Monitoring Arthropods in Azorean Agroecosystems: the project AGRO-ECOSERVICES

Paulo A. V. Borges‡, Rui Nunes‡, Lucas Lamelas-López‡, Enésima Pereira‡, Ricardo Costa‡, Paulo Monjardino§, David H. Lopes‡, António Onofre Soares‖, Artur Gil¶, François Rigal#,
Marco Ferrante‡, Gabor L. Lövei‡,‡

‡ cE3c – Centre for Ecology, Evolution and Environmental Changes/ Azorean Biodiversity Group and Universidade dos Açores, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroísmo, Azores, Portugal
§ CBA – Biotechnology Centre of Açores, University of Azores, Faculty of Agriculture and Environment, Rua Capitão João D’Avila, 9701-042, Angra do Heroísmo, Azores, Portugal
‖ cE3c – Centre for Ecology, Evolution and Environmental Changes/ Azorean Biodiversity Group and Universidade dos Açores, Faculty of Sciences and Technology, 9500-321, Ponta Delgada, Azores, Portugal
¶ IVAR - Research Institute in Volcanology and Risk Assessment | University of the Azores, Ponta Delgada, Azores, Portugal
CNRS - Université de Pau et des Pays de l’Adour, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, E2S, UMR 5254, BP, Pau Cedex, Pau, France
‖ Department of Agroecology, Aarhus University, Flakkebjerg Research Centre, Forsøgsvej 1, DK-4200, Slagelse, Denmark

Corresponding author: Paulo A. V. Borges (paulo.av.borges@uac.pt)
Academic editor: Rui Elias
Received: 03 Nov 2021 | Accepted: 17 Nov 2021 | Published: 09 Dec 2021
Citation: Borges PAV, Nunes R, Lamelas-López L, Pereira E, Costa R, Monjardino P, Lopes DH, Soares AO, Gil A, Rigal F, Ferrante M, Lövei GL (2021) Monitoring Arthropods in Azorean Agroecosystems: the project AGRO-ECOSERVICES. Biodiversity Data Journal 9: e77548. https://doi.org/10.3897/BDJ.9.e77548

Abstract

Background

The data we present are part of the AGRO-ECOSERVICES project (Assessing ecosystem services and disservices provided by arthropod species in Azorean agroecosystems). The project aims to evaluate the relative importance of native and non-native organisms as ecosystem services (ES) and disservices (ED) providers, by combining novel, direct and quantitative tools for monitoring agro-biodiversity. Ecosystem services include evaluation of natural pest control by predation, seed predation on weed plants, pollination, decomposition and ecosystem disservices, herbivory and seed predation on crop plants. Active Aerial Searching (AAS) (only in maize-fields) and pitfall traps were used to sample the arthropod biodiversity (predatory spiders, true-bugs and beetles and main insect pests).
on four agricultural habitats of Terceira Island, namely citrus orchards, low and high elevation maize fields and vineyards.

New information

We provided an inventory of all arthropods recorded in four Azorean agroecosystems (citrus orchards, low and high elevation maize fields and vineyards) from Terceira Island. A total of 50412 specimens were collected, belonging to four classes, 20 orders, 81 families and 200 identified species of arthropods. A total of 127 species are considered introduced (n = 22646) and 69 native non-endemic (n = 24117). Four endemic species were recorded with very few specimens (n = 14) and 3635 specimens belong to unidentified taxa recorded only at genus or family level. Five species are new records for Terceira Island, with *Lagria hirta* (Linnaeus, 1758) (Coleoptera, Tenebrionidae) being also a new record for the Azores. This publication contributes to a better knowledge of the arthropods communities present in agro-ecosystems of Terceira Island and will serve as a baseline for future monitoring schemes targeting the long-term change in arthropod diversity and abundance.

Keywords

Active Aerial Searching (AAS), citrus, dataset, invertebrates, island diversity, Macaronesia, maize, occurrence, orchards, pitfall traps, vineyards.

Introduction

Land-use transformation with associated habitat degradation, is one of the major drivers of biodiversity loss worldwide (Vitousek et al. 1997, Barnosky et al. 2011, Borges et al. 2019a, Harvey et al. 2020). In the case of Azores, since Portuguese colonisation in the 15th century, the original landscape has suffered severe transformations, with the replacement of native forests by exotic tree plantations, pastures, agricultural and urban areas (Gaspar et al. 2008, Borges et al. 2019a, Borges et al. 2019b, Norder et al. 2020).

However, although exotic species have a competitive advantage to colonise new human-altered habitats given that their tolerance to wide range of environmental conditions and habitats (e.g. generalist behaviour) (Rigal et al. 2017), these non-natural habitats also offer opportunities to native biota (McKinney and Lockwood 1999, Blackburn et al. 2004, Sax 2008, Tsafack et al. 2021).

Many species were also introduced because of human settlement (Frutuoso 2011). The current remnants of native forests represent less than 5% of the total area of the archipelago (Gaspar et al. 2008). Currently, the Azorean economy depends greatly on agroecosystems (Gil et al. 2017). Agroecosystems with the largest area are pastures, followed by maize, with the two crops usually grown in rotation. Due to their long co-existence and close taxonomic relationship between pastures and maize (both are grasses), several pests interact with both crops all year round (P. Monjardino, pers.
observ.). These interactions need to be further understood, because of ongoing current significant yield losses in both agroecosystems (P. Monjardino, pers. observ.). Vineyards and citrus orchards are amongst the most important crops on the Azores. Both crops have significant pest and disease problems due to the benign environmental conditions and to improper cultural practices (Lopes et al. 2009).

Azorean terrestrial arthropod fauna have been extensively surveyed in the last two decades. Although most surveys have been conducted in native forests (e.g. Borges et al. 2005, Ribeiro et al. 2005, Borges et al. 2006), several also included anthropogenic habitats, as exotic forest plantations, pastures for cattle grazing and other agricultural areas (Cardoso et al. 2009, Florencio et al. 2015, Rigal et al. 2017, Marcelino et al. 2021, Tsafack et al. 2021).

In 2019 and 2020, we started the project “Assessing Ecosystem Services and Disservices provided by Arthropod species in Azorean Agroecosystems” (AGRO-ECOSERVICES). This project aims to: (i) initiate the monitoring of terrestrial arthropods in agricultural habitats, (ii) implement novel, direct and quantitative tools to quantify ecosystem services (ES) and disservices (ED) and (iii) evaluate the relative importance of native and non-native organisms as ES/ED providers.

Arthropods, especially insects, support ecosystem stability and functioning (Allan et al. 2015, Bennett et al. 2015). Due to their high species richness and abundance, as well as their importance for several ES and ED (Zhang et al. 2007, Ameixa et al. 2018, Noriega et al. 2018, Ecosystem Services 2019), arthropods play a key role in all terrestrial ecosystems. Evaluating the total effect of arthropods that are providers of both ES and ED is challenging (Shapiro and Báldi 2014). For example, when they prey on pests, generalist predators provide biological control, an ES valued at $400 billion/y (Costanza et al. 1997), while their intraguild predation (Lövei and Ferrante 2017) constitutes an ED. A second great challenge is to assess the role of native vs. exotic biodiversity in providing ES/ED, which is essential to manage sustainable landscapes and an important frontier in theoretical ecology. Exotic species often alter ecological processes and cause severe biodiversity loss (Simberloff et al. 2013). Nevertheless, these species may also provide ES: alien plants can increase microbial activity (Vilà et al. 2011), introduced natural enemies can control pests (Heimpel and Mills 2017) or provide ecological “insurance” after the decline of native species (Stavert et al. 2018).

Oceanic islands have a high proportion of endemic species, being very sensitive to biotic disturbance, such as invasions and land-use changes (Stachowicz and Tilman 2005, Kier et al. 2009) - the perfect setting to test the response of ecological communities to disturbance and its effects on ecosystem processes. Several factors contribute to arthropod decline in the Azores (Borges et al. 2019b), including native forest destruction (Triantis et al. 2010), lack of connectivity between forest patches (Aparício et al. 2018) and climate change (Ferreira et al. 2016).

This publication contributes not only to a better knowledge of the arthropods present in agroecosystems of Terceira Island, but will also contribute as a baseline for future
monitoring schemes in Azorean agroecosystems targeting the long-term change in arthropod diversity and abundance.

General description

Purpose: To provide an arthropod inventory of agro-ecosystems from Terceira Island (Azores), based on data collected in four agro-ecosystems, citrus orchards, low and high elevation maize fields and vineyards. This study will contribute to a better knowledge of the arthropods present in agro-ecosystems and will serve as a baseline for future monitoring schemes in Azorean agro-ecosystems targeting the long-term change in arthropod diversity and abundance.

Additional information: The study was conducted between July 2019 and September 2021 in Terceira Island. Active Aerial Searching (only in maize-fields) and pitfall traps were used to sample the arthropod biodiversity (pollinators and predatory spiders, true-bugs and beetles and main insect pests) on four agricultural habitats, namely citrus orchards, vineyards, low elevation maize fields and high elevation maize fields. Information on ecosystem services (ES) and disservices (ED) providers will be the subject of another publication.

Project description

Title: AgEcSe- AGRO-ECOSERVICES - Assessing ecosystem services and disservices provided by arthropod species in Azorean Agroecosystems (ACORES-01-0145-FEDER-000073)

Personnel: Project leaders: Paulo A. V. Borges and António Onofre Soares

Team members: Marco Ferrante, Artur Gil, Marco Girardello, David H. Lopes, Paulo Monjardino, Rui Nunes.

External Consultants: Sven Bacher, Gabor Lövei, François Rigal

Parataxonomists: Jonne Bonnet, Ricardo Costa, Rui Nunes

Darwin Core Database management: Paulo A. V. Borges, Lucas Lamelas-López, Enésima Pereira

Study area description: Terceira Island (area: 400.2 km²; elevation: 1021 m a.s.l.) is located in the central group of the Azores Archipelago (North Atlantic), roughly at 38.638 N and -27.0150 W (Fig. 1). Similar to all islands in Azores, Terceira is volcanic and of recent origin (0.4 Ma, see Florencio et al. 2021). The climate is temperate oceanic, with regular and abundant rainfall, high levels of relative humidity and persistent winds, mainly during the winter and autumn seasons.
Design description: The sampled habitats included citrus orchards, vineyards and low elevation maize fields, all located at low elevation areas and high elevation maize fields (Fig. 2, Table 1). The two types of maize fields differ not only in the elevation, but principally in crop management, the low elevation being an annual rotation of maize and Italian ryegrass and the high elevation (located at intermediate elevation in the Island) being a perennial rotation of maize and perennial ryegrass.

Table 1.
Description of the habitat, locality, elevation and coordinates of the 18 sampled sites on Terceira Island, Azores.

Code Site	Habitat	Location ID	Locality	Elevation (m a.s.l.)	Latitude	Longitude	
C1	Citrus	TER_CITRUS_T1_T206	Pico da Urze	117	38.66989	-27.24047	
C2	Citrus	TER_CITRUS_T2_T207	Qt. Rosário	158	38.68111	-27.26206	
C3	Citrus	TER_CITRUS_T3_T208	S. Bartolomeu	189	38.6827	-27.27555	
C4	Citrus	TER_CITRUS_T4_T209	S. Bento	66	38.66287	-27.21019	
C5	Citrus	TER_CITRUS_T5_T210	S. Carlos	69	38.6625	-27.24961	
ML1	Maize	TER_MAIZE_LOW_T2_T221	Atalaia	111	38.65631	-27.18368	
ML2	Maize	TER_MAIZE_LOW_T1_T220	Cinco Ribeiras	90	38.6758	-27.30998	
ML3	Maize	TER_MAIZE_LOW_T3_T222	S. Mateus	42	38.66304	-27.28962	
ML4	Maize	TER_MAIZE_LOW_T4_T223	Universidade dos Açores - Campus do Pico da Urze	36	38.659	-27.23555	
Code	Site	Habitat	Location ID	Locality	Elevation (m a.s.l.)	Latitude	Longitude
------	------	---------	----------------	--------------	---------------------	----------	-----------
ML5	Maize	Low	TER_MAIZE_LOW_T224	Vinha Brava	167	38.67593	-27.21684
MH1	Maize	High	TER_MAIZE_HIGH_T1_T215	Casa da Mina	314	38.68602	-27.1974
MH2	Maize	High	TER_MAIZE_HIGH_T2_T216	Escampadouro	309	38.70159	-27.2852
MH3	Maize	High	TER_MAIZE_HIGH_T3_T217	Granja	385	38.70083	-27.17019
MH4	Maize	High	TER_MAIZE_HIGH_T4_T218	Juncal	321	38.69996	-27.12048
MH5	Maize	High	TER_MAIZE_HIGH_T5_T219	Poejo	275	38.6768	-27.14616
V1	Vineyards		TER_VINE_F1_T211	Biscoitos Vinha_F1	23	38.79793	-27.25567
V2	Vineyards		TER_VINE_F2_T212	Biscoitos Vinha_F2	52	38.79664	-27.26302
V3	Vineyards		TER_VINE_F3_T213	Biscoitos Vinha_F3	28	38.80066	-27.26842

Funding: This work was financed by FEDER (European Regional Development Fund) in 85% and by Azorean Public funds by 15% through the Operational Program Azores 2020, under the project AGRO-ECOSERVICES (ACORES-01-0145-FEDER-000073).

Figure 2. Map of the study area (Terceira Island, Azores). Codes of sites as in Table 1. Maize fields are located in intensive pasture since they are only operating in summer, with the two crops usually grown in rotation (Land-use data extracted from Cruz et al. 2007).
Sampling methods

Study extent: The study was conducted in four agro-ecosystems of Terceira Island (Fig. 2): citrus orchards (Fig. 3), vineyards (Fig. 4), low elevation maize fields (Fig. 5) and high elevation maize fields (Fig. 6). Five citrus orchards were selected, located at low elevation areas. Ten maize fields, five of which are located inland at higher elevation and five other closer to the coast in low elevation areas. Finally, three vineyards located on the coast, north of the Island were sampled (see also Table 1).

Figure 3. doi
A citrus orchard in Terceira Island (C5 - S. Carlos) (Credit: Rui Nunes).

Figure 4. doi
The vineyards in Terceira Island (V3 - Biscoitos) (Credit: Rui Nunes).
Sampling description: Active Aerial Searching (AAS) and pitfall traps were used to sample arthropod diversity. The following main functional groups were collected: predatory arthropods (mostly spiders, true-bugs, beetles and bugs), phytophagous insects and saprophagous arthropods (mostly millipedes and beetles).

AAS consists in picking arthropods found above knee-level by hand, using forceps, pooter or brush and immediately transferring them into vials containing ethanol 96%. It was implemented in five low- and five high-elevation maize fields. Four 1-hour samples were
obtained during the night when the main predators are more active. Sampling was performed in the summer when the maize plants were at maximum development. Samples were taken by Paulo A. V. Borges and Rui Nunes (two hours each per site).

Pitfall traps were standard 330 ml plastic cups, 8 cm wide at the top and approximately 12 cm deep - European standard plastic cups (Fig. 7), partially filled with propylene glycol. The traps were deployed for 14 consecutive days.

In each of five citrus orchards and six (of ten available) maize fields (three in low- and three in high-elevation areas), 16 pitfall traps organised in sets of two connected with a grid (Fig. 8) were deployed, along a transect, from the point closest to the crop edge. The eight sets of two pitfall traps were separated by at least 10 metres. A total of 80 and 96 pitfall traps were deployed on citrus orchards and maize fields, respectively.

For vineyards, a different strategy had to be followed since Azorean vineyards are formed by small rocky enclosures (between 6-20 m²) (Fig. 4) and pitfall traps were deployed in the interior of these enclosures. Following a transect, a total of 144 individual pitfall traps were deployed in three vineyards (48 in each site).

Sampling methods used in citrus and vineyards (pitfall traps) only provide information on the soil-related arthropods; most of crop insect pests (canopy associated species) are not sampled by this sampling technique.

Quality control: All sampled specimens were first sorted by trained paratokonomists (Jonne Bonnet, Ricardo Costa, Rui Nunes). All specimens were allocated to a taxonomic species by Paulo A. V. Borges. Juveniles were also included in the data presented in this paper since the low diversity of species in Azores allows their reliable identification.
Colonisation status for each identified species is based on Borges et al. 2010 (END - Endemic; NAT - native non-endemic; INTR - introduced).

Geographic coverage

Description: Terceira Island, Azores, Portugal.

Coordinates: 38.638 and 38.814 Latitude; -27.394 and -27.0150 Longitude.
Taxonomic coverage

Description: The following classes and orders of arthropods are covered: Arachnida: Araneae, Opiliones, Pseudoscorpiones; Chilopoda: Geophilomorpha, Lithobiomorpha, Scolopendromorpha, Scutigeromorpha; Diplopoda: Chordeumatida, Julida, Polydesmida; and Insecta: Archaeognatha, Coleoptera, Dermaptera, Hemiptera, Hymenoptera, Lepidoptera, Neuroptera, Orthoptera, Psocoptera, Thysanoptera.

Taxa included:

Rank	Scientific Name	Common Name
class	Araneae	Spiders
class	Opiliones	Opilions
class	Pseudoscorpiones	Pseudoscorpions
class	Diplopoda	Millipedes
class	Chilopoda	Centipedes
order	Archaeognatha	Bristletails
order	Dermaptera	Earwigs
order	Orthoptera	Crickets, Grasshoppers
order	Psocoptera	Barklice
order	Thysanoptera	Thrips
order	Hemiptera	Bugs
order	Neuroptera	Lacewings
order	Coleoptera	Beetles
order	Hymenoptera	Ants
order	Lepidoptera	Moths

Traits coverage

No data available.

Temporal coverage

Notes: 16 July 2019 to 9 June 2021
Collection data

Collection name: Entomoteca Dalberto Teixeira Pombo at University of Azores

Collection identifier: DTP

Specimen preservation method: All specimens were preserved in 96% ethanol.

Curatorial unit: Dalberto Teixeira Pombo insect collection at the University of the Azores (Curator: Paulo A. V. Borges)

Usage licence

Usage licence: Creative Commons Public Domain Waiver (CC-Zero)

Data resources

Data package title: Monitoring Arthropods in Azorean Agroecosystems: the project AGRO-ECOSERVICES (AgEcSe)

Resource link: https://www.gbif.org/dataset/822f3765-6950-40c5-9353-1f335599007c

Alternative identifiers: https://doi.org/10.15468/mvtmyx

Number of data sets: 1

 Data set name: Monitoring Arthropods in Azorean Agroecosystems: the project AGRO-ECOSERVICES

 Download URL: http://ipt.gbif.pt/ipt/resource?r=arthropods_agroecoservices

 Data format: Darwin Core Archive

 Data format version: version 1.10

Description: The dataset is available on the Global Biodiversity Information Facility platform, GBIF (Borges et al. 2021). The following data table includes all the records for which a taxonomic identification of the species was possible. The dataset submitted to GBIF is structured as a sample event dataset, with two tables: event (as core) and occurrences (abundance data). The data in this sampling event resource have been published as a Darwin Core Archive (DwCA), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data file contains 358 records (eventID) and the occurrences file 5134 records (occurrenceID). This IPT (Integrated Publishing Toolkit) archives the data and thus serves as the data repository. The data and resource metadata are available for download from Borges et al. (2021).
Column label	Column description
Table of Sampling Events	Table with sampling events data (beginning of table).
eventID	Identifier of the events, unique for the dataset.
stateProvince	Name of the region of the sampling site.
islandGroup	Name of archipelago.
island	Name of the island.
country	Country of the sampling site.
countryCode	ISO code of the country of the sampling site.
municipality	Municipality of the sampling site.
decimalLongitude	Approximate centre point decimal longitude of the field site in GPS coordinates.
decimalLatitude	Approximate centre point decimal latitude of the field site in GPS coordinates.
geodeticDatum	The ellipsoid, geodetic datum or spatial reference system (SRS) upon which the
	geographic coordinates given in decimalLatitude and decimalLongitude are based.
coordinateUncertaintyInMetres	Uncertainty of the coordinates of the centre of the sampling plot.
coordinatePrecision	Precision of the coordinates.
georeferenceSources	A list (concatenated and separated) of maps, gazetteers or other resources used to
	georeference the Location, described specifically enough to allow anyone in the
	future to use the same resources.
locationID	Identifier of the location.
fieldNumber	Code of the sample
locality	Name of the locality.
minimumElevationInMetres	The lower limit of the range of elevation (altitude, usually above sea level), in
	metres.
habitat	The habitat of the sample.
year	Year of the event.
month	Month of the event.
day	Day of the event.
samplingEffort	The amount of effort expended during an Event.
eventDate	Date or date range the record was collected.
samplingProtocol	The sampling protocol used to capture the species.
Occurrence Table	Table with species abundance data (beginning of new table).
eventID	Identifier of the events, unique for the dataset.
type	Type of the record, as defined by the Public Core standard.
Field	Description
---------------------------	---
licence	Reference to the licence under which the record is published.
institutionID	The identity of the institution publishing the data.
institutionCode	The code of the institution publishing the data.
collectionID	The identity of the collection publishing the data.
collectionCode	The code of the collection where the specimens are conserved.
datasetName	Name of the dataset.
basisOfRecord	The nature of the data record.
occurrenceID	Identifier of the record, coded as a global unique identifier.
recordedBy	A list (concatenated and separated) of names of people, groups or organisations who performed the sampling in the field.
identifiedBy	A list (concatenated and separated) of names of people, groups or organisations who assigned the Taxon to the subject.
dateIdentified	The date on which the subject was determined as representing the Taxon.
organismQuantity	A number or enumeration value for the quantity of organisms.
organismQuantityType	The type of quantification system used for the quantity of organisms.
sex	The sex and quantity of the individuals captured.
lifeStage	The life stage of the organisms captured.
scientificName	Complete scientific name including author and year.
scientificNameAuthorship	Name of the author of the lowest taxon rank included in the record.
kingdom	Kingdom name.
phylum	Phylum name.
class	Class name.
order	Order name.
family	Family name.
genus	Genus name.
specificEpithet	Specific epithet.
infraspecificEpithet	Infrapecific epithet.
taxonRank	Lowest taxonomic rank of the record.
establishmentMeans	The process of establishment of the species in the location, using a controlled vocabulary: 'native', 'introduced', 'endemic', "unknown".
identificationRemarks	Information about morphospecies identification (code in Dalberto Teixeira Pombo Collection).
Additional information

We collected a total of 50412 specimens, belonging to four classes, 20 orders and 81 families of arthropods. A total of 127 species are considered introduced (n = 22646) and 69 native non-endemic (n = 24117). Four endemic species were recorded with very few specimens (n = 14) and 3635 specimens belong to unidentified taxa recorded only at genus or family level.

Arachnids belonged to three orders, Araneae being the most abundant (95% of arachnid specimens belonged to this order). Chilopoda and Diplopoda classes recorded four and three orders, being Lithobiomorpha and Julida, respectively, the most abundant. Insecta was the most abundant class (n = 39590) recorded in the studied agro-ecosystems, with Coleoptera the most abundant order (38% of specimens).

A total of 200 species were identified (Table 2) and an additional 73 morphospecies need proper identification, totalling potentially 273 species (see Suppl. material 1).

class	order	family	scientificName	Origin	VINE	CITRUS	MAIZE L	MAIZE H	Total
Arachnida	Araneae	Agelenidae	Tegenaria domestica (Clerck, 1757)	INTR	1		1		
Arachnida	Araneae	Agelenidae	Tegenaria pagana C.L. Koch, 1840	INTR	3		2		5
Arachnida	Araneae	Araneidae	Agalenatae redi (Scopoli, 1763)	INTR	7		2		9
Arachnida	Araneae	Araneidae	Araneus angulatus Clerck, 1757	INTR	30				30
Arachnida	Araneae	Araneidae	Argiope bruennichi (Scopoli, 1772)	NAT	37	50	87		
Arachnida	Araneae	Araneidae	Ghibaranea occidentalis Wunderlich, 1989	END	1				
Arachnida	Araneae	Araneidae	Mangora acalypha (Walckenaer, 1802)	INTR	1				1
Arachnida	Araneae	Araneidae	Neoscona crucifera (Lucas, 1838)	INTR	2	2	4		
Arachnida	Araneae	Araneidae	Zygciella x-notata (Clerck, 1757)	INTR	6	12	18		
Arachnida	Araneae	Clubionidae	Clubiona terestris Westring, 1851	INTR	2				2

Table 2.

Inventory of arthropods collected in four agroecosystems in Terceira Island (Azores, Portugal) following an elevation gradient: vineyards (Vine), citrus orchards (Citrus), maize fields at low elevation (Maize L) and at high elevation (Maize H). The list includes only the specimens identified at species-level. Class, order, family, scientific name follow alphabetical sequence. Colonisation status based on Borges et al. 2010 (Origin: END - Endemic; NAT - native non-endemic; INTR - introduced) and abundance per habitat type are provided. Bold scientific names constitute new records for Terceira Island. * - New record for Azores.
class	order	family	scientificName	Origin	VINE	CITRUS	MAIZE L	MAIZE H	Total
Arachnida	Araneae	Clubionidae	*Porrhoclubiona decora* (Blackwall, 1859)	NAT	25	4	29		
Arachnida	Araneae	Clubionidae	*Porrhoclubiona genevensis* (L. Koch, 1866)	INTR	1	1			
Arachnida	Araneae	Dictynidae	*Lathys dentichelis* (Simon, 1883)	NAT	1	1			
Arachnida	Araneae	Dictynidae	*Nigma puella* (Simon, 1870)	INTR	3	3			
Arachnida	Araneae	Dysderidae	*Dysdera crocata* C. L. Koch, 1838	INTR	4	70	20	15	109
Arachnida	Araneae	Gnaphosida	*Marinarozelotes lyonneti* (Audouin, 1828)	INTR	15	15			30
Arachnida	Araneae	Linyphiidae	*Agyneta decora* (O. Pickard-Cambridge, 1871)	INTR	1	1			
Arachnida	Araneae	Linyphiidae	*Agyneta fusciapta* (C. L. Koch, 1836)	INTR	28	7	396	18	449
Arachnida	Araneae	Linyphiidae	*Erigone atra* Blackwall, 1833	INTR	1	3	3	13	20
Arachnida	Araneae	Linyphiidae	*Erigone autumnalis* Emerton, 1882	INTR	1	309	333	95	738
Arachnida	Araneae	Linyphiidae	*Erigone dentipalpis* (Wider, 1834)	INTR	2	176	484		662
Arachnida	Araneae	Linyphiidae	*Mermessus bryantae* (Ivie & Barrows, 1935)	INTR	2	3	2	7	
Arachnida	Araneae	Linyphiidae	*Mermessus tradecorum* (Berland, 1932)	INTR	117	7	53	177	
Arachnida	Araneae	Linyphiidae	*Nerinee clahtrata* (Sundevall, 1830)	INTR	3	2	2	7	
Arachnida	Araneae	Linyphiidae	*Oedothorax fuscus* (Blackwall, 1834)	INTR	4	80	577	661	
Arachnida	Araneae	Linyphiidae	*Ostearius melanopygius* (O. Pickard-Cambridge, 1880)	INTR	1	6	17	24	
Arachnida	Araneae	Linyphiidae	*Palliduphantes schmitzi* (Kulczynski, 1899)	NAT	7	1	1	2	11
Arachnida	Araneae	Linyphiidae	*Pelecopis parallelis* (Wider, 1834)	INTR	32	1	33		
Arachnida	Araneae	Linyphiidae	*Prinerigone vagans* (Audouin, 1826)	INTR	130	229	359		
Arachnida	Araneae	Linyphiidae	*Tenuiphantes tenuis* (Blackwall, 1852)	INTR	132	104	177	413	
Arachnida	Araneae	Lycosidae	*Arctosa perita* (Latreille, 1799)	INTR	1	1			
class	order	family	scientificName	Origin	VINE	CITRUS L	MAIZE H	Total	
-----------	-----------	-------------	--	--------	------	----------	---------	-------	
Arachnida	Araneae	Lycosida	*Pardosa acorensis* Simon, 1883	END	6	3	9		
Arachnida	Araneae	Oecobiidae	*Oecobius navus* Blackwall, 1859	INTR	5	5	10		
Arachnida	Araneae	Salticidae	*Chalciscorpus infimus* (Simon, 1868)	INTR	14		14		
Arachnida	Araneae	Salticidae	*Helophasus kochii* Simon, 1868	INTR	1		1		
Arachnida	Araneae	Salticidae	*Macaroenis diligens* (Blackwall, 1867)	NAT	1	2	3		
Arachnida	Araneae	Salticidae	*Pseudou phosphorys vafra* (Blackwall, 1867)	INTR	3		3		
Arachnida	Araneae	Salticidae	*Salticus mutabilis* Lucas, 1846	INTR	1		1		
Arachnida	Araneae	Salticidae	*Synageles venator* (Lucas, 1836)	INTR	1		1		
Arachnida	Araneae	Scytolitidae	*Scytodes thoracita* (Latreille, 1802)	INTR	1		1		
Arachnida	Araneae	Segestriidae	*Segestria florentina* (Rossi, 1790)	INTR	1		1		
Arachnida	Araneae	Tetragenathidae	*Pachygnatha degeeri* Sundevall, 1830	INTR	1	55	56		
Arachnida	Araneae	Theridiidae	*Cryptacaea blatta* (Urquhart, 1886)	INTR	5	2	11	18	
Arachnida	Araneae	Theridiidae	*Neottiura bimaculata* (Linnaeus, 1767)	INTR	1		1		
Arachnida	Araneae	Theridiidae	*Parasteatoda tepidariorum* (C. L. Koch, 1841)	INTR	8	69	77		
Arachnida	Araneae	Theridiidae	*Steatoda grossa* (C. L. Koch, 1838)	INTR	16	71	87		
Arachnida	Araneae	Theridiidae	*Steatoda nobilis* (Thorell, 1875)	INTR	2		2		
Arachnida	Araneae	Theridiidae	*Theridion melanostictum* O. Pickard-Cambridge, 1876	INTR	1	3	4		
Arachnida	Araneae	Theridiidae	*Theridion musivivum* Schmidt, 1956	NAT	1		1		
Arachnida	Araneae	Thomisidae	*Xysticus nubilus* Simon, 1875	INTR	3		3		
Arachnida	Araneae	Zodariidae	*Zodarion atlanticum* Pekár & Cardoso, 2005	INTR	934	7	14	1	956
Arachnida	Opiliones	Phalangiidae	*Homalenotus coriaceus* (Simon, 1879)	NAT	1	156	20	177	
Class	Order	Family	Scientific Name	Origin	VINE	Citrus	Maize	MAIZE	Total
---------------	--------------	--------------------	--	--------	------	--------	-------	-------	-------
Arachnida	Opiliones	Phalangiidae	Leiobunum blackwalli Meade, 1961	NAT	7	12	19		
Arachnida	Pseudoscorpiones	Chthoniidae	Chthonius ischnocheles (Hermann, 1804)	INTR	8	10	4	22	
Arachnida	Pseudoscorpiones	Chthoniidae	Ehippiumothionis tetrachelatus (Preyssler, 1790)	INTR	18	9	27		
Arachnida	Pseudoscorpiones	Neobisiidae	Neobliaum maroccanum Beier, 1930	INTR	1	2	3		
Chilopoda	Geophilomorpha	Linotaeniidae	Strigamia crassipes (C.L. Koch, 1835)	NAT	2	2	2		
Chilopoda	Lithobiomorpha	Lithobiidae	Lithobius pilicornis pilicornis Newport, 1844	NAT	15	4	1	1	21
Chilopoda	Scolopendromorpha	Cryptopidae	Cryptops hortenais (Donovan, 1810)	NAT	6	1	2	9	
Chilopoda	Scutigeromorpha	Scutigeridae	Scutigera coleoptrata (Linnaeus, 1758)	INTR	34	205	171	27	437
Diplopoda	Chordeumatida	Haplobainosomatida	Haplobainosoma lusitanum Verhoeff, 1900	INTR	6	6	6		
Diplopoda	Julida	Blaniulidae	Blaniulus gutulatus (Fabricius, 1798)	INTR	1	1	1		
Diplopoda	Julida	Blaniulidae	Nopoiulus kochii (Gervais, 1847)	INTR	3	3	3		
Diplopoda	Julida	Blaniulidae	Proteroiulus fuscus (Am Stein, 1857)	INTR	3	3	3		
Diplopoda	Julida	Julidae	Brachyiulus pusillus (Leach, 1814)	INTR	138	138			
Diplopoda	Julida	Julidae	Cylindrocilcius testistriatus (Curtis, 1845)	INTR	1	1	1		
Diplopoda	Julida	Julidae	Cylindrociulus propinquis (Porat, 1870)	INTR	4	14	18		
Diplopoda	Julida	Julidae	Ommatoiulus moreleti (Lucas, 1860)	INTR	221	1740	35	217	2213
Diplopoda	Polydesmida	Polydesmida	Brachydemos superus Latzel, 1884	INTR	1	1	1		
Diplopoda	Polydesmida	Polydesmida	Polydesmus coriaceus Porat, 1870	INTR	8	470	12	53	543
Insecta	Archaeognatha	Machilidae	Dilta saxicola (Womersley, 1930)	NAT	3	4	7		
class	order	family	scientificName	Origin	VINE	CITRUS	MAIZE	MAIZE	Total
---------------	----------------	---------------	---	--------	------	--------	-------	-------	-------
Insecta	Coleoptera	Anthicidae	*Hirticollis quadriguttatus* (Rossi, 1792)	NAT	1	166	176		343
Insecta	Coleoptera	Apionidae	*Aspidapion radiolus* (Marsham, 1802)	NAT	1	1	2		2
Insecta	Coleoptera	Apionidae	*Ischnopterapion vires* (Herbst, 1797)	INTR	6	2	8		8
Insecta	Coleoptera	Carabidae	*Acupalpus dubius* Schilsky, 1888	NAT	37	8	45		45
Insecta	Coleoptera	Carabidae	*Acupalpus flavicollis* (Sturm, 1825)	NAT	47	1	48		48
Insecta	Coleoptera	Carabidae	*Agonum muehleri muehleri* (Herbst, 1784)	INTR	38	38			76
Insecta	Coleoptera	Carabidae	*Amara aenea* (De Geer, 1774)	INTR	1	6	15	22	38
Insecta	Coleoptera	Carabidae	*Anisodactylus birotatus* (Fabricius, 1787)	INTR	1	3	65	69	69
Insecta	Coleoptera	Carabidae	*Calosoma olivieri* Dejean, 1831	NAT	14	41	55		55
Insecta	Coleoptera	Carabidae	*Harpalus distinguendus distinguendus* (Duftschmid, 1812)	INTR	1	3	40	44	44
Insecta	Coleoptera	Carabidae	*Laemostenus complanatus* (Dejean, 1828)	INTR	5	41	1	47	47
Insecta	Coleoptera	Carabidae	*Microlestes negrita negrita* (Wollaston, 1854)	NAT	6	6			6
Insecta	Coleoptera	Carabidae	*Notophilius quadripunctatus* Dejean, 1826	NAT	1	1			1
Insecta	Coleoptera	Carabidae	*Ocys harpaloides* (Audinet-Serville, 1821)	NAT	5	5			5
Insecta	Coleoptera	Carabidae	*Paranchus abipes* (Fabricius, 1796)	INTR	1	16	17		17
Insecta	Coleoptera	Carabidae	*Pseudophonus rufipes* (De Geer, 1774)	INTR	7	74	55	6995	7131
Insecta	Coleoptera	Carabidae	*Pterostichus vernalis* (Panzer, 1796)	INTR	25	25			50
Insecta	Coleoptera	Chrysomelidae	*Chaetocnema hortensis* (Fourcroy, 1785)	INTR	1	2	3		3
Insecta	Coleoptera	Chrysomelidae	*Chrysolina bankii* (Fabricius, 1775)	NAT	10	10			10
Insecta	Coleoptera	Chrysomelidae	*Epitrix cucumeris* (Harris, 1851)	INTR	53	4	57		57
class	order	family	scientificName	Origin	VINE	CITRUS	MAIZE L	MAIZE H	Total
----------	-------------	-------------------	---	--------	------	--------	---------	---------	-------
Insecta	Coleoptera	Chrysomelidae	Longitarsus kutcherai (Rye, 1872)	INTR	1				1
Insecta	Coleoptera	Coccinellidae	Scymniscus helgae (Fürsch, 1965)	INTR	1				1
Insecta	Coleoptera	Corylophidae	Sericoctus lateralis (Gyllenhal, 1827)	INTR	15	61	268	96	440
Insecta	Coleoptera	Curculionidae	Calacalles subcarinatus (Israelson, 1984)	END	1				1
Insecta	Coleoptera	Curculionidae	Calthormiocerus curvipes (Wollaston, 1854)	NAT	18				18
Insecta	Coleoptera	Curculionidae	Coccotrypes carpophagus (Hornung, 1842)	INTR	71	3	2		76
Insecta	Coleoptera	Curculionidae	Naupactus cervinus (Boheman, 1840)	INTR	4				4
Insecta	Coleoptera	Curculionidae	Orthochaetes insignis (Aubé, 1863)	NAT	1	21			22
Insecta	Coleoptera	Curculionidae	Otiorrhynchus crinitus (Gyllenhal, 1834)	INTR	5				5
Insecta	Coleoptera	Curculionidae	Otiorrhynchus rugosostriatus (Goeze, 1777)	INTR	4	1			5
Insecta	Coleoptera	Curculionidae	Pseudophloeophagus tenax Wollaston, 1854	NAT	2				2
Insecta	Coleoptera	Curculionidae	Xyleborinus alni (Nijima, 1909)	INTR	1				1
Insecta	Coleoptera	Dryophthoridae	Cosmopolites sordidus (Germar, 1824)	INTR	1				1
Insecta	Coleoptera	Dryophthoridae	Sphenophorus abbreviatus (Fabricius, 1787)	INTR	4	2	51	57	
Insecta	Coleoptera	Elateridae	Aeolus melliculus moreleti Tamier, 1860	INTR	8				8
Insecta	Coleoptera	Elateridae	Heteroderes azoricus (Tamier, 1860)	END	2	1			3
Insecta	Coleoptera	Elateridae	Heteroderes vagus Candèze, 1893	INTR	3	13			16
Insecta	Coleoptera	Elateridae	Melanotus dichrous (Erichson, 1841)	INTR	14				14
Insecta	Coleoptera	Histeridae	Caroinops pumilio (Erichson, 1834)	INTR	1				1
class	order	family	scientificName	Origin	VINE	CITRUS	MAIZE L	MAIZE H	Total
----------------	------------	--------------	--	--------	------	--------	---------	---------	-------
Insecta	Coleoptera	Hydrophiidae	Sphaeridium bipustulatum Fabricius, 1781	INTR	1	1	2		
Insecta	Coleoptera	Latridiidae	Cartodore nodifer (Westwood, 1839)	INTR	2	1	3		
Insecta	Coleoptera	Leiodidae	Catops coracinus Kellner, 1846	NAT	1	1			
Insecta	Coleoptera	Malachiidae	Altalus lusitanicus lusitanicus Erichson, 1840	NAT	2	2			
Insecta	Coleoptera	Mycetophagidae	Litargus baleatus Le Conte, 1856	INTR	1	1	2		
Insecta	Coleoptera	Mycetophagidae	Typhaea stercorea (Linnaeus, 1758)	INTR	1	642	5	648	
Insecta	Coleoptera	Nilidulidae	Carpophilus fumatus Boheman, 1851	INTR	1	1			
Insecta	Coleoptera	Nilidulidae	Epuraea biguttata (Thunberg, 1784)	INTR	49	22	1	72	
Insecta	Coleoptera	Nilidulidae	Phenolia limbata tibialis (Boheman, 1851)	INTR	15	6	1	1	23
Insecta	Coleoptera	Nilidulidae	Stelidota geminata (Say, 1825)	INTR	128	18	146		
Insecta	Coleoptera	Phalacridae	Stilbus testaceus (Panzer, 1797)	NAT	1	24	1	26	
Insecta	Coleoptera	Ptilidae	Plenidium pusillum (Gyllenhal, 1808)	INTR	4	6	2	12	
Insecta	Coleoptera	Scarabaeidae	Calamosternus granarius (Linnaeus, 1767)	INTR	7	7			
Insecta	Coleoptera	Scarabaeidae	Onthophagus vacca (Linnaeus, 1767)	INTR	6	6			
Insecta	Coleoptera	Scarabaeidae	Popillia japonica Newman, 1838	INTR	4	4			
Insecta	Coleoptera	Silvanidae	Cryptamorpha desjardinsii (Guetrin-Méneville, 1844)	INTR	3	3			
Insecta	Coleoptera	Staphylinidae	Aleochara bipustulata (Linnaeus, 1760)	INTR	1	1	4	6	
Insecta	Coleoptera	Staphylinidae	Aloconota sulcifrons (Stephens, 1832)	NAT	11	11			
Insecta	Coleoptera	Staphylinidae	Amischa analis (Gravenhorst, 1802)	INTR	1	8	48	1321	1378
class	order	family	scientificName	Origin	VINE	CITRUS L	MAIZE H	MAIZE	Total
-----------	------------	----------------	--	--------	------	----------	---------	-------	-------
Insecta	Coleoptera	Staphylinidae	*Anotylus nitidifrons* (Wollaston, 1871)	INTR	10	377	4	8	399
Insecta	Coleoptera	Staphylinidae	*Anotylus nitidulus* (Gravenhorst, 1802)	INTR	2				2
Insecta	Coleoptera	Staphylinidae	*Astenus lyonesius* (Joy, 1908)	NAT				10	10
Insecta	Coleoptera	Staphylinidae	*Atheta aeneicollis* (Sharp, 1869)	INTR	1	2			3
Insecta	Coleoptera	Staphylinidae	*Atheta fungi* (Gravenhorst, 1806)	INTR	1	76	66	49	192
Insecta	Coleoptera	Staphylinidae	*Carpelimus corticinus* (Gravenhorst, 1806)	NAT				1	
Insecta	Coleoptera	Staphylinidae	*Coproporus pulchellus* (Erichson, 1839)	INTR	6				6
Insecta	Coleoptera	Staphylinidae	*Cordalia obscura* (Gravenhorst, 1802)	INTR	20	17	256	316	609
Insecta	Coleoptera	Staphylinidae	*Euplectus infimus* Raaffray, 1910	INTR	1	2			3
Insecta	Coleoptera	Staphylinidae	*Gabrius nigritulus* (Gravenhorst, 1802)	INTR			2	3	5
Insecta	Coleoptera	Staphylinidae	*Medon apicalis* (Kraatz, 1857)	NAT	1			1	
Insecta	Coleoptera	Staphylinidae	*Ocypus aethiops* (Waltl, 1835)	NAT	308		1	309	
Insecta	Coleoptera	Staphylinidae	*Ocypus olens* (Müller, 1764)	NAT	59		45	104	
Insecta	Coleoptera	Staphylinidae	*Oligota pumilio* Kiesenwetter, 1858	NAT	7	70	178	12	267
Insecta	Coleoptera	Staphylinidae	*Phloeonomus punctipennis* Thomson, 1867	NAT	1			1	
Insecta	Coleoptera	Staphylinidae	*Proteinus atomarius* Erichson, 1840	NAT	10			10	
Insecta	Coleoptera	Staphylinidae	*Pseudoplectus perplexus* (Jacquelin du Val, 1854)	NAT	22	4	41	67	
Insecta	Coleoptera	Staphylinidae	*Quedius curtipennis* Bernhauer, 1908	NAT				1	1
Insecta	Coleoptera	Staphylinidae	*Rugilus orbiculatus* (Paykull, 1789)	NAT	2	365	757	1124	
Insecta	Coleoptera	Staphylinidae	*Sepedophilus lusitanicus* Hammond, 1973	NAT	4		4		4
Insecta	Coleoptera	Staphylinidae	*Stenomastax maderae* Assing, 2003	NAT	127			127	
class	order	family	scientificName	Origin	VINE	CITRUS	MAIZE L	MAIZE H	Total
----------	-------------	--------------	---	--------	------	--------	---------	---------	-------
Insecta	Coleoptera	Staphylinidae	*Tachyporus chrysomelinus* (Linnaeus, 1758)	INTR	1				1
Insecta	Coleoptera	Staphylinidae	*Tachyporus nitidulus* (Fabricius, 1781)	INTR	1	2	5	3	11
Insecta	Coleoptera	Staphylinidae	*Trichiura immigrata* Lohse, 1984	INTR	3				3
Insecta	Coleoptera	Staphylinidae	*Xantholinus longiventris* Heer, 1839	INTR	3	1			4
Insecta	Coleoptera	Tenebrionidae	*Blaps lethifera* Marsham, 1802	INTR	1				1
Insecta	Coleoptera	Tenebrionidae	*Lagria hirta* (Linnaeus, 1758)	INTR	1				1
Insecta	Dermaptera	Anisolabididae	*Euborellia annulipes* (Lucas, 1847)	INTR	2	116	26	144	
Insecta	Dermaptera	Forficulidae	*Forficula auricularia* Linnaeus, 1758	INTR	2	155	232	389	
Insecta	Hemiptera	Anthocoridae	*Anthocoris nemoralis* (Fabricius, 1794)	NAT	1				1
Insecta	Hemiptera	Anthocoridae	*Orinus laevigatus laevigatus* (Fieber, 1860)	NAT	1				1
Insecta	Hemiptera	Aphididae	*Rhopalosiphoninus latysiphon* (Davidson, 1912)	INTR	6	43	49		49
Insecta	Hemiptera	Cicadellidae	*Anoscopus albifrons* (Linnaeus, 1758)	NAT	1	3	6	10	
Insecta	Hemiptera	Cicadellidae	*Cicadella viridis* (Linnaeus, 1758)	INTR	3				3
Insecta	Hemiptera	Cicadellidae	*Euscelidius variegatus* (Kirschbaum, 1858)	NAT	72	10	82		
Insecta	Hemiptera	Cicadellidae	*Sophonia orientalis* (Matsumura, 1912)	INTR	1				1
Insecta	Hemiptera	Cydnidae	*Geotomus punctulatus* (A. Costa, 1847)	NAT	33	3	3	1	40
Insecta	Hemiptera	Delphacidae	*Kelisia ribaudi* Wagner, 1938	NAT	8	41	116	165	
Insecta	Hemiptera	Delphacidae	*Megamelodes quadrmaculatus* (Signoret, 1865)	NAT	1				1
Insecta	Hemiptera	Lygaeidae	*Aphanus rolandri* (Linnaeus, 1758)	NAT	7	3		10	
Insecta	Hemiptera	Lygaeidae	*Heterogaster urticae* (Fabricius, 1775)	NAT	1				1
class	order	family	scientificName	Origin	VINE	CITRUS	MAIZE L	MAIZE H	Total
-----------	-------------	---------------	---------------------------------	--------	------	--------	---------	---------	-------
Insecta	Hemiptera	Lygaeidae	Kleidocerys ericae (Horváth, 1909)	NAT	1				1
Insecta	Hemiptera	Lygaeidae	Oxyccarenus lavaterae (Fabricius, 1787)	INTR	1				1
Insecta	Hemiptera	Lygaeidae	Scolopostethus decoratus (Hahn, 1833)	NAT	6	33	1	1	41
Insecta	Hemiptera	Microphysidae	Loricula elegantula (Bärensprung, 1858)	NAT	1				1
Insecta	Hemiptera	Miridae	Campyloneura virgula (Herrick-Schaeffer, 1835)	NAT	1				1
Insecta	Hemiptera	Miridae	Heterotoma planicornis (Pallas, 1772)	NAT	4				4
Insecta	Hemiptera	Miridae	Pilophorus confusus (Kirschbaum, 1856)	NAT	1				1
Insecta	Hemiptera	Miridae	Trigonotylus caelestialis (Kirkaldy, 1902)	NAT	493	231	724		
Insecta	Hemiptera	Nabidae	Nabis pseudoferus ibericus Remane, 1962	NAT	7	46	53		
Insecta	Hemiptera	Pentatomidae	Nezara viridula (Linnaeus, 1758)	INTR	5	6	11		
Insecta	Hemiptera	Reduviidae	Empicoris rubromaculatus (Blackburn, 1889)	INTR	10	1	11		
Insecta	Hemiptera	Reduviidae	Ploiaria domestica Scopoli, 1786	INTR	1		1		
Insecta	Hemiptera	Saltidae	Saldula palustris (Douglas, 1874)	NAT	1		1		
Insecta	Hemiptera	Tingidae	Acalypsa parvula (Fallén, 1807)	NAT	5	4	9		
Insecta	Hymenoptera	Apidae	Bombus terrestris (Linnaeus, 1758)	INTR	1	1	2		
Insecta	Hymenoptera	Formicidae	Hypoponera educari (Forel, 1894)	NAT	12	32	37	99	180
Insecta	Hymenoptera	Formicidae	Lasius grandis Forel, 1909	NAT	10283	3058	1444	1091	15876
Insecta	Hymenoptera	Formicidae	Linepithema humile (Mayr, 1868)	INTR	2		2		
Insecta	Hymenoptera	Formicidae	Monomorium carbonarium (Smith, 1858)	NAT	272	367	1	640	
Insecta	Hymenoptera	Formicidae	Tetramorium caespitum (Linnaeus, 1758)	NAT	327	1329	1202	451	3309
Insecta	Hymenoptera	Formicidae	Tetramorium caldarium (Roger, 1857)	INTR	215	135	1	351	
The five most abundant species account for 64% of all identified specimens and include two ant species: *Lasius grandis* Forel, 1909 (Hymenoptera: Formicidae) (n = 15876) and *Tetramorium caespitum* (Linnaeus, 1758) (Hymenoptera: Formicidae) (n = 3309), the ground-beetle *Pseudoophonus rufipes* (De Geer, 1774) (Coleoptera, Carabidae (n = 7131), the millipede (Diplopoda: Julida) *Ommatoiulus moreleti* (Lucas, 1860) (n = 2213) and the cricket (Orthoptera: Gryllidae) *Eumodicogryllus bordigalensis* (Latreille, 1804) (n = 1561).

Within the non-identified morphospecies, the most abundant taxa was a millipede (MF 1006) with 1959 specimens mostly sampled in high elevation maize fields (see Suppl. material 1).

Considering only identified species, a total of 10062 (21.48%), 7622 (16.27%), 16390 (34.99%) and 12763 (27.27%) specimens were collected and identified at species level in citrus orchards, low elevation maize fields, high elevation maize fields and vineyards, respectively (Table 2).

The most abundant species in vineyards were the native ant *Lasius grandis* (n = 10283), the introduced spider *Zodarion atlanticum* Pekár & Cardoso, 2005 (n = 934) and the native ant *Tetramorium caespitum* (n = 327) (Table 2).

The most abundant species in citrus orchards were the native ant *L. grandis* (n = 3058), the introduced millipede *Ommatoiulus moreleti* (n = 1740) and the native ant *T. caespitum* (n = 1329) (Table 2).
The most abundant species in low elevation maize fields were also ants, *L. grandis* (n = 1444) and *T. caespitum* (n = 1202), followed by the exotic beetle *Typhaea stercorea* (Linnaeus, 1758) (n = 642) and the mirid bug *Trigonotylus caelestialium* (Kirkaldy, 1902) (n = 493) (Table 2).

Finally, the most abundant species in high elevation maize fields were the introduced ground-beetle *Pseudoophonus rufipes* (n = 6995), the introduced cricket *Eumodicogryllus bordigalensis* (n = 1559), the two rove-beetles *Amischa analis* (Gravenhorst, 1802) (n = 1321) and *Rugilus orbiculatus* (Paykull, 1789) (757) and also the ant *L. grandis* (n =1091).

Two spiders usually very abundant in intensive pastures are also relatively abundant, *Oedothorax fuscus* (Blackwall, 1834) (n = 577) and *Erigone dentipalpis* (Wider, 1834) (n = 484) (Table 2).

Although the introduced species potentially have the ability to colonise and spread in human-disturbed habitats (e.g. Rigal et al. 2017), our results showed that Azorean agroecosystems represent habitat opportunities for native arthropods. Some of the most abundant species are generalist predators with omnivorous behaviour, like the ants and the ground-beetle *P. rufipes*. Remarkable was the high abundance of the predatory spider *Z. atlanticum* in vineyards that feed on ants and may act as an ED provider. Most other predators potentially provide an ES to the Azorean agroecosystem habitats, particularly in maize fields and vineyards, through biological control of pests (e.g. Heimpel and Mills 2017). Introduced species can also affect native species of arthropods, for example, through opportunistic predation. However, introduced species may also supplement the functional traits lost after the decline of native species in these habitats (e.g. Stavert et al. 2018).

Five species are new records for Terceira Island: three beetles (Coleoptera), one millipede (Diplopoda: Julida) and one true bug (Hemiptera). The new beetle records included one specimen sampled of *Lagria hirta* (Linnaeus, 1758), eight of *Ischnopterapion virens* (Herbst, 1797) and six of *Microlestes negrita negrita* (Wollaston, 1854). All these individuals were collected in maize fields. The new millipede record included three specimens of *Nopoiulus kochii* (Gervais, 1847), also collected in maize fields, but at low elevation. Finally, the new hemipteran record included three specimens of *Cicadella viridis* (Linnaeus, 1758) from a citrus orchard. All new records belong to introduced species, with the exception of *M. negrita negrita*, which is native to the Azores.

Lagria hirta (Coleoptera, Tenebrionidae) is a new record for Azores. We have also recently sampled this species in the Island of Santa Maria. This seems to be a recent introduction in Azores, being still rare in Terceira, but already widespread in Santa Maria.

Future perspectives

Importantly, the EU Biodiversity Strategy 2020 lists, as a priority, the mapping and assessment of the state of biodiversity, ecosystems and their services in all EU member states (Maes et al. 2016). Azores are part of Europe’s nine Outermost Regions (ORs) for
which there is a general lack of ES mapping and assessment as compared with mainland Europe (Sieber et al. 2018).

By focusing on Azorean Island agroecosystems (e.g. maize fields, vineyards, citrus orchards) and having the current baseline monitoring data, we aim to develop in the near future a multifaceted approach to gain more insight to evaluate the relative importance of native and exotic arthropod organisms as ecosystem services (ES)/ ecosystem disservices (ED) providers. In this way, it will be possible to understand the ecosystem processes and functions and the goods and services arthropods provide for improving the resilience of Azorean agro-ecosystems, as well as human well-being.

Acknowledgements

We thank all the farmers and landowners who permitted us to work on their properties: Adega Simas, Eleutério Nunes, Evangelho, Francisco Helvideo Barcelos, Marcelino Faria, Mozart Macedo Ávila, Narciso Borba, Paulo Ferreira, Ruben Barcelos, José Baldaya and Márcio.

This work was financed by FEDER (European Regional Development Fund) in 85% and by Azorean Public funds by 15% through the Operational Program Azores 2020, under the project AGRO-ECOSERVICES (ACORES-01-0145-FEDER-000073).

The Darwin-Core database was prepared within the scope of the project AZORESBIOPORTAL –PORBIOTA (ACORES-01-0145-FEDER-000072).

Author contributions

PAVB, PM, DHL, AOS, AG, FR, GL and MF contributed to study conceptualisation. PAVB, LLL, RN, PM, DHL and MF performed the fieldwork. PAVB, RN and RC performed the species sorting and identification. PAVB, EP and LLL contributed to dataset preparation and data analysis. All authors contributed to manuscript writing.

References

- Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hözel N, Klaus V, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner S, Rillig M, Schaefer M, Schloter M, Schmitt B, Schöning I, Schrumpf M, Solly E, Sorkau E, Steckel J, Steffen-Dewenter I, Stempfhuber B, Tschapka M, Weiner C, Weisser W, Werner M, Westphal C, Wilcke W, Fischer M (2015) Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters 18 (8): 834-843. https://doi.org/10.1111/ele.12469
- Ameixa OMCC, Soares AO, Soares AMVM, Lillebø A (2018) Ecosystem services provided by the little things that run the world. In: Şen B, Grillo O (Eds) Selected studies in biodiversity. IntechOpen, 267-302 pp. https://doi.org/10.5772/intechopen.74847
• Aparício B, Cascalho J, Cruz M, Borges PAV, Azevedo EB, Elias RB, Ascensão F (2018) Assessing the landscape functional connectivity using movement maps: a case study with endemic Azorean insects. Journal of Insect Conservation 22 (2): 257-265. https://doi.org/10.1007/s10841-018-0059-7
• Barnosky A, Matzke N, Tomiya S, Wogan GU, Swartz B, Quental T, Marshall C, McGuire J, Lindsey E, Maguire K, Mersey B, Ferrer E (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471 (7336): 51-57. https://doi.org/10.1038/nature09678
• Bennett EM, Cramer W, Begossi A, Cundill G, Díaz S, Ego BN, Geijzendorffer IR, Krug CB, Lavorel S, Lazos E, Lebel L, Martín-López B, Meyfroidt P, Mooney HA, Nel JL, Pascual U, Payet K, Harguindeguy NP, Peterson GD, Prieur-Richard A, Reyers B, Roebeling P, Seppelt R, Solan M, Tschakert P, Tschamvike T, Turner B, Verburg PH, Viglizzo EF, White PC, Woodward G (2015) Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Current Opinion in Environmental Sustainability 14: 76-85. https://doi.org/10.1016/j.cosust.2015.03.007
• Blackburn T, Cassey P, Duncan R, Evans K, Gaston K (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305 (5692): 1955-1958. https://doi.org/10.1126/science.1101617
• Borges PAV, Aguiar C, Amaral J, Amorim IR, André G, Araíal A, Baz A, Dinis F, Enghoff H, Gaspar C, Ilharco F, Mahnert V, Melo C, Pereira F, Quartau JA, Ribeiro SP, Ribes J, Serrano AR, Sousa AB, Strassen RZ, Vieira L, Vieira V, Vitorino A, Wunderlich J (2005) Ranking protected areas in the Azores using standardised sampling of soil epigean arthropods. Biodiversity and Conservation 14 (9): 2029-2060. https://doi.org/10.1007/s10531-004-4283-y
• Borges PAV, Gabriel R, Fattorini S (2019a) Biodiversity erosion: causes and consequences. In: Leal-Filho W, Azul A, Brandli L, Özuyar P, Wall T (Eds) Life on land. Encyclopedia of the UN sustainable development goals. The Springer Nature, Switzerland, 1-10 pp. https://doi.org/10.1007/978-3-319-71065-5_78-1
• Borges PAV, Santos AMC, Elias RB, Gabriel R (2019b) The Azores archipelago: biodiversity erosion and conservation biogeography. Encyclopedia of the World’s biomes-Earth systems and environmental sciences. Elsevier, Amsterdam, Netherlands, 1-18 pp. https://doi.org/10.1016/B978-0-12-409548-9.11949-9
• Borges PAV, Lamelas-López L, Nunes R, Monjardino P, Lopes DH, Soares AO, Ferrante M (2021) Monitoring arthropods in Azorean agroecosystems: the project AGRO-ECOSERVICES. v.1.10. Universidade dos Açores. GBIF. https://doi.org/10.15468/mvtmyx
• Cardoso P, Aranda SC, Lobo JM, Dinis F, Gaspar C, Borges PAV (2009) A spatial scale assessment of habitat effects on arthropod communities of an oceanic island. Acta Oecologica 35 (5): 590-597. https://doi.org/10.1016/j.actao.2009.05.005

• Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill R, Paruelo J, Raskin R, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387 (6630): 253-260. https://doi.org/10.1038/387253a0

• Cruz JV, Pereira R, Moreira A (2007) Carta de ocupação do solo do da região Autónoma dos Açores—projecto SUEMAC. Secretaria Regional do Ambiente. Direcção Regional do Ordenamento do território e dos Recursos Hídricos. URL: https://www.azores.gov.pt/Gra/srm-drotrh/contenudos/publicacoes/Carta+de+Ocupa%C3%A7%C3%A3o+do+Solo.htm?lang=pt&area=ct

• Ecosystem Services ISPOBA (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Zenodo https://doi.org/10.5281/zenodo.3553458

• Ferreira MT, Cardoso P, Borges PAV, Gabriel R, de Azevedo EB, Reis F, Araújo MB, Elias RB (2016) Effects of climate change on the distribution of indigenous species in oceanic islands (Azores). Climatic Change 138: 603-615. https://doi.org/10.1007/s10584-016-1754-6

• Florencio M, Lobo JM, Cardoso P, Almeida-Neto M, Borges PAV (2015) The colonisation of exotic species does not have to trigger faunal homogenisation: lessons from the assembly patterns of arthropods on oceanic islands. PLOS One 10 (5): e0128276. https://doi.org/10.1371/journal.pone.0128276

• Florencio M, Patiño J, Nogue S, Traveset A, Borges PAV, Schaefer H, Amorim IR, Arnedo M, Ávila SP, Cardoso P, de Nascimento L, Fernandéz-Palacios JM, Gabriel SI, Gil A, Gonçalves V, Haroun R, Illera JC, López-Darias M, Martínez A, Martins GM, Neto Al, Nogales M, Oromí P, Rando JC, Raposeiro PM, Rigal F, Romeiras MM, Silva L, Valido A, Vanderpoorten A, Vasconcelos R, Santos AMC (2021) Macaronesia as a fruitful arena for ecology, evolution, and conservation biology. Frontiers in Ecology and Evolution 9 (Article 718169). https://doi.org/10.3389/fevo.2021.718169

• Frutuoso G (2011) Saudades da terra. Published in 6 volumes from 1978 to 1983. Instituto Cultural de Ponta Delgada, Ponta Delgada. URL: http://www.icpd.pt/loja/ver.php?id=133 [ISBN 972-9216-68-1; 972-9216-69-X; 972-9216-70-3; 972-9216-61-4; 972-9216-71-1: 972-9216-72-X]

• Gaspar C, Borges PAV, Gaston KJ (2008) Diversity and distribution of arthropods in native forests of the Azores archipelago. Arquipelago Life and Marine Sciences 25: 1-30. URL: https://repositorio.uac.pt/bitstream/10400.3/249/1/pp_1_30_Gaspar_etal_25.pdf

• Gil A, Fonseca C, Benedicto-Royuela J (2017) Land cover trade-offs in small oceanic islands: a temporal analysis of Pico Island, Azores. Land Degradation & Development 29 (2): 349-360. https://doi.org/10.1002/ldr.2770

• Harvey J, Heinen R, Armbrrecht I, Basset Y, Baxter-Gilbert J, Bezemer TM, Böhm M, Bommacco R, Borges PAV, Cardoso P, Clausnitzer V, Cornelisse T, Crane E, Dicke M, Dijkstra K, Dyer L, Ellers J, Fartmann T, Forister M, Furlong M, Garcia-Aguayo A, Gerlach J, Gols R, Goulson D, Habel J, Haddad N, Hallmann C, Henriques S, Herberstein M, Hochkirch A, Hughes A, Jepsen S, Jones TH, Kaydan B, Kleijn D, Klein A, Latty T, Leather S, Lewis S, Lister B, Losey J, Lowe E, Macadam C, Montoya-Lerma
J, Nagano C, Ogan S, Orr M, Painting C, Pham T, Potts S, Rauf A, Roslin T, Samways M, Sanchez-Bayo F, Sar S, Schultz C, Soares A, Thanchareon A, Tscharntke T, Tylianakis J, Umbers KL, Vet LM, Visser M, Vujic A, Wagner D, WallisDeVries M, Westphal C, White T, Wilkins V, Williams P, Wyckhuys KG, Zhu Z, de Kroon H (2020) International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology & Evolution 4 (2): 174-176. https://doi.org/10.1038/s41559-019-1079-8

• Heimpel GE, Mills NJ (2017) Biological control: ecology and applications. Cambridge University Press, 386 pp. [ISBN 97805218145144] https://doi.org/10.1017/9781139029117

• Kier G, Kreft H, Lee TM, Jetz W, Ibišch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences 106 (23): 9322-9327. https://doi.org/10.1073/pnas.0810306106

• Lopes DJH, Cabrera PR, Borges PAV, Aguin-Pombo D, Pereira AMN, Mumford JD, Mexia AMM (2009) Folhas Divulgativas. [Species files]. 1st Editio. Centro de Biotecnologia dos Açores, Angra do Heroísmo, 192 pp. [ISBN 978-989-95707-2-6]

• Lövei G, Ferrante M (2017) A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Science 24 (4): 528-542. https://doi.org/10.1111/1744-7917.12405

• Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JJ, Grizzetti B, Cardoso A, Somma F, Petersen J, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K, Pirollo C, Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J, Pereira HM, Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz J, Pérez-Soba M, Grêt-Regamey A, Lilloa A, Malak DA, Condé S, Moen J, Czúcz B, Drakou EG, Zulian G, Lavalle C (2016) An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem Services 17: 14-23. https://doi.org/10.1016/j.ecoser.2015.10.023

• Marcelino J, Borges PAV, Borges I, Pereira E, Santos V, Soares AO (2021) Standardised arthropod (Arthropoda) inventory across natural and anthropogenic impacted habitats in the Azores archipelago. Biodiversity Data Journal 9: e62157. https://doi.org/10.3897/ bdj.9.e62157

• McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14 (11): 450-453. https://doi.org/10.1016/s0169-5347(99)01679-1

• Norder SJ, de Lima RF, de Nascimento L, Lim JY, Fernández-Palacios JM, Romeiras MM, Elias RB, Cabezas FJ, Catarino L, Ceriaco LMP, Castilla-Beltrán A, Gabriel R, de Sequeira MM, Rijndijk KF, Nogué S, Kissling WD, van Loon EE, Hall M, Matos M, Borges PAV (2020) Global change in microcosms: environmental and societal predictors of land cover change on the Atlantic ocean islands. Anthropocene 30: 10042. https://doi.org/10.1016/j.ancene.2020.100242

• Noriega JA, Hortal J, Azcárate F, Berg M, Bonada N, Briones MI, Del Toro I, Goulson D, Ibanez S, Landis D, Moretti M, Potts S, Slade E, Stout J, Ulyshen M, Wackers F, Woodcock B, Santos AC (2018) Research trends in ecosystem services provided by insects. Basic and Applied Ecology 26: 8-23. https://doi.org/10.1016/j.baae.2017.09.006

• Ribeiro SP, Borges PAV, Gaspar C, Melo C, Serrano ARM, Amaral J, Aguilar C, Andrê G, Quartau JA (2005) Canopy insect herbivores in the Azorean Laurisilva forests: key host
plant species in a highly generalist insect community. Ecography 28 (3): 315-330. https://doi.org/10.1111/j.0906-7590.2005.04104.x

- Rigal F, Cardoso P, Lobo JM, Triantis KA, Whittaker RJ, Amorim IR, Borges PAV (2017) Functional traits of indigenous and exotic ground-dwelling arthropods show contrasting responses to land-use change in an oceanic island, Terceira, Azores. Diversity and Distributions 24 (1): 36-47. https://doi.org/10.1111/dad.12655

- Sax DF (2008) Latitudinal gradients and geographic ranges of exotic species: implications for biogeography. Journal of Biogeography 28 (1): 139-150. https://doi.org/10.1111/j.1365-2699.2001.00536.x

- Shapiro J, Báldi A (2014) Accurate accounting: How to balance ecosystem services and disservices. Ecosystem Services 7: 201-202. https://doi.org/10.1016/j.ecoser.2014.01.002

- Sieber IM, Borges PAV, Burkhard B (2018) Hotspots of biodiversity and ecosystem services: the Outermost Regions and Overseas Countries and Territories of the European Union. One Ecosystem 3 https://doi.org/10.3897/oneeco.3.e24719

- Simberloff D, Martin J, Genovesi P, Maris V, Wardle D, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascual M, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what's what and the way forward. Trends in Ecology & Evolution 28 (1): 58-66. https://doi.org/10.1016/j.tree.2012.07.013

- Stachowicz JJ, Tilman D (2005) Species invasions and the relationships between species diversity, community saturation, and ecosystem functioning. In: Sax DF, Stachowicz JJ, Gaines SD (Eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer Associates, Inc, Sunderland, Massachusetts, 41-64 pp. [ISBN 978-0878938117].

- Stavert J, Pattemore D, Bartomeus I, Gaskett A, Beggs J (2018) Exotic flies maintain pollination services as native pollinators decline with agricultural expansion. Journal of Applied Ecology 55 (4): 1737-1746. https://doi.org/10.1111/1365-2664.13103

- Triantis KA, Borges PAV, Ladle RJ, Hortal J, Cardoso P, Gaspar C, Dinis F, Mendonça E, Silveira LMA, Gabriel R, Melo C, Santos AMC, Amorim IR, Ribeiro SP, Serrano ARM, Quartau JA, Whittaker RJ (2010) Extinction debt on oceanic islands. Ecography 33: 285-294. https://doi.org/10.1111/j.1600-0587.2010.06203.x

- Tsafack N, Fattorini S, Boieiro M, Rigal F, Ros-Prieto A, Ferreira MT, Borges PAV (2021) The role of small lowland patches of exotic forests as refuges of rare endemic Azorean arthropods. Diversity 13 (9): 443. https://doi.org/10.3390/d13090443

- Vilà M, Espinar J, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters 14 (7): 702-708. https://doi.org/10.1111/j.1461-0248.2011.01628.x

- Vitousek P, Mooney H, Lubchenco J, Melillo J (1997) Human domination of Earth's ecosystems. Science 277 (5325): 494-499. https://doi.org/10.1126/science.277.5325.494

- Zhang W, Ricketts T, Kremen C, Carney K, Swinton S (2007) Ecosystem services and dis-services to agriculture. Ecological Economics 64 (2): 253-260. https://doi.org/10.1016/j.ecolecon.2007.02.024
Supplementary material

Suppl. material 1: Complete list of sampled species and mophospecies

Authors: Paulo A. V. Borges
Data type: Occurrences
Brief description: Detailed complete list of sampled species and morphospecies with indication of the morphospecies codes in the column (Identification Remarks)
Download file (24.93 kb)