Abstract

This data article contains the statistical analysis of the total, percentage and distribution of editorial board composition of 111 Hindawi journals indexed in Emerging Sources Citation Index (ESCI) across the continents. The reliability of the data was shown using correlation, goodness-of-fit test, analysis of variance and statistical variability tests.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Decision Sciences
More specific subject area	Bibliometrics, Statistical data analysis
Type of data	Table, Figure and MS Excel
How data was acquired	The data was obtained from freely open access hindawi journals
Data format	Raw, partially analyzed
Experimental factors	Patterns of composition of editorial members of journals indexed in ESCI.
Experimental features	Only the Journals indexed in ESCI were considered
Data source location	Hindawi Publisher
Data accessibility	All the data are in this data article

Value of the data

- The data could be helpful in the determination of the impact of journal indexing on scientific publications.
- The analysis can be extended to other publishers.
- The dataset can be helpful in bibliometric analysis.
- The dataset can be helpful as a ranking analytics for journals and management of smart campuses.
- The dataset can be helpful in monitoring the impact of editorial composition in the acceptance and rejection of manuscripts submitted to different Hindawi journals.
- The dataset can provide insight to the following: stereotyping in academic publications, duration differences in acceptance or rejection of manuscript, bias in publication. See [1] for the case of management academic area.
- The dataset can spur academic discourse on the effect of geographical distribution of editorial board membership on perceived research output using the journals indexed in ESCI as case study. This can be achieved when citation analysis is incorporated. See the conclusions of [2].
- Several statistical models and methods can be applied to the dataset for further analysis.

1. **Data**

The dataset contained in this article are listed as follows:

a. The dataset of editorial composition of 111 Hindawi journals indexed in ESCI. This can be assessed as Supplementary data 1.

b. The frequency of editorial board composition of the 111 Hindawi journals and their summary statistics. This is presented in Fig. 1.

c. The editorial board membership grouped into six continents. These are presented in bar charts. See Fig. 2a, b, c, d and e.

d. The detailed statistical analysis such as correlation analysis, test of normality and analysis of variance

e. The detailed dataset showing the Poisson distribution goodness-of-fit test of the data classified into six continents namely North America (NAM), Europe (EURO), Asia (ASIA), South America (SAM), Australia (AUST) and Africa (AFR).

1.1. **Detailed data description**

Hindawi Publishing Corporation is one of the leading academic publishers of medical, technical, social and scientific peer-reviewed literature. Currently, they publish 302 journals that cut across
different academic domains. The publisher operates on fully open access model under Creative Commons Attribution License (CC-BY). The editorial policies of the journals stipulate that they operate without editor-in-chief but rather through editorial boards. Manuscripts submitted to the journals are first processed at the editorial office and sent to an assigned editor chosen from the pool of editorial board members of the journal. The assigned editor is then saddled with the responsibility of sourcing for qualified reviewers for the manuscript. The decision to accept or reject solely rests on the shoulders of the editors. The business model used by the publisher is that indexing determines the article processing charges.

Currently, Hindawi publishing Corporation publishes 111 journals indexed in emerging sources citation index (ESCI). ESCI is part of web of science owned and maintained by of Clarivate Analytics (formerly Thomson Reuters). ESCI has been in existence since 2015 and it includes peer reviewed academic journals.

2. Experimental design, materials and methods

The experimental design used in this paper is the application of statistical methods targeted at revealing the hidden patterns of the datasets. Text mining was used to extract the dataset from the publisher’s website. Similar analysis on statistical methods and the applications in bibliometrics can be found in Ref. [3–16]. In addition, those works have helped in deeper understanding of pattern of editorial composition, citation analysis, rejection and acceptance rates and others.

2.1. Distribution of Editorial board membership (composition) across the six continents

The editorial board membership of the publisher is classified into six continents. The summary statistics is as shown in Table 1.

2.2. Percentage editorial board membership composition

Percentage editorial board membership composition of Hindawi journals indexed in ESCI was obtained to show the actual percentage composition across the continents. This is shown in Table 2.
2.3. Correlation

The correlation results using Spearman, Pearson and Kendall correlation coefficient are obtained in the form of matrices shown in Tables 3a, 3b and 3c.

The distances between the correlations are computed using the following:

\[A_1 = |\text{Pearson} - \text{Spearman}| \]

\[A_2 = |\text{Kendall} - \text{Pearson}| \]
The application of the transformations and their percentages using Table 3a, 3b and 3c are presented in Table 4. Correlation analysis often reveals some interesting hidden pattern in data. See [17–21] for details.
Table 3b
A correlation matrix of the editorial board composition (Spearman correlation coefficient).

Variables	NAM	EURO	ASIA	SAM	AUST	AFR
NAM	1					
EURO	0.076240	1				
ASIA	0.134405	0.540343	1			
SAM	0.101428	0.257115	0.294628	1		
AUST	0.242937	0.122644	0.095750	0.186542	1	
AFR	0.173750	0.254738	0.278440	0.316884	0.178483	1

Table 3c
A correlation matrix of the editorial board composition (Kendall correlation coefficient).

Variables	NAM	EURO	ASIA	SAM	AUST	AFR
NAM	1					
EURO	0.047338	1				
ASIA	0.090226	0.411477	1			
SAM	0.082719	0.213338	0.241630	1		
AUST	0.198969	0.096349	0.071850	0.169551	1	
AFR	0.142385	0.211057	0.231271	0.293869	0.167058	1

Table 4
Absolute difference between the correlations coefficients and their percentages.

Variables	A_1	A_2	A_3	%A_1	%A_2	%A_3
(NAM, EURO)	0.874514	0.903416	0.028902	87.4514	90.3416	2.8902
(NAM, ASIA)	0.521181	0.56536	0.044179	52.1181	56.536	4.4179
(NAM, SAM)	0.634773	0.653482	0.018709	63.4773	65.3482	1.8709
(NAM, AUST)	0.650619	0.694587	0.043968	65.0619	69.4587	4.3968
(NAM, AFR)	0.134723	0.166088	0.031365	13.4723	16.6088	3.1365
(EURO, ASIA)	0.225296	0.354162	0.128866	22.5296	35.4162	12.8866
(EURO, SAM)	0.518045	0.561822	0.043777	51.8045	56.1822	4.3777
(EURO, AUST)	0.747501	0.773796	0.026295	74.7501	77.3796	2.6295
(EURO, AFR)	0.164524	0.208205	0.043681	16.4524	20.8205	4.3681
(ASIA, SAM)	0.23267	0.285668	0.052998	23.267	28.5668	5.2998
(ASIA, AUST)	0.481262	0.505162	0.0239	48.1262	50.5162	2.39
(ASIA, AFR)	0.216983	0.264152	0.047169	21.6983	26.4152	4.7169
(SAM, AUST)	0.528166	0.545157	0.016991	52.8166	54.5157	1.6991
(SAM, AFR)	0.158346	0.181361	0.023015	15.8346	18.1361	2.3015
(AUST, AFR)	0.107313	0.118738	0.011425	10.7313	11.8738	1.1425

Table 5
Partial correlation coefficients r.

Variables	r_1	r_2	r_3
(NAM, EURO, ASIA)	0.92396	−0.36286	0.60816
(NAM, EURO, SAM)	0.88896	−0.00400	0.35857
(NAM, EURO, AUST)	0.78299	0.43382	0.14799
(NAM, EURO, AFR)	0.95117	−0.32034	0.42729
(EURO, ASIA, SAM)	0.66486	0.67958	−0.16288
(EURO, ASIA, AUST)	0.65482	0.81534	−0.28140
(EURO, ASIA, AFR)	0.70747	0.07149	0.29866
(ASIA, SAM, AUST)	0.20115	0.33679	0.59146
(ASIA, AUST, AFR)	0.52308	−0.42229	−0.00001
(SAM, AUST, AFR)	0.68657	0.40428	−0.08751
Table 6
Goodness-of-fit test for Poisson distribution (North America).

NAM	Observed	Poisson Probability	Expected	Contribution to Chi-Sq
<=4	28	0.020906	2.3206	284.171
5	11	0.029080	3.2279	18.714
6 - 7	19	0.127488	14.1512	1.661
8 - 9	23	0.218069	24.2057	0.060
10 - 11	12	0.241587	26.8162	8.186
12 - 13	3	0.187090	20.7670	15.200
14 - 15	5	0.106851	11.8605	3.968
16 - 17	5	0.046826	5.1976	0.008
>=18	5	0.022103	2.4534	2.643

N	DF	Chi-Sq	P-Value
111	7	334.612	0.000

3 cell(s) (33.33%) with expected value(s) less than 5.

Table 7
Goodness-of-fit test for Poisson distribution (Europe).

EURO	Observed	Poisson Probability	Expected	Contribution to Chi-Sq
<=6	43	0.028454	3.1584	502.578
7	11	0.030312	3.3646	17.327
8	10	0.048642	5.3993	3.920
9	11	0.069384	7.7017	1.413
10	5	0.089075	9.8873	2.416
11	4	0.103957	11.5392	4.926
12	0	0.111215	12.3449	12.345
13	3	0.109828	12.1909	6.929
14	2	0.100711	11.1789	7.537
15	6	0.086194	9.5675	1.330
16	4	0.069159	7.6766	1.761
17	2	0.052227	5.7971	2.487
18	0	0.037249	4.1346	4.135
>=19	10	0.063595	7.0590	1.225

N	DF	Chi-Sq	P-Value
111	12	570.328	0.000

3 cell(s) (21.43%) with expected value(s) less than 5.
The result of the partial correlation is presented in Table 5.

2.4. Goodness-of-fit test

The uneven editorial board membership composition across the continents necessitated the conduct of goodness-of-fit test using Poisson distribution. The goodness-of-fit results are divided into two. Firstly, the detailed tests are shown in Tables 6–11 and the chart of the observed and expected values are shown in Figs. 3–8.

Table 8
Goodness-of-fit test for Poisson distribution (Asia).

Poisson	Contribution to Chi-Sq			
ASIA	Observed	Probability	Expected	
<=2	44	0.051615	5.7293	255.643
3	13	0.078458	8.7089	2.114
4	15	0.122635	13.6125	0.141
5	8	0.153350	17.0218	4.782
6	3	0.159797	17.7374	12.245
7	3	0.142727	15.8427	10.411
8	1	0.111546	12.3816	10.462
9	2	0.077490	8.6014	5.066
10	3	0.048449	5.3778	1.051
11	2	0.027538	3.0567	0.365
>=12	17	0.026395	2.9299	67.569

N	DF	Chi-Sq	P-Value
111	9	369.850	0.000

2 cell(s) (18.18%) with expected value(s) less than 5.

Table 9
Goodness-of-fit test for Poisson distribution (South America).

Poisson	Contribution to Chi-Sq			
SAM	Observed	Probability	Expected	
0	77	0.440511	48.8967	16.1523
1	20	0.361140	40.0865	10.0649
2	8	0.148035	16.4319	4.3267
>=3	6	0.050315	5.5849	0.0308

N	DF	Chi-Sq	P-Value
111	2	30.5748	0.000

The result of the partial correlation is presented in Table 5.
Table 10
Goodness-of-fit test for Poisson distribution (Australia).

Poisson	Contribution to Chi-Sq			
AUST	Observed	Probability	Expected	
0	52	0.374568	41.5770	2.61293
1	39	0.367819	40.8279	0.08184
2	13	0.180596	20.0461	2.47669
>=3	7	0.077017	8.5489	0.28063

N DF Chi-Sq P-Value
111 2 5.45209 0.065

Table 11
Goodness-of-fit test for Poisson distribution (Africa).

Poisson	Contribution to Chi-Sq			
AFR	Observed	Probability	Expected	
0	90	0.691170	76.7199	2.2988
1	11	0.255297	28.3380	10.6079
>=2	10	0.053533	5.9421	2.7711

N DF Chi-Sq P-Value
111 1 15.6777 0.000

Fig. 3. Chart of observed and expected values (North America).
Fig. 4. Chart of observed and expected values (Europe).

Fig. 5. Chart of observed and expected values (Asia).

Fig. 6. Chart of observed and expected values (South America).
2.5. Analysis of variance

The data is subjected to analysis of variance (ANOVA) and the result is shown in Table 12. Furthermore the boxplot and interval plot of the data are displayed in Figs. 9 and 10 respectively.

2.6. Statistical variability analysis

Different variability measures are conducted for editorial board composition of ESCI indexed Hindawi journals across the continents. These are summarized in Tables 13–18.
Table 12
Analysis of variance of the editorial board composition across the continents of ESCI indexed Hindawi journals.

Source	DF	Adj SS	Adj MS	P-Value	P-Value
Factor	5	16421	3284.2	14.55	0.000
Error	660	148948	225.7		
Total	665	165369			

Model Summary

\[S \quad R-sq \quad R-sq(adj) \quad R-sq(pred) \]
\[15.0226 \quad 9.93\% \quad 9.25\% \quad 8.28\% \]

Means

Factor	N	Mean	StDev	95% CI
NAM	111	10.51	24.24	(7.71, 13.31)
EURO	111	12.84	25.38	(10.04, 15.64)
ASIA	111	6.252	10.392	(3.452, 9.052)
SAM	111	0.820	2.877	(-1.980, 3.620)
AUST	111	0.982	2.240	(-1.818, 3.782)
AFR	111	0.3694	0.9335	(-2.4304, 3.1692)

Pooled StDev = 15.0226

Fig. 9. Box plot of editorial board composition across the continents.
Table 13
Variability analysis of the North America data.

Absolute range	250
Relative range (unbiased)	10.3118
Variance (unbiased)	587.779
Standard Deviation (unbiased)	24.2442
Coefficient of Variation (unbiased)	2.306
Squared Differences between all Pairs of Observations	1175.56
Mean Absolute Differences between all Pairs of Observations	10.2165
Gini Mean Difference	10.2165
Leik Measure of Dispersion	0.559367
Index of Diversity	0.943516
Index of Qualitative Variation	0.952093
Coefficient of Dispersion	1.0223
Observations	111

Table 14
Variability analysis of the Europe data.

Absolute range	248
Relative range (unbiased)	9.77153
Variance (unbiased)	644.137
Standard Deviation (unbiased)	25.3799
Coefficient of Variation (unbiased)	1.97696
Squared Differences between all Pairs of Observations	1288.27
Mean Absolute Differences between all Pairs of Observations	12.9369
Gini Mean Difference	12.9369
Leik Measure of Dispersion	0.56356
Index of Diversity	0.956098
Index of Qualitative Variation	0.96479
Coefficient of Dispersion	1.19229

Fig. 10. Interval plot of editorial board composition across the continents.
Table 15
Variability analysis of the Asia data.

Statistic	Value
Absolute range	71
Relative range (unbiased)	6.83228
Variance (unbiased)	107.99
Standard Deviation (unbiased)	10.3918
Coefficient of Variation (unbiased)	1.6621
Squared Differences between all Pairs of Observations	215.981
Mean Absolute Differences between all Pairs of Observations	7.86306
Gini Mean Difference	7.86306
Leik Measure of Dispersion	0.510375
Index of Diversity	0.966327
Index of Qualitative Variation	0.975112
Coefficient of Dispersion	1.95157

Table 16
Variability analysis of the South America data.

Statistic	Value
Absolute range	23
Relative range (unbiased)	7.99482
Variance (unbiased)	8.27633
Standard Deviation (unbiased)	2.87686
Coefficient of Variation (unbiased)	3.50914
Squared Differences between all Pairs of Observations	16.5527
Mean Absolute Differences between all Pairs of Observations	1.41523
Gini Mean Difference	1.41523
Leik Measure of Dispersion	0.59021
Index of Diversity	0.881053
Index of Qualitative Variation	0.889063
Coefficient of Dispersion	n/a

n/a not available.

Table 17
Variability analysis of the Australia data.

Statistic	Value
Absolute range	22
Relative range (unbiased)	9.82118
Variance (unbiased)	5.01785
Standard Deviation (unbiased)	2.24006
Coefficient of Variation (unbiased)	2.28116
Squared Differences between all Pairs of Observations	10.0357
Mean Absolute Differences between all Pairs of Observations	1.33202
Gini Mean Difference	1.33202
Leik Measure of Dispersion	0.53995
Index of Diversity	0.944533
Index of Qualitative Variation	0.95312
Coefficient of Dispersion	0.920055

Table 18
Variability analysis of the Africa data.

Statistic	Value
Absolute range	5
Relative range (unbiased)	5.3562
Variance (unbiased)	0.871417
Standard Deviation (unbiased)	0.931497
Coefficient of Variation (unbiased)	2.52727
Squared Differences between all Pairs of Observations	1.74283
Mean Absolute Differences between all Pairs of Observations	0.649304
Gini Mean Difference	0.649304
Leik Measure of Dispersion	0.512639
Index of Diversity	0.933968
Index of Qualitative Variation	0.942458
Coefficient of Dispersion	n/a

n/a not available.
Acknowledgements

The research was carried out by the Ranking Analytics sub-cluster of the SmartCU research cluster of Covenant University and fully sponsored by Covenant University Centre for Research, Innovation and Development (CUCRID), Covenant University, Ota, Nigeria.

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.02.044.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.02.044.

References

[1] T.F. Burgess, N.E. Shaw, Editorial board membership of management and business journals: a social network analysis study of the Financial Times 40, Br. J. Manag. 21 (3) (2010) 627–648.
[2] T. Nisonger, The relationship between international editorial board composition and citation measures in political science, business, and genetics journals, Scientometrics 54 (2) (2002) 257–268.
[3] Ó. Miró, P. Burbano, C.A. Graham, D.C. Cone, J. Ducharme, A.F.T. Brown, F.J. Martín-Sánchez, Analysis of h-index and other Bibliometric Markers of Productivity and Repercussion of a Selected Sample of Worldwide Emergency Medicine Researchers.
[4] H.B. Volfner, P. Kokol, S. Bobek, D. Zeleznik, J. Završnik, A bibliometrical retrospective of the journal computers in human behavior (1991–2015), Comput. Hum. Behav. 65 (2016) 46–58.
[5] J. Petersen, F. Hattke, R. Vogel, Editorial governance and journal impact: a study of management and business journals, Scientometrics 112 (3) (2017) 1593–1614.
[6] K.C. Garg, S. Pali, A preliminary investigation of editorial gatekeeping of CSIR-NISCAIR journals, Ann. Libr. Info. Stud. 63 (1) (2016) 49–52.
[7] M. Jokić, G. Sirotić, Do the international editorial board members of croatian social sciences and humanities journals contribute to their visibility? Medijs. Istraz. 21 (2) (2016) 5–33.
[8] J.M. Wicherts, Peer review quality and transparency of the peer-review process in open access and subscription journals, PLoS One 11 (1) (2016) e0147913.
[9] I. Metz, A.W. Harzing, M.J. Zyphur, Of journal editors and editorial boards: who are the trailblazers in increasing editorial board gender equality? Br. J. Manag. 27 (4) (2016) 712–726.
[10] S. Cummings, P. Hoebink, Representation of academics from developing countries as authors and editorial board members in scientific journals: does this matter to the field of development studies? Eur. J. Dev. Res. 29 (2) (2017) 369–383.
[11] C.K. Rösing, R. Junes, A.N. Haas, Publication rates of editorial board members in oral health journals, Braz. Oral Res. 28 (1) (2014) 1–5.
[12] E.F. Schisterman, C.W. Swanson, Y.L. Lu, S.L. Mumford, The changing face of epidemiology: gender disparities in citations? Epidemiology 28 (2) (2017) 159–168.
[13] A. Dhanani, M.J. Jones, M. J, Editorial boards of accounting journals: gender diversity and internationalisation, Account. Audit. Account. J. 30 (5) (2017) 1008–1040.
[14] J. Petersen, How innovative are editors?: evidence across journals and disciplines, Res. Eval. 26 (3) (2017) 256–268.
[15] G.S. Shideler, R.J. Araújo, Reviewer interest in a manuscript may predict its future citation potential, Scientometrics 113 (2) (2017) 1171–1176.
[16] E.E. Sarigöl, D. Garcia, I. Scholtes, F. Schweitzer, Quantifying the effect of editor–author relations on manuscript handling times, Scientometrics 113 (3) (2017) 609–631.
[17] O.T. Kayode, H.I. Okagbue, J.A. Achuka, Water Quality Assessment for Groundwater Around a Municipal Waste Dumpsite, Data in Brief, (http://dx.doi.org/10.1016/j.dib.2018.01.072).
[18] H.I. Okagbue, A.A. Opanuga, P.E. Oguntunde, P.O. Ugwoke, Random number datasets generated from statistical analysis of randomly sampled GSM recharge cards, Data Brief 10 (2017) 269–276.
[19] P. Wessa, Variability (v1.0.7) in Free Statistics Software (v1.2.1), Office for Research Development and Education, 2016 (http://www.wessa.net/rwasp_variability.wasp/).
[20] H.I. Okagbue, M.O. Adamu, P.E. Oguntunde, A.A. Opanuga, E.A. Owoloko, S.A. Bishop, Datasets on the statistical and algebraic properties of primitive Pythagorean triples, Data Brief 14 (2017) 686–694.
[21] J.Y. Park, Z. Nagy, Bibliography data for thermal comfort and building control research – Keywords co-occurrences relation-ship and citation network from 5536 articles, Data in Brief, (https://doi.org/10.1016/j.dib.2018.01.033).