REVIEW

Oncolytic virotherapy in hepato-bilio-pancreatic cancer: The key to breaking the log jam?

Yuwei Li1,2,3 | Yinan Shen1,2,3 | Ronghua Zhao4 | Ismael Samudio4 | William Jia4 | Xueli Bai1,2,3 | Tingbo Liang1,2,3

1Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
2Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
3Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
4Virogin Biotech Canada Ltd, Vancouver, Canada

Correspondence
Tingbo Liang, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310006, Zhejiang Province, China. Email: liangtingbo@zju.edu.cn

Abstract
Traditional therapies have limited efficacy in hepatocellular carcinoma, pancreatic cancer, and biliary tract cancer, especially for advanced and refractory cancers. Through a deeper understanding of antitumor immunity and the tumor microenvironment, novel immunotherapies are becoming available for cancer treatment. Oncolytic virus (OV) therapy is an emerging type of immunotherapy that has demonstrated effective antitumor efficacy in many preclinical studies and clinical studies. Thus, it may represent a potential feasible treatment for hard to treat gastrointestinal (GI) tumors. Here, we summarize the research progress of OV therapy for the treatment of hepato-bilio-pancreatic cancers. In general, most OV therapies exhibit potent, specific oncolysis both in cell lines in vitro and the animal models in vivo. Currently, several clinical trials have suggested that OV therapy may also be effective in patients with refractory hepato-bilio-pancreatic cancer. Multiple strategies such as introducing immunostimulatory genes, modifying virus capsid and combining various other therapeutic modalities have been shown enhanced specific oncolysis and synergistic anti-cancer immune stimulation. Combining OV with other antitumor therapies may become a more effective strategy than using virus alone. Nevertheless, more studies are needed to better understand the mechanisms underlying the therapeutic effects of OV, and to design appropriate dosing and combination strategies.

KEYWORDS
biliary tract cancer, hepatocellular carcinoma, immunotherapy, oncolytic virus, pancreatic cancer

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
1 | BACKGROUND

Oncolytic virus (OV) selectively replicate in and destroy tumor cells while causing virtually no damage to normal cells. The antitumor effect of oncolytic viruses is primarily achieved in two ways: (a) direct tumor lysis; and (b) induction of an antitumor immune response in animal or humans. On the one hand, because of defective anti-viral pathways (ie interferon response pathway), tumor cells are unable to stop OV replication and undergo cell lysis and death following infection. The viral progeny are released from the infected tumor cells and spread to uninfected tumor cells, which causes a sustained antineoplastic response. On the other hand, the infection of tumor cells express pathogen-associated molecular pattern molecules (PAMPs) and damage-associated molecular pattern molecules (DAMPs), which induces the innate immune response through activation of toll-like receptors. In turn, the activation of the innate immune system facilitates presentation of viral antigens and tumor-associated antigens (TAAs) to prime the adaptive immune response. Of note, several common oncolytic viruses (eg, adenovirus, herpes simplex virus [HSV], vesicular stomatitis virus [VSV], vaccinia virus, and reovirus; Figure 1) have been proven to promote antitumor immunity. Furthermore, oncolytic viruses armed with exogenous immune-stimulating can exert profound antitumor effects via synergistic stimulation of anti-cancer immunity.

The traditional treatment for hepatocellular carcinoma (HCC), pancreatic cancer, and biliary tract cancer primarily include surgical resection, radiotherapy, and chemotherapy; however, the outcomes of these interventions remain unsatisfactory. Moreover although immunotherapeutic strategies including the PD-1/CTLA4 antibody and chimeric antigen receptor T cells (CAR T cells) have been proven to have good clinical efficacy in certain tumor types, the complex immune microenvironment of hepatobiliary-pancreatic cancer appears to limit their efficacy. Given the broad immune-stimulating and oncolytic activities of OV, it is tempting to speculate that they may be important components, alone and/or in combination with currently available immunotherapies, of successful treatment strategies for hard to treat gastrointestinal (GI) cancers. Here, we systematically review and summarize the current status of treatment and the application of oncolytic viruses for HCC, pancreatic cancer, and biliary tract cancer (Figure 2).

2 | ONCOLYTIC VIRUSES AS A NOVEL TREATMENT FOR HCC, PANCREATIC CANCER, AND BILIARY TRACT CANCER

2.1 | Adenoviruses

Adenoviruses are a non-enveloped double-stranded DNA viruses of approximately 36 kb genome that can be divided into 57 different serotypes (Figure 3). Among these serotypes, Ad2 and Ad5, which belong to subgroup C adenoviruses, are

FIGURE 1 (1) OVs induce immunogenic cell death (ICD). Then oncolysis by OVs causes the release of tumor-specific antigens (local oncolysis); (2) ~ (3) Tumor-specific antigens uptake by APCs which migrate to lymph nodes. Antigen-loaded APCs initiate the activation of tumor-specific T cells; (4) ~ (5) Tumor-specific T cells move to local tumor mass (infected) and metastatic cancer cells (uninfected) and exert antitumor effect.
LI et al.

Subgroup C adenoviruses infect host cells by binding to the coxsackie adenovirus receptor (CAR) and their transcription requires two key viral genes (E1A and E1B). The protein encoded by E1A orchestrates activation of the E2F transcription factor and initiates the cell cycle of the host cell during the quiescent phase. The protein encoded by E1B is divided into the E1B-55 kD protein and E1B-19 kD protein. The E1B-55 kD protein binds to p53 and induces its degradation, whereas the E1B-19 kD protein—similar to the anti-apoptotic factor Bcl2, prevents the premature apoptosis of infected cells.

The advantages of using adenoviruses are their high viral titers, ease of engineering-in of foreign genes into its moderate size (26-46 Kbp) DNA genome, and the breadth of clinical experience around their use. Furthermore, adenoviruses can replicate in host cells at large quantities, and the viral genes cannot integrate into the host cell genome, which improves its safety.

2.1.1 Adenoviruses in liver cancer

Oncolytic adenoviruses can be designed to specifically target liver cancer cells using several different methods. The first method is to specifically target the specific signaling pathways in tumors by altering the key adenovirus replication genes. This design is primarily achieved by deleting either the E1A or E1B genes. ONYX-015 is a typical engineered adenovirus (Ad2 and Ad5 hybrid), in which the E1B gene is deleted using gene editing technology to prevent the formation of the E1B-55 kD protein without affecting the E1B-19 kD protein, and only replicates in p53-deficient cells. In both phase I and phase II clinical trials, intravenous and intratumoral injections of ONYX-015 were shown to be safe, well tolerated, and exhibited no dose-limiting toxicity; despite the ubiquity of anti-adenviral antibodies before treatment, ONYX-015 showed some evidence of clinical benefit. Further studies have shown that the deletion of the E1B-55 kD protein played a selective oncolytic role by mediating late viral mRNA nuclear export rather than p53 degradation. The second method is to control the expression of key genes required for virus replication using a specific promoter of liver cancer tissue (eg, GD55, CNHK500, and SG7011let7T). ZD55 is an E1B-deficient Ad5 similar to ONYX-015. The AFP-regulated oncolytic adenovirus (ZD55, in which the endogenous E1A promoter was replaced by the AFP promoter) and GOLPH2-regulated oncolytic adenovirus, GD55 (ZD55, in which the endogenous E1A promoter was replaced by the GOLPH2 promoter) were designed based on the most commonly used adenoviral vectors. Subgroup C adenoviruses infect host cells by binding to the coxsackie adenovirus receptor (CAR) and their transcription requires two key viral genes (E1A and E1B). The protein encoded by E1A orchestrates activation of the E2F transcription factor and initiates the cell cycle of the host cell during the quiescent phase. The protein encoded by E1B is divided into the E1B-55 kD protein and E1B-19 kD protein. The E1B-55 kD protein binds to p53 and induces its degradation, whereas the E1B-19 kD protein—similar to the anti-apoptotic factor Bcl2, prevents the premature apoptosis of infected cells. The advantages of using adenoviruses are their high viral titers, ease of engineering-in of foreign genes into its moderate size (26-46 Kbp) DNA genome, and the breadth of clinical experience around their use. Furthermore, adenoviruses can replicate in host cells at large quantities, and the viral genes cannot integrate into the host cell genome, which improves its safety.

2.1.1 Adenoviruses in liver cancer

Oncolytic adenoviruses can be designed to specifically target liver cancer cells using several different methods. The first method is to specifically target the specific signaling pathways in tumors by altering the key adenovirus replication genes. This design is primarily achieved by deleting either the E1A or E1B genes. ONYX-015 is a typical engineered adenovirus (Ad2 and Ad5 hybrid), in which the E1B gene is deleted using gene editing technology to prevent the formation of the E1B-55 kD protein without affecting the E1B-19 kD protein, and only replicates in p53-deficient cells. In both phase I and phase II clinical trials, intravenous and intratumoral injections of ONYX-015 were shown to be safe, well tolerated, and exhibited no dose-limiting toxicity; despite the ubiquity of anti-adenviral antibodies before treatment, ONYX-015 showed some evidence of clinical benefit. Further studies have shown that the deletion of the E1B-55 kD protein played a selective oncolytic role by mediating late viral mRNA nuclear export rather than p53 degradation. The second method is to control the expression of key genes required for virus replication using a specific promoter of liver cancer tissue (eg, GD55, CNHK500, and SG7011let7T). ZD55 is an E1B-deficient Ad5 similar to ONYX-015. The AFP-regulated oncolytic adenovirus (ZD55, in which the endogenous E1A promoter was replaced by the AFP promoter) and GOLPH2-regulated oncolytic adenovirus, GD55 (ZD55, in which the endogenous E1A promoter was replaced by the GOLPH2 promoter) were designed based on the most commonly used adenoviral vectors. Subgroup C adenoviruses infect host cells by binding to the coxsackie adenovirus receptor (CAR) and their transcription requires two key viral genes (E1A and E1B). The protein encoded by E1A orchestrates activation of the E2F transcription factor and initiates the cell cycle of the host cell during the quiescent phase. The protein encoded by E1B is divided into the E1B-55 kD protein and E1B-19 kD protein. The E1B-55 kD protein binds to p53 and induces its degradation, whereas the E1B-19 kD protein—similar to the anti-apoptotic factor Bcl2, prevents the premature apoptosis of infected cells. The advantages of using adenoviruses are their high viral titers, ease of engineering-in of foreign genes into its moderate size (26-46 Kbp) DNA genome, and the breadth of clinical experience around their use. Furthermore, adenoviruses can replicate in host cells at large quantities, and the viral genes cannot integrate into the host cell genome, which improves its safety.

FIGURE 2 Number of published or registered preclinical and clinical studies for oncolytic virus in hepato-bilio-pancreatic cancer. Adenovirus is the most widely used. There are few related clinical trials, and most of the existing clinical trials are only in Phase I or Phase II clinical trials.

FIGURE 3 Properties of the oncolytic viruses for hepato-bilio-pancreatic cancer and several well-validated oncolytic viruses are listed. The yellow region represents the capsid and the blue region represents the envelope. Both adenovirus and reovirus are non-enveloped viruses. The values represent the range of minimum diameter of the capsid. dsDNA, double-stranded DNA; ssRNA, single-stranded RNA.
on the high expression of AFP and GOLPH2 in HCC, respectively. These OV demonstrated higher specificity against HCC compared to other tumors, as well as a more pronounced antitumor effect, and GD55 induced less damage to normal liver cells compared to ZD55.32 The third method is to specifically target the liver cancer cell receptor by engineering adenoviral capsids.27

To enhance the antitumor effect of oncolytic adenoviruses, a variety of ZD55-gene systems have been constructed, which preserve tumor targeting and carry different therapeutic genes (eg, ZD55-Smac/ZD55-TRAIL and ZD55-IFN-β). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces tumor cell apoptosis through the death receptor pathway and various caspases, to which HCC is highly resistant,28,29 via in part inhibition of caspase activation by inhibitor of apoptosis proteins (IAP) and the X-linked inhibitor of apoptosis protein (XIAP).30 Thus, ZD55-Smac/ZD55-TRAIL also incorporates the mitochondrial-derived activator of caspases (Smac) which abolishes IAP inhibition of caspases and enhances tumor cell sensitivity to the TRAIL pathway.29

The combination of ZD55-Smac and ZD55-TRAIL proved to effectively reduce the levels of IAP and XIAP expression and promote HCC cell apoptosis in HCC cell lines in vitro and HCC xenografts in vivo, whereas the effect of either ZD55-Smac or ZD55-TRAIL alone was significantly attenuated.29 However, expressing pro-apoptosis gene by an OV is never a good idea since once the gene is expressed, the cells infected will die first, which eliminates the virus replication in the cell and also inhibits virus dissemination inside of tumor mass. ZD55-IFN-β, a ZD55 expressing IFN-β, showed significant antitumor effects and the high level of IFN-β expression in the HCC cell lines, as well as HCC xenografts. In addition, no obvious cytotoxic or apoptotic effects were detected in normal cells infected with ZD55-IFN-β, which indicate that the toxic effect of IFN-β did not impact the cells in normal tissues.31

2.1.2 Adenoviruses in pancreatic cancer

ONYX-015 has been demonstrated to induce tumor-specific cytolysis and antitumor efficacy in both pancreatic cancer cell lines in vitro and mice xenografts in vivo.32 Moreover the efficacy was significantly enhanced when combined with chemotherapy, including cisplatin and 5-fluorouracil.32 However, a clinical trial showed limited clinical efficacy of the intratumoral endoscopic ultrasound injection of ONYX-015 combined with an intravenous injection of gemcitabine for unresectable pancreatic cancer.33 This may be because pancreatic tumors are highly fibrotic with a high ratio of normal cells to tumor cells, which may highly limit virus dissemination in the tumor since, by definition, OVs cannot replicate in nontumor cells. Therefore, it is plausible that oncolytic virus should be designed to enhance viral spread and breakdown the extracellular matrix of pancreatic tumors.34

Several novel oncolytic adenoviruses currently being researched exhibit exciting antitumor activity against pancreatic cancer in preclinical studies. For example, Ad5AE1B19K, the adenoviral mutants with an anti-apoptotic E1B-19 kDa gene deletion, could selectively kill pancreatic cancer cells in vitro and xenografts in vivo when combined with gemcitabine.35 A similar oncolytic adenovirus (AdΔΔ) with the deletions in both the E1ACR2 (another anti-apoptotic gene) and E1B19K genes displayed enhanced antitumor efficacy combined with the chemotherapeutics, docetaxel and mitoxantrone, in pancreatic cancer xenografts in vivo and decreased levels of virus in normal cells compared to the single-deleted AdΔΔCR2 mutant.36 Telomelysin (OBP-401), in which the hTERT promoter controls viral replication with a fully functional viral E3 region, only replicates in cells with upregulated hTERT (eg, pancreatic cancer cells).37 Telomelysin effectively lysed pancreatic cancer cells and shrank xenografted tumors alone or in combination with docetaxel.38 In CRAd-Cans, deleting the E1B-55 kDa gene and carrying canstatin (an angiogenesis inhibitor gene), showed the synergistic effects of antitumor therapy and anti-angiogenesis therapy.39

Most pancreatic cancers demonstrate pRb hyperphosphorylation,40 and two oncolytic adenoviruses, LoAd703 and VCN-01, have been constructed to replicate in pancreatic cancer cells with a disrupted Rb pathway and several related clinical trials are currently underway. LoAd703 is an Ad5/35 expressing human CD40L and 4-1BBL. CD40L can induce the adaptive immune response and CD40-mediated tumor cell apoptosis, whereas 4-1BBL enhances immunological memory and expands T and NK cells, modulating the pancreatic cancer stroma to support the antitumor response.41 LoAd703 can efficiently lyse pancreatic cancer cell lines in vitro and reduce the established tumors in xenograft models in vivo.41 A Phase I/II clinical trial is currently underway to actively recruit patients to assess the efficacy and safety of an intratumoral injection of LOAd703 combined with gemcitabine and nab-paclitaxel as a treatment for pancreatic cancer. Another adenovirus (VCN-01) has been engineered to express hyaluronidase and RGD-modified fibers, which improves the half-life of viruses in the blood and enhances intratumoral spread, resulting in antitumor activity in mice and Syrian hamster pancreatic cancer xenografts models after intravenous or intratumoral injection.42 A Phase I dose escalation trial of VCN-01 by intratumoral injection combined with gemcitabine and abraxane determining the safety and tolerability in patients with advanced pancreatic cancer has been completed; however, the results have yet to be reported (NCT02045589).
2.1.3 Adenoviruses in biliary tract cancer

Previous reports have revealed that an adenovirus expressing p27KIP1 induces apoptosis against cholangiocarcinoma cells by triggering extracellular Fas ligand expression. To further enhance the tumor specificity and viral infectivity of the adenovirus-based therapies in cholangiocarcinoma cells, Zhu et al designed several novel recombinant adenoviruses with a survivin promoter and capsid modifications. The survivin promoter has extremely low activity in normal human tissues, especially in the liver, but exhibited higher activity in cholangiocarcinoma cells, indicating decreased toxicity to the human liver and higher tumor specificity. Moreover, three different capsid modifications (RGD, F5/3, and pk7) enhanced the levels of viral infectivity; however, the replication ratios of these adenoviruses are significantly lower than the wild type virus, suggesting that the capsid modification enhanced viral infectivity and impaired viral replication.

AxdAdB-3, a double-restricted Ad with a mutant E1A and E1B-55kD deletion, showed effective and selective replication and oncolysis of gallbladder cancer (GBC) cells in vitro and in vivo with reduced negative effects on normal cells. Moreover AxdAdB-3-F/RGD, a novel AxdAdB-3 with RGD-modified fibers via the incorporation of an Arg-Gly-Asp (RGD) motif into the HI-loop of Ad5 fiber-knob region, can enhance infectivity by increasing viral interaction with the integrins that are abundantly expressed in almost all biliary cancer cells. AxdAdB3 only infected biliary cancer cells with preserved CAR expression. In another approach, the use of a chimeric construct with the shaft from an Ad5 serotype and the knob from Ad3 serotype enhanced transduction in several CAR-negative cancer cells.

2.2 Vaccinia virus

Vaccinia virus is a double-stranded DNA virus that replicates and spreads rapidly (Figure 3). Importantly, vaccinia virus harbors the thymidine kinase (TK) gene, which encodes the TK, an enzyme necessary for viral replication that is ubiquitously expressed in malignant cancer cells but rarely expressed in normal cells. Thus, by removing the TK gene, vaccinia virus can only target malignant cancer cells, since the defective vaccinia virus can only replicate using the TK of host cells. Vaccinia virus can secrete viral proteins to activate host cell EGFR-RAS pathway to further synthesize TK, which improves the efficiency of virus infection and promotes the destruction of tumor cells. The disabled interferon response of malignant tumor cells is also one of the factors driving vaccinia virus to target malignant tumor cells. Moreover vaccinia virus exhibits effectiveness and stability when given systemically and is resistant to the effects of antibodies and complement. The intravenous injection of vaccinia virus has been shown to be effective in tumor xenografts, despite the presence of high antibody titers.

2.2.1 Vaccinia virus in liver cancer

The vaccinia virus currently used in clinical liver cancer research primarily involves JX-594. JX-594 is a derivative of the vaccinia virus Wyeth strain (a smallpox vaccine), which was widely used in global vaccination programs to eradicate smallpox due to its proven safety in humans. The use of a vaccinia virus with a single knockout of the TK gene (CVV) effectively removed liver cancer cells in animal models. JX-594 contains two genes that were inserted into the TK gene region: (a) a gene encoding hGM-CSF, which promotes myeloid and dendritic cell maturation to induce antitumor immunity and inhibit tumor blood vessels, but may stimulate myeloid-derived suppressor cells (MDSCs) resulting in diminished innate and adaptive antitumor responses in numerous cancers; and (b) lac-Z, which encodes β-galactosidase as a surrogate marker to assess viral replication. Current clinical trials have demonstrated that JX-594 is safe and well-tolerated when used to treat liver cancer patients and that intriguingly there is no correlation between serum antibody levels and JX-594 replication, safety, and antitumor activity. Kim et al confirmed that JX-594 was well-tolerated in rabbits and rat liver cancer models with a significant antitumor effect. Park et al found that in patients with refractory primary liver cancer and metastatic liver cancer, JX-594 could be detected in both injected and uninjected tumors, and exhibited antitumor effects. Grade I-III flu-like symptoms were common adverse reactions following an intratumoral injection of JX-594, and several patients displayed transient grade I-III dose-related thrombocytopenia while Grade III hyperbilirubinemia was dose-limiting. In addition, the maximum tolerated dose was 1×10^8 pfu. Subsequent studies have not found dose-limiting toxicities for JX-594, and suggested the maximum feasible dose is 2×10^9 pfu. Moreover, Heo et al demonstrated systemic and long-term efficacy of a direct intratumoral injection of JX-594 in patients with advanced HCC and the dose was significantly associated with overall survival; the overall survival for the high dose (1×10^9 pfu) treatment was approximately twice that of the low dose group (1×10^8 pfu) ($14.1 \text{ m} vs 6.7 \text{ m}$) with comparable safety. A phase II clinical trial of advanced liver cancer further confirmed...
that the dose of a direct intratumoral injection of JX-594 was significantly associated with the overall survival.\(^6^4\) In addition, Cripe et al evaluated the safety of an intratumoral injection of JX-594 in children with liver cancer, and found that an intratumoral injection of JX-594 was safe and the side effects were primarily flu-like symptoms and skin pustules.\(^6^2\) Since patients with liver cancer are often associated with cirrhosis and viral hepatitis, traditional treatments do not induce an antiviral response; however, JX-594 induces high concentrations of antiviral cytokines that inhibit HBV, which may be effective for treating HBV-related HCC.\(^5^5\) Compared with traditional sorafenib treatment, JX-594 is also associated with a longer overall survival and fewer adverse reactions; however, additional clinical trials are needed to further verify the safety of JX-594 and explore the possibilities of combining JX-594 with other therapies. A phase III clinical trial (PHOCUS) investigating the combination of JX-594 and sorafenib for the treatment of advanced liver cancer is currently underway (NCT02562755).

2.2.2 Vaccinia virus in pancreatic cancer

GLV-1h68 (GL-ONC1) is a replication-competent virus containing the marker genes ruc-gfp and mutations in the F14.5L, J2R, and A56R loci, which disrupts TK and he-magglutinin. GLV-1h68 has demonstrated safety and antitumor efficacy in PANC-1 cell lines in vitro and PANC-1 pancreatic tumor xenografts via systemic injection in vivo.\(^6^6\) Moreover GLV-1h68 combined with cisplatin or gemcitabine resulted in enhanced therapeutic efficacy.\(^6^6\) To enhance the role of the virus as a cancer treatment, multiple therapeutic genes have been engineered for expression in vaccinia virus. The Lister vaccinia virus vaccine strain was designed to encode the endostatin-angiostatin fusion gene (VVhEA), and showed significant potent antitumor activity against human pancreatic tumor cells in vitro, a high selectivity for cancer cells, and inhibition of angiogenesis and tumor regression of human pancreatic tumor xenografts in mice following both intravenous and intratumoral injection.\(^6^7\) It is important to note that VVhEA was effective against pancreatic tumors insensitive to oncolytic adenoviruses.\(^6^7\) Another Lister vaccine strain (VV-IL-10) that encoded interleukin (IL)-10 and lacked TK has demonstrated superior antitumor efficacy in mice with subcutaneous pancreatic cancer that was also associated with long-term antitumor immunity.\(^6^8\) Although, no significant difference was observed in in vitro antitumor activity when VV-IL-10 was compared with the control VV, the presence of IL-10 which prevents host immune inhibition of viral replication, resulted in greater therapeutic efficacy in vivo of VV-IL-10.\(^6^8\)\(^6^9\)

2.2.3 Vaccinia virus in biliary tract cancer

GLV-1h68 has also demonstrated oncolytic activity against cholangiocarcinoma cell lines in vitro, and was well tolerated and exhibited antitumor efficacy in xenograft bearing athymic nude mice.\(^7^0\) A phase I clinical trial is currently evaluating the safety and efficacy of GLV-1h68, which is delivered as a bolus intravenous injection, in patients with solid organ cancers, including cholangiocarcinoma (NCT02714374).

2.3 Herpes simplex virus

Herpes simplex virus (HSV) is a double-stranded DNA virus that can be divided into HSV-1 and HSV-2 according to the specific serotype (Figure 3). Currently, HSV-1 is primarily used in clinical oncolytic therapy, whereas there are some studies which show that HSV-2 is also effective against a variety of tumors; interestingly, a tumor cell subpopulation that only responds to treatment with HSV-2 has been found.\(^7^1\)\(^7^2\) Compared with other viruses, HSV can infect and quickly kill tumor cells, supporting rapid viral replication and spread of the virus within a tumor mass. Moreover the safety of HSV can be ensured through the use of anti-HSV drugs (eg, acyclovir).\(^7^1\)

2.3.1 HSV in liver cancer

HSV-1 is primarily used for the treatment of liver cancer. The genome of HSV-1 is approximately 150 kb, including many non-essential genes that have no significant effect on viral replication and can be modified without losing the oncolytic effect of the virus.\(^7^3\) In the HSV-1 OV, LCSOV expression of the viral glycoprotein H gene is driven by the liver-specific apolipoprotein E (apoE)-AAT promoter and contains additional miRNA complementary sequences of miR-122a, miR-124a, and let-7 inserted into the same 3’ UTR region of the modified gH gene.\(^7^4\) miR-122a is a liver-specific miRNA that is expressed at low levels only in HCC, whereas miR-124a and let-7 are down-regulated or lacking in malignant cancer cells enabling translational control of gH expression in LCSOV infected normal cells.\(^7^4\)\(^7^5\) LCSOV also displays high selectivity and effective killing in HCC xenografts and cell lines, and significantly reduces tumor volume with minimal toxicity.\(^7^4\) G47A is a third-generation oncolytic HSV with mutations in the γ34.5, ICP6, and ICP47 genes. The γ34.5 gene production can prevent the host cell from stopping translation due to viral infection, allowing viral proteins to be continuously synthesized. Since tumor cells often lack control over translation and the antiviral response, HSV with the
γ34.5 gene mutation can replicate in tumor cells.73,76 The ICP6 gene product is required for the replication of viruses in noncycling cells, so mutations in the ICP6 gene enable HSV to selectively replicate in constantly dividing cells (eg, tumor cells).77 Moreover, an ICP47 gene mutation can amplify the targeting of tumor cells caused by a γ34.5 gene mutation and stimulate T cells to enhance the immune response and antitumor immunity to virus-infected tumor cells.73,78 G47Δ requires only a very low MOI to effectively kill a variety of different HCC cell lines and inhibit tumor growth in HCC xenografts with no significant toxicity.78 HSV-1-T-01 is similar to G47Δ, in which the γ34.5 and ICP6 genes were deleted and the ICP6 gene was replaced with the LacZ gene. HSV-1-T-01 was found to inhibit tumor growth in both HCC cell lines and xenografts, and significantly improved the antitumor effect by enhancing T cell-mediated immunity.79

2.3.2 | HSV in pancreatic cancer

Several preclinical studies have demonstrated the antitumor activity of both HSV-1 and HSV-2 for pancreatic cancer. G207 is a typical engineered HSV-1 with deletions in both copies of γ34.5 and genetic inactivation of ICP6, which replicated in and lysed human pancreatic cancer cells in vitro.80 Another engineered HSV-1, NV1020, had a deletion in only one copy of γ34.5 also displayed effective viral replication and cell lysis in human pancreatic cancer cells in vitro, as well as a higher production of viral progeny.81 Both the injection of G207 and NV1020 into athymic mice xenografts induced complete pancreatic tumor eradication in 25% and 40% of mice, respectively.81 FusOn-H2 is an HSV-2 construct with a deletion in the PK domain which encodes serine/threonine protein kinase activity and replicates in cells with an activated Ras signaling pathway. FusOn-H2 could eradicate subcutaneous tumors and orthotopic tumors in human pancreatic cancer xenografts following an intratumor and systemic injection, respectively.82

A Phase I clinical trial evaluated the efficacy of HF10, a naturally mutated HSV-1, in six patients with unresectable pancreatic cancer. No adverse effects were observed and HF10 infection stimulated the host antitumor immune responses and increased the number of NK cells, CD4+ cells, CD8+ cells, and macrophages after virus injection; four of the six patients showed clinical efficacy with longer survival.83 Additionally, talimogene laherparepvec (T-VEC), a modified HSV-1 with deletions in γ34.5 and ICP47, and also expressing GM-CSF, has been approved by the FDA as the first oncolytic virus therapy for the treatment of melanoma. Unfortunately, a Phase I trial assessing the safety of T-VEC in 17 patients with unresectable pancreatic cancer showed limited efficacy and various adverse events and only two patients completed the trial (NCT00402025).

2.3.3 | HSV in biliary tract cancer

The study of oncolytic therapy for cholangiocarcinoma remains in the preclinical stage. NV1203 is an attenuated HSV with a UL56 deletion, a single copy of ICP0, ICP4, and γ34.5, as well as the insertion of the Escherichia coli lacZ marker gene into the ICP47 locus. UL56 is associated with the pathogenicity and neuroinvasiveness of HSV, and the lack of UL56 attenuates the virus.84 In addition, ICP0 is associated with both lytic and latent HSV infections, and ICP0-null HSV-1 is extremely sensitive to IFN and PML-mediated disruption of the viral lifecycle; however, since IFN and PML are downregulated in most tumors, this virus can specifically target cancer cells.73,85,86 Combination treatment with low-dose external radiation therapy (XRT) and NV1203 was highly tumoricidal, both in vitro and in vivo,87 though the greatest tumor volume decrease was observed in the YoMi cell line, which correlated with up-regulation of growth arrest and DNA damage protein 34 (GADD34) by XRT.85 GADD34 has significant homology to γ34.5 and improves the specificity of the virus for targeting tumor cells.87

G207 is a HSV-1 mutant with deletions in both the γ34.5 and ICP6 genes, and its safety has been demonstrated in humans.88 Nearly total cell killing was observed in five gallbladder carcinoma cell lines within 72 hours of in vivo G207 injection.89 Moreover an intratumor injection of G207 (1 × 10^7 pfu) in immunocompetent hamsters bearing established subcutaneous KIGB-5 tumors displayed a significant inhibition of tumor growth and prolonged survival.89 Interestingly, a decreased antitumor effect was observed in athymic mice bearing KIGB-5 tumors, suggesting that the systemic antitumor effect of G207 is partly mediated by T cells.89

2.4 | Reovirus

Reovirus is a double-stranded RNA virus that is ubiquitous in nature, found in untreated sewage, stagnant water, and rivers worldwide (Figure 3). In normal cells, a reovirus infection activates the PKR pathway of the host cell. PKR is a serine/threonine protein kinase involved in antiviral host defense, functioning to inhibit reovirus translation, replication, and further infection.90 In cells in which the Ras signaling pathway is activated, the PKR pathway is inhibited, resulting in viral replication and eventually destroying the host cells. Ras gene mutations have been found in various human tumors, including pancreatic, colon, and lung cancer, suggesting the potential of using reoviruses to treat tumors.91,92 Ras
Reovirus had a limited therapeutic effect on HBV-HCC.96 By HBV inhibited the oncolysis of reovirus in HCC; thus, et al found that the oncogenic protein, HBX, produced IFN production.97 Responses through inducing innate immune activation and models and cell lines, demonstrating significant anti-HCC effect.98 An intraportal administration of reovirus decreased therapy in mice with Panc1 and BxPC3 xenografts mice in vivo.98 An intravenous reovirus injection is safe, displays no dose-limiting toxicity, and has potent antitumor effects.95 Currently, although the reovirus type 3 Dearing strain is most commonly used in clinical studies, there are only a few studies using reovirus to treat liver and biliary tract cancer.

2.4.1 Reovirus in liver cancer

Most liver cancers are associated with oncogenic viral infections (eg, HBV [54%] and HCV [31%]).96 Park et al found that the oncogenic protein, HBX, produced by HBV inhibited the oncolysis of reovirus in HCC; thus, reovirus had a limited therapeutic effect on HBV-HCC.96 In contrast, Samson et al demonstrated that reovirus could effectively inhibit HCV replication in HCV-HCC mouse models and cell lines, demonstrating significant anti-HCC responses through inducing innate immune activation and IFN production.97

2.4.2 Reovirus in pancreatic cancer

Approximately 90% of pancreatic cancers have K-ras gene mutations; thus, reoviruses are oncolytic toward cancer cells displaying activated Ras signaling.92 Reovirus (serotype 3) has shown significant antitumor effects in four human pancreatic cancer cell lines with K-ras mutations and BxPC3 with a normal Ras proto-oncogene, and was also an effective therapy in mice with Panc1 and BxPC3 xenografts mice in vivo.98 An intraportal administration of reovirus decreased the number and size of liver metastases from pancreatic cancer without any toxicity to normal hepatic tissue in hamsters.99 Furthermore, an intraperitoneal administration of reovirus effectively controlled the peritoneal dissemination of pancreatic cancer in hamsters.100 Pelareorep (REOLYSIN®) is a proprietary isolate of the human reovirus type 3 Dearing strain and demonstrates a potential anticancer effect towards several cancers when used as a mono and/or combination therapy.101 A phase II study of pelareorep combined with gemcitabine therapy was evaluated in 34 patients with advanced pancreatic adenocarcinoma. The combined therapy was well tolerated without serious adverse events and the median progression-free survival (PFS) was 3.4 months (median overall survival [OS]: 10.2 months) with a 1- and 2-year survival rate of 45% and 24%, respectively, which were the highest observed rates in the similar studies, which demonstrated that pelareorep can complement gemcitabine treatment in pancreatic cancer.102 However, another phase II study of pelareorep combined with paclitaxel/carboplatin therapy compared with paclitaxel/carboplatin therapy alone was evaluated in 73 patients with metastatic pancreatic adenocarcinoma; no significant differences were found in the response rate, PFS, or OS between the two therapies due to insurmountable immune suppression and elevated expression of CTLA4 on T cells may be the key factor limiting the oncolytic efficacy in patients with pancreatic cancer.103

2.5 Vesicular stomatitis virus

Vesicular stomatitis virus (VSV) is a negative-stranded RNA virus that specifically targets tumor cells due to the reduced ability of tumor cells to resist VSV infection (Figure 3). An engineered VSV that expresses β-gal (rVSV-β-gal) demonstrated effective viral transduction, tumor-selective viral replication, and extensive oncolytic effects in HCC cells, and prolonged survival of Buffalo rats bearing orthotopic HCC without significant cytotoxicity or liver damage. Further experiments showed that while the survival time of rats treated with rVSV-β-gal was significantly prolonged, viral spread between solid tumor cells was limited.104 To overcome this problem, recombinant virus VSV-NDV was constructed to induce the formation of syncytia between tumor cells to promote efficient viral spread. The VSV membrane surface glycoprotein is replaced by Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) protein and modified fusion (F) membrane protein, which retain the ability for rapid replication while increasing the safety and the ability of virions to spread between cells and enhance the oncolytic effect.105 VSV-NDV-induced extensive syncytia formation and enhanced tumor cytotoxicity were observed in both in vivo and in vitro HCC models without inducing significant peripheral hepatic parenchymal damage.106 VSV (MΔ51)-M3 is a recombinant VSV with amino acid 51 deleted from the VSV-M protein and also expresses M3, a chemokine-binding protein from murine gammaherpesvirus-68. The deletion of amino acid 51 from the VSV-M protein results in the loss of the ability of the virus to inhibit mRNA transport in host cells; therefore, IFN and cytokine expression is increased in infected cells, which increases the safety of rVSV but induces a stronger inflammatory response and reduces the oncolytic effect of rVSV.107 The addition of M3 antagonizes chemokine signaling and reduces immune infiltration allowing survival of the virus and oncolysis to continue. In an HCC-bearing mouse model of hepatic artery perfusion, treatment with rVSV (MΔ51)-M3 decreased infiltration of neutrophils and NK cells in the lesion, while the viral titer increased, the oncolytic effect was enhanced, and more importantly, no obvious systemic and organ toxicities were observed.107
2.6 | Myxoma virus

Myxoma virus (MYXV) is a member of the poxvirus family that has a double-stranded DNA genome and is pathogenic to rabbits, but not humans.108 In addition, a MYXV infection may be prevented through protective interferon responses induced in species other that rabbits, which results in a narrow host tropism.109 However, MYXV can replicate in cells with an activated Akt pathway, as well as p53 or Rb dysfunction.110,111 Akt is a serine/threonine kinase that regulates cellular proliferation and death but is upregulated in several human cancer cells.112 Therefore, MYXV can be used to selectively target many cancer cells and has been shown to be effective at infecting and killing 70% of tested tumor cell lines.113 Moreover MYXV can productively infect, replicate in, and lyse human pancreatic cancer cells in vitro and prolong survival in mouse xenografts in vivo.114 In addition, the combined use of MYXV and gemcitabine displays a robust antitumor effect.115

The effective tumor cell killing ability of MYXV has been shown in a variety of human gallbladder carcinoma cell

Table 1 Application situation of oncolytic virus in HCC
Viral type
Adenovirus
Vaccinia virus
HSV-1
VSV
Viral type

Adenovirus
Vaccinia
virus
HSV-1

(Continues)
lines. Both rapamycin and hyaluronan can effectively enhance the oncolytic ability of MYXV in vitro, but only hyaluronan can enhance the antitumor effects of MYXV in vivo and prolong the survival of GBC tumor-bearing mice via the interaction between HA and CD44 which results in increased Akt signaling. There are no related clinical trials in human subjects are currently ongoing.

2.7 | Measles virus

Measles virus (MV) is a negative-stranded RNA paramyxovirus (Figure 3) and the vaccine strains of the virus widely used for measles prevention worldwide have demonstrated excellent safety. MV enters cells through the CD46 receptor, a membrane-associated protein that protects cells against complement-mediated lysis that is overexpressed in tumors but exhibits low levels of expression in normal cells; thus, MV preferentially infects tumor cells. The virus kills tumor cells via cell-to-cell fusion and the formation of mononuclear cell aggregates. MV strains have demonstrated potent antitumor activity in multiple tumor models, including both solid tumors and hematologic malignancies.

A MV expressing the sodium iodide symporter reporter gene (MV-NIS) was found to efficiently infect human pancreatic tumor xenografts in athymic nude mice and facilitated diagnostic imaging of infection. Since 5-FU is commonly used for the treatment of carcinomas with low effectiveness in bile duct cancer, SCD can convert the prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU) and subsequently to 5-fluorouridine-monophosphate, which inhibits both DNA and protein synthesis. MeV-SCD combined with the administration of 5-FC displays significant oncolytic ability against cholangiocarcinoma in vitro. In vivo, the intratumoral administration of MeV-SCD significantly reduced the tumor size and was associated with a significant survival benefit.

2.8 | Application status of OV therapy in hepato-bilio-pancreatic cancer

Tables 1-3 show the application situation of oncolytic virus in HCC, pancreatic cancer, and biliary tract cancer. Different OV have their unique advantages and disadvantages. For example, As the most widely used virus for research, adenovirus has broad tropism for infecting many human tissues and is conducive to clinical applications. However, the small genome of adenovirus only allows insertion of small portions of genetic material (not exceeding 8 kb), limiting its ability to deliver multiple antitumor or immune-stimulating payloads. In contrast, HSV-1 has a large genome with many genes not necessary for virus replication, thus allowing researchers to manipulate the genome to enhance the oncolytic activity without destroying the ability of virus replication. Importantly, HSV-1 is highly immunogenic, directly stimulating NK cells
and synergizing with IL-15 to promote antitumor immunity. However, HSV-1 spreads from cell to cell, suggesting that intratumoral injection may be the best means for delivery while intravenous administration may be not suitable due to multiple physical (i.e., general “stickiness” to endothelium and blood components) and immunological

Viral type	Name	Mode of administration	Combination therapy	Key features	Cancer types	Study types	Ref./Clinical trial
Adenovirus	AxE1CAUT	Intratumoral	5-FU and/or Ganciclovir	Deletion of the E1A, E1B, and E3 regions and cDNAs of UPRT and HSV-tk with the CAG promoter are inserted	Cholangiocarcinoma	Preclinical	[133]
	AxdAdB-3	Intratumoral	Gene-directed enzyme prodrug therapy	A mutant E1A and E1B-55kD deletion	Gallbladder carcinoma	Preclinical	[45]
	AxdAdB-3-F/ RGD	Intratumoral	—	A mutant E1A and E1B-55kD deletion and the incorporation of an Arg-Gly-Asp motif into the HI-loop of Ad5 fiberknob region	Gallbladder carcinoma	Preclinical	[46]
	AdSurp-P53	Intratumoral	—	Survivin promoter-regulated as well as high expression of p53	Gallbladder carcinoma	Preclinical	[134]
	SG7605-p53-11R	Intratumoral	—	Arm with the p53 gene and cell-penetrating peptide 11R	Gallbladder carcinoma	Preclinical	[135]
Vaccinia virus	GLV-1h68	Intratumoral	—	The LIVP strain with mutations in F14.5L, J2R, and A56R loci	Cholangiocarcinoma	Preclinical	[70]
HSV-1	NV1203	Intratumoral	XRT	UL56 deletion as well as a single copy of ICP0, ICP4, γ34.5, and the Escherichia coli lacZ marker gene is inserted into the ICP47 locus	Cholangiocarcinoma	Preclinical	[87]
	G207	Intratumoral	—	Deletions in both copies of γ34.5 and genetic inactivation of ICP6	Gallbladder carcinoma	Preclinical	[89]
Myxoma virus	MYXV	Intratumoral	Rapamycin + Hyaluronan	Unmodified	Gallbladder carcinoma	Preclinical	[116,117]
Measles virus	MeV-SCD	Intratumoral	5-FC	Express super cytosome deaminase	Cholangiocarcinoma	Preclinical	[123]
CONFLICTS OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Yuwei Li and Yinan Shen contributed equally to this work. All authors contributed to the study conception and design. All authors read and approved the final manuscript.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Yuwei Li https://orcid.org/0000-0002-9290-6701
Tingbo Liang https://orcid.org/0000-0003-0143-3353

REFERENCES
1. Thomson BJ. Viruses and apoptosis. Int J Exp Pathol. 2001;82(2):65-76.
2. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30(7):658-670.
3. Rahal A, Mushar B. Oncolytic viral therapy for pancreatic cancer. J Surg Oncol. 2017;116(1):94-103.
4. Prestwich RJ, Ilett EJ, Errington F, et al. Immune-mediated anti-tumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res. 2009;15(13):4374-4381.
5. Li H, Dutuor A, Tao L, Fu XP, Zhang XL. Virotherapy with a type 2 herpes simplex virus-derived oncolytic virus induces potent antitumor immunity against neuroblastoma. Clin Cancer Res. 2007;13(1):316-322.
6. Toda M, Rabkin SD, Kojima H, Martuza RL. Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther. 1999;10(3):385-393.
7. Diaz RM, Galivo F, Kottke T, et al. Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res. 2007;67(6):2840-2848.
8. Greiner S, Humrich JY, Thuman P, Sauter B, Schuler G, Jenne L. The highly attenuated vaccinia virus strain modified virus Ankara induces apoptosis in melanoma cells and allows bystander dendritic cells to generate a potent anti-tumoral immunity. Clin Exp Immunol. 2006;146(2):344-353.
9. Li SZ, Yang F, Ren XB. Immunotherapy for hepatocellular carcinoma. Drug Discov Ther. 2015;9(5):363-371.
10. Solinas C, Pusole G, Demurtas L, et al. Tumor infiltrating lymphocytes in gastrointestinal tumors: controversies and future clinical implications. Crit Rev Oncol Hematol. 2017;110:106-116.
11. Chu RL, Post DE, Khuri FR, Van Meir EG. Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res. 2004;10(16):5299-5312.
12. Wang YG, Huang PP, Zhang R, Ma BY, Zhou XM, Sun YF. Targeting adeno-associated virus and adenoviral gene therapy for hepatocellular carcinoma. World J Gastroentero. 2016;22(1):326-337.
13. Gallimore PH, Turnell AS. Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene. 2001;20(54):7824-7835.
14. Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science. 1997;275(5304):1320-1323.

15. White E, Sabbatini P, Debbas M, Wold WS, Kushe D, Gooding LR. The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor alpha. Mol Cell Biol. 1992;12(6):2570-2580.

16. Zou W, Luo C, Zhang Z, et al. A novel oncolytic adenovirus targeting to telomerase activity in tumor cells with potent. Oncogene. 2004;23(2):457-464.

17. Bischoff JR, Kim DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996;274(5286):373-376.

18. Reid T, Warren R, Kirk D. Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther. 2002;9(12):979-986.

19. Ganly I, Kirk D, Eckhardt G, et al. A phase I study of Oncylx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000;6(3):798-806.

20. O'Shea CC, Johnson L, Bagus B, et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell. 2004;6(6):611-623.

21. Jin HJ, Lv SQ, Yang JH, et al. Use of microRNA let-7 to control the replication specificity of oncolytic adenovirus in hepatocellular carcinoma cells. PLoS ONE. 2011;6(7):e21307.

22. Zhang Q, Chen GH, Peng LH, et al. Increased safety with preserved antitumoral efficacy on hepatocellular carcinoma with dual-regulated oncolytic adenovirus. Clin Cancer Res. 2006;12(21):6523-6531.

23. Wang YG, Liu T, Huang PP, et al. A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma. J Biol Chem. 2015;289(11):13564-13578.

24. He GQ, Lei W, Wang SB, et al. Overexpression of tumor suppressor TSLC1 by a survivin-regulated oncolytic adenovirus significantly inhibits hepatocellular carcinoma growth. J Cancer Res Clin. 2012;138(4):657-670.

25. Zhang ZL, Zou WG, Luo CX, et al. An armed oncolytic adenovirus system, ZD355-gene, demonstrating potent antitumoral efficacy. Cell Res. 2003;13(6):481-489.

26. Zhang KY, Qian J, Wang SB, Yang Y. Targeting gene-viro-therapy with AFP driving Apoptin gene shows potent tumor effect in hepatocarcinoma. J Biomed Sci. 2012;19.

27. Mathis JM, Stoff-Khalili MA, Curiel DT. Oncolytic adenoviruses - selective retargeting to tumor cells. Oncogene. 2005;24(52):7775-7791.

28. Pathil A, Armeanu S, Venturelli S, et al. HDAC inhibitor treatment of hepatoma cells induces both TRAIL-independent apoptosis and restoration of sensitivity to TRAIL. Hепatolоgy. 2006;43(3):425-434.

29. Pei ZF, Chu L, Zou WG, et al. An oncolytic adenoviral vector of smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatolоgy. 2004;39(5):1371-1381.

30. Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R. X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and-7 in distinct modes. J Biol Chem. 2001;276(29):27058-27063.

31. He LF, Gu JF, Tang WH, et al. Significant antitumor activity of oncolytic adenovirus expressing human interferon-beta for hepatocellular carcinoma. J Gene Med. 2008;10(9):983-992.
51. Parato KA, Breitbach CJ, Le Boeuf F, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther. 2012;20(4):749-758.

52. Kirn DH, Wang YH, Le Boeuf F, Bell J, Thorne SH. Targeting of the oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9(6):533-542.

53. Thorne SH, Liang W, Sampath P, et al. Targeting localized immune suppression within the tumor through repeat cycles of immune cell-oncolytic virus combination therapy. Mol Ther. 2010;18(9):1698-1705.

54. Vilarinho S, Tatde TH. New frontier in liver cancer treatment: oncolytic viral therapy. Hepatology. 2014;59(1):343-346.

55. Yoo SY, Jeong SN, Kang DH, Heo J. Evolutionary cancer-favoring engineered vaccinia virus for metastatic hepatocellular carcinoma. Oncotarget. 2017;8(42):71489-71499.

56. Dranoff G, Jaffe E, Lazenby A, et al. Vaccination with irradiated tumor-cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting antitumor immunity. P Natl Acad Sci USA. 1993;90(8):3539-3543.

57. Breitbach CJ, Paterson JM, Lemay CG, et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther. 2007;15(9):1686-1693.

58. Tamadah RSE, Hoerauf A, Layland LE. Immunomodulatory effects of myeloid-derived suppressor cells in diseases: role in cancer and infections. Immunobiology. 2018;223(4-5):432-442.

59. Breitbach CJ, Burke J, Jonker D, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 2011;477(7362):99-U102.

60. Heo J, Reid T, Ruo L, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia virus JX-594 in liver cancer. Nat Med. 2013;19(3):329-336.

61. Cripe TP, Ngo MC, Geller JJ, et al. Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in pediatric cancer patients. Mol Ther. 2015;23(3):602-608.

62. Kim JH, Oh JY, Park BH, et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther. 2006;14(3):361-370.

63. Breitbach CJ, Moon A, Burke J, Hwang TH, Kirn DH. A phase 2, open-label, randomized study of Pexa-Vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular carcinoma. Methods Mol Biol. 2015;1317:343-357.

64. Liu TC, Hwang T, Park BH, Bell J, Kirn DH. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther. 2008;16(9):1637-1642.

65. Yu YA, Galanis C, Woo Y, et al. Regression of human pancreatic tumor xenografts in mice after a single systemic injection of recombinant vaccinia virus GLV-1h68. Mol Cancer Ther. 2009;8(1):141-151.

66. Tsosome JR, Briat A, Alusi G, et al. Lister strain of vaccinia virus armed with endostatin-angiostatin fusion gene as a novel therapeutic agent for human pancreatic cancer. Gene Ther. 2009;16(10):1223-1233.

67. Chard LS, Maniati E, Wang PJ, et al. A vaccinia virus armed with interleukin-10 Is a promising therapeutic agent for treatment of murine pancreatic cancer. Clin Cancer Res. 2015;21(2):405-416.

68. Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180(9):5771-5777.

69. Pugaleithi A, Mojica K, Ady JW, et al. Recombinant vaccinia virus GLV-1h68 is a promising oncolytic vector in the treatment of cholangiocarcinoma. Cancer Gene Ther. 2015;22(12):591-596.

70. Fu X, Tao L, Wang PY, Cripe TP, Zhang X. Comparison of infectivity and spread between HSV-1 and HSV-2 based oncolytic viruses on tumor cells with different receptor expression profiles. Oncotarget. 2018;9(30):21348-21358.

71. Fu XP, Tao LH, Cai R, Prigge J, Zhang XL. A mutant type 2 herpes simplex virus deleted for the protein kinase domain of the ICP10 gene is a potent oncolytic virus. Mol Ther. 2006;13(5):882-890.

72. Peters C, Rabinkin SD. Designing herpes viruses as oncolytic. Mol Ther-Oncolytics. 2015;2:15010.

73. Fu XP, Rivera A, Tao LH, De Geest B, Zhang XL. Construction of an oncolytic herpes simplex virus that precisely targets hepatocellular carcinoma cells. Mol Ther. 2012;20(2):339-346.

74. Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer. 2010;17(1):F19-36.

75. He B, Gross M, Rozibman B. The gamma(134-5) protein of herpes simplex virus 1 complexes with protein phosphatase 1 alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA. 1997;94(3):843-848.

76. Goldstein DJ, Weller SK. Factor(S) present in herpes-simplex virus type-1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase - characterization of an Icp6 deletion mutant. Virology. 1988;166(1):41-51.

77. Wang JN, Xu LH, Zeng WG, et al. Treatment of human hepatocellular carcinoma by the oncolytic herpes simplex virus G47delta. Cancer Cell Int. 2014;14:83.

78. Nakatake R, Kaibori M, Nakamura Y, et al. Third-generation oncolytic herpes simplex virus inhibits the growth of liver tumors in mice. Cancer Sci. 2018;109(3):600-610.

79. Lee JH, Fedoroff HJ, Schoeniger LO. G207, modified herpes simplex virus deleted for the protein kinase domain of ICP34.5, is a promising oncolytic agent in a preclinical model of hepatocellular carcinoma. Mol Ther. 2012;20(4):749-758.

80. McAuliffe PF, Jarnagin WR, Johnson P, Delman KA, Federoff H. G207, modified herpes simplex virus type-1, kills human pancreatic cancer cells in vitro and in vivo. Cancer Cell Int. 2014;14:83.
virus derived from type 2 herpes simplex virus. Clin Cancer Res. 2006;12(10):3152-3157.

83. Nakao A, Kasuya H, Sahin TT, et al. A phase I dose-escalation clinical trial of intraoperative direct intratumoral injection of HSV1-100 oncolytic virus in non-resectable patients with advanced pancreatic cancer. Cancer Gene Ther. 2011;18(3):167-175.

84. Kehn R, Rosen-Wolff A, Darai G. Restitution of the UL56 gene expression of HSV-1 HFEM led to restoration of virulent phenotype; deletion of the amino acids 217 to 234 of the UL56 protein abrogates the virulent phenotype. Virus Res. 1996;40(1):17-31.

85. Sobol PT, Hummell JL, Rodrigues RM, Mossman KL. PML has a predictive role in tumor cell permissiveness to interferon-sensitive oncolytic viruses. Gene Ther. 2009;16(9):1077-1087.

86. Boutell C, Everett RD. Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J Virol. 2013;94:465-481.

87. Jarnagin WR, Zager JS, Hezel M, et al. Treatment of cholangiocarcinoma with oncolytic herpes simplex virus combined with external beam radiation therapy. Cancer Gene Ther. 2006;13(3):326-334.

88. Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 2000;7(10):867-874.

89. Nakano K, Todo T, Chijiwa K, Tanaka M. Therapeutic efficacy of G207, a conditionally replicating herpes simplex virus type 1 mutant, for gallbladder carcinoma in immunocompetent hamsters. Mol Ther. 2001;3(4):431-437.

90. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PWK. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. Embo J. 1998;17(12):3351-3362.

91. Coffey MC, Strong JE, Forsyth PA, Lee PWK. Reovirus therapy of tumors with activated Ras pathway. Cancer Res. 1998;58(22):5392:1332-1334.

92. Bos JL. Ras oncogenes in human cancer - a Review. Cancer Res. 1989;49(17):4682-4689.

93. Marcato P, Shmulevitz M, Pan D, Stoltz D, Lee PWK. Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release. Mol Ther. 2007;15(8):1522-1530.

94. Steele L, Errington F, Prestwich R, et al. Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NF-kappa B mediated and supports innate and adaptive anti-tumour immune priming. Mol Cancer. 2010;9(23):pii: e01386-18.

95. Abdullahi S, Jakel M, Behrend SJ, et al. A novel chimeric oncolytic virus vector for improved safety and efficacy as a platform for the treatment of hepatocellular carcinoma. J Virol. 2018;92(23):pii: e01386-18.

96. Hirano S, Etoh T, Okunaga R, et al. Reovirus inhibits the peritoneal dissemination of pancreatic cancer cells in an immunocompetent animal model. Oncol Rep. 2009;21(6):1381-1384.

97. Chakrabarty R, Tran H, Selvaggi G, Hagerman A, Thompson B, Coffey M. The oncolytic virus, pelareorep, as a novel anticancer agent: a review. Invest New Drug. 2015;33(3):761-774.

98. Mahalingam D, Goel S, Aparo S, et al. A Phase II study of pelareorep (REOLYSIN(R)) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers (Basel). 2018;10(6):pii:E160.

99. Noonan AM, Farren MR, Geyer SM, et al. Randomized phase 2 trial of the oncolytic virus pelareorep (Reolysin) in upfront treatment of metastatic Pancreatic adenocarcinoma. Mol Ther. 2016;24(6):1150-1158.

100. Shinozaki K, Ebert O, Kournioti C, Tai YS, Woo SL. Oncolysis of multifocal hepato-cellular carcinoma in the rat liver by hepatic artery infusion of vesicular stomatitis virus. Mol Ther. 2004;9(3):367-371.

101. Chakrabarty R, Tran H, Selvaggi G, Hagerman A, Thompson B, Coffey M. The oncolytic virus, pelareorep, as a novel anticancer agent: a review. Invest New Drug. 2015;33(3):761-774.

102. Abdullahi S, Jakel M, Behrend SJ, et al. A novel chimeric oncolytic virus vector for improved safety and efficacy as a platform for the treatment of hepatocellular carcinoma. J Virol. 2018;92(23):pii: e01386-18.

103. Ebert O, Shinozaki K, Kournioti C, Park MS, Garcia-Sastre A, Woo SLC. Synctia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Mol Ther. 2004;9:S397.

104. Weng MZ, Zhang MD, Qin YY, et al. Targeting gallbladder carcinoma with oncolytic herpes simplex virus combined with external beam radiation therapy. Cancer Gene Ther. 2004;9(3):367-371.

105. Abdullahi S, Jakel M, Behrend SJ, et al. A novel chimeric oncolytic virus vector for improved safety and efficacy as a platform for the treatment of hepatocellular carcinoma. J Virol. 2018;92(23):pii: e01386-18.

106. Wang F, Ma YY, Barrett JW, et al. Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nat Immunol. 2004;5(12):1266-1274.

107. Weng MZ, Zhang MD, Qin YY, et al. Targeting gallbladder carcinoma with oncolytic herpes simplex virus combined with external beam radiation therapy. Cancer Gene Ther. 2014;21(3):2350-2356.
rapamycin in vitro and further improved by hyaluronan in vivo.
Mol. Cancer. 2014;13.

118. Cutts FT, Markowitz LE. Successes and failures in measles con-
trol. *J. Infect. Dis.* 1994;170(Suppl 1):S32-41.

119. Galanis E. Therapeutic potential of oncolytic measles virus: prom-
ises and challenges. *Clin Pharmacol Ther.* 2010;88(5):620-625.

120. Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: me-
chanisms of action and clinical strategies. *Nat Rev Cancer.*
2003;3(5):330-338.

121. Anderson BD, Nakamura T, Russell SJ, Peng KW. High CD46
receptor density determines preferential killing of tumor cells by
oncolytic measles virus. *Cancer Res.* 2004;64(14):4919-4926.

122. Carlson SK, Classic KL, Hadac EM, et al. Quantitative molecular
imaging of viral therapy for pancreatic cancer using an engineered
measles virus expressing the sodium-iodide symporter reporter
gene. *Am J Roentgenol.* 2009;192(1):279-287.

123. Lange S, Lampe J, Bossow S, et al. A novel armed oncolytic mea-
sles vaccine virus for the treatment of cholangiocarcinoma.
Hum Gene Ther. 2013;24(5):554-564.

124. Kojima Y, Honda K, Hamada H, Kobayashi N. Oncolytic
gene therapy combined with double suicide genes for
human bile duct cancer in nude mouse models.
J Surg Res. 2009;157(1):E63-E70.

125. Samudio I, Hofs E, Cho B, et al. UV light-inactivated HSV-1
stimulates natural killer cell-induced killing of prostate cancer
cells. *J Immunother.* 2019;42(5):162-174.

126. Samudio I, Rezvani K, Shaim H, et al. UV-inactivated HSV-1
potently activates NK cell killing of leukemic cells.
Blood. 2016;127(21):2575-2586.

127. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of
cancer treatment at dawn. *Cancer Sci.* 2016;107(10):1373-1379.

128. Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson
DA. The pancreas cancer microenvironment.
Clin Cancer Res. 2012;18(16):4266-4276.

129. Chang JH, Jiang Y, Pillarisetty VG. Role of immune cells in pan-
creatic cancer from bench to clinical application: an updated re-
view. *Medicine.* 2016;95(49):e5541.

130. Ebert O, Shinozaki K, Huang TG, Savontaus MJ, Garcia-Sastre
A, Woo SL. Oncolytic vesicular stomatitis virus for treatment of
orthotopic hepatocellular carcinoma in immune-competent rats.
Cancer Res. 2003;63(13):3605-3611.

131. Kasuya H, Nishiyama Y, Nomoto S, et al. Suitability of a US3-
inactivated HSV mutant (L1BR1) as an oncolytic virus for pan-
creatic cancer therapy. *Cancer Gene Ther.* 2007;14(6):533-542.

132. Bossow S, Grossardt C, Temme A, et al. Armed and targeted
measles virus for chemovirotherapy of pancreatic cancer.
Cancer Gene Ther. 2011;18(8):598-608.

133. Stackhouse MA, Pederson LC, Grizzle WE, et al. Fractionated
radiation therapy in combination with adenoviral delivery of the
cytosine deaminase gene and 5-fluorocytosine enhances cytotoxic
and antitumor effects in human colorectal and cholangiocarci-
noma models. *Gene Ther.* 2000;7(12):1019-1026.

134. Liu C, Sun B, An N, et al. Inhibitory effect of Survivin promot-
er-regulated oncolytic adenovirus carrying P53 gene against gall-
bladder cancer. *Mol Oncol.* 2011;5(6):545-554.

135. Wang JH, Yu Y, Yan Z, et al. Anticancer activity of oncolytic ade-
oviruses carrying p53 is augmented by 11R in gallbladder cancer
cell lines in vitro and in vivo. *Oncol Rep.* 2013;30(2):833-841.

How to cite this article: Li Y, Shen Y, Zhao R, et al. Oncolytic virotherapy in hepato-bilio-pancreatic cancer: The key to breaking the log jam? *Cancer Med.* 2020;9:2943–2959. https://doi.org/10.1002/cam4.2949