Adiaspiromycosis of an *Apodemus agrarius* captured wild rodent in Korea

Tae-Hyoun Kim¹, Ju-Hee Han¹, Seo-Na Chang¹, Dong-Su Kim¹, Tamer Said Abdelkader¹, Seung-Hyeok Seok², Jong-Hwan Park¹, Hong-Shik Oh*, Jong-Taek Kim³, Byoung-Hee Lee⁶, Jeong-Hwa Shin⁵, Jung-Hyun Kim⁷, Jong-Min Kim⁷, Jae-Hak Park¹*

¹Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
²Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Korea
³Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Korea
⁴Department of Science Education, Jeju National University, Jeju, Korea
⁵College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
⁶Biological Resources Coordination Division, National Institute of Biological Resources, Incheon, Korea
⁷Biosafety Research Team, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Korea

Adiaspiromycosis is caused by pulmonary infection with *Emmonsia*. Inhalated spores of *Emmonsia* cause asymptomatic infection to necrogranulomatous pneumonia, depending on the burden of adiaspore and host immunity. For disease monitoring of wild rodents captured on Jeju Island in Korea, we examined the lung tissue of wild rodents histopathologically. Spores composed of thick three-layered walls were found following histopathological examination and were diagnosed as adiaspiromycosis. Adiaspiromycosis has been found in mammals in many parts of the world. To our knowledge, this is the first report of adiaspiromycosis of an *Apodemus agrarius* captured in Korea.

Keywords: Adiaspiromycosis, *Emmonsia crescens*, wild rodent

Received 10 November 2011; Revised version received 3 March 2012; Accepted 3 March 2012

Adiaspiromycosis is a pulmonary fungal infection caused by the dimorphic fungi, *Emmonsia parva* or *Emmonsia crescens* [1]. Large globose, thick-walled, non-proliferating structures called adiaspore [2] are seen in infected tissue. The term adiaspore was derived from the Greek verb *speirein* for scattering, with *adia* being a negative, so adiaspiromycosis describes an infection in which there is no multiplication or dissemination of the fungus from the original site [3].

Emmonsia species are ubiquitous filamentous fungi isolated commonly from soil [1]. *Emmonsia crescens* (*Chrysosporium parvum* var. *crescens*) has been isolated from over 96 species of animals as well as soil worldwide, whereas *Emmonsia parva* (*Chrysosporium parvum*) has been isolated from relatively few species of animals in narrow geographical ranges [2].

Emmonsia crescens is the main causative agent of adiaspiromycosis in mainland Europe and the UK, whereas *Emmonsia parva* is widespread in certain exothermic regions, including Central Asia, Africa and parts of the America [4]. The first human case of adiaspiromycosis due to *Emmonsia crescens* was reported in France in 1960 [4] and human pulmonary adiaspiromycosis has been reported in the literature from multiple countries including Russia, Germany, the Czech Republic, Guatemala, Brazil and the United States [5,6].

*Corresponding author: Jae-Hak Park, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul 151-742, Korea
Tel: +82-2-880-1256; Fax: +82-2-878-1257; E-mail: pjhak@snu.ac.kr

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Infection of wild life has been reported in squirrels in Canada [7], Eurasian otters (Lutra lutra) in England [8], European beavers in Sweden [9], raccoons (Procyon lotor) [10], bullfrogs (Rana catesbeiana) in US [11] and European hedgehogs (Erinaceus europaeus) in Portugal [12].

Inhalation of soil dust containing spores of Emmonsia is the main route of infection [13]. The infection’s pathological effects range from asymptomatic infection to necrogranulomatous pneumonia and death, depending on the burden of adiaspore and host immunocompetence [14]. Adiapiromycosis patients have a chronic history of progressive dyspnea, nonproduction cough, fatigue, low-grade fever and, less frequently, with hemophysis, pain, chills, malaise, weight loss and auscultatory crackles [14,15,16,17]. In addition to the pulmonary organ, Emmonsia crescens can cause cutaneous adiaspiromycosis and associated acute conjunctivitis [5]. In many of the reported cases, Emmonsia crescens infection was related to play in the surroundings of an animal burrow, which may have played the role of a reservoir, and other outdoor activities [18].

Inhaled E. crescens develops into large, thick-walled spherules called adiaspores, measuring as much as 700 μm, and originating from minute (2–4 μm) subglobose conidia. Infectious E. crescens cannot germinate at the elevated temperatures of the host, and instead increases in volume to form thick-walled, non-replicating adiaspores that elicit extensive granulomatous reaction [4]. Expanding adiaspores cause collapse of the adjacent alveoli and respiratory distress or even failure [19]. Clinical signs are not significant in rodents [9]. However, adiaspore can form small or more extensive foci on the surface of the liver and spleen in experimental infection of adiaspiromycosis with intraperitoneal injection in wild rodents [20].

Diagnosis of adiapiromycosis is difficult because the fungus is not easily cultured. Histological observation of characteristic adiaspores with light microscopy [13] in lung tissue specimen such as human biopsy samples [18] has been performed. However, Emmonsia parva and Emmonsia crescens are morphologically indistinguishable in their mycelial phases, which makes differential diagnosis difficult. E. crescens produces multinucleate adiaspores at temperatures above 30-37°C (depending on the isolate) [21] which routinely reach diameters in excess of 500 μm [4], whereas Emmonsia parva isolates produce adiaspores that are mononucleate and substantially smaller (20-40 μm in diameter) only at temperatures approaching or in excess of 40°C [4].

During the surveillance for disease in wild rodents captured on Jeju Island, Korea, we detected multiple circular spore-like materials surrounded by granulomatous inflammatory lesion. Macrophages and Langerhans giant cells infiltrated in the surrounding granulomatous tissue. The spores have three layers in their walls and basophilic granular structures in their inner parts. Haematoxylin and Eosin stain. Bar=100 μm

Figure 1. Adiaspores of Emmonsia sp. in the lung parenchyma of an Apodemus agrarius. (A) Round structures (black arrows) scattered in the lung. (B) Adiaspore was located in alveolar space encapsulated by granulomatous inflammatory lesion. Macrophages and Langerhans giant cells infiltrated in the surrounding granulomatous tissue. The spores have three layers in their walls and basophilic granular structures in their inner parts. Haematoxylin and Eosin stain. Bar=100 μm.
the entire lung field (Figure 1A). These structures were located in alveolar space, had thick trilaminar walls consisting of a basophilic outer-layer (3.4 µm in diameter 227 µm structure), an eosinophilic mid-layer (11 µm in diameter 227 µm structure) and a pale colored inner-layer (43 µm in diameter 227 µm structure) and a basophilic granular retiform part in the center (approximately 119 µm in diameter 227 µm structure). The diameter of the structures was 195-500 µm (mean 263 µm). The structures mildly compressed the surrounding tissues that were encapsulated by multinucleated giant cells, macrophages (epithelioid cells) and lymphocytes (Figure 1B).

We diagnosed the lesion found in the lung as adiaspiromycosis by Emmonisa sp. infection based on the shape, stained appearance, and lesion. That the structures have thick outer walls and inner basophilic parts are adiaspores of fungus and those are the cause of the granulomatous lesion in the lung. A total of 12 wild rodents (Apodemus agrarius) were captured in this surveillance. Only one such case was detected. The entirety of the lung tissue was not examined microscopically, only part of the lungs was inspected. Therefore, many infected cases could have been missed. And unfortunately, we could not identify whether the agent was Emmonisa crescent or Emmonisa parvum. But it is more likely that it was Emmonisa crescent, based on the difference in their distribution in the world [4]. The number of recorded infections of wild rodents is low. To our knowledge, this is the first report of adiaspiromycosis of wild rodents captured in Korea.

Acknowledgments

This study was supported by the research fund of the National Institute of Environmental Research and Research Institute for Veterinary Science, Seoul National University.

References

1. Chantrey JC, Borman AM, Johnson EM, Kipar A. Emmonsia crescent infection in a British water vole (Arvicola terrestris). Med Mycol 2006; 44(4):375-378.
2. Sigler L. Ajellomyces crescent sp. nov., taxonomy of Emmonisa spp., and relatedness with Blastomyces dermatitidis (teleomorph Ajellomyces dermatitidis). J Med Vet Mycol 1996; 34(3): 301-314.
3. Emmons CW, Jellison WL. Emmonsia crescent sp. n. and adiaspiromycosis (haploomycosis) in mammals. Ann N Y Acad Sci 1960; 89:91-101.
4. Borman AM, Simpson VR, Palmer MD, Linton CJ, Johnson EM. Adiaspiromycosis due to Emmonsia crescent is widespread in native British mammals. Mycopathologia 2009; 168(4):153-163.
5. Mendes MO, Moraes MA, Renoiner EL, Dantas MH, Lanzieri TM, Forseca CF, Luna EI, Hatch DL. Acute conjunctivitis with episcleritis and anterior uveitis linked to adiaspiromycosis and freshwater sponges, Amazon region, Brazil. Emerg Infect Dis 2009; 15(4): 633-639.
6. Wellinhausen N, Kern VW, Haase G, Rozdzinski E, Kern P, Marre R, Essig A, Hetzel J, Hetzel M. Chronic granulomatous lung infection caused by the dimorphic fungus Emmonsia sp. Int J Med Microbiol 2003; 293(6): 441-445.
7. Leighton FA, Wobeser G. The prevalence of adiaspiromycosis in three sympatric species of ground squirrels. J Wildl Dis 1978; 14(3): 362-365.
8. Simpson VR, Gavier-Widen D. Fatal adiaspiromycosis in a wild Eurasian otter (Lutra lutra). Vet Rec 2000; 147(9): 239-241.
9. Mörner T, Avenäs A, Mattsson R. Adiaspiromycosis in a European beaver from Sweden. J Wildl Dis 1999; 35(2): 367-370.
10. Hamir AN. Pulmonary adiaspiromycosis in raccoons (Procyon lotor) from Oregon. J Vet Diagn Invest 1999; 11(6):565-567.
11. Hill JE, Parnell PG. Adiaspiromycosis in bullfrogs (Rana catesbeiana). J Vet Diagn Invest 1996; 8(4):496-497.
12. Seixas F, Travassos P, Pinto ML, Pires I, Pires MA. Pulmonary adiaspiromycosis in a European hedgehog (Erinaceus europaeus) in Portugal. Vet Rec 2006; 158(8): 274-275.
13. Pusterla N, Pesavento PA, Leutenegger CM, Hay J, Louwenstone LJ, Durando MM, Magdesian KG. Disseminated pulmonary adiaspiromycosis caused by Emmonsia crescentia in a horse. Equine Vet J. 2002; 34(7):749-752.
14. Barbosa Filho JV, Amorim MB, Deheinzelin D, Samidiva PH, de Carvalho CR. Respiratory failure caused by adiaspiromycosis. Chest 1990; 97(5):1171-1175.
15. England DM, Hochholzer L. Adiaspiromycosis: an unusual fungal infection of the lung. Report of 11 cases. Am J Surg Pathol 1993; 17(9):876-886.
16. Nuorva K, Ptikainen J, Juttunen NP, Juhola M. Pulmonary adiaspiromycosis in a two year old girl. J Clin Pathol 1997; 50(1): 82-85.
17. Peres LC, Travassos P, Pinto ML, Soares FA. Pulmonary dissemination of adiaspiromycosis in humans. Am J Trop Med Hyg 1992; 46(2):146-150.
18. Dot JM, Debourgogne A, Champigneulle J, Salles Y, Brizion M, Puyhardy JM, Collomb J, Plénat F, Machouart M. Molecular diagnosis of disseminated adiaspiromycosis due to Emmonsia crescentia. J Clin Microbiol 2009; 47(4):1269-1273.
19. Habuik Z. Emmoniosis of wild rodents and insectivores in Czechland. J Wildl Dis 1996; 35(2):243-249.
20. Krivanec K, Otenúasek M, Prokopík J. Experimental adiaspiromycosis of the common vole (Microtus arvalis) and other small wild mammals after intraperitoneal inoculation. Mycopathol Mycol Appl. 1974; 53(1):133-40.
21. Boisseau-Lebreuil MT. In vitro formation of adiospores in 10 strains of Emmonsia crescentia, the fungal agent of adiaspiromycosis. C R Seances Soc Biol Fil 1973; 169(4):1057-1061.