Incremental and Modular Context-Sensitive Analysis

Isabel Garcia-Contreras1,2 Jose F. Morales1,2 Manuel V. Hermenegildo1,2

1 IMDEA Software Institute
2 T. U. Madrid (UPM)

HCVS: Horn Clauses for Verification and Synthesis — March 28th, 2021
Introduction

Context: Analyzing/Verifying software projects during development in order to:
- Detect and report of bugs as early as possible (e.g., on-the-fly, at commit, ...).
- Optimize code and libraries globally for the program being developed.

Problem: Context-sensitive analysis can be quite precise but also expensive, specially for interactive uses.

Make it incremental! – successive changes during development are often comparatively small and localized.

So far, in abstract interpretation, this was achieved by:
- Fine-grain (clause-level) incremental analysis for non-modular programs.
 [SAS’96, TOPLAS’00]
- Coarse-grain (module-level) analysis aimed at reducing memory consumption.
 [ENTCS’00, LOPSTR’01]

We propose an extension of the modular algorithm to react to module changes, and a way to combine it with fine-grain incrementality.
Motivation - (Incremental) Static On-the-fly verification

```
P = B
; rewrite(clause(H,B),clause(H,P),I,G,Info)
).

rewrite( clause(H,B), clause(H,P),I,G,Info) :-
  numbervars_2(H,0,Lhv),
  collect_info(B,Info,Lhv,_,_,_),
  add_annotations(Info,P,I,G),!.

:- pred add_annotations(Info,Phrase,Ind,Gnd)
  (var(Phrase), indep(Info,Phrase))
  => (ground(Ind), ground(Gnd)).
add_annotations([],[],_,_).
add_annotations([I]Is,[P|Ps],Indep,Gnd)
  add_annotations(I,P,Indep,Gnd),
  add_annotations(Is,Ps,Indep,Gnd).
add_annotations(Info,Phrase,I,G) :- !,
  para_phrase( Info,Code,Type,Vars,I,G),
  make_CGE_phrase( Type,Code,Vars,PCode,I,G),
  ( var(Code),!,
    Phrase = PCode
  ;  Vars = [],!,
    Phrase = Code
  ;  Phrase = (PCode,Code)
  ).
```

Verified assertion:
:- check calls add_annotations(Info,Phrase,Ind,Gnd)
 : (var(Phrase), indep(Info,Phrase)).

Verified assertion:
:- check success add_annotations(Info,Phrase,Ind,Gnd)
 : (var(Phrase), indep(Info,Phrase))
General idea

1. Take “snapshots” of the program sources (e.g., at each editor save/pause while developing, each commit, ...).
2. **Detect the changes** w.r.t. the previous snapshot.
3. **Reanalyze:**
 - Annotate and remove potentially outdated information.
 - (Re-)Analyze **incrementally** (only the parts needed) module by module until an intermodular fixpoint is reached again.

→ Recheck assertions/Reoptimize.
Abstract Interpretation

- Simulates the execution of the program using an abstract domain D_α, simpler than the concrete one.
- Guarantees:
 - Analysis termination, provided that D_α meets some conditions.
 - Results are safe approximations of the concrete semantics.

We use Prolog syntax for Horn Clauses

$$\text{Head}_k \leftarrow B_{k,1}, \ldots, B_{k,n_k}$$

1. `list([]).` % fact
2. `list([X|Xs]) :-` % rule head
 - `list(Xs).` % rule body
Concrete (Top-down) Semantics – AND trees

1. `par([], P, P).
2. `par([C|Cs], P0, P) :- xor(C, P0, P1), par(Cs, P1, P).
3. `xor(0, 0, 0).
4. `xor(0, 1, 1).
5. `xor(1, 0, 1).
6. `xor(1, 1, 0).

AND tree of `:- par([0, 1], 0, P).:
A PLAI [NACL’89] **analysis graph** has a set of **nodes** \(\langle A, \lambda^c \rangle \mapsto \lambda^s \) for every potentially reachable predicate, where:

- \(A \) is an atom, the predicate identifier.
- \(\lambda^c \) is an abstract call to \(A \).
- \(\lambda^s \) is the abstract answer for \(A \) and \(\lambda^c \) if it succeeds.

Example

```
par([], P, P).
par([C|Cs], P0, P) :-
    xor(C, P0, P1),
    par(Cs, P1, P).

xor(0,0,0).
xor(0,1,1).
xor(1,0,1).
xor(1,1,0).
```

Example nodes:

\[\langle \text{par}(L, P0, P), T \rangle \mapsto \langle P0/\text{bit}, P/\text{bit} \rangle \]

For any call to \text{par} that succeeds, \(P0 \) and \(P \) are either 1 or 0.

\[\langle \text{par}(L, P0, P), \langle P0/\neg \rangle \rangle \mapsto \bot \]

If \text{par} is called with \(P0 \) a negative number, it always fails.

Edges: \(\langle P, \lambda \rangle_{i,j} \xrightarrow{\lambda^p} \langle Q, \lambda' \rangle \), calling \(P \) with \(\lambda \) causes \(Q \) to be called with \(\lambda' \).

Analysis is **interprocedural, multivariant, and context sensitive.**
Entry: \(- \text{par}(M, 0, P). \)
Modular CHC Programs

Strict module system

- Modules define an interface of exported and imported predicates.
- Non-exported predicates cannot be seen or used in other modules.

Modular program

```prolog
:- module(main, [main/2]).

:- use_module(bitops, [xor/3]).

main(L,P) :-
    par(L,0,P).

par([], P, P).
par([C|Cs], P0, P) :-
    xor(C, P0, P1),
    par(Cs, P1, P).
```

```prolog
:- module(bitops, [xor/3]).

xor(0,0,0).
xor(0,1,1).
xor(1,0,1).
xor(1,1,0).
```
Graphs for Incremental and Modular Analysis

We have:

- A **global analysis graph** G: call dependencies among imported/exported predicates.
- A **local analysis graph** L_M per module M: limited to the predicates used in M.

\[
\begin{align*}
&\langle \text{main}(M,P), \text{main} \rangle \leftrightarrow (P/\text{bit}) \\
&\langle \text{par}(M,X,P), \text{para} \rangle \leftrightarrow (X/z, P/\text{bit}) \\
&\langle \text{xor}(C,P0,P1), \text{xor} \rangle \leftrightarrow (P0/z, C/\text{bit}, P1/\text{bit}) \\
&\langle \text{xor}(C,P0,P1), \text{xor} \rangle \leftrightarrow (P0/\text{bit}, C/\text{bit}, P1/\text{bit})
\end{align*}
\]
Changes detected!

planner.pl

```prolog
%%
- explore(P,Map,[P|Map]) :-
  -- safe(P).
%%
```

lib.pl

```prolog
%%
+ add(Node,Graph) :-
  +  % implementation
+  % implementation
%%
```
Snapshot of Analysis Graphs
The algorithm:

- Maintains local and global graphs with call/success pairs for the predicates and their dependencies.
- Deals incrementally with additions, deletions.
- Localizes as much as possible fixpoint (re)computation inside modules to minimize context swaps.
Theorem 4 (Correctness of IncAnalyze starting from a partial analysis). Let P be a program, Q_α a set of abstract queries, and A_0 any analysis graph. Let $\mathcal{A} = \text{IncAnalyze}(P, Q_\alpha, \emptyset, A_0)$. \mathcal{A} is correct for P and $\gamma(Q_\alpha)$ if for all concrete queries $q \in \gamma(Q_\alpha)$ all nodes n from which there is a path in the concrete execution $q \rightsquigarrow n$ in $[P]Q$, that are abstracted in the analysis A_0 are included in Q_α, i.e.:

$$\forall Q, n. Q \in \gamma(Q_\alpha) \land q \rightsquigarrow n \in [P]Q,$$

$$\forall n_{\alpha} \in A_0 . n \in \gamma(n_{\alpha}) \Rightarrow n_{\alpha} \in Q_\alpha.$$

Theorem 6 (Precision of IncAnalyze). Let P, P' be programs, such that P differs from P' by Δ, let Q_α a set of abstract queries, and $A_0 = \text{IncAnalyze}(P, Q_\alpha, \emptyset, \emptyset)$ an analysis graph. The following hold:

- If $\mathcal{A} = \text{IncAnalyze}(P, Q_\alpha, \emptyset, \emptyset)$, then \mathcal{A} is the least program analysis graph for P and $\gamma(Q_\alpha)$, and
- $\text{IncAnalyze}(P, Q_\alpha, \Delta, A_0) = \text{IncAnalyze}(P, Q_\alpha, \emptyset, \emptyset)$.

Lemma 1 (Correctness of IncAnalyze modulo imported predicates). Let M be a module of program P, E a set of abstract queries. Let L_0 be an analysis graph such that $\forall \langle A, \lambda^c \rangle \in L_0. \text{mod}(A) \in \text{imports}(M)$. The analysis result

$$L = \text{IncAnalyze}(M, E, \emptyset, L_0)$$

is correct for M and $\gamma(E)$ assuming L_0.

Lemma 2 (Precision of IncAnalyze modulo imported predicates). Let M be a module of program P, E a set of abstract queries. Let L_0 be an analysis graph such that $\forall \langle A, \lambda^c \rangle \in L_0. \text{mod}(A) \in \text{imports}(M)$ if L_0 contains the least fixed point as defined in Theorem 6. The analysis result

$$L = \text{IncAnalyze}(M, E, \emptyset, L_0)$$

is the least program analysis graph for M and $\gamma(E)$ assuming L_0.

Lemma 3 (Correctness updating L modulo G). Let M be a module of program P and E a set of entries. Let G be a previous state of the global analysis graph, if L_M is correct for M and $\gamma(E)$ assuming G. If G changes to G' the analysis result

$$L'_M = \text{LocIncAnalyze}(M, E, G', L_M, \emptyset)$$

is correct for M and $\gamma(E)$ assuming G.

Theorem 10 (Correctness of ModIncAnalyze from scratch). Let P be a modular program, and Q_α a set of abstract queries. Then, if:

$$\{G, \{L_M, \}\} = \text{ModIncAnalyze}(P, Q_\alpha, \emptyset, \emptyset)$$

G is correct for P and $\gamma(Q_\alpha)$.

Lemma 4 (Precision updating L modulo G). Let M be a module contained in program P, E a set of entries. Let G be a previous state of the global analysis graph, if $L_M = \text{LocIncAnalyze}(M, E, G, \emptyset, \emptyset)$. If G changes to G' the analysis result:

$$\text{LocIncAnalyze}(M, E, G', L_M, \emptyset) = \text{LocIncAnalyze}(M, E, G', \emptyset, \emptyset)$$

is the same as analyzing from scratch, i.e., the lfp of M, E.

Theorem 11 (Precision of ModIncAnalyze from scratch). Let P be a modular program and Q_α a set of abstract queries. The analysis result

$$\mathcal{A} = \text{ModIncAnalyze}(P, Q_\alpha, \emptyset, \emptyset) = \text{ModAnalyze}(P, Q_\alpha)$$

such that $\mathcal{A} = \{G, \{L_M, \}\}$, then $G = G'$.

Theorem 12 (Precision of ModIncAnalyze). Let P, P' be modular programs that differ by Δ, Q_α a set of queries, and $\mathcal{A} = \text{ModIncAnalyze}(P, Q_\alpha, \emptyset, (\emptyset, \emptyset))$, then

$$\text{ModIncAnalyze}(P', Q_\alpha, \emptyset, (\emptyset, \emptyset)) = \text{ModIncAnalyze}(P', Q_\alpha, \mathcal{A}, \Delta).$$
Theorem 4 (Correctness of IncAnalyze starting from a partial analysis). Let P be a program, Q_α a set of abstract queries, and \mathcal{A}_0 any analysis graph. Let $\mathcal{A} = \text{IncAnalyze}(P, Q_\alpha, \emptyset, (\emptyset, \emptyset))$. \mathcal{A} is correct for P and $\gamma(Q_\alpha)$ if for all nodes n.

Lemma 3 (Correctness updating \mathcal{L} modulo \mathcal{G}). Let M be a module of program P and E a set of entries. Let \mathcal{G} be a previous state of the global analysis graph, if \mathcal{L}_M is correct for M and $\gamma(E)$ assuming \mathcal{G}. If \mathcal{G} changes to \mathcal{G}' the analysis result is correct for P and $\gamma(Q_\alpha)$.

Contributions

The results from our incremental, modular analysis are:

- **Correct over-approximations** of the AND tree semantics.
- The most **accurate** (lfp) if no widening is performed.

Additionally:

- Extended traditional algorithm with **widening** (not formalized before).
- **Split correctness and precision** of incremental analysis.
- New results reanalyzing starting from a **partial analysis**.
- Formalized results of an **existing modular** algorithm (non incremental).
Experimental evaluation
Addition experiment (time in ms) – def domain

Adding - warplan
Accumulated normalized time (def) – clause addition

The order inside each set of bars is: |mon|mon_inc|mod|mod_inc|.
Deletion experiment (time in ms) - def domain

Deleting - warplan

Time (ms)

of clauses
Experimental evaluation

Accumulated normalized time (def) – clause deletion

The order inside each set of bars is: mon|mon_td|mon_scc|mod|mod_td|mod_scc
The Approach in Action - Static On-the-fly verification in CiaoPP

```
42 P = B
43 ; rewrite(clause(H,B),clause(H,P),I,G,Info)
44 ).
45
46 rewrite( clause(H,B), clause(H,P),I,G,Info ) :-
47 numbers_vars_2(H,O,Lhv),
48 collect_info(B,Info,Lhv,_,X,Y),
49 add_annotations(Info,P,I,G),!.

51 :- pred add_annotations(Info,Phrase,Ind,Gnd)
52 : ( var(Phrase), indep(Info,Phrase) )
53 => ( ground(Ind), ground(Gnd) ).
54
55 add_annotations([],[],_,_).
56 add_annotations([I|Is],[P|Ps],Ind,Gnd)
57 add_annotations(I,P,Ind,Gnd),
58 add_annotations(Is,Ps,Ind,Gnd).
59
60 add_annotations(Info,Phrase,I,G) :- !,
61 para_phrase( Info,Code,Type,Vars,I,G ),
62 :- check calls add_annotations(Info,Phrase,Ind,Gnd) 
63 : ( var(Phrase), indep(Info,Phrase) )

Verified assertion:
:- check calls add_annotations(Info,Phrase,Ind,Gnd) 
: ( var(Phrase), indep(Info,Phrase) )

Verified assertion:
:- check success add_annotations(Info,Phrase,Ind,Gnd)
: ( var(Phrase), indep(Info,Phrase) )
```

Average assertion checking time (seconds)

Benchmark: chat-80 port – 5.2k LOC across 27 files (Ciao Prolog), 20 assertions/experiment.

	a-cls	r-cls	t-cls	a-asr	r-asr	t-asr
non-inc						
analysis	2.0	2.0	1.8	2.1	2.1	2.1
total	3.0	2.4	3.2	2.9	2.4	2.9
inc						
diff	0.1	0.1	0.1	0.1	0.1	0.1
(re)analysis	0.4	0.4	0.3	–	–	–
total	1.7	1.9	1.6	0.3	0.3	0.3
Conclusion

To take home:

- Almost immediate response when the changes do not affect the result.
- Up to $13 \times$ speedup w.r.t. the original non-incremental algorithm.
- Being aware of modular structures is useful: Up to $2 \times$ speedup when compared with the original incremental algorithm.
- Modular analysis from scratch is improved up to $9 \times$.
- Keeping structures for incrementality produces small overhead.
- Using the analyzer interactively, on the fly becomes practical.

Future work

- Amenability of abstract domains to incrementality.
- Heuristics for automatic configuration of incrementality settings.
- Applications in the program transformation/partial evaluation context.
- Incrementality-aware transformation (from other source languages).
Thanks!

CiaoPP: https://github.com/ciao-lang/ciaopp
Experiments/benchmarks: https://github.com/ciao-lang/ciaopp_tests/tree/master/tests/incanal
Full version: https://doi.org/10.1017/S1471068420000496