TITLE:
Self-trapped electrons and holes in PbBr2 crystals

AUTHOR(S):
Iwanaga, M; Azuma, J; Shirai, M; Tanaka, K; Hayashi, T

CITATION:
Iwanaga, M ...[et al]. Self-trapped electrons and holes in PbBr2 crystals. PHYSICAL REVIEW B 2002, 65(21): 214306.

ISSUE DATE:
2002-06-01

URL:
http://hdl.handle.net/2433/50225

RIGHT:
Copyright 2002 American Physical Society
Self-trapped electrons and holes in PbBr$_2$ crystals

Masanobu Iwanaga
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

Junpei Azuma, Masanobu Shirai, and Koichiro Tanaka
Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Tetsusuke Hayashi
Faculty of Integrated Human Studies, Kyoto University, Kyoto 606-8501, Japan

(Received 15 January 2002; published 10 June 2002)

We have directly observed self-trapped electrons and holes in PbBr$_2$ crystals with the electron-spin-resonance (ESR) technique. The self-trapped states are induced below 8 K by two-photon interband excitation with pulsed 120-fs-width laser light at 3.10 eV. Spin-Hamiltonian analyses of the ESR signals have revealed that the self-trapping electron centers are the dimer molecules of Pb$^{2+}$ along the crystallographic a axis and the self-trapping hole centers are those of Br$_2^-$ with two possible configurations in the unit cell of the crystal. Thermal stability of the self-trapped electrons and holes suggests that both of them are related to the blue-green luminescence band at 2.55 eV coming from recombination of spatially separated electron-hole pairs.

I. INTRODUCTION

Lead halide, PbBr$_2$ and PbCl$_2$, crystals decompose photochemically under ultraviolet (UV) light irradiation at room temperature. At low temperatures, intense photoluminescence (PL) with a large Stokes shift is induced instead of the photochemical decomposition. Because ionic conductivity is suppressed at low temperatures, it is thought that local lattice deformation just after photoexcitation does not induce further successive desorption of halogen ions and aggregation of lead ions. The local lattice deformation is most likely related to the PL at low temperatures. These phenomena imply the strong electron-phonon interaction in PbBr$_2$ and PbCl$_2$.

By studying the PL properties at low temperatures below 30 K in PbBr$_2$, it has been strongly suggested that bound- and free-electron-hole (e-h) pairs intrinsically relax into spatially separated pairs of a self-trapped electron (STEL) and a self-trapped hole (STH). The relaxation probably results from the strong interaction of both electrons and holes with acoustic phonons. To obtain further insight into the relaxation of e-h pairs, it is significant to investigate structurally the lattice-relaxed localized states with the electron-spin-resonance (ESR) technique in PbBr$_2$ photoirradiated below 30 K.

Structures of localized electronic states have been investigated so far in other ionic crystals. In x-ray irradiated crystals of alkali halides, ESR experiments have revealed that the holes localize on two nearest-neighbor halogen ions and form the dimer molecules of (halogen)$_2$ (Refs. 7 and 8). The top of the valence band is composed of the np states in X$^-$ ions (X=F, Cl, and Br for n=2, 3, and 4, respectively), and the formation of the dimer-molecular STH is mainly attributed to the covalent bond of the np states. On the other hand, holes in cubic PbF$_2$ irradiated with gamma rays or neutrons localize on Pb$^{2+}$ ions and form Pb$^{3+}$ centers below 77 K. Some calculations for cubic PbF$_2$ have indicated that the top of valence band is mainly composed of the 6s states in Pb$^{2+}$ ions. The STH structure is closely related to the valence-band structure. Moreover, Pb$^{2+}$ ions can be effective hole traps and form Pb$^{3+}$ centers in Pb-doped alkali halides.

STEL’s were first observed in PbCl$_2$ irradiated with x rays at about 80 K; the STEL’s form the dimer molecules of Pb$_2^{3+}$ which are complementary to X$_2^-$ (V$_A$ center) in alkali halides, and the configuration is due to the conduction band composed of the 6p states in Pb$^{2+}$ ions and to the covalent bond of the 6p states. It was proposed that STH’s in PbCl$_2$ form V$_{F}$-type Cl$_2^-$ centers, but the existence has been disputed. Although no definite experimental evidence simultaneously observing both STEL’s and STH’s has been reported so far, PbCl$_2$ and PbBr$_2$ are the candidates for yielding them. The coexistence of STEL’s and STH’s gives evidence that both electrons and holes strongly interact with acoustic phonons, and provides the experimental foundation for the further study of the uncommon relaxation including spontaneous e-h separation.

In order to clarify the relaxed states of e-h pairs in PbBr$_2$, we have measured ESR signals induced with pulsed 120-fs-width and 3.10-eV laser light below 8 K. Spin-Hamiltonian analyses of the ESR signals have revealed that both electrons and holes get self-trapped, and, respectively, form dimer molecules of Pb$_2^{3+}$ and Br$_2^-$ as the self-trapping centers. We present the properties of ESR signals of PbBr$_2$ and the thermal stability in Sec. III, analyze the structures of the electron- and hole-trapping centers with spin Hamiltonians in Sec. IV, and discuss the correlation of STEL’s and STH’s with luminescence in Sec. V.

II. EXPERIMENTAL PROCEDURES

Single crystals of PbBr$_2$ were grown with the Bridgman technique from 99.999% powder purified under vacuum distillation. The crystal of orthorhombic D_{2h}^6 (Refs. 18 and 19)
was cut to a size of $3 \times 3 \times 3$ mm3 along the right-angled crystallographic a, b, and c axes.

The crystal was sealed in a transparent quartz capillary with a transparent quartz rod and was fixed in a microwave cavity with a guide for light injection. The microwave cavity was a rectangular TE$_{103}$-mode cavity resonator with the cavity quality factor Q. STEL and STH are described in Sec. III A. Solid lines indicate the prominent ESR positions. Dashed lines correspond to the ESR positions calculated from the spin Hamiltonian in Sec. IV.

FIG. 1. Typical ESR spectrum measured at 5 K after photoirradiation at 5 K. Magnetic-field vector is in the ac plane and the direction corresponds to 65° in Fig. 3 below. Microwave frequency is 9.385 GHz. STEL and STH are described in Sec. III A. Solid lines indicate the prominent ESR positions. Dashed lines correspond to the ESR positions calculated from the spin Hamiltonian in Sec. IV.

III. EXPERIMENTAL RESULTS

A. Properties of ESR spectra

Figure 1 shows a typical ESR spectrum measured at 5 K after photoirradiation at 5 K. The solid lines in Fig. 1 indicate the prominent ESR positions and the dashed lines indicate the ESR positions calculated from the spin Hamiltonians in Sec. IV. The signals are classified into three groups by the rotation-angle dependence and the thermal profiles: (i) The ESR signals named STEL survive up to 130 K under pulse annealing. (ii) The signals named STH disappear under pulse annealing above 30 K. (iii) Though several signals at 280–340 mT cannot be well resolved because of the overlap with the STH signals, they survive above 100 K and almost disappear around 130 K under pulse annealing. The signals named STEL and STH, respectively, correspond to self-trapped electrons and holes, as analyzed in Secs. IV A and IV B.

ESR signals around 330 mT under UV light irradiation at 77 K were reported by several authors. However, the ESR signals named STEL and STH have not been reported to our knowledge. Because of the overlap of the ESR signals, the spectrally well-resolved STEL and STH signals are mainly restricted to the region higher than 340 mT; in the region the intensity ratio of the STEL signals is 4:1 and that of the STH signals is 3:2:1. The STEL signals show linear response to the microwave power up to 10 mW even at 5 K. On the other hand, the STH signals saturate for microwave power higher than 0.01 mW at 6 K. The reduced linewidth of the STEL signals, $\Delta B = (g/g_0) \Delta B_0$, is estimated to be 14(±1) mT where g is the g value of the STEL, g_0 the free-electron g factor, and ΔB_0 the linewidth estimated from the experimental data; the ΔB is about three-times broader than $\Delta B = 5.5$ mT in PbCl$_2$ (Ref. 14).

Figure 2 presents the rotation-angle dependence of the STEL signals (closed circles) at 8 K; magnetic-field vector B is in the ab plane and the rotation axis is the c axis. The index (I, M_I) denotes the pair of the total nuclear spin of the STEL center and the magnetic quantum number. The intensities of the ESR signals with indices $(1,0)$ and $(1,-1)$ are more than ten times as weak as that with $(0,0)$. The intensity ratio between $(0,0)$, $(1/2,1/2)$, and $(1/2,-1/2)$ is about 4:0.9:1. Solid and dashed lines fit the experimental data and are derived from the spin Hamiltonian in Sec. IV A. A similar rotation-angle dependence of the STEL in PbCl$_2$ shows the twofold splits when B is in the bc and ac
the spin Hamiltonian described in Sec. IV B. Magnetic-field vector B is in the ac plane and the rotation axis is the b axis. Solid and dashed lines: fitting lines derived from the spin Hamiltonian described in Sec. IV B.

planes, the splits come from the two configurations reflecting the crystallographic symmetry. However, the explicit split has not been observed in PbBr$_2$ when B is in the bc and ac planes. Probably, the broad linewidth in PbBr$_2$ hides the split.

Figure 3 displays the rotation-angle dependence of the STH signals (closed circles); the magnetic-field vector B is in the ac plane and the rotation axis is the b axis. The signals are picked up from the ESR spectra as shown in Fig. 1. There exist the two series, each of which has more than three resonances. The two series are mirror symmetric for the bc plane with each other, reflecting the crystallographic mirror symmetry. Solid and dashed lines are derived from the spin Hamiltonian describing the hole center composed of two equivalent Br$^-$ ions, and fit the STH signals.

B. Thermal stability of ESR signals and thermoluminescence

Figure 4 shows the thermal stability of the STH signals (closed circles) and the total TL intensity during the pulse annealing (open circles). The ESR signals after pulse annealing were measured at 6 K. The intensity of the STH signals sharply decreases above 20 K and the signals were hardly observed after pulse annealing at 40 K. The ESR signals at 280–340 mT also decrease up to 40 K by a similar amount as the STH signals, and keep almost constant under pulse annealing at 40–100 K. TL appears corresponding to the quenching of the STH signals over 20–30 K. The TL spectrum under pulse annealing at 22 K is displayed in the inset of Fig. 4. The TL spectrum at 1.6 eV is spectrally in agreement with the red PL band; it is induced under excitation into the fundamental absorption region and increases 20–30 K instead of the decrease of the blue-green PL band at 2.55 eV.

Figure 5 shows the thermal stability of the STEL signals (closed circles) and the total TL intensity during pulse annealing (open circles). The ESR signals after pulse annealing were measured at 5 K. The intensity of the STEL signals decreases above 100 K and the signals are quenched at 145 K. The ESR signals at 280–340 mT also vanish together with the STEL signals. TL was observed over 90–140 K, strongly at 100–105 K. The TL spectrum measured around the peak of the TL curve is displayed in the inset of Fig. 5; the TL spectrum peaks at 1.7 eV and is located in the high-energy side in comparison with the spectrum in Fig. 4. The TL spectrum in Fig. 5 is spectrally in agreement with the PL spectrum in this temperature range. The PL has an extrinsic nature; it is induced under excitation even in the energy range ($h\omega=3.5$ eV) lower than the fundamental absorption edge of 3.8 eV.

IV. SPIN-HAMILTONIAN ANALYSIS

A. Structures of self-trapped electrons

The ESR signals prominently appearing at 410–530 mT have the g value of $g<2$ and therefore are ascribed to electron centers. They have the similar rotation-angle dependence with each other as shown in Fig. 2, and thermally disappear together. The intensity ratio seems to reflect the isotope effect. Indeed, Pb$^{2+}$ ions consist of nuclear spin $I = 0$ (contained 79% naturally) and $I = 1/2$ (contained 21% naturally). The pair of two equivalent Pb ions has the total nuclear spins of 0 (singlet), 1/2 (doublet), and 1 (triplet); the constituent ratio is 19.2:10:1. When the degeneracy of the multiplets is lifted, the ratio of the singlet to the two doublets...
The dependence enables us to set the principal such as \(\text{Pb}^2+ \) pairs, the pairs along the shown in Fig. 6; among the two nearest-neighbor \(\text{Pb}^2+ \) ions that bond the two \(\text{Pb}^2+ \) centers. The spin Hamiltonian \(\mathcal{H} \) with Zeeman and hyperfine terms is given by

\[
\mathcal{H} = \mu_B s \cdot \mathbf{g} \cdot \mathbf{B} + g_0 \mu_B I_1 \cdot \mathbf{A} \cdot \mathbf{S} + g_0 \mu_B A_2 \cdot \mathbf{A} \cdot \mathbf{S},
\]

where \(\mu_B \) denotes the Bohr magneton, \(s \) the electron spin, \(g \) the Zeeman tensor, \(\mathbf{B} \) the magnetic-field vector, \(g_0 \) the free-electron \(g \) factor, \(I_1 \) the nuclear spin, and \(A_1 \) the hyperfine tensor \((i=1,2)\). The \(\text{Pb}^- \) ion dimer does not contain the nuclear quadrupole term because \(I_i = 0 \) or \(1/2 \).

Each rotation-angle series of the ESR signals in Fig. 2 takes maximum and minimum values when \(B \parallel a \) and \(B \parallel c \). The dependence enables us to set the principal \(g \) and \(A \) axes such as \(x = c, y = b, \) and \(z = a \).

Under axial symmetry \((A_x = A_y)\) and the second-order perturbation, taking the Zeeman term as the unperturbed term, the Hamiltonian (1) is transformed, as shown explicitly in Ref. 25, into the equation describing the allowed ESR transitions. The axial symmetry implies that the dimer-molecular axis is chosen to be the \(z \) axis.

The modified equation well describes the rotation-angle-dependent series of the ESR signals around the \(a, b, \) and \(c \) axes as in Fig. 2. The principal \(g \) values are obtained by fitting the Zeeman series of \(I = 0 \); the solid line with index \((I,M_I) = (0,0)\) in Fig. 2 represents the fitted Zeeman line. Principal \(A \) values are obtained by fitting the series of \(I = 1/2 \), using the principal \(g \) values; the solid lines with indices \((1/2,1/2)\) and \((1/2, -1/2)\) fit the series by varying the principal \(A \) values only. The dashed lines in Fig. 2 are drawn with the \(g \) and \(A \) values, and those with \((1,0)\) and \((1, -1)\) describe the series well. This analysis confirms that the ESR spectrum named STEL in Fig. 1 and the ESR signals in Fig. 2 originate from the electron-trapping center of \(\text{Pb}^2+ \). As for the electron centers, it is improbable that they are affected by vacancies or impurities because the rotation-angle dependence excludes the symmetry breaking around the electron centers by the permanent lattice defects. The coexistence of STEL’s and “perturbed” STEL’s by the defects is also excluded because of the single rotation-angle pattern and the thermal decay. Therefore, the electron centers named STEL in Fig. 1 are declared to be self-trapping electron centers of \(\text{Pb}^2+ \).

The structures of the STEL centers are schematically shown in Fig. 6; among the two nearest-neighbor \(\text{Pb}^- \) ion pairs, the pairs along the \(a \) axis are the configurations consistent with the analysis unfolded in this section. In Fig. 6, each stick that bonds the two \(\text{Pb}^2+ \) ions stands for the covalent bond via the localized electron. As described in Sec. III A, the broad linewidth of the STEL signals probably hides the twofold splits in the \(ab \) and \(ac \) planes observed in \(\text{PbCl}_2 \) (Refs. 14 and 15), and consequently the \(x \) and \(y \) axes determined here may deviate slightly from the principal \(x \) and \(y \) axes corresponding to each of the twofold splits.

FIG. 6. Schematic configurations of the electron-self-trapping \(\text{Pb}^2+ \) centers in \(\text{PbBr}_2 \) crystal. Four \(\text{Pb}^2+ \) ions (small black balls) and eight \(\text{Br}^- \) ions (large white balls) in the two nearest-neighbor \(bc \) planes constitute the unit cell of the crystal. The lengths of the unit cell along the \(a, b, \) and \(c \) axes are 4.767, 8.068, and 9.466 Å, respectively (Ref. 18). There exist two configurations of the STEL centers in the crystal, and each STEL center of \(\text{Pb}^2+ \) is schematically represented with the two nearest-neighbor \(\text{Pb}^2+ \) ions along the \(a \) axis and the stick that depicts the covalent bond of the two \(\text{Pb}^2+ \) ions via the electron. The spin-Hamiltonian parameters of the \(\text{Pb}^2+ \) center are listed in Table I.

The principal values of Zeeman \(g \) and hyperfine \(A \) tensors are listed in Table I. The principal \(g \) values vary from 1.4 to 1.7 and are comparable to the values of \(\text{Pb}^2+ \) in \(\text{PbCl}_2 \) and \(\text{NaCl}:\text{Pb} \). This analysis only provides the absolute values of \(A_x, A_y, \) and \(A_z \), and the principal \(A \) values are in the same order of several tens of mT as in \(\text{PbCl}_2 \) and \(\text{NaCl}:\text{Pb} \).

In accordance with \(\text{Pb}^2+ \) in \(\text{PbCl}_2 \) and \(\text{NaCl}:\text{Pb} \), the same signs of principal \(A \) values are chosen for \(\text{Pb}^2+ \) in \(\text{PbBr}_2 \). The parameters \(\rho \) and \(A_\sigma \) of \(\text{PbBr}_2 \) are calculated with the \(g \) and \(A \) values in the perturbative analysis for the electronic levels of dimer-molecular centers. The physical meanings of \(\rho \) and \(A_\sigma \) are discussed in Sec. V B.

B. Structures of self-trapped holes

The three prominent ESR signals at 350–390 mT named STH in Fig. 1 belong to the series with the similar rotation-angle dependence and the same thermal stability under pulse annealing. The intensity of the ESR signals at 280–340 mT decrease up to 40 K by a similar amount to the three signals at 350–390 mT. Therefore, there probably exist further signals at 280–340 mT of the same origin with the three signals at 350–390 mT, though the overlap with other signals prevents observing them separately. The ESR signals at 280–390 mT have the \(g \) values of \(g \approx 2 \) and probably originate from hole centers.

In \(\text{PbBr}_2 \), we assume two equivalent nuclei \(\text{Br}^- \) as the hole center with more than three resonances at 280–390 mT. This assumption is consistent with the ratio of 3:2:1 estimated in Fig. 1; full signals of \(\text{Br}^- \) would be composed of seven resonances with the ratio of 1:2:3:4:3:2:1 in the first-order hyperfine effect associated with the \(\text{Br}^-\)nuclear spin of \(3/2 \).

The spin Hamiltonian \(\mathcal{H} \) is also expressed by Eq. (1). For \(\text{Br}^- \), a quadrupole term can be added as a second-order...
TABLE I. Spin-Hamiltonian parameters of Pb\(_2^{3+}\) electron centers. Principal \(A_i\) values \((i=x,y,z)\), \(\rho_x\), and \(A_\sigma\) are represented in mT. The meanings of \(\rho_x\) and \(A_\sigma\) are discussed in Sec. V B. The parameters of Pb\(_2^{3+}\) centers in PbCl\(_2\) and NaCl:Pb are also cited for comparison.

Electron center	\(g_x\)	\(g_y\)	\(g_z\)	\(A_x\)	\(A_y\)	\(A_z\)	\(\rho_x\)	\(A_\sigma\)
Pb\(_2^{3+}\) in PbBr\(_2^a\)	1.563	1.416	1.690	-87	-87	100	39	-14
	\(\pm 0.002\)	\(\pm 0.002\)	\(\pm 0.002\)	\(\pm 4\)	\(\pm 3\)	\(\pm 5\)		
Pb\(_2^{3+}\) in PbCl\(_2^b\)	1.549	1.379	1.718	-85	-85	109	39	-5
	\(\pm 0.001\)	\(\pm 0.001\)	\(\pm 0.003\)	\(\pm 1\)	\(\pm 1\)	\(\pm 1\)		
Pb\(_2^{3+}\) in PbCl\(_2^d\)	1.494	1.322	1.662	NR\(^c\)	NR\(^c\)	NR\(^c\)	NR\(^c\)	NR\(^c\)
	\(\pm 0.005\)	\(\pm 0.005\)	\(\pm 0.005\)					
Pb\(_2^{3+}\) in NaCl:Pb\(^b\)	1.469	1.300	1.621	-115	-123	115	46	-29
	\(\pm 0.002\)	\(\pm 0.002\)	\(\pm 0.002\)	\(\pm 1\)	\(\pm 1\)	\(\pm 1\)		

\(^a\)This work; Sec. IV A.
\(^b\)Reference 14.
\(^c\)Not reported (NR).
\(^d\)Reference 15.
\(^e\)References 14 and 26.

effect\(^25\) because the nuclear spin of Br\(^-\) is 3/2. However, explicit second-order effects have not been observed in our measurements. Therefore, we apply Eq. (1) containing only the first-order term to the experimental data and moreover hypothesize the agreement of principal \(g\) and \(A\) axes.

As shown in Fig. 3, the solid-line and dashed-line series are mirror symmetric for the \(bc\) plane, and the rotation-angle dependence implies that the principal \(g\) and \(A\) axes deeply tilt from any crystallographic axis. This deviation and the overlap of the signals at 280–340 mT make it difficult to determine the orientation of principal \(x\), \(y\), and \(z\) axes. However, it is possible only to determine approximately the orientation of the \(z\) axis from the well-resolved signals at 350–390 mT. Thus, the first and second Euler angles are, respectively, 51° and 126° for the series fitted with the solid lines in Fig. 3, and 129° and 126° for the dashed lines. The third angle cannot be determined experimentally. We assume the angle to be 0°, and consequently the orientation of \(x\) and \(y\) axes determined here is not necessarily in agreement with the principal \(x\) and \(y\) axes of Br\(_2\)\(^-\) centers. The spin-Hamiltonian analysis is performed in a similar procedure as that described in Sec. IV A, except for \(I=3\). As shown in Fig. 3, the Hamiltonian well describes the rotation-angle dependence of the three prominent signals at 350–390 mT and some other prominent signals in the region lower than 340 mT. Table II presents the principal \(g\) and \(A\) values obtained by the fitting and shows that the values of Br\(_2\)\(^-\) centers in PbBr\(_2\) are comparable to those in alkali bromides. Though this spin-Hamiltonian analysis cannot provide the signs of hyperfine parameters \(A_x\), \(A_y\), and \(A_z\), the molecular analysis\(^9\) of electronic levels in Br\(_2\)\(^-\) centers requires the signs to be positive, and the same signs are chosen in PbBr\(_2\) in accordance with the analysis. The parameters \(\rho_x\) and \(A_\sigma\) in Table II are discussed in comparison with those of other host crystals in Sec. V B.

The Br\(^-\) ion pairs whose axis is in agreement with the principal \(z\) axis of the solid-line series in Fig. 3 are limited to pair \(a\) in Fig. 7; for pair \(a\), the first and second Euler angles of the molecular axis are, respectively, 50.7° and 126.1° when the

TABLE II. Spin-Hamiltonian parameters of Br\(_2\)\(^-\) hole centers. Principal \(A_i\) values \((i=x,y,z)\), \(\rho_x\), and \(A_\sigma\) are represented in mT. The meanings of \(\rho_x\) and \(A_\sigma\) are discussed in Sec. V B. The parameters of Br\(_2\)\(^-\) centers in KBr, NaBr, and RbBr are also cited for comparison.

Hole center	\(g_x\)	\(g_y\)	\(g_z\)	\(A_x\)	\(A_y\)	\(A_z\)	\(\rho_x\)	\(A_\sigma\)
Br\(_2\)\(^-\) (pair a)\(^a\) in PbBr\(_2\)	2.16	2.17	1.90	10	10	46	16	17
	\(\pm 0.02\)	\(\pm 0.02\)	\(\pm 0.01\)	\(\pm 4\)	\(\pm 4\)	\(\pm 1\)		
Br\(_2\)\(^-\) (pair b)\(^a\) in PbBr\(_2\)	2.18	2.23	1.90	10	10	46	19	14
	\(\pm 0.05\)	\(\pm 0.05\)	\(\pm 0.03\)	\(\pm 1\)	\(\pm 1\)	\(\pm 7\)		
Br\(_2\)\(^-\) in NaBr\(^b\)	2.1514	2.1968	1.9791	6.50	7.38	43.1	18.23	12.66
Br\(_2\)\(^-\) in KBr\(^b\)	2.1629	2.1672	1.9839	7.68	7.66	45.0	19.87	14.45
Br\(_2\)\(^-\) in RbBr\(^b\)	2.1683	2.1524	1.9846	8.36	8.12	45.5	17.80	15.13

\(^a\)This work; Sec. IV B.
\(^b\)Reference 9; the accuracies of parameters \(g\) and \(A\) are within \(\pm 0.0005\) and \(\pm 0.07\), respectively.
lattice ions are located at the equilibrium positions. Similarly, the dashed-line series in Fig. 3 corresponds to pair b in Fig. 7; the first and second Euler angles are 129.3° and 126.1°, respectively. Pairs a and b are indeed mirror symmetric for the bc plane.

The good agreement of the dimer-molecular axes with the Br-ion pairs in the crystal confirms that the STE signals originate from the Br$_2^-$ centers which are not affected by any permanent lattice defect. Therefore, the hole centers named STH in Sec. III A are ascribed to the self-trapping hole centers of Br$_2^-$.

V. DISCUSSION

A. Correlation of self-trapped states with luminescence

Thermal stability of the ESR signals indicates that the STE's and the STH's coexist only in the temperature range below 30 K. Therefore, intrinsic luminescence related to both STE's and STH's would appear below 30 K.

The blue-green (BG) PL band at 2.55 eV is the dominant intrinsic PL below 20 K in PbBr$_2$, and the phosphorescent decay is well described by the radiative recombination model. The model assumes the process whereby the spatially separated e-h pair gets close by tunneling motion, forms a self-trapped exciton (STE), and recombines with radiation. The phosphorescent decay suggests that the BG-PL band originates from the distant pairs of a STEL and a STH.

The BG-PL band thermally decreases at 20–30 K and disappears above 30 K. The thermally stable range of the BG-PL band corresponds to that of both STE's and STH's. This correspondence supports the fact that the BG-PL band is closely related to both STE's and STH's. In particular, the BG-PL band is not induced in the temperature range above 30 K, where the STH's disappear as shown in Fig. 4. Therefore, it is plausible that the STE's yielding the BG-PL have the configuration of (Br$_2^-$ + electron), though it is unknown whether the STE is the nearest-neighbor pair of a STH and a STEL or whether it has the configuration in which a Br$_2^-$ center bounds an electron in the excited orbital. On the other hand, the red PL band grows instead of the quenching of the BG-PL band at 20–30 K; as shown in Fig. 4, the temperature range corresponds to the growth of the red TL that has the same shape as the red PL band. Because of the instability of the STH's at 20–30 K, the red PL and the red TL are ascribed to the STE's associated with the STEL centers of Pb$_2^{3+}$ stable at 20–30 K. To clarify the configurations of the self-trapped excitons directly, the examination with an optically detected magnetic-resonance technique is preferable, because this ESR study can only suggest the configurations of the STE's yielding the BG-PL and the red PL bands.

As for the thermal stability of self-trapping centers, it is to be noted that the temperature at which the STH's and the STEL's disappear under pulse annealing does not necessarily indicate that of the thermal quenching of the self-trapping centers themselves. Indeed, the thermal decay of Br$_2^-$ in alkali halides is affected by the thermal activation of trapped electrons and positive vacancies. In PbBr$_2$, vacancies of Br$^-$ and Pb$^{2+}$ ions inevitably exist because of the high ionic conductivity, and the density of Br$^-$ vacancy is estimated at more than 1017 cm$^{-3}$. Consequently, it is likely that the thermal activation of vacancies affects the STH's: (i) it makes the self-trapped states unstable, induces the thermal transfer of the holes, and leads the holes to radiative and/or nonradiative decay, or (ii) it deforms the self-trapping centers to other trapping centers associated with vacancies. The thermal stability of the STEL's may be also affected by the thermal activation of other hole centers as discussed in Sec. V C.

B. Electronic structures of self-trapping centers

In this section we tentatively apply the perturbative analysis of Refs. 9 and 26 to the dimer centers, and discuss the electronic structures of STEL's and STH's in PbBr$_2$ from the comparison with other crystals. According to the analysis, the mixing by spin-orbit interaction between the ground σ_g^s and excited orbitals π_g^s, π_g^p in the dimer molecule of Pb$_2^{3+}$ and Br$_2^-$ are calculated from the g shift and the principal A values under the Hartree-Fock approximation and the second-order perturbation taking the spin-orbit interaction as the perturbed term. The parameters ρ_s in Tables I and II denote the dipole-dipole interaction between the magnetic moments of the electron (or hole) and nuclei, and represent the anisotropic contribution to the hyperfine term. The parameters A_s represent the isotropic contribution to the A tensor and are given by $A_s = A^{s}_{\parallel} + A^{s}_{\perp}$ where A^{s}_{\parallel} is the positive Fermi contact term and A^{s}_{\perp} the negative exchange-polarization term of the inner electrons.

For Pb$_2^{3+}$, A^{s}_{\parallel} is proportional to $6s$-state mixing into the ground orbital $\sigma_g^s = \alpha_s (6s_1 + 6s_2) + \beta_s (6p_{1z} - 6p_{2z})$ where α_s and β_s are constants, and $6s$ and $6p$, respectively, denote the atomic wave functions of the $6s$ and $6p$ states in Pb$_2^{2+}$. ρ_s is $\rho_s = \beta_s^2(r^{-3})$ where $\langle r^{-3} \rangle$ is the spatial distribution of...
the electron, and the small ρ_s values result in the spread of the electron as long as the β_s’s of Pb$_2$$^+$ are comparable in different host crystals. As shown in Table I, ρ_s in PbBr$_2$ has the same value as that in PbCl$_2$ and is 15% smaller than that in NaCl:Pb; the ρ_s suggests that the distribution of STEL in PbBr$_2$ spreads as outwardly as in PbCl$_2$ and more outwardly than in NaCl:Pb. A_s in PbBr$_2$ is negatively 2.8 times larger than that in PbCl$_2$. In other words, the positive part A_s, which reflects 6s mixing into the ground orbital σ_s, contributes more than the negative A_s in PbCl$_2$. This result qualitatively suggests that 6s mixing into the σ_s is larger in PbCl$_2$ than in PbBr$_2$. The difference is probably ascribed to the components of the top of valence band. The valence-band structure of PbCl$_2$ with more mixing of 6s states in Pb$_2$$^+$ ions may make it possible for the holes to form STH centers of Pb$_3$$^+$ as observed in PbF$_2$ (Ref. 10). Indeed, the mixing ratios of the 6s states into the top of the valence bands become larger in order of PbBr$_2$, PbCl$_2$, and PbF$_2$ (Ref. 12).

The complementary discussion can be applied to Br$_2^-$ ions. Parameters ρ_s and A_s in Table II are comparable to each other. This analysis implies that the distribution of STH and the orbital functions of the σ_s in PbBr$_2$ are quite similar to those in alkali bromides.

C. Other trapping centers associated with lattice defects

The ESR signals at 280–340 mT have the g values of $g \approx 2$, and the overlap of the signals prevents discriminating each signal and analyzing with a spin Hamiltonian. However, they vanish together with the STEL signals around 120 K under pulse annealing, and then the crystal emits TL as shown in Fig. 5. Therefore, the signals at 280–340 mT are most likely to originate from hole-trapping centers.

From the valence-band structure, the Pb$_3$$^+$ center can be considered as another candidate for the intrinsic hole-trapping center, but the satellites, which stem from the isotope 207Pb of $I=1/2$ (contained 21% naturally), have not been observed at 0–1 T just as seen in PbF$_2$ crystals

Pb-doped KCl crystals. Interstitial lattice defects, namely, Frenkel defects have been also excluded in PbBr$_2$. Consequently, the signals at 280–340 mT except for the unresolved STH signals probably originate from the extrinsic hole center associated with the permanent lattice defects such as vacancy, impurity, or both. The extrinsic hole-trapping centers are efficient competitors of the STH centers because they survive above 100 K together with not a few STEL and disappear around 120 K with emitting TL.

VI. CONCLUSIONS

Self-trapping electron and hole centers are simultaneously photoinduced by two-photon interband excitation with 120-fs-width laser light at 3.10 eV and have been directly detected with the ESR technique. The excitation enables us to induce e–h pairs with enough density for the present ESR measurements. Spin-Hamiltonian analyses have revealed that the structures of STEL’s and STH’s are the dimer-molecular Pb$_2$$^+$ and Br$_2^-$, respectively. The STH centers of Pb$_2$$^+$ orient along the crystallographic a axis. The holes select self-trapping sites among many nearest-neighbor Br-ion pairs in the unit cell, and form the STH centers of Br$_3^-$ with the two particular orientations. From the comparison of the principal g and A values, the Pb$_2$$^+$ and the Br$_3^-$ centers are similar to those in other crystals studied so far.

From this ESR study, we conclude that both electrons and holes in PbBr$_2$ crystals strongly interact with acoustic phonons and do relax into the individual self-trapped states. Moreover, the STEL’s and the STH’s centers coexist below 30 K, and the STH centers disappear at 20–30 K. The temperature range is in good agreement with the range in which the phosphorescent blue-green PL band at 2.55 eV is induced. The agreement supports the conclusion of the previous PL study (Ref. 5) that both STEL and STH centers are related to the radiative recombination process yielding the blue-green PL band.
20 J. Arends and J.F. Verwey, Phys. Status Solidi 23, 137 (1967).
21 W.C. De Gruijter and J. Kerssen, J. Solid State Chem. 5, 467 (1972).
22 J. Kerssen, W.C. De Gruijter, and J. Volger, Physica (Amsterdam) 70, 375 (1973).
23 M. Iwanaga (unpublished).
24 C.P. Slichter, Principals of Magnetic Resonance, 3rd ed. (Springer, Berlin, 1990), Chap. 11.
25 D. Schoemaker, Phys. Rev. 174, 1060 (1968).
26 I. Heynderickx, E. Goovaerts, and D. Schoemaker, Phys. Rev. B 36, 1843 (1987).
27 J.F. Verwey and J. Schoonman, Physica (Amsterdam) 35, 386 (1967).
28 J. Oberschmidt and D. Lazarus, Phys. Rev. B 21, 5813 (1980).