Variability of summer apple tree varieties in 2019 by indicators of vegetative organs

N P Bratilova and O A Gerasimova

Faculty of Forestry, Reshetnev Siberian State University of Science and Technology,
31 Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation

E-mail: goa.1903@yandex.ru

Abstract. The article presents the results of a study of annual shoots of large-fruited apple varieties, characterized by early ripening and consumer maturity, in the Botanical Garden named after Vs. M. Krutovsky. The leaf area, weight of 1 cm² of leaf and 1 running centimeter of shoot in absolutely dry state are calculated. A significant positive correlation was revealed between the indicators of the area of the sheet and the mass of 1 cm² of sheet in absolutely dry state, and between the mass of 1 linear cm shoot and 1 cm² leaf. Using the regression method, it is possible to reduce labor costs for determining phytomass without resorting to additional measurements of the supply of dry foliage mass and to determine the increase in the mass of branches even in leafless periods. In Siberia, it is recommended to use the most promising varieties of apple trees in terms of photosynthetic activity and productivity for cultivation.

1. Introduction

Recently, the study of the characteristics of the leaf apparatus has attracted close attention, since leaves are the main photosynthetic organs of most plant species [1]. Measured traits and their interconnections are used to assess intraspecific and interspecific variability, which in turn can deeply affect plant growth, reproduction and ecosystem functioning [1, 2]. One of the frequently studied signs of ecological orientation is the ratio of dry leaf mass (LMA) per area [2–6].

Most often, the leaf area is determined using destructive methods and methods that are time-consuming. Currently, the work is underway to optimize the estimation of this parameter by means of the regression method using simple linear measurements in the field [7–9].

In Siberia, in the city of Krasnoyarsk there is a Botanical Garden named after Vs. M. Krutovsky [10]. This object is located at the junction of the Kansk-Rybinsk Basin and the forest-steppe zone of the West Siberian Plain with the foothills of the Eastern Sayan Mountains, which leads to the formation of sharply continental climatic conditions. It is a good choice of the place where the garden named after M. Krutovsky was laid at the mouth of the Laletina River on the I and II terraces of the right bank of the Yenisei River. It made possible to form a special, milder microclimate for the grown plants. The Botanical Garden is unique in the presence of a collection of home-grown apple trees (Malus domestica Borkh) of various varieties that differ in a number of ways: size, shape of the fruit, their taste, ripening and storage periods, etc. In a sharply continental climate M. Krutovsky proposed a method of forming apple trees. This method is called the Arctic or Krasnoyarsk stanza (creeping form). At the moment, 39 large-fruited varieties cultivated on the territory of the European part of Russia, in Siberia and abroad are been preserved in the garden, some trees have reached the 115th age [10].
2. Methods and materials
We have studied large-fruited varieties of apple trees, characterized by early ripening and consumer maturity. Among each variety, 5 model trees were selected, from which one model branch of the current year growth was selected from the middle part of the crown. In annual shoots, the phytomass was determined separately by fractions (leaves, branches) and leaf area. The mass of 1 cm² of sheet and 1 running centimeter of the shoot in absolutely dry state (a.d.s.) was calculated. Leaf area was determined using the Petiole.LeafArea program. The leaves and shoots were dried in a drying cabinet SHS-80-01 SPU at 105° C until absolutely dry.

Processing of the collected experimental material was carried out by the methods of mathematical statistics using the Microsoft Excel program. The level of variability of indicators was evaluated by a scale of S.A. Mamaev [11].

Between the studied signs on the basis of correlation analysis the form, orientation and tightness of communication were established. The detection of regression dependences was carried out using the cross-platform software Curve Expert [12].

3. Results and discussion
In a study of the growth and accumulation of phytomass of annual shoots, it was found that the average mass of the leaf plate of large-fruited apple varieties was 0.29±0.012 g, the indicator is characterized by a high level of variability (table 1).

Indicator	\(\bar{x} \)	\(\pm m \)	\(\pm \sigma \)	V, %	P, %
Area of 1 leaf, cm²	27.9	1.09	8.48	30.4	3.9
Mass of 1 leaf in a.d.s., g	0.29	0.012	0.090	31.3	4.0
Mass of 1 running shoot cm in a.d.s., g	0.071	0.0028	0.0218	30.6	3.9

The level of variability of the remaining studied indicators is increased.
When determining the intraspecific variability of summer varieties by morphometric characteristics and phytomass, it was revealed that the leaf plate area of summer apple varieties in 2019 varied from 14.3±1.93 (St. Petersburg summer) to 39.8±1.81 (Krasnoyarsk beauty) cm² (table 2).

Variety	\(\bar{x} \)	\(\pm m \)	\(\pm \sigma \)	V, %	P, %	\(t_b \) at \(t_{05}=2.04 \)
White filling	26.9	2.07	4.64	17.3	7.7	4.69
Nobilis	30.1	3.89	8.70	28.9	12.9	2.26
Papier	22.9	3.16	7.08	30.8	13.8	4.64
Grushovka Moscow	33.6	1.85	4.14	12.3	5.5	2.40
Arcade glass	27.3	2.53	5.66	20.7	9.3	4.03
Golden thorn	35.1	2.79	6.24	17.8	8.0	1.43
Petersburg summer	14.3	1.93	4.33	30.3	13.5	9.64
Astrakhan White	25.3	0.70	1.56	6.2	2.8	7.48
Medovka	35.2	1.18	2.64	7.5	3.4	2.13
Krasnoyarsk beauty	39.8	1.81	4.04	10.2	4.5	-
Aurora	25.3	2.92	6.53	25.9	11.6	4.23
Terentyevka	19.6	1.88	4.21	21.5	9.6	7.73

The level of variation in leaf area varies from very low in varieties Astrakhan Beloe and Medovka to high in varieties Papirovka, Nobilis, St. Petersburg summer, Aurora and Terentyevka.
In 2019, the varieties Nobilis, Grushovka Moscow, Arcad cup, Golden thorn, Medovka and Krasnoyarsk beauty were distinguished by a large mass of leaf plates (table 3).

Variety	\(\bar{y} \)	\(\pm m \)	\(\pm \sigma \)	V, %	P, %	\(t_p \) at \(t_{0.05}=2.04 \)
White filling	0.25	0.035	0.077	30.9	13.8	3.05
Nobilis	0.34	0.040	0.090	26.2	11.7	1.05
Papier	0.23	0.036	0.081	35.2	15.8	3.39
Grushovka Moscow	0.33	0.022	0.049	14.9	6.7	1.65
Arcade glass	0.35	0.021	0.048	13.8	6.2	1.33
Golden thorn	0.40	0.034	0.077	19.3	8.6	-
Petersburg summer	0.16	0.015	0.033	21.2	9.5	6.49
Astrakhan White	0.29	0.011	0.025	8.8	3.9	3.19
Medovka	0.37	0.021	0.048	12.8	5.7	0.68
Krasnoyarsk beauty	0.33	0.018	0.040	12.1	5.4	1.82
Aurora	0.21	0.023	0.051	24.3	10.9	4.58
Terentyevka	0.21	0.020	0.045	21.3	9.5	4.77

The level of variability of the mass of one leaf in an absolutely dry state varies from low in the Astrakhan white variety to high in the Papirovka variety.

Maximum mass of 1 running cm of shoot was noted in the variety Arkad glassy, also a large value of this indicator are characterized by varieties White filling, Nobilis, Grushovka Moscow, Golden thorn, Astrakhan white, Medovka, Aurora. Minimum mass of 1 running cm of shoot was detected in varieties Petersburg summer and Terentyevka (table 4).

Variety	\(\bar{y} \)	\(\pm m \)	\(\pm \sigma \)	V, %	P, %	\(t_p \) at \(t_{0.05}=1.70 \)
White filling	0.076	0.0036	0.0081	10.7	4.8	1.18
Nobilis	0.086	0.0080	0.0180	20.9	9.4	0.39
Papier	0.064	0.0046	0.0102	16.0	7.2	2.01
Grushovka Moscow	0.083	0.0041	0.0091	10.9	4.9	0.66
Arcade glass	0.092	0.0860	0.1924	30.3	13.6	-
Golden thorn	0.076	0.0101	0.0225	29.4	13.2	0.98
Petersburg summer	0.038	0.0011	0.0025	6.5	2.9	4.14
Astrakhan White	0.084	0.0033	0.0074	8.8	3.9	0.60
Medovka	0.079	0.0076	0.0170	21.4	9.6	0.85
Krasnoyarsk beauty	0.063	0.0085	0.0191	30.4	13.6	1.83
Aurora	0.071	0.0074	0.0165	23.1	10.3	1.42
Terentyevka	0.042	0.0070	0.0156	36.7	16.4	3.39

The reliability criteria for the differences \(t_p \) were calculated for the indices of annual shoots of summer apple varieties with average values for all studied plants (table 5).

Variety	Area of 1 leaf, cm²	Mass of 1 leaf in a.d.s., g	Mass of 1 shoot running cm in a.d.s., g
White filling	0.43	1.08	-1.02

Table 5. Criteria for the reliability of differences \(t_p \) of indicators of different varieties of apple trees with an average value for the entire collection of summer varieties (at \(t_{0.05}=1.70, t_{0.05}=2.04 \)).
Nobilis -0.54 -1.29 -1.77
Papier 1.50 1.55 1.22
Grushovka -2.65 -1.68 -2.46
Moscow 1.50 1.55 1.22
Arcade glass 0.23 -2.32 -1.58
Golden thorn -2.39 -3.02 -0.48
Petersburg summer 6.14 6.87 11.10
Astrakhan White 2.02 0.31 -3.17
Medovka -4.54 -3.39 -0.94
Krasnoyarsk beauty -5.63 -1.80 0.85
Aurora 0.85 3.05 0
Terentyevka 3.81 3.39 3.85
Averge meaning 27.9±1.09 0.29±0.012 0.071±0.0028

According to the data given in table 5, a number of conclusions can be made. So, for example, in the Arcade variety, the cup-shaped reliable differences with the average values for the entire collection of summer apple trees on the leaf area were not detected (t_b is less than t_{0.05}), however, the leaf mass indicator significantly exceeds the average value, which may indicate a large thickness of the leaf blade. Variety Astrakhan white also has a large thickness of the leaf blade. In the varieties Krasnoyarsk beauty, Grushovka Moscow, Aurora, the opposite direction is traced, they differ in the smaller thickness of the leaf blade in comparison with the average.

Correlation analysis showed the presence of a strong positive relationship between the area and mass of the leaf blade for summer apple varieties (r = 0.858). This dependence can be described by the Logistic Model equation (figure 1):

\[y = \frac{4.07}{1 + 1.00 \times \exp(-1.19x)}; \quad R^2 = 0.76, \]

(1)

where y – mass of 1 leaf in a.d.s., g; x – area of 1 leaf, cm\(^2\)

![Figure 1. Dependence of leaf mass in a.d.s. from the leaf area of summer apple varieties.](image-url)
The presence of a strong positive relationship between the leaf mass and 1 running centimeter of shoots in summer apple varieties was found ($r=0.723$). This dependence is approximated by the equation Exponential Association (Figure 2):

$$y=6.65 \cdot \exp^{(8.14x)}; \quad R^2=0.53,$$

(2)

where y – mass of 1 leaf in a.d.s., g; x – area of 1 shoot running cm, cm2

Figure 2. The dependence of the mass of leaves on the mass of 1 shoot running cm of summer varieties of apple trees.

4. Conclusion

Thus, it was established that intraspecific variability is observed in the apple tree in terms of leaf area, leaf mass, and 1 running cm of shoot in absolutely dry state.

In Siberia, the most promising varieties of apple trees for cultivation, from the point of view of photosynthetic activity and productivity, are the varieties Grushovka Moscow, Golden thorn, Medovka, Krasnoyarsk beauty.

Using the regression method, which describes the relationship between leaf area and leaf mass in a completely dry state, it is possible to reduce labor costs for determining phytomass without resorting to additional measurements of the stock of dry foliage mass; and also determine the increase in the mass of branches even in a leafless period.

Acknowledgments

The reported study was funded by RFBR, project number 19-34-90089.

References

[1] Niklas K J, Cobb E D, Niinemets Ü, Reich P B, Sellin A, Shipley B and Wright I J 2007 “Diminishing returns” in the scaling of functional leaf traits across and within species groups *Proc. Natl. Acad. Sci. USA* 104 8891–6

[2] Vasfilov S P 2011 Analysis of the reasons for the variability of the ratio of dry leaf mass to its area in plants *General biology* 72 (6) 436–54

[3] Lusk C H, Reich P B, Montgomery R A, Ackerly D D and Cavender-Bares J 2008 Why are evergreen leaves so contrary about shade? *Trends Ecol Evol.* 23(6) 299–303

[4] Milla R, Reich P B, Niinemets Ü and Castro-Díez P 2008 Environmental and developmental
controls on specific leaf area are little modified by leaf allometry *Funct. Ecol.* 22 565–76

[5] Castro-Díez P, Puyravaud J P and Cornelissen J H C 2000 Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types *Oecologia* 124 476–86

[6] Bratilova N P, Moksina N V and Gerasimova O A Intraspecific variability of apple tree by indicators of vegetative and generative organs *IOP Conf. Ser.: Earth Envir. Sci.* 316

[7] Mazzini R B, Ribeiro R V, Pio R M 2010 A simple and non-destructive model for individual leaf area estimation in citrus *Fruits* vol 65(5) 269-75

[8] Demirsoy H 2009 Leaf area estimation in some species of fruit tree by using models as a non-destructive method *Fruits* 64 (1) 45-51

[9] Demirsoy H and Lang G A 2010 Short communication. Validation of a leaf area estimation model for sweet cherry *Spanish Journal of Agricultural Research* 8 (3) 830-2

[10] Matveeva R N, Butorova O F and Moksina N V 2014 The unique collection of apple trees in V. Krutovskiy Botanical garden is 110 years *Materials of international scientific conference The perspective of introduction of ornamental plants in the botanical gardens and arboretum (Simferopol) pp 136–9

[11] Mamaev S A 1973 *Forms of intraspecific variability of woody plants (on the example of the Pinaceae family in the Urals)* (Moscow: Nauka)

[12] Kuzmichev V V, Pavlov N V and Smolyanov A S 1994 *Mathematical statistics* (Krasnoyarsk: STI) p 80