Analysis of 30 Putative BRCA1 Splicing Mutations in Hereditary Breast and Ovarian Cancer Families Identifies Exonic Splice Site Mutations That Escape In Silico Prediction

Barbara Wappenschmidt1,2,9, Alexandra A. Becker1,2,9, Jan Hauke1,2,3, Ute Weber1,2, Stefanie Engert4, Juliane Köhler1,2, Karin Kast2, Norbert Arnold6, Kerstin Rhiem1,2, Eric Hahnen1,2, Alfons Meindl4, Rita K. Schmutzler1,2

1 Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany, 2 Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, 3 Institute of Human Genetics, University of Cologne, Cologne, Germany, 4 Department of Gynaecology and Obstetrics, Klinikum rechts der Isar at the Technical University, Munich, Germany, 5 Department of Gynaecology and Obstetrics, Technical University of Dresden, Dresden, Germany, 6 Division of Oncology, Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany

Abstract

Screening for pathogenic mutations in breast and ovarian cancer genes such as BRCA1/2, CHEK2 and RAD51C is common practice for individuals from high-risk families. However, test results may be ambiguous due to the presence of unclassified variants (UCV) in the concurrent absence of clearly cancer-predisposing mutations. Especially the presence of intronic or exonic variants within these genes that possibly affect proper pre-mRNA processing poses a challenge as their functional implications are not immediately apparent. Therefore, it appears necessary to characterize potential splicing UCV and to develop appropriate classification tools. We investigated 30 distinct BRCA1 variants, both intronic and exonic, regarding their spliceogenic potential by commonly used in silico prediction algorithms (HSF, MaxEntScan) along with in vitro transcript analyses. A total of 25 variants were identified spliceogenic, either causing/enhancing exon skipping or activation of cryptic splice sites, or both. Except from a single intronic variant causing minor effects on BRCA1 pre-mRNA processing in our analyses, 23 out of 24 intronic variants were correctly predicted by MaxEntScan, while HSF was less accurate in this cohort. Among the 6 exonic variants analyzed, 4 severely impair correct pre-mRNA processing, while the remaining two have partial effects. In contrast to the intronic alterations investigated, only half of the spliceogenic exonic variants were correctly predicted by HSF and/or MaxEntScan. These data support the idea that exonic splicing mutations are commonly disease-causing and concurrently prone to escape in silico prediction, hence necessitating experimental in vitro splicing analysis.

Introduction

Between 1997 and 2012, more than 13,000 families fulfilling the criteria for hereditary breast and ovarian cancer were tested for mutations affecting the major susceptibility genes BRCA1 and BRCA2 [1,2] by the German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBOC). While pathogenic BRCA1/2 mutations were detected in approximately 24% of the families (as of May 2012), a considerable amount of BRCA1/2 variants were identified that are of unknown biological and clinical relevance, so called unclassified variants (UCV), including missense changes, small in-frame insertions or deletions, and potential splice site alterations. UCV are particularly problematic for cancer risk estimation and clinical management, as their functional implications are not immediately apparent [3]. Even though several splice site prediction algorithms are available, evaluation of UCV that possibly affect BRCA1/2 pre-mRNA processing is challenging as it frequently requires experimental validation. Numerous BRCA1/2 splicing mutations have been identified by using either mRNA derived from mutation carriers or by employing BRCA1/2 minigene constructs [4,5,6,7,8,9,10]. The majority of these studies focuses on variants located within or in the close proximity of intronic splice sites only, suggesting that many mutations located deeper in the intron or exon that impair proper BRCA1/2 pre-mRNA processing remain elusive.

Today, there is ample evidence that disease-causing splicing mutations are more prevalent than previously expected. An oftencited estimate of 15% reflects only mutations that are known to affect the splice sites [11]. When assayed directly for individual genes, up to 50% of disease-causing mutations are found to affect
splicing and it has been proposed that even 60% of mutations that cause disease do so by disrupting splicing [12,13]. This discrepancy is due to the finding that many human disease genes harbour exonic alterations that affect pre-mRNA splicing. Nonsense, missense and even translationally silent exonic mutations can impair gene activity by inducing the splicing machinery to skip the mutation-bearing exons. However, only a few exonic splicing mutations within BRCA1 have been reported so far [5,6,14]. Based on these findings, experimental validation of putative BRCA1/2 splicing mutations, both intronic and exonic, appears to be required. The pathogenic potential of putative splicing mutations is routinely estimated using in silico prediction analyses such as the maximum entropy model (MaxEntScan) [15] or the Human Splice Finder (HSF) algorithm [16]. In this study, we assessed the functional impact of 30 distinct BRCA1 variants on pre-mRNA processing by employing bioinformatic prediction tools and experimental analysis of mRNA derived from carriers. Among the 24 intronic and 6 exonic variants analyzed, a total of 25 variants, including 4 missense mutations and 2 silent alterations were identified spliceogenic, either cause/enhance exon skipping or activation of cryptic splice sites, or both. Interestingly, 23 out of 24 intronic variants were correctly predicted by combined bioinformatic analyses, while 3 out of 6 exonic variants clearly escaped in silico detection. In summary, these data contribute to the recent knowledge of BRCA1 splicing mutations and further highlight the importance of experimental splicing analysis particularly for exonic BRCA1 variants and the need for improved bioinformatic prediction of exonic variants that affect the splicing machinery.

Materials and Methods

Probands and DNA isolation

Probands were recruited at the German consortium of hereditary breast and ovarian cancer (GC-HBOC) centres in Cologne, Dresden, Kiel or Munich. Genomic DNA was isolated from venous blood samples using the salting out method [17] or the QIAamp DNA Blood Maxi Kit (#51194, Qiagen, Hilden, Germany). Mutational screening was performed by denaturing high performance liquid chromatography (DHPLC) on all exons, followed by direct sequencing of conspicuous exons [18]. Ethical approval for this study was given by the institutional Ethics Committee of the University of Cologne, Germany (07-185, 10/18/2007). Written informed consent was obtained from all patients and control individuals.

Reverse transcription PCR (RT-PCR)

Reverse transcription PCR (RT-PCR) was performed to determine effects of intronic and exonic sequence variants on BRCA1 pre-mRNA processing. Total RNA was isolated from peripheral blood leukocytes using TRIzol Reagent (#15596-018, Invitrogen, Carlsbad, CA, USA). RNA concentrations were determined using a NanoDrop ND-1000 spectrophotometer (Peqlab, Erlangen, Germany). Reverse transcription was carried out by employing the Transcriptor High Fidelity cDNA Synthesis Kit (#05091240400, Roche Applied Science, Mannheim, Germany) using 500 ng of total RNA and oligo (dT)18 primers. Subsequent PCR were performed using the Qiagen Multiplex PCR Kit (#206145, Qiagen, Hilden, Germany), template-specific primers (table S2 A), and one microlitre of the RT reaction. PCR products were separated on 2.5% agarose gels and visualized by ethidium bromide staining. For long-range amplification of exon 11 and flanking sequences, we employed the Phusion Hot Start II High-Fidelity DNA Polymerase according to the manufacturer's protocol (# F-549S, Thermo Scientific, Bonn, Germany). PCR products were additionally analyzed by Sanger sequencing using ABI 3100 or ABI 3500xl Genetic Analyzers (Applied Biosystems, Carlsbad, CA, USA). When indicated, electrophoretically separated PCR products were purified from agarose gels using the QIAquick Gel Extraction Kit (#20704, Qiagen, Hilden, Germany). Densitometric analysis of band intensities was performed using the Quantity One software version 4.5.1 (BioRad, Munich, Germany).

Quantitative RT-PCR

For real-time quantification of target gene expression, one-step real-time PCR was performed using the QuantiTect SYBR Green RT-PCR Kit (Qiagen, Hilden, Germany) on an Applied Biosystems StepOne Plus Real-Time PCR System (Applied Biosystems, Darmstadt, Germany). Each 20 µl RT-PCR mix contained 10 ng total RNA (4 ng/µl), 2 µl of the primer dilution, 10 µl QuantiTect SYBR Green RT-Master Mix and 0.2 µl QuantiTect RT Mix. One-step RT-PCR reactions were carried out in 96-well optical reaction plates, covered with Optical Adhesive Covers (Bioplastics, Landgraaf, Netherlands). Cycling conditions were as follows: 50°C for 30 min (reverse transcription step), 95°C for 15 min and 40 cycles of 94°C for 15 s, 60°C for 30 s and 72°C for 35 s. Real-time RT-PCR was conducted four times for each amplitcon and each RNA sample. The comparative method of relative quantification (2-DDCt) was used to calculate the relative expression levels of each amplitcon. Results are given as mean ± SD. RT-PCR specificity of each PCR reaction was verified by melting curve analysis and confirmed by agarose gel electrophoresis. Amplicons have been designed to span exon borders to exclude false positive detection of genomic contaminations. Primers are listed in table S2 B.

In silico analysis, databases and nomenclature

For splice site prediction, we employed the maximum entropy model (MaxEntScan) [15] and the Human Splice Finder (HSF) algorithm [16], which calculate splice junction strengths (MaxEntScan) or consensus values (CVs) (HSF), respectively, for the wild type and mutated sequences (http://www.umd.be/HSF/). For HSF, a ΔCV of 10% or more is considered significant based on empirical studies of known splicing mutations [16]. For MaxEntScan, a cutoff value of 20% has been suggested, though the cutoff is stated to be arbitrary [19]. In the provided tables the variants are described in both the traditional BIC nomenclature and the HGVS nomenclature based on the U14680.1 reference sequence for BRCA1. For comparison with the BIC website in the main text the description according to BIC is given. Genomic variation frequencies are given according to the 1000 Genomes (http://www.1000genomes.org), the Exome Variant Server (EVS; http://evs.gs.washington.edu/EVS/) the Breast Cancer Information Core (BIC; http://research.nhgri.nih.gov/bic/) databases and BRCA2006, the internal databases of the German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBOC).

Results

BRCA1 mutations within invariant splice sites

We analyzed a total of 12 BRCA1 variants (derived from 14 independent cases) located within invariant donor or acceptor dinucleotides, all of which are predicted to be damaging according to both, HSF and MaxEntScan analyses (table S1). While some variants have previously been described on genomic level (6/12, see below), the assessment of their functional consequences for BRCA1 pre-mRNA processing is pending in all cases. RT-PCR
analyses paralleled by Sanger sequencing revealed all 12 variants to either cause aberrant exon exclusions or to activate nearby cryptic splice sites, or both. In detail, the vast majority of naturally occurring BRCA1 transcripts carry exon 5, while some mRNA species either partially (BRCA1-Δ52ntex5) or completely lack exon 5 (BRCA1-Δex5) [20]. While these naturally occurring isoforms were detected in control samples, IVS4-1G>C markedly increases skipping of exon 5 (Figure 1 A, B). Three damaging mutations within the donor splice site of intron 16 (IVS5+1G>T, IVS5+1G>A, IVS5+3A>G) have been reported to enhance the usage of an upstream cryptic splice site, resulting in a 3' 22 bp deletion of exon 5 on mRNA level (BRCA1-Δ22ntex5) [4,20,21,22,23]. In our cohort, we identified a IVS5+1G>C variant [24], which expectedly had similar effects (Figure 1 A). In contrast to these variants that quantitatively affect exon recognition, IVS17-2A>G (Figure S1 H), IVS18+1G>C [25] (Figure S1 H), IVS18-2delA [26] (Figure 2 A), IVS19+2T>G (Figure 2 A), IVS21-1G>T (Figure S1 K) and IVS22+2ddT (Figure S1 K) cause the exclusion of the respective exons 18, 19, or 22, which was not observed in control samples. Another two variants, IVS19-1G>T and IVS20-1G>A [27], cause aberrant exon exclusions and, in addition, activate cryptic splice sites. IVS19-1G>T causes skipping of exon 20 and the generation of BRCA1 mRNA species lacking the first 13 nt of exon 20 (Figure S1 I). IVS20-1G>A augments skipping of exon 21 and triggers the production of mRNA species lacking the first 8 nt of exon 21 (Figure S1 J). Besides these 10 variants described so far, the remaining 2 do not cause whole exon exclusions. IVS2-1G>C [28] promotes the activation of a cryptic splice site within exon 3, resulting in a mRNA isoform lacking the first 7 nt of exon 3 (Figure S1 A). IVS19+1delG did not associate with a suspicious splicing pattern as shown by gel electrophoresis of RT-PCR products. However, sequencing revealed the deletion of the last 3' nucleotide of exon 19 on mRNA level due to the activation of a cryptic splice site, which includes the last nucleotide of that exon (Figure 2 A, B).

Intronic BRCA1 variants outside invariant splice dinucleotides

In our cohort, we identified a total of 12 intronic variants located outside invariant splice sites, one of which has already been described on genomic level (IVSI+63G>C) and is considered damaging [29]. By employing the splice site prediction algorithms described above, IVSI+63G>C and five more variants (IVSI+1A>T, IVSI+1A=G, IVSI+64A>G, IVSI+64G>A, IVS22+3A>T, IVS22+4A>G) likely impair existing splice sites according to HSF and/or MaxEntScan, while the remaining variants appear to be neutral or below the respective thresholds (table S1). In line with prediction data, IVSI+1A>T, IVSI+1A=G, IVSI+4A>T, IVSI+4A=G and IVSI+64A>G are predicted to impair the splice donor site of intron 16. As expected, retention of intronic sequences was also observed in each case (Figure S1 E). Sanger sequencing revealed the incorporation of 65 nt of the 5' end of intron 16 in all cases, including IVSI+64T>C. Both, IVS22+3A>T and IVS22+4A>G, cause the exclusion of exon 22 (Figure S1 L). A total of 3 out of 6 remaining variants, predicted as neutral or below the respective HSF and MaxEntScan thresholds, indeed do not affect BRCA1 pre-mRNA processing in our analyses (IVSI+5+22T>A, IVS9-34T>C, IVS10-6C>A, IVS20+15C>T, IVS21+13G>T) (Figures 1 A; 2 A; S1 B, I, J). Even though predicted neutral, IVS4-18T>G appears to marginally compromise intron 5 acceptor splice site recognition, thereby increasing exon 5 skipping (Figure 1 A, B). Compared with controls, densitometric measurements of band intensities confirmed IVS4-18T>G to moderately elevate the abundance of BRCA1-Δex5 mRNA species relative to transcripts harbouring exon 5 (data not shown). To validate this finding, we performed quantitative realtime analyses to evaluate the effects of IVS4-18T>G on BRCA1 exon 5 exclusion. While BRCA1-Δex5 represents a rare isoform in controls, the occurrence of IVS4-18T>G increases exon 5 exclusion reaching levels of significance compared with control samples (Figure 1 A, B).

Exonic BRCA1 variants

Exonic alterations potentially affect splicing and thus, we analyzed the impact of 6 distinct exonic variants on BRCA1 pre-mRNA processing (table S1). While 3 variants have previously been described on genomic level (see below), the functional consequences on BRCA1 pre-mRNA splicing were unclear in all but one case (710C>T,C197C). All 6 variants locate in the close vicinity (±3 nt) to the respective exon borders. Only 3/6 variants, 4304G>A,Q1395Q, G4794C>A,E1559K and 5193G>C,D1692H [33] are predicted to be deleterious according to HSF and MaxEntScan algorithms (table S1). Concordantly, the silent mutation 4304G>A,Q1395Q affecting the last nucleotide of exon 12, causes exon 12 exclusion (Figure S1 D). 4794G>A,E1559K, which is located at the last nucleotide of exon 15, activates a cryptic splice site resulting in the loss of the last 11 nt of exon 15 (Figure S1 E). 5193G>C,D1692H, which affects the last nucleotide of exon 17, activates a cryptic splice site in intron 17, causing the retention of 153 nucleotides of intron 17 within the spliced transcript. Additionally, 5193G>C,D1692H appears to enhance exon 17 skipping compared to controls (Figure S1 G). Noteworthy, BRCA1 transcripts lacking exon 17 are also observed in controls and thus represent naturally occurring isoforms. 787A>G,K223R, 5276G>C,G1803A [34] and 710C>T,C197C clearly escaped in silico analyses. 787A>G,K223R, affecting the antepenultimate nucleotide of exon 10, causes exon 10 exclusion (Figure S1 B). 5276G>C,G1803A, which affects the second nucleotide of exon 23, causes skipping of that exon (Figures S1 M). The remaining variant 710C>T,C197C [35,36], predicted as neutral, is located at the antepenultimate nucleotide of exon 9. Previous analyses demonstrated this variant to only slightly impair exon 9 recognition, which supports a nonpathogenic role for BRCA1 710C>T,C197C [37]. By RT-PCR analysis and Sanger sequencing, we confirm this variant to moderately enhance exon 9 skipping (Figure 1 C, D). Subsequent real-time PCR analysis revealed that 710C>T,C197C increases the abundance of BRCA1 transcripts lacking exon 9 and exons 9 and 10 about 2fold, reaching levels of significance compared with each control sample (Figure 1 C, D). Including 710C>T,C197C, we in summary identified 6 exonic variants located in the close vicinity of the respective exon border to affect correct BRCA1 pre-mRNA splicing (787A>G,K223R, 4304G>A,Q1395Q, G4794C>A,E1559K, 5193G>C,D1692H, 5276G>C,G1803A). For 787A>G,K223R, direct sequencing of wild-type sized RT-PCR products following gel extraction revealed a heterozygous A/G signal at position 787, indicating that the 787A>G transition impairs correct BRCA1 pre-mRNA splicing in an incomplete manner and thus, mutant BRCA1 proteins carrying the K223R amino acid substitution may be expressed. In contrast, transcripts carrying the
and 8.04% (the relative amounts of transcripts lacking exons 9 and 10 (Δex5) observed. Related mutation carriers were analyzed. NTC = no template control. Effects of the variant cryptic splice site, resulting in a 22 bp deletion on mRNA level (Δex). Compared with two control samples, enhanced exon 5 skipping in IVS4-18T>G and IVS4-18T>C elevate exon 5 exclusion (Δex5), while IVS5+1G>T, IVS5+1G>C and IVS5+1G>A promote the usage of an upstream cryptic splice site, resulting in a 22 bp deletion on mRNA level (Δex5). Regarding the variant IVS5+1G>T, two mRNA samples derived from two related mutation carriers were analyzed. NTC = no template control. Effects of the variant cryptic splice site, resulting in a 22 bp deletion on mRNA level (Δex). Compared with two control samples, enhanced exon 5 skipping in IVS4-18T>G and IVS4-18T>C elevate exon 5 exclusion (Δex5), while IVS5+1G>T, IVS5+1G>C and IVS5+1G>A promote the usage of an upstream cryptic splice site, resulting in a 22 bp deletion on mRNA level (Δex). Compared with two control samples, enhanced exon 5 skipping in IVS4-18T>G and IVS4-18T>C elevate exon 5 exclusion (Δex5), while IVS5+1G>T, IVS5+1G>C and IVS5+1G>A promote the usage of an upstream cryptic splice site, resulting in a 22 bp deletion on mRNA level (Δex). Compared with two control samples, enhanced exon 5 skipping in IVS4-18T>G and IVS4-18T>C elevate exon 5 exclusion (Δex5), while IVS5+1G>T, IVS5+1G>C and IVS5+1G>A promote the usage of an upstream cryptic splice site, resulting in a 22 bp deletion on mRNA level (Δex). Compared with two control samples, enhanced exon 5 skipping in IVS4-18T>G and IVS4-18T>C elevate exon 5 exclusion (Δex5), while IVS5+1G>T, IVS5+1G>C and IVS5+1G>A promote the usage of an upstream cryptic splice site, resulting in a 22 bp deletion on mRNA level (Δex).

Discussion

Screening for pathogenic variants in breast and ovarian cancer genes BRCA1/2, CHEK2 [38] and RAD51C [39] is common practice for individuals from high-risk families. However, test results may be ambiguous due to the presence of one or more unclassified variants (UCV) in the concurrent absence of clearly cancer-predisposing mutations. This scenario considerably hampers cancer risk estimation and clinical management. Therefore, it appears necessary to functionally characterize UCV and to develop appropriate UCV classification tools. A particular class of variants represent putative splicing alterations, which are frequently assessed by in silico prediction and functionally analyzed using either mRNA derived from mutation carriers or by employing minigene constructs [4,5,6,7,8,9,10].

While variants located in the canonical splice site dinucleotides that flank the exons are generally considered deleterious, more distant exonic and intronic variants require experimental characterization due to the risk of erroneous in silico prediction as demonstrated in this study. Moreover, when predicted deleterious, it frequently remains elusive whether deleterious variants cause exon skipping and/or activate cryptic splice sites which may be located distant to the wild-type sites, hence not covered by the prediction algorithms.

We investigated 30 rare BRCA1 variants regarding their splicogenic potential using in silico (HSF, MaxEntScan) along with in vitro mRNA analyses. Among those, all 12 variants located within the canonical splice sites were predicted damaging, which was in-line with our in vitro mRNA analyses. A total of 6 out of 12 intronic variants outside the canonical splice sites were predicted damaging by HSF and/or MaxEntScan, which was also confirmed. Among the 6 remaining intronic variants predicted neutral, we demonstrate IVS4-18T>G to marginally impair proper processing of BRCA1 pre-mRNA as it causes an approximately three-fold increased abundance of BRCA1 transcripts lacking exon 5. IVS4-18T>G is listed 4 times in patient databases [2 × BIC, 2 × BRCA2006] and was not found on control chromosomes according to the EVS database. Even though the rare variant
IVS4-18T>G only moderately augments the relative amount of BRCA1-Dex5 mRNA species (Figure 1A, B), we cannot exclude a potentially disease-modifying effect and thus consider its significance uncertain.

We hypothesized that exonic alterations that affect proper BRCA1 pre-mRNA processing are more abundant than currently known and thus included 6 exonic variants in our study. Among those variants, all located in the close vicinity (≤3 nt) to the respective exon border, one silent and two missense alterations indeed were predicted damaging and cause substantial splice defects. The remaining variants (710C>T,C197C, 787A>G,K223R and 5527G>C,G1803A) were below the respective HSF and MaxEntScan thresholds. Interestingly, 787A>G,K223R as well as 710C>T,C197C and 5527G>C,G1803A clearly escaped in silico prediction. 5527G>C,G1803A, which affects the second nucleotide of exon 23, causes skipping of that exon (Figures S1 M) while 787A>G,K223R impairs exon 10 recognition. Noteworthy, the latter variant disrupts BRCA1 pre-mRNA processing in an incomplete manner and thus, BRCA1 proteins carrying the possibly damaging K223R amino acid substitution are likely to be translated (HumVar Score: 0.906, PolyPhen-2 prediction). The remaining, silent variant predicted neutral (710C>T,C197C) causes a two fold increased abundance of the naturally occurring, rare isoforms BRCA1-D9 and BRCA1-D9/10 compared to controls (Figure 1 C and D). This data is in accordance with the findings published by Dosil and co-workers, who previously have shown that 710C>T,C197C only marginally alters exon 9 recognition [37]. The splicing defect observed might be due to the fact that 710C>T,C197C, affecting the antepenultimate nucleotide of exon 9, creates a novel exonic splicing silencer motif (TATTGC/TAG) [37]. In case of a pathogenic effect, however, the frequencies of the 710C>T,C197C variant (rs1799965) are expected to be elevated in patient compared with control databases. According to the EVS database, the 710C>T transition is present on 12 out of 7020 control chromosomes indicating a carrier frequency of 0.34% (12/3510). 710C>T,C197C is listed 31 times in BIC (31/14866, carrier frequency of 0.21%) and 34 in the BRCA2006 databases (34/13287, carrier frequency of 0.26%). The carrier frequency data supposes a non-pathogenic role for the 710C>T,C197C variant which is in line with previous studies [23,37,40], while disease-modifying effects cannot be excluded.

In summary, we investigated 30 unclassified BRCA1 variants with putative effects on splicing, 25 of which were experimentally proven spliceogenic in peripheral blood leukocytes (PBL). The degree of likelihood of pathogenicity of each variant remains elusive and requires further investigation, including multifactorial likelihood analysis and other approaches [41]. While variants with severe impact on splicing (Table 1) may be considered as likely pathogenic (class 4) according to the classification system proposed by Plon and colleagues [42], variants with only partial effects on splicing such as IVS4-18T>G, 787A>G,K223R and 710C>T,C197C (Table 1) are particularly challenging and remain of uncertain clinical significance (class 3). With respect to the tissue-specific nature of pre-mRNA processing, splicing alterations caused by these variants in PBL might not fully reflect...

Figure 2. RT-PCR analyses of BRCA1 exon 19 and flanking sequences. A) Compared with controls C (1) to C (5), the variants IVS18-2delA and IVS19+2T>G elevate exclusion of exon 19 (Δex19). Regarding the variant IVS18-2delA, two mRNA samples derived from two unrelated mutation carriers were analyzed. Effects of IVS18-6C>A on BRCA1 pre-mRNA processing were not observed. IVS19+1delG did not associate with a suspicious splicing pattern as shown by RT-PCR followed by gel electrophoresis. * Note that IVS19+1delG causes a 1 nt deletion on transcript level not detectable by agarose gel electrophoresis. B) Direct sequencing of IVS19+1delG samples following RT-PCR revealed the deletion of the last nucleotide of exon 19 on mRNA level due to the activation of a cryptic splice site, which incorporates the last nucleotide of exon 19. NTC = no template control. doi:10.1371/journal.pone.0050800.g002
Table 1. Classification of putative BRCA1 splicing mutations.

BRCA1 nomenclature	HGVS nomenclature	in vitro splicing result	in vitro splicing result (HGVS) protein change (HGVS)	Family ID	Probands(s) analysed (phenotype/onset)	Family history	Ethnicity
IVS2—1G>C	c.81—1G>C	Δ7nt 5' of exon 3	r.81_87del	p.Leu30*	09_2506	BC (30 y, 65 y)	European
IVS4—1G>C	c.135—1G>C	enhanced Δ exon 5	enhanced c.135_212del	p.[Phe45_Lys71del]	09_3489	BC (30 y, 65 y)	European
IVS11—1G>C	c.212+1G>C	enhanced Δ22nt 3' of exon 5	enhanced c.191_212del	p.Cys64*	09_1855	BC (30 y)	European
IVS12—2A>G	c.5075—2A>G	Δ exon 18	r.5075_5152del	p.Asp162_Trp1718delinsGly	09_0847	BC (27 y, 31 y, 35 y, 48 y, 50 y)	European
IVS17—1G>C	c.5152—1G>C	Δ exon 20	r.5153_5193del	p.Trp1718Serfs*1	09_0329	BC (27 y, 31 y, 35 y, 48 y, 50 y)	European
IVS20—1G>A	c.5278—1G>A	Δ last nt of exon 19	r.5193del	p.Glu1731Aspfs*33	09_2891	BC (27 y, 31 y, 35 y, 48 y, 50 y)	European
IVS21—1G>T	c.5333—1G>T	Δ exon 22	r.5333_5406del	p.Asp1778Glyfs*26	09_1932	BC (37 y, 40 y)	European
IVS22—2delT	c.5406+2delT	Δ exon 22	r.5333_5406del	p.Asp1778Glyfs*26	09_1288	BC (37 y, 40 y)	European

Intronic BRCA1 variants outside invariant splice sites

BRCA1 nomenclature	HGVS nomenclature	in vitro splicing result	in vitro splicing result (HGVS) protein change (HGVS)	Family ID	Probands(s) analysed (phenotype/onset)	Family history	Ethnicity
IVS11—3A>G	c.4096+3A>G	enhanced Δ exon 11, Δ330nt 3' of exon 11	enhanced c.[671_4096del, 767_4096del]	p.[Ala224_Leu1365del, Ser264_Leu1365del]	12_0909	3 (BC, 37 y)	European
IVS16—3G>C	c.4986+3G>C	Ins 65 nt intron r.4986+1_4986+65ins	p.Met1663Valfs*14	09_0351	#01 (BC, 33 y)	2 x BC (32 y*, 65 y)	European
IVS16—4A>G	c.4986+4A>G	Ins 65 nt intron r.4986+1_4986+65ins	p.Met1663Valfs*14	12_0899	#01 (BC, 34 y, 40 y)	3 x BC (32 y, 35 y)	European
Table 1. Cont.

BIC nomenclature	HGVS nomenclature	in vitro splicing result	in vitro splicing result (HGVS) protein change (HGVS)	Family ID	Proband(s) analysed (phenotype, onset)	Family history	Ethnicity	
IVS16+5G>A	c.4986+5 G>A	Ins 65 nt intron:4986+1_4986+65ins	p.Met1663Valfs*14	09, 4089	#001 (BC, 36 y)	4× BC (20 y, 36 y*, 50 y, 50 y)	Arabian	
IVS22+3A>T	c.5406+3 A>T	Δ exon 22	r.5333_5406del	p.Asp1778Glyfs*26	TU367	#20226 (BC, 40 y)	2× BC (40 y, 52 y)	European
IVS22+4A>G	c.5406+4 A>G	Δ exon 22	r.5333_5406del	p.Asp1778Glyfs*26	GH188	#11896 (OvCa, 60 y)	1× OV (60 y), DCIS (64 y), European OvX (38 y)*	

Exonic BRCA1 variants

4304G>A, Q1395Q	c.4185G>A, p.Glu1395Glu	Δ exon 12	r.4097_4185del	p.Gly136Alafs*7	TU235	#19896 (OC, 61 y)	4× BC (34 y, 43 y, 68 y, 57 y), 2× OC (60 y, 61 y)*	European
4794G>A, E1559K	c.4675G>A, p.Glu1559Glu	Δ11nt 3′ of exon 15	r.4665_4675del	p.Glu1556Glyfs*13	09, 3575	#003 (OC, 50 y)	1× BC (44 y), 2× OC (47 y, European 50 y)*	
5193G>C, D1692H	c.5074G>C, p.Asp1692His	Ins 153 nt intron 17, enhanced Δ exon 17	r.5074_+5074+153ins	p[Asp1692Glyfs*14, Val1665Serfs*7] 4987_5074del	09, 3943	#001 (BC, 27 y)	1× BC (27 y)*	European

| 5527G>C, G1803A | c.5408G>C, p.Gly1803Ala | Δ exon 23 | r.5407_5467del | p.Gly1803Alafs*10 | 09, 2219 | #001 (OC, 45 y) | 1× BC (41 y), 4× OC (45 y, European 45 y, 45 y*, 53 y) |

B: Partial impact on splicing

| 710C>T, C197C | c.591C>T, p.Cys197Cys | enhanced Δ exon 9 and 9/10 | r.548_593del | p.Gly183Cysfs*16, Gly183_Lys223del | 09, 1472 | #001 (n.a.) | 2× BC (36 y, 52 y) | European |
| 787A>G, K223R | c.668A>G, p.Lys223Arg | enhanced Δ exon 10 | r.594_670del | p.Val199Cysfs*2, p.Lys223Arg | 12, 0621 | #001 (BC, 32 y), 4× BC (32 y, 52 y, 58 y, 58 y*, European 40 y) |

C: No effect on splicing observed

1202+16G>A	c.3212+23 T>A	/	/	09, 3716	#001 (BC, 40 y)	2× BC (40 y, 50 y)	European
1203–34T>C	c.594–34T>C	/	/	09, 2602	#001 (BC, 21 y)	2× BC (21 y, 44 y)	Turkish
1207–6C>A	c.5152–6C>A	/	/	09, 1469	#001 (DCIS, 53 y)	2× BC (53 y, 75 y), 1× DCIS (53 y)*	European
1208+15C>T	c.5277+15C>T	/	/	09, 2627	#001 (BC, 35 y)	1× BC (35 y)	European
1208+15G>A	c.5322G>T	/	/	09, 2376	#001 (BC, 42 y)	2× BC (42 y, 45 y)	European

*Variants with severe impact on splicing are considered as likely pathogenic (class 4) according to the classification system proposed by Plon et al., [42], while variants with only partial effects on splicing remain of uncertain clinical significance (class 3). Variant descriptions (BIC nomenclature, HGVS nomenclature), consequences on transcript- and protein levels, family IDs, analyzed index patients (phenotypes, age at onset), family histories (phenotypes, age at onset) and ethnic backgrounds are given. Family members carrying the same BRCA1 variant are indicated (asterisk). All other listed family members were not available for analysis. Abbreviation: BC = breast cancer; OC = ovarian cancer; n.a. = not affected; bil = bilateral; ProC = prostate carcinoma; MTX = mastectomy; DCIS = Ductal carcinoma in situ.

doi:10.1371/journal.pone.0050800.t001
those in the tissues at risk. Regarding the value of in silico prediction algorithms used in this study, 23 out of 24 intronic variants were predicted correctly by combined in silico analysis (HSF, MaxEntScan). Noteworthy, the MaxEntScan prediction performance clearly exceeds that of HSF in our cohort. Besides IVS4+1G>T, the remaining 23 out of 24 intronic variants were properly predicted by MaxEntScan, while 4 intronic variants experimentally proven damaging (IVS11+3A>G, IVS16+3G>C, IVS22+3A>T, IVS22+4A>G, table S1) were below the HSF threshold [16]. This finding further highlights the value of using multiple in silico prediction algorithms to improve accuracy. Among the 6 exonic variants analyzed in our study, 4 BRCA1 variants substantially disrupt proper pre-mRNA splicing, supporting the notion that exonic splicing mutations are more common than previously assumed [12,13]. Interestingly, only a few exonic splicing mutations within BRCA1 have been reported so far [5,6,14]. 3 out of 6 exonic variants proven spliceoceptive escaped prediction, indicating that in silico analysis currently performs relatively poorly for exonic alterations [14], which highlights the need for improved bioinformatic prediction tools. Given the fact that prediction of ESE and ESS is also not yet fully accurate [43,44,45,46], in vitro splicing analysis of exonic variants located close to the respective exon border is required and might be performed on a routinely basis.

Supporting Information

Figure S1 RT-PCR analyses of BRCA1 exons 3 (A), 10 (B), 11 (C), 12 (D), 15 (E), 16 (F), 17 (G), 18 (H), 20 (I), 21 (J), 22 (K, L) and 23 (M). The topmost band in lane IVS2-1G>C (A) and the middle bands in lanes IVS9-2A>C (B), IVS21-1G>T (K) and IVS22+2d(T) (K) could not be identified as additional BRCA1 isoforms by direct sequencing and thus appear to be unspecific (data not shown). RT-PCR signals suggested to be unspecific are marked with red bands in lanes C, 12 (D), 15 (E), 16 (F), 17 (G), 18 (H), 20 (I), 21 (J), 22 (K, L) and 23 (M).

References

1. Mika Y, Swensen J, Shattuck-Eddens D, Futraal PA, Harshman K, et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66–71.
2. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, et al. (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378: 709–792.
3. Schwartz GF, Hughes KS, Lynch HT, Fabian CJ, Fentiman IS, et al. (2008) Prediction of splice site alterations in breast cancer risk, genetics, & risk management, April, 2007. Cancer 113: 2627–2637.
4. Thery JC, Krieger S, Gauldatt P, Revillion F, Buisine MP, et al. (2011) Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes. Eur J Hum Genet 19: 1052–1058.
5. Raponi M, Kravecivoca J, Copens E, Divina P, Eccles D, et al. (2011) Prediction of single-nucleotide substitutions that result in exon skipping: identification of a splicing silencer in BRCA1 exon 6. Hum Mutat 32: 436–444.
6. Gauldatt P, Krieger S, Thery JC, Killian A, Roussein A, et al. (2010) The BRCA1 c.5434C>G (p.Pro1812Ala) variant induces a deleterious exon 32 splicing by affecting exonic splicing regulatory elements. J Med Genet 47: 398–403.
7. Bonner C, Krieger S, Vezain M, Roussein A, Tournier I, et al. (2008) Screening BRCA1 and BRCA2 unclassified variants for splicing mutations using reverse transcription PCR on patient RNA and an ex vivo assay based on a splicing reporter minigene. J Med Genet 45: 438–446.
8. Anezková O, Buisson M, Salles MJ, Triboutot S, Longy M, et al. (2008) Unclassified variants identified in BRCA1 exon 11: Consequences on splicing. Genes Chromosomes Cancer 47: 418–426.
9. Whitley PJ, Guirgeli L, Walker LG, Healey S, Thompson BA, et al. (2011) Splicing and multifactorial analysis of intronic BRCA1 and BRCA2 sequence variants identifies clinically significant splicing aberrations up to 12 nucleotides from the intron/exon boundary. Hum Mutat 32: 678–687.

Table S1 Classification, frequencies and in silico characterization of analyzed variants. A: BRCA1 mutations within invariant splice sites; B: Intronic BRCA1 variants outside invariant splice sites; C: Exonic BRCA1 variants; BIG, EVS and 1000 Genomes entries are as of 02/23/2012. BRCA2006 data of the GC-HBOC are as of 04/10/2012. EVS data refers to variation frequencies in the European/American population (rs numbers are given only when frequency data is available). Valuation of variants by the BIC steering committee is given in brackets, when available (yes = clinically important). The consensus values (CVs) for wildtype and mutant splice sites provided by HSF analysis are shown. For HSF prediction, a ΔCV of 10% or more is considered significant. For MaxEntScan analysis, a cutoff value of 20% has been suggested. Differences considered significant are shown in bold/+= no difference between for wildtype and mutant splice sites according to HSF or MaxEntScan.

Table S2 Oligonucleotides used for non-quantitative RT-PCR (A) and quantitative real-time RT-PCR analyses (B).

Acknowledgments

We are very thankful to all family members who participated in this study, Dr. Christoph Engel for providing BRCA2006 data, Katharina Lázlofor excellent technical assistance, and Karin Boss for critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: BW AB JH EH AM RKS. Performed the experiments: AB JH UW JK EH. Analyzed the data: BW AB JH KR EH. Contributed reagents/materials/analysis tools: SE KK NA KR AM RKS. Wrote the paper: BW AB EH RKS.
21. Meindl A (2002) Comprehensive analysis of 989 patients with breast or ovarian cancer provides BRCA1 and BRCA2 mutation profiles and frequencies for the German population. Int J Cancer 97: 472–480.

22. Friedman LS, Szabo CJ, Ostermeyer EA, Dowd P, Butler L, et al. (1995) Novel inherited mutations and variable expressivity of BRCA1 alleles, including the founder mutation 185delAG in Ashkenazi Jewish families. Am J Hum Genet 57: 1218–1297.

23. Diez O, Osorio A, Duran M, Martinez-Ferrandis JL, de la Hoya M, et al. (2003) Analysis of BRCA1 and BRCA2 genes in Spanish breast/ovarian cancer patients: a high proportion of mutations unique to Spain and evidence of founder effects. Hum Mutat 22: 301–312.

24. Evans DG, Bulman M, Young K, Goldhale D, Lalloe F (2003) Sensitivity of BRCA1/2 mutation testing in 466 breast/ovarian cancer families. J Med Genet 40: e107.

25. Dong J, Chang-Claude J, Wu Y, Schumacher V, Debatin I, et al. (1998) A high proportion of mutations in the BRCA1 gene in German breast/ovarian cancer families with clustering of mutations in the 3rd third of the gene. Hum Genet 103: 154–161.

26. Kiechle M, Gross E, Schwarz-Boeger U, Pfisterer J, Jonat W, et al. (2000) Ten novel BRCA1 and BRCA2 mutations in breast and/or ovarian cancer families from northern Germany. Hum Mutat 16: 529–530.

27. Shattuck-Eidens D, Oliphant A, McClure M, McBride C, Gupte J, et al. (1997) BRCA1 sequence analysis in women at high risk for susceptibility mutations. Risk factor analysis and implications for genetic testing. JAMA 278: 1242–1250.

28. Kroiss R, Winkler V, Bikas D, Fleischmann E, Mainau C, et al. (2005) Younger birth cohort correlates with higher breast and ovarian cancer risk in European BRCA1 mutation carriers. Hum Mutat 26: 583–589.

29. Aden C, Reynolds C, Soderberg CL, Silkak JM, McDounell SK, et al. (2003) Pathologic characteristics of breast parenchyma in patients with hereditary breast carcinoma, including BRCA1 and BRCA2 mutation carriers. Cancer 97: 1–11.

30. Lu M, Conzen SD, Cole CN, Arrick BA (1996) Characterization of functional messenger RNA splice variants of BRCA1 expressed in nonmalignant and tumor-derived breast cells. Cancer Res 56: 4578–4581.

31. Scholl T, Pyne MT, Russo D, Ward BE (1999) BRCA1 IVS16+6T–>C is a deleterious mutation that creates an aberrant transcript by activating a cryptic splice donor site. Am J Med Genet 85: 113–116.

32. Vreeswijk MP, Kraan JN, van der Klift HM, Vink GR, Cornelisse CJ, et al. (2009) Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs. Hum Mutat 30: 107–114.

33. Coupier I, Baldeyron C, Rousseau A, Mosseri V, Pages-Berhouet S, et al. (2004) Fidelity of DNA double-strand break repair in heterozygous cell lines harbouring BRCA1 missense mutations. Oncogene 23: 914–919.

34. Markiev N, Marti-Renom MA, Weber BL, Sah A, Monteiro AN (2004) Structure-based assessment of missense mutations in human BRCA1: implications for breast and ovarian cancer predisposition. Cancer Res 64: 3790–3797.

35. Berghorsson JT, Efjertsens B, Olsen JH, Borg A, Nielsen KV, et al. (2001) BRCA1 and BRCA2 mutation status and cancer family history of Danish women affected with multifocal or bilateral breast cancer at a young age. J Med Genet 38: 361–368.

36. McKean-Cowdin R, Spencer Frighelio H, Xia LY, Pearce CL, Thomas DG, et al. (2005) BRCA1 variants in a family study of African-American and Latina women. Hum Genet 116: 497–506.

37. Doal V, Tosar A, Canadas C, Perez-Segura P, Diaz-Rubio E, et al. (2010) Alternative splicing and molecular characterization of splice site variants: BRCA1 c.501C>T as a case study. Clin Chem 56: 53–61.

38. Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, et al. (2002) Low-penetration susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31: 55–59.

39. Meindl A, Hellebrand H, Wiek C, Erven W, Wappenschmidt B, et al. (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42: 410–414.

40. Takahashi H, Behbakht K, McGregor PE, Chiu HC, Couch FJ, et al. (1995) Mutation analysis of the BRCA1 gene in ovarian cancers. Cancer Res 55: 2998–3002.

41. Spurdle AB, Couch FJ, Hogervorst FB, Radice P, Siminovits OM (2008) Prediction and assessment of splicing alterations: implications for clinical testing. Hum Mutat 29: 1304–1313.

42. Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, et al. (2008) Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 29: 1292–1299.

43. Whaley PJ, Pettigrew CA, Brewer BL, Walker LG, Spurdle AB, et al. (2010) Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts. BMC Med Genet 11: 80.

44. Pettigrew CA, Wayte N, Wronski A, Lovelock PK, Spurdle AB, et al. (2008) Colocalisation of predicted exonic splicing enhancers in BRCA2 with reported sequence variants. Breast Cancer Res Treat 110: 227–234.

45. Castella P, Surdo NC, Resta N, Guarni G, Stella A (2006) In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects. BMC Genomics 7: 243.

46. Zatko A, Messiaen L, Vandenbroucke I, Wieser R, Fonatsch C, et al. (2004) Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1. Hum Mutat 24: 491–501.

47. Scott CL, Jenkins MA, Southey MC, Davis TA, Leary JA, et al. (2003) Average age-specific cumulative risk of breast cancer according to type and site of germline mutations in BRCA1 and BRCA2 estimated from multiple-case breast cancer families attending Australian family cancer clinics. Hum Genet 112: 542–551.

48. Tesoriero AA, Wong EM, Jenkins MA, Hopper JL, Brown MA, et al. (2005) Molecular characterization and cancer risk associated with BRCA1 and BRCA2 splice site variants identified in multiple-case breast cancer families. Hum Mutat 26: 495.

49. Spearman AD, Sweet K, Zhou Z, McMammon J, Couch FJ, et al. (2008) Clinically applicable models to characterize BRCA1 and BRCA2 variants of uncertain significance. J Clin Oncol 26: 5393–5400.