The Importance of Neuromonitoring in Non Brain Injured Patients

Denise Battaglini¹,², Paolo Pelosi¹,³ and Chiara Robba¹,³*

Introduction
The use of non-invasive neuromonitoring in patients without brain injury has increased over the past decades [1]. Most common clinical applications of noninvasive neuromonitoring in the non-neurological setting include the study of patients without primary brain injury but with a potential for neurological derangement. These clinical conditions include liver failure, post-cardiac arrest syndrome, severe respiratory failure with or without extracorporeal membrane oxygenation (ECMO) or extracorporeal carbon dioxide removal (ECCO2R), polytrauma, stroke, sepsis, pregnancy, pediatric population, and the surgical population in the perioperative period [1]. In recent years, a growing literature has suggested the use of non-invasive techniques in this population, and these are becoming increasingly popular among general critical care physicians for daily and bedside patient management [1, 2]. The aim of this chapter is to provide anesthesiologists and intensivists with an up-to-date view of the most frequent clinical conditions with potential for neurological complications in patients without brain injury, and to describe the role of non-invasive multimodal neuromonitoring in the early identification and management of these complex scenarios.

Basics of Neuromonitoring in Anesthesia and Critical Care
In this paragraph, we will introduce the most commonly used non-invasive neuro-monitoring tools in anesthesia and in the critical care settings. However, a detailed description of each neuromonitoring system is beyond the aim of the present manuscript, and the reader should refer to the dedicated literature.

Table 1 presents the methodology, strengths, and limitations of the main neuromonitoring techniques (electroencephalography [EEG], processed EEG [pEEG], somatosensory evoked potentials [SSEPs] and motor-sensory potentials [MEPs], transcranial Doppler [TCD], optic nerve sheath diameter [ONSD], pupillometry, and near-infrared spectroscopy [NIRS]).

Clinical Applications
Neuromonitoring in the Operating Room
Intraoperative and postoperative neurological complications, such as delirium, postoperative cognitive decline, stroke, spinal cord ischemia, and postoperative visual loss, are frequently underestimated [2]. These complications have the potential to increase mortality and morbidity and should therefore be promptly identified and prevented [2]. Some types of surgery are more susceptible than others to cerebral complications. In major vascular surgery, registries have reported an intra/postoperative stroke rate of 7% after carotid stenting and of 3.2% after endarterectomy [3]. During aortic procedures,
Type	Methodology	Strengths (S) and limitations (L)	Action of medications
EEG	EEG gives information about cortical activity	S: Global information of cerebral activity	Ketamine increases the activity of excitatory neurons and high frequency oscillations
	Global information	L: EEG trace needs experienced operators for interpretation	Nitrous oxide increases the amplitude of high frequency activity
	Scalp electrodes		Dexmedetomidine causes slow oscillations with deeper sedation but easily awakened patient
			Propofol increases theta, alpha, spindle beta power, slow waves and delta activity
			Sevoflurane effects on BIS are unclear
pEEG	Translation between analogic signal of EEG to digital (numeric). Awake status = 100; general anesthesia = 40–60; suppressed EEG = 0	S: Bedside application	Ketamine increases the activity of excitatory neurons and high frequency oscillations
	Regional information	S: Easy interpretation	Nitrous oxide increases the amplitude of high frequency activity
	Adhesive pads	S: Availability	Dexmedetomidine causes slow oscillations with deeper sedation but easily awakened patient
	DSA is a colored trace obtained from EEG frequencies and transformed into decibels of bi-hemispheric activity that can change from red (more frequent) to blue (rare)	L: Translation between analogic signal of EEG to digital	Propofol induces slow waves, until suppressed
		L: Muscle artifact	pEEG with increases in dosage
		L: Effects of medications	Sevoflurane affects on BIS are unclear
MEPs	MEPs measured by transcranial stimulation of the cortex and recording the signal at the spinal cord level, peripheral motor nerves, or the muscles	S: Bedside application	Ketamine increases amplitude at increased frequency of MEPs
		S: Availability	Dexmedetomidine causes a decrease in MEP amplitude
		L: Interference with electric devices	Propofol has excitatory effects on MEPs
		L: Interpretation by expert equipment	Sevoflurane has a depressant effect on MEPs
SSEPs	SSEPs measured by stimulating a peripheral sensory nerve and recording the signal transmitted to the sensory cortex	S: Bedside application	Ketamine increases cortical SSEP amplitude
	Bedside application	S: Availability	Dexmedetomidine affects amplitude minimally
		L: Interference with electric devices	Propofol has minimal effects on SSEPs. Sevoflurane affects SSEPs in a dose-dependent way
		L: Interpretation by expert equipment	Benzodiazepines reduce amplitude and increase latency of SSEPs
		L: Validation in non-older adults	Opioids do not significantly affect SSEPs, but remifentanil prolongs SSEP latency
Type	Methodology	Strengths (S) and limitations (L)	Action of medications
-------	-------------	----------------------------------	------------------------
TCD	Investigation of local blood flow and velocities in the circle of Willis 2 mHz probe placed in acoustic windows (i.e., transtemporal) Measure of nICP and eCPP Cerebral autoregulation Critical closing pressure Diastolic closing margin Midline shift Emboli, obstruction, stenosis	S: Bedside application S: Availability L: Need for experienced operators L: Availability of windows	Ketamine may affect cerebral hemodynamics Propofol decreases the tone of the venous capacitance vessels and decreases cerebral metabolism Remifentanil reduces cerebral blood flow velocity despite constant perfusion pressure Thiopental decreases CBF velocities Benzodiazepines decrease CBF velocity
ONSD	Measure of nICP and eCPP	S: Bedside application S: Easy interpretation S: Availability	ONSD is larger with propofol in comparison to sevoflurane
Pupillometry	Pupillometry measures the diameter of the pupils and the pupillary light reflex NP is an algorithm using parameters to determine pupillary light response, with a scale 0–5, < 3 is abnormal Maximum and minimum pupil diameter (mm) refers to diameter at rest and peak constriction Latency is the time (seconds) delay between light stimulus and pupillary constriction CV is the distance (mm) of constriction divided by duration (seconds) of constriction Dilation velocity is the distance (mm) of re-dilation divided by duration (seconds) of re-dilation	S: Bedside application S: Easy interpretation S: Availability	Remifentanil determines miosis and reduces PLR Propofol determines miosis and reduces CV Barbiturate titrated to burst suppression reduces CV Diproperidol causes miosis and reduces PDR Metoclopramide causes miosis and reduces PDR
NIRS	NIRS measures cerebral oxygen saturation by using a near-infrared light passing through adhesive pads and tissues. The light is therefore absorbed by oxyhemoglobin and deoxyhemoglobin, thus obtaining a value reflecting the local amount of oxygen within the frontal region A decrease of 20% from baseline can be associated to the reduction of CBF, hypoperfusion and neurologic symptoms Regional measure Adhesive pads	S: Bedside application S: Easy interpretation S: Availability L: Regional evaluation of cerebral oximetry that may not reflect global changes in hemodynamics L: Bias with skin color and gender L: Variations due to systemic extracranial perfusion L: Elimination of oxygen degradation products in patients with liver diseases that can alter the absorption of light	Propofol and dexmedetomidine equally preserve cerebral oxygenation and do not affect neurological outcome Cerebral oxygenation may be better preserved with sevoflurane than propofol Midazolam and morphine may alter cerebral oxygenation and hemodynamics
Table 1 (continued)

Type	Methodology	Strengths (S) and limitations (L)	Action of medications
Various devices are available with different algorithms and components, including Masimo (Masimo Corp, Irvine, CA), INVOS (Medtronic, Minneapolis, USA)			

EEG: Electroencephalogram, pEEG: processed EEG, BIS: Bispectral index, DSA: density spectral array, ONSD: optic nerve sheath diameter, CBF: cerebral blood flow, SSEPs: somatosensory evoked potentials, MEPs: motor sensory evoked potentials, TCD: transcranial Doppler, nICP: non-invasive intracranial pressure, eCPP: estimated cerebral perfusion pressure, CV: constriction velocity, NPI: Neurological Pupil index, PLR: pupillary light reflex, PRD: pupillary reflex dilation
Electroencephalography

Electroencephalography (EEG) was introduced into the operating room to reduce the risk of awareness during surgery, to optimize anesthetic titration, and to individualize the depth of anesthesia [6]. The main raw traces identified by pEEG are shown in Fig. 1, panel A, while an example of a density spectral array (DSA) trace is presented in Fig. 1, panel B. In 2017, the European Society of Anesthesiology (ESA) produced a consensus suggesting that all patients undergoing surgery should have anesthesia depth monitored [7]. EEG responses to anesthesia depend on the interaction between surgical stimulation, sedatives, and anesthetic plane. The phase of induction of anesthesia is characterized by an increase in beta activity (13–30 Hz), followed by the maintenance phase which is characterized by an increase of alpha (8–12 Hz) and delta (0–4 Hz) activities, while during the emergence phase, a reverse order of frequencies appears. A numeric index between 40–60, which is the result of the integration of the raw signals, is recommended to avoid awareness and excessive sedation [2]. The use of pEEG devices has been validated to reduce awareness in patients receiving volatile anesthetics with a minimum alveolar concentration (MAC) value < 0.7, and during total intravenous anesthesia [2]. Moreover, pEEG may reduce drug consumption, thus reducing the incidence of postoperative nausea and vomiting and facilitating extubation and earlier discharge [2]. The intraoperative use of pEEG has been shown to reduce the incidence of delirium, cognitive dysfunction, and ischemic stroke in the postoperative period [2].

In major vascular surgery settings, the presence of beta bands, a decrease of more than 50% of background activity, a reduction in amplitude of 60%, an increase in delta and slow wave activities, or a complete loss of signal is highly suggestive for ischemic complications [8]. Of note, during carotid endarterectomy, changes in cerebral blood flow (CBF) frequently reflect on the EEG within 20–30 s after clamping [3]. When using pEEG, a reduction in bispectral index (BIS) value has also been correlated to ischemia and neurological deficit [9].

In cardiac surgery, long-term EEG burst suppression has been associated with postoperative neurocognitive dysfunction and delirium [4], while decreased alpha and beta waves can be indicative of a CBF < 22 ml/100 g brain tissue/minute, and further reduction to 7-15 ml/100 g/min can result in an isoelectric EEG [4]. However, a recent large randomized controlled trial (RCT) did not support the use of EEG-guided anesthetic administration for the prevention of postoperative delirium in major surgery [10]. EEG or pEEG monitoring might also be useful to detect and avoid periods of burst suppression, which have been associated with postoperative delirium. However, evidence is still lacking on this topic [4].

Evoked Potentials

Evoked potentials are restricted to specific procedures, since their use often requires dedicated equipment and training. During carotid endarterectomy, hypoperfusion of the middle cerebral and anterior cerebral arteries could be detected by abnormalities in the SSEP signal at the median and tibial nerves [3]. Information from evoked
Table 2 Clinical application of neuromonitoring in the operating room

Type of surgery/procedure	Neurological complications	Neuromonitoring	Evidence
Major vascular surgery	Stroke, delirium, cognitive decline, paralysis	EEG or pEEG	Beta bands, slow background, reduction of amplitude on EEG, reduction of BIS on pEEG are signs of ischemia (carotid surgery)
		Evoked potentials	Abnormalities in the SSEPs of median and tibial nerves if hypoperfusion (carotid surgery). MEPs correlate with NIRS
		TCD	TCD can allow detection of stenosis, turbulence, and emboli (carotid surgery)
		NIRS	Cerebral rSO2 < 70% is indicative of possible hypoperfusion (carotid surgery), lumbar rSO2 < 75% for 15 min can cause spinal cord injury (aortic repair)
Cardiac surgery	Delirium, cognitive dysfunction, stroke	EEG or pEEG	Long-term EEG burst suppression is associated with cognitive dysfunction and delirium. Decrease in alpha and beta waves is indicative of tissue hypoperfusion
		Evoked potentials	Help in the detection of ischemia, not specific
		TCD	TCD can detect changes in CBF, microemboli, flow asymmetries
		NIRS	An rSO2 value which falls by 10–20% or < 50% is associated with postoperative complications. The threshold of rSO2 > 80% prevents complications
Abdominal surgery	Neurological deterioration, intracranial hypertension	TCD	TCD can allow non-invasive calculation of ICP, identification of changes in CBF due to high ICP or carbon-dioxide vasodilatation
Orthopedic surgery	Cerebral deoxygenation	NIRS	Cerebral rSO2 monitoring can prevent cerebral deoxygenation and neurological complications

EEG electroencephalogram, pEEG processed EEG, TCD transcranial Doppler; NIRS near infrared spectroscopy, BIS Bispectral index, rSO2 regional saturation of oxygen, MEPs motor evoked potentials, SSEPs sensory evoked potentials, CBF cerebral blood flow, ICP intracranial pressure

Fig. 1 Processed electroencephalography (pEEG). The main raw traces identified by pEEG are shown in Panel A: (a) small amplitude, fast frequency wave (patient awake), (b) moderate sedation, (c) large amplitude, slow frequency wave (general anesthesia), (d) slow oscillations (deep anesthesia), (e) isoelectric trace and burst suppression. The density spectral array (DSA), a colored trace obtained from EEG and transformed into decibels of bi-hemispheric activity that can change from red (highest powers) to blue (lowest powers), is shown in Panel B. The white line in the DSA represents the spectral edge frequency (SEF) (in Hertz), 95% of the power of the brain resides below that line. The purple line in the DSA in the median frequency (MF). BIS bispectral index
potentials has the advantage of being objective and providing quantitative information on neurological complications, but during surgery the signal may be modified by general anesthetics, and in particular volatile agents. SSEPs may also have high false-positive rates (40–67%) and a moderate false-negative (13%) rate, and a delayed response for spinal cord ischemia. Indeed, during aortic surgery, the blood flow is more often compromised in the anterior motor tract than in the sensory dorsal column, and the limited ability of evoked potentials to detect altered motor function during ischemia in case of isolated spinal injury becomes even more worrisome [11].

Transcranial Doppler
TCD flows of the main intracranial arteries are shown in Fig. 2. There are still no clear indications for TCD in the perioperative setting, but some authors have suggested its use during liver transplant for the detection of cerebral complications and in particular brain edema [12]. During pneumoperitoneum and the Trendelenburg position, TCD can also be considered for the detection of episodes of high intracranial pressure (ICP) [13] following increases in carbon dioxide (CO2) that can result in cerebral vasodilatation [14].

The beach chair position is a technique used for shoulder surgery, which has shown to put the patient at risk of neurological complications as it may decrease cerebral perfusion due to blood pressure fall [15]. Moreover, major orthopedic surgery is a discipline at high risk of microembolic complications and TCD may help in the early diagnosis of embolic stroke in the perioperative period [16].

TCD in major vascular surgery can detect isolated arterial stenosis, which results in focal velocity increase and turbulence, inadequate collateral flow after proximal carotid cross-clamping by detecting compromised flow, and high-intensity signals at the Doppler spectral waveforms that can be indicative of emboli [17].

Finally, TCD is frequently used in cardiac surgery to detect changes in flow velocities and flow asymmetries and can be a valid option to assess anterograde cerebral perfusion during aortic arch surgery and for the detection of high-intensity signals related to microemboli [18, 19].

Near-Infrared Spectroscopy
NIRS can provide important information on changes in cerebral oxygenation during the perioperative period, but NIRS signals can be modified by anesthetics and sedatives. In orthopedic surgery, NIRS has been used together with TCD during the beach chair position to prevent cerebral deoxygenation with good effect [16], but its use is
specifically recommended in major vascular and cardiac surgery [4, 20].

In carotid surgery, a regional cerebral oxygen saturation (rSO2) of <70% (50 to 75%) has been suggested as a possible indicator of hypoperfusion, and in patients undergoing aortic repair, a lumbar rSO2 of <75% for 15 min predicted the development of spinal cord injury [4, 20]. The sensitivity of NIRS in detecting cerebral ischemia is 60–100% with good specificity (94–98%) [20], although neurological monitoring and awake anesthesia remain the gold standard [21].

NIRS has also been recommended in cardiac surgery, both in the preoperative and intraoperative periods, to detect patients at higher risk of neurological complications and to identify episodes of acute cerebral hypoperfusion, which are common in these settings [22]. Cerebral oximetry should be cautiously interpreted, considering the baseline values and its trend, as well as preoperative patient status [22]. A recent meta-analysis assessing preoperative rSO2 values in cardiac surgery found a reference range of between 51 and 82%, with a mean baseline value of 66% [23]. According to the literature, intervention is needed when the rSO2 values decrease by 10–20% from baseline or below the absolute value of 50%; moreover, the time spent with rSO2 < 50% is significantly associated with the occurrence of postoperative delirium during coronary artery bypass graft surgery [23].

Figure 3 shows an example of cerebral oximetry using the Masimo (Masimo Corp., Irvine, CA) device.

Neuromonitoring in the Emergency Department and Intensive Care Unit

Neuromonitoring in the emergency department (ED) and ICU might be a valuable complement to clinical diagnosis and diagnostic images in patients without primary brain injury who are at risk of cerebral hemodynamic impairment [24]. Neurological impairment is common in patients admitted to the ED and ICU with sepsis, metabolic, renal, or hepatic diseases, and intoxication as these conditions can cause encephalopathy, cognitive decline, and delirium [24]. Additionally, a large potential for brain injury should be considered in patients with polytrauma, in the context of focused assessment with sonography in trauma (FAST) [25, 26].

Despite the diagnostic and prognostic potentiality of non-invasive multimodal neuromonitoring in the ED, use of these techniques is still limited in these settings, and they are currently more frequently adopted in post-emergency settings after ICU admission. Table 3 resumes

![Fig. 3](image). Near infrared spectroscopy. This figure represents two possible traces, one with normal values and the other with abrupt decrease in regional oxygen saturation (rSO2) values. \(\Delta O_2 Hbi\) index associated with variation of the oxygenated component of the hemoglobin in the total calculation of rSO2 (arterial component of rSO2), \(\Delta H Hbi\) an index associated with variation of the deoxygenated component of hemoglobin within the total calculation of rSO2 (venous component of rSO2), \(\Delta cHbi\) is the sum of \(\Delta H Hbi + \Delta O_2 Hbi\). SpO2—rSO2 is the difference between the value of peripheral saturation of oxygen (SpO2) and rSO2.
some of the most common clinical applications of neuromonitoring in the ED and ICU.

Electroencephalography

EEG is mainly used in the ED for the early diagnosis of first-time seizures that are often caused by non-primary brain injury, such as with systemic fever and metabolic disturbances [27]. The utility of pEEG in the ED has been poorly investigated, but it may potentially be used in patients who need sedation for various reasons, to assess the occurrence of burst suppression, to help in the induction of anesthesia, and to monitor brain activity for any causes [9, 28, 29].

In the ICU setting, in addition to the detection of seizures or status epilepticus, one of the main applications of EEG is in the assessment of patient prognosis [30], in particular with the detection of a suppressed EEG in case of vegetative state and electrocerebral silence in brain death [31]. This is particularly useful in cardiac arrest patients [31].

In patients receiving ECMO, EEG has shown to be useful in the identification of patients at risk for neurological complications and to predict poor outcome, by the identification of specific patterns, such as suppression [32] and absence of EEG reactivity [33]. Abnormal background abnormalities have also been demonstrated to be common EEG features of patients with coronavirus disease 2019 (COVID-19), with an incidence of 96%, while epileptiform discharges were present in 20% of patients [34].

Evoked Potentials

Evoked potentials are frequently used for neuroprognostication in specific diseases (e.g., traumatic brain injury [TBI], cardiac arrest) as part of multimodality algorithms that include clinical examination, electrophysiologic testing, imaging, and laboratory markers (e.g.,

Table 3 Clinical application of neuromonitoring in the emergency department and intensive care unit

Setting	Neurological complications	Neuromonitoring	Evidence
Cardiac arrest	Neurological outcome	EEG or pEEG	Prognostication after cardiac arrest
	Evoked potentials	TCD	Detection of CBF abnormalities and intracranial hypertension
Brain death	Diagnosis	EEG or pEEG	Electrocerebral silence
		TCD	Detection of flow inversion, intracranial hypertension. Ancillary test
ECMO	Neurological outcome	EEG or pEEG	Prognostication in patients receiving ECMO
ARDS and COVID-19	Neurological complications, delirium	EEG or pEEG	Typical EEG includes abnormal background, epileptiform discharges in only 20%
Liver diseases	Encephalopathy	TCD	High resistances on TCD, CBF alterations
Kidney disease	Encephalopathy	TCD	CBF alterations
Sepsis	Encephalopathy	TCD	CBF alterations, stroke
ARDS	Neurological complications, delirium	EEG or pEEG	Typical EEG includes abnormal background, epileptiform discharges in only 20%
TCD	Detection of flow inversion, intracranial hypertension. Ancillary test		
NIRS	To detect brain deoxyxygenation, and responses to hemodynamic and respiratory maneuvers		
Pupillometry	Inconclusive evidence		
ECMO	Neurological outcome	EEG or pEEG	Prognostication in patients receiving ECMO
ARDS	Neurological complications, delirium	EEG or pEEG	Typical EEG includes abnormal background, epileptiform discharges in only 20%
TCD	Detection of flow inversion, intracranial hypertension. Ancillary test		
NIRS	To detect brain deoxyxygenation, and responses to hemodynamic and respiratory maneuvers		
Pupillometry	Inconclusive evidence		
Liver diseases	Encephalopathy	TCD	Association with outcome
Kidney disease	Encephalopathy	TCD	Association with outcome
Sepsis	Encephalopathy	TCD	Association with outcome
NIRS	To detect brain deoxyxygenation, and responses to hemodynamic and respiratory maneuvers		
Pupillometry	Inconclusive evidence		

EEG = electroencephalogram, pEEG = processed EEG, TCD = transcranial Doppler, NIRS = near infrared spectroscopy, BIS = Bispectral index, rSO2 = regional saturation of oxygen, SSEPs = sensory evoked potentials, CBF = cerebral blood flow, ICP = intracranial pressure, PI = pulsatility index, ARDS = acute respiratory distress syndrome, COVID-19 = coronavirus disease 2019, ECMO = extracorporeal membrane oxygenation.
Following cardiac arrest, SSEPs are still considered a cornerstone of prognostic algorithms, especially when delayed 48–72 after cardiac arrest [31]. Typical patterns of SSEPs in the median nerve following cardiac arrest include: bilaterally negative N20, which is indicative of death or vegetative state and poor prognosis; presence of N20 potentials and absent mismatch negativity, which is diagnostic of indeterminate prognosis; and presence of N20 with mismatch negativity, which represents a 95% chance of recovery with good neurological function [31].

Transcranial Doppler

TCD has considerable diagnostic potential in the ED and the ICU. Hepatic encephalopathy is a complication which occurs in up to 70% of patients with liver cirrhosis, and that manifests with psychomotor, attentive, and executive alterations [35].

Higher vascular resistances and pulsatility index in the middle and posterior cerebral arteries of cirrhotic patients have been reported in comparison to controls, with 74% accuracy of the middle cerebral artery resistive index for discriminating the presence of hepatic encephalopathy [35].

Alterations in CBF have also been found in patients with uremia and chronic kidney disease, typically with a decrease in CBF observed after hemodialysis [36].

Sepsis-associated encephalopathy is considered as an independent risk factor for mortality [37] that is characterized by a decrease in the density of cerebral microvessels that can alter cerebrovascular resistances, with potential for inadequate oxygen supply and cerebral dysfunction. On TCD, the pulsatility index was higher in septic patients than in controls [38], and high pulsatility index values on the first day of sepsis diagnosis were associated with a positive CAM-ICU delirium assessment [39]. TCD after cardiac arrest has been extensively studied, and includes four different features: pulsatility index <0.6 (very low resistance), associated with possible hyperemia, vasospasm or stenosis; pulsatility index 1.2–1.6 (high resistance) with possible microangiopathy or mild intracranial hypertension; pulsatility index 1.7–1.9 (very high resistance) with severe intracranial hypertension; and pulsatility index ≥ 2 with cerebral hyperperfusion. In patients who remain comatose >20 min after return of spontaneous circulation the main pattern described is a high pulsatility index [40].

In patients with polytrauma admitted to the ED at risk for intracranial hypertension or with contraindications to invasive ICP placement, TCD and ONSD can be a valid option for the assessment of high ICP and for excluding extracranial hypertension [25, 26].

In mechanically ventilated patients with acute respiratory distress syndrome (ARDS) (including COVID-19 ARDS), TCD has been extensively used and has the potential to indicate the effect of mechanical ventilation strategies on cerebral function, to detect secondary brain dysfunction, and to assess cerebral autoregulation during hemodynamic and respiratory rescue maneuvers [41–43].

Near Infrared Spectroscopy

The use of NIRS is gaining increasing interest in the ED and ICU settings to detect microcirculatory changes in patients with septic or metabolic alterations. Although the majority of studies have been conducted in the ICU, some studies in the ED have concluded that NIRS may correlate with severity of illness, especially after cardiac arrest, with variable association between rSO2 values and outcome [44, 45]. NIRS has been also used for the evaluation of cerebral complications and out come in sepsis, with a rSO2 cut-off of 75% as predictor of neurological sequelae [46]. Similarly, an increase in rSO2 during hospitalization, and lower tissue oxygen extraction rates detected using NIRS, have been shown to be associated with improved survival in polytrauma patients [47].

Finally, in mechanically ventilated patients with ARDS (and COVID-19 ARDS), NIRS has been shown to be useful in assessment of the effect of hemodynamic and respiratory maneuvers on brain oxygenation and cerebral hemodynamics [42, 43, 48].

Automated Pupillometry

In the critical care setting, pupillary size and reactivity to light may provide information about intracranial disease, including elevated ICP and altered perfusion, sedation and analgesia, delirium assessment, brain metabolic derangements, and prognostication [49, 50]. Some studies have used pupillometry to assess the pupillary response to a light stimulus before painful procedures in order to assess adequacy of analgesia. In addition, pupillometry has been shown to be useful to assess the level of sedation, with a good correlation with BIS values [50].

Metabolic disorders can impair the sympathetic system and affect pupillary light reactivity. This can also be observed in patients with sepsis or liver-associated encephalopathy, and neurological disorders. Some authors have suggested that patients with a delayed recovery of pupillary reflexes developed demyelinating encephalopathy or dementia, suggesting that pupillary abnormalities may be associated with potential neurological derangements [49, 50].

Automated pupillometry is also gaining interest as part of the prognostication algorithms adopted after cardiac arrest.
arrest [49]. A pupillary light reflex < 6%, neurologic pupillary index (NPI) of 0 at 6 h from the cardiac arrest, and a pupillary light response < 13% have been shown to be predictive of poor outcome [49]. Pupillary light reactivity, when used in combination with EEG and SSEP has also been shown to improve sensitivity to 100% for the prediction of outcome after cardiac arrest [49].

Intracranial hypertension can also occur in non-primary brain injured patients. Automated pupillometry can detect and even predict elevated ICP. For example, unilateral pupillary dilation and loss of reactivity can be detected as a sign of trans-tentorial herniation [49]. An altered constriction velocity has been identified during and before ICP elevation, and improvement in constriction velocity has been described after osmotic treatment to reduce brain edema [49].

At present, no consensus exists concerning the routine use of automated pupillometry in ED and ICU settings, although recent research supports its use to obtain objective information on pupillary function compared with manual pupillary examination [49, 50].

Conclusion
Increasing evidence suggests that the use of brain monitoring – EEG, evoked potentials, TCD, and NIRS – is gaining popularity even in non-neurocritical care settings, e.g., in the perioperative setting, ED, and ICU, to improve patient care. Neuromonitoring devices can be non-invasive, low-cost, safe tools available at the bedside, with a great potential for both diagnosis and monitoring of patients at risk of brain insult.

Further clinical and research developments, training and teaching programs are urgently needed to support implementation of neuromonitoring in daily clinical practice.

Acknowledgements
None.

Authors’ contributions
DB and CR wrote the first draft of the manuscript, PP supervised the work. All authors had read and approved of the final manuscript.

Funding
Publication was funded by DISCS university of Genoa.

Availability of data and materials
NA.

Declarations
Ethics approval and consent to participate
Not available.

Consent for publication
Not available.

Competing interests
None.

Author details
1 Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS, University of Genoa, Genoa, Italy. 2 Department of Medicine, University of Barcelona, Barcelona, Barcelona, Spain. 3 Department of Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy.

Published online: 22 March 2022

References
1. Robba C, Goetti A, Geeraerts T, et al. Brain ultrasonography: methodology, basic and advanced principles and clinical applications. A narrative review. Intensive Care Med. 2019;45:913–27.
2. Bonatti G, Iannuzzi F, Amadio S, et al. Neuromonitoring during general anesthesia in non neurologic surgery. Best Pract Res Clin Anaesthesiol. 2021;35:255–66.
3. So VC, Poon CCM. Intraoperative neuromonitoring in major vascular surgery. Br J Anaesth. 2016;117:13-23.
4. Milne B, Gilley T, Gautel L, Kunt G. Neuromonitoring and neurocognitive outcomes in cardiac surgery: a narrative review. J Cardiothorac Vasc Anesth. 2021. https://doi.org/10.1053/j.jvca.2021.07.029.
5. Checketts MR, Alladi R, Ferguson K, et al. Recommendations for standards of monitoring during anaesthesia and recovery 2015. Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2016;71:85–93.
6. Romagnoli S, Franchi F, Ricci Z. Processed EEG monitoring for anesthesia and intensive care practice. Minerva Anestesiol. 2019;85:1219–30.
7. Aldecoa C, Bettielli G, Bilota F, et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol. 2017;34:192–214.
8. Roseborough GS. Pro: routine shunting is the optimal management of the patient undergoing carotid endarterectomy. J Cardiothorac Vasc Anesth. 2004;18:375–80.
9. Estruch-Pérez MJ, Barberá-Alacreu M, Ausina-Aguilar A, Soliveres-Ripoll J, Solaz-Roldán C, Morales-Suárez-Varela MM. Bispectral index variations in patients with neurological deficits during awake carotid endarterectomy. Eur J Anaesthesiol. 2010;27:539–63.
10. Wildes TS, Mickie AM, Ben Abdallah A, et al. Effect of electroencephalography-guided anesthetic administration on postoperative delirium among older adults undergoing major surgery. JAMA. 2019;321:473.
11. Sloan TB, Edmonds HL, Koht A. Intraoperative non-invasive assessment of intracranial pressure, autoregulation of cerebral blood flow and critical closing pressure during orthotopic liver transplant. Ultrasound Med Biol. 2019;45:1435–45.
12. Robba C, Baccigaluppi S, Cardim D, et al. Intraoperative non invasive intracranial pressure monitoring during pneumoperitoneum: a case report and a review of the published cases and case report series. J Clin Monit Comput. 2016;30:527–38.
13. Cittono G, Vascotto E, Villa F, Celotti S, Pesenti A. Induced abdominal compartment syndrome increases intracranial pressure in neurotrauma patients: a prospective study. Crit Care Med. 2001;29:1466–71.
14. Aguirre JA, Marzendorfer O, Brada M, Saporito A, Borgaat A, Bührer P. Cerebral oxygenation in the beach chair position for shoulder surgery in regional anesthesia: impact on cerebral blood flow and neurobehavioural outcome. J Clin Anesth. 2016;35:456–64.
15. Ketaibl C, Engel A, Horvat Menih I, et al. Detection and differentiation of cerebral microemboli in patients undergoing major orthopaedic surgery using transcranial Doppler ultrasound. Br J Anaesth. 2017;118:400–6.
16. Sloan MA. Prevention of ischemic neurologic injury with intraoperative monitoring of selected cardiovascular and cerebrovascular procedures: roles of electroencephalography, somatosensory evoked potentials,
transcranial doppler, and near-infrared spectroscopy. Neurol Clin. 2006;24:631–45.
18. Messerotti Benvenuti S, Zanatta P, Ballì F, Polesel E, Palomba D. Preliminary evidence for reduced preoperative cerebral blood flow velocity as a risk factor for cognitive decline three months after cardiac surgery: an extension study. Persuif. 2012;27:486–92.
19. Ono M, Joshi B, Brady K, et al. Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke. Br J Anaesth. 2012;109:391–8.
20. Stilo F, Spinelli F, Martelli E, et al. The sensitivity and specificity of cerebral oximetry, measured by INVOS - 4100, in patients undergoing carotid endarterectomy compared with awake testing. Minerva Anesth. 2012;78:1126–35.
21. Guay J, Kopp S. Cerebral monitors versus regional anesthesia to detect cerebral ischemia in patients undergoing carotid endarterectomy: a meta-analysis. Can J Anaesth. 2013;60:266–79.
22. Thiele RH, Shaw AD, Bartels K, et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on the role of Neurormonitoring in perioperative outcomes: cerebral near-infrared spectroscopy. Anesth Analg. 2020;131:1444–55.
23. Chan MJ, Chung T, Glassford NJ, Bellomo R. Near-infrared spectroscopy in adult cardiac surgery patients: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2017;31:1155–65.
24. de Azevedo DS, Salinet ASM, de Lima OM, Teixeira MJ, Bor-Seng-Shu E, de Carvalho NR. Cerebral hemodynamics in sepsis assessed by transtemporal Doppler: a systematic review and meta-analysis. J Clin Monit Comput. 2017;31:1123–32.
25. Rasulo FA, Bertuetti R, Robba C, et al. The accuracy of transtemporal Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care. 2017;21:44.
26. Robba C, Pozzebon S, Moro B, Vincent JL, Cereue J, Taccone FS. Multimodal non-invasive assessment of intracranial hypertension: an observational study. Crit Care. 2020;24:379.
27. Yigit O, Eray O, Mihci E, Yilmaz D, Arslan S, Eray B. The utility of EEG in the emergency department. Emerg Med J. 2012;29:301–5.
28. Fritz BA, Kalaničk FL, Maybrier HR, et al. Intraoperative electroencephalogram suppression predicts postoperative delirium. Anesth Analg. 2016;122:234–42.
29. Crepeau AZ, Rabinstein AA, Fugate JE, et al. Continuous EEG in therapeutic hypothermia after cardiac arrest: prognostic and clinical value. Neurology. 2013;80:339–44.
30. Choi WJ, Lee JH, Kim SH. Neurological prognostication using raw EEG patterns and spectrograms of frontal EEGs in cardiac arrest patients. J Clin Neurophysiol. 2021. https://doi.org/10.1097/WNP.0000000000000787.
31. Koenig MA, Kaplan PW. Clinical applications for EPs in the ICU. J Clin Neurophysiol. 2015;32:472–80.
32. Peluso L, Rechichi S, Franchi F, et al. Electroencephalographic features in patients undergoing extracorporeal membrane oxygenation. Crit Care. 2020;24:629.
33. Cho S-M, Choi CW, Whitman G, et al. Neurophysiological findings and brain injury pattern in patients on ECMO. Clin EEG Neurosci. 2019;52:462–9.
34. Kubota T, Gajera PK, Kuroda N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav. 2021;115:107682.
35. Ponziani FR, Funaro B, Lupascu A, et al. Minimal hepatic encephalopathy is associated with increased cerebral vascular resistance: A transcranial doppler ultrasound study. Sci Rep. 2019;9:15373.
36. Olguín-Ramírez L, Hernández-Guajardo D, Celis-Jasso J, et al. Difference of cerebral flows in uremia as a cause of encephalopathy. Follow-up by transtemporal Doppler. Neurology. 2020;94:5413.
37. Mazeraud A, Rigby C, Bouchereau E, Benghanem S, Bozza FA, Sharshar T. Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics. 2020;17:392–403.
38. Szatmári S, Végh T, Csomós Á, et al. Impaired cerebrovascular reactivity in sepsis-associated encephalopathy studied by acetazolamide test. Crit Care. 2010;14:R50.
39. Pernaros C, Attou R, Decorte L, et al. Transcranial Doppler to assess sepsis-associated encephalopathy in critically ill patients. BMC Anesthesiol. 2014;14:45.