U(3)-Family Nonet Higgs Boson
and its Phenomenology

Yoshio Koide

Department of Physics, University of Shizuoka
52-1 Yada, Shizuoka 422, Japan

and

Morimitu Tanimoto

Science Education Laboratory, Ehime University, Matusyama 790, Japan

Abstract

In a model where quark and lepton masses and family-mixings are caused not by a variety of Yukawa couplings y_{ij} ($i, j = 1, 2, 3$: family indices) with one vacuum expectation value (VEV) $v = \langle \phi^0 \rangle_0$, but by a variety of VEV’s of a U(3)-family nonet Higgs boson ϕ_L, $v^j_i = \langle \phi^0_{Lj} \rangle_0$, with a single coupling constant, the following problems are investigated: what constraints on the Higgs potential are imposed in order to provide realistic quark and lepton mass spectra and mixings and what constraints on the Higgs boson masses are required in order to suppress unwelcome flavor-changing neutral current effects. Lower bounds of the physical Higgs boson masses of ϕ_L are deduced from the present experimental data and new physics from the present scenario is speculated.

* hep-ph/9505333: To be published in Z. Phys. C.
* E-mail address: koide@u-shizuoka-ken.ac.jp
* E-mail address: tanimoto@edserv.ed.ehime-u.ac.jp
1. Introduction

One of our dissatisfaction with the standard model is that for the explanation of the mass spectra of quarks and leptons, we are obliged to choose the coefficients y_{ij}^f in the Yukawa coupling $\sum_f \sum_{i,j} f_{iL}^f \phi_{0j} \langle \phi_0^f \rangle \phi_{0i}^f$ ($f = \nu, e, u, d$, and i, j are family indices) “by hand”. If we could understand the mass spectra from the vacuum expectation values (VEV’s) $\langle \phi_{0j}^f \rangle$ of U(3) family [1] nonet Higgs fields which couple with fermions as $\sum_f \sum_{i,j} f_{iL}^f \phi_{0j}^f \phi_{0i}^f f_{jR}$, we would be happy. Unfortunately, however, we know that the mass spectra of up- and down-quarks and charged leptons are not identical and the Kobayashi-Maskawa [2] (KM) matrix is not a unit matrix. Moreover, we know that in such multi-Higgs models, in general, flavor changing neutral currents (FCNC) appear unfavorably.

In the present paper, on the basis of a model where quark and lepton masses and family-mixings are caused not by a variety of Yukawa couplings $y_{ij} (i,j = 1, 2, 3$: family indices) with one vacuum expectation value (VEV) $v = \langle \phi_0 \rangle$, but by a variety of VEV’s $v_i = \langle \phi_{0i} \rangle$ with a single coupling constant, we investigate the following problems: what constraints on the Higgs potential are imposed in order to provide realistic quark and lepton mass spectra and KM mixings and what constraints on the Higgs boson masses are required in order to suppress unwelcome FCNC effects. It will be concluded that a special form of the Higgs potential $V(\phi_L)$, which leads to realistic quark and lepton mass spectra, can safely suppress unwelcome FCNC and the present experimental data put lower bounds of a few TeV on the physical Higgs boson masses.

The model we discuss is a seesaw-type quark and lepton mass matrix model [3], where the 6×6 mass matrix for fermions f and F are given by

\[
(\mathcal{F} F)_L \begin{pmatrix} 0 & m_L \\ m_R & M_F \end{pmatrix} \begin{pmatrix} f \\ F \end{pmatrix}_R ,
\]

where $f_L = (2, 1)$, $f_R = (1, 2)$, $F_L = (1, 1)$ and $F_R = (1, 1)$ of SU(2)$_L \times$SU(2)$_R$. We assume that 3×3 matrices m_L and m_R are universal for $f = u, d, \nu$ and e (up-quark-, down-quark-, neutrino- and charged lepton-sectors), so that differences between quark and lepton sectors and between up- and down-sectors come only from the differences of M_F. We assume that the structure of M_F is simply given by $[[\text{unit matrix}]+ b_f \text{ (a rank-one matrix)}]$, where b_f is a complex parameter depending on f (up- or down- and quark or lepton sectors). The SU(2)$_L$ [SU(2)$_R$] symmetry
breaking matrix $m_L \ [m_R]$ is given by $y_L \langle \phi^0_L \rangle_0 \ [y_R \langle \phi^0_R \rangle_0]$, where $\phi_L \ [\phi_R]$ belongs to $(2,1,8+1) \ [(1,2,8+1)]$ of $SU(2)_L \times SU(2)_R \times U(3)_{family}$. Note that the $U(3)$-family symmetry is badly broken by the heavy fermion mass matrix M_F, as we state in Sect.2.

Generally, the diagonalization of the mass matrix (1.1) transforms the vertex

$$
(F \ F)_L \begin{pmatrix} 0 & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix} \begin{pmatrix} f \\ F \end{pmatrix}_R ,
$$

into

$$
(F' \ F')_L \begin{pmatrix} \Gamma'_{11} & \Gamma'_{12} \\ \Gamma'_{21} & \Gamma'_{22} \end{pmatrix} \begin{pmatrix} f' \\ F' \end{pmatrix}_R ,
$$

where $\Gamma_{12} = y_L \phi^0_L$ and so on, and (f', F') are mass eigenstates, so that the vertex Γ'_{11} is not $\Gamma'_{11} = 0$ any longer. (The details are discussed in Sect.3.) Since the physical Higgs bosons ϕ_L are sufficiently light compared with the other Higgs bosons ϕ_R and so on, the contributions to FCNC in quarks and leptons will be dominated only by ϕ_L. Therefore, in the present paper, we will concentrate our study on the Higgs boson ϕ_L.

In the present paper, as a model of the Higgs boson ϕ_L, we adopt a $U(3)$-family nonet Higgs boson model [4], which was proposed by one of the authors (Y.K.) in order to explain a charged lepton mass relation [5]

$$
m_e + m_\mu + m_\tau = \frac{2}{3}(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2 ,
$$

which predicts $m_\tau = 1776.969 \pm 0.001$ MeV for the input values [6] of m_e and m_μ.

He assumed a $U(3)_{family}$ nonet Higgs boson ϕ whose potential is given by

$$
V(\phi) = \mu^2 \text{Tr}(\phi \phi^\dagger) + \frac{1}{2} \lambda [\text{Tr}(\phi \phi^\dagger)]^2 + \eta \phi_s^* \phi_s^\dagger \text{Tr}(\phi_{oct} \phi_{oct}^\dagger) .
$$

Here, for simplicity, the $SU(2)_L$ structure of ϕ has been neglected, and we have expressed the nonet Higgs bosons ϕ^j_i by the form of 3×3 matrix,

$$
\phi = \phi_{oct} + \frac{1}{\sqrt{3}} \phi_s 1 ,
$$
where ϕ_{oct} is the octet part of ϕ, i.e., $\text{Tr}(\phi_{\text{oct}}) = 0$, and $\mathbf{1}$ is a 3×3 unit matrix. For $\mu^2 < 0$, conditions for minimizing the potential (1.5) lead to the relation

$$v_s^*v_s = \text{Tr} \left(v_{\text{oct}}^\dagger v_{\text{oct}} \right),$$

(1.7)

together with $v = v^\dagger$, where $v = \langle \phi \rangle_0$, $v_{\text{oct}} = \langle \phi_{\text{oct}} \rangle_0$ and $v_s = \langle \phi_s \rangle_0$, so that we obtain the relation

$$\text{Tr} \left(v^2 \right) = \frac{2}{3} [\text{Tr}(v)]^2.$$

(1.8)

If we assume a seesaw-like mechanism for charged lepton mass matrix M_ℓ, $M_\ell \simeq mM_E^{-1}m$, with $m \propto v$ and heavy lepton mass matrix $M_E \propto \mathbf{1}$, we can obtain the mass relation (1.4).

However, the model (1.5) is only a toy model, and here the SU(2)$_L$ structure of ϕ was not discussed explicitly. Moreover, the Higgs potential (1.5) brings unwelcome massless physical Higgs bosons into the theory. In the present paper, we investigate what potential form of ϕ_L is favorable in order to provide realistic fermion mass spectrum without contradicting the present experimental data. The outline of the model is presented in the next section 2.

In the section 3, we discuss the Higgs potential $V(\phi_L)$ of the U(3)-family nonet Higgs bosons $\phi_L \ (\phi_R)$ under an ansatz and the conditions for minimizing $V(\phi_L)$. In Sect.4, we calculate masses of the Higgs boson ϕ_L, and in Sect.5, we estimate a lower bound of the mass of the Higgs bosons $\phi_{Li}^j \ (i \neq j)$ from the experimental data of the rare kaon decay $K_L \rightarrow e^\pm \mu^\mp$. Besides, the present model, in general, induces FCNC. In Sect.6, we will estimate lower bounds of the physical Higgs boson masses from the present experimental data of $K^0\bar{K}^0$- and $D^0\bar{D}^0$- mixings, and so on. Finally, in Sect.7, we will speculate a possible new physics which is expected from the present model.

2. Outline of the model

In our scenario, we prepare the following fermions: $f = \ell, q \ (\ell = (\nu, e), q = (u, d))$ and $F = N, E, U, D$, which belong to $f_L = (2, 1, 3), f_R = (1, 2, 3), F_L = (1, 1, 3)$, and $F_R = (1, 1, 3)$ of SU(2)$_L \times$SU(2)$_R \times$U(3)$_{\text{family}}$, respectively. Here, SU(2)$_L \times$SU(2)$_R$ are gauged, but U(3)$_{\text{family}}$ is not gauged. The global symmetry U(3)$_{\text{family}}$ will be broken not spontaneously, but explicitly. Up- and down-heavy fermions, F_{up} and F_{down}, are distinguished by hypercharge Y (note that $Y \neq B - L$ for the heavy fermions): Hypercharges of the heavy fermions (N, E) and (U, D) take
the values \((0, -2)\) and \((4/3, -2/3)\), respectively. The quantum numbers of those fields are listed in Table I.

In the present model, differently from the standard \(SU(2)_L \times SU(2)_R \times U(1)_{B-L}\) model, we do not consider Higgs scalar fields which belong to \((2, 2)\) of \(SU(2)_L \times SU(2)_R\), so that there are no Higgs fields which couple with \(\bar{f}f\) at tree level. We assume only the following Yukawa interactions:

\[
H_{\text{Yukawa}} = y_0 \sum_{i,j} \bar{F}_i [\delta^i_j \Phi_0 + 3b_f (\Phi_X)_i] F_j \\
+ y_L \sum_{i,j} \left[\bar{F}_i (\phi_L)_i^j F^\text{down}_R + \bar{F}_i (\phi_R)_i^j F^\text{up}_R + \text{h.c.} \right] + (L \leftrightarrow R) ,
\]

where \(\phi = (\phi^+, \phi^0)\) and \(\bar{\phi} = (\bar{\phi}^0, -\bar{\phi}^-)\). The scalar fields \(\phi_L\) and \(\phi_R\) belong to \((2, 1, 8 + 1)\) and \((1, 2, 8 + 1)\) of \(SU(2)_L \times SU(2)_R \times U(3)\) family, respectively, and the VEV’s \(\langle \phi^0_L \rangle_0\) and \(\langle \phi^0_R \rangle_0\) provide left- and right-handed weak boson masses \(m(W_L)\) and \(m(W_R)\), respectively. The fields \(\Phi_0\) and \(\Phi_X\) which belong to \((1, 1, 1)\) and \((1, 1, 8 + 1)\), respectively, do not contribute to weak boson masses \(m(W_L)\) and \(m(W_R)\), but play only a role of providing extremely large masses for vector-like fermions \(F\). Then, the mass matrices for fermions \((f, F)\) are given by

\[
(\bar{f} F)^{\text{up}}_L \begin{pmatrix} 0 & m_L^\dagger \\ m_R^\dagger & M_F \end{pmatrix} \begin{pmatrix} f \\ F \end{pmatrix}^{\text{up}}_R + (\bar{f} F)^{\text{down}}_L \begin{pmatrix} 0 & m_L \\ m_R^\dagger & M_F \end{pmatrix} \begin{pmatrix} f \\ F \end{pmatrix}^{\text{down}}_R + \text{h.c.} .
\]

In the present model, since we will choose \(m_L^\dagger = m_L\) and \(m_R^\dagger = m_R\) later, what we should do is to diagonalize the \(6 \times 6\) mass matrix

\[
M = \begin{pmatrix} 0 & m_L \\ m_R & M_F \end{pmatrix} .
\]

Under the approximation of \(M_F \gg m_L, m_R\), we obtain a seesaw-type mass matrix form

\[
M_f \simeq m_L M_F^{-1} m_R .
\]

The structures of \(m_L\) and \(m_R\) are common to quarks and leptons. The variety of \(M_f\) comes from structures of \(M_F\) which depend on \(F = U, D, N\) and \(E\).
In the present paper, we assume that

\[\langle \phi^0_R \rangle_0 \propto \langle \phi^0_L \rangle_0. \]

(2.5)
i.e., each term in \(V(\phi_R) \) takes the coefficient which is exactly proportional to the corresponding term in \(V(\phi_L) \). This assumption means that there is a kind of “conspiracy” between \(V(\phi_R) \) and \(V(\phi_L) \). However, in this paper, we will not go into this problem moreover.

On the other hand, the heavy fermion mass matrices \(M_F \) are given by

\[M_F = y_0 \left[\langle \Phi_0 \rangle_0 \mathbf{1} + \left(y_X^F / y_0 \right) \langle \Phi_X \rangle_0 \right], \]

where \(\langle \Phi_0 \rangle_0 = V_0, \langle \Phi_X \rangle_0 = V_X^F X \) and

\[
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad X \equiv \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.
\]

(2.6)

Note that the U(3)-family symmetry is badly broken by \(\langle \Phi_X \rangle_0 \). The democratic term \(X \) in \(M_F \) may be understood, for example, by a permutation group \(S_3 \) \[8\]. However, in the present stage, since our interest is focused on the light Higgs boson \(\phi_L \), we do not touch the origin of the democratic term \(X \). Anyhow, we assume that the \(M_F \) is given by

\[M_F = m_0 K_f \left(\mathbf{1} + 3 b_f X \right), \]

(2.7)

where \(m_0 K_f = y_0 V_0 \) and \(3 b_f = (y_X^F / y_0) (V_X / V_0) \). Since the parameter \(K_f \) is given by \(K_f = y_0 \langle \Phi_0 \rangle_0 \), it is independent of \(f = u, d, e, \nu \), i.e., \(K_e = K_u = K_d \) at \(\mu = m_0 K \).

However, for numerical evaluations, we will treat \(K_f \) effectively as \(K_e \neq K_u \simeq K_d \), because of the evolution from \(\mu \sim m_0 K \) to \(\mu \sim M_W \).

The variety of the quark and lepton mass matrices \(M_f \) essentially originates in the parameter \(b_f \). Since we take \(v_L \equiv \langle \phi^0_L \rangle_0 \) and \(v_R \equiv \langle \phi^0_R \rangle_0 \) such as they are Hermitian, a \(CP \) violation phase can be included only in the heavy fermion mass matrix \(M_F \) (i.e., in the parameter \(b_f \)). For the charged leptons, considering the phenomenological success of the relation (1.8) [i.e., (1.4)], we put \(b_e = 0 \). Therefore, the mass matrix of the heavy leptons \(M_E \) is Hermitian, and \(CP \) violation does not manifest in the charged lepton sector.

The phenomenological study of the quark mass spectrum and family-mixings based on the seesaw-type mass matrix (1.1) with \(M_F \) of the form (2.7) has been done
by one of the authors (Y.K.) and Fusaoka [9]. They have found that the seesaw-type mass matrix with M_F of the form (2.7) can provide an explanation why $m_t \gg m_b$, while $m_u \sim m_d$, by taking $b_u = -1/3$ ($\beta_u = 0$) and $b_d \simeq -e^{i\beta_d}$ ($\beta_d \simeq -20^\circ$), but with keeping $K_u = K_d$: The inverse of the matrix $[(\text{unit matrix})+(\text{democratic-type matrix})]$, $1 + 3b_f X$, also take a form $[(\text{unit matrix})+(\text{democratic-type matrix})]$, $1 + 3a_f X$, with $a_f = -b_f/(1 + 3b_f)$; The enhancement $m_t/m_b \gg 1$ comes from $|a_f| \to \infty$ in the limit of $b_f \to -1/3$, while $m_u \sim m_d$ comes from the feature that the democratic-type mass matrix [10] can provide a large mass only to the third family, i.e., the effect of $|a_u| \to \infty$ contributes mainly to m_t. Of course, by adjusting the parameter β_d, they [9] have also obtained reasonable KM matrix parameters as well as up- and down-quark masses. Here, we do not repeat their numerical results.

Since the VEV of ϕ^0_L is small compared with those of other Higgs fields ϕ^0_R, Φ_0 and Φ_X, i.e., $(\text{Tr}(\phi_L)^2)^{1/2} \sim 10^2 \text{ GeV}$, we expect some observable effects of the physical Higgs bosons ϕ_L in the low energy ($10^2 - 10^3 \text{ GeV}$) experiments. The purpose of the present paper is to investigate the physics of the U(3)$_{\text{family}}$ nonet Higgs bosons ϕ_L from the phenomenological point of view. In the next section, we investigate a possible form of $V(\phi_L)$ which derives the relation (1.8) (therefore the charged lepton mass relation (1.4)). However, we will not touch what mathematical requirements can provide such a potential form. The purpose of the present paper is to study masses of the physical Higgs bosons ϕ_L and their interactions with gauge bosons and fermions when the fields ϕ_L are described by such a potential which can lead to the relation (1.8).

3. Higgs potential $V(\phi_L)$ and “nonet” ansatz

What is of great interest to us is a potential form of ϕ_L, $V(\phi_L)$. Hereafter, we will omit the index L and simply write ϕ_L as ϕ. We do not consider mixings among Higgs scalar fields with hierarchically different VEV’s, i.e., among ϕ_L, ϕ_R and Φ_0, X. Then, the potential $V(\phi)$ is given by

$$V(\phi) = V_{\text{nonet}} + V_{\text{Oct-Singl}} + V_{\text{SB}} \, ,$$

where V_{nonet} is a part of $V(\phi)$ which satisfies a “nonet” ansatz stated below, $V_{\text{Oct-Singl}}$ is a part which violates the “nonet” ansatz, and V_{SB} is a term which breaks U(3)$_{\text{family}}$ explicitly.
The “nonet” ansatz is as follows: the octet component ϕ_{oct} and singlet component ϕ_s of the Higgs scalar fields ϕ_L (ϕ_R) always appear with the combination of (1.6) in the Lagrangian. Under the “nonet” ansatz, the SU(2)$_L$ invariant (and also U(3)$_{\text{family}}$ invariant) potential V_{nonet} is given by

$$V_{\text{nonet}} = \mu^2 \text{Tr}(\bar{\phi}\phi) + \frac{1}{2} \lambda_1 \sum_{i,j} \sum_{k,l} (\bar{\phi}_i^j \phi_j^i)(\bar{\phi}_k^l \phi_l^k)$$

$$+ \frac{1}{2} \lambda_2 \sum_{i,j} \sum_{k,l} (\bar{\phi}_i^j \phi_k^i)(\bar{\phi}_l^j \phi_l^k) + \frac{1}{2} \lambda_3 \sum_{i,j} \sum_{k,l} (\bar{\phi}_i^j \phi_k^i)(\bar{\phi}_j^k \phi_l^l),$$

(3.2)

where $(\bar{\phi}\phi) = \phi^- \phi^+ + \phi^0$. Here, for simplicity, we have taken only U(3)$_{\text{family}}$ singlet terms in which each two of four fields can make U(3)$_{\text{family}}$ singlets. A more general case, which includes terms $\sum_{i,j,k,l} (\bar{\phi}_i^j \phi_k^i)(\bar{\phi}_l^k \phi_l^l)$ and so on, is given in Appendix A.

In addition to V_{nonet} which satisfies the nonet ansatz, we consider terms the following interaction terms between octet- and singlet-components $V_{\text{Oct.Singl}}$ which break the nonet ansatz:

$$V_{\text{Oct.Singl}} = \eta_1 (\bar{\phi}_s \phi_s) \text{Tr}(\bar{\phi}_{\text{oct}} \phi_{\text{oct}}) + \eta_2 \sum_{i,j} \left((\bar{\phi}_s \phi_{\text{oct}})_i^j \right) \left((\bar{\phi}_{\text{oct}})_i^j \phi_s \right)$$

$$+ \eta_3 \sum_{i,j} \left((\bar{\phi}_s \phi_{\text{oct}})_i^j \right) \left((\bar{\phi}_{\text{oct}})_i^j \phi_s \right) + \eta_3^* \sum_{i,j} \left((\bar{\phi}_{\text{oct}})_i^j \phi_s \right) \left((\bar{\phi}_{\text{oct}})_i^j \phi_s \right),$$

(3.3)

Note that the both potential terms $V_{\text{nonet}}+V_{\text{Oct.Singl}}$ are invariant under SU(3)$_{\text{family}}$ symmetry and the exchange $\phi_{\text{oct}} \leftrightarrow 1(\phi_s/\sqrt{3})$.

As stated later, the potential which consists only of V_{nonet} and $V_{\text{Oct.Singl}}$ cannot fix each value v_i of the VEV’s $\langle \phi^0 \rangle_0 = v = \text{diag}(v_1, v_2, v_3)$ completely, although we can derive that the VEV’s v should satisfy the relation (1.8). In order to fix three values of v_i completely, we will add to an explicitly U(3)$_{\text{family}}$ symmetry breaking term V_{SB}. We consider that gauge symmetries are exact symmetries in the original Hamiltonian, so that those are broken only spontaneously, while global symmetries are phenomenological and approximate symmetries, so that the symmetries may be broken explicitly.
For a time, we neglect the term V_{SB} in (3.1). For $\mu^2 < 0$, conditions for minimizing the potential (3.1) are as follows:

$$\left[\mu^2 + (\lambda_1 + \lambda_2)\text{Tr}(v^\dagger v)\right]v_s^* + \lambda_3 \text{Tr}(v^\dagger v^\dagger) v_s$$
$$+ (\eta_1 + \eta_2)\text{Tr}(v_{oct}^\dagger v_{oct}) v_s^* + 2\eta_3^* \text{Tr}(v_{oct}^\dagger v_{oct}) v_s = 0,$$ \(3.4\)

$$\left[\mu^2 + (\lambda_1 + \lambda_2)\text{Tr}(v^\dagger v)\right] v_{oct} + \lambda_3 \text{Tr}(v^\dagger v^\dagger) v_{oct} + (\eta_1 + \eta_2)v_s v_s^* v_{oct}^\dagger + 2\eta_3 v_s^* v_{oct} = 0,$$ \(3.5\)

and the similar equations with $v \leftrightarrow v^\dagger$ ($v_{oct} \leftrightarrow v_{oct}^\dagger$ and $v_s \leftrightarrow v_s^\dagger$). For simplicity, we consider the case $\eta_3^* = \eta_3$, so that $v^\dagger = v$. Then, we can readily obtain the desirable relation

$$v_s^2 = \text{Tr}(v_{oct}^2) = \frac{-\mu_s^2}{2(\lambda_1 + \lambda_2 + \lambda_3) + \eta_1 + \eta_2 + 2\eta_3},$$ \(3.6\)

which leads to the relation (1.8).

Note that the exact nonet form (1.6) is not always essential to provide the relation (1.8). In the modified potential

$$V_{nonet} = \mu_s^2 \bar{\phi}_s \phi_s + \mu_{oct}^2 \text{Tr}(\bar{\phi}_{oct} \phi_{oct}) + \frac{1}{2} \lambda_1 \sum_{i,j} \sum_{k,l} (\bar{\phi}_i^j \phi_j^i)(\bar{\phi}_k^l \phi_l^k) + \cdots,$$ \(3.7\)

where

$$\phi = \phi_{oct} + \frac{k}{\sqrt{3}} \phi_s 1,$$ \(3.8\)

we can also obtain the desirable relation (1.8) when the coefficient k satisfies

$$k^2 = \mu_s^2/\mu_{oct}^2,$$ \(3.9\)

because the conditions for minimizing (3.7) leads to

$$k^2 v_s^2 = \text{Tr}(v_{oct}^2) = \frac{-\mu_s^2}{2(\lambda_1 + \lambda_2 + \lambda_3) + \eta_1 + \eta_2 + 2\eta_3}.$$ \(3.10\)

The essential assumption is that the terms $\bar{\phi}_s \phi_s$ and $\bar{\phi}_{oct} \phi_{oct}$ appear with the same relative weight in V_{nonet} and in the Yukawa interactions with fermions. However,
there is no substantial difference between the cases of $k = 1$ and $k \neq 1$ for evaluation of physical quantities. Therefore, hereafter, we will investigate only the case of $k = 1$.

So far, we do not have any conditions more than (3.6) (therefore (1.8)) for v, although it is sufficient for deriving charged lepton mass relation (1.4). In order to fix each component of v, we must add some additional terms to the potential $V(\phi)$.

In general, we can choose such a family-basis in which v is given by a diagonal form

$$v = \text{diag}(v_1, v_2, v_3) . \tag{3.11}$$

Then, under the replacement $\phi^0 \rightarrow \phi^0 + v$, seven components of ϕ^0_{oct}, i.e., six components $\phi^0_{ij} \ (i \neq j)$ and a diagonal component (we denote it as ϕ^0_y) can invariant, although the singlet component ϕ^0_s and the other diagonal component ϕ^0_x which is orthogonal to ϕ^0_y cannot be invariant:

$$\begin{align*}
\phi^0_s &\rightarrow \phi^0_s + v_s , \\
\phi^0_x &\rightarrow \phi^0_x + v_x , \\
\phi^0_y &\rightarrow \phi^0_y , \\
(\phi^0)^j_i &\rightarrow (\phi^0)^j_i \ (i \neq j) .
\end{align*} \tag{3.12}$$

Therefore, we add the following $U(3)_{\text{family}}$ symmetry breaking terms to the potential of ϕ:

$$V_{SB} = \xi \left[(\overline{\phi}_y \phi_y) + \sum_{i,j} (\overline{\phi}^0_i \phi^0_j) \right] . \tag{3.13}$$

We can easily see that the relation (3.6) is unchanged even by adding such the explicitly symmetry-breaking terms V_{SB}, because of (3.12). We would like to stress that the explicit $U(3)_{\text{family}}$ breaking (3.13) is a soft breaking, so that it does not spoil the Yukawa sector. We consider that the parameter ξ satisfies

$$\xi + \mu^2 > 0 , \tag{3.14}$$

in order to guarantee $\langle \phi^0_y \rangle_0 = 0$ and $\langle \phi^0_{ij} \rangle_0 = 0 \ (i \neq j)$.

We can rewrite the mass terms $\mu^2 \text{Tr}(\overline{\phi}\phi) + V_{SB}$ into

$$\mu^2 (\overline{\phi}_s \phi_s) + \mu^2_{\text{oct}} \text{Tr}(\overline{\phi}_{\text{oct}} \phi_{\text{oct}}) + V'_{SB} , \tag{3.15}$$
where
\[V'_{SB} = -\xi (\bar{\phi}_x \phi_x) , \]
\[(3.16) \]
and \(\mu^2_{\text{oct}} = \xi + \mu^2 \). The term \(V'_{SB} \) plays a role to fix the axis of the SU(3)_{family} breaking.

Here, for convenience of our discussions, we define the parameters \(z_i \) as
\[v_i = v_0 z_i , \]
\[(3.17) \]
with \(z_1^2 + z_2^2 + z_3^2 = 1 \). Also we define the diagonal components of \(\phi_{\text{oct}} \), \(\phi_x \) and \(\phi_y \), as
\[\phi_x = x_1 \phi_1^1 + x_2 \phi_2^2 + x_3 \phi_3^3 , \]
\[\phi_y = y_1 \phi_1^1 + y_2 \phi_2^2 + y_3 \phi_3^3 , \]
\[(3.19) \]
with \(\sum_i x_i = 0 \), \(\sum_i y_i = 0 \), \(\sum_i x_i^2 = 1 \), \(\sum_i y_i^2 = 1 \) and \(\sum_i x_i y_i = 0 \), where \(v_i = v_s/\sqrt{3} + x_i v_x \). Then, the coefficients \(x_i \) and \(y_i \) are given by the following relations:
\[x_i = \sqrt{2} z_i - \frac{1}{\sqrt{3}} , \]
\[(3.20) \]
\[(y_1, y_2, y_3) = \left(\frac{x_2 - x_3}{\sqrt{3}}, \frac{x_3 - x_1}{\sqrt{3}}, \frac{x_1 - x_2}{\sqrt{3}} \right) . \]
\[(3.21) \]

Some useful formulas for the parameters \(z_i \) are given in Appendix B.

Although in the present stage of the model, we must add an SU(3)_{family} symmetry breaking term \(V'_{SB} \) by “hand”, this does not mean that we must provide three values \((x_1, x_2, x_3)\). The independent parameter of \(x_i \) is only one (for example, see (B7) in Appendix B).

4. Higgs boson masses and interactions

For convenience, we rewrite the fields \(\phi^\pm \) and \(\phi^0 \) with the fields \(\chi^\pm \), \(\chi^0 \), and \(H^0 \) defined by
\[\left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array} \right) = \frac{1}{\sqrt{2}} \left(\begin{array}{c} i \sqrt{2} \chi^+ \\ H^0 - i \chi^0 \end{array} \right) , \]
\[(4.1) \]
Then, the mass terms after the spontaneous symmetry break down are given by

\[V_{\text{mass}} = V_m(\chi^\pm) + V_m(\chi^0) + V_m(H^0), \tag{4.2} \]

\[V_m(\chi^\pm) = \xi \left[\sum_{i \neq j} (\chi^-)^j_i (\chi^+)^i_j + \chi_y^0 \chi_y^0 \right] + (\lambda_2 + \lambda_3) \left[\text{Tr}(v \chi^+) \text{Tr}(v \chi^-) - 2v_s^2 \text{Tr}(\chi^- \chi^+) \right] + (\eta_2 + 2\eta_3) \left[v_s \chi_-^0 \text{Tr}(v \chi^+) + v_s \chi_+^0 \text{Tr}(v \chi^-) - 2v_s^2 \chi_-^0 \chi_+^0 - v_s^2 \text{Tr}(\chi^- \chi^+) \right], \tag{4.3} \]

\[V_m(\chi^0) = \frac{1}{2} \xi \left[\sum_{i \neq j} (\chi^0)^j_i (\chi^0)^i_j + \chi_y^0 \chi_y^0 \right] + \lambda_3 \left\{ \left[\text{Tr}(v \chi^0) \right]^2 - 2v_s^2 \text{Tr}(\chi^0 \chi^0) \right\} + 2\eta_3 \left[-v_s^2 \text{Tr}(\chi^0 \chi^0) + 2v_s \chi_y^0 \text{Tr}(v \chi^0) - 2v_s^2 \chi_y^0 \chi_y^0 \right], \tag{4.4} \]

\[V_m(H^0) = \frac{1}{2} \xi \left[\sum_{i \neq j} (H^0)^j_i (H^0)^i_j + H_y^0 H_y^0 \right] + (\lambda_1 + \lambda_2 + \lambda_3) \left[\text{Tr}(v H^0) \right]^2 + 2(\eta_1 + \eta_2 + 2\eta_3) v_s H_s^0 \left[\text{Tr}(v H^0) - v_s H_s^0 \right], \tag{4.5} \]

where we have used the relations (3.4) and (3.5).

First, we discuss masses of the charged Higgs bosons χ^\pm. From (4.3), the mass terms $\sum_{i,j} (\chi^-)^j_i M_0^2 (\chi^+)^{i_j}$ for the diagonal components of the fields χ^\pm are given by

\[M_{ij}^2 = \xi y_i y_j + (\lambda_2 + \lambda_3)(v_i v_j - v_0^2 \delta_{ij}) + \frac{1}{3}(\eta_2 + 2\eta_3)(v_1 + v_2 + v_3) \left[(v_i + v_j) - (v_1 + v_2 + v_3) \left(\frac{2}{3} + \delta_{ij} \right) \right], \tag{4.6} \]

where, from (3.20) and (3.21), y_i is given by $y_i = \sqrt{2}(v_j - v_k)/\sqrt{3}v_0$ ((i, j, k) are cyclic indexes of (1, 2, 3)).
The mass matrix (4.6) is diagonalized by transforming $(\phi_1^1, \phi_2^2, \phi_3^3)$ into

\[
\begin{pmatrix}
\phi_1 \\
\phi_2 \\
\phi_3
\end{pmatrix} = \begin{pmatrix}
z_1 & z_2 & z_3 \\
z_1 - \sqrt{\frac{2}{3}} z_2 - \sqrt{\frac{2}{3}} & z_3 - \sqrt{\frac{2}{3}} z_1 & z_3 - \sqrt{\frac{2}{3}} z_2 \\
\sqrt{\frac{2}{3}} (z_2 - z_3) & \sqrt{\frac{2}{3}} (z_3 - z_1) & \sqrt{\frac{2}{3}} (z_1 - z_2)
\end{pmatrix}\begin{pmatrix}
\phi_1^1 \\
\phi_2^2 \\
\phi_3^3
\end{pmatrix},
\] (4.7)

($\phi = \chi^\pm, \chi^0$ and H^0). From (3.20) and (3.21), we find

\[
\begin{pmatrix}
\phi_1 \\
\phi_2 \\
\phi_3
\end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix}
\phi_x + \phi_s \\
\phi_x - \phi_s \\
\sqrt{2} \phi_y
\end{pmatrix}.
\] (4.8)

Then, we obtain the masses of χ^\pm as follows:

\[
\begin{align*}
m^2(\chi^\pm_1) &= 0, \\
m^2(\chi^\pm_2) &= - (\lambda_2 + \lambda_3 + \eta_2 + 2\eta_3) v_0^2, \\
m^2(\chi^\pm_3) &= - \left[\lambda_2 + \lambda_3 + \frac{1}{2} (\eta_2 + 2\eta_3) - \xi \right] v_0^2,
\end{align*}
\] (4.9)

where

\[
\xi = \xi / v_0^2, \tag{4.10}
\]

and χ^i_j denotes a boson with $i \neq j$.

Similarly, by the transformation (4.7), we obtain masses of χ^0 and H^0:

\[
\begin{align*}
m^2(\chi^0_1) &= 0, \\
m^2(\chi^0_2) &= - 2(\lambda_3 + 2\eta_3) v_0^2, \\
m^2(\chi^0_3) &= - \left[2(\lambda_3 + \eta_3) - \xi \right] v_0^2, \\
m^2(\chi^0_{ij}) &= - \left[2(\lambda_3 + \eta_3) - \xi \right] v_0^2,
\end{align*}
\] (4.11)

and

\[
\begin{align*}
m^2(H^0_1) &= [2(\lambda_1 + \lambda_2 + \lambda_3) + \eta_1 + \eta_2 + 2\eta_3] v_0^2, \\
m^2(H^0_2) &= - (\eta_1 + \eta_2 + 2\eta_3) v_0^2, \\
m^2(H^0_3) &= \xi v_0^2, \\
m^2(H^0_{ij}) &= \xi v_0^2.
\end{align*}
\] (4.12)
Since $\mu^2 < 0$, the positivity of $m^2(H_1^0)$ is guaranteed by (3.6), i.e.,
\[2(\lambda_1 + \lambda_2 + \lambda_3) + \eta_1 + \eta_2 + 2\eta_3 = -2\mu^2/v_0^2 > 0 \ . \quad (4.13) \]

The positivities of $m^2(H_2^0)$ and $m^2(\chi_2^\pm)$ require
\[2(\lambda_1 + \lambda_2 + \lambda_3) > -(\eta_1 + \eta_2 + 2\eta_3) > 0 \ , \quad (4.14) \]
and
\[2\lambda_1 + \lambda_2 + \lambda_3 + \eta_1 > -(\lambda_2 + \lambda_3 + \eta_2 + 2\eta_3) > 0 \ , \quad (4.15) \]
respectively. These relations are consistent with the positivity conditions of the potential for large values of the fields ϕ. From (4.13) and (3.14), we obtain a constraint
\[2m^2(H_3^0) > m^2(H_1^0) \ . \quad (4.16) \]

If we suppose $\xi \to \infty$, the Higgs bosons $\chi_i^{\pm j}$, χ_3^\pm, χ_i^0, χ_3^0, H_i^{0j} and H_3^0 decouple from the present model, the physical Higgs bosons become only H_1^0, H_2^0, χ_2^0 and χ_2^\pm, so that the model becomes essentially identical with the two-Higgs-doublet model [11].

On the other hand, weak boson masses are obtained by calculating the kinetic term $\text{Tr}(D_\mu \phi D^\mu \phi)$ (D_μ is a covariant derivative). From the straightforward calculation, we can check that the Higgs bosons which are eaten by weak bosons W^\pm and Z^0 are χ_1^\pm and χ_1^0. The masses of weak bosons are given by
\[m^2(W^\pm) = \frac{1}{2} g^2 v_0^2 \ , \quad (4.17) \]
\[m^2(Z^0) = \frac{1}{2} g_z^2 v_0^2 \ , \quad (4.18) \]
where $g_z = g/\cos \theta_W$. Therefore, the value of v_0 is given by
\[v_0^2 = \frac{m^2(W^\pm)}{g^2/2} = \frac{1}{4G_F/\sqrt{2}} = (174 \text{ GeV})^2 \ . \quad (4.19) \]

Since we take interest only in new effects which are caused by the existence of ϕ_L, we neglect mixing of ϕ_L with ϕ_R. Since, for a time, we deal only with tree-level physics, we calculate the interactions of ϕ_L by taking the unitary gauge.
Interactions of ϕ_L with gauge bosons are calculated from the kinetic term
$\text{Tr}(D_\mu \phi L D^\mu \phi_L)$. The results are as follows:

$$H_{EW} = + \frac{1}{2} \left(2gm_W W^\mu_\mu + g_z m Z Z^\mu \right) H_1^0$$

$$+ i \left(eA_\mu + \frac{1}{2} g_z \cos 2\theta W Z_\mu \right) \text{Tr}(\chi^- \partial^\mu \chi^+) + \frac{1}{2} g_z Z_\mu \text{Tr}(\chi^0 \partial^\mu H^0)$$

$$+ \left(e^2 A_\mu A^\mu + eg_z \cos 2\theta W A_\mu Z^\mu + \frac{1}{4} g_z^2 \cos^2 2\theta W Z_\mu Z^\mu \right) \text{Tr}(\chi^- \chi^+)$$

$$+ \frac{1}{5} g_z^2 Z_\mu Z^\mu \left[\text{Tr}(\chi^0 \chi^0) + \text{Tr}(H^0 H^0) \right]$$

$$+ \frac{1}{4} g^2 W^\mu_\mu \left[2\text{Tr}(\chi^- \chi^+) + \text{Tr}(\chi^0 \chi^0) + \text{Tr}(H^0 H^0) \right]$$

$$- \frac{1}{2} g \left(eA_\mu - g_z \sin^2 \theta W Z_\mu \right) \left\{ W^\mu + \text{Tr}(\chi^- \chi^+) + i \text{Tr}(\chi^- H^0) \right\} + \text{h.c.} \right\} , \quad (4.20)$$

where $g_z = g / \cos \theta_W$ and $\chi^\pm_1 = \chi^0_1 = 0$. Note that the interactions of the neutral Higgs boson H^0_1 with gauge bosons are completely identical with those of the neutral Higgs boson H^0 in the standard model.

Three-body interactions of ϕ_L are calculated from the potential (3.1):

$$H_{\phi\phi\phi} = \sqrt{2} \lambda_1 v_0 \text{Tr}(\chi^- \chi^+) H_1^0 + \frac{1}{\sqrt{2}} (\lambda_1 + \lambda_2) v_0 \text{Tr}(\chi^0 \chi^0 + H^0 H^0) H_1^0$$

$$- \frac{1}{\sqrt{2}} \lambda_3 v_0 \text{Tr}(\chi^0 \chi^0 - H^0 H^0) H_1^0 + \sqrt{2} i \lambda_4 \text{Tr}[(\chi^0 v - v \chi^0) \chi^- \chi^+]$$

$$+ \frac{1}{2\sqrt{2}} \lambda_5 \left[\text{Tr} \left((H^0 v + v H^0)(\chi^- \chi^+ + \chi^+ \chi^-) \right) - i \text{Tr} \left((\chi^0 v - v \chi^0)(\chi^- \chi^+ - \chi^+ \chi^-) \right) \right.$$

$$\left. - 2 \text{Tr}[v(\chi^+ H^0 \chi^- + \chi^- H^0 \chi^+)] \right]$$

$$+ \frac{1}{2\sqrt{2}} \eta_1 v_0 \left[(H_1^0 - H_2^0) \text{Tr}(2\chi^- \chi^+ + \chi^0 \chi^0 + H^0 H^0) \right]$$
As we discuss in Sect. 5 and Sect. 6, we consider that only the Higgs boson H_1^0 is light compared with the other Higgs bosons whose masses are of the order of TeV. The interaction (4.21) states the absence of the decays of these Heavy Higgs bosons into two H_1^0 states. Of course, the lightest Higgs boson H_1^0 cannot decay into multi-Higgs-boson states. The dominant decay modes of our Higgs bosons are those into two fermion states.

5. Effective fermion-Higgs interactions and $K_L \rightarrow \mu^\pm e^\mp$ decay

Our Higgs particles ϕ_L do not have interactions with light fermions f at tree level, and they can couple only between light fermions f and heavy fermions F. However, since the fermion mass matrix (2.3) is diagonalized, the physical fermion states (mass eigenstates) are mixed states of f and F. The physical fermion states are given by

$\left(\begin{array}{c} f^\text{phys}_L \\ F^\text{phys}_L \end{array} \right) = \left(\begin{array}{cc} U^f_L & 0 \\ 0 & U^F_L \end{array} \right) \left(\begin{array}{c} f^\text{phys}_L \\ F^\text{phys}_L \end{array} \right)$, \hspace{1cm} (5.1)

(and the similar relation with $L \rightarrow R$), where 6×6 unitary matrices $U_L^{(6 \times 6)}$ and $U_R^{(6 \times 6)}$ diagonalize the 6×6 mass matrix (2.3) as

$U_L^{(6 \times 6)} \left(\begin{array}{cc} 0 & m_L \\ m_R & M_F \end{array} \right) U_R^{(6 \times 6)\dagger} = \left(\begin{array}{cc} M_f & 0 \\ 0 & M'_f \end{array} \right)$, \hspace{1cm} (5.2)
and 3 × 3 unitary matrices $U^f_{L/R}$ and $U^F_{L/R}$ diagonalize the 3 × 3 mass matrices M_f and M'_F in (5.2) into the diagonal matrices D_f and D_F as

$$U^f_L M_f U^f_R \dagger = D_f , \quad U^F_L M'_F U^F_R \dagger = D_F , \quad (5.3)$$

respectively.

In the “seesaw” approximation $(m_L, m_R, \ll M_F)$, the 6 × 6 unitary matrices $U^{(6 \times 6)}_{L/R}$ are given by

$$U^{(6 \times 6)}_L \simeq \left(\begin{array}{cc} 1 & -m_L M^{-1}_R \\ M^{-1}_R m_L & 1 \end{array} \right) , \quad (5.4)$$

$$U^{(6 \times 6)}_R \simeq \left(\begin{array}{cc} 1 & -m_R M^{-1}_F \\ M^{-1}_F m_R & 1 \end{array} \right) , \quad (5.5)$$

where m_L and m_R are Hermitian in the present model. Therefore, an interaction vertex with the fermions (f, F)

$$\left(\begin{array}{c} \Gamma_{11} \\ \Gamma_{12} \\ \Gamma_{21} \\ \Gamma_{22} \end{array} \right) , \quad (5.6)$$

is also transformed into

$$\left(\begin{array}{cc} \Gamma^{\text{phys}}_{11} & \Gamma^{\text{phys}}_{12} \\ \Gamma^{\text{phys}}_{21} & \Gamma^{\text{phys}}_{22} \end{array} \right) , \quad (5.7)$$

where

$$\Gamma^{\text{phys}}_{11} \simeq U^f_L \left[\Gamma_{11} - \Gamma_{12} M_F^{-1} m_R - m_L M_F^{-1} \Gamma_{21} + m_L M^{-1}_F \Gamma_{22} M^{-1}_F m_R \right] U^f_R \dagger$$

$$\simeq U^f_L \left[\Gamma_{11} + \Gamma_{12} m_L^{-1} M_f + M_f m_R^{-1} \Gamma_{21} + M_f m_R^{-1} \Gamma_{22} m_L^{-1} M_f \right] U^f_R \dagger , \quad (5.8)$$

and so on. In (5.8), we have used the relation

$$M_f \simeq -m_L M_F^{-1} m_R . \quad (5.9)$$
For the effective Hamiltonian for the decay of the Higgs bosons (H), where we have used the relations

$$\Gamma_{\text{phys}}^{\phi_L} \approx U^{f}_{\phi_L} m^{-1}_L M f U^{\dagger}_R = U^{f}_{\phi_L} \langle \phi_L \rangle_0^{-1} U^{\dagger}_L D_f ,$$

(5.10)

where we have used the relations $m_L = y_f \langle \phi_L \rangle_0$ and $U^{f}_L M f U^{\dagger}_R = D_f$.

For charged leptons $f = e$, since $U^{e}_L = U^{e}_R = 1$, $D_e = \text{diag}(m_e, m_\mu, m_\tau)$ and $\langle \phi_L \rangle_0^{-1} = v^{-1} = \text{diag}(v_1^{-1}, v_2^{-1}, v_3^{-1})$, the fields ($\phi_L$) couple to ($\tilde{e}_L^{\text{phys}}, \tilde{e}_R^{\text{phys}}$) with the effective coupling

$$\kappa_j \equiv \frac{m_j}{v_j} = \frac{1}{v_0} \sqrt{m_j^2(m_\tau + m_\mu + m_e)} = \frac{m_\tau + m_\mu + m_e}{v_0} \kappa_j .$$

(5.11)

For example, for the interaction of $(H^0 - i\chi^0)/\sqrt{2}$, we obtain

$$\frac{1}{\sqrt{2}} \kappa_j (\tilde{e}^{L,R}_e e_R) (H^0 - i\chi^0)_i^j + \frac{1}{\sqrt{2}} \kappa_j (\tilde{e}^{L,R}_e e_L) (H^0 + i\chi^0)_i^j$$

$$= \frac{1}{2\sqrt{2}} \left\{ (\tilde{e}^{L,R}_e (a_{ij} - b_{ij} \gamma_5) e_j) (H^0)_i^j + i (\tilde{e}^{L,R}_e (b_{ij} - a_{ij} \gamma_5) e_j) (\chi^0)_i^j \right\} ,$$

(5.12)

where

$$a_{ij} = \kappa_i + \kappa_j , \quad b_{ij} = \kappa_i - \kappa_j .$$

(5.13)

Therefore, in the pure leptonic modes, the exchange of ϕ_L cannot cause family-number non-conservation. On the other hand, in quark sector, since $U^{q}_{L/R} \neq 1$, the family-number non-conservation is, in general, caused by the exchange of ϕ_L.

Note that even in the limit of $U^{f}_L = 1$, the Higgs bosons ($H^0)_i^j$ ($i \neq j$) can sensitively affect rare decay modes $K_L \rightarrow e^+ \mu^-$, $K^+ \rightarrow \pi^+ e^- \mu^+$, $D^+ \rightarrow \pi^+ \mu^- e^+$, $B^+ \rightarrow \pi^+ e^- \tau^+$, $B^+ \rightarrow K^+ \mu^- \tau^+$, and so on. The most rigorous bound of the mass of the Higgs bosons ($H^0)_i^j$ ($i \neq j$) comes from the rare decay $K_L \rightarrow e^+ \mu^+$. The effective Hamiltonian for the decay $s \rightarrow d + e^+ + \mu^-$ is given by

$$H_{\text{eff}} = \frac{1}{m_H^2} (\overline{d} (a_{sd} + b_{sd} \gamma_5) s) (\overline{\mu} (a_{\mu e} - b_{\mu e} \gamma_5) e)$$

$$+ \frac{1}{m_\chi^2} (\overline{d} (b_{sd} + a_{sd} \gamma_5) s) (\overline{\mu} (b_{\mu e} - a_{\mu e} \gamma_5) e) ,$$

(5.14)
where
\[a_{sd} \simeq \frac{1}{2 \sqrt{2}} \left(\frac{m_s}{v_2} + \frac{m_d}{v_1} \right), \quad b_{sd} \simeq \frac{1}{2 \sqrt{2}} \left(\frac{m_s}{v_2} - \frac{m_d}{v_1} \right), \quad (5.15) \]

\[a_{\mu e} = \frac{1}{2 \sqrt{2}} \left(\frac{m_\mu}{v_2} + \frac{m_e}{v_1} \right), \quad b_{\mu e} = \frac{1}{2 \sqrt{2}} \left(\frac{m_\mu}{v_2} - \frac{m_e}{v_1} \right), \quad (5.16) \]

and we have used \(U_d \simeq 1 \). By using the relation
\[\langle 0 | (\bar{d} \gamma_5 s) | K^0(p) \rangle = -i \frac{f_K m_K^2}{m_s + m_d} \]

we obtain the decay amplitude
\[A(K^0 \to e^- \mu^+) = \frac{f_K m_K^2}{m_s + m_d} \left[\frac{b_{sd}}{m_H^2} (\bar{\mu}(a_{\mu e} - b_{\mu e} \gamma_5)e) + \frac{a_{sd}}{m_\chi^2} (\bar{\mu}(b_{\mu e} - a_{\mu e} \gamma_5)e) \right], \quad (5.18) \]

so that
\[\Gamma(K_L \to e^\pm \mu^\mp) \simeq \frac{m_K}{256 \pi} \left(\frac{f_K m_K^2}{m_s + m_d} \right)^2 \left(\frac{1}{m_H^2} + \frac{1}{m_\chi^2} \right)^2 \left(\frac{m_s}{v_2} \right)^2 \left(\frac{m_\mu}{v_2} \right)^2, \quad (5.19) \]

where we have used the approximation for \((m_d/v_1)^2 \ll (m_s/v_2)^2\) and \((m_e/v_1)^2 \ll (m_\mu/v_2)^2\). The experimental lower bound \(B(K_L \to e^\pm \mu^\mp) < 3.3 \times 10^{-11} \) puts the constraint
\[\left(\frac{1}{m_H^2} + \frac{1}{m_\chi^2} \right)^{-1} > (1.69 \text{ TeV})^2. \quad (5.20) \]

If \(m_H \sim m_\chi \), (5.20) leads to the lower bound
\[m(H_3) \simeq m(\chi_3) > 2.4 \text{ TeV}. \quad (5.21) \]

Thus, Higgs scalar masses are expected to be a few TeV region.

6. Constraints on the Higgs boson masses from \(P^0 \bar{T}^0 \) mixings

As stated in the previous section, since \(U_L^T \neq 1 \) in quark sector, flavor changing neutral currents (FCNC), in general, appear by exchanging the Higgs bosons

\[19 \]
\(\phi_2, \phi_3 \) and \(\phi^i_j \ (i \neq j) \) (\(\phi = H^0 \) and \(\chi^0 \)), and they can sensitively contribute to the \(K^0\overline{K}^0 \), \(D^0\overline{D}^0 \) and \(B^0\overline{B}^0 \) mixings. In this section, we study the magnitudes of FCNC in details.

Note that as far as the physical Higgs boson \(H_1^0 \) is concerned, the interaction with quarks \(q_i \) is still diagonal type \((\overline{q}_L q_i) H_{1}^0 \), because \(H_{1}^0 = \sum_i v_i (H_0^0)_{i}/v_0 \), so that

\[
\frac{1}{\sqrt{2}} v_0 (\overline{q}_L U_L^0 v (\phi_L)_{0}^{-1} U^*_L D q_R) H_{1}^0 + \text{h.c.} = \frac{1}{\sqrt{2}} \sum_i \frac{m_i^q}{v_0} (\overline{q}_i q_i) H_{1}^0. \tag{6.1}
\]

Therefore, the interactions of \(H_1^0 \) with quarks are identical with those of the physical neutral Higgs boson \(H_{SM}^0 \) in the standard model. Recall that the electroweak interactions of \(H_1^0 \) are also identical with those of \(H_{SM}^0 \). As far as \(H_1^0 \) is concerned, we cannot distinguish from the standard-model Higgs boson \(H_{SM}^0 \) experimentally.

The fermion-Higgs boson interactions are, from (5.10), given by

\[
H_{f\phi} = (\overline{f} L U v (\phi)_{0}^{-1} U^*_L D f_R) + \text{h.c.}
\]

\[
= \sum_{i,j} (\overline{f}_i L f_j R) \left(\sum_{k \neq l} \phi^l_k m_j U^k_i U^*_j + \sum_k \phi^k l m_j U^k_i U^*_j \right) + \text{h.c.}, \tag{6.2}
\]

where \(U \equiv U_L^f, \phi \equiv \phi^0 = (H^0 - i \chi^0)/\sqrt{2}, D \equiv D_f = \text{diag}(m_f^u, m_f^d, m_f^s) \) and \(f = u, d \).

The interactions with \(\phi^l_k \ (k \neq l) \) are rewritten as follows:

\[
\frac{1}{2\sqrt{2}} \sum_{i,j} \sum_{k \neq l} \overline{f}_i \left((A_{ij}^{kl} - B_{ij}^{kl} \gamma_5) (H_0^0)_{k}^l + i(B_{ij}^{kl} - A_{ij}^{kl} \gamma_5) (\chi^0)_{k}^l \right) f_j, \tag{6.3}
\]

where

\[
A_{ij}^{kl} = \frac{1}{2} \left(\frac{m_i}{v_k} + \frac{m_j}{v_l} \right) U^k_i U^*_j, \quad B_{ij}^{kl} = \frac{1}{2} \left(\frac{m_i}{v_k} - \frac{m_j}{v_l} \right) U^k_i U^*_j. \tag{6.4}
\]

For the interactions with \(\phi^k_k \), by using the expression

\[
\phi^k_k = z_k \phi_1 + \left(\frac{1}{\sqrt{3}} z_k - \frac{2}{3} \right) \phi_2 + \sqrt{\frac{2}{3}} (z_l - z_m) \phi_3, \tag{6.5}
\]

\(z_l \) and \(z_m \) are introduced.
where \((k, l, m)\) are cyclic indices of \((1,2,3)\), we can obtain

\[
\sum_{i,j} m_j v_0 \left[\delta_i^j (\phi_1 + \phi_2) - \sqrt{\frac{2}{3}} \phi_2 \sum_k \frac{1}{z_k} U_i^k U_j^{k*} + \sqrt{\frac{2}{3}} \phi_3 \sum_k \frac{z_l - z_m}{z_k} U_i^k U_j^{k*} \right] + \text{h.c.}
\]

\[
= \frac{1}{\sqrt{2}} \sum_i \frac{m_i}{v_0} \left[\langle \bar{f}_i f_i (H_1^0 + H_2^0) - i(\bar{f}_i \gamma_5 f_i) \chi_2^0 \right]
\]

\[
- \frac{1}{\sqrt{3}} \sum_{i,j} \left[\langle \bar{f}_i (a_{ij} - b_{ij} \gamma_5) f_j \rangle H_2^0 + i \langle \bar{f}_i (b_{ij} - a_{ij} \gamma_5) f_j \rangle \chi_2^0 \sum_k \frac{z_l - z_m}{z_k} U_i^k U_j^{k*} \right], \quad (6.6)
\]

where

\[
a_{ij} = \frac{1}{2} \left(\frac{m_i}{v_0} + \frac{m_j}{v_0} \right), \quad b_{ij} = \frac{1}{2} \left(\frac{m_i}{v_0} - \frac{m_j}{v_0} \right). \quad (6.7)
\]

The effective four-Fermi interactions of FCNC are given by

\[
H_{FCNC} = \frac{1}{3} \sum_{i \neq j} \left[\frac{1}{m^2(H_0^0)} \left(\langle \bar{f}_i (a_{ij} - b_{ij} \gamma_5) f_j \rangle \right)^2 \right.
\]

\[
- \frac{1}{m^2(\chi_2^0)} \left(\langle \bar{f}_i (b_{ij} - a_{ij} \gamma_5) f_j \rangle \right)^2 \left(\sum_k \frac{1}{z_k} U_i^k U_j^{k*} \right)^2
\]

\[
+ \frac{1}{3} \sum_{i \neq j} \left[\frac{1}{m_2(H_3^0)} \left(\langle \bar{f}_i (a_{ij} - b_{ij} \gamma_5) f_j \rangle \right)^2 \right.
\]

\[
- \frac{1}{m_2(\chi_3^0)} \left(\langle \bar{f}_i (b_{ij} - a_{ij} \gamma_5) f_j \rangle \right)^2 \left(\sum_k \frac{z_l - z_m}{z_k} U_i^k U_j^{k*} \right)^2
\]

\[
+ \frac{1}{2} \sum_{i \neq j, k \neq l} \left[\frac{1}{m^2(H_k^0)} \langle \bar{f}_i (A_{ij}^kl - B_{ij}^kl \gamma_5) f_j \rangle \langle \bar{f}_i (A_{ij}^{lk} - B_{ij}^{lk} \gamma_5) f_j \rangle \right.
\]

\[
- \frac{1}{m^2(\chi_k^0)} \left(\langle \bar{f}_i (B_{ij}^kl - A_{ij}^kl \gamma_5) f_j \rangle \langle \bar{f}_i (B_{ij}^{lk} - A_{ij}^{lk} \gamma_5) f_j \rangle \right). \quad (6.8)
\]
If we suppose the case $\xi \to \infty$, we can neglect the contributions from ϕ_3 and $\phi^l_k (k \neq l)$ to the $K^0\bar{K}^0$ mixing and so on, since these Higgs bosons decouple from the low energy effective theory. However, even then, the contributions form ϕ_2 still remain. From the experimental values of K^0-L^0 and $D^0_1-D^0_2$ mass differences, the masses of H_2^0 and χ_2^0 must be large than 10^5 GeV. Considering from (4.14), (4.15) and $v_0 = 174$ GeV, it is unlikely that H_2^0 and χ_2^0 have such large masses as far as we suppose that the coupling constants $\lambda_3, \eta_1, \eta_2$ and η_3 are of the order of one or less than it.

Note that the contributions form χ^0 have the opposite signs to that from H^0. If we suppose $m^2(H^0_k) = m^2(\chi_k) \equiv m^2_{H^0_k} (k = 2, 3)$, which means

$$
\eta_1 + \eta_2 = 0 \ , \quad \lambda_3 + \eta_3 = 0 ,
$$

the contributions of H_{FCNC} are considerably reduced:

$$
H_{\text{FCNC}} = \frac{1}{3} \sum_{i \neq j} \left[\frac{1}{m^2(H^0_2)} \left(\sum_k \frac{1}{z_k} U^k_i U^k_j \right)^2 + \frac{1}{m^2(H^0_3)} \left(\sum_k \frac{z_l - z_m}{z_k} U^k_i U^k_j \right)^2

- \frac{3}{2} \frac{1}{m^2(H^0_l)} \sum_k \left(\frac{1}{z_k} U^k_i U^k_j \right)^2 \right] \left[(\bar{f}_i f_j)^2 - (\bar{f}_i \gamma_5 f_j)^2 \right]

= \frac{1}{3} \left(\frac{1}{m^2_{H^2}} - \frac{1}{m^2_{H^3}} \right) \sum_{i \neq j} \frac{m_i m_j}{v_0^2} \sum_k \left(\frac{1}{z_k} + \frac{z_l - z_m}{z_1 z_2 z_3} \right) (U^k_i U^k_j)^2

\times \left[(\bar{f}_i f_j)^2 - (\bar{f}_i \gamma_5 f_j)^2 \right] ,
$$

where we have used the relations (B1)–(B4) given in Appendix B and

$$
U^i_j U^m_i U^{m*}_j = \frac{1}{2} \left[(U^k_i U^{k*}_j)^2 - (U^i_j U^{*i}_j)^2 - (U^m_i U^{m*}_j)^2 \right] .
$$

The constraint (6.9) rewrites the η_1- and η_2-terms in the potential (3.3) into

$$
\eta_i \sum_{i,j} \left[\phi^0_s (\phi^0_{oct})_i^j - (\phi^s_{oct})_i^j \phi^0_s \right] \left[\phi^- (\phi^-_{oct})_j^i - (\phi^-_{oct})_j^i \phi^- \right] ,
$$
where \((\phi^+\phi^0 - \phi^0\phi^+)\) and \((\phi^-\phi^0 - \phi^-\phi^0)\) belong to \(I = 0\) states. The constraint (6.10) leads the \(\lambda_3\) - the \(\eta_3\)-terms in the potential to

\[
\frac{1}{2} \lambda_3 \left[\text{Tr}(\phi_{\text{oct}}\phi_{\text{oct}}) - \phi_s\phi_s \right] \cdot \left[\text{Tr}(\phi_{\text{oct}}\phi_{\text{oct}}) - \phi_s\phi_s \right],
\]

(6.14)

where \(\phi_s\cdot\phi_s\) denotes the \(I = 0\) component in \((I = 1) \times (I = 1)\), i.e.,

\[
\phi_s\cdot\phi_s = \phi^-\phi^- - \phi^+\phi^+ - \phi^0\phi^0 + \phi^0\phi^0 - \phi^0\phi^0 + \phi^0\phi^0.
\]

(6.15)

Then, the physical Higgs boson masses are given by

\[
m^2_{H_1} \equiv m^2(H_0^0) = 2(\lambda_1 + \lambda_2)v_0^2,
\]

\[
m^2_{H_2} \equiv m^2(H_2^0) = m^2(\chi_2^0) = 2\lambda_3v_0^2,
\]

\[
m^2_{H_3} \equiv m^2(H_3^0) = m^2(H_3^0) = m^2(\chi_3^0) = m^2(\chi_3^0) = m^2(\chi_3^0) = \xi v_0^2,
\]

\[
m^2(\chi_2^0) = -(\lambda_2 + \eta_2 - \lambda_3)v_0^2,
\]

\[
m^2(\chi_3^0) = -(\lambda_2 + \frac{1}{2}\eta_2 - \xi)v_0^2.
\]

(6.16)

The mass difference between \(P_i^j\) and \(\overline{P}_i^j\), \(\Delta m_P = m(P_i^j) - m(\overline{P}_i^j)\), is given by [12]

\[
\Delta m_P = \eta_{QCD} B_Pj_{P}^2 m_P \left[\left(\frac{m_P}{m_i + m_j} \right)^2 - \frac{1}{6} \right] \frac{1}{3} \left(\frac{1}{m_{H_2}^2} - \frac{1}{m_{H_3}^2} \right) K_{ij},
\]

(6.17)

where \(\eta_{QCD}\) is a QCD correction factor from hard gluon exchange, \(B_P\) is a parameter that characterizes the inaccuracy of the vacuum insertion approximation, and

\[
K_{ij} = \frac{m_i m_j}{v_0^2} \sum_k \left(\frac{1}{z_k^2} + \frac{z_k - z_l - z_m}{z_1 z_2 z_3} \right) (U_i^k U_j^k)^2.
\]

(6.18)

Although the \((\pi c)\) and \((\overline{D}s)\) currents involve the small factors \(m_u m_c/v_0^2 \simeq 2.8 \times 10^{-7}\) and \(m_d m_s/v_0^2 \simeq 6.5 \times 10^{-8}\), respectively, the contributions of them to the \(K_L\) - \(K_S\) and \(D^0\) - \(\overline{D}^0\) mass differences are not negligible because \(K_{ij}\) are given by \(K_{12} \simeq \ldots\)
\[(U_L^d)^1_2 / z_1^2 \] for \(\Delta m_K \) and \(K_{12} \simeq (U_L^n)^1_2 / z_1^2 \) for \(\Delta m_D \), and the factor \(1/z_1^2 \) takes a large value. The experimental values [6] \(m_{KL} - m_{K_S} = (3.510 \pm 0.018) \times 10^{-12} \) MeV, \(|m_{D_1} - m_{D_2}| < 2 \times 10^{10} \) h\(s^{-1} \), \(m_{B^+_u} - m_{B^+_d} = (0.51 \pm 0.06) \times 10^{12} \) h\(s^{-1} \), and \(m_{B^0_{sH}} - m_{B^0_{sL}} > 1.8 \times 10^{12} \) h\(s^{-1} \) lead to the constraints

\[
(1/m_{H_2}^2 - 1/m_{H_3}^2)^{-1/2} \simeq \left(\eta_{QCD}^K \right)^{1/2} |(U_L^d)^1_1(U_L^d)^1_2| \times 32 \text{ TeV} , \tag{6.19}
\]

\[
(1/m_{H_2}^2 - 1/m_{H_3}^2)^{-1/2} \simeq \left(\eta_{QCD}^D \right)^{1/2} |(U_L^u)^1_1(U_L^u)^1_2| \times 16 \text{ TeV} , \tag{6.20}
\]

\[
(1/m_{H_2}^2 - 1/m_{H_3}^2)^{-1/2} \simeq \left(\eta_{QCD}^B \right)^{1/2} |(U_L^d)^1_1(U_L^d)^1_3| \times 38 \text{ TeV} , \tag{6.21}
\]

and

\[
(1/m_{H_2}^2 - 1/m_{H_3}^2)^{-1/2} < \left(\eta_{QCD}^{B_S} \right)^{1/2} |(U_L^d)^1_2(U_L^d)^1_3| \times 88 \text{ TeV} , \tag{6.22}
\]

respectively, where we, for simplicity, have put the other contributions to \(P^0 - \overline{P}^0 \) mixing zero, and, we have used \(B_K = 0.65 \) [13] and \(f_K = 0.160 \) GeV [6] in (6.19) and \(f_D B_D^{1/2} = f_B B_B^{1/2} = f_{B_S} B_{B_S}^{1/2} = 0.2 \) GeV in (6.20) – (6.22).

The numerical estimates of the Higgs boson masses depend on the structures of \(U_L^n \) and \(U_L^d \). From the constraint \(V_{us} = (U_L^n)^{0t}_1 (U_L^d)^1_1 \simeq 0.22 \), we cannot consider a mass matrix model which provides \((U_L^n)^2_1 \simeq 0 \) and \((U_L^d)^2_1 \simeq 0 \) simultaneously. We suppose \(|(U_L^n)^2_1| \sim |(U_L^d)^2_1| \). If we take \(|(U_L^d)^1_1(U_L^d)^1_2| \simeq 0.22 \) by way of trial and \(\eta_{QCD} \simeq 1 \), the constraint (6.19) predicts \((1/m_{H_2}^2 - 1/m_{H_3}^2)^{-1/2} \simeq 7.1 \) TeV. Only when \(m_{H_2} \simeq m_{H_3} \), the FCNC processes are highly suppressed. Since we have known \(m_{H_2} > 2.4 \) TeV from the data of \(K_L \to e^\pm \mu^\mp \), we cannot take too low a value of \(m_{H_2} \). For example, for \(m_{H_2} \simeq 2.5 \) TeV, the mass difference must be a very small value \(m_{H_3} - m_{H_2} \simeq 0.14 \) TeV.

7. Production and decays of new Higgs bosons

As we stated in Sect.4 and Sect.6, as far as the Higgs boson \(H_1^0 \) is concerned, its interactions with electroweak gauge bosons and with light fermions (quarks and leptons) are exactly the same ones as the physical Higgs boson \(H^0_{SM} \) in the standard model. From (4.16), the decays \(H_1^0 \to H_2^0 H_2^0, \chi_k^0 \chi_k^0 \) \((k = 2, 3) \), \((H^0)^i_j(H^0)^j_i \) and \(\chi_i^i \chi_j^j \) \((i \neq j) \) are forbidden, so that the dominant decay mode is \(H_1^0 \to b\bar{b} \).
Therefore, in the present model, it is hard to distinguish the Higgs boson H_1^0 from H_{SM}^0 in the standard model.

The most distinguishable ones from the physical Higgs bosons in the standard model and/or in the conventional multi-Higgs model are $(H^0)_i^j$ and $(\chi^0)_i^j$ ($i \neq j$). If we suppose that they have masses of a several hundred GeV, we may expect a production

$$e^+ + e^- \rightarrow Z^* \rightarrow (H^0)_i^j + (\chi^0)_j^i,$$

$$\leftrightarrow f_i + \bar{f}_j \quad \leftrightarrow f_j + \bar{f}_i,$$

in a super e^+e^- linear collider in the near future. Unfortunately, as discussed in Sect.5 and Sect.6, their masses must be larger than a few TeV, so that we cannot expect the observation in e^+e^- collider.

Only a chance of the observation of our Higgs bosons ϕ_i^j is in a production

$$u + q(\bar{q}) \rightarrow t + (\phi)_i^3 + q(\bar{q}) \quad (q = u, d, s),$$

(7.2)

at a super hadron collider with several TeV beam energy, for example, at LHC, because the coupling $a_{tu} (b_{tu})$ is sufficiently large to produce (7.2):

$$a_{tu} \simeq \frac{m_t}{v_3} + \frac{m_u}{v_1} = 1.029 + 0.002.$$

(7.3)

The dominant decay modes of $(H^0)_2^3$ and $(H^0)_1^3$ are hadronic ones, i.e., $(H^0)_2^3 \rightarrow c\bar{c}, s\bar{b}$ and $(H^0)_1^3 \rightarrow u\bar{t}, d\bar{b}$. Only for $(H^0)_1^3$, which is produced by the reaction $u + q \rightarrow c + (H^0)_1^3 + q$, the leptonic mode $(H^0)_1^3 \rightarrow e^- \mu^+$ has a visible branching ratio:

$$\Gamma(H_1^2 \rightarrow u\bar{c}) : \Gamma(H_1^2 \rightarrow d\bar{s}) : \Gamma(H_1^2 \rightarrow e^- \mu^+)$$

$$\simeq 3 \left[\frac{(m_c)}{(v_2)} + \frac{(m_u)}{(v_1)} \right] : 3 \left[\frac{(m_s)}{(v_2)} + \frac{(m_d)}{(v_1)} \right] : \left[\frac{(m_u)}{(v_2)} + \frac{(m_c)}{(v_1)} \right]$$

$$= 73.5\% : 24.9\% : 1.6\%,$$

(7.4)

where we have used an approximate relation $U_L^f \simeq 1$ and have taken the quark mass values $m_q(\mu)$ at $\mu = 1$ GeV, $m_u = 5.6$ MeV, $m_d = 9.9$ MeV, $m_s = 199$ MeV and $m_c = 1.49$ GeV, as the quark masses inside ordinary hadrons.

8. Conclusion
In conclusion, inspired by the phenomenological success of the charged lepton mass relation (1.4), we have proposed a model with $U(3)_{\text{family}}$ nonet Higgs bosons ϕ_L and ϕ_R and vector-like heavy leptons F ($F = U, D, N, E$) correspondingly to ordinary quarks and leptons f ($f = u, d, \nu, e$), and have investigated its possible new physics.

The charged lepton mass relation (1.4) can derive only when the potential $V(\phi)$ takes a special form (3.1), which satisfies “$U(3)$-family nonet” ansatz. In order to avoid massless physical Higgs bosons, we must consider a term which explicitly breaks $U(3)$-family symmetry, (3.13) [or (3.16)].

In the low energy phenomenology, only the light Higgs boson ϕ_L plays a role. Of the 36 components of our Higgs boson ϕ_L, the three, χ_1^\pm and χ_0^1, are eaten by the gauge bosons W^\pm and Z^0, respectively. The neutral Higgs boson H_1^0 has the same interactions with fermions and electroweak gauge bosons, so that it is hard to distinguish our Higgs boson H_1^0 from the neutral Higgs boson in the standard model experimentally.

If we take the $\xi \to \infty$ limit in the explicit $U(3)$-family symmetry breaking term V_{SB}, the Higgs bosons which have finite masses become only H_1^0, H_2^0, χ_2^0 and χ_2^\pm, so that the model becomes similar to the two-Higgs-doublet model. However, differently from the conventional two-Higgs-doublet model, our Higgs bosons H_2^0 and χ_2^0 can contribute to the flavor-changing neutral current processes, so that their masses must be larger than 10^2 TeV. We think that such a case is unnatural.

For the case of a finite ξ, we have 33 physical Higgs bosons given by (4.5), (4.11) and (4.12). In order to suppress the rare decay modes $K_L \to \mu^+e^\mp$, $K^+ \to \pi^+e^-\mu^+$, and so on, we must put the constraint (5.20), which leads to $m(H_3) \simeq m(\chi_3) > 2.4$ TeV for $m_H \simeq m_\chi$. In order to suppress the FCNC, the masses of H_2^0 and χ_2^0 must be, in general, larger than 10^2 TeV. Only the case which gives an acceptably lower values of the Higgs boson masses is the case $m(H) = m(\chi)$ and $m_{H2} \simeq m_{H3}$. Then, we can expect our Higgs bosons with masses of 2.5 TeV (except for H_1^0). In a top pair production at LHC, we may expect an observation of $t\bar{t}$ pair with a large p_T, due to the production $u + q \to t + \phi_1^3 + q$ and the subsequent decay $\phi_1^3 \to u + \bar{t}$.

Acknowledgments

The problem of the flavor-changing neutral currents in the present model was pointed out by Professor K. Hikasa. The authors would sincerely like to thank him.
for valuable comments. This work was supported by the Grant-in-Aid for Scientific Research, Ministry of Education, Science and Culture, Japan (No.06640407).

Appendix A

More general potential form of V_{nonet} is given by

$$V_{\text{nonet}} = \text{r.h.s. of (3.2)} + \sum_{i,j,k,l} \left[\frac{1}{2} \lambda_4 (\overline{\phi}_i^j \phi_j^k)(\overline{\phi}_k^l \phi_l^i)
\right. \\
+ \frac{1}{2} \lambda_5 (\overline{\phi}_i^j \phi_j^i)(\overline{\phi}_k^k \phi_k^k) + \frac{1}{2} \lambda_6 (\overline{\phi}_i^j \phi_j^k)(\overline{\phi}_k^l \phi_l^i) + \frac{1}{2} \lambda_7 (\overline{\phi}_i^j \phi_j^i)(\overline{\phi}_k^k \phi_k^k) \left. \right] . \quad (A.1)$$

Then, for $\mu^2 < 0$, conditions for minimizing the potential (3.1) are as follows:

$$\left[\mu^2 + (\lambda_1 + \lambda_2) \text{Tr}(v^\dagger v) \right] v_s^* + \lambda_3 \text{Tr}(v^\dagger v^\dagger) v_s + (\lambda_4 + \lambda_5 + \lambda_6 + \lambda_7) \frac{1}{\sqrt{3}} \text{Tr}(v^\dagger v^\dagger v)$$

$$+ (\eta_1 + \eta_2) \text{Tr}(v^\dagger_{oct} v_{oct}) v_s^* + 2\eta_3 \text{Tr}(v^\dagger_{oct} v_{oct}) v_s = 0 , \quad (A.2)$$

$$\left[\mu^2 + (\lambda_1 + \lambda_2) \text{Tr}(v^\dagger v) \right] v_{oct} + \lambda_3 \text{Tr}(v^\dagger v^\dagger) v_{oct} + (\lambda_4 + \lambda_5)(v^\dagger v)_{oct}$$

$$+ \frac{1}{2} (\lambda_6 + \lambda_7)(v^\dagger v^\dagger v + vv^\dagger v^\dagger)_{oct} + (\eta_1 + \eta_2) v_s^* v^\dagger_{oct} v_{oct}^* + 2\eta_3 v_s^* v_{oct}^* v_{oct} = 0 , \quad (A.3)$$

and the similar equations with $v \leftrightarrow v^\dagger$ ($v_{oct} \leftrightarrow v_{oct}^\dagger$ and $v_s \leftrightarrow v_s^\dagger$), where A_{oct} means an octet part of the 3×3 matrix A, i.e., $A_{oct} = A - (1/3)\text{Tr}(A) \cdot 1$. Only when

$$\lambda_4 + \lambda_5 + \lambda_6 + \lambda_7 = 0 , \quad (A.4)$$

we can obtain the desirable relation (3.6).

What is of great interest to us is whether these terms ($\lambda_4 - \lambda_7$ terms) can generate additional masses of the neutral Higgs bosons H_i^{0j} ($i \neq j$) or not, because these bosons become to massless in the limit of $\overline{\xi} \to 0$. Unfortunately, these terms cannot contribute to the masses except for those of $\chi_i^{\pm j}$ and χ_i^{0j} ($i \neq j$), because the $\lambda_4 - \lambda_7$ terms still respect the SU(3) family symmetry. Therefore, the existence of Goldstone bosons cannot be avoided by the introduction of these terms. The existence of the $\lambda_4 - \lambda_7$ terms does not improve the situation of our model and only makes our study intricate, so that we have omitted the study of the $\lambda_4 - \lambda_7$ terms from the present studies.
Appendix B

Since the parameters \(z_i = v_i/v_0 \) satisfy the relations

\[
z_1^2 + z_2^2 + z_3^2 = 1 , \tag{B.1}
\]

\[
z_1 + z_2 + z_3 = \sqrt{\frac{3}{2}} , \tag{B.2}
\]

we find the relations

\[
z_1 z_2 + z_2 z_3 + z_3 z_1 = \frac{1}{4} , \tag{B.3}
\]

\[
z_i z_j = \frac{1}{4} - \sqrt{\frac{3}{2}} z_k + z_k^2 , \tag{B.4}
\]

where \((i, j, k)\) are cyclic indices of \((1, 2, 3)\).

In the present seesaw-type mass matrix model, the values \(v_i^2 \) are proportional to the charged lepton masses \(m_i^e = (m_e, m_\mu, m_\tau) \), the values \(z_i \) are given by

\[
z_i = [m_i^e/(m_e + m_\mu + m_\tau)]^{1/2} , \tag{B.5}
\]

i.e.,

\[
\begin{pmatrix}
z_1 \\
z_2 \\
z_3
\end{pmatrix}
= \begin{pmatrix}
0.016473 \\
0.23687 \\
0.97140
\end{pmatrix} , \tag{B.6}
\]

so that

\[
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
= \begin{pmatrix}
-0.55405 \\
-0.24237 \\
+0.79642
\end{pmatrix}
= \cos(\frac{\pi}{4} + \delta) \frac{1}{\sqrt{6}} \begin{pmatrix}
-2 \\
1 \\
1
\end{pmatrix}
+ \sin(\frac{\pi}{4} + \delta) \frac{1}{\sqrt{2}} \begin{pmatrix}
0 \\
-1 \\
1
\end{pmatrix} , \quad (\delta = 2.268^\circ) . \tag{B.7}
\]

The expression \((B.7) \) suggests that the Higgs boson state \(\phi_x \) is almost given by a 45°-mixing between \(\lambda_3 \)- and \(\lambda_8 \)-components of \(SU(3)_\text{family} \). At the present stage,
the parameter δ is pure phenomenological one. If we can give only the value of δ, we can fix the values of $(x_1, x_2, x_3; y_1, y_2, y_3; z_1, z_2, z_3)$. The open question why δ takes such a value will be answered in a future theory.

References and Footnotes

[1] The “family symmetry” is also called a “horizontal symmetry”: K. Akama and H. Terazawa, Univ. of Tokyo, report No. 257 (1976) (unpublished); T. Maehara and T. Yanagida, Prog. Theor. Phys. 60, 822 (1978); F. Wilczek and A. Zee, Phys. Rev. Lett. 42, 421 (1979); A. Davidson, M. Koca and K. C. Wali, Phys. Rev. D20, 1195 (1979); J. Chakraborti, Phys. Rev. D20, 2411 (1979).

[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[3] The seesaw mechanism has originally proposed for the purpose of explaining why neutrino masses are so invisibly small: M. Gell-Mann, P. Rammond and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D. Z. Freedman (North-Holland, 1979); T. Yanagida, in Proc. Workshop of the Unified Theory and Baryon Number in the Universe, edited by A. Sawada and A. Sugamoto (KEK, 1979); R. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980). For applications of the seesaw mechanism to the quark mass matrix, see, for example, Z. G. Berezhiani, Phys. Lett. 129B, 99 (1983); Phys. Lett. 150B, 177 (1985); D. Chang and R. N. Mohapatra, Phys. Rev. Lett. 58, 1600 (1987); A. Davidson and K. C. Wali, Phys. Rev. Lett. 59, 393 (1987); S. Rajpoot, Mod. Phys. Lett. A2, 307 (1987); Phys. Lett. 191B, 122 (1987); Phys. Rev. D36, 1479 (1987); K. B. Babu and R. N. Mohapatra, Phys. Rev. Lett. 62, 1079 (1989); Phys. Rev. D41, 1286 (1990); S. Ranfone, Phys. Rev. D42, 3819 (1990); A. Davidson, S. Ranfone and K. C. Wali, Phys. Rev. D41, 208 (1990); I. Sogami and T. Shinohara, Prog. Theor. Phys. 66, 1031 (1991); Phys. Rev. D47, 2905 (1993); Z. G. Berezhiani and R. Rattazzi, Phys. Lett. B279, 124 (1992); P. Cho, Phys. Rev. D48, 5331 (1994); A. Davidson, L. Michel, M. L. Sage and K. C. Wali, Phys. Rev. D49, 1378 (1994); W. A. Ponce, A. Zepeda and R. G. Lozano, Phys. Rev. D49, 4954 (1994).

[4] Y. Koide, Mod. Phys. Lett. A5, 2319 (1990).
[5] Y. Koide, Lett. Nuovo Cimento 34, 201 (1982); Phys. Lett. B120, 161 (1983); Phys. Rev. D28, 252 (1983).

[6] Particle data group, Phys. Rev. D50, 1173 (1994).

[7] Y. Koide, a talk presented at the INS Workshop “Physics of e^+e^-, $e^-\gamma$ and $\gamma\gamma$ collisions at linear accelerators”, INS, University of Tokyo, December 20–22, 1994, to be published in Proceedings edited by Z. Hioki, T. Ishii and R. Najima. The prototype of this model was investigated by Fusaoka and one of the authors (Y.K.): Y. Koide and H. Fusaoka, US-94-02, 1994 (hep-ph/9403354), (unpublished). However, their Higgs potential leads to massless physical Higgs bosons, so that it brings some troubles into the theory. In the present paper, the global symmetry $U(3)_{\text{family}}$ will be broken explicitly, and not spontaneously, so that massless physical Higgs bosons will not appear.

[8] H. Harari, H. Haut and J. Weyers, Phys. Lett. B78, 459 (1978).

[9] Y. Koide and H. Fusaoka, Preprint US-95-03 and AMU-95-04 (1995) (hep-ph/9505201), to be published in Z. Phys. C.

[10] H. Harari, H. Haut and J. Weyers, Phys. Lett. B78 (1978) 459; T. Goldman, in Gauge Theories, Massive Neutrinos and Proton Decays, edited by A. Perlmutter (Plenum Press, New York, 1981), p.111; T. Goldman and G. J. Stephenson, Jr., Phys. Rev. D24 (1981) 236; Y. Koide, Phys. Rev. Lett. 47 (1981) 1241; Phys. Rev. D28 (1983) 252; 39 (1989) 1391; C. Jarlskog, in Proceedings of the International Symposium on Production and Decays of Heavy Hadrons, Heidelberg, Germany, 1986 edited by K. R. Schubert and R. Waldi (DESY, Hamburg), 1986, p.331; P. Kaus, S. Meshkov, Mod. Phys. Lett. A3 (1988) 1251; Phys. Rev. D42 (1990) 1863; L. Lavoura, Phys. Lett. B228 (1989) 245; M. Tanimoto, Phys. Rev. D41 (1990) 1586; H. Fritzsch and J. Plankl, Phys. Lett. B237 (1990) 451; Y. Nambu, in Proceedings of the International Workshop on Electroweak Symmetry Breaking, Hiroshima, Japan, (World Scientific, Singapore, 1992), p.1.

[11] V. Barger, J. L. Hewett and R. J. N Phillips, Phys. Rev. D41, 3421 (1990); L. Hall and S. Weinberg, Phys. Rev. D48, R979 (1993); Y. L. Wu and L. Wolfenstein, Phys. Rev. Lett. 73, 1762 (1994).
[12] Note that the effective interaction (6.11) has not the form $\left[(\mathcal{F}_i f_j)^2 + (\mathcal{F}_i \gamma_5 f_j)^2 \right]$ in the conventional model, but the form $\left[(\mathcal{F}_i f_j)^2 - (\mathcal{F}_i \gamma_5 f_j)^2 \right]$, so that the factor $5/6$ in the conventional model is replaced with the factor $\left[\cdots^2 - 1/6 \right]$ as given in (6.17). See, for example, B. McWilliams and O. Shanker, Phys. Rev. D22, 2853 (1980).

[13] A. J. Buras, M. Jamin and P. H. Weisz, Nucl. Phys. B347, 491 (1990).
Table I. Quantum numbers of fermions and Higgs bosons

	Y	SU(2)$_L$	SU(2)$_R$	U(3)$_{family}$
f_L	$(\nu, e)^{Y=-1}_L$, $(u, d)^{Y=1/3}_L$	2	1	3
f_R	$(\nu, e)^{Y=-1}_R$, $(u, d)^{Y=1/3}_R$	1	2	3
F_L	$N^Y_L=0$, $E^Y_L=-2$, $U^Y_L=4/3$, $D^Y_L=-2/3$	1	1	3
F_R	$N^Y_R=0$, $E^Y_R=-2$, $U^Y_R=4/3$, $D^Y_R=-2/3$	1	1	3
ϕ_L	$(\phi^+, \phi^0)^{Y=1}_L$	2	1	$8+1$
ϕ_R	$(\phi^+, \phi^0)^{Y=1}_R$	1	2	$8+1$
Φ_F	$\Phi_0^{Y=0}$, $\Phi_X^{Y=0}$	1	1	1, $8+1$

\[(2, 1, 8+1) \quad (1, 1, 1) \quad (1, 2, 8+1) \]

\[\langle \phi_0^L \rangle_0 \equiv m_L/y_f^L \quad \langle \Phi_F \rangle_0 \equiv M_F/y_F \quad \langle \phi_0^R \rangle_0 \equiv m_R/y_f^R \]

Fig. 1. Mass generation of quarks and leptons f