In Vitro Differentiation of Embryonic and Adult Stem Cells into Hepatocytes: State of the Art

SARAH SNYKERS, JOERY DE KOCK, VERA ROGIERS, TAMARA VANHAECKE

Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium

Key Words. Adult stem cells • Embryonic stem cells • Hepatocytes • In vitro protocols • Differentiation

ABSTRACT

Stem cells are a unique source of self-renewing cells within the human body. Before the end of the last millennium, adult stem cells, in contrast to their embryonic counterparts, were considered to be lineage-restricted cells or incapable of crossing lineage boundaries. However, the unique breakthrough of muscle and liver regeneration by adult bone marrow stem cells at the end of the 1990s ended this long-standing paradigm. Since then, the number of articles reporting the existence of multipotent stem cells in skin, neuronal tissue, adipose tissue, and bone marrow has escalated, giving rise, both in vivo and in vitro, to cell types other than their tissue of origin. The phenomenon of fate reprogramming and phenotypic diversification remains, though, an enigmatic and rare process. Understanding how to control both proliferation and differentiation of stem cells and their progeny is a challenge in many fields, going from preclinical drug discovery and development to clinical therapy. In this review, we focus on current strategies to differentiate embryonic, mesenchymal-like, and liver stem/progenitor cells into hepatocytes in vitro. Special attention is paid to intracellular and extracellular signaling, genetic modification, and cell-cell and cell-matrix interactions. In addition, some recommendations are proposed to standardize, optimize, and enrich the in vitro production of hepatocyte-like cells out of stem/progenitor cells. STEM CELLS 2009;27:577–605

INTRODUCTION: THE STEM CELL NICHE

The totipotent fertilized egg is the ultimate stem cell that gives rise to all tissues of the developing embryo. In the adult, “multipotent” stem/progenitor cells reside for a nearly infinite term at restricted locations to allow continuation of the cycle of life [1–3]. These so-called stem cell niches have been identified in the bone marrow [4], brain [5], skin [6], intestinal crypt [7], and liver [1, 8]. The original idea of a stem cell “niche” evolved from the concept that stem/progenitor cells inhabit tissues within an “inductive microenvironment” that directs their self-renewal, differentiation, and cell fate in both normal physiology and disease [1, 3, 9]. Many developmental regulatory signaling molecules, including Wnts, bone morphogenetic proteins (BMP), fibroblast growth factors (FGFs), Notch, and others, may play a role [1, 7, 8]. In addition to stem/progenitor cells, the niche microenvironment comprises nonstem niche cells (e.g., stromal cells, periductular fibroblasts, and stellate cells), parasympathetic nerve endings and specialized extracellular matrix (Fig. 1) [1, 2, 10, 11]. Other cell-cell interactions have also been hypothesized. The coordinated signaling between component cells and scaffold, (in)direct cell-cell contacts, and integration of stem cell-autonomous properties represent an interactive and dynamic system, organized to facilitate cell fate decisions in a proper spatiotemporal manner [1, 2, 8].

Historically, the developmental paradigm was that adult stem cells were, in contrast to their embryonic counterparts, subjected to “cell fate determinism.” Nowadays, new insights on stem cell potency have challenged the latter canonical developmental hierarchy [12]. Nevertheless, “adult stem cell plasticity” still remains an obscure and rather rare phenomenon. The finding that at least some transitions may be ascribed to cellular fusion events have underpinned true plastic phenomena [13, 14] and has led to an outbreak of raw headlines, utterly questioning adult stem cell versatility, for example, “Adult Stem Cell Plasticity—Fact or Artifact?” [15], “Recipes for Adult Stem Cell Plasticity: Fusion Cuisine or Readymade?” [16], “Adult Stem Cell Plasticity—Fact or Fiction” [17], and “Stem Cell Fusion Confusion” [18].

Author contributions: S.S.: conception and design, manuscript writing, collection and assembly of data, data analysis and interpretation; J.D.K.: manuscript writing, collection and assembly of data; V.R.: financial support, critical revision of manuscript; T.V.: critical revision of manuscript, final approval of manuscript.

Correspondence: Sarah Snykers, Ph.D., Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium. Telephone: 32-0-2-4774587; Fax: 32-0-2-4774582; e-mail: sarah.snykers@vub.ac.be. Received September 25, 2008; accepted for publication November 21, 2008; first published online in STEM CELLS EXPRESS December 4, 2008. ©AlphaMed Press 1066-5099/2008/$30.00/0 doi: 10.1634/stemcells.2008-0963

STEM CELLS 2009;27:577–605 www.StemCells.com
Hitherto, the answer remained an open question. The fact is that not all cellular “redirections,” no matter how rare their occurrence, might be ascribed to simple fusion events [12, 16, 19, 20]. In vitro, spontaneous fusion only occurs in coculture models, and, even so, the frequency rate is limited to about one fusion event per $10^3–10^6$ cocultured cells [12, 20, 21]. In addition, in vivo, regular natural fusion of stem cells with other cell types seems unlikely because, with the exception of the liver and the pancreas, healthy organs lack substantial complements of polyploid cells [16]. This brings us back to the essence of fate reprogrammation of stem/progenitor cells: the stem cell microenvironment. In vivo, an injured environment seems most favorable for tissue replenishment by stem/progenitor cells [16, 22, 23], although extracellu lar cues provided by the transplanted stem/progenitor cells (cf. the “bystander” effect) also may be partly accountable for “recovery” of the recipient [23, 24]. In vitro, the highest success rates of phenotypic “diversification” were gained upon mimicking the microenvironment (Fig. 1). It is now well recognized that identification of the in vivo signaling patterns—the lineage-specific growth factors/cytokines and their (relative) dose and rank of application [8]—is crucial for eliciting distinct responses from cultured stem/progenitor cells and directing lineage-specific cell growth and differentiation in vitro.

Apart from the latter cues, intrinsic cellular stress signals, executed by removal of stem/progenitor cells from their physiological niche, may also facilitate alterations in cellular architecture and phenotype via mechanisms of “cytoskeleton collapse” (Fig. 1; see also Need for Standardization, Optimization, and Enrichment) [25, 26].

In this survey, we provide an up-to-date overview on the wide variety of experimental conditions that have been applied thus far to trigger cultured pluripotent embryonic stem (ES) cells, multipotent mesenchymal (like) stem/progenitor cells (MSCs), and bipotent liver progenitor cells (LPCs) into (functional) hepatocytes (Tables 1, 2, and 3). In principle, most approaches are based on reconstructing the in vivo microenvironment via (a) addition of soluble medium factors and (b) reconstitution of cell-matrix, and (c) cell-cell interactions. Recently, (d) interest has also increased in chromatin modulation as a strategy to manipulate cell fate. Constitutive overexpression of liver-enriched transcription factor (LETF) genes might be an alternative but has a downside too.

Figure 1. Adult stem/progenitor cell environment in vivo and ex vivo. The balance between cell growth/differentiation of adult stem/progenitor cells is regulated by a complex cross-talking network of paracrine and autocrine signals and cell-cell and cell-extracellular matrix interactions. Abbreviation: ECM, extracellular matrix.
Origin	Marker-based selection	Hepatic differentiation conditions	Growth factors/cytokines/nonepigenetic additives	Differentiation-inducing agents	Refs
EMBRYONIC STEM CELLS					
Successful transdifferentiation					
Monkey ES		Cell density 3.6 × 10^6 cells/cm²	NS 10% FCS / Oct3/4, AFP, ALB z1AT, HNF4x	/	[49]
mES		Collagen type I 20% FCS	NS	/	[50]
mES		Gelatin NS	NS	/	[34]
mES		Gelatin (a) (b) Suspension 20% FBS	/	/	[36]
Growth factors/cytokines/nonepigenetic modifiers					
mES		Gelatin NS	D6: 20 ng/ml aFGF, 10 ng/ml bFGF	AFP, ALB, TAT	[34]
RESC		Matrigel NS	D10: 10 ng/ml HGF D16: ITS, dex	AF, ALB, z1AT, CK18	[41]
ES	Bry⁺ 2 EBs/cm²	Matrigel	2D upon differentiation 15% SR D5-13: 15% SR	Sox17, Hhex, HNF-4, Ipf1	[38]
Monkey ES		Collagen type I NS	D5-13: 15% FCS		[42]
mE14-1 ES		Gelatin NS	D2: 100 ng/ml aFGF D4: 20 ng/ml HGF D6: 10 ng/ml OSM nicotinamide, dex, ITS	CYP2B10, CY2P29, CYP2D9, CYP3A11, CYP7A1	[43]
mE14-1 ES		Gelatin NS	D2: 100 ng/ml aFGF D4: 20 ng/ml HGF D6: 10 ng/ml OSM nicotinamide, dex, ITS	Mixed culture (blood/sinusoid vascular-like + hepatocyte layers)	[44]
hES		Collagen type I NS	NS	HNF3β, GATA4, HNF1	[53]
Table 1. (Continued).

Origin	Marker-based selection	Hepatic differentiation conditions	Hepatic features							
		Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors/cytokines/non-epigenetic additives	Differentiation-inducing agents	RNA + protein level	Functionality level	Refs	
-------	------------------------	--------------	----------------------------------	-------	---	-----------------------------	------------------	------------------	-------	
hES		NS	Collagen scaffold 3D culture system	NS	(a) *D9-12*: 100 ng/ml aFGF *D12-20*: 20 ng/ml HGF *D15-20*: dex, ITS, 10 ng/ml OSM	(a) CK19 (+), CK18, CK8, TTR, ALB, z1AT, TO, TAT G6P, CYP7A1	(1) AFP, ALB and urea production, ICG uptake		[175]	
					(b) No GF	(b) +: AFP, CK19, TTR, z1AT, CK8, CK18, ALB :: G6P, TAT		(2) Low AFP, ALB urea production		
mES14 ES		NS		NS	aFGF, HGF, OSM	TTR, z1AT, AFP, ALB G6P, TAT		ICG and glycogen uptake		[176]
mES		1.6-2 EBs/cm²	Matrigel	10% FBS	20 ng/ml HGF, 50 ng/ml aFGF, 10 ng/ml OSM, ITS, dex	GATA4, AFP, ALB, TTR, CK18, GST, TO		Glycogen storage		[177]
hES		NS	Gelatin	NS	(a) 20 ng/ml HGF, 50 ng/ml β-NGF, separately/combined	(a) AFP, ALB, CK7, CK8, CK9 TTR, CK19, GGT	(b) 10⁻⁷ M RA		[35]	
mES		NS	Gelatin	NS	(a) *D7-11*: 100 ng/ml aFGF *D7-19*: 20 ng/ml TGF, 20 ng/ml AFP *D11-19*: 20 ng/ml EGF, 20 ng/ml KGF, 20 ng/ml HGF *D15-19*: dex, ITS, 10 ng/ml OSM	(a) AFP, ALB, CK7, CK8, CK9 TTR, CK19, GGT	(b) Only TTR		[178]	
mES (pALB-EGFP)		0.32 x 10⁶ cells/cm²	(1) *D0-3*: 3D on gelatin, no feeder cells (2) *D3-8*: 3.2 x 10⁷/cm² on gelatin (3) *D5-10*: 3.2 x 10⁷/cm² on collagen	NS	(1) *D0-3*: 10⁶ M RA, 100 U/ml LIF (2) *D3-8*: 100 ng/ml FGF1, 20 ng/ml FGF4, 50 ng/ml HGF (3) *D5-10*: 10 ng/ml OSM (4) From *D10*: TF, hydrocortisone, BSA, insulin	HNF3β, AFP, ALB, TTR, CK8, TAT, TO, G6P, LST1, CPS1, PEPPCK, CYP1A1, HNF4	(b) No GF	Urea and glucose synthesis		[179]
mCD4-Foxa2 ES		High density	*D6*: clusters formed are replated on gelatin	/	*D4*: selection of GFP-Bry/C4-^{Flad}/C4-^{Tsh2}/^{cKit}³/³ *D4*: selection of GFPR^{Flad}/C4-^{Tsh2}/^{cKit}³/³ *D4*: Sox17, Shh, Hhex *D5-6*: AFP, CD4-Foxa2 **cKit**^{³/³}	HNF3β, AFP, ALB, TTR, CK8, TAT, TO, G6P, LST1, CPS1, PEPPCK, CYP1A1, HNF4	(b) No GF	ALB secretion, glycogen storage		[180]
Origin	Marker-based selection	Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors/cytokines/nongenetic additives	Differentiation-inducing agents	RNA + protein level	Functionality level	Refs	
-----------	------------------------	--------------	----------------------------------	-------	---	-------------------------------	--------------------	---------------------	------	
Monkey ES			NS	NS	(1) D0-3: 100 U/ml LIF, 10^-8 mol/L RA	Upon D6: dex, 10 ng/ml EGF, 10 ng/ml bFGF, 20 ng/ml HGF, 20 ng/ml TGFβ, 10 ng/ml VEGF	CPS1, CYP7A1, CYP3A11↑, cKit		49	
mES			NS	Gelatin	(2) D7-11: 100 ng/ml aFGF	AFP, ALB, α1AT, HNF4, Oct3/4			46	
mES (pALB-EGFP)			NS	Collagen	(3) D8-10: 10 ng/ml OSM	HNF1β↑, HNF3β/γ↑, HNF4↑, HNF6↑, C/EBPβ↑, ALB↑, TTR↑, AFP, TO, CYP2E1↑, CYP2D10↑, ADH1↑, Oct3/4↑, Nanog↓			55	
mES (pALB-EGFP)			NS	Collagen type I	(4) D11-19: ITS, 10 ng/ml OSM, dex					
hES			NS	Collagen type I	D0-2: TF, insulin, BSA, hydrocortisone	From D5: collagen	ALB, α1AT, TO, TTR	Glucose production, ammonia metabolism	54	

Table 1. (Continued).

Origin	Marker-based selection	Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors/cytokines/nongenetic additives	Differentiation-inducing agents	RNA + protein level	Functionality level	Refs
mES			NS	NS	(1) D0-3: 100 U/ml LIF, 10^-8 mol/L RA	Upon D6: dex, 10 ng/ml EGF, 10 ng/ml bFGF, 20 ng/ml HGF, 20 ng/ml TGFβ, 10 ng/ml VEGF	CPS1, CYP7A1, CYP3A11↑, cKit		49
mES			NS	Gelatin	(2) D7-11: 100 ng/ml aFGF	AFP, ALB, α1AT, HNF4, Oct3/4			46
mES			NS	Collagen	(3) D8-10: 10 ng/ml OSM	HNF1β↑, HNF3β/γ↑, HNF4↑, HNF6↑, C/EBPβ↑, ALB↑, TTR↑, AFP, TO, CYP2E1↑, CYP2D10↑, ADH1↑, Oct3/4↑, Nanog↓			55
hES			NS	Collagen type I	D0-2: TF, insulin, BSA, hydrocortisone	From D5: collagen	ALB, α1AT, TO, TTR	Glucose production, ammonia metabolism	54

Table 1. (Continued).

Origin	Marker-based selection	Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors/cytokines/nongenetic additives	Differentiation-inducing agents	RNA + protein level	Functionality level	Refs
Monkey ES			NS	NS	(1) D0-3: 100 U/ml LIF, 10^-8 mol/L RA	Upon D6: dex, 10 ng/ml EGF, 10 ng/ml bFGF, 20 ng/ml HGF, 20 ng/ml TGFβ, 10 ng/ml VEGF	CPS1, CYP7A1, CYP3A11↑, cKit		49
mES			NS	Gelatin	(2) D7-11: 100 ng/ml aFGF	AFP, ALB, α1AT, HNF4, Oct3/4			46
mES			NS	Collagen	(3) D8-10: 10 ng/ml OSM	HNF1β↑, HNF3β/γ↑, HNF4↑, HNF6↑, C/EBPβ↑, ALB↑, TTR↑, AFP, TO, CYP2E1↑, CYP2D10↑, ADH1↑, Oct3/4↑, Nanog↓			55
hES			NS	Collagen type I	D0-2: TF, insulin, BSA, hydrocortisone	From D5: collagen	ALB, α1AT, TO, TTR	Glucose production, ammonia metabolism	54

Table 1. (Continued).

Origin	Marker-based selection	Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors/cytokines/nongenetic additives	Differentiation-inducing agents	RNA + protein level	Functionality level	Refs
Monkey ES			NS	NS	(1) D0-3: 100 U/ml LIF, 10^-8 mol/L RA	Upon D6: dex, 10 ng/ml EGF, 10 ng/ml bFGF, 20 ng/ml HGF, 20 ng/ml TGFβ, 10 ng/ml VEGF	CPS1, CYP7A1, CYP3A11↑, cKit		49
mES			NS	Gelatin	(2) D7-11: 100 ng/ml aFGF	AFP, ALB, α1AT, HNF4, Oct3/4			46
mES			NS	Collagen	(3) D8-10: 10 ng/ml OSM	HNF1β↑, HNF3β/γ↑, HNF4↑, HNF6↑, C/EBPβ↑, ALB↑, TTR↑, AFP, TO, CYP2E1↑, CYP2D10↑, ADH1↑, Oct3/4↑, Nanog↓			55
hES			NS	Collagen type I	D0-2: TF, insulin, BSA, hydrocortisone	From D5: collagen	ALB, α1AT, TO, TTR	Glucose production, ammonia metabolism	54

Table 1. (Continued).

Origin	Marker-based selection	Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors/cytokines/nongenetic additives	Differentiation-inducing agents	RNA + protein level	Functionality level	Refs
Monkey ES			NS	NS	(1) D0-3: 100 U/ml LIF, 10^-8 mol/L RA	Upon D6: dex, 10 ng/ml EGF, 10 ng/ml bFGF, 20 ng/ml HGF, 20 ng/ml TGFβ, 10 ng/ml VEGF	CPS1, CYP7A1, CYP3A11↑, cKit		49
mES			NS	Gelatin	(2) D7-11: 100 ng/ml aFGF	AFP, ALB, α1AT, HNF4, Oct3/4			46
mES			NS	Collagen	(3) D8-10: 10 ng/ml OSM	HNF1β↑, HNF3β/γ↑, HNF4↑, HNF6↑, C/EBPβ↑, ALB↑, TTR↑, AFP, TO, CYP2E1↑, CYP2D10↑, ADH1↑, Oct3/4↑, Nanog↓			55
hES			NS	Collagen type I	D0-2: TF, insulin, BSA, hydrocortisone	From D5: collagen	ALB, α1AT, TO, TTR	Glucose production, ammonia metabolism	54
Table 1. (Continued).

Origin	Marker-based selection	Hepatic differentiation conditions	Hepatic features				
			RNA + protein level	Functionality level	Refs		
mES (SK7, Pdx (1))		Preinduction: coculture with 10^3 M 15/cm² Diffenitation: 2.0–2.5 x 10^3 ES/cm²	D0-D4: 10% FBS D4-D60: 10% SR	D0-D4: 4.5 g/l glucose, 20 ng/ml activin, 50 ng/ml bFGF D4-D60: 2 g/l glucose D8: +/- dex, 10 ng/ml HGF, OSM	D10-D30: [ALB, CK19, CYP7A1, CYP2B10, CYP3A11, CYP3A13, Salt2A1, GT1A1, ABCB11 +dex, HGF, OSM, CXCR4, E-cadherin, AFP (80%)]	CYP activity, glycogen storage, ALB secretion	
hES (KhES-1)		Preinduction: coculture with 10^3 M 15/cm² Diffenitation: 8.3–10 x 10^3 ES/cm²	D0-D50: 10% KSR	D0-D50: 4.5 g/l glucose D0-D10: 20 ng/ml activin, 10 μM LY294002 D10-D50: dex, 10 ng/ml HGF	D18: Sox17, 80% ALP, 9% ALB, CK18/19, CYP7A1 D18-50: ↑ ALB, CYP3A4, OATP1B1	Glycogen storage	
Nonepigentic modifiers							
mBALB/CES	NS	Gelatin	20% cow serum	dex, ITS	ALP↑, ALB↑	[181]	
m, hES	NS	Collagen type I	20% FBS	dex, ITS	TTR↑, ALB ALB secretion↑	[56]	
m (EB5)	NS	Gelatin	10% FCS	+/- dex, insulin, glucose, ornithine, galactose, phenylalanine -: arginine, tyrosine, glucose, pyruvate	+/-: ALB, TTR, AFP, CK18 −: TAT, z1AT, G6P, PPECK	ICG uptake [182]	
Growth factors/cytokines/epigenetic modifiers							
Growth progenitor cells							
mES cells (D3)	NS	Gelatin	15% FBS	(3) D11-17/23: 10 ng/ml HGF until confluent (1) D0-4: 0.8% DMSO (2) D4-10: 2.5 mM SB	ALP, z1AT, CK18/19, GGT, HNF3b, DPPIV	[43]	
Hepatocytes	NS	Collagen type I	10% FBS	(4) D17/23-23/29: dex insulin, nicotinamide 20 ng/ml EGF 10 ng/ml HGF (5) from D23/29: 10 ng/ml OSM, dex	ALB, G6P↑, TAT↑	Glycogen storage ALB secretion	
hES	NS	PAU coating, nonwoven PTFE	NS	D0-3: 100 ng/ml hFGF D3-11: 100 ng/ml HGF D11-14: dex	D3-11: 1% DMSO	ALB	[183]
hEBs	Matrigel	20% FBS	5 mM SB	-: AFP +: ALB, z1AT, CK8/18		Glycogen storage, inducible CYP450 activity	[65]
Table 1. (Continued).

Origin	Marker-based selection	Hepatic differentiation conditions	Hepatic features	Refs			
mES(D3)		Cell density: 1 × 10⁴ cells/cm²	Serum: D0-D10: 20% FBS	RNA + protein level: +; ALB, K18, DPP14, ADH, CYP3A13, CYP27A1	Glycolysis, glycogen storage, urea production, CYP activity	[57]	
		Cell-matrix/cell-cell interaction: D0-D10: gelatin, collagen type I, polystyrene	Serum: D0-D10: 20% FBS	Differentiation-inducing agents: D0-4: 1% DMSO D4-10: 2.5 mM SB	Glycogen storage, urea production ↑ALB secretion	[184]	
		Serum: D0-D10: 20% FBS	Serum: D0-D10: 20% FBS	Serum: D0-D4: 0.8% DMSO D4-D10: 2.5 mM SB	Glycogen storage, ALB secretion	[43]	
		Serum: D0-D4: 1% DMSO D4-10: 2.5 mM SB	Serum: D0-D4: 0.8% DMSO D4-D10: 2.5 mM SB	Serum: D0-D4: 1% DMSO D4-10: 2.5 mM SB	Glycogen storage, ALB secretion	[51]	
		Serum: D0-D4: 1% DMSO D4-10: 2.5 mM SB	Serum: D0-D4: 1% DMSO D4-10: 2.5 mM SB	Serum: D0-D4: 1% DMSO D4-10: 2.5 mM SB	Glycogen storage, ALB secretion	[185]	
hES		Phase I, pre-differentiation = no confluence	Collagen type I 10% FBS	Phase I, pre-differentiation = no confluence	Phase I, pre-differentiation = no confluence	Collagen type I 10% FBS	[43]
mES (D3)		Collagen type I 10% FBS	[43]				
mES, monkey ES		Matrigel 100 ng/ml activin A	[51]				
		D0-D3/5:D3/5-D10/12: SR	[51]				
		D0-D1/2-D3/5: 0.5 mM SB	[51]				
		D0-D3/5:D3/5-D10/12: 1% DMSO	[51]				
		Organoid culture in hollow fibers 20% FBS	[51]				
		D9: 1 mM SB	[51]				
Table 1. (Continued).

Origin	Marker-based selection	Hepatic differentiation conditions	Hepatic features	
	Cell density	Serum	Growth factors/cytokines/LETFs overexpression	Refs
			HNF3β mRNA overexpression	
mES	NS	10% FBS	D0-7: 20 ng/ml FGF2, sodium pyruvate	[63]
	(3D)		OATP1, MRP1, MRP2, MRP3, UGT1a1	
			Triacylglycerol, urea, glycogen, ALB synthesis	
mES	NS	10% FBS	20 ng/ml FGF2	[64]
	Gelatin		HNF3β mRNA overexpression	
			TTR, AFP, ALB, a1AT, TO, PEPCK	
			ALB production	
mES	NS	10% FBS	50 ng/ml FGF2, dex, ascorbic phosphate, nicotinamide	[62]
	(3D)		HNF3β mRNA overexpression	
			UTR, AFP, ALB, a1AT, TO, PEPCK	
			ALB synthesis	
Growth factors/cytokines/cell surface marker-based selection				
hES	(2) CXCR4+	NS	0/0.2/2% FBS	[40]
			(1) 100 ng/ml activin A	
			SOX17↑, FOXA2↑	
			(80% homogeneity)	
Growth factors/cytokines/coculture				
mES	AFP expression	Collagen type I	D0-1: 1000 U/ml LIF, 10 μM RA	[59]
	2 × 10⁴ cells/cm²	(a) Coculture ES with Thy1⁺, CD49f⁻, CD45⁻ mouse fetal liver cells		
		Collagen type I	(b) No coculture	
		Collagen type I	(a) AFP, Foxa2, ALB, TAT, TO, G6P	
		Collagen type I	(a) Glycogen storage	
		(b) No coculture	Ammonia clearance↑	
mES	1 × 10⁴ ES/cm²	Coculture with embryonic chick cardiac mesoderm	10 ng/ml EGF, dex, ITS, nicotinamide	[61]
		10% FBS	1% DMSO	
			(b) AFP, Foxa2, ALB	
			sox17↑, HNF3β, GATA4, ALP↑, ALB↑	
Coculture				
Monkey ES		Co-culture with MFLCs	NS	[49]
	3.6 × 10⁶ ES/cm²		+: AFP, ALB↑, a1AT, HNF4, CYP7A1	
	1 × 10⁵ MFLCs/cm²		−: Oct3/4	
			Urea synthesis, glycogen storage	
3D System				
ES (D3; P10-22)		Alginate, poly-1,-lysine, microencapsulation	20% FBS	[186]
	NS		Urea and ALB secretion	
mES	NS	3D collagen scaffold	NS	[58]
			Exogeneous GF hormones	
			+: ALB	
			−: CK18	
biological events [27]. Each step of cell growth and differentiation is tightly regulated by intra- and extracellular communication, as well as cell autonomous mechanisms (Fig. 2). Nodal (activin), FGFs, BMP, hepatocyte growth factor (HGF), and oncostatin M (OSM) are herein the most essential extracellular signals [2, 27–30]. At the intracellular level, the liver-enriched transcription factors hepatocyte nuclear factor (HNF) 3α,β, HNF4α, HNF1α,β, HNF6, and CCAAT enhancer binding protein (C/EBP) α,β act consecutively, in essence, in a cross-regulatory manner, at specific developmental stages to regulate liver-specific gene expression [27–29, 31, 32] (Fig. 2).

In brief, at the onset of liver ontogeny (approximately rodent embryonic day [E] 8.5), specification from endodermal stem cells toward the hepatic epithelial lineages requires, next to HNF3β and activin A signaling, signaling from two adjacent mesodermal cell types: FGFs (FGF1 and basic bFGF) from the cardiogenic mesoderm cells, and BMPs (BMP2, BMP4, BMP5, and BMP7) from the septum transversum mesenchyme [27–29] (Fig. 2). Then (approximately rodent E9.0–9.5), cells start to massively proliferate and bud into the environment of the septum transversum mesenchyme. The hepatic epithelial specified cells are now referred to as bipotent hepatoblasts (GATA4+, HNF4α+, HNF6+, hepatic α-fetoprotein [AFP]/albumin [ALB]+, and biliary cytokeratin [CK17+/CK19+]) [2, 27–29]. At rodent E11–12, the liver primarily becomes a primarily hematopoietic organ. Hematopoietic stem cells (HSCs) originating from the extrapancreatic organ colonize the liver bud, thereby emitting a growth signal for the liver [28, 29]. Consequentially, hepatoblasts continue to proliferate and start expressing placental alkaline phosphatase, intermediate filament proteins (CK14, CK8, and CK18), and later also biliary cytokeratin [CK19], and start expressing placental alkaline phosphatase, intermediate filament proteins (CK14, CK8, and CK18), and later also biliary cytokeratin [CK19], and biliary cytokeratin [CK17]. At this point, although cells continue to proliferate, most of them are unipotent and irreversibly committed to either the hepatic or cholangiocyte lineage [2, 27, 29]. Complete functional hepatic maturation ultimately takes place after birth upon coassistance of HGF, produced by the surrounding nonparenchymal liver cells (sinusoidal, stellate, and endothelial cells) [33].
Table 2. Strategies for in vitro differentiation of MSCs into hepatocyte-like cells including their molecular and functional endpoints

Origin	Marker-based selection	Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors/cytokines/nonepigentic additives	Differentiation-inducing agents	RNA + protein level	Functionality level	Refs	
MESENCHYMAL (-LIKE) STEM/PROGENITOR CELLS	Successful transdifferentiation									
BM (femoral heads, 60–69-year-old healthy human adults; P2)		NS	/	2D preinduction: 20 ng/ml EGF, 10 ng/ml bFGF, D0-7: 20 ng/ml HGF, 10 ng/ml bFGF, nicotinamide D7-21: 20 ng/ml OSM, dex, ITS, BSA, linoleic acid	CK18, CK19, Thy1, HNF4α, C/EBPβ, ALB, CYP2E1, CYP3A4	[77]				
BM (tibias + femora, 3-week-old C57BL/6 mice)		5 × 10⁴ cells/cm²	FN	10% FCS	HNF3β, AFP, TTR, ALB, CK18, G6P, TAT	Glycogen storage, urea production	[72]			
BM (tibias + femora, 6- to 7-week-old SD rats; P3)		2 × 10⁴ cells/cm²	FN	5% FBS	FIC MSC, CK18 Upon induction: ALB, CK18				[71]	
BM (tibias + femora, SD rats)		2 × 10⁴ cells/cm²	Differentiation onset upon 70% confluence	NS	1% FBS	20 ng/ml HGF, 10 ng/ml FGFr4	AFP, ALB	Glycogen storage, urea production		[69]
BM (femora, 1-month-old Wistar rats)		NS	Polylysine (a) 10% FBS + 5% cholestatic serum (b) 10% FBS			(a) + (b) AFP, CK18			[73]	
BM (healthy human; P4-5)		22 × 10³ MSC/ cm²	Collagen type I	Predifferentiation: 2% FBS	D0-2: 10 ng/ml FGFr4 D3-5: 20 ng/ml HGF from D6 on: ITS, dex, 20 ng/ml HGF	CK18 CYP activity			[84]	
UCB (P3)			Differentiation onset upon 100% confluence	NS	1% FBS	20 ng/ml HGF 10 ng/ml FGFr4	AFP, ALB, CK18	Glycogen storage, urea production		[138]
UCB (P5)										
ADSC (lipoaspirates, 38–49-year-old healthy human adults; P2)										
Origin	Marker-based selection	Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors-cytokines/nongenetic additives	Differentiation inducing agents	RNA + protein level	Functionality level	Refs	
--	------------------------	--------------	-----------------------------------	---	--	--------------------------------------	---------------------	-------------------	------	
Placenta (P5)		NS	FN or poly-L-lysine	0-24 h: expansion media	24–40 h: ITS, dex, 10 ng/ml EGF, 10 ng/ml PDGF	Undifferentiated:	Weak			
				From 40 h: 20 ng/ml HGF, 10 ng/ml FGF-4		Differentiation:				
BM (iliac crests, human, 19–32 years, P3)		5 × 10⁵ cells/cm²	NS	15% FBS or 20% HPR	D0–D7: 20 ng/ml HGF, dex	D0–D7: 10 ng/ml OSM	HPR > FBS: ALB, AFP, CK18	HPR > FBS: urea production		
UCB (P2-6)		1.5 × 10⁶ cells/cm²	Collagen type I	D0–D1: 10% FBS	D1–3: 20 ng/ml EGF, 10 ng/ml Bigf	D1–3: 10 ng/ml OSM	Undifferentiated			
					D1–13: 20 ng/ml HGF, 10 ng/ml bFGF, ITS	D13–D23: 20 ng/ml HGF, dex, ITS	Differentiation:			
BM (iliac crests + vertebrae, postmortem human, 8–67 years, P1-9)		1.5 × 10⁵ cells/cm²	Collagen type I	D0–D10: ITS, dex, 10 ng/ml FGF-4, 20 ng/ml HGF	D10–D30: ITS, dex, 20 ng/ml OSM					
Skin fibroblasts										
(human skin biopsy, 8–35 years, P1-3)										
BM (tibias + femora, C57BL/6 mice, P4)		5 × 10⁵ cells/cm²	FN	10% FCS	D0–D21: ITS, dex, 0–60 ng/ml HGF, 0–60 ng/ml FGF-4, 0–30 ng/ml EGF, 0–30 ng/ml OSM	35 ng/ml FGF + 30 ng/ml OSM > 40 ng/ml HGF + 30 ng/ml OSM > 20 ng/ml FGF + 20 ng/ml OSM	ALB, CK18, TTR, AFP	Urea production, ALB secretion		
Table 2. (Continued).

Origin	Marker-based selection	Hepatic differentiation conditions	Hepatic features	
Growth factors/cytokines/cell surface markers				
BM human	CD45\(^+\), GlyA\(^-\)			
		20 ng/ml HGF, 10 ng/ml FGF4		
BM (iliac crest, healthy human; P5-13)	CD3\(^+\), CD14\(^-\), CD19\(^-\), CD38\(^-\), CD66b\(^-\), GlyA\(^-\)	1.2 \(\times \) \(10^5 \) cells/cm\(^2\)		
		NS	2D prestimulation: 20 ng/ml EGF, 10 ng/ml bFGF D0-7: nicotinamide, 20 ng/ml HGF, 10 ng/ml bFGF From D7: dex, ITS, 20 ng/ml OSM	
UCB (P5-13)	CD3\(^+\), CD14\(^-\), CD19\(^-\), CD38\(^-\), CD66b\(^-\), GlyA\(^-\)	1.2 \(\times \) \(10^5 \) cells/cm\(^2\)		
		NS	2D prestimulation: 20 ng/ml EGF, 10 ng/ml FGF D0-7: nicotinamide, 20 ng/ml HGF, 10 ng/ml FGF From D7: dex, ITS, 20 ng/ml OSM	
ADSC (subcutaneous, 36–55 years, gastric cancer male/female patients, P5-9)	CD105\(^+\)	7 \(\times \) \(10^3 – 10^4 \) cells/cm\(^2\)		
		Collagen	D1-D21: 0.5 mg/ml BSA	
			D1-D21: hydrocortisone, insulin, dex, 20 ng/ml EGF, 150 ng/ml HGF, 300 ng/ml aFGF, 25 ng/ml FGF-4 D21-35: dex 30 ng/ml OSM	
ADSCs (subcutaneous, 55 years, gastric cancer male patient)	CD105\(^+\)	7 \(\times \) \(10^3 – 10^4 \) cells/cm\(^2\)		
		Collagen	D1-D21: 0.5 mg/ml BSA	
			D1-D21: hydrocortisone, insulin, dex, 20 ng/ml EGF, 150 ng/ml HGF, 300 ng/ml aFGF, 25 ng/ml FGF-4 D21-35: dex 30 ng/ml OSM	
Growth factors/cytokines/epigenetic modifiers				
BM (tibias + femora, C57/BL6 mice)		1 \(\times \) \(10^4 \) MSCs/cm\(^2\) + 5.2 \(\times \) \(10^3 \) liver cells/cm\(^2\)		
		Coculture with nonparenchymal liver cells on collagen	12 h before coculture: dx Upon coculture: nicotinamide, insulin, dex, 50 ng/ml HGF, 20 ng/ml OSM	
ADSC (abdominoplasty, 19–55 years human adults; P3-5)		2.5–3 \(\times \) \(10^4 \) cells/cm\(^2\)		
		FN	10 ng/ml HGF, 10 ng/ml ITS, 10 ng/ml EGF, dex	
BM (iliac crest, human adults)		100–200 cells/cm\(^2\)		
		NS	D1: 40 ng/ml HGF, 20 ng/ml EGF D0: preincubation with 20 \(\mu \)M 5-AzaC	
ADSC (subcutaneous/peritoneal, female donor)		100–200 cells/cm\(^2\)		
		NS	D1: 40 ng/ml HGF, 20 ng/ml EGF D0: preincubation with 20 \(\mu \)M 5-AzaC	

Refs: [70], [75], [79], [82], [89], [90], [142], [145]
Origin	Marker-based selection	Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors-cytokines/nonepigenetic additives	Differentiation inducing agents	Hepatic features
BM (iliac crest and (emora, human))							
BM (healthy human; P4-5)	22 × 10^3 MSC/cm²	Collagen type I	Predifferentiation: 2% FBS	D0-D2: 10 ng/ml FGF4	From D6 on: 1 μM TSA	ALB, CK18, HNF1α, MR22, C/EBPα	
ADSC (peritoneal, Fisher 344 rats)	200–300 cells/cm²	FN	(2) D1: hepatocyte growth medium	D0: preincubation with 20 μM 5-AzaC	ALB, ALP, CYP1A1, HNF1α, Cx32, DPP4, PCK1	Glycogen storage, urea production	
UCB hTERT (retrovirus infected)	2.1 × 10^2 cells/cm²	NS	D1-D22: 10% FBS	D1-D22: 10 ng/ml FGF2, 20 ng/ml HGF	D0: preincubation with 1 μM 5-AzaC	ALP, C/EBPα, CYP1A1/2, PEPCKα	
BM (tibias + femora, SD rats)	22 × 10^3 MSC/cm²	Collagen type I	Predifferentiation: 2% FBS	D0-D2: 10 ng/ml FGF4	From D6 on: supplement of 1 μM TSA	ALB, C/EBPα/β , CYP3A4, Wnt1, CYP3A4	
LEFTs overexpression						ALB secretion↑	
ADSCs (lipoaspirates, 38–49 years, healthy human adults; P2)	NS	NS	/	2D preinduction: 20 ng/ml EGF, 10 ng/ml bFGF	D7: C/EBPα, β, mRNA overexpression	C/EBPα, Thy1↑, CYP3A4↑	
Growth factors/cytokines/coculture							
Direct coculture							
BM (femora + tibias, Lewis rats; ≥P9)	2.4 × 10^4 MSC/cm² + 1.6 × 10^4 hepatocytes/cm²	Coculture with rat hepatocytes on FN	/	Dex, 100 ng/ml SCF, 20 ng/ml HGF, 50 ng/ml EGF, 10 ng/ml FGF4	Coculture: AFP, CK19/18, ALB		
Indirect coculture							
BM (femora + tibias, 2- to 3-month-old SD rats; P1 + 3)	On top: MSCs On bottom: SD rat normal or cirrhotic liver tissue	10% FBS	/	AFP, ALB in cocultures with normal/ injured liver			
Conditioned culture medium							
BM (femora + tibias, 8-10-week-old ICR mice; P3)	5 × 10^3 MSC/cm²	Collagen type I, 50% hepatocyte conditioned media	10% FBS			ALP, HNF3β, CK19, CK18, ALB, TAT, G6P	Glycogen storage, urea secretion
Table 2. (Continued).

Origin	Marker-based selection	Hepatic differentiation conditions	Hepatic features						
		Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors-cytokines/nonepigentic additives	Differentiation inducing agents	RNA + protein level	Functionality level	Refs
Growth factors/cytokines/specific ECM	MSC (human; P6)	(a) Spherical cell pellet	10% FBS	*DO-14*: 50 ng/ml HGF, 10 ng/ml bFGF, ITS, dex, nicotinamide	D14-28: 50 ng/ml OSM, nicotinamide, ITS, dex	ALB, inducible CYP3A4 mRNA (a) > (b)	ALB and urea secretion, glycogen storage (a) > (b)	[76]	
		2.4 × 10^5 MSC/cm^2	FN /	100 ng/ml SCF, 20 ng/ml HGF, 50 ng/ml EGF, 10 ng/ml FGF4, dex	No expression of hepatic markers		[78]		
Failed transdifferentiation	BM (femora + tibias, Lewis.IWR2 rats; ≥P9)	2.4 × 10^5 MSC/cm^2	Collagen type 1	Predifferentiation: 2% FBS	100 ng/ml FGF4, dex, 20 ng/ml FGF4, dex	No expression of hepatic markers	[84]		
		(a) and (1), (2), (3) indicate different protocols applied and order of serial steps, respectively; †, downregulation; ‡, upregulation; −, negative; +, positive). Abbreviations: a1AT, a1-antitrypsin; ADH, alcohol dehydrogenase; ADSC, adipose tissue-derived stem cell; aFGF, acidic fibroblast growth factors; AFP, α-fetoprotein; ALB, albumin; 5-AzaC, 5-azacitidine; bFGF, basic FGF; BM, bone marrow; BSA, bovine serum albumin; CD, cluster of differentiation; C/EBP, CCAAT enhancer binding protein; CK, cytokerin; CPS, carbamoyl phosphate synthase; Cx, connexin; CYP, cytochrome P450-dependent monoxygenases; dex, dexamethasone; DMSO, dimethylsulfoxide; DPP4, dipeptidylpeptidase IV; EGF, epidermal growth factor; FBS, fetal bovine serum; FCS, fetal calf serum; FGF, fibroblast growth factor; FIC, freshly isolated cells; Flt3, FMS-like tyrosine kinase; FN, fibronectin; GlyA, glycophorin, A; G6P, glucose-6-phosphatase; GSK, glycogen synthase kinase; GST, glutathione S-transferase; m, months; HepPar1, hepatocyte paraffin 1; HGF, hepatocyte growth factor; HNF, hepatocyte nuclear factor; HPR, human platelet releasate; IT5, insulin-transferrin-selenium acid; LDL, low-density lipoprotein; MDR/MRP, multidrug resistance protein; M2PK, M2-isozyme of pyruvate kinase; MSC, mesenchymal stem cell; NS, not specified; OSM, oncostatin M; P, passage; PDGF, platelet-derived growth factor; PEPCK, phosphoenolpyruvate carboxykinase; SCF, stem cell factor; SD, Sprague-Dawley; SIS, small intestine submucosa; TO, tryptophan-2,3-dioxygenase; TAT, tyrosine aminotransferase; TSA, trichostatin, A; TTR, transthyretin; UCB, umbilical cord blood; UGT, UDP-glucuronosyltransferase; w, weeks.							
Table 3. Strategies for in vitro differentiation of LPCs into hepatocyte-like cells including their molecular and functional endpoints.

Origin	Marker-based selection	Hepatic differentiation conditions	Hepatic features	Ref.					
Origin									
LIVER PROGENITOR CELLS									
Successful transdifferentiation									
Spontaneous									
OC/CDE cell line from adult rat injury model	Cell density: 6.4×10^4 OC/cm²	Cell-matrix/cell-cell interaction: Serum 10% FCS	Functionality level: Basal media; GGT⁻, GGT⁺: ALB (transient), LDH, G6P	[106]					
LPC cell lines from allyl alcohol adult rat injury model	Cell density: NS	Expansion: STO feeder layers	Differentiation-inducing agents: Removal of feeder layer	[193]					
(1) Oval cells from 2-AFF/70% PH rat liver injury model (2) hepatoblasts from rat embryos									
Growth factors/cytokines									
NPEC from adult human subacute injured livers	Cell density: 1.25×10^5 cells/cm²	Growth rate: Thy⁺ > Thy⁻	Hepatic effect of ECM < GF	[100]					
LPC from E16, E18, E20 rat liver	Cell density: 6.25×10^4 cells/cm²	Collagen type I	TAT, G6P, CPS	[96]					
Growth factors/cytokines/cell surface markers									
LPC from E13.5 mice liver	Cell density: 1×10^5 cells/cm²	Noncoated laminin, FN, type IV collagen, type I collagen	HGF, bFGF, OSM	[195]					
Liver epithelial cells from E14.5 mouse liver	Cell density: Low density	Collagen	EGF, HGF	[94]					
LPCs from adult mouse liver	Cell density: 1×10^5 cells/cm²	Collagen type I	Insulin, dex, nicotinamide, ascorbic acid, 20 μg/l HGF	[101]					
Origin	Marker-based selection	Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors/cytokines/epigenetic modifiers	Differentiation-inducing agents	Hepatic features	Functionality level	Ref.
--------	------------------------	--------------	-----------------------------------	-------	---	-----------------------------	----------------	-------------------	-----
LPC from 11 dpc mouse liver	cKit⁺, CD45⁺, TER119⁺	2–4 × 10⁵ cells/cm²	Collagen type I	10% FCS	10 ng/ml EGF, dex, insulin + combinations of 40 ng/ml HGF, 10 ng/ml OSM, 20 ng/ml SCF, 50 ng/ml FGF-1	FIC: Moderate: HNF-4, cKit High: ALB, AFP, TTR, HGF, OSMR, c-Met Upon in vitro induction: HGF, TTR, ALB, z1AT OSM. G6F, TAT HGF + OSM: TTR, ALB, z1AT, G6F, TAT	Glycogen storage		
BEC from human healthy + tumor liver of adults and children	HEA⁺	Subculture at 90% confluence	Collagen	5% FBS	10 ng/ml EGF, 10 ng/ml HGF, insulin, hydrocortisone	While proliferating⁺: ++ CK8, CK18, CK7, CK19 Rare: AFP, ALB, z1AT, cKit ⁺: vimentin, desmin, factor VIII			
HPC from E13.5 mouse liver	(1) CD49f⁺, Thy1⁺, CD45⁺, (2) CD49f[−], Thy1[−], CD45⁺	1 × 10³ cells/cm²	- Collagen type I - Coculture of CD49f⁺ and Thy1[−] cells (1) direct (1/1); (2) indirect using inserts	10% FCS	Insulin, dex, nicotinamide, 20 µg/ml HGF	CD49f⁺: ALB, AFP, CHK1 Thy1[−]: ++ smooth muscle actin, desmin, vimentin, -: AFP, ALB, or CK19 Coculture: TAT, TO	Coculture: glycogen storage		
LPC from human fetal liver	--: CD2, CD3, CD14, CD16, CD19, CD24, CD36, CD38, CD45RA, CD56, CD66b, GlyA	NS	Collagen type I	10% FCS	50 ng/ml HGF, 20 ng/ml EGF, 10 ng/ml bFGF From D3: coexposure to 20% conditioned media	FIB: CD117⁺, CD34⁺, Lin⁺ In culture: ALB ?/ALB ?/CK19^{+/}/ALB[−]/ CK19[−]/ALB[−]/ CK19[−]	[137]		
SP cells from human cadaveric liver	Hoechst 33342[−], CD45[−]	6 × 10³ cells/cm²	FN	10% FCS	dex, insulin, 20 ng/ml HGF, 10 ng/ml bFGF	CD45[−]: HepPar, CK8, ALB, CK18, z1AT, CYP2B6	CD45[−]:	[196]	
Epithelial cells, hepatoblasts from E12.5 murine liver	TER119[−], CD45[−], cKit[−], CD31[−], Liv2[−], E-cadherin[−], Dlk-1[−], Sca1[−]	2 × 10³ cells/cm²	Collagen type I	10% FBS	dex, 10 ng/ml EGF, 10 ng/ml bFGF, 20 ng/ml TGF-β	FIC: ALP+, ALB+, CK19[−], FIC: AP+: ALB+, CK19+, CK19[−], CK19[−], CK19[−], CK19[−]	Upon induction: ++ CK19, TAT, G6F ⁺: TO		[136]
FLMPCs⁺ from human fetal liver	--: CD29, CD73, CD44, CD90 --: CD34, CD45, CD117, CD133	1 × 10³ cells/cm²	Collagen	NS	10 ng/ml OSM	Undifferentiated FLMPC: CD34⁺, CD90⁺, cKit⁺, EPCAM⁺, cMet⁺, SSEA-4[−], CK18[−], CK19[−], CK19+, ALP+, CD44h⁺, vimentin⁺ Upon induction: ALB, AFP, z1AT, HNF1α, HNF3β, HNF4 Upon induction: ALP+, CK8, CK18	ALB secretion, glycogen storage, CYP activity		[98]
HLSC	++ CD29, CD73, CD44, CD90 --: CD34, CD45, CD117, CD133	NS	NS	NS	HGF, FGF4	FIC: CK8, CK18, vimentin, nestin, ALB, AFP	Upon induction: CYP activity, ALB and urea production		[197]

Growth factors/cytokines/epigenetic modifiers

LPC from E12 rat liver | NS | FN | Serum | Insulin, dex | DMSO | E12: ALP+, ALB+, HES6⁺ E15: HES6++, CK52[−] | | [105] |

DMSO + SB +: BDS7
Origin	Marker-based selection	Hepatic differentiation conditions	Growth factors- cytokines/ nonepigenetic additives	Iteration-inducing agents	Hepatic features	Ref.	
OC/CDE cell line from adult rat injury model	NS	Subculture at 80–90% confluence	Insulin, hydrocortisone*	10% FCS	ALB (transient), LDH, G6P	[106]	
	NS	Irradiated 3T3 feeder layers on 3D collagen-gel sandwich	Insulin, hydrocortisone, 2% DMSO/ 3.75 mM SBb	+: ALB (sustained), G6P†			
	NS	NS	Insulin, hydrocortisone, 3.75 mM SBb	+: GGT, AP†			
WB F344	4 × 10^4 cells/cm^2	NS	NS	dex	3.75 mM SB	TAT activity [109]	
LE2, LE6 oval cell line from CDE adult rat injury model	4 × 10^7 PH/cm^2	NS	NS	5 mM SB for 24 h	ALB, TF, G6P, H4, AFP, GGT, CK19	[108]	
FNRL from rat	4 × 10^5 cells/cm^2	NS	NS	10% human serum	5 ng/ml EGF, dex, nicotinamide, ascorbic acid	[104]	
CF-PH from human liver	4 × 10^5 cells/cm^2	NS	NS	10% human serum	D4: 1% DMSO	Nonconfluence: CK7, CK19, CK8, CK18, ALB	[108]
LEPC from mouse liver	NS	Subculture	Insulin, hydrocortisone	1% DMSO	−: CK19, HES6, H.4, DPPIV, GGT	[104]	
HepaRG from HCV infected human liver	2.7 × 10^4 cells/cm^2	Purification by subculture	D0-D14, insulin, hydrocortisone	SB	+: CK7, CK19	[111]	
MSC from human fetal liver	NS	1 Matrigel	From 12 h: 10 μg/ml HGF, 10 μg/ml FGF-4	0–10/12 h: 2.5 mM 5-AzaC	+: APP, GATA4, CK18, ALB, HNF1, GST	[114]	
MSC from healthy SD rat liver, 2, 4, 20, 28 months	2 × 10^6 cells/slide	NS	NS	/	−: other HNFs	[144]	
Coculture	LE2, LE6 oval cell line from CDE adult rat injury model	Subculture at 80–90% confluence	Insulin, hydrocortisone, 2% DMSO/ 3.75 mM SBb	+: ALB (transient), LDH, G6P	Young > old: GST, CK18	[104]	
	4 × 10^5 cells/cm^2	NS	NS	/	−: CK19, HES6, H.4, DPPIV, GGT	[104]	
Origin	Marker-based selection	Cell density	Cell-matrix/cell-cell interaction	Serum	Growth factors-cytokines/nonepigentic additives	Differentiation-inducing agents	Hepatic features
-------------------------------	--	--------------	----------------------------------	--------------------------	---	---------------------------------	--
LPC from 11 dpc mouse liver	cKit^{lo}, CD45⁻,	1–5 × 10⁴ 11 dpc LPCS/cm²	D0-2: Coculture of 11 dpc LPCs + cell-depleted 12 dpc liver fragments D2-28: transfer of fragments to filters	10% FBS	Insulin, dex, nicotinamide, ascorbic acid, 20 µg/l HGF	cKit^{lo}, CD45⁻, TER119⁻, LPCs repopulated cell-depleted 12 dpc liver organoids → formation of ALB⁺ CK19⁻ bile duct cells, ALB⁺ CK19⁻, ALB⁺ CK19⁻ hepatocytes	Ref. [97]
LPCs from adult mouse liver	CD45⁺, TER119⁻, sside-scatter^{low}	ND	Coculture of sorted cells with nonparenchymal cells	20 ng/ml SCF, 10 ng/ml HGF, 20 ng/ml HSS, 10 ng/ml EGF, 10 ng/ml LIF	FIC: Integrin-α6, AFP⁺, integrin-β¹, cKit⁺, Thy1⁺	Upon co-culture: ALB, CK19	Ref. [101]
Oval cells from ethionine/PH injured rat liver	Thy1⁺	1042 cells/cm²	On fibroblast feeder layers	BSA, dex, ITS, nicotinamide	FIIH: AFP, ALB, cKit, CXCR4, HNF1α, HNF6, CK18, CK19 Upon culture on feeder layers: AFP, ALB, HNF1α, HNF6, CK18, CK19	Upon culture: glycogen storage	Ref. [103]
Oval cells from E14 fetal rat liver	Thy1⁺	4 × 10³ cells/cm²	On fibroblast feeder layers				

Aggregation

| BMEL from E14.5 mouse liver | 64 × 10⁴ cells/cm² | / | | | | | |

Failed transdifferentiation

Growth factors/cytokines/matrices

| Oval cells from E14 fetal rat liver | Thy1⁺ | 1–2 × 10³ cells/cm² | Collagen type I | 10% PCS | (a) 50 µg/l EGF, insulin | (a) Upon culture: Fibroblastic morphology, no hepatic expression | Ref. [198] |

(b) insulin, dex, nicotinamide 50 µg/l HGF, 20 µg/l EGF

(b) Upon culture: Fibroblastic morphology, only CK18 expression
Key signaling and molecular cross-talk events are thus patterned to occur in the right place at the right time [8]. Interactions between these various compartments accomplish homeostatic regulation of stem/progenitor cell functioning in vivo [2, 8]. Consequently, identification and simulation of these in vivo signaling patterns might comprise an approach to contribute to fate reprogramming of stem/progenitor cells in vitro.

FROM STEM CELLS TO HEPATOCYTES: CURRENT IN VITRO DIFFERENTIATION STRATEGIES

Embryonic Stem Cells

ES cells spontaneously differentiate into cell types of the three germ layers, including hepatocytes, upon removal of leukemia inhibitory factor and feeder layers [34–37]. The processes of lineage establishment in developing embryoid bodies (EBs) appear to follow the events of embryogenesis, suggesting that ES cells can recognize and respond to the signals regulating embryonic development. The drawback is the yield of mixed cell types.

Addition of Soluble Medium Factors (Growth Factors/Cytokines/Corticosteroids/Hormones). The use of growth factors and cytokines is pivotal for hepatic growth of ES cells in vitro. Hormones and corticosteroids have a supporting role (Table 1).

Growth Factors/Cytokines/Corticosteroids/Hormones	Use
activin A	Enriches ES cell cultures for endodermal populations
HGF	Supports a midlate hepatic phenotype
FGFs	But BMP, are effective in mediating early hepatic differentiation
dexamethasone, and insulin-transferrin-sodium selenite (ITS)	Inherent to most differentiation protocols

Reconstruction of In Vivo Cell-Matrix and Cell-Cell Interactions. Imitation of the ontogenic scaffold (particularly collagen) [42, 50, 52–58] and coculture with hepatic and nonhepatic cell types might provide an optimal in vitro environment to promote hepatogenic differentiation in ES cell and other stem cell cultures [49, 59]. However, intimate physical cell contact may result in cell fusion and requires highly sophisticated techniques to separate distinct cell populations. Hence, differentiation protocols currently use semipermeable membranes or filtered cell-conditioned media [60]. Fetal liver cells probably represent the most suitable cultivation partners [49, 59], because they, unlike cardiac mesoderm [61], contribute to hepatocellular functionality in ES cell cultures.
Determination of Cell Fate via Genetic Modification

(a) LETFS overexpression. HNF3β functions as a vital regulator of the initial intracellular signaling pathways in liver development/regeneration [28, 32] (Fig. 2). In addition, it may act as a driving force of ES cell differentiation along the hepatic lineage. In this context, HNF3β-transfected ES cells acquire a hepatic phenotype, more efficiently and far earlier than their untransfected counterparts [62–64]. Using this approach, ES cell differentiation in culture is in fact driven by the same transcriptional events as seen in early liver organogenesis in vivo. Hepatic gene expression and also hepatocellular functionality are found to be directly related to HNF3β levels [62]. A stated alternative is the recombinant expression of E-cadherin, most likely because adherens junction-mediated intercellular coupling has an integral role in hepatocyte functioning [52]. Major drawbacks of the constitutive overexpression of regulatory (transcription) factors are the risks of both unpredictable and nonintended gene upregulation in vitro.

(b) Epigenetic modification. The actual idea of changing cell fate via direct interference with the local chromatin structure of plastic cells was introduced only a few years ago. In 2003, ES exposure to 5 mM sodium butyrate led to 10%–15% enrichment with pure hepatic cells [65]. Lately, priming with alternating concentrations of sodium butyrate (0.5–1 mM) in the presence of activin A resulted in 10%-70% enrichment [51]. Basically, combined application of epigenetic modification and stepwise exposure to cytokine stimuli contributed considerably to homogeneity of the end population and acquirement of hepatic functionality [52]. Hitherto, both successful and failed differentiations were obtained using histone deacetylase inhibitors (HDACis), rendering their hepatotropic effect ambiguous [43, 57]. Plausible explanations are described in From Stem Cells to Hepatocytes: Current Characterization Strategies and Their Limitations.

Multipotent Mesenchymal Stem Cells

Unidirectional/downstream differentiation into other mesenchymal cell types, such as adipocytes, chondrocytes, and osteoblasts readily occurs in the presence of a simple cocktail of growth factors and nutrients [66]. Successful bypassing of lineage borders depends mainly on multistep processes in a coordinated, synergistic signaling network (Table 2).

Addition of Soluble Medium Factors (Growth Factors/Cytokines/Corticosteroids/Hormones). Multipotent adult progenitor cells (MAPCs), discovered by Verfaillie and coworkers, were the first plastic cells found within adult bone marrow that gained the ability to undergo hepatic differentiation. Using combined exposure to FGF + HGF + ITS + dexamethasone, MAPCs transformed into cells with morphological, phenotypic, and functional characteristics of hepatocytes [67]. Yet, the resultant population was far from homogeneous. Significantly optimized differentiation was obtained via exposure of bone marrow stem cells to the same hepatogenic factors, but in a time-specific sequential manner, reflecting their secretion pattern during the hepatogenesis in vivo.
More than 85% of the thus sequentially cultured cells featured a highly differentiated hepatic phenotype and functionality, including inducible cytochrome P450 (CYP)-dependent activity [68]. Thus far, several research groups have revealed expression of distinct hepatic markers and functions, that is, ALB and urea secretion, glycogen storage, and low-density lipoprotein uptake upon stimulation of MSCs with hepaticogenic factors exclusively, added either as a mixture (FGF + HGF [69–71]; FGF + HGF + OSM [72]) or separately (HGF [73]; HGF/OSM [74]; FGF/HGF/OSM [75]). Also combinations thereof (FGF + HGF followed by OSM [76, 77]) have been applied. In contrast, others emphasized the necessity of supplementary differentiation-inducing factors to enforce functional hepatic conversion of MSCs [78]. Basically, soluble medium factors such as dexamethasone, ITS, and nicotinamide synergistically affect the hepatic driving pathways [79]. In sharp contrast to the critical role of serum in MSC expansion and until recently in ES cell differentiation, serum-free conditions have been successfully applied on a routine basis for hepatic differentiation of MSCs [75, 77–79].

Reconstruction of In Vivo Cell-Matrix and Cell-Cell Interactions. Cocultures of stromal bone marrow cells with primary hepatocytes were at first designated to develop long-term functional hepatic in vitro models [80]. Jagged1 protein was considered responsible for the benign effects on hepatocyte differentiation by mediating differentiation events via the Notch signaling pathway [80, 81]. Later, Jagged1 and Notch were considered essential in driving bone marrow progenitors toward hepatocyte-lineage cells [81]. In a recent study by Lange et al. [78], coculture with liver cells was claimed to be the sole trigger able to shift MSC into cells with a hepatobiliary phenotype. The impaired differentiation capability of the chosen clonal MSCs or the high purity of high passaged MSCs (thus not contaminated with hematopoietic stem cells) [82, 83] was held responsible for failing growth factor-stimulated hepatic differentiation.

Another critical factor affecting cellular differentiation status is the spatial distribution between cells. Differentiation is usually initiated upon 60%–100% confluence (Table 1). Significantly promoted hepatic differentiation in areas of highest cellular density (maximal cell-cell contact) versus that in lower cellular density emphasized the necessity of supplementary differentiation-inducing factors before hepatic differentiation [87–89], whereas HDACis act as stimulants during or after differentiation [68, 79, 90, 91]. In general, chromatin remodeling seems, thus, to be a potential innovative strategy to overcome cell fate determination and favor lineage-specific differentiation. This field is expected to emerge in the coming years.

Addition of Soluble Medium Factors (Growth Factors/Cytokines/Corticosteroids/Hormones). Differentiation of LPCs into either the biliary or hepatic lineage greatly depends on the type of growth factor/cytokine used. (a) In midphase fetal liver, transforming growth factor (TGF) β promotes LPCs to undergo biliary differentiation [93], whereas HGF, FMS-like tyrosine kinase 3, stem cell factor (SCF), epidermal growth factor (EGF) [93–96], and members of the Gp130 receptor family, including OSM [97, 98], promote their initial hepatic differentiation and maturation, respectively. FGF propagates embryonic liver cultures toward hepatic progenitors. In this sense, FGF1 and FGF4 enrich for bipotential hepatic progenitors, whereas FGF8 further promotes the former enrichment for unipotential hepatic progenitors [99]. (b) In neonatal and adult rodent liver, HGF, FGF (FGF-1, FGF-2, and FGF-4), EGF, SCF, and TGFβ1 might simultaneously play a central role in activation/proliferation, maintenance, and differentiation of LPCs such as liver epithelial cells and oval cells [100–103]. Some exceptions do occur, however [104].

Guidance of their cell fate by corticosteroids and hormones is less unidirectional. For example, dexamethasone upregulates the number of both hepatic- and bile duct-like cells in LPCs derived from midphase fetal mouse liver tissue [93]. Despite this scattered effect, when dexamethasone is accompanied by sodium butyrate, cultured oval cells shift solely toward the hepaticocyte lineage [105]. Furthermore, growth-promoting effects have been ascribed to insulin, transferrin, z-tocopherol acetate, selenite, linoleic acid, nicotinamide, and hydrocortisone [95, 100–102, 106].

Reconstruction of In Vivo Cell-Matrix and Cell-Cell Interactions. The decisive factor of the microenvironment in directing the liver ontogeny underlines the importance of local cell and tissue paracrine signaling. In the context of this rationale, cocultivation of LPCs with stellate cells and mesenchymal feeder layers, including embryonic chick lung mesenchyme, growth-inhibiting embryonic STO fibroblast, or mesenchymal NIH3T3 fibroblast feeder layers, stimulate differentiation along the hepatic lineage [97, 101, 103, 104]. Cultivation in a three-dimensional collagen gel I matrix culture system provides further support [104]. In turn, removal of feeder layers and introduction of Matrigel leads to the formation of bile structures [104].

Besides signals secreted by the surrounding environment, cell density may also trigger differentiation. In essence, the
Stem cell-derived hepatocyte-like cells may be characterized in vitro at four levels: morphological, RNA, protein, and activity levels. Usually, the analytical work is limited to the elucidation of (a) endodermal/hepatogenic RNA transcripts via (quantitative) reverse transcriptase-polymerase chain reaction and (b) proteins by immunofluorescence. The most studied endodermal markers include LETFs (HNF1α, HNF3β, HNF4α, and C/EBPα), plasma proteins (AFP, ALB, trans-thyretin (TTR)), and cytoskeletal proteins (CK18, CK8) (Tables 1–3). A minority of studies have examined the expression of CYPs and other “late” enzymes such as tryptophan 2,3-dioxygenase (TO) and tyrosine amino transferase (TAT).

The following three features inherent to hepatic stem cell transitions need to be taken into account to perform accurate phenotyping. (a) The differentiation of stem/progenitor cells toward the hepatocyte lineage often involves uncontrolled processes, resulting in a heterogeneous cell population. Genes such as TAT [115], phosphoenolpyruvate carboxyki-nase [116], and LETFs [117–120] are also expressed in other somatic cells such as lung, intestine, pancreas, and kidney and thus cannot be considered as “true” hepatocyte markers. In addition, genes such as AFP and TTR are both expressed in liver tissue and in the extraembryonic yolk sac [121, 122]. Hence, exclusive analysis of one of the latter markers cannot count as proof for a genuine hepatic phenotype. The need thus arises to identify genes that are predominantly expressed in the liver and not in other tissues, enabling an accurate follow-up of the differentiation process and precise characterization of the end populations. In mouse, CYP7A1 is solely expressed in the liver and not in the yolk sac tissue, fulfilling its function as a reliable hepatocyte marker [36]. Alternatively, the synthesis of urea is a privileged function of hepatocytes [123, 124].

(b) The differentiation of hepatoblasts into hepatocytes is a steady process. It is known that embryonic, fetal, and adult hepatocytes differ in their molecular phenotype [1, 2]. Basically, hepatogenesis in vivo implies serial expression of early (HNF3β, AFP, and TTR), midlate (HNF1α, HNF4α, ALB, and CK18), and late (TO, TAT, C/EBPα, and CYPs) markers [28, 30–32, 125, 126]. Yet, some genes such as TTR and ALB are first expressed in early-midlate embryos and maintain expression in fetal and adult hepatocytes [126]. Positive expression of these genes may not enlighten the present differentiation state properly. AFP, on the other hand, is expressed very early in embryonic development and during the fetal stages. Its expression gradually levels off with increasing development and disappears entirely in adult life [125]. AFP thus represents a reliable marker to discriminate between distinct developmental stages. Alternatively, most, but not all, metabolic and detoxifying enzymes do not become functional before birth. Indeed, during the terminal step of liver organogenesis, the liver becomes a functional, metabolic organ: hepatocytes start to both control the levels of metabolites and serum proteins in the bloodstream and express numerous new genes and proteins related to specific functions of the adult liver [32, 123, 124]. Therefore, to state the differentiation stage of the resultant hepatocyte-like cells, functional assays for enzymes need to be carried out. At present, functional analysis is particularly focused on glycogen uptake, urea metabolism, and ALB secretion. Only a little attention has been paid to other metabolic functions, including CYP450-dependent activity and responsiveness to prototype inducers such as phenobarbital (human CYP2B6 and CYP3A4 and rat CYP2B1/2), rifampicin (CYP3A4), and 3-methylcholanthrene (human and rat CYP1A1/2). If one bears in mind that inducible P450-dependent activity is considered to be a key determinant of the functional hepatic phenotype [123, 127], characterization must encompass the above-mentioned metabolic functionality assays as well.

(c) The ultimate proof of functional hepatic behavior is no doubt in vivo transplantation of ex vivo generated stem cells-based hepatic cells in (immunodeficient) animal models with liver injury [58, 70, 79, 82, 83, 87, 128]. Examples of recipients permissive for engraftment of both allogeneic and xenogeneic cells are partially hepatectomized recipients [82/nude [79] mice, carbon tetrachloride-injured severe combined immunodeficient (SCID) mice, and urokinase-type plasmingen activator inhibitor [82]/nonobese diabetic-SCID mice [79, 128, 129]. Positive homing, engraftment, repopulation, and functional maturation are basically explored by means of molecular imaging techniques, immunohistochemistry, in situ hybridization, and serology [58, 70, 79, 82, 83, 87, 128–130]. Despite seemingly irrefutable evidence that stem/progenitor cells could contribute to liver reconstitution, caution should be taken with production of false-positive results owing to application of CD34 and CD133 antibody-labeling [121]. Also, one should keep in mind that, apart from generating fully functional stem cell-derived hepatocytes, other mechanisms including the bystander effect, fusion (cf. Introduction), partial transdifferentiation, and horizontal gene transfer [128, 129] might be responsible. For a more scrupulous insight in this complex matter, we refer the reader to Hengstler et al. [129].

In brief, accurate hepatic phenotyping in vitro should encompass the molecular analysis of a set of (non)specific hepatic markers in combination with ammonia formation and inducible CYP-dependent metabolism as functionality tests. Confirmation of the in vitro obtained results via rigorous in vivo tools might shed light on the therapeutic potential of stem/progenitor cells in various acute and chronic liver disorders.

FROM STEM CELLS TO HEPATOCYTES: CURRENT CHARACTERIZATION STRATEGIES AND THEIR LIMITATIONS

Stem cell-derived hepatocyte-like cells may be characterized in vitro at four levels: morphological, RNA, protein, and activity levels. Usually, the analytical work is limited to the elucidation of (a) endodermal/hepatogenic RNA transcripts via (quantitative) reverse transcriptase-polymerase chain reaction and (b) proteins by immunofluorescence. The most studied endodermal markers include LETFs (HNF1α, HNF3β, HNF4α, and C/EBPα), plasma proteins (AFP, ALB, trans-thyretin (TTR)), and cytoskeletal proteins (CK18, CK8) (Tables 1–3). A minority of studies have examined the expression of CYPs and other “late” enzymes such as tryptophan 2,3-dioxygenase (TO) and tyrosine amino transferase (TAT).

The following three features inherent to hepatic stem cell transitions need to be taken into account to perform accurate phenotyping. (a) The differentiation of stem/progenitor cells toward the hepatocyte lineage often involves uncontrolled processes, resulting in a heterogeneous cell population. Genes such as TAT [115], phosphoenolpyruvate carboxykinase [116], and LETFs [117–120] are also expressed in other somatic cells such as lung, intestine, pancreas, and kidney and thus cannot be considered as “true” hepatocyte markers. In addition, genes such as AFP and TTR are both expressed in liver tissue and in the extraembryonic yolk sac [121, 122]. Hence, exclusive analysis of one of the latter markers cannot count as proof for a genuine hepatic phenotype. The need thus arises to identify genes that are predominantly expressed in the liver and not in other tissues, enabling an accurate follow-up of the differentiation process and precise characterization of the end populations. In mouse, CYP7A1 is solely expressed in the liver and not in the yolk sac tissue, fulfilling its function as a reliable hepatocyte marker [36]. Alternatively, the synthesis of urea is a privileged function of hepatocytes [123, 124].

(b) The differentiation of hepatoblasts into hepatocytes is a steady process. It is known that embryonic, fetal, and adult hepatocytes differ in their molecular phenotype [1, 2]. Basically, hepatogenesis in vivo implies serial expression of early (HNF3β, AFP, and TTR), midlate (HNF1α, HNF4α, ALB, and CK18), and late (TO, TAT, C/EBPα, and CYPs) markers [28, 30–32, 125, 126]. Yet, some genes such as TTR and ALB are first expressed in early-midlate embryos and maintain expression in fetal and adult hepatocytes [126]. Positive expression of these genes may not enlighten the present differentiation state properly. AFP, on the other hand, is expressed very early in embryonic development and during the fetal stages. Its expression gradually levels off with increasing development and disappears entirely in adult life [125]. AFP thus represents a reliable marker to discriminate between distinct developmental stages. Alternatively, most, but not all, metabolic and detoxifying enzymes do not become functional before birth. Indeed, during the terminal step of liver organogenesis, the liver becomes a functional, metabolic organ: hepatocytes start to both control the levels of metabolites and serum proteins in the bloodstream and express numerous new genes and proteins related to specific functions of the adult liver [32, 123, 124]. Therefore, to state the differentiation stage of the resultant hepatocyte-like cells, functional assays for enzymes need to be carried out. At present, functional analysis is particularly focused on glycogen uptake, urea metabolism, and ALB secretion. Only a little attention has been paid to other metabolic functions, including CYP450-dependent activity and responsiveness to prototype inducers such as phenobarbital (human CYP2B6 and CYP3A4 and rat CYP2B1/2), rifampicin (CYP3A4), and 3-methylcholanthrene (human and rat CYP1A1/2). If one bears in mind that inducible P450-dependent activity is considered to be a key determinant of the functional hepatic phenotype [123, 127], characterization must encompass the above-mentioned metabolic functionality assays as well.

(c) The ultimate proof of functional hepatic behavior is no doubt in vivo transplantation of ex vivo generated stem cells-based hepatic cells in (immunodeficient) animal models with liver injury [58, 70, 79, 82, 83, 87, 128]. Examples of recipients permissive for engraftment of both allogeneic and xenogeneic cells are partially hepatectomized recipients [82/nude [79] mice, carbon tetrachloride-injured severe combined immunodeficient (SCID) mice, and urokinase-type plasmingen activator inhibitor [82]/nonobese diabetic-SCID mice [79, 128, 129]. Positive homing, engraftment, repopulation, and functional maturation are basically explored by means of molecular imaging techniques, immunohistochemistry, in situ hybridization, and serology [58, 70, 79, 82, 83, 87, 128–130]. Despite seemingly irrefutable evidence that stem/progenitor cells could contribute to liver reconstitution, caution should be taken with production of false-positive results owing to application of CD34 and CD133 antibody-labeling [121]. Also, one should keep in mind that, apart from generating fully functional stem cell-derived hepatocytes, other mechanisms including the bystander effect, fusion (cf. Introduction), partial transdifferentiation, and horizontal gene transfer [128, 129] might be responsible. For a more scrupulous insight in this complex matter, we refer the reader to Hengstler et al. [129].

In brief, accurate hepatic phenotyping in vitro should encompass the molecular analysis of a set of (non)specific hepatic markers in combination with ammonia formation and inducible CYP-dependent metabolism as functionality tests. Confirmation of the in vitro obtained results via rigorous in vivo tools might shed light on the therapeutic potential of stem/progenitor cells in various acute and chronic liver disorders.
Stem Cell Technologies: Current Shortcomings

Need for Standardization, Optimization, and Enrichment

ES cells harbor a unique pluripotent versatility compared with other fetal and adult multi- or bipotent stem/progenitor cell populations. They possess the unrestricted capacity to form embryonic and adult cell types, thereby reflecting the distinct developmental stages in vivo. Yet, the use of ES cell/EB technology encounters a complex differentiation environment, lack of organization, and inherent heterogeneity of the system [132–134]. In addition, although EBs may form functional and specialized cell types, including hepatocytes, the differentiation efficiency in number of lineage-specific cell types obtained is rather low [35, 135]. Culture of EBs in the presence of (a) differentiation inducers or (b) biologically derived signals (e.g., conditioned medium or purified growth factors) or other lineage-selective agents have been used to enrich for specific cell populations [133]. Thus, high-purity (70%–80%) ES cell-derived hepatocyte cultures have recently been produced on subculture and fine-tuning of the order/type of cytokine exposure [47, 48]. Yet, spontaneous differentiation is still predominant in many differentiation protocols. Differentiation is thus a default pathway of ES cells rather than replication. The opposite holds for adult stem cells [3]. For this reason, the use of adult stem/progenitor cells is often considered as a potential alternative. Basically, LPCs in culture differentiate either into hepatocytes, bile duct, or both (bipotency) [92, 97, 98, 136, 137]. The choice of matrices is the most important determinant for the direction taken. Lately, evidence has been provided that mesenchymal-like stem/progenitor cells from various sources (bone marrow, adipose tissue, skin, placenta, and umbilical cord) could occasionally overcome lineage borders and differentiate into endodermal (hepatocytes) and ectodermal (neural cells) cell types after specific in vitro induction [69, 74–76, 138–140]. It has now become clear that next to identification of hepaticogenic cytokines or growth factors, their concentrations, mode of presentation, and order of application [8] also are crucial for hepatic differentiation and subsequent maturation into functional hepatocytes in vitro. As such, sequential exposure of bone marrow MSCs to hepaticogenic factors reflecting their secretion pattern during liver embryogenesis in vivo results in a homogeneous population of functional hepatocytes. A downside of adult stem cell technology, however, is the level of reproducibility. Indeed, we found that only 25% of the bone marrow hMSC samples processed were “plastic” and consequently adopted a functional hepatic phenotype (intralaboratory variability). A number of unknown and consequently insufficiently controlled variables could be responsible. For example, the differentiation potential of MSCs might depend on the following:

(a) The donor. Age, gender, lifestyle (e.g., smoking, alcohol consumption, or drug abuse, health condition (health/disease), intake of pharmaceutical agents, genetic differences, and others [141]. For example, the yield of MSCs within bone marrow is influenced by age, gender, the presence of osteoporosis, and prior exposure to high-dose chemotherapy or radiation [142]. In addition, both the differentiation and self-renewing capacity of bone marrow and liver MSCs was often, although not exclusively [143], found to level off with age [141, 142, 144]. In contrast, the adipogenic and myogenic differentiation ratios of ADSCs are not affected by the donor’s age [142]. To date, little is known about the relationship between disease (cancer) and stem cell behavior [142]. Yet, ADSCs derived from patients with gastric cancer were found to retain their endodermal differentiation potential [142, 145].

(b) The starting material. The harvest tissue varies, and the original characteristics of the starting material are often poorly defined (e.g., phenotypic profile, heterogeneity/conformity, and passage number). Phenotypic instability and plastic variability are inherent characteristics of MSCs [141, 146–148]. In this context, individual clones of cell lines derived from MSCs have different potentials for differentiation, indicating different stages of determination and levels of plasticity. Physiological alterations, resulting from exposure of clonal MSCs to a specific microenvironment during both proliferation and differentiation, may induce heritable and epigenetic cellular preconditioning, altering their original phenotype and manipulating their predestined cell fate [147]. In this regard, it was previously shown by DiGirolamo et al. [147] that some of the clonally derived MSCs from a single mother colony, expanded in separate cultures and subjected to identical osteogenic conditions, could efficiently differentiate into osteoblasts whereas others could not. This study clearly illustrates that clonal daughter cells, even when derived from a single mother cell, may have a different (ial) potential in response to soluble factors. The ambiguous definition of starting cell material remains a key obstacle for in vitro purposes and might even explain the global nonreproducibility or discrepancies in inter- and intralaboratory results reported thus far.

(c) The technology used. From an extensive review of the current literature, it appears that great variety exists among strategies to isolate, purify, expand, and differentiate postnatal stem cells. MSCs lack well-defined characterization and common surface markers that allow accurate isolation via fluorescence-activated cell sorting (FACS). For this reason, bone marrow MSCs are usually, but not exclusively, isolated via the plastic adherence technique. A major drawback of this strategy is its heterogeneous outcome, yielding a phenotypically mixed fibroblastoid cell population [141, 146, 148–150], often contaminated with hematopoietic cells at low passages [147, 151]. Basically, heterogeneity of initial populations hinders interpretation and reciprocal comparison of results among different research groups. Also, molecular cues necessary to enforce in vitro differentiation are complex and therefore are not easily identifiable or reproducible [152].

(d) Stress. Architectural and phenotypic diversification in response to stress might be misinterpreted as a true transdifferentiation phenomena. In fact, stem/progenitor cells removed from their natural niche and subsequently grown in a chemical ex vivo environment emit intrinsic (cellular) and chemical stress signals that in turn could lead to cytoskeletal collapse or pseudo-alchemical transitions [25, 26]. Unraveling the mechanisms underlying current successful and failed occurrences of adult stem cell plasticity and transdifferentiation is a complex and speculative undertaking that goes far beyond the scope of this review. Yet, we emphasize caution in interpreting data as spontaneous transitional processes.

It is conceivable that the factors enumerated above are only in part responsible for the variation in results observed in our studies and those of others. In this regard, it was postulated that phenotypic heterogeneity is intrinsic to stem cells because of their asymmetric self-renewal/differentiation potential.
Another critical factor for the commercial and clinical application (potential) of adult stem cells is the development of high-throughput scaling procedures. Today, most strategies to control and manipulate the cellular microenvironment of undifferentiated stem cells and their differentiated progeny are optimized on a laboratory scale. To be of pharmaceutical relevance, miniaturization and scaling up toward industrial needs are obligatory. In this context, bone marrow as source of hMSCs might not be ideal. Indeed, traditional bone marrow procurement procedures are risky for the patient and, in addition, bone marrow is also not readily available and yields only low numbers of multipotent stem cells upon processing [153]. A more easily accessible and readily available source of MSCs is human adipose tissue [75, 77, 78, 154] or human skin. These sources have the additional advantage that they may be obtained from healthy volunteers of diverse ages and gender. For these reasons, the latter alternative MSC sources are currently being explored.

Epigenetic Modification under Discussion?
Another point of interest is the role of epigenetic modifiers, particularly HDACis, in mediating hepatic-conditioned postnatal progenitor cells toward fully functional hepatocytes. In general, epigenetic modifiers affect a broad variety of cellular processes, including cell cycling, differentiation, and apoptosis [155–158]. For example, previous findings in our laboratory indicated that epigenetic alterations may represent a valuable approach to develop phenotypically stable primary hepatocyte cultures. It was revealed that addition of TSA to isolated primary hepatocytes impedes G_0/G_1 cell cycle transition and consequently favors the maintenance of hepatocellular functionality in vitro [155, 156, 158, 159]. Given this principle and the fact that covalent histone modification is central in processes determining lineage-specific gene expression and cell fate decisions [160, 161], we exposed postnatal bone marrow MSCs to TSA to obtain well-functioning mature hepatocytes. Critical factors in this process are onset of exposure, dose, and environmental conditions (cell-cell contact and cell densities) [155, 157, 158] as discussed in the following.

(a) Timing. Timing seems most essential in transdifferentiation processes. In this regard, addition of 1 μM TSA to undifferentiated bone marrow hMSCs and 0- to 5-day conditioned bone marrow hMSCs resulted in massive cell death. On the other hand, hMSCs prestimulated with hepatogenic factors for at least 6 days before addition of 1 μM TSA underwent successful hepatic differentiation. Similar results were found by Seo et al. [79]. The importance of timing is also supported by the significant number of failed transdifferentiation experiments, producing nonhepatocyte-like cells [162–165]. In some cases, failure could be ascribed to inaccurately timing of exposure and determined concentrations.

(b) Dosage. Determination of the HDACi concentration that induces cell cycle arrest is another crucial factor, as the latter is generally a prerequisite for differentiation in vitro [166]. In primary hepatocyte cultures, differentiation and proliferation exclude each other [167]. Concentrations higher than this critical value may result in massive cell death. In preliminary experiments on bone marrow hMSCs, 5–25 μM TSA was found to be cytotoxic whereas 1 μM TSA, added from the 6th day of differentiation on, supported long-term culture and suppression of proliferation. Yet, at the molecular level a rather high apoptotic level was revealed. It was thought to be conceivable that TSA under hepatic-stimulating conditions selectively induced apoptosis of non(hepatic) differentiating cells, and simultaneously promoted the survival of hepatic differentiating cells. Although this is just a hypothesis and thus not based on stated evidence, it does stress the importance of timing and dose optimization of HDACis.

(c) Biotransformation. TSA is metabolically instable and undergoes intensive phase I biotransformation in primary rat hepatocytes [168]. With a 30-min incubation time, virtually all TSA is metabolized into inactive metabolites. It might thus be optional to use HDACi compounds that are more metabolically stable than TSA [169]; however, the latter only becomes an issue when stem cell-derived hepatocytes acquire metabolic activity.

Another point that can be raised here is the fact that HDACis, being modulators of chromatin, are by nature considered to be genotoxic. To date, data available in the literature are scarce. However, the genotoxic factor may have important consequences once one aims to use HDACi/DNMTi-treated hepatocytes in cell therapy or transplantation.

PERSPECTIVES
From the discussion in From Stem Cells to Hepatocytes: Current In Vitro Differentiation Strategies and From Stem Cells to Hepatocytes: Current Characterization Strategies and Their Limitations, it becomes clear that standardization of the production of functional hepatocytes out of postnatal progenitors and improvement of the hepatic potency of the initial progenitor population are tasks for the future. Here we state some ideas that may help to guide future stem cell research.

(a) A precise characterization of the undifferentiated initial cell populations is of utmost importance for future exploitation of stem cell technology. Phenotyping based on surface markers has thus far been insufficient. Instead, characterization should be performed at morphological, molecular, and functional levels. However, if the hypothesis that heterogeneity is inherent to stem cells is true, efforts hereto may be futile. With microarray analysis of gene expression pattern(s) and proteomics we will learn more. It also remains to be clarified whether physiological markers of MSCs and LPCs become lost or undergo changes during isolation and expansion/subculture procedures. Aging and stress during growth and subculture might also affect the phenotype of progenitors [141, 170–173]. Selection of reliable cell surface markers is therefore desirable to accurately isolate, select, and purify well-defined populations of plastic progenitors via FACS. Public accessibility of phenotypic profiling via databases and the Web may facilitate standardization and comparative inter- and intralaboratory studies.

(b) Stem cells differ significantly in their surface receptor expression profiles for cytokines/growth factors at successive developmental stages [8, 27–29, 31–33]. Dosage, timing, and combinations of cytokines/growth factors should thus be fine-tuned according to the differentiated state and type of stem cell involved. The suitability of epigenetics to promote hepatic (trans)differentiation requires a delicate balance between biological activity, pharmacokinetic, and toxicological characteristics; proliferation/differentiation; and finally apoptosis/cell survival. Successful improvement of the hepatocellular phenotype and functional inter- and intralaboratory studies.
Another major consideration is the dichotomy between hepaticoyte proliferation and expression of differentiated functions (overview in [166]). In contrast to the in vivo situation, in which cellular proliferation and differentiation go hand in hand, in vitro differentiation is mostly associated with cell cycle arrest (with the exception of some in vitro cultured LPCs) [102, 103]. Most commonly, cells exit from the cell cycle and then undergo differentiation, resulting in either a terminal, irreversible cell specialization or a particular developmental step in the life cycle [166]. Hence, the dosage and combination of soluble medium additives should be fine-tuned, according to this dichotomy between proliferation and differentiation of the cells.

Finally, in addition to variability at the in vitro level, it should be clarified whether or not the multipotency of stem/progenitor cells significantly depends on the donor’s profile [141, 171, 174]. Simple questions on the effect of age (young or elderly donors), lifestyle (e.g., smokers or nonsmokers), health condition, and other factors should be answered before practical application is considered.

In conclusion, a more scrupulous understanding of the instructive signals emanating from the stem cell niche, together with a deeper analysis of cell-intrinsic mechanisms governing replication versus differentiation-inducing signals, is needed to reliably expand and differentiate stem/progenitor cells. Identification of reliable surface markers, useful for accurate and efficient isolation of plastic progenitor cells may upregulate the current hepaticoyte potential of MSC and eventually serve to construct efficient and standardized devices that enable specific direction of MSCs and other progenitors towards the hepaticoyte lineage. Standardization is, in any case, a sine qua non for prospective preclinical and clinical purposes of stem cells and their differentiated progeny.

ACKNOWLEDGMENTS

This work was supported by the European Community’s Sixth Framework Programme (FP6/2005-2011) under Grant Agreement 037499, the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement 20161, Institut d’encouragement de la Recherche Scientifique et de l’Innovation de Bruxelles (Brustem), and Belgian Science Policy (IAP HEPRO).

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

The authors indicate no potential conflicts of interest.

REFERENCES

1. Theise ND. Gastrointestinal stem cells. III. Emergent themes of liver stem cell biology: niche, quiescence, self-renewal, and plasticity. Am J Physiol Gastrointest Liver Physiol 2006;290:G189-G193.
2. Shafritz DA, Oertel M, Menhenda A et al. Liver stem cells and prospects for liver reconstitution by transplanted cells. Hepatology 2006;43:893-898.
3. Naveiras O, Daley GQ. Stem cells and their niche: a matter of fate. Cell Mol Life Sci 2006;63:760-766.
4. Wilson A, Trump A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006;39:93-106.
5. Parati EA, Pozzi S, Ottolina A et al. Neural stem cells: an overview. Stem Cells 1997;15:305-313.
6. Christiano AM. Epithelial stem cells: stepping out of their niche. Cell 2004;118:530-532.
7. He XC, Zhang J, Tong WG et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-β-catenin signaling. Nat Genet 2004;36:1117-1121.
8. Moore KA, Lemischka IR. Stem cells and their niches. Science 2006;311:1880-1885.
9. Benayahu D, Akavia UD, Shur I. Differentiation of bone marrow stroma-derived mesenchymal cells. Curr Med Chem 2007;14:173-179.
10. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 2004;116:769-778.
11. Koller MR, Manchel I, Palsson BO. Importance of parenchymal/stromal cell ratio for the ex vivo reconstitution of human hematopoiesis. Stem Cells 1997;15:305-313.
12. Zech NH, Shkumatov A, Koestenbauer S. The magic behind stem cells. J Assist Reprod Genet 2007 [Epub ahead of print].
13. Wang X, Willenbring H, Akkari Y et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003;422:897-901.
14. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003;422:901-904.
15. Raff M. Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol 2003;19:1-22.
16. Allison MR, Poulsom R, Otto WR et al. Recipes for adult stem cell plasticity: fusion cuisine or readymade? J Clin Pathol 2004;57:113-120.
Hepatic Potency of Stem Cells: State of the Art

33 Kamiya A, Kinoshita T, Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett 2001;492:90–94.

34 Chinzei R, Tanaka Y, Shimizu-Saito K et al. Embryonic-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 2002;36:22–29.

35 Kui AL, Cong XQ, Li XL et al. Generation of hepatocytes from cultured mouse embryonic stem cells. Liver Transpl 2003;9:1094–1099.

36 Ashina K, Fujimori H, Shimizu-Saito K et al. Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells 2004;9:1297–1308.

37 Kumashiro Y, Teramoto K, Shimizu-Saito K et al. Isolation of hepatocyte-like cells from mouse embryoid body cells. Transplant Proc 2005;37:299–300.

38 Kubo A, Shinozaki K, Shannon JM et al. Development of definitive endoderm from embryonic stem cells in culture. Development 2004;131:1651–1662.

39 Chen Y, Soto-Gutierrez A, Navarro-Alvarez N et al. Instant hepatic differentiation of human embryonic stem cells using activin A and a deleted variant of HGF. Cell Transplant 2006;15:865–871.

40 D’Amour KA, Agucllack AD, Eliason S et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005;23:1534–1541.

41 Ruhnke M, Ungefroren H, Zehle G et al. Long-term culture and differentiation of embryonic stem cells into neural, glial, endothelial, and hepatic lineages. Stem Cells 2003;21:428–436.

42 Tsukada H, Takada T, Shiomi H et al. Acidic fibroblast growth factor promotes hepatic differentiation of monkey embryonic stem cells. In Vitro Cell Dev Biol Anim 2006;42:83–88.

43 Zhou QJ, Xiang LX, Shao JZ et al. Generation of hepatocytes from human embryonic stem cells exhibiting markers of cytochrome P450 expression in murine embryonic stem cell-derived hepatic tissue system. Drug Metab Dispos 2006;34:696–701.

44 Ogawa S, Tagawa T, Kaminoyashi A et al. Crucial roles of mesodermal cell lineages in a murine embryonic stem cell-derived liver in vivo. Development 2005;132:903–913.

45 Hu AB, Cai JY, Zheng QC et al. High-ratio differentiation of embryonic stem cells into hepatocytes in vitro. Liver Int 2004;24:237–245.

46 Agarwal S, Holton KL, Lanza R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells 2008;26:1117–1127.

47 Shiraki N, Ogasawara S, Inada Y et al. Characterization of cytotoxic Cytotoxic expression of embryonic stem cells. Biochim Biophys Acta 2007;1773:1534–1541.

48 Zhou QJ, Xiang LX, Shao JZ et al. Generation of hepatocytes from human embryonic stem cells exhibiting markers of cytochrome P450 expression in murine embryonic stem cell-derived hepatic tissue system. Drug Metab Dispos 2006;34:696–701.

49 Saito K, Yoshikawa M, Ouji Y et al. Promoted differentiation of rat embryonic stem cell-like cells into neuronal, glial, endothelial, and hepatic lineages. Stem Cells 2003;21:428–436.

50 Rambhatla H, Chiu CP, Kundu P et al. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 2003;12:1–11.

51 Chamberlain G, Fox J, Ashton B et al. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007;25:2739–2749.

52 Schwartz RE, Reyes M, Koodie L et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 2002;109:1291–1302.

53 Nykers S, Vanhaecke T, Papeule P et al. Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells. Toxicol Sci 2006;94:330–341.

54 Wang XQ, Zang WJ, Bao LJ et al. Fibroblast growth factor-4 and hepatocyte growth factor induce differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocytes. World J Gastroenterol 2005;11:7461–7465.

55 Shen W, Xiong Y, Liu Z et al. Hepatic differentiation of bone marrow stromal cells: development of in vitro co-culture and intra-portal transplantation models. J Immunol Methods 2005;304:691–695.

56 Li W, Liu SN, Luo DD et al. Differentiation of hepatocytoid cells induced from whole-bone-marrow method isolated rat myeloid mesenchymal stem cells. World J Gastroenterol 2006;12:4866–4869.

57 Tong H, Liao CX, Zhou J et al. Differentiation of transplanted mouse c-Ki-lin bone marrow cells into hepatocytes in vitro. Nan Fang Yi Ke Da Xue Xue Bao 2006;26:567–569.

58 Shi SN, Wei L, Wang JH et al. Hepatic differentiation capability of rat bone marrow-derived mesenchymal stem cells and hematopoietic stem cells. World J Gastroenterol 2004;10:2818–2822.

59 Shi XL, Qu YD, Wu XY et al. In vitro differentiation of mouse bone marrow mononuclear cells into hepatocyte-like cells. Hepatol Res 2005;31:223–231.

60 Li W, Liu SN, Luo DD et al. Differentiation of hepatocytoid cells induced from whole-bone-marrow method isolated rat myeloid mesenchymal stem cells. World J Gastroenterol 2006;12:4866–4869.

61 Wang SH, Gang EJ, Jeong JA et al. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 2005;330:1153–1161.

62 Lee KD, Kuo TK, Whang-Peng J et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 2004;40:1275–1284.

63 Sun SY, Dai H, Leong KW. Hepatic differentiation potential of commercially available human mesenchymal stem cells. Tissue Eng 2006;12:3477–3485.

64 Talens-Visconti R, Bonora A, Rover R et al. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in combination with bone marrow mesenchymal stem cells. World J Gastroenterol 2006;12:5834–5845.

65 Lange C, Bassler P, Lioznov MV et al. Hepatocytic gene expression in cultured rat mesenchymal stem cells. Transplant Proc 2005;37:276–279.

66 Luo Z, Sun Y, Bae Y et al. Differentiation of human adipose stromal cells into hepatocyte lineage in vitro and in vivo. Biochem Biophys Res Commun 2007;350:264–269.

67 Mizuguchi T, Hui T, Palm K et al. Enhanced proliferation and differentiation of rat hepatocytes cultured with bone marrow stromal cells. J Cell Physiol 2001;189:106–119.

68 Okumoto K, Saito T, Hattori E et al. Differentiation of bone marrow cells into cells that express liver-specific genes in vitro: implication of the Notch signals in differentiation. Biochem Biophys Res Commun 2005;324:691–695.

69 Aurich I, Mueller LP, Aurich H et al. Functional integration of functional mesenchymal stem cells into human bone marrow stromal cells. Arch Biochem Biophys 2006;448:273–280.

70 Shirahashi H, Wu J, Yamamoto N et al. Differentiation of human and mouse embryonic stem cells along a hepatocyte lineage. Cell Transplant 2005;14:197–211.

71 Sharma NS, Shukhanovitch R, Schloss R et al. Sodium butyrate-treated embryonic stem cells yield hepatocyte-like cells expressing a glycolytic phenotype. Biotechnol Bioeng 2006;94:1053–1063.

72 Inoue K, Hattori E, Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett 2001;492:90–94.

73 Schwartz RE, Linehan JL, Painschab MS et al. Defined conditions for development of functional hepatic cells from human embryonic stem cells. Stem Cells Dev 2005;14:643–655.

74 Yamamoto H, Quinn G, Asari A et al. Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology 2003;37:983–993.

75 Yamamoto Y, Teratani T, Yamamoto H et al. Recapitulation of in vivo gene expression during hepatic differentiation from murine embryonic stem cells. Hepatology 2005;42:558–567.

76 Shirahashi H, Wu J, Yamamoto N et al. Differentiation of human and mouse embryonic stem cells along a hepatocyte lineage. Cell Transplant 2005;14:197–211.

77 Sharma NS, Shukhanovitch R, Schloss R et al. Sodium butyrate-treated embryonic stem cells yield hepatocyte-like cells expressing a glycolytic phenotype. Biotechnol Bioeng 2006;94:1053–1063.

78 Inoue K, Hattori E, Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett 2001;492:90–94.
84 Snykers S, Vanhaecke T, De Becker A et al. Chromatin remodelling agent trichostatin A is a key-factor in the hepatic differentiation of human mesenchymal stem cells derived from adult bone marrow. BMC Dev Biol 2007;7:24.

85 Mulhem M, Mahmoud M, Lavelle D et al. Modification of hematopoietic stem cell fate by Saza 2-deoxycytidine and trichostatin A. Blood 2004;103:4102–4110.

86 Schmittwolf C, Kirchhof N, Jauch A et al. In vivo haematopoietic activity is induced in neurosphere cells by chromatin-modifying agents. EMBO J 2005;24:554–566.

87 Sgoda M, Aurich H, Kleist S et al. Hepatocyte differentiation of mesenchymal stem cells from rat peritoneal adipose tissue in vitro and in vivo. Exp Cell Res 2007;313(13):2875–2886.

88 Yoshida A, Shimomura T, Sakabe T et al. A role of Wnt/beta-catenin signals in hepatic fate specification of human umbilical cord blood-derived mesenchymal stem cells. Stem J Physiol Gastrointest Liver Phys 2007;293:G1089–G1098.

89 Stock P, Staeg M, Muller LP et al. Hepatocytes derived from adult stem cells. Transplant Proc 2008;40:620–623.

90 Yamazaki S, Miki K, Hasegawa K et al. Sera from liver failure patients and a demethylating agent stimulate transdifferentiation of murine bone marrow cells into hepatocytes in coculture with nonparenchymal liver cells. J Hepatol 2003;39:17–23.

91 De Kock J, Vanhaecke T, Rogiers V et al. Chromatin remodelling, a novel strategy to expedite the hepatic differentiation of adult bone marrow stem cells in vitro, Aatex 2008;14:605–611.

92 Li WL, Su J, Yao YC et al. Isolation and characterization of bipotent liver progenitor cells from adult mouse. Stem Cells 2006;24:322–332.

93 Monga SP, Tang Y, Candotti F et al. Expansion of hepatic and hematopoietic stem cells utilizing mouse embryonic liver explants. Cell Transplant 2007;16:1081–89.

94 Tanimizu N, Nishikawa M, Saito H et al. Isolation of hepatoblasts from oval cell precursors in culture. Cancer Res 1998;58:5514–5522.

95 Skekton T, Cortegano I, Gonzalez P et al. A population of c-KiTa(CD45/TER119)-hepatic cell progenitors of 11-day postconception mouse embryo liver reconstitutes cell-depleted liver organoids. J Clin Invest 2003;112:1152–1163.

96 Feng HC, Bruns H, Hoper C et al. Cell growth and differentiation of different hepatic cell populations isolated from fetal rat liver in vitro. Tissue Eng 2006;12:123–130.

97 Minagut S, Cortegano I, Gonzalez P et al. A population of c-KiTa(CD45/TER119)-hepatic cell progenitors of 11-day postconception mouse embryo liver reconstitutes cell-depleted liver organoids. J Clin Invest 2003;112:1152–1163.

98 Dan YY, Riehle KJ, Lazaro C et al. Isolation of multipotent progenitor cells from adult murine liver. Stem Cells 2003;21:624–631.

99 Fujikawa T, Hirose T, Fuji H et al. Purification of adult hepatic progenitor cells using green fluorescent protein (GFP)-transgenic mice and fluorescence-activated cell sorting. J Hepatol 2003;39:162–170.

100 Liu C, Schreiter T, Dirsch O et al. Presence of markers for liver progenitor cells. Biochim Biophys Acta 2006;1775:1786.

101 He ZP, Tan WQ, Tang YF et al. Activation, isolation, identification and in vitro proliferation of adult hepatic stem cells. Cell Pro- lif 2004;37:177–187.

102 Li W, You P, Wei Q et al. Hepatic differentiation and transcriptional signals in hepatic fate specification of human umbilical cord blood-derived mesenchymal stem cells cultured in the presence of sodium butyrate. J Cell Physiol 1994;161:463–469.

103 Liu C, You P, Wei Q et al. Hepatic differentiation and transcriptional signals in hepatic fate specification of human umbilical cord blood-derived mesenchymal stem cells cultured in the presence of sodium butyrate. J Cell Physiol 1994;161:463–469.

104 Germain L, Blouin MJ, Marceau N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, a cytokeratin, and cell surface-exposed components. Cancer Res 1998;48:4909–4918.

105 Matris PC, Whislet JA, Xu Y et al. C/EBPz is required for lung maturation at birth. Development 2006;133:1155–1164.

106 De Kock J, Vanhaecke T, Rogiers V et al. Chromatin remodelling, a novel strategy to expedite the hepatic differentiation of adult bone marrow stem cells in vitro, Aatex 2008;14:605–611.

107 Strick-Marchand H, Weiss MC. Inducible differentiation and morphology of bipotent liver cell lines from wild-type mouse liver progenitor cells induced by 5aza 2 and trichostatin A: a key-factor in the hepatic differentiation of embryonic liver cells. J Cell Physiol 2007;213:240–249.

108 Li W, You P, Wei Q et al. Hepatic differentiation and transcriptional signals in hepatic fate specification of human umbilical cord blood-derived mesenchymal stem cells cultured in the presence of sodium butyrate. J Cell Physiol 1994;161:463–469.

109 Ott M, Rajvanshi P, Sokhi RP et al. Differentiation-specific regulation of a transgene expression in a diploid epithelial cell line derived from the normal F344 rat liver. J Pathol 1999;187:365–373.

110 Li W, You P, Wei Q et al. Hepatocyte differentiation and transcriptional profile of the mouse liver epithelial progenitor cells (LEPs) under serum-free conditions. Biochim Biophys Acta 2007;1712:1691–1698.

111 Fujikawa T, Hirose T, Fujii H et al. Purification of adult hepatic progenitor cells using green fluorescent protein (GFP)-transgenic mice and fluorescence-activated cell sorting. J Hepatol 2003;39:162–170.

112 Koch KS and Leffert HL. Normal liver progenitor cells in culture. In: Sell S, ed. Stem Cells Handbook. Totowa, NJ: Humana Press, 2004;367–384.

113 Cerec V, Glaise D, Garnier D et al. Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology 2007;35:597–605.

114 Stock P, Staeg M, Muller LP et al. Hepatocytes derived from adult stem cells. Transplant Proc 2008;40:620–623.

115 Li W, You P, Wei Q et al. Hepatocyte differentiation and transcriptional profile of the mouse liver epithelial progenitor cells (LEPs) under serum-free conditions. Biochim Biophys Acta 2007;1712:1691–1698.

116 Koch KS and Leffert HL. Normal liver progenitor cells in culture. In: Sell S, ed. Stem Cells Handbook. Totowa, NJ: Humana Press, 2004;367–384.
139 Kwak DH, Yu K, Kim SM et al. Dynamic changes of gangliosides expression during the differentiation of embryonic and mesenchymal stem cells into neural cells. Exp Mol Med 2006;38:668–676.

140 Park KS, Lee YS, Kang KS. In vitro neuronal and osteogenic differentiation of mesenchymal stem cells from human umbilical cord blood. J Vet Sci 2006;7:343–348.

141 Sethe S, Scott A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev 2006;5:91–116.

142 Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Quigg N, Okohi H, Ochiai T. Adipose tissue-derived stem cells as a source of human hepatocytes. Hepatology 2007;46:219–228.

143 Lysy PA, Campard D, Smets F et al. Persistence of a chromosomal phenotype after hepatocyte differentiation of human bone marrow mesenchymal stem cells. Cell Prolif 2008;41:36–58.

144 Tarnowski M, Koryciak-Komarska H, Czekaj P et al. The comparison of multipotential for differentiation of progenitor mesenchymal-like stem cells obtained from livers of young and old rats. Folia Histochim Cytobiol 2007;45:245–254.

145 Yamamoto Y, Banas A, Murata S et al. A comparative analysis of the transcriptome and signal pathways in hepatic differentiation of human adipose mesenchymal stem cells. FEBS J 2008;275:1260–1273.

146 Bobs S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochim Cytobiol 2006;44:215–230.

147 Digiroamlo CM, Stokes D, Colter D et al. Propagation and senescence of human bone marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999;107:275–281.

148 Beyer NN, da Silva ML. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol 2006;249:282.

149 Phinney DG, Kopen G, Isaacson RL et al. Plastic adherent stromal cells as a source of human mesenchymal stem cells. Stem Cells 2003;21:358–369.

150 Phinney DG, Kopen G, Righter W et al. Donor variation in the purity and function of human mesenchymal stem cells. J Cell Physiol 2004;201:1–16.

151 Kulkarni JS, Khanna A. Functional hepatocyte-like cells derived from mouse embryonic stem cells: a novel in vitro hepatotoxicity model for drug screening. Toxicol In Vitro 2006;20:1014–1022.

152 Teratani T, Yamamoto H, Aoyagi K et al. Direct hepatic fate specification from mouse embryonic stem cells. Hepatology 2005;41:836–846.

153 Gouon-Evans V, Boussemart L, Gadue P et al. BMP-4 is required for hepatic specification of mouse embryonic stem cells: a novel in vitro hepatotoxicity model for drug screening. Toxicol In Vitro 2005;19:404–411.

154 Pan YL, Cai JY, Hu AB. Differentiation of hepatocytes from mouse embryonic stem cells and its significance. Hepatobiol Pancreat Dis Int 2005;4:291–294.

155 Endo M, Toyama Y, Ito C et al. Hepatolblast-like cells enriched from mouse embryonic stem cells in medium without glucose, pyruvate, arginine, and tyrosine. Cell Tissue Res 2008;333:17–27.

156 Soto-Gutierrez A, Navarro-Alvarez N, Rivas-Carrillo JD et al. Differentiation of human embryonic stem cells to hepatocytes using deleted variant of HGF and poly-α-methyl-urethane-coated nonwoven polyethylenefluoroethylene fabric. Cell Transplant 2006;15:335–341.

157 Li L, Sharma N, Chippada U et al. Functional modulation of ES-derived hepatocyte lineage cells via substrate compliance alteration. Ann Biomed Eng 2008;36:865–876.

158 Liu X, Li W, Sun J et al. Hepatic differentiation of embryonic stem cells in HF/organoid culture. Transplant Proc 2008;40:611–613.

159 Magure T, Novik E, Schloss R. Alginate-PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnol Bioeng 2006;93:581–591.

160 Chien CC, Yen BL, Lee FK et al. In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells Dev 2006;15:109–119.

161 Kazemnejad S, Allameh A, Gharibaghian A et al. Efficient replating of fetal bovine serum with human platelet releasate during propagation and differentiation of human bone marrow-derived mesenchymal stem cells to functional hepatocytes-like cells. Vox Sang 2008;95:149–158.

162 Campard D, Lysy PA, Najimi M et al. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 2008;134:833–848.

163 Shi XL, Mao L, Xu BY et al. Optimization of an effective directed differentiation medium for differentiating mouse bone marrow mesenchymal stem cells into hepatocytes in vitro. Cell Biol Int 2008;32:959–965.

164 Ke Z, Zhou F, Wang L et al. Down-regulation of Wnt signaling could promote bone marrow-derived mesenchymal stem cells to...
192 Chen Y, Dong XJ, Zhang GR et al. In vitro differentiation of mouse bone marrow stromal stem cells into hepatocytes induced by conditioned culture medium of hepatocytes. J Cell Biochem 2007;102:52–63.
193 Yin L, Sun M, Ilic Z et al. Derivation, characterization, and phenotypic variation of hepatic progenitor cell lines isolated from adult rats. Hepatology 2002;35:315–324.
194 Jensen CH, Iauho EI, Santoni-Rugiu E et al. Transit-amplifying ductular (oval) cells and their hepatocytic progeny are characterized by a novel and distinctive expression of delta-like protein/preadipocyte factor 1/fetal antigen 1. Am J Pathol 2004;164:1347–1359.
195 Suzuki A, Iwama A, Miyashita H et al. Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. Development 2003;130:2513–2524.
196 Hussain SZ, Strom SC, Kirby MR et al. Side population cells derived from adult human liver generate hepatocyte-like cells in vitro. Dig Dis Sci 2005;50:1755–1763.
197 Herrera MB, Bruno S, Buttiglieri S et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006;24:2840–2850.
198 Isabel Z, Miki B, Einav H et al. Isolation, characterization and culture of Thy1-positive cells from fetal rat livers. World J Gastroenterol 2006;12:3841–3847.

See www.StemCells.com for supporting information available online.