Intuitionistic (λ,μ)-fuzzy subalgebras in CI-algebras

Fengxiao Wang
College of Mathematics and Statistics, Kashi University, Kashi, 844000, China
Email: fxw-hz@126.com

Abstract. The aim of this paper is to introduce the notion of intuitionistic (λ,μ)-fuzzy subalgebras in CI-algebra and to investigate some of their properties. Characterizations of an intuitionistic (λ,μ)-fuzzy subalgebras are provided. It is shown that the intersection and direct product of two intuitionistic (λ,μ)-fuzzy subalgebras of CI-algebra are also intuitionistic (λ,μ)-fuzzy subalgebra.

1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [1], several researches were conducted on the generalizations of the notion of fuzzy sets. The idea of intuitionistic fuzzy sets was first proposed by Atanassov [2,3], as a generalization of the notion of fuzzy sets. Fuzzy sets and intuitionistic fuzzy sets are widely used in various algebraic systems. Only with the membership degrees ranged on the interval [0,1], it is difficult to express the difference of the irrelevant elements from the contrary elements in fuzzy sets. Based on these observations, Lee [4] introduced an extension of fuzzy sets named bipolar-valued fuzzy sets. He gave two kinds of representations of the notion of bipolar-valued fuzzy sets.

In 1966, Imai and Iseki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. A generalization of a BCK-algebra, Kim and Kim [5] introduced the notion of a BE-algebra, and investigated several properties. In [6,7], Ahn and So introduced the notion of ideals in BE-algebras. They gave several descriptions of ideals in BE-algebras. In [8], Seok, Young and Kyoung introduced the notion of fuzzy ideals in BE-algebras, and investigate related properties. In [9], B.L.Meng defined the notion of CI-algebra as a generalization of a BE-algebra. In [10], Kim studied this algebra in detail and some fundamental properties of CI-algebras were discussed and studied in many papers [11,12].

In this paper, we introduce the concept of intuitionistic (λ,μ)-fuzzy subalgebra in CI-algebras, and investigate related properties. It is shown that the intersection and direct product of two intuitionistic (λ,μ)-fuzzy subalgebras of CI-algebra are also intuitionistic (λ,μ)-fuzzy subalgebra.

2. Preliminaries

In this section, we review some basic knowledge of CI-algebra (see, [9,10,11]).

An algebra $(X,\ast,1)$ of type $(2,0)$ is called a CI-algebra if it satisfies the following conditions: (1) $x\ast x = 1$, (2) $1 \ast x = x$, (3) $x \ast (y \ast z) = y \ast (x \ast z)$ for all $x,y,z \in X$.

A relation \leq on a CI-algebra X by $x \leq y$ if and only if $x \ast y = 1$. Let $(X,\ast,1)$ be a CI-algebra. Then for all $x,y \in X$, $(x \ast 1) \ast (y \ast 1) = (x \ast y) \ast 1$, $y \ast ((y \ast x) \ast x) = 1$. A non-empty subset A of a CI-algebra X is said to be a subalgebra of X if for any $x,y \in A$, $x \ast y \in A$.

A fuzzy set in set X is a function $\mu : X \rightarrow [0,1]$ and the complement of μ, denoted by $\overline{\mu}$, is the fuzzy set given by $\overline{\mu}(x) = 1 - \mu(x)$. For $t \in [0,1]$, the set $U(\mu; t) = \{x \in X | \mu(x) \geq t\}$ is called an upper level cut set and $L(\mu; t) = \{x \in X | \mu(x) \leq t\}$ is called a lower level cut set.

Definition 2.1 A fuzzy set μ is called a fuzzy subalgebra of CI-algebra X if it satisfies: for all $x, y \in X$, $\mu(x * y) \geq \mu(x) \land \mu(y)$.

Definition 2.2 A fuzzy set μ is called a (λ, μ)-fuzzy subalgebra of CI-algebra X if it satisfies: for all $x, y \in X$ and $0 \leq \lambda < \mu \leq 1$, $\mu(x * y) \lor \lambda \geq \mu(x) \lor \mu(y) \lor \mu$.

An Intuitionistic fuzzy set (briefly, IFS) A in a nonempty set X is an object having the form $A = \{(x, \alpha_A(x), \beta_A(x)) | x \in X\}$, and $0 \leq \alpha_A(x), \beta_A(x) \leq 1$, $0 \leq \alpha_A(x) + \beta_A(x) \leq 1$ for all $x \in X$.

Definition 2.3 An IFS $A = (\alpha_A, \beta_A)$ of X is called the intuitionistic fuzzy subalgebras of X if it satisfies: for all $x, y, z \in X$,

(1) $\alpha_A(x * y) \geq \alpha_A(x) \land \alpha_A(y)$,
(2) $\beta_A(x * y) \leq \beta_A(x) \lor \beta_A(y)$.

3. Intuitionistic (λ, μ)-fuzzy subalgebras of CI-algebras

In what follows, let X denote a CI-algebra and $0 \leq \lambda < \mu \leq 1$ unless otherwise specified.

Definition 3.1 An IFS $A = (\alpha_A, \beta_A)$ of X is called the intuitionistic (λ, μ)-fuzzy subalgebras of X if it satisfies: for all $x, y \in X$,

(1) $\alpha_A(x * y) \lor \lambda \geq \alpha_A(x) \lor \alpha_A(y) \lor \mu$,
(2) $\beta_A(x * y) \land \mu \leq \beta_A(x) \land \beta_A(y) \lor \lambda$.

Example 3.1 Let $X = \{1, a, b, c\}$ in which $*$ is defined by

*	1	a	b	c
1	1	a	b	c
a	1	1	b	b
b	1	a	1	a
c	1	1	1	1

Then X is a CI-algebra. Let $\alpha_A(1) = \alpha_A(b) = \alpha_A(c) = 1$, $\alpha_A(a) = 0$, $\beta_A(1) = \beta_A(b) = \beta_A(c) = 0$, $\beta_A(a) = 1$, then $A = (\alpha_A, \beta_A)$ is an intuitionistic (λ, μ)-fuzzy subalgebras of X.

If $\alpha_B(1) = \alpha_B(b) = 0.4$, $\alpha_B(a) = \alpha_B(c) = 0.6$, and $\beta_B(1) = \beta_B(b) = 0.6$, $\beta_B(a) = \beta_B(c) = 0.4$, then $B = (\alpha_B, \beta_B)$ is not an intuitionistic (λ, μ)-fuzzy subalgebras of X.

Theorem 3.1 Any intuitionistic fuzzy subalgebras is an intuitionistic (λ, μ)-fuzzy subalgebras of X.

Theorem 3.2 An IFS $A = (\alpha_A, \beta_A)$ is an intuitionistic (λ, μ)-fuzzy subalgebras of X if and only if the fuzzy sets α_A and $\overline{\beta_A}$ are (λ, μ)-fuzzy subalgebra of X.

Proof Let IFS $A = (\alpha_A, \beta_A)$ is an intuitionistic (λ, μ)-fuzzy subalgebras of X, clearly α_A is a (λ, μ)-fuzzy subalgebra of X. For all $x, y \in X$ and $0 \leq \lambda < \mu \leq 1$,

$\overline{\beta_A}(x * y) \lor \lambda = (1 - \beta_A(x * y)) \lor \lambda = 1 - \beta_A(x * y) \lor (1 - \lambda) \leq 1 - \beta_A(x) \lor (1 - \lambda) \lor (1 - \mu)$

$= (1 - \beta_A(x) \lor \beta_A(y)) \lor \mu = (1 - \beta_A(x) \lor (1 - \beta_A(y))) \lor \mu = \overline{\beta_A}(x) \lor \overline{\beta_A}(y) \lor \mu.$

By definition 2.2, it holds that $\overline{\beta_A}$ is a (λ, μ)-fuzzy subalgebra of X.

Conversely, assume that α_A and $\overline{\beta_A}$ are (λ, μ)-fuzzy subalgebras of X, then the (1) of Definition 3.1 is true. For all $x, y \in X$, we have
\[
\beta_A(x*y) \land \mu = (1 - \overline{\beta}_A(x*y)) \land \mu = 1 - \overline{\beta}_A(x*y) \lor (1 - \mu) \leq 1 - \overline{\beta}_A(x) \lor \overline{\beta}_A(y) \lor (1 - \lambda)
\]

\[
= (1 - \overline{\beta}_A(x)) \lor (1 - \overline{\beta}_A(y)) \lor \lambda = \beta_A(x) \land \beta_A(y) \land \lambda.
\]

It follows from Definition 3.1 that \(A = (\alpha_A, \beta_A)\) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebras of \(X\).

Theorem 3.3 An IFS \(A = (\alpha_A, \beta_A)\) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebras of \(X\) if and only if intuitionistic fuzzy sets \((\alpha_A, \overline{\alpha}_A)\) and \((\overline{\beta}_A, \beta_A)\) are intuitionistic \((\lambda, \mu)\)-fuzzy subalgebras of \(X\).

Theorem 3.4 An IFS \(A = (\alpha_A, \beta_A)\) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebras of \(X\) if and only if for all \(s,t \in [0,1]\), the nonempty sets \(U(\alpha_A; t)\) and \(L(\beta_A; s)\) are subalgebras of \(X\).

Proof Let \(A = (\alpha_A, \beta_A)\) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebras of \(X\). For \(a \in [\lambda, \mu]\), if \(x, y \in U(\alpha_A; a)\), then \(\alpha_A(x) \geq a, \alpha_A(y) \geq a\), so \(\alpha_A(x*y) \lor \lambda \geq \alpha_A(x) \land \alpha_A(y) \lor \mu \geq a\). That is \(\alpha_A(x*y) \lor \lambda \geq a\), thus \(x*y \in U(\alpha_A; a)\). Therefore \(U(\alpha_A; t)\) is subalgebra of \(X\).

For all \(b \in [\lambda, \mu]\), if \(x, y \in L(\beta_A; b)\), then \(\beta_A(x) \leq b\) and \(\beta_A(y) \leq b\), which implies that \(\beta_A(x*y) \land \mu \leq \beta_A(x) \lor \beta_A(y) \lor \lambda \leq b\). Hence \(\beta_A(x*y) \leq b\) and \(x*y \in L(\beta_A; b)\). Therefore \(L(\beta_A; s)\) is a subalgebra of \(X\).

Conversely, assume that for each \(s,t \in [\lambda, \mu]\), the nonempty sets \(U(\alpha_A; t)\) and \(L(\beta_A; s)\) are subalgebras of \(X\). If there exist \(a, b \in X\) such that \(\alpha_A(a*b) \lor \lambda < \alpha_A(a) \land \alpha_A(b) \lor \mu\), then takin \(t_0 = (\alpha_A(a*b) \lor \lambda + \alpha_A(a) \land \alpha_A(b) \lor \mu)/2\), we have \(a, b \in U(\alpha_A; t_0)\) and \(a*b \in U(\alpha_A; t_0)\). But \(U(\alpha_A; t_0)\) is a subalgebra of \(X\). This is a contradiction. Hence for all \(x, y \in X\),

\[
\alpha_A(x*y) \lor \lambda < \alpha_A(x) \land \alpha_A(y) \lor \mu.
\]

In the same way, we have for all \(x, y \in X\), \(\beta_A(x*y) \land \mu \leq \beta_A(x) \lor \beta_A(y) \lor \lambda\). Therefore IFS \(A = (\alpha_A, \beta_A)\) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebras of \(X\).

Example 3.2 Let \(X = \{1, a, b, c\}\) in which \(*\) is defined by

	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	a	1	c
c	c	c	c	1

Then \((X, *, 1)\) is a CI-algebra. Let \(\alpha_A(1) = \alpha_A(c) = 0.7, \alpha_A(a) = \alpha_A(b) = 0.2,\) and \(\beta_A(1) = 0.2, \beta_A(c) = 0.2, \beta_A(a) = \beta_A(b) = 0.7\), then \(A\) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebras of \(X\).

Clearly, \(U(\alpha_A; 0.2) = L(\beta_A; 0.7) = \{1, a, b, c\}\) and \(U(\alpha_A; 0.7) = L(\beta_A; 0.2) = \{1, c\}\) are subalgebra of \(X\).

Suppose that \(A = (\alpha_A, \beta_A)\) and \(B = (\alpha_B, \beta_B)\) be two intuitionistic fuzzy sets of \(X\), the intersection \(A \cap B = (\alpha_{A \cap B}, \beta_{A \cap B})\) of \(A\) and \(B\) is defined by

\[
\alpha_{A \cap B}(x) = \alpha_A(x) \land \alpha_B(x), \quad \beta_{A \cap B}(x) = \beta_A(x) \lor \beta_B(x).
\]

Theorem 3.5 Let \(A = (\alpha_A, \beta_A)\) and \(B = (\alpha_B, \beta_B)\) be two intuitionistic \((\lambda, \mu)\)-fuzzy subalgebras of \(X\). Then intersection \(A \cap B\) is also intuitionistic \((\lambda, \mu)\)-fuzzy subalgebra of \(X\).

Proof Assume \(A = (\alpha_A, \beta_A)\) and \(B = (\alpha_B, \beta_B)\) be two intuitionistic fuzzy subalgebras of \(X\), then, for all \(x, y, z \in X\),
\[\alpha_a(x \ast y) \vee \lambda \geq \alpha_a(x) \wedge \alpha_a(y) \wedge \mu, \quad \alpha_b(x \ast y) \vee \lambda \geq \alpha_b(x) \wedge \alpha_b(y) \wedge \mu \]
\[\beta_a(x \ast y) \wedge \mu \leq \beta_a(x) \vee \beta_a(y) \vee \lambda, \quad \beta_b(x \ast y) \wedge \mu \leq \beta_b(x) \vee \beta_b(y) \vee \lambda. \]
Therefore
\[\alpha_{a \ast b}(x \ast y) \vee \lambda = \alpha_a(x \ast y) \wedge \alpha_b(x \ast y) \vee \lambda = (\alpha_a(x \ast y) \vee \lambda) \wedge (\alpha_b(x \ast y) \vee \lambda) \]
\[\geq (\alpha_a(x) \wedge \alpha_a(y) \wedge \mu) \wedge (\alpha_b(x) \wedge \alpha_b(y) \wedge \mu) \]
\[= (\alpha_a(x) \wedge \alpha_b(x)) \wedge (\alpha_a(y) \wedge \alpha_b(y)) \wedge \mu = \alpha_{a \ast b}(x) \wedge \alpha_{a \ast b}(y) \wedge \mu. \]
\[\beta_{a \ast b}(x \ast y) \wedge \mu = \beta_a(x \ast y) \vee \beta_b(x \ast y) \wedge \mu = (\beta_a(x \ast y) \vee \lambda) \wedge (\beta_b(x \ast y) \wedge \mu) \]
\[\leq (\beta_a(x) \vee \beta_a(y) \vee \lambda) \wedge (\beta_b(x) \vee \beta_b(y) \vee \lambda) \]
\[= (\beta_a(x) \vee \beta_b(x)) \vee (\beta_a(y) \vee \beta_b(y)) \vee \lambda = \beta_{a \ast b}(x) \vee \beta_{a \ast b}(y) \vee \lambda. \]
Hence \(A \cap B \) is also intuitionistic \((\lambda, \mu)\)-fuzzy subalgebra of \(X \).

Theorem 3.6 Let \(f \) be an endomorphism of \(X \). If \(A = (\alpha_a, \beta_a) \) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebra of \(X \). Then \((\alpha'_a, \beta'_a)\) is also intuitionistic \((\lambda, \mu)\)-fuzzy subalgebra of \(X \). Where \(\alpha'_a(x) = \alpha_a(f(x)) \) and \(\beta'_a(x) = \beta_a(f(x)) \).

Proof Assume \(f \) be an endomorphism of \(X \), then for \(x, y \in X \), \(f(x \ast y) = f(x) \ast f(y) \). If \(A = (\alpha_a, \beta_a) \) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebra of \(X \), then
\[\alpha'_a(x \ast y) \vee \lambda = \alpha_a(f(x \ast y)) \vee \lambda = \alpha_a(f(x) \ast f(y)) \vee \lambda \]
\[\geq \alpha_a(f(x)) \wedge \alpha_a(f(y)) \wedge \mu = \alpha'_a(x) \wedge \alpha'_a(y) \wedge \mu, \]
and
\[\beta'_a(x \ast y) \wedge \mu = \beta_a(f(x \ast y)) \wedge \mu = \beta_a(f(x) \ast f(y)) \wedge \mu \]
\[\leq \beta_a(f(x)) \vee \beta_a(f(y)) \vee \lambda = \beta'_a(x) \vee \beta'_a(y) \vee \lambda. \]
It follows from Definition3.1 that \((\alpha'_a, \beta'_a)\) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebra of \(X \).

Theorem 3.7 Let \(f : X \to Y \) be an epimorphism of CI-algebras. If \(A = (\alpha_a, \beta_a) \) is an intuitionistic fuzzy set in \(Y \). Then \(B = (\alpha'_a, \beta'_a) \) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebra of \(X \) if and only if \(A = (\alpha_a, \beta_a) \) is an intuitionistic fuzzy \((\lambda, \mu)\)-fuzzy subalgebra of \(Y \).

Proof For any \(y_1, y_2 \in Y \), there exists \(x_1, x_2 \in X \) such that \(f(x_1) = y_1 \) and \(f(x_2) = y_2 \). Then
\[\alpha_a(y_1 \ast y_2) \vee \lambda = \alpha_a(f(x_1) \ast f(x_2)) \vee \lambda = \alpha_a(f(x_1 \ast x_2)) \vee \lambda \]
\[= \alpha'_a(x_1 \ast x_2) \vee \lambda \geq \alpha'_a(x_1) \wedge \alpha'_a(x_2) \wedge \mu \]
\[= \alpha_a(f(x_1)) \wedge \alpha_a(f(x_2)) \wedge \mu = \alpha_a(y_1) \wedge \alpha_a(y_2) \wedge \mu. \]
\[\beta_a(y_1 \ast y_2) \wedge \mu = \beta_a(f(x_1) \ast f(x_2)) \wedge \mu = \beta_a(f(x_1 \ast x_2)) \wedge \mu \]
\[= \beta'_a(x_1 \ast x_2) \wedge \mu \leq \beta'_a(x_1) \vee \beta'_a(x_2) \vee \lambda \]
\[= \beta_a(f(x_1)) \vee \beta_a(f(x_2)) \vee \lambda = \beta_a(y_1) \vee \beta_a(y_2) \vee \lambda. \]
Therefore \(A = (\alpha_a, \beta_a) \) is an intuitionistic fuzzy \((\lambda, \mu)\)-fuzzy subalgebra of \(Y \).
Conversely, for any \(x_1, x_2 \in X \), there exists \(y_1, y_2 \in Y \) such that \(f(x_1) = y_1 \) and \(f(x_2) = y_2 \). Then
\[\alpha'_a(x_1 \ast x_2) \vee \lambda = \alpha_a(f(x_1 \ast x_2)) \vee \lambda = \alpha_a(f(x_1) \ast f(x_2)) \vee \lambda \]
\[= \alpha_a(y_1 \ast y_2) \vee \lambda \geq \alpha_a(y_1) \wedge \alpha_a(y_2) \wedge \mu \]
\[= \alpha_A(f(x_1)) \wedge \alpha_A(f(x_2)) \wedge \mu = \alpha_A(f(x_1)) \wedge \alpha_A(f(x_2)) \wedge \mu.\]

\[\beta_A'(x_1 \ast x_2) \wedge \mu = \beta_A'(f(x_1 \ast x_2)) \wedge \mu = \beta_A'(f(x_1) \ast f(x_2)) \wedge \mu\]

\[= \beta_A(y_1 \ast y_2) \wedge \mu \leq \beta_A(y_1) \vee \beta_A(y_2) \vee \lambda\]

\[= \beta_A(f(x_1)) \vee \beta_A(f(x_2)) \vee \lambda = \beta_A'(x_1) \vee \beta_A'(x_2) \vee \lambda.\]

It follows from Definition 3.1 that \(B = (\alpha_A', \beta_A')\) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebra of \(X\).

Theorem 3.8 Let \(f : X \to Y\) be an epimorphism of CI-algebras. If \(A = (\alpha_A, \beta_A)\) is an intuitionistic fuzzy set in \(X\). If \(A = (\alpha_A, \beta_A)\) is an intuitionistic fuzzy \((\lambda, \mu)\)-fuzzy subalgebra of \(X\). Then \(f(A) = (\alpha_{f(A)}, \beta_{f(A)})\) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebra of \(Y\). Where

\[\alpha_{f(A)}(y) = \sup \{\alpha_A(x) \mid f(x) = y\}\]

and \(\beta_{f(A)}(y) = \inf \{\beta_A(x) \mid f(x) = y\}\).

Proof Suppose that \(A = (\alpha_A, \beta_A)\) is an intuitionistic fuzzy \((\lambda, \mu)\)-fuzzy subalgebra of \(X\) and \(f : X \to Y\) be an epimorphism of CI-algebras. Then for any \(y_1, y_2 \in Y\), there exists \(x_1, x_2 \in X\) such that \(f(x_1) = y_1\) and \(f(x_2) = y_2\). Then

\[\alpha_{f(A)}(y_1 \ast y_2) \vee \lambda = \sup \{\alpha_A(x_1 \ast x_2) \mid f(x_1 \ast x_2) = y_1 \ast y_2\} \vee \lambda\]

\[= \sup \{\alpha_A(x_1 \ast x_2) \wedge \lambda \mid f(x_1) \ast f(x_2) = y_1 \ast y_2\}\]

\[= \sup \{\alpha_A(x_1 \ast x_2) \wedge \lambda \mid f(x_1) = y_1, f(x_2) = y_2\}\]

\[\geq \sup \{\alpha_A(x_1) \wedge \alpha_A(x_2) \wedge \mu \mid f(x_1) = y_1, f(x_2) = y_2\}\]

\[= \sup \{\alpha_A(x_1) \wedge \alpha_A(x_2) \mid f(x_1) = y_1, f(x_2) = y_2\} \wedge \mu\]

\[= (\sup \{\alpha_A(x_1) \mid f(x_1) = y_1\}) \wedge (\sup \{\alpha_A(x_2) \mid f(x_2) = y_2\}) \wedge \mu\]

\[= \alpha_{f(A)}(y_1) \wedge \alpha_{f(A)}(y_2) \wedge \mu.\]

\[\beta_{f(A)}(y_1 \ast y_2) \wedge \mu = \inf \{\beta_A(x_1 \ast x_2) \mid f(x_1 \ast x_2) = y_1 \ast y_2\} \wedge \mu\]

\[= \inf \{\beta_A(x_1 \ast x_2) \wedge \mu \mid f(x_1) \ast f(x_2) = y_1 \ast y_2\}\]

\[= \inf \{\beta_A(x_1 \ast x_2) \wedge \mu \mid f(x_1) = y_1, f(x_2) = y_2\}\]

\[\leq \inf \{\beta_A(x_1) \vee \beta_A(x_2) \mid f(x_1) = y_1, f(x_2) = y_2\} \vee \lambda\]

\[= \inf \{\beta_A(x_1) \vee \beta_A(x_2) \mid f(x_1) = y_1, f(x_2) = y_2\} \vee \lambda\]

\[= (\inf \{\beta_A(x_1) \mid f(x_1) = y_1\}) \vee (\inf \{\beta_A(x_2) \mid f(x_2) = y_2\}) \vee \lambda\]

\[= \beta_{f(A)}(y_1) \vee \beta_{f(A)}(y_2) \vee \lambda.\]

Then \(f(A) = (\alpha_{f(A)}, \beta_{f(A)})\) is an intuitionistic \((\lambda, \mu)\)-fuzzy subalgebra of \(Y\).

In the following, the Cartesian product of intuitionistic \((\lambda, \mu)\)-fuzzy subalgebras are defined and some results are discussed.

Theorem 3.9 Let \(X\) be CI-algebra and Cartesian product of \(X\) is \(X \times X = \{(x, y) \mid x \in X, y \in X\}\). Then \((X \times X, \circ, (1, 1))\) is also a CI-algebra under the binary operation \(\circ\) defined by

\[(a, b) \circ (c, d) = (a \ast c, b \ast d)\]

for all \((a, b), (c, d) \in X \times X\).

Definition 3.2 Let \(A = (\alpha_A, \beta_A)\) and \(B = (\alpha_B, \beta_B)\) are intuitionistic fuzzy set of \(X\). The Cartesian product \(A \times B = (\alpha_{A \times B}, \beta_{A \times B})\) of \(A\) and \(B\) is defined by

\[\alpha_{A \times B}(x, y) = \alpha_A(x) \wedge \alpha_B(y),\]

\[\beta_{A \times B}(x, y) = \beta_A(x) \vee \beta_B(y),\]

for all \((x, y) \in X \times X\).
Theorem 3.10 Let $A = (\alpha_A, \beta_A)$ and $B = (\alpha_B, \beta_B)$ are intuitionistic (λ, μ)-fuzzy subalgebras of X. Then the Cartesian product $A \times B$ of A and B is an intuitionistic (λ, μ)-fuzzy subalgebra of CI-algebra $(X \times X, o, (1,1))$.

Let $(X, \ast, 1)$ and $(Y, \ast, 1)$ be two CI-algebras and $A \times B = (\alpha_{A \times B}, \beta_{A \times B})$ be an intuitionistic fuzzy set of $X \times Y$. Define $\tilde{A} = (\alpha_A, \beta_A)$ and $\tilde{B} = (\alpha_B, \beta_B)$ by
\[
\alpha_A(x) = \sup_{z \in Y} \alpha_{A \times B}(x, z), \quad \beta_A(x) = \inf_{z \in Y} \beta_{A \times B}(x, z), \quad \alpha_B(y) = \sup_{z \in X} \alpha_{A \times B}(z, y), \quad \beta_B(y) = \inf_{z \in X} \beta_{A \times B}(z, y).
\]

Theorem 3.11 Let $A \times B = (\alpha_{A \times B}, \beta_{A \times B})$ be an intuitionistic fuzzy set of CI-algebra $(X \times Y, o, (1,1))$. Then $\tilde{A} = (\alpha_A, \beta_A)$ is an intuitionistic (λ, μ)-fuzzy subalgebra of X.

Proof (1) For all $x_1, x_2 \in X$, since $A \times B = (\alpha_{A \times B}, \beta_{A \times B})$ be an intuitionistic fuzzy set of CI-algebra $(X \times X, o, (1,1))$, then
\[
\begin{align*}
\alpha_A(x_1 \ast x_2) \vee \lambda &= \sup_{z_1, z_2 \in Y} \alpha_{A \times B}(x_1, z_2, z) \vee \lambda = \sup_{z_1, z_2 \in Y} \alpha_{A \times B}(x_1 \ast x_2, z_1) \vee \mu \\
&= \sup_{z_1, z_2 \in Y} \alpha_{A \times B}(x_1, z_2, z) \vee \lambda \geq \sup_{z_1, z_2 \in Y} \alpha_{A \times B}(x_1, z_1) \wedge \alpha_{A \times B}(x_2, z_2) \wedge \mu \\
&= (\sup_{z_1, z_2 \in Y} \alpha_{A \times B}(x_1, z_1)) \wedge (\sup_{z_1, z_2 \in Y} \alpha_{A \times B}(x_2, z_2)) \wedge \mu = \alpha_A(x_1) \wedge \alpha_A(x_2) \wedge \mu.
\end{align*}
\]

Therefore $\tilde{A} = (\alpha_A, \beta_A)$ is an intuitionistic (λ, μ)-fuzzy subalgebra of X.

(2) For all $y_1, y_2 \in Y$, since $A \times B = (\alpha_{A \times B}, \beta_{A \times B})$ be an intuitionistic fuzzy set of CI-algebra $(X \times Y, o, (1,1))$, then
\[
\begin{align*}
\alpha_B(y_1 \ast y_2) \vee \lambda &= \sup_{z \in X} \alpha_{A \times B}(z, y_1 \ast y_2) \vee \lambda = \sup_{z \in X} \alpha_{A \times B}(z \ast y_2, y_1) \vee \lambda \\
&= \sup_{z \in X} \alpha_{A \times B}(z \ast y_2, y_1) \vee \lambda \\
&\leq \sup_{z \in X} \alpha_{A \times B}(z, y_1) \wedge \alpha_{A \times B}(z, y_2) \wedge \mu \\
&= (\sup_{z \in X} \alpha_{A \times B}(z, y_1)) \wedge (\sup_{z \in X} \alpha_{A \times B}(z, y_2)) \wedge \mu = \alpha_B(y_1) \wedge \alpha_B(y_2) \wedge \mu.
\end{align*}
\]

Therefore $\tilde{B} = (\alpha_B, \beta_B)$ is an intuitionistic (λ, μ)-fuzzy subalgebra of Y.

Hence $\tilde{B} = (\alpha_B, \beta_B)$ is an intuitionistic (λ, μ)-fuzzy subalgebra of Y.

6
Theorem 3.12 Let $A \times B = (\alpha_{A \times B}, \beta_{A \times B})$ be an intuitionistic fuzzy set of CI-algebra $(X \times Y, \circ, (1,1))$. Then

1. α_A and $\beta_A = 1 - \beta_A$ are (λ, μ)-fuzzy subalgebra of X.
2. α_B and $\beta_B = 1 - \beta_B$ are (λ, μ)-fuzzy subalgebra of Y.

4. Conclusions
In this paper, the notion of intuitionistic (λ, μ)-fuzzy subalgebras in CI-algebra are introduced. Some of their properties are investigated. Some properties of intuitionistic (λ, μ)-fuzzy subalgebras in CI-algebra are obtained. In our opinion, these definitions and main results can be similarly extended to some other algebraic systems.

Acknowledgment
This research was supported by the Xinjiang National Science Foundation (2018D01A02).

References
[1] Zadeh L A 1965 Fuzzy sets Inform. control 8 338-353
[2] Atanassov K T 1986 Intuitionistic fuzzy sets Fuzzy sets and systems 20 87-96
[3] Atanassov K T 1994 New operations defined over the intuitionistic fuzzy sets Fuzzy sets and systems 61 137-142
[4] Lee K M 2000 Bipolar-valued fuzzy sets and their operations Proc. Int. Conf. on Intelligent Technologies Bangkok Thailand 307–312
[5] Kim H S and Kim Y H 2007 On BE-algebras Sci. Math. Jpn. 66 113-116
[6] Ahn S S and So K S 2008 On ideals and upper sets in BE-algebras Sci. Math. Jpn 2 279-285
[7] Ahn S S and Ko J M 2012 Filters in commutative BE-algebras Commun. Korean Math. Soc. 27 233-242
[8] Song S Z, Jun Y B and Lee K J 2010 Fuzzy ideals in BE-algebras. Bull. Malays. Math. Sci. Soc. 33 147-153
[9] Meng B L 2009 CI-algebra Sci. Math. Jpn. Online e-2009 695-701
[10] Kim K H 2011 A note on CI-algebras Int. Math. Forum 6(1) 1-5
[11] Pickart B and Walendziak A 2011 On filters and upper sets in CI-algebras Algebra Discrete Math. 11 109-115
[12] Rezaei A and Borumand Saeid A 2011 On fuzzy subalgebras of BE-algebras Afrika Matematika 22 115-127