Partial quark-lepton universality
and neutrino CP violation

Jiajun Liao¹, D. Marfatia², and K. Whisnant¹

¹Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
²Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA

Abstract

We study a model with partial quark-lepton universality that can naturally arise in grand unified theories. We find that constraints on the model can be reduced to a single condition on the Dirac CP phase δ in the neutrino sector. Using our current knowledge of the CKM and PMNS mixing matrices, we predict $-32.4^\circ \leq \delta \leq 32.0^\circ$ at 2σ.
1 Introduction

Our understanding of neutrinos has progressed steadily in the last two decades. After the observation of nonzero θ_{13} by the Daya Bay [1], RENO [2], and Double Chooz [3] experiments, we now know the three mixing angles θ_{12}, θ_{23}, and θ_{13}, and the two mass squared differences to good precision. For the normal hierarchy, current 2σ ranges of the three mixing angles from a global three-neutrino oscillation analysis are [4]

$$\theta_{12} = 33.7^{+2.1}_{-2.1}(°) , \quad \theta_{23} = 41.4^{+6.6}_{-2.6}(°) , \quad \theta_{13} = 8.80^{+0.73}_{-0.77}(°) . \quad (1)$$

The focus of next generation neutrino oscillation experiments is shifted to the Dirac CP phase δ and the neutrino mass hierarchy. Predictions of the many theoretical models designed to explain the observed mixing patterns await verification. Among these models, quark-lepton universality (QLU) [5] is well-motivated. It is based on simple relations in Grand Unified Theories (GUT) and connects the mixing matrices of quarks and leptons. Exact quark-lepton universality leads to a symmetric PMNS mixing matrix. However, using the current 3σ ranges of the oscillation parameters [4], we find the moduli of the neutrino mixing matrix elements are

$$|V_{PMNS}| = \begin{pmatrix}
0.789 - 0.853 & 0.501 - 0.594 & 0.133 - 0.172 \\
0.195 - 0.557 & 0.411 - 0.733 & 0.602 - 0.784 \\
0.196 - 0.557 & 0.411 - 0.733 & 0.602 - 0.784
\end{pmatrix}. \quad (2)$$

We see that the exactly symmetric PMNS mixing matrix is disfavored by current data. This aspect of the PMNS matrix with $V_{PMNS} = V_{PMNS}^T$ or $V_{PMNS} = V_{PMNS}^\dagger$ has been studied in Ref. [6].

In this Letter, we discuss partial quark-lepton universality [5], which does not require the unitary matrices that diagonalize the upper and lower components of the weak doublets to be the same. Partial QLU can naturally arise in SO(10) models while exact quark-lepton universality may require a larger quark-lepton symmetry than is contained in SO(10). We find that partial QLU fits the current data very well and we can make a prediction for the unknown Dirac CP phase.

In Section 2, we review partial quark-lepton universality and discuss renormalization group effects on the model. In Section 3, we discuss the phenomenological results of this model and predict the Dirac CP phase. We conclude in Section 4.

2 Partial quark-lepton universality

Partial quark-lepton universality can be derived from some simple relations in grand unified theories [5]. The minimal version of SU(5) implies

$$M_l = M_d^T , \quad (3)$$

and

$$M_u = M_u^T , \quad (4)$$
where M_l, M_u, and M_d are the mass matrices of the charged-leptons, up-type quarks and down-type quarks, respectively. If we assume M_d is Hermitian, which can be achieved by imposing left-right symmetry, then from Eq. (3) we know that both the down-type quarks and charged-leptons can be diagonalized by a unitary matrix V,

$$V^\dagger M_d V = D_d, \quad V^T M_l V^* = D_l.$$ (5)

Also, in some SO(10) models, we have

$$M_u = \alpha M_{\nu D} = \beta M_R,$$ (6)

where $M_{\nu D}$ is the Dirac neutrino mass matrix, M_R is the right-handed Majorana neutrino mass matrix, and α and β are proportionality constants; then from Eq. (4) we see that both the upper components of the weak doublets and the right-handed neutrinos can be diagonalized by a unitary matrix V',

$$V'^\dagger M_u V'^* = D_u, \quad V'^\dagger M_{\nu D} V'^* = D_{\nu D}, \quad V'^\dagger M_R V'^* = D_R.$$ (7)

Below the seesaw scale, the light neutrino mass matrix, $M_\nu = -M_{\nu D}M_R^{-1}M_{\nu D}^T$, is also diagonalized by V', i.e.,

$$V'^\dagger M_\nu V'^* = D_\nu.$$ (8)

From Eqs. (5), (7) and (8), we can find that the observable mixing matrices are related by

$$V_{CKM} = V'^{\dagger} V,$$ (9)

and

$$V_{PMNS} = V^T V'.$$ (10)

Note that this ansatz is based on the simple assumptions Eqs. (3), (4), (6) and the Hermiticity of M_d. These conditions can naturally arise in an SO(10) scheme with the superpotential terms [5],

$$W_d = \frac{f_{ij}}{M}(16_i^T B \Gamma_\mu H)(H'^T B \Gamma_\mu 16_j) + \frac{f'_{ij}}{M}(16_i^T B \Gamma_\mu H')(H'^T B \Gamma_\mu 16_j)$$ (11)

and

$$W_u = g_{ij}(16_i^T B \Gamma_{\mu\nu\lambda\sigma\rho} 16_j) \Phi^{\mu\nu\lambda\sigma\rho},$$ (12)

where H, H' are 16-plet Higgses, Φ is a 126-plet Higgs, B is a charge conjugation matrix in SO(10), i and j are generation indices, and $\mu, \nu, \lambda, \sigma, \rho$ are SO(10) indices. The Lorentz indices and the standard charge conjugation matrix are suppressed. The H and H' contain neutral fields with the quantum numbers of ν and ν^c, so that the vacuum expectation value for ν^c breaks SO(10) while SU(5) remains preserved. By imposing an
additional symmetry, $16 \rightarrow 16^*$, $H \rightarrow H'^*$, which leads to $f_{ij} \rightarrow f'_{ij}^*$, a Hermitian M_d can be obtained.

For exact quark-lepton universality, we must have $V' = V$, which requires a large quark-lepton symmetry that is not easily realized in SO(10) [5]. Also, the relation $V' = V$ indicates that $V_{CKM} = I$ and the V_{PMNS} mixing matrix is symmetric, which is disfavored by current data. In the next section, we show that partial quark-lepton universality is still allowed by current data.

Current data that determine the CKM and PMNS mixing matrices are measured at low energies, while the quark-lepton universality relations are realized at the grand unification scale. In order to use current data to analyze the model, we must consider renormalization group (RG) effects. For the CKM matrix, the RG effects are very small, i.e., the next order relative corrections of the CKM matrix are of the order λ^5 [7], where $\lambda = 0.225$. The RG effects in the neutrino sector are strongly dependent on the mass spectrum of the light neutrinos. For the inverted and quasi-degenerate mass hierarchies, the effects can be large [8]. However, from Eq. (6) we know that quark-lepton universality implies that the light neutrinos are very hierarchical with the normal mass spectrum. In this case, RG effects on the three angles are very small [9], e.g., $\delta \theta_{23} \sim 0.6^\circ$, $\delta \theta_{13} \sim 0.2^\circ$ and $\delta \theta_{12} \sim 0.8^\circ$ in the MSSM if the lightest neutrino mass is 0.01 eV. Since current uncertainties in the three angles are larger than the RG effects, we neglect the RG effects in our analysis.

3 Phenomenology

Partial QLU predicts the two observable mixing matrices to have the form of Eqs. (9) and (10), which can be rewritten as

$$V_{PMNS}V_{CKM} = V^TV, \quad (13)$$

and

$$V'^*_{CKM}V_{PMNS} = V'^TV'. \quad (14)$$

Hence, in order for the model to work, both $V_{PMNS}V_{CKM}$ and $V'^*_{CKM}V_{PMNS}$ should be symmetric. Solutions for V and V' will always exist because if $V'^*_{CKM}V_{PMNS}$ is symmetric, then it can be diagonalized by a unitary matrix U_s, i.e., $U_s^TV'^*_{CKM}V_{PMNS}U_s = D$, where D is diagonal. This means that we can find the solution, $V' = \sqrt{D}U_s^\dagger$. However, the two constraints are not independent. If $V_{PMNS}V_{CKM}$ is symmetric, then by diagonalizing it we can easily determine V, and then if we define $V' = VV_{CKM}^\dagger$, it follows that $V'^TV' = V'^*_{CKM}V_{PMNS}$, and $V'^*_{CKM}V_{PMNS}$ would be symmetric, too.

Although solutions for V and V' exist, they are not unique. We can always insert a combination of a real rotation matrix R^TR into the middle of the right-handed side of Eq. (13) or (14), and since $R^TR = I$, the equation will not change. This can also be seen from Eqs. (9) and (10). For any real rotation matrix R, RV and RV' are also unitary, hence if we let $V \rightarrow RV$ and $V' \rightarrow RV'$, the two observable mixing matrices will stay the same.
Now if we define

$$U = V_{CKM}^* V_{PMNS},$$

(15)

then the only constraint from the model is that U is symmetric. Since both V_{CKM} and V_{PMNS} are unitary matrices, U is also unitary. For a 3×3 unitary matrix, it can be shown that U being symmetric is equivalent to the moduli of U being symmetric under phase redefinition [10]. This constraint still imposes three conditions: $|U_{12}| = |U_{21}|$, $|U_{13}| = |U_{31}|$, and $|U_{23}| = |U_{32}|$. However, the conditions are not independent. Since U is unitary, $|U_{11}|^2 + |U_{12}|^2 + |U_{13}|^2 = |U_{11}|^2 + |U_{21}|^2 + |U_{31}|^2$, hence $|U_{12}| = |U_{21}|$ indicates $|U_{13}| = |U_{31}|$ and vice versa. Similarly, $|U_{23}| = |U_{32}|$ is equivalent to $|U_{13}| = |U_{31}|$. Therefore, there is only one independent condition that constrains the model. Here we choose it to be $|U_{13}| = |U_{31}|$.

The CKM matrix can be written in terms of the Wolfenstein parameters [11] as,

$$V_{CKM} = \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + O(\lambda^4),$$

(16)

and the PMNS matrix can be written in the standard form, which is

$$V_{PMNS} = \begin{bmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix},$$

(17)

where c_{ij}, s_{ij} denotes $\cos \theta_{ij}$ and $\sin \theta_{ij}$ respectively, and Majorana phases are not included. From Eq. (15), we can see the condition $|U_{13}| = | U_{31}|$ becomes

$$|(1 - \lambda^2/2)s_{13}e^{-i\delta} + \lambda s_{23}c_{13} + c_{23}c_{13}A\lambda^3(\rho + i\eta)| = |A\lambda^3(1 - \rho + i\eta)c_{13}c_{12} + A\lambda^2(s_{12}c_{23} + c_{12}s_{23}s_{13}e^{i\delta}) + s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} + O(\lambda^4)|.$$

(18)

Keeping in mind that $\sin \theta_{13} < \lambda$, the $\lambda^2 s_{13}^2$ and $\lambda^3 s_{13}$ terms can be neglected since they are of the same order of magnitude as the terms dropped in the Wolfenstein parametrization. Then we get a simple expression for the cosine of the Dirac CP phase:

$$\cos \delta = \frac{s_{12}^2 s_{23}^2 + c_{12}^2 c_{23}^2 s_{13}^2 - s_{13}^2 - \lambda^2 B}{2s_{23}c_{23}s_{12}c_{13}s_{13} + 2\lambda s_{23}c_{13}s_{13} + 2A\lambda^2 s_{12}c_{12}(c_{23}^2 - s_{23}^2)s_{13}} + O(\lambda^4),$$

(19)

where $B = s_{23}^2 c_{13}^2 - 2A s_{12}^2 c_{23}^2 s_{23} - 2A\lambda(1 - \rho)c_{12}c_{23}s_{13}$. We see that for very small θ_{13} the numerator of the above equation is always larger than the denominator, so that there is no solution for δ. Hence partial quark-lepton universality prefers rather large θ_{13}.

Using the currently favored CKM [12] and PMNS [4] parameters with their respective uncertainties, and solving the condition $|U_{13}| = |U_{31}|$ numerically without any approximation, we find the Dirac CP phase δ in the PMNS matrix to lie between -32.4° and 32.0° at 2σ. The asymmetry around 0 is due to the small CP violation in the CKM matrix, which does not enter the approximate result in Eq. (19).

We also find predictions for each mixing angle versus δ given the best-fit values and 2σ allowed regions of the other two mixing angles and the CKM parameters. The results
are shown in Fig. 1. With the constraints from the other two mixing angles and the CKM parameters, we find that $\theta_{23} < 48.3^\circ$, $\theta_{12} < 36.3^\circ$ and $\theta_{13} > 7.64^\circ$ at 2σ. The partial QLU model is perfectly consistent with current data, and rather large θ_{13} is strongly favored for the measured solar and atmospheric mixing angles.

A measurement of δ by future long baseline neutrino oscillation experiments will provide a stringent test of the viability of the partial quark-lepton universality model.

4 Conclusion

We studied partial quark-lepton universality, which can naturally arise in grand unified theories. Constraints on the model can be reduced to one simple condition, $|U_{13}| = |U_{31}|$. Dropping terms of order λ^4 from this condition, we find a simple expression for the Dirac CP phase δ in the neutrino sector. We also studied the allowed parameter regions of the model numerically. Our prediction that δ lies within the range $[-32.4^\circ, 32.0^\circ]$ at the 2σ level, will be tested by future long baseline neutrino experiments.

Acknowledgements

This research was supported by the U.S. Department of Energy grant No. de-sc0010504.
Figure 1: The 2σ allowed regions (shaded bands) in the (δ, θ_{13}), (δ, θ_{12}), and (δ, θ_{23}) planes using measurements (with uncertainties) of the other two neutrino mixing angles and the CKM parameters. The solid curves within the shaded bands are the model predictions for the best-fit values of the other two mixing angles and the CKM parameters. The horizontal solid lines mark the best-fit values and the horizontal dashed lines mark the 2σ limits of θ_{23}, θ_{12} and θ_{13}.
References

[1] F. P. An et al. [DAYA-BAY Collaboration], Phys. Rev. Lett. 108, 171803 (2012) \(\text{arXiv:1203.1669 [hep-ex]}\); \(\text{arXiv:1210.6327 [hep-ex]}\).

[2] J. K. Ahn et al. [RENO Collaboration], Phys. Rev. Lett. 108, 191802 (2012) \(\text{arXiv:1204.0626 [hep-ex]}\).

[3] Y. Abe et al. [Double Chooz Collaboration], \(\text{arXiv:1301.2948 [hep-ex]}\).

[4] F. Capozzi, G. L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, \(\text{arXiv:1312.2878 [hep-ph]}\).

[5] A. S. Joshipura and A. Y. Smirnov, Nucl. Phys. B 750, 28 (2006) \(\text{hep-ph/0512024}\).

[6] K. A. Hochmuth and W. Rodejohann, Phys. Lett. B 644, 147 (2007) \(\text{hep-ph/0611030}\); Y. BenTov and A. Zee, Phys. Lett. B 714, 80 (2012) \(\text{arXiv:1203.2671 [hep-ph]}\); W.-z. Guo and M. Li, Phys. Lett. B 718, 1385 (2013) \(\text{arXiv:1209.5161 [hep-ph]}\).

[7] P. Kielanowski, S. R. Juarez Wysozka and H. J. G. Mora, Phys. Lett. B 479, 181 (2000) \(\text{hep-ph/0002062}\).

[8] J. A. Casas, J. R. Espinosa, A. Ibarra and I. Navarro, Nucl. Phys. B 573, 652 (2000) \(\text{hep-ph/9910420}\); K. R. S. Balaji, A. S. Dighe, R. N. Mohapatra and M. K. Parida, Phys. Lett. B 481, 33 (2000) \(\text{hep-ph/0002177}\); N. Haba, Y. Matsui and N. Okamura, Eur. Phys. J. C 17, 513 (2000) \(\text{hep-ph/0005075}\); P. H. Chankowski and S. Pokorski, Int. J. Mod. Phys. A 17, 575 (2002) \(\text{hep-ph/0110249}\); S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. A. Schmidt, JHEP 0503, 024 (2005) \(\text{hep-ph/0501272}\).

[9] S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. A. Schmidt, JHEP 0503, 024 (2005) \(\text{hep-ph/0501272}\); M. A. Schmidt and A. Y. Smirnov, Phys. Rev. D 74, 113003 (2006) \(\text{hep-ph/0607232}\).

[10] G. C. Branco and P. A. Parada, Phys. Rev. D 44, 923 (1991).

[11] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).

[12] M. Bona et al. [UTfit Collaboration], JHEP 0507, 028 (2005) \(\text{hep-ph/0501199}\), and updates at \text{http://www.utfit.org/}.