Supplementary Information

Tailored nano-columnar La$_2$NiO$_4$ cathodes for improved electrode performance

Alexander Stangl *, Adeel Riaz *, Laetitia Rapenne *, José Manuel Caicedo b, Juan de Dios Sirvent c, Federico Baiutti cd, Carmen Jiménez a, Albert Tarancón ce, Michel Mermoux f and Mónica Burriel *a

a. Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, 38000 Grenoble, France. E-mail: alexander.stangl@grenoble-inp.fr and monica.burriel@grenoble-inp.fr
b. Catalan Institute of Nanoscience and Nanotechnology, ICN2, CSIC and The Barcelona Institute of Science and Technology (BIST), 08193 Bellaterra, Spain
c. Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain
d. Departement of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
e. ICREA, 23 Passeig Lluis Companys, 08010 Barcelona, Spain
f. Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38000, Grenoble, France

ESI-Figure 1: XRD pattern of L2NO4 thin films with different thickness deposited at 650 °C on a) LAO, b) STO and c) YSZ. Substrate peaks are marked by grey dots and the observed L2NO4 planes are labelled according to ICDD reference 04-015-2147.

ESI-Figure 2: c-parameter as a function of thickness for “as-deposited” L2NO4 films on LAO and STO single crystal substrates.
ESI-Figure 3: Grain size distribution, i.e. number of grains for each grain size, for all L2NO4 film thicknesses and substrates, analysed within an area of 1.13×0.76 µm.
ESI-Figure 4: SEM analysis of 200 nm thick L2NO4 film deposited at 750 °C on a) LAO and b) YSZ substrate. Deposition at elevated temperature results in a dense structure with a closed, flat surface, as confirmed by TEM analysis, shown in c) for the L2NO4/LAO sample. Segregation of excess La on the surface is observed in the form of La$_2$O$_3$ particles (yellow arrows). The La/Ni ratio in the precursor solution was optimised for depositions at 650 °C. The solution-to-layer transfer ratio however depends on the deposition temperature. The La segregation can be avoided by reducing the La/Ni ratio in the precursor solution. However, no influence of excess La was found on the exchange activity.
ESI-Figure 5: Atomic force microscopy of L2NO4/LAO samples, revealing increasing roughness (RMS) from 2.6 to 11.9 nm with increasing film thickness from 33 to 540 nm.

ESI-Figure 6: STEM EDX analysis of 540 nm thick L2NO4/LAO sample.
ESI-Figure 7: Analysis of microstructural stability of L2NO4 by SEM and XRD after functional characterisation at temperatures up to 600 °C with a total annealing duration of 24h. The very narrow line at around 38 ° in the post ECR spectra (red diamond) comes from the Ag electrodes.

ESI-Figure 8: Normalised conductivity transients of L2NO4 thin films at 375°C after a change of ρO2 from 10-250 mbar. Films of different thickness deposited on a) LAO, b) STO and c) YSZ.

ESI-Figure 9: a) Electrochemical impedance spectroscopy of nano-columnar L2NO4/YSZ measured in dry air in the frequency range from 1 MHz to 1 Hz at 590 °C. The equivalent circuit, used to fit the EI spectra, is shown in the inset, with a resistive contribution for YSZ in series to a high and low frequency Randles cell for the counter and the L2NO4 working electrode, respectively. b) L2NO4 contribution over the reciprocal temperature for 100 and 200 nm thick L2NO4.