Supplementary Information

Aqueous pKₐ Prediction for Tautomerisable Compounds Using Equilibrium Bond Lengths

Beth A. Caine, Maddalena Bronzato, Torquil Frazer, Nathan Kidley, Christophe Dardonville and Paul L. A. Popelier

School of Chemistry, University of Manchester, Great Britain,
Manchester Institute of Biotechnology (MIB), 131 Princess Street, Great Britain,
Syngenta AG, Jealott’s Hill, Warfield, Bracknell, RG42 6E7, Great Britain,
Instituto de Química Médica, IQM–CSIC, C/ Juan de la Cierva 3, 28006 Madrid, Spain

Contents

Supplementary Methods ..2-4
Supplementary Table 1 .. 5-12
Supplementary Note 1 ...12
Supplementary Tables 2 - 6 13-18
Supplementary Note 2 ...19-20
Supplementary Figure 1 ...21
Supplementary Tables 7-13 22-29
Supplementary Figures 2-330-31
Supplementary References32
Supplementary Methods

Regression Approaches

Gaussian Process Regression (GPR)

We built our GPR model using the Python library called George. A gaussian process is a non-parametric model that defines a distribution over functions, which is updated according to the training data. The process is fully defined by two priors: the mean function (set to zero) and a covariance function \(k(x, x') \) (also called the kernel, which in our case is a radial basis function or SE-ARD),

\[
SE - ARD(x, x') = \exp \left(-\frac{1}{2} \sum_{d=1}^{N} \frac{|x - x'|^2}{\ell^2} \right) \tag{1}
\]

The hyperparameters \((\ell) \) for this kernel were found by maximising the log-likelihood function using the gradient descent BFGS algorithm (implemented by scipy), on the negative gradient of the log-likelihood function (therefore finding the maximum of the function). As there can be many local maxima, the optimiser was restarted with random weights 100 times in an attempt to find the global maximum.

Support Vector Regression (SVR)

We built our SVR model using the Python library scikit-learn. For a linear function, given a set of data \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \) the goal of SVR is to find a function \(f(x) \), i.e.,

\[
f(x) = \langle w, x \rangle + b \tag{2}
\]

where \(\langle w, x \rangle \) corresponds to the dot product, and that has at most \(\varepsilon \) deviation from all training set \(y_i \) values, and is as flat as possible. In order to obtain a function that is as flat as possible the norm of \(w \) is minimised, which is a convex optimisation problem, i.e., the problem becomes,

\[
\begin{align*}
\text{minimise} & \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} (\xi_i - \xi_i^*) \tag{3} \\
\text{such that} & \quad \langle w, x \rangle + b - y_i \leq \varepsilon + \xi_i \tag{4} \\
& \quad y_i - \langle w, x \rangle + b \leq \varepsilon + \xi_i^* \tag{5}
\end{align*}
\]

The loss function is the default in sklearn, which corresponds to the “epsilon-insensitive loss” (the L1 loss). In eq. 3 we have also introduced \(\xi_i \) and \(\xi_i^* \) as slack variables, which measure the deviation of training samples outside the \(\varepsilon \)-insensitive zone. These slack variables are used in \(\varepsilon \)-SVR as it can be a difficult task to find a function \(f \) that approximates all \((x_n, y_n) \) with less than \(\varepsilon \) deviation for all points. \(C \) is the box constraint, which affects the trade-off between the model flatness and the extent that deviations larger
than epsilon are allowed in optimisation. C and ε were found via a GridSearch in scikit-learn using 7-fold cross validation RMSEE, along with ε.

Partial Least Squares (PLS)

We built our PLS models using the Python library scikit-learn. PLS was chosen over Multiple Linear Regression due to the possibility of multicollinearity between bond length features. PLS is a way of building a regression model using latent variable (LV) decomposition. The two matrices X and Y, containing the descriptors x and the target values y of the training set can be decomposed into a sum of f latent variables,

\[
X = TP^T + E = t_fp_f^T + E \quad (6)
\]

\[
Y = UQ^T + F = ufq_f^T + F \quad (7)
\]

where T and U are score matrices, P and Q are loading matrices, and E and F are residual matrices, all for X and Y. For a latent variable,

\[
u_f = b_ft_f \quad (8)
\]

where b_f is the coefficient for the latent variable f. To identify an optimal number of LVs for each feature combination, models were constructed using 1 to $ndim$ LVs (where $ndim$ is the number of dimensions/features), and the model that returned the best RMSEE of the training set was selected.

Random Forest Regression (RFR)

We built our RFR model using the Python library called scikit-learn. Random Forest Regression is an ensemble method to regression. This means that multiple decision trees are used to arrive at a final output value, which is the average of the individual tree predictions. This is achieved by bagging, i.e. randomly sampling from the full set (by replacement) and a decision tree being trained on each training data sample, $\{(x_1, y_1), ..., (x_n, y_n)\}$, where x_i, ($i = 1, ..., n$), is a vector of descriptors and y_i is the target value (pK_a). For each tree the best split for each node is picked from a randomly selected subset of descriptors. The tree is then grown until further splits are not possible, and not pruned back. This procedure is repeated until enough trees have been grown. The number of estimators (n_{est}) and maximum depth were found in each case by applying a grid search (GridSearchCV in scikit-learn). The final hyperparameter values were chosen to minimize a 7-fold cross validation RMSEE.
Validation Metrics.

The r^2 score that we calculate to assess model predictability is produced via k-fold cross validation, where $k=7$. Hence, a 7^{th} of the dataset is removed, and the remaining $6/7^{th}$ of the input features and observables are used to form the predictive equation. Predictions are then made for the 7^{th} that was removed. The second 7^{th} is then removed, and the first 7^{th} joins the remaining $5/7^{th}$ to make up a new $6/7^{th}$ training set. When all 7 cycles are complete and all compounds have been predicted once, the following equation is used to obtain the r^2 value:

$$r^2 = 1 - \frac{\sum_{i}^{N}(y_{i,obs} - y_{i,pred})^2}{\sum_{i}^{N}(y_{i,obs} - \bar{y})^2}$$ \hspace{1cm} (9)

where $y_{i,obs}$ and $y_{i,pred}$ correspond to the observed and predicted values for each of the training set compounds, and \bar{y} is the mean value of the observed values for the training set. The RMSEE values that we quote are derived from the following equation:

$$RMSEE = \sqrt{\frac{\sum_{i}^{N}(y_{i,obs} - y_{i,pred})^2}{N}}$$ \hspace{1cm} (10)

where $y_{i,obs}$ and $y_{i,pred}$ are defined as above and N is the number of compounds of the training set. The mean absolute error is defined as:

$$MAE = \frac{\sum_{i}^{N_{ext}}|y_{i,obs} - y_{i,pred}|}{N_{ext}}$$ \hspace{1cm} (11)

where $y_{i,obs} - y_{i,pred}$ is the residual error, and where i is now the test set compound and N_{ext} denotes the number of compounds in the external test set. These 7-fold CV metrics were calculated using cross_validate in sklearn in python for each of the 31 combinations of the 5 input features O-H, C-O, C=C, C-C and C=O: (5 x 1 bond length models) + (10 x 2 bond length models) + (10 x 3 bond length models) + (5 x 4 bond length models) + (1 x 5 bond length model) = 31.

External validation was also performed by calculation of the Mean Absolute Error (MAE) and by employing Roy’s MAE evaluation criteria.11 According to Roy, the two criteria that must be met by a “good” model are that:

1) the MAE must be less than 10% of the training set range, and
2) the MAE+3σ must be less than 20% of the training set range.

Here σ denotes the standard deviation of the absolute errors. If the model does not fit the above criteria then it can be deemed “moderate”, that is, if for the second criterion 25% is used in place of 20%, or “poor” if it does not obey either criterion. The Root-Mean-Squared-Error of Prediction (RMSEP) calculated for the test set is also used to evaluate model prediction accuracy.
Supplementary Table 1. Structures, pK\(_a\) values, train/test labels and source references for all compounds studied in this work. Compounds labelled in green were chosen as the test set via a random 70/30 train:test split. Compounds shown in black correspond to the training set.

#	ID	Structure	pK\(_a\)	Source	
1	tk1	![Structure](image1.png)	1.56	*Syngenta	
2	tk3	![Structure](image2.png)	2.46	*Syngenta	
3	tk4	![Structure](image3.png)	2.03	*Syngenta	
4	tk5	![Structure](image4.png)	2.45	*Syngenta	
5	tk6	![Structure](image5.png)	2.46	*Syngenta	
6	tk7	![Structure](image6.png)	2.80	*Syngenta	
7	tk8	![Structure](image7.png)	2.84	*Syngenta	
8	tk9	![Structure](image8.png)	3.00	*Syngenta	
---	---	---	---	---	
9	tk10	![Chemical Structure]	3.05	*Syngenta	
10	tk11	![Chemical Structure]	3.29	*Syngenta	
11	tk12	![Chemical Structure]	3.70	*Syngenta	
12	tk13	![Chemical Structure]	3.89	*Syngenta	
13	tk14	![Chemical Structure]	4.03	*Syngenta	
14	tk15	![Chemical Structure]	5.15	*Syngenta	
15	tkn1	![Chemical Structure]	3.60	Lee¹	
16	tkn2	![Chemical Structure]	3.44	Lee¹	
17	tkn3	![Chemical Structure]	3.10	Lee¹	
18	tkn4	![Chemical Structure]	3.04	Lee¹	
---	---	---	---		
19	tkc1	![Chemical Structure](structure1.png)	4.09	Lee¹	
20	tkc2	![Chemical Structure](structure2.png)	3.83	Lee¹	
21	tkc3	![Chemical Structure](structure3.png)	3.81	Lee¹	
22	tkc4	![Chemical Structure](structure4.png)	3.77	Lee¹	
23	tkc5	![Chemical Structure](structure5.png)	3.50	Lee¹	
24	tkc6	![Chemical Structure](structure6.png)	3.20	Lee¹	
25	dk1	![Chemical Structure](structure7.png)	4.24	*Syngenta	
26	dk2	![Chemical Structure](structure8.png)	5.22	*Syngenta	
27	dk3	![Chemical Structure](structure9.png)	4.86	*Syngenta	
28	dk4	![Chemical Structure](structure10.png)	4.69	*Syngenta	
29	dk5	![Chemical Structure](structure11.png)	5.06	*Syngenta	
30	dk6	![Chemical Structure](structure12.png)	4.62	*Syngenta	
31	dk7	![Chemical Structure](image)	5.10	*Syngenta	
32	dk8	![Chemical Structure](image)	5.69	*Syngenta	
33	dk9	![Chemical Structure](image)	5.36	*Syngenta	
34	dk10	![Chemical Structure](image)	4.71	*Syngenta	
35	dk11	![Chemical Structure](image)	5.70	*Syngenta	
36	dk12	![Chemical Structure](image)	5.16	*Syngenta	
37	dk13	![Chemical Structure](image)	5.07	*this work	
38	dk14	![Chemical Structure](image)	5.03	*this work	
39	dk15	![Chemical Structure](image)	5.08	*this work	
40	dk16	![Chemical Structure](image)	4.74	*this work	
41	dk17	![Chemical Structure](image)	4.73	*this work	
42	dk18	![Chemical Structure](image)	4.68	*this work	
43	dk19	![Chemical Structure](image)	4.76	*this work	
---	---	---	---	---	
44	dk20	![Image](image1.png)	5.57	*this work	
45	dk21	![Image](image2.png)	5.19	*this work	
46	tk16	![Image](image3.png)	5.47	*this work	
47	tk17	![Image](image4.png)	5.36	*this work	
48	dk22	![Image](image5.png)	2.75	*Syngenta	
49	dk23	![Image](image6.png)	2.85	*Syngenta	
50	dk24	![Image](image7.png)	2.98	*Syngenta	
51	dk25	![Image](image8.png)	3.85	*Syngenta	
52	dk26	![Image](image9.png)	3.92	*Syngenta	
53	dk27	![Image](image10.png)	4.29	*Syngenta	
54	dk28	![Image](image11.png)	4.46	*Syngenta	
55	dk29	![Image](image12.png)	5.78	*Syngenta	
---	---	---	---	---	
56	tk18	![Chemical Structure](image1)	2.54	*Syngenta	
57	tk19	![Chemical Structure](image2)	2.79	*Syngenta	
58	Alloxydim (o1)	![Chemical Structure](image3)	3.70\(^2\)	3.81*	Literature\(^{[2,3]}\), *this work
59	Cycloxydim (o2)	![Chemical Structure](image4)	4.04\(^{4}\)	4.51*	Literature\(^{[*]}\), *this work
60	Butroxydim (o3)	![Chemical Structure](image5)	4.36\(^{5}\)	4.34*	Literature\(^{[*]}\), *this work
61	Sethoxydim (o4)	![Chemical Structure](image6)	4.58\(^{6}\)	4.48*	Literature\(^{[*]}\), *this work
62	Clethodim (o5)	![Chemical Structure](image7)	4.47\(^{7}\)	*	Literature\(^{[*]}\),

10
	Name	Structure	pKₐ (logarithm) Value	Reference	Notes
63	Tepraloxydim (o6)	![Tepraloxydim](image)	4.58⁸ 4.30*	literature[⁸], *this work	
64	Tralkoxydim (o7)	![Tralkoxydim](image)	4.98⁹ 4.35*	literature[⁹], *this work	
65	Profoxydim (o8)	![Profoxydim](image)	5.91¹⁰ 4.82*	literature[¹⁰], *this work	
66	Tetracycline (tet1)	![Tetracycline](image)	3.35	literature[⁹]	
67	4-Epianhydrotetracycline (tet2)	![4-Epianhydrotetracycline](image)	3.48	literature[¹⁰]	
68	Chlortetracycline (tet3)	![Chlortetracycline](image)	3.25	literature[⁹]	
69	Doxycycline (tet4)	![Doxycycline](image)	3.50	literature[⁹]	
70	Oxytetracycline (tet5)	![Oxytetracycline](image)	3.53	literature[⁹]	
*See Supplementary Methods for methodological overview of experimental pKₐ determination in this work.

Supplementary Note 1

Many of the sources for the herbicides o1-o8 are not primary sources because they cannot be located (it is likely they were measured internally by the companies that developed them). However, many compounds feature in the “Pesticide Manual” produced by the British Crop Council. The literature values listed are validated by the current work (except in the case of profoxdim, o8) as there is good agreement between them and the new values measured here.

71	Demeclocycline (tet6)	3.30	literature[10]

71 Demeclocycline (tet6)
Details of experimental measurement of pKₐ values for all compounds marked * in Supplementary Table 1 (i.e. “Syngenta” or “this work”).

Experimental pKₐ measurements were collected using a SiriusT3 instrument (Sirius Analytical Instruments, East Sussex, Great Britain), an automatic titration system incorporating *in situ* UV spectroscopy. The Sirius T3 is equipped with an Ag/AgCl double-junction reference electrode to monitor pH, a dip probe attached to a UV spectrophotometer, a stirrer, and all with automated volumetric titration capability. The Sirius T3 UV-metric pKₐ measurement protocol measures the change in multi-wavelength absorbance in the UV region of the absorbance spectrum while the pH is titrated. Measurements were carried out at 25°C and constant ionic strength (0.01 M KCl) and UV absorbance data are collected from 160–760 nm while the 250–450 nm region is typically used for pKₐ determinations.

Because of the low water solubility of the tested compounds, the titrations were carried out in a co-solvent (methanol): the method involves compound titration with three different methanol concentrations and the calculation of the pKₐ by extrapolation using the Yasuda–Shedlovsky¹²,¹³ equation. Two Sirius T3 computer programs, that is, Sirius T3 Control v1.1.3.0 and Sirius T3 Refine v1.1.3.0, were used to execute measurement protocols and analyse pH-dependent multi-wavelength spectra, respectively.
Supplementary Table 2. B3LYP/6-311G(d,p) solvent phase (CPCM) optimised bond lengths, T1 and T2 angles, tkn and tkc series’ in the keto-enol anti tautomer (Fig. 3b), as well as experimental pK\textsubscript{a} and log LD\textsubscript{50} values taken from source[1]. Total wavefunction energies (optimized at B3LYP/6-311G(d,p) with CPCM) are shown in Supplementary Table 6.

ID	ortho	para	O-H	C-O	C=C	C-C	C=O	C-C	C=O	C=C	T1	T2	pK\textsubscript{a}	log LD\textsubscript{50}
tkn1	NO\textsubscript{2}	H	0.96751	1.32948	1.37940	1.47843	1.22419	1.48137	1.21895	1.52129	17.74	72.54	3.60	2.91
tkn2	NO\textsubscript{2}	Cl	0.96756	1.32845	1.37998	1.47821	1.22447	1.47925	1.21847	1.52261	17.11	72.70	3.44	1.62
tkn3	NO\textsubscript{2}	CF\textsubscript{3}	0.96759	1.32767	1.38058	1.47746	1.22477	1.47740	1.21857	1.52463	14.39	75.64	3.10	1.16
tkn4	NO\textsubscript{2}	SO\textsubscript{3}CH\textsubscript{3}	0.96783	1.32682	1.38113	1.47707	1.22505	1.47563	1.21880	1.52590	10.90	77.11	3.04	1.12
tkc1	Cl	OMe	0.96590	1.34213	1.36190	1.46552	1.22756	1.51064	1.21818	1.49203	60.31	26.02	4.09	3.71
tkc2	Cl	Me	0.96617	1.33967	1.36484	1.46766	1.22706	1.50420	1.21686	1.50041	53.80	34.22	3.83	3.45
tkc3	Cl	H	0.96635	1.33778	1.36684	1.46912	1.22665	1.49980	1.21629	1.50562	49.25	40.37	3.81	2.92
tkc4	Cl	F	0.96628	1.33825	1.36626	1.46878	1.22680	1.50122	1.21616	1.50355	51.27	36.67	3.77	3.20
tkc5	Cl	Cl	0.96642	1.33632	1.36824	1.47000	1.22646	1.49737	1.21605	1.50705	46.76	40.44	3.50	2.26
tkc6	Cl	SO\textsubscript{2}CH\textsubscript{3}	0.96697	1.33210	1.37329	1.47307	1.22580	1.48791	1.21613	1.51549	36.64	51.65	3.20	1.86

NO\textsubscript{2} r2	0.61	0.93	0.95	0.96	0.95	0.94	0.06	0.97
Cl r2	0.93	0.96	0.95	0.95	0.94	0.95	0.54	0.90
full set r2	0.69	0.77	0.68	0.59	0.50	0.76	0.07	0.76

NO\textsubscript{2} r2	0.43	0.85	0.82	0.70	0.81	0.84	0.37	0.80
Cl r2	0.86	0.92	0.90	0.90	0.91	0.90	0.53	0.86
full set r2	0.69	0.76	0.69	0.60	0.50	0.76	0.11	0.75
Supplementary Table 3. B3LYP/6-311G(d,p) solvent phase (CPCM) optimised bond lengths of the tkn and tkc series’ in the *endo* keto-enol *syn* tautomer (Fig. 3c), as well as experimental pKₐ and log LD₅₀ values taken from source [1]. Total wavefunction energies (optimized at B3LYP/6-311G(d,p) with CPCM) are shown in Supplementary Table 6.

ID	ortho	para	O-H	C-O	C=C	C-C	C=O	C-C	pKₐ	log LD₅₀		
tkn1	NO₂	H	1.00880	1.31073	1.39499	1.47308	1.22453	1.45572	1.24373	1.51195	3.60	2.91
tkn2	NO₂	Cl	1.00764	1.31028	1.39540	1.47320	1.22467	1.45421	1.24296	1.51308	3.44	1.62
tkn3	NO₂	CF₃	1.00618	1.31034	1.39482	1.47238	1.22470	1.45223	1.24229	1.51401	3.10	1.16
tkn4	NO₂	SO₂CH₃	1.00549	1.31024	1.39479	1.47215	1.22485	1.45148	1.24183	1.51494	3.04	1.12
tkc1	Cl	OMe	1.01376	1.30976	1.39799	1.47970	1.22254	1.45872	1.24996	1.49755	4.09	3.71
tkc2	Cl	Me	1.01420	1.30846	1.39936	1.47923	1.22249	1.45588	1.24865	1.50280	3.83	3.45
tkc3	Cl	H	1.01369	1.30795	1.39981	1.47881	1.22259	1.45426	1.24776	1.50569	3.81	2.92
tkc4	Cl	F	1.01308	1.30801	1.39980	1.47923	1.22259	1.45436	1.24768	1.50492	3.77	3.20
tkc5	Cl	Cl	1.01218	1.30770	1.39992	1.47871	1.22272	1.45275	1.24681	1.50683	3.50	2.26
tkc6	Cl	SO₂CH₃	1.01009	1.30740	1.39971	1.47728	1.22314	1.45010	1.24539	1.50955	3.20	1.86

NO₂	r²									
	0.98	0.56	0.40	0.88	0.80	0.99	0.96	0.94		
Cl	r²									
	0.85	0.73	0.43	0.89	0.82	0.94	0.95	0.83		
full set r²										
	0.75	0.05	0.25	0.56	0.52	0.77	0.77	0.78		

NO₂	r²									
	0.86	0.89	0.06	0.50	0.78	0.87	0.88	0.85		
Cl	r²									
	0.81	0.70	0.42	0.84	0.78	0.90	0.92	0.81		
full set r²										
	0.78	0.09	0.31	0.59	0.57	0.65	0.78	0.77		
Supplementary Table 4. B3LYP/6-311G(d,p) solvent phase (CPCM) optimised bond lengths of the tkn and tkc series’ in the exo keto-enol syn tautomer (Fig. 3d), as well as experimental pKa and log LD50 values taken from source[1]. Total wavefunction energies (optimized at B3LYP/6-311G(d,p) with CPCM) are shown in Supplementary Table 6.

ID	ortho	para	O-H	C-O	C=C	C=C	C=O	C=C	C=O	C=C	pK_a	log LD50
tkn1	NO2	H	1.25073	1.45792	1.48178	1.22264	1.40101	1.31071	1.02895	1.48335	3.60	2.91
tkn2	NO2	Cl	1.24991	1.45883	1.48170	1.22241	1.39752	1.30897	1.02894	1.48926	3.44	1.62
tkn3	NO2	CF3	1.24928	1.45946	1.48152	1.22245	1.39544	1.30820	1.02849	1.49215	3.10	1.16
tkn4	NO2	SO3CH3	1.24922	1.45980	1.48192	1.22243	1.39556	1.30836	1.02890	1.49124	3.04	1.12
tkc1	Cl	OMe	1.24857	1.46010	1.48143	1.22250	1.39355	1.30794	1.02808	1.49285	4.09	3.71
tkc2	Cl	Me	1.24795	1.46042	1.48070	1.22268	1.39131	1.30731	1.02808	1.49468	3.83	3.45
tkc3	Cl	H	1.25092	1.45403	1.47484	1.22469	1.39703	1.30408	1.03193	1.49681	3.81	2.92
tkc4	Cl	F	1.25030	1.45507	1.47530	1.22470	1.39552	1.30385	1.03223	1.49720	3.77	3.20
tkc5	Cl	Cl	1.24995	1.45487	1.47460	1.22474	1.39390	1.30359	1.03173	1.49825	3.50	2.26
tkc6	Cl	SO2CH3	1.24681	1.45350	1.47525	1.22110	1.39540	1.30110	1.03204	1.49870	3.20	1.86

NO2 r²	0.89	0.88	0.01	0.93	0.93	0.95	0.14	0.93
Cl r²	0.40	0.02	0.02	0.20	0.16	0.18	0.01	0.24
full set r²	0.35	0.19	0.43	0.01	0.54	0.65	0.23	0.75

NO2 r²	0.84	0.74	0.21	0.44	0.85	0.83	0.71	0.85
Cl r²	0.22	0.06	0.07	0.08	0.07	0.24	0.07	0.30
full set r²	0.27	0.24	0.48	0.03	0.44	0.67	0.30	0.72
Supplementary Table 5. B3LYP/6-311G(d,p) solvent phase (CPCM) optimised bond lengths of the tkn and tkc series’ in the triketo tautomer (Fig. 3a) as well as experimental pKₐ and log LD₅₀ values taken from source[¹]. Total wavefunction energies (optimized at B3LYP/6-311G(d,p) with CPCM) are shown in Supplementary Table 6.

ID	ortho	para	C=O	C-C	C-H	C-C	C=O	C-C	C=O	C-C	pKₐ	log LD₅₀
tkn1	NO₂	H	1.21000	1.53900	1.10042	1.54009	1.21055	1.54168	1.21696	1.48718	3.60	2.91
tkn2	NO₂	Cl	1.21001	1.53882	1.10046	1.54088	1.21055	1.53901	1.21422	1.49505	3.44	1.62
tkn3	NO₂	CF₃	1.21007	1.53890	1.10026	1.54156	1.21054	1.53753	1.21260	1.50014	3.10	1.16
tkn4	NO₂	SO₂CH₃	1.20995	1.53918	1.10024	1.54124	1.21061	1.53780	1.21294	1.49822	3.04	1.12
tkc1	Cl	OMe	1.20987	1.53981	1.10020	1.54110	1.21075	1.53599	1.21144	1.50298	4.09	3.71
tkc2	Cl	Me	1.20983	1.53984	1.09979	1.54297	1.21047	1.53299	1.20920	1.51130	3.83	3.45
tkc3	Cl	H	1.20860	1.54072	1.09720	1.55344	1.20881	1.52930	1.20951	1.51534	3.81	2.92
tkc4	Cl	F	1.20873	1.54108	1.09727	1.55416	1.20876	1.52845	1.20864	1.51683	3.77	3.20
tkc5	Cl	Cl	1.20882	1.54066	1.09707	1.55400	1.20863	1.52744	1.20843	1.51786	3.50	2.26
tkc6	Cl	SO₂CH₃	1.20890	1.54064	1.09705	1.55413	1.20862	1.52690	1.20800	1.51874	3.20	1.86

NO₂ r²	0.00	0.00	0.32	0.83	0.16	0.93	0.92	0.89
Cl r²	0.00	0.00	0.04	0.04	0.05	0.19	0.43	0.21
full set r²	0.36	0.55	0.46	0.45	0.39	0.74	0.84	0.78

NO₂ r²	0.17	0.00	0.65	0.94	0.01	0.85	0.87	0.90
Cl r²	0.01	0.05	0.10	0.10	0.12	0.25	0.44	0.24
full set r²	0.40	0.61	0.51	0.51	0.45	0.75	0.80	0.76
Supplementary Table 6. B3LYP/6-311G(d,p) /CPCM total energies in Hartree for each tautomeric form of the *tkn* and *tkc* series.

ID	keto-enol (endo) anti (b)	keto-enol (endo) syn (c)	keto-enol (exo) syn (d)	Diketo (a)
tkn1	-933.0286676	-933.0464026	-933.0431372	-933.02545
tkn2	-1392.647259	-1392.66457	-1392.660993	-1392.6435
tkn3	-1270.165215	-1270.182164	-1270.178273	-1270.161
tkn4	-1776.065033	-1776.081334	-1776.078701	-1776.0611
tkc1	-1302.650311	-1302.664479	-1302.66302	-1302.6476
tkc2	-1227.421956	-1227.437151	-1227.435437	-1227.4191
tkc3	-1188.093305	-1188.108998	-1188.107143	-1188.0901
tkc4	-1287.356209	-1287.371518	-1287.369568	-1287.353
tkc5	-1647.71318	-1647.728783	-1647.726659	-1647.7097
tkc6	-1776.065033	-1776.081334	-1776.078701	-1776.0611
Supplementary Note 2

The origin of bond length variation with pKₐ for 2-NO₂ (tkn) and 2-Cl (tkc) substituted triketones.

Initial analysis of the internal validation statistics for the full set of 10 tkn and tkc compounds in total, reveals, in each state, no r² values above 0.90 for any plot of bond length i to viii vs pKₐ. However, correlations increase for each bond length when the set is split into two subsets. Intuitively, the full set is split according to the 2-substituent type, into one set consisting of compounds tkn₁–tkn₄, and another set of compounds tkc₁–tkc₆. Whilst Cl atoms are electron-withdrawing through σ-bonds due to their electronegativity, the electron-withdrawing effect of an NO₂ group occurs not only due to the electronegativity of the nitrogen atom (i.e. σ-effects) but also due to a π-withdrawal effect. Furthermore, the electron-withdrawing capacity of Cl is reduced by its positive mesomeric effect, i.e., π-donation into the ring. Overall, by a comparison of the strength of the correlation of all bond lengths with pKₐ across each tautomer, the keto-enol anti tautomer b (Figure 3A of the main text) comes out on top. Bond lengths and statistics for all tautomers a–d can be found in Tables S2 to S5.

For both subsets, the trend in the bond variation of O-H i, C-O ii and C=C iii with pKₐ is such that more acidic compounds have longer O-H and C=C bonds but shorter C-O distances. These observations fit with the intuition that a longer, weaker O-H bond should exhibit an increased propensity for dissociation. However, there are some inconsistencies between the two sets when we now consider the remaining bonds. Firstly, considering the 2-NO₂ set (still as tautomer b i.e., the anti keto-enol form), the more acidic species are found to have shorter C-C iv and vi bonds, and longer C=O v bonds, suggesting that the delocalisation occurs across the whole triketone system. Evidence for this assertion lies in the co-planar orientation of the keto-enol moiety with the exo carbonyl group: tkn₁–tkn₄ have an average C₁=C₂-C₃=O₄ dihedral angle T₁ of 15° (Figure 3B of the main text). However, the plot of bond vii vs pKₐ does not provide corroboration of the above assertion because, rather than showing the expected negative correlation, the two variables are completely uncorrelated (r²= 0.06). For these same four compounds, the exo carbonyl group is almost orthogonal to the phenyl ring: the C₆=C₅-C₃=O₄ torsional angle T₂ has an average value of 75°. This orthogonality is indicative of negligible conjugation of the 2-Ac-1,3-CHD group with the aromatic ring. It should also be noted that the magnitude of T₁ and T₂ dihedral angles also correlate with pKₐ, with r² values 0.84 and 0.92, respectively. That is to say, the more co-planar the two C=O and single C-O moieties of the triketone fragment are, the lower the pKₐ.

Now considering the tkc subset, the average T₁ and T₂ angles are found to be ~50°, and ~38°, respectively. This preferred geometry is indicative of an increase in the degree of conjugation with the aromatic ring. This assertion is corroborated by the fact that T₁ and T₂ values also correlate to aqueous pKₐ values, with r² values of 0.95 (with a positive gradient) and 0.89 (with a negative gradient),
respectively i.e., as the exo carbonyl group of the tkc series becomes more in-plane with benzene, these compounds become more acidic. As is illustrated in Figure 3B of the main text, the C-C iv and C=O v bonds of the 2-Cl subset are also found to show opposing trends with pKa when compared to the same bonds of the 2-NO2 analogues. A longer C-C bond and shorter C=O bond is again indicative of less conjugation with the keto group. Finally, whereas the slope of the line-of-best-fit for both subsets is negative for bond distance viii, i.e., the C-C bond linking to the phenyl group, those of the 2-Cl series are consistently shorter those of the 2-NO2 set. From this observation, it may again be inferred that there is a greater degree of conjugation into the phenyl ring through the exo carbonyl for C1 to C6, as the C-C viii bond gains more double bond character.

In order to further explain the above observations, an IQA analysis was performed on the B3LYP/6-311G(d,p) calculated wavefunctions of all 10 derivatives. The images shown in Fig.S1 (a) and (b) were generated using the wavefunction of the global minimum geometry of the 2-NO2 and 2-Cl,4-OMe derivatives with MORFI. The atomic basins are shown, and all Bond Critical Points (BCPs) are marked in purple. The first obvious difference between Fig. S1 (a) and (b) is that BCPs are found between O8 and C5 (blue arrow), and between O9 and O4 (green arrow) in (a), whereas they are absent in (b). Whilst the presence of a BCP does not mean that there is a bonding interaction per se, it does suggest that the interaction should be looked at in more detail. Inspection of the full E_{IQA} interaction energy between O8 and C5 for both types of compound reveals that it is generally -25 kJ mol⁻¹ more negative for the four tkn (2-NO2) derivatives on average compared to the six 2-Cl compounds. Looking at the Vxc contribution to this E_{IQA} value, the 2-NO2 derivatives are found to be -19 kJ mol⁻¹ more negative on average than the average value for the 2-Cl subset. A substantial increase in the exchange interaction between the O8 atom and the ipso carbon of the phenyl ring explains the lengthening of the C=O v bond. This is because an increase in delocalisation of electrons between O8 and C5 means there are fewer electrons available to partake in delocalisation between the constituent atoms of the C=O bond. Correspondingly, as the bond length increases, the Vxc value for the C=O becomes more positive.

Visual inspection of the Highest Occupied Molecular Orbital (HOMO) of compounds of each type (i.e. tkn or tkc), reveals evidence of orbital overlap between the exo carbonyl group and the phenyl ring for the tkc species, which is absent in the tkc analogue. This is shown in Supplementary Figure 1 (c) and (d), for compounds tkn3 and tkc6, and may be taken as further corroboration of the relative increase conjugation between the phenyl ring and exo-carbonyl group for the tkc analogues in this tautomeric state and conformation.
Supplementary Figure 1. (a) The atomic basins of 2-(2-NO₂-phenyl)-1,3-cyclohexanedione and the bond critical points (purple) between O⁸ and C⁶ (blue arrow) and O⁹ and O⁴ (green arrow). (b) The atomic basins of 2-(2-Cl,4-OMe-phenyl)-1,3-cyclohexanedione, showing that the bond critical points highlighted in (a) are now absent. (c) HOMO of tkn3, showing a lack of orbital overlap between the exo carbonyl moiety and the phenyl ring. (d) HOMO of tkc6, showing possible orbital overlap due to increase in co-planarity between the exo carbonyl group and the phenyl ring.
Supplementary Table 7. Bond lengths (\(i-v\)) and pK\(_a\) values for the most stable conformation identified at B3LYP/6-311G(d,p) in CPCM for all compounds studied in this work, whilst keeping the keto-enol *anti* state of the 1,3-CHD or 1,3-CPD group.

RING SIZE	type	ID	O-H (i)	C-O (ii)	C=C (iii)	C-C (iv)	C=O (v)	pK\(_a\)
6	triketone	tk1	0.96800	1.32333	1.37699	1.47240	1.22323	1.56
6	triketone	tk3	0.96518	1.34120	1.35956	1.45886	1.22561	2.46
6	triketone	tk4	0.96680	1.33209	1.36960	1.46311	1.22589	2.03
6	triketone	tk5	0.96779	1.32533	1.38229	1.47782	1.22515	2.45
6	triketone	tk6	0.96709	1.32108	1.37846	1.48605	1.21694	2.46
6	triketone	tk7	0.96673	1.33374	1.37241	1.47358	1.22622	2.80
6	triketone	tk8	0.96685	1.33205	1.37322	1.47363	1.22567	2.84
6	triketone	tk9	0.96689	1.33326	1.37383	1.47470	1.22618	3.00
6	triketone	tk10	0.96725	1.33073	1.37681	1.47736	1.22597	3.05
6	triketone	tk11	0.96654	1.33588	1.37030	1.47056	1.22675	3.29
6	triketone	tk12	0.96593	1.33457	1.37145	1.47077	1.22675	3.70
6	triketone	tk13	0.96710	1.33574	1.37197	1.47198	1.22755	3.89
6	triketone	tk14	0.96524	1.34224	1.35959	1.45910	1.22530	4.03
6	triketone	tk15	0.96624	1.33919	1.36785	1.46930	1.22762	5.15
6	triketone	tkn1	0.96751	1.32948	1.37940	1.47843	1.22419	3.60
6	triketone	tkn2	0.96756	1.32845	1.37998	1.47821	1.22447	3.44
6	triketone	tkn3	0.96759	1.32767	1.38058	1.47746	1.22477	3.10
6	triketone	tkn4	0.96783	1.32682	1.38113	1.47707	1.22505	3.04
6	triketone	tkc1	0.96590	1.34213	1.36190	1.46552	1.22756	4.09
6	triketone	tkc2	0.96617	1.33967	1.36484	1.46766	1.22706	3.83
6	triketone	tkc3	0.96635	1.33778	1.36684	1.46912	1.22665	3.81
6	triketone	tkc4	0.96628	1.33825	1.36626	1.46878	1.22680	3.77
6	triketone	tkc5	0.96642	1.33632	1.36824	1.47000	1.22646	3.50
6	triketone	tkc6	0.96697	1.33210	1.37329	1.47307	1.22580	3.20
6	diketone	dk1	0.96571	1.34718	1.35746	1.46509	1.22678	4.24
6	diketone	dk2	0.96565	1.35126	1.35795	1.46564	1.22875	5.22
6	diketone	dk3	0.96562	1.34926	1.35904	1.46562	1.22819	4.86
6	diketone	dk4	0.96568	1.34888	1.35820	1.46501	1.22806	4.69
6	diketone	dk5	0.96566	1.35075	1.35814	1.46599	1.22845	5.06
6	diketone	dk6	0.96565	1.34511	1.35991	1.46785	1.22746	4.62
6	diketone	dk7	0.96557	1.34580	1.35988	1.46770	1.22770	5.10
6	diketone	dk8	0.96566	1.34814	1.35807	1.46878	1.22861	5.69
6	diketone	dk9	0.96565	1.35006	1.36031	1.47126	1.22843	5.36
6	diketone	dk10	0.96574	1.34688	1.35905	1.46693	1.22712	4.71
6	diketone	dk11	0.96556	1.35083	1.35952	1.46733	1.22908	5.70
6	diketone	dk12	0.96575	1.34919	1.36028	1.46845	1.22786	5.16
6	diketone	dk13	0.96556	1.34751	1.35456	1.45373	1.22924	5.07
6	diketone	dk14	0.96549	1.34799	1.35303	1.45156	1.22962	5.03
6	diketone	dk15	0.96559	1.34771	1.35395	1.45284	1.22948	5.08
6	diketone	dk16	0.96575	1.34686	1.35374	1.45220	1.22883	4.74
6	diketone	dk18	0.96572	1.34651	1.35370	1.45205	1.22855	4.68
6	diketone	dk19	0.96573	1.34670	1.35372	1.45215	1.22872	4.76
6	diketone	dk20	0.96523	1.35340	1.35899	1.46392	1.23016	5.57
6	diketone	dk21	0.96564	1.34788	1.35314	1.45446	1.22931	5.19
6	diketone	tk16	0.96609	1.34008	1.36735	1.47021	1.22799	5.47
6	diketone	tk17	0.96600	1.33993	1.36644	1.46871	1.22823	5.36
5	diketone	dk22	0.96636	1.33521	1.35886	1.46315	1.22049	2.75
5	diketone	dk23	0.96589	1.33851	1.35731	1.46313	1.22163	2.85
5	diketone	dk24	0.96656	1.33444	1.35970	1.45805	1.22150	2.98
5	diketone	dk25	0.96626	1.33565	1.35625	1.46174	1.22195	3.85
5	diketone	dk26	0.96638	1.33731	1.35851	1.46357	1.22340	3.92
5	diketone	dk27	0.96626	1.33830	1.35821	1.46299	1.22394	4.29
5	diketone	tk18	0.96779	1.32326	1.36401	1.48929	1.22142	2.54
5	diketone	tk19	0.96803	1.32126	1.37481	1.47497	1.22104	2.79
6	dim	o1	0.96601	1.34263	1.36055	1.45890	1.22687	3.81
6	dim	o2	0.96574	1.34523	1.36022	1.46202	1.22898	4.51
6	dim	o3	0.96587	1.34538	1.36151	1.46418	1.22865	4.34
6	dim	o4	0.96579	1.34519	1.36139	1.46430	1.22884	4.48
6	dim	o6	0.96578	1.34531	1.36077	1.46292	1.22894	4.30
6	dim	o7	0.96578	1.34596	1.36158	1.46565	1.22863	4.35
6	dim	o8	0.96592	1.34500	1.36006	1.46183	1.22890	4.82
6	diketone	tet1	0.96685	1.33124	1.37383	1.45361	1.23080	3.35
6	diketone	tet2	0.96650	1.33394	1.36917	1.47136	1.22588	3.48
6	diketone	tet3	0.96657	1.33147	1.37335	1.45366	1.23041	3.25
6	diketone	tet4	0.96685	1.33297	1.37031	1.47032	1.22544	3.50
6	diketone	tet5	0.96674	1.33313	1.37024	1.46821	1.22630	3.53
6	diketone	tet6	0.96684	1.33120	1.37368	1.45303	1.23065	3.30
Supplementary Table 8. The ID for each combination of features of the 5 common to the keto-enol fragment.

Model ID	Features	# features
1	O-H	1
2	C-O	1
3	C=C	1
4	CC	1
5	C=O	1
6	O-H	2
7	O-H	2
8	O-H	2
9	O-H	2
10	C-O	2
11	C-O	2
12	C-O	2
13	C=C	2
14	C=C	2
15	CC	2
16	O-H	3
17	O-H	3
18	O-H	3
19	O-H	3
20	O-H	3
21	O-H	3
22	C-O	3
23	C-O	3
24	C-O	3
25	C=C	3
26	O-H	4
27	O-H	4
28	O-H	4
29	O-H	4
30	C-O	4
31	ALL	5
Supplementary Table 9. 7-fold CV RMSEE, MAE, and R^2 score for PLS regression using each combination of the 5 bond lengths of the keto-enol fragment. The optimal model based on RMSEE is marked in red.

MODEL	R2 SCORE	RMSEE	MAE	LV
1	0.554	0.746	0.604	1
2	0.712	0.567	0.418	1
3	0.378	0.887	0.652	1
4	0.155	1.073	0.879	1
5	0.374	0.898	0.732	1
6	0.662	0.629	0.486	1
7	0.511	0.790	0.600	1
8	0.467	0.826	0.648	1
9	0.625	0.670	0.554	1
10	0.611	0.687	0.501	1
11	0.606	0.692	0.518	1
12	0.691	0.599	0.461	1
13	0.339	0.925	0.698	1
14	0.600	0.695	0.545	1
15	0.353	0.928	0.728	1
16	0.722	0.577	0.466	2
17	0.702	0.606	0.511	2
18	0.723	0.588	0.469	2
19	0.559	0.812	0.664	2
20	0.639	0.668	0.541	2
21	0.689	0.655	0.575	2
22	0.706	0.609	0.489	2
23	0.707	0.592	0.453	2
24	0.756	0.539	0.417	2
25	0.692	0.663	0.515	2
26	0.735	0.579	0.476	3
27	0.738	0.578	0.461	3
28	0.754	0.539	0.435	3
29	0.728	0.600	0.507	3
30	**0.759**	**0.530**	**0.410**	**3**
31	0.758	0.543	0.446	3
Supplementary Table 10. 7-fold CV RMSEE, MAE, and R² score for RF regression using each combination of the 5 bond lengths of the keto-enol fragment. The optimal model based on RMSEE is marked in red.

MODEL	R²	RMSEE	MAE	max dept	n est
1	0.809	0.700	0.583	3	25
2	0.948	0.623	0.518	6	10
3	0.649	0.955	0.763	3	50
4	0.632	0.962	0.815	3	500
5	0.870	0.734	0.605	4	10
6	0.958	0.647	0.546	6	500
7	0.879	0.763	0.634	4	25
8	0.919	0.727	0.588	5	50
9	0.960	0.608	0.538	6	25
10	0.944	0.650	0.533	6	10
11	0.948	0.599	0.497	5	25
12	0.967	0.573	0.463	6	100
13	0.884	0.926	0.720	6	75
14	0.957	0.618	0.530	5	500
15	0.931	0.727	0.543	6	25
16	0.957	0.640	0.529	6	100
17	0.949	0.620	0.523	5	25
18	0.965	0.577	0.475	6	50
19	0.905	0.760	0.632	4	100
20	0.949	0.695	0.594	5	10
21	0.954	0.622	0.513	5	25
22	0.900	0.641	0.533	3	10
23	0.954	0.596	0.493	5	25
24	0.959	0.567	0.457	6	25
25	0.953	0.634	0.514	5	50
26	0.956	0.659	0.552	6	75
27	0.953	0.600	0.489	5	25
28	0.960	0.573	0.459	6	25
29	0.957	0.646	0.526	6	50
30	0.916	0.628	0.501	3	10
31	0.940	0.648	0.515	4	10
Supplementary Table 11. 7-fold CV RMSEE, MAE, and R² score for SV regression with a linear kernel using each combination of the 5 bond lengths of the keto-enol fragment. The optimal model based on RMSEE is marked in red.

MODEL	R²	RMSEE	MAE	C	epsilon
1	0.010	1.110	0.960	1000	1
2	0.695	0.582	0.432	1000	0.0001
3	0.364	0.827	0.614	1000	0.1
4	0.139	1.021	0.832	1000	0.1
5	0.109	1.025	0.888	1000	1
6	0.695	0.582	0.432	1000	0.0005
7	0.367	0.826	0.614	1000	0.1
8	0.150	1.018	0.831	1000	0.1
9	0.114	1.023	0.885	1000	1
10	0.668	0.616	0.454	1000	0.01
11	0.687	0.590	0.442	1000	0.0001
12	0.703	0.573	0.428	1000	0.1
13	0.368	0.857	0.643	1000	0.0001
14	0.459	0.785	0.593	1000	0.01
15	0.219	0.961	0.784	1000	0.01
16	0.668	0.616	0.454	1000	0.01
17	0.687	0.590	0.442	1000	0.0001
18	0.702	0.574	0.429	1000	0.1
19	0.372	0.855	0.642	1000	0.0001
20	0.462	0.785	0.594	1000	0.01
21	0.230	0.960	0.785	1000	0.01
22	0.669	0.630	0.466	1000	0.0005
23	0.676	0.609	0.453	1000	0.0001
24	0.708	0.590	0.446	1000	0.1
25	0.466	0.817	0.621	1000	0.001
26	0.669	0.631	0.467	1000	0.0001
27	0.677	0.609	0.453	1000	0.0001
28	0.708	0.590	0.447	1000	0.1
29	0.469	0.817	0.622	1000	0.0001
30	0.688	0.619	0.469	1000	0.01
31	0.688	0.619	0.469	1000	0.01
Supplementary Table 12. 7-fold CV RMSEE, MAE, and R^2 score for SV regression with an RBF kernel using each combination of the 5 bond lengths of the keto-enol fragment. The optimal model based on RMSEE is marked in red.

MODEL	R2	RMSEE	MAE	C	epsilon	gamma
1	0.181	1.030	0.891	1000	0.1	5
2	0.709	0.551	0.400	1000	0.01	5
3	0.367	0.822	0.601	1000	0.01	5
4	0.125	1.010	0.798	1000	0.1	5
5	0.361	0.946	0.802	1000	0.1	5
6	0.709	0.550	0.400	1000	0.01	5
7	0.387	0.815	0.597	1000	0.01	5
8	0.209	0.956	0.756	1000	0.05	5
9	0.420	0.854	0.726	1000	0.5	5
10	0.723	0.546	0.406	1000	0.05	5
11	0.712	0.558	0.408	1000	0.0001	3
12	0.717	0.546	0.403	1000	0.0001	5
13	0.373	0.854	0.624	1000	0.01	1
14	0.557	0.725	0.554	1000	0.1	5
15	0.346	0.880	0.706	1000	0.0001	5
16	0.723	0.547	0.405	1000	0.05	5
17	0.712	0.558	0.408	1000	0.0001	3
18	0.718	0.547	0.403	1000	0.0001	5
19	0.396	0.852	0.626	1000	0.0005	5
20	0.560	0.727	0.558	1000	0.1	5
21	0.413	0.858	0.700	1000	0.05	5
22	0.731	0.551	0.411	1000	0.0001	5
23	0.723	0.554	0.415	1000	0.005	3
24	0.753	0.533	0.401	1000	0.1	5
25	0.652	0.666	0.492	1000	0.0005	5
26	0.731	0.550	0.409	1000	0.0001	5
27	0.723	0.553	0.414	1000	0.005	3
28	0.753	0.534	0.402	1000	0.1	5
29	0.655	0.665	0.489	1000	0.05	5
30	0.755	0.533	0.405	1000	0.05	5
31	0.756	0.533	0.405	1000	0.05	5
Supplementary Table 13. 7-fold CV RMSEE, MAE, and R² score for GP regression with an RBF kernel using each combination of the 5 bond lengths of the keto-enol fragment. The optimal models based on RMSEE are marked in red.

	MAE	RMSEE	R²
1	0.69	0.84	-2.15
2	0.56	0.76	-1.58
3	0.70	0.85	-2.25
4	0.64	0.72	-1.37
5	0.30	0.49	-0.06
6	0.56	0.65	-0.88
7	0.66	0.86	-2.36
8	0.64	0.72	-1.37
9	0.30	0.49	-0.06
10	0.54	0.70	-1.20
11	0.56	0.65	-0.88
12	0.52	0.58	-0.50
13	0.70	0.83	-2.12
14	0.35	0.50	-0.11
15	0.28	0.51	-0.16
16	0.64	0.88	-2.47
17	0.56	0.74	-1.46
18	0.54	0.64	-0.85
19	0.68	0.85	-2.29
20	0.35	0.50	-0.11
21	0.36	0.56	-0.42
22	0.62	0.82	-2.00
23	0.44	0.65	-0.92
24	0.44	0.62	-0.74
25	0.33	0.51	-0.19
26	0.54	0.70	-1.20
27	0.33	0.51	-0.15
28	0.32	0.55	-0.35
29	0.33	0.51	-0.19
30	0.33	0.51	-0.15
31	0.33	0.51	-0.15
Supplementary Figure 2. For the series o1-o8: Marvin predictions (no consideration of tautomers/resonance), literature experimental values (“Lit Exp”), our newly measured experimental values (“Our Exp”) and AIBL predictions made using the C-O bond model, i.e. $pK_a = 98.38*r(C-O)-127.71$. An asterisk (*) denotes predictions for compounds that feature in the test set, i.e. are external predictions. Those without asterisks feature in the training set used to formulate the model itself.
Supplementary Figure 3. For the series tet1-tet6: Marvin predictions (no consideration of tautomers/resonance), literature experimental values (“Exp”) and AIBL predictions made using the C-O bond model, i.e. $pK_a = 98.38*r(C-O)-127.71$. An asterisk (*) denotes predictions for compounds that feature in the test set, i.e. are external predictions. Those without asterisks feature in the training set used to formulate the model itself.
Supplementary References

1. D. L. Lee et al., *Pestic. Sci.*, 1998, 54, 377-384.
2. Iwataki, I.; Hirono, Y., Synthesis of Pesticides Chemical Structure and Biological Activity Natural Products with Biological Activity: *The Chemical Structure and Herbicidal Activity of Alloxydim-sodium and Related Compounds*, Symposia Papers Presented at the Fourth International Congress of Pesticide Chemistry, Zurich, Switzerland, July 24–28 1978, Pages 235-243.
3. Soeda, Y.; Ishihara, K.; Iwataki, I.; Kamimura, H., Fate of a Herbicide 14C-Alloxydim-sodium in Sugar Beet, *J. Pesticide Sci.*, 1978, 4, 121-128.
4. (No author listed- European Food Safety Authority), Conclusion on the peer review of the pesticide risk assessment of the active substance cycloxydim, EFSA Journal, 2010, 8, 1669.
5. Tomlin, C., Ed. The Pesticide Manual, 14th ed. Hampshire, UK, British Crop Production Council, 2014, 134–135.
6. Chamberlain, K.; Evans, A. A.; Bromilow, R. H., 1-Octanol/Water Partition Coefficient (Kow) and pKₐ, for Ionisable Pesticides Measured Metric Method, *Pesticide Science*, 1996, 47, 265-272.
7. Gaillard, J.; Thomas, M.; Lazartigues, A.; Bonnefille, B.; Pallez, C.; Dauchy, X.; Feidt, C.; Banas. D., Potential of barrage fish ponds for the mitigation of pesticide pollution in streams, *Environ. Sci. Pollut. Res.*, 2016, 23–35.
8. Tomlin CDS., Ed. The Pesticide Manual: A World Compendium. 14 Ed., Hampshire: BCPC Publications; 2006.
9. Şanlı, S.; Şanlı, N.; Alsancak, G., Determination of Protonation Constants of Some Tetracycline Antibiotics by Potentiometry and LC Methods in Water and Acetonitrile-Water Binary Mixtures, *J. Braz. Chem. Soc.*, 2009, 20, 939-946.
10. Benet, L. Z.; Goyan, J. E, Determination of the Stability Constants of Tetracycline Complexes, *J. Pharm. Sci.*, 1965, 54, 983-987.
11. Roy, K.; Das, N.; Ambure, P.; Aher, R. B., *Chemo. Intell. Lab. Syst.*, 2016, 152, 18-33.
12. Shedlovsky, T. In *Electrolytes*; Peace, B., Ed.; Pergamon Press, New York, USA, 1962; pp 146-151.
13. Yasuda, M. *Bull. Chem. Soc. Jpn.* 1959, 32, 429-432.