Micromammalian distribution and abundance in the Western Cape Province, South Africa, as evidenced by Barn owls *Tyto alba* (Scopoli)

D. M. AVERY¹, G. AVERY¹, & N. G. PALMER²

¹Iziko South African Museum, Cape Town, South Africa, and ²Western Cape Nature Conservation Board, Stellenbosch, South Africa

(Accepted 20 December 2004)

Abstract

The history of Western Cape mammalogy began almost 200 years ago with Thunberg (1811) and has been augmented periodically ever since. The present paper follows Vernon (1972) and Grindley et al. (1973) in eliciting information from material in Barn owl *Tyto alba* (Scopoli) pellets. Analyses are based on identified and counted mandibles and maxillae. The Laminate vlei rat, *Otomys laminatus* Thomas and Schwann, and Krebs’s fat mouse, *Steatomys krebsii* Peters, are shown to have wider distributions than were previously recorded. The Southern multimammate mouse, *Mastomys coucha* (A. Smith), is apparently expanding its range westwards, a move probably enabled by changes in vegetation due to farming practices. There appears to be some correspondence between proportional representation of some species and rainfall, either its amount per annum or its seasonality. Variation in alveolar length in Cape gerbils, *Tatera afra* (Gray), taken as a proxy for mean individual mass, suggests that mean size in this species may be influenced by rainfall seasonality. Although the Vlei rat, *Otomys irroratus* (Brants), is known to breed throughout the year, the present evidence indicates that in the West Coast National Park births peak in late spring and early summer, some two months after maximum rainfall. The Western Cape data support the concept that *T. alba* is a selective opportunist. Sample structure and co-occurrence of species in individual pellets both show that in some cases the owls are more nearly opportunistic while in others they appear to be considerably more selective.

Keywords: Abundance, Barn owl, distribution, micromammals, South Africa

Introduction

As Rookmaker (1989) pointed out, the Cape of Good Hope was one of the first regions of Africa to attract the attention of European naturalists. Unfortunately, few of the records concerned micromammals although the Cape golden mole, *Chrysochloris asiatica* (Linnaeus), various molerats of the family Bathyergidae, the Striped field mouse, *Rhabdomys pumilio* (Sparrman), and the round-eared elephant shrew, *Macroscelides proboscideus* (Shaw), were noted (Rookmaker 1989). Perhaps the first scientific lists of mammals from the Cape Province were those of Thunberg (1811) and Smuts (1832).
Some 70 years later the first systematic collections were made in southern Africa by C. B. H. Grant, one of whose expeditions was made near Knysna in the present Western Cape (Thomas and Schwann 1906). A further 30 years elapsed before Shortridge undertook his historic work in the western part of the subcontinent, including the Cedarberg Mountains (Shortridge and Carter 1938; Shortridge 1942). During the last 40 years publication has been more regular, if still sparse, on micromammal distributions in the (now Western) Cape Province. Most of these have been by Western Cape Nature Conservation and South African National Parks staff or concerning reserves administered by these bodies (e.g. De Hoog 1967; Robinson 1976; Stuart and Braack 1978; Stuart et al. 1978; Lawson 1982; De Graaff and Rautenbach 1983; Avery et al. 1990). Apart from the preliminary distribution maps of Stuart and Lloyd (1978) no publication has concentrated on bringing together all available biogeographic information on the mammals of the province, such as has been done for other provinces by, for example, Lynch (1983, 1989) and Rautenbach (1982). General studies that include Western Cape distributional data are those of Meester et al. (1986), Skinner and Smithers (1990), and Mills and Hes (1997), as well as those on rodents (De Graaff 1981), some shrews (Crocidura spp., Meester 1963; Suncus spp., Meester and Lambrechts 1971) and selected micromammals (Davis 1974). Most recently, Friedmann and Daly (2004) have collated all data known up to 2002–3, including some forming part of this study.

The contribution of the Barn owl, Tyto alba (Scopoli), to our knowledge of micromammalian distributions is generally well documented though there have been few records from the Western Cape. Vernon (1972) recorded a collection from Little Brak River near Mossel Bay and Grindley et al. (1973) reported collections from Stanford near Hermanus and Oesterval on the Langebaan Lagoon. Additionally, we have published some of the samples discussed here in other contexts (e.g. Avery 1977, 1982, 1992, 1999; Avery et al. 1990). The present paper, which comprises the third in a series of reports on micromammalian data obtained from Tyto alba pellets from different provinces of South Africa (Avery et al. 2002, 2003), examines for the first time all Western Cape micromammalian information collected through the agency of Tyto alba over the last 30 years (Table I; Figure 1).

Material and methods

Tyto alba pellets and bulk pellet residues were collected from sites throughout the Western Cape Province. In some cases more than one collection was made from the same site and in three areas regular collections were made over a period of years. These latter are the West Coast National Park (Bottelary and Geelbek), the De Hoop Nature Reserve (De Hoop and Potberg) and Vrolijkheid Nature Reserve. In cases where regular collections were made, the sites were initially cleared of all pellets and residual material. Thereafter, all fresh pellets were removed on each occasion. This ensured that, after the first collection, the period of pellet deposition was known, which is essential for analysis of seasonal variation. Samples were grouped by season for analysis, using the South African conventional quarterly subdivisions of summer (December to February), autumn (March to May), winter (June to August), and spring (September to November).

Individual pellets were measured and weighed, then prepared in a solution of sodium hydroxide to dissolve hair (Scheuler 1972; Longland 1985). Mandibles and maxillae were also extracted from bulk samples of decomposed pellets. Identification and counting of individual micromammals, represented by mandibles and maxillae, was undertaken by
Table I. Quarter-degree squares in the Western Cape Province from which *Tyto alba* pellets have been collected and incorporated into the collections of Iziko South African Museum.

Square	Site	Code	SAM-CT	Collection year	Collector	N
3118CA	Papendorp Moreson	PDM	0020	1984	R. K. Brooke	36
3218AB	Steenbokfontein N kopje	SFN	0012	1978	D. M. Avery, G. Avery	168
	Steenbokfontein S kopje	SFS	0013	1979, 1980	D. M. Avery, G. Avery	729
	Wadrisfoutpan	WSP	0040	1985, 1987	N. G. Palmer	245
3218AD	Elands Bay (=?=Verlorenvlei)	EBY	0044	1987	N. G. Palmer	8
	Verlorenvlei	VLR	0063	1988	Unrecorded	120
	Verlorenvlei 2	VLV	0069	1989	D. M. Avery, G. Avery	146
3218BB	Andriesgrund	AGA	0001	1970s	D. M. Avery, G. Avery	729
	Clanwilliam Dam	CMD	0052	1988	R. K. Brooke	76
3218BC	Schyunskaal	SNK	0004	1973, 1978	D. M. Avery, G. Avery, J. E. Parkinson	100
3218BD	Algeria Road	AGR	0027	1984	Unrecorded	114
	Olifants River	ORI	0005	1975, 1978	G. Avery	334
	Renbaan	RBN	0059	~1988	D. M. Avery, G. Avery	100
	Rondegat	RGT	0010	1977, 1978	G. Avery, A. B. Smith	255
3218CB	Brakkukil Farm	BKL	0144	2000	G. eSilva	136
	St Helenafonetin	SHF	0039	1985, 1987	Mr Jordaan	232
3218CD	Berg River Soutpan Farm	BR3	0085	1992	R. K. Brooke, J. Roff	10
	Berg River Station	BR2	0084	1992	R. K. Brooke, J. Roff	49
	Berg River Viervlei	BR1	0083	1992	R. K. Brooke, J. Roff	110
3219AA	Klipfonteinrand	KFR	0135	1970s	D. M. Aver, G. Avery	76
3219BD	Ouedebaaskraal	OBK	0067	1989	G. P. Lochner	212
3222BC	Karoo NP Zigzag Kloof	KNP	0045	1987	R. A. G. Davies	250
3318AA	Abrahamskaal Hall	ABK	0026	1990–4	D. M. Aver, G. Avery, R. K. Brooke et al.	2009
	Abrahamskaal House	ABH	0076	1990, 1992	D. M. Aver, G. Avery, R. K. Brooke et al.	274
	Bottelary	BTY	0050	1988–94	G. Avery, R. K. Brooke, B. van Lente	2208
	Geelbek Cottage	GBK	0028	1984–8	D. M. Aver, G. Avery, R. K. Brooke	2825
	Geelbek Silo	GBS	0014	1979–81	D. M. Avery, G. Avery	804
	Saldanha Quarry	SDQ	0046	1987	N. G. Palmer	311
	Smutskaa A	SKA	0089	1992–3	B. van Lente	956
	Smutskaa B	SKB	0087	1992	B. van Lente	284
3318AD	Rondeberg Quarry	RBG	0093	1995	Unrecorded	7
3318BB	Matjiesriver Porterville	MRP	0058	1988	R. K. Brooke	420
	Pampoenkraal	PPK	0068	1989	R. K. Brooke	510
3318CB	Koeberg Power Station	KBG	0095	1995–6	G. Avery, R. K. Brooke	328
3318DA	Philadelphia	PDP	0092	1994	C. Higgo	6
3318DC	Contermanskloof Farm	CMK	0077	1991	Unrecorded	47
	Durbanville					
	Kraaifontein	KFN	0033	1985	G. V. Hobbs	125
	Parow Caravan Park	PCP	0086	1992	B. van der Welt	71
3318DD	Stellenbosch Airfield	STB	0073	1989, 1990	N. G. Palmer	146
	Vlottenberg	VTB	0137	1989, 1990	Unrecorded	7
3319CA	Slangrivier	SLR	0153	1989, 1990	Unrecorded	30
3319DA	Mowers Siding	MWS	0079	1991–3	R. K. Brooke	1154
	Nuy	NUY	0075	1990	R. K. Brooke	72
3319DD	Vrolijkheid NCS (huis nr 7)	VNC	0065	1988–9	V. Munnik	2059
3321DA	Calitzdorp	CDP	0051	1988	D. M. Avery, G. Avery, G. Malan	89
The largest number of any one jaw (left and right mandible or maxilla) constitutes the minimum number of individuals represented. A more detailed discussion of identification methods is given in Avery et al. (2002). The nomenclature of Bronner et al. (2003) has been followed.

Averaged rainfall and temperature data (Weather Bureau 1986) for stations near the collection sites were accumulated to ascertain if there were any correlations between these data and species proportions in samples (squares and individual sites) of 100 or more individuals. Only those species that occurred in at least 75% of the samples were considered. In the case of Geelbek in the West Coast National Park and De Hoop in the De Hoop Nature Reserve, 50 individuals was taken as the minimum seasonal sample size. Climate data were averaged for the same season as the pellet collection period and for the preceding season. On the premise that rainfall during the season of collection and during the preceding season may have differing effects on species composition, both were tested for possible correlation with proportions of various species in the samples.

Maximum overall lengths of cheektooth alveoli in maxillae and mandibles were measured in adult Tatera afra as two possible proxies for individual size to establish whether there was a correlation between size and mean annual precipitation (MAP). Six maxillary and five mandibular samples, all of over 50 individuals, were considered (Table II). Two-sample t tests (Velleman 1988) were conducted using DataDesk 6 to establish whether there was significant difference in the size structure of samples from sites with different MAP.

Samples of Otomys irroratus (Brants) from an abandoned cottage near Geelbek were examined for evidence of changes in population structure. Estimates of age at death were based on the amount of wear on the lower right first molar. Generally, age classes are based

Square	Site	Code	SAM-CT	Collection year	Collector	N
3322AC	Boomplas B	WGR	0088	1992	G. Malan	283
3322AC	Boomplas C	BPC	0008	1976–7	D. M. Avery	426
3322AC	Nooigedacht	NGT	0011	1977, 1979	D. M. Avery, G. Avery	914
3322AC	Osgat	OGT	0006	1976	D. M. Avery	43
3322DC	Glentyre	GNT	0009	1976, 1977, 1979	D. M. Avery, G. Avery	1281
3322DD	Eilandvei	EDV	0047	1987	N. G. Palmer	147
3419AB	Boontje Kraal Farm	BKF	0143	1996	N. G. Palmer	126
3419BC	Bakenskop	BAK	0080	1992	Unrecorded	34
3419CB	Windheuvel	WHL	0003	1970s	G. Avery	36
3419CB	Byneskranskop	BNP	0002	1970s	D. M. Avery, G. Avery, V. A. Scott	799
Die Kelders	DKD	0049	1987, 1996, 1997	G. Avery	336	
3419DA	Groot Hagelkraal	GHK	0055	1988	I. Bell, R. K. Brooke	99
3419DA	Klein Hagelkraal	KHK	0015	1980	D. M. Avery, G. Avery	624
3420AD	De Hoop NR	DHP	0029	1984–93	A. Scott et al.	1612
3420BC	Potberg	PTB	0041	1986–9	A. Scott et al.	5085
3420CA	Armscor	ACA	0066	1987–8	WCNC staff	424
3421AD	Blombos	BBS	0099	1998	D. M. Avery, G. Avery	1028
Stillbay	SBY	0131	2000	Unrecorded		56
on discrete changes in the pattern of the teeth as wear progresses (e.g. Hanney 1963). In the case of *O. irroratus*, however, the lamellar nature of the teeth precludes the use of this method. The lower first molar was chosen because Perrin (1979) has established that variation in its occlusal length correlates well with eye-lens weight, which is commonly used to estimate age. However, to discount the possible effect of overall tooth length on occlusal length at a given age, as discussed in Avery (1984), the difference between length of wear

Figure 1. Location of the Western Cape Province in South Africa (A) and of Western Cape Province quarter-degree squares yielding *Tyto alba* pellet samples discussed in this paper (B).
surface and maximum length of tooth was calculated as a proportion of the latter. The observed range in this occlusal index has been found to be between 0.50 in very young (neo-natal) animals to zero in old animals (Avery 1984). The age of the old animals is taken to be 24 months, which is the observed maximum longevity in this species (Davis 1973). This occlusal index also has the merit of providing an index that decreases with age, thereby allowing the data to be transformed using Spinage’s (1971) square-root function, $y = y_0(1 - \sqrt{t/n})$ where y_0 is the index at age 0, t is the age in months and n is the maximum age (here taken as 24 months). This function was employed to accommodate the fact that occlusal length does not increase at a steady rate throughout life. Ages were estimated to the nearest month and then grouped into 3-month age classes, the first of which represents the pre-reproductives (Davis and Meester 1981). Differences among and between months and seasons, based on occlusal indices, were examined using F and t tests. Only samples for which the month of collection was circumscribed (i.e. where all pellets had been removed the preceding month) were included in these analyses.

Results

Samples were collected from 64 sites in 33 quarter-degree squares (Table I; Figure 1). The number of individual micromammals recorded from individual sites varies from six at Philadelphia to 2825 at Geelbek Cottage; by quarter-degree square the range is between six in 3318DA (Philadelphia) and 9945 in 3318AA (West Coast National Park). In all, 56 species are represented, of which the great majority (33) are rodents; the remainder are bats, shrews, golden moles, and elephant-shrews (Table III). The most frequently represented species is the Pygmy mouse, *Mus minutoides* A. Smith, which was recovered from 91% of sites and 97% of squares; the most common species is *Tatera afr* (Gray), which dominated 30% of samples by site and by square (Table IV; Figures 2–6). Between 19 and 28 species were recorded from three provincial nature reserves and the West Coast National Park (Table V). The specific identity of two species [the Cape marsh rat, *Dasymys capensis* (Roberts), and the Southern multimammate mouse, *Mastomys coucha* (A. Smith)] is based on present distribution and therefore queried in Table III because it is not currently possible to separate these species consistently from *D. incomtus* (Sundevall) and *M. natalensis* (A. Smith), respectively, on cranial remains.

Otomys irratus was the only one of seven species considered to show any significant overall correlation between percentage representation and climate variables. Correlation tended, however, to depend on two outlying samples where large percentages coincide with high rainfall. When these outliers are removed, the only significant correlation ($r=0.568,$

Table II. Details of samples (>50 individuals) examined in analysis of size variation in mandibles of *Tatera afr*.

Site	Square	Mandibles	Maxillae	MAP	% Win
SFN	3218AB	56	139		74
SFS	3218AB	109	95	139	74
AGA	3218BB	54	65	248	74
BBS	3421AD	76	82	464	54
KFN	3318DC	67	73	569	74
STB	3318DD	58	57	629	70

Mandibles and maxillae, number of mandibles and maxillae measured; MAP, mean annual precipitation. % Win, proportion of rainfall in the winter half year; SFN and SFS, Steenbokfontein North and South; AGA, Andriesgrond; BBS, Blombos; KFN, Kraaifontein; STB, Stellenbosch Airfield.
Table III. Micromammalian taxa represented in *Tyto alba* pellets from the Western Cape Province (list according to Bronner et al. 2003 and Musser and Carleton 1993 for introduced species).

Family	Genus and species	English common name
Order: AFROSORICIDA Chrysochloridae Gray, 1825	Cryptochloris zyli Shortridge and Carter, 1938	De Winton’s golden mole
	Cryptochloris asiatica (Linnaeus, 1758)	Cape golden mole
	Eremitalpa granti (Broom, 1907)	Visagie’s golden mole
	Chlorotalpa duthiae (Broom, 1907)	Duthie’s golden mole
	Chlorotalpa sclateri (Broom, 1907)	Sclater’s golden mole
	Amblysomus hottentotus (A. Smith, 1829)	Hottentot golden mole
Order: MACROSCELIDEA Macroscelididae Bonaparte, 1838	Macroscelides proboscideus (Shaw, 1800)	Round-eared elephant-shrew
	Elephantulus rupestris (A. Smith, 1831)	Western rock elephant-shrew
	Elephantulus edwardii (A. Smith, 1839)	Cape rock elephant-shrew
Order: RODENTIA Bathyergidae Waterhouse, 1841	Bathyergus suillus (Schreber, 1782)	Cape dune mole-rat
	Bathyergus janetta Thomas and Schwann, 1904	Namaqua dune mole-rat
	Cryptomys hottentotus (Lesson, 1826)	African mole-rat
	Cryptomys damarensis (Ogilby, 1838)	Damaraland mole-rat
	Georychus capensis (Pallas, 1778)	Cape mole-rat
	Macroscelides proboscideus (Shaw, 1800)	Round-eared elephant-shrew
	Elephantulus rupestris (A. Smith, 1831)	Western rock elephant-shrew
	Elephantulus edwardii (A. Smith, 1839)	Cape rock elephant-shrew
Myoxidae Gray, 1821	Graphiurus ocularis (A. Smith, 1829)	Spectacled dormouse
	Graphiurus murinus (Desmarest, 1822)	woodland dormouse
Muridae Illiger, 1815	Acomys subspinous (Waterhouse, 1838)	Cape spiny mouse
	Rhabdomys pumilio (Sparrmann, 1784)	Four-striped grass mouse
	Dasymys capensis (Roberts, 1936)	Cape marsh rat
	Grammomys dolichurus (Smuts, 1832)	Woodland thicket rat
	Mus minutoides A. Smith, 1834	Pygmy mouse
	Mus musculus Linnaeus, 1758	House mouse
	Mastomys coucha (A. Smith, 1836)	Southern multimammate mouse
	Myomyscus verreauxi (A. Smith, 1834)	Verreaux’s mouse
	Aethomys namaquensis (A. Smith, 1834)	Namaqua rock mouse
	Aethomys chrysophilus (De Winton, 1897)	Red veld rat
	Rattus rattus (Linnaeus, 1758)	Ship rat
	Parotomys brantsii (A. Smith, 1834)	Brants’s whistling rat
	Parotomys littledalei Thomas, 1918	Littledale’s whistling rat
	Otomys laminatus Thomas and Schwann, 1905	Laminate vlei rat
	Otomys saundersiae Roberts, 1929	Saunders’s vlei rat
Family	Genus and species	English common name
--------	------------------	---------------------
Otomys irroratus (Brants, 1827)	Vlei rat	
Otomys unisulcatus F. Cuvier, 1829	Bush vlei rat	
Desmodillus auricularis (A. Smith, 1834)	Cape short-tailed gerbil	
Gerbillurus paeba ((A. Smith, 1836)	Hairy-footed gerbil	
Tatera atra (Gray, 1830)	Cape gerbil	
Mystromys albicaudatus (A. Smith, 1834)	White-tailed mouse	
Saccostomus campestris Peters, 1846	Pouched mouse	
Malacothrix typica (A. Smith, 1834)	Gerbil mouse	
Dendromus melanotis A. Smith, 1834	Grey climbing mouse	
Dendromus mesomelas (Brants, 1827)	Brants’s climbing mouse	
Steatomys krebse Peters, 1852	Krebs’s fat mouse	
Myosorex varius (Smuts, 1832)	Forest shrew	
Suncus varilla (Thomas, 1895)	Lesser dwarf shrew	
Suncus infinitesimus (Heller, 1912)	Least dwarf shrew	
Crocidura fuscomurina (Heuglin, 1865)	Tiny musk shrew	
Crocidura flavescens (I. Geoffroy, 1827)	Reddish-grey musk shrew	
Crocidura cyanea (Duvernoy, 1838)	Greater red musk shrew	
Tadarida aegyptiaca (E. Geoffroy, 1818)	Egyptian free-tailed bat	
Miniopterus schreibersi (Kuhl, 1817)	Schreibers's long-fingered bat	
Neoromicia capensis (A. Smith, 1829)	Cape serotine bat	
Myotis tricolor (Temminck, 1832)	Temminck’s hairy bat	
Eptesicus hottentotus (A. Smith, 1833)	Long-tailed serotine bat	
Nycteris thebaica E. Geoffroy, 1813	Egyptian slit-faced bat	
Rhinolophus clivosus Creutzschmar, 1828	Geoffroy’s horseshoe bat	
Rhinolophus capensis Lichtenstein, 1823	Cape horseshoe bat	
Table IV. Number of quarter-degree squares and sites with sample number at least 100 in which each species is represented (total) and is dominant (dom.), with the range of percentage representation of the dominant species (min–max %).

Genus and species	Squares			Sites		
	Total	Dom.	Min–max %	Total	Dom.	Min–max %
Cryptochloris zyli	1	1	19.0	33	2	27.9–36.8
Chrysochloris asiatica	19	32				
Eremitalpa granti	5	14				
Chlorotalpa duthiae	3	3				
Chlorotalpa sclateri	3	4				
Amblysomus hottentotus	2	2				
Macroscelides proboscideus	3	4				
Elephantulus rupestris	3	4				
Elephantulus edwardii	10	12				
Bathynurges suillus	2	3				
Bathynurges janetta		1				
Rhabdomys pumilio	30	1	17.5	54	1	39.6
Dasymys ?capensis	2	2				
Grammomys dolichurus	1	1				
Mus minutoides	32	4	23.8–55.1	58	5	23.8–69.5
Mus musculus	14	18				
Mastomys ?coucha	5	8				
Myomyscus verreauxi	11	16				
Aethomys namaquensis	19	29	17.7			
Aethomys chrysophilus	1	1				
Rattus rattus	7	8				
Parotomys brantsii	1	1				
Parotomys littledalei	1	1				
Otomys laminatus	4	7				
Otomys saundersiae	20	30				
Otomys irroratus	29	4	16.6–57.8	49	7	15.1–57.8
Otomys unisulcatus	12	2	28.1–29.9	23	3	26.7–32.8
Desmodillus auricularis	9	1	35.4	11	1	53.4
Gerbillurus paeba	16	35				
Tatera afr'a	24	9	31.5–60.4	49	16	20.1–80.9
Mystromys albicaudatus	3	3				
Saccostomus campestris	5	8				
Malacothrix typica	4	4				
Dendromus melanotis	28	48				
Dendromus mesomelas	12	23	19.5			
Steatomys krebsii	17	31				
Myosorex varius	24	2	17.2–20.3	46	1	22.3
Suncus varilla	22	3	18.9–39.3	43	5	18.9–47.0
Suncus infinitestimus	1	1				
Crocidura fuscomurina	1	1				
Crocidura cyanea	21	31				
Crocidura flavescens	10	12				
Tadarida aegyptiaca	8	10				
Miniopterus schreibersii	6	6				
Neoromicia capensis	15	21				
annual precipitation. Maximum and minimum temperatures appear to have no influence. Combined samples from the neighbouring sites of Geelbek and Bottelary on the banks of the Langebaan Lagoon in the West Coast National Park show a significant negative correlation \((r = -0.630, df = 15, P = 0.01)\) between same-season rainfall and proportions of *Suncus varilla* (Thomas) (Figure 7A). In the same park, a significant positive correlation was found between same-season minimum monthly temperature and proportions of *Steatomys krebsii* Peters \((r = 0.608, df = 16, P = 0.01)\) (Figure 7B) as well as a negative correlation between previous-season minimum monthly temperature and proportions of *S. varilla* \((r = -0.615, df = 17, P = 0.01)\) (Figure 7C).

There is demonstrable variation in mean maxillary alveolar length in *Tatera atra* in samples greater than 50 (Figure 8). Two-sample *t* tests of mean maxillary alveolar measurements indicate that Blombos differs significantly (at the 0.01 level) from each of the other five samples (Table VI). No significant differences were found between the mandibular samples. Nor is there any significant variation between mean length of maxillary alveoli and mean annual rainfall.

Pre-reproductive (age class 1, age 1–3 months) *Otomys irroratus* were found to constitute a much higher proportion of the summer sample than of samples for other seasons, especially winter (Figure 9). This pattern is also observable for individual months, with December containing the greatest number of pre-reproductives and July the smallest number (Figure 9). However, apparent neonates (month 1, third molar not fully erupted) were recovered in February, April, July, November, and December. The *t* tests show significant differences at the 0.01 level between December and each of the months of May to September and there is also a significant difference between summer and winter, and between autumn and winter (Table VII). During the period May to September age classes 3 and 4 are better represented than they are at other times of the year while second-year animals (classes 5–8) are not well represented at any time of the year. When estimated ages were translated into month of birth the proportions of individuals estimated to have been born in a given month varied between 4.3% in June and 11.3% in September (Figure 10).

Discussion

Geographic distribution

While there are recent publications that include the generalized distribution of micromammalian species in the Western Cape Province (e.g. Mills and Hes 1997), the lack of up-to-date detailed maps makes it difficult to establish the extent to which the
present data add to what was previously known. However, Stuart and Lloyd’s (1978) preliminary maps suggest that the general pattern of distribution of some species has been reasonably well known for some time. Judging by the number of squares in which they have been recorded, species such as *Tatera afra* and *Rhabdomys pumilio* appear to be much commoner than other species. It is quite possible, however, that this commonness is at least partly a function of visibility, perceived nuisance value and/or trapability. Thus, *R. pumilio*
is mainly diurnal, unlike most southern African micromammals, so that it is frequently seen; it is also readily identifiable because of the stripes along its back. *Tatera afra*, on the other hand, is regarded as a pest by farmers and gardeners so, pro rata, its presence will be very well reported. Its burrow entrances are also clearly visible since they tend to occur in groups in open ground.

In some other cases the present data may confirm previously suggested ranges, extend ranges or help fill apparent gaps in distribution. For instance, although there were few

Figure 3. Distribution of Murinae whose remains have been found in *Tyto alba* pellets from 10 or more Western Cape Province quarter-degree squares. White circles indicate dominance in squares yielding remains of at least 100 individuals.
data points, *Suncus varilla* (Meester and Lambrechts 1971; Stuart and Lloyd 1978, listed as *S. etruscus*) appeared to have a fairly wide distribution in the Western Cape, which is confirmed by the present data (Figure 5D). In other species, such as *Otomys laminatus* Thomas and Schwann, which was previously only recorded from one square (3319CC: Davis 1974; Stuart and Lloyd 1978; De Graaff 1981), even the modest addition of four further squares is of consequence. *Steatomys krebsii* was shown by Stuart and Lloyd (1978) to be present in two squares in the extreme south-west whereas present data

Figure 4. Distribution of Otomyinae (A–C) and Dendromurinae (D–F) whose remains have been found in *Tyto alba* pellets from 10 or more Western Cape Province quarter-degree squares. White circles indicate dominance in squares yielding remains of at least 100 individuals.
Another interesting case is that of *Mastomys* spp. The species in the Western Cape is probably *M. coucha* (Friedmann and Daly 2004; Venturi et al. 2004) although it is not currently possible to confirm this with cranial evidence alone. According to Stuart and Lloyd (1978) the species they called *Praomys natalensis* occurred no further west than 3423AB. Neither do De Graaff’s (1997) generalized maps show either species of *Mastomys*.
as occurring in the Western Cape. However, Van Niekerk (2001) has recorded its presence in the De Hoop Nature Reserve (3420AD). Present data confirm that the species has reached as far west along the coast as 3420CA (Armscor); it is also present in the Oudthoorn area, in the Cango Valley and near Calitzdorp. Either *Mastomys* sp. was previously overlooked or it is extending its range south-westwards. The latter is the more likely alternative, given its semi-commensal habit and its propensity for taking advantage of disturbance such as that created by the clearing of vegetation for farming (Meester et al. 1979). This also accords with the situation in the Free State Province where high numbers of *M. coucha* in the Willem Pretorius Nature Reserve and Korannaberg Conservancy have recently been taken to indicate habitat disturbance (Avenant 2000, 2003).

Climate influences

Although overall the only significant correlation with climate is that between *Otomys irroratus* and rainfall during the spring quarter, there is some indication that dominance in a sample may coincide broadly with mean annual rainfall and/or percentage rainfall during the winter half year (Table VIII). *Tatera afra*, which is the dominant prey species in nine squares (Figure 7), is apparently affected by rainfall seasonality rather than by amount. Its restriction to near-coastal sites in the south and west of the province where winter rainfall is at least 59% accords with the fact that *T. afra* is endemic to the Western Cape, which is predominantly a winter-rainfall region. Conversely, *Otomys irroratus* and *Suncus varilla*, which have much wider distributions, dominate where rainfall is approximately 230–470 mm, no more than about 65% of which falls in winter. This reflects the fact that these
two species dominate samples from the east and south of the province. *Mus minutoides* flourishes under a similar but more seasonal (65–74% winter) rainfall regime in the Western Cape.

Logically, one might expect that if there were any significant correlation between numbers or proportional representation of individual species and climate variables it would be with conditions that occurred at some time before the period being sampled. Thus, for example, if there were particularly large numbers of species A in a sample collected during the spring quarter, the high number should reflect the influence of prevailing climatic

Genus and species	DHNR	KNP	VNR	WCNP
Cryptochloris zyli		x		
Eremitalpa granti				
Chlorotalpa sclateri		x		
Macrocelides proboscideus				
Elephantulus rupestris	x			
Elephantulus edwardii	x			
Cryptomys hottentotus	x	x		
Georychus capensis	x		x	
Acomys subspinosus	x			
Rhabdomys pumilio	x	x	x	x
Mus minutoides	x		x	x
Mus musculus	x			
Mastomys fusciceps	x			
Myomyscus verreauxi	x		x	x
Aethomys namaquensis				
Aethomys chrysophilus	x			
Rattus rattus				
Otomys saundersiae			x	x
Otomys ironatus				
Otomys unisulcatus				
Desmodillus auricularis				
Gerbillurus paeba		x		x
Tatera afra	x			
Saccostomus campestris		x		
Malacothrix typica		x		
Dendromus melanotis			x	x
Dendromus mesomelas			x	x
Steatonyx krebii		x		
Myosorex varius				
Suncus varilla		x		x
Crocidura fuscomurina				
Crocidura cyanea		x		x
Tadarida aegyptiaca				
Miniopterus schreibersii				
Neoromicia capensis		x		x
Myotis tricolor		x		
Eptesicus hottentotus			x	
Nycteris thebatica			x	
Rhinolophus chivosus			x	
Rhinolophus capensis			x	
Figure 7. Significant correlation of seasonal variation in percentage representation of *Suncus varilla* and *Steatomys krebsii* and climate variables in the De Hoop Nature Reserve (Geelbek and Bottelary). (A) Same-season rainfall and proportions of *S. varilla*; (B) same-season minimum monthly temperature and *S. krebsii*; (C) previous-season minimum monthly temperature and *S. varilla*. See text for further details.

Figure 8. Variation in (A) maxillary and (B) mandibular alveolar length in *Tatera afra* from selected sites with mean annual precipitation increasing from left to right. SFN and SFS, Steenbokfontein North and South (139 mm); AGA, Andriesgrond (248 mm); BBS, Blombos (464 mm); KFN, Kraaifontein (569 mm); STB, Stellenbosch Airfield (629 mm).

Table VI. Differences, significant at the 0.01 level, between sample means of maxillary alveolar length based on two-sample *t* tests for samples greater than 50.

Samples	*t*	df	*P*
BBS–AGA	−2.657	138	0.0088
BBS–KFN	−4.917	116	≤0.0001
BBS–SFN	−4.26	172	≤0.0001
BBS–SFS	−2.657	100	0.0092
BBS–STB	−3.107	143	0.0023

BBS, Blombos; AGA, Andriesgrond; KFN, Kraaifontein; SFN and SFS, Steenbokfontein North and South; STB, Stellenbosch Airfield.
conditions during the preceding winter quarter when breeding took place. This does not appear to be the case in the Western Cape except in one instance where percentage representation of *Suncus varilla* shows a significant negative correlation with average...
minimum monthly temperature of the quarter preceding that in which the sample was collected. Correlation with climate conditions during the season when the sample was collected must have one or more other causes. Possibilities include improved survivorship of prey individuals, deleterious impact on other possible prey species and effect of vegetation cover on predator behaviour.

It has previously been suggested that Tatera afra may conform to Bergmann’s Rule on the basis of variation in the length of mandibular alveoli of this species in several archaeological sites although it was noted at the time that the evidence from the maxillary alveoli did not agree with that from the mandibular alveoli (Avery 1982). The present data confirm that variation in maxillary alveolar length in adults is not consistent with that in mandibular alveolar length (Figure 9). Neither does variation in the mean of the two measurements correlate significantly. Moreover, the lack of any significant difference between mean maxillary alveolar length and rainfall suggests that observed variation is probably due to other factors. The influence of rainfall on reproduction, and hence on mean individual size, is not a factor since only the jaws of adult individuals were included in the calculations. One possibility, however, is that the small mean size of the BBS material reflects the location of this site in square 3421AD, which is near the eastern extremity of the recorded range of the species. This location is characterized by 54% winter rainfall (Table II), which is below the minimum in squares where T. afra is dominant (Table VIII; Figure 7). Towards the northern extreme of its range T. afra also tends towards smaller mandibles than is the case in the centre of its distribution (Figure 9). However, T. afra dominates several of the northern squares, where rainfall is low but seasonality high, leading to the conclusion that rainfall seasonality is more important to this species than is mean annual precipitation; certainly it breeds after the winter rains (Perrin 1997) when the danger of burrow flooding is past and food is more abundant.

In the case of Otomys irroratus from Geelbek, although there are young individuals throughout the year, their proportional representation varies seasonally. This variation does not appear to be directly connected with rainfall although there is some indication that
breeding is offset by a month or more from rainfall. According to the present evidence births peak in spring and early summer, two months after highest rainfall (Figure 10). One possibility for the delay is that the area needs time to drain after the rains before vegetation can re-grow. Conversely, the low proportion of births in June at Geelbek could reflect low rainfall in late summer. It is probably less likely that night-time temperatures are sufficiently low to influence breeding as they do in the Van Riebeeck Nature Reserve, near Pretoria, where frost is a factor (Davis 1973) since temperature varies much less in the West Coast National Park than it does at Pretoria. Moreover, the trough in *O. irroratus* breeding occurs a month before the lowest mean minimum temperature, possibly due to the fact that vegetation re-growth has not yet occurred. In the Andries Vosloo Kudu Reserve near Grahamstown breeding was repressed during mid-summer (Perrin 1980), which appears to suggest a negative correlation with rainfall although breeding was not thought to be markedly influenced by rainfall (Bronner et al. 1988).

Predator behaviour

As has been previously noted (Avery et al. 2003), *Tyto alba* is a selective opportunist; its preferred prey varies from location to location, depending on which species is most easily obtainable due to large numbers or accessibility. Selective opportunism is potentially reflected in variation in aspects of prey composition such as number, identity, mean mass and habitat of prey species as well as their proportional representation in the sample.

In the Western Cape there is considerable variation in the structure of samples comprising more than 100 individuals per quarter-degree square (Table IX) and per individual site. Shannon indices of general diversity range between 1.39 and 2.58. The lowest values are generally caused by heavy concentration on *Tatera afra*, which comprise up to 60% of a sample, although the number of species per square also varies considerably, ranging from 8 to 28. The number of species recorded from Steenbokfontein (3218AB) is higher than expected of such a low rainfall region (139 mm) but this may be due to the existence nearby of a small inter-dune dam. Certainly, the expected dominance of one species results in a low value for the general diversity index (Table IX). This pattern of one very well-represented species, in this case *T. afra*, and low numbers of all other species is to be expected in the unpredictable climate of the north-west coast. It would appear therefore that the owls were hunting opportunistically, optimizing the micromammalian food supply in terms both of available species richness and of individual abundance. Another picture emerges at the eastern end of the West Cape coast. Here, though there is high, year-round rainfall, diversity is also relatively low despite quite high numbers of species. In this case the dominant species is *Otomys irroratus*, whose high proportions (53% and 58% for adjoining squares 3322DC and 3322DD near Wilderness) are not what one would expect in the equable climate of the area. There are, however, extensive reed-beds round a series of lakes, which are likely to be favoured hunting grounds for the owls. In this case, therefore, it is not clear whether the owls were selectively hunting *O. irroratus* or whether it really was extremely well represented in the landscape. The former possibility is supported by the fact that even adult *O. irroratus* appear to be a favoured prey of *Tyto alba* in many parts of the Western Cape Province in spite of their surprisingly large size (up to about 120 g) relative to that of the birds (about 340 g) (Table IV) and of the fact that they are predominantly diurnal (Kerley 1997).

It has previously been noted that there is frequent co-occurrence of various prey species in *T. alba* pellets from the West Coast National Park (Avery 1992). At the time this was
taken as evidence that the species concerned inhabited the same or nearby microhabitats. It could, however, equally imply that during the course of hunting a particular habitat the owls will tend to catch whatever suitable prey they see so that, in that sense, they will be acting opportunistically. When the data from four sites were examined, it became clear that there was no generally consistent pattern of co-occurrence among the 10 best represented species, with the possible exception of *Dendromus mesomelas* (Brants), which was found more frequently with *Myosorex varius* (Smuts) than with any other species in the three out of four sites (Table X). Conversely, one small species co-occurred most frequently with five or more of the other best represented species in each of the four samples. Almost certainly this partly reflects the fact that the small species are more likely to be found with other species in a single pellet than are the larger species. However, the commonly co-occurring species are neither the only nor necessarily the best represented small species in the samples. It seems likely that closer inspection of the patterns of co-occurrence will provide some insight into owl hunting behaviour to augment other lines of evidence. For instance, at Vrolijkheid Nature Reserve, at a roost near the reserve headquarters, *Mus minutoides* far outnumbers other species (30% of the top 10 species and 43% co-occurrence with at least

Square	N	s	H	g	Major prey species	%	MAP	% Win
3218AB	1139	28	1.87	73	*Tatera afra*	53.7	139	74
3218AD	302	24	2.20	71	*Tatera afra*	41.1	220	75
3218BB	627	20	1.93	43	*Mus minutoides*	42.1	248	74
3218BC	100	12	1.58	74	*Tatera afra*	55.0	265	76
3218BD	802	25	2.50	66	*Cryptomys hottentotus*	19.0	248	74
3218CB	368	14	1.71	55	*Tatera afra*	38.0	228	78
3218CD	169	14	1.53	72	*Tatera afra*	60.4	270	70
3219BD	212	8	1.77	31	*Desmodillus auricularis*	35.4	79	65
3222BC	250	19	2.43	65	*Otomys irroratus*	22.4	230	35
3318AA	9534	21	2.35	55	*Myosorex varius*	17.2	277	75
3318BB	930	13	1.55	23	*Mus minutoides*	55.1	496	73
3318CB	328	12	2.10	81	*Otomys unisulcatus*	29.3	455	74
3318DC	243	16	1.94	67	*Tatera afra*	45.3	569	74
3318DD	242	11	1.39	77	*Tatera afra*	43.4	629	70
3319DA	1237	18	2.34	71	*Otomys unisulcatus*	28.1	239	69
3319DD	2059	22	2.43	50	*Mus minutoides*	27.7	252	65
3321DA	339	18	2.05	42	*Suncus varilla*	39.5	227	44
3322AC	1897	27	2.42	51	*Myosorex varius*	20.3	473	50
3322DC	1263	24	1.91	78	*Otomys irroratus*	52.7	718	48
3322DD	147	17	1.70	87	*Otomys irroratus*	57.8	718	48
3419AB	126	12	2.02	29	*Mus minutoides*	23.8	420	66
3419CB	1092	25	2.58	52	*Rhabdomys pumilio*	17.5	469	65
3419DA	723	22	2.54	44	*Otomys irroratus*	16.6	469	65
3420AD	1607	20	2.11	67	*Tatera afra*	31.5	427	59
3420BC	4858	27	2.39	34	*Suncus varilla*	18.9	427	59
3420CA	424	19	2.22	62	*Tatera afra*	36.6	480	66
3421AD	1084	14	2.03	37	*Suncus varilla*	29.3	464	54
Maximum	9534	28	2.58	87		60.4		
Minimum	100	8	1.39	23		16.6		

N, number of individuals; s, number of species; H, Shannon index of diversity; g, grams (mean mass); %, percentage representation of major prey item; MAP, mean annual precipitation; % Win, percentage precipitation in the winter half year.
one of these species). In this case it may be supposed that the owls were concentrating on *M. minutoides* that lived around the buildings, only catching other species opportunistically. At Geelbek, on the other hand, it is most likely that the owls concentrated on hunting the edge of Langebaan lagoon where they could most easily locate the relatively large *Otomys irroratus* among the dense reed beds and thick grass. In this case the quite high numbers of *M. varius* and *D. mesomelas* would be a by-product of such a hunting strategy.

Conclusion

The Western Cape samples provide further evidence of the potential of *Tyto alba* pellets to provide information on both prey species and predator. Although it is difficult to be certain because of the dearth of prior information, it appears that the known ranges of several micromammalian species have been extended or, at least, confirmed. Beyond this basic information on small mammal distribution and biodiversity, various data indicate that rainfall, whether overall amount or seasonality, influences the proportional representation of some species. Seasonality rather than annual amount seems to affect mean individual size in *Tatera afra*. Likewise, high winter rainfall may encourage greater (or more successful) breeding activity in *Otomys irroratus*. On the other hand, the identity of prey species and their proportional representation in samples can provide some indication of the owls’ hunting methods. Another source of similar information is the contents of individual pellets, which support the contention that *Tyto alba* varies its hunting strategy from locality

Table X. Principal co-occurrence among 10 best represented species at four sites in different parts of the province.

Species	Geelbek Cottage	Klein Hagelkraal	Nooitgedacht	Vrolijkheid NR
Acomys subspinosus				
Rhabdomys pumilio	*Myosorex varius*	*Otomys irroratus* and *Suncus varilla*	Myosorex varius	
Mus minutoides	*Suncus varilla*	*Mastomys coucha*	*Mus minutoides*	*Dendromus melanotis*
Mastomys coucha				
Myomyscus verreauxi	*Suncus varilla*	*Myosorex varius*	*Myosorex varius*	*Mus minutoides*
Aethomys namaquensis				
Otomys laminiatus				
Otomys saundersiae	*Steatomys krebsii*	*Myosorex varius*	*Myosorex varius*	*Mus minutoides*
Otomys irroratus	*Myosorex varius*	*Suncus varilla*	*Myosorex varius*	*Mus minutoides*
Gerbillus paeba	*Otomys saundersiae*	*Myosorex varius*	*Myosorex varius*	*Mus minutoides*
Tatera afra	*Myosorex varius*	*Myosorex varius*	*Myosorex varius*	*Mus minutoides*
Dendromus melanotis	*Suncus varilla*	*Myosorex varius*	*Suncus varilla*	*Mus minutoides*
Dendromus mesomelas	*Myosorex varius*	*Myosorex varius*	*Myosorex varius*	*Mus minutoides*
Steatomys krebsii	*Otomys saundersiae*	*Myosorex varius*	*Myosorex varius*	*Mus minutoides*
Myosorex varius	*Dendromus mesomelas*	*Suncus varilla*	*Otomys irroratus*	*Mus minutoides*
Suncus varilla	*Steatomys krebsii*	*Myosorex varius*	*Aethomys namaquensis*	*Mus minutoides*
Crocidura cyanea	*Myosorex varius*	*Suncus varilla*	*Myosorex varius*	*Mus minutoides*
Most frequently occurring species	*Crocidura cyanea*	*Myosorex varius*	*Aethomys namaquensis*	*Mus minutoides*
Dom. sp.	*Dendromus mesomelas*	*Myosorex varius*	*Aethomys namaquensis*	*Mus minutoides*
% Dom. sp.	20.7	22.3	22.3	26.5
Sample size	2950	624	914	2059

Each sample has a dominant species (Dom sp.) representing approximately one-fifth to one-quarter of the sample (% Dom sp.). The sample size is the number of micromammalian prey individuals in each sample.
to locality. Although some conclusions may be tentative at this stage it should become possible, as more samples are studied, to confirm or modify conclusions reached so far.

Acknowledgements

Thanks go to all those who have collected pellet samples over the years, especially the late Mr R. K. Brooke, and Ms A. Scott and co-workers at the De Hoop Nature Reserve. Dr N. L. Avenant, National Museum Bloemfontein, and Dr G. Malan, Tshwane University of Technology, offered useful comments on a previous draft. The ongoing project of which this forms part has been supported by the National Research Foundation, Iziko South African Museum and the Western Cape Nature Conservation Board.

References

Avenant NL. 2000. Small mammal community characteristics as indicators of ecological disturbance in the Willem Pretorius Nature Reserve, Free State, South Africa. South African Journal of Wildlife Research 30:26–33.

Avenant NL. 2003. The use of small mammal community characteristics as indicators of ecological disturbance in the Korannaberg Conservancy. In: Singleton GR Hinds LA Krebs CJ Spratt DM, editors. Rats, mice & people: rodent biology and management. ACIR Monograph 96:95–98.

Avery DM. 1977. Past and present distribution of some rodent and insectivore species in the southern Cape Province, South Africa: new information. Annals of the South African Museum 74:201–209.

Avery DM. 1982. Micromammals as palaeoenvironmental indicators and an interpretation of the late Quaternary in the southern Cape Province, South Africa. Annals of the South African Museum 86:183–374.

Avery DM. 1984. Micromammalian population dynamics and environmental change: the last 18 000 years in the southern Cape. In: Vogel JC, editor. Late Cainozoic palaeoclimates of the southern hemisphere. Rotterdam: Balkema. p 361–369.

Avery DM. 1992. Ecological data on micromammals collected by Barn owls Tyto alba in the West Coast National Park, South Africa. Israel Journal of Zoology 38:385–397.

Avery DM. 1999. A preliminary assessment of the relationship between trophic variability in southern African Barn owls (Tyto alba) and climate. Ostrich 70:179–186.

Avery DM, Avery G, Colahan BD. 2003. Micromammal distribution in the Free State, South Africa: Barn owl data. Navorsinge van die Nasionale Museum Bloemfontein 19:1–18.

Avery DM, Avery G, Roberts A. 2002. A contribution from Barn owl pellets to known micromammalian distributions in KwaZulu-Natal, South Africa. African Zoology 37:131–140.

Avery DM, Rautenbach IL, Randall RM. 1990. An annotated checklist of the land mammal fauna of the West Coast National Park, South Africa. Koedoe 33:1–18.

Bronner G, Gordon S, Meester J. 1988. Otomys irroratus. Mammalian Species 308:1–6.

Bronner GN, Hoffmann M, Taylor PJ, Chimimba CT, Best PB, Matthee CA, Robinson TJ. 2003. A revised systematic checklist of the extant mammals of the southern African subregion. Durban Museum Novitates 28:56–96.

Davis DHS. 1974. The distribution of some small southern African mammals (Mammalia: Insectivora, Rodentia). Annals of the Transvaal Museum 29:135–184.

Davis RM. 1973. The ecology and life history of the vlei rat, Otomys irroratus (Brants 1827), on the Van Riebeeck Nature Reserve [PhD thesis]. Pretoria: University of Pretoria.

Davis RM, Meester J. 1981. Reproduction and postnatal development in the vlei rat, Otomys irroratus, on the Van Riebeeck Nature Reserve, Pretoria. Mammalia 45:99–116.

De Graaff G. 1981. The rodents of southern Africa. Durban: Butterworths.

De Graaff G. 1997. Natal multimammate mouse Mastomys natalensis, and multimammate mouse Mastomys coucha. In: Mills G, Hes L, editors. The complete book of southern African mammals. Cape Town: Struik Winchester. p 145–146.

De Graaff G, Rautenbach IL. 1983. A survey of mammals in the newly proclaimed Karoo National Park, South Africa. Annales Musée Royal de l'Afrique Centrale 237:89–99.

De Hoog RJ. 1967. A survey of small mammals at the provincial wildlife farm, De Hoop. Cape Provincial Administration. Unpublished report.
Thunberg CP. 1811. Mammalia capensia, recensista et illustrata. Mémoires de l’Academie Impériale des Sciences de St. Pétersbourg 3:299–323.

Van Niekerk CH. 2001. Past and present climates: owl pellet composition as an indicator of local climatic change [M Agric Sci (Zool) thesis] Stellenbosch: Stellenbosch University.

Velleman PF. 1988. DataDesk 6.0 statistics guide. Ithaca (NY): Data Description.

Venturi FP, Chimimba CT, Van Aarde RJ, Fairall N. 2004. The distribution of two medically and agriculturally important cryptic rodent species, *Mastomys natalensis* and *M. coucha* (Rodentia: Muridae) in South Africa. African Zoology 39:235–245.

Vernon CJ. 1972. An analysis of owl pellets collected in southern Africa. Ostrich 43:109–124.

Weather Bureau, 1986. Climate of South Africa: WB40 climate statistics up to 1984. Pretoria: Department of Environment Affairs.