Reithinger, R; Mohsen, M; Leslie, T (2010) Risk factors for anthropo-
nontic cutaneous Leishmaniasis at the household level in Kabul,
Afghanistan. PLoS neglected tropical diseases, 4 (3). e639. ISSN
1935-2727 DOI: 10.1371/journal.pntd.0000639

Downloaded from: http://researchonline.lshtm.ac.uk/1731/

DOI: 10.1371/journal.pntd.0000639
Risk Factors for Anthroponotic Cutaneous Leishmaniasis at the Household Level in Kabul, Afghanistan

Richard Reithinger*, Mohammad Mohsen, Toby Leslie
HealthNet TPO, Kabul, Afghanistan

Abstract

Background: Kabul, Afghanistan, is the largest focus of anthroponotic cutaneous leishmaniasis (ACL) in the world. ACL is a protozoan disease transmitted to humans by the bite of phlebotomine sand flies. Although not fatal, ACL can lead to considerable stigmatization of affected populations.

Methods: Using data from a standardized survey of 872 households in 4 wards of Kabul, Afghanistan, univariate and multivariate logistic regression analyses tested associations between presence of active ACL and ACL scars with 15 household-level variables.

Findings: Univariate analyses showed that active ACL was positively associated with household member's age, ACL prevalence, and brick wall type, but negatively associated with household number of rooms, bednet use, and proportion of windows with screens. Multivariate analysis showed a positive association between active ACL and household member's age, ACL prevalence, and brick wall type, and a negative association with household proportion of windows with screens.

Conclusion: Household-level characteristics were shown to be risk factors for ACL. Monitoring a selected number of household characteristics could assist in rapid assessments of household-level variation in risk of ACL. ACL prevention and control programs should consider improving house construction, including smoothing of walls and screening of windows.

Introduction

After decades of war, Kabul, Afghanistan, became the world’s largest focus of cutaneous leishmaniasis (CL) with an estimated annual incidence of 67,500 cases [1]. CL is a vector-borne protozoan disease that is characterized by cutaneous lesions which develop at the site of the insect bite [2]. Albeit not fatal, CL has a significant social impact in Afghanistan [3,4] as it may lead to severe stigmatization of affected individuals when lesions occur on the face and exposed extremities.

Several reports document the dramatic increase of CL in the region, including Iran [5–7], Pakistan [8–11] and, in particular, Afghanistan [1,12–16]. Whilst some of these reports have indicated that CL is associated with sex [1], age [1,9], domestic animals [9] and clustering of cases at the household level [1,9] little is known about other household characteristics associated with this disease in South Asia. Whereas many Asian foci CL is transmitted zoontically (i.e. through an animal reservoir), CL in Kabul is transmitted anthroponotically, with CL being referred to as anthroponotic CL (ACL) and the human population representing the main reservoir of infection.

The objectives of the work described here were to investigate household-level characteristics associated with ACL in Kabul in order to support the development and implementation of strategies to prevent and control ACL.
Author Summary

Cutaneous leishmaniasis is a vector-borne protozoan disease that is characterized by cutaneous lesions which develop at the site of the insect bite. Lesions can vary in severity, clinical appearance, and time to cure; in a proportion of patients lesions can become chronic, leading to disfiguring mucosal leishmaniasis or leishmaniasis recidivans. Albeit not fatal, cutaneous leishmaniasis can have a significant social impact as it may lead to severe stigmatisation of affected individuals when lesions or scars occur on the face and exposed extremities. Over the last 10–20 years there has been an increase in the number of leishmaniasis cases reported in South Asia, particularly in Afghanistan. Little is known about the household-level risk factors for infection and disease. Here we confirm previous reports that had shown the association of cutaneous leishmaniasis with age and clustering of cases at the household-level. Additionally, we show that risk of cutaneous leishmaniasis is associated with household construction (i.e. brick walls) and design (i.e. proportion of windows with screens).

carried out; most of the infections in Kabul are caused by *Leishmania tropica* [17]. All persons with active lesions were offered free anti-leishmanial treatment at any of the 8 HealthNet TPO leishmaniasis clinics in the city. Household data included information on household design (i.e. number of rooms, number of windows), construction materials (i.e. wall type, ceiling type), ACL preventive methods (i.e. number of windows screened, household bednet ownership, reported bednet use), and ownership of animals (i.e. household ownership of dogs, chicken, goats, sheep and cattle).

Statistical Analysis

Questionnaire data was entered into a Microsoft Excel database (Microsoft Corporation, Seattle, WA). In addition to explanatory variables collected during the household surveys, a number of explanatory variables were derived, including household prevalence of active or past ACL, household members per room, number of windows per household members and proportion of household windows screened. Note, for calculation of household prevalence of active or past ACL, the household member under study was excluded from the prevalence calculation. In a first set of analyses, the association of possible household-level explanatory variables with individuals having active ACL or ACL scars was tested by estimating univariate odds ratios (OR) by logistic regression. In a second set of analyses, we used backward stepwise multiple regression to identify significant (p < 0.05) explanatory variables. A total of 996 households were visited; 124 households had incomplete demographic or clinical data and were excluded from the analyses. Of the 10,596 people surveyed in the 872 households included (mean: 12.2 persons per household), 51.1% and 48.9% where male and female, respectively; the median age of the study population was 15 years (interquartile range [IQR] 8–30). Households had a mean 2.0 rooms (range 1–22), 2.2 windows (range 0–18), 4.6 household members per room (range 0.18–15) and 0.4 windows per household member (range 0–4).

Results

Population Surveyed and Prevalence of ACL

A total of 996 households were visited; 124 households had incomplete demographic or clinical data and were excluded from the analyses. Of the 10,596 people surveyed in the 872 households included (mean: 12.2 persons per household), 51.1% and 48.9% where male and female, respectively; the median age of the study population was 15 years (interquartile range [IQR] 8–30). Households had a mean 2.0 rooms (range 1–22), 2.2 windows (range 0–18), 4.6 household members per room (range 0.18–15) and 0.4 windows per household member (range 0–4).

Of the population surveyed, 224 (21.2%) and 1,421 (13.4%) had active ACL lesions or scars, respectively; 11 individuals had both lesions and scars (Figure 1). Of those persons with ACL lesions, the median lesion number was 1 (IQR: 1–2) and the median lesion duration (to survey date) was 8.5 months (IQR 0.75–48). The median age of those individuals with ACL lesions was 15 years (IQR 9–30) and of those with ACL scars was 18 (IQR 12–30) (Figure 1).

Household-Level Variables: Univariate Analysis

The univariate analysis showed that whereas risk of active ACL was positively associated with household members’ age, particularly age groups of 19 years of age and younger (Figure 1), the prevalence of active ACL, brick walls and population density, it was negatively associated with the household number of rooms and the proportion of windows that are screened (Table 1). Risk of ACL scars was positively associated with household member’s age (Figure 1), prevalence of ACL scars, number of windows per household member, and brick or stone walls, but negatively associated with household wood-beamed ceilings and population density (Table 1).

Household-Level Variables: Multivariate Analyses

Multivariate analyses demonstrated that household member’s age, prevalence of active ACL (Figure 2) and brick walls increased the risk for active ACL, whereas the proportion of household windows screened reduced it (Table 2). Similarly, household member’s age, prevalence of ACL scars, and brick or stone walls increased risk of ACL scars, whereas increased household prevalence of active ACL, wood-beamed ceilings and population density reduced it (Table 2).
Discussion

In established endemic areas, ACL prevalence typically increases with age up to 15 years, after which prevalence levels off, presumably because of the acquisition of immunity [2]. Susceptibility to infection and disease is determined by a number of parasite, host and sand fly effects and factors [2]. Thus, infections can cluster within households, which is indicative of the short flight range of sand flies [19], anthroponotic transmission [1,9], or genetic susceptibility [20]. Infection is also known to be dependent on host nutritional status and acquired immunosuppression (e.g. HIV) [21,22]. Risk factors of disease commonly include sex (e.g. sex bias usually points to behavioural patterns that increase vector exposure), age, household design and construction material (e.g. number of floors, number of rooms, dirt floor), household presence of domestic animals (e.g. dogs, pigs), household proximity to forested areas or other areas where sand flies are known to aggregate, and migration of household members [23–31].

Our findings indicate that household construction materials (e.g. brick walls) and design (e.g. number of rooms or number of windows per person) can significantly influence ACL risk in Kabul. Observed associations are probably due to sand fly and human behaviour, and ultimately increased or decreased sand fly exposure. Many households in surveyed city wards were still rudimentary at the time of the survey and were being reconstructed following the years of armed conflict. The sand fly vector in Kabul, *P. sergenti*, is endophagic (i.e. biting occurs inside houses) and bites in the evening and at night [32]. Thus, for example, greater density in terms of number of household members per room could attract more sand flies, increasing an individual household member’s exposure to sand flies and, hence, the probability of receiving an infective bite. In contrast, an increased number of household rooms likely reduces household members’ exposure to sand flies, with inside walls and doors possibly representing a barrier for host-seeking sand flies.

Our analyses showed that ACL risk is not associated with household ownership of domestic animals, specifically dogs or chicken. Although dogs have been found infected with *L. tropica* [33] and can be risk factors for ACL as reported in a study in Pakistan [9], our findings suggest that they are only incidental hosts in Kabul. This also would further confirm the anthroponotic nature of *Leishmania* transmission in Kabul. Besides dogs and chicken, people often owned cows or buffalos, sheep and goats, but these were shown to be of no significance in terms of risk for ACL (data not shown).

ACL risk is strongly associated with the presence of disease in other household members, confirming previous findings that the disease is highly focal at the household level [1]. A likely explanation for this is that sand fly distribution and abundance is patchy (both horizontally and vertically [29]), but stable over time, and as shown here, vector exposure is strongly dependent on household construction materials and design. The sand fly flight range is generally short [19] and it is likely that *Leishmania* transmission does not occur beyond a defined cluster of

![Figure 1. Age prevalence curve of anthroponotic cutaneous leishmaniasis (ACL) in Kabul, Afghanistan.](https://www.plosntds.org/figure1.png)
Risk Factor	Cutaneous leishmaniasis lesion	Cutaneous leishmaniasis scar							
	Total	%	OR	95% CI	P	%	OR	95% CI	P
Age (years)									
0–4	1428	1.28	1.00	0.63–1.58	0.996	14.71	5.44	4.11–7.21	<0.001
5–9	1816	2.48	1.99	1.15–3.44	0.014	9.20	2.77	2.00–3.81	<0.001
10–14	1781	2.30	2.01	1.07–3.84	0.031	17.28	1.75	1.03–3.57	<0.001
15–19	1348	2.52	1.86	0.99–2.68	0.054	16.09	5.25	3.84–7.19	<0.001
≥20	4215	2.04	1.63	1.03–3.30	0.039	16.27	5.44	3.81–7.45	<0.001
Sex									
Male	5410	2.01	13.03						
Female	5186	2.22	1.10	0.86–1.41	0.437	14.02	1.09	0.97–1.23	0.149
Household active ACL prevalence	8706	0.93	13.50						
0.00–0.25	1786	6.55	7.45	4.78–11.63	<0.001	13.77	1.03	0.76–1.39	0.856
>0.25	101	25.74	36.86	18.32–74.18	<0.001	10.89	0.79	0.28–2.19	0.647
Household ACL scar prevalence	4819	2.18	3.07						
0.00–0.25	3943	2.18	1.00	0.63–1.58	0.996	14.71	5.44	4.11–7.21	<0.001
>0.25	1833	1.80	0.83	0.45–1.54	0.551	38.35	19.57	15.08–25.41	<0.001
Household wall type	1481	2.16	8.99						
Mud	1391	4.89	2.33	1.21–4.47	0.011	15.10	1.80	1.19–2.72	0.005
Brick	7446	1.64	0.75	0.44–1.31	0.315	13.99	1.64	1.17–2.30	0.004
Stone	210	0.95	0.44	0.10–1.87	0.263	20.48	2.61	1.32–5.15	0.006
Household ceiling type	938	0.93	22.39						
Cloth-covered	214	1.71	1.95	0.71–5.37	0.197	11.68	0.46	0.19–1.08	0.074
Concrete	8945	2.18	1.26	0.50–3.17	0.625	12.35	0.49	0.35–0.68	<0.001
Wood (beam)	142	3.52	2.10	0.65–6.85	0.217	26.76	1.27	0.63–2.55	0.507
Wood (thatched)	230	1.74	1.02	0.29–3.60	0.976	17.83	0.75	0.35–1.61	0.462
Other	4316	2.66	13.88						
Household number of rooms	5872	1.82	0.68	0.46–1.00	0.051	13.15	0.95	0.76–1.18	0.626
2–4	349	0.06	0.21	0.05–0.84	0.027	14.61	1.07	0.60–1.93	0.819
≥2.50	2055	1.41	18.00						
Household members per room	5257	1.85	1.31	0.83–2.09	0.249	11.30	0.58	0.45–0.74	0.000
2.51–5.00	1885	2.61	2.03	1.14–3.61	0.016	15.01	0.80	0.59–1.07	0.134
5.01–7.50	1338	3.36	2.43	1.33–4.46	0.004	13.00	0.68	0.48–0.96	0.027
>7.51	2456	1.91	14.21						
Household number of windows	6560	2.44	1.30	0.81–2.09	0.271	13.17	0.93	0.74–1.16	0.519
2–4	1512	1.12	0.59	0.30–1.18	0.137	14.15	1.01	0.74–1.38	0.950
≥4	3631	2.15	13.27						
Number of windows per household members	4580	2.25	1.04	0.72–1.51	0.818	12.38	0.93	0.74–1.17	0.547
0.26–0.50	2056	1.85	0.85	0.44–1.67	0.647	15.81	1.24	0.95–1.62	0.116
>1.00	259	1.54	0.71	0.22–2.34	0.567	20.08	1.66	1.00–2.75	0.049
Proportion of household windows screened	4172	2.90	14.19						
0.00	588	0.85	0.28	0.09–0.96	0.043	14.11	1.00	0.64–1.56	0.994
0.01–0.25	1687	1.42	0.48	0.28–0.82	0.007	13.63	0.96	0.70–1.31	0.794
>0.50	3510	1.62	0.55	0.35–0.87	0.010	12.62	0.87	0.69–1.10	0.242
Household bednet ownership	10365	2.13	13.52						
No	10416	1.72	16.80						
Yes	211	1.42	0.69	0.23–2.01	0.493	14.22	0.94	0.45–1.95	0.862
households. This may also explain why risk of active disease is reduced in those households with a high proportion of household members with ACL scars; this also may explain why there is a strong association between household prevalence of active ACL and household prevalence of ACL scars (Figure 2). It is believed that sand flies get infected with *Leishmania* when biting people with active ACL. Thus, a household with a high proportion of people with scars is—from an epidemiological point of view—less ‘infectious’ to its inhabitants than a household that includes a high proportion of ACL cases.

Finally, our data also suggests that means to reduce vector exposure can be highly successful in reducing the risk of ACL, with

Risk Factor	Cutaneous leishmaniasis lesion	Cutaneous leishmaniasis scar								
	Total	%	OR	95% CI	P	%	OR	95% CI	P	
Household ownership of animals	No	6698	2.30			12.23				
	Yes	3859	1.79	0.77	0.54–1.10	0.155	14.07	1.08	0.88–1.33	0.464
Household ownership of dogs	No	7166	2.16							
	Yes	3430	2.01	0.93	0.65–1.32	0.676	14.66	1.16	0.94–1.43	0.171
Household ownership of chicken	No	9790	2.19							
	Yes	806	1.24	0.56	0.23–1.36	0.203	15.97	1.02	0.71–1.49	0.882

Unadjusted odds ratios for variables associated with anthropotonic cutaneous leishmaniasis in Kabul, Afghanistan. doi:10.1371/journal.pntd.0000639.t001

Figure 2. Household clustering of active and past anthropotonic cutaneous leishmaniasis (ACL) cases. Bubble graph, where the size of the data point (‘bubble’) is proportionate to the number of individuals. Straight line represents the cut-off for possible active ACL: past ACL household ratio.

doi:10.1371/journal.pntd.0000639.g002
simple screening of windows being effective (i.e. in this study, 45–72% protective efficacy depending on the proportion of windows screened). Use of textile fabrics, whether insecticide-treated or not, hung on doors, used as bednets or topsheets, have consistently shown efficacy in reducing indoor ACL transmission in endemic areas [34–36], including in Kabul [37]. Of note is that we did not observe an association of bednets or bednet use with active ACL or ACL scars, which probably was due to the small number of bednets (i.e. 211) present in surveyed households. Whether bednets are protective against *Leishmania* infection will dependent on a number of factors besides use, including whether the nets are impregnated with insecticide, net shape and size, or wear and tear [38]. Interestingly, screening of household windows and ceilings has been shown to be effective in reducing malaria vector abundance and child anemia [39]; such approach has yet to be tested for leishmaniasis.

A number of caveats have to be noted. First, we did not confirm parasite etiology of clinical cases. However, as reported previously, it is likely that most infections were due to *L. tropica* [17]. We observed clustering of cases and higher risk of ACL among younger age groups in the study, both of which are a characteristic of anthroponotic *Leishmania* transmission [1,9]. The transmission cycle of the other *Leishmania* species causing CL in Afghanistan, *L. major*, is zoonotic, with all age groups at risk of the disease [15]. Second, we did not collect data on household members’ residency time in Kabul, which should have been assessed as it could have potentially confounded the study’s results. Consequently, we cannot specify whether household members did acquire ACL when living in Kabul or in another area prior to relocating to Kabul. This could have affected associations between ACL scars and household-level characteristics. However, we note that in a previous study active ACL prevalence was not shown to be significantly greater in immigrants than local Kabul residents, supporting the hypothesis that the epidemic in Kabul has been maintained by a steady influx of susceptible immigrants and that

Risk Factor	Cutaneous leishmaniasis lesion	Cutaneous leishmaniasis scar	
Age (years)	OR 95% CI P	OR 95% CI P	
0–4	1.75 0.98–3.14 0.059	3.22 2.27–4.59 <0.001	
5–9	1.71 0.92–3.19 0.090	7.13 5.02–10.13 <0.001	
10–14	1.88 1.00–3.53 0.050	6.86 4.67–10.06 <0.001	
15–19	1.57 0.93–2.64 0.091	6.42 4.54–9.08 <0.001	
≥20			
Household active ACL prevalence	0.00	0.99 0.82–1.21 0.964	
	0.01–0.25	6.66 4.14–10.70	0.99 0.82–1.21 0.964
	>0.25	27.07 15.06–48.68	0.99 0.82–1.21 0.964
Household ACL scar prevalence	0.00	0.99 0.82–1.21 0.964	
	0.01–0.25	5.47 4.10–7.31	0.99 0.82–1.21 0.964
	>0.25	19.91 15.16–26.15	0.99 0.82–1.21 0.964
Household wall type	0.00	0.33–1.05 0.073	
Brick	1.70 1.00–2.89 0.048	0.99 0.82–1.21 0.964	
Stone	0.99 0.62–1.61 0.983	0.99 0.82–1.21 0.964	
Other	0.28 0.04–1.85 0.185	0.28 0.04–1.85 0.185	
Household ceiling type	0.00	0.53–1.36 0.504	
Cloth-covered	0.59	0.33–1.05 0.073	
Concrete	0.64 0.50–0.83 0.001	0.64 0.50–0.83 0.001	
Wood (beam)	0.85 0.53–1.36 0.504	0.85 0.53–1.36 0.504	
Wood (thatched)	0.82	0.48–1.39 0.458	
Other	0.59 0.33–1.05 0.073	0.59 0.33–1.05 0.073	
Household members per room	0.00	0.54–0.94 0.017	
≤2.50	0.70 0.58–0.83 <0.001	0.70 0.58–0.83 <0.001	
2.51–5.00	0.88 0.71–1.07 0.211	0.88 0.71–1.07 0.211	
>7.51	0.71 0.54–0.94 0.017	0.71 0.54–0.94 0.017	
Proportion of household windows screened	0.00	0.22–1.59 0.299	
0.01–0.25	0.59 0.22–1.59 0.299	0.59 0.22–1.59 0.299	
0.26–0.50	0.62 0.41–0.96 0.030	0.62 0.41–0.96 0.030	
>0.50	0.80 0.59–1.10 0.166	0.80 0.59–1.10 0.166	

Note, significant collinearity was observed in the ‘Household ownership of animals’, ‘Household ownership of dogs’, ‘Household bednet ownership’ and ‘Household bednet use’ variables, with variance inflation factors of 13.55, 11.79, 6.80, 6.75, respectively. Variance inflation factors ≥5 indicate collinearity and that variables may be redundant. As a result the ‘Household ownership of animals’ and ‘Household bednet ownership’ variables were dropped prior to inclusion of variables for the full multivariate model.

Adjusted odds ratios for variables associated with anthroponotic cutaneous leishmaniasis in Kabul, Afghanistan.

doi:10.1371/journal.pntd.0000639.t002
transmission is stable [13]. We also note that associations between tested household variables and ACL are remarkably similar for those with active disease and those with ACL scars. Third, we used prevalence estimates as outcome variables. These will give only a valid reflection of current transmission rates if spatial differences in transmission between areas are constant over time. Fourth, some of the variables investigated may be a proxy indicator for other variables that were not assessed, e.g., household animal ownership and number of rooms may be a proxy for household socio-economic status and better living conditions as a whole; wood beam houses could be older and therefore in areas with less structural disruption due to the armed conflict. Fifth, the number of regression analyses that were carried out will also have increased the odds of finding a significant association between household variables and ACL. Nonetheless, we note that both univariate analyses and multivariate analyses were consistent in identifying certain household-level characteristics as being risk factors for ACL.

Conclusion
In 2003 ten clinics diagnosed and treated leishmaniasis cases in Kabul [1], but it was estimated that only 40% (i.e., ~25,000 cases) of all active cases were being treated annually. As ACL in Kabul is transmitted anthroponotically, this means that up to 60% of all active cases were being untreated and, hence, remain the main ACL reservoirs driving transmission. This may explain why the witnessed epidemic has been so prolonged since first documented in 1990 [12].

Given that Kabul is the world’s largest ACL foci and given the local importance of the disease, it is recommend that large-scale strategies to reduce sand fly human vector contact, and provision of treatment be implemented. Clearly, we show that when designing an ACL intervention strategy, household variables that could represent a risk factor for infection and, therefore, could impact the intervention’s success or failure should be assessed. As shown here simple measures, such as screening of windows, could significantly reduce the risk of acquiring ACL.

Acknowledgments
We thank Jan Kolacinski, Annick Lenglet, Kate Graham, HealthNet TPO field staff and the Afghan Ministry of Public Health for logistical support, and we are grateful to Larry Muenz and Rupert Quinell for comments on the manuscript. The opinions expressed in this paper are those of the authors and may not reflect the position of their employing organisations nor of their work’s sources of funding.

Author Contributions
Conceived and designed the experiments: RR MM. Performed the experiments: MM TL. Analyzed the data: RR. Wrote the paper: RR TL.

References
1. Reithinger R, Molsen M, Asdfil K, Siddiqui M, Erasmus P, et al. (2003) Anthroponotic cutaneous leishmaniasis, Kabul, Afghanistan. Emerg Infect Dis 9: 727–729.
2. Reithinger R, Djurdjan JC, Louzir H, Pirmez C, Alexander B, et al. (2007) Cutaneous leishmaniasis. Lancet Infectious Diseases 7: 581–596.
3. Reithinger R, Asdfil K, Kolaczynski J, Molsen M, Hami S (2003) Social impact of leishmaniasis, Afghanistan. Emerg Infect Dis 11: 634–636.
4. Kassi M, Kassi M, Alghan AK, Rehman R, Kasi PM (2008) Marring transmission: the stigmatization and the impact of cutaneous leishmaniasis in Pakistan and Afghanistan. PLoS Negl Trop Dis 2: e259.
5. Yaghoobi-Esfahadi MR, Jafari R, Hanafi-Bojd AA (2004) A new epidemic focus of zoonotic cutaneous leishmaniasis in central Iran. Ann Saudi Med 24: 98–101.
6. Fazaeli A, Fouladi B, Sharifi I (2009) Emergence of cutaneous leishmaniasis in a border area at south-east of Iran: an epidemiological survey. J Vector Borne Dis 46: 36–42.
7. Razmjou S, Hejazy H, Motazedian MH, Baghari M, Emamy M, et al. (2009) A new focus of zoonotic cutaneous leishmaniasis in Shiraz, Iran. Trans R Soc Trop Med Hyg 103: 727–730.
8. Rowland M, Munir A, Durran N, Noyes H, Reyburn H (1999) An outbreak of cutaneous leishmaniasis in an Afghan refugee settlement in north-west Pakistan. Trans R Soc Trop Med Hyg 93: 133–136.
9. Brooker S, Mohammed N, Asdfil K, Agha S, Reithinger R, et al. (2004) Leishmaniasis in refugee and local Pakistani populations. Emerg Infect Dis 10: 1581–1584.
10. Shakila A, Bilgecs FM, Salim A, Mothumadin M (2006) Geographical distribution of cutaneous leishmaniasis and sand flies in Pakistan. Turkiye Parazitol Derg 30: 1–6.
11. Anwar M, Hussain MA, Ur-Rehman H, Khan I, Sheikl RA (2007) Epidemic of cutaneous leishmaniasis: 109 cases in a population of 500. East Mediterr Health J 13: 1212–1213.
12. Ashford R (1992) Cutaneous leishmaniasis in Kabul: observations on a prolonged epidemic. Ann Trop Med Parasitol 86: 361–71.
13. Reyburn H, Rowland M, Molsen M, Khan B, Davies C (2003) The prolonged epidemic of anthropogenic cutaneous leishmaniasis in Kabul, Afghanistan: ‘bringing down the neighbourhood’. Trans R Soc Trop Med Hyg 97: 170–176.
14. Reithinger R, Asdfil K, Hami S, Kolaczynski J (2004) Cutaneous leishmaniasis, northern Afghanistan. Emerg Infect Dis 10: 966–967.
15. Fauser MK, Heyl G, Amiri M (2006) Zoonotic cutaneous leishmaniasis, Afghanistan. Emerg Infect Dis 12: 1623–1624.
16. Faule S, Schadez H, Heyl G, Amiri M, Hoeran A (2008) Zoonotic cutaneous leishmaniasis outbreak in Mazar-e Sharif, northern Afghanistan: an epidemiological evaluation. Int J Med Microbiol 298: 543–550.
17. Reithinger R, Molsen M, Wahid M, Bismallah M, Quinell RJ, et al. (2005) Efficacy of thermotherapy to treat cutaneous leishmaniasis caused by Leishmania tropica in Kabul, Afghanistan: a randomized, controlled trial. Clin Infect Dis 40: 1148–1155.
18. Nathanson BH, Higgins TL (2008) An introduction to statistical methods used in binary outcome modeling. Semin Cardiothorac Vasc Anesth 12: 153–66.
19. Killick-Kendrick R (1999) The biology and control of phlebotomine sand flies. Clin Dermatol 17: 279–283.
20. Sakhiendanzeswen F, Soe JS, Handman E (2009) The role of host genetics in leishmaniasis. Trends Parasitol 25: 383–391.
21. Wieg Gl, Armijos RX, Zurita C, Racines J, Reddy A, et al. (1995) Nutritional status and cutaneous leishmaniasis in rural Ecuadorian children. J Trop Pediatr 41: 22–38.
22. Alvar J, Aparicio P, Asfla A, Den Boer M, Caffavate C, et al. (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21: 334–359.
23. Wieg J, Kaantch CJ, Martinez F, Valderrama L, Saravia NG (1993) Epidemiology of cutaneous leishmaniasis in Colombia: environmental and behavioral risk factors for infection, clinical manifestations, and pathogenicity. J Infect Dis 168: 709–714.
24. Davies CR, Llanos-Cuentas EA, Campos P, Monge J, Villaseca P, et al. (1997) Cutaneous leishmaniasis in the Peruvian Andes: risk factors identified from a village cohort study. Am J Trop Med Hyg 56: 85–95.
25. Alcaia A, Abel L, David G, Torres ME, Flandre P, et al. (1997) Risk factors for onset of cutaneous and mucocutaneous leishmaniasis in Bolivia. Am J Trop Med Hyg 57: 79–84.
26. Sosa-Estani S, Segura EL, Gomez A, Salomón OD, Pelauta M, et al. (2001) Cutaneous leishmaniasis in Northern Argentina: identification of risk factors in a case-cohort study of three municipalities in Salta. Rev Soc Bras Med Trop 34: 511–517.
27. Yaden ZE, Rodrigues LC, Davies CR, Quinell MA (2003) Indoor and peri-domestic transmission of American cutaneous leishmaniasis in northwestern Argentina: a retrospective case-control study. Am J Trop Med Hyg 68: 519–526.
28. Reithinger R, Canales Espinoza J, Llanos-Cuentas A, Davies CR (2003) Domestic dog ownership: a risk factor for human infection with Leishmania (Viannia) species. Trans R Soc Trop Med Hyg 97: 141–145.
29. Hewitt S, Reyburn H, Ashford R, Rowland M (1998) Anthroponotic cutaneous leishmaniasis in Kabul, Afghanistan: vertical distribution of cases in apartment blocks. Trans R Soc Trop Med Hyg 92: 273–274.
30. Noger E, Gadien E, Yamuah L, Eugers H, Hussien J, et al. (2008) Outbreak of cutaneous leishmaniasis in Sili woreda, Ethiopian: risk factor assessment and causative agent identification. Trans R Soc Trop Med Hyg 102: 803–890.
31. Pedrosa Fila A, Ximenes RA (2009) Sociodemographic and environmental risk factors for American cutaneous leishmaniasis (ACL) in the State of Alagoas, Brazil. Am J Trop Med Hyg 81: 192–201.
32. Killick-Kendrick R, Killick-Kendrick M, Tang Y (1995) Anthroponotic cutaneous leishmaniasis in Kabul, Afghanistan: the high susceptibility of Phlebotomus argentipes to Leishmania tropica. Trans R Soc Trop Med Hyg 89: 477–478.
33. Duretur J, Rios J, Gallego M, Perezes J, Pratlong F, et al. (1991) Leishmania tropica in Morocco: infection in dogs. Trans R Soc Trop Med Hyg 85: 595.
34. Kolaczynski JH, Muhammad N, Khan QS, Jan Z, Rehman N, et al. (2004) Subsidized sales of insecticide-treated nets in Afghan refugee camps demonstrate
the feasibility of a transition from humanitarian aid towards sustainability. Malar J 3: 15.

35. Yaghoobi-Ershadi MR, Moosa-Kazemi SH, Zahrarai-Ramazani AR, Jalai-Zand AR, Akhavan AA, et al. (2006) Evaluation of deltamethrin-impregnated
bed nets and curtains for control of zoontic cutaneous leishmaniasis in a hyperendemic area of Iran. Bull Soc Pathol Exot 99: 43–48.

36. Moosa-Kazemi SH, Yaghoobi-Ershadi MR, Akhavan AA, Abdoli H, Zahrarai-Ramazani AR, et al. (2007) Deltamethrin-impregnated bed nets and curtains in
an anthropotic cutaneous leishmaniasis control program in northeastern Iran. Ann Saudi Med 27: 6–12.

37. Reyburn H, Ashford R, Mohsen M, Hewitt S, Rowland M (2000) A randomized
controlled trial of insecticide-treated bednets and chaddars or top sheets, and
residual spraying of interior rooms for the prevention of cutaneous leishmaniasis
in Kabul, Afghanistan. Trans R Soc Trop Med Hyg 94: 361–366.

38. Das ML, Singh SP, Vanlerberghe V, Rijal S, Rai M, et al. (2007) Population
Preference of Net Texture prior to Bed Net Trial in Kala-Azar-Endemic Areas.
PLoS Negl Trop Dis 1: e100.

39. Kirby MJ, Ameh D, Bottomley C, Green C, Javara M, et al. (2009) Effect of two
different house screening interventions on exposure to malaria vectors and on
anaemia in children in The Gambia: a randomised controlled trial. Lancet 374:
998–1009.