FIBERED RIBBON DISKS

KYLE LARSON AND JEFFREY MEIER

Abstract. We study the relationship between fibered ribbon 1–knots and fibered ribbon 2–knots by studying fibered disk-knots with handlebody fibers. We give a characterization of fibered homotopy-ribbon disk-knots and give analogues of the Stallings twist for fibered disk-knots and 2–knots. As an application, we produce infinite families of distinct homotopy-ribbon disks with homotopy equivalent exteriors, with relevance to the Slice-Ribbon Conjecture. We show that any fibered ribbon 2–knot can be obtained by doubling infinitely many different disk-knots (sometimes in different contractible 4–manifolds). As a corollary, we show that every nontrivial, fibered ribbon 2–knot admits infinitely many fibered 1–knots as symmetric cross-sections. Finally, we illustrate how our framework is especially well-behaved in the case of spins of fibered 1–knots, and we prove that the spins of any two fibered 1–knots can be related by a sequence of torus surgeries.

1. Introduction

Fibered knots have a long and rich history of study (for both classical knots and higher-dimensional knots); the additional structure provided by the fibering has led to strong algebraic and geometric results. (See, for example, [Har82], [Neu63], and [Sta78].) Less attention has been devoted to fibered disk-knots. We investigate fibered 2–disks with a solid handlebody as their fiber. The study of these objects serves as an intermediary between the work of Casson and Gordon [CG83], which characterizes fibered homotopy-ribbon 1–knots, and the work of Cochran [Coc83], which characterizes fibered homotopy-ribbon 2–knots. We give a corresponding characterization of fibered homotopy-ribbon 2–disks in terms of their fiber.

Theorem 1.1. Let D be a fibered disk-knot in B^4 with fiber H. Then D is homotopy-ribbon if and only if $H \cong H_g$.

We also prove an analogue of the Stallings twist theorem [Sta78] that allows us to produce new fibered disk-knots from old ones. The proof continues the broader idea of interpreting certain changes to the monodromy of a mapping torus as surgeries on the total space. The particular surgeries we use for fibered disk-knots double to Gluck twists, so we see the phenomenon of an infinite order operation (twisting along a disk) collapse upon doubling to an order two operation (twisting along a sphere). As a result, we can show that many different fibered disks double to the same fibered 2–knot.

Theorem 1.2. Let $D_0 \subset B^4$ be a fibered disk-knot with fiber H and monodromy ϕ, and let $E \subset H$ be an essential, properly embedded disk that is unknotted in B^4. Then, the result of twisting m times along E is a new fibered disk-knot $D_m \subset B^4$ with monodromy $\phi_m = \phi \circ \tau^m_E$. Furthermore,
(1) $K_m = \partial D_m$ is a fibered knot in S^3 with monodromy $\varphi_m = \varphi_0 \circ \tau_c^m$, where $c = \partial E$ is a Stallings curve;

(2) the collection $\{D_m\}_{m \in \mathbb{Z}}$ contains infinitely many pairwise non-diffeomorphic fibered disk-knots, where $D_0 = D$; and

(3) the collection $\{D D_m\}_{m \in \mathbb{Z}}$ of fibered 2–knots obtained by doubling contains at most two equivalence classes.

If in addition the fiber H is the handlebody H_g, then the family of disk exteriors $\{B^4 \setminus \nu D_m\}_{m \in \mathbb{Z}}$ will all be homotopy equivalent.

We remark that Gordon-Sumners gave examples of disk-knots whose exteriors have the homotopy type of a circle and double to give the unknotted 2–sphere [GS75].

We will see in Section 5 that, in principle, Theorem 1.2 could be used to produce potential counterexamples to the Slice-Ribbon Conjecture.

In Section 3, we describe a process called inflation, which associates a fibered homotopy-ribbon 2–knot to a fibered homotopy-ribbon 1–knot via a fibered homotopy-ribbon disk-knot. This process, however, raises questions about the relationship between the topological and smooth categories in dimension four; potentially non-standard 4–balls and 4–spheres come into play, as in [CG83].

We also consider an inverse process to inflation, called halving, which associates a fibered homotopy-ribbon 1–knot to a fibered homotopy-ribbon 2–knot via a fibered homotopy-ribbon disk-knot in a contractible manifold.

Theorem 1.3. Let S be a non-trivial fibered 2–knot in S^4 with fiber $(# g S^1 \times S^2)^\circ$. Then (S^4, S) can be expressed as the double of infinitely many pairs (W_m, D_m), where

(1) W_m is a contractible 4–manifold;

(2) D_m is a fibered homotopy-ribbon disk-knot in W_m;

(3) the boundaries $Y_m = \partial W_m$ are all related by Dehn filling on a common 3–manifold; and

(4) infinitely many of the Y_m (and, therefore, the corresponding W_m) are non-diffeomorphic.

Given a 2–knot $S \subset S^4$, we call 1–knot K a symmetric equator of S if K is obtained from S by halving. In other words, S is the double of a disk along K. We have the following immediate corollary to Theorem 1.3.

Corollary 1.4. Any non-trivial, fibered homotopy-ribbon 2–knot has infinitely many distinct fibered symmetric equators.

Inflation can be viewed as a generalization of a more classical construction: spinning a fibered 1–knot. Spins of fibered knots provide examples to which Theorems 1.2 and 1.3 can be applied in a very nice way. For example, the collection of 2–knots produced by Theorem 1.2 contains only one isotopy class if D_0 is a half-spun disk-knot (see Section 6).

Finally, we show that spins of fibered 1–knots are related in an interesting way.

Theorem 1.5. Suppose S_1 and S_2 are 2–knots in S^4 obtained by spinning fibered 1–knots of genus g_1 and g_2, respectively. If $g_1 = g_2$, then (S^4, S_2) can be obtained from (S^4, S_1) by surgery on a link of tori in the exterior of S_1. If $g_1 \neq g_2$, we can get from (S^4, S_1) to (S^4, S_2) by a sequence of two sets of surgeries on links of tori.
1.1. Organization.

In Section 2, we set up basic notation and conventions and introduce the main objects of study. In Section 3, we describe how the work of [CG83] allows us to pass from fibered homotopy-ribbon 1–knots to 2–disk-knots, and then 2–knots upon doubling. We prove Theorem 1.1 using the characterization of fibered homotopy-ribbon 2–knots in [Coc83].

A main theme of the paper is to interpret changes to the monodromy of fibrations as surgeries on the total space, as has classically been done with the Stallings twist. In Section 4, we explore this theme in depth, and develop some lemmata required for our main results. In Section 5, we prove and discuss Theorems 1.2 and 1.3 and raise a number of interesting questions. To illustrate the techniques and results found throughout the paper, we conclude with a discussion of spinning fibered 1–knots in Section 6, where we prove Theorem 1.5.

1.2. Acknowledgments.

The authors would like to thank Robert Gompf, Cameron Gordon, and Chuck Livingston for helpful comments and conversations. The authors were supported by NSF grants DMS-1148490, DMS-1309021, and DMS-1400543.

2. Preliminaries and Notation

All manifolds will be assumed to be oriented and smooth, and all maps will be smooth. The boundary of a manifold X will be denoted ∂X. If X is closed, we will denote by X° the manifold obtained by puncturing X (that is, removing the interior of a closed ball from X). The double of X is the manifold $DX = X \cup_{\partial X} (-X)$, where the gluing is done by the identity map. Note that we also have $DX \cong \partial (X \times I)$. Similarly, the spin of a closed manifold X is $S(X) = \partial (X^\circ \times D^2)$. We will denote the closed tubular neighborhood of an embedded submanifold N of X by νN.

An n–knot K is an embedded copy of S^n in S^{n+2}. We say that K is unknotted if it bounds an embedded D^{n+1} in S^{n+2}. The exterior of K is $E_K = S^{n+2} \setminus \nu K$. An n–disk-knot D is a proper embedding of the pair $(D^n, \partial D^n)$ into $(D^{n+2}, \partial D^{n+2})$. Observe that ∂D is an $(n-1)$–knot in $\partial D^{n+2} = S^{n+1}$. We say D is unknotted if there is an isotopy fixing ∂D that takes D to an embedded disk in ∂D^{n+2} (in particular, this implies that ∂D is unknotted as well). Knots occurring as boundaries of disk-knots are called slice knots, and the disk the knot bounds is a called a slice disk. Embedded knots and disk-knots are considered up to the equivalence of pairwise diffeomorphism.

Throughout, we will let Σ_g denote the genus g surface, $H_g = z_g S^1 \times D^2$ denote the genus g handlebody, and M_g denote $\#_g S^1 \times S^2$.

Let Y be a compact and connected n–manifold with (possibly empty) connected boundary ∂Y, and let $\phi : Y \to Y$ be a diffeomorphism. The mapping torus $Y \times_\phi S^1$ of Y is the $(n+1)$–manifold formed from $Y \times I$ by identifying $y \times \{1\}$ with $\phi(y) \times \{0\}$ for all $y \in Y$. We see that a mapping torus is a fiber bundle over S^1 with fiber Y. The map ϕ is called the monodromy of the mapping torus. If ∂Y is non-empty, then $\partial (Y \times_\phi S^1)$ is a mapping torus with fiber ∂Y and monodromy the restriction $\phi|_{\partial Y}$. We are especially interested in the case where the exterior of a knot or disk admits such a fibration, so we highlight the following definition.
The monodromy \(\phi \) of \(2 \)-knot in \(X \) without boundary. This closed mapping torus can be obtained by surgering the \(X \). The fibered manifold \(X \) in negative \(k \) the one induced by the product structure by taking \(k \) handle \(h \)-disk \(D \) be a compact \(3 \)-manifold with \(\partial H \) the paper: the relationship between fibered disk-knots and fibered \(2 \)-knots. Let \(H \) in their shared exterior. The compatibility condition is still satisfied because \(K \) fibers are disks, and \(0 \)-surgery results in \(g \) off surface \(\Sigma \). Example 2.3. Let \(K \) be a fibered knot in \(S^3 \), so \(E_K \) admits the structure of a mapping torus \(\Sigma_g \times \varphi \ S^1 \). The boundary of \(\Sigma_g \) is a longitude of \(K \), so performing 0-surgery on \(K \) glues in a disk to each longitude, resulting in a closed surface bundle \(S^n_0(K) = \Sigma_g \times \varphi \ S^1 \). The monodromy \(\hat{\varphi} \) is obtained by extending \(\varphi \) across the capped off surface \(\Sigma_g \). The simplest example is when \(K \) is the unknot, in which case the fibers are disks, and \(0 \)-surgery results in \(S^2 \times S^1 \).

For an arbitrary fibered knot \(K \subset S^3 \), performing \((1/n) \)-surgery on \(K \) results in a homology \(3 \)-sphere \(S^3_1(K) \). Let \(K' \) be the core of the glued-in solid torus, also called the dual knot of the surgery. Since \(K' \) is the core of the surgery torus, we see that \(E_{K'} = E_K \), and so \(K' \) is a fibered knot in \(S^3_1(K) \). Note that the boundary compatibility condition is still satisfied because \(K' \) and \(K \) share the same longitudes in their shared exterior.

We conclude this section by examining a concept that will be central throughout the paper: the relationship between fibered disk-knots and fibered \(2 \)-knots. Let \(H \) be a compact \(3 \)-manifold with \(\partial H \cong \Sigma_g \). Let \(\phi : H \to H \) be a diffeomorphism, and consider the mapping torus \(X_0 = H \times \phi \ S^1 \). We can isotope \(\phi \) so that it fixes a small disk \(D^2 \subset \partial H \). This gives us an embedded solid torus \(D^2 \times S^1 \) in \(\partial X_0 \), and a fixed fibering of \(\partial D^2 \times S^1 \) by a preferred longitude \(\lambda = \{ pt \} \times S^1 \). See Figure 1(a).

Consider the 4-manifold \(X = X_0 \cup_f h \) obtained by attaching 4-dimensional 2-handle \(h \) along \(D^2 \times S^1 \). We say that \(h \) has framing \(k \) if the framing is related to the one induced by the product structure by taking \(k \) full right-handed twists (for negative \(k \) take left-handed twists). Observe that the cocore \(D \) of \(h \) is a fibered disk in \(X \), since removing a neighborhood of \(D \) is equivalent to removing \(h \), and results in the fibered manifold \(X_0 \).

If we double \(D \) we get a \(2 \)-knot \(S = \partial D \subset \partial X \), and notice that \(S \) is a fibered \(2 \)-knot in \(\partial X \) with fiber \(M = \partial H \). The monodromy \(\Phi : M \to M \) is the double of the monodromy \(\phi : H \to H \), so \(E_S = \partial X \setminus \nu S \cong M^c \times \phi \ S^1 \).

Lemma 2.4. The pair \((\partial X, S) \) depends only on the parity of \(k \), and the two possible pairs are related by a Gluck twist on \(S \).
FIBERED RIBBON DISKS

Figure 1. A schematic (a) for a handlebody bundle, and (b) an immersed ribbon disk in S^3. In (a), ϕ has been isotoped to preserve D, which we think of as a slice disk for the fibered knot K, whose fiber is F. The boundary of the handlebody bundle is the surface bundle $S_0^3(K)$, which has $\hat{F} = F \cup_K D$ as fibers. A Stallings curve c is shown as the boundary of a disk E in H.

Proof. The pair $(\mathcal{D}X, \mathcal{S})$ is obtained from E_Σ by gluing in $S^2 \times D^2$. Gluing in a copy of $S^2 \times D^2$ to a 4–manifold with $S^2 \times S^1$ boundary amounts to attaching a 2–handle and a 4–handle, since $S^2 \times D^2$ admits a handle decomposition relative to its boundary with one 2–handle and one 4–handle. We can choose the 2–handle to be h from the previous paragraph; in other words, we can isotope the attaching region of the 2–handle to lie in one hemisphere of $S^2 \times S^1$. There is a unique way to attach the 4–handle. Gluck \cite{Glu62} showed that up to isotopy there is a unique, non-trivial way to glue in $S^2 \times D^2$. This corresponds to the unique element ρ in the mapping class group of $S^2 \times S^1$ that doesn’t extend over $S^2 \times D^2$. Choosing framing k corresponds to gluing by the map ρ^k, and since ρ^2 is isotopic to the identity, the result follows. Lastly, we point out that the manifolds coming from even or odd framings are related by a Gluck twist. (See Section 4 for more details.)

In this paper we are interested in disk-knots with fiber $H_g = \natural_g S^1 \times D^2$ and 2–knots with fiber $M_g = (\natural_g S^1 \times S^2)\circ$, which are clearly related by doubling in the way we have just discussed.

Let $D \subset B^4$ be a fibered disk-knot with fiber H_g and monodromy ϕ, so $\overline{B^4 \setminus \nu(D)} \cong H_g \times_\phi S^1$. Note that $\partial(B^4, D) = (S^3, K)$ is a fibered slice knot with fiber Σ°_g and monodromy φ, where $\varphi = \phi|_{\partial H_g}$, as in Example 2.3 and Figure 1(a). Doubling (B^4, D) results in a fibered 2–knot $S \subset S^4$ with fiber \hat{M}°_g.

The rest of the paper is devoted to the analysis of these objects.

3. Homotopy-ribbon knots and disks

Following \cite{Coc83}, we will say that an n–knot $K \subset S^{n+2}$ is homotopy-ribbon if it bounds a slice disk $D \subset D^{n+3}$ with the property that $\overline{D^{n+3} \setminus \nu D}$ admits a handle decomposition with only 0–, 1–, and 2–handles, in which case D is called a homotopy-ribbon disk for K. The knot K is called ribbon if it bounds an immersed disk in S^{n+2} with only ribbon singularities. (See \cite{Kaw96} for details.) These singularities can be
removed by pushing the disk into D^{n+3}, giving a ribbon disk for K. See Figure 1(b) for an example.

We call a slice knot $K \subset S^{n+2}$ weakly homotopy-ribbon if there is a surjection
\[\pi_1(S^{n+2} \setminus K) \twoheadrightarrow \pi_1(D^{n+3} \setminus D). \]

We have the following inclusions among n-knots:

\[\text{ribbon} \subset \text{homotopy-ribbon} \subset \text{weakly homotopy-ribbon} \subset \text{slice} \]

The Slice-Ribbon Conjecture postulates that every slice knot in S^3 is ribbon. In fact, in the classical case, it is not known whether any of the converse inclusions hold or not. On the other hand, it is known that every 2–knot is slice [Ker65], while some 2–knots are not ribbon [Yaj64]. We now state the theorems of Cochran and Casson-Gordon that motivate the present work.

Theorem 3.1 (Cochran, [Coc83]). Let $K \subset S^4$ be a fibered 2–knot with fiber M°. Then K is homotopy-ribbon if and only if $M \cong \#_g S^1 \times S^2$.

Theorem 3.2 (Casson-Gordon, [CG83]). Let $K \subset S^3$ be a fibered 1–knot with monodromy $\varphi : \Sigma_g \rightarrow \Sigma_g$.

1. If K bounds a homotopy-ribbon disk $D \subset B^4$, then the closed monodromy $\hat{\varphi} : \Sigma_g \rightarrow \Sigma_g$ extends over a handlebody to $\phi : H_g \rightarrow H_g$.
2. If the closed monodromy $\hat{\varphi}$ extends over a handlebody to $\phi : H_g \rightarrow H_g$, then there is a homotopy-ribbon-disk D' for K in a homotopy 4–ball B such that $B \setminus \nu(D') \cong H_g \times H_g$.

We remark that the original theorem stated by Casson-Gordon is slightly more general, and uses the property we call “weakly homotopy-ribbon”. However, the theorem can be strengthened to conclude homotopy-ribbon, since every mapping torus of H_g can be built with only 0–, 1–, and 2–handles (see Lemma 3.3).

We see there is a strong correspondence between fibered homotopy-ribbon knots and conditions on the fiber. Here, we expand the picture to include fibered 2–disk-knots.

Theorem 1.1. Let D be a fibered disk-knot in B^4 with fiber H. Then D is homotopy-ribbon if and only if $H \cong H_g$.

Proof. Suppose that D is a fibered homotopy-ribbon disk-knot. Let $S \subset S^4$ be the 2–knot obtained by doubling D. Then S is a fibered homotopy-ribbon 2–knot with fiber $M = H \cup_F H$, where $F = \partial H$. To see this, consider the product $(B^4 \times I, D \times I)$ of (B^4, D). The 3–ball $D \times I$ is a slice disk in B^5 for $S = DD = \partial(D \times I)$. In fact, it is a homotopy-ribbon disk; the exterior of $D \times I$ is obtained by crossing the exterior of D with I, and this preserves the indices of the handle decompositions. By Theorem 3.1, this means that $M \cong M_h = \#_h S^1 \times S^2$.

Now, suppose that $g(F) = g$. Since F is a closed, separating surface in M, it can be compressed g times. (Any essential surface in M_h must be a sphere.) Since $M = H \cup_F H$ is a double, these compressions can be done one by one and symmetrically
to both sides. It follows that \(H = H_g \#(\#_{k \in \mathbb{Z}} S^1 \times S^2) \). However, we claim that there is a surjection \(\pi_1(F) \twoheadrightarrow \pi_1(H) \). This implies that \(h = g \), as desired.

To see where this surjection comes from, consider the infinite cyclic cover \(\tilde{W} \) of \(W = B^4 \setminus \nu(D) \). We have that \(\tilde{W} \cong H \times \mathbb{R} \) and \(\partial \tilde{W} \cong F \times \mathbb{R} \). Furthermore, we have the following identifications of the commutators subgroups:

\[
\pi_1(H) \cong \pi_1(\tilde{W}) \cong [\pi_1(W), \pi_1(W)]
\]

and

\[
\pi_1(F) \cong \pi_1(\partial \tilde{W}) \cong [\pi_1(Y), \pi_1(Y)],
\]

where \(Y = \partial W \cong S^3_0(\partial D) \) is given by 0–Dehn surgery on the knot \(\partial D \subset S^3 \).

By assumption, \(\pi_1(S^3 \setminus \partial D) \twoheadrightarrow \pi_1(W) \) (here we use the weaker definition of homotopy-ribbon, which follows from the stronger), which implies that \(\pi_1(S^3_0(\partial D)) \twoheadrightarrow \pi_1(W) \) (since the class of the longitude includes to the trivial element). This gives a surjection between the corresponding commutator subgroups. It follows that \(\pi_1(F) \twoheadrightarrow \pi_1(H) \), as desired.

Conversely, suppose that \(D \) is a fibered disk-knot with handlebody fiber. Then, by Lemma 3.3 below, the exterior of \(D \) in \(B^4 \) can be built using only 0–, 1–, and 2–handles. This, by definition, implies that \(D \) is homotopy-ribbon.

The following lemma appears implicitly in [AR84] (see also [Mon79]).

Lemma 3.3. A mapping torus with fiber \(H_g \) can be built with only 0–, 1–, and 2–handles.

The key point is that an \(n \)–handle in the fiber gives rise to an \(n \)–handle and an \((n + 1) \)–handle in the mapping torus.

It is worth noting that the restriction to homotopy-ribbon disk-knots is important, since any fibered slice knot can bound infinitely many different fibered slice disks in the 4–ball, none of which are homotopy-ribbon. To see this, take any fibered slice disk \(D \) in the 4–ball with boundary some fibered slice knot and form the fiber-preserving connected sum \(D \# S \) for any fibered 2–knot \(S \). For example, if we take any fibered 2–knot \(S \subset S^4 \) and remove a small 4–ball centered on a point in \(S \), then the result is a slice disk \(D \) for the unknot whose fibers are the same as those of \(S \).

Example 3.4. Many infinite families of handlebody bundles whose total space is the complement of a ribbon disk in \(B^4 \) were produced by Aitchison-Silver using construction by isotopy. Their main result states that the boundaries of these fibered ribbon disks are doubly slice, fibered ribbon knots that, collectively, realize all possible Alexander polynomials for such knots. See [AS88] for complete details.

The result of Casson-Gordon allows us to start with a fibered homotopy-ribbon 1–knot and construct a fibered homotopy-ribbon disk in a homotopy 4–ball \(B \). This is accomplished by extending the (closed) monodromy to \(H_g \) and adding a 2–handle to the resulting mapping torus. Next, we can double the resulting fibered disk to get a fibered homotopy-ribbon 2–knot in the homotopy 4–sphere \(DB \). We call this process inflation, and say that we have inflated the fibered homotopy-ribbon 1–knot.
Figure 2. An example of Stallings twisting on a fibered ribbon knot along a curve \(c \) (shown in (a)) that extends to a disk in the handlebody. In (b), we see a push-off \(c_+ \) of \(c \) (after isotoping the knot), and (c) shows the fibered ribbon knots obtained by twisting \(n \) times along \(c \). (The box represents \(n \) full-twists.)

...to the fibered homotopy-ribbon 2–knot. We will see later that this, in some sense, generalizes spinning fibered 1–knots. However, it is not known in general whether \(B \) and \(DB \) must be standard. This suggests the following question.

Question 3.5. Does a fibered homotopy-ribbon knot always extend to a fibered homotopy-ribbon disk in \(B^4 \)? Specifically, must \(B \) be diffeomorphic to \(B^4 \)?

Of course, inflation may depend on a choice of fibered homotopy-ribbon disk for \(K \).

Question 3.6. Is the process of inflating a fibered homotopy-ribbon 1–knot independent of the choice of extension of the monodromy over a handlebody?

4. Changing Monodromies by Surgery

Let \(K \subset S^3 \) be a fibered knot with fiber \(\Sigma_g \) and monodromy \(\varphi \). An essential curve \(c \) on a fiber \(F_\ast \) is called a Stallings curve if \(c \) bounds a disk \(D_c \) in \(S^3 \) (called a Stallings disk), and the framing on \(c \) induced by \(F_\ast \) is zero. Given such a curve, we can cut open \(E_K \) along \(F_\ast \) and re-glue using the surface diffeomorphism \(\tau_c : F_\ast \to F_\ast \), which is given by a Dehn twist along \(c \subset F_\ast \). This operation, called a Stallings twist along \(c \), produces a new fibered knot \(K' \subset S^3 \) with fiber \(\Sigma_g \) and monodromy \(\phi' = \phi \circ \tau_c^{\pm 1} \) [Sta78].

The Stallings twist is a classical operation and provides the first instance of a more general theme: interpreting a change to the monodromy of a fiber bundle as a surgery on the total space. If \(K' \) is obtained from \(K \) by a Stallings twist, then the resulting mapping torus \(E_{K'} \) will be related to the original by \(\pm 1 \) Dehn surgery on \(c \) in \(E_K \).

The following lemma allows us to conclude that Stallings twists can be used to create infinite families of distinct knots.

Lemma 4.1. Suppose that \(K' \) is obtained from \(K \) by twisting \(m \) times about a Stallings curve \(c \) for \(K \), and assume that \(g(K) \geq 2 \). Then \(K' \) will be distinct from \(K \) provided \(|m| = 1 \) or \(|m| > 9g - 3 \).
Proof. If $K' = K$, then the corresponding monodromies are conjugate:

$$\varphi \circ \tau_c^m = \sigma^{-1} \varphi \sigma.$$

This implies that τ_c^m is a commutator. Corollary 8 of [KO01] states that a single Dehn twist is never a commutator, which yields the result when $|m| = 1$, and Corollary 2.4 of [Kor04] states that τ_c^m cannot be a commutator when $|m| > 9g - 3$. □

There are other instances where interpreting a change to the monodromy as a surgery has proved useful. Gompf [Gom10] used this approach to study Cappell-Shaneson 4–spheres, which arise as mapping tori of T^3. There, the corresponding operations are changing the monodromy by twisting along a torus and performing torus surgery. Nash [Nas10] pursues this idea further in his thesis.

In what follows, we will interpret changing the monodromy of a handlebody bundle by twisting along a disk as a 2–handle surgery and changing the monodromy of a $\#_g S^1 \times S^2$ bundle by twisting along a sphere as a Gluck twist. We first give some precise definitions of the diffeomorphisms by which we will change the monodromies.

Definition 4.2. Let $\omega_\theta : D^2 \to D^2$ and $\Omega_\theta : S^2 \to S^2$ be the maps given by clockwise rotation of D^2 and S^2 (about some fixed axis) through the angle θ. Let H be a compact 3–manifold with boundary and let M be a compact 3–manifold.

Given a properly embedded disk $E \subset H$, we can identify a neighborhood of E with $D^2 \times I$ and define a map $\tau_E : H \to H$ to be the identity map away from of $D^2 \times I$, and $\tau_D(z,t) = (\omega_{2\pi t}(z),t)$ on $D^2 \times I$.

Similarly, given an embedded 2–sphere S in M, we can identify a neighborhood of S with $S^2 \times I$ and define a map $\tau_S : M \to M$ to be the identity map away from $S^2 \times I$, and $\tau_S(x,t) = (\Omega_{2\pi t}(x),t)$ on $S^2 \times I$.

We will call these maps twisting along the disk D and twisting along the sphere S, respectively. Observe that we can iterate these operations to twist m times along a disk or sphere, for any $m \in \mathbb{Z}$, where $m < 0$ should be interpreted as counterclockwise rotation.

Remark 4.3. The restriction $\tau_D|_{\partial H} : \partial H \to \partial H$ is a right-handed Dehn twist τ_c along the curve $c = \partial D^2$. If we double twisting along a disk we get twisting along a sphere. That is, the double of the map $\tau_D : H \to H$ is the map $\tau_S : M \to M$ where S is the double of D in $M = DH$.

Later, we will mostly be interested in the case when $H = H_g$ and $M = M_g$, but we will continue to work in generality for the time being. Next, we introduce two types of surgery and examine how they relate to the diffeomorphisms defined above.

4.1. The Gluck twist.

Definition 4.4. Given an embedded 2–sphere S in a 4–manifold X with trivial normal bundle, we can identify a neighborhood of S with $S^2 \times D^2$. We produce a new 4–manifold X_S by removing $S^2 \times D^2$ and re-gluing it using the map $\rho : S^2 \times S^1 \to S^2 \times S^1$ defined by $\rho(x,\theta) = (\Omega_\theta(x),\theta)$. The manifold X_S is said to be the result of performing a Gluck twist on S.
Gluck [Glu62] defined the preceding operation and showed that, up to isotopy, \(\rho \) is the only non-trivial way to glue in an \(S^2 \times D^2 \) to a manifold with \(S^2 \times S^1 \) boundary. Furthermore, he showed that \(\rho^2 \) is isotopic to the identity map, so \(\rho \) has order two in the mapping class group. Therefore, performing two consecutive Gluck twists on a sphere gives you back the original 4–manifold.

Recall that gluing in a copy of \(S^2 \times D^2 \) to a 4–manifold with \(S^2 \times S^1 \) boundary amounts to attaching a 2–handle \(h \) and a 4–handle. The attaching circle for \(h \) will be \(\{ pt \} \times S^1 \), and the framing will be zero (corresponding to the product framing) if we glue by the identity map, or \(\pm 1 \) if we glue by the Gluck twist map \(\rho \). There is a unique way to attach the 4–handle in either case. Furthermore, since \(\rho^2 \) is trivial, we see that the framing only matters mod 2.

Remark 4.5. Note that \(\rho \) is isotopic to a map taking \(\Omega_{2st} \) on half of the circle (identifying half the circle with \(I \)) and the identity map on the other half. Therefore we can substitute such a map in the gluing process without changing the result.

Performing a Gluck twist on a 2–knot \(S \subset S^4 \) produces a homotopy 4–sphere \(S_S \), and it is not known, in general, when \(S_S \) is diffeomorphic to \(S^4 \). For certain types of 2–knots, however, it is known that a Gluck twist not only returns \(S^4 \), but also preserves the equivalence class of the 2–knot. The easiest case is for the unknotted 2–sphere, which we record here for later use.

Lemma 4.6. Let \(\mathcal{U} \) be the unknotted 2–sphere in \(S^4 \). Performing a Gluck twist on \(\mathcal{U} \) gives back \((S^4, \mathcal{U}) \).

Proof. It is a basic fact that \(\overline{S^4 \setminus \nu \mathcal{U}} = B^3 \times S^1 \). If \(S'_U \) is the result of performing a Gluck twist on \(\mathcal{U} \), then \(S'_U = B^3 \times S^1 \cup \rho(S^2 \times D^2) \). Since \(\rho \) clearly extends over \(B^3 \times S^1 \), we see that \(S'_U = B^3 \times S^1 \cup \rho(S^2 \times D^2) \) is diffeomorphic to \(B^3 \times S^1 \cup S^2 \times D^2 \cong S^4 \), and the diffeomorphism is the identity map on \(S^2 \times D^2 \) (and so preserves \(\mathcal{U} \)). We think of this diffeomorphism as “untwisting” along \(B^3 \times S^1 \).

Remark 4.7. In fact, this can be generalized to any 2–knot \(S \) that bounds \((#_g S^1 \times S^2)^\circ \) – essentially because \(\Omega_0 \) extends across \((#_g S^1 \times S^2)^\circ \). See Chapter 13 of [Kaw96] for details. It follows, for example, that if \(S \subset S^4 \) is a homotopy-ribbon 2–knot, then \(S_S \cong S^4 \), and the Gluck twist preserves the homotopy-ribbon 2–knot.

Our main observation here is that changing the monodromy of a 4–dimensional mapping torus by twisting along a sphere contained in a fiber corresponds to performing a Gluck twist on the total space.

Proposition 4.8. Let \(M \) be a compact 3–manifold, and consider the mapping torus \(X = M \times \phi \ S^1 \). Let \(S \) be an embedded 2–sphere in a fiber \(M_* \). Let \(X' = M \times \phi_{tor_S} S^1 \) be the mapping torus formed by cutting \(X \) along \(M_* \) and re-gluing with the diffeomorphism \(\tau_S : M_* \to M_* \). Then \(X' \) is obtained from \(X \) by performing a Gluck twist on \(S \). Furthermore, applying \(\tau_S \) twice gives \(X'' = M \times \phi_{tor} S^1 \), which is diffeomorphic to \(X \).

Proof. Identify a neighborhood of \(S \) in \(M_* \) with \(S \times I \). Since the mapping torus is locally a product \(M_* \times I_0 \), we can identify a neighborhood of \(S \) in \(X \) with \(S \times I \times I_0 \).
Performing a Gluck twist on S corresponds to deleting $S \times I \times I_0$ and re-gluing it by ρ along $S \times \partial(I \times I_0)$. By Remark 4.5 we can isotope ρ so that it is the identity map except on $S \times I \times \{1\}$, where we take $\Omega_{2\pi t}$. The result is clearly diffeomorphic to cutting along the fiber M and re-gluing by τ_S, so we get the first claim. The second claim follows from the first claim and the fact that performing a Gluck twist twice on a sphere preserves the original diffeomorphism type.

\[\square\]

4.2. 2–handle surgery.

Next, we introduce an operation on 4–manifolds with boundary that will be instrumental in proving our main results.

Definition 4.9. Suppose a 4–manifold X can be decomposed as $X = X_0 \cup_f h$, with a 2–handle h attached to some 4–manifold with boundary X_0 with framing f. We say X' is obtained from X by 2–handle surgery on h with slope m if $X' = X_0 \cup_{f'} h$ is formed by removing h and re-attaching it with the same attaching circle but with framing f', where f' is obtained from f by adding m right-hand twists.

In other words, 2–handle surgery is the process of cutting out and re-gluing a B^4 along $S^1 \times D^2$. We make the following simple observations.

Lemma 4.10. Suppose X' is obtained from X by 2–handle surgery. Then $\pi_1(X') \cong \pi_1(X)$ and $H_*(X) \cong H_*(X')$.

Note that it is clearly possible to change the homotopy type of X via 2–handle surgery, since the intersection form may change.

Proof. We get a handle decomposition for X by taking a handle decomposition for X_0 and adding h. A handle decomposition for a 4–manifold allows one to read off a presentation of the fundamental group: each 1–handle gives a generator, and the attaching circle for each 2–handle provides a relation. Now the framings for the 2–handles do not affect the relations, so removing h removes a relation and re-attaching h (with any framing) adds the same relation back. Thus, $\pi_1(X') \cong \pi_1(X)$. Similarly, the homology groups can be computed in a simple way from a handle decomposition, and one can check that they don’t depend on the framings of the 2–handles. \[\square\]

The next lemma gives a condition for when a 2–handle surgery preserves the diffeomorphism type of the 4–manifold. Recall that a properly embedded disk D in a 4–manifold X is said to be unknotted if it is isotopic rel ∂ into the boundary of X.

Lemma 4.11. Suppose X contains a 2–handle h whose cocore is unknotted in X. Then any 2–handle surgery on h will preserve the diffeomorphism type of X.

Proof. Removing h is equivalent to removing a neighborhood of the cocore D. If D is unknotted, then this can be thought of as adding a 1–handle to X. We form X' by attaching a 2–handle along the former attaching circle, which will intersect the belt sphere of the 1–handle geometrically once. Therefore, these two handles will cancel (regardless of framing). It follows that we have not changed X, so X' is diffeomorphic to X. In other words, D being unknotted is equivalent to the existence of a 1–handle that h cancels, and the cancellation does not depend on the framing of h. \[\square\]
Next, we consider how the boundary of a 4–manifold changes when doing 2–handle surgery. Recall that for $X = X_0 \cup h$, ∂X is obtained from ∂X_0 by performing integral surgery on the attaching circle K of h, with the surgery coefficient given by the framing. The belt sphere of h in ∂X is then the dual knot K' of K. If X' is the result of the 2–handle surgery, then $\partial X'$ is obtained from ∂X by doing surgery on K', which can be seen as the composition of two surgeries: first do the ‘dual surgery’ from ∂X back to ∂X_0, then do another surgery (corresponding to the new framing of h) from ∂X_0 to $\partial X'$. Note that the surgery from ∂X to $\partial X'$ won’t be integral, in general.

Example 4.12. Suppose that $X = B^4$, and X_0 is the exterior of a slice disk for a knot $K \subset S^3 = \partial B^4$. Then, ∂X_0 is the 3–manifold obtained by 0–surgery on K. We see that X is obtained from X_0 by attaching a 0–framed 2–handle h along $K' \subset \partial X_0$, where K' is the dual knot to K. Now, X' is formed by 2–handle surgery on h with slope m if h is attached with framing m instead of framing 0, so $\partial X'$ is m–Dehn surgery on K' in ∂X_0. From this viewpoint, we see that $\partial X'$ is obtained from ∂X by performing $(-1/m)$–Dehn surgery on K in S^3.

Now we show that changing the monodromy of a 4–dimensional mapping torus with boundary by twisting along a disk that is properly embedded in a fiber corresponds to performing a 2–handle surgery on the total space.

Proposition 4.13. Let H be a compact 3–manifold with boundary, and consider the mapping torus $X = H \times \phi S^1$. Let D be a disk that is properly embedded in a fiber H_\ast. Let $X' = H \times \phi \tau_D S^1$ be the mapping torus obtained by cutting X along H_\ast and re-gluing with the diffeomorphism $\tau_D : H_\ast \to H_\ast$. Then, X' can be obtained from X by performing a 2–handle surgery on a handle h in X where the cocore of h is D.

Proof. Similarly to Proposition 4.8, we identify a neighborhood of D in H_\ast with $D \times I$ and a neighborhood of D in X as $N = D \times I \times I_0$. Then N is diffeomorphic to B^4, and $N \cap (X \setminus N) = D \times \partial(I \times I_0)$ is a solid torus. Thus, we can view N as a 2–handle attached to $X \setminus N$ with cocore $D \times \{0\} \times \{0\}$. (Cutting out N and re-gluing it is then a 2–handle surgery.) We choose the gluing map to be the identity map except on $D \times I \times \{1\}$, where we take $\omega_{2\pi c}$. This is clearly diffeomorphic to cutting along the fiber and re-gluing by τ_D to obtain X'.

□

5. Main results

Now we can apply the techniques from the previous section to prove our main results.

Theorem 1.2. Let $D_0 \subset B^4$ be a fibered disk-knot with fiber H and monodromy ϕ, and let $E \subset H$ be an essential, properly embedded disk that is unknotted in B^4. Then, the result of twisting m times along E is a new fibered disk-knot $D_m \subset B^4$ with monodromy $\phi_m = \phi \circ \tau_E^m$. Furthermore,

1. $K_m = \partial D_m$ is a fibered knot in S^3 with monodromy $\varphi_m = \varphi_0 \circ \tau_c^m$, where $c = \partial E$ is a Stallings curve;
2. the collection $\{D_m\}_{m \in \mathbb{Z}}$ contains infinitely many pairwise non-diffeomorphic fibered disk-knots, where $D_0 = D$; and
(3) the collection $\{D D_m\}_{m \in \mathbb{Z}}$ of fibered 2–knots obtained by doubling contains at most two equivalence classes.

If in addition the fiber H is the handlebody H_g, then the family of disk exteriors $\{B^4 \setminus \nu D_m\}_{m \in \mathbb{Z}}$ will all be homotopy equivalent.

Proof. Changing the monodromy by twisting along E is equivalent to performing a 2–handle surgery, by Proposition 4.13 where the cocore of the 2–handle is E. Since E is unknotted, Lemma 4.11 states that the diffeomorphism type of the total space doesn’t change, and so the result is a fibered disk-knot in B^4. In fact there is a small subtlety: we are using the fact that performing the 2–handle surgery in the disk exterior $H_g \times_{\phi} S^1$ and then filling back in the the disk D is equivalent to performing the 2–handle surgery in $H_g \times_{\phi} S^1 \cup \nu D = B^4$. However, the order of these operations is insignificant, because $E \cap \nu D = \emptyset$.

Because E is unknotted, it can be isotoped to a disk E' lying in $S^3 = \partial B^4$ such that $c = \partial E'$ lies on a fiber surface F_0 for $K_0 = \partial D_0$. Furthermore, the framing on c induced by F will is zero, since c bounds a disk in H_g. By definition, E' is a Stallings disk for $K_0 = \partial D_0$. Since twisting along a disk restricts to a Dehn twist on the boundary, we see that we are changing the monodromy of the boundary surface bundle by $\tau^m_E|_{\partial H} = \tau^m_c$. This settles part (1).

Part (2) follows from the fact that infinitely many of the boundary knots ∂D_m are distinct. For example, the collection $\{K_k(9g-2)\}_{k \in \mathbb{Z}}$ contains pairwise distinct knots, by Lemma 4.1.

Part (3) follows from Remark 4.3 and Proposition 4.8.

Finally, if $H = H_g$, then we will show that $Z_m = H_g \times_{\phi \circ \tau E}^m S^1$ is a $K(G,1)$, where $G \cong \pi_1(Z_m)$ is independent of m, by Lemma 4.10. By the long exact sequence of a fibration, and since the base space S^1 satisfies $\pi_n(S^1) = 0$ for $n > 1$, we see that $\pi_n(Z_m) \cong \pi_n(H_g) = 0$ for all $n > 1$. Thus, the Z_m are homotopy equivalent for all m. \[\square\]

Remark 5.1. In many cases, it may be that $DD_m = DD_n$ for all $m,n \in \mathbb{Z}$. For example, when we consider spinning fibered 1–knots below, we will see examples where the resulting collection of 2–knots contains a unique isotopy class.

If we start with a fibered ribbon disk D_0 for a ribbon knot ∂D_0, we can twist along an unknotted disk E in the fiber to obtain D_m, which will be a homotopy-ribbon disk for ∂D_m, by Theorem 1.2. However, it’s not obvious that D_m must be ribbon. Therefore, we see that the above procedure could be used to produce potential counterexamples to the Slice-Ribbon Conjecture.

Now given a fibered 2–knot $S \subset S^4$ with fiber $\# g S^1 \times S^2$, we consider the ways in which it can be decomposed as the double of a fibered disk in a contractible 4–manifold. We have already seen in Theorem 1.2 that it is possible for a 2–knot to be the double of infinitely many distinct disk-knots in B^4, but this is a somewhat special situation. We next prove a sort of converse result, which is more general but comes with the trade-off that we can no longer guarantee that the fibered disks lie in B^4.

Theorem 1.3. Let S be a non-trivial fibered 2–knot in S^4 with fiber $(\# g S^1 \times S^2)\circ$. Then (S^4, S) can be expressed as the double of infinitely many pairs (W_m, D_m), where
(1) W_m is a contractible 4–manifold;
(2) D_m is a fibered homotopy-ribbon disk-knot in W_m;
(3) the boundaries $Y_m = \partial W_m$ are all related by Dehn filling on a common 3–
manifold; and

(4) infinitely many of the Y_m (and, therefore, the corresponding W_m) are non-
diffeomorphic.

Again, we remark that the theorem holds in a slightly more general setting. One
could consider S to be in a homotopy 4–sphere, for example, yet draw the same
conclusions.

To prove Theorem 1.3, we must first record a fact about self-diffeomorphisms of
$M_g = \# g S^1 \times S^2$.

Proposition 5.2. Let $\Phi : M_g \rightarrow M_g$ be an orientation-preserving diffeomorphism.
Then Φ can be isotoped so that it preserves the standard Heegaard splitting of M_g.
Furthermore, Φ is isotopic to the double of a diffeomorphism $\phi : H_g \rightarrow H_g$.

Proof. Montesinos [Mon79] gives representatives for generators of the mapping class
group $\mathcal{M}(M_g)$, and, upon inspection, we see that each of the orientation-preserving
representatives satisfy the above properties. The result follows, since any orientation-
preserving diffeomorphism of M_g is isotopic to a composition of Montesinos’ repre-
sentatives.

\square

Remark 5.3. Given such a Φ, the description of Φ as the double of a handlebody
diffeomorphism ϕ is not unique. Indeed we can alter ϕ by twisting twice along any
disk and the doubled map Φ will be unaffected (up to isotopy), by Proposition 4.8.

Given a fibered 2–knot $S \subset S^4$ with fiber M^g_0 and monodromy Φ, we can apply
Proposition 5.2 to obtain a (non-unique) handlebody bundle $H_g \times_\phi S^1$ which doubles
to the exterior of S, $E_S = M^g_0 \times_\phi S^1$. More precisely, we double the handlebody
bundle, except along a disk D_0 that is fixed by ϕ.

Recall from our comments on the Gluck twist that S^4 is recovered from E_S by
attaching a 0–framed 2–handle h and a 4–handle. The attaching circle of h is $\{pt\} \times S^1$, and it can be isotoped to lie on the boundary of the sub-bundle $H_g \times_\phi S^1$ (in fact, we can choose the attaching region to be $D_0 \times S^1$). Let $W_0 = (H_g \times_\phi S^1) \cup h$ and observe that $S^4 = DW_0$. This is most easily seen by noticing that the complement E_S is completed to S^4 by gluing in a $S^2 \times D^2$, where we think of the cocore D of h as
the southern hemisphere and doubled copy of D as the northern hemisphere. Then
the proof of Theorem 1.3 will be completed by proving the following claim.

Claim 5.4. Let W_m be the manifold obtained by performing 2–handle surgery on h
with slope m, and let D_m be the cocore of the re-glued h. Then, $DW_m = S^4$, and
$DD_m = S$. Furthermore, the W_m are contractible 4–manifolds, and infinitely many
of the W_m are distinct.

Proof. The fact that $DW_m = S^4$ and $DD_m = S$ follows from Lemma 2.4 and Remark
4.7: the pairs (DW_m, DD_m) are related by Gluck twists on DD_m, and Gluck twists on
2–knots bounding M^g_0 preserve both the 4–manifold and the 2–knot. Next, notice that
\[\pi_1(H_g \times \phi S^1) \cong \pi_1(M_g \times \phi S^1) \], since \(\Phi \) and \(\phi \) are identical as automorphisms of the free group on \(g \) generators. It follows that the HNN extensions presenting these groups will be identical. Since \(\pi_1(M_g \times \phi S^1 \cup h) \cong 1 \), it follows that \(\pi_1(H_g \times \phi S^1 \cup h) \cong 1 \).

One can calculate that \(W_m \) has trivial homology, and it then follows from Whitehead’s theorem that \(W_n \) is contractible.

The boundaries \(Y_m = \partial W_m \) are all related by Dehn filling on a common 3–manifold \(Y \), as discussed in Example 4.12. More precisely, we have that \(Y_m = Y(-1/m) \). If \(Y \) is Seifert fibered, then distinct fillings will produce distinct manifolds, as claimed in [Hei74]. If \(Y \) is hyperbolic, then we have \(\text{vol}(Y(-1/m)) < \text{vol}(Y) \) for all \(m \) and \(\lim_{m \to \infty} \text{vol}(Y(-1/m)) = \text{vol}(Y) \) [Thu97]. It follows that there is an infinite sequence \(\{m_i\}_{i \in \mathbb{N}} \) such that \(\text{vol}(Y_{m_1}) < \text{vol}(Y_{m_2}) < \text{vol}(Y_{m_3}) < \cdots \). Therefore, infinitely many of the \(Y_m \) are distinct. If \(Y \) is toroidal, we can cut \(Y \) along all essential tori, and repeat the above argument on the atoroidal piece containing \(\partial Y \). □

Question 5.5. Is it possible that \(Y_{m'} \cong Y_m \) for some \(m' \neq m \)? This would be an example of a cosmetic surgery on a fibered homotopy-ribbon knot in a \(\mathbb{Z} \)–homology 3–sphere.

Quite a few choices were made in the preceding construction, and this raises a number of questions. An obvious one is whether we can always arrange for one of the \(W_m \) to be the standard 4–ball. We can phrase the question as follows.

Question 5.6. Is every fibered homotopy-ribbon 2–knot in \(S^4 \) the double of a fibered homotopy-ribbon disk-knot in \(B^4 \)?

A result of Levine [Lev83] states that the double of any disk-knot is doubly slice, so to answer the above question negatively, it would suffice to find a fibered homotopy-ribbon 2–knot in \(S^4 \) that is not doubly slice. If we generalize to arbitrary fibers then we can observe that not all fibered 2–knots are doubles of fibered disks. This follows simply because there exist 2–knots that are fibered by 3–manifolds that are themselves not doubles (see [Zee65]).

We introduce the term **halving** to describe the process of going from a fibered homotopy-ribbon 2–knot \(S \subset S^4 \) to one of the cross-sectional fibered homotopy-ribbon 1–knots produced by Theorem 1.3. This raises the question of which 1–knots can result from this process for a given 2–knot.

Definition 5.7. Given a 2–knot \(S \subset S^4 \), we call 1–knot \(K \) a symmetric equator of \(S \) if \(K \) can be obtained from \(S \) by halving. In other words, \(S \) is the double along \(K \) of a disk in a contractible 4–manifold.

From this point of view, we have the following corollary to Theorem 1.3.

Corollary 1.4. Any nontrivial, fibered homotopy-ribbon 2–knot has infinitely many fibered distinct symmetric equators.

6. Spinning fibered 1–knots

Recall that the **spin** of a manifold \(X \) is given by \(S(X) = \partial(X^\circ \times D^2) \). Equivalently, we can view the spin as a double, \(S(K) \cong \mathcal{D}(X^\circ \times I) \), as follows.

\[
\mathcal{D}(X^\circ \times I) = \partial(X^\circ \times I \times I) \cong \partial(X^\circ \times D^2)
\]
Notice that $S(S^n) \cong S^{n+1}$, so the the spin of a knot (S^3, K) is a 2–knot $(S^4, S(K))$, called the spin of K. Also, if we let $(B^3, K^o) = (S^3, K)^o$ be the punctured pair, then $(B^3, K^o) \times I = (B^4, D_K)$, where D_K is a ribbon disk for $K\#(-K)$, which we sometimes call the half-spin of K. The justification of this terminology is that $\mathcal{D}(B^4, D_K) \cong (S^4, S(K))$.

Now, if (S^3, K) is a fibered knot, then $K\#(-K)$ is a fibered ribbon knot, (B^4, D_K) is a fibered ribbon disk for $K\#(-K)$, and $(S^4, S(K))$ is a fibered ribbon 2–knot. Suppose that K has monodromy $\phi : \Sigma^o_2 \to \Sigma^o_2$. Then, $(B^4, D_K) \cong (S^3, K)^o \times I$ is clearly fibered with fibers $H_{2g} \cong \Sigma^o_2 \times I$ and monodromy $\phi = \phi \times I$. It is clear that the fibration restricts to the boundary to give a fibration of $(S^3, K\#(-K))$, where the fibers are $\Sigma^o_2 \times (-\Sigma^o_2)$ and the monodromy is $\varphi \times (-\varphi)$. Finally, if we view $(S^4, S(K))$ as the double of (B^4, D_K), then we see that the former is fibered with fiber $M_{2g} = \#_{2g} S^1 \times S^2$ (since $M_{2g} = \mathcal{D} H_{2g}$) and monodromy $\Phi = \mathcal{D}\phi$.

This spinning construction is an example of inflation, which relates the fibered ribbon knot $K\#(-K)$ to the fibered ribbon 2–knot $S(K)$. Therefore it is natural to try to understand the techniques and results from the previous sections in case of spins of fibered knots.

The trivial pair (S^4, S^2) admits a natural fibration by 3–balls. One way to visualize the spin $S(K)$ is to view K as a knotted arc $K^o \subset B^3$, and to identify this 3–ball with a fiber of (S^4, S^2). Then, $S(K)$ is the trace of K^o as the 3–ball sweeps out all of S^4 via this fibration. See Figure 3(a).

Let K be a fibered knot, and let F be a fiber of $K^o \subset B^3$. Let a be an unknotted arc on F, with endpoints in ∂B^3, as in Figure 3(a). Then $D_a = a \times I \subset (\overline{B^3 \setminus \nu K}) \times I$ is an unknotted disk in a fiber $H_{2g} \subset D_K$. We can apply Theorem 1.2 to obtain new fibered disks D_{J_m} in B^4 by twisting m times along D_a. The disks D_{J_m} will be homotopy-ribbon disks for knots J_m obtained from $K\#(-K)$ by doing m Stallings twists along $c = \partial D_a$.

These J_m are nice examples of inflation, because their fibrations extend to homotopy-ribbon disk complements in the standard B^4. Choosing different arcs for a provides a wealth of examples. Some of these families of fibered ribbon knots have been studied elsewhere [Ait84, AS88, HS91, Sta78], often with the goal of finding infinitely many distinct fibered ribbon knots with, say, the same Alexander module.

When we double this picture to get $(S^4, S(K))$, we get an unknotted sphere $S_a = \mathcal{D} D_a$ inside a fiber $M \cong M_{2g}$ of $S(K)$. We see that S_a is the spin of a, and twisting along S_a gives a new fibered ribbon 2–knot $S(K)^a$ in S^4, which is the double of the disk-knot D_{J_m}, for all odd m (Theorem 1.2). However, in this special setting, we see that twisting on S_a preserves the 2–knot $S(K)$.

Proposition 6.1. $S(K)^a = S(K)$

Proof. Since a is unknotted it bounds a semi-disk in B^3 (that is, a together with an arc on the boundary bound a disk). Perturb the disk so that it intersects K^o transversely in k points. Spinning this semi-disk gives a ball B_a bounded by S_a, showing that S_a is, in fact, unknotted in S^4. Furthermore, we see that B_a intersects $S(K)$ in k circles, which come from spinning the k intersection points. The circles form an k component
Figure 3. The right handed trefoil, shown (a) as an embedded arc in B^3. (A portion of the boundary 2–sphere is shown in green.) Lying on a Seifert surface for K^c, we see two arcs, a_1 and a_2, which are boundary parallel in B^3. If we form the spin of the the picture in (a), we get the spun trefoil knot, together with two spheres S_1 and S_2 corresponding to the spins of the arcs a_1 and a_2. In (b), we see an equatorial cross section of the spun trefoil. Alternatively, (b) shows the boundary of the half-spun trefoil. The curves c_1 and c_2 are Stallings curves for the square knot, and bound disks in the genus two handlebody, thought of as a fiber of the half-spun trefoil.

unlink since they are the spins of isolated points. By an isotopy of $S(K)$ taking place in a collar $B_a \times I$, we can assume the circles all lie concentrically in a plane in B_a.

Now, $S(K)'$ is formed by changing the monodromy by twisting along S_a, and, by Proposition 4.8, this is equivalent to performing a Gluck twist on S_a. By the proof of Lemma 4.6, we see that the diffeomorphism taking S_a^4 (the result of performing a Gluck twist on S_a) back to S^4 is “untwisting” along the complement of S_a. This can be realized as cutting $S^1 \times B^3 = S^4 \setminus \nu S_a$ at B_a and re-gluing by a 2π twist about an axis, which we can choose to be perpendicular to the plane in B_a containing the concentric circles. Therefore the twist in fact preserves the circles, and hence sends $S(K)'$ onto $S(K)$, proving the claim. \hfill \Box

6.1. Torus surgery. We finish by discussing one more type of monodromy change. Just as one can change the monodromy of a fibered 2–knot by twisting along a sphere, one can also change the monodromy by twisting along a torus. This can be interpreted as a torus surgery in the total space, and there are some nice applications of this in the spin setting.

Definition 6.2. Given a torus T embedded in compact 3–manifold M, we can identify a neighborhood of T with $S^1 \times S^1 \times I$. We define the map $\tau_T : M \to M$ to be the identity map away from a neighborhood of T, and the identity map on the first S^1 factor times a Dehn twist on $S^1 \times I$ in the neighborhood $S^1 \times S^1 \times I$. We will call this map twisting along the torus T.

Given an embedded torus T in a 4-manifold X, torus surgery on T (also called a log transform) is the process of cutting out νT and re-gluing it by a self-diffeomorphism of $\partial \nu T = T^3$. Torus surgery is a well-studied operation on 4-manifolds, and we refer the reader to [GS99] for a more comprehensive overview. Here we state its relationship to changing the monodromy by twisting along a torus. The proof is similar to Proposition 4.8 and Proposition 4.13.

Proposition 6.3. Let Y be a compact 3–manifold, and consider the mapping torus $X = Y \times_\phi S^1$. Let T be an embedded torus in a fiber M_s. Let $X' = Y \times_{\phi \tau_T} S^1$ be the mapping torus formed by cutting X open along M_s and re-gluing using the diffeomorphism $\tau_T : M_s \rightarrow M_s$. Then X' can be obtained from X by performing a torus surgery on T.

We can show that all fibered 2–knots coming from spinning fibered 1-knots are related by torus surgeries. In this special setting, this can be thought of as an analogue to a theorem of Harer [Har82], which states that all fibered links in S^3 are related to the unknot by Stallings twists and a type of plumbing.

Theorem 1.5. Suppose S_1 and S_2 are 2–knots in S^4 obtained by spinning fibered 1–knots of genus g_1 and g_2 respectively. If $g_1 = g_2$, then (S^4, S_2) can be obtained from (S^4, S_1) by surgery on a link of tori in the exterior of S_1. If $g_1 \neq g_2$, we can get from (S^4, S_1) to (S^4, S_2) by a sequence of two sets of surgeries on links of tori.

Proof. Assume S_1 and S_2 are the result of spinning fibered 1-knots K_1 and K_2, respectively, each with fiber genus $g = g_1 = g_2$. Let us first restrict our attention to S_1 and K_1. The monodromy for K_1 is given by a composition of Dehn twists along some collections of curves $\{\alpha_i\}$ on its fiber Σ_0^g, and so the monodromy for the fibered disk D_{K_1} is a composition of Dehn twists times the identity on its fiber $\Sigma_0^g \times I = H_{2g}$. Therefore, we see that the monodromy for D_{K_1} is a composition of maps that are twisting along annuli $\{\alpha_i \times I\}$, and when we double to obtain S_1, we see that the monodromy of the fibered ribbon 2–knot is a composition of maps that are twisting along tori $\{\alpha_i \times S^1\} \subset E_{S_1}$. The same is true, of course, for S_2, and we can achieve that the collections of tori are disjoint by selecting them to lie in disjoint fibers. Then, (S^4, S_2) can be obtained from (S^4, S_1) by cutting along these fibers and changing the monodromy by twisting along these collections of tori. By Proposition 6.3, this can be realized by torus surgery on the tori, proving the first part of the theorem.

Now suppose $g_2 > g_1$. Then S_1 is fibered by M_{2g_1} and S_2 is fibered by M_{2g_2}. The first task is to increase the number of $S^1 \times S^2$ factors in the fiber of S_1 using torus surgery. Isotope the monodromy of S_1 so that it fixes a 3–ball B in M_{2g_1}. Then, we have $B \times S^1$ inside the exterior E_{S_1}. If $U \subset B$ is the $(2g_2 - g_1)$ component unlink, then $U \times S^1 \subset B \times S^1$ is an unlink of $(2g_2 - g_1)$ tori in E_{S_1}. We perform surgery on these tori such that the gluing maps correspond to the gluing map for 0–framed Dehn surgery on U times the identity map in the remaining S^1 direction. This changes $B \times S^1$ to $M_{2g_2}^* \times S^1$. The result of this set of torus surgeries is a mapping torus with fiber M_{2g_2}. We can now change the monodromy to that of S_2 by another set of torus surgeries as in the first part of the proof. Hence (S^4, S_2) can be obtained from (S^4, S_1) by a sequence of two sets of surgeries on links of tori. \[\square\]
Suppose c is a Stallings curve in a fiber F_* of K_\circ in $B^3 \setminus \nu K^\circ$. Then spinning c gives a torus T_c inside a fiber M_* of $\mathcal{S}(K)$. We have the following relationship.

Corollary 6.4. If K_c is the result of applying a Stallings twist to K along c, then $\mathcal{S}(K_c)$ can be obtained from $\mathcal{S}(K)$ by torus surgery on T_c.

References

[Ait84] Iain Roderick Aitchison, *Isotoping and twisting knots and ribbons*, ProQuest LLC, Ann Arbor, MI, 1984, Thesis (Ph.D.)–University of California, Berkeley.

[AR84] I. R. Aitchison and J. H. Rubinstein, *Fibered knots and involutions on homotopy spheres*, Four-manifold theory (Durham, N.H., 1982), Contemp. Math., vol. 35, Amer. Math. Soc., Providence, RI, 1984, pp. 1–74.

[AS88] Iain R. Aitchison and Daniel S. Silver, *On certain fibred ribbon disc pairs*, Trans. Amer. Math. Soc. 306 (1988), no. 2, 529–551.

[CG83] A. J. Casson and C. McA. Gordon, *A loop theorem for duality spaces and fibred ribbon knots*, Invent. Math. 74 (1983), no. 1, 119–137.

[Coc83] Tim Cochran, *Ribbon knots in S^4*, J. London Math. Soc. (2) 28 (1983), no. 3, 563–576.

[Gluc83] Herman Gluck, *The embedding of two-spheres in the four-sphere*, Trans. Amer. Math. Soc. 104 (1962), 308–333.

[Gom10] Robert E. Gompf, *More Cappell-Shaneson spheres are standard*, Algebr. Geom. Topol. 10 (2010), no. 3, 1665–1681.

[GS75] C. McA. Gordon and D. W. Summers, *Knotted ball pairs whose product with an interval is unknotted*, Math. Ann. 217 (1975), no. 1, 47–52.

[GS99] Robert E. Gompf and András I. Stipsicz, *4-manifolds and Kirby calculus*, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999.

[Har82] John Harer, *How to construct all fibered knots and links*, Topology 21 (1982), no. 3, 263–280.

[Hei74] Wolfgang Heil, *Elementary surgery on Seifert fiber spaces*, Yokohama Math. J. 22 (1974), 135–139.

[HS91] L. Richard Hitt and Daniel S. Silver, *Ribbon knot families via Stallings’ twists*, J. Austral. Math. Soc. Ser. A 50 (1991), no. 3, 356–372.

[Kaw96] Akio Kawamura, *A survey of knot theory*, Birkhäuser Verlag, Basel, 1996, Translated and revised from the 1990 Japanese original by the author.

[Ker65] Michel A. Kervaire, *Les nœuds de dimensions supérieures*, Bull. Soc. Math. France 93 (1965), 225–271.

[KO01] Mustafa Korkmaz and Burak Ozbagci, *Minimal number of singular fibers in a Lefschetz fibration*, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1545–1549.

[Kor04] Mustafa Korkmaz, *Stable commutator length of a Dehn twist*, Michigan Math. J. 52 (2004), no. 1, 23–31.

[Lev83] J. Levine, *Doubly sliced knots and doubled disk knots*, Michigan Math. J. 30 (1983), no. 2, 249–256.

[Mon79] José María Montesinos, *Heegaard diagrams for closed 4-manifolds*, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 219–237.

[Nas10] Daniel Nash, *Homotopy 4-spheres and surgery on 2-tori*, ProQuest LLC, Ann Arbor, MI, 2010, Thesis (Ph.D.)–University of California, Irvine.

[Neu63] Lee Neuwirth, *On Stallings fibrations*, Proc. Amer. Math. Soc. 14 (1963), 380–381.

[Sta78] John R. Stallings, *Constructions of fibred knots and links*, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 55–60.
[Thur97] William P. Thurston, *Three-dimensional geometry and topology. Vol. 1*, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997, Edited by Silvio Levy.

[Yaj64] Takeshi Yajima, *On simply knotted spheres in R^4*, Osaka J. Math. 1 (1964), 133–152.

[Zee65] E. C. Zeeman, *Twisting spun knots*, Trans. Amer. Math. Soc. 115 (1965), 471–495.