HOCHSCHILD COHOMOLOGY OF $U(\mathfrak{sl}_2(k))$

MATTHEW TOWERS

Abstract. We calculate the Hochschild cohomology of $U(\mathfrak{sl}_2(k))$ when k is a field of characteristic $p > 2$.

1. Introduction

Let k be a field, $\mathfrak{g} = \mathfrak{sl}_2(k)$ and $U = U(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g}. In this note we calculate $\text{HH}^*(U)$ when k has characteristic $p > 2$.

U is a Hopf algebra with antipode $\eta(x) = -x$ and comultiplication $\Delta(x) = x \otimes 1 + 1 \otimes x$ for $x \in \mathfrak{g}$. Let $U^e = U \otimes_k U^{op}$ be the enveloping algebra of U, so there is an algebra homomorphism $(1 \otimes \eta) \circ \Delta : U \to U^e$ making U^e into a free U-module (on the generators $\lambda \otimes 1$ for λ in a PBW basis of U). The induced module $k \otimes_{U^e} U$ is isomorphic to U and the restricted module $U|_{U^e}^U$ is by definition U^{ad}, so Eckmann-Shapiro gives

$$\text{HH}^*(U) = \text{Ext}^*_U(U, U) = \text{Ext}^*_U(k \otimes_{U^e} U, U) \cong \text{Ext}^*_U(k, U^{\text{ad}}).$$

If k has characteristic zero, the structure of $\text{HH}^*(U)$ follows immediately: in that case $\text{Ext}^*_U(k, L) = 0$ whenever L is a nontrivial simple U-module so $\text{HH}^*(U) \cong \text{Ext}^*_U(k, k) \otimes_k Z(U)$. The centre $Z(U)$ is generated by the Casimir element of U in the characteristic zero case, and $\text{Ext}^*_U(k, k)$ is an exterior algebra with one generator of degree 3 arising from the Killing form.

Let S be the symmetric algebra on the adjoint \mathfrak{g}-module. To calculate the Hochschild cohomology in the case when the characteristic of k is greater than two we use the isomorphisms

$$\text{HH}^*(U) \cong \text{Ext}^*_U(k, U^{\text{ad}}) \cong \text{Ext}^*_U(k, S)$$

where the first follows as above and the second from the isomorphism of U-modules $U^{\text{ad}} \cong S$ of [FP87]: this result shows $\text{HH}^*(U)$ agrees with the Poisson cohomology of S equipped with the Poisson bracket induced by the Lie bracket of \mathfrak{g}.

Under this isomorphism $\text{HH}^0(U)$ corresponds to S^2, and each $\text{HH}^i(U)$ becomes a S^2-module. We describe this module structure by generators and relations, and give the Hilbert series (arising from the polynomial grading on S) explicitly. The following theorem summarises some of the results to be proved in sections 3, 4 and 5.

Theorem 1.1. As S^2-modules, $\text{HH}^1(U)$ is generated by three elements of degree $p - 1$ and four of degree p, $\text{HH}^2(U)$ is generated by three elements of degree $p - 1$ and one of degree p and $\text{HH}^3(U)$ is generated by one element of degree one and one of degree $p - 2$.

1.1. Notation. Let k be a field of characteristic $p > 2$ and e, f, h denote the usual basis of $\mathfrak{g} = \mathfrak{sl}_2(k)$. Let S^n be the nth symmetric power of the adjoint \mathfrak{g}-module and $S = \bigoplus_{n \geq 0} S^n$ the symmetric algebra on the adjoint \mathfrak{g}-module. Let $c = h^2 + 4ef \in S^2$, let Z be the subalgebra of S generated by c, e^p, h^p, f^p so that $Z = S^2$ and let Z_0 be the subalgebra of Z generated by e^p, f^p and h^p. Multiplication

\[Date: Tuesday 28th April, 2015.\]
by an element of Z is a g-endomorphism of S, so each Hochschild cohomology group is a Z-module.

Let $L(r)$ denote the simple highest weight g-module with dimension $r + 1$. The natural module $L(1)$ has a basis x, y with $h \cdot x = x, h \cdot y = -y$, and we write $S^n(L(1))$ for the nth symmetric power of $L(1)$.

There is a standard resolution of the trivial U-module

$$0 \rightarrow U \otimes_k x \otimes_k x \rightarrow U \otimes_k x \otimes_k y \rightarrow U \otimes_k y \rightarrow k \rightarrow 0 \quad (1)$$

in which the differentials are given by

$$\delta_n(1 \otimes x_1 \land \cdots \land x_n) = \sum_i (-1)^{i+1} x_i \otimes x_1 \land \cdots \land \hat{x}_i \land \cdots \land x_n$$

$$+ \sum_{i<j} (-1)^{i+j} [x_i, x_j] \land x_1 \land \cdots \land \hat{x}_i \land \cdots \land \hat{x}_j \land \cdots \land x_n$$

for $n \geq 1$ and $\delta_1(1 \otimes x) = x$ for $x, x_i \in g$. In particular the Hochschild cohomology groups $\text{HH}^i(U)$ are zero for $i \geq 4$.

Both $L(1)$ and g admit weight gradings, with e, h, f in degrees 2, 0, -2 and x, y in degrees 1, -1 respectively, hence so do their symmetric and exterior powers. The differentials in this resolution respect the weight gradings, so $\text{Ext}_U^i(k, S)$ has two gradings, one from the weight grading on S and one from the polynomial grading $S = \bigoplus_{n \geq 0} S^n$.

2. Symmetric powers of the natural module

Lemma 2.1. For each $n \geq 2$ there is a short exact sequence of g-modules

$$0 \rightarrow S^{n-2} \xrightarrow{\phi} S^n \rightarrow S^{2n}(L(1)) \rightarrow 0 \quad (2)$$

Proof. The images of the elements $e^i h^{n-i}, h^n, f^i h^{n-i}$ for $1 \leq i \leq n$ in S^n/cS^{n-2} form a basis, and defining $\phi : S^n \rightarrow S^{2n}(L(1))$ by $\phi(cS^{n-2}) = 0$ and

$$\phi(e^i h^{n-i}) = (-2)^{-i} x^{n+i} y^{n-i}$$

$$\phi(h^n) = x^n y^n$$

$$\phi(f^i h^{n-i}) = 2^{-i} x^{n-i} y^{n+i}$$

induces an isomorphism $S^n/cS^{n-2} \rightarrow S^{2n}(L(1))$. \hfill \square

If $2n = qp + r$ with $0 \leq r < p - 1$ then the submodule structure of $S^{2n}(L(1))$ is

$$\begin{array}{c}
L(r') \\
L(r) \\
\cdots \\
L(r') \\
L(r)
\end{array}$$

where $r' = p - 2 - r$ and there are $q + 1$ copies of $L(r)$ and q of $L(r')$. If $2n = qp + (p - 1)$ then $S^{2n}(L(1))$ is a direct sum of copies of $L(p - 1)$.

Proposition 2.2. Let $2n = qp + r$ with $0 \leq r \leq p - 1$. Then

$$\dim \text{Ext}_U^1(k, S^{2n}(L(1))) = \begin{cases}
q + 2 & r = p - 2 \\
2q & r = 0 \\
0 & \text{otherwise.}
\end{cases}$$
Proof. We identify 1-cocycles for the resolution (1) with linear maps \(\alpha : g \to S^{2n}(L(1)) \) such that
\[
\begin{align*}
\epsilon \cdot \alpha(f) - f \cdot \alpha(e) &= \alpha(h) \\
(h - 2) \cdot \alpha(e) &= \epsilon \cdot \alpha(h) \\
(h + 2) \cdot \alpha(f) &= f \cdot \alpha(h)
\end{align*}
\]
so that the coboundaries are the maps \(\delta_{z} : g \to S^{2n}(L(1)) \) given by \(\delta_{z}(r) = r \cdot z \) for \(z \in S^{2n}(L(1)) \). We may assume \(\alpha \) is homogeneous with respect to the weight grading, and if its weight degree \(j \) is not zero mod \(p \) then \(\alpha \) equals the coboundary \(\delta_{\epsilon(h)/j} \). Weight homogeneous cocycles \(\alpha \) whose weight degree is divisible by \(p \) take the form
\[
\alpha(h) = \lambda_{h}x^{i}y^{2n-i} \quad \alpha(e) = \lambda_{e}x^{i+1}y^{2n-i-1} \quad \alpha(f) = \lambda_{f}x^{i-1}y^{2n-i+1}
\]
where \(n \equiv i \mod p, -1 \leq i \leq 2n + 1 \) and \(\lambda_{e}, \lambda_{f}, \lambda_{h} \in k \), with the convention that these coefficients are zero if the corresponding monomial would have a negative exponent. The cocycle condition becomes
\[
(n + 1)(\lambda_{f} - \lambda_{e}) = \lambda_{h} \quad n\lambda_{h} = 0
\]
All coboundaries with the same weight degree are scalar multiples of the map \(\delta_{2, \gamma^{2n-1}} \) which sends \(h \) to 0, \(e \) to \(ix^{i+1}y^{2n-i-1} \) and \(f \) to \(ix^{-i}y^{2n-i+1} \).

Suppose first \(n \neq 0 \), so that \(\lambda_{h} = 0 \). If \(n \neq -1 \) then we must have \(\lambda_{f} = \lambda_{e} \), so \(\alpha \) is a coboundary. This shows that the dimension of the Ext group is as claimed for \(r \neq 0, p - 2 \). If \(n \equiv -1 \), so \(r = p - 2 \), we may choose \(\lambda_{f} \) and \(\lambda_{e} \) freely but \(\alpha \) is a coboundary if \(\lambda_{e} = \lambda_{f} \). Each choice for \(i \) contributes one to the dimension of the Ext group, which is \(q + 2 \).

Now let \(n \equiv 0 \), so all coboundaries with this weight degree are zero. We have \(r = 0 \) and \(2n = qp \), and each possibility for \(i \) contributes two to the dimension of the Ext group since \(\lambda_{e} \) and \(\lambda_{f} \) may be chosen freely, except for the extreme values which contribute one: one of \(\lambda_{e} \) or \(\lambda_{f} \) is forced to be zero as the corresponding monomial has a negative exponent. This gives a total of \(2q \).

\[\square \]

Proposition 2.3. Let \(2n = qp + r \) with \(0 \leq r \leq p - 1 \). Then
\[
\dim \operatorname{Ext}^{2}_{k}(S^{2n}(L(1))) = \begin{cases}
2q + 2 & r = p - 2 \\
q - 1 & r = 0 \\
0 & \text{otherwise}.
\end{cases}
\]

Proof. We interpret 2-cocycles as maps \(\alpha : \wedge^{2}g \to S^{2n}(L(1)) \) such that
\[
e \cdot \alpha(h \wedge f) + f \cdot \alpha(e \wedge h) = h \cdot \alpha(e \wedge f).
\]
Coboundaries are spanned by maps of the form
\[
\begin{align*}
\rho_{z}(h \wedge f) &= 0 \\
\rho_{z}(e \wedge f) &= -f \cdot z \\
\rho_{z}(e \wedge h) &= (2 - h) \cdot z \\
\tau_{z}(h \wedge f) &= -f \cdot z \\
\tau_{z}(e \wedge f) &= -z \\
\tau_{z}(e \wedge h) &= e \cdot z
\end{align*}
\]
for \(z \in S^{2n}(L(1)) \). If \(\alpha \) is weight homogeneous of degree \(j \neq 0 \) then it equals \((1/j)(\alpha_{h \wedge f} - \tau_{\alpha(e \wedge h)})\) so is a coboundary. Therefore we assume
\[
\alpha(h \wedge f) = \lambda_{f}x^{i-1}y^{2n-i+1}, \alpha(e \wedge f) = \lambda_{e}x^{i+1}y^{2n-i-1}, \alpha(e \wedge h) = \lambda_{e}x^{i}y^{2n-i-1}
\]
where \(n \equiv i \mod p, -1 \leq i \leq 2n + 1 \) and \(\lambda_{e}, \lambda_{f}, \lambda_{h} \in k \), with the convention that these are zero if the corresponding monomial would have a negative exponent. The cocycle condition becomes
\[
(n + 1)(\lambda_{e} + \lambda_{f}) = 0.
\]
Suppose first that \(n + 1 \equiv 0 \mod p \) so this condition is empty. By subtracting a coboundary of the form \(t_2 \) we can assume \(\lambda_h = 0 \), and such a cocycle is not a boundary unless it is zero since if \(r_2 \) or \(s_2 \) have weight degree congruent to zero then they kill \(e \wedge h \) and \(h \wedge f \). It follows that each possible choice of \(i \) contributes two to the dimension of the Ext group, except the extreme values \(i = -1, 2n + 1 \) where one of \(\lambda_e, \lambda_f \) is forced to be zero because the corresponding monomial would have a negative exponent, so the dimension is \(2q \). This takes care of the case \(r = p - 2 \).

Now suppose \(n + 1 \not\equiv 0 \), so \(\lambda_e = -\lambda_f \) and by subtracting a suitable \(t_2 \) we may assume \(\lambda_h = 0 \). If \(n \not\equiv 0 \) then \(\alpha = -(\lambda_f/n)t_{x_{i-1}}y_{2n+i} - (1/n(n+1))s_{x_{i-1}}y_{2n+i+1} \) is a coboundary. Otherwise as before so each possible choice for \(i \) contributes one to the dimension of the Ext group so the dimension is as claimed.

Proposition 2.4. Let \(2n = qp + r \) with \(0 \leq r \leq p - 1 \). Then

\[
\dim \Ext^3_U(k, S^{2n}(L(1))) = \begin{cases} 1 & n = 0 \\ q & r = p - 2 \\ 0 & \text{otherwise}. \end{cases}
\]

Proof. The resolution \(\mathbf{1} \) shows \(\Ext^3_U(k, S^{2n}(L(1))) \cong S^{2n}(L(1))/g \cdot S^{2n}(L(1)) \). We have

\[
h \cdot x^a y^b = (a-b)x^a y^b \\
e \cdot x^{a-1} y^{b+1} = (b+1)x^a y^b \\
f \cdot x^{a+1} y^{b-1} = (a+1)x^a y^b
\]

so \(x^a y^b \in S^{2n}(L(1)) \) is in the image of the action of \(g \) if and only if \(a \equiv b \equiv -1 \mod p \) or \(a = b = 0 \). Thus the images of the monomials \(1 \) and \(x^{p(p+1)}y^{p+1} \) for \(q_x, q_y \geq 0 \) in \(S(L(1))/g \cdot S(L(1)) \) are a basis.

Proposition 2.5. The first connecting homomorphism in the long exact sequence obtained by applying \(\hom_U(k, -) \) to \(\mathbf{2} \) is zero.

Proof. We need that \(\phi^* : \hom_U(k, S^n) \to \hom_U(k, S^{2n}(L(1))) \) is onto, or equivalently that every trivial submodule of \(S^{2n}(L(1)) \) is the image of a trivial submodule of \(S^n \) under \(\phi : S^n \to S^{2n}(L(1)) \). The trivial submodules of \(S^{2n}(L(1)) \) are spanned by monomials \(x^a y^b \) for \(a, b \geq 0 \). If \(a > b \) then \(x^a y^b = \phi(e^{(a-b)/2}h_{p+1}) \), and \(g \) acts trivially on \(e^{(a-b)/2}h_{p+1} \). The cases where \(a \leq b \) are similar.

3. \(\HH^3(U) \)

Lemma 3.1. The following are cocycles with values in \(S \):

\(\alpha \)	\(\alpha(e) \)	\(\alpha(h) \)	\(\alpha(f) \)
\(\delta_e \)	\(f^{p-1} \)	0	0
\(\delta_f \)	0	0	\(e^{p-1} \)
\(\delta \)	\(h^{p-h_{p-1}/2} \)	\(e^{(p-1)/2} \)	\(h^{p-h_{p-1}/2} \)
\(E \)	0	\(2e^p \)	\(-h e^{p-1} \)
\(F \)	\(h f^{p-1} \)	\(-2f^p \)	0
\(H \)	\(-2c^p f^{p-1} \)	0	\(2fh^{p-1} \)
\(C \)	\(\frac{(p+1)/2-h_{p-1}+1}{4f} \)	\(h^p \)	\(\frac{c(p+1)/2-h_{p-1}+1}{4e} \)

Proof. Checking the cocycle condition \(\mathbf{4} \) is straightforward using the fact that the action of \(g \) on \(S \) is by derivations.
Lemma 3.2.
(1) \(e^p F + f^p E = (1/2)h^p H \)
(2) \(2e^p \delta - c(p-1)/2 E - h^p \delta_f = 0 \).
(3) \(2f^p \delta + c(p-1)/2 F - h^p \delta_e = 0 \).
(4) \(c(p-1)/2 H + 2e^p \delta_e - 2f^p \delta_f = 0 \).
(5) \(c(p-1)/2 C - h^p \delta - e^p \delta_e - f^p \delta_f = 0 \).
(6) \(c(p+1)/2 \delta - h^p C + e^p F - f^p E = 0 \).
(7) \(2f^p C + h^p F - c(p+1)/2 \delta_e - f^p \delta_f = 0 \).
(8) \(2e^p C - h^p E - c(p+1)/2 \delta_f + e^p H = 0 \).

Proof.
(1) \(s = (1/p)(e^p - 4(e,f)^p - h^{2p}) \) makes sense as an element of \(S \) if we expand \(e^p \) and perform the division in an appropriate \(\mathbb{Z} \)-form. Then \(e^p F + f^p E - (1/2)h^p H \) is equal to \(-1/4 \) times the coboundary of \(1 \implies s \).
(2) From now on we write \((a, b, c) \) for the linear map \(g \to S \) sending \(e \) to \(a \), \(h \) to \(b \) and \(f \) to \(c \). Then \(2e^p \delta - c(p-1)/2 E - h^p \delta_f \) is \(e^p \) times the cocycle
\[
\begin{pmatrix}
 h^p - h e^{(p-1)/2} & 0 \\
 0 & -h^p - h e^{(p-1)/2}
\end{pmatrix}
\]
This is the coboundary of \(1 \implies - \sum_{r=0}^{p-1/3} h^p 2^{r-1} c^r/(2r + 1) \).
(3) Similar to (2).
(4) \(c(p-1)/2 H - 2e^p \delta_e + 2f^p \delta_f \) is the cocycle
\[
- h^p \begin{pmatrix}
 h^p - h e^{(p-1)/2} & 0 \\
 0 & -h^p - h e^{(p-1)/2}
\end{pmatrix}
+ c(p+1)/2 \begin{pmatrix}
 (c^{(p-1)/2} - h^{p-1}) & 0 \\
 0 & -c^{(p-1)/2} - h^{p-1}
\end{pmatrix}
\]
The first term is a coboundary as in (2), and the second bracketed term is the coboundary of \(1 \implies \sum_{k=0}^{p-3/2} c^k h^p 2^{-k(b+1)/(2(b + 1))} \).
(5) Follows immediately from the definitions.
(6) Follows immediately from the definitions.
(7) \(2f^p C + h^p F - c(p+1)/2 \delta_e - f^p H \) is the cocycle
\[
-f^p c \begin{pmatrix}
 (c^{(p-1)/2} - h^{p-1}) & 0 \\
 0 & -c^{(p-1)/2} - h^{p-1}
\end{pmatrix}
\]
which is a coboundary as in (4).
(8) Similar to (7). \(\square \)

Proposition 3.3.
The second connecting homomorphism in the long exact sequence obtained by applying \(\text{hom}_{U}(k, -) \) to (2) is zero.

Proof.
We show
\[
\phi^* : \text{Ext}_{U}^{1}(k, S^n) \to \text{Ext}_{U}^{1}(k, S^{2n}(L(1)))
\]
is onto by finding preimages under the map induced by \(\phi \) of representing cocycles for the basis of the right hand side provided by Proposition 2.

Firstly let \(n \equiv -1 \mod p \) and write \(2n = qp + (p-2) \). For any choice of scalars \(\lambda_{i,e} \neq \lambda_{i,f} \) where \(-1 \leq i \leq 2n + 1 \) and \(i \equiv n \mod p \), the cocycles
\[
A_i = (\lambda_{i,e} x^{i+1} y^{2n-i-1}, \lambda_{i,f} x^{-i} y^{2n-i+1})
\]
represent a basis of \(\text{Ext}_{U}^{1}(k, S^{2n}(L(1))) \).

Suppose \(i = n \), and choose \(\lambda_{i,e} = 1, \lambda_{i,f} = -1 \). Since \(\phi(-2ch^{n-1}) = A_n(e) \) and \(\phi(-2fh^{n-1}) = A_n(f) \), a cocycle represents a preimage of \(A_n \) if it is equal modulo \(c \) to
\[
-(2ch^{n-1}, 0, 2fh^{n-1}).
\]
for some $1 ≤ i ≤ n$ have the form $e(2^{n-i-1}h^{i+1}f^{n-i-1}) = A_i(e)$, a cocycle represents a preimage of A_i if it equals $$(2^{n-i-1}h^{i+1}f^{n-i-1}, 0, 0) \mod c.$$

Since $n+1 \equiv 0 \mod p$ a scalar multiple of a power of h^p and of f^p times $δ_e$ works. The case $i > n$ is similar.

Now let $n \equiv 0 \mod p$, so cocycles representing elements of $\text{Ext}^1_U(k, S^{2n}(L(1)))$ have the form $B_i = (λ_{i,e}, x^{i+1}, y^{2n-i-1}, λ_{i,h}, x^i, y^{i+1}, (λ_{i,e} + λ_{i,h})x^i, y^{i+1})$ for some $λ_{i,e}, λ_{i,h}$ and some $i \equiv n \mod p$.

If $i = n$ and $λ_{i,h} = 0$ then as $φ(h^{i+1}e) = (-2)^{-1}x^iy^{i+1}$ and $φ(h^{i+1}f) = 2^{-1}x^iy^{i+1}$ a suitable power of h^p times H is a preimage of B_n.

If $i = n$ and $λ_{i,h} = 1, λ_{i,e} = -1/2$ then a preimage of B_n has the form $(eh^{n-1}, h^n, fh^{n-1}) \mod c$ so a power of h^p times C is a preimage, for $C(e) \equiv eh^{p-1}$ and $C(f) \equiv fh^{p-1} \mod c$.

Suppose $n < i < 2n$. If $λ_{i,h} = 0, λ_{i,e} = 1$ then $φ((-2)^{i+1-n}h^{2n-i-1}e^{i+1-n}) = B_i(e)$ and $φ((-2)^{i+1-n}e^{i+1-n}) = B_i(h)$, so B_i has a preimage which is a scalar multiple of some cocycle $e^{(q/2-1)p}E$ is a preimage for B_{2n} since $φ((-2)^n e^{n}) = x^{2n}$. Then a scalar multiple of $e^{(q/2-1)p}E$ is a preimage for B_{2n} since $φ((-2)^{n-1}e^{n-1}h) = x^{2n-1}y$. The cases when $i < n$ are similar.

\[□ \]

Proposition 3.4. $HH^1(U)$ is generated as a Z-module by the cohomology classes of the cocycles listed in Lemma 3.3.

Proof. Vanishing of the first two connecting homomorphisms gives an exact sequence
\[0 \to \text{Ext}^1_U(k, S^{n-2}) \xrightarrow{c} \text{Ext}^1_U(k, S^n) \xrightarrow{δ_e} \text{Ext}^1_U(k, S^{2n}(L(1))) \to 0 \]

for each n. Let H be the Z-submodule of $\text{Ext}^1_U(k, S)$ generated by the cohomology classes of the cocycles of Lemma 3.1. The proof of the previous proposition showed that every element of $\text{Ext}^1_U(k, S^{2n}(L(1)))$ has a preimage under $φ^*$ in H, so the result follows by induction on n. \[□ \]

Proposition 3.5. As a Z_0-module $HH^1(U)$ is the free module on $c^iδ, c^iδ_e, c^iδ_f$ for $0 ≤ i ≤ (p-1)/2$ and c^iE, c^iF, c^iH, c^iC for $0 ≤ i ≤ (p-3)/2$ modulo relations c^iR where R is the first relation from Lemma 3.2 and $0 ≤ i ≤ (p-3)/2$.

Proof. Lemma 3.2 and Proposition 3.4 imply that these elements generate $HH^1(U)$ over Z_0 and the Z_0-module with these generators and relations surjects onto $HH^1(U)$.

We need only check the dimensions of their graded pieces agree. Since Z_0 is polynomial on three generators of degree p, its degree n part has dimension $d_n = (n/p+2)/2$ if p divides n and zero otherwise. Thus the degree n part of the Z_0-module with these generators and relations has dimension
\[e_n = 3 \sum_{i=0}^{(p-1)/2} d_{n-(p-1)-2i} + 4 \sum_{i=0}^{(p-1)/2} d_{n-p-2i} - \sum_{i=0}^{(p-3)/2} d_{n-2p-2i}. \]
Let \(e_n = \dim \text{Ext}_1^U(k, S^n) \). Then \([4]\) and Proposition \([2, 2]\) tell us that \(e_0 = e_1 = 0 \) and if \(n = qp + r \) for \(0 \leq r < p \),

\[
e_n - e_{n-2} = \begin{cases}
4q & r = 0 \\
2q + 3 & r = p - 1 \\
0 & \text{otherwise}.
\end{cases}
\]

It is straightforward to check that \(e_n \) obeys the same initial conditions and recurrence relation.

Corollary 3.6. Let \(n = qp + r \) with \(0 \leq r \leq p - 1 \). Then

\[
\dim \text{Ext}_1^U(k, S^n) = \begin{cases}
3\left(\binom{q+2}{2} + 4\binom{q+1}{2}\right) & r = p - 1 \\
4\binom{q+1}{2} - \binom{q}{2} & r \neq p - 1 \text{ even} \\
3\binom{q+1}{2} & r \text{ odd}.
\end{cases}
\]

Proof. This follows from \([5]\). \(\square\)

4. \(\text{HH}^2(U) \)

Lemma 4.1. The following are cocycles with values in \(S \):

\(\alpha \)	\(\alpha(h \wedge f) \)	\(\alpha(e \wedge f) \)	\(\alpha(e \wedge h) \)
\(R_e \)	0	0	\(f \)
\(R_h \)	\(f h^{p-2} \)	\(f \)	\(e f h^{p-2} \)
\(R_f \)	\(e f^{p-1} \)	0	0
\(T \)	\(f h^{p-1} \)	0	\(e f h^{p-1} \)

Proof. Check the cocycle condition \([5]\). \(\square\)

Lemma 4.2. \(e^p R_e + f^p R_f - h^p R_h = c^{(p-1)/2} T \)

Proof. \(e^p R_e + f^p R_f - c^{(p-1)/2} T \) equals

\[
(f((ef)^{p-1} - c^{(p-1)/2} h^{p-1}), 0, 0, (ef)^{p-1} - c^{(p-1)/2} h^{p-1})
\]

and since \((ef)^{p-1} = (c - h^2)^{p-1} = \sum_{i=0}^{p-1} c^i h^{2p-2-2i}\) this is

\[
\left(\sum_{i=0, i \neq (p-1)/2}^{p-1} f^i c^i h^{2p-2-2i}, 0, \sum_{i=0, i \neq (p-1)/2}^{p-1} e c^i h^{2p-2-2i} \right).
\]

The coboundary \(c^i h^{2p-1-2i} \) equals

\[
(2(2i + 1)) f c^i h^{2p-2-2i} - c^i h^{2p-1-2i} - 2(2i + 1) e c^i h^{2p-2-2i}
\]

so \(e^p R_e + f^p R_f - c^{(p-1)/2} T \) differs by a coboundary from

\[
\left(0, \sum_{i=0, i \neq (p-1)/2}^{p-1} c^i h^{2p-1-2i} - 2(2i + 1), 0 \right).
\]

Each \((0, c^i h^{2p-1-2i}, 0)\) with \(0 < i \leq p - 1 \) is the coboundary \(s_{x_i} \), where \(x_i = (1/i) \sum_{j=0}^{i-1} f c^j h^{2p-2-2i} \), so up to coboundaries \(e^p R_e + f^p R_f - c^{(p-1)/2} T \) equals

\[
(0, h^{2p-1}/2, 0).
\]

Since \(t_{h^{p-1}} = (2fh^{p-2} - h^{p-1}, 2eh^{p-2}) \)

\(h^p R_h \) differs by \((0, h^{p-1}/2, 0)\) from a boundary, and the result follows. \(\square\)

Proposition 4.3. The third connecting homomorphism in the long exact sequence obtained by applying \(\text{hom}_U(k, -) \) to \([3]\) is zero except in the case \(n = p - 1 \) when it has image of dimension one.
Proof. We must show
\[\phi^* : \text{Ext}_U^2(k, S^n) \to \text{Ext}_U^2(k, S^{2n}(L(1))) \]
is onto unless \(n \neq p - 1 \) when its image has codimension one. To do this, as before, we find preimages of cocycles representing a basis of the right hand side.

Suppose \(n \equiv 0 \mod p \). The cocycles
\[A_i = (x^{-1}y^{2n-i+1}, 0, -x^{i+1}y^{2n-i-1}) \]
for \(0 < i < 2n \) and \(i \equiv 0 \mod p \) represent a basis of \(\text{Ext}_U^2(k, S^{2n}(L(1))) \), where we adopt the notation \((a, b, c)\) for the linear map on \(\Lambda^2 g \) such that \(h \wedge f \mapsto a, e \wedge f \mapsto b, e \wedge h \mapsto c \).

If \(i = n \) then \(2h^{n-p}T \) is a preimage. If \(i > n \) then a scalar multiple of \(e^{i-n}h^{2n-i-p}T \) is a preimage, and if \(i < n \) we get a similar result.

Now suppose \(n \equiv -1 \mod p \) and \(n > p - 1 \), so that cocycles have the form
\[(\lambda_f x^{-1}y^{2n-i+1}, 0, \lambda_e x^{i+1}y^{2n-i-1}) \]
for \(-1 \leq i \leq 2n + 1 \) and \(i \equiv n \mod p \).

When \(i = 2n + 1 \), we need only find a preimage for
\[(x^{2n}, 0, 0) \]
and \(e^{n+1-p}R_f \).

When \(n < i < 2n + 1 - p \) we have to find preimages for two linearly independent cocycles. Taking \(\lambda_f = 1, \lambda_e = 0 \) we get the cocycle
\[(x^{-1}y^{2n-i+1}, 0, 0) \]
which has a scalar multiple of \(h^{2n-i+1}e^{i-n-p}R_f \) as a preimage. Also \(h^{2n-i+1-p}e^{i-n}R_h \)
is congruent modulo \(c \) to
\[(e^{i-n}h^{2n-i+1}/4, 0, e^{i-n+p}h^{2n-i-1}) \]
so it is a preimage for the cocycle with \(\lambda_e = \lambda_f = (-2)^{i-n-1} \). The cases where \(i < n \) are similar.

When \(i = n \), \(2fph^{n+1-2p}R_f \) is a preimage of the cocycle with \(\lambda_f = 1, \lambda_e = 0 \) since \((f e)p^{-1} = h^{2p-2} \mod c \). A preimage for the cocycle with \(\lambda_f = 0, \lambda_e = 1 \) can be found similarly.

Finally suppose \(n = p - 1 \). Preimages when \(i = -1 \) or \(2n + 1 \) work exactly as before, so we look only at cocycles with weight degree zero. By subtracting an appropriate coboundary we may assume these send \(e \wedge f \) to zero, so they take the form
\[\left(f \sum_{i=0}^{(p-3)/2} \phi_i e^i h^{p-2-i}, 0, e \sum_{i=0}^{(p-3)/2} \epsilon_i e^i h^{p-2-i} \right) \]
for some scalars \(\phi_i, \epsilon_i \). Such a map is a a cocycle if and only if \(\phi_{i-3/2} = \epsilon_{i-3/2} \) and
\[\phi_{i-1} - \phi_i = \epsilon_{i-1} - \epsilon_i \]
for \(1 \leq i \leq (p - 3)/2 \). This has the general solution \(\phi_i = \epsilon_i \) for \(0 \leq i \leq (p - 3)/2 \). On the other hand, it shows that if \(z \in S \) has weight \(-2 \) then
\[(-f : e \cdot z, 0, e \cdot e \cdot z) \]
is a coboundary. Taking \(z = f e^i h^{p-2-2i} \) we get
\[-4i(2i + 1)(f e^i h^{p-2(2i+1)}, 0, e e^i h^{p-2(2i+1)}) \]
\[+ 4(i + 1)(2i + 1)(f e^{i+1} h^{p-2(i+2)}, 0, e e^{i+1} h^{p-2(i+2)}) \]
and so each
\[(f e^i h^{p-2(i+1)}, 0, e e^i h^{p-2(i+1)}) \]
for $0 < i \leq (p - 3)/2$ is a coboundary. Therefore the weight zero ($i = n$) part of $\text{Ext}_U^1(k, S)$ has dimension at most one, and since $(fh^{p-2}, 0, eh^{p-2}) = R_h$ is a preimage of the nonbounding cocycle
\[(x^{p-2}y^{p}/2, 0, -x^{p}y^{p-2}/2)\]
it is exactly one.

Proposition 4.4. $\text{HH}^2(U)$ is generated as a Z-module by \bar{R}_e, \bar{R}_f, \bar{R}_h and \bar{T}. As a Z-module it is isomorphic to the free module on those generators modulo the relation of Lemma 4.3.

Proof. That these elements generate $\text{HH}^2(U)$ as a Z-module follows from the preimages computed in the proof of Proposition 4.3 as for $\text{HH}^1(U)$. We only need show that the graded pieces of the free module with these generators and relations have the same dimensions as those of $\text{HH}^2(U)$.

Proposition 4.3 implies
\[0 \to \text{Ext}_U^2(k, S^{n-2}) \xrightarrow{\phi} \text{Ext}_U^2(k, S^n) \xrightarrow{\phi^*} \text{Ext}_U^2(k, S^{2n}(L(1))) \to 0\]
is exact except when $n = p - 1$ when ϕ^* has image of dimension three, which together with Proposition 4.3 gives a recurrence relation for $e_n = \text{dim Ext}_U^2(k, S^{n-2})$:

\[e_n - e_{n-2} = \begin{cases}
3 & n = p - 1 \\
4q + 4 & n = qp + p - 1 \text{ for } q > 0 \\
2q - 1 & n = qp \\
0 & \text{otherwise.}
\end{cases}\]

Since Z is free as a Z_0-module on e^i for $0 \leq i < p$, the dimension f_n of the polynomial degree n part of Z satisfies
\[(9) \quad f_n = \begin{cases}
\binom{q + 2}{2} & n = qp + r, r \text{ even} \\
\binom{q + 1}{2} & n = qp + r, r \text{ odd}
\end{cases}\]
so the free Z-module with our generators and relations has degree n part of dimension $3f_{n-(p-1)} + f_{n-p} - f_{n-(2p-1)}$ which equals
\[
\begin{align*}
3\binom{q + 2}{2} + \binom{q + 1}{2} - \binom{q - 1}{2} & \quad n = qp + r, r \neq p - 1 \text{ even} \\
3\binom{q + 2}{2} & \quad n = qp + p - 1 \\
3\binom{q + 1}{2} & \quad n = qp + r, r \text{ odd.}
\end{align*}
\]
This satisfies the same recurrence relation and initial conditions as e_n. \hfill \Box

5. $\text{HH}^3(U)$

Proposition 5.1. Let $n = qp + r$ for $0 \leq r < p$. Then
\[\text{dim Ext}_U^3(k, S^n) = \begin{cases}
1 & n \leq p - 3 \text{ even} \\
\binom{q + 2}{2} & r = p - 1 \\
\binom{q + 1}{2} & r \text{ odd} \\
\binom{q}{2} & r < p - 1 \text{ even.}
\end{cases}\]

Proof. Proposition 4.3 implies that
\[(10) \quad 0 \to \text{Ext}_U^3(k, S^{n-2}) \xrightarrow{\phi} \text{Ext}_U^3(k, S^n) \xrightarrow{\phi^*} \text{Ext}_U^3(k, S^{2n}(L(1))) \to 0\]
is exact, except when \(n = p - 1 \) in which case the map \(\text{Ext}^3_U(k, S^{n-2}) \to \text{Ext}^3_U(k, S^n) \) has kernel of dimension one. Using Proposition 2.4 this gives the following recurrence relation for \(e_n = \dim \text{Ext}^3_U(k, S^n) \):

\[
e_n - e_{n-2} = \begin{cases}
1 & n = 0 \\
2q + 1 & n = qp + p - 1, q > 0 \\
0 & \text{otherwise.}
\end{cases}
\]

The claimed dimensions obey this recurrence relation and agree with \(e_n \) for \(n = -1, 0 \) so the result follows. \(\square \)

Let \(I \) and \(J \) be the cohomology classes of the 3-cocycles sending \(f \wedge h \wedge e \) to 1 and \(h^{p-1} \) respectively.

Proposition 5.2. As a \(\mathbb{Z} \)-module, \(\text{Ext}^3_U(k, S) \) is generated by \(I \) and \(J \) subject to the relations \(e^p I = f^p I = h^p I = c^{(p-1)/2} I = 0 \).

Proof. The free \(\mathbb{Z} \)-module with these generators and relations has degree \(n \) part of dimension 1 if \(n \leq (p - 3)/2 \) is even and \(f_{n-(p-1)} \) otherwise, where \(f_n \) is as in (9). This agrees with \(\dim \text{Ext}^3_U(k, S^n) \) by the previous proposition, so we only need show that the given relations hold in \(\text{Ext}^3_U(k, S) \) and that \(I \) and \(J \) generate it as a \(\mathbb{Z} \)-module.

That \(e^p I = f^p I = h^p I = 0 \) is because \(\dim \text{Ext}^3_U(k, S^p) = 0 \), and \(c^{(p-1)/2} I = 0 \) because of the \(n = p - 1 \) case of (10). That \(I \) and \(J \) generate \(\text{Ext}^3_U(k, S) \) as a \(\mathbb{Z} \)-module follows, as for the lower degree Hochschild cohomology groups, by induction on \(n \) using (10); the right hand term has a basis consisting of the element represented by the cocycle \(f \wedge h \wedge e \to 1 \), which has \(I \) as a preimage under \(\phi^* \), and elements represented by cocycles

\[
f \wedge h \wedge e \mapsto x^{ap+b-1} y^{bp+p-1}
\]

for \(a, b \geq 0, a + b \) even by Proposition 2.4. If \(a > b \) these have \(e^{(a-b)p/2} h^{bp} J \) as a preimage under \(\phi^* \), if \(a < b \) \(f^{(b-a)p/2} h^{ap} J \) is a preimage and if \(a = b \) then \(h^{ap} J \) is a preimage. \(\square \)

References

[FP87] Eric M. Friedlander and Brian J. Parshall, *Rational actions associated to the adjoint representation*, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 2, 215–226. MR 911755 (88k:14026)

E-mail address: m.towers@imperial.ac.uk