Introduction

Borrelia burgdorferi sensu stricto is a bacterial spirochete that is one of the causative agents of Lyme disease[1,2,3]. Human risk for the disease may be dependent on a complex interaction between environment and vector [1] with transmission of the resultant bacterial genotypes an essential determinant of disease.

B. burgdorferi is transmitted by *Ixodes* ticks: *I. scapularis* and *I. pacificus* in North America and *I. ricinus* in Europe [2,3,4]. The tick often acquires the spirochetes during its larval stage by feeding on an infected host, usually small rodents [5]. After molting, the nymphs feed on small mammals or birds; adults primarily on deer. It is during these feedings as a nymph or adult that the spirochetes from an infected tick can be transmitted to a new host. Humans, although not part of the natural enzootic cycle, can become infected with *B. burgdorferi* after being bitten by an infected tick, primarily by nymphs due to their small size. Lyme disease in humans may be localized to the site of the tick bite and is often characterized by the almost pathognomonic bull’s-eye-like lesion called erythema migrans (EM). In other cases, the infection may disseminate and produce systemic pathology affecting other skin sites, the nervous system, the joints, or the heart [6,7,8,9].

In the past, researchers often classified *B. burgdorferi* s.s. by the type of outer surface protein C (ospC) expressed [10,11]. There is a demonstrated correlation between ospC type and the rodent host [12], suggesting that some host species only carry *B. burgdorferi* s.s. expressing a certain ospC type. Studies have shown that patients who present with localized disease (i.e., a single bull’s-eye lesion) have a small subset of ospC types relative to the ospC types found in ticks from the entire region. A smaller subset of ospC types has been found...
in patients with systemic disease, suggesting that the \textit{ospC} type may be one marker for disease dissemination in humans [10].

Multilocus sequence typing (MLST) and multilocus variable-number tandem repeat (VNTR) analysis has been used to distinguish \textit{B. burgdorferi} sensu stricto and sensu lato isolates and examine their evolutionary lineage [13,14,15,16]. MLST has been shown to have a higher resolving power than other methods [15]. However, traditional MLST requires sequencing of each locus to define the genotype and cannot resolve mixtures of genotypes. Multilocus PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) has been used to genotype a number of medically relevant organisms [17,18,19,20,21,22] and to detect tick-borne pathogens in clinical specimens [23]. To efficiently identify the different species and genotypes of \textit{B. burgdorferi} s.s., and s.l., we used multilocus PCR/ESI-MS genotyping assay to characterize \textit{Borrelia} populations in individual ticks.

Using the PCR/ESI-MS genotyping assay on a diverse collection of culture isolates and tick extracts we identified 53 different genotypes of \textit{B. burgdorferi} s.s. Furthermore the assay was able to characterize members of the \textit{B. burgdorferi} s.l. group to the species and genotype levels. Results of this analysis demonstrated significant \textit{B. burgdorferi} s.s. genotypic diversity among different regions in the United States and even more diversity between North American and European strains. The PCR/ESI-MS genotyping assay further identified a high prevalence of ticks containing multiple \textit{B. burgdorferi} genotypes in the US and Europe. Exposure to multiple \textit{Borrelia} genotypes from a single tick bite may further increase the risk of disseminated Lyme disease.

Materials and Methods

Multilocus PCR/ESI-MS genotyping assay

The PCR/ESI-MS genotyping assay employs eight PCR primer pairs that target seven \textit{Borrelia} genes (Table 1). The primers are designed to amplify and distinguish all known \textit{Borrelia} species by targeting conserved regions of DNA that amplify variable regions. All primers used in this study had a thymine nucleotide at the 5'-end to minimize the addition of non-templated adenosines during amplification with \textit{Taq} polymerase [24]. An internal positive control (calibrant) made from synthetic DNA (BlueHeron Biotechnology, Bothell, WA) was included in each PCR reaction at 50 copies per PCR reaction. The calibrant sequence contains a five-base pair (bp) deletion within the amplicon so that the calibrant amplicons can be resolved from the bacteria-derived amplicons; the calibrant serves as an internal positive PCR control and allows quantification of amplicons in the PCR reaction. Nucleic acid extract from individual ticks was added to each of eight wells of 96-well plates containing everything required for PCR except the template DNA. PCR was performed in a 40-μL reaction containing 1 μL nucleic acid, 1 unit of Immolase \textit{Taq} polymerase (Bioline USA, Taunton, MA), 20 mM Tris (pH 8.3), 75 mM KCl, 1.5 mM MgCl₂, 0.4 M betaine, 200 μM dNTP, 200 μM dCTP, 200 μM dTTP (each dNTP from Bioline USA), and 200 μM 13C-enriched dGTP (Cambridge Isotope Laboratories, Andover, MA), 20 mM sorbitol (Sigma-Aldrich, St. Louis, MO), 2 μg/mL sonicated poly-A RNA (Sigma-Aldrich), 500 μg/mL of ultrapure BSA (Invitrogen, Carlsbad, CA), and 250 nM of each primer. The following PCR cycling conditions were used on an MJ Dyad 96-well thermocycler (Bio-Rad Inc., Hercules, CA): 95°C for 10 min, followed by 8 cycles of 95°C for 30 s, 48°C for 30 s, and 72°C for 30 s, with the 48°C annealing temperature increasing 0.9°C for each cycle. The PCR was then continued for 37 additional cycles of 95°C for 15 s, 56°C for 20 s, and 72°C for 20 s. The PCR cycle ended with a final extension of 2 min at 72°C followed by a 4°C hold. The cycled PCR plates were then processed on the Ibis Bioscience (Carlsbad, CA) T5000 ESI-MS system.

ESI-MS and base composition analysis

The base composition of the PCR amplicons was determined by ESI-MS using the Ibis Biosciences T5000 system as previously described [21,25,26].

Borrelia isolates and nucleic acid extraction

\textit{Borrelia} isolates were characterized from nucleic acid extracted from cultured isolates, field-collected ticks, and a clinical specimen. Adult and nymphal \textit{Ixodes} ticks were collected in New York, New Jersey, and Maryland, USA. The ticks were maintained in \textit{Ixodes} Ringers solution as previously described [27,28]. The nucleic acids from cultured isolates and tick extracts were extracted using the High Pure PCR Template Preparation Kit (Roche Diagnostics, Indianapolis, IN) according to the manufacturer’s recommended protocol. The nucleic acid extracts were subjected to PCR and ESI-MS genotyping.

Table 1. Primers used in genotyping assay.

Primer Pair ID	Primer code	Gene target	Primer sequence (5’-3’-end)
BCT3511	BCT8229F	gyrB	TGCATTGGAAAGCTTGACCTGTTGCC
BCT3513	BCT8230R	rp0C	TTGGTACACAAAAAGAATGGGA
BCT3515	BCT8232R	rplB	TCACAAAGGTGTGTGAAAGG
BCT3517	BCT8233R	leuS	TCACTGTTGTCATCCGGAAGG
BCT3519	BCT8240R	flaB	TGGATAAATCTTCAAGGAAGGCTCC
BCT3521	BCT8248R	ospC	TGAGGCGGTTTGGTAAATCCCTGGCA
BCT3514	BCT8241F		TACGAGCATGTGCATTGCATGA
BCT3516	BCT8242R	hsb	TGCAAATAATGTTGAGTTGACTTTGTTGCTT
BCT3518	BCT8243F		TGGGTTTCTTGTTAAGGACCTGTCCTT
BCT3520	BCT8245F		TGCATAATCGACCCCTGACAGACCT
BCT3522	BCT8246R		TGGCGAACCCCTGACAGACCT
BCT3524	BCT8247F		TTTCCTGCTTCAAGGACCTGACCT
BCT3526	BCT8248R		TACCTTTAACGTCTTTCTCTCTAGG

[doi:10.1371/journal.pone.0010650.t001]
Connecticut, California, Indiana, and southern Germany (Table 2).
The species of the tick was determined by a trained entomologist.
Ticks from the United States were collected through use of a drag
cloth. Total nucleic acids were extracted from ticks from North
American and from skin biopsy as previous described [27]. Briefly,
the specimens were homogenized by bead-beating with zirconia/
ytria beads (Glen Mills, Clifton, NJ) and the nucleic acids were
extracted using a modified Qiagen MinElute Virus spin kit protocol.
Nucleic acids were eluted in AVE buffer (Qiagen) and stored at
−80 °C.
Cultured isolates were provided by Barbara J. Johnson at the
CDC in Ft. Collins, CO. DNA was extracted from these isolates
diluting the sample in water and heating to 95 °C for 10 min.
DNA from isolates previously characterized by their ospC type
was provided by the laboratory of Benjamin Luft at Stony Brook
University, NY [28].

Ixodes ricinus ticks were collected either in the area of Constance by
flagging (Lake Constance, Southern Germany) or obtained from
patients living in the southwestern parts of Germany. All ticks were
visually identified as *I. ricinus* by an entomologist. DNA from large
Ixodes ricinus ticks was obtained by slicing the ticks open using a sterile
single-use scalpel blade and transferring the material to a 1.5 mL
reaction tube, containing 200 μL QIAGEN’s ATL-buffer (QIAamp
DNA Mini Kit; QIAGEN, Hilden, Germany). Nymphs and larvae
were transferred into 1.5 mL reaction tubes, containing 200 μL
ATL-buffer and squeezed with a single use, sterile PP pistil (Carl
Roth, Karlsruhe, Germany). The crude lysates were digested for a
minimum of 3 h (nymphs and larvae) and a maximum overnight
(adults) after addition of 20 μL Proteinase K. After brief centrifuga-
tion, supernatants were transferred to sterile 2.0 mL screw capped
tubes (Sarstedt, Nümbrecht, Germany). DNA was extracted in a
QIACube instrument, applying the protocol “QIAamp DNA Mini-
Blood or body fluid-Manual Lysis”, available from the QIAGEN
homepage. The elution volume was set to 200 μL.

Data analysis and interpretation

The basecount signature was used to determine the genotype of
a *Borrelia*-containing specimen. If two isolates differed by a single

Table 2. Sample origin locations and prevalence of *Borrelia* infected ticks.

State	County	Collection Site	Sample type	Samples (n)	Borrelia infected (i)	B. burgdorferi s.s. Genotypes found
California	Marin	China Camp SP, Olompali SP	Adult	141	2	2
	Napa	Bothe SP, Skyline Regional Park	Adult	186	2	1
	Sonoma	Glen Ellen	Nymphal	44	3	3, 4
	Glenn	Elk Creek	Adult	69	0	0
	Santa Cruz	Nisene Marks SP, Felton	Adult	64	0	0
	Placer	Colfax, Foresthill, Lake Arthur, Drivers Flat	Adult	250	6	32, 34
	Lake	Clear Lake SP	Adult	128	2	0
	Humbolt	Arcata	Adult	14	0	0
	San Joaquin	Lodi	Adult	10	0	0
	Mendocino	Russian Gulch SP	Adult	5	0	0
	Del Norte	Patrick’s Creek Six Rivers National Forest	Adult	15	0	0
	Alameda	Oakland	Adult	22	0	0
	Total	Ticks		948	15	
Connecticut	Fairfield	Bridgeport	Adult	99	67	1, 6, 7, 8, 10, 11, 12, 13, 22, 23, 33, 34, 36, 37, 38, 39, 40, 41, 42
	New York	Dutchess	Nymphal	74	11	31, 32
	Suffolk	Shelter Island, Connetquot, Mastic	Adult	179	109	1, 6, 7, 8, 10, 11, 12, 13, 15, 22, 23, 33, 34, 35, 40, 41, 44, 45, 46, 47, 48
	Suffolk	Shelter Island, Connetquot, Mastic	Nymphal	24	11	1, 11, 22, 23, 33, 41, 43, 53
	Westchester	Franklin D. Roosevelt State Park - Ben Luft	Adult	44	24	1, 6, 7, 10, 11, 15, 23, 25, 30, 32, 34, 44, 52
	Total			321	155	
Germany	Konstanz	unknown		178	34	9
NJ	skin biopsy		1	1	33	
CDC	culture isolate		9	N/A	N/A	
Stony Brook	culture isolate		79	N/A	N/A	

doi:10.1371/journal.pone.0010650.t002
base count they were considered to be unique genotypes. Primer pairs BCT3514 and BCT3515 were principally used to determine the species of Borrelia and the remaining primer pairs were used to genotype the organisms. When more than one allele was detected for any of the gene targets, the sample was considered to contain a mixture of Borrelia burgdorferi genotypes. If a mixture differed at more than one of the eight loci, we required a 1.5-fold difference in the amplitudes to assign the alleles to the major and minor contributors. When the mixtures were present at equal levels the genotypes could not be resolved.

Results

Multilocus PCR/ESI-MS genotyping of Borrelia

The multilocus PCR/ESI-MS genotyping assay was evaluated by testing 351 Borrelia burgdorferi s.l. positive specimens: 61 cultured isolates from North America and Europe, 256 B. burgdorferi s.s. infected field-collected ticks from North America and 34 ticks infected with Borrelia from Europe (Table 2). These analyses resulted in the identification of 53 distinct B. burgdorferi s.s. genotypes as shown in Table 3. Primer pairs BCT3514 and BCT3515 produced a consistent signature for B. burgdorferi s.s., but distinguish other members of the B. burgdorferi s.l. complex: B. afzelii, B. garinii, B. valaisiana, B. andersonii, B. bissettii, and B. lusitaniae (Table S1). The allelic diversity of the loci ranged from a high of 21 alleles for primer pair BCT3518 (targeting the OspC gene) to a low of four alleles for primer pair BCT3514, which was used to identify the Borrelia species. The multilocus PCR/ESI-MS genotyping assay identified nine genotypes of B. afzelii and four genotypes of B. garinii. All eight primer pairs detected a unique base count signature for B. valaisiana, B. andersonii, B. bissettii, and B. lusitaniae, but because there was only one isolate of each we could not demonstrate the assay’s ability to genotype these species (Table 4). One sample of B. spielmanii was also detected on six of the eight primer pairs. Additionally, the assay was able to genotype B. burgdorferi directly from a skin biopsy from a patient presenting with erythema migrans. Results of this analysis showed the patient was infected with our genotype 33 (specimen NJ1, Table 3).

Table 3. Borrelia burgdorferi isolates and genotype.

Specimen ID1	Genotype	Specimen ID1	Genotype
109A, 1608, CA3, CT13, CT20, CT32, CT38, CT39*, CT45, NY5, NY13*, NY33, NY74, NY76, NY83, NY87, CT23*, CT6	1	MI418	27
CA1, CA2, IN9*	2	168a	28
CA92-0953, CA6	3	Bol26	29
CA92-1096, CA4, CA5, CA11	4	NY85*	30
NC92-0972	5	NY4, NY51	31
B31, 297, 136b, 132a, 132b, IP2, PKo2, IP3, L65, H3, IP1, H81, Lenz, Hill, Ho, OEAI1, 132a, 211, CT28*, CT42*, CT48, NY24, NY27, NY40, NY55, NY75*	6	CA8, IN6, IN12*, NY84, NY85*, IN9*	32
CT8, CT19, CT31, CT34, CT46, NY23*, NY48, NY73*	7	CT42*, NY2, NY58, NJ1	33
NC-2, JD1, NY20, NY22, NY25, NY45, NY46, NY53, NY59*, NY41*	8	CA7, IN10, CT6, CT24, NY10*, NY15*, NY32, NY57, NY71*, NY78	34
si-4, 217-S, Bol1, Z6, GER_204	9	CA9, NY69	35
WI-MCI, IN5, CT41*, CT49*, NY50, NY70, NY79	10	CT30, NY1	36
IN2, IN8, CT4, CT10, CT12, CT16*, CT17*, CT21, CT23*, CT25, CT26, CT27, CT33, CT35, CT36*, CT37, CT40, NY16, NY18, NY29, NY34, NY36*, NY37, NY39, NY42*, NY44, NY47, NY52, NY64, NY66, NY72, CT39*, CT59*, CT16*, CT36*, NY52, NY71*	11	CT18	37
94a, CT1, CT5, CT9, CT47, NY12, NY17, NY26, NY30, NY35, NY41*, NY65, NY67, NY68	12	CT29	38
CT14, CT44, NY54	13	CT41*, IN12*, IN1, IN11	39
Bol12, Bol24, Lx36, Z57, DK7, Y32, Y2, Y3, NY19, Y20, Y9	14	NY13*, CT28*, CT17*	40
N40, JS91, KL55, SD91, NP14, 88a, K93, GT1, NY28*, NY38, NY49*, NY56, NY60, NY82	15	CT2*, NY7*, NY15*	41
Bol29, Bol30, MFT30, KD13, SF3, R09, BL31679, VR26	16	CT50	42
Z9	17	NY14	43
Bol27, Bol15, FR-931, Bol25, Bol2	18	NY75*, NY10*	44
VS219	19	NY11*	45
Y1, Y10, R9, Y14	20	NY11*	46
R5	21	NY19	47
86b, 97b, IN3, CT2*, CT15*, NY7*, NY61*, NY63	22	NY28*	48
80a, 72a, CT3*, CT7, CT22, CT43, NY3, NY6, NY9, NY21, NY43, NY62, NY77, NY80	23	NY31	49
MI407	24	NY23*	50
156a, IN7, NY81*, NY86	25	NY42*	51
MI415, IN4*	26	NY73*	52
110A, KI93	27	CA10	53

*Denotes a mixture of more than one genotype.

1Italicized samples are European in origin; unitalicized samples are United States in origin.

doi:10.1371/journal.pone.0010650.t003
testing, potentially affecting Dutchess county NY were dead and dessicated at the time of nymphs. It should be noted that the nymphal ticks obtained from Characterization of Borrelia burgdorferi ospC typing Comparison of multilocus PCR/ESI-MS genotyping with infection rate with 12 of 904 adult (23.5%) were infected with B. burgdorferi had a higher infection rate with 67 of the 99 adult ticks positive for were excluded from the infection rate determination. Connecticut a B. burgdorferi ticks (904 adults and 44 nymphs) were collected and the 2008 and 2009 tick seasons. During the same years, 948 (adults and nymphs), and one site in Connecticut (adults) during analyzed from one site in Indiana (adults), five sites in New York (adults and nymphs), and one site in Connecticut (adults) during the 2008 and 2009 tick seasons. During the same years, 948 Ixodes pacificus ticks (904 adults and 44 nymphs) were collected and analyzed from 18 sites in California (Table 2). New York State had a B. burgdorferi infection rate of 59.6% in adult ticks and 45.8% in nymphs. It should be noted that the nymphal ticks obtained from Dutchess county NY were dead and dessicated at the time of testing, potentially affecting B. burgdorferi detections, and therefore were excluded from the infection rate determination. Connecticut had a higher infection rate with 67 of the 99 adult ticks positive for B. burgdorferi (67.7%). In Indiana 19 of 81 of adults ticks sampled (23.5%) were infected with B. burgdorferi. California had the lowest infection rate with 12 of 904 adult I. pacificus ticks and 3 of 44 nymphs (1.4% and 6.8% respectively) positive for B. burgdorferi, (Table 2).

We were able to determine the genotypes of 139 of the 219 B. burgdorferi s.s. positive adult I. scapularis ticks. The remaining 80 samples contained either un-typable B. burgdorferi mixtures (n = 30), or there was insufficient DNA from the specimen to enable a full genotype analysis (n = 50). The predominant genotypes by region were: New York (8, 11, 12 and 23), Connecticut (11, 1, 12, and 7) and Indiana (39, 32 and 11) and represented 40%, 57% and 64% of the infected ticks, respectively (Figure 1). Nine of 15 B. burgdorferi s.s. positive adult I. pacificus ticks from Northern California were genotyped and found to predominantly contain genotypes 2 and 4 (Figure 1).

B. burgdorferi s.s. genotypic diversity by geographic region

We compared the genetic diversity of B. burgdorferi in our field-collected specimens and culture isolates at the local level (New York vs. Connecticut), the regional level (Northeast vs. Indiana vs. California) and the continental level (North America vs. Europe), as shown in Figure 2A, B, and C respectively. Single specimens containing a resolvable mixture of genotypes were treated as separate counts for determining genotype frequency for the area.

In each region studied, a few genotypes were responsible for the majority of the B. burgdorferi infections (Figure 1). Proximal Connecticut and New York shared the highest percentage of common genotypes: 79% of CT genotypes were also observed in NY and 48% of NY genotypes were also observed in CT (Figure 2A). In examining North America, we grouped CT and NY (designated NE for Northeastern US) together due to their close proximity and the extent of shared genotypes. We found two genotypes (32 and 34) common to California, Indiana, and the Northeast (Figure 2B). Indiana shared 77% of its genotypes with the Northeast while 57% of California’s genotypes were also found in the Northeast.

Table 4. Other Borrelia species genotypes.

Species	Specimen ID	Genotype
Borrelia afzelii	ACA1 (UK-814), GER_169	1
	pKo, GER_106, GER_139*	2
	GER_033, GER_038	3
	GER_005*	4
	GER_005*, GER_139*, GER_176, GER_178*, GER_200	5
	GER_119, GER_178*	6
	GER_022, GER_116	7
	GER_125	8
	GER_004	9
Borrelia garinii	VSBM	1
	NT29 H59	2
	GER_158	3
	GER_020	4
B. valaisiana	GER_143	1
B. andersonii	19857	1
B. bissettii	DN127	1
B. lusitaniae	PotI81	1
B. spielmanii	GER_173	1

Italicized samples are European in origin; non-italicized samples are United States in origin.

*Denotes a mixture of more than one genotype.

doi:10.1371/journal.pone.0010650.t004

Table 5. Comparison of ospC typing vs. PCR/ESI-MS genotyping.

Strain	ospC Type	Genotype
B31, IP2, Pk22, IP3, Lenz, L65, HII, Ho, IP1, HB1, B31, 132a, 132b	A	6
Mi415	B1	26
109a, 160b	B1	1
Bol12, Lx36, Z57	B2	14
VS219	B2	19
JD1	C	8
SD91, NP14, N40, 88a	E	15
Mi407	F	24
72a, 80a	G	23
Mi411, 156a	H	25
86b, 97b	I	22
118a	J	28
297, OEA11, 136b, 163b	K	7
Y1, Y10	L	20
217-5, Bol6, Z6	L	9
Mi418	N	27
Bol15, Bol25, Bol27, Fr-93/1	Q	18
Z9	S	17
94a	U	12
Bol29, Bol30	V	16
B5	W	21

doi:10.1371/journal.pone.0010650.t005
In the comparison of North American to European isolates (Figure 2C), only three genotypes were found on both continents. Of the *B. burgdorferi* s.s. genotypes observed in North America and Europe, only 6.6% of US genotypes (3 out of 45) were found in Europe and 27% of the European genotypes (3 of 11) were observed in the US.

Characterization of genotypic *Borrelia* mixtures in *Ixodes* ticks

Of the 169 *B. burgdorferi*-positive adult *I. scapularis* ticks we characterized, 62% (*n* = 104) had a single genotype, 34% (*n* = 57) contained two genotypes and 5% (*n* = 8) had three or more genotypes (Figure 3). In those specimens with mixtures of more than one genotype, we were able to determine the individual *B. burgdorferi* genotypes in 52% of the specimens (34 of 65) based upon difference in the allele amplitude as described above in the methods section and shown in Figure 3A. Additionally, one of eleven *B. burgdorferi* infected nymphs from Suffolk County, NY was found to be infected with a mixture of two *B. burgdorferi* genotypes (genotypes 22 and 41). The proportion of *B. burgdorferi* s.s. genotypes per infected adult *Ixodes scapularis* ticks from Indiana, Connecticut, and New York is shown in Figure 3B.

Borrelia burgdorferi s.l. genotyping of *I. ricinus* ticks from Southern Germany

178 *I. ricinus* ticks were tested for the presence of *Borrelia* on the genotyping assay and 36 were found to have *Borrelia* (20.2%). The majority of the positive samples were *B. afzelii* (*n* = 23) followed by *B. garinii* (*n* = 6) and *B. burgdorferi* s.s. (*n* = 3), *B. valaisiana* (*n* = 2), *B. lusitaniae* (*n* = 1), *B. spielmanii* (*n* = 1). In total 20 of the 36 samples positive for *Borrelia* were genotyped. The remaining samples contained un-genotypable mixtures or had limited levels of DNA.

Figure 1. *B. burgdorferi* s.s. genotypes detected in NY, CT, IN, and CA. The number indicates the genotype and the pie size is relative to the proportion that the genotype was observed compared to all the genotypes in that region. The number of *B. burgdorferi* samples genotyped in each region was 104 for NY, 61 for CT, 14 for IN, and 9 for CA. doi:10.1371/journal.pone.0010650.g001
Mixtures of *Borrelia* genotypes were also observed in the *I. ricinus* ticks with 8 (22.2%) of the 36 *Borrelia* positive specimens having two or more genotypes present. Five of the eight had a mixture of two genotypes while the remaining samples had 3 or more genotypes present. Three of the mixtures were resolved to their individual genotypes. Five of the mixtures were of *B. afzelii* genotypes, one a mixture of *B. garinii*, one was a mixture of *B. lusitaniae* genotypes, and one a mixture of *B. valaisiana*.

Discussion

Lyme disease, caused by *B. burgdorferi*, has symptoms which are usually nonspecific, consisting of fever, fatigue, chills, headache, and muscle aches. In some cases, signs of the disease remain localized to an EM. In other cases there are signs of dissemination into systemic disease such as multiple erythema migrans lesions, central and peripheral neurologic abnormalities, cardiac impair-
ment, and swelling of large joints. Different strains of *B. burgdorferi* have been associated with varying pathogenicities in the human host, with some strains more often observed in disseminated infections [10,29]. Previous studies have shown that certain strains of *B. burgdorferi* are more likely to cause an erythema migrans and/or disseminate through the body [10,30]. The ability to quickly identify the *Borrelia* species and associate particular genotypes with certain symptoms can have important patient-management implications. For example, the clinical observation of a single erythema migrans lesion where at least one of the recovered spirochetes is associated with an invasive phenotype might alert the treating physician to consider the use of an antibiotic, such as an intravenously administered one, that will reliably penetrate the central nervous system [31,32] or, at the very least, the physician would monitor the patient for development of neurologic symptoms even with administration of oral antibiotics.

Previous studies have also shown culturing spirochetes from ticks or clinical specimens can alter the genotypes observed as compared to those obtained from direct PCR [33,34]. Using our rapid multilocus PCR/ESI-MS genotyping assay, we have demonstrated that we can genotype *B. burgdorferi* directly from adult or nymphal ticks without the need for culture. Additionally, we have shown that our PCR/ESI-MS method can be used to detect and genotype *B. burgdorferi* directly from a clinical specimen. The PCR/ESI-MS genotyping assay has the added benefit of being able to identify the species and genotype a variety of *Borrelia* that can cause Lyme disease.

Studies have shown that the multilocus sequence typing (MLST) approach provides a finer separation of strains than does typing based on the *ospC* gene alone [15]. Using our multilocus PCR/ESI-MS genotyping assay, several *ospC* groups were subdivided into multiple genotypes. In North America we observed 44 different genotypes of *B. burgdorferi*, 35 of which were found at sites within 100 miles of each other, which could indicate a much more diverse population of *B. burgdorferi* than previously described. In this study, we found that *Borrelia* infection rates in adult *I. scapularis* ticks from the northeastern US were similar to those observed previously [4,35,36]; *B. burgdorferi* infection rates were relatively lower in Indiana and California. An earlier study utilizing an MLST approach reported that no genotypes were shared between the Northeastern United States and the Midwest (with Ohio being the dividing state) [37]. In contrast to this observation, we found two genotypes in all three regions of the United States. Although our sample sizes from the Midwest and California were lower, the presence of these genotypes in each region may indicate that there was a widespread expansion of a few clonal isolates across North America followed by subsequent local diversification.

Past studies employing either single-strand conformation polymorphism (SSCP) or reverse line blotting (RLB) have shown that ticks can be infected with more than one strain of *B. burgdorferi* [4,38]. Due to the limits of DNA sequencing, MLST approaches cannot resolve mixtures without culture. Due to the capability of mass spectrometry to resolve mixtures, our PCR/ESI-MS genotyping assay could detect and frequently resolve specimens containing a mixture of more than one genotype. Of the 169 *B. burgdorferi* positive *I. scapularis* ticks characterized from the US, 39% contained two or more genotypes. Of the 36 *Borrelia* positive *I. ricinus* ticks from Europe, we found 22.2% containing more than one pathogenic species/members of *Borrelia burgdorferi* sensu lato complex. These findings indicate genotype mixtures in ticks are common in both Europe and North America. Our finding of a nymph (which had fed only once) with multiple genotypes and 5% of the adult ticks (which have fed twice), with three or more genotypes indicates that ticks can become infected with more than one genotype of *B. burgdorferi* from a single feeding. Further studies are needed to determine if certain combinations of genotypes are more likely to co-infect a tick or cause disease in humans.

In this study we developed a very high resolution *Borrelia* genotyping assay that can genotype directly from a variety of sample types and discriminate *Borrelia* mixtures. We found a diversity of genotypes across geographic regions. This capability to rapidly identify and genotype *Borrelia* may facilitate better management of patients with Lyme disease and provide a better understanding of the association of *Borrelia* genotypes and disease. Our findings also underscore the importance of collaborations between scientists with environmental and microbial ecology expertise [1,12] along with those in health related research. While our findings, which were not designed to be comprehensive, provides the impetus and shows the feasibility to explore other areas where Lyme is being reported such as the southern US and northern Mexico. Such studies can contribute to a broader epidemiologic assessment of the breadth of potential Lyme disease in North America. Future studies focusing on *Borrelia* genotypes in nymphs will further define their genotypic co-infection rates and determine if certain genotypes tend to preferentially co-infect. The findings here indicate that the diversity of genotypes in ticks known to cause Lyme disease is greater then previously described and that *Borrelia* may frequently exist as genotypic mixtures in the environment.

Supporting Information

Table S1 Table showing the detected A, G, C, T nucleotides detected for the different genotypes.

Nucleotides	Detected Genotypes
A	Genotype 1
G	Genotype 2
C	Genotype 3
T	Genotype 4

Found at: doi:10.1371/journal.pone.0010650.s001 (0.04 MB XLS)

Acknowledgments

We would like to thank Angella Falco, Ann Donohue, David James, Jack Cavier, Jamesina Scott, Jianmin Zhong, Paul Binding, Rob Cummings, Ronald Keith, Stacy Berden, Sylviane Schwarz, Waloki Wekesa, Kirby Stafford, Richard Ostfeld, Keith Clay, and Benedikt Mothes for providing ticks and Heike Haag for excellent technical assistance with the *I. ricinus* ticks. Additionally we would like to thank Barbara J. Johnson at the CDC in Ft. Collins for providing us with various *Borrelia* culture isolates.

Author Contributions

Conceived and designed the experiments: CDC MWE. Performed the experiments: CDC MAR ON CAP. Analyzed the data: CDC HEM MAR MWE. Contributed reagents/materials/analysis tools: SES BJL ON SC FL RS. Wrote the paper: CDC SES ON MWE.

References

1. Brownstein JS, Holford TR, Fish D (2003) A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 111: 1152–1157.
2. Falco RC, McKeona DF, Daniell TJ, Nadelman RB, Nowakowski J, et al. (1999) Temporal relation between Ixodes scapularis abundance and risk for Lyme disease associated with erythema migrans. Am J Epidemiol 149: 771–776.
3. Hulinska D, Votyptka J, Kriz B, Holinkova N, Novakova J, et al. (2007) Phenotypic and genotypic analysis of *Borrelia* spp. isolated from *Ixodes ricinus* ticks by using electrophoretic chips and real-time polymerase chain reaction. Folia Microbiol (Praha) 52: 315–324.
4. Qin WG, Dykhuizen DE, Acosta MS, Luft BJ (2002) Geographic uniformity of the Lyme disease spirochete (*Borrelia burgdorferi*) and its shared history with tick
vector (Ixodes scapularis) in the Northeastern United States. Genetics 160: 833–849.
5. Hanincova K, Ogden NH, Diuk-Wasser M, Pappas CJ, Iyer C, et al. (2008) Fitness variation of Borrelia burgdorferi sensu stricto strains in mice. Appl Environ Microbiol 74: 155–157.
6. Schutze SE. (1994) Diagnostic Lyme disease. Hosp Pract (Off Ed) 29: 8–11.
7. Coyle PK, Dattwyler R (1990) Spirochetal infection of the central nervous system. Infect Dis Clin North Am 4: 731–746.
8. Coyle PK, Schutzer SE (2002) Neurologic aspects of Lyme disease. Med Clin North Am 86: 261–284.
9. Schutze SE, Coyle PK, Krupp LB, Deng Z, Belman AL, et al. (1997) Simultaneous expression of Borrelia OspC and OspC and IgM response in cerebrospinal fluid in early neurologic Lyme disease. J Clin Invest 100: 763–767.
10. Seinost G, Dykhuizen DE, Dattwyler RJ, Golde WT, Dunn JJ, et al. (1999) Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun 67: 3510–3524.
11. Wang IN, Dykhuizen DE, Qiu W, Dunn JJ, Bosler EM, et al. (1999) Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics 151: 15–30.
12. Brioson D, Dykhuizen DE (2004) ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics 168: 713–722.
13. Farlow J, Postic D, Smith KL, Jay Z, Baranton G, et al. (2002) Strain typing of Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii by using multiple-locus variable-number tandem repeat analysis. J Clin Microbiol 40: 4612–4618.
14. Qiu WG, Schutzer SE, Bruno JF, Attie O, Xu Y, et al. (2004) Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc Natl Acad Sci U S A 101: 14150–14155.
15. Margos G, Gatewood AA, Anensen DM, Hanincova K, Terehovka D, et al. (2008) MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A 105: 8730–8735.
16. Vitorino LR, Margos G, Feil EJ, Collares-Pereira M, Ze-Ze L, et al. (2008) Fine-scale phylogeographic structure of Borrelia luttoniae revealed by multilocus sequence typing. PLoS ONE 3: e4002.
17. Sampaio R, Russell KL, Massire C, Diuk-Wasser M, Harpin V, et al. (2007) Global surveillance of emerging Influenza virus genotypes by mass spectrometry. PLoS One 2: e489.
18. Ecker DJ, Massire C, Blyn LB, Hofstadler SA, Hannis JC, et al. (2009) Molecular genotyping of microbes by multilocus PCR and mass spectrometry: a new tool for hospital infection control and public health surveillance. Methods Mol Biol 531: 71–87.
19. Hall TA, Sampaio R, Blyn LB, Ranken R, Ivy C, et al. (2009) Rapid molecular genotyping and clonal complex assignment of Staphylococcus aureus isolates by PCR coupled to electrospray ionization-mass spectrometry. J Clin Microbiol 47: 1733–1741.
20. Hannis JC, Manalili SM, Hall TA, Ranken R, White N, et al. (2008) High-resolution genotyping of Campylobacter species by use of PCR and high-throughput mass spectrometry. J Clin Microbiol 46: 1220–1225.
21. Ecker JA, Massire C, Hall TA, Ranken R, Pennella TT, et al. (2006) Identification of Acinetobacter species and genotyping of Acinetobacter baumannii by multilocus PCR and mass spectrometry. J Clin Microbiol 44: 2921–2932.
22. Blyn LB, Hall TA, Libby R, Ranken R, Sampaith R, et al. (2008) Rapid detection and molecular serotyping of adenovirus by use of PCR followed by electrospray ionization mass spectrometry. J Clin Microbiol 46: 644–651.
23. Ehsho MW, Crowder CD, Li H, Matthews HE, Meng S, et al. (2009) Detection and Identification of Ehrlichia species in Blood Using PCR and Electrospray Ionization Mass Spectrometry. J Clin Microbiol.
24. Brownstein MJ, Cartner JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20: 1094–1006, 1088–1089.
25. Ecker DJ, Sampaio R, Blyn LB, Ehsho MW, Ivy C, et al. (2005) Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance. Proc Natl Acad Sci U S A 102: 8012–8017.
26. Ecker DJ, Sampaio R, Massire C, Blyn LB, Hall TA, et al. (2008) Bpi T5000: a universal biosensor approach for microbiology. Nat Rev Microbiol 6: 553–558.
27. Crowder CD, Rounds MA, Phillips CA, Peurin J, Matthews H, et al. (2009) Extraction of Total Nucleic Acids from Ticks for the Detection of Bacterial and Viral Pathogens. J Med Entomol In Press.
28. Qiu WG, Bruns JF, McCraig WD, Xu Y, Lively I, et al. (2008) Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerg Infect Dis 14: 1097–1104.
29. Fikrig E, Coyle PK, Schutzer SE, Chen M, Deng Z, et al. (2004) Preferential presence of decorin-binding protein B (BBA25) and BBA30 antibodies in cerebrospinal fluid of patients with neurologic Lyme disease. J Clin Microbiol 42: 1243–1246.
30. Wormser GP, Brisson D, Liversi D, Hanincova K, Sandigursky S, et al. (2008) Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis 198: 1358–1364.
31. Coyle PK, Deng Z, Schutzer SE, Belman AL, Benach J, et al. (1993) Detection of Borrelia burgdorferi antigens in cerebrospinal fluid. Neurology 43: 18159–18164.
32. Ecker DJ, Sampaio R, Blyn LB, Hanincova K, Pappas CJ, Iyer R, et al. (2008) MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A 105: 8730–8735.
33. Norris DE, Johnson BJ, Piesman J, Maupin GO, Clark JL, et al. (1997) Culturing selects for specific genotypes of Borrelia burgdorferi in an enzootic cycle in Colorado. J Clin Microbiol 35: 2359–2364.
34. Livers D, Varde S, Iyer R, Koenig S, Binner S, et al. (1999) Genetic diversity of Borrelia burgdorferi lyne disease patients as determined by culture versus direct PCR with clinical specimens. J Clin Microbiol 37: 565–569.
35. Tokarz R, Jain K, Bennett A, Brise T, Iain Lippin W (2009) Assessment of Polymicrobial Infections in Ticks in New York State. Vector Borne Zoonotic Dis.
36. Brownstein MJ, Cartner JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20: 1094–1006, 1088–1089.
37. Coyle PK, Deng Z, Schutzer SE, Belman AL, Benach J, et al. (1993) Detection of Borrelia burgdorferi antigens in cerebrospinal fluid. Neurology 43: 18159–18164.
38. Guttman DS, Wang PW, Wang IN, Bosler EM, Luft BJ, et al. (1996) Multiple Genotypes of Borrelia burgdorferi in lyme disease patients as determined by culture versus direct PCR with clinical specimens. J Clin Microbiol 37: 565–569.
39. Tsai JJ, Wooten JT, Bunkis J, Luna MG, Fisher D, et al. (2004) An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proc Natl Acad Sci U S A 101: 18159–18164.
40. Guttman DS, Wang PW, Wang IN, Bosler EM, Luft BJ, et al. (1996) Multiple infections of Ixodes scapularis ticks by Borrelia burgdorferi as revealed by single-strand conformation polymorphism analysis. J Clin Microbiol 34: 652–656.