On Stable Hypersurfaces with Vanishing Scalar Curvature

Gregório Silva Neto

May, 24 2013

Abstract

We will prove that there are no stable complete hypersurfaces of \mathbb{R}^4 with zero scalar curvature, polynomial volume growth and such that $\frac{(-K)}{H^3} \geq c > 0$ everywhere, for some constant $c > 0$, where K denotes the Gauss-Kronecker curvature and H denotes the mean curvature of the immersion. Our second result is the Bernstein type one there is no entire graphs of \mathbb{R}^4 with zero scalar curvature such that $\frac{(-K)}{H^3} \geq c > 0$ everywhere. At last, it will be proved that, if there exists a stable hypersurface with zero scalar curvature and $\frac{(-K)}{H^3} \geq c > 0$ everywhere, that is, with volume growth greater than polynomial, then its tubular neighborhood is not embedded for suitable radius.

1 Introduction

Let $x : M^3 \to \mathbb{R}^4$ be an isometric immersion. If $\lambda_1, \lambda_2, \lambda_3$ are the eigenvalues of the second fundamental form, then the scalar curvature R, the non-normalized mean curvature H, and the Gauss-Kronecker curvature K are given, respectively, by

\[R = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3, \quad H = \lambda_1 + \lambda_2 + \lambda_3 \quad \text{and} \quad K = \lambda_1 \lambda_2 \lambda_3. \]

(1.1)
In 1959, Hartman and Nirenberg, cf. [8], have shown that the only surfaces with zero Gaussian curvature in three-dimensional Euclidean space are planes and cylinders.

Generalizing this fact, in 1977, Cheng and Yau, cf. [16], showed that the only complete non-compact hypersurfaces with constant scalar curvature and non-negative sectional curvature in the Euclidean space \(\mathbb{R}^{n+1} \) are the generalized cylinders \(S^{n-p} \times \mathbb{R}^p \).

Let \(D \subset M^3 \) be a regular domain, i.e., a domain with compact closure and piecewise smooth boundary. A \textit{compact supported variation} of the immersion \(x \) is a differentiable map \(X : (\epsilon, \epsilon) \times D \to \mathbb{R}^4 \), \(\epsilon > 0 \), such that, for each \(t \in (-\epsilon, \epsilon) \), \(X_t : D \to \mathbb{R}^4 \), \(X_t(p) = X(t, p) \) is an immersion, \(X_0 = x|_D \) and \(X_1|_{\partial D} = X_0|_{\partial D} \). We recall that hypersurfaces of \(\mathbb{R}^4 \) with zero scalar curvature are critical points of the functional

\[
\mathcal{A}_1(t) = \int_M H(t)dM_t
\]

under all variations compactly supported in \(D \) (see [13], [1], [14], [4]).

Following Alencar, do Carmo, and Elbert, cf. [2], let us define the concept of stability for immersions with zero scalar curvature. Let \(A : TM \to TM \) the linear operator associated to the second fundamental form of immersion \(x \). We define the \textit{first Newton transformation} \(P_1 : TM \to TM \) by

\[
P_1 = HI - A,
\]

where \(I \) denotes identity operator. We now introduce a second order differential operator which will play a role similar to that of Laplacian in the minimal case:

\[
L_1(f) = \text{div}(P_1(\nabla f)),
\]

where \(\text{div} X \) denotes the divergence of vector field \(X \), and \(\nabla f \) denotes the gradient of the function \(f \) in the induced metric. In [9], Hounie and Leite showed that \(L_1 \) is elliptic if and only if \(\text{rank} \ A = 1 \). Thus, \(K \neq 0 \) everywhere implies \(L_1 \) is elliptic, and if \(H > 0 \), then \(P_1 \) is a positive definite linear operator.

Computing the second derivative of functional \(\mathcal{A}_1 \) we obtain

\[
\frac{d^2\mathcal{A}_1}{dt^2} \bigg|_{t=0} = -2 \int_M f(L_1 f - 3Kf)dM,
\]

where \(f = \langle \frac{dX}{dt}(0), \eta \rangle \), and \(\eta \) is the normal vector field of the immersion.
Since \(H^2 = |A|^2 + 2R \), if \(R = 0 \) then \(H^2 = |A|^2 \), i.e., if \(K \neq 0 \) everywhere, then \(H^2 = |A|^2 \neq 0 \) everywhere. It implies that \(H > 0 \) everywhere or \(H < 0 \) everywhere. Hence, unlike minimal case, the sign of functional \(A_1 \) depends on choice of orientation of \(M^3 \). Following Alencar, do Carmo and Elbert, see [2], if we choose an orientation such that \(H > 0 \) everywhere, then the immersion will be stable if \(\frac{d^2 A_1}{dt^2} \bigg|_{t=0} > 0 \) under all compact support variations. Otherwise, i.e., if we choose an orientation such that \(H < 0 \), then \(x \) is stable if \(\frac{d^2 A_1}{dt^2} \bigg|_{t=0} < 0 \). For more details, see [2].

In the pursuit of this subject, Alencar, do Carmo and Elbert, cf. [2], have posed the following:

Question. Is there any stable complete hypersurface \(M^3 \) in \(\mathbb{R}^4 \) with zero scalar curvature and everywhere non-zero Gauss-Kronecker curvature?

The goal of this paper is to give some partial answers to this question. Let \(B_r(p) \) be the geodesic ball with center \(p \in M \) and radius \(r \). We say that a Riemannian manifold \(M^3 \) has *polynomial volume growth*, if there exists \(\alpha \in [0, 4] \) such that

\[
\frac{\text{vol}(B_r(p))}{r^{\alpha}} < \infty,
\]

for all \(p \in M \).

A well known inequality establishes that

\[
HK \leq \frac{1}{2} R^2. \tag{1.4}
\]

If \(R = 0 \) and \(K \neq 0 \) everywhere, then the quotient \(\frac{K}{H^3} \) is always negative, independent on choice of orientation. Furthermore, considering \(K \) and \(H^3 \) as functions of the eigenvalues of second fundamental form, we can see that

\[
0 < \frac{(-K)}{H^3} \leq \frac{4}{27},
\]

provided \(K \) and \(H^3 \) are homogeneous polynomials of degree 3. For details, see Appendix.

The first result is
Theorem A. There is no stable complete hypersurface M^3 of \mathbb{R}^4 with zero scalar curvature, polynomial volume growth and such that
\[\frac{(-K)}{H^3} \geq c > 0 \]
everywhere, for some constant $c > 0$. Here H denotes the mean curvature and K denotes the Gauss-Kronecker curvature of the immersion.

As a consequence of Theorem A, we obtain the following Bernstein type result.

Theorem B. There are no entire graphs M^3 of \mathbb{R}^4 with zero scalar curvature and such that
\[\frac{(-K)}{H^3} \geq c > 0 \]
everywhere, for some constant $c > 0$. Here H denotes the mean curvature and K denotes the Gauss-Kronecker curvature of the immersion.

Following Nelli and Soret, cf. [12], in section 5 we show that, if M^3 is a stable complete hypersurface of \mathbb{R}^4 with zero scalar curvature and such that $\frac{(-K)}{H^3} \geq c > 0$ everywhere, then the tube around M is not embedded for suitable radius. Precisely, we define the tube of radius h around M the set
\[T(M, h) = \{ x \in \mathbb{R}^4; \exists p \in M, x = p + t\eta, t \leq h(p) \} \]
where η is the normal vector of second fundamental form of the immersion and $h : M \to \mathbb{R}$ is an everywhere non-zero smooth function. We prove

Theorem C. Let M^3 be a stable complete hypersurface of \mathbb{R}^4 with vanishing scalar curvature. Suppose that the second fundamental form of the immersion is bounded and there exists a constant $c > 0$ such that $\frac{(-K)}{H^3} \geq c > 0$ everywhere. Then, for constants $0 < b_1 \leq 1$, $b_2 > 0$, and for any smooth function $h : M \to \mathbb{R}$ satisfying
\[h(p) \geq \min \left\{ \frac{b_1}{|A(p)|}, b_2 \rho(p)^{\delta} \right\}, \quad p \in M, \delta > 0, \]
the tube $T(M, h)$ is not embedded. Here, $\rho(p)$ denotes the intrinsic distance in M to a fixed point $p_0 \in M$.

4
Acknowledgements. I would like to thank professor Hilário Alencar for read critically this manuscript and for his many valuable suggestions. I would also to thank Detang Zhou by his useful suggestions, and professor Barbara Nelli for her suggestions to clarify some arguments used in the proof of Theorem C.

2 Preliminary Results

Let $B(X,Y) = \nabla_X Y - \nabla_X Y$ be the second fundamental form of immersion x, where ∇ and $\bar{\nabla}$ are the connections of M^3 and \mathbb{R}^4, respectively. The shape operator is the only symmetric linear operator $A : TM \rightarrow TM$ such that

$$B(X,Y) = \langle A(X), Y \rangle \eta, \ \forall \ X,Y \in TM,$$

where η is the normal field of the immersion x.

Denote by $|A|^2 = \text{tr}(A^2)$ the matrix norm of second fundamental form. Since $H^2 = |A|^2 + 2R$, if $R = 0$, then $H^2 = |A|^2$. Hence, $K \neq 0$ everywhere implies $H = |A| \neq 0$ everywhere, and we can choose an orientation of M such that $H > 0$ everywhere.

 Remark 2.1. From now on, let us fix an orientation of M^3 such that $H > 0$ everywhere.

A well known inequality establishes that

$$HK \leq \frac{1}{2}R^2.$$

Therefore, by using inequality above, $R = 0$ and $H > 0$ everywhere implies $K < 0$ everywhere.

Define $P_1 : TM \rightarrow TM$ by $P_1 = HI - A$ the first Newton transformation. If $R = 0$ and $H > 0$, then P_1 is positive definite. It was proved by Hounie and Leite in a general point of view, see [9]. In fact, P_1 positive definite implies $L_1(f) = \text{div}(P_1(\nabla f))$ is an elliptic differential operator. Let us give here a proof for sake of completeness. It suffices to prove that $H - \lambda_i > 0, \ i = 1, 2, 3$. In fact,

$$\lambda_i^2(H - \lambda_1) = \lambda_i^2(\lambda_2 + \lambda_3) = \lambda_i^2\lambda_2 + \lambda_i^2\lambda_3.$$
Since \(R = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3 = 0 \), we have
\[
0 = \lambda_1 R = \lambda_1 (\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3) = \lambda_1^2 \lambda_2 + \lambda_1^2 \lambda_3 + \lambda_1 \lambda_2 \lambda_3,
\]
i.e.,
\[
\lambda_1^2 \lambda_2 + \lambda_1^2 \lambda_3 = -\lambda_1 \lambda_2 \lambda_3 = -K > 0.
\]
Thus,
\[
\lambda_1^2 (H - \lambda_1) = \lambda_1^2 \lambda_2 + \lambda_1^2 \lambda_3 = -\lambda_1 \lambda_2 \lambda_3 > 0,
\]
and then, \(H - \lambda_1 > 0 \). The other cases are analogous.

Our choice of orientation, i.e., that one such that \(H > 0 \) everywhere, implies stability condition is equivalent to
\[
-3 \int_M K f^2 dM \leq \int_M \langle P_1 (\nabla f), \nabla f \rangle dM. \tag{2.1}
\]
The inequality (2.1) is known as stability inequality.

Remark 2.2. When \(H < 0 \), then \(K > 0 \) and \(P_1 \) is negative definite. In this case, stability condition is equivalent to
\[
3 \int_M K f^2 dM \leq \int_M \langle (-P_1) (\nabla f), \nabla f \rangle dM.
\]

Let \(\nabla A(X, Y, Z) := \langle \nabla_Z (A(X)) - A(\nabla_Z X), Y \rangle \) be the covariant derivative of operator \(A \). The following proposition will play an important role in the proof of main theorems.

In [6], do Carmo and Peng showed a very similar inequality for minimal hypersurfaces.

Proposition 2.1. If \(R = 0 \), then
\[
|\nabla A|^2 - |\nabla H|^2 \geq \frac{2}{3} |\nabla H|^2,
\]
where \(\nabla H \) denotes the gradient of \(H \).

Proof. Let us fix \(p \in M \) and choose \(\{e_1(p), e_2(p), e_3(p)\} \) an orthonormal basis of \(T_p M \) such that \(h_{ij}(p) = \lambda_i(p) \delta_{ij} \), where \(h_{ij} = \langle A(e_i), e_j \rangle \), \(\lambda_i(p) \) denotes the eigenvalues of \(A \) in \(p \) and \(\delta_{ij} \) is the Kronecker delta
\[
\delta_{ij} = \begin{cases}
1 & \text{if } i = j; \\
0 & \text{if } i \neq j.
\end{cases}
\]
Extending this basis by parallel transport along geodesics starting on p, to a referential in a neighbourhood of p, we have $\nabla_{e_i(p)} e_j(p) = 0$, for all $i, j = 1, 2, 3$. This is called geodesic referential at p.

Let us denote by $h_{ij;k} = (h_{ij})_k := e_k(h_{ij})$ the covariant derivatives of function h_{ij}, and by h_{ijk} the components of tensor ∇A in the referential $\{e_1, e_2, e_3\}$, i.e., $h_{ijk} = \nabla A(e_i, e_j, e_k)$. Since $\{e_1, e_2, e_3\}$ is a geodesic referential, we have

$$ h_{ijk} = \nabla A(e_i, e_j, e_k) = \langle \nabla_{e_k}(A(e_i)) - A(\nabla_{e_k} e_i), e_j \rangle = \langle \nabla_{e_k}(A(e_i)), e_j \rangle $$

$$ = e_k(\langle A(e_i), e_j \rangle) - (A(e_i), \nabla_{e_k} e_j) = e_k(\langle A(e_i), e_j \rangle) = e_k(h_{ij}) $$

$$ = h_{ij;k}. $$

Since $R = 0$, then $H^2 = |A|^2$. By using this fact, we have

$$ 4H^2 |\nabla H|^2 = |\nabla (H^2)|^2 = |\nabla (|A|^2)|^2 = \sum_{k=1}^{3} \left[\left(\sum_{i,j=1}^{3} h_{ij}^2 \right)_k \right]^2 $$

$$ = \sum_{k=1}^{3} \left(\sum_{i,j=1}^{3} 2h_{ij}h_{ij;k} \right)^2 = 4 \sum_{k=1}^{3} \left(\sum_{i=1}^{3} h_{ii}h_{ii;k} \right)^2. $$

Now, by using Cauchy-Schwarz inequality, we obtain

$$ 4 \sum_{k=1}^{3} \left(\sum_{i=1}^{3} h_{ii}h_{ii;k} \right)^2 \leq 4 \sum_{k=1}^{3} \left[\left(\sum_{i=1}^{3} h_{ii}^2 \right) \left(\sum_{i=1}^{3} h_{ii;k}^2 \right) \right] $$

$$ = 4|A|^2 \left(\sum_{i=1}^{3} h_{ii;k}^2 \right) = 4H^2 \left(\sum_{i=1}^{3} h_{ii;k}^2 \right). $$

Therefore,

$$ |\nabla H|^2 \leq \sum_{i,k=1}^{3} h_{ii;k}^2, \quad (2.2) $$

On the other hand,

$$ \nabla H = \sum_{k=1}^{3} \left(\sum_{i=1}^{3} h_{ii;k} \right) e_k. $$
By using Codazzi equations for immersions in Euclidean space, i.e., $h_{ijk} = h_{ikj}$, we have

$$|\nabla H|^2 = \sum_{k=1}^{3} \left(\sum_{i=1}^{3} h_{iik} \right)^2 \leq 3 \sum_{i,k=1}^{3} h_{iik}^2 = \frac{3}{2} \left[\sum_{i,k=1}^{3} h_{ik}^2 + \sum_{i,k=1}^{3} h_{kii}^2 \right].$$

Therefore

$$\left(1 + \frac{2}{3}\right) |\nabla H|^2 \leq \sum_{i,k=1}^{3} h_{iik}^2 + \sum_{i,k=1}^{3} h_{kii}^2 \leq \sum_{i,j,k=1}^{3} h_{ijk}^2 = |\nabla A|^2.$$

\[\square\]

3 Main Theorems

Hereafter, we will fix a point $p_0 \in M$ and denote by B_r the geodesic (intrinsic) ball of center p_0 and radius r.

The main tool to prove Theorem A stated in the Introduction is the following

Proposition 3.1. Let $x : M^3 \to \mathbb{R}^4$ be a stable isometric immersion with zero scalar curvature and such that K is nowhere zero. Then, for all smooth function ψ with compact support in M, for all $\delta > 0$ and $0 < q < \sqrt{1/3}$, there exists constants $\Lambda_1(q), \Lambda_2(q) > 0$ such that

$$\int_M H^{5+2q} \left(\frac{(-K)}{H^3} - \Lambda_1 \delta^{\frac{5+2q}{2+q}} \right) \psi^{5+2q} dM \leq \Lambda_2 \delta^{-\frac{5+2q}{2+q}} \int_M |\nabla \psi|^{5+2q} dM. \quad (3.1)$$

Proof. Let us choose an orientation such that $H > 0$ and apply the corresponding stability inequality

$$3 \int_M (-K) f^2 dM \leq \int_M \langle P_i(\nabla f), \nabla f \rangle dM, \quad (3.2)$$

for $f = H^{1+q}\varphi$, where $q > 0$, and φ is a smooth function compactly supported on M.

First note that

$$\nabla f = \nabla (H^{1+q}\varphi) = (1 + q)H^q \varphi \nabla H + H^{1+q} \nabla \varphi.$$
It implies
\[
\langle P_1(\nabla f), \nabla f \rangle = (1 + q)^2 H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle \\
+ 2(1 + q) H^{1+2q} \varphi \langle P_1(\nabla H), \nabla \varphi \rangle \\
+ H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle.
\]

Since $H > 0$, then P_1 is positive definite. Now, let us estimate the second term in the right hand side of identity above. By using Cauchy-Schwarz inequality followed by inequality $xy \leq \frac{x^2}{2} + \frac{y^2}{2}$, for all $x, y \in \mathbb{R}$, we obtain
\[
H^{1+2q} \varphi \langle P_1(\nabla H), \nabla \varphi \rangle = H^{2q} \varphi \sqrt{\beta \varphi} \sqrt{P_1(\nabla H)} \langle (1/\sqrt{\beta}) H \sqrt{P_1(\nabla \varphi)} \rangle \\
\leq H^{2q} \varphi \sqrt{\beta \varphi} \sqrt{P_1(\nabla H)} \frac{\| (1/\sqrt{\beta}) H \sqrt{P_1(\nabla \varphi)} \|^2}{2} + \frac{\| (1/\sqrt{\beta}) H \sqrt{P_1(\nabla \varphi)} \|^2}{2} \\
\leq \frac{\beta}{2} H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle + \frac{1}{2\beta} H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle, \tag{3.3}
\]
for any constant $\beta > 0$. Then stability inequality (3.2) becomes
\[
3 \int_M (-K) H^{2+2q} \varphi^2 dM \leq (1 + q)^2 \int_M H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle dM \\
+ 2(1 + q) \int_M H^{1+2q} \varphi \langle P_1(\nabla H), \nabla \varphi \rangle dM \\
+ \int_M H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle dM \tag{3.4}
\]
\[
\leq \left((1 + q)^2 + (1 + q) \beta \right) \int_M H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle dM \\
+ \frac{1 + (1 + q)}{\beta} \int_M H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle dM.
\]
Let us estimate $\int_M H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle dM$. By using identity
\[
L_1(fg) = \text{div}(P_1(\nabla (fg))) = \text{div}(f P_1(\nabla g)) + g L_1 f + \langle P_1(\nabla f), \nabla g \rangle,
\]

we have
\[L_1(H^{2+2q} \varphi^2) = \text{div}(HP_1(\nabla(H^{1+2q} \varphi^2))) + H^{1+2q} \varphi^2 L_1(H) \]
\[+ \langle P_1(\nabla H), \nabla(H^{1+2q} \varphi^2) \rangle \]
\[= \text{div}(HP_1(\nabla(H^{1+2q} \varphi^2))) + H^{1+2q} \varphi^2 L_1(H) \]
\[+ (1 + 2q) H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle + 2H^{1+2q} \varphi \langle P_1(\nabla H), \nabla \varphi \rangle. \]

Integrating both sides of the identity above and by using Divergence Theorem, we obtain
\[(1 + 2q) \int_M H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle dM = - \int_M H^{1+2q} \varphi^2 L_1(H) dM \]
\[- 2 \int_M H^{1+2q} \varphi \langle P_1(\nabla H), \nabla \varphi \rangle dM. \]

By using inequality (3.3), we have
\[(1 + 2q) \int_M H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle dM \leq - \int_M H^{1+2q} \varphi^2 L_1(H) dM \]
\[+ \beta \int_M H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle \]
\[+ \frac{1}{\beta} \int_M H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle dM, \]
i.e.,
\[(1 + 2q - \beta) \int_M H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle dM \leq - \int_M H^{1+2q} \varphi^2 L_1(H) dM \]
\[+ \frac{1}{\beta} \int_M H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle dM. \]

On the other hand, is well known, see [1], Lemma 3.7, that
\[-L_1(H) = |\nabla H|^2 - |\nabla A|^2 - 3HK. \]

Since \(P_1 \) is positive definite, we have
\[\langle P_1(\nabla H), \nabla H \rangle \leq (\text{tr} P_1)|\nabla H|^2 = 2H|\nabla H|^2, \]

i.e.,
\[(1 + 2q - \beta) \int_M H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle dM \leq - \int_M H^{1+2q} \varphi^2 L_1(H) dM \]
\[+ \frac{1}{\beta} \int_M H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle dM. \]
\[|\nabla H|^2 \geq \frac{1}{2H} \langle P_1(\nabla H), \nabla H \rangle.\]

By using Proposition 2.1 and inequality above, we obtain

\[-L_1(H) \leq -\frac{2}{3} |\nabla H|^2 - 3HK \leq -\frac{1}{3H} \langle P_1(\nabla H), \nabla H \rangle - 3HK.\]

Then

\[
\left(\frac{4}{3} + 2q - \beta \right) \int_M H^{2q} \varphi^2 \langle P_1(\nabla H), \nabla H \rangle dM \leq 3 \int_M H^{2+2q} (-K) \varphi^2 dM
\]

\[+ \frac{1}{\beta} \int_M H^{2+2q} \varphi \langle P_1(\nabla \varphi), \nabla \varphi \rangle dM.\]

Replacing last inequality in (3.4), stability inequality becomes

\[3 \int_M (-K) H^{2+2q} \varphi^2 dM \leq 3C_1 \int_M H^{2+2q} (-K) \varphi^2 dM
\]

\[+ C_2 \int_M H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle dM,\]

i.e.,

\[3(1 - C_1) \int_M H^{2+2q} (-K) \varphi^2 dM \leq C_2 \int_M H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle dM.\]

where

\[C_1 = \frac{(1 + q)^2 + \beta(1 + q)}{\frac{4}{3} + 2q - \beta}, \quad C_2 = 1 + \frac{(1 + q)}{\beta} \frac{(1 + q)^2 + (1 + q)\beta}{\beta (\frac{4}{3} + 2q - \beta)},\]

\[0 < q < \sqrt{1/3} \text{ by hypothesis, and } \beta \text{ is taken such that } 0 < \beta < \frac{1/3 - q^2}{q + 2}. \text{ This choice of } \beta \text{ is necessary to have } C_1 < 1. \text{ In fact,}

\[\beta < \frac{1/3 - q^2}{q + 2} \Rightarrow q^2 + \beta q + 2\beta < \frac{1}{3}\]

\[\Rightarrow (1 + q)^2 + \beta(1 + q) < \frac{4}{3} + 2q - \beta\]

\[\Rightarrow C_1 = \frac{(1 + q)^2 + \beta(1 + q)}{\frac{4}{3} + 2q - \beta} < 1.\]
Therefore,
\[\int_M H^{2+2q}(-K)\varphi^2 dM \leq \frac{C_2}{3(1 - C_1)} \int_M H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle dM. \]

On the other hand, since \(P_1 \) is positive definite, we have
\[\langle P_1(\nabla \varphi), \nabla \varphi \rangle \leq (\text{tr } P_1)|\nabla H|^2 \leq 2H|\nabla \varphi|^2. \]

Denoting by \(C_3 = \frac{2C_2}{3(1 - C_1)} \), we have
\[
\int_M H^{2+2q}(-K)\varphi^2 dM \leq \frac{C_3}{2} \int_M H^{2+2q} \langle P_1(\nabla \varphi), \nabla \varphi \rangle dM \leq C_3 \int_M H^{3+2q} |\nabla \varphi|^2 dM.
\]

Letting \(\varphi = \psi^p \), where \(2p = 5 + 2q \), we obtain
\[
\int_M H^{2+2q}(-K)\psi^{5+2q} dM \leq C_3 p^2 \int_M H^{3+2q} \psi^{3+2q} |\nabla \psi|^2 dM. \tag{3.5}
\]

By using Young’s inequality, i.e.,
\[xy \leq \frac{x^a}{a} + \frac{y^b}{b}, \quad \frac{1}{a} + \frac{1}{b} = 1 \]

with
\[x = \delta H^{3+2q} \psi^{3+2q}, \quad y = \frac{|\nabla \psi|^2}{\delta}, \quad a = \frac{5 + 2q}{3 + 2q}, \quad b = \frac{5 + 2q}{2}, \quad \text{and} \quad \delta > 0, \]
we have
\[H^{3+2q} \psi^{3+2q} |\nabla \psi|^2 \leq \frac{3 + 2q}{5 + 2q} \delta^{\frac{5+2q}{5+2q}} H^{5+2q} \psi^{5+2q} + \frac{2}{5 + 2q} \delta^{-\frac{5+2q}{5+2q}} |\nabla \psi|^{5+2q}. \]

Replacing last inequality in inequality (3.5), we obtain
\[
\int_M H^{2+2q}(-K)\psi^{5+2q} dM \leq \frac{3 + 2q}{5 + 2q} p^2 C_3 \delta^{\frac{5+2q}{5+2q}} \int_M H^{5+2q} \psi^{5+2q} dM
\]
\[
+ \frac{2}{5 + 2q} p^2 C_3 \delta^{-\frac{5+2q}{2}} \int_M |\nabla \psi|^{5+2q} dM,
\]

12
i.e.,

\[
\int_M H^{5+2q} \left(\frac{(-K)}{H^3} - \Lambda_1 \delta^{5+2q} \right) \psi^{5+2q} dM \leq \Lambda_2 \delta^{-\frac{5+2q}{2}} \int_M |\nabla \psi|^{5+2q} dM, \tag{3.6}
\]

where \(\Lambda_1 = \frac{3 + 2q}{5 + 2q} p^2 C_3 \) and \(\Lambda_2 = \frac{2p^2}{5 + 2q} C_3 \).

Remark 3.1. In [15], Schoen, Simon, and Yau obtained the following Sobolev type inequality for minimal hypersurfaces \(M^n \) immersed in \(\mathbb{R}^{n+1} \):

\[
\int_M |A|^{2p} \psi^{2p} dM \leq C(n, p) \int_M |\nabla \phi|^{2p} dM, \tag{3.7}
\]

for \(p \in [2, 2+\sqrt{2/n}) \), and for all function \(\psi : M \to \mathbb{R} \) compactly supported on \(M \). By using inequality of Proposition 3.1, we obtain a similar result for hypersurfaces \(M^3 \) immersed in \(\mathbb{R}^4 \) with zero scalar curvature. In fact, if \(R = 0 \), then \(H^2 = |A|^2 \). Choosing an orientation such that \(H > 0 \), we have \(H = |A| \). In this case, we have

Corollary 3.1 (Sobolev type inequality). Let \(x : M^3 \to \mathbb{R}^4 \) be a stable isometric immersion with zero scalar curvature and such that \(\frac{(-K)}{H^3} \geq c > 0 \) everywhere. Then, for all smooth function \(\psi \) with compact support in \(M \), for all \(\delta > 0 \) and \(p \in (5/2, 5/2 + \sqrt{1/3}) \), there exists a constant \(C(p) > 0 \) such that

\[
\int_M |A|^{2p} \psi^{2p} dM \leq C(p) \int_M |\nabla \psi|^{2p} dM. \tag{3.8}
\]

Remark 3.2. In the recent article [11], Ilias, Nelli, and Soret, obtained results in this direction for hypersurfaces with constant mean curvature.

Now let us prove the Theorem A stated in the Introduction.

Theorem A. There is no stable complete hypersurface \(M^3 \) of \(\mathbb{R}^4 \) with zero scalar curvature, polynomial volume growth and such that

\[
\frac{(-K)}{H^3} \geq c > 0
\]

everywhere, for some constant \(c > 0 \).
Proof. Suppose by contradiction there exists a complete stable hypersurface attending conditions of Theorem A. Then we can apply Proposition 3.1. Choose the compact supported function \(\psi : M \to \mathbb{R} \) defined by

\[
\psi(p) = \begin{cases}
1 & \text{if } p \in B_r; \\
\frac{2r - \rho(p)}{r} & \text{if } p \in B_{2r} \setminus B_r; \\
0 & \text{if } p \in M \setminus B_{2r},
\end{cases}
\]

(3.9)

where \(\rho(p) = \rho(p, p_0) \) is the distance function of \(M \). By using this function \(\psi \) in the inequality of Proposition 3.1, we have

\[
\int_{B_r} H^{5+2q} \left(\frac{(-K)}{H^3} - \Lambda_1 \delta^{\frac{5+2q}{3+2q}} \right) dM \leq \int_{B_{2r}} H^{5+2q} \left(\frac{(-K)}{H^3} - \Lambda_1 \delta^{\frac{5+2q}{3+2q}} \right) \psi^{5+2q} dM \\
\leq \Lambda_2 \delta^{-\frac{5+2q}{2}} \int_{B_{2r}} |\nabla \psi|^{5+2q} dM \\
\leq \Lambda_2 \delta^{-\frac{5+2q}{2}} \operatorname{vol} B_{2r} \\
\leq \Lambda_2 \delta^{-\frac{5+2q}{2}} \cdot \lim_{r \to \infty} \frac{\operatorname{vol}(B_r)}{r^\alpha} \cdot \lim_{r \to \infty} \frac{1}{r^{5+2q-\alpha}} = 0
\]

for \(0 < q < \sqrt{1/3} \). Taking \(\delta > 0 \) sufficiently small and since, by hypothesis, \(\frac{(-K)}{H^3} \geq c > 0 \), we get

\[
\left(\frac{(-K)}{H^3} - \Lambda_1 \delta^{\frac{5+2q}{3+2q}} \right) > 0.
\]

By hypothesis, \(M \) has polynomial volume growth. It implies that

\[
\lim_{r \to \infty} \frac{\operatorname{vol}(B_r)}{r^\alpha} < \infty, \quad \alpha \in (0, 4].
\]

Letting \(r \to \infty \) in the inequality (3.10), we obtain

\[
\lim_{r \to \infty} \int_{B_r} H^{5+2q} \left(\frac{(-K)}{H^3} - \Lambda_1 \delta^{\frac{5+2q}{3+2q}} \right) dM \leq \Lambda_2 \lim_{r \to \infty} \frac{\operatorname{vol}(B_{2r})}{r^\alpha} \cdot \lim_{r \to \infty} \frac{1}{r^{5+2q-\alpha}} = 0.
\]

Therefore \(H \equiv 0 \), and this contradiction finishes the proof of the theorem. \(\square \)

Remark 3.3. In the proof of Theorem A, \(M \) need not even be properly immersed, since we are taking intrinsic (geodesic) balls. Since \(M \) is complete, we have \(M = \bigcup_{n=1}^\infty B_{r_n} \) for some sequence \(r_n \to \infty \), and thus we can take \(r \to \infty \) in the estimate.
Remark 3.4. By using their Sobolev inequality (3.7), Schoen, Simon, and Yau gave a new proof of Bernstein’s Theorem for dimension less than or equal to 5, namely, that the only entire minimal graphs \(M^n \) in \(\mathbb{R}^{n+1} \), \(n \leq 5 \) are hyperplanes. By using our version of Sobolev inequality (3.8), we prove the following Bernstein type result.

As a corollary of Theorem A, we have the following result.

Theorem B. There are no entire graphs \(M^3 \) of \(\mathbb{R}^4 \) with zero scalar curvature and such that

\[
\frac{(-K)}{H^3} \geq c > 0
\]

everywhere, for some constant \(c > 0 \).

Proof. Suppose there exists an entire graph \(M \) satisfying the conditions of corollary. In [3], Proposition 4.1, p. 3308, Alencar, Santos, and Zhou showed that entire graphs with zero scalar curvature and whose mean curvature does not change sign are stable. Since \(R = 0 \) by hypothesis, we have \(H^2 = |A|^2 \). Provided \(K \neq 0 \) everywhere, we have \(H^2 = |A|^2 > 0 \) which implies that \(H \) does not change sign. Thus, the entire graph \(M \) is stable. On the other hand, it is well known that graphs satisfy \(\text{vol}(B_r) \leq Cr^4, C > 0 \). Therefore, by using the hypothesis \(\frac{(-K)}{H^3} \geq c > 0 \), inequality (3.10) in the proof of Theorem A, p.14, and taking \(r \to \infty \) we obtain the same contradiction. \(\square \)

4 Examples

The class of hypersurfaces treated here is non-empty, as shown in the following example. It can be found in [10], Lemma 2.1, p. 400. See also [2], p. 213 – 214 and [7], p. 161.

Example 4.1. Let \(M^3 \hookrightarrow \mathbb{R}^4 \) the rotational hypersurface parametrized by

\[
X(t, \theta, \varphi) = (f(t) \sin \theta \cos \varphi, f(t) \sin \theta \sin \varphi, f(t) \cos \theta, t),
\]

where \(f(t) = \frac{t^2}{4m} + m \) and \(m \) is a non-negative constant. The principal curvatures are

\[
\lambda_1 = \lambda_2 = \frac{m^{1/2}}{f^{3/2}}, \quad \lambda_3 = -\frac{1}{2} \frac{m^{1/2}}{f^{3/2}}.
\]
Then $R = 0$ and $\frac{-K}{H^3} = \frac{4}{27}$ everywhere. Since M^3 is a rotational hypersurface and its profile curve is quadratic, it has polynomial volume growth. Then by Theorem A the immersion is unstable.

This example appears in the Theory of Relativity as the embedding of the space-like Schwarzschild manifold of mass $m/2 > 0$, see Introduction of [5], for details.

The following class of hypersurfaces are well known, see [2], p. 214, and they are the classical examples of stable hypersurfaces with zero scalar curvature. This class show us that some condition over nullity of Gauss-Kronecker curvature are needed.

Example 4.2. Let $M^3 \subset \mathbb{R}^4$ be the cylinder parametrized by

$$x(u,v,t) = (u,v,\alpha(t),\beta(t)); \quad u,v,t \in \mathbb{R},$$

where $c(t) := (\alpha(t),\beta(t))$ is a parametrized curve with positive curvature $k(t)$ at every point. In this case, principal curvatures are

$$\lambda_1 = 0, \lambda_2 = 0, \text{ and } \lambda_3 = k(t).$$

Thus $R = 0$, $H > 0$ and $K = 0$ everywhere. Then, M^3 is stable, see [2].

Observe that if $c(t) = (t,f(t))$, the cylinder M is the graph of the smooth function $F : \mathbb{R}^3 \rightarrow \mathbb{R}$ given by $F(u,v,t) = f(t)$. In particular, taking $f(t) = t^2$ or $f(t) = \sqrt{1+t^2}$ we obtain an entire graph with polynomial volume growth, $R = 0, H > 0$ and $K = 0$ everywhere.

5 Non-embedded Tubes

Let $x : M^3 \rightarrow \mathbb{R}^4$ be an isometric immersion. Following Nelli and Soret, see [12], we define the tube of radius h around M the set

$$T(M,h) = \{ x \in \mathbb{R}^4; \exists p \in M, x = p + t\eta, t \leq h(p) \},$$

16
where η is the normal vector of the second fundamental form of x, and $h : M \to \mathbb{R}$ is an everywhere non-zero smooth function. If $|A| \neq 0$ everywhere, we define the subfocal tube the set

$$T \left(M, \frac{\epsilon}{|A|} \right), \ 0 < \epsilon \leq 1.$$

Denote by $T(r, h)$ the tube of radius h around $B_r \subset M$, i.e., considering $M = B_r$ in the above definition, and let

$$V(r, h) = \int_{T(r, h)} dT,$$

where dT denotes the volume element of the tube. If $R = 0$, and choosing an orientation such that $H > 0$, we have $H = |A|$. Under the conditions of Proposition 3.1, and assuming that $\frac{(-K)}{H^3} \geq c > 0$, then there exists a constant $C(q)$ depending only on $0 < q < \sqrt{1/3}$ such that

$$\int_{B_r} |A|^{5+2q} \psi^{5+2q} dM \leq C(q) \int_{B_r} |\nabla \psi|^{5+2q} dM. \quad (5.1)$$

Choosing the same function with compact support used in the proof of Theorem A (see (3.9), p. 14), we obtain

$$\int_{B_r} |A|^{5+2q} dM \leq C(q) \frac{\text{vol}(B_r)}{r^{5+2q}}.$$

The following lemma is essentially the same Lemma 1 of [12], p. 496, and the proof will be omitted here.

Lemma 5.1. Let M^3 be a complete, stable hypersurface of \mathbb{R}^4 satisfying $R = 0$ and $\frac{(-K)}{H^3} \geq c > 0$ everywhere.

(a) For $r > 0$ sufficiently large, there exists a constant $\alpha(q)$, depending only on $0 < q < \sqrt{1/3}$ such that

$$\text{vol}(B_r) > \alpha(q)r^{5+2q}. \quad (5.2)$$

(b) For each $\beta > 1$, $0 < q < \sqrt{1/3}$, and $r > 0$ satisfying inequality (5.2) above, there exists a sufficiently large $\tilde{r} > r$ such that

$$\text{vol}(B_{\tilde{r}}) - \text{vol}(B_{\beta r}) > \alpha(q)r^{5+q}.$$
The next result is a vanishing scalar curvature version of Theorem 1, p. 499 of [12].

Theorem C. Let M^3 be a stable complete hypersurface of \mathbb{R}^4 with vanishing scalar curvature. Suppose that the second fundamental form of the immersion is bounded and there exists a constant $c > 0$ such that $\frac{(-K)}{H^3} \geq c > 0$ everywhere. Then, for constants $0 < b_1 \leq 1$, $b_2 > 0$, and for any smooth function $h : M \to \mathbb{R}$ satisfying

$$h(p) \geq \inf \left\{ \frac{b_1}{|A(p)|}, b_2 \rho(p) \delta \right\}, \quad \delta > 0,$$

(5.3)

the tube $T(M, h)$ is not embedded. Here, $\rho(p)$ denotes the intrinsic distance in M to a fixed point $p_0 \in M$.

Proof. In [12], Nelli and Soret showed that

$$V(r, h) = \int_{B_r} h(p) dM - \frac{1}{2} \int_{B_r} h(p)^2 H(p) dM - \frac{1}{4} \int_{B_r} h(p)^4 K(p) dM.$$

By using the classical inequality between geometric and quadratic means, one finds that

$$K = \lambda_1 \lambda_2 \lambda_3 \leq \lambda_1 \lambda_2 \lambda_3 |A|$$

$$\leq \left(\frac{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}{3} \right)^{3/2}$$

$$= \frac{1}{3\sqrt{3}} |A|^3,$$

i.e.,

$$K(p) \leq \frac{1}{3\sqrt{3}} |A(p)|^3.$$

(5.4)

Let B^+_r the set where $\frac{b_1}{|A(p)|}$ is the infimum and $B^-_r = B_r \setminus B^+_r$. Then

$$V(r, h) \geq b_1 \int_{B^+_r} \frac{1}{|A|} dM - \frac{b_1^2}{2} \int_{B^+_r} \frac{1}{|A|^2} H dM - \frac{b_1^4}{4} \int_{B^+_r} \frac{1}{|A|^3} K dM$$

$$+ b_2 \int_{B^-_r} \rho^\delta dM - \frac{b_2^2}{2} \int_{B^-_r} \rho^{2\delta} H dM - \frac{b_2^4}{4} \int_{B^-_r} \rho^{4\delta} K dM.$$
Since $H = |A|$, we have

$$V(r, h) \geq \left(b_1 - \frac{b_1^2}{2} - \frac{b_1^4}{12\sqrt{3}} \right) \int_{B_r^+} \frac{1}{|A|} dM + b_2 \int_{B_r^-} \rho^\delta dM - \frac{b_2^2}{2} \int_{B_r^-} \rho^{2\delta} H dM - \frac{b_2^4}{4} \int_{B_r^-} \rho^{4\delta} K dM.$$

Let us estimate the integrals over B_r^-. By using inequality (5.4) above, we get

$$-K \geq -\frac{1}{3\sqrt{3}} |A|^3 \geq -\frac{b_1}{b_2} \frac{1}{3\sqrt{3}} \rho^{-3\delta}$$

and

$$-H = -|A| \geq \frac{b_1}{b_2} \rho^{-\delta}.$$

By hypothesis, $|A|$ is bounded, then there exists $a := \inf_{M} \frac{1}{|A|}$. Therefore

$$V(r, h) \geq \left(b_1 - \frac{b_1^2}{2} - \frac{b_1^4}{12\sqrt{3}} \right) \int_{B_r^+} \frac{1}{|A|} dM + \left(b_2 - \frac{b_2 b_1}{2} - \frac{b_2^4 b_1}{12\sqrt{3}} \right) \int_{B_r^-} \rho^\delta dM$$

$$\geq a \left(b_1 - \frac{b_1^2}{2} - \frac{b_1^4}{12\sqrt{3}} \right) \text{vol}(B_r^+) + \left(b_2 - \frac{b_2 b_1}{2} - \frac{b_2^4 b_1}{12\sqrt{3}} \right) \int_{B_r^-} \rho^\delta dM.$$

On the other hand, for r sufficiently large,

$$\int_{B_r^-} \rho^\delta dM = \int_{B_r^- \setminus B_{\beta^{-1}r}} \rho^\delta dM + \int_{B_{\beta^{-1}r}} \rho^\delta dM \geq \int_{B_r^- \setminus B_{\beta^{-1}r}} \rho^\delta dM$$

$$\geq \left(\frac{r}{\beta} \right)^\delta [\text{vol}(B_r^-) - \text{vol}(B_{\beta^{-1}r})]$$

$$\geq [\text{vol}(B_r^-) - \text{vol}(B_{\beta^{-1}r})].$$

19
Then
\[V(r, h) \geq a \left(b_1 - \frac{b_1^2}{2} - \frac{b_1^4}{12\sqrt{3}} \right) \left(\text{vol}(B_r^+) - \text{vol}(B_{\beta^{-1}r}^+) + \text{vol}(B_{\beta^{-1}r}^+) \right) + \left(b_2 - \frac{b_2^2b_1}{2} - \frac{b_2^2b_1^2}{12\sqrt{3}} \right) \left(\text{vol}(B_r^-) - \text{vol}(B_{\beta^{-1}r}^-) \right) \]
\[\geq C \left(\text{vol}(B_r) - \text{vol}(B_{\beta^{-1}r}) \right). \]

By using Lemma 5.1, item (b), there exists \(\tilde{r} > r \) such that
\[V(\tilde{r}, h) \geq C\tilde{r}^{5+q}. \] (5.5)

The Euclidean distance is less than or equal to the intrinsic distance. It implies
\[B_r(p) \subset B(p, r), \]
where \(B_r(p) \equiv B_r \) and \(B(p, r) \) denotes the intrinsic and the Euclidean ball of center \(p \) and radius \(r \). By using (5.3), we have
\[h(q) \geq \min \left\{ b_1, b_2\rho(q)^\delta \right\} \geq \min \left\{ \inf_M \frac{b_1}{|A|}, b_2\rho(q)^\delta \right\} = \inf_M \frac{b_1}{|A|} = b_1 a, \]
for \(0 < b_1 \leq 1 \) and \(\rho \) sufficiently large, then
\[T(r, b_1a) \subset T(r, h). \]

Suppose, by contradiction, that \(T(r, b_1a) \) is embedded. Since
\[T(r, b_1a) \subset B(p, r + 2b_1a), \]
then its volume \(V(r, b_1a) \) satisfies
\[V(r, b_1a) \leq \text{vol}(B(p, r + 2b_1a)) = \omega_4(r + 2b_1a)^4, \]
where \(\omega_4 \) is the volume of \(B(p, 1) \). Let us consider two different cases. First, if \(M \) is not contained in any ball, above inequality is a contradiction with (5.5) for \(r \) sufficiently large. Therefore, \(T(r, b_1a) \), and thus \(T(r, h) \), is not embedded for \(r \) sufficiently large. In the second case, if \(M \) is contained in some ball, then \(T(M, h) \) has finite volume (since \(T(M, h) \) is embedded) and it is also a contradiction with (5.5). \(\square \)
6 Appendix

Let us prove the following fact established in the Introduction:

Let \(x : M^3 \to \mathbb{R}^4 \) be an isometric immersion with zero scalar curvature. If \(H \) and \(K \) denotes the mean curvature and Gauss-Kronecker curvature, respectively, then

\[
0 \leq -\frac{K}{H^3} \leq \frac{4}{27} \quad \text{everywhere on } M.
\]

Figure 1: Representation of the domain \(N_\omega \) of \(\frac{K}{H^3} \) over \(S^2 \), considering this function as an algebraic function of the eigenvalues. This domain is the intersection of one of the plane \(\lambda_1 + \lambda_2 + \lambda_3 = 1 \) with \(S^2 \). The hypothesis cuts off only three small neighbourhoods around the coordinate axis.

In fact, let \((\lambda_1, \lambda_2, \lambda_3) = t\omega\) where \(\omega \in S^2 \). By using (1.1), we can see that \(R, H \) and \(K \) are homogeneous polynomials. It implies \(H(t\omega) = tH(\omega), \ R(t\omega) = t^2R(\omega), \ K(t\omega) = t^3K(\omega) \) and hence

\[
\frac{K}{H^3}(t\omega) = \frac{K}{H^3}(\omega).
\]

Then the behavior of \(\frac{K}{H^3} \) depends only of its values on the sphere \(S^2 \). Since \(N := \{(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3; R = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3 = 0\} \) is closed and \(S^2 \) is compact, we obtain that \(N_\omega = N \cap S^2 \) is compact, see figure 6. Then, \(\frac{K}{H^3} : N_\omega \to \mathbb{R} \) is a continuous
function with compact domain. The claim then follow from the Weierstrass maxima and minima theorem. Upper bound $\frac{1}{27}$ can be found by using Lagrange multipliers method.

References

[1] Alencar, H., do Carmo, M. P., Colares, A. G., Stable hypersurfaces with constant scalar curvature, Math. Z., 213, 117 - 131 (1993).

[2] Alencar, H., do Carmo, M. P., Elbert, M. F., Stability of hypersurfaces with vanishing r–constant curvatures in Euclidean spaces. J. Reine Angew. Math. 554, 201-216 (2003).

[3] Alencar, H., Santos W., Zhou W., Stable hypersurfaces with constant scalar curvature, Proc. Amer. Math. Soc., 138, 3301 - 3312 (2010).

[4] Barbosa, J.L., Colares, A.G., Stability of hypersurfaces with constant r–mean curvature. Annals of Global Analysis and Geometry, 15, 277-297 (1997).

[5] Bray, H. L., Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Diff. Geo., 59, 177-267 (2001).

[6] Do Carmo, M.; Peng, C. K. Stable complete minimal hypersurfaces. Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol. 1, 2, 3 (Beijing, 1980), 1349-1358, Sci. Press Beijing, Beijing, (1982).

[7] Do Carmo, M., Elbert M. F., On Stable complete Hypersurfaces with vanishing r–mean curvature, Tohoku Math. J., 56, 155-162 (2004).

[8] Hartman, P., Nirenberg, L., On spherical image maps whose Jacobians do not change sign. Amer. J. Math. 81, 901-920 (1959).

[9] Hounie, J., Leite, M. L., Two-ended hypersurfaces with zero scalar curvature, Indiana University Mathematical Journal, 48, 867-882 (1999).
[10] Hounie, J., Leite, M. L., Uniqueness and nonexistence theorems for hypersurfaces with $H_r = 0$, Annals of Global Analysis and Geometry, 17, 397-407 (1999).

[11] Ilias, S., Nelli, B., Soret, M., Caccioppoli’s inequalities on constant mean curvature hypersurfaces in Riemannian manifolds, Annals of Global Analysis and Geometry, 42, no. 4, 433-471 (2012).

[12] Nelli, B., Soret, M., Stably embedded minimal hypersurfaces. Mathematische Zeitschrift. 255, 493-514 (2007).

[13] Reilly, R. C., Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Diff. Geometry. 8, 465-477 (1973).

[14] Rosenberg, H., Hypersurfaces of constant curvatures in space forms. Bulletin des Sciences Mathématiques, 117, 211-239 (1993).

[15] Schoen, R., Simon, L., Yau, S-T. Curvature estimates for minimal hypersurfaces, Acta Math. 134, 275 - 288 (1975).

[16] Cheng, S.Y., Yau, S.T., Hypersurfaces with constant scalar curvature. Math. Ann. 225, 195-204 (1977).

Gregório Silva Neto
Universidade Federal de Alagoas,
Instituto de Matemática,
57072-900, Maceió, Alagoas, Brazil.
gregorio@im.ufal.br