ACTION OF THE CREMONA GROUP ON FOLIATIONS ON \(\mathbb{P}^2_C \): SOME CURIOUS FACTS

by

Dominique CERVEAU & Julie DÉSERTI

Abstract. — The Cremona group of birational transformations of \(\mathbb{P}^2_C \) acts on the space \(\mathcal{F}(2) \) of holomorphic foliations on the complex projective plane. Since this action is not compatible with the natural graduation of \(\mathcal{F}(2) \) by the degree, its description is complicated. The fixed points of the action are essentially described by Cantat-Favre in [3]. In that paper we are interested in problems of "aberration of the degree" that is pairs \((\phi, \mathcal{F}) \in \text{Bir}(\mathbb{P}^2_C) \times \mathcal{F}(2) \) for which \(\deg \phi^* \mathcal{F} < (\deg \mathcal{F} + 1)\deg \phi + \deg \phi - 2 \), the generic degree of such pull-back. We introduce the notion of numerical invariance \((\deg \phi^* \mathcal{F} = \deg \mathcal{F}) \) and relate it in small degrees to the existence of transversal structure for the considered foliations.

2010 Mathematics Subject Classification. — 14E07, 37F75

1. Introduction

Let us consider on the complex projective plane \(\mathbb{P}^2_C \) a foliation \(\mathcal{F} \) of degree \(d \) and a birational map \(\phi \) of degree \(k \). If the pair \((\mathcal{F}, \phi) \) is generic then \(\deg \phi^* \mathcal{F} = (d + 1)k + k - 2 \). For example if \(\mathcal{F} \) and \(\phi \) are both of degree 2, then \(\phi^* \mathcal{F} \) is of degree 6. Nevertheless one has the following statement which says that "aberration of the degree" is not exceptional:

Theorem A. — For any foliation \(\mathcal{F} \) of degree 2 on \(\mathbb{P}^2_C \) there exists a quadratic birational map \(\psi \) of \(\mathbb{P}^2_C \) such that \(\deg \psi^* \mathcal{F} \leq 3 \).

Holomorphic singular foliations on compact complex projective surfaces have been classified up to birational equivalence by Brunella, McQuillan and Mendes ([11]). Let \(\mathcal{F} \) be a holomorphic singular foliation on a compact complex projective surface \(S \). Let Bir(\(\mathcal{F} \)) (resp. Aut(\(\mathcal{F} \))) denote the group of birational (resp. biholomorphic) maps of \(S \) that send leaf to leaf. If \(\mathcal{F} \) is of general type, then Bir(\(\mathcal{F} \)) = Aut(\(\mathcal{F} \)) is a finite group. In [3] Cantat and Favre classify the pairs \((\mathcal{S}, \mathcal{F}) \) for which Bir(\(\mathcal{F} \)) (resp. Aut(\(\mathcal{F} \))) is infinite; in the case of \(\mathbb{P}^2_C \) such foliations are given by closed rational 1-forms.

In this article we introduce a weaker notion: the numerical invariance. We consider on \(\mathbb{P}^2_C \) a pair \((\mathcal{F}, \phi) \) of a foliation \(\mathcal{F} \) of degree \(d \) and a birational map \(\phi \) of degree \(k \geq 2 \). The foliation \(\mathcal{F} \) is numerically invariant under the action of \(\phi \) if \(\deg \phi^* \mathcal{F} = \deg \mathcal{F} \). We characterize such pairs \((\mathcal{F}, \phi) \) with \(\deg \mathcal{F} = \deg \phi = 2 \) which

Second author supported by the Swiss National Science Foundation grant no PP00P2_128422 /1 and by ANR Grant “BirPol” ANR-11-JS01-004-01.
is the first degree with deep (algebraic and dynamical) phenomena, both for foliations and birational maps. We prove that a numerically invariant foliation under the action of a generic quadratic map is special:

Theorem B. — Let \mathcal{F} be a foliation of degree 2 on \mathbb{P}^2_C numerically invariant under the action of a generic quadratic birational map of \mathbb{P}^2_C. Then \mathcal{F} is transversely projective.

In that statement generic means outside an hypersurface in the space Bir_2 of quadratic birational maps of \mathbb{P}^2_C.

For any quadratic birational map ϕ of \mathbb{P}^2_C there exists at least one foliation of degree 2 on \mathbb{P}^2_C numerically invariant under the action of ϕ and we give "normal forms" for such foliations. We don’t know if the foliations numerically invariant under the action of a non-generic quadratic birational map have a special transversal structure. Problem: for any birational map ϕ of degree $d \geq 3$, does there exist a foliation numerically invariant under the action of ϕ?

A foliation \mathcal{F} on \mathbb{P}^2_C is primitive if $\deg \mathcal{F} \leq \deg \phi^* \mathcal{F}$ for any birational map ϕ. Foliations of degree 0 and 1 are defined by a rational closed 1-form (it is a well-known fact, see for example [2]). Hence a non-primitive foliation of degree 2 is also defined by a closed 1-form that is a very special case of transversely projective foliations. Generically a foliation of degree 2 is primitive. The following problem seems relevant: classify in any degree the primitive foliations numerically invariant under the action of birational maps of degree ≥ 2; are such foliations transversely projective or is this situation specific to the degree 2 ? In this vein we get the following statement.

Theorem C. — A foliation \mathcal{F} of degree 2 on \mathbb{P}^2_C numerically invariant under the action of a generic cubic birational map of \mathbb{P}^2_C satisfies the following properties:

- \mathcal{F} is given by a closed rational 1-form (Liouvillian integrability);
- \mathcal{F} is non-primitive.

Is it a general fact, i.e. if \mathcal{F} is numerically invariant under the action of ϕ and $\deg \phi \gg \deg \mathcal{F}$ is \mathcal{F} Liouvillian integrable ?

The text is organized as follows: we first give some definitions, notations and properties of birational maps of \mathbb{P}^2_C and foliations on \mathbb{P}^2_C. In §3 we give a proof of Theorem A, we focus on foliations of degree 2 on \mathbb{P}^2_C that have at least two singular points and then on foliations of degree 2 on \mathbb{P}^2_C with exactly one singular point. The section §4 is devoted to the description of foliations of degree 2 on \mathbb{P}^2_C numerically invariant under the action of any quadratic birational map. This allows us to prove Theorem B. At the end of the paper, §5 we describe the foliations of degree 2 numerically invariant under some cubic birational maps of \mathbb{P}^2_C and establish Theorem C.

Acknowledgment. — We thank Alcides Lins Neto for helpful discussions.

2. Some definitions, notations and properties

2.1. About birational maps of \mathbb{P}^2_C. — A rational map ϕ of \mathbb{P}^2_C is a "map" of the type

$$\phi: \mathbb{P}^2_C \longrightarrow \mathbb{P}^2_C, \hspace{1cm} (x : y : z) \longrightarrow (\phi_0(x,y,z) : \phi_1(x,y,z) : \phi_2(x,y,z))$$

where the ϕ_i’s are homogeneous polynomials of the same degree and without common factor. The degree of ϕ is by definition the degree of the ϕ_i’s. A birational map ϕ of \mathbb{P}^2_C is a rational map having a rational
"inverse" \(\psi \), i.e. \(\phi \circ \psi = \psi \circ \phi = \text{id} \). The first examples are the birational maps of degree 1 which generate the group \(\text{Aut}(\mathbb{P}_2^2) = \text{PGL}(3, \mathbb{C}) \). Let us give some examples of quadratic birational maps:

\[
\begin{align*}
\sigma &: (x : y : z) \rightarrow (yz : xz : xy), \\
\rho &: (x : y : z) \rightarrow (xy : z^2 : yz), \\
\tau &: (x : y : z) \rightarrow (x^2 : xy : y^2 - xz).
\end{align*}
\]

These three maps, which are involutions, play an important role in the description of the set of quadratic birational maps of \(\mathbb{P}_2^2 \).

The birational maps of \(\mathbb{P}_2^2 \) form a group denoted \(\text{Bir}(\mathbb{P}_2^2) \) and called the Cremona group. If \(\phi \) is an element of \(\text{Bir}(\mathbb{P}_2^2) \) then \(\mathcal{O}(\phi) \) is the orbit of \(\phi \) under the action of \(\text{Aut}(\mathbb{P}_2^2) \times \text{Aut}(\mathbb{P}_2^2) \):

\[
\mathcal{O}(\phi) = \{ \ell \phi' | \ell, \ell' \in \text{Aut}(\mathbb{P}_2^2) \}.
\]

A very old theorem, often called Noether Theorem, says that any element of \(\text{Bir}(\mathbb{P}_2^2) \) can be written, up to the action of an automorphism of \(\mathbb{P}_2^2 \), as a composition of quadratic birational maps (\cite{4}). In \cite{5} Chapters 1 & 6 the structure of the set \(\text{Bir}_d \) (resp. \(\text{Bir}_d \)) of birational maps of \(\mathbb{P}_2^2 \) of degree \(\leq d \) (resp. \(d \)) has been studied when \(d = 2 \) and \(d = 3 \).

Theorem 2.1 (Corollary 1.10, Theorem 1.31, \cite{5}). — One has the following decomposition

\[
\text{Bir}_2 = \mathcal{O}(\sigma) \cup \mathcal{O}(\rho) \cup \mathcal{O}(\tau).
\]

Furthermore

\[
\text{Bir}_2 = \overline{\mathcal{O}(\sigma)}
\]

where \(\mathcal{O}(\sigma) \) denotes the ordinary closure of \(\mathcal{O}(\sigma) \), and

\[
\dim \mathcal{O}(\sigma) = 12, \quad \dim \mathcal{O}(\rho) = 13, \quad \dim \mathcal{O}(\tau) = 14.
\]

Note that there is a more precise description of \(\text{Bir}_3 \) in \cite{5} Chapter 1.

We will further do some computations with birational maps of degree 3. Let us consider the following family of cubic birational maps:

\[
\Phi_{a,b}: (x : y : z) \rightarrow (x(x^2 + y^2 + axy + bxz + yz) : y(x^2 + y^2 + axy + bxz + yz) : xyz)
\]

with \(a, b \in \mathbb{C}, a^2 \neq 4 \) and \(2b \notin \{a \pm \sqrt{a^2 - 4}\} \). The structure of the set of cubic birational maps is much more complicated (\cite{5} Chapter 6), nevertheless one has the following result.

Theorem 2.2 (Proposition 6.35, Theorem 6.38, \cite{5}). — The closure of

\[
\mathcal{X} = \{ \mathcal{O}(\Phi_{a,b}) | a, b \in \mathbb{C}, a^2 \neq 4, 2b \notin \{a \pm \sqrt{a^2 - 4}\} \}
\]

in the set of rational maps of degree 3 is an irreducible algebraic variety of dimension 18.

Furthermore the closure of \(\mathcal{X} \) in \(\text{Bir}_3 \) is \(\text{Bir}_3 \).

The "most degenerate model" \cite{1} is up to automorphisms of \(\mathbb{P}_2^2 \)

\[
\Psi: (x : y : z) \rightarrow (xz^2 + y^3 : yz^2 : z^3).
\]

1. In the following sense: for any \(\phi \) in \(\text{Bir}_3 \) the following inequality holds: \(\dim \mathcal{O}(\phi) \geq \dim \mathcal{O}(\Psi) = 13 \).

2.2. About foliations.

Definition 2.3. — Let \mathcal{F} be a foliation (maybe singular) on a complex manifold M; the foliation \mathcal{F} is a singular transversely projective one if there exists

a) $\pi: P \to M$ a \mathbb{P}^1-bundle over M,

b) \mathcal{G} a codimension one singular holomorphic foliation on P transversal to the generic fibers of π,

c) $\varsigma: M \to P$ a meromorphic section generically transverse to \mathcal{G}, such that $\mathcal{F} = \varsigma^* \mathcal{G}$.

Let \mathcal{F} be a foliation on \mathbb{P}^2_C, assume that there exist three rational 1-forms θ_0, θ_1 and θ_2 on \mathbb{P}^2_C such that

i) \mathcal{F} is described by θ_0, i.e. $\mathcal{F} = \mathcal{F}_{\theta_0}$,

ii) the θ_i’s form a $\mathfrak{sl}(2;\mathbb{C})$-triplet, that is

$$d\theta_0 = \theta_0 \wedge \theta_1, \quad d\theta_1 = \theta_0 \wedge \theta_2, \quad d\theta_2 = \theta_1 \wedge \theta_2.$$

Then \mathcal{F} is a singular transversely projective foliation. To see it one considers the manifolds $M = \mathbb{P}^2_C, P = \mathbb{P}^2_C \times \mathbb{P}^1_C$, the canonical projection $\pi: P \to M$ and the foliation \mathcal{G} given by

$$\theta = dz + \theta_0 + z\theta_1 + \frac{z^2}{2}\theta_2$$

where z is an affine coordinate of \mathbb{P}^1_C, in that case the transverse section is $z = 0$. When one can choose the θ_i’s such that $\theta_1 = \theta_2 = 0$ (resp. $\theta_2 = 0$) the foliation \mathcal{F} is defined by a closed 1-form (resp. is transversely affine).

Classical examples of singular transversely projective foliations are given by Riccati foliations.

Definition 2.4. — A Riccati equation is a differential equation of the following type

$$\mathcal{E}_R: y' = a(x)y^2 + b(x)y + c(x)$$

where a, b and c are meromorphic functions on an open subset \mathcal{U} of \mathbb{C}. To the equation \mathcal{E}_R one associates the meromorphic differential form

$$\omega_{x_R} = dy - \left(a(x)y^2 + b(x)y + c(x) \right) dx$$

defined on $\mathcal{U} \times \mathbb{C}$. In fact ω_{x_R} induces a foliation $\mathcal{F}_{\omega_{x_R}}$ on $\mathcal{U} \times \mathbb{P}^1_C$ that is transverse to the generic fiber of the projection $\mathcal{U} \times \mathbb{P}^1_C \to \mathcal{U}$. One can check that

$$\theta_0 = \omega_{x_R}, \quad \theta_1 = - (2a(x)y + b(x)) dx, \quad \theta_2 = - 2a(x) dx$$

is a $\mathfrak{sl}(2;\mathbb{C})$-triplet associated to the foliation $\mathcal{F}_{\omega_{x_R}}$.

We say that ω_{x_R} is a Riccati 1-form and $\mathcal{F}_{\omega_{x_R}}$ is a Riccati foliation.

Let S be a ruled surface, that is a surface S endowed with $f: S \to C$, where C denotes a curve and $f^{-1}(c) \simeq \mathbb{P}^1_C$. Let us consider a singular foliation \mathcal{F} on S transverse to the generic fibers of f. The foliation \mathcal{F} is transversely projective.

Recall that a foliation \mathcal{F} is radial at a point m of the surface M if in local coordinates (x,y) around m the foliation \mathcal{F} is given by a holomorphic 1-form of the following type

$$\omega = x dy - y dx + \text{h.o.t.}$$

Let us denote by $\mathbb{F}(n;d)$ the set of foliations of degree d on \mathbb{P}^n_C (see [2]). The following statement gives a criterion which asserts that an element of $\mathbb{F}(2;2)$ is transversely projective.
Proposition 2.5. — Let $\mathcal{F} \in \mathbb{F}(2; 2)$ be a foliation of degree 2 on \mathbb{P}_C^2. If a singular point of \mathcal{F} is radial, then \mathcal{F} is transversely projective.

Proof. — Assume that the singular point is the origin 0 in the affine chart $z = 1$, the foliation \mathcal{F} is thus defined by a 1-form of the following type

$$\omega = x dy - y dx + q_1 dx + q_2 dy + q_3 (x dy - y dx)$$

where the q_i’s denote quadratic forms. Let us consider the complex projective plane \mathbb{P}_C^2 blown up at the origin; this space is denoted by $\text{Bl}(\mathbb{P}_C^2, 0)$. Let $\pi: \text{Bl}(\mathbb{P}_C^2, 0) \to \mathbb{P}_C^2$ be the canonical projection. Then $\pi^* \mathcal{F}$ is transverse to the generic fibers of π, and in fact transverse to all the fibers excepted the strict transforms of the lines $xq_1 + yq_2 = 0$. Hence the foliation $\pi^* \mathcal{F}$ is transversely projective; since this notion is invariant under the action of a birational map, \mathcal{F} is transversely projective.

Remark 2.6. — The same argument can be involved for foliations of degree 2 on \mathbb{P}_C^2 having a singular point with zero 1-jet.

Remark 2.7. — The closure of the set Δ_R of foliations in $\mathbb{F}(2; 2)$ having a radial singular point is irreducible, of codimension 2 in $\mathbb{F}(2; 2)$.

3. Proof of Theorem A

We establish Theorem A in two steps: we first look at foliations that have at least two singular points and then at foliations with exactly one singular point.

3.1. Foliations of degree 2 on \mathbb{P}_C^2 with at least two singularities. —

Proposition 3.1. — For any $\mathcal{F} \in \mathbb{F}(2; 2)$ with at least two distinct singularities there exists a quadratic birational map $\psi \in \mathcal{O}(\rho)$ such that $\deg \psi^* \mathcal{F} \leq 3$.

Proof. — In homogeneous coordinates \mathcal{F} is described by a 1-form

$$\omega = q_1 y z \left(\frac{dy}{y} - \frac{dz}{z} \right) + q_2 x z \left(\frac{dz}{z} - \frac{dx}{x} \right) + q_3 x y \left(\frac{dx}{x} - \frac{dy}{y} \right)$$

where

$$q_1 = a_0 x^2 + a_1 y^2 + a_2 z^2 + a_3 x y + a_4 x z + a_5 y z, \quad q_2 = b_0 x^2 + b_1 y^2 + b_2 z^2 + b_3 x y + b_4 x z + b_5 y z,$$

$$q_3 = c_0 x^2 + c_1 y^2 + c_2 z^2 + c_3 x y + c_4 x z + c_5 y z.$$

Up to an automorphism of \mathbb{P}_C^2 one can suppose that $(1 : 0 : 0)$ and $(0 : 1 : 0)$ are singular points of \mathcal{F}, that is $a_1 = b_0 = c_0 = c_1 = 0$. If $c_3 \neq 0$, resp. $c_3 = 0$ and $b_4 \neq 0$, resp. $c_3 = b_4 = 0$, then let us consider the quadratic birational map ψ of $\mathcal{O}(\rho)$ defined as follows

$$\psi: (x : y : z) \mapsto \left(xy : z^2 + \frac{b_3 - c_4 + \sqrt{(b_3 - c_4)^2 + 4b_4 c_3}}{2c_3} y z : y z \right),$$

resp.

$$\psi: (x : y : z) \mapsto \left(xy : z^2 + y z : - \frac{b_3 - c_4}{b_4} y z \right),$$

resp. $\psi = \rho$. A direct computation shows that $\psi^* \omega = \chi\omega'$ where ω' denotes a homogeneous 1-form of degree 4. The foliation \mathcal{F}' defined by ω' has degree at most 3.

\qed
3.2. Foliations of degree 2 on \(\mathbb{P}^2 \) with exactly one singularity. — Such foliations have been classified:

Theorem 3.2 ([6]). — Up to automorphisms of \(\mathbb{P}^2 \) there are four foliations of degree 2 on \(\mathbb{P}^2 \) having exactly one singularity. They are described in affine chart by the following 1-forms:

- \(\Omega_1 = x^2 \, dx + y^2 \, (x \, dy - y \, dx) \),
- \(\Omega_2 = x^2 \, dx + (x + y^2)(x \, dy - y \, dx) \),
- \(\Omega_3 = xy \, dx + (x + y^2)(x \, dy - y \, dx) \),
- \(\Omega_4 = (x + y^2 - x^2y) \, dy + x(x + y^2) \, dx \).

Proposition 3.3. — There exists a quadratic birational map \(\psi_1 \in \mathcal{O}(\mathfrak{p}) \) such that \(\deg \psi_1^* \mathcal{F}_{\Omega_1} = 2 \); furthermore \(\mathcal{F}_{\Omega_1} \) has a rational first integral and is non-primitive.

For \(k = 2, 3 \), there is no birational map \(\phi_k \) such that \(\deg \phi_k^* \mathcal{F}_{\Omega_k} = 0 \) but there is a \(\psi_k \in \mathcal{O}(\mathfrak{r}) \) such that \(\deg \psi_k^* \mathcal{F}_{\Omega_k} = 1 \). In particular \(\mathcal{F}_{\Omega_2} \) and \(\mathcal{F}_{\Omega_3} \) are non-primitive.

There is a quadratic birational map \(\psi_4 \in \mathcal{O}(\mathfrak{t}) \) such that \(\deg \psi_4^* \mathcal{F}_{\Omega_4} = 3 \) and \(\mathcal{F}_{\Omega_4} \) is primitive.

Remark 3.4. — If \(\phi = (x^2 : xy : xz + y^2) \), then \(\deg \phi^* \mathcal{F}_{\Omega_2} = \deg \phi^* \mathcal{F}_{\Omega_3} = 2 \). A contrario we will see later there is no quadratic birational map \(\phi \) such that \(\deg \phi^* \mathcal{F}_{\Omega_4} = 2 \) (see Corollary 4.15).

Corollary 3.5. — For any element \(\mathcal{F} \) of \(\mathcal{F}(2;2) \) with exactly one singularity there exists a quadratic birational map \(\psi \) such that \(\deg \psi^* \mathcal{F} \leq 3 \).

Proof of Proposition 3.3 — The foliation \(\mathcal{F}_{\Omega_1} \) is given in homogeneous coordinates by

\[
\Omega_1' = (x^2z - y^3) \, dx + xy^2 \, dy - x^3 \, dz;
\]

if \(\psi_1 : (x : y : z) \rightarrow (x^2 : xy : yz) \) then

\[
\psi_1^* \Omega_1' \wedge (y(2xz - y^2) \, dx + x(y^2 - xz) \, dy - x^2 \, ydz) = 0.
\]

The foliation \(\mathcal{F}_{\Omega_1} \) has a rational first integral and is non-primitive, it is the image of a foliation of degree 0 by a cubic birational map:

\[
(x^3 : x^2y : x^2z + y^3/3) \wedge (z \, dx - x \, dz) = 0.
\]

The foliation \(\mathcal{F}_{\Omega_2} \) is described in homogeneous coordinates by

\[
\Omega_2' = (x^2z - xy - y^3) \, dx + x(xz + y^2) \, dy - x^3 \, dz;
\]

let us consider the birational map \(\psi_2 : (x : y : z) \rightarrow (x^2 : xy : xz - 2x^2 - 2xy - y^2) \) then

\[
\psi_2^* \Omega_2' \wedge ((xz - yz) \, dx + xz \, dy - x^2 \, dz) = 0.
\]

One can verify that

\[
(2 + \frac{1}{x} + \frac{2y}{x} + \frac{y^2}{x^2}) \exp \left(-\frac{y}{x} \right)
\]

is a first integral of \(\mathcal{F}_{\Omega_2} \); it is easy to see that \(\mathcal{F}_{\Omega_2} \) has no rational first integral so there is no birational map \(\phi_2 \) such that \(\deg \phi_2^* \mathcal{F}_{\Omega_2} = 0 \).

The foliation \(\mathcal{F}_{\Omega_3} \) is given in homogeneous coordinates by the 1-form

\[
\Omega_3 = y(xz - x^2 - y^2) \, dx + x(x^2 + y^2) \, dy - x^2 \, ydz;
\]

if \(\psi_3 : (x : y : z) \rightarrow (x^2 : xy : xz + y^2/2) \) then

\[
\psi_3^* \Omega_3 \wedge (y(z - x) \, dx + x^2 \, dy - xy \, dz) = 0.
\]
The function
\[\left(\frac{y}{x} \right) \exp \left(\frac{1}{2} \frac{y^2}{x^2} - \frac{1}{x} \right) \]
is a first integral of \(\mathcal{F}_{\Omega_4} \) and \(\mathcal{F}_{\Omega_3} \) has no rational first integral so there is no birational map \(\phi_3 \) such that \(\deg \phi_3 \mathcal{F}_{\Omega_3} = 0 \).

Let us consider the birational map of \(\mathbb{P}^2 \) given by
\[\psi_4: (x:y:z) \rightarrow (-x^2:xy:y^2-xz) \]
In homogeneous coordinates \(\Omega'_4 = x(xz+y^2) dx + (xz^2+y^2z-x^2y)dy + (xyz-y^3-x^3)dz \); a direct computation shows that
\[\psi_4 \mathcal{F}_{\Omega'_4} \cap (x^3y^2-x^2y^2+y^3z-2x^2yz) dx + (x^3y-4y^4-x^2z^2+3xy^2z)dy + x(2y^3-x^3-xyz)dz = 0. \]
The foliation \(\mathcal{F}_{\Omega_4} \) has no invariant algebraic curve so \(\mathcal{F}_{\Omega_4} \) is not transversely projective ([6, Proposition 1.3]). In fact a foliation of degree 2 without invariant algebraic curve is primitive; as a consequence \(\mathcal{F}_{\Omega_4} \) is a primitive foliation. \(\square \)

4. Numerical invariance

In the sequel num. inv. means numerically invariant.

In this section we determine the foliations \(\mathcal{F} \) of \(\mathbb{P}(2;2) \) num. inv. under the action of \(\sigma \) (resp. \(\rho \), resp. \(\tau \)). Note that if \(\phi \) is a birational map of \(\mathbb{P}^2_\mathbb{C} \) and \(\ell \) an element of \(\text{Aut}(\mathbb{P}^2_\mathbb{C}) \) then \(\deg(\phi \ell)^* \mathcal{F} = \deg \phi^* \mathcal{F} \); hence following Theorem 2.1 we get the description of foliations num. inv. under the action of a quadratic birational map of \(\mathbb{P}^2_\mathbb{C} \).

Lemma 4.1. — An element \(\mathcal{F} \) of \(\mathbb{P}(2;2) \) is num. inv. under the action of \(\sigma \) if and only if it is given up to permutations of coordinates and standard affine charts by 1-forms of the following type
\[\begin{align*}
\text{either} & \quad \omega_1 = y(x+ey)dx + (bx+\delta y+ax^2+\gamma y)dy, \\
\text{or} & \quad \omega_2 = (\delta+\beta y+\kappa y^2)dx + (\alpha+\varepsilon x+\chi x^2)dy,
\end{align*} \]
where \(\alpha, \beta, \gamma, \delta, \varepsilon, \kappa \) (resp. \(\alpha, \beta, \gamma, \delta, \varepsilon, \kappa \)) are complex numbers such that \(\deg \mathcal{F}_{\omega_1} = 2 \) (resp. \(\deg \mathcal{F}_{\omega_2} = 2 \)).

Proof. — The foliation \(\mathcal{F} \) is defined by a homogeneous 1-form \(\omega \) of degree 3. The map \(\sigma \) is an automorphism of \(\mathbb{P}^2_\mathbb{C} \setminus \{xyz=0\} \) so if \(\sigma^* \omega = P \omega' \), with \(\omega' \) a 1-form of degree 3 and \(P \) a homogeneous polynomial then \(P = x^iy^jz^k \) for some integers \(i, j, k \) such that \(i+j+k = 4 \). Up to permutation of coordinates it is sufficient to look at the four following cases: \(P = x^4, P = x^3y, P = x^2y^2 \) and \(P = x^2yz \). Let us write \(\omega \) as follows
\[\omega = q_1yz \left(\frac{dy}{y} - \frac{dz}{z} \right) + q_2xz \left(\frac{dx}{x} - \frac{dz}{z} \right) + q_3xy \left(\frac{dx}{x} - \frac{dy}{y} \right) \]
where
\[\begin{align*}
q_1 &= a_0x^2 + a_1y^2 + a_2z^2 + a_3xy + a_4xz + a_5yz, \\
q_2 &= b_0x^2 + b_1y^2 + b_2z^2 + b_3xy + b_4xz + b_5yz, \\
q_3 &= c_0x^2 + c_1y^2 + c_2z^2 + c_3xy + c_4xz + c_5yz.
\end{align*} \]
Computations show that \(x^4 \) (resp. \(x^3y \)) cannot divide \(\sigma^* \omega \). If \(P = x^2yz \) then \(\sigma^* \omega = P \omega' \) if and only if
\[\begin{align*}
c_0 &= 0, & b_0 &= 0, & a_2 &= 0, & b_2 &= 0, & a_1 &= 0, & c_1 &= 0, & b_4 &= 0, & c_3 &= 0, & b_3 &= c_4,
\end{align*} \]
that gives \(\omega_1 \). Finally one has \(\sigma^* \omega = x^2y^2\omega' \) if and only if
\[\begin{align*}
c_1 &= 0, & c_0 &= 0, & b_0 &= 0, & a_1 &= 0, & b_4 &= 0, & c_3 &= 0, & a_5 &= 0, & b_3 &= c_4, & c_5 &= a_3; \]
in that case we obtain ω_2.
\[\square\]

Proposition 4.2. — A foliation $\mathcal{F} \in \mathbb{F}(2;2)$ num. inv. under the action of an element of $\mathcal{O}(\sigma)$ is Aut(\mathbb{P}^2_C)-conjugate either to a foliation of type \mathcal{F}_{ω_1}, or to a foliation of type \mathcal{F}_{ω_2}; in particular it is transversely projective.

Proof. — Let ϕ be an element of $\mathcal{O}(\sigma)$ such that $\deg \phi^* \mathcal{F} = 2$; the map ϕ can be written $\ell_1 \sigma \ell_2$ where ℓ_1 and ℓ_2 denote automorphisms of \mathbb{P}^2_C. By assumption the degree of $(\ell_1 \sigma \ell_2)^* \mathcal{F} = \ell_2^* (\sigma^*(\ell_1^* \mathcal{F}))$ is 2. Hence $\deg \sigma^*(\ell_1^* \mathcal{F}) = 2$ and the foliation $\ell_1^* \mathcal{F}$ is num. inv. under the action of σ. Since $\ell_1^* \mathcal{F}$ and \mathcal{F} are conjugate and since the notion of transversal projectivity is invariant by conjugacy it is sufficient to establish the statement for $\sigma = \sigma'$. The proposition thus follows from the fact that 1-forms of Lemma 4.1 are Riccati ones (up to multiplication).

\[\square\]

Remark 4.3. — For generic values of parameters α, β, γ, ϵ, κ a foliation of type \mathcal{F}_{ω_1} given by the corresponding form ω_1 is not given by a closed meromorphic 1-form. This can be seen by studying the holonomy group of \mathcal{F}_{ω_1}, that can be identified with a subgroup of PGL($2;\mathbb{C}$) generated by two elements f and g. For generic values of the parameters f and g are also generic, in particular the group $\langle f, g \rangle$ is free. When \mathcal{F}_{ω_1} is given by a closed 1-form, then the holonomy group is an abelian one.

Remark that a contrario the foliations given by 1-forms of type \mathcal{F}_{ω_2} are conjugate to a foliation of type \mathcal{F}_{ω_2}; in particular it is transversely projective.

Remark 4.4. — Let Δ_1 denote the closure of the set of elements of $\mathbb{F}(2;2)$ conjugate to a foliation of type \mathcal{F}_{ω_1}. The following inclusion holds: $\Delta_2 \subset \Delta_1$.

Note also that Δ_1 is contained in Δ_R (see Remark 2.7).

Remark 4.5. — The notion of num. inv. is not related to the dynamic of the map (see 3 for example); the foliations num. inv. by the involution σ ("without dynamic") are conjugate to the foliations num. inv. by $A \sigma$, $A \in$ Aut(\mathbb{P}^2_C), which has a rich dynamic for generic A.

The foliations of $\mathbb{F}(2;2)$ invariant by σ are particular cases of num. inv. foliations:

Proposition 4.6. — An element of $\mathbb{F}(2;2)$ invariant by σ is given up to permutations of coordinates and affine charts

- either by $y(1+y) \, dx + (\beta x + \alpha y + \alpha x^2 + \beta xy) \, dy$,
- or by $y(1-y) \, dx + (\beta x - \alpha y + \alpha x^2 - \beta xy) \, dy$,
- or by $y \, dx + (\alpha + \epsilon x + A \alpha x^2) \, dy$,

where the parameters are complex numbers such that the degree of the associated foliations is 2.

Proof. — With the notations of Lemma 4.1 one has

$$\sigma^* \omega_1 = -y(\epsilon + \kappa y) \, dx - (\gamma x + \alpha y + \delta x^2 + \beta xy) \, dy;$$

thus $\sigma^* \omega_1 \wedge \omega_1 = 0$ if and only if either $\gamma = \beta$, $\delta = \alpha$, $\epsilon = \kappa$, or $\gamma = -\beta$, $\delta = -\alpha$, $\epsilon = -\kappa$.

One has $\sigma^* \omega_2 = -(\kappa + \beta y + \delta y^2) \, dx - (\gamma + \epsilon x + A \alpha x^2) \, dy$ and $\omega_2 \wedge \sigma^* \omega_2 = 0$ if and only if $\gamma = \alpha$, $\delta = 0$ and $\kappa = 0$.

\[\square\]

Remark 4.7. — The foliations associated to the two first 1-forms with parameters α, β of Proposition 4.6 are conjugate by the automorphism $(x,y) \mapsto (x,-y)$.

Lemma 4.8. — A foliation $\mathcal{F} \in \mathbb{F}(2;2)$ is num. inv. under the action of ρ if and only if \mathcal{F} is given in affine chart
• either by $\omega_3 = y(\kappa + \epsilon y + \lambda y^2)\,dx + (\beta + \kappa x + \delta y + \gamma \epsilon y + \alpha y^2 - \lambda \epsilon x^2)\,dy$,
• or by $\omega_4 = y(\mu + \delta x + \gamma y + \epsilon xy)\,dx + (\alpha + \beta x + \lambda y + \delta x^2 + \kappa \epsilon xy - \epsilon \delta x^2)\,dy$,
• or by $\omega_5 = (\lambda + \gamma y + \kappa xy + \epsilon y^2)\,dx + (\beta + \delta x + \alpha x^2)\,dy$,

where the parameters are such that the degree of the corresponding foliations is 2.

Proof. — Let us take the notations of the proof of Lemma 4.1. The map ρ is an automorphism of $\mathbb{P}_\mathbb{C}^2 \setminus \{yz = 0\}$ so if $\rho^*\omega = P\omega'$ with ω' a 1-form of degree 3 and P a homogeneous polynomial then $P = y^j z^k$ for some integer j, k such that $j + k = 4$. We have to look at the four following cases: $P = z^4, P = y z^3, P = y^2 z^2, P = y^3 z$ and $P = y^4$. Computations show that y^4 (resp. $y^3 z$) cannot divide $\rho^*\omega$. If $P = z^4$ then $\rho^*\omega = P\omega'$ if and only if

\[
c_0 = 0, \quad b_0 = 0, \quad c_3 = 0, \quad b_4 = 0, \quad b_2 = 0, \quad a_0 = c_4, \quad b_3 = c_4, \quad a_4 = 2c_2 - b_5;
\]

this gives the first case ω_3. The equality $\rho^*\omega = y z^3 \omega'$ holds if and only if

\[
b_0 = 0, \quad c_0 = 0, \quad b_4 = 0, \quad c_1 = 0, \quad a_1 = 0, \quad b_2 = 0, \quad a_0 = 2c_4 - b_3
\]

and we obtain ω_4. Finally one has $\rho^*\omega = y^2 z^2 \omega'$ if and only if

\[
c_1 = 0, \quad b_0 = 0, \quad c_3 = 0, \quad a_5 = 0, \quad a_1 = 0, \quad c_0 = 0, \quad b_4 = 0, \quad c_5 = a_3
\]

which corresponds to ω_5. \hfill \square

Proposition 4.9. — The foliations of type \mathcal{F}_{ω_3} and \mathcal{F}_{ω_4} are transversely projective. In fact the \mathcal{F}_{ω_5} are transversely affine and the \mathcal{F}_{ω_6} are Riccati ones.

Proof. — A foliation of type \mathcal{F}_{ω_6} is described by the 1-form

\[
\theta_0 = dx - \frac{(\beta + \delta y + \alpha x^2) + (\kappa + \gamma y - \lambda y^2) x}{y(\kappa + \epsilon y + \lambda y^2)}\,dy
\]

and it is transversely affine; to see it consider the $sl(2; \mathbb{C})$-triplet

\[
\theta_0, \quad \theta_1 = \frac{\kappa + \gamma y - \lambda y^2}{y(\kappa + \epsilon y + \lambda y^2)}\,dy, \quad \theta_2 = 0.
\]

A foliation of type \mathcal{F}_{ω_5} is given by

\[
dy + \frac{\lambda + (\gamma + \kappa) y + \epsilon y^2}{\beta + \delta x + \alpha x^2}\,dx
\]

and thus is a Riccati foliation. In fact the fibration $x/z = \text{constant}$ is transverse to \mathcal{F}_{ω_5} that generically has three invariant lines. \hfill \square

We don’t know if the \mathcal{F}_{ω_7} are transversely projective. For generic values of the parameters a foliation of type \mathcal{F}_{ω_7} hasn’t meromorphic uniform first integral in the affine chart $z = 1$. Thus if \mathcal{F}_{ω_7} is transversely projective then it must have an invariant algebraic curve different from $z = 0$ (see [7]). We don’t know if it is the case. A foliation of degree 2 is conjugate to a generic \mathcal{F}_{ω_7} (by an automorphism of $\mathbb{P}_\mathbb{C}^2$) if and only to has an invariant line (say $y = 0$) with a singular point (say 0) and local model $2x\,dy - y\,dx$. The closure of the set of such foliations has codimension 2. Note that the three families $\mathcal{F}_{\omega_7}, \mathcal{F}_{\omega_8}$ and \mathcal{F}_{ω_9} have non trivial intersection. The set $\{\mathcal{F}_{\omega_7}\}$ contains many interesting elements such that the famous Euler foliation given by $y^2\,dx + (y - x)\,dy$; this foliation is transversely affine but is not given by a closed rational 1-form.

Proposition 4.10. — A foliation $\mathcal{F} \in \mathbb{P}(2; 2)$ num. inv. under the action of an element of $\Theta^1(\rho)$ is conjugate to a foliation either of type \mathcal{F}_{ω_7}, or of type \mathcal{F}_{ω_8}, or of type \mathcal{F}_{ω_9}.
Let us look at special num. inv. foliations, those invariant by ρ.

Proposition 4.11. — An element of $\mathcal{F}(2;2)$ invariant by ρ is given by a 1-form of one of the following type

- $y(1-y)\,dx + (\beta + x)dy$,
- $y^2\,dx + (-1+y)dy$,
- $y(1-y)(\gamma + \delta x)\,dx + (1+y)(\alpha + \beta x + \delta^2)dy$,
- $y(1+y)(\gamma + \delta x)\,dx + (1-y)(\alpha + \beta x + \delta^2)dy$,
- $(1-y^2)\,dx + (\beta + \delta x + \alpha^2)dy$,

where the parameters are complex numbers such that the degree of the associated foliations is 2.

Corollary 4.12. — An element of $\mathcal{F}(2;2)$ invariant by ρ is defined by a closed 1-form.

Remark 4.13. — The third and fourth cases with parameters $\alpha, \beta, \gamma, \delta$ are conjugate by the automorphism $(x,y) \mapsto (x,-y)$.

From Lemmas 4.1 and 4.8 one gets the following statement.

Proposition 4.14. — A foliation num. inv. by an element of $\mathcal{O}(\phi)$, with $\phi = \sigma, \rho$, preserves an algebraic curve.

Corollary 4.15. — There is no quadratic birational map ϕ of \mathbb{P}^2_1 such that $\deg \phi^* \mathcal{F}_\Omega = 2$.

Proof. — The foliation \mathcal{F}_Ω has no invariant algebraic curve ([16 Proposition 1.3]); according to Proposition 4.14 it is thus sufficient to show that there is no birational map $\phi \in \mathcal{O}(\tau)$ such that $\deg \phi^* \mathcal{F}_\Omega = 2$ that can be established with a direct and tedious computation.

Remark 4.16. — The map ρ can be written $\ell_1 \sigma \ell_2 \sigma \ell_3$ with

$$
\ell_1 = (z-y:y-x:y), \quad \ell_2 = (y+z:z:x), \quad \ell_3 = (x+z:y-z:z).
$$

We are interested by the "intermediate" degrees of a numerically invariant foliation \mathcal{F}, that is the sequence $\deg \mathcal{F}$, $\deg (\ell_1 \sigma)^* \mathcal{F}$, $\deg (\ell_1 \sigma^2 \sigma \ell_3)^* \mathcal{F} = \deg \mathcal{F}$. A tedious computation shows that for generic values of the parameters the sequence is 2, 5, 2. We schematize this fact by the diagram

```
      5
     /|
    2| 2
   /|
  2| 2
```

A similar argument to Lemma 4.1 yields to the following result.

Lemma 4.17. — An element \mathcal{F} of $\mathcal{F}(2;2)$ is num. inv. under the action of τ if and only if \mathcal{F} is given in affine chart by a 1-form of type

$$
\omega_6 = (-\delta x + \alpha y - \varepsilon x^2 + \theta xy + \beta y^2 + \kappa x^2 y + \mu xy^2 + \lambda y^3)\,dx + (-3\alpha x + \xi x^2 + 2(\delta - \beta)xy + \alpha y^2 - \kappa x^3 - \mu x^2 y - \lambda xy^2)\,dy
$$

where the parameters are such that $\deg \mathcal{F}_\omega = 2$.

We don’t know the qualitative description of foliations of type \mathcal{F}_{ω_6}. For example we don’t know if the \mathcal{F}_{ω_6} are transversely projective. If it is the case, this implies the existence of invariant algebraic curves, and that fact is unknown.
Remark 4.20. — A foliation $\mathcal{F} \in \mathbb{F}(2; 2)$ num. inv. under the action of an element of $\Theta(\tau)$ is conjugate to \mathcal{F}_ω, for suitable values of the parameters.

Let us describe some special num. inv. foliations under the action of τ, those invariant by τ.

Proposition 4.19. — An element of $\mathbb{F}(2; 2)$ invariant by τ is given

- either by $(-\varepsilon x^2 + \theta xy + \beta y^2 + \varepsilon xy^2 - (\xi + \theta)y^3) \, dx + x(\xi x - 2\beta y + \varepsilon xy + (\xi + \theta)y^2) \, dy$,
- or by $(-\delta x + \alpha y + \frac{1}{2}\delta y^2 + \kappa y^3 + \mu x^2 y + \lambda y^3) \, dx - (3\alpha x - \delta xy - \alpha y^2 + \kappa x^3 + \mu x^2 y + \lambda xy^2) \, dy$,

where the parameters are complex numbers such that the degree of the associated foliations is 2.

The foliations associated to the first 1-form are transversely affine.

Proof. — The 1-jet at the origin of the 1-form

$$\omega = (-\varepsilon x^2 + \theta xy + \beta y^2 + \varepsilon xy^2 - (\xi + \theta)y^3) \, dx + x(\xi x - 2\beta y + \varepsilon xy + (\xi + \theta)y^2) \, dy$$

is zero so after one blow-up \mathcal{F}_ω is transverse to the generic fiber of the Hopf fibration; furthermore as the exceptional divisor is invariant, \mathcal{F}_ω is transversely affine. \(\square\)

Remark 4.20. — The map τ can be written $\ell_1 \sigma \ell_2 \sigma \ell_3 \sigma \ell_2 \sigma \ell_4$ with

$$\ell_1 = (x : y : x - 2y : -x + y : z), \quad \ell_2 = (x + z : x : y), \quad \ell_3 = (-y : x - 3y + z : x), \quad \ell_4 = (y - x : z - 2x : 2x - y).$$

Let us consider a foliation \mathcal{F} num. inv. under the action of τ; set $\mathcal{F}' = \ell_1^* \mathcal{F}$. We compute the intermediate degrees:

$$\deg^* \mathcal{F}' = 5, \quad \deg(\sigma \ell_2 \sigma)^* \mathcal{F}' = 4, \quad \deg(\sigma \ell_3 \sigma \ell_2 \sigma)^* \mathcal{F}' = 5.$$

To summarize:

```
  \[\begin{array}{ccc}
  5 & 5 \\
  4 & & \\
  2 & 2 &
  \end{array}\]
```

5. Higher degree

We will now focus on similar questions but with cubic birational maps of \mathbb{P}_C^2 and elements of $\mathbb{F}(2; 2)$. The generic model of such birational maps is:

$$\Phi_{a, b}: (x : y : z) \rightarrow (x(x^2 + y^2 + axy + bxz + yz) : y(x^2 + y^2 + axy + bxz + yz) : xyz)$$

with $a, b \in \mathbb{C}, \ a^2 \neq 4$ and $2b \notin \{a \pm \sqrt{a^2 - 4}\}$.

Lemma 5.1. — An element \mathcal{F} of $\mathbb{F}(2; 2)$ is num. inv. under the action of $\Phi_{a, b}$ if and only if \mathcal{F} is given in affine chart

- either by $\omega_1 = y(\alpha + \gamma) \, dx - x(\alpha + \kappa) \, dy$,
- or by $\omega_2 = b(b^2 - ab + 1 + (a - 2b)y + y^2) \, dx + (b^2 - ab + 1 + (ab - 2)x + x^2) \, dy$,

where the parameters are such that $\deg \mathcal{F}_\omega = \deg \mathcal{F}_\omega = 2$.

Remark 5.2. — Remark that the foliations F_{o_7} do not depend on the parameters of $\Phi_{a,b}$, that is, the F_{o_7} are num. inv. by all $\Phi_{a,b}$, whereas the F_{o_8} only depend on a and b.

Furthermore F_{o_7} is num. inv. by σ and ρ.

Proposition 5.3. — Any $F \in F(2; 2)$ num. inv. under the action of $\Phi_{a,b}$, and more generally any $F \in F(2; 2)$ num. inv. under the action of a generic cubic birational map of \mathbb{P}_C^2, satisfies the following properties:

- F is given by a rational closed 1-form;
- F is non-primitive.

Proof. — Let us establish those properties for F_{o_7}.

For generic values of α, γ and κ one can assume up to linear conjugacy that F_{o_7} is given by

$$\eta' = y(1+y)dx - x(1+x)dy$$

that gives up to multiplication

$$\frac{dx}{x(1+x)} \to \frac{dy}{y(1+y)}$$

which is closed. A foliation of type F_{o_7} is also described in homogeneous coordinates by the 1-form

$$\eta = yz(y+z)dx - xz(x+z)dy + xy(x-y)dz.$$

One has

$$\sigma^*\eta = xyz(- (y+z)dx + (x+z)dy + (x-y)dz)$$

so F_{o_7} is non-primitive.

The idea and result are the same for the foliations F_{o_8} (except that it gives a birational map ϕ such that $\deg \phi^* F_{o_8} = 1$).

Let us consider an element F of $F(2; 2)$ num. inv. under the action of a birational map of degree ≥ 3; is F defined by a closed 1-form ?

Remark 5.4. — The foliations F_{o_7} are contained in the orbit of the foliation $F_{\eta'}$.

Remark 5.5. — Any map $\Phi_{a,b}$ can be written $\ell_1\sigma\ell_2\sigma\ell_3$ with $\ell_2 = (x^*y + z^*z : x^*y + *z : x^*x + *y + *z)$ (see [5, Proposition 6.36]). Let us consider the birational map $\xi = \alpha\ell_2\sigma$ with

$$\ell_2 = (ay + bz : cy + ez : fx + gy + hz) \in \text{Aut}(\mathbb{P}_C^2).$$

As in Lemma 5.1 there are two families of foliations \mathcal{F}_1, \mathcal{F}_2 of degree 2, one that does not depend on the parameters of ξ and the other one depending only on the parameters of ξ, such that $\xi^*\mathcal{F}_1$ and $\xi^*\mathcal{F}_2$ are of degree 2. One question is the following: what is the intermediate degree ? A computation shows that for generic parameters $\deg \sigma^*\mathcal{F}_1 = 4$ and that $\deg \sigma^*\mathcal{F}_2 = 2$. This implies in particular that F_{o_8} is num. inv. under the action of σ. For \mathcal{F}_1 and F_{o_7} one has

```
4
\downarrow
2
\quad \downarrow
2
```

and for \mathcal{F}_2 and F_{o_8}

```
2 \\
\quad \longrightarrow \quad 2 \\
\quad \longrightarrow \quad 2
```
Let us now consider the "most degenerate" cubic birational map
\[\Psi : (x : y : z) \mapsto (x^2 + y^3 : yz^2 : z^3). \]

Lemma 5.6. — An element \(\mathcal{F} \) of \(\mathbb{F}(2;2) \) is num. inv. under the action of \(\Psi \) if and only if \(\mathcal{F} \) is given in affine chart by
\[\omega_0 = (-\alpha + \beta y + \gamma z) \, dx + (\varepsilon - 3\beta x + \kappa y - 3\gamma x y + \lambda y^2) \, dy \]
where the parameters are such that \(\deg F_{\omega_0} = 2 \). In particular \(\mathcal{F} \) is transversely affine.

Remark 5.7. — The map \(\psi \) can be written \(\ell_1 \sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma \ell_5 \sigma \ell_6 \sigma \ell_2 \sigma \ell_7 \) with
\[
\begin{align*}
\ell_1 &= (z - y : y : y - x), & \ell_2 &= (y + z : z : x), & \ell_3 &= (-z : -y : x - y), \\
\ell_4 &= (x + z : x : y), & \ell_5 &= (-y : x - 3y + z : x), & \ell_6 &= (-x : -y - z : x + y), \\
\ell_7 &= (x + y : z - y : y).
\end{align*}
\]
As previously we consider the problem of the intermediate degrees; if \(\mathcal{F}' = \ell_1' \mathcal{F} \), a computation shows that for generic parameters
\[
\begin{align*}
\deg \sigma^* \mathcal{F}' &= 4, & \deg(\sigma \ell_2 \sigma)^* \mathcal{F}' &= 3, & \deg(\sigma \ell_2 \sigma \ell_3 \sigma)^* \mathcal{F}' &= 5, \\
\deg(\sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma)^* \mathcal{F}' &= 3, & \deg(\sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma \ell_5 \sigma)^* \mathcal{F}' &= 5, \\
\deg(\sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma \ell_5 \sigma \ell_6 \sigma)^* \mathcal{F}' &= 3, & \deg(\sigma \ell_2 \sigma \ell_3 \sigma \ell_4 \sigma \ell_5 \sigma \ell_6 \sigma)^* \mathcal{F}' &= 4,
\end{align*}
\]
that is

![Diagram](attachment:diagram.png)

We have not studied the quadratic foliations numerically invariant by (any) cubic birational transformation. It is reasonable to think that such foliations are transversally projective.

References

[1] M. Brunella. Birational geometry of foliations. Monografías de Matemática. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2000. Available electronically at http://www.impa.br/Publicacoes/Monografias/Abstracts/brunella.ps.

[2] F. Cano, D. Cerveau, and J. Déserti. Théorie élémentaire des feuilletages holomorphes singuliers. Echelles. Belin, 2013.

[3] S. Cantat and C. Favre. Symétries birationnelles des surfaces feuilletées. J. Reine Angew. Math., 561:199–235, 2003.

[4] G. Castelnuovo. Le trasformationi generatrici del gruppo cremoniano nel piano. Atti della R. Accad. delle Scienze di Torino, 36:861–874, 1901.

[5] D. Cerveau and J. Déserti. Transformations birationnelles de petits degré, volume 19 of Cours Spécialisés. Société Mathématique de France, Paris, to appear.
[6] D. Cerveau, J. Déserti, D. Garba Belko, and R. Meziani. Géométrie classique de certains feuilletages de degré deux. *Bull. Braz. Math. Soc. (N.S.)*, 41(2):161–198, 2010.

[7] D. Cerveau, A. Lins-Neto, F. Loray, J. V. Pereira, and F. Touzet. Complex codimension one singular foliations and Godbillon-Vey sequences. *Mosc. Math. J.*, 7(1):21–54, 166, 2007.