HYPERKÄHLER MANIFOLDS AND BIRATIONAL TRANSFORMATIONS IN DIMENSION 4

DAN BURNS, YI HU AND TIE LUO

ABSTRACT. We show that any birational map between projective hyperKähler manifolds of dimension 4 is composed of a sequence of simple flops or elementary Mukai transformations under the assumption that each irreducible component of the indeterminacy of the birational map is normal.

§1 Introduction and statement of main theorem

The main result of this paper is a solution to an open problem posed by Mukai more than a decade ago (Problem 4.5, [Mu2]) under a normality assumption.

Theorem 1.1. Let $\Phi : X \dashrightarrow X'$ be a birational transformation between two nonsingular hyperKähler fourfolds and $B \subset X$ the indeterminacy of Φ. Assume each irreducible component of B is normal. Then B is a union of a \mathbb{P}^2 and some rational surfaces which are either \mathbb{P}^2s or blowups of \mathbb{P}^2s and $\Phi : X \dashrightarrow X'$ can be decomposed as a sequence of the Mukai elementary transformations along these \mathbb{P}^2s up to an isomorphism.

This theorem gives a complete classification of birational transformations of projective symplectic fourfolds. Note that the birational maps between Calabi-Yau threefolds have been classified in [Ko1].

A hyperKähler manifold is a projective manifold X equipped with a holomorphic symplectic form ω. Such a manifold has trivial canonical bundle. It is desired, following Mori’s minimal model program, that any birational map between two minimal models with trivial canonical bundles can be decomposed as a finite sequences of elementary ones, flops. A particularly interesting class of flops consists of the so-called Mukai’s elementary transformations [Mu2].
Precisely, let \((X, \omega)\) be a holomorphic symplectic manifold and \(P\) an embedded smooth subvariety. Assume further that \(P\) is a \(\mathbb{P}^r\)-bundle over a smooth variety \(\Sigma\) such that the codimension of \(P\) coincides with \(r\). Then it is known [Mu2] that one can blow up \(X\) along \(P\) to get a smooth variety \(\tilde{X}\) and the exceptional divisor can be blow down along a different ruling to get a smooth variety \(X'\). Moreover, \(X'\) comes equipped with a symplectic form \(\omega'\) which coincides with \(\omega\) away from the exceptional locus. Such a simple birational process \(X \dashrightarrow X'\) is called a Mukai elementary transformation.

The first nontrivial dimension that such elementary transformations can occur is 4. Here, \(P\) is necessarily the projective space \(\mathbb{P}^2\). Trying to find a solution to Mukai’s open problem, we wondered whether an irreducible flop is necessarily a Mukai’s elementary transformation. This turns out to be true in the projective category assuming normality of the indeterminacy (Theorem 1.1).

It is clear that one needs to isolate a copy of \(\mathbb{P}^2\) to be able to perform a Mukai elementary transformation. For this we need to classify the exceptional locus of a logterminal contraction, which contracts part of the indeterminacy. It turns out to be a formidable task to fully achieve this goal and many years have past since we started working on the project. Even if assuming the normality of each irreducible component, the task is still quite involved. The relative relation of various components can be very complex. One key point is to check that the normality of each irreducible component in \(B\) is kept after METs. To this end, a useful result of Wierzba [W] is applied.

There are examples of birational maps between symplectic fourfolds with indeterminacy consisting a chain of rational surfaces as shown below.

\textit{Example.} Let \(S\) be the K3 surface defined by the quartic homogeneous polynomial

\[xy(x^2 + y^2 + z^2 + w^2) + w(x^3 + y^3 + z^3 + w^3) \]

in \(\mathbb{P}^3\) with coordinates \([x, y, z, w]\). Note that there are three \(\mathbb{P}^1\)s on \(S\) in the \(\mathbb{P}^2\) defined by \(w = 0\), i.e.; two lines and a conic. Let \(S^{[2]}\) be the Hilbert scheme of points of length 2 on \(S\). There is a chain of three \(\mathbb{P}^2\), say \(B_1, B_2, B_3\) on \(S^{[2]}\) corresponding to the three \(\mathbb{P}^1\) on \(S\). Let \(B_1, B_3\) be the \(\mathbb{P}^2\)s corresponding to the two lines. \(B_1, B_3\) are disjoint and they both have one point in common with \(B_2\). Now we perform a
MET to B_2 to get Y and METs to B_1, B_3 to get X. Let f be the birational map from X to Y. The indeterminacy on X is a chain of three surfaces with the two ends isomorphic to \mathbb{P}^2s and the middle one isomorphic to blowup of \mathbb{P}^2 at two points. The indeterminacy on Y is a chain of three surfaces with two ends isomorphic to blowup of \mathbb{P}^2 at a point and the middle one isomorphic to \mathbb{P}^2.

The example indicates that our situation is more complicated than the picture demonstrated in [Ka1] where the indeterminacy is a disjoint union of \mathbb{P}^2s. But, it is easy to prove that any two components that are isomorphic to \mathbb{P}^2 are either disjoint or meeting at isolated points. For otherwise, they would meet in a locus of dimension 1. Contracting one of the component in X (being isomorphic to \mathbb{P}^2, it is contractible) will result in the contraction of the dimension 1 locus in the other component (also $\cong \mathbb{P}^2$), which is absurd.

Acknowledgments. We thank János Kollár for his help, Nick Shepherd-Barron for pointing out an error, Jan Wierzba for sharing his results in [W]. We also thank S.-T. Yau for being interested in this work.

§2 Some General Lemmas

Throughout the paper X stands for a symplectic fourfold unless otherwise stated.

Definition 2.1. Let X be a symplectic fourfold. A MET from (X, B) to (X', B') is the Mukai elementary transformation

$$
E \subset \bar{X}
$$

$$
P \xrightarrow{\sim} \mathbb{P}^2 \subset X \quad \overset{p}{\longrightarrow} \quad X' \supset B' \cong (\mathbb{P}^2)^*
$$

where E is the incidence correspondence between B and B'.

Regarding a MET, one has the following basic result.

Lemma 2.2. Let $f: X \dasharrow X'$ be a MET with exceptional loci $B \subset X, B' \subset X'$. Let $E \subset \bar{X}$ be the exceptional divisor. Let H be an divisor such that $H \cdot C < 0$ for any curve $C \subset B$ and H' the proper transform of H in X'. Then $p^*H - q^*H' = aE$ for $a > 0$. Moreover, H' is numerically positive on B', i.e., $H' \cdot C' > 0$ for any curve $C' \subset B'$.

Proof. Since E is the only exceptional divisor for both p and q, we have $p^*H - q^*H' = aE$. To see the sign of a, let C be a line of B. Recall that B' is the dual
space of B. We set $\bar{C} = (C, P) \subset E$ where $P \in B'$ is the point that corresponds to C. Thus we have

$$aE \cdot \bar{C} = p^*H \cdot \bar{C} - q^*H' \cdot \bar{C} = H \cdot p_*\bar{C} - H' \cdot q_*\bar{C} = H \cdot C < 0$$

by the projection formula. This implies $a > 0$ since $E \cdot \bar{C} < 0$.

To get the last statement, it suffices to show that $H' \cdot C' > 0$ for any line C' in B'. Like above, set $\bar{C}' = (Q', C') \subset E$ where Q' is the point in B that corresponds to C'. Then,

$$0 > aE \cdot \bar{C}' = p^*H \cdot \bar{C}' - q^*H' \cdot \bar{C}' = H \cdot p_*\bar{C}' - H' \cdot q_*\bar{C}' = -H' \cdot C'.$$

□

Several technical results are also needed.

First, one expects that the exceptional locus of $\Phi : X \to X'$ contains a rational curve. The following lemma asserts that in the case of symplectic variety, any rational curve moves in one more family than Riemann-Roch predicts.

Lemma 2.3 (Ran). Assume a symplectic manifold X^n contains a rational curve C, then C deforms at least in $(n - 2)$ families.

Proof. See the proof in [R] when C is smooth.

When C is singular, we consider the graph of $f : \mathbb{P}^1 \to C \subset X$:

$$\tilde{f} : \mathbb{P}^1 \to \bar{C} \subset \mathbb{P}^1 \times X = \bar{X}.$$

\bar{C} is smooth. Let $\tilde{\mathcal{H}} (\mathcal{H})$ be the Hilbert scheme containing \bar{C} in \bar{X} (C in X), one has the following estimate by [R] (see also [Ka2])

$$\dim \tilde{\mathcal{H}} \geq \chi(\mathcal{N}_{\bar{C}/\bar{X}}) + \dim \im(\pi)$$

$$= -\bar{C}.K_{\bar{X}} + (n + 1 - 3) + \dim \im(\pi)$$

$$= 2 + n + 1 - 3 + \dim \im(\pi)$$

$$= n + \dim \im(\pi)$$
where π is the semi-regularity map, whose dual is

$$\pi^t : H^0(\bar{X}, \Omega^2_{\bar{X}}) \to H^0(\bar{C}, N^*_C/\bar{X} \otimes \Omega_C).$$

To see that π^t is nontrivial, we consider the image of $\beta^* \omega$ where ω is the holomorphic symplectic form on X and α, β are projections from \bar{X} to \mathbb{P}^1 and X. We shall show that $\beta^* \omega$ is not zero at any point $y = (x, f(x)) \in \bar{C}$ as long as $f(x)$ is a smooth point on C. Around an analytic neighborhood of y in \bar{X} which is viewed as the product of analytic neighborhoods of x and $f(x)$ in \mathbb{P}^1 and X (respectively), one has a (non-canonical) isomorphism

$$\Omega^2_{\bar{X}} \simeq \beta^* \Omega^2_X + \beta^* \Omega_X \wedge \alpha^* \Omega_{\mathbb{P}^1}$$

$$\simeq \beta^* \wedge^2 N^*_C/\bar{X} + \beta^*(\Omega_C \otimes N^*_C/X) + \beta^* N^*_C/X \otimes \alpha^* \Omega_{\mathbb{P}^1} + \beta^* \Omega_C \wedge \alpha^* \Omega_{\mathbb{P}^1}.$$

Under this identification, we have

$$\wedge^2 N^*_C/\bar{X} \simeq \beta^* \wedge^2 N^*_C/X + \beta^* N^*_C/X \otimes \alpha^* \Omega_{\mathbb{P}^1}.$$

Then the non-degenerate property of ω implies that the component of $\beta^* \omega$ in $\beta^*(N^*_C/X \otimes \Omega_C)$ is not trivial. Thus $\pi^t(\beta^*(\omega)) \neq 0.$

So the semi-regularity map π is nontrivial. Hence

$$\dim \mathcal{H} \geq n + 1.$$

Notice that a nontrivial automorphism of \mathbb{P}^1 from the first factor of \bar{X} gives a nontrivial deformation of \bar{C}, which however does not move C in X. Therefore

$$\dim \mathcal{H} \geq n + 1 - 3 = n - 2.$$

□

When $n = 4$, we obtain that each and every rational curve in a symplectic fourfold moves in a at least 2-dimensional family.

The next lemma was pointed out by J. Kollár.

Lemma 2.4. Let S be a normal surface, proper over \mathbb{C}. Then S satisfies exactly one of the following:

1. Every morphism $f : \mathbb{P}^1 \rightarrow S$ is constant;
There is a morphism \(f : \mathbb{P}^1 \to S \) such that \(f \) is rigid.

\(S \cong \mathbb{P}^2; \)

\(S \cong \mathbb{P}^1 \times \mathbb{P}^1, \) or \(S \) is isomorphic to a minimal ruled surface over a curve of positive genus or a minimal ruled surface with a negative section contracted.

Proof. If we have either of (1) or (2), we are done. Otherwise, there is a morphism \(f : \mathbb{P}^1 \to S \) deforms in a 1-parameter family, thus \(S \) is uniruled.

Let \(p : \tilde{S} \to S \) be the minimal desingularization with the exceptional curve \(E. \tilde{S} \) is also uniruled, hence there is an extremal ray \(R. \) There are 3 possibilities for \(R. \)

1. \(\tilde{S} \cong \mathbb{P}^2, \) thus also \(S \cong \mathbb{P}^2 \) (which implies (3)).
2. \(\tilde{S} \) is a minimal ruled surface (which implies (4)).
3. \(R \) is spanned by a \((-1)\)-curve \(C_0 \) in \(\tilde{S}. \)

But (3) is impossible, because the image of \(C_0 \) in \(S \) would have been rigid. The proof goes as follows. Assume the contrary that \(f_0 : \mathbb{P}^1 \cong C_0 \subset \tilde{S} \to S \) is not rigid and let \(f_t : \mathbb{P}^1 \to S \) be a 1-parameter deformation. For general \(t, \) \(f_t \) lifts to a family of morphisms \(\bar{f}_t : \mathbb{P}^1 \to \tilde{S}. \) As \(t \to 0, \) the curves \(\bar{f}_t(\mathbb{P}^1) \) degenerate and we obtain a cycle

\[
\lim_{t \to 0} \bar{f}_t(\mathbb{P}^1) = C_0 + F
\]

where \(\text{Supp} F \subset \text{Supp} E. \tilde{S} \) is the minimal resolution, thus \(K_{\tilde{S}} \cdot F \geq 0. \) Therefore,

\[
K_{\tilde{S}} \cdot \bar{f}_t(\mathbb{P}^1) \geq K_{\tilde{S}} \cdot C_0 = -1.
\]

On the other hand, for a general \(t \) the morphism \(\bar{f}_t \) is free, thus

\[
K_{\tilde{S}} \cdot \bar{f}_t(\mathbb{P}^1) \leq -2
\]

by II.3.13.1, [Ko2]. This contradiction shows that \(f_0 \) is rigid. \(\square \)

We will also use the following lemma which is essentially from 2.19 of [Ketal].

Lemma 2.5. Let \(\Phi : X \dashrightarrow X' \) be a birational map between projective symplectic fourfolds. Assume \(H' \) is ample on \(X' \) and \(H \) its proper transform on \(X. \) \(\Phi \) is a morphism if \(H \) is nef. \(\Phi \) is an isomorphism if \(H \) is ample (or numerically positive).

Proof. See the proof of Proposition 2.7 of [C] for the details when \(H \) is ample. The same proof goes through when \(H \) is numerically positive. \(\square \)

Finally, the following proposition due to J. Wierzba [W] will be very useful for checking the invariance of the normality of the exceptional locus under METs.
Proposition 2.6. (Theorem 1.3 and 1.4 in [W]) Let $\pi : \hat{X} \to X$ be an isolated symplectic singularity of dimension 4 and E the exceptional locus. E is a union of irreducible projective surfaces B_i whose normalizations are \mathbb{P}^2. Then

1) if E_i meets E_j along a curve C, C is in the singular locus of either E_i or E_j;

2) if E_i is nonsingular in codimension 1 for all i, E_i is normal for all i.

§3 Proof of the main theorem

Proof. We now start to prove Theorem 1.1. To begin with, let

$$\Phi : X \dasharrow X'$$

be a birational map between two hyperKähler fourfolds. This map is necessarily isomorphic in codimension 1. Our goal is to show that the indeterminacy of Φ is a union of a \mathbb{P}^2 with other rational surfaces and Φ is factored into METs.

Let H' be a very ample divisor on X'. Let H be its proper transform in X.

We divide the proof into a few steps.

1. First, we consider the pair $(X, \epsilon H)$. It is log-terminal for $\epsilon << 1$. Since H is not nef on X (actually not nef on $B = \cup B_i$, the union of all irreducible subvarieties where f is not defined), by Lemma 2.5, there is a curve $C \subset B$ such that $C \cdot H < 0$.

Using the contraction theorem [KMM] to the log-terminal pair $(X, \epsilon H)$, there is a morphism $g : X \to Y$ whose exceptional locus is contained in B. Next, apply the rationality theorem of Kawamata [Ka2] to the morphism g, the exceptional locus of g is covered by rational curves. By abusing notation a little, we still use the letter C to denote a rational curve contracted by g. By Lemma 2.2 C moves in at least two families and it can not move out of B because $C \cdot H < 0$. Let B_1 be an irreducible component of B which is generically swept out by C. B_1 is contracted by the map g that contracts C. We argue in the following lemma that B_1 has to be contracted to a point.

Lemma 3.1. B_1 is contracted to a point by the map g. (In particular, the resulting variety Y has only an isolated singular point.)

Proof. Here the proof uses holomorphic Hamiltonian flows.

First note that by Kawamata (Theorem 2, [Ka2]), the exceptional locus of $g : X \to Y$ is covered by a families of rational curves. B_1 is actually covered by at
least a two dimensional family of rational curves. Hence B_1 is unirational and thus rational. Clearly, B_1 is a surface. This implies that B_1 is (generically) Lagrangian.

Assume the contrary that the map g mapped B_1 onto a curve D in Y, rather than onto a point as we wish. Let f be a holomorphic function defined in a neighborhood of a general point of D, and which has $df \neq 0$ when restricted to the curve D (locally around the point). We pull this function back up to a neighborhood of a fiber F in the original variety X. Let H_f be the Hamiltonian holomorphic vector field determined by f and the symplectic structure in a neighborhood of the fiber curve F. Since the differential of f on B_1 near F is nonzero, by what we assumed about f and D, and since B_1 is Lagrangean, it follows that H_f is transverse to B_1 along F. Now flowing F along the integral curves of H_f, we will get a holomorphic deformation of F outside of B_1, which contradicts the fact that the contraction of the extremal curve F contracted only B_1 locally around F. □ of the lemma.

It could happen that a rational curve in B_1 moves into another component which is also contracted by g. To show the normalization of B_1 is \mathbb{P}^2, we need to know additionally that every rational curve moves within B_1. Assume otherwise. Let C' be a rigid rational curve in B_1 and C'' a general rational curve in B_1 meeting C'. Then C'' moves in only one family which is against Lemma 2.3. Hence every rational curve moves in B_1. By Lemma 2.4, there is a morphism

$$\nu : \mathbb{P}^2 \to B_1$$

such that ν is the normalization of B_1. So $B_1 \simeq \mathbb{P}^2$.

We now continue from the step 1 of the proof of the main theorem.

2. Next, we perform a MET to (X, B_1) to get (X^1, B_1^1). Let H^1 be the proper transform of H. By Lemma 2.2, H^1 is numerically positive on B_1^1. Let $\cup_{i \geq 1} B_i^1$ be the image of $\cup_{i \geq 1} B_i$ under the MET. We are done if H^1 is numerically positive. Otherwise there is a curve $C^1 \subset \cup_{i \geq 1} B_i^1$ such that $C^1 \cdot H^1 < 0$. Obviously C^1 is not contained in B_1^1 because of the positivity of H^1 on B_1^1. Again, we apply the contraction-rationality theorem of [Ka2] to the log-terminal pair $(X^1, \epsilon_1 H^1)$ for $\epsilon_1 << 1$ to get a rational curve C_1 which deforms in an at least two-dimensional family. Let $B_2^1 (\neq B_1^1)$ be the irreducible component which contains the family.

B_2^1 normalizes to a \mathbb{P}^2 and is a \mathbb{P}^2 if it is normal by the same argument used
before. There are two situations: 1) B_1^2 does not intersect B_1^1. 2) B_1^2 does intersect B_1^1. In case 1) $B_2 \simeq B_1^2$, so B_2^2 is normal.

In case 2), the intersection must be a set of finitely many points since H_1 is positive on B_1^1 and negative on B_1^2. This implies that B_1 intersects B_2 along some P^1s before the MET. Moreover the nonnormal locus of B_1^2 is contained in $B_1^1 \cap B_1^2$, hence isolated. If B_1^1 is another irreducible component which is also contracted, again B_1^1 intersects B_1^1 at isolated points. This implies that B_1^1 could be nonnormal only at finitely many points since the original B_i is assumed to be normal. Proposition 2.6 says that nonnormal locus must be empty. After all $B_1^1 \simeq P^2$.

3. Perform a MET to (X^1, B_1^2) to get $(X_2 B_2^2)$. After k steps of doing MET, we arrive at (X^k, B_k^2). If the proper transform H^k of H is positive on B^k, we are done. Otherwise there is some B_{k+1}^k whose normalization is P^2 and H^k is negative on it. We may assume that B_{k+1}^k is contracted by a logterminal contraction associated with $(X^k, \epsilon_k H^k)$ for $\epsilon_k << 1$. A comparison between $B_{k+1}^k \subset X$ (which is assumed to be normal) and B_{k+1}^k shows that the nonnormal locus of B_{k+1}^k is a set of finitely many points. More precisely, assume B_{k+1}^k is singular along a curve C_k^i, we backtrack to a previous i-th step ($i > 1$) after which B_{k+1}^i become singular along the curve C_i, the proper transform of C_k^i. Note that $H^i C < 0$ and B_{k+1}^i has to intersect B_i^i. Since H^i is positive on B_i^i, we conclude that B_{k+1}^i intersects B_i^i at finitely many points. But this implies that B_{k+1}^i can not be singular along C_i. This argument applies to any irreducible component B_j^k contracted along with B_{k+1}^k. Again Proposition 2.6 says that B_{k+1}^k is normal and hence is a P^2. A MET can be performed on (X^k, B_{k+1}^k). After finitely many steps we obtain

$$\Phi^m : X^m \dashrightarrow X'$$

such that the proper transform H^m of H' is numerically positive on X^m. This implies that Φ^m is an isomorphism by Lemma 2.5.

The proof of Theorem 1.1 is now complete. □

The above proof has the following consequence on the uniqueness of METs.

Corollary 3.2. Let $\Phi : X \dashrightarrow X'$ be a birational transformation of two hyperKähler fourfolds which is obtained by blowing-up a smooth center in each of
X', X. Then Φ is a Mukai elementary transformation up to isomorphism.

§4 Rational Hodge structure

Theorem 1.1 also yields an isomorphism between the rational Hodge structures of two hyperKähler fourfolds.

Corollary 4.1. Let $\Phi: X \to X'$ be a birational morphism between two hyperKähler fourfolds. Then Φ induces an isomorphism between the rational Hodge structures of X and X'.

Proof. Theorem 1.1 reduces the proof to the case when $\Phi: X \to X'$ is a MET. Let Z be the common blowdown of X and X' by collapsing the exceptional loci of Φ and Φ^{-1} to an isolated point z. Then the contraction $g: X \to Z$ ($g': X' \to Z$) is strictly semi-small in the sense that $\dim g^{-1}(z) = \frac{1}{2}\text{codim}\{z\}$. By the Beilinson-Bernstein-Deligne-Gabber decomposition theorem (applied to the contraction g and g'), we have the following quasi-isomorphisms between perverse sheaves

$$Rg_!\mathcal{C}_X^\bullet \cong IC^\bullet(Z) \oplus IC^\bullet(z)[-4]$$

and

$$Rg'_*\mathcal{C}_X^\bullet \cong IC^\bullet(Z) \oplus IC^\bullet(z)[-4].$$

Both isomorphisms are compatible with rational Hodge decompositions by M. Saito's results. This proves the corollary. □

References

[C] A. Corti, Factoring birational maps of threefolds after Sarkisov, J. Alg. Geom. 4 (1995), 223-254.

[Ka1] Y. Kawamata, Small contractions of four dimensional algebraic manifolds, Math. Ann. 284 (1989), 595-600.

[Ka2] Y. Kawamata, On the length of an extremal rational curve, Invent. math. 105 (1991), 609-611.

[Ka3] Y. Kawamata, Unobstructed deformations, II, J. Alg. Geom. 4 (1995), 277-279.

[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model program, Adv. Stud. Pure Math., vol. 10, 1987, pp. 283-360.

[Ko1] J. Kollár, Flops., Nagoya Math. J. 113 (1989), 15-36.

[Ko2] J. Kollár., Rational curves on algebraic varieties, Ergeb. der Math. und ihrer Grenzg., Springer-Verlag, Berlin, New York, 1995.

[Ketal] J. Kollár et al, Astérisque 217 (1992).

[Mu1] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. math. 77 (1984), 101-116.

[Mu2] S. Mukai, Moduli of vector bundles on K3 surfaces and symplectic manifolds, Sugaku Expositions 1 (1988), 139-174.
[R] Z. Ran, *Hodge theory and Hilbert schemes*, J. Diff. Geom. 37 (1993), 191-198.

[W] J. Wierzba, *On 4-dimensional isolated symplectic singularities*, preprint (1999).

Department of Mathematics, University of Texas, Arlington, TX 76019

E-mail address: hu@math.uta.edu, tluo@math.uta.edu