Isobaric analog state in 96Ag

L. Zamick,¹ A. Escuderos,¹ S.J.Q. Robinson,² and Y. Y. Sharon¹

¹Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, 08854
²Department of Physics, Millsaps College, Jackson, Mississippi, 39210

Previously, in a single-j-shell calculation ($j = g_9/2$), we obtained the excitation energy of the $J = 0^+, T = 2$ isobaric analog state in 96Ag to be a bit below 1 MeV relative to the $J = 8^+, T = 1$ ground state. We here use binding energy data and Coulomb energy estimates to obtain this same excitation energy and to see if the two approaches are consistent.

PACS numbers:

I. RESULTS

If there were no violation of charge independence, the binding energy of 96Pd ground state ($J = 0^+, T = 2$) would be identical to the binding energy of the analog state, also $J = 0^+, T = 2$, in 96Ag. But, since that is not the case in real life, the excitation energy of the $J = 0^+, T = 2$ state in 96Ag is then given by

$$E^*(J = 0^+, T = 2) = BE(^{96}\text{Ag}) - BE(^{96}\text{Pd}) + V_C,$$

where the BEs are the binding energies and V_C includes all charge-independence violating effects. We here assume that V_C arises from the Coulomb interaction and use the formula of Anderson et al. [1]:

$$V_C = E_1Z/A^{(1/3)} + E_2,$$

where $Z = (Z_1 + Z_2)/2$. Anderson et al. [1] list four sets of values of E_1 and E_2. We here use the average values $E_1 = 1.441$ MeV and $E_2 = -1.06$ MeV.

We show in Table I results for various nuclei, some for which the excitation energy of the analog state is known and some for which it is not. The binding energy differences are taken from Ref. [2]

The fact that the analog state and Coulomb arguments work well in known cases gives us confidence that we can use these for the unknown case of 96Ag. Turning things around, if the isobaric analog state were found, then we might have a better constraint on what the binding energy is.

We can compare the results of the calculated excitation energies with selected calculations in the literature. For 44Sc and 46Sc, single-j-shell results ($f_7/2$) [4] are respectively 3.047 and 4.949 MeV, as compared with Table I's results of 2.873 and 5.024 MeV. The large space results are also shown. In 52Mn there is reasonable agreement between calculated, single j, large space and experiment.

NUCLEUS	Binding Energy Difference	Coulomb Energy	Excitation Energy	Single j	Large space	Experiment
44Sc	4.435	7.308	2.873	3.047^a	3.418^b	2.779
46Sc	2.160	7.184	5.024	4.949^a	5.250^b	5.022
52Mn	5.494	8.399	2.905	2.774	2.7307	2.926
60Cu	6.910	9.430	2.520	2.235	2.536	
94Rh	10.386	13.043	2.657	1.990^c	3.2664^d 2.87943^f	2.048^c
96Ag	12.432	13.574	1.142	0.900^c	1.91667^d 1.64017^f	0.842^c

^aEscuderos, Zamick, Bayman (2005) [4].
^bGXPF1 interaction [9].
^cZamick and Escuderos (2012) [5].
^djj44b interaction [7].
^eCCGI interaction [5, 6].
^fJUN45 interaction [10].
For the small space for ^{60}Cu ($p_{3/2}$) we can use a particle-hole transformation to get the spectrum of this nucleus from the spectrum of ^{58}Cu since 3 $p_{3/2}$ neutrons can be regarded as a single neutron hole. This gives a value of 2.235 MeV as compared with experiment—2.536 MeV.

For ^{96}Ag single-j-shell results [5] are 0.900 MeV with INTd and 0.842 MeV with the CCGI interaction [6]. These are lower than the value in Table I of 1.142 MeV. There are also large scale calculations with the jj44b [7] interaction for ^{96}Ag—the result is 1.996 MeV, significantly larger than the calculated value. In ^{94}Rh the jj44b interaction yields 3.052 MeV, larger than the Table I's value of 2.657 MeV. The large space calculations with June45 are qualitatively similar. The single- j INTd and CCGI results are lower, 1.990 MeV and 2.048 MeV respectively.

We can also examine this problem using various mass formulas that abound in the literature. To this end we refer to the work of Kirson[17] which contains not only the parameters of the semiempirical mass formula of Bethe and Weisacker [18] but also a more elaborate formula that he developed. Also to be considered is the mass formula of Dulfo and Zuker [19] which is generally considered to be the best on the market.

We here present the results of the excitation energies in the format Nucleus (semiempirical, Zuker, KirsonA, KirsonB, repeat of table 1). In semiempirical and KirsonA we use the Coulomb energies contained the respective mass formulas. In Zuker and KirsonB we use the Coulomb energies from Table 1 [1].

\[
\begin{align*}
44\text{Sc} & \quad (2.526, 2.374, 1.947, 2.592, 2.873) \\
46\text{Sc} & \quad (6.250, 4.744, 4.532, 5.060, 5.024) \\
52\text{Mn} & \quad (1.875, 1.927, 1.418, 1.911, 2.905) \\
60\text{Cu} & \quad (1.408, 2.420, 1.013, 1.514, 2.520) \\
94\text{Rh} & \quad (2.316, 2.205, 1.503, 1.734, 2.657) \\
96\text{Ag} & \quad (0.368, 0.689, -0.036, 0.173, 1.142) \\
\end{align*}
\]

We next list the Coulomb energy difference for (semiempirical, Kirson, Table)

\[
\begin{align*}
44\text{Sc} & \quad (8.025, 6.663, 7.308) \\
46\text{Sc} & \quad (7.906, 6.652, 7.184) \\
52\text{Mn} & \quad (9.071, 7.827, 8.399) \\
60\text{Cu} & \quad (10.061, 8.928, 9.430) \\
94\text{Rh} & \quad (13.526, 12.812, 13.043) \\
96\text{Ag} & \quad (14.035, 13.364, 13.547) \\
\end{align*}
\]

The Kirson value is smaller than the semiempirical one because it includes an exchange term. In the future it would be useful to get a better handle on the Coulomb energies.

In view of the differing results of shell model calculations and mass formulas it would be of great interest to measure the excitation energies of isotopic analog states in the $g_{9/2}$ region. We hope that this work will encourage experimentalists to look not only for the surprisingly neglected $J = 0^+$ isotopic analog states in ^{94}Rh and ^{96}Ag, but also for other such states throughout this region.

Acknowledgments

We thank Klaus Blaum for his help. We are indebted to Michael Kirson for valuable discussions and for providing us with the Dulfo-Zuker’s results.

[1] J.D. Anderson, C. Wong, and J.W. McClure, Phys. Rev. 138, B615 (1965).
[2] G. Audi, A.H. Wapstra, and C. Thibault, Nuclear Physics A 729, 337 (2003); Private Communication April 2011 by Georges Audi and Wang Meng.
[3] private communication April (2011) by George Audi and Wang Meng.
[4] A. Escuderos, L. Zamick, and B.F. Bayman. Wave functions in the $f_{7/2}$ shell, for educational purposes and ideas, http://arxiv.org/abs/nucl-th/0506050 (2005).
[5] L. Zamick and A. Escuderos, Nucl. Phys. A 889, 8 (2012).
[6] L. Coraggio, A. Covello, A. Gargano, and N. Itaco, Phys. Rev. C 85, 034335 (2012).
[7] B.A. Brown, A.F. Lisetskiy, unpublished. The jj44b Hamiltonian was obtained from a fit to about 600 binding energies and excitation energies with a method similar to that used for the JUN45 Hamiltonian [8].
[8] B. Cheal, et al., Phys. Rev. Lett. 104, 252502 (2010).
[9] M. Homma, T. Otsuka, B.A. Brown, and T. Mizusaki, Phys. Rev. C 69, 034335 (2004).
[10] Private communication by George Audi and Wang Meng, April 2011.
[11] A. Escuderos and L. Zamick, Phys. Rev. C 73, 044302 (2006).
[12] L. Zamick, Phys. Rev. C 75, 064305 (2007).
[13] P. Van Isacker and S. Heinze, Phys. Rev. Lett. 100, 052501 (2008).
[14] L. Zamick and P. Van Isacker, Phys. Rev. C 78, 044327 (2008).
[15] Chong Qi, Phys. Rev. C 83, 014307 (2011).
[16] M. Honma, T. Otsuka, T. Mizusaki and M. Hjorth-Jensen, Phys Rev C 80, 064323 (2009).
[17] M. Kirson, Nucl. Phys.A 798, 29(2008)
[18] H.A. Bethe and R.F. Bacher, Rev. Mod. Phys.82, 8 (1936)
[19] J.Dulfo,A.P. Zuker, Phys. Rev C52, R23 (1995)