Lepton Scattering off Few-Nucleon Systems at Medium and High Energies

C. Ciofi degli Atti1,*, L. P. Kaptari2, H. Morita3

1Department of Physics, University of Perugia and Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, I-06123, Italy
2Bogoliubov Lab. Theor. Phys., 141980, JINR, Dubna, Russia
3Faculty of Social Information, Sapporo Gakuin University, 11 Bunkyo-dai, Ebetsu-shi, Hokkaido 069-8555, Japan

Abstract. The interpretation of recent Jlab experimental data on the exclusive process $A(e,e'p)B$ off few-nucleon systems are analyzed in terms of realistic nuclear wave functions and Glauber multiple scattering theory, both in its original form and within a generalized eikonal approximation. The relevance of the exclusive process $^4He(e,e'p)^3H$ for possible investigations of QCD effects is illustrated.

Exclusive and semi-inclusive lepton scattering off nuclei in the quasi elastic region, plays a relevant role in nowadays hadronic physics for the following main reasons: i) due to the wide kinematical range available by present experimental facilities, non trivial information on nuclei (e.g. nucleon-nucleon (NN) correlations) can be obtained; ii) the mechanism of propagation of hadronic states in the medium can be investigated in great details; iii) at high energies QCD related effects (e.g. color transparency effects) might be investigated. At medium and high energies the propagation of a struck hadron in the medium is usually treated within the Glauber multiple scattering approach (GA) \cite{1}, which has been applied with great success to hadron scattering off nuclear targets. However, when the hadron is created inside the nucleus, as in a process $A(l,l'p)X$, various improvements of the original GA have been advocated. Most of them are based upon a Feynman diagram reformulation of GA; such an approach, developed long ago for the treatment of hadron-nucleus scattering \cite{2}, has been recently generalized to the process $A(l,l'p)X$ \cite{3}, demonstrating that in particular kinematical regions appreciable deviations from GA are expected. The merit of the approach, based upon a generalized eikonal approximation (GEA), is that the frozen approximation, common to GA, is partly removed by taking into account the excitation energy of the $A-1$ system; this results in a correction term to the standard profile function of GA, leading to an additional contribution to the

*E-mail address: ciofi@pg.infn.it
longitudinal component of the missing momentum. The GEA has recently been applied \[3\] to a systematic calculation of the two-body (2bbu) and three-body (3bbu) break up channels of \(^3\)He electro-disintegration using realistic three-body wave functions \[6\] and two-nucleon interactions (AV18) \[7\]; the two-body break up channel \(^3\)He(\(e, e'p\))\(^2\)H has also been considered within GEA in Ref. \[8\], obtaining results consistent with Ref. \[4\], \(A - 1\).

In GEA the final state wave function has the following form

\[
\Psi_f (r_1, \ldots r_A) = \hat{A} S_{\text{GEA}}(r_1, \ldots r_A) e^{-i\mathbf{p} \cdot \mathbf{r}_1} e^{-i\mathbf{P}_{A-1} \cdot \mathbf{R}_{A-1}} \phi^*_{A-1}(r_2, \ldots r_A) \tag{1}
\]

where \(S_{\text{GEA}} = \sum_{n=2}^{A} S_{\text{GEA}}^{(n)}\) generates the final state interaction (FSI) between the struck particle and the \(A - 1\) nucleon system; in Eq. (1) \(n\) denotes the order of multiple scattering, with the single scattering term \((n=1)\) given by

\[
S_{\text{GEA}}^{(1)}(r_1, \ldots r_A) = 1 - \sum_{i=2}^{A} \theta(z_i - z_1) e^{i\Delta_z (z_i - z_1)} \Gamma(b_1 - b_i) \tag{2}
\]

where \(\Gamma(b) = \sigma_{NN}^{tot}(1 - i\alpha_{NN}) \cdot \exp[-b^2/2b_0^2]/[4\pi b_0^2]\) is the usual Glauber profile function and \(\Delta_z = (q_0/|q|)E_m, E_m\) being the removal energy related to the excitation energy of \(A - 1\); due to the presence of \(\Delta_z\) the frozen approximation is partly removed; note that when \(\Delta_z = 0\), the usual GA is recovered (the expression of the \(n\)-th order contribution \(S_{\text{GEA}}^{(n)}\) is given in Ref. \[3\]).

Within the factorization approximation (FA), the diagrammatic approach leads to the following expression for cross section

\[
\frac{d^6\sigma}{d\Omega' dE' d^3p_m} = K\sigma_{ep} P_{FA}^{FSI}(p_m, E_m), \tag{3}
\]

where \(K\) is a kinematical factor, \(\sigma_{ep}\) the electron-nucleon cross section, \(p_m = q - p\) and \(E_m\) the missing momentum and energy, respectively, \(p\) the momentum of the detected nucleon and, eventually, \(P_{FA}^{FSI}\) the distorted spectral function.

If the FA is relaxed, the differential cross section assumes the following form

\[
\frac{d^6\sigma}{d\Omega' dE' d^3p_m} = \sigma_{Mott} \sum_i V_i W_i^A(\nu, Q^2, p_m, E_m) \tag{4}
\]

where \(i \equiv \{L, T, TL, TT\}\), and \(V_L, V_T, V_{TL}, \text{and } V_{TT}\) are well-known kinematical factors. A non factorized approach (NFA) thus requires therefore the evaluation of the various response functions \(W_i\)'s. The cross sections of the processes \(^2\)He(\(e, e'p\))\(^4\)He, \(^3\)He(\(e, e'p\))\(^2\)H, \(^3\)He(\(e, e'p\))\(^4\)He, \(\text{and } \delta\)He(\(e, e'p\))\(^3\)He have been calculated in \[3\] within a parameter-free approach based upon realistic two-, three-, and four-body wave functions. In Fig. 1 the factorized and non factorized cross sections of the 2bbu process \(^3\)He(\(e, e'p\))\(^2\)H are compared with recent Jlab experimental data \[10\]. The results presented in Fig. 1 clearly show that treating FSI within the FA is a poor approximation for ”negative” (left, \(\phi = 0\)) values of the missing momentum, unlike what happens for ”positive” (right, \(\phi = \pi\)) values (here \(\phi\) is the azimuthal angle of the detected proton, with respect to
Figure 1. LEFT: the differential cross section of the process $^3\text{He}(e,e'p)^2\text{H}$ calculated taking into account FSI within the non factorized (FSI(NFA)) and factorized (FSI(FA)) approaches. Experimental data from Ref. [10]. (After Ref. [5]). RIGHT: the transverse-longitudinal asymmetry for the process $^3\text{He}(e,e'p)^2\text{H}$. Dot-dash: PWIA; dash: PWIA plus single rescattering FSI; full: PWIA plus single and double rescattering FSI (three-body wave function from [6], AV18 interaction [7]). Experimental data from Ref. [10]. (After Ref. [5]).

The momentum transfers q). In spite of the good agreement provided by the NFA, quantitative disagreements with experimental data still persist at $\phi = 0$, in particular in the region around $|p_m| \simeq 0.6 - 0.65 \text{GeV}/c$. The origin of such a disagreement can better visualized by analyzing the left-right asymmetry

$$A_{TL} = \frac{d\sigma(\phi = 0^\circ) - d\sigma(\phi = 180^\circ)}{d\sigma(\phi = 0^\circ) + d\sigma(\phi = 180^\circ)},$$

(5)

It is well known that when the explicit expressions of V_i and W_A are used in Eq. (5) the numerator is proportional to the transverse-longitudinal response W_{TL}, whereas the denominator does not contain W_{TL} at all, which means that A_{TL} is a measure of the relevance of the transverse-longitudinal response relative to the other responses. The experimental [10] and theoretical [5] asymmetries are presented in Fig. 1 which clearly shows that at high values of the missing momentum the theoretical calculation cannot explain the experimental data. The reason for such a failure, which is common to many approaches, is at present under investigation.

Concerning the 3bbu channel calculation, theoretical results are presented in Fig. 2; an overall good agreement with the experimental data can be achieved, provided the large effects of the final state interaction are taken into account.

The results for the 2bbu channel in ^4He, are reported in Figs. 3 where the
reduced cross section
\[n_D(p_m) = \frac{d^3\sigma}{d\Omega'dE' d\Omega_p} (K\sigma_{ep})^{-1}, \] (6)
is compared with preliminary JLab data (CQ\omega 2) obtained in perpendicular kinematics [11]. It can be seen that: i) the dip predicted by the PWIA is completely filled up by the FSI; ii) like the \(^3\text{He}\) case, the difference between GA and GEA is not very large; iii) an overall satisfactory agreement between theory and experiment is obtained.

Figure 2. The differential cross section of the 3bbu channel \(^3\text{He}(e,e'p)(np)\) plotted, for fixed values of \(p_m\), vs the excitation energy of the two-nucleon system in the continuum \(E_{rel} = t^2/M_N = E_p = E_m - E_A\). The curves labeled \(\text{PWA}\) do not include any FSI; the dashed curves correspond to the PWIA; the dot-dashed curve include the FSI with single rescattering; the full curves include both single and double rescattering (three-body wave function from [6], AV18 interaction [7]). Experimental data from Ref. [10]. (After Ref. [4])

It has been argued by various authors that at high values of \(Q^2\) the phenomenon of color transparency, i.e. a reduced NN cross section in the medium, might be observed. Color transparency is a consequence of the cancelation between various hadronic intermediate states of the produced ejectile. In [13] the vanishing of FSI at \(Q^2\) has been produced by considering the finite formation time (FFT) the ejectile needs to reach its asymptotic form of a physical baryon. This has been implemented by explicitly considering the dependence of the NN scattering amplitude upon nucleon virtuality. According to [13] FFT effects can be introduced by replacing \(\theta(z_i - z_1)\) appearing in the Glauber profile with
\[J(z_i - z_1) = \theta(z_i - z_1) (1 - \exp[-(z_i - z_1)/l(Q^2)]) \] (7)
where \(l(Q^2) = Q^2/(x m_N M^2)\); here \(x\) is the Bjorken scaling variable and the quantity \(l(Q^2)\) plays the role of the proton formation length, i.e. the length of the
trajectory that the knocked out proton runs until it return to its asymptotic form; the quantity M is related to the nucleon mass m_N and to an average resonance state of mass m^{*} by $M^2 = m^{*2} - m_N^2$. Since the formation length grows linearly with Q^2, at higher Q^2 the strength of the Glauber-type FSI is reduced by the damping factor $(1 - \exp[-(z_i - z_1)/l(Q^2)])$; if $l(Q^2) = 0$, then S_{FFT} reduces to the usual Glauber operator S_G.

The results of calculations of the cross section of

\begin{equation}
\frac{d^2\sigma}{dQ^2 dx} = A(Q^2, x, T, p, m) + B(Q^2, x, T, p, m)
\end{equation}

Figure 3. LEFT: the reduced cross section (Eq. (6)) of the process $^4He(e,e'p)^3H$ at perpendicular kinematics and $x \simeq 1.8$. The solid line shows the results within GEA, whereas the dashed curve corresponds to the conventional GA. Preliminary data from [11]. RIGHT: the reduced cross section (Eq. (6)) of the process $^4He(e,e'p)^3H$ at perpendicular kinematics for various values of Q^2 and $x \simeq 1.4$, calculated taking FFT effects into account. Four-body wave functions from Ref. [12]. (After Ref. [9])

the process $^4He(e,e'p)^3H$ in perpendicular kinematics taking into account FFT effects are presented in Fig. 3 (for calculations in parallel kinematics see [14]). It can be seen that at the JLAB kinematics ($Q^2 = 1.78 \,(GeV/c)^2$, $x \sim 1.8$) FFT effects, as expected, are too small to be detected, they can unambiguously be observed in the region $5 \leq Q^2 \leq 10 \,(GeV/c)^2$ and $x = 1.4$. Thus measuring the Q^2 dependence of the cross section of $^4He(e,e'p)^3H$ process at $p_m \sim 430 \,MeV/c$ and $Q^2 \sim 10 \,(GeV/c)^2$ would be extremely interesting.

To sum up, the following remarks are in order:

i) an overall good agreement between the results of theoretical calculations and experimental data for both 3He and 4He is observed, which is very gratifying also in view of the lack of any adjustable parameter in theoretical calculations; ii) the effects of the FSI are such that they systematically bring theoretical calculations in better agreement with the experimental data; for some quantities, FSI effects simply improve the agreement between theory and experiment, whereas for some other quantities, they play a dominant role; iii) the 3bbu channel in

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3.png}
\caption{LEFT: the reduced cross section (Eq. (6)) of the process $^4He(e,e'p)^3H$ at perpendicular kinematics and $x \simeq 1.8$. The solid line shows the results within GEA, whereas the dashed curve corresponds to the conventional GA. Preliminary data from [11]. RIGHT: the reduced cross section (Eq. (6)) of the process $^4He(e,e'p)^3H$ at perpendicular kinematics for various values of Q^2 and $x \simeq 1.4$, calculated taking FFT effects into account. Four-body wave functions from Ref. [12]. (After Ref. [9])}
\end{figure}
3He, provides evidence of NN correlations, in that the experimental values of p_m and E_m corresponding to the maximum values of the cross section satisfy, to a large extent, the relation predicted by the two-nucleon correlation mechanism, with FSI mainly affecting the magnitude of the cross section; iv) the violation of the factorization approximation is appreciable at ”negative” values ($\phi = 0$) of the missing momentum, whereas the non factorized and factorized predictions are in good agreement in the whole range of positive values ($\phi = \pi$) of $|p_m|$; v) the left-right asymmetry can reasonably be reproduced at low values of the missing momentum, but a substantial discrepancy between theoretical calculations and experimental data, common to several calculations, remains to be explained at high values of $|p_m|$; vi) Finite Formation Time effects can be investigated at moderately high values of Q^2 by means of the process $^4He(e, e'p)^3H$.

References

1. R. J. Glauber, in Lectures in Theoretical Physics,Vol. I p.315, edited by W. E. Brittin and L. G. Dunham. Wiley Interscience, New York (1959).
2. V. N. Gribov, Sov. Phys. JETP, 30 (1970) 709
3. M.M. Sargsian, T.V. Abrahamyan, M.I. Strikman and L.L. Frankfurt, Phys. Rev. C71(2005)044614.
4. C. Ciofi degli Atti and L.P. Kaptari, Phys. Rev. C71 (2005) 024005; Phys. Rev. Lett. 95 (2005) 052502.
5. C. Ciofi degli Atti and L.P. Kaptari, [arXiv:0705.3951].
6. A. Kievsky, S. Rosati and M. Viviani, Nucl. Phys. A551(1993)241.
7. R.B. Wiringa, V.G. Stokes and R. Schiavilla, Pys. Rev. C51 (1995) 38.
8. R. Schiavilla et al., Phys. Rev. C72(2006)064003.
9. C. Ciofi degli Atti, L. P. Kaptari and H. Morita, Nucl. Phys. A782(2007)191c.
10. F. Benmokhtar et al., Phys. Rev. Lett. 94(2005)082325.
11. B. Reitz et al., Eur. Phys. J. A S19(2004)165.
12. H. Morita, Y. Akaishi, O. Endo and H. Tanaka, Prog. Theor. Phys. 78(1987)1117; H. Morita, Y. Akaishi and H. Tanaka, Prog. Theor. Phys. 79(1988)1279.
13. M.A. Braun, C. Ciofi degli Atti and D. Treleani, Phys. Rev. C62(2000)034606.
14. H. Morita, M. Braun, C. Ciofi degli Atti and D. Treleani, Nucl. Phys. A699(2002)328c.