HARMONIC REDUCTION OF A SINGLE-PHASE MULTILEVEL INVERTER USING GENETIC ALGORITHM AND PARTICLE SWARM OPTIMIZATION

LING CHIN WAN

A thesis submitted in partial fulfilment of the requirements for the award of the Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

JANUARY 2016
I dedicate this thesis to my beloved parents, supervisor, sisters, family and friends.
ACKNOWLEDGEMENT

I would like to express my heartily gratitude to my supervisor, Associate Professor Ir Dr Goh Hui Hwang for all the idea, guidance, motivation and support that he had given to me throughout the years of his supervision. Without his guidance and inspiration, this research could not be successfully completed.

Also, my gratitude is devoted to all my friends and to those whom involve directly or indirectly with this research for their co-operation, help and encouragement in the effort to succeed my research.

Besides that, I would like to thanks the Ministry of Science, Technology and Innovation, Malaysia (MOSTI) and the Office for Research, Innovation, Commercialization, Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia (UTHM) for financially supporting this research FRGS voted 1521 and Science Fund N0.S023. I would like to thanks also the Ministry of Education Malaysia for the MyBrain 15 scholarships provided, which enable me to complete my study.

My deepest appreciation goes to my family, especially to my mother for her unfailing love and prayers which have been supported me through the years. In addition, I would like to thank my sister for her encouragement and support throughout the years.
ABSTRACT

Inverter play important role in power system especially with it capability on reducing system size and increase efficient. Recent research trend of power electronics system are focusing on multilevel inverter topic in optimization on voltage output, reduce total harmonics distortion, modulation technique and switching configuration. Standalone application multilevel inverter is high focused due to the rise of renewable energy policy all around the world. Hence, this research emphasis on identify best topology of multilevel inverter and optimize it among the diode-clamped, capacitor clamped and cascaded H-bridge multilevel inverter to be used for standalone application in term of total harmonics distortion and voltage boosting capability. The first part of research that is identify best topology multilevel inverter is applying sinusoidal pulse width modulation technique. The result shown cascade H-bridge give the best output in both total harmonics distortion (9.27%) and fundamental component voltage (240 V_{rms}). The research proceed with optimization with fundamental switching frequency method that is optimized harmonic stepped waveform modulation method. The selective harmonics elimination calculation have adapt with genetic algorithm and particle swarm optimization in order to speed up the calculation. Both bio-inspired algorithm is compared in term of total harmonic distortion and selected harmonics elimination for both equal and unequal sources. In overall result shown both algorithm have high accuracy in solving the non-linear equation. However, genetic algorithm shown better output quality in term of selected harmonics elimination where overall no exceeding 0.4%. Particle swarm optimization shows strength in finding best total harmonics distortion where in 7-level cascaded H-bridge multilevel inverter (m=0.8) show 6.8% only as compared to genetic algorithm. Simulation for 3-level, 5-level and 7-level for each multilevel inverter at different circumferences had been done in this research. The result draw out a conclusion where the possibility of having a filterless high efficient invert can be achieve.
ABSTRAK

Inverter memainkan peranan penting dalam sistem kuasa terutamanya dengan keupayaan mengurangkan saiz sistem dan meningkatkan efisien. Kajian terhadap elektronik kuasa sistem amat giat dalam kategori optimisme kualiti voltan output, mengurangkan jumlah herotan harmonik, teknik modulasi dan konfigurasi suis. Aplikasi inverter berdikari difokuskan dengan galakan penggunaan tenaga boleh diperbaharui di seluruh dunia. Oleh itu, kajian ini fokus kepada mengenal pasti konfigurasi suis inverter yang paling sesuai untuk aplikasi inverter berdikari dari diode clamped, capacitor clamped dan cascaded H-bridge inverter bertingkap. Kajian mula dengan simulasi ketiga tiga inverter dengan mengaplikasi teknik sinusodal pusle width modulation. Keputusan menunjuk bahawa cascaded H-bridge inverter merupakan terbaik berbanding dengan yang lain dengan jumlah herotan harmonik (9.27%) dan frekuensi asas komponen voltan (240 V_{rms}). Kajian diteruskan dengan optimisme cascaded H-bridge inverter dengan teknik optimized harmonic stepped waveform modulasi. Selective harmonics elimination terlibat dengan kalkulus matematik yang rumit. Genetik algoritma dan partikel swarm optimistik diperuntukkan untuk menyelesaikan kalkulus yang rumit. Dalam proses simulasi, genetik dan partikel swarm optimisme dibandingkan satu sama lain. Keputusan menunjuk bahawa genetik algoritma menunjukkan superior atas partikel swarm optimistik secara keseluruhan(>0.4%). Tetapi, partikel swarm optimistik menunjukkan keupayaan mendapat output yang paling rendah jumlah heratan harmonik (6.8%). Semua simulasi dijalankan dengan cara dan spesifikasi berlainan dengan 3-level, 5-level dan 7-level. Kajian in akhir dengan konklusi bahawa filterless inverter mampu direalisasikan.
CONTENTS

CONTENTS	PAGE
TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	vi
ABSTRAK	ivii
CONTENTS	vii
LIST OF TABLES	viii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS AND SYMBOLS	xxiii

CHAPTER 1 INTRODUCTION

1.1 Project background | 1
1.2 Problem statement | 3
1.3 Aim and objectives | 4
1.4 Research scopes | 4
1.5 Thesis outline | 5

CHAPTER 2 LITERATURE REVIEW
2.1 Power electronic system

2.2 Power converter

2.3 Voltage source inverter

2.4 Multilevel inverter

2.4.1 Diode-Clamped Multilevel Inverter

2.4.2 Capacitor-Clamped Multilevel Inverter

2.4.3 Cascaded H-Bridge Multilevel Inverter

2.5 Total harmonic distortion

2.6 Modulation technique

2.6.1 Carrier-based pulse width modulation

2.6.2 Third harmonics injection pulse width modulation method

2.6.3 Space vector pulse width modulation

2.6.4 Harmonics Based Optimized harmonics stepped waveform modulation

2.7 Selective harmonics elimination

2.8 Previous research work on multilevel inverter

CHAPTER 3 METHODOLOGY

3.1 Proposed multilevel inverter

3.1.1 Multilevel topologies involved

3.1.2 Sinusoidal pulse width modulation

3.1.3 Simulation parameter

3.2 Multilevel inverter optimization

3.2.1 Optimized harmonics stepped waveform technique
3.2.2 Fourier series approach voltage output 35
3.2.3 Selective harmonics elimination calculation 40

3.3 Bio-inspired algorithm 42
3.3.1 Genetic algorithm 42
3.3.1 Particle Swarm optimization algorithm 47

CHAPTER 4 RESULTS AND DISCUSSION
4.1 Topologies comparison 49
4.1.1 3-level multilevel inverter 49
4.1.2 5-level multilevel inverter 53
4.1.3 7-level multilevel inverter 55
4.2 Multilevel inverter optimization 58
4.3 Switching signal comparisons 58
4.4 Optimized harmonics stepped waveform (Genetic algorithm) 59
4.4.1 3-level with equal DC sources 59
4.4.2 5-level with equal DC sources 63
4.4.3 7-level with equal DC sources 68
4.4.4 3-level with unequal DC sources 71
4.4.5 5-level with unequal DC sources 75
4.4.6 7-level with unequal DC sources 79

4.5 Optimized harmonics stepped waveform (Particle swarm optimization) 84
4.5.1 3-level with equal DC sources 84
4.5.2 5-level with equal DC sources 89
Section	Title	Page
4.5.3	7-level with equal DC sources	93
4.5.4	3-level with unequal DC sources	97
4.5.5	5-level with unequal DC sources	101
4.5.6	7-level with unequal DC sources	105
4.6	Overall discussion	109

CHAPTER 5 CONCLUSION

5.1 Conclusion | 114
5.2 Research contribution | 115
5.3 Future work and recommendation | 116

PUBLICATIONS | 117
REFERENCES | 118
APPENDIX A | 126
APPENDIX B | 129
VITA | 130
LIST OF TABLES

Table	Description	Page
2.1	3-level diode clamped multilevel inverter switching configuration	15
2.2	3-level capacitor clamped multilevel inverter switching configuration	17
2.3	Components comparison of multilevel inverter topologies	19
2.4	Literature on multilevel inverters	25
3.1	Simulation parameter	27
3.1	Particle swarm optimization parameter	47
4.1	3-level multilevel inverter analysis	53
4.2	5-level multilevel inverter analysis	56
4.3	7-level multilevel inverter analysis	58
4.4	3-level switching angles	60
4.5	3-level total harmonics distortion with respective modulation index	62
4.6	5-level switching angles	64
4.7	5-level total harmonics distortion with respective modulation index	66
4.8	7-level switching angles	68
4.9	7-level total harmonics distortion with respective modulation index	70
4.10	3-level switching angles (unequal)	72
Chapter 4.11	3-level total harmonics distortion with respective modulation index (unequal)	74
Chapter 4.12	5-level switching angles (unequal)	76
Chapter 4.13	5-level total harmonics distortion with respective modulation index (unequal)	78
Chapter 4.14	7-level switching angles (unequal)	80
Chapter 4.15	7-level total harmonics distortion with respective modulation index (unequal)	82
Chapter 4.16	3-level switching angles	85
Chapter 4.17	3-level total harmonics distortion with respective modulation index	87
Chapter 4.18	5-level switching angles	89
Chapter 4.19	5-level total harmonics distortion with respective modulation index	92
Chapter 4.20	7-level switching angles	94
Chapter 4.21	7-level total harmonics distortion with respective modulation index	96
Chapter 4.22	3-level switching angles (unequal)	98
Chapter 4.23	3-level total harmonics distortion with respective modulation index (unequal)	100
Chapter 4.24	5-level switching angles (unequal)	102
Chapter 4.25	5-level total harmonics distortion with respective modulation index (unequal)	104
Chapter 4.26	7-level switching angles (unequal)	106
Chapter 4.27	7-level total harmonics distortion with respective modulation	
Section	Title	Page
---------	--	------
4.28	Comparison of multilevel inverter on total harmonic distortion	111
4.29	Comparison of fundamental frequency voltage	112
4.30	Comparison between SPWM and OSHW method	112
4.31	Comparison between equal and unequal DC sources (Genetic algorithm)	113
4.32	Comparison between equal and unequal DC sources (Particle swarm optimization)	115
LIST OF FIGURES

Figure	Description	Page
2.1	Illustrated square wave signal	9
2.2	Illustrated modified square wave signal	9
2.3	Illustrated pure sine wave signal	10
2.4	Voltage source inverter family	11
2.5	3-level diode clamped multilevel inverter topology	14
2.6	3-level capacitor clamped multilevel inverter topology	16
2.7	2-level cascaded H-bridge multilevel inverter topology	18
2.8	Classification of multilevel inverter modulation method	21
3.1	General block diagram of inverter system	27
3.2	Overall work flow chart	28
3.3	3-level capacitor clamped multilevel inverter topology	29
3.4	3-level diode clamped multilevel inverter topology	30
3.5	3-level Cascade H-bridge multilevel inverter	30
3.6	SPWM phase disposition modulation	31
3.7	Comparison of modulation signal and carrier signal illustration	32
3.8	3-level optimized harmonics stepped waveform topology	34
3.9	n-level cascaded H-bridge multilevel inverter topology	35
3.10 Generalized staircase waveform of 5-level multilevel inverter		
3.11 6 level quarter-wave symmetric waveform		
3.12 Flow chart of genetic algorithm		
3.13 Matlab constraint M-file		
3.14 Matlab fitness M-file		
3.15 Matlab optimization tool (Genetic Algorithm)		
3.16 Particle swarm optimization flow chart		
4.1 3-level cascaded H-bridge multilevel inverter system		
4.2 Voltage output 3-level CC-MLI		
4.3 Voltage output 3-level DC-MLI		
4.4 Voltage output 3-level CHB-MLI		
4.5 FFT analysis of 3-level CC-MLI output		
4.6 FFT analysis of 3-level DC-MLI output		
4.7 FFT analysis of 3-level CHB-MLI output		
4.8 5-level cascaded H-bridge multilevel inverter system		
4.9 FFT analysis of 5-level CC-MLI output		
4.11 FFT analysis of 5-level DC-MLI output		
4.12 FFT analysis of 5-level CHB-MLI output		
4.12 7-level cascaded H-bridge multilevel inverter system		
4.13 FFT analysis of 7-level CC-MLI output		
4.14 FFT analysis of 7-level DC-MLI output		
4.15 FFT analysis of 7-level CHB-MLI output		
4.16 Switching signal of SPWM (a) and OHSW (b) 59		
4.17 3-level switching angle versus modulation index 61		
4.18 3-level fitness function value versus modulation index 62		
4.19 Voltage output 3-level (m=0.85) 63		
4.20 FFT analysis of 3-level output (m=0.85) 64		
4.21 5-level switching angle versus modulation index 65		
4.22 5-level fitness function value versus modulation index 65		
4.23 Voltage output 5-level (m=0.8) 67		
4.24 FFT analysis of 5-level output (m=0.8) 67		
4.25 7-level switching angle versus modulation index 69		
4.26 7-level fitness function value versus modulation index 69		
4.27 Voltage output 7-level (m=0.8) 71		
4.28 FFT analysis of 3-level output (m=0.8) 71		
4.29 3-level switching angle versus modulation index (unequal) 73		
4.30 3-level fitness function value versus modulation index (unequal) 73		
4.31 Voltage output 3-level unequal DC (m=0.85) 75		
4.32 FFT analysis of 3-level unequal DC output (m=0.85) 75		
4.33 5-level switching angle versus modulation index (unequal) 77		
4.34 5-level fitness function value versus modulation index (unequal) 77		
4.35 Voltage output 5-level unequal DC (m=0.80) 79		
4.36 FFT analysis of 5-level unequal DC output (m=0.80) 79		
4.37 7-level switching angle versus modulation index (unequal) 81		
4.38 7-level fitness function value versus modulation index (unequal)		
4.39 Voltage output 7-level unequal DC (m=0.80)		
4.40 FFT analysis of 7-level unequal DC output (m=0.80)		
4.41 3-level switching angle versus modulation index		
4.42 3-level fitness function value versus modulation index		
4.43 Voltage output 3-level (m=0.85)		
4.44 FFT analysis of 3-level output (m=0.85)		
4.45 5-level switching angle versus modulation index		
4.46 5-level fitness function value versus modulation index		
4.47 Voltage output 5-level (m=0.8)		
4.48 FFT analysis of 5-level output (m=0.8)		
4.49 7-level switching angle versus modulation index		
4.50 7-level fitness function value versus modulation index		
4.51 Voltage output 7-level (m=0.8)		
4.52 FFT analysis of 3-level output (m=0.8)		
4.53 3-level switching angle versus modulation index (unequal)		
4.54 3-level fitness function value versus modulation index (unequal)		
4.55 Voltage output 3-level unequal DC (m=0.85)		
4.56 FFT analysis of 3-level unequal DC output (m=0.85)		
4.57 5-level switching angle versus modulation index (unequal)		
4.58 5-level fitness function value versus modulation index (unequal)		
4.59 Voltage output 5-level unequal DC (m=0.80)		
Section	Description	Page
---------	---	------
4.60	FFT analysis of 5-level unequal DC output (m=0.80)	105
4.61	7-level switching angle versus modulation index (unequal)	107
4.62	7-level fitness function value versus modulation index (unequal)	108
4.63	Voltage output 7-level unequal DC (m=0.80)	109
4.64	FFT analysis of 7-level unequal DC output (m=0.80)	110
4.65	Overall harmonic elimination for equal and no equal DC source (Genetic Algorithm)	114
4.66	Overall harmonic elimination for equal and no equal DC source (Particle Swarm Optimization)	115
LIST OF SYMBOLS AND ABBREVIATIONS

Symbol	Meaning
A_c	Carrier amplitude
A_m	Modulation amplitude
fval	Fitness function value
m	Number of voltage level
P_{best}	Best fitness (PSO)
G_{best}	Global best (PSO)
V	Voltage
Hz	Frequency
AC	Alternate current
CC-MLI	Capacitor clamped multilevel inverter
CHB-MLI	Cascaded H-bridge multilevel inverter
CSI	Current source inverter
DC	Direct current
DC-MLI	Diode clamped multilevel inverter
DG	Distribution generation
GA	Genetic algorithm
IGBT	Insulated-gate bipolar transistor
MG	Microgrid
MOSFET	Metal–oxide–semiconductor field-effect transistor
PD	Phase disposition modulation
POD	Phase opposition disposition modulation
Abbreviation	Description
--------------	--
PS	Phase shift modulation
PWM	Pulse width modulation
OHSW	Optimize harmonic stepped waveform
SPWM	Sinusoidal Pulse Width modulation
SHE	Selective harmonic elimination
THD	Total harmonic distortion
VSI	Voltage source inverter
CHAPTER 1

INTRODUCTION

1.1 Project background

In conjunction with industrialization and increase of human population, resultant world energy demand continues to increase year by year. The population and energy consumption is increasing correspondingly with time which is also predicted to continue increasing in future [1]. This cause increasing demand of energy for future energy sustain [1]. The exploration in renewable energy show increasing trend in past decade. Examples of renewable energy sources (RES) such as sun, wind, geothermal, biomass which will not be exhausted. RES have advantage over traditional sources in less emission [2]. However, RES mostly experience problem related to inconsistent output. For example, solar energy are dependent source which differ by radiation and yet need to be covert form DC to AC. Renewable energy is always complemented with inverter which hold the key to generating high efficient and reliable power. To utilize the energy, inverters play an important role in energy conversion process.
Inverter can be classified into two main types that is voltage source inverter (VSI) and current source inverter (CSI). Each types have their own unique characterise which been listed in literatures [3-7]. From the literatures, a brief conclusion of VSI is more popular than CSI can be make [3]. In addition, VSI transformer-less inverter popular in renewable energy application due to overall size reduction. The most common use inverter is high power 2-level PWM inverter. However high power application ideally is require low switching losses.

In past decade, numberless of literature has proven multilevel inverter is a practical solution on resolving high switching losses problem exist in conventional inverter for high power application [8]. Research trend nowadays are more focusing on several multilevel inverter topologies for renewable energy sources application. Multilevel topologies inverter generate multilevel voltage source output which synthesize the staircase waveform form single or multiple low DC voltage source. The low input voltage source reduce the stress encounter by the switches with ability produce high output voltage source. Currently, cascaded H-bridge multilevel inverter (CHB-MLI) and it modified topologies is high grab attention due to the flexibility toward renewable energy.

Multilevel inverter system can be separate into two sector which is inverter topology system and switching strategy. Inverter topology system consist of the most part include switches power sources, topology configuration and filter system. Power source are mostly RE such as solar panel and wind turbine. For topology configuration, there are 3 main type which been frequently cited in literature that is diode clamped multilevel inverter (DC-MLI), capacitor clamped multilevel inverter (CC-MLI) and cascaded H-bridge multilevel inverter (CHB-MLI) [9-16]. Filter part is apply to remove harmonics and smoothen the inverter output quality.

The move on to next part that is switching strategy. This part manipulated the harmonics profile for the inverter output waveform. The conventional type are square wave. This type evolve into quasi-square wave which give better profile as compare to square wave. Current trend is pulse width modulation (PWM) which been widely
apply in currently VSI devices [17]. However, researcher explored other method on overcome the cons of PWM where different kind of add on method been apply in conjunction with PWM such as elective harmonic elimination (SHE). SHE consist of complex non-linear equation on resolving best switching timing. Hence, various calculation approach been tested to optimize the overall performance. The calculation method include newton-rapshon, Fourier transform, and even bio-inspired algorithm approach such as bee, ant, particle swarm, genetic, bat and others [18-23].

Multilevel inverter widely apply in power system area. The some of the power generated by renewable resources are capable on self-sustainable for the user or even excessive power can revert back to main grid. Hence, this research focus on the trend of self-sustainable type or so call standalone application.

1.2 Problem statement

At present, existing high power system using traditional multi-pulse converter which alone with bulky transform and filter system [24, 25]. The size of converter have given a limitation to the application of converter especially in small scale usage such as standalone application system. Beside of the sizing problem, traditional converter also have high switching loss and electromagnetic interference (EMI) problem according to the previous researches [26, 27]. In order to solve this problem, converter with smaller size and low switching loss criteria is needed. However in standalone system need to maintain or even performance better in term of harmonic distortions and voltage boosting capability. Hence, inverter are found to be the solution.

Inverter play important role in regaining quality AC current to the consumer. Multilevel inverter have been done individually research according to the literatures for capacitor clamped [28, 29], diode clamped [30], cascaded H-bridge [31] and other topologies [32-34]. Each research show the related topology to be suitable for standalone application but there has been no comparative research between each other.
Among the topologies comparison, modulation strategies also hot topic of research in inverter fields. Several literature found to be having difficulty in resolving high non-linear equation of getting best switching timing [35-39]. The mathematical approach have reach a limit in increasing calculation speed of the complex equation.

Due to all the problem mention in this section, the proposed solution will be presented in next section.

1.3 Aim and objectives

The aim of this research is to analyse the performance of multilevel inverter topologies for a standalone application. Hence following objectives had been listed to ensure objective achieved.

a) To compare the performance of multilevel inverter topologies with sinusoidal pulse width modulation in term of total harmonics distortion and the voltage boosting capability.

b) Apply proposed switching method to optimize the multilevel inverter with purpose to reduce total harmonic distortion and switching frequency.

c) To compare the capability of inverter system in adapting to balanced and unbalanced voltage sources with different bio-inspired algorithm for switching angle calculation.

1.4 Research scopes

Multilevel inverters are basically classified into three main categories which are capacitor clamped multilevel inverter, diode clamped multilevel inverter and cascaded H-bridge multilevel inverter. This research objective is to identify the most suitable topology in a single phase standalone application. The three topologies are the fundamental idea of the other latest modified topology. Hence, the scope has been narrowed into focusing only on these three multilevel inverter topology.
In simulation environment, topology construction and algorithm calculation is realised with the aid of Matlab/Simulink software. The overall specification for the simulation are listed as below. Total voltage input will always be 240 V, output voltage modulated to 50 Hz and the sampling time is $1 \times e^{-06}$s. MOSEF switches model is used. Hence, Matlab R2015a is used throughout the research with the aid of other software such as Microsoft Excel.

For the optimization of selected topology, optimized harmonic stepped waveform is proposed to be applied. The simulation input remain total 240 V and the sampling time is $1 \times e^{-06}$s. The calculation of selective harmonics elimination in this research is focus on comparison on genetic algorithm and particle swarm optimization. Both method under same simulation model with them own specification mention in methodology respectively.

In addition, three levels of multilevel inverter are applied in the research that is 3-level, 5-level and 7-level multilevel inverter. In this research, main key point is total harmonic distortion (THD), switching frequency, voltage boosting capability and the capability in adapting unequal sources.

1.5 Thesis outline

The thesis is doing performances analysis of multilevel inverter for standalone application. The literature studies of the project stated in chapter 2. Chapter 3 is the methodology of simulation topology and modulation method are discussed. Chapter 4 is where the result and analysis of the simulation are presented. Lastly chapter 5 is the conclusion and recommendation of the research.
REFERENCES

[1] Mattick, C.S., E. Williams, and B.R. Allenby, “Historical trends in global energy consumption,” Technology and Society Magazine, IEEE, vol. 29, pp. 22-30, 2010.

[2] Daher, S., Schmid, J., & Antunes, F. L., “Multilevel inverter topologies for stand-alone PV systems,” IEEE transactions on industrial electronics, pp. 2703-2712, 2008.

[3] Azmi, S., “Comparative analysis between voltage and current source inverters in grid-connected application,” Renewable Power Generation on IET Conference, pp. 1-6, 2011.

[4] Yunus, H.I. and R.M. Bass, “Comparison of VSI and CSI topologies for single-phase active power filters,” Power Electronics Specialists Conference IEEE, vol. 2, pp. 1892-1898, 1996.

[5] Lakwal, J., Deshpande, D. M., Suresh, A., & Mittal, A., “Cascaded Multilevel Inverter Topologies for Photovoltaic Power Generation Systems,” International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN, pp. 0974-4290, 2013.

[6] Ozdemir, E., S. Ozdemir, and L.M. Tolbert, “Fundamental-frequency-modulated six-level diode-clamped multilevel inverter for three-phase stand-alone photovoltaic system,” Industrial Electronics on IEEE Transactions, vol. 56, pp. 4407-4415, 2009.

[7] Yuan, X. and I. Barbi, “Fundamentals of a new diode clamping multilevel inverter,” Power Electronics on IEEE Transactions, vol. 15, pp. 711-718, 2000.
[8] Kim, T. J., Kang, D. W., Lee, Y. H., & Hyun, D. S., “The analysis of conduction and switching losses in multi-level inverter system,” Power Electronics Specialists Conference, vol. 3, pp. 1363-1368, 2001.

[9] Baker, R. and L. Bannister, “Electric Power Converter,” Electric Power Converter. US Patent 3 867 643, 1975.

[10] Nabae, A., I. Takahashi, and H. Akagi, “A new neutral-point-clamped PWM inverter,” Industry Applications on IEEE Transactions, vol. 5, pp. 518-523, 1981.

[11] Meynard, T. and H. Foch, “Multi-level conversion: high voltage choppers and voltage-source inverters,” Power Electronics Specialists Conference IEEE, pp. 397-403, 1992.

[12] Peng, F.Z, “A generalized multilevel inverter topology with self voltage balancing,” IEEE Transactions on industry applications, vol. 37, pp. 611-618, 2001.

[13] Hill, W. and C. Harbourt, “Performance of medium voltage multi-level inverters,” Industry Applications Conference, Thirty-Fourth IAS Annual Meeting, vol. 2, pp. 1186-1192, 1999.

[14] Manjrekar, M.D., P.K. Steimer, and T.A. Lipo, “Hybrid multilevel power conversion system: a competitive solution for high-power applications,” IEEE Transactions on Industry Applications, vol. 36, pp. 834-841, 2000.

[15] Lai, Y.-S. and F.-S. Shyu, “Topology for hybrid multilevel inverter,”. IEE Proceedings-Electric Power Applications, vol. 149, pp. 449-458, 2002.

[16] Song, Byeong-Mun, Juhyung Kim, Jih-Sheng Lai, Ki-Chul Seong, Hae-Jong Kim, and Sun-Soon Park, “A multilevel soft-switching inverter with inductor coupling,” IEEE Transactions on Industry Applications, vol. 37, pp. 628-636, 2001.

[17] Kanimozhi, M. and P. Geetha, “A new boost switched capacitor multilevel inverter using different multi carrier PWM techniques,” Circuit, Power and Computing Technologies on International Conference, pp. 432-437, 2014.

[18] Khamooshi, R. and J.S. Moghani, “Comprehensive harmonic optimization in cascaded h-bridge multilevel inverters using variable DC sources,” Power Electronics, Drive Systems and Technologies Conference (PEDSTC), 5th, pp. 249-254, 2014.
[19] Ganesan, K., K. Barathi, P. Chandrasekar, and D. Balaji., “Selective Harmonic Elimination of Cascaded Multilevel Inverter Using BAT Algorithm,” Procedia Technology, 21, pp. 651-657, 2015.

[20] Aghdam, M.H., S. Fathi, and G. Gharehpetian, “Comparison of OMTHD and OHSW harmonic optimization techniques in multi-level voltage-source inverter with non-equal DC sources,” Power Electronics, pp. 587-591, 2007.

[21] Kumar, J., B. Das, and P. Agarwal, “Selective harmonic elimination technique for a multilevel inverter,” space, vol. 1, pp. 3, 2008.

[22] Kavousi, A., Vahidi, B., Salehi, R., Bakhshizadeh, M.K., Farokhnia, N. and Fathi, S.H., “Application of the bee algorithm for selective harmonic elimination strategy in multilevel inverters,” Power Electronics on IEEE Transactions, vol. 27, pp. 1689-1696, 2012.

[23] Parkash, A., S. Shimi, and S. Chatterji, “Harmonics Reduction in Cascade H-Bridge Multilevel Inverters Using GA and PSO,” International Journal of Engineering Trends and Technology, vol. 12, pp. 453-465, 2014

[24] Najafi, E., & Yatim, A. H. M., “Design and implementation of a new multilevel inverter topology,” IEEE transactions on industrial electronics, vol. 59, pp. 4148-4154, 2012.

[25] Gandomi, A. A., Saeidabadi, S., Hosseini, S. H., Babaei, E., & Sabahi, M., “Transformer-based inverter with reduced number of switches for renewable energy applications,” IET Power Electronics, vol. 8, pp. 1875-1884, 2015.

[26] Beigi, L. M. A., Azli, N. A., Khosravi, F., Najafi, E., & Kaykhoosravi, A. “A new multilevel inverter topology with reduced number of power switches,” Power and Energy on IEEE International Conference, pp. 55-59, 2012.

[27] Miloudi, H., Bendaoud, A., Miloudi, M., Gourbi, A., & Slimani, H., “Common mode conducted electromagnetic interference in inverter fed-AC motor,” Przegląd Elektrotechniczny (Electrical Review), pp. 272-275, 2010.

[28] S. Devaraj, Anitha G. S., “POD-PWM Based Capacitor Clamped Multilevel Inverter,” International Journal of Technical Research and Applications, vol. 3, pp. 80-82, 2015.

[29] Priyan, S.S. and K. Ramani, “Implementation of closed loop system for flying capacitor multilevel inverter with stand-alone Photovoltaic input,” Power, Energy and Control, pp. 281-286, 2013.
[30] Ozdemir, E., S. Ozdemir, and L.M. Tolbert, “Fundamental-Frequency-Modulated Six-Level Diode-Clamped Multilevel Inverter for Three-Phase Stand-Alone Photovoltaic System,” IEEE Transactions on Industrial Electronics, vol. 56, pp. 4407-4415, 2009.

[31] Raghu, M. and V. Goutham, “Control of a three-phase cascaded h-bridge multilevel inverter for stand-alone PV System,” International Journal of Modern Engineering Research, vol. 2, pp. 278-282, 2012.

[32] Chen, A., & He, X., “Research on hybrid-clamped multilevel-inverter topologies,” IEEE Transactions on Industrial Electronics, vol. 53, pp. 1898-1907, 2006.

[33] Colak, I., Kabalci, E., & Bayindir, R., “Review of multilevel voltage source inverter topologies and control schemes,” Energy Conversion and Management, vol. 52, 1114-1128, 2011.

[34] Peng, F. Z., Qian, W., & Cao, D., “Recent advances in multilevel converter/inverter topologies and applications,” Power Electronics Conference, pp. 492-501, 2010.

[35] Farokhnia, N., Vadizadeh, H., Kadkhoda, F., & Vahabzadeh, A., “Formulation of the line voltage THD, case I: Multilevel inverter with equal DC sources,” Power Electronics Conference, pp. 1244-1251, 2010.

[36] Patel, H. S., & Hoft, R. G., “Generalized harmonic elimination and voltage control in thyristor inverters: Part II-voltage control technique,” IEEE Transactions on Industry Applications, vol. 10, pp. 666-673, 1974.

[37] Li L, Czarkowski D, Liu Y, Pillay P, “Multilevel selective harmonic elimination PWM technique in series-connected voltage inverters,” IEEE Transactions on Industry Applications, vol. 36, pp. 160-170, 2000.

[38] Fei, W., Du, X., & Wu, B., “A generalized half-wave symmetry SHE-PWM formulation for multilevel voltage inverters,” IEEE Transactions on Industrial Electronics, vol. 57, pp. 3030-3038, 2010.

[39] Enjeti PN, Ziogas PD, Lindsay JF, “Programmed PWM techniques to eliminate harmonics: A critical evaluation,” IEEE Transactions on Industry Applications, vol. 26, pp. 302-316, 1990.

[40] Kim, T. J., Kang, D. W., Lee, Y. H., & Hyun, D. S., “The analysis of conduction and switching losses in multi-level inverter system,” Power Electronics Specialists Conference, vol. 3, pp. 1363-1368, 2001.
[41] Wilson, T.G., “The evolution of power electronics,” IEEE Transactions on Power electronics, vol. 15, pp.439-446, 2000.

[42] Mariam, L., M. Basu, and M.F. Conlon, “A review of existing microgrid architectures,” Journal of Engineering, 2013.

[43] Binduhewa, P.J., M. Barnes, and A. Renfrew, “Standard microsource interface for a MicroGrid,” SmartGrids for Distribution IET-CIRED, pp. 1-4, 2008.

[44] Zhang, J. and M.C. Gursoy, “The impact of renewable energy resources on demand response management in a smart grid,” IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 475-479, 2012.

[45] Ross, M., Hidalgo, R., Abbey, C. and Joós, G., “Energy storage system scheduling for an isolated microgrid,” IET Renewable Power Generation, vol. 5, pp. 117-123, 2011.

[46] Lasseter, R.H., “MicroGrids,” IEEE Power Engineering Society Winter Meeting, vol. 1, pp. 305-308, 2002.

[47] Mohan, N. and T.M. Undeland, “Power electronics: converters, applications, and design,” John Wiley & Sons, 2007.

[48] Starke, M., L.M. Tolbert, and B. Ozpineci, “AC vs. DC distribution: A loss comparison,” IEEE/PES Transmission and Distribution Conference and Exposition, pp. 1-7, 2008.

[49] Owen, E.L., “History [origin of the inverter],” Industry Applications Magazine, IEEE, pp. 64-66, 1996.

[50] Poddar, G. and M.K. Sahu, “Natural harmonic elimination of square-wave inverter for medium-voltage application,” IEEE Transactions on Power Electronics, vol. 24, pp. 1182-1188, 2009.

[51] Naderi, R. and K. Smedley, “A new hybrid active neutral point clamped flying capacitor multilevel inverter,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 794-798, 2015.

[52] Duggapu, D.P., S.V.K. Pulavarthi, and S. Nulakajodu, “Comparison between Diode Clamped and HBridge Multilevel Inverter (5 to 15 odd levels),” International Journal of Emerging Trends in Electrical and Electronics, vol. 1, pp. 66-78, 2013.
[53] Kouzou, A., H. Abu Rub, A. Iqbal, Sk Moin Ahmed, B. S. Khaldi, M. O. Mahmoudi, M. S. Boucherit, and R. Kennel., “Selective harmonics elimination for a three-level diode clamped five-phase inverter based on particle swarm optimization,” 37th Annual Conference on IEEE Industrial Electronics Society, pp. 3495-3500, 2011.

[54] Ozdemir, S., Ozdemir, E., Tolbert, L. M., & Khomfoi, S., “Elimination of harmonics in a five-level diode-clamped multilevel inverter using fundamental modulation,” Power Electronics and Drive Systems on 7th International Conference, pp, 850-854, 2007.

[55] Thomas, R. V., Rakesh, E., Jacob, J., & Chitra, A., “Identification of optimal SVPWM technique for diode clamped multilevel inverter based induction motor drive,” Electrical, Computer and Communication Technologies (ICECCT), pp. 1-6, 2015.

[56] Nedumgatt, Jacob James, K. B. Jayakrishnan, S. Umashankar, D. Vijayakumar, and D. P. Kothari, “Perturb and observe MPPT algorithm for solar PV systems-modeling and simulation,” India Conference (INDICON), pp. 1-6, 2011.

[57] Mirafzal, B., M. Saghaleini, and A.K. Kaviani, “An SVPWM-based switching pattern for stand-alone and grid-connected three-phase single-stage boost inverters,”. Power Electronics on IEEE Transactions, vol. 26, pp. 1102-1111, 2011.

[58] Jose, J., Goyal, G. N., & Aware, M. V., “Improved Inverter Utilisation Using Third Harmonic Injection,” Power Electronics, Drives and Energy Systems on International Conference, pp. 1-6, 2010

[59] Chiasson, J., Tolbert, L., McKenzie, K., & Du, Z., “Eliminating harmonics in a multilevel converter using resultant theory,” Power Electronics Specialists Conference, IEEE 33rd Annual, vol. 2, pp. 503-508, 2002.

[60] Chiasson, J., Tolbert, L. M., McKenzie, K., & Du, Z., “A complete solution to the harmonic elimination problem,” Applied Power Electronics Conference and Exposition, Eighteenth Annual IEEE, vol. 1, pp. 596-602, 2003.

[61] Chiasson, J. N., Tolbert, L. M., McKenzie, K. J., & Du, Z., “A unified approach to solving the harmonic elimination equations in multilevel converters,” IEEE Transactions on power electronics, vol. 19, pp. 478-490, 2004.
[62] Ozdemir, E., Ozdemir, S., & Tolbert, L. M., “Fundamental-frequency-modulated six-level diode-clamped multilevel inverter for three-phase standalone photovoltaic system,” IEEE Transactions on Industrial Electronics, vol. 56, pp. 4407-4415, 2009.

[63] Cecati, C., Ciancetta, F., & Siano, P., “A multilevel inverter for photovoltaic systems with fuzzy logic control,” IEEE Transactions on Industrial Electronics, vol. 57(12), pp. 4115-4125, 2010.

[64] M.V.Vinod kumar, D.Kamala, “Comparative Analysis of Different Modulation Techniques For Five Level Diode Clamped Inverter With Boost Converter,”. Journal of Precious Engineering Research and Applications, vol. 1, pp. 05 -11, 2016.

[65] Abd-El-Wahed, W., A. Mousa, and M. El-Shorbagy, “Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems,” Journal of Computational and Applied Mathematics, vol. 253: p. 1446-1453, 2011.

[66] Debnath, S. and R. Narayan, “THD Optimization in 13 level photovoltaic inverter using Genetic Algorithm,” International Journal of Engineering Research and Applications, vol 2, pp. 385-389, 2012.

[67] Hosseini, S. H., Sadigh, A. K., Barakati, S. M., & Kangarlu, M. F., “Comparison of SPWM technique and selective harmonic elimination using genetic algorithm,” Electrical and Electronics Engineering, pp. 1-178, 2009.

[68] Perumal, M. and D. Nanjudapan, “Performance enhancement of embedded system based multilevel inverter using genetic algorithm,” Journal of Electrical Engineering, vol. 62, pp. 190-198, 2011.

[69] Ozpineci, B., L.M. Tolbert, and J.N. Chiasson., “Harmonic optimization of multilevel converters using genetic algorithms,” IEEE 35th Annual Power Electronics Specialists Conference, vol. 62, pp.190-198, 2011.

[70] Vas, Peter, “Artificial-intelligence-based electrical machines and drives: application of fuzzy, neural, fuzzy-neural, and genetic-algorithm-based techniques,” Oxford university press, vol. 45, 1999.

[71] Yang, H., Zhou, W., Lu, L., & Fang, Z., “Optimal sizing method for standalone hybrid solar–wind system with LPSP technology by using genetic algorithm,” Solar energy, pp. 354-367, 2008.
[72] Adedeji, A, “Genetic (evolutionary) algorithm: introduction and its use as an engineering design tool,” Olad Publication and Printing Enterprises, Nigeria, pp. 978-8115, 2007

[73] Song, M.-P. and G.-C. Gu, “Research on particle swarm optimization: a review,” in Machine Learning and Cybernetics, Proceedings of on International Conference, vol. 4, pp. 2236-2241, 2004.

[74] Eberhart, R.C. and J. Kennedy, “A new optimizer using particle swarm theory,” IEEE Proceedings of the sixth international symposium on micro machine and human science. vol. 43, pp. 39-43, 1995.

[75] Eberhart and S. Yuhui, “Particle swarm optimization: developments, applications and resources,” evolutionary computation, vol.1, pp. 81-86, 2001.

[76] Chiasson, J. N., Tolbert, L. M., Du, Z., & McKenzie, K. J., “The use of power sums to solve the harmonic elimination equations for multilevel converters,” EPE Journal, vol. 15, pp.19-27, 2005

[77] Tolbert, L. M., Chiasson, J., McKenzie, K., & Du, Z., “Elimination of harmonics in a multilevel converter with nonequal DC sources,” In Applied Power Electronics Conference and Exposition, vol. 1, pp. 589-595, 2003.