New Frontiers in Vascular Access Practice: From Standardized to Patient-tailored Care and Shared Decision Making

Mariana Murea 1 and Karen Woo 2

Abstract

Vascular access planning is critical in the management of patients with advanced kidney disease who elect for hemodialysis for RRT. Policies put in place more than two decades ago attempted to standardize vascular access care around the model of optimal, namely arteriovenous fistula, and least preferred, namely central venous catheter, type of access. This homogenized approach to vascular access care emerged ineffective in the increasingly heterogeneous and complex dialysis population. The most recent vascular access guidelines acknowledge the limitations of standardized care and encourage tailoring vascular access care on the basis of patient and disease characteristics. In this article, we discuss available literature in support of patient-tailored access care on the basis of differences in vascular access outcomes by biologic and social factors—age, sex, and race. Further, we draw attention to the overlooked dimension of patient-reported preferences and shared decision making in the practice of vascular access planning. We discuss milestones to overcome as requisite steps to implement effective shared decision making in vascular access care. Finally, we take into consideration local practice cofactors as major players in vascular access fate. We conclude that a personalized approach to hemodialysis vascular access will require dynamic care specifically relevant to the individual on the basis of biologic factors, fluctuating clinical needs, values, and preferences.

KIDNEY360 2: 1380–1389, 2021. doi: https://doi.org/10.34067/KID.0002882021

Introduction

Creation and preservation of a vascular access is at the core of hemodialysis (HD), the most frequently used form of RRT in the United States. Decades of scientific evolution materialized into three types of vascular access: arteriovenous fistula (AVF), arteriovenous graft (AVG), and central venous catheter (CVC). At the inception of the RRT era, creation of any form of vascular access was a blissful achievement. Subsequently, vascular access care was funneled to a one-access type approach, namely, AVF. Landmark studies executed in the 1990s and decades of guidelines that dominated clinical practice between 1997 and 2019 generated a legacy of AVF-centered practice that upheld AVF as the primary vascular access objective in all patients who are HD dependent (1). At last, the mainstream approach in vascular access practice is starting to develop fundamental shifts.

A growing number of studies have pointed to differing vascular access outcomes, particularly AVF outcomes, between different patient groups (2–11). With increasing observation that AVF-prioritized care is particularly ineffective in certain patient groups, the latest vascular access guidelines shifted recommendations from a standardized to a customized approach, recommending placement of the “right access, in the right patient, at the right time, for the right reasons” (12). The new guidelines encourage consideration of individual patient variables and preference-sensitive decision making in line with the principles of patient-centered medicine. However, effective implementation of shared decision making (SDM) in vascular access care remains elusive, given the complexities involved in the decision-making process. Below we discuss the available knowledge as it pertains to vascular access outcomes, which can be used as an initial step to tailor access care to each individual (Figure 1A). Knowledge gaps and complexities involved in what is a multifaceted approach to vascular access care are presented (Table 1). Closure of these gaps is a prerequisite to implement effective SDM in routine care are presented (Figure 1B). Thus, we draw a distinction between patient-tailored access care that could be adopted on the basis of current data, and SDM access care as a key area for future work.

Patient-tailored Vascular Access Care

Drawing from large epidemiologic studies and in the context of varied biologic phenotypes (age, sex) and social factors (race), we analyze how vascular access customization can be developed and managed. Using the evidence-practice model for customized vascular access care (Figure 1A), the dialysis access can be stratified on the basis of individual-level risk for AV access
failure and trade-offs between short- and long-term access outcomes, using available knowledge.

Age and Vascular Access Outcomes

Many studies have attested to the challenging task of achieving a functioning AVF in older patients. A meta-analysis of 13 studies concluded that older patients have a 50%–65% higher risk of primary AVF failure, and 80% higher risk of secondary AVF failure compared with younger patients (13). Vascular access interventions in older patients to maintain a patent AV access are required nearly 60% more often with an AVF than an AVG (9).

On the basis of inferior AVF outcomes in older patients and patient-specific factors affecting clinical outcomes, it is imperative to consider the evidence-practice model and the evidence-preference-practice framework to ensure informed decision-making.

![Figure 1](image-url)
Figure 1. The approach to hemodialysis vascular access care. (A) The evidence-practice model. (B) The evidence-preference-practice framework.

Table 1. Components essential for implementation of effective shared decision making in vascular access practice

Component of Care	Complexities and Future Work
Quality of information that supports SDM	High-quality scientific evidence to compare outcomes on the basis of different strategies of vascular access planning. Conduct research in general contexts of decision making: predialysis, on-dialysis, with or without prior AV access.
Tools used to predict vascular access outcomes	Develop decision aids tools on the basis of data from a wide breadth of providers, patients, and care settings to improve their generalizability. Risk prediction models need to accounts for a patient’s clinical (e.g., age, sex, race, BMI, frailty, comorbidities) and vascular (e.g., anatomic location of AV access placement, order of AV access) characteristics.
Patients’ values and preferences for vascular access care	Perform qualitative research that probes patients’ preference for access type and choice of trade-offs. Examine the effect of caregiver involvement on vascular access planning. Analyze intraindividual longitudinal changes in access care preference.
System support to integrate and facilitate quality care	Organize existing practices to forge greater levels of connectivity between care teams and patient navigation across the entire journey of vascular access care, i.e., utilize vascular access coordinators. Multidisciplinary encounters (e.g., nephrologist, surgeon, and patient/family) and patient education to facilitate vascular access creation. Increase availability to access care and analyze safety of care with mobile vascular access surgery units.
Patient decision aids	Clear communication of access options and potential complications with each access type. Develop decision aids specific to separate processes of care, e.g., predialysis access planning, on-dialysis access choice after failure of a previous access.
Policy and quality measures	Develop instruments that measure SDM experiences and clinical consequences. Adjust performance metrics to accommodate patient preference-based vascular access practice.

SDM, shared decision making; BMI, body mass index; AV, arteriovenous.
not surprising recent reports indicate older patients starting HD with a CVC and who underwent placement of AVG as first AV access for HD placed either before or after dialysis initiation had fewer catheter-dependent days, and similar survival as those who had an AVF as first AV access placed (9,10,14–16). In a nationally representative cohort of 115,425 patients on incident HD aged ≥67 years old derived from the US Renal Data System, dialysis survival analysis as a function of first vascular access placed indicated no significant mortality difference between those patients with a graft as the first access placed and those patients with a fistula (hazard ratio [HR], 1.05; 95% confidence interval [95% CI], 1.00 to 1.11; P = 0.06) (10). In a separate cohort of 138,245 incident patients who started HD with a CVC, patient survival across the entire cohort was equivalent between those who had AVF or AVG placement (HR, 0.98; 95% CI, 0.93 to 1.02; P = 0.35), but among patients aged ≥80 years with albumin levels >4.0 g/dl, AVF creation was associated with higher mortality hazard compared with AVG creation (HR, 1.22; 95% CI, 1.04 to 1.43; P = 0.01) (16).

Age-related AVG outcomes have been less well studied. In one retrospective analysis of >70,000 patients who underwent AVG placement, there was no significant difference in graft primary patency, primary assisted patency, and secondary patency with increasing age. Interestingly, the study found a slight decrease in severe prosthetic graft infection requiring graft excision (HR, 0.99; 95% CI, 0.99 to 0.99; P < 0.001), and increase in mortality (HR, 1.03; 95% CI, 1.03 to 1.03; P < 0.001) for the older age categories compared with the younger patients (4).

In addition to the association between age and AV access patency and infection rate, age can also modulate CVC-related infectious complications. In a 3-year retrospective study of 464 patients who were incident and prevalent, the rate of CVC-related bacteremia was 67% lower in patients ≥75 years of age than in younger patients, with the analyses adjusted for comorbidities, catheter lock solutions, catheter location, and use of immunosuppressive medications (11).

The success of an AV access depends on the biology of older patients’ vascular beds, particularly in regard to vascular calcification and endothelial dysfunction. Studies have shown the prevalence of arterial calcification increases with age and negatively affects AVF maturation (17,18). On the contrary, vascular calcifications and fibrosis present in preoperative tissue specimens do not associate with inferior unassisted primary AVF survival, and might confer a protective effect against recurrent AVG interventions (19).

Finally, intact endothelial function is important for native, autologous AV access, because it allows synthesis of mediators that promote vasodilation and inhibit vascular stenosis in response to injury. A study using brachial artery flow-mediated vasodilation in a cohort of healthy adults indicated that endothelial dysfunction was present in 25% of individuals ≥60 years of age and 9%–13% of individuals <50 years of age (P < 0.001) (20).

Therefore, besides morbidity, age-dependent pathophysiologic changes could explain why older age (assessed as ≥65 years in many reports) correlates with higher rates of primary and secondary AVF failure (9,21–23). Nevertheless, similar fistula patency rates between older and younger individuals have also been reported, and although data suggest grafts could be a better vascular access strategy in older adults, not all of the literature supports this concept (24,25).

Sex Differences in AV Access Outcomes

The issue of patient sex has been extensively studied for vascular access failure. Study results are conflicting over the association between female sex, AVF nonmaturation, and reduced patency (26–29). A prospective study of 200 patients with upper extremity access creations found on univariate analysis that female sex was significantly associated with failure to achieve an AVF used successfully for HD (P = 0.05) (30). However, on multivariable analysis, with age, ischemic heart disease, prior CVC or pacemaker, inflow artery diameter and outflow vein diameter in the model, the only significant predictor of failure was artery diameter (P < 0.01). In another cohort of 300 patients, who were dependent on a CVC for HD at the time of AVF creation, there was no association between patient sex and clinical AVF maturation, defined as removal of the catheter within 180 days after AVF creation (3).

The potential association between patient sex and AVF outcomes has been postulated to be related to smaller vein diameter in females compared with males. To refute this belief, one study of 148 consecutive patients showed no association between sex and diameter of the cephalic vein (31). Similarly, another study found lower AVF maturation rates in females that were not explained by differences in vein diameter (32). The aforementioned 300 patient cohort study demonstrated that there was no significant difference in median vein diameter between women and men (0.37 mm vs 0.38 mm, P = 0.62) (3). However, the median arterial diameter was significantly smaller at 0.35 mm in women, compared with 0.42 mm in men (P < 0.001). On multivariable analysis, each 1 mm increase in preoperative arterial diameter was significantly associated with increasing likelihood of achieving both unassisted (odds ratio, 1.5; 95% CI, 1.23 to 1.83; P < 0.001) and assisted maturation (odds ratio, 1.36; 95% CI, 1.10 to 1.66; P = 0.002). Another study of outcomes after adopting a practice of preferentially creating brachiocephalic AVFs, unless the patient was an ideal anatomic candidate for radiocephalic AVF, demonstrated a significant increase in primary functional patency at 1 year (33). This may be related to larger arterial diameter at the brachial artery versus radial artery.

Given these findings, it is possible that inferior outcomes associated with female sex may be related to smaller arterial diameter in females, rather than vein diameters. At this time, it remains unclear what the contribution of patient sex is to vascular access outcomes. However, it may be prudent to prioritize anatomic findings over patient sex itself in the vascular access decision-making process.

Racial Disparities in Vascular Access Practice and Outcomes

Epidemiologic research demonstrated presence of a significant difference in the prevalence of AVF creation among racial groups, with Black patients having an approximately 10% lower prevalence of AVF compared with White patients (7,34–36). It is unclear why this is the case. Some authors have suggested the cause relates to Black patients having smaller
vein diameters, but the evidence is far from conclusive (37,38). In fact, one recent study demonstrated no association between race and vein or artery diameter (3).

Black patients are more likely to experience primary access failure, undergo repeat vascular access after an index access, and have a shorter time to repeat access (6,7,39). Compared with White patients, Black patients have significantly decreased primary, primary assisted, and secondary AVF patency (HR, 0.81, 0.83, 0.89, respectively) (5). A similar phenomenon has been demonstrated in treatment of peripheral arterial disease in Black patients, who have been shown to be at significantly higher risk of graft failure after lower extremity bypass, in both dialysis dependent and nondialysis-dependent populations (40–42). The reason for the increased risk of failure in both dialysis vascular access and in peripheral bypass grafting is unclear. Investigators have demonstrated that Black patients have higher serum levels of lipoprotein(a), which has variable associations with risk of atherosclerosis and myocardial infarction (43,44). However, it is uncertain whether lipoprotein(a) is responsible for increased risk of dialysis access and/or lower extremity bypass graft failure, and it does not appear that this has been specifically investigated in the literature.

There is scant evidence that Hispanic patients may have slightly better outcomes after fistula compared with White patients (5); however, the majority of the little available literature demonstrates no difference in outcomes between Hispanic and White patients (2,7,39). There is a strong possibility that the lack of statistically significant difference may be due to the smaller relative sample size and an associated type II error. Negligible evidence is available on the outcomes of vascular access in the Asian/Pacific Islander patients with ESKD. Further investigation in all of the racial/ethnic subpopulations is required to better understand outcome disparities and their drivers.

Expectations and Trade-offs

An integral component of patient-tailored vascular access care is setting expectations relative to vascular access outcomes. Access-related expectations need to be discussed in short- and long-term contexts. Besides the risk of primary AV access failure and potential need of adjuvant procedures to aid AV access maturation (short-term expectations), the chance of longitudinal transitions from one type of access to another must be considered (long-term expectations). Recent studies showed that even with successful conversion from CVC to AV access, only 30%–50% of patients achieved CVC-free dialysis for >90% to 80% of their HD treatments (45,46). Interestingly, the proportion of CVC-free HD treatments after AV access placement was not different between older and younger patients (46). As pointed out by Allon et al., each type of access modifies the balance between short- and long-term expectations, creating a trade-off between short-term and long-term experiences (47–49). Compared with grafts, fistulas have better long-term survival and require fewer interventions. At the same time, fistulas have a higher primary failure rate, require more interventions to achieve maturation and require greater catheter dependence compared with grafts (47–49). As a result, patients more likely to benefit from a graft are those with history of primary AVF failure, poor vascular anatomy, or short life expectancy (47–49). Thus, often there is no clear “right answer,” but rather a series of trade-offs to consider, the value of which might be perceived differently by people with differing value systems and priorities.

Toward the Goal of SDM in Vascular Access Care

A hallmark of quality in health care, SDM is defined as care that is respectful of, and responsive to, individual patient preferences, needs, and values, while ensuring patients are informed and engaged in the medical decision-making process (50,51). SDM is important when more than one reasonable option to medical care exists, and its key ingredient is incorporation of patients’ values and preferences to the available options into medical care. We condense SDM in a framework on the basis of evidence-preference-practice approach (Figure 1B). Working toward this goal, we pinpoint components of care and highlight complexities that need to be addressed through future research in partnership with all health care stakeholders (Table 1).

Quality of Information that Supports SDM

Standard practice, which is integral in the framework for defining what is medically reasonable, is ideally on the basis of high-quality, reproducible scientific evidence. However, this level of evidence is generally lacking in vascular access literature. Current vascular access practice-centered on surgical fistula creation—is on the basis of 30-year-old retrospective research and observational studies (52–55) and has not been evaluated in clinical trials (56). It can be contended that an intervention that is considered standard practice but is on the basis of low-quality evidence might require a different medical-reasonableness assessment than a treatment option that is informed by several randomized controlled trials. Thus, obtaining comparative results between alternative AV access strategies through rigorously performed, randomized studies is a critical need (57–59).

Precision of Medical Information Used To Predict Vascular Access Outcomes

Clinicians lack sensitive tools to predict preoperatively the risk of AV access maturation failure. Factors other than inadequate vascular anatomy contribute to failure of AV access development (60–62). As reviewed above, age, sex, race, and peripheral arterial disease are known risk factors for higher likelihood of AV access primary failure, yet our ability to relay each individual’s risk of short- and long-term adverse access events remains poor (21,63). The order and anatomic location of AV access placement adds more nuances to the complexity of access-outcome prediction. Retrospective studies showed the outcomes of a second or third AVF are inferior to outcomes of the initial graft (45,64); in contrast, the outcome of second or third AVG are superior to those of the initial graft (45). After primary failure of an initial forearm fistula, placement of an upper arm AVF carries two-fold higher risk for primary failure, more adjuvant interventions, and longer CVC dependence with three-fold
higher frequency of catheter-related bacteremia than placement of an upper arm AVG (47).

Patients’ Values and Preferences for Vascular Access Care
Presently, vascular access planning is largely driven by the patient’s nephrologist and vascular access surgeon, with little attention given to individual patient preferences. Because vascular access practice has been dominated by disease-centered outcomes, studies on patients’ preferences for different types of vascular access have not been carried out. A general impression about patients’ preferences for vascular access care could perhaps be gleaned from qualitative studies that analyzed patients’ self-reported experiences with access care. These studies revealed themes of heightened vulnerability, device intrusiveness on the body, disfigurement, mechanization of the body, impinging on way of life, imposing burdens, self-preservation and ownership, and confronting decisions and consequences (65,66). In-person semistructured interviews have probed patient reports on vascular access decision making and outcomes attitudes (58,67). In one qualitative study, most patients interviewed (14 of 15) disclosed minimal engagement in vascular access decision making and accepted vascular access recommendations from physicians. Although the patients took ownership of the vascular access decision, they lacked clear understanding about the different types of access and their consequences. All (15 of 15) patients viewed the vascular access as “intertwined and interrelated” with dialysis and did not differentiate between dialysis and vascular access in decision making (67).

Patient-reported attitudes toward vascular access outcomes were also explored in a cohort of ten patients (mean age 76 years) who started HD with a CVC, enrolled in a pilot clinical trial of vascular access placement, and underwent AVF (n=4) or AVG placement (n=6) (58). At the time of the interview, 6 months after AV access placement, six patients achieved successful cannulation of the AV access. Although all patients (ten of ten) perceived the intervention of AV access placement as “no other choice” and “something that needed to be done,” six of ten patients expressed the decision of AV access placement was made collaboratively between physician, patient and/or family members. When asked to reflect on each access (CVC vs AV access received) and compare access-related experiences, most patients (seven of ten) reported a preference for CVC rather than AV access, if they were given a choice. Reasons for CVC preference were AV access failure (n=3) and dislike of needles (n=4). Two patients declared they would rather give up any length of their life to keep the CVC as their dialysis access (unpublished data).

We note it is not known whether age-based differences exist in patients’ perceptions and desired level of involvement in decision making about vascular access choice on HD. In one study of patients with ESKD on peritoneal dialysis, differences in the importance of outcomes were noted across participant subgroups in terms of patients’ ages. In comparison to younger participants (aged <55 years) for whom mortality was ranked first overall, participants in the older age group (>55 years) ranked mortality 11th, and gave higher priority to quality-of-life outcomes, including the ability to travel and sleep (68). This underscores that decision making requires consideration of the patients’ different goals and priorities across age groups.

Communication between Health Care Providers, Patients, and Family
Attention to the timing and continuity of communication between access care providers, patients, and families is an important mechanism underlying the quality of SDM (69). These discussions need to elicit and explore patient and family experiences, values, and preferences. Not infrequently, patients have had either immediate and/or distant family members with ESKD, whose experience with dialysis that might have affected patients’ decision toward various processes of care. Involving patients and their caregivers in the choice of HD vascular access is also important when the decision making is influenced by variables such as religion, health literacy, cognitive ability, and length of patient–clinician relationship. After dialysis initiation, older patients can experience substantial declines in their cognitive and functional abilities, with most clinical and physical deterioration taking place in the initial 3 months on dialysis (70). Despite awareness of evolving disabilities in older patients after dialysis initiation, little emphasis has been placed on patients’ willingness to pursue what many times is either failed or repetitive interventions to create an AV access. These attempts at AV access creation could erode the remaining quality of life by subjecting patients to costly, recurrent, and painful interventions with multiple physician visits, hospitalizations, and time away from loved ones (71,72). Input from caregivers and other health care providers is necessary to formulate care plans congruent with patient’s expressed wishes and general goals of care.

System Support To Improve Interprofessional Collaboration, Patient Navigation, and Quality of Care
Interprofessional Collaboration
Vascular access care is a multistep process with different providers involved at different levels of care, such as nephrologists, access educators, surgeons, interventional nephrologists, radiologists, and nurses. In the absence of interprofessional communication, opportunities to convey patients’ expression of their experience and preference at different levels of care is lost (73). Often, this leads to a fragmented approach to care. In fact, in health care, professional divides (74,75), organizational silos (76), isolated clinics, uncommunicative teams, and disconnected departments (77) are often the norm (78). Thus, vascular access coordinator-coordinated care to networks all providers and extend complex information to patients/families is an essential resource to streamline vascular access care and SDM (79). Research showed that using a dedicated vascular team approach increases the prevalence of AVF use and early identification of complications, and improves vascular access outcome (80–83).

Patient Navigation
Patients need help to navigate the maze of health care. Like other patients with chronic health conditions, patients with advanced CKD often require hospitalization, several emergency room visits, and/or countless appointments with specialists. Giving patients the tools and support they need to
navigate such complex care is paramount to improve patient outcomes across the spectrum of kidney disease care (84–87). A recent quality improvement project within the Geisinger Health System showed that patient education, needs assessment, peer support, care navigation, and electronic supports yielded improvements in patient self-efficacy and knowledge, and trends toward improvements in patient and provider confidence (88).

Quality of Care

Communicating a comprehensive picture of vascular access outcomes includes consideration of local practices, such as access to care, surgeons’ experience and dedication to angioaccess surgery, and dialysis staff cannulation skills.

Regarding access to care, the supply of surgeons placing vascular access is key. Geographic variation in AVF placement and maturation rates, independent of patient-level comorbid burden, has been well described (89,90). Research showed the supply of vascular access surgical specialists is highest in socially and economically advantaged areas (91). The utility and safety of a mobile vascular access surgical unit in providing quality vascular access surgery for the indigent rural population with poor access to care should be the subject of further study. Moreover, it has been recognized that the surgical skill is an important factor affecting AVF surgery success (92–94). Surgeons’ prior volume of AV access placements is strongly associated with AV access maturation (94), particularly for the forearm access compared with those located on the upper arm (92). Sharing benchmarked performance data with surgeons could be an actionable step in achieving more high-value care in HD access surgery (93).

Cannulation of the fistula is a procedure requiring significant skill development and refinement and, if not done well, it can have negative consequences on access outcomes and patients’ experience. In clinical practice, procedures for vascular access cannulation vary from clinic to clinic (95). Some nurses remain in a state of a “perpetual novice” resulting in a vicious cycle of negative patient consequences (bruising, pain), further influencing patients’ decisions not to pursue a fistula or abandon cannulation. The risk of a mis-cannulation could be reduced with appropriate training of nurses and creating a practice environment that is patient centered and cultivates teamwork (96,97).

Patient Decision Aids

Decision aid tools that are peer and patient reviewed and use patient-friendly language must be developed to convey a holistic picture of the components of vascular access journey with each type of access. In collaboration with key stakeholders, a research group recently developed mixed-media vascular access education materials (available at go.unc.edu/dialysis access) and their preliminary findings suggest the decision aids improved patients’ understanding and experiences as they navigated vascular access care (98). In accordance with particular care contexts (e.g., pre- or postdialysis initiation, with or without a previously failed AV access), more than one category of decision aids will be required. The decision aids will need to contain information as it pertains to their specific care context and relay unbiased information of the pros and cons of each type of vascular access. Ensuring patients are informed according to their context of care, physicians should present each access type as an option and elicit their preference to each process of care and incorporate their preference into practice (Figure 1B).

Policy and Quality Measures

We acknowledge the objectives of presenting vascular access types as options and integrating a patient’s preference may not be achieved as long as dialysis reimbursement is designed around disease-centered metrics, that is, the prevalence of AVF use at outpatient dialysis units (99). Despite this limitation, it is rational for policy changes to occur after research generates substantial evidence of SDM feasibility, clinical advantage, and patient satisfaction. A critical step in SDM implementation is producing a reliable instrument that measures the SDM experience, from the perspective of patients and providers, on the basis of which the quality and effect of SDM can be appraised and tied with quality measures and reimbursement. The experience with SDM measurement instruments in other areas of medicine heralds the objective of instrument development for measuring SDM experiences and clinical consequences in vascular access practice will require diligent work (100–102). Contingent on accumulation of high-quality, patient-centered data, and SDM instruments, the performance standards will need to be modified to better accommodate individualized patient care.

A Fluid Approach to Accommodate Evolving Vascular Access Care and Complications

The dynamic nature of health status in adults with advanced kidney disease may lead to changes in patients’ priorities. Thus, temporal changes in vascular access planning will be an inherent part of access care. As physicians, we must recognize that relative benefits and harms of each form of access are critically dependent not only on patient characteristics, but also on disease circumstances and prognosis, which in turn, may cause temporal changes in patient preferences for a particular type of access. Not infrequently, patients express a desire to maintain a CVC for dialysis, even when they understand the risks associated with catheter use (103). Patients for whom an AV access strategy was originally elected and who developed an intercurrent illness that profoundly affected the quality of life (e.g., stroke, advanced malignancy) will need to have their goals of care and vascular access approach revisited; dialysis with a CVC may be an acceptable approach in those scenarios. Thus, the exercise evidence-preference-practice for HD vascular access may need to be applied more than once during the lifetime of an individual with advanced kidney disease.

Physicians are habitually unwilling to accept a patient’s preference for and choice of using a CVC. Conceding to a patient’s preference to keep a CVC might be perceived as a significant departure from previously held dogma that physicians have the ethical and legal obligation to resist “patient’s self-destructive choices” (104). We contend that physicians have the moral obligation to abide by the patient’s choices, provided (1) the patient has decision-making capacity, and (2) there is correct understanding—by the patient and caregivers—of risks associated with the choice. There are other circumstances when the physicians abide to
unfavorable decisions made by patients regarding treatment of their kidney disease with RRT, a chief example being the patient’s choice regarding dialysis therapy. Legal and ethical principles have long been put into place to support a person’s right to either forego dialysis initiation or withdraw dialysis (105). Notably, stopping RRT in a patient with ESKD is a direct and unequivocal cause of death; physicians properly accede to patients’ wishes in these scenarios. In contrast, physicians target AV access creation, often at odds with patients’ desires and in spite of mounting literature showing that a CVC is not a direct mediator of death in patients with ESKD (106–108). Efforts should continue to identify and implement measures that minimize and ideally eliminate the risk of CVC-related complications, some of which are dialysis-staff dependent (109–112). Future qualitative research should explore and elucidate contextual differences of the individual experiences with different vascular accesses to bring a deeper awareness and understanding of contextual vascular access care.

All too frequently, physicians refer to patients who require vascular access as a homogenous group. Contemporary research has shed light on a spectrum of individuals with different access outcomes and different needs. Inter-and intra-patient heterogeneity in health status, health priorities, and illness experiences not only revealed that access type-centered approach was inadequate, but also highlighted the need to shift the care to a patient-centered, access-minded approach with the expectation that the need for a particular vascular access type can change in time. Future clinical trials and qualitative research should provide a deeper understanding of the complexity of access-related outcomes and the lived experiences of vascular access intervention to complement clinical data with SDM for these patients. Vascular access planning needs to take into consideration local practices and identify areas in need of improvement. Strengthening vascular access care requires the reorganization of existing practices to coordinated care and provide equal and easy access to care. It is clear that personalized access care, on the basis of a SDM model of evidence-practice approach, will require dynamic care that a CVC is not a direct mediator of death in patients with ESKD (106–108). Efforts should continue to identify and implement measures that minimize and ideally eliminate the risk of CVC-related complications, some of which are dialysis-staff dependent (109–112). Future qualitative research should explore and elucidate contextual differences of the individual experiences with different vascular accesses to bring a deeper awareness and understanding of contextual vascular access care.

Disclosures
M. Murea reports receiving research funding from Vifor Inc.; and reports being a scientific advisor or member as Subject Editor, BMC Nephrology and Nephrology (Carlton). K. Woo reports being a scientific advisor or member of Laminite Data Safety Monitoring Board, and the Journal of Vascular Surgery Editorial Board.

Funding
This work was supported by the National Institute on Aging, National Institutes of Health (NIDDK grant R01AG060178-01 (to M. Murea) and the National Institute of Diabetes and Digestive and Kidney Diseases, NIH grant K08DK107934 (to K. Woo).

Acknowledgments
The National Institutes of Health did not participate in the collection, analysis, and interpretation of data, in the writing of the report, or in the decision to submit the article for publication.

Author Contributions
M. Murea and K. Woo conceptualized the study, were responsible for data curation, wrote the original draft, and reviewed and edited the manuscript; M. Murea was responsible for the investigation and validation.

References
1. Murea M, Geary RL, Davis RP, Moossavi S: Vascular access for hemodialysis: A perennial challenge. Semin Dial 32: 527–534, 2019 https://doi.org/10.1111/sdi.12828
2. Farrington C, Lee TC: The new age of vascular access: Choosing the right access for the right reason in older hemodialysis patients. Am J Kidney Dis 76: 457–459, 2020 https://doi.org/10.1053/j.ajkd.2020.03.024
3. Farrington CA, Robbin ML, Lee T, Barker-Finkel J, Allon M: Early prediction of arteriovenous fistula maturation: A novel perspective on an enduring problem. J Am Soc Nephrol 31: 1617–1627, 2020 https://doi.org/10.1681/ASN.2019080848
4. Arhuidese II, Beaulieu RJ, Aridi HD, Loacham S, Baldwin EK, Malas MB: Age-related outcomes of arteriovenous grafts for hemodialysis access. J Vasc Surg 72: 643–650, 2020 https://doi.org/10.1016/j.vjs.2019.10.096
5. Arhuidese II, Ali EA, Muhammad R, Dhaliwal J, Shukla AJ, Malas MB: Racial differences in utilization and outcomes of hemodialysis access in the United States. J Vasc Surg 71: 1664–1673, 2020 https://doi.org/10.1016/j.vjs.2019.07.092
6. Trivedi PS, Lind KE, Ray CE, Rochon PJ, Ryu RK: Race and sex disparities in outcomes of dialysis access maintenance interventions. J Vasc Interv Radiol 29: 476–481.e1, 2018 https://doi.org/10.1016/j.jvir.2017.10.018
7. Woo K, Gascue L, Goldman DP, Romley JA: Variations in outcomes of hemodialysis vascular access by race/ethnicity in the elderly. J Vasc Surg 65: 783–792.e4, 2017 https://doi.org/10.1016/j.vjs.2016.09.054
8. Shah S, Leonard AC, Megenahan K, Christianson AL, Thakar CV: Gender and racial disparities in initial hemodialysis access and outcomes in incident end-stage renal disease patients. Am J Nephrol 48: 4–14, 2018 https://doi.org/10.1159/000490624
9. Woo K, Goldman DP, Romley JA: Early failure of dialysis access among the elderly in the era of fistula first. Clin J Am Soc Nephrol 10: 1791–1798, 2015 https://doi.org/10.2215/CJN.09040914
10. DeSilva RN, Patibandla BK, Vin Y, Narra A, Chawla V, Brown RS, Goldfarb-Rumyantsev AS: Fistula first is not always the best strategy for the elderly. J Am Soc Nephrol 24: 1297–1304, 2013 https://doi.org/10.1681/ASN.2012060632
11. Murea M, James KM, Russell GB, Byrum GV 3rd, Yates JE, Tuttle NS, Bleyer AJ, Burkart JM, Freedman BI: Risk of catheter-related bloodstream infection in elderly patients on hemodialysis. Clin J Am Soc Nephrol 9: 764–770, 2014 https://doi.org/10.2215/CJN.07710713
12. Lok CE, Huber TS, Lee T, Shenoy S, Yezulin AS, Abreau K, Allon M, Asit A, Astor BC, Glickman MH, Graham J, Moiste LM, Rajan DK, Roberts C, Vachharajani TJ, Valentini RP, National Kidney Foundation: KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update [published correction appears in Am J Kidney Dis 77: 551, 2021]. Am J Kidney Dis 75[Suppl 2]: S1–S164, 2020 https://doi.org/10.1053/j.ajkd.2019.12.001
13. Astor BC, Eustace JA, Powe NR, Klag MJ, Fink NE, Coresh J; CHOICE Study: Type of vascular access and survival among incident hemodialysis patients: The Choices for Healthy Outcomes in Caring for ESRD (CHOICE) Study. J Am Soc Nephrol 16: 1449–1455, 2005 https://doi.org/10.1681/ASN.2004090748
14. Lee T, Thamer M, Zhang Y, Zhang Q, Allon M: Outcomes of elderly patients after predialysis vascular access creation. J Am Soc Nephrol 26: 3133–3140, 2015 https://doi.org/10.1681/ASN.2014090938
15. Claudet F, Hottelart C, Allard J, Allot V, Bocquentin F, Boudet R, Champliaux B, Charmes JP, Ciobotaru M, Dickson Z, Essig M, Honoré P, Lacour C, Lagarde C, Manescu M, Peyronnet P, Poux JM, Rerolle JP, Rince M, Couchoud C, Aldigier JC; RENLimousin: The clinical status and survival in elderly dialysis:
Example of the oldest region of France. *BMC Nephrol* 14: 131, 2013 https://doi.org/10.1186/1471-2369-14-131

16. Yoo TH, Chaer RA, Dillavou ED, Leers SA, Makaroun MS: Patients started on hemodialysis with tunneled dialysis catheter have similar survival after arteriovenous fistula and arteriovenous graft creation. *J Vasc Surg* 62: 1590–7.e2, 2015 https://doi.org/10.1016/j.jvs.2015.07.076

17. Hassan NA, D’Orsi ET, D’Orsi CJ, O’Neill WC: The risk for medial arterial calcification in CKD. *Clin J Am Soc Nephrol* 7: 275–279, 2012 https://doi.org/10.2215/CJN.06490711

18. Kim YO, Song HC, Yoon SA, Yang CW, Kim NI, Choi YJ, Lee EJ, Kim WY, Chang YS, Bang BK: Preexisting intimal hyperplasia of radial artery is associated with early failure of radiofrequency arteriovenous fistula in hemodialysis patients. *Am J Kidney Dis* 41: 422–428, 2003 https://doi.org/10.1053/ajkd.2003.50051

19. Allon M, Litovsky S, Young CJ, Deierhoi MH, Goodman J, Hanaway M, Lockhart ME, Robbins ML: Correlation of pre-existing vascular pathology with arteriovenous graft outcomes in hemodialysis patients. *Am J Kidney Dis* 62: 1112–1129, 2013 https://doi.org/10.1053/j.ajkd.2013.03.040

20. Skaga EA, Aspesen ST, Oldervoll L, Morkedal B, Vatten L, Wilsall U, Ellingsen O: Age and gender differences of endothelial function in 4739 healthy adults: The HUNT3 Fitness Study. *Eur J Prev Cardiol* 20: 531–540, 2013 https://doi.org/10.1177/2047487312444234

21. Lok CE, Allon M, Moist L, Oliver MJ, Shah H, Zimmerman D: Risk equation determining unsuccessful cannulation events and failure to maturation in arteriovenous fistulas (REDUCE FTM II). *J Am Soc Nephrol* 17: 3204–3212, 2006 https://doi.org/10.1681/ASN.2006030190

22. Peterson WJ, Barker J, Allon M: Disparities in fistula maturation persist despite preoperative vascular mapping. *Clin J Am Soc Nephrol* 3: 437–441, 2008 https://doi.org/10.2215/CJN.03480807

23. Richardson AI, Leake A, Schmieder GC, Biuckians A, Stokes GK, Panneton JM, Clickman MH: Should fistulas really be first in the elderly patient? *J Vasc Access* 10: 199–202, 2009

24. Vindelhauzen LN, Vindelhauzen AH, Lumgair H, Rebollo I, Vindelhauzen LS, Marnode N, Cacciola R, Macdougall I: Vascular access for hemodialysis in the elderly. *Mamode N, Cacciola R, Macdougall I: Vascular access for hemodialysis in the elderly.*

25. Olsha O, Hijazi J, Goldin I, Shemesh D: Vascular access in hemodialysis patients. *Am J Kidney Dis* 15: 1796–1803, 2020 https://doi.org/10.2215/CJN.03600320

26. Allon M, Ornt DB, Schwab SJ, Rasmussen C, Delmez JA, Greene T, Kusek JW, Martin AA, Minda S: Hemodialysis (HEMO) Study Group: Factors associated with the prevalence of arteriovenous fistulas in hemodialysis patients in the HEMO study. *Kidney Int* 58: 2178–2185, 2000 https://doi.org/10.1046/j.1523-1755.2000.00391.x

27. Isahaque B, Zayed MA, Miller J, Nguyen D, Kaji AH, Lee JT, O’Connell J, de Virgilio C: Increased use of brachiocephalic arteriovenous access stulas improves functional primary patency. *J Vasc Surg* 62: 442–447, 2015 https://doi.org/10.1016/j.jvs.2015.03.019

28. Siracuse JJ, Gill HL, Ebelboumy I, Wollstein A, Kotsurovsky Y, Catz D, Kim IK, Morrissey NJ: Effect of race and insurance status on outcomes after vascular access placement for hemodialysis. *Ann Vasc Surg* 28: 964–969, 2014 https://doi.org/10.1016/j.annvgs.2013.10.016

29. System USRD: USRDS annual data report: Epidemiology of kidney disease in the United States, 2018. Available at: https://www.usrsds.org/annual-data-report/previous-adrs. Accessed August 8, 2021

30. Qian J, Lee T, Thamer M, Zhang Y, Crews DC, Allon M: Racial disparities in the arteriovenous fistula care continuum in hemodialysis patients. *Clin J Am Soc Nephrol* 15: 467–471, 2020 https://doi.org/10.2215/CJN.09090919

31. Allon M, Ornt DB, Schwab SJ, Rasmussen C, Delmez JA, Greene T, Kusek JW, Martin AA, Minda S: Hemodialysis (HEMO) Study Group: Factors associated with the prevalence of arteriovenous fistulas in hemodialysis patients in the HEMO study. *Kidney Int* 58: 2178–2185, 2000 https://doi.org/10.1046/j.1523-1755.2000.00391.x

32. Singh N, Sidaway AN, DeZee KJ, Neville RF, Akbari C, Henderson W: Factors associated with early failure of infrainguinal lower extremity arterial bypass. *J Vasc Surg* 47: 556–561, 2008 https://doi.org/10.1016/j.jvs.2007.09.059

33. Astor BC, Eustace JA, Klag MJ, Powe NR, Longenecker JC, Fink NE, Marcovina SM, Coresh J; CHOICE Study: Race-specific association of lipoprotein(a) with vascular access interventions in hemodialysis patients: The CHOICE Study. *Kidney Int* 61: 1115–1123, 2002 https://doi.org/10.1046/j.1523-1755.2002.00194.x

34. Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG: Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. *JAMA* 301: 2331–2339, 2009 https://doi.org/10.1001/jama.2009.801

35. Murea M, Brown WM, Divers J, Moossavi S, Robinson TW, Bagwell B, Burkart JM, Freedman BI: Vascular access placement order and outcomes in hemodialysis patients: A longitudinal study. *Am J Nephrol* 46: 268–275, 2017 https://doi.org/10.1159/000481313

36. Ladak F, Ravani P, Oliver MJ, Kamar F, Clarke A, Hiremath S, Macrae J, Blake P, Moist LM, Garg AX, Lam N, Dumaine C, Quinn RR: The influence of age on the likelihood of catheter-free fistula use in hemodialysis patients. *Can J Kidney Health Dis* 6: 2054358119861943, 2019 https://doi.org/10.1177/2054358119861943

37. Lee T, Barker J, Allon M: Comparison of survival of upper arm arteriovenous fistulas and grafts after failed forearm fistula. *Am J Kidney Dis* 18: 1936–1941, 2007 https://doi.org/10.1016/S0272-6386(06)01119-X

38. Lee T, Qian J, Thamer M, Allon M, Tradeoffs in vascular access selection in elderly patients initiating hemodialysis with a catheter. *Am J Kidney Dis* 72: 509–518, 2018 https://doi.org/10.1053/j.ajkd.2018.03.023

39. Voorzaat BM, Jannaat CJ, van der Bort KEA, Dekker FW, Rotmans JI. Patency outcomes of arteriovenous fistulas and grafts for hemodialysis access: A trade-off between

Patient-centric Approach in Vascular Access Practice, Murea et al. 1387
nonmaturation and long-term complications. *Kidney360* 1: 916–924, 2020.

50. Nording R, Skogland G, Gage SM, Lithgow T, Himmelbirg J, Rivara MB, Hays RD, Woo K, Peipert JD: Vascular access-specific health-related quality of life impacts among hemodialysis patients: Qualitative development of the hemodialysis access-related quality of life (HARQ) instrument. *BMC Nephrol* 21: 16, 2020 https://doi.org/10.1186/s12882-020-1683-5

51. Elwyn G, Frosch D, Thomson R, Joseph-Williams N, Lloyd A, Kinnithers P, Cording E, Tomson D, Dodd C, Rollnick S, Edwards A, Barry M: Shared decision making: A model for clinical practice. *J Gen Intern Med* 27: 1361–1367, 2012 https://doi.org/10.1007/s11606-012-2077-6

52. Dhingra RK, Young EW, Hulbert-Sharon TE, Leavely SF, Port FK: Type of vascular access and mortality in U.S. hemodialysis patients. *Kidney Int* 60: 1443–1451, 2001 https://doi.org/10.1046/j.1523-1755.2001.00947.x

53. Ishani A, Collins AJ, Herzog CA, Foley RN: Septicemia, access and cardiovascular disease in dialysis patients: The US RSKS Wave 2 study. *Kidney Int* 68: 311–318, 2005 https://doi.org/10.1111/j.1523-1755.2005.00414.x

54. Pastan S, Socie JM, McClellan WM: Vascular access and increased risk of death among hemodialysis patients. *Kidney Int* 62: 620–626, 2002 https://doi.org/10.1046/j.1523-1755.2002.00460.x

55. Bradbury BD, Fissell RB, Albert JM, Anthony MS, Critchlow FD, Fissell RB, Albert JM, Anthony MS, Critchlow FD, Chen H, Divers J: A randomized pilot study to improve outcomes in peritoneal dialysis: A multinational nomal group technique study. *Clin J Am Soc Nephrol* 14: 74–83, 2019 https://doi.org/10.2215/CJN.02215-CJN.2015.5380518

56. Rozo de los Ordones AL, Sharma N, Heyland DK, You JJ: Strategies for effective goals of care discussions and decision-making: Perspectives from a multi-centre survey of Canadian hospital-based healthcare providers. *BMC Palliat Care* 14: 38, 2015 https://doi.org/10.1186/s12904-015-0035-5

57. Kurella Tamura M, Covinsky KE, Shorr AF, Hauck WW, Yaffe K, Landefeld CS, McCulloch CE: Functional status of elderly adults before and after initiation of dialysis. *N Engl J Med* 361: 1539–1547, 2009 https://doi.org/10.1056/NEJMoa0904655

58. Murea M, Burkart J: Finding the right hemodialysis vascular access in the elderly: A patient-centered approach. *J Vasc Access* 17: 386–391, 2016

59. Monroy-Cuadros M, Yilmaz S, Salazar-Baruelos A, Doig C: Risk factors associated with patency loss of hemodialysis vascular access within 6 months. *Clin J Am Soc Nephrol* 5: 1787–1792, 2010 https://doi.org/10.2215/CJN.09441209

60. Roodbeen R, Vreke A, Boland G, Rademakers J, van Muiswinkel M, Noordman J, van Dulmen S: Communication and shared decision-making with patients with limited health literacy: barriers, strategies and suggestions for improvement reported by hospital-based palliative care providers. *PloS One* 15: e0234926, 2020 https://doi.org/10.1371/journal.pone.0234926

61. Battles JB: Quality and safety by design. *Qual Saf Health Care* 15: Suppl 1: i1–i3, 2006 https://doi.org/10.1136/qshc.2006.020347

62. Brathwaite J, Westbrook M: Rethinking clinical organisational structures: An attitude survey of doctors, nurses and allied health staff in clinical directorates. *J Health Serv Res Policy* 10: 10–17, 2005 https://doi.org/10.1136/jshc.2005.010015

63. Leape L, Berwick D, Clancy C, Conway J, Gluck P, Guest J, Lawrence D, Morath J, O’Neill P, Pinakinwicz D, Isaac T, Lucian Leape Institute at the National Patient Safety Foundation: Transforming healthcare: A safety imperative. *Qual Saf Health Care* 18: 424–428, 2009 https://doi.org/10.1136/qshc.2009.036954

64. Brathwaite J: Between-group behaviour in health care: Gaps, edges, boundaries, disconnections, weak ties, spaces and holes. A systematic review. *BMC Health Serv Res* 10: 330, 2010 https://doi.org/10.1186/1472-6963-10-330

65. Brathwaite J: Bridging gaps to promote networked care between teams and groups in health delivery systems: A systematic review of non-health literature. *BMJ Open* 5: e006567, 2015 https://doi.org/10.1136/bmjopen-2014-006567
among veterans: A quality improvement initiative. *Am J Nephrol* 45: 14–21, 2017 https://doi.org/10.1159/000452346
80. Kii mii M, MacRae JM: A dedicated vascular access program can improve arteriovenous fistula rates without increasing catheters. *J Vasc Access* 9: 254–259, 2008
81. Dwyer A, Shelton P, Brier M, Aronoff C: A vascular access coordinator improves the prevalent fistula rate. *Semin Dial* 25: 239–243, 2012 https://doi.org/10.1111/j.1525-139X.2011.00961.x
82. Gill S, Quinn R, Oliver M, Kamar F, Kahani R, Devoe D, Mysore P, Pannu N, MacRae J, Manns B, Hemmelgarn B, James M, Tonelli M, Lewin A, Liu P, Ravani P: Multi-disciplinary vascular access care and access outcomes in people starting hemodialysis therapy. *Clin J Am Soc Nephrol* 12: 1991–1997, 2017 https://doi.org/10.2215/CJN.04303117
83. Raza H, Hashmi MN, Dianne V, Hamza M, Hejaili F, A-Sayyari A: Vascular access outcome with a dedicated vascular team based approach. *Saudi J Kidney Dis Transpl* 30: 39–44, 2019 https://doi.org/10.4103/1319-2442.252931
84. Owen JE, Walker RJ, Edgell L, Collie J, Douglas I, Hewitson TD, Becker GI: Implementation of a pre-dialysis clinical pathway for patients with chronic kidney disease. *Int J Qual Health Care* 18: 145–151, 2006 https://doi.org/10.1093/intqhc/mzl094
85. Polkinghorne K, Perry PC: Effect of a vascular access nurse coordinator to reduce central venous catheter use in incident hemodialysis patients: A quality improvement report. *Am J Kidney Dis* 53: 99–106, 2019 https://doi.org/10.1053/j.ajkd.2008.06.026
86. Ackad A, Simonian GT, Steel K, Parisi C, Mancini S, Douglas C, Buckner D: A journey in reversing practice patterns: A multidisciplinary experience in implementing DOQI guidelines for vascular access. *Nephrol Dial Transplant* 20: 1450–1455, 2005 https://doi.org/10.1093/ndt/gfh818
87. Fishbane S, Agoritsas S, Bellucci A, Halinski C, Shah HH, Sakhiya V, Balsam L: Augmented Nurse Care Management in KDST stages 4 to 5: A Randomized Trial. *Am J Kidney Dis* 70: 498–505, 2017 https://doi.org/10.1053/j.ajkd.2017.02.366
88. Flythe JE, Narendra JH, Yule C, Manivannan S, Murphy S, Lee S-YD, Strigo TS, Peskoe S, Pendergast JF, Boulware LE, Green JA: Vascular access outcome with a dedicated vascular team among veterans: A quality improvement initiative. *J Am Soc Nephrol* 25: 239–243, 2012 https://doi.org/10.2215/CJN.03840808
89. Gall a JH; The Renal Physicians Association and the American Society of Nephrology: Clinical practice guideline on shared decision-making in the appropriate initiation of and withdrawal from dialysis. *J Am Soc Nephrol* 11: 1340–1342, 2000 https://doi.org/10.1618/ASN.2019.711734
90. Quinn RR, Oliver MJ, Devoe D, Poinen K, Kabani R, Kamar F, My s o re P, Lewin AM, H ire m a s h S, MacRae J, James MT, Miller L, Hemmelgarn BR, Mois t LM, Gar g AX, Ch o w d h u r y TT, Rav ani P: The effect of fistula attitudinal risk of access and cause-related death. *J Am Soc Nephrol* 28: 613–620, 2017 https://doi.org/10.1618/ASN.2016020151
91. Ravani P, Quinn R, Oliver M, Robinson B, Pisoni R, Pannu N, MacRae J, Manns B, Hemmelgarn B, James M, Tonelli M, Gillespie B: Examining the association between hemodialysis access type and mortality: The role of access complications. *Clin J Am Soc Nephrol* 12: 955–964, 2017 https://doi.org/10.2215/CJN.12181116
92. Hemmelgarn BR, Mois t LM, Lok CE, Tonelli M, Manns BJ, Holden RM, LeBlanc M, Faris P, Barre P, Zhang J, Scott-Douglas N: Prevention of Dialysis Catheter Lumen Occlusion with rt-PA versus Heparin Study Group: Prevention of dialysis catheter malfunction with recombinant tissue plasminogen activator. *N Engl J Med* 364: 303–312, 2011 https://doi.org/10.1056/NEJMoai101376
93. Bleyer AJ, Murea M: Antimicrobial catheter locks: Searching for the ideal solution. *J Am Soc Nephrol* 22: 1781–1782, 2011 https://doi.org/10.1681/ASN.2010080839
94. Merikhi A, Gharsay A, Madhiy M, Mehrkash M, Poureshabram E, Chambarinia L: Comparison of the effect of antibiotic-lock and ethanol-lock methods on infection rate in children with hemodialysis catheter. *Clin J Am Exp Urol* 7: 380–390, 2019 https://doi.org/10.1371/journal.pone.0197203
95. Mokrzycki MH, Leigh KA, Kliger AS, Niyyar VD, Asp VB, Goldestein L, Taylor Q, Novosad SA: Implementation of an electronic catheter checklist in outpatient hemodialysis facilities: Results of a pilot quality improvement project. *Kidney Int* 360: 2: 684–694, 2021

Received: April 28, 2021 Accepted: June 7, 2021