Article type: Letters

Article Title: A Case Series of MGUS and COVID-19

Authors: Jesus D. Gonzalez-Lugo MD, Lizamarie Bachier-Rodriguez MD, Mendel Goldfinger MD, Aditi Shastri MBBS, R. Alejandro Sica MD, Kira Gritsman MD, PhD, Vikas Mehta MD, Rafi Kabarriti MD, Sanjay Goel MD, Amit Verma MD, Ira Braunschweig MD, Noah Kornblum MD*, and Ioannis Mantzaris MD*

1Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY.
2Department of Otorhinolaryngology-Head and Neck Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY.
3Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY.

Running Title: MGUS and COVID-19

Corresponding Authors:

Ioannis Mantzaris:
Montefiore Medical Center, Moses Campus
111 East 210th Street, Hofheimer 100, Bronx, NY, 10467
E-mail: imantzar@montefiore.org
Phone Number: 718-920-4826
Fax Number: 718-798-7474

Noah Kornblum:
Montefiore Einstein Center for Cancer Care

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi:10.1111/bjh.16906

This article is protected by copyright. All rights reserved
Letter:

Monoclonal Gammopathy of Undetermined Significance (MGUS) is a pre-malignant clonal plasma cell disorder, with 25 to 30% life-long risk of progression to multiple myeloma (MM). It is usually asymptomatic, but infrequently associated with several serious conditions, such as neuropathies, glomerulonephritis, and
acquired angioedema. Moreover, a higher risk of infection and deep venous thrombosis has been reported in patients with MGUS.

In recent studies of SARS-CoV-2 infection (COVID-19) in cancer, a higher fatality rate was found, especially in hematologic malignancies. While not an overt hematologic malignancy, MGUS falls within the spectrum of plasma cell dyscrasias, and has the potential to disrupt immunity and coagulation. Therefore, MGUS could affect the course and outcome of COVID-19, however such association remains unknown.

We describe 7 patients diagnosed with MGUS who tested positive for COVID-19 from March 18th through April 8th, 2020, at Montefiore Health System, that was the epicenter of the COVID-19 pandemic in the Bronx, NY (Table 1). All cases were positive by real-time reverse-transcriptase polymerase chain reaction of nasopharyngeal swabs.

Case 1: 59-year-old Hispanic man with low-intermediate-risk IgG-kappa MGUS, diabetes mellitus (DM) and hypertension (HTN), presented to the Emergency Department (ED) with three days of dry cough, subjective fever, and myalgias. He was normotensive, afebrile, with room-air oxygen saturation (SpO2) of 98%. He did not require hospital admission, was followed-up one month later and his symptoms had resolved.

Case 2: 66-year-old Caucasian woman with low-risk IgG-lambda MGUS, HTN, and bronchiectasis, presented to the ED with one week of productive cough, subjective fever, wheezing, and diarrhea. She was normotensive, febrile to 102F, with a room-air SpO2 of 98%. Chest X-Ray (CXR) showed chronic changes. She was hospitalized, started on broad-spectrum antibiotics for presumed superimposed pneumonia, and a course of hydroxychloroquine and Lopinavir/Ritonavir per institutional protocol. Her hospitalization was complicated by non-infectious diarrhea, which eventually improved, and was discharged to a rehabilitation facility after a 16-day hospitalization.

Case 3: 83-year-old African American (AA) man with high-intermediate-risk IgA-kappa MGUS, HTN, DM, and chronic kidney disease (CKD), presented with altered mental status (AMS) and lethargy noticed few hours prior; and six days of dry cough and malaise. He was normotensive, afebrile, with room-air SpO2 of 80%, which corrected to 96% on nasal canula (NC) (4L/min). His CXR revealed multifocal bilateral infiltrates. Serum glucose was 884mg/dL. He was started on intravenous fluids and insulin for hyperosmolar hyperglycemic...
state. D-dimers peaked at 20ug/mL. Received broad-spectrum antibiotics for potential bacterial superinfection. His confusion gradually resolved, oxygen requirements improved, and was discharged home on hospital day eight.

Case 4: 71-year-old man with low-intermediate-risk IgM-lambda MGUS, and HTN presented to his general practitioner’s office with dry cough. He was instructed to self-isolate at home, was followed-up one month later and noted his symptoms had resolved.

Case 5: 81-year-old AA woman with low-risk IgG-Lambda MGUS, HTN, DM, CKD, congestive heart failure, and pulmonary sarcoidosis presented to the ED with ten days of dry cough and dyspnea. She was hypotensive (90/53), afebrile, with room-air SpO2 of 89%, that improved to 99% on non-rebreather mask (NRB). CXR showed left lung base atelectasis. Acute kidney injury (AKI) was noted. She was hospitalized, started on intravenous fluids with resolution of hypotension, and treated with hydroxychloroquine per institutional protocol. She was transitioned to NC on hospital day two. Her renal function and oxygenation gradually improved, and she was discharged to a rehabilitation facility after an 11-day hospitalization.

Case 6: 76-year-old Hispanic man with low-intermediate-risk IgA-Lambda MGUS, HTN, DM and CKD, presented to the ED with five days of dry cough, and dyspnea. He was hypertensive (181/78 mmHg), febrile (101F), with room-air SpO2 of 96%. CXR showed bibasilar infiltrates. AKI with hyperkalemia was noted. He was hospitalized and later developed non-ST-elevation myocardial infarction, managed conservatively. His renal function deteriorated and on hospital day 6 hemodialysis was initiated. His renal function gradually improved and was discharged home on hospital day 25.

Case 7: 92-year-old AA man, nursing home resident with low-intermediate-risk IgG-Kappa MGUS, HTN, DM, CKD, epilepsy, and dementia presented to the ED with AMS and lethargy noticed few hours prior to presentation. He had dry cough, dyspnea and malaise for 1 week. He was hypertensive (158/88 mmHg), afebrile, with room-air SpO2 of 96%. On examination he was using accessory respiratory muscles. The patient had do-not-resuscitate and do-not-intubate orders and was therefore placed on a NRB. CXR showed left mid-lower lobe infiltrates. He was admitted, started on broad-spectrum antibiotics and additionally treated for decompensated heart failure. D-dimers peaked at 20ug/mL. Finally, his family opted for comfort care and he expired on hospital day 13.
COVID-19 is a heterogeneous disease that ranges from asymptomatic in some patients to fatal in others. Advanced age, male sex, and comorbidities, such as HTN and DM have been identified as risk factors for adverse prognosis. Significant coagulopathy has been observed in severe cases, and elevated D-dimer levels have been shown to have prognostic significance. In a study performed at our institution, patients with hematologic malignancies and COVID-19 had a higher mortality rate than non-cancer patients.

We wanted to investigate the effects that MGUS might have on patients with COVID-19. Our patients were older adults with an age range between 59 and 92 years. They all had underlying conditions, identified as high-risk comorbidities, yet none of the patients required mechanical ventilation or ICU management, and with the exception of one fatality, they all eventually recovered (table 1). The only fatality was a patient with multiple risk factors, including male sex, advanced age, nursing home residency, multiple comorbidities and a very elevated D-dimer.

MGUS represents the earliest stage of plasma cell dyscrasia and is generally an asymptomatic phase of the disease spectrum. Still, some studies suggest MGUS patients manifest increased susceptibility to bacterial and viral infections, as well as coagulation abnormalities. Whether these perturbations of immunity and coagulation have the potential to impact the clinical trajectory of COVID-19 remains to be examined with large-scale data. This small case series seems to suggest that MGUS may not pose additional risks for poor outcomes in COVID-19 infection.

Acknowledgements: None

Authorship:
Contribution: AV, NK, IM conceived the research, AV, VM, RK, LBR, MG, AS, RAS, KG, IB and SJ identified the cases and clinical information, JGL collected the data, JGL, NK, IM, and AV wrote the manuscript. All authors reviewed and approved the final version of the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Ioannis Mantzaris, Montefiore Medical Center, Moses Campus, Hofheimer 100, 111East 210th Street, Bronx, NY, 10467; e-mail: imantzar@montefiore.org
Noah Kornblum, 1695 Eastchester Rd, Bronx, NY, 10461; e-mail: nkornblu@montefiore.org

References:
1. Blade J, Rosinol L, Cibeira MT, de Larrea CF. Pathogenesis and progression of monoclonal gammopathy of undetermined significance. *Leukemia*. 2008;22(9):1651-1657.
2. Go RS, Rajkumar SV. How I manage monoclonal gammopathy of undetermined significance. *Blood*. 2018;131(2):163-173.
3. Kristinsson SY, Tang M, Pfeiffer RM, et al. Monoclonal gammopathy of undetermined significance and risk of infections: a population-based study. *Haematologica*. 2012;97(6):854-858.
4. Kristinsson SY, Fears TR, Gridley G, et al. Deep vein thrombosis after monoclonal gammopathy of undetermined significance and multiple myeloma. *Blood*. 2008;112(9):3582-3586.
5. Dai M, Liu D, Liu M, et al. Patients with Cancer Appear More Vulnerable to SARS-COV-2: A Multicenter Study during the COVID-19 Outbreak. *Cancer Discov*. 2020.
6. Mehta V, Goel S, Kabarriti R, et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. *Cancer Discov*. 2020.
7. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet*. 2020;395(10229):1054-1062.
8. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. *JAMA*. 2020.
9. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. *Aging (Albany NY)*. 2020;12(7):6049-6057.
10. Bowles L, Platton S, Yartey N, et al. Lupus Anticoagulant and Abnormal Coagulation Tests in Patients with Covid-19. *N Engl J Med*. 2020.
11. Fauci AS, Lane HC, Redfield RR. Covid-19 - Navigating the Uncharted. *N Engl J Med*. 2020;382(13):1268-1269.

This article is protected by copyright. All rights reserved
Table 1: Baseline characteristics, laboratory findings and clinical course of COVID-19 patients with MGUS

Patient							
Patient							
Age (yr)	59	66	83	71	81	76	92
Gender	Male	Female	Male	Male	Female	Male	Male
Race/Ethnicity	Hispanic	White	AA	Other	AA	Hispanic	AA
Comorbidities	DM HTN	HTN CLD	DM HTN CKD	HTN	DM HTN CLD CKD CHF	DM HTN CKD	DM HTN CKD Dementia
Immunoglobulin Subtype	IgG Kappa	IgG Lambda	IgA Kappa	IgM Lambda	IgG Lambda	IgA Lambda	IgG Kappa
MGUS Risk Stratification	Low-intermediate	Low	High-intermediate	Low-intermediate	Low	Low-intermediate	Low-intermediate
NH Resident	No	No	No	No	No	No	Yes

Lab Tests

Hemoglobin, g/dL							
Prior to adm.	12.5	12.7	11.8	13.5	10.4	12.5	11.2
Minimum	-	9.9	11.5	-	8.2	10.7	8.1
Platelets, x10^9/L							
Prior to adm.	389	317	210	116	282	315	191
Minimum	-	156	89	-	185	301	141
ANC (x10^9/L)							
Prior to adm.	6.4	6.4	2.9	1.2	4.3	2.2	1.1
Minimum	-	1.2	5.3	-	2.3	2.8	0.3
Clinical Course	Hospital admission	ICU admission	Intubation	Dialysis	LOS, days	Outcome	
-----------------	-------------------	--------------	------------	----------	-----------	---------	
	Yes	No	No	No	-	Recovered	
	No	No	No	No	16	Recovered	
	No	No	No	No	8	Recovered	
	Yes	No	No	No	11	Recovered	
	Yes	No	No	No	25	Recovered	
	Yes	No	No	No	13	Deceased	

*AA: African American, ALC: Absolute Lymphocyte Count, ANC: Absolute Neutrophil Count, CHF: Congestive Heart Failure, CKD: Chronic Kidney Disease, CLD: Chronic Lung Disease, DM: Diabetes Mellitus, HTN: Hypertension, LOS: Length of stay, MGUS: Monoclonal Gammopathy of Undetermined Significance

**MGUS Risk Stratification per Mayo Clinic Criteria