Introduction

Unicellular organisms (prokaryota) including bacteria transformed from lifeless matter 3.5 billion years ago [1-5]. Organic compounds were produced by artificial methods [6]. Microorganisms transform to other microorganisms [7]. Human cells transform to different cells [8,9]. A lifeless protein transforms to an infectious prion [10]. All of the above data suggest pathways independent of contamination may produce microbes.

Objective

To prove that fetal cells may produce microbes.

Methods

We searched the keywords fetal infections in Google scholar and pub med for articles and their references published in English from 2000 to 2017. We then applied the probability theory to calculate the probability of pathways independent of contamination to produce fetal infections.

Results

Fetal cells may produce infections. The probability of certainty of this observation is 99.9998%.

Conclusion

Fetal cells may produce infections.

Keywords: Germ Theory; Infections; Gastric Ulcers; Duodenal Ulcers; Burn Wounds Infections
The probability that Fetal Cells May Produce Microbes is % 99.9996 (Table 1) [15-23].

Discussion

Although, the precise mechanism and pathways of transformation remain unknown the probability that fetal cells produce or transform to microorganisms to be correct is 99.9996%. The presence of microorganisms in placenta or amniotic fluid has been attributed to contamination by gut microbiota. This observation has never been validated. Furthermore, the possibility of contamination through various barriers of human tissue does not seem to be likely. Of importance, milk microbiota are morphologically distinct and are not contaminants. This discovery may introduce novel treatments for opportunistic infections especially those associated with burns and major trauma. It may improve our understanding of inflammatory disorders and discovering yet unknown environmental influences (sudden temperature changes, exposure to cold) in the pathogenesis of common or unrecognized infections.

References

1. Salerian AJ (2017) Human body may produce bacteria. Medical Hypotheses 103: 31-132.
2. Salerian AJ (2018) Was Pasteur Wrong? Human Cells may Generate Bacteria. Biomed J Sci &Tech Res 4(5).
3. Schopf JW (2006) Fossil evidence of Archaean Life. Philosophical transactions of the Royal Society. Biological sciences 361(1470): 869-885.
4. Cavalier-Smith T (2006) Cell evolution and Earth history: Stasis and revolution. Philosophical transactions Royal Society London biological sciences 361(1470): 969-1006.
5. Altermann W, Karmieczak J (2003) Archean Micro fossils: A reappraisal of early life on earth. Research microbiology 154(9): 611-617.
6. Lazzano A, Bada JL (2003) Orig Life Evol Biosph 33: 235.
7. Rosenow EC (1914) Test mutations within the streptococcus enamel proper school. Journal of Infectious Disorders 14(1): 1-32.
8. Bracco RM, Krauss MR, Roe AS, MacLeod CM (1957) Transformation reactions between pneumococcus and three strains of streptococci. J Exp Med 106(2): 247-259.
9. Krause DS, Thiiese ND, Collector ML (2001) Multi-Organ, Multi-Lineage Engraftment by a Single Bone Marrow-Derived Stem Cell. Cell 105(3): 369-377.
10. Brown P, Will RG, Brindle R, Asher DM, Detweiler L (2001) Bovine spongiform encephalopathy and variant Creutzfeldt-Jacob disease: Background evolution and current concerns. Emerging Infectious Diseases 7(1): 6-16.
11. Jimenez E, Martin ML, Martin R, Ordirosa J, M Olives, et al. (2008) Is fetal meconium sterile? Research in Microbiology 159(3): 187-189.
12. Ardissone AN, DeLa Cruz D, Davis- Richardson AG, Rechigi KT (2014) Meconium microbiome analysis identifies bacteria correlated with premature birth. PLOS ONE 9(6):e101399.
13. Cabrera-Rubio R, Collado MC, Latten K, Salminnen S, Isolauri E, et al. (2012) The human milk microbiome changes over lactation and is shaped by maternal weights mode of delivery. The American Journal of clinical nutrition 96(3): 544-551.
14. Martin R, Langa S, Revirigio C, Jimenez E, Marin ML, et al. (2003) Milk is a source of lactic acid bacteria for the infant gut. The journal of pediatrics 143(6): 754-758.
15. Hakizima, El-Shamy SB (1985) Genetic Susceptibility in Pityriasis versicolor. Dermatologica 171(2): 86-88.
16. Burke R (1961) Tinea Versicolor: Susceptibility factors in experimental infection in human beings. Journal of investigative dermatology 36(5): 389-401.
17. Faergemann J, Fredricksson T (1981) Experimental infections in rabbits and humans with Pityrosporum orbiculare and Povale. Journal of Investigative Dermatology 77(3): 314-318.
18. Faergemann J, Aly R, Wilson DR, Maibach HI (1983) Skin occlusion: Effect on Pityrosporum orbiculare, skin P-CO2, pH, trans epidermal water loss, and water content. Archives of dermatological research November 275(6): 383-387.

19. Najm WI (2011) Peptic ulcer disorder. Primary care 38(3): 383-394.

20. Macedo JLS, Santos JB (2005) Bacterial and fungal colonization of burn wounds. Mem Inst Oswaldo Cruz 100(5): 535-539.

21. Kaur H, Bhat J, Anvikar AR, Rao S, Gadge V (2006) Bacterial profile of blood and burn wound infections in burn patients. Burns 34: 89-95.

22. Dib JR, Weiss A, Neumann A, Ordonez O, Estevez M, et al. (2009) Isolation of bacteria from remote high-altitude Andean Lakes Able to grow in the presence of antibiotics. Recent patents ion Anti-infective drug discovery 4(1): 66-76.

23. Darwin C, Barlow N (1887) The autobiography of Charles Darwin. New York: Norton, USA.

ISSN: 2574-1241
DOI: 10.26717/BJSTR.2018.09.001739

Alen J Salerian MD. Biomed J Sci & Tech Res

Assets of Publishing with us
- Global archiving of articles
- Immediate, unrestricted online access
- Rigorous Peer Review Process
- Authors Retain Copyrights
- Unique DOI for all articles

Submission Link: https://biomedres.us/submit-manuscript.php

This work is licensed under Creative Commons Attribution 4.0 License

https://biomedres.us/