Antibiotic-induced disruption of the microbiome exacerbates chemotherapy-induced diarrhea and can be mitigated with autologous fecal microbiota transplantation.
Abstract

Chemotherapy is well documented to disrupt the gut microbiome leading to poor treatment outcomes and a heightened risk of adverse toxicity. While strong associations exist between its composition and gastrointestinal toxicity, its causal contribution remains unclear. Our inability to move beyond association has limited the development and implementation of microbial-based therapeutics in chemotherapy adjuncts with no clear rationale of how and when to deliver them.

Here, we investigate the impact of augmenting the gut microbiome on gastrointestinal toxicity caused by the chemotherapeutic agent, methotrexate (MTX). Fecal microbiome transplantation (FMT) delivered after MTX had no appreciable impact on gastrointestinal toxicity. In contrast, disruption of the microbiome with antibiotics administered before chemotherapy exacerbated gastrointestinal toxicity, impairing mucosal recovery (P<0.0001) whilst increasing diarrhea severity (P=0.0007) and treatment-related mortality (P=0.0045). Importantly, these detrimental effects were reverse when the microbiome was restored using autologous FMT (P=0.03); a phenomenon dictated by the uptake and subsequent expansion of *Muribacteraeae*. These are the first data to show that clinically impactful symptoms of gastrointestinal toxicity are dictated by the microbiome, and provide a clear rationale for how and when to target the microbiome to mitigate the acute and chronic complications caused by disruption of the gastrointestinal microenvironment.

Translation of this new knowledge should focus on stabilizing and strengthening the gut microbiome before chemotherapy, and developing new microbial approaches to accelerate recovery of the mucosa. By controlling the depth and duration of mucosal injury, secondary consequences of gastrointestinal toxicity may be avoided.

Keywords: Microbiome, faecal microbiome transplantation, FMT, antibiotics, chemotherapy, methotrexate, gastrointestinal toxicity, mucositis.
Introduction

Cancer therapy is well recognized for its detrimental effects on the host microbiota, causing profound and often chronic changes in the microbial community of the gastrointestinal tract. While the exact microbial shifts differ between unique treatment regimens, chemotherapy is typically associated with a loss of key commensals and expansion of enteric pathogens; both of which are exacerbated by prophylactic and empirical antibiotic use. Disruption of the host microbiota is now considered a critical event in the initiation of various treatment complications, many of which are catalyzed by breakdown of the mucosal barrier. While mucosal barrier injury (MBI) is initiated by acute cytotoxic injury to the intestinal stem cell niche, it is perpetuated by innate immune responses that are thought to be dictated by host-microbe interactions at the mucosal interface. However, these assumptions are largely based on associations between the gut microbiome composition and gastrointestinal symptoms, with robust causal data lacking. As such, it remains unclear if microbial changes that occur after chemotherapy truly contribute to symptoms, or are simply a form of collateral damage resulting from breakdown of the mucosal barrier.

MBI has long been a major clinical obstacle without effective intervention. Acutely, it decreases the absorptive capacity of the intestine and manifests as diarrhea causing a debilitating loss in quality of life and thus, compliance and dose maintenance. In the setting of hematopoietic stem cell transplantation (HSCT), the complications of MBI are particularly profound due to underlying immunosuppression driving immunological complications including graft-versus host disease (GvHD) by permitting translocation of endogenous danger signals that activate donor derived T cells. This same process underpins the development of bloodstream infection (BSI), with the expansion and subsequent translocation of enteric pathobionts now reported to drive more than 50% of all BSI cases in stem cell transplant recipients. Of particular interest, a growing body of evidence suggests that microbial disruption (i.e. caused by antibiotic use) at the time of chemotherapy increases the risk of adverse events linked to MBI, suggesting a causal role for the host microbiome.

Fecal microbiota transplantation (FMT) is a powerful tool that can be used fundamentally to explore causal relationships between the host and their resident microbes. It is also recognized for its ability to deliver a diverse and metabolically active microbial community to the host with greater durability compared to commercial probiotics making it of great interest in supportive cancer care. Its efficacy is well documented in the case of recurrent Clostridium difficile infection (CDI) with experimental efficacy also shown for Inflammatory Bowel Disease (IBD), highlighting its luminal and mucosal benefits. Within oncology, its use has been met with caution due to the perceived risks of translocation, however recent reports detail profound benefits in steroid refractory GvHD. While it has been demonstrated that FMT is able to restore the microbial community after 5-fluorouracil and antibiotics, it remains unclear if FMT-induced microbial restoration is able to...
prevent or minimize MBI and its associated clinical manifestations. The current study therefore aimed to determine the impact of microbial manipulation, using antibiotics and FMT, on MBI and its clinical manifestations using a validated model of methotrexate-induced gastrointestinal toxicity. By delivering autologous gut microbes after chemotherapy, we aimed to provide new data to aid in defining the causal contribution of the microbiome to MBI and associated symptoms, and identify translational methods aimed at strengthening the host microbiome before treatment.

Materials and Methods

This study is reported in accordance with the ARRIVE guidelines for the robust and reproducible reporting of preclinical research.

Ethical statement, husbandry specifications and experimental considerations

All experiments were conducted in accordance with ethical guidelines approved by the national Dutch committee: “Centrale Commissie Dierproeven” (CCD) and the Institutional Animal Care and Use Committee of the University Medical Centre Groningen (UMCG), University of Groningen (RUG) under the license number 15338-01. All rats were individually housed in conventional, open top cages at the “Centrale Dienst Proefdieren” (CDP, Central Animal Facility) at UMCG. Rats were housed under 12 h light/dark cycles with ad libitum access to autoclaved AIN93G rodent chow (Research Diet Services, The Netherlands) and sterile water. Sawdust bedding was provided in all cases as well as a toilet roll for enrichment. All cages were randomly arranged across racks to prevent potential bias. All experiments were performed in N=9 rats per group which is sufficiently powered to detect a 25% effect size at power 80% and alpha=0.05.

Preclinical model of MTX-induced mucosal barrier injury

Mucosal barrier injury (MBI) was induced with the chemotherapeutic drug, methotrexate (MTX) obtained from the Pharmachie Holding B.V. (The Netherlands) administered at 45-60 mg/kg as previously described. Briefly, male Wistar rats (150-180 g, Charles River, Germany) were treated with a single intravenous dose of MTX on day 0 administered via the penile vein under anesthetic (3% isoflurane). A volume equivalent dose of 0.9% NaCl was used as vehicle control in all experiments as previously described. All experiments were performed in a blinded manner, with rats given a unique identification number.

The primary endpoint of the study was plasma citrulline, a validated biomarker of small intestinal enterocyte mass and clinically utilized marker of MBI caused by chemotherapy. Plasma citrulline was assessed in repeated blood samples (75 µl) collected from the tail vein into EDTA-treated hematocrit capillary tubes. Plasma was isolated from whole blood by centrifugation (4000 g for 10
min) and citrulline quantified using automated ion exchange column chromatography as previously described. Data are presented as raw citrulline values assessed longitudinally and area under the curve (AUC). AUC was defined as the area below $Y = \text{Mean baseline citrulline value for all groups and above the individual animal citrulline curve}$. Accordingly, the more severe the mucositis, the higher the AUC value.

Clinical toxicity assessment
Clinical manifestations of MBI were assessed daily and included body weight, diarrhea, food intake, water intake and welfare assessments. Diarrhea was assessed using a validated grading system where $0 = \text{no diarrhea}$, $1 = \text{mild diarrhea indicated by soft but formed pellets}$, $2 = \text{moderate diarrhea indicated by peri-anal staining}$ and $3 = \text{severe diarrhea with extensive staining and leakage}$. Food and water intake were measured daily by manually weighing the contents of the chow hopper and water bottle. During the experimental period, HRW was responsible for maintaining animal water and chow eliminating the possibility of animal caretakers to change water bottles or refresh chow.

Histopathology
Routine haematoxylin and eosin (H&E) staining was performed to assess intestinal tissue morphology. Briefly, drop-fixed jejunal tissue was processed and embedded into paraffin wax. 4 µm sections were cut on a rotary microtome and mounted onto glass Superfrost® slides. H&E staining was performed as per routine protocols and slides were scanned using the Hamamatsu Photonics Digital Slide Scanner (NanoZoomer S60). Images were evaluated using the NDP.view2 software. Villus height and crypt depth were measured using annotation tools in NDP.view2. 10 well oriented crypts/villi were measured per slide and an average calculated per animal.

Antibiotic-induced microbial disruption
Antibiotics (750 mg/l vancomycin, 350 mg/l imipenem and 1 g/l metronidazole) were administered in drinking water for 1 week to disrupt the intestinal microbiota prior to MTX treatment. Antibiotics were refreshed twice weekly.

Fecal microbiota transplantation
In all experiments, fecal microbiota transplantation (FMT) was performed, prepared using fecal pellets collected during acclimatization. To eliminate individual variation in the FMT product, fecal pellets were pooled from all rats. Fecal pellets were collected from rats by placing them into individual cages (without bedding) cleaned with 70% ethanol. Immediately following defecation, fecal pellets were collected with sterile forceps and placed directly into de-oxygenated amies transport solution with 10% glycerol at a concentration of 1 pellet/ml. Samples were then homogenized by vortexing at maximum speed for 5 min until no visible pellets were present. The fecal homogenate was then aliquoted under anaerobic conditions into individual (daily) portions (7 ml) and stored at -80°C.
until the day of administration. An additional FMT was also prepared for quality control (culture analysis of CFUs). On the day of administration, an aliquot of fecal homogenate was thawed at room temperature under anaerobic conditions before being centrifuged at 13,000 g for 10 min. The supernatant was removed and the pellet resuspended in 7 ml of sterile, de-oxygenated 1X PBS. The sample was then homogenized by vortexing for 1 min and allowed to settle by gravity for 15 min. The supernatant was then administered to rats between 8-10am via oral gavage (500 µl). Control rats received a volume equivalent dose of 1X PBS. FMT was evaluated as: 1) an adjunct to MTX, administered on day 1-7 after MTX, and 2) a restorative approach after antibiotic prophylaxis, administered on days -3,-2 and -1 prior to MTX (administered on day 0). Specific schedules for each experiment are shown in figure panels (Figures 3C and 5F).

Microbiome analysis
The fecal microbiota composition was assessed using 16S rRNA gene sequencing as previously described. Briefly, DNA was extracted using the double bead-beater procedure and the QIAamp DNA Stool Minikit guidelines. Isolated DNA was quantified using the NanoDrop UV Visible Light Spectrophotometer and the V3-V4 region amplified using polymerase chain reaction (PCR). Each PCR reaction contained 1 µl of 10 µM 341f forward primer, (V3F: 5’aatgatacggcgaccaccgagatct 3’) 25 µl Phire HS II Master Mix, 22 µl DNase free water, 1 µl of 10 µM 806r barcoded reverse primer and 1 µl DNA template (100 ng/µl). Amplification was confirmed using gel electrophoresis. Size selection and fragment removal was performed using AMPure XP beads as per manufacturer’s guidelines, before the final PCR products were normalized to 2mM and pooled to form a single library which was stored at -4oC until sequencing. Sequencing was performed using the MiSeq Benchtop Next Generation Sequencer (Illumina). The paired-end sequencing data received from Illumina software were processed and analyzed using the Qiagen CLC Genomics Workbench v12.0 (kindly provided by Qiagen to HRW). De novo OTU-picking was performed without chimera filtering using Greengenes (RRID:SCR_002830 version 13.5) as a reference database.

Statistics
All data (excluding 16S) were analyzed using GraphPad Prism v8.0 (RRID:SCR_002798). Data were first analyzed for normality using the D'Agostino-Pearson Normality test. Parametric data were subsequently analyzed using one- or two-way analysis of variance (ANOVA) with post-hoc correction for multiple comparisons. For repeated measures, mixed model with Geisser’s greenhouse correction was used to identify significant differences. When normality was not confirmed, a Kruskal-Wallis with Dunn’s multiple comparison was used to identify significance. Area under the curve (AUC) was used to reduce repeated data sets and simultaneously assess the duration and intensity of a parameter. Specific statistical methods are defined in each figure legend. In all cases, P<0.05 was considered statistically significant.
Results

Methotrexate disrupts the gastrointestinal microenvironment, prompting mucosal barrier injury and pathogen expansion

MTX caused self-limiting mucosal barrier injury (MBI) indicated in plasma citrulline concentrations ([Figure 1A/B](#)). Maximum MBI was observed 4 days post-MTX treatment, however it was significantly decreased relative to controls from day 2-8 (P<0.0001). AUC for plasma citrulline was significantly increased in MTX-treated rats (44.03 ± 26.44 vs 438.0 ± 51.82, P<0.0001) underpinned by a significant villus atrophy in the jejunum (594.9 ± 18.8μm vs 327.0 ± 25.3μm, P<0.0001, **Figure 1C**).

MTX also impaired weight gain (ΔBW), with significant differences in µBW from day 2-10 (P<0.0001, **Figure 1D**). This was accompanied by anorexia, with food intake significantly decreased in MTX-treated rats on day 4 (P=0.008, **Figure 1E**). No changes in water intake were identified (data not shown).

Analysis of the fecal microbiota revealed no significant change in alpha diversity (Shannon’s index) following MTX (**Figure 1F**). Compositionally however, there was a profound increase in the relative abundance of Proteobacteria taxa, especially Enterobacteriales (**Figure 1G, Figure S1**), with paralleled decreases in Bifidobacteriales (**Figure 1H, Figure S1**).
Chapter 4

Figure 1. MTX disrupts the gastrointestinal microenvironment. MTX administered intravenously at 45 mg/kg caused significant mucosal injury and microbial changes. (A-B) show plasma citrulline, a biomarker of mucosal injury where higher AUC indicates more profound MBI. (B) shows villus height determined from histological analysis of the jejunum. (D-E) show clinically-relevant symptoms of MBI, change in body weight and food intake, respectively; each of which are decreased with MTX. (F-H) show 16S rRNA sequencing outputs, including alpha diversity which was unchanged by MTX and compositional changes in key taxa including Proteobacteria and Actinobacteria phyla. Data (A-F) shown as mean ± SEM. Data (G-H) shown as mean relative abundance at day 4. All experiments were conducted in N=9 rats / group repeated once. * indicates P<0.05, ** indicates P<0.02, *** indicates P<0.001.

Fecal microbiota transplantation promotes microbial stability during MTX toxicity but does not impact clinical manifestations

Following confirmation of microbial disruption in our model, we evaluated the efficacy of autologous FMT to prevent MBI and associated clinical manifestations of MTX treatment. FMT increased both microbial richness and diversity following MTX (P=0.03, P=0.04, respectively, Figure 2A/B). While the relative abundance of Proteobacteria taxa was decreased, this failed to reach statistical significance (Figure 2C). FMT was unable to mitigate MBI, indicated by plasma citrulline (longitudinal dynamics...
and area under the curve (AUC), Figure 2D/E) or ΔBW (Figure 2F). It did however increase food intake during peak mucosal injury (3.2 ± 0.7 g/day vs 8.5 ± 1.7 g/day, P=0.007, Figure 2G). There were no significant correlations between peak MBI (defined by citrulline at day 4) and microbial richness or diversity (Figure 2H/I). A significant but mild correlation was identified between citrulline and the relative abundance of Proteobacteria at day 4 (R²=0.24, P=0.002, Figure 2J).

Figure 2. Autologous faecal microbiome transplantation protects the microbiome during MTX treatment but does not prevent mucosal injury. (A-B) show microbial richness and diversity in MTX and MTX+FMT groups at baseline and peak injury (day 4). (D-G) show citrulline (raw and AUC) and clinical outcomes across groups. Food intake on day 4 increased in FMT treated animals (G, **P=0.01). (H-J) show correlations between citrulline on day 4 (peak injury) and microbial read outs. All grouped data shown as mean ± SEM. All experiments were conducted in N=9 rats / group repeated once. * indicates P<0.05, ** indicates P<0.02, *** indicates P<0.001.

Antibiotic-induced microbial disruption exacerbates MTX-induced gastrointestinal toxicity by impairing mucosal recovery

To further investigate the impact of the microbiota on MTX-induced MBI, we evaluated the effect of antibiotic-induced microbial disruption (ABX) on MTX toxicity in a high-dose model (Figure 3C). MTX was administered at 60 mg/kg (MTX60) to induce a more severe MBI phenotype. ABX, alone or in
combination with MTX60, induced a profound decrease in microbial diversity, while MTX60 alone caused no significant change in alpha diversity (Figure 3A). Irrespective of diversity, both MTX60 and ABX+MTX60 caused changes in the phylogenetic composition of the microbiota characterized by expansion of Proteobacteria (Figure 3B).

Figure 3. ABX and MTX synergistically damage the gastrointestinal microbiota. (A) shows alpha diversity (Shannon’s Index) at day 0 and +4 after MTX and ABX+MTX. At both time points the diversity of the faecal microbiota was significantly decreased in ABX+MTX rats (P<0.0001). (B) shows composition (taxonomic classification: phylum) of microbiota at day +4, and (C) shows experimental design. Antibiotics ablated enteric commensals, permitting domination of proteobacteria phyla. Consistent with lower dose model (MTX45), MTX60 caused no change in alpha diversity (A) but altered the abundance of Proteobacteria, Bacteroidetes and Firmicutes (B). All grouped data shown as mean ± SEM. All experiments with MTX treatment were conducted in N=9 rats / group repeated once; control and antibiotic alone groups had N=6.

ABX significantly increased MTX60-induced mortality (P=0.0045; Figure 4A). While acute MBI, indicated by plasma citrulline, was comparable between MTX60 and ABX+MTX60, the ability for the mucosa to recover was significantly impaired in ABX treated rats (Figure 4B). This resulted in a significantly increased plasma citrulline AUC in ABX+MTX60 treated rats compared to MTX60 alone (583±21 vs 698±11, P<0.0001, Figure 4C). This was accompanied by more profound weight loss in rats treated with ABX+MTX60 compared MTX60 alone (Figure 4D) irrespective of food intake (Figure 4E). Histopathological analysis of the jejunum revealed more pronounced villous atrophy in ABX+MTX60 rats compared to all other groups (P<0.0001), including MTX60 (P=0.03; Figure 4F).
Autologous fecal microbiota transplantation during chemotherapy-induced diarrhea

Figure 4. ABX prophylaxis impairs mucosal recovery causing a more severe toxicity phenotype. (A) shows survival/mortality after MTX±ABX, with antibiotics increasing MTX-induced mortality (P=0.0045). (B-C) show plasma citrulline dynamics and AUC indicating impaired mucosal recovery in ABX+MTX. (D) shows change in body weight after MTX treatment, which was increased in ABX+MTX rats on day +3 (P=0.039) and +4 (P=0.006). (E) shows food intake in all groups, with MTX and ABX+MTX groups showing no differences. (F) shows histopathological changes in the jejunum at day +4, with ABX exacerbating MTX-induced villous atrophy (P=0.03). All grouped data shown as mean ± SEM. All experiments with MTX treatment were conducted in N=9 rats / group repeated once; control and antibiotic alone groups had N=6. * indicates P<0.05, ** indicates P<0.02, *** indicates P<0.001.

FMT mitigates detrimental effects of ABX on MTX-induced diarrhea with its efficacy dictated by colonisation of Muribaculaceae (S24-7)

Disruption of the microbiome with ABX induced a more pronounced toxicity phenotype. As such, we next aimed to restore the microbiome after ABX using autologous FMT. Given high rates of mortality seen in the MTX60 (high-dose) model, MTX was administered as intravenously at 45 mg/kg (MTX45). At this dose, ABX had no significant impact on mortality (Figure 5A). However, consistent with the high-dose MTX60 model, ABX slowed mucosal recovery, with a significantly lower citrulline value seen at day 8 compared to MTX45 only (P=0.02, Figure 5B). FMT accelerated mucosal recovery, increasing citrulline at day 8 compared to ABX+MTX45 (P=0.04, Figure 5B). These subtle differences did not affect the AUC for citrulline (Figure 5C). Clinically, weight loss and food intake were not affected by FMT, with significant differences only identified between MTX45 and ABX+MTX45 groups (P<0.05, Figure 5D/E).
Figure 5. Effect of restorative FMT on gastrointestinal toxicity caused by moderate dose MTX (45mg/kg) and ABX. (A) shows survival/mortality for MTX vs ABX+MTX vs ABX+FMT+MTX, with no significant difference observed in the low dose model (MTX45). (B-C) show plasma citrulline dynamics and AUC, which were only mildly influenced by FMT (day +8, P=0.048). (D) shows change in body weight relative to day 0 in all groups. ABX exacerbated MTX-induced weight loss (P=0.046 day +7, P=0.038 day +8); there were no differences between MTX alone and ABX+FMT+MTX. (E) shows food intake across the course of the experiment, with no significant effect of FMT observed. (F) is the experimental design. All grouped data shown as mean ± SEM. All experiments were conducted in N=9 rats / group repeated once. * indicates P<0.05, ** indicates P<0.02, *** indicates P<0.001.

Despite only mild effects on MBI, weight loss and food intake, ABX profoundly exacerbated diarrhea caused by MTX45 (Figure 6A-C). Antibiotics induced a severe diarrhea phenotype compared to MTX45 alone (Day 7, P=0.01; Figure 6D) and ABX+FMT+MTX45 groups (Day 7, P=0.0007, Figure 6D). This resulted in a significantly higher diarrhea AUC in ABX+MTX45 compared to both MTX45 alone (P=0.02; Figure 6E) and ABX+FMT+MTX45 (P=0.03; Figure 6E).
Autologous fecal microbiota transplantation during chemotherapy-induced diarrhea

Figure 6. Pre-treatment with antibiotics cause severe diarrhea when administered in combination with MTX and can be reversed by FMT. (A-C) show diarrhea profiles for (A) MTX only, (B) ABX+MTX and (C) ABX+FMT+MTX groups; data show percentage of rats experiencing certain grade of diarrhea at given time point. (D) shows mean diarrhea score over experimental period, with ABX+MTX showing increased diarrhea severity at day +6 (P=0.0114) and +7 (P=0.0007) with AUC for diarrhea calculated in (E) (P=0.03). Grouped data shown as mean ± SEM. All experiments were conducted in N=9 rats/group repeated once. * indicates P<0.05, ** indicates P<0.02, *** indicates P<0.001.

Analysis of individual responses revealed a responder/non-responder effect with significant differences seen in citrulline dynamics (P<0.0001, Figure 7A-C). Responders (“R”) were defined as rats maintained stable citrulline values throughout the experimental period (i.e. responded to FMT). Non-responders (“NR”) displayed typical citrulline dynamics of MTX treatment characterized by hypo-citrullinemia at day 4 (i.e. did not respond to FMT).

Subgroup analysis of the microbiota composition at day 0 in ABX+FMT+MTX rats (N=9) suggests the durability of the FMT dictates response to MTX, with principal component 3 (PCo3) differentiating R vs NR (Figure 7D). PCo3 correlated with the relative abundance of Muribaculaceae (S24-7), which was significantly elevated in FMT responders (P=0.001, Figure 7E/F).
Figure 7. Severity of MTX-induced MBI is defined by FMT durability. (A) shows plasma citrulline dynamics analysed for N=9 rats in ABX+FMT+MTX group showing clustering of responders (R; N=3) and non-responders (NR; N=6). (B-C) show sub-group analysis of R vs NR showed significant difference in longitudinal citrulline dynamics and AUC (P=0.0005). (D) shows principal coordinate analysis, with PCo3 aligned with responder phenotype and correlating with S24-7 abundance (E-F) shows relative abundance of S24-7 (Muribaculaceae) between R and NR identified by differential abundance analysis (FDR adjusted P=0.02). All grouped data shown as mean ± SEM. All analyses were conducted in N=9 rats / group repeated once. * indicates P<0.05, ** indicates P<0.02, *** indicates P<0.001.

Discussion

Disruption of the intestinal microbiome is increasingly associated with unfavorable treatment outcomes in people with cancer, reported to dictate both the efficacy and toxicity of chemotherapy as well as the risk of relapse 1. Here we report the first phenotypic analysis of fecal microbiome transplantation (FMT) delivered after cytotoxic chemotherapy (MTX) and antibiotics, identifying Muribaculaceae (S24-7) as a key regulator of mucosal injury and repair. Mucosal barrier injury (mucositis) in the gastrointestinal tract is a major oncological obstacle due to its acute symptomology and systemic consequences. While a strong body of data show microbial injury after chemotherapy drugs, including MTX 26, it remains hotly debated if these changes are directly mediated by chemotherapy, or simply a form of collateral damage resulting from mucosal injury 27. Our data support the latter, with FMT delivered after MTX failing to appreciably impact mucosal injury.
(defined by citrulline) and its clinical manifestations (weight loss, anorexia), despite maintaining a more stable microbiome composition defined by 16S sequencing. The lack of FMT efficacy could also be explained by the hypothesis that MTX-induced mucosal injury creates a luminal environment that is inhospitable to microbes introduced via FMT, or simply the degree of mucosal injury is too profound for the donated microbes to influence. Each interpretation is based on the concept that microbial disruption occurs secondary to mucosal injury; a hypothesis that is consistent with existing data showing chemotherapeutic drugs, including 5-FU and irinotecan, do not directly interfere with the microbiome.

We do however show that disruption of the host microbiome with antibiotics impairs mucosal recovery and exacerbates diarrhea, with FMT having a beneficial impact. This supports the hypothesis that while microbial disruption occurs after mucosal injury, dysbiosis amplifies mucosal injury and establishes self-perpetuating feedback loops that drive clinical manifestations. This strongly supports interventions targeting the microbiome to minimise the depth and duration of MBI, accelerating recovery and controlling clinical symptoms/consequences.

Whilst the dynamics of microbial injury after chemotherapy have been the topic of intense investigation, their correlation with treatment outcomes has been variable. In contrast, the composition of the microbiome at baseline (i.e. at the time of chemotherapy) is increasingly linked to how an individual responds. This has been most elegantly demonstrated in the case of immunotherapy-induced colitis, however a growing body of evidence anecdotally suggests that similar mechanisms may dictate an individual’s risk of mucosal injury caused by chemotherapy. In a recent systemic review of predictors of mucosal injury coordinated by the Multinational Association for Supportive Care in Cancer, antibiotic use in the month leading up to cancer therapy was identified as a modulator of mucosal injury. Consistent with these findings, antibiotic administration prior to MTX treatment caused a profound increase in treatment-related mortality (TMR) and diarrhea. Underlying this observation was severe mucosal injury, with antibiotics exacerbating villous atrophy and impairing mucosal recovery. In fact, antibiotic treated rats failed to recover from MTX treatment, with hypocitrullinemia evident at day 10. Given the large relative expansion in Proteobacteria, it may also be the case that expansion of enteric pathogens serve to amplify mucosal injury through interaction with Toll-like receptor 4; an already defined mediator of chemotherapy-induced diarrhea. Further research is required to identify the microbial factors that control mucosa recovery in the context of chemotherapy treatment, with short chain fatty acids (SCFA) a promising candidate due to their ability to simultaneously promote luminal acidification (thus controlling pathogen expansion) as well as mucosal proliferation and immunology. Of note, SCFAs have been documented to be deficient after chemotherapy and exert protective effects in chemotherapy- and radiation-induced intestinal injury.
Chapter 4

The detrimental effects we observed when antibiotics were administered prior to MTX combined with the growing number of studies associating increased morbidity, mortality and relapse with antibiotic use. This has been explored with the greatest detail in haematopoietic stem cell transplant (HSCT) recipients due to the intensity of chemotherapy they receive and current reliance on antibiotics. Importantly, comparable to our findings, antibiotics and microbial injury have been reported to increase the risk and severity of intestinal graft-versus-host disease. Mechanistically, this is thought to be caused by increased intestinal permeability and mucin degradation — two well-defined aspects of chemotherapy-induced mucotoxicity and diarrhea — and, as such, may also be mechanisms responsible for our findings.

Microbial injury caused by antibiotic prophylaxis is well documented. While the antibiotic schedule used in our study was not intended to reflect clinical practice, when viewed alongside the growing body of literature, our findings raise important implications for antibiotic stewardship. Specifically, they highlight the need to select appropriate prophylactic anti-microbial drugs that do not damage the microbiome. Ciprofloxacin is reported to have mild effects on the microbiome and may therefore be a potential avenue to restrict antibiotics whilst still providing appropriate infection control. However, in some cases, residual microbial injury may be caused by previous antibiotic exposure, cytotoxic treatment, co-morbidities or other medications. As such, restoring or strengthening the microbiome prior to treatment represents a potentially important supportive care strategy.

We showed that FMT administered after antibiotics but before MTX was able to restore typical dynamics of mucosal recovery, reiterating our findings that suggest a causal contribution of the microbiome to mucosal healing. However, of particular interest was the clear clustering in response to FMT intervention. FMT uptake is documented to be variable both preclinically and clinically, reflecting donor selection and the preparation/status of the recipient. Our data demonstrated a low response rate to FMT intervention, with only 33% of rats responding to FMT. Subgroup analysis suggest response to FMT intervention is mediated through the durability of the FMT, specifically colonization and expansion of Muribaculaceae (S24-7). Muribaculaceae (S24-7) is a typical rodent bacterial family belonging to the Bacteroidetes phylum already documented to regulate FMT efficacy in rodents. It is recognized to increase in abundance following prebiotic intervention with vitamin B2 and selenium, both of which have documented benefits in the prevention of mucosal injury caused by chemotherapy. Translating this new knowledge is somewhat challenging as Muribaculaceae is absent in humans. However, it is considered to be a core functional microbe of the rodent gut, found in high abundance under healthy circumstances. As such, our findings may simply reflect that restoration of Muribaculaceae is an indicator of successful FMT uptake, and we hypothesise that colonization of other functional microbes relevant to the human gut (e.g. Fecalibacterium or Blautia) would likely dictate clinical FMT efficacy. Importantly, it cannot be
excluded that the abundance of Muribaculaceae were comparable between responders and non-responders prior to FMT, and such, pre-FMT microbiome composition may also be an important factor dictating its efficacy.

While our data strongly support adjunctive FMT strategies to improve treatment outcomes, this study is not without its limitations. It must be noted that due to the mild nature of microbial injury seen at 45 mg/kg MTX, a higher dose was used for the subsequent study (MTX60). This, in combination with antibiotics, induced unacceptable levels of mortality and as such, we reverted to 45 mg/kg for all remaining experiments. Our observations remained largely comparable across both doses, with the exception of citrulline and body weight. As such, we cannot definitively conclude that the exacerbated diarrhea profile is the result of impaired mucosal recovery in the lower dose model. The heightened diarrhea may simply reflect antibiotic-induced dysbiosis. However, we did not see substantial diarrhea in our rats while undergoing antibiotic treatment (6/27 developed grade 1 diarrhea for average of 1.16 days) suggesting it is the combination of antibiotics and MTX that is responsible the exacerbated diarrhea phenotype driven by impaired mucosal recovery. Nonetheless, given the multifactorial nature of chemotherapy-induced diarrhea, it is most likely that both the dysbiosis and impaired mucosal recovery caused by antibiotics are driving the diarrhea profile.

In conclusion, our data underscore the importance of microbial stability during chemotherapy treatment and provide a rationale to re-evaluate the administration of microbial interventions for the control of mucosal injury. We suggest microbial interventions be used prior to chemotherapy treatment to repopulate or shift the composition of the host microbiome, thus offering a new strategy to improve treatment outcomes. Alternatively, a strong rationale also exists for post-chemotherapy intervention aimed at promoting restoration of the mucosal barrier through microbial intervention. This approach would minimize the duration of mucosal injury, decreasing the intensity of symptoms and opportunity for translocation events.
References

1. Ervin SM, Ramanan SV, Bhatt AP. Relationship Between the Gut Microbiome and Systemic Chemotherapy. *Dig Dis Sci* 2020 Mar; 65(3): 874-884.

2. Pouncey AL, Scott AJ, Alexander JL, Marchesi J, Kinross J. Gut microbiota, chemotherapy and the host: the influence of the gut microbiota on cancer treatment. *Ecancermedicalscience* 2018; 12: 868.

3. Hueso T, Ekpe K, Mayeur C, Gatse A, Joncquel-Chevallier Curt M, Gricourt G, et al. Impact and consequences of intensive chemotherapy on intestinal barrier and microbiota in acute myeloid leukemia: the role of mucosal strengthening. *Gut Microbes* 2020 Nov; 12(1): 1800897.

4. Mohiuddin JJ, Chu B, Facciabene A, Poirier K, Wang X, Doucette A, et al. Association of antibiotic exposure with survival and toxicity in patients with melanoma receiving immunotherapy. *J Natl Cancer Inst* 2020 Apr 15.

5. Bowen J, Al-Dasooqi N, Bossi P, Wardill H, Van Sebille Y, Al-Azri A, et al. The pathogenesis of mucositis: updated perspectives and emerging targets. *Support Care Cancer* 2019 Oct; 27(10): 4023-4033.

6. Tarricone R, Abu Koush D, Nyanzi-Wakholi B, Medina-Lara A. A systematic literature review of the economic implications of chemotherapy-induced diarrhea and its impact on quality of life. *Crit Rev Oncol Hematol* 2016 Mar; 99: 37-48.

7. Diaz C, Neubauer S, Rechenmacher F, Kessler H, Missirlis D. Recruitment of alphabeta3 integrin to alpha5beta1 integrin-induced clusters enables focal adhesion maturation and cell spreading. *J Cell Sci* 2020 Jan 2; 133(1).

8. Chang CC, Hayase E, Jenq RR. The role of microbiota in allogeneic hematopoietic stem cell transplantation. *Expert Opin Biol Ther* 2021 Jan 18: 1-11.

9. Reed D, Sen J, Lassiter K, Thomas T, Harr E, Daniels E, et al. Prospective Initiative to Reduce Mucosal Barrier Injuries and Bloodstream Infections in Patients With Hematologic Malignancy Receiving Inpatient Chemotherapy. *JCO Oncol Pract* 2020 Mar; 16(3): e306-e312.

10. Dandoy CE, Alonso PB. MBI-LCBI and CLABSI: more than scrubbing the line. *Bone Marrow Transplant* 2019 Dec; 54(12): 1932-1939.

11. Wardill HR, Sonis ST, Blijlevens NMA, Van Sebille YZA, Ciortba MA, Loeffen EAH, et al. Prediction of mucositis risk secondary to cancer therapy: a systematic review of current evidence and call to action. *Support Care Cancer* 2020 Nov; 28(11): 5059-5073.

12. Dembroszky F, Gede N, Szakacs Z, Hegyi P, Kiss S, Farkas N, et al. Fecal Microbiota Transplantation May Be the Best Option in Treating Multiple Clostridioides difficile Infection: A Network Meta-Analysis. *Infect Dis Ther* 2020 Oct 26.

13. Green JE, Davis JA, Berk M, Hair C, Loughman A, Castle D, et al. Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than Clostridium difficile infection: a systematic review and meta-analysis. *Gut Microbes* 2020 Nov 9; 12(1): 1-25.

14. Wardill HR, Secombe KR, Bryant RV, Hazenberg MD, Costello SP. Adjunctive fecal microbiota transplantation in supportive oncology: Emerging indications and considerations in
15. van Lier YF, Davids M, Haverkate NJE, de Groot PF, Donker ML, Meijer E, et al. Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. *Sci Transl Med* 2020 Aug 12; 12(556).

16. Zhang F, Zuo T, Yeoh YK, Cheng FWT, Liu Q, Tang W, et al. Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease. *Nat Commun* 2021 Jan 4; 12(1): 65.

17. Le Bastard Q, Ward T, Sidiropoulos D, Hillmann BM, Chun CL, Sadowsky MJ, et al. Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. *Sci Rep* 2018 Apr 18; 8(1): 6219.

18. da Silva Ferreira AR, Wardill HR, Havinga R, Tissing WJE, Harmsen HJM. Prophylactic Treatment with Vitamins C and B2 for Methotrexate-Induced Gastrointestinal Mucositis. *Biomolecules* 2020 Dec 29; 11(1).

19. Wardill HR, da Silva Ferreira AR, Lichtenberg Cloo S, Havinga R, Harmsen HJM, Vermeij WP, et al. Pre-therapy fasting slows epithelial turnover and modulates the microbiota but fails to mitigate methotrexate-induced gastrointestinal mucositis. *Gut Microbes* 2020 Nov 9; 12(1): 1-9.

20. Kuiken NS, Rings EH, Havinga R, Groen AK, Tissing WJ. Effect of minimal enteral feeding on recovery in a methotrexate-induced gastrointestinal mucositis rat model. *Support Care Cancer* 2016 Mar; 24(3): 1357-1364.

21. Blijlevens NM, Lutgens LC, Schattenberg AV, Donnelly JP. Citrulline: a potentially simple quantitative marker of intestinal epithelial damage following myeloablative therapy. *Bone Marrow Transplant* 2004 Aug; 34(3): 193-196.

22. van der Velden WJ, Herbers AH, Bruggemann RJ, Feuth T, Peter Donnelly J, Blijlevens NM. Citrulline and albumin as biomarkers for gastrointestinal mucositis in recipients of hematopoietic SCT. *Bone Marrow Transplant* 2013 Jul; 48(7): 977-981.

23. van Vliet MJ, Tissing WJ, Rings EH, Koetsie HA, Stellard F, Kamps WA, et al. Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. *Pediatr Blood Cancer* 2009 Dec 15; 53(7): 1188-1194.

24. Wardill HR, Gibson RJ, Van Sebille YZ, Secombe KR, Coller JK, White IA, et al. Irinotecan-Induced Gastrointestinal Dysfunction and Pain Are Mediated by Common TLR4-Dependent Mechanisms. *Mol Cancer Ther* 2016 Jun; 15(6): 1376-1386.

25. Heida FH, van Zoonen A, Hulscher JBF, Te Kiefte BJC, Wessels R, Kooi EMW, et al. A Necrotizing Enterocolitis-Associated Gut Microbiota Is Present in the Meconium: Results of a Prospective Study. *Clin Infect Dis* 2016 Apr 1; 62(7): 863-870.

26. Nayak RR, Alexander M, Deshpande I, Stapleton-Gray K, Rimal B, Patterson AD, et al. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. *Cell Host Microbe* 2021 Jan 7.

27. da Silva Ferreira AR, Wardill HR, Tissing WJE, Harmsen HJM. Pitfalls and novel experimental approaches to optimize microbial interventions for chemotherapy-induced gastrointestinal mucositis. *Curr Opin Support Palliat Care* 2020 Jun; 14(2): 127-134.

28. Vanlancker E, Vanhoecke B, Stringer A, Van de Wiele T. 5-Fluorouracil and irinotecan (SN-
38) have limited impact on colon microbial functionality and composition in vitro. PeerJ 2017; 5: e4017.

29. Zhang M, Zhou H, Xu S, Liu D, Cheng Y, Gao B, et al. The gut microbiome can be used to predict the gastrointestinal response and efficacy of lung cancer patients undergoing chemotherapy. Ann Palliat Med 2020 Nov; 9(6): 4211-4227.

30. Shi W, Shen L, Zou W, Wang J, Yang J, Wang Y, et al. The Gut Microbiome Is Associated With Therapeutic Responses and Toxicities of Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients-A Pilot Study. Front Cell Infect Microbiol 2020; 10: 562463.

31. Wardill HR, Tissing WJE. Determining risk of severe gastrointestinal toxicity based on pretreatment gut microbial community in patients receiving cancer treatment: a new predictive strategy in the quest for personalized cancer medicine. Curr Opin Support Palliat Care 2017 Jun; 11(2): 125-132.

32. Daillere R, Routy B, Goubet AG, Cogdill A, Ferrere G, Alves-Costa Silva C, et al. Elucidating the gut microbiota composition and the bioactivity of immunostimulatory commensals for the optimization of immune checkpoint inhibitors. Oncoimmunology 2020 Jul 20; 9(1): 1794423.

33. Daillere R, Derosa L, Bonvalet M, Segata N, Routy B, Gariboldi M, et al. Trial watch : the gut microbiota as a tool to boost the clinical efficacy of anticancer immunotherapy. Oncoimmunology 2020 Jun 3; 9(1): 1774298.

34. Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun 2016 Feb 2; 7: 10391.

35. Shouval R, Kouniavski E, Fein J, Danylesko I, Shem-Tov N, Geva M, et al. Risk factors and implications of oral mucositis in recipients of allogeneic hematopoietic stem cell transplantation. Eur J Haematol 2019 Oct; 103(4): 402-409.

36. Reyna-Figueroa J, Garcia-Beristain JC, Galindo-Delgado P, Limon-Rojas AE, Madrid-Marina V. Antibiotic use before chemotherapy: a risk factor for developing neutropenic colitis in children with leukemia. J Pediatr Hematol Oncol 2015 Mar; 37(2): 121-127.

37. Wardill HR, Bowen JM, Van Sebille YZ, Secombe KR, Coller JK, Ball IA, et al. TLR4-Dependent Claudin-1 Internalization and Secretagogue-Mediated Chloride Secretion Regulate Irinotecan-Induced Diarrhea. Mol Cancer Ther 2016 Nov; 15(11): 2767-2779.

38. Sun Y, O’Riordan MX. Regulation of bacterial pathogenesis by intestinal short-chain Fatty acids. Adv Appl Microbiol 2013; 85: 93-118.

39. Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol 2019; 10: 277.

40. Tian T, Zhao Y, Yang Y, Wang T, Jin S, Guo J, et al. The protective role of short-chain fatty acids acting as signal molecules in chemotherapy- or radiation-induced intestinal inflammation. Am J Cancer Res 2020; 10(11): 3508-3531.

41. Elkrief A, Derosa L, Kroemer G, Zitvogel L, Routy B. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? Ann Oncol 2019 Oct 1; 30(10): 1572-1579.
Autologous fecal microbiota transplantation during chemotherapy-induced diarrhea

42. Martins Lopes MS, Machado LM, Ismael Amaral Silva PA, Tome Uchiyama AA, Yen CT, Ricardo ED, et al. Antibiotics, cancer risk and oncologic treatment efficacy: a practical review of the literature. *Ecanercmedicalsience* 2020; 14: 1106.

43. Shono Y. Gut microbiota and graft-versus-host disease: broad-spectrum antibiotic use increases post-allogeneic hematopoietic stem cell transplant graft-versus-host disease-related mortality. *Rinsho Ketsueki* 2017; 58(7): 835-842.

44. Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. *Sci Transl Med* 2016 May 18; 8(339): 339ra371.

45. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF, et al. Intestinal Blautia is Associated with Reduced Death from Graft-versus-Host Disease. *Biol Blood Marrow Transplant* 2015 Aug; 21(8): 1373-1383.

46. Pillinger KE, Bouchard J, Withers ST, Mediwala K, McGee EU, Gibson GM, et al. Inpatient Antibiotic Stewardship Interventions in the Adult Oncology and Hematopoietic Stem Cell Transplant Population: A Review of the Literature. *Ann Pharmacother* 2020 Jun; 54(6): 594-610.

47. Bhalodi AA, van Engelen TSR, Virk HS, Wiersinga WJ. Impact of antimicrobial therapy on the gut microbiome. *J Antimicrob Chemother* 2019 Jan 1; 74(Suppl 1): i6-i15.

48. Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. *Therap Adv Gastroenterol* 2016 Mar; 9(2): 229-239.

49. Lleal M, Sarrabayrouse G, Willamil J, Santiago A, Pozuelo M, Manichanh C. A single faecal microbiota transplantation modulates the microbiome and improves clinical manifestations in a rat model of colitis. *EBioMedicine* 2019 Oct; 48: 630-641.

50. Pereira AM, Pinna C, Biagi G, Stefanelli C, Maia MRG, Matos E, et al. Supplemental selenium source on gut health: insights on fecal microbiome and fermentation products of growing puppies. *FEMS Microbiol Ecol* 2020 Oct 21; 96(11).

51. Jahangard-Rafsanjani Z, Gholami K, Hadjibabaie M, Shamshiri AR, Alimoghadam K, Sarayani A, et al. The efficacy of selenium in prevention of oral mucositis in patients undergoing hematopoietic SCT: a randomized clinical trial. *Bone Marrow Transplant* 2013 Jun; 48(6): 832-836.

52. Osaka T, Moriyama E, Arai S, Date Y, Yagi J, Kikuchi J, et al. Meta-Analysis of Fecal Microbiota and Metabolites in Experimental Colitic Mice during the Inflammatory and Healing Phases. *Nutrients* 2017 Dec 6; 9(12).
Chapter 4

Supplementary results

A) Taxonomic level: Phylum

B) Taxonomic level: Class

C) Taxonomic level: Order

Figure S1. Taxonomic composition of control and MTX treated rats. Bacterial composition at levels A) Phylum, B) Class and C) Order.
Autologous fecal microbiota transplantation during chemotherapy-induced diarrhea