Different interaction of onset age and duration of type 1 diabetes on the dynamics of autoantibodies to insulinoma-associated antigen-2 and zinc transporter 8

Eiji Kawasaki1,*, Yoichi Oikawa2,3, Akira Okada4, Norio Kanatsuna5, Tomoyuki Kawamura6,7,8, Tadashi Kikuchi9, Jungo Terasaki5, Junnosuke Miura8, Yoshihisa Itoh9, Toshiaki Hanafusa10

1Diabetes Center, Shin-Koga Hospital, Kurume, Japan, 2Department of Internal Medicine, Tokyo Saiseikai Central Hospital, Tokyo, Japan, 3Department of Endocrinology and Diabetes, School of Medicine, Saitama Medical University, Saitama, Japan, 4Okada Clinic, Fukushima, Japan, 5Department of Internal Medicine (I), Osaka Medical College, Takatsuki, Japan, 6Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan, 7Cosmic Corporation, Tokyo, Japan, 8Diabetes Center, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan, 9Eiju General Hospital, Tokyo, Japan, and 10Sakai City Medical Center, Sakai, Japan

Keywords
Age, Autoantibodies, Type 1 diabetes

*Correspondence
Eiji Kawasaki
Tel: +81-942-38-2222
Fax: +81-942-38-2248
E-mail address: e-kawasaki@tenjinkai.or.jp

J Diabetes Investig 2021; 12: 510–515
doi: 10.1111/jdi.13370

ABSTRACT

Aims/Introduction: This study aimed to investigate the dynamics associated with autoantibodies to insulinoma-associated antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A) relating to the onset age and disease duration in patients with type 1 diabetes.

Methods: Using bridging-type enzyme-linked immunosorbent assay, IA-2A, ZnT8A and glutamic acid decarboxylase autoantibodies were evaluated in 269 patients with type 1 diabetes (median onset age 18.2 years, range 0.8–86 years; median diabetes duration 7 years, range 0–58 years). We then compared the prevalence of these autoantibodies among the different age groups, along with the duration of diabetes using the Cochran–Armitage trend test and multivariate logistic regression analysis.

Results: The prevalence of IA-2A, ZnT8A and glutamic acid decarboxylase autoantibodies in patients with duration of ≤3 years was 41.1, 36.7 and 72.2%, respectively, with 80.0% expressing one or more of these autoantibodies. This prevalence declined according to the disease duration (P < 0.005). Both IA-2A and ZnT8A were more frequently observed in younger patients, whereas glutamic acid decarboxylase autoantibodies was more common in older patients. Multivariate logistic regression analysis showed that there was a significant interaction between the onset age and duration of diabetes in patients diagnosed when aged ≤10 years regarding all anti-islet autoantibodies (P < 0.05). However, for patients diagnosed in the middle tertile (aged 11–30 years), the interaction was significant only for ZnT8A, and for those with late-onset diabetes (aged ≥31 years) only for IA-2A.

Conclusions: The current study showed that the rate of disappearance of anti-islet autoantibodies is faster in patients aged ≤10 years, and that even though both proteins are localized in the insulin granule membrane, humoral autoimmunity to IA-2 and ZnT8 differs according to the age of onset.

INTRODUCTION

Anti-islet autoantibodies are important serological markers for classifying individuals with diabetes. Previous reports state that at the onset of type 1 diabetes, one or more of the anti-islet autoantibodies, including autoantibodies to glutamic acid decarboxylase (GADA), insulin, insulinoma-associated antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A), is detected in 95% of patients with type 1 diabetes.1,2 In general practice, anti-islet autoantibody measurement is recommended as a routine clinical examination to distinguish autoimmune diabetes or to clarify diagnosis when physicians encounter “atypical” cases.3,4 It is well known that Japanese patients with type 1 diabetes are
classified into three subtypes depending on the manner of onset and progression; fulminant, acute-onset or slowly progressive type 1 diabetes. Among these subtypes, the presence of anti-islet autoantibodies is essential in diagnosing acute-onset and slowly progressive type 1 diabetes. Due to anti-islet autoantibodies’ tendency to disappear years after the emergence of diabetes, a possible diagnosis of type 1 diabetes should not be dismissed in long-standing diabetes, even in the absence of autoantibodies. Furthermore, the patient’s age at onset also influences the prevalence of some anti-islet autoantibodies, and it has been reported that IA-2A and ZnT8A are more common in younger individuals. However, despite compelling evidence, the interaction between age and duration of diabetes is still unresolved. To explore this question, we investigated how the age of onset and duration of diabetes relates to the prevalence of IA-2A and ZnT8A in contradistinction to GADA.

METHODS
Participants
A total of 333 serum samples from type 1 diabetic patients were collected from six contributing institutions for the present study. All patient samples were taken from an ethnically homogeneous Japanese population. We excluded a total of 64 patients, 27 diagnosed with fulminant type 1 diabetes, and a further 37 complicated by autoimmune thyroid diseases as a result of their anti-islet autoantibodies often persistent presence in comparison with cases solely involving type 1 diabetes. Data for the remaining 269 patients, including 213 acute-onset type 1 diabetes and 56 slowly progressive type 1 diabetes, were used in all subsequent analyses. A diagnosis of type 1 diabetes was made based on the criteria set by the Committee of the Japan Diabetes Society. The study protocols were approved by the ethics committee of each contributing institute, and informed consent was obtained from all participants. The clinical and immunological profiles of included and excluded patients are summarized in Table S1. Serum samples were stored at -20°C until use.

Anti-islet autoantibody measurement
Anti-islet autoantibodies (GADA, IA-2A and ZnT8A) were determined using a bridging-type enzyme-linked immunosorbent assay (RSR Ltd., Cardiff, UK), which uses the sandwich-type principle (bivalent enzyme-linked immunosorbent assay using biotinylated antigen), as previously described. All results were read from a calibration curve constructed in the same run as the calibrators and expressed in U/mL. The cut-off value for the IA-2A was 0.6 U/mL, 10.0 U/mL for the ZnT8A and 5.0 U/mL for the GADA, respectively. The intra- and interassay coefficients of variation for the IA-2A were 2.0–3.3% and 4.0–6.5%, respectively, 3.5–6.2% and 7.5–9.3% for ZnT8A, and 3.5–8.5% and 5.2–6.4% for GADA (taken from the manufacturer’s data sheets of the three kits; RSR Ltd.). In the 2018 Islet Autoantibody Standardization Program Workshop (Lab ID: 1801), the assay sensitivities and specificities achieved were 60% and 100% for IA-2A, 72% and 96% for ZnT8A, and 78% and 99% for GADA, respectively.

Statistical analysis
All results are expressed as the mean ± standard deviation or median (range), and the autoantibody prevalence was compared using the χ2-test, Fisher’s exact test and Cochran–Armitage’s test where appropriate. Differences in non-parametric data were then tested using the Mann–Whitney U-test. The age of onset and duration of diabetes were categorized in tertiles: diabetes onset at 0–10 years, 11–30 years, and older than 31 years; duration of diabetes 0–3 years, 4–15 years, and more than 16 years. The association of autoantibody positivity with age and duration of diabetes were estimated using multivariate logistic regression models, and P-values <0.05 were considered statistically significant. Statistical analysis for this study was carried out using StatView statistical software (version 5.0; SAS Institute, Cary, NC, USA).

RESULTS
Relationship between age at onset and the prevalence of anti-islet autoantibodies
Of 85 patients diagnosed with type 1 diabetes aged ≤10 years, 35 (41.2%) and 29 (34.1%) were positive for IA-2A and ZnT8A, respectively. Autoantibody prevalence decreased with increasing age for both IA-2A and ZnT8A, whereas GADA became more prevalent in patients who were older at the time of diagnosis, with 74.7% of those aged ≥31 years testing positive (Table 1). Consequently, the prevalence of patients positive for one or more of these three autoantibodies was relatively stable among all age tertiles.

Relationship between duration of diabetes and the prevalence of anti-islet autoantibodies
As shown in Table 1, 37 (41.1%) and 33 (36.7%) patients with a duration of ≤3 years were positive for both IA-2A and ZnT8A, respectively. The prevalence of both IA-2A and ZnT8A saw a significant decrease relating to disease duration, and ≤20% of patients with a duration of ≥16 years were positive for these autoantibodies. A total of 65 (72.2%) patients with a duration of ≤3 years were positive for GADA. Although a significant decline in GADA positivity was also observed, approximately 50% of patients with a duration of ≥16 years remained positive. Our combined analysis showed that the prevalence of patients positive for one or more of the autoantibodies also saw a significant decrease from 80% to 62% (P = 0.0064; Table 1).

Interaction of duration of diabetes and age of onset on anti-islet autoantibody positivity
Table 2 shows the results of four separate multivariate logistic regression analyses with dependent variables IA-2A, ZnT8A, GADA or ≥1Ab. In patients whose age of onset was ≤10 years, positivity of anti-islet autoantibodies decreased significantly for patients with a duration of diabetes ≥16 years compared with
Table 1 | Univariate analysis for the prevalence of autoantibodies to glutamic acid decarboxylase, insulinoma-associated antigen-2 and zinc transporter 8

Age at onset	Duration of diabetes	n	GADA	%Pos	OR	95%CI	IA-2A	%Pos	OR	95%CI	ZnT8A	%Pos	OR	95%CI	≥1Ab	%Pos	OR	95%CI
0–10 years	0–3 years	32	62.5	1	-	-	62.5	1	-	-	50.0	1	-	-	80.0	1	-	-
	4–15 years	25	48.0	0.55	0.19–1.60	60.0	1.70	0.59–4.90	28.0	0.38	0.13–1.19	84.0	1.47	0.38–5.72				
	≥16 years	28	32.1	0.28*	0.10–0.83	17.9	0.25*	0.08–0.81	21.4	0.27*	0.09–0.85	42.9	0.24*	0.08–0.74				
11–30 years	0–3 years	27	77.8	1	-	-	29.6	1	-	-	33.3	1	-	-	81.5	1	-	-
	4–15 years	27	66.7	0.57	0.17–1.92	29.6	1	0.31–3.22	22.2	0.57	0.17–1.92	77.8	0.80	0.21–3.01				
	≥16 years	35	54.3	0.34	0.11–1.05	22.9	0.70	0.23–2.21	11.4	0.26*	0.07–0.96	68.6	0.50	0.15–1.66				
≥31 years	0–3 years	31	77.4	1	-	-	45.2	1	-	-	25.8	1	-	-	80.6	1	-	-
	4–15 years	40	80.0	1.17	0.37–3.66	27.5	0.46	0.17–1.24	17.5	0.61	0.19–1.92	85.0	1.36	0.39–4.72				
	≥16 years	24	62.5	0.49	0.15–1.58	8.3	0.11*	0.02–0.55	16.7	0.58	0.15–2.20	70.8	0.58	0.17–2.04				

%Pos, percentage of autoantibody-positive patients; CI, coefficient interval; GADA, glutamic acid decarboxylase autoantibodies; IA-2A, insulinoma-associated antigen-2 autoantibodies; OR, odds ratio; ZnT8A, zinc transporter 8 autoantibodies. Bold values indicate statistically significant difference.

*P < 0.05. **P < 0.005.
islet autoantibody measurement can offer utility in backing up clinical acumen in determining how to best manage patients with diabetes, a basic understanding of each autoantibody's dynamics is vital in general practice. The data we have presented suggest IA-2A, ZnT8A and GADA's rate of disappearance is faster in patients with an age of onset ≤10 years and relates to the disease duration. Therefore, to effectively discriminate between type 1 diabetes and other monogenic diabetes, such as Wolfram syndrome and maturity-onset diabetes of the young17–19, cystic fibrosis20 or ketosis-prone diabetes21, we assert the importance of early examination of the anti-islet autoantibodies in this patient group.

The diagnostic sensitivity of the anti-islet autoantibody tests we investigated tended to vary according to age at diabetes onset, with IA-2A and ZnT8A being higher in children, and GADA being higher in adults, as reported in previous studies6–8. Furthermore, as previously stated, it has been reported that GADA's persistent presence is associated with thyroid autoimmunity in patients with type 1 diabetes9,22 and the chromosome, 3q28, in a region of strong linkage disequilibrium in the first intron of the gene, LPP16, which was originally identified as a susceptibility locus for celiac disease23 and autoimmune thyroid disease24. Furthermore, in longitudinal studies of genetically at-risk children followed from birth, it has been reported that the presence of multiple anti-islet autoantibodies greatly increases the probability for type 1 diabetes25, and IA-2A and ZnT8A are shown to appear later, in general, during the subclinical disease process and to herald more rapid progression to type 1 diabetes than GADA26–28. These data imply that anti-GAD response might be a sign of general autoimmunity, whereas IA-2A and ZnT8A might be a surrogate indicator of residual β-cell mass29–30, although there is a study showing that the prevalence of IA-2A and ZnT8A at and after type 1 diabetes onset did not strongly correlate with endogenous insulin secretion31. To avoid autoimmune thyroid disease convoluting the results of the present study, we excluded the type 1 diabetic patients with autoimmune thyroid disease who were persistently positive for GADA9. Because of this exclusion, we suggest that the GADA persistence in patients aged ≥11 years observed in the present study is unrelated to the presence of autoimmune thyroid disease.

Although the age-dependent decline of the autoantibody positivity is similar between IA-2A and ZnT8A, the interaction between the onset age and duration of diabetes was different between the two autoantibodies. The interaction was significant only for ZnT8A in patients diagnosed in the middle tertile (11–30 years), and only for IA-2A in those with late-onset diabetes (aged ≥31 years). These results show that the intensity of the autoimmune response to IA-2 and ZnT8A can vary according to age, even though both autoantigens are transmembrane proteins located within the insulin secretory granules and the half-life of both autoantibodies is correlated8. In a study on a population of white European origin, Tridgell et al.32 reported that the interaction between the onset of disease and duration of diabetes was significant for GADA, but not IA-2A, in type 1 diabetic patients. In contrast with the results from the present study, they showed that the prevalence of GADA decreased rapidly after diagnosis in patients aged <14 years, whereas the decline in IA-2A positivity was similar regardless of the age of onset. Furthermore, the age-dependent associations between anti-islet autoantibody positivity and genetic factors, such as human leukocyte antigen7, and the relationship between ethnicity and autoantibody status were also reported3. Previous studies showed that the HLA-DR3-DQ2 haplotype, which is absent or very rare in the Japanese population33, was positively associated with GADA7,16. In a cross-study comparison, the results led to the speculation that ethnic differences might be one of the reasons for the discrepancies between the two studies, as the genetic background of Japanese type 1 diabetic patients differs from that of white patients5. However, a longitudinal study, including genetic factors, is required to confirm whether the interaction between the age- and duration-dependent effects on anti-islet autoantibody positivity in the Japanese population is distinct from that of the white population.

There were several limitations to this study, to begin with, the number of participants was relatively small, which might raise some imbalances in boundaries of age at onset and duration of diabetes. Therefore, further investigation using a larger cohort is required to confirm the present results. Additionally, we did not have genetic or metabolic data, and so did not examine the association between the presence of autoantibodies and genetic background or loss of β-cell function.

In summary, the present study showed that the disappearance of anti-islet autoantibodies is more rapid in patients aged ≤10 years at onset, and that even though both proteins are localized in the insulin granule membrane, humoral autoimmunity to IA-2 and ZnT8 differs according to the age of onset. Therefore, we conclude that the age of onset and duration of diabetes both have a critical impact on autoantibody status, and should be considered when interpreting a result for patients with diabetes. Although the exact mechanisms by which these anti-islet autoantibodies generate an age-dependent effect are still unknown, the data presented in the present study should provide a compelling context for clinicians and investigators using autoantibody measurement to classify individuals with diabetes.

ACKNOWLEDGMENTS
This research has not received any specific grants from funding agencies in the public, commercial or not-for-profit sectors.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Bingley PJ. Clinical applications of diabetes antibody testing. J Clin Endocrinol Metab 2010; 95: 25–33.
2. Kawasaki E. Type 1 diabetes and autoimmunity. Clin Pediatr Endocrinol 2014; 23: 99–105.

3. Haneda M, Noda M, Origasa H, et al. Japanese clinical practice guideline for diabetes 2016. J Diabetes Investig 2018; 9: 657–697.

4. Handelsman Y, Bloomgarden ZT, Grunberger G, et al. American association of clinical endocrinologists and american college of endocrinology – clinical practice guidelines for developing a diabetes mellitus comprehensive care plan – 2015. Endocr Pract 2015; 21 (Suppl 1): 1–87.

5. Kawasaki E, Matsuura N, Eguchi K. Type 1 diabetes in Japan. Diabetologia 2006; 49: 828–836.

6. Sera Y, Kawasaki E, Abiru N, et al. Autoantibodies to multiple islet autoantigens in patients with abrupt onset type 1 diabetes and diabetes diagnosed with urinary glucose screening. J Autoimmun 1999; 13: 257–265.

7. Graham J, Hagopian WA, Kockum I, et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes 2002; 51: 1346–1355.

8. Bravis V, Kaur A, Walkey HC, et al. Relationship between islet autoantibody status and the clinical characteristics of children and adults with incident type 1 diabetes in a UK cohort. BMJ Open 2018; 8: e020904.

9. Kawasaki E, Tâkino H, Yano M, et al. Autoantibodies to glutamic acid decarboxylase in patients with IDDM and autoimmune thyroid disease. Diabetes 1994; 43: 80–86.

10. Imagawa A, Hanafusa T, Awata T, et al. Report of the Committee of the Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus: new diagnostic criteria of fulminant type 1 diabetes mellitus (2012). J Diabetes Investig. 2012; 3: 536–539.

11. Kawasaki E, Maruyama T, Imagawa A, et al. Diagnostic criteria for acute-onset type 1 diabetes mellitus (2012): Report of the Committee of Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus. J Diabetes Investig 2014; 5: 115–118.

12. Tanaka S, Ohmori M, Awata T, et al. Diagnostic criteria for slowly progressive insulin-dependent (type 1) diabetes mellitus (SPIDDM) (2012): report by the Committee on Slowly Progressive Insulin-Dependent (Type 1) Diabetes Mellitus of the Japan Diabetes Society. Diabetol Int 2015; 6: 1–7.

13. Kawasaki E, Oikawa Y, Okada A, et al. Zinc transporter 8 autoantibodies complement glutamic acid decarboxylase and insulinoma-associated antigen-2 autoantibodies in the identification and characterization of Japanese type 1 diabetes. J Diabetes Investig 2020; 11: 1181–1187.

14. Ota T, Takamura T, Nagai Y, et al. Significance of IA-2 antibody in Japanese type 1 diabetes: its association with GAD antibody. Diabetes Res Clin Pract 2005; 67: 63–69.

15. Kawasaki E, Kuniya G, Sato H, et al. Humoral immune response to islet autoantigens in Japanese patients with type 1 diabetes. Ann N Y Acad Sci 2008; 1150: 248–251.

16. Brorsson CA, Onengut S, Chen WM, et al. Novel association between immune-mediated susceptibility loci and persistent autoantibody positivity in Type 1 diabetes. Diabetes 2015; 64: 3017–3027.

17. Rubio-Cabezas Q, Edghill EL, Argente J, et al. Testing for monogenic diabetes among children and adolescents with antibody-negative clinically defined Type 1 diabetes. Diabet Med 2009; 26: 1070–1074.

18. McDonald TJ, Colclough K, Brown R, et al. Islet autoantibodies can discriminate maturity-onset diabetes of the young (MODY) from Type 1 diabetes. Diabet Med 2011; 28: 1028–1033.

19. Yaghoobkar H, Abbasi F, Ghaemi N, et al. Type 1 diabetes genetic risk score discriminates between monogenic and Type 1 diabetes in children diagnosed at the age of <5 years in the Iranian population. Diabet Med 2019; 36: 1694–1702.

20. Gottlieb PA, Yu L, Babu S, et al. No relation between cystic fibrosis-related diabetes and type 1 diabetes autoimmunity. Diabetes Care 2012; 35: e57.

21. Balasubramanyam A, Garza G, Rodriguez L, et al. Accuracy and predictive value of classification schemes for ketosis-prone diabetes. Diabetes Care 2006; 29: 2575–2579.

22. Kawasaki E, Yasui T, Tsurumaru M, et al. Sequential elevation of autoantibodies to thyroglobulin and glutamic acid decarboxylase in type 1 diabetes. World J Diabetes 2013; 4: 227–230.

23. Hunt KA, Zhernakova A, Turner G, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 2008; 40: 395–402.

24. Cooper JD, Simmonds MJ, Walker NM, et al. Seven newly identified loci for autoimmune thyroid disease. Hum Mol Genet 2012; 21: 5202–5208.

25. Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013; 309: 2473–2479.

26. De Grijse J, Asanghanwa M, Nouthe B, et al. Predictive power of screening for antibodies against insulinoma-associated protein 2 beta (IA-2beta) and zinc transporter-8 to select first-degree relatives of type 1 diabetic patients with risk of rapid progression to clinical onset of the disease: implications for prevention trials. Diabetologia 2010; 53: 517–524.

27. Vermeulen I, Weets I, Costa Q, et al. An important minority of prediabetic first-degree relatives of type 1 diabetic patients derives from seroconversion to persistent autoantibody positivity after 10 years of age. Diabetologia 2012; 55: 413–420.

28. Savola K, Bonifacio E, Sabbah E, et al. IA-2 antibodies—a sensitive marker of IDDM with clinical onset in childhood and adolescence. Childhood Diabetes in Finland Study Group. Diabetologia 1998; 41: 424–429.

29. Horie I, Kawasaki E, Shimomura A, et al. Emergence of anti-islet autoantibodies in Japanese patients with type 1 diabetes. Endocr J 2010; 57: 623–628.
30. Wenzlau JM, Walter M, Gardner TJ, et al. Kinetics of the post-onset decline in zinc transporter 8 autoantibodies in type 1 diabetic human subjects. *J Clin Endocrinol Metab* 2010; 95: 4712–4719.

31. Williams GM, Long AE, Wilson IV, et al. Beta cell function and ongoing autoimmunity in long-standing, childhood onset type 1 diabetes. *Diabetologia* 2016; 59: 2722–2726.

32. Tridgell DM, Spiekerman C, Wang RS, et al. Interaction of onset and duration of diabetes on the percent of GAD and IA-2 antibody-positive subjects in the type 1 diabetes genetics consortium database. *Diabetes Care* 2011; 34: 988–993.

33. Ikegami H, Noso S, Babaya N, et al. Genetic basis of type 1 diabetes: Similarities and differences between East and West. *Rev Diabet Stud* 2008; 5: 64–72.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 | Clinical characteristics.
Table S2 | Prevalence of anti-islet autoantibodies and their association with female sex and slowly progressive type 1 diabetes.