Global Adaptation to a Lipid Environment Triggers the Dormancy-Related Phenotype of *Mycobacterium tuberculosis*

Juan G. Rodríguez, Adriana C. Hernández, Cecilia Helguera-Repetto, Diana Aguilar Ayala, Rosalina Guadarrama-Medina, Juan M. Anzóla, Jose R. Bustos, María M. Zambrano, Jorge González-y-Merchand, María J. García, Patricia Del Portillo

**ABSTRACT** Strong evidence supports the idea that fatty acids rather than carbohydrates are the main energy source of *Mycobacterium tuberculosis* during infection and latency. Despite that important role, a complete scenario of the bacterium’s metabolism when lipids are the main energy source is still lacking. Here we report the development of an *in vitro* model to analyze adaptation of *M. tuberculosis* during assimilation of long-chain fatty acids as sole carbon sources. The global lipid transcriptome revealed a shift toward the glyoxylate cycle, the overexpression of main regulators *whiB3*, *dosR*, and Rv0081, and the increased expression of several genes related to reductive stress. Our evidence showed that lipid storage seems to be the selected mechanism used by *M. tuberculosis* to ameliorate the assumed damage of reductive stress and that concomitantly the bacilli acquired a slowed-growth and drug-tolerant phenotype, all characteristics previously associated with the dormant stage. Additionally, intergenic regions were also detected, including the unexpected upregulation of tRNAs that suggest a new role for these molecules in the acquisition of a drug-tolerant phenotype by dormant bacilli. Finally, a set of lipid signature genes for the adaptation process was also identified. This *in vitro* model represents a suitable condition to illustrate the participation of reductive stress in drugs’ activity against dormant bacilli, an aspect scarcely investigated to date. This approach provides a new perspective to the understanding of latent infection and suggests the participation of previously undetected molecules.

**IMPORTANCE** *Mycobacterium tuberculosis* establishes long-lasting highly prevalent infection inside the human body, called latent tuberculosis. The known involvement of fatty acids is changing our understanding of that silent infection; however, question of how tubercle bacilli globally adapt to a lipid-enriched environment is still an unanswered. With the single change of providing fatty acids as carbon sources, the bacilli switch on their program related to dormant stage: slowed growth, accumulation of lipid bodies, and development of drug tolerance. In this stage, unexpected and previously unknown participants were found to play putatively important roles during the process. For the first time, this work compares the global transcriptomics of bacteria by using strand-specific RNA sequencing under two different growth conditions. This study suggests novel targets for the control of tuberculosis and provides a new straightforward *in vitro* model that could help to test the activity of drugs against dormant bacilli from a novel perspective.

---

Although several *in vitro* models have been used to mimic the...
environment of dormant bacilli during latency (16–18), cultures grown in the presence of lipids, the most abundant molecules surrounding bacilli in vivo, have not been extensively analyzed.

To gain insight into the process of M. tuberculosis adaptation to a fatty acid environment, we developed an in vitro model where bacilli were grown in even-length long-chain fatty acids (LC-FAs) as the sole carbon source. Even-length LC-FAs were selected because they are the main LC-FAs found in human cells (19) and are a major component of TAGs (20). Although other in vivo lipid energy sources cannot be ignored, it is possible that for long-term infection, bacilli might benefit by selecting even-length LC-FAs, avoiding the toxicity associated with other lipid sources (21).

We analyzed changes in the global transcriptome of M. tuberculosis by using high-throughput methods such as strand-specific RNA sequencing (ss-RNA-seq) (22).

RESULTS AND DISCUSSION

The global transcriptome of M. tuberculosis in the LC-FA in vitro model. In order to mimic the nutrient conditions presumed to be encountered by M. tuberculosis during in vivo infection (23), we cultured M. tuberculosis H37Rv in a medium supplemented with a mixture of even-length LC-FAs as the sole carbon source. Growth in LC-FAs was compared to growth in dextrose as a control. We found that growth in LC-FAs was slower than growth in dextrose but reached similar saturation points (see Fig. S1 in the supplemental material).

RNA was analyzed by ss-RNA-seq with material from bacilli grown in dextrose to the exponential (DE) and stationary (DS) phases and in LC-FA to the exponential (FE) and stationary (FS) phases (see Fig. S1). The sequence depth obtained showed good coverage of the M. tuberculosis genome, as indicated by the platesaus reached in all instances by mapping reads against coding sequences (CDS) (see Fig. S2A). A normal distribution of the data was achieved in all cases (see Fig. S2B) (24). The number of sequences retained after processing for quality was 13.1 to 19.3 million reads (Table 1). To facilitate the comparison of gene expression, the data were normalized as reads per kilobase per million reads (RPKM). Only genes showing ≥1 RPKM were considered for analysis. Statistical analysis for significant differential gene expression was performed with Fisher exact test (see Table S1A and B in the supplemental material). That analysis gave results consistent with those obtained with the DEGseq package for biological replicates (see Table S1C and D) (see Materials and Methods).

We identified all 45 tRNAs (25) (see Table S2A), all of the most highly expressed small RNAs (7), and most of the previously identified noncoding RNAs (8) (see Table S2B). During growth in LC-FAs, gene expression (reads mapped to CDS) was greatly reduced compared with the control, particularly in the stationary phase (Table 1). This low gene expression contrasts with the high number of reads that mapped to intergenic regions (IGRs), suggesting close control mediated by small RNAs in cultures grown with LC-FAs.

Consistent with the high number of reads mapping to IGRs in the FS culture, the four most highly expressed IGRs corresponded to this sample (see Table S2B and C). Two of them, namely, MTS2823 and MTS0977 (see Table S2C), have also shown increased expression during infection (7), suggesting that they might be important regulators and highlighting the association of the conditions used in our model with the conditions encountered by the bacilli in vivo.

More remarkable was the overexpression of tRNAs in FS (see Table S2A), which contrasts with the few transcripts mapped to CDS in FS and which, presumably, was a reflection of low translation activity (Table 1). Aminoacyl tRNAs are involved in cellular processes other than protein synthesis, such as the modification of bacterial membrane lipids via the multiple-peptide resistance factor (MprF) protein (26). MprF attaches positively charged amino acids to the polar heads of phosphatidylglycerol, effectively neutralizing the negative charge of the membrane (27) and thus decreasing membrane permeability and susceptibility to antibacterial peptides and cationic antibiotics (28). The tRNAs involved in these changes are tRNA-Lys, tRNA-Ala, and less frequently tRNA-Arg (26, 29), the same tRNAs that were expressed more in FS than in DS in our model (Fig. 1). We hypothesize that, in the presence of FA, bacilli modify their envelope by aminoacyl-tRNAs, conferring adaptation to stress and possibly increasing resistance to antibiotics, a process associated with the dormant stage of M. tuberculosis (17). Whether this attractive mechanism to modify the cell envelope, in fact, involved in the adaptation and survival of the bacilli during long-term infection remains to be investigated.

Comparative analysis of CDS between growth in dextrose and LC-FA showed that majority of genes had similar expression levels, both at exponential and stationary phases (see Fig. S3A and B in the supplemental material), with only 10% of the potential CDS being differentially expressed (Fig. 2; see Table S3). This analysis identified genes with differential expression in all of the functional categories of Tuberculist (http://www.tuberculist.epfl.ch), with the exception of genes belonging to the PE/PPE category in the exponential phase (Fig. 2; see Table S3). On the contrary, the PE/PPE category was overrepresented in the stationary phase (Fig. 2 and Table S3), suggesting that when M. tuberculosis grows in a fatty acid environment, these abundant proteins (25) might

---

**TABLE 1 Transcriptomic profile of M. tuberculosis in different carbon sources**

| Reads | No. (%) of reads in following growth phase: |
|-------|-------------------------------------------|
|       | DE | DS | FE | FS |
| All   | 13.12 | 19.29 | 18.314 | 16.054 |
| All mapped | 8.17 (62.3) | 10.78 (55.9) | 9.56 (53.4) | 8.01 (51.2) |

Mapped without rRNA
- Mapped to CDS: 0.52 (71.3)
- Mapped to IGRs: 0.17 (22.4)
- Mapped to antisense CDS: 0.05 (6.4)

* Total numbers (in millions) of reads determined under the different conditions tested (upper part) and numbers (percentages) of reads determined by excluding those corresponding to tRNA (lower part) are shown.
play an additional role in antigenic variation and immune evasion (30, 31). Contrary to our expectations, genes belonging to the functional category “lipid metabolism” were not overrepresented in either the exponential or the stationary phase (Fig. 2; see Table S3), a result that could be attributed to the gene redundancy present within this category (25). Among the most highly differentially expressed genes in FS, we identified pckA (P = 4^-14) and tgs-1 (P = 2^-13) (see Table S1F), both of which play critical roles in the lipid metabolic pathways of M. tuberculosis (10, 32). As happens with pckA, the gene icl-1 was also upregulated within the trichloroacetic acid (TCA) cycle (see Table S1E and F), consistent with the central role of these enzymes in M. tuberculosis lipid metabolism (13). Because of the use of only even-length LC-FAs, we did not expect production of propionyl coenzyme A (CoA) from lipid degradation. In agreement with this, we did not detect increased expression of genes belonging to the methylcitrate and methylmalonate pathways (33).

The functional category of “regulatory proteins” was under-represented in the stationary phase, highlighting the involvement of four genes upregulated in the same phase (FS) (Fig. 2; see Table S3). Two of these correspond to the known regulators WhiB3, which is associated with redox balance (34), and DosR, which is related to redox balance, and a major regulator of hypoxia in M. tuberculosis (5). As a result, a large number of DosR-regulated genes were also expressed more in FS than in DS (Table 2; see Table S1F). We also identified the recently reported regulator Rv0081, which is considered a global hypoxic response regulator (6) and the presumptive transcriptional regulator nrdR (http://www.tuberculist.epfl.ch).

Given that WhiB3 and DosR, two heme sensor proteins related to intracellular redox balance (34, 35), were identified as key components of the adaptation of M. tuberculosis to growth in LC-FA, we searched for significantly overexpressed genes involved in redox balance. Independently of the phase of growth, bacilli cultured in LC-FAs had a higher percentage of significantly overexpressed genes associated with reductive stress (see Table S4A). These results suggest that growing M. tuberculosis in a fatty acid medium putatively causes a burst in reductive stress and thus the required molecules to maintain redox balance would be induced in order to allow cell growth under these conditions. An imbalance of the redox equilibrium leads to either reductive or oxidative stress responses, the latter well documented to be involved in M. tuberculosis infection (36). However, the contribution of its counterpart, namely, reductive stress, has barely been considered thus far and occurs when reducing equivalents, such as NADH, FADH, or NADPH, are abnormally increased (34, 37). In our LC-FA cultures, the reducing equivalents that could be generated by both β-oxidation of LC-FAs and TCA metabolic activities would result in reductive stress that must be cleared for survival via reductive sinks, such as poly-

![FIG 1](image-url) Differential expression of tRNAs in the fatty acid model. Fold change comparison of tRNAs between the stationary and exponential phases under both culture conditions. Fold changes were calculated by calculating DS/DE (black bars) and FS/FE (light brown bars) RPKM ratios.

![FIG 2](image-url) Genes differentially expressed in the fatty acid model. Numbers of genes differentially expressed by functional categories according to TubercuList (http://www.tuberculist.epfl.ch/) are shown. Circle sizes correspond to the numbers of genes with significant differential expression in fatty acid medium versus dextrose medium. (A) Exponential phase. (B) Stationary phase.
mer deposition, reverse TCA, or nitrate reductase activity, among others (35, 37). The induced expression of 11 genes with allegedly reductive sink activity, 8 of which are involved in polymer deposition, might indicate the participation of reductive stress during growth of *M. tuberculosis* in LC-FA (Table 3). Our results suggest that polymer deposition, which includes TAG accumulation, as well as the formation of other complex lipids, such as SL-1, PAT, DAT, and PDIM (Table 3), was the main reductive sink mechanism used by *M. tuberculosis* when grown on fatty acids as carbon sources. This is consistent with the observed lipid droplets inside *M. tuberculosis* during the stationary phase of growth in LC-FA (Fig. 3A) and agrees with the suggestion that lipid accumulation could be a reputed marker of *M. tuberculosis* during latent infection (17, 38). The accumulation of lipid droplets inside *M. tuberculosis* in our LC-FA *in vitro* model, together with the high expression of *tgs-1*, prompted us to test for drug tolerance, another dormancy-related characteristic of the bacilli. To do this, we determined the drug susceptibility of *M. tuberculosis* to a mixture of four drugs known to be active against replicating and nonreplicating bacilli (39). Our results showed that *M. tuberculosis* manifested greater drug tolerance in the presence of lipids than during growth in dextrose (Fig. 3B and 3C). The relationship between the detected overexpression of tRNAs and drug tolerance deserves further investigation, as it represents an attractive idea regarding the participation of tRNAs in the dormant stage of *M. tuberculosis*.

**Comparison of the LC-FA model with other dormancy-related *in vitro* models.** The host environmental cues that trigger the *M. tuberculosis* dormant stage or long-term infection are not fully elucidated, although changes associated with hypoxia, starvation, and low pH have been shown to be important (17). To test the suitability of growth in LC-FA as an *in vitro* model, we compared the gene expression profile of our lipid-enriched condition with other well-established *in vitro* models designed to mimic the hypoxic and starvation conditions faced by the pathogen within the host. Genes with significantly higher expression during growth in LC-FA (see Table S1E and F in the supplemental material) were compared with the highest-scoring genes derived from array data obtained from the meta-analysis published by Murphy and Brown (40). The total number of genes shared by any two conditions was very similar, with no significant differences in percentages (see Fig. S4A). Therefore, growth in LC-FA can be another suitable *in vitro* model for the analysis of genes related to the dor-

**TABLE 2** Member genes of the dormancy regulon with significantly increased expression in the fatty acid model

| Gene tag | Gene name | Functional category | Function (reference) | RPKM ratio<sup>a</sup> | P value<sup>b</sup> |
|----------|-----------|---------------------|----------------------|------------------------|------------------|
| Rv0709   |           | Unknown; probable transduction regulatory protein (42) | 1.59 FE/DE 2.10 FS/DS 1.09 E-12 FS vs DS 3.37 E-07 |
| Rv0800   |           |                     | 0.00 FS vs DS 1.19 E-09 |
| Rv0801   |           | 0                   | 1.10 FE/DE 9.00 FS/DS 0.014 |
| Rv0243   | fadA2     | 1                   | 1.60 FE/DE 3.07 FS/DS 9.87 E-05 |
| Rv0569   |           | 0                   | 3.07 FE/DE 2.67 FS/DS 0.90 E-14 |
| Rv0570   | nrdZ      | 2                   | 2.67 FE/DE 0.028 FS/DS 0.004 |
| Rv1436   | gap       | 7                   | 1.15 FE/DE 3.00 FS/DS 9.33 E-05 |
| Rv1452   | argC      | 3                   | 3.00 FE/DE 2.62 E-08 FS/DS 0.012 |
| Rv1733c  | Rv1738    | 10                  | 1.15 FE/DE 1.09 E-12 FS/DS 0.09 E-14 |
| Rv1813c  | Rv1996    | 0                   | 1.93 FE/DE 1.19 FS/DS 9.33 E-05 |
| Rv2005c  | Rv2007c   | 0                   | 6.50 FE/DE 2.18 FS/DS 3.15 E-13 |
| Rv2030c  | fdxA      | 7                   | 5.25 FE/DE 1.09 E-12 FS/DS 3.88 E-10 |
| Rv2031c  | hspX      | 10                  | 6.05 FE/DE 5.25 FS/DS 0.90 E-14 |
| Rv2623   | TB31.7    | 0                   | 3.08 FE/DE 5.25 FS/DS 0.90 E-14 |
| Rv2625c  | Rv2626c   | 3                   | 3.02 FE/DE 4.67 FS/DS 1.44 E-06 |
| Rv2627c  | Rv2628    | 10                  | 2.43 FE/DE 4.67 FS/DS 2.96 E-06 |
| Rv2629   | Rv3127    | 10                  | 1.40 FE/DE 1.09 E-12 FS/DS 1.18 E-05 |
| Rv3130c  | tgs-I     | 10                  | 1.13 FE/DE 3.02 FS/DS 4.16 E-08 |
| Rv3131c  | TAG       | 1                   | 2.23 FE/DE 2.62 FS/DS 0.003 |
| Rv3313c  | devR      | 9                   | 2.31 FE/DE 4.00 FS/DS 0.003 |
| Rv3314c  | Rv3314c   | 0                   | 2.60 FE/DE 1.09 E-12 FS/DS 6.54 E-05 |

<sup>a</sup> Functional categories based on [http://www.tuberculist.epfl.ch: 0, virulence, detoxification, and adaptation; 1, lipid metabolism; 2, information pathways; 3, cell wall and cell processes; 7, intermediary metabolism and respiration; 9, regulatory proteins; 10, conserved hypothetical proteins.

<sup>b</sup> RPKM ratio according to phase of growth: exponential (FE/DE) or stationary (FS/DS). See Table S1A and B in the supplemental material for the complete set of data. The gene is overexpressed in FE or FS if the ratio is above 1.

<sup>c</sup> Determined by Fisher exact test, in which statistically significant differential expression between two conditions was determined by looking at genes with FDRs of <0.05 (see Materials and Methods for details).

<sup>d</sup> —, gene with a ratio of <1 or with no significantly increased expression under those conditions.

<sup>e</sup> TCS, two-component regulatory system.
mant stage of *M. tuberculosis*. It is noteworthy that growth in LC-FA and growth under hypoxia conditions shared more genes belonging to the DosR regulon than either condition compared to growth during starvation (see Fig. S4A). Interestingly, one of the LC-FA used was palmitate, a fatty acid present in the culture medium used in one of the classical *in vitro* models of persistence (41).

Because of the suggested involvement of reductive stress in the growth of *M. tuberculosis* in a lipid-enriched medium, we sought to identify genes related to reductive stress in the same hypoxia and starvation data set used for the above analysis (40). Of the 371 genes associated with reductive stress in the *M. tuberculosis* genome (http://www.tuberculist.epfl.ch), we excluded genes belonging to the functional category of “lipid metabolism” to avoid bias toward the fatty acid model. We compared the remaining 216 genes with the 206 highest-scoring genes for all three data sets (see Fig. S4B). The number of genes related to reductive stress identified in each case was different, with the highest represented by LC-FA (24/206 genes, 11.1%), followed by hypoxia (14/206 genes, 6.5%), and the lowest represented by starvation (7/206 genes, 3.2%). The differences among percentages were close to significant between hypoxia and LC-FA and clearly significant between starvation and LC-FA (see Fig. S4B). Recently, it has been shown that reductive stress could play a role during long-term mycobacterial infection and that lipids could be stakeholders in this process (37). Our results also indicate that growth in LC-FA might be a more suitable *in vitro* model to better test the putative involvement of reductive stress during the long-term infection of *M. tuberculosis*.

**Genes involved in the adaptation of *M. tuberculosis* to a lipid environment.** The global analysis of the *M. tuberculosis* transcriptome showed increased expression of genes involved in various metabolic processes and identified specific genes that provide insight into cellular adaptation during growth with fatty acids as the sole carbon sources (Fig. 2; see Table S1E and F). Searching for a set of genes related to the pathways used by *M. tuberculosis* to adapt to a lipid environment, we identified 14 genes that had significantly increased expression in FE or FS if the ratio is >1. See Table S1A and B in the supplemental material for the complete set of data.

**TABLE 3 Genes with significantly increased expression and their putative relation to reductive stress**

| Gene tag | Gene name | Growth phase | Functional category | Function | Putative influence on reductive stress | RPKM ratio | P value |
|----------|-----------|--------------|---------------------|----------|---------------------------------------|-------------|---------|
| Rv0243a  | fidA2     | FS           | 1                   | Lipid degradation | NADH/NADPH | 1.60 | 9.87 E-05 |
| Rv0570a  | nrdZ      | FS           | 2                   | Ribonucleoside-diphosphate reductase | 1.09 | 0.004 |
| Rv0694a  | lldD1     | FE           | 7                   | 2-3-Lactate dehydrogenase | 0.032 | 1.57 E-10 |
| Rv0697    |           | FE           | 7                   | Unknown; probable dehydrogenase | 0.032 | 1.57 E-10 |
| Rv1180    | pk3-1     | FE           | 1                   | Probable polyketide synthase | 0.032 | 1.57 E-10 |
| Rv1436a  | gap-3     | FE           | 7                   | Probable GADPH | 0.032 | 1.57 E-10 |
| Rv1652a  | argC      | FS           | 7                   | Arginine biosynthesis | 0.032 | 1.57 E-10 |
| Rv1908c  | katG      | FE           | 0                   | Catalase/peroxidase | 0.032 | 1.57 E-10 |
| Rv2382c  | mntB      | FE           | 1                   | Polyketide synthase | 0.032 | 1.57 E-10 |
| Rv2590    | fadD29    | FE           | 1                   | Lipid degradation | 0.032 | 1.57 E-10 |
| Rv2781    |           | FE           | 7                   | Oxidoreductase | 0.032 | 1.57 E-10 |
| Rv2794c  | pprT      | FE           | 1                   | 4'-Phosphopantetheinyl transferase | 0.032 | 1.57 E-10 |
| Rv2931    | ppaA      | FS           | 1                   | PDIM biosynthesis | 0.032 | 1.57 E-10 |
| Rv2995c   | leuB      | FS           | 7                   | Leucine synthesis | 0.032 | 1.57 E-10 |
| Rv2996c   | serA1     | FS           | 7                   | 3-1-Serine synthesis | 0.032 | 1.57 E-10 |
| Rv3130c   | tgs-1     | FS           | 1                   | TAG synthase | 0.032 | 1.57 E-10 |
| Rv3131a   |           | FE           | 10                  | Unknown | 0.032 | 1.57 E-10 |
| Rv3145    | nuoA      | FE           | 7                   | Probable NADH-dehydrogenase | 0.032 | 1.57 E-10 |
| Rv3229c   | desA3     | FE           | 1                   | Lipid desaturase | 0.032 | 1.57 E-10 |
| Rv3230    |           | FE           | 7                   | Oxidoreductase | 0.032 | 1.57 E-10 |
| Rv3371    |           | FS           | 1                   | TAG synthase | 0.032 | 1.57 E-10 |
| Rv3825c   | pks-2     | FE           | 1                   | Probable polyketide synthase | 0.032 | 1.57 E-10 |

- Member of the DosR regulon.
- Functional categories based on [http://www.tuberculist.epfl.ch](http://www.tuberculist.epfl.ch), virulence, detoxification, and adaptation; 1, lipid metabolism; 2, information pathways; 7, intermediary metabolism and respiration; 10, conserved hypothetical proteins.
- RPKM ratio according to phase of growth: exponential (FE/DE) or stationary (FS/DS). The gene is overexpressed in FE or FS if the ratio is >1. See Table S1A and B in the supplemental material for the complete set of data.
- Arrows indicate the putative contributions of genes to the increase (up arrow) or decrease (down arrow) in reductive equivalents. Absence of an arrow indicates a gene that could contribute to both an increase and a decrease in reductive equivalents, for example, an oxidoreductase-encoding gene.
- Determined by Fisher exact test, in which statistically significant differential expression between two conditions was determined by looking at genes with FDRs of <0.05 (see Materials and Methods for details).
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
are also upregulated in nongrowing bacilli in murine models (13, 15).

Two lipid signature genes belong to the functional category of “lipid metabolism” (http://www.tuberculist.epfl.ch): Rv1184, which codes for an exported protein that is able to perform lipid degradation and ppIT, which encodes a phosphopantetheinyl transferase that activates the polyketide synthases (44). Two additional genes are related to membrane activity allegedly involved in either the transport of metabolites (Rv1733) or associated with the ESX-1 secretion system of Mycobacterium tuberculosis (Rv3614c), the latter coding for EspD.

WhiB3 was the single transcriptional regulator detected as part of the signature. This heme-based sensor, which is associated with intracellular redox balance, links environmental signaling with cellular metabolism (34). Interestingly, five of the members of the lipid signature belong to the DosR hypoxia regulon. This suggests that induction of the DosR transcriptional regulator could result from cotranscription from the upstream Rv3134c gene (45, 46), which is part of the lipid signature. The Rv3134c gene harbors a usp domain, as does another gene of the lipid signature, Rv1996. One of the DosR-regulated genes, Rv0079c, has recently been reported as a dormancy-associated translation inhibitor (DATIN) that inhibits in vitro protein synthesis. Overexpression of a recombinant DATIN in Escherichia coli and in Mycobacterium bovis BCG decreased the growth rate of these microorganisms (42). We therefore suggest that the overexpression of this gene in both the exponential and stationary phases could be the responsible for the observed slower growth of M. tuberculosis in LC-FA (see Fig. S1 in the supplemental material). Many of the genes included in the lipid signature are of unknown function, showing our scarce knowledge of how M. tuberculosis adapts to a lipid-enriched condition. One of these genes, Rv1733c, codes for a hypothetical protein reported to be induced by hypoxia and starvation (5).

To investigate whether these genes could be coregulated at the transcriptional level, we searched for a possible consensus motif 500 nucleotides (nt) upstream of each open reading frame (ORF) (47). We identified a DNA motif in 12 of the 14 genes analyzed (Fig. 4). The probability that this motif could be present in these genes by chance was 1E-07, thus suggesting a biological function of the motif in genes of the lipid signature. Interestingly, the motif was not found upstream of whiB3, opening the possibility that this gene product could be involved in transcriptional regulation of the lipid signature genes. The identification of an antisense transcript of the whiB3 gene in DS (Fig. 4B.2) strongly suggests the

| Time (Days of exposure to antibiotics) | MPN/ml |
|---------------------------------------|--------|
|                                       | DE     | DS    | FE    | FS    |
| 0                                     | >1100  | >1100 | >1100 | >1100 |
| 7                                     | 7.3    | 3.6   | 56    | 56    |
| 14                                    | 3.6    | <3    | 24    | 12    |
| 21                                    | <3     | <3    | 3     | <3    |

FIG 3 Dormancy-related phenotype of M. tuberculosis grown in the fatty-acid model. (A) Electron micrographs of M. tuberculosis grown under different carbon sources. White arrows indicate presumed lipid bodies identified in LC-FA at stationary phase. Magnification: ×60,000 (DE, DS, and FE) or ×12,000 (FS). Exponential- and stationary-phase cultures were incubated with drugs in the presence of dextrose or fatty acids. Cultures were collected after 7, 14, or 21 days of exposure to drugs as estimated by CFU counting (B) or by calculating the MPN/ml (C) (see Materials and Methods for details). The R, MX, MZ, and AK concentrations used were 8, 4, 8, and 8 μg/ml, respectively. Means and standard deviations of four experiments are shown.
involvement of noncoding RNA in *whiB3* gene regulation under lipid-enriched conditions.

To assess the relevance of these genes for *M. tuberculosis* growth, we next compared this list with previously reported studies aimed at identifying essential genes. Interestingly, none of the 14 lipid signature genes were found to contain IS insertions in 2 of the 533 isolates (48). In contrast, 10 of the 14 genes are considered non-essential for *in vitro* *M. tuberculosis* growth, based on transposon mutagenesis (49). These data support our proposal that the LC-FA model could be more closely related to the conditions that the bacilli confront in vivo during TB infection.

**Final remarks.** On the basis of the results presented here, we propose the following scenario for *M. tuberculosis* growing on even-length LC-FA s (Fig. 5). Lipids surrounding the bacilli, TAG or LC-FA s, are hydrolyzed by lipases (such as *Rv1184c*) and then internalized through receptors (Rv1733c). The lipids are subsequently converted to acetyl-CoA by β-oxidation and consumed by the glyoxylate cycle (Icl1). At this point, PckA can regenerate phosphoenolpyruvate to continue the cycle. As a consequence, both CO₂ and the reducing equivalents NADH and NAPDH in- and are sensed by the DosR, Rv0081, and WhiB3 transcriptional regulators. These and probably other stress conditions induce the expression of genes such as *pptT*, *pks-2*, *pks-3*, and *tgs-1*, which are responsible for the synthesis of complex lipids that balance the redox state of the cell by polymer deposition. The detection of *espD* suggests secretion, possibly of toxic compounds. On the other hand, several genes of the DosR regulon are induced: stress proteins (Rv1996, and Rv3134c, which are cotranscribed with *dosR*) and other reductive sinks (Rv3131), inhibitors of protein synthesis (Rv0079), and heme stabilization proteins (Icl1). Proteins required for porphyrin synthesis (HemA and HemC) are also induced (see Table S4B). Finally, the high expression of tRNAs could modify membrane properties, resulting in tolerance to environmental stresses and antibiotics. We propose that when *M. tuberculosis* grows on LC-FA s as sole carbon sources, the cells change their gene expression profile by inducing genes required for stress protection, as well as genes required for its survival during long-term infection. Our results therefore provide insight into the physiological responses of tubercle bacilli when grown in a lipid-rich environment, a poorly studied aspect of TB infection.

**TABLE 4 Lipid signature of M. tuberculosis grown in the fatty acid model**

| Gene tag | Gene name | Functional category | Function (reference) | RPKM ratio<sup>ab</sup> | P value<sup>cd</sup> | FE/DE | FS/DS | FE vs DE | FS vs DS |
|----------|-----------|---------------------|----------------------|--------------------------|-----------------------|-------|-------|---------|---------|
| Rv0079<sup>a</sup> | Unknown; probable transduction regulatory protein (42) | 10 | 1.59 | 2.10 | 0.019 E-12 | 3.37 E-07 |
| Rv0211 | *pckA* | 7 | Phosphoenolpyruvate carboxykinase | 1.03 | 1.83 | 0.021 | 4.03 E-14 |
| Rv0467 | *icl-1* | 7 | Isocitrate lyase | 3.88 | 1.52 | 1.58 E-08 | 3.89 E-09 |
| Rv1066 | Unknown; rhodanase like domain | 10 | 2.11 | 4.10 | 1.28 E-07 | 9.04 E-13 |
| Rv1184c | Unknown; possible exported protein, probably lipase, esterase or quinase (43) | 3 | 4.80 | 5.00 | 3.69 E-07 | 0.024 |
| Rv1733c<sup>a</sup> | Unknown; probable conserved transmembrane protein family | 3 | 2.77 | 1.50 | 2.62 E-08 | 0.012 |
| Rv1996<sup>a</sup> | Unknown; universal stress protein | 0 | 1.93 | 1.19 | 1.09 E-12 | 6.27 E-06 |
| Rv2794c | 4'3-phosphopantetheinyl transferase | 1 | 1.18 | 3.00 | 0.041 | 8.33 E-05 |
| Rv3131<sup>a</sup> | Unknown; putative NAD(P)H nitroreductase | 10 | 2.89 | 4.00 | 1.09 E-12 | 9.04 E-13 |
| Rv3134c<sup>a</sup> | Unknown; universal stress protein family | 10 | 1.03 | 3.43 | 5.99 E-06 | 3.19 E-10 |
| Rv3416 | *whiB3* | 9 | Redox sensor; transcriptional regulatory protein | 2.50 | 1.09 | 0.003 | 0.009 |
| Rv3612c | Unknown | 10 | 2.00 | 1.10 | 0.029 | 0.014 |
| Rv3614c | *espD* | 3 | Unknown; ESX-1 secretion associated protein | 2.81 | 1.09 E-12 | 9.04 E-13 |
| Rv3686c | Unknown | 10 | 1.82 | 3.00 | 1.60 E-08 | 3.26 E-07 |

<sup>a</sup> Member of the DosR regulon.

<sup>b</sup> Functional categories based on http://www.tuberculist.epfl.ch: 0, virulence, detoxification, and adaptation; 1, lipid metabolism; 3, cell wall and cell processes; 7, intermediary metabolism and respiration; 9, regulatory proteins; 10, conserved hypothetical proteins.

<sup>c</sup> RPKM ratio according to phase of growth: exponential (FE/DE) or stationary (FS/DS). The gene is overexpressed in FE or FS if the ratio is >1. See Table S1A and B in the supplemental material for the complete set of data.

<sup>d</sup> Determined by Fisher exact test, in which statistically significant differential expression between two conditions was determined by looking at genes with FDRs of <0.05 (see Materials and Methods for details).

<sup>e</sup> http://genome.tbdb.org, accessed December 2012.
activity of *M. tuberculosis* during the complex period of latency. The data derived from the use of the LC-FA *in vitro* model represent a novel tool suitable for the study of the susceptibility of *M. tuberculosis* to drugs during latency from a new perspective.

**FIG 4** Features of lipid signature genes. (A) Sequence logo of the lipid signature motif. The nucleotide sequence was determined by performing Gibbs sampling of the 500 bp upstream of the initiation codon of the lipid signature genes (see Materials and Methods for details). In the representation of the consensus sequence shown in the graph, the height of each nucleotide indicates the level of conservation. (B) Differential transcription of the *whiB3* gene. Artemis view of the reads mapped to the *whiB3* gene under the conditions tested. The blue arrow indicates the orientation of *whiB3* transcription. (B.1) Exponential phase: red, dextrose; purple, LC-FA. (B.2) Stationary phase: green, dextrose; blue, LC-FA. Antisense transcription is identified in the stationary phase of growth in dextrose.

**FIG 5** Proposed scenario of *M. tuberculosis* growth in the fatty acid model. Growth of *M. tuberculosis* during the *in vitro* model of even-LC-FA is shown. See the text (final remarks) for details.
In summary, our results show a new scenario for the adaptation of \textit{M. tuberculosis} to a lipid-rich environment, presenting evidence of the role of reductive stress and giving insights into the participation of novel molecules such as noncoding RNAs and tRNAs. These could play important roles in the adaptation of the bacteria for long-term survival. During the coevolution of the human host and the tubercle bacilli, these adaptations have probably been crucial for bacterial survival and the establishment of a balanced coexistence, represented by a successful infection without disease, which we know as latent TB.

**MATERIALS AND METHODS**

**Bacterial strain and culture conditions.** \textit{M. tuberculosis} H37Rv (donated by The Pasteur Institute, Paris, France) was grown at 37°C in 100 ml of Dubos broth (Difco) supplemented with 10% ADC (Middlebrook) in a 1-liter flask to an optical density at 600 nm (OD\textsubscript{600}) of 0.5. The culture was divided in two, and cells were pelleted by centrifugation and resuspended in (i) Dubos broth base (without glycerol) (BD Difco) containing 0.5% each oleic acid, palmitic acid, and stearic acid or (ii) Dubos medium with 0.5% albumin–0.75% dextrose–0.04% catalase (ADC enrichment). Cultures were grown with agitation at 200 rpm at 37°C, and growth was monitored by measuring the OD\textsubscript{600}.

**RNA isolation.** Total RNA was isolated from cultures in the exponential and stationary phases as previously described (51). Basically, cultures were harvested by centrifugation and pellets were resuspended in guanidinium chloride buffer (6 M guanidinium chloride, 0.1% Tween 80), containing 0.5% albumin (Sigma Fraction V, fatty acid free) and supplemented with a mixture of 0.003% FA with even an number of carbon atoms (0.001% each: 18 carbon atoms, 16 carbon atoms, and 18 carbon atoms) or (ii) Dubos medium with 0.5% albumin–0.75% dextrose–0.04% catalase (ADC enrichment). Cultures were grown with agitation at 200 rpm at 37°C, and growth was monitored by measuring the OD\textsubscript{600}.

**Library preparation and sequencing.** Strand-specific RNA-seq libraries were prepared in accordance with the protocol described by Wald-bauer and coworkers (52). Briefly, the DNase-treated RNA (100 ng) was fragmented by divalent-cation hydrolysis (Fragmentation Buffer; Affymetrix). Cells were lysed mechanically in a FastPrep (Thermo Scientific) with 150- to 200-μm glass beads (Sigma-Aldrich) by performing four lysis cycles of 15 s each at high speed (6.5 m/s). Nucleic acids were purified with phenol-chloroform-isoamyl alcohol (25:24:1), and RNA was differentially precipitated with 0.4 volume of absolute ethanol (added drop by drop). Finally, RNA was washed three times with Trizol reagent (Invitrogen). RNA integrity was analyzed by a bioanalyzer (Agilent Technologies) and quantified by spectrophotometry with the NanoDrop ND-1000 (Thermo Scientific).

**Analysis of the upstream regions of the genes belonged to the lipid signature.** For each gene, 500 nt were taken upstream of the initiation codon. These regions were fed into the Gibbs sampling algorithm, and the sequences were analyzed to detect any possible bias in their composition. This was done by means of the program “unifedcpd.” Once corrected for possible bias, the samples were run with the following parameters: k-mer, 12 to 24 nt; -n, for nucleic acid alphabet; E3, maximum number of sites to find; -S 20, number of seeds to try; -i 1,000, number of iterations. The probability of the motif arising by chance was determined by means of the hypergeometric distribution (56). For this, the number of genes in which the motif was present in the 500-nt upstream region in H37Rv was calculated. It turned out that 767 of the 4,060 genes had the motif (this is the population distribution), so we wanted to calculate the probability of drawing 12 out of 14 genes given the population distribution (767/4,060).

**qRT-PCR of selected genes.** The total transcripts of selected genes were measured by real-time qRT-PCR. Quantification was performed with gene-specific primers (see Table S5) and SYBR green (Molecular Probes, Inc.). Samples were subjected to 40 cycles of amplification (denaturation at 95°C for 30 s, specific annealing temperature for 15 s, and extension at 72°C for 15 s) with a final extension at 72°C for 5 min. To ensure that the fluorescence levels detected were due to the amplification of a specific product, a melting curve analysis was performed. Absolute analysis was carried out. To do this, a standard curve was obtained for each set of primers by using 10-fold dilutions of known amounts of \textit{M. tuberculosis} H37Rv chromosomal DNA (1,000, 10,000, 100,000, and 1,000,000 theoretical copies). Threshold cycle values of each RNA quantitation were

**Measurement of drug activity.** The activity of a drug mixture containing rifampin (R), moxifloxacin (MX), metronidazole (MZ) and amikacin (AK) against exponential- and stationary-phase cultures of \textit{M. tuberculosis} grown in dextrose or FA medium was tested. R, MZ, and AK were purchased from Sigma Chemicals (United States); MX was obtained from Bayer (Mexico). R was dissolved in ethanol; MZ, AK, and MX were dissolved in distilled water. To determine drug activity, 4- to 6-day-old (exponential-phase) cultures and 15-day-old (stationary-phase) cultures (containing at least 1 × 10\textsuperscript{6} CFU/ml) were incubated with the drug combination for 0, 7, 14, or 21 days; R, MX, MZ, and AK were used at their maximum drug concentration in serum at 8, 4, 8, and 8 μg/ml, respectively (39). After incubation, culture CFU counts per milliliter were determined by plating appropriate dilutions as described previously (55). In parallel, 1 ml of each culture was taken to perform 10\textsuperscript{3} to 10\textsuperscript{4} dilutions with Dubos broth. One milliliter of every dilution was transferred to each of three tubes containing 9 ml of Dubos broth with or without the fatty acid mixture, accordingly. These broth cultures were examined for visible turbidity every 7 days over a 3-week period of incubation at 37°C. The most probable number (MPN) of viable bacilli was then estimated while taking in account the patterns of positive and negative tubes (http://www.fda.gov/food/foodscienceresearch/laboratorymethods/ucm109656.htm; accessed January 2013). Plating of different culture samples on blood agar medium showed the absence of bacteria other than mycobacteria. Growth of \textit{M. tuberculosis} in turbid tubes was confirmed by Ziehl-Neelsen staining and colonial morphology on Middlebrook 7H11.
interpolated to standard curve to obtain gene expression (number of gene copies per microliter). Normalization of these data was performed by using 16S rRNA expression levels.

**Transmission electron microscopy.** Cells were harvested by centrifugation at 16,000 × g, washed in sterile phosphate-buffered saline (PBS), and fixed in 2.5% (vol/vol) glutaraldehyde–0.1 M sodium phosphate for 1 h. Cells were recovered and resuspended in 1% (wt/vol) osmium tetroxide for 1 h. Cells were then dehydrated through treatment with a series of ethanol solutions (30, 40, 50, 60, 70, 80, and 90%); each treatment was performed twice for 10 min each time. A final dehydration step was done twice with 100% ethanol for 15 min. Samples were embedded in EPON 812 resin (EMS). This resin was polymerized at 60°C for 24 h. Resin blocks were cut in a Leica Ultratome UCT Ultratome to a 70-nm thickness, placed on 200-mesh copper grids (EMS), and stained with 30% (wt/vol) uranyl acetate–70% (vol/vol) methanol and counterstained with Reynolds lead citrate buffer. Samples were examined with a JEOL JEM-1011 transmission electron microscope with an acceleration voltage of 60 kV.

**Statistical analysis.** Statistical analysis for differential gene expression was evaluated by using RPKMs as expression values and Fisher’s exact test on a two-by-two contingency table (57) on a per-gene basis in which the two columns of the table were separated by reads that overlap the gene’s ORF and reads that do not overlap the ORF, and the two rows were separated by the two compared samples (FE versus DE or FS versus DS). Significant differences were determined with Fisher’s exact test with the additional criteria of a false-discovery rate (FDR) of <5%. The results were consistent with those obtained with the DESeq package for biological replicates (58).

**Nucleotide sequence accession number.** The RNA-seq data sets have been deposited in the NCBI Gene Expression Omnibus (59) under accession number GSE47863.

**SUPPLEMENTAL MATERIAL**

Supplemental material for this article may be found at http://mbio.asm.orglookup/suppl/doi:10.1128/mBio.01125-14/-/DCSupplemental.

**Figure S1.** JPG file, 0.2 MB.

**Figure S2.** JPG file, 0.2 MB.

**Figure S3.** JPG file, 0.2 MB.

**Figure S4.** JPG file, 0.4 MB.

**Figure S5.** JPG file, 0.4 MB.

**Table S1.** PDF file, 1.7 MB.

**Table S2.** PDF file, 0.2 MB.

**Table S3.** PDF file, 0.1 MB.

**Table S4.** PDF file, 0.1 MB.

**Table S5.** PDF file, 0.1 MB.

**REFERENCES**

1. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. 1999. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282:677–686.

2. Gengenbacher M, Kaufmann SH. 2012. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev. 36:514–532. http://dx.doi.org/10.1111/j.1574-6976.2012.00331.x.

3. Gonzalez-y-Merchand J, Mostoslavsky R, Hardie D, Westerjee V, Huygen K, Hernandez-Pando R, Thole J, Behr M, Gicquel B, Martin C. 2008. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One 3:e3496. http://dx.doi.org/10.1371/journal.pone.0003496.

4. Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Ten Bokum A, Besra GS, Lott JS, Stoker NG. 2007. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol. Microbiol. 65:684–699. http://dx.doi.org/10.1111/j.1365-2958.2007.05827.x.

5. Voskuil MI, Viscontí KC, Schoolnik GK. 2004. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low oxygen dormancy. Tuberculosis (Edinb) 84:218–227. http://dx.doi.org/10.1016/j.tube.2004.02.003.

6. Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, Gomes A, Rustad T, Dolganov G, Glotova I, Abeel T, Mahwini C, Kennedy AD, Allard R, Brabant W, Krueger A, Jaini S, Honda B, Yu WH, Hickey MJ, Zucker J, Garay C, Weiner B, Sisk P, Stolte C, Winkler JK, Van de Peer Y, Iazzetti P, Camacho D, Dreyfuss T, Luiu Y, Dorh alcohol, Mollenkopf HJ, Drofas G, Lamontagne J, Zhou Y, Piquenot J, Park SR, Ramam S, Kauffman SH, Shi, Mohney RP, Chelsky D, Moody DB, Sherman DR, Schoolnik GK. 2013. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499:178–183. http://dx.doi.org/10.1038/nature12337.

7. Arnvig KB, Comas I, Thomson NR, Houghton J, Bosshoff HI, Croucher NJ, Rose G, Perkins TT, Parkhill J, Dougan G, Young DB. 2011. Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptomes of Mycobacterium tuberculosis. PLoS Pathog. 7:e1002342. http://dx.doi.org/10.1371/journal.ppat.1002342.

8. Miotto P, Forti F, Ambrosi A, Pellin D, Veiga DF, Balazi G, Gennaro ML, Di Serio C, Ghisotti D, Cirillo DM. 2012. Genome-wide discovery of small RNAs in Mycobacterium tuberculosis. PLoS One 7:e51950. http://dx.doi.org/10.1371/journal.pone.0051950.

8. Peyron P, Vauourgeix J, Poquet Y, Levaliron F, Botanch C, Bardou F, Daffé M, Emile JF, Marchou B, Cardona PJ, de Chastellier C, Altare F. 2008. Foamy macrophages from tuberculosis patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 4:e1000204. http://dx.doi.org/10.1371/journal.ppat.1000204.

9. Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE. 2011. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 7:e1002093. http://dx.doi.org/10.1371/journal.ppat.1002093.

10. Gill WP, Harik NS, Whidden MR, Liao RP, Mittler JE, Sherman DR. 2009. A replication clock for Mycobacterium tuberculosis. Nat. Med. 15:211–214. http://dx.doi.org/10.1038/nm.1915.

11. Cubero N, Esteban J, Palenque E, Rosell A, Garcia MJ. 2013. Evaluation of the detection of Mycobacterium tuberculosis with metabolic activity in culture-negative human clinical samples. Clin. Microbiol. Infect. 19:273–278. http://dx.doi.org/10.1111/j.1469-0691.2012.03779.x.

12. Muñoz-Elias EJ, McKinney JD. 2005. Mycobacterium tuberculosis isocitrate lyase 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 11:638–644. http://dx.doi.org/10.1038/nm1252.

13. Duollet H, Johnston JB, de Montellano PR. 2011. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol. 19:530–539. http://dx.doi.org/10.1016/j.tim.2011.07.009.

14. Schnappinger D, Ehr T, Voskuil MI, Liu Y, Mangan IA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198:695–704. http://dx.doi.org/10.1084/jem.20030846.

15. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43:717–731. http://dx.doi.org/10.1046/j.1365-2958.2002.02279.x.

16. Deb C, Lee CM, Dubey VS, Daniel J, Abomoeak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE. 2009. A novel in vitro multiple-stress
dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 4:e6077. http://dx.doi.org/10.1371/journal.pone.0006077.

18. Voiskui MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK. 2003. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 197:705–713. http://dx.doi.org/10.1084/jem.20030205.

19. Lehninger A, Nelson D, Cox M. 2008. Lehninger principles of biochemistry, 5th ed. W. H. Freeman, New York, NY.

20. Jackson SK, Stark JM, Taylor S, Harwood JL. 2009. The two-component system RpfRD controls transcription of rpoS in Mycobacterium tuberculosis. Mol. Microbiol. 73:611–623. http://dx.doi.org/10.1111/j.1365-2958.2009.06077.x.

21. Jackson SK, Cooke C, Schilder H, Lemaire S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentle S, Hamlin N, Holroyd S, Hornby T, Jorge R, Kaidar P, Kato G, Khodashikhay S, Khojasteh P, Kitchens C, Kong J, Kucherov O, Keeling J, Kellis M, Kistler S, Kozich J, Kruis W, Lam K, Larena A, Law J, Lewis S, Lohse C, Loiseau P, Lovell J, Macpherson S, Macrina P, Marchesi F, Milne C, Millard C, Mindall D, Montenat S, Murray S, Kato G, Oliver K, Osborne J, Quail MA, Rajakumar K, Adegbola RA, Besra GS, Butcher PD, Barer MR. 2008. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med. 5:e75. http://dx.doi.org/10.1371/journal.pmed.0050075.

22. Piccaro G, Giannoni F, Filippini P, Mustazzolu A, Fattorini L. 2013. Activities of drug combinations against Mycobacterium tuberculosis grown in aerobic and hypoxic acidic conditions. Antimicrob. Agents Chemother. 57:1428–1433. http://dx.doi.org/10.1128/AAC.02154-12.

23. Farhana A, Guidry L, Srivastava A, Singh A, Honda K, Stylian C. 2010. Reductive stress in microbes: implications for understanding Mycobacterium tuberculosis disease and persistence. Adv. Microb. Physiol. 57:43–117. http://dx.doi.org/10.1016/S0065-2660(09)58002-3.

24. Garton NJ, Waddeil SJ, Sherratt AT, Lee SM, Smith RJ, Senner C, Hinds J, Rajakumar K, Adegbola RA, Besra GS, Butcher PD, Barer MR. 2008. RNA-Seq of Mycobacterium tuberculosis grown in nutrient-depleted cultures reveals a putative “dormancy associated translation inhibitor (DATIN).” PLoS One 3:e38709. http://dx.doi.org/10.1371/journal.pone.0038709.

25. Sultana R, Tannerre K, Guruprasad L. 2011. The PE-PPE domain in mycobacterium reveals a serine a/b hydrolase fold and function: an in silico analysis. PLoS One 6:e16745. http://dx.doi.org/10.1371/journal.pone.0016745.

26. Leblanc C, Prudhomme T, Tabourret G, Ray A, Burbaud S, Cabantous S, Mourey I, Guilhot C, Chalut C. 2012. 4'-Phosphopantetheinyl transferase PrfT, a new drug target required for Mycobacterium tuberculosis growth and persistence in vivo. PLoS Pathog. 8:e1003097. http://dx.doi.org/10.1371/journal.ppat.1003097.

27. Rodriguez JG, Burbano CS, Nuñez C, Gonzalez CE, Zambrano MM, Garcia MJ, Del Portillo P. 2008. Rv6079 encodes a putative “dormancy associated translation inhibitor (DATIN).” PLoS One 3:e16745. http://dx.doi.org/10.1371/journal.pone.0016745.

28. Reyes A, Sandoval A, Cubillos-Ruiz A, Varley KE, Hernandez-Neuta I, Samper S, Martin C, Garcia MJ, Ritacco V, Lopez L, Robledo J, Zambrano MM, Mitra RD, Del Portillo P. 2012. IS-seq: a novel high throughput survey of in vivo IS6110 transposition in multiple Mycobacterium tuberculosis genomes. BMC Genomics 13:249. http://dx.doi.org/10.1186/1471-2164-13-249.

29. Griffith JE, Gawronski JD, Dejesus MA, Loerger TR, Akerley BJ, Sassetti CM. 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 7:e1002251. http://dx.doi.org/10.1371/journal.ppat.1002251.

30. Ermolaeva ME, Boshoff H, Pastori E, Dick T, Ehrst S, Flynn J, Schnappinger D, Wilkinson RJ, Young D. 2009. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7:845–855. http://dx.doi.org/10.1038/nrmicro2236.

31. Gonzalez-y-Merchand JA, Garcia MJ, Gonzalez-Rico S, Colston MJ, Cox RA. 1997. Strategies used by pathogenic and nonpathogenic mycobacteria to synthesize RNA. J. Bacteriol. 179:6949–6958.
52. Waldbauer JR, Rodrigue S, Coleman ML, Chisholm SW. 2012. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle. PLoS One 7:e43432. http://dx.doi.org/10.1371/journal.pone.0043432.
53. Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:B25. http://dx.doi.org/10.1186/gb-2009-10-3-r25.
54. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B. 2000. Artemis: sequence visualization and annotation. Bioinformatics 16:944–945. http://dx.doi.org/10.1093/bioinformatics/16.10.944.
55. Gonzalez-Y-Merchand JA, Zaragoza-Contreras R, Guadarrama-Medina R, Helguera-Repetto AC, Rivera-Gutierrez S, Cerna-Cortes JF, Santos-Argumedo L, Cox RA. 2012. Evaluation of the cell growth of mycobacteria using *Mycobacterium smegmatis* mc2 155 as a representative species. J. Microbiol. 50:419–425. http://dx.doi.org/10.1007/s12275-012-1556-0.
56. Rivals I, Personnaz L, Taing L, Potier MC. 2007. Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23:401–407. http://dx.doi.org/10.1093/bioinformatics/btl633.
57. Carlson J, Heckerman D, Shani G. 2009. Estimating false discovery rates for contingency tables. Microsoft Research, Redmond, WA. http://research.microsoft.com/pubs/80571/fdr%20for%20contingency%20tables.pdf.
58. Wang L, Feng Z, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. http://dx.doi.org/10.1093/bioinformatics/btp612.
59. Edgar R, Domrachev M, Lash AE. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30:207–210. http://dx.doi.org/10.1093/nar/30.1.207.