Performance of Some Pomegranate Cultivars under Different Irrigation levels in North Sinai

A.Y. Haleem, W.M. Ghieth and A.A.H. Hegazy

ABSTRACT
Drought is one of the main serious problems for agriculture production which its intensity is increasing in many parts of the world. Hence, this experiment was carried out during 2015 and 2016 to study responses of four pomegranate cultivars Manfalouty, Nab-Elgamal, Wonderful and Wardi grown in sandy soil, in North Sinai Research Station, under different irrigation levels 100%, 75% and 50% of the recommended water level (11, 8.25 and 5.5 m³/tree/year) on growth, flowering, yield and fruit quality. The results obtained that the highest irrigation level 100% (11 m³/tree/year) enhanced vegetative growth, fruit set (%), number of fruits/tree, yield/kg/tree and fruit quality (fruit weight, diameter, length,) followed by descending moderate irrigation level 75% (8.25 m³/tree/year) while, 50% (5.5 m³/tree/year) gave the lowest values during both seasons. One the other hand, the data showed that the percentage of total sugars, acidity and proline significantly increased by decreasing amount of water. Manfalouty cultivar gave the highest values of growth parameters, total flowers/tree, fruit set (%), no of fruits, yield, fruit weight aspects and sugar content, and the lowest fruit drop (%), fruit peel (%), peel thickness (cm) followed by descending order of Nab-Elgamal cultivar. While, Wonderful and Wardi cultivars exhibited the lowest significant values in both seasons respectively. Moreover, data indicated generally that the best treatment combination was gained from using irrigation level at 100% (11 m³/tree/year) with Manfalouty and Nab-Elgamal which exhibited the highest values for all vegetative growth parameters, fruit set (%), fruit weight aspects, fruit arils and the least sugar content. Whereas, the maximum flower/tree, number of fruits/tree, fruit retention (%) and yield was observed with Manfalouty under the same irrigation level. On the other hand, Wardi cultivar under least irrigation treatment at 50% (5.5 m³/tree/years) recorded the highest significant values of fruit drop (%), fruit peel (%), fruit thickness (cm), proline (%) and acidity (%). Generally, data clarified that Manfalouty and Nab-Elgamal pomegranate cultivars are considered as a highly tolerant and significant to drought stress under North Sinai conditions compared to Wonderful and Wardi cultivars.

Keywords: Pomegranate, irrigation, drought, cultivars, productivity, fruit quality

Introduction
Pomegranate (Punica granatum L.) belongs to family Punicaceae and is one of the oldest known edible fruits. Pomegranate is an important commercial fruit crop of the tropical and subtropical regions of the world. It plays an important role in health development as it is packed with powerful antioxidants and vitamins (Parvizi and Sepaskhah, 2015). Pomegranate is a drought resistant tree because it tolerates heat and can grow well in arid, semi-arid and even under desert conditions (Aseri et al., 2008). Regular irrigation throughout the dry season helps to reach optimal growth and yield and fruit quality for commercial production (Holland et al., 2009). Water stress is one of the most significant environmental factors restricting growth, performance, and distribution of plant species worldwide (Liu et al., 2011).

Plants species can tolerate water stress by synthesis and accumulation of low molecular mass organic solutes such as soluble sugars, proline or other amino acids to regulate the osmotic potential of cells Zhang et al., (2010), Ebtedaie and Shekafandeh, (2016) and Pourghayoumi et al., (2017).Some researchers have investigated pomegranate tree performance under different irrigation levels such as Khattab et al., (2011a) who studied growth and productivity of pomegranate trees under five different irrigation levels, they observed that the highest irrigation level (15m³/tree/year) simulated vegetative growth and number of fruits per tree, fruit set (%), fruit retention (%) and total yield, whereas the lowest irrigation level (7 m³/tree/year) decreased these parameters. Shahzad et al., (2016) showed that drought stress is a severe problem which effects on vegetative growth, yield, reproduction, and development of crops.

Corresponding Author: A.Y. Haleem, Pomology Unit, Department of Plant Production, Desert Research Center, Cairo, Egypt

DOI: 10.36632/mejar/2020.9.4.79
Pomegranate trees applied several mechanisms for drought resistance such as increasing cell turgid by accumulation of soluble sugars and proline, increasing water potential for more water absorption from soil, chlorophyll and carotenoid pigments preserved by control of leaf relative water content (RWC), reducing leaf area (Rad et al., 2015).

In recent years, water stress has become a huge problem in pomegranate orchards caused reductions in quality, such as fruit cracking, and quantity of fruits. Therefore, identifying and introducing the most tolerant pomegranate cultivar to water deficit is very essential. The majority of studies on pomegranate trees under water stress have primarily investigated physiological responses such as transpiration, stomatal conductance, photosynthesis, intrinsic water use efficiency, stem and leaf water potential, RWC, and leaf osmotic potential (Galindo et al., 2013, Intrigliolo et al., 2011 and Mellisho et al., 2012).

Therefore, the main aim of this study was to investigate and compare the effect of different three irrigation levels (100%, 75% and 50%) on the growth and productivity of four pomegranate cultivars (Manfalouty, Nab-Elgamal, Wonderful and Wardi) under North Sinai conditions.

2. Materials and Methods

This experiment was conducted during two successive seasons of 2015 and 2016 on different four pomegranate (Punica granatum L.) cultivars Manfalouty, Nab-Elgamal, Wonderful and Wardi grown at North Sinai Research Station, El-Sheikh Zuwayid, North Sinai Governorate, Egypt. All trees under investigation were seven years old, grown in sandy soil under drip irrigation system. The trees were planted at 5 x 5 m apart and all trees are almost uniform in shape and received regularly the annual horticultural practices.

The soil and irrigation water analysis was done and listed in Table (1):

Characteristics	Soil	Water
Particle size distribution %		
Sand	93.3	
Silt	4.9	
Clay	2.1	
Texture	Sandy soil	
SP	19.5	6.6
EC (dsm⁻¹)	4.29	2.13
pH	8.00	8.0
Soluble cations meq/l		
Ca²⁺	20.0	6
Mg²⁺	7.8	1.3
Na⁺	14.1	13.6
K⁺	1.0	0.4
Soluble anions meq/l		
CO₃²⁻	---	--
HCO₃⁻	3.1	1.6
Cl⁻	25.6	16.3
SO₄²⁻	14.2	3.4
Available micronutrients in soil (ppm)		
Fe	2.8	1.5
Zn	3.6	1.5
Cu	0.7	0.2
Mn	5.4	0.1

In this experiment, three different irrigation levels 100% (control), 75% and 50% of the recommended rate of irrigations, were applied on different pomegranate cultivars
Table 2: Distribution of irrigation water (L. Month/tree) and (m3/Month/feddan) during 2015 and 2016 seasons.

Irrigation levels	100% irrigation (control)	75% irrigation	50% irrigation			
	L. mo./tree	m3/mo./Fed.	L. mo./tree	m3/mo./Fed.	L. mo./tree	m3/mo./Fed.
March	240	40.32	180	30.24	120	20.16
April	630	105.84	472.5	79.38	315	52.92
May	1500	252.00	1125	189.00	750	126.00
June	2100	352.80	1575	264.60	1050	176.40
July	2100	352.80	1575	264.60	1050	176.40
August	2100	352.80	1575	264.60	1050	176.40
September	1500	252.00	1125	189.00	750	126.00
October	660	110.88	495	83.16	330	55.44
November	180	30.24	135	22.68	90	15.12
Total m3/year	11.0	1849.68	8.25	1387.26	5.50	924.84

2.1. Measurements

2.1.1. Vegetative growth parameters:

A- Average shoots length (cm): At the end of each season in September, the average shoot length was recorded by measuring the length of labeled shoots per tree and then the average shoot length (cm) was calculated.

B- Number of leaves per shoot: Leaves developed on the new shoots were counted at the end of growing season in September.

C- Leaf Area (cm2): Was determined by using the Laser leaf area meter CL203.

2.1.2. Flowering and fruiting parameters:

A. Number of fruits per tree: Fruits were picked at October in both seasons and number of fruits per the tree was counted.

B. Fruit set percentage: Was calculated according to the formula:

\[
\text{Fruit set} \% = \frac{\text{number of set fruits}}{\text{total number of flowers}} \times 100.
\]

C. Fruit drop percentage: Was calculated by the following equation:

\[
\text{Fruit drop} \% = \frac{\text{Total number of fruit set} - \text{Total number of fruits at harvest}}{\text{Total number of fruit set}} \times 100.
\]

D. Fruit retention percentage: Fruit retention (%) = Total number of fruits at harvest / Total number of fruit set X 100.

E- Yield per tree (kg): At harvest time, fruits per tree for each treatment were weighted and then average yield/tree as kg was estimated.

F- Fruit physical properties: Ten fruits were taken randomly at harvest time from each treated tree for determination of fruit weight (g), fruit length (cm), fruit diameter (cm), fruit arils (%), fruit peel (%), peel thickness (cm).

2.1.3. Fruit chemical properties:

Sample of 10 mature fruits of each tree was taken at the harvest time to determining total acidity % in juice as citric acid by titrating 5 ml juice with 0.1 sodium hydroxide against using the phenolphalein as an indicator. The total sugars % was determined according to A.O.A.C. (1985).

Proline Percentage: Mature fresh leaf samples (0.5 g) were homogenized in 10 ml 3%-5% sulphosalisylic acid then filtered through Whitman No.1 filter paper. The filtrate (2 ml) was added to 2 ml ninhydrin reagent and 2 ml glacial acetic acid and then the mixture boiled on water both for one hour. The boiled mixture was put in ice both, then 4 ml were added to each sample with severely inverting, then calorimetrically estimated at 520 nm according to (Bates et al., 1973). The proline concentration was determined from standard curve and calculated on fresh weight basis.

The obtained data were subjected to proper statistical analysis of variance for a split plot design (two factors) using MSTATC computer program with three replicates contents two trees. Duncan’s multiple range tests was used for comparison between means. Different alphabetical letters in the column are significantly differed at (0.05) level of significance (Duncan, 1955). The same trees were used throughout both experimental seasons.
3. Results and Discussion

3.1. Vegetative growth characters:

Data in Table (3) clearly showed a significant difference among the three irrigation levels (100%, 75% and 50%) in terms of average shoot length (cm), number of leaves per shoots and leaf area (cm2) in both seasons. Irrigation under level 100% (11.0 m3/tree/year) recorded the highest values of shoot length (27.03 and 26.53 cm), number of leaves per shoots (25.35 and 25.21) and leaf area (3.90 and 3.84 cm2) followed by irrigation level 75% (8.25 m3/tree/year) during both seasons, respectively. On the other hand, least irrigation level at 50% (5.5 m3/tree/year) induced the lowest values of shoot length (16.70 and 12.65 cm), number of leaves per shoots (14.86 and 11.03) and leaf area (3.03 and 2.77 cm2) during two studied seasons, respectively.

Table 3: Effect of irrigation levels on vegetative growth of four pomegranate cultivars in 2015 and 2016 seasons.

Cultivars	Season 2015	Season 2016							
	Irrigation levels	Irrigation levels							
	100%	75%	50%	Mean	100%	75%	50%	Mean	
Average shoot length (cm)									
Manfalouty	27.63a	26.03bc	19.48ef	24.38a	29.72a	24.38a	16.42f	23.51a	
Nab-Elgamal	28.27a	24.96cd	18.27f	23.84a	27.91a	23.84a	17.91d	21.15b	
Wonderful	27.04a-c	23.18d	15.89g	22.04b	25.94b	22.04b	19.78e	18.92c	
Wardi	25.18b-d	20.75e	13.14h	19.69c	25.21a	25.21a	15.23f	15.73d	
Mean	27.03a	23.73b	16.70c	26.53a	20.30b	12.65c			
Number of leaves per shoots									
Manfalouty	27.69a	25.54b	18.21gh	23.82a	28.24a	23.82a	15.17c	22.43a	
Nab-Elgamal	26.15ab	22.46de	16.87h	21.83b	27.19ab	21.83b	12.92f	20.34b	
Wonderful	24.63bc	20.79ef	13.73i	19.72c	24.68b	24.68b	17.71d	17.29c	
Wardi	22.93cd	19.85fg	10.63j	17.80d	20.76c	20.76c	13.54ef	13.62d	
Mean	25.35a	22.16b	14.86e	25.21a	19.01b	11.03c			
Leaf area (cm2)									
Manfalouty	3.98a	3.78bc	3.27c	3.68a	4.15a	3.57cd	3.04f	3.59a	
Nab-Elgamal	3.91ab	3.62d	3.16e	3.56b	4.01ab	3.43de	2.84fg	3.42b	
Wonderful	3.93ab	3.53d	3.02f	3.49b	3.75bc	3.21ef	2.69g	3.22c	
Wardi	3.76dc	3.25e	2.67g	3.23e	3.44de	2.97f	2.51g	2.97d	
Mean	3.90a	3.54b	3.03c	3.84a	3.29b	2.77c			

Means followed by the same letter(s) within each column are not significantly different at the 0.05 level, according to Duncan's multiple range tests.

Results indicated that water stress is a vital factor limiting pomegranate cultivation in Mediterranean basin; also it can impair performance pomegranate growth and yield. The reduction in shoot growth and leaf enlargement and expansion may be due to the changes in hormone balance Webster et al., (2000) and Liu et al., (2005).

Similar findings are in harmony with Abd El-Samad and Ibrahim, (2007), Khattab et al., (2011a), Abd-Ella, (2011), Hamdy et al., (2016), Bugueno et al., (2016), Parvizi et al., (2016) and Martínez-Nicolás et al., (2019)

The growth parameters increased in the all cultivars under study as a result of increasing amount of water. However, Manfalouty cultivar exhibited the highest significant average of shoot length (24.38 and 23.51 cm), number of leaves per shoots (23.82 and 22.43) and leaf area (3.68 and 3.59 cm2) followed by descending order Nab-Elgamal then Wardi cultivars. Meanwhile, Wardi cultivar gave the lowest significant average shoot length (19.69 and 15.73 cm), number of leaves per shoots (17.80 and 13.62) and leaf area (3.23 and 2.97 cm2) in both seasons, respectively.
For the interaction among the three levels of irrigation (100%, 75% and 50%) and four pomegranate cultivars (Manfalouty, Nab-Elgamal, Wonderful and Wardi), the best results of shoot length, number of leaves per shoots and leaf area were observed with Manfalouty and Nab-Elgamal cultivars under irrigation level 100% (11.0m³/tree/year). On the other hand, the least values were observed with Wardi pomegranate cultivar under irrigation level at 50% (5.5m³/tree/year) for shoot length (13.14 and 9.42cm), number of leaves per shoots (10.63 and 6.56) and leaf area (2.67 and 2.51cm²) in both successive seasons, respectively. The other interaction came in between.

3.2. Flowering and fruiting parameters

Data presented in Table (4) indicated that a significant effect on total flowers/tree, fruit set and fruit drop percentages in response to different irrigation levels in the first and second seasons. Hence, the highest total flowers/tree (207.51 and 219.21) and fruit set percentage (28.53 and 28.02%) were noticed under irrigation level at 100% (11.0m³/tree/year). However, sever water stress at 50% (5.5m³/tree/year) recorded the lowest values of total flower/tree (133.31 and 100.63) and fruit set percentage (21.32 and 16.43) during seasons 2015 and 2016 respectively. On the other side, the highest fruit drop percentage was noticed under irrigation level at 50% (5.5m³/tree/year) which reached (19.31 and 22.66%). Meanwhile, applying irrigation at 100% (11.5m³/tree/year) gave the least fruit drop percentage (12.43 and 13.59%) in both successive seasons, respectively. These results are in harmony with Abd-Ella, (2011) who indicated that the highest mean value of number of flowers /shoot, fruit set percentage were associated with highest rate of irrigation level at 11m³/tree/year compared to irrigation level at (8.25 and 5.5m³/tree/year).

| Table 4: Effect of irrigation levels on total flowers/tree, fruit set (%) and fruit drop (%) of four pomegranate cultivars in 2015 and 2016 seasons. |
|---------------------|---------------------|---------------------|
| Cultivars | Season 2015 | Season 2016 |
| | Irrigation levels | Irrigation levels |
| | 100% | 75% | 50% | Mean | 100% | 75% | 50% | Mean |
| Total flowers/tree | | | | | | | | |
| Manfalouty | 221.73a | 198.82b | 160.70c | 193.75a | 257.31a | 182.88c | 142.51c | 194.23a |
| Nab-Elgamal | 201.84b | 178.49cd | 142.31f | 174.21b | 229.48b | 157.17d | 112.72f | 166.46b |
| Wonderful | 217.97a | 171.66d | 124.68g | 171.44b | 226.83b | 139.72e | 91.97g | 152.84c |
| Wardi | 188.48c | 157.41e | 105.54h | 150.48c | 163.20d | 107.65f | 55.33h | 108.73d |
| Mean | 207.51a | 176.60b | 133.31c | 219.21a | 146.86b | 100.63c | | |
| Fruit set (%) | | | | | | | | |
| Manfalouty | 29.13a | 27.42ab | 23.57d | 26.71a | 30.06a | 26.73c | 19.80f | 25.53a |
| Nab-Elgamal | 28.74a | 26.49a-c | 22.72de | 25.98ab | 29.58ab | 25.15cd | 17.70g | 24.14a |
| Wonderful | 28.59a | 25.21b-d | 20.14ef | 24.65b | 27.13bc | 23.17de | 14.48h | 21.59b |
| Wardi | 27.68ab | 24.10cd | 18.84f | 23.54c | 25.32cd | 21.50ef | 13.75h | 20.19b |
| Mean | 28.53a | 25.80b | 21.32c | 28.02a | 24.14b | 16.43c | | |
| Fruit drop (%) | | | | | | | | |
| Manfalouty | 11.86f | 14.10 d-f | 17.60bc | 14.52b | 12.11i | 16.61fg | 19.59c-e | 16.11c |
| Nab-Elgamal | 12.07f | 14.49de | 18.65b | 15.07b | 12.60i | 17.60e-g | 21.05e | 17.08c |
| Wonderful | 12.55ef | 15.31cd | 19.13b | 15.66b | 13.88hi | 18.78d-f | 23.47b | 18.71b |
| Wardi | 13.24d-f | 16.88bc | 21.87a | 17.33a | 15.76gh | 20.58cd | 26.54a | 20.96a |
| Mean | 12.43e | 15.20b | 19.31a | 13.59c | 18.39b | 22.66a | | |

Means followed by the same letter(s) within each column are not significantly different at the 0.05 level, according to Duncan's multiple range tests.

Data in Table (5) showed that fruit retention%, number of fruits /tree and yield (kg/tree) were significantly affected by three different irrigation levels. However, under irrigation treatment at 100% (11.0m³/tree/year) gave the highest percentage of fruit retention (85.43 in the 1st and 83.19% in the 2nd season), no. of fruits/tree (20.18 in the 1st and 22.32 in the 2nd season) and yield (kg/tree) (4.21 in the 1st and 4.88kg in the 2nd season), followed by the moderate irrigation at 75% (8.25m³/tree/year).
Meanwhile, deficit irrigation at 50% (5.5m³/tree/year) produced the lowest fruit retention (72.52 in the 1st and 65.62% in the 2nd season), no. of fruits/tree (11.21 in the 1st and 7.68 in the 2nd season) and yield (1.70 in the 1st and 1.19kg in the 2nd season). The obtained results are in agreement with Abd El-Samad and Ibrahim (2007), Rad et al., (2015), Tavousi et al. (2015), Cano-Lamadrid et al., (2018), (Parvizi et al., 2014) and Zhang et al., (2017).

Table 5: Effect of irrigation levels on fruit retention (%), number of fruits /tree and yield of four pomegranate cultivars in 2015 and 2016 seasons.

Cultivars	Season 2015	Season 2016						
	Irrigation	Irrigation						
	levels	levels						
	100%	75%						
	50%	Mean						
	50%	Mean						
	100%	75%						
Fruit retention								
(%)								
Manfalouty	87.12a	83.55bc	76.61ef	82.43a	85.58a	80.51bc	71.86ef	79.32a
Nab-Elgamal	86.13ab	80.95cd	74.48fg	80.52ab	83.68ab	76.22cd	69.38f	76.43b
Wonderful	84.48a-c	79.79de	71.75g	78.67b	82.35ab	73.86de	63.82g	73.34c
Wardi	83.99a-c	77.11ef	67.23b	76.11c	81.16b	68.83f	57.41h	69.13d
Mean	85.43a	80.35b	72.52c	83.19a	74.85b	65.62c		
Number of fruits								
(%) per tree								
Manfalouty	22.17a	19.93a-c	16.43de	19.51a	29.67a	16.31d	11.21f	19.06a
Nab-Elgamal	19.41bc	15.12ef	11.71gh	15.41b	23.65b	13.78e	8.71g	15.38b
Wonderful	21.02ab	15.04ef	9.53hi	15.20b	20.46c	11.41f	6.74g	12.87c
Wardi	18.12cd	13.76fg	7.18i	13.02c	15.50de	8.44g	4.06h	9.33d
Mean	20.18a	15.96b	11.21c	22.32a	12.48b	7.68c		
Yield (kg/tree)								
(%) per tree								
Manfalouty	5.06a	4.04bc	2.52e-g	3.87a	6.89a	3.47d	1.89f	4.08a
Nab-Elgamal	4.39ab	3.14de	1.85gh	3.13b	5.39b	2.67c	1.46f	3.17b
Wonderful	4.01bc	2.64ef	1.41hi	2.69c	4.30c	1.85f	0.91g	2.35c
Wardi	3.38cd	2.21fg	1.03i	2.21d	2.95de	1.29fg	0.52h	1.58d
Mean	4.21a	3.01b	1.70c	4.88a	2.32b	1.19c		

Means followed by the same letter(s) within each column are not significantly different at the 0.05 level, according to Duncan's multiple range tests.

The results revealed that percentage of fruit retention; numbers of fruit/tree and yield (kg/tree) were significantly varied among the four pomegranate cultivars. However, Manfalouty cultivar produced the highest significant fruit retention (82.43 & 79.32%), number of fruit /tree (19.51 &19.06) and yield (kg/tree) (3.87 & 4.08) followed by descending order Nab-Elgamal and Wonderful cultivars. Meanwhile, Wardi cultivar gave the lowest values in percentage of fruit retention (76.11 & 69.13%), number of fruit /tree (13.02 &9.33) fruit /tree and (2.21 & 1.58) yield (kg/tree) during the first and second experimental seasons respectively. As for the interaction effect between different irrigation levels and four pomegranate cultivars, it is clear that the maximum fruit retention percentage (87.12 & 85.58%), number of fruit/tree (22.17 & 29.67) and yield (kg/tree) (5.06 & 6.89kg/tree) was observed with Manfalouty cultivar under level irrigation at 100% (11.0m³/tree/year). On the contrary, Wardi cultivar under severe water stress at 50% (5.5m³/tree/year) recorded the lowest values of fruit retention percentage (67.23 & 57.41%), number of fruit/tree (7.18 & 4.06) and yield (kg/tree) (1.03 & 0.52kg/tree) in the 1st and 2nd season respectively. The other interactions were in between values. The obtained results are in harmony with Abo-Taleb et al., (1998) found that Manfalouty and Nab-El-gamal cultivars exhibited the greatest values of growth parameters, followed in decreasing order by Arabby and Wardi under severe water stress. EL-Agamy et al., (2010) observed that Manfalouty pomegranate was the most tolerant cultivar to drought and salinity in comparison to Nab-El-gamal under in vitro conditions.

Results presented in Table (6) reveal a significant effect on fruit weight, fruit length and fruit diameter in response to different irrigation levels. Hence, the highest values and significant in fruit
weight (188.47 & 200.70g), fruit length (7.09 & 7.15cm) and fruit diameter (6.62 & 6.73cm) was observed under irrigation level at 100% (11.0m\(^3\)/tree /year) followed by moderate irrigation level at 75% (8.25m\(^3\)/tree /year). On the other side, applied irrigation level at 50% (5.5 m\(^3\)/tree /year) recorded the least average of fruit weight (123.21 & 105.67g), fruit length (5.80 & 5.42cm) and fruit diameter (6.21 & 5.75cm) in the first and second season respectively. These results are in line with Khattab et al., (2011b), Mellisho et al., (2012) and Parviz et al., (2014) who concluded that fruit physical properties (average fruit weight, fruit length and fruit diameter) were improved under the highest irrigation rate.

Fruit physical properties were significantly varied among the four pomegranate cultivars which grown under different irrigation levels. However, in the first season, Manfalouty and Nab-Elgamaral produced the highest fruit weight (169.23 & 166.83g), fruit length (6.41 & 6.33cm) and fruit diameter (6.87 & 6.85cm). Meanwhile, in the second season, Manfalouty cultivar gave the best fruit weight (174.79 g), fruit length (6.44cm) and fruit diameter (6.21 & 5.75cm). On the other hand, Wardi cultivar exhibited the lowest average in fruit weight (139.09 & 118.39g), fruit length (5.85 & 5.65cm) and fruit diameter (6.34 & 5.84cm) during the first and second experimental seasons, respectively.

Table 6: Effect of irrigation levels on fruit weight (g), fruit length (cm) and fruit diameter (cm) of four pomegranate cultivars in 2015 and 2016 seasons.

Cultivars	Season 2015		Season 2016					
	Irrigation levels		Irrigation levels					
	100%	75%	50%	Mean	100%	75%	50%	Mean
Fruit weight (g)								
Manfalouty	191.11b	174.86cd	141.72f	169.23a	224.40a	167.20c	132.79de	174.79a
Nab-Elgamaral	201.21a	169.19d	130.09g	166.83a	211.60ab	145.55d	117.90fg	158.01b
Wonderful	184.45bc	154.52e	124.75f	154.57b	197.80b	129.08ef	97.29gh	141.38c
Wardi	177.10cd	143.89f	96.27h	139.09e	169.20c	111.25g	74.70i	118.39j
Mean	188.47a	160.61b	123.21c		200.70a	138.02b	105.67c	
Fruit length (cm)								
Manfalouty	6.59ab	6.51ab	6.13cd	6.41a	7.03a	6.42c	5.86d	6.44a
Nab-Elgamaral	6.72a	6.35bc	5.92de	6.33a	6.83ab	6.19c	5.73d	6.25a
Wonderful	6.64ab	6.17cd	5.76e	6.19a	6.67b	5.76d	5.16e	5.86d
Wardi	6.41ac	5.75c	5.39f	5.85b	6.38c	5.64d	4.91c	5.65c
Mean	6.59a	6.19b	5.80c	6.73a	6.00b	5.42c		
Fruit diameter (cm)								
Manfalouty	7.15ab	7.07ac	6.41ef	6.87a	7.41a	6.72d	6.39e	6.84a
Nab-Elgamaral	7.21a	6.82bd	6.53de	6.85a	7.33ab	6.53de	6.06eg	6.63b
Wonderful	7.08ab	6.74ce	6.24f	6.69b	7.03bc	6.32ef	5.80g	6.39c
Wardi	6.91ac	6.43df	5.67e	6.34c	6.83cd	5.94g	4.76h	5.84d
Mean	7.09a	6.77a	6.21b	7.15a	6.38b	5.75c		

Means followed by the same letter(s) within each column are not significantly different at the 0.05 level, according to Duncan's multiple range tests.

With regard to the combination among three levels of irrigation and four pomegranate cultivars, data indicated that, in the first season, the bigger fruit weight (201.21g), the highest fruit length (6.72cm) and fruit diameter (7.21cm) were found with Nab-Elgamaral cultivar under full irrigation at 100% (11.0m\(^3\)/tree /year). Meanwhile, in the second season, Manfalouty cultivar gave the best fruit weight (224.40g), fruit length (7.41cm) and fruit diameter (7.21cm) under irrigation at 100% (11.0m\(^3\)/tree /year). On the other hand, Wardi cultivar recorded the lowest fruit weight (96.27 & 74.70g), fruit length (5.39 & 4.91cm) and fruit diameter (5.67 & 4.76cm) under least irrigation level at 50% (5.5m\(^3\)/tree /year), in the first and second seasons, respectively. The other interactions were in between values.

Concerning the results in Table (7) it is shown that fruit arils (%), fruit peel (%) and peel thickness (mm) was significantly affected by different three irrigation levels in both seasons. However, the highest
percentage and significant in fruit arils (%) was obtained under full irrigation treatment (11.0m³/tree/year) which average (59.00 & 60.33%) followed by irrigation under level at 75% (8.25 m³/tree/year) which produced (54.27 & 51.31%). Whereas, applied irrigation at 50% (5.5 m³/tree/year) obtained the lowest percentage in fruit arils (48.05 & 43.85%) in both seasons, respectively. On the other side, the highest values and significant in fruit peel (59.00 & 60.33%) and peel thickness (59.00 & 60.33 mm) was observed under level irrigation at 50% (5.5m³/tree/year). While, irrigation at 100% (11.0m³/tree/year) resulted in the lowest significant percentage in fruit peel (59.00 & 60.33%) and peel thickness (59.00 & 60.33 mm) in both seasons, respectively.

Table 7: Effect of irrigation levels on fruit arils (%), fruit peel (%) and peel thickness (mm) of four pomegranate cultivars in 2015 and 2016 seasons.

Cultivars	Season 2015	Season 2016						
	Irrigation levels	Irrigation levels	Irrigation levels					
	100%	75%	50%	Mean	100%	75%	50%	Mean
Fruit arils (%)								
Manfalouty	59.69ab	56.87a-c	51.62d-f	56.06a	54.17a	54.85b	48.44e	55.49a
Nab-Elgamal	60.67a	55.62b-d	49.12g	55.14ab	62.05a	52.55cd	45.93ef	53.51ab
Wonderful	58.30ab	53.09c-e	47.74f	53.04b	59.48ab	52.23cd	42.14fg	51.28b
Wardi	57.33ab	51.52d-f	43.73g	50.86c	56.61bc	45.58ef	38.90gh	47.03c
Mean	59.00a	54.27g	48.05c	60.33a	51.31b	43.85c		
Fruit peel (%)								
Manfalouty	40.34g	43.13f	48.38cd	43.95e	37.16g	45.15cd	51.56b	44.62d
Nab-Elgamal	40.68g	44.81ef	50.88bc	45.46bc	39.08fg	47.45cd	54.67bc	47.07c
Wonderful	41.70g	46.58de	52.26ab	46.85b	40.52ef	47.77c	58.98a	49.09b
Wardi	42.99f	48.48cd	54.87a	48.78a	43.39df	54.42b	61.10a	52.97a
Mean	41.43c	45.75b	51.60a	40.04c	48.69b	56.58a		
Peel thickness (mm)								
Manfalouty	0.31f	0.35f	0.46de	0.37c	0.35h	0.51f	0.55ef	0.47c
Nab-Elgamal	0.41e	0.49d	0.56bc	0.48b	0.43g	0.58df	0.67bc	0.56b
Wonderful	0.35f	0.46de	0.60ab	0.47b	0.42g	0.62cd	0.72b	0.59b
Wardi	0.48d	0.55c	0.64a	0.56a	0.56ef	0.65c	0.79a	0.67a
Mean	0.38c	0.46b	0.57a	0.44c	0.59b	0.68a		

Means followed by the same letter(s) within each column are not significantly different at the 0.05 level, according to Duncan's multiple range tests.

Manfalouty (56.06 & 55.49 %) and Nab-Elgamal (55.14 & 53.51 mm) cultivars gave the highest percentage of fruit arils (%) followed by Wonderful cultivar (53.04 & 51.28 %). Whereas, the lowest percentage of fruit arils was observed with Wardi cultivar (50.86 & 47.03 %) in both seasons, respectively. On the other hand, Manfalouty cultivar gave the least percentage and significant of fruit peel (48.78 & 52.97 %) and peel thickness (00.37 & 00.47 mm). Meanwhile, Wardi cultivar produced the highest percentage of fruit peel (48.78 & 52.97 %) and peel thickness (00.56 & 00.67 mm). Nab-Elgamal and Wonderful cultivars recorded the intermediate values in this respect during the first and second seasons respectively.

The obtained data from the interaction among the three different irrigation levels and four pomegranate cultivars indicated that the highest percentage of fruit arils was observed with Nab-Elgamal (60.67 & 62.05 %) and Manfalouty (59.69 & 63.97 %) under irrigation 100% (11.0m³/tree/year). While, the least value of fruit arils was obtained with Wardi cultivar (43.73 & 38.90 %) under deficit irrigation at 50%. On the other side, Wardi cultivar under least irrigation level produced the highest and significant average of fruit peel (54.87 & 61.10 %) and peel thickness (00.64 & 00.79 mm) compared to Manfalouty under irrigation treatment at 100% (11.0m³/tree/year) which gave the lowest percentage of fruit peel (40.34 & 37.16 %) and peel thickness (00.31 & 00.35 mm) in both seasons, respectively. The other interaction came in between.
3.3. Fruit chemical properties

Data presented in Table (8) indicated that total sugar (%), acidity (%) and proline (%) were significantly affected by different irrigation treatments in both seasons. However, the highest level and significant of total sugar (13.36 & 13.39%), acidity (2.09 & 2.31%) and proline (1.34 & 1.49%) was noticed under water stress at 50% (5.5 m³/tree/year). While, the lowest level of total sugar (12.90 & 13.16%), acidity (1.44 & 1.64%) and proline (0.55 & 0.67%) were recorded under full irrigation at 100% (11.0 m³/tree/year). On the other hand, moderate irrigation level at 75% (8.25 m³/tree/year) exhibited an intermediate value during the first and second season, respectively. These results are in harmony with Abd-Ella, (2011), Khattab et al., (2011 c), Rad et al., (2015), Dinc et al., (2018) and Nasrabadia et al., (2019) on different pomegranate cultivars; observed that the lowest level of proline and fruit acidity was observed with the highest irrigation level, soluble carbohydrate content increased with reducing the irrigation level. Also, Cano-Lamadrid et al., (2018) found that the highest contents of glucose and fructose were recorded under water stress in wonderful pomegranate cultivar.

Table 8: Effect of irrigation on total sugar, acidity and proline (%) of four pomegranate cultivars in 2015 and 2016 seasons.

Cultivars	Season 2015	Season 2016						
	Irrigation levels	Irrigation levels						
	100%	75%	50%	Mean	100%	75%	50%	Mean
Manfalouty	13.26	13.46	13.62	13.44a	13.47c	13.61ab	13.67a	13.58a
Nab-Elgamal	13.08	13.31	13.59	13.32b	13.29d	13.54bc	13.69a	13.51b
Wonderful	12.97	13.36d	13.55	13.29b	13.17c	13.48c	13.51c	13.39c
Wadi	12.31	12.53	12.67	12.51c	12.73	12.79f	12.69	12.74d
Mean	12.90	13.17b	13.36d	13.16c	13.35b	13.39a		

Means followed by the same letter(s) within each column are not significantly different at the 0.05 level, according to Duncan's multiple range tests.

The highest percentage and significant of total sugars (13.44 in the 1st and 13.58% in the 2nd season) and the lowest level of proline percentage (00.81 in the 1st and 00.93% in the 2nd season) were recorded with Manfalouty cultivar compared to Wadi cultivar which gave the least content of sugar (12.51 in the 1st and 12.74% in the 2nd season) and the highest percentage of proline (1.05 in the 1st and 1.23% in the 2nd season). On the other side, the lowest percentage of total acidity was observed with Nab-Elgamal cultivar (1.68 in the 1st and 1.90 in the 2nd season). These results are in the same line with Hamdy et al., (2016)

Also, the total sugars (%), acidity (%) and proline (%) were significantly affected by the interaction among the three levels irrigation and four pomegranate cultivars. Hence, Manfalouty and Nab-Elgamal cultivars under deficit irrigation level at 50% (5.5 m³/tree/year) produced the highest values of total sugar. While, the lowest value of sugar percentage was observed with Wadi cultivar under full irrigation at100% (12.31 in the 1st season) and 50% (12.69% in the 2nd season). On the other
hand, the highest average of acidity and proline percentage was observed with Wardi pomegranate cultivar under water stress at 50% (5.5 m³/tree/year). Whereas, Nab-Elgamal under full irrigation 100% gave the lowest average of acidity percentage (1.42 and 1.53) and Manfalouty gave the lowest average of proline (0.49% and 56%) during both seasons, respectively. The other interaction came in between.

References

A. O. A. C., 1985. Official methods of analysis. Association of Official Agricultural Chemists, 14th ed: Benjamin Franklin station Washington, DC, USA, 490-510.

Abd El-Samad, G.A. and A.M. Ibrahim, 2007. Effect of different irrigation regimes and partial substitution n-mineral by organic manures on water use, growth and productivity of pomegranate trees. Annals of Agric. Sc., Moshtohor, 45(1):327-352.

Abd-Ella, E.K.E., 2011. Effect of soil conditioners and irrigation levels on growth and productivity of pomegranate trees in the new reclaimed region. Alexandria Science Exchange Journal, 32(4): 550-575.

Abo-Taleb, S.A., V.F. Moaman and S.S. El-Deen, 1998. Growth of pomegranate transplants as affected by different water regimes. Ann. Agr. Sci. Moshtohor, 36:1073-1091.

Aseri, G.K., N. Jain, J. Panwar, A.V. Rao and P.R. Meghwal, 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci. Hort., 117(2):130-135.

Bates, L.S., R.P. Waldren and I.D. Teare, 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 93: 205-207.

Bugeon, F., N. Livella, F. Varas, P. Undurraga, M. Castro and E. Salgado, 2016. Responses of young Punica granatum plants under four different water regimes. Ciencia e Investigacion Agraria; 43(1):49-56.

Cano-Lamadrid, M., A. Galindo, J. Collado-González, P. Rodríguez, Z.N. Cruz, P. Legua, F. Burló, D. Morales, Á.A. Carbonell-Barrachinaa and F. Hernández, 2018. Influence of deficit irrigation and crop load on the yield and fruit quality in Wonderful and Mollar de Elche pomegranates. J. Sci. Food Agric., 98: 3098–3108.

Dinc, N., K. Aydinsakir, M. Isik, R. Bastug, N. Ari, A. Sahin and D. Buyuktas, 2018. Assessment of different irrigation strategies on yield and quality characteristics of drip irrigated pomegranate under Mediterranean conditions. Irrigation Science, 36:87–96.

Duncan, D.B., 1955. Multiple ranges and multiple F Test. Biometrics, 11: 1-42.

Ebtedaie, M. and A. Shekafandeh, 2016. Antioxidant and carbohydrate changes of two pomegranate cultivars under deficit irrigation stress. Spanish Journal of Agricultural Research, 14(4): 1-9.

El-Agamy, S.Z., R. A.A. Mostafa, M.M. Shaaban and M.T. El-Mahdy, 2010. In vitro salt and drought tolerance of Manfalouty and Nab El-gamal pomegranate cultivars. Australian J. of Basic and Applied Sciences, 4 (6):1076-1082.

Galindo, A., P. Rodriguezb, C.D. Mellishoa, E. Torrecillas, A. Morianad, Z.N. Cruzb, W. Conejeroa, F. Morenoe and A. Torrecillas, 2013. Assessment of discretely measured indicators and maximum daily trunk shrinkage for detecting water stress in pomegranate trees. Agri Forest Meteorol., 180:58–65.

Hamdy, A. E., S.M. Khalifa, S.S. Shawer and A.A.G. Mancy, 2016. Effect of water stress on the growth, nutritional and biochemical status of two varieties of Pomegranate seedlings. J. Plant Production, Mansoura Univ., 7(12):1321-1329.

Holland, D., K. Hatib and I. Bar-yaakov, 2009. Pomegranate: Botany, Horticulture, breeding. Hortic. Rev., 35: 127-191.

Intrigliolo, D.S., E. Nicolas, L. Bonet, P. Ferrer, J.J. Alarcón and J. Bartual, 2011. Water relations of field grown Pomegranate trees (Punica granatum) under different drip irrigation regimes. Agric Water Manage., 98(4):691–696.

Khattab, M.M., A.E. Shaban, A.H. El-Shrief and A.S. El-Deen Mohamed, 2011a. Growth and productivity of Pomegranate trees under different irrigation levels I: vegetative growth and fruiting. Journal of Horticultural Science & Ornamental Plants, 3 (2): 194-198.
Khattab, M.M., A.E. Shaban, A.H. El-Shrief and A.S. El-Deen Mohamed, 2011a. Growth and productivity of Pomegranate trees under different irrigation levels II: Fruit Quality. Journal of Horticultural Science & Ornamental Plants 3 (3): 259-264.

Khattab M.M., A.E. Shaban, A.H. El-Shrief and A.S. El-Deen Mohamed, 2011b. Growth and productivity of Pomegranate trees under different irrigation levels III: leaf pigments, proline and mineral content. Journal of Horticultural Science & Ornamental Plants 3 (3): 265-269.

Liu C., Y. Liu, K. Guoa, D. Fana, G. Li, Y. Zhenga, L. Yuc and R. Yangc, 2011. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 71: 174-183.

Liu, F., C.R. Jensen and M.N. Andersen, 2005. A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust. J. Agric. Res., 56(11):1245–1252.

Martínez-Nicolás, J.J., A. Galindo, I. Griñán, P. Rodríguez, Z.N. Cruz, R. Martínez-Font, A.A. Carbonell-Barrachina, H. Nouri and P. Melgarejo, 2019. Irrigation water saving during pomegranate flowering and fruit set period do not affect Wonderful and Mollar de Elche cultivars yield and fruit composition. Agricultural Water Management, 226: 105781.

Mellisho, C.D., I. Egea, A. Galindo, P. Rodriguez, J. Rodriguez, W. Conejero and F. Romojaro, 2012. Pomegranate (Punica granatum L.) fruit response to different deficit irrigation conditions. Agricultural water management, 114: 30-36.

Nasrabadia, M., A. Ramezaniana, S. Eshghia, A.A. Kamgar-Haghhighib, M.R. Vazifeshenas and D. Valerod, 2019. Biochemical changes and winter hardiness in pomegranate (Punica granatum L.) trees grown under deficit irrigation. Scientia Horticulturae, 251: 39-47.

Parvizi H. and A.R. Sepaskhah, 2015 Effect of drip irrigation and fertilizer regimes on fruit quality of a pomegranate (Punica granatum (L.) cv. Rabab) orchard. Agric. Water Manag., 156:70–78.

Parvizi H., A.R. Sepaskhah and S.H. Ahmadi, 2014. Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of pomegranate (Punica granatum (L.) cv. Rabab). Agricultural water management, 146: 45-56.

Parvizi H., A.R. Sepaskhah and S.H. Ahmadi, 2016. Physiological and growth responses of pomegranate (Punica granatum (L.) cv. Rabab) trees under partial root zone drying and deficit irrigation regimes. Agricultural water management. 163: 45-460.

Pourghayoumi, M., M. Rahemi, D. Bakhshi, A. Aalami and A.A. Kamgar-Haghhighi, 2017. Responses of pomegranate cultivars to severe water stress and recovery: changes on antioxidant enzyme activities, gene expression patterns and water stress responsive metabolites. Physiol Mol Biol Plants, 23(2):321–330.

Rad, M.H., M.R. Asghari and M.H. Asareh, 2015. The effects of drought stress on growth, yield and fruit quality of Pomegranate (Punica granatum L.) cv. Rababe Niriz under dry climate condition. Seed and Plant Production Journal, 31(1): 75-90.

Shahzad, M.A., S.U. Jan, F. Afzal, M. Khalid, A. Gul, I. Sharma, A. Sofo, and P. Ahmad, 2016. Drought stress and morphophysiological responses in plants. Water stress and crop plants: A sustainable approach; Chapter 27

Tavousi, M., F. Kaveh, A. Alizadeh, H. Babazadeh and A. Tehranifar, 2015. Effects of drought and salinity on yield and water use efficiency in pomegranate tree. J. Mater. Environ. Sci., 6 (7) 1975-1980.

Webster, A.D, C. J. Atkinson, A.S. Lucas, S.P. Vaughan and L. Taylor, 2000. Interactions between root restriction, irrigation and rootstock treatments on the growth and cropping of ‘Queen Cox’ apple trees: Effects on orchard growth and cropping. J. Hortic. Sci. and Biotech., 75 (2):181-189.

Zhang H., D. Wang, E.J. Ayars and J.C. Phene, 2017. Biophysical response of young pomegranate trees to surface and sub-surface drip irrigation and deficit irrigation. Irrig. Sci., 35:425–435.

Zhang, Y., C.L. Zhong, Y. Chen, Z. Chen, Q.B. Jiang, C. Wu and K. Pinyopusarerk, 2010. Improving drought tolerance of Casuarina equisetifolia tolerance of Causarina equisetifilia seedlings by arbuscular mycorrhizal seedlings by arbuscular mycorrhizas under glasshouse conditions. New Forests, 40:261–271.