Event-based Consensus Tracking for Nonlinear Multi-Agent Systems under Semi-Markov Jump Topology

JIAFENG YU1,2, QINSHENG LI1,3, WEN XING4, XIN YUAN2, and YAN SHI5

1Jiangsu Maritime Institute, Nanjing 211170, China
2School of Electrical and Electronic Engineering, University of Adelaide, Adelaide 5005, Australia
3School of Mechanic Engineering and Automation, Shanghai University, Shanghai 200072, China
4College of Automation, Harbin Engineering University, Harbin 150001, China
5Graduate School of Science and Technology, Tokai University, Tokyo 862-8652, Japan

Corresponding author: Jiafeng Yu (e-mail: yyujie99@163.com)

ABSTRACT This paper studies the event-triggering leader-follower consensus with the strictly dissipative performance for nonlinear multi-agent systems (MASs) with semi-Markov changing topologies. First, a polynomial fuzzy model is established to describe the error nonlinear multi-agent system that is formed by one virtual leader and followers. Then, a new event-triggering transmission strategy is proposed to mitigate communication and computational load. By utilizing the event-triggering mechanism and modeling the switching topologies by semi-Markov process, a sampled-data based consensus protocol is designed. Compared with traditional Markov jump topologies, the transition rate is time-varying for semi-Markov switching topologies. By mode-dependent Lyapunov-Krasovskii functional, the sum of square based relaxed stabilization conditions for fuzzy MASs are obtained to guarantee event-triggering consensus with strict dissipativity in an even-square sense, i.e., the derived conditions take into account the joint effects of event-triggering control, semi-Markov jump topologies and external disturbance. An illustrative example is provided to verify the proposed consensus design schemes.

INDEX TERMS Multi-agent system, fuzzy modeling, strict dissipativity, event-triggering control, semi-Markov switching topology.

I. INTRODUCTION

Cooperative consensus of multi-agent systems (MASs) has received considerable attention owing to its wide applications, including flocking [1], formation control [2], [3]. The main purpose of consensus problems is to design a distributed controller (consensus protocol), which can guarantee that all agents can reach a common state by exchanging local information among neighboring agents via communication link. Various control schemes have been utilized, such as finite time control in [4], fault-tolerant control in [5], [6], adaptive control in [7]–[9] and optimal control in [11], [12].

The communication topologies among the agents may not be often fixed due to links interruption and new establishment partly stem from the communication equipment failures and disturbance. To describe the time-varying topology, a common method is that the switching topologies are modeled by the Markov process, which have been attracted a lot of concerns. For example, see [13]–[15]. However, in practice, Markov changing topologies have many limitations because the dwell time obeys exponential distribution and the transition rates are constant. Different from traditional Markov jump topologies, the dwell time of semi-Markov changing topologies obeys more general distribution, including Gaussian distribution and Weibull distribution. For semi-Markov switching topologies, the transition rates are time-varying and depend on the dwell time. Recently, fruitful results have been reported on semi-Markov switching topologies [16]–[18]. Hence, semi-Markov changing topology is one of the issues worth considering here.

Dissipativity theory is introduced in [19], which plays a key role in the analysis and synthesis of control systems. In practice, it is necessary to guarantee the dissipativity to reach the purpose of interference attenuation. The dissipativity is regarded as a generalization of the H_{∞} performance, the passivity theory, and the bounded real lemma. The dissipative performance is discussed for a variety of dynamic systems [20], [21]. For instance, [21] studies the observed-based event-triggering sliding mode control with the strict
dissipativity of the switched stochastic discrete system.

Event-triggering control (ETC), as an effective scheme in saving communication resources and alleviating control updates, has gain remarkable attention. Different from the time-triggering scheme, data transmission and control updates are decided by an event-triggering condition. When the triggering condition is met, the event occurs. The central idea and challenge of ETC are to establish the time sequence of data transmission through a predefined event-triggering strategy which is different from the time series of traditional periodic control. For example, see [22] and the references therein. Recently, event-triggering consensus problems for MASs have attracted extensive attention. Rich results have been obtained [23]–[28]. For instance, the control problem of event-triggering consensus is discussed for linear MASs with changing topologies in [26].

Recently, the polynomial fuzzy model in [29] is introduced for modeling a nonlinear system by polynomial expression. The new fuzzy model can be viewed as a generalization of the T-S fuzzy model [30]–[32], which has attracted extensive attention. For example, see [22] and the references therein. The main contributions of this paper are summarized as follows:

(i) Most existing results deal with the consensus problems of the nonlinear MASs by using the Lipschitz conditions, such as [9], [10]. A polynomial fuzzy model is established to describe the error nonlinear multi-agent system in this paper. Compared with [34], the fuzzy model here is simpler and without extra assumptions.

(ii) In [35], [36], the consensus problems of continuous-time communication are investigated for nonlinear MASs under changing topologies. [13] addresses the time-triggering consensus problems for nonlinear MASs under Markov switching topologies. Unlike [13], [35], [36], a sampled-data mode-dependent event-triggering transmission strategy is presented here to reduce communication and computational load. By using the event-triggering scheme and modeling the switching topologies by semi-Markov process, the mode-dependent event-triggering consensus protocols are designed.

(iii) Using mode-dependent Lyapunov-Krasovskii functional, relaxed stabilization conditions based on sum of square (SOS) [37] are obtained to assure event-triggering consensus with strict dissipativity in an even-square sense, i.e., the presented conditions take into account the joint effects of event-triggering communication, semi-Markov jump topologies and external disturbance.

The remainder of this paper is organized as follows: In Section 2, the related knowledge of graph theory is introduced and the problem formulation is given. In Section 3, the polynomial fuzzy model is built and the sample-data mode-dependent event-triggering transmission scheme is designed. In Section 4, event-triggering consensus protocols and the main results are presented. In Section 5, an illustrative example is provided. We conclude this paper in Section 6.

Notation: The symbol ⊗ denotes the Kronecker product. \| \cdot \| is the Euclidean norm. \(I \) represents the identity matrix with appropriate dimensions. \(E \{ \cdot \} \) is the expectation operator. \((Ω, F, P)\) denotes a probability space. \(Q > 0 \) means that the matrix \(Q \) is positive definite. The superscript T for matrix \(Q \) denotes transpose of matrix \(Q \). \(\text{Sym}(A) \) means \(A + A^T \). \(Σ^2 \) represents SOS.

II. PRELIMINARIES AND PROBLEM FORMULATION

Here, we introduce the related knowledge of graph theory and the problem formulation is presented.

A. GRAPH THEORY

Let \(\mathcal{G} = (V, E, A) \) be a digraph generated by \(N \) follower agents, in which \(V = \{1, \ldots, N\} \) is a nonempty node set, \(E = \{(i, j) : i, j \in V\} \) denotes an edge set, and \(A = [a_{ij}] \in \mathbb{R}^{N \times N} \) represents a weighted adjacency matrix. \(a_{ij} = 1 \) if \((i, j) \in E\), otherwise \(a_{ij} = 0 \). Define Laplacian matrix \(L = \{L_{ij}\} \in \mathbb{R}^{N \times N} \) as \(L_{ij} = \sum_{k=1, k \neq i}^{N} a_{ik} \) if \(i = j \), otherwise \(L_{ij} = -a_{ij} \). We denote \(\mathcal{G} \) as a digraph formed by one virtual leader labeled 0 and \(N \) follower agents marked \(1 \sim N \).

Define a switching signal by \(γ(t) : [0, +∞) \rightarrow S = \{1, \ldots, s\} \), whose value is the index of network topology. Denote \(L(γ(t)) \) as the Laplacian matrix of the topology \(\mathcal{G}(γ(t)) \) at \(γ(t) \).

B. SEMI-MARKOV SWITCHING TOPOLOGIES

The semi-Markov switching signal \(γ(t) \) is determined by the probability transitions:

\[
P_r\{γ(t + φ) = ν|γ(t) = μ\} = \begin{cases} \lambda_{μν}(φ) + o(φ), & μ ≠ ν, \\ 1 + \lambda_{μμ}(φ) + o(φ), & μ = ν \end{cases} \tag{1}
\]

where \(φ > 0 \) denotes the sojourn time and \(\text{lim}_{φ \rightarrow 0} o(φ)/φ = 0 \). \(λ_{μν}(φ) \geq 0 \) denotes the transition rate with \(μ ≠ ν \) from mode \(μ \) at time \(t \) to mode \(ν \) at time \(t + φ \) and \(λ_{μμ}(φ) = -Σ_{ν=1, ν≠μ}^{s} λ_{μν}(φ) \). In this paper, we consider time-varying transition rate \(λ_{μν}(φ) \) depending on \(φ \). When \(λ_{μν}(φ) = λ_{μν}(φ) \) constant, the semi-Markov process reduces to a traditional Markov process.

C. PROBLEM FORMULATION

Here, we consider a leader-follower nonlinear multi-agent system formed by \(N \) followers and one virtual leader. Each agent’s dynamics is described by

\[
\begin{align*}
\dot{x}_0 &= f(x_0), \\
\dot{x}_i &= f(x_i) + u_i + d_p w_i,
\end{align*} \tag{2}
\]

where \(x_0 \in \mathbb{R}^n \) is the state of virtual leader, \(x_i \in \mathbb{R}^n \) is the state of agent \(i \), and \(i = 1, \ldots, N \). \(f(x_i) \in \mathbb{R}^n \) is
a polynomial vector in \(x_i, u_i \in \mathbb{R}^n \) is the control input. \(d_p \in \mathbb{R}^{n \times q} \), and \(w_i \in \mathbb{R}^q \) is the external disturbance.

The error state is \(e_i = x_i - x_0 \). Then, the error dynamics can be expressed as

\[
\dot{e}_i = f(x_i) - f(x_0) + u_i + d_p w_i, \quad (3)
\]

Before going further, the following assumptions and concepts are given to obtain the main results.

Assumption 1: Each \(G^{\gamma(t)} \), \(\gamma(t) \in S \), contains a directed spanning tree with the root of the virtual leader.

Assumption 2: States of each agent are periodically sampled. The sampling period is synchronized by a clock.

Definition 1: [36]: Given matrices \(Y \in \mathbb{R}^{r \times q} \), \(X \in \mathbb{R}^{r \times t} \), and \(Z = Z^T \in \mathbb{R}^{q \times q} \) with \(X' \leq 0 \) and \(Z > 0 \), if for \(T^* \geq 0 \) and \(\delta > 0 \),

\[
\int_0^{T^*} \left[\begin{array}{c} z \\ w \end{array} \right]^T \left[\begin{array}{cc} I_N \otimes X & I_N \otimes Y \\ I_N \otimes Y & I_N \otimes Z \end{array} \right] \left[\begin{array}{c} z \\ w \end{array} \right] \, dt \geq \delta \int_0^{T^*} w^T w \, dt
\]

then (3) is called strictly \((X, Y, Z)\)-\(\delta\)-dissipative.

Definition 2: Under the consensus protocol \(u_i, (2) \) is called mean-square consensus if

\[
\lim_{t \to \infty} E\{\|x_i - x_0\|^2\} = 0, \quad i = 1, \ldots, N
\]

for any initial conditions \(x_i(0), x_0(0) \in \mathbb{R}^n \).

Remark 1: Inspired by [35], the definition of mean-square consensus in (5) for event-based MASs under semi-Markov jump topologies is presented.

III. POLYNOMIAL FUZZY MODEL AND EVENT-TRIGGERING MECHANISM

A. POLYNOMIAL FUZZY MODEL

To describe system (3), a polynomial fuzzy model is established below:

\[
\mathcal{R}^p: \quad \text{If } \theta_{i1} = \zeta_{j1}, \ldots, \theta_{iu} = \zeta_{ju}, \text{ then } \
\dot{e}_i = a_p(e_i)e_i + u_i + d_p w_i, \quad (6)
\]

where \(\theta_i = [\theta_{i1}, \ldots, \theta_{iu}]^T \) denotes the premise variable vector. \(\zeta_{j1}, \ldots, \zeta_{ju} \) refer to the fuzzy sets. \(r \) is IF-THEN rules’ number. \(a_p(e_i) \) denotes the polynomial matrix in \(e_i \).

The compact form of (6) is

\[
\dot{e}_i = \sum_{p=1}^{r} h_p(\theta_i)\{a_p(e_i)e_i + u_i + d_p w_i\}, \quad (7)
\]

where

\[
h_p(\theta_i) = \frac{\omega_p(\theta_i)}{\sum_{p=1}^{r} \omega_p(\theta_i)} = \prod_{j=1}^{u} C_{j}^p(\theta_{i,j}).
\]

The function \(h_p(\theta_i) \) has the properties of

\[
h_p(\theta_i) \geq 0, \quad \sum_{p=1}^{r} h_p(\theta_i) = 1.
\]

B. EVENT-TRIGGERING MECHANISM

To save communication resources, an event-triggering control strategy is presented for the system (2). To determine whether the sampled data is transmitted or not, the mode-dependent event-triggering condition for the \(i \)th agent is defined as

\[
\begin{align*}
\{ \varepsilon_i(t_k^i + lh) \}^T \Phi^{(i)}(t_k^i + lh) &> \rho_i \{ \varepsilon_i(t_k^i + lh) \}^T \Phi^{(i)}(t_k^i + lh), \quad (8)
\end{align*}
\]

where \(\rho_i > 0 \) denotes the threshold, and \(\Phi^{(i)} > 0 \) is the weighting matrices to be designed later. \(\varepsilon_i(t_k^i + lh) = \sum_{j \in N_i} a_{ij} |x_i(t_k^i) - x_j(t_k^i)| + d_i |x_i(t_k^i) - x_0(t_k^i + lh)| \), where \(i = 1, 2, \ldots, \) and \(h \) is the sampling period. Define

\[
\varepsilon_i(t_k^i + lh) = \alpha(x_i(t_k^i) - x_i(t_k^i + lh)), \quad (9)
\]

where \(\alpha \) is a scalar in \((0, 1]\). \(\varepsilon_i(t_k^i + lh) \) denotes the measurement error formed by the last released state \(x_i(t_k^i) \) and the current state \(x_i(t_k^i + lh) \). Let \(m_h = t_k^i + lh, \varepsilon_i(m_h) = \alpha(x_i(t_k^i) - x_i(t_k^i + lh)) \), and \(e_i(m_h) = \alpha(x_i(m_h) - x_0(m_h)) \), where \(m \) is an integer.

Remark 2: If the condition (8) holds, the event is trig- erred, and then the sampled data is sent to its neighbors and controller. The event-triggering time sequence represents \(\{t_k^i, t_{k+1}^i, \ldots\} \), in which \(t_k^i \) is the initial time. Since the minimum inter-event time \(\min\{t_{k+1}^i - t_k^i\} \geq \bar{h} \), Zeno behavior does not happen.

Remark 3: In (9), motivated by [32], \(\alpha \) is introduced to smooth the input signal. If \(\alpha = 1 \), the event-triggering mechanism will reduced to the conventional one as in [16], [38]. Compared with the conventional event-triggering mechanism, the event-triggering mechanism in (9) will reduce erroneuous events induced by the abrupt changing of the output measurement.

IV. EVENT-TRIGGERING CONSENSUS DESIGN AND CONSENSUS CONDITIONS

Now, we consider the event-triggering dissipative consensus conditions for system (7) under semi-Markov jump topologies. Then, the derived results can be extended to a fixed topological case.

A. EVENT-TRIGGERING CONSENSUS PROTOCOL

Here, we first design a distributed event-triggering consensus protocol for system (7) under semi-Markov changing topologies.

Considering the controlled output \(z_i \), the augmented system of agent \(i \) is

\[
\dot{e}_i = \sum_{p=1}^{r} h_p(\theta_i)\{c_{zp}e_i + d_{zp} w_i\}, \quad (10)
\]

where \(c_{zp} \in \mathbb{R}^{r \times n} \), \(d_{zp} \in \mathbb{R}^{r \times q} \), and \(z_i \in \mathbb{R}^i \).
An event-triggering consensus protocol for agent i is designed as follows:

$$u_i(t) = - \sum_{j \in N_i(t)} a_{ij} \gamma_i(t) [x_i(t_k^j) - x_j(t_k^i)] - d_i \gamma_i(t) [x_i(t_k^i) - x_0(mh)],$$

where $t \in [mh, (m+1)h)$, $N_i = \{ j \in V : (j, i) \in E \}$ is the ith agent’s neighboring set, $\gamma_i(t) \in \mathbb{R}^{n \times n}$ denotes positive definite control gain matrix, d_i is the weight of information flow. If agent i can get the leader’s information at $\gamma(t)$, then $d_i = 1$.

Remark 4: Our purpose is to design the consensus protocol (11) to ensure that all agents can achieve agreement and alleviate the consumption of communication resources.

The sampled-data based protocol (11) is expressed as

$$u_i(t) = - \frac{1}{\alpha} \sum_{j \in N_i(t)} a_{ij} \gamma_i(t) \left[e_i(mh) - e_j(mh) \right] + \frac{1}{\alpha} \gamma_i(t) [e_i(mh) + E_i(mh)],$$

where $t \in [mh, (m+1)h)$.

For notation simplicity, $\gamma(t) = \mu, \mu \in S$. The compact form of (12) is

$$u(t) = - \frac{1}{\alpha} (\tilde{E} \gamma \Gamma + \mu) e(mh) + \frac{1}{\alpha} (\tilde{E} \mu + \Gamma \mu) e(mh),$$

where

$$\tilde{E} \mu = - E \mu - D \mu, \quad \Gamma \mu = \text{diag}(d_1, \ldots, d_N),$$

$$e(mh) = [e_1^T(mh), \ldots, e_N^T(mh)]^T,$$

$$\tilde{E}(mh) = [\tilde{E}_1^T(mh), \ldots, \tilde{E}_N^T(mh)]^T.$$

Substituting (13) into (10), the closed-loop system at $\gamma(t)$ is

$$\dot{e}(t) = \sum_{p=1}^{r} h_p(\theta) \left\{ A_p(e) e + D_p w \right\} + \frac{1}{\alpha} \gamma_i(t) [e_i(mh) - e_j(mh)],$$

$$\dot{z}(t) = \sum_{p=1}^{r} h_p(\theta) (C_{zp} e + D_{zp} w),$$

$$e(\theta) = \varphi(\theta), \quad \theta \in [-h, 0],$$

where $t \in [mh, (m+1)h)$,

$$h_p(\theta) = \text{diag}(h_p(\theta_1), \ldots, h_p(\theta_N)),$$

$$A_p(e) = \text{diag}(a_p(e_1), \ldots, a_p(e_N)),$$

$$D_p = I_N \otimes d_p, C_{zp} = I_N \otimes c_{zp},$$

$$D_{zp} = I_N \otimes d_{zp} e = [e_1^T, \ldots, e_N^T]^T,$$

$$z = [z_1^T, \ldots, z_N^T]^T, w = [w_1^T, \ldots, w_N^T]^T.$$

Define artificial delay by $mh = t - \tau(t)$, $0 \leq \tau(t) \leq h$, $\hat{\tau}(t) = 1$ at $t \neq mh$.

B. CONSENSUS CONDITIONS UNDER SEMI-MARKOV SWITCHING TOPOLOGIES

Theorem 1: Given matrices $Y \in \mathbb{R}^{n \times q}, X = X^T \in \mathbb{R}^{t \times t}$, and $Z = Z^T \in \mathbb{R}^{q \times q}$ with $X \leq 0$ and $Z > 0$, and scalars $\delta > 0$, $h > 0$, and $0 < \alpha \leq 1$, under Assumptions 1 and 2 by semi-Markov process and the consensus protocol (13), there exist positive matrices $P^\mu \in \mathbb{R}^{n \times n}, \Gamma^\mu \in \mathbb{R}^{n \times n}, Q \in \mathbb{R}^{n \times n}, R \in \mathbb{R}^{n \times n}$, and $\Phi^\mu \in \mathbb{R}^{n \times n}$, nonnegative $\varepsilon_1, \varepsilon_2$ and ε_3, such that, for $\mu = 1, \ldots, s, p = 1, \ldots, r$,

$$\eta_1(p^\mu - \varepsilon_1 I) \eta_1 \leq \Sigma^2,$$

$$\eta_2(\Gamma^\mu - \varepsilon_2 I) \eta_2 \leq \Sigma^2,$$

$$-\eta_3(\Pi^\mu + \varepsilon_3 I) \eta_3 \leq \Sigma^2.$$ \(\text{(15)}\) \(\text{(16)}\) \(\text{(17)}\)

Then, (14) is asymptotically stable, i.e. all agents can reach an event-triggering consensus with a strictly dissipative performance in mean-square sense, where η_1, η_2 and η_3 are arbitrary vectors,

$$\Pi^\mu \triangleq \sum_{i=1}^{s} \lambda_{i\mu} (I_N \otimes \mu^\varepsilon) + \text{Sym}((I_N \otimes \mu^\varepsilon) A_p(e)),$$

$$\Xi^\mu \triangleq -C_{zp}^T (I_N \otimes \varphi) C_{zp},$$

$$\Sigma^\mu \triangleq -C_{zp}^T (I_N \otimes \varphi) D_{zp} - C_{zp}^T (I_N \otimes \varphi) + (I_N \otimes \mu^\varepsilon) D_p,$$

$$\Lambda^\mu \triangleq \text{diag}(\rho_1, \ldots, \rho_N),$$

$$\Delta^\mu \triangleq \mu^\varepsilon A_p(e).$$

Proof 1: Choose Lyapunov-Krasovskii functional:

$$V(t) = V_1(t) + V_2(t) + V_3(t),$$

Where

$$V_1(t) = e^T(I_N \otimes \mu^\varepsilon(e)) e,$$

$$V_2(t) = \int_{\hat{\tau}(t)}^{t} e^T(t) (I_N \otimes Q) e(t) dt,$$

$$V_3(t) = h \int_{\hat{\tau}(t)}^{t} \hat{e}^T(t) (I_N \otimes R) \hat{e}(t) d\sigma d\beta.$$
From (15) and (16), we can get \(V(t) > 0 \) and \(\Gamma^\mu > 0 \), respectively.

The weak infinitesimal operator \(\mathcal{F} \) of \(V(t) \) is defined as
\[
\mathcal{F}V(t) = \lim_{\Delta \to 0} \frac{1}{\Delta} \{ E \{ V(t + \Delta)|e(t), \gamma(t) \} - V(t) \}.
\]
(19)

Therefore, one has
\[
\mathcal{F}V_1(e) = \sum_{\nu=1}^s \lambda_{\nu}(\phi)e^T(t)(I_N \otimes p^{\nu})e(t) + 2e^T(t)(I_N \otimes p^{\nu})\dot{e}(t),
\]
(20)
\[
\mathcal{F}V_2(e) = e^T(I_N \otimes Q)e,
\]
(21)
\[
\mathcal{F}V_3(e) = h^2e^T(I_N \otimes R)e - h \int_{t-h}^t \dot{e}(\sigma)(I_N \otimes R)e(\sigma)d\sigma,
\]
(22)

Employing Jensen’s inequality, the second item in (22) implies that
\[
- \int_{t-h}^t \dot{e}(\sigma)(I_N \otimes R)e(\sigma)d\sigma \leq - (e^T(t) - e^T(t-h))(I_N \otimes R) \times (e(t) - e(t-h)).
\]
(23)
Furthermore, if event-triggering condition (8) is broken, the event is not triggering. We obtain
\[
(\mathcal{E}(mh))^T(I_N \otimes \Phi^\mu)\mathcal{E}(mh) = \sum_{i=1}^N (\mathcal{E}_i(mh))^T\Phi^\mu\mathcal{E}_i(mh) \leq \Lambda(M(mh))^T(I_N \otimes \Phi^\mu)Y(mh)
\]
(24)
where \(Y(mh) = -(\hat{\mathcal{E}}^\mu \otimes I_n)e(mh) - (\hat{\mathcal{E}}^\mu \otimes I_n)\mathcal{E}(mh) \).

Therefore, (24) can be expressed as
\[
(\mathcal{E}(t-\tau(t)))^T(I_N \otimes \Phi^\mu)\mathcal{E}((t-\tau(t))) \leq [e(t-\tau(t)) + \mathcal{E}(t-\tau(t))]^T \times (\hat{L}^\mu)^T \Lambda(\hat{L}^\mu \otimes \Phi^\mu) [e(t-\tau(t)) + \mathcal{E}(t-\tau(t))].
\]
(25)
Combining (20)-(23) and (25), and assuming that \(w(t) = 0 \), one obtains
\[
\mathcal{F}V(t) = \xi^T(t) \left(\sum_{p=1}^r L_p(\theta)\Sigma \right) \xi(t),
\]
where
\[
\xi(t) = \begin{bmatrix} e^T & e^T(t-\tau(t)) & e^T(t-h) & \mathcal{E}^T(t-\tau(t)) \end{bmatrix}^T,
\]
\[
\Sigma = \begin{bmatrix} \Pi_1 & \Pi_2 & \Pi_3 & \Pi_2 \\
* & \Pi_5 & 0 & \Pi_5 \\
* & * & \Pi_7 & 0 \\
+ h^2 & 0 & \Pi_6 & \Pi_6 \\
\end{bmatrix},
\]
(26)
From (17) and Proposition 2 in [39], it follows that \(\Sigma < 0 \). Hence, \(\mathcal{F}V(t) < 0 \).

Under zero initial condition, an index is defined as
\[
\mathcal{J}(T^*) = \int_0^{T^*} \begin{bmatrix} z \ w \end{bmatrix}^T \begin{bmatrix} I_N \otimes X & I_N \otimes Y \\ \ast & I_N \otimes Z \end{bmatrix} \cdot \begin{bmatrix} z \ w \end{bmatrix} dt - \delta \int_{T^*}^{\infty} w^T w dt.
\]
(27)
For any nonzero \(w(t) \in I_2(0, \infty) \), one shows
\[
\mathcal{J}(T^*) = \int_0^{T^*} \xi^T(t) \left(\sum_{p=1}^r h_p(\theta)\Psi \right) \xi dt,
\]
(28)
where
\[
\xi = \begin{bmatrix} e^T & e^T(t-\tau(t)) & e^T(t-h) & \mathcal{E}^T(t-\tau(t)) & w^T \end{bmatrix}^T,
\]
\[
\Psi = \begin{bmatrix} \Pi_1 + \Xi_1 & \Pi_2 & \Pi_3 & \Pi_2 & \Xi_2 \\
* & \Pi_5 & 0 & \Pi_5 & 0 \\
* & * & \Pi_7 & 0 & 0 \\
* & * & * & \Pi_8 & 0 \\
* & * & * & * & \Xi_3 \end{bmatrix}
\]
Employing Schur complement, if
\[
\begin{bmatrix} \Pi_1 + \Xi_1 & \Pi_2 & \Pi_3 & \Pi_2 & \Xi_2 & \Pi_4 \\
* & \Pi_5 & 0 & \Pi_5 & 0 & \Omega_6 \\
* & * & \Pi_7 & 0 & 0 & 0 \\
* & * & * & \Pi_8 & 0 & \Omega_6 \\
* & * & * & * & \Xi_3 & hD_P^T \\
* & * & * & * & * & \Pi_9 \end{bmatrix} < 0,
\]
(29)
then \(\Psi < 0 \). From (17), it follows that (28) holds. One gets
\[
\int_0^{T^*} \xi^T(t)\Psi\xi dt < 0.
\]
(30)
From (27) and \(\mathcal{V}(T^*) > 0 \), one obtains
\[
\mathcal{J}(T^*) > 0.
\]
By Definition 1, (14) is strictly \((X, Y, Z)\)-\(\delta\)-dissipative. Based on (17), one obtains
\[
\mathcal{F}V(t) < 0, \quad t \in [mh, (m+1)h).
\]
(31)
Therefore, there exists a scalar \(\epsilon > 0 \), such that
\[
\mathcal{F}V(t) < -\epsilon e^T(t)e(t), \quad t \in [mh, (m+1)h),
\]
(32)
By using Dynkin’s formula, one has
\[
E\{V((m+1)h-o(h)) \} - V\{mh\} < -\epsilon E\int_{mh}^{(m+1)h-o(h)} \|e(\sigma)\|^2 d\sigma.
\]
Similarly, one obtains
\[
E\{V mh-o(h)\} - V\{(m-1)h\} < -\epsilon E \left\{ \int_{(m-1)h}^{mh-o(h)} \|e(\sigma)\|^2 d\sigma \right\},
\]
\[
E\{V mh-o(h)\} - E\{V(0)\} < -\epsilon E \left\{ \int_{mh}^{mh-o(h)} \|e(\sigma)\|^2 d\sigma \right\},
\] (32)

Since \(V_2(t) \geq 0 \) and \(\int_{t=0}^{t} e(t)(I N \otimes Q)e(t)d\sigma = 0 \) for \(t=mh \), so \(V_2((mh-o(h)) \geq V_2(mh) \), which implies that
\[
E\{V mh-o(h)\} \geq V\{(mh)\}.
\] (33)

Therefore, it follows from (31)-(33) that
\[
E\{V((m+1)h-o(h))\} - E\{V(0)\} \leq -\epsilon \sum_{m=0}^{\infty} E \left\{ \int_{mh}^{(m+1)h-o(h)} \|e(\sigma)\|^2 d\sigma \right\}.
\] (34)

By (34), one obtains
\[
\sum_{m=0}^{\infty} E \left\{ \int_{mh}^{(m+1)h-o(h)} \|e(\sigma)\|^2 d\sigma \right\} \leq e^{-1} E\{V(0)\},
\]

That is
\[
\lim_{T \to \infty} E \left\{ \int_{0}^{T} \|e(\sigma)\|^2 d\sigma \right\} \leq \infty,
\]

which indicates that \(\lim_{T \to \infty} E\{e(\sigma)\|^2 = 0 \). According to Definition 2, all agents achieve consensus. This proof is completed.

Remark 5: In Theorem 1, by polynomial Lyapunov-Krasovskii functional technique, SOS-based relaxed sufficient condition is presented to ensure that the polynomial fuzzy MASs can achieve even-square agreement with strictly dissipative performance under event-triggering control and semi-Markov switching topologies. Based on Theorem 1, we present the following approach to design the control gains.

Theorem 2: Given matrices \(X = X^T \in \mathbb{R}^{r \times r}, Z = Z^T \in \mathbb{R}^{q \times q} \), and \(Y^{\mu} \times q \) with \(X \leq 0 \) and \(Z > 0 \), and scalars \(\delta > 0, h > 0 \), and \(0 < \alpha \leq 1 \), under Assumptions 1 and 2 by semi-Markov process and the consensus protocol (13), there exist positive matrices \(\vec{p}^\mu, \vec{r}^\mu, \vec{q}^\mu \in \mathbb{R}^{n \times n} \), \(\vec{p}^\mu, \vec{r}^\mu \in \mathbb{R}^{n \times n} \) and \(\vec{q}^\mu \in \mathbb{R}^{n \times n} \), nonnegative polynomials \(\varepsilon_1, \varepsilon_2 \), \(\varepsilon_3 \) such that, for \(\mu = 1, \ldots, s, p = 1, \ldots, r, \)
\[
[\eta_1^T (\vec{p}^\mu - \varepsilon_1 I) \eta_1] \leq \Sigma^2, \quad (35)
\]
\[
[\eta_2^T (\vec{q}^\mu - \varepsilon_2 I) \eta_2] \leq \Sigma^2, \quad (36)
\]
\[
-\eta_3^T (\vec{q}^\mu + \varepsilon_3 I) \eta_3 \leq \Sigma^2. \quad (37)
\]

Then, (14) is asymptotically stable with strict dissipativity, where \(\eta_1, \eta_2 \) and \(\eta_3 \) are arbitrary vectors.
we get
\[
\begin{bmatrix}
\Omega_1 - (I_N \otimes \bar{p}^\mu) \\
\times \Xi_1 (I_N \otimes \bar{p}^\mu) \\
-\Omega_{10} (\Omega_{11})^{-1} \Omega_{10}
\end{bmatrix}
\begin{bmatrix}
\Omega_2 & \Omega_3 & \Omega_2 & \hat{\Xi}_2 & \Omega_4 \\
\ast & \Omega_7 & 0 & 0 & 0 \\
\ast & \ast & \Omega_8 & 0 & 0 \\
\ast & \ast & \ast & \Xi_3 & hD_pT \\
\ast & \ast & \ast & \ast & \Omega_9 \\
\ast & \ast & \ast & \ast & \hat{\Xi}_1
\end{bmatrix}
\begin{bmatrix}
\Omega_1 \\
\Omega_2 \\
\Omega_3 \\
\Omega_2 \\
\hat{\Xi}_2 \\
\Omega_4 \\
\gamma \\
\Omega_{10}
\end{bmatrix}
\triangleq \Omega^\mu < 0,
\]
where \(\bar{p}^\mu = (p^\mu)^{-1}, \bar{R}^\mu = \bar{p}^\mu R \bar{p}^\mu, Q^\mu = \bar{p}^\mu Q \bar{p}^\mu, \Phi^\mu = \bar{p}^\mu \Phi \bar{p}^\mu \).

Since \((I_N \otimes \bar{p}^\mu) - (I_N \otimes \bar{R}^\mu)^T (I_N \otimes \bar{R}^\mu)^{-1} (I_N \otimes \bar{p}^\mu) \geq 0\), it follows that
\[
- (I_N \otimes R)^{-1} = -(I_N \otimes \bar{p}^\mu) (I_N \otimes \bar{R}^\mu)^{-1} (I_N \otimes \bar{p}^\mu) \leq I_N \otimes \bar{R}^\mu - 2(I_N \otimes \bar{p}^\mu).
\]

By Schur complement, (39) can be expressed by SOS conditions (37). The rest part of the proof is similar to those of Theorem 1.

Remark 6: By contragredient transformation of (38), then SOS conditions (37) is derived. From (35)-(37), we obtain the solutions of \(\hat{\Gamma}^\mu, \bar{p}^\mu \) and \(\Phi^\mu \). Then, the control gain and event-triggering parameters are calculated by \(\Gamma^\mu = \hat{\Gamma}^\mu (\bar{p}^\mu)^{-1} \) and \(\Phi^\mu = (\bar{p}^\mu)^{-1} \Phi \bar{p}^\mu \). When \(\lambda_{\mu\nu}(\phi) = \lambda_{\mu\nu} \), where \(\lambda_{\mu\nu} \) is the constant transition rate, the semi-Markov process is reduced to the traditional Markov process. In Theorems 1 and 2, since the transition rate \(\lambda_{\mu\nu}(\phi) \) depending on \(\phi \) is time-varying, the SOS condition (37) is not linear, which is difficult to solve. To overcome this drawback, we present the following result.

C. CONSENSUS CONDITIONS UNDER SEMI-MARKOV SWITCHING TOPOLOGIES

Here, based on the obtained result in Theorem 2, consensus conditions for MASs under semi-Markov switching topologies is given.

Theorem 3: Given matrices \(X = X^T \in \mathbb{R}^{n \times 1}, Z = Z^T \in \mathbb{R}^{q \times q} \), and \(Y^{i \times q} \) with \(X \leq 0 \) and \(Z > 0 \), and scalars \(\delta > 0, h > 0 \), and \(0 < \alpha \leq 1 \), under Assumptions 1 and 2 by semi-Markov process and the protocol (13) depending on mode \(\mu \), there exist positive matrices \(\mu, \mu \), \(\bar{p}^\mu \in \mathbb{R}^{n \times n}, \bar{R}^\mu \in \mathbb{R}^{n \times n} \), \(\bar{Q}^\mu \in \mathbb{R}^{n \times n}, \bar{R}^\mu \in \mathbb{R}^{n \times n} \), and \(\bar{p}^\mu \in \mathbb{R}^{n \times n} \), nonnegative polynomials \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \) and \(\varepsilon_4 \), such that, for \(m = 1, \ldots, s, \)
\begin{align*}
\eta_1^T \mu \bar{p}^\mu - \varepsilon_1 I & \leq \Sigma^2, \\
\eta_2^T \mu \bar{p}^\mu - \varepsilon_2 I & \leq \Sigma^2, \\
\eta_3^T \mu \bar{p}^\mu + \varepsilon_3 I & \leq \Sigma^2, \\
\eta_4^T \mu \bar{p}^\mu + \varepsilon_4 I & \leq \Sigma^2.
\end{align*}

Then, (14) is asymptotically stable with strict dissipativity, where \(\eta_1, \eta_2, \eta_3 \) and \(\eta_4 \) are arbitrary vectors.

Proof 3: For a specific \(\phi \), the transition rate \(\lambda_{\mu\nu}(\phi) \) can be written as convex combination \(\lambda_{\mu\nu}(\phi) = \kappa_1 \lambda_{\mu\nu} + \kappa_2 \lambda_{\mu\nu} \), where \(\kappa_1 + \kappa_2 = 1 \) and \(\kappa_1, \kappa_2 > 0 \). Multiplying \(\hat{\Omega}^\mu \) by \(\kappa_1 \) and \(\hat{\Omega}^\mu \) by \(\kappa_2 \), it follows that
\[
\begin{bmatrix}
M_1 & \Omega_2 & \Omega_3 & \Omega_2 & \hat{\Xi}_2 & \Omega_4 & \gamma & M_2 \\
\ast & \Omega_5 & 0 & \Omega_5 & 0 & \Omega_6 & 0 & 0 \\
\ast & \ast & \Omega_7 & 0 & 0 & 0 & 0 & 0 \\
\ast & \ast & \ast & \Omega_8 & 0 & \Omega_6 & 0 & 0 \\
\ast & \ast & \ast & \ast & \Xi_3 & hD_pT & 0 & 0 \\
\ast & \ast & \ast & \ast & \ast & \Omega_9 & 0 & 0 \\
\ast & \ast & \ast & \ast & \ast & \ast & \Omega_{11} & 0 \\
\ast & \ast & \ast & \ast & \ast & \ast & \hat{\Xi}_1 & 0
\end{bmatrix} < 0.
\]
D. Consensus Conditions under a Fixed Topology

Design event-triggering consensus protocol for the ith agent under a fixed topology

$$u_i(t) = - \sum_{j \in N_i} \alpha_{ij} \Gamma [x_i(t_k^j) - x_j(t_k^j)] - d_i \Gamma [x_i(t_k^j) - x_0(mh)],$$

where $t \in [mh, (m + 1)h]$. $\Gamma \in \mathbb{R}^{n \times n}$ denotes positive definite control gain matrix. The other parameters are similar to those in (11).

The sampled-data consensus protocol (44) can be represented as

$$u_i(t) = - \sum_{j \in N_i} \alpha_{ij} \Gamma \left[e_i(mh) - e_j(mh) \right] + \varepsilon_i(mh) - \varepsilon_j(mh),$$

where $t \in [mh, (m + 1)h]$.

Rewrite (45) in compact form as

$$u = \frac{1}{\alpha} (\tilde{\mathcal{L}} \otimes \Gamma) e(mh) + \frac{1}{\alpha} (\tilde{\mathcal{L}} \otimes \Gamma) \mathcal{E}(mh),$$

where

$$\tilde{\mathcal{L}} = - \mathcal{L} - \mathcal{D}, \mathcal{D} = \text{diag} \{d_1, \ldots, d_N\},$$

$$e(mh) = [e_{11}^T(mh), \ldots, e_{N1}^T(mh)]^T,$$

$$\mathcal{E}(mh) = [\mathcal{E}_{11}(mh), \ldots, \mathcal{E}_{N1}(mh)]^T.$$

Substituting (46) into (10), the closed-loop system is

$$\dot{e}(t) = \sum_{p=1}^{r} h_p(\theta) \left\{ A_p(e) e + D_p w + \frac{1}{\alpha} (\tilde{\mathcal{L}} \otimes \Gamma) e(t - \tau(t)) + \frac{\varepsilon_i}{\alpha} (\tilde{\mathcal{L}} \otimes \Gamma) \mathcal{E}(t - \tau(t)) \right\},$$

$$z(t) = \sum_{p=1}^{r} h_p(\theta) (C_{zp} e + D_{zp} w),$$

$$e(\vartheta) = \varphi(\vartheta), \vartheta \in [-h, 0],$$

where $t \in [mh, (m + 1)h]$.

From Theorems 1 and 2, the derived results can be extended to event-triggering dissipative consensus under a fixed topology.

\textbf{Theorem 4:} Given matrices $\mathcal{X} = \mathcal{X}^T \in \mathbb{R}^{n \times n}$, $\mathcal{Z} = \mathcal{Z}^T \in \mathbb{R}^{n \times q}$, and $\mathcal{Y}^{n \times q}$ with $\mathcal{X} \leq 0$ and $\mathcal{Z} > 0$, and scalars $\delta > 0$, $h > 0$, and $0 < \alpha \leq 1$, under Assumption 1 and the consensus protocol (46), there exist positive matrices $\bar{\rho} \in \mathbb{R}^{n \times n}$, $\Gamma \in \mathbb{R}^{n \times n}$, $\bar{Q} \in \mathbb{R}^{n \times n}$, $\bar{R} \in \mathbb{R}^{n \times n}$, and $\bar{\Phi} \in \mathbb{R}^{n \times n}$, nonnegative polynomials ε_1, ε_2 and ε_3, such that for $p = 1, \ldots, r$,

$$\eta_1^T(\bar{\rho} - \varepsilon_1 \Gamma) \eta_1 \leq \Sigma^2,$$

$$\eta_2^T(\bar{\Gamma} - \varepsilon_2 \Gamma) \eta_2 \leq \Sigma^2,$$

$$-\eta_3^T(\bar{\Omega} + \varepsilon_3 \Gamma) \eta_3 \leq \Sigma^2.$$

Then, (14) is asymptotically stable with strict dissipativity, where η_1, η_2 and η_3 are arbitrary vectors, Σ^2 is a positive definite matrix, and $\bar{\mathcal{L}} \leq \tilde{\mathcal{L}} \otimes \Gamma$.

\textbf{Proof 4:} This proof is similar to those of Theorems 1 and 2.

V. Illustrative Example

Consider a nonlinear multi-agent network, which the switching topologies are shown in Figure 1. Each agent’s dynamics is described from [40]

$$\begin{align*}
\dot{x}_0 &= f(x_0) \\
\dot{x}_i &= f(x_i) + u_i + d_p w_i,
\end{align*}$$

where

$$f(x_i) = \begin{bmatrix} 10(x_{i2} - x_{i1}) \\ 28x_{i1} - x_{i1}x_{i3} - x_{i2} \\ x_{i1}x_{i2} - \frac{2}{3}x_{i3} \end{bmatrix}.$$

The polynomial fuzzy model is established as follows:

$$R^{n \times \psi} : \begin{cases} x_{i1}(t) = \xi_1(t), x_{i2}(t) = \xi_2(t), x_{i3}(t) = \xi_3(t), \end{cases}$$

Then, (14) is asymptotically stable with strict dissipativity, where η_1, η_2 and η_3 are arbitrary vectors, Σ^2 is a positive definite matrix, and $\bar{\mathcal{L}} \leq \tilde{\mathcal{L}} \otimes \Gamma$.

\textbf{Proof 4:} This proof is similar to those of Theorems 1 and 2.

\textbf{V. Illustrative Example}

Consider a nonlinear multi-agent network, which the switching topologies are shown in Figure 1. Each agent’s dynamics is described from [40]

$$\begin{align*}
\dot{x}_0 &= f(x_0) \\
\dot{x}_i &= f(x_i) + u_i + d_p w_i,
\end{align*}$$

where

$$f(x_i) = \begin{bmatrix} 10(x_{i2} - x_{i1}) \\ 28x_{i1} - x_{i1}x_{i3} - x_{i2} \\ x_{i1}x_{i2} - \frac{2}{3}x_{i3} \end{bmatrix}.$$

The polynomial fuzzy model is established as follows:

$$R^{n \times \psi} : \begin{cases} x_{i1}(t) = \xi_1(t), x_{i2}(t) = \xi_2(t), x_{i3}(t) = \xi_3(t), \end{cases}$$

Then, (14) is asymptotically stable with strict dissipativity, where η_1, η_2 and η_3 are arbitrary vectors, Σ^2 is a positive definite matrix, and $\bar{\mathcal{L}} \leq \tilde{\mathcal{L}} \otimes \Gamma$.

\textbf{Proof 4:} This proof is similar to those of Theorems 1 and 2.

\textbf{V. Illustrative Example}

Consider a nonlinear multi-agent network, which the switching topologies are shown in Figure 1. Each agent’s dynamics is described from [40]

$$\begin{align*}
\dot{x}_0 &= f(x_0) \\
\dot{x}_i &= f(x_i) + u_i + d_p w_i,
\end{align*}$$

where

$$f(x_i) = \begin{bmatrix} 10(x_{i2} - x_{i1}) \\ 28x_{i1} - x_{i1}x_{i3} - x_{i2} \\ x_{i1}x_{i2} - \frac{2}{3}x_{i3} \end{bmatrix}.$$

The polynomial fuzzy model is established as follows:

$$R^{n \times \psi} : \begin{cases} x_{i1}(t) = \xi_1(t), x_{i2}(t) = \xi_2(t), x_{i3}(t) = \xi_3(t), \end{cases}$$

Then, (14) is asymptotically stable with strict dissipativity, where η_1, η_2 and η_3 are arbitrary vectors, Σ^2 is a positive definite matrix, and $\bar{\mathcal{L}} \leq \tilde{\mathcal{L}} \otimes \Gamma$.

\textbf{Proof 4:} This proof is similar to those of Theorems 1 and 2.

\textbf{V. Illustrative Example}

Consider a nonlinear multi-agent network, which the switching topologies are shown in Figure 1. Each agent’s dynamics is described from [40]

$$\begin{align*}
\dot{x}_0 &= f(x_0) \\
\dot{x}_i &= f(x_i) + u_i + d_p w_i,
\end{align*}$$

where

$$f(x_i) = \begin{bmatrix} 10(x_{i2} - x_{i1}) \\ 28x_{i1} - x_{i1}x_{i3} - x_{i2} \\ x_{i1}x_{i2} - \frac{2}{3}x_{i3} \end{bmatrix}.$$

The polynomial fuzzy model is established as follows:

$$R^{n \times \psi} : \begin{cases} x_{i1}(t) = \xi_1(t), x_{i2}(t) = \xi_2(t), x_{i3}(t) = \xi_3(t), \end{cases}$$

Then, (14) is asymptotically stable with strict dissipativity, where η_1, η_2 and η_3 are arbitrary vectors, Σ^2 is a positive definite matrix, and $\bar{\mathcal{L}} \leq \tilde{\mathcal{L}} \otimes \Gamma$.

\textbf{Proof 4:} This proof is similar to those of Theorems 1 and 2.
The augmented fuzzy error system is
\[
\dot{e} = \sum_{p=1}^{8} h_p(\theta) \left(A_p(e)e + D_p w(t) + \frac{1}{\alpha}(L^\mu \otimes \Gamma^\mu) e(t-\tau(t)) + \frac{1}{\alpha}(L^\mu \otimes \Gamma^\mu) E(t-\tau(t)) \right),
\]
\[
z = \sum_{p=1}^{8} h_p(\theta) (C_{zp} e + D_{zp} w(t)),
\]
where
\[
C_{zp} = I_4 \otimes \begin{bmatrix} 1.75 & 0 & 0 \\ 1 & 0.01 & 0.06 \\ 0 & 0.08 & 0 \end{bmatrix},
\]
\[
D_{zp} = I_4 \otimes \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}.
\]

Without loss of generality, assume that the edges' weights of all communication topologies are 1. Figure 2 depicts the semi-Markov switching signal. Laplacian matrices are expressed as
\[
L^1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]
\[
L^2 = \begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

The external disturbance is \(w(t) = 1.5e^{-0.25t} |\cos t| \). Let \(X = -0.8, Y = -0.65, Z = 1.25, \delta = 0.9 \). The sampling period is \(h = 0.1 \). In (9), \(\alpha = 0.5 \). The transition rates are given by \(\lambda_{11}(\phi) = (-2.4, -1.6), \lambda_{12}(\phi) = (1.6, 2.4), \lambda_{21}(\phi) = (1.4, 2.6), \lambda_{22}(\phi) = (-2.6, -1.4) \). The event-triggering parameters \(\rho = (0.0625, 0.025, 0.0625, 0.05) \). From Theorem 3, using the SOSTOOLS [37] to solve SOS conditions, we obtain
\[
\Gamma^1 = \begin{bmatrix} 3.4766 & 0 & 0 \\ * & 2.6436 & 0 \\ * & * & 2.6436 \end{bmatrix},
\]
\[
\Gamma^2 = \begin{bmatrix} 3.3807 & 0 & 0 \\ * & 2.5661 & 0 \\ * & * & 2.5661 \end{bmatrix}.
\]

The event-triggering instants of each agent are depicted in Figure 3, which indicates the amounts of sampling data transmitted are reduced. The state trajectories of each agent are shown in Figure 4. The error states are given in Figure 5. The simulation results show that all agents achieve consensus, which demonstrates the effectiveness of the presented design schemes.

VI. CONCLUSION

In this paper, the event-triggering consensus with strict dissipativity have been studied for fuzzy MASs with semi-Markov jump topologies and external disturbance. A new
event-triggering consensus protocol has been designed to guarantee that MASs can achieve consensus and save communication resources. With the mode-dependent Lyapunov-Krasovskii functional, SOS-based relaxed conditions have been obtained. The simulation results demonstrate the effectiveness of the proposed design techniques. Future work will consider the event-based containment control problems for MASs with switching topologies and cyber attacks.

REFERENCES

[1] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and switching networks,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 863–868, 2007.

[2] X. Dong and G. Hu, “Time-varying formation control for general linear multi-agent systems with switching directed topologies,” Automatica, vol. 73, pp. 47–55, 2016.

[3] L. Wang, J. Xi, M. He, and G. Liu, “Robust time-varying formation design for multiagent systems with disturbances: Extended-state-observer method,” International Journal of Robust and Nonlinear Control, vol. 30, no. 20, pp. 2796–2808, 2020.

[4] R. Sakthivel, A. Parivallal, B. Kaviarasan, H. Lee, Y. d. Lim, “Finite-time consensus of Markov jumping multi-agent systems with time-varying actuator faults and input saturation,” ISA Transactions, vol. 83, pp. 89–99, 2018.

[5] C. Deng and G. Yang, “Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems,” Automatica, vol. 103, pp. 62–68, 2019.

[6] Q. Wang and J. Wang, “Fully distributed fault-tolerant consensus protocols for Lipschitz nonlinear multi-agent systems,” IEEE Access, vol. 6, pp. 17313–17325, 2018.

[7] Q. Li, J. Yu, W. Xing, J. Wang, and Y. Shi, “Dissipative consensus tracking of fuzzy multi-agent systems via adaptive protocol.” IEEE Access, vol. 8, pp. 200915–200922, 2020.

[8] G. Wen, W. Yu, Z. Li, X. Yu, and J. Cao, “Neuro-adaptive consensus tracking of multiagent systems with a high-dimensional leader,” IEEE Transactions on Cybernetics, vol. 47, no. 7, pp. 1730–1742, 2017.

[9] R. Agha, M. Rehan, C. K. Ahn, G. Mustafa, and S. Ahmad, “Adaptive Distributed Consensus Control of One-Sided Lipschitz Nonlinear Multi-Agents,” IEEE Transactions on Systems, Man and Cybernetics: Systems, vol. 49, no. 3, pp. 568–578, 2019.

[10] M. Rehan, A. Jameel and C. K. Ahn, “Distributed consensus control of one-sided lipschitz nonlinear multiagent systems,” IEEE Transactions on Systems, Man and Cybernetics: Systems, vol. 48, no. 8, pp. 1297-1308, 2018.

[11] Z. Zhang, W. Yan, and H. Li, “Distributed optimal control for linear multi-agent systems on general digraphs,” IEEE Transactions on Automatic Control, to be published, doi: 10.1109/TAC.2020.2974424, 2020.

[12] D. Wang, Z. Wang, and C. Wen, “Distributed optimal control protocol for a class of uncertain nonlinear multi-agent networks with disturbance rejection using adaptive technique,” IEEE Transactions on Systems, Man, and Cybernetics: System, to be published, doi: 10.1109/TSMC.2019.2933005.

[13] L. Ding and G. Guo, “Sampled-data leader-following consensus for nonlinear multi-agent systems with Markovian switching topologies and communication delay,” Journal of the Franklin Institute, vol. 352, no. 1, pp. 369–383, 2015.

[14] J. Yu, P. Shi, Q. Li, W. Xing, M. Chadli, and G. M. Dimirovski, “Fuzzy-based dissipative consensus for multi-agent systems with Markov switching topologies,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 4127–4131, 2020.

[15] J. Yu, C. K. Ahn, P. Shi, “Event-triggered bipartite consensus for fuzzy multi-agent systems under Markovian switching signed topology,” IEEE Transactions on Fuzzy Systems, to be published, doi: 10.1109/TFUZZ.2021.3089740

[16] J. Dai and G. Guo, “Event-triggered leader-following consensus for multi-agent systems with semi-Markov switching topologies,” Information Sciences, vol. 459, pp. 290–301, 2019.

[17] H. Shen, Y. Wang, H. P. Ju, and Z. Wang, “Fault-tolerant leader-following consensus for multi-agent systems subject to semi-Markov switching topologies: An event-triggered control scheme,” Nonlinear Analysis: Hybrid Systems, vol. 34, pp. 92–107, 2019.

[18] M. Cong and X. Mu, “ H_{∞} Consensus of linear multi-agent systems with semi-Markov switching network topologies and measurement noises,” IEEE Access, vol. 7, pp. 156089–156096, 2019.

[19] J. C. Willems, “Dissipative dynamical systems-part 1: General theory,” Archive for Rational Mechanics and Analysis, vol. 45, no. 5, pp. 321–351, 1972.

[20] M. Zhang, C. Shen, Z. Wu, and D. Zhang. “Dissipative Filtering for Switched Fuzzy Systems with Missing Measurements,” IEEE Transactions on Cybernetics, vol. 50, no. 5, 1931-1940, 2020.

[21] J. Liu, L. Wu, C. Wu, W. Luo, and L. G. Franquelo, “Even-triggering dissipative control of switched stochastic systems via sliding mode,” Automatica, vol. 103, pp. 261-273, 2019.

[22] A. Selivanov and E. Fridman, “Even-triggered H_{∞} control: A switching approach,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp. 3221-3226, 2016.

[23] Y. Zhang, R. Yang, H. Yan, and F. Yang, “H_{∞} consensus of event-based multi-agent systems with switching topology,” Information Sciences, vol. 370-371, no. 20, pp. 623-635, 2016.

[24] C. Deng, M. J. Er, G. Yang, and N. Wang, “Event-triggered consensus of linear multiagent systems with time-varying communication delays,” IEEE Transactions on Cybernetics, to be published, doi: 10.1109/TCYB.2019.2922740.

[25] Y. Xu, Z. Wu, Y. Pan, C. K. Ahn, and H. Yan, “Consensus of linear multi-agent systems with input-based triggering condition,” IEEE Transactions on Systems, Man and Cybernetics: Systems, vol. 49, no. 11, pp. 2308–2317, 2019.

[26] Z. Wu, Y. Xu, R. Lu, Y. Wu, and T. Huang, “Event-triggered control for consensus of multiagent systems with fixed/switching topologies,” IEEE Transactions on Systems, Man and Cybernetics: Systems, vol. 48, no. 10, pp. 1736–1746, 2018.

[27] W. Xing, P. Shi, R. K. Agarwal, and L. Lo “Robust H_{∞} synchronization for complex networks with event-triggered communication scheme,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 5233–5245, 2020.

[28] C. Deng, C. Wen, J. Huang, X. Zhang, and Y. Zou, “Distributed observer-based cooperative control approach for uncertain nonlinear MASs under event-triggered communication,” IEEE Transactions on Automatic Control, to be published, doi: 10.1109/TAC.2021.3090739.

[29] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum of squares approach to cooperative output regulation for Takagi-Sugeno Fuzzy multiagent systems,” IEEE Transactions on Systems, Man and Cybernetics: System, to be published, doi: 10.1109/TCYB.2019.2933005.

[30] M. Zhang, P. Shi, C. Shen, and Z. Wu, “Static Output Feedback Control of Switched Nonlinear Systems with Actuator Faults,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 8, pp. 1600–1609, 2020.

[31] Z. Zhang, Y. Shi, Z. Zhang, and W. Yan, “New results on sliding-mode control for Takagi-Sugeno Fuzzy multiagent systems,” IEEE Transactions on Cybernetics, vol. 49, no. 5, pp. 1592–1604, 2019.

[32] X. Zhou and Z. Gu, “Event-triggered H_{∞} filter design of T-S fuzzy multi-agent systems subject to hybrid attacks and sensor saturation,” IEEE Access, vol. 8, pp. 126530–126539, 2020.
uncertainties,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 94–110, 2016.

[34] P. Tabarisaadi, M. Mardani, M. Shasadeghi, and B. Safarinejad, “A sum-of-squares approach to consensus of nonlinear leader-follower multi-agent systems based on novel polynomial and fuzzy polynomial models,” Journal of the Franklin Institute, vol. 354, no. 18, pp. 8398–8420, 2017.

[35] B. Kaviarasan, R. Sakthivel, C. Wang, F. Alzahrani, “Resilient control design for consensus of nonlinear multi-agent systems with switching topology and randomly varying communication delays,” Neurocomputing, vol. 311, pp. 155–163, 2018.

[36] P. Shi, J. Yu, “Dissipativity-based consensus for fuzzy multiagent systems under switching directed topologies,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 5, pp. 1143–1151, 2021.

[37] S. Prajna, A. Papachristodoulou, P. Seiler, and P. Parrilo, “SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, Version 2.00,” California Institute of Technology, 2004.

[38] H. Ren, G. Zong, and H. R. Karimi, “Asynchronous finite-time filtering of networked switched systems and its application: an event-drive method,” IEEE Transactions on Circuits & Systems I Regular Paper, vol. 66, no. 1, pp. 391–402, 2019.

[39] S. Prajna and A. Papachristodoulou and F. Wu, “Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach s,” Proceedings of Asian Control Conference, pp. 157–165, 2004.

[40] Y. Zhao, B. Li, J. Qin, H. Gao, and H. R. Karimi, “H_{\infty} consensus and synchronization of nonlinear systems based on a novel fuzzy model,” IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 2157–2169, 2013.

JIAFENG YU received the Ph.D. degree in control science and engineering from the Harbin Institute of Technology, Harbin, China, in 2014. She is with the Jiangsu Maritime Institute, Nanjing, China. From August 2018 to September 2020, she was a Postdoctoral Fellow with the School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia. Her current research interests include multi-agent systems, complex dynamical networks, and fuzzy control systems.

QINSHENG LI received the M.S. degree from Dalian Maritime University in 2011. He is currently pursuing for the Ph.D. degree in control science and engineering with Shanghai University. His research interests include modeling and optimal control of complex systems, multi-agent systems, and fuzzy control systems.

WEN XING received the Ph.D. degree in control science and engineering from Harbin Engineering University, China, in 2020. From 2017 to 2019, she was a visiting student with the School of Electrical and Electronic Engineering, University of Adelaide, Australia. She is currently a Lecturer with Harbin Engineering University. Her research interests include complex networks, multi-agent systems, and distributed cooperative control.

XIN YUAN received the B.E. (Hons) and Ph.D degrees from the University of Adelaide in 2016 and 2021. He is currently undertaking research at the University of Adelaide and working on discovering new approaches for the cognitive agent-based systems with Artificial General Intelligence and their applications in autonomous and control systems.

YAN SHI Yan Shi received the BSc degree in applied mathematics from Northeast Heavy Machinery Institute (currently Yanshan University), China, 1982, the MSc degree in applied mathematics from Dalian Maritime University, China, 1988, and the Ph.D. degree in Information and Computer Sciences, from Osaka Electro-Communication University, Japan, 1997. He is currently a Professor with the Graduate School of Science and Technology, Tokai University, Japan. His research interests include approximate reasoning, fuzzy reasoning, fuzzy system modelling and applications, neuro-fuzzy learning algorithms for system identification. He has published over 200 papers in journals and conferences. He has actively served in a number of journals. He is the Executive Editor of International Journal of Innovative Computing, Information and Control; Editor-in-Chief of International Journal of Biomedical Soft Computing and Human Sciences; and Editor-in-Chief of ICIC Express Letters. He is a member, the board of directors of Biomedical Fuzzy Systems Association.

VOLUME 4, 2016
11