Anti-proliferative effects of *Ziziphus spina-christi* and *Phlomis russeliana* leaf extracts on HEK293 and MCF-7 Cell Lines and Evaluation of Bax and Bcl-2 Genes Expression Level in MCF-7 Cells

Kimia Ghaffari, Rahim Ahmadi, Behrooz Saberi, Pooria Moulavi

Abstract

To investigate the effects of *Phlomis russeliana* and *Ziziphus spina-christi* leaf extracts on apoptosis in breast cancer MCF-7 cells. Cell lines were divided into a control group and the groups exposed to 0.001, 0.01, 0.1, 1, and 10 mg/ml of *Ziziphus spina-christi* and *Phlomis russeliana* leaf extracts. Cell viability was quantified by the MTT assay. The expression of Bax and Bcl-2 genes was evaluated by Real-time PCR analysis. Statistical analysis was performed using ANOVA. HEK293 cell viability significantly increased in the groups exposed to 0.001, 0.01, and 0.1 mg/ml of *Z.christi* leaf extract and decreased in the group exposed to 10 mg/ml of *P.russeliana* leaf extract. MCF-7 cells viability significantly decreased in the groups exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml of *Z.christi* leaf extract and increased in the groups exposed to 0.001 and 0.01 mg/ml of *P.russeliana* leaf extract. The exposure of MCF-7 cells to 1 and 10 mg/ml of *Prusseliana* leaf extract also led to a significant decrease in cell viability. The cytotoxic effect of *Z.christi* was higher than *P.russeliana* leaf extracts on MCF7 cells. 1 mg/ml of *Z.christi* leaf extracts also significantly increased the expression level of Bax and Bcl-2 genes in MCF7 cells. Bcl-2 gene expression significantly increased in the group exposed to 10 mg/ml of *P.russeliana* leaf extract.Despite *P.russeliana* leaf extract, lower *Z.christi* leaf extract concentrations inhibited MCF-7 cells proliferation. *Ziziphus spina-christi* and *phlomis russeliana* leaf extracts mechanism of action has occurred through the Bax-independent apoptotic pathway on MCF-7 cells.

Keywords: Breast cancer- proliferat- apoptosis

Asian Pac J Cancer Prev; 21, Anticancer Activity of Natural Compounds: HOW’s on Methods and Reports Suppl, 81-87

Introduction

Phlomis russeliana, commonly known as Jerusalem or Turkish Sage, is a flowering plant of the Lamiaceae family. This plant is the herbaceous and perennial aromatic plant that the genus phlomis is widely distributed in Turkey, Iran, Turkmenistan, Afghanistan, and Iraq (Demirchi et al., 2008). Phlomis species contain monoterpenes, sesquiterpenes, aliphalic compounds, fatty acids (hexadecanoic acid), and other components such as flavonoids, iridoids, and phenylethyl alcohol, which were used to treat various disorders such as diabetes, gastric ulcer, hemorrhoid, inflammation, and wound (Yesila et al., 2005; Amor et al., 2009).

Ziziphus spina-christi-known as Christ’s thorn Jujube-is a shrub belonging to the Rhamnaceae family native in northern and tropical Africa and southern and western Asia. Plant leaves contain various compounds such as phenolic, flavonoids, and alcaloids, including ziziphine, jubanine and amphibine, alpha terpinol, linalol and diverse saponins, and the roots are used to treat headaches. While, the spines or ashes of these species are applied to snake bites. Boiled leaves are applied to various surface wounds which have antihelminthic and antidiarhetic properties to reduce eye inflammation. The fruits are used as an emollient and astringent agent (Defni et al., 2005; Pawlowska et al., 2009; Nawwar et al., 1984; Al-Mamary et al., 2002).

Breast cancer (BC) is a major worldwide health care problem which is the second leading cause of cancer death among women (Ghaffari et al., 2016). Many risk factors led to normal breast cells become cancerous due to the mutation in the DNA and increase the chance of developing breast cancer (Hulka et al., 1995). Breast cancer (BC) is a major worldwide health care problem which is the second leading cause of cancer death among women (Ghaffari et al., 2016). Many risk factors led to normal breast cells become cancerous due to the mutation in the DNA and increase the chance of developing breast cancer (Hulka et al., 1995).

Apoptotic cell death is a genetically programmed mechanism(s) that maintains the healthy survival/ death

1Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran. 2Department of Physiology, Faculty of basic Science, Hamedan Branch, Islamic Azad University, Hamedan, Iran. 3Department of Microbiology, Faculty of bio Sciences, Tonekabon Branch, Islamic Azad University, Mazandaran, Iran. 4Department of Biotechnology, Factualy of BioScineces, North Tehran Branch, Islamic Azad University, Tehran, Iran. *For Correspondence: drrahahmadi@yahoo.com
balance in eukaryotic cells which involves the potentially
determined elimination of cells (Elmore, 2007). Proteases,
known as caspases cause apoptosis, and normally occurs
as a homeostatic and defense mechanism in tissues, while
enhanced apoptosis causes degenerative diseases and may
promote carcinogenesis (Fulda, 2010). The Bcl-2 family
proteins include a heterogeneous group of pro-apoptotic
(Bax) and anti-apoptotic (Bcl-2) molecules which regulate
programmed cell death by controlling pro-apoptotic and
anti-apoptotic intracellular signals. The apoptotic signals
modulate the central control points of apoptotic pathways
including the expression of antiapoptotic proteins such as
Bcl-2 or by down-regulation or mutation of proapoptotic
proteins such as Bax (Hassan et al., 2014; McKenzie et
al., 2006).

Various studies showed that herb compounds and
natural materials such as Vitamins, Carotenoids, taxol,
camptothecin, vincristine, and vinblastine were the
important sources of several clinically useful anticancer
agents (Vidhya et al., 2016; Balunas et al., 2005). Studies
suggest that a rich diet in vegetables and fruits which are
the rich sources of antioxidants may reduce cancer
risk (Hocman, 1989). Further studies indicated that
Angiosperms show the cytotoxic activities against breast
cancer cell lines (MCF-7) (Ali MA et al., 2014; Han et al.,
2009). More studies have shown that Phenyl propanoid
caffeic acid, phenyl ethyl alcohol, and Phenylethyl
alcohol glycosides isolated from Phlomis Species show
cytotoxic activity against several cancer cells (Saracoglu
et al., 1995). Moreover, several researches indicated that
Phlomis samia extract could induce apoptosis so quickly
in cancer cells within a few hours (Ihoulal et al., 2017).

Some studies showed that some plants belong to the
Rhamnaceae family can inhibit cancer cell proliferation
(Jing et al., 2015; Pawlowska et al., 2009; Shokrzadeh
et al., 2009). Recent advances in cancer research have
shown that high apoptosis level was found in the MCF-
7 cell line treated with a member of the Rhamnaceae
family (Lombardi et al., 2017). The studies also suggest that
Ziziphus Jujube (Jujube) plants show numerous
medicinal and pharmacological properties and have anti-
cancer and pro-apoptotic abilities in human cervical and
breast cancer cells in vitro (Abedini et al., 2016). New
academic research suggests that aqueous extracts of Z.
spina-christi have cytotoxic effects on cancer cell lines
(Jafarian et al., 2014). The evidence obtained from clinical
studies confirms that Ziziphus spina-christi leaf extract
has antiproliferative influence and pro-apoptotic abilities
on the MCF-7 (human breast adenocarcinoma) cell line
(Farmani et al., 2016).

In contrast, it was reported that triterpenoids isolated
from Zizyphus jujube can inhibit foam cell formation in
macrophages which can be a reason for increase fatty
in vessels (Fuijiwara et al., 2011). Besides, recent data
were shown that a member of Lamiaceae family has
low cytotoxic effects against cancer cells (Oliveira et
al., 2017).

The recent increase in the prevalence and mortality.
rates of breast cancer in the world (Huang et al., 2009).
Unfortunately, there are so many complications and
limitations in methods of healing cancers. Therefore,

research on herbal treatments has a serious role in cancer
therapies. Although previous studies have reported the
anticancer effects of Phlomis and Ziziphus extracts
[20,21], there are few researches on Ziziphus spina-christi
and Phlomis russeliana extracts on cancer cells at the
cellular and molecular level. The present study aimed to
investigate Phlomis russeliana and Ziziphus spina-christi
leaf extracts on apoptosis in breast cancer MCF-7 cells.

Materials and Methods

Cell line
The human breast cancer (MCF-7) and normal
embryonic kidney (HEK293) cell lines were obtained from
the National Cell Bank of Iran (Pasteur Institute, Tehran,
Iran) (Fazeli et al., 2014).

Extracts preparation
The selected plant was collected in different areas
of Guilan province, Iran in June, 2016. The fresh leaf of
Phlomis russeliana and Ziziphus spina-christi cut into
small pieces, washed well in tap water, swabbed with
70% ethanol and dried in 24 to 26 °C during 7-8 days. The
extraction was performed using the soaking method. To
this purpose, 100 grams of plant’s dry weight was mixed
with 300 ml of 80% ethanol (Merck, Germany) and soaked
for 24 hours. Then, Soxhlet apparatus was used for the
extraction. The extracts were put inside the plates for 24
hours to be dried (Abedini et al., 2016).

Cell culture
The MCF-7 and HEK293 cells were maintained in
complete growth medium (CGM) supplemented with 10%
FBS and 1% antibiotics (penicillin/streptomycin). The cells
(1 × 10^6 cells/ml) were plated in T-25 flasks containing 5
mls of CGM and grown in a humidified incubator under
95% air and 5% CO2 at 37°C to subconfluence (90 - 95%).
The culture medium was replaced every 48 hours. When
the cells reached 90 - 95% confluence, the medium was
aspirated and the cells monolayer was washed three times
with sterile phosphate-buffered saline. The cell monolayer
was treated with 1 ml of 0.25% (w/v) trypsin-EDTA and
incubated briefly at 37°C and visualized microscopically
to ensure complete cell detachment. Cells were re-suspended
in the complete growth medium. Cells were also stained
with trypan blue (100 µl of cell suspension and 100 µl
of 0.4% trypan blue), incubated for 2 minutes at room
temperature, and counted using a hemacytometer.

Cytotoxicity assay
The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] assay was performed to
assess cell proliferation activity and cytotoxicity in MCF-7
and HEK293 cells exposed to 0.001, 0.01, 0.1, 1, and 10
µg/ml of Phlomis russeliana and Ziziphus spina-christi
leaf extracts. Cell viability was determined using the MTT
assay 24 hours after incubation. The MTT assays were
performed according to standard protocols. MCF-7 and HEK
cells were seeded in 96-well plates with 6 × 10^4 cells/well
which placed at 37°C in a 5% CO2 humidified incubator
until 60% confluence (Kobayashi et al., 2013).
The complete growth medium was removed, and the cells were serum-starved for 24 h before treatment. Cells incubated in culture medium alone served as a control for cell viability (untreated cells). The cells were treated with different doses of Phlomis russeliana and Ziziphus spina-christi leaf extracts: 0.001, 0.01, 0.1, 1 and 10 μg/ml for 24 h in a complete growth medium. Following the extracts treatments, the medium was removed, and 100 μl of MTT solution (5 mg/ml in sterile H2O) was added to each well. The plates were incubated under 95% atmosphere air and 5% CO2 at 37°C for 4 h. The MTT solution was removed, and 200 μl aliquots of DMSO were added to each well to dissolve the formazan crystals, followed by incubation for 10 min at 37°C. Treatments were performed in triplicates, and optical densities were read at 570 nm by spectrophotometric method.

Quantitative Real Time-PCR Analysis

HEK293 and MCF-7 cells were seeded in dishes at 500,000 cells/10 mL/ 75 cm². One day after seeding, the medium was changed, and the cells were incubated with the test compounds for 12 h. At the end of the incubation, the cells were collected by centrifugation, washed with ice-cold PBS, and total RNA was extracted using a RNeasy midi kit (Roche, 1 828 665, Germany). Total RNA (2.5 μg) was reverse transcribed into cDNA using a Transcriptor First Strand cDNA synthesis kit (Roche,04 379 012 001, Germany), and quantitative real-time PCR was carried out as using a LightCycler-FastStart DNA master SYBR Green I Kit (ABI , 4369016,American) and LightCycler apparatus (Roche Diagnostics). The Quantitative RT-PCR for Bax and Bcl2 genes was carried out using the specific primers (as shown in Table 1). GAPDH gene was used to normalize the relative expression for interesting genes calculated by 2 ΔΔCT method and SYBR Green kit. After quantitative real-time RT-PCR reactions, the presence of the expected PCR products was confirmed by an agarose gel electrophoresis.

Data analysis

Statistical analysis was performed using a one-way analysis of variance (ANOVA method) followed by post hoc Turkey’s multiple comparisons test in SPSS 20 software. Differences were considered significant at the P<0.05 level.

Results

The viability of HEK293 cells exposed to 0.001, 0.01, 0.1, 1, and 10 μg/ml of Phlomis russeliana and Ziziphus spina-christi leaf extracts in cell culture. HEK293 cells viability significantly increased in groups exposed to 0.001 and 0.01 mg/ml of Z.christi leaf extract compared to the control group (P<0.01), and exposure of HEK293 cells to 0.1 mg/ml of Z.christi leaf extract also led to a significant increase in viability of HEK293 cells compared with the control group (P<0.05) (as shown in Figure 1). However, there was no significant difference between HEK293 cells’ viability exposed to 1 and 10 mg/ml of Z.christi leaf extract compared to the control group. HEK293 cell viability significantly decreased in the group exposed to 10 mg/ml of P. russeliana leaf extract compared to the control group (P<0.01). There was also no significant difference in cell viability among HEK293 cells exposed to 0.001, 0.01, 0.1, and 1mg/ml of P. russeliana leaf extract compared to the control group. Meanwhile, there was also significant difference in cell viability between HEK293 cells exposed to 0.001, 0.01, 0.1,1 and 10 mg/ml of P. russeliana leaf extract compared to HEK293 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml Z.christi leaf of extract (P<0.01).

The viability of MCF-7 cells exposed to 0.001, 0.01, 0.01, 0.1, 1 and 10 μg/ml of P. russeliana leaf extract compared to the control group (P<0.01). There was also no significant difference in cell viability among MCF-7 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml of P. russeliana leaf extract compared to the control group. Meanwhile, there was also significant difference in cell viability between HEK293 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml of P. russeliana leaf extract compared to HEK293 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml Z.christi leaf of extract (P<0.01).

Quantitative Real Time-PCR Analysis

HEK293 and MCF-7 cells were seeded in dishes at 500,000 cells/10 mL/ 75 cm². One day after seeding, the medium was changed, and the cells were incubated with the test compounds for 12 h. At the end of the incubation, the cells were collected by centrifugation, washed with ice-cold PBS, and total RNA was extracted using a RNeasy midi kit (Roche, 1 828 665, Germany). Total RNA (2.5 μg) was reverse transcribed into cDNA using a Transcriptor First Strand cDNA synthesis kit (Roche,04 379 012 001, Germany), and quantitative real-time PCR was carried out as using a LightCycler-FastStart DNA master SYBR Green I Kit (ABI , 4369016,American) and LightCycler apparatus (Roche Diagnostics). The Quantitative RT-PCR for Bax and Bcl2 genes was carried out using the specific primers (as shown in Table 1). GAPDH gene was used to normalize the relative expression for interesting genes calculated by 2 ΔΔCT method and SYBR Green kit. After quantitative real-time RT-PCR reactions, the presence of the expected PCR products was confirmed by an agarose gel electrophoresis.

Data analysis

Statistical analysis was performed using a one-way analysis of variance (ANOVA method) followed by post hoc Turkey’s multiple comparisons test in SPSS 20 software. Differences were considered significant at the P<0.05 level.

Results

The viability of HEK293 cells exposed to 0.001, 0.01, 0.1, 1, and 10 μg/ml of Phlomis russeliana and Ziziphus spina-christi leaf extracts in cell culture. HEK293 cells viability significantly increased in groups exposed to 0.001 and 0.01 mg/ml of Z.christi leaf extract compared to the control group (P<0.01), and exposure of HEK293 cells to 0.1 mg/ml of Z.christi leaf extract also led to a significant increase in viability of HEK293 cells compared with the control group (P<0.05) (as shown in Figure 1). However, there was no significant difference between HEK293 cells’ viability exposed to 1 and 10 mg/ml of Z.christi leaf extract compared to the control group. HEK293 cell viability significantly decreased in the group exposed to 10 mg/ml of P. russeliana leaf extract compared to the control group (P<0.01). There was also no significant difference in cell viability among HEK293 cells exposed to 0.001, 0.01, 0.1, and 1mg/ml of P. russeliana leaf extract compared to the control group. Meanwhile, there was also significant difference in cell viability between HEK293 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml of P. russeliana leaf extract compared to HEK293 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml Z.christi leaf of extract (P<0.01).

The viability of MCF-7 cells exposed to 0.001, 0.01, 0.01, 0.1, 1 and 10 μg/ml of P. russeliana leaf extract compared to the control group (P<0.01). There was also no significant difference in cell viability among MCF-7 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml of P. russeliana leaf extract compared to the control group. Meanwhile, there was also significant difference in cell viability between HEK293 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml of P. russeliana leaf extract compared to HEK293 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml Z.christi leaf of extract (P<0.01).

Table 1. Specific Primers for BAX, BCL-2 and GAPDH Genes

Gene	Sequences
GAPDH	5'TGCACCACCAACTGCTTA3' (Forward) 5'GGATGCAAGGGATBATGTTTC3' (Reverse)
BAX	5'TGGAGCTGCAGAGGATGATTG3' (Forward) 5'GAAGTTGCGGTCAGAAACTG3' (Reverse)
BCL-2	5'CTGCACCTGACGCCCTACC3' (Forward) 5'CACATGACCCCAACGAACTCAAAGA3' (Reverse)

Figure 1. Effect of Ziziphus Spina-Christi and Phlomis Russeliana Leaf Extracts on HEK293 Cells Viability. The cells were treated with different concentrations of Z. christi and P. russeliana extracts (0.001, 0.01, 0.1 and 1mg/ml). Data are expressed as mean ± SD (n=3). Values are statistically significant at *P<0.01, **P<0.05 compared to control group and, #P<0.01 compared to groups exposed to P. russeliana extract.
0.01, 1 and 10 μg/ml of *Phlomis russeliana* and *Ziziphus spina-christi* leaf extracts in cell culture. Due to figure 2, MCF-7 cells viability significantly decreased in the groups exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml of *Z.christi* leaf extract compared to the control group (P<0.01). However, MCF-7 cells viability significantly increased in group exposed to 0.001 and 0.01 mg/ml of *P.russeliana* leaf extract compared to control group (P<0.01 and P<0.05, respectively). There was also no significant difference in cell viability among MCF-7 cells exposed to 0.1 mg/ml of *P.russeliana* leaf extract compared to control group. The exposure of MCF-7 cells to 1 and 10 mg/ml of *P.russeliana* leaf extract also led to significant decrease in viability of MCF-7 cells compared with the control group (P<0.01). Meanwhile, there was also significant difference in cell viability among MCF-7 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml of *P.russeliana* leaf extract compared to MCF-7 cells exposed to 0.001, 0.01, 0.1, 1 and 10 mg/ml of *Z.christi* leaf extract (P<0.01) (see figure 2).

The expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 genes in MCF-7 cells exposed to 1 mg/ml of *Ziziphus spina-christi* and 10 mg/ml of *Phlomis russeliana* leaf extracts. Due to figure 3, to examine the alteration of apoptosis regulating genes expression by *Ziziphus spina-christi* and *Phlomis russeliana* leaf extracts in MCF7 cells, we investigated the effect of 1 mg/ml of *Z.christi* and 10 mg/ml of *P.russeliana* leaf extracts (as cytotoxic dose) on the expression level of GAPDH, Bax and Bcl-2 genes. The results indicated that 1 mg/ml of *Z.christi* leaf extracts significantly increased the expression level of pro-apoptotic Bax and anti-apoptotic Bcl-2 genes in MCF7 cells (P<0.01). However, there was no significant difference among the expression of Bax gene exposed to 10 mg/ml of *P.russeliana* leaf extract compared to the control group, Bcl-2 gene expression significantly increased in the group exposed to 10 mg/ml of *P.russeliana* leaf extract compared to the control group.

Figure 2. Effect of *Ziziphus Spina-Christi* and *Phlomis Russeliana* Leaf Extracts on MCF-7 Cells Viability. The cells were treated with different concentrations of *Z. christi* and *P. russeliana* extracts (0.001, 0.01, 0.1 and 1 mg/ml). Data are expressed as mean ± SD (n=3). Values are statistically significant at *P<0.01 and **P<0.05 compared to control group and #P<0.01 compared with groups exposed to *P. russeliana* extract.

Figure 3. MCF-7 Cells Treated with 1 mg/ml *Ziziphus Spina-Christi* and *Phlomis Russeliana* Leaf Extracts. Data represents relative gene expression (Target/GADPH) mean ± SD of five experiments (n=3). Values are statistically significant at *P<0.01 compared to control group and group exposed to *P. russeliana* extract, respectively.
Discussion

Our findings indicated that cell viability increases in non-cancerous human embryonic kidney cells exposed to low Ziziphus spina-christi leaf extract concentration; however, the exposure of HEK293 cells to high concentrations of Phlomis russeliana extracts gives rise to decreased cell viability show that low level of Z.christi leaf extract may have protective effects on non-cancerous cells. In line with this finding, studies show some plants species leaf extracts indicated low toxicity against non-cancerous cells compared with cancerous cells (Strzemski et al., 2017; Bishayee et al., 2011). However, plant extracts can inhibit the growth of non-cancerous cells (Medjakovik et al., 2016).

We have shown that higher concentrations of Z.christi and Prusseliana leaf extracts had anti-proliferative effects on MCF-7 cells; however, only a lower concentration of Z.christi leaf extract can inhibit MCF-7 cells proliferation, and a lower concentration of Prusseliana leaf extract can promote MCF-7 cells viability show greater anticancer potential of Z.christi leaf than Prusseliana leaf extract. Besides, all concentrations of leaf extract on MCF-7 cells had higher cytotoxic effects against MCF-7 cells when compared one to one with Prusseliana leaf extract.

Previous studies have also reported that members of Rhamnaceae and lamicaeae families were used in traditional medicine for the treatment of cancer (Plastina et al., 2012; Srancikova et al., 2013); based on new research, some extract components of plants belonging to Rhamnaceae and lamiceae families represent natural products that can prevent and treat breast cancer (Bishayee et al., 2011; Berdowska et al., 2013).

In an experimental study, Ziziphus spina-christi has antiproliferative effect on the MCF-7 cell line (Farmani et al., 2016). The total extract of several Phlomis species shows cytotoxicity activity against some human cancer cell lines especially including MCF-7 cell line (Sarkhail et al., 2017). However, reports show that some Rhamnaceae and laminate extracts have a less anti-cancer effect than other herbal extracts (Oliveira et al., 2017; Tepkeeva et al., 2008).

Our observation indicated that Z.christi and P. russeliana leaf extracts induce MCF-7 cell apoptosis via a Bax-independent pathway in which Bax expression level does not change or increases, and Bel-2 expression level also increases. Recent advances in cancer have also shown that apoptosis was induced in the MCF-7 cell line via Bax-independent pathways such as caspase-3 activation and down-regulating survivin expression (O’Donovan et al., 2003; Devarjan et al., 2002). However, apoptosis can be induced in breast cancer cell lines via a Bax-dependent pathway in which Bax expression level increases, and Bel-2 expression level decreases (De Angelis et al., 1998).

Several phytochemical reports have also indicated that flavonoids and fatty acids such as linoleic acid, oleic acid and, stearic acid existing in plants belonging to the Rhamnaceae and Lamicaceae family may have an inhibitory effect on the mammalian cell cycle (Amor et al., 2009; Taherghorabi et al., 2015); thus, this compound can have anti-cancer effects in the live creatures (Du at al., 2013; Zafari-Shayan et al., 2016). It indicated that flavonoids and fatty acids can induce apoptosis in many cancer cells. It showed that flavonoids and fatty acids induce caspase-3 activation (Das et al., 2010; Wu et al., 2017). Once caspase-3 is activated, downstream death substrates are cleaved irrespective of the involvement of cytochrome c. Caspase-3 may also amplify the upstream death cascade including cytochrome c release from mitochondria by cleaving Bcl-2, converting it from an anti-apoptotic to a pro-apoptotic protein (Ding et al., 2017). Due to our results, when Bax expression level increases, Bcl-2 expression level has also increased, and considering the results of various studies, Bcl-2 is cleaved by caspase action which is converted to pro-apoptotic protein (Ding et al., 2017; Bellows et al., 2000), Hence, we suggest that increasing Bcl-2 expression level may have associated to cleavage Bcl-2 and converting it to pro-apoptotic protein.

The main purpose of this study was to evaluate the apoptosis induction in breast cancer (MCF-7) cells treated with a cytotoxic concentration of hydro-alcoholic leaf extracts of Phlomis russeliana and Ziziphus spina-christi. The concept of apoptosis could be of great importance for cancer treatment, and studies on the effects of naturally derived compounds on cancer cells have a place in vitro and in vivo experiments. In brief, the leaf extracts of Phlomis russeliana and Ziziphus spina-christi showed a significant reduction in in vitro breast cancer cell proliferation by inducing Bax-independent apoptosis. However, more studies are needed to investigate the exact molecular mechanisms underlying the anticancer activity of Phlomis russeliana and Ziziphus spina-christi leaf extracts. Furthermore, natural extracts of Phlomis russeliana and Ziziphus spina-christi use may hold promise as an adjuvant treatment to prevent or treat breast cancer.

Our findings indicated that lower Z.christi and higher Prusseliana leaf extract concentration have anti-proliferative effects on MCF-7 cells in vitro, and there was greater anticancer potential for Z.christi than Prusseliana leaf extract. Lower Z.christi leaf extract concentration, other than inhibitory effects on cancer cell growth, has also proliferative effects on non-cancerous cells. We indicated that Z.christi and Prusseliana leaf extracts induce apoptosis in MCF-7 cells by the Bax-independent apoptosis pathway. Although the action mechanism is still not well defined, this study’s results should be useful in the future investigation of cancer studies and/or therapy.

Acknowledgement

This research was supported by the grant awarded by Islamic Azad University, Hamedan Branch, Iran. We appreciate all who assisted us to exert this research.

References

Abedini MR, Erfanian N, Nazem H, Jamali S, Hoshyar R.
Anti-proliferative and apoptotic effects of Ziziphus Jujube on cervical and breast cancer cells. Avicenna journal of phytotherapy. 2016 Mar;6(2):142.

Ali MA, Farah MA, Al-Hemaid FM, Abou-Tarboubeh FM. In vitro cytotoxicity screening of wild plant extracts from Saudi Arabia on human breast adenocarcinoma cells. Genetics and Molecular Research. 2014 Jan 1;13(2):3981-90.

Al-Mamary M, Al-Meeri A, Al-Habori M. Antioxidant activities and total phenolics of different types of honey. Nutrition research. 2002 Sep 20;22(9):1041-7.

Amor IL, Boubaker J, Sgaier MB, Skandrani I, Boubi W, Neffati A, Kilani S, Bouhileil I, Ghedira K, Chekir-Ghedira L. Phytochemistry and biological activities of Phlomis species. Journal of ethnopharmacology. 2009 Sep 7;125(2):183-202.

Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life sciences. 2005;78(5):431-45.

Bellow DS, Chau BN, Lee P, Laezsbnik Y, Burns WH, Hardwick JM. Antia apoptotic herpesvirus Bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. Journal of virology. 2000 Jun 1;74(11):5024-31.

Berdowska I, Zieliński B, Fecka I, Kulbacka J, Saczko J, Demirci F, Guven K, Demirci B, Dadandi MY, Baser KHC. Apoptosis: A Review of Programmed Cell Death. Du LJ, Gao QH, Ji XL, Ma YJ, Xu FY, Wang M. Comparison of flavonoids, phenolic acids, and antioxidant activity of hyperplastic and cancer cells, independent of steroid hormone receptors. Fitoterapia. 2016 Apr 30;110:150-6.

Demirci F, Guven K, Demirci B, Dadandi MY, Baser KHC. Antibacterial activity of two Phlomis essential oils against food pathogens. Food Control. 2008;19(12):1159-64.

Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM, Sapino A, Zhang F, Sharma D, Xiao-He Y, Tora AD. Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. 2002 Dec 22;21(57):8843.

Du LJ, Gao QH, Ji XL, Ma YJ, Xu FY, Wang M. Comparison of flavonoids, phenolic acids, and antioxidant activity of explosion-puffed and sun-dried jujubes (Ziziphus jujuba Mill.). J Agirc Food Chem. 2013 Dec 4;61(48):11840-7

Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007; 35(4): 495–516.

Farmani F, Moein M, Amanzadeh A, Kandelous HM, Ehsanpour M, Daiguiji N, et al. Triterpenoids isolated from Zizyphus jujuba inhibit foam cell formation in macrophages. J Agric Food Chem. 2011; 59(9):4544-52.

Fulda S. Evasion of Apoptosis as a Cellular Stress Response in Cancer. International Journal of Cell Biology. 2010;2010: 6

Ghaffari K, Hashemi M, Ebrahimi E, Shirkoohi R. BIRC5 Genomic Copy Number Variation in Early-Onset Breast Cancer. Iranian biomedical journal. 2016;20(4):241-5.

Han J, Talorete TP, Yamada P, Isoda H. Anti-proliferative and apoptotic effects of oleanepin and hydroxytrerosol on human breast cancer MCF-7 cells. Cytotecnology. 2009 Jan;59(1):45-53.

Hassan M, Watahi H, AbuAlmaata A, Ohba Y, and Sakuragi N. Apoptosis and Molecular Targeting Therapy in Cancer.Biomed Res Int. 2014; 2014:150845.

Hocman G. Prevention of cancer: vegetables and plants. Comp Biochem Physiol B 1989;93(2):201-12

Huang Z, Chen G, Shi P. Effects of emodin on the gene expression profiling of human breast carcinoma cells. Cancer Detect Prev. 2009;32(4):286-91.

Hulka BS, Stark AT. Breast cancer: cause and prevention. Lancet. 1995; 346(8979): 883-887.

Ihoul s, karaali W, abidi2 N. Antioxidant, Anti-Proliferative, and Induction of Apoptosis by Phlomis samia Methanolic Extract from Algeria. Der Pharma Chemica, 2017; 9(7):99-107.

Jafarian A, Zolfaghari B, Shirani K. Cytotoxicity of different extracts of Ziziphus spina-christi on Hela and MDA-MB-468 tumor cells. Adv Biomed Res. 2014; 3:38.

Jing XY, Peng YR, Wang XM, Duan JA. Effects of Ziziphus jujuba fruit extracts on cytochrome P450 (CYP1A2) activity in rats. Chinese journal of natural medicines. 2015;13(8):588-94.

Kobayashi N, Abedini M, Sakuragi N, Tsang BK. PRIMA-1 increases cisplatin sensitivity in chemoresistant ovarian cancer cells with p53 mutation: a requirement for Akt down-regulation. Journal of ovarian research. 2013 Jan 26;6(1):7.

Lombardi V. R. M, Carrera I, and Cabacelon R. In Vitro Screening for Cytotoxic Activity of Herbal Extracts. Evid Based Complement Alternat Med. 2017; 2017: 2675631.

Medjakovic S, Hobiger S, Ardjomand-Woelkart K, Bucar F, Jungbauer A. Pumpkin seed extract: Cell growth inhibition and cytotoxicity of different extracts of aerial parts of Ziziphus spina-christi on Hela and MDA-MB-468 tumor cells. Adv Biomed Res. 2014; 3:38.

Neffati A, Kilani S, Bouhlel I, Ghedira K, Chekir-Ghedira L. Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene. 2002 Dec 22;21(57):8843.

O’Donovan N, Crown J, Stunell H, Hill AD, McDermott E, O’Higgins N, Duffy MJ. Caspase 3 in breast cancer. Clinical Cancer Research. 2003 Feb 1;9(2):738-42.
Oliveira JR, de Jesus Viegas D, Martins APR, Carvalho CAT, Soares CP, Camargo SEA, et al. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity. Arch Oral Biol. 2017; 82:271-279.

Pawlowska AM, Camangi F, Bader A and Braca A. Flavonoids of Ziziphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food chemistry. 2009; 112(4): 858-862.

Plastina P, Bonofgio D, Vizza D, Fazio A, Rovito D, Giordano C, et al. Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells. J Ethnopharmacol 2012;140(2):325-32.

Saracoglu I, Inoue M, CALIS I, OGİHARA Y. Studies on constituents with cytotoxic and cytostatic activity of two Turkish medicinal plants Phlomis armeniaca and Scutellaria salviifolia. Biological and Pharmaceutical Bulletin. 1995 Oct 15;18(10):1396-400.

Sarkhail P, Sahranavard S, Nikan M, Gafari S, Eslami-Tehrani B. Evaluation of the cytotoxic activity of extracts from six species of Phlomis genus. Journal of Applied Pharmaceutical Science Vol. 2017 Feb;7(02):180-4.

Shokrzadeh M, Saeedi Saravi SS, Mirzayi M. Cytotoxic Effects of Ethyl Acetate Extract of Sambucus ebulus Compared With Etoposide on Normal and Cancer Cell Lines. Pharmacognosy magazine. 2009; 5(20): 316-319.

Srancikova A, Horvathova E, Kozics K. Biological effects of four frequently used medicinal plants of Lamiaceae. Neoplasma. 2013;60(6):585-97

Strzemski M, Wojnicki K, Sowa I, Wojas-Krawczyk K, Krawczyk P, Kocjan P, Such J, Latalski M, Wnorowski A, Wójciak-Kosior M. In Vitro Antiproliferative Activity of Extracts of Carлина acaulis subsp. caulescens and Carлина acanthifolia subsp. utzka. Frontiers in Pharmacology. 2017 Jun 13;8:371.

Tahergorabi Z, Abedini MR, Mitra M, Fard MH, Beydokhti H. “Ziziphus jujuba”: A red fruit with promising anticancer activities. Pharmacognosy reviews. 2015 Jul;9(18):99.

Tepkeeva II, Moiseeva EV, Chaadaeva AV, Zhavoronkova EV, Kessler YV, Semushina SG, et al. Evaluation of antitumor activity of peptide extracts from medicinal plants on the model of transplanted breast cancer in CBRB-R6b(8.17)1Hem mice. Bull Exp Biol Med 2008;145(4):464-6.

Vidhya R, Fleming AT. Assessment of the Cytotoxic Potential of Tecoma castanifolia (D. Don) Melch Flower Extract Against MCF-7 Cell Line. American Journal of Ethnomedicine. 2016;3(1):01-5.

Wu D, Qiao K, Feng M, Fu Y, Cai J, Deng Y, et al. Apoptosis of Acanthamoeba castellanii Trophozoites Induced by Oleic Acid. J Eukaryot Microbiol. 2017 Aug 8.

Yesilada E, Bedir E, Calis I, Takaishi Y, Ohmoto Y. Effects of triterpene saponins from Astragalus species on in vitro cytokine release. Journal of ethnomedical. 2005;96(1-2):71-7.

Zafari-Shayan S, Moradkhani S, Dastan D. Analysis of fatty acid composition of two selected Phlomis species. Journal of Herbmed Pharmacology. 2016;5..