Low incidence of intrauterine growth restriction in pregnant patients with systemic lupus erythematosus taking hydroxychloroquine

Valentina Canti, Margherita Scarrone, Rebecca De Lorenzo, Giuseppe A. Ramirez, Roberta Erra, Sara Bordoli, Sara Celli, Elena Schmit, Susanna Rosa, Maria T. Castiglioni and Patrizia Rovere-Querini

ABSTRACT
Systemic lupus erythematosus (SLE) preferentially affects women of childbearing age. Miscarriages or fetal death, intrauterine growth restriction (IUGR), preterm delivery, preeclampsia and disease flares complicate pregnancy in SLE patients. Treatment is challenging due to the need to prevent disease exacerbations and limit obstetrical complications, while showing an acceptable safety profile for both the mother and the fetus. We collected data from 74 pregnancies in 53 SLE patients prospectively followed in a dedicated ‘Pregnancy at risk’ outpatient clinic from 2003 to 2019. Out of 74, 45 pregnancies patients were treated with hydroxychloroquine (HCQ). Mothers under HCQ therapy (HCQ+ patients) and those who did not receive HCQ (HCQ− patients) were homogeneous in terms of age and comorbidities. Disease activity prior to conception was slightly higher in HCQ+ patients. No significant difference was observed in terms of obstetrical history. In patients achieving a viable pregnancy, the rate of IUGR (4/39, 10% in HCQ+ vs 8/25, 32%, in HCQ− patients, p < .05) was significantly lower in HCQ+ patients. Conversely, HCQ+ patients displayed a significantly longer time to delivery (37.8 ± 1.72 vs. 36.3 ± 4.11 in HCQ− patients, p < .05). HCQ is safe in pregnant patients with SLE and protects against obstetrical complications.

1. Introduction
Systemic lupus erythematosus (SLE) preferentially affects women of childbearing age. Pregnancy in patients with SLE may have detrimental effects for the mother and the fetus. Adverse pregnancy outcomes (APOs) occur in up to 19% of patients with SLE and encompass fetal death (4%), neonatal death (1%), preterm delivery (9%), small fetus for gestational age (10%) and preeclampsia (2%). The frequency of APOs is higher in patients with SLE and antiphospholipid antibodies (aPL Abs) [1].

Active lupus nephritis, decreased complement levels, thrombocytopenia, positive aPL Abs and anti-SSA/SSB antibodies are risk factors for APOs [2–6]. Pregnant SLE patients with lupus nephritis suffer higher rates of APOs [7,8]. A history of nephritis predispose to lupus flares during pregnancy [9], especially in case of active disease at conception [10]. SLE flares contribute to morbidity and mortality [11–14] and associate with higher rates of APOs [1]. Conversely, quiescent disease at conception does not associate with increased APOs despite a history of lupus nephritis [15].

The management of SLE during pregnancy is challenging. Pregnancy per se influences several laboratory and clinical parameters used to measure disease activity. Obstetric complications mimic lupus flares, making the distinction challenging [16]. Accordingly, modified scales to assess SLE activity have been developed [17]. Adapting the need for pharmacological disease control to pregnancy safety is of importance to minimize pregnancy risks [18] and warrants the implementation of a comprehensive follow up plan, from preconception counseling [19] to post-partum monitoring.

Drugs compatible with pregnancy in SLE include hydroxychloroquine (HCQ) [20]. HCQ anti-inflammatory effect stems from interference with intracellular Toll-like receptors [21], with phospholipase activity and with the inflammatory cytokines production, thus promoting the TH2 shift typical of a
normal pregnancy [22]. Moreover, the agent inhibits platelet aggregation and secretion of arachidonic acid by activated platelets [23,24], decreases the risk of thrombosis and increases overall survival in patients with SLE [25,26]. HCQ has a protective effect on placenta and trophoblast damage in anti-phospholipid syndrome (APS). It reverses aPL-mediated inhibition of trophoblast IL-6 secretion and limit inhibition of cell migration [27]. HCQ restores the trophoblastic differentiation [28], limits complement activation, prevents the binding of antibodies to phospholipids [24,29], decreases aPL titers [30] and inhibits endothelial cell activation and TNFz production [31].

Other effects include protection from endothelial dysfunction via activation of the ERK5 protein kinase [32], prevention from generation of reactive oxygen species [33], lipid lowering and anti-diabetic actions [34]. HCQ crosses the placenta [35] but no significant risk of congenital malformations, retinopathy or ototoxicity has been demonstrated [36–40]. Its discontinuation during pregnancy increases the risk of disease flares [37] and therapeutic HCQ blood range protects from flares [41]. Current EULAR recommendations are to start HCQ preconceptionally and to continue it throughout pregnancy [42]. Substantial effort is being devoted to verify whether HCQ might effectively protect the mother and the infant, without undue toxicity [43–46]. Little is known about the role of HCQ in pregnant patients with SLE without aPL Abs. The objective of this study is to compare the rate and characteristics of pregnancy complications in patients with SLE treated or not with HCQ.

2. Materials and methods

2.1. Study design and population

We performed a monocentric prospective observational study of pregnant women with SLE classified according to the revised American College of Rheumatology criteria [47]. All patients also satisfied the 2019 EULAR/American College of Rheumatology criteria [48]. We collected data from 74 pregnancies carried by 53 patients with SLE followed at the ‘Pregnancy at risk’ multidisciplinary outpatient clinic of San Raffaele Hospital, Milan, Italy from 2003 to 2019. Approval was obtained from the Comitato Etico Ospedale San Raffaele, Milan, Italy (protocol ‘Autoimmuno-mol’, PI Angelo Manfredi, no. 2/2013INT). This study was conducted in accordance with the Declaration of Helsinki. Forty-five out of 74 (61%) pregnancies were carried by SLE patients receiving HCQ therapy (HCQ+ group) and 29/74 (39%) by SLE patients who were not treated with HCQ during pregnancy (HCQ− group). The dosage of HCQ/day was standard and equivalent to 300 mg/day throughout pregnancy.

Data regarding demographics and disease history were collected at enrollment. Patients were then monitored with regular visits every month from pre-conception counseling to delivery and post-partum. At each visit the following information was recorded: disease activity (by using the SLE disease activity index, SLEDAI-2K [49]) and findings at physical examination, laboratory tests including complete blood count, C reactive protein (CRP), complement levels and serology (anti-dsDNA, anti-SSA/Ro, anti-SSB/La antibodies). All patients were also screened for the presence of aPL [50], namely anticardiolipin antibodies (aCL IgG and IgM), anti-beta2-glycoprotein I antibodies (aβ2GPI IgG and IgM) assessed by ELISA (QUANTA Lite) and lupus anticoagulant (LAC). Serial obstetric ultrasound to monitor fetal growth and uterine arteries doppler were also performed at each visit and associated findings recorded.

2.2. Statistical analysis

Statistical analysis was performed with SPSS 15.0. Groups were retrospectively defined based on the use of HCQ during pregnancy. We first compared the baseline characteristics of the two groups (HCQ+ and HCQ−) to account for possible confounding factors. We then tested for bivariate or multivariate associations among APOs, aPL Abs profile and HCQ status by using chi-square test or Fisher exact test and Anova, as appropriate. We considered differences to be statistically significant at p < .05.

3. Results

3.1. Baseline demographics, general medical and obstetric history

HCQ+ and HCQ− patients did not differ at baseline in terms of demographic data except for year of delivery that was more recent in HCQ+ than HCQ− patients. This could reflect the increased confidence that we acquired during the last 20 years in HCQ use for the treatment of SLE patients during pregnancy. Moreover, also general clinical history and obstetrical history did not differ except for previous thromboembolic events, which were more frequent in the HCQ− group (p < .05). APS was equally represented in the two groups (Table 1). HCQ+ and HCQ− patients were homogeneous in terms of early (first trimester miscarriages) and late pregnancy complications (preeclampsia, gestational
hypertension, IUGR, stillbirth and preterm delivery) (Table 1).

Disease activity and therapy before conception and during pregnancy

Disease duration calculated at the time of delivery was similar between HCQ\(^+\) and HCQ\(^-\) patients (Table 1). Concerning disease history prior to conception, the rate of organ involvement in the two groups was similar, while anti-dsDNA antibodies and hypocomplementemia were more frequent in HCQ\(^+\) patients compared with HCQ\(^-\) patients (67 vs. 34%, \(p = .004\) and 75 vs. 52%, respectively; \(p = .04\)) (Table 2).

At the preconception counselling, disease activity evaluated using the SLEDAI index, was higher in HCQ\(^+\) patients compared with HCQ\(^-\) patients (3.56 ± 2.56 vs. 2.15 ± 2.24, respectively; \(p = .02\)) (Table 3). During pregnancy, disease activity evaluated for each trimester was similar between the two groups. Complement levels were comparable between the groups, both at preconception counselling and during pregnancy (Table 3).

During the 6 months before conception, the two groups received similar pharmacological treatment. In the HCQ\(^+\) group 40% of patients used azathioprine and 56% of patients were treated with corticosteroids. Similarly, in the HCQ\(^-\) group, 21% of women assumed azathioprine and 48% used corticosteroids (Table 4). During pregnancy, only 4 out of 29 patients (4%) in the HCQ\(^-\) group used azathioprine, compared to 16 out of 45 patients (36%) in the HCQ\(^+\) group. Treatment with corticosteroids during pregnancy was similar in the two groups but the mean equivalent daily dose of prednisone was higher in HCQ\(^-\) then in HCQ\(^+\) (2.4 ± 1.7 vs. 0.9 ± 1.2 mg, \(p < .007\)). By contrast, treatment with low dose aspirin (LDA), low molecular weight heparin (LMWH) and their association were equally distributed between the two groups (Table 4).

Pregnancy outcome: APO and delivery

The rate of first and second trimester miscarriages was comparable between the two groups. A viable pregnancy was achieved in 39/45 (87%) patients in the HCQ\(^+\) group and in 25/29 (86%) patients in the HCQ\(^-\) group. Bilateral notches at Uterine Artery doppler were detected during mid-second trimester ultrasound in 1/39 (3%) patients in the HCQ\(^+\) group and in 4/25 (16%) of the HCQ\(^-\) group (\(p = .07\)). 1/39 (3%) patients in the HCQ\(^+\) group

Table 1. Baseline demographic characteristics, general clinical and obstetric history of the study population. IUGR: intrauterine growth restriction.

Past medical history	HCQ\(^+\) (n = 29)	HCQ\(^-\) (n = 45)	\(p\) Value
Antiphospholipid syndrome	6 (21)	6 (13)	n.s.
Connective tissue disease	23 (79)	39 (87)	n.s.
Arterial hypertension	4 (14)	6 (13)	n.s.
Thyroid disease	7 (24)	11 (24)	n.s.
Thrombophilia	6 (21)	7 (16)	n.s.
Congenital thrombophilia	3 (10)	1 (2)	n.s.
History of thromboembolism	7 (24)	2 (4)	.02
Nephropathy	6 (21)	7 (16)	n.s.

Table 2. History of organ involvement and biomarkers of disease activity.

Organ involvement	HCQ\(^-\) (n = 29)	HCQ\(^+\) (n = 45)	\(p\) Value
Nephritis	7 (24)	18 (40)	n.s.
Neurologic manifestations	4 (14)	8 (18)	n.s.
Hematologic manifestations	12 (41)	25 (56)	n.s.
Cutaneous manifestations	15 (52)	28 (64)	n.s.
Muskolo-skeletal manifestations	14 (48)	29 (64)	n.s.
Serositis	4 (14)	8 (18)	n.s.
Constitutional symptoms	10 (34)	32 (71)	n.s.
Serological biomarkers			
Anti-dsDNA antibodies	10 (34)	30 (67)	.004
Anti-Ro/SSA antibodies	7 (24)	16 (36)	n.s.
Hypocomplementemia	15 (52)	34 (75)	.04

The time to delivery was significantly longer in HCQ+ patients (37.8 ± 1.72 vs 36.3 ± 4.11 gestational weeks, \(p < .05 \)). Preterm delivery occurred more frequently in HCQ− patients compared with HCQ+ patients (28 vs 18%), even if this difference did not reach statistical significance.

Neonatal and placental weight at birth were comparable between the two groups (Table 5). The rate of gestational

Table 3. Disease activity at the preconception counseling, during pregnancy and in the post-partum. C3 range 0.9–1.6 mg/dL and C4 range 0.1–0.4 mg/dL.
Preconception disease activity
Preconception SLEDAI
Hypocomplementemia
C3 (mg/dL)
C4 (mg/dL)
Disease activity during pregnancy
Trimester I SLEDAI
Trimester II SLEDAI
Trimester III SLEDAI
Hypocomplementemia
C3 (mg/dL)
C4 (mg/dL)
Disease activity in the post-partum
Post-partum SLEDAI

Table 4. Pharmacological therapy before and during pregnancy. LDA: low dose aspirin; LMWH: low molecular weight heparin. SD: standard deviation.
Preconception treatment
Corticosteroids
Azathioprine
Treatment during pregnancy
LDA
LMWH
LDA + LMWH
Azathioprine
Corticosteroids
Mean ± SD Mean ± SD
Corticosteroids (mean equivalent daily dose)
HCQ daily dose

Table 5. Pregnancy outcomes.
Pregnancy outcomes
Early adverse pregnancy outcomes n = 29
Early miscarriage < 10 gw
Late miscarriage > 10 gw < 24 gw
Late adverse pregnancy outcomes n = 25
Intrauterine death
Preeclampsia
Hypertension
Placental abruption
Bilateral notch
IUGR
Fetal distress
Stillbirth
Preterm delivery
Delivery outcome Mean ± SD (min, max) Mean ± SD (min, max)
Week of delivery
Neonatal weight (g)
Placental weight (g)

Table 6. Multivariate analysis of predictors of IUGR in pregnant patients with SLE.
OR (95%CI)
aPL Abs
AZA
HCQ

Intrauterine death at 27 weeks of gestation.
hypertension, stillbirth and placental abruption as well as the delivery outcome did not differ between the two groups (Table 5).

Discussion

Considerable efforts have been made to evaluate HCQ effects on adverse obstetric complications [43–45]. Based on these reports supporting HCQ efficacy and relative safety, the agent has been used more frequently in the last years in pregnant patients with SLE. This applies also to our cohort, as can be evinced by the years of delivery reported in Table 1. Thus, patients in HCQ group might have benefited from other advances in the treatment of the disease as well that have emerged in most recent years. In our study, we have indeed observed a significantly lower rate of complications in patients treated with HCQ. The gestational week at delivery was significantly higher in the HCQ group, revealing a possible effect also on the incidence of prematurity. This is relevant, since these patients at the preconception counseling had a significantly higher disease activity. A statistically significant protection of HCQ against pregnancy complications (and in particular IUGR) could be demonstrated in SLE patients regardless of the presence of aPL Abs, suggesting that the agent is effective on events associated or not to aPL Abs.

The impact of HCQ may be higher on complications related to placental function, because of its vascular-prootive effects [32,33]. For example, IUGR was shown to be related to placental dysfunction, even in the absence of APS [51] and placental vasculopathy and hypoxic damage independent of aPL Abs have been described in SLE [52]. The antithrombotic action of HCQ [25] may increase placental perfusion and fetal growth. However, HCQ efficacy on very early stages of pregnancy—and possibly in the preconceptional phase—suggests that other mechanisms are involved, including the regulation of complement activity [53], the maintenance of the action of physiological anticoagulants, such as Annexin 5 [29] and modulation of the inflammatory response which is fundamental for successful pregnancy [22]. Further studies are needed to define the mechanisms involved in the protective action of HCQ in pregnant patients. Meanwhile, the observations reported in this study strongly suggest that the agent is a safe and effective complement to the treatment of pregnant patients with systemic autoimmune diseases, SLE in particular.

Conclusion

Taking into consideration the excellent safety profile of HCQ and its numerous beneficial effects on obstetrical outcomes, it should be given preconceptionally and continued throughout pregnancy in SLE patients, independently of disease activity with possible beneficial effects both for the mother and the newborn.

Acknowledgements

The authors thank all our patients of the ‘Pregnancy at risk’ outpatient clinic in San Raffaele Hospital, for data collection during their follow-up.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Patrizia Rovere-Querini http://orcid.org/0000-0003-2615-3649

Data availability statement

The data that support the findings of this study are available from the corresponding author, [VC], upon reasonable request.

References

[1] Buyon JP, Kim MY, Guerra MM, et al. Predictors of pregnancy outcomes in patients with lupus: a cohort study. Ann Intern Med. 2015;163(3):153–163.

[2] Wagner SJ, Craici I, Reed D, et al. Maternal and foetal outcomes in pregnant patients with active lupus nephritis. Lupus. 2009;18(4):342–347.

[3] Clowse MEB, Magder LS, Petri M. The clinical utility of measuring complement and anti-dsDNA antibodies during pregnancy in patients with systemic lupus erythematosus. J Rheumatol. 2011; 38(6):1012–1016.

[4] Simchen MJ, Dulitzki M, Rofe G, et al. High positive antibody titers and adverse pregnancy outcome in women with antiphospholipid syndrome. Acta Obstet Gynecol Scand. 2011;90(12):1428–1433.

[5] Askanase AD, Friedman DM, Copel J, et al. Spectrum and progression of conduction abnormalities in infants born to mothers with anti-SSA/ Ro-SSB/La antibodies. Lupus. 2002;11(3):145–151.

[6] Ruffatti A, Salvan E, Del Ross T, et al. Treatment strategies and pregnancy outcomes in antiphospholipid syndrome patients with thrombosis and triple antiphospholipid positivity. A European multicentre retrospective study. Thromb Haemost. 2014;112(10):727–735.

[7] Moroni G, Doria A, Giglio E, et al. Maternal outcome in pregnant women with lupus nephritis. A prospective multicenter study. J Autoimmun. 2016; 74:194–200.
[8] Smyth A, Radovic M, Garovic VD. Women, kidney disease, and pregnancy. Adv Chronic Kidney Dis. 2013;20(5):402–410.

[9] Schreiber K, Stach K, Sciascia S. Lupus nephritis and pregnancy outcome. Autoimmun Rev. 2017;16(4):433–434.

[10] Singh AG, Chowdhary VR. Pregnancy-related issues in women with systemic lupus erythematosus. Int J Rheum Dis. 2015;18(2):172–181.

[11] Østensen M, Cetin I. Autoimmune connective tissue diseases. Best Pract Res Clin Obstet Gynaecol. 2015;29(5):658–670.

[12] Eudy AM, Siega-Riz AM, Engel SM, et al. Effect of pregnancy on disease flares in patients with systemic lupus erythematosus. Ann Rheum Dis. 2018;77(6):855–860.

[13] Yang H, Liu H, Xu D, et al. Pregnancy-related systemic lupus erythematosus: clinical features, outcome and risk factors of disease flares—a case control study. PLoS ONE. 2014;9(8):e104375.

[14] Smyth A, Oliveira GHM, Lahr BD, et al. A systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin J Am Soc Nephrol. 2010;5(11):2060–2068.

[15] Fischer-Betz R, Specker C, Brinks R, et al. Low risk of renal flares and negative outcomes in women with lupus nephritis conceiving after switching from mycophenolate mofetil to azathioprine. Rheumatology (Oxford). 2013;52(6):1070–1076.

[16] Andreoli L, Gerardi MC, Fernandes M, et al. Disease activity assessment of rheumatic diseases during pregnancy: a comprehensive review of indices used in clinical studies. Autoimmun Rev. 2019;18(2):164–176.

[17] Buyon JP, Kalunian KC, Ramsey-Goldman R, et al. Assessing disease activity in SLE patients during pregnancy. Lupus. 1999;8(8):677–684.

[18] De Lorenzo R, Ramirez GA, Punzo D, et al. Neonatal outcomes of children born to mothers on biological agents during pregnancy: state of the art and perspectives. Pharmacol Res. 2020;152:104583.

[19] Østensen M. Preconception counseling. Rheum Dis Clin North Am. 2017;43(2):189–199.

[20] Göstestam Skorpen C, Hoeltenbein M, Tincani A, et al. The EU-APR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis. 2016;75(3):795–810.

[21] Kuznik A, Bencina M, Svajger U, et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazolquinolines. J Immunol. 2011;186(8):4794–4804.

[22] de Moreuil C, Alavi Z, Pasquier E. Hydroxychloroquine may be beneficial in preeclampsia and recurrent miscarriage. Br J Clin Pharmacol. 2020;86(1):39–49.

[23] Mekinian A, Costedoat-Chalumeau N, Masseau A, et al. Obstetrical APS: Is there a place for hydroxychloroquine to improve the pregnancy outcome? Autoimmun Rev. 2015;14(1):23–29.

[24] Pierangeli SS, Erkan D. Antiphospholipid syndrome treatment beyond anticoagulation: are we there yet? Lupus. 2010;19(4):475–485.

[25] Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, et al. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69(1):20–28.

[26] Shinjo SK, Bonfá E, Wojdyna D, et al. Antimalarial treatment may have a time-dependent effect on lupus survival: data from a multinational Latin American inception cohort. Arthritis Rheum. 2010;62(3):855–862.

[27] Albert CR, Schlesinger WJ, Viall CA, et al. Effect of hydroxychloroquine on antiphospholipid antibody-induced changes in first trimester trophoblast function. Am J Reprod Immunol. 2014;71(2):154–164.

[28] Marchetti T, Ruffatti A, Wuillemin C, et al. Hydroxychloroquine restores trophoblast fusion affected by antiphospholipid antibodies. J Thromb Haemost. 2014;12(6):910–920.

[29] Rand JH, Wu X-X, Quinl A, et al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010;115(11):2292–2299.

[30] Broder A, Putterman C. Hydroxychloroquine use is associated with lower odds of persistently positive antiphospholipid antibodies and/or lupus anticoagulant in systemic lupus erythematosus. J Rheumatol. 2013;40(1):30–33.

[31] Döring Y, Hurst J, Lorenz M, et al. Human antiphospholipid antibodies induce TNFα receptors in monocytes via Toll-like receptor 8. Immunobiology. 2010;215(3):230–241.

[32] Le N-T, Takei Y, Izawa-Ishizawa Y, et al. Identification of activators of ERK5 transcriptional activity by high-throughput screening and the role of endothelial ERK5 in vasoprotective effects induced by statins and antimalarial agents. J Immunol. 2014;193(7):3803–3815.

[33] Virdis A, Tani C, Duranti E, et al. Early treatment with hydroxychloroquine prevents the development of endothelial dysfunction in a murine model of systemic lupus erythematosus. Arthritis Res Ther. 2015;17:277.

[34] Mercer E, Rekedal L, Garg R, et al. Evidence of transplacental passage of hydroxychloroquine in monocytes via Toll-like receptor 8. Immunobiology. 2010;215(3):230–241.

[35] Clowse MEB, Magder L, Witter F, et al. Hydroxychloroquine use is associated with lower odds of persistently positive antiphospholipid antibodies and/or lupus anticoagulant in systemic lupus erythematosus. J Rheumatol. 2013;40(1):30–33.

[36] Broder A, Putterman C. Hydroxychloroquine use is associated with lower odds of persistently positive antiphospholipid antibodies and/or lupus anticoagulant in systemic lupus erythematosus. J Rheumatol. 2013;40(1):30–33.

[37] Le N-T, Takei Y, Izawa-Ishizawa Y, et al. Identification of activators of ERK5 transcriptional activity by high-throughput screening and the role of endothelial ERK5 in vasoprotective effects induced by statins and antimalarial agents. J Immunol. 2014;193(7):3803–3815.

[38] Virdis A, Tani C, Duranti E, et al. Early treatment with hydroxychloroquine prevents the development of endothelial dysfunction in a murine model of systemic lupus erythematosus. Arthritis Res Ther. 2015;17:277.

[39] Mercier E, Rekedal L, Garg R, et al. Hydroxychloroquine improves insulin sensitivity in obese non-diabetic individuals. Arthritis Res Ther. 2012;14(3):R135.

[40] Costedoat-Chalumeau N, Amoura Z, Aymard G, et al. Evidence of transplacental passage of hydroxychloroquine in humans. Arthritis Rheum. 2002;46(4):1123–1124.

[41] Diav-Citrin O, Blyakhman S, Shechtman S, et al. Pregnancy outcome following in utero exposure to hydroxychloroquine: a prospective comparative observational study. Reprod Toxicol. 2013;39:58–62.

[42] Cloose MEB, Magder L, Witter F, et al. Hydroxychloroquine in lupus pregnancy. Arthritis Rheum. 2006;54(11):3640–3647.

[43] Costedoat-Chalumeau N, Amoura Z, Duhaut P, et al. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases: a study of one hundred thirty-three cases compared with a control group. Arthritis Rheum. 2003;48(11):3207–3211.
Osadchy A, Ratnapalan T, Koren G. Ocular toxicity in children exposed in utero to antimalarial drugs: review of the literature. J Rheumatol. 2011;38(12):2504–2508.

Sperber K, Hom C, Chao CP, et al. Systematic review of hydroxychloroquine use in pregnant patients with autoimmune diseases. Pediatr Rheumatol Online J. 2009;7:9.

Costedoat-Chalumeau N, Galicier L, Aumaitre O, et al.; Group PLUS. Hydroxychloroquine in systemic lupus erythematosus: results of a French multicentre controlled trial (PLUS Study). Ann Rheum Dis. 2013;72(11):1786–1792.

Andreoli L, Bertsias GK, Agmon-Levin N, et al. EULAR recommendations for women’s health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Ann Rheum Dis. 2017;76(3):476–485.

Guillotin V, Bouhet A, Barnetche T, et al.; Fédération Hospitalo-Universitaire Acronim. Hydroxychloroquine for the prevention of fetal growth restriction and prematurity in lupus pregnancy: a systematic review and meta-analysis. Joint Bone Spine. 2018;85(6):663–668.

Leroux M, Desveaux C, Parcevaux M, et al. Impact of hydroxychloroquine on preterm delivery and intrauterine growth restriction in pregnant women with systemic lupus erythematosus: a descriptive cohort study. Lupus. 2015;24(13):1384–1391.

Seo MR, Chae J, Kim YM, et al. Hydroxychloroquine treatment during pregnancy in lupus patients is associated with lower risk of preeclampsia. Lupus. 2019;28(6):722–730.

Do SC, Rizk NM, Druzin ML, et al. Does hydroxychloroquine protect against preeclampsia and preterm delivery in systemic lupus erythematosus pregnancies? Am J Perinatol. 2020;37(09):873–880.

Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725.

Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019;71(9):1400–1412.

Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29(2):288–291.

Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006; 4(2):295–306.

López-Farfán JA, Martínez-Marín DG, Van Der Heyden-Pardo T. Uterine artery score in patients with systemic lupus erythematosus as a predictor of intrauterine growth restriction. Gynecol Obstet Mex. 2011;79(3):137–142.

Ostensen M, Clowse M. Pathogenesis of pregnancy complications in systemic lupus erythematosus. Curr Opin Rheumatol. 2013;25(5):591–596.

Bertolaccini ML, Contento G, Lennen R, et al. Complement inhibition by hydroxychloroquine prevents placental and fetal brain abnormalities in antiphospholipid syndrome. J Autoimmun. 2016;75:30–38.