Occurrence and genetic characterization of *Giardia duodenalis* and *Cryptosporidium* spp. from adult goats in Sichuan Province, China

Zhijun Zhong1*, Rui Tu1*, Hongping Ou2*, Guangwen Yan3, Jiaming Dan1, Qicheng Xiao1, Ya Wang1, Suizhong Cao1, Liuong Shen1, Junliang Deng1, Zhicai Zuo1, Xiaoping Ma1, Ziyao Zhou1, Haifeng Liu1, Shumin Yu1, Zhihua Ren1, Yanchun Hu1, Guangneng Peng1*

1 Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, P.R. China, 2 Chengdu Agricultural College, Sichuan, P.R. China, 3 College of Animal Science, Xichang University, Xichang, P.R. China

* These authors contributed equally to this work.

* *zhongzhijun488@126.com (ZZ); pgn.sicau@163.com (GP)

Abstract

*Giardia duodenalis* and *Cryptosporidium* spp. are common gastrointestinal protozoa in mammals. Many studies have been conducted on the distribution of *G. duodenalis* and *Cryptosporidium* spp. genotypes in sheep and cattle. However, in China, information about molecular characterization and genetic analysis of *G. duodenalis* and *Cryptosporidium* spp. in goats is limited. In this study, 342 fecal samples from adult goats were collected from 12 farms in Sichuan Province, China. The occurrence of *G. duodenalis* and *Cryptosporidium* spp. in adult goats was 14.9% (51/342) and 4.7% (16/342), respectively. All *G. duodenalis* were identified as assemblage E, with two novel genotypes (assemblages E17 and E18) being detected at the beta-giardin (*bg*) locus. Based on three loci—beta-giardin (*bg*), triose phosphate isomerase (*tpi*), and glutamate dehydrogenase (*gdh*)—multilocus sequence typing revealed three novel multilocus genotypes (MLGs) of assemblage E (MLG-E1, E2, E3 (sc)). Small Subunit (SSU) rRNA-based PCR identified two *Cryptosporidium* species, namely *C. xiaoi* (11/16) and *C. suis* (5/16). This study is not only the first to report *C. suis* infection in adult goats in China but is also the first to use the MLG approach to identify *G. duodenalis* in adult goats.

Introduction

*Giardia duodenalis* and *Cryptosporidium* spp. are two genera of intestinal parasitic protozoa that infect humans and a broad range of animals, including livestock, companion animals, and wildlife [1–3]. Infection is acquired following ingestion of highly resilient, infective stages (cysts or oocysts) via the fecal-oral route [4]. Damage to animals is dependent on multiple factors, such as the strain of the parasite involved and the immunological and nutritional status of
Giardia duodenalis and Cryptosporidium spp. are two of the most common identified parasitic protists in ruminants (i.e., cattle, goat, and sheep) and G. duodenalis is considered a multispecies complex with at least eight distinct assemblages (A–H). It has been reported that G. duodenalis assemblages A, B, and E are capable of infecting goats [7], and of these, assemblage E has been commonly detected in goats worldwide [8–11]. The zoonotic assemblages A and B have also been detected in goats, which suggests a potential threat to human beings [12–16]. In recent years, G. duodenalis has been identified in a wide variety of animals, including cattle (assemblages A, B, and E), sheep (assemblages A, B, and E), goats (assemblages A, B, and E), dogs (assemblages A, C and D), cats (assemblages A, F), pigs (assemblages A, B, D, E, and F), rabbits (assemblages B and E), rodents (assemblages A, B, and G), non-human primates (NHPs) (assemblages A, B, and E), and some other wild animals in China [17]. Of the abovementioned animals, information about production animals, including cattle and sheep, is more frequently reported, mostly in provinces with developed husbandry. In China, G. duodenalis infection in goats is limited with reports from only four provinces (Anhui, Henan, Shanxi, and Heilongjiang) [11,13,14]. Similarly, Cryptosporidium spp. has also been widely reported in various animals in China, especially for ruminants, such as cattle, sheep, and goats [18]. Several Cryptosporidium species (C. ubiquitum, C. xioai, C. parvum, C. hominis, C. andersoni, and rat genotype II) have been reported in goats worldwide with C. hominis and C. parvum frequently reported in humans, especially in developing countries including China, which suggests the potential occurrence of zoonotic transmission between goats and humans [18]. However, in China, only C. ubiquitum, C. xioai, C. parvum, and C. andersoni have been identified in goats, with C. ubiquitum and C. xioai being predominant [7,14,19,20]. The Cryptosporidium spp. genotypes that have the potential to infect goats are still not clear.

Recent studies have mostly focused on reservoirs of G. duodenalis and Cryptosporidium spp. in cattle, particularly calves, and only a limited number of reports have focused on goats as the reservoir for these two parasites [21]. According to the National Bureau of Statistics of the People’s Republic of China, in 2016, the total population (~15.67 million heads) of goats in Sichuan Province was the fourth largest in China, which has the largest goat population in the world [5]. However, no information about G. duodenalis or Cryptosporidium spp. infection in goats is available in Sichuan Province. To gain a better understanding about the genetic diversity and frequency of G. duodenalis and Cryptosporidium species in adult goats, we conducted the first known molecular study on G. duodenalis and Cryptosporidium spp. infection for Sichuan Province, China. Here, we report for the first time the occurrence and genetic characterization of G. duodenalis infection in adult goats in Sichuan Province, China.

**Methods**

**Ethics statement**

This study was reviewed and approved by the Institutional Animal Care and Use Committee of Sichuan Agricultural University under permit number DYY-S20174604. The field studies did not involve any endangered or protected animal species. Prior to the study, permission was granted by the owners of 12 farms. No other specific permits were required for the described field studies. In this study, all fecal samples were carefully collected cautiously from the rectum of each goat without causing discomfort.
Sample collection

Sichuan Province, located in southwestern China, has a subtropical monsoon climate, where the breeding industry is still in the initial development stage although it has a long history of traditional husbandry. From June to August 2017, a total of 342 fecal samples were collected from goats at 12 different farms in Sichuan Province, China, with a history of animals with diarrhea, including Qingchuan (105˚50’E, 32˚26’N), Beichuan (104˚18’E, 31˚53’N), Songya (104˚50’E, 31˚22’N), Dalin (106˚06’E, 30˚50’N), Linshui (106˚37’E, 30˚27’N), Shuikou (103˚27’E, 30˚24’N), Shuangliu (104˚03’E, 30˚34’N), Jianyang (104˚32’E, 30˚24’N), Mingshan (103˚02’E, 30˚0’N), Fushun (104˚46’E, 29˚20’N), Naxi (105˚26’E, 28˚52’N), and Jingjiu (102˚20’E, 27˚50’N) (Fig 1). The city-level map was provided by the National Geomatics Centre of China (National Geomatics Centre of China, Beijing, China, http://ngcc.sbsm.gov.cn/).

The 12 farms are distributed throughout Sichuan Province, except the western region where animal husbandry is relatively undeveloped. Of the 12 farms, six (Qingchuan, Dalin, Beichuan, Jianyang, Fushun, and Jingjiu) practiced intensive feeding, while the other six farms are free-range. All goats included in the study were more than 1 year old. Feces were collected directly from the rectum of each goat into a 50-mL centrifuge tube, which was immediately

![Sampling sites (filled triangles) in Sichuan Province, China.](https://doi.org/10.1371/journal.pone.0199325.g001)
capped, labeled, and placed in a box with ice. Fecal samples were transported to the Sichuan Agricultural University and stored in 2.5% potassium dichromate at 4 °C. All samples were processed within 24 h after collection.

DNA extraction and PCR amplification

Before DNA extraction, feces were washed with distilled water to remove potassium dichromate. DNA was extracted from the feces using a PowerSoil® DNA isolation kit (MoBio, Carlsbad CA, USA) according to the manufacturer’s instructions and stored at −20°C in 100 μL of the solution buffer provided in the kit [22].

For detection of *Giardia* spp., DNA samples were subjected to nested PCR amplifications based on the detection of beta-giardin (bg), triose phosphate isomerase (tpi), and glutamate dehydrogenase (gdh) as previously described [23]. Nested PCR of *Cryptosporidium* spp. was performed targeting the small subunit (SSU) rRNA gene [24]. The primers and amplification conditions used in this study (Table 1) have been previously described [23, 24]. The PCR reaction was composed of 12.5 μL 2x Taq PCR Master Mix (KT201-02, Tiangen, Beijing, China), 8.5 μL deionized water (Tiangen, Beijing, China), 2 μL DNA, and 1 μL each of set primers, for a total volume of 25 μL. Positive and negative controls were included in each test. Secondary PCR products were visualized by 1% agarose gel electrophoresis and staining with Golden View.

Sequencing and phylogenetic analysis

The secondary PCR products were sent to Invitrogen (Shanghai, China) and sequenced in both directions. To determine the species/assemblages of *Giardia* and *Cryptosporidium* species/genotypes, sequences were aligned with reference sequences from GenBank using BLAST (http://blast.ncbi.nlm.nih.gov) and Clustal X. For the phylogenetic analysis, sequences at the three loci obtained in this study were concatenated to form one multilocus sequence for each isolate. A neighbor-joining tree was constructed using Mega 5 (http://www.megasoftware.net/)

| Gene | Primer | Sequence (5'-3') | Annealing Temperature(˚C) | Fragment Length(bp) | Reference |
|------|--------|-----------------|--------------------------|---------------------|-----------|
| bg   | F1     | AAGCCCGAGCGACCTACCCCGCAGTGCC | 60 | 530 | [23] |
|      | R1     | GAGCCCGGCCCTGGACCTCGAGCCAGAC | | | |
|      | F2     | GAACGAAACATAGATCGGCGGTTCCG | 55 | | |
|      | R2     | CTCGACGAGCTTCGCTGTGTA | | | |
| tpi  | F1     | AATATATGCTCCGCTCGTGC | 50 | 530 | [23] |
|      | R1     | CAAAACTTTTTCCGAAACC | | | |
|      | F2     | CCTCCATGCGGIGGTAACCT | 50 | | |
|      | R2     | GTGCCCAACACICCCGGTGGC | | | |
| gdh  | F1     | TTCCGTRTCAGTACAACGT | 50 | 511 | [23] |
|      | R1     | ACCCTGTCTGGRGGGCGCA | | | |
|      | F2     | ATGACYGAGCTYCAGGCGACGT | 50 | | |
|      | R2     | GTGCCGARGGCGATGACGA | | | |
| 18S  | F1     | TTCTAGAGCTATAATACGTCG | 55 | 800 | [24] |
|      | R1     | CCCGATGCCTCGAAACGAGA | | | |
|      | F2     | GGAAGGTTGATTATGATGATAAG | 58 | | |
|      | R2     | AAGGAGTAAAGGAAACCTCCA | | | |

https://doi.org/10.1371/journal.pone.0199325.t001
based on the evolutionary 124 distances calculated using the Kimura 2-parameter model with 1000 replications for the bootstrap analysis.

**Nucleotide sequence accession numbers**

Representative nucleotide sequences were deposited into the GenBank database under the following accession numbers: MG602956–MG602963. GenBank accession numbers of reference sequences are listed as follows: E5 (KY769092) and E8 (KY633465) for the bg loci; E2 (KT92262) and E3 (KT92259) for the tpi loci; and E3 (KF843925) and E4 (KF843926) for the gdh loci.

**Results and discussion**

*Giardia duodenalis*

*Giardia duodenalis* infection in goats has been reported from many countries such as Ghana, Malaysia, India, Greece, Tanzania, Iran, Spain, the Netherlands, and China [8–10,12,13,15,16,25,26]. However, in China, information regarding *G. duodenalis* infection in goats is limited, with only three reports available [11,13,14]. Our study, for the first time, reports the occurrence and genetic characterization of *G. duodenalis* infection in adult goats in Sichuan Province, China.

In the present study, goats from 10 of the 12 farms showed presence of *G. duodenalis*, with the positive rate ranging from 5–37.5% (Table 2). The highest occurrence (37.5%, 15/40) was found in Linshui Farm which is free-ranging and relatively poorly managed. *Giardia duodenalis* was detected in 51 of 324 (14.9%) fecal samples from adult goats, which was higher than that observed in Shaanxi (10.8%) [14], Anhui (6.3%) [11], or Heilingjiang (2.9%) [13], but lower than that in Henan (17.3%) [14]. Moreover, only two studies related to goat kids are available to date, but the infection rates of *G. duodenalis* in kids in Greece (40.4%) [9] and the Canary Islands (42.2%) in Spain [15] are significantly higher than what has been reported in

| Farm      | No. tested | C. xiao *a* | C. suis | *G. duodenalis* No. (%) of positive | *G. duodenalis* No. (%) of positive |
|-----------|------------|-------------|---------|-----------------------------------|-----------------------------------|
| Mingshan *a* | 41         | 6           | 14.6 (95% CI: 3.3–25.9) | 9       | 22.0 (95% CI: 8.7–35.2) |
| Naxi *a*         | 26         | 5           | 19.2 (95% CI: 0.5–31.4) | 2       | 7.7 (95% CI: 3.3–18.6)  |
| Shuikou *a*       | 40         | 2           |         | 2       | 5.0 (95% CI: 2.1–12.1)  |
| Songya *a*        | 24         | 0           |         | 0       | 0                     |
| Linshui *a*       | 40         | 1           | 2.5 (95% CI: 2.5–7.5)  | 15      | 37.5 (95% CI: 12.1–57.9) |
| Shuangli *a*       | 25         | 4           | 16.0 (95% CI: 0.5–31.4) | 5       | 20.0 (95% CI: 3.1–36.8) |
| Jingjiu *b*       | 36         | 3           |         | 3       | 8.3 (95% CI: 1.1–17.8)  |
| Qingchuan *b*     | 21         | 6           | 28.6 (95% CI: 7.5–49.6) | | |
| Dalin *b*          | 26         | 0           |         | 0       | 0                     |
| Beichuan *b*      | 23         | 1           | 4.3 (95% CI: 4.7–13.4)  | | |
| Jianyang *b*      | 20         | 1           | 5.0 (95% CI: 5.5–15.5)  | | |
| Fushun *b*        | 20         | 7           | 35.0 (95% CI: 12.1–57.9) | | |
| Total             | 342        | 11          | 5        | 51      | 14.9 (95% CI: 11.1–18.7) |

*a* CI: confidence intervals  

*b* free-ranging  

https://doi.org/10.1371/journal.pone.0199325.t002
any study for adult goats. This suggests that *G. duodenalis*-infection may be associated with age, which had been previously proved in sheep and cattle [27,28]. However, whether this hypothesis is reliable still requires confirmation with a more extensive epidemiological investigation of goats of various ages.

The genetic diversity of *G. duodenalis* was analyzed by sequencing the *bg*, *tpi*, and *gdh* loci with 51, 37, and 33 sequences were obtained, respectively (Table 3). Sequence analysis of 51 *G. duodenalis* positive samples showed mono-infection with the ruminant-specific assemblage E at the three loci, which is similar to the results of previous investigations on adult goats [8,10,11,29]. According to previous studies, the zoonotic genotypes A and B have been detected in goats, which suggests a zoonotic threat to human beings [12]. In the present study, our findings indicated that adult goats may not be a potential reservoir for zoonotic genotypes of *G. duodenalis* in Sichuan Province. However, recently, scientists concluded that assemblage E should also be considered potentially zoonotic [7,30]. More epidemiological research is needed regarding the potentially zoonotic genotypes of assemblage E.

Bg locus sequences exhibited an unexpectedly high occurrence of assemblage E5 (94.1%), with only one isolate (JY13) identified as E8 (2.0%). Two novel subtypes, named E17 (2.0%) and E18 (2.0%), were also detected. Among the 43 *tpi* sequences, no genetic variation was observed, with assemblage E2 (97.7%) being predominant and only one isolate (BC07) from Beichuan identified as assemblage E3 (2.3%). At the *gdh* locus, only two known subtype

**Table 3. Multilocus characterization of *Giardia duodenalis* isolates in adult goats based on the bg, tpi and gdh genes.**

| Isolate  | Farm       | bg  | tpi | gdh | MLG type |
|----------|------------|-----|-----|-----|----------|
| BC07     | Beichuan   | -   | E3  | -   | -        |
| CD02,06,08,22 | Shuangli | E5  | E2  | E4  | MLG1(sc) |
| CD01     |            | E5  | E2  | -   | -        |
| GA03,17,19 | Linshui   | E5  | E2  | E4  | MLG1(sc) |
| GA06,18  |            | E5  | -   | E4  | -        |
| GA05     |            | E5  | -   | -   | -        |
| GY17,18,20,26,27,29,35,37 | Qingchuan | E5  | E2  | E4  | MLG1(sc) |
| GY05,08,23,28,40 |         | E5  | E2  | -   | -        |
| GY25,32  |            | E5  | -   | -   | -        |
| JY13     | Jianyang   | E5  | E2  | E4  | MLG1(sc) |
| LZ01,15  | Naxi       | E5  | E2  | E4  | MLG1(sc) |
| QL27     | Shuikou    | E5  | E2  | E4  | MLG1(sc) |
| QL08     |            | E5  | E2  | -   | -        |
| XCA09    | Jingjiu    | E17 | E2  | E4  | MLG3(sc) |
| XCA21    |            | E5  | E2  | -   | -        |
| XCA23    |            | E5  | -   | -   | -        |
| YAA15,26,29,37,38,39 | Mingshan | E5  | E2  | E4  | MLG1(sc) |
| YAA21    |            | E5  | -   | -   | -        |
| YAA18,36 |            | E5  | E2  | -   | -        |
| ZG01,03,06,12,17 | Fushun | E5  | E2  | E4  | MLG1(sc) |
| ZG16     |            | E18 | E2  | -   | -        |
| ZG14     |            | E5  | -   | -   | -        |

"-" represents PCR negative.

"#" represents the novel genotypes.

"sc" represents Sichuan Province.

https://doi.org/10.1371/journal.pone.0199325.t003
assemblages, E4 (97.0%) and E3 (3.0%), were found among the 33 sequences, of which the majority of the isolates were identified as assemblage E4, except one isolate from Jianyang (JY13) was identified as assemblage E3. Among the bg, tpi, and gdh loci, predominant subtypes of assemblages E at each locus (E5 (94.1%) at the bg locus, E2 (97.7%) at the tpi locus, and E4 (97.0%) at the gdh locus) were also commonly detected in sheep, cattle, yaks, and pigs, demonstrating a potential risk of cross-species transmission of *G. duodenalis* to different animals [27,29,31,32].

Furthermore, using multilocus sequence typing, we analyzed 31 positive isolates that were successfully amplified on all the three loci (bg, tpi, and gdh), forming three novel assemblage E MLGs (MLG-E1 (sc), MLG-E2 (sc), and MLG-E3 (sc)) (Table 2). Assemblage E MLGs were only identified from nine farms. MLG-1 (sc) was observed in seven farms while MLG-2 (sc) (3.2%, 1/31) and MLG-E3 (sc) (3.2%, 1/31) were found only at the Jiangyang and Jingjiu farms, respectively, suggesting MLG-1 (sc) (93.5%, 29/31) was the predominant MLG (sc), while MLG-2 (sc) and MLG-E3 (sc) may be farm-unique. Compared with other MLGs detected in previous studies, lower genetic heterogeneity was observed (only 3 MLGs detected) in *G. duodenalis*, which was mainly reflected by the limited subtype diversity of assemblage E with only 4, 2, and 2 subtypes yielded at the bg, gdh, and tpi loci, respectively [29,33]. Phylogenetic analysis indicated that the three novel assemblage E MLGs were genetically distinct from those isolated from sheep in Qinghai and Henan Provinces, China [29,31]. Moreover, MLG-E1 (sc) and MLG-E3 (sc) were placed in the major cluster of MLGs from Tibetan sheep in Qinghai, whereas MLG-E2 (sc) was clustered with MLGs from sheep in Henan (Fig 2). This result revealed the presence of host-specific clusters of MLGs from adult goats in Sichuan Province.

In short, our study, for the first time, reports the occurrence and genetic characterization of *G. duodenalis* infection in adult goats in Sichuan Province, China. This first-time observation requires a more extensive epidemiological investigation in goats of various ages.

**Cryptosporidium spp.**

In the present study, goats from 4 of the 12 farms contained *Cryptosporidium* spp., with the positive rate ranging from 2.5% to 19.2% (Table 1). None of the *Cryptosporidium*-positive farms practiced intensive farming, which suggests the occurrence of *Cryptosporidium* spp. in goats may be closely related to management of the farms. The overall occurrence of *Cryptosporidium* spp. in this study was 4.7% (16/342, Table 1), which was higher than that observed in Henan (2.8%, 28/1017) [20] and close to that in Chongqing (6.5%, 16/248) [20] and Guangdong (5.5%, 5/91) [19]. However, it was much lower than the positive rate in Shaanxi (11.3%, 55/485), Henan (34.0%, 49/144), Shandong (18.0%, 18/100), Hubei (11.7%, 13/111) and Shanghai (10.9%, 33/302) [14,19].

Among the 16 positive samples, two *Cryptosporidium* species (C. xiaoi and C. suis) were identified. C. xiaoi was the most predominant genotype detected in three farms, while C. suis was only found in Naxi. To date, this is the first molecular identification of *C. suis* infection in adult goats. C. xiaoi was the predominant species found in this study (68.8%, 11/16), which is consistent with that reported in previous surveys in China [14,19]. However, it is different from studies in Henan and Chongqing [20], which revealed that *C. andersoni* and *C. ubiquitum* are predominant species, respectively. Other studies found that *C. parvum* was the dominant species in goats [34–36]. In this study, *C. parvum*, *C. andersoni*, and *C. ubiquitum*, which were considered zoonotic subtypes, were not detected. The difference in genotype between our survey and previous studies may be related to host age, raising density, geographical ecological conditions, and examination methods [7, 14, 19,20].
Conclusions

This is the first known report on the occurrence and genetic characterizations of *G. duodenalis* and *Cryptosporidium* spp. in adult goats in Sichuan Province, China. We found that assemblage E of *G. duodenalis* was dominant in adult goats in this region. For the first time, we used an MLG approach to identify *G. duodenalis* in adult goats, and we detect three novel assemblage E MLGs. For *Cryptosporidium* spp., two *Cryptosporidium* species (*C. xiaoii* and *C. suis*) were observed, which is, notably, the first time *C. suis* infection has been identified in adult goats. For a better understanding of the epidemiology and genotypes of *G. duodenalis* and *Cryptosporidium* spp. in goats, further investigation with a larger sample of goats of different ages is needed.
Acknowledgments
The authors thank Guangwen Yan and Hongping Ou for giving advice on sample collection.

Author Contributions
Conceptualization: Zhijun Zhong, Hongping Ou, Guangneng Peng.
Data curation: Zhijun Zhong, Junliang Deng, Zhicai Zuo, Yanchun Hu.
Formal analysis: Zhijun Zhong, Rui Tu, Liuhong Shen, Shumin Yu.
Funding acquisition: Zhijun Zhong, Guangneng Peng.
Investigation: Zhijun Zhong, Rui Tu, Suizhong Cao, Xiaoping Ma, Haifeng Liu.
Methodology: Zhijun Zhong, Guangwen Yan, Ziyao Zhou, Zhihua Ren.
Project administration: Zhijun Zhong, Guangneng Peng.
Resources: Zhijun Zhong.
Software: Jiaming Dan, Qicheng Xiao, Ya Wang.
Supervision: Zhijun Zhong.
Validation: Zhijun Zhong.
Writing – original draft: Zhijun Zhong, Rui Tu, Hongping Ou.
Writing – review & editing: Zhijun Zhong, Guangneng Peng.

References
1. Fayer R. Cryptosporidium: a water-borne zoonotic parasite. Vet Parasitol. 2004; 126: 37–56. https://doi.org/10.1016/j.vetpar.2004.09.004 PMID: 15567578.
2. Ryan U, Caccio SM. Zoonotic potential of Giardia. Int J Parasitol. 2013; 43: 943–956. https://doi.org/10.1016/j.ijpara.2013.06.001 PMID: 23856995.
3. Li W, Li Y, Song M, Lu Y, Yang J, Wei T, et al. Prevalence and genetic characteristics of Cryptosporidium, Enterocytozoon bieneusi and Giardia duodenalis in cats and dogs in Heilongjiang province, China. Vet Parasitol. 2015; 208: 125–134. https://doi.org/10.1016/j.vetpar.2015.01.014 PMID: 25665462.
4. Xiao L. Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol. 2010; 124: 80–89. https://doi.org/10.1016/j.exppara.2009.03.018 PMID: 19358845.
5. Robertson LJ, Gjerde BK, Furuseth HE. The zoonotic potential of Giardia and Cryptosporidium in Norwegian sheep: a longitudinal investigation of 6 flocks of lambs. Vet Parasitol. 2010; 171: 140–145. https://doi.org/10.1016/j.vetpar.2010.03.014 PMID: 20381251.
6. Robertson ID, Irwin PJ, Lymbery AJ, Thompson RCA. The role of companion animals in the emergence of parasitic zoonoses. Inter J Parasitol. 2000; 30: 1369–1377. PMID: 11113262.
7. Al-Habsi K, Yang R, Williams A, Miller D, Ryan U, Jacobson C. Zoonotic Cryptosporidium and Giardia shedding by captured rangeland goats. Veterinary Parasitology: Regional Studies and Reports. 2017; 7: 32–35. https://doi.org/10.1016/j.vprsr.2016.11.006
8. Squire SA, Yang R, Robertson I, Ayi I, Ryan U. Molecular characterization of Cryptosporidium and Giardia in farmers and their ruminant livestock from the Coastal Savannah zone of Ghana. Infect Genet Evol. 2017; 55: 236–243. https://doi.org/10.1016/j.meegid.2017.09.025 PMID: 28941990.
9. Tzanidakis N, Sotiraki S, Ciaerbeou E, Ehsan A, Voutzourakis N, Kostopoulos D, et al. Occurrence and molecular characterization of Giardia duodenalis and Cryptosporidium spp. in sheep and goats reared under dairy husbandry systems in Greece. Parasite. 2014; 21:45. https://doi.org/10.1051/parasite/2014048 PMID: 25187088.
10. Jafari H, Jalali MHR, Shapouri MSA, Hajikolai MRH. Determination of Giardia duodenalis genotypes in sheep and goat from Iran. Journal of Parasitic Diseases. 2014; 38: 81–84. https://doi.org/10.1007/s12639-012-0199-8 PMID: 24505184.
11. Gu YF, Wang LK, Li Y, Li L, Chu XH, Xin DW, et al. Prevalence and molecular characterization of *Giardia lamblia* isolates from goats in Anhui Province. Chin J Parasitol Parasit Dis. 2014; 32: 401–403. PMID: 25726610.

12. Lim YAL, Mahdy MAK, Tan TK, Xiang TG, Jex AR, Nolan MJ, et al. First molecular characterization of *Giardia duodenalis* from goats in Malaysia. Mol Cell Probe. 2013; 27: 28–31. https://doi.org/10.1016/j.mcp.2012.08.006 PMID: 22971518.

13. Zhang W, Zhang X, Wang R, Liu A, Shen Y, Ling H, et al. Genetic Characterizations of *Giardia duode- nalis* in Sheep and Goats in Heilongjiang Province, China and Possibility of Zoonotic Transmission. Plos Negl Trop Dis. 2012; 6: e1826. https://doi.org/10.1371/journal.pntd.0001826 PMID: 23029587.

14. Peng XQ, Tian GR, Ren GJ, Yu ZQ, Lok JB, Zhang LX, et al. Infection rate of *Giardia duodenalis* in fine sheep and coarse sheep. Chinese Journal of Veterinary Parasitology. 2014; 35: 17–20. PMID: 25726610.

15. Ruiz A, Foronda P, González JF, Guedes A, Abreu-Acosta N, Molina JM, et al. Occurrence and geno-type characterization of *Giardia duodenalis* in goat kids from the Canary Islands, Spain. Vet Parasitol. 2008; 154: 137–141. https://doi.org/10.1016/j.vetpar.2008.03.003 PMID: 18436382.

16. Utaaker KS, Myhr N, Bajwa RS, Joshi H, Kumar A, Robertson LJ. Goats in the city: prevalence of *Giardia duodenalis* and *Cryptosporidium* spp. in extensively reared goats in northern India. Acta Vet Scand. 2017; 59: 86. https://doi.org/10.1186/s13028-017-0354-4 PMID: 29273058.

17. Li J, Wang H, Wang R, and Zhang L. *Giardia duodenalis* Infections in Humans and Other Animals in China. Front Micro, 2017; 8: 2004. https://doi.org/10.3389/fmicb.2017.02004 PMID: 29081771.

18. Li J, Qi M, Chang Y, Wang R, Li T, Dong H, et al. Molecular Characterization of *Giardia duodenalis* in dairy calves in Xinjiang, Northwestern China. Parasit Vectors. 2016; 9: 546. https://doi.org/10.1186/s13071-016-1828-3 PMID: 27737706.

19. Ye J, Xiao L, Wang Y, Guo Y, Roellig DM, Feng Y. Dominance of *Giardia duodenalis* assemblage A and *Enterocytozoon bieneusi* genotype BEB6 in sheep in Inner Mongolia, China. Vet Parasitol. 2015; 210: 235–239. https://doi.org/10.1016/j.vetpar.2015.04.011 PMID: 25944405.

20. Jin Y, Fei J, Cai J, Wang X, Li N, Guo Y, et al. Multilocus genotyping of *Giardia duodenalis* in Tibetan sheep and yaks in Qinghai, China. Vet Parasitol. 2017; 247: 70–76. https://doi.org/10.1016/j.vetpar.2017.09.021 PMID: 29080768.

21. Abdel-Moein KA, Saeed H. The zoonotic potential of *Giardia intestinalis* assemblage E in rural settings. Parasitol Res. 2016; 115: 3197–3202. https://doi.org/10.1007/s00436-016-5081-7 PMID: 27112756.
31. Wang H, Qi M, Zhang K, Li J, Huang J, Ning C, et al. Prevalence and genotyping of *Giardia duodenalis* isolated from sheep in Henan Province, Central China. Infect Genet Evol. 2016; 39: 330–335. https://doi.org/10.1016/j.meegid.2016.02.006 PMID: 26861620.

32. Wang SS, Yuan YJ, Yin YL, Hu RS, Song JK, Zhao GH. Prevalence and multilocus genotyping of *Giardia duodenalis* in pigs of Shaanxi Province, northwestern China. Parasit Vectors. 2017; 10: 490. https://doi.org/10.1186/s13071-017-2418-8 PMID: 29041984.

33. Wang X, Cai M, Jiang W, Wang Y, Jin Y, Li N, et al. High genetic diversity of *Giardia duodenalis* assemblage E in pre-weaned dairy calves in Shanghai, China, revealed by multilocus genotyping. Parasitol Res. 2017; 116(8): 2101–2110. https://doi.org/10.1007/s00436-017-5509-8 PMID: 28550644.

34. Geurden T, Thomas P, Casaert S, Vercruysse J, Claerebout E. Prevalence and molecular characterisation of *Cryptosporidium* and *Giardia* in lambs and goat kids in Belgium. Vet Parasitol. 2008; 155: 142–145. https://doi.org/10.1016/j.vetpar.2008.05.002 PMID: 18565678.

35. Maurya PS, Rakesh RL, Pradeep B, Kumar S, Kundu K, Garg R, et al. Prevalence and risk factors associated with *Cryptosporidium* spp. infection in young domestic livestock in India. Trop Anim Health Prod. 2013; 45: 941. https://doi.org/10.1007/s11250-012-0311-1 PMID: 23132135.

36. Quilez J, Torres E, Chalmers RM, Hadfield SJ, Cacho ED, Sánchezacedo C. *Cryptosporidium* Genotypes and Subtypes in Lambs and Goat Kids in Spain. Appl Environ Microbiol. 2008; 74: 6026–6031. https://doi.org/10.1128/AEM.00606-08 PMID: 18621872