TRUNCATED CODES AND TERNARY CUBE COMPOUNDS

ITALO DEJTER
University of Puerto Rico
Rio Piedras, PR 00936-8377
e-mail: italo.dejter@gmail.com

LUIS FUENTES
Universidad Nacional Abierta y a Distancia
Cartagena, Colombia
e-mail: luis.fuentes@unad.edu.co

AND

CARLOS ARAUJO
Universidad del Atlantico
Barranquilla, Colombia
e-mail: carlosaraujo@mail.uniatlantico.edu.co

Abstract

Perfect codes in the \(n \)-dimensional grid \(\Lambda_n \) of \(\mathbb{Z}^n \) (\(0 < n \in \mathbb{Z} \)) and its quotient toroidal grids were obtained via the truncated distance \(\rho(u, v) \) in \(\mathbb{Z}^n \) given between \(u = (u_1, \ldots, u_n) \) and \(v = (v_1, \ldots, v_n) \) in \(\mathbb{Z}^n \) as the graph distance \(h(u, v) \) in \(\Lambda_n \) if \(|u_i - v_i| \leq 1 \), for all \(i \in \{1, \ldots, n\} \), and as \(n + 1 \), otherwise. Such perfect codes are extended to non-lattice superlattice graphs \(\Gamma_n \) obtained by gluing ternary \(n \)-cubes along each of their codimension 1 ternary subcubes. We ascertain the existence of an infinite number of isolated perfect truncated-metric codes of radius 2 in \(\Gamma_n \) for \(n = 2 \) and conjecture such existence for \(n > 2 \) with radius \(n \). We ask whether there are suitable notions replacing quotient toroidal grids of \(\Lambda_n \) for the case of \(\Gamma_n \).

Keywords: Truncated metric, perfect code, square lattice, ternary cube.

2010 Mathematics Subject Classification: 94B25; 52C22; 11H31; 05C69.
I. Dejter, L. Fuentes and C. Araujo

1. Perfect truncated-metric codes

We are motivated by computer architecture problems (cf [1]) associated to signal transmission in a finite field (cf. [10, 11, 14]) including algorithm-flowchart modeling with applications in alternate reality games. Related topics of coding theory and lattice domination are based on the Lee metric arising from the Minkowsky ℓ_p norm [4] with $p = 1$. These themes, related to the still unsolved Golomb-Welch Conjecture [13, 15, 16], were investigated via perfect Lee codes [10], diameter perfect Lee codes [14], tilings with generalized Lee spheres [2, 11], perfect dominating sets (PDS’s) [20], perfect-distance dominating sets (PDDS’s) [1] and efficient dominating sets [8].

Let $0 < n \in \mathbb{Z}$. The aforementioned codes or dominating sets are realized in the lattice tiling of \mathbb{Z}^n, whose tiles are translates of a common generalized Lee sphere. This lattice tiling happens in the n-dimensional grid Λ_n, namely the lattice graph whose vertex set is \mathbb{Z}^n with exactly one edge between each two vertices at euclidean distance 1. A natural follow-up here was to consider lattice tilings of \mathbb{Z}^n with two different generalized Lee spheres. Focus on such follow-up for $n > 3$ was only possible by modifying the notion of Lee distance d to that of a truncated distance ρ, defined below (not a standard distance, but see Remark 6), having perfect code applications as in Subsection 1.3 that restates rainbow-coloring results of [12]. Furthermore, ternary non-lattice superlattice graphs Γ_n, built as compounds of ternary n-cubes glued along codimension 1 ternary subcubes, presented below in Remark 1 and Section 2 that generalize the corresponding lattice graphs Λ_n (even though those are not lattice graphs themselves), extend the mentioned perfect code applications in Section 3.

Recall that the Hamming distance $h(u, v)$ between vectors $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ in $\mathbb{Z}^n \subset \mathbb{R}^n$ is the number of positions $i \in [n] = \{1, \ldots, n\}$ for which $u_i \neq v_i$. Now, let $\rho: \mathbb{Z}^n \times \mathbb{Z}^n \rightarrow \mathbb{Z}$ be given by:

$$\rho(u, v) = \begin{cases} h(u, v), & \text{if } |u_i - v_i| \leq 1 \text{ for all } i \in [n]; n + 1, & \text{otherwise}. \end{cases}$$

Given $S \subseteq \mathbb{Z}^n$, we denote by $[S]$ the induced subgraph of S in Λ_n. In the above definition of ρ, the Hamming distance h may be replaced alternatively by the graph distance in Λ_n and is also our choice definition to be used on the graphs Γ_n of Sections 2-3. Such graphs may be taken as alternate reality graphs, since they offer from each vertex of a ternary n-cube glued in the compound Γ_n two ternary options as arrows for each coordinate direction. We start by developing Γ_2 in Section 2. From each vertex of Γ_n algorithm flowcharts can be adapted following ternary directions in participating ternary n-cubes, with vertices representing decision conditional diamonds that lead to “Yes” or “True” and “No” or “False” arrows, i.e. oriented edges representing two sides of a participating triangle in a ternary $(n - 1)$-cube, each such arrow representing one or more process rectangles. An elementary example of this is given in Section 4.
To each component H of $[S]$, we assign an integer $t_H > 0$ to be understood in the context below as the radius of a truncated sphere with center H. For every component H' of $[S]$ in the translation class $⟨H⟩$ of H in \mathbb{Z}^n, we assume $t_{H'} = t_H$. This yields a correspondence κ from the set of translation classes $⟨H⟩$ of components H of $[S]$ into \mathbb{Z} such that $\kappa(⟨H⟩) = t_H$, for every $H \in ⟨H⟩$.

Let $\rho(u, S) = \min\{\rho(u, s) | s \in S\}$. Let $(H)_{\kappa(⟨H⟩)} = \{u \in \mathbb{Z}^n | \rho(u, H) \leq \kappa(⟨H⟩)\}$. A κ-perfect truncated-metric code, or κ-PTMC, is a set $S \subseteq \mathbb{Z}^n$ such that for all $u \in \mathbb{Z}^n$ there exists a unique $s \in S$ with $\rho(u, s) = \rho(u, S)$ and such that the collection

$$\{(H)_{\kappa(⟨H⟩)} | H \text{ is a connected component of } S\}$$

forms a partition of \mathbb{Z}^n. For each component H of S, $(H)_{\kappa(⟨H⟩)}$ is referred to as the truncated sphere centered at H (or around H) with radius $\kappa(⟨H⟩)$. Here, H is said to be the truncated center of $(H)_{\kappa(⟨H⟩)}$ and its vertices are said to be its central vertices. Given $0 < t \in \mathbb{Z}$, a κ-PTMC is said to be a t-PTMC if all $\kappa(⟨H⟩)$’s are equal to t. If $|H| = 1$, then $|(H)^t| = \sum_{i=0}^{t} 2^i \binom{n}{i}$, for $0 \leq t \leq n$, (which is less than the cardinal of the corresponding ℓ_1 sphere of radius t, if $t > 1$ [4]). We note that 1-PTMC’s coincide with PDS’s [20].

Remark 1. A binary (resp. ternary) n-cube graph Q_n^i, succinctly called n-cube (resp. n-tercubic), is a cartesian product $K_i \square \cdots \square K_i$ of n complete graphs K_i with $V(K_i) = \{0, \ldots, i-1\} = F_i$, the field of order $i = 2$ (resp. 3). In Sections 2-3, we extend the study of PTMC’s to edge-disjoint unions $\Gamma_n \supset \Lambda_n$ of triangles; these are connected unions of ternary n-cubes to be called ternary n-cube compounds, (denomination that make us think of Λ_n as binary n-cube compounds) and that cannot have non-isolated PDS’s or non-isolated 1-PTMC’s. (However, the ternary perfect single-error-correcting codes of length $\frac{3^n-1}{2}$ [18, 2] are isolated PDS’s, or efficient dominating sets [8] in the ternary $\frac{3^n-1}{2}$-cubes; these also are edge-disjoint unions of triangles, for $t > 0$). We will say for $G = \Gamma_n$ in Sections 2-3 that: an edge-disjoint union G of triangles has a non-isolated PDS S if every vertex of G not in S is adjacent to just either one vertex of G (as in PDS’s) or the two end-vertices of an edge of S. Therefore, a non-isolated PDS is not necessarily a PDS. Section 3 shows that Γ_2 has an infinite number of isolated 2-PTMC and conjectures that Γ_n has isolated n-PTMC’s, $\forall n > 2$.

Remark 2. We will restate some results of [12] in Theorem 11, (resp. Theorems 12-13) below, in terms of PTMC’s: these results, given from a coloring-graph viewpoint in [12], say that PTMC’s in Λ_n that are lattice as in [14], or lattice-like as in [1], exist having every induced component H with vertex set (a) whose convex hull is an n-parallelotope (resp. either a 0-cube or an $(n-1)$-cube) and (b) contained in and dominating a truncated sphere centered at H with
radius \(n \) (resp. radius either \(n - 2 \) or 1) that is a tile of the associated lattice tiling of \(\mathbb{Z}^n \). In the center-left of Figure 1, such 0-cubes and \((n - 1)\)-cubes are suggested in black and dark-gray colors for \(n = 3 \) (Theorem 12), representing \(\mathbb{Z}^n \) with dark-gray thin-edges and vertices, but dominating edges in thick black trace and other edges of a specific tile in thick dark-gray trace. This is schematized on the upper-right of the figure that represents the assignment of the last coordinate value mod 3 on the projection of this PTMC onto \(\mathbb{Z}^{n-1} \). The case \(n = 4 \) of Theorem 13 (the first PTMC which is neither PDS nor PDDS), can be visualized similarly. For example, the dominating edges, red colored in the copy of \(Q_2^4 \subset \mathbb{Z}^4 \) in the lower-right of Figure 1 indicate a truncated sphere of radius 2 (resp. 1) at \((0,0,0,0)\) (resp. \((1,1,1,1)\)). Also in the center-left of Figure 1, light-gray 3-parallelotopes represent convex hull parts of truncated 3-spheres whose central vertices form a lattice PTMC, the simplest case of Theorem 11.

Remark 3. (I) A \(t \)-PTMC (resp. a truncated \(t \)-sphere) of \(\Lambda_n \) is defined like a PDDS \([1]\) (resp. generalized Lee sphere \([11]\)) with \(\rho \) instead of the Lee distance \(d \). (II) 1-PTMC’s of \(\Lambda_n \) (resp. truncated 1-spheres) coincide with PDS’s \([20]\) (resp. generalized Lee 1-spheres). (III) An example \([1]\) cited in Remark 10, below, justifies that our definition of PTMC above employs translation classes instead of isomorphism classes, for in it the truncated spheres have common radius (namely 1) for both translation classes, but that does not exclude the eventuality of an example with differing radii.

Remark 4. Motivation for Theorems 12-13 on building “lattice” \(\kappa \)-PTMC’s whose induced components are \(r \)-cubes (0 \(\leq r \leq n \)) of different dimensions \(r \).
comes from: (A) the perfect covering codes with spheres of two different radii in Chapter 19 [5] and (B) a negative answer [19] to a conjecture [20] claiming that the induced components of every 1-PTMC S in an n-cube Q_n^2 are all r-cubes Q_r^2 (not necessarily in the same translation class [9]), where r is fixed. In fact, it was found in [19] that a 1-PTMC in Q_{13}^2 whose induced components are r-cubes Q_r^2 of two different values $r = r_1$ and $r = r_2$ exists, specifically for $r_1 = 4$ and $r_2 = 0$. This seems to be the only known counterexample to the cited conjecture.

1.1. Notation, ℓ_p metrics and periodicity

If no confusion arises, every $(a_1, \ldots, a_n) \in \mathbb{Z}^n$ is expressed as $a_1 \cdots a_n$. Let $O = 00 \cdots 0$, $e_1 = 10 \cdots 0$, $e_2 = 01 \cdots 0$, \ldots, $e_{n-1} = 0 \cdots 01$ and $e_n = 00 \cdots 01$.

Let $z \in \mathbb{Z}^n$, let $H = (V, E)$ be a subgraph of Λ_n and let $H + z$ be the subgraph $H' = (V', E')$ whose vertex set is $V' = V + z = \{w \in \mathbb{Z}^n : \exists v \in V \text{ such that } w = v + z\}$ so that $uv \in E \iff (u+z)(v+z) \in E'$. For example, let H be induced in Λ_n by the vertices with entries in $\{0, 1\}$. Then, every translation $H + z$ of H in Λ_n (in particular H itself) is isomorphic to Q_n^2.

Let $i \in [n]$. Each edge (resp. segment) uv of Λ_n (resp. $\mathbb{R}^n \supset \mathbb{Z}^n$) with $u \neq v$ is parallel to $Oe_i \in E(\Lambda_n) \iff u - v \in \{\pm e_i\}$ (resp. $\iff \exists a \in \mathbb{R} \setminus \{0\}$ with $u - v = ae_i$). A parallelootope P in \mathbb{R}^n is a cartesian product of segments parallel to some of the Oe_i’s ($i \in [n]$). We restrict to P’s having their vertices in \mathbb{Z}^n. An edge of P is a segment of unit length parallel to some Oe_i ($i \in [n]$) separating a pair of vertices of Λ_n in P. Recall that a trivial subgraph of Λ_n is composed by just one vertex. The proof of the following is similar to that of Theorem 1 [1].

Theorem 5. Let $0 < t \in \mathbb{Z}$. If S is a t-PTMC in Λ_n, then the convex hull in \mathbb{R}^n of the vertex set $V(H)$ of each nontrivial component H of $[S]$ is a parallelootope in \mathbb{R}^n whose edges are parallel to some or all of the segments Oe_i in $E(\Lambda_n)$, where $i \in [n]$.

Let H be a nontrivial induced subgraph of Λ_n with the convex hull of $V(H)$ in \mathbb{R}^n as a parallelootope whose edges are parallel to some or all of the segments Oe_i in $E(\Lambda_n)$, ($i \in [n]$). If exactly r elements of $[n]$ are such values of i, then we say that H is an r-box. Note that H is a cartesian product $\Pi_{i=1}^n P^i$, where P^i is a finite path, $\forall i \in [n]$, with exactly r paths P^i having positive length.

Let $W_{n, H, t}$ be the truncated sphere of radius t around an H as above, where $0 \leq t \in \mathbb{Z}$. Then, H is the truncated center of $W_{n, H, t}$. A t-PTMC S of Λ_n determines a partition of \mathbb{Z}^n into spheres $W_{n, H, t}$ with H running over the components of $[S]$. Such an S with the components of $[S]$ obtained by translations from a fixed finite graph H is said to be a t-PTMC$[H]$. (This imitates the definition of a t-PDDS$[H]$ in [1], mentioned in Remark 3(I) above). Let S be a t-PTMC$[H]$ and let H' be a component of $[S]$ obtained from H by means of a translation.
Then \(S \) is said to be a lattice \(t\)-PTMC\([H] \) if and only if there is a lattice \(L \subseteq \mathbb{Z}^n \) such that: \(H^n \) is a component of \([S] \) \(\iff H'' = H' + z \), for some \(z \in L \).

Remark 6. It is relevant to note the connections of \(\rho \) and the \(\ell_p \) metrics [4]: A truncated sphere of truncated radius 1 centered at some vertex \(v \) is a Lee \((p = 1)\) sphere of radius 1, whereas a truncated sphere of truncated radius \(n \) centered at \(v \) is a sphere of radius 1 in the maximum \((p = \infty)\) distance, namely \(W_{n,\{v\},1} \) (which has an \(n \)-dimensional cube for convex hull). Thus, all truncated spheres in this work are spheres in some \(\ell_p \) metric, and the truncated metrics are a convenient way to consider different \(\ell_p \) metrics for the graph components. This observation allows connections with other previous works such as (for just one \(t \)) perfect codes in the maximum metric and in the \(\ell_p \) metrics [4].

Remark 7. We start to rephrase the graph-coloring facts of [12], to be completed in Subsection 1.3. Announced as Theorem 11 below, there is a construction of lattice \(\kappa \)-PTMC’s \(S \) whose induced subgraphs \([S] \) in \(\Lambda \) have their components \(H \) with:

(i) vertex sets \(V(H) \) whose convex hulls are \(n \)-boxes in \(\mathbb{R}^n \) with distance 3 to \([S] \setminus H \), and representatives (one per component \(H \)) forming a lattice with generators along the coordinate directions;

(ii) each \(V(H) \) contained in a truncated sphere \((H)^{\kappa(|H|)}\) whose radius is \(n \).

(We do not know whether similar lattice \(t \)-PTMC’s \(S \) exist with \([S] \) having \(r \)-parallelotopes as their components, for \(r \) fixed such that \(0 < r < n \).)

Extending the meaning of the adjective lattice in Subsection 1.2 below, as in [12] we have in Theorems 12-13 that a lattice \(\kappa \)-PTMC \(S \) exists in \(\Lambda \) whose induced subgraph \([S] \) has its components \(H \) with vertex sets \(V(H) \):

(i') having both \((n - 1)\)-cubes and 0-cubes as their convex hulls in \(\mathbb{R}^n \);

(ii') contained in truncated spheres \((H)^{\kappa(|H|)}\) whose radii, namely 1 and \((n - 2)\), correspond respectively to the \((n - 1)\)-cubes and 0-cubes in item (i').

A set \(S \subset \mathbb{Z}^n = E(\Lambda) \) is periodic if and only if there exist \(p_1, \ldots, p_n \in \mathbb{Z} \) such that \(v \in S \) implies \(v \pm p_i e_i \in S, \forall i \in [n] \). Since each lattice \(t\)-PTMC\([H] \) \(S \) is periodic [1], then every canonical projection from \(\Lambda \) onto a toroidal grid \(T \), i.e. a cartesian product \(T = C_{k_1 p_1} \square C_{k_2 p_2} \square \cdots \square C_{k_n p_n} \) of \(n \) cycles \(C_{k_i p_i} \) \((0 < k_i \in \mathbb{Z}, \forall i \in [n])\), takes \(S \) onto a \(t\)-PTMC\([H] \) in \(T \). This observation adapts to respective situations that complement the statements of Theorems 11-13 via canonical projections from \(\mathbb{Z}^n \) onto adequate toroidal grids \(T \).

Problem 8. Do lattice \(t\)-PTMC’s \(S \) exist with \([S] \) having \(r \)-parallelotopes as their components, for \(r \) fixed such that \(0 < r < n \)?
1.2. Further specifications

Given a lattice \(L \) in \(\mathbb{Z}^n \), a subset \(T \subseteq \mathbb{Z}^n \) that contains exactly one vertex in each class mod \(L \) (so that \(T \) is a complete system of coset representatives of \(L \) in \(\Lambda_n \)) is said to be an FR (acronym suggesting “fundamental region”) of \(L \). A partition of \(\mathbb{Z}^n \) into FR’s of \(L \) is said to be a tiling of \(\mathbb{Z}^n \). Those FR’s are said to be its tiles.

We extend the notion of lattice \(\kappa \)-PTMC so that the associated fundamental region (see [3], pg 26), or FR (see above) of every new lattice contains a finite number of (in our applications, just two) members \(H \) of each \(\langle H \rangle \).

In the literature, existing constructions of lattice \(t \)-PTMC’s in \(\Lambda_n \) (\(t < n \)) concern just \(t = 1 \) (see [1, 2, 11, 14]) but there are not many known lattice 1-PTMC’s. For example, [7] shows that there is only one lattice 1-PTMC\([Q_2^2] \) and no non-lattice 1-PTMC\([Q_2^2] \). In addition, there is a lattice 2-PDDS\([Q_2^1] \) in \(\Lambda_3 \) arising from a tiling of Minkowsky cited in [1].

Conjecture 9. There is no \(t \)-PTMC lattice in \(\Lambda_n \), for \(1 < t < n \).

This conjecture has an analogous form for perfect codes in the \(\ell_p \) metrics in [4], and together with the conjecture mentioned in Remark 4(B), produces a contrast with the constructions in Theorems 12-13, below.

If \(S \) is a periodic non-lattice \(t \)-PTMC\([H] \) in \(\Lambda_n \), then there exists \(0 < m \in \mathbb{Z} \) and a tiling of \(\Lambda_n \) with tiles that are disjoint copies of the vertex set \(V(H^*) \) of a connected subgraph \(H^* \) induced in \(\Lambda_n \) by the union of:

(a) the vertex sets of \(m \) disjoint copies \(H^1, \ldots, H^m \) of \(H \) (components of \([S]\));
(b) the sets \((H^j)^{\kappa(H)} \) of vertices \(v \in \mathbb{Z}^n \) with \(\rho(v, H^j) \leq t \), for \(j \in [m] \), where \((H^1)^{\kappa(H)}, \ldots, (H^m)^{\kappa(H)} \) are pairwise disjoint copies of \((H)^{\kappa(H)} \) in \(\mathbb{Z}^n \).

By taking such an \(m \) as small as possible, we say that \(S \) is a \(t \)-PTMC\([H; m] \).

Remark 10. In Section 5 [1], a non-lattice 1-PTMC\([Q_2^1; 4] \) \(S \) is shown to exist with a lattice \(L_S \) based on it, each of the FR’s of \(L_S \) containing two copies of \(Q_2^2 \) parallel to \(Oe_1 \) and two more copies of \(Q_2^2 \) parallel to \(Oe_2 \), these four copies being components of \([S]\).

Thus, even for a non-lattice \(t \)-PTMC \(S \) in \(\Lambda_n \), a lattice can be recovered and formed by selected vertices \(v_T \) in the corresponding tiles \(T \) associated with \(S \). We say that such set \(S \) is a lattice \(t \)-PTMC\([H; m] \), indicating the number \(m \) of isomorphic components of \([S]\) in a typical tile \(T \) in which to fix a distinguished vertex \(v_T \).

We further specify the developments above as follows. A \(t \)-PTMC \(S \) in \(\Lambda_n \) with the components of \([S]\) obtained by translations from two non-parallel subgraphs \(H_0, H_1 \) of \(\Lambda_n \) is said to be a \(t \)-PTMC\([H_0, H_1] \). The case of this in Remark 10 is a \(\kappa \)-PTMC, with two translation classes of components of \([S]\) formed...
by the copies of Q_2^2 parallel to each of the directions coordinates. Here, κ sends those copies onto $t = 1$. Each tile of this κ-PTMC contains two copies of Q_2^2 parallel to Oe_1 and two copies of Q_2^2 parallel to Oe_2, accounting for $m = 4$.

More generally, let $t_i \in [n]$, for $i = 0, 1$. We say that a set $S \subset V$ is a (t_0, t_1)-PTMC$[H_0, H_1]$ in Λ_n if for each $v \in V$ there is:

(i') a unique index $i \in \{0, 1\}$ and a unique component H_v^i of $[S]$ obtained by means of a translation from H_i such that the truncated distance $\rho(v, H_v^i)$ from v to H_v^i satisfies $\rho(v, H_v^i) \leq t_i$ and

(ii') a unique vertex w in H_v^i such that $\rho(v, w) = \rho(v, H_v^i)$.

Even though such a set S is not lattice as in [14] (or lattice-like [1]), it may happen that there exists a lattice $L_S \subset \mathbb{Z}^n$ such that for $0 < m_0, m_1 \in \mathbb{Z}$ there exists an FR of L_S in Λ_n given by the union of two disjoint subgraphs H_0^*, H_1^*, where H_i^* ($i = 0, 1$) is induced in Λ_n by the disjoint union of:

(a') the vertex sets of m_i disjoint copies $H_i^1, \ldots, H_i^{m_i}$ of H_i, (components of $[S]$);

(b') the sets $(H_i^1)^{\kappa_H(i)}$ of vertices $v \in \mathbb{Z}^n$ for which $0 < \rho(v, H_i^1) \leq t_i$, for $j \in [m_i]$, where $(H_i^1)^{\kappa_H(i)}, \ldots, (H_i^{m_i})^{\kappa_H(i)}$ are pairwise disjoint copies of $H^\kappa([H])$ in \mathbb{Z}^n.

Subsection 1.3 contains a restatement of results of [12], translating its graph-coloring context into our present one. In fact, in Theorem 12 below, a lattice 1-PTMC$[H_0, H_1; m_0, m_1]$ is obtained; in addition, a family of lattice (t_0, t_1)-PTMC$[H_0, H_1; m_0, m_1]$’s in the graphs Λ_n that extend the lattice 1-PTMC of Theorem 12 is obtained in Theorem 13.

1.3. Restatement of graph-coloring results

A particular case of lattice t-PTMC$[H]$ is that in which H is an n-box of Λ_n. For each such H, Theorem 11 below says that there is a lattice n-PTMC$[H]$ in Λ_n. (In [2], n-boxes of unit volume in Λ_n are shown to determine 1-PDDS$[H]$’s if and only if either $n = 2^r - 1$ or $n = 3^r - 1$).

How to construct a lattice n-PTMC$[H]$ S in Λ_n? From Subsection 1.1 we know that S determines a partition of \mathbb{Z}^n into spheres $W_{n,H',n}$, where H' runs over the components of $[S]$. These spheres must conform a tiling associated to a lattice $L_S \subset \mathbb{Z}^n$ as follows: In each $W_{n,H',n}$, let $b_1b_2\cdots b_n$ be the vertex $a_1a_2\cdots a_n$ for which $a_1 + a_2 + \cdots + a_n$ is minimal. We say that this $b_1b_2\cdots b_n$ is the anchor of $W_{n,H',n}$. The anchors of the spheres $W_{n,H',n}$ form the lattice $L = L_S$. Without loss of generality we can assume that O is the anchor of a $W_{n,H_0,n}$ whose truncated center H_0 is a component of $[S]$. Let $c_1c_2\cdots c_n$ be the
vertex $a_1a_2\cdots a_n$ in $W_{n,H_0,n}$ for which $a_1 + a_2 + \cdots + a_n$ is maximal. Then L_S has generating set \{(1 + c_1)e_1, (1 + c_2)e_2, \ldots, (1 + c_n)e_n\} and is formed by all linear combinations of those $(1 + c_i)e_i, (i \in [n])$. This insure that S exists and is lattice $[14]$ (or lattice-like $[1]$) via L_S.

Theorem 11. [12] For each $i \in [n]$, let P_i be a path of length $c_i - 2$, parallel to Oe_i, and let $H = \Pi_{i=1}^n P_i$ be an n-box in Λ_n. Then, there is a lattice n-PTMC$[H]$ S of Λ_n with minimum ℓ_1-distance 3 between the components of $[S]$.

As in Theorem 11 and commented in Remark 2, Figure 1 displays a representation of the convex hulls of two induced components, in light-gray color, of a lattice t-PTMC$[H]$ in Λ_n, where $t = n = 3$ and $H = Q_0^3$. The components of this PTMC are just 0-cubes, the simplest case of Theorem 11 whose proof, discussed below, is contained in [12] from a graph-coloring perspective.

Theorem 12. [12] There exists a lattice 1-PTMC$[Q_2^3, Q_0^3; 2, 2]$ (in particular a PDS) S in Λ_3 with minimum ℓ_1-distance 3 between the components of $[S]$.

As also commented in Remark 2, Theorem 12 is illustrated in Figure 1, showing in black color the components of $[S]$ in a typical FR of L_S, namely: two copies of Q_2^3 and two copies of Q_0^3, with the edges in the corresponding truncated 1-spheres shown in thick black trace; the other edges induced in the union of these 4 components are shown in thick dark-gray trace. As also commented in Remark 2, truncated 3-spheres of the 3-PTMC$[Q_0^3]$ resulting from Theorem 11 are shaded in light-gray color. Also, dark-gray color was used to indicate two other copies of Q_2^3 appearing in the figure that are components of $[S]$. Notice that the vertices O, e_1, e_2, e_3 are indicated in the figure.

To state Theorem 13, let $H_0 = Q_0^3$, $H_1 = Q_0^3$, $m_0 = m_1 = 2$, $t_0 = 1$, $t_1 = n - 2$.

Theorem 13. There exists a lattice $(1, n - 2)$-PTMC$[Q_2^3, Q_0^3; 2, 2]$ S in Λ_n.

Remark 14. From the last observation in Remark 7, it can be deduced that the respective PTMC S covers (via canonical projections) in Theorems 11, 12 and 13, respectively:

- an n-PTMC$[H]$ in $T = C_{c_1 k_1} \square C_{c_2 k_2} \square \cdots \square C_{c_n k_n}, (1 < k_i \in \mathbb{Z}, \forall i \in [n])$;
- a 1-PTMC$[Q_2^3, Q_0^3; 2, 2]$ in $T = C_{6 k_1} \square C_{6 k_2} \square C_{3 k_3}, (0 < k_i, \forall i \in [3])$;
- a $(1, n - 2)$-PTMC$[Q_2^3, Q_0^3; 2, 2]$ in $T = C_{6 k_1} \square \cdots \square C_{6 k_{n-1}} \square C_{3 k_n}, (0 < k_i, \forall i \in [n])$.
2. Ternary superlattice graphs

Let the 2-tercube, or tersquare, Q_2^3 be denoted $[\emptyset]$, with vertices given by the 2-tuples xy, $(x, y \in F_3 = \{0, 1, 2\})$. As a graph, $[\emptyset] = (0, 1, 2) \sqcap (0, 1, 2)$, namely the cartesian product of two triangles whose vertex sets are both F_3, is represented at the center of Figure 2 sharing a triangle with each one of 15 ternsquares, to be specified below, in respective partially viewable colored backgrounds. The 1-subtercubes or triangles Q_1^2 of the 2-tercube $[\emptyset]$ have vertex sets $\{0y\}_{y \in F_3}$, $\{1y\}_{y \in F_3}$, $\{2y\}_{y \in F_3}$, $\{x0\}_{x \in F_3}$, $\{x1\}_{x \in F_3}$, $\{x2\}_{x \in F_3}$. They will be indicated $x^0, x^1, x^2, y^0, y^1, y^2$, respectively. To each of these triangles t^s ($t \in \{x, y\}; s \in F_3$) of $[\emptyset]$ we glue a corresponding tersquare $[$t$]$ intersecting $[\emptyset]$ exactly in t^s.

Table I

01	11	01	11	01	11	02	22	02	22	02	22	02	22
$[x^0yy]$													
00	10	00	10	00	10	00	20	00	20	00	20	00	20
$[x^0yy]$													
01	11	01	11	01	11	02	22	02	22	02	22	02	22
$[x^0yy]$													
00	10	00	10	00	10	00	20	00	20	00	20	00	20
$[x^0yy]$													
10	11	10	11	10	11	20	22	20	22	20	22	20	22
$[x^1yy]$													
00	01	00	01	00	01	00	02	00	02	00	02	00	02

This way, six tersquares $\{0\}, \ldots, \{2\}$ are obtained (to be called subcentral tersquares, colored yellow and light-blue in Figure 2) that intersect $[\emptyset]$ respectively in the triangles x^0, \ldots, y^2. Next, we glue to the remaining new triangles (i.e., other than those already in $[\emptyset]$), a set of nine new tersquares that we denote $[x^1y]$.
(and call corner tersquares, colored green and gray in Figure 2). These nine ter-
squares share merely a vertex with \([\emptyset]\) and their disposition with respect to the
central tersquare \([\emptyset]\) and subcentral tersquares \(x^0, \ldots, y^2\) is specified in Figure 2.
In fact, \([x^i_{y^j}]\) shares a triangle \(y^j\) with \([x^i]\) and a triangle \(x^i\) with \([y^j]\), for \(i, j = 0, 1, 2\).
Such triangles can be further specified respectively as \(y^j[x^i]\) and \(x^i[y^j]\).

Figure 2. Representing a PDS of \([\emptyset]\) in \(\Gamma_2\)

The graph \([\emptyset]\) resulting from the union of the \(1 + 6 + 9 = 16\) tersquares
constructed so far, will be referred to as the 2-hive \([\emptyset]\). The central tersquare
\([\emptyset]\) of \([\emptyset]\) shares just one triangle with each of the six subcentral terccubes and
just one vertex with each of the nine corner tersquares. The tersquare \([\emptyset]\), given
as a subgraph at the center of Figure 2, also results in the representation at the
lower-right quarter of Table I by identifying the quadruple of vertices labelled 22,
as well as each pair of vertices labelled 20, 21, 02 and 12.

The construction above continues with the iterative glueing of tersquares along free triangles, namely those triangles along which glueing of a new continuing tersquare was not already performed. In the limit of feasible glueings, a total compound graph Γ_2 of tersquares, glued in pairs of adjacent tersquares along corresponding triangles, results in an infinite locally finite graph, the ternary square compound graph Γ_2, that we also call ternary non-lattice superlattice graph. Notation for all tersquares and triangles of Γ_2, continuing the notation of the 16 tersquares and their triangles above, is completed below. The word “superlattice” here corresponds to the fact that, even though Γ_2 is not a lattice graph itself, it restricts to lattice graphs when restricted to binary square compound graphs, as in Remark 1 by puncturing all elements bearing a single value of F_3.

![Figure 3. Planar projection of a portion of Γ_2 larger than in Figure 2](image-url)

Three subgraphs of Γ_2 are represented in Table I, containing just one 4-cycle (of the 9 in Q^3_2) per participating (but not totally shown) glued tersquare. This yields 9 sub-lattice types in Γ_2 (one per 4-cycle of Q^3_2, three partially shown in Table I), each isomorphic to Λ_2. Thus, Γ_2 is a superset of each of the copies of Λ_2 generated by some 4-cycle of Γ_2. We further specify Γ_2 after presenting a non-isolated PDS in $[[0]]$ (Theorem 15).
The large connected graph in Figure 2 represents the 2-hive \([\emptyset]\), with \([\emptyset]\), \([\emptyset]\) and \([\emptyset]\) in light-blue background, \([\emptyset]\), \([\emptyset]\) and \([\emptyset]\) in yellow background, and the nine tersquares \([xy]_{ij}\) in green background if \(y \neq 1\) and light-gray background if \(y = 1\), where the apparent colored areas spatial disposition results in the partial hiding of some of these areas. The thick red edges induce a subgraph of \([\emptyset]\) whose vertex set is a non-isolated PDS \((\text{as defined in Remark 1})\) of \([\emptyset]\). The dominating edges are drawn in thick black trace, allowing the reader to verify that all vertices of \([\emptyset]\) not in \(S\) are dominated as indicated in Remark 1. (It is elementary to verify that no isolated PDS in \([\emptyset]\) exists). The remaining edges of \([\emptyset]\), not in thick trace, are in dashed trace if they are “exterior” edges of \([\emptyset]\) (i.e., those shared by 2-hives other than \([\emptyset]\) in \(\Gamma_2\)) and in thin trace otherwise (i.e., if they are “interior” edges of \([\emptyset]\)). Motivation for pursuing such a non-isolated PDS arose as a palliative remedy for the impossibility of having here a PDS like the Livingston-Stout PDS in the grid \(P_4 \square P_4\) [17], which happens to be the only isolated PDS in grid graphs \(P_m \square P_n\), for \(2 < \min\{m, n\}\) [6].

Theorem 15. There exists a non-isolated PDS, or \(1\)-PTMC \([Q_1^2, Q_2^2, Q_3^3 \square Q_4^3; 4, 1, 1]\), in the 2-hive \([\emptyset]\) \(\subset \Gamma_2\).

Proof. The claimed PDS in \([\emptyset]\) is formed by the vertex sets of the following components (of its induced subgraphs):

(a) the edge \((00, 01)\) of triangle \((00, 01, 02)\) shared by tersquares \([\emptyset]_2\) and \([xy]_{02}\);

(b) the edge \((10, 20)\) of triangle \((00, 10, 20)\) shared by tersquares \([\emptyset]_0\) and \([xy]_{00}\);

(c) the edge \((21, 22)\) of triangle \((20, 21, 22)\) shared by tersquares \([\emptyset]_0\) and \([xy]_{20}\);

(d) the edge \((00, 02)\) of triangle \((00, 02, 01)\) shared by tersquares \([\emptyset]_1\) and \([xy]_{01}\);

(e) the 4-cycle \((02, 12, 11, 01)\) of tersquare \([\emptyset]\), where its edge \((02, 12)\) (of triangle \(\Delta = (02, 12, 22)\)) is shared (with \(\Delta\)) with tersquare \([xy]_{22}\);

(f) the triangular prism in \([\emptyset]\) formed by triangles \((00, 01, 02)\) and \((20, 21, 22)\) and edges \((00, 20), (02, 22), (20, 22)\) (of triangle \((02, 22, 12)\), shared by tersquare \([xy]_{22}\)) and \((01, 21)\) (of triangle \((01, 21, 11)\), shared by tersquare \([xy]_{11}\)).

As can be verified in Figure 2, the edges departing from these red-edge components cover all other vertices of \([\emptyset]\), proving the theorem.

Figure 2 may be augmented by adding the tersquares \([xy]_{ijk}\), with \(i \neq j\) in \(F_3\), etc. One may continue by adding tersquares \([xy]_{lmn...pq}\) with \(i \neq j \neq ... \neq k \neq l\) (resp. \(m \neq n \neq ... \neq p \neq q\)) i.e. not two contiguous equal values under the \(x\)'s (resp. \(y\)'s). Taking \(i, j, ..., k, l, m, n, ..., p, q\) in \(F_3\) to be contiguously different
with just two values, (e.g. 0,1; resp. 0,2; resp. 1,2, in the upper-left; resp. upper-right; resp. lower-left quarter in Table I) is a way of obtaining 3 sub-lattices of \(\Gamma_2 \), each isomorphic to \(\Lambda_2 \), as in Table I. But there is an infinite family of “parallel” sub-lattices in \(\Gamma_2 \) for each of the 9 sublattice types, one per each 4-cycle of a typical tersquare as in the lower-left quarter of Table I. For example, the type with values 0,2 represents “parallel” sub-lattices having “shortest” tersquares \([\emptyset]\), \([xx]\), \([yy]\), \([xx]\), \([y]\), etc., including every \([xx\cdots xx]\), \([yy\cdots yy]\) and \([xx\cdots xx yy\cdots yy]\).

Figure 4. Components of a 2-PTMC[\(Q_2^2\)] of \([\emptyset]\) in \(\Gamma_2\)

These sub-lattices can be refined by replacing each edge \(e\) in them by the 2-path closing a triangle with \(e\) and adding more vertices and additional edges out of them to the new vertices obtained by the said replacement, in order to
distinguish the glued 2-tercubes in Γ_2. In particular, Figure 2 is obtained from such a procedure by starting from a plane containing the upper-right quarter of Table I. Figure 3 shows a projection of a partial extension of Figure 2 in such a plane, where tersquare colors are kept as in Figure 2, including if they are projected into a 2-path. Colors here still are light-blue, blue, green and light-gray. Each tersquare in Figure 3, represented by four squares with the common central vertex 11, is just recognizable by its upper-left vertex denomination presence. Of the four such squares, the lower-right one has the corresponding tersquare denomination. The other tersquare denominations in the three remaining squares correspond to the counterpart denominations in the representation of $[\emptyset]$.

Definition. A **ternary n-cube compound** graph Γ_n is defined as the union of all necessary n-tercubes that appeared glued along their (codimension 1) ternary $(n-1)$-subtercubes, for any $2 < n \in \mathbb{Z}$. The vertices of such Γ_n are given in terms of the n-tercubes. These, that can be denoted $[x], [y], \ldots, [z], [xy], [yz], \ldots$ including all those of the general form $[J] = [x_0 \ldots x_n y_0 \ldots y_m z_0 \ldots z_p]$, where x, y, \ldots, z represent the n (ternary) coordinate directions. Such n-tercubes are assigned locally by reflection on the $(n-1)$-subtercubes. Thus the said vertices can be denoted $x^0[J], \ldots, z^2[J]$, by following the notations above.

Example 16. Figure 2 for $n = 2$, represents the 2-hive $[[\emptyset]]$ with $[\emptyset]$ at its center, and its neighboring tersquares $[x], [y], [z]$ in light-blue background, $[xy], [yz]$ in yellow background, and the tersquares neighboring those tersquares, namely $[xy], (i, j \in F_3)$, in green and light-gray backgrounds. It can be seen that Γ_n may be considered as a superset of Λ_n in three different ways, as was commented above in relation to Table I for $n = 2$.

We pose the following.

Problem 17. Does there exist a non-isolated PDS S in Γ_n, for $n \geq 2$? If so, could S behave like a lattice, for example by restricting itself to a lattice PDS over any sub-lattice of Γ_n, as exemplified in Table I?

3. Isolated 2-PTMC’s in Γ_2

In this section, we keep working in Γ_2, but slightly modifying the definition of a κ-PTMC by replacing the used Hamming distance h by the graph distance of Γ_2. It is clear that the Hamming distance in our graph-theoretical context is just the graph distance. Then, we have the following result.
Theorem 18. There exists 262144 isolated 2-PTMC’s in the 2-hive $[[\emptyset]] \subset \Gamma_2$.

Proof. In Figure 4, the nine copies $[xy]_i$, $(i, j \in F_3)$, of the tersquare are shown with its edges in thick black trace, against the thin black trace of the remaining edges of the 2-hive $[[\emptyset]]$. These nine copies happen to be the truncated 2-spheres centered at the vertices of an isolated PTMC of $[[\emptyset]]$ constituted as a selection of one vertex per yellow-faced 4-cycle in the figure. We may say that these yellow-faced 4-cycles are the "external" 4-cycles of $[[\emptyset]]$. So, there are $4^9 = 262144$ 2-PTMC’s in Γ_2.

Corollary 19. There exists a 2-PTMC $[Q_2^2]$ in the 2-hive $[[\emptyset]]$.

Proof. The yellow-faced 4-cycles are copies of Q_2^2 and induce the components of the claimed 2-PTMC-$[Q_2^2]$.

Figure 5. Analysis of the square $(00, 01, 11, 10)$ in tersquare $[xy]_2$.

Theorem 20. There exists an infinite number of isolated 2-PTMC in Γ_2.

Proof. Let us analyze one of the yellow squares in Figure 4, say square $(00, 01,11,10)$ in tersquare $[010]$, as represented in Figure 5; the remaining eight yellow squares have similar properties to those to be described, once the notations of local vertices and neighboring tercubes are updated in each case in place of those in the figure. Besides the "external" 4-cycle $(00,01,11,10)$ in Figure 5, whose edges are in black color, we set in red and blue, (green and hazel) colors those additional edges defining a pair of 4-cycles in the respective tercubes $[002]$, $[102]$, $[202]$ and $[222]$, namely $\{(00,02,12,10),(01,02,12,11)\}$, $\{(00,20,21,01),(10,20,21,11)\}$, equally denoted but pertaining to different tersquares, as shown. Since it is seen that the maximum truncated distance in Figure 5 is 2, we conclude that any one of the four vertices of the black 4-cycle dominates the remaining vertices in the other 4-cycles in the figure, in positions in their tersquares similar to those of the yellow cycles in Figure 4, namely the four just mentioned tersquares as well as the "opposite" tersquares $[2202]$, $[2202]$, $[2202]$ and $[2202]$, where these involved tersquare denominations are set in Figure 5 straddling edges common to two of their 4-cycles, for better reference, twice for the last four mentioned tersquares. This particular case is easily generalized to conclude that each vertex in a yellow square dominates via ρ in the neighboring tersquares in a form similar to that of $[00]$. With the same structure as the 2-hive $[00]$, we have the 2-hives of its neighboring 2-hive pair $\{[0001],[0010]\}$, etc., sharing four tersquares with $[00]$, tersquares denoted $(10,11,12)$, both in $[0]$ and in $[0]$ and $[0]$ and $[0]$. These four tersquares belong both in $[0000]$ and $[0001]$ to the four respective tercubes $[001]$, $[001]$, $[001]$ and $[001]$. Moreover, the union of these four tercubes constitutes the intersection $[0000] \cap [0001]$. By considering in each of these two 2-hives the equivalent of the yellow squares of $[00]$ in Figure 4, and selecting in each such yellow square a vertex contributing to the construction of an isolated 2-PTMC of Γ_2, iteration of such a procedure eventually allows the completion of such dominating set. Observe that the argument exposed from the 2-hive pair $\{[0001],[0010]\}$ is one of twelve cases arising from the 2-hive $[00]$. Iteration of these twelve cases departing from any 2-hive of Γ_2 that is reached in the continuing procedure allows to advance a further step in the construction of such isolated 2-PTMC.

Remark 21. The argument of Theorem 20 can be modified to ascertain the existence of 2-PTMC$[H]$, where H is a 4-cycle, or the union of yellow squares with a common vertex in different 2-hives, like the eight squares, in Figure 5, at vertex 10 in the tersquares $[220]$, $[202]$, $[212]$, $[220]$, $[221]$, $[202]$, $[220]$ and $[212]$. Conjecture 22. There exists an isolated n-PTMC in Γ_n, $\forall n > 2$.

Problem 23. Does there exist a suitable way of declaring a subset $S \subset V(\Gamma_n)$ to be periodic, or periodic-like, that extends the notion of periodicity of Λ_n at the
end of Remark 7 to one in Γ_n? so that a replacement of the notion of “quotient” or “toroidal” graphs of Λ_n can be found that way for Γ_n?

4. Appendix

On the left of Figure 6, an oriented representation of a ternary square is provided. Here, one may take the vertices as decision conditional diamonds, the outgoing arrows as “Yes” or “True” option arrows and the incoming arrows as “No” or “False” option arrows. An elementary flowchart modeled on this oriented ternary square is given as an example on the right of Figure 6, where the root of the flowchart corresponds to vertex 00 and there are four terminators, corresponding to the vertices 01, 02, 11 and 12. The decision conditional diamonds correspond to the vertices 00, 10, 20, 21 and 22. To avoid terminators that are the end of more than one process, as is the case of 11 and 12 in the figure, one may select in Γ_2 modeling flowchart continuation in adjacent tercubes to the immediately previous ones, each sharing with the current tercube an already used triangle.

![Figure 6. Ternary square as a model of algorithm flowchart](image)

Acknowledgement: We thank the two anonymous reviewers that provided helpful comments on an earlier draft of this manuscript.

References

[1] C. Araujo, I. Dejter and P. Horak, A generalization of Lee codes, Designs, Codes and Cryptography, 70 (2014), 77–90.

[2] S. Buzaglo and T. Etzion, Tilings by (0.5, n)-Crosses and Perfect Codes., SIAM Jour. Discrete Math., 27 (2013), 1067–1081.

[3] R. Calderbank, ed., Different aspects of coding theory: AMS Short Course, San Francisco, CA, AMS, Proc. Symp. Appl. Math., 50 1995.

[4] A. Campello, G. C. Jorge, J. E. Strapasson, S. I. R. Costa, Perfect codes in the ℓ_p distance, European Journal of Combinatorics, 53 (2016),72–85.
[5] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering codes, Elsevier 1997.

[6] I. Dejter, A. Delgado, Perfect dominating sets in rectangular grid graphs, J. Combin. Math. Combin. Comput., 70 (2009), 177–196.

[7] I. Dejter, L. Fuentes and C. Araujo, There is but one PDS in \(\mathbb{Z}^3 \) inducing just square components, Bull. Inst. Combin. Appl., 82 (2018), 30–41.

[8] I. Dejter and O. Serra, Efficient dominating sets in Cayley graphs, Discrete Applied Mathematics, 129 (2003), 319–328.

[9] I. Dejter and P. Weichsel, Twisted perfect dominating subgraphs of hypercubes, Congr. Numer. 94 (1993), 67–78.

[10] T. Etzion, Product constructions for perfect Lee codes, IEEE Transactions in Information Theory, 57 (2011), 7473–7481.

[11] T. Etzion, Tilings with generalized Lee spheres, in: J.-S. No et al., eds., Mathematical Properties of Sequences, Springer 726 (2003), 181–198.

[12] L. Fuentes, I. Dejter and C. Araujo, Rainbow perfect domination in lattice graphs, Electronic Journal Graph Theory and Applications, 6 (1) (2018), 95–112

[13] S. Golomb and K. Welch, Perfect codes in the Lee metric and the packing of polyominoes, SIAM Jour. Applied Math., 18 (1970), 302–317.

[14] P. Horak and B. F. AlBdaiwi, Diameter perfect Lee codes, IEEE Transactions of Information Theory, 58 (2012),5490–5499.

[15] P. Horak and O. Grosek, A new approach towards the Golomb-Welch conjecture. European Journal of Combinatorics, 38 (2014), 12–22.

[16] P. Horak and D. Kim, 50 Years of the Golomb-Welch Conjecture, IEEE Transactions on Information Theory, 60 (2018), 3048–3061.

[17] M. Livingston and Q. F. Stout, Perfect Dominating Sets, Congr. Numer., 79 (1990), 187–203.

[18] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier 1977.

[19] P. Östergård and W. Weakley, Constructing covering codes with given automorphism, Designs, Codes and Cryptography, 16 (1999), 65–73.

[20] P. M. Weichsel, Dominating sets in n-cubes, Journal of Graph Theory, 18 (1994) 479–488.