The efficacy and safety of monoclonal antibody treatments against COVID-19: A systematic review and meta-analysis of randomized clinical trials

Ifan Ali Wafa, Nando Reza Pratama, David Setyo Budi, Henry Sutanto, Alfian Nur Rosyid, Citrawati Dyah Kencono Wungu

aFaculty of Medicine, Universitas Airlangga, Indonesia
bDepartment of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, The Netherlands
cDepartment of Physiology and Biophysics, State University of New York (SUNY) Downstate Health Sciences University, New York, USA
dDepartment of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Indonesia
eDepartment of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Indonesia
fInstitute of Tropical Disease, Universitas Airlangga, Indonesia

Word Count: 3480 words (excluding abstract and references)

Correspondence:
Citrawati Dyah Kencono Wungu, MD., PhD.
Department of Physiology and Medical Biochemistry, Airlangga University
Jalan Mayjen Prof. Dr. Moestopo No.47, Surabaya, Indonesia
Email: citrawati.dyah@fk.unair.ac.id
Abstract

Objectives: The use of monoclonal antibody for COVID-19 showed conflicting results in prior studies and its efficacy remains unclear. We aimed to comprehensively determine the efficacy and safety profile of monoclonal antibodies in COVID-19 patients.

Methods: Sixteen RCTs were analyzed using RevMan 5.4 to measure the pooled estimates of risk ratios (RRs) and standardized mean differences (SMDs) with 95% CIs.

Results: The pooled effect of monoclonal antibodies demonstrated mortality risk reduction (RR=0.89 (95%CI 0.82-0.96), I²=13%, fixed-effect). Individually, tocilizumab reduced mortality risk in severe to critical disease (RR=0.90 (95%CI 0.83-0.97), I²=12%, fixed-effect) and lowered mechanical ventilation requirements (RR=0.76 (95%CI 0.62-0.94), I²=42%, random-effects). Moreover, it facilitated hospital discharge (RR=1.07 (95%CI 1.00-1.14), I²=60%, random-effects). Meanwhile, bamlanivimab-etesevimab and REGN-COV2 decrease viral load ((SMD=-0.33 (95%CI -0.59 to -0.08)); (SMD=-3.39 (95%CI -3.82 to -2.97))). Interestingly, monoclonal antibodies did not improve hospital discharge at day 28-30 (RR=1.05 (95%CI 0.99–1.12), I²=71%, random-effects) and they displayed similar safety profile with placebo/standard therapy (RR=1.04 (95%CI 0.76-1.43), I²=54%, random-effects).

Conclusion: Tocilizumab improved hospital discharge and reduced mortality as well as the need for mechanical ventilation, while bamlanivimab-etesevimab and REGN-COV2 reduced viral load in mild to moderate outpatients. In general, monoclonal antibodies are safe and should be considered in severe to critical COVID-19 patients.

Keywords: COVID-19; Monoclonal Antibody; Mortality; Viral load; Meta-analysis

Registration: PROSPERO (CRD42021235112)
INTRODUCTION

Since December 2019, a novel coronavirus disease (COVID-19) firstly discovered in Wuhan, China has spread globally and profoundly affected various aspects of life (Li et al., 2020). The viral infectious disease is caused by SARS-CoV-2; an enveloped, positive-sense, single-stranded genomic ribonucleic acid (+ssRNA) virus from the group of Betacoronavirus in the family of Coronaviridae (Hu et al., 2021). In the lungs, SARS-CoV-2 binds to angiotensin converting enzyme type-2 (ACE-2) receptors at the membrane of pulmonary alveolar cells type-2 and undergoes endocytosis. Subsequently, the interaction of viral antigen with RIG-I-like receptors (RLRs) activates the host immune system as an effort to eliminate the virus from the body (Hertanto et al., 2021), predisposing to the clinical presentations of COVID-19 patients, ranging from asymptomatic or mild up to severe disease state with pneumonia and acute respiratory distress syndrome that can ultimately lead to death (Lai et al., 2020).

The development of optimal and effective therapies for COVID-19 is essential to minimize COVID-19 morbidity and mortality (Lu, 2020; Li and De Clercq, 2020). Several components of the virus and host immune system have been identified as potential targets in COVID-19 management. A previous study reported that the SARS-CoV-2 S2 protein was important for viral entry and thought to be a potential target for neutralizing antibody (Walls et al., 2020). Moreover, the SARS-CoV-2 infection could trigger a hyperactive immune response, leading to cytokine release syndrome (CRS) or cytokine storm (Hertanto et al., 2021). Among numerous proinflammatory cytokines involved in CRS, interleukin (IL)-6 is one of the most critical and has been associated with a poor prognosis (Zhang et al., 2020a; Zhang et al., 2020b; Zhao, 2020). Therefore, the inhibition of IL-6 (e.g., by preventing the binding to its receptors) could prevent the occurrence of CRS and lower the severity of the disease. Moreover, complement C5a and white blood cells (i.e., neutrophil and monocytes) were detected in the bronchoalveolar lavage fluid (BALF) of COVID-19 patients, supporting the chemoattraction role of C5a in lungs-derived C5aR1-expressing cells; which is responsible for cell damage and ARDS (Carvelli et al., 2020). Of note, C5a is one of the major drivers for complement-mediated inflammation that rapidly responds to pathogens and cellular injury (Woodruff and Shukla, 2020).

Monoclonal antibody is one of the proposed therapeutic options for COVID-19. Anti-SARS-CoV-2 monoclonal antibodies are among the latest investigational COVID-19 treatments granted with emergency use authorization (EUA) from the United States Food and
Drug Administration (FDA). Briefly, monoclonal antibodies recognize one epitope of an antigen while polyclonal antibodies recognize multiple epitopes (Lipman et al., 2005). The variable region can be modified to target specific molecules, including the S2-protein, cytokines, and cytokine receptors. Among 5 Antibody isotypes—IgA (subclasses IgA1 and IgA2), IgE, IgD, IgM, and IgG (subclasses IgG1, IgG2, IgG3 and IgG4) —IgG is commonly selected for therapeutic purposes due to its strong binding affinity to an antigen and its Fc receptor, supported by its long serum half-life (Chames et al., 2009; Lu, 2020). As the consequence, the administration of neutralizing monoclonal antibody targeting SARS-CoV-2 spike proteins allows the inhibition of virus attachment to human ACE-2 receptors, thus inhibits viral entry (Tian et al., 2020). To prevent complement system activation triggered during SARS-CoV-2 infection, a recent study proposed the use of monoclonal antibody against C5a (anti-C5a) (Woodruff and Shukla, 2020). Among available monoclonal antibodies for COVID-19, anti-IL-6 receptors and anti-SARS-CoV-2 are widely studied in clinical trials (Yang et al., 2020; Patel et al., 2021).

Nonetheless, the efficacy and safety of this pharmacological agent remain controversial (FDA, 2020; Patel et al., 2021). Moreover, at present, the application of monoclonal antibody as a therapeutic agent in COVID-19 shows conflicting results in prior studies, demanding further investigations. Thus, this meta-analysis aims to assess the previously reported efficacy and safety of monoclonal antibodies on clinical and laboratory outcomes and its safety profile in COVID-19 patients.

MATERIALS AND METHODS

Search Strategy

The PubMed (MEDLINE), ScienceDirect, Cochrane Library, Proquest and Springer databases were systematically searched from January 25 until February 5, 2021, without any limitation of publication year. We also performed manual searches, extended from February 5 to March 5, 2021, through MedRxiv and citation searching to get evidence from unpublished data and retrieve potential articles without missing any additional eligible studies. The following keywords were used: “(COVID-19) AND ((Monoclonal Antibody) OR (Neutralizing Antibody) OR (Serotherapy)) AND ((Viral Load) OR (Oxygen) OR (Duration) OR (Mortality) OR (Inflammation))”. Additional details about the search strategy are available in Supplementary Materials.
Data Collection

The title and abstract of the articles were screened by IAW and NRP. Duplications were removed using the Mendeley reference manager. We independently screened the title and abstract of all retrieved studies based on the following eligibility criteria: (1) participants confirmed at any clinical stage of COVID-19 with/without other comorbidities; (2) adult (≥18 years) male/female study population; (3) the study involved monoclonal antibody treatments of interest; (4) the study compared the intervention group with control (placebo or/and standard of care or combination therapy); (5) the study evaluated efficacy (i.e. mortality, need for mechanical ventilation, hospital discharge, virologic outcomes) or safety outcomes (serious adverse events); (6) study type was randomized controlled trial (RCT).

Data Extraction and Quality Assessment

IAW, NRP, and DSB independently extracted relevant data using the standardized form. The following information was extracted: first author’s name and publication year, study design, country, sample size, age, disease severity, dosage and administration of monoclonal antibodies, types of comparison, and outcomes (all-cause mortality, need for mechanical ventilation, hospital discharge at day 28-30, change of viral load, and serious adverse events). Serious adverse events were defined as any untoward medical occurrence that are potentially related to monoclonal antibody treatment.

The studies were classified into “low risk of bias,” “some concerns,” or “high risk of bias” according to the Cochrane risk of bias tool for randomized trial (RoB ver.2) (Sterne et al., 2019). Any discrepancies were consulted with an expert and resolved by discussion until reaching consensus. The Grading of Recommendation Assessment, Development, and Evaluation (GRADE) system was used to evaluate the quality of evidence of the findings (Brignardello-Petersen et al., 2018; Puhan et al., 2014).

Statistical Analysis

Primary analyses were carried out using the Review Manager version 5.4 (The Cochrane Collaboration). Pooled risk ratios (RRs) for dichotomous outcomes were evaluated using Mantel-Haenszel method. Standardized mean differences (SMDs) of continuous outcomes were pooled using inverse variance. I^2 test was used to quantify heterogeneity between studies, with values $I^2 > 50\%$ represents moderate-to-high heterogeneity. If the value of I^2 statistics was <50\% or the p-value was >0.1, the fixed-effects model could be applied; otherwise, the random-effects model would be used. Begg's funnel plot and Egger’s test were
performed for publication bias analysis, and if present, trim-and-fill method was performed. All statistical analysis with a p-value <0.05 was considered statistically significant.

Subgroup analyses were done on monoclonal antibody types and disease severity for mortality risk, and monoclonal antibody types for the other outcomes. Leave-one-out sensitivity analysis was conducted to find the source of statistical heterogeneity and demonstrate how each study affected the overall result. Fixed-effects and random-effects with different tau estimators (DL, SJ, and HKSJ) were performed for sensitivity analysis using R version 4.0.5 to find the robustness of pooled data (see *Supplementary Materials*).

RESULTS

Study characteristics

We identified 6032 and 7310 studies through primary database and manual searching, respectively. After duplication removal, we screened potentially relevant studies and obtained 228 studies to be checked for eligibility. Some studies were excluded due to the reasons documented in PRISMA diagram (*Figure 1*).

Among 16 RCTs, the REMAP-CAP trial (Gordon et al., 2021) was split into two separate intervention groups: the tocilizumab and sarilumab groups. In total, there were 8857 participants included in the meta-analysis, consisted of 4700 and 4157 participants in the intervention and control groups, respectively. The characteristics and outcomes summary for each study, RoB ver.2 assessment, and the certainty of evidence of findings reported using GRADE system are presented in *Supplementary Tables*.

MORTALITY

All-cause mortality

All-cause mortality was examined from 16 RCTs with a total of 8857 patients. Monoclonal antibody was associated with a lower mortality risk (RR=0.89 (95%CI 0.82-0.96), $I^2=3\%$, fixed-effects). Subsequently, subgroup analyses on the disease severity and monoclonal antibody types were conducted, however only tocilizumab and sarilumab therapies for severe-critical COVID-19 patients were pooled, due to limited studies available (*Figure 2*).

Tocilizumab in severe-critical COVID-19

Patients with severe-critical COVID-19 receiving tocilizumab displayed a lower mortality risk (RR=0.90 (95%CI 0.83-0.97), $I^2=12\%$, fixed-effect). RECOVERY trial contributed to
the most weight in this meta-analysis (71.1%), and 82.3% in tocilizumab arm and 82.2% in
standard therapy arm receiving corticosteroid (pooled RR=0.87 (95%CI 0.80-0.95), Ι²=14%,
fixed-effects). Omitting this trial did not change the direction of effect, although it impaired
the statistical significance (RR=0.92 (95%CI 0.78-1.10), Ι²=25%, fixed-effects). Meanwhile,
TOCIBRAS trial mainly contributed to the statistical heterogeneity. Excluding this study
from the analysis provided a more consistent result (pooled RR=0.89 (95%CI 0.82-0.96),
Ι²=0%). At last, Funnel plot and Egger’s test did not show any publication bias.

Sarilumab in severe-critical COVID-19

In severe to critical COVID-19 patients treated with sarilumab, the pooled effect was
evaluated using two studies: EudraCT and REMAP-CAP trials (RR=0.74 (95%CI 0.48-1.14),
Ι²=2%, fixed-effect). Numerically, the RR was lower than that of tocilizumab, but it did not
reach statistical significance. Egger’s test cannot be performed because there were only two
studies included in the analysis.

THE NEED FOR MECHANICAL VENTILATION

Ten RCTs consisted of 6061 patients were examined (Figure 3). Only studies involving anti-
IL-6R antibodies reported mechanical ventilation outcome. All participants were in severe-
critical disease, except for the participants from COVINTOC trial who were in moderate-
severe state. Although IL-6R did not demonstrate a reduction of mechanical ventilation
requirements (RR=0.76 (95%CI 0.61-0.96, Ι²=49%, random-effects), subgroup analyses
revealed that tocilizumab significantly reduced the need for mechanical ventilation (RR=0.76
(95%CI 0.62-0.94), Ι²=42%, random-effects), but not sarilumab (RR=0.76 (95%CI 0.21-
2.78), Ι²=87%, random-effects). We also found that EMPACTA trial was the source of
heterogeneity in the tocilizumab subgroup. However, omitting this study yielded a similar
result (RR=0.81 (95%CI 0.72-0.91), Ι²=0%, fixed-effects). No publication bias was detected
from the funnel plot and Egger’s test.

HOSPITAL DISCHARGE AT DAY 28-30

Eleven RCTs consisted of 7490 patients were examined (Figure 4). The overall effect of the
interventions on hospital discharge at day 28-30 showed no significant difference (RR=1.05
(95%CI 0.99-1.22), Ι²=71%, random-effects). Patients in tocilizumab and sarilumab
subgroups had severe-critical disease, while patients receiving spike-protein antibodies were
in moderate-severe COVID-19. Subsequently, subgroup analyses for sarilumab and
tocilizumab were performed and only tocilizumab significantly increased the rate of hospital
discharge (RR=1.07 (95% CI 1.00-1.14), I²=60%, random-effects). The p-value in 4 significant figures was 0.0498, therefore it reached statistical significance. The funnel plot and Egger’s test did not indicate any publication bias.

CHANGE OF VIRAL LOAD

Two RCTs consisted of 896 patients with bamlanivimab monotherapy (Figure 5) indicated that bamlanivimab alone did not reduce viral load at day 11 (SMD=-0.07 (95% CI -0.21 to 0.07), I²=44%, fixed-effect), in contrast to the combination of bamlanivimab and etesevimab (SMD=-0.33 (95% CI -0.59 to -0.08)). In addition, REGN-CoV2 significantly reduced viral load at day 7 (SMD=-3.39 (95% CI -3.82 to -2.97)). However, only two studies included into the analysis, thus Egger's test could not be performed.

SERIOUS ADVERSE EVENTS

In 16 RCTs of 8897 patients, the overall safety of monoclonal antibody did not differ from placebo/standard therapy (RR=1.04 (95% CI 0.76-1.43), I²=54%, random-effects) (Figure 6), as well as the subgroup analyses performed for anti-spike-protein (RR=1.00 (95% CI 0.67-1.49) I²=29%, fixed-effect), tocilizumab (RR=0.96 (95% CI 0.79-1.18), I²=72%, random-effects) and sarilumab (RR=1.12 (95% CI 0.74-1.70, I²=0%, fixed-effect). Interestingly, the CORIMUNO-TOCI 1 trial reported that tocilizumab was significantly safer than placebo/standard therapy. On the contrary, the EMPACTA trial showed that tocilizumab was more harmful than placebo/standard therapy. These two studies were the main sources of heterogeneity in our analysis, although removing those studies from the tocilizumab subgroup did not change the direction of effect and statistical significance (RR=1.00 (95% CI 0.80-1.24), I²=0%, fixed-effects). Publication bias was indicated in the anti-spike-protein subgroup. The trim-and-fill method altered neither the direction of effect nor the statistical significance (RR=0.92 (95% CI 0.63-1.36), I²=27%, fixed-effects).

DISCUSSION

Our analyses showed that monoclonal antibodies provided benefits on mortality rate reduction, mostly because of the weight of tocilizumab studies. From subgroup analysis, tocilizumab showed this benefit, while sarilumab did not. Analysis of the need for mechanical ventilation was conducted by employing only anti-IL-6R studies since the others did not report this outcome. Additionally, some RCTs were outpatients and in mild-moderate disease. No significant benefit was found on hospital discharge at day 28-30 from pooling all
monoclonal antibodies. However, subgroup analysis demonstrated that tocilizumab had a significantly higher hospital discharge rate, but sarilumab and bamlanivimab did not. Most of the publications included in this study did not specify any specific description about the hospital discharge. We obtained this data from the description of their ordinal severity scale. In addition, the symptom progression score was not compared because it was described differently across studies.

Next, we also performed a meta-analysis assessing the efficacy of monoclonal antibodies in lowering viral load. For this particular purpose, all included studies employed anti spike-proteins (Chen et al., 2021; Gottlieb et al., 2021; Weinreich et al., 2021). There were three studied interventions—bamlanivimab, bamlanivimab-ettesevimab, and REGN-COV2. As the results, the pooled effect of bamlanivimab studies did not show significant viral load reduction. Meanwhile, bamlanivimab-ettesevimab and REGN-COV2 reported significant viral load reduction, but each was evaluated only from one RCT, therefore we cannot evaluate the pooled effect. Finally, safety profile should be taken into consideration when administering monoclonal antibodies in COVID-19 patients. Our analyses showed that monoclonal antibodies did not show significant harm or benefit as compared to placebo/standard care. However, not all studies included in this meta-analysis specified the number of treatment-related severe adverse events. The researchers considerately assumed that severe adverse events were related to the treatment unless it was specified otherwise.

We believe that pooling different monoclonal antibodies into one outcome analysis is not insightful since different interventions should be treated independently as they could display varying results. Therefore, we also aimed to look into the subgroup analysis in addition to the overall effect of the pooled antibodies.

ANTI-IL-6R

The efficacy of tocilizumab was mostly reported in studies where the participants received corticosteroids, for example in RECOVERY and REMAP-CAP trials. If these studies were excluded from the analysis, the pooled effect of mortality risk reduction was no longer significant. This highlights the potential benefit of the combination of tocilizumab and corticosteroids in mortality risk reduction. Indeed, it was shown that dexamethasone significantly reduced mortality risk (Sterne et al, 2020). This could also indicate that the tocilizumab effect may be additional to the corticosteroid benefit (Horby et al, 2021). Whether the administration of tocilizumab alone, without another immunomodulatory agent,
would reduce mortality risk remains unclear. Therefore, it is recommended that the use of tocilizumab in severe-critical COVID-19 patients is combined with corticosteroids rather than tocilizumab alone.

Next, our subgroup analysis showed that tocilizumab was beneficial in reducing mechanical ventilation needs and hospital discharge. Consistently, the benefits of tocilizumab in improving oxygen-support and mechanical ventilation rate have been previously documented (Aziz et al., 2021; Kotak et al., 2020; Tleyjeh et al., 2021). Additionally, REMAP-CAP and EMPACTA trials reported that the administration of tocilizumab was associated with earlier hospital discharge and reduction of hospital stay, respectively.

We failed to demonstrate the benefit of sarilumab in reducing the need for mechanical ventilation and hospital discharge rate. This was in line with another study (Della-Torre et al., 2020). The following are some of the proposed arguments to explain this finding. First, the open-label REMAP-CAP trial showed that the sample size included in the sarilumab group was smaller than the control group. Second, the double-blind EudraCT trial reported that more than 60% of patients in the trial received systemic corticosteroids before, during, or after infusion of the studied drug and the frequency of systemic corticosteroid varied during the study. Consequently, it might have diminished the differences between the investigational drug and the control group.

Anti IL-6R was generally safe and tolerable for the treatment of COVID-19 patients. A previous study reported no significant differences between tocilizumab and control groups in terms of the risk of treatment-related serious adverse events (Lin et al, 2021). Tocilizumab, moreover, had a lower rate of serious infections compared to those in the control group (Kotak et al, 2020; Lan et al., 2020; Zhao et al., 2021).

Lastly, the SARS-CoV-2 infection may result in excessive release of pro-inflammatory cytokines, including IL-6, an important cytokine associated with disease severity and mortality, which leads to hyperactivation of the immune response associated with acute respiratory distress syndrome (Xu et al., 2020). However, although IL-6 is one of major cytokines that drive CRS, IL-6 suppression alone might be insufficient to cease the hyperinflammatory phase of COVID-19. Moreover, although there was an increased IL-6 level in COVID-19 patients, it was not as high as observed in sepsis or ARDS (Leisman et al., 2020; Sinha et al., 2020). In general, healthcare providers need to consider patients with severe COVID-19 to attain the maximum benefit from the inhibition of IL-6.
ANTI-SPIKE-PROTEIN

Viral load reduction of bamlanivimab was evaluated by two studies (Chen et al., 2021; Gottlieb et al., 2021) from the same RCT, BLAZE-1 (NCT04427501). Both studies reported that bamlanivimab 700mg and bamlanivimab 7000mg did not reduce viral load at day 11. Gottlieb et al. (2021) reported that only bamlanivimab 2800mg showed a higher viral load reduction although it was statistically insignificant, while Chen et al. (2020) reported that bamlanivimab 2800mg significantly reduced viral load.

Prozone-like effect possibly plays a role for the reduced efficacy at higher dose, more likely in the earlier time of the disease (Vaidya et al., 2017; Casadevall et al., 2021). Besides, the natural course of the disease also plays a role in viral load reduction. This may mask the clinical significance of neutralizing antibody administration. It is important to mention that missing data from Gottlieb et al. (2020) was replaced using an approach detailed in Supplementary Materials.

Among these anti-spike-protein antibodies, REGN-COV2 and bamlanivimab-etesevimab showed statistically significant viral load reduction but bamlanivimab alone did not reduce viral load. This finding was in line with FDA’s decision published on 16 April 2021 stating that FDA revoked its previously issued EUA for monoclonal antibody bamlanivimab (FDA, 2021). There is a possibility that etesevimab has superior efficacy on viral load reduction. Another possibility is that etesevimab and bamlanivimab may have synergistic effects. However, further research on clinical efficacy of etesevimab monotherapy and its pharmacokinetics with bamlanivimab are warranted.

Finally, it is important to note that BLAZE-1, ACTIV-3 and REGN-COV2 research were sponsored by the same company that designed the drug. Moreover, although all serious adverse events were reported, only some were judged by investigators to be treatment related. However, these studies are double-blinded. To correct the publication bias, trim-and-fill method was performed and the result remained similar.

ANTI-C5a

At present, there was only one study investigating anti-C5a with two outcomes included in this meta-analysis: the all-cause mortality and safety profile of the monoclonal antibody therapy. The mortality rate in anti-C5a antibody IFX-1 (vilobelimab) group vs. placebo was numerically lower, 13.3% vs 26.7%, respectively. However, this finding did not reach
statistical significance, probably owing to the small number of participants. Additionally, compared to placebo/standard care, neither benefit nor harm was observed.

LIMITATION

This meta-analysis has several limitations: (1) some studies were open-labelled; thus, the risk of bias regarding allocation concealment in those studies could not be ruled out; (2) We mainly discussed IL-6R inhibitors (e.g., tocilizumab) because most published RCTs are tocilizumab-associated studies and existing studies on other antibodies are scarce. (3) The small number of participants in some studies may increase the likelihood of type II statistical error. Larger scale RCTs are required to confirm the findings; (4) many other trials are ongoing; therefore, this study needs to be updated as soon as more trials become available. Nevertheless, this meta-analysis provides a solid evidence by incorporating only RCTs. To the best of our knowledge, this is the first meta-analysis that investigated the efficacy and safety of various monoclonal antibodies on clinical and laboratory outcomes, as well as their safety profile in patients with COVID-19.

CONCLUSION

In conclusion, monoclonal antibody is beneficial in reducing mortality risk and the need for mechanical ventilation, but not hospital discharge in COVID-19 patients. In contrast to sarilumab, tocilizumab reduces mortality risk in severe to critical patients, reduces the need for mechanical ventilation, and increases hospital discharge at day 28-30. Bamlanivimab monotherapy does not reduce mortality, increase hospital discharge, nor reduce viral load; while bamlanivimab-etesevimab and REGN-COV2 significantly decrease viral load. IFX-1 shows no benefit in mortality risk reduction. No major safety concern was documented for all the monoclonal antibodies.

Conflict of interest

None declared.

Ethical approval

Not applicable.
381 **Funding**

382 None.

383

384
REFERENCES

Aziz M, Haghbin H, Abu Sitta E, Nawras Y, Fatima R, Sharma S, et al. Efficacy of tocilizumab in COVID-19: A systematic review and meta-analysis. J Med Virol 2021;93(3):1620-1630, doi: 10.1002/jmv.26509.

Brignardello-Petersen R, Bonner A, Alexander PE, Siemieniuk R, Furukawa T, Rochwerg B, et al. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol 2018;93:36-44, doi:10.1016/j.jclinepi.2017.10.005.

Carvelli J, Demaria O, Vély F, Batista L, Benmansour N, Fares J, et al. Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature 2020;588(7836):146-150, doi:10.1038/s41586-020-2600-6.

Casadevall A, Joyner MJ, Pirofski LA. Neutralizing Antibody LY-CoV555 for Outpatient Covid-19. NEJM 2021;384(2):189, doi: 10.1056/NEJMc2033787.

Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. British Journal of Pharmacology 2009;157(2):220-33, doi: 10.1111/j.1476-5381.2009.00190.x.

Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. N Engl J Med 2021;384(3):229-237, doi: 10.1056/NEJMoa2029849.

Della-Torre E, Campochiaro C, Cavalli G, De Luca G, Napolitano A, La Marca S, et al. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: an open-label cohort study. Ann Rheum Dis 2020;79(10):1277-1285, doi: 10.1136/annrheumdis-2020-218122.

Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol A, Arabi YM, et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med 2021;384(16):1491-1502, doi: 10.1056/NEJMoa2100433.

Gottlieb RL, Nirula A, Chen(148,3),(990,981)
Puhan MA, Schunemann HJ, Murad MH, Li T, Brignardello-Petersen R, Singh JA, et al. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ 2014;349:g5630, doi: 10.1136/bmj.g5630.

Rosas IO, Bräu N, Waters M, Hunter BD, Bhagani S, Skiest D, et al. Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia. N Engl J Med 2021;384(16):1503-1516, doi: 10.1056/NEJMo2028700.

Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N Engl J Med 2021;384(1):20-30, doi: 10.1056/NEJMo2030340.

Salvarani C, Dolci G, Massari M, Merlo DF, Cavuto S, Savoldi L, et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern Med 2021;181(1):24-31, doi: 10.1001/jamainternmed.2020.6615.

Sinha P, Calfee CS, Cherian S, Brealey D, Cutler S, King C, et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: a prospective observational study. Lancet Respir Med 2020;8(12):1209-1218, doi: 10.1016/S2213-2600(20)30366-0.

Soin AS, Kumar K, Choudhary NS, Sharma P, Mehta Y, Kataria S, et al. Tocilizumab plus standard care versus standard care in patients in India with moderate to severe COVID-19-associated cytokine release syndrome (COVINTOC): an open-label, multicentre, randomised, controlled, phase 3 trial. Lancet Respir Med 2021;9(5):511-521, doi: 10.1016/S2213-2600(21)00081-3.

Sterne J, Murthy S, Diaz J, Slutsky A, Villar J, Angus DC, et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020;324(13):1330-1341, doi: 10.1001/jama.2020.17023.

Sterne JAC, Savović J, Page MJ, Elbers R, Blencowe N, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366: l4898, doi: 10.1136/bmj.l4898.

Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes A, et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med 2020;383(24):2333-2344, doi: 10.1056/NEJMo2028836.

Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect 2020;9(1):382-385, doi: 10.1080/22221751.2020.1729069.

Tleyjeh IM, Kashour Z, Damaj M, Riaz M, Tlayjeh H, Altannir M, et al. Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis. Clin Microbiol Infect 2021;27(2):215-227, doi: 10.1016/j.cmi.2020.10.036.

U.S. Food and Drug Administration. Coronavirus (COVID-19) update: FDA revokes emergency use authorization for monoclonal antibody bamlanivimab. News release. Food and Drug Administration. 2021. [Accessed 19 April 2021] https://www.fda.gov/news-
events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-monoclonal-antibody bamlanivimab.

U.S. Food and Drug Administration. Coronavirus (COVID-19) Update: November 9, 2020. Food and Drug Administration. 2020. [Accessed 2 February 2021] https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-november-9-2020.

Vaidya K, Oleksijew A, Tucker L, Pappano W, Anderson M, Grinnell C, et al. A “Prozone-Like” Effect Influences the Efficacy of the Monoclonal Antibody ABT-700 against the Hepatocyte Growth Factor Receptor. Pharmacology 2017;100(5-6):229-242, doi: 10.1159/000478663.

Veiga VC, Prats JAG, Farias DLC, Dourado LK, Zampieri F, Machado FR, et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ 2021;372:n84, doi: 10.1136/bmj.n84.

Vlaar APJ, de Bruin S, Busch M, Timmermans S, van Zeggeren I, Koning R, et al. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol 2020;12:764-773, doi: 10.1016/S2665-9913(20)30341-6.

Walls A, Park Y, Tortorici M, Wall A, McGuire A, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020;181(2):281-292.e6, doi: 10.1016/j.cell.2020.02.058.

Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med 2021;384(3):238-251, doi: 10.1056/NEJMoa2035002.

Woodruff T, Shukla A. The Complement C5a-C5aR1 GPCR Axis in COVID-19 Therapeutics. Trends in Immunology 2020;41(11):965-967, doi: https://10.1016/j.it.2020.09.008.

Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A 2020;117(20):10970-10975, doi: 10.1073/pnas.2005615117.

Yang L, Liu W, Yu X, Wu M, Reichert JM, Ho M. COVID-19 antibody therapeutics tracker: a global online database of antibody therapeutics for the prevention and treatment of COVID-19. Antibody Therapeutics 2020;3(3):205-212, doi: 10.1093/abt/tbaa020.

Zhang C, Wu Z, Li JW, Zhao H, Wang G. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents 2020;55(5):105954, doi: 10.1016/j.ijantimicag.2020.105954.

Zhang S, Li L, Shen A, Chen Y, Qi Z. Rational Use of Tocilizumab in the Treatment of Novel Coronavirus Pneumonia. Clin Drug Invest 2020;40(6):511-518, doi: 10.1007/s40261-020-00917-3.
Zhao H, Zhu Q, Zhang C, Li J, Wei M, Qin Y, et al. Tocilizumab combined with favipiravir in the treatment of COVID-19: A multicenter trial in a small sample size. Biomed Pharmacother 2021;133:110825, doi: 10.1016/j.biopha.2020.110825.

Zhao M, Lu J, Tang Y, Dai Y, Zhou J, Wu Y. Tocilizumab for treating COVID-19: a systemic review and meta-analysis of retrospective studies. Eur J Clin Pharmacol 2021;77(3):311-319, doi: 10.1007/s00228-020-03017-5.

Zhao M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. Int J Antimicrob Agents 2020;55(6):105982, doi: 10.1016/j.ijantimicag.2020.105982.
Figure 1 PRISMA diagram of the literature search
Figure 2 Subgroup analysis between types of monoclonal antibody and mortality among COVID-19 patients

Study or Subgroup	Intervention	Control	Weight	Risk Ratio	Risk Ratio
	Events	Events		M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
1.1.1 Anti Spike (mild to moderate)					
Chen et al. 2020	0	0	143	Not estimable	Not estimable
Goulard et al. 2021	0	0	146	Not estimable	Not estimable
Laroe et al. 2020	6	153	5	151	0.5%
Weireth et al. 2020	0	164	0	89	Not estimable
Subtotal (95% CI)	934	528	0.5%	1.67	[0.57, 4.86]
Total events	8	5			
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.94 (P = 0.35)					
1.1.2 Tocilizumab (severe-critical)					
Gordon et al. 2021	96	350	142	307	13.9%
Herminio et al. 2020	7	35	0	67	0.9%
Horby 2021	596	2822	684	2094	71.1%
Rossa et al. 2021	58	294	28	14	3.9%
Salaruma et al. 2020	26	248	11	128	1.6%
Sasan et al. 2020	2	50	1	63	0.1%
Stone et al. 2020	6	191	2	81	0.3%
Velga et al. 2021	14	95	6	64	0.6%
Subtotal (95% CI)	3284	3038	92.3%	0.90	[0.83, 0.97]
Total events	897	693			
Heterogeneity: Ch² = 7.52, df = 7 (P = 0.34), P = 12%					
Test for overall effect: Z = 2.64 (P = 0.009)					
1.1.3 Tocilizumab (moderate-severe)					
Seo, 2021	11	91	15	90	1.6%
Subtotal (95% CI)	91	88	1.6%	0.71	[0.34, 1.46]
Total events	11	15			
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.93 (P = 0.35)					
1.1.4 Tocilizumab (unspecific)					
Zhao et al. 2021	0	18	2	7	0.4%
Subtotal (95% CI)	19	19	0.4%	0.08	[0.00, 1.49]
Total events	0	2			
Heterogeneity: Not applicable					
Test for overall effect: Z = 1.86 (P = 0.06)					
1.1.5 Sotrovimab (severe-critical)					
Gordon et al. 2021	10	45	142	397	3.0%
Lacourc re et al. 2020	35	332	9	84	1.6%
Subtotal (95% CI)	377	481	4.5%	0.74	[0.48, 1.14]
Total events	45	151			
Heterogeneity: Ch² = 1.02, df = 1 (P = 0.31), P = 2%					
Test for overall effect: Z = 1.36 (P = 0.18)					
1.1.6 IFX-1 (severe-critical)					
Vafai et al. 2020	9	15	7	15	0.7%
Subtotal (95% CI)	15	15	0.7%	1.29	[0.65, 2.54]
Total events	9	7			
Heterogeneity: Not applicable					
Test for overall effect: Z = 0.72 (P = 0.47)					
Total (95% CI)	4790	4157	100.0%	0.89	[0.62, 0.96]
Total events	881	1072			
Heterogeneity: Ch² = 14.99, df = 12 (P = 0.31), P = 13%					
Test for overall effect: Z = 2.80 (P = 0.009)					
Figure 3 Subgroup analysis between types of monoclonal antibody and the need for mechanical ventilation among COVID-19 patients

Figure 4 Subgroup analysis between types of monoclonal antibody and the number of COVID-19 patients discharged from hospital at day 28-30
Figure 5 Forest plot for the correlation between monoclonal antibody and viral load change from baseline

Figure 6 Subgroup analysis between types of monoclonal antibody and the number of serious adverse events in COVID-19