Clinical and molecular characteristics of invasive community-acquired Staphylococcus aureus infections in Chinese children

Yanhong Qiao1,2†, Xue Ning1†, Qiang Chen3, Ruizhen Zhao4, Wenqi Song1, Yuejie Zheng4, Fang Dong1, Shipeng Li1, Juan Li1, Lijuan Wang1, Ting Zeng1, Yanhong Dong1, Kaihu Yao1, Sangjie Yu1, Yonghong Yang1 and Xuzhuang Shen1*

Abstract

Background: This study aims to investigate the clinical features of invasive community-acquired Staphylococcus aureus (CA-SA) infection in Chinese children and analyze its molecular features.

Methods: Clinical data and invasive CA-SA isolates were prospectively collected. Pediatric risk of mortality (PRISM) score was used for disease severity measurement. Molecular typing was then performed, followed by expression analysis for virulence genes.

Results: Among 163 invasive CA-SA infection cases, 71 (43.6%) were methicillin-resistant SA (MRSA) infections and 92 (56.4%) were methicillin-susceptible SA (MSSA). A total of 105 (64.4%) children were younger than 1 year old, and 79.7% (129/163) were under 3 years age. Thirteen kinds of diseases were observed, in which bacteremia and pneumonia accounted for 65.6% (107/163) and 52.8% (86/163), respectively. A total of 112 (68.1%) patients had two or more infective sites simultaneously, and four cases (2.5%) died. CA-MSSA more frequently caused multi-sites infections, bacteremia, and musculoskeletal infection than MRSA. A total of 25 sequence types (STs) were detected. MRSA mainly comprised ST59 (49/71, 69%), whereas the most frequent clonotypes were ST88 (15/92, 16.3%), ST25 (13/92, 14.1%), ST7 (13/92, 14.1%), ST2155 (12/92, 13%), and ST188 (9/92, 9.8%) for MSSA. Seven STs were common to both MSSA and MRSA groups. No differences in clinical presentation or PRISM score were found between the two groups or among different ST. The expression levels of the four known virulence genes varied among the six main ST clones.

Conclusions: Invasive CA-SA infections were characterized by high incidence and multi-site infections in young children in China. The clinical manifestations of CA-MSSA were more frequently associated with multi-site infections, bacteremia and musculoskeletal infection than those of CA-MRSA. Isolated genotypes may be relevant to the expressions of virulence genes, but not to clinical manifestations.

Keywords: Staphylococcus aureus, Community-acquired, Invasive infection, Child, Molecular epidemiology
Background

Staphylococcus aureus (SA) causes a multitude of human infections around the world [1]. In the past decade, an increase in the community-acquired SA (CA-SA) infection rate, accompanied by a decreased incidence of hospital-acquired SA (HA-SA) infections, has been observed [2-4].

In 2005, Gonzalez reported 14 children with severe CA-SA infections, 13 of which experienced bacteremia and bone-joint complications simultaneously and 3 died [5]. Since 1999 four deaths caused by severe invasive community-acquired methicillin-resistant SA (CA-MRSA) were observed in America, and many serious infections caused by CA-MRSA have been reported [6]. In Cunningham’s study, eight children with serious invasive community-acquired methicillin-susceptible SA (CA-MSSA) infection were reported and their clinical manifestations were clearly described [7]. Several studies have reported invasive infections, but few of large scale studies on the clinical characteristics of invasive CA-SA infections have been performed.

As the subjective simplification of the physiological stability index, the simplified acute physiology (SAP) score is a widely used general severity scoring system used in European intensive care medicine for adult patients [8]. The pediatric risk of mortality (PRISM) score has been developed and validated in several centers in the United States in pediatric patients [9-11]. It was reported that the PRISM score could directly reflect the severity of the disease, and has been widely used for predicting patients’ death or survival, as reported in Portugal in 2005, the United Kingdom and Senegal in 2006, and India in 2010 [12-15].

Regional differences may exist in the distribution of invasive CA-MRSA isolates. For example, ST93 and ST1 are the common types in Australia [16], whereas ST8 (USA300) is common in America [17] and France [18]. In Switzerland, ST5 accounted for the majority of invasive CA-MRSA isolates [19]. Our previous study also revealed that ST59 was the dominant clone in children from the mainland of China, which was in agreement with the results reported by Taiwan [20]. However, no dominant clone has been detected yet for invasive MSSA isolates throughout the world [21,22].

Previous studies have indicated that virulence genes may play an important role in serious SA infections [7,22,23]. Although various virulence genes have been reported, core genome-encoded toxins, including hemolysin-a genes (hla), a-type phenol-soluble modulin (psma) and RNAIII, have been detected in almost all SA isolates [24]. Panton–Valentine leukocidin (pvl) was initially considered as an important virulence factor in SA; however, the role of pvl in the pathogenicity of SA is still under debate [25]. Compelling evidence has revealed an association between virulence gene expression and pathogenicity in animal model. For example a study in the US showed high expression levels of core genome-encoded virulence genes contributed to the high virulence of isolate USA300 in rats [26]. However, information on the relationship between virulence gene expression and clinical manifestations in patients with invasive SA infections is still lacking [27]. A correlation has also been reported between molecular type and virulence gene expression [28,29].

In the current study, we used the PRISM III score to evaluate disease severity, described the clinical and molecular characteristics of CA-SA, and detected the expression of the hla, psma, RNA III and pvl genes. Virulence gene expression and clinical manifestations and virulence gene expressions were then compared between invasive CA-MRSA and CA-MSSA isolates, followed by an investigation into the relationship between molecular characteristics and disease severity. The findings contribute to our understanding of the pathogenic mechanisms involved in invasive SA infections.

Methods

Definitions

“Community-acquired infections” are infections that are either present or incubating on admission and associated with the first positive culture result obtained within 48 h of admission [29]. Individuals with the following “high-risk” factors were excluded from the study: receiving continuous hemodialysis, receiving chemotherapy, dependent on an indwelling catheter, needing an intravenous line or percutaneous device when culturing [15].

Invasive SA refers to SA isolated from a normally sterile body site [17]. Subjects were excluded from this classification if they had positive culture results but did not show clinically relevant infective signs [17]. Staphylococcal pneumonia, necrotizing pneumonia and musculoskeletal infection were defined as described previously [20]. Patients with pneumonia were excluded if the SA isolates were recovered from the sputum. Patients with orbital infections were excluded if the SA isolates were recovered from the swabs of the eye or ear secretion only [30]. Severe pneumonia diagnosis should meet at least one of the following requirements: (1) admission to an intensive care unit; (2) necrotizing or cavitary infiltrates; and (3) empyema. Patients that did not meet one of these requirements were classified into the moderate pneumonia group [31]. Necrotizing fasciitis was diagnosed based on a surgical report, as confirmed by pathological examination [32]. Any patient who showed SA infections involving skin or soft tissue structures was categorized under skin and soft tissue infections (STSI).
Patients and data collection
Patients (≤14 years old) with invasive CA-SA infections were prospectively recruited from three regional children’s hospitals between December 2011 and February 2013. Clinical data, such as general demographic information, clinical features, laboratory results, potential risk factors and treatment, were retrieved from the medical records department. PRISM III [11] was used to measure disease severity; all patients were scored based on PRISM within 24 h of admission. This study was approved by the Ethics Committees of the three children’s hospitals in Beijing, Shenzhen and Jiangxi. A parent or guardian of each patient provided written informed consent.

Molecular typing and screening of the key virulence genes
All isolates were sent to the Key Laboratory of Major Diseases in Beijing Children’s Hospital for SA identification. Only the first isolated strain from a normally sterile body site was evaluated.

Polymerase chain reaction (PCR) amplification was used for multilocus sequence typing (MLST) and staphylococcal protein A (SPA) typing. Three core genome-encoded toxin genes, including hla, and psmA and the regulator RNAIII, were screened by PCR [33]; pvl gene was also detected as described previously [33].

Quantitative analysis of gene expression
For RNA isolation, overnight cultures were diluted 1:100 in 10 mL of tryptic soy broth (TSB) and incubated at 37°C with shaking at 180 rpm until stationary growth phase (OD600 ≥ 2.0). No observable differences in the growth rates were found for the SA strains in TSB. The harvested cell aliquots were pelleted by centrifugation at 12,000 rpm at −4°C for 5 min. Each pellet was washed once in an equal volume of Tris–HCl and EDTA buffer (10 mM Tris–HCl and 1 mM EDTA, pH 8), followed by re-suspension in TE buffer containing 10 g/L lysozyme and 40 mg/L lysostaphin. The mixture was then incubated at 37°C for 15 min. Total bacterial RNA was isolated using RNAiso (Takara, Japan) according to the instructions of the manufacturer. Contaminated DNA was removed by incubating the total bacterial RNA with RNase-free DNase I (30 U/100 μg of total RNA, Takara) at 37°C for 1 h. Complementary DNA (cDNA) was synthesized using the PrimeScript RT reagent kit (Takara) according to the instructions of the manufacturer. The amounts of RNA and cDNA were quantitated using a NanoDrop spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA).

Real-time PCR was performed using SYBR Premix Ex Taq™ (Takara), and the primers were designed and synthesized according to a previous study [28]. The comparative Ct (2–ΔΔCT) method was used to quantify the expression of the genes selected, with the expression of MRSA isolate USA300 being used as a reference. Alterations in gene expression were expressed as the fold change relative to the reference; all of the reactions were performed in triplicate, and the gyrB gene was used as an endogenous control [33].

Statistical analysis
Categorical variables were analyzed using the Chi-square or Fisher’s exact test. Mann–Whitney U analysis was used to compare PRISM scores between MRSA and MSSA groups. Gene expression values were normalized by log10 transformation, then analyzed by performing the Student’s t test to compare MRSA and MSSA strains. One-way analysis of variance with Dunnett’s multiple comparison was used for the PRISM score and expression level analysis among different ST or SPA types. Differences were considered statistically significant when P < 0.05. All analyses were performed using SPSS software (version 18.0, SPSS Inc., Chicago IL, USA).

Results
Demographics of the patients
A total of 163 children (99 males and 64 females; mean age, 2.4 years) were enrolled in this study. Approximately 66.3% (108/163) of the patients were less than 1 year old and 79.8% (130/163) were under 3 years old. Seventy-one patients (43.6%) suffered from MRSA infection, while 92 (56.4%) patients manifested MSSA infection. A significantly higher proportion of patients with related risk factors was observed in the MRSA group than in the MSSA group (χ2 = 11.499, df = 1, P = 0.001). No significant difference was found between the two groups in terms of age, origin, fever duration and other factors (Table 1). A total of 120 cases (73.6%) yielded PRISM scores of less than 4.0, and 20 cases (12.3%) yielded PRISM scores higher than 8.0. The Mann–Whitney U analysis revealed no significant difference in the PRISM scores between MRSA and MSSA groups (Z = –0.706, P = 0.48).

Clinical diagnosis
Table 2 lists the disease spectrum of patients with invasive SA infection. Bacteremia (65%), pneumonia (52.8%) and musculoskeletal infection (19.6%) were the most frequent diseases. The proportion of patients with bacteremia or musculoskeletal infection caused by MSSA was significantly higher than that caused by MRSA (χ2 = 13.696, df = 1, and P = 0.000 for bacteremia; χ2 = 5.578, df = 1, and P = 0.018 for musculoskeletal infection). Fifty-one cases (31.3%) were found to have single-site infections; among which, pneumonia (45.1%) and bacteremia (29.4%) were the most common symptoms. In total, 112 patients (68.7%) showed two or more infective sites simultaneously, in which 25.9% had bacteremia and pneumonia, and 19.6% had SSTI. A significantly higher proportion of patients with
multi-site infections was observed in the MSSA group compared with the MRSA group ($\chi^2 = 5.344$, df = 1, and $p = 0.021$). Patients with pneumonia complicated with MRSA-instigated SSTI were higher in proportion than patients with SSTI caused by MSSA ($\chi^2 = 10.57$, df = 1, and $p = 0.001$). The proportion of patients displaying pneumonia alone was higher in the MRSA group than in the MSSA group ($\chi^2 = 7.82$, df = 1, and $p = 0.005$, Table 2).

Table 1 Demographics and clinical characteristics of patients with invasive SA infections

Characteristics	Total No. (%)	MRSA No. (%)	MSSA No. (%)	P	
Patients	163	71 (43.6)	92 (56.4)	1.0	
Gender					
Male	99 (60.7)	37 (52.1)	62 (67.4)	0.048	
Female	64 (39.3)	34 (47.9)	30 (32.6)		
Age-Median (month, IQR*)					
<=1 mo	51 (31.3)	20 (28.1)	31 (33.7)	0.451	
1 mo–1 yr	54 (33.1)	26 (36.6)	28 (30.4)	0.593	
1 yr–3 yr	25 (15.3)	15 (21.2)	10 (10.9)	0.072	
3 yr–14 yr	33 (20.3)	10 (14.1)	23 (25)	0.086	
Area					
Rural	90 (55.2)	38 (53.5)	52 (56.5)	0.702	
Urban	73 (44.8)	33 (46.5)	40 (43.5)		
Risk factorsa:					
History in the past 1 yr of					
Hospitalization	21	16	5	0.001	
Surgery	6	3	3	0.336	
Trauma or scalds	3	1	2	0.212	
Endotracheal intubation	4	3	1	1.0	
Congenital heart disease	4	2	2	0.567	
Other congenital diseasesc	3	2	1	1.00	
Presenting symptoms					
Fever	134 (82.2)	60 (84.5)	74 (80.4)	0.5	
Hypothermia	4 (2.5)	2 (2.8)	2 (2.2)	1.00	
Fever days-Median (IQR)	5.5 (7)	6.5 (7)	5 (6)	0.76	
Shock	4 (2.5)	2 (2.8)	2 (2.2)	1.00	
Coma	2 (1.2)	1 (1.4)	1 (1.1)	1.00	
Laboratory examination					
White cell count-Median (10⁹/L, IQR)	17.35 (8.47)	18.71 (9.41)	16.41 (9.52)	0.72	
Neutrophil count-Median (IQR)	10.46 (7.37)	11.58 (6.44)	10.74 (7.18)	0.81	
Thrombocytopenia (<100 × 10⁹/L)	12 (7.4)	5 (7)	7 (7.6)	0.89	
C-reactive protein-Median (mg/L, IQR)	47.9 (19.5)	46.7 (21.3)	48.5 (19.3)	0.92	
PRISM score	Median (IQR)	2 (6)	2 (6)	2 (6)	0.48
Hospitalization					
Hospital days-median (IQR)	15 (7)	17 (8)	14.5 (7)	0.168	
Intensive care unit (ICU) admission	76 (46.6)	34 (47.9)	42 (45.7)	0.777	
ICU days-Median (IQR)	9 (4)	8 (5)	9.5 (4)	0.786	

Notes: MRSA: methicillin-resistant S. aureus; MSSA: methicillin-susceptible S. aureus; PRISM: pediatric risk of mortality.

*aInterquartile range.

*bNot mutually exclusive.

*cOne MRSA case each of congenital immunodeficiency and congenital laryngeal cyst and one MSSA case of thalassemia.
Table 2 Clinical characteristics of children with invasive S. aureus infections

Characteristics	Total n =163	MRSA n =71	MSSA n = 92	P
Infection sites				
Bacteremia	107 (65.6)	34 (47.9)	73 (79.3)	0.000
Pneumonia	86 (52.8)	43 (60.6)	43 (46.7)	0.08
Severe pneumonia	72 (83.7)	38 (88.4)	34 (79.1)	0.243
Necrotizing pneumonia	16 (18.6)	8 (18.6)	8 (18.6)	1.0
Moderate pneumonia	14 (16.3)	5 (11.6)	9 (20.9)	0.243
Musculoskeletal infection	32 (19.6)	8 (11.3)	24 (26.1)	0.018
Osteomyelitis	27 (84.3)	8 (100)	19 (79.2)	0.29
Arthritis	15 (46.9)	3 (37.5)	17 (70.8)	0.116
Pyomyositis	10 (31.2)	4 (50)	6 (25)	1.0
Necrotizing fasciitis	8 (25)	2 (25)	6 (25)	1.0
Meningitis	7 (3.7)	3 (4.2)	4 (4.3)	1.0
Endocarditis	3 (1.8)	2 (2.8)	1 (1.1)	0.82
Orbital abscess	4 (2.5)	4 (5.6)	0	0.073
Deep-seated abscess	4 (2.5)	1 (1.4)	3 (3.3)	0.805
Others\(^b\)	6 (3.6)	4 (5.6)	2 (2.2)	0.457
Clinical diagnosis				
Single-site infections				
Pneumonia	23 (45.1)	18 (62.1)	5 (22.7)	0.005
Bacteremia	15 (29.4)	6 (20.7)	9 (40.9)	0.117
Musculoskeletal infection	7 (13.7)	2 (6.9)	5 (22.7)	0.224
Others\(^c\)	6 (11.8)	3 (10.3)	3 (13.6)	1.0
Multi-site infections				
Two infection sites	87 (77.7)	35 (49.3)	52 (74.3)	0.266
Bacteremia + SSTI	22 (19.6)	10 (23.8)	12 (17.1)	0.39
Bacteremia + Pneumonia	29 (25.9)	7 (16.7)	22 (31.4)	0.084
Pneumonia-related Bacteremia	16 (14.3)	3 (7.1)	13 (18.6)	0.094
Bacteremia + Musculoskeletal infection	12 (10.7)	2 (4.8)	10 (14.3)	0.207
Pneumonia + SSTI	10 (8.9)	9 (21.4)	1 (1.4)	0.001
Others\(^d\)	14 (12.5)	7 (16.7)	7 (10)	0.302
The infection sites ≥3				
Bacteremia + Pneumonia + SSTI	12 (10.7)	2 (4.8)	10 (14.3)	0.207
Others\(^e\)	13 (11.6)	5 (11.9)	8 (11.4)	1.00

MRSA: methicillin-resistant S. aureus; MSSA: methicillin-susceptible S. aureus; SSTI: skin and soft tissue infections.

\(^a\)Not mutually exclusive.

\(^b\)One MRSA case each of lymphadenitis, peritonitis, hepatapostema, and appendiceal abscess and one MSSA case each of peritonitis and hydrocele complicated with infection.

\(^c\)One MRSA case each of appendiceal abscess, deep-seated abscess, and orbital abscess and three MSSA cases of deep-seated abscess.

\(^d\)Two MRSA cases of bacteremia + orbital abscess, one MRSA case each of pneumonia + musculoskeletal infection, pneumonia + meningitis, pneumonia + peritonitis, pneumonia + hepatapostema, and musculoskeletal infection + SSTI; three MSSA cases of musculoskeletal infection + SSTI; one MSSA case each of pneumonia + meningitis, bacteremia + peritonitis, endocarditis + meningitis, and bacteremia + hydrocele complicated with infection.

\(^e\)One MRSA case each of bacteremia + meningitis + endocarditis, bacteremia + pneumonia + lymphadenitis, pneumonia + musculoskeletal infection + endocarditis, bacteremia + pneumonia + orbital abscess + meningitis, and bacteremia + pneumonia + musculoskeletal infection + SSTI; four MSSA cases of bacteremia + musculoskeletal infection + SSTI; two cases of bacteremia + pneumonia + meningitis + SSTI; one MSSA case each of bacteremia + pneumonia + musculoskeletal infection and bacteremia + pneumonia + musculoskeletal infection + SSTI.
Treatment and follow-up

Additional file 1: Table S1 shows information relating to the medication and surgical treatment received by patients. The proportion of susceptible antibiotics used in prior empirical therapy was significantly lower in the MRSA group than in the MSSA group (χ² = 13.49, df =1, and p = 0.000). No difference was observed between the MRSA and MSSA groups in the proportion of patients requiring surgical treatment (χ² = 1.824, df =1, and p = 0.117).

In total, four patients died because of infection-related diseases during hospitalization; among which, three were newborn babies with bacteremia complicated with pneumonia. The remaining case suffered from MRSA bacteremia and meningitis complicated with endocarditis.

MLST and SPA typing

A total of 25 STs were detected. MRSA strains showed 11 ST, in which 69% were ST59. Nineteen ST, including two new ST (ST2760 and ST2771), were detected in the MSSA strains. The five most dominant STs in MSSA were ST88 (15/92, 16.3%), ST25 (13/92, 14.1%), ST7 (13/92, 14.1%), ST2155 (12/92, 13%) and ST188 (9/92, 9.8%). Seven ST were observed in both MRSA and MSSA, among which the most frequent ST were ST59, ST88, ST25, ST7, ST2155 and ST188, detected in 119 strains (73%).

The MRSA strains displayed 21 SPA types, among which t437 (42/71, 59.2%) and t441 (4/71, 5.6%) were the most frequent. Forty-three SPA types, including the most dominant ST genotypes (F = 3.947 and p = 0.003 for psmA; F = 7.62 and p = 0.00 for hla; F = 9.276 and p = 0.00 for RNAIII; and F = 3.22 and p = 0.01 for pvl). The expression levels of the psmA genes in ST59 were significantly higher than those in ST7 (p = 0.003). Higher expression levels of hla and RNAIII were detected in the ST59 strains than those in the ST88, ST7 and ST188 strains (p = 0.00, p = 0.009 and p = 0.00 for hla; and p = 0.00, p = 0.001 and p = 0.00 for RNAIII). In addition, a higher pvl gene expression level was also observed in the ST59 strain than in the ST188 and ST7 strains (p = 0.008 and p = 0.021). Lower pvl expression was observed in ST59 than in the ST25 strains (Figure 2).

Discussion

Clinical characteristics of invasive CA-SA infections in children

As a pathogen with extremely high prevalence, CA-SA causes various severe clinical infections and is associated with morbidity and mortality [4,17,34,35]. In Suryadevara’s study, most of the 128 children with invasive SA infections showed symptoms of bacteremia and musculoskeletal infections, and 61.8% of these children were under 4 years age [4]. Chen reported that cases in children under 1 year of age accounted for 29% of the total number of children with invasive CA-MRSA infections [36]. Kleven reported that bacteremia and pneumonia are the most common diseases in invasive MRSA infections [17]. In the present study, children younger than 1 year of age accounted for approximately 64.4% of the total cases with invasive SA infections, and bacteremia was the most common diagnosis. In addition, 68.1% of the children exhibited two or more infective sites, indicating that the clinical manifestations of invasive SA infections are complex in young children.
Previous studies have also revealed that invasive MRSA in children mainly resulted in multi-sites infections [36,37]. However, few studies have reported the clinical features of pediatric invasive MSSA infections. In the current study, significantly higher proportion of bacteremia, musculoskeletal infection and multi-site infections were found in the pediatric MSSA group than in the MRSA group, which differed from the results reported for adults [16,38]. Recent studies have reported that fewer MSSA cells were required to cause the same rate of death in mice than MRSA cells, indicating the higher pathogenicity of MSSA than MRSA [39]. In addition, differences in virulence of epidemic clones and sensitivities of different populations may also contribute to these results. However, no significant difference in the mortality and PRISM scores was observed between children with invasive MRSA and those

Table 3 Clinical characteristics of children with invasive infections caused by the common MLST-type *S. aureus* strains

Clinical syndrome	ST59 (n = 51)	ST88 (n = 20)	ST25 (n = 13)	ST7 (n = 13)	ST2155 (n = 12)	ST188 (n = 10)			
	MRSA (n = 49)	MSSA (n = 2)	MRSA (n = 5)	MSSA (n = 15)	MRSA (n = 13)	MSSA (n = 13)			
Total	20(39.2)	0	1(5)	5(25)	4(30.8)	5(38.5)	6(50)	1(100)	2(22.2)
Bacteremia	5(9.8)	0	0	2(10)	2(15.4)	3(23.1)	1(8.3)	1(100)	1(11.1)
Single-site infection									
Pneumonia	12(23.5)	0	1(5)	2(10)	1(7.7)	1(7.7)	3(25)	0	0
Musculoskeletal infection	2(3.9)	0	0	1(5)	0	1(7.7)	2(16.7)	0	1(11.1)
Others	1a(2)	0	0	0	1b(7.7)	0	0	0	0
Multi-site infections									
B + P	29(56.9)	2(3.9)	4(20)	10(50)	9(69.2)	8(61.5)	6(50)	0	7(77.8)
B + M	(7.8)	0	2(10)	2(10)	2(15.4)	3(23.1)	1(8.3)	0	3(33.3)
B + S	1(2)	0	1(5)	3(15)	3(23.1)	1(7.7)	2(16.7)	0	1(11.1)
P + S	8(15.7)	0	1(5)	3(15)	2(15.4)	0	3(25)	0	1(11.1)
B + P + S	7(13.7)	0	0	0	0	0	0	0	0
Others	7a(13.7)	1b(2)	0	1b(5)	1b(7.7)	3b(23.1)	0	0	2d(22.2)

Notes: B + P, bacteremia + pneumonia; B + M, bacteremia + musculoskeletal infection; B + S, bacteremia + skin and soft tissue infections (SSTI); P + S, pneumonia + SSTI.

aOne case of orbital abscess.
bOne case of deep-seated abscess.
cTwo cases of bacteremia + orbital abscess, one case each of bacteremia + pneumonia + musculoskeletal infection, musculoskeletal infection + SSTI, bacteremia + pneumonia + lymphadenitis, bacteremia + pneumonia + osteomyelitis + SSTI, and pneumonia + osteomyelitis + endocarditis.
dOne case of bacteremia + pneumonia + musculoskeletal infection + SSTI.
eOne case of bacteremia + musculoskeletal infection + SSTI.
fOne case of musculoskeletal infection + SSTI.
gTwo cases of bacteremia + pneumonia + meningitis and one case of pneumonia + meningitis.
hOne case each of bacteremia + pneumonia + musculoskeletal infection and meningitis + endocarditis.

Figure 1 Differences in PRISM scores between different MLST-type isolates and different Staphylococcus protein A (SPA)-type isolates.

Differences in PRISM score between different MLST-type and SPA-type groups are not statistically significant (one-way ANOVA test). Note: ST59 only had two MSSA strains. ST25, ST7, and ST2155 only comprised MSSA strains. ST188 only had one MRSA strain. ST88 had five MRSA and 15 MSSA strains. t437 only had three MSSA strains, whereas t441 only comprised MRSA strains. t091 and t189/t078 only comprised MSSA strains.
with MSSA infections. In the present study, some of the cases had hospitalizations during the previous year and colonization of SA might not be ruled out among those patients. A high proportion of MRSA infections was observed in this study, and therefore the choice of effective antibiotics is important for successful management in invasive CA-SA infection.

Molecular features of invasive CA-SA isolates
This is the first study to analyze of the molecular characteristics of invasive CA-MSSA strains isolated from children in mainland China. Diverse types including ST88, ST25, ST7, ST2155 and ST188, have been identified in this study, which differ from those detected in Europe, Australia and Taiwan [21,22,40]. In addition, the common clones of CA-MSSA were diverse, as reported previously in other geographical regions [21,22,40], indicating that MSSA strains isolated from invasive infection may also have regional characteristics.

MSSA has been proposed to gain or lose drug resistance and virulence genes through transduction of phage or Staphylococcal Cassette Chromosome mec (SCCmec) elements, and may finally evolve into MRSA [41]. For example, glycopeptide intermediately susceptible MRSA, discovered in Japan and in the United States, is supposedly derived from ST5-MSSA after acquiring SCCmec II [42]. In the present study, seven ST-SPA types existed in both MRSA and MSSA, and a similar mechanism may contribute to the evolution of MSSA to MRSA. However, in ST59-MSSA strains, only one strain was type t437, which was the dominant SPA type for ST59-MRSA. This finding indicates that ST59-MRSA is probably an entry clone, but did not evolve from local MSSA, similar to the results obtained by Jimenez [38].

Molecular features and disease
Studies have reported that the virulence gene of SA may vary with ST type [22,24,29]. Little information exists on whether molecular types contribute to different clinical manifestations. Nair reported that invasive infections caused by USA300 and non-USA300 strains did not differ in mortality [43], whereas Wehrhahn et al. found that ST45-MSSA, ST47-MSSA and ST22-MRSA corresponded to bloodstream infections [22]. In this study, no significant differences were found in the PRISM scores, infective site number or infective type among different ST and SPA types. Several factors may affect such analyses, such as strain type, immune status of the host, underlying diseases, quantity of the infecting bacteria and the route of infection.

Expression of key virulence genes
Key virulence genes-hla, psma, RNAIII and pvl genes in different MLST-type and SPA-type isolates. The expression of key genes was measured by qRT–PCR of cultures grown to the early phase of stationary growth in TSB. gyrB cDNA was used as an endogenous control. USA300 was used as a normalized control to measure sample expression. Data was normalized by transforming the data by log10 (gene expression values). The results are the means of each group and are presented as means ± standard errors of the means. *: p <0.05, **: p <0.01, ***: p <0.001 (one-way ANOVA, Dunnett’s multiple comparison test vs. ST59).
genes were related to disease severity in the rabbit model and proposed that the expressions of these genes can be used for assessing the virulence of MRSA [28]. Kobayashi deemed that hla, psma, and RNAIII perform important functions in USA300-induced mouse skin infection [44]. A number of studies have shown that the pathogenic potential of MRSA may be related to the expression levels of virulence genes, especially the key virulence genes. However, differences in the expression levels of key virulence genes have not been clearly investigated between MRSA and MSSA, and among the different ST of MSSA. Our previous studies revealed that expressions of hla, psma, RNAIII and pvl in ST59 were higher than those in other MRSA STs [29]. In the present study, stronger associations were detected among the six common genotypes of the isolates and their expressions of virulence genes. However, ST was not correlated with PRISM score. Based on these results, it appears that SA virulence genes do not solely act in causing infection, they may also play a causative role by the regulation of virulence. In addition, in the present study, the pvl gene was only detected in 27% of the isolates, in which MRSA accounted for 68.1%. This result indicates that the pvl gene does not play a crucial role in SA pathogenicity.

Conclusion
In this study, the clinical and molecular characteristics of invasive SA infections are investigated in Chinese children for the first time. Multifarious clinical manifestations were observed for invasive SA infections. MSSA may be associated with more multi-site infections, bacteremia and musculoskeletal infections. ST may contribute to different expression levels of virulence genes. The limitation of this study is that sample size is relatively low, multicenter studies are needed for further verification of our findings. However, our results help to clarify the pathogenic mechanism of this organism. These findings may have implications for rational drug use and the treatment of SA-induced invasive infections in children.

Additional files

Additional file 1: Table S1. Management and clinical outcomes of invasive S. aureus infections in hospitalized children.

Additional file 2: Table S2. Molecular characteristics of strains isolated from patients with invasive S. aureus infections.

Additional file 3: Figure S1. Expression levels of psma, hla, RNA II and pvl in MRSA and MSSA. The expression of key genes was measured by quantitative real-time polymerase chain reaction (qRT–PCR) of cultures grown to the early phase of stationary growth in tryptic soy broth (TSB). gyrB cDNA was used as an endogenous control. USA300 was used as a normalized control to measure sample expression. Data was normalized by transforming the data by lg10 (gene expression values). The results are the means of every group and are presented as means±standard errors of the means. Differences in key gene expressions between the two groups are not statistically significant (Student’s t-test).

Abbreviations
CA-SA: Community-acquired Staphylococcus aureus; PRISM: Pediatric risk of mortality; SA: Staphylococcus aureus; MRSA: Methicillin-resistant SA; HA-SA: Hospital-acquired SA; CA-MRSA: Community-acquired methicillin-resistant SA; CA-MSSA: Community-acquired methicillin-susceptible SA; hla: hemolysin-a genes; psma: a-type phenol-soluble modulins; pvl: Panton–Valentine leukocidin; PCR: Polymerase chain reaction; MLST: multilocus sequence typing; STs: sequence types; SPA: staphylococcal protein A; TS: tryptic soy broth.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YHQ and XN were responsible for the study design, data collection, conducting the experiments and drafting of the manuscript; RZZ, YJ, QC, FD and WQS were responsible for data and sample collection; LJW, JI, and SFL performed the experiments; TZ and YHD performed the statistical analysis; YHY, KHY and SFL critically revised the manuscript; XZS contributed to the design of the study and drafting the manuscript, analyzing the data, and revising the final version of the manuscript. All authors approved the final manuscript.

Acknowledgments
This study was supported by the National Natural Science Foundation of China (Grant No. 81171648) and the National Natural Science Foundation of China and the Research Grants Council of Hong Kong Joint Research Scheme (No. 81061160509). We would like to thank Prof. Baolin Sun from the University of Science and Technology of China, Prof. Jianzhong Zhang from the Chinese Center for Disease Control and Prevention and Prof. Yongqiang Jiang from the Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences for their assistance with the experimental techniques. We are also grateful for the help provided by Wei Gao and Lin Yuan from the Beijing Pediatric Research Institute, Beijing Children’s Hospital.

Author details
1Key Laboratory of Major Diseases in Children and National Key Discipline of Pediatrics, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, PR China. 2Pediatric Department of Aviation General Hospital, Beijing, PR China. 3Jiangxi Children’s Hospital, Jiangxi, PR China. 4Shenzhen Children’s Hospital, Shenzhen, PR China.

Received: 6 June 2014 Accepted: 23 October 2014
Published online: 07 November 2014

Reference
1. Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998, 339:520–532.
2. Hadler JL, Petit S, Mandour M, Carter ML. Trends in invasive infection with methicillin-resistant Staphylococcus aureus, Connecticut, USA, 2001–2010. Emerg Infect Dis 2012, 18:917–924.
3. Sola C, Pagnanini H, Egea AL, Moyano AJ, Gamoero A, Kevic I, Calaso C, Vindel A, Lopardo H, Brocco JL. Spread of epidemic MRSA STS-IV clone encoding PVL as a major cause of community onset staphylococcal infections in Argentinian children. PLoS One 2012, 7:e30487.
4. Sunyaveda M, Moro MR, Rosenbaum PF, Kiska D, Riddell S, Weiner LB, Shaw J. Incidence of invasive community-onset Staphylococcus aureus infections in children in Central New York. J Pediatr 2010, 156:152–154.e1.
5. Gonzalez BE, Martinez-Aguilar G, Hulten KG, Hammerman WA, Coxx-Bu J, Avalos-Mishan A, Mason EO Jr, Kaplan SL. Severe Staphylococcal sepsis in adolescents in the era of community-acquired methicillin-resistant Staphylococcus aureus. Pediatrics 2005, 115:642–648.
6. From the Centers for Disease Control and Prevention: Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus–Minnesota and North Dakota, 1997–1999. JAMA 1999, 282:1123–1125.
7. Cunningham A, Brick T, Cooper M, Davis J, Hunt D, O’Toole AM, Nolan M, Lyall H. Severe invasive Panton-Valentine Leucocidin positive Staphylococcus aureus infections in children in London, UK. J Infect 2009, 59:28–36.
8. Strand K, Søreide E, Aardal S, Flaaten HT. A comparison of SAPS II and SAPS 3 in a Norwegian intensive care unit population. Acta Anaesthesiol Scand 2009, 53:395–400.
9. Pollack MM, Ruttmann UE, Gerton PR: Pediatric risk of mortality (PRISM) score. Crit Care Med 1998, 16:1110–1116.

10. Pollack MM, Patel KM, Ruttmann U, Cuerdon T: Frequency of variable measurement in 16 pediatric care intensive care units: influence on accuracy and potential for bias in severity of illness assessment. Crit Care Med 1996, 24:74–77.

11. Pollack MM, Patel KM, Ruttmann UE: PRISM III: an updated Pediatric Risk of Mortality score. Crit Care Med 1996, 24:743–752.

12. Martha VF, Garcia PC, Vacha JP, Einloft PR, Bruno F, Rampon V: Comparison of two prognostic scores (PRISM and PIM) at a pediatric intensive care unit. J Pediatr (Rio J) 2005, 81:259–264.

13. Brady AR, Harrison D, Black S, Jones, S, Rowan K, Pearson G, Ratcliffe J, Parny GJ, UK PICOS Study Group: Assessment and optimization of mortality prediction tools for admissions to pediatric intensive care in the United Kingdom. Pediatrics 2006, 117:e73–e74.

14. Gerardin P, Rogier C, Leuteret S, Jouvenel P, Ka AS, Imbert P: Evaluation of Pediatric Risk of Mortality (PRISM) scoring in African children with falciparum malaria. Pediatr Crit Care Med 2006, 74S:47.

15. Taun RN, Lahnith KR, Tullu WS: Performance of PRISM (Pediatric Risk of Mortality) score and PIM (Pediatric Index of Mortality) score in a tertiary care pediatric ICU. Indian J Pediatr 2010, 77:267–271.

16. Wehrhahn MC, Robinson JO, Pearson JC, O’Brien GF, Tan HL, Coombs GW, Pascoe EM, Lee R, Salviris P, Salviris R, New D, Murray RJ: Clinical and laboratory features of invasive community-onset methicillin-resistant Staphylococcus aureus infection: a prospective case–control study. Eur J Clin Microbiol Infect Dis 2010, 29:1028–1033.

17. Klevers RM, Morrison MA, Nadle J, Pettit G, Gershman K, Ray S, Harrison LH, Lynfield R, Durney G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK: Active Bacterial Core surveillance (ABCs) MRSA Investigators: Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007, 298:1763–1771.

18. Dauwalder O, Lina G, Durand G, Bes M, Meugnier H, Jarlier V, Coignard B, UK PICOS Study Group: Comparative analysis of virulence diversity of clones collected in France in 2006 and 2007. Clin Microbiol Infect 2013, 19:e288–e290.

19. Qiao Y, Dong F, Song W, Wang L, Yang Y, Shen X: Hospital and community-associated methicillin-resistant Staphylococcus aureus: a 6-year surveillance study of invasive infections in Chinese children. Acta Paediatr 2013, 102:1081–1086.

20. Grundmann H, Andersen CM, van den Wijngaard CC, Sparr BG, Hermann D, Feil EJ: European Staphylococcal Reference Laboratory Working Group: Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 2010, 7:e1000215.

21. Wehrhahn MC, Robinson JO, Pascoe EM, Coombs GW, Pearson JC, O’Brien GF, Tan HL, New D, Salviris P, Salviris R, Murray RJ: Illness severity in community-onset invasive Staphylococcus aureus infection and the presence of virulence genes. J Infect Dis 2012, 205:1840–1848.

22. Hinz SA, Schennings T, Heindahl A, Flock JI: Collagen binding of Staphylococcus aureus is a virulence factor in experimental endocarditis. J Infect Dis 1996, 174:83–88.

23. Otto M: MRSA virulence and spread. Cell Microbiol 2012, 14:1513–1521.

24. Otto M: A MRSA-terious enemy among us: end of the PVL controversy? Nat Med 2011, 17:169–170.

25. Montgomery CP, Boyle-Vavra S, Adem PV, Lee JC, Husain AN, Clasen J, Daum RS: Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis 2008, 198:561–570.

26. Boakes E, Kearns AM, Badou C, Lina G, Hill RL, Ellington MJ: Do differences in Panton-Valentine leukocidin production among international methicillin-resistant Staphylococcus aureus clones affect disease presentation and severity? J Clin Microbiol 2010, 50:1773–1776.

27. Li M, Cheung HJ, Hu J, Wang D, Joo HS, Deleo FR, Otto M: Comparative analysis of virulence and toxin expression of global community-associated methicillin-resistant Staphylococcus aureus strains. J Infect Dis 2010, 202:1856–1876.