Dear Editors

We read with great interest the manuscript by Zhang et al. that reported on the impact of different risk factors and comorbidities in COVID-19 lethality. The authors observed that the odds of dying by COVID-19 in cancer patients decrease with age and cancer becomes a non-significant factor above 80 years. We speculate on the possible causes for the different COVID-19 severity between elderly and young patients. Several factors that can have a different impact on young and elderly have to be taken into account such as inflammation, microbiota and anti-cancer therapies. Inflammaging is a complex process that characterizes elderly people and it is believed to contribute to the severity of COVID-19 associated with old age. Cancer and related therapies may alter the process of inflammaging both quantitatively and qualitatively and could impact on COVID-19 severity. Moreover, therapies used in elderly cancer patients are usually different from that used for young people where the presence of comorbidities and the mechanisms of action of the different drugs both on the susceptibility genes and on other factors have to be considered. Sex hormones and anti-estrogen therapies affect significantly gene expression in target cells thereby modulating the susceptibility of the tissues to SARS-CoV-2 infection and as a consequence the extent of the symptoms. The concentration of sex hormones varies with aging and among sexes. Interestingly, recent evidences, further corroborate the hypothesis that also sex hormones or anti-estrogen therapies impact the susceptibility to COVID-19 and its severity.

Why the complications of COVID-19 patients differ in elderly and young cancer patients

Sara Bravaccini*, Fabio Nicolini*, Michele Zanon, Anna Gaimari, Claudio Cerchione, Roberta Maltoni, Francesca Pirini, Lucia Mazzotti, Michela Cortesi, Sara Ravaioli, Maria Maddalena Tumedei, Massimiliano Mazza*

IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy

ARTICLE INFO

Keywords:
COVID-19 symptomatology
Elderly patients
Inflammation
Comorbidities
Cancer

ABSTRACT

Zhang et al. reported the impact of different risk factors and comorbidities in COVID-19 lethality. The authors observed that the odds of dying by COVID-19 in cancer patients decrease with age and cancer becomes a non-significant factor above 80 years. We speculate on the possible causes for the different COVID-19 severity between elderly and young patients. Several factors that can have a different impact on young and elderly have to be taken into account such as inflammation, microbiota and anti-cancer therapies. Inflammaging is a complex process that characterizes elderly people and it is believed to contribute to the severity of COVID-19 associated with old age. Cancer and related therapies may alter the process of inflammaging both quantitatively and qualitatively and could impact on COVID-19 severity. Moreover, therapies used in elderly cancer patients are usually different from that used for young people where the presence of comorbidities and the mechanisms of action of the different drugs both on the susceptibility genes and on other factors have to be considered. Sex hormones and anti-estrogen therapies affect significantly gene expression in target cells thereby modulating the susceptibility of the tissues to SARS-CoV-2 infection and as a consequence the extent of the symptoms. The concentration of sex hormones varies with aging and among sexes. Interestingly, recent evidences, further corroborate the hypothesis that also sex hormones or anti-estrogen therapies impact the susceptibility to COVID-19 and its severity.

* Corresponding authors.
E-mail addresses: sara.bravaccini@irst.emr.it (S. Bravaccini), fabio.nicolini@irst.emr.it (F. Nicolini), massimiliano.mazza@irst.emr.it (M. Mazza).

https://doi.org/10.1016/j.tranon.2022.101541
Received 28 June 2022; Accepted 7 September 2022
Available online 12 September 2022
1936-5233/© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
chronic upregulation of IL-6 and its elevation also predicts mortality due to COVID-19 [1] and causes a strong inflammatory response. However, our understanding of the factors associated with these features is still limited and requires deeper investigation. Interestingly, the situation is different in centenarians who are characterized by anti-inflammatory markers and specific longevity traits which seem to protect them from poor outcomes. The presence of protective factors from COVID-19 mortality in centenarians has been recently observed also by the Robert Koch Institute who reports a mortality rate of 46.7% by COVID-19 for German SARS-CoV-2-infected patients aged 80–89 while 23.3% only for people above 90 and up to 117 years old [4]. This intriguing observation should be better explored in a wider cohort of centenarians in order to understand the mechanism or the features associated with a lower severity and mortality rate for COVID-19 in this subset of individuals. An interesting link between extreme longevity and IL-6 signaling was described by Zeng et al. [5], who found that the IL-6 gene polymorphism SNP rs2069837 is significantly associated with centenarians that were shown to overexpress anti-inflammatory variants in immune/inflammatory genes [6]. In addition, other factors such as the tissue localization and the level of expression of COVID-19 susceptibility genes (ACE2, TMPRSS2 and NRPI), which are differentially expressed in females and males, and in young and old individuals [7–9], can contribute to the diverse severity of the disease. An explanation could be that a lower expression of the susceptibility genes in normal tissues in the elderly population as compared to young individuals prevents synergism between cancer and COVID-19 while cancer in a young person may be associated with a worsening in the odds ratio of dying of COVID-19 due to the context in which SARS-CoV-2 infection and tissue tropism is manifested. According to this hypothesis, our data confirm that ACE2 and TMPRSS2 are expressed to a lower level in the tissues from the elderly as compared to young people [10].

In addition, it should be considered that different types of cancer affect young and old individuals therefore the synergy with COVID-19 and the following symptomatology may be influenced by that as well.

Moreover, the therapy used in elderly cancer patients may be different from that of young people due to the presence of comorbidities and fragilities in the elderly as well as the underlying mechanisms of action of the different drugs both on the susceptibility genes and on other factors that also affect the differences observed in young and elderly cancer patients. Sex hormones and anti-estrogen therapies, for example, affect significantly gene expression in target cells thereby modulating the susceptibility of the tissues to SARS-CoV-2 infection and as a consequence the extent of the symptoms [11]. The concentration of sex hormones varies with aging, it is different between sexes and it is a consequence the extent of the symptoms [11]. In addition, other factors such as the tissue localization and the level of expression of COVID-19 susceptibility genes (ACE2, TMPRSS2 and NRPI), which are differentially expressed in females and males, and in young and old individuals [7–9], can contribute to the diverse severity of the disease. An explanation could be that a lower expression of the susceptibility genes in normal tissues in the elderly population as compared to young individuals prevents synergism between cancer and COVID-19 while cancer in a young person may be associated with a worsening in the odds ratio of dying of COVID-19 due to the context in which SARS-CoV-2 infection and tissue tropism is manifested. According to this hypothesis, our data confirm that ACE2 and TMPRSS2 are expressed to a lower level in the tissues from the elderly as compared to young people [10].

Authors contributions

SB and MM conceived the idea, wrote the manuscript and provided a critical framework. FN, AG, CC, RM, LM, MZ, FP, MC, SR, MMT analyzed the studies in the literature. All authors proofread the manuscript, provided final approval to publish it and agreed to be accountable for all aspects of the manuscript.

Ethical approval

Not applicable.

Data availability statement

Not applicable.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Cellnex Telecom for its support to IRCCS IRST via the ACT4COVID project.

Funding

Cellnex Telecom for its support to IRCCS IRST via the ACT4COVID project.

References

[1] H Zhang, Y Wu, Y He, X Liu, M Liu, Y Tang, X Li, G Yang, G Liang, S Xu, M Wang, W. Wang, Age-related risk factors and complications of patients with COVID-19: a population-based retrospective study, Front. Med. (Lausanne) 8 (2022 Jan 11), 757459, https://doi.org/10.3389/fmed.2021.757459. eCollection 2021.
[2] M Bonafe, F Prattichizzo, A Giuliani, G Stori, J Sahabatinielli, F Olivieri, Inflamm-aging: why older men are the most susceptible to SARS-CoV-2 complicated outcomes, Cytokine Growth Factor. Rev. 53 (2020 Jun) 33–37, https://doi.org/10.1016/j.cytogfr.2020.04.005.
[3] F Prattichizzo, M Bonafe, F Olivieri, C Franceschi, Senescence associated macrophages and ‘macroph-aging’: are they pieces of the same puzzle? Aging 8 (12) (2016 Dec 7) 3159–3160, https://doi.org/10.18632/aging.101133.
[4] P Kordowitski, Centenarians and COVID-19: is there a link between longevity and better immune defense? Gerontology (2021) https://doi.org/10.1159/000518905.
[5] Y Zeng, C Nie, J Min, X Liu, M Li, H Chen, H Xu, M Wang, T Ni, Y Li, H Yan, JP Zhang, C Song, LQ Chi, HM Wang, J Dong, GY Zheng, L Lin, F Qian, Y Qi, X Liu, H Cao, Y Wang, I Zhang, Z Li, Y Zhou, Y Wang, J Lu, J Li, M Qi, L Bolund, A Yashin, KC Land, S Gregory, Z Yang, W Gotteschalk, W Tao, J Wang, J Wang, X Xu, H Bar, M Nygaard, I Christiansen, K Christensen, C Franceschi, MW Lutz, J Gu, Q Tan, T Perls, P Sebastiani, J Deelen, E Slagboom, E Hauser, H Xu, XI Tian, H Yang, JW. Vaupel. Novel loci and pathways significantly associated with longevity. Sci. Rep. 6 (2016) 21243, https://doi.org/10.1038/srep21243.
[6] D Lio, I Scola, RM Giarratana, G Candore, G Colonna-Romano, C Caruso, CR. Balisteri, SARS CoV-2 infection the longevity study perspectives, Ageing Res. Rev. 67 (2021), 101299, https://doi.org/10.1016/j.arr.2021.101299.
[7] R Reindl-Schweighofer, S Hodmloner, F Eskandary, M Poglitsh, B Bonderman, R Strazd, JH Abele, R Oberheber, A Zaufady, M. Hecking, ACE2 elevation in severe COVID-19, Am. J. Respir. Crit. Care Med. 203 (9) (2021) 1191–1196, https://doi.org/10.1164/rccm.202110-0142LE.
[8] M Hoffmann, H Kleine-Weber, S Schroeder, N Krüger, T Herrler, S Erichsen, TS Schiergens, G Herrler, NH Wu, A Nitsche, MA Müller, C Dronen, S Pohlmann, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell. 181 (2) (2020 Apr 16) 271–280, https://doi.org/10.1016/j.cell.2020.02.052, e8.
[9] S Wang, F Guo, K Liu, H Wang, S Rao, P Yang, C. Jiang, Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2, Virus Res. 136 (1–2) (2008 Sep) 8–15, https://doi.org/10.1016/j.virusres.2008.03.004.
[10] S Ravaioli, M Tebaldi, E Fonzi, D Angèli, M Mazza, F Nicolini, A Lucchesi, F Fanini, F Pirini, MM Tumedei, C Cerchione, P Viale, Y Sambri, G Martinelli, S. Bravaccini, C ACE2 and TMPRSS2 potential involvement in genetic susceptibility to SARS-CoV-2 in cancer Patients, Cell Transplant. 29 (2020), 96369720968749, https://doi.org/10.1177/096369720968749.
[11] S Bravaccini, I Fonzi, M Tebaldi, D Angeli, G Martinelli, F Nicolini, P Parrrella, M Mazza, Endrogen and estrogen receptor inhibitors: unexpected allies in the fight against COVID-19, Cell Transplant. 30 (2021 Jan-Dec), 96369721991477, https://doi.org/10.1177/096369721991477.
[12] L Xiao, H Sakagami, N. Miwa, ACE2: the key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: DeMON OR ANGE? Viruses 12 (5) (2020 Apr) 249, https://doi.org/10.3390/v12050491.