Biomechanical compatibility study of a nickel-free medical TiNbZr shape memory alloy

E O Nasakina1,2, S V Konushkin1, M A Sudarchikova1, D A Novikova4, K V Sergiyenko1, A A Kolmakova1,4, A V Mikhailova1, L A Shatova3, A G Kolmakov1, M A Sevostyanov1,2

1Baikov Institute of Metallurgy and Material Sciences, 49 Leninsky Avenue, Moscow, Russia
2All-Russian Research Institute of Phytopatology, Bol’shie Vyazemy, Moscow region, Russian Federation
3Voronezh State Technical University, st. 20-letiya Oktyabrya, 84/4, Voronezh, Russia
4N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Pr., Moscow, 119991, Russian Federation

Corresponding author’s e-mail: nacakina@mail.ru

Abstract. Biomechanical compatibility of a Ti - (20-30) Nb - 5Zr shape memory alloy was studied. The tensile strength study was carried out. The best properties are observed for the Ti-28Nb-5Zr composition with a wire diameter of 1200 μm, adapted to work in a living organism. The dependence of the change in strength and plasticity on the annealing temperature exhibits minimal extrema. The best characteristics are noted at 800 °C.

1. Introduction
Superelasticity, delayed response to action, low Young's modulus is characteristic of materials biomechanical compatibility and is inherent for shape memory alloys, for example, NiTi [1–2]. Therefore, nitinol is actively used in medicine.

However, the properties of the material highly depend on the surface state, which followed the method of production: different degrees of defectiveness, impurities, an surface Ni content. The marvelous properties of the alloy at the same time accompanied by some difficulties in their traditional methods processing [3-4]. Also the toxic nickel contained in a high concentration and the possibility of the corrosive destruction of the product in the working environment limit its applicability [5-8].

nevertheless, it was shown that shape memory alloys can be obtained from non-toxic metals [9-14]. The shape memory effect was found in titanium alloys with a tantalum, niobium, and molybdenum content of 20-40%. Zirconium also acts as a beta-stabilizer but also prevents the formation of an brittle ω-phase. The smaller size of zirconium compared to other designated metals caused a decrease in the bond strength between its atoms, which is connected with a decrease in elasticity Young's modulus. The superelasticity and shape memory effect were found for alloys with the zirconium content less than 8 at. %.

Thus, these alloys is interesting materials for medical production. This work was aimed at studying the biomechanical compatibility of the Ti-Nb-Zr alloy.
2. Materials and methods
The tensile strength study was carried out on an INSTRON 3382 universal testing machine with a
tensile speed of 1 mm/min. The initial calculated length was measured with an error of ± 0.1 mm. The
initial diameter was measured with an error of ± 0.001 mm. The sample was fixed in the grips of the
testing machine so that the extreme marks limiting the calculated length were spaced from the grips of
the machine at a distance of at least two diameters of the test sample. The grippers ensured that the
sample did not slip during testing. Testing of the wire with the determination of the relative
elongation, yield strength, and ultimate resistance was carried out according to the methods of GOST
1497-84. The processing of test results in determining the characteristics of mechanical properties was
carried out following GOST 1497-84 using the INSTRON Bluehill 2.0 software. 3-7 samples were
tested for one experimental point. The values of the conventional yield stress, tensile strength, relative
elongation, and Young's modulus were determined.

3. Results and discussion
The results of mechanical tests are shown in Table 1. It can be seen that the best properties are
observed for the alloy with 28 at.% Nb when a wire diameter is

\[\text{1200 \mu m} \]

Indicators of strength and ductility after heat treatment at maximum temperature are comparable to or exceed those for Ti – 6Al – 4V [15], Ti – Nb – Sn [16-17], Ti – 25Ta [18], or Ti – Nb [19].

№	Composition and diameter (mm)	Processing	Rel. extension (%) ±0.1	Yield strength (MPa) ±10	Tensile strength (MPa) ±10	Young's modulus (GPa)
1	Ti-25Nb-5Zr d=0.4		1.09	688	812	41.770
2			1.47	604	819	42.789
3		after drawing	1.24	658	821	38.637
4	Ti-25Nb-5Zr d=0.7		2.38	531	643	31.636
5			1.83	577	666	39.829
6			2.12	575	665	46.480
7	Ti-28Nb-5Zr d=1.2		1.62	603	695	37.802
8			1.98	595	726	41.447
9			2.05	545	694	37.012
10	Ti-30Nb-5Zr d=0.55		0.81	618	648	46.804
11			1.10	458	640	41.918
12			0.80	639	674	50.496
13	Ti-25Nb-5Zr d=0.4 ultrasound + annealing 600°C, 20 min, vacuum		0.28	601	620	43.281
14			1.71	527	707	42.800
15			2.71	591	715	44.092
16	Ti-25Nb-5Zr d=0.7		3.13	572	750	42.079
17			1.88	570	738	38.574
18			3.76	648	756	24.768
19	Ti-28Nb-5Zr d=1.2 ultrasound + annealing 500°C, 1 h, vacuum		6.57	397	596	31.071
20			6.15	458	601	39.801
21			5.57	486	590	33.547
22	Ti-30Nb-5Zr d=0.55		1.15	435	557	39.143
Firstly annealing at 500 °C promoted a high increase in plasticity and, on the contrary, a decrease in strength and Young's modulus, which then always decreased with an annealing temperature increase. It is possible that the alloy sample deformed during the drawing process is significantly weakened because the dislocation density is significantly reduced.

Plasticity falls at 600 °C but reached high values at temperatures 700-800 °C. Thus, the deformation is lowest for the samples treated at 600 °C. Perhaps in this moment, the destruction of the metastable β-phase inhomogeneously starts over the grain volume decreasing the plasticity characteristics. Then, the metastable β-phase destroys uniformly becoming a stable beta or mixed $\beta+\alpha$, in connection with which there is an increase in strength and plasticity [20-21].

4. Conclusions

Thus, a new functional material for medical purposes was obtained, adapted from the point of view of biomechanical compatibility to work in a living organism. The Ti-28Nb-5Zr alloy has the best characteristics.

23	5Zr d=0.55	1.41	444	592	47.293
24		1.83	332	581	41.186
25	Ti-25Nb-5Zr d=0.7	1.76	511	732	30.576
26		2.03	548	751	38.816
27		1.85	557	741	37.785
28	Ti-28Nb-5Zr d=1.2	6.49	419	614	29.725
29	annealing 600C, 1 h, vacuum	3.64	492	611	34.741
30		4.05	573	614	36.636
31	Ti-30Nb-5Zr d=0.55	1.42	445	590	41.650
32		1.74	363	600	38.662
33		1.07	492	594	41.892
34	Ti-25Nb-5Zr d=0.7	2.49	398	788	28.419
35		1.71	442	774	33.011
36		1.46	572	791	40.879
37	Ti-28Nb-5Zr d=1.2	5.43	511	661	28.343
38	annealing 700C, 1 h, vacuum	7.87	477	671	28.229
39		6.62	493	668	30.425
40	Ti-30Nb-5Zr d=0.55	1.75	527	710	37.917
41		1.40	541	711	43.462
42		1.52	544	727	42.576
43	Ti-25Nb-5Zr d=0.7	0.20	378	424	44.424
44		0.55	640	800	36.191
45		1.27	625	881	39.975
46	Ti-28Nb-5Zr d=1.2	2.39	581	745	19.905
47	annealing 800C, 1 h, vacuum	1.99	682	955	23.794
48		2.38	642	820	21.942
49	Ti-30Nb-5Zr d=0.55	1.85	623	841	42.091
50		2.64	529	840	32.267
51		2.33	631	838	40.393
Acknowledgments

This work was supported by a grant from the President of the Russian Federation for state support of young Russian scientists MK-1820.2020.8.

References

[1] Pelton A.R., Huang G.H., Moine P., Sinclair R., Effects of thermal cycling on microstructure and properties in nitinol // Mater. Sci. Eng., 2012, 532. P. 130–138. DOI: 10.1016/j.msea.2011.10.073.

[2] Spaggiari A., Castagnetti D., Golinelli N., Dragoni E., Scirè Mammano G., Smart materials: Properties, design and mechatronic applications // Journal of Materials: Design and Applications, 2019, 233. P. 734-762. DOI:10.1177/1464420716673671

[3] Chaudhari R., Vora J.J., Patel V., de Lacalle L.L.N., Parikh D.M., Surface analysis of wire-electrical-discharge-machining-processed shape-memory alloys // Materials, 2020, 13. P. 1-3. DOI:10.3390/ma13030530

[4] Chaudhari R., Vora J.J., Mani Prabu S.S., Palani I.A., Patel V.K., Parikh D.M., de Lacalle L.N.L., Multi-response optimization of WEDM process parameters for machining of superelastic nitinol shape-memory alloy using a heat-transfer search algorithm // Materials, 2019, 12. P. 1-22. DOI:10.3390/ma120812770

[5] Zhang Y., Zhang Z., Xie Y., Wang S., Qiu Q., Zhou Y., Zeng G., Toxicity of nickel ions and comprehensive analysis of nickel ion-associated gene expression profiles in THP-1 cells // Mol. Med. Rep, 2015, 12. P. 3273-3278. DOI:10.3892/mmr.2015.3878

[6] Lu X., Bao X., Huang Y., Qu Y., Lu H., Lu Z., Mechanisms of cytotoxicity of nickel ions based on gene expression profiles // Biomaterials, 2009, 30. P. 141–148. DOI: 10.1016/j.biomaterials.2008.09.011

[7] Sevostyanov M.A., Nasakina E.O., Baikin A.S., Sergienko K.V., Konushkin S.V., Kaplan M.A., Seregin A.V., Leonov A.V., Kozlov V.A., Shkirin A.V., Bunkin N.F., Kolmakov A.G., Simakov S.V., Gudkov S.V., Biocompatibility of new materials based on nanostructured nitinol with titanium and tantalum composite surface layers: experimental analysis in vitro and in vivo // Journal of Materials Science: Materials in Medicine, 2018, 29. P. 1-12. DOI: 10.1007/s10856-018-6039-3.

[8] Nasakina E.O., Sudarchikova M.A., Sergienko K.V., Konushkin S.V., Sevostyanov M.A., Ion Release and Surface Characterization of Nanostructured Nitinol during Long-Term Testing // Nanomaterials. 2019, 9. P. 1-24. DOI: 10.3390/9011569.

[9] Petzhik M., Dynamics of martensitic structure at TiNb-based quenched alloys under heating and loading // Journal of Physics: Conference Series, 2013, 438. P. 1-5. DOI:10.1088/1742-6596/438/1/012020

[10] Yilmazer H., Niinomi M., Nakai M., et al., Heterogeneous structure and mechanical hardness of biomedical β-type Ti–29Nb–13Ta–4.6Zr subjected to high-pressure torsion // Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10. P. 235–245. DOI:10.1016/j.jmbbm.2012.02.022

[11] Dubinskii S.M., Prokoshkin S.D., Brailovski V., et al., Structure formation during thermomechanical processing of Ti-Nb-Zr(Ta) alloys and manifestation of the shape-memory effect // Physics of Metals and Metallography, 2011, 112. P. 529-542. DOI:10.1134/S0031918X11050206

[12] Gudkov S.V., Simakina A.V., Sevostyanov M.A., Konushkin S.V., Losertová M., Ivannikov A.Yu., Kolmakov A.G., Izmailov A.Y. Manufacturing and study of mechanical properties, structure and compatibility with biological objects of plates and wire from new Ti-25Nb-13Ta-5Zr alloy // Metals, 2020, 10(12), pp. 1–14, 1584

[13] Konushkin S.V., Sergiyenko K.V., Nasakina E.O., Leontyev V. G., Kuznetsova O. G., Titov D. D., Tsareva A.M., Dormidontov N.A., Kirsankin A.A., Kannykin S.V., Sevostyanov M.A., Kritskaya K.A., Berezhnov A.V., Laryushkin D.P., Kulikov A.V., Belosludtsev K.N.,
Antipov S.S., Volkov M.Yu., Kozlov V.A., Rebezov M.B., Shikirin A.V., Baimler I.V., Simakin A.V., Gudkov S.V. Study of the physicochemical and biological properties of the new promising Ti-20Nb-13Ta-5Zr alloy for biomedical applications // Materials Chemistry and Physics, 2020, T.255, p.123557.

[14] Sevostyanov M.A., Kolmakov A.G., Sergiyenko K.V., Kaplan M. A., Baikin A.S., Gudkov S.V. Mechanical, physical–chemical and biological properties of the new Ti–30Nb–13Ta–5Zr alloy // Journal of Materials Science, 2020, 55(29), pp. 14516–14529

[15] Zhao, X.; Zhang, J.; Song, X.; Guo, W. Investigation on mechanical properties of laser welded joints for Ti–6Al–4V titanium alloy. Mater. Sci. Technol. 2013, 29, 1405–1413, doi:10.1179/1743284713y.0000000314

[16] Cheng, X.; Liu, S.; Chen, C.; Chen, W.; Liu, M.; Li, R.; Zhang, X.-Y.; Zhou, K. Microstructure and mechanical properties of additive manufactured porous Ti-33Nb-4Sn scaffolds for orthopaedic applications. J. Mater. Sci. Mater. Electron. 2019, 30, 91, doi:10.1007/s10856-019-6292-0

[17] Barkarmo, S.; Östberg, A.-K.; Johansson, C.B.; Franco-Tabares, S.; Johansson, P.H.; Dahlgren, U.; Stenport, V. Inflammatory cytokine release from human peripheral blood mononuclear cells exposed to polyetheretherketone and titanium-6 aluminum-4 vanadium in vitro. J. Biomater. Appl. 2018, 33, 245–258, doi:10.1177/0885328218786005

[18] Sergienko, K.V.; Titov, D.D.; Konushkin, S.V.; Baikin, A.S.; O Nasakina, E.; I Baskakova, M.; Bespamiatnova, A.; E Baranov, E.; A Shatova, L.; Kolmakov, A.G.; et al. Study of the coefficient of heat expansion of TiNbTaZr alloy. IOP Conf. Ser. Mater. Sci. Eng. 2019, 525, 012092, doi:10.1088/1757-899x/525/1/012092

[19] Li, Y.-H.; Shang, X.-Y. Recent progress in porous TiNb-based alloys for biomedical implant applications. Mater. Sci. Technol. 2020, 36, 385–392, doi:10.1080/02670836.2020.1724415

[20] Narayanan G.H., Archbold T.F., Decomposition of the metastable beta phase in the all-beta alloy Ti-13V-11Cr-3Al // Met. Mater. Trans., A 1970, 1. P. 2281–2290, doi:10.1007/bf02643446

[21] Vajpai S., Sharma B., Ota M., Ameyama K., Effect of cold rolling and heat-treatment on the microstructure and mechanical properties of β-titanium Ti-25Nb-25Zr alloy // Mater. Sci. Eng. A, 2018, 736. P. 323–328, doi:10.1016/j.msea.2018.09.002