A Sparse Additive Model for High-Dimensional Interactions with an Exposure Variable

Sahir R Bhatnagar1,2, Tianyuan Lu3,4, Amanda Lovato5, David L Olds6, Michael S Kobor7, Michael J Meaney8, Kieran O’Donnell9, Yi Yang10, and Celia MT Greenwood1,3,5

1Department of Epidemiology, Biostatistics and Occupational Health, McGill University

2Department of Diagnostic Radiology, McGill University

3Quantitative Life Sciences, McGill University

4Lady Davis Institute, Jewish General Hospital, Montréal, QC

5Statistics Canada, Ottawa, ON

6Department of Pediatrics, University of Colorado School of Medicine, Denver

7Department of Medical Genetics, University of British Columbia, BC

8Singapore Institute for Clinical Sciences, Singapore; McGill University

9Department of Psychiatry, McGill University

10Department of Mathematics and Statistics, McGill University

11Departments of Oncology and Human Genetics, McGill University
Abstract

A conceptual paradigm for onset of a new disease is often considered to be the result of changes in entire biological networks whose states are affected by a complex interaction of genetic and environmental factors. However, when modelling a relevant phenotype as a function of high dimensional measurements, power to estimate interactions is low, the number of possible interactions could be enormous and their effects may be non-linear. Existing approaches for high dimensional modelling such as the lasso might keep an interaction but remove a main effect, which is problematic for interpretation. In this work, we introduce a method called sail for detecting non-linear interactions with a key environmental or exposure variable in high-dimensional settings which respects either the strong or weak heredity constraints. We prove that asymptotically, our method possesses the oracle property, i.e., it performs as well as if the true model were known in advance. We develop a computationally efficient fitting algorithm with automatic tuning parameter selection, which scales to high-dimensional datasets. Through an extensive simulation study, we show that sail outperforms existing penalized regression methods in terms of prediction accuracy and support recovery when there are non-linear interactions with an exposure variable. We then apply sail to detect non-linear interactions between genes and a prenatal psychosocial intervention program on cognitive performance in children at 4 years of age. Results from our method show that individuals who are genetically predisposed to lower educational attainment are those who stand to benefit the most from the intervention. Our algorithms are implemented in an R package available on CRAN (https://cran.r-project.org/package=sail).
Computational approaches to variable selection have become increasingly important with the advent of high-throughput technologies in genomics and brain imaging studies, where the data has become massive, yet where it is believed that the number of truly important variables is small relative to the total number of variables. Although many approaches have been developed for main effects, there is an enduring interest in powerful methods for estimating interactions, since interactions may reflect important modulation of a genomic system by an external factor and vice versa [2]. Accurate capture of interactions may hold the potential to better understanding biological phenomena and improving prediction accuracy. For example, a model that considered interactions between brain imaging data and genetic features had better classification accuracy compared to a model that considered the main effects only [24]. Furthermore, the manifestations of disease are often considered to be the result of changes in entire biological networks whose states are affected by a complex interaction of genetic and environmental factors [31]. However, there is a general deficit of such replicated interactions in the literature [36]. Indeed, power to detect interactions is always lower than for main effects, and in high-dimensional settings ($p >> n$), this lack of power to detect interactions is exacerbated, since the number of possible interactions could be enormous and their effects may be non-linear. Hence, analytic methods that may improve power are essential. Furthermore, methods capable of detecting non-linear interactions are uncommon.

Interactions may occur in numerous types and of varying complexities. In this paper, we consider one specific type of interaction model, where one exposure variable E is involved in possibly non-linear interactions with a high-dimensional set of measures X leading to effects on a response variable, Y. We propose a multivariable penalization procedure for detecting non-linear interactions between X and E. Our method is motivated by the Nurse Family Partnership (NFP); a program of prenatal and infancy home visiting by nurses for low-income
mothers and their children [26]. In this intervention, NFP nurses guided pregnant women
and parents of young children to improve the outcomes of pregnancy, their children’s health
and development, and their economic self-sufficiency, with the goal of reducing disparities
over the life-course. Early intervention in young children has been shown to positively impact
intellectual abilities [6], and more recent studies have shown that cognitive performance is
also strongly influenced by genetic factors [30]. Given the important role of both environment
and genetics, we are interested in finding interactions between these two components on
cognitive function in children.

1.1 A sparse additive interaction model

Let \(Y = (Y_1, \ldots, Y_n) \in \mathbb{R}^n \) be a continuous outcome variable, \(X_E = (E_1, \ldots, E_n) \in \mathbb{R}^n \) a bi-
nary or continuous environment/exposure vector of known importance, and \(X = (X_1, \ldots, X_p) \in \mathbb{R}^{n \times p} \)
a matrix of additional predictors, possibly high-dimensional. Furthermore let \(f_j : \mathbb{R} \rightarrow \mathbb{R} \) be
a smoothing method for variable \(X_j \) by a projection on to a set of basis functions:

\[
 f_j(X_j) = \sum_{\ell=1}^{m_j} \psi_{j\ell}(X_j) \beta_{j\ell}
\]

Here, the \(\{\psi_{j\ell}\}_{1}^{m_j} \) are a family of basis functions in \(X_j \) [18]. Let \(\Psi_j \) be the \(n \times m_j \) matrix of
evaluations of the \(\psi_{j\ell} \) and \(\theta_j = (\beta_{j1}, \ldots, \beta_{jm_j}) \in \mathbb{R}^{m_j} \) for \(j = 1, \ldots, p \) (\(\theta_j \) is a \(m_j \)-dimensional
column vector of basis coefficients for the \(j \)th main effect). In this article we consider an
additive interaction regression model of the form

\[
 Y = \beta_0 \cdot 1_n + \sum_{j=1}^{p} \Psi_j \theta_j + \beta_E X_E + \sum_{j=1}^{p} (X_E \circ \Psi_j) \tau_j + \varepsilon
\]

where \(\beta_0 \in \mathbb{R} \) is the intercept, \(\beta_E \in \mathbb{R} \) is the coefficient for the environment variable,
\(\tau_j = (\tau_{j1}, \ldots, \tau_{jm_j}) \in \mathbb{R}^{m_j} \) are the basis coefficients for the \(j \)th interaction term, \((X_E \circ \Psi_j) \) is
the \(n \times m_j \) matrix formed by the component-wise multiplication of the column vector \(X_E \) by
each column of Ψ_j, and $\varepsilon \in \mathbb{R}^n$ is a vector of i.i.d errors with mean zero and finite variance. Here we assume that p is large relative to n, and particularly that $\sum_{j=1}^{p} m_j/n$ is large. Due to the large number of parameters to estimate with respect to the number of observations, one commonly-used approach in the penalization literature is to shrink the regression coefficients by placing a constraint on the values of $(\beta_E, \theta_j, \tau_j)$. Certain constraints have the added benefit of producing a sparse model in the sense that many of the coefficients will be set exactly to 0 [4]. Such a reduced predictor set can lead to a more interpretable model with smaller prediction variance, albeit at the cost of having biased parameter estimates [12]. In light of these goals, consider the following penalized objective function:

$$Q(\Phi) = -L(\Phi) + \lambda (1 - \alpha) \left(w_E |\beta_E| + \sum_{j=1}^{p} w_j \|\theta_j\|_2 \right) + \lambda \alpha \sum_{j=1}^{p} w_j E \|\tau_j\|_2$$

(3)

where $\Phi = (\beta_0, \beta_E, \theta_1, \ldots, \theta_p, \tau_1, \ldots, \tau_p)$, $L(\Phi)$ is the log-likelihood function of the observations $V_i = (Y_i, \Psi_i, X_iE)$ for $i = 1, \ldots, n$, $\|\theta_j\|_2 = \sqrt{\sum_{k=1}^{m_j} \beta^2_{jk}}$, $\|\tau_j\|_2 = \sqrt{\sum_{k=1}^{m_j} \tau^2_{jk}}$, $\lambda > 0$ and $\alpha \in (0, 1)$ are adjustable tuning parameters, $w_E, w_j, w_j E$ are non-negative penalty factors for $j = 1, \ldots, p$ which serve as a way of allowing parameters to be penalized differently. The first term in the penalty penalizes the main effects while the second term penalizes the interactions. The parameter α controls the relative weight on the two penalties. Note that we do not penalize the intercept.

An issue with (3) is that since no constraint is placed on the structure of the model, it is possible that an estimated interaction term is non-zero while the corresponding main effects are zero. While there may be certain situations where this is plausible, statisticians have generally argued that interactions should only be included if the corresponding main effects are also in the model [22]. This is known as the strong heredity principle [7]. Indeed, large main effects are more likely to lead to detectable interactions [11]. In the next section we discuss how a simple reparametrization of the model (3) can lead to this desirable property.
1.2 Strong and weak heredity

The strong heredity principle states that an interaction term can only have a non-zero estimate if its corresponding main effects are estimated to be non-zero, whereas the weak heredity principle allows for a non-zero interaction estimate as long as one of the corresponding main effects is estimated to be non-zero \[7\]. In the context of penalized regression methods, these principles can be formulated as structured sparsity \[1\] problems. Several authors have proposed to modify the type of penalty in order to achieve the heredity principle \[3, 17, 20, 28\]. We take an alternative approach. Following Choi et al. \[8\], we introduce a new set of parameters \[\gamma = (\gamma_1, \ldots, \gamma_p) \in \mathbb{R}^p\] and reparametrize the coefficients for the interaction terms \[\beta_j\] in (2) as a function of \[\gamma_j\] and the main effect parameters \[\theta_j\] and \[\beta_E\].

This reparametrization for both strong and weak heredity is summarized in Table 1.

Type	Feature	Reparametrization
Strong heredity	\[\hat{\beta}_j \neq 0\] only if \[\hat{\theta}_j \neq 0\] and \[\hat{\beta}_E \neq 0\]	\[\beta_j = \gamma_j \beta_E \theta_j\]
Weak heredity	\[\hat{\beta}_j \neq 0\] only if \[\hat{\theta}_j \neq 0\] or \[\hat{\beta}_E \neq 0\]	\[\beta_j = \gamma_j (\beta_E \cdot 1_{m_j} + \theta_j)\]

To perform variable selection in this new parametrization, we penalize \[\gamma = (\gamma_1, \ldots, \gamma_p)\] instead of penalizing \[\beta\] as in (3), leading to the following penalized objective function:

\[
Q(\Phi) = -L(\Phi) + \lambda(1 - \alpha) \left(w_E |\beta_E| + \sum_{j=1}^p w_j \|\theta_j\|_2 \right) + \lambda \alpha \sum_{j=1}^p w_j E |\gamma_j E| \quad (4)
\]

An estimate of the regression parameters is given by \[\hat{\Phi} = \arg \min_\Phi Q(\Phi)\]. This penalty allows for the possibility of excluding the interaction term from the model even if the corresponding main effects are non-zero. Furthermore, smaller values for \[\alpha\] would lead to more interactions being included in the final model while values approaching 1 would favor main effects. Similar to the elastic net \[41\], we fix \[\alpha\] and obtain a solution path over a sequence of \[\lambda\] values.
1.3 Toy example

We present here a toy example to better illustrate the methods proposed in this paper. With a sample size of \(n = 100 \), we sample \(p = 20 \) covariates \(X_1, \ldots, X_p \) independently from a \(N(0, 1) \) distribution truncated to the interval \([0,1]\). Data were generated from a model which follows the strong heredity principle, but where only one covariate, \(X_2 \), is involved in an interaction with a binary exposure variable, \(E \):

\[
Y = f_1(X_1) + f_2(X_2) + 1.75E + 1.5E \cdot f_2(X_2) + \varepsilon
\]

(5)

For illustration, function \(f_1(\cdot) \) is assumed to be linear, whereas function \(f_2(\cdot) \) is non-linear:

\[
f_1(x) = -3x, \quad f_2(x) = 2(2x - 1)^3.
\]

The error term \(\varepsilon \) is generated from a normal distribution with variance chosen such that the signal-to-noise ratio (SNR) is 2. We generated a single simulated dataset and used the strong heredity sail method (described below) with cubic B-splines to estimate the functional forms. 10-fold cross-validation (CV) was used to choose the optimal value of penalization. We used \(\alpha = 0.5 \) and default values for all other arguments. We plot the solution path for both main effects and interactions in Figure 1, coloring lines to correspond to the selected model. We see that our method is able to correctly identify the true model. We can also visually see the effect of the penalty and strong heredity principle working in tandem, i.e., the interaction term \(E \cdot f_2(X_2) \) (orange lines in the bottom panel) can only be non-zero if the main effects \(E \) and \(f_2(X_2) \) (black and orange lines respectively in the top panel) are non-zero, while non-zero main effects does not imply a non-zero interaction.
In Figure 2, we plot the true and estimated component functions \(\hat{f}_1(X_1) \) and \(E \cdot \hat{f}_2(X_2) \), and their estimates from this analysis with sail. We are able to capture the shape of the correct functional form, but the means are not well aligned with the data. Lack-of-fit for \(f_1(X_1) \) can be partially explained by acknowledging that sail is trying to fit a cubic spline to a linear function. Nevertheless, this example demonstrates that sail can still identify trends reasonably well.
1.4 Related work

Methods for variable selection of interactions can be broken down into two categories: linear and non-linear interaction effects. Many of the linear effect methods consider all pairwise interactions in X [3, 8, 33, 39] which can be computationally prohibitive when p is large. More recent proposals for selection of interactions allow the user to restrict the search space to interaction candidates [17, 20]. This is useful when the researcher wants to impose prior information on the model. Two-stage procedures, where interaction candidates are considered from an original screen of main effects, have shown good performance when p is large [15, 32] in the linear setting. There are many fewer methods available for estimating non-linear interactions. For example, Radchenko and James (2010) [28] proposed a model...
of the form

\[Y = \beta_0 + \sum_{j=1}^p f_j(X_j) + \sum_{j>k} f_{jk}(X_j, X_k) + \varepsilon \]

where \(f(\cdot) \) are smooth component functions. This method is more computationally expensive than sail since it considers all pairwise interactions between the basis functions, and its effectiveness in simulations or real-data applications is unknown as there is no software implementation.

While working on this paper, we were made aware of the recently proposed pliable lasso [35] which considers the interactions between \(X_{n \times p} \) and another matrix \(Z_{n \times K} \) and takes the form

\[Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \sum_{j=1}^K \theta_j Z_j + \sum_{j=1}^p (X_j \circ Z) \alpha_j + \varepsilon \] (6)

where \(\alpha_j \) is a \(K \)-dimensional vector. Our proposal is most closely related to this method with \(Z \) being a single column matrix; the key difference being the non-linearity effects of our predictor variables. As pointed out by the authors of the pliable lasso, either their method or ours can be seen as a varying coefficient model, i.e., the effect of \(X \) varies as a function of the exposure variable \(E \) or \(Z \) in (6).

The main contributions of this paper are five-fold. First, we develop a model for non-linear interactions with a key exposure variable, following either the weak or strong heredity principle, that is computationally efficient and scales to the high-dimensional setting \((n << p)\). Second, through simulation studies, we show improved performance in terms of prediction accuracy and support recovery over existing methods that only consider linear interactions or additive main effects. Third, we show that our method possesses the oracle property [13], i.e., it performs as well as if the true model were known in advance. Fourth, we demonstrate the performance of our method in two applications: 1) gene-environment interactions in a prenatal psychosocial intervention program [26] and 2) a study aimed at identifying which clinical variables influence mortality rates amongst seriously ill hospital-
ized patients [10]. Fifth, we implement our algorithms in the sail R package on CRAN (https://cran.r-project.org/package=sail), along with extensive documentation. In particular, our implementation also allows for linear interaction models, user-defined basis expansions, a cross-validation procedure for selecting the optimal tuning parameter, and differential shrinkage parameters to apply the adaptive lasso idea [40].

The rest of the paper is organized as follows. Section 2 describes our optimization procedure and some details about the algorithm used to fit the sail model for the least squares case. Theoretical results are given in Section 3. In Section 4, through simulation studies we compare the performance of our proposed approach and demonstrate the scenarios where it can be advantageous to use sail over existing methods. Section 5 contains two real data examples and Section 6 discusses some limitations and future directions.

2 Computation

In this section we describe a blockwise coordinate descent algorithm for fitting the least-squares version of the sail model in (4). We fix the value for α and minimize the objective function over a decreasing sequence of λ values ($\lambda_{\text{max}} > \cdots > \lambda_{\text{min}}$). We use the subgradient equations to determine the maximal value λ_{max} such that all estimates are zero. Due to the heredity principle, this reduces to finding the largest λ such that all main effects $(\beta_E, \theta_1, \ldots, \theta_p)$ are zero. Following Friedman et al. [14], we construct a λ-sequence of 100 values decreasing from λ_{max} to 0.001λ_{max} on the log scale, and use the warm start strategy where the solution for λ_ℓ is used as a starting value for $\lambda_{\ell+1}$.

2.1 Blockwise coordinate descent for least-squares loss

The strong heredity sail model with least-squares loss has the form

\[
\hat{Y} = \beta_0 \cdot 1 + \sum_{j=1}^{p} \Psi_j \theta_j + \beta_E X_E + \sum_{j=1}^{p} \gamma_{jE} \beta_E (X_E \circ \Psi_j) \theta_j
\]
(7)

and the objective function is given by

\[
Q(\Phi) = \frac{1}{2n} \| Y - \hat{Y} \|^2_2 + \lambda(1 - \alpha) \left(\sum_{j=1}^{p} w_j \| \theta_j \|^2_2 \right) + \lambda \alpha \sum_{j=1}^{p} w_j |\gamma_{jE}| \]
(8)

Solving (8) in a blockwise manner allows us to leverage computationally fast algorithms for \ell_1 and \ell_2 norm penalized regression. We show in Supplemental Section B that by careful construction of pseudo responses and pseudo design matrices, existing efficient algorithms can be used to estimate the parameters. Indeed, the objective function simplifies to a modified lasso problem when holding all \theta_j fixed, and a modified group lasso problem when holding \beta_E and all \gamma_{jE} fixed. We provide an overview of the computations in Algorithm 1.

2.2 Weak Heredity

Our method can be easily adapted to enforce the weak heredity property. That is, an interaction term can only be present if at least one of its corresponding main effects is non-zero. To do so, we reparametrize the coefficients for the interaction terms in (2) as \[\alpha_j = \gamma_{jE} (\beta_E \cdot 1_{m_j} + \theta_j) \], where \(1_{m_j}\) is a vector of ones with dimension \(m_j\) (i.e. the length of \(\theta_j\)). We defer the algorithm details for fitting the sail model with weak heredity in Supplemental Section B.4, as it is very similar to Algorithm 1 for the strong heredity sail model.
Algorithm 1 Blockwise Coordinate Descent for Least-Squares \texttt{sail} with Strong Heredity.

For a decreasing sequence \(\lambda = \lambda_{\max}, \ldots, \lambda_{\min} \) and fixed \(\alpha \):

1. Initialize \(\beta_0^{(0)}, \beta_E^{(0)}, \theta_j^{(0)}, \gamma_j^{(0)} \) for \(j = 1, \ldots, p \) and set iteration counter \(k \leftarrow 0 \).
2. Repeat the following until convergence:

 (a) update \(\gamma = (\gamma_{1E}, \ldots, \gamma_{pE}) \)

 i. Compute the pseudo design: \(\tilde{X}_j \leftarrow \beta_E^{(k)} (X_E \circ \Psi_j) \) \(\theta_j^{(k)} \) for \(j = 1, \ldots, p \)
 ii. Compute the pseudo response \(\tilde{Y} \) by removing the contribution of every term not involving \(\gamma \) from \(Y \)
 iii. Solve:

 \[
 \gamma^{(k)\text{(new)}} \leftarrow \arg \min_{\gamma} \frac{1}{2n} \left\| \tilde{Y} - \sum_j \gamma_{jE} \tilde{X}_j \right\|^2 + \lambda \alpha \sum_j w_{jE} |\gamma_{jE}| \quad (9)
 \]
 iv. Set \(\gamma^{(k)} = \gamma^{(k)\text{(new)}} \)

 (b) update \(\theta = (\theta_1, \ldots, \theta_p) \)

 for \(j = 1, \ldots, p \)

 i. Compute the pseudo design: \(\tilde{X}_j \leftarrow \Psi_j + \gamma_{jE}^{(k)} \beta_E^{(k)} (X_E \circ \Psi_j) \)
 ii. Compute the pseudo response (\(\tilde{Y} \)) by removing the contribution of every term not involving \(\theta_j \) from \(Y \)
 iii. Solve:

 \[
 \theta_j^{(k)\text{(new)}} \leftarrow \arg \min_{\theta_j} \frac{1}{2n} \left\| \tilde{Y} - \tilde{X}_j \theta_j \right\|^2 + \lambda (1 - \alpha) w_j \|\theta_j\|_2 \quad (10)
 \]
 iv. Set \(\theta_j^{(k)} \leftarrow \theta_j^{(k)\text{(new)}} \)

 (c) update \(\beta_E \)

 i. Compute the pseudo design: \(\tilde{X}_E \leftarrow X_E + \sum_j \gamma_{jE}^{(k)} (X_E \circ \Psi_j) \theta_j^{(k)} \)
 ii. Compute the pseudo response (\(\tilde{Y} \)) by removing the contribution of every term not involving \(\beta_E \) from \(Y \)
 iii. Soft-threshold update (\(S(x, t) = \text{sign}(x)(|x| - t)_+ \)):

 \[
 \beta_E^{(k)\text{(new)}} \leftarrow \frac{1}{\tilde{X}_E^\top \tilde{X}_E} S \left(\frac{1}{n \cdot w_E} \tilde{X}_E^\top \tilde{Y}, \lambda (1 - \alpha) \right) \quad (11)
 \]
 iv. Set \(\beta_E^{(k+1)} \leftarrow \beta_E^{(k)\text{(new)}} \), \(k \leftarrow k + 1 \)
2.3 Adaptive sail

The weights for the environment variable, main effects and interactions are given by w_E, w_j and w_{jE} respectively. These weights serve as a means of allowing a different penalty to be applied to each variable. In particular, any variable with a weight of zero is not penalized at all. This feature is usually selected for one of two reasons:

1. Prior knowledge about the importance of certain variables is known. Larger weights will penalize the variable more, while smaller weights will penalize the variable less

2. Allows users to apply the adaptive sail, similar to the adaptive lasso [40]

We describe the adaptive sail in Algorithm 2. This is a general procedure that can be applied to the weak and strong heredity settings, as well as both least squares and logistic loss functions. We provide this capability in the sail package using the `penalty.factor` argument and provide an example in Supplemental Section ??.

Algorithm 2 Adaptive sail algorithm

1. For a decreasing sequence $\lambda = \lambda_{\text{max}}, \ldots, \lambda_{\text{min}}$ and fixed α run the sail algorithm
2. Use cross-validation or a data splitting procedure to determine the optimal value for the tuning parameter: $\lambda^{\text{opt}} \in \{\lambda_{\text{max}}, \ldots, \lambda_{\text{min}}\}$
3. Let $\hat{\beta}_E^{\text{opt}}, \hat{\theta}_j^{\text{opt}}$ and $\hat{\tau}_j^{\text{opt}}$ for $j = 1, \ldots, p$ be the coefficient estimates corresponding to the model at λ^{opt}
4. Set the weights to be
 $w_E = \left(\frac{\hat{\beta}_E^{\text{opt}}}{1 + 1/n}\right)^{-1}$, $w_j = \left(\frac{\|\hat{\theta}_j^{\text{opt}}\|_2 + 1/n}{1 + 1/n}\right)^{-1}$, $w_{jE} = \left(\frac{\|\hat{\tau}_j^{\text{opt}}\|_2 + 1/n}{1 + 1/n}\right)^{-1}$
 for $j = 1, \ldots, p$
5. Run the sail algorithm with the weights defined in step 4), and use cross-validation or a data splitting procedure to choose the optimal value of λ

2.4 Flexible design matrix

The definition of the basis expansion functions in (1) is very flexible, in the sense that our algorithms are independent of this choice. As a result, the user can apply any basis expansion they desire. In the extreme case, one could apply the identity map, i.e., $f_j(X_j) = X_j$ which
leads to a linear interaction model (referred to as linear sail). When little information is known a priori about the relationship between the predictors and the response, by default, we choose to apply the same basis expansion to all columns of X. This is a reasonable approach when all the variables are continuous. However, there are often situations when the data contains a combination of categorical and continuous variables. In these cases it may be sub-optimal to apply a basis expansion to the categorical variables. Owing to the flexible nature of our algorithm, we can handle this scenario in our implementation by allowing a user-defined design matrix. The only extra information needed is the group membership of each column in the design matrix. We illustrate such an example in a vignette of the sail R package.

3 Theory

In this section we study the asymptotic behaviour of the sail estimator $\hat{\Phi}$, defined as the minimizer of (4), as well as the model selection properties. We show that sail possesses the oracle property when the sample size approaches infinity and the number of predictors is fixed. That is, under certain regularity conditions, it performs as well as if the true model were known in advance and has the optimal estimation rate [40]. The regularity conditions and proofs are given in Supplemental Section A.

Let $\Phi^* = (\beta_{E}^*, \theta_1^T, \ldots, \theta_p^T, \gamma_1^* E, \ldots, \gamma_p^* E)^T$ denote the unknown vector of true coefficients in (4). To simplify the notation, we use the representation $\Phi^* = (\phi_1^T, \phi_2^T, \ldots, \phi_{p+1}^T, \phi_{p+2}^T, \ldots, \phi_{2p+1}^T)^T$, where $\phi_1^* = \beta_{E}^*, \phi_2^* = \theta_1^*, \ldots, \phi_{p+1}^* = \theta_p^*$, and $\phi_{p+2}^* = \gamma_{1 E}^*, \ldots, \phi_{2p+1}^* = \gamma_{p E}^*$. Denote by $\mathcal{A} = \{m : \phi_m^* \neq 0\}$ the unknown sparsity pattern of Φ^*, and $\hat{\mathcal{A}} = \{m : \hat{\phi}_m \neq 0\}$ the estimated sail model selector. We can rewrite the penalty terms in (4), and consider the
The estimates $\hat{\Phi}_n$ given b

$$\hat{\Phi}_n = \arg \min_{\Phi} Q_n(\Phi) = -L_n(\Phi) + n\lambda_m \sum_{m=1}^{2p+1} \|\phi_m\|_2,$$

where $\lambda_1 = \lambda(1 - \alpha)w_E$, $\lambda_m = \lambda(1 - \alpha)w_m$ for $m = 2, \ldots, p + 1$, and $\lambda_m = \lambda\alpha w_{mE}$ for $m = p + 2, \ldots, 2p + 1$. Define

$$A_1 = \{m : \phi_m^* \neq 0 (1 \leq m \leq p+1)\}, \quad A_2 = \{m : \phi_m^* \neq 0 (p+2 \leq m \leq 2p+1)\}, \quad A = A_1 \cup A_2$$

that is, A_1 contains the indices for main effects whose true coefficients are non-zero, and A_2 contains the indices for interaction terms whose true coefficients are non-zero. Let

$$a_n = \max \{\lambda_m, \lambda_{m'} : m \in A_1, m' \in A_2\}$$

$$b_n = \min \{\lambda_m, \lambda_{m'} : m \in A_1^c, m' \in A_2^c \text{ s.t. } \phi_m^* = \gamma_{jE}^* = 0 \text{ but } \beta_E \neq 0 \text{ and } \theta_j^* \neq 0 \ (1 \leq j \leq p)\}$$

Note that our asymptotic results are stated for the main effects and interaction terms only, even though our formulation includes an unpenalized intercept. Consistency results immediately follow for β_0 since we assume the data has been centered, leading to a closed form solution for the intercept in the least-squares setting.

Lemma 1. [Existence of a local minimizer] If $a_n = o\left(\frac{1}{\sqrt{n}}\right)$ as $n \to \infty$, i.e. $\sqrt{n}a_n \to 0$, then

$$\|\hat{\Phi}_n - \Phi^*\|_2 = O_p\left(\frac{1}{\sqrt{n}}\right)$$

Lemma (1) states that if the tuning parameters corresponding to the non-zero coefficients converge to 0 at a speed faster than $\frac{1}{\sqrt{n}}$, then there exists a local minimizer of $Q_n(\Phi)$ which is \sqrt{n}-consistent [8, 37].

Theorem 1 (Model selection consistency). If $\sqrt{n}a_n \to 0$ and $\sqrt{n}b_n \to \infty$, then

$$P\left(\hat{\Phi}_{A_1^c} = 0\right) \to 1 \quad \text{and} \quad P\left(\hat{\Phi}_{A_2^c} = 0\right) \to 1$$

(13)
Theorem (1) shows that sail can consistently remove the main effects and interaction terms which are not associated with the response with high probability. Together with Lemma (1), we see that the asymptotic behaviour of the penalty terms for the zero and non-zero predictors must be different to satisfy the model selection consistency property (13) [23]. Specifically, when the tuning parameters for the non-zero coefficients converge to 0 faster than \(1/\sqrt{n} \) (i.e. \(\sqrt{n}a_n \to 0 \)) and those for zero coefficients are large enough (i.e. \(\sqrt{n}b_n \to \infty \)), the Lemma (1) and Theorem (1) imply that the \(\sqrt{n} \)-consistent estimator \(\hat{\Phi}_n \) satisfies

\[
P(\hat{\Phi}_{A_c} = 0) \to 1.
\]

Next, we obtain the asymptotic distribution of the sail estimator.

Theorem 2 (Asymptotic normality). Denote \(A = A_1 \cup A_2 \). Assume that \(\sqrt{n}a_n \to 0 \) and \(\sqrt{n}b_n \to \infty \). Under the regularity conditions, the subvector \(\hat{\Phi}_A \) of the local minimizer \(\hat{\Phi}_n \) given in Lemma (1) satisfies

\[
\sqrt{n}(\hat{\Phi}_A - \Phi^*_A) \overset{d}{\to} N\left(0, I^{-1}(\Phi^*_A)\right),
\]

where \(I(\Phi^*_A) \) is the Fisher information matrix for \(\Phi_A \) at \(\Phi_A = \Phi^*_A \), assuming \(A_c \) is known in advance.

Together, Theorems (1) and (2) establish that if the tuning parameters satisfy the conditions \(\sqrt{n}a_n \to 0 \) and \(\sqrt{n}b_n \to \infty \), then as the sample size grows large, sail has the oracle property [13]. In order for the conditions on the tuning parameters to be satisfied, we follow the strategies outlined for the adaptive Lasso [40], the adaptive group Lasso [23] and the adaptive elastic-net [42]. That is, we define the adaptive weights as \(w_m = \|\hat{\phi}_{m}^{\text{init}} + 1/n\|^{-\xi}_2 \) for \(m = 1, \ldots, 2p + 1 \), where \(\xi \) is a positive constant and \(\hat{\phi}_{m}^{\text{init}} \) is an initial \(\sqrt{n} \)-consistent estimate of \(\phi^*_m \). Here, the \(1/n \) is to avoid division by zero.
4 Simulation Study

In this section, we use simulated data to understand the performance of sail in different scenarios.

4.1 Comparator Methods

Since there are no other packages that directly address our chosen problem, we selected comparator methods based on the following criteria: 1) penalized regression methods that can handle high-dimensional data ($n < p$), 2) allowing at least one of linear effects, non-linear effects or interaction effects, and 3) having a software implementation in R. The selected methods can be grouped into three categories:

1. Linear main effects: lasso [34], adaptive lasso [40]

2. Linear interactions: lassoBT [32], GLinternet [20]

3. Non-linear main effects: HierBasis [16], SPAM [29], gamsel [9]

For GLinternet we specified the interactionCandidates argument so as to only consider interactions between the environment and all other X variables. For all other methods we supplied (X, X_E) as the data matrix, 100 for the number of tuning parameters to fit, and used the default values otherwise\(^1\). lassoBT considers all pairwise interactions as there is no way for the user to restrict the search space. SPAM applies the same basis expansion to every column of the data matrix; we chose 5 basis spline functions. HierBasis and gamsel selects whether a term in an additive model is non-zero, linear, or a non-linear spline up to a specified max degrees of freedom per variable.

We compare the above listed methods with our main proposal method sail, as well as with adaptive sail (Algorithm 2) and sail weak which has the weak heredity property.

\(^1\)R code for each method available at https://github.com/sahirbhatnagar/sail/blob/master/my_sims/method_functions.R
For each function f_j, we use a B-spline basis matrix with `degree=5` implemented in the `bs` function in R [27]. We center the environment variable and the basis functions before running the `sail` method.

4.2 Simulation Design

To make the comparisons with other methods as fair as possible, we followed a simulation framework that has been previously used for variable selection methods in additive models [19, 21]. We extend this framework to include interaction effects as well. The covariates are simulated as follows. First, we generate x_1, \ldots, x_{1000} independently from a standard normal distribution truncated to the interval $[0,1]$ for $i = 1, \ldots, n$. The first four variables are non-zero (i.e. active in the response), while the rest of the variables are zero (i.e. are noise variables). The outcome Y is then generated following one of the models and assumptions described below.

We evaluate the performance of our method on three of its defining characteristics: 1) the strong heredity property, 2) non-linearity of predictor effects and 3) interactions. Simulation scenarios are designed specifically to test the performance of these characteristics.

1. **Heredity simulation**

 Scenario (a) **Truth obeys strong heredity.** In this situation, the true model for Y contains main effect terms for all covariates involved in interactions.

 $$ Y = \sum_{j=1}^{4} f_j(X_j) + \beta_E \cdot X_E + X_E \cdot f_3(X_3) + X_E \cdot f_4(X_4) + \varepsilon $$

 Scenario (b) **Truth obeys weak heredity.** Here, in addition to the interaction, the
E variable has its own main effect but the covariates X_3 and X_4 do not.

$$Y = f_1(X_1) + f_2(X_2) + \beta_X \cdot X_E + X_E \cdot f_3(X_3) + X_E \cdot f_4(X_4) + \varepsilon$$

Scenario (c) Truth only has interactions. In this simulation, the covariates involved in interactions do not have main effects as well.

$$Y = X_E \cdot f_3(X_3) + X_E \cdot f_4(X_4) + \varepsilon$$

2. Non-linearity simulation scenario

Truth is linear. sail is designed to model non-linearity; here we assess its performance if the true model is completely linear.

$$Y = 5X_1 + 3(X_2 + 1) + 4X_3 + 6(X_4 - 2) + \beta_X \cdot X_E + X_E \cdot 4X_3 + X_E \cdot 6(X_4 - 2) + \varepsilon$$

3. Interactions simulation scenario

Truth only has main effects. sail is designed to capture interactions; here we assess its performance when there are none in the true model.

$$Y = \sum_{j=1}^{4} f_j(X_j) + \beta_X \cdot X_E + \varepsilon$$

The true component functions are the same as in [19, 21] and are given by $f_1(t) = 5t$, $f_2(t) = 3(2t - 1)^2$, $f_3(t) = 4 \sin(2\pi t)/(2 - \sin(2\pi t))$, $f_4(t) = 6(0.1 \sin(2\pi t) + 0.2 \cos(2\pi t) + 0.3 \sin(2\pi t)^2 + 0.4 \cos(2\pi t)^3 + 0.5 \sin(2\pi t)^3)$. We set $\beta_X = 2$ and draw ε from a normal distribution with variance chosen such that the signal-to-noise ratio is 2. Using this setup, we generated 200 replications consisting of a training set of $n = 200$, a validation set of $n = 200$ and a test set of $n = 800$. The training set was used to fit the model and the
validation set was used to select the optimal tuning parameter corresponding to the minimum prediction mean squared error (MSE). Variable selection results including true positive rate, false positive rate and number of active variables (the number of variables with a non-zero coefficient estimate) were assessed on the training set, and MSE was assessed on the test set.

4.3 Results

The prediction accuracy and variable selection results for each of the five simulation scenarios are shown in Figure 3 and Table 2, respectively. We see that sail, adaptive sail and sail weak have the best performance in terms of both MSE and yielding correct sparse models when the truth follows a strong heredity (scenario 1a), as we would expect, since this is exactly the scenario that our method is trying to target. Our method is also competitive when only main effects are present (scenario 3) and performs just as well as methods that only consider linear and non-linear main effects (HierBasis, SPAM), owing to the penalization applied to the interaction parameter. Due to the heredity property being violated in scenario 1c), no method can identify the correct model with the exception of GLinternet. When only linear effects and interactions are present (scenario 2), we see that adaptive sail has similar MSE compared to the other linear interaction methods (lassoBT and GLinternet) with a better TPR and FPR. Overall, our simulation study results suggests that sail outperforms existing methods when the true model contains non-linear interactions, and is competitive even when the truth only has either linear or additive main effects.

We visually inspected whether our method could correctly capture the shape of the association between the predictors and the response for both main and interaction effects. To do so, we plotted the true and predicted curves for scenario 1a) only. Figure 4 shows each of the four main effects with the estimated curves from each of the 200 simulations along with the true curve. We can see the effect of the penalty on the parameters, i.e., decreasing prediction
Table 2: Mean (standard deviation) of the number of selected variables ($|\hat{\mathcal{J}}|$), true positive rate (TPR) and false positive rate (FPR) as a percentage from 200 simulations for each of the five scenarios. $|\mathcal{J}|$ is the number of truly associated variables.

Linear Effects	Linear Interactions	Non-linear Effects	Non-linear Interactions									
lasso adaptive lasso	lassoBT GLinternet	HierBasis SPAM gamsel	sail adaptive sail weak									
1a) Strong heredity ($	\mathcal{J}	= 7$)										
$	\hat{\mathcal{J}}	$	30 (14)	8 (4)	37 (17)	41 (21)	152 (28)	38 (17)	47 (19)	37 (15)	8 (5)	34 (13)
TPR	54.9 (7.4)	49.7 (10.4)	62.0 (10.4)	66.7 (12.8)	66.2 (17)	60.9 (9.0)	57.1 (6.5)	90.6 (7.7)	69.7 (28.8)	86.4 (10.1)		
FPR	1.3 (0.7)	0.2 (0.2)	1.6 (0.8)	1.8 (1.0)	7.4 (1.4)	1.7 (0.8)	2.2 (0.9)	1.5 (0.7)	1.1 (0.7)	1.4 (0.6)		
1b) Weak heredity ($	\mathcal{J}	= 5$)										
$	\hat{\mathcal{J}}	$	19 (12)	4 (2)	20 (13)	37 (22)	23 (22)	28 (15)	22 (15)	16 (9)	7 (6)	17 (11)
TPR	41.0 (4.5)	40.2 (1.9)	41.0 (4.5)	65.1 (15.2)	42.6 (6.7)	54.8 (8.8)	43.8 (7.9)	47.8 (10.4)	46.9 (11.2)	51.0 (12.8)		
FPR	0.8 (0.6)	0.1 (0.1)	0.9 (0.7)	1.7 (1.1)	1.1 (1.1)	1.3 (0.7)	1.0 (0.8)	0.7 (0.4)	0.2 (0.3)	0.7 (0.5)		
1c) Interactions Only ($	\mathcal{J}	= 2$)										
$	\hat{\mathcal{J}}	$	14 (13)	3 (2)	15 (14)	42 (21)	14 (14)	14 (12)	14 (13)	6 (7)	3 (5)	6 (7)
TPR	0.0 (0.0)	0.0 (0.0)	0.2 (3.5)	82.6 (26.3)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.7 (5.9)	0.0 (0.0)		
FPR	0.7 (0.6)	0.6 (6.9)	0.8 (0.7)	2.0 (1.1)	0.7 (0.7)	0.7 (0.6)	0.7 (0.6)	0.3 (0.4)	0.2 (0.2)	0.3 (0.4)		
2) Linear Effects ($	\mathcal{J}	= 7$)										
$	\hat{\mathcal{J}}	$	36 (16)	8 (3)	48 (17)	47 (20)	36 (17)	42 (18)	36 (16)	30 (12)	12 (4)	19 (14)
TPR	69.9 (4.7)	67.4 (6.7)	72.7 (6.6)	92.6 (9.1)	69.9 (4.6)	64.6 (8.4)	69.9 (4.7)	87.4 (14.1)	88.6 (13.5)	64.3 (13.6)		
FPR	1.6 (0.8)	0.2 (0.1)	2.1 (0.8)	2.1 (1.0)	1.6 (0.9)	1.9 (0.9)	1.6 (0.8)	1.2 (0.6)	0.3 (0.2)	0.7 (0.7)		
3) Main Effects Only ($	\mathcal{J}	= 5$)										
$	\hat{\mathcal{J}}	$	30 (15)	7 (4)	31 (15)	35 (18)	160 (17)	42 (18)	54 (20)	40 (16)	8 (5)	40 (16)
TPR	76.6 (10.0)	67.4 (13.6)	77.0 (10.1)	78.3 (8.8)	97.6 (7.5)	92.3 (10.9)	82.4 (10.0)	89.3 (13.0)	78.0 (14.8)	89.1 (13.0)		
FPR	1.3 (0.7)	0.2 (0.2)	1.4 (0.8)	1.6 (0.9)	7.8 (0.8)	1.9 (0.9)	2.5 (1.0)	1.8 (0.8)	0.2 (0.2)	1.8 (0.8)		

variance at the cost of increased bias. This is particularly well illustrated in the bottom right panel where sail smooths out the very wiggly component function $f_4(x)$. Nevertheless, the primary shapes are clearly being captured.

To visualize the estimated interaction effects, we ordered the 200 simulation runs by the Euclidean distance between the estimated and true regression functions. Following Radchenko et al. [28], we then identified the 25th, 50th, and 75th best simulations and plotted, in Figures 5 and 6, the interaction effects of X_E with $f_3(X_3)$ and $f_4(X_4)$, respectively. We see that sail does a good job at capturing the true interaction surface for $X_E \cdot f_3(X_3)$. Again, the smoothing and shrinkage effect is apparent when looking at the interaction surfaces for $X_E \cdot f_4(X_4)$.
Test Set MSE
Based on 200 simulations

Figure 3: Boxplots of the test set mean squared error from 200 simulations for each of the five simulation scenarios.
Figure 4: True and estimated main effect component functions for scenario 1a). The estimated curves represent the results from each one of the 200 simulations conducted.
Figure 5: True and estimated interaction effects for $X_E \cdot f_3(X_3)$ in simulation scenario 1a).

Figure 6: True and estimated interaction effects for $X_E \cdot f_4(X_4)$ in simulation scenario 1a).
5 Real data applications

5.1 Gene-environment interactions in the Nurse Family Partnership program

It is well known that environmental exposures can have an important impact on academic achievement. Indeed, early intervention in young children has been shown to positively impact intellectual abilities [6]. More recent studies have shown that cognitive performance, a trait that measures the ability to learn, reason and solve problems, is also strongly influenced by genetic factors. Genome-wide association studies (GWAS) suggest that 20% of the variance in educational attainment (years of education) may be accounted for by common genetic variation [25, 30]. Unsurprisingly, there is significant overlap in the SNPs that predict educational attainment and measures of cognitive function. An interesting query that arises is how the environment interacts with these genetics variants to predict measures of cognitive function. To address this question, we analyzed data from the Nurse Family Partnership (NFP), a psychosocial intervention program that begins in pregnancy and targets maternal health, parenting and mother-infant interactions [26]. The Stanford Binet IQ scores at 4 years of age were collected for 189 subjects (including 19 imputed using mice [5]) born to women randomly assigned to control ($n = 100$) or nurse-visited intervention groups ($n = 89$). For each subject, we calculated a polygenic risk score (PRS) for educational attainment at different p-value thresholds using weights from the GWAS conducted in Okbay et al. [25].

In this context, individuals with a higher PRS have a propensity for higher educational attainment. The goal of this analysis was to determine if there was an interaction between genetic predisposition to educational attainment (X) and maternal participation in the NFP program (E) on child IQ at 4 years of age (Y). We applied the weak heredity sail with cubic B-splines and $\alpha = 0.1$, and selected the optimal tuning parameter using 10-fold cross-validation. Our method identified an interaction between the intervention and PRS which...
included genetic variants at the 0.0001 level of significance. This interaction is shown in Figure 7. We see that the intervention has a much larger effect on IQ for lower PRS compared to a higher PRS. In other words, perinatal home visitation by nurses can impact IQ scores in children who are genetically predisposed to lower educational attainment. Similar results were obtained for the other imputed datasets (Supplemental Section C).

We also compared sail with two other interaction selection methods, lassoBT and GLinternet with default settings, on 200 bootstrap samples of the data. The average and standard deviation of the MSE and size of the active set (|\(\hat{J} \)|) across the 200 bootstrap samples are given in Table 3. We see that sail tends to select sparser models while maintaining similar prediction performance compared to lassoBT. The GLinternet statistics are omitted here since the algorithm did not converge for many of the 200 simulations.

Figure 7: Estimated interaction effect identified by the weak heredity sail using cubic B-splines and \(\alpha = 0.1 \) for the Nurse Family Partnership data. The selected model, chosen via 10-fold cross-validation, contained three variables: the main effects for the intervention and the PRS for educational attainment using genetic variants significant at the 0.0001 level, as well as their interaction.
5.2 Study to Understand Prognoses Preferences Outcomes and Risks of Treatment

The Study to Understand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT) aimed at identifying which clinical variables influence medium-term (half-year) mortality rate amongst seriously ill hospitalized patients and improving clinical decision making [10]. With a relatively large sample size of 9,105 and detailed documentation of clinical variables, the SUPPORT dataset allows detection of potential interactions using the strategy implemented in sail. We applied sail to test for non-linear interactions between acute renal failure or multiple organ system failure (ARF/MOSF), an important predictor for survival rate, and 13 other variables that were deemed clinically relevant. These variables included the number of comorbidities (excluding ARF/MOSF), age, sex, as well as multiple physiological and blood biochemical indices. The response was whether a patient survived after six months since hospitalization.

A total of 8,873 samples had complete data on all variables of interest. We randomly divided these samples into equal sized training/validation/test splits and ran lassoBT, GLinternet, and the weak heredity sail with cubic B-splines and $\alpha = 0.1$. A binomial distribution family was specified for GLinternet, whereas lassoBT had the same default settings as the simulation study since it did not support a specialized implementation for binary outcomes. We again ran each method on the training data, determined the optimal tuning parameter on the validation data based on the area under the receiver operating characteristic curve (AUC), and assessed AUC on the test data. We repeated this process 200 times and report the results in Table 3. We found that sail achieved similar prediction accuracy to lassoBT and GLinternet. However, the predictive performance of lassoBT and GLinternet relied on models which included many more variables. In Figure 8, we visualize the two strongest interaction effects associated with the number of comorbidities and age, respectively. For those having undergone ARF/MOSF, an increased number of comorbidities decreases their
chance of survival, while there seems to be no such relationship for non-ARF/MOSF patients.

The interaction between ARF/MOSF and age shows the risk incurred by ARF/MOSF is most distinguishing among patients between the ages of 70 and 80.

Table 3: Comparison of analytic methods for selecting interactions using the Nurse Family Partnership program and the SUPPORT datasets. Averages (standard deviations in parentheses) are based on 200 bootstrap samples.

Method	Nurse Family Partnership	SUPPORT						
	Mean Squared Error	$	\hat{J}	$	AUC	$	\hat{H}	$
sail	3.5 (0.6)	4 (3)	0.66 (0.01)	25 (3)				
lassoBT	3.53 (0.477)	11 (6)	0.65 (0.009)	49 (14)				
GLinterneta	–	–	0.65 (0.009)	58 (7)				

aGLinternet results not reported for NFP data since the algorithm did not converge in many of the bootstrap samples.

b $|\hat{J}|$ is the number of variables selected by the method.

6 Discussion

In this article we have introduced the sparse additive interaction learning model sail for detecting non-linear interactions with a key environmental or exposure variable in high-dimensional settings. Using a simple reparametrization, we are able to achieve either the weak or strong heredity property without using a complex penalty function. We developed a blockwise coordinate descent algorithm to solve the sail objective function for the least-squares loss. We further studied the asymptotic properties of our method and showed that under certain conditions, it possesses the oracle property. All our algorithms have been implemented in a computationally efficient, well-documented and freely available R package on CRAN. Furthermore, our method is flexible enough to handle any type of basis expansion including the identity map, which allows for linear interactions. Our implementation allows the user to selectively apply the basis expansions to the predictors, allowing for example,
Figure 8: Illustration of estimated interaction effects identified by \texttt{sail} for the SUPPORT data. Median prediction curves in dark colors based on 200 train/validate/test splits represent the estimated marginal interaction effects. Coefficients estimated in each of the 200 train/validate/test splits were used to generate prediction curves representing a 90% confidence interval colored in corresponding light colors.

A combination of continuous and categorical predictors. An extensive simulation study shows that \texttt{sail}, \texttt{adaptive sail} and \texttt{sail weak} outperform existing penalized regression methods in terms of prediction accuracy, sensitivity and specificity when there are non-linear main effects only, as well as interactions with an exposure variable. We then demonstrated the utility of our method to identify non-linear interactions in both biological and epidemiological data. In the NFP program, we showed that individuals who are genetically predisposed to lower educational attainment are those who stand to benefit the most from the intervention. Analysis of the SUPPORT data revealed that those having undergone ARF/MOSF, an increased number of comorbidities decreased their chances of survival, while there seemed to be no such relationship for non-ARF/MOSF patients. In a bootstrap analysis of both datasets, we observed that \texttt{sail} tended to select sparser models while maintaining similar
prediction performance compared to other interaction selection methods.

Our method however does have its limitations. sail can currently only handle \(X_E \cdot f(X)\) or
\(f(X_E) \cdot X\) and does not allow for \(f(X, X_E)\), i.e., only one of the variables in the interaction can
have a non-linear effect and we do not consider the tensor product. The reparametrization
leads to a non-convex optimization problem which makes convergence rates difficult to assess,
though we did not experience any major convergence issues in our simulations and real
data analysis. The memory footprint can also be an issue depending on the degree of
the basis expansion and the number of variables. Furthermore, the functional form of the
covariate effects is treated as known in our method. Being able to automatically select
for example, linear vs. nonlinear components, is currently an active area of research in
main effects models [16]. To our knowledge, our proposal is the first to allow for non-linear
interactions with a key exposure variable following the weak or strong heredity property
in high-dimensional settings. We also provide a first software implementation for these
models.

References

[1] F. Bach, R. Jenatton, J. Mairal, G. Obozinski, et al. Structured sparsity through convex
optimization. *Statistical Science*, 27(4):450–468, 2012. 6

[2] S. R. Bhatnagar, Y. Yang, B. Khundrakpam, A. C. Evans, M. Blanchette, L. Bouchard,
and C. M. Greenwood. An analytic approach for interpretable predictive models in high-
dimensional data in the presence of interactions with exposures. *Genetic epidemiology*,
42(3):233–249, 2018. 3

[3] J. Bien, J. Taylor, R. Tibshirani, et al. A lasso for hierarchical interactions. *The Annals
of Statistics*, 41(3):1111–1141, 2013. 6, 9

[4] P. Bühlmann and S. Van De Geer. *Statistics for high-dimensional data: methods, theory
and applications*. Springer Science & Business Media, 2011. 5
[5] S. v. Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in r. *Journal of statistical software*, pages 1–68, 2010. 26, 21, 22

[6] F. A. Campbell and C. T. Ramey. Effects of early intervention on intellectual and academic achievement: a follow-up study of children from low-income families. *Child development*, 65(2):684–698, 1994. 4, 26

[7] H. Chipman. Bayesian variable selection with related predictors. *Canadian Journal of Statistics*, 24(1):17–36, 1996. 5, 6

[8] N. H. Choi, W. Li, and J. Zhu. Variable selection with the strong heredity constraint and its oracle property. *Journal of the American Statistical Association*, 105(489):354–364, 2010. 6, 9, 16, 2, 5

[9] A. Chouldechova and T. Hastie. Generalized additive model selection. *arXiv preprint arXiv:1506.03850*, 2015. 18

[10] A. F. Connors, N. V. Dawson, N. A. Desbiens, W. J. Fulkerson, L. Goldman, W. A. Knaus, J. Lynn, R. K. Oye, M. Bergner, A. Damiano, et al. A controlled trial to improve care for seriously iii hospitalized patients: The study to understand prognoses and preferences for outcomes and risks of treatments (support). *Jama*, 274(20):1591–1598, 1995. 11, 28

[11] D. R. Cox. Interaction. *International Statistical Review/Revue Internationale de Statistique*, pages 1–24, 1984. 5

[12] J. Fan, F. Han, and H. Liu. Challenges of big data analysis. *National science review*, 1(2):293–314, 2014. 5

[13] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American statistical Association*, 96(456):1348–1360, 2001. 10, 17, 2, 5

[14] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. *Journal of statistical software*, 33(1):1, 2010. 11, 12, 19

[15] N. Hao, Y. Feng, and H. H. Zhang. Model selection for high-dimensional quadratic
regression via regularization. *Journal of the American Statistical Association*, pages 1–11, 2018.

[16] A. Haris, A. Shojaie, and N. Simon. Nonparametric regression with adaptive truncation via a convex hierarchical penalty. *arXiv preprint arXiv:1611.09972*, 2016.

[17] A. Haris, D. Witten, and N. Simon. Convex modeling of interactions with strong heredity. *Journal of Computational and Graphical Statistics*, 25(4):981–1004, 2016.

[18] T. Hastie, R. Tibshirani, and M. Wainwright. *Statistical Learning with Sparsity: The Lasso and Generalizations*. CRC Press, 2015.

[19] J. Huang, J. L. Horowitz, and F. Wei. Variable selection in nonparametric additive models. *Annals of statistics*, 38(4):2282, 2010.

[20] M. Lim and T. Hastie. Learning interactions via hierarchical group-lasso regularization. *Journal of Computational and Graphical Statistics*, 24(3):627–654, 2015.

[21] Y. Lin, H. H. Zhang, et al. Component selection and smoothing in multivariate nonparametric regression. *The Annals of Statistics*, 34(5):2272–2297, 2006.

[22] P. McCullagh and J. A. Nelder. *Generalized linear models*, volume 37. CRC press, 1989.

[23] Y. Nardi, A. Rinaldo, et al. On the asymptotic properties of the group lasso estimator for linear models. *Electronic Journal of Statistics*, 2:605–633, 2008.

[24] K. Ning, B. Chen, F. Sun, Z. Hobel, L. Zhao, W. Matloff, A. W. Toga, A. D. N. Initiative, et al. Classifying alzheimer’s disease with brain imaging and genetic data using a neural network framework. *Neurobiology of aging*, 2018.

[25] A. Okbay, J. P. Beauchamp, M. A. Fontana, J. J. Lee, T. H. Pers, C. A. Rietveld, P. Turley, G.-B. Chen, V. Emilsson, S. F. W. Meddens, et al. Genome-wide association study identifies 74 loci associated with educational attainment. *Nature*, 533(7604):539, 2016.

[26] D. Olds, C. R. Henderson Jr, R. Cole, J. Eckenrode, H. Kitzman, D. Luckey, L. Pettitt,
K. Sidoras, P. Morris, and J. Powers. Long-term effects of nurse home visitation on children’s criminal and antisocial behavior: 15-year follow-up of a randomized controlled trial. *Jama*, 280(14):1238–1244, 1998. 4, 10, 26

[27] R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2017. 19

[28] P. Radchenko and G. M. James. Variable selection using adaptive nonlinear interaction structures in high dimensions. *Journal of the American Statistical Association*, 105(492):1541–1553, 2010. 6, 9, 22

[29] P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 71(5):1009–1030, 2009. 18

[30] C. A. Rietveld, S. E. Medland, J. Derringer, J. Yang, T. Esko, N. W. Martin, H.-J. Westra, K. Shakhbazov, A. Abdellaoui, A. Agrawal, et al. Gwas of 126,559 individuals identifies genetic variants associated with educational attainment. *Science*, 340(6139):1467–1471, 2013. 4, 26

[31] E. E. Schadt. Molecular networks as sensors and drivers of common human diseases. *Nature*, 461(7261):218–223, 2009. 3

[32] R. D. Shah. Modelling interactions in high-dimensional data with backtracking. *Journal of Machine Learning Research*, 17(207):1–31, 2016. 9, 18

[33] Y. She and H. Jiang. Group regularized estimation under structural hierarchy. *arXiv preprint arXiv:1411.4691*, 2014. 9

[34] R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society. Series B (Methodological)*, pages 267–288, 1996. 18

[35] R. Tibshirani and J. Friedman. A pliable lasso. *arXiv preprint arXiv:1712.00484*, 2017. 10

[36] N. J. Timpson, C. M. Greenwood, N. Soranzo, D. J. Lawson, and J. B. Richards. Genetic architecture: the shape of the genetic contribution to human traits and disease. *Nature*
REFERENCES

[37] H. Wang, G. Li, and C.-L. Tsai. Regression coefficient and autoregressive order shrinkage and selection via the lasso. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 69(1):63–78, 2007. 16, 2

[38] Y. Yang and H. Zou. A fast unified algorithm for solving group-lasso penalize learning problems. *Statistics and Computing*, 25(6):1129–1141, 2015. 12, 19

[39] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. *The Annals of Statistics*, pages 3468–3497, 2009. 9

[40] H. Zou. The adaptive lasso and its oracle properties. *Journal of the American statistical association*, 101(476):1418–1429, 2006. 11, 14, 15, 17, 18

[41] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 67(2):301–320, 2005. 6

[42] H. Zou and H. H. Zhang. On the adaptive elastic-net with a diverging number of parameters. *Annals of statistics*, 37(4):1733, 2009. 17
A Proofs

A.1 Regularity Conditions

(C1) The observation \(\{V_i : i = 1, \ldots, n\} \) are independent and identically distributed with a probability density \(f(V, \Phi) \), which has a common support. We assume the density \(f \) satisfies the following equations:

\[
E_{\Phi} \left[\nabla_{\phi_j} \log f(V, \Phi) \right] = 0 \quad \text{for } j = 1, \ldots, 2p + 1.
\]

and

\[
I_{j_1 k_1 j_2 k_2}(\Phi) = E_{\Phi} \left[\frac{\partial}{\partial \phi_{j_1 k_1}} \log f(V, \Phi) \cdot \frac{\partial}{\partial \phi_{j_2 k_2}} \log f(V, \Phi) \right] \\
= E_{\Phi} \left[-\frac{\partial^2}{\partial \phi_{j_1 k_1} \partial \phi_{j_2 k_2}} \log f(V, \Phi) \right],
\]

for any \(j_1, j_2 = 1, \ldots, 2p + 1 \), and \(k_1 = 1, \ldots, p_{j_1}, k_2 = 1, \ldots, p_{j_2} \), where \(j_1, j_2 \) are the index of group, \(k_1, k_2 \) be the index of elements within the corresponding group, \(p_{j_1}, p_{j_2} \) are the group size of \(j_1, j_2 \) respectively.

(C2) The Fisher information matrix

\[
I(\Phi) = E \left[\left(\frac{\partial}{\partial \Phi} \log f(V, \Phi) \right) \left(\frac{\partial}{\partial \Phi} \log f(V, \Phi) \right)^\top \right]
\]

is finite and positive definite at \(\Phi = \Phi^* \).

(C3) There exists an open set \(\omega \) of \(\Omega \) that contains the true parameter point \(\Phi^* \) such that for almost all \(V \) the density \(f(V, \Phi) \) admits all third derivatives

\[
\frac{\partial^3 f(V, \Phi)}{\partial \phi_{j_1 k_1} \partial \phi_{j_2 k_2} \partial \phi_{j_3 k_3}}
\]

for all \(\Phi \) in \(\omega \) and any \(j_1, j_2, j_3 = 1, \ldots, 2p + 1 \), and \(k_1 = 1, \ldots, p_{j_1}, k_2 = 1, \ldots, p_{j_2} \) and
Furthermore, there exist functions $M_{j_1k_1j_2k_2j_3k_3}$ such that

$$\frac{\partial^3}{\partial \phi_{j_1k_1} \partial \phi_{j_2k_2} \partial \phi_{j_3k_3}} \log f(V, \Phi) \leq M_{j_1k_1j_2k_2j_3k_3}(V) \quad \text{for all } \Phi \in \omega,$$

and $m_{j_1k_1j_2k_2j_3k_3} = E_{\Phi^*}[M_{j_1k_1j_2k_2j_3k_3}(V)] < \infty$.

A.2 Lemma (1) proof

Let $\eta_n = \frac{1}{\sqrt{n}} + a_n$ and $\{\Phi^* + \eta_n \delta : \|\delta\|_2 \leq C\}$ be the ball around Φ^* for $\delta \in \mathbb{R}^d$, where d is the dimension of the design matrix and C is some constant. Under the regularity assumptions, we show that there exists a local minimizer $\hat{\Phi}_n$ of $Q_n(\Phi)$ such that $\|\hat{\Phi}_n - \Phi^*\|_2 = O_p\left(\frac{1}{\sqrt{n}}\right)$.

For this proof, we adopt the approaches outlined in [8, 13, 23, 37] and extend it to our situation. Let $\eta_n = \frac{1}{\sqrt{n}} + a_n$ and $\{\Phi^* + \eta_n \delta : \|\delta\|_2 \leq C\}$ be the ball around Φ^* for $\delta = (u_1^\top, u_2^\top, \ldots, u_{p+1}^\top, u_{p+2}^\top, \ldots, u_{2p+1}^\top)^\top \in \mathbb{R}^d$, where d is the dimension of the design matrix and C is some constant. The objective function is given by

$$Q_n(\Phi) = -L_n(\Phi) + n\lambda_m \sum_{m=1}^{2p+1} \|\phi_m\|_2,$$

Define

$$D_n(\delta) \equiv Q_n(\Phi^* + \eta_n \delta) - Q_n(\Phi^*).$$
Then for δ that satisfies $\|\delta\|_2 = C$, we have

$$D_n(\delta) = -L_n(\Phi^* + \eta_n \delta) + L_n(\Phi^*) + n \sum_{m=1}^{2p+1} \lambda_m (\|\theta_m^* + \eta_n u_m\|_2 - \|\theta_m^*\|_2)$$

\[(a) \geq -L_n(\Phi^* + \eta_n \delta) + L_n(\Phi^*) + n \sum_{m \in A_1} \lambda_m^\theta (\|\theta_m^* + \eta_n u_m\|_2 - \|\theta_m^*\|_2)
+ n \sum_{m \in A_2} \lambda_m^\theta (\|\theta_m^* + \eta_n u_m\|_2 - \|\theta_m^*\|_2)
\]

\[(b) \geq -L_n(\Phi^* + \eta_n \delta) + L_n(\Phi^*) - n \eta_n \sum_{m \in A_1} \lambda_m \|u_m\|_2 - n \eta_n \sum_{m \in A_2} \lambda_m \|u_m\|_2
\]

\[(c) \geq -L_n(\Phi^* + \eta_n \delta) + L_n(\Phi^*) - n \eta_n^2 \sum_{m \in A_1} \|u_m\|_2 - n \eta_n^2 \sum_{m \in A_2} \|u_m\|_2
\]

\[(d) = -[\nabla L_n(\Phi^*)]^\top (\eta_n \delta) - \frac{1}{2} (\eta_n \delta)^\top [\nabla^2 L_n(\Phi^*)](\eta_n \delta)(1 + o(1))
- n \eta_n^2(|A_1| + |A_2|)C
\]

(15)

Inequality (a) is by the fact that $\sum_{m \not\in A_1} \|\phi_m^*\|_2 = 0$ and $\sum_{m \not\in A_2} \|\phi_m^*\|_2 = 0$. Inequality (b) is due to the reverse triangle inequality $\|a\|_2 - \|b\|_2 \geq -\|a - b\|_2$. Inequality (c) is by $\lambda_m \leq a_n \leq \eta_n$ for $m \in A_1$ and $m \in A_2$. Equality (d) is by the standard argument on the Taylor expansion of the loss function:

$$L_n(\Phi^* + \eta_n \delta) = L_n(\Phi^* + \eta_n \cdot 0) + \eta_n \nabla L_n(\Phi^* + \eta_n \cdot 0)^\top (\delta - 0)
+ \frac{1}{2} (\delta - 0)^\top \nabla^2 L_n(\Phi^* + \eta_n \cdot 0) (\delta - 0) \{1 + o(1)\}
= L_n(\Phi^*) + \eta_n \nabla L_n(\Phi^*)^\top \delta + \frac{1}{2} \delta^\top \nabla^2 L_n(\Phi^*) \delta \eta_n^2 \{1 + o(1)\}$$
We split (15) into three parts:

\[
D_1 = - \left[\nabla L_n (\Phi^*) \right]^\top (\eta_n \delta)
\]

\[
D_2 = -\frac{1}{2} \left(\eta_n \delta \right)^\top \left[\nabla^2 L_n (\Phi^*) \right] (\eta_n \delta) (1 + o(1))
\]

\[
D_3 = -n\eta_n^2 (|A_1| + |A_2|) C
\]

Then

\[
D_1 = -\eta_n \left[\nabla L_n (\Phi^*) \right]^\top \delta
\]

\[
= -\sqrt{n} \eta_n \left(\frac{1}{\sqrt{n}} \nabla L_n (\Phi^*) \right)^\top \delta
\]

\[
= -\sqrt{n} \eta_n \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \nabla \log f (V_{i, \Phi})|_{\Phi=\Phi^*} \right)^\top \delta
\]

\[
= -\sqrt{n} \eta_n \left(\sqrt{n} \left[\frac{1}{n} \sum_{i=1}^{n} \nabla \log f (V_{i, \Phi})|_{\Phi=\Phi^*} - 0 \right] \right)^\top \delta
\]

\[
= -\sqrt{n} \eta_n \left(\sqrt{n} \left[\frac{1}{n} \sum_{i=1}^{n} \nabla \log f (V_{i, \Phi})|_{\Phi=\Phi^*} - E_{\Phi^*} \nabla L (\Phi^*) \right] \right)^\top \delta
\]

\[
= -\sqrt{n} \eta_n O_P (1) \delta
\]

\[
= -O_P \left(n\eta_n^2 \right) \delta
\]

(16)

The last equation is by \(a_n = o \left(\frac{1}{\sqrt{n}} \right) \) and

\[
O_P (n\eta_n^2) = O_P (n(n^{-1/2} + a_n)^2) = O_P (1 + 2n^{1/2}a_n + na_n^2)
\]

\[
= O_P (1 + n^{1/2}a_n + (n^{1/2}a_n)^2) = O_P (1 + n^{1/2}a_n + o(1))
\]

\[
= O_P (n^{1/2}(n^{-1/2} + a_n)) = O_P (n^{1/2}\eta_n)
\]
\[D_2 = \frac{1}{2} n \eta_n^2 \left\{ \delta^T \left[-\frac{1}{n} \nabla^2 L_n(\Phi^*) \right] \delta \right\} (1 + o_p(1)) \]
\[= \frac{1}{2} n \eta_n^2 \left\{ \delta^T [I(\Phi^*)] \delta \right\} (1 + o_p(1)) \text{ by the weak law of large numbers.} \]
\[= O_p(n \eta_n^2 \|\delta\|_2^2) \]
\[\text{(17)} \]

Combining (16) and (17) with (15) gives:

\[D_n(\delta) \geq D_1 + D_2 + D_3 \]
\[= -O_P(m \eta_n^2 \|\delta\|_2^2) + O_P(n \eta_n^2 \|\delta\|_2^2) - m \eta_n^2 (|A_1| + |A_2|) C \]

We can see that the first term \(D_1 \) is linear in \(\delta \) and the second term \(D_2 \) is quadratic in \(\delta \).

We can conclude that for a large enough constant \(C = \|\delta\|_2 \), \(D_2 \) dominates \(D_1 \) and \(D_3 \). Note that this is a positive term since \(I(\Phi) \) is positive definite at \(\Phi = \Phi^* \) by regularity condition (C2). Therefore, for each \(\varepsilon > 0 \), there exists a large enough constant \(C \) such that, for large enough \(n \)

\[P \left\{ \inf_{\|\delta\|_2 = C} D_n(\delta) > 0 \right\} \geq 1 - \varepsilon \]

This implies with probability at least \(1 - \varepsilon \) that the empirical likelihood \(Q_n \) has a local minimizer in the ball \(\{\Phi^* + \eta_n \delta : \|\delta\|_2 \leq C\} \) (since \(Q_n \) is bounded and \(\{\Phi^* + \alpha \eta_n \delta : \|\delta\|_2 \leq C\} \) is closed). In other words, there exists a local solution \(\hat{\Phi}_n \) such that \(\|\hat{\Phi}_n - \Phi^*\| \leq \eta_n \|\delta\|_2 \leq \eta_n C = O_P(\eta_n) = O_P(\frac{1}{\sqrt{n}} + a_n) = O_P(\frac{1}{\sqrt{n}}) \), since \(a_n = o(\frac{1}{\sqrt{n}}) \). Hence, \(\|\hat{\Phi}_n - \Phi^*\|_2 = O_P(\frac{1}{\sqrt{n}}) \).

\[\square \]

A.3 Theorem 1 proof

We first consider consistency for the main effects \(P\left(\hat{\Phi}_{A_1^c} = 0 \right) \to 1 \). Following [8, 13], it is sufficient to show that for all \(m \in A_1^c \), \(P\left(\hat{\phi}_m = 0 \right) \to 1 \), which implies that \(P\left(\hat{\Phi}_{A_1^c} = 0 \right) \to
1, i.e., the \sqrt{n}-consistent estimate $\hat{\Phi}$ has oracle property $\hat{\phi}_m = 0$ if $\phi^*_m = 0$. Denote
\[
\hat{\phi}_m = (\hat{\phi}_{m1}, \ldots, \hat{\phi}_{mp_m}),
\]
where p_m is the group size of $\hat{\phi}_m$. Let $\hat{\phi}_{mk}$ be the k-th entry of $\hat{\phi}_m$. Note that if $\hat{\phi}_m \neq 0$, then $\hat{\phi}_{mk} \neq 0$ for $k = 1, \ldots, p_m$, then penalty function $\|\hat{\phi}_m\|_2$ becomes differentiable. Therefore ϕ_{mk} for $k = 1, \ldots, p_m$ must satisfy the following normal equation
\[
\frac{\partial Q_n(\hat{\phi}_n)}{\partial \phi_{mk}} = -\frac{\partial L_n(\hat{\phi}_n)}{\partial \phi_{mk}} + n\lambda_m \frac{\hat{\phi}_{mk}}{\|\hat{\phi}_m\|_2}
\]
\[
= -\frac{\partial L_n(\Phi^*)}{\partial \phi_{mk}} - \sum_{j_1=1}^{2p+1} \sum_{k_1=1}^{p_j_1} \frac{\partial^2 L_n(\Phi^*)}{\partial \phi_{mk} \partial \phi_{j_1 k_1}} (\hat{\phi}_{j_1 k_1} - \phi^*_{j_1 k_1})
\]
\[
- \frac{1}{2} \sum_{j_1=1}^{2p+1} \sum_{k_1=1}^{p_j_1} \sum_{j_2=1}^{2p+1} \sum_{k_2=1}^{p_j_2} \frac{\partial^3 L_n(\bar{\Phi})}{\partial \phi_{mk} \partial \phi_{j_1 k_1} \partial \phi_{j_2 k_2}} (\hat{\phi}_{j_1 k_1} - \phi^*_{j_1 k_1}) (\hat{\phi}_{j_2 k_2} - \phi^*_{j_2 k_2})
\]
\[
+ n\lambda_m \frac{\hat{\phi}_{mk}}{\|\hat{\phi}_m\|_2} \triangleq I_1 + I_2 + I_3 + I_4 = 0
\]
where $\bar{\Phi}$ lies between $\hat{\phi}_n$ and Φ^*. By the regularity conditions and Lemma (1) that $\|\hat{\phi}_n - \Phi^*\|_2 = O_P \left(\frac{1}{\sqrt{n}} \right)$, the first term is of the order $O_p(\sqrt{n})$

\[
I_1 = -\frac{\partial L_n(\hat{\phi}_n)}{\partial \phi_{mk}} = -\sqrt{n} \frac{1}{n} \frac{\partial L_n(\hat{\phi}_n)}{\partial \phi_{mk}} = \sqrt{n} O_p(1) = O_p(\sqrt{n}).
\]
Then the second is of the order $O_P \left(\frac{1}{\sqrt{n}} \right)$ and the third term is of the order $O_P \left(\frac{1}{n} \right)$. Hence
\[
\frac{\partial Q_n(\hat{\phi}_n)}{\partial \phi_m} = \sqrt{n} \left\{ O_p(1) + \sqrt{n} \lambda_m \frac{\hat{\phi}_{mk}}{\|\hat{\phi}_m\|_2} \right\}.
\]
As $\sqrt{n} \lambda_m \geq \sqrt{n} b_n \to \infty$ for $m \in \mathcal{A}_1^n$ from the assumption, therefore we know that I_4 dominates I_1, I_2 and I_3 in (18) with probability tending to one. This means that (18) cannot
be true as long as the sample size is sufficiently large. As a result, we can conclude that with probability tending to one, the estimate \(\hat{\phi}_m = (\hat{\phi}_{m1}, \ldots, \hat{\phi}_{mp_m}) \) must be in a position where \(\hat{\phi}_m \) is not differentiable. Hence \(\hat{\phi}_m = 0 \) for all \(m \in \mathcal{A}_1^c \). Hence \(P(\hat{\Phi}_{\mathcal{A}_1^c} = 0) \to 1. \)

This completes the proof.

Next, we prove that for the interactions \(P(\hat{\Phi}_{\mathcal{A}_2} = 0) \to 1 \). For \(m \in \mathcal{A}_2^c \) s.t. \(\phi_m^* = \gamma_{jE}^* = 0 \) but \(\beta_{E} \neq 0 \) and \(\theta_j^* \neq 0 \) \((1 \leq j \leq p) \), we can prove \(P(\hat{\Phi}_{\mathcal{A}_2} = 0) \to 1 \) by a similar reasoning, which further implies that \(P(\hat{\gamma}_{jE} = 0) \to 0 \). For \(m \in \mathcal{A}_2^c \) such that \(\phi_m^* = \gamma_{jE}^* = 0 \) and either \(\beta_{E} = 0 \) or \(\theta_j^* = 0 \) \((1 \leq j \leq p) \): without loss of generality, assume that \(\theta_j^* = 0 \).

Notice that \(\hat{\theta}_j = 0 \) implies \(\hat{\gamma}_{jE} = 0 \), since if \(\hat{\gamma}_{jE} \neq 0 \), the value of the loss function does not change but the value of the penalty function will increase. Because we already prove \(P(\hat{\Phi}_{\mathcal{A}_1^c} = 0) \to 1 \), therefore we get \(P(\hat{\Phi}_{\mathcal{A}_2} = 0) \to 1 \) as well for this case.

\(\square \)

A.4 Theorem 2 proof

By Lemma (1) and Theorem (1), there exists a \(\hat{\Phi}_\mathcal{A} \) that is a \(\sqrt{n} \)-consistent local minimizer of \(Q(\Phi_\mathcal{A}) \), therefore \(\| \hat{\Phi}_\mathcal{A} - \Phi_\mathcal{A}^* \|_2 = O_P \left(\frac{1}{\sqrt{n}} \right) \) and \(P(\hat{\Phi}_\mathcal{A}^c = 0) \to 1 \). Thus satisfies (with probability tending to 1):

\[
\frac{\partial Q_n (\Phi_\mathcal{A})}{\partial \Phi_m} \bigg|_{\Phi = \left(\begin{array}{c} \hat{\Phi}_\mathcal{A} \\ 0 \end{array} \right), \forall m \in \mathcal{A}} = 0,
\]

that is

\[
\frac{\partial Q_n (\Phi_\mathcal{A})}{\partial \Phi_m} \bigg|_{\Phi_\mathcal{A} = \hat{\Phi}_\mathcal{A}, \forall m \in \mathcal{A}} = 0.
\]
where

\[Q_n(\Phi_A) = -L_n(\Phi_A) + n \sum_{m \in A_1} \lambda_m \| \phi_m \|_2 + n \sum_{m \in A_2} \lambda_m \| \phi_m \|_2 \]

\[= -L_n(\Phi_A) + nP(\Phi_A). \] \hfill (21)

From (20) and (21) we have

\[\nabla_A Q_n(\Phi_A) = -\nabla_A L_n(\Phi_A) + n\nabla_A P(\Phi_A) = 0, \] \hfill (22)

with probability tending to 1.

Denote \(\Sigma = \text{diag}\{o_1, \ldots, o_p\} \). We then expand \(-\nabla_A L_n(\Phi_A) \) at \(\Phi_A = \Phi_A^* \) in (22):

\[-\nabla_A L_n(\Phi_A) = -\nabla_A L_n(\Phi_A^*) - [\nabla_A^2 L_n(\Phi_A^*) + \Sigma] (\Phi_A - \Phi_A^*) \]

\[= \sqrt{n} \left[-\frac{1}{\sqrt{n}} \nabla_A L_n(\Phi_A^*) + \left(-\frac{1}{n} \nabla_A^2 L_n(\Phi_A^*) - \Sigma \right) \sqrt{n} (\Phi_A - \Phi_A^*) \right] \]

\[= \sqrt{n} \left[-\frac{1}{\sqrt{n}} \nabla_A L_n(\Phi_A^*) + (I(\Phi_A^*) - \Sigma) \sqrt{n} (\Phi_A - \Phi_A^*) \right]. \]

The third line follows by

\[\frac{1}{n} \nabla_A^2 L_n(\Phi_A^*) = E \{ \nabla_A^2 L(\Phi_A^*) \} + \Sigma = -I(\Phi_A^*) + \Sigma. \]

Denote

\[b = (\lambda_m \text{sgn}(\beta_m^*), \lambda_m \frac{\theta_m^*}{\| \theta_m^* \|_2}^\top, \lambda_m \text{sgn}(\gamma_{mE}^*))^\top, \quad m \in A, \]

We also expand \(n\nabla_A P(\Phi_A) \) at \(\Phi_A = \Phi_A^* \) in (22):

\[n\nabla_A P(\Phi_A) = n \left[b + \Sigma (\Phi_A - \Phi_A^*) \right]. \]
And due to the fact that $\sqrt{n} \lambda_m \leq \sqrt{n} a_n \to 0$ for $m \in A$ and $\frac{\theta_m^*}{\| \theta_m^* \|^2} \leq 1$ for any $1 \leq k \leq p_m$, we know that $\sqrt{n} b = (o_p(1), \ldots, o_p(1))^\top$. Thus,

$$
\nabla_A Q_n (\tilde{\Phi}_A) = \sqrt{n} \left[-\frac{1}{\sqrt{n}} \nabla_A L_n (\Phi_A^*) + (I (\Phi_A^*) + \Sigma) \sqrt{n} (\tilde{\Phi}_A - \Phi_A^*) \right] \\
+ \sqrt{n} \left[\sqrt{n} b + \Sigma \sqrt{n} (\tilde{\Phi}_A - \Phi_A^*) \right] \\
= \sqrt{n} \left[-\frac{1}{\sqrt{n}} \nabla_A L_n (\Phi_A^*) + \sqrt{n} b + (I (\Phi_A^*) + \Sigma) \sqrt{n} (\tilde{\Phi}_A - \Phi_A^*) \right] \\
= 0.
$$

Therefore, by the central limit theorem, we know that

$$
(I (\Phi_A^*) + \Sigma) \sqrt{n} (\tilde{\Phi}_A - \Phi_A^*) = \sqrt{n} \frac{1}{n} \sum_{i=1}^{n} \nabla_A \log f(V_i, \Phi_A^*) + o_p(1).
$$

Hence,

$$
\sqrt{n} \left(\tilde{\Phi}_A - \Phi_A^* \right) \overset{d}{\to} N \left(0, I^{-1} (\Phi_A^*) \right).
$$

B Algorithm Details

In this section we provide more specific details about the algorithms used to solve the sail objective function. The strong heredity sail model with least-squares loss has the form

$$
\hat{Y} = \beta_0 \cdot \mathbf{1} + \sum_{j=1}^{p} \Psi_j \theta_j + \beta_E X_E + \sum_{j=1}^{p} \gamma_j \beta_E (X_E \circ \Psi_j) \theta_j
$$

(23)
and the objective function is given by

\[
Q(\Phi) = \frac{1}{2n}\|Y - \hat{Y}\|_2^2 + \lambda(1 - \alpha) \left(w_E|\beta_E| + \sum_{j=1}^p w_j\|\theta_j\|_2 \right) + \lambda\alpha \sum_{j=1}^p w_E|\gamma_j| \tag{24}
\]

Solving (24) in a blockwise manner allows us to leverage computationally fast algorithms for \(\ell_1\) and \(\ell_2\) norm penalized regression. Denote the \(n\)-dimensional residual column vector \(R = Y - \hat{Y}\). The subgradient equations are given by

\[
\frac{\partial Q}{\partial \beta_0} = \frac{1}{n} \left(Y - \beta_0 \cdot 1 - \sum_{j=1}^p \Psi_j \theta_j - \beta_EX_E - \sum_{j=1}^p \gamma_j\beta_E(X_E \circ \Psi_j)\theta_j \right)^\top 1 = 0 \tag{25}
\]

\[
\frac{\partial Q}{\partial \beta_E} = -\frac{1}{n} \left(X_E + \sum_{j=1}^p \gamma_j(X_E \circ \Psi_j)\theta_j \right)^\top R + \lambda(1 - \alpha)w_Es_1 = 0 \tag{26}
\]

\[
\frac{\partial Q}{\partial \theta_j} = -\frac{1}{n} (\Psi_j + \gamma_j\beta_E(X_E \circ \Psi_j))^\top R + \lambda(1 - \alpha)w_j s_2 = 0 \tag{27}
\]

\[
\frac{\partial Q}{\partial \gamma_j} = -\frac{1}{n} (\beta_E(X_E \circ \Psi_j)\theta_j)^\top R + \lambda\alpha w_E s_3 = 0 \tag{28}
\]

where \(s_1\) is in the subgradient of the \(\ell_1\) norm:

\[
s_1 \in \begin{cases}
\text{sign}(\beta_E) & \text{if } \beta_E \neq 0 \\
[-1, 1] & \text{if } \beta_E = 0,
\end{cases}
\]

\(s_2\) is in the subgradient of the \(\ell_2\) norm:

\[
s_2 \in \begin{cases}
\frac{\theta_j}{\|\theta_j\|_2} & \text{if } \theta_j \neq 0 \\
u \in \mathbb{R}^{m_j} : \|u\|_2 \leq 1 & \text{if } \theta_j = 0,
\end{cases}
\]
and s_3 is in the subgradient of the ℓ_1 norm:

$$s_3 \in \begin{cases} \text{sign}(\gamma_j) & \text{if } \gamma_j \neq 0 \\ [-1, 1] & \text{if } \gamma_j = 0. \end{cases}$$

Define the partial residuals, without the jth predictor for $j = 1, \ldots, p$, as

$$R_{(-j)} = Y - \beta_0 \cdot 1 - \sum_{\ell \neq j} \Psi_\ell \theta_\ell - \beta_E X_E - \sum_{\ell \neq j} \gamma_\ell \beta_E (X_E \circ \Psi_\ell) \theta_\ell$$

the partial residual without X_E as

$$R_{(-E)} = Y - \beta_0 \cdot 1 - \sum_{j=1}^p \Psi_j \theta_j$$

and the partial residual without the jth interaction for $j = 1, \ldots, p$, as

$$R_{(-jE)} = Y - \beta_0 \cdot 1 - \sum_{j=1}^p \Psi_j \theta_j - \beta_E X_E - \sum_{\ell \neq j} \gamma_\ell \beta_E (X_E \circ \Psi_\ell) \theta_\ell$$

From the subgradient equations (25)–(28) we see that

$$\hat{\beta}_0 = \left(Y - \sum_{j=1}^p \Psi_j \hat{\theta}_j - \hat{\beta}_E X_E - \sum_{j=1}^p \hat{\gamma}_j \beta_E (X_E \circ \Psi_j) \hat{\theta}_j \right)^\top 1$$

$$\hat{\beta}_E = \frac{S \left(\frac{1}{n w_E} (X_E + \sum_{j=1}^p \hat{\gamma}_j (X_E \circ \Psi_j) \hat{\theta}_j)^\top R_{(-E)} , \lambda (1 - \alpha) \right)}{\left(X_E + \sum_{j=1}^p \hat{\gamma}_j (X_E \circ \Psi_j) \hat{\theta}_j \right)^\top \left(X_E + \sum_{j=1}^p \hat{\gamma}_j (X_E \circ \Psi_j) \hat{\theta}_j \right)}$$

$$\lambda (1 - \alpha) w_E \frac{\theta_j}{\|\theta_j\|_2} = \frac{1}{n} (\Psi_j + \gamma_j \beta_E (X_E \circ \Psi_j))^\top R_{(-jE)}$$

$$\hat{\gamma}_j = \frac{S \left(\frac{1}{n w_{jE}} (\beta_E (X_E \circ \Psi_j) \theta_j)^\top R_{(-jE)} , \lambda \alpha \right)}{(\beta_E (X_E \circ \Psi_j) \theta_j)^\top (\beta_E (X_E \circ \Psi_j) \theta_j)}$$

where $S(x, t) = \text{sign}(x)(|x| - t)$ is the soft-thresholding operator. We see from (29) and (30) that there are closed form solutions for the intercept and β_E. From (32), each γ_j also has a
closed form solution and can be solved efficiently for \(j = 1, \ldots, p \) using a coordinate descent procedure [14]. Since there is no closed form solution for \(\beta_j \), we use a quadratic majorization technique [38] to solve (31). Furthermore, we update each \(\theta_j \) in a coordinate wise fashion and leverage this to implement further computational speedups which are detailed in Supplemental Section B.2. From these estimates, we compute the interaction effects using the reparametrizations presented in Table 1, e.g., \(\tau_j = \hat{\gamma}_j \hat{\beta}_E \hat{\theta}_j, j = 1, \ldots, p \) for the strong heredity sail model.

B.1 Least-Squares sail with Strong Heredity

A more detailed algorithm for fitting the least-squares sail model with strong heredity is given in Algorithm 3.
Algorithm 3 Blockwise Coordinate Descent for Least-Squares sail with Strong Heredity

1: function sail($X, Y, X_E, \text{basis}, \lambda, \alpha, w_j, w_E, w_{jE}, \epsilon$) \> Algorithm for solving (24)
2: $\Psi_j \leftarrow \text{basis}(X_j), \tilde{\Psi}_j \leftarrow X_E \odot \Psi_j$ for $j = 1, \ldots, p$
3: Initialize: $\beta_0^{(0)} \leftarrow \tilde{\gamma}, \beta_E^{(0)} = \theta_j^{(0)} = \gamma_j^{(0)} \leftarrow 0$ for $j = 1, \ldots, p$.
4: Set iteration counter $k \leftarrow 0$
5: $R^* \leftarrow Y - \beta_0^{(k)} - \beta_E^{(k)} X_E - \sum_j (\Psi_j + \gamma_j^{(k)} \beta_E^{(k)} \tilde{\Psi}_j) \theta_j^{(k)}$
6: repeat
7: \> To update $\gamma = (\gamma_1, \ldots, \gamma_p)$
8: $\tilde{X}_j \leftarrow \beta_E^{(k)} \tilde{\Psi}_j \theta_j^{(k)}$ for $j = 1, \ldots, p$
9: $R \leftarrow R^* + \sum_j \gamma_j^{(k)} \tilde{X}_j$
10: $\gamma^{(k)(\text{new})} \leftarrow \arg \min_\gamma \frac{1}{2n} \left\| R - \sum_j \gamma_j^{(k)} \tilde{X}_j \right\|^2_2 + \lambda \alpha \sum_j w_{jE} |\gamma_j|$
11: $\Delta = \sum_j (\gamma_j^{(k)} - \gamma_j^{(k)(\text{new})}) \tilde{X}_j$
12: $R^* \leftarrow R^* + \Delta$
13: \> To update $\theta = (\theta_1, \ldots, \theta_p)$
14: $\tilde{X}_j \leftarrow \Psi_j + \gamma_j^{(k)} \beta_E^{(k)} \tilde{\Psi}_j$ for $j = 1, \ldots, p$
15: for $j = 1, \ldots, p$ do
16: $R \leftarrow R^* + \tilde{X}_j \theta_j^{(k)}$
17: $\theta_j^{(k)(\text{new})} \leftarrow \arg \min_{\theta_j} \frac{1}{2n} \left\| R - \tilde{X}_j \theta_j \right\|^2_2 + \lambda (1 - \alpha) w_j \| \theta_j \|_2$
18: $\Delta = \tilde{X}_j (\theta_j^{(k)} - \theta_j^{(k)(\text{new})})$
19: $R^* \leftarrow R^* + \Delta$
20: \> To update β_E
21: $\tilde{X}_E \leftarrow X_E + \sum_j \gamma_j^{(k)} \tilde{\Psi}_j \theta_j^{(k)}$
22: $R \leftarrow R^* + \beta_E^{(k)} \tilde{X}_E$
23: $\beta_E^{(k)(\text{new})} \leftarrow \frac{1}{\tilde{X}_E^\top \tilde{X}_E} S \left(\frac{1}{n \cdot w_E} \tilde{X}_E^\top R, \lambda (1 - \alpha) \right)$ \> $S(x, t) = \text{sign}(x)(|x| - t)_+$
24: $\Delta = (\beta_E^{(k)} - \beta_E^{(k)(\text{new})}) \tilde{X}_E$
25: $R^* \leftarrow R^* + \Delta$
26: \> To update β_0
27: $R \leftarrow R^* + \beta_0^{(k)}$
28: $\beta_0^{(k)(\text{new})} \leftarrow \frac{1}{n} R^* \cdot 1$
29: $\Delta = \beta_0^{(k)} - \beta_0^{(k)(\text{new})}$
30: $R^* \leftarrow R^* + \Delta$
31: $k \leftarrow k + 1$
32: until convergence criterion is satisfied: $\left\| Q(\Phi^{(k-1)}) - Q(\Phi^{(k)}) \right\| / Q(\Phi^{(k-1)}) < \epsilon$
B.2 Details on Update for θ

Here we discuss a computational speedup in the updates for the θ parameter. The partial residual (R_s) used for updating θ_s ($s \in 1, \ldots, p$) at the kth iteration is given by

$$R_s = Y - \widetilde{Y}_{(s)}^{(k)}$$

(33)

where $\widetilde{Y}_{(s)}^{(k)}$ is the fitted value at the kth iteration excluding the contribution from Ψ_s:

$$\widetilde{Y}_{(s)}^{(k)} = \beta_0^{(k)} - \beta_E^{(k)} X_E - \sum_{\ell \neq s} \Psi_{\ell} \theta_{\ell}^{(k)} - \sum_{\ell \neq s} \gamma_\ell^{(k)} \beta_E^{(k)} \Psi_{\ell} \theta_{\ell}^{(k)}$$

(34)

Using (34), (33) can be re-written as

$$R_s = Y - \beta_0^{(k)} - \beta_E^{(k)} X_E - \sum_{j=1}^p (\Psi_j + \gamma_j^{(k)} \beta_E^{(k)} \Psi_j) \theta_j^{(k)} + (\Psi_s + \gamma_s^{(k)} \beta_E^{(k)} \Psi_s) \theta_s^{(k)}$$

$$= R^* + (\Psi_s + \gamma_s^{(k)} \beta_E^{(k)} \Psi_s) \theta_s^{(k)}$$

(35)

where

$$R^* = Y - \beta_0^{(k)} - \beta_E^{(k)} X_E - \sum_{j=1}^p (\Psi_j + \gamma_j^{(k)} \beta_E^{(k)} \Psi_j) \theta_j^{(k)}$$

(36)

Denote $\theta_s^{(k)(new)}$ the solution for predictor s at the kth iteration, given by:

$$\theta_s^{(k)(new)} = \arg\min_{\theta_j} \frac{1}{2n} \left\| R_s - (\Psi_s + \gamma_s^{(k)} \beta_E^{(k)} \Psi_s) \theta_j \right\|_2^2 + \lambda (1 - \alpha) w_s \| \theta_j \|_2$$

(37)

Now we want to update the parameters for the next predictor θ_{s+1} ($s+1 \in 1, \ldots, p$) at the kth iteration. The partial residual used to update θ_{s+1} is given by

$$R_{s+1} = R^* + (\Psi_{s+1} + \gamma_{s+1}^{(k)} \beta_E^{(k)} \Psi_{s+1}) \theta_{s+1}^{(k)} + (\Psi_s + \gamma_s^{(k)} \beta_E^{(k)} \Psi_s) (\theta_s^{(k)} - \theta_s^{(k)(new)})$$

(38)
where R^* is given by (36), $\theta_s^{(k)}$ is the parameter value prior to the update, and $\theta_s^{(k)(new)}$ is the updated value given by (37). Taking the difference between (35) and (38) gives

$$
\Delta = R_t - R_s
$$

$$
= (\Psi_t + \gamma_t^{(k)} \beta E_t \Psi_t \theta_t^{(k)}) + (\Psi_s + \gamma_s^{(k)} \beta E_s \Psi_s \theta_s^{(k)}) - (\Psi_s + \gamma_s^{(k)} \beta E_s \Psi_s \theta_s^{(k)(new)}) - (\Psi_s + \gamma_s^{(k)} \beta E_s \Psi_s \theta_s^{(k)(new)})
$$

$$
= (\Psi_t + \gamma_t^{(k)} \beta E_t \Psi_t \theta_t^{(k)}) - (\Psi_s + \gamma_s^{(k)} \beta E_s \Psi_s \theta_s^{(k)(new)})
$$

Therefore $R_t = R_s + \Delta$, and the partial residual for updating the next predictor can be computed by updating the previous partial residual by Δ, given by (39). This formulation can lead to computational speedups especially when $\Delta = 0$, meaning the partial residual does not need to be re-calculated.

B.3 Maximum penalty parameter (λ_{max}) for strong heredity

The subgradient equations (26)–(28) can be used to determine the largest value of λ such that all coefficients are 0. From the subgradient Equation (26), we see that $\beta E = 0$ is a solution if

$$
\frac{1}{w_E} \left[\frac{1}{n} \left(X_E + \sum_{j=1}^{p} \gamma_j (X_E \circ \Psi_j) \theta_j \right) ^\top R(-E) \right] \leq \lambda (1 - \alpha)
$$

From the subgradient Equation (27), we see that $\theta_j = 0$ is a solution if

$$
\frac{1}{w_j} \left[\frac{1}{n} \left(\Psi_j + \gamma_j \beta E(X_E \circ \Psi_j) \right) ^\top R(-j) \right]_2 \leq \lambda (1 - \alpha)
$$

From the subgradient Equation (28), we see that $\gamma_j = 0$ is a solution if

$$
\frac{1}{w_{jE}} \left[\frac{1}{n} \left(\beta E(X_E \circ \Psi_j) \theta_j \right) ^\top R(-jE) \right] \leq \lambda \alpha
$$
Due to the strong heredity property, the parameter vector \((\beta_E, \theta_1, \ldots, \theta_p, \gamma_1, \ldots, \gamma_p)\) will be entirely equal to 0 if \((\beta_E, \theta_1, \ldots, \theta_p) = 0\). Therefore, the smallest value of \(\lambda\) for which the entire parameter vector (excluding the intercept) is 0 is:

\[
\lambda_{\text{max}} = \frac{1}{n(1 - \alpha)} \max \left\{ \frac{1}{w_E} \left(X_E + \sum_{j=1}^{p} \gamma_j (X_E \circ \Psi_j) \theta_j \right)^\top R_{(-E)},
\max_j \frac{1}{w_j} \left\| (\Psi_j + \gamma_j \beta_E (X_E \circ \Psi_j))^\top R_{(-j)} \right\|_2 \right\}
\]

which reduces to

\[
\lambda_{\text{max}} = \frac{1}{n(1 - \alpha)} \max \left\{ \frac{1}{w_E} (X_E)^\top R_{(-E)}, \max_j \frac{1}{w_j} \| (\Psi_j)^\top R_{(-j)} \|_2 \right\}
\]

B.4 Least-Squares sail with Weak Heredity

The least-squares sail model with weak heredity has the form

\[
\hat{Y} = \beta_0 \cdot 1 + \sum_{j=1}^{p} \Psi_j \theta_j + \beta_E X_E + \sum_{j=1}^{p} \gamma_j (X_E \circ \Psi_j) (\beta_E \cdot 1_{m_j} + \theta_j)
\]

The objective function is given by

\[
Q(\Phi) = \frac{1}{2n} \| Y - \hat{Y} \|_2^2 + \lambda(1 - \alpha) \left(w_E |\beta_E| + \sum_{j=1}^{p} w_j \| \theta_j \|_2 \right) + \lambda \alpha \sum_{j=1}^{p} w_E |\gamma_j|
\]
Denote the n-dimensional residual column vector $R = Y - \hat{Y}$. The subgradient equations are given by

$$
\frac{\partial Q}{\partial \beta_0} = \frac{1}{n} \left(Y - \beta_0 \cdot 1 - \sum_{j=1}^{p} \Psi_j \theta_j - \beta_E X_E - \sum_{j=1}^{p} \gamma_j (X_E \circ \Psi_j) (\beta_E \cdot \mathbf{1}_{m_j} + \theta_j) \right)^\top \mathbf{1} = 0 \tag{46}
$$

$$
\frac{\partial Q}{\partial \beta_E} = \frac{1}{n} \left(X_E + \sum_{j=1}^{p} \gamma_j (X_E \circ \Psi_j) \mathbf{1}_{m_j} \right)^\top R + \lambda (1 - \alpha) w_E s_1 = 0 \tag{47}
$$

$$
\frac{\partial Q}{\partial \theta_j} = \frac{1}{n} \left(\Psi_j + \gamma_j (X_E \circ \Psi_j) \right)^\top R + \lambda (1 - \alpha) w_j s_2 = 0 \tag{48}
$$

$$
\frac{\partial Q}{\partial \gamma_j} = \frac{1}{n} \left((X_E \circ \Psi_j) (\beta_E \cdot \mathbf{1}_{m_j} + \theta_j) \right)^\top R + \lambda \alpha w_j s_3 = 0 \tag{49}
$$

where s_1 is in the subgradient of the ℓ_1 norm:

$$
s_1 \in \begin{cases}
\text{sign} (\beta_E) & \text{if } \beta_E \neq 0 \\
[-1, 1] & \text{if } \beta_E = 0,
\end{cases}
$$

s_2 is in the subgradient of the ℓ_2 norm:

$$
s_2 \in \begin{cases}
\frac{\theta_j}{\| \theta_j \|_2} & \text{if } \theta_j \neq 0 \\
u \in \mathbb{R}^{m_j} : \| u \|_2 \leq 1 & \text{if } \theta_j = 0,
\end{cases}
$$

and s_3 is in the subgradient of the ℓ_1 norm:

$$
s_3 \in \begin{cases}
\text{sign} (\gamma_j) & \text{if } \gamma_j \neq 0 \\
[-1, 1] & \text{if } \gamma_j = 0.
\end{cases}
$$

Define the partial residuals, without the jth predictor for $j = 1, \ldots, p$, as

$$
R_{(-j)} = Y - \beta_0 \cdot 1 - \sum_{\ell \neq j} \Psi_\ell \theta_\ell - \beta_E X_E - \sum_{\ell \neq j} \gamma_\ell (X_E \circ \Psi_\ell) (\beta_E \cdot \mathbf{1}_{m_\ell} + \theta_\ell)
$$
the partial residual without X_E as

$$R(-E) = Y - \beta_0 \cdot 1 - \sum_{j=1}^{p} \Psi_j \theta_j - \sum_{j=1}^{p} \gamma_j (X_E \circ \Psi_j) \theta_j$$

and the partial residual without the jth interaction for $j = 1, \ldots, p$

$$R(-jE) = Y - \beta_0 \cdot 1 - \sum_{j=1}^{p} \Psi_j \theta_j - \beta_E X_E - \sum_{\ell \neq j} \gamma_\ell (X_E \circ \Psi_\ell) (\beta_E \cdot 1_{m_\ell} + \theta_\ell)$$

From the subgradient Equation (47), we see that $\beta_E = 0$ is a solution if

$$\frac{1}{w_E} \left\| \frac{1}{n} \left(X_E + \sum_{j=1}^{p} \gamma_j (X_E \circ \Psi_j) 1_{m_j} \right) ^\top R(-E) \right\| \leq \lambda (1 - \alpha) \quad (50)$$

From the subgradient Equation (48), we see that $\theta_j = 0$ is a solution if

$$\frac{1}{w_j} \left\| \frac{1}{n} \left(\Psi_j + \gamma_j (X_E \circ \Psi_j) \right) ^\top R(-j) \right\|_2 \leq \lambda (1 - \alpha) \quad (51)$$

From the subgradient Equation (49), we see that $\gamma_j = 0$ is a solution if

$$\frac{1}{w_{jE}} \left\| \frac{1}{n} \left((X_E \circ \Psi_j) (\beta_E \cdot 1_{m_j} + \theta_j) \right) ^\top R(-jE) \right\| \leq \lambda \alpha \quad (52)$$
From the subgradient equations we see that

\[
\hat{\beta}_0 = \left(Y - \sum_{j=1}^{p} \Psi_j \hat{\theta}_j - \hat{\beta}_E X_E - \sum_{j=1}^{p} \hat{\gamma}_j (X_E \circ \Psi_j) (\hat{\beta}_E \cdot 1_{m_j} + \hat{\theta}_j) \right) ^ {\top} 1 \tag{53}
\]

\[
\hat{\beta}_E = \frac{S \left(\frac{1}{n w_E} (X_E + \sum_{j=1}^{p} \hat{\gamma}_j (X_E \circ \Psi_j) 1_{m_j}) ^ {\top} (X_E + \sum_{j=1}^{p} \hat{\gamma}_j (X_E \circ \Psi_j) 1_{m_j}) \right) \left(X_E + \sum_{j=1}^{p} \hat{\gamma}_j (X_E \circ \Psi_j) 1_{m_j} \right)}{\lambda (1 - \alpha) w_j \frac{\theta_j}{\| \theta_j \|_2}} = \frac{1}{n} (\Psi_j + \gamma_j (X_E \circ \Psi_j)) ^ {\top} R_{(-j)} \tag{54}
\]

\[
\hat{\gamma}_j = \frac{S \left(\frac{1}{n w_{jE}} ((X_E \circ \Psi_j) (\beta_E \cdot 1_{m_j} + \theta_j)) ^ {\top} R_{(-j E)}, \lambda \alpha \right) \left((X_E \circ \Psi_j) (\beta_E \cdot 1_{m_j} + \theta_j) \right)}{(X_E \circ \Psi_j) (\beta_E \cdot 1_{m_j} + \theta_j) ^ {\top} (X_E \circ \Psi_j) (\beta_E \cdot 1_{m_j} + \theta_j)} \tag{55}
\]

where \(S(x, t) = \text{sign}(x)(|x|-t) \) is the soft-thresholding operator. As was the case in the strong heredity sail model, there are closed form solutions for the intercept and \(\beta_E \), each \(\gamma_j \) also has a closed form solution and can be solved efficiently for \(j = 1, \ldots, p \) using the coordinate descent procedure implemented in the glmnet package [14], while we use the quadratic majorization technique implemented in the gglasso package [38] to solve (55). Algorithm 4 details the procedure used to fit the least-squares weak heredity sail model.

B.4.1 Maximum penalty parameter (\(\lambda_{\text{max}} \)) for weak heredity

The smallest value of \(\lambda \) for which the entire parameter vector \((\beta_E, \theta_1, \ldots, \theta_p, \gamma_1, \ldots, \gamma_p)\) is \(0 \) is:

\[
\lambda_{\text{max}} = \frac{1}{n} \max \left\{ \frac{1}{(1 - \alpha) w_E} \left(X_E + \sum_{j=1}^{p} \gamma_j (X_E \circ \Psi_j) 1_{m_j} \right) ^ {\top} R_{(-E)}, \max_{j} \frac{1}{(1 - \alpha) w_j} \left\| (\Psi_j + \gamma_j (X_E \circ \Psi_j)) ^ {\top} R_{(-j)} \right\|_2, \max_{j} \frac{1}{\alpha w_{jE}} ((X_E \circ \Psi_j) (\beta_E \cdot 1_{m_j} + \theta_j) ^ {\top} R_{(-j E)} \right\} \right\} \tag{57}
\]
Algorithm 4 Coordinate descent for least-squares sail with weak heredity

1: function sail($X, Y, X_E, \text{basis}, \lambda, \alpha, w_j, w_E, w_{jE}, \epsilon$) \quad \triangleright \text{Algorithm for solving (45)}
2: \quad \Psi_j \leftarrow \text{basis}(X_j), \tilde{\Psi}_j \leftarrow X_E \circ \Psi_j \text{ for } j = 1, \ldots, p
3: \quad \text{Initialize: } \beta_0^{(0)} \leftarrow \tilde{Y}, \beta_E^{(0)} = \theta_j^{(0)} = \gamma_j^{(0)} \leftarrow 0 \text{ for } j = 1, \ldots, p.
4: \quad \text{Set iteration counter } k \leftarrow 0
5: \quad R^* \leftarrow Y - \beta_0^{(k)} - \beta_E^{(k)} X_E - \sum_j \Psi_j \theta_j^{(k)} - \sum_j \gamma_j^{(k)} \tilde{\Psi}_j (\beta_E^{(k)} \cdot 1_{m_j} + \theta_j^{(k)})
6: \quad \text{repeat}
7: \quad \quad \bullet \text{ To update } \gamma = (\gamma_1, \ldots, \gamma_p)
8: \quad \quad \quad \tilde{X}_j \leftarrow \tilde{\Psi}_j (\beta_E^{(k)} \cdot 1_{m_j} + \theta_j^{(k)}) \text{ for } j = 1, \ldots, p
9: \quad \quad \quad R \leftarrow R^* + \sum_{j=1}^p \gamma_j^{(k)} \tilde{X}_j
10: \quad \quad \gamma^{(k)(\text{new})} \leftarrow \arg\min_{\gamma} \frac{1}{2n} \left\| R - \sum_j \gamma_j \tilde{X}_j \right\|^2_2 + \lambda \alpha \sum_j w_{jE} |\gamma_j|
11: \quad \Delta = \sum_j (\gamma_j^{(k)} - \gamma_j^{(k)(\text{new})}) \tilde{X}_j
12: \quad R^* \leftarrow R^* + \Delta
13: \quad \bullet \text{ To update } \theta = (\theta_1, \ldots, \theta_p)
14: \quad \quad \tilde{X}_j \leftarrow \Psi_j + \gamma_j^{(k)} \tilde{\Psi}_j \text{ for } j = 1, \ldots, p
15: \quad \quad \text{for } j = 1, \ldots, p \text{ do}
16: \quad \quad \quad R \leftarrow R^* + \tilde{X}_j \theta_j^{(k)}
17: \quad \quad \theta_j^{(k)(\text{new})} \leftarrow \arg\min_{\theta_j} \frac{1}{2n} \left\| R - \tilde{X}_j \theta_j \right\|^2_2 + \lambda (1 - \alpha) w_j \|\theta_j\|_2
18: \quad \Delta = \tilde{X}_j (\theta_j^{(k)} - \theta_j^{(k)(\text{new})})
19: \quad R^* \leftarrow R^* + \Delta
20: \quad \bullet \text{ To update } \beta_E
21: \quad \quad \tilde{X}_E \leftarrow X_E + \sum_j \gamma_j^{(k)} \tilde{\Psi}_j 1_{m_j}
22: \quad \quad R \leftarrow R^* + \beta_E^{(k)} \tilde{X}_E
23: \quad \beta_E^{(k)(\text{new})} \leftarrow \frac{1}{\tilde{X}_E^r \tilde{X}_E} S \left(\frac{1}{n \cdot w_E} \tilde{X}_E^r R, \lambda (1 - \alpha) \right)
\quad \triangleright S(x, t) = \text{sign}(x) (|x| - t)_+
24: \quad \Delta = (\beta_E^{(k)} - \beta_E^{(k)(\text{new})}) \tilde{X}_E
25: \quad R^* \leftarrow R^* + \Delta
26: \quad \bullet \text{ To update } \beta_0
27: \quad \quad \tilde{X}_0 \leftarrow \tilde{X}_E + \sum_j \gamma_j^{(k)} \tilde{\Psi}_j 1_{m_j}
28: \quad \quad R \leftarrow R^* + \beta_0^{(k)}
29: \quad \beta_0^{(k)(\text{new})} \leftarrow \frac{1}{n} R^* \cdot 1
30: \quad \Delta = \beta_0^{(k)} - \beta_0^{(k)(\text{new})}
31: \quad R^* \leftarrow R^* + \Delta
32: \quad k \leftarrow k + 1
33: \quad \text{until convergence criterion is satisfied: } \left| Q(\Phi^{(k-1)}) - Q(\Phi^{(k)}) \right| / Q(\Phi^{(k-1)}) < \epsilon
ADDITIONAL RESULTS ON PRS FOR EDUCATIONAL ATTAINMENT

which reduces to

$$\lambda_{\text{max}} = \frac{1}{n(1 - \alpha)} \max \left\{ \frac{1}{w_{E}} (X_{E})^{\top} R_{(-E)}, \max_{j} \frac{1}{w_{j}} \left\| (\Psi_{j})^{\top} R_{(-j)} \right\|_{2} \right\}$$

This is the same \(\lambda_{\text{max}} \) as the least-squares strong heredity sail model.

C Additional Results on PRS for Educational Attainment

Figure C.1: Estimated interaction effect identified by the weak heredity sail using cubic B-splines and \(\alpha = 0.1 \) for the Nurse Family Partnership data for the 5 imputed datasets. Of the 189 subjects, 19 IQ scores were imputed using mice [5]. The selected model, chosen via 10-fold cross-validation, contained three variables: the main effects for the intervention and the PRS for educational attainment using genetic variants significant at the 0.0001 level, as well as their interaction.
Figure C.2: Coefficient estimates obtained by the weak heredity sail using cubic B-splines and $\alpha = 0.1$ for the Nurse Family Partnership data for the 5 imputed datasets. Of the 189 subjects, 19 IQ scores were imputed using mice [5]. The selected model, chosen via 10-fold cross-validation, contained three variables: the main effects for the intervention and the PRS for educational attainment using genetic variants significant at the 0.0001 level, as well as their interaction. This results was consistent across all 5 imputed datasets. The white boxes indicate a coefficient estimate of 0.