Deformations of Calogero-Moser Systems

J.F. van Diejen

Department of Mathematics and Computer Science, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands.

Abstract. Recent results are surveyed pertaining to the complete integrability of some novel \(n\)-particle models in dimension one. These models generalize the Calogero-Moser systems related to classical root systems.

1. Introduction

The Hamiltonian of the celebrated Calogero-Moser (CM) system \([1]\) is given by

\[
H_{cm} = \frac{1}{2} \sum_{1 \leq j \leq n} \theta_j^2 + g^2 \sum_{1 \leq j < k \leq n} \wp(x_j - x_k),
\]

where \(\wp(z)\) denotes the Weierstraß \(\wp\)-function \([2]\) or a degeneration thereof \((1/z^2, 1/sh^2(z)\) or \(1/\sin^2(z)\)). The integrability of \(H_{cm}\) was proved with the aid of a Lax matrix \([1]\).

Some years ago a relativistic generalization of \(H_{cm}\) was introduced \([3, 4, 5]\). The Hamiltonian of the relativistic system \((RCM)\) reads

\[
H_{rcm} = \sum_{1 \leq j \leq n} \cosh(\beta \theta_j) \prod_{k \neq j} \left[1 + \beta^2 g^2 \wp(x_j - x_k) \right]^{1/2}.
\]

One can look upon the RCM system as a one-parameter deformation of the CM model, with \(\beta \sim 1/c\) (the inverse of the speed of light) acting as deformation parameter. For \(\beta \to 0\), which corresponds to the nonrelativistic limit, \(\beta^{-2}(H_{rcm}(\beta) - n)\) converges to \(H_{cm}\). The relativistic system is also integrable; explicit formulas have been found for a complete set of integrals in involution:

\[
H_{l,rcm} = \sum_{J \subset \{1, \ldots, n\}} e^{-\beta \sum_{j \in J} \theta_j} \prod_{j \in J} \prod_{k \in J^C} \left[1 + \beta^2 g^2 \wp(x_j - x_k) \right]^{1/2}, \quad l = 1, \ldots, n.
\]

From a Lie-theoretic perspective the above \(n\)-particle models are connected with the root system \(A_{n-1}\). Here, we will take a look at similar deformations of the CM systems related to classical root systems other than \(A_{n-1}\) (i.e. \(B_n, C_n, D_n\) and \(BC_n\)). A more detailed discussion of the material covered below (including proofs) can be found in the papers \([6, 7]\).

2. Trigonometric Potentials

In the case of trigonometric potentials our system is characterized by the Hamiltonian

\[
H = \sum_{1 \leq j \leq n} \left(\cosh(\beta \theta_j) V_j^{1/2} V_{-j}^{1/2} - (V_j + V_{-j})/2 \right)
\]

*Talk given at the 9th Workshop on Nonlinear Evolution Equations and Dynamical Systems (NEEDS '93), held at Gallipoli, Italy, September 3-12, 1993.

†E-mail address: jand@fwi.uva.nl
with
\[
V_{\varepsilon j} = w(\varepsilon x_j) \prod_{k \neq j} v(\varepsilon x_j + x_k) v(\varepsilon x_j - x_k), \quad \varepsilon = \pm 1, \quad (5)
\]
\[
v(z) = \frac{\sin \alpha(\mu + z)}{\sin(\alpha z)}, \quad (6)
\]
\[
w(z) = \frac{\sin \alpha(\mu_0 + z) \cos \alpha(\mu_1 + z) \sin \alpha(\mu_0' + z) \cos \alpha(\mu_1' + z)}{\cos(\alpha z)} \cdot (7)
\]
One can look upon the functions \(v\) and \(w\) as potentials: \(v\) governs the interaction between the particles and \(w\) models an external field. The parameters \(\mu, \mu'_r\) and \(\mu'_r\) \((r = 0, 1)\) act as coupling constants; after setting them equal to zero the particles become free \((v, w = 1)\).

Just as for the RCM system, explicit formulas have been found that constitute a complete set of integrals in involution for the Hamiltonian \(H\) \((4)-(7)\)
\[
H_l = \sum_{j \subset \{1, \ldots, n\}, |J| \leq l, \varepsilon_j = \pm 1, j \in J} \text{ch}(\beta \theta_{\varepsilon J}) V_{\varepsilon J, J}^{1/2} V_{-\varepsilon J, J}^{1/2} U_{J, l - |J|}, \quad l = 1, \ldots, n, \quad (8)
\]
with
\[
\theta_{\varepsilon J} = \sum_{j \in J} \varepsilon_j \theta_j, \quad (9)
\]
\[
V_{\varepsilon J, K} = \prod_{j \in J} w(\varepsilon_j x_j) \prod_{j, j' \in J, j < j'} v^2(\varepsilon_j x_j + \varepsilon_j' x_j') \prod_{j' \in J, k \in K} v(\varepsilon_j x_j + x_k) v(\varepsilon_j x_j - x_k), \quad (10)
\]
\[
U_{l, p} = \sum_{\varepsilon_i = \pm 1, i \in I} (-1)^q \sum_{0 \leq I_1 \subset \cdots \subset I_q \subset I} \prod_{1 \leq q' \leq q} V_{\varepsilon(I_{q'} \setminus I_{q'-1}) : I_q \setminus I_{q'}} \quad (11)
\]
\((U_{1,0} = 1, I_0 = \emptyset)\). Notice that \(H_1\) coincides with the Hamiltonian \(H\) \((4)\) up to a factor two.

Theorem 1 (Liouville integrability): The functions \(H_1, \ldots, H_n\) are in involution (with respect to the standard Poisson bracket induced by the symplectic form \(\omega = \sum_j dx_j \wedge d\theta_j\)).

After reparametrization according to
\[
\mu = i \beta g, \quad \mu_r = i \beta g_r, \quad \mu'_r = i \beta g'_r, \quad (12)
\]
the asymptotics for \(\beta \to 0\) leads to the CM system associated with the root system \(BC_n\):
\[
H_1(\beta) = H_{1,0} \beta^2 + o(\beta^2), \quad (13)
\]
with
\[
H_{1,0} = \sum_{1 \leq j \leq n} \theta_j^2 + \beta^2 \sum_{1 \leq j \neq k \leq n} \left(\frac{1}{\sin^2 \alpha(x_j + x_k)} + \frac{1}{\sin^2 \alpha(x_j - x_k)}\right) + \alpha^2 \sum_{1 \leq j \leq n} \left(\frac{(g_0 + g'_0)^2}{\sin^2(\alpha x_j)} + \frac{(g_1 + g'_1)^2}{\cos^2(\alpha x_j)}\right) + \text{const.} \quad (14)
\]
More generally, one has
\[
H_l(\beta) = H_{1,0} \beta^{2l} + o(\beta^{2l}), \quad (15)
\]
with
\[H_{l,0} = \sum_{J \subset \{1, \ldots, n\}, |J|=l} \prod_{j \in J} \theta_j^2 + \text{l.o.} \] \hspace{1cm} (16)
(l.o. stands for terms of lower order in the momenta \(\theta_j \)). An immediate consequence of Theorem 1 and the above expansion formulas is the integrability of the CM Hamiltonian \(H_{1,0} \) \cite{14}.

Theorem 2 (transition to the BC\(_n\)-type CM system): The limits
\[H_{l,0} = \lim_{\beta \to 0} \beta^{-2l} H_l(\beta), \quad l = 1, \ldots, n, \] \hspace{1cm} (17)
exist and the resulting functions \(H_{1,0}, \ldots, H_{n,0} \) are in involution.

3. Elliptic Potentials
As elliptic counterpart of \(H(4)-(7) \), I propose the following Hamiltonian:
\[H = \sum_{1 \leq j \leq n} \text{ch}(\beta \theta_j) V_{1/2}^j V_{-1/2}^j + U \] \hspace{1cm} (18)
where \(V_{\epsilon_j} \) is again of the form (4), but now with \(v \) and \(w \) given by
\[v(z) = \frac{\sigma(\mu + z)}{\sigma(z)}, \quad w(z) = \prod_{0 \leq r \leq 3} \frac{\sigma_r(\mu_r + z) \sigma_r(\mu'_r + z)}{\sigma_r(z) \sigma_r(z)}. \] \hspace{1cm} (19)

The function \(U \) is defined by
\[U = \sum_{0 \leq r \leq 3} c_r \prod_{1 \leq j \leq n} v(\omega_r + x_j) v(-\omega_r - x_j), \] \hspace{1cm} (20)
\[c_r = \sigma(\mu)^{-2} \prod_{0 \leq s \leq 3} \sigma_s(\mu_{\pi_r(s)}) \sigma_s(\mu'_{\pi_r(s)}), \] \hspace{1cm} (21)
where the following permutations have been introduced: \(\pi_0 = id, \pi_1 = (01)(23), \pi_2 = (02)(13) \) and \(\pi_3 = (03)(12) \). In the above expressions \(\sigma(z) \) denotes the Weierstraß \(\sigma \)-function with quasi-periods \(2\omega_r, r = 1, 2, 3 \), and the \(\sigma_r \) are the associated functions \cite{4}
\[\sigma_r(z) = \exp(-\eta_r z) \sigma(\omega_r + z)/\sigma(\omega_r), \quad r = 1, 2, 3. \] \hspace{1cm} (22)

(By convention \(\omega_0 \equiv 0 \) and \(\sigma_0(z) \equiv \sigma(z) \)).

Although the integrability of \(H (18)-(21) \) has not been demonstrated yet, some partial results have been obtained \cite{4}: \(i. \) I found an additional Hamiltonian, which commutes with \(H (18)-(21) \) if the coupling constants of the external field satisfy the condition \(\sum_{0 \leq r \leq 3} (\mu_r + \mu'_r) = 0; \ ii. \) for special values of the coupling constants \(H (18)-(21) \) can be seen as a reduction of the RCM Hamiltonian \cite{3}; the integrability of the model then follows from \cite{4}; \(iii. \) if \(\mu \) equals a half-period \(\omega_r \), then straightforward generalization of the expressions in Section 2 results in an ansatz for the higher integrals; their commutativity has been verified for \(n \leq 4 \).

After setting parameters as in Eq. (12), one has
\[H(\beta) = \text{const} + H_0 \beta^2/2 + o(\beta^2) \] \hspace{1cm} (23)
with

$$H_0 = \sum_{1 \leq j \leq n} \theta_j^2 + g^2 \sum_{1 \leq j \neq k \leq n} (\wp(x_j + x_k) + \wp(x_j - x_k)) + \sum_{1 \leq j \leq n} (g_r + g'_r)^2 \wp(\omega_r + x_j). \quad (24)$$

A Lax pair for the flow generated by H_0 (24) has been presented by Inozemtsev [8].

Remarks: i. For special values of the parameters g_r, g'_r, the Hamiltonians $H_{1,0}$ (14) and H_0 (24) reduce to CM Hamiltonians that are associated with the root systems B_n, C_n and D_n.

ii. Quantization of the Hamiltonians for $\beta \neq 0$ gives rise to difference operators instead of the usual partial differential operators. The reason is the occurrence of exponentials of the form $\exp(\pm \beta i \partial_{x_j})$ in the quantized Hamiltonian. In the case of trigonometric potentials the eigenfunctions of the quantum system turn out to be the product of a factorized ground-state wave function and recently discovered multivariable generalizations of the Askey-Wilson polynomials [6, 7].

iii. Further limits of the Hamiltonian with elliptic potentials in Eqs. (18)-(21) lead to novel n-particle models with nearest neighbor interaction [9]. These models generalize the nonperiodic relativistic Toda chain [10], and form a deformation of known Toda chains with very general boundary conditions [11].

References

[1] M. A. Olshanetsky, A. M. Perelomov, Classical integrable finite-dimensional systems related to Lie algebras, Phys. Reps. 71, 313 (1981).
[2] E. T. Whittaker, G. N. Watson, A course of modern analysis (Cambridge U. P., Cambridge, 1986).
[3] S. N. M. Ruijsenaars, H. Schneider, A new class of integrable systems and its relation to solitons, Ann. Phys. (N.Y.) 170, 370 (1986).
[4] S. N. M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Commun. Math. Phys. 110, 191 (1987).
[5] S. N. M. Ruijsenaars, Finite-dimensional soliton systems, in Integrable and superintegrable systems, ed. B. Kupershmidt (World Scientific, Singapore, 1990), p. 165.
[6] J. F. van Diejen, Commuting difference operators with polynomial eigenfunctions, math. prepr. University of Amsterdam nr. 93-10, funct-an/9306002 (1993).
[7] J. F. van Diejen, Integrability of difference Calogero-Moser systems, math. prepr. University of Amsterdam nr. 93-19 (1993).
[8] V. I. Inozemtsev, Lax representation with spectral parameter on a torus for integrable particle systems, Lett. Math. Phys. 17, 11 (1989).
[9] J. F. van Diejen, Difference Calogero-Moser systems and finite Toda chains, in preparation.
[10] S. N. M. Ruijsenaars, Relativistic Toda systems, Commun. Math. Phys. 133, 217 (1990).
[11] V. I. Inozemtsev, The Finite Toda Lattices, Commun. Math. Phys. 121, 629 (1989).