On transversal and 2-packing numbers in uniform linear systems

Carlos A. Alfaro * G. Araujo-Pardo † C. Rubio-Montiel ‡ Adrián Vázquez-Ávila §

Abstract

A linear system is a pair \((P, \mathcal{L})\) where \(\mathcal{L}\) is a family of subsets on a ground finite set \(P\), such that \(|l \cap l'| \leq 1\), for every \(l, l' \in \mathcal{L}\). The elements of \(P\) and \(\mathcal{L}\) are called points and lines, respectively, and the linear system is called intersecting if any pair of lines intersect in exactly one point. A subset \(T\) of points of \(P\) is a transversal of \((P, \mathcal{L})\) if \(T\) intersects any line, and the transversal number, \(\tau(P, \mathcal{L})\), is the minimum order of a transversal. On the other hand, a 2-packing set of a linear system \((P, \mathcal{L})\) is a set \(R\) of lines, such that any three of them have a common point, then the 2-packing number of \((P, \mathcal{L})\), \(\nu_2(P, \mathcal{L})\), is the size of a maximum 2-packing set. It is known that the transversal number \(\tau(P, \mathcal{L})\) is bounded above by a quadratic function of \(\nu_2(P, \mathcal{L})\). An open problem is to characterize the families of linear systems which satisfies \(\tau(P, \mathcal{L}) \leq \lambda \nu_2(P, \mathcal{L})\), for some \(\lambda \geq 1\). In this paper, we give an infinite family of linear systems \((P, \mathcal{L})\) which satisfies \(\tau(P, \mathcal{L}) = \nu_2(P, \mathcal{L})\) with smallest possible cardinality of \(\mathcal{L}\), as well as some properties of \(r\)-uniform intersecting linear systems \((P, \mathcal{L})\), such that \(\tau(P, \mathcal{L}) = \nu_2(P, \mathcal{L}) = r\). Moreover, we state a characterization of 4-uniform intersecting linear systems \((P, \mathcal{L})\) with \(\tau(P, \mathcal{L}) = \nu_2(P, \mathcal{L}) = 4\).

Keywords. Linear systems, transversal number, 2-packing number, finite projective plane.

* Banco de México, carlos.alfaro@banxico.org.mx.
† Instituto de Matemáticas, UNAM, garaujo@math.unam.mx. This work was partially supported by PAPIIT-UNAM, Grant: IN107218 and CONACyT-México, Grant: 282280
‡ División de Matemáticas e Ingeniería, FES Acatlán, UNAM, christian.rubio@apolo.acatlan.unam.mx. This work was partially supported by PAIDI/007/19
§ Subdirección de Ingeniería y Posgrado, UNAQ, adrian.vazquez@unaq.edu.mx.
1 Introduction

A linear system is a pair \((P, \mathcal{L})\) where \(\mathcal{L}\) is a family of subsets on a ground finite set \(P\), such that \(|l \cap l'| \leq 1\), for every pair of distinct subsets \(l, l' \in \mathcal{L}\). The linear system \((P, \mathcal{L})\) is intersecting if \(|l \cap l'| = 1\), for every pair of distinct subsets \(l, l' \in \mathcal{L}\). The elements of \(P\) and \(\mathcal{L}\) are called points and lines, respectively; a line with exactly \(r\) points is called a \(r\)-line, and the rank of \((P, \mathcal{L})\) is the maximum cardinality of a line in \((P, \mathcal{L})\), when all the lines of \((P, \mathcal{L})\) are \(r\) lines we have a \(r\)-uniform linear system. In this context, a simple graph is an 2-uniform linear system.

A subset \(T \subseteq P\) is a transversal (also called vertex cover or hitting set in many papers, as example \([7, 10, 11, 12, 13, 16–21]\)) of \((P, \mathcal{L})\) if for any line \(l \in \mathcal{L}\) satisfies \(T \cap l \neq \emptyset\). The transversal number of \((P, \mathcal{L})\), denoted by \(\tau(P, \mathcal{L})\), is the smallest possible cardinality of a transversal of \((P, \mathcal{L})\).

A subset \(R \subseteq \mathcal{L}\) is called 2-packing of \((P, \mathcal{L})\) if three elements are chosen in \(R\) then they are not incident in a common point. The 2-packing number of \((P, \mathcal{L})\), denoted by \(\nu_2(P, \mathcal{L})\), is the maximum number of a 2-packing of \((P, \mathcal{L})\).

There are many interesting works studying the relationship between these two parameters, for instance, in \([20]\), the authors propose the problem of bounding \(\tau(P, \mathcal{L})\) in terms of a function of \(\nu_2(P, \mathcal{L})\) for any linear system. In \([2]\), some authors of this paper and others proved that any linear system satisfies:

\[
\left\lfloor \frac{\nu_2}{2} \right\rfloor \leq \tau \leq \frac{\nu_2(\nu_2 - 1)}{2}.
\]

That is, the transversal number, \(\tau\), of any linear system is upper bounded by a quadratic function of their 2-packing number, \(\nu_2\).

In order to find how a function of \(\nu_2(P, \mathcal{L})\) can bound \(\tau(P, \mathcal{L})\), the authors of \([10]\) using probabilistic methods to prove that \(\tau \leq \lambda \nu_2\) does not hold for any positive \(\lambda\). In particular, they exhibit the existence of \(k\)-uniform linear systems \((P, \mathcal{L})\) for which their transversal number is \(\tau(P, \mathcal{L}) = n - o(n)\) and their 2-packing number is upper bounded by \(\frac{2n}{k}\).

Nevertheless, there are some relevant works about families of linear systems in which their transversal numbers are upper bounded by a linear function of their 2-packing numbers. In \([1]\) the authors proved that if \((P, \mathcal{L})\) is a 2-uniform linear system, a simple graph, with \(|\mathcal{L}| > \nu_2(P, \mathcal{L})\) then \(\tau(P, \mathcal{L}) \leq \nu_2(P, \mathcal{L}) - 1;\)
moreover, they characterize the simple connected graphs that attain this upper bound and the lower bound given in Equation (1). In [2] was proved that the linear systems \((P, L)\) with \(|L| > \nu_2(P, L)\) and \(\nu_2(P, L) \in \{2, 3, 4\}\) satisfy \(\tau(P, L) \leq \nu_2(P, L)\); and when attain the equality, they are a special family of linear subsystems of the projective plane of order 3, \(\Pi_3\), with transversal and 2-packing numbers equal to 4. Moreover, they proved that \(\tau(\Pi_q) \leq \nu_2(\Pi_q)\) when \(\Pi_q = (P_q, L_q)\) is a projective plane of order \(q\), consequently the equality holds when \(q\) is odd.

The rest of this paper is structured as follows: In Section 2, we present a result about linear systems satisfying \(\tau \leq \nu_2 - 1\). In Section 3, we give an infinite family of linear systems such that \(\tau = \nu_2\) with smallest possible cardinality of lines. And, finally, in the last section, we presented some properties of the \(r\)-uniform linear systems, such that \(\tau = \nu_2 = r\), and we characterize the 4-uniform linear systems with \(\tau = \nu_2 = 4\).

2 On linear systems with \(\tau \leq \nu_2 - 1\)

Let \((P, L)\) be a linear system and \(p \in P\) be a point. It is denoted by \(L_p\) to the set of lines incident to \(p\). The degree of \(p\) is defined as \(\deg(p) = |L_p|\) and the maximum degree overall points of the linear systems is denoted by \(\Delta(P, L)\). A point of degrees 2 and 3 is called double and triple point, respectively, and two points \(p\) and \(q\) in \((P, L)\) are adjacent if there is a line \(l \in L\) with \(\{p, q\} \subseteq l\).

In this section, we generalize Proposition 2.1, Proposition 2.2, Lemma 2.1, Lemma 3.1 and Lemma 4.1 of [2] proving that a linear system \((P, L)\) with \(|L| > \nu_2(P, L)\) and “few” lines satisfies \(\tau(P, L) \leq \nu_2(P, L) - 1\). Notice that, through this paper, all linear systems \((P, L)\) are considered with \(|L| = \nu_2(P, L)\) if and only if \(\Delta(P, L) \leq 2\).

Theorem 2.1. Let \((P, L)\) be a linear system with \(p, q \in P\) be two points such that \(\deg(p) = \Delta(P, L)\) and \(\deg(q) = \max\{\deg(x) : x \in P \setminus \{p\}\}\). If \(|L| \leq \deg(p) + \deg(q) + \nu_2(P, L) - 3\), then \(\tau(P, L) \leq \nu_2(P, L) - 1\).

Proof Let \(p, q \in P\) be two points as in the theorem, and let \(L'' = L \setminus \{L_p \cup L_q\}\), which implies that \(|L''| \leq \nu_2(P, L) - 2\). Assume that \(|L''| = \nu_2(P, L) - 2\) \((L_p \cap L_q \neq \emptyset)\), otherwise, the following set \(\{p, q\} \cup \{a_l : a_l\text{ is any point of } l \in L''\}\) is a transversal of \((P, L)\) of cardinality at most \(\nu_2(P, L) - 1\), and the statement
holds. Suppose that \(\mathcal{L}'' = \{L_1, \ldots, L_{\nu_2 - 2}\} \) is a set of pairwise disjoint lines because, in otherwise, they induce at least a double point, \(x \in P \), hence the following set of points \(\{p, q, x\} \cup \{a_l : l \in \mathcal{L}'' \setminus \mathcal{L}'\} \), where \(a_l \) is any point of \(l \), is a transversal of \((P, \mathcal{L})\) of cardinality at most \(\nu_2(P, \mathcal{L}) - 1 \), and the statement holds.

Let \(l_q \in \mathcal{L}_q \setminus \{l_{p,q}\} \) be a fixed line and let \(l_p \) be any line of \(\mathcal{L}_p \setminus \{l_{p,q}\} \), where \(l_{p,q} \) is the line containing to \(p \) and \(q \) (since \(\mathcal{L}_p \cap \mathcal{L}_q \neq \emptyset \)). Then \(l_p \cap l_q \neq \emptyset \), since the \(l_q \) induce a triple point on the following 2-packing \(\mathcal{L}'' \cup \{l_p, l_{p,q}\} \), which implies that there exists a line \(l_{p,q} \in \mathcal{L}'' \) with \(l_q \cap l_p \cap l_{p,q} \neq \emptyset \), and hence \(l_p \cap l_q \neq \emptyset \). Consequently, \(\deg (q) = \Delta (P, \mathcal{L}) \) and \(\Delta (P, \mathcal{L}) \leq \nu_2 (P, \mathcal{L}) - 1 \) (since \(\deg (p) - 1 \leq \nu_2 (P, \mathcal{L}) - 2 \)). Therefore, the following set:

\[
\{l_p \cap L_i : i = 1, \ldots, \Delta - 1\} \cup \{a_{\Delta}, \ldots, a_{\nu_2 - 2}\} \cup \{p\},
\]

where \(a_i \) is any point of \(L_i \), for \(i = \Delta, \ldots, \nu_2 - 2 \), is a transversal of \((P, \mathcal{L})\) of the cardinality at most \(\nu_2 (P, \mathcal{L}) - 1 \), and the statement holds.

\[\square \]

3 A family of uniform linear systems with \(\tau = \nu_2 \)

In this section, we exhibit an infinite family of linear systems \((P, \mathcal{L})\) with two points of maximum degree and \(|\mathcal{L}| = 2\Delta (P, \mathcal{L}) + \nu_2 (P, \mathcal{L}) - 2 \) with \(\tau (P, \mathcal{L}) = \nu_2 (P, \mathcal{L}) \). It is immediately, by Theorem 2.1, that \(\tau (P, \mathcal{L}) \leq \nu_2 (P, \mathcal{L}) - 1 \) for linear systems with less lines.

In the remainder of this paper, \((\Gamma, +)\) is an additive Abelian group with neutral element \(e \). Moreover, if \(\sum_{g \in \Gamma} g = e \), then the group is called neutral sum group. In the following, every group \((\Gamma, +)\) is a neutral sum group, such that \(2g \neq e \), for all \(g \in \Gamma \setminus \{e\} \). As an example of this type of groups we have \((\mathbb{Z}_n, +)\), for \(n \geq 3 \) odd.

Let \(n = 2k + 1 \), with \(k \) a positive integer, and \((\Gamma, +)\) be a neutral sum group of order \(n \). Let:

\[
\mathcal{L} = \{L_g : g \in \Gamma \setminus \{e\}\}, \text{ where } L_g = \{(h, g) : h \in \Gamma\},
\]

for \(g \in \Gamma \setminus \{e\} \), and:

\[
\mathcal{L}_p = \{l_{p_g} : g \in \Gamma\}, \text{ where } l_{p_g} = \{(g, h) : h \in \Gamma \setminus \{e\}\} \cup \{p\},
\]

for \(g \in \Gamma \), and \(\mathcal{L}_q = \{l_{q_g} : g \in \Gamma\} \), where:

\[
l_{q_g} = \{(h, f_g(h)) : h \in \Gamma, f_g(h) = h + g \text{ with } f_g(h) \neq e\} \cup \{q\},
\]
Hence, the set of lines \mathcal{L} is a set of pairwise disjoint lines with $|\mathcal{L}| = n - 1$ and each line of \mathcal{L} has n points. On the other hand, \mathcal{L}_p and \mathcal{L}_q are set of lines incidents to p and q, respectively, with $|\mathcal{L}_p| = |\mathcal{L}_q| = n$, and each line of $\mathcal{L}_p \cup \mathcal{L}_q$ has n points. Moreover, this set of lines satisfies that, giving $l_{pa} \in \mathcal{L}_p$ there exists an unique $l_{qb} \in \mathcal{L}_q$ with $l_{pa} \cap l_{qb} = \emptyset$, otherwise, there exits $l_{pa} \in \mathcal{L}_p$ such that $l_{pa} \cap l_{qb} \neq \emptyset$, for all $l_{qb} \in \mathcal{L}_q$, which implies that $a + b \in \Gamma \setminus \{e\}$, for all $b \in \Gamma$, which is a contradiction.

The linear system (P_n, \mathcal{L}_n) with $P_n = (\Gamma \times \Gamma \setminus \{e\}) \cup \{p, q\}$ and $\mathcal{L}_n = \mathcal{L} \cup \mathcal{L}_p \cup \mathcal{L}_q$, denoted by $\mathcal{C}_{n,n+1}$, is an n-uniform linear system with $n(n-1) + 2$ points and $3n - 1$ lines. Notice that, this linear system has 2 points of degree n (points p and q) and $n(n-1)$ points of degree 3.

A linear subsystem (P', \mathcal{L}') of a linear system (P, \mathcal{L}) satisfies that for any line $l' \in \mathcal{L}'$ there exists a line $l \in \mathcal{L}$ such that $l' = l \cap P'$, where $P' \subset P$. Given a linear system (P, \mathcal{L}) and a point $p \in P$, the linear system obtained from (P, \mathcal{L}) by deleting the point p is the linear system (P', \mathcal{L}') induced by $\mathcal{L}' = \{l \setminus \{p\} : l \in \mathcal{L}\}$. On the other hand, given a linear system (P, \mathcal{L}) and a line $l \in \mathcal{L}$, the linear system obtained from (P, \mathcal{L}) by deleting the line l is the linear system (P', \mathcal{L}') induced by $\mathcal{L}' = \mathcal{L} \setminus \{l\}$. The linear systems (P, \mathcal{L}) and (Q, \mathcal{M}) are isomorphic, denoted by $(P, \mathcal{L}) \simeq (Q, \mathcal{M})$, if after deleting the points of degree 1 or 0 from both, the systems (P, \mathcal{L}) and (Q, \mathcal{M}) are isomorphic as hypergraphs (see [4]).

It is important to state that in the rest of this paper it is considered linear systems (P, \mathcal{L}) without points of degree one because, if (P, \mathcal{L}) is a linear system which has all lines with at least two points of degree 2 or more, and (P', \mathcal{L}') is the linear system obtained from (P, \mathcal{L}) by deleting all points of degree one, then they are essentially the same linear system because it is not difficult to prove that transversal and 2-packing numbers of both coincide (see [2]).

Example 3.1. Let $\Gamma = \mathbb{Z}_3$. The linear system $\mathcal{C}_{3,4} = (P_3, \mathcal{L}_3)$ has as set of points to $P_3 = \{(0,1), (1,1), (2,1), (0,2), (1,2), (2,2)\} \cup \{p\} \cup \{q\}$ and as set of lines to $\mathcal{L}_3 = \mathcal{L} \cup \mathcal{L}_p \cup \mathcal{L}_q$, where

\[
\mathcal{L} = \{(0,1), (1,1), (2,1)\}, \{(0,2), (1,2), (2,2)\}, \\
\mathcal{L}_p = \{(0,1), (0,2), p\}, \{(1,1), (1,2), p\}, \{(2,1), (2,2), p\}, \\
\mathcal{L}_q = \{(1,1), (2,2), q\}, \{(0,1), (1,2), q\}, \{(0,2), (2,1), q\}
\]
Figure 1: Linear system $C_{3,4} = (P_3, \mathcal{L}_3)$.

and depicted in Figure 1 This linear system is isomorphic to the linear system giving in Figure 3, which is the linear system with the less number of lines and maximum degree 3 such that $\tau = \nu_2 = 4$.

Proposition 3.1. The linear system $C_{n,n+1}$ satisfies that:

$$\tau(C_{n,n+1}) = n + 1$$

Proof Notice that $\tau(C_{n,n+1}) \leq n + 1$ since $\{x_g : x_g \text{ is any point of } L_g \in \mathcal{L}\} \cup \{p,q\}$ is a transversal of $C_{n,n+1}$. To prove that $\tau(P_n, \mathcal{L}_n) \geq n + 1$, suppose on the contrary that $\tau(P_n, \mathcal{L}_n) = n$. If T is a transversal of cardinality n then $T \subseteq \Gamma \times \Gamma \setminus \{e\}$, i.e., $p, q \notin T$ because, in other case, if $p \in T$ then, by the Pigeonhole principle, there is a line $l_{q_n} \in \mathcal{L}_q$ such that $T \cap l_{q_n} = \emptyset$, since $\deg(q) = n$, which is a contradiction, unless that $q \in T$, which implies that there exists $L \in \mathcal{L}$ such that $L \cap T = \emptyset$ (because $|\mathcal{L}| = n - 1$), which is also a contradiction. Therefore $T \subseteq \Gamma \times \Gamma \setminus \{e\}$.

Suppose that:

$$T = \{(h_0, f_{g_0}(h_0)), \ldots, (h_{n-1}, f_{g_{n-1}}(h_{n-1}))\},$$

where $\{h_0, \ldots, h_{n-1}\} = \{g_0, \ldots, g_{n-1}\} = \Gamma$ and $f_{g_i} = h_i + g_i \neq e$, for $i = 0, \ldots, n - 1$. Then:

$$\sum_{i=0}^{n-1} f_{h_i}(g_i) = \sum_{i=0}^{n-1} (g_i + h_i) = \sum_{i=0}^{n-1} g_i + \sum_{i=0}^{n-1} h_i = e,$$

since $\sum_{g \in \Gamma} g = \sum_{g \in \Gamma \setminus \{e\}} g = e$, which implies that there exists $f_{h_j}(g_j) \in T$ that
satisfies \(f_{h_j}(g_j) = e \), which is a contradiction, and consequently \(\tau(C_{n,n+1}) = n + 1 \).

\[\square \]

Proposition 3.2. The linear system \(C_{n,n+1} \) satisfies that:

\[\nu_2(C_{n,n+1}) = n + 1 \]

Proof Notice that \(\nu_2(C_{n,n+1}) \geq n + 1 \) because, for any two lines \(l_{p_1}, l_{p_2} \in \mathcal{L}_p \), \(\mathcal{L} \cup \{l_{p_1}, l_{p_2}\} \) is a 2-packing. To prove that \(\nu_2(C_{n,n+1}) \leq n + 1 \), suppose on the contrary that \(\nu_2(C_{n,n+1}) = n + 2 \), and that \(R \) is a maximum 2-packing of size \(n + 2 \), we analyze to cases:

Case (i): Suppose that \(R = \mathcal{L} \cup \{l_{p_1}, l_{p_2}, l_{q_1}\} \), where \(l_{p_1}, l_{p_2} \in \mathcal{L}_p \) and \(l_{q_1} \in \mathcal{L}_q \); since there is an unique line \(l_p \in \mathcal{L}_p \) which intersect to \(l_{q_1} \), then we assume that \(l_{p_1} \cap l_{q_1} \neq \emptyset \). By construction of \(C_{n,n+1} \) there exists \(L \in \mathcal{L} \) that satisfies \(l_{p_1} \cap l_{q_1} \cap L = \emptyset \), inducing a triple point, which is a contradiction.

Case (ii): Let \(k \) be an element of \(\Gamma \setminus \{e\} \) and \(R = \{l_{p_1}, l_{p_2}, l_{q_1}, l_{q_2}\} \cup \mathcal{L} \setminus \{L_k\} \) with \(l_{p_1}, l_{p_2} \in \mathcal{L}_p \) and \(l_{q_1}, l_{q_2} \in \mathcal{L}_q \), without loss of generality, suppose that \(l_{p_1} \cap l_{q_1} \neq \emptyset \), \(l_{p_1} \cap l_{q_2} \neq \emptyset \), \(l_{p_1} \cap l_{q_d} = \emptyset \) and \(l_{p_2} \cap l_{q_c} = \emptyset \), otherwise, \(R \) is not a 2-packing. It is claimed that there exists \(L \in \mathcal{L} \setminus \{L_k\} \) such that either \(l_{p_1} \cap l_{q_1} \cap L \neq \emptyset \) or \(l_{p_1} \cap l_{q_d} \cap L \neq \emptyset \), which implies that \(R \) induce a triple point, which is contradiction and hence \(\nu_2(C_{n,n+1}) = n + 1 \). To verify the claim suppose on the contrary that every \(L \in \mathcal{L} \setminus \{L_k\} \) satisfies \(l_{p_1} \cap l_{q_1} \cap L = \emptyset \) and \(l_{p_1} \cap l_{q_d} \cap L = \emptyset \). It means that \(l_{p_1} \cap l_{q_1} \cap L_k \neq \emptyset \) and \(l_{p_2} \cap l_{q_d} \cap L_k \neq \emptyset \). By construction of \(C_{n,n+1} \) it follows that:

\[
\begin{align*}
 l_{p_i} & = \{(i, x) : x \in \Gamma \setminus \{e\}\}, \text{ for all } i \in \Gamma, \\
 l_{q_j} & = \{(x, x+j) : x \in \Gamma \setminus \{e\} \text{ and } x+j \neq e\}, \text{ for all } j \in \Gamma, \text{ and} \\
 L_k & = \{(x,k) : x \in \Gamma\}.
\end{align*}
\]

If \(l_{p_1} \cap l_{q_1} \cap L_k \neq \emptyset \) and \(l_{p_2} \cap l_{q_d} \cap L_k \neq \emptyset \), then \(a+c = b+d = k \). On the other hand, as \(l_{p_1} \cap l_{q_d} = \emptyset \) and \(l_{p_2} \cap l_{q_c} = \emptyset \), then \(a+d = b+c = e \). As a consequence of \(a+c = b+d = k \) and \(a+d = b+c = e \) we obtain \(2k = e \), which is a contradiction. Therefore, \(\nu_2(C_{n,n+1}) = n + 1 \).

\[\square \]

Hence, by **Proposition 3.1** and **Proposition 3.2** it was proved that:
Theorem 3.2. Let $n = 2k + 1$, with $k \in \mathbb{N}$, then

$$\tau(C_{n,n+1}) = \nu_2(C_{n,n+1}) = n + 1,$$

with smallest possible cardinality of lines.

3.1 Straight line systems

A straight line representation on \mathbb{R}^2 of a linear system (P, L) maps each point $x \in P$ to a point $p(x)$ of \mathbb{R}^2, and each line $L \in L$ to a straight line segment $l(L)$ of \mathbb{R}^2 in such a way that for each point $x \in P$ and line $L \in L$ satisfies $p(x) \in l(L)$ if and only if $x \in L$, and for each pair of distinct lines $L, L' \in L$ satisfies $l(L) \cap l(L') = \{p(x) : x \in L \cap L'\}$. A straight line system (P, L) is a linear system, such that it has a straight line representation on \mathbb{R}^2. In [2] was proved that the linear system $C_{3,4}$ is not a straight one. The Levi graph of a linear system (P, L), denoted by $B(P, L)$, is a bipartite graph with vertex set $V = P \cup L$, where two vertices $p \in P$, and $L \in L$ are adjacent if and only if $p \in L$.

In the same way as in [2] and according to [15], any straight line system is Zykov-planar, see also [23]. Zykov proposed to represent the lines of a set system by a subset of the faces of a planar map on \mathbb{R}^2, i.e., a set system (X, F) is Zykov-planar if there exists a planar graph G (not necessarily a simple graph) such that $V(G) = X$ and G can be drawn in the plane with faces of G two-colored (say red and blue) so that there exists a bijection between the red faces of G and the subsets of F such that a point x is incident with a red face if and only if x is incident with the corresponding subset. In [22] was shown that the Zykov’s definition is equivalent to the following: A set system (X, F) is Zykov-planar if and only if the Levi graph $B(X, F)$ is planar. It is well-known that for any planar graph G the size of G, $|E(G)|$, is upper bounded by $\frac{k(|V(G)|-2)}{2}$ (see [5] page 135, exercise 9.3.1 (a)), where k is the girth of G (the length of a shortest cycle contained in the graph G). It is not difficult to prove that the Levi graph $B(C_{n,n+1})$ of $C_{n,n+1}$ is not a planar graph, since the size of the girth of $B(C_{n,n+1})$ is 6, it follows:

$$3n^2 - n = |E(C_{n,n+1})| > \frac{3(n^2 + 2n - 1)}{2},$$

for all $n \geq 3$. Therefore, the linear system $C_{n,n+1}$ is not a straight line system.

Finally, as a Corollary of Theorem 2.1 we have the following:
Corollary 3.1. Let \((P, L)\) be a straight line system with \(p, q \in P\) be two points such that \(\text{deg}(p) = \Delta(P, L)\) and \(\text{deg}(q) = \max\{\text{deg}(x) : x \in P \setminus \{p\}\}\). If \(|L| \leq \text{deg}(p) + \text{deg}(q) + \nu_2(P, L) - 3\), then \(\tau(P, L) \leq \nu_2(P, L) - 1\).

4 Intersecting \(r\)-uniform linear systems with \(\tau = \nu_2 = r\)

In this subsection, we give some properties of \(r\)-uniform linear systems that satisfies \(\tau = \nu_2 = r\) as well as a characterization of \(4\)-uniform linear systems with \(\tau = \nu_2 = 4\).

Let \(L_r\) be the family of intersecting linear systems \((P, L)\) of rank \(r\) that satisfies \(\tau(P, L) = \nu_2(P, L) = r\), then we have the following lemma:

Lemma 4.1. Each element of \(L_r\) is an \(r\)-uniform linear system.

Proof. Let consider \((P, L) \in L_r\) and \(l \in L\) any line of \((P, L)\). It is clear that \(T = \{p \in l : \text{deg}(p) \geq 2\}\) is a transversal of \((P, L)\). Hence \(r = \tau(P, L) \leq |T| \leq r\), which implies that \(|l| = r\), for all \(l \in L\). Moreover, \(\text{deg}(p) \geq 2\), for all \(p \in l\) and \(l \in L\).

In [8] was proved the following:

Lemma 4.2. [8] Let \((P, L)\) be an \(r\)-uniform intersecting linear system then every edge of \((P, L)\) has at most one vertex of degree 2. Moreover \(\Delta(P, L) \leq r\).

Lemma 4.3. [8] Let \((P, L)\) be an \(r\)-uniform intersecting linear system then
\[3(r - 1) \leq |L| \leq r^2 - r + 1.\]

Hence, by Theorem 2.1 and Lemma 4.3 it follows:

Corollary 4.1. If \((P, L) \in L_r\) then \(3(r - 1) + 1 \leq |L| \leq r^2 - r + 1\).

In [2] was proved that the linear systems \((P, L)\) with \(|L| > \nu_2(P, L)\) and \(\nu_3(P, L) \in \{2, 3, 4\}\) satisfy \(\tau(P, L) \leq \nu_2(P, L)\); and when attain the equality, they are a special family of linear subsystems of the projective plane of order \(3\), \(\Pi_3\) (some of them \(4\)-uniform intersecting linear systems) with transversal and \(2\)-packing numbers equal to \(4\). Recall that a finite projective plane (or merely
projective plane) is a linear system satisfying that any pair of points have a common line, any pair of lines have a common point and there exist four points in general position (there are not three collinear points). It is well known that, if \((P, L)\) is a projective plane, there exists a number \(q \in \mathbb{N}\), called order of projective plane, such that every point (line, respectively) of \((P, L)\) is incident to exactly \(q+1\) lines (points, respectively), and \((P, L)\) contains exactly \(q^2 + q + 1\) points (lines, respectively). In addition to this, it is well known that projective planes of order \(q\), denoted by \(\Pi_q\), exist when \(q\) is a power prime. For more information about the existence and the unicity of projective planes see, for instance, [3, 6].

Given a linear system \((P, L)\), a triangle \(\mathcal{T}\) of \((P, L)\), is the linear subsystem of \((P, L)\) induced by three points in general position (non collinear) and the three lines induced by them. In [2] was defined \(\mathcal{C} = (P_C, L_C)\) to be the linear system obtained from \(\Pi_3\) by deleting \(\mathcal{T}\); also there was defined \(\mathcal{C}_{4,4}\) to be the family of linear systems \((P, L)\) with \(\nu_2(P, L) = 4\), such that:

i) \(\mathcal{C}\) is a linear subsystem of \((P, L)\); and

ii) \((P, L)\) is a linear subsystem of \(\Pi_3\),

this is \(\mathcal{C}_{4,4} = \{(P, L) : \mathcal{C} \subseteq (P, L) \subseteq \Pi_3 \text{ and } \nu_2(P, L) = 4\}\).

Hence, the authors proved the following:

Theorem 4.1. [2] Let \((P, L)\) be a linear system with \(\nu_2(P, L) = 4\). Then, \(\tau(P, L) = \nu_2(P, L) = 4\) if and only if \((P, L) \in \mathcal{C}_{4,4}\).

Now, consider the projective plane \(\Pi_3\) and a triangle \(\mathcal{T}\) of \(\Pi_3\) (see (a) of Figure 2). Define \(\hat{\mathcal{C}} = (P_C, L_C)\) to be the linear subsystem induced by \(L_C = L\backslash \mathcal{T}\) (see (b) of Figure 2). The linear system \(\hat{\mathcal{C}} = (P_C, L_C)\) just defined has ten points and ten lines. Define \(\hat{\mathcal{C}}_{4,4}\) to be the family of 4-uniform intersecting linear systems \((P, L)\) with \(\nu_2(P, L) = 4\), such that:

i) \(\hat{\mathcal{C}}\) is a linear subsystem of \((P, L)\); and

ii) \((P, L)\) is a linear subsystem of \(\Pi_3\),

It is clear that \(\hat{\mathcal{C}}_{4,4} \subseteq \mathcal{C}_{4,4}\) and each linear system \((P, L) \in \hat{\mathcal{C}}_{4,4}\) is an 4-uniform intersecting linear system. Hence

Corollary 4.2. \((P, L) \in \mathbb{L}_4\) if and only if \((P, L) \in \hat{\mathcal{C}}_{4,4}\).
Figure 2: (a) Projective plane of order 3, Π_3 and (b) Linear system obtained from Π_3 by deleting the lines of the triangle \mathcal{T}.

References

[1] C. A. Alfaro, C. Rubio-Montiel and A. Vázquez-Ávila, Covering and 2-packing number in graphs, Submitted, https://arxiv.org/abs/1707.02254.

[2] G. Araujo-Pardo, A. Montejano, L. Montejano and A. Vázquez-Ávila, On transversal and 2-packing numbers in straight line systems on \mathbb{R}^2, Util. Math. 105 (2017), 317–336.

[3] L. M. Batten, Combinatorics of Finite Geometries, Cambridge Univ Press, Cambridge, 1986.

[4] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland Mathematical Library, Elsevier Science, 1984.

[5] J. A. Bondy, Graph Theory With Applications, Elsevier Science Ltd., Oxford, UK, 1976.

[6] F. Buekenhout, Handbook of Incidence Geometry: Buildings and Foundations, Elsevier, 1995.

[7] V. Chvátal and C. McDiarmid, Small transversal in hypergraphs, Combinatorica 12 (1992), no. 1, 19–26.

[8] Y. Dong, and E. Shan, and S. Li, and L. Kang, Domination in intersecting hypergraphs, preprint https://arxiv.org/abs/1701.01564
[9] M. Dorfling and M. A. Henning, Linear Hypergraphs with Large Transversal Number and Maximum Degree Two, Eur. J. Comb. 36 (2014), 231–236.

[10] A. Eustis, and J. Verstraëte, On the independence number of Steiner systems, Combin. Probab. Comput. 22 (2013), no. 2, 241–252.

[11] J. Eckhoff, A survey of the Hadwiger-Debrunner (p,q)-problem, Discrete and computational geometry, Algorithms Combin., vol, 25, Springer, Berlin, 2003, pp. 347–377.

[12] P. Erdős, D. Fon-Der-Flaass, A. V. Kostochka and Z. Tuza, Small transversals in uniform hypergraphs, Siberian Adv. Math. 2 (1992), no. 1, 82–88.

[13] M. A. Henning and A. Yeo, Hypergraphs with large transversal number, Discrete Math. 313 (2013), no. 8, 959–966.

[14] M. Huicochea, J. Jerónimo-Castro, L. Montejano and D. Oliveros, About the piercing number of a family of intervals, Discrete Math. 338 (2015), no. 12, 2545–2548.

[15] M. Kaufmann, and M. van Kreveld, and B. Speckmann, Subdivision drawings of hypergraphs, Graph drawing, Berlin: Springer, 2009, pp. 396–407

[16] J. Kynčl and M. Tancer, The maximum piercing number for some classes of convex sets with the (4,3)-property, Electron. J. Combin. 15 (2008), no. 1, Research Paper 27, 16.

[17] L. Montejano and P. Soberón, Piercing numbers for balanced and unbalanced families, Discrete Comput. Geom. 45 (2011), no. 2, 358–364.

[18] A. Noga, K. Gil, J. Matousek and R. Meshulam, Transversal numbers for hypergraphs arising in geometry, Adv. in Appl. Math. 29 (2002), no. 1, 79–101.

[19] A. Noga and D. J. Kleitman, Piercing convex sets, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 252–256.

[20] A. Noga and D. J. Kleitman, Piercing convex sets and the Hadwiger-Debrunner (p,q)-problem, Adv. Math. 96 (1992), no. 2, 252–256.

[21] F. Sterk, A characterization of the graphs in which the transversal number equals the matching number, J. Comb. Theory, Ser. B 27 (1979), 228–229.
[22] T. R. S. Walsh, *Hypermaps versus bipartite maps*, J. Comb. Theory, Ser. B 18 (1975), 155–163.

[23] A. A. Zykov, *Hypergraphs*, Uspehi Mat. Nauk 29 (1974), no. 6 (180), 89–154.