Mapping gaseous amines, ammonia, and their particulate counterparts in marine atmospheres of China’s marginal seas: Part 2 - spatiotemporal heterogeneity, causes and hypothesis

Yating Gao¹, Dihui Chen¹, Yanjie Shen¹, Yang Gao¹,², Huiwang Gao¹,², Xiaohong Yao¹,²*

¹Key Laboratory of Marine Environment and Ecology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao 266100, China
²Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

*Correspondence to: Xiaohong Yao (xhyao@ouc.edu.cn)
Figure S1: Map of particulate NH_4^+ in marine atmospheres during three campaigns (a) Campaign B; (b) Campaign A; (c) Campaign C; size distributions of particulate NH_4^+ was superimposed in (c); D2May, D3May, N20May represent the samples collected in daytime on 2nd, 3rd May 2012 and nighttime on 20 May 2012, respectively.
Figure S2: Correlation of TMA_{gas} with ambient temperature (open circle and cross represent the data collected in Campaign B and a particular period of Campaign A, respectively).
Figure S3: Time series of molar ratios of DMA$_{gas}$/NH$_3_{gas}$ (a) and (c) in Campaign B and A; correlation between DMA$_{gas}$/NH$_3_{gas}$ and DMAH$^+$/NH$_4^+$ (b) and (d) in Campaign B and A; map of particulate DMAH$^+$; (e) and size distributions of DMAH$^+$/NH$_4^+$ and mass concentrations of DMAH$^+$; (f) in Campaign C.