Martingale inequalities for spline sequences

Markus Passenbrunner

Received: 6 February 2019 / Accepted: 21 March 2019 / Published online: 30 March 2019
© The Author(s) 2019

Abstract
We show that D. Lépingle’s $L_1(\ell_2)$-inequality
\[\left\| \left(\sum_n \mathbb{E}[f_n|\mathcal{F}_{n-1}]^2 \right)^{1/2} \right\|_1 \leq 2 \cdot \left\| \left(\sum_n f_n^2 \right)^{1/2} \right\|_1, \quad f_n \in \mathcal{F}_n, \]
extends to the case where we substitute the conditional expectation operators with orthogonal projection operators onto spline spaces and where we can allow that f_n is contained in a suitable spline space $\mathcal{S}(\mathcal{F}_n)$. This is done provided the filtration (\mathcal{F}_n) satisfies a certain regularity condition depending on the degree of smoothness of the functions contained in $\mathcal{S}(\mathcal{F}_n)$. As a by-product, we also obtain a spline version of H_1-BMO duality under this assumption.

Keywords Martingale inequalities · Polynomial spline spaces · Orthogonal projection operators

Mathematics Subject Classification 65D07 · 60G42 · 42C10

1 Introduction
This article is part of a series of papers that extend martingale results to polynomial spline sequences of arbitrary order (see e.g. [11,14,16–19,22]). In order to explain those martingale type results, we have to introduce a little bit of terminology: Let k be a positive integer, (\mathcal{F}_n) an increasing sequence of σ-algebras of sets in $[0, 1]$ where each \mathcal{F}_n is generated by a finite partition of $[0, 1]$ into intervals of positive length. Moreover, define the spline space
\[\mathcal{S}_k(\mathcal{F}_n) = \{ f \in C^{k-2}[0, 1] : f \text{ is a polynomial of order } k \text{ on each atom of } \mathcal{F}_n \} \]
and let \(P_n^{(k)} \) be the orthogonal projection operator onto \(\mathcal{S}_k(\mathcal{F}_n) \) with respect to the \(L_2 \) inner product on \([0, 1]\) with the Lebesgue measure \(| \cdot | \). The space \(\mathcal{S}_1(\mathcal{F}_n) \) consists of piecewise constant functions and \(P_n^{(1)} \) is the conditional expectation operator with respect to the \(\sigma \)-algebra \(\mathcal{F}_n \). Similarly to the definition of martingales, we introduce the following notion: let \((f_n)_{n \geq 0} \) be a sequence of integrable functions. We call this sequence a \(k \)-martingale spline sequence (adapted to \((\mathcal{F}_n) \)) if, for all \(n, \\
P_n^{(k)} f_{n+1} = f_n.
\]

For basic facts about martingales and conditional expectations, we refer to [15].

Classical martingale theorems such as Doob’s inequality or the martingale convergence theorem in fact carry over to \(k \)-martingale spline sequences corresponding to arbitrary filtrations \((\mathcal{F}_n) \) of the above type, just by replacing conditional expectation operators by the projection operators \(P_n^{(k)} \). Indeed, we have

(i) (Shadrin’s theorem) there exists a constant \(C_k \) depending only on \(k \) such that

\[
\sup_n \| P_n^{(k)} : L_1 \to L_1 \| \leq C_k,
\]

(ii) (Doob’s weak type inequality for splines)

there exists a constant \(C_k \) depending only on \(k \) such that for any \(k \)-martingale spline sequence \((f_n) \) and any \(\lambda > 0 \),

\[
|\{ \sup_n |f_n| > \lambda \}| \leq C_k \sup_n \| f_n \|_1 \frac{\lambda}{\lambda},
\]

(iii) (Doob’s \(L_p \) inequality for splines)

for all \(p \in (1, \infty] \) there exists a constant \(C_{p,k} \) depending only on \(p \) and \(k \) such that for all \(k \)-martingale spline sequences \((f_n) \),

\[
\| \sup_n |f_n| \|_p \leq C_{p,k} \sup_n \| f_n \|_p,
\]

(iv) (Spline convergence theorem)

if \((f_n) \) is an \(L_1 \)-bounded \(k \)-martingale spline sequence, then \((f_n) \) converges almost surely to some \(L_1 \)-function,

(v) (Spline convergence theorem, \(L_p \)-version)

for \(1 < p < \infty \), if \((f_n) \) is an \(L_p \)-bounded \(k \)-martingale spline sequence, then \((f_n) \) converges almost surely and in \(L_p \).

Property (i) was proved by Shadrin in the groundbreaking paper [22]. We also refer to the paper [25] by von Golitschek, who gives a substantially shorter proof of (i). Properties (ii) and (iii) are proved in [19] and properties (iv) and (v) in [14], but see also [18], where it is shown that, in analogy to the martingale case, the validity of (iv) and (v) for all \(k \)-martingale spline sequences with values in a Banach space \(X \) characterize the Radon–Nikodým property of \(X \) (for background information on that material, we refer to the monographs [6,20]).
Here, we continue this line of transferring martingale results to k-martingale spline sequences and extend Lépingle’s $L_1(\ell_2)$-inequality [12], which reads

$$\left\| \left(\sum_n \mathbb{E}[f_n | \mathcal{F}_{n-1}]^2 \right)^{1/2} \right\|_1 \leq 2 \cdot \left\| \left(\sum_n f_n^2 \right)^{1/2} \right\|_1,$$

(1.1)

provided the sequence of (real-valued) random variables f_n is adapted to the filtration (\mathcal{F}_n), i.e. each f_n is \mathcal{F}_n-measurable. Different proofs of (1.1) were given by Bourgain [3, Proposition 5], Delbaen and Schachermayer [4, Lemma 1] and Müller [13, Proposition 4.1]. The spline version of inequality (1.1) is contained in Theorem 4.1.

This inequality is an L_1 extension of the following result for $1 < p < \infty$, proved by Stein [24], that holds for arbitrary integrable functions f_n:

$$\left\| \left(\sum_n \mathbb{E}[f_n | \mathcal{F}_{n-1}]^2 \right)^{1/2} \right\|_p \leq a_p \left\| \left(\sum_n f_n^2 \right)^{1/2} \right\|_p,$$

(1.2)

for some constant a_p depending only on p. This can be seen as a dual version of Doob’s inequality $\| \sup |\mathbb{E}[f | \mathcal{F}_\ell]|\|_p \leq c_p \| f \|_p$ for $p > 1$, see [1]. Once we know Doob’s inequality for spline projections, which is point (iii) above, the same proof as in [1] works for spline projections if we use suitable positive operators T_n instead of $P_n^{(k)}$ that also satisfy Doob’s inequality and dominate the operators $P_n^{(k)}$ pointwise (cf. Sects. 3.1, 3.2).

The usage of those operators T_n is also necessary in the extension of inequality (1.1) to splines. Lépingle’s proof of (1.1) rests on an idea by Herz [10] of splitting $\mathbb{E}[f_n \cdot h_n]$ (for f_n being \mathcal{F}_n-measurable) by Cauchy–Schwarz after introducing the square function $S_n^2 = \sum_{\ell \leq n} f_\ell^2$:

$$(\mathbb{E}[f_n \cdot h_n])^2 \leq \mathbb{E}[f_n^2/S_n] \cdot \mathbb{E}[S_nh_n^2]$$

(1.3)

and estimating both factors on the right hand side separately. A key point in estimating the second factor is that S_n is \mathcal{F}_n-measurable, and therefore, $\mathbb{E}[S_n | \mathcal{F}_n] = S_n$. If we want to allow $f_n \in \mathcal{S}_k(\mathcal{F}_n)$, S_n will not be contained in $\mathcal{S}_k(\mathcal{F}_n)$ in general. Under certain conditions on the filtration (\mathcal{F}_n), we will show in this article how to substitute S_n in estimate (1.3) by a function $g_n \in \mathcal{S}_k(\mathcal{F}_n)$ that enjoys similar properties to S_n and allows us to proceed (cf. Sect. 3.4, in particular Proposition 3.4 and Theorem 3.6).

As a by-product, we obtain a spline version (Theorem 4.2) of C. Fefferman’s theorem [7] on H^1-BMO duality. For its martingale version, we refer to A. M. Garsia’s book [8] on Martingale Inequalities.

2 Preliminaries

In this section, we collect all tools that are needed subsequently.

 Springer
2.1 Properties of polynomials

We will need Remez’ inequality for polynomials:

Theorem 2.1 Let $V \subset \mathbb{R}$ be a compact interval in \mathbb{R} and $E \subset V$ a measurable subset. Then, for all polynomials p of order k (i.e. degree $k - 1$) on V,

$$\|p\|_{L_\infty(V)} \leq \left(4 \frac{|V|}{|E|}\right)^{k-1} \|p\|_{L_\infty(E)}.$$

Applying this theorem with the set $E = \{x \in V : |p(x)| \leq 8^{-k+1}\|p\|_{L_\infty(V)}\}$ immediately yields the following corollary:

Corollary 2.2 Let p be a polynomial of order k on a compact interval $V \subset \mathbb{R}$. Then

$$\left|\{x \in V : |p(x)| \geq 8^{-k+1}\|p\|_{L_\infty(V)}\}\right| \geq |V|/2.$$

2.2 Properties of spline functions

For an interval σ-algebra \mathcal{F} (i.e. \mathcal{F} is generated by a finite collection of intervals having positive length), the space $\mathcal{H}_k(\mathcal{F})$ is spanned by a very special local basis (N_i), the so called B-spline basis. It has the properties that each N_i is non-negative and each support of N_i consists of at most k neighboring atoms of \mathcal{F}. Moreover, (N_i) is a partition of unity, i.e. for all $x \in [0, 1]$, there exist at most k functions N_i so that $N_i(x) \neq 0$ and $\sum_i N_i(x) = 1$. In the following, we denote by E_i the support of the B-spline function N_i. The usual ordering of the B-splines (N_i)—which we also employ here—is such that for all i, $\inf E_i \leq \inf E_{i+1}$ and $\sup E_i \leq \sup E_{i+1}$.

We write $A(t) \lesssim B(t)$ to denote the existence of a constant C such that for all t, $A(t) \leq CB(t)$, where t denote all implicit and explicit dependencies the expression A and B might have. If the constant C additionally depends on some parameter, we will indicate this in the text. Similarly, the symbols \gtrsim and \simeq are used.

Another important property of B-splines is the following relation between B-spline coefficients and the L_p-norm of the corresponding B-spline expansions.

Theorem 2.3 (B-spline stability, local and global) Let $1 \leq p \leq \infty$ and $g = \sum_j a_j N_j$. Then, for all j,

$$|a_j| \lesssim |J_j|^{-1/p} \|g\|_{L_p(J_j)}, \quad (2.1)$$

where J_j is an atom of \mathcal{F} contained in E_j having maximal length. Additionally,

$$\|g\|_p \simeq \|(a_j|E_j|^{1/p})\|_{\ell_p}, \quad (2.2)$$

where in both (2.1) and (2.2), the implied constants depend only on the spline order k.

\blacksquare Springer
Observe that (2.1) implies for $g \in \mathcal{S}_k(\mathcal{F})$ and any measurable set $A \subset [0, 1]$

$$\|g\|_{L_\infty(A)} \lesssim \max_{j: |E_j \cap A| > 0} \|g\|_{L_\infty(J_j)}. \quad (2.3)$$

We will also need the following relation between the B-spline expansion of a function and its expansion using B-splines of a finer grid.

Theorem 2.4 Let $\mathcal{G} \subset \mathcal{F}$ be two interval σ-algebras and denote by $(N_{G,i})_i$ the B-spline basis of the coarser space $\mathcal{S}_k(\mathcal{G})$ and by $(N_{F,i})_i$ the B-spline basis of the finer space $\mathcal{S}_k(\mathcal{F})$. Then, given $f = \sum_j a_j N_{G,j}$, we can expand f in the basis $(N_{F,i})_i$

$$\sum_j a_j N_{G,j} = \sum_i b_i N_{F,i},$$

where for each i, b_i is a convex combination of the coefficients a_j with $\text{supp} N_{G,j} \supseteq \text{supp} N_{F,i}$.

For those results and more information on spline functions, in particular B-splines, we refer to [21] or [5].

2.3 Spline orthoprojectors

We now use the B-spline basis of $\mathcal{S}_k(\mathcal{F})$ and expand the orthogonal projection operator P onto $\mathcal{S}_k(\mathcal{F})$ in the form

$$Pf = \sum_{i,j} a_{ij} \left(\int_0^1 f(x) N_i(x) \, dx \right) \cdot N_j \quad (2.4)$$

for some coefficients (a_{ij}). Denoting by E_{ij} the smallest interval containing both supports E_i and E_j of the B-spline functions N_i and N_j respectively, we have the following estimate for a_{ij} [19]: there exist constants C and $0 < q < 1$ depending only on k so that for each interval σ-algebra \mathcal{F} and each i, j,

$$|a_{ij}| \leq C q^{q|j-i|} / |E_{ij}|. \quad (2.5)$$

2.4 Spline square functions

Let (\mathcal{F}_n) be a sequence of increasing interval σ-algebras in $[0, 1]$ and we assume that each \mathcal{F}_{n+1} is generated from \mathcal{F}_n by the subdivision of exactly one atom of \mathcal{F}_n into two atoms of \mathcal{F}_{n+1}. Let P_n be the orthogonal projection operator onto $\mathcal{S}_k(\mathcal{F}_n)$. We denote $\Delta_n f = P_n f - P_{n-1} f$ and define the spline square function

$$Sf = \left(\sum_n |\Delta_n f|^2 \right)^{1/2}. $$
We have Burkholder’s inequality for the spline square function, i.e. for all $1 < p < \infty$ [16], the L_p-norm of the square function Sf is comparable to the L_p-norm of f:

$$\|Sf\|_p \simeq \|f\|_p, \quad f \in L_p$$

with constants depending only on p and k. Moreover, for $p = 1$, it is shown in [9] that

$$\|Sf\|_1 \simeq \sup_{\varepsilon \in \{-1,1\}^\mathbb{Z}} \| \sum_n \varepsilon_n \Delta_n f \|_1, \quad Sf \in L_1,$$

with constants depending only on k and where the proof of the \lesssim-part only uses Khintchine’s inequality whereas the proof of the \gtrsim-part uses fine properties of the functions $\Delta_n f$.

2.5 $L_p(\ell_q)$-spaces

For $1 \leq p, q \leq \infty$, we denote by $L_p(\ell_q)$ the space of sequences of measurable functions (f_n) on $[0, 1]$ so that the norm

$$\|(f_n)\|_{L_p(\ell_q)} = \left(\int_0^1 \left(\sum_n |f_n(t)|^q \right)^{p/q} \, dt \right)^{1/p}$$

is finite (with the obvious modifications if $p = \infty$ or $q = \infty$). For $1 \leq p, q < \infty$, the dual space (see [2]) of $L_p(\ell_q)$ is $L_{p'}(\ell_{q'})$ with $p' = p/(p-1), q' = q/(q-1)$ and the duality pairing

$$\langle (f_n), (g_n) \rangle = \int_0^1 \sum_n f_n(t) g_n(t) \, dt.$$

Hölder’s inequality takes the form $|\langle (f_n), (g_n) \rangle| \leq \|(f_n)\|_{L_p(\ell_q)} \|(g_n)\|_{L_{p'}(\ell_{q'})}$.

3 Main results

In this section, we prove our main results. Section 3.1 defines and gives properties of suitable positive operators that dominate our (non-positive) operators $P_n = P_n^{(k)}$ pointwise. In Sect. 3.2, we use those operators to give a spline version of Stein’s inequality (1.2). A useful property of conditional expectations is the tower property $E_G E_F f = E_G f$ for $G \subset F$. In this form, it extends to the operators (P_n), but not to the operators T from Sect. 3.1. In Sect. 3.3 we prove a version of the tower property for those operators. Section 3.4 is devoted to establishing a duality estimate using a spline square function, which is the crucial ingredient in the proofs of the spline versions of both Lépingle’s inequality (1.1) and H_1-BMO duality in Sect. 4.
3.1 The positive operators T

As above, let \mathcal{F} be an interval σ-algebra on $[0, 1]$, (N_i) the B-spline basis of $\mathcal{A}_k(\mathcal{F})$, E_i the support of N_i and E_{ij} the smallest interval containing both E_i and E_j. Moreover, let q be a positive number smaller than 1. Then, we define the linear operator $T = T_{\mathcal{F}, q, k}$ by

$$Tf(x) := \sum_{i,j} q^{|i-j|} \frac{1}{|E_{ij}|} \langle f, 1_{E_i} \rangle 1_{E_j}(x) = \int_0^1 K(x, t) f(t) \, dt,$$

where the kernel $K = K_T$ is given by

$$K(x, t) = \sum_{i,j} q^{|i-j|} \frac{1}{|E_{ij}|} 1_{E_i}(t) \cdot 1_{E_j}(x).$$

We observe that the operator T is selfadjoint (w.r.t the standard inner product on L_2) and

$$k \leq K_x := \int_0^1 K(x, t) \, dt \leq \frac{2(k+1)}{1-q}, \quad x \in [0, 1],$$

which, in particular, implies the boundedness of the operator T on L_1 and L_∞:

$$\|Tf\|_1 \leq \frac{2(k+1)}{1-q} \|f\|_1, \quad \|Tf\|_\infty \leq \frac{2(k+1)}{1-q} \|f\|_\infty.$$

Another very important property of T is that it is a positive operator, i.e. it maps non-negative functions to non-negative functions and that T satisfies Jensen’s inequality in the form

$$\varphi(Tf(x)) \leq K_x^{-1} T(\varphi(K_x \cdot f))(x), \quad f \in L_1, x \in [0, 1],$$

for convex functions φ. This is seen by applying the classical Jensen inequality to the probability measure $K(t, x) \, dt / K_x$.

Let $\mathcal{M} f$ denote the Hardy–Littlewood maximal function of $f \in L_1$, i.e.

$$\mathcal{M} f(x) = \sup_{I \ni x} \frac{1}{|I|} \int_I |f(y)| \, dy,$$

where the supremum is taken over all subintervals of $[0, 1]$ that contain the point x. This operator is of weak type $(1, 1)$, i.e.

$$|\{ \mathcal{M} f > \lambda \}| \leq C \lambda^{-1} \|f\|_1, \quad f \in L_1, \lambda > 0.$$
for some constant C. Since trivially we have the estimate $\|\mathcal{M} f\|_\infty \leq \|f\|_\infty$, by Marcinkiewicz interpolation, for any $p > 1$, there exists a constant C_p depending only on p so that
\[\|\mathcal{M} f\|_p \leq C_p \|f\|_p. \]

For those assertions about \mathcal{M}, we refer to (for instance) [23].

The significance of T and \mathcal{M} at this point is that we can use formula (2.4) and estimate (2.5) to obtain the pointwise bound
\[|P f(x)| \leq C_1 (T |f|)(x) \leq C_2 \mathcal{M} (x), \quad f \in L_1, x \in [0, 1], \quad (3.3) \]
where $T = T_{F, q, k}$ with q given by (2.5), C_1 is a constant that depends only on k and C_2 is a constant that depends only on k and the geometric progression q. But as the parameter $q < 1$ in (2.5) depends only on k, the constant C_2 will also only depend on k.

In other words, (3.3) tells us that the positive operator T dominates the non-positive operator P pointwise, but at the same time, T is dominated by the Hardy–Littlewood maximal function \mathcal{M} pointwise and independently of F.

3.2 Stein’s inequality for splines

We now use this pointwise dominating, positive operator T to prove Stein’s inequality for spline projections. For this, let (F_n) be an interval filtration on $[0, 1]$ and P_n be the orthogonal projection operator onto the space $\mathcal{S}_k(F_n)$ of splines of order k corresponding to F_n. Working with the positive operators $T_{F_n, q, k}$ instead of the non-positive operators P_n, the proof of Stein’s inequality (1.2) for spline projections can be carried over from the martingale case (cf. [1, 24]). For completeness, we include it here.

Theorem 3.1 Suppose that (f_n) is a sequence of arbitrary integrable functions on $[0, 1]$. Then, for $1 \leq r \leq p < \infty$ or $1 < p \leq r \leq \infty$,
\[\| (P_n f_n) \|_{L_p(\ell_r)} \lesssim \| (f_n) \|_{L_p(\ell_r)} \quad (3.4) \]
where the implied constant depends only on p, r and k.

Proof By (3.3), it suffices to prove this inequality for the operators $T_n = T_{F_n, q, k}$ with q given by (2.5) instead of the operators P_n. First observe that for $r = p = 1$, the assertion follows from Shadrin’s theorem ((i) on page 1). Inequality (3.3) and the $L_{p'}$-boundedness of \mathcal{M} for $1 < p' \leq \infty$ imply that
\[\left\| \sup_{1 \leq n \leq N} |T_n f| \right\|_{p'} \leq C_{p', k} \|f\|_{p'}, \quad f \in L_p \quad (3.5) \]
with a constant $C_{p', k}$ depending on p' and k. Let $1 \leq p < \infty$ and $U_N : L_p(\ell_1^N) \rightarrow L_p$ be given by $(g_1, \ldots, g_N) \mapsto \sum_{j=1}^N T_j g_j$. Inequality (3.5) implies the boundedness of
the adjoint $U_N^*: L_{p'} \to L_{p'}(\ell_1^N)$, $f \mapsto (T_j f)^N_{j=1}$ for $p' = p/(p - 1)$ by a constant independent of N and therefore also the boundedness of U_N. Since $|T_j f| \leq T_j |f|$ by the positivity of T_j, letting $N \to \infty$ implies (3.4) for T_n instead of P_n in the case $r = 1$ and outer parameter $1 \leq p < \infty$.

If $1 < r \leq p$, we use Jensen’s inequality (3.2) and estimate (3.1) to obtain
\[
\sum_{j=1}^N |T_j g_j|^r \lesssim \sum_{j=1}^N T_j (|g_j|^r)
\]
and apply the result for $r = 1$ and the outer parameter p/r to get the result for $1 \leq r < p < \infty$. The cases $1 < p \leq r < \infty$ now just follow from this result using duality and the self-adjointness of T_j. \hfill \Box

3.3 Tower property of T

Next, we will prove a substitute of the tower property $E_{\mathcal{G}} E_{\mathcal{F}} f = E_{\mathcal{G}} f$ ($\mathcal{G} \subset \mathcal{F}$) for conditional expectations that applies to the operators T.

To formulate this result, we need a suitable notion of regularity for σ-algebras which we now describe. Let \mathcal{F} be an interval σ-algebra, let (N_j) be the B-spline basis of $\mathcal{A}_k(\mathcal{F})$ and denote by E_j the support of the function N_j. The k-regularity parameter $\gamma_k(\mathcal{F})$ is defined as
\[
\gamma_k(\mathcal{F}) := \max_i \max(|E_i|/|E_{i+1}|, |E_{i+1}|/|E_i|),
\]
where the first maximum is taken over all i so that E_i and E_{i+1} are defined. The name k-regularity is motivated by the fact that each B-spline support E_i of order k consists of at most k (neighboring) atoms of the σ-algebra \mathcal{F}.

Proposition 3.2 (Tower property of T) Let $\mathcal{G} \subset \mathcal{F}$ be two interval σ-algebras on $[0, 1]$. Let $S = T_{\mathcal{G}, \sigma, k}$ and $T = T_{\mathcal{F}, \tau, k'}$ for some $\sigma, \tau \in (0, 1)$ and some positive integers k, k'. Then, for all $q > \max(\tau, \sigma)$, there exists a constant C depending on q, k, k' so that
\[
|ST f(x)| \leq C \cdot \gamma^k \cdot (T_{\mathcal{G}, q, k}|f|)(x), \quad f \in L_1, x \in [0, 1],
\]
where $\gamma = \gamma_k(\mathcal{G})$ denotes the k-regularity parameter of \mathcal{G}.

Proof Let (F_i) be the collection of B-spline supports in $\mathcal{A}_k(\mathcal{F})$ and (G_i) the collection of B-spline supports in $\mathcal{A}_k(\mathcal{G})$. Moreover, we denote by F_{ij} the smallest interval containing F_i and F_j and by G_{ij} the smallest interval containing G_i and G_j.

We show (3.6) by showing the following inequality for the kernels K_S of S and K_T of T (cf. 3.1)
\[
\int_0^1 K_S(x, t) K_T(t, s) \, dt \leq C \gamma^k \sum_{i,j} q^{\frac{|i-j|}{|G_{ij}|}} 1_{G_i}(x) 1_{G_j}(s), \quad x, s \in [0, 1]
\]
(3.7)
for all $q > \max(\tau, \sigma)$ and some constant C depending on q, k, k'. In order to prove this inequality, we first fix $x, s \in [0, 1]$ and choose i such that $x \in G_i$ and ℓ such that $s \in F_\ell$. Moreover, based on ℓ, we choose j so that $s \in G_j$ and $G_j \supset F_\ell$. There are at most $\max(k, k')$ choices for each of the indices i, ℓ, j and without restriction, we treat those choices separately, i.e. we only have to estimate the expression

$$\sum_{m, r} \sigma^{m-i} \tau^{r-\ell} |G_m \cap F_r| / |G_{im}| |F_{\ell r}|.$$

Since, for each r, there are also at most $k + k' - 1$ indices m so that $|G_m \cap F_r| > 0$ (recall that $\mathcal{G} \subset \mathcal{F}$), we choose one such index $m = m(r)$ and estimate

$$\Sigma = \sum_r \sigma^{m(r) - i} \tau^{r-\ell} |G_{m(r)} \cap F_r| / |G_{i, m(r)}| |F_{\ell r}|.$$

Now, observe that for any parameter choice of r in the above sum,

$$G_{i, m(r)} \cup F_{\ell r} \supseteq (G_{ij} \setminus G_j) \cup G_i$$

and therefore, since also $G_{m(r)} \cap F_r \subset G_{i, m(r)} \cap F_{\ell r}$,

$$\Sigma \leq 2 \sum_r \sigma^{m(r) - i} \tau^{r-\ell} / |(G_{ij} \setminus G_j) \cup G_i| \sum_r \sigma^{m(r) - i} \tau^{r-\ell},$$

which, using the k-regularity parameter $\gamma = \gamma_k(\mathcal{G})$ of the σ-algebra \mathcal{G} and denoting $\lambda = \max(\tau, \sigma)$, we estimate by

$$\Sigma \leq 2 \gamma k / |G_{ij}| \sum_m \lambda^{m-i} \sum_{r: m(r) = m} \lambda^{r-\ell} \lesssim \gamma k / |G_{ij}| \sum_m \lambda^{i-m+|m-j|}$$

$$\lesssim \gamma k / |G_{ij}| (|i-j| + 1) \lambda^{i-j},$$

where the implied constants depend on λ, k, k' and the estimate $\sum_{r: m(r) = m} \lambda^{r-\ell} \lesssim \lambda^{m-j}$ used the fact that, essentially, there are more atoms of \mathcal{F} between F_r and F_ℓ (for r as in the sum) than atoms of \mathcal{G} between G_m and G_j. Finally, we see that for any $q > \lambda$,

$$\Sigma \lesssim C \gamma k q^{i-j} / |G_{ij}|$$

for some constant C depending on q, k, k', and, as $x \in G_i$ and $s \in G_j$, this shows inequality (3.7).

As a corollary of Proposition 3.2, we have
Corollary 3.3 Let \((f_n)\) be functions in \(L_1\). We denote by \(P_n\) the orthogonal projection onto \(\mathcal{H}_k(\mathcal{F}_n)\) and by \(P'_n\) the orthogonal projection onto \(\mathcal{H}_k'(\mathcal{F}_n)\) for some positive integers \(k, k'\). Moreover, let \(T_n\) be the operator \(T_{F_n, q, k}\) from (3.3) dominating \(P_n\) pointwise.

Then, for any integer \(n\) and for any \(1 \leq p \leq \infty\),
\[
\left\| \sum_{\ell \geq n} P_n((P'_{\ell-1} f_\ell)^2) \right\|_p \lesssim \left\| \sum_{\ell \geq n} T_n((P'_{\ell-1} f_\ell)^2) \right\|_p \lesssim \gamma_k(\mathcal{F}_n)^k \cdot \left\| \sum_{\ell \geq n} f_\ell^2 \right\|_p,
\]
where the implied constants only depend on \(k\) and \(k'\).

Proof We denote by \(T_n\) the operator \(T_{F_n, q, k}\) and by \(T'_n\) the operator \(T_{F_n, q', k'}\), where the parameters \(q, q' < 1\) are given by inequality (3.3) depending on \(k\) and \(k'\) respectively. Setting \(U_n := T_{\mathcal{F}_n, \max(q, q')^{1/2}, k}\), we perform the following chain of inequalities, where we use the positivity of \(T_n\) and (3.3), Jensen’s inequality for \(T'_{\ell-1}\), the tower property for \(T_n T'_{\ell-1}\) and the \(L_p\)-boundedness of \(U_n\), respectively:
\[
\left\| \sum_{\ell \geq n} T_n((P'_{\ell-1} f_\ell)^2) \right\|_p \lesssim \left\| \sum_{\ell \geq n} T_n((T'_{\ell-1} f_\ell)^2) \right\|_p \lesssim \left\| \sum_{\ell \geq n} T_n(T'_{\ell-1} f_\ell^2) \right\|_p \leq \left\| T_n(T'_{\ell-1} f_\ell^2) \right\|_p + \left\| \sum_{\ell > n} T_n(T'_{\ell-1} f_\ell^2) \right\|_p \lesssim \left\| f_n^2 \right\|_p + \gamma_k(\mathcal{F}_n)^k \cdot \left\| \sum_{\ell > n} U_n(f_\ell^2) \right\|_p \lesssim \gamma_k(\mathcal{F}_n)^k \cdot \left\| \sum_{\ell \geq n} f_\ell^2 \right\|_p,
\]
where the implied constants only depend on \(k\) and \(k'\). \(\square\)

3.4 A duality estimate using a spline square function

In order to give the desired duality estimate contained in Theorem 3.6, we need the following construction of a function \(g_n \in \mathcal{H}_k(\mathcal{F}_n)\) based on a spline square function.

Proposition 3.4 Let \((f_n)\) be a sequence of functions with \(f_n \in \mathcal{H}_k(\mathcal{F}_n)\) for all \(n\) and set
\[
X_n := \sum_{\ell \leq n} f_\ell^2.
\]
Then, there exists a sequence of non-negative functions \(g_n \in \mathcal{S}_k(\mathcal{F}_n) \) so that for each \(n \),

(1) \(g_n \leq g_{n+1} \),
(2) \(X_n^{1/2} \leq g_n \),
(3) \(\mathbb{E} g_n \leq \mathbb{E} X_n^{1/2} \), where the implied constant depends on \(k \) and on \(\sup_{m \leq n} y_k(\mathcal{F}_m) \).

For the proof of this result, we need the following simple lemma.

Lemma 3.5 Let \(c_1 \) be a positive constant and let \((A_j)_{j=1}^N \) be a sequence of atoms in \(\mathcal{F}_n \). Moreover, let \(\ell : \{1, \ldots, N\} \rightarrow \{1, \ldots, n\} \) and, for each \(j \in \{1, \ldots, N\} \), let \(B_j \) be a subset of an atom \(D_j \) of \(\mathcal{F}_\ell(j) \) with

\[
|B_j| \geq c_1 \sum_{i: \ell(i) \geq \ell(j), D_i \subseteq D_j} |A_i|.	ag{3.8}
\]

Then, there exists a map \(\varphi \) on \(\{1, \ldots, N\} \) so that

(1) \(|\varphi(j)| = c_1 |A_j| \) for all \(j \),
(2) \(\varphi(j) \subseteq B_j \) for all \(j \),
(3) \(\varphi(i) \cap \varphi(j) = \emptyset \) for all \(i \neq j \).

Proof Without restriction, we assume that the sequence \((A_j) \) is enumerated such that \(\ell(j+1) \leq \ell(j) \) for all \(1 \leq j \leq N-1 \). We first choose \(\varphi(1) \) as an arbitrary (measurable) subset of \(B_1 \) with measure \(c_1 |A_1| \), which is possible by assumption (3.8). Next, we assume that for \(1 \leq j \leq j_0 \), we have constructed \(\varphi(j) \) with the properties

(1) \(|\varphi(j)| = c_1 |A_j| \),
(2) \(\varphi(j) \subseteq B_j \),
(3) \(\varphi(i) \cap \cup_{i \leq j} \varphi(i) = \emptyset \).

Based on that, we now construct \(\varphi(j_0 + 1) \). Define the index sets \(\Gamma = \{ i : \ell(i) \geq \ell(j_0 + 1), D_i \subseteq D_{j_0+1} \} \) and \(\Lambda = \{ i : i \leq j_0 + 1, D_i \subseteq D_{j_0+1} \} \). Since we assumed that \(\ell \) is decreasing, we have \(\Lambda \subseteq \Gamma \) and by the nestedness of the \(\sigma \)-algebras \(\mathcal{F}_n \), we have for \(i \leq j_0 + 1 \) that either \(D_i \subseteq D_{j_0+1} \) or \(|D_i \cap D_{j_0+1}| = 0 \). This implies

\[
|B_{j_0+1} \setminus \bigcup_{i \leq j_0} \varphi(i)| = |B_{j_0+1}| - |B_{j_0+1} \cap \bigcup_{i \leq j_0} \varphi(i)|
\geq c_1 \sum_{i \in \Gamma} |A_i| - |D_{j_0+1} \cap \bigcup_{i \leq j_0} \varphi(i)|
\geq c_1 \sum_{i \in \Lambda} |A_i| - \bigcup_{i \in \Lambda \setminus \{j_0+1\}} \varphi(i)
\geq c_1 \sum_{i \in \Lambda} |A_i| - \sum_{i \in \Lambda \setminus \{j_0+1\}} c_1 |A_i| = c_1 |A_{j_0+1}|.
\]

Therefore, we can choose \(\varphi(j_0 + 1) \subseteq B_{j_0+1} \) that is disjoint to \(\varphi(i) \) for any \(i \leq j_0 \) and \(|\varphi(j_0 + 1)| = c_1 |A_{j_0+1}| \) which completes the proof. \(\square \)
Proof of Proposition 3.4 Fix n and let $(N_{n,j})$ be the B-spline basis of $S_k(F_n)$. Moreover, for any j, set $E_{n,j} = \text{supp} N_{n,j}$ and $a_{n,j} := \max_{\ell \leq n} \max_{r:E_{\ell,r} \supset E_{n,j}} \|X_\ell\|_{L^\infty(E_{\ell,r})}^{1/2}$ and we define $\ell(j) \leq n$ and $r(j)$ so that $E_{\ell(j),r(j)} \supset E_{n,j}$ and $a_{n,j} = \|X_{\ell(j)}\|_{L^\infty(E_{\ell(j),r(j)})}^{1/2}$. Set

$$g_n := \sum_j a_{n,j} N_{n,j} \in \mathcal{S}_k(F_n)$$

and it will be proved subsequently that this g_n has the desired properties.

PROPERTY (1): In order to show $g_n \leq g_{n+1}$, we use Theorem 2.4 to write

$$g_n = \sum_j a_{n,j} N_{n,j} = \sum_j \beta_{n,j} N_{n+1,j},$$

where $\beta_{n,j}$ is a convex combination of those $a_{n,r}$ with $E_{n+1,j} \subseteq E_{n,r}$, and thus

$$g_n \leq \sum_j \left(\max_{r:E_{n+1,j} \subseteq E_{n,r}} a_{n,r} \right) N_{n+1,j}.$$

By the very definition of $a_{n+1,j}$, we have

$$\max_{r:E_{n+1,j} \subseteq E_{n,r}} a_{n,r} \leq a_{n+1,j},$$

and therefore, $g_n \leq g_{n+1}$ pointwise, since the B-splines $(N_{n+1,j})_j$ are nonnegative functions.

PROPERTY (2): Now we show that $X_n^{1/2} \leq g_n$. Indeed, for any $x \in [0, 1]$,

$$g_n(x) = \sum_j a_{n,j} N_{n,j}(x) \geq \min_{j:E_{n,j} \ni x} a_{n,j} \geq \min_{j:E_{n,j} \ni x} \|X_n\|_{L^\infty(E_{n,j})}^{1/2} \geq X_n(x)^{1/2},$$

since the collection of B-splines $(N_{n,j})_j$ forms a partition of unity.

PROPERTY (3): Finally, we show $\mathbb{E}g_n \lesssim \mathbb{E}X_n^{1/2}$, where the implied constant depends only on k and on $\sup_{m \leq n} \gamma_k(F_m)$. By B-spline stability (Theorem 2.3), we estimate the integral of g_n by

$$\mathbb{E}g_n \lesssim \sum_j |E_{n,j}| \cdot \|X_{\ell(j)}\|_{L^\infty(E_{\ell(j),r(j)})}^{1/2}, \quad (3.9)$$

where the implied constant only depends on k. In order to continue the estimate, we next show the inequality

$$\|X_\ell\|_{L^\infty(E_{\ell,r})} \lesssim \max_{s:|E_{\ell,r} \cap E_{\ell,s}| > 0} \|X_\ell\|_{L^\infty(E_{\ell,s})}, \quad (3.10)$$
where by $J_{\ell,s}$ we denote an atom of \mathcal{F}_r with $J_{\ell,s} \subset E_{\ell,s}$ of maximal length and the implied constant depends only on k. Indeed, we use Theorem 2.3 in the form of (2.3) to get $(f_m \in \mathcal{S}_k(\mathcal{F}_\ell)$ for $m \leq \ell$)

$$\|X_\ell\|_{L_\infty(E_{\ell,r})} \leq \sum_{m \leq \ell} \|f_m\|^2_{L_\infty(E_{\ell,r})} \lesssim \sum_{m \leq \ell} \sum_{s : |E_{\ell,s} \cap E_{\ell,r}| > 0} \|f_m\|^2_{L_\infty(J_{\ell,s})} = \sum_{s : |E_{\ell,s} \cap E_{\ell,r}| > 0} \sum_{m \leq \ell} \|f_m\|^2_{L_\infty(J_{\ell,s})}. \tag{3.11}$$

Now observe that for atoms I of \mathcal{F}_ℓ, due to the equivalence of p-norms of polynomials (cf. Corollary 2.2),

$$\sum_{m \leq \ell} \|f_m\|^2_{L_\infty(I)} \lesssim \sum_{m \leq \ell} \frac{1}{|I|} \int_I f_m^2 = \frac{1}{|I|} \int_I X_\ell \leq \|X_\ell\|_{L_\infty(I)},$$

which means that, inserting this in estimate (3.11),

$$\|X_\ell\|_{L_\infty(E_{\ell,r})} \lesssim \sum_{s : |E_{\ell,s} \cap E_{\ell,r}| > 0} \|X_\ell\|_{L_\infty(J_{\ell,s})},$$

and, since there are at most k indices s so that $|E_{\ell,s} \cap E_{\ell,r}| > 0$, we have established (3.10).

We define $K_{\ell,r}$ to be an interval $J_{\ell,s}$ with $|E_{\ell,r} \cap E_{\ell,s}| > 0$ so that

$$\max_{s : |E_{\ell,r} \cap E_{\ell,s}| > 0} \|X_\ell\|_{L_\infty(J_{\ell,s})} = \|X_\ell\|_{L_\infty(K_{\ell,r})}.$$

This means, after combining (3.9) with (3.10), we have

$$\mathbb{E}g_n \lesssim \sum_j |J_{n,j}| \cdot \|X_\ell(j)\|_{L_\infty(K_{\ell(j),r(j)})}^{1/2}. \tag{3.12}$$

We now apply Lemma 3.5 with the function ℓ and the choices

$$A_j = J_{n,j}, \quad D_j = K_{\ell(j),r(j)},$$

$$B_j = \left\{t \in D_j : X_\ell(j)(t) \geq 8^{-2(k-1)}\|X_\ell(j)\|_{L_\infty(D_j)} \right\}.$$

In order to see Assumption (3.8) of Lemma 3.5, fix the index j and let i be such that $\ell(i) \geq \ell(j)$. By definition of $D_i = K_{\ell(i),r(i)}$, the smallest interval containing $J_{n,i}$ and D_i contains at most $2k - 1$ atoms of $\mathcal{F}_{\ell(i)}$ and, if $D_i \subset D_j$, the smallest interval containing $J_{n,i}$ and D_j contains at most $2k - 1$ atoms of $\mathcal{F}_{\ell(j)}$. This means that, in particular, $J_{n,i}$ is a subset of the union V of $4k$ atoms of $\mathcal{F}_{\ell(j)}$ with $D_j \subset V$. Since
each atom of \(F_n \) occurs at most \(k \) times in the sequence \((A_j) \), there exists a constant \(c_1 \) depending on \(k \) and \(\sup_{u \leq \ell(j)} \gamma_k(F_u) \leq \sup_{u \leq n} \gamma_k(F_u) \) so that

\[
|D_j| \geq c_1 \sum_{i: \ell(i) \geq \ell(j) \atop D_i \subset D_j} |A_i|,
\]

which, since \(|B_j| \geq |D_j|/2 \) by Corollary 2.2, shows that the assumption of Lemma 3.5 holds true and we get a function \(\varphi \) so that \(|\varphi(j)| = c_1 |J_{n,j}|/2 \), \(\varphi(j) \subset B_j \), \(\varphi(i) \cap \varphi(j) = \emptyset \) for all \(i, j \). Using these properties of \(\varphi \), we continue the estimate in (3.12) and write

\[
\mathbb{E} g_n \lesssim \sum_j |J_{n,j}| \cdot \|X_{\ell(j)}\|_{L_\infty(D_j)}^{1/2} \leq 8^{k-1} \cdot \sum_j \frac{|J_{n,j}|}{|\varphi(j)|} \int_{\varphi(j)} X_{\ell(j)}^{1/2}
\]

\[
= \frac{2}{c_1} \cdot 8^{k-1} \cdot \sum_j \int_{\varphi(j)} X_{\ell(j)}^{1/2}
\]

\[
\lesssim \sum_j \int_{\varphi(j)} X_n^{1/2} \leq \mathbb{E} X_n^{1/2},
\]

with constants depending only on \(k \) and \(\sup_{n \leq N} \gamma_k(F_u) \).

Employing this construction of \(g_n \), we now give the following duality estimate for spline projections (for the martingale case, see for instance [8]). The martingale version of this result is the essential estimate in the proof of both Lépingle’s inequality (1.1) and the \(H^1 \)-BMO duality.

Theorem 3.6 Let \((\mathcal{F}_n) \) be such that \(\gamma := \sup_n \gamma_k(F_n) < \infty \) and \((f_n)_{n \geq 1} \) a sequence of functions with \(f_n \in \mathcal{S}_k(F_n) \) for each \(n \). Additionally, let \(h_n \in L_1 \) be arbitrary. Then, for any \(N \),

\[
\sum_{n \leq N} \mathbb{E} [|f_n \cdot h_n|] \lesssim \sqrt{2} \cdot \mathbb{E} \left[\left(\sum_{\ell \leq N} f_{\ell}^2 \right)^{1/2} \right] \cdot \sup_{n \leq N} \|P_n(\sum_{\ell=n}^N h_{\ell}^2)\|_{L_\infty}^{1/2},
\]

where the implied constant is the same constant that appears in (3) of Proposition 3.4 and therefore only depends on \(k \) and \(\gamma \).

Proof Let \(X_n := \sum_{\ell \leq n} f_{\ell}^2 \) and \(f_{\ell} \equiv 0 \) for \(\ell > N \) and \(\ell \leq 0 \). By Proposition 3.4, we choose an increasing sequence \((g_n) \) of functions with \(g_0 = 0 \), \(g_n \in \mathcal{S}_k(F_n) \) and the properties \(X_n^{1/2} \leq g_n \) and \(\mathbb{E} g_n \lesssim \mathbb{E} X_n^{1/2} \) where the implied constant depends only on \(k \) and \(\gamma \). Then, apply Cauchy–Schwarz inequality by introducing the factor \(8_n^{1/2} \) to get
\[\sum_n \mathbb{E}[|f_n h_n|] = \sum_n \mathbb{E} \left[\frac{f_n}{g_n^{1/2}} \cdot g_n^{1/2} h_n \right] \]
\[\leq \left[\sum_n \mathbb{E}[f_n^2 / g_n] \right]^{1/2} \cdot \left[\sum_n \mathbb{E}[g_n h_n^2] \right]^{1/2}. \]

We estimate each of the factors on the right hand side separately and set
\[\Sigma_1 := \sum_n \mathbb{E}[f_n^2 / g_n], \quad \Sigma_2 := \sum_n \mathbb{E}[g_n h_n^2]. \]

The first factor is estimated by the pointwise inequality \(X_n^{1/2} \leq g_n \):
\[\Sigma_1 = \mathbb{E} \left[\sum_n f_n^2 / g_n \right] \leq \mathbb{E} \left[\sum_n f_n^2 / X_n^{1/2} \right] = \mathbb{E} \left[\sum_n X_n - X_{n-1} / X_n^{1/2} \right] \leq 2 \mathbb{E} \sum_n (X_n^{1/2} - X_{n-1}^{1/2}) = 2 \mathbb{E} X_N^{1/2}. \]

We continue with \(\Sigma_2 \):
\[\Sigma_2 = \mathbb{E} \left[\sum_{\ell=1}^N g_\ell h_\ell^2 \right] = \mathbb{E} \left[\sum_{\ell=1}^N \sum_{n=1}^\ell (g_n - g_{n-1}) h_\ell^2 \right] \]
\[= \mathbb{E} \left[\sum_{n=1}^N (g_n - g_{n-1}) \cdot \sum_{\ell=n}^N h_\ell^2 \right] \]
\[= \mathbb{E} \left[\sum_{n=1}^N P_n (g_n - g_{n-1}) \cdot \sum_{\ell=n}^N h_\ell^2 \right] \]
\[= \mathbb{E} \left[\sum_{n=1}^N (g_n - g_{n-1}) \cdot P_n \left(\sum_{\ell=n}^N h_\ell^2 \right) \right] \]
\[\leq \mathbb{E} \left[\sum_{n=1}^N (g_n - g_{n-1}) \right] \cdot \sup_{1 \leq n \leq N} \left\| P_n \left(\sum_{\ell=n}^N h_\ell^2 \right) \right\|_{\infty}, \]

where the last inequality follows from \(g_n \geq g_{n-1} \). Noting that by the properties of \(g_n \), \(\mathbb{E} \left[\sum_{n=1}^N (g_n - g_{n-1}) \right] = \mathbb{E} g_N \lesssim \mathbb{E} X_N^{1/2} \) and combining the two parts \(\Sigma_1 \) and \(\Sigma_2 \), we obtain the conclusion.

\[\square \]

4 Applications

We give two applications of Theorem 3.6, (i) D. Lépingle’s inequality and (ii) an analogue of C. Fefferman’s \(H_1 \)-BMO duality in the setting of splines. Once the results
Martingale inequalities for spline sequences 111

from Sect. 3 are known, the proofs of the subsequent results proceed similarly to their martingale counterparts in [8, 12] by using spline properties instead of martingale properties.

4.1 Lépingle’s inequality for splines

Theorem 4.1 Let \(k, k' \) be positive integers. Let \((\mathcal{F}_n)\) be an interval filtration with \(\sup_n \gamma_k(\mathcal{F}_n) < \infty \) and, for any \(n \), \(f_n \in S_k(\mathcal{F}_n) \) and \(P'_n \) be the orthogonal projection operator on \(S_k(\mathcal{F}_n) \). Then,

\[
\| (P'_{n-1} f_n) \|_{L_1(\ell_2)} = \left\| \left(\sum_n (P'_{n-1} f_n)^2 \right)^{1/2} \right\|_1 \lesssim \left\| \left(\sum_n f_n^2 \right)^{1/2} \right\|_1 = \| f_n \|_{L_1(\ell_2)},
\]

where the implied constant depends only on \(k, k' \) and \(\sup_n \gamma_k(\mathcal{F}_n) \).

Proof We first assume that \(f_n = 0 \) for \(n > N \) and begin by using duality

\[
\mathbb{E} \left[\left(\sum_n (P'_{n-1} f_n)^2 \right)^{1/2} \right] = \sup_{(H_n)} \mathbb{E} \left[\sum_n (P'_{n-1} f_n) \cdot H_n \right],
\]

where sup is taken over all \((H_n) \in L_\infty(\ell_2) \) with \(\| (H_n) \|_{L_\infty(\ell_2)} = 1 \). By the self-adjointness of \(P'_{n-1} \),

\[
\mathbb{E}[(P'_{n-1} f_n) \cdot H_n] = \mathbb{E}[f_n \cdot (P'_{n-1} H_n)].
\]

Then we apply Theorem 3.6 for \(f_n \) and \(h_n = P'_{n-1} H_n \) to obtain (denoting by \(P_n \) the orthogonal projection operator onto \(S_k(\mathcal{F}_n) \))

\[
\sum_{n \leq N} |\mathbb{E}[f_n \cdot h_n]| \lesssim \mathbb{E} \left[\left(\sum_{\ell \leq N} f_\ell^2 \right)^{1/2} \right] \cdot \sup_{n \leq N} \| P_n \left(\sum_{\ell=n}^N (P'_{\ell-1} H_\ell)^2 \right) \|_\infty. \tag{4.1}
\]

To estimate the right hand side, we note that for any \(n \), by Corollary 3.3,

\[
\| P_n \left(\sum_{\ell=n}^N (P'_{\ell-1} H_\ell)^2 \right) \|_\infty \lesssim \| \sum_{\ell=n}^N H_\ell^2 \|_\infty.
\]
Therefore, (4.1) implies
\[
\mathbb{E} \left[\left(\sum_n (P'_{n-1} f'_n) \right)^{1/2} \right] = \sup_{(H_n)} \mathbb{E} \left[\sum_n f_n \cdot (P'_{n-1} H_n) \right] \lesssim \mathbb{E} \left[\left(\sum_{\ell \leq N} f_\ell^2 \right)^{1/2} \right],
\]
with a constant depending only on \(k, k' \) and \(\sup_{n \leq N} \gamma_k(\mathcal{P}_n) \). Letting \(N \) tend to infinity, we obtain the conclusion. \(\square \)

4.2 \(H_1 \)-BMO duality for splines

We fix an interval filtration \((\mathcal{F}_n)_{n=1}^\infty\), a spline order \(k \) and the orthogonal projection operators \(P_n \) onto \(\mathcal{S}_k(\mathcal{P}_n) \) and additionally, we set \(P_0 = 0 \). For \(f \in L_1 \), we introduce the notation
\[
\Delta_n f := P_n f - P_{n-1} f, \quad S_n(f) := \left(\sum_{\ell=1}^n (\Delta_\ell f)^2 \right)^{1/2}, \quad S(f) = \sup_n S_n(f).
\]

Observe that for \(\ell < n \) and \(f, g \in L_1 \),
\[
\mathbb{E}[\Delta_\ell f \cdot \Delta_n g] = \mathbb{E}[P_\ell (\Delta_\ell f) \cdot \Delta_n g] = \mathbb{E}[\Delta_\ell f \cdot P_\ell (\Delta_n g)] = 0.
\]

Let \(V \) be the \(L_1 \)-closure of \(\cup_n \mathcal{S}_k(\mathcal{P}_n) \). Then, the uniform boundedness of \(P_n \) on \(L_1 \) implies that \(P_n f \to f \) in \(L_1 \) for \(f \in V \). Next, set
\[
H_{1,k} = H_{1,k}(\mathcal{P}_n) = \{ f \in V : \mathbb{E}(S(f)) < \infty \}
\]
and equip \(H_{1,k} \) with the norm \(\| f \|_{H_{1,k}} = \mathbb{E}S(f) \). Define
\[
\text{BMO}_k = \text{BMO}_k(\mathcal{P}_n) = \left\{ f \in V : \sup_n \| \sum_{\ell \geq n} T_n ((\Delta_\ell f)^2) \|_\infty < \infty \right\}
\]
and the corresponding quasinorm
\[
\| f \|_{\text{BMO}_k} = \sup_n \| \sum_{\ell \geq n} T_n ((\Delta_\ell f)^2) \|_\infty^{1/2},
\]
where \(T_n \) is the operator from (3.3) that dominates \(P_n \) pointwise.

Let us now assume \(\sup_n \gamma_k(\mathcal{P}_n) < \infty \). In this case we identify, similarly to \(H_1 \)-BMO-duality (cf. [7,8,10]), \(\text{BMO}_k \) as the dual space of \(H_{1,k} \).
First, we use the duality estimate Theorem 3.6 and (4.2) to prove, for $f \in H_{1,k}$ and $h \in \text{BMO}_k$,

$$\left| \mathbb{E}\left[(P_n f) \cdot (P_n h) \right] \right| \leq \sum_{\ell \leq n} \mathbb{E}\left[|\Delta_\ell f| \cdot |\Delta_\ell h| \right] \lesssim S_n(f) \cdot \|h\|_{\text{BMO}}.$$

This estimate also implies that the limit $\lim_n \mathbb{E}\left[(P_n f) \cdot (P_n h) \right]$ exists and satisfies

$$\left| \lim_n \mathbb{E}\left[(P_n f) \cdot (P_n h) \right] \right| \lesssim \|f\|_{H_{1,k}} \cdot \|h\|_{\text{BMO}}.$$

On the other hand, similarly to the martingale case (see [8]), given a continuous linear functional L on $H_{1,k}$, we extend L norm-preservingly to a continuous linear functional Λ on $L_1(\ell_2)$, which, by Sect. 2.5, has the form

$$\Lambda(\eta) = \mathbb{E}\left[\sum_\ell \sigma_\ell \eta_\ell \right], \quad \eta \in L_1(\ell_2)$$

for some $\sigma \in L_\infty(\ell_2)$. The k-martingale spline sequence $h_n = \sum_{\ell \leq n} \Delta_\ell \sigma_\ell$ is bounded in L_2 and therefore, by the spline convergence theorem ((v) on page 2), has a limit $h \in L_2$ with $P_n h = h_n$ and which is also contained in BMO_k. Indeed, by using Corollary 3.3, we obtain $\|h\|_{\text{BMO}} \lesssim \|\sigma\|_{L_\infty(\ell_2)} = \|\Lambda\| = \|L\|$ with a constant depending only on k and $\sup_n \gamma_k(F_n)$. Moreover, for $f \in H_{1,k}$, since L is continuous on $H_{1,k}$,

$$L(f) = \lim_n L(P_n f) = \lim_n \Lambda\left((\Delta_1 f, \ldots, \Delta_n f, 0, 0, \ldots) \right)$$

$$= \lim_n \sum_{\ell=1}^{n} \mathbb{E}[\sigma_\ell \cdot \Delta_\ell f] = \lim_n \mathbb{E}\left[(P_n f) \cdot (P_n h) \right].$$

This yields the following

Theorem 4.2 If $\sup_n \gamma_k(\mathcal{F}_n) < \infty$, the linear mapping

$$u : \text{BMO}_k \to H^*_{1,k}, \quad h \mapsto \left(f \mapsto \lim_n \mathbb{E}\left[(P_n f) \cdot (P_n h) \right] \right)$$

is bijective and satisfies

$$\|u(h)\|_{H^*_{1,k}} \simeq \|h\|_{\text{BMO}_k},$$

where the implied constants depend only on k and $\sup_n \gamma_k(\mathcal{F}_n)$.

Remark 4.3 We close with a few remarks concerning the above result and we assume that (\mathcal{F}_n) is a sequence of increasing interval σ-algebras with $\sup_n \gamma_k(\mathcal{F}_n) < \infty$.
(1) By Khintchine’s inequality, \(\|Sf\|_1 \lesssim \sup_{\varepsilon \in \{-1, 1\}} \| \sum_n \varepsilon_n \Delta_n f \|_1 \). Based on the interval filtration \((\mathcal{F}_n)\), we can generate an interval filtration \((\mathcal{G}_n)\) that contains \((\mathcal{F}_n)\) as a subsequence and each \(\mathcal{G}_{n+1}\) is generated from \(\mathcal{G}_n\) by dividing exactly one atom of \(\mathcal{G}_n\) into two atoms of \(\mathcal{G}_{n+1}\). Denoting by \(P_{\mathcal{G}}^j\) the orthogonal projection operator onto \(\mathcal{S}_k(\mathcal{G}_n)\) and \(\Delta_{\mathcal{G}}^j = P_{\mathcal{G}}^j - P_{\mathcal{G}}^{j-1}\), we can write

\[
\sum_n \varepsilon_n \Delta_n f = \sum_n \varepsilon_n \sum_{j=\alpha_n}^{\alpha_n+1-1} \Delta_{\mathcal{G}}^j f
\]

for some sequence \((\alpha_n)\). By using inequalities (2.7) and (2.6) and writing \((S_{\mathcal{G}}f)^2 = \sum_j |\Delta_{\mathcal{G}}^j f|^2\), we obtain for \(p > 1\)

\[
\|Sf\|_1 \lesssim \|S_{\mathcal{G}}f\|_1 \leq \|S_{\mathcal{G}}f\|_p \lesssim \|f\|_p.
\]

This implies \(L_p \subset H_{1,k}\) for all \(p > 1\) and, by duality, \(\text{BMO}_k \subset L_p\) for all \(p < \infty\).

(2) If \((\mathcal{F}_n)\) is of the form that each \(\mathcal{F}_{n+1}\) is generated from \(\mathcal{F}_n\) by splitting exactly one atom of \(\mathcal{F}_n\) into two atoms of \(\mathcal{F}_{n+1}\) and under the condition \(\sup_n \gamma_{k-1}(\mathcal{F}_n) < \infty\) (which is stronger than \(\sup_n \gamma_k(\mathcal{F}_n) < \infty\)), it is shown in [9] that

\[
\|Sf\|_1 \simeq \|f\|_{H_1},
\]

where \(H_1\) denotes the atomic Hardy space on \([0, 1]\), i.e. in this case, \(H_{1,k}\) coincides with \(H_1\).

Acknowledgements Open access funding provided by Austrian Science Fund (FWF). It is a pleasure to thank P. F. X. Müller for very helpful conversations during the preparation of this paper. The author is supported by the Austrian Science Fund (FWF), Project F5513-N26, which is a part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Asmar, N., Montgomery-Smith, S.: Littlewood-Paley theory on solenoids. Colloq. Math. 65(1), 69–82 (1993)
2. Benedek, A., Panzone, R.: The space \(L^p\), with mixed norm. Duke Math. J. 28, 301–324 (1961)
3. Bourgain, J.: Embedding \(L^1\) in \(L^1/ H^1\). Trans. Am. Math. Soc. 278(2), 689–702 (1983)
4. Delbaen, F., Schachermayer, W.: An inequality for the predictable projection of an adapted process. In: Séminaire de Probabilités, XXIX, volume 1613 of Lecture Notes in Mathematics, pp. 17–24. Springer, Berlin (1995)
5. De Vore, R.A., Lorentz, G.G.: Constructive approximation, volume 303 Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1993)
6. Diestel, J., Uhl Jr., J.J.: Vector Measures. American Mathematical Society, Providence (1977). (With a foreword by B. J. Pettis, Mathematical Surveys, No. 15)
7. Fefferman, C.: Characterizations of bounded mean oscillation. Bull. Am. Math. Soc. 77, 587–588 (1971)
8. Garsia, A.M.: Martingale Inequalities: Seminar Notes on Recent Progress. Mathematics Lecture Notes Series. W. A. Benjamin, Inc., Reading (1973)
9. Gevorkyan, G., Kamont, A., Keryan, K., Passenbrunner, M.: Unconditionality of orthogonal spline systems in H^1. Stud. Math. 226(2), 123–154 (2015)
10. Herz, C.: Bounded mean oscillation and regulated martingales. Trans. Am. Math. Soc. 193, 199–215 (1974)
11. Keryan, K., Passenbrunner, M.: Unconditionality of Periodic Orthonormal Spline Systems in L^p (2017). arXiv:1708.09294 (to appear in Studia Mathematica)
12. Lépingle, D.: Une inégalité de martingales. In: Séminaire de Probabilités, XII (University of Strasbourg, Strasbourg, 1976/1977), Volume 649 of Lecture Notes in Mathematics, pp. 134–137. Springer, Berlin (1978)
13. Müller, P.F.X.: A decomposition for Hardy martingales. Indiana Univ. Math. J. 61(5), 1801–1816 (2012)
14. Müller, P.F.X., Passenbrunner, M.: Almost Everywhere Convergence of Spline Sequences (2017). arXiv:1711.01859
15. Neveu, J.: Discrete-Parameter Martingales, revised edn. North-Holland Publishing Co., Amsterdam (1975). (Translated from the French by T. P. Speed, North-Holland Mathematical Library, Vol. 10)
16. Passenbrunner, M.: Unconditionality of orthogonal spline systems in L^p. Stud. Math. 222(1), 51–86 (2014)
17. Passenbrunner, M.: Orthogonal projectors onto spaces of periodic splines. J. Complex. 42, 85–93 (2017)
18. Passenbrunner, M.: Spline Characterizations of the Radon–Nikodým Property (2018). arXiv:1807.01861
19. Passenbrunner, M., Shadrin, A.: On almost everywhere convergence of orthogonal spline projections with arbitrary knots. J. Approx. Theory 180, 77–89 (2014)
20. Pisier, G.: Martingales in Banach Spaces. Volume 155 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016)
21. Schumaker, L.L.: Spline Functions: Basic Theory. Pure and Applied Mathematics. Wiley, New York (1981)
22. Shadrin, A.: The L_∞-norm of the L_2-spline projector is bounded independently of the knot sequence: a proof of de Boor’s conjecture. Acta Math. 187(1), 59–137 (2001)
23. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)
24. Stein, E.M.: Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematics Studies, No. 63. Princeton University Press, Princeton (1970)
25. von Golitschek, M.: On the L_∞-norm of the orthogonal projector onto splines. A short proof of A. Shadrin’s theorem. J. Approx. Theory 181, 30–42 (2014)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.