Antibacterial Activity of Ti3C2Tx MXene
Kashif Rasool, Mohammed Helal, Adnan Ali, Chang E. Ren, Yury Gogotsi, and Khaled A Mahmoud

ACS Nano, Just Accepted Manuscript • DOI: 10.1021/acsnano.6b00181 • Publication Date (Web): 24 Feb 2016
Downloaded from http://pubs.acs.org on February 25, 2016

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Antibacterial Activity of Ti$_3$C$_2$T$_x$ MXene

Kashif Rasool1, Mohamed Helal1, Adnan Ali1, Chang E. Ren2, Yury Gogotsi2*, and Khaled A. Mahmoud1*

1Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 5825, Doha, Qatar. Fax: +974 44541528

2Department of Materials Science and Engineering and A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA

E-mail: gogotsi@drexel.edu, kmahmoud@qf.org.qa
ABSTRACT

MXenes are a family of atomically thin, two-dimensional (2D) transition metal carbides and carbonitrides with many attractive properties. Two-dimensional Ti$_3$C$_2$T$_x$ (MXene) has been recently explored for applications in water desalination/purification membranes. A major success indicator for any water treatment membrane is the resistance to biofouling. To validate this and to understand better the health and environmental impacts of the new 2D carbides, we investigated the antibacterial properties of single- and few-layer Ti$_3$C$_2$T$_x$ MXene flakes in colloidal solution. The anti-bacterial properties of Ti$_3$C$_2$T$_x$ were tested against *Escherichia coli* (*E. coli*) and *Bacillus subtilis* (*B. subtilis*) by using bacterial growth curves based on optical densities (OD) and colonies growth on agar nutritive plates. Ti$_3$C$_2$T$_x$ shows a higher antibacterial efficiency toward both Gram-negative *E. coli* and Gram-positive *B. subtilis* compared with graphene oxide (GO), which has been widely reported as an antibacterial agent. Concentration dependent antibacterial activity was observed and more than 98% bacterial cell viability loss was found at 100 µg/mL Ti$_3$C$_2$T$_x$ within 4 h of exposure, as confirmed by colony forming unit (CFU) and regrowth curve. Antibacterial mechanism investigation by scanning electron microscopy (SEM), and transmission electron microscopy (TEM) coupled with lactate dehydrogenase (LDH) release assay indicated the damage to the cell membrane which resulted in release of cytoplasmic materials from the bacterial cells. Reactive oxygen species (ROS) dependent and independent stress induction by Ti$_3$C$_2$T$_x$ was investigated in two separate abiotic assays. MXenes are expected to be resistant to bio-fouling and offer bactericidal properties.

KEYWORDS: MXene, Ti$_3$C$_2$T$_x$, antibacterial, *B. subtilis*, *E. coli*, membrane, oxidative stress
Recently, the family of 2D materials has been augmented by a large group of early transition metal carbides.\(^1\)\(^-\)\(^6\) This new family of 2D materials has been labeled “MXenes”, where M is an early transition metal and X is carbon and/or nitrogen. Ti\(_3\)C\(_2\)T\(_x\) (T is standing for the surface termination, such as -O, -OH or -F) is the most studied MXene and recently we reported the selective ion sieving of micrometer-thick Ti\(_3\)C\(_2\)T\(_x\) membranes.\(^7\) The hydrophilic nature of Ti\(_3\)C\(_2\)T\(_x\), together with the hydrated interlayer spacing, promotes ultrafast water flux and differential sieving towards single-, double- and triple-charged metal cations of different sizes. Ti\(_3\)C\(_2\)T\(_x\) outperformed graphene oxide (GO) membranes in the separation of higher charge cations. However, antibacterial characteristics of MXenes have never been studied. It is important to investigate the antibacterial properties of MXenes for their potential use as a biocide in water treatment and biomedical applications.

Several studies have compared the antibacterial activity of 2D graphene-based materials (graphite oxide, GO and reduced GO (rGO)) against Gram-negative (Gram (-)) and Gram-positive (Gram (+)) bacteria through direct contact\(^8\)\(^-\)\(^14\). The antibacterial activity of metal and metal oxide nanoparticles (e.g., Ag, ZnO and TiO\(_2\)) have also been well documented by a sizable number of studies.\(^15\),\(^16\) Antibacterial activity of these nanoparticles has been associated with production of reactive oxygen species (ROS) and direct contact with bacteria membrane, penetrating into the bacteria and interacting with sulfur-containing proteins as well as phosphorus-containing DNA, leading to bacterial cell death.\(^17\)\(^-\)\(^21\) Similarly, the antimicrobial activities of graphene have been found to be the synergy of both “chemical” and “physical” effects.\(^14\),\(^19\) Most of the studies have attributed the antibacterial activity of GO and rGO to oxidative and physical stress induced by sharp edges of graphene nanosheets, which may result in mechanical damage of cell membranes, leading to a loss of their integrity.\(^14\),\(^22\)\(^-\)\(^24\) Moreover,
several mechanisms have been proposed to explain the antimicrobial properties of carbon nanotubes (CNT) based composite films including inhibition of electron transports, leakage and penetration of cell membrane and generation of ROS.25-29 Despite antimicrobial properties of MXenes have never been examined before, it is reasonable to assume that at least some of those mechanisms may work in MXenes, which were shown to destroy dye molecules in solution.9 Therefore, investigations of the mechanism of MXene’s interaction with bacterial cell membranes and its bactericidal activity are needed to determine the range of potential applications of these new materials.30,31

Here we present for the first time a report on the antibacterial behavior of Ti$_3$C$_2$T$_x$ MXene in the colloidal suspension. To better understand the health and environmental impacts of the new 2D carbides, the antibacterial activity of Ti$_3$C$_2$T$_x$ MXene toward two bacterial models - \textit{Escherichia coli} (\textit{E. coli}) and \textit{Bacillus subtilis} (\textit{B. subtilis}), was studied and compared with GO. The concentration dependent antibacterial activities were evaluated by cell viability assays together with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and lactate dehydrogenase (LDH) release assay. On the basis of these results, we introduce MXenes as a new family of 2D antimicrobial nanomaterials. This will open a door for MXenes in the antibacterial applications and water purification industry.

RESULTS AND DISCUSSIONS

Synthesis and Characterization of Ti$_3$C$_2$T$_x$

Ti$_3$C$_2$T$_x$ suspension was prepared from multilayer (ML) Ti$_3$C$_2$T$_x$ “clay” by ultrasonication under flow of Argon (Ar) gas as described in the experimental section. Ti$_3$C$_2$T$_x$ synthesis was described in details elsewhere.32 GO was also synthesized by oxidizing natural graphite powders
using H₂SO₄ and KMnO₄ according to the modified Hummers method and was used as a reference in this study. Figure 1 shows SEM images of Ti₃AlC₂ (Figure 1A), ML-Ti₃C₂Tx (Figure 1B), and Ti₃C₂Tx (Figure 1C) nanosheets dried on alumina wafer and photographs of their corresponding colloidal suspensions in water. The images clearly show the different appearance of the three materials after 10 minutes sonication. Both Ti₃AlC₂ and as-produced ML-Ti₃C₂Tx show opaque gray color and their particles precipitated after 1 h and the SEM revealed well stacked nanosheets. On the other hand, delaminated Ti₃C₂Tx formed dark green colloidal solution and the stacked layers were delaminated as observed from SEM (Figure 1C). The TEM micrograph in (Figure 1D) revealed thin, transparent flakes of delaminated Ti₃C₂Tx nanosheets. Fluorine and oxygen were confirmed by energy-dispersive spectroscopy (EDS), suggesting O- and F-containing surface terminations. Delaminated Ti₃C₂Tx has highly exfoliated and smaller sheets, which are expected to provide a significantly higher surface area than Ti₃AlC₂ and ML-Ti₃C₂Tx and an improved antimicrobial performance. A typical XRD pattern of air-dried Ti₃C₂Tx powder is shown in Figure 1E. The presence of peaks corresponding to basal-plane reflections (00l) with c lattice parameter of 27–28 Å suggests the presence of water, and possibly Li ions, between the hydrophilic and negatively charged Ti₃C₂Tx MXene nanosheets. The sharp and intense peak (002) at 6.17° is at a much lower angle that typical of Ti₃C₂Tx produced by etching in HF. Peaks around 40° are still observed, which suggests a good periodicity between the stacked MXene layers.
Figure 1: SEM images of Ti$_3$AlC$_2$ (A) and ML-Ti$_3$C$_2$T$_x$ (B) and Ti$_3$C$_2$T$_x$ nanosheets on an alumina filter (C), and their corresponding photographs showing Ti$_3$AlC$_2$, ML-Ti$_3$C$_2$T$_x$ and Ti$_3$C$_2$T$_x$ solution, respectively; D, TEM image of the pristine Ti$_3$C$_2$T$_x$ flake; E, typical XRD pattern of ML-Ti$_3$C$_2$T$_x$.

Antibacterial Activity

In order to investigate the effect of delamination on the antibacterial efficiency of MXene, the inhibition effect of three materials (Ti$_3$AlC$_2$ (MAX), as-produced ML-MXene, and
delaminated Ti$_3$C$_2$T$_x$ nanosheets) were examined against both *E. coli* and *B. subtilis*. The bacterial growth inhibition was determined by the colony counting method. Figure S1A (Supporting Information) shows the photographs of agar plates onto which control and bacterial cells were re-cultivated after treatment for 4 h with the same concentration of 100 µg/mL of nanomaterial. Figure S1B (Supporting Information), depicts the percentage growth inhibition of both bacterial strains exposed to the materials under study. MAX dispersion showed growth inhibition of only 14.39±1.43% and 18.34±1.59% for *E. coli* and *B. subtilis*, respectively. The ML- Ti$_3$C$_2$T$_x$ dispersion showed a little higher antibacterial activity compared with MAX with *E.coli* and *B. subtilis* growth inhibition of 30.55±2.56% and 33.60±2.89%, respectively. Whereas for the cells exposed to the colloidal solution of delaminated Ti$_3$C$_2$T$_x$ MXene, the loss of *E. coli* and *B. subtilis* cells viability increases to 97.70±2.87% and 97.04±2.91%, respectively, exhibiting much stronger inhibition. The three materials showed significant differences in their antibacterial activities against both bacterial strains. In particular, delaminated Ti$_3$C$_2$T$_x$ MXene has a much more pronounced antibacterial activity compared with those of MAX and ML-Ti$_3$C$_2$T$_x$ MXene and was used for further studies.

Concentration Dependent Antibacterial Activity of Ti$_3$C$_2$T$_x$

The antibacterial activity of Ti$_3$C$_2$T$_x$ against Gram (+) *B. subtilis* and Gram (-) *E. coli* was evaluated by measuring the growth curve and the cell viability after exposure of the bacteria to increasing concentrations of Ti$_3$C$_2$T$_x$ colloidal solutions. The optical density (OD) was monitored spectrophotometrically at 600 nm for pristine bacteria and bacteria treated with Ti$_3$C$_2$T$_x$ by over different time intervals from lag phase (when individual bacteria are adjusting to the environment) to stationary phase (when their growth and death rates are equivalent). Bacteria (at
10^7 colony forming units (CFU)/mL) were treated with different concentrations of Ti₃C₂Tx for 4 h, re-cultivated on agar plates, and evaluated by using the bacteria counting method. Figure 2 shows the typical photographs of *E. coli* or *B. subtilis* bacteria colonies after treatment with various concentrations of bacteria. As can be seen from both panels, the number of colonies significantly decreases with increasing concentration of Ti₃C₂Tx. The obtained results indicate the dose-dependent antimicrobial activity of Ti₃C₂Tx.

Figure 2: Concentration dependent antibacterial activities of the Ti₃C₂Tx in aqueous suspensions: Photographs of agar plates onto which *E. coli* (top panel) and *B. subtilis* (bottom panel) bacterial cells were re-cultivated after treatment for 4 h with 0 µg/mL (A), 10 µg/mL (B), 20 µg/mL (C),
50 µg/mL (D), 100 µg/mL (E), and 200 µg/mL (D) of Ti$_3$C$_2$T$_x$, respectively. Bacterial suspensions in deionized water without Ti$_3$C$_2$T$_x$ MXene material was used as control.

Figure 3 shows the bacterial cells viability exposed to Ti$_3$C$_2$T$_x$ and GO concentrations in the range of 2–200 µg/mL for 4 h. Ti$_3$C$_2$T$_x$ showed excellent antimicrobial activity for both Gram (+) and Gram (-) bacteria. The bacterial cell loss gradually ascended with the increasing concentration of Ti$_3$C$_2$T$_x$. *E. coli* and *B. subtilis* showed 92.53% and 93.96% survival rate, respectively, at the lowest Ti$_3$C$_2$T$_x$ concentration of 2 µg/mL. By increasing the Ti$_3$C$_2$T$_x$ MXene concentration from 2 µg/mL to 20 µg/mL, the survival rate of *E. coli* and *B. subtilis* was decreased to 35.31% and 28.21%, respectively. More than 96% bacterial viability loss for both bacterial strains was observed at 100 µg/mL of Ti$_3$C$_2$T$_x$ and bacterial inhibition was increased to more than 99% at 200 µg/mL of Ti$_3$C$_2$T$_x$ (Figure 3). Additionally, the Ti$_3$C$_2$T$_x$ dispersions revealed a stronger influence on *B. subtilis* than *E. coli* at lower concentrations.

The obtained results are in agreement with previously reported data, where several nanomaterials showed a higher antibacterial activity against Gram (+) bacterial strains than Gram (-) bacteria and differences of the cell wall structure of two bacterial strains were reported as a possible reason for different sensitivities. 9, 34 Gram (-) *E. coli* cells have negatively charged cellular membranes, as function of the isoelectric point (pI) = 4-5. For the G-positive *B. subtilis* cells, the pI value of the membranes can reach 7, which produces a more negatively charged surface in culturing medium. 35, 36 Therefore, the higher negative charges of *E. coli* cells at pH 7 could explain their higher resistance against the direct exposure to Ti$_3$C$_2$T$_x$ substrate than *B. subtilis* cells in aqueous suspensions at pH 7. This could be attributed to the observed difference in the antimicrobial activity against Gram (-) *E. coli* and Gram (+) *B. subtilis*. Recently, graphene-based materials were reported to show unique antibacterial properties and have become
one of the most popular research subjects.10, 37, 38 Moreover, \textit{E. coli}, as Gram (-) bacteria, are covered by a much thinner layer of peptidoglycan (thickness of 7-8 nm), but have an external protective lipid membrane.39 Whereas, Gram (+) \textit{B. subtilis} lacks the external lipid membrane, but its thicker peptidoglycan cell walls are in the range of 20-80 nm. It was reported that the cell membrane of Gram (+) bacteria lacking the outer membrane were more easily damaged by direct contact with graphene nanowalls, as compared to the Gram (-) \textit{E. coli} with the outer membrane.10, 39 The hydrophilic Ti$_3$C$_2$Tx could effectively attach to bacteria, facilitating their inactivation by direct contact interaction.

In order to compare antibacterial activity of Ti$_3$C$_2$Tx with GO, both bacterial strains were treated with different concentrations of GO under the same experimental conditions. Figure 3 shows the viability of both \textit{E. coli} and \textit{B. subtilis} bacteria in control, which was taken as 100\%, and exposed to 0-200 µg/mL of GO. For both bacterial strains, there were substantial differences in bacteria colonies on agar plates, indicating that the Ti$_3$C$_2$Tx MXene has a higher antibacterial activity as compared to GO in our experimental setup. Ti$_3$C$_2$Tx showed more than 98\% cell inactivation to both bacterial strains at 200 µg/mL of Ti$_3$C$_2$Tx, whereas, GO induces about 90 \% inactivation at the same concentration (Figure 3).

To further evaluate the bactericidal properties of Ti$_3$C$_2$Tx MXene, the antibacterial activity is reported in terms of log reduction. The plate count experiments showed log 2.43 and log 2.21 reductions of viable \textit{E. coli} and \textit{B. subtilis} bacteria, respectively, as compared to the initial concentration of bacteria (107 CFU/mL) (Figure S2, (Supporting Information)). GO suspensions showed a log reduction of 1.02 and 0.97 for \textit{E. coli} and \textit{B. subtilis}, respectively, being less effective than Ti$_3$C$_2$Tx.
To evaluate the antibacterial activity of Ti$_3$C$_2$Tx MXene in growth media, both bacterial strains were exposed to 200 µg/mL of Ti$_3$C$_2$Tx in LB media for 4 h. Figure S3 (Supporting Information) depicts the growth of bacterial cells in LB media in presence of Ti$_3$C$_2$Tx. Figure S3A shows a significant decrease in log of bacterial growth when exposed to Ti$_3$C$_2$Tx. The viable cells count in growth media were 33.32% and 27.34% for E. coli and B. subtilis, respectively, in presence of Ti$_3$C$_2$Tx as compared to that of control (see Figure S3B).

The effect of contact time on bactericidal activity of Ti$_3$C$_2$Tx (200 µg/mL) was further examined during the 4 h incubation period. Figure S4 (Supporting Information) shows the kinetics of antibacterial activity in terms of cell viability and log reduction. The antibacterial activity increased with increasing contact time and cell viability decreased to 50% within 2 h of contact time and more than 98% cells viability loss was observed after 4 h. This relatively short contact time might also be advantageous for the application of Ti$_3$C$_2$Tx as antibacterial agent.

Figure 3: Cell viability measurements of (A) E. coli and (B) B. subtilis treated with Ti$_3$C$_2$Tx and graphene oxide (GO) in aqueous suspension. Bacterial suspensions (107 CFU/mL) were incubated with different Ti$_3$C$_2$Tx and GO concentrations (0-200 µg/mL) at 35 °C for 4 h at 150 rpm shaking speed. Survival rates were obtained by the colony forming count method.
Gentamicin at concentration of 50 µg/mL was used as positive control. Error bars represent the standard deviation.

The antimicrobial activity of Ti$_3$C$_2$Tx nanosheets was further confirmed by bacterial regrowth curves using a second assay. Figure 4 shows the OD growth curves of *E. coli* and *B. subtilis* cells incubated with different concentrations of Ti$_3$C$_2$Tx. It was found that inhibition of both bacterial strains growth was dose dependent and the bactericidal activity increased with increasing Ti$_3$C$_2$Tx concentration, which was in line with the number of colonies grown on the LB plates. Growth kinetics constants for both bacterial strains were evaluated and are given in Table 1. It was found that the specific growth constant for *E. coli*, (µ$_e$) decreased from 0.277 h$^{-1}$ to 0.068 h$^{-1}$ with increasing Ti$_3$C$_2$Tx concentration from 0 to 200 µg/mL. For *B. subtilis*, a decrease in the growth rate constants (µ$_b$) from 0.347 h$^{-1}$ to 0.134 h$^{-1}$ was observed with increasing Ti$_3$C$_2$Tx concentration. With increasing Ti$_3$C$_2$Tx concentration from 0 to 200 µg/mL, bacterial doubling time (T$_d$) was increased from 2.5 h to 10.11 h and 2.0 h to 5.16 h for *E. coli* and *B. subtilis*, respectively, showing a strong bactericidal effect.

Table 1: Specific growth constant and doubling time obtained in the batch growth tests for *E. coli* and *B. subtilis* cells treated to different Ti$_3$C$_2$Tx concentrations.
Substrate	Constant	Ti$_3$C$_2$Tx (µg/mL)
	μ_c (h$^{-1}$)	0.277 0.271 0.261 0.239 0.168 0.087 0.068
$E. coli$	T_d (h)	2.5 2.550 2.65 2.9 4.12 7.92 10.11
	μ_b (h$^{-1}$)	0.347 0.319 0.306 0.264 0.240 0.190 0.134
$B. subtilis$	T_d (h)	2.0 2.251 2.259 2.617 2.878 3.629 5.16

Figure 4: Bacterial suspensions exposed to different Ti$_3$C$_2$Tx concentrations at 35°C for 4 h and the reaction mixture then transferred to 15 mL tubes, each containing 10 mL LB medium. The tubes were inoculated on a shaking incubator at 150 rpm and 35°C and at bacterial cell density measured at specific time intervals. OD re-growth curves of (A) $E. coli$ and (B) $B. subtilis$ in LB broth at 35°C after the cells were treated with different concentrations of Ti$_3$C$_2$Tx, in DI water for 4 h. Controls were cells untreated with Ti$_3$C$_2$Tx.
Bacterial Membrane Morphology Changes

To understand the antibacterial effect of Ti$_3$C$_2$Tx MXene, changes of morphology and membrane integrity of *E. coli* and *B. subtilis* cells, due to the interaction with Ti$_3$C$_2$Tx, were further evaluated by SEM and TEM. As depicted by SEM images in Figure 5a, bacterial cells for both *E. coli* and *B. subtilis* cultured in the absence of Ti$_3$C$_2$Tx were viable with no observed membrane damage or cell death. The higher magnification in lower panels shows that the bacterium is protected by intact cytoplasmic membrane. On the other hand, most bacterial cell suffered from a prevalent membrane damage and cytoplasm leakage in the presence of 50 µg/mL of Ti$_3$C$_2$Tx, which is clearly observed at high magnifications (Figure 5B). Some bacterial cells still maintained the membrane integrity, but they were deformed. At 100 µg/mL of Ti$_3$C$_2$Tx, both bacteria suffered from prevalent cell lysis indicated by a severe membrane disruption and cytoplasm leakage (see the red circles at high magnification in Figure 5C).
Figure 5: SEM images of the *E. coli* (top panel) and *B. subtilis* (bottom panel) treated with 0 µg/mL – control (A), 50 µg/mL (B), and 100 µg/mL of Ti$_3$C$_2$Tx, at low and high magnification, respectively. Control bacterial cells were viable with no observed membrane damage or cell death and the higher magnification shows that the bacterium is protected by intact cytoplasmic membrane (Figure 5A). At 50 and 100 µg/mL of Ti$_3$C$_2$Tx, both bacteria suffered from prevalent cell lysis indicated by a severe membrane disruption and cytoplasm leakage (see the red circles at high magnification in Figure 5C).

Significant morphological changes in the cell structure could be attributed to detachment of the cytoplasmic membrane from the cell wall as confirmed by LDH release assay. The SEM observations were consistent with the bacteria colonies numbers in Figure 3. It is suggested that
with increasing Ti$_3$C$_2$T$_x$ concentration both *E. coli* and *B. subtilis* were trapped or wrapped by the thin sheets of Ti$_3$C$_2$T$_x$ and subsequently formed agglomerates. This has been confirmed by spot EDS analysis on the surface of the bacterium (see Figure S5, (Supporting Information)). Similar observations were reported for graphene, GO, and CNTs, where the death of both the Gram (-) and the Gram (+) cells was ascribed to the disruption of their membranes and the leakage of their cytoplasm content after direct contact with graphene-based material.$^8,_{14,26,40}$ Liu *et al.* suggested that different aggregation/dispersion behavior of GO and rGO may have distinct effect in their antimicrobial activities.14

Additionally, TEM images (Figure 6) were utilized to observe the cell wall and membrane damage, as well as the change of inner structure of cells. TEM analysis of *E. coli* and *B. subtilis* before and after being exposed to 200 µg/mL of Ti$_3$C$_2$T$_x$ showed a decrease in the number of bacterial cells in Ti$_3$C$_2$T$_x$ treated groups comparing to the control. As Figure 6 shows, Ti$_3$C$_2$T$_x$ nanosheets were tightly adsorbed around the cells and even entered the cells (Figure 6, arrows a,c). Meanwhile, the intracellular densities of both *E. coli* and *B. subtilis* decreased, revealing that they lost some intracellular substance. The attachment of Ti$_3$C$_2$T$_x$ MXene to the cellular membrane of both bacteria is clearly demonstrated by presence of the highly crystalline Ti$_3$C$_2$T$_x$ layers observed from the high resolution TEM (HRTEM) and the corresponding selected area electron diffraction (SAED) patterns, as well as the spot EDS analysis showing Ti signal on the surface of the treated bacteria (see Figures S6 and S7). In both *E. coli* and *B. subtilis*, the cell wall was stripped down after exposure to Ti$_3$C$_2$T$_x$ nanosheets (Figure 6, arrows b, d). Significant inner cell structure leakage was observed due to cell wall and membrane damage.
Figure 6: TEM images of *E. coli* (A, B) and *B. subtilis* (C, D) treated with 200 µg/mL of Ti$_3$C$_2$Tx for 4 h at low (A, C) and high magnifications (B, D). The cell wall stripped down after exposure to Ti$_3$C$_2$Tx nanosheets (arrows b, d), Ti$_3$C$_2$Tx nanosheets tightly adsorbed around the cells and entered into the cells (arrows a, c). The intracellular densities of both cells decreased and Ti$_3$C$_2$Tx attached to the cellular membrane of both bacteria (arrows b,d).

LDH release assay was used to quantitatively determine the extent of cell damage. Figure 7 shows the LDH activity in the supernatants after 4 h of incubation. Concentration dependent LDH release was observed as bacterial cells were exposed to Ti$_3$C$_2$Tx nanosheets dispersions (Figure 7). The bacterial cells exposed to 2 and 10 µg/L of Ti$_3$C$_2$Tx exhibited minimal LDH release for both *E. coli* and *B. subtilis*. However LDH release increased significantly when bacterial cells were exposed to 200 µg/L solution of Ti$_3$C$_2$Tx, which showed cytotoxicity of 38.41% and 55.24% for *E. coli* and *B. subtilis*, respectively. This dose dependent cytotoxicity
shows that both the walls and the inner contents of the cell were damaged, suggesting that membrane disruption might be a major cell inhibitory mechanism.

![Graph showing cytotoxicity of Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{x}](image)

Figure 7: Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{x} cytotoxicity measured by LDH release from the bacterial cells exposed to different concentrations of Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{x} for 4 h.

Oxidative-Stress and Antimicrobial Activity of Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{x} MXene

Some earlier studies have proposed oxidative stress as a common mechanism of antibacterial activity of several metal, metal oxide and carbon based nanomaterials.\(^8, 14, 17, 41\) Oxidative stress occurs when cells are exposed to elevated levels of ROS such as free radicals, O\textsubscript{2}−, 'OH and H\textsubscript{2}O\textsubscript{2}. In particular, many previous studies have explored the generation of ROS on the surface of carbon, metal and metal-oxide NPs like graphene, Ag, TiO\textsubscript{2} and ZnO.\(^16, 17, 18\) While an agreement on the ROS production of different nanomaterials was difficult to reach among various studies, almost all engineered NPs including nonoxide nanomaterials appear to produce ROS under certain circumstances.\(^20, 21, 42\) For example, some studies detected ROS in TiO\textsubscript{2}}
nanoparticles suspensions under dark conditions,43,44 whereas other studies did not.45 A similar mechanism has been thought for antibacterial activity of iron oxide nanoparticles in which reduced iron species (Fe3+/2+) reacted with oxygen to create ROS.46

To identify if cellular oxidative stress may be induced by Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{x}, ROS dependent and independent oxidative stress was investigated in two separate abiotic assays. First, the production of superoxide anion (O\textsubscript{2}•-) at different Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{x} concentrations was monitored using XTT assay. As shown in the Figure S8 (Supporting Information), no noticeable absorption was detected at different Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{x} concentrations revealing that MXene mediated no or negligible superoxide anion production and their role in Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{x} antibacterial activity could be minimal. However, the production and impact of ROS other than superoxide anion needs to be discreetly examined in future studies.

Second, oxidative stress mediated by Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{x} was examined using glutathione oxidation assay. Glutathione is a tripeptide with a thiol group, which serves as one of the major cellular antioxidant enzymes in bacteria. It is involved in the intracellular oxidative balance and protects the cells against external electrophilic compounds. The oxidation of glutathione has been widely used as an indicator of the oxidative stress induced by different nanomaterials. Thiol groups (-SH) in glutathione can be oxidized to disulfide converting glutathione to glutathione disulfide. Moreover, direct contact of glutathione with nanoparticle surface also logically could lead to loss of glutathione by adsorption, or binding.47 In this study glutathione was exposed to increasing concentrations of Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{x} in a bicarbonate buffer and incubated for 4 h, after which the concentration of thiol groups was quantified by Ellman’s assay.
Figure 8: Ti$_3$C$_2$T$_x$ nanosheets reaction with glutathione in colloidal suspensions. Bicarbonate buffer (50 mM at pH 8.5) without Ti$_3$C$_2$T$_x$ was used as a negative control. H$_2$O$_2$ (1 mM) was used as a positive control: (A) Time dependent glutathione (0.4 mM) loss after incubation for 4 h with Ti$_3$C$_2$T$_x$ (200 µg/mL). (B) Glutathione depletion exposed to different Ti$_3$C$_2$T$_x$ concentrations (at 2, 10, 20, 50, 100 and 2000 µg/mL) and incubated for 4 h.

As shown in Figure 8, glutathione depletion was dependent on both Ti$_3$C$_2$T$_x$ concentration and incubation time. While negligible glutathione loss was observed for the control samples in the absence of Ti$_3$C$_2$T$_x$, glutathione concentration was reduced to 97.5 to 61.7 % when Ti$_3$C$_2$T$_x$ concentration was increased from 2 to 200 µg/mL, respectively (Figure 8B). It is unlikely that Ti$_3$C$_2$T$_x$ MXene itself can work as an oxidant for glutathione, but Ti$_3$C$_2$T$_x$ has reactive Ti-F groups on its surface, which are not stable at high pH, and also Ti$_3$C$_2$T$_x$ possesses a high negative surface charge, as shown by its -30 to -40 mV zeta-potential in aqueous solutions. Thus, both chemical reactions and physisorption are potentially possible. However, at the moment, there is no published data on interaction of Ti$_3$C$_2$T$_x$ with thiols.

It is important to note that MXenes also have good conductivity (>2000 S/cm measured on Ti$_3$C$_2$T$_x$ films), similar to or exceeding that of rGO. The mechanism in this case could be
explained by formation of a conductive bridge over the insulating lipid bilayer, mediating electron transfer from bacterial intracellular components to the external environment and resulting in cell death \(^8,49\).

Proposed Inhibition Mechanism of Ti\(_3\)C\(_2\)T\(_x\) MXene

Strong antibacterial property of Ti\(_3\)C\(_2\)T\(_x\) may be partially attributed to the anionic nature of its surface. Ti\(_3\)C\(_2\)T\(_x\) nanosheets have negatively charged surfaces. In addition, its high hydrophilicity may enhance bacterial contact to membrane surface resulting in inactivation of adhered microorganisms according to direct contact-killing mechanism. Moreover, hydrogen bonding between oxygenate groups of Ti\(_3\)C\(_2\)T\(_x\) MXene and the lipopolysaccharide strings of the cell membrane could result in bacterial inhibition by preventing nutrient intake as recently proposed for GO nanosheets \(^{10,50}\). It is important to understand the interaction of MXene with cell membranes for the evaluation of MXene’s health and environmental impacts and to utilize it as biocide in disinfection industry. We have found the interesting antibacterial activity of Ti\(_3\)C\(_2\)T\(_x\); however, still the interaction between MXene and bacterial cell membrane has to be investigated and fully understood. From the above LDH release assay, SEM and TEM images, as well as glutathione oxidation assays, the antimicrobial mechanism of Ti\(_3\)C\(_2\)T\(_x\) MXene nanosheets can be explained as follows: First of all, delaminated Ti\(_3\)C\(_2\)T\(_x\) nanosheets with sharp edges have the capacity of adsorbing on the surface of microorganisms. It is also suggested that with increasing Ti\(_3\)C\(_2\)T\(_x\) concentration, both *E. coli* and *B. subtilis* were trapped or wrapped by the nanometer-thin sheets of Ti\(_3\)C\(_2\)T\(_x\) and subsequently formed agglomerates. Moreover, exposure of bacterial cells to sharp edges of Ti\(_3\)C\(_2\)T\(_x\), as shown by the TEM image in Figure 1A, may induce membrane damage. The water contact angle on Ti\(_3\)C\(_2\)T\(_x\) films was found to be 37°.
and its hydrophilicity may result in effective attachment of bacteria to Ti$_3$C$_2$Tx. The antibacterial effects may also be attributed to strong reducing activity of MXene and its reactive surfaces. The smallest Ti$_3$C$_2$Tx nanosheets could permeate into the microorganism cell through direct physical penetration or via endocytosis. Finally, Ti$_3$C$_2$Tx may also react with some molecules in the cell wall and cytoplasm of microorganism, disrupting the cell structure and leading to the death of the microorganism. Recently, several studies investigating the effects of carbon based nanomaterials, such as graphene, GO, CNT and fullerene, proposed a similar three-step antibacterial mechanism causing physicochemical damage to cell membranes depending upon the size of nanoparticles.

Ti$_3$C$_2$Tx has been used as a representative MXene in this study. However, there are now close to 20 members of MXene family that should be similarly screened for their potential use as antibacterial agents. Taking into account that other MXenes have different transition metals, such as Nb, Mo, V, etc., exposed on their surface, we can expect different chemical behavior as a function of the MXene composition and the surface termination (OH, O, F, etc.). Even Ti-based MXenes can differ in chemical reactivity. For example, Ti$_2$CT$_x$ oxidizes easier in presence of oxygen and water than Ti$_3$C$_2$Tx. Ti$_3$C$_2$Tx produced by different methods has different functional groups on its surface, with more F on the surface of Ti$_3$C$_2$Tx produced by etching in concentrated HF compared to that synthesized by extracting Al in diluted HF or LiF-HCl solution. Difference in surface chemistry may affect toxicity and antibacterial activity of MXenes. This study is the first step toward understanding interactions of MXenes with living matter and it is expected to open the door for extensive studies on other 2D carbides and nitrides of transition metals. Fine tuning of MXene surface functional groups, flake size, and
conductivity, both in colloidal and membrane forms, may open a wide window for MXenes’
application in the antimicrobial coatings and water purification membranes.

CONCLUSIONS

Our studies demonstrate that Ti$_3$C$_2$Tx in aqueous colloidal solution can stimulate
antibacterial activity against Gram (-) *E. coli* and Gram (+) *B. subtilis* bacteria. Ti$_3$C$_2$Tx
antibacterial activity was dose dependent and exceeded that of GO. Direct contact with Ti$_3$C$_2$Tx
MXene can disrupt cellular membranes leading to cell damage and eventual death. We have
focused this first study on the antibacterial properties of MXenes, but the cellular uptake and
cytotoxicity of MXene should be studied to understand the health and environmental impact of
MXenes. On the basis of these results, we introduce MXenes as a new family of 2D
antimicrobial nanomaterials for their potential use in water treatment and biomedical
applications.

MATERIALS AND METHODS

Synthesis, delamination, and dispersion of Ti$_3$C$_2$Tx

A colloidal solution of single- and few-layer Ti$_3$C$_2$Tx particles was obtained by
delaminating Ti$_3$C$_2$Tx powders by ultrasonication, after etching Ti$_3$AlC$_2$ with LiF/HCl solution
(Sigma-Aldrich) as described previously32 with minor modifications in the process. Briefly, the
obtained ML-Ti$_3$C$_2$Tx powder was dispersed in deaerated water with a weight ratio of ML-
Ti$_3$C$_2$Tx: water of 1:250. The suspension was sonicated under flowing argon, and then
centrifuged for 1 h at 3000 rpm to obtain the supernatant containing Ti$_3$C$_2$T$_x$ flakes. TEM, SEM, EDX, and XRD were used to study the structure, composition and morphology of the flakes.

Cell preparation

The antibacterial properties of Ti$_3$C$_2$T$_x$ and GO colloids were evaluated using *E. coli* and *B. subtilis* as the model gram negative and gram-positive bacteria, respectively. Glycerol stocks were used to inoculate defined overnight cultures in LB medium at 35°C. Following that, 1 mL volumes of cell suspensions were sub-cultured and harvested at the exponential growth phase. Cultures were centrifuged at 5000 rpm for 5 min and pellets obtained were washed three times with phosphate buffered saline (PBS, Sigma-Aldrich) (pH 7.2) to remove residual macromolecules and other growth medium constituents. The cell pellets collected by centrifugation were re-suspended in sterilized deionized water (DI) and diluted to approximate cell concentration of 107 CFU/mL. Gentamicin (50 µg/mL) was used as positive control. Water was used to replace PBS buffer for the antibacterial studies to prevent the aggregation of MXene in PBS during experiments. Figure S9, (Supporting Information) showed that cell viability of *E. coli* and *B. subtilis* was similar in DI and PBS during 4 h of incubation time.

Antibacterial activity of Ti$_3$C$_2$T$_x$ (MXene) nanosheets dispersions

Antibacterial activity against each strain was determined by the colony count method and the measurement of OD. Batch assays were performed to compare the antibacterial activity of delaminated Ti$_3$C$_2$T$_x$ in colloidal solution with that of dispersions of ML-Ti$_3$C$_2$T$_x$ and Ti$_3$AlC$_2$.
Delaminated Ti$_3$C$_2$T$_x$, ML-Ti$_3$C$_2$T$_x$ and Ti$_3$AlC$_2$ concentrations of 100 µg/mL were applied to both *E. coli* and *B. subtilis* and cell survival rate was counted by CFU/mL.

A second set of antibacterial activity tests was conducted by spread plate CFU counting. The bacteria (about 107 CFU/mL were incubated with different concentrations (2-200 µg/mL) of Ti$_3$C$_2$T$_x$ MXene for 4 h. Aliquots of the samples were withdrawn and CFU were counted by plating 40 µL of 10-fold serial dilutions onto LB agar plates. Colonies were counted after incubation at 35°C and the cell survival rate was expressed as the percentage of the control and log reduction. The following equation was used to represent relative viability of cells:

Relative cells viability = \(\left(\frac{N_c}{N_m} \right) \times 100\),

where \(N_c \) is bacterial colonies of the control sample and \(N_m \) are colonies for cells treated to Ti$_3$C$_2$T$_x$.

The log reduction was calculated using the following equation:

\[
\text{Log reduction} = \log_{10} \left(\frac{A}{B} \right),
\]

where \(A \) is the number of viable microorganisms before treatment and \(B \) is the number of viable microorganisms after treatment.

Additionally, batch assays were performed with different Ti$_3$C$_2$T$_x$ concentrations. To examine the effect of MXene on bacterial growth, the batch assays were subjected to 2, 10, 20, 50, 100 and 200 µg of Ti$_3$C$_2$T$_x$ per mL. The batch assays were subjected to continuous shaking at 150 rpm and constant mesophilic temperature of 35°C for 4 h. For controls, DI was added instead of Ti$_3$C$_2$T$_x$. The reaction mixture was then transferred to 15 mL tubes, each containing 10 mL LB medium, and the tubes were inoculated on a shaking incubator at 150 rpm and 35°C. Aliquots of the samples were withdrawn at specific time intervals and the value of OD at a wavelength of 600 nm was measured on a UV-Vis spectrometer (Novaspec Plus). Bacterial
growth curves were created by plotting OD values versus time and bacterial growth kinetics were studied. All experiments were performed as triplicates and average values were reported.

Antibacterial activity of Ti$_3$C$_2$T$_x$ in LB growth media was assessed by exposing the bacteria (about 10^5 CFU/mL) to 200 µg/mL of Ti$_3$C$_2$T$_x$ MXene for 4 h. Aliquots of the samples were withdrawn and CFU were counted as described earlier.

Lactase dehydrogenase release assay

LDH release assay was used to determine the cell membrane activity of MXene treated bacterial cells in colloidal solution using cytotoxicity detection kit (Roche Applied Science). The standard protocol assay was performed according to the manufacturer's instructions. Briefly, *E. coli* and *B. subtilis* cells were treated with 2, 10, 20, 50, 100 and 200 µg/mL Ti$_3$C$_2$T$_x$ in DI for 4 h. Following 4 h exposure to MXene, 50 µL of cell culture supernatant was transferred into sterile 1 mL centrifuge tubes. 50 µL substrate mix was added and tubes were incubated at room temperature in the dark for 1 h. The reaction was stopped by the addition of 50 µL of stop solution. LDH release was quantified by measuring absorbance at 490 nm.

Superoxide radical (O$_{2}^•^{-}$) assay

The hypothetical possibility of superoxide radical anion (O$_{2}^•^{-}$) production was evaluated by monitoring the absorption of XTT (2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide, Fluka). XTT can be reduced by superoxide radical anion (O$_{2}^•^{-}$) to form water-soluble XTT-formazan with the maximum absorption at 470 nm. XTT (0.4 mM) were dissolved in PBS solution at pH 7.0. Bacterial dispersions treated with Ti$_3$C$_2$T$_x$ at different concentrations (1 mL) in DI were mixed with 1 mL of 0.4 mM XTT. The mixture was incubated in dark for 5 h,
afterwards; the mixture was filtered through a 0.45 µm polyethersulfone filter to remove Ti$_3$C$_2$T$_x$. The changes in absorbance at 470 nm were monitored with a UV-Vis spectrophotometer.

Abiotic thiol oxidation and quantification

The Ti$_3$C$_2$T$_x$ (MXene)-mediated abiotic oxidation of glutathione was studied by quantifying thiol concentration following Ellman’s assay as described earlier49. Briefly, 0.4 mM glutathione was prepared in a 50 mM bicarbonate buffer (pH 8.6) at a total volume of 250 µL in microcentrifuge tubes, and the reaction was initiated by spiking the solution with various Ti$_3$C$_2$T$_x$ concentrations. The tubes were then placed in a shaker incubator at room temperature (22-23 °C) and covered with aluminum foil to prevent any photochemical reactions. A 90 µL aliquot of the reaction solution was mixed with 157 µL of Tris-HCl (pH 8.3, Fluka) and 3 µL of 100 mM 5,5’-dithio-bis-(2-nitrobenzoic acid) (DTNB, Invitrogen). The assayed aliquots were then filtered through a 0.45 µm polyethersulfone filter (Whatman) to remove Ti$_3$C$_2$T$_x$ and eliminate any background absorbance and/or scattering. The filtered aliquot absorbance at 412 nm was measured by a UV-Vis spectrophotometer (SPECTRA max 340PC). The concentration of thiol was calculated using the absorbance at 412 nm, a path length of 1 cm, and a molar extinction coefficient of 14150 M$^{-1}$ cm$^{-1}$. Glutathione oxidation by H$_2$O$_2$ (1 mM and 10 mM) was used as a positive control.

Cell morphology observation with SEM and TEM

SEM analysis was performed to observe the effect of Ti$_3$C$_2$T$_x$ MXene on morphology and surface structure of the bacterial cells using FEI-Nova Nano SEM 650. Electron microscopy
imaging of samples was accomplished using the following procedures: after the experiments, cells from the treated samples were fixed with 2.5% glutaraldehyde (Sigma-Aldrich) overnight at 4°C, followed by washing with 0.1 M PBS (pH 7.4) and dehydration with a graded ethanol series (25, 50, 80, 100%). For SEM, samples were allowed to dry completely at room temperature and then coated with gold by sputtering (5 nm).

The ultrastructure of the bacteria was examined by TEM. The bacteria were pelleted and fixed overnight with 4% formaldehyde – 1% glutaraldehyde fixative. Following a wash with S-Collidine buffer, the samples were post-fixed with 1 % osmium tetroxide for 1 h, dehydrated in graded concentrations of ethanol, and embedded in epoxy resin. The resin embedded tissue was polymerized at 60°C overnight. Thick 1-2 µm and thin 90 nm sections were cut using a Leica EM UC6 ultramicrotome. Grids were stained with uranyl acetate and lead citrate stains. Ultrathin 90 nm sections were examined with a JEOL JEM-1230 transmission electron microscope operated at 80 kV. Digital images were acquired using an AMT digital camera system.

AUTHOR INFORMATION

Corresponding Author: K.A. Mahmoud, Qatar Environment and Energy Research Institute (QEERI), P.O. Box 5825, Doha, Qatar. Fax: +974 44541528

E-mail: kmahmoud@qf.org.qa

Corresponding Author: Yury Gogotsi, Department of Materials Science and Engineering and A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA

E-mail: gogotsi@drexel.edu

ACKNOWLEDGMENTS
KR is grateful to the Maersk Oil Research & Technology Centre at Qatar for the financial support. CR was supported by the Chinese Scholarship Council (CSC). YG acknowledges the support from the NOMAD project funded by British Council. FESEM analysis was performed at the Central Lab Unit, Qatar University. The authors would like to thank C. Johnson and S. Koutzaki at the Centralized Research Facilities and Pathology Department, College of Medicine, of Drexel University for the TEM analyses. The authors are grateful to Department of Biological and Environmental Sciences, Qatar University for their support and providing bacteria strains and Dr. Susan Sandeman of Brighton University for the helpful discussions.

Supporting Information Available: Photographs of agar plates and results of inhibition studies, detailed cell viability and log reduction graphs, detailed TEM and EDS analysis. This material is available free of charge via the Internet at http://pubs.acs.org.
REFERENCES

1. Lei, J.-C.; Zhang, X.; Zhou, Z. Recent advances in MXene: Preparation, Properties, and Applications. *Front. Phys.* **2015**, *10*, 276-286.
2. Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Transition Metal Carbides. *ACS Nano* **2012**, *6*, 1322-1331.
3. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti$_3$AlC$_2$. *Adv. Mater.* **2011**, *23*, 4248-4253.
4. Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall'Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Intercalation and Delamination of Layered Carbides and Carbonitrides. *Adv. Mater.* **2011**, *23*, 4248-4253.
5. Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A New Family of Two-Dimensional Materials. *Adv. Mater.* **2014**, *26*, 992-1005.
6. Naguib, M.; Gogotsi, Y. Synthesis of Two-Dimensional Materials by Selective Extraction. *Acc. Chem. Res.* **2015**, *48*, 1288-135.
7. Ren, C. E.; Hatzell, K. B.; Alhabeb, M.; Ling, Z.; Mahmoud, K. A.; Gogotsi, Y. Charge-and Size-Selective Ion Sieving Through Ti$_3$C$_2$T$_x$ MXene Membranes. *J. Phys. Chem. Lett.* **2015**, *6*, 4026-4031.
8. Li, J.; Wang, G.; Zhu, H.; Zhang, M.; Zheng, X.; Di, Z.; Liu, X.; Wang, X. Antibacterial Activity of Large-area Monolayer Graphene Film Manipulated by Charge Transfer. *Sci. Rep.* **2014**, *4*.
9. Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-Based Antibacterial Paper. *ACS Nano* **2010**, *4*, 4317-4323.
10. Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. *ACS Nano* **2010**, *4*, 5731-5736.
11. Salas, E. C.; Sun, Z.; Lüttinge, A.; Tour, J. M. Reduction of Graphene Oxide via Bacterial Respiration. *ACS Nano* **2010**, *4*, 4852-4856.
12. Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; Zhou, R. Destructive Extraction of Phospholipids from *Escherichia Coli* Membranes by Graphene Nanosheets. *Nat. Nanotechnol.* **2013**, *8*, 594-601.
13. Kim, I. Y.; Park, S.; Kim, H.; Park, S.; Ruoff, R. S.; Hwang, S.-J. Strongly-Coupled Freestanding Hybrid Films of Graphene and Layered Titanate Nanosheets: An Effective Way to Tailor the Physicochemical and Antibacterial Properties of Graphene Film. *Adv. Funct. Mater.* **2014**, *24*, 2288-2294.
14. Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. *ACS Nano* **2011**, *5*, 6971-6980.
15. Chernousova, S.; Epple, M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. *Angew. Chem. Int. Ed.* **2013**, *52*, 1636-1653.
16. Lemire, J. A.; Harrison, J. J.; Turner, R. J. Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. *Nature Rev. Microbiol.* **2013**, *11*, 371-384.
17. Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles. *ACS Nano* **2012**, *6*, 5164-5173.
18. Lakshmi Prasanna, V.; Vijayaraghavan, R. Insight into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Oxygen Species Even in the Dark. *Langmuir* 2015, 31, 9155-9162.

19. Wang, Y.-W.; Cao, A.; Jiang, Y.; Zhang, X.; Liu, J.-H.; Liu, Y.; Wang, H. Superior Antibacterial Activity of Zinc Oxide/Graphene Oxide Composites Originating from High Zinc Concentration Localized around Bacteria. *ACS Appl. Mater. Interfaces* 2014, 6, 2791-2798.

20. Zhang, W.; Li, Y.; Niu, J.; Chen, Y. Photogeneration of Reactive Oxygen Species on Uncoated Silver, Gold, Nickel, and Silicon Nanoparticles and Their Antibacterial Effects. *Langmuir* 2013, 29, 4647-4651.

21. Choi, O.; Hu, Z. Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. *Environ. Sci. Technol.* 2008, 42, 4583-4588.

22. Wu, L.; Zeng, L.; Jiang, X. Revealing the Nature of Interaction between Graphene Oxide and Lipid Membrane by Surface-Enhanced Infrared Absorption Spectroscopy. *J. Am. Chem. Soc.* 2015, 137, 10052-10055.

23. Romero-Vargas Castrillón, S.; Perreault, F.; de Faria, A. F.; Elimelech, M. Interaction of Graphene Oxide with Bacterial Cell Membranes: Insights from Force Spectroscopy. *Environ. Sci. Technol. Lett.* 2015, 2, 112-117.

24. Perreault, F.; de Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. *ACS Nano* 2015, 9, 7226-7236.

25. Li, Q.; Mahendra, S.; Lyon, D. Y.; Brunet, L.; Liga, M. V.; Li, D.; Alvarez, P. J. J. Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential applications and implications. *Water Res.* 2008, 42, 4591-4602.

26. Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. *Langmuir* 2007, 23, 8670-8673.

27. Guo, L.; Morris, D. G.; Liu, X.; Vaslet, C.; Hurt, R. H.; Kane, A. B. Iron Bioavailability and Redox Activity in Diverse Carbon Nanotube Samples. *Chem. Mater.* 2007, 19, 3472-3478.

28. Pulskamp, K.; Diabaté, S.; Krug, H. F. Carbon Nanotubes Show no Sign of Acute Toxicity but Induce Intracellular Reactive Oxygen Species in Dependence on Contaminants. *Toxicol. Lett.* 2007, 168, 58-74.

29. Narayan, R. J.; Berry, C. J.; Brigmon, R. L. Structural and Biological Properties of Carbon nanotube Composite Films. *Mat. Sci. Eng. B* 2005, 123, 123-129.

30. Kostarelos, K.; Novoselov, K. S. Exploring the Interface of Graphene and Biology. *Science* 2014, 344, 261-263.

31. Dellieu, L.; Lawarée, E.; Reckinger, N.; Didembourg, C.; Letesson, J. J.; Sarrazin, M.; Deparis, O.; Matroule, J. Y.; Colomer, J. F. Do CVD Grown Graphene Films have Antibacterial Activity on Metallic Substrates? *Carbon* 2015, 84, 310-316.

32. Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M. W. Conductive MXene Clay with High Volumetric Capacitance. *Nature* 2014, 516, 78-81.

33. Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. *J. Am. Chem. Soc.* 1958, 80, 1339-1339.

34. Fu, F.; Li, L.; Liu, L.; Cai, J.; Zhang, Y.; Zhou, J.; Zhang, L. Construction of Cellulose Based ZnO Nanocomposite Films with Antibacterial Properties through One-Step Coagulation. *ACS Appl. Mater. Interfaces* 2015, 7, 2597-2606.

35. Brock, T. D. Milestones in Microbiology. *Acad. Med.* 1961, 36, 847.
36. Büttner, K.; Bernhardt, J.; Scharf, C.; Schmid, R.; Mäder, U.; Eymann, C.; Antelmann, H.; Völker, A.; Völker, U.; Hecker, M. A Comprehensive Two-Dimensional Map of Cytosolic Proteins of *Bacillus subtilis*. *Electrophoresis* 2001, 22, 2908-2935.

37. Kholmanov, I. N.; Stoller, M. D.; Edgeworth, J.; Lee, W. H.; Li, H.; Lee, J.; Barnhart, C.; Potts, J. R.; Piner, R.; Akinwande, D.; Barrick, J. E.; Ruoff, R. S. Nanostructured Hybrid Transparent Conductive Films with Antibacterial Properties. *ACS Nano* 2012, 6, 5157-5163.

38. Ocsoy, I.; Paret, M. L.; Ocsoy, M. A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against *Xanthomonas perforans*. *ACS Nano* 2013, 7, 8972-8980.

39. Eaton, P.; Fernandes, J. C.; Pereira, E.; Pintado, M. E.; Xavier Malcata, F. Atomic Force Microscopy Study of the Antibacterial Effects of Chitosans on *Escherichia coli* and *Staphylococcus aureus*. *Ultramicroscopy* 2008, 108, 1128-1134.

40. Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene Oxide Exhibits Broad-Spectrum Antimicrobial Activity against Bacterial Phytopathogens and Fungal Conidia by Intertwining and Membrane Perturbation. *Nanoscale* 2014, 6, 1879-1889.

41. Zhang, Y.; Ali, S. F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A. S. Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived PC12 Cells. *ACS Nano* 2010, 4, 3181-3186.

42. Yong, K.-T.; Law, W.-C.; Hu, R.; Ye, L.; Liu, L.; Swihart, M. T.; Prasad, P. N. Nanotoxicity Assessment of Quantum Dots: from Cellular to Primate Studies. *Chem. Soc. Rev.* 2013, 42, 1236-1250.

43. Long, T. C.; Saleh, N.; Tilton, R. D.; Lowry, G. V.; Veronesi, B. Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity. *Environ. Sci. Technol.* 2006, 40, 4346-4352.

44. Long, T. C.; Tajuba, J.; Sama, P.; Saleh, N.; Swartz, C.; Parker, J.; Hester, S.; Lowry, G. V.; Veronesi, B. Nanosize Titanium Dioxide Stimulates Reactive Oxygen Species in Brain Microglia and Damages Neurons in Vitro. *Environ. Health Persp.* 2007, 115, 1631-1637.

45. Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J. I.; Wiesner, M. R.; Nel, A. E. Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm. *Nano Lett.* 2006, 6, 1794-1807.

46. Ismail, R. A.; Sulaiman, G. M.; Abdulrahman, S. A.; Marzoog, T. R. Antibacterial Activity of Magnetic Iron Oxide Nanoparticles Ssynthesized by Laser Ablation in Liquid. *Mat. Sci. Eng. C* 2015, 53, 286-297.

47. Carmel-Harel, O.; Storz, G. Roles of the Glutathione- and Thioredoxin-Dependent Reduction Systems in the *Escherichia coli* and *Saccharomyces Cerevisiae* Responses to Oxidative Stress. *Annu. Rev. Microbiol.* 2000, 54, 439-461.

48. Ling, Z.; Ren, C. E.; Zhao, M.-Q.; Yang, J.; Giammarco, J. M.; Qiu, J.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene Films and Nanocomposites with High Capacitance. *Proc. Natl. Acad. Sci. USA* 2014, 111, 16676-16681.

49. Vecitis, C. D.; Zodrow, K. R.; Kang, S.; Elimelech, M. Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. *ACS Nano* 2010, 4, 5471-5479.

50. Liu, S.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. *Langmuir* 2012, 28, 12364-12372.
51. Tian, T.; Shi, X.; Cheng, L.; Luo, Y.; Dong, Z.; Gong, H.; Xu, L.; Zhong, Z.; Peng, R.; Liu, Z. Graphene-Based Nanocomposite As an Effective, Multifunctional, and Recyclable Antibacterial Agent. *ACS Appl. Mater. Interfaces* **2014**, *6*, 8542–8548.

52. Mashtalir, O.; Cook, K. M.; Mochalin, V. N.; Crowe, M.; Barsoum, M. W.; Gogotsi, Y. Dye Adsorption and Decomposition on Two-Dimensional Titanium Carbide in Aqueous Media. *J. Mater. Chem. A* **2014**, *2*, 14334–14338.

53. Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries. *J. Am. Chem. Soc.* **2013**, *135*, 15966–15969.

54. Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R. C.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). *ACS Nano* **2015**, *9*, 9507–9516.

55. Mashtalir, O.; Lukatskaya, M. R.; Zhao, M.-Q.; Barsoum, M. W.; Gogotsi, Y. Amine-Assisted Delamination of Nb$_2$C MXene for Li-Ion Energy Storage Devices. *Adv. Mater.* **2015**, *27*, 3501–3506.

56. Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray Photoelectron Spectroscopy of Select Multi-Layered Transition Metal Carbides (MXenes). *Appl. Surf. Sci.* **2016**, *362*, 406–417.

57. Wang, H.-W.; Naguib, M.; Page, K.; Wesolowski, D. J.; Gogotsi, Y. Resolving the Structure of Ti$_3$C$_2$T$_x$ MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function. *Chem. Mater.* **2016**, *28*, 349–359.
Live B. Subtilis

Dead B. Subtilis

$$\text{Ti}_3\text{C}_2\text{Tx} \text{ MXene}$$

Intertwine