Hunting for New Physics with Up Vector-like Quarks

To cite this article: Miguel Nebot 2015 J. Phys.: Conf. Ser. 631 012025

View the article online for updates and enhancements.
Hunting for New Physics with Up Vector-like Quarks

Miguel Nebot
Centro de Física Teórica de Partículas, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
E-mail: nebot@cftp.ist.utl.pt

Abstract. An interesting class of scenarios beyond the Standard Model extends the fermionic content of the theory through the addition of vector-like isosinglet quarks. Through a detailed analysis of available experimental constraints, potential deviations from the Standard Model expectations are addressed in observables such as the time-dependent CP asymmetry in $B_s \rightarrow J/\Psi \Phi$ decays, the D_0 same charge dimuon asymmetry in B meson systems A_{SL}, rare kaon and B decays and deviations from a 3×3 unitary mixing matrix.

1. Introduction
We consider an extension of the Standard Model (SM) where one isosinglet vector-like quark T with charge $Q = 2/3$ is added to the spectrum [1,2,3]. In addition to the usual Yukawa terms

$$\mathcal{L}_{Y_{SM}} = -\bar{q}_0 L_i \tilde{\Phi} Y^i_{u} j u^j_0 R - \bar{q}_0 L_i \Phi Y^i_{d} j d^j_0 R + h.c.$$ \hspace{1cm} (1)

for an up vector-like quark, we have additional terms:

$$\mathcal{L}_T = -\bar{q}_0 L_i \tilde{\Phi} Y^i_{T} T^j_0 R - \bar{T}^0 L_i \mu T^j_1 u^j_0 R - M_0 T^j_0 L^j_0 R + h.c.$$ \hspace{1cm} (2)

After diagonalization of the up and down mass matrices, the 3×3 mixing matrix connecting u, c, t and d, s, b quarks is no longer unitary, but a submatrix of a larger 4×4 unitary matrix U. The charged and neutral current interactions have the form

$$\mathcal{L}_W = -\frac{g}{\sqrt{2}} \bar{u}_L \gamma^\mu V d^\mu W + h.c.,$$ \hspace{1cm} (3)

$$\mathcal{L}_Z = -\frac{g}{2 \cos \theta_W} \left[\bar{u}_L \gamma^\mu \left(V V^\dagger \right) u_L - \bar{d}_L \gamma^\mu d_L - 2 \sin^2 \theta_W J^\mu_{em} \right] Z_\mu,$$

where $d \equiv (d, s, b)$, $u \equiv (u, c, t, T)$ and V is a 4×3 submatrix of the matrix U:

$$U = \begin{pmatrix}
V_{u_d} & V_{u_s} & V_{u_b} & U_{u_4} \\
V_{c_d} & V_{c_s} & V_{c_b} & U_{c_4} \\
V_{t_d} & V_{t_s} & V_{t_b} & U_{t_4} \\
V_{T_d} & V_{T_s} & V_{T_b} & U_{T_4}
\end{pmatrix}.$$ \hspace{1cm} (5)

1 Subindex 0 labels weak eigenstates, indices i and j run over the three usual generations.
The submatrix \(V_{(3 \times 3)} \), i.e. the upper left 3 \(\times \) 3 block within \(U \), is not a unitary matrix, since
\[
V_{(3 \times 3)} V_{(3 \times 3)}^\dagger \neq 1_{(3 \times 3)}.
\]
These deviations of unitarity of the “would-be standard” mixing matrix lead to flavour changing neutral currents (FCNC) which are only present in the up sector and controlled by
\[
(V V^\dagger)_{ij} = \delta_{ij} - U_{i4} U_{j4}^*.
\]
(6)

The addition of one isosinglet vector-like up quark provides:
- A new mass eigenstate in the up sector which can give new contributions to amplitudes involving virtual up quarks, as in neutral meson mixings and decays.
- A mixing matrix \(V \) which is not 3 \(\times \) 3 unitary anymore, allowing for deviations of the mixing elements \(V_{ij} \) from SM values.
- Modified couplings to the \(Z \) boson in the up sector, including tree level flavour changing couplings, and reduced flavour conserving ones.

2. Experimental constraints
To reflect the abundant experimental information that constrains modifications of the flavour sector such as the ones introduced in the present scenario, we have considered the following observables.
- Tree level observables, whose extraction from experiment is presumably unaffected by New Physics (NP) effects. These observables include moduli of the CKM elements in the first and second rows. For the third row the only relevant measurement, from single top production, concerns \(V_{tb} \). The physical phase \(\gamma \) is also obtained from tree level information. The input values for the analysis are collected in table 1.

\(V_{ud} \)	0.97425 ± 0.00022
\(V_{cd} \)	0.230 ± 0.011
\(V_{tb} \)	0.00375 ± 0.00046
\(V_{ub} \)	0.00375 ± 0.00027
\(\gamma \)	(73.2 ± 7.0)°

Table 1. Tree level observables [4][6].

- Concerning \(B_d^0 - \bar{B}_d^0 \) and \(B_s^0 - \bar{B}_s^0 \) mixings: we consider time-dependent CP asymmetries \(A_{J/\Psi K_S} \) and \(A_{J/\Psi \Phi} \) (the “golden” channel in each system), mass and width differences \(\Delta M_{B_d}, \Delta \Gamma_d, \) and \(\Delta M_{B_s}, \Delta \Gamma_s \), additional CP asymmetries involving different combinations of invariant phases, \(\sin(2\bar{\alpha}), \sin(2\beta + \gamma) \), the individual semileptonic asymmetries \(A_{SL}^d, A_{SL}^s \) and the same charge dimuon asymmetry \(A_{SL}^b \). Input values are collected in table 2.
- Representative rare decays of \(B \) mesons (table 3).
- Observables from the kaon sector: rare decays and CP violation in the mixing of neutral kaons (table 4).
- Electroweak precision observables: the oblique parameters \(S \) and \(T \) (the role of \(U \) is negligible):

\[
\Delta S = 0.02 \pm 0.11, \quad \Delta T = 0.05 \pm 0.12, \quad \text{with a correlation 0.879.}
\]

They are naturally suppressed by ratios \(m^2 / m_T^2 \), where \(m \) denotes generically the standard quark masses [1]. This natural suppression of FCNC is crucial in order to make the model plausible.
Deviations from the SM values can be significant in

\[|\Delta \beta|, |\Delta \gamma| \text{ and } |\Delta \delta| \text{ are also present, we are not requiring that the short distance ones fully account for the observed } x_D = (0.8 \pm 0.2) \times 10^{-2}. \]

3. Results

In the following I present a number of selected results from a full numerical exploration of the available parameter space of the model with an up vector-like quark. In figure 1 the physical phases \(\beta \) and \(\beta_s \) of the CKM matrix are shown together with selected moduli of mixing elements. Deviations from the SM values can be significant in \(\beta_s \) and \(|V_{ub}| \). Figure 1 shows that despite the tight and abundant experimental information, there is still room for deviations from the SM picture with a 3 \times 3 unitary CKM matrix, and thus New Physics effects could be expected in some observables.

In figure 2 additional information on the deviation with respect to the 3 \times 3 unitary mixing is presented: mixing elements controlling the couplings of the new quark \(T \) are shown in subfigures 2(a), 2(b) and 2(c). Since \(|V_{Tb}| \) is typically constrained to be 10-20 times smaller than \(|V_{ub}| \), \(B \) physics flavour constraints dominated in the SM by top quark contributions can be satisfied even for values of \(|V_{Td}| \) and \(|V_{Ts}| \) as large as the ones shown, especially when compared to the values allowed for \(|V_{td}| \) and \(|V_{ts}| \). Subfigures 2(d) and 2(e) show the deviations from unitarity of the \(u \) and \(c \) rows,

\[\Delta_u = 1 - |V_{ud}|^2 - |V_{us}|^2 - |V_{ub}|^2, \quad \Delta_c = 1 - |V_{cd}|^2 - |V_{cs}|^2 - |V_{cb}|^2. \]
Figure 1. $\Delta \chi^2$ profiles of selected phases and moduli in the CKM matrix: solid line (blue) for the VL scenario, dashed line (red) for the SM.

Figure 2. $\Delta \chi^2$ profiles of mixings beyond 3×3 unitarity and deviations in the u and c rows.

While figures 1 and 2 show the possibility to accommodate deviations from the SM in the mixing matrix, figure 3 focuses then on what can be obtained for different observables.

- Figure 3(a) illustrates how a significant enhancement of the same charge dimuon asymmetry $A^{SL}_{S L}$ can be obtained in this scenario; nevertheless, values at the -5×10^{-3} level, as required by the D0 measurements, cannot be obtained just from the 3×3 unitarity deviations [9].
• Figure 3(b) shows that deviations from the SM expectation \(A_{J/ΨΦ} \sim 0.04 \) can be introduced at the level of uncertainty of the current LHCb measurement.

• Figures 3(c) and 3(d) illustrate how loop induced rare decays can be either enhanced or suppressed, with respect to SM expectations, at levels which could be probed in future experiments.

• Tree level flavour changing couplings of up-type quarks and the \(Z \), shown in eq. (4) and (6), allow decays highly suppressed in the SM such as \(t → cZ \) or \(t → uZ \). According to figure 3(e), the addition of an up vector-like quark allows branching ratios that could reach the \(10^{-5} – 10^{-4} \) level, that could be explored at the LHC.

![Figure 3. \(Δχ^2 \) profiles of selected observables: solid line (blue) for the VL scenario, dashed line (red) for the SM.](image)

Figures 1, 2 and 3 display different \(Δχ^2 \) profiles of individual quantities. Beyond individual quantities, one can exploit correlations among different quantities to characterize the pattern of potential SM deviations associated to this New Physics scenario. Figures 4 to 7 show different joint \(Δχ^2 \) regions.

In terms of deviations from a \(3 × 3 \) unitary matrix, \(|V_{ts}| \) and \(|V_{td}| \) in figure 4(a) are typically expected to be reduced with respect to SM values. Their counterparts for the new quark \(T \) couplings, \(|V_{Ts}| \) and \(|V_{Td}| \), are shown in fig. 4(b) although, as anticipated in figs. 2(a) and 2(b), they can reach sizable values, it is now clear that such values cannot be obtained for both simultaneously.

Concerning the same charge dimuon asymmetry \(A_{S_{SL}}^b \), fig. 3(a) establishes that the scenario under study cannot produce values in agreement with the D0 measurement. Figure 5 shows in addition that the partial enhancement in \(A_{S_{SL}}^b \) can only be obtained if \(|V_{ub}| \) does also deviate to larger-than-standard values.

For loop induced rare decays, figure 6 displays to contrasting cases. According to 6(a), although both \(Br(B_d → μ^+μ^-) \) and \(Br(B_d → μ^+μ^-) \) can deviate from SM expectations, it may be hard to disentangle those deviations from a SM value. For rare kaon decays, figure 6(b) shows
two connected branches: $K_L \rightarrow \pi^0 \nu \bar{\nu}$ can only be enhanced if the charged mode $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ is also enhanced. There is also room for the model to keep at SM level or below the neutral mode while the charged mode can be increased up to 2-3 times the SM value.

For decays induced by the Z flavour changing tree couplings, $t \rightarrow cZ$ and $t \rightarrow uZ$, figure 7 shows them in association with the mass m_T of the new quark T. Although the branching ratios of those rare decays can reach values within reach of the LHC, it is clear that this also requires light values of the mass m_T. This aspect illustrates the power of detailed analyses: even though the $t \rightarrow qZ$ branching ratios do not depend on the value of m_T, full use of the available experimental information can establish such correlations.
4. Conclusions
An overview of a detailed analysis of flavour data in the context of a simple extension of the Standard Model, that includes an additional $Q = 2/3$ vector-like isosinglet quark is presented. Experimental constraints from all the relevant quark flavour sectors are imposed and yet deviations from Standard Model expectations can be accommodated. This is illustrated through different individual observables and the power of correlations to characterize the New Physics scenario under study.

Figure 6. $\Delta \chi^2$ profiles, 68%, 95% and 99% CL regions are shown: blue regions for the VL scenario, red regions for the SM.

Figure 7. $\Delta \chi^2$ profiles, 68%, 95% and 99% CL regions are shown: blue regions for the VL scenario, red regions for the SM.
Acknowledgments
This work was partially supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the projects CFTP-FCT Unit 777 and CERN/FP/123580/2011. The author is very grateful for the hospitality and organization of Discrete 2014.

References
[1] Langacker P and London D 1988 Phys.Rev. D38 886; del Aguila F and Bowick M 1983 Nucl.Phys. B224 107; del Aguila F, Laermann E and Zerwas P 1988 Nucl.Phys. B297 1; Cheng T and Li L F 1992 Phys.Rev. D45 1708–1710.
[2] del Aguila F and Cortes J 1985 Phys.Lett. B156 243; del Aguila F, Chase M and Cortes J 1986 Nucl.Phys. B271 61; Branco G and Lavoura L 1986 Nucl.Phys. B278 738; Buchmuller W and Gronau M 1989 Phys.Lett. B220 641; Nir Y and Silverman D J 1990 Phys.Rev. D42 1477–1484; Nardi E, Roulet E and Tommasini D 1992 Nucl.Phys. B386 239–266; Silverman D 1992 Phys.Rev. D45 1800–1803; Branco G, Parada P, Morozumi T and Rebelo M 1993 Phys.Lett. B306 398–402; Branco G, Morozumi T, Parada P and Rebelo M 1993 Phys.Rev. D48 1167–1175; Branco G, Parada P and Rebelo M 1995 Phys.Rev. D52 4217–4222 (Preprint hep-ph/9501347); Barger V, Berger M and Phillips R 1995 Phys.Rev. D52 1663–1683 (Preprint hep-ph/9503204); del Aguila F, Aguilar-Saavedra J and Branco G 1998 Nucl.Phys. B510 39–60 (Preprint hep-ph/9703410); Barenboim G and Botella F 1998 Phys.Lett. B433 385–395 (Preprint hep-ph/9708209); Barenboim G, Botella F, Branco G and Vives O 1998 Phys.Lett. B422 277–286 (Preprint hep-ph/9708369); Kakebe I and Yamamoto K 1998 Phys.Lett. B416 184–191 (Preprint hep-ph/9705203); Barenboim G, Botella F and Vives O 2001 Phys.Rev. D64 015007 (Preprint hep-ph/0012197); Higuchi K and Yamamoto K 2000 Phys.Rev. D62 073005 (Preprint hep-ph/0004065); Barenboim G, Botella F and Vives O 2001 Nucl.Phys. B613 285–305 (Preprint hep-ph/0105366); Aguilar-Saavedra J 2003 Phys.Rev. D67 035004 (Preprint hep-ph/0301121); Aguilar-Saavedra J, Botella F, Branco G and Nebot M 2005 Nucl.Phys. B706 204–220 (Preprint hep-ph/0406151); Botella F J, Branco G C and Nebot M 2009 Phys.Rev. D79 096009 (Preprint 0805.3995); Higuchi K and Yamamoto K 2010 Phys.Rev. D81 015009 (Preprint 0911.1175); Frampton P H, Hung P and Sher M 2000 Phys.Rept. 330 263 (Preprint hep-ph/9903387).
[3] Botella F, Branco G and Nebot M 2012 JHEP 1212 040 (Preprint 1207.4440).
[4] Beringer J and others (Particle Data Group) (Particle Data Group) 2012 Phys.Rev. D86 010001.
[5] Amhis Y and others (Heavy Flavor Averaging Group) (Heavy Flavor Averaging Group) 2012 (Preprint 1207.1158).
[6] Aubert B and others (BABAR Collaboration) (BaBar Collaboration) 2007 Phys.Rev.Lett. 99 251801 (Preprint hep-ex/0703037); Poluektov A and others (Belle Collaboration) (Belle Collaboration) 2010 Phys.Rev. D81 112002 (Preprint 1003.3360); Ikado K and others (Belle Collaboration) (Belle Collaboration) 2006 Phys.Rev.Lett. 97 251802 (Preprint hep-ex/0604018); Haru K and others (Belle Collaboration) (Belle collaboration) 2010 Phys.Rev. D82 071101 (Preprint 1006.4201); Aubert B and others (BABAR Collaboration) (BABAR Collaboration) 2008 Phys.Rev. D77 011107 (Preprint 0708.2260); Lees J and others (BABAR Collaboration) (BABAR Collaboration) 2012 (Preprint 1207.6989).
[7] Aaij R and others (LHCb Collaboration) (LHCb Collaboration) 2012 Phys.Rev.Lett. 108 101803 (Preprint 1112.3183); Aaij R and others (LHCb Collaboration) (LHCb Collaboration) 2012 Phys.Lett. B707 497–505 (Preprint 1112.3056); Aubert B and others (BABAR Collaboration) (BABAR Collaboration) 2009 Phys.Rev. D79 072009 (Preprint 0902.1708); Adachi I, Aihara H, Asner D, Aulchenko V, Asgeir T and others (Belle Collaboration) (Belle Collaboration) 2012 Phys.Rev.Lett. 108 171802 (Preprint 1201.4643); Aad G and others (ATLAS Collaboration) (ATLAS Collaboration) 2012 Phys. Lett. B713 387 (Preprint 1204.0735).
[8] Chatrchyan S and others (CMS Collaboration) (CMS Collaboration) 2011 Phys.Rev.Lett. 107 191802 (Preprint 1107.5834); Chatrchyan S and others (CMS Collaboration) (CMS Collaboration) 2012 JHEP 1204 033 (Preprint 1203.3976); Aaij R and others (LHCb Collaboration) (LHCb Collaboration) 2012 Phys.Rev. Lett. 108 231801 (Preprint 1203.4493); Aaij R and others (LHCb Collaboration) (LHCb Collaboration) 2012 Phys.Lett. B708 55–67 (Preprint 1112.1600).
[9] F. J. Botella, G. C. Branco, M. Nebot and A. Sánchez, Phys. Rev. D91 (2015) 3, 035013 (Preprint 1402.1181).
[10] Alavi-Harati A and others (KTeV Collaboration) (KTeV Collaboration) 1999 Phys.Rev.Lett. 83 22–27 (Preprint hep-ex/9905060); Ambrose D and others (E871 Collaboration) (E871 Collaboration) 2000 Phys.Rev.Lett. 84 1389–1392; Ahn J and others (E391a Collaboration) (E391a Collaboration) 2008 Phys.Rev.Lett. 100 201802 (Preprint 0712.4164); Artamonov A and others (E949 Collaboration) (Preprint hep-ph/0602197).
(E949 Collaboration) 2008 Phys.Rev.Lett. 101 191802 (Preprint 0808.2459). Abouzaid E and others (KTeV Collaboration) (KTeV Collaboration) 2011 Phys.Rev. D83 092001 (Preprint 1011.0127).

[11] Cirigliano V, Ecker G, Neufeld H, Pich A and Portoles J 2012 Rev.Mod.Phys. 84 399 (Preprint 1107.6001)