FLOATING BODY, ILLUMINATION BODY,
AND POLYTOPAL APPROXIMATION

CARSTEN SCHÜTT

Abstract. Let K be a convex body in \mathbb{R}^d and K_t its floating bodies. There is a polytope with at most n vertices that satisfies

$$K_t \subset P_n \subset K$$

where

$$n \leq e^{16d \frac{\text{vol}_d(K \setminus K_t)}{t \text{vol}_d(B_{2}^d)}}$$

Let K^t be the illumination bodies of K and Q_n a polytope that contains K and has at most n $d-1$-dimensional faces. Then

$$\text{vol}_d(K^t \setminus K) \leq cd^4 \text{vol}_d(Q_n \setminus K)$$

where

$$n \leq \frac{c}{dt} \text{vol}_d(K^t \setminus K)$$

1991 Mathematics Subject Classification. 52A22.

This paper was written while the author was visiting the MSRI at Berkeley in the spring of 1996.
1. Introduction

We investigate the approximation of a convex body K in \mathbb{R}^d by a polytope. We measure the approximation by the symmetric difference metric. The symmetric difference metric between two convex bodies K and C is

$$d_S(C, K) = \text{vol}_d((C \setminus K) \cup (K \setminus C))$$

We study in particular two questions: How well can a convex body K be approximated by a polytope P_n that is contained in K and has at most n vertices and how well can K be approximated by a polytope Q_n that contains K and has at most n $d-1$-dimensional faces. Macbeath [Mac] showed that the Euclidean Ball B_d^2 is an extremal case: The approximation for any other convex body is better. We have for the Euclidean ball

$$c_1 d^{d-1} \text{vol}_d(B_d^2)n^{-\frac{d-1}{2}} \leq d_S(P_n, B_d^2) \leq c_2 d^{d-1} \text{vol}_d(B_d^2)n^{-\frac{d-1}{2}}$$

provided that $n \geq (c_3 d^{d-1})^{-2}$. The right hand inequality was first established by Bronshtein and Ivanov [BI] and Dudley [D1,D2]. Gordon, Meyer, and Reisner [GMR1,GMR2] gave a constructive proof for the same inequality. Müller [Mü] showed that random approximation gives the same estimate. Gordon, Reisner, and Schütt [GRS] established the left hand inequality. Gruber [Gr2] obtained an asymptotic formula. If a convex body K in \mathbb{R}^d has a C^2-boundary with everywhere positive curvature, then

$$\inf\{d_S(K, P_n) \mid P_n \subset K \text{ and } P_n \text{ has at most } n \text{ vertices}\}$$

is asymptotically the same as

$$\frac{1}{2}\text{del}_{d-1}\left(\int_{\partial K} \kappa(x) \frac{1}{\pi} d\mu(x)\right)^{\frac{d+1}{d}} \left(\frac{1}{n}\right)^{-\frac{d-1}{2}}$$

where del_{d-1} is a constant that is connected with Delone triangulations. In this paper we are not concerned with asymptotic estimates, but with uniform.

Int(M) denotes the interior of a set M. $H(x, \xi)$ denotes the hyperplane that contains x and is orthogonal to ξ. $H^+(x, \xi)$ denotes the halfspace that contains the vector $x - \xi$, and $H^-(x, \xi)$ the halfspace containing $x + \xi$. $e_i, i = 1, \ldots, d$ denotes the unit vector basis in \mathbb{R}^d. $[A, B]$ is the convex hull of the sets A and B. The convex floating body K_t of a convex body K is the intersection of all halfspaces whose defining hyperplanes cut off a set of volume t from K.

The illumination body K^t of a convex body K is [W]

$$\{x \in \mathbb{R}^d \mid \text{vol}_d([x, K] \setminus K) \leq t\}$$

K^t is a convex body. It is enough to show this for polytopes. Let F_i denote the faces of a polytope P, ξ_i the outer normal and x_i an element of F_i. Then we have

$$\text{vol}_d([x, P] \setminus P) = \frac{1}{d} \sum_{i=1}^n \max\{0, <\xi_i, x - x_i>\} \text{vol}_{d-1}(F_i)$$

The right hand side is a convex function.
2. The Floating Body

Theorem 2.1. Let K be a convex body in \mathbb{R}^d. Then we have for every t, $0 \leq t \leq \frac{1}{4} e^{-4} \text{vol}_d(K)$, that there are $n \in \mathbb{N}$ with

$$n \leq e^{16d} \frac{\text{vol}_d(K \setminus K_t)}{t \text{vol}_d(B^d_2)}$$

and a polytope P_n that has n vertices and such that

$$K_t \subset P_n \subset K$$

We want to see what kind of asymptotic estimate we get for bodies with smooth boundary from Theorem 1. We have [SW]

$$\text{vol}_d(K \setminus K_t) \sim \frac{d + 1}{2} \left(\frac{1}{\text{vol}_{d-1}(B^d_2)} \right)^{\frac{d^2}{d+1}} \int_{\partial K} \kappa(x)^{\frac{d}{d+1}} d\mu(x)$$

$$\sim t^{\frac{d}{d+1}} d \int_{\partial K} \kappa(x)^{\frac{d}{d+1}} d\mu(x)$$

Since

$$n \sim d^{\frac{d}{t}} \frac{1}{t} \text{vol}_d(K \setminus K_t)$$

we get

$$\text{vol}_d(K \setminus K_t) \sim d \left(\frac{d + 1}{n} \text{vol}_d(K \setminus K_t) \right)^{\frac{d^2}{d+1}} \int_{\partial K} \kappa(x)^{\frac{d}{d+1}} d\mu(x)$$

$$\text{vol}_d(K \setminus K_t)^{\frac{d}{d+1}} \sim d^2 n^{-\frac{d}{d+1}} \int_{\partial K} \kappa(x)^{\frac{d}{d+1}} d\mu(x)$$

Thus we get

$$\text{vol}_d(K \setminus P_n) \leq \text{vol}_d(K \setminus K_t) \sim d^2 n^{-\frac{d}{d+1}} \left(\int_{\partial K} \kappa(x)^{\frac{d}{d+1}} d\mu(x) \right)^{\frac{d^2}{d+1}}$$

In case that K is the Euclidean ball we get

$$\text{vol}_d(B^d_2 \setminus P_n) \leq c d^2 n^{-\frac{d^2}{d+1}} \text{vol}_d(B^d_2)$$

where c is an absolute constant. If one compares this to the optimal result (1.1) one sees that there is an additional factor d.

The volume difference $\text{vol}_d(P) - \text{vol}_d(P_t)$ for a polytope P is of a much smaller order than for a convex body with smooth boundary. In fact, we have [S] that it is of the order $t |\ln t|^{d-1}$. In [S] this has been used to get estimates for approximation of convex bodies by polytopes.

The same result as in Theorem 2.1 holds if we fix the number of $(d-1)$-dimensional faces instead of the number of vertices. This follows from the economic cap covering for floating bodies [BL, Theorem 6]. The constants are not as good as in Theorem 2.1.

The following lemmata are not new. They have usually been formulated for symmetric, convex bodies [B,H,MP].
Lemma 2.2. Let K be a convex body in \mathbb{R}^d and let $H(cg(K), \xi)$ be the hyperplane passing through the center of gravity $cg(K)$ of K and being orthogonal to ξ. Then we have for all $\xi \in \partial B^d_2$

(i)

$$(1 - \frac{1}{d+1})^d \text{vol}_d(K) \leq \text{vol}_d(K \cap H^+(cg(K), \xi)) \leq (1 - \frac{1}{d+1})^d \text{vol}_d(K)$$

(ii) for all hyperplanes H in \mathbb{R}^d that are parallel to $H(cg(K), \xi)$

$$(1 - \frac{1}{d+1})^{d-1} \text{vol}_{d-1}(K \cap H) \leq \text{vol}_{d-1}(K \cap H(cg(K), \xi))$$

The sequence $(1 - \frac{1}{d+1})^d$, $d = 2, 3, \ldots$ is monotonely decreasing. Indeed, by Bernoulli’s inequality we have $1 - \frac{1}{d} \leq (1 - \frac{1}{d+1})^d$, or $\frac{d}{d+1} \leq \frac{d}{d+1} \frac{d}{d+1}$. Therefore we get $(\frac{d}{d+1})^d \leq (\frac{d}{d+1})^{d-1}$, which implies $(1 - \frac{1}{d+1})^d \leq (1 - \frac{1}{d})^{d-1}$.

Therefore we get for the inequalities (i)

$$(2.1) \quad \frac{1}{e} \text{vol}_d(K) \leq \text{vol}_d(K \cap H^+(cg(K), \xi)) \leq (1 - \frac{1}{e}) \text{vol}_d(K)$$

By the above $(1 + \frac{1}{d})^d$ is a monotonely increasing sequence. Thus we get $(1 + \frac{1}{d})^d < e$. For (ii) we get

$$(2.2) \quad \text{vol}_{d-1}(K \cap H) \leq e \text{vol}_{d-1}(K \cap H(cg(K), \xi))$$

Proof. (i) We can reduce the inequality to the case that K is a cone with a Euclidean ball of dimension $d - 1$ as base. To see this we perform a Schwarz symmetrization parallel to $H(cg(K), \xi)$ and denote the symmetrized body by $S(K)$. The Schwarz symmetrization replaces a section parallel to $H(cg(K), \xi)$ by a $d - 1$-dimensional Euclidean sphere of the same $d - 1$-dimensional volume. This does not change the volume of K and $K \cap H^+(cg(K), \xi)$ and the center of gravity $cg(K)$ is still an element of $H(cg(K), \xi)$. Now we consider the cone

$$[z, S(K) \cap H(cg(K), \xi)]$$

such that

$$\text{vol}_d([z, S(K) \cap H(cg(K), \xi)]) = \text{vol}_d(K \cap H^-(cg(K), \xi))$$

and such that z is an element of the axis of symmetry of $S(K)$ and of $H^-(cg(K), \xi)$. See figure 2.1.

$$\tilde{K} = (K \cap H^+(cg(K), \xi)) \cup [z, S(K) \cap H(cg(K), \xi)]$$

is a convex set such that $\text{vol}_d(K) = \text{vol}_d(\tilde{K})$ and such that the center of gravity $cg(\tilde{K})$ of \tilde{K} is contained in $[z, S(K) \cap H(cg(K), \xi)]$. Thus

$$\text{vol}_d(\tilde{K} \cap H^+(cg(\tilde{K}), \xi)) > \text{vol}_d(\tilde{K} \cap H^+(cg(K), \xi)) = \text{vol}_d(K \cap H^+(cg(K), \xi))$$
We apply a similar argument to the set $S(K) \cap H^+(cg(K), \xi)$ and show that we may assume that $S(K)$ is a cone with z as its vertex. Thus we may assume that

$$K = [(0, \ldots, 0, 1), \{(x_1, \ldots, x_{d-1}, 0) | \sum_{i=1}^{d-1} |x_i|^2 \leq 1\}] \text{ and } \xi = (0, \ldots, 0, 1)$$

Then

$$\text{vol}_d(K) = \frac{1}{d} \text{vol}_{d-1}(B_2^{d-1})$$

and

$$\frac{1}{\text{vol}_d(K)} \int_K x_d dx_d = d \int_0^1 t(1 - t)^{d-1} dt = d \int_0^1 (1 - s)^{d-1} ds = \frac{1}{d+1}$$

We obtain that

$$\text{vol}_d(K \cap H^-(cg(K), (0, \ldots, 0, 1)) = (1 - \frac{1}{d+1})^d \text{vol}_d(K)$$

(ii) Let H be a hyperplane that is parallel to $H(cg(K), \xi)$ and such that $\text{vol}_{d-1}(K \cap H) > \text{vol}_{d-1}(K \cap H(cg(K), \xi))$. Otherwise there is nothing to prove. We apply a Schwarz symmetrization parallel to $H(cg(K), \xi)$ to K. The symmetrized body is denoted by $S(K)$. Let z be the element of the axis of symmetry of $S(K)$ such that

$$[z, S(K) \cap H] \cap H(cg(K), \xi) = S(K) \cap H(cg(K), \xi)$$

Since $\text{vol}_{d-1}(K \cap H) > \text{vol}_{d-1}(K \cap H(cg(K), \xi))$ there is such a z. We may assume that $H^+(cg(K), \xi)$ is the half space containing z. Then we have

$$[z, S(K) \cap H] \cap H^-(cg(K), \xi) \subset S(K) \cap H^-(cg(K), \xi)$$

$$[z, S(K) \cap H] \cap H^+(cg(K), \xi) \supset S(K) \cap H^+(cg(K), \xi)$$

Therefore we have that

$$cg([z, S(K) \cap H]) \in H^+(cg(K), \xi)$$

Therefore, if h_{cg} denotes the distance of z to $H(cg(K), \xi)$ and h the distance of z to H, we get as in the proof of (i) that

$$h_{cg} \geq h(1 - \frac{1}{d+1})$$

Thus we get

$$\text{vol}_{d-1}(K \cap H(cg(K), \xi)) = \text{vol}_{d-1}(S(K) \cap H(cg(K), \xi)) \geq (1 - \frac{1}{d+1})^{d-1} \text{vol}_{d-1}(K \cap H)$$

\square
Lemma 2.3. Let \(K \) be a convex body in \(\mathbb{R}^d \) and let \(\Theta(\xi) \) be the infimum of all numbers \(t \), \(0 < t \), such that

\[
\text{vol}_{d-1}(K \cap H(\text{cg}(K), \xi)) \geq e \text{vol}_{d-1}(K \cap H(\text{cg}(K) + t\xi, \xi))
\]

Then we have

\[
\frac{1}{2e^3} \text{vol}_d(K) \leq \Theta(\xi) \text{vol}_{d-1}(K \cap H(\text{cg}(K), \xi)) \leq e \text{vol}_d(K)
\]

Proof. The right hand inequality follows from Fubini’s theorem and Brunn-Minkowski’s theorem. Now we verify the left hand inequality. We consider first the case that we have for \(t \), \(t > \Theta(\xi) \),

\[
K \cap H(\text{cg}(K) + t\xi, \xi) = \emptyset
\]

Then we have by (2.1) and (2.2)

\[
\frac{1}{e^3} \text{vol}_d(K) \leq \text{vol}_d(K \cap H^+(\text{cg}(K), \xi))
\]

\[
= \int_0^\Theta(\xi) \text{vol}_{d-1}(K \cap H(\text{cg}(K) + t\xi, \xi)) dt \leq e \Theta(\xi) \text{vol}_{d-1}(H(\text{cg}(K), \xi))
\]

If for some \(t \), \(t > \Theta(\xi) \), we have \(K \cap H(\text{cg}(K) + t\xi, \xi) \neq \emptyset \) then we have

\[
\text{vol}_{d-1}(K \cap H(\text{cg}(K), \xi)) = e \text{vol}_{d-1}(K \cap H(\text{cg}(K) + \Theta(\xi)\xi, \xi))
\]

We perform a Schwarz symmetrization parallel to \(H(\text{cg}(K), \xi) \). We consider the cone

\[
[z, S(K) \cap H(\text{cg}(K), \xi)]
\]

such that \(z \) is an element of the axis of symmetry of \(S(K) \) and such that

\[
[z, S(K) \cap H(\text{cg}(K), \xi)] \cap H(\text{cg}(K) + \Theta(\xi)\xi, \xi) = S(K) \cap H(\text{cg}(K) + \Theta(\xi)\xi, \xi)
\]

Let \(H^+(\text{cg}(K), \xi) \) and \(H^+(\text{cg}(K) + \Theta(\xi)\xi, \xi) \) be the half spaces that contain \(z \). Then we get by convexity

\[
[z, S(K) \cap H(\text{cg}(K), \xi)] \cap H^+(\text{cg}(K) + \Theta(\xi)\xi, \xi) \supset S(K) \cap H^+(\text{cg}(K) + \Theta(\xi)\xi, \xi)
\]

(2.3)

We get by (2.1)

\[
\frac{1}{e^3} \text{vol}_d(K) \leq \text{vol}_d(K \cap H^+(\text{cg}(K), \xi)) =
\]
By the hypothesis of the lemma we have for all \(s \) with \(0 \leq s \leq \Theta(\xi) \)

\[
vol_{d-1}(K \cap H(cg(K), \xi)) \leq e \ vol_{d-1}(K \cap H(cg(K) + s\xi, \xi))
\]

Using this and (2.2) we estimate the first summand. The second summand is estimated by using (2.3). Thus the above expression is not greater than

\[
e^2 \ vol_d([z, S(K) \cap H(cg(K), \xi)] \cap H^-(cg(K) + \Theta(\xi)\xi, \xi)) + \\
vol_d([z, S(K) \cap H(cg(K), \xi)] \cap H^+(cg(K) + \Theta(\xi)\xi, \xi))
\]

By an elementary computation for the volume of a cone we get that the latter expression is smaller than

\[
2e^2 vol_d([z, S(K) \cap H(cg(K), \xi)] \cap H^-(cg(K) + \Theta(\xi)\xi, \xi))
\]

We use (2.2) again and get that the above expression is smaller than

\[
2e^3 \Theta(\xi) vol_{d-1}(K \cap H(cg(K), \xi))
\]

\(\square \)

Lemma 2.4. Let \(K \) be a convex body in \(\mathbb{R}^d \). Then there is a linear transform \(T \) with \(\det(T) = 1 \) so that we have for all \(\xi \in \partial B^d_2 \)

\[
\int_{T(K)} | < x, \xi > |^2 dx = \frac{1}{d} \int_{T(K)} \sum_{i=1}^d | < x, e_i > |^2 dx
\]

We say that a convex body is in an isotropic position if the linear transform \(T \) in Lemma 2.4 can be chosen to be the identity. See [B, H].

Proof. We claim that there is a orthogonal transform \(U \) such that we have for all \(i, j = 1, \ldots, d \) with \(i \neq j \),

\[
\int_{U(K)} < x, e_i > < x, e_j > dx = 0
\]

Clearly, the matrix

\[
(\int_K < x, e_i > < x, e_j > dx)_{i,j=1}^d
\]

is symmetric. Therefore there is an orthogonal \(d \times d \)-matrix \(U \) so that

\[
U(\int_K < x, e_i > < x, e_j > dx)_{i,j=1}^d U^t
\]
is a diagonal matrix. We have

\[U \left(\int_K \langle x, e_i \rangle \langle x, e_j \rangle \, dx \right)_{i,j=1}^d U^t = \left(\int_K \sum_{i,j=1}^d u_{i,i} \langle x, e_i \rangle \langle x, e_j \rangle \, dx \right)_{i,k=1}^d \]

\[= \left(\int_K \langle x, U^t(\langle x, U^t(\langle x, u_{k,k} \rangle \rangle d)_{i,k=1}^d = \left(\int_{U(K)} \langle y, e_i \rangle \langle y, e_j \rangle \, dy \right)_{i,i=1}^d \]

So the latter matrix is a diagonal matrix. All the diagonal elements are strictly positive. This argument is repeated with a diagonal matrix so that the diagonal elements turn out to be equal. Therefore there is a matrix \(T \) with \(\det T = 1 \) such that

\[\int_{T(K)} \langle x, e_i \rangle \langle x, e_j \rangle \, dx = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j \\ \frac{1}{d} \int_{T(K)} \sum_{j=1}^d |\langle x, e_j \rangle|^2 \, dx & \text{if } i = j \end{array} \right. \]

From this the lemma follows.

\[\square \]

Lemma 2.5. Let \(K \) be a convex body in \(\mathbb{R}^d \) that is in an isotropic position and whose center of gravity is at the origin. Then we have for all \(\xi \in \partial B_2^d \)

\[\frac{1}{24 e^{10}} \ vol_d(K)^3 \leq \ vol_{d-1}(K \cap H(\text{cg}(K), \xi)) \leq \frac{1}{6} e^3 \ vol_d(K)^3 \]

Proof. By Lemma 2.4 we have for all \(\xi \in \partial B_2^d \)

\[\frac{1}{d} \int_K \sum_{i=1}^d |\langle x, e_i \rangle|^2 \, dx = \int_K |\langle x, \xi \rangle|^2 \, dx \]

By Fubini’s theorem we get that this equals

\[\int_{-\infty}^{\infty} t^2 \ vol_{d-1}(K \cap H(t\xi, \xi)) \, dt \geq \int_0^{\Theta(\xi)} t^2 \ vol_{d-1}(K \cap H(t\xi, \xi)) \, dt \]

where \(\Theta(\xi) \) is as defined in Lemma 2.3. By the definition of \(\Theta(\xi) \) the above expression is greater than

\[\frac{1}{e} \ vol_{d-1}(K \cap H(\text{cg}(K), \xi)) \int_0^{\Theta(\xi)} t^2 \, dt \geq \frac{1}{3e} \Theta(\xi)^3 \ vol_{d-1}(K \cap H(\text{cg}(K), \xi)) \]

By Lemma 2.3 this is greater than

\[\frac{1}{24 e^{10}} \ vol_d(K)^3 \]
Now we show the right hand inequality. By Lemma 2.4 we have

\[\frac{1}{d} \int_{K} \sum_{i=1}^{d} |< x, e_i >|^2 \, dx = \int_{K} |< x, \xi >|^2 \, dx = \int_{-\infty}^{\infty} t^2 \, vol_{d-1}(K \cap H(t\xi, \xi)) \, dt = \]

\[\int_{\Theta(\xi)}^{d} t^2 \, vol_{d-1}(K \cap H(t\xi, \xi)) \, dt + \int_{\Theta(-\xi)}^{0} t^2 \, vol_{d-1}(K \cap H(t\xi, \xi)) \, dt + \]

\[\int_{\Theta(-\xi)}^{0} t^2 \, vol_{d-1}(K \cap H(t\xi, \xi)) \, dt + \int_{-\infty}^{\Theta(-\xi)} t^2 \, vol_{d-1}(K \cap H(t\xi, \xi)) \, dt \]

By (2.2) this is not greater than

\[\frac{e}{3} \Theta(\xi)^3 vol_{d-1}(K \cap H(cg(K), \xi)) + \int_{\Theta(\xi)}^{\infty} t^2 \, vol_{d-1}(K \cap H(t\xi, \xi)) \, dt + \]

\[\frac{e}{3} \Theta(-\xi)^3 vol_{d-1}(K \cap H(cg(K), \xi)) + \int_{-\infty}^{\Theta(-\xi)} t^2 \, vol_{d-1}(K \cap H(t\xi, \xi)) \, dt \]

The integrals can be estimated by

\[2 \Theta(\xi)^3 vol_{d-1}(K \cap H(cg(K), \xi)) \quad \text{and} \quad 2 \Theta(-\xi)^3 vol_{d-1}(K \cap H(cg(K), \xi)) \]

respectively. We treat here only the case \(\xi \), the case \(-\xi\) is treated in the same way. If the integral equals 0 then there is nothing to show. If the integral does not equal 0 then we have

\[vol_{d-1}(K \cap H(cg(K), \xi)) = e \, vol_{d-1}(K \cap H(cg(K) + \Theta(\xi)\xi, \xi)) \]

We consider the Schwarz symmetrization \(S(K) \) of \(K \) with respect to the plane \(H(cg(K), \xi) \). We consider the cone \(C \) that is generated by the Euclidean spheres \(S(K) \cap H(cg(K), \xi) \) and \(S(K) \cap H(cg(K) + \Theta(\xi)\xi, \xi) \). We have that

\[S(K) \cap H^+(cg(K) + \Theta(\xi)\xi, \xi) \subset C \]

and that the height of \(C \) is equals

\[\frac{\Theta(\xi)}{1 - e^{-\frac{1}{d-1}}} \]

Since \((1 + \frac{1}{d-1})^{d-1} < e \) we have \(1 - e^{-\frac{1}{d-1}} > \frac{1}{d} \). Thus the height of the cone \(C \) is less than \(d \, \Theta(\xi) \). Thus we get for all \(t \) with \(\Theta(\xi) \leq t \leq d \, \Theta(\xi) \)

\[vol_{d-1}(K \cap H(cg(K) + t\xi, \xi)) \leq (1 - \frac{t}{\Theta(\xi)})^{d-1} vol_{d-1}(K \cap H(cg(K), \xi)) \]
Now we get
\[
\int_{\Theta(\xi)}^{\infty} t^2 \, \text{vol}_{d-1}(K \cap H(t\xi, \xi)) \, dt \leq \\
\int_{\Theta(\xi)} \frac{\Theta(\xi)}{t} \, t^2 \, (1 - \frac{t}{d\Theta(\xi)})^{d-1} \text{vol}_{d-1}(K \cap H(\text{cg}(K), \xi)) \, dt \leq \\
\text{vol}_{d-1}(K \cap H(\text{cg}(K), \xi)) (d \Theta(\xi))^3 \int_{0}^{1} s^2 (1 - s)^{d-1} \, ds = \\
\text{vol}_{d-1}(K \cap H(\text{cg}(K), \xi)) (d \Theta(\xi))^3 \frac{2}{d(d+1)(d+2)} \leq \\
2 \, \text{vol}_{d-1}(K \cap H(\text{cg}(K), \xi)) \Theta(\xi)^3
\]

Therefore we get
\[
\frac{1}{d} \int_{K} \sum_{i=1}^{d} | < x, e_i > |^2 \, dx \leq \left(\frac{e}{3} + 2 \right) (\Theta(\xi)^3 + \Theta(-\xi)^3) \text{vol}_{d-1}(K \cap H(\text{cg}(K), \xi))
\]

Now we apply Lemma 2.3 and get
\[
2 \left(\frac{e}{3} + 2 \right) e^3 \frac{\text{vol}_{d}(K)^3}{\text{vol}_{d-1}(K \cap H(\text{cg}(K), \xi))^2}
\]

□

Lemma 2.6. Let K be a convex body in \mathbb{R}^d such that the origin is an element of K. Then we have
\[
\frac{1}{d} \int_{K} \sum_{i=1}^{d} | < x, e_i > |^2 \, dx \geq \frac{d^2}{d+2} \text{vol}_{d-1}(\partial B_2^d)^{-\frac{d}{2}} \text{vol}_{d}(K)^{\frac{d+2}{d}}
\]

Proof. Let $r(\xi)$ be the distance of the origin to the boundary of K in direction ξ. By passing to spherical coordinates we get
\[
\frac{1}{d} \int_{K} \sum_{i=1}^{d} | < x, e_i > |^2 \, dx = \frac{1}{d} \int_{\partial B_2^d} \int_{0}^{r(\xi)} \rho^{d+1} \, d\rho \, d\xi = \frac{1}{d(d+2)} \int_{\partial B_2^d} r(\xi)^{d+2} \, d\xi
\]

By Hölder’s inequality we get that the above expression is greater than
\[
\frac{\text{vol}_{d-1}(\partial B_2^d)}{d(d+2)} \left(\frac{1}{\text{vol}_{d-1}(\partial B_2^d)} \int_{\partial B_2^d} r(\xi)^d \, d\xi \right)^{\frac{d+2}{d}} = \frac{d^2}{d+2} \text{vol}_{d-1}(\partial B_2^d)^{-\frac{d}{2}} \text{vol}_{d}(K)^{\frac{d+2}{d}}
\]

□

The following lemma can be found in [MP]. It is formulated there for the case of symmetric convex bodies.
Lemma 2.7. Let K be a convex body in \mathbb{R}^d such that the origin coincides with the center of gravity of K and such that K is in an isotropic position. Then we have

$$B^d_2(cg(K), \frac{1}{24e^3\sqrt{\pi}} vol_d(K)^{\frac{1}{3}}) \subset K \frac{1}{4e} vol_d(K)^{\frac{1}{3}}$$

Proof. As in Lemma 2.3 let $\Theta(\xi)$ be the infimum of all numbers t such that

$$vol_{d-1}(K \cap H(cg(K), \xi)) \geq e vol_{d-1}(K \cap H(cg(K) + t\xi, \xi))$$

By Lemma 2.3 we have

$$\Theta(\xi) \geq \frac{1}{2e^3} \frac{vol_d(K)}{vol_{d-1}(K \cap H(cg(K), \xi))}$$

By Lemma 2.5 we get

$$\Theta(\xi) \geq \frac{1}{2e^3\sqrt{6e^3}} \left(\frac{1}{vol_d(K)} \frac{1}{d} \int_K \sum_{i=1}^d |<x, e_i>|^2 dx \right)^{\frac{1}{d}}$$

We have

$$vol_d(B^d_2) = \frac{\pi^{d/2}}{\Gamma(d/2 + 1)} \leq \frac{\pi^{d-1}(2e)^{d/2}}{d^{d+1}}$$

and thus

$$vol_d(B^d_2)^{\frac{1}{d}} \leq \sqrt{\frac{2\pi e}{d}}$$

Therefore we get by Lemma 2.6

$$\Theta(\xi) \geq \frac{1}{2e^3\sqrt{6e^3}} \frac{d^\frac{d}{2}}{\sqrt{d+2}} \left(\frac{vol_d(K)}{vol_{d-1}(\partial B^d_2)} \right)^{\frac{1}{d}} \geq \frac{1}{12e^5\sqrt{\pi}} vol_d(K)^{\frac{1}{d}}$$

On the other hand, we have

$$vol_d(K \cap H^-(cg(K) + \frac{\Theta(\xi)}{2} \xi, \xi)) \geq \int_0^{\Theta(\xi)} vol_{d-1}(K \cap H(cg(K) + t\xi, \xi)) dt$$

where $H^-(cg(K) + \frac{\Theta(\xi)}{2} \xi, \xi)$ is the half space not containing the origin. By the definition of $\Theta(\xi)$ this expression is greater than

$$\frac{\Theta(\xi)}{2e} vol_{d-1}(K \cap H(cg(K), \xi))$$

By Lemma 2.3 we get that this is greater than

$$\frac{1}{4e} vol_d(K)$$
Therefore, every hyperplane that has distance
\[
\frac{1}{24e^5 \sqrt{\pi}} \text{vol}_d(K)^{\frac{1}{d}}
\]
from the center of gravity cuts off a set of volume greater than \(\frac{1}{4e} \text{vol}_d(K)\).

□

Proof of Theorem 2.1. We are choosing the vertices \(x_1, \ldots, x_n \in \partial K\) of the polytope \(P_n\). \(N(x_k)\) denotes the normal to \(\partial K\) at \(x_k\). \(x_1\) is chosen arbitrarily. Having chosen \(x_1, \ldots, x_{k-1}\) we choose \(x_k\) such that
\[
\{x_1, \ldots, x_{k-1}\} \cap \text{Int}(K \cap H^- (x_k - \Delta_k N(x_k), N(x_k))) = \emptyset
\]
where \(\Delta_k\) is determined by
\[
\text{vol}_d(K \cap H^- (x_k - \Delta_k N(x_k), N(x_k))) = t
\]
It could be that the hyperplane \(H(x_k - \Delta_k N(x_k), N(x_k))\) is not tangential to the floating body \(K_t\), but this does not affect the computation. We claim that this process terminates for some \(n\) with
\[
(2.4) \quad n \leq e^{16d \frac{\text{vol}_d(K \setminus K_t)}{t \text{vol}_d(B_2^d)}}
\]
This claim proves the theorem: If we cannot choose another \(x_{n+1}\), then there is no cap of volume \(t\) that does not contain an element of the polytope \(P_n = [x_1, \ldots, x_n]\). By the theorem of Hahn-Banach we get \(K_t \subset P_n\). We show now the claim. We put
\[
(2.5) \quad S_n = K \cap H^- (x_n - \Delta_n N(x_n), N(x_n))
\]
\[
S_k = K \cap \left(\bigcap_{i=k+1}^{n} H^+(x_i - \Delta_i N(x_i), N(x_i)) \right) \cap H^- (x_k - \Delta_k N(x_k), N(x_k))
\]
for \(k = 1, \ldots, n - 1\). We have for \(k \neq l\) that
\[
\text{vol}_d(S_k \cap S_l) = 0
\]
Let \(k < l < n\). Then we have
\[
S_k \cap S_l = K \cap \left(\bigcap_{i=k+1}^{n} H^+(x_i - \Delta_i N(x_i), N(x_i)) \right) \cap H^- (x_k - \Delta_k N(x_k), N(x_k))
\]
\[
\cap K \cap \left(\bigcap_{i=l+1}^{n} H^+(x_i - \Delta_i N(x_i), N(x_i)) \right) \cap H^- (x_l - \Delta_l N(x_l), N(x_l))
\]
\[
\subset H^+(x_l - \Delta_l N(x_l), N(x_l)) \cap H^- (x_l - \Delta_l N(x_l), N(x_l))
\]
\[
= H(x_l - \Delta_l N(x_l), N(x_l))
\]
Thus we have

\[(2.6) \quad \text{vol}_d(S_k \cap S_l) \leq \text{vol}_d(H(x_l - \Delta l N(x_l), N(x_l))) = 0\]

The case \(k < l = n\) is shown in the same way. We have for \(k = 1, \ldots, n - 1\)

\[
S_k = K \cap \left(\bigcap_{i=k+1}^{n} H^+(x_i - \Delta_i N(x_i), N(x_i)) \right) \cap H^-(x_k - \Delta_k N(x_k), N(x_k))
\]

\[
\supset [x_k, K_l] \cap H^-(x_k - \Delta_k N(x_k), N(x_k))
\]

\[
\supset [x_k, (K \cap H^-(x_k - \tilde{\Delta}_k N(x_k), N(x_k))_t] \cap H^-(x_k - \Delta_k N(x_k), N(x_k))
\]

where \(\tilde{\Delta}_k\) is determined by

\[
\text{vol}_d(K \cap H^-(x_k - \tilde{\Delta}_k N(x_k), N(x_k))) = 4e^4 t
\]

By Lemma 2.7 there is an ellipsoid \(\mathcal{E}\) contained in \((K \cap H^-(x_k - \tilde{\Delta}_k N(x_k), N(x_k)))_t\) whose center is \(cg(K \cap H^-(x_k - \tilde{\Delta}_k N(x_k), N(x_k)))\) and that has volume

\[
\text{vol}_d(\mathcal{E}) = \frac{4e^4}{(24e^5 \sqrt{\pi})^d} t \text{vol}_d(B_2^d)
\]

Since \((K \cap H^-(x_k - \tilde{\Delta}_k N(x_k), N(x_k)))_t\) is contained in \(K_t\), \(\mathcal{E}\) is contained in \(K_t\). Thus

\[
S_k \supset [x_k, \mathcal{E}] \cap H^-(x_k - \Delta_k N(x_k), N(x_k))
\]

We claim now that \([x_k, \mathcal{E}] \cap H^-(x_k - \Delta_k N(x_k), N(x_k))\) contains an ellipsoid \(\tilde{\mathcal{E}}\) such that

\[
\text{vol}_d(\tilde{\mathcal{E}}) = \frac{4e^4}{(24e^5 \sqrt{\pi})^d \frac{1}{(4e^5)^d}} t \text{vol}_d(B_2^d)
\]

and consequently

\[(2.7) \quad \text{vol}_d(S_k) \geq \frac{4e^4}{(24e^5 \sqrt{\pi})^d \frac{1}{(4e^5)^d}} t \text{vol}_d(B_2^d) = \frac{4e^4}{(96e^{10} \sqrt{\pi})^d} t \text{vol}_d(B_2^d)
\]

For this we have to see that \(\tilde{\Delta}_k \leq 4e^5 \Delta_k\). By the assumption \(t \leq \frac{1}{4} e^{-5} \text{vol}_d(K)\) we get that

\[
\text{vol}_d(K \cap H^-(x_k - \tilde{\Delta}_k N(x_k), N(x_k))) \leq \frac{1}{e} \text{vol}_d(K)
\]

Therefore we get by (2.1) that \(cg(K) \in H^+(x_k - \tilde{\Delta}_k N(x_k), N(x_k))\). We consider two cases. If

\[
\text{vol}_d((K \cap H(x_k - \Delta_k N(x_k), N(x_k)))) < \text{vol}_d((K \cap H(x_k - \Delta_k N(x_k), N(x_k))))
\]
then we have for all t, $\Delta_k \leq t \leq \tilde{\Delta}_k$, by the theorem of Brunn-Minkowski

\begin{equation}
vol_{d-1}(K \cap H(cg(K), N(x_k))) \leq vol_{d-1}(K \cap H(x_k - \tilde{\Delta}_k N(x_k), N(x))) \\
\leq vol_{d-1}(K \cap H(x_k - t N(x_k), N(x)))
\end{equation}

We get by (2.2)

\[\Delta_k \geq \frac{t}{e \cdot vol_{d-1}(K \cap H(cg(K), N(x)))} \]

By (2.8)

\[(\Delta_k - \tilde{\Delta}_k)vol_{d-1}(K \cap H(cg(K), N(x))) \leq \]

\[vol_d(K \cap H^{-}(x_k - \tilde{\Delta}_k N(x_k), N(x))) - vol_d(K \cap H^{-}(x_k - \Delta_k N(x_k), N(x))) \]

This implies

\[\tilde{\Delta}_k - \Delta_k \leq \frac{(4e^4 - 1)t}{vol_{d-1}(K \cap H(cg(K), N(x)))} \]

Therefore we get

\[\tilde{\Delta}_k \leq \frac{(4e^4 - 1)t}{vol_{d-1}(K \cap H(cg(K), N(x)))} + \Delta_k \leq 4e^5 \Delta_k \]

If

\[vol_{d-1}(K \cap H(x_k - \Delta_k N(x_k), N(x))) \leq vol_{d-1}(K \cap H(x_k - \tilde{\Delta}_k N(x_k), N(x))) \]

then by the theorem of Brunn-Minkowski we have for all t, $0 \leq t \leq \Delta_k$, and all s, $\Delta_k \leq s \leq \tilde{\Delta}_k$,

\[vol_{d-1}(K \cap H(x_k - t N(x_k), N(x))) \leq vol_{d-1}(K \cap H(x_k - \Delta_k N(x_k), N(x))) \]

\[\leq vol_{d-1}(K \cap H(x_k - s N(x_k), N(x))) \]

We get

\[\Delta_k \geq \frac{t}{vol_{d-1}(K \cap H(x_k - \Delta_k N(x_k), N(x)))} \]

and

\[\tilde{\Delta}_k - \Delta_k \leq \frac{(4e^4 - 1)t}{vol_{d-1}(K \cap H(x_k - \Delta_k N(x_k), N(x)))} \]

Therefore we get

\[\tilde{\Delta}_k \leq \frac{(4e^4 - 1)t}{vol_{d-1}(K \cap H(x_k - \Delta_k N(x_k), N(x)))} + \Delta_k \leq 4e^4 \Delta_k \]

We have verified (2.7). From (2.6) and (2.7) we get

\[vol_d(K \setminus K_t) \geq vol_d(\bigcup_{k=1}^{n} S_k) = \sum_{k=1}^{n} vol_d(S_k) \geq n \frac{4e^4}{(96e^{10} \sqrt{\pi})^d} t \cdot vol_d(B_2^d) \]

Thus we get (2.4)

\[vol_d(K \setminus K_t) \geq e^{-16d} n t \cdot vol_d(B_2^d) \]
3. The Illumination Body

Theorem 3.1. Let K be a convex body in \mathbb{R}^d such that

$$\frac{1}{c_1}B^d_2 \subset K \subset c_2B^d_2$$

Let $0 \leq t \leq (5c_1c_2)^{-d-1}vol_d(K)$ and let $n \in \mathbb{N}$ with

$$\left(\frac{128}{7}\pi\right)^{\frac{d}{d+1}} \leq n \leq \frac{1}{32ed}vol_d(K^t \setminus K)$$

Then we have for every polytope P_n that contains K and has at most $n \ d-1$ dimensional faces

$$vol_d(K^t \setminus K) \leq 10^7 \ d^2(c_1c_2)^{2+\frac{1}{d+1}}vol_d(P_n \setminus K)$$

We want to see what this result means for bodies with a smooth boundary. We have the asymptotic formula [W]

$$\lim_{t \to 0} \frac{vol_d(K^t) - vol_d(K)}{t^{\frac{2}{d+1}}} = \frac{1}{2} \left(\frac{d(d+1)}{vol_{d-1}(B^d_2)} \right)^{\frac{2}{d+1}} \int_{\partial K} \kappa(x)^{\frac{1}{d+1}} d\mu(x)$$

Thus we get

$$vol_d(K^t) - vol_d(K) \sim t^{\frac{2}{d+1}} \int_{\partial K} \kappa(x)^{\frac{1}{d+1}} d\mu(x)$$

And by the theorem we have

$$n \sim \frac{1}{dt} vol_d(K^t \setminus K)$$

Thus we get

$$vol_d(K^t) - vol_d(K) \sim d\left(\frac{1}{dn} vol_d(K^t \setminus K)\right)^{\frac{2}{d+1}} \int_{\partial K} \kappa(x)^{\frac{1}{d+1}} d\mu(x)$$

Or

$$vol_d(K^t \setminus K)^{\frac{d}{d+1}} \sim d\left(\frac{1}{dn} \right)^{\frac{2}{d+1}} \int_{\partial K} \kappa(x)^{\frac{1}{d+1}} d\mu(x)$$

$$vol_d(K^t \setminus K) \sim d\left(\frac{1}{n} \right)^{\frac{2}{d+1}} \left(\int_{\partial K} \kappa(x)^{\frac{1}{d+1}} d\mu(x) \right)^{\frac{d+1}{d}}$$

By Theorem 3.1 we get now

$$vol_d(P_n \setminus K) \geq \frac{1}{d} \left(\frac{1}{c_1c_2}\right)^{1+\frac{d}{d+1}} \left(\frac{1}{n} \right)^{\frac{2}{d+1}} \left(\int_{\partial K} \kappa(x)^{\frac{1}{d+1}} d\mu(x) \right)^{\frac{d+1}{d}}$$

By a theorem of F. John [J] we have $c_1c_2 \leq d$.

The following lemma is due to Bronshtein and Ivanov [BI] and Dudley [D1, D2]. It can also be found in [GRS].
Lemma 3.2. For all dimensions \(d, d \geq 2\), and all natural numbers \(n, n \geq 2d\), there is a polytope \(Q_n\) that has \(n\) vertices and is contained in the Euclidean ball \(B_2^d\) such that
\[
d_H(Q_n, B_2^d) \leq \frac{16}{7} \left(\frac{\text{vol}_{d-1}(\partial B_2^d)}{\text{vol}_{d-1}(B_2^{d-1})} \right)^{\frac{2}{d-1}} n^{-\frac{2}{d-1}}
\]

We have that
\[
\text{vol}_{d-1}(\partial B_2^d) = d \text{vol}_d(B_2^d) = d \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2} + 1)}
\]
\[
= d \sqrt{\pi} \frac{\Gamma(\frac{d-1}{2} + 1)}{\Gamma(\frac{d}{2} + 1)} \text{vol}_{d-1}(B_2^{d-1}) \leq d \sqrt{\pi} \text{vol}_{d-1}(B_2^{d-1})
\]
(3.1)

Since \(d^{\frac{2}{d-1}} \leq 4\) and \((1 - t)^d \geq 1 - dt\) we get from (3.1)
\[
d_H(B_2^d, Q_n) \leq \frac{16}{7} \left(\frac{d \sqrt{\pi}}{n} \right)^{\frac{2}{d-1}} \leq \frac{64}{7} \pi n^{-\frac{2}{d-1}}
\]
(3.2)

Proof of Theorem 3.1. We denote the \(d - 1\)-dimensional faces of \(P_n\) by \(F_i, i = 1, \ldots, n\), and the cones generated by the origin and a face \(F_i\) by \(C_i, i = 1, \ldots, n\). Let \(x_i \in F_i\) and \(\xi_i, \|\xi_i\|_2 = 1\), orthogonal to \(F_i\) and pointing to the outside of \(P_n\). Then \(H(x_i, \xi_i)\) is the hyperplane containing \(F_i\) and \(H^+(x_i, \xi_i)\) the halfspace containing \(P_n\). See figure 3.1. We may assume that the hyperplanes \(H(x_i, \xi_i), i = 1, \ldots, n\), are supporting hyperplanes of \(K\). Otherwise we can choose a polytope of lesser volume. Let \(\Delta_i\) be the height of the set
\[
K^t \cap H^-(x_i, \xi_i) \cap C_i
\]
i.e. the smallest number \(s\) such that
\[
K^t \cap H^-(x_i, \xi_i) \cap C_i \subset H^+(x_i + s\xi_i, \xi_i)
\]

Let \(z_i\) be a point in \(\partial K^t \cap C_i\) where the height \(\Delta_i\) is attained. We may assume that
\[
B_2^d \subset K \subset cB_2^d\]
where \(c = c_1 c_2\). Also we may assume that
(3.3)
\[
P_n \subset 2cB_2^d
\]
if we allow twice as many faces. This follows from (3.2): There is a polytope \(Q_k\) such that \(\frac{1}{2}B_2^d \subset Q_k \subset B_2^d\) and the number of vertices \(k\) is smaller than \(\left(\frac{128}{7} \pi\right)^{\frac{d-1}{2}}\). Thus \(Q_k^*\) satisfies \(B_2^d \subset Q_k^* \subset 2B_2^d\) and has at most \(\left(\frac{128}{7} \pi\right)^{\frac{d-1}{2}}\) \(d - 1\)-dimensional faces. As the new polytope \(P_n\) we choose the intersection of \(cQ_k^*\) with the original polytope \(P_n\). Since we have by assumption that \(n\) is greater than \(\left(\frac{128}{7} \pi\right)^{\frac{d-1}{2}}\) the new polytope has at most
\[
\frac{1}{\text{vol}_{d}(K^t \setminus K)}
\]
(3.4)
$d - 1$-dimensional faces.

We show first that for t with $0 \leq t \leq (5cd)^{-d-1}vol_d(K)$ and all $i, i = 1, \ldots, n$ we have

\begin{equation}
\Delta_i \leq \frac{1}{d}
\end{equation}

Assume that there is a face F_i with $\Delta_i > \frac{1}{d}$. Consider the smallest infinite cone D_i having z_i as vertex and containing K. Since $H(x_i, \xi_i)$ is a supporting hyperplane to K and $K \subset cB_2^d$ we have

\[K \subset D_i \cap H^+(x_i, \xi_i) \cap H^-(x_i - 4c\xi_i, \xi_i) \]

and

\[D_i \cap H^-(x_i, \xi) = [z_i, K] \cap H^-(x_i, \xi) \]

We have

\[t = vol_d([z_i, K] \setminus K) \geq vol_d([z_i, K] \cap H^-(x_i, \xi_i)) = vol_d(D_i \cap H^-(x_i, \xi_i)) = \frac{1}{d} \Delta_i vol_{d-1}(D_i \cap H(x_i, \xi_i)) \geq \frac{1}{d^2} vol_{d-1}(D_i \cap H(x_i, \xi_i)) \]

Thus

\begin{equation}
vol_{d-1}(D_i \cap H(x_i, \xi_i)) \leq d^2 t
\end{equation}

Since (3.5) does not hold we have

\[vol_{d-1}(D_i \cap H(x_i - 4c\xi_i, \xi_i)) = (\frac{4c + \Delta_i}{\Delta_i})^{d-1} vol_{d-1}(D_i \cap H(x_i, \xi_i)) \leq (4cd + 1)^{d-1} vol_{d-1}((D_i \cap H(x_i, \xi_i)) \]

By (3.6) we get

\[vol_{d-1}(D_i \cap H(x_i - 4c\xi_i, \xi_i)) \leq (4cd + 1)^{d-1} d^2 t \leq (5cd)^{d-1} d^2 t \]

Thus we get

\[vol_d(K) \leq vol_d(D_i \cap H^+(x_i, \xi_i) \cap H^-(x_i - 4c\xi_i, \xi_i)) \leq 2c(5cd)^{d-1} d^2 t \leq (5cd)^{d+1} t \]

Thus

\[t \geq (5cd)^{-d-1} vol_d(K) \]
This is a contradiction to the assumption on \(t \) in the hypothesis of the theorem. Thus we have shown (3.5). We consider now two cases: All those heights \(\Delta_i \) that are smaller than \(\frac{2dt}{\text{vol}_{d-1}(F_i)} \) and those that are greater. We may assume that \(\Delta_i, i = 1, \ldots, k \) are smaller than \(\frac{2dt}{\text{vol}_{d-1}(F_i)} \) and \(\Delta_i, i = k+1, \ldots, n \) are strictly greater. We have

\[
\text{vol}_d((K^t \setminus P_n) \cap C_i) = \int_0^{\Delta_i} \text{vol}_{d-1}((K^t \setminus P_n) \cap C_i \cap H(x_i + s\xi_i, \xi_i))ds
\]

Since \(B_2^d \subset K \subset P_n \) we get

\[
\text{vol}_d((K^t \setminus P_n) \cap C_i) \leq \int_0^{\Delta_i} \text{vol}_{d-1}(F_i)(1 + s)^{d-1}ds \leq \Delta_i(1 + \Delta_i)^{d-1}\text{vol}_{d-1}(F_i)
\]

By (3.5) we get

\[
\text{vol}_d((K^t \setminus P_n) \cap C_i) \leq \Delta_i(1 + \frac{1}{d})^{d-1}\text{vol}_{d-1}(F_i)
\]

For \(i = 1, \ldots, k \) we get

\[
\text{vol}_d((K^t \setminus P_n) \cap C_i) \leq \frac{2dt}{\text{vol}_{d-1}(F_i)}(1 + \frac{1}{d})^{d-1}\text{vol}_{d-1}(F_i) \leq 2edt
\]

Thus we get

\[
\text{vol}_d((K^t \setminus P_n) \cap (\bigcup_{i=1}^k C_i)) \leq 2kedt \leq 2nedt
\]

By (3.4) we get

\[
(3.7) \quad \text{vol}_d((K^t \setminus P_n) \cap (\bigcup_{i=1}^k C_i)) \leq \frac{1}{8}\text{vol}_d(K^t \setminus K)
\]

Now we consider the other faces. We have for \(i = k+1, \ldots, n \)

\[
(3.8) \quad \Delta_i \geq \frac{2dt}{\text{vol}_{d-1}(F_i)}
\]

We show that we have for \(i = k+1, \ldots, n \)

\[
(3.9) \quad \Delta_i \leq 5c \left(\frac{5c\text{vol}_{d-1}(F_i)}{2d\text{vol}_d(K)} \right)^{\frac{1}{d-1}}
\]

Suppose that there is a face \(F_i \) so that (3.9) does not hold. Then we have

\[
t = \text{vol}_d([z_i, K] \setminus K) \geq \text{vol}_d([z_i, K] \cap H^-(x_i, \xi_i)) = \frac{\Delta_i}{d}\text{vol}_{d-1}([z_i, K] \cap H(x_i, \xi_i))
\]

Therefore we get by (3.8)

\[
(3.10) \quad \text{vol}_{d-1}([z_i, K] \cap H(x_i, \xi_i)) \leq \frac{dt}{\text{vol}_{d-1}(F_i)} \leq \frac{1}{8}\text{vol}_d(K)
\]
By (3.3) we have that

\[K \subset D_i \cap H^+(x_i, \xi_i) \cap H^-(x_i - 4c\xi_i, \xi_i) \]

Thus

\[\text{vol}_d(K) \leq \text{vol}_d(D_i \cap H^-(x_i - 4c\xi_i, \xi_i)) \]

The cone \(D_i \cap H^-(x_i - 4c\xi_i, \xi_i) \) has a height equal to \(4c + \Delta_i \). Therefore we get

\[\text{vol}_d(K) \leq \frac{1}{d}(4c + \Delta_i)(\frac{4c + \Delta_i}{\Delta_i})^{d-1}\text{vol}_{d-1}(D_i \cap H(x_i, \xi_i)) \]

By (3.5) we have \(\Delta_i \leq 1 \). Therefore we get

\[\text{vol}_d(K) \leq \frac{5c}{d}(\frac{5c}{\Delta_i})^{d-1}\text{vol}_{d-1}(D_i \cap H(x_i, \xi_i)) \]

By (3.10) we get

\[\text{vol}_d(K) \leq \frac{5c}{2d}(\frac{5c}{\Delta_i})^{d-1}\text{vol}_{d-1}(F_i) \]

This inequality implies (3.9).

Let \(y_i \) be the unique point

\[y_i = [0, z_i] \cap H(x_i, \xi_i) \]

We want to make sure that \(y_i \in F_i \cap [z_i, K] \). This holds since \(z_i \in C_i \cap H^-(x_i, \xi_i) \) and \(\Delta_i > 0 \). Since \(y_i \in F_i \) we have

\[\text{vol}_{d-1}(F_i) = \frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{\partial B_2^{d-1}} r_i(\eta)^{d-1}d\mu(\eta) \]

where \(r_i(\eta) \) is the distance of \(y_i \) to the boundary \(\partial F_i \) in direction \(\eta, \eta \in \partial B_2^{d-1} \), and, since \(y_i \in F_i \cap [z_i, K] \), we have

\[\text{vol}_{d-1}(F_i \cap [z_i, K]) = \frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{\partial B_2^{d-1}} \rho_i(\eta)^{d-1}d\mu(\eta) \]

where \(\rho_i(\eta) \) is the distance of \(y_i \) to the boundary \(\partial(F_i \cap [z_i, K]) \). Consider the set

\[A_i = \{ \eta \mid (1 - \frac{1}{4d})r_i(\eta) \leq \rho_i(\eta) \} \]

We show that

\[\frac{1}{d}\text{vol}_{d-1}(F_i) \leq \frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{\partial B_2^{d-1}} r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1}d\mu(\eta) \]
We have

\[
\frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{A_i} r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1} \, d\mu(\eta) \\
\leq \frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{\partial B_2^{d-1}} r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1} \, d\mu(\eta)
\]
\[
\leq \frac{1}{4} \frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{A_i} r_i(\eta)^{d-1} \, d\mu(\eta) \leq \frac{1}{4} \text{vol}_{d-1}(F_i)
\]

Therefore we get

\[
\frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{A_i^c} r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1} \, d\mu(\eta) \geq \\
\frac{1}{4} \frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{\partial B_2^{d-1}} r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1} \, d\mu(\eta) - \\
\frac{1}{4} \frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{A_i} r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1} \, d\mu(\eta) \geq \\
\text{vol}_{d-1}(F_i) - \text{vol}_{d-1}(F_i \cap [z_i, K]) - \frac{1}{4} \text{vol}_{d-1}(F_i)
\]

By (3.10) we get that this is greater than \(\frac{1}{4} \text{vol}_{d-1}(F_i)\). This implies

\[
\frac{1}{4} \text{vol}_{d-1}(F_i) \leq \frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{A_i^c} r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1} \, d\mu(\eta)
\]

Thus we have established (3.11).

We shall show that

\[
(3.12) \quad \text{vol}_d((K^t \setminus P_n) \cap C_i) \leq 20480 \, ed^2c^{2 + \frac{1}{2}} \pi \text{vol}_d((P_n \setminus K) \cap C_i)
\]

We have

\[
\text{vol}_d(D_i^c \cap H^+(x_i, \xi_i) \cap C_i) \leq \text{vol}_d((P_n \setminus K) \cap C_i)
\]

Compare figure 3.2. Therefore, if we want to verify (3.12) it is enough to show

\[
\text{vol}_d((K^t \setminus P_n) \cap C_i) \leq 20480 \, ed^2c^{2 + \frac{1}{2}} \pi \text{vol}_d(D_i^c \cap H^+(x_i, \xi_i) \cap C_i)
\]

We may assume that \(y_i\) and \(z_i\) are orthogonal to \(H(x_i, \xi_i)\). This is accomplished by a linear, volume preserving map: Any vector orthogonal to \(\xi_i\) is mapped onto itself and \(y_i\) is mapped to \(\xi_i\). See figure 3.3.
Let \(w_i(\eta) \in D_i^c \cap H^+(x_i, \xi_i) \cap C_i \) such that \(w_i(\eta) \) is an element of the 2-dimensional subspace containing 0, \(y_i \), and \(y_i + \eta \). Let \(\delta_i(\eta) \) be the distance of \(w_i(\eta) \) to the plane \(H(x_i, \xi_i) \). Then we have

\[
\frac{1}{d} \frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{A_i^c} (r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1}) \delta_i(\eta) \, d\mu(\eta) \leq \text{vol}_d(D_i^c \cap H^+(x_i, \xi_i) \cap C_i)
\]

Thus, in order to verify (3.12), it suffices to show

\[
\text{vol}_d((K^t \setminus P_n) \cap C_i) \leq
\]

(3.13)

\[
20480 \, ed^2c^2+\frac{1}{2} \frac{1}{d} \frac{\text{vol}_{d-1}(B_2^{d-1})}{\text{vol}_{d-2}(\partial B_2^{d-1})} \int_{A_i^c} (r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1}) \delta_i(\eta) \, d\mu(\eta)
\]

In order to do this we shall show that for all \(i = k + 1, \ldots, n \) and all \(\eta \in A_i^c \) there is \(w_i(\eta) \) such that the distance \(\delta_i(\eta) \) of \(w_i \) from \(H(x_i, \xi_i) \) satisfies

\[
\frac{\Delta_i}{\delta_i} \leq \begin{cases}
32dc & \text{if } 0 \leq \alpha_i \leq \frac{\pi}{4} \\
160 \, dc^2 \left(\frac{5c \, \text{vol}_{d-1}(F_i)}{2d \, \text{vol}_d(K)} \right) \cdot \frac{1}{\rho_i} & \text{if } \frac{\pi}{4} \leq \alpha_i \leq \frac{\pi}{2}
\end{cases}
\]

(3.14)

The angles \(\alpha_i(\eta) \) and \(\beta_i(\eta) \) are given in figure 3.3. We have for all \(\eta \in A_i^c \)

\[
\delta_i = (r_i - \rho_i) \frac{\sin(\alpha_i) \sin(\beta_i)}{\sin(\pi - \alpha_i - \beta_i)} \quad 0 \leq \alpha_i, \beta_i \leq \frac{\pi}{2}
\]

(3.15)

Thus we get

\[
\frac{\Delta_i}{\delta_i} \leq \frac{\rho_i \sin(\pi - \alpha_i - \beta_i)}{r_i - \rho_i \cos(\alpha_i) \sin(\beta_i)} \leq \frac{\rho_i}{(r_i - \rho_i) \cos(\alpha_i) \sin(\beta_i)}
\]

By (3.11) we have \(\rho_i \leq (1 - \frac{1}{4d})r_i \). Therefore we get

\[
\frac{\Delta_i}{\delta_i} \leq \frac{4d}{\cos(\alpha_i) \sin(\beta_i)}
\]

Since \(B_2^d \subset K \subset P_n \subset 2c \, B_2^d \) we get that \(\tan \beta_i \geq \frac{1}{4c} \). Here we have to take into account that we applied a transform to \(K \) mapping \(y_i \) to < \(\xi_i, y_i > \xi_i \). That leaves the distance of \(F_i \) to the origin unchanged and \(r_i(\eta) \) is less than \(4c \). If \(\beta_i \geq \frac{\pi}{4} \) we have \(\sin \beta_i \geq \frac{1}{\sqrt{2}} \). If \(\beta_i \leq \frac{\pi}{4} \) then \(\frac{1}{4c} \leq \tan \beta_i = \frac{\sin \beta_i}{\cos \beta_i} \leq \sqrt{2} \sin \beta_i \). Therefore we get

\[
\frac{\Delta_i}{\delta_i} \leq \frac{16\sqrt{2} \, dc}{\sin \beta_i}
\]
Therefore we get for all $0 \leq \alpha_i \leq \frac{\pi}{4}$

$$\frac{\Delta_i}{\delta_i} \leq 32 dc$$

By (3.9) and (3.15) we get

$$\frac{\Delta_i}{\delta_i} \leq \frac{1}{r_i - \rho_i} \sin(\pi - \alpha_i - \beta_i) \delta_i \left(\frac{5c \ vol_{d-1}(F_i)}{2d \ vol_d(K)} \right)^{\frac{1}{d-1}}$$

We proceed as in the estimate above and obtain

$$\frac{\Delta_i}{\delta_i} \leq \frac{16\sqrt{2} \ dc}{r_i} \frac{5c}{\sin(\alpha_i)} \left(\frac{5c \ vol_{d-1}(F_i)}{2d \ vol_d(K)} \right)^{\frac{1}{d-1}}$$

Thus we get for $\frac{\pi}{4} \leq \alpha_i \leq \frac{\pi}{2}$

$$\frac{\Delta_i}{\delta_i} \leq \frac{32 \ dc}{r_i} \frac{5c}{\sin(\alpha_i)} \left(\frac{5c \ vol_{d-1}(F_i)}{2d \ vol_d(K)} \right)^{\frac{1}{d-1}}$$

We verify now (3.13). By the definition of A_i we get

$$\frac{\ vol_{d-1}(B_2^{d-1})}{\ vol_{d-2}(\partial B_2^{d-1})} \int_{A_i^c} (r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1}) \delta_i(\eta) \ d\mu(\eta) \geq$$

$$(1 - e^{-\frac{1}{8}}) \frac{\ vol_{d-1}(B_2^{d-1})}{\ vol_{d-2}(\partial B_2^{d-1})} \int_{A_i} r_i(\eta)^{d-1} \delta_i(\eta) \ d\mu(\eta)$$

We get by (3.15)

$$\frac{1}{320 dc} \frac{\ vol_{d-1}(B_2^{d-1})}{\ vol_{d-2}(\partial B_2^{d-1})} \left\{ \int_{\ A_i^c \atop \alpha_i \leq \frac{\pi}{4}} r_i^{d-1} d\mu + \frac{1}{5c} \left(\frac{2d \ vol_d(K)}{5c \ vol_{d-1}(F_i)} \right)^{\frac{1}{d-1}} \int_{\ A_i^c \atop \alpha_i > \frac{\pi}{4}} r_i^{d-1} d\mu \right\}$$

By (3.11) we get that either

$$\frac{\ vol_{d-1}(B_2^{d-1})}{\ vol_{d-2}(\partial B_2^{d-1})} \int_{A_i^c \atop \alpha_i \leq \frac{\pi}{4}} r_i^{d-1} d\mu \geq \frac{1}{8} \ vol_{d-1}(F_i)$$

or

$$\frac{\ vol_{d-1}(B_2^{d-1})}{\ vol_{d-2}(\partial B_2^{d-1})} \int_{A_i^c \atop \alpha_i > \frac{\pi}{4}} r_i^{d-1} d\mu \geq \frac{1}{8} \ vol_{d-1}(F_i)$$

In the first case we get for the above estimate

$$\frac{\ vol_{d-1}(B_2^{d-1})}{\ vol_{d-2}(\partial B_2^{d-1})} \int_{A_i^c} (r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1}) \delta_i(\eta) \ d\mu(\eta) \geq$$

$$\frac{\Delta_i}{\ vol_{d-1}(F_i)} \geq \frac{1}{\ vol_d((K^t \setminus P_n) \cap C_i)}$$
The last inequality is obtained by using (3.5): Since $B_2^d \subset K$ we have for all hyperplanes H that are parallel to F_i,$\ vol_{d-1}(K^t \cap H \cap C_i) \leq (1 + \Delta_i)^{d-1} vol_{d-1}(F_i)$. By (3.5) we get $vol_{d-1}(K^t \cap H \cap C_i) \leq \epsilon \ vol_{d-1}(F_i)$. In the second case we have

$$\frac{vol_{d-1}(B_2^{d-1})}{vol_{d-2}(\partial B_2^{d-1})} \int_{A_i^c} (r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1}) \delta_i(\eta) \ d\mu(\eta) \geq$$

$$\frac{1}{5c} \left(\frac{2d \ vol_d(K)}{5c \ vol_{d-1}(F_i)} \right) \frac{\Delta_i}{320dc} \ vol_{d-1}(B_2^{d-1}) \ int_{A_i^c \ \alpha_i > \frac{\pi}{4}} r_i^{d-1} d\mu \geq$$

$$\frac{1}{5c} \left(\frac{2d \ vol_d(K)}{5c \ vol_{d-1}(F_i)} \right) \frac{\Delta_i}{320dc} \ vol_{d-1}(B_2^{d-1}) \ \frac{\Delta_i}{2560dc} \ vol_{d-1}(F_i) \geq$$

$$\frac{1}{5c} \left(\frac{d \ vol_d(K)}{20c \ vol_{d-1}(B_2^{d-1})} \right) \ \frac{\Delta_i}{2560dc} \ vol_{d-1}(F_i) \geq$$

Since $B_2^d \subset K$ we get

$$\frac{vol_{d-1}(B_2^{d-1})}{vol_{d-2}(\partial B_2^{d-1})} \ int_{A_i^c} (r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1}) \delta_i(\eta) \ d\mu(\eta) \geq$$

$$\frac{1}{5c} \left(\frac{d \ vol_d(B_2^d)}{20c \ vol_{d-1}(B_2^{d-1})} \right) \ \frac{1}{2560edc} \ vol_d((K^t \ P_n) \cap C_i) \geq$$

$$(20480 \ ed^2 c^{2+\frac{1}{d-1}})^{-1} \ vol_d((K^t \ P_n) \cap C_i)$$

The second case gives a weaker estimate. Therefore we get for both cases

$$vol_d((K^t \ P_n) \cap C_i) \leq$$

$$20480 \ ed^2 c^{2+\frac{1}{d-1}} \ vol_{d-1}(B_2^{d-1}) \ int_{A_i^c} (r_i(\eta)^{d-1} - \rho_i(\eta)^{d-1}) \delta_i(\eta) \ d\mu(\eta)$$

Thus we have verified (3.13) and by this also (3.12). By (3.12) we get

$$vol_d((K^t \ P_n) \cap \bigcup_{i=k+1}^{n} C_i) \leq 20480 \ ed^2 c^{2+\frac{1}{d-1}} \ vol_d((K^t \ P_n) \cap (P_n \ K))$$

(3.16)

$$\leq 20480 \ ed^2 c^{2+\frac{1}{d-1}} \ vol_d((P_n \ K))$$

If the assertion of the theorem does not hold we have

$$vol_d(P_n \ K) \ \\leq \ \frac{1}{\delta^d} \ vol_d(K \ \cap \ K)$$

(3.17)
Thus we get
\[\text{vol}_d((K^t \setminus P_n) \cap \left(\bigcup_{i=k+1}^n C_i \right)) \leq \frac{1}{8} \text{vol}_d(K^t \setminus K) \]
Together with (3.7) we obtain
\[(3.18) \quad \text{vol}_d(K^t \setminus P_n) \leq \frac{1}{4} \text{vol}_d(K^t \setminus K) \leq \frac{1}{4} \{ \text{vol}_d(K^t \setminus P_n) + \text{vol}_d(P_n \setminus K) \} \]
By (3.17) we have
\[\text{vol}_d(P_n \setminus K) \leq \frac{1}{8} \text{vol}_d(K^t \setminus K) \leq \frac{1}{2} \text{vol}_d(K^t \setminus P_n) + \frac{1}{2} \text{vol}_d(P_n \setminus K) \]
This implies
\[\text{vol}_d(P_n \setminus K) \leq \text{vol}_d(K^t \setminus P_n) \]
Together with (3.18) we get now the contradiction
\[\text{vol}_d(K^t \setminus P_n) \leq \frac{1}{2} \text{vol}_d(K^t \setminus P_n) \]
\[\square \]

References

[B] K. Ball, *Logarithmically concave functions and sections of convex sets in \(\mathbb{R}^n \)*, Studia Mathematica 88 (1988), 69–84.

[BL] I. Bárány and D.G. Larman, *Convex bodies, economic cap covering, random polytopes*, Mathematika 35 (1988), 274–291.

[BI] E.M. Bronshtein and L.D. Ivanov, *The approximation of convex sets by polyhedra*, Siberian Mathematical Journal 16 (1975), 1110–1112.

[D1] R. Dudley, *Metric entropy of some classes of sets with differentiable boundaries*, Journal of Approximation Theory 10 (1974), 227–236.

[D2] R. Dudley, *Correction to ”Metric entropy of some classes of sets with differentiable boundaries”,* Journal of Approximation Theory 26 (1979), 192–193.

[F–T] L. FejesToth, *Über zwei Maximumsaufgaben bei Polyedern*, Tohoku Mathematical Journal 46 (1940), 79–83.

[GMR1] Y. Gordon, M. Meyer, and S. Reisner, *Volume approximation of convex bodies by polytopes—a constructive method*, Studia Mathematica 111 (1994), 81–95.

[GMR2] Y. Gordon, M. Meyer and S. Reisner, *Constructing a polytope to approximate a convex body*, Geometriae Dedicata 57 (1995), 217–222.

[GRS] Y. Gordon, S. Reisner, and C. Schütt, *Umbrellas and polytopal approximation of the Euclidean ball*, Journal of Approximation Theory.

[Gr1] P.M. Gruber, *Volume approximation of convex bodies by inscribed polytopes*, Mathematicische Annalen 281 (1988), 292–245.

[Gr2] P.M. Gruber, *Asymptotic estimates for best and stepwise approximation of convex bodies II*, Forum Mathematicum 5 (1993), 521–538.

[GK] P.M. Gruber and P. Kenderov, *Approximation of convex bodies by polytopes*, Rend. Circolo Mat. Palermo 31 (1982), 195–225.

[H] D. Hensley, *Slicing convex bodies—bounds for slice area in terms of the body’s covariance*, Proceedings of the American Mathematical Society 79 (1980), 610–625.
[J] F. John, *Extremum problems with inequalities as subsidiary conditions*, R. Courant Anniversary Volume, Interscience New York, 1948, pp. 187–204.

[Mac] A.M. Macbeath, *An extremal property of the hypersphere*, Proceedings of the Cambridge Philosophical Society 47 (1951), 245–247.

[MP] V. Milman and A. Pajor, *Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space*, Geometric Aspects of Functional Analysis (J. Lindenstrauss and V.D. Milman, eds.), Israel Seminar (GAFA) 1987-88, Springer-Verlag, 1989, pp. 64–104.

[Mü] J.S. Müller, *Approximation of the ball by random polytopes*, Journal of Approximation Theory 63 (1990), 198–209.

[R] C.A. Rogers, *Packing and Covering*, Cambridge University Press, 1964.

[S] C. Schütt, *The convex floating body and polyhedral approximation*, Israel Journal of Mathematics 73 (1991), 65–77.

[SW] C. Schütt and E. Werner, *The convex floating body*, Mathematica Scandinavica 66 (1990), 275–290.

[W] E. Werner, *Illumination Bodies and the Affine Surface Area*, Studia Mathematica 110 (1994), 257–269.

Mathematisches Seminar, Christian Albrechts Universität, D-24098 Kiel, Germany

Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
Figure 2.1
Figure 2.2

\[S(K) \]

\[H(\text{cg}(K), \xi) \]

\[H(\text{cg}(K) + \Theta(\xi)\xi, \xi) \]
Figure 2.3
Figure 3.1

\[\Delta_i \]

\[P_n \rightarrow K \rightarrow H(x_i, \xi_i) \]

\[C_i \]

\[0 \]

\[Z_i \]
Figure 3.2
Figure 3.3

\[y_i + r_i(\eta)\eta \]