Subjective Image Quality Assessment with Boosted Triplet Comparisons

Hui Men, Hanhe Lin, Mohsen Jenadeleh, Dietmar Saupe
University of Konstanz

May 10, 2022
Full Reference IQA Datasets

IQA Datasets	Distortion Levels
CID:IQ	5
CSIQ	3-5
LIVE	5-6
KADID-10k	5
TID2013	5
VCL@FER	6

Qualities range over the five ACR/DCR categories.

Are 5-6 distortion levels enough?

No: Content providers apply image compression, focus on the high quality range (approx. 1 JND).

To create datasets with 12 or more distortion levels up to 2 or 3 JND, we need to sharpen the subjective assessment (DCR).

Our proposal: **Boosted triplet comparisons.**
Reference and Distorted Image
Boosting (A)

\[v' = v_{\text{ref}} + \alpha(v_{\text{dist}} - v_{\text{ref}}) \quad (\alpha > 1) \]

Ref.

Amplification (A)
Boosting (A+Z)

Ref.

Added Zoom (Z)
Boosting (A+Z+F)

Ref.

Added Flicker (F)
Triplet Comparisons (TC)

Which image is more similar to the middle one?

left not sure right
Thurstonian Scale Reconstruction from TC

\[Z_{ijk} = |X_k - X_j| - |X_i - X_j| \]

\[
\Pr(Z_{ijk} > 0 | \mu) = 1 - \Phi(\mu_k - \mu_i) - \Phi\left(\frac{\mu_k + \mu_i - 2\mu_j}{\sqrt{3}}\right)
\]
\[+ 2 \Phi(\mu_k - \mu_i) \Phi\left(\frac{\mu_k + \mu_i - 2\mu_j}{\sqrt{3}}\right) \]

\[
\Pr(Z_{ijk} \leq 0 | \mu) = 1 - \Pr(Z_{ijk} > 0 | \mu).
\]

\[
L(\mu) = - \sum_{(i,j,k,R_{ijk}) \in T} \log p^{R_{ijk}} (1 - p)^{1 - R_{ijk}}
\]

\[
p = \Pr(Z_{ijk} > 0 | \mu).
\]

\[
\hat{\mu} = \arg \min_{\mu=\mu_0, \ldots, \mu_M} L(\mu).
\]

Algorithm 2 Probability of a response \(R_{ijk} \in \{0, 1\}\) to a triplet comparison \((i, j, k)\)

1: \(\mu = (\mu_0, \ldots, \mu_M)\) \(\triangleright\) stimuli means in model
2: \(u_0 \leftarrow \mu_k - \mu_i\)
3: \(v_0 \leftarrow (\mu_k + \mu_j - 2\mu_j) / \sqrt{3}\)
4: \(p \leftarrow 1 - \Phi(u_0) - \Phi(v_0) + 2\Phi(u_0)\Phi(v_0)\)
5: if \(R_{ijk} = 1\) then \(\triangleright\) stimulus \(i\) closer to \(j\) than \(k\)
6: Return \(p\)
7: else \(\triangleright\) stimulus \(k\) closer to \(j\) than \(i\)
8: Return \(1 - p\)

Subjective image quality assessment with boosted triplet comparisons
IEEE Access, Vol. 9, pp. 138939-75, Oct. 2021
Three Experiments

1. Basic triplet comparisons
 (only the reference image as the pivot)

2. General triplet comparisons
 (arbitrary image as the pivot)

3. Boosting for degradation category rating (DCR)

 Implemented by crowdsourcing on AMT.
Materials

- 10 source images from the MCL-JCI Dataset
Materials

7 Distortion Types

- Ref.
- Color Diffusion
- High Sharpen
- Jitter
- JPEG 2000
- Lens Blur
- Motion Blur
- Multiplicative Noise
Experiment I (Baseline TC)

- 8 types of baseline TCs *(pivot: reference image)*
- 10 sources
- 7 distortion types
- **13** distortion levels (1 ref. + 12 dist.) ~ 3 JND
- Spacing between consecutive test images: **0.25** JND
Type 1/8 of Baseline TCs

- Plain TC (Original)

Which image is more similar to the middle one?

- left
- not sure
- right
Type 2/8 of Baseline TCs

- A-Boosting (Amplified)

\[v' = v_{\text{ref}} + \alpha(v_{\text{dist}} - v_{\text{ref}}) \quad (\alpha = 2) \]

Which image is more similar to the middle one?

- Left
- Ref.
- Right

Subjective image quality assessment with boosted triplet comparisons
IEEE Access, Vol. 9, pp. 138939-75, Oct. 2021
Type 3/8 of Baseline TCs

- Z-Boosting (cropped to 0.5x \rightarrow Zoomed 2x)

Which image is more similar to the middle one?

- Left
- Ref.
- Right

Choose: left, not sure, right.
Type 5/8 of Baseline TCs

- AZ-Boosting (Amplified + Zoomed)

Which image is more similar to the middle one?

- Left
- Ref.
- Right

Subjective image quality assessment with boosted triplet comparisons
IEEE Access, Vol. 9, pp. 138939-75, Oct. 2021
Type 5/8 of Baseline TCs

- F-Boosting (Flicker)

Which image has a stronger flicker effect?

- left
- not sure
- right
Type 6/8 of Baseline TCs

- AF-Boosting (Amplified + Flicker)

Which image has a stronger flicker effect?

- left
- not sure
- right
Type 7/8 of Baseline TCs

- ZF-Boosting (Zoomed + Flicker)

Which image has a stronger flicker effect?

left not sure right
Type 8/8 of Baseline TCs

- AZF-Boosting (Amplified + Zoomed + Flicker)

Which image has a stronger flicker effect?

- left
- not sure
- right
1. Reconstructed Impairment Scales

Main Result of Experiment I

Impairment [JND] vs. Distortion level

- AZF
- ZF
- AF
- AZ
- F
- A
- Z
- Plain
2. Sensitivity Gain

Sensitivity gain: Factor by which an increase of perceived distortion is multiplied by boosting.
2. Sensitivity Gain

Example of Sensitivity Gain

Impairment [JND]	Sensitivity gain
0	1
1	1.5
2	2
3	2.5
4	3
4.5	4

- Plain triplets
- AZ-boosted triplets
- Gain of AZ-boosted triplets

Saturation Effect

Sensitivity Gain for all Types of Boosting

- F
- A
- AF
- Z
- ZF
- AZ
- AZF

Distortion level
Experiment II (General TC)

- 2 types of general TCs (pivot: distorted image)
 - plain
 - AZF-boosting
- 10 sources
- 1 distortion type (motion blur)
- 31 distortion levels (1 ref. + 30 dist.) \(\sim \) 3 JND
- Spacing between consecutive test images: 0.1 JND
2 Types of General TCs

- Plain TC (original)

Which image is more similar to the middle one?

- Left
- Dist.
- Right

left not sure not sure
2 Types of General TCs

- AZF-Boosting (Amplified + Zoomed + Flicker)

Which image has a stronger flicker effect?

- left
- not sure
- not sure
1. Impairment Scales & Sensitivity Gain

![Main Result of Experiment II](image)

- **Plain triplets**
- **AZF-boosted triplet**
- **Gain of AZF-boosted (Exp. II)**
- **Gain of AZF-boosted (Exp. I)**

Impairment [JND]

- **0.1JND**
- **0.25JND**

Distortion level

Sensitivity gain

Subjective image quality assessment with boosted triplet comparisons
IEEE Access, Vol. 9, pp. 138939-75, Oct. 2021
2. True Positive Rate

Average TPR for all triplets \((i, j, k)\) and distance \(D = ||i-j|-|j-k||\) for all 10 sources
3. Convergence in Precision

- The precision of the reconstructions for given budgets of TCs
- 95% confidence intervals (CI)
4. Convergence in Ordering

Convergence of SROCC

SROCC

Number of TC responses per sequence

- Red: Boosted triplets
- Blue: Plain triplets

Subjective image quality assessment with boosted triplet comparisons
IEEE Access, Vol. 9, pp. 138939-75, Oct. 2021
Experiment III (DCR)

- 4 types of DCRs (Plain, A, Z, AZ)
- 10 sources
- 7 distortion types
- 13 distortion levels
 (1 ref. + 12 dist.) ~ 3 JND
- Spacing between consecutive images: 0.25 JND
Result of Experiment III (DCR)
KonFiG-IQA

Konstanz **Fine-Grained IQA Dataset**

IQA Datasets	Distortion Levels
CID:IQ	5
CSIQ	3-5
LIVE	5-6
KaDiD-10k	5
TID2013	5
VCL@FER	6
KonFiG-IQA (A)	12
KonFiG-IQA (B)	30
Conclusion

1. Three boosting strategies: artefact amplification, zooming, flicker
 - enlarge the sensitivity of pair and triplet comparisons
 - increase the accuracy of subjective FR-IQA
2. Reconstruction of perceptual qualities from triplet comparisons
 - Thurstone’s probabilistic model
 - maximum likelihood estimation
3. Two IQA datasets of 1140 images
 - 10 reference images, 7 dist. types, 12/30 dist. levels over 3 JND
 - 1.7 million crowdsourcing responses to triplet comparisons
4. Extensive FR-IQA performance analysis of boosted triplet comparisons
 - ratio of true positive responses
 - detection rates
 - sensitivity gains
 - effect sizes
 - convergence in accuracy
 - convergence in correlation
 - time complexity