Convergence of Langevin-Simulated Annealing algorithms with multiplicative noise II: Total Variation

Pierre Bras*† and Gilles Pagès*

Abstract

We study the convergence of Langevin-Simulated Annealing type algorithms with multiplicative noise, i.e. for $V : \mathbb{R}^d \to \mathbb{R}$ a potential function to minimize, we consider the stochastic differential equation $dY_t = -\sigma^T \nabla V(Y_t) dt + a(t)^2 \Upsilon(Y_t) dt$, where (W_t) is a Brownian motion, where $\sigma : \mathbb{R}^d \to \mathcal{M}_d(\mathbb{R})$ is an adaptive (multiplicative) noise, where $a : \mathbb{R}^+ \to \mathbb{R}^+$ is a function decreasing to 0 and where Υ is a correction term. Allowing σ to depend on the position brings faster convergence in comparison with the classical Langevin equation $dY_t = -\nabla V(Y_t) dt + \sigma dW_t$. In a previous paper we established the convergence in L^1-Wasserstein distance of Y_t and of its associated Euler scheme \tilde{Y}_t to $\argmin(V)$ with the classical schedule $a(t) = A \log^{-1/2}(t)$. In the present paper we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.

Keywords— Stochastic Optimization, Langevin Equation, Simulated Annealing, Neural Networks

MSC Classification— 62L20, 65C30, 60H35

1 Introduction

Langevin-based algorithms are used to solve optimization problems in high dimension and have gained much interest in relation with Machine Learning. The Langevin equation is a Stochastic Differential Equation (SDE) which consists in a gradient descent with noise. More precisely, let $V : \mathbb{R}^d \to \mathbb{R}^+$ be a coercive potential function, then the associated Langevin equation reads

$$dX_t = -\nabla V(X_t) dt + \sigma dW_t, \quad t \geq 0,$$

where (W_t) is a d-dimensional Brownian motion and where $\sigma > 0$. Under standard assumptions, the invariant measure of this SDE is the Gibbs measure ν_{σ^2} of density proportional to $e^{-2V(x)/\sigma^2}$ and for small enough σ, this measure concentrates around $\argmin(V)$ [Dal17] [Bra21]. Adding a small noise to the gradient descent allows to explore the space and to escape from traps such as local minima or saddle points appearing in non-convex optimization problems [Laz92] [DPG+14]. Such methods have been recently brought up to light again with Stochastic Gradient Langevin Dynamics (SGLD) algorithms [WT11] [LCCC16], especially for the deep learning and the calibration of large artificial neural networks.

The Langevin-simulated annealing SDE is the Langevin equation where the noise parameter is slowly decreasing to 0, namely

$$dX_t = -\nabla V(X_t) dt + a(t)^2 \sigma dW_t, \quad t \geq 0,$$

(1.1)
where $a : \mathbb{R}^+ \to \mathbb{R}^+$ is non-increasing and converges to 0. The idea is that the "instantaneous" invariant measure $\nu_{a(t)}$ which is the Gibbs measure of density $\propto \exp(-2V(x)/(a(t)^2\sigma^2))$ converges itself to $\arg\min(\mathcal{V})$. Although the additive case i.e. where σ is constant has been extensively studied, little attention has been paid to the multiplicative case i.e. where $\sigma : \mathbb{R}^d \to \mathcal{M}_d(\mathbb{R})$ depends on X_t.

The objective of the present paper is to study the convergence in total variation of the Langevin-Simulated annealing SDE, i.e. (1.1) with non-constant σ. Following [PP20, Proposition 2.5], we need to add a correction term in the drift, giving

$$dY_t = -(\sigma \sigma^\top \nabla V)(Y_t)dt + a(t)\sigma(Y_t)dW_t + \left(a^2(t) \left[\sum_{j=1}^{d} \partial_j(\sigma\sigma^*)(Y_t)_{ij} \right]_{1 \leq i \leq d} \right) dt,$$

(1.2)

$$a(t) = \frac{A}{\sqrt{\log(1 + \epsilon)}},$$

(1.3)

so that $\nu_{a(t)}$ is still the the "instantaneous" invariant measure. We also study the convergence of its Euler-Maruyama scheme \tilde{Y}_t with decreasing steps and with noisy gradient estimates coming from stochastic gradient algorithms. We assume in particular the convex uniformity of the potential V outside a compact set (but we do not assume that the potential is convex) and the ellipticity and the stochastic gradient algorithms. We assume in particular the convex uniformity of the potential V outside a compact set (but we do not assume that the potential is convex) and the ellipticity and the boundedness of σ.

We studied this SDE and proved the convergence in L^1-Wasserstein distance of Y and \tilde{Y} to ν^\ast which is the limit measure of ν_a as $a \to 0$, in a previous paper [BP21], which the present paper is a companion paper of. More precisely, we proved that $\mathcal{W}_1(Y_t, \nu^\ast)$ is of order $a(t)$ as $t \to \infty$ and that $\mathcal{W}_1(Y_t, \nu_{a(t)})$ is of order $t^{-\alpha}$ for every $\alpha \in (0, 1)$. For more details, we refer to the introduction of [BP21]. In particular, for applications to optimization problems arising in Stochastic Optimization and in Machine Learning and for choices of $\sigma : \mathbb{R}^d \to \mathcal{M}_d(\mathbb{R})$ used by practitioners, we refer to [BP21, Section 3].

The proof for the total variation distance case relies on the same strategy developed in [BP21]. We first introduce the process X where the coefficient $(a(t))$ is "by plateau" i.e. non-increasing and piecewise constant on time intervals $[T_n, T_{n+1}]$. Then we give bounds on $d_{TV}(X_t, Y_t)$ using a domino strategy [BP21, (1.2)]. However the main difference with the L^1-Wasserstein distance concerns the total variation distance between X and Y in small time as in general, it is more difficult to give bounds in small time for the total variation distance between two processes with close coefficients. Indeed, considering the functional characterization and comparing it with the L^1-Wasserstein distance, if x and $y \in \mathbb{R}^d$ are close to each other and if $f : \mathbb{R}^d \to \mathbb{R}$ is Lipschitz-continuous, then we can bound $|f(x) - f(y)|$ by $|f|_{Lip}[x - y]$; however if \tilde{f} is measurable bounded, then we cannot directly bound $|f(x) - f(y)|$ in terms of $|x - y|$. Instead, the common strategy of proof in the literature is to use Malliavin calculus in order to perform an integration by parts and to use bounds on the derivatives of the density. In this context, [PP20] relies on a highly technical Malliavin approach inducing a "regularization from the past" (see [PP20, Theorem 3.7 and Appendix C]).

We give bounds in small time relying on the recent paper [BPP21] and we adapt some of the proofs to the non-homogeneous Markovian setting. These bounds rely on estimates of the density of the solutions to SDE’s and their derivatives [Fri64]. The strategy of proof is the following: we first reduce to the null drift case using a Girsanov change of measure. Then we introduce an artificial regularization in order to perform a Malliavin-type integration by parts and we use Aronson’s bounds on the density and its derivatives; we need to pay attention to the dependency in the parameter a, controlling the ellipticity of the SDE and which converges to 0, of the constants that appear in the Aronson bounds. Moreover, we rely on [DMR18] to give bounds on the total variation between two Gaussian laws.

Contrary to the L^1-Wasserstein distance, we do not prove the convergence as $t \to \infty$ of Y_t and \tilde{Y}_t to ν^\ast since in most of the cases, ν^\ast is supported by a finite number of points and then if Y_t has a
density then \(d_{TV}(Y_t, \nu^*) = 2\). Instead, we prove the convergence in total variation of \(Y_t\) and \(\bar{Y}_t\) to their "instantaneous invariant measure" \(\nu_{a(t)}\) which itself converges to \(\nu^*\) (in law, for the \(L^1\)-Wasserstein distance etc, see for example [Hwa80, Theorem 2.1] and [BP21, Lemma 4.6]) and we give bounds on \(d_{TV}(Y_t, \nu_{a(t)})\) and on \(d_{TV}(\bar{Y}_t, \nu_{a(t)})\) as \(t \to \infty\).

The paper is organized as follows. In Section 2 we give the setting and assumptions of the problem we consider and state our main results of convergence with respect to the \(L^1\)-Wasserstein distance etc, see for example [BP21, Section 3] and [BP21, Lemma 4.6]. In Section 4, we prove the convergence of the plateaux SDE using exponential contraction properties. Using this convergence, the convergences of \(d_{TV}(Y_t, \nu_{a(t)})\) and \(d_{TV}(\bar{Y}_t, \nu_{a(t)})\) are proved in Section 5 and 6 respectively.

Notations

We endow the space \(\mathbb{R}^d\) with the canonical Euclidean norm denoted by \(|\cdot|\) and we denote by \((\cdot, \cdot)\) the associated canonical inner product. For \(x \in \mathbb{R}^d\) and for \(R > 0\), we denote \(B(x, R) = \{y \in \mathbb{R}^d : |y - x| \leq R\}\).

For \(M \in (\mathbb{R}^d)^\otimes k\), we denote by \(\|M\|\) its operator norm, i.e. \(\|M\| = \sup_{u \in \mathbb{R}^d \times k, |u| = 1} M \cdot u\). If \(M : \mathbb{R}^d \to (\mathbb{R}^d)^\otimes k\), we denote \(\|M\| = \sup_{x \in \mathbb{R}^d} \|M(x)\|\). We say that \(M\) is \(C^k\) for some \(r \in \mathbb{N} \cup \{0\}\) if \(M\) is bounded and has bounded derivatives up to the order \(r\).

For \(k \in \mathbb{N}\) and if \(f : \mathbb{R}^d \to \mathbb{R}\) is \(C^k\), we denote by \(\nabla^k f : \mathbb{R}^d \to (\mathbb{R}^d)^\otimes k\) its differential of order \(k\). If \(f\) is Lipschitz-continuous, we denote by \([f]_{\text{Lip}}\) its Lipschitz constant.

We denote the total variation distance between two distributions \(\pi_1\) and \(\pi_2\) on \(\mathbb{R}^d\):

\[d_{TV}(\pi_1, \pi_2) = 2\sup_{A \in \mathcal{B}(\mathbb{R}^d)}|\pi_1(A) - \pi_2(A)|.\]

Without ambiguity, if \(Z_1\) and \(Z_2\) are two \(\mathbb{R}^d\)-valued random vectors, we also write \(d_{TV}(Z_1, Z_2)\) to denote the total variation distance between the law of \(Z_1\) and the law of \(Z_2\). We have as well

\[d_{TV}(\pi_1, \pi_2) = \sup\left\{\int_{\mathbb{R}^d} f d\pi_1 - \int_{\mathbb{R}^d} f d\pi_2, f : \mathbb{R}^d \to [-1, 1] \text{ measurable}\right\}.

Moreover, we recall that if \(\pi_1\) and \(\pi_2\) admit densities with respect to some measure reference \(\lambda\), then

\[d_{TV}(\pi_1, \pi_2) = \int_{\mathbb{R}^d} \left|\frac{d\pi_1}{d\lambda} - \frac{d\pi_2}{d\lambda}\right| d\lambda.\]

We denote the \(L^p\)-Wasserstein distance between two distributions \(\pi_1\) and \(\pi_2\) on \(\mathbb{R}^d\):

\[W_p(\pi_1, \pi_2) = \inf \left\{\left(\int_{\mathbb{R}^d} |x - y|^p \pi(dx, dy)\right)^{1/p} : \pi \in \mathcal{P}(\pi_1, \pi_2)\right\},\]

where \(\mathcal{P}(\pi_1, \pi_2)\) stands for the set of probability distributions on \((\mathbb{R}^d \times \mathbb{R}^d, \mathcal{B}_\mathcal{B}(\mathbb{R}^d)^\otimes 2)\) with respective marginal laws \(\pi_1\) and \(\pi_2\). For \(p = 1\), let us recall the Kantorovich-Rubinstein representation of the Wasserstein distance of order 1 [Vil09, Equation (6.3)]:

\[W_1(\pi_1, \pi_2) = \sup \left\{\int_{\mathbb{R}^d} f(x)(\pi_1 - \pi_2)(dx) : f : \mathbb{R}^d \to \mathbb{R}, [f]_{\text{Lip}} = 1\right\}.

For \(x \in \mathbb{R}^d\), we denote by \(\delta_x\) the Dirac mass at \(x\).

In this paper, we use the notation \(C\) and \(c\) to denote real positive constants, which may change from line to line.
2 Assumptions and main results

2.1 Assumptions

Let us briefly recall the setting adopted in [BP21]. Let \(V : \mathbb{R}^d \to (0, +\infty) \) be a \(C^2 \) potential function such that \(V \) is coercive and

\[
(x \mapsto |x|^2 e^{-2V(x)/A^2}) \in L^1(\mathbb{R}^d) \text{ for some } A > 0. \tag{2.1}
\]

Then \(V \) admits a minimum on \(\mathbb{R}^d \). Moreover, let us assume that

\[
V^* := \min_{\mathbb{R}^d} V > 0, \quad \argmin(V) = \{x^*_1, \ldots, x^*_m\}, \quad \forall i = 1, \ldots, m, \quad \nabla^2 V(x^*_i) > 0, \tag{2.2, \mathcal{H}_V^1}
\]

i.e. \(\min_{\mathbb{R}^d} V \) is attained at a finite number \(m^* \) of points and at each point the Hessian matrix is positive definite. We then define for \(a \in (0, A] \) the Gibbs measure \(\nu_a \) of density:

\[
\nu_a(dx) = Z_a e^{-2(V(x) - V^*)/a^2} dx, \quad Z_a = \left(\int_{\mathbb{R}^d} e^{-2(V(x) - V^*)/a^2} dx \right)^{-1}. \tag{2.3}
\]

Following [Hwa80, Theorem 2.1], the measure \(\nu_a \) converges weakly to \(\nu^* \) as \(a \to 0 \), where \(\nu^* \) is the weighted sum of Dirac measures:

\[
\nu^* = \left(\sum_{j=1}^{m^*} (\det \nabla^2 V(x_j^*))^{-1/2} \right)^{-1} \sum_{i=1}^{m^*} (\det \nabla^2 V(x_i^*))^{-1/2} \delta_{x_i^*}. \tag{2.4}
\]

Following [BP21, Lemma 4.6], \(\nu_a \) also converges to \(\nu^* \) as \(a \to 0 \) for the \(L^1 \)-Wasserstein distance.

We consider the following Langevin SDE in \(\mathbb{R}^d \):

\[
Y_{t}^{x_0} = x_0 + \int_{0}^{t} \sigma(Y_{s}^{x_0}) dW_s + a(t) \sigma(Y_{t}^{x_0}) dt, \tag{2.5}
\]

where, for \(a \geq 0 \), the drift \(b_a \) is given by

\[
b_a(x) = -(\sigma \sigma^T \nabla V)(x) + a^2 \sum_{j=1}^{d} \partial_j (\sigma \sigma^T)_{ij}(x) =: -(\sigma \sigma^T \nabla V)(x) + a^2 \Upsilon(x), \tag{2.6}
\]

where \(W \) is a standard \(\mathbb{R}^d \)-valued Brownian motion defined on a probability space \((\Omega, \mathcal{A}, \mathbb{P}) \), where \(\sigma : \mathbb{R}^d \to \mathcal{M}_d(\mathbb{R}) \) is \(C^2 \) and

\[
a(t) = \frac{A}{\sqrt{\log(t+e)}} \tag{2.7}
\]

where \(A \) is defined in (2.1) and with \(\log(e) = 1 \). This equation corresponds to a gradient descent on the potential \(V \) with preconditioning \(\sigma \) and multiplicative noise ; the second term in the drift (2.6) is a correction term (see [PP20, Proposition 2.5]) which is zero for constant \(\sigma \).

We make the following assumptions on the potential \(V \):

\[
|\nabla V|^2 \leq CV \quad \text{and} \quad \sup_{x \in \mathbb{R}^d} ||\nabla^2 V(x)|| < +\infty, \tag{2.8, \mathcal{H}_V^2}
\]

which implies in particular that \(V \) has at most a quadratic growth. Let us also assume that

\[
\sigma \text{ is bounded and Lipschitz-continuous, } \nabla^2 \sigma \text{ is bounded, } \nabla(\sigma \sigma^T) \nabla V \text{ is bounded,} \tag{2.9, \mathcal{H}_\sigma}
\]
and that \(\sigma \) is uniformly elliptic, i.e.

\[
\exists \sigma_0 > 0, \forall x \in \mathbb{R}^d, \quad (\sigma \sigma^\top)(x) \geq \sigma_0^2 I_d.
\]

(2.10)

Assumptions (2.8, \(\mathcal{H}_V^2 \)) and (2.9, \(\mathcal{H}_\sigma \)) imply that \(\Upsilon \) is also bounded and Lipschitz-continuous and that \(b_\alpha \) is Lipschitz-continuous uniformly in \(\alpha \in [0, A] \). Let the minimal constant \([b]_{\text{Lip}}\) be such that:

\[
\forall \alpha \in [0, A], \quad b_\alpha \text{ is } [b]_{\text{Lip}}\text{-Lipschitz continuous.}
\]

(2.11)

We make the non-uniform dissipative (or convexity) assumption outside of a compact set: there exists \(\alpha_0 > 0 \) and \(R_0 > 0 \) such that

\[
\forall x, y \in B(0, R_0)^c, \quad \left((\sigma \sigma^\top) \nabla V \right) (x) - \left((\sigma \sigma^\top) \nabla V \right) (y), \quad x - y \geq \alpha_0 |x - y|^2.
\]

(2.12, \(\mathcal{H}_{ef} \))

Taking \(y \in B(0, R_0)^c \) fixed, letting \(|x| \to \infty \) and using the boundedness of \(\sigma \), (2.12, \(\mathcal{H}_{ef} \)) implies that \(|\nabla V| \) is coercive. Using (2.8, \(\mathcal{H}_V^2 \)) and the boundedness of \(\sigma \), there exists \(C > 0 \) (depending on \(A \)) such that:

\[
\forall \alpha \in [0, A], \quad 1 + |b_\alpha(x)| \leq CV^{1/2}(x).
\]

Let \((\gamma_n)_{n \geq 1}\) be a non-increasing sequence of varying positive steps. We define \(\Gamma_n := \gamma_1 + \cdots + \gamma_n \) and for \(t \geq 0 \):

\[
N(t) := \min\{k \geq 0 : \Gamma_{k+1} > t\} = \max\{k \geq 0 : \Gamma_k \leq t\}.
\]

(2.13)

We make the classical assumptions on the step sequence, namely

\[
\gamma_n \downarrow 0, \quad \sum_{n \geq 1} \gamma_n = +\infty \quad \text{and} \quad \sum_{n \geq 1} \gamma_n^2 < +\infty
\]

(2.14, \(\mathcal{H}_\gamma \))

and we also assume that

\[
\varpi := \limsup_{n \to \infty} \frac{\gamma_n - \gamma_{n+1}}{\gamma_{n+1}} < \infty.
\]

(2.15, \(\mathcal{H}_\varpi \))

For example, if \(\gamma_n = \gamma_1/n^\eta \) with \(\eta \in (1/2, 1) \) then \(\varpi = 0 \); if \(\gamma_n = \gamma_1/n \) then \(\varpi = \gamma_1 \).

In stochastic gradient algorithms, the true gradient is measured with a zero-mean noise \(\zeta \), which law only depends on the current position. That is, let us consider a family of random fields \((\zeta_n(x))_{x \in \mathbb{R}^d, n \in \mathbb{N}}\) such that for every \(n \in \mathbb{N}, (\omega, x) \in \Omega \times \mathbb{R}^d \mapsto \zeta_n(x, \omega) \) is measurable and for all \(x \in \mathbb{R}^d \), the law of \(\zeta_n(x) \) only depends on \(x \) and \((\zeta_n(x))_{n \in \mathbb{N}}\) is an i.i.d. sequence independent of \(W \). We make the following assumptions:

\[
\forall x \in \mathbb{R}^d, \quad \forall p \geq 1, \quad \mathbb{E}[\zeta_1(x)] = 0 \quad \text{and} \quad \mathbb{E}[|\zeta_1(x)|^p] \leq C_p V^{p/2}(x).
\]

(2.16)

We then consider the Euler-Maruyama scheme with decreasing steps associated to \((Y_t)\):

\[
\hat{Y}_{\Gamma_{n+1}}^{x_\alpha} = x_\alpha, \quad \hat{Y}_{\Gamma_{n+1}}^{x_\alpha} = \hat{Y}_{\Gamma_n} + \gamma_{n+1} \left(b_\alpha(\Gamma_n)(\hat{Y}_{\Gamma_n}^{x_\alpha}) + \zeta_{n+1}(\hat{Y}_{\Gamma_n}^{x_\alpha}) \right) + a(\Gamma_n)\sigma(\hat{Y}_{\Gamma_n}^{x_\alpha})(W_{\Gamma_{n+1}} - W_{\Gamma_n}),
\]

(2.17)

We extend \(\hat{Y}^{x_\alpha} \) on \(\mathbb{R}^+ \) by considering its genuine continuous interpolation:

\[
\forall t \in [\Gamma_n, \Gamma_{n+1}), \quad \hat{Y}_t^{x_\alpha} = \hat{Y}_{\Gamma_n}^{x_\alpha} + (t - \Gamma_n) \left(b_\alpha(\Gamma_n)(\hat{Y}_{\Gamma_n}^{x_\alpha}) + \zeta_{n+1}(\hat{Y}_{\Gamma_n}^{x_\alpha}) \right) + a(\Gamma_n)\sigma(\hat{Y}_{\Gamma_n}^{x_\alpha})(W_t - W_{\Gamma_n}).
\]

(2.18)
2.2 Main results

Theorem 2.1. (a) Let Y be defined in (2.5). Assume (2.2, \mathcal{H}_{V1}), (2.8, \mathcal{H}_{V2}), (2.9, \mathcal{H}_{σ}), (2.10) and (2.12, \mathcal{H}_{ef}). Then, for every $\alpha \in (0,1)$, if A is large enough, then for every $x_0 \in \mathbb{R}^d$ and for every $t > 0$:

$$
d_{TV}(Y_t^{x_0}, \nu_{\alpha(t)}) \leq C e^{C \sqrt{\log(t)(1+|x_0|^2)} t^{-\alpha}}.
$$

(2.19)

(b) Let \bar{Y} be defined in (2.17). Assume (2.2, \mathcal{H}_{V1}), (2.8, \mathcal{H}_{V2}), (2.9, \mathcal{H}_{σ}), (2.10) and (2.12, \mathcal{H}_{ef}). Assume furthermore that $\sigma \in C_0^2$. Assume furthermore (2.14, \mathcal{H}_{γ}) and (2.15, \mathcal{H}_{γ}), that V is C^3 with $\|\nabla^3 V\| \leq CV^{1/2}$ and that σ is C^3 with $\|\nabla^3 (\sigma \gamma\gamma)\| \leq CV^{1/2}$. Then, for every $\alpha \in (0,1)$, if A is large enough, then for every $x_0 \in \mathbb{R}^d$ and for every $t > 0$:

$$
d_{TV}(\bar{Y}_t^{x_0}, \nu_{\alpha(t)}) \leq C \left(\log^{1/2}(t) \max \left[V^2(x_0), 1 + |x_0| \right] t^{-\alpha} + e^{C \sqrt{\log(t)(1+|x_0|^2)} t^{C/2} \gamma_{\alpha}(\alpha t)} \right).
$$

(2.20)

Remark 2.2. Depending on the step sequence (γ_n), we can compare the two terms arising in the right-hand side of (2.20). For example, if $\gamma_n = \gamma_1 n^{-\eta}$ for some $\eta \in (1/2, 1]$, then

- If $\eta = 1$, then $\gamma_{\alpha}(\alpha t) \asymp e^{-Ct}$ and the first term is the dominating term.
- If $\eta \in (1/2, 1)$ then $\gamma_{\alpha}(\alpha t) \asymp (Ct)^{-\eta/(1-\eta)}$.

2.3 Extensions and interpolations of the processes

Let us define the following processes that will be used as auxiliary tools in the proofs.

- We define (X_t) as the solution the following SDE where the coefficients piecewisely depend on the time; X is then said to be "by plateau":

$$
X_0^{x_0} = x_0, \quad dX_t^{x_0} = b_{a_k+1}(X_t^{x_0})dt + a_{k+1} \sigma(X_t^{x_0})dW_t, \quad t \in [T_k, T_{k+1}],
$$

(2.21)

where b_a is defined in (2.6) and the time schedule (T_n) is defined by

$$
T_n := C(T) n^{1+\beta},
$$

(2.22)

where $C(T) > 0$, $\beta > 0$ and $a_n := a(T_n)$. More generally, we define $(X_t^{x,n})$ as the solution of

$$
X_0^{x,n} = x, \quad dX_t^{x,n} = b_{a_k+1}(X_t^{x,n})dt + a_{k+1} \sigma(X_t^{x,n})dW_t, \quad t \in [T_k - T_n, T_{k+1} - T_n], \quad k \geq n,
$$

(2.23)

i.e. $(X_t^{x,n})$ has the conditional law of $(X_{T_n+t})_{t \geq 0}$ given $X_{T_n} = x$. We have $X_t^0 = X_t^{x,0}$. The Markov transition kernel associated to $X^{x,n}$ denoted $P_t^{x,n}$ reads on Borel functions $f : \mathbb{R}^d \to \mathbb{R}^+$, $P_t^{x,n} f(x) = \mathbb{E}[f(X_t^{x,n})]$.

- Considering now the original SDE (2.5), we also define for every $x \in \mathbb{R}^d$ and every fixed $u \geq 0$:

$$
Y_{0,u}^x = x, \quad dY_{t,u}^x = b_{a(t+u)}(Y_{t,u}^x)dt + a(t+u) \sigma(Y_{t,u}^x)dW_t,
$$

(2.24)

so that $Y_x = Y_{0,0}^x$. We define the Markov transition kernel associated to Y between the times t and $t + u$ by $P_{t,u}^Y$, such that for all Borel functions $f : \mathbb{R}^d \to \mathbb{R}^+$, $P_{t,u}^Y f(x) = \mathbb{E}[f(Y_{t,u}^x)]$.

- Considering finally (2.17) and (2.18), we define for every $n \geq 0$, $(\bar{Y}_{t,\Gamma_n}^{x})_{t \geq 0}$, first at times $\Gamma_k - \Gamma_n$, $k \geq n$, by

$$
\bar{Y}_{0,\Gamma_n}^x = x, \quad \bar{Y}_{\Gamma_k-\Gamma_n,\Gamma_n}^x = \bar{Y}_{\Gamma_k-\Gamma_n,\Gamma_n}^x + \gamma_{k+1} \left(b_{a_k}(\bar{Y}_{\Gamma_k-\Gamma_n,\Gamma_n}^x) + \zeta_{k+1}(\bar{Y}_{\Gamma_k-\Gamma_n,\Gamma_n}^x) \right)

+ a(\Gamma_k) \sigma(\bar{Y}_{\Gamma_k-\Gamma_n,\Gamma_n}^x)(W_{\Gamma_k+1} - W_{\Gamma_k}),
$$

(2.25)
then at every time t by the genuine interpolation on the intervals $(\Gamma_k - \Gamma_n, \Gamma_{k+1} - \Gamma_n))_{k \geq n}$ as before. In particular $\tilde{Y}^x = \tilde{Y}_{30}^x$. Still more generally, we define $\tilde{Y}_{t,u}^x$, where $u \in (\Gamma_n, \Gamma_{n+1})$ as

$$
\tilde{Y}_{0,u}^x = x, \quad \tilde{Y}_{t,u}^x = \begin{cases}
 x + t(b_a(x) + \zeta_{n+1}(x)) + a^2(u)\sigma(x)(W_t - W_{t_n}) & \text{if } t \in [u, \Gamma_{n+1}] \\
 \tilde{Y}_{t-(\Gamma_{n+1}-u),\Gamma_{n+1}}^{x} & \text{if } t > \Gamma_{n+1}.
\end{cases}
$$

For $n, k \geq 0$, for $u \in [\Gamma_k, \Gamma_{k+1})$ and $\gamma \in [0, \Gamma_{k+1}-u]$, let $P^F_{\gamma,u}$ be the Markov transition kernel associated to $\tilde{Y}_{\gamma,u}$ between the times 0 and γ i.e. for all Borel functions $f : \mathbb{R}^d \to \mathbb{R}^+$, $P^F_{\gamma,u}f(x) = \mathbb{E}[f(\tilde{Y}_{x,u}^\gamma)]$.

3. Bounds in total variation for small t

In this section we give bounds for the total variation distance between the processes X, Y and \tilde{Y}. Although such bounds are straightforward for L^p-distances, they are more difficult to establish for d_{TV}. To this end we adopt a strategy similar to [BPP21].

For $x \in \mathbb{R}^d$ and for $a \in \mathbb{R}^+$ we define the "cut" drift $\tilde{b}_a^x : \mathbb{R}^d \to \mathbb{R}^d$ which is the drift b_a which is null outside a compact set centred on x. More precisely, we choose $R > 0$ and we consider a C^∞ decreasing function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\psi = 1$ on $[0, R^2]$ and $\psi = 0$ on $[(R+1)^2, \infty)$ and we define $\tilde{b}_a^x(y) := b_a(y)\psi(|y-x|^2)$, so that $|\tilde{b}_a^x|$ is bounded by $C(1+|x|)$ since b_a is Lipschitz-continuous.

For $\sigma : \mathbb{R}^d \to \mathcal{M}_d(\mathbb{R})$, we denote the martingale:

$$
M(\sigma)_0^x = x, \quad dM(\sigma)_t^x = \sigma(M(\sigma)_t^x)dW_t
$$

with its associated one-step Euler-Maruyama scheme:

$$
\tilde{M}(\sigma)_t^x = x + \sigma(x)W_t. \quad (3.2)
$$

Lemma 3.1. Let Z be solution of the following SDE:

$$
dZ_t^x = u(t)\sigma_x(Z_t^x)dW_t,
$$

where $u : \mathbb{R}^+ \to (0, \infty)$ is C^1 and bounded. Then $(Z_t) \sim (M(\sigma)_{F(t)}^t_{(0)}), \text{ where } F : \mathbb{R}^+ \to \mathbb{R}^+$ is solution of the differential equation

$$
F(0) = 0, \quad F'(t) = \frac{1}{u^2(F(t))}
$$

and where F^{-1} denotes the (continuous) inverse function of F.

Proof. First, F is well defined and is strictly increasing with $F(t) \to \infty$ as $t \to \infty$ since u is bounded, so that $F^{-1} : \mathbb{R}^+ \to \mathbb{R}^+$ is well defined as well. We have

$$
d\left(Z_{F(t)}^x\right)_t = u(F(t))\sigma_x(Z_{F(t)}^x)d\left(W_{F(t)}\right)_t = F'(t)^{1/2}u(F(t))\sigma_x(Z_{F(t)}^x)d\tilde{W}_t = \sigma_x(Z_{F(t)}^x)d\tilde{W}_t.
$$

where \tilde{W} is the Brownian motion defined by $\tilde{W}_t = \int_0^t F'(s)^{-1/2}dW_F(s)$. \hfill \Box

3.1 Total variation bound in small time for the Euler-Maruyama scheme

Proposition 3.2. Assume that $\sigma \in C^2_{Lip}$. There exists $C > 0$ such that for every $n, k \geq 0$, for every $u \in [\Gamma_k, \Gamma_{k+1})$ and every $t > 0$ such that $u \in [T_n, T_{n+1})$, $t \leq \Gamma_{k+1} - u$ and $u + t \in [T_n, T_{n+1})$,

$$
d_{TV}(X_t^{x,n}, \tilde{Y}_{t,u}^x) \leq C e^{Ca_n^{-1}(1+|x|^2)r/(2r+1)} + Ca_n^{-2}(a_n - a_{n+1}). \quad (3.3)
$$
We apply a strategy of proof similar to [BPP21, Theorem 2.2]. However we need to pay attention to the dependency of the constants in the bounds in \((a_n)\). Let us write
\[
d_{TV}(X_t^{x,n}, \tilde{Y}_t^{x,n}) \leq d_{TV}(X_t^{x,n}, \tilde{X}_t^{x,n}) + d_{TV}((\tilde{X}_t^{x,n}, Z_t^{x,n}) + d_{TV}(Z_t^{x,n}, \tilde{Z}_t^{x,n})
\]
where
\[
\begin{align*}
\tilde{X}_0^{x,n} &= x, & d\tilde{X}_t^{x,n} &= \tilde{b}_{n+1}^x(\tilde{X}_t^{x,n})dt + a_{n+1}\sigma(\tilde{X}_t^{x,n})dW_t, \\
Z_0^{x,n} &= x, & dZ_t^{x,n} &= a_{n+1}\sigma(Z_t^{x,n})dW_t, \\
\tilde{Z}_0^{x,n} &= x, & \tilde{Z}_t^{x,n} &= x + a_{n+1}\sigma(x)W_t.
\end{align*}
\]

- Using [BPP21, Lemma 3.2], we have
\[
d_{TV}(X_t^{x,n}, \tilde{X}_t^{x,n}) \leq C(1 + |x|^2)t,
\]
where the constant \(C\) does not depend on \(n\).

- We use [QZ04, Theorem 2.4] and we rework the bound from [BPP21, Lemma 3.5] to make explicit the dependency in \(a_n\). Reworking [BPP21, Lemma 3.4], we have for \(q \geq 1\):
\[
\begin{align*}
E \left[\sup_{s \in [0,t]} |U_s^{x,n}|^{2q} \right] &\leq C e^{C_q a_{n+1}^{\tau(1+|x|^2)}}, \\
U_0^{x,n} &= 1, & dU_s^{x,n} &= a_{n+1}^{-1} U_s^{x,n} \left(\sigma^{-1}(Z_s^{x,n}) \tilde{b}_{n+1}^x(Z_s^{x,n}), dW_s \right).
\end{align*}
\]
Moreover, following Lemma 3.1 we have \((Z_t^{x,n}) \sim (M(\sigma)^x)_{F(-1)(t)}\) where the process \((M(\sigma)_t)\) does not depend on \(n\) and where \(F(-1)(t) = a_{n+1}^2 t\). Thus following [Fri64, Chapter 9, Theorem 7] (also see [BPP21, Theorem 3.1] for the application to SDE’s) and since \(\sigma \in C_b^2\) we have
\[
|\nabla_x p_{M(\sigma)}(t, x, y)| \leq \frac{C}{t^{(d+1)/2}} e^{-c|y-x|^2/t} \tag{3.6}
\]
and then
\[
|\nabla_x p_{\bar{Z}}(t, x, y)| = |\nabla_x p_{M(\sigma)}(a_{n+1}^2 t, x, y)| \leq \frac{C}{t^{(d+1)/2}} e^{-c a_{n+1}^2 |y-x|^2/t} \leq \frac{C}{t^{(d+1)/2}} e^{-c|y-x|^2/t}.
\]
Then using [BPP21, Lemma 3.5] with the adapted bound on \(U_s^{x,n}\) (3.5) along with [QZ04, Theorem 2.4], we obtain
\[
d_{TV}(\bar{X}_t^{x,n}, \tilde{X}_t^{x,n}) \leq C e^{C a_{n+1}^{-1}(1+|x|^2)t^{1/2}}. \tag{3.7}
\]
The same way, we obtain
\[
d_{TV}(\bar{Z}_t^{x,n}, \tilde{Z}_t^{x,n}) \leq C e^{C a_{n+1}^{-1}(1+|x|^2)t^{1/2}}.
\]

- Following Lemma 3.1, we have \((Z_t^{x,n}) \sim (M(\sigma)^x)_{\alpha_{n+1}^{2+1}}\) and \((\tilde{Z}_t^{x,n}) \sim (\tilde{M}(\sigma)^x)_{\alpha_{n+1}^{2+1}}\), where both processes \(M(\sigma)\) and \(\tilde{M}(\sigma)\) do not depend on \(n\). We then use [BPP21, Theorem 2.2] to get
\[
d_{TV}(M(\sigma)_t^{x,n}, \tilde{M}(\sigma)_t^{x,n}) \leq C e^{C|x|^2 t^{r/(2r+1)}}
\]
which implies
\[
d_{TV}(Z_t^{x,n}, \tilde{Z}_t^{x,n}) \leq C e^{C|x|^2 a_{n+1}^{2r/(2r+1)} + C|x|^2 t^{r/(2r+1)} \leq C e^{C|x|^2 t^{r/(2r+1)}}.
\]
• Let us now investigate $d_{TV}(\bar{X}_t^{x,n}, \bar{Y}_t^{x,u})$. Conditionally to $\zeta(x)$, both random vectors are Gaussian vectors with

$$\bar{X}_t^{x,n} \sim \mathcal{N}\left(x + tb_{a+1}(x), a_{n+1}^2t\sigma\sigma^\top(x)\right) \quad \text{and} \quad \bar{Y}_t^{x,u} \sim \mathcal{N}\left(x + tb_{a}(x) + t\zeta(x), a^2(u)t\sigma\sigma^\top(x)\right).$$

Then, conditionally to $\zeta(x)$ we have

$$d_{TV}(\bar{X}_t^{x,n}, \bar{Y}_t^{x,u}) \leq d_{TV}\left(\mathcal{N}\left(x + tb_{a+1}(x), a_{n+1}^2t\sigma\sigma^\top(x)\right), \mathcal{N}\left(x + tb_{a}(x) + t\zeta(x), a_{n+1}^2t\sigma\sigma^\top(x)\right)\right)$$

$$+ d_{TV}\left(\mathcal{N}\left(x + tb_{a}(x) + t\zeta(x), a_{n+1}^2t\sigma\sigma^\top(x)\right), \mathcal{N}\left(x + tb_{a}(x) + t\zeta(x), a^2(u)t\sigma\sigma^\top(x)\right)\right)$$

$$=: D_1 + D_2.$$

We then refer to [DMR18] which gives bounds on the total variation between two Gaussian laws, first in the case $d > 1$. Using [DMR18, Theorem 1.1] with $\lambda_1 = \ldots = \lambda_d = (a(u)^2 - a_{n+1}^2)/a_{n+1}^2$, we have

$$D_2 \leq C\left(\frac{a^2(u) - a_{n+1}^2}{a_{n+1}^2}\right) \leq Ca_n^{-1}(a_n - a_{n+1}).$$

Using [DMR18, Theorem 1.2], since the ρ_i's are bounded independently of n and since for every $y \in \mathbb{R}^d$, $y^\top\sigma\sigma^\top(x)y \geq a_0^2||y||^2$, we have

$$D_1 \leq C\sqrt{n}a_n^{-1}(1 + |\zeta(x)|^{1/2}).$$

Now, integrating over the law of $\zeta(x)$ and using that $\mathbb{E}(|\zeta(x)|) \leq CV(x)$, we obtain

$$d_{TV}(\bar{X}_t^{x,n}, \bar{Y}_t^{x,u}) \leq Ca_n^{-1}(a_n - a_{n+1}) + C\sqrt{t}(1 + V^{1/2}(x)).$$

In the case $d = 1$, we use [DMR18, Theorem 1.3] and obtain the same bounds.

• Conclusion: Considering (3.4), we get

$$d_{TV}(X_t^{x,n}, Y_t^{x,u}) \leq C(1 + |x|^2)t + Ce^{Ca_n^{-1}(1+|x|^2)t^{1/2}} + Ce^{C|x|^2t^{(2r+1)}}$$

$$+ Ca_n^{-1}(a_n - a_{n+1}) + C\sqrt{t}(1 + V^{1/2}(x))$$

$$\leq Ce^{Ca_n^{-1}(1+|x|^2)t^{1/2} + Ca_n^{-1}(a_n - a_{n+1})^{2r/(2r+1)}}.$$

3.2 Total variation bound in small time for the continuous SDE

Proposition 3.3. Assume that $r \in C_{b,2}$ and let $\bar{t} > 0$. There exists $C > 0$ such that for all $\varepsilon > 0$, $n \geq 0$, $u, t \geq 0$ such that $u \in [T_n, T_{n+1}]$, $u + t \in [T_n, T_{n+1}]$ and $t \leq \bar{t}$,

$$d_{TV}(X_t^{x,n}, Y_t^{x,u}) \leq Ce^{Ca_n^{-1}(1+|x|^2)t^{1/2} + Ca_{n+1}^{-1}(a(u) - a_{n+1})^{2r/(2r+1)}}.\quad (3.8)$$

Proof. We have

$$d_{TV}(X_t^{x,n}, Y_t^{x,u}) \leq d_{TV}(X_t^{x,n}, \tilde{X}_t^{x,n}) + d_{TV}(\tilde{X}_t^{x,n}, \tilde{Z}_t^{x,n}) + d_{TV}(Z_t^{x,n}, \tilde{Z}_t^{x,n})$$

$$+ d_{TV}(Z_t^{x,u}, \tilde{Y}_t^{x,u}) + d_{TV}(\tilde{Y}_t^{x,u}, Y_t^{x,u})\quad (3.9)$$

where

$$d\tilde{X}_t^{x,n} = \tilde{b}_a(x)dt + a_{n+1}\sigma(\tilde{X}_t^{x,n})dW_t,$$
\[dZ_t^{x,n} = a_{n+1}\sigma(Z_t^{x,n})dW_t, \]
\[d\tilde{Z}_t^{x,u} = a(u + t)\sigma(\tilde{Z}_t^{x,u})dW_t, \]
\[d\tilde{Y}_{t,u} = \tilde{b}_a(u + t)(\tilde{Y}_{t,u})dt + a(u + t)\sigma(\tilde{Y}_{t,u})dW_t. \]

Using [BPP21, Lemma 3.2], we have
\[d_{TV}(X_t^{x,n}, \tilde{X}_t^{x,n}) + d_{TV}(\tilde{Y}_{t,u}, Y_{t,u}) \leq C(1 + |x|^2)t. \]

Using (3.7) again, we have
\[d_{TV}(\tilde{X}_t^{x,n}, Z_t^{x,n}) \leq C e^{C a_{n+1}^{-1}(1+|x|^2)t^{1/2}}. \]

Moreover, using [QZ04, Theorem 2.4] (with an immediate adaptation to the non-homogeneous case) and establishing the same bounds as in [BPP21, Lemma 3.5], we also have
\[d_{TV}(\tilde{Z}_{t,u}, Y_{t,u}) \leq C e^{C a_{n+1}^{-1}(1+|x|^2)t^{1/2}}. \]

(3.10)

We now turn to \(d_{TV}(Z_t^{x,n}, \tilde{Z}_{t,u}) \). Using Lemma 3.1 as in (3.6) we have
\[|\nabla_y p_x(t, x, y)| = |\nabla_y p_{M(\sigma)}(a_{n+1}, t, x, y)| \leq C \frac{a_{n+1}^{-(d+r)}}{t(d+r)/2} e^{-c|x-y|^2/t}. \]

To bound \(p_Z \) we use the change of time \(F \) satisfying \(F'(t) = a^{-2}(u + F(t)) \) so that
\[a_n^{-2}t \leq F(t) \leq a_{n+1}^2t \quad \text{and} \quad a_n^2 t \leq F^{-1}(t) \leq a_{n+1}^2t \]

and then
\[|\nabla_y p_{\tilde{Z}}(t, x, y)| = |\nabla_y p_{M(\sigma)}(F^{-1}(t), x, y)| \leq C \frac{a_{n+1}^{-(d+r)}}{t(d+r)/2} e^{-c|x-y|^2/t}. \]

We prove as in [BP21, Lemma 6.2] that
\[\|Z_t^{x,n} - \tilde{Z}_{t,u}\|_1 \leq C(a(u) - a_{n+1})t^{1/2} \]

and then using [BPP21, Proposition 2.3] we get for every \(\varepsilon > 0 \):
\[d_{TV}(Z_t^{x,n}, \tilde{Z}_{t,u}) \leq C a_{n+1}^{-(d+r)}a^2t^{-r} + C \varepsilon^{-1/2}(a(u) - a_{n+1})t^{1/2}. \]

Choosing \(\varepsilon = (a(u) - a_{n+1})^{2/(2r+1)}t \) yields
\[d_{TV}(Z_t^{x,n}, \tilde{Z}_{t,u}) \leq C a_{n+1}^{-(d+r)}(a(u) - a_{n+1})^{2r/(2r+1)}. \]

Conclusion: considering (3.9), we get
\[d_{TV}(X_t^{x,n}, Y_{t,u}) \leq C(1 + |x|^2)t + C e^{C a_{n+1}^{-1}(1+|x|^2)t^{1/2}} + C a_{n+1}^{-(d+r)}(a(u) - a_{n+1})^{2r/(2r+1)}. \]

\[\square\]

Remark 3.4. As in [BPP21, Theorem 2.3], we could improve the dependency in \(|x| \) in (3.3) and (3.8), at the expense of further assumptions on \(V \). However it would require to track the dependency in the ellipticity in \(a_n \) in the bounds proved in [MPZ21], which rely on Malliavin calculus. We believe that it would considerably increase the length and the technicality of the present article, while bringing no significant improvement to our final results.
4 Convergence of the plateau SDE X_t in total variation

In this section, we prove the convergence of the plateau SDE X_t defined in (2.21).

4.1 Exponential contraction in total variation

We first show that the property of exponential contraction that holds for the L^1-Wasserstein distance under the setting described in Section 2.1 (see [BP21, Theorem 4.2]) also holds for the total variation distance.

Theorem 4.1. Let X be the solution to

$$X_0^x = x, \quad dX_t^x = b_a(X_t^x)dt + a\sigma(X_t^x)dW_t,$$

with $a \in (0,A]$ and where b_a is defined in (2.6), so that ν_a defined in (2.3) is the unique invariant distribution of X ([PP20, Proposition 2.5]). Let $t_0 \in (0,1]$. Under the assumption $(2.12, \mathcal{H}_{c.f})$, we have

- For every $x, y \in \mathbb{R}^d$ and for every $t \geq t_0$ we have

$$d_{\text{TV}}(X_t^x, X_t^y) \leq Ce^{-C_1/a^2}e^{-\rho_a t}|x-y|, \quad \rho_a := e^{-C_2/a^2}. \tag{4.2}$$

- For every $x \in \mathbb{R}^d$ and for every $t \geq t_0$ we have

$$d_{\text{TV}}(X_t^x, \nu_a) \leq Ce^{-C_1/a^2}e^{-\rho_a t}\nu_a(|x-\cdot|). \tag{4.3}$$

Proof. (a) Following [BP21, Theorem 4.2], we have

$$\forall x, y \in \mathbb{R}^d, \ W_1(X_t^x, X_t^y) \leq Ce^{C_1/a^2}|x-y|e^{-\rho_a t}. \tag{4.1}$$

Let $t \geq t_0$ and let $f : \mathbb{R}^d \to \mathbb{R}$ a Borel bounded function. Then

$$\mathbb{E}[f(X_t^x)] - \mathbb{E}[f(X_t^y)] = \mathbb{E}[P_{t_0}^X f(X_{t_0}^x)] - \mathbb{E}[P_{t_0}^X f(X_{t_0}^y)].$$

where P^X denotes the kernel associated to X. But using [PP20, Proposition 3.1] we have for every z_1 and $z_2 \in \mathbb{R}^d$,

$$P_{t_0}^X f(z_2) - P_{t_0}^X f(z_1) = \langle \nabla P_{t_0}^X f(\xi), z_2 - z_1 \rangle = \frac{1}{t_0} \mathbb{E} \left[f(X_{t_0}^\xi) \left(\int_0^{t_0} \left(a^{-1} - a^{-1}X_t^\xi Y_t^\xi \right) dW_t, z_2 - z_1 \right) \right],$$

where $\xi \in (z_1, z_2)$ and $(Y_s^\xi)_{s \geq 0}$ denotes the tangent process of (X_t^ξ), i.e.

$$Y_0^\xi = I_d, \quad dY_s^\xi = \nabla b_a(X_s^\xi)Y_s^\xi ds + a\nabla \sigma(X_s^\xi)Y_s^\xi \otimes dW_s. \tag{4.4}$$

Since $\nabla \sigma$ and ∇b_a are bounded (uniformly in a), we have

$$\sup_{\xi \in \mathbb{R}^d, s \in [0,t_0]} \mathbb{E}\|Y_s^\xi\|_2^2 < +\infty,$$

where the bound does not depend on a. So that

$$P_{t_0}^X f(z_2) - P_{t_0}^X f(z_1) \leq C\|f\|_\infty|z_2 - z_2|a^{-1}\sup_{\xi \in \mathbb{R}^d, s \in [0,t_0]} \mathbb{E}\|Y_s^\xi\|_2,$$

and then $[P_{t_0}^X f]_{\text{Lip}} \leq Ca^{-1}\|f\|_\infty$. Then we obtain

$$d_{\text{TV}}(X_t^x, X_t^y) \leq Ca^{-1}W_1(X_{t_0}^x, X_{t_0}^y) \leq Ce^{-C_1/a^2}e^{-\rho_a t}|x-y|. \tag{4.5}$$

(b) As ν_a is the invariant distribution of the diffusion (4.1) we have

$$d_{\text{TV}}(X_t^x, \nu_a) \leq \int d_{\text{TV}}(X_t^x, X_t^y) \nu_a(dy) \leq Ce^{C_1/a^2}e^{-\rho_a t}\int |x-y|\nu_a(dy) \leq Ce^{C_1/a^2}e^{-\rho_a t}\nu_a(|x-\cdot|). \tag{4.6}$$

4.2 Convergence of the plateau SDE

Let \((T_n) \) be the time schedule defined in (2.22) and by a slight abuse of notation we define

\[
a_n := a(T_n) = \frac{A}{\sqrt{\log(T_n + e)}} \quad \text{and} \quad \rho_n := e^{-C_2/a_n^2}.
\]

(4.5)

We recall that [BP21, Lemma 4.3]

\[
0 \leq a_n - a_{n+1} \asymp (n \log^{3/2}(n))^{-1}.
\]

(4.6)

Proposition 4.2. Let \(\nu_n, a \in (0,A] \), be the Gibbs measure defined in (2.3). Assume that \(V \) is coercive, that \((x \mapsto |x|^2e^{-2V(x)/A^2}) \in L^1(\mathbb{R}^d) \) and (2.2, \(H_{\nu_1} \)). Then for \(n \geq 2 \),

\[
d_{TV}(\nu_n, \nu_0) \leq \frac{C}{n \log(n)}.
\]

(4.7)

Moreover, for every \(s, t \in [a_{n+1}, a_n] \), we have

\[
d_{TV}(\nu_s, \nu_t) \leq \frac{C}{n \log(n)}.
\]

(4.8)

The proof is given in the Appendix A.1.

We now prove the convergence of the SDE "by plateaux" for the total variation distance.

Theorem 4.3. Let \(X \) be the process defined in (2.21) and (2.23). Let \(t_0 \) be defined as in Theorem 4.1. If \(A > \max(\sqrt{(1 + \beta)^{-1}C_2}, \sqrt{(1 + \beta)^{-1}C_1}) \) where \(C_1 \) and \(C_2 \) are defined in (4.2), then for all \(x_0 \in \mathbb{R}^d \) and for all \(C_1(T) < C(T) \), for all large enough \(n \geq n(C_1(T)) \), on the time schedule \((T_n) \) we have

\[
d_{TV}(X_{T_n}^{x_0}, \nu_{a_n}) \leq Ca_n^{-1}n^{-1+(\beta+1)/A} \exp\left(-\left(C_1(T_n)^{-1}C_2/A^2 + 1 + |x_0|\right)\right) (1 + |x_0|) \]

(4.9)

and for every \(t \in \mathbb{R}^+ \setminus \bigcup_{n \geq 1} [T_n, T_n + t_0] \) we have

\[
d_{TV}(X_{T_n}^{x_0}, \nu_{a(t)}) \leq \frac{C(1 + |x_0|)}{t^{(1 + \beta)^{-1}C_1/A^2} \log(t + e)}.
\]

(4.10)

Proof. For fixed \(x \in \mathbb{R}^d \) and using Theorem 4.1, we have for every bounded Borel function \(f : \mathbb{R}^d \to \mathbb{R} \),

\[
E[f(X_{T_n+1}^{x_0} - T_n)] - E[f(Z_{a_{n+1}})] \leq C a_n^{-1} e^{C_1/a_n^2} e^{-\rho_{a_{n+1}}(T_{n+1} - T_n)} \| f \|_\infty |X - Z_{a_{n+1}}|,
\]

where \(Z_{a_{n+1}} \sim \nu_{a_{n+1}} \). Now integrating \(x \) with respect to the law of \(X_{T_n}^{x_0} \) yields

\[
d_{TV}(X_{T_n+1}^{x_0}, \nu_{a_{n+1}}) \leq C a_n^{-1} e^{C_1/a_n^2} e^{-\rho_{a_{n+1}}(T_{n+1} - T_n)} \left(W_1(X_{T_n}^{x_0}, \nu_0) + W_1(\nu_{a_{n+1}}, \nu_{a_n}) \right)
\]

\[
\leq C a_n^{-1} e^{C_1/a_n^2} e^{-\rho_{a_{n+1}}(T_{n+1} - T_n)} \left(1 + |x_0| \right),
\]

\[
\mu_n := e^{C_1/a_n^2} e^{-\rho_{a_{n+1}}(T_{n+1} - T_n)}
\]

(4.11)

where we used [BP21, Theorem 5.1] and [BP21, Proposition 4.4]. We use the bound on \(\mu_n \) given by [BP21, (5.5)]. Then to bound \(d_{TV}(X_{T_n}^{x_0}, \nu_{a_{n+1}}) \) for any \(t \in (T_n + t_0, T_{n+1}) \), we apply Theorem 4.1 on the time interval \([T_n, t] \) which length is not smaller than \(t_0 \) and we conclude as in the proof of [BP21, Theorem 5.1].

Remark 4.4. The condition that \(t \) does not belong in any interval \([T_n, T_n + t_0] \) is a technical condition which is specific to our strategy of proof. However this condition is not a problem for the convergence of \(Y_t \) since for these two processes, the time schedule \((T_n) \) is only a tool for the proof.
5 Convergence of Y_t in total variation

We now consider (Y_t) as defined in (2.5) with extended definition (2.24).

5.1 Preliminary lemmas

Lemma 5.1. Let $\lambda \in \mathbb{R}^+$. There exists $C > 0$ such that for every $n \geq 0, u \geq 0$ and every $x \in \mathbb{R}^d$:

$$\sup_{t \geq 0} E \left[e^{\lambda |X^{x,n}_t|^2} \right] \leq C e^{\lambda |x|^2} \quad \text{and} \quad \sup_{t \geq 0} E \left[e^{\lambda |Y^{x,n}_t|^2} \right] \leq C e^{\lambda |x|^2}. \quad (5.1)$$

Sketch of proof. By Itô’s Lemma, we have for $k \geq n$ and for $t \in [T_k - T_n, T_{k+1} - T_n]$:

$$d \left(e^{\lambda |X^{x,n}_t|^2} \right) = \lambda e^{\lambda |X^{x,n}_t|^2} \left(2 \langle X^{x,n}_t, dX^{x,n}_t \rangle + d \langle X^{x,n}_t \rangle_t \right) + 2\lambda^2 |X^{x,n}_t|^2 e^{\lambda |X^{x,n}_t|^2} d \langle X^{x,n}_t \rangle_t$$

$$= \lambda e^{\lambda |X^{x,n}_t|^2} \left(-2 \langle \sigma \nabla V(X^{x,n}_t), X^{x,n}_t \rangle dt + 2a_{n+1} \langle X^{x,n}_t, Y(X^{x,n}_t) \rangle dt \right)$$

$$+ 2\lambda^2 e^{\lambda |X^{x,n}_t|^2} a_{n+1}^2 (X^{x,n}_t) \sigma (X^{x,n}_t) dW_t + a_{n+1}^2 \text{Tr}(\sigma \sigma^T(X_t)) dt$$

the "dominating" term is $-\langle \sigma \nabla V(X^{x,n}_t), X^{x,n}_t \rangle dt$ which makes $E[e^{\lambda |X^{x,n}_t|^2}]$ decrease. Using assumption (2.12, \mathcal{H}_{cf}), we have for $|X^{x,n}_t|$ large enough,

$$-\langle \sigma \nabla V(X^{x,n}_t), X^{x,n}_t \rangle \leq -C\sigma_0^2 \alpha_0 |X^{x,n}_t|^2.$$

Moreover, using the facts that Y and σ are bounded, that $\alpha_n \to 0$, that $|\nabla V| \leq CV^{1/2}$ and that $\sigma^T \geq \sigma_0^2 I_d$, for large enough $|X^{x,n}_t|$ and large enough n, the coefficient in dt in the last equation is negative. We deal with the cases where $|X^{x,n}_t|$ is not large enough or where n is not large enough the same way as in the proof of [BP21, Lemma 6.1] and [BP21, Lemma 7.1], where more details can be found.

The proof is the same for Y, replacing a_{k+1} by $a(u + t)$.

Proposition 5.2. Let $T, \bar{\gamma} > 0$. There exists $C > 0$ such that for every Borel bounded function $f : \mathbb{R}^d \to \mathbb{R}$ and every $t \in (0, T]$, for all $n \geq 0$, for all $u < \bar{\gamma}$ such that $u \in [T_n, T_{n+1})$ and $u + t + \gamma \in [T_n, T_{n+1})$,

$$\left| E \left[P_t^{Y,x} f(Y^{x,u}_\gamma) \right] - E \left[P_t^{X,x} f(X^{x,n}_\gamma) \right] \right| \leq C a_{n+1}^2 (a_n - a_{n+1}) \| f \|_{\infty} t^{-1} V(x). \quad (5.2)$$

Proof. We apply [BP21, Proposition 6.4] to $g_t := P_t^{X,x} f$ with $t > 0$. Following [PP20, Proposition 3.2(b)], we have

$$\Phi_{g_t}(x) \leq C \| f \|_{\infty} a_{n+1}^{-2} t^{-1} \max \left(V^{1/2}(x), \sup_{\xi \in (x^{x,n}, Y^{x,u}_\gamma)} V^{1/2}(\xi) \right) \| f \|_{2} \sup_{\xi \in (x, X^{x,n}_\gamma)} V^{1/2}(\xi).$$

We conclude as in the proof of [BP21, Proposition 6.5].
5.2 Proof of Theorem 2.1(a)

More precisely, we prove that for all $\beta > 0$, if

$$A > \max \left(\sqrt{(\beta + 1)(2C_1 + C_2)}, \sqrt{(1 + \beta^{-1})C_2} \right),$$

then

$$d_{TV} \left(Y^x_{it}, \nu_{a(t)} \right) \leq \frac{C_{0}C_{1} \sqrt{\log(t) (1 + |x_0|^2)} \over \ell t^{(1 + \beta)^{-1} - (2C_1 + C_2)/A^2}.}$$

Proof. We follow the proof of [BP21, Theorem 2.1(b)] in [BP21, Section 7.3] based on a domino strategy with respect to some decreasing step sequence (γ_n), even though Y is not an Euler-Maruyama scheme. In this case, the step sequence (γ_n) is only a tool for the proof. This way we can choose freely the sequence (γ_n) in this section. We use Theorem 4.1 in place of [BP21, Theorem 4.2] and Proposition 5.2 in place of [BP21, Proposition 7.4]. For $f: \mathbb{R}^d \to \mathbb{R}$ bounded measurable and for $x \in \mathbb{R}^d$ we write

$$\begin{align*}
\left| Ef(X^n_{T_{n+1}}) - \mathbb{E} f(Y^n_{T_{n+1}}) \right| & \leq \left| (P^n_{\gamma_{\text{init}},T_{n+1}}) f(x) \right| + \sum_{k=N(T_{n+1})+1} \left| (P^n_{\gamma_{\text{end}},T_{n+1} - T_{k}}) f(x) \right| \leq \sum_{k=N(T_{n+1})+1} \left| (P^n_{\gamma_{\text{end}},T_{n+1} - T_{k}}) f(x) \right| \\
& := (a) + (b) + (c),
\end{align*}$$

where

$$\gamma_{\text{init}} := \Gamma_{N(T_{n+1})+1} - T_{n+1} \leq (\gamma_{N(T_{n+1})} + 1) \quad \text{and} \quad \gamma_{\text{end}} := T_{n+1} - \Gamma_{N(T_{n+1})} \leq (\gamma_{N(T_{n+1})} + 1).$$

Then we have

$$(a) \leq C a^{-3} e^{-\rho_{k+1} \Gamma_{k}} \sum_{k=N(T_{n+1})+1} \frac{N(T_{n+1}-T_{k}^{-1})}{\gamma_{k} e^{\rho_{k+1} \Gamma_{k}}} \leq C a^{-3} e^{-\rho_{k+1} \Gamma_{k}} |f|_{\infty} (a_{n+1} - a_{n+1}) V(x) \rho_{k+1}^{-1}.$$

We obtain likewise

$$(c) \leq C a^{-3} e^{-\rho_{k+1}(T_{n+1} - T_{n})} |f|_{\infty} (a_{n+1} - a_{n+1}) V(x) \rho_{k+1}^{-1}.$$

Applying Proposition 5.2 yields

$$(b) \leq C a^{-2} (a_{n+1} - a_{n+1}) |f|_{\infty} V(x) \sum_{k=N(T_{n+1})+1} \frac{\gamma_{k}}{T_{n+1} - \Gamma_{k}} \leq C a^{-2} (a_{n+1} - a_{n+1}) |f|_{\infty} V(x) \log(1/\gamma_{N(T_{n+1})}).$$

Applying Proposition 3.3 with $r = 1$ along with Lemma 5.1 yields

$$(c) \leq C |f|_{\infty} \left(C a^{-1} (1 + |x|^2)^{1/2} \gamma_{N(T_{n+1})} + a^{-2 d/3} (a_{n+1} (T_{n+1} - \gamma_{N(T_{n+1})}) - a_{n+1})^{2/3} \right).$$
But we have
\[a(T_{n+1} - \gamma N(T_{n+1})) - a_{n+1} = a(T_{n+1} - \gamma N(T_{n+1})) - a(T_{n+1}) \leq C \frac{da}{dt}(T_{n+1}) \cdot \gamma N(T_{n+1}) \leq \frac{C \gamma N(T_{n+1})}{T_{n+1}}. \]
We now choose \(\gamma_n = \gamma_1 n^{-2/3} \) so that \(\gamma N(T_n) \leq n^{-2} \) and then
\[(\text{end}) \leq C e^{C a_{n+1}^{-1}(1 + |x|^2)} n^{-1}. \]
This way we obtain for every \(x \in \mathbb{R}^d \):
\[|\mathbb{E} f(X^n_{T_{T_{n+1}} - T_n}) - \mathbb{E} f(Y^n_{T_{T_{n+1}} - T_n})| \leq C \|f\|_\infty a_{n+1}^{-3} e^{C a_{n+1}^{-2} (a_n - a_{n+1}) V(x) + \rho_n^{-1} \rho_n} e^{C a_{n+1}^{-1}(1 + |x|^2)}. \quad (5.5) \]
We integrate this inequality with respect to the laws of \(X^n_{T_n} \) and \(Y^n_{T_n} \) and obtain, temporarily setting \(x_n := X^n_{T_n} \) and \(y_n := Y^n_{T_n} \) and using [BP21, Lemma 6.1] and Lemma 5.1,
\[\text{dTV}(X^n_{T_{n+1}}, Y^n_{T_{n+1}}) \leq \text{dTV}(X^n_{T_{n+1} - T_n}, Y^n_{T_{n+1} - T_n}) + \text{dTV}(X^n_{T_{n+1} - T_n}, Y^n_{T_{n+1} - T_n}) \]
\[\leq C a_{n+1}^{-1} e^{C a_{n+1}^{-2} e^{a_{n+1} + (T_{n+1} - T_n)}} \text{dTV}(X^n_{T_{n+1}}, Y^n_{T_n}) + C w_n e^{C a_{n+1}^{-1}(1 + |x|^2)}, \quad \text{where} \mu_n \text{is defined in (4.11). Iterating this inequality yields} \]
\[\text{dTV}(X^n_{T_{T_{n+1}}}, Y^n_{T_{T_{n+1}}}) \leq C (w_{n+1} + \mu_{n+1} w_n + \cdots + \mu_{n+1} \cdots \mu_{n} w_1) \leq C w_{n+1}, \]
where we used, since \(A \) satisfies (5.3), that \(\mu_n = O(e^{-C n^\eta}) \) for some \(\eta > 0 \) (see [BP21, (5.5)]) and that \(w_n \) is bounded as it converges to 0. Moreover using Theorem 4.3 we have
\[\text{dTV}(Y^n_{T_{T_{n+1}}}, \nu_{T_{n+1}}) \leq \text{dTV}(X^n_{T_{T_{n+1}}}, Y^n_{T_{n+1}}) + \text{dTV}(X^n_{T_{T_{n+1}}}, \nu_{T_{n+1}}) \leq C e^{C \frac{\sqrt{\log(n)(1 + |x|^2)}}{n^{\beta + 1} (C_1 + C_2)/2}}, \quad (5.6) \]
Finally, let us bound \(\text{dTV}(X^n_{T_{T_{n+1}}}, Y^n_{T_{n+1}}) \) for any \(t \in [T_n, T_{n+1}] \). If \(t \in [T_n + t_0, T_{n+1}] \) then we can apply Theorem 4.1 and we proceed as in the end of [BP21, Section 6.3]. If \(t \in [T_n, T_n + t_0] \), then we consider another shifted time schedule \(T_n := C (T_{n+1} + 2 t_0) \) such that
\[\bigcup_{i=0}^\infty [T_n, T_n + t_0] \cap \bigcup_{i=0}^\infty [T_n, T_n + t_0] = \emptyset. \]
Making use of the new time schedule we obtain as before a bound on \(\text{dTV}(Y^n_{T_{T_{n+1}}}, \nu_{T_{n+1}}) \) for every \(t \notin \bigcup_{i=0}^\infty [T_n, T_n + t_0] \). Since the time schedules \((T_n) \) and \((T_n) \) are only tools for the proof of convergence of \(Y_t \), we then obtain a bound on \(\text{dTV}(Y_t, \nu_{T_{n+1}}) \) for every \(t \in \mathbb{R}^+ \).

6 Convergence of the Euler-Maruyama scheme in total variation

We now consider \((\tilde{Y}_n) \) as in (2.17) with extended definition (2.25).
6.1 Preliminary lemmas

Lemma 6.1. Let \(\lambda \in \mathbb{R}^+ \). There exists a constant \(C > 0 \) such that for every \(k \geq 0 \), for every \(u \in [\Gamma_k, \Gamma_{k+1}] \) and for every \(x \in \mathbb{R}^d \):

\[
\sup_{n \geq k+1} \mathbb{E} \left[e^{\lambda |Y_{t_n,u,n}^x|} \right] \leq C e^{\lambda |x|^2}.
\]

(6.1)

Proof. The proof is the same as for Lemma 5.1. For the adaptation to discrete time, we refer to the proof of [BP21, Lemma 7.1].

Proposition 6.2. Let \(T > 0 \). There exists \(C > 0 \) such that for every Lipschitz continuous function \(f \) and every \(t \in (0, T) \), for all \(n \geq 0 \), for all \(\gamma \) such that \(\Gamma_k \in [T_n, T_{n+1}] \), \(\gamma \leq \gamma_{k+1} \) and \(\Gamma_k + t + \gamma \in [T_n, T_{n+1}] \),

\[
\mathbb{E} \left[P_t f(Y_{\gamma_{k+1}, \gamma_k}^x) \right] - \mathbb{E} \left[P_t f(X_{t_n}^x) \right]
\leq C \| f \|_{\infty} V^2(x) \left(a_{n+1} - t^{-1} \right) \left(\gamma^2 + (a(\Gamma_k) - a_{n+1}) \gamma + a_{n+1} \beta \right).
\]

(6.2)

Proof. The proof is the same as the proof of Proposition 5.2, using [BP21, Proposition 7.3]. We also remark that we can directly improve the bound in \((a_n - a_{n+1}) \) into \((a(\Gamma_k) - a_{n+1}) \).

6.2 Proof of Theorem 2.1(b)

More precisely, we prove that for all \(\beta > 0 \), if \(\sigma \in \mathbb{R}^d \) and if

\[
A > \max \left(\sqrt{(\beta + 1)(2C_1 + C_2)}, \sqrt{(1 + \beta^{-1})C_2} \right)
\]

and if \(A \) is large enough so that

\[
n_1^{(\beta+1)C_1/A^2} \gamma^{r/(2r+1)}(\Gamma_k) \xrightarrow{n \to \infty} 0,
\]

then

\[
d_{TV}(\gamma_{k+1}, \nu_{t_n}) \leq C \left(\log^{1/2}(t) \max \left[V^2(x_0), 1 + |x_0| \right] + \sqrt{\log(t)(1+|x_0|^2)} C_1 A^2 \gamma^{r/(2r+1)} \right).
\]

(6.5)

Proof. We still follow the proof of [BP21, Theorem 2.1(b)] in [BP21, Section 7.3] based on a domino strategy, using Theorem 4.1 in place of [BP21, Theorem 4.2] and Proposition 6.2 in place of [BP21, Proposition 7.4]. Let \(n \geq 0 \), for \(f : \mathbb{R}^d \to \mathbb{R} \) bounded measurable, we split \(|\mathbb{E} f(X_{T_{n+1}}^x) - \mathbb{E} f(Y_{T_{n+1}^x + \Gamma_k}^x)| \) into four terms \((\gamma^{	ext{init}}), (\alpha), (\beta), (\gamma^{	ext{end}})\).

Using Theorem 4.1, [BP21, Lemma 7.1] and Proposition 6.2 we get as in [BP21, Section 7.3]:

\[
(a) \leq C a_n^{-4} e^{C_1 a_n^2} \| f \|_{\infty} (a_n - a_{n+1}) V^2(x) \rho_{n+1}.
\]

(\gamma^{	ext{init}}) \leq C a_n^{-4} e^{C_1 a_n^2} e^{-\rho_n(T_{n+1} + \Gamma_k)} \| f \|_{\infty} (a_n - a_{n+1}) \gamma_{n+1} V^2(x).

Using Proposition 6.2 and [BP21, Lemma 7.1], we obtain

\[
(b) \leq C a_n^{-3} \left(\gamma_{n+1} V^2(x) \sum_{k=N(T_{n+1}+\Gamma_k)}^{N(T_{n+1})} \frac{\gamma_k}{(T_{n+1} - \Gamma_k)^{3/2}} \right) + C a_n^{-2} \left(\sum_{k=N(T_{n+1}+\Gamma_k)}^{N(T_{n+1})} \frac{\gamma_{n+1}}{T_{n+1} - \Gamma_k} \right) \| f \|_{\infty} V^2(x).
\]

16
But we remark that
\[a(T_k) - a_n = a(T_{n+1}) \leq C \frac{d a}{dt} (T_{n+1}) \cdot (\Gamma_k - T_{n+1}) \leq \frac{C (\Gamma_k - T_{n+1})}{T_{n+1} \log^{3/2} (T_{n+1})} \]
and then
\[
(b) \leq C a_n^{-3} \left(\gamma_N(T_{n+1} - T) + \sqrt{\gamma_N(T_{n+1} - T)} (a_n - a_{n+1}) \right) \| f \|_{\infty} V^2(x) \int_{T_{n+1} - T}^{T_{n+1} - \gamma_N(T_{n+1})} \frac{du}{(T_{n+1} - u)^{3/2}} \\
+ C a_n^{-2} \left(\gamma_N(T_{n+1} - T) \int_{T_{n+1} - T}^{T_{n+1} - \gamma_N(T_{n+1})} \frac{du}{T_{n+1} - u} + \frac{1}{T_{n+1}} \int_{T_{n+1} - T}^{T_{n+1} - \gamma_N(T_{n+1})} du \right) \| f \|_{\infty} V^2(x) \\
\leq C a_n^{-3} \left(\gamma_N(T_{n+1} - T) + \sqrt{\gamma_N(T_{n+1} - T)} (a_n - a_{n+1}) \right) \| f \|_{\infty} V^2(x) \gamma_N(T_{n+1})^{-1/2} \\
+ C a_n^{-2} \left(\gamma_N(T_{n+1}) | \log(\gamma_N(T_{n+1})) | + T_{n+1}^{-1} \right) \| f \|_{\infty} V^2(x) \\
\leq C a_n^{-3} \left(\gamma_N(T_{n+1}) + (a_n - a_{n+1}) \right) \| f \|_{\infty} V^2(x). \]

Applying Proposition 3.2 along with Lemma 6.1 yields
\[(b) \leq C \| f \|_{\infty} \left(e^{Ca_n^{-1}(1+|x|^2)} \gamma_N(T_{n+1})^{-1/2} + a_n^{-2} (a_n - a_{n+1}) \right). \]

We finally obtain for every \(x \in \mathbb{R}^d \):
\[|E_f(X_{T_{n+1} - T_n}^x) - E_f(Y_{T_{n+1} - T_n}^x)| \leq C \| f \|_{\infty} (a_n^{-1} e^{C a_n^{-1} (a_n - a_{n+1}) V^2(x) \rho_n^{-1}} + e^{C a_n^{-1} (1+|x|^2)} \gamma_N(T_{n+1})^{-1/2}). \]

The same way as in Section 5.2 we get
\[d_{TV}(\bar{Y}_{T_{n+1}}^x, \nu_{a_n}) \leq C \left(a_n^{-4} e^{C a_n^{-1} (a_n - a_{n+1}) \max \left| V^2(x_0), 1 + |x_0| \right| \rho_n^{-1} + e^{C a_n^{-1} (1+|x_0|^2)} \gamma_N(T_{n+1})^{-1/2}} \right) \]
and, for \(t \in [T_n, T_{n+1}] \),
\[d_{TV}(\bar{Y}_t^x, \nu_{a(t)}) \leq C e^{C a_n^{-1} \left(a_n^{-4} e^{C a_n^{-1} (a_n - a_{n+1}) \max \left| V^2(x_0), 1 + |x_0| \right| \rho_n^{-1} + e^{C a_n^{-1} (1+|x_0|^2)} \gamma_N(T_{n+1})^{-1/2}} \right)}. \]

\[\square \]

A Appendix

A.1 Proof of Proposition 4.2

Proof. We use the characterization of the total variation distance as the \(L^1 \)-distance between the densities, which reads
\[
d_{TV}(\nu_{a_n}, \nu_{a_{n+1}}) = \int_{\mathbb{R}^d} \left| \mathcal{Z}_{a_n} e^{-2(V(x) - V^*)/a_n^2} - \mathcal{Z}_{a_{n+1}} e^{-2(V(x) - V^*)/a_{n+1}^2} \right| dx \\
\leq \mathcal{Z}_{a_{n+1}} \int_{\mathbb{R}^d} e^{-2(V(x) - V^*)/a_{n+1}^2} - e^{-2(V(x) - V^*)/a_n^2} dx + \left| \mathcal{Z}_{a_n} - \mathcal{Z}_{a_{n+1}} \right| \int_{\mathbb{R}^d} e^{-2(V(x) - V^*)/a_n^2} dx \\
= \mathcal{Z}_{a_{n+1}} a_n^{-d} \int_{\mathbb{R}^d} e^{-2(V(a_{n+1} x) - V^*)/a_n^2} - e^{-2(V(a_n x) - V^*)/a_{n+1}^2} dx \\
+ |1 - \frac{\mathcal{Z}_{a_n}}{\mathcal{Z}_{a_{n+1}}} | \mathcal{Z}_{a_{n+1}} a_n^{-d} \int_{\mathbb{R}^d} e^{-2(V(a_n x) - V^*)/a_n^2} dx. \]

Using [BP21, (B.3)] and [BP21, (B.5)], the first term is bounded by
\[C a_n^{-n+1} \int_{\mathbb{R}^d} e^{-2(V(a_{n+1} y) - V^*)/a_n^2} V(a_{n+1} y) - V^* \frac{dy}{a_n^2} dx \leq C \frac{a_n - a_{n+1}}{a_n}, \]
because the integral converges by dominated convergence as for the proof of [BP21, (B.3)]. Using [BP21, (B.3)] and [BP21, (B.4)], the second term is bounded by \(C(n \log (n))^{-1} \). \[\square \]
References

[BP21] Pierre Bras and Gilles Pagès. Convergence of Langevin-Simulated Annealing algorithms with multiplicative noise. arXiv e-prints, page arXiv:2109.11669, September 2021.

[BPP21] Pierre Bras, Gilles Pagès, and Fabien Panloup. Total variation convergence of the Euler scheme in small time with unbounded drift. arXiv, 2021.

[Bra21] Pierre Bras. Convergence rates of Gibbs measures with degenerate minimum. arXiv e-prints, page arXiv:2101.11557, 2021.

[Dal17] Arnak S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities. J. R. Stat. Soc. Ser. B. Stat. Methodol., 79(3):651–676, 2017.

[DMR18] Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation distance between high-dimensional Gaussians. arXiv e-prints, page arXiv:1810.08693, October 2018.

[DPG+14] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio. Identifying and Attacking the Saddle Point Problem in High-Dimensional Non-Convex Optimization. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS’14, page 2933–2941, Cambridge, MA, USA, 2014. MIT Press.

[Fri64] Avner Friedman. Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

[Hwa80] Chii-Ruey Hwang. Laplace’s method revisited: weak convergence of probability measures. Ann. Probab., 8(6):1177–1182, 1980.

[Laz92] V. A. Lazarev. Convergence of stochastic approximation procedures in the case of several roots of a regression equation. Problemy Peredachi Informatsii, 28(1):75–88, 1992.

[LCCC16] Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic gradient langevin dynamics for deep neural networks. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, page 1788–1794. AAAI Press, 2016.

[MPZ21] Stéphane Menozzi, Antonello Pesce, and Xicheng Zhang. Density and gradient estimates for non degenerate Brownian SDEs with unbounded measurable drift. J. Differential Equations, 272:330–369, 2021.

[PP20] Gilles Pagès and Fabien Panloup. Unadjusted Langevin algorithm with multiplicative noise: Total variation and Wasserstein bounds. arXiv e-prints, page arXiv:2012.14310, 2020.

[QZ04] Zhongmin Qian and Weian Zheng. A representation formula for transition probability densities of diffusions and applications. Stochastic Process. Appl., 111(1):57–76, 2004.

[Vil09] Cédric Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and new.

[WT11] Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, page 681–688. Omnipress, 2011.