Data article

Data on cost analysis of drilling mud displacement during drilling operation

Emeka Emmanuel Okoroa, Adewale Dosunmub, Sunny E. Iyukec

a Petroleum Engineering Department, Covenant University Ota, Nigeria
b Petroleum Engineering Department, University of Port Harcourt, Nigeria
c Chemical Engineering Department, Petroleum Training Institute, Nigeria

A R T I C L E I N F O

Article history:
Received 25 April 2018
Received in revised form 10 May 2018
Accepted 15 May 2018
Available online 18 May 2018

A B S T R A C T

The focus of this research was to present a data article for analyzing the cost of displacing a drilling fluid during the drilling operation. The cost of conventional Spud, KCl and Pseudo Oil base (POBM) muds used in drilling oil and gas wells are compared with that of a Reversible Invert Emulsion Mud. The cost analysis is limited to three sections for optimum and effective comparison. To optimize drilling operations, it is important that we specify the yardstick by which drilling performance is measured. The most relevant yardstick is the cost per foot drilled. The data have shown that the prices for drilling mud systems are a function of the mud system formulation cost for that particular mud weight and maintenance per day. These costs for different mud systems and depend on the base fluid. The Reversible invert emulsion drilling fluid, eliminates the cost acquired in displacing Pseudo Oil Based mud (POBM) from the well, possible formation damage (permeability impairment) resulting from the use of viscous pill in displacing the POBM from the well-bore, and also eliminates the risk of taking a kick during mud change-over. With this reversible mud system, the costs of special fluids that are rarely applied for the well-completion purpose (cleaning of thick mud filter cake) may be reduced to the barest minimum.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Value of the data

- These data describe the volume and material estimate needed for each hole section and the type of mud necessary to achieve smooth drilling operation in each hole section.
- The data showed the cost, the quantity of materials and sequence at which these materials are applied to achieve optimum displacement.
- These data can be used to study the economic analysis of new mud systems proposed by researchers and also help to compare if these mud systems are economically viable.
- These data can also be used to analyze and predict prices and/or build cost for drilling mud systems for a certain mud weight and daily maintenance expense.
- The data reveals that cost varies according to the different mud types and are dependent on the base fluid phase.

Data

The type of drilling fluid systems and the volume of drilling fluid needed for each hole section is summarized in Table 1. The well was spudded with Bentonite/Polymer mud system. The mud was then converted to KCl/Polymer mud system by the addition of Pre-hydrated KCl into the system. The 12 ¼” hole section was drilled with Pseudo Oil Based Mud (POBM) system. The 8 ½” development hole section was drilled with Non-Aqueous Fluid system (NAF).

The volume of drilling fluids needed for three sections was estimated and presented in Tables 2–4. The cost and how successful an oil or gas well will be completed depends to a substantial extent, on the properties and characteristics of the drilling fluid (Amorin et al. [1]). A considerable number of drilling fluid formulations have been developed by researchers and the selection of the best fluid to meet the formation to be drilled conditions will minimize well costs.

The cost for drilling a typical well may be constant when drilled without any instability case. Instability during a drilling operation in wells can quickly escalate cost dramatically (Okoro et al. [2]). The materials and their cost for each drilling fluid systems are presented in Tables 5–7.
Table 1
Summary of mud types used during the drilling operation.

Components	Well sections
Open hole diameter	24", 16", 13 5/8"
Casing/liner diameter	16", 13 5/8", 12 1/4"
Description	Surface/conductor, Top hole, Intermediate, Reservoir section
Conventional mud type	SPUD, KCL, POBM, NAF

Table 2
Volume estimate for the bentonite/polymer mud system (SPUD mud).

S/N	Section	Internal diameter, ID	ID square	Depth (ft)	Conversion factor	Volume of mud
1	Surface volume					600
2	24" Casing to 400 ft	24	576	400	1029	223,9067055
3	16" Open hole to 2000ft	16	256	1600	1029	398,0563654
4	Washout 20%					244,3926142
5	Losses behind casing 20%					394,1613217
6	PIT/transit losses 5%					98,54033042
7	Hole enlargement					39,80563654
8	Total volume (bbl)					1567,259475

Table 3
Volume estimate for KCl/polymer mud.

S/N	Section	Internal diameter, ID	ID square	Depth (ft)	Conversion factor	Volume of mud
1	Surface volume					600
2	24" Casing to 5000 ft	24	576	5000	1029	223,9067055
3	16" Open hole to 9386 ft	16	256	4386	1029	1146,899903
4	Washout 20%					394,1613217
5	Losses behind casing 20%					98,54033042
6	PIT/transit losses 5%					39,80563654
7	Hole enlargement					114,6899903
8	Total volume (bbl)					2972,359572

Table 4
Volume estimate for POBM mud.

S/N	Section	Internal diameter, ID	ID square	Depth (ft)	Conversion factor	Volume of mud
1	Surface volume					600
2	13 3/8" casing @ 5000 ft	13.375	178.89063	5000	1029	869,2450194
3	12 1/4" open hole to 9386 ft	12.25	150.0625	4386	1029	639,625
4	Washout 20%					421,7740039
5	Losses behind casing 20%					421,7740039
6	PIT/transit losses 5%					105,443501
7	Hole enlargement					63,9625
8	Total volume (bbl)					3121,824028
Figs. 1 and 2 illustrates the cost per barrel and cost per feet drilled respectively for the mud systems used in the drilling operations.

The build cost for a drilling fluid system is the price for the individual components and mixing requirements. The total build cost includes purchasing the initial drilling systems materials and the expenses involved with conditioning the drilling mud system in the well as it is drilled.

2. Experimental design, materials, and methods

The water-based mud in the wellbore from the previous hole section is displaced and replaced with POBM drilling fluid. The first step is to lower the viscosity and gel strength of the water-based mud. The suggested method is to dilute the fluid with water to obtain a low rheology [Patel [3]]. The optimal thinning of the water-based mud will dictate how easy the mud will be displaced out of the hole. The spacer is pumped first, followed by the POBM mud at maximum pump rate to get the mud in the annulus moving (Table 8).

Table 5	Spud mud material estimate.				
Products	Unit size (kg)	Cost/unit (USD)	Conc.: lbs/bbl	Units	Total cost (USD)
Bentonite (1mt)	1000	605	25	18	10890.00
Caustic Soda	25	75	0.25	8	600.00
Soda Ash	25	32	0.25	8	256.00
CMC HV	25	124	2	57	7068.00
CaCO3 fine	50	21	10	143	3003.00
CMC LV	25	124	2	57	7068.00
Drilling surfactant	55	945	0.5	7	6615.00
Ultra seal	25	100	2	57	5700.00
Mica	25	36.3	2	57	2069.10
Total cost (USD)					43269.10
Total volume (bbl)					1567.26
MD (ft)					2000.00

Table 6	KCl/ polymer mud material estimates.				
Products	Unit size (kg)	Cost/unit (USD)	Conc.: lbs/bbl	Units	Total cost (USD)
Bentonite (1mt)	1000	605	18	25	15125.00
Caustic soda	25	75	0.25	14	1050.00
Soda ash	25	32	0.25	14	448.00
PAC-R	25	150	2	108	16200.00
Borhamyl starch	25	62.5	4	216	13500.00
PAC-L	25	150	1	54	8100.00
XCD polymer	25	312	1	54	16848.00
KCl (1mt)	1000	1450	21	29	42050.00
CaCO3 F/M	50	21	10	270	5670.00
Soltex	25	108	4	216	23328.00
Surfactant (gal)	1	945	1	8	7560.27
Mica fine	25	36.3	2	108	3920.40
Ultra seal LCM	25	100	2	108	10800.00
Barite (1mt)	1000	400	50	68	27200.00
Paraffin (bbl)	36	266.65	2	24	6399.60
Total cost (USD)					183074.27
Total volume (bbl)					2972.36
MD (ft)					5010.00
After drilling and prior to running completion hardware, the fluid in the borehole is often displaced to a water-based completion fluid, usually a solution of various salts. During this displacement, chemical washes and viscous spacers are placed in the solution to make surfaces water-wet, while helping to remove oil mud and residual oil-wet material from the borehole (Ali et al. [4]).

The viscosity and gel strengths of the POBM are low prior to displacement. The suggested method was to dilute the fluid with premix, base fluid or a thinner to obtain the low rheology if this is necessary. The optimal thinning of the POBM fluid will dictate how easy the mud will be displaced out of the hole.

Table 7
POBM mud system material and cost estimate.

Product	Unit size	Unit price (USD)	Conc.: ppb/bbl	Sxs/drm/bbl	Total cost (USD)
EDC 99 DW (1 bbl)	0.5	266.65	0.64	8	2133.20
Primary emulsifier (gal)	4	535	6	49	26215.00
Secondary emulsifier (gal)	4	715	3	24	17160.00
Organophilic clay (kg)	25	88	8	454	39952.00
Lime (kg)	25	13.5	4	227	3064.50
Soltex (kg)	25	108	4	227	24516.00
CaCO3 F/M (kg)	50	21	8	227	4767.00
Barite (mt)	1000	400	219	311	124400.00
Calcium chloride (kg)	25	24.35	30	1700	41395.00
Rheology modifier (gal)	4	810	1	8	6480.00
Wetting agent (kg)	55	590	0.85	22	12980.00
Fresh water (1 bbl)	0.5	0	0.236	3	0.00
Total cost (USD)					**303062.70**
Total volume (bbl)					**3122.08**
MD (ft)					**9386.00**

Fig. 1. Cost per barrel for each mud systems.

Fig. 2. Cost per feet drilled for each mud systems.
The volume of drilling fluid needed for each section was obtained using the equation below:

$$Volume \ (bbl) = \frac{ID^2}{1029} \times D$$

(1)

Where,

ID = Hole Internal Diameter, inch
D = Hole Depth, ft

Eqs. (2) and (3) were used to estimate the product units needed in gallons and kilogram respectively;

$$Gallons = \frac{ppb \times volume \ of \ mud \ (bbl)}{Specific \ Gravity \times 8.33ppg}$$

(2)

$$Unit \ (kg) = \frac{ppb \times Volume \ of \ mud \ Unit \ (kg) \times 2.205}{Material \ Unit}$$

(3)

Eq. (4) was used to convert the quantity of additives used from lb/bbl to sxs:

$$\frac{\frac{lb}{bbl} \times Required \ Volume \ (bbl)}{Unit \ Size \times 2.205} = Number \ of \ sxs$$

(4)

Where,

sxs = Sacks
lb/bbl = Pound per barrel
bbl = Barrel

Acknowledgments

The authors would like to thank Covenant University Centre for Research Innovation and Discovery (CUCRID) Ota, Nigeria for its support in making the publication of this research possible.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.05.075.
Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.05.075.

References

[1] R. Amorin, A. Dosunmu, R.K. Amankwah, Economic viability of the use of local pseudo-oils for drilling fluid formulation, Ghana Min. J. 15 (2) (2015) 81–90.
[2] E.E. Okoro, A. Dosunmu, S. Iyuke and B. Oriji, Impact of reversible invert emulsion drilling fluid rheology on production. SPE-178308MS, Paper Presented at the Nigeria Annual International Conference and Exhibition, August 4–6, 2015.
[3] A.D. Patel, Reversible invert emulsion drilling fluids – a quantum leap in technology. SPE 47772 presented at the IADC/SPE Asia Pacific Drilling Technology Conference, Jakarta, Indonesia, September 7–9, 1999.
[4] S. Ali, M. Bowman, M. Luyster, A. Patel, C. Svoboda, A. McCarty and B. Pearl, Reversible drilling-fluid emulsions for improved well performance. Oilfield Review, Autumn, 2004.