Ion amount in Zoysia matrella Merr. leaves during the winter season in the saline environments

SUGIURA, Souichirou*1) and TAKAHASHI, Shimpei2)

1) Graduate School of Agriculture, Tokyo University of Agriculture
東京農業大学大学院　農学研究科
2) Faculty of Regional Environment Science, Tokyo University of Agriculture
東京農業大学　地域環境科学部

Abstract: The purpose of the present study was to evaluate the ion amounts characteristics of green leaves and brown leaves in Zoysia matrella (L.) Merr. during the winter season in the saline environments. Plants were treated with four concentrations of NaCl solution (0, 7.5, 15 and 30 g L NaCl) for 165 days during the winter season. In the 30 g L NaCl group, all leaves turned brown (leaf mortality ratio was 100%). In the 7.5 and 15 g L NaCl groups, Na⁺ amounts of brown leaves were 1.4-fold and 2.0-fold higher than in green leaves, respectively. Furthermore, in the 7.5 and 15 g L NaCl groups, Cl⁻ amounts of brown leaves were 1.4-fold and 2.0-fold higher than in green leaves, respectively. However, K⁺ amount exhibited an inverse relationship, with higher K⁺ amount in green leaves than in brown leaves. In the 0, 7.5, and 15 g L NaCl groups, K⁺ amounts of green leaves were 2.3-fold, 1.8-fold, and 1.8-fold higher than in brown leaves, respectively. Furthermore, K⁺/Na⁺ ratio in the green leaves showed higher value compared with brown leaves with significant difference in 7.5 g L NaCl (2.4-fold higher) and 15 g L (3.5-fold higher) NaCl treated groups. From the results of completely different traits in ion amount and K⁺/Na⁺ ratio in green and brown leaves indicated that Z. matrella could accumulate harmful NaCl in senescing leaves against salinity stress in the winter season.

Key words: salt tolerant turf grass, green leaves, brown leaves, sodium ion, potassium ion, K⁺/Na⁺ ratio

1. Introduction

Zoysia matrella (L.) Merr. is a popular and common turf grass used as a ground cover plant for green spaces in Japan (Asano & Namihisa, 1999; Fukuoka, 2000). This turf grass has also been recognized as salt-tolerant species (Marcum, 2006; Uddin et al., 2009). Regarding salt tolerance of Z. matrella, salt excretion from salt gland and leaf surface (Yamamoto et al., 2016; Sugiura, 2020), salt compartment in the vacuole (Chen et al., 2015) and osmotic adjustment in cells (Marcum & Murdoch, 1994; Akamine et al., 2002) have been reported. For the characteristics of salt tolerance, the species has been noticed as cost efficient turf grass in landscape area with saline water irrigation (Chen et al., 2009), and it was also considered important greening plants for coastal area with storm surge or tsunami damage may occur.

However, the plant leaves die (turn to brown) in the winter season (new leaves develop from the surviving rhizomes in the spring season). Furthermore, the species is called...
warm-season turfgrass, delicate for low temperature stress, the optimum temperature is 25°C–35°C (Sato, 1995). For utilizing the turf grass sustainably in saline environments such as coastal area, the salinity stress tolerance mechanism in winter season of *Z. matrella* was considered important to understand.

It has been known that the senescing leaves have important role in plants physiology in winter season. Generally for ion reuse, deciduous trees undergo ion translocation from the leaves in the winter season prior to the leaves dying and falling. A prior study reported that in *Quercus serrata*, leaves exhibit low ion amount, including nitrogen, phosphate, potassium and magnesium, in the winter season (Hiraizumi et al., 1996). Especially, potassium is an important ion for osmotic control and tolerance of environmental stress for plants (Turgeon, 2007). Moreover, it was referred that turfgrass undergoes leaf amino acid translocation as the process of leaves dying (Turgeon, 2007).

Senescing leaves also have an important role in plant salinity stress tolerance. Previous reports indicated that the salt tolerant species can accumulate NaCl in leaves, which then die and fall, removing harmful salt (Imada et al., 2009; Kanai et al., 2014). It was demonstrated that *Z. matrella* accumulate large amounts of salt in its leaves compare with other parts of the plant (rhizomes and roots) in saline environments (Sugiura et al., 2017).

From the above, we hypothesized that *Z. matrella* senescing leaves have important role for salinity stress tolerance in winter season as accumulating salinity in senescing leaves. However, there is presently no report evaluating ion amounts of senescing leaves in herbaceous plant including *Z. matrella* with detailed quantitative data. Therefore it considered valuable to clarify ion amounts in brown leaves for understand the plants physiology and strategy for salinity stress in low temperature stress.

To clarify ion amount of brown leaves, we treated *Z. matrella* with different concentrations of NaCl solution during the winter season, and measured ion amount (Na⁺, Cl⁻ and K⁺) in green leaves and brown leaves, together with leaf mortality ratio and K⁺/Na⁺ ratio. The objective of the present study was to evaluate ion amount characteristics in green and brown leaves in a saline environment during the winter season, and to understand the role of senescing leaves for salinity stress.

2. Materials and Methods

2.1 Species and experimental design

Z. matrella (L.) Merr. was purchased as sod turf from the Tottori Lawn Product Association (Tottori, Japan). On June 7, 2015, three stolon segments (3 cm each) were planted in 200 cm³ Wagner pots filled with 1.0 kg gravel as a drainage layer and 4.0 kg river sand as bed soil. Each pot was irrigated with tap water for 133 days until the plants were well-established (observed dense leaves, and leaves height around 15 cm in each pot). During the tap water irrigation, no fertilizer was applied.

Four concentrations of NaCl solution were prepared [0 (as Control), 7.5, 15, and 30 g L⁻¹], with 3 repetitions. For the possibility of utilizing the plant in coastal area, the maximum concentration of the NaCl solution (30 g L⁻¹) was set to sea water level, as referring previous experiment (Sugiura et al., 2017). The total number of pots prepared were 12 (4 concentrations of NaCl solution × 3 repetitions). As for avoiding rain effects, each pot containing a plant was placed at random in a greenhouse (non-heated) at the Tokyo University of Agriculture, Tokyo, Japan.

2.2 NaCl treatment

After irrigating the pots with tap water for 133 days to establish the plants, NaCl solution was added. NaCl (99.5%) was mixed with tap water at the above-specified concentrations in plastic tanks. Thereafter, 600 mL NaCl solution was used to treat to each pot from October 19 2015 to April 1 2016 (165 days). NaCl treatment was conducted when the soil surface was dry, including Oct. 19, Nov. 5 and 22, Dec. 9, 2015, Jan. 19, 2016 and Feb. 29, 2016 to yield six treatments. Tap water was not treated during the NaCl solution treatment period. To avoid adding NaCl treatment directly to *Z. matrella* leaves, a funnel was used, and NaCl solution was added directly to the soil. The average temperature and humidity in the non-heated greenhouse during NaCl solution treatment are illustrated in Fig. 1.

![Daily average greenhouse temperature and humidity during the NaCl treatment period](image)

Fig. 1 Daily average greenhouse temperature and humidity during the NaCl treatment period

Data were measured from October 19, 2015 to April 1, 2016 (165 days). Greenhouse was not heated during experiment.
2.3 Measurement of leaf dry weight and leaf mortality ratio

After 165 days NaCl treatment, turf leaves were trimmed to a height of 2 cm from the soil surface to measure ion amount and dry weight (DW). To quantify dry weight, the leaves were dried in an oven at 90°C for 24 h and divided into green leaves and brown leaves, followed by measurement of biomass. The leaves were not washed with water prior to ion measurement in order to avoid ion outflow, especially in brown leaves (Japan Soil Association Ed., 2001). Therefore in the present study, the data regarding ion amounts include inside and outside ion of the leaves. Leaf mortality ratio was calculated using green leaf DW and brown leaf DW, according to the following formula:

Leaf mortality ratio (%) = [brown leaf DW – (green leaf DW + brown leaf DW)] ÷ brown leaf DW] × 100

2.4 Leaf ion measurement

Dried leaves were milled using beads in a centrifuge tube with a homogenizer (BMSA 20 TP, Bio Medical Science Co., Ltd., Tokyo, Japan). Measurement of ion amounts in the leaves was conducted as referring previous experiment (Russo & Karmarkar, 1998). Milled dried leaves were transferred to a 2mL centrifuge tube containing distilled water. The tube was then shaken thoroughly by hand for 30 sec, and the solution was subsequently filtered through a 0.45-μm membrane filter (NY 025045, Membrane Solutions Limited). The quantities of each ion (Na+, Cl− and K+) were measured using an ion analyzer (IA300, DKKTOA Corporation, Tokyo, Japan).

2.5 Statistical analysis

Considering the small sample sizes (three repetitions) in this study, we used the nonparametric methods (Hoskin, 2010; Mann-Whitney U Test to evaluate significant differences between green and brown leaves, Bonferroni’s multiple comparison test for comparison of four different NaCl treatments. Statistical analysis were conducted using the addin analysis software in Microsoft Excel (BellCurve for Excel, Social Survey Research Information Co, Ltd.).

3. Results and Discussion

3.1 Leaf dry weight and mortality ratio

After 165 days NaCl treatment, green leaf dry weight was decreased according to NaCl concentrations treated. At 30 g/L, no green leaves remained (Table 1). However brown leaves dry weight did not differ between NaCl treatment groups. Leaf mortality ratios were 56.2, 76.5, 89.0, 100, 0% in ascending order of NaCl concentration.

The daily temperature in the green house was recorded below 5°C on January 13 (Fig. 1). At the end of the study, the control group, which was not subjected to NaCl stress, exhibited a high mortality ratio of 56.2%. This suggested that low temperature alone decreased green leaf dry weight, which was further exacerbated by salinity stress (Table 1). For the data of green leaves and brown leaves dry weight, there were no significant differences in all four NaCl treated groups (Table 1). Especially as the control (no-NaCl treated group) showed no significant difference, it was indicated that the low temperature halted leaves growing during the experiment in winter season.

3.2 Leaf ion amounts

In NaCl-stressed plants, both green and brown leaves showed large amounts of NaCl. However, in brown leaves, Na+ and Cl− amounts were higher than in green leaves [Fig. 2 (a), (b)]. In the 7.5 and 15 g/L NaCl groups, Na+ amounts in brown leaves were 1.4-fold and 2.0-fold higher significantly than in green leaves, respectively. Similarly, in the 7.5 and 15 g/L NaCl groups, Cl− amounts in brown leaves were 1.4-fold and 2.0-fold higher than in green leaves, respectively.

These results demonstrated that Z. matrella could accumulate large amounts of NaCl in senescing leaves, consistent with previous reports (Imada et al., 2009; Kanai et al., 2014). And it was considered that Zoysia matrella can remove NaCl by accumulating those ions in senescing leaves in a saline environment. However, in the salt tolerant plants, it was reported that the old cell develops vacuole to accumulate more salt in it (Takahashi, 1997, Maeda, 2012). Further study such as investigating relationship between leaves age and ion amounts in Z. matrella was considered in need.

Table 1: Leaf dry weight and mortality ratio

Treated NaCl solution concentration (g/L)	Leaf dry weight (g/200 cm²)	Leaf mortality ratio (%)		
Green leaves	Brown leaves	Green leaves	Brown leaves	
Control	1.9±0.5 a	2.6±1.3 a	4.5±1.7 a	56.2±5.0
7.5	1.2±0.3 ab	4.4±1.7 a	5.6±1.8 a	76.5±9.6
15	0.4±0.1 bc	3.2±1.6 a	3.6±1.8 a	89.0±1.5
30	0.0±0.0 c	4.5±1.7 a	4.5±1.7 a	100.0±0.0
brown leaves, respectively. The results of the present study suggest that during the winter season, *Z. matrella* is capable of translocating K⁺ from senescing leaves to other parts of the plant prior to the leaves’ dying as previously reported in *Quercus serrata* (Hiraizumi et al., 1996). Moreover, most of potassium remains as ion in the plant cells and not be transformed other substances (Nakamura Ed., 1993). Those reports and low K⁺ amount of brown leaves in the present study results [Fig. 2(c)] suggested our consideration. However, for more detail on ion accumulate trait in leaves, additional experiment such as using isotope tracking techniques was considered in need.

3.3 K⁺/Na⁺ ratio of green and brown leaves.

K⁺/Na⁺ ratio (mass value) in both green and brown leaves showed low value accordance with treated NaCl concentration increased. However, the green leaves showed higher value compared with brown leaves with significant difference in 7.5 g L⁻¹ (2.4-fold higher) and 15 g L⁻¹ (3.5-fold higher) NaCl solution treated groups (Table 2).

![Fig. 2](image)

Fig. 2 Green leaves and brown leaves ion amounts
(a) Na⁺,(b)Cl⁻,(c)K⁺. Ion amounts (Na⁺, Cl⁻ and K⁺) were measured after 165 days NaCl treatment. Data are expressed as means. Vertical bars represent SDs of triplicate analyses. Ion amounts include inside and outside ion of leaves. Statistically significant differences between green and brown leaves are denoted as: * p<0.05. No mark denotes lack of statistical significance. Differences were assessed using a Mann-Whitney U Test. Values sharing the same letter were not significantly different (p = 0.05), as measured by a Bonferroni’s multiple comparison test in comparison of four different NaCl treatments. Small letter: green leaves, large letter: brown leaves. All leaves were observed as brown leaves in the 30 g L⁻¹ NaCl treated condition, indicated as N/A.

Treated NaCl solution concentration (g/L)	K⁺/Na⁺ ratio	Significant differences	
Control	1.26 ± 0.41 a	1.32 ± 0.22 a	ns
7.5	0.46 ± 0.10 b	0.19 ± 0.06 b	*
15	0.28 ± 0.02 b	0.08 ± 0.02 b	*
30	N/A	0.06 ± 0.01 b	N/A

Table 2 K⁺/Na⁺ ratio (mass value) of green and brown leaves against four different concentration of NaCl solution treatment
Data were measured after 165 days NaCl treatment. Data are expressed as mean values ± SD of triplicate analyses. Ion amounts include inside and outside ion of leaves. Statistically significant differences between green and brown leaves are denoted as: * p<0.05, ns denotes lack of statistical significance. Differences were assessed using a Mann-Whitney U Test. Values sharing the same letter were not significantly different (p = 0.05), as measured by a Bonferroni’s multiple comparison test in comparison of four different NaCl treatments. All leaves were observed as brown leaves in the 30 g L⁻¹ NaCl treated condition, indicated as N/A.
Na`/H` antiporter on bio membrane (Du et al., 2010; Chen et al., 2015).

The results of ion amount and K`/Na` ratio in the present study indicated completely different with green and brown leaves (Fig. 2, Table 2). From the results of the present study and previous reports, for one of the salt tolerance mechanism of Z. matrella in winter season, it was considered that the senescing leaves has important role for accumulation of harmful salinity in the senescing leaves against salinity stress.

References

Akamine, H., Ishimine, Y., Kurihara, N., Omokawa, H., Ichizen, N. and Kuramoto, H. (2002) Influence of Salinity on the Growth, and Na, K and Amino Acid Contents in Masca-
nergass (Zos sia tenuifolia Wild.). Journal of Japanese Society of Turfgrass Science 31(1): 2–6 (in Japanese).

Asano, Y. and Namilih, H. (1999) Growth Responses to Salini-
y in Zoysia grasses. Journal of Japanese Society of Turfgrass Science, 28(1):42–44 (in Japanese).

Chen, J., Yan, J., Qian, Y., Jiang, Y., Zhang, T., Guo, H., Guo, A. and Liu, J. (2009) Growth Responses and Ion Regulation of Four Warm Season Turfgrasses to Long-Term Salinity Stress. Scientia Horticulturae 122(4): 620–625.

Chen, Y., Li, L., Zong, J., Chen, J., Guo, H., Guo, A. and Liu, J. (2015) Heterologous Expression of the Halophyte Zos sia matrella H + - Pyrophosphatase Gene Improved Salt Tolerance in Arabidopsis thaliana. Plant Physiology and Bio-
chemistry 91: 49–55.

Du, Y., Hei, Q., Liu, Y., Zhang, H., Xu, K. and Xia, T. (2010) Isola-
tion and Characterization of a Putative Vacuolar Na + /H + Antipporter Gene from Zos sia japonica L. Journal of Plant Biology 53(4): 251–258.

Fukuoka, H. (2000) Breeding of Zos sia Grass 1. Collection of Genetic Resources and General View of Their Characteris-
tics. Journal of Japanese Society of Turfgrass Science, 29 (1): 11–21 (in Japanese).

Hiraizumi, S., Kawaguchi, J. and Tadaki, Y. (1996) The Return of Nutrients with Litter-fall in Some Secondary Forests in Nagoya. Bulletin of the Nagoya University Forests, 15: 123–140 (in Japanese).

Hoskin, T. (2010) Parametric and Nonparametric: Demystifying the Terms. Ctsa. Mayo. Edu. 1–5.

Imada, S., Yamanaka, N. and Tamai, S. (2009) Effects of Salinity on the Growth, Na Partitioning, and Na Dynamics of a Salt-
tolerant Tree, Populus alba L. Journal of Arid Environ-
ments, 73(3): 245–251.

Japan Soil Association (Edited) (2001) The Methods of Soil, Water and Plant Analysis. 321 pp. Japan Soil Association, Tokyo (in Japanese).

Kanai, H., Tajima, M. and Sakai, A. (2014) Effects of Salinity on the Growth and Survival of the Seedlings of Mangrove, Rhizophora stylosa. International Journal of Plant & Soil Science, 3(7): 879–893.

Maeda, Y. (2012) Plant Salt Tolerance and Removal of Salt in Saline Soil by Plants. Bulletin of the Society of Sea Water Science, Japan 66(2): 92–98.

Marcum, K.B. (2006) Use of Saline and Non-Potable Water in the Turfgrass Industry: Constraints and Developments. Ag-
gricultural Water Management, 80(1-3 SPEC. ISS.): 132–146.

Marcum, K.B. and Murdoch, C.L. (1994) Salinity Tolerance Mechanisms of Six C 4 Turfgrasses. Journal of the American Society for Horticultural Science 119(4): 779–784.

Nakamura, N. (Edited) (1993) ZOYSIAGRASS: Science and Management for Golf Course. 368 pp. Soft Science, Inc., Tokyo (in Japanese).

Russo, V.M. and Karmarkar, S.V. (1998) Water Extraction of Plant Tissues for Analysis by Ion Chromatography. Com-
munications in Soil Science and Plant Analysis, 29(3-4): 245–253.

Sato, S. (1995) Physio-Ecological Charctors of Cool and Warm Season Turfgrass. Journal of Japanese Society of Turfgrass Science 23(2): 145–157 (in Japanese).

Schachtman, D.P., Bloom, A.J. and Dvorak, J. (1989) Salt-toler-
ant Triticum × Lophopyrum Derivatives Limit the Accumula-
tion of Sodium and Chloride Ions under Saline-stress. Plant, Cell and Environment 12: 47–55.

Sugiura, S. (2020) Salt Gland Characteristics and Activity of Zoysia matrella Merr. in Environments with Different Levels of Salinity. Journal of Japanese Society of Turfgrass Science 48(2): 142–148.

Sugiura, S., Tanaka, S., Mizuniwa, C. and Takahashi, S. (2017) Mitigation of Salt Accumulation in Soil by Zoysia matrella Merr. Journal of Japanese Society of Turfgrass Science, 45 (2): 103–107 (in Japanese).

Takahashi, E. (1997) What Is Salt for Biosis -Salt Excessive for the Soil and Diet- (2 nd Edition). 201 pp. Rural Culture As-
sociation Japan, Tokyo (in Japanese).

Turgeon, A.J. (2007) Turfgrass Management (8 th Edition). 436 pp. Prentice Hall, New Jersey.

Uddin, M.K., Juraimi, A.S., Ismail, M.R., Othman, R. and Rahim, A.A. (2009) Growth Response of Eight Tropical Turfgrass Species to Salinity. African Journal of Biotechnology, 8(21): 5799–5806.

Yamamoto, A., Hashiguchi, M., Akune, R., Masumoto, T., Muguerza, M., Saeki, Y. and Akashi, R. (2016) The Relation-
ship between Salt Gland Density and Sodium Accumu-
lation/Secretion in a Wide Selection from Three Zoysia Species. Australian Journal of Botany 64(4): 277–284.

(Accepted: August 18, 2020)