Construction of Anti-codon Table of the Plant Kingdom and Evolution of tRNA Selenocysteine (tRNA\textsc{Sec})

Tapan Kumar Kumar Mohanta (nostoc.tapan@gmail.com)
Yeungnam University

Awdhesh Kumar Mishra
Yeungnam University

Abeer Hashem
King Saud University

Elsayed Fathi Abd_Allah
King Saud University

Abdul Latif Khan
University of Nizwa

Ahmed Al-Harrasi
University of Nizwa

Research article

Keywords: tRNA, Evolution, Anti-codon, tRNA\textsc{Sec}, Protein translation, Wobble

DOI: https://doi.org/10.21203/rs.3.rs-43566/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background The tRNAs act as a bridge between the coding mRNA and incoming amino acids during protein translation. The anti-codon of tRNA recognizes the codon of the mRNA and deliver the amino acid into the protein translation chain. However, we did not know about the exact abundance of anti-codons in the genome and whether the frequency of abundance remains same across the plant lineage or not.

Results Therefore, we analysed the tRNAnome of 128 species and reported an anti-codon table of the plant kingdom. We found that CAU anti-codon of tRNAMet has highest (5.039%) whereas GCG anti-codon of tRNAArg has lowest (0.004%) abundance. However, when we compared the anti-codon frequencies according to the tRNA isotypes, we found tRNALeu (7.808%) has highest abundance followed by tRNASer (7.668%) and tRNAGly (7.523%). Similarly, suppressor tRNA (0.036%) has lowest abundance followed by tRNASec (0.066%) and tRNAHis (2.109). The genome of Ipomoea nil, Papaver somniferum, and Zea mays encoded the highest number of anti-codons at 59 each whereas the genome of Ostreococcus tauri was found to encode only 18 isoacceptors. The tRNASec genes undergone losses more frequently than duplication and we found that tRNASec showed anti-codon switch during the course of evolution.

Conclusion The anti-codon table of the plant tRNA will enable us to understand the synonymous codon usage of the plant kingdom and can be very helpful to understand which codon is preferred over other during the translation.

Background

The proteins present in cells are the product of the blueprint prescribed by the genes [1–3]. Collectively, all of the genes (including coding and non-coding) present in a cell represent the genome of an organism [4,5]. The construction of a protein from a gene is a complex procedure and requires the involvement of transfer RNA (tRNA), messenger RNA (mRNA), ribosomes, amino acids, and other molecules [6–9]. This process is commonly known as translation which is a fundamental parameter of living cells [6–9]. The functional apparatus involved in gene translation is highly conserved across the tree of life [10]. mRNA conveys the blueprint information as triplet codons composed of nucleotides and tRNA are able to perceive the cognate codons [11,12]. Although mRNA and ribosomes represent the two major parts of the machinery responsible for translation, transfer RNAs (tRNAs) are the fundamental units of this translation machinery [13–15]. The anti-codon of a tRNA links to the codon of the mRNA and supplies the corresponding amino acid into the protein translation chain [3,8,15,16]. Two or more different tRNAs can bind an amino acid and transfer it to the ribosome [17–20]. There are 22 different amino acids encoded by 63 codons (including UGA and UAG codons for selenocysteine and pyrolysine, respectively) as several of the amino acids are encoded by more than one codon and hence its corresponding anti-codon [21–25]. Therefore, it is possible to encode more than one tRNA molecule with different anti-codons to transfer a particular amino acid [21,26–28]. Although codon selection for a corresponding anti-codon is the primary unit of the translation machinery, mutational bias, selection, drift, and codon usage bias also shape the prescribed translation [29–32]. Although there are critical steps for the efficient and proper functioning of the translation machinery, other synonymous codons can also serve as an alternative choice [32–34]. The differential use of codons also reflects their natural demand in the protein translation machinery [35,36]. tRNAs are classified into various gene families based on their isoacceptor anti-codons [17,19,20]. The available tRNA pool is maintained at a level that can accommodate the transcript levels present in a cell, thus ensuring efficient and accurate translation. Highly-expressed genes, however, exhibit codon usage bias that reflects the copy number of the corresponding tRNA [37–39]. Translational selection acts to maintain the balance between codon usage and tRNA availability [40–42]. There is always selection pressure, however, to increase the production of the codons used in highly-expressed genes [32,43,44].
Over the course of evolution, the earth has undergone enormous changes and the Plant Kingdom has been subjected to numerous stresses [45–47]. All living organisms had to adapt to a changing environment, which resulted in the increased importance of some protein-coding genes while others became less important [48–50]. Accordingly, there was a need to alter the relative number and type of available tRNAs to fulfil the translational requirements of the new and/or modified protein-coding genes [51,52]. Changes in the relative number and type of tRNA molecules are also associated with a change in the number and type of anti-codons [53,54]. The role of selection pressure brought about by translational demand and its role in maintaining tRNA pools has not been adequately addressed. Furthermore, the selection pressure that determines the maintenance of low copy tRNA families and anti-codons also remains unclear. Whether translational selection pressure favours optimal codons in particular cases and keeps other codons as non-optimal, and hence in low supply, is unknown. It is also unknown if the amino acid requirements of proteins impact the need to provide specific tRNAs having the required anti-codons, as well as the genes that encode those tRNAs. In the present study, an attempt was made to determine the frequency of anti-codons in the tRNAome of the Plant Kingdom to better understand the presence of codons and anti-codon frequency. Our objective was to provide information on the link between the presence of codons and their corresponding anti-codons, tRNAs, and the number of amino acids utilized in plant proteomes. Therefore, we analysed the frequency of anti-codons in the tRNA of plant genomes and constructed an anti-codon table of the Plant Kingdom.

Material And Methods

Sequence Retrieval

The annotated RNA sequence files of all 128 plant species were downloaded from the National Center for Biotechnology Information (NCBI) using the Ensemble genome browser. The downloaded sequence files were scanned for the presence of tRNAs using tRNAscan-SE software on a Linux-based platform. The resulting tRNAscan files were used for further analysis. After the completion of the scanning of individual files, all files were merged to obtain a complete plant tRNAome file. The frequency of each individual anti-codon was obtained from the tRNAome file and presented as a number and percentage (%). In the course of the analysis, several tRNA$^{\text{Sec}}$ were identified in different plant genomes and were kept separately for further study.

Sequence alignment

Multiple sequence alignment of tRNA$^{\text{Sec}}$ genes was conducted using multalin software with default parameters. To construct the phylogenetic tree, a multiple sequence alignment of tRNAs and tRNA$^{\text{Sec}}$ were conducted using the MUSCLE program in MEGA7 software [55,56]. The resulting alignment was saved in a MEGA file format. The alignment file was subsequently used to construct a phylogenetic tree using MEGA7 software. Prior to the construction of the phylogenetic tree, a model selection was carried out using the following statistical parameters; statistical method, maximum likelihood substitution type, nucleotides, gaps/missing data treatment, complete deletion. Based on the lowest BIC score, a phylogenetic tree of tRNAs and tRNA$^{\text{Sec}}$ was constructed. The statistical parameters used to construct the phylogenetic tree were: statistical method (maximum likelihood), test of phylogeny (bootstrap method), no. of bootstrap replicates (1000), substitution type (nucleotides), model/method (Kimura-2-parameter model), rates among sites (gamma distributed), no. of discrete gamma parameters (5), gaps/missing data treatment (partial deletion), site coverage cut-off (95 %), ML Heuristic method (nearest-neighbour-interchange), and branch swap filter (very strong). A separate phylogenetic tree was constructed using all of the tRNA$^{\text{Sec}}$ sequences and the same statistical approaches as mentioned above to determine deletion and duplication events. The constructed phylogenetic tree of tRNA$^{\text{Sec}}$ genes was exported in a Newick file format. Subsequently, a species tree was constructed using all of the 128 species in the taxonomy browser of NCBI. To determine RNA$^{\text{Sec}}$ deletion and duplication events, the phylogenetic tree
of tRNA$^{\text{Sec}}$ was reconciled with the species tree using Notung software, version 2.9. The reconciled gene and species tree revealed deletion, duplication, and co-divergence events that occurred in tRNA$^{\text{Sec}}$ genes. The resultant phylogenetic tree of tRNAs (with tRNA$^{\text{Sec}}$) and the phylogenetic tree of tRNA$^{\text{Sec}}$ were analysed by using Icy Tree to identify recombination events.

Cluster based grouping of the anti-codons

Anti-codons were grouped based on their percentage frequency in the tRNAnome. To cluster them, the percent frequency of anti-codons was used against each anti-codon. A classical clustering approach was used to cluster the anti-codons using a paired group UPGMA algorithm and Euclidean similarity index with 1000 bootstrap replicates.

Statistical analysis

The probability plot linear regression analysis of tRNA gene number per genome and frequency of anti-codons were statistically analysed and a value of p<0.05 was considered to be significant. To investigate anti-codon numbers in different lineages and their statistical significance, a t-test was conducted comparing anti-codon number in eudicot vs. monocot, eudicot vs. algae, and monocot vs. algae. Differences were deemed significant at p < 0.05. All of the statistical analyses were conducting using Past3 software.

Results

Genome size is not proportional to the number of tRNA genes

A genome-wide analysis of fully-annotated whole genome sequences of 128 species was conducted to identify tRNA genes and to construct an anti-codon table of the Plant Kingdom (Table 1). The species included in the study varied in the size of their respective genomes (Table 2). A regression analysis was conducted to determine the correlation between genome size and the number of tRNA genes encoded per genome. Results indicated that plant genome size was not correlated ($r = 0.5471$, $y=0.17892x+619.76$) with the number of the tRNA genes per genome (Figure 1). *Ipomoea nil*, with a genome size of genome size of 735.23 Mb, possesses 6,475 tRNA genes which was the highest number of tRNA encoding genes identified in the species of plants that were analysed. Other species with a high number of tRNA genes in their genome were *Cucurbita moschata* (4,062), *Cucurbita pepo* (3,228), *Cucurbita maxima* (3,036), *Papaver somniferum* (2,571), *Brassica napus* (2,180), and *Ipomoea triloba* (2,180). Among the 128 analysed plant species, 22 (16.92%) species possessed more than one thousand tRNA genes in their genome. In contrast, *Ostreococcus tauri* and *Phaedactylum tricornutum* only encoded 41 tRNA genes in their genome, which was the lowest number of tRNA encoding genes identified in the species of plants that were analysed. Other species encoding lower number of tRNA genes were *Raphidocelis subcapitata* (43), *Monoraphidium neglectum* (48), and *Bathycoccus prasinus* (57). The genome size of *O. tauri*, *P. tricornutum*, *R. subcapitata*, and *M. neglectum* was 14.76, 27.4, 51.16, and 69.71 Mb, respectively. These genome sizes are relatively smaller than the genome of most of the other plant species that were analysed.

CAU (Met) was the most abundant and GCG (Arg) was the least abundant encoded Anti-codons in the Plant Kingdom

The occurrence of each of the anti-codons were separately analysed to determine the frequency of anti-codons in the genomes of the Plant Kingdom. Results indicated that CAU (Met) was the most abundant (5.033%) anti-codon in the Plant Kingdom, followed by GUC (Asp, 4.274%), GUU (Asn, 4.020%), and GCC (Gly, 3.811%) (Table 1, Supplementary File 1). In contrast, GCG (Arg) was identified as the least abundant (0.004%) anti-codon in the Plant Kingdom, followed by GAG (Leu, 0.009%), CUA (Sup, 0.011%), and ACU (Ser, 0.019%) (Table 1, Supplementary File 1). The lowest-abundant anti-codon (GCG) was only present in *Ipomea nil*, *Nicotiana attenuata*, *Papaver somniferum*, and *Ziziphus*.
When the anti-codon frequency of different tRNA isoacceptor was considered, however, tRNA_{Leu} was found to be the most abundant tRNA isoacceptor (Table 1). Approximately 7.808% of all anti-codons in the Plant Kingdom were found to be encoded by tRNA_{Leu} (Table 1). The abundance of tRNA_{Leu}, was followed by tRNA_{Ser} (7.668%), tRNA_{Gly} (7.523%), and tRNA_{Arg} (7.284%) (Table 1). tRNA_{Leuc}, tRNA_{Ser}, and tRNA_{Arg} encode six different isoacceptors which might be the reason for their higher abundance in the plant genomes. Suppressor tRNA (0.036%) was found to be the least abundant tRNA isoacceptor in the plant genomes, followed by tRNA_{Sec} (0.066%), tRNA_{His} (2.109%), and tRNA_{Cys} (2.547%) (Table 1). Suppressor tRNA (CUA) anti-codon was only found in *Ectocarpus siliculosus*, *Nicotiana sylvestris*, and *Zea mays* (Supplementary File 1).

Anti-codons can be classified into five groups based on their frequency of occurrence in plant genomes

A clustering analysis based on the frequency of abundance of the anti-codons in the Plant Kingdom was conducted using the paired group (UPGMA) algorithm and Euclidean similarity index with 1000 bootstrap replicates. The analysis revealed five distinct groups of anti-codons and were named as group A, B, C, D, and E (Figure 2). The anti-codons in the different groups were: Group A - CAU, GCC, GUU, and GUC; Group B - CUU, GAA, AAA, AGA, UCC, GCA, GCU, UCC, AAC, CCA, GUA, UUU, UGG, AGC, UUC, and UAC; Group C - UGA, UGU, UAG, UUG, UCU, CAC, AGU, GUG, AAG, AGG, UGC, CAA, and ACC; Group D - CGG, CGU, CGA, CGG, CAG, UAA, AGG, UAG, UCC, CCC, UAC, CCU, and CUG; and Group E - GGU, GGA, AUU, GUA, GAC, AUC, AUG, AAA, ACA, UCA, GGG, ACU, UUA, GCC, ACC, AUA, GAG, CUA, and GCG (Figure 2). The anti-codon groupings are based on their abundance in plant genomes, from highest (Group A) to lowest (Group E).

Plant genomes encode 18 to 59 isoacceptors (anti-codons)

The genome-wide analysis of the Plant Kingdom revealed the diversity in the number of anti-codons present in the genomes of individual species, which ranged from 18–59 (Table 2). *Ostreococcus tauri* was found to encode only 18 isoacceptors while *Micromonas commoda* encodes only 26 isoacceptors (Table 2). *Ipomoea nil*, *Papaver somniferum*, and *Zea mays* encoded the highest number of anti-codons at 59 each. At least 51 (39.53%) species were found to encode 50 or more anti-codons in their genome. On average, plant genomes encode 48.25 anti-codons per genome. A paired two tailed t-test was conducted to statistically analyse the frequency of anti-codons present in algae, eudicot, and monocot species. The comparison between eudicot and monocot species indicated that the frequency of tRNA anti-codons in these two groups was not significantly different (P < 0.05) at 1.2691 < 1.984 (t-test result 1.2691, critical value $T_{1.984}$), respectively (Table 3). In contrast, a significant difference in tRNA frequency was observed between eudicots and algae (10.3939 > 1.987), and between monocots and algae (6.2914 > 2.037) (Table 3). Notably, the variance in tRNA frequency in the monocot lineage was much lower than it was in the eudicots and algae.

Only a few species have lost tRNA genes

Our analysis revealed that a few species have lost the presence of specific tRNA genes (tRNA isotype) in their genome. These species include *Coccomyxa subellipsoidea* (tRNA_{Tyr}), *Corchorus capsularis* (tRNA_{Leu}, tRNA_{Thr}, tRNA_{Lys}), *Corchorus olitorius* (tRNA_{Tyr}), *Klebsormidium nitens* (tRNA_{Tyr}, tRNA_{Ser}), *Monoraphidium neglectum* (tRNA_{Thr}), *Ostreococcus tauri* (tRNA_{Phe}, tRNA_{Gln}), *Picea glauca* (tRNA_{Ser}), *Phaedactylum tricornutum* (tRNA_{Cys}), and *Raphidocelis subcapitata* (tRNA_{Tyr}) (Table 2). These species were found to lost the mentioned gene(s) in their genome. Understanding the loss of tRNA genes and its functional implication in protein translation is very crucial.
Some plant species encode tRNASec in their genomes

Several plant species were found to encode tRNA genes for selenocysteine amino acids. More specifically, 22 (17.187%) species were found to encode a tRNASec gene in their genome. These species were Aegilops tauschii, Beta vulgaris, Brassica rapa, Cucumis sativus, Cucurbita maxima, Cucurbita moschata, Cucurbita pepo, Ectocarpus siliculosus, Ipomoea nil, Ipomoea triloba, Lactuca sativa, Momordica charantia, Medicago truncatula, Monoraphidium neglectum, Nicotiana tabacum, Papaver somniferum, Picea glauca, Populus euphratica, Salvia splendens, Tarenaya hassleriana, Triticum urartu, and Zea mays (Table 2). The length of tRNASec encoding genes was ranged from 70 to 90 nucleotides with average length being 72.93 nucleotides per tRNA. A multiple sequence alignment of tRNASec genes indicated the presence of a conserved G-x-C nucleotide at the 30th and 32nd positions and a conserved U-C-A at 34th, 35th, and 36th positions (Supplementary Figure 1). The pseudo-uridine loop was also found to contain a conserved G-U-U-x2-A-x2-C nucleotide consensus sequence (Supplementary Figure 1). The tRNASec in C. maxima (NW_019272053.1), however, was found to encode a C-U-U nucleotide sequence instead of a G-U-U conserved consensus sequence in its pseudo-uridine loop (Supplementary Figure 1).

Loss of tRNASec occurred to a greater extent than duplication

A phylogenetic tree was constructed to investigate the evolution of tRNASec genes by considering the nucleotide sequences of all the 20 tRNA genes along with tRNASec genes. The phylogenetic tree revealed the 28 major tRNA groups (Figure 3). The tRNASec genes were clustered in the middle of the phylogenetic tree and tRNASec was found to be present in at least six different clusters (Figure 3). A few tRNASec genes were grouped with tRNALys (CUU), tRNAAsn (GUU), tRNAArg (UCG, CCG), tRNAGly (UCC), and tRNATrp (CCA) (Figure 3). The analysis indicates that tRNASec is distributed in different clusters in the phylogenetic tree. This explains the role of duplication events in the evolution of tRNASec genes. Therefore, an analysis was conducted to investigate the deletion/duplication events related to tRNASec genes. As a result, we found that tRNASec deletion events occurred more frequently than duplication events. A total of 45 duplications, 119 deletions, and 9 co-divergent events were identified within 68 tRNASec genes found in 22 species (Supplementary Figure 2). The role of recombination in the evolution of tRNASec was further analysed. Results indicated that tRNASec genes had undergone recombination events, as did other tRNA genes (Figure 4). The role of recombination and duplication of tRNASec genes resulted in the sharing of its genetic sequence with other tRNAs genes which may perhaps explain why tRNASec was present in different clusters within the phylogenetic tree. A recombination analysis of tRNASec genes indicated the role of recombination events within the tRNASec itself (Figure 5). A time tree analysis revealed that the divergence time of tRNASec genes in plant species occurred at least 2,466.30 million years ago (MYA) (Supplementary Figure 3) and less than a MYA in the case of the tRNASec in P. somniferum. The tRNASec in P. somniferum was found to arise from a duplication event. The recent divergence time for the tRNASec in P. somniferum indicates that this gene has undergone a recent duplication event.

tRNASec underwent a switch in anti-codons during evolution

tRNA genes undergo rapid changes during the course of their evolution to meet translational demand. Therefore, an attempt was made to better understand the role of tRNASec genes in plant evolution. It is well known that the tRNASec gene is encoded by a UCA anticyodon and that this gene was found in different clusters in the phylogenetic tree of tRNAs. An anti-codon switch occurs more frequently with a nucleotide sequence of a tRNA gene with a different anti-codon than with a gene with a similar anti-codon [51]. Therefore, the possibility of anti-codon switch in tRNASec gene was examined. tRNASec grouped with tRNALys (CUU), tRNAAsn (GUU), tRNAArg (UCG, CCG), tRNAGly (UCC), and tRNATrp
(CCA). The UCA anti-codon of tRNA^{Sec} was replaced by CUU in tRNA^{Lys} and in tRNA^{Asn} it was replaced by GUU where the 2nd and 3rd nucleotide of the anti-codons were constant. In tRNA^{Arg} and tRNA^{Gly}, the UCA anti-codon of tRNA^{Sec} was replaced by UCG and UCC where the 1st nucleotide of the anti-codons remained constant and the 2nd and 3rd anti-codons were variable. For the CCG anti-codon of tRNA^{Arg} and the CCA anti-codon of tRNA^{Trp}, the 1st nucleotide of U(CA) of tRNA^{Sec} was replaced with a C nucleotide and the 3rd nucleotide remained variable.

Statistical Analysis

The varied number and frequency of anti-codons led us to understand whether or not a dataset is approximately normally distributed. Therefore, we conducted normal probability plot study of anti-codon numbers (Figure 6). The normal probability plot correlation coefficient was 0.9632. the correlation co-efficient and an approximately straight line indicate that normal distribution was good for the dataset (Figure 6). Ordinary linear fit least square regression model of anti-codon numbers was conducted to find the best fit for a set of data by minimizing the sum of the offsets or residuals of points from the plotted curve and to understand the behaviour of dependent variables (Supplementary Figure 4). The method estimates the relationship by minimizing the sum of the squares in the difference between the observed and predicted values of dependent variable configured as a straight line. At 95% significance and intercept at zero, the slope was found to be 34.621 (Supplementary Figure 4). The statistical result of the ordinary least square regression was; \(t=10.728 \), standard error \(\sigma=3.227 \), and \(p(\text{slope})=6.161E-16 \). For 95% bootstrap confidence interval (\(N=1999 \)); correlation \(r=0.00916 \), \(r^2=8.3917E-05 \), \(t=0.072713 \), \(p(\text{uncorr})=0.94226 \), and permutation \(p=0.9404 \). the residual standard error of estimate was 147.

Discussion

tRNA is an adaptor molecule that becomes charged when it binds an amino acid and subsequently donates it to an elongating peptide chain as determined by a codon-anti-codon recognition system. Each tRNA contain a characteristics anti-codon sequence which dictates the translation of a mRNA sequence into a protein. In some cases, the same codon can get decoded by different tRNA species and the same tRNA species can also become decoded by different codons due to wobble interactions (Watson-Crick base pairing) at the first position of an anti-codon and third position of the codon [26–28]. In our analysis of 128 species of the plants, none were found to encode all 64 anti-codons, which suggests that wobble base pairing exists in all plant species. The wobble interaction occurs at the G:U (guanine-uracil) base pairing and modifications in anti-codons that change the specificity of a codon [57–59]. Due to this redundancy, it is not necessary for a plant genome to encode all of existing anti-codons and utilize different tRNAs according to the requirement. The presence of only 29 anti-codons in the genome of *Klebsormidium nitens* and 31 anti-codons in *Bathycoccus prasinos*, however, are somewhat very interesting. Species *K. nitens* and *B. prasinos* belonged to the phylum algae and the genome sizes of these species are much smaller than the genome sizes found in gymnosperm and angiosperms. The absence of a greater number of anti-codons in these species suggests that the rate of wobble base-pairing might be quite high in these species. Mohanta et al., (2020) reported that species of cyanobacteria possessed 32 to 43 anti-codons per genome [20]. Cyanobacterial genomes are smaller than genomes of alae and higher plants [60]. The absence of a greater number of anti-codons in species with smaller genome is directly related to a higher frequency of wobble base-pairing. *Ipomea nil* (59), *Ipomea triloba* (58), *Papaver somniferum* (59), *Cucurbita pepo* (56), and *Zea mays* (59) possess a high number of anti-codons and so the occurrence of wobble base pairing may be quite minimal in these species. It will be interesting to determine the factors responsible for the occurrence of high and low frequencies of wobble base-pairing. Zhang et al., (2013) reported that the presence of high concentration of amino acids in the nutrient media led to higher rate of mismatch incorporation of amino acids into the translating protein chain [61]. They also reported that wobble codon position is less stringent in base pair
mismatch and base change in 3rd position explained additional 25% misincorporation either by favourable GmRNA/UtRNA mismatch or wobble position mismatch [61]. The G/U mismatch was predominant during the codon recognition and which is commonly found in the nucleic acid secondary structures as well [62–64].

The abundance of the CAU anti-codon that encodes tRNAMet was the greatest among all of the anti-codons (Supplementary File 1). Methionine is used to initiate the start of a polypeptide chain, and as a result, almost all proteins require a methionine amino acid. Therefore, the abundance of an anti-codon for tRNAMet was found to be the highest. Additionally, tRNAMet (CAU) was found to have evolved earlier than other tRNAs during the course of evolution [18,19]. If the abundance of isoacceptors is considered, tRNALeu, which contain six isoacceptors (GGA, AGA, CGA, UGA, ACU, GCU), has the highest abundance (7.808% of the collective plant species). Similarly, tRNASer, and tRNAArg, both with six isoacceptors, have a high percentage of anti-codon abundance. This finding led us to conclude that, the higher the number of isoacceptors for tRNA isotypes, the greater the level of anti-codon sharing in a genome. The study also reveals that plant genomes encode tRNALeu, tRNASer, and tRNAArg more frequently than other tRNAs. A proteome-wide analysis by Mohanta et al., (2019) reported a higher abundance of Leu amino acids in the proteomes of the Plant Kingdom [65]. This observation directly corroborates that the number and abundance of tRNALeu genes in genome is directly proportional to the number of Leu amino acids in the proteome. In contrast, a few anti-codons, including GCG, GAG, GGG, GCC, ACU, ACC, UCA (Sec) (group E) of different tRNA isotypes were found to have a low abundance (Figure 2). Yona et al., (2013) reported that multiple copies of rare tRNAs are deleterious to a cell [51]. They also stated that the effective gene copy number of each tRNA anti-codon set can undergo changes during evolution that may be due to the changes in demand-to-supply [51]. A single point mutation in an anti-codon can change one tRNA to another. The lowest encoding anti-codon GCG of tRNAArg may have undergone a point mutation resulting in tRNAArg with ACG, CCG, and UCG, which avoids the deleterious effect of the GCG anti-codon. Previous studies have also noted that rare tRNAs may be essential for co-translational folding as low abundance could provide a pause in translation [44,66].

When plants grow in a multitude of environmental conditions, environmental stress can induce the expression of genes needed for stress adaptation, which may affect codon usage by the transcriptome. This leads to a demand for a different pool of tRNAs to support the change in codon usage and avoid a translational imbalance [52,67]. If the altered environmental conditions persist, the tRNAs have to undergo changes in their level of expression to meet and respond to the environmental stress-induced changes in gene expression. If the changes in supply-demand continue, it may lead to changes in the genetic pool of the tRNAs that are beneficial and favoured by selection pressures. These novel translational demands can be maintained by shifting nucleotides in the anti-codons rather than by the duplication of genes. The tRNA pool can evolve to maintain the translational requirement by adjusting the number and/or ratio of tRNA isotypes encoding the same amino acid. An anti-codon switch, however, can also dramatically change the ratios of tRNA isoacceptor within a tRNA pool. This can be done by increasing the copy number of one isoacceptor at the expense of others. The high sequence similarity of different anti-codons (anti-codon switch) can be the result of purifying selection that maintains sequence similarity. Sequence similarity, however, can result from concerted evolution that maintains sequence similarity through frequent recombination among members of the same gene family [68,69]. The presence of a high level of recombination in tRNAs indicates that the evolution of plant tRNAs for anti-codon switch and sequence similarity may be due to concerted evolution. A single point mutation in an anti-codon can result in the encoding of a different tRNA family. It would be interesting to understand the evolutionary constraints that lead to the generation of more members while others have fewer members. It has been previously reported that tRNALeu encodes a higher number of tRNA genes in the genome, a feature that is directly related to the higher number of tRNA isoacceptors in tRNALeu [17–20]. The question remains if purifying selection plays a role in maintaining a low level of certain tRNAs, such as tRNASec, tRNAHis, tRNATrp, and tRNATyr. It is plausible that this purifying selection might be responsible for maintaining the anti-codons of these tRNAs at non-optimal levels. A
previous study reported that increasing the copy number of a low copy tRNA gene family in a cell results in proteotoxic stress due to problems in protein folding [51]. In addressing the need for environmental adaptation, tRNA isotypes provide evolutionary plasticity to changes in translational demand due to their presence as a multi-member gene family. A few species have lost tRNA genes for particular tRNA isotypes and anti-codon switch/point mutations of anti-codons may be a factor that contributes to maintaining the function of a genome in the complete absence of a particular gene family.

Selenocysteine (a selenium containing cysteine analog) is co-translationally inserted in a small fraction of proteins (selenoproteins) and is driven by a tRNAsSec gene. Although Sec is found in all three domains of life, it is not universal. Approximately 20% of the prokaryotic genome contains selenoproteins, while in eukaryotes selenoproteins are reported to be more concentrated in the metazoan lineage [70–73]. The absence of selenoproteins in fungi and land plants has also been reported previously [74] and results from a lack of a tRNAsec gene in their genomes. tRNAsec is encoded by a UGA anti-codon which also encodes a stop codon. A highly sensitive and efficient method of tRNA identification is needed to find tRNAsec. The lack of suitable identification techniques may be the main reason for stating the absence of tRNAsec genes in fungal and plant genomes. Using current technology, however, we were able to identify tRNAsec, as well as tRNAsec genes in a few of the genomes of the analysed plant species.

Conclusion

The repertoire of tRNA has a significant impact on the fitness of an organism. The frequency (abundance) of anti-codons that explains synonymous codon usage in coding genes, however, has remained unexplored. Anti-codon frequency can be directly attributed to the frequency of synonymous codon usage and an anti-codon table of the Plant Kingdom, along with the percent abundance of each anti-codon, can be very helpful for understanding the relationship between codon and anti-codon frequency in the genome. The 21st amino acid, selenocysteine, encoded by tRNAsec has undergone a duplication event along with an anti-codon switch. Understanding the mechanisms involved in the loss of tRNA genes in a few species may be crucial to deciphering the translation mechanism in these species. The frequency of the anti-codons GCG (Arg), GAG (Leu), ACU (Ser), GGG (Pro) were very low in abundance and appear to be the rarest form of anti-codons in the Plant Kingdom. Yona et al., (2013) reported that multiple copies of rare tRNAs are deleterious to a cell [51], which suggests that large copy numbers of CGC, GAG, ACU, and GGG anti-codons may be deleterious to plant cells. Therefore, a very low number of these anti-codons are encoded in the plant genome. A few species have completely lost specific tRNA isotype genes in their genome. Additionally, a previous also reported the loss of tRNA genes in some plant genomes [75].

Declarations

Ethic approval and consent to participate

Not applicable

Consent for publication

All authors agree and have consent for publication

Availability of data material

All the studied data were taken from publicly available databases and data associated with the manuscript is provided in supplementary file.
Competing of interest

There is no competing of interest to declare

Funding

Not applicable

Author contribution

TKM: conceived the idea, collected and annotated the genome sequences, analysed and interpreted the data and drafted the manuscript, AKM: analysed the data; AH and EFA: drafted and revised the manuscript, ALK: revised the manuscript, AA: revised the manuscript

Acknowledgement

The authors would like to extend their sincere appreciation to the Researchers Supporting Project Number (RSP-2020/134), King Saud University, Riyadh, Saudi Arabia.

References

1. Kleijn M, Scheper GC, Voorma HO, Thomas AAM. Regulation of translation initiation factors by signal transduction. European Journal of Biochemistry [Internet]. John Wiley & Sons, Ltd; 1998;253:531–44. Available from: https://doi.org/10.1046/j.1432-1327.1998.2530531.x

2. Meinnel T, Mechulam Y, Blanquet S. Methionine as translation start signal: A review of the enzymes of the pathway in Escherichia coli. Biochimie [Internet]. 1993;75:1061–75. Available from: http://www.sciencedirect.com/science/article/pii/030090849390005D

3. Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene [Internet]. 1999;234:187–208. Available from: http://www.sciencedirect.com/science/article/pii/S0378111999002103

4. Schaffer R, Landgraf J, Pérez-Amador M, Wisman E. Monitoring genome-wide expression in plants. Current Opinion in Biotechnology [Internet]. 2000;11:162–7. Available from: http://www.sciencedirect.com/science/article/pii/S0958166900000847

5. Lonsdale DM. A review of the structure and organization of the mitochondrial genome of higher plants. Plant Molecular Biology [Internet]. 1984;3:201–6. Available from: https://doi.org/10.1007/BF0029655

6. Noller HF. Ribosomal RNA And Translation. Annual Review of Biochemistry [Internet]. Annual Reviews; 1991;60:191–227. Available from: https://doi.org/10.1146/annurev.bi.60.070191.001203

7. Zamecnik P. From protein synthesis to genetic insertion. Annual Review of Biochemistry [Internet]. Annual Reviews; 2005;74:1–28. Available from: https://doi.org/10.1146/annurev.biochem.74.050304.091632

8. Gualerzi CO, Pon CL. Initiation of mRNA translation in prokaryotes. Biochemistry [Internet]. American Chemical Society; 1990;29:5881–9. Available from: https://doi.org/10.1021/bi00477a001

9. Nakamoto T. Mechanisms of the initiation of protein synthesis: in reading frame binding of ribosomes to mRNA. Molecular Biology Reports [Internet]. 2011;38:847–55. Available from: https://doi.org/10.1007/s11033-010-0176-1

10. Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, et al. An Evolutionarily Conserved Mechanism for Controlling the Efficiency of Protein Translation. Cell [Internet]. Elsevier; 2010;141:344–54. Available from: https://doi.org/10.1016/j.cell.2010.03.031
11. Chevance FF V, Hughes KT. Case for the genetic code as a triplet of triplets. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2017/04/17. National Academy of Sciences; 2017;114:4745–50. Available from: https://pubmed.ncbi.nlm.nih.gov/28416671

12. Clancy S, Brown W. Translation: DNA to mRNA to Protein. Nature Education. 2008;1:101.

13. Sharp SJ, Schaack J, Cooley L, Burke DJ, Soil D. Structure and Transcription of Eukaryotic tRNA Gene. Critical Reviews in Biochemistry. Taylor & Francis; 1985;19:107–44.

14. Crick FHC. The origin of the genetic code. Journal of Molecular Biology [Internet]. 1968;38:367–79. Available from: http://www.sciencedirect.com/science/article/pii/0022283668903926

15. Green R, Noller HF. Ribosomes and translation. Annual Review of Biochemistry [Internet]. Annual Reviews; 1997;66:679–716. Available from: https://doi.org/10.1146/annurev.biochem.66.1.679

16. Baggett NE, Zhang Y, Gross CA. Global analysis of translation termination in E. coli. PLOS Genetics [Internet]. Public Library of Science; 2017;13:e1006676. Available from: https://doi.org/10.1371/journal.pgen.1006676

17. Mohanta TK, Bae H. Analyses of Genomic tRNA Reveal Presence of Novel tRNAs in Oryza sativa. Frontiers in Genetics. Frontiers Media S.A.; 2017;8:90.

18. Mohanta T, Syed A, Ameen F, Bae H. Novel Genomic and Evolutionary Perspective of Cyanobacterial tRNAs. Frontiers in Genetics. 2017;8:200.

19. Mohanta TK, Khan AL, Hashem A, Allah EFA, Yadav D, Al-Harrasi A. Genomic and evolutionary aspects of chloroplast tRNA in monocot plants. BMC Plant Biology [Internet]. 2019;19:39. Available from: https://doi.org/10.1186/s12870-018-1625-6

20. Mohanta TK, Yadav D, Khan A, Hashem A, Abd_Allah EF, Al-Harrasi A. Analysis of genomic tRNA revealed presence of novel genomic features in cyanobacterial tRNA. Saudi Journal of Biological Sciences [Internet]. 2019;27:124–33. Available from: http://www.sciencedirect.com/science/article/pii/S1319562X19301020

21. Ambrogelly A, Pialioura S, Söll D. Natural expansion of the genetic code. Nature Chemical Biology [Internet]. 2007;3:29–35. Available from: https://doi.org/10.1038/nchembio847

22. Lobanov A V, Turanov AA, Hatfield DL, Gladyshiev VN. Dual functions of codons in the genetic code. Critical Reviews in Biochemistry and Molecular Biology [Internet]. Taylor & Francis; 2010;45:257–65. Available from: https://doi.org/10.3109/10409231003786094

23. Polycarpo C, Ambrogelly A, Bérubé A, Winbush SM, McCloskey JA, Crain PF, et al. An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 2004;101:12450 LP – 12454. Available from: http://www.pnas.org/content/101/34/12450.abstract

24. Mahapatra A, Srinivasan G, Richter KB, Meyer A, Lienard T, Zhang JK, et al. Class I and class II lysyl-tRNA synthetase mutants and the genetic encoding of pyrrolysine in Methanosarcina spp. Molecular Microbiology [Internet]. John Wiley & Sons, Ltd; 2007;64:1306–18. Available from: https://doi.org/10.1111/j.1365-2958.2007.05740.x

25. Yuan J, O'Donoghue P, Ambrogelly A, Gundlapalli S, Sherrer RL, Pialioura S, et al. Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Letters [Internet]. John Wiley & Sons, Ltd; 2010;584:342–9. Available from: https://doi.org/10.1016/j.febslet.2009.11.005

26. Crick F. Codon-anticodon pairing. Journal of Molecular Biology. 1966;19:548–55.

27. Agris PF, Vendeix FAP, Graham WD. tRNA's Wobble Decoding of the Genome: 40 Years of Modification. Journal of Molecular Biology [Internet]. 2007;366:1–13. Available from:
28. Näsvall SJ, Chen P, Björk GR. The wobble hypothesis revisited: Uridine-5-oxyacetic acid is critical for reading of G-ending codons. RNA [Internet]. 2007;13:2151–64. Available from: http://rnajournal.cshlp.org/content/13/12/2151.abstract

29. Guo Y, Xiong L, Ishitani M, Zhu J-K. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proceedings of the National Academy of Sciences [Internet]. 2002;99:7786 LP – 7791. Available from: http://www.pnas.org/content/99/11/7786.abstract

30. Schwartz DC, Parker R. Mutations in translation initiation factors lead to increased rates of deadenylation and decapping of mRNAs in Saccharomyces cerevisiae. Molecular and cellular biology [Internet]. American Society for Microbiology; 1999;19:5247–56. Available from: https://pubmed.ncbi.nlm.nih.gov/10409716

31. Morton BR. The Role of Context-Dependent Mutations in Generating Compositional and Codon Usage Bias in Grass Chloroplast DNA. Journal of Molecular Evolution [Internet]. 2003;56:616–29. Available from: https://doi.org/10.1007/s00239-002-2430-1

32. Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics [Internet]. 1991;129:897 LP – 907. Available from: http://www.genetics.org/content/129/3/897.abstract

33. Yang Z, Nielsen R. Mutation-Selection Models of Codon Substitution and Their Use to Estimate Selective Strengths on Codon Usage. Molecular Biology and Evolution [Internet]. 2008;25:568–79. Available from: https://doi.org/10.1093/molbev/msm284

34. Sharp PM, Li W-H. An evolutionary perspective on synonymous codon usage in unicellular organisms. Journal of Molecular Evolution [Internet]. 1986;24:28–38. Available from: https://doi.org/10.1007/BF02099948

35. Song KY, Choi HS, Hwang CK, Kim CS, Law P-Y, Wei L-N, et al. Differential use of an in-frame translation initiation codon regulates human mu opioid receptor (OPRM1). Cellular and Molecular Life Sciences [Internet]. 2009;66:2933–42. Available from: https://doi.org/10.1007/s00018-009-0082-7

36. Saier MH. Differential codon usage: a safeguard against inappropriate expression of specialized genes? FEBS Letters [Internet]. John Wiley & Sons, Ltd; 1995;362:1–4. Available from: https://doi.org/10.1016/0014-5793(95)00185-C

37. Sharp PM, Tuohy TMF, Mosurski KR. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Research [Internet]. 1986;14:5125–43. Available from: https://doi.org/10.1093/nar/14.13.5125

38. Sharp P, Li W-H. Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons . Nucleic Acids Research [Internet]. 1986;14:7737–49. Available from: https://doi.org/10.1093/nar/14.19.7737

39. Sharp PM, Devine KM. Codon usage and gene expression level in Dictyostelium discoidum: highly expressed genes do [prefer] optimal codons . Nucleic Acids Research [Internet]. 1989;17:5029–40. Available from: https://doi.org/10.1093/nar/17.13.5029

40. Musto H, Cruveiller S, D’Onofrio G, Romero H, Bernardi G. Translational Selection on Codon Usage in Xenopus laevis. Molecular Biology and Evolution [Internet]. 2001;18:1703–7. Available from: https://doi.org/10.1093/oxfordjournals.molbev.a003958

41. Naya H, Romero H, Carels N, Zavala A, Musto H. Translational selection shapes codon usage in the GC-rich genome of Chlamydomonas reinhardtii. FEBS Letters [Internet]. 2001;501:127–30. Available from: http://www.sciencedirect.com/science/article/pii/S0014579301026448

42. Romero H, Zavala A, Musto H, Bernardi G. The influence of translational selection on codon usage in fishes from the family Cyprinidae. Gene [Internet]. 2003;317:141–7. Available from:
43. Bulmer M. Coevolution of codon usage and transfer RNA abundance. Nature [Internet]. 1987;325:728–30. Available from: https://doi.org/10.1038/325728a0

44. Drummond DA, Wilke CO. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell [Internet]. 2008;134:341–52. Available from: https://pubmed.ncbi.nlm.nih.gov/18662548

45. DiMichele WA. Wetland-Dryland Vegetational Dynamics in the Pennsylvanian Ice Age Tropics. International Journal of Plant Sciences [Internet]. The University of Chicago Press; 2014;175:123–64. Available from: https://doi.org/10.1086/675235

46. Mohanta TK, Occhipinti A, Atsbaha Zebelo S, Foti M, Fliegmann J, Bossi S, et al. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS one. 2012;7:e32822.

47. Mohanta T. Advances in Ginkgo biloba research: Genomics and metabolomics perspectives. African Journal of Biotechnology. 2012;11:15936–44.

48. Wu D-D, Irwin DM, Zhang Y-P. De Novo Origin of Human Protein-Coding Genes. PLOS Genetics [Internet]. Public Library of Science; 2011;7:e1002379. Available from: https://doi.org/10.1371/journal.pgen.1002379

49. Graur D. Amino acid composition and the evolutionary rates of protein-coding genes. Journal of Molecular Evolution [Internet]. 1985;22:53–62. Available from: https://doi.org/10.1007/BF02105805

50. Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, et al. Evolution of protein-coding genes in Drosophila. Trends in Genetics [Internet]. 2008;24:114–23. Available from: http://www.sciencedirect.com/science/article/pii/S0168952508000024

51. Yona AH, Bloom-Ackermann Z, Frumkin I, Hanson-Smith V, Charpak-Amikam Y, Feng Q, et al. tRNA genes rapidly change in evolution to meet novel translational demands. eLife. 2013;2013:1–17.

52. Frumkin I, Lajoie MJ, Gregg CJ, Hornung G, Church GM, Pilpel Y. Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proceedings of the National Academy of Sciences [Internet]. 2018;115:E4940 LP-E4949. Available from: http://www.pnas.org/content/115/21/E4940.abstract

53. Schultz DW, Yarus M. tRNA Structure and Ribosomal Function: II. Interaction Between Anticodon Helix and other tRNA Mutations. Journal of Molecular Biology [Internet]. 1994;235:1395–405. Available from: http://www.sciencedirect.com/science/article/pii/S0022283684710965

54. Bloom-Ackermann Z, Navon S, Gingold H, Towers R, Pilpel Y, Dahan O. A Comprehensive tRNA Deletion Library Unravels the Genetic Architecture of the tRNA Pool. PLOS Genetics [Internet]. Public Library of Science; 2014;10:e1004084. Available from: https://doi.org/10.1371/journal.pgen.1004084

55. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research [Internet]. Oxford University Press; 2004;32:1792–7. Available from: https://pubmed.ncbi.nlm.nih.gov/15034147

56. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution [Internet]. 2016;33:1870–4. Available from: https://doi.org/10.1093/molbev/msw054

57. Varani G, McClain WH. The G.U wobble base pair. EMBO reports [Internet]. John Wiley & Sons, Ltd; 2000;1:18–23. Available from: https://doi.org/10.1093/embo-reports/kvd001

58. Limmera S, Reifa B, otta G, Arnold L, Sprinzl M. NMR evidence for helix geometry modifications by a G-U wobble base pair in the acceptor arm of E. coli tRNAAla. FEBS Letters [Internet]. John Wiley & Sons, Ltd; 1996;385:15–20. Available from: https://doi.org/10.1016/0014-5793(96)00339-0

59. Mueller U, Schübel H, Sprinzl M, Heinemann U. Crystal structure of acceptor stem of tRNA(Ala) from Escherichia coli shows unique G.U wobble base pair at 1.16 A resolution. RNA [Internet]. 1999;5:670–7. Available from:
60. Mohanta TK, Pudake RN, Bae H. Genome-wide identification of major protein families of cyanobacteria and genomic insight into the circadian rhythm. European Journal of Phycology. 2017;52.

61. Zhang Z, Shah B, Bondarenko P V. G/U and Certain Wobble Position Mismatches as Possible Main Causes of Amino Acid Misincorporations. Biochemistry [Internet]. American Chemical Society; 2013;52:8165–76. Available from: https://doi.org/10.1021/bi401002c

62. Müller UR, Fitch WM. The biological significance of G-T/G-U mispairing in nucleic acid secondary structure. Journal of Theoretical Biology [Internet]. 1985;117:119–26. Available from: http://www.sciencedirect.com/science/article/pii/S0022519385801673

63. Sugimoto N, Kierzek R, Freier SM, Turner DH. Energetics of internal GU mismatches in ribooligonucleotide helixes. Biochemistry [Internet]. American Chemical Society; 1986;25:5755–9. Available from: https://doi.org/10.1021/bi00367a061

64. Limmer S. Mismatch base pairs in RNA. Progress in nucleic acid research and molecular biology. United States; 1997;57:1–39.

65. Mohanta TK, Khan AL, Hashem A, Abd_Allah EF, Al-Harrasi A. The Molecular Mass and Isoelectric Point of Plant Proteomes. BMC Genomics [Internet]. 2019;20:631. Available from: http://biorxiv.org/content/early/2019/02/10/546077.abstract

66. Thanaraj TA, Argos P. Ribosome-mediated translational pause and protein domain organization. Protein science: a publication of the Protein Society [Internet]. Cold Spring Harbor Laboratory Press; 1996;5:1594–612. Available from: https://pubmed.ncbi.nlm.nih.gov/8844849

67. Rocha EPC. Codon usage bias from tRNA's point of view: Redundancy, specialization, and efficient decoding for translation optimization. Genome Research [Internet]. 2004;14:2279–86. Available from: http://genome.cshlp.org/content/14/11/2279.abstract

68. Munz P, Amstutz H, Kohli J, Leupold U. Recombination between dispersed serine tRNA genes in Schizosaccharomyces pombe. Nature [Internet]. 1982;300:225–31. Available from: https://doi.org/10.1038/300225a0

69. Amstutz H, Munz P, Heyer W-D, Leupold U, Kohli J. Concerted evolution of tRNA genes: Intergenic conversion among three unlinked serine tRNA genes in S. pombe. Cell [Internet]. Elsevier; 1985;40:879–86. Available from: https://doi.org/10.1016/0092-8674(85)90347-2

70. Zhang Y, Romero H, Salinas G, Gladyshev VN. Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome biology [Internet]. 2006/10/20. BioMed Central; 2006;7:R94–R94. Available from: https://www.ncbi.nlm.nih.gov/pubmed/17054778

71. Zhang Y, Turanov AA, Hatfield DL, Gladyshev VN. In silico identification of genes involved in selenium metabolism: evidence for a third selenium utilization trait. BMC genomics [Internet]. BioMed Central; 2008;9:251. Available from: https://pubmed.ncbi.nlm.nih.gov/18510720

72. Mariotti M, Guigó R. Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization Running Title: Phylogeny of selenophosphate synthetases Keywords : selenocysteine , gene duplication , sub. Genome Research. 2015;25:1256–67.

73. Jiang L, Ni J, Liu Q. Evolution of selenoproteins in the metazoan. BMC Genomics [Internet]. 2012;13:446. Available from: https://doi.org/10.1186/1471-2164-13-446

74. Lobanov AV, Hatfield DL, Gladyshev VN. Eukaryotic selenoproteins and selenoproteomes. Biochimica et biophysica acta [Internet]. 2009/05/27. 2009;1790:1424–8. Available from:
75. Wald N, Margalit H. Auxiliary tRNAs: Large-scale analysis of tRNA genes reveals patterns of tRNA repertoire dynamics. Nucleic Acids Research. 2014;42:6552–66.

76. Tamura K, Filipski A, Peterson D, Stecher G, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution [Internet]. 2013;30:2725–9. Available from: https://doi.org/10.1093/molbev/mst197

Tables

Table 1

Anti-codon table of the plant kingdom with frequency of anti-codons.
tRNA Isotypes	Isoacceptors	Total no of Anti-codons (%)
Asparagine	AUU (155) GUU (3972)	4.176
Cysteine	GCA (2454) ACA (64)	2.547
Glutamine	CUG (1321) UUG (1775)	3.133
Glycine	ACC (31) GCC (3766) CCC (1105) UCC (2532)	7.523
Serine	GGA (378) AGA (2332) CGA (820) UGA (1506) ACU (19) GCU (2522)	7.668
Threonine	AGU (1946) GGU (366) CGU (729) UGU (1619)	4.716
Tyrosine	AUA (38) GUA (2825)	2.897
Alanine	AGC (2897) GGC (25) CGC (1060) UGC (2125)	6.180
Isoleucine	AAU (3200) GAU (188) UAU (1069) CAU (0)	4.510
Leucine	AAG (2065) GAG (9) CAG (859) UAG (1625) CAA (2145) UAA (1012)	7.808
Methionine	CAU (4979)	5.039
Phenylalanine	AAA (55) GAA (3330)	3.425
Proline	AGG (2070) GGG (22) CGG (845) UGG (2861)	5.868
Tryptophan	CCA (2736)	2.769
Valine	AAC (2700) GAC (205) CAC (1934) UAC (1267)	6.179
Arginine	ACG (2178) GCG (4) CCG (705) UCG (1084) CCU (1311) UCU (1915)	7.284
Histidine	AUG (53) GUG (2031)	2.109
Lysine	CUU (3387) UUU (2862)	6.324
Aspartic acid	GUC (4223) AUC (52)	4.326
Glutamic acid	CUC (2909) UUC (2370)	5.342
Suppressor	CUA (11) UUA (25)	0.036
Selenocysteine	UCA (66)	0.066
Table 2

Genomic details of plant anti-codons.

Not determined	? (59)	0.059

Species Name	Classification	Total No of tRNAs	Total No of anticodons	Missing anticodons	Amino Acids of Missing anticodons	Missing tRNA Genes	Encoding Sec Amino Acids
Abrus precatorius	Eudicot	702	49	ACA, AUG, AUA, ACC, GGC, UUA, GGG, ACU, CUA, GAG, GCG	His, Tyr, Cys, Val, Ala, Sup, Pro, Ser, Sup, Leu		
Aegilops tauschii	Monocot	1701	53	ACA, ACC, ACU, AUA, AUG, CUA, GAG, GCG, GGC, GGG, UUA	Cys, Gly, Ser, Tyr, His, Sup, Leu, Arg, Ala, Pro, Sup		
Amborella trichopoda	Amborella	321	49	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAG, GCG, GGC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup		
Ananas comosus	Monocot	446	49	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAG, GCG, GGC, GGG, UCA, UUA	Phe, Cys, Gly, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup		
Arabidopsis thaliana	Eudicot	678	49	AAA, ACA, ACC, AUA, AUG, AUC, AUG	Phe, Cys, Gly, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup		
Species	Phylum	Length (nt)	Stop codon				
-------------------------------	--------	-------------	------------				
Arachis duranensis	Eudicot	579	51				
Arachis hypogaea	Eudicot	1250	56				
Arachis ipaensis	Eudicot	562	52				
Arabidopsis lyrata	Eudicot	567	50				
Asparagus officinalis	Monocot	493	45				
Species	Kingdom	References	Start	Stop	Codons	Amino Acids	
-------------------------	---------	------------	-------	------	--------	--	
Bathycoccus prasinos	Algae	57	31		AAA, AAG, AAU, ACA, ACC, ACU, AGA, AU, AUG, AU, CAC, CCC, CCG, CU, CGA, CGC, CGU, CUA, CUC, CUG, GAC, GCC, GCG, GGA, GCC, GGG, GGU, UAU, UCA, UCG, UGU, UUA	Phe, Leu, Ile, Cys, Gly, Ser, Ser, Tyr, Asp, His, Asn, Val, Gly, Arg, Arg, Ser, Ala, Thr, Sup, Glu, Gln, Val, Gly, Arg, Ser, Ala, Pro, Thr, Ile, Sup, Arg, Thr, Sup	
Beta vulgaris	Eudicot	942	53		AAA, ACA, ACC, ACU, AUA, AUG, AU, CAC, CCC, CCG, CU, CGA, CGC, CGU, CUA, CUC, CUG, GAC, GCC, GCG, GGA, GCC, GGG, GGU, UAU, UCA, UCG, UGU, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Leu, Arg, Sup	
Brachypodium distachyon	Monocot	563	49		AAA, ACA, ACC, ACU, AUA, AUG, AU, CAC, CCC, CCG, CU, CGA, CGC, CGU, CUA, CUC, CUG, GAC, GCC, GCG, GGA, GCC, GGG, GGU, UAU, UCA, UCG, UGU, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Ser, Arg, Ala, Pro, Sup, Sup	Yes
Species	Taxonomy	Length	Score	TAA	Amino Acids	Note	
--------------------	------------	--------	-------	-----	------------------------------	------	
Brassica napus	Eudicot	2180	53	GCG, GGC, GGG, UCA, UUA			
Brassica oleracea	Eudicot	993	48	AAA, ACA, ACC, ACU, AUA, AUI, CUA, GCG, GGG, UCA, UUA	Cys, Gly, Ser, Tyr, Asn, Sup, Arg, Pro, Sup, Sup, Phe		
Brassica rapa	Eudicot	1047	50	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUI, CUA, GAC, GAG, GAU, GCG, GGC, GGG, GGU, UCA, UUA	Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ser, Pro, Sup, Phe		
Yes							
Cajanus cajan	Eudicot	694	49	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUI, CUA, GAG, GCG, GGA, GGG, GGU, UCA, UUA	Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup, Phe		
Camelina sativa	Eudicot	1652	51	ACA, Gly, Ser,			

Page 21/55
Species	Domain	Accession	Length	Coding Sites			
Camellia sinensis	Eudicot	612	51	AAA, ACC, ACU, AUA, AUC, AUG, CUA, GAG, GAC, GCU, GGG, UCA, UUA	Gly, Ser, Tyr, Asn, Sup, Val, Leu, Ile, Arg, Ala, Pro, Sup, Cys		
Cannabis sativa	Eudicot	490	46	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUC, AUA, CUA, GAC, GAG, GCU, GGG, UCA, UUA	Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Val, Leu, Ile, Arg, Ser, Ala, Pro, Sup, Sup, Phe		
Capsella rubella	Eudicot	557	47	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUA, CUA, GAC, GAG, GAU, GCG, GGA, GGC, GGG, UCA, UUA	Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Val, Leu, Ile, Arg, Ala, Pro, Sup, Sup, Phe		
Capsicum annuum	Eudicot	794	53	ACA, ACC, ACU, GAC, GAG, GAU, GCG, GGC, GGG, UCA, UUA	Cys, Gly, Ser, Tyr, Asp, Sup,		
Species	Domain	Accession	Length	Codon Usage	Amino Acid Composition		
-----------------------	--------	-----------	--------	-------------	------------------------		
Carica papaya	Eudicot	378	51	ACA, ACC, ACU, AUA, AUG, AUC, AUA	Leu, Arg, Ala, Sup, Sup		
Chenopodium quinoa	Eudicot	1017	51	AAA, ACC, ACU, AUG, ACU, AUG, AUA	Cys, Gly, Ser, Tyr, Asp, His, Sup, Leu, Arg, Ala, Pro, Sup, Sup		
Chlamydomonas reinhardtii	Algae	87	45	AAA, ACA, ACC, ACU, AUA, AUG, AUC, AUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Val, Leu, Ile, Arg, Ser, Ala, Pro, Thr, Sup, Sup		
Cicer arietinum	Eudicot	665	48	AAA, ACA, ACC, ACU, AUA, AUG, AUC, AUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Thr, Sup, Sup		
Organism	Domain	Species	Accession	ORF 1	ORF 2	Codons	Amino Acids
------------------------------	--------	---------	-----------	-------	-------	--------	-------------
Citrus clementina	Eudicot	428	47	AAA,	ACA,	GAG,	Phe, Cys,
				ACC,	ACU,	GAU,	Gly, Ser,
				UUA,	AUG,	UUG,	Tyr, Asp,
				AUG,	AUU,	AUU,	His, Asn,
				CUA,	GAC,	GAC,	Sup, Val,
				GAG,	GGU,	GGU,	Leu, Ile,
				GAU,	GUA,	GUA,	Arg, Ala,
				AUG,	GUA,	GUA,	Pro, Sup,
				AUU,	GUA,	UUA,	Sup

Citrus sinensis	Eudicot	417	48	AAA,	ACA,	GAG,	Phe, Cys,
				ACC,	ACU,	GAU,	Gly, Ser,
				UUA,	AUG,	UUG,	Tyr, Asp,
				AUG,	AUU,	AUU,	His, Asn,
				CUA,	GAC,	GAC,	Sup, Val,
				GAG,	GGU,	GGU,	Leu, Ile,
				GAU,	GUA,	GUA,	Arg, Ser,
				AUG,	AUU,	AUU,	Ala, Pro,
				CUA,	GAC,	GAC,	Thr, Tyr,
				GAG,	GGU,	GUA,	Sup, Sup

Coccomyxa subellipsoidea	Algae	77	44	AAA,	ACA,	GAG,	Phe, Cys,
				ACC,	ACU,	GAU,	Gly, Ser,
				UUA,	AUG,	UUG,	Tyr, Asp,
				AUG,	AUU,	AUU,	His, Asn,
				CUA,	GAC,	GAC,	Sup, Val,
				GAG,	GGU,	GGU,	Leu, Ile,
				GAU,	GUA,	GUA,	Arg, Ser,
				AUG,	AUU,	AUU,	Ala, Pro,
				CUA,	GAC,	GAC,	Thr, Tyr,
				GAG,	GGU,	GUA,	Sup, Sup

Coffea arabica	Eudicot	747	50	AAA,	ACA,	GAG,	Phe, Cys,
				ACC,	ACU,	GAU,	Ser, Tyr,
				UUA,	AUG,	UUG,	Asp, His,
				AUG,	AUU,	AUU,	Sup, Leu,
				CUA,	GAC,	GAC,	Ile, Arg

Page 24/55
Species	Kingdom	Genes	Codons	Amino Acids	Additional Information			
Coffea eugenioides	Eudicot	529	49	Ala, Pro, Sup, Sup				
Corchorus capsularis	Eudicot	200	38	Phe, Cys, Ser, Tyr, Asp, His, Sup, Val, Leu, Ile, Arg, Ala, Pro, Sup, Sup				
Corchorus olitorius	Eudicot	473	49	Phe, Ile, Cys, Gly, Arg, Ala, Pro, Tyr, Asp, His, Asn, Leu, Ser, Ala, Sup, Lys, Val, Leu, Ile, Arg, Ala, Pro, Tyr, Sup, Sup, Lys	Lys, Tyr			
Species	Kingdom	Length	Codons					
-------------------------	-----------	--------	--------					
Cucumis melo	Eudicot	598	49					
			AAA,					
			ACA,					
			ACC,					
			ACU,					
			AUA,					
			AUG,					
			AUU,					
			CUA,					
			GAG,					
			GCG,					
			GGC,					
			GGG,					
			UCA,					
			UUA					
			Phe, Cys,					
			Gly, Ser,					
			Tyr, Asp,					
			His, Asn,					
			Sup, Leu,					
			Arg, Ala,					
			Pro, Sup,					
			Sup					
Cucumis sativus	Eudicot	640	52					
			AAA,					
			ACC,					
			ACU,					
			AUG,					
			AUU,					
			CUA,					
			GAG,					
			GCG,					
			GGC,					
			GGG,					
			UUA					
			Phe, Gly,					
			Ser, Tyr,					
			His, Asn,					
			Sup, Leu,					
			Arg, Ala,					
			Pro, Sup					
Cucurbita maxima	Eudicot	3036	55					
			ACU,					
			AUG,					
			AUU,					
			CUA,					
			GAG,					
			GCG,					
			GGA,					
			GGC,					
			UUA					
			Ser, Tyr,					
			His, Sup,					
			Leu, Arg,					
			Ser, Ala,					
			Sup					
Cucurbita moschata	Eudicot	4062	57					
			CUA,					
			GAC,					
			GAG,					
			GCG,					
			GGC,					
			GGG,					
			UUA					
			Sup, Val,					
			Leu, Arg,					
			Ala, Pro,					
			Sup					
Cucurbita pepo	Eudicot	3228	56					
			ACC,					
			AUC,					
			AUG,					
			CUA,					
			GAG,					
			GCG,					
			GGC,					
			GGG,					
			UUA					
			Gly, Asp,					
			His, Sup,					
			Leu, Arg,					
			Pro, Sup					
Cynara cardunculus	Eudicot	586	47					
			AAA,					
			ACA,					
			ACC,					
			ACU,					
			AUG,					
			AUU,					
			CUA,					
			GAC,					
			GAG,					
			GAU,					
			Phe, Cys,					
			Gly, Ser,					
			Tyr, Asp,					
			Asn, Sup,					
			Val, Leu,					
			Ile, Arg,					
			Ala, Pro,					
			Thr, Val,					
			Sup					
Species	Taxonomy	Codons	Amino Acids					
-------------------------	----------	--------	-------------					
Cyanophoraparadoxa	Algae	68	AAA, ACA, ACC, ACU, AUU, AUA, AUC, AUG, AUJ, CUA, GCA, GGA, GGC, GGU, UCA, UGA, UUG, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Arg, Ser, Ala, Pro, Thr, Sup				
Daucus carota	Eudicot	494	AAA, ACA, ACC, ACU, AUU, AUA, AUC, AUG, AUU, CUA, GCA, GGA, GGC, GGU, UCA, UGA, UUG, UUA	Phe, Cys, Gly, Ser, Asp, His, Asn, Sup, Leu, Ile, Arg, Ala, Pro, Sup, Sup				
Dendrobium catenatum	Monocot	254	AAA, ACA, ACC, ACU, AUU, AUA, AUC, AUG, AUU, CUA, GCA, GGA, GGC, GGU, UCA, UGA, UUG, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup				
Dendrobium officinale	Orchid	254	AAA, ACA, ACC, ACU, AUU, AUA, AUC, AUG, AUU, CUA, GCA, GGA, GGC, GGU, UCA, UGA, UUG, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup				
Species	Class	Length	Reading Frame	AA	Other Amino Acids			
-------------------	------------	--------	---------------	-------------	------------------			
Duriozibethinus	Eudicot	604	48	AAA, ACA,	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Val, Leu, Ile, Arg, Pro, Sup, Sup			
				ACC, ACU,				
				AUA, AUC,				
				AUG, AUU,				
				CUA, GAC,				
				GAG, GAU,				
				GCG, GGG,				
				GGU, UCA,				
				UUA				
Ectocarpussiliculosus	Algae	116	48	AAA, AAC,	Phe, Val, Ile, Cys, Gly, Ser, Tyr, Asp, His, Asn, Leu, Arg, Ala, Pro, Thr			
				AAU, ACA,				
				ACC, ACU,				
				AUA, AUC,				
				AUG, AUU,				
				CUA, GAG,				
				GGC, GGU,				
				GGU, UCA,				
				UUA				
Elaeisguineensis	Monocot	436	49	AAA, ACA,	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup			
				ACC, ACU,				
				AUA, AUC,				
				AUG, AUU,				
				CUA, GAG,				
				GGC, GGG,				
				UCA, UUA				
Erythranthegeuttata	Eudicot	729	49	AAA, ACA,	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup			
				ACC, ACU,				
				AUA, AUC,				
				AUG, AUU,				
				CUA, GAG,				
				GGC, GGG,				
				UCA, UUA				
Organism	Domain	Length	Identifier	Codons	Amino Acids			
------------------------	--------	--------	------------	--------	---------------------			
Eucalyptus grandis	Eudicot	463	50	AAA,	Phe, Gly, Ser, Tyr,			
				ACC,	Asp, His, Sup, Ser,			
				ACU,	Arg, Ser, Ala, Pro,			
				AUA,				
				AUC,				
				AUG,				
				CUA,				
				GAG,				
				GCG,				
				GGA,				
				GGC,				
				GGG,				
				UCA,				
				UUA				
Eutrema salignum	Eudicot	468	46	AAA,	Phe, Cys, Gly, Ser,			
				ACA,	Tyr, Asp, His, Asn,			
				ACC,	Sup, Val, Leu, Ile,			
				ACU,	Arg, Ala, Pro, Thr,			
				AUA,				
				AUC,				
				AUG,				
				AUU,				
				CUA,				
				GAC,				
				GAG,				
				GAU,				
				GCG,				
				GGC,				
				GGG,				
				GGU,				
				UCA,				
				UUA				
Fragaria vesca	Eudicot	507	49	AAA,	Phe, Cys, Gly, Ser,			
				ACA,	Tyr, Asp, His, Asn,			
				ACC,	Sup, Leu, Arg, Ala,			
				ACU,	Pro, Thr, Sup,			
				AUA,				
				AUC,				
				AUG,				
				AUU,				
				CUA,				
				GAC,				
				GAG,				
				GAU,				
				GCG,				
				GGC,				
				GGG,				
				UCA,				
				UUA				
Glycine max	Eudicot	747	50	AAA,	Phe, Cys, Gly, Ser,			
				ACA,	Tyr, Asp, His, Sup,			
				ACC,	Leu, Arg, Ala, Pro,			
				ACU,				
				AUA,				
				AUC,				
				AUG,				
				CUA,				
				GAC,				
				GAG,				
				GAU,				
				GCG,				
				GGC,				
				GGG,				
				UCA,				
				UUA				
Gossypium arboreum	Eudicot	906	50	AAA, ACA, ACC, ACU, AUA, AUC, AUG, CUA, GAG, GCG, GGC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Sup, Leu, Arg, Ala, Pro, Sup			
------------------------	----------	-----	----	---------------------	----------------------	---		
Gossypium hirsutum	Eudicot	1436	55	ACC, ACU, AUA, CUA, GAG, GCG, GGC, GGG, UCA, UUA	Gly, Ser, Tyr, Sup, Leu, Arg, Ala, Sup, Sup			
Gossypium raimondii	Eudicot	798	51	AAA, ACA, ACC, ACU, AUA, AUG, CUA, GAG, GCG, GGC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, His, Sup, Leu, Arg, Ala, Pro, Sup, Sup			
Helianthus annuus	Eudicot	1262	49	AAA, ACA, ACC, ACU, AUC, AUG, CUA, GAG, GAU, GCG, GGC, GGG, GGU, UCA, UUA	Phe, Cys, Gly, Ser, Asp, His, Sup, Leu, Ile, Arg, Ala, Pro, Thr, Sup, Sup			
Herrania umbratica	Eudicot	325	45	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAC, GAG, GAU	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Val, Leu, Ile, Arg, Ser, Ala, Pro, Thr, Sup, Sup			
Species	Class	Genes	Codons	Amino Acids				
-------------------------	-----------	-------	--------	----------------------				
Hevea brasiliensis	Eudicot	592	49	AAA, ACA, ACC, ACU, AUA, AUG, AUU, GUA, GCAG, GCG, GGC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup			
Ipomoea nil	Eudicot	6475	59	CUA, GAG, GCG, GGC, GGG, UUA	Sup, Leu, Ala, Pro, Sup			
Ipomoea triloba	Eudicot	2180	58	ACU, CUA, GAG, GCG, GGG, UUA	Ser, Sup, Leu, Arg, Pro, Sup			
Jatropha curcas	Eudicot	471	49	AAA, ACA, ACC, ACU, AUA, AUG, AUU, CUA, GAG, GCG, GGC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Thr, Sup			
Juglans regia	Eudicot	572	45	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAC, GAG, GAU, GCG, GGA,	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Val, Leu, Ile, Arg, Ser, Ala, Pro, Thr, Sup			
Species	Kingdom	Accession	GCs	GCs	Amino Acids	Codon Usage		
-------------------------	-----------	-----------	-----	-----	-------------	-------------		
Klebsormidium nitens	Algae	62	29		Phe, Val,	UGA, UUA		
					Leu, Ile,			
					Cys, Gly,			
					Ser, Ser,			
					Ala, Pro,			
					Thr, Tyr,			
					Asp, His,			
					Asn, Val,			
					Leu, Gly,			
					Arg, Ala,			
					Pro, Thr,			
					Sup, Glu,			
					Gln, Lys,			
					Val, Leu,			
					Arg, Ala,			
					Sup, Thr,			
					Sup			
Lactuca sativa	Eudicot	903	53		Phe, Gly,	UGA, UUA		
					Ser, Tyr,			
					His, Sup,			
					Leu, Arg,			
					Ala, Pro,			
					Sup			
Lupinus angustifolius	Eudicot	900	47		Phe, Cys,	UGA, UUA		
					Ser, Tyr,			
					Asp, His,			
					Asn, Sup,			
					Val, Leu,			
					Ile, Arg,			
					Ala, Pro,			
					Thr, Sup,			
					Sup			
Genus	Kingdom	Species Number	Codon Count	Codon Position	Codon Count	Codon Position	Codon Count	Codon Position
---------------------------	-------------	----------------	-------------	----------------	-------------	----------------	-------------	----------------
Malus domestica	Eudicot	761	47	AAA, ACA, ACC, ACU, AUA, AUC, AUG, CU, GAC, GAG, GGA, GGU, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Sup, Val, Leu, Ile, Arg, Ala, Thr, Sup, Sup			
Manihot esculenta	Eudicot	815	50	ACA, ACC, ACU, AUA, AUC, AUG, AU, CUA, GAG, GCG, GGU, UCA, UUA	Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Thr, Leu, Sup			
Medicago truncatula	Eudicot	898	55	ACU, AUC, AUG, CU, GAG, GCG, GGC, GGU, UCA, UUA	Cys, Asp, His, Leu, Arg, Ala, Pro			
Micromonas commoda	Algae	60	26	AAA, AAC, AAG, AAU, ACA, ACC, ACU, AGA, AGC, AGG, AGU, AUA, AUC, AUG, AU, CAA, CAC, CAG, CCC, CGG, CGU	Phe, Val, Leu, Ile, Cys, Gly, Ser, Ser, Ala, Pro, Thr, Tyr, Asp, His, Asn, Leu, Val, Leu, Gly, Arg, Arg, Ser, Ala, Pro, Thr, Sup, Glu, Ala, Lys, Val, Arg, Ser, Ala, Pro, Ile, Sup, Arg, Sup			
	Family	Taxon	Loci	Peptides	Codons			
----------------------	------------	------------	------	------------	--------			
Momordica charantia	Eudicot	667	49	Cys, Ser,	ACA,			
				Tyr, Asp,	ACU,			
				His, Sup,	AUA,			
				Val, Leu,	AUG,			
				Ile, Arg,	AUG,			
				Ser, Thr,	UUA,			
				Ala, Pro,	CUA,			
				Thr, Sup	GUA,			
					GCG,			
					GGA,			
					GGC,			
					GGG,			
					GGU,			
					UUA			
Monoraphidium neglectum	Algae	48	30	Phe, Val,	AAA,			
				Leu, Ile,	AAC,			
				Cys, Gly,	AAG,			
				Ser, Ser,	AAU,			
				Thr, Tyr,	ACA,			
				Asp, His,	ACC,			
				Asn, Leu,	ACU,			
				Gly, Arg,	AGA,			
				Arg, Ser,	AGU,			
				Pro, Thr,	AAU,			
				Sup, Glu,	AUG,			
				Val, Leu,	AUC,			
				Arg, Ala,	AUG,			
				Pro, Thr,	UAA,			
				Leu, Sup,	UCA,			
				Arg, Ser,	UCG,			
				Thr, Sup	UGA,			
					UGU,			
					UUA			
Species	Class	Accession	PIs	Translation Products				
-------------------------	-----------	-----------	-----	----------------------				
Morus notabilis	Eudicot	392	47	AAA, ACA, ACC, ACU, AUA, AUC, AUU, CUA, GAC, GAG, GAU, GCG, GGA, GGC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, Asn, Sup, Val, Leu, Ile, Arg, Ser, Ala, Pro, Sup, Sup			
Musa acuminata	Monocot	710	48	ACA, ACC, ACU, AUA, AUC, AUG, CUA, GAC, GAG, GAU, GCG, GGA, GGG, GGU, UCA, UUA	Cys, Gly, Ser, Tyr, Asp, His, Sup, Val, Leu, Ile, Arg, Ser, Pro, Thr, Sup, Sup			
Nelumbo nucifera	Eudicot	980	53	ACC, AUA, AUC, AUG, CUA, GAC, GAG, GCG, GGC, GGG, UCA, UUA	Gly, Tyr, Asp, His, Sup, Leu, Arg, Ala, Pro, Sup, Sup			
Nicotiana attenuata	Eudicot	1086	53	ACC, ACU, AUA, CUA, GAC, GAG, GAU, GCG, GGC, GGG, UCA, UUA	Gly, Ser, Tyr, Sup, Val, Leu, Ile, Ala, Pro, Sup, Sup			
Nicotiana sylvestris	Eudicot	809	52	AAA, ACC, ACU, AUA, AUC, AUU, GAG, GCG, GUA, GCG	Phe, Gly, Ser, Tyr, Asp, Asn, Leu, Arg, Ala, Pro, Sup, Sup			
Species	Class	Accession No	Exon	Codons				
---------------------------------	------------	--------------	------	--------	---			
Nicotiana tabacum	Eudicot	1504	55	AAA,	Phe, Ser, Tyr, Sup, Leu, Arg, Ala, Pro, Sup			
				ACU,				
				AUA,				
				CUA,				
				GAG,				
				GCG,				
				GGC,				
				GGG,				
				UUA,				
Nicotiana tomentosiformis	Eudicot	798	52	AAA,	Phe, Gly, Ser, Asp, His, Sup, Leu, Arg, Ala, Pro, Sup			
				ACC,				
				ACU,				
				AUC,				
				AUG,				
				CUA,				
				GAG,				
				GCG,				
				GGC,				
				GGG,				
				UCA,				
				UUA,				
Olea europaea	Eudicot	557	52	AAA,	Phe, Gly, Asp, His, Sup, Leu, Arg, Ala, Pro, Sup			
				ACC,				
				AUC,				
				AUG,				
				CUA,				
				GAG,				
				GCG,				
				GGA,				
				GGC,				
				GGG,				
				UCA,				
				UUA,				
Oryza barthii	Monocot	455	48	AAA,	Phe, Cys, Gly, Ser, Tyr, His, Asn, Sup, Val, Ile, Arg, Ala, Pro, Thr, Sup			
				ACA,				
				ACC,				
				ACU,				
				AUA,				
				AUC,				
				AUG,				
				AUB,				
				CUA,				
				GAG,				
				GAC,				
				GUA,				
				GCG,				
				GGG,				
				GGU,				
				UCA,				
				UUA,				
Oryza brachyantha	Monocot	476	47	AAA,	Phe, Cys, Gly, Ser, Tyr, His, Asn, Sup, Val, Ile, Arg, Ala, Pro, Thr, Sup			
				ACA,				
				ACC,				
				ACU,				
				AUA,				
				AUC,				
				AUG,				
				AUB,				
				CUA,				
				GAC,				
Species	Classification	Length	Stop Codons	Start Codons	Translation Products			
------------------------	----------------	--------	-------------	--------------	----------------------			
Oryza glaberrima	Monocot	788	48	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAG, GAU, GCG, GCC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Ile, Arg, Ala, Pro, Sup, Sup			
Oryza glumaepatula	Monocot	554	50	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAG, GAU, GCG, GCC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Asp, His, Asn, Sup, Leu, Ile, Arg, Ala, Pro, Sup, Sup			
Oryza meridionalis	Monocot	552	48	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAG, GAU, GCG, GCC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Ile, Arg, Ala, Pro, Sup, Sup			
Oryza nivara	Monocot	290	48	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAG, GAU, GCG, GCC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Asp, His, Asn, Sup, Leu, Arg, Ser, Ala, Pro, Thr, Sup, Sup			
Organism	Kingdom	Length	Start	Stop				
----------------------	---------	--------	-------	------				
Oryza punctata	Monocot	195	43					
Oryza rufipogon	Monocot	582	50					
Oryza sativa	Monocot	668	51					
Ostreococcus tauri	Algae	41	18					

Codon Usage

- **Oryza punctata**: AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CU, GAC, GAG, GAU, GAG, GCG, GCA, GGA, GCC, GGG, UAA, UAC, UAU, UCA, UUA
- **Oryza rufipogon**: AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAC, GAG, GAU, GCG, GGA, GCC, GGG, UAA, UAC, UAU, UCA, UUA
- **Oryza sativa**: AAA, ACC, ACU, AUA, AUG, AUA, AUA, CUA, GAC, GAG, GCG, GCC, GGG, UAA, UAC, UAU, UCA, UUA
- **Ostreococcus tauri**: AAA, AAG, AAU, ACA, ACC, ACG, AUC, AGG, AGU, AUA, AUA, AUA, UAA, UAA, UAA

Amino Acid Translation

- **Oryza punctata**: Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Val, Leu, Ile, Arg, Ser, Ala, Pro, Leu, Val, Ile, Sup, Sup
- **Oryza rufipogon**: Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Val, Leu, Ile, Arg, Pro, Sup, Sup
- **Oryza sativa**: Phe, Gly, Ser, Tyr, His, Asn, Sup, Ser, Arg, Ala, Pro, Sup, Sup
- **Ostreococcus tauri**: Phe, Leu, Ile, Cys, Gly, Arg, Ser, Pro, Thr, Tyr, Asp, His, Asn, Leu, Val, Gly, Arg, Arg, Ser, Ala, Phe, Gln
| Species | Kingdom | Taxonomy | Count | Codons |
|-------------------------------|-----------|----------|-------|--------|
| Panicum hallii | Monocot | | 541 | AAA, |
| | | | | ACA, |
| | | | | ACC, |
| | | | | ACU, |
| | | | | AUA, |
| | | | | AUC, |
| | | | | AAA, |
| | | | | ACA, |
| | | | | ACC, |
| | | | | ACU, |
| | | | | AUA, |
| | | | | AUC, |
| | | | | AAA, |
| | | | | ACA, |
| | | | | ACC, |
| | | | | ACU, |
| | | | | AUA, |
| | | | | AUC, |

Papaver somniferum	Eudicot		2571	AAA,	Phe, Ser
				ACU,	Sup, Leu
				CUA,	Sup, Sup
				GAG,	
				GGC,	
				GGU,	
				UAA,	
				UAC,	
				UAG,	
				UCA,	
				UCC,	
				UCU,	
				UGA,	
				UGC,	
				UGU,	

Picea glauca	Gymnosperm		57	AAA,	Phe, Val
				AAC,	Leu, Ile
				AAG,	Cys, Gly
				AAU,	Ser, Ser
				ACA,	Ala, Pro
				ACC,	Thr, Tyr
				ACU,	Asp, His
				AGA,	Asn, Val
Phaeodactyllum tricornutum	Alage	41	38	AAA, ACA, ACC, ACG, ACU, AUG, AUA, AUC, UAA, UAU, UUA	Phe, Cys, Gly, Arg, Ser, Tyr, Asp, His, Asn, Pro, Leu, Ile, Cys, Arg, Ser, Ala, Pro, Thr, Ile, Sup, Arg, Pro, Leu	
Phalaenopsis equestris	Monocot	236	48	AAA, ACA, ACC, ACG, ACU, AUG, AUA, AUC, UAA, UCA, UCU, UGG, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Ile, Arg, Ala, Pro, Sup, Sup	
Species	Domain	Length	Codons	Amino Acids		
-------------------------	---------	--------	--------	-------------		
Phoenix dactylifera	Monocot	470	50	AAA, ACC, ACU, AUA, AUG, AUG, AUU, CUA, GAG, GCG, GGC, GGG, UCA, UUA	Phe, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup	
Physcomitrella patens	Bryophyte	60	29	AAA, AAC, AAG, AAU, ACA, ACC, ACU, AGA, AGC, AGU, AUA, AUC, AUG, AUU, CAC, CAG, CCC, CCU, CGA, CGC, CGG, CGU, CUA, CUC, CUG, CUU, GAG, GCG, GCC, GGG, UAA, UCA, UCG, UUA	Phe, Val, Leu, Ile, Cys, Gly, Ser, Ser, Ala, Pro, Thr, Tyr, Asp, His, Asn, Val, Leu, Gly, Arg, Ser, Ala, Pro, Thr, Sup, Glu, Gln, Lys, Leu, Arg, Ala, Pro, Ile, Sup, Arg, Sup	
Populus trichocarpa	Eudicot	623	49	AAA, ACA, ACC, ACU, AUA, AUG, AUG, AUU, CUA, GAG, GCG, GCC, GGG, UAA, UCA, UCG, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup	
Species	Clade	Genes	ORFs	Codons	Standard Amino Acids	Stop Codon(s)
----------------------	---------	-------	------	--------	----------------------	---------------
Populus euphratica	Eudicot	662	54	AAA,	Phe, Gly, Ser, Tyr,	Yes/Sup
				ACC,	His, Asn, Leu, Arg,	
				ACU,	Pro	
				AUA,		
				AUG,		
				AUU,		
				CUA,		
				GAG,		
				GCG,		
				GGG,		
				UCA,		
				UUA		
Prosopis alba	Eudicot	728	47	AAA,	Phe, Cys, Gly, Ser,	
				ACA,	Tyr, Asp, His, Asn,	
				ACC,	Sup, Val, Leu, Ile,	
				ACU,	Arg, Ala, Pro, Sup,	
				AUA,	Sup	
				AUG,		
				AUU,		
				CUA,		
				GAC,		
				GAG,		
				GAU,		
				GCG,		
				GGC,		
				GGG,		
				GGU,		
				UCA,		
				UUA		
Prunus avium	Eudicot	419	46	AAA,	Phe, Cys, Gly, Ser,	
				ACA,	Tyr, His, Asn, Sup,	
				ACC,	Val, Leu, Ile, Arg,	
				ACU,	Ser, Ala, Pro, Thr,	
				AUA,	Sup	
				AUG,		
				AUU,		
				CUA,		
				GAC,		
				GAG,		
				GAU,		
				GCG,		
				GGC,		
				GGG,		
				GGU,		
				UCA,		
				UUA		
Prunus dulcis	Eudicot	1208	49	AAA,	Phe, Cys, Gly, Ser,	
				ACA,	His, Asn, Sup, Leu,	
				ACC,	Ile, Arg, Ala, Pro,	
				ACU,	Sup	
				AUC,		
				AUG,		
				AUU,		
				CUA,		
				GAC,		
				GAG,		
				GAU,		
				GCG,		
				GGC,		
				GGG,		
				GGU,		
				UCA,		
				UUA		
Species	Classification	Bases	Identity	Codons	Amino Acids	
-----------------------	----------------	-------	----------	--------	-------------	
Prunus mume	Eudicot	466	49	AAA,	Phe, Cys,	
				ACA,	Gly, Ser,	
				ACC,	Asp, His,	
				ACU,	Asn, Sup,	
				AUU,	Leu, Arg,	
				AUC,	Ala, Pro,	
				AUG,	Sup, Sup	
				AUU,		
				CUA,		
				GAG,		
				GCG,		
				GGC,		
				GGG,		
				UCA,		
				UUA		
Prunus persica	Eudicot	452	49	AAA,	Phe, Cys,	
				ACA,	Gly, Ser,	
				ACC,	Tyr, Asp,	
				ACU,	His, Asn,	
				AUU,	Sup, Leu,	
				CUA,	Arg, Ala,	
				AUG,	Pro, Sup,	
				AUU,	Sup	
				CUA,		
				GAG,		
				GCG,		
				GGC,		
				GGG,		
				UCA,		
				UUA		
Punicagranatum	Eudicot	430	49	AAA,	Phe, Cys,	
				ACA,	Gly, Ser,	
				ACC,	Tyr, Asp,	
				ACU,	His, Asn,	
				AUU,	Sup, Leu,	
				CUA,	Arg, Ala,	
				AUG,	Pro, Sup,	
				AUU,	Sup	
				CUA,		
				GAG,		
				GCG,		
				GGC,		
				GGG,		
				UCA,		
				UUA		
Pyrus bretschneideri	Eudicot	553	46	AAA,	Phe, Cys,	
				ACA,	Gly, Ser,	
				ACC,	Tyr, Asp,	
				ACU,	His, Asn,	
				AUU,	Sup, Leu,	
				CUA,	Ile, Arg,	
				AUG,	Ser, Ala,	
				AUU,	Pro	
				CUA,	Thr, Sup,	
				GAG,		
				GAU,		
				GCG,		
				GGC,		
				GGG,		
				GUU,		
				UCA,		
				UUA		
Quercus suber	Eudicot	746	46	AAA,	Phe, Cys,	

Page 43/55
Species	Kingdom	Length	Start	Codons	Amino Acids
Raphanus sativus	Eudicot	1383	49	AAA,	Phe, Cys, Gly, Ser, Tyr, Asp,
				ACA,	His, Asn, Sup, Val, Leu, Ile,
				ACC,	Sup, Leu, Arg, Ala, Pro, Thr,
				ACU,	Sup, Sup
				AUA,	
				AUC,	
				AUG,	
				AUU,	
				CUA,	
				GAC,	
				GAG,	
				GAU,	
				GCG,	
				GGC,	
				GGU,	
				UCA,	
				UUA	
Raphidocelissubcapitata	Algae	43	32	AAA,	Phe, Leu, Ile, Cys, Gly, Ser,
				AAG,	Tyr, Asp,
				AAU,	His, Asn,
				ACA,	Sup, Val,
				ACC,	Leu, Ile,
				ACU,	Arg, Ser, Ala, Pro,
				AUA,	Thr, Tyr, Leu, Val,
				AUC,	Leu, Sup, Ser, Ala,
				AUG,	Pro, Thr, Sup, Glu,
				AUU,	Gln, Lys
				CUA,	
				GAC,	
				GAG,	
				GAU,	
				GCG,	
				GGA,	
				GGC,	
				GGU,	
				GUA,	
				UAA,	
				UAC,	
				UAG,	
				UCA,	
				UGA,	
				UGC,	
				UGG,	
				UGU,	
				UUA,	
				UUC,	
				UUG,	
				UUU	
Rhodamniaargentea	Eudicot	628	48	AAA.	Phe, Cys,

Page 44/55
Species	Kingdom	Length	Orthologs	Amino Acids		
Ricinus communis	Eudicot	539	50	Gly, Ser, Tyr, Asp, His, Sup, Val, Leu, Ile, Arg, Ala, Pro, Sup, Sup		
Rosa chinensis	Eudicot	486	48	Phe, Cys, Gly, Ser, Tyr, Asp, His, Sup, Leu, Arg, Ala, Pro, Thr, Sup, Sup		
Salvia splendens	Eudicot	1501	55	Gly, Ser, Tyr, His, Asn, Sup, Ile, Arg, Sup		
Selaginella moellendorfii	Pteridophyte	1054	48	Phe, Gly, Tyr, Asp, His, Asn, Sup, Val, Leu, Arg, Ser, Ala, Pro, Thr, Sup, Sup		
Species	Kingdom	Code	Size	Codon	Amino Acids	
-------------------------	---------	------	------	-------	-------------	
Sesamum indicum	Eudicot	824	50	AAA,	Phe, Cys,	
				ACA,	Gly, Ser,	
				ACC,	Tyr, Asp,	
				ACU,	His, Sup,	
				AUU,	Leu, Arg,	
				UUA,	Ala, Pro,	
				UCA,	Sup, Sup	
Setaria italica	Monocot	576	49	AAA,	Phe, Cys,	
				ACA,	Gly, Ser,	
				ACC,	Tyr, Asp,	
				ACU,	His, Asn,	
				AUU,	Sup, Leu,	
				UUA,	Arg, Ala,	
				UCA,	Pro, Sup,	
				UUA,	Sup	
Solanum lycopersicum	Eudicot	793	48	AAA,	Phe, Cys,	
				ACA,	Gly, Ser,	
				ACC,	Tyr, Asp,	
				ACU,	His, Asn,	
				AUU,	Sup, Leu,	
				UUA,	Ile, Arg,	
				UCA,	Ala, Pro,	
				AUU,	Sup, Sup	
				UUA,		
Solanum pennellii	Eudicot	823	49	AAA,	Phe, Cys,	
				ACA,	Gly, Tyr,	
				ACC,	Asp, Asn,	
				AUU,	Sup, Val,	
				UUA,	Leu, Ile,	
				UUA,	Arg, Ala,	
				UUA,	Pro, Sup,	
				UUA,	Sup	
Species	Class	Genes	Codons	Amino Acids	Backstop Codon	
---------------------	---------	-------	--------	-------------	----------------	
Solanum tuberosum	Eudicot	799	50	Phe, Cys, Gly, Ser, Tyr, Asp, Sup, Leu, Ile, Arg, Ala, Pro, Sup	UCA, UUA	
Sorghum bicolor	Monocot	550	49	Phe, Cys, Gly, Ser, Tyr, Asp, Asn, Sup, Leu, Ile, Arg, Ala, Pro, Sup	UCA, UUA	
Spinacia oleracea	Eudicot	798	50	Phe, Cys, Gly, Ser, Tyr, Asp, His, Sup, Leu, Arg, Ala, Pro, Sup	UCA, UUA	
Syzygium oleosum	Eudicot	445	47	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Val, Leu, Ile, Arg, Ala, Pro, Sup	UCA, UUA	
Species	Kingdom	Genus	Bloom	Fdnr	Amino Acids	
-------------------------	---------	-------	-------	------	--	
Tarenayahassleriana	Eudicot		595	46	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAC, GAG, GAG, GCU, GGC, GGG, GGU, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Val, Leu, Arg, Ala, Pro, Thr, Sup
Theobroma cacao	Eudicot		415	49	AAA, ACA, ACC, ACU, AUA, AUC, AUG, AUU, CUA, GAC, GAG, GCU, GGC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup, Arg, Ala, Pro, Sec, Sup
Triticum urartu	Monocot		412	51	AAA, ACA, ACC, ACU, AUA, AUC, AUG, CCA, CUA, GAC, GCG, GGC, GGG, UAU, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Gly, Sup, Arg, Ala, Ile, Sup
Vigna angularis	Eudicot		610	50	AAA, ACA, ACC, ACU, AUA, AUC, AUG, CUA, GAG, GCG, GGC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, Asp, His, Sup, Leu, Arg, Ala, Pro, Sup, Sup
Vigna radiata	Eudicot		614	50	ACA, ACC, ACU, AUA	Cys, Gly, Ser, Tyr, Asp, His, Asn, Sup
Table 3

AUC, AUG, AUU, CUA, GAG, GCG, GGC, GGG, UCA, UUA

Leu, Arg, Ala, Pro, Sup, Sup

Species	Type	Code	Count	Count	Code	Count	Type	Code	Count	Type	Code	Count
Vitis vinifera	Eudicot	448	50	AAA,	ACA, ACC,	ACU,	AUG,	AUU, CUA,	GAG,	GCG, GGC, GGG, UCA, UUA	Phe, Cys, Gly, Ser, Tyr, His, Asn, Sup, Leu, Arg, Ala, Pro, Sup, Sup	
Zea mays	Monocot	1884	59	ACC,	GAG, GAU,	GCG,	GGC	ACC, ACU, AUA, AUC, AUG, CUA, GAC, GAG, GCC, GGG, UCA, UUA	Gly, Leu, Ile, Arg, Ala			
Ziziphus jujuba	Eudicot	566	52	ACC,	ACU, AUC,	AUG,	CUA,	GAC, GAG, GCC, GGG, UCA, UUA	Gly, Ser, Tyr, Asp, His, Sup, Val, Leu, Ala, Pro, Sup, Sup			

(A) t-test (two tailed) between eudicot and monocot anti-codon numbers. The t-value is smaller than critical value (1.2691 < 1.984). So, the mean was not significantly different ($p < 0.05$). (B) t-test (two tailed) between eudicot and algae anti-codon numbers. The t-test result was greater than critical value (10.3939 > 1.987). So, the mean is significantly different ($p < 0.05$). (C) t-test (two tailed) between Eudicot and algae anti-codon numbers. The t-test result was greater than critical value (6.2914 > 2.037). So, the mean is significantly different ($p < 0.05$).
Statistical parameters	Eudicot	Monocot	t	Degree of freedom	Critical value (T)
Mean	50.0562	49.087	1.2691	110	1.984
Variance	11.1673	8.6285			
Stand. Dev	3.3418	2.9374			
n	89	23			

(B)

Statistical parameters	Monocot	Algae	t	Degree of freedom	Critical value (T)
Mean	49.087	35.2727	6.2914	32	2.037
Variance	8.6285	95.8182			
Stand. Dev	2.9374	9.7878			
n	23	11			

(C)

Statistical parameters	Monocot	Algae	t	Degree of freedom	Critical value (T)
Mean	49.087	35.2727	6.2914	32	2.037
Variance	8.6285	95.8182			
Stand. Dev	2.9374	9.7878			
n	23	11			

Figures
Figure 1

Regression analysis of tRNA gene number with plant genome. The analysis indicated that the number of tRNAs were not significantly correlated with plant genome size.
Figure 2

Grouping of plant anti-codons. The clustering was conducted based on the frequency (percentage) of the anti-codons found in the collective plant genomes of 128 plant species. The grouping A, B, C, D, and E were made based on the decreasing order of anti-codon frequency. The clustering was conducted using the UPGMA algorithm and Euclidean distance matrix with 1000 bootstrap replicates in Past3 software.
Figure 3

Phylogenetic tree of tRNAsSec and other tRNA isotypes. The phylogenetic tree with 21 tRNA isotypes revealed at least 28 major phylogenetic groups where tRNAsSec (red) was placed with different tRNA isotypes. The phylogenetic tree indicates that tRNA has most likely evolved from multiple common ancestors and has also undergone duplication. The evolutionary history was inferred using the Maximum Likelihood method based on the Kimura 2-parameter model. The tree with the highest log likelihood (-7466.51) is illustrated. The percentage of the branches in which the associated taxa cluster together is shown next to the branches. Initial tree(s) for the heuristic search were automatically obtained applying the Neighbor-Join and BIONJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with a superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among the sites [5 categories (+G, parameter = 2.6875)]. The tree is drawn to scale, with branch lengths representing the number of substitutions per site. The analysis utilized 702 nucleotide sequences. All positions with less than 95% site coverage were eliminated. Fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. Evolutionary analyses were conducted in MEGA7 [2].
Figure 4

Recombination events in tRNA isotypes. Results indicated that tRNAs have undergone dynamic recombination events during the course of evolution. The recombination study was conducted using IcyTree software using a nwk file format obtained from the phylogenetic tree.

Figure 5

Recombination events in tRNAsec genes. Results indicate that tRNAsec have undergone recombination events within themselves as well during evolution. The recombination study was conducted using IcyTree using the nwk file format of the phylogenetic tree of the tRNAsec.
Figure 6

Normal probability plot of anti-codon numbers of the plant kingdom with correlation coefficient 0.9636 suggesting the datasets are normally distributed.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryFile1.xlsx
- SupplementaryFigure4.tif
- SupplementaryFigure3.PDF
- SupplementaryFigure2.pdf
- SupplementaryFigure1.pdf