Potential neuroinvasive and neurotrophic properties of SARS-CoV-2 in pediatric patients: comparison of SARS-CoV-2 with non-segmented RNA viruses

Xiaodi Chen

Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing global health crises. Children can be infected, but are less likely to develop severe neurological abnormalities compared with adults. However, whether SARS-CoV-2 can directly cause neurological impairments in pediatric patients is not known. The possible evolutionary and molecular relationship between SARS-CoV-2 and non-segmented RNA viruses were examined with reference to neurological disorders in pediatric patients. SARS-CoV-2 shares similar functional domains with neuroinvasive and neurotropic RNA viruses. The Spike 1 (S1) receptor binding domain and the cleavage sites at S1/S2 boundary are less conserved compared with the S2 among coronaviruses.

Keywords
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) • Neuroinvasive and neurotrophic non-segmented RNA viruses • Multiple sequence alignment • Genome • Phylogenetic tree • Conserved domain • Spike protein • Pediatric patients

Introduction
Viral infections of the respiratory tract are one of the leading causes of morbidity and mortality in humans worldwide, especially in infants and children (Jartti et al. 2012). Respiratory viruses are able to enter brain (neuroinvasion) and infect nerve cells (neuropotropism) in addition to causing respiratory diseases (Desforges et al. 2014). Coronaviruses (CoVs) are one of the most important respiratory viruses and contain a non-segmented RNA sequence. CoVs are phylogenetically classified into four genera: α-, β-, γ-, and δ-CoVs. Some members of CoVs such as severe acute respiratory syndrome coronavirus (SARS-CoV) and human CoV strains 229E (HCoV-229E), OC43 (HCoV-OC43), NL63 (HCoV-NL63), and HKU1 (HCoV-HKU1) can predispose to neurological injury (Bergmann et al. 2006; Morgello 2020). HCoV-OC43, HCoV-HKU1, and HCoV-229E infections have especially been shown to be associated with nervous system injury in pediatric patients (Lau et al. 2006; Principi et al. 2010; Yeh et al. 2004).

Much attention has been given recently to the novel SARS-CoV-2 and its related coronavirus disease 2019 (COVID-19). Neurological syndromes including abnormalities in smell and taste, stroke, and acute necrotizing hemorrhagic encephalopathy have been observed in SARS-CoV-2-infected patients (Beyrouti et al. 2020; Poyiadji et al. 2020; Xydakis et al. 2020). Although these clinical findings suggest that SARS-CoV-2 could have neuroinvasive and neuropotropism potential, whether SARS-CoV-2 plays a direct causative role remains to be determined. Moreover, SARS-CoV-2-related neurological abnormalities mostly occur in severe cases, in which virus-induced immune system hyperactivity, the “cytokine storm,” contributes to disease severity (Wu et al. 2020). SARS-CoV-2 infection is less likely to be symptomatic or result in severe disease in infants and children compared with adult patients (Zimmermann and Curtis 2020). Furthermore, whether SARS-CoV-2 can be detected in nervous system and directly predispose to neurological abnormalities in infants and children have not been reported up to April 2020. Furthermore, very limited information is available to describe the possible evolutionary and molecular relationships of...
SARS-CoV-2 with other neuroinvasive and neurotropic RNA viruses that have the potential to result in infection in pediatric patients.

The purpose of the present study was to compare phylogenetically the whole-genome sequences of SARS-CoV-2 and non-segmented RNA viruses including CoVs and other viruses that have the potential to infect the nervous system of infants and children with use of bioinformatics methodology. The conserved domains (CDs) of SARS-CoV-2 and multiple sequence alignment (msa) methods were used to compare selected CDs that exist in both CoVs and members of other RNA viral families. Finally, the surface spike (S) glycoprotein and its protease cleavage sites were aligned among the CoVs to investigate their potential contribution to neurovirulence. The S protein of SARS-CoV-2 consists of two functional domains: the receptor binding domain (RBD) of S1 protein that binds to host cell receptor angiotensin-converting enzyme 2 (ACE2), and the S2 protein that mediates viral and membrane fusion (Lan et al. 2020). The virus requires S protein priming by cellular proteases, furin, and transmembrane serine protease 2 (TMPRSS2) for entry and membrane fusion after binding to the ACE2 (Hoffmann et al. 2018). Furin cleaves the S protein at the S1/S2 boundary (Andersen et al. 2020), whereas TMPRSS2 cleaves the S protein at the S1/S2 boundary or within S2 subunit (Hoffmann et al. 2020; Lan et al. 2020).

Methods

The whole-genome sequences of 32 non-segmented RNA viruses including 10 CoVs (Table 1) were retrieved from National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) for the purpose of phylogenetic analysis, which was conducted with MEGAX (Penn State University, PA, USA). Three major criteria were used for selecting virus sequences for the phylogenetic analysis. The viruses (1) have human as host, except murine hepatitis virus strain JHM (MHV-JHM), which has mouse as host, but shows a high degree of neuroinvasion and neuropathism (Bergmann et al. 2006; Desforges et al. 2014); (2) have been reported to be associated with neurological diseases in human, especially in fetuses, neonates, or children if possible; and (3) have been isolated from human (especially fetus, neonate, or children) nervous system such as brain, cerebrospinal fluid (CSF), spinal cord, and sensory organs if possible. Furthermore, because the SARS-CoV-2-related multisystem inflammatory syndrome (MIS) was initially reported in children in Europe and North America (DeBiasi et al. 2020; Riphagen et al. 2020; Verdoni et al. 2020), an Italy variant (GenBank: MT077125) and a USA variant (GenBank: MT325563) were added into the present study alongside the original Wuhan variant (SARS-CoV-2-Wuhan, GenBank: NC_045512). All genomic sequences were aligned with the ClustalW algorithm and phylogenetic prediction inferred by the maximum likelihood method and Tamura-Nei model (Kumar et al. 2018; Tamura and Nei 1993) except for sequence identity analysis between the three SARS-CoV-2 variants, which was detected by Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/). The reliability of phylogenetic inference at each branch node was estimated by the Bootstrap test with 1000 replications (Felsenstein 1985). Bootstrap values greater than 80% were considered statistically significant for grouping (Zhu et al. 2016). The trees were visualized by Dendroscope-3 (University of Tübingen, Baden-Württemberg, Germany) (Huson and Scornavacca 2012). The searches of each genomic open reading frame (ORF) and the CDs encoded by ORFs were performed through the ORF Finder and Conserved Domain Database webserver (NCBI), respectively (Marchler-Bauer et al. 2015). For the S protein sequence alignment, CoVs that do not infect humans such as porcine hemagglutinating encephalomyelitis virus (PHEV, GenBank: KY419112), feline coronavirus (FcCoV, GenBank: DQ010921), and transmissible gastroenteritis virus (TGEV, GenBank: KX900411) (Bergmann et al. 2006) were also analyzed for the purpose of comparison. RStudio (RStudio, Inc., Boston, MA, USA) with msa package was used (Bodenhofer et al. 2015) for multiple protein sequence alignment. The results were visualized by RStudio and LaTeX with TEXshade package (Beitz 2000).

Results

SARS-CoV-2 is genetically distant from other non-segmented RNA viruses

Figure 1 b represents a circular phylogram demonstrating the evolutionary relationship between SARS-CoV-2 (blue-labelled) and 29 non-segmented RNA viruses known to infect nervous system (Messacar et al. 2018). Nineteen of these RNA viruses (red-labelled) are also known to be neuroinvasive and neurotropic to infants and children (Messacar et al. 2018). Three SARS-CoV-2 variants share more than 99.97% genomic sequence identity as the results given by the analysis using Clustal Omega. The phylogram demonstrates that the SARS-CoV-2 is the closest relative to SARS-CoV because the branch lengths of the phylogram are proportional to the amount of inferred evolutionary change. Furthermore, SARS-CoV-2 is grouped closed to SARS-CoV with bootstrap value of 100%. However, the bootstrap value for subdividing SARS-CoV-2-USA from SARS-CoV-2-Wuhan was 63.70%, suggesting that the support of grouping of both SARS-CoV-2 variants is low. The CoV sequences formed a genetic group distinct from other virus sequences, and are evolutionarily distant from other members of viral
Table 1 Selected non-segmented RNA viruses (*Homo sapiens* as host) analyzed in phylogenetic analysis of this study

Viral family	RNA viruses	RNA structure	AccessionNr#	Isolation source	References
Picornaviruses	Poliovirus 1	SS ⊙ linear, Icosahedral capsid, no envelope	KX162709	Feces, children with acute flaccid paralysis	Montmayeur et al. (2017)
	Coxsackievirus A9		KM201659	Cerebrospinal fluid (CSF; 70%), pharyngeal/nasal/nasopharyngeal swabs/washes (20%) or stools/rectal swabs (6%); children with aseptic meningitis	Nougairede et al. (2014)
	Echovirus 11		EF634316	Feces; diabetic child	Al-Hello et al. (2008)
	Human parechovirus 3 (HPeV-3)		KY020128	CSF; infants	Nelson et al. (2017)
Flaviviruses	Japanese encephalitis virus	SS ⊙ linear, Icosahedral capsid, no envelope	HM596272	Brain; patient with encephalitis	Mohammed et al. (2011)
	West Nile virus		AF202541	Brain; patient with encephalitis	Jia et al. (1999)
	St. Louis encephalitis virus		EU566860	Brain; patient with encephalitis	George et al. (1984)
	Tick-borne encephalitis virus		JQ650523	Brain; patient with encephalitis	Blaney et al. (2008)
	Zika virus		NC_035889	Brain; fetus with microcephaly	Zhang et al. (2012)
Retroviruses	Human immunodeficiency virus (HIV)-1-JRCSF	SS ⊙ linear, conical capsid, envelope	LC192527	Blood; patients with myelopathy/tropical spastic paraparesis	Nozuma et al. (2017)
	Human T-cell leukemia virus type 1				
Togaviruses	Eastern equine encephalitis virus	SS ⊙ linear, Icosahedral capsid, envelope	KP282670	Brain; patient with encephalitis	Yu et al. (2015)
	Western equine encephalitis virus		GQ287640	Brain; patient with encephalitis	Logue et al. (2009)
	Venezuelan equine encephalitis virus		MF590066	Nasopharyngeal swabs, serum; boy (age 16)	Jurez et al. (2020)
	Chikungunya virus		FI000062	CSF; patient	Cherian et al. (2009)
	Rubella		KX291007	Intracerebral fluids; patients with uveitis	Mehta et al. (2018)
Coronavirus	Severe acute respiratory syndrome (SARS-CoV-2- Wuhan*)	SS ⊙ linear, helical capsid, envelope	NC_045512	Bronchovascular lavage fluid; patient with pneumonia	Wu et al. (2020)
	SARS-CoV-2-ITA/INMI1*				
	SARS-CoV-2-USA/DC*				
	SARS-CoV*				
	HCoV-229E		AY278741	Throat washings; patient with severe acute respiratory syndrome	Rota et al. (2003)
	HCoV-OC43		MF542265	Plasma; child	Bonny et al. (2017)
	Middle East Respiratory Syndrome (MERS)-CoV*		KL131570	Brain; boy (11 months) with fatal encephalitis	Morfopoulou et al. (2016)
	HCoV-NL63*		NC_005831	Nasopharyngeal swab; child (7 months)	van der Hoek et al. (2004)
	HCoV-HKU1*		KF686344	Respiratory specimens, child (age 12) with pneumonia	Domínguez et al. (2014)
	Murine hepatitis virus (MHV)-JHM*		EF647226	Mouse	Ontiveros et al. (2003)
Paramyxoviruses	Respiratory syncytial virus	SS ⊙ linear, helical capsid, envelope	KM360090	Nasal aspirate; child (4 months)	Kim et al. (2014)
	Measles		MF775733	Brain; patient with subacute sclerosing panencephalitis	Bohmwald et al. (2018)

References:
- Al-Hello et al. (2008)
- Moline et al. (2018)
- Nelson et al. (2017)
- Ludow et al. (2016)
- Mohammed et al. (2011)
- Ludow et al. (2016)
- Jia et al. (1999)
- George et al. (1984)
- Blaney et al. (2008)
- Gaensbauer et al. (2014)
- Zhang et al. (2012)
- Gaensbauer et al. (2014)
- Mlakar et al. (2016)
- Messacar et al. (2018)
- Nozuma et al. (2017)
- Alvarez et al. (2015)
- Yu et al. (2015)
- Gaensbauer et al. (2014)
- Logue et al. (2009)
- Stromberg et al. (2020)
- Jurez et al. (2016)
- Johnson et al. (1986)
- Cherian et al. (2009)
- Mehta et al. (2018)
- Doan et al. (2016)
- Mawson and Croft (2019)
- Wu et al. (2020)
- Not reported
- Capobianchi et al. (2020)
- Direct submission by Li et al. (2020)
- Not reported
families. The bootstrap value for dividing CoV family from its closest viral family picornaviruses was 43.60%.

SARS-CoV-2 conserved domains are found in other neuroinvasive and neurotropic RNA viruses

Figure 2a is a schematic diagram showing some important SARS-CoV-2 ORFs and their encoded CDs. Similar to other CoVs, SARS-CoV-2 contains at least six ORFs in its genome with their encoded nonstructural (nsp), structural, and accessory proteins. Four main structural proteins, spike, membrane (or matrix), envelope (E), and nucleocapsid proteins, are encoded by ORFs 26, 75, 5, and 31, respectively, near the 3′-terminus. SARS-CoV-2 has two functional CDs, macrodomain (macro_X_nsp3-like) and viroporin (E protein) (Madan et al. 2005), which can be found in the other neuroinvasive and neurotropic RNA viruses, and also contains the common RNA viral domains such as RNA-directed RNA polymerase (RdRp). Figure 2b (I, II) and c (I, II) show the msa results of macro_X_nsp3-like and viroporin, respectively. In both macro_X_nsp3-like and viroporin, all three SARS-CoV-2 variants have 100% of identity and similarity in protein sequences. The macro_X_nsp3-like is encoded by ORF9 and can be found in CoVs and togaviruses. Compared with the neuroinvasive and neurotropic viruses, SARS-CoV-2 shares 33.3% identity and 47.1% similarity with HCoV-OC43, 36.3% identity and 47.9% similarity with HCoV-229E, 31.3% identity and 41.5% similarity with rubella, 30.3% identity and 44.6% similarity with eastern equine encephalitis virus, 30.9% identity and 42.7% similarity with western equine encephalitis virus, 37.1% identity and 50.4% similarity with Venezuelan equine encephalitis virus, 30.9% identity and 42.7% similarity with western equine encephalitis virus, 37.1% identity and 50.4% similarity with Venezuelan equine encephalitis virus, and 26.5% identity and 37.1% similarity with Chikungunya virus (Fig. 2b-II). The possibility of higher-level groupings of macro_X_nsp3-like is strongly supported within CoVs (bootstrap values, 99 to 100%), but not between CoVs and other neuroinvasive and neurotropic viruses (bootstrap values 54.3%, Fig. 2b-III).

The viroporin is encoded by ORF 5 and can be found in CoVs, coxsackievirus, echovirus, poliovirus, and HIV-1. Compared with the neuroinvasive and neurotropic viruses, SARS-CoV-2 shares sequence identity and sequence similarity with HCoV-OC43 (20.2% identity, 40.5% similarity), HCoV-229E (23.6% identity, 40.2% similarity), coxsackievirus (13.5% identity, 25.6% similarity), echovirus (13.5% identity, 24.3% similarity), poliovirus (13.5% identity, 31.0% similarity), and HIV-1 (9.4% identity, 27.0% similarity) (Fig. 2c-II). The possibility of higher-level groupings of viroporin within CoVs is high (bootstrap values, 74 to 100%), whereas it is low between CoVs and other neuroinvasive and neurotropic viruses (bootstrap values 61.7%, Fig. 2c-III).
Diversity of spike protein may determine the severity of SARS-CoV-2 infection

As the S protein is a major neurovirulent factor of several CoVs, there was a key focus on aligning the S protein among different CoVs (Miura et al. 2008; Phillips et al. 2002). Fingerprint analysis was implemented for the RBD of S1 (Fig. 3a) and S2 proteins (Fig. 3b) in order to gain an overview of the sequence identity and similarity among the different CoVs. The complete sequence is depicted in one single line, and the amino acid residues are presented as colored vertical lines. Higher similarities correspond to darker vertical lines.
As shown in Fig. 3 a and b, the protein sequences of S1 RBD and S2 have 100% identity and similarity between all three SARS-CoV-2 variants. However, the S1 RBD is less conserved than that of S2. In the S1 RBD, SARS-CoV-2 shares 73.4% identity and 82.8% similarity with SARS-CoV, 20.8% identity and 32.5% similarity with HCoV-OC43, 15.6% identity and 26% similarity with HCoV-229E, 20.5% identity and 33.7% similarity with MHV-JHM, and 20% identity and 29.6% similarity with HCoV-HKU1. All of these viruses possess neuroinvasive and neurotropic properties. However, the S1 RBD has only 12.6% identity and 22.9% similarity to that of TGEV. This virus has not been reported to infect the human nervous system thus far. In the S2 protein, SARS-CoV-2 shares 89.4% identity and 95.5% similarity with SARS-CoV, 42.3% identity and 59.7% similarity with HCoV-OC43, 33.5% identity and 50.6% similarity with HCoV-229E, 41.3% identity and 59.7% similarity with MHV-JHM, and 39.1% identity and 57.2% similarity with HCoV-HKU1, but here SARS-CoV-2 shares relatively less identity and similarity with TGEV (32.2% identity and 47.9% similarity). Figure 3 c shows the protease cleavage sites at the S1/S2 boundary and within the S2 protein. All three SARS-CoV-2 variants have same cleavage motifs. The consensus motifs of the cleavage sites at the S1/S2 boundary (sites 1 and 2) are much less conserved than the motifs within the S2 protein. The cleavage site 1 of S1/S2 boundary of SARS-CoV-2, SARS-CoV, MHV-JHM, HCoV-HKU1, HCoV-OC43, PHEV, and MERS-CoV is prone to mutation, and the site 1 in HCoV-299E, HCoV-NL63, TGEV, and FCov does not contain a consensus motif. A polybasic cleavage site (RRAR) for furin was found at the S1/S2 boundary of SARS-CoV-2 (Fig. 3c). This polybasic cleavage site was observed in MHV-JHM as well, but not in other CoVs and viruses studied. Furthermore, the cleavage site 2 at the S1/S2 boundary of SARS-CoV-2 shows a similar motif to SARS-CoV, MHV-JHM, HCoV-HKU1, HCoV-OC43, and PHEV, but not to HCoV-299E, HCoV-NL63, TGEV, FCov, and MERS-CoV. These results suggest that SARS-CoV-2 binding and priming host receptor probably share more similar mechanisms with those from neuroinvasive and neurotropic CoVs rather than the other CoVs.

Discussion

The primary objectives of the current study were to determine the possible evolutionary and molecular relationships between SARS-CoV-2 and non-segmented RNA viruses, especially the viruses that can infect the nervous system in infants and children. Furthermore, the consensus sequence motifs of S protein and its protease cleavage sites were focused on to discover their potential roles in neurovirulence.

Three of the CoV members (HCoV-HKU1, HCoV-OC43, and HCoV-229E) have been reported result in injury of the nervous system in pediatric patients. Therefore, it remains possible that SARS-CoV-2 is also neuroinvasive, neurotropic, and neurovirulent in infants and children because neurological impairment has been reported in SARS-CoV-2-infected patients (Mao et al. 2020; Xydkis et al. 2020). Although SARS-CoV-2 is genetically distant from the other members of the RNA viral families, its macrodomain (macro_X_nsp3-like) and viroporin (E protein) can also be found in the RNA viruses, which infect the nervous system of infants and children. In the present investigation, the macrodomain (macro_X_nsp3-like) was found in CoVs and togaviruses. The macrodomain plays an important role in viral replication and pathogenesis. It has been reported that MHV were unable to cause hepatitis or had reduced neurovirulence after the catalytic site of macrodomain had been mutated (Fehr et al. 2015; Park and Griffin 2009). The macrodomain activity in togaviruses has been shown to affect neurovirulence in mice (Abraham et al. 2020). Furthermore, macrodomain promotes virulence and suppresses interferon (IFN) expression in mice during the early stages of SARS-CoV infection (Fehr et al. 2016). Since SARS-CoV-2 shares high macrodomain sequence identity (80.3%) and similarity (89.3%) with SARS-CoV (Fig. 2b-II), and IFN acts as a modulator of...
936
neurovirulent MHV with E gene deletion were severely
play a role in neurotropism, because some CoVs such as the
2015; Madan et al. 2005; Nieva et al. 2012). Viroporin may
as HIV-1, which is consistent with previous reports (Gonzalez
such as coxsakie-, echo-, polio-viruses, and retroviruses such
infection and further facilitate neuroinvasion.
macrodomain activity may result in BBB leakage after viral
blood-brain barrier (BBB) integrity for viral neuroinvasion
Viroporin is a family of small transmembrane proteins in-
conserved than S2 protein. The star symbol (*) in
Fig. 3 Multiple sequence alignments of S1 RBD, S2 protein, and S
protein protease cleavage sites among CoVs. An overview of sequence
similarities of S1 RBD (a) and S2 protein (b) was implemented by
fingerprint plots, which depict the complete sequence in one single line.
The residues were presented as colored vertical lines (red: similar; blue:
≥ 50% conserved; purple: ≥ 80% conserved). S1 RBD showed much less
conserved than S2 protein. The star symbol (*) in a indicated that the
whole S1 protein sequences of four CoVs (HCoV-229E, HCoV-NL63,
TGEV, FCoV) were used for msa analysis, because the S1 RBD of them
cannot be found in NCBI Conserved Domain Database. The degree of
similarity and identity between all sequences in the alignment were
shown in tables. c The protease cleavage sites of S protein were
compared among CoVs with same msa methodology as described in
Fig. 2 b and c. There are two cleavage pathways S1/S2 boundary.
However, both are less conserved than the cleavage site at S2 protein.
The polybasic cleavage sites (RRAR) for furin observed in SARS-CoV-2
and MHV-JHM at S1/S2 boundary were underlined in red

blood-brain barrier (BBB) integrity for viral neuroinvasion (Miner and Diamond 2016), suppression of IFN by
macromdomain activity may result in BBB leakage after viral
infection and further facilitate neuroinvasion.

Viroporin is a family of small transmembrane proteins in-
cluding the E protein of CoVs (Madan et al. 2005). In the present study, viroporin was detected in CoVs, picornaviruses
such as coxsakie-, echo-, polio-viruses, and retroviruses such as
HIV-1, which is consistent with previous reports (Gonzalez
2015; Madan et al. 2005; Nieva et al. 2012). Viroporin may
play a role in neurotropism, because some CoVs such as the
neurovirulent MHV with E gene deletion were severely
disabled from infecting new host cells with significantly re-
duced viral titers (DeDiego et al. 2007). Moreover, viroporin
in HCoV-OC43 has been show as a determinant of
neurovirulence and central nervous system (CNS) pathology
(Madan et al. 2005; Stodola et al. 2018). During SARS-CoV
infections, viroporin can activate caspase-1 by activating the
NLRP3 inflammasome (Chen et al. 2019; Farag et al. 2020).
Caspase-1 cleaves pro-interleukin (IL)-1β to mature IL-1β.
As a major proinflammatory cytokine, IL-1β facilitates
neuroinvasion by disrupting blood-brain barrier (BBB) integ-
rity (Miner and Diamond 2016). High viroporin sequence
identity (95.9%) and similarity (97.2%) were observed
between SARS-CoV-2 and SARS-CoV (Fig. 2c-II). Thus, it might speculate that SARS-CoV-2 is neuroinvasive by means of viroporin-induced inflammation causing BBB leakage. Although the exact functions of macrodomain and viroporin in SARS-CoV-2 have not been elucidated, the sequence identity and similarity suggest that SARS-CoV-2 may share similar mechanisms with neuroinvasive and neurotropic viruses to infect the nervous system in pediatric patients, which include suppression of IFN by macrodomain activity and/or increased membrane permeability and inflammation induced by viroporin. However, whether such mechanisms in neuroinvasive and neurotropic viruses differ from non-neuroinvasive and non-neurotropic viruses has not been studied. The further investigation is necessary.

The present analysis also showed that the S1 RBD and the protease cleavage sites at the S1/S2 boundary are much less well conserved compared with the S2 protein and the protease cleavage site at S2 among CoVs, respectively. These findings are consistent with previous reports (Perlman and Wheeler 2016) and suggest that each CoV may need a specific binding receptor and protease to bind to its target cells. The high diversity of S1 RBD and cleavage sites at S1/S2 boundary may also determine the severity of the injury to host resulting from the viral infection. However, both SARS-CoV-2 and SARS-CoV cell entries require ACE2 binding and TMPRSS2 priming (Hoffmann et al. 2020; Li et al. 2003). This is probably because they share high sequence identity and similarity of S1 RBD and protease cleavage sites. ACE2 receptor expression can be found in human brain and brain-derived microvascular endothelial cells (Li et al. 2007), whereas the TMPRSS2 gene appears to be low or absent in the human brain (Glowacka et al. 2011; Vaarala et al. 2001). Furthermore, TMPRSS2 expression in human immature BBB endothelial cells has not been reported. This could explain the reason that SARS-CoV-2 infection is usually mild in the nervous system of adults and children. Besides ACE2 binding and TMPRSS2 priming, SARS-CoV-2 cell entry requires furin, which is highly expressed in the CNS. The polybasic furin cleavage site (RRAR) was observed in all SARS-CoV-2 variants and a highly neurovirulent MHV-JHM (Fig. 3C). This is of importance to understand the roles of SARS-CoV-2 in the neurologic diseases, because other proteases such as TMPRSS2 associated with S protein priming may not be present in the human brain. This suggests that SARS-CoV-2 has great potential to be neurotropic and even neurovirulent to the nervous system.

There are several limitations to the study. First, not all viral sequences selected from NCBI database were obtained from nervous tissues of pediatric patients with neurological diseases. This means that it is possible that not all of the results described have direct relevance to pediatric nervous system diseases. This could be corrected in future studies once updated viral sequences have been obtained and sequenced from nervous tissues of pediatric patients with neurological diseases. Secondly, although the homology of macro- and viroporin domains has been predicted between SARS-CoV-2 and other RNA viruses studied, it may be unrelated to the prediction for the analysis, especially in neurological diseases in pediatric patients. There are no direct evidence showing both domains of SARS-CoV-2 play important roles in neuroinvasion and neurotropism in pediatric patients. However, this homology prediction can still be useful in proposing and testing hypothesis in molecular biology, such as hypotheses about the drug design, ligand binding site location, and substrate specificity (Vyas et al. 2012; Xiang 2006). Thirdly, it will be important to understand the function and similarity of predicted domains in 3-dimension (3D) functional protein structure between SARS-CoV-2 and other RNA viruses, which was not performed in the current study. However, the 3D crystallization structure of SARS-CoV-2 macrodomain has been shown to have high similarity to SARS-CoV (Frick et al. 2020). The 3D remodeling of SARS-CoV-2 S protein using bioinformatic analyses has recently been reported, showing that SARS-CoV-2 and SARS-CoV have similar receptor utilization, but with low amino acid similarity in RBD (Jaimes et al. 2020), and the S proteins of SARS-CoV-2 and SARS-CoV are structurally and evolutionary related (Baig et al. 2020). The 3D structure of viroporin in SARS-CoV-2 has not been reported so far. However, Surya et al. showed a nuclear magnetic resonance spectroscopy (NMR) structure of the E protein of SARS-CoV (Surya et al. 2018), which will be helpful in studying the function and structure of viroporin in SARS-CoV-2 in the future.

Conclusion

In summary, although there is no evidence of SARS-CoV-2 directly causing any known human neuropathology, SARS-CoV-2 shares some close molecular and structural similarity to neuroinvasive and neurotropic non-segmented RNA viruses. This leads to speculation about possible involvement of SARS-CoV-2 in causing neurological abnormalities in pediatric patients.

Acknowledgments I gratefully acknowledge the helpful suggestions and editorial assistance of Barbara S. Stonestreet, M.D. (Professor of Pediatrics, Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA), Yuqi Wu (Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA), and Liam M. Koehn, PhD (Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA).

Data availability The datasets generated and/or analyzed during the current study are available in the figshare repository https://doi.org/10.6084/m9.figshare.12482813.
Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of interest.

References

Abraham R, McPherson RL, Dasovich M, Badice M, Leung AKL, Griffin DE (2020) Both ADP-ribosyl-binding and hydrolase activities of the alphavirus ns3 macrodomain affect neurovirulence in mice. mBio 11

Abubakar S, Chee HY, Shafee N, Chua KB, Lam SK (1999) Molecular detection of enteroviruses from an outbreak of hand, foot and mouth disease in Malaysia in 1997. Scand J Infect Dis 31:331–5

Al-Hello H, Paananen A, Eskelinen M, Ylipaasto P, Hovi T, Salmela K, Lukashev AN, Bobegamage S, Roivainen M (2008) An enterovirus strain isolated from diabetic child belongs to a genetic subcluster of echovirus 11, but is also neutralised with monotypic antisera to coxsackievirus A9. J Gen Virol 89:1949–1959

Alvarez C, Verdone K, Tipismana M, Gotuzzo E (2015) A Peruvian family with a high burden of HTLV-1-associated myelopathy/ tropical spastic paraparesis. BMJ Case Rep 2015

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nat Med 26:450–452

Atwood WJ, Berger JR, Kaderman R, Tornatore CS, Major EO (1993) Human immunodeficiency virus type 1 infection of the brain. Clin Microbiol Rev 6:339–66

Baig AM, Khaleeq A, Ali U, Syeda H (2020) Evidence of the COVID-19 dengue virus type 4 antigenic chimeric viruses in mice and proposed neurotropic mechanisms. ACS Chem Neurosci 11:995–998

Beitz E (2000) TEXshade: shading and labeling of multiple sequence alignments using LATEX2 epsilon. Bioinformatics 16:135–139

Bergmann CC, Lane TE, Stohlman SA (2006) Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol 4:121–132

Beyrouti R, Adams ME, Benjamin L, Cohen H, Farmer SF, Goh YY, Humphries F, Jager HR, LossetFNA, Perry RJ, Shah S, Simister RJ, Turner D, Chandarathve A, Werring DJ (2020) Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry 91:889–891

Blaney JE Jr, Speicher J, Hanson CT, Sathe NS, Whitehead SS, Murphy BR, Pletnev AG (2008) Evaluation of St. Louis encephalitis virus/ dengue virus type 4 antigenic chimeric viruses in mice and rhesus monkeys. Vaccine 26:4150–9

Bodenhofer U, Bonasteta E, Horejs-Kainrath C, Hochreiter S (2015) msa: an R package for multiple sequence alignment. Bioinformatics 31:3997–3999

Bohmwald K, Galvez NMS, Rios M, Kalgars AM (2018) Neurologic Alterations Due to Respiratory Virus Infections. Front Cell Neurosci 12:386

Bonny TS, Subramaniam K, Waltzek TB, Elbadry MA, Beau De Rochars VM, Telsima T, Rashid M, Morris JG, Jr., Lednicky JA (2017) Complete Genome Sequence of Human Coronavirus Strain 229E Isolated from Plasma Collected from a Haitian Child in 2016. Genome Announce 5

Capobianchi MR, Rieua M, Messina F, Giombini E, Carletti F, Colavita F, Castilletti C, Lalle E, Bordin L, Vairo F, Nicastri E, Ippolito G, Gruber CEM, Bartolini B (2020) Molecular characterization of SARS-CoV-2 from the first case of COVID-19 in Italy. Clin Microbiol Infect 26:954–956

Chan YP, Chua KB, Koh CL, Lim ME, Lam SK (2001) Complete nucleotide sequences of Nipah virus isolates from Malaysia. J Gen Virol 82:2151–2155

Chen Y, Moriyama M, Chang MF, Ichinohoe T (2019) Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 10:50

Cherian SS, Walimbe AM, JadHAV SM, Gandhe SS, Hundekar SL, Mishra AC, Arankalle VA (2009) Evolutionary rates and timescale comparison of Chikungunya viruses inferred from the whole genome/E1 gene with special reference to the 2005–07 outbreak in the Indian subcontinent. Infect Genet Evol 9:16–23

DeBiasi RL, Song X, Delaney M, Bell M, Smith K, Pershad J, Ansusinha E, Hahn A, Hamdy R, Harik N, Hanisch B, Jantausch B, Koay A, Steinhorn R, Newman K, Wessel D (2020) Severe coronavirus disease-2019 in children and young adults in the Washington, DC, Metropolitan Region. J Pediatr 223:199–203 e1

DeDiego ML, Alvarez E, Almanza F, Rejas MT, Lamirande E, Roberts A, Shiel WJ, Zaki SR, Subbarao K, Enjuanes L (2007) A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol 81:1701–1713

Desforges M, Le Coupucan A, Brison E, Meessen-Pinard M, Talbot PJ (2014) Neuroinvasive and neurotropic human respiratory coronaviruses: potential neuroviral agents in humans. Adv Exp Med Biol 807:75–96

Doan T, Wilson MR, Crawford ED, Chow ED, Khan LM, Knopp KA, O’Donovan BD, Xia D, Hacker JK, Stewart JM, Gonzales JA, Acharya NR, DeRisi JL (2016) Illuminating uveitis: metagenomic deep sequencing identifies common and rare pathogens. Genome Med 8:90

Dominguez SR, Shrivastava S, Berglund A, Qian Z, Goes LGB, Halpin RA, Fedorova N, Ransier A, Weston PA, Durigon EL, Jerez JA, Robinson CC, Town CD, Holmes KV (2014) Isolation, propagation, genome analysis and epidemiology of HKU1 betacoronaviruses. J Gen Virol 95

Farag NS, Breitinger U, Breitinger HG, El Azizi MA (2020) Viroporins and inflammasomes: a key to understand virus-induced inflammation. Int J Biochem Cell Biol 122:105738

Fehr AR, Dittmer D, Channappanavar R, Phillips JM, Meyerholz DK, Perlman S (2015) The ns3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis. J Virol 89:1523–1536

Fehr AR, Channappanavar R, Jankevicius G, Feit C, Zhao J, Athmer J, Meyerholz DK, Ahel I, Perlman S (2016) The conserved coronavi- rous macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavi- rus infection. mBio 7

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

Frick DN, Virdi RS, Vaksanovic N, Dahal N, Silvaggi NR (2020) Molecular basis for ADP-ribose binding to the Mac1 domain of SARS-CoV-2 ns3p. Biochemistry 59:2608–2615

Gaensbauer JT, Lindsey NP, Messacar K, Staples JE, Fischer M (2014) Neuroinvasive and neurotropic human respiratory coronaviruses: potential neuroviral agents in humans. Adv Exp Med Biol 807:75–96

Gonzalez ME (2015) Vpu protein: the viroporin encoded by HIV-1. Viruses 7:4352–4368
Hoffmann M, Hofmann-Winkler H, Pöhlmann S (2018) Priming time: how cellular proteases arm coronavirus spike proteins. Activation of Viruses by Host Proteases: 71–98.

Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–280 e8

Huson DH, Scornavacca C (2012) DendroScope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 61:1061–1067

Jaimes JA, Andre NM, Millet JK, Whittaker GR (2020) Structural modeling of 2019-novel coronavirus (nCoV) spike protein reveals a proteolytically-sensitive activation loop as a distinguishing feature compared to SARS-CoV and related SARS-like coronaviruses. bioRxiv. 2020.02.10.942185.

Jarti T, Jartti T, Rauskanen O, Soderlund-Venermo M (2012) New respiratory viral infections. Curr Opin Pulm Med 18:271–278

Jia XY, Briese T, Jordan I, Rambaut A, Chi HC, Mackenzie JS, Hall RA, Scherret J, Lipkin WI (1999) Genetic analysis of West Nile New York 1999 encephalitis virus. Lancet 354:1971–2

Johnson BJ, Kinney RM, Kost CL, Trent DW (1986) Molecular determinants of alphavirus neurovirulence: nucleotide and deduced protein sequence changes during attenuation of Venezuelan equine encephalitis virus. J Gen Virol 67(Pt 9):1951–60

Johnstone JA, Ross CA, Dunn M (1972) Meningitis and encephalitis in children: a resurgence of a fatal anthropozoonosis. Arch Dis Child 47:647–51

Juarz D, Guevara C, Wiley M, Torre A, Palacios G, Halsey ES, Choe H, Halsey JA, Ross CA, Dunn M (1972) Meningitis and encephalitis in children: a resurgence of a fatal anthropozoonosis. Afr Health Sci 18:539–541

Khalis F, Ayari A, Romdhane MB, Tinsa F, Boussetta K (2018) Rabies encephalitis in children: a resurgence of a fatal anthropozoonosis. Afr Health Sci 18:539–541

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:215–220

Lau SK, Woo PC, Yip CC, Tse H, Tsoi HW, Cheng VC, Lee P, Tang BS, Cheung CH, Lee RA, So LY, Lau YL, Chan KH, Yuen KY (2006) Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol 44:2063–2071

Le Coupanec A, Desforges M, Meessen-Pinard M, Dube M, Day R, Seidah NG, Talbot PJ (2015) Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System. PLoS Pathog 11:e1005261

Li YC, Bai WZ, Hashikawa T (2020) The neuroinvasive potential of severe acute respiratory syndrome coronavirus receptors, ACE2 and CD209L in different organ derived microvascular endothelial cells. Zhonghua Yi Xue Za Zhi 87:833–837

Logue CH, Bosio CF, Welte T, Keene KM, Lederman JP, Phillips A, Sheahan BJ, Pierre DJ, Marlenee N, Brautl AC, Bosio CM, Singh AJ, Powers AM, Olson KE (2009) Virulence variation among isolates of western equine encephalitis virus in an outbred mouse model. J Gen Virol 90:1848–1858

Ludlow M, Kortekaas J, Herden C, Hoffmann B, Tappe D, Trebst C, Griffin DE, Brindle HE, Solomon T, Brown AS, van Riel D, Wolthers KC, Pajkrt D, Wohlsen P, Martina BEE, Baumgartner W, Verjans GM, Osterhaus A (2016) Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol 131:159–184

Madan V, Garcia Mde J, Sanz MA, Carrasco L (2005) Viroporin activity of murine hepatitis virus E protein. FEBS Lett 579:3607–3612

Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, Miao X, Li Y, Hu B (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol

Marchler-Bauer A, Derbishire MK, Gonzales NR, Lu S, Chitsaz F, Geer LC, Geer RC, He J, Gwadz M, Hurwitz DJ, Lanzuczyki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226

Mawson AR, Croft AM (2019) Rubella Virus Infection, the Congenital Rubella Syndrome, and the Link to Autism. Int J Environ Res Public Health

Mehta R, Gerardin P, de Brito CAA, Soares CN, Ferreira MLB, Solomon T (2018) The neurological complications of chikungunya virus: A systematic review. Rev Med Virol 28:e1978

Meissner K, Fischer M, Dominguez SR, Tyler KL, Abzug MJ (2018) Encephalitis in US children. Infec Dis Clin N Am 32:145–162

Miner JJ, Diamond MS (2016) Mechanisms of restriction of viral neuroinvasion at the blood-brain barrier. Curr Opin Immunol 38:18–23

Miura TA, Travanty EA, Oko L, Bielefeldt-Ohmann H, Weiss SR, Beauchemin N, Holmes KV (2008) The spike glycoprotein of murine coronavirus MHV-JHM mediates receptor-independent infection and spread in the central nervous systems of C57BL/6 mice. J Virol 82:755–763

Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, Kolenc M, Resman R, Kesava N, Veprek I, Fabjan Vodusek V, Viziak A, Pizem J, Petrovec M, Avsic Zupanc T (2016) Zika Virus Associated with Microcephaly. N Engl J Med 374:951–8

Mohammed MA, Galbraith SE, Radford AD, Dove W, Takasaki T, Kurane I, Solomon T (2011) Molecular phylogenetic and evolutionary analyses of Mau strain of Japanese encephalitis virus reveal it is the missing fifth genotype. Infect Genet Evol 11:855–62

Moline HL, Karachiński PI, Strain A, Griffith J, Kenyon C, Schleiss MR (2018). Acute Transverse Myelitis Caused by Echovirus 11 in a Pediatric Patient: Case Report and Review of the Current Literature. Child Neurol Open 5:2329048X17751526

Montmayeur AM, Vizjak A, Pizem J, Petrovec M, Avsic Zupanc T (2016) Zika Virus Associated with Fatal Encephalitis. N Engl J Med 375:497–51

Murphy TF, Polioviruses. J Clin Microbiol 55:606–615

Morfopoulos S, Brown JR, Davies EG, Anderson G, Virasami A, Qasim W, Chong WK, Hubank M, Plagnol V, Desforges M, Jacques TS, Talbot PJ, Breuer J (2016) Human Coronavirus OC43 Associated with Fatal Encephalitis. N Engl J Med 375:497–8

Morgello S (2020) Coronavirus and the central nervous system. J Neurol Neurosurg Psychiatry 26:459–473

Murphy TF, Polioviruses. J Clin Microbiol 55:606–615

Morfopoulos S, Brown JR, Davies EG, Anderson G, Virasami A, Qasim W, Chong WK, Hubank M, Plagnol V, Desforges M, Jacques TS, Talbot PJ, Breuer J (2016) Human Coronavirus OC43 Associated with Fatal Encephalitis. N Engl J Med 375:497–8

Morfopoulos S, Mee ET, Connaughton SM, Brown JR, Gilmour K, Chong WK, Duprex WP, Ferguson D, Hubank M, Hutchinson C, Kalikatsos M, McQuaid S, Paine S, Plagnol V, Ruis C, Virasami A, Zhan H, Jacques TS, Schepelmann S, Qasim W, Breuer J (2017)
Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis. Acta Neuropathol 133:139–147
Muenchenbachs A, Bhatnagar J, Zaki SR (2015) Tissue tropism, pathology and pathogenesis of enterovirus infection. J Pathol 235:217–28
Nelson TM, Vuillermin P, Hodge J, Druce J, Williams DT, Jasrotia R, Alexandersen S (2017) An outbreak of severe infections among Australian infants caused by a novel recombinant strain of human parechovirus type 3. Sci Rep 7:4442
Nieva JL, Madan V, Carrasco L (2012) Viroporins: structure and biological functions. Nat Rev Microbiol 10:563–574
Nougalement D, Bessaud M, Thiberville SD, Poirierkowski G, Ninove L, Zandotti C, Cherrel RN, Guilhem N, de Lamballerie X (2014) Widespread circulation of a new echovirus 30 variant causing aseptic meningitis and non-specific viral illness, South-East France. J Clin Virol 61:118–24
Nozuma S, Matsuura E, Kodama D, Tashiro Y, Matsuzaki T, Kubota R, Izumo S, Takashima H (2017) Effects of host restriction factors and the HTLV-1 subtype on susceptibility to HTLV-1-associated myelopathy/tropical spastic paraparesis. Retrovirology 14:26
O’Brien WA, Koyanagi Y, Namazie A, Zhao JQ, Diagne A, Idler K, Zak JA, Chen IS (1990) HIV-1 tropism for mononuclear phagocytes can be determined by regions of gpl20 outside the CD4-binding domain. Nature 348:69–73
Ontiveros E, Kim TS, Gallagher TM, Perlman S (2003) Enhanced virulence mediated by the murine coronavirus, mouse hepatitis virus strain JHM, is associated with a glycine at residue 310 of the spike glycoprotein. J Virol 77:10260–9
Pabbaraju K, Fonseca K, Wong S, Koch MW, Joseph JT, Tipples GA, Tellier R (2018) Genetic characterization of measles virus genotype D6 subacute sclerosing panencephalitis case, Alberta, Canada. J Neurovirol 24:720–729
Park E, Griffin DE (2009) The nsp3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology 388:305–314
Perlman S, Wheeler DL (2016) Neurotropic coronavirus infections. Neurotropic Viral Infections: Volume 1: Neurotropic RNA Viruses 115–148
Phillips JJ, Chua MM, Rall GF, Weiss SR (2002) Murine coronavirus spike glycoprotein mediates degree of viral spread, inflammation, and virus-induced immunopathology in the central nervous system. Virology 301:109–120
Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B (2020) COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology 201187
Principi N, Bosis S, Esposito S (2010) Effects of coronavirus infections in children. Pediatr Infect Dis J 29:355–368
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.