Practice guidance for the use of terlipressin for liver cirrhosis–related complications

Xingshun Qi*, Zhaohui Bai*, Qiang Zhu*, Gang Cheng, Yu Chen, Xiaowei Dang, Huiguot Ding, Juqiang Han, Lei Han, Yingli He, Fanpu Ji, Hongxu Jin, Bimin Li, Hongyu Li, Yiling Li*, Zhiwei Li, Bang Liu, Fuquan Liu, Lei Liu, Su Lin, Da Peng Ma, Fanping Meng, Ruizhao Qi, Tianshu Ren, Lichun Shao, ShanHong Tang, Yufu Tang, Yue Teng, Chunhui Wang, Ran Wang, Yunhai Wu, Xiangbo Xu, Ying Li, Jinqiu Yuan, Shanshan Yuan, Yida Yang, Qingchun Zhao, Wei Zhang, Yongping Yang, Xiaozhong Guo and Weifen Xie; On behalf of Hepatobiliary Disease Study Group of the Chinese Society of Gastroenterology of the Chinese Medical Association & Hepatology Committee of the Chinese Research Hospital Association

Abstract

Background: Liver cirrhosis is a major global health burden worldwide due to its high risk of morbidity and mortality. Role of terlipressin for the management of liver cirrhosis–related complications has been recognized during recent years. This article aims to develop evidence-based clinical practice guidance on the use of terlipressin for liver cirrhosis–related complications.

Methods: Hepatobiliary Study Group of the Chinese Society of Gastroenterology of the Chinese Medical Association and Hepatology Committee of the Chinese Research Hospital Association have invited gastroenterologists, hepatologists, infectious disease specialists, surgeons, and clinical pharmacists to formulate the clinical practice guidance based on comprehensive literature review and experts’ clinical experiences.

Results: Overall, 10 major guidance statements regarding efficacy and safety of terlipressin in liver cirrhosis were proposed. Terlipressin can be beneficial for the management of cirrhotic patients with acute variceal bleeding and hepatoportal syndrome (HRS). However, the evidence regarding the use of terlipressin in cirrhotic patients with ascites, post-paracentesis circulatory dysfunction, and bacterial infections in those undergoing hepatic resection and liver transplantation remains insufficient. Terlipressin-related adverse events, mainly including gastrointestinal symptoms, electrolyte disturbance, and cardiovascular and respiratory adverse events, should be closely monitored.

Conclusion: The current clinical practice guidance supports the use of terlipressin for gastroesophageal variceal bleeding and HRS in liver cirrhosis. High-quality studies are needed to further clarify its potential effects in other liver cirrhosis–related complications.

Keywords: complications, liver cirrhosis, management, practice guidance, terlipressin

Introduction

Liver cirrhosis is the 11th most common cause of death and, together with liver cancer, accounts for 3.5% of all deaths worldwide. It imposes a substantial health burden on many countries. There were 10.6 million cases of decompensated cirrhosis and 112 million cases of compensated cirrhosis globally in 2017. Ascites, gastroesophageal variceal bleeding, hepatic encephalopathy, and hepatorenal syndrome (HRS) are common complications of liver cirrhosis, which are mainly secondary to increased portal pressure, hyperdynamic circulatory state, and systemic inflammation. Terlipressin is widely used for cirrhosis.
the management of gastroesophageal variceal bleeding and HRS. However, its optimal dosage and duration, timing of drug withdrawal, and monitoring and management of adverse events remain controversial.

Methods

Hepatobiliary Study Group of the Chinese Society of Gastroenterology of the Chinese Medical Association and Hepatology Committee of the Chinese Research Hospital Association have selected a working group of experts in charge of organizing the online conferences and of writing this document. Four leaders/co-leaders of this working group defined the methodology used and 10 major topics involved for the practice guidance (Table 1). The members of this working group were selected based on their role, clinical experiences, and researches in the field of management of liver cirrhosis and mainly included gastroenterologists, hepatologists, infectious disease specialists, surgeons, and clinical pharmacists. Four major members were responsible for briefly presenting

Table 1. Key guidance statements regarding the terlipressin in patients with liver cirrhosis.
Gastroesophageal variceal bleeding
Guidance Statement 1. Terlipressin is recommended for the treatment of gastroesophageal variceal bleeding in liver cirrhosis.
Guidance Statement 2. Terlipressin should be considered for the management of acute gastrointestinal bleeding in patients with liver cirrhosis before endoscopy, if gastroesophageal variceal rupture is suspected as the major source of bleeding.
Guidance Statement 3. Terlipressin may be preferred in cirrhotic patients with acute gastrointestinal bleeding and renal dysfunction.
Hepatorenal syndrome
Guidance Statement 4. Terlipressin is recommended for the treatment of type-1 hepatorenal syndrome in liver cirrhosis.
Ascites
Guidance Statement 5. Terlipressin should be considered for severe or refractory ascites in cirrhotic patients, if diuretics are ineffective or patients cannot tolerate diuretic-related adverse reactions.
Post-paracentesis circulatory dysfunction
Guidance Statement 6. Terlipressin could be considered for the prevention of post-paracentesis circulatory dysfunction in cirrhotic patients with ascites undergoing large volume paracentesis (>5L).
Bacterial infections
Guidance Statement 7. Terlipressin should be considered in cirrhotic patients with bacterial infections to improve systemic hemodynamic status, microcirculation, and organ perfusion.
Hepatic resection
Guidance Statement 8. Terlipressin can decrease intraoperative portal pressure, blood loss, and amount of blood transfused and postoperative portal pressure in cirrhotic patients undergoing hepatic resection.
Liver transplantation
Guidance Statement 9. Terlipressin is considered for the improvement of systemic hemodynamic status and renal function in cirrhotic patients undergoing liver transplantation.
Terlipressin-related adverse events
Guidance Statement 10. Terlipressin-related adverse events mainly include gastrointestinal symptoms, electrolyte disturbance, and cardiovascular and respiratory adverse events. They can be often resolved by dosage reduction or drug withdrawal and symptomatic treatment.
the background for each of the 10 major topics, searching the literature in the PubMed database by using search items ‘Cirrhosis’ AND ‘Terlipressin’, systematically reviewing the current evidence and then elaborating the provisional statements for the practice guideline. Since March 2021, these provisional statements were circulated by sending emails among the members of this working group. Thus, each member can independently carry out a systematic literature search, using the PubMed database, to assess the validity of these statements. The four major members gave point-to-point responses to their comments and made corresponding revisions after their discussions. Notably, a guidance document is different from a guideline. Guidelines are developed by a multidisciplinary panel of experts who rate the quality (level) of the evidence and the strength of each recommendation using the Grading of Recommendations Assessment, Development, and Evaluation system. A guidance document is developed by a panel of experts in the topic, and guidance statements, not recommendations, are put forward to help clinicians understand and implement the most recent evidence. On 7 September 2021, an online conference was held and recorded, and the revised statements were discussed among all members of this working group. All relevant comments were considered to further improve the quality of the statements. Subsequently, the updated version of practice guidance was sent for final corrections, comments, and approval of the practice guidance recommendations. Following a Delphi process, all members of this working group were asked to specify whether they approved each recommendation and, if not, to justify their disagreement. Corrections and comments were considered in the final version of the practice guidance. It should be acknowledged that these statements will be further updated after more clinical practice experiences and high-quality evidence are accumulated in future. All members of the working group were also asked to declare any potential conflict of interests. The present work followed the AGREE Reporting Checklist.

Mechanisms of vasopressin and its analogues

Vasopressin and its analogues exert pharmacological effects by binding to V receptors, mainly including V₁ and V₂ receptors. V₁ receptors are primarily distributed on the surface of vascular and uterine smooth muscle cells, and activated V₁ receptors can constrict vascular smooth muscle and increase vascular resistance, thereby reducing splanchic blood flow and increasing effective circulatory blood volume, cardiac output, and blood pressure.₁⁵,₁⁶ V₂ receptors are located at the basolateral membrane of collecting ducts, and activated V₂ receptors can promote the synthesis of aquaporin, then insert into the apical membrane of renal collecting duct and endothelial cells, thereby increasing water reabsorption from the renal collecting duct.₁⁵

Vasopressin and its analogues include pituitrin, arginine vasopressin (antidiuretic hormone), desmopressin, and glycine vasopressin (terlipressin). Pituitrin and terlipressin have strong affinity for V₁ receptors and are commonly used for visceral hemostasis.₁²,₁₈ Antiuretic hormone and desmopressin have strong selectivity for V₂ receptors and are commonly used for the treatment of central diabetes insipidus.₁⁹ At present, pituitrin has been rarely used for the treatment of liver cirrhosis–related complications due to its higher incidence of adverse events.²⁰,²¹

Terlipressin is a synthetic analogue of vasopressin, in which lysine replaces arginine at the eighth position of vasopressin peptide chain, and an amino acid branch chain composed of three glycines at cysteine is added. Its molecular formula is C₁₂₂H₁₇₄N₁₆O₁₅S₂, relative molecular mass is 1227.37, and plasma half-life is 24 ± 2 min. Terlipressin is degraded by protease into active product lysine-vasopressin. Its affinity for V₁ receptors is 6-fold higher than that for V₂ receptors, which can have a stronger effect on splanchic vasoconstriction, thereby reducing portal pressure and increasing renal perfusion.²₅

Use of terlipressin in liver cirrhosis–related complications

Gastroesophageal variceal bleeding in liver cirrhosis

Guidance Statement 1. Terlipressin is recommended for the treatment of gastroesophageal variceal bleeding in liver cirrhosis.

Acute gastrointestinal bleeding is one of serious complications of liver cirrhosis, and gastroesophageal varices are the most common source of gastrointestinal bleeding in liver cirrhosis.²₄ Terlipressin has been recommended as the first-line treatment of gastroesophageal variceal bleeding.²₅–₂₇ In 1990, a randomized controlled trial
(RCT) for the first time explored the role of terlipressin for the treatment of acute esophageal variceal bleeding in cirrhotic patients. 28 Sixty patients were assigned to terlipressin (n = 29) and placebo (n = 31) groups. The rate of control bleeding was significantly higher in patients receiving terlipressin than those receiving placebo (90% versus 59%, p < 0.01). Since then, several studies have also confirmed the efficacy of terlipressin in cirrhotic patients with acute variceal bleeding. 27,29,30 Recently, a meta-analysis of 30 RCTs with 3344 cases compared the efficacy and safety of terlipressin versus placebo, pituitrin, somatostatin, octreotide, endoscopic therapy, or balloon tamponade for the management of acute variceal bleeding in cirrhotic patients. 31 Patients receiving terlipressin had a significantly higher rate of control bleeding and a lower mortality than those receiving placebo, but were not significantly different from those receiving pituitrin, somatostatin, or octreotide. The incidence of adverse events was significantly lower in patients receiving terlipressin than those receiving pituitrin [odds ratio (OR) R = 0.15, p = 0.02], but higher than those receiving somatostatin (OR = 2.44, p = 0.04). Terlipressin alone had significantly higher 5-day failure than endoscopic variceal ligation plus terlipressin (OR = 14.46, p = 0.01). Terlipressin group had a significantly lower 30-day mortality than balloon tamponade group (OR = 0.05, p < 0.01). 31 In addition, terlipressin in combination with octreotide or somatostatin did not further reduce portal pressure. 32,33 The European Association for the Study of the Liver (EASL) and the American Association for the Study of Liver Diseases (AASLD) guidelines recommend that the dosage of terlipressin is 2 mg/4 h by intravenous boluses for 2–5 days. 27,29,30 Notably, recent evidence suggests that continuous infusion of terlipressin could reduce portal pressure stably and increase treatment success rate. 34,35 Considering the use of terlipressin in our clinical practice, we recommended that the initial dosage of terlipressin is 1–2 mg/4 h by slowly intravenous boluses (>1 min) or continuously intravenous infusion and that the maintenance dosage is 1–2 mg/6 h by continuously intravenous infusion. Generally, the maximum daily dosage is 120–150 μg/kg, and its duration is 3–5 days. Certainly, the dosage and duration of terlipressin can be adjusted according to the severity of variceal bleeding and patients’ conditions.

Guidance Statement 2. Terlipressin should be considered for the management of acute gastrointestinal bleeding in patients with liver cirrhosis before endoscopy, if gastroesophageal variceal rupture is suspected as the major source of bleeding.

Non-variceal gastrointestinal bleeding in cirrhotic patients is mainly secondary to peptic ulcer and gastric or duodenal mucosal erosion, and so on. 37 Endoscopy is the golden diagnostic approach for the source of gastrointestinal bleeding. 38 However, in real-world clinical practice, not all patients with acute gastrointestinal bleeding can undergo emergency endoscopy, especially in primary hospitals lacking endoscopy equipment and experienced endoscopists. Real-world studies also showed that 60–80% of patients with acute gastrointestinal bleeding could undergo endoscopy. 39,40 According, the source of gastrointestinal bleeding was unclear in about 20% of patients. The first-line treatment for acute non-variceal gastrointestinal bleeding is high-dose proton pump inhibitors, 41–43 but clinicians also immediately prescribe vasoactive drugs when the source of acute gastrointestinal bleeding is unknown in cirrhotic patients and then adjust their treatment strategy after endoscopy. 27,44 This is primarily because the source of gastrointestinal bleeding is variceal in a majority of cirrhotic patients. 45,46 In fact, in several well-designed clinical trials, vasoactive drugs were given before endoscopy in cirrhotic patients with acute gastrointestinal bleeding. 47–49 Taken together, terlipressin can be considered for the management of acute gastrointestinal bleeding when the source of bleeding is unknown or before endoscopy.

Guidance Statement 3. Terlipressin may be preferred in cirrhotic patients with acute gastrointestinal bleeding and renal dysfunction.

Renal dysfunction is a common complication of acute gastrointestinal bleeding in liver cirrhosis with an incidence of 16–25%. 50,51 It can significantly increase the risk of death in such patients with a short-term mortality of 37–55%. 51–53 A pilot study demonstrated that terlipressin could associate with a significant decrease of serum cystatin-C concentration. 54 By comparison, early studies found that octreotide and somatostatin could not improve renal function. 55–57 Recently, a multicenter retrospective study showed that terlipressin could significantly decrease the in-hospital mortality as compared to octreotide/somatostatin (3.6% versus 20.0%, p = 0.04) in cirrhotic patients with acute gastrointestinal bleeding and renal dysfunction.
defined as serum creatinine concentration of >133 mmol/L. Similarly, another retrospective study also suggested that terlipressin could decrease the 30-day mortality as compared to somatostatin (42.3% versus 52.6%) in cirrhotic patients with esophageal variceal bleeding and renal dysfunction, but the difference was not statistically significant (hazard ratio = 1.49, p = 0.09). Collectively, terlipressin may be a preferred choice of treatment in cirrhotic patients with acute gastrointestinal bleeding and renal dysfunction.

Hepatorenal syndrome in liver cirrhosis

Guidance Statement 4. Terlipressin is recommended for the treatment of type-1 hepatorenal syndrome in liver cirrhosis.

HRS, a functional renal failure, is related to a reduction of effective arterial blood volume and mean arterial pressure (MAP) caused by visceral vasodilation in liver cirrhosis, which can activate sympathetic nervous and renin–angiotensin–aldosterone systems. In addition, it is associated with increased synthesis of vasoactive mediators, such as cysteinyl leukotrienes, thromboxane-A2, F2-isoprostane, and endothelin-1, which affects renal blood flow or glomerular microcirculation. Traditionally, HRS is classified into type 1 and type 2. Type 1 HRS is characterized by rapidly progressive renal failure with doubling of the initial serum creatinine concentration to a level greater than 226 mmol/L (i.e. 2.5 mg/dl) within 2 weeks. Type 2 HRS is characterized by steady or slowly progressive renal failure with a change of serum creatinine concentration from 133 to 226 mmol/L (i.e. from 1.5 to 2.5 mg/dl). In 2015, the International Club of Ascites (ICA) updated the definition of acute kidney injury (AKI) in patients with liver cirrhosis, which refers to an increase in serum creatinine concentration of ≥0.3 mg/dl (i.e. ≥26.5 μmol/L) or an increase in serum creatinine concentration >25% from baseline which is known, or presumed, to have occurred within the prior 7 days. AKI is further classified as three stages. Stage 1: an increase in serum creatinine concentration ≥0.3 mg/dl (i.e. 26.5 μmol/L) or an increase in serum creatinine concentration ≥1.5 μmol/L by intravenous bolus; if serum creatinine concentration drops <25% of the baseline value, the maximum dosage can be increased to 2 mg/4–6 h until serum creatinine concentration drops to <133 μmol/L. Recently, an RCT demonstrated that terlipressin given by continuously intravenous infusion was better tolerated than that by intravenous boluses in patients with type 1 HRS and could be equally effective at doses required for continuously intravenous infusion lower than those required for intravenous bolus administration. Considering the drug safety in our clinical practice, we recommend that the starting dosage of terlipressin for HRS is 1–2 mg/12 h by continuously intravenous infusion. The dosage should be adjusted according to the changes in urine output and serum creatinine concentration.
Ascites in liver cirrhosis

Guidance Statement 5. Terlipressin should be considered for severe or refractory ascites in cirrhotic patients, if diuretics are ineffective or patients cannot tolerate diuretic-related adverse reactions.

Ascites in liver cirrhosis is related to visceral vasodilation, activation of renin–angiotensin–aldosterone and sympathetic-adrenal systems, and increased secretion of antidiuretic hormone, which are secondary to portal hypertension.110 It is also related to low plasma osmotic pressure, which is secondary to reduced hepatic capacity in synthesis of albumin.110 Management of cirrhotic ascites mainly includes restriction of salt and water, diuretics, paracentesis, peritoneal dialysis, transjugular intrahepatic portosystemic shunt (TIPS), and liver transplantation.110 Several pilot studies explored the efficacy of terlipressin in cirrhotic patients with non-refractory111–113 and refractory ascites113–117 and showed that terlipressin could improve hemodynamic status and increase urine output in cirrhotic patients with ascites. Notably, a multicenter study found that human serum albumin could enhance the vasoconstrictive effect of terlipressin, suggesting the synergistic effect of terlipressin plus human serum albumin for refractory ascites.115 A questionnaire survey involving 33 gastroenterologists and hepatologists from 30 hospitals in 15 provinces and municipalities in China showed that 29 participants had clinical experiences of using terlipressin in cirrhotic patients with ascites, because the severity of ascites was not improved by diuretics (24/29, 82.76\%), renal impairment developed during the use of diuretics (24/29, 82.76\%), and urine output was unsatisfactory (6/29, 20.69\%).118 However, no study has evaluated the effect of terlipressin for the prevention of AKI/HRS in cirrhotic patients with ascites but without renal dysfunction.119 It should be acknowledged that the evidence is extremely lacking. In accordance with the management of HRS, we recommend that the starting dosage of terlipressin for cirrhotic ascites is 1 mg/12 h by continuously intravenous infusion.

Post-paracentesis circulatory dysfunction in liver cirrhosis with ascites undergoing large volume paracentesis

Guidance Statement 6. Terlipressin could be considered for the prevention of post-paracentesis circulatory dysfunction in cirrhotic patients with ascites undergoing large volume paracentesis (>5 L).

Post-paracentesis circulatory dysfunction (PPCD) is defined as an increase in plasma renin activity >50\% from baseline within 6 days after large volume paracentesis (LVP), which is defined as the amount of ascites removed is >5 L, in cirrhotic patients with ascites.120 It is associated with excessive expansion of arterial capillaries after LVP121 and causes rapid re-accumulation of ascites and development of hyponatremia and renal dysfunction, thereby increasing the mortality.120,110 Human serum albumin is the first-line choice for the prevention of PPCD.122 Accordingly, LVP should be performed together with the administration of albumin (8 g/L of ascitic fluid removed) to prevent from PPCD.110 Several recent studies also suggested that the use of terlipressin could prevent from PPCD. In an RCT, 40 cirrhotic patients with ascites who underwent LVP were assigned to terlipressin \((n = 20) \) and albumin \((n = 20) \) groups. Terlipressin at a dosage of 1 mg was given by intravenous infusion at the beginning of LVP, 8 h, and 16 h. Plasma renin activity and aldosterone concentrations were significantly improved at 4–6 days after treatment compared to both terlipressin and albumin groups, and their benefits in preventing from PPCD were similar.123 Another RCT involving 20 cirrhotic patients with ascites who underwent LVP demonstrated no significant difference in changes of plasma renin activity 4–6 days after treatment between terlipressin and albumin groups \((p = 0.39) \).124 Based on the current evidence, we recommend that the dosage of terlipressin in cirrhotic patients with ascites who will undergo LVP is 1 mg by intravenous boluses at the beginning of the LVP, 8 h, and 16 h.

Bacterial infections in liver cirrhosis

Guidance Statement 7. Terlipressin should be considered in cirrhotic patients with bacterial infections to improve systemic hemodynamic status, microcirculation, and organ perfusion.

Bacterial infections are common in patients with cirrhosis.125 The prevalence of bacterial infections in cirrhotic patients is 25–35\% at admission or during hospitalization126 with a 4- to 5-fold higher risk than general population.127–129 The 30-day mortality is 30\% and 1-year mortality is 63\% in cirrhotic patients with bacterial infections with a 4-fold higher risk of death than those without bacterial infections.130,131 Spontaneous bacterial peritonitis (SBP) and urinary tract infections are the
most common types of bacterial infections in cirrhotic patients, followed by pneumonia, skin and soft tissue infections, and bacteremia. Antibacterial drugs are the first-line choice of treatment for bacterial infections in cirrhotic patients. It has been reported that terlipressin can cause arterial vasoconstriction, increase blood pressure, and reduce heart rate by activating V1 receptors, thereby improving hemodynamic status in patients with septic shock. Several recent studies suggested that terlipressin be beneficial for bacterial infections in cirrhotic patients with or without shock. In an RCT, 200 cirrhotic patients with SBP and serum bilirubin concentration >4 mg/dl or serum creatinine concentration >1 mg/dl who were treated by antibacterial drugs were randomly assigned to terlipressin (n = 50), human serum albumin (n = 50), human serum albumin plus terlipressin (n = 50), and midodrine (n = 50) groups. Terlipressin was intravenously infused at a dosage of 1 mg/6h for 1–3 days. Patients who received terlipressin had significantly lower cardiac output and portal blood flow and higher systemic vascular resistance than those who did not receive terlipressin, but the in-hospital and 30-day mortality were statistically similar among these groups. In another RCT, 84 cirrhotic patients with septic shock were assigned to terlipressin (n = 42) and norepinephrine (n = 42) groups. The dosage of terlipressin was adjusted every 15 min to maintain the average arterial pressure of ≥65 mmHg, and the total dosage was 2–8 mg within 24h. Terlipressin group had higher rates of MAP ≥65 mmHg (92.9% versus 69.1%, p < 0.01), survival at 48h (95.2% versus 71.4%, p < 0.01), and improvement of shock (33.3% versus 11.9%, p = 0.02), and a lower rate of variceal bleeding (0% versus 9.5%, p = 0.01) than noradrenaline group. But the 28-day survival rate was statistically similar between them (26.2% versus 14.3%, p = 0.17). In summary, terlipressin can be added on antibiotic treatment for bacterial infections in cirrhotic patients, and the recommended dosage is 1 mg/6h by continuously intravenous infusion for 1–3 days. If septic shock develops, the dosage of terlipressin should be adjusted according to the MAP.

Hepatocellular carcinoma, one of the most common malignancies, is often secondary to liver cirrhosis. Hepatic resection is a curative treatment for hepatocellular carcinoma. But liver cirrhosis with portal hypertension can significantly increase the risk of complications and deteriorate the outcomes after hepatic resection. Terlipressin can decrease perioperative portal pressure in patients undergoing hepatic resection. In an RCT, 50 patients undergoing hepatobiliary surgery were assigned to terlipressin (n = 25, including 13 patients who underwent hepatic resection) and placebo (n = 25, including 14 patients who underwent hepatic resection) groups. The initial dosage of terlipressin was 1 mg/30min by intravenous boluses and then adjusted to 2 μg/kg/h by continuously intravenous infusion until postoperative 4h. Terlipressin group had significantly lower intraoperative portal pressure (15.96 ± 6.55 mmHg versus 16.48 ± 5.04 mmHg, p < 0.05) and blood loss (842 ± 145.5 ml versus 1065.7 ± 202 ml, p < 0.01), and higher intraoperative MAP (88.7 ± 7.2 mmHg versus 83.9 ± 6.98 mmHg, p = 0.02) than placebo group, but without any significant difference in intraoperative central venous pressure. In another RCT, 84 patients who underwent resection of two or more liver segments were assigned to terlipressin (n = 42, including 19 patients with liver cirrhosis) and placebo (n = 42, including 12 patients with liver cirrhosis) groups. The initial dosage of terlipressin was 1 mg/30min by intravenous boluses and then adjusted to 2 μg/kg/h by continuously intravenous infusion until postoperative 4h. Terlipressin significantly decreased intraoperative blood loss (1351 ± 887 ml versus 1892 ± 889 ml, p < 0.01) and blood transfusion requirement (30% versus 64.2%, p < 0.01), but increased central venous pressure (8.1 ± 3.6 mmHg versus 5.9 ± 3.7 mmHg, p = 0.01). In a pilot study, 65 patients who underwent resection of three or more liver segments and had portal pressure ≥12 mmHg were assigned to terlipressin (n = 46, including 31 patients with liver cirrhosis) and control (n = 19, including 10 patients with liver cirrhosis) groups. The dosage of terlipressin was 2 mg/24h by continuously intravenous infusion until postoperative 4 days. Terlipressin could decrease postoperative portal pressure and incidence of liver failure (26% versus 53%, p = 0.04). In addition, in an RCT, 150 patients undergoing major hepatic resection were assigned to terlipressin (n = 75, including 15 patients with liver cirrhosis) and placebo (n = 75, including 14 patients...
with liver cirrhosis) groups. The initial dosage of terlipressin was 1 mg by continuously intravenous infusion (>2h), and then adjusted to 1 mg/6h by continuously intravenous infusion until postoperative 5 days. Terlipressin could not significantly prevent from the development of liver-related complications and AKI (6.5% versus 22.6%, p = 0.15).144 Evidence from a meta-analysis also suggested that terlipressin should significantly increase MAP and decrease intensive care unit (ICU) stay in non-cirrhotic patients who underwent hepatic resection.145 Notably, the dosage of terlipressin was relatively large among these studies, but drug-related adverse reactions had not been clearly reported. In addition, current evidence fails to support the use of terlipressin for the prevention of complications in patients undergoing hepatic resection, despite it can decrease intraoperative portal pressure, blood loss, and amount of blood transfused, and postoperative portal pressure. Therefore, we cannot make a definitive recommendation on the use of terlipressin in patients undergoing hepatic resection.

Liver transplantation in liver cirrhosis

Guidance Statement 9. Terlipressin is considered for the improvement of systemic hemodynamic status and renal function in cirrhotic patients undergoing liver transplantation.

Liver transplantation is a curative treatment approach for advanced liver cirrhosis.25,146 The incidence of AKI after liver transplantation is 20–90%,147 which significantly worsens the outcomes of cirrhotic patients.148-151 Major causes of AKI after liver transplantation include excessive blood loss, hypotension, sepsis, and use of calcineurin inhibitors.150,151 Screening of preoperative renal function, monitoring of postoperative renal function, and dosage adjustment of calcineurin inhibitors are critical for the prevention of AKI after liver transplantation.152,153 Terlipressin can improve hemodynamic status and prevent from the development of AKI after liver transplantation. In an RCT, 41 patients with end-stage liver diseases who underwent liver transplantation were assigned to terlipressin (n = 21) and saline (n = 20) groups.154 The initial dosage of terlipressin was 1 mg/30 min by intravenous boluses and then adjusted to 2 μg/kg/h by continuously intravenous infusion until postoperative 72 h. Terlipressin group had significantly lower incidence of AKI (p = 0.04), smaller drainage volume of ascites (p < 0.05), and shorter length of stay (p = 0.03). In another RCT, 80 patients with end-stage liver diseases who underwent liver transplantation were assigned to terlipressin (n = 40) and control (n = 40) groups.155 The initial dosage of terlipressin was 3 μg/kg/h by continuously intravenous infusion and then adjusted to 1.5 μg/kg/h by continuously intravenous infusion until postoperative 72 h. Terlipressin could significantly increase MAP (47.8 ± 4.8 mmHg versus 56.7 ± 6 mmHg, p < 0.01) and peripheral vascular resistance (425.0 ± 26.1 mmHg versus 723.0 ± 46.8 mmHg, p < 0.01) and decrease heart rate (102.6 ± 4.6 versus 91.5 ± 5.7, p < 0.01), cardiac output (8.8 ± 0.6 versus 6.9 ± 0.3, p < 0.01), hepatic vascular resistance index (0.73 ± 0.043 versus 0.682 ± 0.042, p < 0.01), renal vascular resistance index (0.733 ± 0.04 versus 0.68 ± 0.05, p < 0.01), portal vein blood flow (1807.61 ± 239.62 ml/s versus 1402.380 ± 397.26 ml/s, p < 0.01), and serum creatinine concentration (1.22 ± 0.31 mg/dl versus 1.02 ± 0.29 mg/dl, p < 0.01). In addition, in an RCT, 30 patients who underwent living donor liver transplantation were assigned to terlipressin (n = 15) and control (n = 15) groups.156 The initial dosage of terlipressin was 1 mg/30 min by intravenous boluses and then adjusted to 2 μg/kg/h by continuously intravenous infusion until postoperative 48 h. Terlipressin group had significantly lower intraoperative portal pressure (p < 0.01), postoperative serum creatinine (p < 0.05), and postoperative cystatin-C concentration (p < 0.05), but higher intraoperative MAP (82.9 ± 11.2 mmHg versus 71.3 ± 13.9 mmHg, p < 0.05) and intraoperative systemic vascular resistance (736.7 ± 194.2 versus 557.2 ± 204, p < 0.05) than control group. Based on the current evidence, we suggest that the initial dosage of terlipressin during liver transplantation is 1 mg/30 min by intravenous boluses and then adjusted to 1 mg/12h by continuously intravenous infusion until postoperative 48–72 h.

Terlipressin-related adverse events

Guidance Statement 10. Terlipressin-related adverse events mainly include gastrointestinal symptoms, electrolyte disturbance, and cardiovascular and respiratory adverse events. They can be often resolved by dosage reduction or drug withdrawal and symptomatic treatment.

Gastrointestinal symptoms

Terlipressin can produce gastrointestinal smooth muscle spasm and visceral vasoconstriction,157,158
thereby inducing the development of nausea, abdominal pain, and diarrhea. The incidence of gastrointestinal symptoms during the use of terlipressin is 14–80%. Treatment strategy for severe gastrointestinal symptoms mainly includes dosage reduction and even withdrawal and use of antispasmodic drugs. In animal studies, vasopressin-induced gastric smooth muscle spasm can be effectively reversed by local electrical stimulation, but this should be further confirmed by human studies.

Electrolyte disturbance

Terlipressin can activate V2 receptor, probably producing antidiuretic effect and causing electrolyte disturbance. A case report published in 1998 suggested the risk of developing hypokalemia after terlipressin in cirrhotic patients with gastrointestinal bleeding. Besides, more studies suggested that hyponatremia be a common adverse event of terlipressin in cirrhotic patients. The incidence of serum sodium concentration <130 mmol/L was 0–6%, and a decrease in serum sodium concentration of >5 mmol/L was observed in 30–60% of patients treated with terlipressin. Patients with better liver function, higher baseline sodium concentration, and longer duration of terlipressin treatment had a higher risk of developing hyponatremia. In addition, non-steroidal anti-inflammatory drugs can enhance the reabsorption of water by vasopressin receptors located in the renal tubules by inhibiting prostaglandin synthesis, thereby increasing the risk of terlipressin-induced hyponatremia. Electrolyte disturbance related to the use of terlipressin can be resolved after drug withdrawal. However, severe hyponatremia can worsen the outcome of cirrhotic patients, thus close monitoring of serum sodium concentration is required when using terlipressin. Abnormal sodium excretion is usually related to decreased renal perfusion, and restriction of fluid intake and infusion of hypertonic saline should be considered for the management of hyponatremia, if necessary.

Respiratory adverse events

Respiratory adverse events during the use of terlipressin mainly include dyspnea and respiratory distress, because terlipressin can induce pulmonary vasoconstriction, thereby impairing oxygen exchange. Their incidence is estimated to be 10.1%. Recently, in a multicenter RCT involving a total of 300 cirrhotic patients with type 1 HRS, terlipressin group had a higher incidence of respiratory failure than placebo group (10% versus 3%), and patients who developed respiratory failure had worse outcome. However, it should be noted that a high dosage of human serum albumin has been employed for type 1 HRS in this RCT. If dyspnea or respiratory failure occurs during the use of terlipressin, the management should include immediate drug discontinuation, oxygen, bronchodilating drugs, and mechanical ventilation, if necessary.

Other adverse events

Terlipressin can also cause skin and subcutaneous tissue ischemia with an incidence of <5%, due to its vasoconstrictor effect on the systemic circulatory system. Ischemia often occurs at the head, breast, abdominal wall, small intestine, scrotum as well as extremities. SBP and alcohol abuse may increase the risk and severity of ischemic complications. In case of severe ischemic complications during the use of terlipressin, it should be immediately discontinued and vasodilator drugs should be given. In addition, terlipressin might worsen intracranial edema and pressure in patients with acute liver failure and severe hepatic encephalopathy, probably because it decreased cerebrovascular resistance and increased cerebral blood flow by activating cerebrovascular V2 receptors. Therefore, its use should be cautious in patients with acute liver failure and severe hepatic encephalopathy.
with acute liver failure and severe hepatic encephalopathy. If intracranial pressure increased during the use of terlipressin, it would be immediately discontinued, and intracranial pressure-lowering drugs would be given.

Unresolved issues

Terlipressin plays an important role in the management of liver cirrhosis–related complications, especially variceal bleeding and HRS. However, the evidence regarding the use of terlipressin in cirrhotic patients with ascites, PPCD, and bacterial infections and in those undergoing hepatic resection and liver transplantation remains insufficient, and high-quality RCTs are needed to further clarify its potential effects. Future well-designed studies should be performed to address several unresolved issues as follows:

1. Renal dysfunction can significantly deteriorate the outcomes of cirrhotic patients with acute gastrointestinal bleeding. RCTs should clarify the effects of terlipressin on renal function and outcomes in cirrhotic patients with acute gastrointestinal bleeding and renal dysfunction.
2. Terlipressin can significantly improve renal function in cirrhotic patients with type 1 HRS, but its survival benefit remains controversial. High-quality studies should clarify the optimal timing of terlipressin and explore whether early use of terlipressin is more beneficial for cirrhotic patients with HRS. In addition, the efficacy of terlipressin for the treatment of severe/refractory ascites in cirrhotic patients and the prevention of renal dysfunction or AKI in cirrhotic patients with severe/refractory ascites should be explored.
3. Postoperative complications are often lethal in cirrhotic patients undergoing hepatic resection and liver transplantation. RCTs should explore the effects of terlipressin on the prevention of complications after hepatic resection and liver transplantation and clarify its optimal dosage and duration.
4. Drug-related adverse events can compromise the use of terlipressin in clinical practice. Monitoring, prevention, and treatment of terlipressin-related adverse events should be further standardized in large-scale real-world studies.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Author contribution(s)

Xingshun Qi: Conceptualization; Methodology; Project administration; Supervision; Writing – original draft; Writing – review & editing.

Zhaohui Bai: Investigation; Methodology; Writing – original draft.

Qiang Zhu: Investigation; Methodology; Writing – original draft.

Gang Cheng: Investigation; Writing – review & editing.

Yu Chen: Investigation; Writing – review & editing.

Xiaowei Dang: Investigation; Writing – review & editing.

Huiguo Ding: Investigation; Writing – review & editing.

Juqiang Han: Investigation; Writing – review & editing.

Lei Han: Investigation; Writing – review & editing.

Yingli He: Investigation; Writing – review & editing.

Fanpu Ji: Investigation; Writing – review & editing.

Hongxu Jin: Investigation; Writing – review & editing.

Bimin Li: Investigation; Writing – review & editing.

Hongyu Li: Investigation; Writing – review & editing.

Yiling Li: Investigation; Writing – review & editing.

Zhiwei Li: Investigation; Writing – review & editing.

Bang Liu: Investigation; Writing – review & editing.

Fuquan Liu: Investigation; Writing – review & editing.
Lei Liu: Investigation; Writing – review & editing.
Su Lin: Investigation; Writing – review & editing.
Dapeng Ma: Investigation; Writing – review & editing.
Fanping Meng: Investigation; Writing – review & editing.
Ruizhao Qi: Investigation; Writing – review & editing.
Tianshu Ren: Investigation; Writing – review & editing.
Lichun Shao: Investigation; Writing – review & editing.
Shanhong Tang: Investigation; Writing – review & editing.
Yufu Tang: Investigation; Writing – review & editing.
Yue Teng: Investigation; Writing – review & editing.
Chunhui Wang: Investigation; Writing – review & editing.
Ran Wang: Investigation; Writing – review & editing.
Yunhai Wu: Investigation; Writing – review & editing.
Xiangbo Xu: Investigation; Writing – review & editing.
Ling Yang: Investigation; Writing – review & editing.
Jinqiu Yuan: Investigation; Writing – review & editing.
Shanshan Yuan: Investigation; Writing – review & editing.
Yida Yang: Investigation; Writing – review & editing.
Qingchun Zhao: Investigation; Writing – review & editing.
Wei Zhang: Investigation; Writing – review & editing.
Yongping Yang: Conceptualization; Investigation; Project administration; Writing – review & editing.

Xiaozhong Guo: Conceptualization; Investigation; Project administration; Writing – review & editing.

Weifeng Xie: Conceptualization; Investigation; Project administration; Writing – review & editing.

ORCID iDs
Xingshun Qi https://orcid.org/0000-0002-9448-6739
Yiling Li https://orcid.org/0000-0003-3209-8105

Acknowledgements
None.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

Conflict of interest statement
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Availability of data and materials
Data sharing is not applicable to this article as no new data were created or analyzed.

References
1. Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world. J Hepatol 2019; 70: 151–171.
2. GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 2020; 5: 245–266.
3. Krag A, Bendtsen F, Burroughs AK, et al. The cardiorenal link in advanced cirrhosis. Med Hypotheses 2012; 79: 53–55.
4. Salerno F, Guevara M, Bernardi M, et al. Refractory ascites: pathogenesis, definition and therapy of a severe complication in patients with cirrhosis. Liver Int 2010; 30: 937–947.
5. Licata A, Mazzola A, Inggrassia D, et al. Clinical implications of the hyperdynamic syndrome in cirrhosis. Eur J Intern Med 2014; 25: 795–802.
6. Bosch J. Vascular deterioration in cirrhosis: the big picture. *J Clin Gastroenterol* 2007; 41(Suppl. 3): S247–S253.

7. Møller S and Henriksen JH. Cardiovascular complications of cirrhosis. *Gut* 2008; 57: 268–278.

8. Møller S, Hobolth L, Winkler C, *et al.* Determinants of the hyperdynamic circulation and central hypovolaemia in cirrhosis. *Gut* 2011; 60: 1254–1259.

9. Villanueva C, Albillos A, Genescà J, *et al.* Development of hyperdynamic circulation and response to β-blockers in compensated cirrhosis with portal hypertension. *Hepatology* 2016; 63: 197–206.

10. Henriksen JH, Gülberg V, Gerbes AL, *et al.* Increased arterial compliance in cirrhosis is related to decreased arterial C-type natriuretic peptide, but not to atrial natriuretic peptide. *Scand J Gastroenterol* 2003; 38: 559–564.

11. Møller S, Bendtsen F and Henriksen JH. Determinants of the renin-angiotensin-aldosterone system in cirrhosis with special emphasis on the central blood volume. *Scand J Gastroenterol* 2006; 41: 451–458.

12. Bernardi M, Moreau R, Angeli P, *et al.* Mechanisms of decapsulation and organ failure in cirrhosis: from peripheral arterial vasodilatation to systemic inflammation hypothesis. *J Hepatol* 2015; 63: 1272–1284.

13. Helmer DO. An experimental application of the DELPHI method to the use of experts. *Manag Sci* 1963; 9: 458–467.

14. Brouwers MC, Kerkvliet K, Spithoff K, *et al.* The AGREE Reporting Checklist: a tool to improve reporting of clinical practice guidelines. *BMJ* 2016; 352: 11152.

15. Kam PC, Williams S and Yoong FF. Vasopressin and terlipressin: pharmacology and its clinical relevance. *Anaesthesia* 2004; 59: 993–1001.

16. Petersen MB. The effect of vasopressin and related compounds at V1a and V2 receptors in animal models relevant to human disease. *Basic Clin Pharmacol Toxicol* 2006; 99: 96–103.

17. Dai M, Jin G, Lin J, *et al.* Control of postpartum hemorrhage in women with placenta accreta spectrum using prophylactic balloon occlusion combined with Pituitrin intra-arterial infusion. *Eur Radiol* 2020; 30: 4524–4533.

18. Ioannou G, Doust J and Rockey DC. Terlipressin for acute esophageal variceal hemorrhage. *Cochrane Database Syst Rev* 2003; 1: CD002147.

19. Levy M, Prentice M and Wass J. Diabetes insipidus. *BMJ* 2019; 364: 1321.

20. Asfar P, Radermacher P, Calés P, *et al.* The effects of vasopressin and its analogues on the liver and its disorders in the critically ill. *Curr Opin Crit Care* 2010; 16: 148–152.

21. Lo R, Austin A and Freeman J. Vasopressin in liver disease—should we turn on or off? *Curr Clin Pharmacol* 2008; 3: 156–165.

22. Jamil K, Pappas SC and Devarakonda KR. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V(1) and V(2). *J Exp Pharmacol* 2018; 10: 1–7.

23. Møller S, Hansen EF, Becker U, *et al.* Central and systemic haemodynamic effects of terlipressin in portal hypertensive patients. *Liver* 2000; 20: 51–59.

24. Garcia-Tsao G and Bosch J. Management of varices and variceal hemorrhage in cirrhosis. *N Engl J Med* 2010; 362: 823–832.

25. European Association for the Study of the Liver. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. *J Hepatol* 2018; 69: 406–460.

26. Sarin SK, Kumar A, Angus PW, *et al.* Diagnosis and management of acute variceal bleeding: Asian Pacific Association for Study of the Liver recommendations. *Hepatol Int* 2011; 5: 607–624.

27. de Franchis R and Baveno VI Faculty. Expanding consensus in portal hypertension: report of the Baveno VI Consensus Workshop: stratifying risk and individualizing care for portal hypertension. *J Hepatol* 2015; 63: 743–752.

28. Söderlund C, Magnusson I, Törngren S, *et al.* Terlipressin (triglycyl-lysine vasopressin) controls acute bleeding oesophageal varices. A double-blind, randomized, placebo-controlled trial. *Scand J Gastroenterol* 1990; 25: 622–630.

29. Tripathi D, Stanley AJ, Hayes PC, *et al.* U.K. guidelines on the management of variceal haemorrhage in cirrhotic patients. *Gut* 2015; 64: 1680–1704.

30. Garcia-Tsao G, Abraldes JG, Berzigotti A, *et al.* Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. *Hepatology* 2017; 65: 310–335.

31. Zhou X, Tripathi D, Song T, *et al.* Terlipressin for the treatment of acute variceal bleeding: a systematic review and meta-analysis of
32. Kalambokis G, Economou M, Paraskevi K, et al. Effects of somatostatin, terlipressin and somatostatin plus terlipressin on portal and systemic hemodynamics and renal sodium excretion in patients with cirrhosis. J Gastroenterol Hepatol 2005; 20: 1075–1081.

33. Lin HC, Yang YY, Hou MC, et al. Hemodynamic effects of a combination of octreotide and terlipressin in patients with viral hepatitis related cirrhosis. Scand J Gastroenterol 2002; 37: 482–487.

34. Ding C, Wu X, Fan X, et al. Hemodynamic effects of continuous versus bolus infusion of terlipressin for portal hypertension: a randomized comparison. J Gastroenterol Hepatol 2013; 28: 1242–1246.

35. Jha SK, Mishra M, Jha A, et al. Comparison of continuous versus intermittent infusions of terlipressin for the control of acute variceal bleeding in patients with portal hypertension: an open-label randomized controlled trial. Indian J Gastroenterol 2018; 37: 313–320.

36. Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Gastroenterology, Chinese Medical Association; Chinese Society of Endoscopy, Chinese Medical Association. Guidelines for the diagnosis and treatment of esophageal and gastric variceal bleeding in cirrhotic portal hypertension. J Clin Hepatol 2016; 32: 203–219.

37. Gabr MA, Tawfik MA and El-Sawy AA. Non-variceal upper gastrointestinal bleeding in cirrhotic patients in Nile Delta. Indian J Gastroenterol 2016; 35: 25–32.

38. Karstensen JG, Ebibgo A, Bhat P, et al. Endoscopic treatment of variceal upper gastrointestinal bleeding: European Society of Gastrointestinal Endoscopy (ESGE) cascade guideline. Endosc Int Open 2020; 8: E990–E997.

39. Laine L, Laursen SB, Zakko L, et al. Severity and outcomes of upper gastrointestinal bleeding with bloody vs. coffee-grounds hematemesis. Am J Gastroenterol 2018; 113: 358–366.

40. Li Y, Li H, Zhu Q, et al. Effect of acute upper gastrointestinal bleeding manifestations at admission on the in-hospital outcomes of liver cirrhosis: hematemesis versus melena without hematemesis. Eur J Gastroenterol Hepatol 2019; 31: 1334–1341.

41. Laine L and Jensen DM. Management of patients with ulcer bleeding. Am J Gastroenterol 2012; 107: 345–360; quiz 61.

42. Sung JJ, Chan FK, Chen M, et al. Asia-Pacific Working Group consensus on non-variceal upper gastrointestinal bleeding. Gut 2011; 60: 1170–1177.

43. British Society of Gastroenterology Endoscopy Committee. Non-variceal upper gastrointestinal haemorrhage: guidelines. Gut 2002; 51(Suppl. 4): iv1–iv6.

44. Cappell MS and Friedel D. Initial management of acute upper gastrointestinal bleeding: from initial evaluation up to gastrointestinal endoscopy. Med Clin North Am 2008; 92: 491–509, xi.

45. Lu Z, Sun X, Han J, et al. Characteristics of peptic ulcer bleeding in cirrhotic patients with esophageal and gastric varices. Sci Rep 2020; 10: 20068.

46. Garcia-Tsao G, Sanyal AJ, Grace ND, et al. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology 2007; 46: 922–938.

47. Ardevol A, Ibañez-Sanz G, Profitos J, et al. Survival of patients with cirrhosis and acute peptic ulcer bleeding compared with variceal bleeding using current first-line therapies. Hepatology 2018; 67: 1458–1471.

48. Lau JYW, Yu Y, Tang RSY, et al. Timing of endoscopy for acute upper gastrointestinal bleeding. N Engl J Med 2020; 382: 1299–1308.

49. Villanueva C, Colomo A, Bosch A, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med 2013; 368: 11–21.

50. Cárdenas A, Ginès P, Uriz J, et al. Renal failure after upper gastrointestinal bleeding in cirrhosis: incidence, clinical course, predictive factors, and short-term prognosis. Hepatology 2001; 34: 671–676.

51. Bai Z, Primignani M, Guo X, et al. Incidence and mortality of renal dysfunction in cirrhotic patients with acute gastrointestinal bleeding: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2019; 13: 1181–1188.

52. del Olmo JA, Peña A, Serra MA, et al. Predictors of morbidity and mortality after the first episode of upper gastrointestinal bleeding in liver cirrhosis. J Hepatol 2000; 32: 19–24.

53. Hsieh YC, Lee KC, Chen PH, et al. Acute kidney injury predicts mortality in cirrhotic patients with...
gastric variceal bleeding. J Gastroenterol Hepatol 2017; 32: 1859–1866.

54. Zhang J, Liu J, Wu Y, et al. Effect of terlipressin on renal function in cirrhotic patients with acute upper gastrointestinal bleeding. Ann Transl Med 2020; 8: 340.

55. Malesci A, Tacconi M, Valentini A, et al. Octreotide long-term treatment in patients with portal hypertension: persistent inhibition of postprandial glucagon response without major changes in renal function. J Hepatol 1997; 26: 816–825.

56. Ottesen LH, Aagaard NK, Kiszka-Kanowitz M, et al. Effects of a long-acting formulation of octreotide on renal function and renal sodium handling in cirrhotic patients with portal hypertension: a randomized, double-blind, controlled trial. Hepatology 2001; 34: 471–477.

57. Vora JP, Owens DR, Ryder R, et al. Effect of somatostatin on renal function. Br Med J (Clin Res Ed) 1986; 292: 1701–1702.

58. Xu X, Liu B, Lin S, et al. Terlipressin may decrease in-hospital mortality of cirrhotic patients with acute gastrointestinal bleeding and renal dysfunction: a retrospective multicenter observational study. Adv Ther 2020; 37: 4396–4413.

59. Hung TH, Tsai CC, Tseng CW, et al. No difference in mortality between terlipressin and somatostatin treatments in cirrhotic patients with esophageal variceal bleeding and renal functional impairment. Eur J Gastroenterol Hepatol 2016; 28: 1275–1279.

60. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol 2010; 53: 397–417.

61. Salerno F, Gerbes A, Ginès P, et al. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 2007; 56: 1310–1318.

62. Angeli P, Ginès P, Wong F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol 2015; 62: 968–974.

63. Angeli P, Garcia-Tsao G, Nadim MK, et al. News in pathophysiology, definition and classification of hepatorenal syndrome: a step beyond the International Club of Ascites (ICA) consensus document. J Hepatol 2019; 71: 811–822.

64. Mindikoglu AL and Pappas SC. New developments in hepatorenal syndrome. Clin Gastroenterol Hepatol 2018; 16: 162–177.e1.

65. Zhang J, Wu Y and Qi X. Current evidence regarding terlipressin for treatment of hepatorenal syndrome. Shijie Huaren Xiaohua Zazhi 2019; 27: 1–5.

66. Terres AZ, Balbinot RS, Muscope ALF, et al. Evidence-based protocol for diagnosis and treatment of hepatorenal syndrome is independently associated with lower mortality. Gastroenterol Hepatol 2022; 45: 25–39.

67. Wang L, Long Y, Li KK, et al. Pharmacological treatment of hepatorenal syndrome: a network meta-analysis. Gastroenterol Rep 2020; 8: 111–118.

68. Thomson MJ, Taylor A, Sharma P, et al. Limited progress in hepatorenal syndrome (HRS) reversal and survival 2002–2018: a systematic review and meta-analysis. Dig Dis Sci 2020; 65: 1539–1548.

69. Best LM, Freeman SC, Sutton AJ, et al. Treatment for hepatorenal syndrome in people with decompensated liver cirrhosis: a network meta-analysis. Cochrane Database Syst Rev 2019; 9: CD013103.

70. Wang H, Liu A, Bo W, et al. Terlipressin in the treatment of hepatorenal syndrome: a systematic review and meta-analysis. Medicine 2018; 97: e0431.

71. Sridharan K and Sivaramakrishnan G. Vasoactive agents for hepatorenal syndrome: a mixed treatment comparison network meta-analysis and trial sequential analysis of randomized clinical trials. J Gen Intern Med 2018; 33: 97–102.

72. Nanda A, Reddy R, Safraz H, et al. Pharmacological therapies for hepatorenal syndrome: a systematic review and meta-analysis. J Clin Gastroenterol 2018; 52: 360–367.

73. Zheng JN, Han YJ, Zou TT, et al. Comparative efficacy of vasoconstrictor therapies for type 1 hepatorenal syndrome: a network meta-analysis. Expert Rev Gastroenterol Hepatol 2017; 11: 1009–1018.

74. Gifford FJ, Morling JR and Fallowfield JA. Systematic review with meta-analysis: vasoactive drugs for the treatment of hepatorenal syndrome type 1. Aliment Pharmacol Ther 2017; 45: 593–603.

75. Facciorusso A, Chandar AK, Murad MH, et al. Comparative efficacy of pharmacological strategies for management of type 1 hepatorenal syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol 2017; 2: 94–102.

76. Mattos ÂZ, Mattos AA and Ribeiro RA. Terlipressin versus noradrenaline in the treatment
of hepatorenal syndrome: systematic review with meta-analysis and full economic evaluation. *Eur J Gastroenterol Hepatol* 2016; 28: 345–351.

77. Nassar Junior AP, Farias AQ, D’ Albuquerque LA, et al. Terlipressin versus norepinephrine in the treatment of hepatorenal syndrome: a systematic review and meta-analysis. *PLoS ONE* 2014; 9: e107466.

78. Hiremath SB and Srinivas LD. Survival benefits of terlipressin and non-responder state in hepatorenal syndrome: a meta-analysis. *Indian J Pharmacol* 2013; 45: 54–60.

79. Dobre M, Demirjian S, Sehgal AR, et al. Terlipressin in hepatorenal syndrome: a systematic review and meta-analysis. *Int Urol Nephrol* 2011; 43: 175–184.

80. Sagi SV, Mittal S, Kasturi KS, et al. Terlipressin therapy for reversal of type 1 hepatorenal syndrome: a meta-analysis of randomized controlled trials. *J Gastroenterol Hepatol* 2010; 25: 880–885.

81. Gluud LL, Christensen K, Christensen E, et al. Systematic review of randomized trials on vasoconstrictor drugs for hepatorenal syndrome. *Hepatology* 2010; 51: 576–584.

82. Zhang ZF, Yang N, Zhao G, et al. Meta-analysis of terlipressin in treatment of hepatorenal syndrome: an update. *Zhonghua Yi Xue Za Zhi* 2009; 89: 1970–1974.

83. Fabrizi F, Dixit V, Messa P, et al. Terlipressin for hepatorenal syndrome: a meta-analysis of randomized controlled trials. *Int J Artif Organs* 2009; 32: 133–140.

84. Fabrizi F, Dixit V and Martin P. Meta-analysis: terlipressin therapy for the hepatorenal syndrome. *Aliment Pharmacol Ther* 2006; 24: 935–944.

85. Allegretti AS, Isaelsen M, Krag A, et al. Terlipressin versus placebo or no intervention for people with cirrhosis and hepatorenal syndrome. *Cochrane Database Syst Rev* 2017; 6: CD005162.

86. Isaelsen M, Krag A, Allegretti AS, et al. Terlipressin versus other vasoconstrictive drugs for hepatorenal syndrome. *Cochrane Database Syst Rev* 2017; 9: CD011532.

87. Boyer TD, Sanyal AJ, Wong F, et al. Terlipressin plus albumin is more effective than albumin alone in improving renal function in patients with cirrhosis and hepatorenal syndrome type 1. *Gastroenterology* 2016; 150: 1579–1589.e2.

88. Hadengue A, Gadano A, Moreau R, et al. Beneficial effects of the 2-day administration of terlipressin in patients with cirrhosis and hepatorenal syndrome. *J Hepatol* 1998; 29: 565–570.

89. Neri S, Pulvirenti D, Malaguarnera M, et al. Terlipressin and albumin in patients with cirrhosis and type I hepatorenal syndrome. *Dig Dis Sci* 2008; 53: 830–835.

90. Pulvirenti D and Tsami A. Terlipressina a basso dosaggio e albuminanella sindrome epatorenale di tipo I. [Low doses of terlipressin and albumin in type I hepatorenal syndrome]. *Ital J Med* 2008; 2: 34–38.

91. Sanyal AJ, Boyer T, Garcia-Tsao G, et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. *Gastroenterology* 2008; 134: 1360–1368.

92. Solanki P, Chawla A, Garg R, et al. Beneficial effects of terlipressin in hepatorenal syndrome: a prospective, randomized placebo-controlled clinical trial. *J Gastroenterol Hepatol* 2003; 18: 152–156.

93. Yang Y, Dan Z, Lin N, et al. Efficacy of terlipressin in treatment of liver cirrhosis with hepatorenal syndrome. *J Intern Intensive Med* 2001; 7: 123–125.

94. Martín-Llahi M, Pépin MN, Guevara M, et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. *Gastroenterology* 2008; 134: 1352–1359.

95. Zafar S, Haque I, UnTayyab G, et al. Role of terlipressin and albumin combination versus albumin alone in hepatorenal syndrome. *Am J Gastroenterol* 2012; 107: S175.

96. Cavallin M, Kamath PS, Merli M, et al. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: a randomized trial. *Hepatology* 2015; 62: 567–574.

97. Singh V, Ghosh S, Singh B, et al. Noradrenaline vs. terlipressin in the treatment of hepatorenal syndrome: a randomized study. *J Hepatol* 2012; 56: 1293–1298.

98. Alessandria C, Ottobrelli A, Debernardi-Venon W, et al. Noradrenaline vs terlipressin in patients with hepatorenal syndrome: a prospective, randomized, unblinded, pilot study. *J Hepatol* 2007; 47: 499–505.

99. Badawy S, Meckawy N and Ahmed A. Norepinephrine versus terlipressin in patients with type 1 hepatorenal syndrome refractory to treatment with octreotide, midodrine, and albumin: a prospective randomized comparative study. *Egypt J Cardiothorac Anesth* 2013; 7: 13–18.
100. Copaci I, Micu L and Chiriac G. Reversal of type 1 hepatorenal syndrome with terlipressin and octreotide. *J Hepatol* 2016; 64: S660.

101. Ghosh S, Choudhary NS, Sharma AK, et al. Noradrenaline vs terlipressin in the treatment of type 2 hepatorenal syndrome: a randomized pilot study. *Liver Int* 2013; 33: 1187–1193.

102. Goyal O, Sidhu SS, Sehgal N, et al. Noradrenaline is as effective as terlipressin in hepatorenal syndrome type 1: a prospective, randomized trial. *J Assoc Physicians India* 2016; 64: 30–35.

103. Indrabi R, Javid G, Zargar S, et al. Noradrenaline is equally effective as terlipressin in reversal of type 1 hepatorenal syndrome: a randomized prospective study. *J Clin Exp Hepatol* 2013; 3: S97.

104. Sharma P, Kumar A, Shrama BC, et al. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type 1 hepatorenal syndrome and predictors of response. *Am J Gastroenterol* 2008; 103: 1689–1697.

105. Srivastava S, Vishnubhatla S, Prakash S, et al. Randomized controlled trial comparing the efficacy of terlipressin and albumin with a combination of concurrent dopamine, furosemide, and albumin in hepatorenal syndrome. *J Clin Exp Hepatol* 2015; 5: 276–285.

106. Wong F, Pappas SC, Curry MP, et al. Terlipressin plus albumin for the treatment of type 1 hepatorenal syndrome. *N Engl J Med* 2021; 384: 818–828.

107. Moore K, Jamil K, Verleker K, et al. Real-world treatment patterns and outcomes using terlipressin in 203 patients with the hepatorenal syndrome. *Aliment Pharmacol Ther* 2020; 52: 351–358.

108. Cavallin M, Piano S, Romano A, et al. Terlipressin given by continuous intravenous infusion versus intravenous boluses in the treatment of hepatorenal syndrome: a randomized controlled study. *Hepatology* 2016; 63: 983–992.

109. Chinese Society of Hepatology Chinese Medical Association. Guidelines on the management of ascites and complications in cirrhosis. *J Clin Hepatol* 2017; 33: 1847–1863.

110. Aithal GP, Palaniyappan N, China L, et al. Guidelines on the management of ascites in cirrhosis. *Gut* 2021; 70: 9–29.

111. Therapeudos G, Stanley AJ and Hayes PC. Systemic, portal and renal effects of terlipressin in patients with cirrhotic ascites: pilot study. *J Gastroenterol Hepatol* 2004; 19: 73–77.

112. Kalambokis GN, Pappas K, Baltayiannis G, et al. Effects of terlipressin on water excretion after oral water load test in nonazotemic cirrhotic patients with ascites without hyponatremia. *Scand J Gastroenterol* 2010; 45: 1509–1515.

113. Krag A, Møller S, Henriksen JH, et al. Terlipressin improves renal function in patients with cirrhosis and ascites without hepatorenal syndrome. *Hepatology* 2007; 46: 1863–1871.

114. Gadano A, Moreau R, Vachiery F, et al. Natriuretic response to the combination of atrial natriuretic peptide and terlipressin in patients with cirrhosis and refractory ascites. *J Hepatol* 1997; 26: 1229–1234.

115. Fimiani B, Guardia DD, Puoti C, et al. The use of terlipressin in cirrhotic patients with refractory ascites and normal renal function: a multicentric study. *Eur J Intern Med* 2011; 22: 587–590.

116. Gow PJ, Ardalan ZS, Vasudevan A, et al. Outpatient terlipressin infusion for the treatment of refractory ascites. *Am J Gastroenterol* 2016; 111: 1041–1042.

117. Pande G, Saraswat VA, Kumar K, et al. SCALFI-terlipressin mobilizes refractory ascites safely in decompensated liver cirrhosis. *Hepatol Int* 2016; 10: S501.

118. Bai Z, Li H, Guo X, et al. Use of terlipressin in cirrhosis with ascites: a questionnaire survey in China. *J Clin Exp Hepatol* 2020; 10: 407–408.

119. Bai Z, An Y, Guo X, et al. Role of terlipressin in cirrhotic patients with ascites and without hepatorenal syndrome: a systematic review of current evidence. *Can J Gastroenterol Hepatol* 2020; 2020: 5106958.

120. Arora V, Vijayaraghavan R, Maiwall R, et al. Paracentesis-induced circulatory dysfunction with modest-volume paracentesis is partly ameliorated by albumin infusion in acute-on-chronic liver failure. *Hepatology* 2020; 72: 1043–1055.

121. Ruiz-del-Arbol L, Monescillo A, Jimenéz W, et al. Paracentesis-induced circulatory dysfunction: mechanism and effect on hepatic hemodynamics in cirrhosis. *Gastroenterology* 1997; 113: 579–586.

122. Kulkarni AV, Kumar P, Sharma M, et al. Pathophysiology and prevention of paracentesis-induced circulatory dysfunction: a concise review. *J Clin Transl Hepatol* 2020; 8: 42–48.
123. Singh V, Kumar R, Nain CK, et al. Terlipressin versus albumin in paracentesis-induced circulatory dysfunction in cirrhosis: a randomized study. *J Gastroenterol Hepatol* 2006; 21: 303–307.

124. Moreau R, Asselah T, Condat B, et al. Comparison of the effect of terlipressin and albumin on arterial blood volume in patients with cirrhosis and tense ascites treated by paracentesis: a randomised pilot study. *Gut* 2002; 50: 90–94.

125. Fernández J and Gustot T. Management of bacterial infections in cirrhosis. *J Hepatol* 2012; 56: S1–S12.

126. Jalan R, Fernandez J, Wiest R, et al. Bacterial infections in cirrhosis: a position statement based on the EASL Special Conference 2013. *J Hepatol* 2014; 60: 1310–1324.

127. Gustot T, Durand F, Lebrec D, et al. Severe sepsis in cirrhosis. *Hepatology* 2009; 50: 2022–2033.

128. Fernández J, Navasa M, Gómez J, et al. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. *Hepatology* 2002; 35: 140–148.

129. Fernández J, Acevedo J, Castro M, et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. *Hepatology* 2012; 55: 1551–1561.

130. Foreman MG, Mannino DM and Moss M. Cirrhosis as a risk factor for sepsis and death: analysis of the National Hospital Discharge Survey. *Chest* 2003; 124: 1016–1020.

131. Arvaniti V, D’Amico G, Fede G, et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. *Gastroenterology* 2010; 139: 1246–1256.

132. Huang P, Guo Y, Li B, et al. Terlipressin versus norepinephrine for septic shock: a systematic review and meta-analysis. *Front Pharmacol* 2019; 10: 1492.

133. Avni T, Lador A, Lev S, et al. Vasopressors for the treatment of septic shock: systematic review and meta-analysis. *PLoS ONE* 2015; 10: e0129305.

134. Salman TA, Edrees AM, El-Said HH, et al. Effect of different therapeutic modalities on systemic, renal, and hepatic hemodynamics and short-term outcomes in cirrhotic patients with spontaneous bacterial peritonitis. *Eur J Gastroenterol Hepatol* 2016; 28: 777–785.

135. Choudhury A, Kedarisetty CK, Vashishtha C, et al. A randomized trial comparing terlipressin and noradrenaline in patients with cirrhosis and septic shock. *Liver Int* 2017; 37: 552–561.

136. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. *Gastroenterology* 2012; 142: 1264–1273.e1.

137. Singal AG and Murphy CC. Hepatocellular carcinoma: a roadmap to reduce incidence and future burden. *J Natl Cancer Inst* 2019; 111: 527–528.

138. Forner A, Reig M and Bruix J. Hepatocellular carcinoma. *Lancet* 2018; 391: 1301–1314.

139. Bogner A, Reissfelder C, Striebel F, et al. Intraoperative increase of portal venous pressure is an immediate predictor of posthepatectomy liver failure after major hepatectomy: a prospective study. *Ann Surg* 2021; 274: e10–e17.

140. Carrapita JG, Rocha C, Donato H, et al. Portal venous pressure variation during hepatectomy: a prospective study. *Acta Med Port* 2019; 32: 420–426.

141. Mahdy MM, Abbas MS, Kamel EZ, et al. Effects of terlipressin infusion during hepatobiliary surgery on systemic and splanchic haemodynamics, renal function and blood loss: a double-blind, randomized clinical trial. *BMC Anesthesiol* 2019; 19: 106.

142. Abbas MS, Mohamed KS, Ibraheem OA, et al. Effects of terlipressin infusion on blood loss and transfusion needs during liver resection: a randomised trial. *Acta Anaesthesiol Scand* 2019; 63: 34–39.

143. Li X, Zhu X, Xiao N, et al. A prospective study of the effect of terlipressin on portal vein pressure and clinical outcomes after hepatectomy: a pilot study. *Surgery* 2020; 167: 926–932.

144. Kohler A, Perrodin S, De Gottardi A, et al. Effectiveness of terlipressin for prevention of complications after major liver resection – a randomized placebo-controlled trial. *HPB* 2020; 22: 884–891.

145. Gavrilidis P, Roberts KJ, Angelis N, et al. Effectiveness of terlipressin on modulation of portal vein pressure after hepatic resections in non-cirrhotic patients. A systematic review and meta-analysis of randomised controlled trials. *Chirurgia* 2020; 115: 707–714.

146. Strassburg CP and Manns MP. Liver transplantation: indications and results. *Internist* 2009; 50: 550–560.
147. Durand F, Francoz C, Asrani SK, et al. Acute kidney injury after liver transplantation. *Transplantation* 2018; 102: 1636–1649.

148. Fraley DS, Burr R, Bernardini J, et al. Impact of acute renal failure on mortality in end-stage liver disease with or without transplantation. *Kidney Int* 1998; 54: 518–524.

149. McCauley J, Van Thiel DH, Starzl TE, et al. Acute and chronic renal failure in liver transplantation. *Nephron* 1990; 55: 121–128.

150. Lima EQ, Zanetta DM, Castro I, et al. Risk factors for development of acute renal failure after liver transplantation. *Ren Fail* 2003; 25: 553–560.

151. Bilbao I, Charco R, Balsells J, et al. Risk factors for acute renal failure requiring dialysis after liver transplantation. *Clin Transplant* 1998; 12: 123–129.

152. European Association for the Study of the Liver. EASL clinical practice guidelines: liver transplantation. *J Hepatol* 2016; 64: 433–485.

153. Miller CM, Quintini C, Dhawan A, et al. The International Liver Transplantation Society living donor liver transplant recipient guideline. *Transplantation* 2017; 101: 938–944.

154. Reddy MS, Kaliamoorthy I, Rajakumar A, et al. Double-blind randomized controlled trial of the routine perioperative use of terlipressin in adult living donor liver transplantation. *Liver Transpl* 2017; 23: 1007–1014.

155. Fayed N, Refaat EK, Yassein TE, et al. Effect of perioperative terlipressin infusion on systemic, hepatic, and renal hemodynamics during living donor liver transplantation. *J Crit Care* 2013; 28: 775–782.

156. Mukhtar A, Salah M, Aboulfatouh F, et al. The use of terlipressin during living donor liver transplantation: effects on systemic and splanchic hemodynamics and renal function. *Crit Care Med* 2011; 39: 1329–1334.

157. Furgala A, Thor PJ, Maccallum DS, et al. Terlipressin facilitates gastric and autonomic system dysfunctions in liver cirrhosis. *Hepatogastroenterology* 2011; 58: 2041–2044.

158. Kim HR, Lee YS, Yim HJ, et al. Severe ischemic bowel necrosis caused by terlipressin during treatment of hepatorenal syndrome. *Clin Mol Hepatol* 2013; 19: 417–420.

159. Nowak L, Królczyk G, Sobocki J, et al. Gastric stimulation is effective in reversing vasopressin induced gastroparesis. *Folia Med Cracov* 2004; 45: 71–79.

160. Krag A, Bendtsen F, Pedersen EB, et al. Effects of terlipressin on the aquaretic system: evidence of diuretic effects. *Am J Physiol Renal Physiol* 2008; 295: F1295–F1300.

161. Stéphan F and Paillard F. Terlipressin-exacerbated hypokalaemia. *Lancet* 1998; 351: 1249–1250.

162. Escorsell A, Ruiz del Arbol L, Planas R, et al. Multicenter randomized controlled trial of terlipressin versus sclerotherapy in the treatment of acute variceal bleeding: the TEST study. *Hepatology* 2000; 32: 471–476.

163. Feu F, Ruiz del Arbol L, Bañares R, et al. Double-blind randomized controlled trial comparing terlipressin and somatostatin for acute variceal hemorrhage. Variceal Bleeding Study Group. *Gastroenterology* 1996; 111: 1291–1299.

164. Xu X, Lin S, Yang Y, et al. Development of hyponatremia after terlipressin in cirrhotic patients with acute gastrointestinal bleeding: a retrospective multicenter observational study. *Expert Opin Drug Saf* 2020; 19: 641–647.

165. Solá E, Lens S, Guevara M, et al. Hyponatremia in patients treated with terlipressin for severe gastrointestinal bleeding due to portal hypertension. *Hepatology* 2010; 52: 1783–1790.

166. Meng Q, Dang X, Li L, et al. Severe hyponatraemia with neurological manifestations in patients treated with terlipressin: two case reports. *J Clin Pharm Ther* 2019; 44: 981–984.

167. Šima M, Pokorný M, Paďour F, et al. Terlipressin induced severe hyponatremia. *Prague Med Rep* 2016; 117: 68–72.

168. Yim SY, Seo YS, Jung CH, et al. Risk factors for developing hyponatremia during terlipressin treatment: a retrospective analyses in variceal bleeding. *J Clin Gastroenterol* 2015; 49: 607–612.

169. Pan X, Zhou Z, Jin X, et al. Clinical characteristics and risk factors of severe hyponatremia in cirrhotic patients treated with terlipressin. *J Clin Pharm Ther* 2020; 45: 191–198.

170. Gomez Garcia EB, Ruitenbergen A, Madretsma GS, et al. Hyponatraemic coma induced by desmopressin and ibuprofen in a woman with von Willebrand’s disease. *Haemophilia* 2003; 9: 232–234.

171. Qi X, Zhou X, Xu X, et al. Development of hyponatremia during terlipressin therapy in patients with cirrhosis. *Med Inf* 2018; 31: 1–3.
172. Krag A, Bendtsen F, Mortensen C, et al. Effects of a single terlipressin administration on cardiac function and perfusion in cirrhosis. *Eur J Gastroenterol Hepatol* 2010; 22: 1085–1092.

173. Gerbes AL, Huber E and Gülberg V. Terlipressin for hepatorenal syndrome: continuous infusion as an alternative to i.v. bolus administration. *Gastroenterology* 2009; 137: 1179; author reply 1179–1181.

174. Di Micoli A, Buccione D, Degli Esposti D, et al. Terlipressin infusion induces Tako-Tsubo syndrome in a cirrhotic man with hepatorenal syndrome. *Intern Emerg Med* 2011; 6: 437–440.

175. Scharte M, Meyer J, Van Aken H, et al. Hemodynamic effects of terlipressin (a synthetic analog of vasopressin) in healthy and endotoxemic sheep. *Crit Care Med* 2001; 29: 1756–1760.

176. Ozel Coskun BD, Karaman A, Gorkem H, et al. Terlipressin-induced ischemic skin necrosis: a rare association. *Am J Case Rep* 2014; 15: 476–479.

177. Ortega R, Ginès P, Uriz J, et al. Terlipressin therapy with and without albumin for patients with hepatorenal syndrome: results of a prospective, nonrandomized study. *Hepatology* 2002; 36: 941–948.

178. Vaccaro F, Giorgi A, Riggio O, et al. Is spontaneous bacterial peritonitis an inducer of vasopressin analogue side-effects? A case report. *Dig Liver Dis* 2003; 35: 503–506.

179. Lee JS, Lee HS, Jung SW, et al. [A case of peripheral ischemic complication after terlipressin therapy]. *Korean J Gastroenterol* 2006; 47: 454–457.

180. Shawcross DL, Davies NA, Mookerjee RP, et al. Worsening of cerebral hyperemia by the administration of terlipressin in acute liver failure with severe encephalopathy. *Hepatology* 2004; 39: 471–475.

181. Di Micoli A, Bracci E, Cappa FM, et al. Terlipressin infusion induces ischemia of breast skin in a cirrhotic patient with hepatorenal syndrome. *Dig Liver Dis* 2008; 40: 304–305.

182. Mégarbané H, Barete S, Khosrotehrani K, et al. Two observations raising questions about risk factors of cutaneous necrosis induced by terlipressin (Glypressin). *Dermatology* 2009; 218: 334–337.

183. Oh JE, Ha JS, Cho DH, et al. A case of ischemic skin necrosis after glypressin therapy in liver cirrhosis. *Korean J Gastroenterol* 2008; 51: 381–384.

184. Yefet E, Gershovich M, Farber E, et al. Extensive epidermal necrosis due to terlipressin. *Isr Med Assoc J* 2011; 13: 180–181.

185. Lee HJ and Oh MJ. A case of peripheral gangrene and osteomyelitis secondary to terlipressin therapy in advanced liver disease. *Clin Mol Hepatol* 2013; 19: 179–184.

186. Kozniewska E and Szczepanska-Sadowska E. V2-like receptors mediate cerebral blood flow increase following vasopressin administration in rats. *J Cardiovasc Pharmacol* 1990; 15: 579–585.