Locally finite groups with bounded centralizer chains

Alexandr Buturlakin and Andrey V. Vasil’ev

Abstract. The c-dimension of a group G is the maximal length of a chain of nested centralizers in G. We prove that a locally finite group of finite c-dimension k has less than $5k$ nonabelian composition factors.

Keywords: locally finite group, nonabelian simple group, lattice of centralizers, c-dimension.

Introduction

Let G be a group and $C_G(X)$ be the centralizer of a subset X of G. Since $C_G(X) < C_G(Y)$ if and only if $C_G(C_G(X)) > C_G(C_G(Y))$, it follows that the minimal and the maximal conditions for centralizers are equivalent. Thus the length of every chain of nested centralizers in a group with the minimal condition for centralizers is finite. If a uniform bound for the lengths of chains of centralizers of a group G exists, then we refer to maximal such length as c-dimension of G following [1]. The same notion is also known as the height of the lattice of centralizers. It is worth to observe that the class of groups of finite c-dimension includes abelian groups, torsion-free hyperbolic groups, linear groups over fields and so on. In addition, it is closed under taking subgroups and finite direct products, but the c-dimension of a homomorphic image of a group from this class is not necessary finite.

In 1979 R. Bryant and B. Hartley [2] proved that a periodic locally soluble group with the minimal condition for centralizers is soluble. In 2009 E. I. Khukhro published the paper [3], where, in particular, he proved that a periodic locally soluble group of finite c-dimension k has the derived length bounded in terms of k. The same paper contains the conjecture attributed to A. V. Borovik, which asserts that the number of nonabelian composition factors of a locally finite group of finite c-dimension k is bounded in terms of k. The purpose of our work is to prove this conjecture.

Theorem. Let G be a locally finite group of c-dimension k. Then the number of nonabelian composition factors of G is less than $5k$.

§ 1. Preliminaries

Given a locally finite group G, denote by $\eta(G)$ the number of nonabelian composition factors of G.

The following well-known fact (see, for example, [1 Corollary 3.5]) helps us to derive the theorem from the corresponding statement for finite groups.

Lemma 1.1. If G is a locally finite locally soluble simple group, then G is cyclic.

\footnote{The work was partially supported by RFBR Grant 13-01-00505}
Recall that the factor group of a finite group \(G \) by its soluble radical \(R \) is an automorphism group of a direct product of nonabelian simple groups. Thus, if the socle \(Soc(G/R) \) is a direct product of nonabelian simple groups \(S_1, S_2, \ldots, S_n \), then \(G/R \) is a subgroup of the semidirect product \(\langle \text{Aut}(S_1) \times \text{Aut}(S_2) \times \cdots \times \text{Aut}(S_n) \rangle \rtimes \text{Sym}_n \), where \(\text{Sym}_n \) permutes \(S_1, S_2, \ldots, S_n \). By the classification of the finite simple groups, the group of outer automorphisms of a finite simple group is soluble. Therefore, every nonabelian composition factor of \(G \) is either a composition factor of \(Soc(G/R) \), or a composition factor of the corresponding subgroup of \(\text{Sym}_n \).

Next three lemmas give an upper bound for the number of nonabelian composition factors of a subgroup of \(\text{Sym}_n \). We denote by \(\mu(G) \) the degree of the minimal faithful permutation representation of a finite group \(G \).

Lemma 1.2 ([6], Theorem 2). Let \(G \) be a finite group. Let \(\mathcal{L} \) be a class of finite groups closed under taking subgroups, homomorphic images and extensions. If \(N \) is the maximal normal \(\mathcal{L} \)-subgroup of \(G \), then \(\mu(G) \geq \mu(G/N) \).

Lemma 1.3 ([6], Theorem 3.1). Let \(S_1, S_2, \ldots, S_r \) be simple groups. Then \(\mu(S_1 \times S_2 \times \cdots \times S_r) = \mu(S_1) + \mu(S_2) + \cdots + \mu(S_r) \).

Lemma 1.4. If \(G \) is a subgroup of a symmetric group \(\text{Sym}_n \), then \(\eta(G) \leq (n - 1)/4 \).

Proof. We proceed by induction on \(n \). If \(R \) is the soluble radical of \(G \), then Lemma 1.2 implies that \(\mu(G/R) \) does not exceed \(\mu(G) \). Hence, we may assume that the soluble radical of \(G \) is trivial. Let the socle \(Soc(G) \) of \(G \) be the direct product of nonabelian simple groups \(S_1, S_2, \ldots, S_l \). It follows from Lemma 1.3 that \(l \leq n/5 \). Again \(G \) is a subgroup of the semidirect product \(\langle \text{Aut}(S_1) \times \text{Aut}(S_2) \times \cdots \times \text{Aut}(S_l) \rangle \rtimes \text{Sym}_l \). By inductive hypothesis, \(\eta(G) \leq n/5 + (n/5 - 1)/4 = (n - 1)/4 \).

Remark. The group \(\text{Sym}_n \), where \(n = 5^k \) with \(k \geq 1 \), contains a subgroup \(G \) isomorphic to the permutation wreath product \((\cdots ((\text{Alt}_5 \wr \text{Alt}_5) \wr \text{Alt}_5) \cdots) \), where the wreath product is applied \(k - 1 \) times. We have \(\eta(G) = \frac{5^{k-1} - 1}{5 - 1} = \frac{2^{k-1} - 1}{4} \).

The following lemma is a key for bounding the number of composition factors of \(Soc(G/R) \) for a finite group \(G \).

Lemma 1.5 ([3], Lemma 3). If an elementary abelian \(p \)-group \(E \) of order \(p^n \) acts faithfully on a finite nilpotent \(p' \)-group \(Q \), then there exists a series of subgroups \(E = E_0 > E_1 > E_2 > \cdots > E_n = 1 \) such that all inclusions \(C_Q(E_0) < C_Q(E_1) < \cdots < C_Q(E_n) \) are strict.

As usual, \(O_p(G) \) stands for the largest normal \(p \)-subgroup of a finite group \(G \), while \(O_{p'}(G) \) denotes the largest normal \(p' \)-subgroup of \(G \). If a series of commutator subgroups of a group \(G \) stabilizes, then we denote by \(G^{(\infty)} \) the last subgroup of this series. A quasisimple group is a perfect central extension of a nonabelian simple group. The layer \(E(G) \) is the subgroup of \(G \) generated by all subnormal quasisimple subgroups of \(G \), the latter are called components of \(G \). Recall that the layer is a central product of components of \(G \).
§ 2. Proofs

Proposition 2.1. Let G be a finite group of c-dimension k. Then $\eta(G) < 5k$.

Proof. Let R be the soluble radical of G. If P is a Sylow subgroup of R, then $G/R \simeq N_G(P)/(R \cap N_G(P))$, so nonabelian composition factors of $N_G(P)$ and G coincide. On the other hand, c-dimension of $N_G(P)$ as a subgroup of G is at most k. Therefore, we may assume that $N_G(P) = G$ for every Sylow subgroup P of R, i.e. that R is nilpotent.

Obviously, we may suppose that $R \neq G$. Put $\overline{G} = G/R$. The socle \overline{L} of \overline{G} is the direct product of nonabelian simple groups S_1, S_2, \ldots, S_n. As observed in preliminaries, the group $\overline{G}/\overline{L}$ is an extension of a normal soluble subgroup by a subgroup of the symmetric group Sym_n. By Lemma [1.3] an arbitrary subgroup of Sym_n has less than $n/4$ nonabelian composition factors. Thus, it is sufficient to show that $\eta(\overline{L}) = n \leq 4k$. In particular, we may assume that G coincides with L, the preimage of \overline{L} in G, and nonabelian composition factor of G are the groups S_1, S_2, \ldots, S_n.

Let $K = C_G(R)$. The normal subgroup $\overline{K} = KR/R$ of \overline{G} is a direct product of nonabelian simple group. Without loss of generality, we may suppose that $\overline{K} = S_1 \times S_2 \times \ldots \times S_l$ for some $1 \leq l \leq n$. For $i = 1, \ldots, l$ denote by K_i the preimage of S_i in K. Then subgroup $H_i = K_i^{(\infty)}$ is normal in K and is a perfect central extension of S_i, so it is a component of K. Therefore, if $E(K)$ is the layer of K, then $KR = E(K)R$ and $E(K)$ is a central product of H_1, H_2, \ldots, H_l. Hence $\eta(K) = \eta(E(K)) = l$. Since $[H_i, H_j] = 1$ for $i \neq j$, all inclusions $C_{E(K)}(H_i) < C_{E(K)}(H_iH_j) < \cdots < C_{E(K)}(H_iH_j \cdots H_l)$ are strict. Thus, $l \leq k$.

Let P be a Sylow p-subgroup of G and \overline{P} be the image of P in \overline{G}. Since $O_p(R) \leq C_G(O_p'(R))$, the action of P on $O_p'(R)$ by conjugation induces the action of \overline{P} on $O_p'(R)$. Given a prime p, define the set \mathcal{F}_p as follows: a subgroup S_i of \overline{G} lies in \mathcal{F}_p whenever there is an element g of order p in S_i acting faithfully on $O_p'(R)$. Lemma [1.5] yields that $|\mathcal{F}_p| \leq k$ for every prime p. On the other hand, if S_i does not lie in \mathcal{F}_p, then S_i is a subgroup of $C_G(O_p'(R))/R/R$. It follows from the classification of finite simple groups that the order of every nonabelian finite simple group is an even number which is a multiple of 3 or 5. Since $R = O_2(R) \times O_2(R)$, every S_i either belongs to $\mathcal{F}_2 \cup \mathcal{F}_3 \cup \mathcal{F}_5$, or is a subgroup of $\overline{K} = C_G(R)/R/R$. Thus, $\eta(G) \leq |\mathcal{F}_2| + |\mathcal{F}_3| + |\mathcal{F}_5| + \eta(K) \leq 4k$, as required.

Proof of the theorem. Now G is locally finite group. Assume $\eta(G) \geq 5k$. Let $\{G_i\}_{i \in I}$ be a composition series of G, where G_i is a proper subgroup of G_j for $i < j$. Let S_1, S_2, \ldots, S_{5k} be pairwise distinct nonabelian composition factors of G. By Lemma [1.1] every locally finite nonabelian simple group contains a finite insoluble subgroup. Thus, we may choose finite subsets X_1, X_2, \ldots, X_{5k} of G such that the image of X_i in S_i generates an insoluble group. Suppose that H is the finite subgroup of G generated by the union of the sets X_1, X_2, \ldots, X_{5k}. Then $\{G_i \cap H\}_{i \in I}$ is a subnormal series of H having at least $5k$ insoluble factors. This contradicts Proposition 2.1. The theorem is proved.

References

[1] A. Myasnikov, P. Shumyatsky, Discriminating groups and c-dimension, J. Group Theory, 7 (2004), 135–142.
[2] R. Bryant, B. Hartley, Periodic locally soluble groups with the minimal condition on centralizers, J. Algebra, 61 (1979), 328–334.

[3] E. I. Khukhro, On solubility of groups with bounded centralizer chains, Glasgow Math. J., 51 (2009), 49–54.

[4] U. Meierfrankenfeld, Locally finite, simple groups, Lecture notes, 2011, 107 pp., http://www.math.msu.edu/~meier/Classnotes/LFG/LFG.pdf.

[5] D.F. Holt, Representing quotients of permutation groups, Quarterly Journal Of Mathematic, 48 (1997), no. 2, 347–350.

[6] D. Easdown, C.E. Praeger, On minimal faithful permutation representations of finite groups, Bulletin Australian Mathematical Society, 38(1988), 207-220.

Alexandr Buturlakin
Sobolev Institute of Mathematics,
Novosibirsk State University,
e-mail:buturlakin@math.nsc.ru

Andrey V. Vasil’ev
Sobolev Institute of Mathematics,
Novosibirsk State University,
e-mail:vasand@math.nsc.ru