Genetic evidence supports the development of SLC26A9 targeting therapies for the treatment of lung disease — Source link

Jiafen Gong, Gengming He, Cheng Wang, Claire Bartlett ...+36 more authors

Institutions: University of Toronto, Université de Montréal, Alberta Children's Hospital, University of British Columbia ...+10 more institutions

Published on: 14 Oct 2021 - medRxiv (Cold Spring Harbor Laboratory Press)

Topics: Population, COPD and Cystic fibrosis

Related papers:
- Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics
- Modifiers of cftr-directed therapy
- PharmGKB summary: very important pharmacogene information for CFTR.
- Triplet CFTR modulators: future prospects for treatment of cystic fibrosis
- CFTR Modulator Therapies in Cystic Fibrosis

Share this paper:

View more about this paper here: https://typeset.io/papers/genetic-evidence-supports-the-development-of-slc26a9-3b0hoi8sio
Genetic evidence supports the development of SLC26A9 targeting therapies for the treatment of lung disease

Jiafen Gong¹, Gengming He¹,², Cheng Wang¹, Claire Bartlett³, Naim Panjwani¹, Fan Lin¹,
Katherine Keenan¹,³, Julie Avolio³, Anat Halevy¹, Michelle Shaw³, Mohsen Esmaeili¹,
Guillaume Côté-Maurais⁴, Damien Adam⁴,⁵, Stéphanie Bégin⁴, Candice Bjornson⁶, Mark
Chervers⁷, Joe Reisman⁸, April Price⁹, Michael Parkins¹⁰, Richard Van Wylick¹¹, Yves
Berthiaume⁵, Lara Bilodeau¹², Dimas Mateos-Corral¹³, Daniel Hughes¹³, Mary J. Smith¹⁴,
Nancy Morrison¹⁵, Janna Brusky¹⁶, Elizabeth Tullis¹⁷, Anne L. Stephenson¹⁷, Bradley S.
Quon¹⁸, Pearce Wilcox¹⁸, Winnie M. Leung¹⁹, Melinda Solomon²⁰, Lei Sun²,²¹, Emmanuelle
Brochiero⁴,⁵, Theo J. Moraes³,²⁰, Tanja Gonska²,²², Felix Ratjen³,²³, Johanna M. Rommens¹,²⁴,
Lisa J. Strug¹,²,²¹,²⁵,²⁶,*

Affiliations:

¹Program in Genetics and Genome Biology, The Hospital for Sick Children; Toronto, ON,
Canada.
²Biostatistics Division, Dalla Lana School of Public Health, University of Toronto; Toronto, ON,
Canada.
³Translational Medicine, The Hospital for Sick Children; Toronto, ON, Canada.
⁴CRCHUM; Montréal, QC, Canada.
⁵Department of Medicine, Faculty of Medicine, Université de Montréal; Montréal, QC, Canada.
⁶Alberta Children’s Hospital; Calgary, AB, Canada.
⁷British Columbia Children’s Hospital; Vancouver, BC, Canada.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
The Children’s Hospital of Eastern Ontario; Ottawa, ON, Canada.

The Children’s Hospital, London Health Science Centre; London, ON, Canada.

Foothills Medical Centre; Calgary, AB, Canada.

Kingston Health Sciences Centre; Kingston, ON, Canada.

Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval; Québec City, QC, Canada.

IWK Health Centre; Halifax, NS, Canada.

Faculty of Medicine, Memorial University of Newfoundland; St. John’s, NL, Canada.

Queen Elizabeth II Health Sciences Centre; Halifax, NS, Canada.

Jim Pattison Children’s Hospital; Saskatoon, SK, Canada.

St. Michael’s Hospital; Toronto, ON, Canada.

St. Paul’s Hospital; Vancouver, BC, Canada.

University of Alberta Hospital; Edmonton, AB, Canada.

Respiratory Medicine, Hospital for Sick Children; Toronto, ON, Canada.

Department of Statistical Sciences, University of Toronto; Toronto, ON, Canada.

Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children; Toronto, ON, Canada.

Department of Paediatrics, University of Toronto; Toronto, ON, Canada.

Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada.
Abstract

Background: Over 400 variants in the cystic fibrosis (CF) transmembrane conductance regulator (*CFTR*) are CF-causing. *CFTR* modulators target different variants to improve lung function, but large variability in response exists and current therapies do not address all CF-causing variants highlighting an unmet need. Alternative epithelial ion channels such as SLC26A9 could compensate for *CFTR* dysfunction, providing a therapeutic target that benefits all individuals with CF.
Method: We investigate the relationship between *SLC26A9* and lung function pre- and post-treatment with CFTR modulators in Canadian and US CF cohorts, in the general population, and in those with chronic obstructive pulmonary disease (COPD).

Results: *SLC26A9* rs7512462 CC genotype is associated with greater lung function in individuals with minimal function variants (for which there are currently no approved therapies; p=0.002); and gating (p=0.03) and p.Phe508del/p.Phe508del (p=0.009) genotypes upon treatment with CFTR modulators. Analogously, p.Phe508del/p.Phe508del human nasal epithelia with CC after triple combination modulator treatment show greatest CFTR function (p=8x10^{-4}). Beyond CF, rs7512462 is associated with lung function in the UK Biobank (meta-p=2.74x10^{-44}) and in COPD (min p=0.007).

Conclusion: These findings support *SLC26A9* as a therapeutic target to improve lung function for all people with CF and in individuals with other obstructive lung diseases such as COPD.

Key words: *SLC26A9*, Cystic Fibrosis, CFTR modulator treatment, precision medicine, COPD

Background

Cystic Fibrosis [CF (MIM:219700)] is a common life-limiting autosomal recessive genetic disease caused by pathogenic variants in the cystic fibrosis transmembrane conductance regulator (CFTR; MIM:602421). CF affects multiple organs; morbidity in the pancreas and intestine are seen at birth (1-3), while progressive lung disease is experienced throughout the course of disease and is the major cause of morbidity and mortality. Variability in disease severity across the affected organs is due, in part, to variation in other genes, referred to as...
Modifier genes impact phenotypic expressivity in the presence of a dysfunctional major causal gene, for example, CFTR (1, 4-7).

CFTR is localized to the cell membrane of epithelial cells and functions as an ion channel. Over 400 variants have been reported to cause CF through variable effects on CFTR protein function (8, 9). CF-causing mutations impact apical chloride and bicarbonate transport, altering hydration and pH of airway surface liquid resulting in viscous mucus. Accumulation of this viscous mucus leads to cycles of infection and inflammation, obstructing and damaging the airways, resulting in progressive lung damage and end-stage lung disease (10).

Developments in CF therapeutics over the past decade have been transformative, altering the management paradigm from treating the downstream consequences of dysfunctional CFTR and delaying the progression of the disease, to treating the basic defect in an individual’s CFTR itself: precision medicine. New drugs are enhancing CFTR function by targeting the different defects in the protein. For example, individuals with gating mutations have access to a highly effective modulator, ivacaftor (IVA), which is a potentiator that increases the opening probability of CFTR to aid chloride and bicarbonate ion transport in CF epithelia (11). The most common CF causing allele Phe508del (c.1521_1523delCTT; p.Phe508del) (12) displays minimal CFTR at the apical membrane due to processing defects (5, 6) and once at the cell surface the Phe508del protein exhibits reduced opening probability and stability. Pharmaceuticals targeting this defect include a combination therapy of IVA and a CFTR corrector lumacaftor (LUM) or tezacaftor (TEZ) that improves the Phe508del processing to increase cell surface localized protein as well as channel gating. More recently, a triple combination therapy of another
corrector, elezacaftor, combined with tezacaftor and ivacaftor (ETI) has been approved in the United States (US) for individuals with at least one Phe508del aged 6 and above or other mutations responsive to Trikafta (13). Elezacaftor stabilizes the protein within the cell membrane, resulting in greater improvements in lung function over LUM/IVA or TEZ/IVA alone (14, 15). ETI is now indicated by the FDA for 90% of individuals with CF (16), and thus the vast majority of individuals with CF have approved pharmaceuticals that address the basic defect of their CF disease.

Although significant progress has been made in the development of pharmaceuticals for precision medicine in CF, several challenges remain. First, not all individuals with CFTR genotypes for which eligible pharmaceuticals are available respond to those treatments. For those who do show a positive improvement in lung function, there is significant variability in the response (14, 15, 17, 18), which could be augmented with additional therapies. Second, there are mutations that do not result in a functional protein that can be addressed using the current paradigm, and therefore an alternative approach to therapy beyond potentiators and correctors of CFTR is necessary.

Several alternative approaches are being actively pursued, such as gene correction or alternative targets (10). Alternative targets to CFTR can compensate for the abnormal dehydrated airway surface liquid that results from dysfunctional CFTR by modulating other ion channels, transporters and pumps (19-23) and could address the variation in response to existing CFTR modulators while providing a therapeutic option for those individuals with genotypes that do not produce a CFTR protein.
The clinical success rate of drugs in development is appreciably higher when there is human genetic evidence that supports a drug target (24). Genome-wide modifier gene studies in CF have aimed to identify genetic loci that impact disease severity in the presence of CFTR dysfunction in a hypothesis-free approach. First identified in a genome-wide association study (GWAS) of intestinal obstruction in CF (7), the C allele of rs7512462 in intron 5 of Solute Carrier Family 26 member 9 (SLC26A9) (chr1:205899595, hg19) has consistently demonstrated a beneficial effect for several CF co-morbidities, including the exocrine (2, 3) and endocrine pancreas (4, 25). These co-morbidities appear to originate from pre-natal dysfunction in the CF pancreas (1, 3, 26). According to the Genotype Tissue Expression project (GTEx; (27, 28)), rs7512462 is an expression quantitative locus (eQTL) for SLC26A9 where the C allele is associated with greater expression in the adult pancreas (p=1.2E-05, effect size=0.27). The SLC26A9 eQTLs in the region of chr1: 205806897-206006897(hg19) colocalize with the CF co-morbidity GWAS summary statistics (1), suggesting gene expression variation is responsible for the observed CF GWAS results.

Given robust expression in the lungs in GTEx (27, 28), and the importance of attenuating progressive lung disease in CF, there was significant interest in investigating the contribution of SLC26A9 to CF lung function. There was no evidence of association with rs7512462 in the largest CF GWAS of lung function to date (5), comprised predominantly of individuals homozygous for Ph508del (65%). However, restricting to individuals with CFTR variants that maintain apical membrane localization, rs7512462 was associated with CF lung function (29). Moreover, upon treatment with the CFTR modulator IVA, the C allele was associated with the
greatest lung function improvement (5, 29). These results suggested the possibility that SLC26A9 could improve CFTR function at the apical membrane in airway cells, which was supported by two studies that demonstrated greater CFTR function with the C allele of rs7512462 after correction of CFTR-Phe508del primary human bronchial (29) and nasal epithelia (30).

SLC26A9 is an anion chloride channel in epithelial cells that contributes to constitutive apical chloride conductance and enhances cAMP-regulated CFTR currents (31-33). Slc26a9−/−/Cftr−/− rodent models show poor post weaning survival over Cftr−/− (34). That SLC26A9 was not shown to be a strong modifier of CF lung disease in individuals predominantly homozygous for Phe508del (5, 10, 29) in the absence of treatment with CFTR correctors is consistent with functional studies, where differential SLC26A9 interaction with wild-type CFTR and with Phe508del-CFTR in human bronchial epithelia (HBE) has been reported (29, 31).

In CF population studies, the SLC26A9 rs7512462 C allele is associated with greater SLC26A9 expression in the pancreas, reduced gastrointestinal disease severity and greater lung function response to IVA, highlighting its potential as a target to improve CF outcomes across the affected organs and to improve response to approved CFTR modulators. However, several questions remain including whether population studies support SLC26A9 as providing alternative chloride transport in individuals with genotypes for which there are no approved therapies; whether enhancing SLC26A9 will improve lung function response to CFTR modulators targeting the most common Phe508del variant; which patient-specific cell-based
models of the airway are adequate to study SLC26A9; and whether enhancing SLC26A9 could benefit other obstructive lung diseases.

Through continued recruitment into the Canadian CF Gene Modifier Study (CGMS) and in collaboration with the US PROSPECT observational study (35, 36), we investigate the association between SLC26A9 rs7512462 and (1) lung function in individuals with different CFTR genotypes including variants that result in no CFTR protein product; (2) individual lung function responses to CFTR modulators IVA and LUM/IVA; (3) CFTR function in primary cultured human nasal epithelia (HNE) from individuals with CF in response to approved and experimental CFTR modulators; and (4) other phenotypes in non-CF populations to inform the clinical utility of a SLC26A9 modulator beyond applications in CF.

Methods

Study Design

The Canadian Cystic Fibrosis Gene Modifier Study (CGMS) is a registry-based observational genetics study and the US Part B Cystic Fibrosis Foundation (CFF) Therapeutics PROSPECT study is an observational study of modulator treatment. The current study investigates the relationship between SLC26A9 and lung function: pre- and post-CFTR modulators in Canadian and US CF cohorts; in the general population; and in those with chronic obstructive pulmonary disease (COPD).

Clinical data collected as part of the CGMS include forced expiratory volume in 1 second (FEV₁), age, sex, and height which are obtained from the Canadian CF Patient Data Registry.
(CCFRD), with occasional augmentation by chart review at the participating sites. Genetic data is linked to clinical data through an approved data access agreement with Cystic Fibrosis Canada. Part B of the CFF Therapeutics PROSPECT observational study (35, 36) in the US evaluated the effectiveness of LUM/IVA and collected buffy coat and clinical data from individuals with two copies of the Phe508del variant who were prescribed LUM/IVA. We received the PROSPECT study buffy coat and corresponding clinical data from the US CFF. These and the CGMS samples are genotyped on different Illumina platforms (please Supplementary File for sample genotyping and quality control).

Phenotypes, Sampling and Inclusion Criteria

In this study we investigated the effect of SLC26A9 on pre-treatment lung function in three subgroups from CGMS: individuals with at least one gating mutation, individuals homozygous for Phe508del and those with two MF alleles in trans. Lung function severity in the absence of modulator treatment for participants in CGMS was measured by the Survival adjusted average CF-specific Kulich FEV₁ percentiles that is normalized (Saknorm) (5, 29, 37). For participants whose recruitment date was after 2008, Saknorm is calculated using Canadian CF-specific reference equations from 2008–2014 (38) rather than US reference equations (39). After quality control (QC), 91 participants with at least one gating mutation, 1279 who are homozygous Phe508del and 62 with MF alleles in trans are included in the analysis (Fig. 1).
Table 1. Characteristics of participants included for response to CFTR modulators from the CGMS and US PROSPECT.

Participants on CFTR modulator	Participant Characteristics	CGMS IVA (In (29), n=22)	CGMS IVA (new, n=23)	CGMS LUM/IVA (n=105)	LUM/IVA (n=91)
rs7512462	TT/TC/CC	11/10/1	12/9/2	41/48/16	30/50/15
age	mean (range)	26.49 (6.1-58.3)	31.3 (14.0-55.3)	25.7 (10.5-55)	20.9 (6-57)
age <= 12		5	0	2	23
age (12,20]		4	3	38	27
age (20,30]		3	11	38	24
age>30		10	9	27	17
sex	female (%)	16 (72.7%)	13 (56.3%)	57 (54.3%)	52 (57.1%)
FEV_{1pp} baseline	mean (range)	66.6 (30.7-90.4)	58.9 (30.9-89.6)	59.6 (30.8-95.5)	75.7 (31.7-95.8)
Number of post-treatment FEV_{1pp} in 400 days	median (range)	4 (1-6)	4 (1-20)	6 (1-33)	4 (2-4)

The lung function measure in the CFTR modulator study is forced expiratory volume in one second percent predicted (FEV_{1pp}).

updated data removed 1 sample with FEV_{1pp} baseline outside the inclusion criteria and 1 with no data after lung transplant.

CGMS participants prescribed IVA or LUM/IVA were also included in the treatment response study, together with the US PROSPECT participants for LUM/IVA (Table 1). Similar to (29), all participants included for modulator lung response analysis had a baseline measurement between 30 and 96 FEV_{1pp} measured within 3 months prior to, or on, the treatment initiation date. The
CGMS data is obtained from the CCFRD with variable longitudinal entry depending on the resources of the individual clinics across the country while PROSPECT collects regular measurements at 1, 3, 6, and 12 months after treatment initiation. To account for this difference, the LUM/IVA treatment response is defined as the difference in FEV\textsubscript{1pp} between the first visit on treatment within 5-7 months and that measured at baseline following convention in the literature (40); for the IVA study, the difference between mean FEV\textsubscript{1pp} within 15 to 400 days to FEV\textsubscript{1pp} baseline is used (29). We also investigated an IVA analysis with treatment response defined as the difference from the 1st FEV\textsubscript{1pp} within 15 to 60 days after the treatment initiation; the conclusion is comparable but because the sample size is reduced to 33, we report the mean treatment response in 15 to 400 days. After phenotype and genotype QC, 91 participants from PROSPECT and 105 CGMS participants were included in the genetic analysis for LUM/IVA and 45 for the IVA study (please see Supplementary Table 1 for sample exclusion).

We also investigated CFTR function in 46 CF Canada Sick Kids Program in CF Individualized Therapy (CFIT; (41)) participants homozygous for Phe508del whose nasal epithelia were brushed, cultured to passage 2 (P2) and mounted in a circulating Ussing chamber. Thirty-seven individuals who underwent brushing prior to modulator initiation and for whom we had SLC26A9 genotype are included in the Ussing chamber analysis (please see Supplementary File for cell culture and Ussing chamber studies).

A subset of the CGMS cohort (n=82) and 6 healthy controls had RNA from their nasal cells sequenced as part of CFIT. In addition, we have sequenced nasal cells for 9 CFIT samples cultured to passage 3 (P3) at two time points (14-16 days and 26-30 days). We also sequenced...
the RNA from CF individuals who underwent lung transplantation, obtained from paired human
bronchial and nasal epithelia; n=17 independent pairs of uncultured primary HNE and HBE and
n=16 cultured HNE and HBE pairs (Supplementary Material and Methods for sampling and cell
culturing).

Single cell RNAseq data for lung and pancreas tissue were obtained from the Human Protein
Atlas (42, 43) from individuals without CF. Lung tissue samples were obtained from 4 donors
aged 58 to 69 years, and pancreas tissue data were from 3 donors between 35 to 51 years of age
(Supplementary Material for Single Cell RNA-seq Sample processing).

Summary association statistics from other GWAS phenotypes were obtained from the GWAS
ATLAS (44) (please see Supplementary file for PheWAS data extraction). Association analysis
between rs7512462 and lung function in individuals with COPD was carried out using the UK
Biobank data under application #40946. The summary statistics for population-level GWAS in
the UK Biobank (45) for COPD (physician-diagnosed COPD, UID=22130, case-control study
with cases=1,357, controls=90,430) were obtained from Ben Neale’s lab (46).

Statistical Analysis for association with rs7512462

i. association with lung function by CFTR genotype group

To assess whether the rs7512462 genotype is associated with lung function in the different CFTR
genotype groups, we carried out a stratified analysis where the Saknorm association with
rs7512462 was assessed separately for the gating, homozygous Phe508del or two MF genotype
groups, adjusted by an indicator for which cohort was used to calculate Saknorm. We used
linear regression (LR) with a robust variance estimator for those homozygous for Phe508del and for those with two MF variants using the R package rms (47). Previous studies of gating variants reported association of Saknorm with rs7512462 in G551D only, so to mimic those analyses, we implemented LR using the newly recruited unrelated samples with at least one G551D (n=23) and meta-combined the results with those from (29) and the three cohorts from (48). For this meta-analysis, we used the R function metagen in the package meta (49) using a fixed effect model and the R function forestplot from the package forestplot (50). To assess whether lung function is different between the three CFTR genotype groups, we used LR with a robust variance estimator, we also regressed Saknorm on two indicators for the three CFTR genotype categories. Regression was used to determine whether the effect of rs7512462 genotype on lung function (Saknorm) was different depending on the CFTR genotype group. This was achieved by including an interaction term in the multiple regression model and the p-value was obtained by a likelihood ratio test comparing nested models. All models include a binary indicator for the cohort used to calculate Saknorm and only two-sided p-values less than 0.05, and with the direction that the C alleles is beneficial, were considered significant.

ii. association with response to modulator treatment

We also used multivariable regression with robust variance estimates to assess the modulator FEV$_{1pp}$ response association with rs7512462. For the analysis of rs7512462 association with treatment response to IVA, covariates included age and FEV$_{1pp}$ at baseline. For treatment response to LUM/IVA, besides rs7512462, age and FEV$_{1pp}$ at baseline, principal components (PCs) were also included to adjust for population structure, which were calculated from the PROSPECT or the combined Canadian and PROSPECT studies by the R function PC-AiR in the
GENESIS package (51, 52) using the kinship matrix estimated by KING 2.2.4 (53). The significant PCs were selected based on the Tracy-Widom test result using the function twtable in PPGN of Eigensoft (54); we included 7 PCs for the PROSPECT analysis and 4 PCs for the combined CGMS+PROSPECT analysis. Analysis of the Ussing chamber data to assess association of CFTR functional response to CFTR modulators with rs7512462 implemented with a robust variance estimator, adjusted for a binary indicator of culture media. The boxplots are implemented using the functions ggplot and geom_boxplot from the package ggplot2 in R (55) and the function geom_jitter from ggplot2 is used to overlay the individual measurements in a stripchart.

iii. **association analysis with COPD in the UK Biobank**

Genetic association analyses for spirometry measures in COPD cases in the UK Biobank were conducted using imputed (v3) phenotypic data obtained from the UK Biobank (45, 56). In-house scripts, R package rbgen and C++ tool bgenix (57), were used to index, subset and perform association analysis using the imputed dosage (56). Genotyping QC of the microarray data, recommended genomic analysis exclusions (UID=22010), inclusion of only Caucasians (UID=22006), and unrelated individuals as identified by KING 2.2.4 (53) resulted in a final n=1,001 COPD cases. Phenotypic analysis at the SLC26A9 locus included the best measures for peak expiratory flow (PEF), FEV₁, the forced vital capacity (FVC), FEV₁pp and FEV₁/FVC ratio, which is the ratio of FEV₁ to FVC of the lungs. The best measure for FEV₁ (UID=20150) and FVC (UID=20151) were defined as the highest measure from the array of values of up to three blows (UID=3063 and 3062, respectively) that were deemed acceptable according to UID=3061 as defined in (58), and the best FEV₁/FVC is calculated from the selected best FEV₁ and FVC.
For PEF (UID=3064), acceptable measurements were first determined using the European Respiratory Society/American Thoracic Society (ERS/ATS) criteria (UID=20152) and the best measure for PEF was obtained for n=842 samples which is corresponding to the blow with the highest value for the sum of FEV\textsubscript{1} (UID=3063) and FVC (UID=3062), similar to (58). There were n=537 FEV\textsubscript{1pp} values provided among the COPD cases (UID=20154). The lower sample size for PEF and FEV\textsubscript{1pp} may be due to more stringent quality assessment using the ERS/ATS criteria. PCs were calculated on the final 1,001 COPD cases or the relevant subsets for each spirometry association analysis using PC-AiR (51, 52) and all association models included two principal components, sex, age, age2, sex*age and sex*age2. All spirometry measures were inverse rank normal transformed prior to association analysis using the RNOmni R package’s (v0.7.1) rankNorm function (59). Association statistics from each phenotype were then used for colocalization analysis with the CF GWAS summary statistics using LocusFocus (v1.4.8; (60)).

RNA Sequencing, Quality Control and analysis

The HNE cells were sequenced on the Illumina HiSeq 2500 platform (Illumina Inc. San Diego, California, USA) and aligned as described in (41) Expression counts were quantified using RNA-SeQC (ver. 2.0.0) and normalized to transcripts per million (TPM) (61) as well as trimmed mean of M values (TMM) measures (62).

To compare the expression level for SLC26A9 across different airway models, we calculated the TPM from naïve HNE for 82 CGMS participants and 6 healthy controls, 16 pairs of cultured HNE and HBE, 17 pairs of naïve HNE and HBE and 9 CFIT cultured HNE samples.
eQTLs were calculated from 79 CGMS participants for whom both genotype and RNA sequence from naïve HNEs were available. Quality control required TPM ≥ 0.1 and read counts ≥ 6 in greater than 20% of the sample to be analyzed. FastQTL (ver. 2.0) was used to conduct differential gene expression analysis of TMM-normalized read counts on SNP genotypes (63). Covariates included the top 3 genotype principal components, 15 probabilistic estimation of expression residual (PEER) factors, sample study source, sex, genotyping platform, RNA integrity number (RIN) and PTPRC/CD45 gene expression adjusting for immune cell composition in the samples. The genotype principal components and PEER factors were generated using R packages GENESIS (51, 52) and peer (64), respectively. The average expression level of SLC26A9 was compared across HBE and HNE in both cultured and naïve paired tissues. Paired t-tests were conducted using the t.test() function in R v3.6.1 (65), based on TPM.

Results

The CGMS has enrolled 3,257 participants from 9 provinces and 35 clinics across Canada. These individuals have various causal CFTR genotypes that are reflective of the Canadian CF population. Here we specifically study the subgroups of the CGMS who are: (1) homozygous for Phe508del; (2) carrying at least one copy of the G551D (c.1652G>A;p.Gly551Asp) variant or another gating variant approved for IVA; and (3) individuals with two minimal function (MF) variants in trans (66) for which there are no CFTR modulators approved (these include nonsense, splicing and small indel variants). A subset of these individuals homozygous for Phe508del or having at least one gating mutation are on a CFTR modulator (Table 1) and we investigate the lung function response to LUM/IVA in this CGMS subset and in an independent
sample of 91 participants from PROSPECT, an observational study in US. Participants from the PROSPECT study were younger and healthier than the Canadian cohort (as measured by forced expiratory volume in one second (FEV$_1$) percent predicted (FEV$_1$pp)) at treatment initiation (Table 1).

SLC26A9 is associated with CF lung function in the absence of treatment

Using the International CF Gene Modifier consortium lung phenotype, Saknorm ((37); Methods), we compared lung function across the three genotype groups (Fig.1A). Saknorm measures differ significantly between individuals with a gating variant (n=91) and those who are homozygous for Phe508del (n= 1279; effect size=0.21, p=0.025), while individuals with two MF variants (n=62) do not differ in Saknorm from those who are Phe508del homozygous (effect size= -0.09, p=0.35).

Using a fixed effect meta-analysis we combine our newly recruited unrelated individuals from the CGMS with at least one G551D variant (n=23) with our previously published G551D cohort (29) and a recently published independent G551D study (48). This meta-analysis further supports that better lung function is associated with the C allele (n=365, p=0.035, Fig. S1). In individuals from the CGMS who are homozygous Phe508del, the CC genotype provides some evidence of increased lung function albeit with a smaller effect size (effect size = 0.107, p=0.065, Fig. 1a). Importantly, in individuals with two MF variants, the CC genotype is associated with improved lung function (effect size=0.54, p=0.0019, Fig. 1a). This is consistent with the hypothesis that SLC26A9 may be providing alternative chloride transport properties in individuals with CFTR variants for whom no current approved therapies exist.
Table 2. The association between Saknorm and rs7512462 for additive and recessive coding in combined samples.

Models	Covariate	Effect size	S.E.	t	P-value
Additive	Intercept	0.554	0.069	7.997	2.66E-15
	rs7512462_C	0.072	0.030	2.403	0.016
	CFTR:Gating	0.215	0.092	2.329	0.02
	CFTR:MF/MF	-0.081	0.101	-0.802	0.423
	Saknorm cohort	-0.245	0.05	-4.906	1.04E-06
Recessive	Intercept	0.589	0.065	9.038	<1.0E-15
	rs7512462_CC	0.131	0.056	2.341	0.019
	CFTR:Gating	0.212	0.092	2.312	0.021
	CFTR:MF/MF	-0.083	0.101	-0.830	0.407
	Saknorm cohort	-0.246	0.05	-4.918	9.74E-07

The combined samples include individuals with gating mutations (n=91), individuals homozygous for Phe508del (n=1279) or those with two minimal function (MF) mutations (n=62). Saknorm is calculated as in (5, 37) with FEV₁ measurements taken prior to modulator treatment, if applicable. All analyses use the robust covariance matrix estimates by the R package ‘rms’ (47). In addition to rs7512462, both models include a CFTR mutation group indicator, with reference group as homozygous Phe508del and Saknorm cohort. Saknorm cohort is an indicator for the reference equation used to calculate Saknorm (Methods) depending on the year the lung function measurement was taken.

When combining CGMS participants from the three genotype groups in a joint multivariable regression model to assess the association with rs7512462, the C allele is associated with greater lung function (p=0.016 and 0.019 for additive and recessive models, respectively, Table 2). The C allele does not demonstrate a statistically significant difference in effect size depending on one’s CFTR genotype (interaction p-values>0.05 for both additive and recessive models).
Table 3. Association of rs7512462 for CFTR modulator response or change in CFTR function to modulator treatment.

Studies	Covariates	Effect Size	S.E.	P-value
IVA: CGMS	Intercept	10.226	5.121	0.053
	Age at baseline	-0.077	0.095	0.419
	FEV1pp at baseline	-0.025	0.073	0.731
	rs7512462_CC	9.905	4.477	0.033
	Old cohort	5.336	2.606	0.047
LUM/IVA: PROSPECT	Intercept	14.460	5.299	0.008
	Age at baseline	-0.188	0.074	0.014
	FEV1pp at baseline	-0.123	0.053	0.024
	rs7512462_CC	8.518	2.657	0.002
LUM/IVA: PROSPECT+CGMS	Intercept	8.635	3.273	0.009
	Age at baseline	-0.128	0.064	0.047
	FEV1pp at baseline	-0.071	0.037	0.057
	rs7512462_CC	4.858	1.828	0.009
	Prospect Cohort	0.965	1.401	0.492
CFTR-mediated current (VX-770+VX-809)	Intercept	-0.878	0.249	0.001
	rs7512462_CC	-0.512	0.436	0.248
	Standard media	-1.815	0.465	0.0004
CFTR-mediated current (VX-770+VX-809+ amplifier)	Intercept	-2.153	0.397	<0.0001
	rs7512462_CC	-2.064	0.546	0.00076
	Standard media	-2.011	0.69	0.0066

Sample sizes in each CFTR modulator treatment study is IVA:CGMS (n=45), LUM/IVA: PROSPECT (n=91), LUM/IVA: PROSPECT+CGMS (n=196). LUM/IVA studies were also adjusted for population structure by PCs (n=7 PCs for PROSPECT and n=5 for PROSPECT+CGMS). Functional study includes HNEs from individuals homozygous for Phe508del with VX-770+VX-809 (n=37) and VX-770+VX-809+ amplifier (n=31; a subset of the 37 samples tested with 770+VX-809) measured as difference in CFTR-mediated current after applying forskolin regressed on rs7512462 with a recessive coding. All results use robust variance estimates.

Rs7512462 C allele is associated with improved response to CFTR modulators.

Newly recruited participants into the CGMS on IVA (n=23) were, on average, older and had worse baseline lung function than those included in (29) (Table 1). Combining the two samples...
(n=45), despite the difference in baseline characteristics and disease severity, we do observe additional supportive evidence for improved lung function response (difference in FEV$_{1pp}$ pre and post treatment initiation) in individuals with the CC genotype upon treatment with IVA (effect size=9.9, p=0.03, Table 3; Fig. 1b).

Through ongoing recruitment in the CGMS there were 105 participants prescribed LUM/IVA clinically. In collaboration with the US PROSPECT observational study, we investigated lung function response to LUM/IVA alone (n=91) and in a combined sample of n=196 individuals homozygous for Phe508del stratified by rs7512462. Despite minimal clinical response to LUM/IVA reported on average (17), we do observe a significant improvement in lung function response in those with the CC genotype (p=0.002 in PROSPECT and p= 0.009 for combined, respectively; Table 3), akin to observations for IVA (Fig. 1b and (29)), and in studies of improved CFTR function with the rs7512462 C allele in HNE (30) and HBE (21, 29) cells obtained from individuals homozygous for Phe508del. Thus, the SLC26A9 rs7512462 genotype shows improved response to the LUM/IVA combination therapy in cohorts of CF patients who were monitored observationally during their real-world experience with the approved modulators.

We next investigated CFTR-mediated current in 37 cultured HNE from CGMS participants homozygous for Phe508del upon treatment with VX-770+VX-809 (as in (30), corresponding to the IVA/LUM combination; VX-770 applied acutely) and upon treatment with VX-770+VX-809 + an amplifier under experimental investigation ((67); Fig. 2). We used the HNE from the earliest passage available to us (P2) to align with (30). Defining the treatment response as the difference in ΔIeq -forskolin from DMSO to VX-770+ VX809 (n=37) or VX-770+ VX-809 +
amplifier (n=31), we see a significant improvement in CFTR function in the CC group (effect size=-2.064, \(p=0.00076 \), Table 3) in HNE with VX-770+VX-809+ amplifier. The increase in CFTR function in the CC group in the cultured HNE with VX-809 does not reach statistical significance (effect size=-0.512, \(p=0.248 \), Table 3) unlike previous reports in HNE and in HBE models, although the direction of effect is consistent. This difference in effect size made us question the \(SLC26A9 \) gene expression profile across different lung tissue models, especially given the low passage of the primary HNE cultured cells studied by (30).

\section*{SLC26A9 expression differs across airway models}

While investigating eQTLs in various airway tissue models, we observed that there is no evidence supporting rs7512462 as an eQTL in the lungs from GTEx v8 (\(p=0.71 \)) or from RNA obtained from naïve HNE of individuals with CF (\(p=0.64 \), \(n=79 \)). \(SLC26A9 \) expression appears generally low across several different lung model systems we investigated, with average transcripts per million (TPM)= 1.34 (Fig. 3a). We generated a resource that contains the transcriptomes from paired cultured and fresh naïve HNE and HBE tissue on the same individuals (Methods; GEO ID: GSE172232)). Of the primary lung cell models we investigated, the greatest expression is in the naïve HBE cells (TPM=1.94; Fig. 3a), and this expression level is 2.1-fold greater than in the naïve HNE (\(p=0.04 \), paired analysis in \(n=17 \) HNE-HBE naïve pairs). Unfortunately, naïve HBE cell models are not generally accessible for personalized medicine approaches (41), and cultured models are the norm. Here cultured HBE show mean expression with TPM=1.71 that is 2.5-fold greater than the CF cultured HNE (\(p=0.02 \), paired analysis in \(n=16 \) HNE-HBE cultured pairs), although there is some indication that a reduction in culturing time results in greater \(SLC26A9 \) expression in the HNE (Fig. S2).
Using the single cell RNA-seq data catalogued in the Human Protein Atlas (42, 43), we investigated the expression of *SLC26A9* and *CFTR* across cell types in the lung and pancreas. *SLC26A9* is predominantly expressed in type 2 alveolar cells. Interestingly, although in general *SLC26A9* is lowly expressed compared to *CFTR* across the cell types of the adult lung and pancreas, when it is expressed, it is accompanied by *CFTR* (Fig. 3b).

Phenome-wide Association Study (PheWAS) of rs7512462 and colocalization analysis

We used the GWAS ATLAS database (44) that includes 4,756 GWASs from 473 unique studies with 3,302 unique traits and the UK Biobank resource to investigate other non-CF traits associated with rs7512462. The 10 traits with the smallest reported p-values are listed in Table 4, four of which are respiratory phenotypes from the UK Biobank and Spirometa consortium (58): PEF and FEV₁/FVC ratio. Saknorm, the lung function measurement used in the CF GWAS, is also calculated from FEV₁ (5, 37). The list of significant phenotypes also includes our own CF modifier gene study where we first identified rs7512462 as a modifier of early pancreatic disease (Table 4). Interestingly, an earlier age at menarche (which is associated with weight) and a higher male waist circumference and waist-hip ratio are also associated with the rs7512462 C allele. The association with type 1 diabetes and the weight-related phenotypes suggest that the role of SLC26A9 in these reproductive and metabolic phenotypes may likewise trace back to a pancreatic origin. Significant colocalization analysis (column ‘Colocalization P-value’, Table 4) calculated using the Simple Sum (1) implemented in LocusFocus (60) between the meconium ileus CF GWAS statistics (1) and the summary statistics from the PheWAS associated traits supports that the same genetic variation contributes to the traits.
Table 4. The 10 phenotypes with smallest rs7512462 association p-value obtained from the GWAS ATLAS (44).

PMID	Year	Domain	Trait	Effect Size	P-value at rs7512462	N	Colocalization P-value	Effect allele	Other allele
3080456	0	Respiratory	PEF (UKB)	0.038	4.33E-46	32104	3.98E-08	C	T
			PEF (Meta of UKBB and Spirometa)	0.037	2.74E-44	34526	2.69E-08	C	T
3080757	2	Gastrointestinal	Meconium ileus in CF	-0.289	1.86E-09	6770	NA	C	T
2843698	4	Reproduction	Age at menarche FEV₁/FVC ratio (Meta of UKBB and Spirometa)	-0.021	3.93E-06	25251	3.02E-08	C	T
3080456	0	Respiratory	FEV₁/FVC ratio (UKBB)	0.01	4.11E-05	40010	3.98E-09	C	T
3080456	0	Respiratory	Waist circumference (male)	0.01	1.44E-04	32104	1.48E-08	C	T
2375494	8	Metabolic	Reproduction Age at menarche	0.03	2.2E-04	36231	1.38E-08	C	T
2523187	0	Reproduction	Type 1 Diabetes	-0.023	3.2E-04	13298	4.14E-09	C	T
1943048	0	Endocrine	Diabetes	NA	7.47E-04	7982	NA	NA	NA
2375494	8	Metabolic	Waist-hip ratio (male)	0.028	7.7E-04	34629	1.12E-08	C	T

PheWAS significance level is p<1.05x10⁻⁵ after adjusting for 4,756 GWASs in the database (alpha 0.05). NA in the columns effect size, effect allele and other allele denote that the effect size is not reported for the SNP in the original summary statistics from the listed publication (PMID). The column ‘Colocalization P-value’ represents the p-values from the colocalization analysis calculated here with the CF GWAS summary statistics in (1) for the corresponding phenotype, using LousFocus (60) calculated on the chr1: 205,895,000-205,921,000 region in hg19. NA in this column reflects a lack of information available to carry out the colocalization analysis.
Spirometry is a key diagnostic feature of COPD (68). Association analysis of rs7512462 with lung function (PEF, FEV₁, FVC, FEV₁pp and FEV₁/FVC) in the subgroup of the UK Biobank with a physician diagnosis of COPD (n=1,357 of 91,787 with a response of Yes or No) demonstrates that rs7512462 is also a modifier of some lung function measures in COPD, but not of COPD susceptibility itself (Supplementary Table 2). Colocalization analysis also supports a common underlying mechanism between the CF and COPD lung function phenotypes (Supplementary Table 2, Fig. 4).

Discussion

The availability of CFTR-modulators is altering care for many individuals with CF, although variation in responses is apparent. The variability in response is due to a range of factors including genes that define the genetic background of an individual. One such gene is SLC26A9, which contributes to CF comorbidities in the organs of the digestive tract regardless of CFTR genotype (1, 4). The relationship with CFTR is complex however, as an association between lung function and SLC26A9 was not immediately apparent. This could at least be partially reconciled upon realization that the SLC26A9 locus does influence lung disease in some CF individuals, specifically those that carry mutations that lead to gating deficiencies in CFTR. Further, experimental evidence for a relationship between SLC26A9 genotype and CFTR function in airway cell models was then observed by rescuing the traffick-defective Phe508del via ‘corrector’ modulators. However, to assuage concerns by others (48) that the evidence for SLC26A9 remains uncertain, we now extend several of these studies to examine the complex relationship further. We investigate the role of the SLC26A9 genotype in CF patients with different types of CFTR mutations and in treatment response to CFTR modulators both in patient...
populations and in airway models. We align the findings and previously published work with
gene expression patterns, and now also consider the role of SLC26A9 in the phenome and, in
particular, in lung function measurements in non-CF populations. Significant human genetic
evidence that supports a role for SLC26A9 in CF disease severity and CFTR modulator response
is accumulating. Here we provide the most comprehensive investigation of SLC26A9 in CF and
non-CF populations.

The relationship between the SLC26A9 rs7512462 marker and lung function in three types of
CFTR genotypes was revealing. Individuals with CF-causing gating variants including G551D
do show association with rs7512462. Gating-deficient CFTR protein exhibits apical cell
membrane localization with reduced opening probability, resulting in reduced epithelial
chloride and bicarbonate secretion (69). In contrast, individuals homozygous for Phe508del,
comprising the majority of CF cases, show very modest evidence of association with rs7512462.
Phe508del-CFTR is rapidly degraded intracellularly with minimal surface membrane
localization. Interestingly, for the first time, we demonstrated that individuals with MF variants
do show rs7512462 association but would not produce protein and therefore cannot respond to
CFTR modulator therapy.

The studies of MF alleles argue that at least some aspect of lung function contribution by
SLC26A9 can be independent of CFTR. These investigations were supported by several previous
studies highlighting the potential for SLC26A9 to provide alternative chloride transport in the
absence of CFTR. Bertrand et al. (31, 32) demonstrated in airway cell models that SLC26A9 is
a constitutively active chloride channel that functions independently of CFTR prior to CFTR
activation, however interactions due to the poor trafficking of Phe508del-CFTR can have negative consequences.

CF GWAS of early-onset pancreatic and intestinal phenotypes were CFTR genotype independent (1-3, 7); that is, those homozygous for Phe508del still demonstrated benefit from the C allele of rs7512462, a marker of \textit{SLC26A9} gene expression in CF phenotypes that show pre-natal onset (for example, meconium ileus). This indicates that SLC26A9 and CFTR may act independently at this stage of development consistent with the observation that \textit{Slc26a9} mRNA was high in the murine pancreas in the embryonic stages of development when \textit{Cftr} was low (29). Given the small sample size, the rs7512462 association with lung function in individuals with two MF alleles requires further investigation and independent replication. However, a consistent beneficial effect of the CC genotype across several of our independent studies and disparate outcomes provides compelling support that modulation of SLC26A9 can provide alternative chloride transport and could be a therapeutic target to improve lung function in individuals with any \textit{CFTR} genotype. The modulation of alternative channels, transporters and pumps to compensate for dysfunctional CFTR (22, 70), and in particular SLC26A9 (10, 23, 29), would provide a mutation-agnostic approach and address the current unmet need of the CF individuals with MF alleles.

Given other published reports of the rs7512462 relationship with lung function in individuals with G551D variants (29, 48), we used meta-analysis to summarize the current state of evidence. Together, the weight of evidence supports a relationship between the \textit{SLC26A9} marker, rs7512462, and lung function in individuals with a G551D variant where there is cell-surface
localized CFTR protein, but reduced activity. In an expanded CGMS cohort, we also replicated the enhancing effect of the rs7512462 C allele upon rescue of gating variants with IVA, suggesting that the pre-treatment effect may be attributable to the small quantity of functional CFTR that remains. Consistent with this hypothesis is the suggestive association we observed between rs7512462 and lung function prior to treatment with LUM/IVA in individuals from the CGMS homozygous for Phe508del, with a reduced effect size possibly reflective of reduced cell membrane localization.

LUM/IVA was the first approved modulator for those homozygous for Phe508del on the basis of reduced pulmonary exacerbations and lung function response. However, the average improvement in lung function in clinical trials (17) and observational studies (35, 36) has been modest. To investigate whether the improvements in lung function from LUM/IVA are modified by the SLC26A9 genotype, we also genotyped the DNA from participants of the US observational LUM/IVA study, PROSPECT (35, 36), and demonstrated that although modest in its average improvement in lung function, those with the CC rs7512462 genotype exhibited the greatest benefit. Although this is the first report of SLC26A9 impact on clinical response, and in a real-world setting of treated patients, this finding is consistent with published studies of CFTR function in primary HBE and HNE cells from individuals homozygous for Phe508del by us (29) and others (30), respectively. Together these findings across the two CFTR genotype groups replicate and expand previous reports (29-32) and suggest that the SLC26A9 rs7512462 eQTL correlates with CFTR residual or corrected function.
We did evaluate CFTR function in nasal brushes from 37 individuals homozygous for Phe508del in Ussing chamber studies following 24h exposure to vehicle (DMSO), VX-770 with corrector VX-809 (corresponding to IVA/LUM) and a combination of VX-770, VX-809 and an experimental amplifier (67). We observed a similar trend to that reported in (30) with VX-809, although it did not reach statistical significance. When CFTR function was, however, augmented with the amplifier, the difference in CFTR function pre- and post-treatment was greatest in the cells with the rs7512462 SLC26A9 CC genotype. These functional studies further support the hypothesis that SLC26A9 will likely benefit any therapeutic situation with increased apical surface localized CFTR protein, such as for the latest highly effective modulator treatment, ETI.

Although the population studies provide important insights into the relationship between CFTR and SLC26A9 in vivo, functional studies in cellular and animal models will be necessary to understand the functional relationship between the two channels/transporters (71) and how they may be working together. The expression studies presented here provide guidance on the use of cellular models for SLC26A9 and further highlight potential limitations of cultured HNE for the unique considerations of studying SLC26A9 and CFTR that are distinct from the ones for studies of CFTR alone. Compared to naïve bronchial cells, we observed greater variation and lower expression in naïve nasal cells. Furthermore, the culturing process of either HNE or HBE cells resulted in reduced SLC26A9 expression. Presently, the cultured HBE model appears superior to HNEs for investigations of SLC26A9, although further investigation of culturing conditions needs to be considered. Nevertheless, design and interpretation of functional assessment of SLC26A9 in HNEs must consider this variable expression and corresponding limitations.
Interestingly, the most significant SLC26A9 SNPs from the CF GWASs (1, 7) also associate with lung function measurements in several large international studies: PEFand FEV₁/FVC ratio in participants from the UK Biobank aged 40-69 (10, 58); PEF and FEV₁/FVC ratio in the Spirometa consortium (58); and for the FEV₁/FVC ratio in 8-year-olds from the UK10K consortium (72). These results align with our findings that, after correction of CF-causal CFTR variants with modulators, SLC26A9 SNPs are associated with improved lung function and CFTR function.

It is noteworthy that decreased spirometry is diagnostic for other obstructive lung diseases such as COPD (73). Several studies have reported similar pathobiology cascades between CF and COPD due to dysfunctional CFTR and environmental risk factors for COPD (74-78) . For example, CFTR chloride channels show reduced capacity as a result of tobacco smoke and may result in the mucus obstruction characteristic of COPD (77, 79) that is akin to that seen in CF. If SLC26A9 augments chloride transport, SLC26A9 agonists could also be an effective therapeutic strategy for COPD. In support of this premise is the association evidence provided here demonstrating rs7512462 is a modifier of lung function in individuals with physician-diagnosed COPD. Moreover, the significant colocalization evidence between the CF and UK Biobank summary statistics at the SLC26A9 locus are reflective of a common underlying genetic contribution.

Conclusions

A role for SLC26A9 in the CF precision medicine landscape is an exciting prospect. SLC26A9 shows desirable characteristics (10) as an alternative therapeutic target for CF, including the
urgent need for options for CF individuals with MF alleles. The association between \textit{SLC26A9} genotype and response to existing pharmaceuticals indicate the potential to refine personalized combinations of modulators, and there is also support that \textit{SLC26A9} agonists may yield benefit to any existing pharmacological or gene correction paradigm in CF, independent of \textit{CFTR} genotype. The observation that \textit{SLC26A9} can improve measures of lung function in non-CF populations was a serendipitous finding, identified through genetic modifier studies of a ‘monogenic’ disease, and may have far-reaching impact beyond CF.

\textbf{List of abbreviations}

- CF: cystic fibrosis; CFTR: cystic fibrosis transmembrane conductance regulator; IVA: Ivacaftor; LUM: lumacaftor; TZE: tezacaftor; ETI: elezacaftor and tezacaftor combined with ivacaftor; US: United States; GWAS: genome-wide association study; \textit{SLC26A9}: Solute Carrier Family 26 member 9; GTEx: Genotype Tissue Expression project; eQTL: expression quantitative locus; HBE: human bronchial epithelia; CGMS: Canadian CF Gene Modifier Study; HNE: human nasal epithelia; MF: minimal function; \textit{FEV}_1: forced expiratory volume in one second; \textit{FEV}_1\textit{pp}: forced expiratory volume in one second percent predicted; TPM: transcripts per million; PheWAS: Phenome-wide Association Study; PEF: peak expiratory flow; FVC: the forced vital capacity; \textit{FEV}_1/FVC ratio: the ratio of forced expiratory volume in one second to the forced vital capacity; COPD: chronic obstructive pulmonary disease; CFF: Cystic Fibrosis Foundation; CCFRD: Canadian CF Patient Data Registry; Saknorm: the Survival adjusted average CF-specific Kulich \textit{FEV}_1 percentiles that is normalized; QC: quality control; CFIT: CF Canada Sick Kids Program in CF Individualized Therapy; P2: culture to Passage 2; P3: culture to Passage 3; LR: linear
regression; PCs: principal components; TMM: trimmed mean of M values; PEER: probabilistic estimation of expression residual; RIN: RNA integrity number; ERS/ATS: European Respiratory Society/American Thoracic Society.

References

1. Gong J, Wang F, Xiao B, Panjwani N, Lin F, Keenan K, et al. Genetic association and transcriptome integration identify contributing genes and tissues at cystic fibrosis modifier loci. PLoS Genet. 2019;15(2):e1008007.
2. Miller MR, Soave D, Li W, Gong J, Pace RG, Boëlle PY, et al. Variants in Solute Carrier SLC26A9 Modify Prenatal Exocrine Pancreatic Damage in Cystic Fibrosis. J Pediatr. 2015;166(5):1152-7 e6.
3. Soave D, Miller MR, Keenan K, Li W, Gong J, Ip W, et al. Evidence for a causal relationship between early exocrine pancreatic disease and cystic fibrosis-related diabetes: a Mendelian randomization study. Diabetes. 2014;63(6):2114-9.
4. Blackman S, Commander C, Watson C, Arcara K, Strug L, Stonebraker J, et al. Genetic modifiers of cystic fibrosis-related diabetes. Diabetes. 2013;62:3627-35.
5. Corvol H, Blackman SM, Boëlle PY, Gallins PJ, Pace RG, Stonebraker JR, et al. Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat Commun. 2015;6:8382.
6. Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45-56.
7. Sun L, Rommens JM, Corvol H, Li W, Li X, Chiang TA, et al. Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis. Nat Genet. 2012;44(5):562-9.
8. Sosnay PR, Siklosi KR, Van Goor F, Kaniecki K, Yu H, Sharma N, et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat Genet. 2013;45(10):1160-7.
9. The Clinical and Functional TRanslation of CFTR (CFTR2) [Internet]. Available from: http://cftr2.org.
10. Strug LJ, Stephenson AL, Panjwani N, Harris A. Recent advances in developing therapeutics for cystic fibrosis. Hum Mol Genet. 2018;27(R2):R173-R86.
11. Igreja S, Clarke LA, Botelho HM, Marques L, Amaral MD. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides. Hum Mutat. 2016;37(2):209-15.
12. Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med. 1996;2(4):467-9.
13. Cystic Fibrosis Foundation. Elexacaftor-tezacaftor-ivacaftor-Tikafta 2021 [Available from: https://www.cff.org/Trials/Pipeline/details/10150/Elexacaftor-tezacaftor-ivacaftor-Tikafta].
14. Middleton PG, Mall MA, Drevinek P, Lands LC, McKone EF, Polineni D, et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N Engl J Med. 2019;381(19):1809-19.

15. Heijerman HGM, McKone EF, Downey DG, Van Braeckel E, Rowe SM, Tullis E, et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019;394(10212):1940-8.

16. FDA. FDA approves new breakthrough therapy for cystic fibrosis 2019 [cited 2021 Feb 12]. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-breakthrough-therapy-cystic-fibrosis.

17. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220-31.

18. Yu H, Burton B, Huang CJ, Worley J, Cao D, Johnson JP, Jr., et al. Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros. 2012;11(3):237-45.

19. Haq IJ, Gray MA, Garnett JP, Ward C, Brodlie M. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets. Thorax. 2016;71(3):284-7.

20. Martin SL, Saint-Criq V, Hwang TC, Csanady L. Ion channels as targets to treat cystic fibrosis lung disease. J Cyst Fibros. 2018;17(2S):S22-S7.

21. Balazs A, Mall MA. Role of the SLC26A9 Chloride Channel as Disease Modifier and Potential Therapeutic Target in Cystic Fibrosis. Front Pharmacol. 2018;9:1112.

22. Enterprise Therapeutics, editor. Pharmacological characterisation of TMEM16A regulators. The 13th European Cystic Fibrosis Basic Science Conference; 2016; Pisa, Italy.

23. Mall MA, Galietta LJ. Targeting ion channels in cystic fibrosis. J Cyst Fibros. 2015;14(5):561-70.

24. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, et al. The support of human genetic evidence for approved drug indications. Nature genetics. 2015;47(8):856-60.

25. Aksit MA, Pace RG, Vecchio-Pagan B, Ling H, Rommens JM, Boelle PY, et al. Genetic Modifiers of Cystic Fibrosis-Related Diabetes Have Extensive Overlap With Type 2 Diabetes and Related Traits. J Clin Endocrinol Metab. 2020;105(5).

26. Lin YC, Keenan K, Gong J, Panjwani N, Avolio J, Lin F, et al. Cystic fibrosis-related diabetes onset can be predicted using biomarkers measured at birth. Genet Med. 2021;23(5):927-33.

27. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318-30.

28. GTEx Portal [Internet]. [cited 2021]. Available from: http://www.gtexportal.org/home/.

29. Strug LJ, Gonska T, He G, Keenan K, Ip W, Boelle PY, et al. Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics. Hum Mol Genet. 2016;25(20):4590-600.

30. Kmit A, Marson FAL, Pereira SV, Vinagre AM, Leite GS, Servidoni MF, et al. Extent of rescue of F508del-CFTR function by VX-809 and VX-770 in human nasal epithelial cells correlates with SNP rs7512462 in SLC26A9 gene in F508del/F508del Cystic Fibrosis patients. Biochim Biophys Acta Mol Basis Dis. 2019;1865(6):1323-31.

31. Bertrand CA, Mitra S, Mishra SK, Wang X, Zhao Y, Pilewski JM, et al. The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9. Am J Physiol Lung Cell Mol Physiol. 2017;312(6):L912-L25.
32. Bertrand CA, Zhang R, Pilewski JM, Frizzell RA. SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia. J Gen Physiol. 2009;133(4):421-38.

33. Salomon JJ, Spahn S, Wang X, Fullekrug J, Bertrand CA, Mall MA. Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl- channels. Am J Physiol Lung Cell Mol Physiol. 2016;ajplung 00321 2015.

34. Liu X, Li T, Riederer B, Lenzen H, Ludolph L, Yeruva S, et al. Loss of Slc26a9 anion transporter alters intestinal electrolyte and HCO3(-) transport and reduces survival in CFTR-deficient mice. Pflugers Arch. 2015;467(6):1261-75.

35. Rowe SM. A Two-Part Multicenter Prospective Longitudinal Study of CFTR-dependent Disease Profiling in Cystic Fibrosis (PROSPECT) United States2015 [updated May 20,2020; cited 2021 Jan 11]. Available from: https://clinicaltrials.gov/ct2/show/NCT02477319.

36. Sagel SD, Khan U, Heltshe SL, Clancy JP, Borowitz D, Gelfond D, et al. Clinical Effectiveness of Lumacaftor/Ivacaftor in Patients with Cystic Fibrosis Homozygous for F508del-CFTR. A Clinical Trial. Ann Am Thorac Soc. 2021;18(1):75-83.

37. Taylor C, Commander CW, Collaco JM, Strug LJ, Li W, Wright FA, et al. A novel lung disease phenotype adjusted for mortality attrition for cystic fibrosis Genetic modifier studies. Pediatr Pulmonol. 2011;46(9):857-69.

38. Kim SO, Corey M, Stephenson AL, Strug LJ. Reference percentiles of FEV1 for the Canadian cystic fibrosis population: comparisons across time and countries. Thorax. 2018;73(5):446-50.

39. Kulich M, Rosenfeld M, Campbell J, Kronmal R, Gibson RL, Goss CH, et al. Disease-specific reference equations for lung function in patients with cystic fibrosis. Am J Respir Crit Care Med. 2005;172(7):885-91.

40. Bardin E, Pastor A, Semeraro M, Golec A, Hayes K, Chevalier B, et al. Modulators of CFTR. Updates on clinical development and future directions. Eur J Med Chem. 2021;213:113195.

41. Eckford PDW, McCormack J, Munsie L, He G, Stanojevic S, Pereira SL, et al. The CF Canada-Sick Kids Program in individual CF therapy: A resource for the advancement of personalized medicine in CF. J Cyst Fibros. 2019;18(1):35-43.

42. The Human Protein Atlas Program. [Internet]. [cited 2020, Nov 19]. Available from: http://www.proteinatlas.org/.

43. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

44. Watanabe K, Stringer S, Frei O, Umicevic Mirkov M, de Leeuw C, Polderman TJC, et al. A global overview of pleiotropy and genetic architecture in complex traits. Nature genetics. 2019;51(9):1339-48.

45. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.

46. Neale B. We're thrilled to announce an update GWAS analysis of the UK BioBank. 2021 [cited 2021 Mar 21]. Available from: http://www.nealelab.is/uk-biobank/.

47. J. Stare, H. Heinzl, Harrell F. rms: Regression Modeling Strategies 2015 [cited 2021 Mar 20]. Available from: https://cran.r-project.org/web/packages/rms/index.html.
48. Eastman AC, Pace RG, Dang H, Aksit MA, Vecchio-Pagan B, Lam AN, et al. SLC26A9 SNP rs7512462 is not associated with lung disease severity or lung function response to ivacaftor in cystic fibrosis patients with G551D-CFTR. J Cyst Fibros. 2021.

49. Schwarzer G. metagen: Generic inverse variance meta-analysis 2021 [cited 2021 Mar. 20]. Available from: https://rdrr.io/cran/meta/man/metagen.html.

50. Max Gordon, Lumley T. forestplot: Advanced Forest Plot Using 'grid' Graphics 2020 [cited 2021 Mar. 20]. Available from: https://rdrr.io/cran/forestplot/.

51. Conomos MP. Population Structure and Relatedness Inference using the GENESIS Package 2021 [cited 2021 Feb-06].

52. Conomos MP, Miller MB, Thornton TA. Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness. Genet Epidemiol. 2015;39(4):276-93.

53. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867-73.

54. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2(12):e190.

55. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.

56. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9.

57. Band G, Marchini J. BGEN: a binary file format for imputed genotype and haplotype data. bioRxiv2018.

58. Shrine N, Guyatt AL, Erzurumluoglu AM, Jackson VE, Hobbs BD, Melbourne CA, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature genetics. 2019;51(3):481-93.

59. McCaw ZR, Lane JM, Saxena R, Redline S, Lin X. Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies. Biometrics. 2020;76(4):1262-72.

60. Panjwani N, Wang F, Mastromatteo S, Bao A, Wang C, He G, et al. LocusFocus: Web-based colocalization for the annotation and functional follow-up of GWAS. PLoS Comput Biol. 2020;16(10):e1008336.

61. DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012;28(11):1530-2.

62. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.

63. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics. 2016;32(10):1479-85.

64. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc. 2012;7(3):500-7.

65. R Core Team. R: A language and environment for statistical computing. 2015.

66. CF Foundation. Types of CFTR Mutations [cited 2021 Feb 12]. Available from: https://www.cff.org/What-is-CF/Genetics/Types-of-CFTR-Mutations/.

67. Giuliano KA, Wachi S, Drew L, Duksowski D, Green O, Bastos C, et al. Use of a High-Throughput Phenotypic Screening Strategy to Identify Amplifiers, a Novel Pharmacological
Class of Small Molecules That Exhibit Functional Synergy with Potentiators and Correctors.

SLAS Discov. 2018;23(2):111-21.

68. Stephens MB, Yew KS. Diagnosis of chronic obstructive pulmonary disease. Am Fam Physician. 2008;78(1):87-92.

69. Fischer H. The G551D CFTR chloride channel spurs the development of personalized medicine. J Physiol. 2014;592(9):1907-8.

70. Ratjen F, Bell SC, Rowe SM, Goss CH, Quittner AL, Bush A. Cystic fibrosis. Nature Reviews Disease Primers. 2015;1:1-19.

71. Walter JD, Sawicka M, Dutzler R. Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport. Elife. 2019;8.

72. Baskurt Z, Mastromatteo S, Gong J, Wintle RF, Scherer SW, Strug LJ. VikNGS: a C++ variant integration kit for next generation sequencing association analysis. Bioinformatics. 2020;36(4):1283-5.

73. Johns DP, Walters JA, Walters EH. Diagnosis and early detection of COPD using spirometry. J Thorac Dis. 2014;6(11):1557-69.

74. Cantin AM, Hanrahan JW, Bilodeau G, Ellis L, Dupuis A, Liao J, et al. Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med. 2006;173(10):1139-44.

75. Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG, Zeman KL, et al. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J. 2012;26(2):533-45.

76. Raju SV, Jackson PL, Courville CA, McNicholas CM, Sloane PA, Sabbatini G, et al. Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function. Am J Respir Crit Care Med. 2013;188(11):1321-30.

77. Dransfield MT, Wilhelm AM, Flanagan B, Courville C, Tidek SL, Raju SV, et al. Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest. 2013;144(2):498-506.

78. Sloane PA, Shastry S, Wilhelm A, Courville C, Tang LP, Backer K, et al. A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. PLoS One. 2012;7(6):e39809.

79. Mall MA. Unplugging Mucus in Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc. 2016;13 Suppl 2:S177-85.

Information about Supplementary Material

File name: Supplementary Material

File format: docx

Title of the data: Supplementary Methods; Supplementary Figures and Supplementary Tables.
Description of the Data: This file includes the supplementary materials for the paper ‘Genetic evidence supports the development of SLC26A9 targeting therapies for the treatment of lung disease’

Supplementary Methods includes the following subsections:

Sample Genotyping and Quality Control; HBE and HNE sampling; Cell Culturing;

Ussing chamber studies with primary human nasal epithelial cells; Single Cell RNA-seq Sample processing and PheWAS data extraction and Colocalization with CF GWAS Summary Statistics.

There are two figures in section **Supplementary Figures:**

Fig.S1. Forest plot of association between rs7512462 and lung function, measured as Saknorm, prior to modulator treatment, if applicable, in independent samples with at least one G551D variant.

Fig.S2. *SLC26A9* gene expression in cultured primary nasal cells from the same CF patients \((n=9)\) in CGMS at two different time points. Both cultures were P3.

There are two tables in section **Supplementary Tables:**

Supplementary Table 1. The samples removed by the exclusion criteria for the CFTR modulator study.

Supplementary Table 2. The association between rs7512462 genotype and COPD lung function phenotypes in the UK Biobank with colocalization p-values calculated with the CF GWAS p-values reported in (1).

Declarations

Ethics declarations
The Canadian Gene Modifier Study (CGMS) was approved by the Research Ethics Board of the Hospital for Sick Children (# 0020020214 from 2012-2019 and #1000065760 from 2019-present) and all participating sub-sites. Written informed consent was obtained from all participants or parents/guardians/substitute decision makers prior to inclusion in the study. The CGMS is approved by the Research Ethics Board of the Hospital for Sick Children for the usage of public and external data. The US PROSPECT study provides data from a clinical trial registered at clinicaltrial.gov, identifier NCT02477319, and we obtained these data through application to the US CFF at https://www.cff.org/Research/Researcher-Resources/.

Consents for publication

Not applicable.

Availability of data and materials

The datasets generated and/or analyzed in this paper are publicly available. Data from the CGMS analyzed for the lung function pre- and post-modulator treatment are available from Canadian CF registry at https://www.cysticfibrosis.ca/our-programs/cf-registry/requesting-canadian-cf-registry-data; the functional data and RNA-seq data from CGMS is available from the CFIT program at https://lab.research.sickkids.ca/cfit/cystic-fibrosis-patients-families-researchers/, and the paired cultured and fresh naïve HNE and HBE is available at GEO (GSE172232). The US PROSPECT data were obtained through application to the US CFF at https://www.cff.org/Research/Researcher-Resources/ and the study is registered on https://clinicaltrials.gov/ct2/show/NCT02477319. The single cell RNA-sequencing data are downloaded from the Human Protein Atlas Program http://www.proteinatlas.org. The summary statistics for the pheWAS study is available at https://atlas.ctglab.nl/PheWAS and the meconium ileus association results that have been colocalized can be downloaded at
The data used for the COPD analysis are available through application to the UKBiobank.

Competing interests

L.B. participated in a Vertex Virtual Advisory Board and she is a member of the CF Annual Faculty, sponsored by Vertex Pharmaceuticals. D.M-C. received an honorarium for teaching module development for Vertex Pharmaceuticals. N. M. is doing contract research trials for Vertex Pharmaceuticals and Abbvie. A.L.S has received speaking fees for educational programs sponsored by Vertex Pharmaceuticals. B.S.Q. has received speaker fees from Vertex Pharmaceuticals and has served as site PI for several Vertex-sponsored clinical trials. W.M.L is a study investigator for Vertex Pharmaceuticals. E.T., T.G. and F.R. act as a consultant for Vertex Pharmaceuticals. M.S. participated in Vertex clinical trials and received payment for education modules. J.G., G.H., C.W., C. Bartlett, N.P., F.L., K.K., J.A., A.H., M.S., M.E., G.C.M., D.A., S.B., C.Bjornson, M.C., J.R., A.P., M.P., R.V.W., Y.B., D.H., M.J.S., J.B., P.W., L.S., E.B., T.M., J.M.R and L.J.S. have no conflicts of interest.

Funding

Funding was provided by Cystic Fibrosis Foundation STRUG17PO, MORAES1610; Canadian Institutes of Health Research (FRN 167282), Cystic Fibrosis Canada (2626) and the CFIT Program funded by the SickKids Foundation and CF Canada; Natural Sciences and Engineering Research Council of Canada (RGPIN-2015- 03742, 250053-2013). This work was also funded by the Government of Canada through Genome Canada (OGI-148) and supported by a grant
from the Government of Ontario. The funders of the study play no role in study design, data
collection and analysis, decision to publish or preparation of the manuscript.

Author contributions:

Conceptualization: LJS
Data curation: JG, GH, CW, CBartlett, NP, FL, KK, JA, AH, MShaw, ME, GCM, DA, SB, CBjornson, MC, JR, AP, MP, RVW, YB, LB, DMC, DH, MJS, NM, JB, ET, ALS, BSQ, PW, WML, MSolomon, EB, TJM, TG, FR

Formal analysis: JG, Gh, CW, NP, LJS

Funding acquisition: LJS

Investigation: JG, LJS

Methodology: JG, GH, CW, NP, LJS

Project administration: LJS

Supervision: LJS

Visualization: JG, CW

Writing—original draft: JG, GH, CW, NP, JMR, LJS

Writing—review & editing: all authors

Acknowledgments

We thank the US CF Foundation for the use of Part B of the PROSPECT observational study.

We thank the Cystic Fibrosis Canada–SickKids Program for Individualized Therapy for access to
the RNA-sequencing of the nasal epithelia. We thank the patients, care providers and clinic
research assistants, collaborators, and principal investigators involved in CF Centers throughout
Canada for their contributions to the CF Canada Patient Registry and Canadian Gene Modifier
Study. Some of the research was conducted using the UK Biobank Resource under application Number 40946. We thank Shaf Keshavjee for providing the bronchial cells for paired analysis of gene expression and Hong Ouyang for culturing the epithelial cells. We thank Dr. John Miller for providing the amplifier for the study. The authors wish to acknowledge the staff supporting the High Performance Computing cluster and research helpdesk department and The Centre for Applied Genomics at the Hospital for Sick Children, Toronto.
Fig. 1. Participant lung function or lung treatment response categorized by rs7512462 genotype.

(a) Boxplots of lung function from CGMS participants pre-modulator treatment, measured as Saknorm across different CFTR mutation groups. Saknorm is calculated as in (5, 37) with FEV\textsubscript{1} measurements taken prior to modulator treatment, if applicable. Sample sizes by rs7512462 for
each CFTR group are displayed at the bottom of each plot. (b) Boxplot includes an overlay with a stripchart for treatment response in patients on IVA (n=45), LUM/IVA in PROSPECT cohort (n=91) or LUM/IVA in combined PROSPECT and CGMS samples (n=196). Each dot represents an individual measurement. Following (29), the treatment response for IVA is defined as the difference between the mean post-treatment FEV\textsubscript{1pp} within 15 to 400 days and FEV\textsubscript{1pp} baseline. Response for LUM/IVA is defined as the difference in FEV\textsubscript{1pp} between the first post treatment within 5 to 7 months to the baseline ((40); Methods).
Fig. 2. Boxplot overlayed with stripchart for CFTR function by rs7512462 genotype in HNE cultured to P2. Each dot represents an individual measurement. The CFTR function is defined as the difference in ΔIeq-forskolin from treatment with VX-770+VX-809 (left; n=37) and VX-770+VX-809+amplifier (right; n=31) to DMSO in CFTR-mediated current in cultured HNE from participants homozygous for Phe508del. More negative measurements reflect greater CFTR function.
Fig. 3. *SLC26A9* gene expression in various tissue models to guide functional studies. (a) *SLC26A9* expression is low in the bulk RNA-Seq of CGMS CF participants and healthy controls in naïve HNE (left), with diminishing expression with culturing of both HNE and HBE (right). (b) Single cell RNA-Seq studies of non-CF lung and pancreas tissues from the Human Protein
Atlas (42, 43). CFTR expression transcripts per million protein coding genes (pTPM) in orange and SLC26A9 pTPM in blue.
Fig. 4. Colocalization visualization of lung function phenotypes in COPD and CF GWAS p-values at SLC26A9 (1). Figure is plot by LocusFocus (60). P-value scale on the left reflects CF GWAS results plotted as dots and p-value scale on the right reflects the lung-related COPD phenotype association by a line connecting COPD lung genetic association minimum p-values in moving windows. The grey bar indicates the region for which the colocalization analysis is carried out using the Simple Sum statistic (1) with the colocalization p-values shown in Supplementary Table 2. All spirometry phenotype lines in the figure are corresponding to the best measures as defined in (58) with sample sizes reported in Supplementary Table 2.