Fingerprinting coal-derived gases from the UK

Citation for published version:
Győre, D, McKavney, R, Gilfillan, S & Stuart, FM 2017, 'Fingerprinting coal-derived gases from the UK', Chemical Geology. https://doi.org/10.1016/j.chemgeo.2017.09.016

Digital Object Identifier (DOI):
10.1016/j.chemgeo.2017.09.016

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Version created as part of publication process; publisher's layout; not normally made publicly available

Published In:
Chemical Geology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Fingerprinting coal-derived gases from the UK

Domokos Györe⁎, Rory McKavney, Stuart M.V. Gilfillan, Finlay M. Stuart

⁎ Corresponding author.
E-mail address: Domokos.Gyore@glasgow.ac.uk (D. Györe).

ARTICLE INFO

Keywords:
Unconventional
Coal bed methane
Geochemical tracing
Noble gas isotope
Stable isotopes
Mass spectrometry, coal mine methane

ABSTRACT

The large-scale extraction of unconventional hydrocarbons in the United States has led to fears of methane contamination of shallow groundwaters. Differentiating between the deep gas released during extraction (shale gas, coal bed methane and underground coal gasification) and natural shallow-sourced methane is imperative for the monitoring and managing of environmental risks related to the extraction process. Here, for the first time, we present measurements of the major gas, and stable and noble gas isotope composition of coal bed methane (CBM) from central Scotland and coal mine methane (CMM) from central England, UK. The molecular (C1 / (C2 + C3)) and stable isotope compositions (δEC2H6) composition of hydrocarbon gases can be used to differentiate between thermogenic and biogenic sources (Jackson et al., 2013a; Kornacki and McCafrey, 2011; Osborn et al., 2011; Whiticar, 1999). However, methane oxidation can change the isotopic signature of biogenic methane to make it similar to that of thermogenic methane (e.g. Molofsky et al., 2013; Moritz et al., 2015; Vidic et al., 2013). The molecular (e.g. C2 / (C2 + C3)) and stable isotopic (e.g. δEC2H6) composition of hydrocarbon gases can be used to differentiate between thermogenic and biogenic sources (Jackson et al., 2013a; Kornacki and McCafrey, 2011; Osborn et al., 2011; Whiticar, 1999). However, methane oxidation can change the isotopic signature of biogenic methane to make it similar to that of thermogenic methane (e.g. Molofsky et al., 2013; Moritz et al., 2015; Sherwood Lollar and Ballentine, 2009) as bacterial activity (aerobic or anaerobic) enriches the residual CH4 in 13C. Further, simple mixing between biogenic and thermogenic methane can also mask the initially diagnostic isotopic composition (e.g. Whiticar, 1999).

Trace quantities of the noble gases (He, Ne, Ar, Kr and Xe) are present in natural hydrocarbons and provide a complimentary

1. Introduction

The development of horizontal drilling and hydraulic fracturing techniques has permitted the extraction of oil and gas from an array of unconventional reservoirs (e.g. Tour et al., 2010). The economic impact of unconventional shale gas exploitation in the US has been significant, and it has prompted investigation of the potential for unconventional hydrocarbons around the world. Many existing (North America, Australia) and emerging (e.g. China, Argentina, Russia, Brazil) unconventional gas reservoirs are close to potable water resources (Conti et al., 2013; Day, 2009; Mauter et al., 2014; Measham and Fleming, 2014; Vörösmarty et al., 2010), and concern has been raised over the impact of unconventional hydrocarbon exploitation, often by hydraulic fracturing, on groundwater resources (e.g. Vengosh et al., 2014). While several studies have identified deep methane in groundwater near unconventional production wells (Jackson et al., 2013a; Osborn et al., 2011), in the majority of cases this is the result of leakage from the casing of new or pre-existing wells and is not due to fractures to surface caused by the hydraulic fracturing process (Darrah et al., 2014; Molofsky et al., 2011; Molofsky et al., 2013; Warner et al., 2012).

A more rigorous assessment of the environmental effects of unconventional hydrocarbon extraction requires baseline measurement of methane levels in groundwaters prior to exploration and extraction, along with the robust methods for resolving the sources of methane already present, and distinguishing them from the exploited gas (Jackson et al., 2013b; Masters et al., 2014; Moritz et al., 2015; Vidic et al., 2013). The molecular (e.g. C2 / (C2 + C3)) and stable isotopic (e.g. δEC2H6) composition of hydrocarbon gases can be used to differentiate between thermogenic and biogenic sources (Jackson et al., 2013a; Kornacki and McCafrey, 2011; Osborn et al., 2011; Whiticar, 1999). However, methane oxidation can change the isotopic signature of biogenic methane to make it similar to that of thermogenic methane (e.g. Molofsky et al., 2013; Moritz et al., 2015; Sherwood Lollar and Ballentine, 2009) as bacterial activity (aerobic or anaerobic) enriches the residual CH4 in 13C. Further, simple mixing between biogenic and thermogenic methane can also mask the initially diagnostic isotopic composition (e.g. Whiticar, 1999).

Trace quantities of the noble gases (He, Ne, Ar, Kr and Xe) are present in natural hydrocarbons and provide a complimentary
fingerprinting tool that are not affected by chemical or biological processes. When combined with stable isotopes they have proved to be effective tracers of gas origin, migration and gas-fluid interactions in the crust in conventional and enhanced oil recovery hydrocarbon fields, natural CO₂ reservoirs and coal bed fields (Ballentine and O’Nions, 1994; Ballentine and Sherwood Lollar, 2002; Gilfillan et al., 2008; Gilfillan et al., 2009; Györe et al., 2015, 2017; Holland and Gilfillan, 2013; Pinti and Marty, 1995; Zhou et al., 2005). Noble gases have been used to provide a model to describe coal derived methane and groundwater interactions quantifying the water associated with gas production and the presence of the gas desorbed from the coal (Zhou et al., 2005). Recent studies have shown that noble gas isotopes can clearly distinguish between CH₄ which had migrated from overlying formations through faulted well casings, or migrated diffusively through the subsurface as a result of an underground well integrity failure (Darrah et al., 2015; Darrah et al., 2014; Wen et al., 2016).

The United Kingdom has promising shale gas and coal bed methane resources, hosted mainly in Carboniferous strata (Andrews, 2013; Creedy et al., 2001; Harvey and Gray, 2013; Jardine et al., 2009; Masters et al., 2014). Although there is a history of hydraulic fracturing of conventional hydrocarbon and water wells in the onshore UK (Cobbing and Dochartaigh, 2007; Mair et al., 2012), only the Preese Hall well (National Grid Reference: SD 37532 36,627) which directly targets a shale formation, has been subjected to high volume hydraulic fracturing techniques to date. Despite abundant evidence that undertaken correctly, hydraulic fracturing can be employed safely (Mair et al., 2012; Masters et al., 2014; Younger, 2016), the extraction of unconventional gas remains controversial and it is essential to build trust with the public if the reserves are to be exploited. This can be partially achieved by identifying robust techniques for monitoring unplanned migration of any extraction related gases to the surrounding groundwater. Here, we document the major gas, and the stable and noble gas isotope composition of (i) coal bed methane (CBM) from the Midland Valley of Scotland, and (ii) coal mine methane (CMM) from former coal mines in the east central England (Fig. 1). We use these measurements to place constraints on the gas origin, and to identify the presence of natural fingerprints which can be used in robust future monitoring regimes.

2. Geological setting

2.1. Airth CBM field, Central Scotland

The methane from Airth is extracted from coal seams that are part of the North-East Stirlingshire Coalfield in the Midland Valley of central Scotland (Fig. 1). The Midland Valley is a NE-SW trending terrane bounded to the north by the Highland Boundary Fault and to the south by the Southern Upland Fault, and is filled principally with Carboniferous and Devonian sediments. The targeted coal seams are in the Limestone Coal Formation of the Clackmannan Group, defined at the base by the Top Hosie Limestone and at the top by the base of the Index Limestone. The coals are 326.4 to 326 Ma in age (Upper Mississippian) (Waters et al., 2011) (Fig. 2).

Gas exploration was initiated in 1993 with the drilling of the Airth-1 well. Initially coal-bed methane production was 1.7 million m³/day and targeted the 14 potentially productive seams that were > 0.3 m thick. Wells Airth-2 to -4 were drilled in 1996 and Airth-5 to -7 between 2004 and 2007. Dart Energy acquired the site in 2011 and a further 3 new wells and 2 side-tracks off existing wells were drilled (Masters et al., 2014 and references therein). Well depths vary between 892 m (Airth-8) and 1059 m (Airth-1) below sea level (UK Onshore Geophysical Library www.ukogl.org.uk) (Table 1). The field has been pumped for gas flow rate testing during resource appraisal, but so far has not been put into commercial production. The locations of the sampled wells are provided in Table 1.

2.2. South Yorkshire and Nottinghamshire coal mines, Central England

The South Yorkshire and Nottinghamshire coalfields are located in the north east of the Midlands region of England (Fig. 1). The coalfields are within the East Pennine coalfield, the most productive of all the UK coal measures (Allen, 1995). In contrast to the Airth CBM extraction, the Central England gases are from methane extracted from former coal mines. The majority of the mines in the region exploit the Top Hard (Barnsley) coal seam, with various other seams contributing to mined output depending on local conditions. The majority of the mined seams are Middle – Upper Pennsylvanian (313 to 304 Ma). The coals were deposited in cycles typically grading upwards from mudstone, siltstone, sandstone and coal (Waters, 2009). In general, the coals crop out in a NNW-SSE orientated band west of Doncaster and Nottingham, and dip gently to the east under Permian sandstones where they form the significant resources of the concealed coalfields.

The Prince of Wales Colliery was constructed on the site of an existing mine, on the northern edge of Pontefract in West Yorkshire. Work on the drift tunnels was started in 1975 and production commenced in the Castleford Four Foot seam in 1980 and three other seams have since been exploited. The colliery closed in 2002 after producing 1.5 million tonnes of coal per year. The Newmarket Lane Colliery, near Stanley in West Yorkshire, opened in 1837 and closed in 1883, making it one of the oldest mines in the UK. The vent well of Newmarket Lane-1 is 273 m in depth and was finished in 2008. Bevercotes Colliery in Nottinghamshire opened in 1963 and closed in 1993. Bevercotes-1 was completed in 2002 and targets the deepest seam at 700 m below sea level. The Warsop Main Colliery opened in 1893 and closed in 1989. The Warsop-1 well was completed in 2002 and is the shallowest among those sampled at 222 m. The Crown Farm (also known as Mansfield) Colliery and the Sherwood Colliery (targeted by the Old Mill Lane-1 well) located close to Mansfield. The Crown Farm Colliery opened in 1904 and closed in 1989. The well reaches 310 m below sea level and was completed in 2006. Sherwood Colliery closed in 1992 with the associated well being drilled in 2002 to a depth of 300 m. The wells have been operated by Alkane Energy UK Ltd. since drilling. Depth data in Table 1 are from the UK Onshore Geophysical Library (www.ukogl.org.uk) and completion dates are from the BGS Borehole Record, (http://www.bgs.ac.uk/data/boreholescans/home.html). The locations of the sampled wells are provided in Table 1.

3. Sampling and analytical techniques

Six wells from the Airth CBM field and six CMM wells in England were sampled for this study, with duplicates taken in all cases (Table 1). The Airth gases were collected in August 2013, following production of formation water from Airth-1 for production testing from the Airth-10 well. Airth-1 was re-sampled in August 2014 after the field had been shut-in for a year. CMM samples from England were collected in July 2014. All samples were collected in Cu-tubes using the method described in Györe et al. (2015). Samples from Scotland were analysed in two batches in January–February 2015 and in May–July 2015. In addition, tubes from the Airth-1 2014 well was analysed four times between 2 and 303 days after sampling. The England gases were analysed in March 2016.

Major gas analysis was carried out at the University of Edinburgh. Gas from the Cu tube was expanded into an evacuated all-metal line and aliquots of gas were taken by a syringe via a silicone septum. Gas was injected manually into a Perkin-Elmer AutoSystem XL gas chromatograph (GC) via a 30 m long and 0.53 mm internal diameter Sigma-Aldrich Carboxen 1010 PLOT column using helium carrier gas. A thermal conductivity detector was used for nitrogen and oxygen detection, whereas all other species were detected on a flame ionisation detector. The GC was programmed for a ramp of 40 °C for 7 min to allow resolution between O₂ and N₂, then 30 °C/min ramp up to 250 °C for heavier components. The system was calibrated with gas mixtures
produced by CalGaz Ltd. Reproducibility (1σ) of the CO2/CH4 and C1 / (C2 + C3) ratio was ~0.5% and 0.3%, respectively.

Individual Cu tubes were crimped and half was used for stable isotope determinations. CO2 was separated from the volatile hydrocarbons by a procedure modified slightly from Kusakabe (2005) using a liquid nitrogen-cooled isopentane trap (−160 °C). The CH4 was combusted over a platinum catalyst at 960 °C in the presence of oxygen which was administered to the system via a septum. Flow-through was ensured by a pressure gradient between the inlet and the outlet of the furnace, generated by trapping the CO2 and H2O combustion products on a liquid nitrogen-cooled cold finger at the outlet. When the combustion was complete the furnace was isolated and the cold finger was heated to −80 °C by an acetone/dry ice slush trap. H2O was retained while the CO2 was trapped in a calibrated cold finger by liquid nitrogen. The isopentane trap was heated up to ~−80 °C, which released the CO2 and it was trapped in a cold finger by liquid nitrogen. The isotopic composition of CO2 (both, original and derived from CH4) was determined on a VG SIRA II dual inlet isotope ratio mass spectrometer at SUERC (Danbar et al., 2016), relative to V-PDB international standard (Coplen, 1994; Craig, 1957). The finger containing the H2O (derived from CH4) was attached to a manifold where it was vaporized by heating. The hydrogen from the water vapour was reduced in a chromium furnace at 800 °C then admitted into a VG Optima dual inlet isotope ratio mass spectrometer (Donnelly et al., 2001). δD values are given relative to V-SMOW (Gonfiantini, 1984). Experimental uncertainties (1σ) of δ13C and δD determinations are 0.1‰ and 3‰, respectively.

For noble gas isotope analysis, the gas from a single Cu tube was expanded into a purpose built high vacuum system, purified by a titanium sublimation pump run sequentially between ~900 °C and room temperature and series of Zr-Al alloy getters operating at 250 °C. This pre-cleaned gas was then stored in an expansion bottle on the line, fitted with a double valve pipette for online subsampling. Full details of gas purification are reported by Győre et al. (2015). Aliquots of the stored gas were further purified by Zr-Al alloy getters, then the individual noble gases were cryogenically separated and He, Ne and Ar analysed using a MAP 215–50 mass spectrometer in static mode (Codilean et al., 2008; Williams et al., 2005). Mass fractionation,
Fig. 2. Geological cross section of the Midland Valley of Scotland. Redrawn after Monaghan (2014). The location of the section can be seen in Fig. 1.
sensitivity and the reproducibility of the analysis were determined by repeated analysis of HESJ international standard (Matsuda et al., 2002) for He, and air for Ne and Ar.

4. Results

4.1. Major gas and stable isotope composition

4.1.1. Airth CBM field

The gases are dominantly methane; C1 / (C2 + C3) varies between 75 and 121, and CO2 concentrations are < 0.1%. The C and H isotopic compositions of the CH4 exhibit narrow ranges ($\delta^{13}C_{CH4} = -39.5 \pm 41.8 \%$) that are typical of thermogenic methane (Table 1, Figs. 3 & 4). They overlap with the isotopic composition of methane previously measured from North Sea gas sources (Figs. 3 & 4). The C and H isotopes overlap the isotope and major gas composition.

4.1.2. Central England CMM field

Unlike the CBM from Airth, these gases are not pure methane; CH4/CO2 varies between 2.5 (Crown Farm-1) to 43 (Prince of Wales) and C1 / (C2 + C3) varies between 0.172 and 0.187 RA, where RA is the atmospheric ratio of 1.399 x 10^{-6} (Mamyrin et al., 1970). The values are notably higher than the average 3He/4He of continental crust of 0.02 RA (Andreas, 1985).

The concentration of Ne ranges from 0.042 ± 0.0009 to 0.354 ± 0.008 ppmv. 20Ne/22Ne ratios vary between 10.04 ± 0.09 and 211 to 220), which is significantly higher than the atmospheric value (0.0285) (Fig. 6). The isotopic composition of He and Ne identifies a small resolvable mantle contribution in addition to the crustal radiogenic contribution (Ballentine and O’Nions, 1991). If the mantle He is typical of the sub-continental lithosphere ($^{3}He/^{4}He = 6.1$ Ra; Gautheron and Moreira, 2002) 2.8% of He in each well has a magmatic origin. If the mantle noble gases were derived from the proto-Iceland plume source that is known to have influenced early Tertiary volcanism in western Scotland (3He/4He = 50 Ra; Stuart et al., 2003) it would comprise 0.3% of the total He in the gases (Fig. 5B). 3He/4He varies between 0.172 and 0.187 Ra, which is higher than the atmospheric value (0.0285) (Fig. 6). The isotopic composition of He and Ne identifies a small resolvable mantle contribution in addition to the crustal radiogenic contribution (Ballentine and O’Nions, 1991). If the mantle He is typical of the sub-continental lithosphere ($^{3}He/^{4}He = 6.1$ Ra; Gautheron and Moreira, 2002) 2.8% of He in each well has a magmatic origin. If the mantle noble gases were derived from the proto-Iceland plume source that is known to have influenced early Tertiary volcanism in western Scotland (3He/4He = 50 Ra; Stuart et al., 2003) it would comprise 0.3% of the total He in the gases (Fig. 5B).
consistent with varying amount of air derived gases being present in these samples. $^{40}\text{Ar}/^{4}\text{He}$ (where ^{40}Ar is non-atmospheric Ar) of Airth-5 is 0.019 ± 0.0007. This value is an order of magnitude lower than crust-derived radiogenic noble gases (0.2; Torgersen et al., 1989 and is consistent with the preferential loss of He from crustal minerals by diffusion and recoil (e.g. Ballentine and Burnard, 2002).

4.2.2. Central England CMM field

Helium concentrations are lower and Ne and Ar concentrations are higher than the Airth CBM (Fig. 5A & B). ^4He varies from 338 to 1094 ppm and $^3\text{He}/^4\text{He}$ ratios are an order of magnitude lower than the central Scotland gases, varying from 0.002 Ra (Newmarket Lane-1) to 0.043 Ra (Crown Farm-1). These are typical of crustal radiogenic He and indicate that there is no contribution of mantle-derived He.

The $^{20}\text{Ne}/^{22}\text{Ne}$ ratios overlap air within 1σ uncertainty apart from the Newmarket Lane-1 (9.62 ± 0.05) and Prince of Wales (9.64 ± 0.05) mines. $^{20}\text{Ne}/^{22}\text{Ne}$ values in two samples (Bevercotes-1: 0.0316 ± 0.0003 & Prince of Wales: 0.0305 ± 0.0003) are significantly different from those of the atmosphere. The lowest $^{20}\text{Ne}/^{22}\text{Ne}$ (0.0280 ± 0.0003, Crown Farm-1) is associated with the highest $^3\text{He}/^4\text{He}$. Four samples plot on the mass fractionation line, while the remaining two can be explained by the mixture of isotopically fractionated air and crust-derived nucleogenic Ne in the sample (Fig. 6).

Isotopic fractionation of Ne isotopes from natural gases has been observed elsewhere and can be explained by the differences in molecular diffusivities of the different Ne isotopes (e.g. Peeters et al., 2002; Zhou et al., 2005). It is also possible that small variation of the O/F ratio has resulted the observed isotopic ratios in those samples (e.g. Kennedy et al., 1990).

$^{40}\text{Ar}/^{38}\text{Ar}$ are generally lower than in the Airth CBM. Bevercotes-1 shows the highest $^{40}\text{Ar}/^{36}\text{Ar}$ (367 ± 1), while all others exhibit values close to the air ratio. This is indicative of small amount of radiogenic Ar. The dominance of air-derived Ne and Ar in these gases probably reflects varying amounts of air in the sample. $^{40}\text{Ar}/^{4}\text{He}$ are varying from 0.018 (Newmarket Lane-1) to 0.07 (Crown Farm-1).

5. Discussion

5.1. Source of the crustal radiogenic ^4He in CBM and CMM

Both regions exhibit high ^4He concentrations that have the potential to be a useful discriminant of deep gas in the shallow subsurface. In the CBM from central Scotland the mantle-derived He accounts for < 3% of the total, thus in both regions the ^4He is radiogenic. The ^4He likely

Table 2

Noble gas concentrations and isotopic ratios of coal bed gases from Central Scotland and Central England.

Well	$^3\text{He}/^4\text{He}$ (R/Ra)	$^{20}\text{Ne}/^{22}\text{Ne}$	$^{21}\text{Ne}/^{22}\text{Ne}$	$^{40}\text{Ar}/^{36}\text{Ar}$	$^{38}\text{Ar}/^{36}\text{Ar}$	^{4}He (10^{-7})	^{20}Ne (10^{-7})	^{40}Ar (10^{-7})	$^{40}\text{Ar}/^{4}\text{He}$
Central Scotland									
Airth-1 (2013)	0.178 (4)	10.04 (4)	0.0439 (6)	1015 (6)	0.191 (2)	1.18 (5)	0.416 (9)	0.090 (2)	0.054 (3)
Airth-1 (2014)	0.179 (3)	9.96 (4)	0.0401 (6)	879 (5)	0.187 (3)	1.29 (7)	0.51 (3)	0.071 (2)	0.036 (3)
Airth-5	0.184 (7)	9.86 (4)	0.0330 (4)	371 (4)	0.191 (2)	2.98 (15)	3.54 (8)	0.296 (6)	0.019 (3)
Airth-6	0.172 (4)	9.82 (4)	0.0415 (5)	779 (5)	0.191 (1)	2.10 (10)	0.97 (2)	0.149 (3)	0.043 (3)
Airth-8	0.174 (2)	9.69 (5)	0.0393 (6)	844 (5)	0.189 (2)	2.00 (9)	0.89 (2)	0.149 (3)	0.048 (3)
Airth-10	0.180 (4)	9.71 (5)	0.0438 (8)	1032 (6)	0.189 (2)	1.11 (5)	0.49 (1)	0.092 (2)	0.059 (3)
Airth-12	0.187 (6)	10.02 (5)	0.0369 (5)	631 (4)	0.190 (2)	2.40 (10)	1.89 (4)	0.244 (5)	0.053 (3)
Central England									
Old Mill Lane-1	0.0068 (5)	9.80 (5)	0.0284 (3)	300 (1)	0.186 (3)	0.35 (2)	50.2 (3)	4.4 (2)	0.06 (70)
Prince of Wales	0.0268 (6)	9.64 (5)	0.0305 (3)	327 (1)	0.187 (3)	1.10 (5)	2.4 (1)	0.31 (1)	0.02 (1)
Warsop-1	0.0267 (8)	9.75 (5)	0.0288 (3)	308 (1)	0.186 (3)	0.34 (2)	3.2 (1)	0.39 (1)	0.04 (6)
Crown Farm-1	0.0429 (9)	9.79 (5)	0.0280 (3)	300 (1)	0.186 (4)	0.35 (2)	76.9 (4)	5.4 (2)	0.07 (60)
Bevercotes-1	0.0027 (1)	9.70 (5)	0.0316 (3)	367 (1)	0.187 (3)	1.09 (5)	1.14 (5)	0.156 (6)	0.027 (5)
Newmarket Lane-1	0.0019 (1)	9.62 (6)	0.0285 (3)	303 (2)	0.192 (3)	0.80 (4)	13.3 (6)	1.05 (4)	0.018 (50)
Ar	0.000 (9)	9.81 (8)	0.0285 (2)	298.6 (3)	0.185 (3)	0.005 (0)	164.5 (4)	9.34 (1)	NA

1σ uncertainties are displayed as last significant figures in parentheses.

Noble gas concentrations are given in cm3 STP/cm3 and standard conditions are after Ozima and Podosek (2002) ($p = 0.101$ MPa, $T = 0^\circ$C).

Air composition is after Eberhardt et al. (1965); Honda et al. (2015); Mamyrin et al. (1970); Mark et al. (2011); Ozima and Podosek (2002).

Fig. 4. The isotopic composition of coal seam methane, along with other methane-rich gases from UK. All data are from Hitchman et al. (1989) & Waldron et al. (1999). The plot is after Schoell (1980).
originates from two sources; i) radiogenic 4He produced in the coal; and/or ii) incorporation of the crustal flux of 4He.

Using the age of the Airth coal beds (~320 Ma) and U and Th concentration of Scottish coals of similar age (1.6 ± 0.4 and 4.6 ± 4.2 mg/kg coal, respectively; Hamilton, 1974; Salmon et al., 1984) the in situ 4He concentration ranges from 48.7 to 156.8 cm3 STP/t coal (Vermeesch, 2008). Assuming all the in situ 4He is in the gas phase, the concentration of 4He in the sampled gases can be determined using estimates of methane concentration in the coal. CH$_4$ in Scottish coals can be as low as 0.2 m3/t (Creedy, 1991) but concentrations of 8–10 m3/t are reported from well Airth-1 (Bacon, 1995). Using Airth methane values, we calculate in situ 4He concentrations of up to 19.6 ppmv (156.8 cm3 4He/8 m3 CH$_4$). This is more than two orders of magnitude lower than the highest measured He concentration (2984 ppmv) and suggests that the majority of the He in the gas phase originates from the local crust.

The in situ radiogenic He production in the central England CMM gases can be calculated using the same method. Using the U and Th content of coal seams targeted by the abandoned mines (1.6 ± 0.7 and 4.7 ± 1.7 mg/kg coal respectively; Hamilton, 1974) and a mean coal age of 308.5 Ma, the maximum 4He concentration is 141.7 cm3 STP/t coal. This is similar to that of the Airth coals. Methane concentrations in the Yorkshire and Nottinghamshire coals are 3.8 and 4.1 m3/t coal, respectively (Creedy, 1991). This would generate 4He concentrations up to 44.3 ppmv. Assuming all the in situ He is now in the gas phase the in situ production can account for < 14% of the measured 4He. As with the Airth CBM gases, it is clear that the bulk of the 4He contained in the CMM samples also originates from a source external to the coal seams.

Most natural gas reservoirs have He concentrations that are higher than can be produced by in situ radiogenic production (e.g. Kipfer et al., 2002). A ‘steady state’ crustal degassing model has been developed to account for the high 4He content of groundwaters (e.g. Torgersen et al., 1989) and natural gases (e.g. Sano et al., 1986). This is most readily understood to result from grain boundary diffusion of radiogenic He up through the crust. It is also a possibility that thermitectonic events result in episodic release of 4He from the deep crust (e.g. Ballentine and Burnard, 2002). The concentration of He in the Carboniferous coal seam gases studied here are similar to those recorded for natural gas accumulations in other Palaeozoic strata (Fig. 7). For instance, Carboniferous coal seams in the Silesian and Lublin basins of Poland, located at similar depths to those of the CMM samples, have similarly high 4He contents (e.g. Kotarba, 2001; Kotarba and Rice, 2001). These are as high as He concentrations in conventional gas fields in the same age reservoir rocks (Ballentine and Sherwood Lollar, 2002; Hiyagon and Kennedy, 1992; Kotarba et al., 2014). The high 4He concentration we observe appears to be independent of whether the gas is a mine vent gas (England) or an extensively pumped coal seam (Scotland). As all prospective onshore UK unconventional reservoirs are Palaeozoic in age, for example the Bowland Shale (Andrews, 2013), they can be expected to exhibit similar high 4He content to the gases reported here.

5.2. Origin of mantle-derived noble gases in Central Scotland CBM

The He, Ne and Ar isotope systematics (Figs. 5-6) of the Airth CBM gases indicate that a small but significant contribution of mantle-
derived volatiles is trapped within the coals. This is further highlighted in plots of 40Ar/36Ar vs. 21Ne/22Ne (Fig. 8A) and 40Ar/36Ar vs. 4He/36Ar (Fig. 8B) which demonstrates the difference in the non-atmospheric gases from the two regions. In both figures the CMM from northern England shows a mixing between air and a 21Ne-, 40Ar- and 4He-rich gas that is consistent with crust-derived noble gases. In contrast, the Scottish dataset clearly shows the presence of a mantle end-member as the mixing line does not pass through the atmospheric 40Ar/36Ar end member. In both cases the sharp increase of 40Ar/21Ne (A) and 40Ar/4He (B) relative to the English dataset is consistent with the changing production of 40Ar, 21Ne and 4He from the Upper to the Lower crust (Ballentine and Burnard, 2002).

This is the first record of mantle-derived volatiles in onshore UK gases (Oxburgh et al., 1986) and is rather unexpected given the absence of basaltic magmatism or rifting in the last 60 million years. The region has experienced two periods of magmatism since coal formation that could be the source for the mantle-derived volatiles; widespread melting of the sub-continental lithosphere during rifting in the Late Carboniferous-Early Permian (Wilson et al., 2004) and melts of upwelling proto-Iceland plume mantle in the early Cenozoic (Saunders et al., 1997).

The deposition of coals in the Upper Mississippian coincided with extensive basaltic volcanism throughout the Midland Valley of Scotland, that continued until Early Permian times. This was accompanied by the intrusion of thick, widespread sill-complexes during the Lower-Middle Pennsylvanian by a widespread suite of tholeiitic sills and dykes. At this time, the Midland Valley graben had developed into an intra-continental rift, where lithospheric stretching had led to rifting and increased thermal gradients with consequent mantle melting.

The arrival of the proto-Iceland plume beneath the North Atlantic resulted in extensive basaltic magmatism in western Scotland and Northern Ireland at 58–61 Ma. In contrast to the Permo-Carboniferous magmatism, there is little sign of early Tertiary intrusive or extrusive volcanic rocks in central Scotland. The Mull dyke swarm lies ~50 km south of Airth and displays small basaltic fissures, but there is little evidence that the deep crust below the Midland Valley received a significant thickness of melt (Fig. 2).

The E-W trending Ochil Fault lies 12 km to the north of the Airth CBM field and cuts the Carboniferous coals of the Midland Valley. It has a vertical throw of ~4 km and is seismically active (Rippon et al., 1996) and may be a plausible conduit for the mobilisation of mantle volatiles exsolved from mantle melts that underplated the deep crust in the early Cenozoic. The main fault and its splays host several precious metal ore deposits and uraniferous bitumens derived from down-thrown...
Carboniferous sediments (Gallagher et al., 1971; Robinson et al., 1989). It is highly likely that the fault has been a conduit for deep (magmatic) fluids throughout the late Palaeozoic and Mesozoic.

5.3. Fingerprinting coal derived methane occurrences in onshore UK fields

The major gas and stable isotopic composition of CH₄ of both the CBM and CMM gases clearly indicate a thermogenic source (Figs. 3 & 4), suggesting that this may be widespread in UK coals. δ¹³C₂CH₄ and δD₂CH₄ of CBM and CMM overlap UK coal gases, particularly with landfill gases, and North Sea natural gases respectively (Fig. 4). For the most part they are distinct from shallow-sourced methane, e.g. peat (Fig. 4), however there is significant overlap between coal-derived gases from this study and the field defined by landfill methane (Fig. 4), confirming that the C and H isotopes can be ambiguous as source tracers.

The diagnostic feature of the noble gases in the coal-derived gas from both regions in UK is the high ⁴He concentrations. They are significantly higher than expected for shallow sourced methane, and recently recharged groundwaters, which contain He in atmosphere concentrations (~5 ppmv). ⁴He has previously been used to identify the natural migration of CO₂ to groundwaters in Arizona (Gillifilin et al., 2011), the migration of hydrocarbons to the shallow subsurface in Wyoming (Ballentine and Mackintosh, 2012) and in allegations of CO₂ contamination in Saskatchewan (Gillifilin and Hasseldine, 2011; Gillifilin et al., 2017). When combined with ²⁰Ne and ³⁸Ar, He has been used to distinguish CH₄ leaking through faulty well casings (Darrah et al., 2014), identify the source of naturally-occurring methane in groundwaters in the northern Appalachian basin (Darrah et al., 2015), and show that high CH₄ in groundwaters in Texas are unrelated to gas extraction (Wen et al., 2016).

The high ⁴He concentration in coal seam-derived CH₄ has potential as a diagnostic fingerprint to identify any unplanned gas migration from deep to the shallow subsurface. An array of portable, high sensitivity He detector technologies are commercially available which allow precise determination of sub-atmospheric He concentrations. This technology could be used for real-time monitoring of natural gas release, and to record fugitive emissions around sites of gas extraction. Membrane inlet mass spectrometers have been developed for continuous measurement of dissolved noble gas concentrations in groundwaters (Mächler et al., 2012). They could be deployed in wells to monitor the He concentrations prior to and during drilling and hydraulic fracturing to provide early warning of deep gas ingress into groundwater. Mature hydrocarbon-bearing shales underlie the Carboniferous coals in many parts of the UK and many hold economic resources of both CH₄ and potentially ⁴He. Establishing infrastructure for real-time monitoring of He in gas and waters in the UK offers a robust technique for monitoring for unplanned migration of methane from unconventional gas extraction related gases to the surrounding groundwaters.

6. Conclusion

In this study we show that the molecular and stable isotopic composition range of both CBM from Central Scotland, and CMM for Central England is diagnostic of a thermogenic origin for the CH₄ and other light hydrocarbon gases present. We find that CBM samples have a significant CO₂ component, that either originates from the oxidation of organic material alone or with an additional contribution of atmospheric CO₂, whereas the CBM samples are primarily CH₄ with minor C₂ and trace C₃ hydrocarbons. Both the CBM and CMM contain significantly above atmospheric levels of ⁴He. The compositions of unconventional gas reservoirs in the UK we report here show that there is great potential for the application of these tracing techniques, as the reservoirs show elevated ⁴He concentrations even at relatively shallow depths. This is particularly the case in the Airth CBM field in Scotland, which shows the highest ⁴He concentration measured in a shallow Paleozoic aquifer to date of up to ~3000 ppmv. There are underlying mature hydrocarbon bearing shale formations which are currently being explored for unconventional gas beneath the Airth CBM field, in the Midland Valley of Scotland and the Central England region where CMM is being extracted. From the results of this study we expect that any gas produced from these shale formations will also exhibit high ⁴He concentrations and hence real-time monitoring of He in gas and waters in the UK potentially offers a robust technique for monitoring for unplanned migration of any deep sourced methane related to these activities.

Acknowledgements

The research present was funded by a Natural Environmental Research Council (NERC) grant to Gillifilin and Stuart (NE/L008475/1 & NE/L008297/1), The Scottish Government, SUERC, and the Universities of Glasgow and Edinburgh. We are indebted to Dart Energy Ltd. and Alkane Energy UK Ltd. for permission to undertake sampling at their sites and onsite support during sample collection. Marta Zurakowska, Terry Donnelly and Luigia Di Nicola are thanked for their invaluable help in the laboratories. We thank Pierre-Henry Blard, Guillaume Avice and an anonymous reviewer for their constructive comments that have significantly improved the manuscript.

References

Aftek, H.P., Yaïr, D., 2014. The stable isotopic composition of atmospheric CO₂. In: Holland, H.D., Turekian, K.K., 2nd Edition (Eds.), Treatise in Geochemistry. 5. Elsevier, Oxford, pp. 179–212.
Allen, M.J., 1995. Exploration and exploitation of the East Pennine Coalfield. Geol. Soc. Lond., Spec. Publ. 82, 207–214.
Andrews, J.M., 1985. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem. Geol. 49, 339–351.
Andrews, I.J., 2013. The Carboniferous Bowland Shale Gas Study: Geology and Resource Estimation. British Geological Survey for Department of Energy and Climate Change, London, UK.
Bacon, M.J., 1995. Development and techniques used on the Airth 1 well in Scotland. In: Planning for Profit: Coalbed Methane in the UK and Europe.
Ballentine, C.J., Burnard, P.G., 2002. Production, release and transport of noble gases in the continental crust. In: Porelli, D., Ballentine, C.J., Webre, B. (Eds.), Reviews in Mineralogy & Geochemistry, 47. Noble Gases in Geochemistry and Cosmochemistry, pp. 481–538.
Ballentine, C.J., Mackintosh, S., 2012. Using ³⁸Ar/⁴He isotope ratio to identify the source of deep reservoir contributions to shallow fluids and soil gas. Chem. Geol. Isot. Geosci. 304-305, 142–150.
Ballentine, C.J., O’Nions, R.K., 1991. The nature of mantle neon contributions to Vienna Basin hydrocarbon reservoirs. Earth Planet. Sci. Lett. 113, 553–567.
Ballentine, C.J., O’Nions, R.K., 1994. The use of natural He, Ne and Ar isotopes to study hydrocarbon-related fluid provenance, migration and mass balance in sedimentary basins. Geol. Soc. Lond., Spec. Publ. 78 (1), 347–361.
Ballentine, C.J., Sherwood Lollar, B., 2002. Regional groundwater focusing of nitrogen and noble gases into the Hogutton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66 (14), 2483–2497.
Ballentine, C.J., O’Nions, R.K., Oxburgh, E.R., Horvath, F., Deak, J., 1991. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet. Sci. Lett. 105, 229–246.
Ballentine, C.J., O’Nions, R.K., Coleman, M.L., 1996. A Magnus opus: helium, neon and argon isotopes in a North Sea oil field in the Pannonian Basin. Earth Planet. Sci. Lett. 140, 249–261.
Ballentine, C.J., O’Nions, R.K., 1989. The use of natural neon and argon isotopes in the Carpathian Basin to subsurface gases in a tectonically quiescent area, the Carpathian Basin, in the Pannonian Basin. Earth Planet. Sci. Lett. 105, 229–246.
Bosch, A., Mazor, E., 1988. Natural gas association with water and oil as depicted by the stable carbon isotope composition. Earth Planet. Sci. Lett. 91, 1–10.
Bacon, M.J., 1995. Development and techniques used on the Airth 1 well in Scotland. In: Planning for Profit: Coalbed Methane in the UK and Europe.
Ballelent, C.J., Burnard, P.G., 2002. Production, release and transport of noble gases in the continental crust. In: Porelli, D., Ballentine, C.J., Webre, B. (Eds.), Reviews in Mineralogy & Geochemistry, 47. Noble Gases in Geochemistry and Cosmochemistry, pp. 481–538.
Cornides, I., Takaoka, N., Nagao, K., Matsuo, S., 1986. Contribution of mantle-derived CO₂ to subsurface gases in a tectonically quiescent area, the Carpathian Basin, Hungary revealed by noble gas measurements. Geochem. J. 20, 119–125.
Craig, H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149.
Mar. Pet. Geol. 6, 316–323.
Salmon, R., Toureau, A.E.R., Lally, A.E., 1984. The radioactivity content of United Kingdom coal. Sci. Total Environ. 35, 403–415.
Sanø, Y., Wakita, H., Huang, C.-W., 1986. Helium flux in a continental land area estimated from 3He/4He ratio in northern Taiwan. Nature 323, 55–57.
Saunders, A.D., Fitton, J.G., Kerr, A.C., Norry, M.J., Kent, R.W., 1997. The North Atlantic igneous province. In: Mahoney, J.J., Coffin, M.F. (Eds.), Large igneous provinces. American Geophysical Union, pp. 45–95.
Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 44 (5), 649–661.
Sherwood Lollar, B., Ballentine, C.J., 2009. Insights into deep carbon derived from noble gases. Nat. Geosci. 2 (8), 543–547.
Sherwood Lollar, B., O’Nions, R.K., Ballentine, C.J., 1994. Helium and neon isotope systematics in carbon-dioxide-rich and hydrocarbon-rich gas reservoirs. Geochim. Cosmochim. Acta 58 (23), 5279–5290.
Stuart, F.M., Lass-Evans, S., Fitton, J.G., Ellam, R.M., 2003. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59.
Torgersen, T., Kennedy, B.M., 1999. Air-Xe enrichments in Elk Hills oil field gases: role of water in migration and storage. Earth Planet. Sci. Lett. 167, 239–253.
Torgersen, T., Kennedy, B.M., Miyagon, H., Chiou, K.Y., Reynolds, J.H., Clarke, W.B., 1989. Argon accumulation and the crustal degassing flux of 40Ar in the Great Artesian Basin, Australia. Earth Planet. Sci. Lett. 92, 43–56.
Tour, J.M., Kitterl, C., Colvin, V.L., 2010. Green carbon as a bridge to renewable energy. Nat. Mater. 9 (11), 871–874.
Vengosh, A., Jackson, R.B., Warner, N., Darrah, T.H., Kondash, A., 2014. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 48 (15), 8334–8348.
Vermes, P., 2008. Three new ways to calculate average (U-Th)/He ages. Chem. Geol. 249, 339–347.
Vidic, R.D., Bramley, S.L., Vandenbossche, J.M., Vostheimer, D., Abad, J.D., 2013. Impact of shale gas development on regional water quality. Science 340 (6134), 1235009.
Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S.E., Sullivan, C.A., Liermann, C.R., Davies, P.M., 2010. Global threats to human water security and river biodiversity. Nature 467 (7315), 555–561.
Waldron, S., Hall, A.J., Falllick, A.E., 1999. Enigmatic stable isotope dynamics of deep peat methane. Glob. Biogeochem. Cycles 13 (1), 93–100.
Warner, N.R., Jackson, R.B., Darrah, T.H., Osborn, S.G., Down, A., Zhao, K., White, A., Vengosh, A., 2012. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proc. Natl. Acad. Sci. U. S. A. 109 (30), 11961–11966.
Waters, C.N., 2009. Carboniferous geology of Northern England. J. Open Univ. Geol. Soc. 30, 5–16.
Waters, C.N., Browne, M.A.E., Jones, N.S., Somerville, I.D., 2011. Midland valley of Scotland. In: Waters, C.N. (Ed.), A Revised Correlation of the Carboniferous Rocks in the British Isles, Geological Society Special Report, pp. 96–102.
Wen, T., Castro, M.C., Nicot, J.P., Hall, C.M., Larson, T., Mickler, P., Darvari, R., 2016. Methane sources and migration mechanisms in shallow groundwater basins in Parker and Hood counties, Texas: a heavy noble gas analysis. Environ. Sci. Technol. 50 (21), 12012–12021.
Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314.
Williams, A.J., Stuart, F.M., Day, S.J., Phillips, W.M., 2005. Using pyroxene microphenocrysts to determine cosmogenic ^{3}He concentrations in old volcanic rocks: an example of landscape development in central Gran Canaria. Quat. Sci. Rev. 24 (1–2), 211–222.
Wilson, M., Neumann, E.-R., Davies, G.R., Zimmerman, M.J., Heeremans, M., Larsen, B.T., 2004. Permo-carboniferous magmatism and rifting in Europe: introduction. Geol. Soc. Lond. Spec. Publ. 223, 1–10.
Xu, S., Nakai, S.I., Wakita, H., Wang, X., 1995. Mantle-derived noble gases in natural gases from Songliao Basin, China. Geochim. Cosmochim. Acta 59 (22), 4675–4683. Younger, P.L., 2016. How can we be sure fracking will not pollute aquifers? Lessons from a major longwall coal mining analogue (Selby, Yorkshire, UK). Earth Environ. Sci. Trans. R. Soc. Edinb. 106 (62), 89–113.
Zhou, Z., Ballentine, C.J., Kipfer, R., Schoell, M., Thibodeaux, S., 2005. Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA. Geochim. Cosmochim. Acta 69 (23), 5413–5428.