Cesàro summation and multiplicative functions on a symmetric group

Vytas Zacharovas

November 7, 2008

Abstract

We investigate the summability in sense of Cesàro and its applications to investigation of the mean values of multiplicative functions on permutations.

Key words: Cesàro sums, Tauberian theorem, divergent series, multiplicative functions, symmetric group, random permutations.

1 Results

Let S_n be the symmetric group. Each element $\sigma \in S_n$ can be decomposed into a product of independent cycles.

$$\sigma = \kappa_1\kappa_2...\kappa_\omega$$

this decomposition is unique up to the order of the multiplicands. We will call a function $f : S_n \to \mathbb{C}$ multiplicative if $f(\sigma) = f(\kappa_1)f(\kappa_2)...f(\kappa_\omega)$. In what follows we will assume that the value of f on cycles depends only on the length of cycle, that is $f(\kappa) = \hat{f}(|\kappa|)$, where $|\kappa|$ - the order of cycle κ. Let $m_k(\sigma)$ be equal to the number of cycles in the decomposition σ whose order is equal to k. Then obviously $m_1(\sigma) + 2m_2(\sigma) + ... + nm_n(\sigma) = n$. Thus n complex number $\hat{f}(1), \hat{f}(2), ..., \hat{f}(n)$ completely determine the value of function f on any permutation $\sigma \in S_n$

$$f(\sigma) = \hat{f}(1)^{m_1(\sigma)}\hat{f}(2)^{m_2(\sigma)}...\hat{f}(n)^{m_n(\sigma)}.$$

On the group S_n we will define the so called Ewens’s measure $\nu_{n,\theta}$ by means of formula

$$\nu_{n,\theta}(\sigma) = \frac{\theta^{k(\sigma)}}{\theta(n)},$$
where \(k(\sigma) = m_1(\sigma) + m_2(\sigma) + \ldots + m_n(\sigma) \), and \(\theta_n = \theta(\theta + 1)(\theta + n - 1) \).

We will investigate the mean values of multiplicative functions with respect to Ewens measure

\[
M_n(f) = \sum_{\sigma \in S_n} f(\sigma) \nu_{n,\theta}(\sigma).
\]

Since the number of \(\sigma \) such that \(m_k(\sigma) = s_k \) is equal to \(n! \prod_{j=1}^{n} \frac{1}{s_j j^{s_j}} \), therefore

\[
\nu_{n,\theta}(m_1(\sigma) = s_1, \ldots, m_n(\sigma) = s_n) = \frac{n!}{\theta(n)} \prod_{j=1}^{n} \left(\frac{\theta}{j} \right)^{s_j} \frac{1}{s_j!}.
\]

Hence

\[
M_n(f) = \binom{n + \theta - 1}{n}^{-1} \sum_{k_1+2k_2+\ldots+nk_n=n} \prod_{j=1}^{n} \left(\frac{\theta \hat{f}(j)}{j} \right)^{k_j} \frac{1}{k_j!}.
\]

It is easy to see that \(M_n(f) \) is equal to \((n + \theta - 1)^{-1} N_n \), where \(N_n \) is defined by means of relation

\[
F(z) = \exp \left\{ \theta \sum_{j=1}^{\infty} \frac{\hat{f}(j)}{j} z^j \right\} = \sum_{m=0}^{\infty} N_m z^m.
\]

Since the numbers \(\hat{f}(j) \) with \(j > n \) do not influence the value of the coefficient of \(z^n \) therefore we will assume that \(\hat{f}(j) = 1 \) for \(j > n \). Therefore

\[
F(z) = \exp \left\{ \theta \sum_{j=1}^{\infty} \frac{\hat{f}(j)}{j} z^j \right\} = \sum_{j=0}^{\infty} N_j z^j = \frac{\exp\{\theta L_n(z)\}}{(1 - z)^{\theta}},
\]

here and in what follows \(L_n(z) = \sum_{j=1}^{n} \frac{\hat{f}(j)-1}{j} z^j \) and \(L_0(z) = 0 \).

The function \(F(z) \) is the product of two functions \(\exp\{\theta L_n(z)\} = \sum_{k=0}^{\infty} m_k z^k \) and \(\frac{1}{(1 - z)^{\theta}} = \sum_{k=0}^{\infty} \binom{n+\theta-1}{n} z^n \), therefore

\[
M_n(f) = \binom{n + \theta - 1}{n}^{-1} \sum_{j=0}^{n} m_j \binom{n - j + \theta - 1}{n - j}.
\] (1)

We will estimate the sum on the right hand side of the equation (1) by means of the following theorem.

Theorem 1.1. Let \(f(z) = \sum_{m=0}^{\infty} a_m z^m \) be analytic for \(|z| < 1 \). Let us denote

\[
S_\theta(f; n) = \sum_{k=1}^{n} k a_k \binom{n - k + \theta - 1}{n - k},
\]
then for fixed $\theta > 0$ we have
\[
\frac{1}{\binom{n+\theta-1}{n}} \sum_{k=0}^{n} a_k \left(n - k + \theta - 1 \right) - f(e^{-1/n}) - \frac{S_\theta(f; n)}{n^{(n+\theta-1)}}
\ll \frac{1}{n} \sum_{j=1}^{\infty} \left| S_\theta(f; j) \right| e^{-j/n} + \frac{1}{n^\theta} \sum_{j=n}^{\infty} \left| S_\theta(f; j) \right| e^{-j/n}.
\]

The constant in the symbol \ll depends only on θ.

The sum on the righthand side of (1), is called Cesàro mean with parameter $p = \theta - 1$. If for a given formal series $\sum_{k=0}^{\infty} a_k$ the Cesaro means with parameter p converge to some number A, then we say that $\sum_{j=0}^{\infty} a_k$ is (C, p) summable and its Cesàro sum is A and write $(C, p) \sum_{j=0}^{\infty} a_j = A$.

From Theorem 1.1 we can deduce the following result, which is probably already known.

Theorem 1.2. Suppose $p > -1$. A series $\sum_{k=0}^{\infty} a_k$ is (C, p) with summable and it’s (C, p) sum is equal to A if and only if

\[
\lim_{x \to 1^-} \frac{\sum_{k=0}^{\infty} a_k x^k}{x-1} = A, \quad (2)
\]

\[
\lim_{n \to \infty} \frac{S_{p+1}(f; n)}{n^{p+1}} = 0, \quad (3)
\]

where $f(x) = \sum_{j=0}^{\infty} a_j x^j$.

In the case when $\theta = 1$ Theorem 1.2 becomes the classical theorem of Tauber (see. e.g. [6],[7]). For this special case the proof of Theorem 1.1 can be obtained by modifying the proof of Tauber’s theorem. Let us define
\[
\mu_n(p) = \left(\frac{1}{n} \sum_{k=1}^{n} \left| \hat{f}(k) - 1 \right|^p \right)^{1/p}.
\]

Applying Theorem 1.1 we can easily prove the following result

Theorem 1.3. $p > \max \left\{ 1, \frac{1}{\theta} \right\}$ $|\hat{f}(j)| \leq 1,$

\[
M_n(f) = \exp \left\{ \theta \sum_{k=1}^{n} \frac{\hat{f}(k) - 1}{k} \right\} + O(\mu_n(p)),
\]

here the constant in symbol $O(.)$ depends only on θ and p.

The variants of Theorem 1.3 with less precise estimate of the remainder term have been proved in [2],[3],[4] and [5].
2 Proofs

Lemma 2.1. Let \(f(z) = \sum_{m=0}^{\infty} f_m z^m \) be analytic function in the region \(\Delta(\phi, \eta) = \{|z| < 1 + \eta, \ |\arg(z - 1)| > \phi\} \), where \(\eta > 0 \) and \(0 < \phi < \pi/2 \). If
\[
|f(z)| \leq K_1|1-z|^{\alpha_1} + K_2|1-z|^{\alpha_2},
\]
for \(z \in \Delta(\phi, \eta) \) then there exists such a constant \(c = c(\alpha_1, \alpha_2, \eta, \phi) \) which is independent of \(K_1, K_2 \) and such that
\[
|f_n| \leq c(K_1n^{-\alpha_1-1} + K_2n^{-\alpha_2-1}).
\]

Proof. The same as of Theorem 1 of [1]. \(\square \)

Let us denote
\[
c_{m,j} = \sum_{s=0}^{m} \frac{(m-s+\theta-1)(s-\theta-1)}{s+j},
\]
for \(j \geq 1 \). Then the generating function of \(c_{m,j} \) will have the form
\[
F_j(z) = \sum_{m=0}^{\infty} c_{m,j} z^m = \frac{1}{(1-z)^\theta} \int_0^1 (1-xz)^\theta x^{j-1} dx.
\]

Lemma 2.2. We have the following estimates for \(c_{m,j} \):

(i) \(0 \leq c_{m,j} \leq \frac{\theta}{j} e^{\theta m/j}, \ m \geq 1, \ c_{0,j} = \frac{1}{j} \);

(ii) \(c_{m,j} = \frac{(m+\theta-1)}{m} \int_0^1 (1-y)^\theta y^{j-1} dy + O\left(\frac{m^{\theta-2}}{j^\theta} + \frac{1}{m^2}\right) \).

Proof. Differentiating \(F_j(z) \) we obtain
\[
z F_j'(z) = \frac{\theta z F_j(z)}{1-z} + 1 - j F_j(z).
\]
Expanding both sides of the above equation into Taylor series and equating the coefficients of the same powers \(z^m \) we obtain
\[
c_{m,j} = \frac{\theta}{m+j} \sum_{s=0}^{m-1} c_{s,j}, \ m \geq 1
\]
and \(c_{0,j} = \frac{1}{j} \). This recurrent relation implies that
\[
0 < c_{m,j} \leq \frac{\theta}{j} \sum_{s=0}^{m-1} c_{s,j}, \ m \geq 1.
\]
Then

\[0 \leq c_{m,j} \leq b_{m,j}, \]

where \(b_{m,j} \) is solution of the recurrent equation

\[b_{m,j} = \frac{\theta}{j} \sum_{s=0}^{m-1} b_{s,j}, \quad m \geq 1, \]

with initial condition \(b_{0,j} = \frac{1}{j} \). It is easy to check that

\[b_{m,j} = \frac{\theta}{j^2} \left(1 + \frac{\theta}{j} \right)^{m-1}, \quad m \geq 1. \]

Therefore applying inequality \(1 + x \leq e^x \) we obtain the estimate (i)

\[c_{m,j} \leq \frac{\theta}{j^2} \left(1 + \frac{\theta}{j} \right)^{m-1} \leq \frac{\theta}{j^2} e^{\theta m/j}, \quad m \geq 1. \]

In order to prove estimate (ii) we will use Lemma [2.1] with \(\eta = 1/2 \) and \(\phi = \pi/4 \). We can represent \(F_j(z) \) as a sum of two functions

\[F_j(z) = \frac{1}{(1-z)^\theta} \int_0^1 (1-x)^\theta x^{j-1} dx + G_j(z). \]

Let \(z \in \Delta(1/2, \pi/4), |z - 1| < 1/2 \). Then

\[\int_0^1 (1 - z y)^\theta y^{j-1} dy - \int_0^1 (1 - y)^\theta y^{j-1} dy \]

\[= \int_0^{1-|1-z|} (1 - y)^\theta \left(\left(1 - y \frac{z - 1}{1 - y} \right)^\theta - 1 \right) y^{j-1} dy + \]

\[+ \int_{1-|1-z|}^1 (1 - y)^\theta (y^{j-1} - (1 - y)^\theta) y^{j-1} dy \]

\[\ll \int_0^{1-|1-z|} (1 - y)^{\theta - 1} y^{j-1} dy + \int_{1-|1-z|}^1 y^{j-1} |1 - z|^\theta dy \]

\[\ll |1 - z| \int_0^1 (1 - y)^{\theta - 1} y^{j-1} dy + |1 - z|^{\theta+1} \]

\[\ll \frac{|1 - z|}{j^\theta} + |1 - z|^{\theta+1}. \]
It is easy to see that the obtained estimate holds in the whole region \(\Delta(\eta, \phi) \). Therefore for \(z \in \Delta(\eta, \phi) \)

\[
G_j(z) = \frac{1}{(1-z)^\theta} \int_0^1 \left((1-yz)^\theta - (1-y)^\theta \right) y^{j-1} dy
\]

\[
\ll |1-z| + \frac{|1-z|^{1-\theta}}{j^\theta}.
\]

Applying Lemma 2.1 with \(f(z) = G_j(z) \) and taking into account (4) we obtain estimate (ii).

The lemma is proved.

\[
\Box
\]

Proof of Theorem 1.1 Since

\[
\sum_{k=1}^\infty S_\theta(f; k) z^k = \frac{zf'(z)}{(1-z)^\theta},
\]

then

\[
n \alpha_n = \sum_{k=1}^{n} S_\theta(f; k) \left(\frac{n-k-\theta-1}{n-k} \right), \quad n \geq 1.
\]

Therefore

\[
R_n := \sum_{k=0}^{n} a_k \left(\frac{n-k+\theta-1}{n-k} \right) - f(e^{-1/n}) \left(\frac{n+\theta-1}{n} \right)
\]

\[
= \sum_{k=1}^{n} \left(\frac{n-k+\theta-1}{n-k} \right) \frac{1}{k} \sum_{j=1}^{k} S_\theta(f; j) \left(\frac{k-j-\theta-1}{k-j} \right)
\]

\[
- \left(\frac{n+\theta-1}{n} \right) \sum_{k=1}^{n} e^{-k/n} \frac{1}{k} \sum_{j=1}^{k} S_\theta(f; j) \left(\frac{k-j-\theta-1}{k-j} \right)
\]

\[
= \sum_{j=1}^{n} S_\theta(f; j) c_{n-j,j} - \left(\frac{n+\theta-1}{n} \right) \sum_{j=1}^{\infty} S_\theta(f; j) \sum_{k=j}^{\infty} \frac{(k-j-\theta-1)e^{-k/n}}{k}.
\]

Suppose \(j > n/2 \), then

\[
\sum_{k=j}^{\infty} \frac{(k-j-\theta-1)e^{-k/n}}{k} = \sum_{s=0}^{\infty} \frac{(s-\theta-1)e^{-s/s}}{s+j} = \int_{0}^{e^{-1/n}} (1-x)^\theta x^{j-1} dx
\]

\[
= \int_{1/n}^{\infty} (1-e^{-y})^\theta e^{-y} dy \leq \int_{1/n}^{\infty} y^\theta e^{-y} dy
\]

\[
\ll \frac{e^{-j/n}}{jn^\theta}.
\]

6
Applying the obtained estimate and Lemma 2.2 we obtain

\[R_n - \frac{S_\theta(f; n)}{n} \]

\[\ll \sum_{j \leq n/2} |S_\theta(f; j)| c_{n-j,j} - \left(\frac{n + \theta - 1}{n} \right) \sum_{k=j}^{\infty} \frac{(k-j-\theta-1)e^{-k/n}}{k} \]

\[+ \sum_{n/2 < j < n} |S_\theta(f; j)| c_{n-j,j} + \left(\frac{n + \theta - 1}{n} \right) \sum_{j>n/2} |S_\theta(f; j)| \sum_{k=j}^{\infty} \frac{(k-j-\theta-1)e^{-k/n}}{k} \]

\[\ll \left(\frac{n + \theta - 1}{n} \right) \left(\frac{1}{n} \sum_{j \leq n/2} \frac{|S_\theta(f; j)|}{j^\theta} \right) + \frac{1}{n} \sum_{n/2 < j < n} \frac{|S_\theta(f; j)|}{n^\theta} \left(\frac{1}{n} \sum_{j>n} |S_\theta(f; j)| e^{-j/n} \right) \]

here we have used the fact that \(\left(\frac{n}{n} + \theta - 1 \right) = n^{\theta-1} \left(1 + O \left(\frac{1}{n} \right) \right) \).

The theorem is proved.

Proof of Theorem 1.2 The sufficiency of conditions (2) and (3) follows immediately from Theorem 1.1. The fact that Cesàro summability implies (2) and (3) is proved in [7].

Proof of Theorem 1.3 Let us apply Theorem 1.1 with \(f(z) = \exp \{ L_n(z) \} = \sum_{k=0}^\infty m_k z^k \). Then

\[\sum_{k=1}^\infty S_\theta(f; k) z^k = \frac{z f'(z)}{(1-z)^\theta} = F(z) \theta \sum_{k=1}^n (\hat{f}(k) - 1) z^k, \]

therefore

\[S_\theta(f; m) = \sum_{k=1}^m (\hat{f}(k) - 1) N_{m-k}. \]

Since \(|N_k| \leq \binom{k+\theta-1}{k} \) then applying Cauchy inequality with parameters \(\frac{1}{p} + \frac{1}{q} = 1 \) we obtain

\[|S_\theta(f; m)| \ll \left(\sum_{k=1}^m |\hat{f}(k) - 1|^p \right)^{1/p} \left(\sum_{k=1}^m k^{(\theta-1)q} \right)^{1/q} \]

\[\ll m^\theta \left(\frac{n}{m} \right)^{1/p} \mu_n(p). \]
Applying Theorem 1.1 and using the estimate \(\exp\{\theta L_n(e^{-1/n})\} = \exp\{\theta L_n(1)\}(1 + O(\mu_n(p))) \) we get

\[
\frac{N_n}{n^{n+\theta-1}} - \exp \left\{ \theta \sum_{k=1}^{n} \hat{f}(k) - 1 \right\} \ll \mu_n(p) + \frac{\mu_n(p)}{n} \sum_{m=1}^{\infty} \left(\frac{n}{m} \right)^{1/p} e^{-m/n} \\
+ \mu_n(p) \frac{1}{n^\theta} \sum_{m=n}^{\infty} m^{\theta-1} \left(\frac{n}{m} \right)^{1/p} e^{-m/n} \\
\ll \mu_n(p).
\]

The theorem is proved. \(\square \)

References

[1] P. Flajolet, A. Odlyzko, Singularity analysis of generating functions, *SIAM J. Discrete Math.*, 3 (1990), 2, p. 216–240.

[2] E. Manstavičius, The Berry-Esseen bound in the theory of random permutations. *The Ramanujan Journal*. 2 (1998), 185-199.

[3] E. Manstavičius, A Tauber theorem and multiplicative functions on permutations. *Number Theory in Progress*, Eds K. Győry et al, Walter de Gruytnet, Berlin, New York, 1999, 1025 - 1038.

[4] E.Manstavičius, Decomposable mappings on combinatorial structures. Analytic approach. Preprint 98–15, VU Department of Mathematics, 1999, 16 p.

[5] E. Manstavičius, Additive and multiplicative functions on random permutations, *Lithuanian Math. J.*, 36 (1996), 4, 400–408.

[6] G. Tenenbaum, *Introduction to Analytic and Probabilistic Number Theory*, Cambridge Studies in Advanced Mathematics, 46, University Press, Cambridge, 1995.

[7] G. H. Hardy, *Divergent Series*, Izd. inostr. lit., Moscow, 1951 (in Russian).