Label Denoising with Large Ensembles of Heterogeneous Neural Networks

Pavel Ostyakov, Roman Suvorov, Elizaveta Logacheva, Vladimir Aliev, Gleb Sterkin, Oleg Khomenko
{p.ostyakov, r.suvorov, e.logacheva, v.aliev, g.sterkin, o.khomenko}@samsung.com

SAMSUNG AI Center
- Moscow

(2nd place)
Problem statement

Problem

Multilabel classification problem with **avg. labels per video ~ 3.0** out of **3862 classes**;
Labels are **automatically generated** with the YouTube video annotation system;
Final model should be TF Graph and meet 1Gb size requirement.

Data

- Updated youtube8m dataset with **improved** quality **machine-generated labels**, and **reduced size** video dataset;
- Hidden representation produced by Deep CNN pretrained on the ImageNet dataset; for both **audio spectrogram and video frames taken at rate of 1Hz**;
- The dataset also contains **aggregated video-level features extracted as averaged frame-level features**;
- 1024 video features; 128 audio features;
- Frame-level train: 1.3 Tb; Frame-level test: 268 Gb;
- Video-level train: 12 Gb; Video-level test: 2.5 Gb.
Evaluation

Evaluation metric — GAP@20
The GAP metric takes the predicted labels with the highest k=20 confidence scores for each video, treats each prediction as an individual data point in a long list of global predictions sorted by their confidence scores. The list is then be evaluated with Average Precision across all of the predictions and all the videos:

\[
AP = \sum_{i=0}^{N} p(i) \Delta r(i)
\]

where \( N = 20 \times \) number if videos, \( p(i) \) is the precision, and \( r(i) \) is the recall given the first \( i \) predictions.
General approach

Our team sticked to the following approach:

- Train various first-level models;
- Train an ensemble on predicted labels using LightGBM;
- Extract out-of-fold predictions from the ensemble;
- Train several models using soft-labels;
- Finally, train second-level NN.

**Loss.** Binary cross-entropy was selected as main loss function, although other options were also tried (soft ranking loss, hinge ranking loss). Reweighting target labels caused lower GAP@20 results.
Flowchart of our approach

- **L1 models**
  - Frame-level / video-level NN models
  - \( X^1, y^1 \)
  - \( X^2, y^2 \)
  - \( X^3, y^3 \)
  - \( X^4, y^4 \)
  - \( X^5, y^5 \)
  - \( \text{model}^1_{1,1} \)
  - \( \text{model}^2_{1,1} \)
  - \( \text{model}^3_{1,1} \)
  - \( \text{model}^4_{1,1} \)
  - \( \text{model}^5_{1,1} \)
  - \( \text{model}^1_{1,2} \)
  - \( \text{model}^2_{1,2} \)
  - \( \ldots \)
  - \( \text{model}^5_{1,n} \)

- **L1 predictions**
  - LGBM model is trained using predictions of L1 models
  - \( \hat{y}^1_1, \hat{y}^1_2, \ldots, \hat{y}^1_n \)
  - \( \hat{y}^2_1, \hat{y}^2_2, \ldots, \hat{y}^2_n \)
  - \( \hat{y}^3_1, \hat{y}^3_2, \ldots, \hat{y}^3_n \)
  - \( \hat{y}^4_1, \hat{y}^4_2, \ldots, \hat{y}^4_n \)
  - \( \hat{y}^5_1, \hat{y}^5_2, \ldots, \hat{y}^5_n \)

- **L2 models**
  - LGBM model is trained using predictions of L1 models
  - \( \text{LGBM}^1 \)
  - \( \text{LGBM}^2 \)
  - \( \text{LGBM}^3 \)
  - \( \text{LGBM}^4 \)
  - \( \text{LGBM}^5 \)

- **Distillation #1**
  - Models are trained using soft-labels
  - \( \text{model}^1_{2,1} \)
  - \( \text{model}^2_{2,1} \)
  - \( \text{model}^3_{2,1} \)
  - \( \text{model}^4_{2,1} \)
  - \( \text{model}^5_{2,1} \)
  - \( \text{model}^1_{2,2} \)
  - \( \text{model}^2_{2,2} \)
  - \( \text{model}^3_{2,2} \)
  - \( \text{model}^4_{2,2} \)
  - \( \text{model}^5_{2,2} \)

- **Distillation #2**
  - Result
  - \( \hat{y}^1_4, \hat{y}^2_4, \hat{y}^3_4, \hat{y}^4_4, \hat{y}^5_4 \)

youtube8m, Samsung AI Center Moscow (#2)
First level models

- We used only neural networks models both as for video-level and frame-level;
- Models were written in PyTorch and trained using multiple NV P40s;
- Trained for 4 days max;
- 95 video-level and 20 frame-level models were trained;
- For diversity some underperformed models were added (video/audio-only models, under fitted models, models trained on subsampled features, etc.)

Data aug. & Sampling
mixup; subsampling frames {at random | at regular intervals | using thresholds for cosine distances};
MixUp

The mixup method produces “virtual” training samples as linear combinations of existing training and their targets:

\[ x = \lambda x_i + (1 - \lambda) x_j \]
\[ y = \lambda y_i + (1 - \lambda) y_j \]

where \((x_i, y_i)\) and \((x_j, y_j)\) are feature-target vectors sampled from training data and

\[ \lambda \sim \text{Beta}(\alpha, \alpha) \], where \(\alpha = 0.4\) (empirically set parameter)
Video-level models

- ResNet-like architecture [n01z3]
- More than 90 different ResNet-like models were used as a first-level ensemble;
- Hyperparameters were tuned: Number of Audio & Video blocks, Inner size, Dropout.

The best GAP@20 with ResNet-like architecture was: **0.87417** (+ soft-labels), **0.86105** (+ mixup)
Frame-level models

Temporal frame-level representation of the videos was used in frame-level models

- Unidirectional and bidirectional LSTM followed by FC;
- Learnable bag-of-words via VLADBoW model;
- Attention-based model;
- Time-distributed models (with convolution/dense layers);
- Frames replaced with cluster centroids (k-means, k=10000);

Best GAP@20 for single model (frame-level): 0.85325
Second level model

We implemented several ensembling stages for the second level models:

- Second level LGBM model over top-30 categories of best first level models
- Small ensemble (6 models) trained on the out-of-fold soft-labels
- Final model trained on predictions of small ensemble in common TF Graph

Best GAP@20 for Large Ensemble: 0.88943

Best GAP@20 for Final Ensemble: 0.88729
# LGBM dataset

| Class ID | Model 1 | Model 2 | Model 3 | ... | Model 115 | Label |
|----------|---------|---------|---------|-----|-----------|-------|
| Tag 1    | 0.99    | 0.97    | 0.975   | ... | 0.87      | 1     |
| Tag 2    | 0.98    | 0.87    | 0.93    | ... | 0.71      | 1     |
| Tag 3    | 0.99    | 0.3     | 0.54    | ... | 0.89      | 0     |
| ...      | ...     | ...     | ...     | ... | ...       | ...   |
| Tag 30   | 0.92    | 0.94    | 0.99    | ... | 0.1       | 1     |

youtube8m, Samsung AI Center Moscow (#2)
Final Ensemble

Video level features

FC model → FC model

FC layers

3862
Details and insights

- Using frame-level models didn't show any significant improvements over video-level models (see results);
- EDA was kind of useless in the competition (at least for us);
- We assume there are still many noisy labels in the dataset;
- Lower batch size improves results, while not increasing training time;
- BCE results strongly correlate with GAP@20 evaluation results.
Results (validation)

Validation results for models.

Fr. — Frame-level models, Ens. — model was a part of final ensemble

| Model                                      | Fr. | GAP@20   | BCE         | Ens. |
|--------------------------------------------|-----|----------|-------------|------|
| Final ensemble                             | ✓   | 0.88729  | —           | ✓    |
| 1 ResNetLike + soft labels                 | ×   | 0.87417  | 9.2 × 10^{-4} | ✓    |
| 2 ResNetLike + mixup                       | ×   | 0.86105  | 9.7 × 10^{-4} | ✓    |
| 3 ResNetLike over linear combinations      | ✓   | 0.85325  | 1.02 × 10^{-3} | ✓    |
| 4 ResNetLike + soft ranking loss           | ×   | 0.85184  | —           | ✓    |
| 5 AttentionNet                             | ✓   | 0.85094  | 1.08 × 10^{-3} | ✓    |
| 6 LSTM-Bi-Attention                        | ✓   | 0.84645  | 1.04 × 10^{-3} | ✓    |
| 7 Time Distributed Convolutions           | ✓   | 0.84144  | 1.0 × 10^{-3}  | ✓    |
| 8 VLAD-BOW + learnable power              | ✓   | 0.83959  | 1.1 × 10^{-3}  | ✓    |
| 9 Video only ResNetLike                    | ×   | 0.83212  | 1.1 × 10^{-3}  | ✓    |
| 10 Time Distributed Dense Sorting          | ✓   | 0.83136  | —           | ×    |
| 11 EarlyConcatLSTM                         | ✓   | 0.82998  | 1.2 × 10^{-3}  | ✓    |
| 12 Time Distributed Dense Max Pooling      | ✓   | 0.82656  | 1.1 × 10^{-3}  | ✓    |
| 13 Self-attention (transformer encoder)    | ✓   | 0.8237   | 1.2 × 10^{-3}  | ✓    |
| 14 10000 clusters + ResNetLike             | ✓   | 0.7900   | 1.3 × 10^{-3}  | ✓    |
| 15 Audio only ResNetLike                   | ×   | 0.50676  | 2.5 × 10^{-3}  | ✓    |
| 16 Bottleneck 4 neurons                    | ×   | 0.41079  | 2.9 × 10^{-3}  | ✓    |
Results (leaderboard)

- No shake-up;
- Starter Code gives 0.80931;
- Green / Gold / Silver / Bronze: 0.88527, 0.88027, 0.86004, 0.82930
Conclusion

- Use ensembling and distillation;
- Large ensembles can be good even if models within ensemble have weak performance;
- Soft labels can be useful when labeling is noisy;
- Mixup works.
Thank you for your attention

Pavel Ostyakov, Roman Suvorov, Elizaveta Logacheva, Vladimir Aliev, Gleb Sterkin, Oleg Khomenko
{p.ostyakov, r.suvorov, e.logacheva, v.aliev, g.sterkin, o.khomenko}@samsung.com

We are hiring!

SAMSUNG AI Center
- Moscow