Echinococcus granulosus Infection Results in an Increase in Eisenbergiella and Parabacteroides Genera in the Gut of Mice

Jianling Bao1,2, Huajun Zheng3,4, Yuezhu Wang3, Xueting Zheng1, Li He1, Wenjing Qi1, Tian Wang1, Baoping Guo1, Gang Guo1, Xiaoxia Zhang1, Wenbao Zhang1,2*, Jun Li1* and Donald P. McManus5

OPEN ACCESS

EDITED BY:
Jesus L. Romalde, Universidade de Santiago de Compostela, Spain

REVIEWED BY:
Catherine Eichwald, University of Zurich, Switzerland
Majid Fasihi Harandi, Kerman University of Medical Sciences, Iran

*CORRESPONDENCE:
Wenbao Zhang
wenbaozhang2013@163.com
Jun Li
1742712944@163.com;
1742712944@qq.com

SPECIALTY SECTION:
This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

RECEIVED: 16 December 2017
ACCEPTED: 12 November 2018
PUBLISHED: 29 November 2018

Cystic echinococcosis (CE) is a chronic infectious disease caused by Echinococcus granulosus. To confirm whether the infection impacts on the gut microbiota, we established a mouse model of E. granulosus infection in this study whereby BALB/c mice were infected with micro-cysts of E. granulosus. After 4 months of infection, fecal samples were collected for high-throughput sequencing of the hypervariable regions of the 16S rRNA gene. Sequence analysis revealed a total of 13,353 operational taxonomic units (OTUs) with only 40.6% of the OTUs having genera reference information and 101 of the OTUs were significantly increased in infected mice. Bioinformatics analysis showed that the common core microbiota were not significantly changed at family level. However, two genera (Eisenbergiella and Parabacteroides) were enriched in the infected mice (PAMOVA < 0.05) at genus level. Functional analysis indicated that seven pathways were altered in the E. granulosus Infection Group compared with the Uninfected Group. Spearman correlation analysis showed strong correlations of IgG, IgG1 and IgG2a with nine major genera. E. granulosus cyst infection may change the gut microbiota which may be associated with metabolic pathways.

KEYWORDS: Echinococcus granulosus, cystic echinococcosis, mice, microbiome, immunoglobins

INTRODUCTION

Cystic echinococcosis (CE) is a cosmopolitan zoonosis caused by the cystic stage of the dog tapeworm Echinococcus granulosus (McManus et al., 2012). The disease causes serious health problems and economic losses, especially in Central Asia (including western China), northern Africa and South America (McManus et al., 2012). E. granulosus requires two hosts [an intermediate host including sheep, goats, cattle or wild herbivores and a definitive host such as dogs (or wolves and other carnivores)] to complete its life-cycle. Humans also become infected as an incidental host by ingesting eggs released from E. granulosus in carnivore feces. After hatching in the stomach and
The gut microbiota play an important role in human health (Chen et al., 2017) impacting on metabolism, immunity, development and the behavior of the host (Thaiss et al., 2016). In addition, microbiota components are impacted by medical conditions such as cancer (Jensen et al., 2015; O’Keefe, 2016; Sonnenburg and Backhed, 2016). Similar changes occur in experimental models as well (Gkouskou et al., 2014; Yu et al., 2018). Studies showed that helminth infection in the gut induces typical Th2 immune responses which may control the microbiota in the gut of mice (Ramanan et al., 2016; Guernier et al., 2017; Wegener Parfrey et al., 2017). However, it is not known whether *E. granulosus* infection impacts on the gut microbiota of humans or mice. Mice have been used for *E. granulosus* larval infection including primary (Zhang et al., 2001) and secondary infection (Gottstein, 2001; Mourglia-Ettlin et al., 2016). Mice models play an important role in studies of developmental biology and host specificity in echinococcosis (Nakaya et al., 2006). Recently, mouse models were successfully used for drug screening and development (Elissondo et al., 2007; Wang et al., 2017). To increase the success of secondary infection, we developed a method using micro-cysts cultured in vitro to infect mice (Zhang et al., 2005), and obtained more than 70% of cyst recovery from 50 PSC-generated cysts.

In this study, BALB/C mice were infected with micro-cysts of *E. granulosus* and their fecal samples were collected for sequencing the variable regions of 16S rRNA genes of gut commensal bacteria to determine their composition and diversity. We show that *E. granulosus* impacted on the gut microbiota of the mice with microbiota changes likely being associated with the altered host immune status in infected individuals.

MATERIALS AND METHODS

Ethics Statement

The protocols for using mice in the study were approved by the Ethics Committee of The First Affiliated Hospital of Xinjiang Medical University (FAH-XMU, Approval No. IACUC-201206250003). The “Guidelines for the Care of Laboratory Animals” by the Ministry of Science and Technology of the People’s Republic of China (2006) were rigidly followed in the use of these animals.
TABLE 1 | The number and average size of cysts in the *E. granulosus* infection group.

	Eg1	Eg2	Eg3	Eg4	Eg5	Eg11	Eg12	Eg13	Eg14	Eg15	Eg31	Eg32	Eg33	Eg35
Number of cysts	12	15	17	37	21	16	17	14	15	11	12	8	23	13
Average size of cysts (cm)	0.58	0.54	0.58	0.72	0.74	0.55	0.67	0.42	0.49	0.71	0.55	0.75	1.01	0.77

*Eg, mice infected with *E. granulosus.*

FIGURE 1 | IgG antibody isotypes and subtypes in sera of mice infected with *E. granulosus.* *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001.

The V3–V4 hypervariable region of the 16S rRNA gene was amplified by PCR and sequenced; the length of the V3–V4 hypervariable region was approximately 469 bp. Amplicon pools were prepared for sequencing with AMPure XT beads (Beckman Coulter Genomics, Danvers, MA, United States) and quantification with the Library Quantification Kit for Illumina (Kapa Biosciences, Woburn, MA, United States), respectively. The libraries were sequenced on 300PE MiSeq runs.

Bioinformatics and Statistical Analysis

Mothur (version 1.39.5) was used to assemble the paired FASTQ files (Schloss et al., 2011). The selected quality DNA sequences were confirmed using the following criteria: (1) no contaminant sequences, (2) containing no ambiguous bases, (3) the size length ≥350 bp, (4) containing no chimeric sequences, and (5) primers were trimmed. The average length of selected DNA sequences was 414 bp (350–446 bp). The selected DNA sequences were then grouped into operational taxonomic units (OTUs) by comparing with SILVA reference databases (V128) (Quast et al., 2013) at 97% similarity. The minimum reads number of samples (24,097) was used for data normalization. Community richness, evenness and diversity analysis (Shannon, Simpson, Shannoneven, Simpsonenven, ACE, Chao and Good’s coverage) were analyzed using the Mothur *T*-test (with 95% confidence
Spearman rank correlation algorithm. A coefficient of correlation was calculated to estimate the relationship between bacterial genera and antibody isotypes. Statistical analysis was performed using the R statistical package through the STAMP (Parks et al., 2019) software. Differences were determined using STAMP (Parks et al., 2019) software commands “classify.otu” and “make.biom”. PICRUSt (Langille et al., 2013) was also performed to detect abundance taxa at the phylum level (80% threshold) (Wang et al., 2007) based on the RDP (Cole et al., 2009) classifier. LEfSe (Segata et al., 2011) was also performed to detect abundance taxa using “metastats” command. Differences among the two groups were also assessed using Analysis of Molecular Variance (AMOVA) in Mothur. Microbiome functions were analyzed using PICRUSt based on the KEGG (AMOV A) in Mothur. Microbiome groups were also assessed using Analysis of Molecular Variance (AMOVA) in Mothur. Microbiome functions were analyzed using PICRUSt (Langille et al., 2013) based on the KEGG pathways by normalizing the 16S rRNA copy numbers. The input file (biom file) of PICRUSt was calculated using the Mothur software command “classify.otu” and “make.biom”, and then the input file was uploaded to the online PICRUSt for function analysis. Differences were determined using STAMP (Parks et al., 2014).

Correlation of Antibody Isotypes and Bacteria

Statistical analysis program-R Package was performed to calculate the coefficient relationship between bacterial genera present and immunoglobulin isotypes using the non-parametric Spearman rank correlation algorithm. A coefficient of >0.68 or <−0.68 was considered to represent strong correlation (Taylor, 1990).

RESULTS

Infection and Blood Serum Isotypes

In this study 14 mice were transplanted with 35 micro-cysts of *E. granulosus*. All the mice were successfully infected with an average number of 16 (SD ± 7.0) cysts and an average size of 6.4 mm (0.1–21 mm) in diameter (Table 1). Serological antibody tests showed that these infected mice had a predominantly IgG1 antibody response against HCF antigens, followed by IgG2b, IgG2a and IgG3 (Figure 1), indicating *E. granulosus* infection induced a predominant Th2 response.

Bacterial Populations in the Stool Samples

Stool samples from the 25 mice were collected for gastrointestinal microbiota analysis, including 14 samples from the mice infected with cysts of *E. granulosus* (Infected Group) and 11 control samples from mice without infection (Uninfected Group). A total of 1,383,569 16S rRNA genes were identified by high-throughput DNA sequencing analysis after filtering through quality control filters. The gene numbers ranged from 24,097 (from one in Uninfected Group) to 86,478 genes. To normalize the data to avoid statistical bias, 24,097 genes from the mice with the lowest gene number were used as a baseline for normalization of all the sequences. OTU (97% similarity) analysis was used to estimate richness, evenness and diversity of the bacterial communities. A total of 13,353 OTUs were obtained including 9,118 OTUs from mice infected with *E. granulosus*, and 8,423 OTUs from the uninfected mice (Table 2). No significant difference was evident between the two groups of mice in terms of OTU numbers (p > 0.05). The Good’s coverage was over 93.5% (93.5–97.8%) for each sample, and over 98% for the two groups, respectively (Table 2), meaning that the sequencing depth was sufficient to undertake microbiota analysis with two groups.

Core Microbiome in the Gut of Mice

Ribosomal Database Project analysis showed that 99.7% of the 16S rRNA genes were aligned into nine phyla with the common bacteria *Firmicutes, Bacteroidetes* and *Proteobacteria* being dominant in both infected and uninfected groups. RDP analysis clustered 93.5% of the genes (OTUs) into 58 families and 13 families were identified as the major taxa and core microbiomes co-existing in the two groups. The genes in those families accounted for 91.61 and 94.27% of the microbiome community in the infected group and uninfected group, respectively (Table 3). Among the 13 families, *Lachnospiraceae* was mostly predominant in both groups, accounting for 41.42 and 43.92% of the total microbiome, respectively. *Ruminococcaceae* and

TABLE 2 | The diversity evaluation of the microbiomes of mice infected with cystic echinococcosis and uninfected mice.

Group	Sample	OTUs	Coverage (%)	Chao	ACE	Simpson Even	Shannoneven	Shannon	Simpson
Infected	14	9,118	98.50	26,873.315	32,509.715	0.01444	0.646977	5.899138	0.007595
Uninfected	11	8,423	98.25	25,099.202	27,006.635	0.01675	0.660714	5.972012	0.007084

Infected, mice infected with *E. granulosus*; Uninfected, uninfected mice; OTUs, operational taxonomic units; Chao, Chao index; ACE, ACE index.

TABLE 3 | The major families of microbiota in *E. granulosus* infected mice and uninfected mice.

Family	Uninfected (%)	Infected (%)	p-value
Lachnospiraceae	41.42	43.92	> 0.05
Porphyromonadaceae	14.21	15.75	> 0.05
Ruminococcaceae	11.52	18.07	> 0.05
Rikenellaceae	6.61	5.33	> 0.05
Bacteroidaceae	5.80	5.93	> 0.05
Helicobacteraceae	3.31	3.94	> 0.05
Prevotellaceae	2.32	2.20	> 0.05
Desulfovibrionaceae	1.94	1.94	> 0.05
Coriobacteriaceae	0.14	0.20	> 0.05
Deferribacteraceae	1.82	1.80	> 0.05
Lactobacillaceae	1.80	0.90	> 0.05
Enterobacteriaceae	0.39	0.17	> 0.05
Erysipelotrichaceae	0.33	0.29	> 0.05

Uninfected, uninfected mice; Infected, mice infected with *E. granulosus*. Echinoscopiosis Impact on Microbiota in Mice.
Porphyromonadaceae were also dominant (>10% of the entire microbiome in both groups).

Among the 58 families, 40.4% of genes (OUTs) have genus reference information and were aligned into 105 classified genera (Figure 2). There were 57 genera co-existing in both groups. However, there were 24 genera present in the Infection Group and another 24 genera in the Uninfected Group. The proportion of all the group unique genera was less than 0.01%, and no significant differences were found between the two groups.

Among the 105 classified genera, 33 were core genera (with each genus comprising >0.1% of total the microbiome), including Bacteroides, Odoribacter, Clostridium XIVA, Helicobacter, Alistipes, Barnesiella and Mucispirillum (Table 4). Among the predominant genera, there were 27 ubiquitous (core) genera which were consistently found in all samples and comprised more than 38% of the total microbiome.

At the OTU level, there were significant differences between the two groups; 101 OTUs were significantly increased and 49 OTU were significantly decreased in the infected group (p < 0.05) (Table 5). Of note, most (59.6%) OTUs were unclassified into genera as no classification information is available for these OTUs.

Bacterial Composition in Different Groups

LEfSe analysis showed the composition of the bacterial populations in the guts of the infected and uninfected mice was similar, whereas richness, evenness and diversity were only slightly changed (Table 2 and Figure 3). In contrast, AMOVA analysis showed significant difference between the two groups for the microbiota (PAMOVA = 0.029). Species richness (OTU, ACE and Chao index) was higher in the E. granulosus Infected Group, and the evenness (Shannoneven and Simpson even) was lower in this group compared with the uninfected mice. As richness and evenness combined, there was no significant difference in the diversity between the two groups (p > 0.5). Consequently, the results of these analyses indicated that E. granulosus infection did not alter much of the composition of the core bacteria present in the mouse gut significantly, although some rare bacteria in very low abundance were increased.

Among the 13 core families, LEfSe analysis showed no significant difference between the E. granulosus Infected Group and Uninfected Group in terms of microbiome. Among the major abundant genera, three showed significant differences between the groups (Table 4, LDA > 2, p < 0.05). The infected mice significantly increases two genera, including Eisenbergiella (1.9 times) and Parabacteroides (17.5 times) compared with the uninfected mice (p < 0.05).

Predicted Functional Potential Changes in the Microbiomes of the E. granulosus Infection and Uninfected Groups

We used PICRUSt to predict and compare the microbial functional potential changes between the two groups. A total of 47 Kos were found to be significantly increased in the Infected
Correlations Between Bacterial Composition and Immunoglobulin Isotypes

Spearman correlation analysis showed strong correlations of IgG, IgG1 and IgG2a with nine major genera (Table 7 and Figure 4). The numbers of *Enterorhabdus*, *Barnesiella* and *Clostridium* XIVa were positively correlated with IgG1, IgG2a and IgG2b levels, respectively. IgA was positively associated with increased numbers of genera *Clostridium IV*, *Lachnospiraceae Incertae sedis* and *Mucispirillum*. In addition, IgG3 was associated with decreased numbers of genera *Escherichia/Shigella*, *Ruminococcus*, *Ruminococcus/Intestinimonas* and *Ruminococcus*, respectively (Table 7).

DISCUSSION

The ecological balance of the microbiota in the gut is crucial for maintaining healthy condition (Cani et al., 2008). Disruption of the balance of the gut microbiota is associated with a range of diseases, including colorectal cancer, autoimmune diseases, metabolic diseases, among others (Sokol et al., 2008; Jiang et al., 2015). In this study, we showed that *E. granulosus* infection increased two genera of gut microbiota: *Eisenbergiella* and genus...
TABLE 5 | The abundance of OTU (p < 0.01) in the infected mice and uninfected mice determined by LEfSe analysis.

#OTU	Taxonomy	Uninfected: mean rel.freq. (%)	Infected: mean rel.freq. (%)	p-values
OTU00452	Clostridiales; Lachnospiraceae; Clostridium XIVA	0.0139687	0.04387	0.000351
OTU00048	Desulfovibrionales; Desulfovibrionaceae; unclassified Desulfovibrionaceae	0.0067907	0.93419	0.000472
OTU00409	Clostridiales; Lachnospiraceae; Acetatifactor	0.0033954	0.040906	0.001051
OTU00832	Desulfovibrionales; Desulfovibrionaceae; unclassified Desulfovibrionaceae	0	0.013043	0.001199
OTU01146	Clostridiales; Lachnospiraceae; unclassified Lachnospiraceae	0.0075453	0.000296	0.001367
OTU01119	Clostridiales; Lachnospiraceae; unclassified Lachnospiraceae	0.003773	0.005336	0.001834
OTU00050	Bacteroidales; Porphyromonadaceae; Parabacteroides	0.1011065	0.450856	0.002202
OTU00186	Clostridia; Clostridiales; unclassified Clostridiales	0.1844817	0.046538	0.00282
OTU00122	Clostridiales; Lachnospiraceae; Eisenbergiella	0.0211267	0.335252	0.002849
OTU00410	Clostridiales; Ruminococcaceae; Oscillibacter	0.0045272	0.034681	0.003348
OTU00058	Campylobacterales; Helicobacteraceae; Helicobacter	0.5880985	0.596103	0.003788
OTU00720	Clostridiales; Clostridiales; unclassified Clostridiales	0.0015091	0.01245	0.00456
OTU01984	Desulfovibrionales; Desulfovibrionaceae; unclassified Desulfovibrionaceae	0	0.002668	0.006591
OTU01307	Clostridiales; Lachnospiraceae; unclassified Lachnospiraceae	0.0003773	0.004743	0.007635
OTU01051	Bacteria; Firmicutes; unclassified Firmicutes	0.0003773	0.007411	0.007741
OTU02591	Desulfovibrionales; Desulfovibrionaceae; unclassified Desulfovibrionaceae	0	0.001779	0.008089
OTU01588	Bacteroidales; Porphyromonadaceae; Odoribacter	0.0033954	0.00296	0.008438
OTU00715	Desulfovibrionales; Desulfovibrionaceae; unclassified Desulfovibrionaceae	0.0120724	0.003261	0.008709
OTU00480	Clostridiales; Lachnospiraceae; unclassified Lachnospiraceae	0.0049044	0.049206	0.009747

FIGURE 3 | The microbial diversity variability in mice infected (Infected Group) or uninfected (Uninfected Group) with *E. granulosus*. LEfSe analysis showed the composition of the bacterial populations in the guts of the infected and uninfected mice was similar, whereas richness, evenness and diversity were no changed.

Parabacteroides, with most genera remaining unchanged. The two genera are in the family *Lachnospiraceae*. Their increase may impact on human health (Plieskatt et al., 2013), and may be associated with diabetes in mice (Kameyama and Itoh, 2014).

At the OTU level, there were 150 OTUs significantly changed in the infected mice. However, among the OTUs, only 49 OTUs have taxonomic information at genus level with 101 without predicted taxonomic classification information, which limited our further analysis (**Table 5**). Additionally, the LEfSe analysis also showed genera *Eisenbergiella* and *Parabacteroides* increased in the infected mice, suggesting that these two genera of bacteria might be biomarkers for *E. granulosus* infection. In our study, the genus *Eisenbergiella* in the family *Lachnospiraceae* was up-regulated significantly in the infected mice, however, there is very limited biological function information on this genus. Combined with antibody analysis in this study, this genus of bacteria may be associated with a Th2 response.

Another increased genus in Infected Group is *Parabacteroides* whereas species belonging to the genus *Parabacteroides* are saccharolytic (Rajilic-Stojanovic and de Vos, 2014), being...
TABLE 6 | Functional predictions using the PICRUSt base on 16S rRNA gene copy numbers.

KO accession	Annotation	Infected	Uninfected	p-value
K00655	1-acyl-sn-glycerol-3-phosphate acyltransferase [EC:2.3.1.51]	17,607	15,826	0.01887
K02312	2,3-dihydroxybenzoate-AMP ligase [EC:2.7.7.58]	4,214	3,074	2.43E−02
K01826	5-carboxymethyl-2-hydroxymuconate isomerase [EC:5.3.3.10]	2	0	0.015531
K01905	Acetyl-CoA synthetase (ADP-forming) [EC:6.2.1.13]	4,216	3,063	0.02436
K12554	Alanine adding enzyme [EC:2.3.3.2.-]	1	0	0.020538
K03541	Amylosucrase [EC:2.4.1.4]	4,223	3,068	0.023681
K03325	Arsenite transporter, ACR3 family	5,022	3,773	1.16E−02
K01305	Beta-aspartyl-dipeptidase (metallo-type) [EC:3.4.19.-]	4,245	3,082	0.023369
K11754	Dihydrofolate synthase/folylpolyglutamate synthase [EC:6.3.2.12 6.3.2.17]	26,899	24,234	0.011904
K07458	DNA mismatch endonuclease, patch repair protein [EC: 3.1.-.-]	4,883	3,692	0.01095
K06212	Formate transporter	4,268	3,116	0.021367
K13892	Glutathione transport system ATP-binding protein	4,226	3,072	0.024579
K04653	Hydrogenase expression/formation protein HypC	7,620	6,473	0.017468
K04654	Hydrogenase expression/formation protein HypD	7,624	6,475	0.016744
K04655	Hydrogenase expression/formation protein HypE	7,696	6,567	0.019062
K04656	Hydrogenase maturation protein HypF	7,630	6,479	0.016758
K04652	Hydrogenase nickel incorporation protein HypB	7,888	6,740	0.021211
K09091	Hypothetical protein	4,225	3,076	2.37E−02
K09703	Hypothetical protein	4,217	3,064	0.024347
K07301	Inner membrane protein	8,454	7,324	0.000592
K03779	L(+)-tartrate dehydratase alpha subunit [EC:4.2.1.32]	4,264	3,106	0.024966
K00879	L-fuculokinase [EC:2.7.1.51]	4,246	3,099	0.023788
K08369	MFS transporter, putative metabolite:H+ symporter	4,280	3,112	0.021188
K02018	Molybdate transport system permease protein	10,849	8,353	2.09E−02
K03637	Molybdenum cofactor biosynthesis protein C	5,564	4,311	0.024072
K07474	Phage terminase small subunit	4,318	3,190	0.022446
K02759	PTS system, cellbiose-specific IIA component [EC:2.7.1.69]	4,336	3,207	0.022898
K02760	PTS system, cellbiose-specific IIB component [EC:2.7.1.69]	4,448	3,372	0.019282
K02777	PTS system, glucose-specific IIA component [EC:2.7.1.69]	4,677	3,516	0.016117
K10026	Queuosine biosynthesis protein QueE	4,760	3,668	2.47E−02
K12996	Rhamnosyltransferase [EC:2.4.1.-]	4,219	3,080	0.024267
K03086	RNA polymerase primary sigma factor	17,918	16,006	3.41E−03
K05297	Rubredoxin-NAD+ reductase [EC:1.18.1.1]	4,352	3,216	0.020307
K03438	S-adenosyl-methyltransferase [EC:2.1.1.-]; 16S rRNA (cytosine1402-N4)-methyltransferase [EC:2.1.1.199]	16,924	15,121	0.014162
K07313	Serine/threonine protein phosphatase 1 [EC:3.1.3.16]	5,067	3,888	0.010963
K02945	Small subunit ribosomal protein S1	16,311	14,363	1.68E−03
K05814	sn-glycerol 3-phosphate transport system permease protein	4,248	3,118	0.023484
K11928	Sodium/proline symporter	4,419	3,257	0.022096
K01695	Tryptophan synthase alpha chain [EC:4.2.1.20]	9,531	8,500	0.021878
K07665	Two-component system, OmpR family, copper resistance phosphate regulon response regulator CusR	7,719	6,661	0.012516
K04784	Yersiniabactin non-ribosomal peptide synthetase	4,212	3,062	0.024426
Average		2,156	2,116	

The numbers of Infected and Uninfected were the normalization of copy numbers. Uninfected, uninfected mice; Infected, mice infected with E. granulosus.

producers of short chain fatty acids (SCFAs) including acetate, propionate and butyrate as bacterial fermentation products (Cummings et al., 1987; Correa-Oliveira et al., 2016; Lloyd-Price et al., 2016). SCFAs act as links between the microbiota and the host immune system (Correa-Oliveira et al., 2016). The liver is the major systemic organ for SCFA metabolism and consumption
TABLE 7 | Genera of bacteria correlating highly with serum antibody isotypes in *E. granulosus* infected mice and uninfected mice.

Genus	Uninfected (%)	Infected (%)	Factor	Uninfected	Infected	Spearman Coef	p-value
Barnesiella	2.06	2.99	IgG2a	0.2758	0.8682	0.9	0.037386
Ruminococcus	0.13	0.02	IgG1	0.2801	3.4034	−0.9	0.037386
Ruminococcus	0.13	0.02	IgG2b	0.2434	0.8148	−0.9	0.037386
Ruminococcus	0.13	0.02	IgG3	0.2329	1.0469	−1	0
Ruminococcus	0.13	0.02	IgM	0.3879	2.7058	−0.9	0.037386
Clostridium IV	0.04	0.06	IgA	0.1563	0.3758	0.9747	0.004818
Enterorhabdus	0.06	0.08	IgG1	0.2801	3.4034	0.9	0.037386
Intestinimonas	0.13	0.11	IgG2b	0.2434	0.8148	−0.9	0.037386
Escherichia/Shigella	0.39	0.17	IgG	0.7014	3.9271	−1	0
Lachnospiracea incertae sedis	0.56	0.61	IgA	0.1564	0.3758	0.9747	0.004818
Mucispirillum	1.81	2.72	IgA	0.1564	0.3758	0.9747	0.004818
Clostridium XIVA	2.70	4.19	IgG2b	0.2434	0.8148	0.9	0.037386

Uninfected, uninfected mice; Infected, mice infected with *E. granulosus*.

(†Kim et al., 2014), SCFAs released by the gut and equaled by hepatic uptake (Bloemen et al., 2009). *Parabacteroides* has evolved to contain a gene encoding a major capsid protein (Rosenwald et al., 2014) one of the phage orthologous groups (Kristensen et al., 2013). One report demonstrated that *Parabacteroides* was prevalent in diabetic (Wu et al., 2010). The increasing of genus *Parabacteroides* in hydatid infection may be associated with hepatic alteration.

Functional predictions showed seven pathways of the gut microbiota in the *E. granulosus* infection group were altered compared with the uninfected group. These pathways included biotin, lipid metabolism, and tryptophan metabolism.
The synergistic effect of bacteria leads to the difference of gut flora metabolic pathways due to some or all intestinal bacteria involving in metabolism. Biotin metabolism in the intestine is regulated through transcriptional and post-transcriptional mechanisms. Its balance plays a key role in regulating the absorption and the function of biotin in tissues (Zoetendal et al., 2012). Based on pathway impact analysis, we found that tryptophan metabolism was decreased in the E. granulosus infection group. In mice infected with schistosomes, tryptophan or compounds from tryptophan metabolism were up-regulated and increased in urine which indicate possible problems in tryptophan metabolism in these infected animals (Njagi et al., 1992; Wang et al., 2004).

We showed that the bacterial composition of nine major genera had strong correlations with the levels of IgG, IgG1 and IgG2a antibodies against HCF antigens (Figure 4). The numbers of genera Enterorhabdus, and Clostridium XIVA were positively correlated with IgG1 and IgG2b levels, indicating that these bacteria can be tolerated with those Th2 associated antibodies or Th2 responses may benefit those genera of bacteria. Meanwhile, IgG2a, a Th1 associated antibody, was associated with increased number of genus Barnesiella, indicating Th1 has a role for increasing genus Barnesiella. Our data also showed that Th2 associated antibodies IgG1 and IgG2b and IgG3 decreased numbers of genera Escherichia/Shigella, and Ruminococcus, Ruminococcus/Intestinimonas (Table 7 and Figure 4). Interestingly, Intestinimonas decreased significantly in E. granulosus infection group as a differential genus by LEfSe analysis, perhaps it is associated with some kinds of change, then we concluded that it is highly related to IgG2b by Spearman coefficient correlation analysis and is consistent with the immune background of E. granulosus infection. So IgG2b may play impartment role in inhibition of Intestinimonas. Clostridium has been found to be associated with a number of diseases. It showed that Clostridium may participate in antibiotic-associated diarrhea (Buffie et al., 2015) and damages the human intestine in vitro (Fernandez Miyakawa et al., 2005). Barnesiella is present in the healthy intestinal tract and is influenced by antibiotics, and intestinal colonization with Barnesiella confers resistance to intestinal domination and bloodstream infection with vancomycin-resistant Enterococcus (Ubeda et al., 2013).

In summary, we explored gut microbiota in mice infected with E. granulosus, and found that chronic E. granulosus infection increased 101 OTUs including two genera of gut microbiota in mice. Functional prediction showed seven pathways of gut microbiota were altered, and bacterial composition of major genera had positive correlations with IgG1 and IgG2b in E. granulosus infected mice.

Whereas more than 85% of the genomic sequences between mouse and Homo are conserved, overall gene expression and its regulation are considerably different between the two species (Hugenholtz and de Vos, 2018). Human and mouse seems to be similar at phylum level, Bacteroidetes and Firmicutes are the two major bacterial phyla of the intestinal tract (Rawls et al., 2006). However, we do not know whether E. granulosus infection will affect human intestinal flora in the same way as the mouse and further studies are now required to understand the further possible mechanisms associated with altered colonization resistance after helminth infection and to determine changes in the gut microbiota of patients with CE.

ACCESSION NUMBERS
The sequence data have been submitted to the GeneBank Sequence Read Archive (Accession Number PRJN596089).

AUTHOR CONTRIBUTIONS
WZ, JL, and DM contributed to conception and design of the study. JB organized the database. LH, WQ, and TW finished the animal experiments. HZ, ZZ, and YW performed the statistical analysis. JB and YW wrote the first draft of the manuscript. GG, XZ, and BG wrote sections of the manuscript. All authors contributed to manuscript revision, read and approved the submitted version.

FUNDING
The study was financially supported by The National Natural Science Foundation of China (NSFC 81460308 and NSFC U1303203).

REFERENCES
Bloemen, J. G., Venema, K., Van De Poll, M. C., Olde Damink, S. W., Buurman, W. A., and Dejong, C. H. (2009). Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin. Nutr. 28, 657–661. doi: 10.1016/j.clinu.2009.05.011
Buffie, C. G., Bucci, V., Stein, R. R., Mckenney, P. T., Ling, L., Gobourne, A., et al. (2015). Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208. doi: 10.1038/nature13828
Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., et al. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes Metab. Res. Rev. 57, 1470–1481. doi: 10.2337/db07–1403
Cascaravilla, C., Pittini, A., Ruckerl, D., Seoane, P. I., Jenkins, S. J., Macdonald, A. S., et al. (2014). Unconventional maturation of dendritic cells induced by particles from the laminated layer of larval Echinococcus granulosus. Infect. Immun. 82, 3164–3176. doi: 10.1128/IAI.01959–14
Chen, Y. C., Greenbaum, J., Shen, H., and Deng, H. W. (2017). Association between gut microbiota and bone health: potential mechanisms and prospective. J. Clin. Endocrinol. Metab. 102, 3635–3646. doi: 10.1210/jc.2017–00513
Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., et al. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145. doi: 10.1093/nar/gkn879
Correa-Oliveira, R., Fachi, J. L., Vieira, A., Sato, F. T., and Vinolo, M. A. (2016). Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 5:e73. doi: 10.1038/cti.2016.17
Gavidia, C. M., Gonzalez, A. E., Zhang, W., Mcmanus, D. P., Lopera, L., Fernandez Miyakawa, M. E., Pistone Creydt, V., Uzal, F. A., Mcclane, B. A., and Gottstein, B. (2001). Animal models in parasitology. Gottstein, B. (2001). Animal models in parasitology. Hugenholtz, F., and de Vos, W. M. (2018). Mouse models for human intestinal microbiota in mouse models of inflammatory bowel disease. Front. Cell. Infect. Microbiol. Gottstein, B. (2001). Animal models in parasitology. Gottstein, B. (2001). Animal models in parasitology. Rawls, J. F., Mahowald, M. A., Ley, R. E., and Gordon, J. I. (2006). Reciprocal gut microbiota transplants from zebras and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433. doi: 10.1016/j.cell.2006.08.043 Rigano, R., Profumo, E., and Siracusano, A. (1997). New perspectives in the immunology of Echinococcus granulosus infection. Parasitologia 39, 275–277. Rosenwald, A. G., Murray, B., Toth, T., Madapu, R., Kyrollos, A., and Arora, G. (2014). Evidence for horizontal gene transfer between Chlamydomphila pneumoniae and Chlamydia phage. Bacteriophage 4:e965076. doi: 10.1016/2197-0773.2014.965076 Schloss, P. D., Gevers, D., and Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e23710. doi: 10.1371/journal.pone.0023710 Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R66. doi: 10.1186/gb-2011-12-6-r60 Sokol, H., Pigneur, B., Watterlot, L., Lakhdiri, O., Bermudez-Humaran, L. G., Grataudoux, J. I., et al. (2008). Facalbacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. U.S.A. 105, 16731–16736. doi: 10.1073/pnas.0804812105 Sonnenburg, J. L., and Backhed, F. (2016). Diet-microbiota interactions as modulators of human metabolism. Nature 535, 56–64. doi: 10.1038/nature18486 Taylor, R. (1990). Interpretation of the correlation coefficient: a basic review. J. Diagn. Med. Sonogr. 6, 35–39. doi: 10.1177/87564793900600106 Thaiss, C. A., Zmora, N., Levy, M., and Elinav, E. (2016). The microbiome and innate immunity. Nature 535, 65–74. doi: 10.1038/nature18847 Ubeda, C., Bucci, V., Caballero, S., Dijkovic, A., Toussaint, N. C., Equinda, M., et al. (2013). Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect. Immun. 81, 965–973. doi: 10.1128/IAI.01197-12 Wang, H., Li, J., Guo, B., Zhao, L., Zhang, Z., Mcmanus, D. P., et al. (2016). In vitro culture of Echinococcus multilocularis producing protoscolecites and mouse infection with the cultured vesicles. Parasit. Vectors 9:411. doi: 10.1186/s13071-016-1687-y Wang, H., Li, J., Pu, H., Hasan, B., Ma, J., Jones, M. K., et al. (2014). Echinococcus granulosus infection reduces airway inflammation of mice likely through enhancing IL-10 and down-regulation of IL-5 and IL-17A. Parasit. Vectors 7:522. doi: 10.1186/1756-3305-7-522 Wang, G., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/AEM.00620-07 Wang, W., Li, J., Yao, J., Wang, T., Li, S., Zheng, X., et al. (2017). In vitro and in vivo efficacies of novel carbazole aminocarboxals in the treatment of cystic echinococcosis. J. Antimicrob. Chemother. 72, 3122–3130. doi: 10.1093/jac/dlx250
Wang, Y., Holmes, E., Nicholson, J. K., Cloarec, O., Chollet, J., Tanner, M., et al. (2004). Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc. Natl. Acad. Sci. U.S.A. 101, 12676–12681. doi: 10.1073/pnas.0404878101

Wegener Parfrey, L., Jirku, M., Sima, R., Jalovecka, M., Sak, B, Grigore, K., et al. (2017). A benign helminth alters the host immune system and the gut microbiota in a rat model system. PLoS One 12:e0182205. doi: 10.1371/journal.pone.0182205

Wu, X., Ma, C., Han, L., Nawaz, M., Gao, F., Zhang, X., et al. (2010). Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr. Microbiol. 61, 69–78. doi: 10.1007/s00284-010-9582-9

Yu, L. C., Wei, S. C., and Ni, Y. H. (2018). Impact of microbiota in colorectal carcinogenic lessons from experimental models. Intest. Res. 16, 346–357. doi: 10.5217/ir.2018.16.3.346

Zeng, M. Y., Inohara, N., and Nunez, G. (2017). Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 10, 18–26. doi: 10.1038/mi.2016.75

Zhang, W., You, H., Zhang, Z., Tursun, G., Hasyet, A., and Mcmanus, D. P. (2001). Further studies on an intermediate host murine model showing that a primary Echinococcus granulosus infection is protective against subsequent oncospheral challenge. Parasitol. Int. 50, 279–283. doi: 10.1016/S1383-5769(01)00086-1

Zhang, W. B., Jones, M. K., Li, J., and Mcmanus, D. P. (2005). Echinococcus granulosus: pre-culture of protoscoleces in vitro significantly increases development and viability of secondary hydatid cysts in mice. Exp. Parasitol. 110, 88–90. doi: 10.1016/j.exppara.2005.02.003

Zoetendal, E. G., Raes, J., Van Den Bogert, B., Arumugam, M., Booijink, C. C., Troost, F. J., et al. (2012). The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6, 1415–1426. doi: 10.1038/ismej.2011.212

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.