Stationary Ballistic 'V' States
for Preferred Motions of Many Particles

A. Kwang-Hua Chu *

P.O. Box 39, Tou-Di-Ban, Road XiHong, Urumqi 830000, PR China

Abstract

We use the discrete kinetic theory with the free-orientation parameter being fixed \((\pi/4)\) to derive the macroscopic velocity field for many particles flowing through a microdomain. Our results resemble qualitatively other hydrodynamical solutions. The V-shaped velocity field changes as the dominant physical parameter (Knudsen number) varies. We also briefly discuss the possible mechanism due to the entropy production along the boundaries.

Keywords : Knudsen number, discrete kinetic model, dilute gases.

1 Introduction

Discrete kinetic theory [1-2] with the thermostat assumption or diffuse scattering boundary condition [3] have been adopted to ad hoc model the many-particle scattering situation along the gas-surface interacting interface in a plane channel [1]. Specific orientations relevant to different rarefaction parameters were identified therein [1]. Motivated by the recent interests in the quantum Boltzmann approach [4] and the relevant studies [5-8], we continue our previous studies [1] by examining the related velocity and vorticity fields corresponding to those specific \(\theta\) and \(Kn\) we obtained and checking the special case \(\theta = \pi/4\).

Many interesting problems have been successfully solved [9-17] by using the discrete kinetic theory. Carleman (1957) developed 2-velocity models which are defined by abstract properties in order to produce only mathematical purposes. That model was not constructed on the basis of detailed analysis of the collision mechanics [9]. Broadwell (1964) devised a 6-velocity model to handle the simple shock wave problem [10]. At first mathematicians have been interested in the discrete Boltzmann equation with the hope to provide, thanks to the relatively simpler structure of the equation as compared with that of the full Boltzmann equation, stronger results than those available for the Boltzmann equation or mathematical results suitable to be technically generalized to the full Boltzmann equation in the analysis of initial and initial-boundary value problems. However, the analysis over recent years has shown that this is not the case [5,7-8]. These have been reviewed considering mainly the mathematical aspects of the initial and initial-boundary value problems in order to provide a ”more detailed” analysis in a ”more specialized”
field. In fact the consistency of the mathematical results depends on the structure of the mathematical problems: in some cases it is possible to obtain for the discrete Boltzmann equation "stronger" results than the corresponding ones for the Boltzmann equation, and in other case "weaker" results. Kawashima has proved the global existence of solutions to the initial-boundary value problems (I.-B.V.P.) for the discrete Boltzmann Equation in the 1D-region $0 < x < \infty$ or $0 < x < d$ (cf [11]).

Cornille obtained some transient or stationary family of solutions for certain (fixed-orientation) discrete velocity models without considering the boundary conditions [12].

In this short paper, we plan to reconstruct the macroscopic velocity field of many dilute particles by the verified 4-velocity model [18] (the free orientation is fixed to be $\theta = \pi/4$) considering a simple test problem: many molecules or particles flowing along the bounded-plane channel and finally reaching a steady state. The verification of our approaches has been done in [1,6] (cf. Chu), the argues about the differences between different discrete velocity models included. For $\theta = \pi/4$ case, using a completely different solving procedure, we obtained velocity fields which have a V-shaped or chevron-structure.

This short note is organized as follows. We introduce the general orientation-free [5,6] 4-velocity model in Section 2, and simplify it to a system of four equations for associated unknown functions. The general boundary conditions will be briefly introduced, too. Then, we define some macroscopic variables (like u, v) to suit our interest which is to find a class of steady (and parallel) non-boundary-driven solutions or flows for particles flowing along a microslab with bounded (flat-plane) walls. The orientation will be fixed as $\pi/4$ here when we solve the time-independent system of equations with relevant boundary conditions for the test case. As reported in [18], there will be no dispersion or absorption when we implement the model with this orientation so that we can resolve sharp velocity profiles. These kinds of solutions, u, which collect the main results of the present paper, are given in explicit form, and are functions of 1D coordinate: y or Y and are also dependent on certain integration constants or parameters due to the purely diffuse reflection boundary conditions. Finally, we analyze the solutions (V-shaped fields) and make some physical comments or discussions in comparison with the other flow-pattern selection due to the relative orientation effect upon binary encounter of many particles or unusual entropy production along the confined boundaries.

2 Formulations

Considering a simple fluid of particles with mass m and cross-sectional area σ, the first step of the modelling procedures consists in discretizing the velocity directions in a finite number of unit vectors $i_k, k = 1, \ldots, p$. One or more moduli are then associated to each direction. The ratio of the moduli has, however, to be properly chosen, so that collisions between particles
with different velocity moduli are possible. For one velocity moduli case, \(u_i = c_i k, k = 1, \cdots, p; \) \(c \equiv c(x, t) \) in general. Normally \(c \) is determined by the equilibrium distribution.

The particles (hard-sphere) move in the whole space and collide by simple elastic collisions locally in space. The mathematical model is an evolutional equation for the number densities \(N_i(x, t) \) linked to the finite set of velocities \(u_i \). We write a balance equation for the number density \("i" \) in the form

\[
[\frac{\partial}{\partial t} + u_i \cdot \nabla]N_i = G_i - L_i
\]

where \(L_i \) and \(G_i \) are the loss and the gain of the particles \("i" \) due to collisions. In case of binary collisions an exact balance may be obtained, and is expressed with the transitional probabilities and the number densities. This model has the structure of a system of semi-linear partial differential equations of hyperbolic type. Above equation could also be written as

\[
\frac{\partial}{\partial t} N_i + u_i \cdot \nabla N_i = \sum_{r=2}^{R} \sum_{I_r \in E_r} \sum_{J_r \in E_r} \delta(i, J_r, I_r) A_{I_r}^{J_r} N_{I_r} N_r,
\]

where \(i = 1, \cdots, p; \) here, by definition, an \(r \)-collision \((r \geq 2) \) involves \(r \) particles. \(I_r = (i_1, \cdots, i_r) \), and \(J_r = (j_1, \cdots, j_r) \) are two elements of \(E_r \), which is the set of \(r \)-not arranged numbers (considering the combinations instead of the order they appear) taken in the set \(\{1, \cdots, p\} \).

A "transitional" probability denoted by \(A_{I_r}^{J_r} \) is associated to each \(r \)-collision \(I_r \rightarrow J_r \). In the case of binary collisions, this term (also is called as the transition rates) is referred to the collisions \((u_i, u_j) \leftrightarrow (u_k, u_l)\), \(i, j, k, l = 1, \cdots, p; \) and the number of paired-outputs corresponding to a given paired-input is denoted by \(q \). \(N_r \) denotes the product \(N_{i_1} N_{i_2} \cdots N_{i_r} \).

\(\delta(i, J_r, I_r) = \delta(i, J_r) - \delta(i, I_r) \) is the algebraic number of particles \("i" \) created through the collision \(I_r \rightarrow J_r \). \(\delta(i, I_r) \) is (positive or zero) the number of indices \(i \) present in the \(r \)-set. If only nonlinear binary collisions are considered and considering the evolution of \(N_i \), we have

\[
\frac{\partial N_i}{\partial t} + u_i \cdot \nabla N_i = \sum_{j=1}^{p} \sum_{(k,l)} (A_{kl}^{ij} N_k N_l - A_{ij}^{kl} N_i N_j), \quad i = 1, \cdots, p,
\]

where \((k,l)\) are admissible sets of collisions. We may then define the right-hand-side of above equation as

\[
Q_i(N) = \frac{1}{2} \sum_{j,k,l} (A_{kl}^{ij} N_k N_l - A_{ij}^{kl} N_i N_j),
\]

with \(i \in \Lambda = \{1, \cdots, p\} \), and the summation is taken over all \(j, k, l \in \Lambda, \) where \(A_{kl}^{ij} \) are nonnegative constants satisfying \(A_{kl}^{ji} = A_{ij}^{lk} = A_{ij}^{ij} \) : indistinguishability of the particles in collision, \(A_{kl}^{ij}(u_i + u_j - u_k - u_l) = 0 \) : conservation of momentum in collision, \(A_{ij}^{kl} = A_{ij}^{lk} \) : microreversibility condition. The conditions defined for the discrete velocity above requires that elastic, binary collisions, such that momentum and energy are preserved \(u_i + u_j = u_k + u_l \),

\[|u_i|^2 + |u_j|^2 = |u_k|^2 + |u_l|^2, \]

are possible for \(1 \leq i, j, k, l \leq p. \)
The collision operator is now simply obtained by joining A_{ij}^{kl} to the corresponding transition probability densities a_{ij}^{kl} through $A_{ij}^{kl} = S|u_i - u_j| a_{ij}^{kl}$, where,

$$a_{ij}^{kl} \geq 0, \quad \sum_{k,l=1}^{p} a_{ij}^{kl} = 1, \quad \forall i, j = 1, \cdots, p;$$

with S being the effective collisional cross-section. If all $q (p = 2q)$ outputs are assumed to be equally probable, then $a_{ij}^{kl} = 1/q$ for all k and l, otherwise $a_{ij}^{kl} = 0$. The term $S|u_i - u_j|dt$ is the volume spanned by the particle with u_i in the relative motion w.r.t. the particle with u_j in the time interval dt. Therefore, $S|u_i - u_j|N_j$ is the number of j-particles involved by the collision in unit time. Collisions which satisfy the conservation and reversibility conditions which have been stated above are defined as admissible collisions.

The discrete kinetic equations then [1,5,7,18] assume the following form

$$\frac{\partial N_i}{\partial t} + c[\cos(\theta + (i - 1) * \pi/q) \frac{\partial N_i}{\partial x} + \sin(\theta + (i - 1) * \pi/q) \frac{\partial N_i}{\partial y}] = \frac{2cS}{q} \sum_{j=1, j \neq i}^{q} (N_j N_{i+q} - N_i N_{i+q}),$$

where θ is the free orientation starting from the positive $x-$axis to the u_1 direction [1,18], $N_i = N_{i+2q}$ are unknown functions, and c is a reference velocity modulus.

According to [13], for the $2q$-velocity model that is $q \geq 3$, there are more collision invariants than the physical ones or conservation laws which are corresponding to the number of macroscopic variables (in 2D. there are only 4, i.e., one mass, two momenta, one energy). That’s to say, there are unphysical or spurious invariants or macroscopic variables for $q \geq 3$ models (which could be, however, well handled by adding multiple collisions [13]). Thus, we plan to use only the orientation-free 4-velocity model for our test-case problem below.

![Fig. 1 Reference frame for the 4-velocity model with $\theta = \pi/4$ here.](image)

2.1 Boundary Conditions

We use purely diffuse reflection boundary condition [1,3,15-16] here, which means properties of the reflected particles are independent of their properties before the impact. In other words, the re-emitted stream has completely lost its memory of the incoming stream, except for the conservation of the number of particles. Moreover, we impose the following conditions: the particles
are in Maxwellian equilibrium with the wall ("the wall locally behaves as a thermostat", i.e., the particles reflect after they have been in thermodynamic equilibrium with the wall-temperature) satisfies $N_i(r,t)=\gamma_i(r,t)N_{wi}(r,t)$, where γ_i expresses the accommodation of the particles to the wall quantities, and N_{wi} is the discrete Maxwellian densities for the 'i'-direction set of particles. That is, we have

$$|u_j \cdot n|N_{wj} = \sum_{i \in I} B_{ij} |u_i \cdot n|N_{wi}, \quad j \in R, \quad B_{ij} \geq 0, \quad \sum_{j \in R} B_{ij} = 1; \quad (2)$$

with $I = \{i, (u_j - u_w) \cdot n < 0\}$ related to the impinging set of particles, $R = \{j, (u_j - u_w) \cdot n > 0\}$ related to the emerging set of particles, n is the outer normal, u_w is the wall velocity.

2.2 Flows in a Plane Channel

We firstly define the related macroscopic variables $n = N_1 + N_2 + N_3 + N_4$, $nU = c(\alpha N_1 - \beta N_2 - \alpha N_3 + \beta N_4)$, $nV = c(\beta N_1 + \alpha N_2 - \beta N_3 - \alpha N_4)$, (the latter two are the momentum flux along x- and y-directions) with $\rho = n m$, m is the mass of the molecule, ρ is the macroscopic density of the gas. Then, set $n_i = N_i/n$, $i = 1, 2, 3, 4$; and then use non-dimensional $u = U/c$, $v = V/c$, $Y = y/d$, where c may be related to the external forcing [1,19]. d is the full channel width. $y = 0$ is along the center-line.

The geometry of a 2D problem we shall consider is a kind of microchannels with bounded flat-plane walls which are separated apart by a width d. Particles (driven by an external constant forcing initially) flowing along this channel will finally reach a fully developed state (steady state and $\partial u/\partial x = 0$, $v = 0$).

We derive the solutions with $\alpha(\equiv \cos \theta) = \beta(\equiv \sin \theta) = \sqrt{2}/2$ case here. The algorithm is different from those previously reported, we must solve the independent number density respectively then combine them into macroscopic ones since the original macroscopic equation is singular (cf. equations in [6] by Chu). Meanwhile, from the preliminary results reported in Ref. [1,18], it seems, for the case of $\theta = \pi/4$, 4-velocity model will give completely different dispersion relations for the thermodynamic checking of the perturbed Maxwellian equilibrium state. There will be no dispersion or absorption for this particular case.

The governing equations (1), for the assumptions prescribed above, now become

$$\frac{dn_1}{dY} = -\frac{dn_2}{dY} = -\frac{dn_3}{dY} = \frac{dn_4}{dY} = \frac{\sqrt{2}}{4Kn}(1 - 2a) = \frac{\sqrt{2}}{Kn}(n_2n_4 - n_1n_3), \quad (3)$$

here, $n_3 = a - n_1$, $n_2 = 1/2 - n_1$, $n_4 = 1/2 - a + n_1$; $Kn= 1/(dSn)$ is the Knudsen number. The diffuse reflection boundary conditions become:

$$N_{w2}N_1 = N_{w1}N_2, \quad \beta N_1 + \alpha N_2 - \beta N_3 - \alpha N_4 = 0, \quad (4)$$

it means (i) the Maxwellian equilibrium at the walls dominates, (ii) no penetration occurs across the wall. The discrete Maxwellian densities N_{wi} at the wall, as derived before (please see the
detailed references in Refs. [14-16]), are

\[N_{wi} = (n/4)(1 + (2/c^2)u_w \cdot u_i + (−1)^i[|u_w \cdot u_2|^2 − (u_w \cdot u_1)^2](1/c^4)). \]

(5)

Here, boundary conditions are, as \(u_w = 0 \) (the walls are static and fixed) and by assuming the symmetry,

\[n_1 = B_{31}n_3 + B_{41}n_4, \quad \text{at } Y = −1/2, \quad n_3 = B_{13}n_1 + B_{23}n_2, \quad \text{at } Y = 1/2, \]

(6)

with the discrete Maxwellians \(N_{wi}|_{±} = 1/4 \). Integration of Eq. (3) gives

\[n_1 = \frac{\sqrt{2}(1 − 2a)}{4Kn}Y + b. \]

Now, set \(A = 1/(4\sqrt{2}Kn) \), so we get from above equations to solve for \(a, b \):

\[[2A(1 + B_{31} − B_{41}) − B_{31} + B_{41}]a + (1 + B_{31} − B_{41})b = \frac{B_{41}}{2} + (1 + B_{31} − B_{41})A, \]

(7)

\[[1 + 2A(1 + B_{13} − B_{23})]a + (B_{23} − B_{13} − 1)b = \frac{B_{23}}{2} + A(1 + B_{13} − B_{23}), \quad \text{or} \]

(8)

\[Ca + Db = G, \quad Ea + Fb = H. \]

(9)

After manipulations, we have

\[a = \frac{FG − DH}{CF − DE}, \quad b = \frac{CH − EG}{CF − DE}; \]

(10)

where \(CF − DE = 4A(B_{23} − B_{13} − 1) + (B_{23} − B_{13})(B_{41} − B_{31}) − 1 \), and \(FG − DH = (B_{23} − B_{13} − 1)[A(1 + B_{31} − B_{41}) + B_{41}/2] + (1 + B_{31} − B_{41})[A(B_{23} − B_{13} − 1) − B_{23}/2] \), \(CH − EG = A[(B_{23} − 1)(1 − B_{41}) − B_{31}(2 + B_{13} − 2B_{31})] + [(B_{23} − 1)B_{41} − B_{23}B_{31}]/2 \).

Since \(nU/c = \sqrt{2}/2(N_1 − N_2 − N_3 + N_4) \), so we have a family of (particular) flow field in terms of the macroscopic velocity

\[u = \sqrt{2}(2n_1 − a) = \frac{1 − 2a}{Kn}Y + \sqrt{2}(2b − a). \]

(11)

3 Results and Discussions

This class of solution \(u \) obtained by fixing the orientation to be \(\pi/4 \) is in general different from those reported in Ref. [6] by Chu. Note that, for one extreme case of boundary conditions as mentioned in Eq. (2) : \(B_{31} = B_{41} \), and \(B_{13} = B_{23} \); we have

\[a = \frac{2A + (B_{41} + B_{23})/2}{1 + 4A}, \quad b = \frac{A(1 + B_{41} − B_{23}) + B_{41}/2}{1 + 4A}. \]

(12)

We can easily observe that, from equation (11), that \(u = 0 \) everywhere for all Knudsen numbers (Kn). There is no macroscopic flow [20] for many particles once the boundary conditions are selected above.

Otherwise, the velocity field (from equation (11)) as shown in figure 2 is qualitatively similar to
the V-shaped or \textit{chevron}-like structure or pattern \cite{21} reported before in other physical systems. The velocity field is tuned mainly by the Kn and weakly by \(a \) and \(b \) with the latter due to the boundary conditions. We note that \(a \) might depend on the physical properties of fluids and the geometry of the solid-wall as it comes from the gas-solid interaction or reflection. The flow-pattern selection mechanism is yet open to the best knowledge of the authors but might be partially linked to that reported in Ref. \cite{1,6} (cf. Chu) since there will be an essential singularity when integrating equation (1) for \(\theta = \pi/4 \) case. In short, as Kn increases, the chevron front becomes more flat.

The macroscopic vorticity \(\omega \) (or the mean shear) could be obtained by noting

\[
\omega = \frac{du}{dY} = \frac{1 - 2a}{Kn} + \frac{d[\sqrt{2}(2b - a)]}{dY},
\]

(13)

with

\[
a = \frac{2A(1 + B_{31} - B_{41})(B_{23} - B_{13} - 1) + [2B_{41}B_{23} - B_{41}(B_{13} + 1) - B_{23}(1 + B_{31})]/2}{4A(B_{23} - B_{13} - 1) + (B_{23} - B_{13})(B_{41} - B_{31}) - 1},
\]

where the last term of equation (13) is generally zero. Once the Knudsen number (Kn; a kind of rarefaction measure for many-particles interactions or collisions) is fixed, the vorticity is a constant with the related \(B_{ij} \) subjected to the constraint in equation (2). In fact, \(B_{ij} \) should depend on the detailed interactions of the gas-solid interface, like a kind of (known) molecules colliding with specific walls made of (already) specified material. It is bounded above but difficult to be fixed even for specific model and boundary value problem \cite{11}.

Our results for the vorticity field, at least, qualitatively matches with the hydrodynamic two-dimensional solution \cite{20} when the weakly compressible (incompressible) particles flow along a static flat-plane channel and finally reach a fully developed state even though the particles are initially driven by a constant pressure-gradient or unit forcing. Interestingly, similar sharp flow fields of solitary wave profiles (the highest one, cf. Figs. 9 and 10 by Wu \textit{et al.} in \cite{22}) and constant-V vortex was reported recently \cite{22} in other physical system dealing with confined flow transports.

To further interpret the mechanism, we propose that the complicated rate of entropy production along the boundaries (cf. \cite{23-24}) might favor the smearing of viscous diffusion (toward the away-from-wall regions) so that the sharp and strange pattern could form and then there is no significant smoothing of the profiles along the cross-section.

Note that, the approach here: firstly tracing or obtaining (solving the corresponding equation in (3)) each individual discrete number density \(n_i \) then by summing up the corresponding projection to obtain \(u \), is different from that in \cite{6} (by Chu): directly construct the macroscopic solutions from the relevant governing equation for macroscopic variables \(u \). The boundary treatment which is relevant to the entropy production there is thus entirely different. The corresponding non-equilibrium states (due to different rates of entropy production and their decay)
approaching to the final equilibrium states which are used as our boundary conditions might then be different. In fact, as we noticed, the argument raised in [24] could be applicable to present approach as evidenced in the boundary operator as expressed in equation (2) (could be represented as similar divergence form). Otherwise, if our interpretations don’t work, there might exist other unknown mechanism which need our further works.

Acknowledgements. The author is partially supported by the China Post-Dr. Science Foundation under Grant No. 1999-17.

References

[1] K.-H. W. Chu, Non-Equilibrium Stationary Solitons, Phys. Scripta 64, 423-426 (2001). Z. K.-H. Chu, Preprint (2002).

[2] S.K. Godunov and U.M. Sultangazin, Discrete models of the Boltzmann kinetic equation, Russian Math. Survey 26, 3-51 (1971).

[3] L. Arkeryd and N. Maslova, On diffuse reflection at the boundary for the Boltzmann equation and related equations. J. Stat. Phys. 77, 1051-1077 (1994).

[4] V.V. Vedenyapin, I.V. Mingalev, and O.V. Mingalev, On Discrete models of the Quantum Boltzmann-equation. Russian Academy of Sciences Sbornik Mathematics 80, 271-285 (1995).

[5] T. Platkowski and R. Illner, Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory. SIAM Rev. 30, 213-255 (1998).

[6] H. Cabannes, L. Pasol, and K.G. Roesner, Study of a new semi-continuous model of the Boltzmann equation, Eur. J. Mech. B/Fluids 21, 751-760 (2002).

[7] N. Bellomo and T. Gustafsson, The discrete Boltzmann equation: a review of the mathematical aspects of the initial and initial-boundary value problems, Review Math. Phys. 3, 137-162 (1991).

[8] N. Bellomo and R. Gatignol, (eds.) Lecture Notes on the Discretization of the Boltzmann Equation (World Scientific, Singapore 2003).

[9] T. Carleman, Problèmes mathématiques dans la théorie cinétique des gas (Publ. Scient. Inst. Mittag-Leffler 1957), 104-106.

[10] J.E. Broadwell, Shock structure in a simple discrete velocity gas, Phys. Fluids 7, 1243-1247 (1964).

[11] S. Kawashima and S. Nishibata, Existence of a stationary wave for the discrete Boltzmann equation in the half space, Commun. Math. Phys. 207, 385-409 (1999).

[12] H. Cornille, Exact (2+1)-D Solutions for 2 Discrete velocity Boltzmann models with 4 independent densities, J. Phys. A Math. and General 20, L1063-L1067 (1987).

[13] N. Bellomo and S. Kawashima, The discrete Boltzmann equation with multiple collisions: Global existence and stability for the initial value problem, J. Math. Phys. 31, 245-253 (1990).

[14] H. Cabannes, The Discrete Boltzmann Equation. Theory and Applications (Lecture Notes. Berkely : University of California, 1980).

[15] H. D’Almeida and R. Gatognol, The half-space problem in discrete kinetic theory, Math. Models meth. Appl. Sci. 13, 99-120 (2003).
[16] R. Gatignol, Théorie Cinétique des gaz à Répartition Discrète de Vitesses (Lectures Notes in Physics, 36, Springer-Verlag, Berlin 1975).

[17] D. Görsch, Generalized discrete models, Math. Models Meth. Appl. Sci. 12, 49-76 (2002).

[18] W. K.-H. Chu, Spectral problems for the four-velocity model: Revisited, Appl. Math. Lett. 14, 275-278 (2001).

[19] R. Courant and K.O. Friedriches, Supersonic Flow and Shock Waves (Interscience Publ. Inc., New York, 1948), page 15.

[20] L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987), pp. 13 and 146.

[21] Deem, G.S.; Zabusky, N.J.: Vortex waves: stationary ’V states’ interactions. Phys. Rev. Lett. 40 (1978), 859-862.

[22] T. Yaotsu Wu, J. Kao, J.E. Zhang A unified intrinsic functional expansion theory for solitary waves, Acta Mech. Sinica 26, 1-15 (2005). A.J. Faller, The constant-V vortex, J. Fluid Mech. 434 (2001), 167-180.

[23] J. Schnute, Entropy and kinetic theory for a confined gases, Can. J. Math. 27, 1271-1315 (1975).

[24] L. Andrey, The rate of entropy change in non-Hamiltonian systems, Phys. Lett. 111A, 45-46 (1985).
Fig. 2 (a),(b) Rarefaction effects (Kn) on the velocity field u or the V-shaped or chevron-like structure. $Kn = 1/(dS \ n)$ is the Knudsen number. S is the effective collision cross-section. n is the number density of particles.