Supporting information for

Coassembly of Peptides Derived from β-Sheet Regions of β-Amyloid

Nicholas L. Truex and James S. Nowick*

Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025

*To whom correspondence should be addressed: jsnowick@uci.edu

I. SUPPLEMENTAL FIGURES

Fig. S1. 15N-Edited TOCSY spectrum of the 1:1 mixture of peptides $[^{15}\text{N}]1\text{a}$ and $[^{15}\text{N}]1\text{b}$ S4

Fig. S2. Comparison of the 15N-edited NOESY spectrum of the 1:1 mixture of peptides $[^{15}\text{N}]1\text{a}$ and $[^{15}\text{N}]1\text{b}$ with the ^1H NMR TOCSY spectrum of the 1:1 mixture of peptides 1a and 1b S5

Fig. S3. 15N-Edited NOESY spectrum of the 1:1 mixture of peptides $[^{15}\text{N}]1\text{a}$ and $[^{15}\text{N}]1\text{b}$ S7

Fig. S4. Expansions of the ^1H NMR NOESY spectrum of the 1:1 mixture of peptides 1a and 1b S8

Fig. S5. A2B2 heterotetramer consisting of two hydrogen-bonded homodimers of peptides 1a and 1b S9

II. MATERIALS AND METHODS

Synthesis of Peptides 1 S10
Fmoc-Protection of 15N-Labeled Amino Acids S10
NMR Spectroscopy of Peptides 1 S10
NMR Spectroscopy of Peptides $[^{15}\text{N}]1$ S11
Molecular Modeling of Peptides 1a and 1b S13
Job’s Method of Continuous Variation S14
III. **Mathematical Derivations for the Monomer–Homotetramer–Heterotetramer Equilibrium Model**

 A. General Equations
 B. Equations for Homotetramers and Heterotetramers
 C. Equations for Monomers, Homotetramers, and Heterotetramers

IV. **Nonlinear Least-Squares Fitting of the Job Plot**

 A. End User Instructions
 B. Definitions
 C. Monomers, Homotetramers, and Heterotetramers: Data
 D. Monomers, Homotetramers, and Heterotetramers: Try Fit
 E. Monomers, Homotetramers, and Heterotetramers: Refine Fit
 F. Monomers, Homotetramers, and Heterotetramers: Multimers
 G. Monomers, Homotetramers, and Heterotetramers: Tetramer Populations
 H. Monomers, Homotetramers, and Heterotetramers: Monomer Populations
 I. Monomers, Homotetramers, and Heterotetramers: Error of Model

V. **References**

VI. **Characterization Data**

Peptides 1a and 1b

2D DOSY at 8.0 mM total concentration in D$_2$O at 500 MHz and 298 K

$\chi_B = 0.50$ (mole fraction of 1b)
Peptides $[^{15}N]1a$ and $[^{15}N]1b$

$^1H,^{15}N$ HSQC at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$\chi_B = 0.00$ (mole fraction of peptide $[^{15}N]1b$)

$^1H,^{15}N$ HSQC at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$\chi_B = 0.125$ (mole fraction of peptide $[^{15}N]1b$)

$^1H,^{15}N$ HSQC at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$\chi_B = 0.25$ (mole fraction of peptide $[^{15}N]1b$)

$^1H,^{15}N$ HSQC at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$\chi_B = 0.375$ (mole fraction of peptide $[^{15}N]1b$)

$^1H,^{15}N$ HSQC at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$\chi_B = 0.50$ (mole fraction of peptide $[^{15}N]1b$)

$^1H,^{15}N$ HSQC at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$\chi_B = 0.625$ (mole fraction of peptide $[^{15}N]1b$)

$^1H,^{15}N$ HSQC at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$\chi_B = 0.75$ (mole fraction of peptide $[^{15}N]1b$)

$^1H,^{15}N$ HSQC at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$\chi_B = 0.875$ (mole fraction of peptide $[^{15}N]1b$)

$^1H,^{15}N$ HSQC at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$\chi_B = 1.00$ (mole fraction of peptide $[^{15}N]1b$)

$^1H,^{15}N$ HSQC spectra 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

Stack of ^{15}N spectra from the f_1 projections of the $^1H,^{15}N$ HSQC spectra
Figure S1. 15N-Edited TOCSY spectrum of the 1:1 mixture of peptides $[^{15}$N]$1a$ and $[^{15}$N]$1b$ at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O at 600 MHz and 293 K.
Figure S2. (Continued on next page.)
Figure S2 (preceding page). Comparison of the (a) 15N-Edited NOESY spectrum of the 1:1 mixture of peptides $[^{15}\text{N}]\text{1a}$ and $[^{15}\text{N}]\text{1b}$ with the (b) 1H NMR TOCSY spectrum of the 1:1 mixture of peptides \textbf{1a} and \textbf{1b} in 9:1 H$_2$O/D$_2$O at 600 MHz and 293 K. Key crosspeaks associated with the A$_2$B$_2$ heterotetramer are highlighted in red from F$_{19}$, F$_{20}$, and A$_{21}$ of peptides $[^{15}\text{N}]\text{1a}$ and \textbf{1a}, and also from I$_{32}$, G$_{33}$, L$_{34}$ of peptides $[^{15}\text{N}]\text{1b}$ and \textbf{1b}.
Figure S3. 15N-edited NOESY spectrum of the 1:1 mixture of peptides $[^{15}\text{N}]1\text{a}$ and $[^{15}\text{N}]1\text{b}$ at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O at 600 MHz and 293 K. Crosspeaks associated with chemical exchange between the monomers and tetramers are labeled EX. The asterisk (*) indicates a crosspeak from a minor unidentified species associated with the A$_2$B$_2$ heterotetramer.
Figure S4. Expansions of the 1H NMR NOESY spectrum of the 1:1 mixture of peptides 1a and 1b at 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O at 600 MHz and 293 K. Key interlayer NOEs between A·A and B·B homodimers from the A$_2$B$_2$ heterotetramer are highlighted in red. F$_{19}$H$_o$, F$_{19}$H$_m$, and F$_{19}$H$_p$, correspond to the ortho, meta, and para protons of F$_{19}$.
Figure S5. \(A_2B_2\) heterotetramer consisting of two hydrogen-bonded homodimers of peptides 1a and 1b. Contacts between the side chains of F19 and L34 and between the side chains of A21 and I32 are shown, reflecting observed NOEs.
II. MATERIALS AND METHODS

Synthesis of Peptides 1

Synthesis and purification of peptides 1a and 1b, and \([^{15}N]1a\) and \([^{15}N]1b\) were performed as described in the preceding paper.\(^1\)

Fmoc-Protection of \(^{15}N\)-Labeled Amino Acids

Fmoc-protection of \(^{15}N\)-labeled glycine and phenylalanine was performed as described in the preceding paper.\(^1,2\)

NMR Spectroscopy of Peptides 1

Sample Preparation. NMR spectroscopy of peptides 1a and 1b was performed in D\(_2\)O (D, 99.96%; Cambridge Isotope Laboratories, Inc.). The solutions were prepared by dissolving a weighed portion of the peptide in the appropriate volume of solvent. The molecular weights of the peptides were calculated as the TFA salts with all amino groups assumed to be protonated (1a, M.W. 2223.85 and 1b, M.W. 2099.91). The solutions were allowed to stand for 24 h to allow complete hydrogen to deuterium exchange of the amide NH protons.

\(^1H\) NMR, TOCSY, and NOESY Data Collection. NMR spectra were recorded on a Bruker 600 MHz spectrometer with a TBI probe. Presaturation water suppression was applied as needed. TOCSY spectra were recorded with 2048 points in the \(f_2\) dimension and 512 increments in the \(f_1\) dimension with a 150-ms spin-lock mixing time. NOESY spectra were recorded with 2048 points in the \(f_2\) dimension and 512 increments in the \(f_1\) dimension with a 150-ms mixing time.
\textbf{1H NMR, TOCSY, and NOESY Data Processing.} NMR spectra were processed with Bruker XwinNMR software. Automatic baseline correction was applied in both dimensions after phasing the spectra. TOCSY spectra were Fourier transformed to a final matrix size of 2048 x 2048 real points using a Qsinc weighting function (GB = 0.05) and forward linear prediction. NOESY spectra were Fourier transformed to a final matrix size of 2048 x 2048 real points using a Qsinc weighting function (GB = 0.05) and forward linear prediction.

\textit{Diffusion-Ordered Spectroscopy (DOSY) Experiments.} DOSY experiments were performed on a Bruker 500 MHz spectrometer equipped with a TCI cryoprobe, with a diffusion delay (\(\Delta\)) of 75-ms and a diffusion gradient length (\(\delta\)) of 2.5-ms. Sixteen sets of FIDs were recorded with the gradient strength incremented from 5\%–95\% using a linear ramp. The combined FIDs were Fourier transformed in Bruker's TopSpinTM software to give a pseudo-2D spectrum. After phasing and performing baseline correction, each pseudo-2D spectrum was processed with logarithmic scaling on the Y-axis. The Y-axis was calibrated to the diffusion coefficient of the residual HOD peak in D\(_2\)O (1.9 x 10\(^{-9}\) m\(^2\)/s at 298 K).\(^3\) The diffusion coefficients of the peptides were read and converted from logarithmic values to linear values.

\textbf{NMR Spectroscopy of Peptides [15N]1}

\textit{Sample Preparation.} NMR spectroscopy of peptides [15N]1a and [15N]1b was performed in 9:1 H\(_2\)O/D\(_2\)O. The solutions were prepared by dissolving a weighed portion of the peptide in the appropriate volume of solvent. The molecular weights of the peptides were calculated as the TFA salts with all amino groups assumed to be protonated ([15N]1a, M.W. 2224.85 and [15N]1b,
M.W. 2100.91. 4,4-Dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA) was added as an internal standard for referencing chemical shifts.\(^4\)

\(^1\)H NMR, \(^1\)H,\(^{15}\)N HSQC, \(^1\)H,\(^{15}\)N TOCSY-HSQC (\(^{15}\)N-edited TOCSY), and \(^1\)H,\(^{15}\)N NOESY-HSQC (\(^{15}\)N-edited NOESY) Data Collection. NMR spectra were recorded on a Bruker 600 MHz spectrometer with either a TBI probe or a BBFO cryoprobe. Gradient water suppression was applied as needed. \(^1\)H,\(^{15}\)N HSQC spectra were recorded with 1024 points in the \(f_2\) dimension and 512 increments in the \(f_1\) dimension. \(^1\)H,\(^{15}\)N TOCSY-HSQC spectra were recorded with a 150-ms spin-lock mixing time, and with 2048 points in the \(f_3\) dimension (\(^1\)H), one increment in the \(f_2\) dimension (\(^{15}\)N), and 512 increments in the \(f_1\) dimension (\(^1\)H). \(^1\)H,\(^{15}\)N NOESY-HSQC spectra were recorded with a 150-ms mixing time, and with 2048 points in the \(f_3\) dimension (\(^1\)H), 1 increment in the \(f_2\) dimension (\(^{15}\)N), and 1024 increments in the \(f_1\) dimension (\(^1\)H).

\(^1\)H NMR, \(^1\)H,\(^{15}\)N HSQC, \(^1\)H,\(^{15}\)N TOCSY-HSQC (\(^{15}\)N-edited TOCSY), and \(^1\)H,\(^{15}\)N NOESY-HSQC (\(^{15}\)N-edited NOESY) Data Processing. NMR spectra were Fourier transformed in Bruker XwinNMR software with forward linear prediction and a Qsinc weighting function. Automatic baseline correction was applied in both dimensions after phasing the spectra. The \(^1\)H,\(^{15}\)N HSQC spectra were processed to a final matrix size of 2048 x 1024 real points and with GB = 0.1 in the \(f_2\) dimension. The \(^1\)H,\(^{15}\)N TOCSY-HSQC spectra were processed to a final 2D matrix size of 2048 x 1024 real points (\(f_3, f_1\)) and with GB = 0.05 in both dimensions. The \(^1\)H,\(^{15}\)N NOESY-HSQC spectra were processed to a final 2D matrix size of 4096 x 2048 real points (\(f_3, f_1\)) and with GB = 0.05 in both dimensions.
Molecular Modeling of Peptides 1a and 1b.

Molecular models of the A₂B₂ heterotetramers were generated using the models and methods from the preceding paper. The A₄ and B₄ homotetramers of peptides 1a and 1b were imported into PyMOL: Peptide monomers were selected to construct the A·A and B·B homodimer subunits within the A·A/B·B topological isomer. Peptide monomers were selected to construct the two A·B heterodimer subunits within the A·B/A·B topological isomer. The dimer subunits were oriented so that the side chains of L₁₇, F₁₉, A₂₁, and D₂₃ and the side chains of A₃₀, I₃₂, L₃₄, and V₃₆ formed the hydrophobic core of the A₂B₂ heterotetramers.

The coordinates were exported from PyMOL. [Note that .pdb was used, but .mol2 file format is actually preferable and is recommended instead of .pdb.] The file was imported into MacroModel with the Maestro user interface. Atom types and bond orders were edited as needed to correct errors in bond type and charge. Distance constraints were applied to reflect the folding and dimerization of the macrocycles. Four interlayer distance constraints between the δ-methyl group of Ile₁₁ and the methoxy group of Hao were applied to reflect the observed interlayer contacts. Minimization was performed with the MMFFs force field and GB/SA water solvation. All constraints were removed and minimization was repeated to generate a minimum-energy conformation (local minimum). The coordinates were exported in .pdb file format and imported into PyMOL.
Job’s Method of Continuous Variation

Nine samples of peptides $[^{15}\text{N}]_{1}\text{a}$ and $[^{15}\text{N}]_{1}\text{b}$ were prepared at 8.0 mM total concentration with mole fractions of peptide $[^{15}\text{N}]_{1}\text{b} = 0.00, 0.125, 0.25, 0.375, 0.50, 0.625, 0.75, 0.875, and 1.00. An $^{1}\text{H},^{15}\text{N}$ HSQC spectrum at 600 MHz and 293 K was recorded for each mixture using the data collection and data processing parameters described above. These spectra are shown on pages S40-48.

The spectra were reprocessed in Bruker’s TopSpin™ software using a Qsine weighting function to sharpen the crosspeaks for measuring the intensities. One-dimensional ^{15}N spectra from the two-dimensional $^{1}\text{H},^{15}\text{N}$ HSQC spectra were generated by typing “f1sum” in the command line. A stack plot of the ^{15}N spectra is shown on page S49.

The volume integrals of the crosspeaks in the $^{1}\text{H},^{15}\text{N}$ HSQC spectra were measured and normalized to 1.0. Table S1 summarizes the volume integrals versus the mole fraction of peptide $[^{15}\text{N}]_{1}\text{b}, \chi_{B}$.

Table S1. Relative integrals of the crosspeaks 1–14 from the $^{1}\text{H},^{15}\text{N}$ HSQC spectra

χ_{B}	A	A4	B	B4	A2B2	A3B1	A1B3							
0.000	0.000	0.9336	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.125	0.0449	0.6883	0.0608	0.0000	0.0438	0.0435	0.0363	0.0268	0.0427	0.0125	0.0000	0.0000	0.0000	0.0003
0.250	0.0332	0.4359	0.1089	0.0005	0.1309	0.1345	0.0255	0.0421	0.0318	0.0466	0.0031	0.0030	0.0028	0.0012
0.375	0.0281	0.2986	0.1445	0.0042	0.1854	0.1785	0.0424	0.0393	0.0335	0.0239	0.0039	0.0076	0.0064	0.0037
0.500	0.0177	0.1350	0.1987	0.0209	0.2330	0.2310	0.0205	0.0308	0.0262	0.0281	0.0195	0.0158	0.0087	0.0140
0.625	0.0115	0.0608	0.2699	0.0384	0.2423	0.2325	0.0207	0.0206	0.0148	0.0134	0.0278	0.0224	0.0216	0.0033
0.750	0.0082	0.0096	0.3095	0.1466	0.1782	0.1734	0.0037	0.0097	0.0071	0.0055	0.0435	0.0390	0.0293	0.0368
0.875	0.0044	0.0009	0.3820	0.2741	0.0812	0.0783	0.0035	0.0020	0.0000	0.0006	0.0466	0.0351	0.0475	0.0440
1.000	0.0000	0.0000	0.4796	0.5204	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
To generate the Job plot, the relative integrations of the monomers, homotetramers, and heterotetramers were plotted versus the mole fraction χ_B. The normalized integrals of crosspeaks 1 and 2 were used for the relative integrations of the A monomer and A$_4$ homotetramer, respectively; the normalized integrals of crosspeaks 3 and 4 were used for the relative integrations of the B monomer and B$_4$ homotetramer, respectively. The sum of the normalized integrals of crosspeaks 5 and 6 was used for the relative integration of the A$_2$B$_2$ heterotetramer; the sum of the normalized integrals of crosspeaks 7–10 was used for the relative integration of the A$_3$B$_1$ heterotetramer; and the sum of the normalized integrals of crosspeaks 11–14 was used for the relative integration of the A$_1$B$_3$ heterotetramer. Table S2 summarizes the relative integrations. Figure 8 illustrates the resulting Job plot.

χ_B	A	B	A$_4$	A$_3$B$_1$	A$_2$B$_2$	A$_1$B$_3$	B$_4$
0.000	0.0664	0.0000	0.9336	0.0000	0.0000	0.0000	0.0000
0.125	0.0449	0.0608	0.6883	0.1183	0.0873	0.0003	0.0000
0.250	0.0332	0.1089	0.4359	0.1459	0.2654	0.0102	0.0005
0.375	0.0281	0.1445	0.2986	0.1391	0.3639	0.0216	0.0042
0.500	0.0177	0.1987	0.1350	0.1057	0.4640	0.0581	0.0209
0.625	0.0115	0.2699	0.0608	0.0695	0.4748	0.0751	0.0384
0.750	0.0082	0.3095	0.0096	0.0260	0.3516	0.1486	0.1466
0.875	0.0044	0.3820	0.0009	0.0060	0.1595	0.1731	0.2741
1.000	0.0000	0.4796	0.0000	0.0000	0.0000	0.0000	0.5204
III. MATHEMATICAL DERIVATIONS FOR THE MONOMER–HOMOTETRAMER–
HETEROTETRAMER EQUILIBRIUM MODEL

This section describes the mathematical derivations for the monomer–homotetramer–
heterotetramer equilibrium model. This model was used for nonlinear least-squares fitting of the
Job plot and for generating simulated Job plots. The mathematical derivations are based on those
developed by Collum and co-workers in the supporting information of Liou, L. R; McNeil, A. J.;
Ramirez, A.; Toombes, G. E. S.; Gruver, J. M.; Collum, D. B. J. Am. Chem. Soc. 2008, 130,
4859–4868. The following subsections describe (A) the mathematical derivations with general
equations; (B) the implementation for homotetramers and heterotetramers; (C) and our
implementation for monomers, homotetramers, and heterotetramers.

A. General Equations

In this subsection, we describe the mathematical derivations with general equations. The
general equations calculate the concentrations of homooligomers and heterooligomers (that are
the same size) as a function of the mole fraction of compounds “A” and “B”:

\[A_N, A_{N-1}B_1, A_{N-2}B_2, A_{N-3}B_3, \ldots B_N \]

The stoichiometry of the oligomers can be generalized using the term “A_nB_{N-n}”, where the value of
\(N \) reflects oligomer size; the value of \(n \) reflects the number of "A" subunits; and the value of \(N - n \)
reflects the number of "B" subunits. For example, \(N = 4 \) and \(n = 1 \) for an \(A_1B_3 \) heterotetramer.
Three main factors influence the relative concentration of oligomers \(A_nB_{N-n}\) at equilibrium: multiplicity, free energy, and chemical potential. The equations developed by Collum and co-workers combine these factors for calculating the concentrations of homooligomers and heterooligomers.

1. **Multiplicity \((M_n)\):** The number of ways the “A” and “B” subunits can be arranged within an oligomer \(A_nB_{N-n}\). Each unique arrangement is called a permutation \((\rho)\). Oligomers that have multiple permutations are present in larger concentrations than oligomers that have only one. The multiplicity or the number of permutations of an oligomer \(A_nB_{N-n}\) can be determined with Pascal's triangle or by using binomial theorem, which is shown here:

\[
M_n = \frac{N}{(N-n)! \times n!}
\]

2. **Free Energy \((g_\rho)\):** The relative stability of an oligomer permutation \(\rho\). Permutations with the same stoichiometry often have the same relative stability. [In the \(A_2B_2\) heterotetramer of peptides 1a and 1b, the \(A\cdot A/B\cdot B\) and \(A\cdot B/A\cdot B\) topological isomers do not have the same relative stability.] The variable \(\phi_{N,n}\) relates the free energy of each permutation to the relative stability.

\[
-g_\rho = kT \ln(\phi_{N,n})
\]

3. **Chemical Potential \((\mu_A\text{ and }\mu_B)\):** The potential energy associated with the moles of compound “A” and the moles of compound “B” in a mixture. The mole fraction of the compounds reflects the relative chemical potential. The relative chemical potential of \(\mu_A\) and \(\mu_B\) shifts as the mole fraction of A and B is varied in a Job’s method of continuous variation experiment. For a mixture of tetramers, when the mole fraction of A is greater than the mole fraction of B, the concentration the \(A_3B_1\) heterotetramer is greater than the concentration of the \(A_1B_3\) heterotetramer.
To calculate the concentration of a permutation, the free energy and the chemical potential terms are combined to give the following equation:

\[[\rho] = C \times \exp \left(\frac{-g_\rho + n_\rho \mu_A + (N - n_\rho) \mu_B}{kT} \right) \]

(1)

The free energy \(g_\rho \) is the measure of the relative stability of the corresponding permutation \(\rho \); the value of \(n_\rho \) is the number of the “A” subunits within the permutation \(\rho \); the value of \(\mu_A \) is the chemical potential of compound A; the value of \(\mu_B \) is the chemical potential of compound B. The constant \(C \) relates oligomerization propensity to the total concentration.

The concentration of an oligomer \(A_nB_{N-n} \) is the sum of the concentrations of permutations that have the same stoichiometry \((\rho; n_\rho = n) \). For calculating the concentration of an oligomer \(A_nB_{N-n} \), the multiplicity term is combined with the free energy term and chemical potential term to give the following equation:

\[
[A_nB_{N-n}] = \sum_{\rho; n_\rho = n} [\rho] = C \times \exp \left(\frac{n_\rho \mu_A + (N - n_\rho) \mu_B}{kT} \right) \times \sum_{\rho; n_\rho = n} \exp \left(\frac{-g_\rho}{kT} \right)
\]

(2)

\[
= C \times \exp \left(\frac{n_\rho \mu_A + (N - n_\rho) \mu_B}{kT} \right) \times M_n \times \langle \exp \left(\frac{-g_\rho}{kT} \right) \rangle_{\rho; n_\rho = n}
\]

(3)

In this equation, the concentrations of permutations \(\rho \) that have the same stoichiometry \((\rho; n_\rho = n) \) are multiplied by the multiplicity \(M_n \) to give the oligomer concentration \([A_nB_{N-n}]\). In a Job’s method of continuous variation experiment, the sum of the concentrations of permutations \(\rho \) that have the same stoichiometry \((\rho; n_\rho = n)\) gives the oligomer concentration \([A_nB_{N-n}]\).
To simplify equation (3), the variables a and b were used to represent the effective chemical potentials μ_A and μ_B, and the variable $\phi_{N,n}$ was used to represent the relative stability of an oligomer A_nB_{N-n}.

$$a = \exp\left(\frac{\mu_A}{kT}\right) \quad b = \exp\left(\frac{\mu_B}{kT}\right) \quad \phi_{N,n} = \langle \exp\left(\frac{g_n}{kT}\right) \rangle_{\rho, n_p = n}$$

Incidentally, the values of a and b are related to each other such that

$$a + b = 1 \quad \text{and} \quad \frac{a}{b} = \frac{a}{1-a}$$

Incorporation of these variables into equation (3) gives the following equation:

$$[A_nB_{N-n}] = C \times M_n \times \phi_{N,n} \times a^n \times b^{N-n} \quad (4)$$

Equation (4) is the general equation for calculating oligomer concentration. To calculate the relative concentration of an oligomer, the concentration is divided by the sum of the concentrations of all the oligomers A_jB_{N-j}:

$$\frac{[A_nB_{N-n}]}{\sum_{j=0}^{N} [A_jB_{N-j}]} = \frac{C \times M_n \times \phi_{N,n} \times a^n \times b^{N-n}}{\sum_{j=0}^{N} C \times M_j \times \phi_{N,j} \times a^j \times b^{N-j}} \quad (5)$$
B. Equations for Homotetramers and Heterotetramers

In this section, we describe the equations for homotetramers and heterotetramers \((N = 4)\). Heterotetramers have multiple permutations \(\rho\), which increases the concentrations of the heterotetramers relative to the concentrations of the homotetramers. Table S3 summarizes the permutations \(\rho\) of the homotetramers and heterotetramers.

Table S3. Permutations \(\rho\) of the homotetramers and heterotetramers

stoichiometry	multiplicity \(M_n\)	permutation \(\rho\)
\(A_nB_{N-n}\)		
\(A_4\)	1	AAAA
\(A_3B_1\)	4	AAAB, AABA, ABAA, AAAB
\(A_2B_2\)	6	AABB, ABAB, BAAB, BABA, BBAA, ABBA
\(A_1B_3\)	4	ABBB, BABBB, BBAB, BBA
\(B_4\)	1	BBBB

The parameters \(\phi_{N,n}\) are ascribed to each of the homotetramers and heterotetramers, where the \(N\) and \(n\) are integers in which the value of \(N\) describes the oligomer size and the value of \(n\) describes the number of "A" subunits. The value of each \(\phi_{N,n}\) reflects the relative stability of each homotetramer or heterotetramer. The parameters \(\phi_{4,4}\), \(\phi_{4,3}\), \(\phi_{4,2}\), \(\phi_{4,1}\), and \(\phi_{4,0}\) describe the relative stabilities of \(A_4\), \(A_3B_1\), \(A_2B_2\), \(A_1B_3\), and \(B_4\), respectively. The following equations are based on equation (4) and contain these parameters for calculating the concentrations of each homotetramer and heterotetramer:

\[
[A_4] = 1 \times C \times \phi_{4,4} \times a^4 \quad (6)
\]

\[
[A_3B_1] = 4 \times C \times \phi_{4,3} \times a^3b^1 \quad (7)
\]

\[
[A_2B_2] = 6 \times C \times \phi_{4,2} \times a^2b^2 \quad (8)
\]

\[
[A_1B_3] = 4 \times C \times \phi_{4,1} \times a^1b^3 \quad (9)
\]

\[
[B_4] = 1 \times C \times \phi_{4,0} \times b^4 \quad (10)
\]
The following equation calculates the relative integration \((I_{N,n})\) by dividing the integration of one tetramer by the sum of the integrations of all tetramers.

\[
I_{N,n} = \frac{C \times M_n \times \phi_{N,n} \times a^n \times b^{N-n}}{\sum_{j=0}^{N} C \times M_j \times \phi_{N,j} \times a^j \times b^{N-j}}
\]

(11)

The following equations calculate the relative integration of each homotetramer and heterotetramer:

\[
I_{4,4} = \frac{\phi_{4,4}a^4}{\phi_{4,4}a^4 + 4\phi_{4,3}a^3b^1 + 6\phi_{4,2}a^2b^2 + 4\phi_{4,1}a^1b^3 + \phi_{4,0}b^4}
\]

(12)

\[
I_{4,3} = \frac{4\phi_{4,3}a^3b^1}{\phi_{4,4}a^4 + 4\phi_{4,3}a^3b^1 + 6\phi_{4,2}a^2b^2 + 4\phi_{4,1}a^1b^3 + \phi_{4,0}b^4}
\]

(13)

\[
I_{4,2} = \frac{6\phi_{4,2}a^2b^2}{\phi_{4,4}a^4 + 4\phi_{4,3}a^3b^1 + 6\phi_{4,2}a^2b^2 + 4\phi_{4,1}a^1b^3 + \phi_{4,0}b^4}
\]

(14)

\[
I_{4,1} = \frac{4\phi_{4,1}a^1b^3}{\phi_{4,4}a^4 + 4\phi_{4,3}a^3b^1 + 6\phi_{4,2}a^2b^2 + 4\phi_{4,1}a^1b^3 + \phi_{4,0}b^4}
\]

(15)

\[
I_{4,0} = \frac{\phi_{4,0}b^4}{\phi_{4,4}a^4 + 4\phi_{4,3}a^3b^1 + 6\phi_{4,2}a^2b^2 + 4\phi_{4,1}a^1b^3 + \phi_{4,0}b^4}
\]

(16)
C. Equations for Monomers, Homotetramers, and Heterotetramers

In this section, we describe how we modified the equations to accommodate the equilibrium of the monomers with the homotetramers and heterotetramers. The result is the equation used for the monomer–homotetramer–heterotetramer equilibrium model for nonlinear least-squares fitting of the Job plot.

\[A, B, A_4, A_3B_1, A_2B_2, A_1B_3, B_4 \]

We used the following equations to calculate the concentrations of the monomers as a function of their respective relative stabilities \(\phi_{N,n} \) and the chemical potentials \(a \) and \(b \).

\[
\begin{align*}
[A] &= C \times \phi_{1,1} \times a \\
[B] &= C \times \phi_{1,0} \times b
\end{align*}
\]

(17)
(18)

We used the mass balance equation to accommodate the total concentration of compounds A and B. The total concentration has little or no effect on the equilibria among homotetramers and heterotetramers. By contrast, the total concentration is critical in the equilibria of the monomers with the homotetramers and heterotetramers. The mass balance equation gives the total concentration of compounds A and B \([A]_{\text{total}} \) and \([B]_{\text{total}} \) as a function of the monomers, homotetramers, and heterotetramers.

\[
[A]_{\text{total}} + [B]_{\text{total}} = [A] + [B] + 4([A_4] + [A_3B_1] + [A_2B_2] + [A_1B_3] + [B_4])
\]

(19)

Substitution of equations (6), (7), (8), (9), (10), (17), and (18) into the mass balance equation gives the following equation:

\[
[A]_{\text{total}} + [B]_{\text{total}} = C(\phi_{1,1} a + \phi_{1,0} b) + 4C(\phi_{4,4} a^4 + 4\phi_{4,3} a^3 b^1 + 6\phi_{4,2} a^2 b^2 + 4\phi_{4,1} a^1 b^3 + \phi_{4,0} b^4)
\]

(20)
Equation (20) was simplified using the following identities, which represent \(a \) and \(b \) in terms of \(\alpha \) and \(1 - \alpha \):

\[
\alpha = \frac{a}{a + b} \quad x = a + b \quad a = \alpha x \quad b = (1 - \alpha)x
\]

Substitution of \(a = \alpha x \) and \(b = (1 - \alpha)x \) into equation (20) gives the following equation:

\[
[A]_{\text{total}} + [B]_{\text{total}} = xC(\phi_{1,1} \alpha + \phi_{1,0} (1 - \alpha)) + 4x^4C(\phi_{4,4} \alpha^4 + 4\phi_{4,3} \alpha^3(1 - \alpha)^1 + 6\phi_{4,2} \alpha^2(1 - \alpha)^2 + 4\phi_{4,1} \alpha^1(1 - \alpha)^3 + \phi_{4,0} (1 - \alpha)^4)
\]

(21)

Equation (21) was simplified by representing the concentrations of the monomers and tetramers in terms of \(M_{\text{total}} \) and \(T_{\text{total}} \):

\[
M_{\text{total}} = xC(\phi_{1,1} \alpha + \phi_{1,0} (1 - \alpha))
\]

\[
T_{\text{total}} = 4x^4C(\phi_{4,4} \alpha^4 + 4\phi_{4,3} \alpha^3(1 - \alpha)^1 + 6\phi_{4,2} \alpha^2(1 - \alpha)^2 + 4\phi_{4,1} \alpha^1(1 - \alpha)^3 + \phi_{4,0} (1 - \alpha)^4)
\]

Substitution of \(M_{\text{total}} \) and \(T_{\text{total}} \) into the mass balance equation gives the equation for a monomer–tetramer (monomer–homotetramer–heterotetramer) equilibrium model:

\[
[A]_{\text{total}} + [B]_{\text{total}} = x M_{\text{total}} + 4x^4 T_{\text{total}}
\]

(22)

Setting the equation equal to zero gives the following fourth-order polynomial:

\[
x M_{\text{total}} + 4x^4 T_{\text{total}} - ([A]_{\text{total}} + [B]_{\text{total}}) = 0
\]

(23)

The fourth-order polynomial was solved for \(x \) using Mathematica 10.3 (Wolfram Research, Champaign, IL), which gave a set of four roots (not shown). Each root was evaluated under typical conditions of monomer and tetramer equilibrium (e.g. \(M_{\text{total}} = 1.4, T_{\text{total}} = 1.65 \), and \(([A]_{\text{total}} + [B]_{\text{total}}) = 8 \)). The root that gave a non-negative value of \(x \) was used as the monomer–homotetramer–heterotetramer equilibrium model.
IV. NONLINEAR LEAST-SQUARES FITTING OF THE JOB PLOT

This section describes how we used the monomer–homotetramer–heterotetramer equilibrium model for nonlinear least-squares fitting of the Job Plot. To perform the fit, the model was incorporated into a .m script and executed with a series of scripts in MATLAB 2015b. The scripts are based on those developed by Collum and co-workers in the supporting information of Liou, L. R; McNeil, A. J.; Ramirez, A.; Toombes, G. E. S.; Gruver, J. M.; Collum, D. B. J. Am. Chem. Soc. 2008, 130, 4859–4868.

The following subsections describe the process of fitting the model to our experimental data (Table S2) from the Job’s method of continuous variation experiment. The subsections also contain the code from each script along with annotations that describe how the code is used.

A. End User Instructions

1. Copy the code from each subsection into its own text file, but do not transfer the annotations. Save each file into the same folder or directory using the following file names:

 data_Monomer_Tetramer.m

 try_fit.m

 refine_fit.m

 multimers.m

 populations_tetramer.m

 populations_monomer.m

 error_of_model.m

S24
2. Open MATLAB and navigate the “Current Folder” of the program to the directory where the .m scripts were saved.

3. Load the data from the data_Monomer_Tetramer.m file into MATLAB. The data can be loaded in one of two ways: by opening the script with MATLAB and clicking “Run” in the window or by typing the file name into the MATLAB command line and pushing enter.

4. Run the try_fit.m script. This script can be run with or without Expt_Errors. To run the script without Expt_Errors, type the following try_fit function into the command line and push enter:

 \[
 \text{try_fit}(Xb, Ctotal, phi_monomer, peak_assignment_monomer, phi_tetramer, peak_assignment_tetramer, \text{Expt_Populations})
 \]

 To run the try_fit.m script with Expt_Errors, type the following try_fit function into the command line and push enter:

 \[
 \text{try_fit}(Xb, Ctotal, phi_monomer, peak_assignment_monomer, phi_tetramer, peak_assignment_tetramer, \text{Expt_Populations}, \text{Expt_Errors})
 \]

5. The data points in the figure should resemble the data shown in Figure 8. The curves that overlay the data should resemble the curves from the simulated Job plot in Figure 9e.

6. To run the refine_fit.m script without Expt_Errors, type the following refine_fit function into the command line and push enter:

 \[
 \text{refine_fit}(Xb, Ctotal, phi_monomer, peak_assignment_monomer, phi_tetramer, peak_assignment_tetramer, \text{Expt_Populations}, \text{phi_constant})
 \]

 To run the refine_fit.m script with Expt_Errors, type the following refine_fit function into the command line and push enter:

 \[
 \text{refine_fit}(Xb, Ctotal, phi_monomer, peak_assignment_monomer, phi_tetramer, peak_assignment_tetramer, \text{Expt_Populations}, \text{phi_constant}, \text{Expt_Errors})
 \]

 After the fit, the final phi values shown in the MATLAB terminal are the optimized phi values. These values should be comparable to the phi values listed in Figure 8.

7. Make a copy of the file data_Monomer_Tetramer.m to a new file called data_Monomer_Tetramer_new.m. Replace the phi values with the optimized values from the refine_fit.m script.

8. Load the new data file data_Monomer_Tetramer_new.m into MATLAB. Type the try_fit function into the command line and push enter to observe the optimized fit.
B. Definitions

1. $X_b(j)$ is the mole fraction χ_B.

2. C_{total} is the input for the total concentration of each mixture.

3. Expt _Populations is the experimental data input for the relative integrations of the monomers, homotetramers, and heterotetramers (Table S2). These data are referred to as the “experimental populations”.

4. Expt _Errors is the input for the error of the measurements.

5. $\text{peak _assignment _monomer}$ and $\text{peak _assignment _tetramer}$ are column identifiers assigned to each monomer and tetramer population.

6. ϕ_{monomer} and ϕ_{tetramer} are measures of the relative stabilities of the monomers and tetramers. These values are assigned to each monomer, homotetramer, and heterotetramer population and are used by the monomer–homotetramer–heterotetramer equilibrium model for calculating the relative concentrations of each population.

7. ϕ_{constant} is the input that dictates whether a ϕ_{monomer} or ϕ_{tetramer} value remains fixed or is allowed to vary during nonlinear least-squares fitting. A value of 1 allows the corresponding ϕ to vary; a value of 0 keeps the corresponding ϕ fixed.

8. Expt _weights is the input for the error of each data point and is used for weighting the error of each data point. The data points are weighted equally if nothing is entered.

9. conc _monomer and conc _tetramer are used for calculating and storing the concentrations for each monomer, homotetramer, and heterotetramer population. [Note that even though the term concentration is used, the scripts are actually calculating the integrations of the monomer and tetramer populations.]

10. pop _monomer and pop _tetramer are used to temporarily store calculated values for the concentrations (relative integrations) of each monomer or tetramer population. These data are referred to as the calculated (predicted) populations.

11. $\text{Model _Populations}$ is the final output for the concentrations (relative integrations) of the monomers, homotetramers, and heterotetramers.

12. mean _error weighted standard deviation of the residuals over the entire fit.

13. $\text{pop _error}(1,j)$ is the mean error of experimental populations – calculated populations. The value could be negative, zero, or positive.

14. $\text{pop _error}(2,j)$ is the root mean square error of experimental populations – calculated populations. The value is always positive.

15. $\phi_{\text{dimer _new}}$ and $\phi_{\text{tetramer _new}}$ are the new values of each ϕ after the fit.

16. error is the root mean square error of the new calculated populations.
C. Monomers, Homotetramers, and Tetramers: Data

This script stores the experimental populations and the initial values for performing the fit.

This code clears all stored information in the command line and closes all figures.

```matlab
clear variables;
close all;
clc;
```

This code is the input for the total concentration of the mixtures, which is designated \(C_{\text{total}} \). The number of values in \(C_{\text{total}} \) equal the number of samples studied. In this case, nine samples were studied.

```matlab
C_{\text{total}} = [0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008];
```

This code is the input the mole fraction \(\chi_B \), which is designated \(X_B \). The values entered in \(X_B \) equal the mole fraction of each mixture studied. The values are listed from lowest to highest.

```matlab
X_B = [0.00 0.125 0.25 0.375 0.50 0.625 0.75 0.875 1.00];
```

This code is the input for the experimental populations: the relative integrations from the Job’s method of continuous variation experiment (Table S2). Each column lists the relative integrations of the monomer and tetramer populations in the following order: A, B, A_4, A_3B_1, A_2B_2, A_1B_3, B_4. The columns are separated by a space. Each row lists the relative integrations of the mole fractions \(X_B \) listed in the following order: 0.00, 0.125, 0.25, 0.375, 0.50, 0.625, 0.75, 0.875, and 1.00. The rows are separated by a semicolon.

```matlab
Expt_Populations = [
0.0664 0.0000 0.9336 0.0000 0.0000 0.0000 0.0000;
0.0449 0.0608 0.6883 0.1183 0.0873 0.0003 0.0000;
0.0332 0.1089 0.4359 0.1459 0.2654 0.0102 0.0005;
0.0281 0.1445 0.2986 0.1391 0.3639 0.0216 0.0042;
0.0177 0.1987 0.1350 0.1057 0.4640 0.0581 0.0209;
0.0115 0.2699 0.0608 0.0695 0.4748 0.0751 0.0384;
0.0082 0.3095 0.0096 0.0260 0.3516 0.1486 0.1466;
0.0044 0.3820 0.0009 0.0060 0.1595 0.1731 0.2741;
0.0000 0.4796 0.0000 0.0000 0.0000 0.0000 0.5204];
```
The Expt_Errors input is optional for the fit. These values should be listed for the monomer and
tetramer populations in the following order: A, B, A₄, A₃B₁, A₂B₂, A₁B₃, B₄, which is the same
order used for the populations in the Expt_Populations input.

| % Expt_Errors = [:]; |

The peak_assignment_monomer and peak_assignment_tetramer are inputs that designate the
column for each monomer or tetramer. For a given monomer or tetramer, the assignment value
specifies which column the data should be read from or stored in. The peak_assignment_monomer values are listed in the following order: A, B; the
peak_assignment_tetramer values are listed in the following order: A₄, A₃B₁, A₂B₂, A₁B₃, B₄.

| peak_assignment_monomer = [1 5]; |
| peak_assignment_tetramer = [1 2 3 4 5]; |

The initial phi values are all set to one.

The phi_monomer values are listed in the following order: A, B; the phi_tetramer values are
listed in the following order: A₄, A₃B₁, A₂B₂, A₁B₃, B₄.

| phi_monomer = [1 1]; |
| phi_tetramer = [1 1 1 1 1]; |

The phi_constants that are set to 1 allow the phi value to be refined with the refine_fit.m script; the phi_constants that are set to 0 keep the value fixed during the refine_fit.m script.

The phi_constant values are listed in the following order: A, B, A₄, A₃B₁, A₂B₂, A₁B₃, B₄. The phi_constant for the A₄ homotetramer was fixed so that the refine_fit.m script gives a unique solution.

| phi_constant = [1 0 1 1 1 1]; |
D. Monomers, Homotetramers, and Tetramers: Try Fit

This script plots the experimental populations, and also plots the populations calculated from the phi values. The two plots are overlayed in a new window. The experimental populations are plotted versus the mole fraction Xb as open circles; the calculated populations are plotted versus the mole fraction Xb as smooth lines. The script also determines the error between the experimental populations and the calculated populations then prints these values in the MATLAB terminal.

```matlab
function try_fit(Xb, Ctotal,...
    phi_monomer, peak_assignment_monomer,...
    phi_tetramer, peak_assignment_tetramer,...
    Expt_Populations, Expt_Errors)

This code determines whether Expt_Errors are entered.

```if(nargin<8)
 Expt_weights=ones(size(Expt_Populations));
else
 Expt_weights=1./(Expt_Errors+mean(mean(Expt_Errors)));
end```

This code plots the experimental populations of the monomers and tetramers from the Expt_Populations input.

```matlab
    hold on ; cscheme= 'kybmgcrkybmgcr'; axis([0 1 0 1]); xlabel('X_B'); ylabel('Relative Integration'); for j=1:size(Expt_Populations,2)
        if (nargin<8)
            plot(Xb, Expt_Populations(:,j),sprintf('%so',cscheme(j)));
        else
            errorbar(Xb, Expt_Populations(:,j), Expt_Errors(:,j),sprintf('%so',cscheme(j)));
        end
    end
```

This code calculates the monomer and tetramer populations using the initial values of the phi's entered.
XBC = (0:0.01:1);
Ctotalac = Ctotal(1)*ones(size(XBc));
[conc_monomers, conc_tetramers] = multimers(XBc, Ctotalac,...
phi_monomer, phi_tetramer);

This code stores the calculated monomer and tetramer populations and stores them in a matrix.

pop_tetramer = populations_tetramer(conc_monomers,...
peak_assignment_monomer, conc_tetramers, peak_assignment_tetramer);

pop_monomer = populations_monomer(conc_monomers,...
peak_assignment_monomer, conc_tetramers, peak_assignment_tetramer);

pop_tetramer_corrected = pop_tetramer-pop_monomer;
pop_combined = horzcat(pop_monomer(:,1),...
pop_monomer(:,5),pop_tetramer_corrected);

This code plots the calculated populations.

for j=1:size(pop_combined,2)
 plot(XBc,pop_combined(:,j),sprintf('%c',cscheme(j)));
end

This code compares the experimental and the calculated populations, then calculates and displays the error.

[mean_error, pop_error] = error_of_model(Xb, Ctotal,...
phi_monomer, peak_assignment_monomer,...
phi_tetramer, peak_assignment_tetramer,...
Expt_Populations, Expt_weights);

N = length(horzcat(phi_monomer, phi_tetramer)) - 1;
fprintf(1,'\nThe Mean mismatch is %f percent.\n', mean_error*100);

for j=1:size(pop_error, 2)
 fprintf(1,'Predicted value of Population %d exceeds measurement by %f percent\n and mean square error of %f percent.\n',j, pop_error(1,j)*100,pop_error(2,j)*100);
end
E. Monomers, Homotetramers, and Tetramers: Refine Fit

This script performs the nonlinear least-squares fitting. The script optimizes the phi values to match the calculated populations to the experimental populations. The script reports the new phi values and the root mean square difference between the calculated and the experimental populations.

```matlab
function [phi_dimer_new, phi_tetramer_new, error] = refine_fit(Xb,Ctotal,...
    phi_monomer, peak_assignment_monomer,...
    phi_tetramer, peak_assignment_tetramer,...
    Expt_Populations, phi_constant, Expt_Errors)

This code determines whether Expt_errors are entered.

    if (nargin<9)
        Expt_weights = ones(size(Expt_Populations));
    else
        Expt_weights = 1./( Expt_Errors + mean(mean(Expt_Errors)));
    end

This code merges the monomer Expt_Populations and the tetramer Expt_Populations into a single input.

    phimerge = [phi_monomer, phi_tetramer];
    idx_monomer = [1 2]; idx_tetramer = [3 4 5 6 7];
    param = [1:length(phimerge)];

This code sets the initial step size used to optimize the phi values; the initial step size is 10%.

    step_size = 0.1*phi_constant.*phimerge(param);
    N_no_progress = 0;
    N_max_trials = 30;
```
This code compares the calculated and experimental populations of the monomers and tetramers, then calculates and displays the error of the model.

```matlab
[error_best, temp] = error_of_model(Xb,Ctotal,...
    phimerge(idx_monomer), peak_assignment_monomer,...
    phimerge(idx_tetramer), peak_assignment_tetramer,...
    Expt_Populations, Expt_weights);

fprintf(1,'n Initial Error of Fit = %f percent.n', error_best * 100);
```

This code is a "for while" loop that reduces the error of the model by optimizing the phi values.

```matlab
while (N_no_progress < N_max_trials)
    flag = 0;
    for k=1:length(param)

This code adjusts the value of phi to the "right" and to the "left".

```matlab
phi_testr = phimerge;
phi_testr(param(k)) = abs(phimerge(param(k)) + step_size(k));
[error_testr, temp] = error_of_model(Xb,Ctotal,...
 phi_testr(idx_monomer), peak_assignment_monomer,...
 phi_testr(idx_tetramer), peak_assignment_tetramer,...
 Expt_Populations, Expt_weights);

phi_testl = phimerge;
phi_testl(param(k)) = abs(phimerge(param(k)) - step_size(k));
[error_testl, temp] = error_of_model(Xb,Ctotal,...
 phi_testl(idx_monomer), peak_assignment_monomer,...
 phi_testl(idx_tetramer), peak_assignment_tetramer,...
 Expt_Populations, Expt_weights);
```

S32
This code determines which adjustment of phi decreases the error of the model. If either the right or the left value decreases the error, then that value is stored and the loop repeats again. If neither the right or the left value decreases the error, then the step is flagged and the size of the step is reduced.

```matlab
if (error_testr < error_best)
 error_best = error_testr;
 phimerge = phi_testr;
 step_size(k) = step_size(k) * 1.5;
 N_no_progress = 0;

elseif (error_testl < error_best)
 error_best = error_testl;
 phimerge = phi_testl;
 step_size(k) = step_size(k) * 1.5;
 N_no_progress = 0;
else
 flag = flag + 1;
end
end
if (flag >= length(param))
 step_size = step_size * (0.75 + 0.25 * rand);
 N_no_progress = N_no_progress + 1;
end
```

This code displays the new fit after each phi has been adjusted

```matlab
fprintf(1,'

 Error - %f , Last Good Step - %d , Mean Step Size - %f...
',error_best, N_no_progress, 100*mean(step_size));
fprintf('
 Phi Monomer - '); fprintf(1,'%f ', phimerge(idx_monomer));
fprintf(1,'
 Phi Tetramer - '); fprintf(1,'%f ',phimerge(idx_tetramer));
end
```

error = error_best;
phi_monomer_new = phimerge(idx_monomer);
phi_tetramer_new = phimerge(idx_tetramer);
F. Monomers, Homotetramers, and Tetramers: Multimers

For each mole fraction Xb, this script calculates the concentrations (relative integrations) of the monomer and tetramer populations using the inputs: Xb, Ctotal, phi_monomer, and phi_tetramer.

```matlab
function [conc_monomer, conc_tetramer] = multimers(Xb, Ctotal, ...
 phi_monomer, phi_tetramer)
 for j=1:length(Xb)
 [conc_monomer(j,:), conc_tetramer(j,:)] = bisect(Xb(j), Ctotal(j),...
 phi_monomer, phi_tetramer);
 end
```

This code is the bisection function, which optimizes the "relative chemical potential" until the value reflects the mole fraction of the experimental mole fraction.

```matlab
function [conc_monomer, conc_tetramer] = bisect(Xb, Ctotal, ...
 phi_monomer, phi_tetramer)
 tolerance = 1e-6;
 bmax = 1; bmin = 0;
 [Xmin, conc_monomer, conc_tetramer] = Cparametric(bmin, ...
 phi_monomer, phi_tetramer, Ctotal);
 [Xmax, conc_monomer, conc_tetramer] = Cparametric(bmax, ...
 phi_monomer, phi_tetramer, Ctotal);
 while ((Xmax - Xb) > tolerance)
 btest = (bmin + bmax) / 2;
 [Xtest, conc_monomer, conc_tetramer] = Cparametric(btest, phi_monomer, ...
 phi_tetramer, Ctotal);
 if (Xtest > Xb)
 bmax = btest; Xmax = Xtest;
 else
 bmin = btest; Xmin = Xtest;
 end
 end
```
This code is the mathematical model for the monomer and tetramer equilibrium.

```matlab
function [Xb, conc_monomer, conc_tetramer] = Cparametric(b, phi_monomer,...
 phi_tetramer, Ctotal)

 a = 1 - b;

 Tscale = 1e9;

 Mtotal = (phi_monomer(1)*a + phi_monomer(2)*b);
 Ttotal = Tscale * (phi_tetramer(1) * a^4 + 4 * phi_tetramer(2) * a^3 * b +...
 6 * phi_tetramer(3) * a * b^3 + phi_tetramer(4) * a * b^3 +...
 phi_tetramer(5)*b^4);

 Chi = ((1/2)*sqrt(-((9*Ttotal*Mtotal^2+sqrt(3)*sqrt(27*Ttotal^2*Mtotal^4+...
 1024*Ttotal^3*Ctotal^3))^(1/3)/(2*6^(2/3)*Ttotal))+Mtotal/(sqrt(2)*...
 Ttotal*sqrt((9*Ttotal*Mtotal^2+sqrt(3)*sqrt(27*Ttotal^2*Mtotal^4+1024*Ttotal^3*...
 Ctotal^3))^(1/3)/(6^(2/3)*Ttotal)-(4*2^(2/3)*Ctotal)/(3^(1/3)*...
 (9*Ttotal*Mtotal^2+sqrt(3)*sqrt(27*Ttotal^2*Mtotal^4+1024*Ttotal^3*...
 Ctotal^3))^(1/3)))+2*2^(2/3)*Ctotal)/(3^(1/3)*(9*Ttotal*Mtotal^2+...
 sqrt(3)*sqrt(27*Ttotal^2*Mtotal^4+1024*Ttotal^3*Ctotal^3))^(1/3)))/...
 (2*sqrt(2));

 conc_monomer = Chi/Ctotal*[phi_monomer(1)*a, phi_monomer(2)*b];

 conc_tetramer = Tscale * 4 * Chi^4/Ctotal*[phi_tetramer(1)*a*a*a+a,...
 4*phi_tetramer(2)*a*a*a*b, 6*phi_tetramer(3)*a*a*b*b,...
 4*phi_tetramer(4)*a*b*b*b, phi_tetramer(5)*b*b*b];

 Xb = sum(conc_monomer.*[0 1])+sum(conc_tetramer.*[0 0.25 0.5 0.75 1]);
```

S35
G. Monomers, Homotetramers, and Tetramers: Tetramer Populations

For all mole fractions \( X_b \) in the calculation, the populations_tetramer script stores all of the calculated populations for the tetramers.

```matlab
function result = populations_tetramer(conc_monomer, peak_assignment_monomer, ...
 conc_tetramer, peak_assignment_tetramer)

 result = zeros(size(conc_monomer,1), max(max(peak_assignment_monomer),...
 max(peak_assignment_tetramer)));
 N = size(conc_monomer,2);
 for j=1:N
 idx = peak_assignment_monomer(j);
 result(:,idx) = result(:,idx) + conc_monomer(:,j);
 end

 N = size(conc_tetramer,2);
 for j=1:N
 idx = peak_assignment_tetramer(j);
 result(:,idx) = result(:,idx) + conc_tetramer(:,j);
 end
```

H. Monomers, Homotetramers, and Tetramers: Monomer Populations

For all mole fractions \( X_b \) in the calculation, the Populations_monomer script stores all of the calculated populations for the tetramers.

```matlab
function pop_monomer = populations_monomer(conc_monomer, ...
 peak_assignment_monomer, conc_tetramer, peak_assignment_tetramer)

 result = zeros(size(conc_monomer,1), max(max(peak_assignment_monomer),...
 max(peak_assignment_tetramer)));
 N = size(conc_monomer,2);
 for j=1:N
 idx = peak_assignment_monomer(j);
 result(:,idx) = result(:,idx) + conc_monomer(:,j);
 end

 pop_monomer = result;
 N = size(conc_tetramer,2);
 for j=1:N
 idx = peak_assignment_tetramer(j);
 result(:,idx) = result(:,idx) + conc_tetramer(:,j);
 end
```
I. Monomers, Homotetramers, and Tetramers: Error of Model

This script is called within the try_fit.m and in the refine_fit.m scripts. The script reports the weighted mean error and population error of the fit.

function [mean_error, pop_error] = error_of_model(Xb, Ctotal,...
    phi_monomer, peak_assignment_monomer,...
    phi_tetramer, peak_assignment_tetramer,...
    Expt_Populations, Expt_Errors)

    if (nargin<8)
        Expt_weights=ones(size(Expt_Populations));
    else
        Expt_weights = 1./(Expt_Errors + mean(mean(Expt_Errors)));
    end

    [conc_monomers, conc_tetramers] = multimers(Xb,...
        Ctotal, phi_monomer, phi_tetramer);

    pop_tetramer = populations_tetramer(conc_monomers,...
        peak_assignment_monomer, conc_tetramers, peak_assignment_tetramer);

    pop_monomer = populations_monomer(conc_monomers,...
        peak_assignment_monomer, conc_tetramers, peak_assignment_tetramer);

    pop_tetramer_corrected = pop_tetramer-pop_monomer;

    Model_Populations = horzcat(pop_monomer(:,1),...
        pop_monomer(:,5),pop_tetramer_corrected);

    sizeof_Model = size(Model_Populations);
    sizeof_Expt = size(Expt_Populations);

    Model_Populations_Combined = horzcat(conc_monomers, conc_tetramers);
    sizeof_Model_Combined = size(Model_Populations_Combined);

    diff = Model_Populations_Combined-Expt_Populations;
    mean_error = sqrt(sum(sum(diff.*diff.*Expt_weights)) / sum(sum(Expt_weights)));
    pop_error = sum(diff.*Expt_weights,1) ./ sum(Expt_weights,1);
    pop_error(2,:) = sqrt(sum(diff.*diff.*Expt_weights,1) ./ sum(Expt_weights,1));
V. References

1. Truex, N. L.; Wang, Y.; Nowick, J. S. J. Am. Chem. Soc. 2016. DOI: 10.1021/jacs.6b06000.

2. Podlech, J.; Gurrath, M.; Müller, G. 9-Fluorenylmethoxycarbonyl Group. In Houben-Weyl Methods of Organic Chemistry, Goodman, M., Ed. Thieme: Stuttgart, 2003; Vol. E22a, p 61.

3. Longsworth, L. G. J. Phys. Chem. 1960, 64, 1914–1917.

4. Nowick, J. S.; Khakshoor, O.; Hashemzadeh, M.; Brower, J. O. Org. Lett. 2003, 5, 3511–3513.

VI. Characterization Data
\(^{1}\text{H NMR DOSY}\) of a 1:1 mixture of peptides 1a and 1b
8.0 mM total concentration in D\(_2\)O at 500 MHz and 298 K

Calculations for the 1:1 mixture of peptides 1a and 1b at 8.0 mM total concentration

\[ D_{\text{HOD}} = 19.0 \times 10^{-10} \text{ m}^2/\text{s} \]
\[ \log(D_{\text{HOD}}) = -8.721 \]

\[ D_{\text{heterotetramers}}: \log(D) = -9.943; D = 10^{-9.943} = 11.4 \pm 1.1 \times 10^{-11} \text{ m}^2/\text{s} \]

\(^a\)Longsworth, L. G. J. Phys. Chem. 1960, 64, 1914–1917.
$^1$H,$^{15}$N HSQC of peptides $[^{15}$N]$^1$a and $[^{15}$N]$^1$b at 600 MHz and 293 K

$\chi_B^{a} = 0.00$; 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$^a$ $\chi_B$ designates the mole fraction of peptide $[^{15}$N]$^1$b.
$^1$H,$^{15}$N HSQC of peptides $[^{15}$N]$^1$a and $[^{15}$N]$^1$b at 600 MHz and 293 K

$\chi_B^a = 0.125$; 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$^a \chi_B$ designates the mole fraction of peptide $[^{15}$N]$^1$b.

The asterisks (*) indicate crosspeaks associated with minor unidentified species.
$^1$H,$^{15}$N HSQC of peptides $[^{15}$N]$^1$a and $[^{15}$N]$^1$b at 600 MHz and 293 K
$\chi_B^a = 0.25$; 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$a \chi_B$ designates the mole fraction of peptide $[^{15}$N]$^1$b.
$^{1}H,^{15}N$ HSQC of peptides $[^{15}N]1a$ and $[^{15}N]1b$ at 600 MHz and 293 K

$\chi_B^a = 0.375$; 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$\alpha$ $\chi_B$ designates the mole fraction of peptide $[^{15}N]1b$.

The asterisks (*) indicate crosspeaks associated with minor unidentified species.
$^1$H,$^1$5N HSQC of peptides $[^{15}$N]$^1$a and $[^{15}$N]$^1$b at 600 MHz and 293 K
$\chi_B^a = 0.50$; 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$^a \chi_B$ designates the mole fraction of peptide $[^{15}$N]$^1$b.
The asterisks (*) indicate crosspeaks associated with minor unidentified species.
$^{1}H,^{15}N$ HSQC of peptides $[^{15}N]1a$ and $[^{15}N]1b$ at 600 MHz and 293 K

$\chi_{B}^{a} = 0.625$; 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$^{a} \chi_{B}$ designates the mole fraction of peptide $[^{15}N]1b$. 
$^1$H,$^{15}$N HSQC of peptides [15N]1a and [15N]1b at 600 MHz and 293 K
$\chi_B^a = 0.75$; 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$^a$ $\chi_B$ designates the mole fraction of peptide [15N]1b.
$^1$H, $^{15}$N HSQC of peptides $[^{15}$N]$^1$a and $[^{15}$N]$^1$b at 600 MHz and 293 K
$\chi_B^a = 0.875$; 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

$^a$ $\chi_B$ designates the mole fraction of peptide $[^{15}$N]$^1$b.
$^{1}H^{15}N$ HSQC of peptides \([^{15}N]1a\) and \([^{15}N]1b\) at 600 MHz and 293 K

$\chi_B^{a} = 1.00$; 8.0 mM total concentration in 9:1 H$_2$O/D$_2$O

\(^{a}\chi_B\) designates the mole fraction of peptide \([^{15}N]1b\).
$^{1}H,^{15}N$ HSQC of peptides $[^{15}N]1a$ and $[^{15}N]1b$ in 9:1 H$_2$O/D$_2$O at 600 MHz and 293 K Stack of $^{15}N$ spectra from the $f_i$ projections of the $^{1}H,^{15}N$ HSQC spectra

$\chi_B^a$

0.00

0.125

0.25

0.375

0.50

0.625

0.75

0.875

1.00

$^a\chi_B$ designates the mole fraction of peptide $[^{15}N]1b$. 