Fluid Biomarkers for Synaptic Dysfunction and Loss

Elena Camporesi1, Johanna Nilsson1, Ann Brinkmalm1, Bruno Becker1,2, Nicholas J Ashton1,3,4,5, Kaj Blennow1,2 and Henrik Zetterberg1,2,6,7

1Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 2Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden. 3King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK. 4NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK. 5Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 6Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK. 7UK Dementia Research Institute at UCL, London, UK.

ABSTRACT: Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer’s disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synaptic dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synaptic loss and then discuss the available data on established and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synaptic dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.

KEYWORDS: Synaptic biomarkers, cerebrospinal fluid, synaptopathies, Alzheimer’s disease, proteomics

Declaration of Conflicting Interests: The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: KB has served as a consultant, on advisory boards, or on data monitoring committees for Abcam, Axon, Biogen, Julius Clinical, Lilly, MagQu, Novartis, Roche Diagnostics, and Siemens Healthineers, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program. HZ has served as scientific advisory boards for Denali, Roche Diagnostics, Wave, Samumed, Siemens Healthineers, Pintek Therapeutics, and CogRx; has given lectures in symposia sponsored by Fujirebio, Alexcore, and Biogen; and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program. **Corresponding Author:** Elena Camporesi, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, SE 43180 Gothenburg, Sweden. Email: elena.camporesi@gu.se

Introduction

The central nervous system (CNS) can be subject to numerous pathological conditions, which can affect its development, functionality, or cause premature cell death, resulting in neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Although these disorders have different etiologies and pathophysiological mechanisms, many of them have some degree of dysfunction and alteration of the synapses and can thus be categorized as synaptopathies.1,2 In this review, we will discuss how synapses are affected in the most common diseases affecting the CNS, and how advances in synaptic biomarker discovery provide new tools for the study of those diseases. We will mainly focus on neurodegenerative conditions, and in particular on Alzheimer’s disease (AD), which is the predominant cause of dementia affecting approximately 50 million people worldwide.3 Although the exact mechanisms of synaptic loss and dysfunction in the different diseases are still poorly understood, there is evidence that a reduction in synaptic activity and density is one of the earliest events in many of the diseases of the CNS and may even appear before neuronal loss.4,5 The significant role of synapse dysfunction in the disease pathology and progression of synaptopathies has therefore prompted a keen interest in detecting and quantifying synaptic proteins. Molecular brain imaging6 and analysis of cerebrospinal fluid (CSF)7 are used in conjunction to study synaptic proteins, with the aim of using them as biomarkers for prognosis, to follow disease progression and to evaluate effects of drug testing.
Pathophysiology of Synaptic Dysfunction and Loss

Synaptic functions

The neuronal synapses are the functional units of neurotransmission in the brain, with an estimated 100 trillion interconnected synapses in an elaborate and complex network. Synapses are formed during development and the early postnatal period. After reaching the maximum density at 2 to 4 years of age, many different mechanisms for synaptic formation and elimination are processes that balance each other, to ensure proper connectivity between brain regions and signal refinement. For proper synaptic activity, a balance is needed, and alterations between synaptic formation and elimination can cause synaptic dysfunction and impaired brain network activities. To understand pathological mechanisms and at which stage synapses are affected is of utmost importance to define targets and intervention strategies.

Synapse and neuronal loss in brain disorders

As mentioned, a balance in synaptic formation and pruning is essential for proper connectivity and brain functionality. For instance, excessive synaptic pruning during adolescence is one of the hypothesized mechanisms for schizophrenia, which most commonly manifests with an onset in late adolescence or early-adulthood. The term “synaptopathy” is applied to refer to all diseases that are characterized by a progressive synaptic dysfunction and loss. AD, the most common neurodegenerative disease, can be therefore considered both a synaptopathy and a proteinopathy.

AD pathology is identified by the presence of extracellular deposits of amyloid-β (Aβ) plaques, formed by the aggregation of Aβ peptides, and neurofibrillary tangles (NFTs) that are intraneuronal accumulations of hyperphosphorylated and truncated tau protein, respectively. Along with these main hallmarks, gliosis, neuroinflammation, and vascular dysfunction are also present, which reflects the complexity of AD. However, it is synaptic loss which best correlates with cognitive symptoms and it is also apparent in the early stages of the disease pathophysiology. The number of synapses in the brain decreases during normal aging but this decrease is exacerbated in AD and, consequently, the synapse-to-neuron ratio is lower in AD brains compared with age-matched nondemented individuals. In AD, brain biopsies show synaptic loss in neocortical regions and the hippocampus, the latter showing the greatest reduction by approximately 50%. How the major AD hallmarks, tau and Aβ, pathologically interact with synapses needs more investigation. However, most studies identified the oligomeric forms of Aβ and tau, rather than larger aggregates, to be the synaptotoxic species. Both in vivo and ex vivo Aβ oligomers (Aβo) disrupt LTP, probably interfering with NMDAR (N-methyl-D-aspartate receptor) activity and downstream pathways, in addition to causing oxidative stress, impairing axonal transport, and causing nerve cell death (reviewed in Cline et al). In AD, Aβ and tau act in concert and studies have identified their simultaneous presence in the postsynaptic compartment. Aβo has been suggested to bind to a variety of targets, including cellular prion protein (PrP), neurotactin 1, neurotactin-2α, PrB, EphB2, Shank, syn-Gap, Na/K-ATPase, ultimately leading to impairment of LTP and synaptic loss. Phosphorylated tau oligomers can relocate from axons to dendrites, interfering with NMDAR and AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) and impairing glutamaticergic transmission.

Moreover, as points of transmission of signals between neurons, synapses seem also to help the spreading of the pathology via prion-like mechanisms, and some studies show the possibility of Aβo and tau oligomers to be transferred from neuron to neuron. Tau aggregation, without Aβ pathology, is also a pathological hallmark of other neurodegenerative diseases, the so-called tauopathies. Tauopathies include, among others, some forms of...
frontotemporal lobar degeneration (FTLD), namely FTLD- tau, progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Although all tauopathies have in common the presence of tau aggregates in the CNS, the characteristics of these aggregates differ among them and are different from the NFTs of AD. PSP shows filamentous aggregates in astrocytes and oligodendrocytes, while in CBD tau accumulation in neurons is less fibrillar and in astrocytes it accumulates in the form of astrocytic plaques. As introduced above, oligomeric tau has been connected to synaptic damage through different pathways, also involving activation of microglia and astrocytes through inflammatory processes, and animal models of tau pathology show early synaptic loss prior to neuronal death.

As the combination of Aβ and tau pathology define AD, accumulation of aggregated α-synuclein (α-syn) is the pathological feature of several diseases, which are commonly collectively referred to as α-synucleinopathies. Among the most common synucleinopathies are Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), dementia with Lewy body (DLB), and multiple system atrophy (MSA). PD, PDD, and DLB show accumulation of the so-called Lewy neurites (LN) and Lewy bodies (LB), where α-syn is the principal component. The physiological role of α-syn at the synapse is not precisely understood yet; however, it is commonly accepted that its dyshomeostasis and accumulation leads to cell damage and is responsible for synaptic impairment and neuronal damage. Alpha-syn, localized mainly presynaptically, is involved in synaptic vesicle regulation and trafficking. It also interacts with membrane lipids and can associate with mitochondria, and in the SNARE complex formation. It interacts with the Golgi-endoplasmic reticulum system and the endolysosomal system. Pathologic α-syn can interfere with all these organelles, consequently impairing-related pathways. The protein can change its conformation and aggregate, giving rise to oligomers, fibrils, and larger aggregates. Which form is responsible for toxicity is still a matter of debate. However, as discussed for AD, the oligomeric form of α-syn has been suggested to be the responsible for the synaptic damage in dopaminergic neurons, and the possibility for oligomeric α-syn of spreading in a prion-like manner has been proposed.

At a cellular level, typically PD and DLB are distinguished from MSA, inasmuch the accumulations of LN and LB are mainly present in neurons, while in MSA, α-syn accumulation appears in oligodendrocytes. Moreover, MSA inclusions seem to be more compact and aggressive, in line with the increased severity of the disease. However, it was most recently reported that also neurons in MSA show α-syn oligomers deposition. A recent study showed that α-syn filaments differ in DLB and MSA. PD and DLB are usually distinguished based on the symptoms, with DLB being the second most common type of dementia. PD, similar to AD, starts many years before symptoms become overt and at that point, patients had already lost up to 60% motor neurons in the substantia nigra.

Nonetheless, α-syn was first identified and characterized in relation to AD when it was found to be a major non-amyloid beta component of Aβ plaques. In fact, Lewy pathology can be also found in over half of all patients with AD. To further complicate the clinical picture, α-syn depositions are found in tauopathies like PSP and CBD, and NFTs have been found in PD brains. Comorbidities and co-occurrence of different pathologies make diagnosis of these diseases challenging. Synapse damage is a common and early first change in the disease development and prolonged synaptic damage can lead to synaptic loss. Neuronal damage and death seem to be a follow-up event seen only at later stages. For these reasons, the investigation of synaptic biomarkers has the potential to find a way to diagnose the disease in its early stages and also to give us information on the main pathological mechanisms involved.

Current Climate of Fluid Biomarkers in Dementia Imaging and CSF biomarkers

The core CSF biomarkers for AD (Aβ42/14/40, total-tau, and phospho-tau), reflecting the defining Aβ and tau neuropathologies, consistently demonstrate diagnostically significant changes across studies and now have prominent positions in biological and diagnostic criteria for AD. The concentrations of these core AD biomarkers, however, are different from healthy controls in the majority of dementias outside of the AD continuum which can be of great utility in the differential diagnosis of patients with cognitive symptoms. An exception can be made for Creutzfeldt-Jakob disease (CJD), which presents vastly increased levels of t-tau, whereas the concentrations of p-tau181 remain normal or only marginally changed in CJD.

Together with CSF biomarkers, positron emission tomography (PET) and magnetic resonance imaging (MRI) are used to provide a clearer view of pathology and atrophy patterns in the brains of living humans. MRI allows for the measurement of brain atrophy and provides information on regional, structural, and functional integrity of the brain. In the research of neurodegenerative disorders, PET tracers for protein aggregation such as Aβ and tau, as well as glucose metabolism as a measure for neuronal activity and synaptic density, have been developed. Together with CSF biomarkers, MRI and PET are nowadays included in the research diagnostic criteria for AD. However, the availability of PET scans is limited and when possible expensive, thus it is not always applicable.

Blood biomarkers

In certain instances, the biomarkers field is rapidly evolving from CSF into blood, which is a more easily accessible biological fluid. Despite the latest advancement in developing CSF biomarkers for synaptic integrity and large
Fluid Biomarkers for Synapse Pathology

The pathophysiology of synaptopathies and the significance of synapses in cognition make a convincing argument for the need and use of biomarkers of synapse pathology as representation of cognitive and synaptic function. Clinically, synaptic biomarkers may link synaptic degeneration with the cognitive status and decline of the patient, and they could be implemented together with cognitive tests to have a more precise description of the patient’s symptoms, especially at early stages. Moreover, synaptic biomarkers can help to understand the underlying pathological processes ongoing during cognitive diseases, as different proteins could reflect different mechanisms, thus helping the diagnosis. In addition, synaptic biomarkers can also be used during drug development, to monitor the efficacy of treatments on synaptic functioning in drug trials.

Pre- and postsynaptic biomarkers

Biomarkers for synaptic dysfunction can be divided into pre- and postsynaptic biomarkers depending on the localization of the protein. The presence of synaptic proteins in CSF was first demonstrated in the late 1990s, but for a long time, most studies still involved postmortem brain tissue. However, in the last decade, advances in mass spectrometry and immunoassays have allowed the accurate quantification of synaptic proteins in biofluids. As of today, there are 4 main presynaptic biomarkers, growth-associated protein 43 (GAP-43), synaptosomal-associated protein 25 (SNAP-25), synaptotagmin-1, and α-syn, and 1 postsynaptic marker, neouronagrin.

GAP-43. GAP-43 is a presynaptic protein which plays an important role in memory and information storage. It is anchored on the cytoplasmic side of the presynaptic plasma membrane and is mainly expressed in the hippocampus, entorhinal cortex, and neocortex of the adult brain. At the synapse, upon intracellular Ca²⁺ increase, GAP-43 is phosphorylated by protein kinase C. This leads GAP-43 to interact, among others, with synaptophysin and SNAP-25, facilitating synaptic vesicle recycling. Studies have found GAP-43 CSF levels to be significantly increased in patients with AD compared with controls and also other neurodegenerative disorders. CSF GAP-43 levels were also increased in preclinical and clinical patients with AD compared with controls. However, in an antibody-based explorative study, no significant changes in patients with PD or DLB were found compared with controls. Altered CSF GAP-43 levels have also been reported in progressive multiple sclerosis (MS), inflammation, stroke, and PD, but not in frontotemporal dementia (FTD).

SNAP-25. SNAP-25 is a presynaptic protein with a key role in neuronal survival and cognitive function due to its essential part in vesicular exocytosis, neurite outgrowth, and LTP. SNAP-25, together with vesicle-associated membrane proteins (VAMPs) and syntaxins, forms SNARE complexes, which mediate synaptic vesicle apposition to the presynaptic membrane thus allowing for the Ca²⁺-triggered vesicle fusion during exocytosis. SNAP-25 has, in various studies using both enzyme-linked immunosorbent assay (ELISA) and immunoassay-based assays, shown to have significantly higher CSF levels in AD, even at a very early stages. Increased CSF levels of SNAP-25 have also been found in patients with PD and patients with sporadic CJD. In addition, SNAP-25 has been associated with several psychiatric diseases such as attention deficit hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder. Furthermore, there are 2 splicing variants of SNAP-25: SNAP-25A and SNAP-25B. Mass spectrometry–based methods to quantify both total SNAP-25 and the 2 isoforms have therefore been developed to study potential differences in the roles of the isoforms of SNAP-25.
in disease. Nine amino acids differentiate the 2 protein isoforms, which also differ in their effects on neurotransmission.

To our knowledge, no studies have investigated the different isoforms in CSF. However, a postmortem brain tissue study by Barakauskas et al found significantly decreased levels of total SNAP-25 and SNAP-25A but not of SNAP-25B, indicating a specific differential expression of SNAP-25A in schizophrenia.

Synaptotagmin-1. Synaptotagmin-1 is a calcium sensor vesicle protein vital for fast synaptic neurotransmitter release in hippocampal neurons. It is a transmembrane protein anchored in the vesicle membranes containing 2 Ca\(^{2+}\)-binding domains. In response to Ca\(^{2+}\)-binding at elevated concentrations, synaptotagmin-1 triggers the vesicle fusion, but the exact molecular mechanisms remain to be elucidated (for review see Park and Ryu). Initial CSF studies of synaptotagmin-1 found it to be decreased in a CSF pool from patients with early-onset AD compared with a CSF pool from healthy controls. Two decades later, Öhrfelt et al quantified synaptotagmin-1 in individual CSF samples from patients with AD, MCI, and controls, demonstrating significantly increased concentrations of synaptotagmin-1 in patients with AD and MCI, the highest being MCI due to AD. These findings have been corroborated in a recent study where synaptotagmin-1 was quantified in patients in the AD continuum and cognitive decline from other dementias.

In the same study by Tible et al., in addition to synaptotagmin-1, the concentrations of GAP-43 and SNAP-25 were quantified. All 3 presynaptic proteins were significantly increased in AD and MCI-AD compared with the other disorders. However, only SNAP-25 and GAP-43 levels were also significantly higher in AD versus MCI-AD. Only synaptotagmin-1 concentrations were significantly lower in other neurodegenerative disorders compared with controls. Recently, Clarke et al. compared synaptotagmin-1 and SNAP-25 concentrations in patients with FTD and demonstrated increased levels in patients with AD biomarker profile compared with those patients with an FTD profile.

Alpha-synuclein and its forms. Alpha-syn is a key player in the etiology of different neurodegenerative conditions and as such, it has been studied as a possible biomarker for their detection. However, besides being a possible cause for diseases, it is also a presynaptic protein, taking part in many synaptic processes as previously described, which is why it is important to include it in this review. The synucleins family comprises α-, β-, and γ-synuclein, which are soluble proteins encoded by 3 different genes. Among them, α-syn is the most studied.

Total α-syn. Studies of α-syn in CSF have mainly been focused on α-synucleinopathies and were based on immunological assays measuring total α-syn (t-α-syn); however, they have been largely inconsistent. For instance, in PD compared with controls, t-α-syn has been found in several studies to be slightly decreased which is supported by several meta-analyses which concluded that there are significantly lower levels of t-α-syn in PD (10%-15%). However, in other studies no significant difference has been found, and the diagnostic performance of t-α-syn is not considered sufficient for clinical utility due to significant overlap between the populations. Other synucleinopathies, like DLB and MSA, have also shown a similar decrease compared with healthy controls, while tauopathies such as PSP and CBD seem to show no significant difference. For AD in comparison with healthy controls, t-α-syn levels seem to be elevated; however, several studies showed no significant difference. Patients with CJD, on the other hand, have a more pronounced increase in CSF t-α-syn, both compared with controls and with other neurodegenerative diseases. An explanation for the inconclusive findings of CSF α-syn is that leakage into the CSF from synapse breakdown occurs simultaneously as α-syn is retained in pathological inclusions. In addition, the extensive reduction in synapse number over time might lead to a decrease of α-syn production. Together these events might contribute to the confounding results. Another contributing factor for the varying results might be due to technical variation such as handling of samples or quantification methods leading to low reproducibility. Moreover, α-syn is largely expressed outside of the CNS and highly abundant in blood, with red blood cells (RBCs) as its major source. Thus, blood contamination during CSF acquisition might represent another source of variation, skewing the t-α-syn concentration results in CSF.

Despite the possible problems just discussed, there have been many studies evaluating α-syn as blood biomarker for dementias. Studies for α-syn in plasma and serum in PD have all shown similar conflicting results as in CSF. However, a meta-analysis indicates that plasma t-α-syn is significantly higher in PD than in controls. In a study by Laske et al., decreased serum concentrations of t-α-syn in DLB were found but with no difference for AD compared with controls. There are also a few studies on RBC t-α-syn which showed significantly decreased levels of the protein in PD and AD compared with controls. Studies on t-α-syn in saliva have also been performed, but with limited success in differentiating PD from controls.

Oligomeric, phosphorylated, and aggregated forms of α-synuclein. The inconclusive results of t-α-syn as a diagnostic biomarker have sparked research into pathological forms of α-syn, such as oligomeric (o-α-syn), phosphorylated (p-α-syn), and aggregated forms of α-synuclein. Oligomeric α-syn in CSF seems to be increased in PD compared with controls but not in AD and DLB. Furthermore, Parretti et al. found that the diagnostic accuracy of PD can be improved by using the ratio of oligomeric/total α-syn in CSF. In plasma, serum, and RBC, significantly elevated levels have been reported for PD, but also non-significant...
results exist. In a study by Vivacqua et al., increased saliva levels of α-α-syn were found for PD. Phosphorylated α-syn, one of the main disease-associated posttranslational modifications (PTMs), is hard to quantify due to its low CSF concentration, but similar to the oligomeric and the total form, it has been found elevated in PD and its diagnostic accuracy increases when its ratio to other α-syn forms are used. Phosphorylated-α-syn has also been indicated to be elevated in CJD and not increased in AD. Plasma p-α-syn has been found to be significantly increased in PD compared with controls. For the measurement of pathogenic α-syn aggregates in CSF, aggregation assays have been developed. Assays based on real-time quaking-induced conversion (RT-QuIC) or protein misfolding cyclic amplification (PMCA) have shown very promising results (specificity > 95%, sensitivity > 80%) in discriminating synucleinopathies (PD, MSA, and DLB) from nonsynucleinopathies (AD and controls).

Neurogranin. Neurogranin is an intracellular 7.5-kDa protein, concentrated in the dendritic and postsynaptic compartment of synaptic spines of neurons. There it binds via its central IQ domain to the Ca2+-signaling mediator calmodulin, enhancing signaling for processes important in memory formation and to phosphatidic acid at the inner plasma membrane. A neurogranin knockout mouse model showed deficits in spatial memory and synaptic plasticity. In a first study, CSF neurogranin was shown by immunoprecipitation and Western blot to be increased in AD. After the development of immunoassay methods using ELISA, Singulex, and Mesoscale, these findings have been verified in several studies and neurogranin consistently showed increased levels in CSF of AD patients as compared with controls. This increase appears to be specific for AD, as CSF from patients with other neurodegenerative diseases, with the exception of CJD, do not show such an increase. High levels of neurogranin in CSF during prodromal AD have been shown to be predictive of more rapid progression toward AD.

Besides full-length neurogranin, CSF contains mainly fragments of the C-terminal half (with a variety of different truncations at their C-terminal and N-terminal ends). Two intracellular enzymes have been identified that can generate cleavages in the functionally important IQ domain and at the very C-terminal end (calpain-1 and prolyl endopeptidase, respectively). Whether these different fragments of neurogranin have roles in different physiological or pathophysiologically functions is still unknown. In a comparison study, different ELISAs and the Singulex assay were found to have similar performance in predicting AD, in spite targeting different parts of neurogranin. However, this does not rule out that particular neurogranin fragments could yield more discriminatory power to detect AD. Overall, it can be said that neurogranin may be a useful biomarker in CSF to detect early degeneration of neurons and it appears to be fairly specific for AD among several tauopathies.

Plasma concentrations of neurogranin are detectable with conventional ELISAs but are unchanged in AD and do not correlate with CSF neurogranin, probably due to the contribution of peripherally expressed neurogranin peptides to blood neurogranin measurements.

Emerging synaptic biomarkers

Recently, other studies identified more synaptic proteins in CSF, which have been investigated without success so far or that show promise as synaptic biomarkers, thus worth to be mentioned in this section. Wesenhagen et al have recently reviewed 29 proteomic studies that investigated AD-related changes in CSF protein abundances. In total, 97 proteins, including the synaptic proteins neurofascin, NPTX1, NPTX2, and neurexin 1, were reported by 2 or more studies and associated with AD. One of the reviewed studies reported a synaptic biomarker panel where only the 3 synaptic proteins neurofascin, NPTX1, and neurexin 1 were significantly lowered in AD. Similarly, Lleó et al. found that 6 synaptic proteins, calsyn1-1, glutamate receptor 4 (GRIA4), neurexin-2A, neurexin-3A, syntxin-1B, and thy-1 membrane glycoprotein, were increased in CSF in preclinical AD even before the core CSF biomarkers for neurodegeneration.

In explorative proteomics, high-resolution separation methods such as gel electrophoresis, isoelectric focusing, and high-performance liquid chromatography are used in conjunction with mass spectrometry and bioinformatics to study differences in protein expression due to diseases, genetic variations, or therapy. A major advantage of using an explorative approach to study protein abundances is that many hundreds of proteins and protein variants can be studied simultaneously without existing hypotheses or bias. Thus, the discovery of novel biomarkers could lead to new insights on disease mechanisms and eventually the formulation of novel hypotheses. However, using the explorative approach to identify biomarkers in biofluids from individual patient samples is challenging and the overlap of identified biomarker candidates among these studies has historically been relatively low. These discrepancies may be due to a low number of study participants, differences in sample handling, and other analytical parameters. Another possible approach to identify new candidate biomarkers is setting up targeted assays based on proteins of interest from studying the literature and/or public databases. Commonly shotgun proteomics, to identify possible proteins of interest, is also used in the selective process. In this way, several potential biomarker candidates can be validated in a targeted setting in larger cohorts. Among emerging synaptic biomarkers, of special note are neuronal pentraxins and the synaptic vesicle glycoprotein 2A.

Neuronal pentraxins. Neuronal pentraxin I (NPTX1, also called NP1) and II (NPTX2, also called NP2), and the neuronal pentraxin receptor (NPTXR) are widely expressed at excitatory synapses, where they bind to AMPA receptors and...
are suggested to be involved in synaptic plasticity. 233,234 All 3 neuronal pentraxins have recently received much attention and have been shown in several studies to have decreased CSF levels in AD and MCI groups compared with controls. 231,235-242 CSF pentraxin levels also correlate with cognitive performance and hippocampal volume. 150,242,243 Few studies have been performed on other diseases but NPTXR has also been associated with other neurological diseases such as MS244 and FTD. 245 Furthermore, in a study by Magdalou et al 246 both NPTXR and NPTX1 were found to be decreased in atypical parkinsonian disorders (PSP, MSA, CBD) and controls.

SF2A. Recent studies using [11C]UCB-J PET have identified SV2A as the first in vivo marker of synaptic density 247 which demonstrates widespread synaptic loss in AD. 118 SV2A is a synaptic vesicle transmembrane protein, which in brain is widely expressed in neurons. 248 SV2A has been described to be located in the dense-core vesicles 249,250 and in small synaptic vesicles, 251 most probably in both. Although its exact mechanism needs more investigation, it is involved in regulation of neurotransmitter release and expression and trafficking of synaptotagmin. 244 Compared with the typical pattern of hypometabolism seen in AD using [18F]FDG, the spatial extent of decreases in [11C]UCB-J uptake was significantly more confined. The reduction in hippocampal binding is in line with the early loss of entorhinal cortical cell projections to the hippocampus, and reductions of hippocampal SV2A seen in postmortem studies in AD brain tissue. 255,256 More recently, changes in [11C]UCB-J PET have been observed in PD, 257 PSP, 258 cortical basal syndrome, and epilepsy 247 suggesting that SV2A could be a global marker for synaptic density, unlike CSF synaptotagmin-1, SNAP-25, GAP-43, and neurogranin, which are rather specific to AD or amyloidopathies. Recently, SV2A has been detected in CSF and shown to be reduced in AD 259; however it is yet to be determined whether CSF SV2A can be used as a marker for synaptic density in other dementias and whether it has a meaningful correlation with [11C]UCB-J (Figure 1).

Miscellaneous: other emerging synaptic biomarkers

The Rab family are key synaptic proteins involved in both recycling of neurotransmitter receptors and exocytosis of neurotransmitters. Of special note is the family member ras-related protein 3a (Rab3a), highly abundant in brain tissues, which has been connected with several neurodegenerative diseases (AD, PD, and DLB) due to its regulation of AP production and interaction with α-syn. 262 The protein has been investigated by Bereczki et al, 153 which however did not find any significant difference in CSF between patients with PD and control. A second important protein family for neurotransmitter exocytosis is the granin family, which is constituted of dense-core vesicle proteins involved, inter alia, in neuropeptide biogenesis and secretion. The proteins have not only been associated with neurodegenerative diseases, such as AD, but also with other synaptopathies, such as schizophrenia and depression. 263 Three of the key granins: chromogranin-A, secretogranin-2, and neurosecretory protein VGF, have been found to have significantly lower CSF concentrations in AD. 231,264

Another synaptic protein involved in the pathology of AD is contactin-2, a cell-adhesion protein that interacts with APP and beta-secretase 1 (BACE1). Chatterjee et al 265 found that the protein was reduced in both brain tissue and CSF in AD. The less well-studied members of the synuclein family, beta-synuclein (β-syn) and gamma-synuclein (γ-syn), are also present in proteinaceous aggregates in some α-synucleinopathies. 266 Oeckl et al 267 was the first to measure all 3 synucleins protein family members, α, β, γ in CSF. They found increased concentrations of all synucleins in AD and CJD; however for PD, DLB, and atypical parkinsonian syndromes the concentrations were not altered. Furthermore, a high correlation between the 3 synucleins was seen. In another study by Oeckl et al, 267 β-syn was quantified in blood and found it to be increased in AD and CJD compared with controls but not in other neurodegenerative diseases, such as PDD, DLB, amyotrophic lateral sclerosis (ALS), and FTD.

14-3-3. 14-3-3 proteins refer to a family of 7 isoforms which are highly expressed in the brain, accounting for 1% of its soluble protein content. They are also particularly enriched at synapses (presynaptic) and important modulators of synaptic functions, such as neurotransmission and plasticity. 14-3-3 proteins refer to a family of 7 isoforms which are highly expressed in the brain, accounting for 1% of its soluble protein content. They are also particularly enriched at synapses (presynaptic) and important modulators of synaptic functions, such as neurotransmission and plasticity. 14-3-3 proteins refer to a family of 7 isoforms which are highly expressed in the brain, accounting for 1% of its soluble protein content. They are also particularly enriched at synapses (presynaptic) and important modulators of synaptic functions, such as neurotransmission and plasticity. 14-3-3 proteins refer to a family of 7 isoforms which are highly expressed in the brain, accounting for 1% of its soluble protein content. They are also particularly enriched at synapses (presynaptic) and important modulators of synaptic functions, such as neurotransmission and plasticity.

Synaptophysin is one of the most used synaptic biomarkers in immunohistochemistry since it is the most abundant integral synaptic vesicle and plasma membrane protein. In studies of AD postmortem brain tissue, it has been shown that the synaptophysin content is reduced. 271,272 Several studies have reported that the protein is not detectable in CSF, 139,138,273 possibly due to its high hydrophobic profile. 139 However, it has recently been reported to be detected in exosome preparations from body fluids. 274,275
Neuronal-derived exosomes. A recent approach for the discovery of new synaptic biomarkers has been based on isolating neuronal exosomes from blood (plasma). As discussed previously, blood is an easily accessible peripheral fluid, preferred to CSF, which entails a more invasive extraction procedure. However, blood has the disadvantage of being further away from the brain and give peripheral contribution to the levels of the protein. Studying neuronal exosomes enriched from blood gives the advantage to use blood while hopefully better reflecting brain pathogenic processes. Explorative proteomic analysis has tried to map the protein content of the neuronal exosomes and confirmed the presence of several synaptic proteins such as Rab3a and GRIA4.276 In plasma samples, Goetzl et al.274 reported significantly decreased neuronal-derived levels of synaptophysin together with synaptotagmin-2, and neurogranin in patients with AD and FTD compared with controls. In the same study, GAP-43 and synapsin-1 were also detected, but were found to have significantly lower levels only in AD. Furthermore, in another study by Goetzl et al.,277 plasma neuronal-derived exosome levels of NPTX2, neurexin 2, GRIA4, and neuroligin 1 were found to be significantly decreased in AD, where also GluR4 and neuroligin 1 correlated with cognitive loss. Another protein that has been quantified in neuronal exosomes is α-syn, found to have increased concentrations in PD compared with controls.87 For proteins such as neurogranin or α-syn, where peripheral expression complicates the quantification in blood, neuronally derived exosomes seem like an excellent option. However, even if this has promise, it is limited by expensive and time-consuming sample preparation, which as of today restricts its potential for high-throughput biomarker screening and its use in clinical routine. Nevertheless, exosomes are being connected to an increasing number of synaptopathies and they have even been implicated in the propagation of disease-associated proteins such as tau, Aβ, PrP C, and α-syn.279,280 They are a relatively unexplored source for synaptic biomarkers, which makes them a vital part of the field (Figure 2).
Conclusions and Future Perspective

Synapses are essential interconnecting points for neurons and are primarily affected in neurodegenerative and neurodevelopmental disorders. Accumulation of misfolded proteins seems to directly affect them, leading to their dysfunction and loss, which is closely related to the cognitive deficits seen in these aging disorders. This review summarizes latest studies on more established and newly investigated synaptic proteins as candidate biomarkers for synapse dysfunction and neuronal injury in different neurodegenerative diseases, in relation to both CSF and blood (Table 1).

Current CSF synaptic biomarkers are altered in AD but seemingly not in other neurodegenerative disorders. This can reflect a higher response of synapses and neurons to Aβ-mediated damage, probably making AD the pathology with the highest synaptic damage. However, more efforts are needed to characterize synaptic loss in non-AD dementias and other synaptopathies. Increasing evidence suggests that synaptic dysfunction is also involved in neurodevelopmental diseases and neuropsychiatric disorders. Thus, the study of these conditions may help understanding differences or commonalities between synaptopathies.

It can be noticed that most of the synaptic biomarkers described are represented by presynaptic proteins and, in AD, glutamatergic synapses appear to be primarily affected. Among the reviewed synaptic proteins, neurogranin is the most extensively studied and the evidence presented thus far is seemingly specific for AD or Aβ deposition. The other synaptic proteins also show changed levels in relation to AD, with most of them showing increased CSF concentrations, but also in non-AD neurodegenerative diseases (eg, PD, tauopathies), even though in these diseases they are less investigated. NfL is a good marker for general neuronal loss and it would be suitable to represent the “N” in the ATN criteria given that CSF t-tau also mainly changes in AD and CJD. Blood NfL strongly reflects CSF NfL. Elucidating the mechanisms of release of these proteins into biofluids would be of importance to understand their changes in concentration, thus connecting pathological mechanisms to biological responses and increase the interpretability of this biomarker category.

Figure 2. Proteomic approaches in synaptic biomarkers discovery and validation. Proteomic studies can start with large explorative investigations in brain tissue, which might lead to the discovery of new candidate biomarkers. However, these studies can be seen as starting points, and they have no clinical utilities. Thus, investigations in CSF are needed to be able to translate the biomarker discovery into a tool of clinical use. Once the biomarker has been validated in CSF, further investigations can be carried in blood, a biofluid with higher accessibility and cheaper to use. On the other hand blood is further away from the brain and the targeted protein level might be susceptible to peripheral contribution, resulting in lower biomarker specificity and confounding results. A possible approach to overcome this problem is the use of plasma-derived neuronal exosomes. These investigations can be carried out with a targeted or non-targeted approach. In the diagram, pros and cons of both approaches are highlighted. ELISA indicates enzyme-linked immunosorbent assay; IP, immunoprecipitation; LC-MS, liquid chromatography-mass spectrometry; PRM, parallel reaction monitoring; SIMOA, single molecule array; WB, Western blot.

Figure made with www.biorender.com.
Table 1. Synaptic biomarkers changes in CSF and blood based on current literature.

Pathology Compared with Controls	Cerebrospinal Fluid	Blood	References							
	Amyloid-β	Prion	Lewy Body	Tauopathies	Inflamm.	Amyloid	Lewy Body			
AD	CJD	PD	DLB	MSA	PSP	CBD	FTD	MS	AD	PD

Presynaptic

- SNAP-25: ↑ ↑ ↑ = In CSF^{7,150-154,161}, in blood²⁷⁴
- GAP-43: ↑ ↓ = = In CSF^{159,161,158}, in blood²⁷⁴
- Synaptotagmin-1: ↑ = = = In CSF^{159,161,158}, in blood²⁷⁴
- Alpha-synuclein
 - Total: ↓ ↑ ↓ ↓ ↓ = = = = S, E, R In CSF^{63-65,169,171-178,180,207,281}, in blood^{189,190,278}
 - Oligomeric: = = = = In CSF^{69,174,197,198,207}, in blood^{193,199-204}
 - Phosphorylated: = ↑ = S In CSF^{65,169,174,197}, in blood^{193,203}

Postsynaptic

- Neurogranin: ↑ ↑ = = = = = = = = = = In CSF^{1,3,18,121,150,161,216,217,219}, in blood^{121,220,274}
- Neurofilaments
 - Light chain: ↑ ↑ = = = = = = = = = = In CSF^{171,282-286}, in blood^{193,133,135,207,284}
 - Heavy chain: ↑ = In CSF¹⁷¹

Emerging

- Synaptophysin: ↓ E In blood²⁷⁴
- Synucleins
 - Gamma: ↑ ↑ = = In CSF¹⁶⁷
 - Beta: ↑ ↑ = = In CSF^{167, in blood}
- Neuronal pentraxins
 - 1: ↓ ↓ ↓ ↓ ↓ In CSF^{31,264}
 - 2: ↓ ↓ E In CSF^{4,150,235,236,242, in blood}
 - Receptor: ↓ ↓ ↓ ↓ ↓ ↓ In CSF^{37-239,244-246}

(Continued)
PATHOLOGY COMPARED WITH CONTROLS	CEREBROSPINAL FLUID AMYLOID-β PRION LEWY BODY TAUOPATHIES INFLAM.	BLOOD AMYLOID LEWY BODY	REFERENCES
	AD CJD PD DLB MSA PSP CBD FTD MS AD PD		
SV2A	↓		In CSF^{59}
Contactin-2	↓		In CSF^{265}
Neurofascin	↓		In CSF^{231}
Neurexin			
1	↓		In CSF^{231}
2	↑	↓↑E	In CSF^{32}, in blood^{277}
3	↑		In CSF^{232}
Syntaxin-1	↑		In CSF^{32}
Calsyntenin-1	↑		In CSF^{233}
Glutamate receptor 4	↑	↓↑E	In CSF^{32}, in blood^{277}
Thy-1 membrane glycoprotein	↑		In CSF^{32}
Synaptotodin	↓↑E		In blood^{274}
Synaptotagmin-2	↓↑E		In blood^{274}
Synapsin 1	↓E		In blood^{274}
Rab3a	=		In CSF^{33}
Neureilgin 1	↓E		In blood^{277}
14-3-3 Gamma	↑↑	↑	In CSF^{70,289}
Grains	↓		In CSF^{231,264}

Abbreviations: ↑, statistical increase; ↓, statistical decrease; =, no change; AD, Alzheimer’s disease; CBD, corticobasal degeneration; CJD, Creutzfeldt–Jakob disease; CSF, cerebrospinal fluid; DLB, dementia with Lewy body; E, plasma-derived exosomes; FTD, frontotemporal dementia; GAP-43, growth-associated protein 43; MS, multiple sclerosis; MSA, multiple system atrophy; P, plasma; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; R, red blood cells (RBCs); S, serum; SNAP-25, synaptosomal-associated protein 25.
Understanding the pathological mechanisms responsible for synaptic damage is of central importance also during synap tic biomarker investigation. Brain studies could be a starting point, helping to understand the pathophysiological events and for selecting biomarker candidates. The next steps may involve the investigation of biofluids, like CSF, ideally followed by studies in blood, representing the way to bring the investigation further and possibly find synaptic biomarkers of clinical utility. The future of biomarkers ideally would be able to rely on sampling blood, which is a more accessible source than CSF. However, the possible contribution of peripheral expression of the biomarker protein, as discussed for neurogranin and α-syn, can represent a problem and, to date, we still have no blood biomarkers reflecting synaptic pathology. Neuronal-derived exosomes in blood can represent an alternative; however the complexity and variability of the exosome enrichment procedure is currently a drawback for large studies and routine use. Future directions of research should consider more longitudinal studies, to compare protein time-related changes with the disease progression. The contribution of sex differences should be also considered in more detail, as developing evidence suggests that differing biomarker profiles do exist but is protein-specific.300,301

In conclusion, the available evidence on CSF synaptic biomarkers points toward the possible use of these proteins as indicators of synaptic alteration and elimination in synaptopathies, and their use to follow cognitive deficits in neurodegenerative diseases. More efforts are needed to assess their possible use in blood. Mechanistic studies will possibly help understanding how those proteins are affected in pathological processes thus increasing their value as potential biomarkers. Moreover, developing assays for their quantification using highly sensitive and high-throughput platforms will push synaptic protein quantification toward broader investigations. This overview of the field will hopefully highlight possible gaps and guide future studies.

Author Contributions
EC, JN and NJA provided the initial idea and outline of content of the manuscript; EC created figures 1 and 2; JN created the table. All authors contributed to the content of the article and critically reviewed the article and edited the manuscript.

ORCID iD
Elena Camporesi https://orcid.org/0000-0003-1044-0192

REFERENCES

1. Taucufk E, Kouroupi G, Zygogianni O, Matsas R. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. *Open Biol*. 2018;8:180138.
2. Lepeta K, Lourenço MV, Schweitzer BC, et al. Synaptopathies: synaptic dysfunction in neurological disorders — a review from students to students. *J Neurochem*. 2016;138:785-805.
3. Frankish H, Horton R. Prevention and management of dementia: a priority for public health. *Lancet (London, England)*. 2017;390:2614-2615.
4. Masiuliu E, Mallory M, Alford M, et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. *Neurology*. 2001;56:127-129.
5. Janezic S, Threlfell S, Dodson PD, et al. Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. *Proc Natl Acad Sci U S A*. 2013;110:E4016-E4025.
6. Heuring K, Ashton NJ, Leuey A, et al. Synaptic vesicle protein 2A as a potential biomarker in synaptopathies. *Cell Mol Neurosci*. 2019;97:34-42.
7. Brinkmalm A, Brinkmalm G, Honer WG, et al. SNAP-25 is a promising novel cerebrospinal fluid biomarker for synapse degeneration in Alzheimer’s disease. *Mol Neurodegener*. 2015;10:51.
8. Korade Z, Mirnics K. Programmed to be human? *Neuron*. 2014;81:224-226.
9. Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. *Neuron*. 2011;70:687-702.
10. Sudhof TC. Towards an understanding of synapse formation. *Neuron*. 2019;107:269-279.
11. Santos E, Noggle JA, eds. Encyclopedia of Child Behavior and Development. Boston, MA: Springer US; 2011:1446-1465.
12. Sandro R, Bushong E, Zhu Y, et al. Assembly of excitatory synapses in the synapsome of glutamatergic neurotransmission. *Neuron*. 2017;94:312e313-312321.
13. Südhof TC. Neurotransmitter release: the last millisecond in the life of a synapse. *Neuron*. 2013;80:675-690.
14. Hering H, Sheng M. Dendritic spines: structure, dynamics and regulation. *Nat Rev Neurosci*. 2001;2:880-893.
15. Tao CL, Liu YT, Sun R, et al. Differentiation and characterization of excitatory and inhibitory synapses by cryo-electron tomography and correlative microscopy. *J Neurosci*. 2018;38:1493-1510.
16. Cooke SF, Bliss TV. Plasticity in the human central nervous system. *Brain*. 2016;139:1659-1673.
17. Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. *Neuron*. 2014;82:444-459.
18. Piscion C, Kano M, Harsell C. LTD-like molecular pathways in developmental pruning. *Nat Neurosci*. 2016;19:1299-1310.
19. Vitreuxa N, Letellier M, Goda Y. Homeostatic synaptic plasticity: from single synapses to neural circuits. *Curr Opin Neurobiol*. 2012;22:516-521.
20. Cardozo PL, de Lima BQ, Maciel EMA, Silva NC, Dobransky T, Ribeiro FM. Synaptic elimination in neurological disorders. *Curr Neuropharmacol*. 2013;11:571-597.
21. Maiti P, Mannu J, Ilavazhagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. *Neurosci Biobehav Rev*. 2015;59:208-237.
22. Kauer JA, Malenka RC. Synaptic plasticity and addiction. *Nat Rev Neurosci*. 2007;8:444-458.
23. Guilherme N, Cooke SF, Bliss TVP. Synaptic plasticity, memory and the hippocampus. *Nat Rev Neurosci*. 2009;8:65-75.
24. Boks P. Abnormal synaptic pruning in schizophrenia: urban myth or reality? *J Psychiatry Neurosci*. 2014;39:77-83.
25. Racki V, Bartic D, Kucic N, Grezta N, Jurkand A, Roncovic-Greza I. Cortical gray matter loss in schizophrenia: could microglia be the culprit. *Med Hypotheses*. 2016;88:18-21.
26. Oshima EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. *Med Psychiatry*. 2018;24:549-561.
27. Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. *JAMA Neurol*. 2014;71:505-508.
28. Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. *Alzheimer’s Dement*. 2018;14:535-562.
29. Yoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. *Neuron*. 2007;53:337-351.
30. Hamelin L, Lagarde J, Dorothee G, et al. Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer’s disease. *Brain*. 2018;141:1855-1870.
31. Dani M, Wood M, Mizoguchi R, et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. *Brain*. 2018;141:2740-2754.
32. Lier A. The vascular side of Alzheimer’s disease. *Science*. 2019;365:223-224.
33. Jeurcau A, Simion A. Oxidative stress in the pathogenesis of Alzheimer’s disease and cerebrovascular disease with therapeutic implications. *CNS Neurol Drug Targets*. 2020;19:94-108.
34. Terry RD, Masiuliu E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synaptic loss is the major correlate of cognitive impairment. *Ann Neurol*. 1991;30:572-580.
35. Yu W, Lu B. Synapses and dendritic spines as pathogenic targets in Alzheimer’s disease. *Neural Plast*. 2012;2012:247150.
36. Blennow K, Bogdanovic N, Alafouzin I, Ekmann R, Davidson P. Synaptic pathology in Alzheimer's disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. *J Neural Transm (Vienna).* 1996;103:603-618.
37. Selkoe DJ. Alzheimer's disease is a synaptic failure. *Science.* 2002;298:789-791.
38. Maizel J, Mallory M, Allison M, et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease. *Neurology.* 2001;56:127-129.
39. Bertoni-Freddari C, Fattoretti P, Casoli T, Meier-Ruge W, Ulrich J. Morphological adaptive response of the synaptic junctional zones in the human dentate gyrus during course of Alzheimer's disease. *Brain Res.* 1990;517:69-75.
40. Scheff SW, Price DA. Synapse loss in the temporal lobe in Alzheimer's disease. *Ann Neurol.* 1993;33:190-199.
41. Reddy PH, Mani G, Park BS, et al. Differential effect of synaptic proteins in Alzheimer's disease: implications for synaptic dysfunction. *J Alzheimers Dis.* 2007;12:137-147. discussion 148.
42. Clare R, King VG, Wifrenfeld M, Vinters HV. Synapse loss in dementia. *J Neurosci Res.* 2010;88:2083-2090.
43. Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment. *Neurobiol Aging.* 2002;23:73-84.
44. Scheff SW, Price DA, Schmitt FA, DeKosky ST, Selkoe DJ. Critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. *Nat Rev Neurosci.* 2016;17:251-260.
45. de Calignon A, Polgyoro M, Suárez-Calvet M, et al. Propagation of tau pathology in a model of early Alzheimer's disease. *Neuron.* 2012;73:685-697.
46. Clavaguera F, Akatsu H, Fraser G, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. *Proc Natl Acad Sci U S A.* 2013;110:9535-9540.
47. Orr ME, Sullivan AC, Frost B. A brief overview of tauopathy: causes, consequences, and therapeutic strategies. *Trends Pharmacol Sci.* 2017;38:637-648.
48. Kovacs GG. Molecular pathological classification of neurodegenerative diseases: aiming towards precision medicine. *J Mol Neurosci.* 2016;61:38-48.
49. Vogels T, Murgoci AN, Hromadka T. Intersection of pathological tau and microtubla at the synapse. *Acta Neuropathol Commun.* 2019;7:109.
50. Dejanovic B, Huntley MA, De Maziere A, et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by Ctx1 antibodies. *Neurobiol Aging.* 2018;68:535-549.
51. Jackson JS, Witton J, Johnson JD, et al. Altered synaptic stability in the early stages of tauopathy. *Cell Rep.* 2018;17:3063-3068.
52. Goedert M, Jakes R, Spillantini MG. The tauopathy proteins: twenty years on. *J Alzheimers Dis.* 2017;58:487-512.
53. Baba M, Nakajo S, Tu PH, et al. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. *Am J Pathol.* 1998;152:879-884.
54. Braβ JC, Dominguez-Mejíde A, Gerhardt E, et al. Synucleopathies: where we are and where we need to go. *J Neurochem.* 2015;133:433-454.
55. Sanderson JB, De S, Jiang H, et al. Analysis of alpha-synuclein species enriched from cerebral cortex of humans with sporadic dementia with Lewy bodies. *Brain Commun.* 2020;2:faat010.
56. Aarsland D, Beyer MK, Kurz MW. Dementia in Parkinson's disease. *Curr Opin Neurobiol.* 2013;23:212-216.
57. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. *J Neurosci.* 2000;20:9314-9322.
58. Chandra S, Chen X, Rito J, Jahn R, Sudhof TC. A broken alpha -helix in folded alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. *Science.* 2002;298:789-791.
59. Joe KJ, Ku M, Du Y, et al. Alpha-synuclein aggregates preferentially trap extracellular Abeta and Tau oligomers is APP-dependent. *eLife.* 2017;6:e28407. 10.7554/eLife.28407.
60. Braak H, Del Tredici K. Alzheimer's pathogenesis: is there neuron-to-neuron propagation? *Acta Neuropathol.* 2011;121:589-595.
61. Walsh DM, Selkoe DJ. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. *Nat Rev Neurosci.* 2016;17:251-260.
62. de Calignon A, Polgyoro M, Suárez-Calvet M, et al. Propagation of tau pathology in a model of early Alzheimer's disease. *Neuron.* 2012;73:685-697.
63. Clavaguera F, Akatsu H, Fraser G, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. *Proc Natl Acad Sci U S A.* 2013;110:9535-9540.
64. Voor ME, Sullivan AC, Frost B. A brief overview of tauopathy: causes, consequences, and therapeutic strategies. *Trends Pharmacol Sci.* 2017;38:637-648.
65. Kovacs GG. Molecular pathological classification of neurodegenerative diseases: aiming towards precision medicine. *J Mol Neurosci.* 2016;61:38-48.
96. Sekiya H, Kowa H, Koga H, et al. Wide distribution of alpha-synuclein oligomers in multiple system atrophy brain detected by proximity ligation. Acta Neuropathol. 2019;137:455-466.

97. Schweighauser M, Shi Y, Tarantini A, et al. Structures of α-synuclein filaments from multiple system atrophy [published online ahead of print May 27, 2020]. Nature. doi:10.1038/s41586-020-2217-6

98. Zaccà J, McCracken C, Brayne C. A systematic review of prevalence and inci-
dence studies of dementia with Lewy bodies. Age Ageing. 2005;34:561-566.

99. Bellucci A, Mercuri NB, Venneri A, et al. Review: Parkinson’s disease: from syn-
aptic loss to connectome dysfunction. Neurophapt Appl Neurobehol. 2016;42:77-94.

100. Ueda K, Fakushira H, Masliah E, et al. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:11282-11286.

101. Hamilton RL. Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol. 2006;16:378-384.

102. Kovacs GG, Milenkovic I, Wohrer A, et al. Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathol. 2013;126:365-386.

103. Beach TG, Monsell SE, Phillips LE, Kukull W. Accuracy of the clinical diag-
nosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. J Neurophapt Appl Neurobehol. 2012;71:266-273.

104. Moussaud S, Jones DR, Moussaud-Lamodié EL, Delenclos M, Ross OA, Moussaud-Lamodié EL. (18)F-labeled radiopharmaceuticals as biomarkers for tau pathology. Acta Neuropathol Commun. 2017;5:1-11.

105. Schöll M, Damián A, Engler H. Fluorodeoxyglucose PET in neurology and psy-
chiatry. Front Cell Neurosci. 2016;10:678-687.

106. Filippi L, Chiaravalloti A, Bagni O, Schillaci O. Biochemical and molecular basis of tauopathy. Curr Opin Neurol. 2017;30:64-72.

107. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of CSF levels of tau, beta-amyloid(1-42) and neurofilament proteins. Acta Neuropathol Commun. 2015;3:1-15.

108. Sjogren M, Minthon L, Davidsson P, et al. CSF levels of tau, beta-amyloid(1-42) and neurofilament proteins in patients with Parkinson’s disease. Acta Neuropathol. 2017;133:165-178.

109. Oeckl P, Steinacker P, Feneberg E, Otto M. Neurochemical biomarkers in the diagnosis of frontotemporal lobar degeneration: an update. J Neurol. 2016;263:184-192.

110. Riemenschneider M, Wagenpfeil S, Vanderstichele H, et al. Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias. Mol Psychiatry. 2003;8:343-347.

111. Otto M, Wiltfang J, Tumiai H, et al. Elevated levels of tau-protein in cerebro-
spinal fluid of patients with Creutzfeldt-Jakob disease. Neurosci Lett. 1997;225:210-212.

112. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol. 2010;6:67-77.

113. Barrhel H, Sabri O. Clinical use and utility of amyloid imaging. J Nucl Med. 2009;50:1711-1717.

114. Filippos L, Chiaravalloti A, Bagli P, Scalfari A. (18)F-labeled radiopharmaceuticals for the molecular neuroimaging of amyloid plaques in Alzheimer disease. Am J Nucl Med Mol Imaging. 2018;8:268-281.

115. Schöll M, Maass A, Mattsson N, et al. Biomarkers for tau pathology. Mol Cell Neurosci. 2019;73:55-66.

116. Choo IH, Ni R, Schöll M, Wall A, Almkvist O, Nordberg A. Combination of 18F-FDG PET and cerebrospinal fluid biomarkers as a better predictor of the progression to Alzheimer’s disease in mild cognitive impairment patients. J Alzheimers Dis. 2013;33:929-939.

117. Schöll M, Damián A, Engler H. Fluorodeoxyglucose PET in neurology and psy-
chiatry. PLoS Cite. 2014;9:371-390.

118. Mecca AP, Chen MK, O’Dell RS, et al. In vivo measurement of widespread syn-
aptic loss in Alzheimer’s disease with SV2A PET. Alzheimers Dement. 2016;12:974-982.

119. Jack CR, Bennett DA, Blennow K, et al. A/T/NI: an unbiased descriptive class-
ification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539-547.

120. Ashton NJ, Nevado-Holgado AJ, Barber I, et al. A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer’s disease. Sci Adv. 2015;1:1-21.

121. Kvarnberg H, Portelius E, Andreasen U, et al. Characterization of the postsyn-
aptic protein neurogranin in paired cerebrospinal fluid and plasma samples from Alzheimer’s disease patients and healthy controls. Alzheimers Res Ther. 2015;7:40.

122. Nakamura A, Kaneo N, Villemagne VL, et al. High performance plasma amy-
loid beta biomarkers for Alzheimer’s disease. Nature. 2018;554:249-254.

123. Schindler SE, Bollinger JC, Vovd O, et al. High-precision plasma beta-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019;93:e1647-e1659.

124. Janelidze S, Stomrud E, Palmqvist S, et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci Rep. 2016;6:1-11.
173. Wennström M, Surova Y, Hall S, et al. Low CSF levels of both alpha-synuclein and DJ-1: potential biomarkers in Parkinson's disease. *Mov Disord*. 2017;636:70-76.

174. Wang H, Stewert T, Toledo JB, et al. A longitudinal study of Total and phosphorylated alpha-synuclein with other biomarkers in cerebrospinal fluid of Alzheimer's disease and mild cognitive impairment. *J Alzheimers Dis*. 2018;61:1541-1553.

175. Llorens F, Kruse N, Karch A, et al. Validation of alpha-synuclein as a CSF biomarker for sporadic Creutzfeldt-Jakob disease. *Mov Neurol*. 2018;55:2249-2257.

176. Schmitz M, Villar-Piqué A, Llorens F, et al. Cerebrospinal fluid total and phosphorylated alpha-synuclein in patients with Creutzfeldt-Jakob disease and sporadic Creutzfeldt-Jakob disease. *Neurol Res*. 2019;41:98-105.

177. Mollenhauer B, Bowman FD, Drake D, et al. Antibody-based methods for the measurement of alpha-synuclein-concentration in human cerebrospinal fluid—method comparison and round robin study. *J Neurol. Sci*. 2019;410:1206-1238.

178. Barbour K, Kling K, Anderson JP, et al. Red blood cells are the major source of alpha-synuclein in blood. *Neurodegener Dis*. 2008;5:55-59.

179. Barbour K, Kruse N, Linden A, et al. Blood contamination in CSF and its impact on quantitative analysis of alpha-synuclein. *Cell. Trans. 2020;8:370.

180. Fouls PG, Diggle P, Mitchell JL, et al. A longitudinal study on alpha-synuclein in blood plasma as a biomarker for Parkinson's disease. *Sci Rep*. 2013;3:2540.

181. Iishi H, Tokuda T, Tatebe H, et al. Decrease in plasma levels of alpha-synuclein is evident in patients with Parkinson’s disease after elimination of heterogeneous synuclein isoforms. *PLoS ONE*. 2015;10:e0123162.

182. Malec-Litwinowicz M, Plewka A, Plewka D, et al. The relation between plasma alpha-synuclein level and clinical symptoms or signs of Parkinson’s disease. *Neuro 1 Neurol Clin. 2018;52:243-251.

183. Ishii H, Tokuda T, Zhang Z, et al. Systematic activation of NR1P5 inflammasome and plasma alpha-synuclein levels are correlated with motor severity and progression in Parkinson’s disease. *J Neuroinflammation*. 2020;17:111.

184. Bougra A, Stefanis L, Paraskevas GP, Emenoulioudou E, Vekrellis K, Kapaki E. Plasma alpha-synuclein levels in patients with Parkinson’s disease: a systematic review and meta-analysis. *Int J Mol Sci*. 2019;20:240-268.

185. Laske C, Fallgatter AJ, Stransky E, Hagen K, Berg D, Maetzler W. Decreased alpha-synuclein serum levels in patients with Lewy body dementia compared to Alzheimer’s disease patients and control subjects. *Dement Geriatr Cogn Disord*. 2011;31:413-416.

186. Abd-Eldahi S, Honig A, Sinhi-Haham D, et al. Total and proteinase K-resistant alpha-synuclein levels in erythrocytes, determined by their ability to bind phospholipids, associate with Parkinson’s disease. *Sci Rep*. 2015;5:11120.

187. Baldačchi F, Daniele S, Piccardiucici R, et al. Potential diagnostic value of red blood cells alpha-synuclein heteroaggregates in Alzheimer’s disease. *Mol Neurobiol*. 2016;50:651-660.

188. Danieli S, Frosini D, Pietrobono D, et al. Alpha-synuclein heterocrosslinkers with beta-amyloid are increased in red blood cells of Parkinson’s disease patients and correlate with disease severity. *Front Mol Neurosci*. 2011;5:11.

189. Kang W, Chen W, Yang Q, et al. Salivary total alpha-synuclein, oligomeric alpha-synuclein and SNCA variants in Parkinson’s disease patients. *Sci Rep*. 2016;6:28143.

190. Devi I, Hwang H, Edgar JS, et al. Salivary alpha-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. *Brain*. 2011;134:e178-e178.

191. Vivacqua G, Suppa A, Mancinelli R, et al. Salivary alpha-synuclein in the diagnosis of Parkinson’s disease and progressive supranuclear palsy. *Parkinsons Relat Dis*. 2019;6:143-148.

192. Hansson O, Hall S, Ohrfelt A, et al. Levels of cerebrospinal fluid alpha-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. *Alzheimers Res Ther*. 2014;6:25.

193. Parnetti L, Chiaurrenidi S, Perschitelli E, et al. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson’s disease. *Mov Disord*. 2014;29:1019-1027

194. El-Agnaf OM, Salem SA, Paleologou KE, et al. Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. *FASEB J*. 2006;20:419-425.

195. Williams SM, Schulz P, Siersk MR. Oligomeric alpha-synuclein and beta-amyloid variants as potential biomarkers for Parkinson’s and Alzheimer’s disease. *Eur J Neurol*. 2016;43:3-6.

196. Wang X, Yu S, Li F, Feng T. Detection of alpha-synuclein in red blood cells as a potential biomarker of Parkinson’s disease. *Neurosci Lett*. 2015;599:115-119.

197. Pchelina S, Emelyanov A, Baydakova G, et al. Oligomeric alpha-synuclein and glucose cerebroside activity levels in GBA-associated Parkinson’s disease. *Neurosci Lett*. 2017;636:70-76.

198. Fouls PG, Mitchell JD, Parker A, et al. Phosphorylated alpha-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. *FASEB J*. 2011;25:4117-4117.

199. Park MJ, Cheon S-M, Bae H-R, Kim S-H, Kim JW. Elevated levels of alpha-synuclein oligomer in the cerebrospinal fluid of drug-naive patients with Parkinson’s disease. *J Clin Neurol*. 2017;13:215-222.

200. Vivacqua G, Latorre A, Suppa A, et al. Abnormal salivary total and oligomeric alpha-synuclein in Parkinson’s disease. *PLoS ONE*. 2016;11:e0151156.
230. Wesenhagen KEJ, Teunissen CE, Visser PJ, Tijms BM. Cerebrospinal fluid pro-

228. Becker B, Nazir FH, Brinkmalm G, et al. Alzheimer-associated cerebrospinal fluid.

222. Sanfilippo C, Forlenza O, Zetterberg H, Blennow K. Increased neurogranin

218. Kester MI, Teunissen CE, Crimmins DL, et al. Neurogranin as a cerebrospinal fluid biomarker of Alzheimer’s disease progression. F1000Res. 2018;7:1012.

216. Thorsell A, Bjerke M, Gobom J, et al. Neurogranin in cerebrospinal fluid as a marker for predicting future disease progression. PLoS ONE. 2017;12:e0198209.

213. Prichard L, Deloulme JC, Storm DR. Interactions between neurogranin and synuclein. J Neurosci. 2013;33:14337-14347.

215. Huang K-P, Huang FL, Jäger T, Li J, Reymann KG, Balschun D. Neurogranin/alpha-synuclein seeds in brain and cerebrospinal fluid by an RT-QuIC assay. Acta Neuropathol. 2018;6:7.

214. Domínguez-González I, Vázquez-Cuesta SN, Algaba A, Díez-Guerra FJ. Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate. J Neurosci. 2019;39:1782-1789.

217. Kvartsberg H, Duits FH, Ingelsson M, et al. Cerebrospinal fluid levels of the synaptic protein NPTX2 and cognitive dysfunction in Alzheimer’s disease. J Alzheimers Dis. 2017;59:1327-1334.

211. Represa A, Deloulme JC, Sensenbrenner M, Ben-Ari Y, Baudier J. Neurogranin: a postsynaptic calcipatin for setting the response threshold to calcium influxes. Mol Neurobiol. 2019;56:5680-5690.

212. Gerendasy DD, Sutcliffe JG. RC3/neurogranin, a postsynaptic calcium-binding protein for setting the response threshold to calcium influxes. Mol Neurobiol. 1997;15:131-163.

210. Fujiwara H, Hasegawa M, Dohmae N, et al. alpha-Synuclein is phosphorylated by TACE. Neuron. 2014;80:348ra96.

209. Groveman BR, Orrù CD, Hughson AG, et al. Rapid and ultra-sensitive quantification of amyloid-β peptides by an off-the-shelf mass spectrometry method for analysis of potential CSF biomarkers for Alzheimer’s disease. Crit Rev Clin Lab Sci. 2020;87:329-338.

208. Majbour NK, Vaikath NN, van Dijk KD, et al. Oligomeric and phosphorylated alpha-synuclein as a cerebrospinal fluid biomarker of Alzheimer’s disease. JAMA Neurol. 2019;76:950-956.

207. Marsden DF, Williams LE, Schiltz R, et al. Development and evaluation of a multiplexed mass spectrometry based assay for measuring candidate peptide biomarkers in Alzheimer’s Disease Neuroimaging Initiative (ADNI) CSF. Proteomics Clin Appl. 2015;9:715-731.

206. Fujimura H, Hasegawa M, Dohmae N, et al. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160-164.

205. Robinson JL, Molina-Porcel L, Corrada MM, et al. Perforant path synaptic loss in preclinical Alzheimer’s disease cerebrospinal fluid. J Neurol. 2018;225:829-835.

204. Bajjalieh SM, Frantz GD, Weimann JM, Mcconnell SK, Scheller RH. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci. 1994;14:1915-1925.

203. Brandt G, Bajjalieh SM. Cotrafficking of Alzheimer’s disease markers in preclinical Alzheimer’s disease cerebrospinal fluid proteome comparison between multiple sclerosis patients and patients with Alzheimer’s disease. Clin Chem Lab Med. 2016;54:568-580.

202. Robinson JL, Molina-Porcel L, Corrada MM, et al. Perforant path synaptic loss in preclinical Alzheimer’s disease cerebrospinal fluid. J Neurol. 2018;225:829-835.

201. D’Alessandro R, Meldolesi J. Expression and function of the dense-core vesicle protein SNCA/α-synuclein in synucleinopathy lesions. Nat Cell Biol. 2001;3:160-164.

200. Wildsmith KR, Schauer SP, Smith AM, et al. Identification of longitudinally dynamic biomarkers in Alzheimer’s disease cerebrospinal fluid by targeted proteomics. Mol Neurodegeneration. 2014;9:22.

199. Llorens MA, Nelson CC, Guarda R, et al. Concentrations of candidate markers for Alzheimer’s disease in preclinical stages. Brain Behav Immun. 2016;59:58-67.

198. Fantasia J, Khosla S, Ewing AC, et al. Liquid biopsy of cerebrospinal fluid identifies neuronal pentanxarin receptor (NPTX2) as a biomarker of progression of Alzheimer’s disease. Clin Chem Lab Med. 2019;57:1875-1881.

197. Lim B, Toshiaki M, Sosa-Palitai A, et al. Liquid biopsy of cerebrospinal fluid identifies neuronal pentanxarin receptor (NPTX2) as a biomarker of progression of Alzheimer’s disease. Clin Chem Lab Med. 2019;57:1875-1881.

196. Lim B, Sando SB, Groenveld BR, Brätén G, Diamandis EP. Cerebrospinal fluid neuronal pentanxarin receptor as a biomarker of long-term progression of Alzheimer’s disease. J Alzheimers Dis. 2020;79:1129-1137.

195. Yang J, Nowack A, Kensel-Hammes P, Gardner RG, Bajjalieh SM. Cotrafficking of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by an RT-QuIC assay. Acta Neuropathol. 2018;6:7.

194. Robinson JL, Molina-Porcel L, Corrada MM, et al. Perforant path synaptic loss in preclinical Alzheimer’s disease cerebrospinal fluid. J Neurol. 2018;225:829-835.
265. Chatterjee M, Del Campo M, Morrema THJ, et al. Contactin-2, a synaptic and cell adhesion molecule, is reduced in cerebrospinal fluid and brain tissue in Alzheimer’s disease. *Alzheimer’s Res Ther.* 2018;10:52.

266. Galvin JE, Uryu K, Lee VM-Y, Trojanowski JQ. Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains α-, β-, and γ-synuclein. *Proc Natl Acad Sci U S A.* 1999;96:13450-13455.

267. Oeckl P, Halbgebauer S, Anderl-Straub S, et al. Targeted mass spectrometry characterization of microvesicles/exosomes from human cerebrospinal fluid following traumatic brain injury. *J Neurosci Res.* 2016;2016:2016:8407609.

268. Zhang J, Zhou Y. 14-3-3 proteins in glutamatergic synapses. *Neural Plast.* 2018;2018:8407609.

269. Foote M, Zhou Y. 14-3-3 proteins in neurological disorders. *Int J Biochem Mol Biol.* 2012;3:152-164.

270. Goetzl EJ, Kapogiannis D, Schwartz JB, et al. Decreased synaptic proteins in cerebrospinal fluid: a marker of white matter changes. *J Neurosci Res.* 2001;66:510-516.

271. Sze C-I, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ. Loss of the neuronal exosome marker, α-synuclein by ELISA and first cross-sectional study in patients with neurodegenerative diseases. *Brain Pathol.* 2016;26:262-272.

272. Schmitz M, Ebert E, Stoeck K, et al. Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt-Jakob disease diagnostic. *Mult. Neurol.* 2016;5:2189-2199.

273. Almeida CG, Tampellini D, Takahashi RH, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in preymtomatic Alzheimer’s disease. *Alzheimers Dement.* 2020;9:227-231.

274. DeFelipe J, Alonso-Nanclares L. The synapse: differences between men and women. In: Pfaff DW, Christen Y, editors. Neuroendocrinology. Berlin, Heidelberg: Springer; 2013:43-57.