On Moment Approximation and the Effective Putinar’s Positivstellensatz

Lorenzo Baldi ; Bernard Mourrain∗
Inria, Université Côte d’Azur, Sophia Antipolis, France

Abstract

We analyse the representation of positive polynomials in terms of Sums of Squares. We provide a quantitative version of Putinar Positivstellensatz over a compact basic closed semialgebraic set S, with new polynomial bounds on the degree of the positivity certificates. These bounds involve a Łojasiewicz exponent associated to the description of S. We show that under Constraint Qualification Conditions, this Łojasiewicz exponent is equal to 1. We deduce new bounds on the convergence rate of the optima in Lasserre Sum-of-Squares hierarchy to the global optimum of a polynomial function on S and new bounds on the Hausdorff distance between the cone of truncated (probability) measures supported on S and the cone of truncated moment sequences, which are positive on the quadratic module of S.

1 Introduction

A fundamental question in Real Algebraic Geometry is how to describe effectively the set of polynomials which are non-negative on a given domain.

Clearly, the set of non-negative polynomials on \mathbb{R}^n contains the Sums of Squares of real polynomials (SoS). Let $\mathbb{R}[X] = \mathbb{R}[X_1, \ldots, X_n]$ be the \mathbb{R}-algebra of polynomials in the indeterminates X_1, \ldots, X_n with real coefficients. The convex cone of SoS polynomials

$$\Sigma^2 := \Sigma^2[X] = \{ f \in \mathbb{R}[X] \mid \exists r \in \mathbb{N}, g_i \in \mathbb{R}[X] : f = g_1^2 + \cdots + g_r^2 \}$$

is a subset of the convex cone of non-negative polynomials $\text{Pos}(\mathbb{R}^n) := \{ p \in \mathbb{R}[X] \mid \forall x \in \mathbb{R}^n, p(x) \geq 0 \}$. But it is known since Hilbert [Hil88], that these cones differ: not all non-negative polynomials are SoS. A famous counter-example is Motzkin polynomial [Mot67] of degree 6 in 2 variables, which is non-negative on \mathbb{R}^2 but not a SoS. Such polynomials exists for any dimension $n \geq 2$, but not in dimension 1 since univariate non-negative polynomials are SoS.

For a domain $S = S(g) = S(g_1, \ldots, g_r) = \{ x \in \mathbb{R}^n \mid g_i(x) \geq 0 \text{ for } i = 1, \ldots, r \}$, defined by inequalities $g_i \geq 0$ with $g_i \in \mathbb{R}[X]$, that is, a basic closed semialgebraic set, the set $\text{Pos}(S)$ of non-negative polynomials on S contains the quadratic module generated by $g = (g_1, \ldots, g_r)$, and defined by

$$Q = Q(g) := \Sigma^2 + \Sigma^2 \cdot g_1 + \cdots + \Sigma^2 \cdot g_r$$

and also the preorder $O = O(g_1, \ldots, g_r) := Q(\prod_{j \in J} g_j | J \subset \{1, \ldots, r\})$.

A complete description of non-negative polynomials on S is given by Krivine–Stengle Positivstellensatz:

Theorem 1.1 ([Kri64],[Ste74]). Let $S = S(g)$ with $g \subset \mathbb{R}[X]$. Then

$$\text{Pos}(S) = \{ p \in \mathbb{R}[X] \mid \exists s \in \mathbb{N}, q_1, q_2 \in O(g), q_1 p = p^{2s} + q_2 \}$$

∗This work has been supported by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions, grant agreement 813211 (POEMA)
This result is an extension of Artin’s theorem [Art27], stating that non-negative polynomials are ratio of two SoS polynomials. But it induces a denominator in the representation of a positive polynomial.

Since for a general family \(g \subset \mathbb{R}[X] \) and \(n > 1 \), non-negative polynomials on \(S(g) \) do not all belong to the quadratic module \(Q(g) \) or even to the preordering \(O(g) \), it is natural to ask whether the convex cone \(Q(g) \) (resp. \(O(g) \)) is a good inner-approximation of \(\text{Pos}(S) \). A partial answer is given by two important results due to Schm"{u}dgen and Putinar, and also known as denominator free Positivstellensatz. They require the following assumption:

Definition 1.2. Denote \(\|X\|_2^2 = X_1^2 + \cdots + X_n^2 \). We say that a quadratic module \(Q \) is Archimedean if there exists \(r \in \mathbb{R} \) such that \(r^2 - \|X\|_2^2 \in Q \).

We recall these two results, which are central in the paper:

Theorem 1.3 (Schm"{u}dgen’s Positivstellensatz [Sch91]). Let \(S(g) \) be a compact basic semialgebraic set. Then \(f > 0 \) on \(S(g) \) implies \(f \in O(g) \).

Theorem 1.4 (Putinar’s Positivstellensatz [Put93]). Let \(S(g) \) be a basic semialgebraic set. If \(Q(g) \) is Archimedean, then \(f > 0 \) on \(S(g) \) implies \(f \in O(g) \).

As a consequence of the first result, notice that \(S(g) \) compact implies that \(O(g) \) is Archimedean. On the other hand there are examples with \(S(g) \) compact but \(Q(g) \) not Archimedean (see e.g. [PD01] ex. 6.3.1).

Since a non-negative polynomial \(f \in \text{Pos}(S) \) on a compact basic semialgebraic set \(S \) can be approximated uniformly on \(S \) by the polynomial \(f + \varepsilon \), which is strictly positive on \(S \) for \(\varepsilon > 0 \), these results show that any polynomial non-negative on \(S \) is the limit of sequences of polynomials in \(Q(g) \) (resp. \(O(g) \)). Unfortunately, generically the degree of the polynomials in these sequences goes to infinity.

In this paper, we provide quantitative versions of Theorem 1.4 We give new bounds on the degree of the representation in \(Q(g) \), which control the quality of approximation of non-negative polynomials by elements in \(Q(g) \). For this problem, also known as Effective Putinar Positivstellensatz, our main result is Theorem 1.7 which provides the first polynomial bounds in the intrinsic parameters associated to \(g \) and \(f \).

The proof of Theorem 1.7 is developed in Section 2 and Section 3. In the proof and in the bound of the theorem a special role is played by the Łojasiewicz exponent \(L \), comparing the distance and the algebraic distance from \(S \), see Definition 2.4. In Theorem 2.11 we prove that \(L = 1 \) in regular cases, i.e. when a regularity condition coming from Optimization is satisfied, see Definition 2.7. To our best knowledge this is the first analysis of the Łojasiewicz exponent under regularity assumptions of any kind. Corollaries to our main results in regular cases with \(L = 1 \) are described in Corollary 3.9, Corollary 4.4 and Corollary 5.9.

Polynomials of degree bounded by \(l \in \mathbb{N} \) in the quadratic module \(Q(g) \) are used to define a hierarchy of convex optimization problems, also known as Lasserre’s hierarchy, which optimum value converges to the global optimum of a polynomial \(f \in \mathbb{R}[X] \) on \(S \) [Las01]. We describe these hierarchies in Section 4. In Theorem 4.2 and Theorem 4.3 we deduce from Theorem 1.7 new polynomial bounds on the convergence rate of this hierarchy to the global optimum, in terms of the degree of truncation \(l \).

Considering the dual problem, we also analyse the quality of approximation of measures by moment sequences used in Lasserre moment hierarchy. In Theorem 1.8 we provide new bounds on the Hausdorff distance between the cone of truncated probability measures (supported on \(S \)) and the outer convex set of truncated positive moment sequences of unit mass, and on the rate of convergence when the degree \(l \) goes to infinity. The proof of Theorem 1.8 is developed in Section 5. The bounds involve intrinsic parameters associated to \(g \) and the degree \(l \) of truncation. As an intermediate step, in Theorem 5.7 we also bound the Hausdorff distance between positive moment sequences and non-normalized measures.
1.1 Truncated quadratic modules and positive polynomials

To analyse the degree in these SoS representations, we introduce the truncated quadratic modules at level \(l \in \mathbb{N} \), i.e. the polynomials in \(\mathcal{Q}(g) \) that are generated in degree \(\leq l \):

\[
\mathcal{Q}_l(g) = \left\{ s_0 + \sum_{i=1}^{r} s_i g_i \mid s_i \in \mathbb{Z}^2, \deg s_0 \leq l, \deg s_i g_i \leq l \ \forall i = 1, \ldots, r \right\} \subset \mathcal{Q}(g) \cap \mathbb{R}[X]_l. \tag{1}
\]

where \(\mathbb{R}[X]_l \) is the vector space of polynomials of degree \(\leq l \).

Effective versions of Schmüdgen and Putinar’s Positivstellensatz, that give degree bounds for the representation in truncated preorderings and quadratic modules, have been proven by Schweighofer and Nie.

Theorem 1.5 ([Sch04]). For all \(g = g_1, \ldots, g_r \subset \mathbb{R}[X] = \mathbb{R}[X_1, \ldots, X_n] \) defining \(\emptyset \neq S(g) = S \subset [-1, 1]^n \) there exists \(0 < c \in \mathbb{R} \) (depending on \(g \) and \(n \)) such that, if \(f \in \mathbb{R}[X]_d \) is strictly positive on \(S \) with minimum \(f^* = \min_{x \in S} f(x) > 0 \), we have \(f \in \mathcal{Q}_l(g) \) if

\[
l \geq cd^2 \left(1 + \left(d^2 n^d ||f|| \right)^c \right)
\]

Theorem 1.6 ([NS07]). For all \(g = g_1, \ldots, g_r \subset \mathbb{R}[X] = \mathbb{R}[X_1, \ldots, X_n] \) defining an Archimedean quadratic module \(\mathcal{Q} = \mathcal{Q}(g) \) and \(\emptyset \neq S(g) = S \subset [-1, 1]^n \), there exists \(0 < c \in \mathbb{R} \) (depending on \(g \) and \(n \)) such that, if \(f \in \mathbb{R}[X]_d \) is strictly positive on \(S \) with minimum \(f^* = \min_{x \in S} f(x) > 0 \), we have \(f \in \mathcal{Q}_l(g) \) if

\[
l \geq c \exp \left(d^2 n^d ||f|| f^c \right)
\]

The norm used in [Sch04] and [NS07] is the max norm of the coefficients of the polynomial \(f \) w.r.t. the weighted monomial basis \(\xi(x) = \prod_{i=1}^{d} x^a : |a| \leq d \), while the one we will use is the max norm on \([-1, 1]^n\). We describe this norm and fix some notation.

Notation. Throughout the article:

- \(f \in \mathbb{R}[X] \) is a polynomial in \(n \) variables of degree \(d = d(f) \);
- \(S = S(g) = S(g_1, \ldots, g_r) \) is the basic closed semialgebraic set defined by \(g = g_1, \ldots, g_r \);
- \(d(g) = \max_i \deg g_i \) is the maximum degree of the inequalities defining \(S \);
- \(f^* = \min_{x \in S} f(x) \) is the minimum of \(f \) on \(S \), and unless otherwise stated \(f^* > 0 \);
- \(|| \cdot || \) denotes the max norm of a polynomial on \([-1, 1]^n\), i.e. \(||h|| = \max_{x \in [-1, 1]^n} |h(x)| \);
- \(\varepsilon(f) = \frac{f}{||f||} \) is a measure of how close is \(f \) to have a zero on \(S \).

For convenience we will prove our theorem in a normalized setting.

Normalisation assumptions. In the following, we assume that

- \(1 - ||X||^2 \in \mathcal{Q}(g) \),
- \(||g_i|| \leq \frac{1}{2} \ \forall i \in \{1, \ldots, r\} \).

We can always be in this setting by a change of variables if we start with an Archimedean quadratic module: if \(r^2 - ||X||^2 \in \mathcal{Q}(g) \) then \(1 - ||X||^2 \in \mathcal{Q}(g(rX)) \) (i.e. the quadratic module generated by \(g_i(rX_1, \ldots, rX_n) \)). By replacing \(g_i \) with \(\frac{g_i}{||g_i||} \), we can also assume without loss of generality that the second point is satisfied.

The main result of the paper is the following theorem. It is an effective, general version of Putinar’s Positivstellensatz with polynomial bounds for fixed \(n \).
Theorem 1.7. Assume \(n \geq 2 \) and let \(g_1, \ldots, g_r \in \mathbb{R}[X] = \mathbb{R}[X_1, \ldots, X_n] \) satisfying the normalization assumptions (2). Let \(f \in \mathbb{R}[X] \) such that \(f^* = \min_{x \in S} f(x) > 0 \). Let \(\ell, L \) be the Łojasiewicz coefficient and exponent given by Definition 2.4. Then \(f \in Q_l(g) \) if

\[
l \geq O(n^{3.5} r^2 \ell^{2n} d(g)^n d(f)^{3.5} L \ell^{-2.5} L) = \gamma(n,g) d(f)^{3.5} L \ell^{-2.5} L,
\]

where \(\gamma(n,g) \geq 1 \) depends only on \(n \) and \(g \).

Notice that the only parameters in the bound that depend on \(f \) are \(d(f) \) and \(\ell(f) \). We also remark that exponents in Theorem 1.7 have been simplified for the sake of readability and are not optimal: see Equation (21) for sharper bounds, especially for the case \(n \gg 0 \). Moreover we remark that the assumption \(n \geq 2 \), only used to do this simplification, is not a serious limitation since the univariate case is already well studied, see for instance [PR00].

In Section 3 we develop in details the proof of Theorem 1.7. The ingredients for the proof are introduced in Section 2. The main differences with the one of [NS07] is the use of an effective Schmüdgen’s Positivstellensatz on the unit box [LS21], and an effective approximation of regular functions on the unit interval, see Theorem 2.7. Moreover in Section 2.2 we prove that the main exponent of the bound, i.e. the Łojasiewicz exponent \(L \), is equal to 1 for regular polynomial optimization problems, see Definition 2.7 and Theorem 2.11. The corollary of Theorem 1.7 in these regular cases is Corollary 3.9.

As a corollary of Theorem 1.7, we analyse the convergence of Lasserre hierarchies used polynomial optimization. In Section 4 we focus on the optimum of the hierarchy, proving in Theorem 4.2 and Theorem 4.3 a new, general polynomial convergence as corollary of our main result (see Corollary 4.4 for regular Polynomial Optimization Problems). On the other hand in Section 5 we focus on the convergence of the feasible moments of the moment hierarchy to the moments of measures: we prove in Theorem 1.8 that we can bound their Hausdorff distance using Theorem 1.7.

1.2 Truncated moment sequences and measures

Dualizing our point of view, we also consider the convex cone \(\mathcal{M}(S) \) of Borel measures supported on \(S \), which is dual to \(\text{Pos}(S) \). We denote by \(\mathcal{M}^{(1)}(S) \) the set of Borel probability measures supported on \(S \).

The dual of polynomials is described as follows (see [Mou18] for more details). For \(\sigma \in (\mathbb{R}[X])^* = \text{hom}_\mathbb{R}(\mathbb{R}[X], \mathbb{R}) \), we denote \(\langle \sigma | f \rangle = \sigma(f) \) the application of \(\sigma \) to \(f \in \mathbb{R}[X] \). Recall that \((\mathbb{R}[X])^* \cong \mathbb{R}[[Y]] := \mathbb{R}[[Y_1, \ldots, Y_n]] \), with the isomorphism given by:

\[
(\mathbb{R}[X])^* \ni \sigma \mapsto \sum_{\alpha \in \mathbb{N}^n} \langle \sigma | X^\alpha \rangle \frac{Y^\alpha}{\alpha!} \in \mathbb{R}[[Y]],
\]

where \(\{ Y_\alpha \} \) is the dual basis to \(\{ X^\alpha \} \), i.e. \(\langle Y^\alpha | X^\beta \rangle = \delta_{\alpha,\beta} \). With this basis we can also identify \(\sigma \in (\mathbb{R}[X])^* \) with its sequence of coefficients (moments of \(\sigma \)) \(\{ \sigma_\alpha \} \), where \(\sigma_\alpha = \langle \sigma | X^\alpha \rangle \).

Among all the linear functionals of special importance are the ones coming from a measure, i.e. \(\sigma \in (\mathbb{R}[X])^* \) such that there exists a Borel measure \(\mu \in \mathcal{M}(S) \) with \(\langle \sigma | f \rangle = \int f \, d\mu \) for all \(f \in \mathbb{R}[X] \). In this case the sequence \(\{ \mu_\alpha \} \) associated with \(\mu \) is the sequence of moments: \(\mu_\alpha = \int X^\alpha \, d\mu \). We will identify a Borel measure with its associated linear functional acting on polynomials (or equivalently with its sequence of moments), so that \(\mathcal{M}(S) \subset (\mathbb{R}[X])^* \).

We will work in the truncated setting, i.e. when we restrict our linear functionals to a fixed, finite dimensional subspace of \(\mathbb{R}[X] \). In particular we denote \(\langle \cdot | \cdot \rangle \) the restriction of a linear functional (or of a family of linear functionals) to \(\mathbb{R}[X]_t \), i.e. to polynomials of degree at most \(t \). In coordinates, if \(\sigma = \langle \sigma_a | X_\alpha \rangle_{|\alpha| \leq d} \in \mathbb{R}[X]_d^* \) then \(\sigma_{|t} = \langle \sigma_a | X_\alpha \rangle_{|\alpha| \leq t} \in \mathbb{R}[X]_t^* \).

We are interested in the dual algebraic objects to truncated quadratic modules: the truncated positive linear functionals

\[
L_t(g) = \{ \sigma \in (\mathbb{R}[X]_t)^* \mid \forall q \in Q_t(g) \; \langle \sigma | q \rangle \geq 0 \} = Q_t(g)^\vee.
\]
which are polynomial and not exponential in ε.
Assume

Truncated positive linear functionals are an outer approximation of measures supported on S. They are used in Polynomial Optimization Problems (POP) to compute lower approximations of the minimum of a polynomial function f on S, see Section 4. Under the Archimedean assumption, convergence to measures of the linear functionals realizing the lower approximations have been proven in \cite{Sch05} for POP.

However nothing is said about the rate of convergence. We use Theorem 1.7 quantifying how good is the inner approximation of positive polynomials by truncated quadratic modules, to answer the question we are interested in: how good is the outer approximation of (probability) measures supported on S, where $d_H(A, B) = \max \{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(A, b) \}$.

Theorem 1.8. Assume $n \geq 2$ and that the normalisation assumptions (2) are satisfied, and in particular that $1 - ||X||^2 = q \in Q_l(g)$. Let $0 < \varepsilon \leq \frac{1}{l}$, $t \in \mathbb{N}$, and $l \in \mathbb{N}$ such that $l \geq \gamma(n, g) \varepsilon^{2.5nL} t^{0.5n} \left(\frac{1}{t} \right)^{2.5nL} e^{-2.5nL}$ and $l \geq 2t + l_0$, with $\gamma(n, g)$ given by Theorem 1.7. Then

$$d_H(M^{(1)}(S)^{2l}, L_1^{(1)}(g)^{2l}) \leq \varepsilon.$$

The proof of Theorem 1.8 is developed in Section 5. The corollary of Theorem 2.11 in regular cases with $L = 1$ is Corollary 5.9.

1.3 Related works

Complexity analysis in Real Algebraic Geometry is an active area of research, where obtaining good upper bounds is challenging. See for instance \cite{LPR20} for elementary recursive degree bounds in Kivrin-Stengle Positivstellensatz, \cite{Sed18} for computation complexity of real radicals. Among all the Stellensätzen, we consider Putinar’s Positivstellensatz, which allows a denominator free representation and has well-known applications in Polynomial Optimization.

A general, effective version of Putinar’s Positivstellensatz have been proven in \cite{NS07} (see also \cite{Sch04} for a general effective Schmüdgen’s Positivstellensatz). This result is used in \cite{Msed21} to give bounds on the degree of rational SoS positivity certificates, which are exponential in the bit-size of the input polynomials f, g. Compared to \cite{NS07}, Theorem 1.7 gives degree bounds, which are polynomial and not exponential in $\varepsilon(f)$. This implies a polynomial rate convergence of Lasserre hierarchies, see Theorem 4.2, and not logarithmic as in \cite{NS07}. For special semialgebraic sets, the bounds on the convergence rate can be improved: see for instance \cite{LS21} for convergence on the unit box and \cite{FF20} for the unit sphere. The convergence rate of the upper bounds of Lasserre SoS density hierarchy over the sphere has been studied in \cite{DKL19}.

The proof of Theorem 1.7 is based on the construction of a perturbation polynomial $q \in Q(g)$ and the reduction to a simpler semialgebraic set. This construction of the perturbation polynomial q using univariate SoS has already been used in \cite{Sch04, Sch05, NS07, Ave13} and \cite{KS15}. Our main improvements in the proof are the generalisation from univariate SoS to a positive polynomial echelon function, see Section 2.3 and the use of an Effective Schmüdgen’s Positivstellensatz on the unit box from \cite{LS21}. Moreover in Section 2.2 we analyse regular cases that result in very simple exponents, see Corollary 3.9.

This approach with a perturbation polynomial q has also been used in \cite{KS15} to prove a Weierstrass Approximation theorem on compact sets for positive polynomials, where the approximation
is done with polynomials in the quadratic module \(\mathcal{Q}(g) \). We obtain an equivalent result with our polynomial echelon functions in Theorem 4.1, with bounds on the degree of \(q \).

Convergence of moments sequences to measures in Lasserre’s hierarchies has been studied in [Sch05] for Polynomial Optimization Problems and more generally in [Tac21] for Generalized Moment Problems (GMP). The convergence rates of moment hierarchies in GMP over the simplex and the sphere have been studied in [KDK21]. To our best knowledge there is no analysis of the convergence rate for general compact basic semialgebraic sets in the literature. In Theorem 1.8 we prove such a rate of convergence for the moment sequences used in Polynomial Optimization, deducing this speed from Theorem 1.7.

2 The ingredients of the proof

To prove the polynomial bound for the Effective Putinar’s Positivstellensatz (Theorem 1.7), we proceed as follows, refining the approach in [Sch05], [NS07], [Ave13]:

- We perturb \(f \) into a polynomial \(p \) such that \(p \) is positive on the box \([-1, 1]^n\) and \(f - p \) is in the quadratic module \(\mathcal{Q}(g) \);
- We compute a SOS representation of \(p \) in \(\mathcal{Q}(1 - \|X\|^2) \) to deduce the representation of \(f \in \mathcal{Q}(g) \).

Notice that if \(f > 0 \) on \([-1, 1]^n\) then we can directly apply Theorem 3.7 and Lemma 3.8 to conclude the proof. Therefore in the following we always assume that there exists \(x \in [-1, 1]^n \setminus S \) such that \(f(x) \leq 0 \).

To compute the perturbed polynomial \(p \), we use a univariate echelon-like polynomial, which shape and degree depends on the distance between a level-set of \(f \) and \(S \) and on a lower bound of the algebraic distance to \(S \). We detail these ingredients hereafter.

2.1 Distance between level sets of \(f \) and \(S \)

We define the complementary in \([-1, 1]^n\) of a neighbourhood of \(S \), where \(f \) is strictly smaller than \(f^* \):

\[
A = \{ x \in [-1, 1]^n \mid f(x) \leq \frac{3f^*}{4} \}
\]

that is a sublevel set of the function \(f \). Notice that the level set \(f(x) = \frac{3f^*}{4} \) is in the boundary of \(A \) (when \(A \) is nonempty).

We are going to bound the distance from \(A \) to \(S \) in terms of \(\epsilon(f) \). We recall first a Markov inequality theorem, bounding the norm of the gradient of a polynomial function on a convex body, in the special case of the box \([-1, 1]^n\).

Theorem 2.1 ([KR99] th. 3]). Let \(p \in \mathbb{R}[X]_d \) be a polynomial of degree \(\leq d \). Then:

\[
\|\|\nabla p\|\|_2 \leq (2d^2 - d)\|p\|.
\]

Recall that the Lipschitz constant \(L_f \) of \(f \) is the smallest real number such that \(|f(x) - f(y)| \leq L_f \|x - y\|_2 \) for all \(x,y \) in the domain of \(f \). Using Theorem 2.1 to bound the Lipschitz constant of \(f \) on \([-1, 1]^n\), we can lower bound the distance between \(A \) and \(S \).

Proposition 2.2. Let \(A \) and \(S \) be as above. Then \(d_{1H}(A, S) \geq \frac{\epsilon(f)}{4d^2} \).

Proof. We first relate the Lipschitz constant \(L_f \) of \(f \) on \([-1, 1]^n\) with \(\|f\| \).

From the mean value theorem we deduce that for all \(x,y \in [-1, 1]^n \) we have

\[
|f(x) - f(y)| \leq \|\|\nabla f\|\|_2 \|x - y\|_2.
\]

Then from the definition of Lipschitz constant and Theorem 2.1 we have

\[
L_f \leq \|\|\nabla f\|\|_2 \leq (2d^2 - d)\|f\| \\
\Rightarrow \quad \frac{1}{L_f} \geq \frac{1}{(2d^2 - d)\|f\|}.
\]
Now let \(x \in A \) and \(y \in S \). By definition of \(L_f \) we have \(|f(x) - f(y)| \leq L_f \|x - y\|_2 \). Since \(x \in A \) we have \(f(x) \leq \frac{3L_f}{4} \); since \(y \in S \) we have \(f(y) \geq f^* \); thus \(|f(x) - f(y)| \geq \frac{f^*}{4} \) and \(\|x - y\|_2 \geq \frac{f^*}{4L_f} \). Since the inequality hold for all \(x \in A \) and \(y \in S \) we can use Equation (3) to conclude:

\[
d_{H}(A, S) \geq \frac{f^*}{4L_f} \geq \frac{f^*}{4(2d^2 - d)}|f| = \frac{\varepsilon(f)}{4(2d^2 - d)} \geq \frac{\varepsilon(f)}{8d^2}.
\]

\(\square \)

2.2 Bounds on the algebraic distance to \(S \)

The algebraic distance to the set \(S \) is the continuous semialgebraic function defined by

\[
G(x) = |\min[g_1(x), \ldots, g_r(x), 0]|.
\]

Clearly, \(G(x) = 0 \) if and only if \(x \in S \), and \(G(x) > 0 \) if \(x \notin S \). We are going to bound from below the function \(G \) on \(A \), that is find \(\delta \in \mathbb{R}_{>0} \) such that

\[
\forall x \in A, \ G(x) \geq \delta \tag{4}
\]

(such a \(\delta \) exists since \(A \) is compact and \(G(x) > 0 \) on \(A \)).

To express such a \(\delta \) in terms of \(\varepsilon(f) \), we use Łojasiewicz inequalities, following and expanding the approach in [NS07, lem. 13].

Theorem 2.3 ([BCR98], cor. 2.6.7]). Let \(B \) be a closed and bounded semialgebraic set and let \(f, g \) be two continuous semialgebraic functions from \(B \) to \(\mathbb{R} \) such that \(f^{-1}(0) \subset g^{-1}(0) \). Then there exists \(c, L \in \mathbb{R}_{>0} \) such that \(\forall x \in B \):

\[
|g(x)|^L \leq c|f(x)|.
\]

We use now Theorem 2.3 and Proposition 2.2 to bound \(\delta \) in terms of \(\varepsilon(f) \).

Definition 2.4. Let \(c, L \) be the constant and exponent of Łojasiewicz inequalities (Theorem 2.3) for the functions \(G : x \in [-1, 1]^n \mapsto G(x) = |\min[g_1, \ldots, g_r(x), 0]| \) and \(D : x \in [-1, 1]^n \mapsto D(x) = d(x, S) \), that is, for \(x \in [-1, 1]^n \)

\[
D(x)^L \leq c G(x).
\]

These constant and exponent are well-defined by Theorem 2.3 since the functions \(D \) and \(G \) are continuous semialgebraic and \(S = D^{-1}(0) = G^{-1}(0) \).

Lemma 2.5. We can choose \(\delta = \frac{1}{c} \left(\frac{\varepsilon(f)}{8d^2} \right)^L \) in Equation (4), where \(c, L \) are defined in Definition 2.4.

Proof. By Proposition 2.2, we have \(D(x) = d(x, S) \geq \frac{\varepsilon(f)}{8d^2} \) for \(x \in A \). Then from Equation (5), we deduce that for \(x \in A \),

\[
\left(\frac{\varepsilon(f)}{8d^2} \right)^L \leq c G(x) \Rightarrow G(x) \geq \frac{1}{c} \left(\frac{\varepsilon(f)}{8d^2} \right)^L.
\]

Therefore, we can choose \(\delta = \frac{1}{c} \left(\frac{\varepsilon(f)}{8d^2} \right)^L \). \(\square \)

The exponent \(L \) in Definition 2.4 will play an important role in the bounds of the Effective Putinar’s Positivstellensatz. We show now that, under generic assumptions, we can choose \(L = 1 \), as suggested in the following example.

Example 2.6. Consider the univariate polynomial \(g(X) = \varepsilon^2 - X^2 \) and let \(S = S(g) = [-\varepsilon, \varepsilon] \subset [-1, 1] \). Now let \(x \in [-1, 1] \) and \(D, G \) be as in Definition 2.4. It is easy to show that:

\[
D(x) \leq \frac{1}{2\varepsilon} G(x).
\]
Indeed, if for example \(\varepsilon \leq x \leq 1 \), we have \(D(x) = x - \varepsilon \) and \(G(x) = x^2 - \varepsilon^2 = (x + \varepsilon)(x - \varepsilon) \) and \(D(x) = \frac{1}{x^2} G(x) \leq \frac{1}{x} G(x) \). This shows that we can choose \(L = 1 \) for all \(\varepsilon > 0 \).

On the other hand if \(\varepsilon = 0 \), i.e. \(g(X) = -X^2 \) and \(S = \{0\} \), we have a singular equation. A simple computation shows that it is not possible to choose \(L = 1 \) in this case. The minimum \(L \) satisfying the inequality is \(L = 2 \).

We introduce a regularity condition needed to prove \(L = 1 \), generalizing Example 2.6. This is a standard condition in optimization (see [Ber99, sec. 3.3.1]), which implies the so-called Karush–Kuhn–Tucker (KKT) conditions [Ber99, prop. 3.3.1].

Definition 2.7. Let \(x \in S(g) \). The active constraints at \(x \) are the constraints \(g_0, \ldots, g_m \) such that \(g_i(x) = 0 \). We say that the Constraint Qualification Condition (CQC) hold at \(x \) if for the active constraints \(g_i, \ldots, g_i \) at \(x \), the gradients \(\nabla g_i(x), \ldots, \nabla g_m(x) \) are linearly independent.

Lemma 2.8. Let \(y \in \mathbb{R}^n \setminus S(g) \), and let \(z \) be a point in \(S = S(g) \) minimizing the distance of \(y \) to \(S \), that is \(d(y,S) = \| y - z \|_2 \). If \(\{g_i \mid i \in I\} \) are the active constraints at \(z \) and the CQC hold, then there exist \(\lambda_i \in \mathbb{R}_{\geq 0} \) such that:

\[
y - z = \sum_{i \in I} \lambda_i \nabla(-g_i)(z).
\]

Proof. Fix \(y \in \mathbb{R}^n \). Notice that \(y - x = -\frac{\nabla\|x-y\|^2}{2} \), where the gradient is take w.r.t. \(x \). Moreover \(z \in S \) such that \(d(y,S) = \| y - z \|_2 \) is a minimizer of the following Polynomial Optimization Problem:

\[
\min_{x} \frac{\|y - x\|^2}{2} : g_i(x) \geq 0 \forall i \in \{1, \ldots, r\}.
\]

Since the CQC hold at \(z \), we deduce from [Ber99, prop. 3.3.1] that the KKT conditions hold. In particular:

\[
\frac{\nabla\|y - z\|^2}{2} = \sum_{i \in I} \lambda_i \nabla g_i(z)
\]

For some \(\lambda_i \in \mathbb{R}_{\geq 0} \). Therefore \(y - z = \frac{\nabla d(y,z)^2}{2} = \sum_{i \in I} \lambda_i \nabla(-g_i)(z) \). \(\square \)

We first fix a point \(z \in S \) and consider the points \(y \) such that the closest point to \(y \) on \(S \) is \(z \). We prove that \(L = 1 \) in the sector of these \(y \) where all the active constraints at \(z \) are strictly negative at \(y \).

Lemma 2.9. Let \(D, G \) as in Definition 2.3 and let \(z \in S(g) \) with active constraints \(g_i : i \in I \). Then there exists \(\varepsilon' = \varepsilon'(z) > 0 \) and constant \(\varepsilon' = c'(z) > 0 \) such that for all \(y \) with:

- \(D(y) = d(y,S) = \| y - z \|_2 \);
- \(D(y) \leq \varepsilon' \);
- \(g_i(y) < 0 \) for all \(i \in I \),

we have \(D(y) \leq c'G(y) \).

Proof. Let \(z \in S \) and \(y \in \mathbb{R}^n \) be such that \(D(y) = \| y - z \|_2 \). Consider the Taylor expansion of \(g_i \) at \(z \) for the active constraints \(\{g_i : i \in I\} \); there exists \(h_i(y) = (h_i,1(y), \ldots, h_i,n(y)) \), where \(\lim_{y \rightarrow z} h_i,j(y) = 0 \), such that:

\[
g_i(y) = \nabla g_i(z) \cdot (y - z) + \sum_{j=1}^{n} h_i,j(y)(y_j - z_j) = \nabla g_i(z) \cdot (y - z) + h_i(y) \cdot (y - z).
\]
Since the CQC is satisfied at \(z \) we can apply Lemma 2.8 there exists \(\lambda = (\lambda_i: i \in I) \) with \(y - z = \sum_{i \in I} \lambda_i \nabla (-g_i)(z) \). Substituting we obtain \(\forall i \in I \): \[
g_i(y) = -\sum_{j \in I} \lambda_j \langle \nabla g_i(z) \cdot \nabla g_j(z) \rangle + h_i(y) \cdot (y - z).
\]

We denote:

- \(g_i(y) = (g_i(y): i \in I) \);
- \(A_I(z) = (\nabla g_i(z) \cdot \nabla g_j(z))_{i,j} \) the Gram matrix of \(\nabla g_i(z) \);
- \(h(y) = (h_{i,j}(y))_{i,j} \).

With this notation we get:
\[
g_i(y) = -A_I(z) \lambda + h(y)(y - z).
\]

Since CQC hold at \(z \) the \(\nabla g_i(z) \) are linearly independent and \(A_I(z) \) is invertible. Thus we can solve for \(\lambda \):
\[
\lambda = -A_I(z)^{-1} g_i(y) + A_I(z)^{-1} h(y)(y - z).
\] (7)

Recall from Lemma 2.8 that we have:
\[
y - z = \sum_{i \in I} \lambda_i \nabla (-g_i)(z) = -J_I(z) \lambda,
\]
where \(J_I(z) = \text{Jac}(g_i)(z) = (\nabla g_i(z))_{i \in I} \) is the Jacobian matrix. Substituting \(\lambda \) from Equation (7) we obtain:
\[
y - z = J_I(z) A_I(z)^{-1} g_i(y) - J_I(z) A_I(z)^{-1} h(y)(y - z).
\]

Taking the norm we deduce that
\[
\left(1 - \|J_I(z)\|_2 \right) \|A_I(z)\|_2^{-1} \|h(y)\|_2 \|y - z\|_2 \leq \|J_I(z)\|_2 \|A_I(z)\|_2^{-1} \|g_i(y)\|_2
\] (8)

where \(\|\cdot\|_2 \) denotes the 2-norm (resp. operator norm) of vectors (resp. matrices). Notice that:

- \(\|g(y)\|_2 = \sqrt{\sum_{i \in I} g_i(y)^2} \leq \sqrt{|I|} \max_{i \in I} \|g_i(y)\| \leq \sqrt{r} G(y) \), since
 \[
 G(y) = \left| \min \{0, g_i(y): i \in \{1, \ldots, r\} \} \right| = \max \{0, \|g_i(y)\|: g_i(y) < 0 \}
 \]
 and \(g_i(y) < 0 \) for all \(i \in I \) by hypothesis;

- \(1 - \|J_I(z)\|_2 \|A_I(z)\|_2^{-1} \|h(y)\|_2 \|y - z\|_2 \geq \frac{1}{2} \) if \(y \) is close enough to \(S \). Indeed \(h_{i,j} \to 0 \) when \(y \to z \), i.e. when \(\|y - z\|_2 = d(y, S) = D(y) \) is going to zero. Thus we can choose \(\epsilon' \) such that \(D(y) \leq \epsilon' \) implies \(1 - \|J_I(z)\|_2 \|A_I(z)\|_2^{-1} \|h(y)\|_2 \|y - z\|_2 \geq \frac{1}{2} \).

Then we deduce from Equation (8):
\[
D(y) = \|y - z\|_2 \leq 2 \sqrt{r} \|J_I(z)\|_2 \|A_I(z)\|_2^{-1} G(y)
\]
when \(D(y) \leq \epsilon' \), that proves the lemma with \(\epsilon'' = 2 \sqrt{r} \|J_I(z)\|_2 \|A_I(z)\|_2^{-1} \).

We generalize the previous lemma, removing the assumption that all the active constraints are negative at \(z \).

Lemma 2.10. Let \(D, G \) as in Definition 2.4 and assume that the CQC hold at \(z \in \mathcal{S} = S(g) \). Then there exists \(\epsilon'' = \epsilon''(z) > 0 \) and constant \(c' = c'(z) > 0 \) such that for all \(y \) with:

- \(D(y) = d(y, S) = \|y - z\|_2 \)

We get:
\[
D(y) = \|y - z\|_2 \leq 2 \sqrt{r} \|J_I(z)\|_2 \|A_I(z)\|_2^{-1} G(y)
\]
when \(D(y) \leq \epsilon' \), that proves the lemma with \(\epsilon'' = 2 \sqrt{r} \|J_I(z)\|_2 \|A_I(z)\|_2^{-1} \).

We generalize the previous lemma, removing the assumption that all the active constraints are negative at \(z \).
with the same notation as in Equation (6). This implies that there exists \(\delta > 0 \) such that

\[
\begin{align*}
&\text{we have } D(y) \leq \varepsilon'' G(y).
\end{align*}
\]

Proof. Let \(y \) and \(z \) be as in the hypothesis and let \(g_i : i \in I \) be the active constraints at \(z \). Notice that if \(y = z \in S \) then \(D(y) = G(y) = 0 \) and there is nothing to prove. So we assume that \(y \notin S \): there exists \(i \in \{1, \ldots, r\} \) s.t. \(g_i(y) < 0 \). Moreover, from Lemma 2.9 we only need to consider the case where there exists \(i \in I \) such that \(g_i(y) \geq 0 \).

So let \(I_+ = I_+(y) = \{i \in I : g_i(x) \geq 0\} \) and \(I_- = I_-(y) = \{i \in I : g_i(x) < 0\} \). Notice that \(I_- \) and \(I_+ \) depend on \(y \), but to obtain a result independent from \(I_- \) and \(I_+ \) it is enough to take the minimum \(\varepsilon'' \) and the maximum \(\varepsilon'' \) as \(I_- \) and \(I_+ \) vary.

If we consider the Taylor expansion of \(g_i \) at \(z \), we obtain:

\[
\begin{align*}
&i \in I_- \Rightarrow 0 < g_i(y) = \nabla g_i(z) \cdot (y - z) + h_i(y) \cdot (y - z),
\end{align*}
\]

with the same notation as in Equation (6). This implies that there exists \(\delta > 0 \) such that \(\nabla (-g_i)(z) \cdot (y - z) \geq \delta \), for all \(i \in I_- \) when \(y \) is close enough to \(z \).

We want to reduce to the case of only negative inequalities. We define:

- \(G_-(y) = \min\{0, g_i(y) : i \in I_-\} \);
- \(S_- = S(g_i : i \in I_-) \);
- \(D_-(y) = d(y, S_-) \);
- \(T_z S_- \) the (affine) tangent space of \(S_- \) at \(z \).

Notice that, since the gradients are linearly independent, \(T_z S_- \) is the affine subspace passing through \(z \) and orthogonal to \(\nabla (-g_i)(z) \) for \(i \in I_- \). In particular, since \(\nabla (-g_i)(z) \cdot (y - z) \geq \delta \), \(y - z \in T_z S_- \) the angle between \(y - z \) and \(T_z S_- \) is lower bounded by a strictly positive angle \(\phi > 0 \) for all \(y \) close enough to \(z \).

For a geometric intuition of the following discussion, see Figure 1. Let \(z' \) be the projection of \(y \) on \(T_z S_- \). By definition of \(\phi \) we have \(\|y - z\|_\varepsilon \leq \frac{\|y - z\|}{\sin \phi} \). Now let \(z'' \) be the projection of \(y \) on \(S_- \). Since \(y \) is close to \(z \), \(z'' \) is close to \(z' \), i.e. the projection of \(y \) on \(S_- \) is close to the projection of \(y \) on \(T_z S_- \). Thus there exists a constant \(c \) such that \(\|y - z\|_\varepsilon \leq c \frac{\|y - z\|}{\sin \phi} \). More precisely, let \(z''' \) be the projection of \(z'' \) on \(T_z S_- \). Thus \(z'' - z = (z'' - z') + (z' - z), \) and since we project \(z'' \) on \(T_z S_- \) we have:

![Figure 1: Proof of Lemma 2.10](image)
• $z'' - z''' = \sum_{i \in I_\epsilon} \gamma_i \nabla g_i(z) = J_\epsilon(z) \gamma$ for some $\gamma = (\gamma_i : i \in I_\epsilon)$;

• $z'' - z$ is orthogonal to $\nabla g_i(z)$ for $i \in I_\epsilon$.

By definition of z' we have $\|y - z\|_2 \leq \|y - z''\|_2 \leq \|y - z''\|_2 + \|z'' - z'''\|_2$. We show now that $\|z'' - z'''\|_2$ is small compared to $\|y - z\|_2$. Expanding at z for $i \in I_\epsilon$ we obtain:

$$0 = g_i(z'') = \nabla g_i(z) \cdot (z'' - z) + h_i(z'') \cdot (z'' - z) = \nabla g_i(z) \cdot (z'' - z) + h_i(z'') \cdot (z'' - z).$$

Proceeding as in Equation (7), we have $y = A_I(z)^{-1} h(z')(z'' - z)$. Now, since z'' is the projection of y on S_- and $z \in S_-$ we have $\|z'' - z\|_2 \leq 2\|y - z\|_2$. Thus we deduce:

$$\|y - z\|_2 \leq \|y - z''\|_2 + \|z'' - z'''\|_2 \leq \|y - z''\|_2 + \|J_\epsilon(z)\|_2 \|y\|_2 \leq \|y - z''\|_2 + 2\|J_\epsilon(z)\|_2 \|A_I(z)^{-1} h(z'')(z'' - z)\|_2 \leq \|y - z''\|_2 + 2\|J_\epsilon(z)\|_2 \|A_I(z)^{-1}\|_2 \|h(z'')\|_2 \|y - z\|_2.$$

Therefore

$$\|y - z\|_2 \leq \frac{\|y - z''\|_2}{\sin \phi} \leq \frac{\|y - z''\|_2}{\sin \phi} + \frac{2\|J_\epsilon(z)\|_2 \|A_I(z)^{-1}\|_2 \|h(z'')\|_2 \|y - z\|_2}{\sin \phi},$$

and finally

$$\left(1 - \frac{2\|J_\epsilon(z)\|_2 \|A_I(z)^{-1}\|_2 \|h(z'')\|_2}{\sin \phi}\right) \|y - z\|_2 \leq \frac{\|y - z''\|_2}{\sin \phi}.$$

As $z'' \rightarrow z$ if $y \rightarrow z$, $\|h(z'')\|_2 \rightarrow 0$ for $y \rightarrow z$. Then there exists $\epsilon'' > 0$ such that $D(y) \leq \epsilon''$ implies $1 - \frac{2\|J_\epsilon(z)\|_2 \|A_I(z)^{-1}\|_2 \|h(z'')\|_2}{\sin \phi} \geq \frac{1}{2}$ and thus

$$\|y - z\|_2 \leq \frac{\|y - z''\|_2}{\sin \phi}. \quad (9)$$

In other words, we just proven in Equation (9) that

$$D(y) \leq \epsilon'' \Rightarrow D(y) \leq \frac{2}{\sin \phi} D_\epsilon(y).$$

Since D_ϵ is the distance function to S_ϵ, that is defined by inequalities negative at y, we can apply Lemma 2.9 there exists c' such that if ϵ'' is small enough, $D_\epsilon(y) \leq \epsilon''$ implies $D_\epsilon(y) \leq c' G_\epsilon(y)$ (notice that this is possible because $D(y) \rightarrow 0$ implies $D_\epsilon(y) \rightarrow 0$). Moreover observe that $G(y) = G_\epsilon(y)$ since only the g_i that are negative at y contribute to $G(y)$. Then, if we set $\epsilon'' = \frac{2c'}{\sin \phi}$ we can conclude:

$$D(y) \leq \epsilon'' \Rightarrow D(y) \leq \epsilon'' G(y).$$

\hfill \Box

We can now show that if the CQC hold at every point of the semialgebraic set the Łojasiewicz exponent is equal to 1.

Theorem 2.11. Let D, G as in Definition 2.4 and assume that the CQC hold at every point of $S = S(g) \subset [-1, 1]^n$. Then there exists a constant $c \in \mathbb{R}_{> 0}$ such that:

$$D(y) \leq c G(y)$$

for all $y \in [-1, 1]^n$.

11
Proof. Let \(\varepsilon = \min_{z \in S} \varepsilon''(z) \) and \(\varepsilon' = \max_{z \in S} \varepsilon''(z) \), with \(\varepsilon''(z) \) and \(\varepsilon'(z) \) as in Lemma 2.10. Notice that \(\varepsilon > 0 \) and \(\varepsilon' < \infty \) exist because \(S \) is compact and \(0 < \varepsilon''(z) \), \(\varepsilon''(z) < \infty \) are respectively lower and upper semicontinuous functions of \(z \). Let \(U = \{ y \in [-1,1]^n \mid d(y, S) < \varepsilon \} \subset [-1,1]^n \) (an open set containing \(S \)); by definition of \(\varepsilon \) and \(\varepsilon' \) we have \(D(y) \leq \varepsilon G(y) \) for all \(y \in U \) from Lemma 2.10.

Now consider the compact set \(C = [-1,1]^n \setminus U \) and let \(G^* > 0 \) be the minimum of \(G \) on \(C \). Moreover since \(S \subset [-1,1]^n \) we have \(D(y) \leq 2 \sqrt{n} \) for \(y \in [-1,1]^n \). Then:

\[
D(y) \leq 2 \sqrt{n} = \frac{2 \sqrt{n}}{G^*} G^* \leq \frac{2 \sqrt{n}}{G^*} G(y)
\]

for all \(y \in C \).

Finally taking \(\zeta = \max(\varepsilon', \frac{2 \sqrt{n}}{G^*}) \) we obtain:

\[
D(y) \leq \zeta G(y)
\]

for all \(y \in [-1,1]^n \).

\[\square \]

Remark. In Theorem 2.11 we prove that in regular cases the Lojasiewicz exponent is 1. On the other hand we don’t give a precise estimate for the constant \(\zeta \), even if we can revisit the proof of Lemma 2.9, Lemma 2.10 and Theorem 2.11 to bound it in terms of the following parameters:

- the max norm of the Jacobian of the \(g \): we could bound this parameter bounding the norm of \(g \);
- the min norm of the Gram matrix of the \(\mathbf{V} g \): this measures how close are the gradients to be linearly dependend;
- the minimum of \(G(y) \) on the complementary in \([-1,1]^n \) of a small neighbourhood of \(S \): this measures how close are the \(g \) to have a common zero outside of \(S \);
- the convergence rate to 0 of the Taylor remainder \(h(z) \).

A detailed analysis of these parameters would also give an upper bound for \(\zeta \), but we don’t develop it for the sake of simplicity.

Remark. On the contrary when the problem is not regular the bounds on the exponent \(L \) can be large. We have:

\[
L \leq d(g)(6d(g) - 3)^{t + r - 1}
\]

see [KSS15], sec. 3.1 and [KSS16].

2.3 Construction of a polynomial echelon function

In this section, we describe the polynomial echelon function \(h_{k,m} \) used to perturb \(f \). This echelon polynomial depends on a parameter \(\delta \in \mathbb{R}_{>0} \) controlling the width of the step (and defined in Section 2.2) and on a parameter \(k \in \mathbb{R}_{>0} \) controlling the minimum of the function. To show that the degree and the norm of the perturbation polynomial depend polynomially on \(\varepsilon(f) \) (in Section 3.1), we are going to bound the degree of the echelon polynomials in terms of \(\delta \) and \(k \).

Consider the following function:

\[
H(t) = \begin{cases}
1 & t \in [-1,-\delta] \\
\frac{9(k-1) - 2 (k-1) t^2 - 2 (k-1)}{2d t k} - \frac{27 (k-1) t^3}{2d t k} - \frac{7 k - 9}{2} & t \in [-\delta, -\delta + \frac{\delta}{3}] \\
\frac{9 (k-1) t^3 + 27 (k-1) t^2 + 9 (k-1) t + k + 1}{2d t k} - \frac{27 k}{2d t k} & t \in [-\delta + \frac{\delta}{3}, -\delta + \frac{2\delta}{3}] \\
\frac{1}{t} & t \in \left[0, \frac{2}{3}\right] \\
\frac{9 (k-1) t^3 + \frac{1}{3}}{2d t k} & t \in \left[-\delta + \frac{2\delta}{3}, 0\right] \\
\frac{1}{t} & t \in [0,1]
\end{cases}
\]

(10)
The piecewise polynomial function $H(t)$ is a C^2 cubic spline on $[-1,1]$. Indeed an explicit computation shows that the functions $H, H^{(1)}, H^{(2)}$ are absolutely continuous, and moreover the piecewise constant function $H^{(3)}$ is of total variation $V = \frac{216(k-1)}{\delta^3 k}$. Finally notice that H is non-increasing on $[-1,1]$.

We approximate this function by a polynomial $p \in \mathbb{R}[T]$, using Chebyshev approximation (see Figure 2):

Theorem 2.12 (Chebyshev approximation on $[-1,1]$ [Tre13]). For an integer u, let $h : [-1,1] \to \mathbb{R}$ be a function such that its derivatives through $h^{(u-1)}$ be absolutely continuous on $[-1,1]$ and its u-th derivative $f^{(u)}$ is of bounded variation V. Then its Chebyshev approximation p_m of degree m satisfies:

$$\|h - p_m\| \leq \frac{4V}{\pi u (m-u)^4}.$$

Proposition 2.13. There exist a univariate polynomial $h_{k,m} \in \mathbb{R}[T]$ such that:

- $\deg h_{k,m} = m$ with $m = \left\lceil \frac{6}{\delta} \sqrt{\frac{4(k-1)}{3\pi}} + 3 \right\rceil$;
- for $t \in [-1,-\delta]$ we have $1 - \frac{1}{k} \leq h_{k,m}(t) \leq 1 + \frac{1}{k}$;
- for $t \in [0,1]$ we have $h_{k,m}(t) \leq \frac{2}{k}$;
- for $t \in [-1,1]$ we have $0 \leq h_{k,m}(t) \leq 1 + \frac{1}{k}$.

Proof. We construct a degree m Chebyshev approximation $h_{k,m} \in \mathbb{R}[T]$ of H such that

$$\|H - h_{k,m}\| \leq \frac{1}{k}, \quad (11)$$

so that the last three points of the proposition are satisfied. As $H, H^{(1)}$ and $H^{(2)}$ are absolutely continuous and $H^{(3)}$ has total variation $V = \frac{216(k-1)}{\delta^3 k}$, by Theorem 2.12, it suffices to take m such

$$m \geq \sqrt{\frac{4V}{3\pi (m-3)^4}} + \frac{6}{\delta} \sqrt{\frac{4(k-1)}{3\pi}} + 3,$$

which proves the first point.

The other points follow from Equation (11) and the definition of H in (10). \qed

3 Effective Putinar’s Positivstellensatz

This section is devoted to the proof of Theorem 1.7.

3.1 From S to $[-1,1]^n$

Let $h_{k,m}$ be as in Proposition 2.13. We want to show that, for a suitable choice of k, m and $s \in \mathbb{R}_{>0}$, the polynomial:

$$p = f - s \sum_{i=1}^r h_{k,m}(g_i)g_i \quad (12)$$

is such that $p \geq \frac{f}{2}$ on $[-1,1]^n$.

Remark. Our construction of the perturbed polynomial p is similar to the one in [Sch05], [NS07], or [Ave13] where the polynomial h is a univariate (sum of) squares. That choice is simpler, but it results in worst bounds for the degree and the norm of $s \sum_{i=1}^{r} h_{k,m}(g_i)g_i$, than the one we obtain using the polynomial echelon function $h_{k,m}$.

These univariate SoS coefficients have also been used in [KS15], to prove that one can uniformly approximate non-negative polynomials on compact sets, using the proper subcone of the quadratic module $Q(g)$ where the SoS coefficient of g_i is of the form $\sum_{j}(h_j(g_i))^2$, for h_j univariate. They derive a Putinar’s Positivstellensatz and apply it to Polynomial Optimization problems. We describe the equivalent of the uniform approximation result in Theorem 4.1, with our coefficients $h_{k,m} \in Q(1 + T, 1 - T)$.

Proposition 3.1. Assume that the normalisation assumptions (2) are satisfied. If

$$s > \frac{6\|f\|}{\delta},$$

$$k > \frac{2r - 2}{\delta} + 1;$$

$$k > \frac{4s}{f^*};$$

then $p = f - s \sum_{i=1}^{r} h_{k,m}(g_i)g_i \geq \frac{f^*}{2}$ on $[-1, 1]^n$.

Proof. Let $x \in A$ so that $G(x) \geq \delta$, i.e. $\min[g_1(x), \ldots, g_r(x), 0] \leq -\delta$ (see Section 2), and WLOG assume $g_1(x) \leq -\delta$. Notice that from Proposition 2.13 we have $h_{k,m}(g_1(x)) \geq 1 - \frac{1}{k}$ and, if $g_i(x) \geq 0$, $h_{k,m}(g_1(x)) \leq \frac{2}{k}$. Moreover recall that $\|g_i\| \leq \frac{1}{2}$ from the normalisation assumptions (2). Then:

$$p(x) = f(x) - s \sum_{i=1}^{r} h_{k,m}(g_i(x))g_i(x)$$

$$\geq f(x) + s\delta(1 - \frac{1}{k}) - s \sum_{i=2}^{r} h_{k,m}(g_i(x))g_i(x)$$

$$\geq f(x) + s\delta(1 - \frac{1}{k}) - s \frac{r-1}{k} = f(x) + s\delta \frac{2}{2}(1 - \frac{1}{k}) + s\delta(1 - \frac{1}{k} - \frac{r-1}{k}).$$

From Equation (13) and Equation (14), we have respectively $f(x) + s\delta \frac{2}{2}(1 - \frac{1}{k}) > \frac{\|f\|}{2}$ and $\delta(1 - \frac{1}{k} - \frac{r-1}{k}) > 0$, so that $p(x) > \frac{f^*}{2}$ for $x \in A$. 14
By Equation (15), \(\frac{3f^*}{4} - \frac{sr}{k} > \frac{f^*}{2} \). By the normalization assumptions (2) and as \(h_{k,m} \) is upper bounded by \(\frac{2}{k} \) on \([0,1]\) (see Proposition 2.13), we therefore deduce that for \(x \in [-1,1] \setminus A \)

\[
p(x) = f(x) - s \sum_{i=1}^{r} h_{k,m}(g_i(x))g_i(x) \geq \frac{3f^*}{4} - \frac{sr}{k} \frac{2}{k} = \frac{3f^*}{4} - \frac{sr}{k} \frac{2}{k} > \frac{f^*}{2}.
\]

This shows that \(p(x) > \frac{f^*}{2} \) for \(x \in [-1,1] \setminus A = A \cup([-1,1] \setminus A) \). \(\square \)

Proposition 3.2. Let \(p \) be as in (12), with (13), (14), (15) and the normalization assumptions (2) satisfied. Let \(d(g) = \max_i \deg g_i \). Then

\[
\|p\| = O(\|f\|2^{2L}rcd(f)2^L \varepsilon(f)^{-L}),
\]

\[
\deg p = O(2^{4L}r^\frac{1}{2}\varepsilon \frac{L}{4} d(g) d(f) \varepsilon(f)^{-L}),
\]

Proof. Let \(d = d(f) = \deg f \). We start bounding \(m \) in terms of \(\varepsilon(f) \).

We can choose \(m = \left[\frac{2}{\epsilon} \sqrt{\frac{4(k-1)}{3s}} + 3 \right] \) from Proposition 2.13, thus it is enough to bound \(k \) and \(\delta \).

From Lemma 2.5 we can choose \(\delta = \frac{1}{2} \epsilon^\frac{1}{4}(f)L = \epsilon^\frac{1}{4}(f)L \epsilon^{-3kL}d^{-2L} \). From Equation (13) we deduce that:

\[
s = O(\|f\|) = O(\|f\|\|c2^{3L}d2^L \varepsilon(f)^{-L}).
\]

From Equation (14) we deduce that \(k = O(\frac{2}{\epsilon(f)}) \), while from and Equation (15) (together with Equation (13)) we deduce that \(k = O(\frac{1}{\epsilon(f)}) \); the latter has an higher order in terms of \(\varepsilon(f) \), and finally:

\[
k = O(c2^{3L}rd2^L \varepsilon(f)^{-(L+1)}).
\]

Now we plug Equation (19) in \(m = \left[\frac{2}{\epsilon} \sqrt{\frac{4(k-1)}{3s}} + 3 \right] \) and obtain:

\[
m = O(\frac{k^\frac{1}{2}}{\delta}) = O((\epsilon^\frac{1}{4}2d f^\frac{1}{2} \epsilon(f)^{-L})(c2^{3L}d2^L \epsilon(f)^{-L})) = O(c^\frac{1}{4}2^L d^\frac{1}{4} \epsilon(f)^{-L}).
\]

(20)

By the normalization assumptions (2), the properties of \(h_{k,m} \) (Proposition 2.13) and Equation (18) we obtain:

\[
\|p\| \leq \|f\| + s \sum_{i=1}^{r} \|h_{k,m}(g_i)g_i\| \leq \|f\| + s(1 + \frac{1}{k})^\frac{1}{2} \leq \|f\| + sr = O(\|f\| + \|f\|cr2^{3L}d2^L \varepsilon(f)^{-L}) = O(\|f\|c2^{3L}d2^L \varepsilon(f)^{-L}).
\]

Similarly, using Equation (20) we have:

\[
\deg(f - p) \leq \max_i \deg(h_{k,m}(g_i)g_i), i = 1, \ldots, r = O(d(g)m + d(g)) = O(2^{4L}r^\frac{1}{2}\varepsilon \frac{L}{4} d(g) d(f) \varepsilon(f)^{-L}).
\]

where \(d(g) = \max_i \deg g_i \). \(\square \)

We now show that \(f - p = s \sum_{i=1}^{r} h_{k,m}(g_i(x))g_i(x) \) is in \(Q_l(g) \), giving degree bounds for the level \(l \) that is necessary to represent \(f - p \) (see Proposition 3.6).

Theorem 3.3 (Fekete - Lukács [PR00]). Let \(f \in \mathbb{R}[T]_d \) be a univariate polynomial of degree \(d \). If \(f \geq 0 \) on \([-1,1]\) then there exists \(s_0, s_1, s_2 \in \Sigma^* \) such that \(f = s_0 + s_1(1-T) + s_2(1+T) \), where the degree of every addendum is \(\leq d + 1 \). In other words, \(\text{Pos}([-1,1])_d \subset Q_{d+1}(1 - T, 1 + T) \).
Proof. From [PR00] (see also [PS76, part VI, 46–47]) there exists polynomials h_i such that $f = h_0^2 + h_1^2 (1 - T) + h_2^2 (1 + T) + h_3^2 (1 - T^2)$, where the degree of every addendum is $\leq d$. Now notice that $1 - T^2 = \frac{1}{2} ((1 + T)^2 (1 - T) + (1 - T)^2 (1 + T))$ to conclude.

Lemma 3.4. Let $Q(g)$ be a quadratic module such that $1 - \|X\|_2^2 \in Q(g)$, and let f be a polynomial such that $f > 0$ on $[-1, 1]^n$. Then $f \in Q(g)$.

Proof. Since $f > 0$ on $[-1, 1]^n$, then $f \in Q(1 - \|X\|_2^2)$ by Theorem 3.7 and Lemma 3.8. Now by hypothesis $Q(1 - \|X\|_2^2) \subset Q(g)$ and thus $f \in Q(g)$.

Lemma 3.4 shows that we can use a Schmüdgen theorem on $[-1, 1]^n$ (but we could also use the unit ball) to prove that $f \in Q(g)$, without having proven a general Putinar’s Positivstellensatz for $Q(g)$ yet.

Lemma 3.5. Let $h \in \text{Pos}([-1, 1], m)$ be a univariate polynomial of degree m. If the normalization assumptions (2) are satisfied and $d(g) = \max_i \deg g_i$, then $h(g_i)g_i \in Q(d(g)m + l_0 + 2(g))$, where $l_0 = \min \{ k : 1 - g_i \in Q_k(g) \forall i = 1, \ldots, r \}$.

Proof. By Theorem 3.3, $h \in Q_{m+1}(1 + T, 1 - T)$, i.e. $h = s_0 + s_1 (1 + T) + s_2 (1 - T)$, where s_i is a SoS where $\deg s_0, \deg s_1 + 1$ and $\deg s_2 + 1$ are $\leq m + 1$. Let $d_i = \deg g_i$. Notice that:

- $s_0(g_i)g_i \in Q_{d_i(m+1)+d_i}(g) = Q_{d_i(m+2)}(g)$ since s_0 is a SoS of degree $\leq m + 1$;
- $s_1(g_i)(1 + g_i)g_i = s_1(g_i)g_i + s_1(g_i)g_i^2 \in Q_{d_i(m+2)+d_i}(g)$ since s_1 is a SoS of degree $\leq m$;
- $s_2(g_i)(1 - g_i)g_i = s_2(g_i)g_i - g_i^2 \in Q(g)$. Indeed $g_i - g_i^2 = (1 - g_i)g_i + g_i(1 - g_i)$, and since $\|g_i\| \leq \frac{1}{2}$, we have $(1 - g_i) \in Q(g)$ by Lemma 3.4. In particular let l_0 be minimal such that for all i we have $1 - g_i \in Q_{l_0}(g)$. Then $g_i - g_i^2 \in Q_{l_0+2}(g)$ and finally $s_2(g_i)(1 - g_i)g_i = s_2(g_i)g_i - g_i^2 \in Q_{d_i(m+l_0+2)}(g)$.

This shows that $h(g_i)g_i = s_0(g_i)g_i + s_1(g_i)(1 + g_i)g_i + s_2(g_i)(1 - g_i)g_i \in Q_{d(g)m+l_0+2}(g)$, where $d(g) = \max_i d_i.$

We now apply Lemma 3.5 to p to determine the degree of the reprentation of $f - p \in Q(g)$.

Proposition 3.6. Let $s \sum_{i=1}^f h_{k,m}(g_i)g_i = f - p$ be as in (12). If the normalization assumptions (2) are satisfied, then $f - p \in Q_i(g)$ when $l = O(2^{4L} r^8 \ell^4 d(g) d(f) \varepsilon(f) \ell^{m+1})$, where c, L are given by Lemma 2.5.

Proof. It is enough to prove that for all i we have $h_{k,m}(g_i)g_i \in Q_i(g)$. Notice that $h_{k,m}(g_i)g_i \in Q_{d(g)m+l_0+2}(g)$ for all i, see Lemma 3.5. From Equation (20) we can choose $m = O(c^2 r^4 \varepsilon^{-\ell^{m+1}})$ and thus if $l = O(2^{4L} r^8 \ell^4 d(g) d(f) \varepsilon(f) \ell^{-m+1})$ we have $s \sum_{i=1}^f h_{k,m}(g_i)g_i = f - p \in Q_i(g)$.

3.2 The Polynomial Effective Positivstellensatz

We will use an effective version of Schmudgen’s Positivstellensatz for the box $[-1, 1]^n$.

Theorem 3.7 ([LS21]). Let $f \in \mathbb{R}[X]$, $\deg f = d$ and $f > 0$ on $[-1, 1]^n$. Let $f_{\min} = \min_{x \in [-1, 1]^n} f(x)$ and $f_{\max} = \max_{x \in [-1, 1]^n} f(x)$. Then there exists a constant $C(n, d)$ (depending only on n and d) such that $f \in O_{n, d}(1 + X)$, where:

$$r \geq \max \left\{ \pi d \sqrt{2n}, \sqrt{\frac{C(n, d)(f_{\max} - f_{\min})}{f_{\min}}} \right\}.$$

Moreover the constant $C(n, d)$ is a polynomial in d for fixed n:

$$C(n, d) \leq 2\pi^2 d^2 (d + 1)^n n^3 = O(d^{n^3} n^3)$$
Our assumption is that $\mathcal{Q}(1 - ||X||^2) \subset \mathcal{Q}(g)$, while Theorem 3.7 involves $O(1 \pm X_i : i \in \{1, \ldots, n\})$. We show that we can move from the latter to the former with a constant degree shift in Lemma 3.8.

Lemma 3.8. The preordering associated with the box $[-1, 1]^n$ is included in the quadratic module of the unit ball. In particular $O_d(1 \pm X_i : i \in \{1, \ldots, n\}) \subset Q_{d+1}(1 - ||X||^2)$.

Proof. Notice that:

$$1 \pm X_i = \frac{1}{2}((1 - X_i^2) + (1 \pm X_i)^2)) = \frac{1}{2}((1 - ||X||^2) + \sum_{j \neq i} X_j^2 + (1 \pm X_i)^2)).$$

This implies that $Q_d(1 \pm X_i : i \in \{1, \ldots, n\}) \subset Q_{d+1}(1 - ||X||^2)$. Since $Q(1 - ||X||^2)$ is a preordering (i.e. it is closed under multiplication) we also have $O_d(1 \pm X_i : i \in \{1, \ldots, n\}) \subset Q_{d+1}(1 - ||X||^2). \square$

Lemma 3.8 implies that we have a Putinar-like representation of polynomials positive on the box as elements of the quadratic module of the ball.

We are now ready to prove the main theorem.

Proof of Theorem 3.7 Let $p = f - s \sum_{i=1}^t h_{k,m}(g)\xi_i$ be as in Equation (12), with s, k, m satisfying Equation (13), Equation (14), Equation (15) and $h_{k,m}$ as in Proposition 2.13. In particular:

- $p \geq f - t$ on $[-1,1]^n$ from Proposition 3.1;
- $||p|| = O(2^3 r \epsilon d(f)^2 ||f|| \epsilon(f)^{-2})$ from Equation (16);
- $\deg p = O(2^4 r^\frac{1}{2} \epsilon^\frac{3}{2} d(g) d(f)^\frac{1}{4} \epsilon(f)^{-\frac{12}{11} r})$ from Equation (17).

We apply Theorem 3.7 to p: $p \in O_{nl_0}(1 \pm X_i : i \in \{1, \ldots, n\})$, if $l_0 \geq \frac{\sqrt{C(n, deg p)(p_{\max} - p_{\min})}}{p_{\min}}$. Recall also from Theorem 3.7 that $C(n, m) = O(n^3 m^{n+2})$. We now deduce the asymptotic order of l_0:

$$\sqrt{C(n, deg p)(p_{\max} - p_{\min})} = O(\sqrt{n^3 (\deg p)^{n+2} (\frac{||p||}{f^*} + 1)})$$

$$= O\left(\sqrt{n^3 (2^4 le^{\frac{1}{2}} d(g) d(f)^{\frac{1}{4}} \epsilon(f)^{-\frac{12}{11} r})^n + 2^3 ||p|| \epsilon(f)^{2L} \epsilon(f)^{-L} f^*}\right)$$

$$= O\left(n^3 2^{3(n+1)} r^{\frac{1}{2}} e^{\frac{4n+11}{2}} d(g)^{n+2} d(f) \left(\frac{2(n+1) r}{\epsilon(f)} - \frac{4 + 11 r + 11 L + 5}{n}\right) \right)$$

so we can choose $l_0 = O(n^3 2^{3(n+1)} r^{\frac{1}{2}} e^{\frac{4n+11}{2}} d(g)^{n+2} d(f) \left(\frac{2(n+1) r}{\epsilon(f)} - \frac{4 + 11 r + 11 L + 5}{n}\right))$ and $p \in O_{nl_0}(1 \pm X_i : i \in \{1, \ldots, n\})$. Now, from Lemma 3.8 we have $O_{nl_0}(1 \pm X_i : i \in \{1, \ldots, n\}) \subset \mathcal{Q}_{nl_0 + n}(1 - ||X||^2)$. Moreover from Equation (2) we have that $1 - ||X||^2 \in \mathcal{Q}(g)$. In particular if $1 - ||X||^2 \in \mathcal{Q}(g)$ and thus $\mathcal{Q}_{nl_0 + n}(1 - ||X||^2) \subset \mathcal{Q}_{nl_0 + n + l_0}(g)$, i.e. choosing $l = n O(l_0) = O(n^3 2^{3(n+1)} r^{\frac{1}{2}} e^{\frac{4n+11}{2}} d(g)^{n+2} d(f) \left(\frac{2(n+1) r}{\epsilon(f)} - \frac{4 + 11 r + 11 L + 5}{n}\right))$ we have $p \in \mathcal{Q}(g)$. Finally notice that $f = (f - p) + p$ and

- $p \in \mathcal{Q}(g)$ from the discussion above;
- $f - p \in \mathcal{Q}(g)$ from Proposition 3.6, since the degree of the truncated quadratic module in Proposition 3.6 is smaller than l.

Then $f \in \mathcal{Q}(g)$ with

$$l = O(n^3 2^{3(n+1)} r^{\frac{1}{2}} e^{\frac{4n+11}{2}} d(g)^{n+2} d(f) \left(\frac{2(n+1) r}{\epsilon(f)} - \frac{4 + 11 r + 11 L + 5}{n}\right)).$$

(21)
We simplify the exponents for readability. Recall that $L \geq 1$ and $c \geq 1$, and assume $n \geq 2$. Under these assumptions the inequalities $(4n + 11)L \leq 10nL$, $n + 5 \leq 6n$, $4n + 11 \leq 10n$, $n + 2 \leq 2n$ and $(4L + 1)n + 11L + 5 \leq 14nL$ hold. Therefore we deduce that $f \in Q_l(g)$ if

$$
l \geq O(n^3 2^{5nL} r^n c^{2n} d(g)^n d(f)^{3.5nL} \epsilon(f)^{-2.5nL}),$$

where $\gamma(n, g) = O(n^3 2^{5nL} r^n c^{2n} d(g)^n) \geq 1$. \hfill \Box

Remark. From Equation (21), we have $l = O(n^3 2^{-\frac{4n+11}{2}} r^n c^{-\frac{4n+11}{2}} d(g)^n d(f)^{\frac{4n+11}{2}} \epsilon(f)^{-\frac{4n+11}{2}+3})$, where ϵ, L are defined in Definition 2.4. The exponents in Theorem 1.7 have been simplified for the sake of readability and are not optimal.

If the inequalities defining S satisfy a regularity condition we can simplify the bound, since $L = 1$ in this case (see Section 2.2).

Corollary 3.9. Assume $n \geq 2$ and let $g_1, \ldots, g_s \in \mathbb{R}[X] = \mathbb{R}[X_1, \ldots, X_n]$ satisfying the normalization assumptions 2 and such that the CQC (Definition 2.7) hold at every point of $S(g)$. Let $f \in \mathbb{R}[X]$ such that $f^* = \min_{x \in S} f(x) > 0$. Then $f \in Q_l(g)$ if

$$
l = O(n^3 2^{5n} r^n c^{2n} d(g)^n d(f)^{3.5n} \epsilon(f)^{-2.5n}),$$

where c is given by Theorem 2.11.

Proof. Apply Theorem 1.7 and Theorem 2.11 \hfill \Box

4 Convergence of Lasserre’s relaxations optimum

We begin with a short description of Polynomial Optimization Problems (POP) and of the Lasserre hierarchies to approximately solve them, and refer to [Las01], [Las15] for more details.

Let $f, g_1, \ldots, g_s \in \mathbb{R}[X]$. The goal of Polynomial Optimization is to find:

$$f^* := \inf \left\{ f(x) \in \mathbb{R} \mid x \in \mathbb{R}^n, g_i(x) \geq 0 \text{ for } i = 1, \ldots, s \right\} = \inf f(x) : g_i(x) \geq 0 \forall i \in \{1, \ldots, r\},$$

that is the infimum f^* of the objective function f on the basic semialgebraic set $S = S(g)$. It is a general problem, which appears in many contexts and with many applications, see for instance [Las10].

We define the SoS relaxation of order l of problem (22) as $Q_{2l}(g)$ and the supremum:

$$f^*_{\text{SoS}, l} := \sup \left\{ \lambda \in \mathbb{R} \mid f - \lambda \in Q_{2l}(g) \right\}.$$ (23)

Now we want to define the dual approximation of the polynomial optimization problem. We are interested in an affine hyperplane section of the cone $L_l(g) = Q_l(g)^*$:

$$L^{(1)}_l(g) = \left\{ \sigma \in L_l(g) \mid \langle \sigma | 1 \rangle = 1 \right\}.$$ (24)

With this notation we define the MoM relaxation of order l of problem (22) as $L_{2l}(g)$ and the infimum:

$$f^*_{\text{MoM}, l} := \inf \left\{ \langle \sigma | f \rangle \in \mathbb{R} \mid \sigma \in L^{(1)}_{2l}(g) \right\}.$$(24)

It is easy to show that the relaxations (23) and (24) are lower approximations of f^*. Their convergence to f^* as the order l goes to infinity is deduced from Putinar’s Positivstellensatz. In particular the rate of convergence can be deduced from the Effective Putinar’s Positivstellensatz: see Theorem 4.3. The proof of this result is the purpose of Section 4.

Remark. We have that $f^*_{\text{SoS}, l} \leq f^*_{\text{MoM}, l} \leq f^*$ for all l. Thus the results of this section, stated for the SoS relaxations $f^*_{\text{SoS}, l}$, are also valid for the MoM relaxations $f^*_{\text{MoM}, l}$.
A first step for the proof of Theorem 4.1 is to recognize Theorem 1.7 as a quantitative result of approximation of polynomials with polynomials in the truncated quadratic module.

Theorem 4.1. Assume \(n \geq 2 \) and let \(g \) satisfy the normalization conditions (2). Let \(L \) be the Lojasiewicz exponent defined in Definition 2.4 and let \(f \geq 0 \) on \(S(g) \). Then for \(0 < \varepsilon \leq \|f\| \), we have \(f - f^* + \varepsilon = q \in Q_l(g) \) for

\[
l \geq \gamma'(n, g) d(f)^{3.5nL} \|f\|^{2.5nL} \varepsilon^{-2.5nL}
\]

where \(\gamma'(n, g) = 3^{2.5nL} \gamma(n, g) \geq 1 \) depends only on \(n \) and \(g \) and \(\gamma(n, g) \) is given by Theorem 1.7

Proof. Notice that \(f - f^* + \varepsilon > 0 \) on \(S(g) \) and

\[
\varepsilon(f - f^* + \varepsilon) = \frac{\varepsilon}{\|f - f^* + \varepsilon\|} \geq \frac{\varepsilon}{\|f\| + |f^*| + \varepsilon} \geq \frac{\varepsilon}{3\|f\|}
\]

for \(\varepsilon \leq \|f\| \). Moreover \(\deg f - f^* + \varepsilon = \deg f = \deg f \). By Theorem 1.7, we have \(f - f^* + \varepsilon = q \in Q_l(g) \) if

\[
l \geq O(n^3 2^{5nL} r^n \varepsilon^{2n} d(g)^n d(f)^{3.5nL} (\frac{\varepsilon}{3\|f\|})^{2.5nL})
\]

where \(\gamma'(n, g) = 3^{2.5nL} \gamma(n, g) = O(n^3 2^{5nL} 3^{2.5nL} r^n \varepsilon^{2n} d(g)^n \gamma(n, g)^n) \geq 1 \) depends only on \(n \) and \(g \), and not on \(f \), and \(\gamma(n, g) \) is given by Theorem 1.7

Remark. From Equation (21), we have \(\gamma(n, g) = O(n^3 2^{5nL} r^n \varepsilon^{2n} d(g)^n d(f)^n) \) for \(l \geq \gamma'(n, g) d(f)^{3.5nL} \|f\|^{2.5nL} \varepsilon^{-2.5nL} \). The exponents of \(\gamma'(n, g) \) in the proof have been simplified for the sake of readability and are not optimal.

Remark. Theorem 4.1 is a quantitative version of Weierstrass approximation theorem for non-negative polynomials on \(S \), showing that a polynomial \(f \in Pos(S(g)) \) can be approximated uniformly on \([-1,1]^n \) (within distance \(\varepsilon \)) by an element \(f^* + q \in Q_l(g) \) for \(l \geq \gamma'(n, g) d(f)^{3.5nL} \|f\|^{2.5nL} \varepsilon^{-2.5nL} \). We are now ready to prove the rate of convergence for Lasserre hierarchies.

Theorem 4.2. With the same hypothesis of Theorem 4.1, let \(f_{S^l} \) be the Lasserre SoS (lower) approximation. Then \(f^* - f_{S^l} \leq \varepsilon \) for

\[
l \geq \gamma'(n, g) d(f)^{3.5nL} \|f\|^{2.5nL} \varepsilon^{-2.5nL}.
\]

Proof. Notice that

\[
f_{S^l} = \sup\{ \lambda \in \mathbb{R} | f - \lambda \in Q_{2l}(g) \} = \inf\{ \varepsilon \in \mathbb{R}_{\geq 0} | f - f^* + \varepsilon \in Q_{2l}(g) \}.
\]

By Theorem 4.1 for \(l \geq \gamma'(n, g) d(f)^{3.5nL} \|f\|^{2.5nL} \varepsilon^{-2.5nL} \), \(f - f^* + \varepsilon \in Q_l(g) \). This implies that \(f^* - f_{S^l} \leq \varepsilon \) and concludes the proof.

Theorem 4.3. With the same hypothesis of Theorem 4.2 and \(\gamma''(n, g) = \gamma'(n, g)^{\frac{1}{1-n}} \), we have

\[
0 \leq f^* - f_{S^l} \leq \gamma''(n, g) \|f\| d(f)^{\frac{1}{1-n}} [l^{1-n}]^{-\gamma''(n, g)}.
\]

Proof. We apply Theorem 4.2 with \(\varepsilon \leq \|f\| \) such that \(l = \lfloor \gamma'(n, g) d(f)^{3.5nL} \|f\|^{2.5nL} \varepsilon^{-2.5nL} \rfloor \) and \(\gamma''(n, g) = \gamma'(n, g)^{\frac{1}{1-n}} \).

In conclusion Theorem 1.7 allows to prove Theorem 4.3, a polynomial convergence of the Lasserre’s lower approximations to \(f^* \). In comparison with [NS07, th. 8], where the convergence is logarithmic in level \(l \) of the hierarchy, Theorem 4.3 gives a polynomial convergence to \(f^* \).

In regular POP we can simplify the bound, since \(L = 1 \) in this case (see Section 2.2).

Corollary 4.4. With the same hypothesis of Theorem 4.2 and \(\gamma''(n, g) = \gamma'(n, g)^{\frac{1}{1-n}} \), we have

\[
0 \leq f^* - f_{S^l} \leq \gamma''(n, g) \|f\| d(f)^{\frac{1}{1-n}} [l^{1-n}]^{-\gamma''(n, g)}
\]

if the CQC (Definition 2.7) hold at every point of \(S(g) \).

Proof. Apply Theorem 4.3 and Theorem 2.11.
5 Convergence of moment sequences to measures

We are interested in the study of the truncated positive linear functionals \(\mathcal{L}_t(g) = \mathcal{Q}_t(g)^\vee \), i.e. the dual convex cone of the truncated quadratic modules, and in particular of its generating section \(\mathcal{L}_d^{(1)}(g) \). This cone is used to define the Lasserre MoM relaxations \([24]\). In the following we often restrict the linear functionals to polynomials of degree \(\leq t \), that is we consider the cones \(\mathcal{L}_t(g)^{[t]} \).

Notice in particular that, if \(\mu \in \mathcal{M}(S)^{[t]} \) and \(q \in \mathcal{Q}_t(g) \cap \mathbb{R}[X]_t \), then \(\langle f | q \rangle = \int q \, d\mu \geq 0 \), since \(q \geq 0 \) on \(S \). In other words: \(\mathcal{M}(S)^{[t]} \subset \mathcal{L}_t(g)^{[t]} \) for all \(t \), i.e. our dual cone is an outer approximation of the cone of measures supported on \(S \). To compare quantitatively these cones we consider their affine generating sections \(\mathcal{M}(S)^{[t]}(S) \) and \(\mathcal{L}_t(g)^{[t]} \). In this section, we prove Theorem 1.8 which shows the convergence of the outer approximation as \(t \) goes to infinity, and deduce the speed rate from Theorem 5.7.

Before the proof of the main theorem, recall that in the finite dimensional vector space \(\mathbb{R}[X]_t \), all the norms are equivalent: we specify in Lemma 5.7 a constant that we will need in the proof of Theorem 5.7 for the following norms. For \(f = \sum_{|\alpha| \leq t} a_\alpha X^\alpha \in \mathbb{R}[X]_t \), as usual \(\|f\| = \max_{x \in [-1,1]^d} |f(x)| \), and \(\|f\|_2 = \sqrt{\sum |a_\alpha|^2} \).

Lemma 5.1. For \(f \in \mathbb{R}[X]_t \), we have \(\|f\| \leq \sqrt{\binom{n+t}{t}} \|f\|_2 \).

Proof. Let \(x \in [-1,1]^n \) such that \(|f(x)| = \|f\| \). Denote \(\bar{x} = (x^\alpha)_{|\alpha| \leq t} \) and \(\bar{a} = (a_\alpha)_{|\alpha| \leq t} \). Then:

\[
\|f\| = |f(x)| = |\bar{a} \cdot \bar{x}| \leq \|\bar{a}\|_2 \|\bar{x}\|_2 = \|f\|_2 \|\bar{x}\|_2
\]

using the Cauchy-Schwarz inequality. Finally notice that \(|x^\alpha| \leq 1 \) for all \(\alpha \) since \(x \in [-1,1]^n \), and thus \(\|\bar{x}\|_2 \leq \sqrt{\dim \mathbb{R}[X]_t} = \sqrt{\binom{n+t}{t}} \), which implies \(\|f\| \leq \sqrt{\binom{n+t}{t}} \|f\|_2 \). \(\square \)

We recall a version of Haviland’s theorem that characterize linear functionals that are represented by measures supported on a compact set.

Theorem 5.2 ([Sch17, th.17.6]). Let \(S \subset \mathbb{R}^n \) be compact and let \(\text{Pos}(S)_t = \{f \in \mathbb{R}[X] \mid \deg f \leq t, \ f(x) \geq 0 \ \forall x \in S \} \). Then for a linear functional \(\sigma \in \mathbb{R}[X]_t^* \), \(\sigma \in \mathcal{M}(S)^{[t]} \) if and only if \(\langle \sigma | f \rangle \geq 0 \) for all \(f \in \text{Pos}(S)_t \).

We slightly modify Theorem 5.2 in order to consider only polynomials of unit norm.

Corollary 5.3. Let \(P = \{f \in \text{Pos}(S)_t \mid \|f\|_2 = 1 \} \) and let \(\sigma \in \mathbb{R}[X]_t^* \). Then \(\sigma \in \mathcal{M}(S)^{[t]} \subset \mathbb{R}[X]_t^* \) if and only if \(\langle \sigma | f \rangle \geq 0 \) for all \(f \in P \).

Proof. Notice that \(\langle \sigma | f \rangle \geq 0 \iff \langle \sigma | f / \|f\|_2 \rangle \geq 0 \). Then apply Theorem 5.2. \(\square \)

We interpret Corollary 5.3 in terms of convex geometry. The convex set

\[
\mathcal{M}(S)^{[t]} = \{ \sigma \in \mathbb{R}[X]_t^* \mid \forall f \in P, \langle \sigma | f \rangle \geq 0 \}
\]

is the convex cone dual to \(P \). Any \(f \in P \) is defining an hyperplane \(\langle \sigma | f \rangle = 0 \) in \(\mathbb{R}[X]_t^* \), and an associated halfspace \(H_f = \{ \sigma \in \mathbb{R}[X]_t^* \mid \langle \sigma | f \rangle \geq 0 \} \) such that \(\mathcal{M}(S)^{[t]} \subset H_f \). Corollary 5.3 means that \(\mathcal{M}(S)^{[t]} = \bigcap_{f \in P} H_f \).

We consider a relaxation of the non-negativity condition to prove our convergence.

Definition 5.4. For \(\varepsilon \geq 0 \) and \(P \) as in Corollary 5.3, we define \(C(\varepsilon) = \{ \sigma \in \mathbb{R}[X]_t^* \mid \forall f \in P, \langle \sigma | f \rangle \geq -\varepsilon \} \).

Notice that by definition and Corollary 5.3, we have \(C(0) = \mathcal{M}(S)^{[t]} \).

We show now that \(C(\varepsilon) \) contains the truncated positive linear functionals of total mass one for an high enough level of the hierarchy.
Lemma 5.5. Let \(l \geq \gamma'(n, g) t^{3.5nL} \left(\frac{u+1}{t} \right)^{\frac{5nL}{L}} \epsilon^{-2.5nL} \), where \(g \) satisfy assumption (2) and \(\gamma'(n, g) \) is given by Equation (25). Then \(L_1^{\ast}(g)^{[l]} \subset C(\varepsilon) \).

Proof. By Lemma 5.1, for all \(f \in P \) we have \(\|f\| \leq \left(\frac{u+1}{t} \right)^{\frac{5nL}{L}} \epsilon^{-2.5nL} \). From Theorem 4.1, we deduce that for \(l \geq \gamma'(n, g) t^{3.5nL} \left(\frac{u+1}{t} \right)^{\frac{5nL}{L}} \epsilon^{-2.5nL} \), we have \(f - f^* + \epsilon = q \in Q(g) \). Thus for \(\sigma \in L_1^{\ast}(g)^{[l]} \) we obtain
\[
\langle \sigma | f + \epsilon \rangle = \langle \sigma | q + f^* \rangle \geq 0.
\]
Therefore \(\langle \sigma | f \rangle \geq -\varepsilon \). This shows that \(L_1^{\ast}(g)^{[l]} \subset C(\varepsilon) \).

The convex set \(C(\varepsilon) \) can be seen as a tubular neighborhood of \(M(S)^{[l]} \). We are going to bound its Hausdorff distance to the measures. We state and prove the result in the general setting of convex geometry, and finally use it to prove Theorem 5.7.

Lemma 5.6. Let \(C = \bigcap_{H \in \mathcal{H}} H \) be a closed convex set described as intersection of half spaces \(H = \{ x \in \mathbb{R}^N \mid c_H \cdot x + b_H \geq 0 \} \), where

- \(\mathcal{H} \) is the set of all the half-spaces containing \(C \) (of unit normal).

If \(H(\varepsilon) = \{ x \in \mathbb{R}^N \mid c_H \cdot x + b_H \geq -\varepsilon \} \) and \(C(\varepsilon) = \bigcap_{H \in \mathcal{H}} H(\varepsilon) \), then \(d_H(C, C(\varepsilon)) \leq \varepsilon \).

Proof. By definition \(C \subset C(\varepsilon) \). Assume that this inclusion is proper, otherwise there is nothing to prove, and let \(\xi \in C(\varepsilon) \setminus C \). Consider the closest point \(\eta \) in \(C(\varepsilon) \) on \(C \), and the half space \(H = \{ x \in \mathbb{R}^N \mid \frac{\eta - \xi}{\| \eta - \xi \|_2} \cdot (x - \eta) + b \geq 0 \} \) defined by the affine supporting hyperplane orthogonal to \(\eta - \xi \) passing through \(\eta \) (and thus \(\frac{\eta - \xi}{\| \eta - \xi \|_2} \cdot \eta = -b \)). Notice that \(H \in \mathcal{H} \) since \(H \) is defined by a normalized supporting hyperplane of \(C \).

Finally notice that
\[
\| \eta - \xi \|_2^2 = (\frac{\eta - \xi}{\| \eta - \xi \|_2} \cdot (\eta + b)) = \frac{\eta - \xi}{\| \eta - \xi \|_2} \cdot (\eta + b) = (\frac{\eta - \xi}{\| \eta - \xi \|_2} \cdot \eta + b).
\]
Since \(\xi \in C(\varepsilon) \) and \(H \in \mathcal{H} \), we have \((\frac{\eta - \xi}{\| \eta - \xi \|_2} \cdot \eta + b) \geq -\varepsilon \), and thus \(0 \leq \| \eta - \xi \|_2^2 \leq \varepsilon \). Then the distance between any \(\xi \in C(\varepsilon) \setminus C \) and its closest point \(\eta \in C \) is \(\leq \varepsilon \), which implies \(d_H(C, C(\varepsilon)) \leq \varepsilon \).

Theorem 5.7. Let \(Q(g) \) be a quadratic module where \(g \) satisfy assumption (2) and let \(l \geq \gamma'(n, g) t^{3.5nL} \left(\frac{u+1}{t} \right)^{\frac{5nL}{L}} \epsilon^{-2.5nL} \), with \(\gamma'(n, g) \) given by Equation (25). Then \(d_H(M(S)^{[l]}, L_1^{\ast}(g)^{[l]}) \leq \varepsilon \).

Proof. By Corollary 5.3, we have:
\[
M(S)^{[l]} = \{ \sigma \in \mathbb{R}[X]^p_t \mid \forall f \in P, \langle \sigma | f \rangle \geq 0 \} = \bigcap_{f \in P} H_f,
\]
where \(H_f = \{ \sigma \in \mathbb{R}[X]^p_t \mid \langle \sigma | f \rangle \geq 0 \} \) with \(\|f\|_2 = 1 \) and \(f \in \text{Pos}(S) \). We check that the hyperplanes \(H_f \) with \(f \in P \) defining \(M(S)^{[l]} \) satisfy the hypothesis of Lemma 5.6

- The half-space \(H_f \) has a unit normal since \(\|f\|_2 = 1 \);

- Any supporting hyperplane of \(M(S)^{[l]} \) defines an half-space \(H_f = \{ \sigma \in \mathbb{R}[X]^p_t \mid \langle \sigma | f \rangle \geq 0 \} \) with \(f \in P \). Indeed if \(f \) defines a supporting hyperplane of \(M(S)^{[l]} \), then \(\mu f = \int f d\mu \geq 0 \) for all \(\mu \in M(S)^{[l]} \). In particular for all \(x \in S \) we have \(f(x) = \int f d\delta_x \geq 0 \) (where \(\delta_x \) denotes the dirac measure concentrated at \(x \)). This proves that \(f \in \text{Pos}(S) \), and, normalizing it, we can assume \(f \in P \).

Then from Lemma 5.6, we have \(d_H(M(S)^{[l]}, C(\varepsilon)) \leq \varepsilon \).

Finally by Lemma 5.5, we deduce that \(L_1^{\ast}(g)^{[l]} \subset C(\varepsilon) \) and conclude that
\[
d_H(M(S)^{[l]}, L_1^{\ast}(g)^{[l]}) \leq d_H(M(S)^{[l]}, C(\varepsilon)) \leq \varepsilon.
\]
Notice that in Theorem 1.8 we are bounding the distance between normalized linear functionals and measures that may be *not* normalized (i.e. not a probability measure). In the following we solve this problem.

We recall and adapt to our context [H16, lem. 3] to obtain a bound on the norm of moment sequences. In particular we do not assume that the ball constraint is an explicit inequality, but only that the quadratic module is Archimedean.

Lemma 5.8. Assume that \(r^2 - ||X||_2^2 = q \in \mathcal{Q}_{l_0}(\mathfrak{g}) \). Then for all \(t \in \mathbb{N} \) and \(l \geq 2t - 2 + l_0 \), if \(\sigma \in \mathcal{L}^{(1)}_l(\mathfrak{g}) \) we have \(||\sigma||_{2l} \leq \sqrt{\frac{n+t}{t}} \sum_{k=0}^t r^{2k} \).

Proof. For \(\sigma \in \mathcal{L}^{(1)}_l(\mathfrak{g}) \), let \(H_\sigma^k \) be the Moment matrix of \(\sigma \) in degree \(\leq 2k \), which is semi-definite positive. Let \(||H_\sigma^k||_F \) be its Frobenius norm, i.e. \(||H_\sigma^k||_F = \sqrt{\sum_{|\alpha| \leq k} \sigma_\alpha^2} \), and \(||H_\sigma^k||_2 \) its \(\ell^2 \) operator norm, i.e. the maximal eigenvalue of \(H_\sigma^k \). Notice that by definition we have \(||\sigma||_{2l} \leq ||H_\sigma||_F \) and \(||H_\sigma^k||_2 \leq \sqrt{\text{tr} H_\sigma^k} \). Moreover recall \(||H_\sigma^k||_F \leq \sqrt{\text{rank}(H_\sigma^k)} ||H_\sigma^k||_2 \). To obtain a bound on \(||\sigma||_{2l} \), we are going to \(\text{tr} H_\sigma^k = \sum_{|\alpha| \leq k} \sigma_{2\alpha} = \left(\sigma^{2k} \right) \sum_{|\alpha| \leq k} \mathbf{X}^{2\alpha} \). As for \(k \leq t \),

\[
(r^2 - ||X||_2^2) \left(\sum_{|\alpha| \leq k-1} \mathbf{X}^{2\alpha} \right) \in \mathcal{Q}_{2t-2+l_0}(\mathfrak{g}) \subset \mathcal{Q}_t(\mathfrak{g}).
\]

we have

\[
0 \leq \left(r^2 - ||X||_2^2 \right) \left(\sum_{|\alpha| \leq k-1} \mathbf{X}^{2\alpha} \right) = r^2 \left(\sum_{|\alpha| \leq k-1} \mathbf{X}^{2\alpha} \right) - \left(\sigma \left(\sum_{|\alpha| \leq k-1} \mathbf{X}^{2\alpha} \right) - \langle \sigma | 1 \rangle \right) = r^2 \text{tr} H_\sigma^{k-1} + 1 - \text{tr} H_\sigma^k,
\]

that is, \(\text{tr} H_\sigma^k \leq r^2 \text{tr} H_\sigma^{k-1} + 1 \). Since \(\text{tr} H_\sigma^0 = \sigma_0 = 1 \), we deduce by induction on \(k \) that \(\text{tr} H_\sigma^k \leq \sum_{k=0}^t r^{2k} \) and thus

\[
||\sigma||_{2l} \leq ||H_\sigma||_F \leq \sqrt{\text{rank}(H_\sigma)} ||H_\sigma||_2 \leq \sqrt{\frac{n+t}{t}} \text{tr} H_\sigma \leq \sqrt{\frac{n+t}{t}} \sum_{k=0}^t r^{2k}.
\]

□

Finally we are ready to prove Theorem 1.8, where we obtain the bound of the distance between normalized linear functionals and probability measures.

Proof of Theorem 1.8. Let \(\varepsilon' = \frac{1}{2} \varepsilon t^{-1} \left(\frac{n+t}{t} \right)^{-\frac{3}{2}} \leq \frac{1}{4} \), \(\sigma \in \mathcal{L}^{(1)}_l(\mathfrak{g})^{\{2l\}} \) and \(\mu \in \mathcal{M}(\mathfrak{g})^{\{2l\}} \) be the closest point to \(\sigma \). We first bound the norm of \(\mu \). As

\[
l \geq \gamma(n, \mathfrak{g}) 6^{2.5nL} t^{6nL} \left(\frac{n+t}{t} \right)^{\frac{3}{2}} e^{-2.5nL} = \gamma'(n, \mathfrak{g}) t^{3.5nL} \left(\frac{n+t}{t} \right)^{\frac{3}{2}} (\varepsilon')^{-2.5nL},
\]

by Theorem 5.7 we have \(d(\sigma, \mu) \leq \varepsilon' \).

Let \(\mu_0 = \int \mathbb{1} \, d\mu \). We want to bound the distance between \(\sigma \) and \(\frac{\mu}{\mu_0} \) in \(\mathcal{M}(\mathfrak{g})^{\{2l\}} \). Notice that

\[
d(\sigma, \frac{\mu}{\mu_0}) \leq d(\sigma, \mu) + d(\mu, \frac{\mu}{\mu_0}) \leq \varepsilon' + \left| \frac{1 - \mu_0}{\mu_0} \right| ||\mu||_2.
\]

(27)

Since \(\sigma_0 = 1 \), \(d(\sigma, \mu) \leq \varepsilon' \) implies \(1 - \varepsilon' \leq \mu_0 \leq 1 + \varepsilon' \), and therefore \(\left| \frac{1 - \mu_0}{\mu_0} \right| \leq \frac{\varepsilon'}{1 - \varepsilon'} \). Moreover, using Lemma 5.8 we have

\[
||\mu||_2 = ||\mu - \sigma + \sigma|| \leq d(\mu, \sigma) + ||\sigma||_2 \leq \varepsilon' + (t+1) \sqrt{\frac{n+t}{t}}.
\]
Then from Equation \((27)\) we conclude that
\[
d\left(\sigma, \mu_0\right) \leq \varepsilon' + \frac{\varepsilon'}{1-\varepsilon'}\left(t+1\right)\left(n+t\right) + 2\varepsilon'\sqrt{\left(n+t\right)} = \varepsilon,
\]
since \(\varepsilon' \leq \frac{1}{4}, n \geq 1\) and \(t \geq 1\).

Corollary 5.9. With the hypothesis of Theorem \([1.8]\) and the CQC (Definition \([2.7]\)) satisfied at every point of \(S(g)\), then
\[
d_H(M^{(1)}(S)[2t], L^{(1)}_l^t(g)[2t]) \leq \varepsilon
\]
if \(l \geq \gamma(n,g)6^{2.5n}t^{6n\left(\frac{n+t}{t}\right)^{2.5nL}}\varepsilon - 2.5nL\).

Proof. Apply Theorem \([1.8]\) and Theorem \([2.11]\).}

In Theorem \([1.8]\) we prove a bound for the convergence of Lasserre moment hierarchy to hierarchies of moments. The convergence, without bounds, can be deduced from \([Sch05, \text{th. 3.4}]\) by taking as objective function a constant. On the other hand, we can deduce \([Sch05, \text{th. 3.4}]\) from Theorem \([1.8]\) by considering the sections of \(L^{(1)}_l^t(g)[t]\) given by \(\langle \sigma | f \rangle = f^*_t\text{MoM}_{k}^t\).

In the context of Generalized Moment Problems (GMP), general convergence to moments of measures has been studied in \([Tac21]\). The uniform bounded mass assumption in \([Tac21]\) is trivially satisfied in the context of Polynomial Optimization, since \(\sigma_0 = \langle \sigma | 1 \rangle = 1\): the convergence result of \([Tac21]\) is thus more general than \([Sch05, \text{th. 3.4}]\) and the one implied by Theorem \([1.8]\). But we conjecture, and leave it for future exploration, that it is possible to extend the proof technique of Theorem \([1.8]\) to the GMP and give bounds on the rate of convergence also in this extended context.

Acknowledgments. The authors thank M. Laurent and L. Slot for the discussion about Schmüdgen’s theorem on \([-1,1]^n\], A. Parusiński and K. Kurdyka for the useful suggestions on the Łojasiewicz and Markov inequalities and F. Kirschner for discussions on half space descriptions of convex bodies.

References

[Art27] Emil Artin. “Über die Zerlegung definiter Funktionen in Quadrate”. In: *Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg* 5.1 (1927), pp. 100–115.

[Ave13] Gennadiy Averkov. “Constructive Proofs of some Positivstellensätze for Compact Semialgebraic Subsets of R d”. In: *Journal of Optimization Theory and Applications* 158.2 (2013), pp. 410–418.

[BCR98] Jacek Bochnak, Michel Coste, and Marie-Francoise Roy. *Real Algebraic Geometry*. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Berlin Heidelberg: Springer-Verlag, 1998. ISBN: 978-3-540-64663-1.

[Ber99] Dimitri P. Bertsekas. *Nonlinear Programming*. Athena Scientific, 1999. ISBN: 978-1-886529-00-7.

[DKL19] Etienne De Klerk and Monique Laurent. *Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere*. 2019.

[FF20] Kun Fang and Hamza Fawzi. “The sum-of-squares hierarchy on the sphere and applications in quantum information theory”. In: *Mathematical Programming* (2020).

[GPR12] Blekherman Grigoriy, A. Parrilo Pablo, and R. Thomas Rekha, eds. *Semidefinite Optimization and Convex Algebraic Geometry*. MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, 2012. ISBN: 978-1-61197-228-3.
[Put93] Mihai Putinar. “Positive Polynomials on Compact Semi-algebraic Sets”. In: Indiana University Mathematics Journal 42.3 (1993), pp. 969–984.

[Roc97] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1997.

[Sch04] Markus Schweighofer. “On the complexity of Schmüdgen’s Positivstellensatz”. In: Journal of Complexity 20.4 (2004), pp. 529–543.

[Sch05] Markus Schweighofer. “Optimization of Polynomials on Compact Semialgebraic Sets”. In: SIAM Journal on Optimization 15.3 (2005), pp. 805–825.

[Sch17] Konrad Schmüdgen. The Moment Problem. Graduate Texts in Mathematics. Springer International Publishing, 2017. ISBN: 978-3-319-64545-2.

[Sch91] Konrad Schmüdgen. “The K-moment problem for compact semi-algebraic sets”. In: Mathematische Annalen 289.1 (1991), pp. 203–206.

[SEDYZ18] Mohab Safey El Din, Zhi-Hong Yang, and Lihong Zhi. “On the complexity of computing real radicals of polynomial systems”. In: ISSAC ’18 - The 2018 ACM on International Symposium on Symbolic and Algebraic Computation. New-York, United States: ACM, 2018, pp. 351–358.

[Ste74] Gilbert Stengle. “A nullstellensatz and a positivstellensatz in semialgebraic geometry”. In: Mathematische Annalen 207.2 (1974), pp. 87–97.

[Tac21] Matteo Tacchi. “Convergence of Lasserre’s hierarchy: the general case”. In: Optimization Letters (2021).

[Tre13] Lloyd N. Trefethen. Approximation Theory and Approximation Practice. SIAM, 2013. ISBN: 978-1-61197-240-5.