Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review Article

COVID-19 associated mucormycosis — An emerging threat

Chien-Ming Chao a,b, Chih-Cheng Lai c, Wen-Liang Yu d,e,*

a Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan
b Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, 73657, Taiwan
c Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan, 71051, Taiwan
d Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
e Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan

Received 27 July 2021; received in revised form 22 November 2021; accepted 29 December 2021
Available online 13 January 2022

KEYWORDS
COVID-19; Corticosteroid; Diabetes mellitus; Fungus; Mucormycosis

Abstract  Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly become a global threaten since its emergence in the end of 2019. Moreover, SARS-CoV-2 infection could also present with co-infection or secondary infection by other virus, bacteria, or fungi. Among them, mucormycosis is a rare but aggressive fungal disease and it mainly affects patients particularly with poorly controlled diabetes mellitus with diabetic ketoacidosis (DKA). We here did a comprehensive review of literature reporting COVID-19 associated with mucormycosis (CAM) cases, which have been reported worldwide. The prevalence is higher in India, Iran, and Egypt than other countries, particularly highest in the states of Gujarat and Maharashtra in India. Poor diabetic control and the administration of systemic corticosteroids are the common precipitating factors causing mucormycosis in the severe and critical COVID-19 patients. In addition, COVID-19 itself may affect the immune system resulting in vulnerability of the patients to mucormycosis. Appropriate treatments of CAM include strict glycemic control, extensive surgical debridement, and antifungal therapy with amphotericin B formulations.

Copyright © 2022, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan. Fax: +886 6 2833351.
E-mail addresses: ccm870958@yahoo.com.tw (C.-M. Chao), dtmed141@gmail.com (C.-C. Lai), Yuleon_md@yahoo.com.tw (W.-L. Yu).

https://doi.org/10.1016/j.jmii.2021.12.007
1684-1182/© 2022, Taiwan Society of Microbiology. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly become a global threat since its emergence in the end of 2019.1 As of November 20, 2021, more than 255 million confirmed cases have been identified worldwide and more than 5 million deaths have been reported.1 SARS-CoV-2 infection could present as asymptomatic, mild symptom, severe pneumonia, and acute respiratory distress syndrome (ARDS).1-11 Although respiratory tract symptoms and fever were the most common clinical presentations among symptomatic patients, extra-pulmonary involvements by COVID-19 include cardiac, gastrointestinal, hepatic, renal, neurological, olfactory, gustatory, ocular, cutaneous and hematological symptoms.1 Moreover, SARS-CoV-2 infections could also present with co-infections or secondary infections by bacteria, such as Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae, and Acinetobacter baumannii; viruses such as influenza, coronavirus, rhinovirus/enterovirus, parainfluenza, metapneumovirus, and human immunodeficiency virus, and fungi, such as Aspergillus spp.5-10 In addition to these co-pathogens, many cases of mucormycosis among COVID-19 patients have been reported recently.11-18 Mucormycosis is a rare but aggressive fungal disease and it mainly affects patients with poorly controlled diabetes mellitus and severely immunocompromised patients.19 In contrast to aspergillosis, mucormycosis was rarely reported following viral infection.20-22 At present, the studies and knowledge about COVID-19 associated with mucormycosis (CAM) have been limited. Therefore, we did a comprehensive review of literature reporting mucormycosis in patients with COVID-19 to provide updated information.

Epidemiology

Since the outbreak of COVID-19, more and more cases of CAM have been reported.23-27 In UK, the post-mortem study of 10 several fatal COVID-19 cases in the early pandemic (between March 1 and April 30, 2020) showed one patient who had unexpected disseminated mucormycosis involving the lungs and brain.21 In US, Placik et al. reported a fatal case of mucormycosis with necrosing pulmonary infections and a bronchopleural fistula following COVID-19 in Arizona.24 In India, Mehta et al. demonstrated a diabetic patient of rhino-orbital mucormycosis associated with COVID-19.26 In Brazil, Monte Junio et al. showed an unusual case of gastric mucormycosis in an elderly patient with COVID-19.24 In Italy, Paserol et al. reported one COVID-19 case who developed a pulmonary mucormycosis with extensive cavitary lesions.27 Thereafter, more and more CAM cases have been reported in Egypt, the Netherlands, Iran, Japan, Spain, Mexico, and Austria.28-36 In contrast to other countries, India reported the most cases with a rapid increasing incidence.37 As of May 28, 2021, at least 14,872 cases of CAM have been found in India, in which the state of Gujarat had the highest incidence, with at least 3726 cases, followed by the state of Maharashtra.38 The similar trend was reported in another large retrospective study of 2826 patients with COVID-19 associated rhino-orbital-cerebral mucormycosis, in which the states of Gujarat (22%) and Maharashtra (21%) had the highest cases.39 At the same time, the number of acute invasive fungal rhinosinusitis in a single center in Egypt was much higher in 2020 (n = 29) than 2017 (n = 9), 2018 (n = 8), and 2019 (n = 10).39 A multicenter study in India showed that the prevalence of CAM was 0.27% among hospitalized COVID-19 patients, in which the prevalence was higher in COVID-19 managed in intensive care unit (ICU) than in general ward (25/1579 versus 28/10,517).13 Till now, almost 90% of the CAM cases were reported from India (Table 1),13,14,26,38,40-53 which may be attributed the following causes: (1) India has the second largest diabetic population and about 70% of them were not under control54 and (2) the environmental factors in India - tropical and sub-tropical humid climate and high environmental temperature.54

Pathogenetic roles of ketoacidosis and unbound iron

The patients developing diabetic ketoacidosis (DKA) are susceptible to mucormycosis. In a study testing the in-vitro growth of Rhizopus oryzae, a common etiologic agent of mucormycosis, in DKA serum, the acidic conditions (pH 7.3-6.6) of serum would reduce the capacity of transferrin to bind iron, thus offering the unbound iron in the DKA serum to support the profuse growth of R. oryzae. DKA sera did not support fungal growth at two conditions of either iron-deficient status or at a serum pH greater than or equal to 7.4.55 Clinical and animal model data have demonstrated that the presence of elevated available serum iron predisposes the host to mucormycosis due to the critical role of the ability of Mucorales to acquire host iron as a virulence factor.56,57 Rhizopus invades the epithelium via fungal spore coat proteins (CotH) binding to the host receptor of glucose-regulated protein 78 (GRP78) on the nasal and alveolar epithelial cells. clothes. The hallmark features of DKA including β-hydroxy butyrate (BHB), glucose, and iron components in DKA sera can increase surface expression of GRP78 in epithelial cells and fungal CotH expression. BHB also indirectly compromised the ability of transferrin to bind iron, thus increasing the available serum iron. Together with use of corticosteroid in a standard care of COVID-19 patients can further upregulate CotH3 and nasal mucormycosis, in DKA sera

Interactions between COVID-19 and mucormycosis

Most cases of mucormycosis are temporally linked to COVID-19.55 The surge in the number of cases of CAM is relevant to environmental characteristics and universal glucocorticoid use for severe COVID-19 cases, in addition to a previous well-known demographic factor of poor control for diabetes mellitus especially with DKA. The systemic use of corticosteroids is a double-edged sword in the therapy for cytokine storm and triggering for mucormycosis in the COVID-19
| Geographic areas                  | Case no. | Age (yr) | Gender | Underlying condition                        | Lesion                  | Mortality | Author                  |
|----------------------------------|----------|----------|--------|-------------------------------------------|-------------------------|-----------|-------------------------|
| United Kingdom                   | 1        | 22       | M      | Obesity, hypothyroidism                    | Disseminated            | Yes       | Hanley et al.           |
| London                           | 2        |          |        |                                           |                         |           |                         |
| South America                    | 1        | 86       | M      | Corticosteroid use                         | Stomach                 | Yes       | Monte Junior et al.     |
| São Paulo, Brazil                | 1        | 24       | F      | Obesity                                   | Rhino-orbital-cerebral  | Yes       | Waizel-Haiat et al.     |
| Mexico City, Mexico              | 1        | 68       | M      | Heart transplant, DM                       | Cutaneous               | Yes       | Khatri et al.           |
| United States                    | 9        |          |        |                                           |                         |           |                         |
| New York                         | 1        | 33       | F      | DM                                        | Rhino-orbital-cerebral  | Yes       | Werthan-Ehrenreich et al.|
| San Francisco, California        | 1        | 60       | M      | DM                                        | Rhino-orbital           | Yes       | Mekonnen et al.         |
| Riverside, California            | 1        | 79       | M      | Corticosteroid use                         | Pulmonary               | No        | Johnson et al.          |
| San Diego, California            | 2        | NA       | NA     | DM (2), corticosteroid use (2)             | Rhino-orbital-cerebral  | 2/2       | Dallalzadeh et al.     |
| Dover, Delaware                  | 1        | 41       | M      | DM                                        | Rhino-cerebral          | No        | Alekseyev et al.        |
| Lewes, Delaware                  | 1        | 56       | M      | ESRD, corticosteroid use                   | Lung                    | Yes       | Kanwar et al.           |
| Yuma, Arizona                    | 1        | 49       | M      | Corticosteroid use                         | Lung                    | Yes       | Placik et al.           |
| European Union                   | 9        |          |        |                                           |                         |           |                         |
| Multisite, the Netherlands       | 4        | 50–70    | M (4)  | DM (2), corticosteroid use (1), obesity (1)| Lung (3), orbital (1)   | 3/4       | Buil et al.             |
| Barcelona, Spain                 | 2        | 62, 48   | M (2)  | Kidney transplant (2), DM (1), corticosteroid use (2) | Rhinosinusal (1), Musculoskeletal (1) | 0/2       | Arana et al.            |
| Besançon, France                 | 1        | 55       | M      | Lymphoma                                  | Lung                    | Yes       | Bellanger et al.        |
| Sassari, Italy                   | 1        | 66       | M      | Hypertension                              | Lung                    | Yes       | Pasero et al.           |
| Graz, Austria                    | 1        | 53       | M      | Acute myeloid leukemia                     | Lung                    | Yes       | Zurl et al.             |
| Egypt                            | 7        | 41–67    | M (4)  | DM (6)                                    | Rhino-orbital-cerebral  | 3/7       | Ashour et al.           |
| Cairo                            | 7        |          | F (3)  |                                           |                         |           |                         |
| Middle East                      | 29       |          |        |                                           |                         |           |                         |
| Tehran, Iran                     | 1        | 61       | M      | Corticosteroid use                         | Rhino-orbito-cerebral   | 15 (52%)  | Karimi-Galougahi et al. |
| Tehran, Iran                     | 2        | 40, 54   | M (1)  | Corticosteroid use                         | Rhino-orbital (1), rhino-orbital-cerebral (1) | 1/2       | Veisi et al.            |
| Tehran, Iran                     | 15       | 14–71    | M (9)  | DM (13), corticosteroid use (7)            | Rhino-orbital (15)      | 7/15      | Pakdel et al.           |
| Kayseri, Turkey                  | 11       | 61–88    | M (9)  | DM (8), corticosteroid use (11)            | Sino-orbital (11)       | 7/11      | Bayram et al.           |
| India                            | 3129     |          |        |                                           |                         | 412/3106 (13%) |                         | Garg et al.             |
| Chandigarh                       | 1        | 55       | M      | DM, ESRD, corticosteroid use               | Lung                    | No        | Saldanha et al.         |
| Mangalore, Karnataka             | 1        | 32       | F      | DM                                        | Rhino-orbital-cerebral | No        | Revannavar et al.       |
| Mangalore, Karnataka             | 1        | NA       | F      | DM                                        | Rhino-orbital-cerebral | No        |                         |

(continued on next page)
Table 1 (continued)

| Geographic areas                        | Case no. | Age (yr) | Gender | Underlying condition                        | Lesion                                      | Mortality | Author               |
|-----------------------------------------|----------|----------|--------|--------------------------------------------|---------------------------------------------|-----------|----------------------|
| Mysuru, Karnataka                       | 2        | 34, 50   | M (2)  | Nil                                        | Rhino-orbital (2)                          | 0/2       | Sai Krishna et al.   |
| Bangalore, Karnataka                    | 1        | 66       | M      | DM, corticosteroid use                      | Rhino-orbital                               | no        | Rao et al.           |
| Bangalore, Karnataka                    | 17       | 35–73    | M (14) | DM (16), corticosteroid use                 | Rhino-orbito-cerebral (17)                 | 6/17      | Moorthy et al.       |
| Puducherry                              | 10       | 23–67    | M (8)  | DM (5), corticosteroid use                 | Orbital (10)                                | 4/10      | Sarkar et al.        |
| Ahmedabad, Gujarat                      | 1        | 42       | M      | DM, corticosteroid use                      | Rhino-orbital                               | no        | Selarka et al.       |
| Ahmedabad, Gujarat                      | 2        | 25, 47   | M (2)  | Kidney transplant (2), DM (2)               | Rhino-orbital (1), lung (1)                | 2/2       | Meshram et al.       |
| Ahmedabad, Gujarat                      | 19       | NA       | NA     | DM (19), corticosteroid use                 | Rhino-orbital (19)                          | 3/19      | Ravani et al.        |
| Bikaner, Rajasthan                      | 5        | 52–70    | M (1)  | DM (5)                                      | Rhino-orbital (5)                           | 2/5       | Nehara et al.        |
| Jaipur, Rajasthan                       | 23       | NA       | NA     | NA                                         | Rhino-orbital-cerebral (23)                | NA        | Sharma et al.        |
| Hyderabad, Telangana; Mumbai, Maharashtra| 6       | 46–74    | M (6)  | DM (6), corticosteroid use                 | Rhino-orbital (6)                           | 0/6       | Sen et al.           |
| Mumbai, Maharashtra                     | 1        | 60       | M      | DM                                         | Rhino-orbital                               | yes       | Mehta et al.         |
| Mumbai, Maharashtra                     | 1        | 38       | M      | Corticosteroid use                         | Rhino-orbital-cerebral (25)                | 14/25     | Maini et al.         |
| Mumbai, Maharashtra                     | 25       | NA       | NA     | DM (22), HIV (2), corticosteroid use (25)  | Rhino-orbito-cerebral (44), lung (16), kidney (1), disseminated (4), others (5) | 75/170    | Joshi et al.         |
| Multicenter                             | 187      | 57a      | M (150)| DM (113), corticosteroid use (146), kidney transplant (3) | Rhino-orbital (117), rhino-orbito-cerebral (44), lung (16), kidney (1), disseminated (4), others (5) | 75/170    | Patel et al.         |
| 102 centers                             | 2826     | 12–88    | M (193)| DM (2194), hypertension (690), renal failure (88) | Rhino-orbito-cerebral (2826)                | 305/2218  | Sen et al.           |

* Mean ± SD, 56.9 ± 12.5.

Note. M: man; F: female; DM, diabetes mellitus; ESRD, end stage renal disease; HIV, human immunodeficiency virus; NA, not applicable.
patients that requires critical care. The combination of steroid therapy and diabetes mellitus can augment immunosuppression and hyperglycemia, increasing the risk of mucormycosis. Most cases were reported from India in the literature. Even though a rather high regional prevalence in India, a 2.1-fold rise in mucormycosis during the COVID-19 pandemic than previous year was noted. The median time interval between COVID-19 diagnosis and the first evidence of a mucormycosis infection was 7–15 days. Additionally, these patients could have the presentation of fever, eyelid edema, conjunctival chemosis, deteriorating visual acuity, proptosis, ophthalmoplegia, diplopia, periorbital pain, orbital/facial disoloration, cranial nerve palsy, headache, nasal blockage, ear pain, black nasal crusts, nasal discharge, periocular hypoesthesia, palatal ulcer/eschar, toothache, loose teeth, epistaxis, and facial deviation/palsy. CT or MRI can show sinusitis, oantal fistula, erosions of the nasal septum, hard palate, and sinus wall, air within bony sinus structures, focal mucosal nonenhancement, panophthalmitis, orbital infiltration involving the optic nerve, skull base involvement, cerebral sinus thrombosis with secondary vasculitis, watershed acute cerebral infarctions and meningeal enhancement. For patient with pulmonary involvement, fever, cough, dyspnea, and hypoxia could be the presenting signs and symptoms, and the radiographic manifestations included consolidations, cavity lung lesions and bronchopleural fistula formations with empyema. Although the diagnosis of CAM based on the identification of organisms in tissue by histopathology with culture confirmation, it should also require clinicians’ high index of suspicion, recognition of host factors, prompt assessment of clinical manifestations and further image investigations using CT or MRI.

**Microbiologic distribution**

Previously, the most common reported saprophytic environmental fungi causing mucormycosis was *Rhizopus* species and other pathogens including *Mucor, Cunninghamamella, Apophysomyces, Lichtheimia* (formerly *Absidia*), *Saksenaea*, *Syncephalastrum*, *Bertholletia*, and *Rhizomucor* species have been reported. During COVID-19 pandemic, several fungi including *R. oryzae*, *R. microsporus*, *Rhizopus azysporus*, *Lichtheimia mucor*, and *Lichtheimia ramose* have been identified as causative pathogens. Rarely, CAM can have concomitant infections with *Aspergillus* species.

**Clinical manifestations**

Uncontrolled diabetes mellitus was the most common underlying conditions contributed to CAM. Additionally, other immunocompromised conditions, including neutropenia, end-stage kidney disease, hematologic malignancy, solid organ transplant recipients and the use of corticosteroid have been reported. In one large series of COVID-19 associated rhino-orbital-cerebral mucormycosis, diabetes mellitus was presented in 78% of 2826 patients, and 87% had been treated with corticosteroid. Another study of 187 CAM cases showed the similar thing that 78.1% of patients had received corticosteroid and 60.4% of patients had diabetes mellitus. However, COVID-19 could be the only underlying disease in 32.6% of CAM patients. The most common involved site of CAM was rhino-orbital-cerebral, but lung, kidney, cutaneous, stomach, mediastinal lymph node, heart, pericardium, kidney, musculoskeletal and disseminated infections have been reported. For patients with rhino-orbital-cerebral sinusitis, orbital/facial pain and orbital/facial edema were the most common symptoms, followed by loss of vision, ptosis and nasal block. Additionally, these patients could have the presentation of fever, eyelid edema, conjunctival chemosis, deteriorating visual acuity, proptosis, ophthalmoplegia, diplopia, periorbital pain, orbital/facial disoloration, cranial nerve palsy, headache, nasal blockage, ear pain, black nasal crusts, nasal discharge, periocular hypoesthesia, palatal ulcer/eschar, toothache, loose teeth, epistaxis, and facial deviation/palsy.

**Treatment**

First-line treatment with high-dose liposomal amphotericin B but not slow escalation is strongly recommended. Liposomal amphotericin B (5 mg/kg/day), dilute in 200 cc 5% dextrose over 2–3 h infusion, is the preferred regimen; and higher dose of 10 mg/kg/day may be given in orbital-cerebral involvement. Amphotericin B deoxycholate (1 mg/kg/day) as substantial toxicity is used only if cost and availability of liposomal amphotericin B is an issue. Patients who are intolerant to amphotericin B, alternative agents are posaconazole or isavuconazole. Both triazoles are also strongly recommended salvage treatments. Posaconazole or isavuconazole is often combined with liposomal amphotericin B with refractory mycosis. Anti-fungal therapy may be initiated with liposomal amphotericin B and posaconazole, followed by isavuconazole as salvage therapy. Several case reports have shown isavuconazole to be effective as the salvage therapy for mucormycosis. A total of 72 clinical isolates of *Mucorales* were evaluated,
more isolates were found to be potentially susceptible to isavuconazole when compared to posaconazole. Successful treatment of fungal meningitis with isavuconazole in limited case reports supports brain penetration in humans. In addition to appropriate antifungal agents, the management of mucormycosis is multimodal, including reversal of underlying risk factors, such as glycemic control, and extensive or repeated surgical debridement. Surgery according to the extent of CAM involvement is important in rhino-orbito-cerebral infection and in soft tissue infection and surgery intervention should be very aggressive.

Outcomes

The morbidity and mortality of CAM remain high. Buil et al. reported that three of 4 CAM cases developed in the ICU and three deaths occurred in the Netherlands. In a series of 187 CAM cases in India, the reported overall mortality was 37.4% (70/187) and 44.1% (75/170) within 6 and 12 weeks respectively. The mortality rates were substantially higher in non-prevalent regions (>50%–100% in the United States and the European countries) than prevalent regions (about 40%–50% in the middle East and Egypt) and lowest (13%) in India (Table 1). However, the prognosis of mucormycosis could vary according to the site of involvement. The largest study of 2826 patients with COVID-19 associated rhino-orbital-cerebral mucormycosis in India reported the all-cause mortality was 14% (n = 305) of 2128 patients with available outcome data. Although the patients with disease stage >3b (defining stage 3c: central retinal or ophthalmic artery occlusion or superior ophthalmic vein thrombosis; involvement of superior orbital fissure, inferior orbital fissure, orbital apex, loss of vision; stage 3d: bilateral orbital involvement; and stage 4) had poorer prognosis in this study, paranasal sinus debridement and orbital exenteration could significantly help reduce the mortality rate in patients with stage 4 of intracranial extension (52% versus 39%, p < 0.05).

Conclusion

During COVID-19 pandemic, the emergence of CAM has become a serious concern, particularly in India. Uncontrolled diabetes mellitus with DKA and the use of corticosteroid are the most common conditions among patients with CAMs. Rhino-orbital-cerebral is the most common site of involvement, but CAM can also involve pulmonary, skin and stomach. Highly suspicion and early diagnosis are the key of successful management of patients with CAM. Although the prognosis of CAM is poor, first-line high-dose liposomal amphotericin B and appropriate surgical intervention can help improve the outcome.

Ethical

Not relevant. We declare that reporting of the study was in line with the Declaration of Helsinki, as revised in 2013.

Funding

None declare.

Author contributions

Concept and design: C.-M.C., C.-C.L. and W.-L.Y. Drafting of the manuscript: C.-M.C. and C.-C.L. Critical revision of the manuscript: C.-C.L. and W.-L.Y.

Acknowledgments

None declare.

References

1. World health organization. https://covid19.who.int/. [Accessed 27 July 2021].
2. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents 2020;55:105924.
3. Lai CC, Liu YH, Wang CY, Wang VH, Hsueh SC, Yen MY, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. J Microbiol Immunol Infect 2020;53:404–12.
4. Lai CC, Ko WC, Lee PI, Jean SS, Hsueh PR. Extra-respiratory manifestations of COVID-19. Int J Antimicrob Agents 2020;56:106024.
5. Lai CC, Wang CY, Hsueh PR. Co-infections among patients with COVD-19: the need for combination therapy with non-anti-SARS-CoV-2 agents? J Microbiol Immunol Infect 2020;53:505–12.
6. Chen WC, Lai YC, Lin CH, Zheng JF, Hung WC, Wang YJ, et al. First COVID-19 mortality case in Taiwan with bacterial co-infection by national surveillance of critically ill patients with influenza-negative pneumonia. J Microbiol Immunol Infect 2020;53:652–6.
7. Musuza JS, Watson L, Parmasad V, Putman-Buehler N, Christensen L, Safdar N. Prevalence and outcomes of co-infection and superinfection with SARS-CoV-2 and other pathogens: a systematic review and meta-analysis. PLoS One 2021;16:e0251170.
8. Alhumaid S, Al Mutair A, Al Alawi Z, Alshawi AM, Alomran SA, Almuhanna MS, et al. Coinfections with bacteria, fungi, and respiratory viruses in patients with SARS-CoV-2: a systematic review and meta-analysis. Pathogens 2021;10:809.
9. Langford BJ, So M, Raybardhan S, Leung V, Westwood D, MacFadden DR, et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect 2020;26:1622–9.
10. Lai CC, Yu WL. COVID-19 associated with pulmonary aspergillosis: a literature review. J Microbiol Immunol Infect 2021;54:46–53.
11. Buil JB, van Zanten ARH, Bentvelsen RG, Rijpstra TA, Goorhuis B, van der Voort SR, et al. Case series of four secondary mucormycosis infections in COVID-19 patients, The Netherlands, December 2020 to May 2021. Euro Surveill 2021;26:2100510.
12. Pakdel F, Ahmadkia K, Salehi M, Tabari A, Jafari R, Mehrparvar G, et al. Mucormycosis in patients with COVID-19: a cross-sectional descriptive multicenter study from Iran. Mycoses 2021;64:1238–52.
13. Patel A, Agarwal R, Rudramurthy SM, Shevkani M, Hess I, Sharma R, et al. Multicenter epidemiologic study of coronavirus disease-associated mucormycosis, India. Emerg Infect Dis 2021;27:2349–59.
14. Selarka L, Sharma AK, Rathod G, Saini D, Patel S, Sharma VK. Mucormycosis: A dreaded complication of COVID-19. QJM 2021;114:670–1.
15. Karimi-Galoughi M, Arastou S, Haseli S. Fulminant mucormycosis complicating coronavirus disease 2019 (COVID-19). Int Forum Allergy Rhinol 2021;11:1029–30.
16. Khatri A, Chang KW, Berlinrut I, Wallach F. Mucormycosis after Coronavirus disease 2019 infection in a heart transplant recipient - case report and review of the literature. J Mycol Med 2021;31:101125.
17. Mekonnen ZK, Ashraf DC, Jankowski T, Grob SR, Vagefi MR, Kersten RC, et al. Acute invasive rhino-orbital mucormycosis in a patient with COVID-19-associated acute respiratory distress syndrome. Ophthalmic Plast Reconstr Surg 2021;37:e40–80.
18. Pan J, Tsai C, Li M, Xiao K, de Hoog GS, Verweij PE, et al. First case of rhino-cerebral mucormycosis caused by Lichtheimia orrnata, with a review of Lichtheimia Infections. Mycopathologia 2020;185:555–67.
19. Steinbrink JM, Miceli MH. Mucormycosis. Infect Dis Clin 2021;35:435–52.
20. Ajmal S, Mahmood M, Abu Saleh O, Larson J, Sohail MR. Invasive fungal infections associated with prior respiratory viral infections in immunocompromised hosts. Infection 2018;46:555–8.
21. Penger H, Xiao J, Wan H, Shi J, Li J. Severe gastric mucormycosis infection followed by cytomegalovirus pneumonia in a renal transplant recipient: a case report and concise review of the literature. Transplant Proc 2019;51:556–60.
22. Seo YW, Hwang Bo S, Kim SK, Han SB, Chung NG, Kang JH. Fatal systemic adenoviral infection superimposed on pulmonary mucormycosis in a child with acute leukemia: a case report. Medicine (Baltim) 2016;95:e5054.
23. Hanley B, Naresh KN, Roufosse C, Nicholson AG, Weir J, Cooke GS, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe 2020;1:e245–53.
24. Monte Junior ESD, Santos M, Ribeiro IB, Luz GO, Baba ER, Hirsch BS, et al. Rare and fatal gastrointestinal mucormycosis (Zygomycosis) in a COVID-19 patient: a case report. Clin Endosc 2020;53:746–9.
25. Placik DA, Taylor WL, Wnuk NM. Bronchopleural fistula development in the setting of novel therapies for acute respiratory distress syndrome in SARS-CoV-2 pneumonia. Radiol Case Rep 2020;15:2378–81.
26. Mehta S, Pandey A. Rhino-orbital mucormycosis associated with COVID-19. Cureus 2020;12:e10726.
27. Pasero D, Sanna S, Liperi C, Piredda D, Branca GP, Casadalo L, et al. A challenging complication following SARS-CoV-2 infection: a case of pulmonary mucormycosis. Infection 2020;49:1055–60.
28. Fouad YA, Abdelaziz TT, Askoura A, Saleh MI, Mahmoud MS, Ashour DM, et al. Spike in rhino-orbital-cerebral mucormycosis cases presenting to a tertiary care center during the COVID-19 pandemic. Front Med 2021;8:645270.
29. Ashour MM, Abdelaziz TT, Ashour DM, Askoura A, Saleh MI, Mahmoud MS. Imaging spectrum of acute invasive fungal rhino-orbital-cerebral sinusitis in COVID-19 patients: a case series and a review of the literature. J Neurolordiol 2021;48:319–24.
30. Bayram N, Ozsaygili C, Sav H, Tekin Y, Gundogan M, Pangal E, et al. Susceptibility of severe COVID-19 patients to rhino-orbital mucormycosis fungal infection in different clinical manifestations. Jpn J Ophthalmol 2021;65:515–25.
31. Arana C, Cuevas Ramirez RE, Xipell M, Casals J, Moreno A, Herrera S, et al. Mucormycosis associated with COVID-19 in two kidney transplant patients. Transpl Infect Dis 2021;23:e13652.
32. Veysi A, Bagheri A, Eshaghi M, Rikhtehgar MH, Rezaei Kanavi M, Farjad R. Rhino-orbital mucormycosis during steroid therapy in COVID-19 patients: a case report. Eur J Ophthalmol 2021;51:11206271211009450.
33. Zuri C, Hoenigl M, Schulz E, Hatzi S, Gorkiewicz G, Krause R, et al. Autopsy proven pulmonary mucormycosis due to Rhizopus microsporus in a critically ill COVID-19 patient with underlying hematological malignancy. J Fungi (Basel) 2021;7:88.
34. Werthman-Ehrenreich A. Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am J Emerg Med 2021;42:264.e265–8.
35. Waizel-Haait S, Guerrero-Paz J, Sanchez-Hurtado L, Callejera-Alarcon S, Romero-Gutierrez L. A case of fatal rhino-orbital mucormycosis associated with new onset diabetic ketoacidosis and COVID-19. Cureus 2021;13:e13163.
36. Alekseyev K, Didenko L, Chaudhry B. Rhinocerebral mucormycosis and COVID-19 pneumonia. J Med Cases 2021;12:85–9.
37. Haut A, Huy NT. Rising incidence of mucormycosis in patients with COVID-19: another challenge for India amidst the second wave? Lancet Respir Med 2021;9:e777.
38. Sen M, Honavar SG, Bansal R, Sengupta S, Rao R, Kim U, et al. Epidemiology, clinical profile, management, and outcome of COVID-19-associated rhino-orbital-cerebral mucormycosis in 2,826 patients in India - collaborative OPAI-IJO Study on Mucormycosis in COVID-19 (COSMIC), Report 1. Indian J Ophthalmol 2021;69:1670–92.
39. Ismaiel WF, Abdelazim MH, Elsosky I, Ibrahim AA,Alsobky ME, Zafan E, et al. The impact of COVID-19 outbreak on the incidence of acute invasive fungal rhinosinusitis. Am J Otolaryngol 2021;42:103080.
40. Garg D, Muthu V, Sehgal IS, Ramachandran R, Kaur H, Bhalla A, et al. Coronavirus disease (Covid-19) associated mucormycosis (CAM): case report and systematic review of the literature. Mycopathologia 2021;186:289–98.
41. Moorthy A, Gaikwad R, Krishna S, Hegde R, Tripathi KK, Kale PG, et al. SARS-CoV-2, Uncontrolled diabetes and corticosteroids-An unholy trinity in invasive fungal infections of the maxillofacial region? A retrospective, multi-centric analysis. J Maxillofac Oral Surg 2021;20:1–8.
42. Rao R, Shetty AP, Nagesh CP. Orbital infarction syndrome secondary to rhino-orbital mucormycosis in a case of COVID-19: clinico-radiological features. Indian J Ophthalmol 2021;69:1627–30.
43. Revannavar SM, PS S, Samaga L, VK V. COVID-19 triggering mucormycosis in a susceptible patient: a new phenomenon in the developing world? BMJ Case Rep 2021;14:e241663.
44. Sai Krishna D, Raj H, Kurup P, Juneja M. Maxillofacial infections in COVID-19 era-actuality or the unforeseen: 2 Case reports. Indian J Otolaryngol Head Neck Surg 2021;2:34–5. https://doi.org/10.1007/s12070-021-02618-5.
45. Saldanha M, Reddy R, Vincent MJ. Paranasal mucormycosis in COVID-19 patient. Indian J Otolaryngol Head Neck Surg 2021;1–4. https://doi.org/10.1007/s12070-021-02574-0.
46. Sarkar S, Gokhale T, Choudhury SS, Deb AK. COVID-19 and orbital mucormycosis. Indian J Ophthalmol 2021;69:1002–4.
47. Meshram HS, Kute VB, Chauhan S, Desai S. Mucormycosis in post-COVID-19 renal transplant patients: a lethal complication in follow-up. Transpl Infect Dis 2021;23:e13663.
48. Nehara HR, Puri I, Singhal V, Iq S, Bishnoi BR, Sirohi P. Rhinocerebral mucormycosis in COVID-19 patient with diabetes a deadly trio: case series from the north-western part of India. Indian J Med Microbiol 2021;39:380–3.
