SCREENING-UL UNOR SOIURI ROMÂNEŞTI DE MĂR PENTRU GENELE DE REZISTENȚĂ LA RAPÂN

MOLECULAR SCREENING OF SOME ROMANIAN APPLE CULTIVARS FOR SCAB RESISTANCE GENES

Mădălina Militaru, Monica Sturzeanu, Adina Iancu
Research Institute for Fruit Growing Pitesti, Romania

*Corresponding author: Iancu Adina, email: aiancu@icdp.ro

Abstract

Apple scab, incited by the fungus Venturia inaequalis (Cke.) Wint., is a devastating disease of apple reported from almost all apple producing Romanian areas, which causes up to 70% losses of production. Molecular markers were used for detection of scab resistance genes in 22 old and introduced apple cultivars ('Romus 3', 'Romus 5', 'Rebra', 'Rustic', 'Nicol', 'Colmar', 'Colonade', registered by Research Institute for Fruit Growing Pitesti; 'Generos', 'Iris', 'Irisem', 'Luca', 'Ciprian', 'Cezar', 'Remar', 'Valery', 'Real', registered by Research Station for Fruit Growing Voinesti, Dambovita; 'Aura', 'Starkprim', 'Ionaprim', 'Bistritean', registered by Research Station for Fruit Growing Bistrita and old cultivars: 'Domnesc', 'Cretesc'). The presence of scab resistance genes were detected using the molecular markers: AL-07 (SCAR), AM19 (SCAR), VfC for Rvi6 (Vf) gene, AD13 (SCAR) for Rvi4 (Vr1) gene, OPL19 (SCAR) for Rvi2 (Vh2) and Rvi8 (Vh8) genes and OPB12 (STS) for Rvi5 (Vm) gene. The Rvi6 gene was detected in 17 cultivars from different breeding center. The marker AD13 presents in genome of 8 cultivars, such as 'Romus 3', 'Romus 5', 'Generos', 'Iris', 'Irisem', 'Cezar', 'Remar', 'Aura'. The Rvi5 gene was revealed in 3 cultivars ('Nicol', 'Generos', 'Irisem'), only.

Cuvinte cheie: Malus domestica, marker, ameliorare.

Keywords: Malus domestica, marker, breeding.

1. Introduction

Apples (Malus x domestica Borkh.) are one of the most important horticultural crop grown in temperate areas and most commonly consumed fruits in the world (Ferree and Warrington, 2003; Muneer et al., 2017). Apple is host to a wide range of pests and diseases and most of the commercial cultivars are susceptible. Scab disease, caused by the ascomycete fungus Venturia inaequalis (Cke) Wint. (anamorph: Spilocaea pomi Fries), negatively affects fruit size and quality, due to blemishes and poor ripening. Managing apple scab requires numerous treatments during the growing season and, unfortunately, the pathogen has already developed resistance to many classes of fungicides.

Several resistance genes were identified from wild cultivars or other progenies. An important source of resistance to scab is Vf gene (renamed Rvi6), derived from Malus floribunda 821 (Bus et al., 2009). It has been used extensively as an important source of scab resistance in commercial cultivars (Crosby et al., 1992), but a new scab race, designated race 6, overcomes Vf resistance, although the resistance of M. floribunda 821 itself remains effective (Parisi et al., 1993). It is suggested that M. floribunda 821 contains an additional gene for hypersensitivity (Vfh), which was lost early in breeding efforts (Parisi and Lespinasse, 1996). The Rvi4 (old named Vh4 = Vx = Vr1) gene was identified in the F$_2$ derivative TSR$_{33}$T$_{129}$ of Russian apple (Vincent et al., 2011). The Rvi2 (old named Vh2 = Vr-A) and Rvi8 (Vh8) genes are closely linked, if not allelic, but are clearly separate genes. A gene-for-gene (GfG) relationship was demonstrated for Rvi8 gene from Malus sieversii originated from the Tarbagatai mountain range in Kazahhstan (Vincent et al., 2011). Another important source of resistance to scab is Rvi5 (Vm) gene derived from the accession Malus x atrosanguinea 804 and M. x micromalus 245-38 (Dayton and Williams, 1970).

For durable resistance, new cultivars need to have several resistance genes incorporated. By traditional breeding, different sources of resistance can be introduced into one genotype.

The aim of this study was to screen 22 apple cultivars for the presence of five scab resistance genes employing a polymorphic sequence characterized amplified regions (SCAR) and sequence-tagged sites (STS) markers.
2. Material and methods

In our experiment, 22 apple cultivars were used for molecular screening. Two of all cultivars, 'Domnesc' and 'Crețesc', are known as old and scab susceptible cultivars (Table 1).

Young leaves from each cultivar were collected in plastic bags direct from an orchard at Genetic and Breeding Department of Research Institute for Fruit Growing Pitești, Romania. Total DNA was extracted from each cultivar using the kit extraction Isolate II Plant DNA (Bioline). Multi-locus genotyping of five apple scab resistance genes (Rvi2, Rvi4, Rvi5, Rvi6, Rvi8) was employed in all the cultivars using five SCAR markers and one STS marker (table 2).

The apple fresh ground with liquid nitrogen was distributed into a tube of 2mL (100 mg) and kept at -80°C. The amplification reaction of DNA was carried out using the MyTaq™ Red Mix in 0.2-mL tubes with 25µL final reaction volume and 18-20 ng of genomic DNA. Amplifications were performed in a Termocycler PCR FastGene Ultra Cycler Gradient. The amplification was performed after the following programs: AL07 and AM19 markers (initial denaturation step at 95°C for 1 min., followed by 35 cycles of 1 min at 94°C, 1 min at 60°C, 2 min. at 72°C and final extension 10 min at 72°C); VIC marker (initial denaturation step at 94°C for 4 min., followed by 30 cycles of 1 min at 94°C, 1 min at 58°C, 1 min at 72°C and final extension 7 min at 72°C); AD13 marker (initial denaturation step at 94°C for 2.45 min., followed by 30 cycles of 1 min at 94°C, 3 min at 58°C, 2 min at 72°C, followed by 1 cycle of 1 min at 94°C, 3 min at 58°C, 10 min at 72°C); OPL19 marker (initial denaturation step at 94°C for 2.45 min., followed by 40 cycles of 55 s at 94°C, 55 s at 55°C, 1.39 min at 72°C and final extension 10 min at 72°C); OPB12 marker (initial denaturation step at 94°C for 2.20 min., followed by 35 cycles of 30 s at 94°C, 1 min at 55°C, 1 min at 72°C and final extension 8 min at 72°C).

The amplified fragments were resolved in 2% agarose gel in a 10x TBE buffer, stained with midori green advance DNA Stain and visualization to combine Essential-V6WL26MX UV. The bands on the gels were transformed in binary data by being scored as "+" for the presence and "-" for absence of alleles for each cultivar per marker.

3. Results and discussions

Molecular markers linked to apple scab resistance would accelerate breeding by making it possible to select resistant individuals, regardless of the growth stage, interaction between resistance genes, source of inoculum or environmental conditions (Cheng et al., 1998).

To confirm the presence of Rvi6 (Vf) gene were used three markers: AL07, AM 19 and VIC. Marker AL07 produced two bands of 823 bp represents the recessive vf allele and of 570 bp represents the dominant allele Vf, so, it can be used for identification of homozygous and heterozygous genotypes. For all studied cultivars, primers for this marker were detected in 17 cultivars. It was absent in susceptible and resistant genotypes, hen they cannot be use to distinguish between resistant and susceptible cultivars on the basis of presence or absence of single band of gel.

To confirm Rvi4 gene was used AD13 marker which amplified two fragments 950 bp and 1,200 bp only in 8 cultivars: 'Romus 3', 'Romus 5', 'Generos', 'Iris', 'Crețesc', 'Remar', 'Remar', 'Aură', 'Starkprim', 'Jonaprim', 'Bistrițean'. The molecular marker AM19 proved to be highly useful because of its ability to distinguish resistant and susceptible cultivars on the basis of presence or absence of single band of gel.

To confirm Rvi5 gene was used AD13 marker which amplified two fragments 950 bp and 1,200 bp only in 8 cultivars: 'Romus 3', 'Romus 5', 'Generos', 'Iris', 'Crețesc', 'Remar', 'Remar', 'Aură', 'Starkprim', 'Jonaprim', 'Bistrițean', 'Domnesc', 'Crețesc'. Two of them ('Domnesc' and 'Crețesc' cvs.) are very susceptible to apple scab in the field.

Marker OPB12 amplified 850 bp (figure 6, table 3) in only three cultivars: 'Nicol', 'Generos' and 'Iris', susceptible and resistant to apple scab. Because OPL19 and OPB12 markers amplicon in both, susceptible and resistant genotypes, hence they cannot be use to distinguish between resistant and susceptible ones.

4. Conclusions

Romania has a large variety of apple cultivars released in different breeding programs for resistance to apple scab. The phenotypic evaluation of scab apple resistance is necessary to be complete with molecular screening using gene specific markers.

An examination of 22 Malus x domestica cultivars, including phenotypic susceptible and resistant cultivars, showed that they contained different PCR products. In our study, the frequencies of the
detected resistance alleles were about 59% for Rvi2 and Rvi8, 36% for Rvi4, 13.5% for Rvi5 and 77% for Rvi6.

Acknowledgements

This research was partially supported by the Romanian Ministry of Agriculture and Rural Development, ADER 7.2.2. „Implementation of new breeding methods of the fruit tree species in order to improve and reduce the time in the selection process”.

References

1. Afunian M.R., Goodwin P.H., Hunter D.M., 2004. Linkage of Vfa4 in Malus x domestica and Malus floribunda with Vf resistance to the apple scab pathogen Venturia inaequalis. Plant Pathology, 53: 461–467.
2. Boudichevskaia A., Flachowsky H., Peil A., Fischer C., Dunemann F., 2006. Development of a multiallelic SCAR marker for the scab resistance gene Vr1/Vh4/Vx from R12740-7A apple and its utility for molecular breeding. Tree Genetics & Genomes, 2(4): 186–195.
3. Bus V.G.M., Laurens F.N.D., Van de Weg W.E., Rusholme R.L., Rikkerink E.H.A., Gardiner S.E., Bassett H.C.M., Kodde L.P., Plummer M.K., 2005a. The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytologist, 166: 1035–1049.
4. Bus V.G.M., Rikkerink E., Aldwinckle H.S., Caffier V., Durel C.E., Gardiner S. et al., 2009. A proposal for the nomenclature of Venturia inaequalis races. Acta Hortic. 814(2): 739–746.
5. Cheng F.S., Weeden N.F., Brown S.K., Aldwinckle H.S., Gardiner S.E., Bus V.G., 1998. Development of a DNA marker for Vm, a gene conferring resistance to apple scab. Genome, 41: 208–214.
6. Crosby J.A., Janick J., Pacikinson P.C., Korban S.S., Connon P.A., 1992. Breeding apples for scab resistance. Fruit Varieties Journal 46: 145-166.
7. Dayton D.F. and Williams E.B., 1970. Additional allelic genes in Malus for scab resistance of two reaction types. J. Am. Soc. Hortic. Sci. 95: 735-736.
8. Ferre D.C., Warrington I.J., 2003. Apples: Botany, Production and Uses, CAB International, Wallington, Oxford, UK: 1-14.
9. Khajuria Y.P., Kauf S., Wafai B.A., Dhar M.K., 2014. Screening of apple germplasm of Kashmir Himalayas for scab resistance genes. Indian Journal of Biotechnology 13: 448-454.
10. Muneer Ahmad Sheikh, KM Bhat, Ji Mir, Sajad Un Nabi, MA Bhat, Hilal Ahmad, Wajida Shafai, Shafia Zaffer, Sumaira Jan, Waseem H Raja, 2017. Phenotypic and molecular screening for diseases resistance of apple cultivars and selections against apple scab (Venturia inaequalis). International Journal of Chemical Studies 5(4): 1107-1113.
11. Parisi L., Lespinasse Y., Guillaume J., Krüger, 1993. A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83: 533-537.
12. Parisi L. and Lespinasse Y., 1996. Pathogenicity of Venturia inaequalis strains of race 6 on apple clones (Malus sp.). Plant Dis. 80: 79-83.
13. Tartarini S., Gianfranceschi L., Sansavini S. and Gessler C., 1999. Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breed. 118(2): 183–186.
14. Vincent G.M.B., Erik H.A.R., Caffier V., Durel C.E., Plummer M.K., 2011. Review of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology 49: 391-413.
Tables and Figures

Table 1. Origin of Romanian apple cultivars

Cultivar	Parentage	Field phenotypic resistance to apple scab
Romus 3	unknown	resistant
Romus 5	Romus 3 x Prima	resistant
Rebra	Prima x Florina	moderately resistant
Rustic	Florina x Pionier	moderately resistant
Nicol	Mc Intosh Wijcik x Pionier	susceptible
Colmar	Mc Intosh Wijcik x Florina	resistant
Colonade	Florina x Mc Intosh Wijcik	resistant
Generos	(Parmain d’or x M. kaido) x (Jonathan x V53-39-2) x (Frumos de Voinesi x V60-6-51)	low susceptible
Iris	gamma radiation (8000 𝛾) of Prima seeds (o.p.)	resistant
Irisem	Starkrimson x Prima	low susceptible
Luca	Champion x Prima	resistant
Ciprian	Prima x Starkrimson	resistant
Cezar	Prima x Starkrimson	resistant
Remar	gamma radiation (5000 𝛾) of Prima seeds (o.p.)	resistant
Valery	Goldenspur x Florina	resistant
Real	gamma radiation (8000 𝛾) of Prima seeds (o.p.)	resistant
Aura	Prima x BN 33/39	resistant
Starkprim	Starkrimson x Prima	resistant
Jonaprim	Jonathan x Prima	resistant
Bistrițean	Starkrimson x Prima	resistant
Crețesc	unknown	high susceptible
Domnesc	unknown	high susceptible

*Unknown parentage

o.p. = open-pollinated

Table 2. Primers used for amplification of scab resistant genes

Gene (Gene name, type)	Name/ type marker	Primer sequence (5’→3’)	Fragment size (bp)	References	
Rvi6 (Vf)	AL07/ SCAR	F: TGGGAGAGATCCAGAAAGTG R: CATCCCTCCAATAATG 30	570; 823	 Khajuria și colab., 2014 Tartarini și colab., 1999	
Rvi6 (Vf)	AM19/ SCAR	F: CGTAGAACGGAATTTGACAGTG R: GACAAAGGGGTGAAGTGCTCC	526	Khajuria și colab., 2014	Tartarini și colab., 1999
Rvi6 (Vf)	VIC/ SCAR	F: GGTTCCTCTTGAAAGCTAG R: GGTTCCTCTGCCGAAGAAA	286; 484; 646	Afumian și colab., 2004	
Rvi4 (Vr1.Vh4, Vx)	AD13/ SCAR	F: CCTTCCTCTTGAAAGCTAG R: GGTTCCTCTGCCGAAGAAA	950; 1200	Boudichevskaia și colab., 2006	
Rvi8 (Vh2) Rvi8 (Vh8)	OPL19/ SCAR	F: ACCTGACCTACAATCTTGAGCTAATC R: GACCTGACATACTGCCGATATTTG	433; 1200	Bus și colab., 2005a	
Rvi5 (Vm)	OPB12/ STS	F: CCTTGAGCAGCTT R: CCTTGACGCATCTACG	687	Cheng și colab., 1998	
Table 3. Results of the molecular screening of the Romanian apple cultivars for scab resistance using molecular markers

Cultivar	Rvi2 OPL19	AD13	Rvi4 OPB12	Rvi5 AL07	Rvi6 AM19	Rvi8 VfC	OPL19
Romus 3	+	-	+	+	+	+	-
Romus 5	+	-	+	+	+	+	-
Rebra	-	-	-	+	+	+	-
Rustic	-	-	-	+	+	+	-
Nicol	-	-	+	-	-	-	-
Colmar	-	-	-	+	+	+	-
Colonade	-	-	-	+	+	+	-
Generos	-	+	+	-	-	-	-
Iris	-	+	-	+	+	+	-
Irisem	-	+	+	-	-	-	-
Luca	+	-	-	+	+	+	+
Ciprian	+	-	-	+	+	+	+
Cezar	+	+	-	+	+	+	+
Remar	+	+	-	+	+	+	+
Valery	+	-	-	+	+	+	-
Real	+	-	-	+	+	+	+
Aura	+	+	-	+	+	+	+
Starkprim	+	-	-	+	+	+	+
Jonaprim	+	-	-	+	+	+	+
Bistrițean	+	-	-	+	+	+	+
Crețesc	+	-	-	-	-	-	+
Domnesc	+	-	-	-	-	-	+

+/- = the presence/absence of the respective amplified allelic fragment linked to each resistance gene (Rvi2, Rvi4, Rvi5, Rvi6, Rvi8) in each cultivar.

Fig. 1. Amplification profile of the marker AL07

(L–ladder 50 pb, 1-‘Florina’, 2-‘Romus 3’, 3-‘Romus 5’, 4-‘Rebra’, 5-‘Rustic’, 6-‘Nicol’, 7-‘Colmar’, 8-‘Colonade’, 9-‘Generos’, 10 - ‘Iris’, 11 - ‘Irisem’, 12 - ‘Luca’, 13 - ‘Ciprian’, 14-‘Aura’, 15-‘Starkprim’, 16-‘Jonaprim’, 17-‘Bistrițean’, 18-‘Domnesc’, 19-‘Crețesc’, 20-‘Cezar’, 21-‘Remar’, 22-‘Valery’, 23-‘Real’)

9
Fig. 2. Amplification profile of the marker AM19
(L–ladder 50 pb, 1-'Florina', 2-'Romus 3', 3-'Romus 5', 4-'Rebra', 5-'Rustic', 6-'Nicol', 7-'Colmar', 8-'Colonade', 9-'Generos', 10 - 'Iris', 11 - 'Irisem', 12 - 'Luca', 13 - 'Ciprian', 14-'Aura', 15-'Starkprim', 16-'Jonaprim', 17-'Bistrițean', 18-'Domnesc', 19-'Cretesc', 20-'Cezar', 21-'Remar', 22-'Valery', 23-'Real')

Fig. 3. Amplification profile of the marker VfC
(L–ladder 50 pb, 1-'Florina', 2-'Romus 3', 3-'Romus 5', 4-'Rebra', 5-'Rustic', 6-'Nicol', 7-'Colmar', 8-'Colonade', 9-'Generos', 10 - 'Iris', 11 - 'Irisem', 12 - 'Luca', 13 - 'Ciprian', 14-'Aura', 15-'Starkprim', 16-'Jonaprim', 17-'Bistrițean', 18-'Domnesc', 19-'Cretesc', 20-'Cezar', 21-'Remar', 22-'Valery', 23-'Real')

Fig. 4. Amplification profile of the marker AD13
(L–ladder 50 pb, 1-'Florina', 2-'Romus 3', 3-'Romus 5', 4-'Rebra', 5-'Rustic', 6-'Nicol', 7-'Colmar', 8-'Colonade', 9-'Generos', 10 - 'Iris', 11 - 'Irisem', 12 - 'Luca', 13 - 'Ciprian', 14-'Aura', 15-'Starkprim', 16-'Jonaprim', 17-'Bistrițean', 18-'Domnesc', 19-'Cretesc', 20-'Cezar', 21-'Remar', 22-'Valery', 23-'Real')
Fig. 5. Amplification profile of the marker OPL19
(L–ladder 50 pb, 1-'Florina', 2-'Romus 3', 3-'Romus 5', 4-'Rebra', 5-'Rustic', 6-'Nicol', 7-'Colmar',
8-'Colonade', 9-'Generos', 10 - 'Iris', 11 - 'Irisem', 12 - 'Luca', 13 - 'Ciprian', 14-'Aura', 15-'Starkprim',
16-'Jonaprim', 17-'Bistrițean', 18-'Domnesc', 19-'Cretesc', 20-'Cezar', 21-'Remar', 22-'Valery', 23-'Real')

Fig. 6. Amplification profile of the marker OPB12
(L–ladder 50 pb, 1-'Florina', 2-'Romus 3', 3-'Romus 5', 4-'Rebra', 5-'Rustic', 6-'Nicol', 7-'Colmar',
8-'Colonade', 9-'Generos', 10 - 'Iris', 11 - 'Irisem', 12 - 'Luca', 13 - 'Ciprian', 14-'Aura', 15-'Starkprim',
16-'Jonaprim', 17-'Bistrițean', 18-'Domnesc', 19-'Cretesc', 20-'Cezar', 21-'Remar', 22-'Valery', 23-'Real')