Quantum codes do not increase fidelity against isotropic errors

J. Lacalle, L.M. Pozo-Coronado, A.L. Fonseca de Oliveira, R. Martín-Cuevas

January 2022

Abstract
Given an m-qubit Φ_0 and an (n, m)-quantum code C, let Φ be the n-qubit that results from the C-encoding of Φ_0. Suppose that the state Φ is affected by an isotropic error (decoherence), becoming Ψ, and that the corrector circuit of C is applied to Ψ, obtaining the quantum state $\tilde{\Phi}$. Alternatively, we analyze the effect of the isotropic error without using the quantum code C. In this case the error transforms Φ_0 into Ψ_0. Assuming that the correction circuit does not introduce new errors and that it does not increase the execution time, we compare the fidelity of Ψ, $\tilde{\Phi}$ and Ψ_0 with the aim of analyzing the power of quantum codes to control isotropic errors. We prove that $F(\Psi_0) \geq F(\tilde{\Phi}) \geq F(\Psi)$. Therefore the best option to optimize fidelity against isotropic errors is not to use quantum codes.

Keywords: quantum error correcting codes, isotropic quantum computing errors, quantum computing error fidelity, quantum computing error variance

1 Introduction
Currently the biggest obstacle to the development of quantum computing continues to be control of quantum errors. Since the beginnings of quantum computing in the 90s of the last century one of the main research objectives was to solve this stumbling block. To address the problem, two fundamental tools were...
developed: quantum error correction codes [1, 2, 3, 4, 5, 6] in combination with fault tolerant quantum computing [7, 8, 9, 10, 11, 12, 13]. These studies culminated in the proof of the quantum threshold theorem, which reads as follows: a quantum computer with a physical error rate below a certain threshold can, through application of quantum error correction schemes, suppress the logical error rate to arbitrarily low levels. However, the proof of this theorem depends on the discretized treatment of quantum errors, inherited from the construction of quantum codes.

We believe that the quantum error model used for the proof of the quantum threshold theorem is not general and that the techniques developed to control quantum errors do not verify the golden rule of error control: correct all small errors exactly. For example, in the case of the coding of a qubit by means of the 5-qubit code [14, 15] it is argued, using error discretization and that this code exactly corrects errors in any of the qubits, that the error probability goes from p to p^2, once the correction circuit has been applied. But, what is actually happening is that the probability of an error (small with high probability) in all qubits is 1 and that the code cannot correct these simultaneous errors. Then, an error occurs with probability 1 and, once the correction circuit is applied, it becomes undetectable.

Therefore it is necessary to make an analysis of quantum errors regardless of their discretization. The procedure indicated for this is to consider quantum errors as continuous random variables and characterize them by their corresponding density functions. In this article we analyze a specific type of error: isotropic quantum errors. An isotropic error of an n-qubit Φ is one in which the probability of the error Ψ only depends on the distance between the two states, $\|\Psi - \Phi\|$, and not on the direction in which the imprecision Ψ occurs with respect to Φ. They are errors that are easy to analyze due to their central symmetry with respect to Φ.

In work [16] we have studied the ability of an arbitrary quantum code to correct these errors, using the variance as the error measure. If Φ is the n-qubit without error state, Ψ the state resulting from a disturbance modeled by an isotropic quantum error and $\tilde{\Phi}$ the result of applying the quantum code correction circuit, assuming that it does not introduce new errors, the result that we demonstrate in [16] is the following:

$$V(\tilde{\Phi}) \geq V(\Psi),$$

where $V(\tilde{\Phi}) = E[\|\tilde{\Phi} - \Phi\|^2]$ and $V(\Psi) = E[\|\Psi - \Phi\|^2]$ are the variances of the corrected state $\tilde{\Phi}$ and the disturbed state Ψ respectively. This means that no quantum code can handle isotropic errors, or even reduce their variance.

Now we are interested in analyzing the ability of quantum codes to increase fidelity against isotropic errors, since the fidelity allows to measure the quantum errors taking into account that the quantum states do not change if they are multiplied by a phase factor, while the variance used in [16] does not take this fact into account.

We represent n-qubits as points of the unit real sphere of dimension $2d - 1$ being $d = 2^n$ [17], $S^{2d-1} = \{ x \in \mathbb{R}^{2d} \mid \|x\| = 1 \}$, taking coordinates with respect
to the computational basis $|0\rangle, |1\rangle, \ldots, |2^n - 1\rangle$,

$$\Psi = (x_0 + ix_1, x_2 + ix_3, \ldots, x_{2d-2} + ix_{2d-1}).$$ \hfill (1)

We consider quantum computing errors as random variables with density function defined on S^{2d-1}. In [16] it is mentioned that it is easy to relate this representation to the usual representation in quantum computing by density matrices and that the representation through random variables is more accurate.

We define the variance of a random variable X as the mean of the quadratic deviation from the mean value μ of X, $V(X) = E[\|X - \mu\|^2]$. In our case, since the random variable X represents a quantum computing error, the mean value of X is the n-qubit Φ resulting from an errorless computation. Without loss of generality, we will assume that the mean value of every quantum computing error will always be $\Phi = |0\rangle$. To achieve this, it suffices to move Φ into $|0\rangle$ through a unitary transformation. Therefore, using the pure quantum states given by Formula (1), the variance of X will be:

$$V(X) = E[\|\Psi - \Phi\|^2] = E[2 - 2x_0] = 2 - 2\int_{S^{2d-1}} x_0 f(x) dx. \hfill (2)$$

Obviously the variance satisfies $V(X) \in [0, 4]$. In [18] the variance of the sum of two independent errors on S^{2d-1} is presented for the first time. It is proved for isotropic errors and it is conjectured in general that:

$$V(X_1 + X_2) = V(X_1) + V(X_2) - \frac{V(X_1)V(X_2)}{2}. \hfill (3)$$

Considering the representation of errors through random variables, the definition of fidelity is very simple:

$$F^2(X) = E[|\langle \Psi|\Phi \rangle|^2] = E[x_0^2 + x_1^2] = \int_{S^{2d-1}} (x_0^2 + x_1^2) f(x) dx. \hfill (4)$$

Then, the problem we want to address is the following: Let Φ_0 be an m-qubit and Φ the corresponding n-qubit encoded by an (n,m)-quantum code C. Suppose that the coded state Φ is changed by error, becoming the state Ψ. While Φ is a pure state, Ψ and Φ are random variables (mixed states).

We also want to study the possibility of not using quantum codes. In this case, we suppose that the initial state Φ_0 is changed by error, becoming the state Ψ_0. State Ψ_0 is also a random variable. Then our goal is to compare the fidelities of Ψ, Φ and Ψ_0:

$$F(\Psi) = E[|\langle \Psi|\Phi \rangle|^2], \quad F(\Phi) = E[|\langle \Phi|\Phi \rangle|^2] \quad \text{and} \quad F(\Psi_0) = E[|\langle \Psi_0|\Phi_0 \rangle|^2].$$

In order to compare the fidelities we will assume that the corrector circuit of C does not introduce new errors and it does not increase the execution time. In other words, we are going to estimate the theoretical capacity of the code to correct quantum computing errors.
In the case of isotropic errors we shall prove that:

\[F(\Psi_0) \geq F(\tilde{\Phi}) \geq F(\Psi). \] (5)

This result leads us to the conclusion that the best option to optimize fidelity against isotropic errors is not to use quantum codes. This result goes in the same direction as that obtained in [16], which indicates that quantum codes do not reduce the variance against isotropic errors.

However, the most widely used model of errors in quantum computing is qubit independent errors. The study of this type of quantum error is much more complex than that of isotropic errors, because it does not have the same symmetry. Despite this technical difficulty, we have proved in [19] that the 5-qubit code [14, 15] is not able to reduce the variance against qubit independent errors. This result, together with those obtained in [16] and in this article, clearly reveals the difficulty of the quantum error control challenge and clearly shows that the continuous nature of quantum errors cannot be ignored.

There are many works related to the control of quantum computing errors, in addition to those already mentioned above. General studies and surveys on the subject [20, 21, 22, 23, 24, 25, 26, 27], about the quantum computation threshold theorem [28, 29, 30, 31], quantum error correction codes [32, 33, 34, 35], concatenated quantum error correction codes [36, 37] and articles related to topological quantum codes [38, 39]. Lately, quantum computing error control has focused on both coherent errors [40, 41] and cross-talk errors [42, 43]. Finally, we cannot forget the hardest error to control in quantum computing, the quantum decoherence [44]. As we have commented above, these quantum computing errors can be analyzed in the framework of random variables that has been set in [16, 17]. In the conclusions we analyze in more detail the characteristics of the different types of error from the point of view of their control and in view of the result obtained in this paper.

The outline of the article is as follows: in section 2 we study the fidelity of the quantum stages \(\Psi, \Psi_0 \) and \(\tilde{\Phi} \); in section 3 we prove the relationship between them given by Formula (5); finally, in section 4 we analyze the conclusions that can be obtained from the proved result.

2 Analysis of fidelity

Associated with the \((n, m)\)-quantum code \(\mathcal{C} \), the following parameters are defined: \(d = 2^n \) is the dimension of \(\mathcal{C} \), \(d' = 2^m \) and \(d'' \) is the number of discrete errors that \(\mathcal{C} \) corrects.

First we are going to study how we can compare the fidelity of the quantum states \(\Psi \) and \(\tilde{\Phi} \), which are \(n \)-qubits encoded with the quantum code \(\mathcal{C} \), and the fidelity of the state \(\Psi_0 \), which is an unencoded \(m \)-qubit state. The working scheme in these two scenarios is illustrated in Figure 2. We assume that the \(\mathcal{C} \) correction circuit, which is applied after each quantum gate in the coded algorithm, does not introduce new errors and is ideally applied for a time \(t = 0 \). In this way we study the theoretical capacity of \(\mathcal{C} \) to control isotropic errors,
that is, its capacity to increase the fidelity of the final state $\tilde{\Phi}$ with respect to Ψ, and we can compare it with the fidelity of the final state Ψ_0 in the scheme without the quantum code C.

We analyze the isotropic error as a decoherence error over a unit of time, which corresponds to the time it takes to apply a quantum gate in the coded algorithm. To compare it with the uncoded algorithm we have to bear in mind that the unit of time in this case will be at most the n–th part of the unit of time in the coded algorithm. To relate the probability distributions in both cases we use the following equality of variances:

$$V(E) = V(E_1 + E_2 + \cdots + E_n),$$

where E is the decoherence error during a unit of time in the coded algorithm and E_1, E_2, \ldots, E_n are independent decoherence errors corresponding to a unit of time in the uncoded algorithm. Using the following generalization of Formula (3) demonstrated in [18]:

$$V(E_1 + E_2 + \cdots + E_n) = 2 - 2 \left(1 - \frac{v_u}{2}\right)^n,$$ \hspace{1cm} (6)

where v_u is the variance of each of the independent errors, we obtain the following relation of v_u with the variance v_c of the error E:

$$v_c = 2 - 2 \left(1 - \frac{v_u}{2}\right)^n \quad \Leftrightarrow \quad v_u = 2 - 2 \left(\frac{2 - v_c}{2}\right)^{1/n}. \hspace{1cm} (7)$$

In the case of the normal probability distribution defined in [16] [18], with the following density function:

$$f_n(\sigma, \theta_0) = \frac{(2d - 2)!!}{(2\pi)^d} \frac{(1 - \sigma^2)}{(1 + \sigma^2 - 2\sigma \cos(\theta_0))^d}, \hspace{1cm} (8)$$

Figure 1: Uncoded/coded work scheme.
where the parameter σ belongs to the interval $[0, 1)$, the above variances have a very simple expression and are independent of the dimension: $v_c = 2(1 - \sigma_c)$ and $v_u = 2(1 - \sigma_u)$. The relationship between them given in Formula (7) translates into a very simple relationship between the corresponding sigma parameters:

$$\sigma_c = \sigma_u^n \Rightarrow \sigma_u = \sigma_c^{1/n}.$$ \hspace{1cm} (9)

From now on we are going to follow the scheme proposed in [16] to calculate the variances of states Ψ and $\tilde{\Phi}$, but to calculate the fidelities of these states and of state Ψ_0.

2.1 Fidelity of Ψ and Ψ_0

The state Ψ, described in Cartesian coordinates in Formula (1) is represented in spherical coordinates as follows:

$$\Psi = (\theta_0, \theta_1, \ldots, \theta_{2d-2}) \begin{cases} 0 \leq \theta_0, \ldots, \theta_{2d-3} \leq \pi, \\ 0 \leq \theta_{2d-2} \leq 2\pi \end{cases},$$

$$x_j = \sin(\theta_0) \cdots \sin(\theta_{j-1}) \cos(\theta_j) \text{ for all } 0 \leq j \leq 2d-2,$$

$$x_{2d-1} = \sin(\theta_0) \cdots \sin(\theta_{2d-2}).$$

Using this representation of Ψ, the fidelity entered in Formula (4) is as follows:

$$F^2(X) = E\left[\cos^2(\theta_0) + \sin^2(\theta_0) \cos^2(\theta_1)\right] = 1 - E\left[\sin^2(\theta_0) \sin^2(\theta_1)\right]. \hspace{1cm} (10)$$

Theorem 1. The fidelity of the isotropic random variable Ψ with density function $f(\theta_0)$ is equal to:

$$F^2(\Psi) = 1 - 4 \left(\frac{2\pi}{2d-1}\right)^{d-1} \left(\frac{d-1}{2d-4}\right)! \left(\frac{2d-2}{2d-1}\right)! E[\sin^{2d}(\theta_0)], \hspace{1cm} (11)$$

where $E[\sin^{2d}(\theta_0)] = \int_0^\pi f(\theta_0) \sin^{2d}(\theta_0) d\theta_0$.

Proof. We have to calculate the expected value of an expression that depends only on angles θ_0 and θ_1 and the isotropic density function depends only on angle θ_0. Therefore, using Formula (10):

$$F^2(\Psi) = 1 - |S^{2d-3}| E[\sin^{2d}(\theta_0)] \int_0^\pi \sin^{2d-1}(\theta_1) d\theta_1$$

$$= 1 - \frac{(2\pi)^{d-1}}{(2d-1)!} \left(\frac{2d-2}{2d-4}\right)! \left(\frac{2d-2}{2d-1}\right)! E[\sin^{2d}(\theta_0)]$$

$$= 1 - 4 \left(\frac{2\pi}{2d-1}\right)^{d-1} \left(\frac{d-1}{2d-4}\right)! \left(\frac{2d-2}{2d-1}\right)! E[\sin^{2d}(\theta_0)].$$

We have used equalities from the Appendix. \hfill \Box
Corollary 1. The fidelity of the isotropic random variable Ψ with normal distribution $f_n(\sigma_c, \theta_0)$ is equal to:

$$F^2(\Psi) = \frac{1 + (d - 1)\sigma^2_c}{d}.$$ (12)

Proof. Using the definition of the normal distribution given in Formula (8) and the Appendix:

$$F^2(\Psi) = 1 - 4 \frac{(2\pi)^{d-1}}{(2d - 1)!!} (d - 1) \bar{E}[\sin^{2d}(\theta_0)]$$

$$= 1 - 4 \frac{(2\pi)^{d-1}}{(2d - 1)!!} (d - 1) \frac{(2d - 2)!!}{(2\pi)^d} (1 - \sigma^2_c) \frac{(2d - 1)!!}{(2d)!!} \pi$$

$$= 1 - \frac{d - 1}{d} (1 - \sigma^2_c) = \frac{1 + (d - 1)\sigma^2_c}{d}.$$

Theorem 1 and Corollary 1 also apply to state Ψ_0, changing the parameter d to d'.

Corollary 2. The fidelity of the isotropic random variable Ψ_0 with density function $f(\theta_0)$ is equal to:

$$F^2(\Psi_0) = 1 - 4 \frac{(2\pi)^{d'-1}}{(2d' - 1)!!} (d' - 1) \bar{E}[\sin^{2d'}(\theta_0)],$$ (13)

where $\bar{E}[\sin^{2d'}(\theta_0)] = \int_0^\pi f(\theta_0) \sin^{2d'}(\theta_0) d\theta_0$. And, if the probability distribution of Ψ_0 is normal with density function $f_n(\sigma_u, \theta_0)$, the fidelity is equal to:

$$F^2(\Psi_0) = \frac{1 + (d' - 1)\sigma^2_u}{d'}.$$ (14)

To compare the fidelities of Ψ_0 and $\tilde{\Phi}$ we need to obtain their values as a function of their variances ν_u and ν_c respectively. The relationship between these variances obtained in Formula (7) will allow us to relate the fidelities of these states.

Theorem 2. The fidelity of the isotropic random variable Ψ_0 with density function $f(\theta_0)$ satisfy:

$$F^2(\Psi_0) \geq 1 - \frac{2d' - 2}{2d' - 1} \left(\nu_u - \left(\frac{\nu_u}{2} \right)^2 \right).$$ (15)
Proof. First we prove, similar to the proof of Theorem 1, the following:

\[F_2(\Psi_0) = 1 - |S^{2d'-3}| E[\sin^{2d'}(\theta_0)] \int_0^{\pi} \sin^{2d'-1}(\theta_1) d\theta_1 \]

\[= 1 - |S^{2d'-3}| E[\sin^{2d'}(\theta_0)] \int_0^{\pi} \sin^{2d'-3}(\theta_1) d\theta_1 \int_0^{\pi} \sin^{2d'-1}(\theta_1) d\theta_1 \]

\[= 1 - \int_{S^{2d'-1}} f(\theta_0) \sin^2(\theta_0) \int_0^{\pi} \sin^{2d'-3}(\theta_1) d\theta_1 \]

And, using the formulas in the Appendix, we obtain:

\[F_2(\Psi_0) = 1 - E[\sin^2(\theta_0)] \frac{2d'' - 2}{2d' - 1}. \]

Using Jensen’s inequality we obtain a lower bound for \(E[\sin^2(\theta_0)] \):

\[(E[1 - \cos(\theta_0)])^2 \leq E[(1 - \cos(\theta_0))^2] \]

\[= E[1 + \cos^2(\theta_0) - 2 \cos(\theta_0)] \]

\[= E[2 - 2 \cos(\theta_0) - \sin^2(\theta_0)] \]

\[= v_u - E[\sin^2(\theta_0)]. \]

And then:

\[E[\sin^2(\theta_0)] \leq v_u - (E[1 - \cos(\theta_0)])^2 = v_u - \left(\frac{v_u}{2}\right)^2. \]

Substituting in the formula of \(F_2(\Psi_0) \) the previous lower bound of \(E[\sin^2(\theta_0)] \), the proof is concluded:

\[F_2(\Psi_0) \geq 1 - \frac{2d'' - 2}{2d' - 1} \left(v_u - \left(\frac{v_u}{2}\right)^2 \right). \]

2.2 Fidelity of \(\tilde{\Phi} \)

The formula for the fidelity of the state \(\tilde{\Phi} \) is very similar to that of the state \(\Psi \), Formula (11), although the proof is more complex because the quantum code \(\mathcal{C} \) is involved.
Theorem 3. The fidelity of the isotropic random variable $\hat{\Phi}$ with density function $f(\theta_0)$ is equal to:

$$F^2(\hat{\Phi}) = 1 - 4 \left(\frac{(2\pi)^{d-1}}{(2d-1)!!} \right) (d - d') \bar{E} \left[\sin^{2d}(\theta_0) \right], \quad (16)$$

where $\bar{E} \left[\sin^{2d}(\theta_0) \right] = \int_0^\pi f(\theta_0) \sin^{2d}(\theta_0)d\theta_0$.

Proof. Taking into account Theorem 3 and Corollary 1 of [16] the fidelity of $\tilde{\Phi}$ is the following:

$$F^2(\tilde{\Phi}) = E \left[P_0 | \langle \Phi | \Pi_0 \Psi \rangle |^2 \right] + (d' - 1) E \left[P_1 | \langle E_1 \Phi | \Pi_1 \Psi \rangle |^2 \right].$$

where P_0 and P_1 are the probabilities of measuring the syndromes 0 and 1 respectively, Π_0 and Π_1 the (normalized) projectors corresponding to the discrete errors $E_0 = I$ and E_1 associated with the aforementioned syndromes and $E_1 \Phi = E_1 |0\rangle = |2d'\rangle$.

The first expected value in the above expression is equal to $F^2(\Psi)$ by the Formula (10) and, using Theorem 4 it is obtained:

$$E \left[P_0 | \langle \Phi | \Pi_0 \Psi \rangle |^2 \right] = E \left[1 - \sin^2(\theta_0) \sin^2(\theta_1) \right] = 1 - 4 \left(\frac{(2\pi)^{d-1}}{(2d-1)!!} \right) (d - 1) \bar{E} \left[\sin^{2d}(\theta_0) \right].$$

And the second is the following:

$$E \left[P_1 | \langle E_1 \Phi | \Pi_1 \Psi \rangle |^2 \right] = E \left[\sin^2(\theta_0) \cdots \sin^2(\theta_{2d'-1}) \left(1 - \sin^2(\theta_{2d'}) \sin^2(\theta_{2d'+1}) \right) \right].$$

Using the Appendix the following is obtained:

$$E \left[\sin^2(\theta_0) \cdots \sin^2(\theta_{2d'-1}) \right] = \bar{E} \left[\sin^{2d}(\theta_0) \right]$$

$$\cdot \int_0^\pi \sin^{2d-1}(\theta_0)d\theta_1 \cdots \int_0^\pi \sin^{2d-2d'+1}(\theta_{2d'-1})d\theta_{2d'-1} S_{2d-2d'-1}$$

$$= \bar{E} \left[\sin^{2d}(\theta_0) \right] 2 \frac{(2d - 2)!!}{(2d - 1)!!} \frac{(2d - 3)!!}{(2d - 2)!!} \cdots 2 \frac{(2d - 2d')!!}{(2d - 2d' + 1)!!} \frac{(2\pi)^{d-d'}}{(2d - 2d' - 2)!!}$$

$$= \bar{E} \left[\sin^{2d}(\theta_0) \right] 4 \frac{(2\pi)^{d-1}}{(2d - 1)!!} (d - d').$$

Similarly we obtain:

$$E \left[\sin^2(\theta_0) \cdots \sin^2(\theta_{2d'+1}) \right] = \bar{E} \left[\sin^{2d}(\theta_0) \right] 4 \frac{(2\pi)^{d-1}}{(2d - 1)!!} (d - d' - 1).$$
With the last two results the following is obtained:

$$E \left[P_1 | \langle E_1 \Phi | \Pi_1 \Psi \rangle \right]^2 = E[\sin^{2d}(\theta_0)] \frac{(2\pi)^{d-1}}{(2d-1)!!}. $$

Finally we get the result we are looking for:

$$F^2(\tilde{\Phi}) = E \left[P_0 | \langle \Phi | \Pi_0 \Psi \rangle \right]^2 + (d'' - 1)E \left[P_1 | \langle E_1 \Phi | \Pi_1 \Psi \rangle \right]^2$$

$$= 1 - E[\sin^{2d}(\theta_0)] \frac{(2\pi)^{d-1}}{(2d-1)!!} (d'' - (d'' - 1))$$

$$= 1 - E[\sin^{2d}(\theta_0)] \frac{(2\pi)^{d-1}}{(2d-1)!!} (d - d').$$

\[\square \]

If the probability distribution of \(\Psi \) is normal the fidelity of \(\tilde{\Phi} \) is much simpler.

Corollary 3. If \(\Psi \) has a normal probability distribution with parameter \(\sigma_c \) the fidelity of \(\tilde{\Phi} \) satisfies:

$$F^2(\tilde{\Phi}) = 1 + \frac{(d' - 1)\sigma^2}{d''}.$$

Proof. To prove the result, it is enough to substitute in Theorem 3 the value of the integral \(E[\sin^{2d}(\theta_0)] \) from the Appendix and consider that \(d = d'd'' \).

To compare the fidelities of \(\Psi_0 \) and \(\tilde{\Phi} \) we need to obtain \(F^2(\tilde{\Phi}) \) as a function of the variances \(v_c \) of the state \(\Psi \).

Theorem 4. If the state \(\Psi \) has an isotropic distribution with density function \(f(\theta_0) \) such that:

$$\int_0^\pi (1 - \cos(\theta_0)) \cos(\theta_0) f(\theta_0) \geq 0, $$

the fidelity of \(\tilde{\Phi} \) satisfies:

$$F^2(\tilde{\Phi}) \leq 1 - \frac{d''}{2d' - 1} v_c.$$

Proof. First we prove, similar to the proofs of Theorems 1 and 2 the following:

$$F^2(\tilde{\Phi}) = 1 - 4 \left(\frac{(2\pi)^{d-1}}{(2d-1)!!} \frac{d''}{d'} \right) E \left[\sin^{2d}(\theta_0) \right]$$

$$= 1 - 4 \left(\frac{(2\pi)^{d-1}}{(2d-1)!!} \frac{(2d - 3)!!}{2(2\pi)^{d-1}} \right) (d - d'') E \left[\sin^2(\theta_0) \right]$$

$$= 1 - 2 \frac{d - d''}{2d - 1} E \left[\sin^2(\theta_0) \right].$$

10
Now, using Formula (18), we obtain the following lower bound:

\[
E \left[\sin^2(\theta_0) \right] = E \left[(1 - \cos(\theta_0))(1 + \cos(\theta_0)) \right] \\
\geq E \left[1 - \cos(\theta_0) \right] = \frac{\nu_c}{2}.
\]

The proof is concluded by introducing the previous lower bound in the expression obtained for \(F^2(\tilde{\Phi})\).

\[\square\]

3 Relationship between the fidelity of the states \(\Psi_0, \tilde{\Phi}\) and \(\Psi\)

The results obtained in the previous section allow us to easily prove the following theorem.

Theorem 5. If the state \(\Psi\) has an isotropic distribution the following relationship between the fidelities of \(\tilde{\Phi}\) and \(\Psi\) holds:

\[
F^2(\tilde{\Phi}) \geq F^2(\Psi). \tag{20}
\]

Proof. Theorems 1 and 3 allow us to prove the result directly, considering that \(d - 1 \geq d - d''\).

\[\square\]

To compare the fidelities of states \(\Psi_0\) and \(\tilde{\Phi}\) we need to use Theorems 2 and 4. However, we must establish a previous result in order to establish the relationship between these states.

Lemma 1. Given \(n \in \mathbb{N}\), \(n \geq 2\), and \(x \in \mathbb{R}\), \(0 \leq x \leq 4\), the following is satisfied:

\[
g(n, x) = 2 - 2 \left(1 - \frac{x}{2}\right)^n - \left(x - \left(\frac{x}{2}\right)^2\right) \geq 0.
\]

Proof. The change of variable \(y = \left(1 - \frac{x}{2}\right)^n\) allows us to better analyze the function:

\[
g(n, y) = 1 + y^2 - 2y^n \quad \text{and} \quad x \in [0, 4] \iff y \in [-1, 1].
\]

Property 1, \(y^2 \geq |y^n|\) for all \(y \in [-1, 1]\) allows us to conclude that \(g(n, y) \geq 0\) for all \(y \in [-1, 1]\) and this shows that:

\[
g(n, x) \geq 0 \quad \text{for all} \quad x \in [0, 4].
\]

\[\square\]

The previous lemma allows us to obtain the main result of this article.
Theorem 6. If states Ψ_0 and Ψ have isotropic distributions with variances v_u and v_c respectively and the density function of Ψ satisfies Formula (18), the following relationship between the fidelities of Ψ_0 and Φ holds:

$$F^2(\Psi_0) \geq F^2(\tilde{\Phi}).$$

(21)

Proof. Theorems 2 and 4 allow us to prove the result, just establishing that the following inequality holds:

$$d - d'' \geq 2d'' - 2\left(v_u - \left(\frac{v_u}{2} \right)^2 \right).$$

Taking into account that $d = d''$ the above inequality is equivalent to the following:

$$v_c \geq 2d'' \left(v_u - \left(\frac{v_u}{2} \right)^2 \right).$$

Using the fact that $d'' \geq 2$ would suffice to prove the first of the following two inequalities:

$$v_c \geq v_u - \left(\frac{v_u}{2} \right)^2 \geq 2d'' \left(v_u - \left(\frac{v_u}{2} \right)^2 \right).$$

Substituting the value of v_c given in Formula (7) and using the function $g(n, x)$ of Lemma 1 we have:

$$v_c \geq v_u - \left(\frac{v_u}{2} \right)^2 \iff g(n, v_u) \geq 0.$$

Finally, Lemma 1 allows us to conclude the proof, using the fact that the variance $v_u \in [0, 4]$.

If the isotropic distributions of Ψ and Ψ_0 are normal the condition given in Formula (18) for Theorems 4 and 6 is not necessary. Indeed, Corollaries 1, 2 and 3 clearly imply that:

$$F(\Psi_0) \geq F(\tilde{\Phi}) \geq F(\Psi).$$

(22)

On the other hand, the condition given by Formula (18) for Theorems 4 and 6 is a sufficient condition. However, it is not necessary because it has been obtained by underestimating the fidelity of Ψ_0 and overestimating that of $\tilde{\Phi}$. It is verified for very general isotropic distributions, such as for density functions $f(\theta_0)$ that satisfy the following:

$$f(\theta_0) = 0 \quad \text{for all} \quad \theta_0 \in \left(\frac{\pi}{2}, \pi \right).$$

Figure 3 shows the curves of $F^2(\Psi_0)$, $F^2(\tilde{\Phi})$ and $F^2(\Psi)$ for normal isotropic distributions and $n = 5$ ($d = 32$), in the extreme cases $d'' = 16$ ($d'' = 2$) and $d' = 2$ ($d'' = 16$).
The conclusion of the study carried out in this article, in view of the results summarized in Formula (22), is that the best option to obtain the highest fidelity against isotropic errors is not to use quantum codes. On the other hand, the improvement of the fidelity of $\tilde{\Phi}$ versus that of Ψ seems to be closely related to the dimension of the subspaces to which these states belong: d' for $\tilde{\Phi}$ versus d for Ψ. See Theorems 1 and 3 and Corollaries 1 and 3.

4 Conclusions

In this article we have analyzed the ability of quantum codes to increase fidelity of quantum states affected by isotropic decoherence errors. The results obtained, despite being those expected for this type of quantum errors, are not good from the point of view of controlling errors in quantum computing. The ability of quantum codes to reduce errors does not compensate the multiplication of the number of gates that they require. This fact implies that the best option against isotropic errors is not to use quantum codes. This result is similar to that obtained in [16]: quantum codes do not reduce the variance of isotropic errors; and in [19]: the 5-qubit quantum code do not reduce the variance of qubit independent errors. The last result is more worrying since it negatively affects the standard model of error in quantum computing. For this reason, it would be important to study the behavior of fidelity in this case.

These results indicate that continuous errors must be taken into account, since it is not possible to ensure that the golden rule of error control “correct all small errors exactly” is fulfilled. Therefore, the study of the stochastic model of quantum errors, focused on discrete errors, must be extended to continuous errors.

For future research, we believe that the continuous quantum computing error model should be further developed. The results on the ability of quantum codes to increase the fidelity or to reduce the variance of quantum errors should be extended to other types of error. It is also important to develop models of the behavior of quantum errors in highly entangled quantum systems. We need
to know better the behavior of errors in this type of systems so important for quantum computing. Finally, all these approaches should allow a reformulation of fault-tolerant quantum computing for continuous errors.

5 Appendix

The values of the integrals that have been used throughout the article are included in this Appendix.

\[\int_0^\pi \sin^k(\theta) d\theta = \begin{cases} \frac{2}{k!!} \frac{(k - 1)!!}{k!!} & k = 1, 3, 5, \ldots \\ \frac{\pi}{k!!} & k = 2, 4, 6, \ldots \end{cases} \]

\[\int_0^\pi \frac{\sin^{2d-2}(\theta)}{(1 + \sigma^2 - 2\sigma \cos(\theta))^d} d\theta_0 = \frac{(2d - 3)!!}{(2d - 2)!!} \frac{\pi}{(1 - \sigma^2)} \]

\[\int_0^\pi \frac{\cos(\theta_0) \sin^{2d-2}(\theta_0)}{(1 + \sigma^2 - 2\sigma \cos(\theta_0))^d} d\theta_0 = \frac{(2d - 3)!!}{(2d - 2)!!} \frac{\sigma}{(1 - \sigma^2)} \pi \]

\[\int_0^\pi \frac{\sin^d(\theta_0)}{(1 + \sigma^2 - 2\sigma \cos(\theta_0))^d} d\theta_0 = \frac{(2d - 1)!!}{(2d)!!} \pi^{-d} \]

Starting from the first integral, the surface of a unit sphere of arbitrary even \((2d)\) or odd \((2d - 1)\) dimension can be calculated.

\[|S_{2d}| = \int_0^\pi \cdots \int_0^\pi \int_0^{2\pi} \sin^{2d-1}(\theta_0) \cdots \sin^1(\theta_{2d-2}) d\theta_0 \cdots d\theta_{2d-2} d\theta_{2d-1} \]

\[= 2 \frac{(2d - 2)!!}{(2d - 1)!!} \frac{(2d - 3)!!}{(2d - 2)!!} \pi \frac{2}{(2d - 4)!!} \cdots \frac{(2 - 1)!!}{2!!} \frac{2 (1 - 1)!!}{1!!} \frac{2 \pi}{2} \]

\[= \frac{2 (2\pi)^d}{(2d - 1)!!} \]

\[|S_{2d-1}| = \int_0^\pi \cdots \int_0^\pi \int_0^{2\pi} \sin^{2d-2}(\theta_0) \cdots \sin^1(\theta_{2d-3}) d\theta_0 \cdots d\theta_{2d-3} d\theta_{2d-2} \]

\[= \frac{(2d - 3)!!}{(2d - 2)!!} \pi \frac{2}{(2d - 4)!!} \cdots \frac{(2 - 1)!!}{2!!} \frac{2 (1 - 1)!!}{1!!} \frac{2 \pi}{2} \]

\[= \frac{(2\pi)^d}{(2d - 2)!!} \]
References

[1] Calderbank. A.R., Shor, P.W., Good quantum error-correcting codes exist, Phys. Rev. A 54, 1098–1105 (1996).

[2] Steane, A.M., Multiple particle inference and quantum error correction, Proc. Roy. Soc. A 452, 2551 (1996).

[3] Gottesman, D., Class of quantum error correcting codes saturating the quantum Hamming boud, Phys. Rev. A 54, 1862 (1996).

[4] Calderbank, A.R., Rains, E.M., Shor, P. W., Sloane, N.J.A., Quantum Error Correction and Orthogonal Geometry, Phys. Rev. Lett. 78, 405 (1997).

[5] Gottesman, D., Stabilizer Codes and Quantum Error Correction (thesis), California Institute of Technology, 1997.

[6] Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A., Quantum error correction via codes over GF(4), IEEE Trans. Inf. Theory. 44(4), 1369–1387 (1998).

[7] Shor, P.W., Fault-tolerant quantum computation, Proceedings of 37th Conference on Foundations of Computer Science, 14-16 October 1996; Burlington, VT, USA; IEEE Comput. Soc. Press, 56–65 (1996); [arXiv:quant-ph/9605011](http://arxiv.org/abs/quant-ph/9605011). DOI: 10.1109/SFCS.1996.548464.

[8] Steane, A.M., Active stabilization, quantum computation and quantum state synthesis, Phys. Rev. Lett. 78, 2252 (1997).

[9] Preskill, J., Reliable quantum computers, Proc. Roy. Soc. Lond. A 454, 385–410 (1998).

[10] Gottesman, D., Theory of fault-tolerant quantum computation, Phys. Rev. A 57, 127–137 (1998).

[11] Knill, E., Laflamme, R., Zurek, W.H., Resilient Quantum Computation, Science 279(5349), 342–345 (1998); [arXiv:quant-ph/9702058v1](http://arxiv.org/abs/quant-ph/9702058v1). DOI: 10.1126/science.279.5349.342

[12] Kitaev, A.Yu., Fault-tolerant quantum computation by anyons, Annals of Physics 303(1), 2–30 (2003); [arXiv:quant-ph/9707021](http://arxiv.org/abs/quant-ph/9707021). DOI: 10.1016/S0003-4916(02)00018-0

[13] Aharonov, D., Ben-Or, M., Fault-Tolerant Quantum Computation with Constant Error Rate, SIAM Journal on Computing 38(4), 1207–1282 (2008). [arXiv:quant-ph/9906129](http://arxiv.org/abs/quant-ph/9906129). DOI: 10.1137/S0097539799359385

[14] Bennet, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K., Mixed state entanglement and quantum error correction, Los Alamos Physics Preprint Archive [http://xxx.lanl.gov/abs/quant-ph/9909058](http://arxiv.org/abs/quant-ph/9909058) (1999).
[15] Laflamme, R., Miquel, C., Paz, J.-P., Zurek, W.H., Perfect quantum error correction codes, *Phys. Rev. Lett.* 77, 198 (1996). Los Alamos Physics Preprint Archive http://xxx.lanl.gov/abs/quant-ph/9602019.

[16] Lacalle, J., Pozo-Coronado, L.M., Fonseca de Oliveira, A.L., Quantum codes do not fix isotropic errors. Quantum Inf Process 20, 37 (2021).

[17] Nielsen, M.A., Chuang, I.L., *Quantum Computation and Quantum Information*, Cambridge University Press, 2010.

[18] Lacalle, J., Pozo Coronado, L.M., Variance of the sum of independent quantum computing errors, *Quantum Information & Computation* 19 (15-16), 1294–1312 (2019).

[19] Lacalle, J., Pozo Coronado, L.M., Fonseca de Oliveira, A.L., Martín-Cuevas, R., Quantum Codes Do Not Fix Qubit Independent Errors, *American Journal of Information Science and Technology* 9(3), 60–72 (2021).

[20] Scott, A.J., Probabilities of Failure for Quantum Error Correction, *Quantum Inf Process* 4, 399–431 (2005). https://doi.org/10.1007/s11128-005-0002-1

[21] Preskill, J., Sufficient condition on noise correlations for scalable quantum computing, *Quantum Information & Computation* 13(3-4), 181–194 (2013).

[22] Gottesman, D., Fault-tolerant quantum computation with constant overhead, *Quantum Information & Computation* 14(15), 1338–1372 (2014).

[23] Cross, A.W., Divincenzo, D.P., Terhal, B.M., A comparative code study for quantum fault tolerance, *Quantum Information & Computation* 9(7), 541–572 (2009).

[24] Hill, C.D., Fowler, A.G., Wang, D.S., Hollenberg, L.C.L., Fault-tolerant quantum error correction code conversion, *Quantum Information & Computation* 13(5), 439–451 (2013).

[25] Duclos-Cianci, G., Poulin, D., Fault-tolerant renormalization group decoder for abelian topological codes, *Quantum Information & Computation* 14(9), 721–740 (2014).

[26] Hocker, D., Zheng, Y., Kosut, R., Brun, T., Rabitz, H., Survey of control performance in quantum information processing, *Quantum Inf Process* 15, 4361–4390 (2016). https://doi.org/10.1007/s11128-016-1406-9

[27] Hocker, D., Kosut, R., Rabitz, H., PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems, *Quantum Inf Process* 15, 3489–3518 (2016). https://doi.org/10.1007/s11128-016-1337-5
[28] Aliferis, P., Gottesman, D., Preskill, J., Quantum accuracy threshold for concatenated distance-3 codes, *Quantum Information & Computation* 6, 97–165 (2006).

[29] Wang, D.S., Fowler, A.G., Stephens, A.M., Hollenberg, and L.C.L., Threshold error rates for the toric and planar codes, *Quantum Information & Computation* 10(5), 456–469 (2010).

[30] Aggarwal, V., Calderbank, A.R., Gilbert, G., Weinstein, Y.S., Volume thresholds for quantum fault tolerance, *Quantum Inf Process* 9, 541–549 (2010). https://doi.org/10.1007/s11128-010-0181-2

[31] Criger, B., Terhal, B., Noise thresholds for the [4,2,2]-concatenated toric code, *Quantum Information & Computation* 16(15) 1261–1281 (2016).

[32] Ozen, M., Guzeltepe, M., Quantum codes from codes over Gaussian integers with respect to the Mannheim metric, *Quantum Information & Computation* 12(9), 813–819 (2012).

[33] Li, R., Zou, F., Liu, Y., Xu, Z., Hermitian dual containing BCH codes and Construction of new quantum codes, *Quantum Information & Computation* 13(1), 21–35 (2013).

[34] Chen, J., Chen, Y., Huang, Y., Feng, C., New optimal asymmetric quantum codes and quantum convolutional codes derived from constacyclic codes, *Quantum Inf Process* 18, 40 (2019). https://doi.org/10.1007/s11128-018-2156-7

[35] La Guardia, G.G., Asymmetric quantum Reed-Solomon and generalized Reed-Solomon codes, *Quantum Inf Process* 11, 591–604 (2012). https://doi.org/10.1007/s11128-011-0269-3

[36] Boulant, N., Pravia, M.A., Fortunato, E.M., Havel, T.F., Cory, D.G., Experimental Concatenation of Quantum Error Correction with Decoupling, *Quantum Inf Processing* 1, 135–144 (2002). https://doi.org/10.1023/A:1019623208633

[37] Evans, Z.W.E., Stephens, A.M., Optimal correction of concatenated fault-tolerant quantum codes, *Quantum Inf Process* 11, 1511–1521 (2012). https://doi.org/10.1007/s11128-011-0312-4

[38] Dias de Albuquerque, C., Palazzo Jr., R., Brandani da Sil, E., Families of codes of topological quantum codes from tessellations tessellations \{4i+2,2i+1\}, \{4i,4i\}, \{8i-4,4\} and \{12i-6,3\}, *Quantum Information & Computation* 14(15), 1424–1440 (2014).

[39] Naghipour, A., Jafarizadeh, M.A., Shahmorad, S., Topological quantum codes from self-complementary self-dual graphs, *Quantum Inf Process* 14, 4057–4066 (2015). https://doi.org/10.1007/s11128-015-1115-9
[40] Greenbaum, D., Dutton, Z., Modeling coherent errors in quantum error correction, *Quantum Science and Technology* 3(1), pp. 015007 (2018).

[41] Bravyi, S., Englbrecht, M., Konig, R., Peard N., Correcting coherent errors with surface codes, *npj Quantum Information* 4, art. 55 (2018).

[42] Piltz, C., Sriarunothai, T., Varón, A.F., Wunderlich, C., A trapped-ion-based quantum byte with 10^{-5} next-neighbour cross-talk, *Nature Communications* 5, art. 4679 (2014).

[43] Buterakos, D., Throckmorton, R.E., Das Sarma, S., Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively coupled singlet-triplet semiconductor spin qubits, *Phys. Rev. B* 97(4), pp. 045431 (2018).

[44] Zurek W.H., Decoherence and the Transition from Quantum to Classical - Revisited. In: Duplantier B., Raimond JM., Rivasseau V. (eds) Quantum Decoherence. Progress in Mathematical Physics, vol 48. Birkhauser Basel (2006).