Proton dominance in the $2^+_2 \rightarrow 0^+_1$ transition of $N = Z \pm 2$ nuclei around 28Si

Yoshiko Kanada-En’yo
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

INTRODUCTION

Nuclear systems often show intrinsic quadrupole deformations. In many nuclei except for shell-closed nuclei, normal deformations are found in the ground bands. Shell effects are essential for the deformations as described by the Nilsson model, and therefore, a variety of shapes appear depending on the mass number particularly in mid-shell nuclei. In $Z = N$ nuclei in the sd-shell region, a nuclear shape rapidly changes as a function of $Z = N$ reflecting the proton-neutron coherent shell effects in deformed systems. For instance, the prolate ground band in 20Ne and the oblate one in 28Si are known. These shapes are easily understood from the shell effects in the Nilsson model, where the $Z = N = 10$ and $Z = N = 14$ shell gaps appear in the prolate and the oblate deformations, respectively.

For $Z \neq N$ nuclei, deformation phenomena are not so simple as in $Z = N$ nuclei. If the shell effect for proton orbits and that for neutron ones compete with each other, the proton shape can be affected by the neutron structure, or decoupling between proton and neutron deformations may occur. The latter case might be possible in light-mass nuclei and it may be observed in the quadrupole transition properties such as the ratio of the neutron transition matrix amplitude to the proton one (so-called M_n/M_p ratio). Such the decoupling between proton and neutron shapes has been suggested, for instance, in 16C for which the enhanced M_n/M_p ratio, i.e., the neutron dominance was observed in the ground-band transition 1[1]. The neutron dominance was described by the oblate proton and prolate neutron shapes 2,3. One of the reasons for the characteristic structure of 16C is that a $Z = 6$ system favors an oblate proton deformation while a $N = 10$ nucleus has the prolate trend of the neutron deformation because of each shell effect of the proton and neutron parts. To clarify the oblate tendency of the proton structure in 16C, a possible transition $^2M_2 \rightarrow 0^+_1$ is a focusing feature which might be interpreted in connection to decoupling of proton and neutron shapes. Our aim is to understand the properties of proton and neutron transition matrices from the viewpoint of deformations of proton and neutron parts. In particular, the proton dominance in the $2^+_2 \rightarrow 0^+_1$ is a focusing feature which might be interpreted in connection to decoupling of proton and neutron shapes. For this aim, we apply a theoretical approach of antisymmetrized molecular dynamics (AMD). The AMD has been successfully applied for study of structures of p-shell and sd-shell nuclei11,12. The present method of AMD calculations is the same as those used for investigation of deformation phenomena.
in \(^{28}\text{Si}, ^{24}\text{Ne}, ^{22}\text{O}, \text{and } ^{20}\text{C}\)[14] and those in C isotopes[2].

Applying the AMD method, we investigate the transition properties of \(^{30}\text{Si}\). Assuming the mirror symmetry, the calculated proton and neutron transition matrix amplitudes are compared with the data evaluated by the observed \(E2\) transition strength for \(^{30}\text{Si}\) and \(^{30}\text{S}\), and they are discussed in connection with proton and neutron deformations. Transition properties in \(^{26}\text{Mg}\) and \(^{26}\text{Si}\) are also discussed. The proton dominance in the transition, \(2^{+}_p \rightarrow 0^{+}_f\), for \(^{18}\text{C}\) and \(^{16}\text{C}\) is also shown as well as that for Si isotopes.

The paper is organized as follows. In the next section, the formulation of the present calculation is explained. In III. The results for \(^{30}\text{Si}\) and \(^{30}\text{S}\) and those for \(^{26}\text{Mg}\) and \(^{26}\text{Si}\) are shown and the proton dominance of \(^{26}\text{Si}\) and \(^{30}\text{Si}\) is discussed. The proton dominance in \(^{10}\text{C}\) and \(^{16}\text{C}\) is shown in IV. In V, a summary is given.

II. FORMULATION

Here we briefly explain the formulation of the present calculations. Details of the formulation of AMD methods for nuclear structure study are explained in Refs. [11–13]. The method of the present calculations is basically same as that in Refs. [11, 13].

An AMD wave function \(\Phi_{\text{AMD}}\) for a system with the mass number \(A\) is given by a single Slater determinant of Gaussian wave packets as,

\[
\Phi_{\text{AMD}}(Z) = \frac{1}{\sqrt{A!}} A\{\varphi_1, \varphi_2, \ldots, \varphi_A\},
\]

where the \(i\)-th single-particle wave function is written as,

\[
\varphi_i = \phi_X \chi_i \tau_i,
\]

\[
\phi_X(r_j) \propto \exp\left\{ -\nu(r_j - \frac{X_i}{\sqrt{\nu^2}})^2 \right\},
\]

\[
\chi_i = \left(\frac{1}{2} + \xi_i \right)^{\chi_+} \left(\frac{1}{2} - \xi_i \right)^{\chi_-}.
\]

Here the isospin function \(\tau_i\) is fixed to be up(proton) or down(neutron). The orientation of intrinsic spin \(\xi_i\) is also fixed to be \(1/2\) or \(-1/2\) in the present calculations as done in Refs. [11, 14]. The width parameter for Gaussian wave packet is taken to be \(\nu = 0.15\ \text{fm}^{-2}\) which is the optimum value for \(^{30}\text{Si}\) used in Ref. [14]. The spatial part, \(\phi_X\), is written by a Gaussian wave packet localized at the certain position \(X_i\) in the phase space. Then, the AMD wave function is expressed by \(\{X_i\}\) which indicate the Gaussian centers for all the single-particle wave functions and are treated as the independent complex variational parameters.

We perform energy variation for a parity-eigen state, \(P^\pm \Phi_{\text{AMD}} = \Phi_{\text{AMD}}^\pm\), projected from an AMD wave function by means of the frictional cooling method[11]. We consider the AMD wave function obtained by the energy variation as an intrinsic state, and total-angular-momentum projection\((P_H^M)\) is performed after the variation to calculate such observables as energies and transition strengths. The \(K\)-mixing is incorporated in the total-angular-momentum projection for non-zero \(J\) states.

As shown later, two local minimum solutions are obtained in the energy variation for the \(Z = 14\) systems. The two minima almost degenerate to each other and may correspond to shape coexistence phenomena as already discussed in the \(N = 14\) systems[14]. Comparing the calculated structure properties such as transition strengths with the experimental data, we assign one of two minima to the intrinsic state of the ground band.

By using the obtained wave functions, we calculate the transition matrix amplitudes \(M_p\) and \(M_n\) for proton and neutron, respectively, and also the \(E2\) transition strengths. They are defined as follows.

\[
M_p = \langle f | (t_z = 1/2) r Y^2_{\mu} | i \rangle,
\]

\[
M_n = \langle f | (t_z = -1/2) r Y^2_{\mu} | i \rangle,
\]

\[
B(E2) = \frac{e^2}{2J_i + 1} M^2_p. \tag{7}
\]

Here \(P(t_z = \pm 1/2)\) are the isospin projection operators for protons and neutrons.

III. RESULTS

A. Effective interaction

The effective nuclear interactions adopted in the present work consist of the central force, the spin-orbit force and Coulomb force. We adopt MV1 force [15] as the central force. The MV1 force contains a zero-range three-body force in addition to the two-body interaction. For interaction parameters, we use the same parameter set as that in Ref. [14]. Namely, the MV1 force (case 1) with the parameters \(b = 0, h = 0, \text{and } m = 0.62\) is used. For the spin-orbit force, the two-range Gaussian form of the G3RS force[16] is adopted. The strengths of the spin-orbit force are \(u_I = u_{II} = 2800\ \text{MeV}\). These strengths were adjusted to reproduce energy levels of \(^{28}\text{Si}\) in Ref. [14].

B. \(^{30}\text{Si}\) and \(^{30}\text{S}\)

After the energy variation for parity projected AMD wave functions, two local minimum solutions (A) and (B) are obtained for \(^{30}\text{Si}\). The state (A) shows a smaller deformation as \((\beta_p, \gamma_p) = (0.18, 0.01\pi)\) and \((\beta_n, \gamma_n) = (0.20, 0.00\pi)\) and the state (B) has a larger deformation as \((\beta_p, \gamma_p) = (0.35, 0.00\pi)\) and \((\beta_n, \gamma_n) = (0.26, 0.00\pi)\). Here the definition of the quadrupole deformation parameters \((\beta_p, \gamma_p)\) for proton density distribution and \((\beta_n, \gamma_n)\) for neutron one is given in Ref. [4].
After the angular momentum projection, the energy levels are obtained from the states (A) and (B) (Fig.1). The bands constructed from two intrinsic states, (A) and (B), almost degenerate. As shown later, the band (A) shows good agreements with experimental data such as the Q moment and E2 transition strengths for the ground band, and therefore, we can assign the band (A) to the experimental ground band. The band (B) might correspond to the excited band, but the excitation energy seems to be underestimated in the present calculation. Because of this underestimation, the energy levels calculated by superposition of (A) and (B) show the band mixing feature around $J \sim 2$ which is inconsistent with the experimental data. Since our interest is in the transition properties of the ground band and its side band, we consider the state (A) for the ground band and omit the mixing with the state (B) in the following discussions.

Experimentally, the E2 transition strengths were measured up to high spin states, and the $K^\pi = 2^+$ side band by the $K^\pi = 0^+$ ground band was identified. In the present calculation, no $K^\pi = 2^+$ side band member is obtained from the band (A) because of the prolate intrinsic shape of the state (A). Owing to the $Z = 14$ shell gap in the oblate deformation, it is naturally expected that 30Si may be soft against γ deformation toward the oblate region. Therefore, we construct another intrinsic state (C) by the alternative energy variation where we vary the single-particle neutron wave functions but freeze the proton configuration so that it has the same proton structure as that of the oblate ground state of 28Si. It corresponds to the energy variation with the constraint of the oblate proton structure. Thus obtained state (C) has a triaxial neutron structure of $(\beta_n, \gamma_n) = (0.21, 0.15\pi)$ with the oblate proton deformation of $(\beta_p, \gamma_p) = (0.27, 0.28\pi)$. The single-particle energy levels in the intrinsic wave functions for the states (A) and (C) are shown in Fig.2. The derivation of the single-particle energies of AMD wave functions is described, for example, in Refs.13, 18. In the state (C), the single-particle energy spectra are consistent with those for oblate systems where the $N = 14$ shell gap is clearly seen, while the $N = 14$ shell gap vanishes in the state (A).

After the angular momentum projection, the $K^\pi = 0^+$ and the $K^\pi = 2^+$ side bands are generated from the intrinsic state (C). We should stress that the absolute energy of the 0^+_1 projected from the state (C) is relatively lower than that from the state (A) even though the intrinsic energy of the state (C) is higher than (A) before the projection. It is because the triaxial state gains more energy than the prolate state in the angular momentum projection. Finally we superpose the state (A) and (C), and obtain the energy levels for the ground and side bands. The energy levels calculated by the superposition (A+C) correspond well to the experimental levels for the $K^\pi = 0^+$ and the $K^\pi = 2^+$ bands except for a slightly higher excitation energy for the $K^\pi = 2^+$ band. Considering that the $K^\pi = 2^+$ band members are constructed mainly from the $|K| = 2$ components of the intrinsic state (C) and the ground band can be described by the $K = 0$ states of (C), these bands are considered to be the $K^\pi = 0^+$ and the $K^\pi = 2^+$ side bands projected from the triaxial intrinsic state (C). We here note that the wave functions of the $K^\pi = 0^+$ components of the state (C) and (A) have large overlap with each other. Therefore, an alternative interpretation is possible. Namely, the ground band is regarded as the rotational band of the prolate state (A) and the $K = 2$ side band is the γ vibration band on the top of the prolate state, which is taken into account by the superposition of (A) and (C).

We calculate the quadrupole transition properties by the superposition (A+C) and discuss the neutron and proton contributions based on the mirror analysis. We first show the calculated values of $B(E2)$, the proton transition matrix amplitudes M_p, and electric quadrupole moments Q in 30Si in comparison with the experimental data in Table II. The theoretical values are in good agreement with the experimental data except for the inter-band transition $4^+_2 \rightarrow 2^+_1$.

We next discuss the M_n/M_p ratio for the $2^+_1 \rightarrow 0^+_1$ and $2^+_2 \rightarrow 0^+_1$ transitions. We assume here the mirror symmetry that the neutron transition matrix amplitudes M_n in 30Si is consistent with the proton transition matrix amplitudes M_p in 30S. Then, the experimental M_n values for 30Si are evaluated by $B(E2)$ in 30S. As shown in Table II, the experimental M_n/M_p ratio for $2^+_1 \rightarrow 0^+_1$ in 30Si is close to a unit indicating that the proton and neutron parts equally contribute to the ground-band transition.

What is striking is that the M_n/M_p ratio for $2^+_2 \rightarrow 0^+_1$ is 0.5 in the experimental data. This indicates the dominant proton matrix amplitude, which is about twice of the neutron one in the transition from the side band to the ground state. The present calculation reproduces this trend of the quenched M_n/M_p ratio, though they much underestimate the M_n value for $2^+_2 \rightarrow 0^+_1$ in 30Si. The origin of the dominant proton contribution and the minor neutron one in this transition, $2^+_2 \rightarrow 0^+_1$, is understood by the difference between proton and neutron structures. As mentioned before, the side band members are constructed mainly from the $|K| = 2$ components of the intrinsic state (C), while the ground band is also approximately written by the $|K| = 0$ states projected from the state (C). That is, the 2^+_2 state can be interpreted as the triaxial side band. As shown in Fig.2 the state (C) shows the larger triaxiality of the proton shape than the neutron part, and therefore, proton contribution should be dominant but neutron one is minor in the $2^+_2 \rightarrow 0^+_1$.

We should comment again that the $K = 0$ components of the triaxial state (C) have large overlaps with those of the prolate state (A). In fact, the overlap between the 0^+ states projected from (A) and (C) is 55%. This is because the deformation parameter γ is not a coordinate but just an expectation value, and two states with different γ values are not orthogonal to each other. Even if a rotational band is constructed by the angular-momentum projection from an intrinsic state, the intrinsic shape is not
observable but an interpretation which is useful to interpret the microscopic wave functions projected from the intrinsic state as the rotational band members. Therefore, strictly speaking, it is not easy to clearly distinguish between rotational $K = 2$ modes of a static triaxial state and γ-vibrational modes in such the system. Then, we can consider the alternative interpretation for the 2^+_2 state as the γ vibration on the prolate $K = 0$ ground band. Again, the proton dominance can be easily understood by the γ vibration of the proton structure. In any cases, we can conclude that the proton dominance of the transition, $2^+_2 \to 0^+_1$, in ^{30}Si originates in the γ softness of the proton part in the $Z = 14$ system, and the difference between proton and neutron structures is essential.

In this subsection, we discuss the proton dominance in the $2^+_2 \to 0^+_1$ of ^{26}Si in relation to the γ deformation of the proton structure, in a similar way to the mirror analysis of ^{30}Si and ^{30}S. Before discussing the M_n/M_p ratio of ^{26}Si based on the mirror analysis, we first investigate the structure of the ground and excited states of the mirror nucleus ^{26}Mg for which the existing data is richer than for ^{26}Si.

We apply the AMD method to ^{26}Mg. After energy variation for parity projected AMD wave functions, two local minimum solutions (A) and (B) are obtained in ^{26}Mg, similarly to the case of ^{30}Si. The state (A) shows the triaxiality shape $(\beta_p, \gamma_p) = (0.33, 0.08\pi)$ and $(\beta_n, \gamma_n) = (0.22, 0.13\pi)$ with a smaller neutron deformation, while the state (B) has a prolate deformation $(\beta_p, \gamma_p) = (0.33, 0.07\pi)$ and $(\beta_n, \gamma_n) = (0.35, 0.00\pi)$ with a larger neutron deformation as seen in Fig. 4. The energy of the intrinsic state (A) degenerates with the state (B) within 0.1 MeV before the angular momentum projection. After the angular-momentum projection, the 0^+ energy projected from the state (A) is 1.1 MeV higher.

Table I: $E2$ transition strengths of the in-band and inter-band transitions in ^{30}Si. The experimental data are taken from ^{10}Si and ^{13}C.

Transition	Inband ($K = 0^+_1$)	Inter-band		
	$B(E2)$	M_p	$B(E2)$	M_p
$2^+_2 \to 0^+_1$	8.5 ± 1.1a	14	5.6 ± 12.5	
$4^+_2 \to 2^+_1$	4.5 ± 1.5b	14	8.7 ± 15.5	
$3^+_1 \to 2^+_2$	7 ± 1.6b	15	8.5 ± 15.4	
$4^+_2 \to 2^+_2$	4.1 ± 1.7b	13	7.1 ± 14	
$4^+_2 \to 3^+_1$	7.9			
$5^+_1 \to 3^+_1$	4.5 ± 2.2b	15	7.4 ± 14.5	
$5^+_1 \to 4^+_2$	1.3 ± 1.0b	8.1	4.5 ± 1.1	

C. ^{26}Mg and ^{26}Si

In this subsection, we discuss the proton dominance in the $2^+_2 \to 0^+_1$ of ^{26}Si in relation to the γ deformation of the proton structure, in a similar way to the mirror analysis of ^{30}Si and ^{30}S. Before discussing the M_n/M_p ratio of ^{26}Si based on the mirror analysis, we first investigate the structure of the ground and excited states of the mirror nucleus ^{26}Mg for which the existing data is richer than for ^{26}Si.
than that obtained from the state (B). In spite of the slightly higher energy of the state (A) than that of the state (B), we tentatively assign the states projected from (A) to the experimental $K^\pi = 0^+$ ground band and its side band $K^\pi = 2^+$, because the observed level structure and $E2$ transition strengths for the $K^\pi = 0^+$ and $K^\pi = 2^+$ band members can be reproduced by the results calculated with the state (A). The state (B) is inconsistent with the experimental fact that the $K^\pi = 2^+$ side band exists by the ground band, and therefore, it would correspond to an excited $K^\pi = 0^+$ band though it is eventually the lowest in the present calculations. In fact, the state (A) can be the lowest if we tune the interaction parameters, for instance, with $a = 0.62$, $b = h = 0.125$, and $u_{11} = -u_{11} = 3200$ MeV. Hereafter, we concentrate only on the $K^\pi = 0^+$ band and its $K^\pi = 2^+$ side band constructed from the state (A), and omit the mixing effect of the state (B).

To see the γ softness of the $N = 14$ neutron structure in ^{26}Mg, we construct an intrinsic state (C) by the alternative energy variation that we vary the centers of single-particle Gaussian wave functions only for protons but freeze the neutron configuration so that it has the same neutron structure as that of the oblate ground state of ^{28}Si. It means the energy variation with the constraint of the oblate neutron structure. Thus obtained state (C) of ^{26}Mg has a triaxial neutron structure of $(\beta_p, \gamma_p) = (0.32, 0.10\pi)$ with the almost oblate neutron deformation $(\beta_n, \gamma_n) = (0.26, 0.28\pi)$. The state (C) is 2 MeV higher than the state (A) before and after the angular momentum. In Fig. 5, we show the energy levels obtained by the superposition (A+C) and discuss the proton contribution is dominant in the small value of M_n/M_p for the transition $2^+_2 \rightarrow 0^+_1$ in ^{26}Si.

TABLE II: The calculated and theoretical $B(E2)$ values and the proton transition matrix for the transitions $2^+_2 \rightarrow 0^+_1$ and $2^+_1 \rightarrow 0^+_1$ in ^{30}Si and ^{30}S. The experimental values of the M_n/M_p ratio are evaluated based on the mirror analysis in which M_n of ^{30}Si is assumed to be equal to M_p of ^{30}S. The experimental $B(E2)$ values are taken from Ref. [19] and those evaluated from the life times and branching ratios.

Energy Levels	exp.	cal.							
$2^+_2 \rightarrow 0^+_1$	^{30}Si	8.5±1.1	15.3	1.1	^{30}S	11	18	7.6	14.5
$2^+_1 \rightarrow 0^+_1$	^{30}Si	1.7±0.5	6.9	0.5	^{30}S	0.4	3	0.02	0.6

TABLE III: $E2$ transition strengths for the in-band and inter-band transitions in ^{26}Mg. The experimental data are taken from [20] and [21].

Energy Levels	exp.	cal.				
Inband $(K = 0^+_1)$	^{26}Si	13.4±0.4	17.5	^{26}Mg	12.9	17.2
$2^+_1 \rightarrow 0^+_1$	^{26}Si	14.3±3	24	^{26}Mg	16.1	25.7
Interband $(K = 2^+_1)$	^{26}Si	9.2±7	17	^{26}Mg	22.5	26.8
$3^+_2 \rightarrow 2^+_1$	^{26}Si	5.2±6	15	^{26}Mg	9.5	19.8

IV. M_n/M_p RATIOS IN p-SHELL NUCLEI

In the previous section, we discuss the proton dominance in the transition $2^+_2 \rightarrow 0^+_1$ between the side band and the ground band of Si isotopes with $N = Z \pm 2$. The
The proton transition matrix for the transitions $2_1^+ \rightarrow 0_1^+$ and $2_2^+ \rightarrow 0_1^+$ in 26Si and 26Mg. The experimental values of the M_n/M_p ratio are evaluated based on the mirror analysis in which M_n of 26Si is assumed to be equal to M_p of 26Mg. The experimental $B(E2)$ values are taken from Ref. [20].

	exp.	cal.					
	$B(E2)$	M_p	M_n/M_p	$B(E2)$	M_p	M_n/M_p	
$2_1^+ \rightarrow 0_1^+$	26Si	15.4±1.5	18.8	0.94	6.4	12.1	1.4
	26Mg	13.4±0.4	17.5	12.9	17.2		
$2_2^+ \rightarrow 0_1^+$	26Si	1.6±0.5	6.0	0.5	1.4	5.6	0.26
	26Mg	0.35±0.07	2.8	0.09	1.5		

Proton dominance can be described by the triaxial shape of the proton structure. This feature originates in the oblate trend of the $Z = 14$ proton configuration.

Let us consider the proton dominance in p-shell nuclei. In C isotopes, $Z = 6$ proton configuration has the oblate trend as is known in 12C. In fact, the oblate proton and prolate neutron shapes are theoretically suggested in 10C and 16C in the AMD calculations [2]. In these nuclei, the proton dominance in the transition $2_2^+ \rightarrow 0_1^+$ is expected as well as 26Si and 30Si. In this section, we refer to the intrinsic structures of 10C and 16C investigated in Ref. [2], and discuss the proton dominance in C isotopes in comparison with Si isotopes. We use the AMD wave functions calculated in the previous work [2].

We show the deformation parameters β and γ for proton and neutron density in the intrinsic states of 10C and 16C in Fig. 4. The experimental and theoretical values of the M_n/M_p ratios are written in Fig. 4 in which the experimental energy levels are drawn. In both nuclei, 10C and 16C, the proton structure shows the oblate deformation in spite of the prolate neutron structure. It means that the $Z = 6$ proton structure is not so much affected by the neutron structure but it keeps the oblate tendency. As a result, the decoupling between proton and neutron shapes is more remarkable in C isotopes than in Si isotopes. This decoupling is one of the reasons for the enhanced M_n/M_p ratio of the ground-band transition $2_1^+ \rightarrow 0_1^+$ in 16C as discussed in Ref. [2]. For the transition $2_2^+ \rightarrow 0_1^+$ in 10C and 16C, the calculated M_n/M_p ratio is quenched and it indicates the proton dominance. The suggested proton dominance originates in the oblate proton structure in the $Z = 6$ systems. This is a good analogy to the proton dominance in 26Si and 30Si, which arises from the oblate trend of the $Z = 14$ proton structure.

Experimentally, the M_n/M_p ratio for $2_2^+ \rightarrow 0_1^+$ is unknown. Inelastic scatterings of 10C and 16C might be a good probe to evaluate the M_n/M_p ratio.

Note that the shape has large quantum fluctuation in such light systems and it is not observable. Nevertheless, it is helpful to interpret the angular-momentum projected states in terms of rotation of the intrinsic deformation to get semi-classical picture of transition properties. Our argument is that the M_n/M_p ratios in C isotopes can be qualitatively understood by the oblate proton and prolate neutron shapes.

V. SUMMARY

$E2$ transitions in 30Si were investigated in relation with the intrinsic deformation. In the calculation of the AMD method, the experimental $B(E2)$ values in the $K^\pi = 0_1^+$
and $K^\pi = 2^+_1$ bands are reproduced by the calculation. Based on mirror analysis, the transition matrix amplitudes M_p and M_n were discussed. Particular attention is paid to the M_n/M_p ratio in the transition from the 2^+_2 state to the 0^+_1 state, whose quenching is experimentally known. The M_n/M_p ratio in 24Mg and 26Si was also investigated. We have shown that the $K^\pi = 2^+_1$ band can be interpreted as the triaxial side band, and the proton contribution is dominant in the transition $2^+_2 \rightarrow 0^+_1$. The quenched M_n/M_p, i.e., the proton dominance in $2^+_2 \rightarrow 0^+_1$ in 30Si and 26Si originates in the oblate trend of the $Z = 14$ proton structure. The proton dominance in $2^+_2 \rightarrow 0^+_1$ is suggested also in 10C and 16C, where the oblate proton structure is favored.

We should comment that the shape has large quantum fluctuation in light-mass systems and it is not observable. Strictly speaking, the macroscopic picture may be too simple for such systems, and therefore, it is not easy to clearly distinguish between two collective pictures, the rotational mode of a static triaxial state and the γ-vibrational mode. Nevertheless, it is helpful to interpret the angular-momentum projected states in terms of rotation of the intrinsic deformation to get semi-classical picture of transition properties. Our argument is that the quenched M_n/M_p ratios in $2^+_2 \rightarrow 0^+_1$ of these nuclei can be qualitatively understood by the oblate trend of proton shapes in the prolate neutron structures.

Acknowledgments

The computational calculations of this work were performed by using the supercomputers at YITP and done in Supercomputer Projects of High Energy Accelerator Research Organization (KEK). This work was supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS). It was also supported by the Grant-in-Aid for the Global COE Program "The Next Generation of Physics, Spun from Universality and Emergence" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

[1] Z. Elekes et al., Phys. Lett. B 586, 34 (2004).
[2] Y. Kanada-En'yo, Phys. Rev. C 71, 014310 (2005).
[3] M. Takashina, Y. Kanada-En'yo and Y. Sakuragi, Phys. Rev. C 71, 054602 (2005).
[4] Y. Kanada-En'yo and H. Horiuchi, Phys. Rev. C 55, 2860 (1997).
[5] T.K. Alexander et al., Phys. Lett. 113B, 132 (1982).
[6] T.K. Alexander et al., Phys. Rev. Lett. 49, 438 (1982).
[7] F. Sciaccati, S. Micheletti, M. Pignanelli, R. De Leo, Phys. Rev. C 31, 736 (1985).
[8] B.A. Brown et al., Phys. Rev. C 26, 2247 (1982).
[9] T.K. Alexander, B. Castel and I.S. Towner, Nucl. Phys. A 445, 189 (1985).
[10] N. Hinohara and Y. Kanada-En'yo, Phys. Rev. C 83, 014321 (2011).
[11] Y. Kanada-En'yo, H. Horiuchi and A. Ono, Phys. Rev. C 52, 628 (1995); Y. Kanada-En'yo and H. Horiuchi, Phys. Rev. C 52, 647 (1995).
[12] Y. Kanada-En'yo and H. Horiuchi, Prog. Theor. Phys. Suppl. 142, 205 (2001).
[13] Y. Kanada-En'yo, M. Kimura and H. Horiuchi, Comptes rendus Physique Vol.4, 497 (2003).
[14] Y. Kanada-En'yo, Phys. Rev. C 71, 014303 (2005).
[15] T. Ando, K. Ikeda, and A. Tohsaki, Prog. Theor. Phys. 64, 1608 (1980).
[16] N. Yamaguchi, T. Kasahara, S. Nagata, and Y. Akaishi, Prog. Theor. Phys. 62, 1018 (1979); R. Tamagaki, Prog. Theor. Phys. 39, 91 (1968).
[17] E. Bitterwolf et al., Z. Phys. A 298, 279 (1980).
[18] A. Dote, H. Horiuchi and Y. Kanada-En'yo, Phys. Rev. C 56, 1844 (1997).
[19] M. Shamsuzzoha Basunia, Nuclear Data Sheets 111, 2331 (2010).
[20] P. M. Endt, J. Blachot, R. B. Firestone, and J. Zippin, Nucl. Phys. A 633, 1 (1998).
[21] F. Glatz et al., Z. Phys. A 324, 187 (1986).
[22] J. H. Kelley, C. G. Sheu and J. L. Godwin et al., Nucl. Phys. A 745, 155 (2004).
[23] H. J. Ong et al., Phys. Rev. C 78, 014308 (2008).