Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement Insights from in vivo imaging

Citation for published version:
Serrels, A, Canel, M, Brunton, VG & Frame, MC 2011, 'Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement Insights from in vivo imaging' Cell adhesion & migration, vol. 5, no. 4, pp. 360-365. DOI: 10.4161/cam.5.4.17290

Digital Object Identifier (DOI):
10.4161/cam.5.4.17290

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Cell adhesion & migration

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement
Insights from in vivo imaging

Alan Serrels,* Marta Canel, Valerie G. Brunton and Margaret C. Frame
Edinburgh Cancer Research UK Centre; Institute of Genetics and Molecular Medicine; University of Edinburgh; Edinburgh, UK

Key words: Src, FAK, E-cadherin, EMT, fluorescent in vivo imaging

Abbreviations: ECM, extracellular matrix; EMT, epithelial to mesenchymal transition; FAK, focal adhesion kinase; AJs, adherens junctions; TGFβ, transforming growth factor beta; GFP, green fluorescent protein; FRAP, fluorescent recovery after photobleaching

Recent advances in confocal and multi-photon microscopy, together with fluorescent probe development, have enabled cancer biology studies to go beyond the culture dish and interrogate cancer-associated processes in the complex in vivo environment. Regulation of the tumor suppressor protein E-cadherin plays an important role in cancer development and progression, and may contribute to the decision between ‘single cell’ and ‘collective invasion’ in vivo. Mounting evidence from in vitro and in vivo experiments places the two non-receptor protein tyrosine kinases Src and Focal Adhesion Kinase at the heart of E-cadherin regulation and the crosstalk between integrins and cadherins. Here we discuss recent insights, attained using high-resolution fluorescent in vivo imaging, into the regulation of E-cadherin and collective invasion. We focus on the regulatory crosstalk between the Src/FAK signaling axis and E-cadherin in vivo.

Introduction

The ability of cells to invade and metastasize is linked to deregulation of interactions with adjacent cells and surrounding extracellular matrix (ECM). The de-stabilization of cell-cell contacts and concomitant ‘enrichment’ of integrin-mediated cell-matrix adhesions is likely a key step in the development of cancer, and is linked to epithelial plasticity and the Epithelial to Mesenchymal Transition (EMT). The adhesion switch is often accompanied by an increase in the migratory potential of tumor cells, and may play a key role in driving tumor cell invasion. However, EMT is not necessarily a pre-requisite for tumor cell invasion. Normal cells can move in a collective manner that is dependent on the maintenance of cell-cell adhesion, as occurs in the well characterized phenomenon of collective cell movement in morphogenesis. Understanding how de-regulation of cell-cell contact occurs, and the mechanisms that regulate collective cell movement during tumor development are important current topics in cancer research, and may lead to new anti-invasive strategies. Recent technological advances in the application of high-resolution fluorescent microscopy in vivo has enabled researchers to probe these processes in greater detail, thereby providing insights into the pathways that regulate E-cadherin, cell-cell adhesion and collective cell movement in pre-clinical cancer models. Here we review how confocal and multi-photon microscopy have added to the study of E-cadherin and collective cell invasion in vivo, including studies on regulation involving Src/Focal Adhesion Kinase (FAK) signaling.

E-Cadherin and Cancer

E-cadherin is the prototypical member of the type-1 classical cadherins and a key component of cell-cell adhesions known as adherens junctions (AJs). This single-pass transmembrane glycoprotein facilitates cell-cell adhesion via a homophilic calcium-dependent interaction with opposing molecules on neighboring cells and is commonly de-regulated in many cancers. E-cadherin expression or cell surface localization is often lost in advanced tumors and this loss is linked, at least in some cases, to metastasis and tumor recurrence. Loss of E-cadherin in human tumors is often the result of promoter methylation or upregulation of the transcriptional repressors Snail, Slug, SIP1 or Zeb1, which target the E-cadherin promoter. However, de-regulation of E-cadherin surface localization has also been linked to the activity of non-receptor tyrosine kinases that have oncogenic potential, including Src and FAK, and the action of transforming growth factor beta (TGFβ), or hepatocyte growth factor (HGF).
**Src/FAK Regulation of E-Cadherin**

Src is the prototypical member of the Src family of non-receptor tyrosine kinases and complexes with FAK at sites of cell-matrix adhesion often termed focal adhesions or focal contacts. Elevated expression of these kinases has been reported in many tumor types, and is frequently linked to poor clinical outcome.12-20 Several lines of evidence now support the idea of crosstalk between components of integrin adhesions and AJs, and suggest that Src/FAK signaling is at the heart of this crosstalk. For example, Src induced de-regulation of E-cadherin in colon cancer cells is dependent on integrin signaling and FAK phosphorylation.9 In support of this, treatment of hepatocytes with the Src inhibitor PP2, or expression of the endogenous interfering version of FAK, namely FAK-related non-kinase (FRNK), is reported to inhibit TGFβ-induced de-localization of E-cadherin.10 Taken together, these data suggest that status of the Src/FAK signaling axis controls epithelial morphology, including TGFβ-induced deregulation of E-cadherin. Recently, we have shown that siRNA mediated depletion of FAK or β1-integrin, and inhibition of Src family kinase activity using the small molecule inhibitor dasatinib, causes inhibition of E-cadherin endocytosis, phenocopying effects of the dynamin inhibitor dynasore.21 Furthermore, inhibition of the Src/FAK pathway using dasatinib and PF-562,271, or downregulation of FAK expression using siRNA, strengthens E-cadherin-mediated cell-cell adhesions, while overexpression of a Src Y527F mutant with constitutive kinase activity results in weakening of cell-cell adhesion strength. Using the human A431 squamous carcinoma cell line, which invades in a collective manner that is dependent on AJs integrity,22 Src/FAK-mediated effects on E-cadherin and cell-cell adhesion strength were observed to correlate with altered E-cadherin dynamics at sites of cell-cell adhesion and inhibition of collective tumor cell invasion in vitro.21 These data provide strong evidence that Src/FAK signaling regulates E-cadherin membrane localization and function, such that increased pathway activity de-regulates E-cadherin and drives EMT, while reduced pathway activity maintains E-cadherin membrane localization and epithelial morphology.

What is not clear is the role of Src/FAK signaling in the formation of new cell-cell adhesions. Overexpression of the gain-of-function Src Y527F mutant inhibits new junction formation in a manner that depends on FAK phosphorylation by Src.23 This stabilizes the mesenchymal-like phenotype resulting from SrcY527F expression in colon carcinoma cells. However, in NBT-II rat bladder carcinoma cells, expression of a kinase defective FAK mutant inhibits the formation of new E-cadherin-mediated cell-cell adhesions, while overexpression of FAK itself has no effect on junction assembly.23 These somewhat paradoxical results leave an unclear picture as to the role of Src/FAK signaling in the formation of new cell-cell adhesions, suggesting that further work is required in order to fully understand the complexity, and possibly context dependence, of AJ assembly.

In vitro studies addressing the role of Src/FAK signaling in the regulation of E-cadherin, cell-cell adhesion and collective cell migration have provided insights into the crosstalk between key components of integrin-based cell-matrix adhesions and AJs, although mechanisms are not yet fully understood. The culture dish represents a very simplistic system for studying biology and there is a drive to move toward more physiological environments. The field of high-resolution fluorescence intra-vital microscopy affords us this opportunity and has enabled researchers to study complex biological problems in a setting that is more physiologically relevant.

**High Resolution Cancer Imaging in Mice**

Recent advances in confocal and multi-photon microscopy, together with the development of fluorescent probes, have led to new cancer biology studies in vivo. These techniques show great promise in furthering our understanding of tumor/host interactions in the in vivo environment, and the mode of action of novel therapeutic agents. For example, using multi-photon microscopy the Condeelis lab have identified an intimate relationship between tumor cells and infiltrating macrophages, providing support for a role for macrophages in aiding tumor cell invasion and entry into blood vessels.24 Fluorescent labeling of tumor cells with Green Fluorescent Protein (GFP), and its variants, has enabled visualization of single tumor cells either via exteriorization of the primary tumor (subcutaneous, orthotopic or genetically engineered tumor models) or through the establishment of tumors under ‘optical windows.’ These windows act to replace the mouse skin, which represents an impenetrable barrier that does not permit confocal and multi-photon microscopy due to contrast-robbing autofluorescence and excessive light scattering. A glass coverslip or ‘optical window’ provides a suitable transparent surface through which to image the tumor sample. Recently, different optical window types have been described, including the dorsal skinfold window (Fig. 1A),21,25,26 the mammary window (Fig. 1B),27 and the cranial window (similar design to mammary window).26

Aside from optical performance, these windows provide a number of other benefits. First, using anesthetics such as isoflurane, repeated imaging can be performed on a routine basis, thus facilitating the observation of tumor-associated processes over periods of days or weeks. Second, no surgery is required at the time of imaging, thereby minimising the risk of an artifactual inflammatory response that may affect tumor behavior. Third, mechanical clamping of the window to the microscope stage greatly reduces sample movement, thereby facilitating the application of advanced imaging techniques that include Fluorescence Recovery After Photobleaching (FRAP) and photoactivation to enable molecular dynamic studies deep in tumor tissue. However, optical windows also have their limitations. These include cell/tissue adhesion to the glass coverslip (although this can be overcome by careful replacement of the coverslip) and the time-consuming surgical installation of the windows, which takes longer than surgical exteriorisation of tumors for imaging. Both approaches have been used for imaging cell behavior and the surrounding microenvironment in tumor-bearing mice, providing new insights into, among other things, the regulation of E-cadherin dynamics, cell-cell adhesion and collective cell migration in vivo.
Further insights into the mechanisms regulating E-cadherin and cell-cell adhesion integrity in vivo comes from our recent work addressing the role of Src/FAK signaling in the regulation of E-cadherin, cell-cell adhesion and collective cell migration. We established the existence of extensive regulatory cross-talk between components of integrin-based cell-matrix adhesions and AJs in the in vivo environment, particularly E-cadherin membrane dynamics, cell-cell adhesion integrity and collective cell migration within primary tumors. We discuss this work below, introducing some principles for imaging of E-cadherin dynamics and cell tracking in an in vivo tumor context.

We first performed high-resolution confocal microscopy, focusing on the comparison of E-cadherin and cell-cell adhesion markers in vitro and in vivo. These experiments identify multi-cellular clusters of various sizes, which actively migrate from tissue into the surrounding collagen, suggesting that tumor cells can migrate while maintaining cell-to-cell contact. Indeed, the maintenance of functional cell-cell adhesions, and therefore physical contact with neighboring cells, is a hallmark of so called collective invasion. The first demonstration of tumor cell collective invasion in vivo was recently reported by the Friedl lab. These authors combined high-resolution multi-photon imaging with dorsal skin-fold windows, and identified both individually migrating cells, and two morphologically distinct patterns of collective invasion following injection of HT-1080 fibrosarcoma cells deep into the mouse dermis. The authors also reported a role for surrounding tissue architecture as a determinant of the choice between single cell invasive migration and collective invasion. Real-time imaging of MTLn3E breast tumors in vivo by the Sahai lab, has also shown the presence of both collective and singly migrating cells. Moreover, use of fluorescent reporters of TGFβ activity, such as GFP-Smad2 and CAGA-CFP, has demonstrated that the decision to move as a single cell or in a collective manner can be driven by localized TGFβ activation, resulting in a transient and reversible EMT. Together, these studies indicate the presence of multiple factors within the tumor microenvironment that influence the mode of tumor cell invasion in vivo. Furthermore, the presence of both single and collectively invading cells within individual tumors, and the possibility of plasticity i.e., inter-conversion between these, suggests that de-regulation of E-cadherin and cell-cell adhesions may be a key determinant of invasion mode.

Further insights into the mechanisms regulating E-cadherin and cell-cell adhesion integrity in vivo comes from our recent work addressing the role of Src/FAK signaling in the regulation of E-cadherin, cell-cell adhesion and collective cell migration. We established the existence of extensive regulatory cross-talk between components of integrin-based cell-matrix adhesions and AJs in the in vivo environment, particularly E-cadherin membrane dynamics, cell-cell adhesion integrity and collective cell migration within primary tumors. We discuss this work below, introducing some principles for imaging of E-cadherin dynamics and cell tracking in an in vivo tumor context.

We first performed high-resolution confocal microscopy, focusing on the comparison of E-cadherin and cell-cell adhesion markers in vitro and in vivo. These experiments identify multi-cellular clusters of various sizes, which actively migrate from tissue into the surrounding collagen, suggesting that tumor cells can migrate while maintaining cell-to-cell contact. Indeed, the maintenance of functional cell-cell adhesions, and therefore physical contact with neighboring cells, is a hallmark of so called collective invasion. The first demonstration of tumor cell collective invasion in vivo was recently reported by the Friedl lab. These authors combined high-resolution multi-photon imaging with dorsal skin-fold windows, and identified both individually migrating cells, and two morphologically distinct patterns of collective invasion following injection of HT-1080 fibrosarcoma cells deep into the mouse dermis. The authors also reported a role for surrounding tissue architecture as a determinant of the choice between single cell invasive migration and collective invasion. Real-time imaging of MTLn3E breast tumors in vivo by the Sahai lab, has also shown the presence of both collective and singly migrating cells. Moreover, use of fluorescent reporters of TGFβ activity, such as GFP-Smad2 and CAGA-CFP, has demonstrated that the decision to move as a single cell or in a collective manner can be driven by localized TGFβ activation, resulting in a transient and reversible EMT. Together, these studies indicate the presence of multiple factors within the tumor microenvironment that influence the mode of tumor cell invasion in vivo. Furthermore, the presence of both single and collectively invading cells within individual tumors, and the possibility of plasticity i.e., inter-conversion between these, suggests that de-regulation of E-cadherin and cell-cell adhesions may be a key determinant of invasion mode.

Figure 1. Images of optical window chambers. (A) tagRFP-expressing tumor under dorsal skinfold window (red), with GFP autofluorescence image (green) and brightfield overlay (gray). Cropped image acquired using 0.14x objective lens on Olympus OVIS10 microscope. (B) MDA-MB-231 GFP expressing tumor under mammary window (green) with brightfield overlay (gray) acquired using 0.14x objective lens on Olympus OVIS10 microscope.
also imposes further restrictions on mobility, such that some molecules are detained and therefore do not vacate physical space required for new unbleached molecules to occupy. Such a situation gives rise to an incomplete recovery when compared with the initial fluorescent signal and when measured is termed the immobile fraction.\textsuperscript{31} We concluded that non-motile cells exhibit a faster recovery half-time and a higher immobile fraction. Comparison of E-cadherin dynamics at sites of cell-cell adhesion between cultures in vitro and tumors in vivo identified significant differences between these environments, both in terms of basal dynamics and response to therapeutic treatment with the Src kinase inhibitor \textit{dasatinib}. Treatment of tumor-bearing mice with \textit{dasatinib} alters E-cadherin dynamics in a manner indicative of reduced migratory capacity,\textsuperscript{34} although quantitative measurement of the true migratory behavior of these cells was not determined. Surgical exposure of the tumor as a skin-flap in these experiments restricted the quantification of migratory behavior, and also provided challenges in terms of minimising focal drift of the sample in the x, y and z axis required for techniques such as FRAP and photoactivation.

Switching of our experimental approach from skin-flaps to dorsal skin-fold windows greatly reduced sample movement during image acquisition, at the same time allowing us to use recoverable anesthesia to perform long-term tracking of tumor cell behavior over multiple imaging sessions.\textsuperscript{21} Similar approaches have been described elsewhere in references 25–27. When coupled with photoswitchable fluorescent proteins, this provides a means of tracking sub-populations of tumor cells over a period of 24–48 h.\textsuperscript{21,27} Quantitative measurement of A431 collective cell migration in vivo using this approach revealed that inhibition of either FAK or Src kinase activity (using the kinase inhibitors PF-562,271 and \textit{dasatinib} respectively), results in inhibition of cell migration within the primary tumor (Fig. 2A),\textsuperscript{21} thereby targeting a process that is likely to be required for the intra-vasation and dissemination of tumor cells from the primary tumor. Moreover, identification of multi-cellular strands some distance from the original activation point suggested the presence of collectively migrating cells within these tumors (Fig. 2B), although this cannot be definitively proved using an assay based on the acquisition of still images at any given time. While individual labeled cells are also visible, we cannot tell whether these were singly migrating cells or cells migrating in a collective manner with cells that had not been switched from green to red. This assay format does not permit the accurate quantification of singly and collectively migrating cells, but it does allow quantification and visualization of what appears to be collective migration. The photoswitching of Dendra2-labeled tumor cells through mammary windows has also been used for measurement of tumor cell entry into blood vessels, with the sub-population of cells being selected for their proximity to a blood vessel.\textsuperscript{27} This approach established that Src/FAK signaling is required for the collective migration of tumor cells in vivo, and also provided pre-clinical evidence that \textit{dasatinib} and PF-562,271 display anti-invasive effects (Fig. 2A).\textsuperscript{21}

To investigate the mechanism by which Src/FAK signaling was regulating collective cell migration in vivo, we used FRAP in GFP-tagged E-cadherin-expressing tumor cells grown under optical windows. Treatment of tumors with \textit{PF-562,271} resulted in a shorter recovery half-time and no change in immobile fraction, mimicking the effects of \textit{PF-562,271} treatment in cells in culture. Further investigation in vitro revealed that these dynamic changes in E-cadherin mobility at sites of cell-cell adhesion correlate with inhibition of E-cadherin endocytosis, inhibition of collective invasion into a 3D collagen matrix and strengthening of cell-cell adhesion. In addition, these studies confirm that GFP-E-cadherin recovery half-time measurements are at least in part a measure of the rate of E-cadherin endocytosis.\textsuperscript{21} These imaging studies provide new insights into the existence of regulatory cross-talk between components of integrin-based cell-matrix adhesions and AJs in vivo, while further identifying potential mechanisms underlying the potential anti-invasive effects of small molecule tyrosine kinase inhibitors targeting Src/FAK signaling in epithelial tumors. However, these studies do not rule out the possibility that inhibition of Src/FAK signaling may have a general effect on cell motility, independent of E-cadherin and AJs status, that may contribute to the potential anti-invasive effects of Src/FAK inhibition in epithelial tissue.

Conclusions and Future Perspectives

To date very few studies have investigated the role of Src/FAK signaling in the cancer-associated regulation of E-cadherin and cell-cell adhesion by imaging in the \textit{in vivo} setting. In vitro cell culture can at best only partially re-capitulate the \textit{in vivo} environment; new techniques allow this to be overcome with the use of high-resolution imaging in vivo. Indeed, in vivo confocal and multi-photon microscopy has highlighted the heterogeneity of tumor cell invasion modes, even within individual tumors,\textsuperscript{25,30} and indicated that localized signaling gradients in primary tumors can induce transient and reversible EMT.\textsuperscript{30} Such insights could not have been gained from purely in vitro studies. Evidence emerging from our own \textit{in vivo} studies investigating the role of Src/FAK signaling in E-cadherin and cell-cell adhesion regulation implies that inhibition of this signaling pathway strengthens cell-cell adhesion in vivo,\textsuperscript{21} promoting a more epithelial-like morphology and suppressing epithelial tumor cell migration. As expected, the biology in vivo is complex and we hypothesize that inhibition of Src/FAK signaling may counteract the pro-EMT signals within the tumor microenvironment, such as those induced by TGFβ, therefore reducing the movement within and away from the tumor. Studies addressing the mechanisms that underpin tumor cell responses to small molecule inhibitors in vivo are therefore important in testing putative anti-cancer therapies. High-resolution in vivo imaging in the \textit{pre-clinical} setting will aid understanding of tumor/host interplay and predicting responses to therapeutic intervention. New quantitative probes for cancer biology imaging in vivo, particularly if these can be applied to more relevant cancer models (genetically engineered), will facilitate further progress.

Acknowledgments

The authors would like to acknowledge funding from Cancer Research UK, program grant C157/A9148.
Figure 2. Visualizing collective cell migration in living animals. (A) Confocal images showing A431 Dendra2 cells in tumors of untreated mice or mice treated with PF-562,271 or dasatinib, at different time points after photoswitching (red). Scale bars, 100 μm. (B) Zoomed images from a control tumor (left) and higher magnification images (center and right) showing collective cell movement. *individual cells within a group; scale bars, 20 μm (left and center images) and 10 μm (right image). All images presented in this figure have been previously published in reference 21.

References
1. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology 2007; 39:305-18; PMID:17558857; DOI:10.1080/00313020701329914.
2. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003; 3:362-74; PMID:12724734; DOI:10.1038/nrc1075.
3. Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 2006; 66:8319-26; PMID:16951136; DOI:10.1158/0008-5472.CAN-06-0410.
4. Hyafil F, Bahiner C, Jacob F. Cell-cell interactions in early embryogenesis: a molecular approach to the role of calcium. Cell 1981; 26:447-54; PMID:6976838; DOI:10.1016/0092-8674(81)90214-2.
5. Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochem Biophys Acta 1994; 1198:11-26; PMID:8199193.
6. Rodrigo JP, Dominguez F, Suarez V, Canel M, Secades P, Chira MD. Focal adhesion kinase and E-cadherin as markers for nodal metastasis in laryngeal cancer. Arch Otolaryngol Head Neck Surg 2007; 133:145-50; PMID:17309983; DOI:10.1001/archotol.133.2.145.
7. Jeunes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 2008; 27:6920-9; PMID:19029934; DOI:10.1080/09603280802343.
8. Avizienyte E, Fincham VJ, Brunton VG, Frame MC. Src SH3/2 domain-mediated peripheral accumulation of Src and phospho-myosin is linked to deregulation of E-cadherin and the epithelial-mesenchymal transition. Mol Biol Cell 2004; 15:2794-803; PMID:15075377; DOI:10.1091/mbc.E03-12-0879.
9. Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG, et al. Src-induced deregulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol 2002; 4:632-8; PMID:12134161.
10. Cicchini C, Laudadio I, Cirarella F, Corazzari M, Strindler C, Consiglio A, et al. TGFbeta-induced EMT requires focal adhesion kinase (FAK) signaling. Exp Cell Res 2008; 314:143-52; PMID:17949712; DOI:10.1016/j.yexcr.2007.09.005.
11. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008; 14:818-29; PMID:18559112; DOI:10.1016/j.devcel.2008.05.009.
12. Allgayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE. Activation of Src kinase in primary colorectal carcinomas: an indicator of poor clinical prognosis. Cancer 2002; 94:344-51; PMID:11900220; DOI:10.1002/cncr.10221.
13. Bolen JB, Veillure A, Schwarz AM, DeSeau V, Rosen N. Activation of pp60c-src protein kinase activity in human colon carcinoma. Proc Natl Acad Sci USA 1987; 84:2251-5; PMID:2436227; DOI:10.1073/pnas.84.8.2251.

14. Carverright GA, Kamps MP, Meisler AI, Pipas JM, Eckhart W. pp60c-src activation in human colon carcinoma. J Clin Invest 1989; 83:2025-33; PMID:2498394; DOI:10.1172/JCI114113.

15. Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 2002; 1602:114-30; PMID:12020799.

16. Morton JP, Karim SA, Graham K, Timpson P, Jamieson N. Activation of pp60c-src protein kinase activity in human colon carcinoma. Proc Natl Acad Sci USA 1987; 84:2251-5; PMID:2436227; DOI:10.1073/pnas.84.8.2251.

17. Madawala AD, et al. Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 2010; 139:292-303; PMID:20393350; DOI:10.1053/j.gastro.2010.03.034.

18. Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 2003; 22:337-58; PMID:12884910; DOI:10.1023/A:1023772912750.

19. Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta 2002; 1602:114-30; PMID:12020799.

20. Morton JP, Karim SA, Graham K, Timpson P, Jamieson N, Athineos D, et al. Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 2010; 139:292-303; PMID:20393350; DOI:10.1053/j.gastro.2010.03.034.

21. Junger WD, et al. p120-catenin is required for the collective invasion of squamous cell carcinoma cells via a phospho-lyation-independent mechanism. Oncogene 2007; 26:5214-28; PMID:17334396; DOI:10.1038/sj.onc.1210334.

22. Playford MP, Vadali K, Cai X, Burridge K, Schaller MD. Focal adhesion kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho. Exp Cell Res 2008; 314:3187-97; PMID:18773890; DOI:10.1016/j.yexcr.2008.08.010.

23. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 2007; 67:2649-56; PMID:17363585; DOI:10.1158/0008-5472.CAN-06-1823.

24. Alexander S, Koehl GE, Hirschberg M, Geisler EK, Friedl P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 2008; 130:1147-54; PMID:18978775; DOI:10.1007/s00418-008-0529-1.

25. Brown E, Munz LL, Fukumura D, Jain RK. In vivo imaging of tumors. Cold Spring Harb Protoc 2010; 2010 pdb prot5452.

26. Kedrin D, Gilgorjevic B, Wyckoff J, Verklisha VV, Condeelis J, Segall JE, et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 2008; 5:1019-21; PMID:18997781; DOI:10.1038/nmeth.1269.

27. Bolen JB, Veillure A, Schwarz AM, DeSeau V, Rosen N. Activation of pp60c-src protein kinase activity in human colon carcinoma. Proc Natl Acad Sci USA 1987; 84:2251-5; PMID:2436227; DOI:10.1073/pnas.84.8.2251.

28. Friedl P, Noble PB, Walton PA, Laird DW, Chauvin PJ, Tabah RJ, et al. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res 1995; 55:4557-60; PMID:7553628.

29. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009; 10:445-57; PMID:19546857; DOI:10.1038/nrm2720.

30. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFbeta signaling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 2009; 11:1287-96; PMID:19838175; DOI:10.1038/ncb1973.

31. Sprague BL, McNally JG. FRAP analysis of binding and assembly. Trends Cell Biol 2005; 15:84-91; PMID:15695097; DOI:10.1016/j.tcb.2004.12.001.

32. Canel M, Serrels A, Anderson KL, Frame MC, Brunton VG. Use of photoactivation and photobleaching to monitor the dynamic regulation of E-cadherin at the plasma membrane. Cell Adh Migr 2010; 4:491-501; PMID:20595808; DOI:10.4161/cam.4.4.12661.

33. de Beco S, Guesudry C, Amblard F, Coscoy S. Endocytosis is required for E-cadherin redistribution at mature adherens junctions. Proc Natl Acad Sci USA 2009; 106:7010-5; PMID:19372377; DOI:10.1073/pnas.0811253106.

34. Serrels A, Timpson P, Canel M, Schwarz JP, Carragher NO, Frame MC, et al. Real-time study of E-cadherin and membrane dynamics in living animalic implications for disease modeling and drug development. Cancer Res 2009; 69:2714-9; PMID:19318551; DOI:10.1158/1008-5472.CAN-08-4308.