Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes

Luong Dai Ly, Shanhua Xu, Seong-Kyung Choi, Chae-Myeong Ha, Themis Thoudam, Seung-Kuy Cha, Andreas Wiederkehr, Claes B Wollheim, In-Kyu Lee and Kyu-Sang Park

Free fatty acids (FFAs) are important substrates for mitochondrial oxidative metabolism and ATP synthesis but also cause serious stress to various tissues, contributing to the development of metabolic diseases. CD36 is a major mediator of cellular FFA uptake. Inside the cell, saturated FFAs are able to induce the production of cytosolic and mitochondrial reactive oxygen species (ROS), which can be prevented by co-exposure to unsaturated FFAs. There are close connections between oxidative stress and organellar Ca\(^{2+}\) homeostasis. Highly oxidative conditions induced by palmitate trigger aberrant endoplasmic reticulum (ER) Ca\(^{2+}\) release and thereby deplete ER Ca\(^{2+}\) stores. The resulting ER Ca\(^{2+}\) deficiency impairs chaperones of the protein folding machinery, leading to the accumulation of misfolded proteins. This ER stress may further aggravate oxidative stress by augmenting ER ROS production. Secondary to ER Ca\(^{2+}\) release, cytosolic and mitochondrial matrix Ca\(^{2+}\) concentrations can also be altered. In addition, plasmalemmal ion channels operated by ER Ca\(^{2+}\) depletion mediate persistent Ca\(^{2+}\) influx, further impairing cytosolic and mitochondrial Ca\(^{2+}\) homeostasis. Mitochondrial Ca\(^{2+}\) overload causes superoxide production and functional impairment, culminating in apoptosis. This vicious cycle of lipotoxicity occurs in multiple tissues, resulting in \(\beta\)-cell failure and insulin resistance in target tissues, and further aggravates diabetic complications.

Experimental & Molecular Medicine (2017) 49, e291; doi:10.1038/emm.2016.157; published online 3 February 2017

INTRODUCTION

Free fatty acids (FFAs) are important sources of fuel required for efficient cellular energy production. FFAs enter mitochondria via carnitine palmitoyltransferase 1 (CPT1) and undergo \(\beta\)-oxidation to generate acetyl-CoA, which serves as a substrate for the Krebs cycle. Fatty acid metabolism generates reducing equivalents used by the electron transport chain (ETC) for ATP synthesis.\(^1\) Increased \(\beta\)-oxidation attenuates further mitochondrial FFA uptake through the formation of malonyl CoA, an inhibitor of CPT1. Excess FFA critically induces reactive oxygen species (ROS) generation, resulting in lipotoxicity associated with ER stress, calcium dysregulation, mitochondrial dysfunction and cell death.

Palmitate, stearate and oleate are the most abundant FFAs, accounting for 70–80% of total plasma FFAs.\(^2\) FFA concentrations in patients with type 2 diabetes are significantly higher than in healthy subjects.\(^3,4\) Compared with normal subjects, rates of palmitate appearance in plasma are 1.5- and 3-fold higher in type 2 diabetic individuals during nocturnal and postprandial states, respectively.\(^4\) In the Paris Prospective Study, increased plasma FFA concentration and decreased 2-h plasma insulin levels are considered to be independent predictors of type 2 diabetes in subjects with a history of impaired glucose tolerance. Among impaired glucose tolerance subjects who develop type 2 diabetes, 78% are in the highest tertile of fasting FFA concentrations. It has been suggested that lipotoxicity is associated with uncompensated insulin secretion in patients with insulin resistance, leading to overt type 2 diabetes.\(^5\)

In this review, we summarize the molecular mechanisms leading to palmitate-induced toxicity in type 2 diabetes, including sources of ROS generation and Ca\(^{2+}\)-mediated pathogenic changes. These mechanisms show harmful cross-interactions. Endoplasmic reticulum (ER) Ca\(^{2+}\) release due to palmitate-induced oxidative stress results in cytosolic and mitochondrial Ca\(^{2+}\) overload, which may further accelerate...
ROS generation from mitochondria and facilitate permeability transition (PT) pore opening. The activation of store-operated Ca\(^{2+}\) (SOC) entry triggered by ER Ca\(^{2+}\) depletion augments the persistent Ca\(^{2+}\) load. The interruption of such vicious cycles of ROS formation and Ca\(^{2+}\) dysregulation may be a good therapeutic target for the prevention and treatment of metabolic diseases related to lipotoxicity.

CD36: Fatty Acid Transporter or Receptor?

CD36 is an 88-kDa, ditopic, heavily N-linked glycosylated transmembrane protein that is also known as fatty acid translocase (FAT). CD36 is abundantly expressed in tissues with a high capacity for fatty acid metabolism (for example, adipose tissue, cardiac and skeletal muscles). Other cells and tissues including liver, endothelial cells, monocytes, macrophages, pancreatic \(\beta\)-cells and podocytes also express CD36.

Muscle-specific over-expression of CD36 enhances FFA uptake and thus decreases plasma triglyceride and fatty acids levels. Conversely, FFA uptake is impaired in CD36 null mice with high plasma concentrations of cholesterol and triglyceride. CD36 expression is low in normal hepatocytes and does not have a significant role in FFA uptake. The Pro90Ser CD36 mutation in humans perturbs the FFA uptake of muscle and adipose tissue, but hepatic uptake is not affected under suppressed or slightly increased concentrations of palmitate. Consistently, hepatic FFA uptake is not disturbed in CD36 knockout mice. Under a high-fat diet or in hepatic steatosis, CD36 is highly inducible by activation of nuclear receptors, including liver X receptor, pregnane X receptor, peroxisome proliferator-activated receptor \(\gamma\) and the aryl hydrocarbon receptor. However, controversies arise concerning the impact of CD36 on fatty liver disease.

Hepatocyte-specific CD36 disruption significantly reduces hepatic triacylglycerol, diacylglycerol (DAG) and cholesterol ester content and improves insulin sensitivity when a high-fat diet is consumed. However, liver-specific CD36 overexpression attenuated hepatic steatosis and insulin resistance in another study with transgenic mice.

In addition to its role in FFA transport, CD36 has an important role in signal transduction through the activation of non-receptor tyrosine kinases of the Src family, including Fyn and Lyn. The binding of long chain (LC)–FFAs to CD36 stimulates the tyrosine phosphorylation of downstream proteins, inducing pro-inflammatory and atherogenic responses associated with diabetes, atherosclerosis, thrombosis, and Alzheimer disease. Ligand binding to CD36 also stimulates phospholipase C (PLC) and, as a consequence, IP\(_3\)-mediated ER Ca\(^{2+}\) release. This signaling pathway contributes, for example, to the sensing of LC-FFA in taste buds. In addition, CD36 stimulates SOC influx. The associated increase in Ca\(^{2+}\)–dependent phospholipase A\(_2\) and prostaglandin synthesis involved in inflammatory responses.

Interestingly, CD36 is upregulated in response to high glucose in insulin-secreting cells and in patients with diabetic nephropathy. Such regulation of CD36 expression may lead to the exacerbation of glucolipotoxicity via increased FFA uptake. In insulinoma cells, CD36 induction increases the uptake of FFA, leading to the blunting of the functional interplay between glucose and lipids in insulin secretion as a consequence of impaired oxidative metabolism. The disruption of the CD36 gene, however, protects from obesity-associated steatosis and insulin resistance. In diabetic animals, a lack of CD36 attenuates NADPH oxidase (NOX)–dependent ROS generation. Moreover, the targeted disruption of CD36 in macrophages shows protective action against atherosclerosis.

Therefore, CD36 could be a therapeutic target for the treatment of metabolic dysfunction worsened by dyslipidemia.

Sulfo-N-succinimidyl derivatives have been developed as selective inhibitors for CD36. Preincubation with a CD36 inhibitor prevents saturated FFA-induced ROS production and cytotoxicity. Sulfo-N-succinimidyl derivatives also inhibit oxidized low-density lipoprotein (oxLDL) uptake in macrophages. Recently, Souza et al. demonstrated that the 5A peptide antagonizes oxLDL binding to CD36, inhibiting inflammation and oxidative stress in vascular tissues. The 5A peptide, through its inhibition of CD36, also reduces glomerular injury and tubule-interstitial fibrosis in animal models of chronic kidney disease.

Oxidative Stress Induced by Fatty Acids

Reactive oxygen species are essential signaling molecules that regulate physiological cell functions. However, the overproduction of ROS in pathologic conditions has detrimental consequences, causing organellar stress, injury and cell death. Palmate is a potent inducer of ROS in a number of cell types, including pancreatic \(\beta\)-cells, cardiomyocytes, vascular smooth muscle cells, skeletal muscle cells, glomerular podocytes, hepatocytes and adipocytes. CD36 appears to be required for fatty acid-induced ROS production due to the fact that the knockdown of CD36 prevents palmitate-dependent oxidative stress.

Increased mitochondrial fatty acid oxidation has been proposed as the main process leading to ROS generation in lipotoxicity (Figure 1). The oxidation of palmitate delivers excess electrons to the ETC, which thus causes superoxide overproduction. There are, however, conflicting data in the literature showing that the acceleration of \(\beta\)-oxidation actually relieves oxidative stress, and the inhibition of mitochondrial fatty acid uptake aggravates ROS production. The molecular mechanisms for cellular ROS generation by palmitate, therefore, remain to be fully elucidated.

Palmitate-induced superoxide cannot be fully eliminated by the addition of the complex III inhibitor antimycin A, revealing that ROS are also generated through sources other than the ETC. In chondrocytes, a mixture of oleate and palmitate enhances ROS production and induces cell apoptosis, mainly by upregulating the protein levels of NOX4. Notably, NOX4 is expressed in mitochondria and contributes to mitochondrial ROS production. A recent study suggests that the activation of protein kinase \(\alpha\) (PK\(\alpha\)) by palmitate increases ROS production through NOX2 upregulation in cardiomyocytes.
An upstream stimulus of PKC is DAG, which is produced either in a membrane-delimited manner with Gq/11-coupled PLC or by enzymatic synthesis from phosphatidic acid. Palmitate increases DAG in a number of cell types. The formation of this signaling molecule may be responsible for palmitate-induced PKC activation and ROS generation (Figure 1). Moreover, there is crosstalk between mitochondria and the NADPH oxidase system via feed-forward amplification of ROS production. The involvement of ER oxidoreductin 1 alpha (ERO1α) and disulfide isomerase during ER stress, as well as ER-mitochondrial Ca2+ dysregulation in ROS overproduction, will be discussed later in this review.

Unlike palmitate, oleate is an unsaturated fatty acid with a cis double bond at position 9. Oleate may stimulate ROS generation but may also protect from oxidative stress. Oleate has been reported to increase intracellular H2O2 production in rat smooth muscle cells, pancreatic β-cells, and human hepatoma HepG2 cells. Other studies, however, reported no effect of oleate on ROS generation in smooth muscle cells from the human coronary artery or Chang liver cells. Oleate is even able to attenuate or abolish palmitate-induced ROS synthesis when the two fatty acids are used in combination. Reduced ROS generation in the presence of oleate is correlated with a protective effect of unsaturated FFAs on ER stress and cytotoxicity.

Figure 1 Palmitate induces ROS overproduction. (1) Increased β-oxidation, (2) DAG-PKC-NOX, (3) CHOP-ERO1α and PDI under ER stress. ROS produced by palmitate triggers PLC activation, ER Ca2+ release, ER stress and mitochondrial dysfunction, which, in turn, aggravate ROS generation. CHOP, CCAAT-enhancer-binding protein homologous protein; DAG, diacylglycerol; ERO1α, ER oxidoreductin 1 alpha; NOX, NADPH oxidase; PDI, protein disulfide isomerase; PKC, protein kinase C; PLC, phospholipase C; ROS, reactive oxygen species.
(1) the overall attenuation of translation, with the simultaneous
(2) promotion of the translation of ER chaperones and
(3) the restoration of the ER-associated degradation (ERAD)
system.67,68 If the stress is too severe to be resolved by the
unfolded protein response, the cell triggers a death program to
be eliminated.

The condensation of palmitoyl-CoA, the activated form of
palmitate and serine, is the first step in the biosynthesis of
ceramide, which is catalyzed by serine palmitoyltransferase.
Ceramide activates protein phosphatase 2A and PKC, both of
which can inhibit Akt activation, leading to insulin resistance in
skeletal muscle and adipose tissue.69,70 This pathogenic process
activates pro-apoptotic signaling and cytochrome c release from
mitochondrial inter-membrane space.71 Ceramide also inhibits
mitochondrial beta-oxidation, which aggravates palmitate-
induced lipotoxicity.72 Intriguingly, ceramide induces the loss
of the ER calcium pool and ER stress. The inhibition of the
sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) by
ceramide has been suggested as the main mechanism of ER
calcium depletion.73

Unlike palmitate, oleate does not cause a significant ER stress
response.30,38,61 Moreover, oleate prevents palmitate-induced
ER stress, c-Jun N-terminal kinase (JNK) activation and cell
death,74,75 all of which are consistent with reduced ROS
generation. A key difference between the two fatty acids is
that oleate, but not palmitate, activates diacylglycerol acyl
transferase (DGAT). The stimulation of DGAT lessens DAG
accumulation by converting it to triacylglycerol.76–78 Using
3H-labeled palmitate, it was shown that oleate attenuates
palmitate-induced DAG formation and instead leads to the
preferential accumulation of triacylglycerol.79 Oleate promotes
the mitochondrial oxidation of palmitate by increasing CPT1
expression. This mechanism contributes to diminished total
aplmitate and palmitate-derived toxic metabolites.78

The ER stress response could be a therapeutic target to
prevent palmitate-induced lipotoxicity. There have been
attempts to tackle diseases of protein misfolding, such as cystic
fibrosis, α\textsubscript{1} antitrypsin deficiency, Alzheimer disease and type
2 diabetes, using the chemical chaperone 4-phenylbutyric
acid.80–83 Taurine-conjugated ursodeoxycholic acid (TUDCA)
has also been tested as a chaperone to protect hepatocytes from
palmitate-induced ER stress and apoptosis.84 Salubrinal,
a selective chemical inhibitor of eIF2α phosphatase, was
introduced to prevent ER stress.85 Further studies revealed,
however, that salubrinal treatment shows deleterious effects in
pancreatic β-cells and other cell types.86,87

Several studies have demonstrated that knockdown of ER
stress proteins (for example, CCAAT-enhancer-binding protein

Figure 2 Palmitate disturbs intracellular Ca2+ homeostasis. ROS activate IP\textsubscript{3}R and RYR, which release Ca2+ from the ER. The deprivation of ER Ca2+ leads to ER stress and CHOP upregulation. Ca2+ is transported into mitochondria through a specialized structure composed of
IP\textsubscript{3}R, VDAC, MCU and GRP75. Excessive Ca2+ in mitochondria leads to cytochrome c release. SOC entry triggered by ER Ca2+ depletion
elicits the persistent influx of Ca2+ into cytosol and mitochondria. High intracellular calcium activates calpain signaling. Cytochrome c,
CHOP and calpain all provoke caspase activation and cell death. CHOP, CCAAT-enhancer-binding protein homologous protein; GRP75,
75 kDa glucose-regulated protein; MCU, mitochondrial Ca2+ uniporter; ROS, reactive oxygen species; SOC, store-operated Ca2+; VDAC,
voltage-dependent anion channel.
homologous protein (CHOP)) has protective effects on palmitate-induced apoptosis in insulin-secreting cells, podocytes and other cell types. However, CHOP knockout mice suffer from steatohepatitis and fibrosis due to the pro-inflammatory actions of CHOP-deleted macrophages in the liver. Therefore, more research is required to find better interventions to prevent palmitate-induced ER stress without serious adverse events.

ER CALCIUM DEPLETION BY PALMITATE

Luminal ER Ca\(^{2+}\) concentration is particularly important for protein folding. High levels of Ca\(^{2+}\) in the ER lumen (\(>400 \mu\text{M}\)) are required for interactions among ER chaperones and between chaperones and unfolded proteins. SERCA maintains high ER Ca\(^{2+}\) concentrations. A chronic reduction of ER Ca\(^{2+}\) stores elicits the accumulation of unfolded or misfolded proteins and initiates an ER stress response (Figure 2). Exposure to thapsigargin, an inhibitor of SERCA, is applied to induce ER stress experimentally by depleting the ER Ca\(^{2+}\) stores. Palmitate-induced ER stress is also associated with a sustained reduction of the ER Ca\(^{2+}\) pool, which has been demonstrated directly through cytosolic and ER Ca\(^{2+}\) measurements. ER Ca\(^{2+}\) loss caused by FFA triggers the unfolded protein response to rescue cells from misfolded protein overload or programmed cell death.

ER proteome analysis in the liver of ob/ob mice shows a fundamental shift in ER function in obesity from protein synthesis to lipid synthesis and metabolism. One important factor inducing ER calcium depletion in obesity is the increased phosphatidylcholine/phosphatidylethanolamine ratio, which disrupts ER calcium refilling capacity by inhibiting SERCA activity. This regulation did not occur at the level of expression, as the SERCA protein was slightly more abundant in ob/ob mice compared to lean mice. The suppression of phosphatidylcholine synthesis from phosphatidylethanolamine normalized the phosphatidylcholine / phosphatidylethanolamine ratio, protected against ER stress and improved systemic glucose homeostasis.

The accumulation of misfolded proteins causes ROS generation from the oxidative folding machineries in the ER and mitochondria. Defective disulfide bond formation depletes glutathione in the ER and produces oxygen radicals via ERO1\(\alpha\) and protein disulfide isomerase. Intriguingly, ROS produced by ERO1\(\alpha\) activates type 1 IP\(_3\) receptors (IP\(_3\)R) and stimulates ER Ca\(^{2+}\) release. Consequent ER Ca\(^{2+}\) loss further deteriorates the protein-folding process and augments ROS generation. Furthermore, prolonged ER stress increases CHOP expression, which upregulates ERO1\(\alpha\), causing additional oxidative stress. This positive feedback mechanism amplifies oxidation-triggered IP\(_3\)R activation and ER Ca\(^{2+}\) release (Figure 1). Blocking this vicious cycle between ER ROS formation and ER Ca\(^{2+}\) release could be a pertinent therapeutic strategy. In support of this approach, we observed that palmitate-induced ER Ca\(^{2+}\) loss was prevented by both ROS scavengers or the inhibition of IP\(_3\) generation.

It is noteworthy that H\(_2\)O\(_2\)-mediated oxidative stress can activate PLC\(_\gamma\) and generate IP\(_3\) and DAG in astrocytes and lung endothelial cells. Consistent with these findings, PLC activation was observed in podocytes treated with either palmitate or H\(_2\)O\(_2\). Pretreatment with a PLC inhibitor attenuated palmitate-induced ER Ca\(^{2+}\) loss, suggesting that IP\(_3\) generation from phosphatidylinositol 4,5-bisphosphate (PIP\(_2\)) contributes to ER Ca\(^{2+}\) release via the IP\(_3\)R. In addition, DAG, the other signaling molecule produced by PLC activity, may also participate in palmitate-dependent ER Ca\(^{2+}\) loss. This hypothesis was supported by experimental evidence showing that palmitate-induced ER Ca\(^{2+}\) depletion and ER stress were surprisingly augmented by treatment with a DAG kinase blocker, leading to DAG accumulation. DAG accumulation activates PKC. PKC activity upregulates NOX (Figure 1), and more ROS are thus generated, as discussed earlier, leading to further ER Ca\(^{2+}\) loss. The inhibition of PKC blunted the effect of palmitate on ER Ca\(^{2+}\), suggesting a critical pathogenic role for DAG-mediated PKC activation. We propose a synergistic stimulation of Ca\(^{2+}\) release from the ER by IP\(_3\) and DAG, although further detailed studies are required to substantiate our working model.

PALMITATE DISTURBS INTRACELLULAR CALCIUM HOMEOSTASIS

Plasma membrane Ca\(^{2+}\) ATPase (PMCA) and SERCA establish 1000- to 10 000-fold change gradients of Ca\(^{2+}\) concentrations across the plasma membrane and the ER membrane. Therefore, inappropriate and uncontrolled cytosolic Ca\(^{2+}\) increases that result from Ca\(^{2+}\) influx from the extracellular space or release from the ER are a burden for the cell as it tries to maintain intracellular Ca\(^{2+}\) homeostasis. Ca\(^{2+}\) stress may initiate pathogenic processes such as calpain-mediated cell death. In β-cells, for instance, it was observed that palmitate-induced ER Ca\(^{2+}\) release activates the calcium-dependent pro-apoptotic protease calpain-2.

Ca\(^{2+}\) release from the ER participates in cell death mechanisms. The luminal ER Ca\(^{2+}\) level is an important factor determining susceptibility to apoptosis triggered by different kinds of proapoptotic stimuli, including ceramides and arachidonic acid. Recent discoveries support these observations by revealing a role for ER-mitochondrial contacts, known as the mitochondria-associated ER membrane (MAM) in apoptosis (Figure 2). MAMs are specialized subcompartments of the ER where the distance between the ER and the mitochondrial membranes is <25 nm. MAMs have been reported as either larger or tighter in diabetic mice on a high-fat diet. The physical contact points between the ER and mitochondria are enriched for specific membrane proteins such as the IP\(_3\) receptor, the voltage-dependent anion channel and the mitochondrial Ca\(^{2+}\) uniporter (MCU). Additional adaptor proteins, including GRP75, are also required to establish high capacity Ca\(^{2+}\) transfer from the ER to the mitochondria. The increased density of MAMs in the cells of animals fed a high-fat diet may aggravate ER Ca\(^{2+}\) depletion.
and mitochondrial Ca2+ overload, although this hypothesis requires further experimentation.104

The activation of Ca2+ signals via PLC-mediated IP\textsubscript{3} generation depletes ER Ca2+ and may thus have a negative impact on ER function and cell survival.90 To prevent this pathogenic consequence, there is an innate response to refill the ER Ca2+ reservoir. In the ER membrane, the stromal interaction molecule (STIM), a transmembrane protein with luminal EF hands, senses ER Ca2+ levels. A decrease in ER Ca2+ leads to STIM translocation to the plasma-membrane-ER junctions. In these sub-plasma membrane areas, STIM proteins oligomerize to form clusters to recruit Orai1, a plasmalemmal Ca2+ channel. Orai1 mediates SOC entry until ER Ca2+ stores are refilled, at which point STIM oligomers again become dispersed. Notably, palmitate-treated cells maintain STIM1 oligomerization, signifying that ER Ca2+ release and depletion of stores persist.30 Upon extracellular Ca2+ addition, palmitate-treated cells show strong and sustained increases in cytosolic Ca2+, whereas there is a negligible influence on Ca2+ influx in control cells (Figure 2).30 This evidence suggests that ER Ca2+ depletion by palmitate induces sustained SOC entry, which may raise cytosolic and mitochondrial Ca2+ to an intolerable level. Low extracellular Ca2+ conditions protect ER and mitochondrial Ca2+ release, whereas there is a negligible influence on Ca2+ influx in control cells (Figure 2).

Mitochondria have an essential role in energy metabolism, mitochondrial dysfunction by palmitate.

MITOCHONDRIAL DYSFUNCTION BY PALMITATE

Mitochondria have an essential role in energy metabolism, biosynthetic processes, Ca2+ homeostasis and the integration of apoptotic signals,106,107 Ca2+ in the mitochondrial matrix and extramitochondrial locations modulates mitochondrial functions, including intermediary metabolism and ATP synthesis. Mitochondrial Ca2+ activates pyruvate dehydrogenase, Krebs cycle activity, mitochondrial transporters, and ATP synthase.108–110 MCU is the main molecule responsible for mitochondrial Ca2+ uptake and the activation of mitochondrial metabolism.111,112 Unexpectedly, no obvious phenotype was initially observed in mice lacking MCU.115 In animals with a cardiac muscle-specific deletion, however, MCU deficiency induces defects in acute metabolic stimulation and protects against ischemia-reperfusion injury.114 Local increases in cytosolic Ca2+ arrest the movement of mitochondria, allowing the organelle to efficiently take up and sequester Ca2+ into its matrix to stimulate mitochondrial energetics.113 Excess mitochondrial Ca2+ uptake, in contrast, induces mitochondrial permeability transition pore opening, followed by cytochrome c release and apoptotic cell death (Figure 2).116

Accumulating evidence suggests that human subjects with obesity or insulin resistance exhibit reduced oxygen consumption rates, decreased expression of mitochondrial proteins, and impaired ATP synthesis.117,118 Mitochondrial dysfunction decreases β-oxidation and may elevate plasma FFA concentration, thereby aggravating lipotoxicity. The supplementation of tricarboxylic acid cycle substrates to facilitate mitochondrial FFA metabolism rescues lipotoxicity in insulin-secreting cells.47,119 However, excessive FFA in mitochondria stimulates superoxide generation from the ETC, leading to cytotoxicity.44

Mitochondria are dynamic organelles that undergo continuous fusion and fission.120 During this process, dysfunctional mitochondria are separated and degraded by mitophagy, which acts as a quality control mechanism.121 Palmitate induces mitochondrial depolarization, morphodynamic fragmentation and impaired ATP synthesis.30 Furthermore, palmitate suppresses autophagic activity, which may increase the proportion of dysfunctional mitochondria. Defective fission allows mitochondria to become more elongated but also more susceptible to glucolipotoxicity.121,122 The deterioration of mitochondrial function induces PT pore opening followed by caspase activation and apoptosis. The major known stimuli for PT pore opening are oxidative stress and matrix Ca2+ overload, both of which are observed during palmitate overload (Figure 2). Mitochondrial antioxidants effectively protect from palmitate-induced ER Ca2+ depletion, IP\textsubscript{3} generation, ER stress and cell death.30 These findings demonstrate the important role of mitochondrial ROS in the palmitate-induced vicious cycle of calcium dysregulation and apoptosis.

FUNCTIONAL CONSEQUENCES OF LITOXICITY AND IMPLICATIONS

Pancreatic beta cell failure and diabetes

During the glucose stimulation of pancreatic β-cells, insulin synthesis represents more than half of total protein synthesis in this highly specialized cell type. This high synthesis rate of insulin is further exaggerated in the context of insulin resistance, when proinsulin production is approximately 1 000 000 molecules per minute.123 Therefore, ER function in β-cells is prone to be overloaded in individuals on a high-calorie diet with limited physical activity. Saturated FFA s exert extra stress on β-cells due to the induction of ROS production. In an attempt to overcome this stress, β-cells upregulate the expression of chaperone proteins and reduce the ER workload as part of the ER stress response. Once a threshold of ER stress has been reached, palmitate may shift the β-cell response from physiologic adaptation to a pro-apoptotic program.124

ER stress in β-cells is a critical step in the pathogenesis of type 2 diabetes (Figure 3). Both high glucose and lipid stimulation produce mitochondrial ROS synergistically. Compared to other cell types, β-cells are highly susceptible to oxidative stress. High glucose and/or palmitate have been reported to decrease SERCA2b expression and ER Ca2+ level in β-cells.92 Inflammatory cytokines, acting as pathogenic molecules in type 1 diabetes, also attenuate SERCA2b expression in β-cells.125 Therefore, ER stress caused by insufficient ER Ca2+ content may be an important factor in the development of diabetes. In addition, the deletion or inactivation of WFS1,
which is mutated in Wolfram syndrome, results in reduced ER Ca\(^{2+}\) content and increases ER stress in β-cells.\(^{92,126}\) Genome studies revealed a link between WFS1 polymorphism and a high risk of type 2 diabetes,\(^{127}\) which may be due to the reported ER stress in β-cells. Palmitate, but not oleate, has been shown to trigger NF-κB activation and ER stress, which may be one mechanism to induce interleukin 1β (IL-1β) and downstream chemokines and cytokines, culminating in mild inflammation in human islets, although this does not directly cause β-cell dysfunction and apoptosis.\(^{128}\)

Mitochondrial function in β-cells is particularly important because glucose/lipid/amino acid metabolism and insulin secretion depend on mitochondrial function.\(^{129}\) It has been demonstrated that mitochondrial morphodynamics protect β-cells from lipotoxicity.\(^{130}\) The inhibition of mitochondrial fission and/or defective mitophagy augments sensitivity to glucolipotoxicity.\(^{122}\) Mitochondrial Ca\(^{2+}\) is a crucial regulator of mitochondrial energy metabolism,\(^{108}\) as mentioned earlier. Therefore, Ca\(^{2+}\) transport from the ER to the mitochondria can affect mitochondrial metabolism as well as β-cell death. The pathogenic role of the ER-mitochondrial Ca\(^{2+}\) connection in mitochondrial dysfunction and β-cell failure by palmitate deserves further investigation.

Insulin resistance in target tissues

It is well-known that palmitate induces insulin resistance by disrupting intracellular insulin signaling in diverse cell types such as hepatocytes, cardiac and skeletal muscle cells, adipocytes, podocytes, hypothalamic neurons, and pancreatic α-cells.\(^{42,131–136}\) Palmitate exposure activates JNK, which phosphorylates IRS-1 on serine\(^{107}\) and decreases Akt phosphorylation, leading to the impairment of downstream signaling. Intriguingly, neuronal cells are more prone to the cytotoxic effects of palmitate. Compared to other cell types, neuronal cells are sensitive to lower doses and shorter exposure time.\(^{135}\) Oleate, again, prevents palmitate-induced insulin resistance in many cases.\(^{137–139}\) Palmitate-induced oxidative stress is the main mechanism disrupting insulin signaling (Figure 3). As discussed above, ROS are derived from multiple sources: mitochondrial ETC, DAG-PKC-NOX and CHOP-ERO1α. ROS can activate not only JNK but also other serine kinases, such as p38 MAPK, GSK-3β and IKKβ in skeletal muscle.\(^{140}\) In HepG2 cells treated with palmitate, p38 MAPK and JNK activities are significantly attenuated by siRNA-mediated NOX3 silencing.\(^{42}\) However, in another hepatic cell line, ROS-induced JNK activation was not completely reversed, even when efficiently suppressing ROS levels using antioxidants.\(^{45}\) The findings suggest that other mechanisms are also involved in palmitate-induced insulin resistance. One possible explanation is the intracellular accumulation of ceramide, which may activate JNK via mixed lineage kinase-3.\(^{141,142}\)

Ca\(^{2+}\) is another modulator of insulin signaling, the molecular mechanisms of which are still poorly understood.\(^{143}\) Ca\(^{2+}\)/calmodulin was suggested to have an important role in the insulin-mediated translocation and exocytosis of glucose transporter type 4 (GLUT4) vesicles in 3T3-L1 adipocytes. A more recent study found that the Ca\(^{2+}\) chelator BAPTA\(^{144}\) operates through the depolarization of microtubules rather than Ca\(^{2+}\) chelation.\(^{145}\) In L6 myotubes, ER Ca\(^{2+}\) release through both ryanodine receptor 1 (RYR1) and IP\(_3\)R promotes insulin-dependent GLUT4 trafficking to the plasma membrane.\(^{146}\) Palmitate impairs mitochondrial calcium retention capacity and impairs insulin-stimulated GLUT4 translocation in L6 myotubes, which was fully restored by adding an inhibitor of PT pore opening.\(^{147}\) Finally, several studies have suggested that either enlarged or insufficient MAMs fail to maintain normal ER-mitochondrial Ca\(^{2+}\) homeostasis. Altered MAM structures may, therefore, indirectly affect the translocation and fusion of GLUT4 vesicles with the plasma membrane.\(^{148}\) Does palmitate-induced ER-mitochondrial Ca\(^{2+}\) dysregulation affect GLUT4 trafficking in a ROS-independent manner? Does palmitate affect insulin-dependent and/or contraction-dependent GLUT4 translocation?
in muscle? More studies are needed to address such potential Ca\(^{2+}\)-mediated mechanisms of lipotoxicity.

Diabetic complications

Chronic diabetic complications have traditionally been attributed to long-term exposure to high glucose. The four classical pathways of hyperglycemia-induced complications include (1) increased polyol pathway flux, (2) increased intracellular formation of advanced glycation end products (AGE), (3) the activation of PKC and (4) the stimulation of the hexosamine pathway. Those pathways are connected by the fact that intracellular high glucose induces elevated mitochondrial ROS production, which leads to a decrease in GAPDH activity. As a result, upstream glycolytic metabolites are diverted into the pathogenic pathways described above. In addition, high glucose augments the expression and activity of members of the NOX family. A detailed description of this crosstalk between NOX and mitochondrial ROS generation has been described elsewhere.

Intriguingly, accumulating evidence supports a synergistic effect between palmitate and high glucose leading to diabetic complications. Such findings have led to the concept of glucolipotoxicity. Oxidative stress may be a common mechanism explaining the harmful synergistic effects of the two nutrients. In bovine and human retinal endothelial cells, NOX2-derived ROS overproduction was significantly higher when the cells were exposed to palmitate and high glucose rather than high glucose alone. Consequently, mitochondrial DNA damage is observed as early as 48 h when bovine retinal cells are exposed to palmitate and high glucose. Similar mtDNA damage was only observed after 96 h when high glucose was added alone. The separate exposure of HUVEC cells to either palmitate or high glucose increases ROS production, but the highest ROS levels were observed upon treatment with both. These experiments clearly demonstrate that glucolipotoxicity, which was originally proposed to affect β-cells, may be similarly harmful to other tissues.

In diabetic nephropathy, functional and structural alterations in podocytes accompany disease progression. In this cell type, palmitate reduces tyrosine phosphorylation following insulin stimulation. This defect downstream of insulin receptor signaling also impairs GLUT4 translocation in podocytes. Palmitate-induced intracellular calcium dysregulation also participates in diabetic nephropathy. In podocytes, elevated cytosolic Ca\(^{2+}\) concentrations induce actin remodeling, which increases albumin permeability. These structural alterations in podocytes also have a critical role in the pathogenesis of proteinuric glomerular disease.

Furthermore, elevated palmitate may also exert harmful effects in periodontitis linked to type 2 diabetes. In mice fed a high-fat diet, which serve as a model of type 2 diabetes, CD36 is overexpressed in gingival fibroblasts. In human gingival fibroblasts, palmitate also provokes mRNA expression of pro-inflammatory cytokines and chemokines, as well as IL-6, IL-8 and CXCL1. This evidence supports the hypothesis that palmitate exposure may worsen diabetic complications.

CONCLUSION

The accumulation of palmitate and derived metabolites, e.g., DAG, induces oxidative stress and ER Ca\(^{2+}\) depletion, leading to ER stress and mitochondrial dysfunction. Excessive ER Ca\(^{2+}\) release and mitochondrial Ca\(^{2+}\) overload further amplify oxidative stress. This close interaction between oxidative stress and Ca\(^{2+}\) dysregulation results in a vicious cycle of increasingly impaired cell function and death. The activation of stores-operated Ca\(^{2+}\) entry may chronically disturb cytosolic and organellar Ca\(^{2+}\) homeostasis; this hypothesis will require further investigation. The disruption of Ca\(^{2+}\) regulation by oxidative stress also contributes to insulin resistance. These hypotheses provide an integrated mechanistic view of lipotoxicity, which has pivotal roles during the progress of diabetes and its complications. In this review, we have suggested future therapeutic approaches to type 2 diabetes via interference with the basic molecular mechanisms overstimulated during lipotoxicity.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This research was supported by a grant (H116C1301) from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (awarded to IKL).

1. Choi CS, Savage DB, Kulkarni A, Yu XX, Liu ZX, Morino K et al. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. *J Biol Chem* 2007; **282**:22678–22688.

2. Hagenfeldt L, Wahren J, Pernow B, Raf L. Uptake of individual free fatty acids by skeletal muscle and liver in man. *J Clin Invest* 1972; **51**:2324–2330.

3. Fraze E, Donner CC, Swislocki AL, Chen YA, Yi Y, Reaven GM. Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. *J Clin Endocrinol Metabol* 1985; **61**:807–811.

4. Miles JM, Wooldridge D, Grellner WJ, Windsor S, Klein S et al. Nocturnal and postprandial free fatty acid kinetics in normal and type 2 diabetic subjects: effects of insulin sensitization therapy. *Diabetes* 2003; **52**:675–681.

5. Charles MA, Eschwege E, Thibult N, Claude JR, Warnet JM, Rosselin GE et al. The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. *Diabetologia* 1997; **40**:1101–1106.

6. Abumrad NA, el-Maghribi MR, Amri EZ, Lopez E, Grimaldi PA. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. *J Biol Chem* 1993; **268**:17665–17668.

7. Van Nieuwenhoven FA, Verstijnen CP, Abumrad NA, Willemsen PH, Van Eys GJ, Van der Vusse GJ et al. Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are co-expressed in rat heart and skeletal muscles. *Biochim Biophys Res Commun* 1995; **207**:747–752.

8. Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL, Abumrad NA. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. *J Biol Chem* 2000; **275**:32523–32529.

9. He J, Lee JH, Febbraio M, Xie W. The emerging roles of fatty acid translocase/CD36 and the aryl hydrocarbon receptor in fatty liver disease. *Exp Biol Med (Maywood)* 2011; **236**:1116–1121.
10 Swerlick RA, Lee KH, Wick TM, Lawley TJ. Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J Immunol 1992; 148: 78–83.

11 Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Prober AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993; 268: 11811–11816.

12 Huy HY, Pearce SF, Yesner LM, Schindler JL, Silverstein RL. Regulated expression of CD36 during monocytic-macrophage differentiation: potential role of CD36 in foam cell formation. Blood 1996; 87: 2020–2028.

13 Noushmehr H, D’Amico E, Farilla L, Hui H, Wawrowsky KA, Mlynarski W et al. Free fatty acid uptake in human pancreatic beta-cells and mediates fatty acid effects on insulin secretion. Diabetes 2005; 54: 472–481.

14 Mayrhofer C, Krieger S, Huttary N, Chang MW, Grillari J, Allmaier G et al. Alterations in fatty acid utilization and impaired antioxidant defense mechanism are early events in podocyte injury: a proteomic analysis. Am J Pathol 2009; 174: 1191–1202.

15 Ibrahimii A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem 1999; 274: 26761–26766.

16 Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pearce SF et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipid metabolism. J Biol Chem 1999; 274: 19055–19062.

17 Garbacz WG, Lu P, Miller TM, Poloyac SM, Eyer NS, Mayrhofer G et al. Hepatic overexpression of CD36 improves glycogen homeostasis and attenuates high-fat diet induced hepatic steatosis and insulin resistance. Mol Cell Biol 2016; 36: 2715–2727.

18 Hames KC, Vella A, Kemp BJ, Jensen MD. Free fatty acid uptake in human monocytes: implications for atherosclerosis and thrombosis. Trans Am Clin Climatol Assoc 2010; 121: 206–220.

19 Kuda O, Jenkins CM, Skinner JR, Moon SH, Su X, Gross RW et al. CD36 mediates fatty acid-induced podocyte apoptosis via oxidative stress. PLoS ONE 2015; 10: e0127507.

20 Walin T, Ma Z, Ogata H, Jorgensen IH, Iezzi M, Wang H et al. Facilitation of fatty acid uptake by CD36 in insulin-producing cells reduces fatty-acid-induced insulin secretion and glucose regulation of fatty acid oxidation. Biochim Biophys Acta 2010; 1801: 191–197.

21 Chen R, Liu J, Zheng Y, Li Y, Wang X et al. Inhibition of fatty acid translocase cluster determinant 36 (CD36), stimulated by oxidized low density lipoprotein, inhibits macrophage migration and attenuates high-fat diet induced hepatic steatosis and insulin resistance. J Biol Chem 2011; 286: 17785–17795.

22 Abdoul-Azize S, Selvakumar S, Kudinov AA, Besnard P, Khan NA. Ca2+ and Na+ influx, phospholipase A2 (PLA2) and membrane cholesterol affect macrophage foam cell formation induced by palmitate and oxLDL. Antioxid Redox Signal 2015; 23: 279–295.

23 Brodeur MR, Bouvet C, Barrette M, Moreau P. Palmitic acid increases fatty acid oxidation and reduces intracellular triglycerides in mouse preadipocytes. J Biol Chem 2004; 279: 25670–25675.
97 Hong JH, Moon SJ, Byun HM, Kim MS, Jo H, Bae YS et al. Critical role of phospholipase Cγ2 in the generation of H2O2-evoked [Ca2+]i oscillations in cultured rat cortical astrocytes. J Biol Chem 2006; 281: 13057–13067.

98 Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T et al. BAX and BAK regulation of endoplasmic reticulum Ca2+-a control point for apoptosis. Science 2003; 300: 135–139.

99 Denaux F, Distelhorst C. Cell biology. Apoptosis—the calcium connection. Science 2003; 300: 65–67.

100 Csordas G, Renken C, Varnai P, Walter L, Weaver D, Buttle KF et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 2006; 174: 915–921.

101 Arruda AP, Pers BM, Paralkar G, Gunev E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med 2014; 20: 1427–1435.

102 Tubb E, Theurey P, Vial G, Bendridi N, Bravard A, Chauvin MA et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 2014; 63: 3279–3294.

103 Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 2012; 13: 566–578.

104 Arruda AP, Hotamisligil GS. Calcium homeostasis and organelle function point for apoptosis. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control output to acute contractile stress in the heart. Cell Rep 2015; 12: 13057–13067.

105 Sathyanarayana P, Barathwal MK, Kundu CN, Lane ME, Bergmann A, Tzivion G et al. Activation of the Drosophila MLK by ceramide reveals TNF-alpha and ceramide as agonists of mammalian MLK3. Mol Cell 2002; 10: 1527–1533.
143 Lanner JT, Katz A, Tavi P, Sandstrom ME, Zhang SJ, Wretman C et al. The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle. Diabetes 2006; 55: 2077–2083.

144 Whitehead JP, Molero JC, Clark S, Martin S, Meneilly G, James DE. The role of Ca2+ in insulin-stimulated glucose transport in 3T3-L1 cells. J Biol Chem 2001; 276: 27816–27824.

145 Furuta A, Tanaka M, Omata W, Nagasawa M, Kojima I, Shibata H. Microtubule disruption with BAPTA and dimethyl BAPTA by a calcium chelation-independent mechanism in 3T3-L1 adipocytes. Endocr J 2009; 56: 235–243.

146 Contreras-Ferrat A, Llanos P, Vasquez C, Espinosa A, Osorio-Fuentealba C, Arias-Calderon M et al. Insulin elicits a ROS-activated and an IP(3)-dependent Ca(2+) release, which both impinge on GLUT4 translocation. J Cell Sci 2014; 127(Pt 9): 1911–1923.

147 Taddeo EP, Laker RC, Breen DS, Akhtar YN, Kenwood BM, Liao JA et al. Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Mol Metab 2014; 3: 124–134.

148 Wang CH, Tsai TF, Wei YH. Role of mitochondrial dysfunction and dysregulation of Ca(2+) homeostasis in insulin insensitivity of mammalian cells. Ann NY Acad Sci 2015; 1350: 66–76.

149 Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–820.

150 Shah A, Xia L, Goldberg H, Lee KW, Quagggin SE, Fantus IG. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J Biol Chem 2013; 288: 6835–6848.

151 Manea A, Manea SA, Todirita A, Albulescu IC, Raucu M, Sasson S et al. High-glucose-increased expression and activation of NADPH oxidase in human vascular smooth muscle cells is mediated by 4-hydroxynonenal-activated PPARalpha and PPARbeta/delta. Cell Tissue Res 2015; 361: 593–604.

152 Cheng DW, Jiang Y, Shalev A, Kowluru R, Cook ED, Singh LP. An analysis of high glucose and glucosamine-induced gene expression and oxidative stress in renal mesangial cells. Arch Physiol Biochem 2006; 112: 189–218.

153 Daiber A. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta 2010; 1797: 897–906.

154 Kumar B, Kowluru A, Kowluru RA. Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Invest Ophthal Vis Sci 2015; 56: 2985–2992.

155 Hong OK, Yoo SJ, Son JW, Kim MK, Baek KH, Song KH et al. High glucose and palmitate increases bone morphogenic protein 4 expression in human endothelial cells. Korean J Physiol Pharmacol 2016; 20: 169–175.

156 Lennon R, Pons D, Sabin MA, Wei C, Shield JP, Coward RJ et al. Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrol Dial Transplant 2009; 24: 3288–3296.

157 Shikama Y, Kudo Y, Ishimaru N, Funaki M. Possible Involvement of Palmitate in Pathogenesis of Periodontitis. J Cell Physiol 2015; 230: 2981–2989.