Iterated Greedy Algorithms for the Hop-Constrained Steiner Tree Problem

Farzane Yahyanejad · Bahram Sadeghi Bigham

Received: date / Accepted: date

Abstract The Hop-Constrained Steiner Tree problem (HCST) is challenging NP-hard problem arising in the design of centralized telecommunication networks where the reliability constraints matter. In this paper three iterative greedy algorithms are described to find efficient optimized solution to solve HCST on both sparse and dense graphs. In the third algorithm, we adopt the idea of Kruskal algorithm for the HCST problem to reach a better solution. This is the first time such algorithm is utilized in a problem with hop-constrained condition. Computational results on a number of problem instances are derived from well-known benchmark instances of Steiner problem in graphs. We compare three algorithms with a previously known method (Voss’s algorithm [24]) in term of effectiveness, and show that the cost of the third proposed method has been noticeably improved significantly, 34.60% in hop 10 on dense graphs and 3.34% in hop 3 on sparse graphs.

Keywords Steiner tree problem · Greedy algorithm · Telecommunication networks · Network design · Hop-Constrained · Optimization

1 Introduction

Consider an undirected graph G=(V, E) with \(v = \{1, 2, ..., n\} \), where specific vertex 1 is root vertex and edge set is \(E = \{(i, j) : i, j \in V, i < j\} \), that each edge has an associated cost \(c_{ij} \geq 0 \). Also, we define a positive integer \(H \) to

Farzane Yahyanejad
Department of Computer Science, University of Illinois at Chicago, IL 60607, USA
f.yahya2@uic.edu
Tel.: +412-951-4151
E-mail: f.yahya2@uic.edu

Bahram Sadeghi Bigham
Department of Computer Science, Institute for Advance Studies in Basic Sciences, Zanjan, Iran
E-mail: b_sadeghi_b@iasbs.ac.ir
show the maximum allowance distance of edge from the root. Let T be a tree in G, and let $V(T)$ be the set of vertices belonging to T. Our goal is finding a tree T, rooted at vertex 1, subject to constraints and the number of edges h_i between $i \in V(T)$ and the root vertex limited to the maximum value H.

Since HCST is a generalization of Steiner tree problem, it is NP-hard problem[21]. We consider hop constraints in graph because of reasons such as reliability or transmission delay in networks. The extensive uses of hop constraints in various settings have been proposed in the literature [11][16][19][20]. Intensive researches on the Minimum Spanning Tree problem with hop constraints (HCMST), which is a special case of the HCST problem where all vertices in the graph are terminals exist. Many surveys regarding of HCMST problem can be found in [6][7][17]. Though, there aren’t much attention to Steiner tree problem with hop constraints. In [11], Gouveia has mentioned HCST problem with developing a strengthened version of a multi-commodity flow model for the minimum spanning tree problem. The LP lower bounds of this model are equal to the ones from a Lagrangian relaxation approach of a weaker MIP model introduced by Gouveia in [12]. Voss presents MIP formulations based on Miller-Tucker-Zemlin subtour elimination constraints [24]. The formulation is then strengthened by disaggregation of variables indicating used edges. The author develops a simple heuristic to find starting solutions and improves them with an exchange procedure based on tabu search. Gouveia Also gives a survey of hop-indexed tree and flow formulations for the hop constrained spanning and Steiner tree problem in [13]. Costa et. al. give a comparison of three methods for a generalization of the HCSTP which is called Steiner tree problem with revenues, budget and hop constraints (STPRBH) in [2]. The considered methods comprise greedy algorithm, destroy-and-repair method and tabu search approaches. Computational results are reported for instances with up to 500 vertices and 12500 edges. Costa et al. in [3] introduce two new models for he STPRBH. Both models are based on the generalized sub-tour elimination constraints and a set of exponential size hop constraints. The authors provide a theoretical and computational comparison with two models based on Miller-Tucker-Zemlin constraints presented in Gouveia [14] and Voss [24]. Theoretical and computational comparisons of flow-based vs. path-based mixed integer programming models for HCST problem are presented by Gouveia et al.. They propose formulations to solve the problem with promising optimality and implement branch-and-price algorithms for all of the formulations. Boeck et al. used layered graphs for hop constrained problems to build extended formulations by techniques presented to reduce the size of the layered graphs. They also presented variation of this problem arising in the context of multicast transmission in telecommunications. Dokeroglu et al. recently proposed novel self-adaptive and stagnation-aware breakout local search algorithm for the solution of Steiner tree problem with revenue, budget and hop constraints with parallel algorithms [25]. In this paper, we focus on efficient optimization iterative greedy algorithms to find efficient solution for HCST. The new algorithms find a feasible solution for HCST are based on Voss’s approach in [23]. The main feature of our last proposed algorithm
is that it uses the idea of Kruskal algorithm in the problem with hop constraint for the first time and enhances the results of this NP-hard problem in polynomial time.

The rest of this paper is organized as following. In Section 2 we formulate a model for HCST problem. Section 3 and 4 provide two complement greedy algorithms to solve HCST. In Section 5 we propose Non Root Based Insertion Algorithm based on the idea of Kruskal algorithm[4]. In Section 6 we report extensive set of computational experiments with our iterative greedy algorithms on well known benchmark, consisting variant kinds of graphs. Finally, Section 7 presents concluding remarks.

2 Mathematical formulation

A non-directed graph \(G = (V, E) \) is given with edge cost \(c_{ij} \geq 0, (i,j) \in E \). Let consider the set \(Q \subseteq V \) represent basic vertices. To obtain a subgraph with minimum cost, other vertices could be involved. Such vertices are called Steiner vertices \((S = V - Q) \). Consider \(x_{ij}^p \) as an edge \((i,j) \in E \) that shows the \(p^{th} \) position from the root and \(\delta(S) \) as a set of edges with one vertex from \(S \). The HCST model can be written as follow:

\[
\min \sum_{p=1}^H \sum_{(i,j) \in E} c_{ij}x_{ij}^p \tag{1}
\]

\[
\sum_{p=1}^H \sum_{(i,j) \in \delta(S)} x_{ij}^p \geq 1 \quad \forall S \subseteq V, S \cap Q \neq \emptyset, (V \setminus S) \cap Q \neq \emptyset \tag{2}
\]

\[
x_{ij}^p \in \{0, 1\} \quad \forall (i,j) \in E \tag{3}
\]

The goal is to find a subgraph with minimum cost due to the hop constraints; Constraints in (2) present the connectivity constraints of basic vertices attaching to at least one edge of the vertices from \(S \) and index \(p \) is used to avoid creation of any cycle.

3 Minimum-Hop Iterative Greedy (MinHIG) Algorithm

In this section, we present an iterative greedy algorithm for HCST problem. The basic idea is from [24]. The first three steps of the algorithm use the generalization of prime algorithm [22] considering the path with number of hop instead of a direct edge between two vertices (Algorithm 1).

We start with a partial solution \(G = (\text{root}, \emptyset) \) that just contains the root. As we mentioned before, \(Q \) is the set of all basic vertices. At each step the set \(T \) is equal to \(Q \setminus G \) and \(H \) is the maximum allowed number of hops that the
Farzane Yahyanejad, Bahram Sadeghi Bigham

root can connects other vertices in the tree. Suppose V_G denote the vertex set of G and V_T denote the vertex set of T. Cost of path $p(u, v)$ between vertices u and v is presented by d_{uv}. Also, for every vertex v, we define U_v equal to the number of needed hops to reach v from the root. For initialization, we set U_{root} to zero. Phase 1 in MinHIG algorithm finds U_v for all vertices v.

Algorithm 1: MinHIG algorithm (Phase 1)

input: An undirected graph.
output: Find U values.

Step 1. Initialization $G = (\{\text{root}\}, \emptyset)$;

while $Q \not\subseteq G$
do

Step 2. Find vertices $u^* \in V_G$, $v^* \in V_T$ and path $P(u^*, v^*)$, where $U_{u^*} = U_{root} + |P(u^*, v^*)| \leq H$,

$d_{u^*, v^*} = \min\{d_{uv} | u \leq V_G, v^* \in V_T\}$;

Step 3. Add the vertices and edges of path $P(u^*, v^*)$ to G,

update U values of the vertices of path $P(u^*, v^*)$.

Algorithm 2: MinHIG algorithm (Phase 2)

input: U values.
output: An efficient feasible solution.

Step 1. Initialization $\text{Tree} = (\{\text{root}\}, \emptyset)$, $h=1$;

while $h \neq H$ do

Step 2. Find vertices $u^* \in Q$, $v^* \in V_{\text{Tree}}$, and path $P(u^*, v^*)$, where $U_{u^*} = h$,

$d_{u^*, v^*} = \min\{d_{uv} | v \in V_{\text{Tree}}, U_{u^* v^*} = U_{u^*} + |P(u^*, v^*)| \leq H\}$;

Step 3. Add the vertices and edges of path $P(u^*, v^*)$ to Tree.

$h \leftarrow h + 1$

Note that in MinHIG algorithm, we suppose that in the efficient optimal solution, vertices with high U values are connected to vertices with low U values.

In phase 2 in MinHIG, first we add the root vertex to the final tree Tree. Then, we start with $h = 1$ and add it until reach maximum hop constraint $h = H$. Vertices with fewer number of hops have been added to the tree earlier. Therefor, with constraint $U_{u^*} + |P(u^*, v^*)| \leq H$, we find $P(u^*, v^*)$, which is the shortest path among all paths of vertex u^* to the all previous added vertices to Tree. Thus, all edges and vertices of this path will be added to the Tree. We repeat this procedure until Tree contains all basic vertices. Figure 1 shows an example of instances where MinHIG gets a solution while Voss’s algorithm [24] doesn’t work. For Figure 1 consider maximum allowed H is 3. With Voss’s algorithm [23], at first, path $P(r \rightarrow 2 \rightarrow 4 \rightarrow 5)$ with cost 7 is added to the tree. Then path $P(r \rightarrow 1 \rightarrow 3)$ with cost 8 will be added. The final Steiner tree is built has cost 15, although, it is obvious that the optimal cost of the Steiner tree is 10. In Step 3 in phase 2 of Algorithm 1 we have tree reconstruction which gives us the cost of 10 for this example. Suppose that vertices with
higher amount of U should be connected to the vertices with lower U values. Therefore, in Step 3 in phase 2, without considering set G, vertices with less U values are added to the final tree. In fact, when we add each vertex, we are sure that other vertices with lower U have been added to the tree earlier and if the current vertex should be connected to one of the basic vertices, we are sure that all possible vertices have been already added to the tree. With implementation of MinHIG on this specific example, after first phase values of $U_r=0, U_1=1, U_3=2, U_2=1, U_4=2$, and $U_5=3$ have been obtained. After the root is added, basic vertex 3 with the lowest U value among basic vertices with shortest path $P(r \rightarrow 1 \rightarrow 3)$ and cost 8 will be added to the tree. Then, the next basic vertex which has not been added to the tree yet and has minimum value U is vertex 5 with shortest path $P(3 \rightarrow 5)$ and cost 2. At the end, the cost of Tree would be 10.

4 Maximum Hop Iterative Greedy (MaxHIG) Algorithm

In MinHIG algorithm, it was assumed that in the Steiner tree, the vertices with higher U are connected to vertices with lower U, but this approach doesn’t cover all groups of graphs. There are other kinds of graphs in which the vertices by lower hops are connected to the path of the other vertices with more hops. For example, consider Figure 2 where maximum allowed number of H is 4. By MinHIG algorithm, first we add path $P(r \rightarrow 2 \rightarrow 6)$ with cost 5 to the Tree. Then, path $P(r \rightarrow 1 \rightarrow 4 \rightarrow 8)$ with cost 6 and path $P(r \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 9)$ with cost 8 will be added to the Tree respectively. Therefore, the result cost of the achieved Steiner tree by this algorithm would be 19, while the optimal cost is 10.
Algorithm 3: MaxHIG algorithm

input: An undirected graph.

output: An efficient feasible solution.

Run Algorithm 1

Step 1. Initialization $Tree = (\{root\}, \emptyset)$, $h = H$;

while $h \neq 1$ do

Step 2. Find vertices $u^* \in Q$, $v^* \in V_{Tree}$, and path $P(u^*, v^*)$,

where $U_{u^*} = h$,

$d_{u^*v^*} = \min \{d_{uv} | v \in V_{Tree}, U_{u^*v^*} = U_{u^*} + |P(u^*, v^*)| \leq H \}$.

Step 3. Add the vertices and edges of path $P(u^*, v^*)$ to $Tree$.

For these types of graphs we substitute algorithm MinHIG phase 2 (Algorithm 2) with MaxHIG algorithm (Algorithm 3). The following is implementation of algorithm MaxHIG on the example of Figure 2:

First we start with vertex 9 which has the maximum U, $U_9 = 4$, and add path $P(3 \rightarrow 5 \rightarrow 7 \rightarrow 9)$ with cost 8 to the tree $Tree$. In the next step, vertex 8 with $U_8 = 3$ and cost 1 will be added to the tree. Then, the path $P(3 \rightarrow 6)$ with cost 1 is added to the tree. The final result cost of the $Tree$ would be 10.

In fact, these two greedy algorithms are helpful for two different types of trees with different features. The first category that is solved with MinHIG are graphs, which in their optimal Steiner tree the basic vertices with high amount hops, U, are connected to the basic vertices with lower U. The latter that can be solved with MaxHIG are graphs that in their optimal Steiner tree, some of the basic vertices are connected to the path of other basic vertices. To obtain Steiner tree in a given arbitrary graph, we run both algorithms and the best answer is considered as the final answer (we will see in last section that in most cases the result by combining of these two algorithms is better than the algorithm by Voss in [24]). The complexity analysis of presented algorithms is as follows:

$-O(QEH)$ is needed to find the shortest path between basic vertices.
-\(O(E\log E)\) is need for Prim algorithm implementation.
-\(O(QV)\) is need for adding a basic vertex at each time and the comparison to all vertices inside Tree.

5 Non Root Based Insertion (NRBI) Algorithm

In this part, first we give an informal overview of NRBI algorithm and then we present the analysis in details. The algorithm uses generalized idea of both Prime and Kruskal algorithm. We use new variable \(itr_v\) (Algorithm 4) to every basic vertex \(v\) as time of entrance to the set \(G\). Again here We assume that \(itr_{root}\) is zero at first and then the first basic vertex \(v\) entered to set \(G\) after root has \(itr_v = 1\). In phase 2 of NRBI algorithm, basic vertices are sorted in descending order due to their iter amount. Then, they would be added to the Tree similar to idea of Kruskal algorithm. In the Voss’s algorithm, the final tree is a subset of set \(G\) constructed in the first phase. In MinHIG and MaxHIG algorithms, set \(G\) is completely neglected and the final tree is created only based on \(U\) values. In this algorithm, as we will see further, set \(G\) is used as an auxiliary set. When vertex \(v\) is added to the tree, there will be two cases:

1- Connecting vertex \(v\) to vertices with less \(itr\).

2- Connecting vertex \(v\) to vertices, which will be added to \(G\) after vertex \(v\).

In the former one, the result is clear and vertex \(v\) should be connected to same vertices that it was connected to in \(G\). If the latter, result will not be clear. First we have to find all vertices with more \(itr\) than \(v\) to find the needed Steiner vertices and add them to the Tree and then we add vertex \(v\). Suppose all vertices except basic vertex \(v\) have been added in the optimal tree and now we have to add the last remaining vertex \(v\) to the Steiner tree. For similar conditions without loss of generality, we assume that the tree is two pieces. First one contains all vertices with \(itr\) less than \(k\) (this sub-tree may be a sub-forest and consists of many disconnected sub-trees) and second one is optimal sub-tree containing all vertices with \(itr\) value more than \(k\). Our goal is to connect \(v\) to the first or second set in the best way. Each time, vertex \(v\) is connected to one of the two pieces until we get the whole tree of all vertices especially vertex \(v\). The optimal sub-tree of the first set of the vertices with \(itr\) less than \(k\) is the optimal sub-tree generated by the set \(S\) containing all vertices added before \(v\) to \(S\).
Algorithm 4: NRBI (Phase 1)

input : An undirected graph.
output: U and itr values.

Step 1. Initialization $G = (\{\text{root}\}, \emptyset)$, while $Q \not\subseteq S$
do

Step 2. Find vertices $u^* \in V_G$ and $v^* \in V_T$ and path $P(u^*, v^*)$,
where
\[
U^*_v = U^*_u + |P(u^*, v^*)| \leq H,
\]
\[
d_{uv^*} = \min\{d_{uv} | u \leq V_G, v^* \in V_T\};
\]

Step 3. Add the vertices and edges of path $P(u^*, v^*)$ to G, update U values of the vertices of path $P(u^*, v^*)$,
Save itr[BasicVertex $v \in P(u^*, v^*)$].

Algorithm 5: NRBI (Phase 2)

input : U_i and itr.
output: An efficient feasible solution.

Initialization $Tree = \{\emptyset\}$
for Maximum Itr_v to 1 do

Find $P(v, u^*)$ where
\[
U^*_u + |P(u^*, v)| \leq U_v;
\]
if $Cost(P(v, u^*)) < Cost(P(v, u^*) \in G)$ then
Add all vertices and edges of $P(v, u^*)$ to $Tree$.
else
Add all vertices and edges of $P(v, u^*) \in G$ to $Tree$.

Now we want to find the most optimal connection of the vertex v to the
tree. So, in the second step, we try to make the best connections for optimal
subtree of v. Since having U values generated from the first phase of the
generalized of prim algorithm, we can guarantee that the hop constraint is not
violated. In the second part of the algorithm, by inspiring the idea of Kruskal
algorithm, we allow to connect each vertex to other vertices without violating U (Algorithm 5).

The analysis of NRBI algorithm. Here we analyze our algorithm in details. We
show that the output is tree and the constructed set doesn’t include any cycle
or cross. All basic vertices in Q are connected together with $Q - 1$ paths by
idea of Kruskal algorithm. Because all U values generated in the phase 1 are
connected by this precondition that each vertex can only be connected to the
vertex with less U, so no cycle would be created.

Since, in this problem we consider adding path instead of edge due to of
the idea of Kruskal algorithm, we should show that no cross is gonna happened
either. In NRBI algorithm, we connect vertices based on their itr in descending
order. The cross happens when some vertices of some paths are connected to each other. Since we know that paths that are constructed by vertices with more \(itr\). These vertices are the only ones capable of changing \(U\) values of vertices that are produced before in path by lower \(itr\) and reverse of it is not possible. Thus cross wont happen. In the second phase of the algorithm, when we add vertices with more \(itr\) to the forest respectively, we assure that during choosing a shortest path for each basic vertex, no cross will be created (No changes can happen in previous paths of the forest). To find the closest vertex to the current \(itr\), distances from all basic and Steiner vertices that have been added to the Tree before are calculated. Thus, there wont be any possibility of creating the cross. If we assume that cross is created, so the vertex at the intersection has been added to the Tree before, then the vertex with current \(itr\) was closer to the vertex of the cross and this is in contrast to our assumption that we have connected the current vertex to the closest vertex with respect to hop constraint. Therefore, there is no cross in graph and the result is tree.

Time complexity of this algorithm in the first part is similar to the previous presented algorithms, equal to \(O(E \cdot \log E)\). In the second part in tree construction, all vertices are connected to each other in the forest. Since for every basic vertex when we add it, it will be compared to all the Steiner and basic vertices in the tree, thus the running time is \(O(QV)\). Before, in the generalized Bellman-Ford, all paths from vertices to each other were calculated in time \(O(QEH)\) and stored in the table. The only cost that we need to calculate to find the path is the time of adding selected path from the table for every vertex in \(Q\) which is at most \(H\). Therefore, the time complexity would be \(O(QH)\) and the total time of last part of the algorithm is \(O(QV)\).

![Fig. 3: An illustrative example to build HCST with 4 mendatory vertices and 4 Steiner vertices](image)

Figure 3 presents an example that if we apply all previous algorithms on that we obtain 31 as the optimal Steiner tree. Though here is the implementation of the NRBI algorithm on the same graph:

First Step:

First, paths \(P(r \rightarrow 1 \rightarrow 2)\) with cost 8 and basic vertex 2, \(P(2 \rightarrow 4 \rightarrow 6 \rightarrow 7)\) with cost of 6 and basic vertex 7, and then path \(P(r \rightarrow 3 \rightarrow 5)\) with cost
17 are added to set G respectively. Now we see that set G contains all basic vertices.

The updated variables itr and U are as follows,

- $itr_7 = 2$, $itr_5 = 3$, $itr_2 = 1$, and $itr_0 = 0$,
- $U_5 = 2$, $U_2 = 2$, $U_7 = 5$, and $U_0 = 0$.

Second Step:

So, we added basic vertices 0, 2, 5, 7 to the tree. Starting with the basic vertex with maximum itr, we select vertex 5. The shortest path between vertex 5 and existed vertices u^* in set $Tree$ with $U_u^* + |P(u^*, 5)| \leq U_5$ is $P(r \rightarrow 3 \rightarrow 5)$.

All edges and vertices of this path are added to the tree (This path is the same path of vertex 5 in set G).

The next basic vertex is the one with $itr = 2$, which is vertex 7. The best way to connect vertex 7 to the one of the vertices in the set $Tree$ is path $P(2 \rightarrow 4 \rightarrow 6 \rightarrow 7)$ with cost 6. For next vertex with $itr = 1$, vertex 2, the best way to connect it to one of the vertices of the tree is $P(2 \rightarrow 3)$ with cost 7. Although the best path for 2 in G is $P(r \rightarrow 1 \rightarrow 2)$ with cost 8, we add vertex 2 with cost 7. The optimal Steiner tree with cost 30 is obtained.

Note, the tree at the beginning of the second phase is not connected same as idea of Kruskal algorithm when we add edges to find the shortest path, but with adding $Q - 1$ paths, at the end the Steiner tree would be a connected tree.

6 Computation

In order to assess the performance of all proposed algorithms, we used instances \{c, d\}_n, n \in \{5, 10, 15, 20\} randomly chosen from the OR-Library\[6\].

The size of these instances for ST problem have been defined between 500 and 1000 nodes from 625 up to 25000 edges (see \[8\] for more details about these instances).

In general, ST instances generate HCST input graphs in this way that ST files provide edge-costs and Steiner vertices so that we select 200 and 300 basic vertices due to random vectors. All algorithms have been implemented in C++ \[7\] and run on all instances, sparse graphs \{c5, c10, d5, d10\} and dense graphs \{c15, c20, d15, d20\}.

For the sake of quality of all algorithms for every sample library, we generate number of vectors equal to 100 times of the hop limitation H to specify different group of basic vertices. For example, to implement the algorithms on instances for $H = 3$, we generate 300 vectors to create different groups of basic vertices.

All algorithms have been implemented on every vector on every instances. Therefore, the number of implementation for every algorithm on specified hop is equal to $100H \times 16$. We compare all of our algorithms with algorithm in \[24\] (Named in the table Voss). In the tables, MinHIG algorithm, MaxHIG

1. http://people.brunel.ac.uk/mastjjb/jeb/orlib/steininfo.html
2. https://github.com/Farzane9696/HC-Steiner
Iterated Greedy Algorithms for the Hop-Constrained Steiner Tree Problem

algorithm, and NRBI algorithm are represented as MinH, MaxH, and NRBI respectively. We also combine first two algorithms, MinHIG and MaxHIG, and show the results of this combination as MM in our tables.

Tables 1 to 8 compare results of algorithms as follows:

First algorithm vs second algorithm: **FOS, SFOS, SOF, and SSOF**

FOS = represents number of times that results of first algorithm is better than the second one.

SFOS = sum of the cost amount that the first algorithm is less than the second one.

SOF = represents the number of times that results of the second algorithm is better than the first one.

SSOF = sum of the cost amount that the second algorithm is less than the first one.

In the following, we show that how we compare results of every two algorithms in every row of the table:

For example: Voss vs MinH: 6 20 224 2739 means that in this comparison the Voss’s algorithm is 6 times better than MinH and the sum of the difference of their cost is 20. MinH is 224 times better than Voss and the sum of the difference of their cost is 2739.

Tests are based on the benchmarks c and d with 200 and 300 basic vertices for 3, 5, 7, and 10 hop. Tables 1 to 4 present our computational results on sparse sets \{c5, d5\} and \{c10, d10\} with 200 and 300 basic vertices, respectively. We focus on NRBI and MM to show that they are the best ones among all five algorithms, but all algorithms are compared two each other one by one and results are provided in tables 1 to 8.

For \(H = 3 \), in 8.54% of 300 vectors, NRBI is better than Voss algorithm. The cost difference is 69.12 in average. In the rest percent of the vectors, the cost calculation for both Voss and NRBI are the same, and in no cases Voss could get better than NRBI. For this hop limitation, We also saw MM is better than Voss with cost difference 49.37 in 5.79% of 300 vectors and in 2.5% vectors, Voss is better with cost difference 21.62 . In the remaining ones, two algorithms found the same cost.

For \(H = 5 \), NRBI in 67.37% of 500 vectors is better compared to the Voss’s algorithm, with cost difference 12940.11 in average. In the remaining percent of the vectors, the cost calculations for both Voss and NRBI are equal, and in no cases Voss was seen better than NRBI. In this hop, we also found that in 52.27% of 500 vectors, MM is better than Voss with cost difference 5879. In 14.2% vectors Voss is better with cost difference 638 and in the remaining ones two algorithms found the result with similar cost.

For \(H = 7 \), NRBI in 99.71% of 700 vectors is better than Voss with cost difference 34029.62 in average and for the rest of the vectors, the minimum costs found by Voss and NRBI are equal. In no cases Voss is better than NRBI. In this hop, in 63.14% of 700 vectors MM is better than Voss with cost difference 9040.12 and in 34.30% with cost 3604.37 vector Voss is better. The remaining vectors, two algorithms calculated same cost.
For $H = 10$, in 99.75% of 1000 vectors, NRBI could find a better solution than Voss with cost difference 9683 in average. In the remaining percent of the vectors Voss and NRBI are equal. In 39.95% of 1000 vectors, MM is better than Voss with cost difference 38545.75. Also, Voss is better in 58.67% vectors with cost difference 1789.75. Remaining had same results.
Table 2: Steiner results on c5 and d5 instances with 300 basic vertices

Methods Comparison	c5	d5	Number of Hop					
	FOS	SFOS	SOF	SSOF	FOS	SFOS	SOF	SSOF
Voss vs MinH:	0	0	0	0	0	0	0	0
Voss vs MaxH:	0	0	0	0	0	0	0	0
Voss vs NRBI:	0	0	0	0	0	0	0	0
Voss vs MM:	0	0	0	0	0	0	0	0
MinH vs MaxH:	0	0	0	0	0	0	0	0
MinH vs NRBI:	0	0	0	0	0	0	0	0
MinH vs MM:	0	0	0	0	0	0	0	0
MaxH vs NRBI:	0	0	0	0	0	0	0	0
MaxH vs MM:	0	0	0	0	0	0	0	0
NRBI vs MM:	0	0	0	0	0	0	0	0

Voss vs MinH: 94 518 46 294 7 22 52 459
Voss vs MaxH: 160 670 48 269 64 230 250 2929
Voss vs NRBI: 0 0 116 540 0 0 253 3107
Voss vs MM: 74 365 54 304 1 3 252 2990
MinH vs MaxH: 109 340 39 193 67 248 220 2510 H=3
MinH vs NRBI: 0 0 0 0 0 0 0 0
MinH vs MM: 0 0 39 193 0 0 220 2510
MaxH vs NRBI: 7 34 217 975 0 0 112 408
MaxH vs MM: 0 0 39 193 0 0 220 2510
NRBI vs MM: 130 642 7 41 46 160 0 0

Voss vs MinH: 291 2809 387 518 174 1623 513 8615
Voss vs MaxH: 358 5280 317 4029 350 5619 340 5118
Voss vs NRBI: 0 0 698 17979 0 0 698 19602
Voss vs MM: 221 1922 431 6487 134 1080 548 9751
MinH vs MaxH: 424 5816 247 2366 515 9172 170 1679
MinH vs NRBI: 5 13 693 15793 19 80 673 12690 H=5
MinH vs MM: 0 0 247 2366 0 0 170 1679
MaxH vs NRBI: 5 13 693 19243 5 26 693 20129
MaxH vs MM: 0 0 424 5816 0 0 515 9172
NRBI vs MM: 687 13436 9 22 666 11037 24 106

Voss vs MinH: 711 27168 279 7472 784 31241 207 3655
Voss vs MaxH: 0 0 1000 64750 0 0 1000 62950
Voss vs NRBI: 925 40193 71 851 866 36858 126 1855 H=7
Voss vs MM: 14 92 984 45196 0 0 999 5533
MinH vs MaxH: 1 1 999 84447 0 0 1000 90536
MinH vs NRBI: 983 44346 15 93 999 53678 0 0
MaxH vs NRBI: 0 0 925 40193 0 0 866 36858
NRBI vs MM: 130 642 7 41 46 160 0 0

Voss vs MinH: 291 2809 387 518 174 1623 513 8615
Voss vs MaxH: 358 5280 317 4029 350 5619 340 5118
Voss vs NRBI: 0 0 698 17979 0 0 698 19602
Voss vs MM: 221 1922 431 6487 134 1080 548 9751
MinH vs MaxH: 424 5816 247 2366 515 9172 170 1679
MinH vs NRBI: 5 13 693 15793 19 80 673 12690 H=7
MinH vs MM: 0 0 247 2366 0 0 170 1679
MaxH vs NRBI: 5 13 693 19243 5 26 693 20129
MaxH vs MM: 0 0 424 5816 0 0 515 9172
NRBI vs MM: 687 13436 9 22 666 11037 24 106
Table 3: Steiner results on c10 and d10 instances with 200 basic vertices

Methods Comparison	c10	d10	Number of Hop					
	POS	SFOS	SOF	SSOF	POS	SFOS	SOF	SSOF
Voss vs MinH	27	70	18	64	0	0	0	0
Voss vs MaxH	29	109	32	105	0	0	0	0
Voss vs MM	16	46	37	120	0	0	0	0
MinH vs MaxH	18	74	24	80	0	0	0	0
MinH vs NRBI	0	0	63	172	0	0	0	0
MinH vs MM	0	0	24	80	0	0	0	0
MaxH vs NRBI	0	0	57	170	0	0	0	0
MaxH vs MM	0	0	18	78	0	0	0	0
NRBI vs MM	39	92	0	0	0	0	0	0

Voss vs MinH	39	327	456	12096	264	1296	222	1386
Voss vs MaxH	175	2562	317	6787	233	2722	257	2533
Voss vs MM	28	200	468	14740	196	2019	293	3284
MinH vs MaxH	416	10315	76	771	215	1454	247	2175
MinH vs NRBI	1	3	498	15158	0	0	498	13352
MinH vs MM	0	0	76	771	0	0	247	2175
MaxH vs NRBI	0	0	499	24699	1	1	498	12632
MaxH vs MM	0	0	416	10315	0	0	215	1454
NRBI vs MM	497	14387	1	3	496	11178	1	1

Voss vs MinH	345	6439	309	4436	497	17432	195	5241
Voss vs MaxH	680	34162	19	150	347	9000	344	9944
Voss vs MM	374	6287	310	4450	311	7199	378	11278
MinH vs MaxH	682	32175	17	166	178	3135	517	16270
MinH vs NRBI	1	3	699	25780	0	0	700	64973
MinH vs MM	0	0	17	166	0	0	517	16270
MaxH vs NRBI	0	0	700	57786	0	0	700	51838
MaxH vs MM	0	0	692	32175	0	0	178	3135
NRBI vs MM	699	25614	1	3	700	48703	0	0

Voss vs MinH	834	14577	149	1182	986	56132	12	150
Voss vs MaxH	1000	97700	0	0	999	105492	1	23
Voss vs MM	834	14577	149	1182	985	54496	13	173
MinH vs MaxH	999	84305	0	0	903	47146	93	1659
MinH vs NRBI	0	0	997	27261	0	0	1000	95094
MinH vs MM	0	0	0	0	0	0	93	1659
MaxH vs NRBI	0	0	999	84305	0	0	903	47146
MaxH vs MM	0	0	997	27261	0	0	1000	95094
NRBI vs MM	997	27261	0	0	1000	93435	0	0

Tables 5 to 8 present our computational results on dense sets \{c15,d15\} and \{c20,d20\} with 200 and 300 basic vertices, respectively. When \(H = 3\), NRBI is better than Voss in 100% of 300 vectors. The cost difference is 9683 in average. In the remaining part of the vectors Voss and NRBI both have equal result, and in no cases Voss is better than NRBI. In this hop, in 58.83% of 300 vectors, MM is better than Voss with cost difference 2407.12 and in 37.16% of them Voss gets better with cost 797. For rest of the vectors they calculate same cost.
Table 4: Steiner results on c10 and d10 instances with 300 basic vertices

Method Comparison	c10	d10	Number of Hop					
	FOS	SFOS	SOF	SSOF	FOS	SFOS	SOF	SSOF
Voss vs MinH:	68	266	51	79	0	0	0	0
Voss vs MaxH:	87	311	91	247	0	0	0	0
Voss vs MM:	44	127	102	275	0	0	0	0
MinH vs MaxH:	59	212	93	335	0	0	0	0
MinH vs NRBI:	0	0	154	574	0	0	0	0
MinH vs MM:	0	0	93	335	0	0	0	0
MaxH vs NRBI:	0	0	116	451	0	0	0	0
MaxH vs MM:	0	0	59	212	0	0	0	0
NRBI vs MM:	81	239	0	0	0	0	0	0
Voss vs MinH:	20	123	473	2025	278	3889	210	2631
Voss vs MaxH:	181	3499	314	7960	281	3901	207	2101
Voss vs NRBI:	0	0	500	36101	0	0	499	18964
Voss vs MM:	16	101	479	20437	218	2686	272	3382
MinH vs MaxH:	472	15875	24	225	253	2416	218	1874
MinH vs NRBI:	1	1	497	15991	0	0	500	20222
MinH vs MM:	0	0	24	225	0	0	218	1874
MaxH vs NRBI:	0	0	500	31640	0	0	500	20764
MaxH vs MM:	0	0	472	15875	0	0	253	2416
NRBI vs MM:	497	15766	1	1	500	18348	0	0
Voss vs MinH:	194	2421	491	10725	260	6758	435	15972
Voss vs MaxH:	694	48742	3	69	520	22808	176	4618
Voss vs NRBI:	0	0	700	31022	0	0	700	92360
Voss vs MM:	194	2421	491	10730	238	5833	458	16852
MinH vs MaxH:	698	56982	2	7	591	29209	105	1805
MinH vs NRBI:	1	5	699	22725	0	0	700	83046
MinH vs MM:	0	0	2	7	0	0	105	1805
MaxH vs NRBI:	0	0	700	79095	0	0	700	110450
MaxH vs MM:	0	0	698	56982	0	0	591	29209
NRBI vs MM:	699	22718	1	5	700	81241	0	0
Voss vs MinH:	560	6496	397	3949	861	40240	137	2817
Voss vs MaxH:	1000	127553	0	0	996	138991	4	119
Voss vs NRBI:	0	0	998	20109	0	0	1000	68787
Voss vs MM:	560	6496	397	3949	861	40024	137	2832
MinH vs MaxH:	1000	127553	0	0	989	101680	10	231
MinH vs NRBI:	1	3	998	25699	0	0	1000	106210
MinH vs MM:	0	0	0	0	0	0	10	231
MaxH vs NRBI:	0	0	1000	147662	0	0	1000	207659
MaxH vs MM:	0	0	1000	125006	0	0	989	101680
NRBI vs MM:	998	22659	1	3	1000	105979	0	0
Table 5: Steiner results on c15 and d15 instances with 200 basic vertices

Methods Comparison	FOS	SFOS	SOF	SSOF	FOS	SFOS	SOF	SSOF	
Voss vs MinH:	67	677	227	1224	39	182	250	2380	
Voss vs MaxH:	151	2010	137	1718	93	578	190	1439	
Voss vs NRBI:	0	0	300	15814	0	0	299	5292	
Voss vs MM:	61	583	231	4389	35	169	254	2451	
MinH vs MaxH:	255	4078	42	259	238	1421	20	84	H=3
MinH vs NRBI:	0	0	299	12267	1	1	293	3095	
MinH vs MM:	0	0	42	259	0	0	20	84	
MaxH vs NRBI:	0	0	300	16086	1	3	298	4434	
MaxH vs MM:	0	0	255	4078	0	0	238	1421	
NRBI vs MM:	299	12088	0	0	292	3014	2	4	

Voss vs MinH:	13	141	456	20120	6	22	485	22858	
Voss vs MaxH:	304	5007	187	2488	37	221	459	11779	
Voss vs NRBI:	0	0	500	21862	0	0	500	21389	
Voss vs MM:	306	5019	185	2434	41	241	455	11297	
MinH vs MaxH:	488	22864	8	66	440	11810	56	502	H=5
MinH vs NRBI:	0	0	500	19343	0	0	500	32947	
MinH vs MM:	0	0	8	66	0	0	56	502	
MaxH vs NRBI:	0	0	500	42141	0	0	500	44255	
MaxH vs MM:	0	0	488	22864	0	0	440	11810	
NRBI vs MM:	500	19277	0	0	500	32445	0	0	

For $H = 5$, in 92.70% of 500 vectors NRBI result is better than what Voss got with cost difference 13012.25 in average. In the rest percent of the vectors, the min cost calculated by Voss and NRBI are same. In no cases Voss is better than NRBI. For this hop, also in 77.12% of 500 vectors MM is better than Voss. The cost difference of them is 4101. In 20.8% of vectors Voss is better with cost difference 1657.62. For rest of the vectors two algorithms calculate same cost.
Table 6: Steiner results on c15 and d15 instances with 300 basic vertices

Methods Comparison	c15 Number of Hop	d15 Number of Hop
	FOS SFOS SOF SSOF	FOS SFOS SOF SSOF
Voss vs MinH:	29 233 268 7410	116 650 179 1768
Voss vs MaxH:	131 2032 162 3205	168 1560 119 1071
Voss vs MM:	27 219 271 7594	112 648 181 1856
MinH vs MaxH:	270 6202 25 198	238 1697 45 130
MinH vs NRBI:	0 0 300 14865	0 0 300 6744
MinH vs MM:	0 0 25 198	0 0 45 130
MaxH vs NRBI:	0 0 300 20869	0 0 300 8311
MaxH vs MM:	0 0 270 6262	0 0 238 1697
NRBI vs MM:	300 14667 0 0	300 6614 0 0
	2 24 498 3484	-
Voss vs MaxH:	367 7289 120 1084	63 592 434 12094
Voss vs NRBI:	0 0 500 25213	0 0 500 27998
Voss vs MM:	367 7289 120 1067	64 600 433 11977
MinH vs MaxH:	499 4090 1 17	481 23474 17 125
MinH vs NRBI:	0 0 500 19028	0 0 500 39500
MinH vs MM:	0 0 1 17	0 0 17 125
MaxH vs NRBI:	0 0 500 59661	0 0 500 62849
MaxH vs MM:	0 0 499 40590	0 0 481 23474
NRBI vs MM:	500 19011 0 0	500 39375 0 0
	2 24 498 3484	-
Voss vs MinH:	0 0 700 58845	0 0 700 59576
Voss vs MaxH:	250 2070 421 4763	17 124 677 19948
Voss vs NRBI:	0 0 700 15325	0 0 700 18595
Voss vs MM:	250 2070 421 4763	17 124 677 19940
MinH vs MaxH:	700 76152 0 0	697 39560 1 8
MinH vs NRBI:	0 0 700 18018	0 0 700 38419
MinH vs MM:	0 0 0 0	0 0 1 8
MaxH vs NRBI:	0 0 700 94170	0 0 700 78171
MaxH vs MM:	0 0 700 76152	0 0 697 39760
NRBI vs MM:	700 18018 0 0	700 38411 0 0
	2 24 498 3484	-
Voss vs MinH:	0 0 1000 145523	0 0 1000 114865
Voss vs MaxH:	90 472 892 11882	2 4 998 36087
Voss vs NRBI:	0 0 992 8653	0 0 994 9344
Voss vs MM:	90 472 892 11882	2 4 998 36087
MinH vs MaxH:	1000 134113 0 0	1000 78782 0 0
MinH vs NRBI:	0 0 1000 20663	0 0 1000 45427
MinH vs MM:	0 0 0 0	0 0 0 0
MaxH vs NRBI:	0 0 1000 154176	0 0 1000 124299
MaxH vs MM:	0 0 1000 134113	0 0 1000 78782
NRBI vs MM:	1000 20063 0 0	1000 45427 0 0

Iterated Greedy Algorithms for the Hop-Constrained Steiner Tree Problem
Table 7: Steiner results on c20 and d20 instances with 200 basic vertices

Methods Comparison	d20	Number of Hop		
Voss vs MinH:	229	1819	57	288
Voss vs MaxH:	286	3298	9	30
Voss vs NRBI:	0	0	300	3484
Voss vs MM:	289	3297	9	23
MinH vs MaxH:	289	3287	8	16
MinH vs NRBI:	0	0	299	3778
MinH vs MM:	0	0	9	23
MaxH vs NRBI:	0	0	300	6772
MaxH vs MM:	0	0	299	2997
NRBI vs MM:	299	3755	0	0
MinH vs NRBI:	0	0	0	0
MinH vs MM:	0	0	0	0
MaxH vs NRBI:	0	0	0	0
MaxH vs MM:	0	0	0	0
NRBI vs MM:	299	3755	0	0

For $H = 7$, NRBI in 75.50% of 700 vectors is better than Voss with cost difference 7608.3 in average. In the remained percent of the vectors the minimum costs calculated by both Voss and NRBI are equal. In no cases Voss is better than NRBI. For this hop, in 91.6% of 700 vectors MM is better than Voss with cost difference 10210.5 and in 5.32% vectors Voss is better with cost difference 1090.37.
Table 8: Steiner results on c20 and d20 instances with 300 basic vertices

Methods Comparison	c20 Number of Hop	d20 Number of Hop
Voss vs MinH:		
Voss vs MaxH:		
Voss vs NRBI:		
Voss vs MM:		
MinH vs NRBI:		
MinH vs MM:		
MaxH vs NRBI:		
MaxH vs MM:		
NRBI vs MM:		

For $H = 10$, NRBI gets better min cost than Voss in 64.48% of 1000 vectors. The cost difference of them is 4053.5 in average. In the remaining percent of the vectors the min costs returned by both Voss and NRBI are equal. Voss on no cases is better than NRBI. For this hop, we also saw that in 97.02% of 1000 vectors, MM is better than Voss with cost difference 17401.75 and in 1.76% vectors Voss is better with cost difference 82.12. On the remaining of vectors, both algorithms found same cost.
Table 9: Performances of proposed algorithms in comparison to Voss

Instances	Hop	Voss	MinH	MaxH	MM	NRBI	MinCost	Imp%	MinCost	Imp%	MinCost	Imp%	MinCost	Imp%
3														
5														
7														
10														
12, 15														
12, 20														
15, 20														
15, 20														
20, 20														

Now we report optimality of algorithms on two groups of graphs, sparse and dense. The analysis in Table 9 indicates that NRBI greedy algorithm performs quite well and consistent. The column "Imp" indicates the amount of improvement over the minimum objective function of all proposed algorithms to Voss. As the density of a graph and number of hop increases, its performance improves. The average of improvements of NRBI to Voss on sparse graph instances are presented for all hops and it is in the range of 3.34 to 11.10. The highest improvement on these graphs is when the hop is 10. Also, For dense graphs the improvement is between 7.54 to 34.60 when the hop is 10. This amount for MM which is combination of MinHIG and MaxHIG is between 3 to 9.54 on sparse graphs and 6.86 to 33.20 on dense graphs. Table 9 also shows all improvements of MinHIG and MaxHIG algorithms on both sparse and dense instances with hops 3, 5, 7, and 10.

Figure 4 shows an average decrease of cost of all algorithms on all different hops, where one can observe that the average amount of improvement on all hops for MM and NRBI algorithm to Voss.
Fig. 4: Average of Minimum cost found with algorithms on H=3, 5, 7, 10.

7 Conclusion

In this paper we have proposed three greedy algorithms to solve Steiner tree problem with hop constraint, which is an important class of network design. The basic ideas of first two greedy algorithms, MinHIG and MaxHIG, were limited to Prim algorithm. They were good on some graphs, but we could not arrive to near optimal solution on all kind of graphs. In fact, the structure of graphs has effect on these algorithms’ solutions, since the algorithms are root based. Furthermore, we proposed an algorithm ,NRBI, which expand the idea of Kruskal algorithm. The algorithm seemed to be quite robust even when more generalized problems are considered, such as having different hop constraints for all basic vertices. In addition, some comprehensive analysis of all proposed algorithms and the comparison to the Voss’s algorithm has been shown that NRBI algorithm arrived to best solution almost in all cases. The improvement is significantly 34.60% in the best case when hop is 10 on dense graphs and in the worst case 3.34% for hop 3 on sparse graphs on these problems. An interesting future work could be use of heuristic algorithms to try to improve the feasible solutions of the proposed greedy algorithms.

References

1. Balakrishnan A, Altinkemer K. Using a hop-constrained model to generate alternative communication network design. ORSA Journal of Computing 4, 1992; 192-205.
2. Costa AM, Cardon JF, Laporte G. Models and branch-and-cut algorithms for the Steiner tree problem with revenues budget and hop constraints. Networks 2009; 53(2):141-159.
3. Costa AM, Cordeau J, Laporte G. Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints. European Journal of Operational Research 2008. 68-78.
4. Kruskal B. The Shortest spanning subtree of a graph and the Traveling Salesman Problem. In: Proceedings of the American Mathematical Society. 1956: 4850.
5. Duin C, Voss S. Steiner tree heuristics. A survey. In: H. Dyckoff et al. (Hrsg): Operations Research Proceedings, Springer, Berlin u.a., 1993: 485-496.
6. Dahl G, Gouveia L, Requeijo C. Formulations and methods for the hop-constrained minimum spanning tree problem. In: P. M. Pardalos and M. Resende, editors, Handbook of Optimization in Telecommunications, 2006: 493-515. Springer.
7. Akgun I, Tansel BC. Degree constrained minimum spanning tree problem: New formulation via Miller-Tucker-Zemlin constraints. Research Report, Bilkent University, Department of Industrial Engineering, Bilkent, Ankara 2009.
8. Ljubic I, Gollowitzer S. Layered Graph Approaches to the Hop constrained Connected Facility Location Problem, INFORMS Journal on Computing, vol. 25 no. 2013: 2 256-270.
9. Beasley JE. In., Distributing test problems by electronic mail. Journal of the Operational Research Society, 1990; 1072-1069.
10. De Boeck J, Fortz B., Extended formulation for hop constrained distribution network configuration problems. European Journal of the Operational Research Society, 2018: 488-502.
11. Gouveia L. Multicommodity flow models for spanning with hop constraints. European Journal of Operational Research; 1996: 178-190.
12. Gouveia L. Using variable redefinition for computing lower bounds for minimum spanning and Steiner trees with hop constraints. INFORMS Journal on Computing, 1998; 10(2):180-188.
13. Gouveia L. Using hop-index models for constrained spanning and Steiner tree models. In: B. Sanso and P. Soriano, editors, Telecommunications network planning; 1999: 21-32.
14. Gouveia L. Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with hop constraints. Computers Operations Research, 1995; 22(9): 959-970.
15. Gouveia L, Magnanti TL. Network flows models for designing diameter-constrained minimum spanning and Steiner trees. Networks 41, 2003: 159-173.
16. Gouveia L, Leitner M, Ljubi I. On the Hop Constrained Steiner Tree Problem with Multiple Root Nodes. Combinatorial Optimization Lecture Notes in Computer Science 2012; 201-212.
17. Gouveia L, Paissa A, Sharmab D. Modeling and solving the rooted distanceconstrained minimum spanning tree problem. Computers and Operations research Lecture, 2008; 35: 600-613.
18. Leblance L, Chifflet J, Mahey P. Packet routing in telecommunication networks with path and flow restrictions. INFORMS Journal in Computing 11, 1999: 188-197.
19. Leblance L, Reddoch R. Reliable link topology/capacity design and routing in backbone telecommunications networks. Working paper, Vanderbilt University, presented at 1st ORSA SIG Conf. on Telecommunications, 1990.
20. Leblance L, Reddoch R, Chifflet J, Mahey P. Routing in telecommunication networks with flow restrictions. Working paper, Vanderbilt University, 1995.
21. Maculan N. The Steiner problem in graphs. Annals of Discrete Mathematics, 1987; 31: 185-212.
22. Prim RC. Shortest connection networks and some generalizations, Bell syst. Techn. J. 1957: 36:1389-1401.
23. Voss S. Steiner’s problem in graphs: Heuristic methods, Discrete Applied Mathematics; 1992: 40:45-72.
24. Voss S. The Steiner tree problem with hop constraint. Annals of Operations Research 1999: 321-345.
25. Dokeroglu T., Mengusoglu E.. A self-adaptive and stagnation-aware breakout local search algorithm on the grid for the Steiner tree problem with revenue, budget and hop constraints. Soft Comput. 2018, 22:413374151.