The proof of Lemma 2.4 of [1] is incorrect. We provide a correct proof of the lemma.

Lemma 2.4 If G is a connected bridgeless graph of order $n \geq 1$, then $\text{ola}^+(G) \geq (n - 1)/2$.

Proof If $n \leq 2$, then the inequality trivially holds. Thus, we may assume that $n \geq 3$. Let α be an optimal linear arrangement of G, let $E_i = \{uv \in E(G) : \alpha(u) \leq i < \alpha(v)\}$ and let

$$c_i = \sum_{e \in E_i} \frac{\lambda_\alpha(e) - 1}{\lambda_\alpha(e)}$$
for each $i = 1, 2, \ldots, n - 1$. Since G is bridgeless, we have

$$E_i \setminus \{\alpha^{-1}(i)\alpha^{-1}(i + 1)\} \neq \emptyset$$

and, thus, $c_i \geq 1/2$ for each $i = 1, 2, \ldots, n - 1$. Hence,

$$\text{ola}^+(G) = \sum_{i=1}^{n-1} c_i \geq (n - 1)/2.$$