Shear wave elastography in medullary thyroid carcinoma diagnostics

Zastosowanie elastografii fali poprzecznej w diagnostyce raka rdzeniastego tarczycy

Katarzyna Dobruch-Sobczak1,2, Anna Gumińska3, Elwira Bakułła-Zalewska4, Krzysztof Młosek5, Rafał Z. Słapa5, Paweł Wareluk5, Agnieszka Krauze5, Agnieszka Ziemiecka5, Bartosz Migda5, Wiesław Jakubowski5, Marek Dedecjus3

1 Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Science, Warsaw, Poland
2 Department of Radiology, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
3 Department of Endocrine Oncology and Nuclear Medicine, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
4 Department of Pathology, Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
5 Department of Diagnostic Imaging, Second Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland

Correspondence: Katarzyna Dobruch-Sobczak, Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Science, Pawinskiego 5B, 02-106 Warsaw, Poland, tel.: +48 509 826 146, e-mail: kdsobczak@gmail.com

DOI: 10.15557/JoU.2015.0033

Abstract

Shear wave elastography (SWE) is a modern method for the assessment of tissue stiffness. There has been a growing interest in the use of this technique for characterizing thyroid focal lesions, including preoperative diagnostics. **Aim:** The aim of the study was to assess the clinical usefulness of SWE in medullary thyroid carcinoma (MTC) diagnostics. **Materials and methods:** A total of 169 focal lesions were identified in the study group (139 patients), including 6 MTCs in 4 patients (mean age: 45 years). B-mode ultrasound and SWE were performed using Aixplorer (SuperSonic, Aix-en-Provence), with a 4–15 MHz linear probe. The ultrasound was performed to assess the echogenicity and echostucture of the lesions, their margin, the halo sign, the height/width ratio (H/W ratio), the presence of calcifications and the vascularization pattern. This was followed by an analysis of maximum and mean Young’s (E) modulus values for MTC (E_{max LR}, E_{mean LR}) and the surrounding thyroid tissues (E_{max SR}, E_{mean SR}), as well as mean E-values (E_{mean LR}) for 2 mm region of interest in the stiffest zone of the lesion. The lesions were subject to pathological and/or cytological evaluation. **Results:** The B-mode assessment showed that all MTCs were hypoechogenic, with no halo sign, and they contained micro- and/or macrocalifications. Ill-defined lesion margin were found in 4 out of 6 cancers; 4 out of 6 cancers had a H/W ratio > 1. Heterogeneous echostucture and type III vascularity were found in 5 out of 6 lesions. In the SWE, the mean value of E_{max LR} for all of the MTCs was 89.5 kPa and (the mean value of E_{max SR} for all surrounding tissues was) 39.7 kPa.
Medullary thyroid carcinoma (MTC) is a rare cancer accounting for 2–4% of all thyroid malignancies. It may occur as sporadic (about 80% of cases) and familial medullary thyroid carcinoma in multiple endocrine neoplasia (MEN) type 2A or 2B syndrome, frequently representing their first clinical manifestation. It originated from the calcitonin-producing parafollicular cells (C cells). These cells are derived from other germ layer than thyroid follicular cells, and join them in later stages of embryogenesis. They are mainly localized in the medial and upper-medial parts of the thyroid lobes, determining the location of MTC. Medullary thyroid carcinomas usually occur as single tumors. They may also be multifocal and bilateral, especially in the case of familial carcinomas(1,2).

Although ultrasound-guided FNAB of the focal lesion is a method of choice in the diagnostics of thyroid focal lesions, a definite diagnosis of MTC is not always possible(3). Medullary carcinomas are usually shown in the ultrasound image as solid, highly hypoechogenic focal lesions with calcifications due to high amounts of amyloid. Macroscopically, medullary thyroid carcinomas most often present in the surgical material as solid tumors, usually with well-defined borders, though non-encapsulated. Cross-sectionally, they are hard or with increased values of $E_{\text{mean LR}}$ and $E_{\text{mean SR}}$ were 34.7 kPa and 24.4 kPa, respectively. The mean value of $E_{\text{mean LR}}$ was 49.2 kPa. **Conclusions:** SWE showed MTCs as stiffer lesions compared to the surrounding tissues. The lesions were qualified for fine needle aspiration biopsy based on B-mode assessment. However, the diagnostic algorithm for MTC is based on the measurement of serum calcitonin levels, B-mode ultrasound and FNAB.
consistency compared to the surrounding thyroid parenchyma. They can be granular, white, grey or beige, usually with no extravasations or necrosis; they rarely contain cystic lesions. The histopathological structure of medullary carcinomas is comprised of solid areas and clusters of cells of various size and shape, sometimes forming trabecular or lobulus microscopic pattern; they are surrounded by hyalinizing or fibro-vascular stroma. Stromal accumulation of amyloid occurs in 80–90% of cases.

Furthermore, MTCs are characterized by rich vascularization with a chaotic course of vessels and the absence of halo sign. Compared to papillary thyroid carcinomas (PTC), which represent the most common thyroid malignancies, MTCs are usually larger and show a more oval shape at diagnosis(4).

Current knowledge does not allow to determine ultrasonographic characteristics that clearly identify MTCs. The available literature reports show that even one in three lesions may not show the characteristics suspicious of malignancy in an ultrasound image(3). Ultrasound sonoelastography is a promising technique for the assessment of the hardness of the thyroid focal lesions. The method is based on a general assumption that most malignancies are represented by hard-tissue lesions, whereas benign lesions are soft-tissue lesions. Currently, two basic sonoelastography techniques are used: static/strain elastography (SE) displaying relative tissue displacement, and dynamic/shear wave elastography (SWE). However, the results obtained using these two methods for thyroid assessment are ambiguous(5–7). Dynamic sonoelastography, using the phenomenon of shear wave propagation velocity through tissues, depending on their hardness, allows for both qualitative and quantitative assessment of focal lesions and the surrounding tissues. In the qualitative assessment, the blue color indicates soft tissues and the red color indicates hard tissues. The quantitative tissue stiffness analysis in the regions of interest (ROI) of various sizes involves the calculation of the maximum, mean and minimum values of the Young’s (E) modulus (kPa).

Aim

The aim of the study was to analyze the ultrasound characteristics of medullary thyroid carcinoma as well as to assess the clinical usefulness of SWE in MTC preoperative evaluation.

Materials and methods

All patients included in the study gave their written consent to participate in the study, and the study was approved by The Bioethics Committee of the Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology. The retrospective analysis included four patients (mean age: 45 years) with six thyroid focal lesions. The patients received B-mode ultrasound examination of the thyroid and the surrounding neck tissues. This was followed by the Young’s (E) modulus (kPa).

rdeniaste tarcy to najczęściej guzy lite, zwykle z dobrze widocznymi brzegami, ale nieotorebkowane. Na przekroju są twarde lub o wzmożonej konsystencji w stosunku do otaczażącego miąższu tarczycy. Mogą być ziarniste, białe, szare bądź beżowe, zazwyczaj bez wylewów i marwiczy; rzadko zawierają zmiany torbielowate. Histopatologicznie raki rdeniaste składają się z litych pól i gniazd komórek o różnej wielkości i różnym kształcie, niekiedy tworząc przywór mikroskopowy beczkowy lub zrakiowy; otoczone są one szkliwiającym albo włóknisto-naczyniowym podścieliskiem. Amyloid w podścielisku kumuluje się w 80–90% przypadków.

Ponadto RRT cechują się bogatym unaczynieniem z chaotycznym przebiegiem naczyń oraz brakiem objawu „halo”. W porównaniu z rakami brodawkowatymi tarczycy (RBT), które stanowią najczęstsze nowotwory złośliwe tego gruźcza, w chwili rozpoznania często są większe i bardziej owalne(4).

Aktualny stan wiedzy nie pozwala na określenie cech jednoznacznie identyfikujących raki rdeniaste tarczycy w badaniu USG. W piśmiennictwie można znaleźć doniesienia, w których autorzy dowodzą, że nawet jedna na trzy zmiany może nie wykazywać w obrazie USG cech wskazujących na złośliwość(3). Obiegującym badaniem oceniającym twardość zmian ogniskowych tarczycy jest sonoelastografia ultrasonograficzna. Technika ta opiera się na ogólnym założeniu, że większość złośliwych zmian nowotworowych to zmiany twarde, natomiast zmiany łagodne przedstawiają się jako miękkie. Obecnie stosowane są dwie podstawowe techniki sonoelastograficzne: elastografia statyczna (strain elastography, SE), tzw. odkształceń względnych, oraz dynamiczna (shear wave elastography, SWE), jednak wyniki uzyskane za pomocą tych metod w badaniu tarczycy nie są jednoznaczne(5–7). W sonoelastografii dynamicznej, wykorzystującej zjawisko prędkości propagacji fali poprzecznej przez tkanki w zależności od ich twardości, zmiany ogniskowe i otaczające tkanki oceniane są w sposób jakościowy oraz ilościowy. W ocenie jakościowej w kolorze niebieskim zakońcowane są tkanki miękkie, w kolorze czerwonym – twarde. W analizie ilościowej sztywności tkank, w obszarach zainteresowania (region of interest, ROI) różnej wielkości, obliczane są wartości maksymalne, średnie i minimalne modułu Younga (E) w kPa.

Cel pracy

Celem niniejszej pracy była analiza cech ultrasonograficznych raków rdeniastych tarczycy oraz określenie przydatności SWE w ich przedoperacyjnej ocenie.

Materiał i metoda

Wszyscy włączeni do badania pacjenci wyrazili pisemną zgodę na udział w nim oraz uzyskano zgodę Komisji Bioetycznej przy Centrum Onkologii – Instytucie im. Marii Skłodowskiej-Curie. Retrospektywna analiza dotyczyła czterech pacjentów (średni wiek: 45 lat) z obecnością sześciu zmian ogniskowych w tarczycy. Wykonano
by a SWE quantitative assessment of the stiffness of lesions and the surrounding thyroid tissues. The assessment was performed in the Laboratory of Ultrasound in Endocrinology and Nuclear Medicine Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology using Aixplorer (SuperSonic, Aix-en-Provence), with a 4–15 MHz linear probe, and in accordance with the standards of the Polish Society of Ultrasonography (8).

The B-mode ultrasound of thyroid focal lesions assessed:

- echogenicity (normal/hypoechoic/isoechoic);
- echostucture (homogeneous/heterogeneous);
- the presence of halo sign;
- the presence of micro- and macrocalcifications;
- lesion margins (sharp/ill-defined);
- height/width ratio;
- vascularization pattern of the lesions, using color Doppler (type I – no visible vessels, type II – single vessels within the lesion, type III – vessels in the parenchyma of the lesion).

Next, focal lesions and the surrounding tissues were evaluated using an elastogram, by placing focal lesions in its central part, i.e. FOV (field of view).

In the quantitative assessment for ROIs of various sizes (the first one included the entire lesion, the second one – an area with a diameter of 2 mm, selected automatically in the stiffest region of the lesion, excluding calcifications), the lesions were analyzed in two sections (transverse and longitudinal), and the obtained E-values were averaged. The maximum and mean E-values for MTC (E_{maxLR}, E_{meanLR}) maximum and mean E-values for the surrounding thyroid tissues (E_{maxSR}, E_{meanSR}) and the mean Young’s modulus values (E_{meanLR}) from the stiffest part of the lesion were analyzed and assessed.

Results

Histopathological evaluation of six focal lesions confirmed the presence of 6 MTCs. Three patients (5 lesions) had familiar MTCs, and one patient with a single lesion had sporadic MTC. The maximum average size of these lesions was 4 to 29 mm (mean 15.2 mm). In the B-mode assessment, all MTCs were hypoechoic, with no halo sign and they contained micro- and macrocalcifications (100%). Ill-defined lesion margin were found in 4 cancers (66.7%). Heterogeneous echostucture and type III vascularization were found in 5 out of lesions (83.3%). Vascular flow was not visualized using Color Doppler in one lesion (Fig. 1 C). The height/width ratio of more than 1 was found in 4 out of 6 lesions (Tab. 1).

In SWE assessment, the mean value of E_{maxLR} for all of the MTCs was 89.5 kPa and the mean value of E_{maxSR} for all surrounding tissues was 39.7 kPa. Mean values of E_{meanLR} and E_{meanSR} were 34.6 kPa and 24.4 kPa, respectively. The mean value for the stiffest part of the lesion (2mm ROI) was 49.2 kPa (E_{meanLR}) (Tab. 2).

u nich badanie USG B-mode gruczołu tarczowego oraz okolicznych tkanek w szyi. Następnie dokonano ilościowej oceny sztywności zmian i otaczających tkanek gruczołu tarczowego w badaniu SWE. Badania przeprowadzono w Pracowni Ultrasonografii w Klinice Endokrynologii i Medycyny Nuklearnej przy Centrum Onkologii – Instytucje im. Marii Skłodowskiej-Curie przy użyciu aparatu Aixplorer (SuperSonic, Aix-en-Provence), głowicą liniową o zakresie częstotliwości 4–15 MHz, zgodnie ze standardami Polskiego Towarzystwa Ultrasonograficznego (8).

W badaniu USG B-mode zmian ogniskowych w tarczycy oceniono:

- echogeniczność (zmiana normo-/hipo-/izoechogeniczna);
- echostrukturę (zmiana jednorodna/niejednorodna);
- występowanie objawu „halo”; występowanie mikro- i makrozwapien;
- brzegi zmiany (ostre/nieostre);
- stosunek wysokości do szerokości zmian ogniskowych;
- wzorzec unacznienia zmian za pomocą kolorowego doplera (typ I – bez widocznych naczyń, typ II – pojedyncze naczynia na obwodzie zmiany, typ III – naczynia w miąższu zmiany).

Następnie zmiany ogniskowe oraz otaczające tkanki analizowano na elastogramie, umieszczając zmiany ogniskowe w jego centralnej części – w tzw. polu widzenia (field of view, FOV).

W ocenie ilościowej dla dwóch różnej wielkości ROI (pierwszy obejmował całą zmianę, drugi – obszar o średnicy 2 mm, wyznaczony automatycznie w najszybciej regionie zmiany, z wyłączeniem zwapienia) zmiany analizowano w dwóch przekrojach: poprzecznym i podłużnym, a otrzymane wartości E uśredniano. Maksymalne i średnie wartości E dla RRT (E_{maxLR}, E_{meanLR}), maksymalne i średnie wartości E dla otaczających tkanek w miąższu gruczołu (E_{maxSR}, E_{meanSR}) oraz średnie wartości modulu Younga (E_{meanLR}) z najtwardszej części zmiany poddano analizie i ocenie.

Wyniki

Analiza histopatologiczna sześciu zmian ogniskowych potwierdziła obecność sześciu raków rdzeniastych tarczycy. U trzech pacjentów (pięć zmian) występowała postać rodzinna, u jednego badanego z pojedynczą zmianą – postać sporadyczna RRT. Maksymalny średni wymiar zmian wynosił od 4 do 29 mm (średnio 15.2 mm). W ocenie B-mode wszystkie RRT były hipoechoogeniczne, bez obecności objawu „halo”, oraz zawierały mikro- i/lub makrozwapienia (100%). Nieostre granice zmiany obecne były w czterech rakach (66,7%). Niejednorodną echostrukturę oraz typ III unacznienia stwierdzono w pięciu z sześciu zmian (83,3%). W jednej zmianie nie uwidoczniono przepływów naczyniowych w obrazowaniu za pomocą kolorowego doplera (ryc. 1 C). Wartość ilorazu wysokości/szerokości powyżej 1 dotyczyła 4/6 zmian (tab. 1).
Fig. 1. A longitudinal section of the left thyroid lobe. Hypoechoic, oval lesion with well-defined margin and fine microcalcifications can be seen dorsally in the upper pole (A). Color Doppler showed no lesion vascularity – type 1 (B). Lesion SWE: $E_{\text{maxLR}} = 19.5$ kPa, $E_{\text{meanLR}} = 12.5$ kPa were lower for the lesion compared with the surrounding tissues ($E_{\text{maxSR}} = 24.1$ kPa, $E_{\text{meanSR}} = 20.5$ kPa) (C).

Tab. 1. B-mode ultrasonographic characteristics of thyroid focal lesions

Lesion no.	Lesion echogenicity	Lesion echostructure	Lesion borders	Halo sign	Calcifications	Height/width ratio	Lesion volume	Type of vascularization
1	Hypoechoogenic	Heterogeneous	Sharp	No	Microcalcifications	0.58 (11/19 mm)	2.4 mL	III
2	Hypoechoogenic	Heterogeneous	Sharp	No	Macrocalcifications	0.82 (18/22 mm)	7.2 mL	III
3	Hypoechoogenic	Heterogeneous	III-defined	No	Microcalcifications / Macrocalcifications	1,125 (9/8 mm)	0.32 mL	III
4	Hypoechoenic	III-defined	No	Microcalcifications / Macrocalcifications	1.67 (15/9 mm)	0.61 mL	III	
5	Hypoechoenic	Heterogeneous	III-defined	No	Microcalcifications / Macrocalcifications	1.71 (12/7 mm)	0.42 mL	III
6	Hypoechoenic	Homogeneous	III-defined	No	Microcalcifications	2 (8/4 mm)	0.16 mL	I

Tab. 1. Cechy USG B-mode zmian ogniskowych w tarczycy
Discussion

Thyroid sonoelastography is a non-invasive method recommended by the EFSUMB as an additional diagnostic tool for characterizing focal thyroid lesions. According to the opinion of EFSUMB experts, the technique is particularly useful for controlling patients with thyroid focal lesions verified as benign, based on FNAB findings\(^9\). This is important for MTCs due to their greater malignant potential compared to papillary thyroid carcinomas (PTC). Additionally, high difficulty in cytological assessment of these tumors with about 63% sensitivity according to Bugalho et al., may delay diagnosis and treatment initiation\(^10\). In our study material, the suspicion of medullary thyroid carcinoma was based in all cases on cytological assessment performed by pathologists.

B-mode assessment of MTC also poses difficulties, especially in the case of small lesions (Fig. 1) with no characteristic ultrasound features, such as irregular macrocalcifications or hypoechogeticity. Woliński et al.\(^11\) performed a meta-analysis of ultrasonographic characteristics of medullary thyroid carcinoma by assessing 169 cases of this tumor, which indicated hypoechogeticity as the most common feature (83.4%). The sensitivity related to the

Lesion No.	E\(_{\text{max LR}}\) [kPa]	E\(_{\text{mean LR}}\) [kPa]	E\(_{\text{mean LRz}}\) [kPa]	E\(_{\text{max SR}}\) [kPa]	E\(_{\text{mean SR}}\) [kPa]
1	59.6	31.9	44.3	39.2	26.9
2	98.4	17.9	60.9	58.1	36.8
3	35.8	13.9	23.5	35.7	14.6
4	190.0	88.0	99.6	43.0	25.2
5	138.0	53.1	62.9	41.0	32.8
6	16.4	3.1	3.9	21.3	10.1
Mean	89.5	34.7	49.2	39.7	24.4

\(E_{\text{max LR}}\) – maximum value of Young’s modulus in the lesion region
\(E_{\text{mean LR}}\) – mean value of Young’s modulus in the lesion region
\(E_{\text{mean LRz}}\) – mean value of Young’s modulus in the stiffest zone in the lesion region
\(E_{\text{max SR}}\) – maximum value of Young’s modulus in the surrounding tissue
\(E_{\text{mean SR}}\) – mean value of Young’s modulus in the surrounding tissue

Tab. 2. Elastographic characteristics of thyroid focal lesions

Nr zmiany	E\(_{\text{max LR}}\) [kPa]	E\(_{\text{mean LR}}\) [kPa]	E\(_{\text{mean LRz}}\) [kPa]	E\(_{\text{max SR}}\) [kPa]	E\(_{\text{mean SR}}\) [kPa]
1	59,6	31,9	44,3	39,2	26,9
2	98,4	17,9	60,9	58,1	36,8
3	35,8	13,9	23,5	35,7	14,6
4	190,0	88,0	99,6	43,0	25,2
5	138,0	53,1	62,9	41,0	32,8
6	16,4	3,1	3,9	21,3	10,1
Wartość średnia	89,5	34,7	49,2	39,7	24,4

\(E_{\text{max LR}}\) – maksymalna wartość modułu Younga dla obszaru zmiany ogniskowej
\(E_{\text{mean LR}}\) – średnia wartość modułu Younga dla obszaru zmiany ogniskowej
\(E_{\text{mean LRz}}\) – średnia wartość modułu Younga dla najsztywniejszego obszaru zmiany
\(E_{\text{max SR}}\) – maksymalna wartość modułu Younga dla otaczających tkanek w miąższu gruczołu
\(E_{\text{mean SR}}\) – średnia wartość modułu Younga dla otaczających tkanek w miąższu gruczołu

Tab. 2. Elastograficzne cechy zmian ogniskowych w tarczycy

W ocenie SWE średnia maksymalna wartość modułu Younga w obrębie RRT (\(E_{\text{mean LR}}\), śr.) wynosiła 89,5 kPa, a w otaczających tkankach 39,7 kPa (\(E_{\text{mean SR}}\), śr.). Średnie wartości średnich modułu Younga’a (\(E_{\text{mean LR}}, \text{śr.} \) i \(E_{\text{mean SR}}, \text{śr.}\)) wynosiły odpowiednio: 34,6 kPa, 24,4 kPa. Wartość średnia z najtwardszej części zmiany (2 mm ROI) wynosiła 49,2 kPa (\(E_{\text{mean LRz}}\), a dla otoczenia \(E_{\text{mean SR}} = 24,4\) kPa (tab. 2).

Dyskusja

Sonoelastografia tarczycy to nieinwazyjne badanie, rekomendowane przez European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) jako dodatkowe narzędzie diagnostyczne w różnicowaniu charakteru zmian ogniskowych w tarczycy. Zgodnie z opinią ekspertów z EFSUMB jest szczególnie przydatne w kontroli dalszego przebiegu chorób i eutanazji, a także do oceny efektywności leczenia na etapie klinicznym.

J Ultrasound 2015; 15: 358–367
absence of halo sign was 89.9%, and microcalcifications were observed in only 35.5% of MTCs. Macrocalcifications, which represent calcified amyloid deposits showing reactive fibrosis, occurred in only 27% of lesions; they are described in the literature as a characteristic feature of MTCs. Similarly, the ‘taller than wide’ feature was rarely observed in these tumors (only 14.4% of cases).

Hypoechogenic lesions with no halo sign dominated in our study material (100%), as also reported by other authors. No relationship was observed between the incidence of other ultrasound features. Microcalcifications, which represent calcified amyloid deposits showing reactive fibrosis, occurred in only 27% of lesions; they are described in the literature as a characteristic feature of MTCs. Similarly, the ‘taller than wide’ feature was rarely observed in these tumors (only 14.4% of cases).

Due to difficulties in determining typical features in ultrasound MTC examination a question should be asked, whether the risk factors of focal lesion malignancy, which are used for ultrasound assessment and have been included in the standards, can relate to MTC cases. Trimboli et al. attempted to answer the question whether USG characteristics associated with PTCs should be used to diagnose MTCs. Their study showed a low incidence of features typical of PTCs in the cases of this tumor, such as ill-defined wdrożenia leczenia. In our study material badawczym we wszystkich przypadkach, na podstawie oceny cytologicznej dokonanej przez patomorfologów, zostało wyznaczone podejrzenie rozpoznania raka rdzeniastego tarczycy.

Trudności sprawia także ocena RRT w badaniu B-mode, szczególnie w przypadku niewielkich zmian (ryc. 1), w których brak jest charakterystycznych cech w badaniu USG, takich jak nierządowe makrozwapienia czy hypoechogeniczność. Woliński i wsp. dokonali metaanalizy cech ultrasonograficznych raka rdzeniastego tarczycy, oceniającej 169 przypadków tego nowotworu, z której wynika, że najczęściej była hypoechogeniczność (83,4%). Czułość braku objawu „halo” wynosiła 89,9%, natomiast tylko w 35,5% RRT obserwowane były makrozwapienia. Zaledwie w 27% zmian występowały makrozwapienia, które są uwzględnione w zadanym studiu odczynnym: w piśmiennictwie opisuje się je jako charakterystyczną cechę RRT. Podobnie niczymo nowotworym tym towarzyszyła cecha „wyższy niż szerszy” – jedynie w 14,4% przypadków.

Podobnie jak w wynikach innych autorów, w naszym materiale również dominowały zmiany hypoechogeniczne, bez objawu „halo” (100%). Nie zaobserwowano zgodności w częstotliwości występowania pozostałych cech badania USG. Mikrozwapienia występowały częściej (5/6 zmian) niż makrozwapienia (4/6). Natomiast łącznie makro- i mikrozwapnienia dotyczyły połowy przypadków w obrębie
margin, microcalcifications and type III vascularization in Color Doppler. Among the ultrasound-assessed characteristics, only hypoechogenicity could suggest MTC, however, this feature was shown in only 50% of cases.

Other characteristics present in MTCs were shown by the following proportion of cases:
• ill-defined margin – 0%;
• microcalcifications – 16.7%;
• type III vascularization – 25%

Significantly different ultrasound characteristics were shown for papillary carcinomas, with the following incidence:
• ill-defined margin – 64.1%;
• microcalcifications – 69.2%
• type III vascularization – 15.4%

Surprisingly, well-defined margin were uncommon, they were found in 13.3% of PTC cases.

Differences in the ultrasound characteristics of medullary carcinomas compared to PTCs result from their different histopathological structure. The hardness of these tumors probably results from their solid histopathological structure, particularly stromal hyalinization and fibrosis in the absence of necrosis or blood extravasations.

Single publications assessing the usefulness of sonoelastography in MTC are available in the literature. Lin et al. showed in their meta-analysis on all types of thyroid cancers that sonoelastography is a highly accurate method with sensitivity and specificity of more than 80%, however, the authors failed to perform a detailed analysis of MTC percentage in the studied populations.(13)

Andrioli et al. in their study, the only publication on MTC hardness assessment, evaluated this type of cancers using relative strain sonoelastography (SE). They used a 4-item deformability scale. Degrees ES3 and ES4 corresponded to non-deforming lesions, and thus suspected of malignancy as opposed to ES1 and ES2 lesions, which were partly or completely deformable(14). Among 18 evaluated MTCs, 10 lesions were classified as soft (one ES1 lesion and 9 ES2 lesions), and only 4 lesions were classified as ES3 and ES4. The results suggest that most MTCs are highly deformable. However, the authors did not provide a detailed description of the evaluated focal lesions, including their size, and the presence of calcifications, both of which may additionally affect their deformability.

Published studies on the use of SWE in differentiating the character of thyroid focal lesions showed that the E-values are higher for malignant cancers compared to those observed in benign lesions. In the available literature, the range of cut-off values differentiating malignant from benign lesions is very high, i.e. from 34.5 up to 94 kPa(15–18). However, PTCs dominate in the cited reports, and the single MTC cases are not discussed in detail.

W zależności od średnich z określenia typowych cech w badaniu USG dla RRT należy zadać pytanie, czy zawarte w standardach czynniki ryzyka złożoności zmian ogólnikowych w ocenie USG w tarczycy mogą dotyczyć przypadków raka rdzeniastego tarczycy. Trimboli i wsp.(12) podjęli się próby odpowiedzi na pytanie, czy powinno się stosować cechy USG powiązane z rakiem brodawkowatym tarczycy (RBT) do diagnozowania RRT. Ich badania wykazały niską częstość występowania cech typowych dla RBT w przypadkach tego nowotworu, takich jak nierегулярne brzegi, mikrozwpätnienia, typ III unaczynienia w obrazowaniu kolorowym dopplerem. Spośród ocenianych w USG cech tylko hipoechojenicznosc mogła sugerować RRT, ale występowała jedynie w 50% przypadków.

Pozostałe cechy występowały w RRT w następującym odsetku przypadków:
• nierегулярne brzegi – 0%;
• obecność mikrozwpätnień – 16,7%;
• typ III unaczynienia – 25%.

Znacząco odmienne cechy obrazu USG towarzyszyły rakom brodawkowatom, dla których częstość wymieniających się USG to:
• nierегулярne brzegi – 64,1%;
• obecność mikrozwpätnień – 69,2%;
• typ III unaczynienia – 15,4%.

Regularne brzegi występowały zaskakująco rzadko i towarzyszyły tylko 13,3% przypadków RBT.

Odmienne charakterystyka cech w badaniu USG raków rdzeniastych w odniesieniu do RBT spowodowana jest różnicami w ich budowie histopatologicznej. Lita budowa histopatologiczna, a zwłaszcza zwiększenie i włóknienie podścieliska, przy braku martwicy i wylewów krwawych, odpowiadają prawdopodobnie za twardość tych guzów.

W piśmiennictwie dostępne są pojedyncze publikacje oceńające przydatność sonoelastografii w RRT. W metaanalizie dotyczącej wszystkich typów raka tarczycy Lin i wsp. dowiedzieli, że jest to metoda o dużej dokładności, z czułością i stwierdzoną powyżej 80%, jednak autorzy nie poddali szczegółowej analizie odsetka RRT w badanych grupach pacjentów.(13)

W pracy Andrioliiego i wsp., jedyniej publikacji dotyczącej oceny twardości RRT, autorzy oceniali ten rodzaj raków w sonoelastografii odkotań względnych. Zastosowali 4-stopniową skalę odkotańności. Stopnie ES3 i ES4 odpowiadają zmianom nieulegającym odkotańciu, a tym samym były podejmowane o złożowości charakter, w przeciwieństwie do zmian typowanych jako ES1 i ES2, które ulegały całkowitemu lub istotnemu odkotańciu.(14) Spośród...
In our study both the maximum and the average values of the Young's modulus were significantly higher compared to the surrounding tissues and did not differ significantly from those presented in the literature on PTC (E\textsubscript{maxLR} mean = 89.5 kPa, E\textsubscript{menLRz} = 49.17 kPa). Apart from one MTC case (Fig. 1), all lesions had E-values higher than 35 kPa (values corresponding to one of the cut-off values suggested in the literature). Additionally, in all cases the lesions showed ultrasonographic characteristics suspicious of malignancy and were qualified for FNAB. It should be noted that there was a large divergence between cytological and histopathological findings. Different findings were observed in an ex vivo assessment performed for 4 MTCs. One of the patients (with two MTCs) had significantly harder lesions, whereas other patient had softer lesions.

Summary

The stiffness of focal lesions assessed using SWE is an additional characteristic in ultrasound imaging, which should be analyzed together with the following B-mode characteristics: ill-defined margin, calcifications, abnormal vascularization pattern (type III) and the dominance of anterior-posterior size over the lateral-lateral size, which increase the risk of their malignancy.

In the SWE, MTCs presented as lesions stiffer than the surrounding tissues, however, the small number of lesions did not allow to draw clear conclusions about the usefulness of this method. The diagnostic algorithm for MTC is based on the measurement of calcitonin levels, B-mode ultrasound assessment and fine needle aspiration biopsy of suspicious lesions. The assessment of the actual usefulness of this technique should be evaluated based on a larger clinical material, taking into account the division into thyroid cancer types.

Limitations

A small number of the assessed lesions due to the low incidence of MTCs in the population is a factor limiting the clear assessment of SWE usefulness in MTC patients.

Conflict of interest

The authors do not report any financial or personal connections with other persons or organizations, which might negatively affect the contents of this publication and/or claim authorship rights to this publication.

Badanych 18 RRT 10 zmian określono jako miękkie (1 zmiana – ES1 oraz 9 – ES2), a tylko 4 jako ES3 i ES4. Wyniki pracy sugerują, że większość RRT ulega istotnemu odkształceniu. Autorzy nie przedstawiają jednak dokładnej charakterystyki ocenianych zmian ogniskowych, w tym wielkości zmian nowotworowych oraz obecności zwapnień w ich obrębie, które mogą mieć dodatkowo wpływ na ich odkształcalność.

W opublikowanych pracach dotyczących zastosowania SWE w różnicowaniu charakteru zmian ogniskowych w tarczycy wykazano, że dla nowotworów złośliwych wartości E są wyższe w porównaniu do wartości obserwowanych w zmianach łagodnych. Zakres wartości progowych (cut-off) różnicujących zmiany łagodne od złośliwych w dostępnym piśmiennictwie jest bardzo duży i wynosi od 34,5 do 94 kPa(15–18). Jednak w cytowanych doniesieniach dominują RBT, a pojedyncze przypadki RRT nie są szczegółowo omawiane.

W naszym badaniu zarówno wartości maksymalne, jak i średnie modułu Younga były istotnie wyższe od wartości w otaczających tkankach i nie odbiegały istotnie od prezentowanych w piśmiennictwie dla RBT (E\textsubscript{maxLR} śr. = 89,5 kPa, E\textsubscript{menLRz} = 49,17 kPa). Z wyjątkiem jednego przypadku RRT, przedstawionego na ryc. 1, wszystkie zmiany cechowały wartości E wyższe niż 35 kPa (wartości odpowiadające jednej z proponowanych w piśmiennictwie wartości odcięcia). Dodatkowo we wszystkich przypadkach zmiany wykazywały w obrazie USG cechy złośliwości i zostały zakwalifikowane do BACC. Na podkreślenie zasługuje fakt dużej zbieżności oceny cytologicznej zmian w odniesieniu do weryfikacji histopatologicznej. Natomiast w ocenie ex vivo, wykonanej na czterech RRT, zaobserwowano odmiennie wyniki. U jednej z pacjentek z obecnością dwóch RRT zmiany były znacząco twardsze, u drugiej bardziej miękkie.

Podsumowanie

Twardość zmian ogniskowych oceniana za pomocą SWE jest dodatkową cechą obrazowania USG, która powinna być analizowana łącznie z obecnością takich cech w obrazowaniu B-mode, jak: nieregularne brzegi, obecność mikrozwapnień, nieprawidłowy wzorzec unaczynienia (typ III) oraz przewaga wymiaru przednio-tylnego nad boczno-bocznym, które zwiększają ryzyko ich złośliwości.

W SWE RRT przedstawiały się jako zmiany sztywniejsze w porównaniu do otaczających tkankach, jednak mała liczba przypadków nie pozwala na wyciągnięcie jednoznacznych wniosków na temat przydatności metody. Algorytm diagnostyczny RRT opiera się na pomiarze stężenia kalcyttoniny, ocenie USG B-mode i biopsji aspiracyjnej cienkoigielnej podejrzanej zmiany. Rzeczywista przydatność tej techniki powinna zostać oceniona na większym materiale klinicznym, z podziałem na typy raków tarczycy.
Ograniczenia

Niewielka liczba ocenianych zmian, spowodowana rzadkim występowaniem RRT w populacji, jest czynnikiem ograniczającym jednoznaczną ocenę przydatności SWE u pacjentów z tym nowotworem.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

References / Piśmiennictwo

1. Bachelot A, Lombardo F, Baudin E, Bidart JM, Schlumberger M: Inheritable forms of medullary thyroid carcinoma. Biochimie 2002; 84: 61–66.
2. Leboulleux S, Baudin E, Travagli JP, Schlumberger M: Medullary thyroid carcinoma. Clin Endocrinol (Oxf) 2004; 61: 299–310.
3. Trimboli P, Giovanela L, Valabrega S, Andrioli M, Baldelli R, Cremonini N et al.: Ultrasound features of medullary thyroid carcinoma correlate with cancer aggressiveness: a retrospective multicenter study. J Exp Clin Cancer Res 2014; 33: 87.
4. Kim SH, Kim BS, Jung SL, Lee JW, Yang PS, Kang BJ et al.: Ultrasonographic findings of medullary thyroid carcinoma: a comparison with papillary thyroid carcinoma. Korean J Radiol 2009; 10: 101–105.
5. Cantisani V, Lodise P, Grahdani H, Mancus E, Maggini E, Di Rocco G et al.: Ultrasound elastography in the evaluation of thyroid pathology. Current status. Eur J Radiol 2014; 83: 420–428.
6. Bhatia KS, Tong CS, Cho CC, Yuen EH, Ahuja AT: Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol 2012; 22: 2397–2409.
7. Dudea SM, Botar-Jid C: Ultrasound elastography in thyroid disease. Med Ultrason 2015; 17: 74–96.
8. Trzebińska A, Dobruch-Sobczak K, Jakubowski W, Jędrezejowski M: Standardy badań ultrasonograficznych Polskiego Towarzystwa Ultrasonograficznego – aktualizacja. Badanie ultrasonograficzne tarczy oraz biopsja tarczyc pod kontrolą ultrasonografii. J Ultrason 2014; 14: 49–60.
9. Cosgrove D, Piccaglia F, Bamber J, Bojunga J, Correas J-M, Gilia OH et al.: EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultrashall Med 2013; 34: 238–253.
10. Bugalho MJ, Santos JR, Sobrinho L: Preoperative diagnosis of medullary thyroid carcinoma: fine needle aspiration cytology as compared with serum calcitonin measurement. J Surg Oncol 2005; 91: 56–60.
11. Wołński K, Rewaj-Losyk M, Ruchala M: Sonographic features of medullary carcinomas – a systematic review and meta-analysis. Endokrynol Pol 2014; 65: 314–318.
12. Trimboli P, Nasrollah N, Amendola S, Rossi F, Ramacciato G, Romanelli F et al.: Should we use ultrasound features associated with papillary thyroid cancer in diagnosing medullary thyroid cancer? Endocr J 2012; 59: 503–508.
13. Lin P, Chen M, Liu B, Wang S, Li X: Diagnostic performance of shear wave elastography in the identification of malignant thyroid nodules: a meta-analysis. Eur Radiol 2014; 24: 2729–2738.
14. Andrioli M, Trimboli P, Amendola S, Valabrega S, Fukunari N, Mirella M et al.: Elastographic presentation of medullary thyroid carcinoma. Endocrine 2014; 45: 153–155.
15. Sebag F, Vaillant-Lombard J, Berbis J, Grieset V, Henry JF, Petit P et al.: Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab 2010; 95: 5281–5288.
16. Veyrieres JB, Albaré F, Lombard JV, Berbis J, Sebag F, Oliver C et al.: A threshold value in Shear Wave elastography to rule out malignant thyroid. Eur J Radiol 2012; 81: 3965–3972.
17. Liu B, Jiang Y, Xie X, Huang G, Zhou L et al.: Two-dimensional shear wave elastography as promising diagnostic tool for predicting malignant thyroid nodules: a prospective single-centre experience. Eur Radiol 2015; 25: 624–634.
18. Park AY, Son EJ, Han K, Youk JH, Kim JA, Park CS: Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur J Radiol 2015; 84: 407–412.