Examination of mycorrhizal inoculum for improving maize tolerance to water stress in pot culture using zeolite and Andisol

V R Cahyanı¹, Suryanti, D F Setiawan, Suntoro, S Minardi, Purwanto and Rahayu

¹Department of Soil Science, Faculty of Agriculture, Sebelas Maret University, Surakarta, Indonesia
E-mail: vitaratri@staff.uns.ac.id

Abstract. Arbuscular mycorrhiza (AM) is known as beneficial microsymbiont that capable to support plant growth by increasing nutrient uptake and improving plant tolerance toward diverse adverse conditions, such as water stress. The present study examined single and mixture mycorrhizal inoculum sources for improving maize tolerance to water stress in pot culture using zeolite and Andisol. Pot culture experiment was conducted using a Factorial Completely Randomized Design with three factors: A: Media type (A₀: zeolite, A₁: Andisol), B: AM inoculum sources (B₁: No inoculum, B₂: Inoculum from Andisol, B₃: Inoculum from eight soil types), C: Media moisture level (C₁: 50%, C₂: 70% of field capacity), with three replications. Each pot contained 300 g of media that sterilized using formaldehyde 2%, Maize were grown until maximal vegetative phase (77 days after planting). The results showed that maize growth on Andisol was higher than on zeolite, inoculum from Andisol were resulted in higher effect than a mixture of inoculum from eight soil types. On zeolite media (A₀), inoculum B₁ showed to improve plant tolerance to water stress at moisture level of C₁ as indicated by plant dry weight (PDW) that 38.6% higher than B₂ and 31.9% higher than B₃, whereas on Andisol (A₁), inoculum B₁ resulted PDW 13.4% higher than B₂ and 38.4% higher than B₃. By AM inoculation in pot culture, maize growth on zeolite media at C₁ was lower than at C₂, whereas maize growth on Andisol at C₁ was higher than at C₂ conditions.

Keyword: Andisol, Maize, Mycorrhizal inoculum, Water stress, Zeolite

1. Introduction
Symbiosis of arbuscular mycorrhiza (AM) with plant roots has been shown to improve the tolerance toward water stress in various plant species, such as for sunflower [1], tomato [2], and wheat [3]. The research on the effect of AM to support maize tolerance toward water stress have also been reported by Renxin et al [4] which comprised of two growth substrates (weathered mine spoil and spontaneously combusted mine spoil), three intensities of drought stress (80%, 60%, 40%), and two mycorrhizal inoculations (non-inoculated and inoculated).

The mechanisms to improve drought tolerance by AM can be mediated by the increasing of nutritional status from developing root surface area, especially P [5]; [6]; [7] by increasing resistance to withering [8], by increasing proline accumulation levels in roots [9]; [10]. The other possible mechanism of drought resistance is by increasing photosynthetic activity as detected by the enhancing of photosynthetic pigment content (chlorophyll) [11]; [12].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
Andisol as one type of soil that occupied around 5.4 million Ha in Indonesia [13] and around 124 million Ha in the world [14] is very potential land area to be subjected for intensification and extensification programs to increase agricultural productivity. The main limitation of the utilization of Andisol is P fixation by allophane. The other major constraint for Andisol in Indonesia is the limitation of water availability. Research on the effect of AM in supporting plants in water stress conditions on Andisol soils is still very limited. The present study aimed at examining the effects of single and mixture mycorrhizal inoculums on maize growth at water stress conditions (50% field capacity) and normal moisture conditions (70% field capacity) using two types of media (zeolite and Andisol) in greenhouse pot culture experiment. Zeolite was used for the comparison media, this is very important to be investigated, since commercial mycorrhizal inoculums are commonly cultured on zeolite media.

2. Materials and Methods

2.1. Collecting soil for media of pot culture and rhizosphere soil for inoculum sources
Andisol soil from Tengaran was used as planting media for pot culture experiment at greenhouse of Faculty of Agriculture, Sebelas Maret University. Rhizosphere soils as a inoculum sources were taken from 8 soil types (from 9 locations) as listed in Table 1. The other media type used for pot culture was zeolite that obtained from the hydroponics shop.

Location	Soil Type	Geographic coordinate point	
		Latitude	Longitude
Tengaran	Andisol	07°15’51”S	110°26’57”E
Tawangmangu	Andisol	07°09’37”S	112°38’14”E
Delanggu	Inceptisol	07°39’20”S	110°44’21”E
Pracimantoro	Entisol	07°51’46”S	110°54’26”E
Jumantono	Alfisol	07°37’47”S	110°56’51”E
Jatikuwung	Vertisol	07°31’06”S	119°50’44”E
Ambarawa	Histosol	07°15’48”S	110°27’00”E
Tuntang	Oxisol	07°15’58”S	110°27’06”E
Bogor	Ultisol	06°32’05”S	106°20’36”E

2.2. Isolation and spore enumeration
Mycorrhizal spores were isolated from rhizosphere soils using a modification method of Cahyani [15] with wet sieving method and decantation followed by separation spores from the filtrate with 60% sucrose solution with centrifugation at 3000 rpm for 5 minutes.

2.3. Preparation media for pot culture
Andisol soil samples were air dried and sieved (<2mm), and filled into plastic pots (8 cm diameter and 14 cm in depth) 300 g of soil/pot culture. The second media for pot culture was zeolite that also prepared 300 g/pot culture.

2.4. Pot experiment in greenhouse
Greenhouse experiment in the present research was designed using a Factorial Completely Randomized Design with three factors: the first factor was media type (A) with 2 levels: A₀ : zeolite, A₁ : Andisol. The second factor was mycorrhizal inoculum source (B) with 3 levels: B₀ : no inoculum, B₁ : Inoculum from Andisol, B₂ : Inoculum from eight soil types and the third factor was media moisture level (C) with 2 levels: C₁ : 50%, C₂ : 70% of field capacity. Media in the pots were sterilized using formaldehyde 2% (20 ml/pot) and incubated for a week, then pots were opened for a week. Urea, rock phosphate and KCl were added at the dosages 150 kg urea Ha⁻¹, 100 kg KCl Ha⁻¹ and 150 kg rock phosphate Ha⁻¹ (0.024 g
urea/pot, 0.024 g rock phosphate/pot and 0.018 g KCl/pot). Two corn seeds were planted per pot culture for all treatment combinations with a depth of 3-5 cm. Mycorrhizal inoculum were inoculated on 7 days after planting (DAP) with a dosage of 30 spores (single sources or mixture sources)/pot culture. Plants were treated with watering according to the experimental treatment of moisture levels with 50% and 70% field capacities. Plants were harvested at maximal vegetative phase on 77 DAP.

Effect of the treatments were observed and measured including mycorrhizal effectiveness (plant height, plant fresh and plant dry weight, root fresh and root dry weight, chlorophyll content), mycorrhizal infectivity, and soil pH (H₂O, KCL, and NaF). Analysis of mycorrhizal infectivity was conducted using methods described by Phillips and Hayman [16] and Bierman and Linderman [17]. Data were analyzed by using the SPSS application for analysis of variance (ANOVA) and Duncan’s Multiple Range Test (DMRT) at level of 5%.

3. Results and Discussion

3.1. The results of ANOVA of the effects of media type, mycorrhizal inoculum source and media moisture level to pH of media, mycorrhizal infectivity and plant growth was presented in Table 2.

Treatments	pH H₂O	pH KCl	pH NaF	MI	PHe	PFW	PDW	RFW	RDW	CC
A	0.00**	0.005**	0.00**	0.00**	0.00**	0.00**	0.00**	0.00**	0.00**	0.00**
B	0.00**	0.00**	0.00**	0.00**	0.765ns	0.02*	0.014*	0.00**	0.016*	0.00**
C	0.014*	0.100ns	0.201ns	0.049	0.919ns	0.2ns	0.976ns	0.534ns	0.687ns	0.111ns
Interaction (AxBxC)	0.969ns	0.125ns	0.736ns	0.03*	0.827ns	0.088ns	0.008*	0.056ns	0.314ns	0.00**

**: p<0.01; *: 0.01≤p≤0.05; ns: >0.05 (non significant), A: Media type, B: Mycorrhizal inoculum source, C: Media moisture level, MI: Mycorrhizal infectivity, PHe: Plant Height, PFW: Plant Fresh Weight, PDW: Plant Dry Weight, RFW: Root Fresh Weight, RDW: Root Dry Weight, CC: Chlorophyll Content

Based on the ANOVA results, it was found that the interaction of media type, mycorrhizal inoculum source, and media moisture level showed the significant effect to mycorrhizal infectivity (MI), plant dry weight (PDW), and chlorophyll content (CC), and did not affect significantly to the pH of plant media.

The results DMRT 5% on the difference effects among treatment levels of each treatment factors separately are presented in Table 3.

Table 3 showed the significant difference effects from treatment levels of factor of media type (A) and factor of mycorrhizal inoculum source (B) to all variables measured in the present study with exception for factor B on plant height (PHe). Maize growth on Andisol (A₁) was higher than on zeolite (A₀), inoculum from Andisol (B₁) were resulted in higher effect than a mixture of inoculums from eight soil types (B₂). Treatment factor C only affected significantly on two variables of pH H₂O and mycorrhizal infectivity, in which pH H₂O and mycorrhizal infectivity were higher at C₁ than C₂.
3.2. The effect of the treatments to pH of media
Based on ANOVA and followed DMRT 5% (Table 2 and Table 3), the present results indicated that zeolite showed the significant higher pH H₂O and pH KCL than Andisol. According to Sprynskyy et al. zeolite is a mineral consisting of hydrated alumina silicate crystals containing alkali or alkaline soil cations in a three-dimensional framework [18] and zeolites have pores that filled by K ions, Na, Ca, Mg and H₂O molecules [19] For pH NaF, Andisol shows higher value of pH NaF as related that this soil has a high amorphous clay mineral of allophane as supported by Kenan et al. [20].

3.3. The effect of the treatments to mycorrhizal infectivity and plant growth
ANOVA and followed DMRT 5% results (Table 2 and Table 4) showed that the interaction of media type, inoculum source, and media moisture level gave significant effects on MI, PDW, and CC.

Correlation analysis between MI and PDW, between MI and CC, and between PDW and CC, resulted positive correlation with a correlation coefficient of \(r = +0.813, p<0.01 \) and \(r = +0.850, p<0.01 \), respectively. It meant that the increase of MI significantly contributed to the increase of PDW and CC, and the increase of PDW was significantly correlated with the increase of CC. These findings explained the mechanisms played by mycorrhiza for supporting maize tolerance to water stress in the present study.

On zeolite media, MI was higher under 50% field capacity than 70% field capacity. That was accordance with the results of the Zhu et al [21] that under severe drought stress, the AM colonization rates were significantly higher than those observed under well-watered conditions. Treatment inoculum of B₁ (mycorrhizal indigenous of Andisol) resulted in the higher mycorrhizal infectivity than B₂ (Inoculum from eight soil types) and B₀ (no inoculum) under both condition C₁ and C₂. Loit et al. [22] reported the similar findings that the indigenous/the natural AM indicated the higher infectivity comparing with the introduction inoculums after the application of organic matter.

On zeolite media, PDW and CC represented as plant growth variables under C₂ conditions were significantly higher than under C₁ conditions (Table 3). According Liu et al [23], treatment of moisture level at 65–70% field capacity on alluvial soil maintained high photosynthesis thus increasing wheat yields. While, plant dry weight with treatment inoculum of B₁ under condition C₂ (70% field capacity)
showed the highest result than B2 and B0. Niwa et al. [24] in their study showed that indigenous AM fungi as a biotic factor well adapted to the local environment.

Table 4. The effect of the treatments to mycorrhizal infectivity and plant growth

Treatment	MI (%)	PDW (g/plant)	CC (mg/g)
A0B0C1	0±0a	0.504±0.180ab	0.017±0.004a
A0B0C2	0±0a	0.672±0.041abc	0.023±0.001ab
A0B1C1	18±7.6bc	0.658±0.082abc	0.029±0.002ab
A0B1C2	17±7.6bc	0.84±0.061cde	0.47±0.003c
A0B2C1	15±5.0bc	0.475±0.041a	0.033±0.002b
A0B2C2	12±2.9ab	0.722±0.131bcd	0.030±0.004b
A1B1C1	17±2.9ab	0.953±0.197def	0.064±0.008d
A1B1C2	18±2.9bc	0.850±0.047cde	0.061±0.002d
A1B2C1	55±5.0d	1.319±0.048g	0.147±0.005h
A1B2C2	47±15.3d	1.006±0.142ef	0.111±0.016f
A2B1C1	52±12.6d	1.163±0.058fg	0.126±0.006g
A2B1C2	27±10.4c	0.966±0.283def	0.090±0.010e

Numbers followed by the same letter show no significant difference in 5% DMRT, A: Media type, B: Mycorrhizal inoculum source, C: Media moisture level, MI: Mycorrhizal infectivity, PDW: Plant dry weight, CC: Chlorophyll content.

On Andisol media, MI was higher under C1 conditions than C2 conditions. In general, AM symbiosis alleviates drought stress via direct water uptake and transport through fungal hyphae to the host plants [25] and increase in the root hydraulic conductance [26]. The treatment of inoculum B2 indicated higher mycorrhizal infectivity under both C1 and C2 conditions than treatments of inoculum B2 and B0. The use of indigenous AM (B1) was more infective, this result was supported by Selvakumar et al. [27] that AM colonization by indigenous inoculum was higher than introduced inoculum which showed high environmental adaptation.

On Andisol media, PDW under C1 conditions was higher than under C2 conditions. Sanchez-Romera et al. [28] showed that under drought conditions, the plant might adapt by modifying of the root system and physiological processes such as hydraulic properties to increase water absorption. Inoculum B1 showed the significant higher results of PDW and CC under condition C1 than inoculum of B2 and B0. The present findings explained that the roles of mycorrhiza to support plant growth and plant tolerance were contributed by enhancing photosynthetic activity. Although PFW, RFW, RDW was not significantly affected by the inoculum treatment, however inoculum B1 tended to gave the higher result comparing with B2 and B0. The enhancing root system and root functions were also estimated contributing to support maize tolerance. Estrada et al. [29] reported similar results that native AMF species were more effective to support maize tolerance on saline conditions than the introduced species.

4. Conclusion

Maize growth on Andisol with all the treatment of AM inoculation was higher than on zeolite under both conditions of moisture levels of 50% field capacity (C1) and 70% field capacity (C2). In principal, maize growth on Andisol under condition of C1 was higher than C2, conversely maize growth on zeolite under C2 was higher than C1. On the two media types, zeolite and Andisol, inoculum B1 showed the highest infectivity (as represented by the percentage of root infection) and the highest effectiveness to support plant growth (as represented by plant dry weight (PDW) and chlorophyll content (CC)) under both conditions of C1 and C2. Mycorrhizal infectivity and PDW, mycorrhizal infectivity and CC, and.
PDW and CC showed significant positive correlation, respectively, indicating the strong contribution of AM for supporting plant growth and plant tolerance to water stress.

Acknowledgement
This study was supported by Research Grant of Penelitian Unggulan Terapan Universitas Sebelas Maret (PUT-UNS) of FY 2019 PNBP Sebelas Maret University

References
[1] Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, and Khodaei Joghan A 2013 Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress Agric. Water Manage. 117, 106–114.

[2] Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, et al. 2016 Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress Plant Physiol 171, 1009–1023

[3] Moucheshi A, Heidari B and Assad MT 2012 Alleviation of drought stress effects on wheat using arbuscularmycorrhizal symbiosis International Journal of AgriScience 2, 35-47

[4] Renxin Zhao, Wei Guo, Na Bi, Jiangyuan Guo, Lixin Wang, Ji Zhao, and Jun Zhang 2015 Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress J Applied Soil Ecology 88, 41–49

[5] Karti 2005 Effect of Arbuscular Mycorrhizal Fungi on Growth and Production of Grass Setaria splendida Stapf Experienced a Drought stress Med-Pet 27, 63-68

[6] Zhu XC, Song FB, Xu HW 2010 Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis Plant Soil 331, 129–137

[7] Ruiz-Lozano JM, R Azcon, and M Gomez 1995 Effects of arbuscular mycorrhizal Glomus species on drought tolerance: Physiological and nutritional plant responses Appl. Environ. Microbiol. 61, 456-460.

[8] Pebriansyah A, Karti PDMH, and Permana AT Effect of drought and addition of arbuscular fungi (AMF) on growth and productivity of tropical grasses (Cloris gayana, Paspalum dilatatum, and Paspalum notatum) Pastura 2, 41-48

[9] Porcel R, Ruiz-Lozano JM 2004 Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plantssubjected to drought stress J. Exp. Bot. 55, 1743–1750

[10] Bhaskara GB, Yang T H and Verslues PE 2015 Dynamic proline metabolism: importance and regulation in water limited environments Front Plant Sci 6, 484.

[11] Talaat NB and Shawky BT 2014 Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity Environ. Exp. Bot 98, 20–31.

[12] Zai XM, Zhu SN, Qin P, Wang XY, Che L, and Luo FX 2012 Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress Photosynthetica 50, 323–328.

[13] Subagja BH, Prasetyo and A.M Sudiharjo 2004 Pedogenesis od soils developed from andesitic volcanic materials at medium altitude in Mount Manglayang. Bandung Area West Java Agrivita 20, 204-219

[14] Leamy ML 1984 International Committee on the Classification of Andisols (ICOMAND) Circular letter No. 6. New Zealand Soil Bureau, DSIR, Lower Hutt.

[15] Cahyani V R 2008 Sebaran Fungi Mikoriza Arbuskular di daerah Surakarta dan Sekitarnya (Distribution of Arbuscular Mycorrhiza Fungi in and Around Surakarta Area) Sains Tanah-Jurnal Ilmu Tanah dan Agroklimatologi Sains Tanah- Journal of Soil Science and Agroclimatology 5, 37-48
[16] Phillips JM and Hayman DS 1970 Improved procedures for clearing roots and staining parasite and vesicular-arbuscular mycorrhiza fungi for rapid assessment of infection Transaction of the British Mycological Society 55, 527-560

[17] Bierman B, Linderman R 1981 Quantifying vesicular-arbuscular mycorrhizae: proposed method towards standardization New Phytol 87, 63–67

[18] Sprynskyy M, Mariya L, Artur P, Piotr K, Jacek N, and Boguslaw Buszewski 2005 Ammonium sorption from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions Journal of Colloid and Interface Science 284, 408–415

[19] Oste LA, Lexmond TM, and Riemsdijk V 2002 Metal immobilization in soils using synthetic zeolites Journal of Environmental quality 31, 813–821.

[20] Kenan Kilica, Huseyin Yalcinb, Alper Durake, and Hakan Mete Dogan 2018 Andisols of Turkey: An example from the Cappadocian Volcanic Province J Geoderma 313, 112–125

[21] Zhu Xian Can, Feng Bin Song and Hong Wen Xu 2010 Arbuscular mycorrhiza improves low temperature stress in maize via alterations in host water status and photosynthesis Plant Soil 331, 129–137

[22] Loit K, Soonvald L, Kukk M, Astover A, Runno-Paurson E, Kaart T, and Opik M 2018 The indigenous arbuscular mycorrhizal fungal colonisation potential in potato roots is affected by agricultural treatments Agronomy Research 16, 510-522.

[23] Liu EK, XR Mei, CR Yan, DZ Gong, and YQ Zhang 2016 Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes J Agricultural Water Management 167, 75–85.

[24] Niwa Rieko, Takuya Koyama, Takumi Sato, and Katsuki Adachi 2018 Dissection of niche competition between introduced and indigenous arbuscular mycorrhizal fungi with respect to soybean yield responses Scientific Reports 8, 7419.

[25] Auge R M, Toler H D, Moore J L, Cho K and Saxton A M 2007 Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo J. Plant Physiol 164, 1289–1299.

[26] Barzana G, Aroca R, Bienert G P, Chaumont F and Ruiz-Lozano JM 2014 New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance Mol. Plant Microbe Interact 27, 349–363.

[27] Selvakumar Gopal, Charlotte C, Yeongyeong Kang, BongNam Chung, Seung Gab Han, and Tong-Min Sa 2018 Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host (Department of Environmental and Biological Chemistry, Chungbuk National University)

[28] Sanchez-Romera, Juan Manuel, Angel Maria, Jose Maria, and Ricardo Aroca 2015 Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought Springer-Verlag Berlin Heidelberg 2015

[29] Estrada B, Aroca R, Maathuis FJM, Barea JM, and Ruiz-Lozana JM 2013 Arbuscular mycorrhizal fungi native from Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis Plant Cell Environ 36, 1771–1782.