Dual symmetry in a generalized Maxwell theory

F. T. Brandt\textcopyright and J. Frenkel\textcopyright

\textit{Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil}

D. G. C. McKeon\textcopyright

\textit{Department of Applied Mathematics, The University of Western Ontario, London, ON N6A 5B7, Canada and Department of Mathematics and Computer Science, Algoma University, Sault St.Marie, ON P6A 2G4, Canada}

(Dated: September 12, 2018)

We examine Podolsky’s electrodynamics, which is noninvariant under the usual duality transformation. We deduce a generalization of Hodge’s star duality, which leads to a dual gauge field and restores to a certain extent the dual symmetry. The model becomes fully dual symmetric asymptotically, when it reduces to the Maxwell theory. We argue that this strict dual symmetry directly implies the existence of the basic invariants of the electromagnetic fields.

PACS numbers: 11.10.-z, 11.15.-q

Keywords: Gauge field theories, Symmetry and conservation laws

I. INTRODUCTION

Many symmetries that led to our understanding of quantum field theories, have their origin in the Maxwell theory describing the electromagnetic interactions. One such symmetry is duality which, in its simplest form, is the invariance of the source-free Maxwell equations under the interchange of electric and magnetic fields. Although the physical meaning of the dual symmetry is not yet entirely clear, there has been much work on the implications of this symmetry \[1\]. Apart from the related duality in supersymmetric and superstring theories \[2–5\], there has also been some interest in the extension of the dual symmetry to the classical Yang-Mills theory \[6\]. In this non-Abelian gauge theory, the Hodge dual field \(\star F_{\alpha \beta}\), in contrast to the gauge field \(F_{\alpha \beta}\), is not derivable from a potential, so that the usual dual symmetry is in general absent.

The main purpose of this work is to study this problem in the context of a simpler (Abelian) gauge theory, where the issues associated with the lack of a manifest dual symmetry may be easier to analyze and understand. One such model is Podolsky’s generalized Maxwell theory \[7\], which preserves the linear character of the field equations, yet avoids the divergences present in the Maxwell theory at short distances. Due to this behaviour, certain difficulties of classical electromagnetism, like the 4/3 problem or non-causal effects are naturally solved in the context of Podolsky’s electrodynamics \[8,9\]. At large distances compared with some quantum scale, this model effectively reduces to the Maxwell theory. (For more recent studies of this theory see, for example, references \[10–15\].)

II. DUALITY IN PODOLSKY ELECTRODYNAMICS

This theory \[7\] may be described, in the source free case, by the action

\[S(l) = -\frac{1}{16\pi} \int d^4x \left[F_{\alpha \beta}^{\alpha \beta} + 2l^2 (\partial_\beta F^{\alpha \beta})(\partial^\gamma F_{\alpha \gamma}) \right], \]

where \(F_{\alpha \beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha\) is the electromagnetic gauge field tensor and \(l\) is a length scale induced by quantum processes, which regularizes the classical Maxwell theory at short distances \[8,9\].
The Euler-Lagrange equations following from (11) are given by
\[(1 - l^2 \Box) \partial^\alpha F_{\alpha\beta} = 0 \tag{2}\]
which leads to the generalized Gauss and Ampère equations
\[(1 - l^2 \Box) \nabla \cdot \vec{E} = 0; \quad (1 - l^2 \Box) \left[\nabla \times \vec{B} - \frac{1}{c} \partial \vec{E} \right] = 0. \tag{3}\]

By virtue of the above form of the electromagnetic field tensor \(F_{\alpha\beta}\), the Hodge dual tensor
\[\ast F_{\alpha\beta} = \frac{1}{2} \epsilon_{\alpha\beta\mu\nu} F^{\mu\nu}\tag{4}\]
satisfies the Bianchi identity
\[\partial^\alpha \ast F_{\alpha\beta} = 0. \tag{5}\]

Since \(\ast F_{\alpha\beta}\) can be obtained from \(F_{\alpha\beta}\) by interchanging \(\vec{E} \rightarrow \vec{B}\) and \(\vec{B} \rightarrow -\vec{E}\), (5) is equivalent to the homogeneous equations
\[\nabla \cdot \vec{B} = 0; \quad \left[\nabla \times \vec{E} + \frac{1}{c} \partial \vec{B} \right] = 0. \tag{6}\]

One can see from (3) and (6) that Podolsky’s theory is no longer dual invariant in general. We will next argue that there exists some potential \(A_\mu\), which satisfies the equation
\[(1 - l^2 \Box) \ast F_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha \tag{7}\]
so that (2) may be interpreted as the Bianchi identity for \((1 - l^2 \Box) \ast F_{\alpha\beta}\). To this end, we note that (7) implies the relation
\[(1 - l^2 \Box) \left[\partial_\rho F_{\alpha\beta} + \partial_\alpha F_{\beta\rho} + \partial_\beta F_{\rho\alpha} \right] = 0. \tag{8}\]

Due to the fact that the dual operation is reflexive, \((\ast F_{\alpha\beta}) = - F_{\alpha\beta}\), (8) leads to the Eq. (2):
\[- (1 - l^2 \Box) \partial^\alpha \ast F_{\alpha\beta} = (1 - l^2 \Box) \partial^\alpha F_{\alpha\beta} = 0. \tag{9}\]

In order to determine explicitly the potential \(A_\mu\), we use an alternative method \cite{6}, where \(F_{\alpha\beta}\) are considered as field variables, subject to the constraint (5). By imposing this condition, one can remove the inherent redundancies comprised in the set of variables \(\{F_{\alpha\beta}\}\). This procedure can be enforced by introducing Lagrange multipliers \(\Lambda_\mu\) and constructing the action
\[S(l) = - \frac{1}{16\pi} \int d^4x \left[F_{\alpha\beta} F^{\alpha\beta} + 2l^2 (\partial_\gamma F^{\alpha\beta})(\partial^\gamma F_{\alpha\gamma}) - 4l^2 \partial^\alpha \ast F_{\alpha\beta} \right]. \tag{10}\]

Extremizing (10) with respect to \(F_{\alpha\beta}\) and \(\Lambda_\beta\) we then get, apart from (5), the equation
\[F_{\alpha\beta} - l^2 \partial^\rho (\partial_\beta F_{\alpha\rho} - \partial_\rho F_{\alpha\beta}) = - \frac{1}{2} \epsilon_{\alpha\beta\mu\nu} (\partial^\mu \Lambda^\nu - \partial^\nu \Lambda^\mu). \tag{11}\]

Expressing the electromagnetic tensors in terms of their duals, we obtain from (11), after some algebra which makes use of the constraint (5), the relation
\[(1 - l^2 \Box) \ast F_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha. \tag{12}\]

Comparing (7) and (12), we see that the potential \(A_\mu\) is just the Lagrange multiplier \(\Lambda_\mu\).

We note here that the general solution of (7) can be written in the form
\[\ast F_{\alpha\beta} = F_{\alpha\beta} + (1 - l^2 \Box)^{-1} (\partial_\alpha A_\beta - \partial_\beta A_\alpha) \tag{13}\]
where the operator \((1 - l^2 \Box)^{-1}\) may be interpreted, for slowly varying fields, as the series \(1 + l^2 \Box + \ldots\) and \(F_{\alpha\beta}\) is a solution of the homogeneous equation
\[(1 - l^2 \Box) F_{\alpha\beta}(x) = 0. \tag{14}\]

It turns out that there exist non-trivial solutions of this equation. For example, in the static case one finds that \(F_{\alpha\beta}(x) = \nabla^2 \int d^3x \frac{F_{\alpha\beta}(\vec{x})}{|\vec{x} - \vec{x}'|} \exp \left(- \frac{|\vec{x} - \vec{x}'|}{l} \right) \tag{15}\)
where \(J_{\alpha\beta}\) is an external source which vanishes at points \(\vec{x}\) inside the source free region. We can see from (15), that \(F_{\alpha\beta}(x)\) is exponentially vanishing at distances much larger than \(l\), or equivalently in the limit \(l \rightarrow 0\), as expected from (14).

From the above equations, it follows that, in contrast to the gauge field \(F_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha\), the dual field \(\ast F_{\alpha\beta}\) is generally not derivable from a potential. However, we can see from (7) that one may generalize the Hodge star duality as
\[F_{\alpha\beta} \equiv (1 - l^2 \Box) \ast F_{\alpha\beta} = \frac{1}{2} \epsilon_{\alpha\beta\mu\nu} (1 - l^2 \Box) F^{\mu\nu}, \tag{16}\]
so that the modified dual field \(F_{\alpha\beta}\) is also a gauge field derivable from the potential \(\Lambda_\mu\), \(F_{\alpha\beta} = \partial_\alpha A_\beta - \partial_\beta A_\alpha\).

Such a field satisfies, from (5), the equation
\[(1 - l^2 \Box)^{-1} \partial^\alpha F_{\alpha\beta} = 0. \tag{17}\]

It may be verified that the solutions of equations (2) and (17) are interchangeable, up to terms of order \(\exp(-|\vec{x}|/l)\) which become small at distances larger than \(l\). Thus, the dual gauge field \(F_{\alpha\beta}\) restores to this extent the dual symmetry. A complete dual symmetry is obtained in the asymptotic region where the parameter \(l\) may be effectively set equal to zero, in which case Podolsky electrodynamics reduces to the Maxwell theory.

III. LORENTZ INVARIANTS FROM DUAL SYMMETRY

We will show next that the full dual symmetry of the source-free Maxwell equations directly leads to the existence of the electromagnetic invariants. We recall that in
a relativistic covariant theory, the electric and magnetic fields transform as a Lorentz tensor, so that the electromagnetic fields in two inertial frames \(K' \) and \(K \) satisfy the conditions \[E'^2 - B'^2 = E^2 - B^2 \] and \(E' \cdot B' = E \cdot B \). \hspace{1cm} (18)

In order to derive these invariants from duality, let us consider a general transformation which relates the fields in \(K' \) and \(K \). In a homogeneous and isotropic spacetime, which is assumed by the relativity principle, the transformation should be linear. Moreover, such a transformation cannot contain derivatives of the fields, since it must be local. The locality ensures that the values of the fields at some space-time point in \(K \), uniquely determine the fields observed in \(K' \) at the same space-time point. Thus, a general transformation which relates \(E' \) to \(E \) and \(B' \) must have the form

\[
E' = a_1 E + a_i' B + b_1 \beta \times B + b_i \beta \times E
+ d_1 (\beta \cdot E) \beta + d_i' (\beta \cdot B) \beta
\] \hspace{1cm} (19)

where \(c \beta \) is the velocity of \(K' \) relative to \(K \) and the dimensionless coefficients \(a_1, a_i', b_1, b_i, d_1, d_i' \) are real functions of \(\beta \). The six structures in (19) may be independent, since transformations in 4-dimensional spacetime may be characterized by six parameters, corresponding for example to three rotation angles and three Lorentz boosts. Using the dual symmetry under \(E \rightarrow B \) (\(E' \rightarrow B' \)) and \(B \rightarrow -E \) (\(B' \rightarrow -E' \)), it follows from (19) that the corresponding transformation of the magnetic field should have the form

\[
B' = a_1 B - a_i E' - b_1 \beta \times E + b_i \beta \times E
+ d_1 (\beta \cdot E) \beta - d_i' (\beta \cdot B) \beta
\] \hspace{1cm} (20)

It is now convenient to introduce the complex electromagnetic vector field \[F = E + iB \]. \hspace{1cm} (21)

Then, it follows from (19) and (20) that the general linear transformation of the complex vector field \(F \) can be written as

\[
F' = a F - i b \beta \times F + d (\beta \cdot F) \beta
\] \hspace{1cm} (22)

where \(a = a_1 - ia'_1 \), \(b = b_1 + ib'_1 \) and \(d = d_1 - id'_1 \) are complex coefficients. The inverse transformation can be obtained by changing \(\beta \rightarrow -\beta \) in (22):

\[
F = a F' + i b \beta \times F' + d (\beta \cdot F') \beta.
\] \hspace{1cm} (23)

Substituting (23) in (22), we obtain the consistency conditions

\[
a^2 - b^2 \beta^2 = 1; \quad a + d \beta^2 = 1,
\] \hspace{1cm} (24)

where we used the fact that \(a \rightarrow 1 \) as \(\beta \rightarrow 0 \).

Let us consider the parallel and perpendicular components of (22) with respect to \(\beta \). Using (24) we then obtain the relations

\[
F'_{||} = (a + d \beta^2) F_{||} = F_{||}
\] \hspace{1cm} (25a)

\[
F'_{\perp} = a F_{\perp} - i b \beta \times F_{\perp} \] \hspace{1cm} (25b)

These correspond to a rotation around \(\beta \) by a complex angle \(\theta \) where \(\theta = \tanh^{-1}(\beta b / a) \). Thus, we get

\[
F'_{||} \cdot F'_{||} = (a^2 - b^2 \beta^2) F_{||} \cdot F_{||} = F_{||} \cdot F_{||}.
\] \hspace{1cm} (26)

From (25a) and (26) it follows that \(F' \cdot F' = F \cdot F \) and hence

\[
E'^2 - B'^2 + 2i E' \cdot B' = E^2 - B^2 + 2i E \cdot B
\] \hspace{1cm} (27)

which leads to the Lorentz invariants (15). We have thus shown that the electromagnetic invariants can be deduced from the dual symmetry of the source-free Maxwell equations.

We finally remark that a photon mass would break the dual symmetry of the Maxwell equations. Such a mass may be generated, for example, by the Stueckelberg mechanism \[18, 19\] which preserves gauge invariance and renormalizability. Hence, the fact that the photon remains massless could be explained if duality would hold at a fundamental level. (Measurements of the galactic vector potential place an upper bound on the photon mass of \(10^{-18} \text{eV}/c^2 \).) This is an open problem which might be worthy of further examination.

ACKNOWLEDGMENTS

We thank CNPq (Brazil) for a grant and Prof. J. C. Taylor for helpful discussions.
[1] L. Álvarez-Gaumé and F. Zamora, In *Nashville 1997, Fundamental particles and interactions* 46-83 [hep-th/9709180].
[2] C. G. Callan, Jr., J. A. Harvey and A. Strominger, Nucl. Phys. B 359, 611 (1991); Nucl. Phys. B 367, 60 (1991).
[3] E. Alvarez, L. Alvarez-Gaume and Y. Lozano, Nucl. Phys. B 424, 155 (1994).
[4] N. Seiberg and E. Witten, Nucl. Phys. B 426, 19 (1994); Nucl. Phys. B 431, 484 (1994).
[5] C. Vafa and E. Witten, Nucl. Phys. B 431, 3 (1994).
[6] H. M. Chan, J. Faridani and S. T. Tsou, Phys. Rev. D 52, 6134 (1995); Phys. Rev. D 53, 7293 (1996).
[7] B. Podolsky, Phys. Rev. 62, 68 (1942); B. Podolsky and P. Schwed, Rev. Mod. Phys. 20, 40 (1948).
[8] J. Frenkel, Phys. Rev. E 54, 5859 (1996).
[9] J. Frenkel and R. B. Santos, Int. J. Mod. Phys. B 13, 315 (1999).
[10] S. I. Kruglov, J. Phys. 43, 245403 (2010).
[11] R. R. Cuzzinatto, C. A. M. de Melo, L. G. Medeiros and P. J. Pompeia, Int. J. Mod. Phys. A 26, 3641 (2011).
[12] R. Bufalo, B. M. Pimentel and G. E. R. Zambrano, Phys. Rev. D 86, 125023 (2012).
[13] F. A. Barone, G. Flores-Hidalgo and A. A. Nogueira, Phys. Rev. D 88, no. 10, 105031 (2013).
[14] A. E. Zayats, Annals Phys. 342, 11 (2014).
[15] A. Accioly, J. Helayl-Neto, F. E. Barone, F. A. Barone and P. Gaete, Phys. Rev. D 90, no. 10, 105029 (2014).
[16] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th edition (Pergamon Press, Oxford, 1975)
[17] J. D. Jackson, Classical Electrodynamics, 3rd edition (Wiley, New York, 1999)
[18] E. C. G. Stueckelberg, Helv. Phys. Acta 11, 225 (1938).
[19] H. Ruegg and M. Ruiz-Altaba, Int. J. Mod. Phys. A 19, 3265 (2004).
[20] C. Amsler et al. [Particle Data Group Collaboration], Phys. Lett. B 667, 1 (2008).