A minimal Tersoff potential for diamond silicon with improved descriptions of elastic and phonon transport properties

Zheyong Fan1,2,*, Yanzhou Wang3,4, Xiaokun Gu5, Ping Qian3,4, Yanjing Su3 and Tapio Ala-Nissila2,6

1 School of Mathematics and Physics, Bohai University, Jinzhou, People’s Republic of China
2 QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
3 Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
4 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
5 Institute of Engineering Thermophysics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
6 Centre for Interdisciplinary Mathematical Modeling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom

E-mail: brucenju@gmail.com, Xiaokun.Gu@sjtu.edu.cn, qianping@ustb.edu.cn and yjsu@ustb.edu.cn

Received 4 October 2019, revised 11 November 2019
Accepted for publication 27 November 2019
Published 27 December 2019

Abstract

Silicon is an important material and many empirical interatomic potentials have been developed for atomistic simulations of it. Among them, the Tersoff potential and its variants are the most popular ones. However, all the existing Tersoff-like potentials fail to reproduce the experimentally measured thermal conductivity of diamond silicon. Here we propose a modified Tersoff potential and develop an efficient open source code called GPUGA (graphics processing units genetic algorithm) based on the genetic algorithm and use it to fit the potential parameters against energy, virial and force data from quantum density functional theory calculations. This potential, which is implemented in the efficient open source GPUMD (graphics processing units molecular dynamics) code, gives significantly improved descriptions of the thermal conductivity and phonon dispersion of diamond silicon as compared to previous Tersoff potentials and at the same time well reproduces the elastic constants. Furthermore, we find that quantum effects on the thermal conductivity of diamond silicon at room temperature are non-negligible but small: using classical statistics underestimates the thermal conductivity by about 10\% as compared to using quantum statistics.

Keywords: Tersoff potential, empirical potential fitting, genetic algorithm, thermal conductivity, phonon dispersion, molecular dynamics (MD) simulation, graphics processing units

(Some figures may appear in colour only in the online journal)

1. Introduction

Thermal transport in silicon based materials has been extensively studied by classical molecular dynamics (MD) simulations [1–12]. The results strongly depend on the empirical interatomic potential used. Quantitatively accurate empirical potentials for covalently bonded solids such as silicon are many-body in nature and cannot be expressed as sums of pairwise interactions. Among the various many-body empirical potentials, the Tersoff potential [13, 14] is the most frequently used for silicon. In addition to the original parameterizations by Tersoff [13, 14], this potential has also been
modified and/or re-parametrized by many other authors [15–17]. Although the Tersoff potential has a relatively simple form and low computational cost compared to many other many-body potentials, it can capture the essence of quantum-mechanical bonding [18], justifying its widespread use in modeling [19–29].

There are however some features that cannot be consistently reproduced by Tersoff-like potentials, such as heat conductivity in the solid phase. In particular, in figure 1 we show the thermal conductivity of the standard diamond silicon structure at 700 K (where quantum effects can be neglected) and zero pressure predicted by using the previous Tersoff-like potentials as well as the one introduced in this work. None of the previous ones gives a reasonable match to the reference experimental value of 51 W m\(^{-1}\) K\(^{-1}\). The Tersoff potentials parametrized by Tersoff [14] and Erhart and Albe [15] (the one named as Si-II which was suggested to be better for simulations with elemental silicon) predict comparable values, as well as the one introduced in this work. None of the previous ones gives a reasonable match to the reference experimental value of 51 W m\(^{-1}\) K\(^{-1}\). The Tersoff potentials parametrized by Tersoff [14] and Erhart and Albe [15] (the one named as Si-II which was suggested to be better for simulation with elemental silicon) predict comparable values and overshoot the experimental value by about 80%, while the modified Tersoff potentials by Kumagai et al [16] (the one called MOD in this reference) and by Pun and Mishin [17] underestimate the experimental value by a factor of 2 and 5, respectively. The fact that the Tersoff-like potentials can predict very different thermal conductivity values suggests that accurate prediction of the thermal conductivity could be achieved with an appropriate functional form and parametrization.

To achieve this goal, we propose here a minimal Tersoff potential for silicon. Here, by ‘minimal’ we mean that every parameter in the potential is essential and there is no redundancy. In the original Tersoff potential [14], there are 11 parameters. The version used by Erhart and Albe [15] has the same number of parameters, although some functions have been written in a different but equivalent way. In the modified Tersoff potential by Kumagai et al [16], 16 parameters were used, and the latest version by Pun and Mishin [17] used 17. Here, instead of going with this trend of increasing the number of fitting parameters and the complexity of the potential, we do the opposite. With extensive fitting trials with the help of a genetic algorithm, we find that three parameters in the Tersoff potential can be eliminated without adversely affecting the quality of the fitting. A set of optimized parameters were found by fitting the minimal Tersoff potential against energy, virial, and force data from quantum density functional theory (DFT) [34, 35] calculations for many configurations. Our optimized potential predicts a thermal conductivity which only overshoots the experimental value by about 20% at 700 K.

This paper is organized as follows. In section 2, we introduce the functional form of the minimal Tersoff potential. In section 3, we present the details of the training data and the fitting method. In section 4, we evaluate the optimized potential in terms of elastic constants, phonon dispersion, and thermal conductivity. In section 5 we present our summary and conclusions.

2. Potential model

2.1. The Tersoff potential

We first briefly introduce the Tersoff potential in the form published by Tersoff in [14]. This is equivalent to the form used by Erhart and Albe in [15].

The total potential energy (cohesive energy) \(U\) for a system with \(N\) atoms is written as a sum the site potentials:

\[
U = \sum_{i=1}^{N} U_i. \tag{1}
\]

The site potential for atom \(i\) is formally written as

\[
U_i = \frac{1}{2} \sum_{j \neq i}^{N} U_{ij}, \tag{2}
\]

where the potential between atoms \(i\) and \(j\) is

\[
U_{ij} = f_C(r_{ij}) \left[f_R(r_{ij}) - b_{ij} f_A(r_{ij}) \right]. \tag{3}
\]

This is the general form of the Tersoff potential. Here, \(f_C(r_{ij})\) is the pairwise cutoff function, \(f_R(r_{ij})\) and \(f_A(r_{ij})\) are respectively the pairwise repulsive and attractive functions, and \(b_{ij}\) (not equal to \(b_{ji}\) in general) is the bond order for the \(ij\) bond. Many-body effects are totally embodied in the bond order. The repulsive and attractive functions take the following forms:

\[
f_R(r_{ij}) = A e^{-\lambda r_{ij}}; \tag{4}
\]

\[
f_A(r_{ij}) = B e^{-\mu r_{ij}}, \tag{5}
\]

where \(A > 0, \lambda > 0, B > 0, \mu > 0\) are fitting parameters.
The bond order b_{ij} is expressed as
\begin{equation}
 b_{ij} = \left(1 + \zeta_{ij}^n\right)^{-1/2n};
\end{equation}
where $n > 0$ is a fitting parameter. A larger ζ_{ij} gives a smaller b_{ij} and a weaker bond. When $\zeta_{ij} = 0$, b_{ij} attains a maximum value of one. The angular function is chosen as
\begin{equation}
 g^{T}(\theta_{jk}) = \gamma \left(1 + \frac{c^2}{d^2} - \frac{c^2}{d^2 + (\cos \theta_{jk} - h)^2}\right),
\end{equation}
where γ, c, d and h are fitting parameters and θ_{jk} is the bond angle formed by the ij and ik bonds.

In the expressions of U_{ij} and ζ_{ij}, there is a cutoff function $f_{c}(r)$ which takes the following form:
\begin{equation}
 f_{c}(r) = \begin{cases}
 1, & r \leq R_1; \\
 \frac{1}{2} \left[1 + \cos \left(\frac{\pi (r - R_1)}{R_2 - R_1}\right)\right], & R_1 < r < R_2; \\
 0, & r \geq R_2.
\end{cases}
\end{equation}

Here, $R_1 > 0$ and $R_2 > R_1$ are the inner and outer cutoff distances, respectively.

The cutoff distances R_1 and R_2 are usually not optimized systematically but are chosen by hand instead. Therefore, there are nine fitting parameters for the Tersoff potential: A, B, λ, μ, γ, n, c, d, h.

2.2. The minimal Tersoff potential

We note that in most Tersoff potentials, $c^2/d^2 \gg 1$, $d^2 \gg 1$, and $\gamma \ll 1$. Under these conditions, $g^{T}(\theta_{jk}) \approx \gamma c^2/d^2 (\cos \theta_{jk} - h)^2$. Defining $\beta = \gamma c^2/d^2$, we obtain
\begin{equation}
 g(\theta_{jk}) = \beta (\cos \theta_{jk} - h)^2.
\end{equation}

An advantage of equation (10) over equation (8) is that the fitting parameter β takes a value of the order of unity, while those in the original Tersoff potential take values differing by orders of magnitude. Therefore, our new angular function is much easier to fit.

As in most previous Tersoff potentials, we do not fit R_1 and R_2 but chose their values by hand. We choose $R_1 = 2.8$ Å and $R_2 = 3.2$ Å, but they can be modified as needed. None of the training data involve atom pairs with distances within the two cutoffs. One of the drawbacks of the bond-order potentials is the abrupt cutoff function, which results in abnormally large forces when two atoms are within the two cutoff distances. Screened bond-order potentials [36–39] have been proposed to overcome this drawback. Because our focus here is on the elastic and thermal properties of diamond silicon, we do not consider these advanced cutoff schemes.

In our numerical implementation, we do not fit the parameters A, B, λ, and μ directly, but instead translate them to another set of equivalent parameters D_0, α, r_0, and S as done by Erhart and Albe [15]:

Table 1. Lattice constants (a) and cohesive energies (E_c) for diamond silicon calculated by using different exchange-correlation functionals.

Functional	a (Å)	E_c (eV/atom)
LSDA	5.403	–5.35
GGA-PBE	5.469	–4.61
GGA-PBEsol	5.436	–4.93
Experimental	5.43	–4.63

\begin{align}
 A &= \frac{D_0}{S - 1} \exp\left(\alpha r_0 \sqrt{2S}\right); \\
 B &= \frac{D_0 S}{S - 1} \exp\left(\alpha r_0 \sqrt{2/\sqrt{S}}\right); \\
 \lambda &= \alpha \sqrt{2S}; \\
 \mu &= \alpha \sqrt{2/\sqrt{S}}.
\end{align}

The advantage of using the parameters D_0, α, r_0, and S in the fitting process is that they all have values of the order of unity (when energy is in units of eV and length is in units of Å), which makes it easier to set up ranges for their allowed values. Physically, S is the slope parameter in the Pauling plot (bond energy versus bond length). When $S = 2$, the combination of the repulsive and attractive functions in equations (4) and (5) reduces to the Morse function. In our fitting trials, we always set $S \approx 2$ (up to 0.1% deviation only) and we thus fix $S = 2$ and do not treat it as a fitting parameter. Therefore, there are only six fitting parameters for our minimal Tersoff potential: D_0, α, r_0, β, n, h. To our knowledge this is a Tersoff-like potential with the smallest number of fitting parameters proposed so far.

3. Fitting database and fitting method

3.1. DFT calculations for the training data

DFT calculations are performed using the Vienna Ab initio Simulation Package (VASP) [40] that employs a plane-wave basis (we chose a kinetic energy cutoff of 600 eV) and the projector augmented wave (PAW) method [41, 42]. A Γ-centered uniform k-point grid with $16 \times 16 \times 16$ k-points is employed in the total energy calculations for a cubic unit cell with 8 atoms and a similar k-point density is used for other unit cells. When atom positions are to be optimized, the stopping criteria is to make the force on each atom smaller than 10^{-4} eV Å$^{-1}$. Spin is considered in all the calculations. As for the exchange-correlation energy functional, we have compared the following three variants: local spin density approximation (LSDA) [43], generalized-gradient approximation [44] as parametrized by Perdew, Burke, and Ernzerhof (GGA-PBE) [45], and a revised GGA-PBE (GGA-PBEsol) [46]. We first performed a calculation with the atom positions allowed to be optimized. The calculated lattice constant and the corresponding cohesive energy for the diamond structure using different functionals...
are listed in Table 1. Our calculated values agree well with those from previous works [47–50]. We note that for bulk silicon, it is not necessary to include semiempirical van der Waals correction [51]. While GGA-PBE gives the most accurate cohesive energy compared with the experimental data, GGA-PBEsol gives the most accurate lattice constant. As we will shift the energy before fitting the potential parameters (see below), we chose to use the results from GGA-PBEsol in the fitting.

After obtaining the ground state structure, we create unit cells with triaxial, biaxial, and uniaxial deformations. For each deformation type, we consider strains \(\epsilon \) from \(-10\%\) to \(10\%\), with smaller steps around the ground state. For each structure, we calculate the total energy and virial tensor without optimizing the atom positions (single-point calculations). The calculated cohesive energy (from GGA-PBEsol) for the ground state deviates from the experimental value to some degree. This might be related to the difficulty of accurately determining the energy of an isolated atom. In order to obtain an empirical potential that can reproduce the experimental value of the cohesive energy, we shift all the DFT energies by a constant value such that the ground state cohesive energy is \(-4.63\) eV per atom. Similar corrections were made by Kumagai et al. [16].

To increase the diversity of bond angles and coordination numbers in the training database, we also consider a few (artificial or real) allotropes of silicon: simple cubic crystal, body-centered cubic crystal, face-centered cubic crystal, and two-dimensional silicene at their ground states with zero stress. Apart from energy and virial, we also include the forces in the training database. To this end, we use the Tersoff potential [14] to generate five configurations at 100, 200, 300, 400, and 500 K, and calculate the force on each atom using DFT. The system here is a cubic cell consisting of 64 atoms with periodic boundary conditions in all directions.

3.2. Genetic algorithm as the fitting method

Simultaneously optimizing all the parameters is a challenging task for conventional fitting methods, but a metaheuristic such as the genetic algorithm (GA) is well suited to handle it. The GA is a global optimization method and has been successfully used in some previous works to optimize complex potentials with many parameters [16, 52, 53]. Other global optimization methods such as the particle swarm optimization method has also been used to fit empirical potentials [54]. Here, we use the GA to optimize all the parameters in our potential simultaneously.

In our optimization problem, the fitness function (also called objective or cost function) to be minimized is a weighted sum of the errors for energy, virial and force:

\[
Z(x) = w_e Z_e(x) + w_v Z_v(x) + w_f Z_f(x). \tag{15}
\]

Here \(x \) represents a solution of the optimization problem, which is an array consisting of the potential parameters:

\[
x = [D_0, \alpha, r_0, \beta, n, h]. \tag{16}
\]

For energy, we define the fitness function as

\[
Z_e(x) = \left(\frac{\sum_n \left| E(n) - E_{DFT}(n) \right|^2}{\sum_n \left| E_{DFT}(n) \right|^2} \right)^{1/2}, \tag{17}
\]

where \(E(n) \) and \(E_{DFT}(n) \) are the energies of the \(n \)th structure calculated from the empirical potential and DFT, respectively. Similarly, the fitness function for virial is defined as

\[
Z_v(x) = \left(\frac{\sum_n \sum_{\mu\nu} \left| \sigma_{\mu\nu}(n) - \sigma_{\mu\nu}^{DFT}(n) \right|^2}{\sum_n \sum_{\mu\nu} \left| \sigma_{\mu\nu}^{DFT}(n) \right|^2} \right)^{1/2}, \tag{18}
\]

where \(\sigma_{\mu\nu}(n) \) and \(\sigma_{\mu\nu}^{DFT}(n) \) are the \(\mu\nu \) virial component of the \(n \)th structure calculated from the empirical potential and DFT, respectively. The \(\mu\nu \) summation is over the nonequivalent elements of the second-rank virial tensor. The fitness function for force is

\[
Z_f(x) = \left(\frac{\sum_n \sum_i \left| f_i(n) - f_{i,DFT}(n) \right|^2}{\sum_n \sum_i \left| f_{i,DFT}(n) \right|^2} \right)^{1/2}, \tag{19}
\]

where \(f_i(n) \) and \(f_{i,DFT}(n) \) are the force on the \(i \)th atom in the \(n \)th structure calculated from the empirical potential and DFT, respectively. The above fitness function is similar to those used in the potfit [55] and POPS [53] packages.

The weighting factors \(w_e, w_v, w_f \) can be adjusted to control the relative emphasis on the targeting properties. A smaller \(Z \) corresponds to a better solution. This unambiguous criteria is the basis for applying the GA.

The workflow of the GA we used is as follows:

1. Initialization. Create \(N_{pop} \) individual solutions \(\{x_i\}_{i=1}^{N_{pop}} \), which form a population with population size \(N_{pop} \). In this work, we use a real-valued chromosome representation, where each gene in a chromosome represents a potential parameter. Therefore, there are \(N_{pop} \) chromosomes in each generation, and each chromosome has 6 genes. The translation between the genotype and the phenotype is very simple: each gene takes a value within \([0,1]\), which is translated to a potential parameter according to two limiting values we set for that parameter.

Parameter	Units	Value
\(D_0 \)	eV	3.21481
\(\alpha \)	Å\(^{-1}\)	1.43134
\(r_0 \)	Å	2.23801
\(S \)	Dimensionless	2
\(n \)	Dimensionless	0.602568
\(\beta \)	Dimensionless	0.282818
\(h \)	Dimensionless	\(-0.641048\)
\(R_1 \)	Å	2.8
\(R_2 \)	Å	3.2

Table 2. Optimized parameters of the minimal Tersoff potential for silicon systems. The cutoff distances \(R_1 \) and \(R_2 \) were not systematically fitted, but chosen by hand. The parameter \(S \) was fixed to 2 after many fitting trials.
2. Loop over N_{gen} generations

(a) Evaluate the fitness functions $Z(x_i)$ for all the individuals x_i in the population, sorting them according to the fitness values.

(b) Keep the best solution (the elite) in each generation without altering it.

(c) Select N_{par} individuals with better fitness (smaller Z values) as parents and discarding the remaining ones.

(d) Perform the crossover genetic operation on the N_{par} selected parents, producing $N_{\text{pop}} - N_{\text{par}}$ new individuals (children) such that the population size is recovered.

(e) Randomly choose some genes in some chromosomes with a given probability and mutate them, i.e. change their values randomly.

After trial and error, we found that the following parameters are good choices: $N_{\text{pop}} = 200$, $N_{\text{par}} = 100$, $N_{\text{gen}} = 1000$, and a mutation rate linearly decreasing from 0.2 to zero during the genetic evolution.

3.3. GPU implementation

While the GA is generally capable of finding globally optimized potential parameters, it requires evaluating the fitness function many times. It is therefore desirable to make an efficient computer implementation.

Recently, efficient implementation of force evaluation routines in graphics processing units (GPU) has been made for general many-body potentials [32, 33]. However, it has also been demonstrated that the computational speed sensitively depends on the simulation cell size. In the calculations here, we only need to use a small simulation cell containing $N_c = 64$ silicon atoms to incorporate all the interactions. For a system as small as this, a naive GPU implementation barely results in a speedup compared to a CPU implementation. To overcome this difficulty, we note that in each generation, we have N_{pop} individuals, each corresponding to N_c configurations. We thus have $N_{\text{pop}}N_c$ configurations in each generation, which are independent of each other. Therefore, we can use a single CUDA kernel to calculate the physical properties (energy, force, and virial) of part or all of the configurations. The effective system size for the CUDA kernel is thus large enough to achieve a considerable speedup. With our efficient GPU code, performing one optimization with 1000 generations takes less than one minute even using a dedicated graphics card such as GeForce RTX 2080. This allowed us to do a huge number of fitting trials. The fitting code is called GPUGA and it is publicly available [56].

3.4. The optimized minimal Tersoff potential

The optimized parameters for the minimal Tersoff potential are listed in table 2. Energy, virial, and force calculated using the optimized potential are compared with the DFT training data in figure 2. The force and virial stress from the empirical potential were calculated using the formulas in [57]. The agreement with DFT results is reasonably good. The errors for energy and virial are of the order of 1%. The cohesive energy and lattice constant calculated using the optimized potential are -4.63 eV per atom and 5.434 Å, respectively. The error for force is relatively large. It is possible to reduce this error, but at the expense of increasing the errors for energy and virial, resulting in unreasonable elastic constants.

To see how the current potential differs from previous Tersoff-like potentials, we plot the angular function $g(\theta)$ and the bond order function $b(\theta)$ for a single triplet in figure 3. Our angular function resembles the spline function constructed by Schall et al based on energies in structures with some special bond angles [58].

4. Evaluation of the optimized minimal Tersoff potential

In this section, we evaluate the optimized minimal Tersoff potential in terms of mechanical and thermal properties. We implement this potential into the efficient open-source GPUMD package [32, 33] and use this package to do all the
MD simulations. We will compare the results with some of the existing Tersoff-type potentials [14–17].

4.1. Elastic constants

The elastic constants calculated using stress-strain relations at zero temperature are presented in table 3. Our minimal Tersoff potential can predict the correct sign of $C_{12} - C_{44}$, while the SW potential [60] and the Tersoff-1988 potential [13] fail. The other potentials [15–17] all describe the elastic properties very well. From table 3 and figure 1, we see that there is no clear correlation between the elastic constants and the thermal conductivity. The good elastic properties of our minimal Tersoff potential is implied by the good fit to the energy and virial data in many deformed structures, as shown in figure 2.

4.2. Phonon dispersion

To properly describe the phonon transport properties, an adequate description of the phonon dispersion curves is needed. Figures 4(a)–(e) show the phonon dispersion calculated using harmonic lattice dynamics with the second order force constants being calculated from the various empirical potentials using the finite displacement method, compared with experimental data [61] from x-ray transmission scattering. Here the phonon executable within the GPUMD package [33] is used. All of the empirical potentials give a reasonable description for the acoustic branches. However, except for the Tersoff-1989 potential [14] and our minimal Tersoff potential, all the other potentials give rise to too large a cutoff frequency for the optical branches. More quantitative comparison is given in figure 4(f), which shows the root mean square error (RMSE) between the calculated phonon frequencies at all the special k-points from the empirical potentials and the corresponding experimental data. The Tersoff-1989 potential [14] and our minimal Tersoff potential are clearly more accurate than the other empirical potentials considered here.

4.3. Thermal conductivity

We next calculate the phonon (lattice) thermal conductivity κ using the efficient homogeneous nonequilibrium molecular dynamics (HNEMD) method [62] for many-body potentials [31]. In this method, one generates a non-equilibrium heat current by adding a small external driving force and measure the heat current, which is directly proportional to the thermal conductivity. For details on the HNEMD method, see [31].

We use a simulation cell with 8000 silicon atoms (with periodic boundaries in all three directions) and consider temperatures from 300 to 1000 K, all with zero pressure. We have checked that finite-size effects are negligible and the calculated thermal conductivity can be considered as that for

Method/Potential	Taken from	C_{11}	C_{12}	C_{44}	$C_{12}-C_{44}$
Experimental [59]	[59]	167.4	65.2	79.6	-14.4
SW [60]	[17]	151.4	76.4	56.4	20
Tersoff [13]	[16]	142.5	75.4	69.0	6.4
Erhart (Si-II) [15]	[15]	167	65	72	-7
Kumagai [16]	[16]	166.4	65.3	77.1	-11.8
Pun [17]	[17]	172.6	64.6	81.3	-16.7
Mini-Tersoff	Here	148	65	75	-10
DFT	Here	156	62	74	-12

Figure 3. The angular function $g(\theta)$ (a) and bond order b_ijk (b) as a function of the bond angle θ_{ijk} in a single triplet ijk for the Tersoff-like potentials considered in this work. References for the potentials considered: Tersoff [14]; Erhart [15]; Kumagai [16]; Pun [17]; Schall [58].

Table 3. Elastic constants (in units of GPa) of diamond silicon from experiments, DFT calculations, and various empirical potentials.
an infinitely large bulk system. To be consistent with experiments, isotope scattering is considered by randomly choosing the mass of a silicon atom according to the following abundance distribution:

\[
\begin{align*}
92.2\% & \quad 28\text{Si}, \\
4.7\% & \quad 29\text{Si}, \\
3.1\% & \quad 30\text{Si}.
\end{align*}
\]

The results obtained by the various Tersoff-like potentials are shown in figure 5 and are compared with experimental data [30]. Results for \(T = 700 \) K have also been shown in figure 1. It is clear that our minimal Tersoff potential gives results closest to the experimental data. At high temperatures where quantum effects are not important, our predictions are only about \(20\% \) larger than the experimental values. However, our predicted thermal conductivity at \(T = 300 \) K is slightly

Figure 4. Phonon dispersion of diamond silicon from the various empirical potentials (lines) compared with experimental data (dots) [61]. References for the potentials considered: (a) Tersoff [14]; (b) Erhart [15]; (c) Kumagai [16]; (d) Pun [17]. (f) The RMSE between the calculated phonon frequencies at all the special \(k \)-points from the empirical potentials and the corresponding experimental data. In this panel, the letters ‘T’, ‘E’, ‘K’, ‘P’, and ‘M’ represent the Tersoff-1989, Erhart-2005, Kumagai-2007, Pun-2017, and mini-Tersoff potentials, respectively.

Figure 5. Thermal conductivity of diamond silicon as a function of temperature from the various potentials. Isotope scattering is included here. Experimental data are from [30]. References for the potentials considered: Tersoff [14]; Erhart [15]; Kumagai [16]; Pun [17].

Figure 6. Thermal conductivity as a function of temperature from the minimal Tersoff potential using MD simulation data and from PBTE calculations with classical and quantum statistics. Isotope scattering is included here. Experimental data are from [30]. Results for \(T = 700 \) K have also been shown in figure 1. It is clear that our minimal Tersoff potential gives results closest to the experimental data. At high temperatures where quantum effects are not important, our predictions are only about \(20\% \) larger than the experimental values. However, our predicted thermal conductivity at \(T = 300 \) K is slightly
smaller than the experimental value. This indicates the presence of quantum effects at low temperatures, as we will discuss below.

To explore the influence of quantum effects, we calculate the thermal conductivity by iteratively solving the Peierls-Boltzmann transport equation (PBTE). In our calculations, we consider both three-phonon and four-phonon scatterings [63] and temperature-dependent interatomic force constants [64]. In this method, both classical and quantum statistics for the phonon population can be conveniently considered. As in the case of MD simulations, isotope scattering is also considered. For details, see [63].

Figure 6 shows the classical and quantum thermal conductivity from the PBTE calculations using the minimal Tersoff potential and the PBTE framework. Phonon–phonon scattering is considered up to the fourth order.

There are two competing quantum effects [65]: quantum statistics gives smaller modal heat capacities but larger phonon scattering times compared to classical statistics. The overestimation of modal heat capacity using classical statistics occurs at high frequencies (optical phonons), while the underestimation of phonon lifetime occurs at low frequencies (acoustic phonons), as can be clearly seen from figure 7. Because the acoustic phonons are the major heat carriers, the effect of phonon lifetime underestimation dominates in the calculation of the thermal conductivity. Therefore, in the temperature range considered here, the thermal conductivity \(\kappa \) is underestimated using classical statistics. Albeit, this overall effect is quite small (about 10%) even at a temperature that is half of the Debye temperature. The point here is that if quantum corrections can be made to the classical MD results, the thermal conductivity at \(T = 300 \) K will be larger instead of smaller than the experimental value. Overall, we can conclude that our minimal Tersoff potential gives the best prediction for the thermal conductivity of diamond silicon among all the empirical potentials considered here.

5. Summary and conclusions

In summary, we have proposed a minimal Tersoff empirical potential for diamond silicon and obtained a set of optimized parameters by fitting the potential against first-principles data using the genetic algorithm. The DFT data include energy and virial in many deformed structures and force in a few structures at finite temperatures. The optimized minimal Tersoff potential well describes the elastic constants, phonon dispersion, and thermal conductivity of diamond silicon simultaneously. Using classical statistics underestimates the thermal conductivity by an amount of about 10% compared to using quantum statistics at room temperature. Both the fitting method and the optimized potential are made freely accessible from open-source codes we developed [33, 56]. The methods developed here are promising for constructing empirical potentials for new materials with good descriptions of the elastic and thermal properties.

Acknowledgments

ZF and TA-N acknowledge the supports from the National Natural Science Foundation of China (NSFC) (No. 11974059) and from the Academy of Finland Centre of Excellence program QTF (Project 312298) and the computational resources provided by Aalto Science-IT project and Finland’s IT Center for Science (CSC). YW, PQ and YS acknowledge the support from the financial support of National Key Research and Development Program of China (2016YFB0700500). XG acknowledges the support from the National Natural Science Foundation of China (NSFC) (No. 51706134). YS acknowledges the financial support from the 111 project (No. B170003).
ORCID iDs
Zheyong Fan https://orcid.org/0000-0002-2253-8210

References
[1] Volz S G and Chen G 2000 Phys. Rev. B 61 2651
[2] Henry A S and Chen G 2008 J. Comput. Theor. Nanosci. 5 141
[3] Donadio D and Galli G 2009 Phys. Rev. Lett. 102 195901
[4] Donadio D and Galli G 2010 Nano Lett. 10 847
[5] Lampin E, Nguyen Q-H, Franciosu P A and Cleri F 2012 Appl. Phys. Lett. 103 131906
[6] Howell P C 2012 J. Chem. Phys. 132 224111
[7] Xiong S, Kosevich Y A, Sääskilähti K, Ni Y and Volz S 2014 Phys. Rev. B 90 195439
[8] Sääskilähti K, Oksanen J, Tulkki J, McGaughey A J H and Volz S 2016 AIP Adv. 6 121904
[9] Cartoixà X, Dettori R, Melis C, Colombo L and Rauli R 2016 Appl. Phys. Lett. 109 013107
[10] Zaoui H, Pallà P L, Cleri F and Lampin E 2017 Phys. Rev. B 95 104309
[11] Zhou Y, Zhang X and Hu M 2017 Nano Lett. 17 1269
[12] Dong H, Fan Z, Shi L, Harju A and Ala-Nissila T 2018 Phys. Rev. B 97 094305
[13] Tersoff J 1988 Phys. Rev. B 38 9902
[14] Tersoff J 1989 Phys. Rev. B 39 5566
[15] Erhart P and Albe K 2005 Phys. Rev. B 71 035211
[16] Kumagai T, Izumi S, Hara S and Sakai S 2007 Comput. Mater. Sci. 39 457
[17] Pun G P P and Mishin Y 2017 Phys. Rev. B 95 224103
[18] Brenner D W 2005 The art and science of an analytic potential Computer Simulation of Materials at Atomic Level (New York: Wiley) ch 2, pp 23–40
[19] de Brito Mota F, Justo J F and Fazzio A 1998 Phys. Rev. B 58 8323
[20] Albe K, Nordlund K and Averback R S 2002 Phys. Rev. B 65 195124
[21] Albe K, Nordlund K, Nord J and Kuronen A 2002 Phys. Rev. B 66 035205
[22] Nord J, Albe K, Erhart P and Nordlund K 2003 J. Phys.: Condens. Matter 15 5649
[23] Erhart P, Juslin N, Goy O, Nordlund K, Müller R and Albe K 2006 J. Phys.: Condens. Matter 18 6585
[24] Munetoh S, Motooka T, Moriguchi K and Shintani A 2007 Comput. Mater. Sci. 39 334
[25] Müller M, Erhart P and Albe K 2007 J. Phys.: Condens. Matter 19 326220
[26] Powell D, Migliorato M A and Cullis A G 2007 Phys. Rev. B 75 115202
[27] Henriksen K O E and Nordlund K 2009 Phys. Rev. B 79 144107
[28] Los J H, Kroes J M H, Albe K, Gordillo R M, Katsnelson M I and Fasolino A 2017 Phys. Rev. B 96 184108
[29] Byggmåstar J, Hodille E A, Ferro Y and Nordlund K 2018 J. Phys.: Condens. Matter 30 135001
[30] Glassbrenner C J and Slack G A 1964 Phys. Rev. 134 A1058
[31] Fan Z, Dong H, Harju A and Ala-Nissila T 2019 Phys. Rev. B 99 064308
[32] Fan Z, Chen W, Vierimaa V and Harju A 2017 Comput. Phys. Commun. 218 10
[33] Fan Z and Gabourie A 2019 brakefan1983/gpumd: Gpumd-v2.4.1 (https://doi.org/10.5281/zenodo.2646768)
[34] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[35] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[36] Pastewka L, Pou P, Pérez R, Gumbsch P and Moseler M 2008 Phys. Rev. B 78 161402
[37] Kumagai T, Hara S, Choi J, Izumi S and Kato T 2009 J. Appl. Phys. 105 064310
[38] Pastewka L, Klemenz A, Gumbsch P and Moseler M 2013 Phys. Rev. B 87 205410
[39] Perriot R, Gu X, Lin Y, Zhakhovsky V V and Oleynik I I 2013 Phys. Rev. B 88 064101
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[44] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[45] Perdew J P, Burke K and Emzerhof M 1996 Phys. Rev. Lett. 77 3865
[46] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 196406
[47] Dal Corso A, Pasquarello A, Baldereschi A and Car R 1996 Phys. Rev. B 53 1180
[48] Centoni S A, Sadigh B, Gilmer G H, Lensosky T J, Díaz de la Rubia T and Musgrave C B 2005 Phys. Rev. B 72 195206
[49] Hummer K, Haji J and Kresse G 2009 Phys. Rev. B 80 115205
[50] Haas P, Tran F and Blaha P 2009 Phys. Rev. B 79 085104
[51] Ortmann F, Bechstedt F and Schmidt W G 2006 Phys. Rev. B 73 205101
[52] Larsson H R, van Duin A C T and Hartke B 2013 J. Comput. Chem. 34 2178
[53] Rohskopf A, Seyf H R, Gordiz K, Tadano T and Henry A 2017 npj Comput. Mater. 3 27
[54] Kandemir A, Yapiçoglu H, Kinaci A, Çağrı T and Sevik C 2016 Nanotechnology 27 055703
[55] Brommer P, Kiselev A, Schofl D, Beck P, Roth J and Trebin H-R 2015 Modelling Simul. Mater. Sci. Eng. 23 074002
[56] 2019 https://github.com/brucefan1983/GPUGA
[57] Fan Z, Pereira L F C, Wang H-Q, Zheng J-C, Donadio D and Harju A 2015 Phys. Rev. B 92 094301
[58] Schall J D, Gao G and Harrison J A 2008 Phys. Rev. B 77 115205
[59] McSkimin H J, Bond W L, Buehler E and Teal G K 1951 Phys. Rev. 83 1080
[60] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
[61] Holt M, Wu Z, Hong H, Zschack P, Jemian P, Tischler J, Chen H and Chiang T-C 1999 Phys. Rev. Lett. 83 3317
[62] Evans D J 1982 Phys. Lett. A 91 457
[63] Gu X, Fan Z, Bao H and Zhao C Y 2019 Phys. Rev. B 100 064304
[64] Hellman O, Steneteg P, Abrikosov I A and Simak S I 2013 Phys. Rev. B 87 104111
[65] Turvey J E, McGaughey A J H and Amon C H 2009 Phys. Rev. B 79 224305