Blueberry Component Pterostilbene Protects Corneal Epithelial Cells from Inflammation via Anti-oxidative Pathway

Jin Li1,2,*, Ruzhi Deng1,2,*, Xia Hua2,3, Lili Zhang2, Fan Lu1, Terry G. Coursey2, Stephen C. Pflugfelder2 & De-Quan Li2

Blueberries have been recognized to possess protective properties from inflammation and various diseases, but not for eye and ocular disorders. This study explores potential benefits of pterostilbene (PS), a natural component of blueberries, in preventing ocular surface inflammation using an in vitro culture model of human corneal epithelial cells (HCECs) exposed to hyperosmotic medium at 450 mOsM. Gene expression was detected by RT-qPCR, and protein production or activity was determined by ELISA, zymography, Western blotting and immunofluorescent staining. Reactive oxygen species (ROS) production was measured using DCFDA kit. The addition of PS significantly reduced the expression of pro-inflammatory mediators, TNF-α, IL-1β, IL-6, MMP-2 and MMP-9 in HCECs exposed to hyperosmotic medium. Pre-treatment with PS (5 to 20 μM) suppressed ROS overproduction in a dose-dependent manner. Additionally, PS significantly decreased the levels of oxidative damage biomarkers, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), aconitase-2 and 8-hydroxydeoxyguanosine (8-OHdG). Importantly, PS was found to rebalance homeostasis between oxygenases and anti-oxidative enzymes by decreasing cyclooxygenase 2 (COX2) expression and restoring the activity of antioxidant enzymes, superoxide dismutase 1 (SOD1) and peroxiredoxin-4 (PRDX4) during hyperosmotic stress. Our findings demonstrate that PS protects human cornea from hyperosmolarity-induced inflammation and oxidative stress, suggesting protective effects of PS on dry eye.

Blueberry consumption has been known to benefit health with preventive effects on cardiovascular disease, neurodegeneration, diabetes, cancer and inflammation. Various animal studies and clinical trials suggest eating blueberries may lower the risk of myocardial infarction and breast cancer, decrease blood pressure, improve insulin resistance and endothelial function, as well as reduce the inflammation1–4. These protective effects can mostly be attributed to blueberry natural component pterostilbene (PS), a phytoalexin that protects plants from inflammatory injuries. PS, an analog of resveratrol, is lipophilic and oral-soluble with 20–80% higher bioavailability than resveratrol, making it an attractive potential therapeutic agent (see review articles5,6).

The effect of PS centers around its suppressive effects on inflammation, apoptosis and oxidative stress. PS has been reported to suppress the production and signaling pathways of proinflammatory cytokines (TNF-α, IL-1β, IL-4), matrix metalloproteinases (MMPs), cyclooxygenase (COX) 2, MAP kinases and NF-kB p65 phosphorylation8,9. PS protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis through a pathway involving oxidative stress, p53, mitochondria, cytochrome C and caspase protease10. PS has been shown to suppress breast cancer stem cells with reducing the stem cell surface antigen CD44 and promoting beta-catenin phosphorylation through inhibition of hedgehog/Akt/GSK3β signaling and downstream molecules, c-myc and cyclin D111. PS is also a potent neuromodulator for aging and Alzheimer’s disease12. However, little is

1Zhejiang Eye Hospital, School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China. 2Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA. 3Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to F.L. (email: lufan@mail.eye.ac.cn) or D.-Q.L. (email: dequanl@bcm.edu)
known about the potential benefits and therapeutic potential of blueberries and their natural compounds in eye and ocular surface diseases.

Dry eye disease is a multifactorial disease of tear and ocular surface that results in symptoms of discomfort, visual disturbance and tear instability with potential damage to the ocular surface. It is often accompanied by increased osmolarity of the tear film and inflammation of the ocular surface. Dry eye disease affects the lives of millions of people, as the prevalence is as high as 14.5 percent (17.9 percent in women and 10.5 percent in men) and continues to rise. An important mechanism of dry eye pathogenesis is hyperosmolality due to deficient tear production and/or tear over evaporation. This causes tear film instability, impaired mucin expression, ocular surface inflammation, corneal epithelial apoptosis, and goblet cell loss.

Studies, both in vivo and in vitro, have demonstrated that reactive oxygen species (ROS) overproduction and oxidative stress are an underlying mechanism of many ocular surface diseases including dry eye. Thus, molecules that suppress inflammation and oxidative damage would be strong potential candidates to prevent or treat dry eye diseases in which oxidative stress-induced inflammation plays a role in disease pathogenesis. A variety of dry eye treatments, such as tear supplementation, has focused on reducing tear hyperosmolality. Osmoprotectants and antioxidants, such as L-carnitine, have been shown to protect ocular surface from inflammation and oxidative injury in human corneal epithelial cells and murine dry eye models. We hypothesize that PS, as a natural dietary component of blueberries, may have potential benefits to dry eye disease based on its protective effect against inflammation and oxidative stress in other organs and tissues. The present study explores the protective role and underlying mechanisms of PS in prevention of inflammatory injury in primary human corneal epithelial cells (HCECs) under hyperosmotic stress, an in vitro dry eye model.

Results

PS significantly decreased the expression of pro-inflammatory mediators in HCECs exposed to hyperosmotic stress. Our previous studies demonstrated that hyperosmolality significantly increased the expression of pro-inflammatory cytokines, chemokines and MMPs, and the present study further confirms these findings. As shown in Fig. 1A, treatment with medium at 450 mOsm increased mRNA expression of TNF-α, IL-1β and IL-6 to 6.30 ± 1.37, 2.47 ± 0.81 and 12.15 ± 3.49 fold (P < 0.001, 0.01, and 0.001, respectively) compared with normal control (312 mOsm). The expression of these three cytokines decreased to 3.47 ± 0.46 (P < 0.05), 1.68 ± 0.16 (P < 0.05), and 8.01 ± 1.48 fold (P < 0.05), respectively, in HCECs at 450 mM OSM with addition of 5µM PS. These cytokines further decreased to 2.28 ± 0.40, 1.32 ± 0.18 and 4.35 ± 1.53 fold (P < 0.01, 0.05, 0.001) by 10µM PS, and 1.97 ± 0.04, 1.18 ± 0.15 and 3.21 ± 0.69 fold (P < 0.01, 0.05, 0.001), respectively, by 20µM PS. Evaluated by ELISA, protein production of TNF-α, IL-1β and IL-6 were 22.53 ± 3.62 pg/ml, 21.66 ± 5.32 pg/ml and 2.93 ± 0.99 ng/ml in HCECs at isomolar condition. Hyperosmotic medium (450 mM OSM) increased their production to 87.57 ± 7.96 pg/ml, 64.92 ± 8.22 pg/ml and 12.90 ± 2.86 ng/ml, respectively. Interestingly, prior treatment with 5, 10 and 20µM of PS significantly reduced production of these pro-inflammatory cytokines to 42.96-21.89 pg/ml, 43.41-27.21 pg/ml and 6.45-2.57 ng/ml, respectively in a concentration-dependent manner. These results suggest that PS has a suppressive effect on inflammatory biomarkers at both mRNA and protein levels.

Hyperosmolality significantly increased the expression of MMP-2 and MMP-9. Compared to the normal isomolar control, mRNA expression increased to 2.13 ± 0.42 for MMP-2 and 1.90 ± 0.31 fold for MMP-9 (all P < 0.05) in HCECs exposed to hyperosmotic medium (450 mOsm). Treatment with PS at 5, 10 or 20 µM significantly reduced MMP-2 and MMP-9 transcripts (all P < 0.05, Fig. 2A). Gelatin zymography confirmed that protein production and activity of MMP-2 and MMP-9 had a similar pattern as mRNA levels.

Treatment with PS significantly reduced hyperosmolality-induced ROS overproduction. We next sought to determine the underlying mechanism by which PS protects HCECs from inflammatory injury induced by hyperosmolality. To accomplish this we used a DCF fluorescence assay to detect all forms of ROS generated during cell metabolism, including superoxide ion (O2•−), hydroxy radical (HO•) and hydrogen peroxide (H2O2). Both DCF fluorescence intensity measurement and microscopy observation revealed that hyperosmotic stress stimulated intracellular ROS production. By contrast, PS pretreatment significantly reduced ROS levels. As shown in Fig. 3A, a time-course study (30–180 min) of DCF fluorescence intensities suggests that ROS generation increases in a time-dependent manner after exposure to 450 mM OSM. However, ROS levels remain at low relatively stable levels at normal isomolar condition. PS (10µM) treatment reduced intensity from 780 ± 110 to 410 ± 65 at 180 min. Overall, ROS generation was suppressed with 5 to 20µM PS in a concentration-dependent manner (Fig. 3B). DCF fluorescence microscopy further showed that ROS fluorescence-positive cells increased dramatically from 8.3% in isomolar control to 28% in cells at 450 mM OSM. It was reduced significantly to 13.7, 9.8 and 7.2% with prior incubated PS at 5, 10 and 20µM (Fig. 3C).

PS reduced oxidative damage induced by hyperosmotic stress in HCECs. ROS overproduction can induce cell oxidative damage. To evaluate oxidative stress we examined the production of lipid peroxidation biomarkers malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) and aconitase-2 were determined. As shown in Fig. 4, immunofluorescent staining demonstrates that expressions of these biomarkers was very low under normal isomolar conditions. However, all four biomarkers increased with exposure to hyperosmotic medium for 24 hours. The positive staining cells for each biomarker increased from 7.4% to 81.4% (MDA), 20.0% to 84.0% (4-HNE), 16.7% to 91.7% (8-OHdG) and 7.6% to 92.3% (aconitase-2). Prior incubation of 10µM PS significantly reduced their levels to 29.6% (MDA), 24.0% (4-HNE), 29.2% (8-OHdG) and 19.2% (aconitase-2), respectively.
PS restored the balance of oxygenases and antioxidative enzymes. We evaluated the mRNA and protein expression levels of oxidative stress-associated enzymes. COX2, officially as prostaglandin-endoperoxide synthase, is an enzyme that mediates oxidative stress. Superoxide dismutase-1 (SOD1) and peroxiredoxin-4 (PRDX4), both antioxidant enzymes, significantly declined during increased levels of oxidative stress. As shown in Fig. 5A, the mRNA level of COX2 increased markedly to 11.57 ± 1.95 fold (P < 0.001) in HCECs exposed to hyperosmotic medium (450 mOsM) alone or in the presence of PS at increasing concentrations (5, 10 and 20 μM). By contrast, the mRNA expression of SOD1 and PDRX4 significantly decreased to 0.43 ± 0.09 and 0.28 ± 0.04, respectively, in HCECs exposure to hyperosmolarity. Interestingly, their mRNA levels rebound significantly in response to PS treatment with increasing concentrations (5, 10 and 20 μM).

Western blot analysis confirmed the increase of COX2 and decrease of SOD1 and PRDX4 at protein levels in HCECs exposed to 450 mOsM (Fig. 5B). The results were consistent with our previous report that revealed an imbalance between oxygenases and antioxidant enzymes in HCECs under hyperosmotic stress. This could be an important mechanism causing excessive ROS production and oxidative damage in HCECs. Interestingly, PS largely suppressed COX2 production while increased the SOD1 and PRDX4 to near normal levels at protein levels (Fig. 5B), restoring the balance of oxygenases and antioxidative enzymes in response to hyperosmotic stress.

Discussion
The protective properties of the dietary components of blueberries have been recognized to suppress inflammation, reduce risk of carcinogenesis, ameliorate diabetes, and attenuate vascular and neurological diseases.
However, little is known about the bioactivity and potential clinical implications of blueberry components on the health of the human eye. Here, we present evidence that PS may potentially have beneficial effects on eye and ocular surface diseases. We show that PS suppresses the expression of inflammatory mediators, reduces ROS generation, and attenuates oxidative damage in cellular membrane, nuclear and mitochondria through rebalancing activity between oxygenases and antioxidative enzymes in HCECs exposed to hyperosmotic stress.

Many studies, including our own, have reported that hyperosmotic stress can elicit an inflammatory response through different proinflammatory mediators, such as TNF-α, IL-1β, IL-6, MMP-2, -9 and -3. An increase in these molecules has been found in the HCEC culture model, the in vivo murine dry eye model, and in the tear fluid of dry eye patients31–33. This study confirms previous findings and further revealed that PS could successfully suppress the proinflammatory response when HCECs exposed to hyperosmotic stress.

Multiple signal pathways have been reported to explain the activity of PS. For example, dietary intake of PS inhibits p38-induced inflammatory markers and nuclear phospho-p65 in colon cancer8,34. PS also attenuates inflammation in rat heart due to cardiac ischemia through TLR4/NF-κB signaling pathway35. Many other reports show that PS plays an important role in reducing inflammation in cancer, ischemia, cognition decline and diabetes8. Here our findings demonstrate for the first time that PS suppresses production of proinflammatory biomarkers TNF-α, IL-1β, IL-6, MMP-2 and -9 in HCECs exposed to hyperosmotic stress, providing the evidence that PS is a protector of corneal epithelium from inflammatory injuries.

PS is a known antioxidant molecules with anti-inflammatory effects8. To date, little is known about protective effect of PS on eye and ocular surface diseases. Here, we performed comprehensive studies to explore the beneficial effects of PS using an in vitro HCEC culture model that mimics dry eye that occurs under hyperosmotic stress. Our findings demonstrate that hyperosmotic stress induces inflammation and oxidative injuries and PS is an effective agent that protects HCECs from hyperosmolarity-induced inflammation.

The present study further showed that PS suppresses hyperosmolarity-induced inflammation via its protective effects against oxidative stress. PS was observed to protect HCECs from oxidative stress by suppressing ROS overproduction and reducing ROS-induced cellular oxidative damage. Lipid peroxidation of the corneal epithelium

Figure 2. PS down-regulated expression of MMP-2 and -9 in HCECs exposed to hyperosmotic medium. Primary HCECs were cultured in isomolar (312 mOsm) medium, then switched to hyperosmotic medium (450 mOsm) alone or in the presence of PS in different concentrations (5, 10 and 20 μM) for 4 h to evaluate mRNA level by RT-qPCR (A); or for 24 h to determine protein production and activity of MMP-2 and -9 by zymography (B). Data were summarized or representative from 3 separated experiments. *P < 0.05, as compared with 312 mOsM; **P < 0.05, as compared with 450 mOsM.
causes changes in the fluidity and permeability of cell membranes and impairs the activity of membrane-bound enzymes. MDA and 4-HNE are two important end-products of oxidation of polyunsaturated fatty acids, and frequently measured as indicators of lipid peroxidation and oxidative stress. Aconitase activity and 8-OHdG levels are major markers for the mitochondria DNA damage. Aconitase-2 is an iron-sulfur protein which acts as sensor in the redox regulation of metabolism by O₂. Aconitase-2 increases with high mitochondrial activity in the cells under oxidative stress. 8-OHdG is a product of oxidative DNA damage following specific enzymatic cleavage in mitochondrial and nuclear DNA. The released 8-OHdG has been widely used as a sensitive and reliable marker of the oxidative DNA damage. Our data showed that PS reduces the lipid peroxidation markers MDA and 4-HNE, as well as mitochondrial DNA damage markers 8-OHdG and aconitase 2 in HCECs exposed to hyperosmotic stress.

Furthermore, PS was found to modulate the oxygenase and antioxidative enzymes associated to oxidative stress. COX2 is considered a pro-inflammatory enzyme as free radicals and prostaglandins are produced during its catalytic cycle. Upregulation of COX2 is a common feature of inflammation by oxidative stress. As major antioxidative enzymes, SOD1 plays a crucial role in scavenging O₂⁻⁰⁻. PRDX4, as a guardian against oxidative stress, also modulate oxidative signaling. These enzymes, often present at high levels and capable of rapidly clearing peroxides, display a remarkable array of variations in their oligomeric states and susceptibility to regulation by hyperoxidative inactivation and other post-translational modifications. PS was found to inhibit pancreatic cancer growth in vivo, which was associated with increasing expression of antioxidative enzyme SOD and anti-proliferation function. Previous studies also suggest that induction of antioxidant enzymes by pterostilbene could protect from cardiovascular disease. The use of PS could reduce the oxidative damage from smoking, alcohol, and gastroesophageal reflux disease. Our data further demonstrate that PS protects HCECs from oxidative damage.
damage by reducing oxygenase COX2 levels while increasing the production of anti-oxidative enzymes SOD1 and PRDX4, restoring the balance between oxygenases and antioxidative enzymes.

These findings suggest that a shift of strategies for dry eye treatment from simple tear-related interventions to a combination with agents that protect eye from inflammatory injuries. Corticosteroids, cyclosporin and doxycycline are used to treat inflammation in dry eye. However, all these agents have significant side effects, such as infection susceptibility and tissue necrosis, often limiting their use. The development of a natural dietary component for dry eye prevention and treatment would be a novel strategy that would benefit a large population patients suffering with eye disorders.

In summary, the present study further reveals a novel phenomenon that a natural blueberry component, PS, effectively protects human corneal epithelium from hyperosmolarity-induced inflammation by reducing ROS generation and oxidative damage through rebalancing the production and activity between oxygenases and anti-oxidative enzymes. Our findings for the first time suggest potential benefits of blueberries and their natural components on ocular surface disorders, such as dry eye.

Materials and Methods

Materials and Reagents. Pterostilbene was purchased from Sigma-Aldrich (St. Louis, MO). Cell culture supplies such as Dulbecco modified Eagle medium (DMEM), Ham-F12, Cortisone, EGF, gentamicin, amphotericin B were obtained from Invitrogen (Grand Island, NY); Fetal bovine serum (FBS) from Hyclone (Logan, UT). DCFDA-cellular ROS detection assay and rabbit polyclonal antibodies against MDA, 4-HNE, aconitase-2 or 8-OHdG were from Abcam (Cambridge, MA). Fluorescein Alexa-Flour 488-conjugated secondary antibodies (goat anti rabbit or mouse IgG, rabbit or donkey anti goat IgG) were from Molecular Probes (Eugene, OR). RNasey Plus Mini RNA extraction kit from Qiagen (Valencia, CA). TaqMan gene expression assays and real-time PCR master mix from Applied Biosystems (Foster City, CA). Ready-To-Go You-Prime First-Strand Beads were from GE Healthcare (Piscataway, NJ). ELISA kits for TNF-α, IL-1β and IL-6 were from Biolegend (San Diego, CA).
CA). Gelatin zymogram gels were from Bio Rad (Hercules, CA). All plastic ware were purchased from Becton Dickinson Biosciences (Lincoln Park, NJ).

Cultures of primary HCECs and in vitro model of hyperosmotic stress. Corneas from donors (19–67 years old) within 72 h after death were obtained from Lions Eye Bank of Texas (Houston, TX). Primary HCECs were cultured from limbal explants in a supplemented hormonal epidermal medium (SHEM) containing 5% FBS according to our previous method. Hyperosmotic stress model was established by switching HCECs from isosmotic (312 mOsm) to hyperosmotic medium at 400 and 450 mOsm, which was achieved by adding 49 or 69 mM sodium chloride. To study its effects, different concentrations (5, 10, 20 μM) of PS were co-incubated in certain wells. The cells treated for 4 hours were used for RNA extraction. The cells treated for 24 hours were used for immunostaining, ELISA, or lysed in RIPA buffer for Western blot analysis.

RNA extraction, reverse transcription, and quantitative real-time PCR (RT-qPCR). Total RNA was extracted with RNasy Plus Mini Kit (Qiagen, Valencia, CA) according to the manufacturer's instructions, quantified with a spectrophotometer (Nanodrop ND-1000; Thermo Scientific, Wilmington, DE), and stored at −80 °C before use. The first strand cDNA was synthesized by RT from 2.0 μg of total RNA using Ready-To-Go You-Prime First-Strand Beads as previously described. Quantitative real-time PCR was performed in StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA) with 10 μl reaction volume containing 4 μl of cDNA, 0.3 μl TaqMan gene expression assay, 5 μl TaqMan gene expression master mix and 0.7 μl H2O. TaqMan gene expression assays used for this study were: GAPDH (Hs99999905_m1), TNF-α (Hs00174128_m1), IL-1β (Hs01555413_m1), IL-6 (Hs00174131_m1), MMP-2 (Hs01548724_m1), MMP-9 (Hs00234579_m1), COX2 (Hs00153133_m1), SOD1 (Hs00533490_m1), PRDX4 (Hs01056076_m1). The thermocycler parameters were 50 °C for 2 min and 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. A non-template control was included to evaluate DNA contamination. The results were analyzed by the comparative threshold cycle (Ct) method and normalized by GAPDH as an internal control.

Enzyme-linked immunosorbent assays. Double-sandwich ELISA for human TNF-α, IL-1β, IL-6 was performed to determine the protein concentration of these pro-inflammatory cytokines in the conditioned media from different treatments according to our previously reported protocol. Absorbance was read at 450 nm with a reference wavelength of 570 nm by Infinite M200 microplate reader (Tecan US, Inc., Morrisville, NC).
Gelatin zymography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) gelatin zymography was performed referring to a previously reported method. Briefly, 10 μl of each conditioned medium was treated with SDS sample buffer without boiling. Samples were fractionated in a 10% polyacrylamide gelatin gel with electrophoresis at 100 V for 90 min at 4°C. The gels were soaked in 0.25% Triton X-100 for 30 min at room temperature to remove the SDS, and incubated in a digestion buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM CaCl₂, 2 μM ZnSO₄, and 0.01% Brij-35) containing 5 mM phenylmethylsulfonyl fluoride (PMSF), a serine protease inhibitor, at 37°C overnight to allow proteinase digestion of its substrate. Gels were rinsed again in distilled water, stained with 0.25% Coomassie brilliant blue R-250 in 40% isopropanol for 2 h, and destained with 7% acetic acid. Gelatinolytic activities appeared as clear bands of digested gelatin against a dark blue background.

Measurement of cellular ROS production. Cellular ROS production was measured using DCFDA assay kit as we previously reported. DCFDA, a cell-permeable fluorogenic dye, is deacetylated by cellular esterases to a non-fluorescent compound, it could be oxidized by ROS into highly fluorescent 2′,7′-dichlorofluorescein (DCF) which measures hydroxyl, peroxyl and other ROS activity within the cell. HCECs were grown on the 96-well plates or 8-chamber slides. When confluent, HCECs were incubated with 25 μM DCFDA at 37°C for 45 min, and then exposed to hyperosmotic medium (450 mOsM) alone or in the presence of 10 μM of PS for different time periods (30–180 min). Cell images were taken with fluorescence microscope. Cell fluorescence in 96-well plates was measured at 488 nm excitation and 525 nm emission using Tecan Infinite M200 Microplate Reader (Tecan US, Inc. Morrisville, NC). Relative changes of DCF fluorescence were also expressed as fold increase over the control cells at isomolar condition.

Immunofluorescent Staining. Using a previously reported method, HCECs on 8-chamber slides were fixed with 4% paraformaldehyde for 10 min and then permeabilized with 0.2% Triton X-100 in PBS at room temperature for 10 min. The cells were then incubated with primary antibodies against human MDA, HNE, aconitase-2 or 8-OHdG at 4°C overnight. Alexa-Fluor 488 conjugated secondary antibodies was applied, and propidium iodide (PI) was used for nuclear counterstaining. The stained slides were photographed with Zeiss laser scanning confocal microscope (LSCM510META, Thornwood, NY).

Western Blot Analysis. Western blot analysis was performed as our previous report. Equal amounts of protein measured by BCA protein assay kit were mixed with 6 × SDS reducing sample buffer and boiled for 5 minutes before loading. The proteins (30 μg/lane) were separated on an SDS polyacrylamide gel and transferred electronically to PVDF membranes. After blocked with 5% nonfat milk in TTBS (50 mM Tris [pH 7.5], 0.9% NaCl, and 0.1% Tween-20) for 1 h, the membranes were incubated with primary antibodies against COX2 (1:200), SOD1 (1:200), PDRX4 (1:200) or β-actin (1:1000) at 4°C overnight. After washing, the membranes were incubated with secondary antibodies and developed with ECL reagent (ECL, GE Healthcare) using Kodak 4000R imaging station (Eastman Kodak, Rochester, NY).

Statistical analysis. Student’s t-test was used to make comparisons among three or more groups, followed by Dunnett’s post-hoc test. P < 0.05 was considered statistically significant.

References
1. Heim, K. C., Angers, P., Leonhart, S. & Ritz, B. Anti-inflammatory and neuroactive properties of selected fruit extracts. J. Med. Food 15, 851–854 (2012).
2. Seymour, E. M. et al. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J. Med. Food 14, 1511–1518 (2011).
3. Kanaya, N., Adams, L., Takasaki, A. & Chen, S. Whole blueberry powder inhibits metastasis of triple negative breast cancer in a xenograft mouse model through modulation of inflammatory cytokines. Nutr. Cancer 66, 242–248 (2014).
4. Johnson, S. A. et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: a randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet 115, 369–377 (2015).
5. Roupe, K. A., Reimensberg, C. M., Vanez, J. A. & Davies, N. M. Pharmacometrics of stilbenes: seeking towards the clinic. Curr. Clin. Pharmacol 1, 81–101 (2006).
6. Estrela, J. M., Ortega, A., Mena, S., Rodriguez, M. L. & Asensi, M. Pterostilbene: Biomedical applications. Crit Rev. Clin. Lab Sci 50, 65–78 (2013).
7. Reimensberg, C. M. et al. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res 22, 169–179 (2008).
8. Paul, S. et al. Anti-inflammatory action of pterostilbene is mediated through the p38 mitogen-activated protein kinase pathway in colon cancer cells. Cancer Prev. Res. (Phila) 2, 650–657 (2009).
9. Li, X., Han, X. & Sun, H. Pterostilbene inhibits angiogenesis by suppressing Erk and Akt activation. Cell. Physiol. Biochem. 21, 221–228 (2007).
10. Zhang, L. et al. Pterostilbene protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis in vitro and in vivo. Apoptosis 17, 25–36 (2012).
11. Wu, C. H., Hong, B. H., Ho, C. T. & Yen, G. C. Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. J. Agric. Food Chem 63, 2432–2441 (2015).
12. Chang, I. et al. Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol. Aging 33, 2062–2071 (2012).
13. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf 5, 75–92 (2007).
14. Luo, L., Li, D.-Q., Correales, R. M. & Pflugfelder, S. C. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Exp. Eye Res 31, 186–193 (2005).
15. Liu, H. et al. A link between tear instability and hyperosmolarity in dry eye. Invest Ophtalmol. Vis. Sci. 50, 3671–3679 (2009).
16. Li, D.-Q. et al. INK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp. Eye Res 82, 588–596 (2006).
17. The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf. 5, 93–107 (2007).

18. Paulsen, A. J. et al. Dry eye in the beaver dam offspring study: prevalence, risk factors, and health-related quality of life. Am. J. Ophthalmol. 157, 799–806 (2014).

19. Čekjova, J. & Čekja, C. The role of oxidative stress in corneal diseases and injuries. Histol. Histopathol. 11, 611–616 (2015).

20. Deng, R. et al. Oxidative stress markers induced by hyperosmolarity in primary human corneal epithelial cells. PLoS One 10, e0126561 (2015).

21. Wakamatsu, T. H. et al. Evaluation of lipid oxidative stress status in Sjögren syndrome patients. Invest Ophthalmol. Vis. Sci. 54, 201–210 (2013).

22. Hua, X. et al. Effects of 1-Carnitine, Erythritol, Betaine and L-Arginine on Pro-inflammatory Markers in Primary Human Corneal Epithelial Cells Exposed to Hyperosmotic Stress. Curr. Eye Res. 40, 657–667 (2015).

23. Deng, R. et al. Osmoprotectants suppress the production and activity of matrix metalloproteinases induced by hyperosmolarity in primary human corneal epithelial cells. Mol. Vis. 20, 1243–1252 (2014).

24. Chen, W. et al. Efficacy of osmoprotectants on prevention and treatment of murine dry eye. Invest Ophthalmol. Vis. Sci. 54, 6287–6297 (2013).

25. Corrales, R. M., Luo, L., Chang, E. Y. & Pflugfelder, S. C. Effects of osmoprotectants on hyperosmolar stress in cultured human corneal epithelial cells. Cornea 27, 574–579 (2008).

26. de Paiva, C. S. et al. Apical corneal barrier disruption in experimental murine dry eye is abrogated by methylprednisolone and doxycycline. Invest Ophthalmol. Vis. Sci. 47, 2847–2856 (2006).

27. Luo, L. et al. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Invest Ophthalmol. Vis. Sci. 45, 4293–4301 (2004).

28. Mancuso, C. et al. Heme oxygenase and cyclooxygenase in the central nervous system: a functional interplay. J. Neurosci. Res. 84, 1385–1391 (2006).

29. Rahman, I. & Adcock, I. M. Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 28, 219–242 (2006).

30. Yamada, S., Ding, T. & Sasaguri, Y. Peroxiredoxin 4: critical roles in inflammatory diseases. J. UOEH 34, 27–39 (2012).

31. Lam, H. et al. Tear cytokine profiles in dysfunctional tear syndrome. Am. J. Ophthalmol. 147, 198–205 (2009).

32. Enriquez-de-Salamanca, A. et al. Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol. Vis. 16, 862–873 (2010).

33. Corrales, R. M. et al. Desiccating stress stimulates expression of matrix metalloproteinases by the corneal epithelium. Invest Ophthalmol. Vis. Sci. 47, 3293–3302 (2006).

34. Paul, S. et al. Dietary intake of pterostilbene, a constituent of blueberries, inhibits the beta-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis 31, 1272–1278 (2010).

35. Wang, C. et al. Pterostilbene attenuates inflammation in rat heart subjected to ischemia-reperfusion: role of TLR4/NF-kappaB signaling pathway. Int. J. Clin. Exp. Med. 8, 1737–1746 (2015).

36. Wakamatsu, T. H., Dogru, M. & Tsukamoto, K. Tear bacterial strains: oxidative stress, inflammation and eye diseases. Arq. Bras. Oftalmol. 71, 72–79 (2008).

37. Tsukamoto, K. et al. The antiaging approach for the treatment of dry eye. Cornea 31 Suppl 1, S38–S58 (2012).

38. Deng, R. et al. Oxidative stress markers induced by hyperosmolarity in primary human corneal epithelial cells. PLoS One. 10, e0126561 (2015).

39. Esteban, H., Schuur, R. J. & Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 41, 803–823 (2006).

40. Pilger, A. & Rudiger, H. W. 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int. Arch. Occup. Environ. Health 80, 1–15 (2006).

41. Bulteau, A. L., Ikeda-Saito, M. & Szweda, L. I. TGF-β1 induces expression of TIMP-1 and TIMP-2 in human corneal epithelial cells. J. Cell. Physiol. 215, 85–95 (2008).

42. Yoon, K. C. et al. Oxidative DNA damage and eye disease. Invest Ophthalmol. Vis. Sci. 54, 1272–1280 (2013).

43. Yang, T. et al. Pterostilbene attenuates inflammation in rat heart subjected to ischemia-reperfusion: role of TLR4/NF-kappaB signaling pathway. Int. J. Clin. Exp. Med. 8, 1737–1746 (2015).

44. Behndig, A., Svensson, B., Marklund, S. L. & Karlsson, K. Superoxide dismutase isoenzymes in the human eye. Invest Ophthalmol. Vis. Sci. 39, 471–475 (1998).

45. Veal, E. A., Tomalin, L. E., Morgan, B. A. & Day, A. M. The fission yeast Schizosaccharomyces pombe as a model to understand how the innate immune system senses and responds to pathogens. Exp. Eye Res. 16, 862–873 (2004).

46. Tsang, C. K., Liu, Y. & Zheng, X. F. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate inflammation. Mol. Cell. Biochem. 329, 14846–14855 (2003).

47. McCormack, D. E. et al. Genomic analysis of pterostilbene predicts its antiproliferative effects against pancreatic cancer in vitro. J. Gastrointest. Surg. 16, 1136–1143 (2012).

48. Leopold, J. A. & Loscalzo, J. Oxidative DNA damage and eye disease. Invest Ophthalmol. Vis. Sci. 47, 471–475 (1998).

49. Veal, E. A., Tomalin, L. E., Morgan, B. A. & Day, A. M. The fission yeast Schizosaccharomyces pombe as a model to understand how the innate immune system senses and responds to pathogens. Exp. Eye Res. 16, 862–873 (2004).

50. Tsang, C. K., Liu, Y. & Zheng, X. F. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun. 5, 3446 (2014).

51. Yamada, S., Ding, T. & Sasaguri, Y. Peroxiredoxin 4: critical roles in inflammatory diseases. J. UOEH 34, 27–39 (2012).

52. Lam, H. et al. Tear cytokine profiles in dysfunctional tear syndrome. Am. J. Ophthalmol. 147, 198–205 (2009).

53. Li, D.-Q. & Leopold, J. A. Oxidative stress markers induced by hyperosmolarity in primary human corneal epithelial cells. Invest Ophthalmol. Vis. Sci. 45, 4293–4301 (2004).

54. Chen, Z. et al. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 22, 355–366 (2004).

Acknowledgements

This study was supported in part by NIH NEI Grants R01 EY023598 (DQL), EY011915 (SCP) and Core Grant for Vision Research EY002520, Lions Foundation for Sight, Research to Prevent Blindness, Oshman Foundation, and William Stamps Farish Fund.

Author Contributions

D.-Q.L., S.C.P and F.L. designed the research, J.L., R.D., X.H., L.Z. and T.G.C. conducted the experiments, J.L., R.D., L.Z. and D.-Q.L. analyzed the results, J.L. and D.-Q.L. wrote the manuscript, T.G.C. performed English editing, all authors reviewed the manuscript.
Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Li, J. et al. Blueberry Component Pterostilbene Protects Corneal Epithelial Cells from Inflammation via Anti-oxidative Pathway. Sci. Rep. 6, 19408; doi: 10.1038/srep19408 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/