Nuclei multiplexing with barcoded antibodies for single-nucleus genomics

Jellert T. Gaublomme1,6,9, Bo Li1,7,9, Cristin McCabe1, Abigail Knecht1, Yiming Yang2, Eugene Drokhlyansky1, Nicholas Van Wittenberghe1, Julia Waldman1, Danielle Dionne1, Lan Nguyen1, Philip L. De Jager3, Bertrand Yeung4, Xinfang Zhao4, Naomi Habib1,8, Orit Rozenblatt-Rosen1 & Aviv Regev1,5

Single-nucleus RNA-seq (snRNA-seq) enables the interrogation of cellular states in complex tissues that are challenging to dissociate or are frozen, and opens the way to human genetics studies, clinical trials, and precise cell atlases of large organs. However, such applications are currently limited by batch effects, processing, and costs. Here, we present an approach for multiplexing snRNA-seq, using sample-barcoded antibodies to uniquely label nuclei from distinct samples. Comparing human brain cortex samples profiled with or without hashing antibodies, we demonstrate that nucleus hashing does not significantly alter recovered profiles. We develop DemuxEM, a computational tool that detects inter-sample multiplets and assigns singlets to their sample of origin, and validate its accuracy using sex-specific gene expression, species-mixing and natural genetic variation. Our approach will facilitate tissue atlases of isogenic model organisms or from multiple biopsies or longitudinal samples of one donor, and large-scale perturbation screens.
Results

Nucleus hashing yields faithful expression profiles. We isolated nuclei from fresh-frozen murine or human cortex, stained them with antibodies, which target the nuclear pore complex, and which are conjugated to a single-stranded DNA oligo that encodes a sample-specific barcode. We pooled samples prior to droplet encapsulation for single-nucleus RNA-seq (snRNA-seq) (Fig. 1a). The DNA barcodes on the antibodies contain a polyA tail, thus acting as artificial transcripts that register the same bead barcode as nuclear transcripts, coupling the transcription profile to the sample of origin.

The additional antibody labeling and washing steps in our protocol typically introduce some loss of nuclei (average yield ~33%, Supplementary Data 1), but did not alter the quality of transcriptional profiling compared with non-hashed snRNA-seq, in a side-by-side comparison of a hashed (antibody labeled) vs. non-hashed pool of the cortex nuclei derived from eight human donors (Supplementary Data 1). We combined the expression profiles from both hashed and non-hashed data sets, followed by clustering and post hoc annotation with legacy cell-type-specific signatures (Fig. 1b), recovering the cell types previously reported for such samples (see the Methods section). Both hashed and non-hashed nuclei were similarly represented across the recovered cell types (Fig. 1c), with an adjusted mutual information score of 0.0048 between cell types and experimental conditions (Fig. 1d, Methods), with only slight differences, such as a weak enrichment of glutamatergic neurons in the hashed sample, and similar cell-type-specific numbers of recovered genes (Fig. 1e). Moreover, hashed and non-hashed nuclei were similarly represented across GABAergic neuron subtypes (Supplementary Fig. 1 and Methods). There were very few significantly differentially expressed genes between control and hashed nuclei within a cell type (Supplementary Data 4, Methods; typically 2–3 orders of magnitude less than between cell types, Supplementary Data 4). In most cases, the few genes differentially expressed between hashed and non-hashed nuclei were not enriched for any functional categories (Supplementary Data 5, Methods). For GABAergic neurons, glutamatergic neurons, and oligodendrocytes, mitochondrial genes were significantly downregulated in the hashed nuclei, suggesting that the additional washing steps for the hashing reduced cytosolic debris. For microglia, genes related to synapse organization, nervous system development, cell adhesion, and neurogenesis are significantly upregulated in the hashed nuclei, suggesting this cell type may be more sensitive to manipulation. Each cell type had nuclei from all eight donors (Fig. 1f) with only slightly differing frequencies (Fig. 1g), as expected for a diverse donor cohort (Supplementary Data 1).

Modifying the staining and washing buffers for nucleus hashing (Methods) compared with those used in cell hashing (Methods), improved the transcriptional similarity with the non-hashed control (Supplementary Fig. 2a), and achieved a similar number of genes expressed per nucleus as the non-hashed control (Supplementary Fig. 2b), whereas a PBS-based buffer (used in cell hashing) generally had poorer performance (Supplementary Fig. 2c). We thus performed all experiments with these optimized staining and washing buffers, except those with mouse samples, which were performed prior to buffer optimization. Collectively, these findings indicate that hashing preserves library quality and cell-type distributions.

DemuxEM computationally demultiplexes hashed nuclei. To probabilistically assign each nucleus to its sample barcode, we developed DemuxEM, an EM-based tool (Fig. 2a). For each nucleus, DemuxEM takes as input a vector of hashtag Unique Molecular Identifier (UMI) counts from that nucleus (Fig. 2a, left). A hashtag UMI is a uniquely sequenced combination of the sample-specific DNA barcode from the oligonucleotide conjugated to the antibody, and the cellular barcode and random UMI sequence from the oligonucleotide that was originally bound to the hydrogel bead. The input vector is a mixture of signal hashtag UMIs, which reflect the nucleus’ sample of origin, and background hashtag UMIs, which likely reflect ambient sample barcodes. Hashing UMIs from the background have different probabilities of matching each of the sample barcodes. DemuxEM estimates this background distribution of sample barcodes based on hashtag UMIs in empty droplets, which are likely to only contain background hashtag UMIs. With this background distribution as a reference, DemuxEM uses an EM algorithm to estimate the fraction of hashtag UMIs from the background in the given droplet and then infer the signal hashtag UMIs by deducting the estimated background UMIs from the input vector. Once the signal has been identified, DemuxEM determines if this droplet encapsulated a single nucleus or a multiplet. For bead barcodes with low-signal hashtag UMIs (e.g., <10 hashtag UMIs), DemuxEM cannot determine the origin of the nucleus and marks it as “unassigned” (Methods).

Single-nucleus RNA-seq (snRNA-seq) has become an instrumental method for interrogating cell types, states, and function in complex tissues that cannot easily be dissociated. This includes tissues rich in cell types, such as neurons, adipocytes and skeletal muscle cells, archived frozen clinical materials, and tissues that must be frozen to register into specific coordinates. Moreover, the ability to handle minute frozen specimens has made snRNA-seq a compelling option for large-scale studies from tissue atlases to longitudinal clinical trials and human genetics. However, to maximize the success of such studies, there is a crucial need to minimize batch effects, reduce costs, and streamline the preparation of large numbers of samples.

For single-cell analysis, these goals have recently been elegantly achieved by multiplexing samples prior to processing, which are barcoded either through natural genetic variation, chemical labeling or DNA-tagged antibodies (cell hashing). These methods have improved technical inter-sample variability by early pooling, lowered the cost per sample by overloading cells per microfluidic run—to an increased ability to detect and discard co-encapsulated cell multiplets sharing the same bead barcode—and reduced the number of parallel processing steps in large studies. However, such approaches have not been reported for nuclei, which may be more challenging to handle due to the different procedures for tagging, and the possibility of more cross-contamination in preparations in the absence of a cell membrane. While one can apply methods leveraging natural genetic variation for multiplexing nuclei of non-isogenic samples, isogenic samples would require an additional tag.

Here, we follow on these studies by developing a single multiplexing method for nuclei (nucleus hashing), using DNA-barcoded antibodies targeting the nuclear pore complex. We show that nucleus hashing does not significantly alter the recovered transcriptome profiles, and develop DemuxEM, a computational tool using the Expectation–Maximization (EM) algorithm to remove multiplets from analysis and assign singlets to their sample of origin. Nucleus-hashing allows us to increase the number of nuclei loaded onto the microfluidic channel, and thus both reduces the cost per nucleus profiled and allows pooling of isogenic samples, such as from isogenic mouse models, multiple specimens from the same human donor, or tissues sampled and preserved from a single individual over time.
Accurate demultiplexing by sex- and individual-mixing. To assess our confidence in calling the sample origin of hashed nuclei by their sample barcodes, we next applied DemuxEM to pooled nuclei of male and female isogenic mice or of human and mouse, such that the single-nucleus transcriptomes provided an orthogonal measure of the sample of origin. First, we multiplexed nuclei isolated from two isogenic C57BL/6J mouse cortices, four technical replicates from each of a female and male mouse (Methods). For DemuxEM-identified singlets, there was a 94.8% agreement between DemuxEM-assigned sample hashtag identities and the expression level of Xist, a transcript predominantly expressed in females (Fig. 2b).

Next, we multiplexed eight cortex samples, four from mouse and four from human (Supplementary Data 1), comparing DemuxEM assignments as human or mouse singlets to their positions in a species-mixing plot based on their number of RNA
UMIs mapping to the human or mouse transcriptome (Methods, Fig. 2c). Overall, nuclei assigned by DemuxEM as human or mouse singlets (Fig. 2c, red and blue, respectively) express predominantly human or mouse reads, respectively (Fig. 2c, alignment along the y- and x-axis). DemuxEM-predicted multiplets occur both on the species-specific axes for intra-species multiplets (Fig. 2c, green (mouse) and purple (human)) and off-axes for inter-species multiplets (Fig. 2c, fuchsia). Notably, DemuxEM’s assignments were robust to changes in the definition of background distribution, Dirichlet prior concentration parameter on the samples, and sequencing depth (Supplementary Fig. 3 and Methods).
Fig. 2 Sample assignment by DemuxEM allows overloading of hashed samples. a DemuxEM takes as input for each nucleus a count vector of hashtag UMI s (left) and estimates it as the sum of a background count vector (right, gray histograms) and a signal sample assignment count vector (right, color histograms). Schematic examples: singlet (top), multiplet (middle), and unassigned (bottom). b Validation by sex mixing in isogenic mice. Distribution of Xist expression (y-axis, log(TP100K + 1)) from eight (1–4 females, 5–8 males) cortex samples that were pooled. There is 94.8% agreement between DemuxEM-assigned sample identities of singlets and Xist expression. c, d Species mixing of the human and mouse cortex nuclei. e Species-mixing plot. Each nucleus (dot) is plotted by the number of RNA UMIs aligned to pre-mRNA mouse mm10 (purple (human); inter-species: fuchsia). S24 singlets (chartreuse) and multiplets (any multiplet that includes a nucleus from sample S24, orange) are colored separately due to its large contribution to ambient hashtags. f Distribution of ambient hashtags matching the sample DNA barcode (x-axis) identified S24 as a disproportionate contributor.

We further leveraged the hashtags to address the sources of ambient hashtags in a pool of samples. In general, nuclei dissociated from tissue samples may be at risk of having higher levels of ambient hashtags compared with single-cell hashing, because the cytoplasm is disrupted during lysis and nonspecific antibody binding to the cytosolic content or tissue-derived debris could contribute to the background. Inspection of sample-specific contribution to the hashtags background distribution showed that one of the human samples (S24, Supplementary Data 1) contributed disproportionately to the background (Fig. 2d), suggesting that this sample might have been of lower quality. This donor sample (S24) indeed had the lowest RNA integrity number (RIN) and the highest postmortem interval (PMI) of all subjects in the study (Supplementary Data 1). The ability to identify which samples contribute to the background is an additional benefit of sample hashing, and can help determine quality parameters for sample inclusion.

Next, we validated our hashtag-based demultiplexing with Demuxlet, an approach based on natural genetic variation. We observed excellent agreement between the two methods for the eight human cortex samples (Fig. 2e): 96% of nuclei were predicted with the same identity by both DemuxEM and Demuxlet. Similarly, for Seurat, a package that includes single-cell hashing analysis, 92% of nuclei were predicted with the same identity by both Seurat and Demuxlet (Fig. 2f; Supplementary Data 2).

DemuxEM also offers an improved estimation of the multiplet rate. The multiplet rate per 10x microluidic channel when loading 7000 cells is expected to be ~3.1%12. When pooling eight samples with equal proportions, there are 56 possible inter-sample doublet configurations and 8 possible intra-sample ones (the proportion of higher order multiplets is much lower), such that 87.5% (56/64) of the doublets are expected to contain nuclei from multiple samples, which can be identified by our hashing strategy. Since we loaded 7000 nuclei, we expect a detectable multiplet rate of around 2.7% (3.1 * 87.5%). DemuxEM, Demuxlet, and Seurat predicted multiplet rates of 2.8%, 2.1%, and 6.5%, respectively (Supplementary Data 2).

Discussion
Nucleus hashing is a principled method for multiplexing single nuclei. It reduces batch effects and costs, and helps streamline large experimental studies. DemuxEM is a computational tool we developed that enables accurate multiplet detection, nucleus identity assignment, and identification of the sources of ambient hashtag contamination. As nuclei, rather than cells, become the starting point of many additional methods—especially in epigenomics—it is likely that hashing can be extended to other single-nucleus genomics assays. Together, nucleus hashing and DemuxEM allow us to reliably interrogate cell types, cellular states, and functional processes in complex and archived tissues at a much larger scale than previously possible.

Methods
Human samples. The studies were conducted under Rush University IRB approvals L91020181 and L86121802. We have complied with all relevant ethical regulations and informed consent was obtained. We used frozen brain tissue banked by two prospective studies of aging: the Religious Order Study (ROS) and the Memory and Aging Project (MAP), which recruit non-demented older individuals (age > 65)13. For the species-mixing experiment, we used four posterior cingulate cortex samples from ROS (Supplementary Data 1). For the human nucleus hashing and overloading experiments, we used 16 dorsolateral prefrontal cortex samples from ROS and MAP (Supplementary Data 1). We selected samples with balanced sex ratio and whole-genome sequencing (WGS) data available14 (except for sample S24, for which WGS data are not available).

Hashing-enabled overloading lowers cost per nucleus. DemuxEM’s ability to more accurately detect droplets that encapsulated multiple inter-sample nuclei allowed us to load a higher concentration of nuclei for a given undetectable multiplet rate, thereby significantly lowering the cost per nucleus. To assess how “overloading” a higher concentration of nuclei affects library quality and cell-type distributions, we hashed and pooled another eight human cortex samples (Supplementary Data 1) and loaded a 10x channel with 14 μl of either ~500 nuclei/μl, 1500 nuclei/μl, 3000 nuclei/μl, or 4500 nuclei/μl. When sequencing these libraries at similar depth per nucleus, we recovered similar numbers of expressed genes per nucleus for the different cell types (Fig. 2g, h). Moreover, nuclei from each loading concentration had similar transcriptional states (Fig. 2i) and maintained the same relative cell-type frequencies (Fig. 2j). As expected, the proportion of multiplets increases with increased loading density (Supplementary Fig. 4). Notably, nucleus multiplets do not typically show higher numbers of RNA UMIs compared with singlets (Supplementary Fig. 4), in contrast to cell hashing.10 The lowest overall cost per nucleus (including nucleus-hashing antibodies, 10x library preparation and sequencing) was achieved for loading 14 μl of 3000 nuclei/μl, resulting in the detection of 13,578 single nuclei in a single 10x channel with an overall ~56% cost per nucleus reduction in our pricing structure, compared with the non-hashed loading density of 500 nuclei/μl (Methods; Supplementary Data 3), albeit with some increase in background signal. Notably, these cost savings can also be achieved by splitting an individual sample into multiple hashed samples, when a larger number of nuclei per sample is required, while still benefitting from the reduced cost and reduced batch effects.

Methods
Human samples. The studies were conducted under Rush University IRB approvals L91020181 and L86121802. We have complied with all relevant ethical regulations and informed consent was obtained. We used frozen brain tissue banked by two prospective studies of aging: the Religious Order Study (ROS) and the Memory and Aging Project (MAP), which recruit non-demented older individuals (age > 65)13. For the species-mixing experiment, we used four posterior cingulate cortex samples from ROS (Supplementary Data 1). For the human nucleus hashing and overloading experiments, we used 16 dorsolateral prefrontal cortex samples from ROS and MAP (Supplementary Data 1). We selected samples with balanced sex ratio and whole-genome sequencing (WGS) data available14 (except for sample S24, for which WGS data are not available).
Mice. All mouse work was performed in accordance with and received ethical approval from the Institutional Animal Care and Use Committees (IACUC) and relevant regulations at the Broad Institute and MIT, with protocols #12-10 and #12-16. We have complied with all relevant ethical regulations for animal testing and research. Adult female and male C57BL/6j mice, obtained from the Jackson Laboratory (Bar Harbor, ME), were housed under specific-pathogen-free (SPF) conditions at the Broad Institute, MIT animal facilities.

Mouse tissue collection. Brains from C57BL/6j mice were obtained and split vertically along the sagittal midline. The cerebral cortices were separated, and excess white matter was removed. Cortices were separated into microcentrifuge tubes and frozen on dry ice. Frozen tissue was stored at −80 °C.

Nuclei isolation, antibody tagging, and snRNA-seq. A fully detailed, step-by-step protocol is described in Supplementary Methods. Briefly, we thawed and minced tissue, dounced it in lysis buffer, filtered the lysate, and resuspended it in staining buffer. A brief incubation with Fc receptor-blocking solution is followed by incubation with the TotalSeq Hashtag antibodies against the nuclear pore complex (MAB414, catalogue numbers listed in Supplementary Data 1) at 1 μg/100 μl and three washes in ST-SB. Next, nuclei were counted and their concentration normalized to the desired loading concentration and pooled right before running the 10x Genomics single-cell 3′ v2 assay (with minor adjustments listed in Supplementary Methods), followed by library preparation and Illumina sequencing.

Buffer optimization. In cell-hashing experiments10, staining is performed with a PBS-based staining buffer (SB: 2% BSA, 0.02% Tween-20 in PBS). We initially used this buffer during staining for nucleus staining as well (gender-specific expression and species-mixing experiments)10. To further optimize our protocol, we compared both a PBS-based staining buffer and a Tris-based staining buffer (ST-SB, see Supplementary Methods, 2% BSA, 0.02% Tween-20, 10 mM Tris, 146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2) to a non-hashed control observing better performance in ST-SB, in terms of overall agreement with non-hashed controls and in the number of genes recovered per nucleus (Supplementary Fig. 2). Going forward, we thus performed experiments with these optimized buffers, except for the initial experiments with mouse samples, and recommend to perform the staining and washing steps of nucleus staining in ST-SB (see Supplementary Methods).

Nuclei yields. We initially observed significant loss of nuclei during spins and washes, and have mitigated this in part by a combination of the following measures: (1) use of Lo-Bind Eppendorf vials, (2) 2% BSA and 0.02% Tween-20 concentration of the staining and washing buffer, and (3) swing-bucket centrifugation of 1.5 -ml vials to better center the nuclei pellet (compared to centrifugation with fixed angle rotators). Our nuclei counting based on DAPI-staining and transmitted light microscopy before and after staining shows that we retain on average 33% of the input nuclei (Supplementary Data 1).

SnRNA-seq data analysis. Starting from BCL files obtained from Illumina sequencing, we ran cellranger mkfqast to extract sequence reads in FASTQ format, followed by cellranger count to generate gene-count matrices from the FASTQ files. Since our data are from single nuclei, we built and aligned reads to genome references with pre-mRNA annotations, which account for both exons and introns. Pre-mRNA annotations improve the number of detected genes significantly compared to a reference with only exon annotations15. For human and mouse data, we used the GRCh38 and mm10 genome references, respectively. To compare one of the following criteria: (1) a total number of expressed genes <200; (2) a total number of expressed genes >6,000; or (3) a percentage of RNA UMIs from each sample, (c1, ..., cn). Each hashtag UMI in the vector can either originate from a properly stained nuclear pore complex (signal) or come from ambient hashtag UMIs (background). We define θ = (θ1, θ2, ..., θn), where θi is the probability that a hashtag UMI is from the background, and θi θj are the probabilities that the hashtag UMI is true signal 1, ..., n. In the hashtag UMI is from the background, we denote P = (p1, ..., pn) as the probabilities that this hashtag UMI matches the barcode sequence of samples 1, ..., n. In addition, we require ∑n i=1 pi = 1.

The probability of generating a hashtag UMI that matches sample i’s barcode sequence is:

\[
P(\text{hashtag} = i) = θ_i p_i + θ_i
\]

And the log-likelihood of generating the hashtag UMI vector is:

\[
L(θ) = \sum_{i=1}^{n} c_i \log(θ_i p_i + θ_i) + \log \left(\frac{\sum_{i=1}^{n} c_i!}{\prod_{i=1}^{n} c_i} \right)
\]

DemuxEM. Suppose we multiplex n samples together. For each droplet, we have a count vector of hashtag UMIs from each sample, (c1, ..., cn). Each hashtag UMI in the vector either originate from a properly stained nucleus (signal) or come from ambient hashtag UMIs (background). We estimate θ using an EM algorithm. First, we impose a sparse Dirichlet prior on the background distribution = (p1, ..., pn), and (2) θ = (θ1, θ2, ..., θn).

We estimate the background distribution using empty droplets. To identify empty droplets, we first collect all bead barcodes with at least one hashtag UMI. We then calculate the total number of hashtag UMIs each collected bead barcode has and performed a k-means clustering with k = 2 on the vector of hashtag UMIs numbers. The cluster with a lower mean hashtag UMI number was identified as empty droplets. If we denote the set of identified empty droplets as B, we can estimate the background distribution as follows:

\[
p_i = \frac{\sum_{j=1}^{n} c_j}{\sum_{j=1}^{n} c_j + \sum_{i \in B} c_i}
\]

where ci is the number of hashtag UMIs matching sample i in bead barcode j.

We estimate θ using an EM algorithm. First, we impose a sparse Dirichlet prior on θ, θ ∼ Dir(1, 0, ..., 0, ..., 0), to encourage the background distribution to explain as much hashtag UMIs as possible. We then follow the EM procedure below:

E step:

\[
z_i = c_i - θ_i / p_i + θ_i, \quad i = 1, ..., n
\]

M step:

\[
θ_i = \max(z_i - 1, 0) / θ_0 + \sum_{i=1}^{n} max(z_i - 1, 0), \quad i = 1, ..., n
\]

\[
θ_0 = \log \left(\frac{\sum_{i=1}^{n} z_i}{\prod_{i=1}^{n} c_i} \right)
\]

Once we have θ estimated, we first calculate the expected number of signal hashtag UMIs:

\[
c_i = (1 - θ_i) \sum_{i=1}^{n} c_i
\]

If c <10, the hashtag UMI vector contains too little signal and thus we mark this
droplet as "unsigned". Otherwise, we count the number of samples that has at least 10% signal hashtag UMIs, \(\left\{ \frac{n_{\text{hash}}}{n_{\text{umi}}} \geq 0.1 \right\}\). If this number is 1, the droplet is a singlet. Otherwise, it is a multiplet.

DemuxEM robustness analysis. We assessed the robustness of DemuxEM using the 2509 hashed nuclei of Fig. 1b. By default, DemuxEM uses k-means clustering with a random state to identify the background distribution and sets the Dirichlet prior concentration parameters of the n samples to 0 (i.e., \(a_1 = \ldots = a_n = 0\)). We perturbed parameters related to the definition of the background distribution, the choice of prior, and the sequencing depth, and calculated the consistency between the perturbed and the default DemuxEM results, where consistency is defined as the percentage of nuclei that are predicted to have the same singlet/multiplet type and sample identities by DemuxEM with both default and perturbed settings. (1) Different definition of the background distribution. (a) k-means' random_state parameter sets the seed of the random number generator that is used for centroid initialization. Different random_state corresponds to different random centroid initialization. We ran DemuxEM with ten randomly generated random_state parameters. (b) We used a different clustering algorithm, hierarchical agglomerative clustering (HAC), to identify the background distribution. Since the standard HAC algorithm has a time complexity of \(O(n^2)\) and we have over 552,363 cell barcodes with nonzero hashtag UMI counts, it is computationally infeasible to apply HAC to all cell barcodes. Thus, we grouped hashtag UMI counts into 500 bins. The first 499 bins contain 1106 counts each, and the last bin contains the largest 469 counts. We calculated the mean of each bin to produce a small data set of only 500 data points. We then applied the HAC algorithm on this data set to get two clusters. We tried HAC with four different Dirichlet prior concentration parameter sets the seed of the random linkage, compact core linkage, and single linkage. Once we got the cluster label for each bin, we assigned cell barcodes within that bin the same cluster label. (c) We tested a simple thresholding strategy to identify the background distribution. Given a threshold \(x\), the background consists of all cell barcodes with hashtag UMI counts \(\leq x\). We tried ten different thresholds: 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. (2) Choice of Dirichlet prior concentration parameter on samples. We tested DemuxEM with ten different Dirichlet concentration parameters for the samples: \(-1.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\). (3) Sequencing depth. We sub-sampled the hashtag UMI count matrix using Bernoulli sampling with 9 different \(p\) parameters: 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1, and ran DemuxEM on each subsampled count matrix.

Cell-type-specific differential gene expression analysis. We conducted differential expression analysis between 2509 hashed nuclei and 3574 control nuclei of Fig. 1b for 27,947 genes within each of the seven cell-type clusters: astrocyte, endothelial cells, GABAergic neurons, glutamatergic neurons, microglia, oligodendrocyte precursor cells (OPC), and oligodendrocytes. We used the Mann—Whitney U test to calculate the \(P\) value for each gene and controlled the false discovery rate (FDR) at 0.05 using the Benjamini—Hochberg procedure. The differentially expressed (DE) genes for each cell type are listed in Supplementary Data 4. In addition, we summarized the total number of DE genes for each cell type in Supplementary Data 4. We applied the same differential expression detection procedure to the 3574 control nuclei to calculate the number of DE genes between control nuclei of one cell type and all other control nuclei for each cell type, which is shown in Supplementary Data 4 as well.

Gene ontology enrichment analysis. We applied Fisher’s exact test in PANTHER with an FDR correction (FDR = 0.05) on the up and down DE genes (separately) in Supplementary Data 4 for each cell type. The analysis results are available in Supplementary Data 5.

Preprocessing of the species-mixing data. The species-mixing cDNA library is deeply sequenced. According to the Cell Ranger report, this library has a sequencing saturation of 89.8%, such that on average ten reads correspond to 1 mRNA sequence from different nuclei. Since PCR chimeras are more likely to be produced at later stages of PCR, they tend to have a smaller read-to-UMI ratio than normal cDNA molecules. Thus, in order to remove PCR chimeras, we only kept UMIs with at least two reads in this data set.

Demuxlet-based demultiplexing. Demuxlet requires a list of SNPs as inputs. We called germline variants for each human donor from WGS data by following GATK Best Practices recommendations,2,12, with GATK26 v3.4-0-g7c62428. We then selected 2,385,459 biallelic SNPs that have PASS in the FILTER field, VQSLOD scores at least 22, and non-identical genotypes in 8 human donors as the Demuxlet input. We ran Demuxlet with the following parameters: field GT—genotype list barcodes.txt contains cell barcodes in the same tag and it is the barcode of the TotalSeq nuclei, 0.1, 0.2, and 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. (2) Choice of Dirichlet prior concentration parameter on samples. We tested DemuxEM with ten different Dirichlet concentration parameters for the samples: \(-1.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\). (3) Sequencing depth. We sub-sampled the hashtag UMI count matrix using Bernoulli sampling with 9 different \(p\) parameters: 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1, and ran DemuxEM on each subsampled count matrix.

Cell-type-specific differential gene expression analysis. We conducted differential expression analysis between 2509 hashed nuclei and 3574 control nuclei of Fig. 1b for 27,947 genes within each of the seven cell-type clusters: astrocyte, endothelial cells, GABAergic neurons, glutamatergic neurons, microglia, oligodendrocyte precursor cells (OPC), and oligodendrocytes. We used the Mann—Whitney U test to calculate the \(P\) value for each gene and controlled the false discovery rate (FDR) at 0.05 using the Benjamini—Hochberg procedure. The differentially expressed (DE) genes for each cell type are listed in Supplementary Data 4. In addition, we summarized the total number of DE genes for each cell type in Supplementary Data 4. We applied the same differential expression detection procedure to the 3574 control nuclei to calculate the number of DE genes between control nuclei of one cell type and all other control nuclei for each cell type, which is shown in Supplementary Data 4 as well.

Gene ontology enrichment analysis. We applied Fisher’s exact test in PANTHER with an FDR correction (FDR = 0.05) on the up and down DE genes (separately) in Supplementary Data 4 for each cell type. The analysis results are available in Supplementary Data 5.

Preprocessing of the species-mixing data. The species-mixing cDNA library is deeply sequenced. According to the Cell Ranger report, this library has a sequencing saturation of 89.8%, such that on average ten reads correspond to 1 mRNA sequence from different nuclei. Since PCR chimeras are more likely to be produced at later stages of PCR, they tend to have a smaller read-to-UMI ratio than normal cDNA molecules. Thus, in order to remove PCR chimeras, we only kept UMIs with at least two reads in this data set.

Demuxlet-based demultiplexing. Demuxlet requires a list of SNPs as inputs. We called germline variants for each human donor from WGS data by following GATK Best Practices recommendations,2,12, with GATK26 v3.4-0-g7c62428. We then selected 2,385,459 biallelic SNPs that have PASS in the FILTER field, VQSLOD scores at least 22, and non-identical genotypes in 8 human donors as the Demuxlet input. We ran Demuxlet with the following parameters: field GT—genotype list barcodes.txt contains cell barcodes in the same tag and it is the barcode of the TotalSeq nuclei, 0.1, 0.2, and 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. (2) Choice of Dirichlet prior concentration parameter on samples. We tested DemuxEM with ten different Dirichlet concentration parameters for the samples: \(-1.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\). (3) Sequencing depth. We sub-sampled the hashtag UMI count matrix using Bernoulli sampling with 9 different \(p\) parameters: 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1, and ran DemuxEM on each subsampled count matrix.

Cell-type-specific differential gene expression analysis. We conducted differential expression analysis between 2509 hashed nuclei and 3574 control nuclei of Fig. 1b for 27,947 genes within each of the seven cell-type clusters: astrocyte, endothelial cells, GABAergic neurons, glutamatergic neurons, microglia, oligodendrocyte precursor cells (OPC), and oligodendrocytes. We used the Mann—Whitney U test to calculate the \(P\) value for each gene and controlled the false discovery rate (FDR) at 0.05 using the Benjamini—Hochberg procedure. The differentially expressed (DE) genes for each cell type are listed in Supplementary Data 4. In addition, we summarized the total number of DE genes for each cell type in Supplementary Data 4. We applied the same differential expression detection procedure to the 3574 control nuclei to calculate the number of DE genes between control nuclei of one cell type and all other control nuclei for each cell type, which is shown in Supplementary Data 4 as well.

Gene ontology enrichment analysis. We applied Fisher’s exact test in PANTHER with an FDR correction (FDR = 0.05) on the up and down DE genes (separately) in Supplementary Data 4 for each cell type. The analysis results are available in Supplementary Data 5.
8. Gehring, J., Park, J. H., Chen, S., Thomson, M. & Pachter, L. Highly multiplexed single-cell RNA-seq for defining cell population and transcriptional spaces. *BioRxiv*, https://doi.org/10.1101/387241 (2018).
9. McGinnis, C. S. et al. MULTI-seq: scalable sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. *BioRxiv*, https://doi.org/10.1101/321533 (2018).
10. Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexed single-cell transcriptome detection for single cell genomics. *Genome Biol.* 19, 224, https://doi.org/10.1186/s13059-018-1603-1 (2018).
11. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. *Nat. Biotechnol.* 36, 411–420 (2018).
12. 10x Genomics. What is the maximum number of cells that can be profiled? https://kb.10xgenomics.com/hc/en-us/articles/360001378811-What-is-the-maximum-number-of-cells-that-can-be-profiled-
13. Bennett, D. A. et al. Religious orders study and rush memory and aging project. *J. Alzheimers Dis.* 64, S161–S189 (2018).
14. De Jager, P. L. et al. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research. *Sci. Data* 5, 180142 (2018).
15. Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. *PLoS ONE* 13, e0209648 (2018).
16. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. *Genome Biol.* 19, 15 (2018).
17. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. *Cell* 166, 1308–1323 e1330 (2016).
18. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. *Cell* 161, 1202–1214 (2015).
19. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. *Nat. Commun.* 8, 14049 (2017).
20. Traag, V. A. Faster unfolding of communities: speeding up the Louvain algorithm. *Phys. Rev. E Stat. Nonlin Soft Matter Phys.* 92, 032801 (2015).
21. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. *J. R. Stat. Soc. B Met 57*, 289–300 (1995).
22. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. *J. Mach. Learn. Res.* 9, 2579–2605 (2008).
23. Dixit, A. Correcting chimeric crosstalk in single cell RNA-seq experiments. *BioRxiv*, https://doi.org/10.1101/093237 (2016).
24. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat. Genet.* 43, 491–498 (2011).
25. Van der Auwerda, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. *Curr. Protoc. Bioinform.* 43, 11 10 11–33 (2013).
26. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 20, 1297–1303 (2010).

Acknowledgements
This publication is part of the Human Cell Atlas (www.humancellatlas.org/publications). We thank Dr. David Bennett at RUSH University for the use of samples from the Religious Order Study (ROS) and the Memory and Aging Project (MAP). We thank Chun (Jimmie) Ye for his input on setting appropriate Demuxlet parameters. We thank Jiarui Ding for helpful discussions in appropriate preprocessing of the species-mixing data. We thank Leslie Gaffney, Anna Hupalowska and Jennifer Rood for help with figure and paper preparation. This work was supported by the NIH BRAIN Initiative grant U19MH114821 and the Klorman Cell Observatory. The ROSMAP sample collection and data used in this paper were supported by U01 AG046152, RFI AG057473, RFI AG015819, P30 AG10161, and R01 AG17917.

Author contributions
J.T.G. and A.R. conceived the study and designed experiments. B.L. and A.R devised analyses and B.L. developed computational methods. B.L., J.T.G., Y.Y. and A.R analyzed the data. X.Z. and B.Y. validated and provided hashing antibodies. J.T.G., C.M., N.V.W., E.D., A.K. and J.W. conducted the experiments. L.N., J.W., J.T.G. and D.D. carried out Illumina library preparation. O.R.R. and A.R. supervised the work. J.T.G., B.L. and A.R. wrote the paper with input from all the authors.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-10756-2.

Competing interests: A.R. is a SAB member of ThermoFisher Scientific and Syros Pharmaceuticals and a founder and equity holder of Celsius Therapeutics. B.Y. and X.Z. are employees of Biolegend which produces the NPC antibodies used in this assay. A.R., O.R.R., J.G., and B.L. are inventors on a pending patent application PCT/US2018/064563. The patent applicants are the Broad Institute, Inc. and MIT. The patent covers the nucleus-hashing protocol and the DemuxEM algorithm described in this paper. The remaining authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/.

Peer review information: *Nature Communications* thanks Ed S. Lein and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.