The electroweak form factor $\hat{\kappa}(q^2)$ and the running of $\sin^2 \hat{\theta}_W$

A. Ferroglia1, G. Ossola2, and A. Sirlin2

1Fakultät für Physik, Universität Freiburg,
D-79104 Freiburg, Germany
and
Institut für Theoretische Teilchenphysik, Universität Karlsruhe,
D-76128 Karlsruhe, Germany

2Department of Physics, New York University,
4 Washington Place, New York, NY 10003, USA

Gauge independent form factors $\rho^{(e;e)}(q^2)$ and $\hat{\kappa}^{(e;e)}(q^2)$ for Möller scattering at $s \ll m_W^2$ are derived. It is pointed out that $\hat{\kappa}^{(e;e)}$ is very different from its counterparts in other processes. The relation between the effective parameter $\hat{\kappa}^{(e;e)}(q^2, \mu) \sin^2 \hat{\theta}_W(\mu)$ and $\sin^2 \theta^{\text{lept}}_{\text{eff}}$ is derived in a scale-independent manner. A gauge and process-independent running parameter $\sin^2 \hat{\theta}_W(q^2)$, based on the pinch-technique self-energy $a_{\gamma Z}(q^2)$, is discussed for all q^2 values. At $q^2 = 0$ it absorbs very accurately the Czarnecki-Marciano calculation of the Möller scattering asymmetry at low s values, and at $q^2 = m_Z^2$ it is rather close to $\sin^2 \theta^{\text{lept}}_{\text{eff}}$. The q^2 dependence of $\sin^2 \hat{\theta}_W(q^2)$ is displayed in the space and time-like domains.

1andrea.ferroglia@physik.uni-freiburg.de
2giovanni.ossola@physics.nyu.edu
3alberto.sirlin@nyu.edu
1 Introduction

The form factors ρ and $\kappa(q^2)$ that incorporate the effect of the electroweak corrections in the neutral current amplitudes have played an important role in precision studies of the Standard Model (SM) [1]. In particular, their effect has been discussed in detail in ν-hadron and ν-lepton scattering at momentum transfers $|q^2| \ll m_W^2$ [2–4], as well as in $e^+ + e^- \rightarrow f + \overline{f}$ near the Z^0 peak [5]. We recall that $\kappa(q^2)$ accompanies the electroweak mixing parameter $\sin^2 \theta_W$ in the $Z^0 - f \overline{f}$ coupling, while ρ multiplies the full neutral current amplitude. A modified version of $\kappa(m_Z^2)$, denoted as $\hat{\kappa}(m_Z^2)$, has also been important in establishing the connection between $\sin^2 \theta_{\text{eff}}$, employed by the Electroweak Working Group (EWWG) to analyze physics at the Z^0 peak, and the $\overline{\text{MS}}$ parameter $\sin^2 \hat{\theta}_W(m_Z)$ [6]. The amplitude $\kappa(q^2)$ and the parameter $\sin^2 \theta_W$ are frequently used in two renormalization schemes: the on-shell framework where $\sin^2 \theta_W \equiv 1 - m_W^2/m_Z^2$ [7], and the $\overline{\text{MS}}$ approach, where one employs $\sin^2 \hat{\theta}_W(\mu)$ and the form factor is denoted as $\hat{\kappa}$. One has, by definition, the relation [3]

$$\kappa(q^2) \sin^2 \theta_W = \hat{\kappa}(q^2, \mu) \sin^2 \hat{\theta}(\mu),$$

where μ is the ’t Hooft scale. In the on-shell scheme, $\kappa(q^2)$ and $\sin^2 \theta_W$ are μ-independent and can be separately regarded as physical observables, while in the $\overline{\text{MS}}$ framework it is the combination $\hat{\kappa}(q^2, \mu) \sin^2 \hat{\theta}(\mu)$ that plays that function. The traditional construction of ρ and $\hat{\kappa}(q^2, \mu)$ at $|q^2| \ll m_W^2$ leads to gauge invariant expressions, which are, however, process dependent.

Recently, Czarnecki and Marciano [8–10] emphasized that $\hat{\kappa}$ is particularly important in polarized Möller scattering at low s values ($s = (p_1 + p_2)^2$ where p_1 and p_2 are the four momenta of the initial electrons). In fact, at the tree-level the asymmetries measured in that process are proportional to $1 - 4 \sin^2 \hat{\theta}_W$, a very small number. Since in the presence of electroweak corrections this factor is replaced at $q^2 = 0$ by $1 - 4 \hat{\kappa}^{(e; e)}(0, m_Z) \sin^2 \hat{\theta}_W(m_Z)$, and $\hat{\kappa}^{(e; e)}(0, m_Z) \approx 1.03$, their effect induces a sharp reduction in the predicted asymmetries. This observation is of particular interest at present in view of the proposed E158 fixed target experiment at SLAC [11].

In Section 2 we discuss the construction of gauge independent form factors $\rho^{(e; e)}$ and $\hat{\kappa}^{(e; e)}(q^2, \mu)$ relevant to Möller scattering at s (and therefore q^2) $\ll m_W^2$, and evaluate them in the framework of the general R_ξ gauge. Their comparison with the traditionally defined amplitudes for other processes, such as ν-lepton scattering at $|q^2| \ll m_W^2$, is discussed. The relation between the effective angle defined by $\hat{\kappa}^{(e; e)}(q^2, \mu) \sin^2 \hat{\theta}_W(\mu)$ and $\sin^2 \theta_{\text{eff}}^{\nu}$ is analyzed.

In Section 3 we discuss a gauge and process independent running parameter $\sin^2 \hat{\theta}_W(q^2)$, defined on the basis of the Pinch Technique (PT) $\gamma - Z$ self-energy, and show that it approximates very accurately the electroweak corrections for Möller scattering at low s values, while it is rather close to $\sin^2 \theta_{\text{eff}}^{\nu}$ at $q^2 = m_Z^2$. The q^2 dependence of $\sin^2 \hat{\theta}_W(q^2)$ is then illustrated over a large range of values in the space-like and time-like domains.

2 Gauge-Independent Form Factors $\rho^{(e; e)}$ and $\hat{\kappa}^{(e; e)}(q^2, \mu)$

The traditional approach to obtain the form factors ρ and $\hat{\kappa}$ at $|q^2| \ll m_W^2$ in the case of $\nu - l$ and ν- hadron scattering [3,4], has been to consider the electroweak corrections in the limit
in which external fermion masses and momentum transfers are neglected relative to \(m_W \). The electroweak corrections can then be written as expressions bilinear in the matrix elements of \(J^Z_{\mu} \) and \(J^\gamma_{\mu} \); the fermionic currents coupled to \(Z^0 \) and \(\gamma \), respectively. Contributions bilinear in \(J^Z_{\mu} \) are absorbed in \(\rho \) while those proportional to \(J^\gamma_{\mu} J^\gamma_{\mu} \) define the form factor \(\hat{\kappa}(q^2) \). Photonic corrections to the external legs are treated separately. Writing the fermionic current of \(Z^0 \) in the form

\[
J^Z_{\mu} = -\bar{\psi} \frac{C_3 \gamma_{\mu} a_-}{2} \psi - \sin^2 \theta_W J^\gamma_{\mu},
\]

where \(a_- \equiv (1 - \gamma_5)/2 \), \(J^\gamma_{\mu} \) is the electromagnetic current and \(C_3 \) \((\pm 1)\) is twice the third component of weak isospin, this procedure leads to the replacement of the tree-level neutral current amplitude \(M^0_{ZZ} \) by

\[
M^0_{ZZ} \rightarrow \frac{im_Z^2}{q^2 - m_Z^2} \frac{8G_F}{\sqrt{2}} \rho^{(i; i')} < f | J^Z_{\mu} | i > < f' | J^Z_{\mu} | i' >, \tag{3}
\]

\[
J^Z_{\mu} \rightarrow -\bar{\psi} \frac{C_3 \gamma_{\mu} a_-}{2} \psi - \hat{\kappa}^{(i; i')} (q^2, \mu) \sin^2 \theta_W(\mu) J^\gamma_{\mu}, \tag{4}
\]

where \(G_F = 1.16637(1) \times 10^{-5}/\text{GeV}^2 \) is the Fermi constant determined from \(\mu \) decay, and the superscripts \((i; i')\) refer to the initial fermions in the process under consideration. Thus, as mentioned in Section 1, \(\rho \) and \(\hat{\kappa} \) are process dependent. In some cases, like \(\nu - l \) scattering, it is possible to absorb the complete electroweak corrections in these form factors. In other cases, such as \(\nu \)-hadron scattering, this is not possible since the electroweak corrections induce hadronic currents with an isospin structure not present at the tree level. The latter are then treated as additional contributions to those contained in Eqs. (3,4).

The approach described above has two important virtues: i) the dominant electroweak corrections are incorporated as compact and rather simple modifications of the tree-level neutral current amplitude and ii) the form factors \(\rho^{(i; i')} \) and \(\hat{\kappa}^{(i; i')} (q^2, \mu) \) are gauge independent.

In order to implement this construction in the case of Møller scattering, we consider the diagrams of Fig. 1 which contain all the gauge-dependent contributions to the \(\hat{\kappa} \) form factor associated with the \(< f' | J^Z_{\mu} | i' > \) matrix element. The mirror image of those diagrams contributes to the \(\hat{\kappa} \) factor present in the \(< f | J^Z_{\mu} | i > \) amplitude.

Using the results of Ref. [12], the diagrams of Fig. 1 can be calculated in the general \(R_\xi \) gauge. The gauge dependencies of the graphs indeed cancel and, performing the \(\overline{\text{MS}} \) subtraction, we find that their contribution to \(\hat{\kappa} \) in the case of the Møller scattering at \(s \) (and therefore \(|q^2| \ll m_W^2 \)) is given by

\[
\hat{\kappa}^{(e; e)} (q^2, \mu) = 1 + \frac{\alpha}{2\pi s^2} \ln \left(\frac{m_Z}{\mu} \right) \left[-\frac{1}{3} \sum_i (C_i Q_i - 4 s^2 Q_i^2) + 7 \hat{c}^2 + \frac{1}{6} \right] + \frac{\alpha}{2\pi s^2} \left[-\sum_i (C_i Q_i - 4 s^2 Q_i^2) I_i(q^2) + \left(\frac{7}{2} \hat{c}^2 + \frac{1}{12} \right) \ln \hat{c}^2 - \frac{23}{18} + \frac{s^2}{3} \right], \tag{5}
\]

where

\[
I_i(q^2) = \int_0^1 dx x (1 - x) \ln \frac{m_i^2 - q^2 x (1 - x)}{m_Z^2}, \tag{6}
\]
the i summation is over the fundamental fermions and includes a color factor 3 for quarks, C_i (± 1) is twice the third component of weak isospin for fermion i, Q_i is its electric charge in units of the proton charge e, m_i its mass, $c^2 \equiv m_W^2/m_Z^2$, and $s^2 \equiv 1 - c^2$ is an abbreviation for the $\overline{\text{MS}}$ parameter $\sin^2 \theta_W(m_Z)$.

The corresponding gauge independent form factor $\rho^{(e;e)}$ contains contributions from several diagrams discussed in Ref. [2], and in the Møller scattering case becomes

$$\rho^{(e;e)} = 1 + \frac{\hat{\alpha}(m_Z)}{4\pi s^2} \left\{ \frac{3}{4} \ln \frac{c^2}{s^2} - \frac{3}{4} + \frac{3}{4} \frac{m_i^2}{m_W^2} \left[1 + \frac{1}{2} \sum_i (C_i Q_i - 4 s^2 Q_i^2) + 7 c^2 + \frac{1}{2} \right] \right\} \left[\left(\ln \frac{c^2}{\xi} + \frac{1}{c^2} \right) \right]$$

where $\xi \equiv m_H^2/m_Z^2$, $\hat{\alpha}^{-1}(m_Z) = 1/127.9 \pm 0.1$, and $\delta_{QCD} \approx -0.12$ is a QCD correction [13].

Aside from the electroweak corrections in Eqs. [5], there are several additional contributions involving $Z - Z$ and $\gamma - Z$ boxes, the vertex diagram of Fig. 2 and QED corrections. These additional contributions are gauge independent and have been evaluated separately in Ref. [8].

At $q^2 = 0$, Eq. (5) becomes

$$\hat{k}^{(e;e)}(0, \mu) = 1 + \frac{\hat{\alpha}(m_Z)}{2\pi s^2} \ln \left(\frac{m_Z}{\mu} \right) \left[-\frac{1}{3} \sum_i (C_i Q_i - 4 s^2 Q_i^2) + 7 c^2 + \frac{1}{6} \right] \left(\ln \frac{c^2}{\mu^2} + \frac{7}{12} c^2 + \frac{1}{12} \right) \ln c^2 - \frac{23}{18} + \frac{s^2}{3} \right\}$$

In order to evaluate $\hat{k}^{(e;e)}(0, \mu)$ it is convenient to set $\mu = m_Z$. The parameter $\sin^2 \theta_W(m_Z)$ can be obtained from $\sin^2 \theta_{eff}^{\text{lept}}$ by using the analysis of Ref. [6]. Since in Section 3 we will consider a running parameter at large q^2 values, for the purpose of this paper we choose not to decouple the top quark in the explicit summations in Eqs. [5], or in the definition of $\sin^2 \theta_W(m_Z)$. In that case, for $m_t = 174.3$ GeV, we have $\sin^2 \theta_W(m_Z) = \sin^2 \theta_{eff}^{\text{lept}}/1.00044$. For $\sin^2 \theta_{eff}^{\text{lept}}$ we will use the central value of the current world average, 0.23148 [14], which leads to $\sin^2 \theta_W(m_Z) = 0.23138$. In the Appendix we report the results obtained if, instead, one employs as input the central value derived from the lepton asymmetries, namely $\sin^2 \theta_W(m_Z) = 0.23103$. For the contribution of the first five flavors of quarks to the i-summation in Eq. (8) one must invoke dispersion relations and experimental data on $e^+ e^- \rightarrow \text{hadrons}$: we use a recent update by Marciano [15]. Further employing $m_W = 80.426$ GeV, $m_Z = 91.1875$ GeV, $m_t = 174.3$ GeV [14], $m_H = 200$ GeV, we obtain

$$\hat{k}^{(e;e)}(0, m_Z) = 1.0270 \pm 0.0025,$$

$$\rho^{(e;e)} = 1.0034.$$ (9)

In the region $115 \text{ GeV} \leq m_H \leq 200 \text{ GeV}$, $\rho^{(e;e)}$ varies slowly with m_H. For instance, $\rho^{(e;e)} = 1.0037$ at $m_H = 115 \text{ GeV}$.

Most of the difference between Eqs. (7,10) and the results reported in Ref. [8] is due to the fact that we have retained the contributions of the $W - W$ boxes in $\hat{k}^{(e;e)}(0, m_Z)$ and $\rho^{(e;e)}$ in order to ensure their gauge independence. In contrast, in Ref. [8] these contributions have been separated out from the form factors in a particular gauge, namely the ’t Hooft-Feynman gauge.
In this gauge, the $W - W$ boxes contribute $\alpha/4\pi s^2$ to $\rho^{(e;e)}$ and $-\alpha/4\pi s^2$ to $\tilde{\kappa}^{(e;e)}$. However, in the general R_ξ gauges, they may be arbitrarily different. A second, smaller difference, is that, as explained before, we have included the top quark contribution in Eq. (3). We have already pointed out that the $Z - Z$ boxes are gauge independent and therefore they may be separated out without affecting the gauge properties of $\tilde{\kappa}^{(e;e)}$ and $\rho^{(e;e)}$. They are suppressed by a factor $1 - 4s^2$ and our calculation of these terms agrees with that reported in Ref. [8]. The contribution of the $Z - \gamma$ boxes, the diagram of Fig. 2 as well as the γ the large corrections associated with the overall effect of the electroweak corrections is to replace

\[1 - 4 \sin^2 \theta_W (m_Z) \rightarrow \rho^{(e;e)} \left\{ 1 - 4 \tilde{\kappa}^{(e;e)} (0, m_Z) \sin^2 \theta_W (m_Z) + (Z - Z)_{\text{box}} + F_1 (y, Q^2) \right\} , \]

which at $Q^2 = 0.025 \text{ GeV}^2$ and $y = 1/2$ equals $0.0454 \pm 0.0023 \pm 0.0010$. This is numerically very close to the result obtained by Czarnecki and Marciano because these authors chose to separate the contributions of the $W - W$ boxes in the 't Hooft-Feynman gauge, where they are reasonable small (cf. Section 4). As emphasized in Ref. [8], since $1 - 4 \sin^2 \theta_W (m_Z) = 0.07448 \pm 0.00068$, the effect of the electroweak corrections in this case is to reduce the asymmetries by $\approx 39\%$. Clearly, the bulk of the reduction is contained in

\[1 - 4 \tilde{\kappa}^{(e;e)} (0, m_Z) \sin^2 \theta_W (m_Z) = 0.0495 . \]

Detailed studies of radiative corrections to polarized Møller scattering at low and high energies are given in Ref. [16] and Ref. [17], respectively.

It should be pointed out that the correction $\tilde{\kappa}^{(e;e)} (0, m_Z) - 1 = 0.0270$ is very different from the corresponding effects in other processes. For instance, in $\nu_\mu - e$ and $\nu_e - e$ scattering one obtains $\tilde{\kappa}^{(\nu_e;e)} (0, m_Z) - 1 = -0.0032$ and $\tilde{\kappa}^{(\nu_\mu;e)} (0, m_Z) - 1 = -0.0210$, respectively [4]. The large difference is mainly due to sizable “charge radius” diagrams that contribute negatively and to significant and negative $W - W$ and $Z - Z$ box contributions. In contrast, the vertex diagram of Fig. 2 as well as the $Z - Z$ boxes are suppressed by $1 - 4s^2$ in the Møller scattering case, while the large corrections associated with the $\gamma - Z$ self-energy are not.

Using the gauge independent form factor $\tilde{\kappa}^{(e;e)} (q^2, \mu)$, it is possible to define an effective electroweak parameter for $|q^2| \ll m_W^2$:

\[\sin^2 \theta_{\text{eff}}^{(e;e)} (q^2) \equiv \text{Re} \tilde{\kappa}^{(e;e)} (q^2, \mu) \sin^2 \theta_W (\mu) . \]

For $q^2 < 0$, $\tilde{\kappa}^{(e;e)} (q^2, \mu)$ is real and the Re instruction is not necessary. Dividing Eq. (12) by

\[\sin^2 \theta_{\text{eff}}^{\text{lept}} = \text{Re} \tilde{k} (m_Z^2, \mu) \sin^2 \theta_W (\mu) , \]

where $\tilde{k} (m_Z^2, \mu)$ is the form factor discussed in Ref. [6], and neglecting two-loop effects not enhanced by powers of m_t^2, we find

\[\sin^2 \theta_{\text{eff}}^{(e;e)} (q^2) = \left\{ 1 + \text{Re} \left[\tilde{\kappa}^{(e;e)} (q^2, \mu) - \tilde{k} (m_Z^2, \mu) \right] \right\} \sin^2 \theta_{\text{eff}}^{\text{lept}} . \]
The μ dependence cancels in Eq. (14) so that we may choose $\mu = m_Z$, and Eq. (14) becomes

$$\sin^2 \theta_{eff}^{(e;e)}(q^2) = \left[\text{Re} \hat{k}^{(e;e)}(q^2, m_Z) - 0.00044 \right] \sin^2 \theta_{eff}^{\text{lept}}. \quad (15)$$

Eq. (15) establishes a scale-independent relationship between the two gauge independent parameters $\sin^2 \theta_{eff}^{(e;e)}(q^2)$ and $\sin^2 \theta_{eff}^{\text{lept}}$, which may be regarded as physical observables.

It is worthwhile to point out that the form factors $\hat{k}^{(e;e)}(q^2, \mu)$ and $\hat{k}(m^2_Z, \mu)$ are quite different conceptually even when \hat{k} is evaluated at $q^2 = m^2_Z$. While \hat{k} is relevant to four-fermion scattering processes, $\hat{k}(m^2_Z, m_Z)$ involves the decay amplitude of an on-shell Z^0 into an $l - \bar{l}$ pair.

3 The running of $\sin^2 \hat{\theta}_W$

In this Section we discuss the possibility of constructing a running electroweak mixing parameter for arbitrary values of q^2. We will impose four theoretical requirements: i) it should be process independent ii) since $\sin^2 \hat{\theta}_W$ is related to $\gamma - Z$ mixing, it should involve the $A_{\gamma Z}(q^2)$ self-energy in a fundamental way iii) it should be gauge independent, at least in the class of R_ξ gauges iv) it should be as simple as possible.

At first hand, these requirements seem difficult to satisfy. In fact, we have seen in Section 2 that, in order to obtain gauge independent form factors, the contributions of box diagrams must be included. Since in general box diagrams depend on two kinematic variables, s and q^2, and are process dependent, it is not trivial to see how to achieve our aims. However, there is a well known framework that allows us to satisfy these conditions, namely the Pinch Technique (PT) [18–27]. We recall that the PT is a prescription that judiciously combines the conventional self-energies with “pinch parts” from vertex and box diagrams in such a manner that the new self-energies are gauge independent and possess desirable theoretical properties. In Ref. [22], it was shown that the “pinch parts” can be identified with amplitudes involving appropriate equal-time commutators of currents, which explains why they are process independent and unaffected by strong interaction dynamics.

In this Section we discuss a running electroweak mixing parameter $\sin^2 \hat{\theta}_W(q^2)$ defined in terms of the PT γZ self-energy. Specifically,

$$\sin^2 \hat{\theta}_W(q^2) \equiv \left(1 - \frac{\hat{c}}{\hat{s}} \frac{a_{\gamma Z}(q^2, \mu)}{q^2} \right) \sin^2 \hat{\theta}_W(\mu), \quad (16)$$

where $a_{\gamma Z}(q^2, \mu)$, the PT γZ self-energy of the SM, can be conveniently expressed as [22]

$$a_{\gamma Z}(q^2, \mu) = A_{\gamma Z}(q^2, \mu)|_{\xi_W=1} - \frac{2\epsilon^2}{\hat{c}\hat{s}} \left(2q^2 \hat{c}^2 - m_W^2 \right) I_{WW}(q^2, \mu). \quad (17)$$

In Eq. (17) $A_{\gamma Z}(q^2, \mu)|_{\xi_W=1}$ is the conventional $\gamma - Z$ self-energy evaluated in the ’t Hooft-Feynman gauge $\xi_W = 1$, and

$$I_{WW}(q^2, \mu) = \frac{1}{16\pi^2} \int_0^1 dx \ln \left[\frac{m_W^2 - q^2 x (1 - x) - i \epsilon}{\mu^2} \right]. \quad (18)$$
Very simple analytic formulae for $I_{W W}(q^2, \mu)$ are given in Eqs. (A5 - 7) of Ref. [22]. In Eq. (18) we have performed the $\overline{\text{MS}}$ subtraction of $\delta = (n - 4)^{-1} + (\gamma - \ln 4\pi)/2$. It is understood that the same subtraction has been implemented in $A_{\gamma Z}(q^2, \mu)|_{\xi W=1}$.

Since the r.h.s. of Eq. (16) is process and gauge independent, it satisfies our theoretical requirements. It is also important to remember that, unlike $A_{\gamma Z}(q^2, \mu)|_{\xi W=1}$, $\alpha_{\gamma Z}(0, \mu) = 0$, so that Eq. (16) is regular as $q^2 \to 0$.

It is convenient to define
\[
\hat{\kappa}^{PT}(q^2, \mu) = 1 - \frac{\alpha}{8} \frac{a_{\gamma Z}(q^2, \mu)}{q^2}.
\] (19)

In the range $|q^2| \ll m_W^2$, we find
\[
\hat{\kappa}^{PT}(q^2, \mu) = 1 + \frac{\alpha}{2\pi s^2} \ln \left(\frac{m_Z}{\mu} \right) \left[-\frac{1}{3} \sum_i (C_i Q_i - 4 s^2 Q_i^2) + 7 \hat{c}^2 + \frac{1}{6} \right] \\
+ \frac{\alpha}{2\pi s^2} \left[-\sum_i (C_i Q_i - 4 s^2 Q_i^2) I_i(q^2) + \left(\frac{7}{2} \hat{c}^2 + \frac{1}{12} \right) \ln c^2 - \frac{\hat{c}^2}{3} \right],
\] (20)

Comparing Eq. (20) with Eq. (5), we have, for $|q^2| \ll m_W^2$:
\[
\hat{\kappa}^{PT}(q^2, \mu) = \hat{\kappa}^{(e; e)}(q^2, \mu) + \frac{17}{18} \frac{\alpha}{2\pi s^2}.
\] (21)

Thus, while $\hat{\kappa}^{(e; e)}(0, m_Z) = 1.0270 \pm 0.0025$ (cf. Eq. (17)),
\[
\hat{\kappa}^{PT}(0, m_Z) = 1.0317 \pm 0.0025,
\] (22)
a difference of 4.7×10^{-3}. We see that the PT form factor approximates rather well $\hat{\kappa}^{(e; e)}(0, m_Z)$ at $q^2 = 0$. More interestingly, the PT running parameter evaluated at $q^2 = 0$ almost exactly absorbs the complete calculation reported in Eq. (11) for $y = 1/2$ and $Q^2 = 0.025 \text{ GeV}^2$. In fact, using Eqs. (16, 19, 22), we have
\[
\sin^2 \hat{\theta}_W(0) = 0.2387 \pm 0.0006.
\] (23)

This leads to
\[
1 - 4 \sin^2 \hat{\theta}_W(0) = 0.0452 \pm 0.0023,
\] (24)
in very close agreement with $0.0454 \pm 0.0023 \pm 0.0010$, reported after Eq. (11), when all electroweak corrections are taken into account. Of course, this very accurate agreement will generally not hold for other values of y and Q^2, but it is interesting that $1 - 4 \sin^2 \hat{\theta}_W(0)$ does absorb quite precisely the bulk of the corrections to Møller scattering at $s \ll m_W^2$.

In order to evaluate $\sin^2 \hat{\theta}_W(q^2)$ as a function of q^2, we set $\mu = m_Z$ and employ the expressions for $A_{\gamma Z}^{(f)}(q^2, m_Z)$ from Ref. [2], $A_{\gamma Z}^{(b)}(q^2, m_Z)|_{\xi W=1}$ from Ref. [28] (f and b mean fermionic and bosonic contributions), and $I_{W W}(q^2, m_Z)$ from Ref. [22]. As for α, we follow the approach of Ref. [29] and replace $\alpha^{-1} \to \alpha^{-1}(q^2)$,
\[
\alpha^{-1}(q^2) = \alpha^{-1} - \frac{2}{\pi} \sum_i Q_i^2 \int_0^1 dx \ln \left(\frac{m_i^2 - q^2 x (1 - x)}{m_i^2} \right).
\] (25)
In evaluating $A_{\gamma Z}(q^2, m_Z)$ and $\alpha^{-1}(q^2)$, we employ the effective light quark masses and the QCD correction factor discussed in Ref. [15].

Figs. 3 and 4 show $\sin^2 \hat{\theta}_W(q^2)$ in the space-like domain $q^2 < 0$, appropriate for e^+e^- colliders, as a function of $Q = (-q^2)^{1/2}$. Table 1 gives a few representative values of $\hat{\kappa}(q^2, m_Z)$ and $\sin^2 \hat{\theta}_W(q^2)$ in that region.

We see that $\sin^2 \hat{\theta}_W(q^2)$ equals 0.2387 at $Q = 0$, 0.2320 at $Q = m_Z$, reaches a minimum of 0.23199 at $Q = 111$ GeV, and then increases monotonically to 0.2352 at $Q = 500$ GeV and 0.2382 at $Q = 1$ TeV.

Fig. 4 bears a close resemblance to a curve presented in Refs. [9,10] for a running parameter constructed on the basis of the diagrams in Figs. (1a,d). The theoretical foundation of the two running parameters is, however, very different. While the PT self-energy is gauge independent within the class of R_ξ gauges, the sum of the diagrams in Figs. (1a,d) is not. Thus, in principle, by varying the gauge in the second approach one can alter the values and Q^2 dependence of the running parameter.

A second problem, already discussed in Ref. [22], is that diagram (1d) is not truly process-independent, even in the limit of neglecting the external fermion masses. For instance, when the external fermion is a quark or a hadron, there are QCD corrections not present in the leptonic case. As explained in Ref. [22], this problem is neatly bypassed in the PT approach since the pinch part of Fig. (1d) is unaffected by strong interaction dynamics.

In the time-like domain $q^2 > 0$, $\hat{\kappa}^{PT}(q^2, \mu)$ is complex and we define the running parameter as

$$\sin^2 \hat{\theta}_W(q^2) \equiv \Re \left[\hat{\kappa}^{PT}(q^2, m_Z)\right] \sin^2 \hat{\theta}_W(m_Z)$$

In Figs. 5 and 6 we present values of $\sin^2 \hat{\theta}_W(q^2)$ in the time-like domain $q^2 > 0$, appropriate to e^+e^- colliders, as a function of $Q = (q^2)^{1/2}$. A sharp decrease associated with the $W - W$ threshold is very visible. In order to soften the behavior in that region we have included the W width by means of the replacement $m_W^2 \rightarrow m_W^2 - i m_{2W} \Gamma_{2W}$, with $m_{2W} = m_W / (1 + (\Gamma_W/m_W)^2)^{1/2} = 80.398$ GeV and $\Gamma_{2W} = 2 m_W \Gamma_W/m_W = 2.117$ GeV [30].

At $Q = m_Z$, we find $\sin^2 \hat{\theta}_W(m_Z^2) = 0.23048$, which is lower than $\sin^2 \hat{\theta}_{eff}^{lep} = 0.23148$ by 0.43 %. Although not in perfect consonance, the two parameters are rather close. Other representative values of $\hat{\kappa}^{PT}$ and $\sin^2 \hat{\theta}_W(q^2)$ in the time-like region are given in Table 2. We see that $\sin^2 \hat{\theta}_W(q^2)$ ranges from 0.2387 at $Q = 0$ to 0.2305 at $Q = m_Z$, reaches a minimum of 0.2241 at $Q = 164$ GeV, and then increases monotonically to 0.2338 at $Q = 500$ GeV and 0.2378 at $Q = 1$ TeV.

It is interesting to note that $\sin^2 \hat{\theta}_W(-m_Z^2)$ is slightly larger then $\sin^2 \hat{\theta}_{eff}^{lep}$, the difference being 0.22 %. Thus, $\sin^2 \hat{\theta}_{eff}^{lep}$ lies between $\sin^2 \hat{\theta}_W(m_Z^2)$ and $\sin^2 \hat{\theta}_W(-m_Z^2)$.

4 Discussion

Aside from the general observation that physical results in gauge theories should be parametrized in a gauge-independent manner, there are specific reasons why this is particularly important in the case of the electroweak form factors ρ and κ:

i) If $\hat{\kappa}^{(e;e)}(q^2, \mu)$ is gauge independent, the effective electroweak mixing parameter $\sin^2 \hat{\theta}_{eff}^{(e;e)}(q^2)$ defined in Eq. (12) is also gauge independent, and consequently may be regarded as a physical
observable. In particular, \(\sin^2 \theta_{e\text{ff}}^{(e;e)}(0) \) can be measured by polarized Møller scattering with considerable precision. If \(\hat{\kappa}^{(e;e)}(q^2, \mu) \) is defined in a gauge-dependent manner, this is theoretically unfounded, since \(\sin^2 \theta_{e\text{ff}}^{(e;e)}(q^2) \) would not qualify as a physical observable.

i) The parameterization in terms of \(\rho \) and \(\hat{\kappa} \) involves a factorization of one-loop electroweak corrections (see, for example, Eqs. (3,4,11)). If the form factors are defined in a gauge-dependent manner, one can make the two-loop effects induced by the factorization to vary arbitrarily by simply changing the gauge used to calculate the form factors. These effects can be very large for large values of the gauge parameter and, in fact, the calculation diverges in the unitary, i.e. the physical, gauge!

ii) It should be also pointed out that the electroweak form factors for other processes, such as discussed in Refs. [2–4], have been defined in a gauge-independent manner.

In order to circumvent these theoretical problems, in Section 2 we have discussed the derivation of gauge independent form factors \(\rho^{(e;e)} \) and \(\hat{\kappa}^{(e;e)}(q^2, \mu) \) appropriate to Møller scattering at \(s \ll m_Z^2 \). For the reasons explained after Eq. (11), the overall electroweak corrections including these form factors, as well as the gauge-independent corrections that have been separated out, agree numerically very closely with the results of Ref. [8]. We have pointed out that \(\hat{\kappa}^{(e;e)}(q^2, \mu) - 1 \) is quite different from the corresponding form factors in other processes such as \(\nu_\mu - e \) or \(\nu_e - e \) scattering. Thus, it is not possible, even at \(|q^2| \ll m_W^2 \), to find a universal electroweak mixing parameter that absorbs the bulk of the electroweak corrections in all processes.

However, as emphasized in Refs. [8–10], experiments on polarized Møller scattering are very special in that the asymmetries measured in that process are greatly affected by \(\hat{\kappa}^{(e;e)}(q^2, m_Z) \) and may be used to measure the effective mixing parameter \(\sin^2 \theta_{e\text{ff}}^{(e;e)}(q^2) \). At \(s \ll m_W^2 \) this is of considerable present interest in view of the proposed E158 experiment at SLAC [11].

In Section 2 we have also derived a scale-independent relation between \(\sin^2 \theta_{e\text{ff}}^{(e;e)}(q^2) \) and \(\sin^2 \theta_{e\text{ff}}^{\text{lept}} \). In particular, this relation may be employed to discuss the electroweak corrections to Møller scattering in the effective scheme of renormalization, in which residual scale dependencies cancel in finite orders of perturbation theory, and \(\sin^2 \theta_{e\text{ff}}^{\text{lept}} \) plays the role of the basic electroweak parameter [31–34].

In Section 3 we have discussed a gauge and process independent running parameter based on the PT \(\gamma Z \) self-energy [22]. At \(q^2 = 0 \) it absorbs very precisely the electroweak corrections to Møller scattering evaluated in Ref. [8] at \(y = 1/2 \) and \(Q^2 = 0.025 \text{GeV}^2 \), and at \(q^2 = m_Z^2 \) it lies within 0.43% of \(\sin^2 \theta_{e\text{ff}}^{\text{lept}} \). Thus it provides an attractive theoretical and phenomenological framework to describe the running of the electroweak mixing parameter over a large range of \(q^2 \) values.

Acknowledgments

The work of A. S. was supported in part by NSF Grant PHY-0245068. The work of A. F. was supported by the DFG-Forschergruppe “Quantenfeldtheorie, Computeralgebra und Monte-Carlo-Simulation”.

8
Appendix

In this Appendix we report the numerical results obtained if one employs as input the central value of $\sin^2 \theta_{\text{lept}}^{\text{eff}}$ derived from the leptonic asymmetries, namely $\sin^2 \theta_{\text{lept}}^{\text{eff}} = 0.23113$, rather than the world average.

Without decoupling the top quark contributions, we have $\sin^2 \hat{\theta}_W(m_Z) = 0.23103$. The value in Eq. (9) is replaced by 1.0271 ± 0.0025, while Eq. (11) equals $0.0467 \pm 0.0023 \pm 0.0010$. $1 - 4 \hat{\kappa}^{(e,e)}(0, m_Z) \sin^2 \hat{\theta}_W(m_Z)$ becomes 0.0508, to be compared with $1 - 4 \sin^2 \hat{\theta}_W(m_Z) = 0.0759$. Eqs. (22, 23, 24) equal 1.0319 ± 0.0025, 0.2384 ± 0.0006, and 0.0464 ± 0.0023, respectively. The values of $\sin^2 \theta_W(q^2)$ are smaller by 0.0003 or 0.0004 that those in Table 1 and by 0.0004 than those in Table 2.

References

[1] See, for example, J. Erler and P. Langacker, in “Review Of Particle Physics,” K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66, 010001 (2002), Section 10.

[2] W. J. Marciano and A. Sirlin, Phys. Rev. D22 (1980) 2695.

[3] S. Sarantakos, A. Sirlin and W. J. Marciano, Nucl. Phys. B 217 (1983) 84.

[4] J. N. Bahcall, M. Kamionkowski and A. Sirlin, Phys. Rev. D 51 (1995) 6146 [arXiv:astro-ph/9502003].

[5] G. Degrassi and A. Sirlin, Nucl. Phys. B352 (1991) 342.

[6] P. Gambino and A. Sirlin, Phys. Rev. D 49 (1994) 1160 [arXiv:hep-ph/9309326]; G. Degrassi, P. Gambino and A. Sirlin, Phys. Lett. B 394 (1997) 188 [arXiv:hep-ph/9611363].

[7] A. Sirlin, Phys. Rev. D22 (1980) 971 and Phys. Rev. D29 (1984) 89, K. Aoki et al., Supplement of the Progress of Theoretical Physics 73 (1982) 1; M. Böhm, H. Spiesberger, and A. Hollik, Fortsh. Phys. 34 (1986) 687; A. Hollik, ibid. 38 (1990) 165.

[8] A. Czarnecki and W. J. Marciano, Phys. Rev. D 53 (1996) 1066 [arXiv:hep-ph/9507420].

[9] A. Czarnecki and W. J. Marciano, Int. J. Mod. Phys. A 13 (1998) 2235 [arXiv:hep-ph/9801394].

[10] A. Czarnecki and W. J. Marciano, Int. J. Mod. Phys. A 15 (2000) 2365 [arXiv:hep-ph/0003049].

[11] K. S. Kumar, E. W. Hughes, R. Holmes and P. A. Souder, Mod. Phys. Lett. A 10 (1995) 2979.

[12] G. Degrassi and A. Sirlin, Nucl. Phys. B 383 (1992) 73.
[13] See, for example, K. Philippides and A. Sirlin, Nucl. Phys. B 450 (1995) 3 [arXiv:hep-ph/9503434].

[14] The LEP Electroweak Working Group, EP Preprint Winter 2003 (http://lepewwg.web.cern.ch/LEPEWWG/).

[15] W. J. Marciano, BNL-60177 Lectures given at 21st Annual SLAC Summer Institute on Particle Physics: Spin Structure in High Energy Processes, Stanford, CA, 26 Jul - 6 Aug 1993

[16] F. J. Petriello, Phys. Rev. D 67 (2003) 033006 [arXiv:hep-ph/0210259].

[17] A. Denner and S. Pozzorini, Eur. Phys. J. C 7 (1999) 185 [arXiv:hep-ph/9807446].

[18] J. M. Cornwall, in: J. W. Dash (Ed.), the 1981 French-American Seminar “Theoretical aspects of Quantum Chromodynamics” Marseille, France, 1981, p. 95; CPT-81/ p. 1345.

[19] J. M. Cornwall, Phys. Rev. D 26 (1982) 1453.

[20] J. M. Cornwall and J. Papavassiliou, Phys. Rev. D 40, 3474 (1989).

[21] J. Papavassiliou, Phys. Rev. D 41 (1990) 3179.

[22] G. Degrassi and A. Sirlin, Phys. Rev. D 46 (1992) 3104. This paper contains a discussion of previous attempts to construct effective running couplings for the electroweak sector of the SM.

[23] G. Degrassi, B. A. Kniehl and A. Sirlin, Phys. Rev. D 48, 3963 (1993).

[24] B. A. Kniehl and A. Sirlin, Phys. Rev. Lett. 81, 1373 (1998) [arXiv:hep-ph/9805390].

[25] N. J. Watson, [arXiv:hep-ph/9912303]

[26] J. Papavassiliou, Phys. Rev. Lett. 84 (2000) 2782 [arXiv:hep-ph/9912336].

[27] D. Binosi and J. Papavassiliou, Phys. Rev. D 66 (2002) 111901 [arXiv:hep-ph/0208189].

[28] A. Sirlin, Nucl. Phys. B 332 (1990) 20.

[29] See, for example, A. Sirlin, Phys. Rev. Lett. 67 (1991) 2127.

[30] W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 46 (1981) 163.

[31] A. Ferroglia, G. Ossola and A. Sirlin, Phys. Lett. B 507 (2001) 147 [arXiv:hep-ph/0103001], and NYU-TH/01/06/01 preprint, arXiv:hep-ph/0106094.

[32] A. Ferroglia, G. Ossola, M. Passera and A. Sirlin, Phys. Rev. D 65 (2002) 113002 [arXiv:hep-ph/0203224].

[33] A. Sirlin, Nucl. Phys. Proc. Suppl. 116 (2003) 53 [arXiv:hep-ph/0210361].

[34] A. Sirlin, J. Phys. G 29 (2003) 213 [arXiv:hep-ph/0209079].
Figure 1: Feynman diagrams that give gauge-dependent contributions to the $\hat{\kappa}$ form factor in $\langle f'| J_{\mu}^{\gamma} | i' \rangle$. The circle in Fig. (1a) represents the contribution of $A_{Z\gamma}$, including its fermionic and bosonic components. The solid line circles in Figs. (1b,1e) indicate a sum of diagrams in which the ends of the W propagator are attached in all possible ways to the fermion lines. In particular, they include the W contribution to the wave function renormalization of the external lines. Diagram (1f) represents the W-W box diagrams, whether crossed or uncrossed.
Figure 2: Gauge-independent vertex diagram. The meaning of the solid line circle is the same as in Fig. 1.

Figure 3: $\sin^2 \hat{\theta}_W(q^2)$ as a function of $Q = (-q^2)^{1/2}$ in the space-like domain $q^2 < 0$, for $0 \leq Q \leq 10 \, \text{GeV}$.

Figure 4: Same as in Fig. 3 for $10 \text{ GeV} \leq Q \leq 1 \text{ TeV}$.

Figure 5: $\sin^2 \hat{\theta}_W(q^2)$ as a function of $Q = (q^2)^{1/2}$ in the time-like domain $q^2 > 0$, for $50 \leq Q \leq 300 \text{ GeV}$.
Figure 6: Same as in Fig. 5 for $10 \text{ GeV} \leq Q \leq 1 \text{ TeV}$.

Table 1: $\hat{\kappa}_{\text{PT}}(q^2, m_Z)$ and $\sin^2 \hat{\theta}_W(q^2)$ for $q^2 < 0$ at different values of Q ($Q = \sqrt{-q^2}$).
Table 2: $\hat{\kappa}^{PT}(q^2, m_Z)$ and $\sin^2 \hat{\theta}_W(q^2)$ for $q^2 > 0$ at different values of Q ($Q = \sqrt{q^2}$).