Better Late Than Never: Filling a Void in the History of Fast Matrix Multiplication and Tensor Decompositions

Victor Y. Pan

Department of Mathematics and Computer Science
Lehman College of the City University of New York
Bronx, NY 10468 USA
and
Ph.D. Programs in Mathematics and Computer Science
The Graduate Center of the City University of New York
New York, NY 10036 USA
victor.pan@lehman.cuny.edu
http://comet.lehman.cuny.edu/vpan/

Abstract

Multilinear and tensor decompositions are a popular tool in linear and multilinear algebra and have a wide range of important applications to modern computing. Our paper of 1972 presented the first nontrivial application of such decompositions to fundamental matrix computations and was also a landmark in the history of the acceleration of matrix multiplication. Published in 1972 in Russian, it has never been translated into English. It has been very rarely cited in the Western literature on matrix multiplication and never in the works on multilinear and tensor decompositions. This motivates us to present its translation into English, together with our brief comments on its impact on the two fields.

2000 Math. Subject Classification: 15A69, 01A60, 15-03

Key Words: Tensor decomposition, Multilinear algebra, Matrix multiplication, Linear algebra

Multilinear or tensor decompositions have been introduced by Hitchcock in 1927, but received scant attention until a half of a dozen of papers appeared in 1963–70 in the psychometrics literature. Our paper [6] was the next major step in this history. It presented the earliest known application of nontrivial multilinear and tensor decompositions to fundamental matrix computations. By now such decompositions have become a popular tool in linear and multilinear algebra and have a wide range of important applications to modern computing (see [10], [4], [5], and the bibliography therein). The paper [6] was also a landmark in the history of the acceleration of matrix multiplication, hereafter referred to as MM (see our recent brief review of the history of that study in [8]).

Let us supply some specific comments. Hereafter $\text{MM}(m, k, n)$ denotes the problem of multiplying a matrix A of size $m \times k$ by a matrix B of size $k \times n$, which are square matrices if $m = k = n$. Let D denote an auxiliary $n \times m$ matrix and let $l_s(A)$, $l'_s(B)$, and $l''_s(D)$ denote linear forms in the entries of the matrices A, B, and D, respectively.

According to Part 1 of [6, Theorem 2], we can perform $M(K, K, K)$ by using cK^ω arithmetic operations for any positive integer K, a constant c independent of K, and $\omega = 3 \log_{mkn} r_{mkn}$ provided that we are given a bilinear algorithm of rank r_{mkn} for $M(m, k, n)$, that is, a bilinear decomposition of the set of the mn entries of the product AB into the sum of r_{mkn} bilinear products. This reduces square $\text{MM}(K, K, K)$ for all K to rectangular $M(m, k, n)$ for any fixed triple of m, k, and n.

[6, Theorem 2] reduces bilinear decomposition of rank R for $\text{MM}(m, k, n)$ to decomposition of the trilinear form $\text{trace}(ABD)$ of rank R, that is, its decomposition into a sum $\sum_{s=1}^{R} l_s(A)l'_s(B)l''_s(D)$. That simple but basic result turns the problem of the acceleration of MM into the search for trilinear decompositions of $\text{trace}(ABD)$ of smaller rank where A, B, and D denote 3 matrices of fixed sizes.

The paragraph following that theorem of [6] demonstrates a novel nontrivial technique of trilinear aggregation for generating such decompositions. The demonstration is by presenting a decomposition of $\text{trace}(ABD)$ for $\text{MM}(n, n, n)$ generated by means of using this technique. The decomposition has rank $0.5n^3 + 3n^2$ for any even n (versus the straightforward decomposition of rank n^3). After
its refinement in 1978 in [7], the technique of trilinear aggregation enabled a decomposition of rank \(\frac{1}{4}(n^3 - 4n) + 6n^2 \) for the trace(ABD) for MM\((n, n, n)\). For \(n = 70 \) the rank turns into 143,640, and this implied the decrease of the record exponent of MM, \(\log_2(7) < 2.8074 \), established in 1969 in [9], to \(3 \log_7 143,640 < 2.7962 \), that is, implied the acceleration of MM\((n, n, n)\) from \(c n^{2.8704} \) for a constant \(c \) to \(O(n^{2.7962}) \).

This was a landmark in the study of MM because since 1969, when the MM exponent was decreased from 3 to 2.8074 in [9], all leading experts worldwide intensified their effort in competition for decreasing it further, towards the information lower bound 2. The exponent 2.8074, however, has defied these intensive attacks for almost a decade, from 1969 to 1978, until it was beaten in [7], based on the application of trilinear aggregation. The new exponent was decreased a number of times soon thereafter, and trilinear aggregation remained an indispensable ingredient of almost all algorithms supporting this development (see [4, page 255]).

The other results of the paper [6] were also of interest for the study of MM. [6, Theorem 1] has established some early upper and lower bounds on the arithmetic complexity of the general problem \(MM(m, k, n) \) for any triple of \(m, k, \) and \(n \) and on its rank, that is, the minimal rank of its bilinear and trilinear decompositions. The theorem has also estimated the arithmetic complexity of MM and its rank in terms of one another and has bounded the rank and arithmetic complexity of the specific problems \(MM(2, 2, n) \), \(MM(2, 3, 3) \), \(MM(2, 3, 3) \), \(MM(2, 3, 4) \), and \(MM(2, 4, 4) \). Moreover part 5 of [6, Theorem 1] showed the duality of 6 algorithms for the 6 problems \(MM(m, k, n) \), \(MM(k, n, m) \), \(MM(n, m, k) \), \(MM(k, m, n) \), \(MM(n, k, m) \), and \(MM(m, n, k) \). In [3] and [11] the duality technique was applied to the design of efficient algorithms for MM, convolution, integer multiplication, and the FIR filters. [6, Theorem 3] provides a nontrivial explicit expression for all bilinear algorithms of rank 7 for \(MM(2, 2, 2) \) (cf. [2]).

The paper [6] has been written by the author in his spare time while he was working in Economics to make his living. The paper was published in Russian, never translated into English so far, very rarely cited in the Western literature on MM and never in the works on multilinear and tensor decompositions. This motivates us to undertake its translation into English, which we present below.

Acknowledgements: Our work has been supported by NSF Grant CCF–1116736 and PSC CUNY Award 67699–00 45.

References

[1] D. Coppersmith, S. Winograd, Matrix Multiplication via Arithmetic Progressions. J. of Symbolic Computations, 9, 3, 251–280, 1990. Proc. version in 19th ACM STOC 1987 (New York, NY), 1–6, ACM Press, New York, NY, 1987.

[2] H.F. de Groot, On Varieties of Optimal Algorithms for the Computation of Bilinear Mappings. Theoretical Computer Science, 7, 1–24, 1978.

[3] J.E. Hopcroft, J. Musinski, Duality Applied to Matrix Multiplication and Other Bilinear Forms. SIAM Journal on Computing, 2, 3, 159–173, 1973.

[4] T.G. Kolda, B.W. Bader, Tensor Decompositions and Applications. SIAM Review, 51, 3, 455–500, 2009.

[5] I.V. Oseledets, E.E. Tyrtyshnikov, TT-cross Approximation for Multidimensional Arrays. Linear Algebra Appl. 432, 1, 70–88, 2010.

[6] V.Y. Pan, On Schemes for the Evaluation of Products and Inverses of Matrices (in Russian). Uspekhi Matematicheskih Nauk, 27, 5 (167), 249–250, 1972.

[7] V.Y. Pan, Strassen’s Algorithm Is Not Optimal. Trilinear Technique of Aggregating for Fast Matrix Multiplication. Proc. the 19th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’78), 166–176, IEEE Computer Society Press, Long Beach, California, 1978.

[8] V.Y. Pan Fast Matrix Multiplication, Trilinear Decompositions, APA algorithms, and Binary Segmentation, preprint, 2014.

[9] V. Strassen, Gaussian Elimination Is Not Optimal. Numerische Math., 13, 354–356, 1969.

[10] E. E. Tyrtyshnikov, Tensor Approximations of Matrices Generated by Asymptotically Smooth Functions. Mat. Sbornik, 194, 6, 147–160, 2003.

[11] S. Winograd, Arithmetic Complexity of Computations, CBMS-NSF Regional Conference Series in Applied Math., SIAM, Philadelphia, 1980.
Suppose we seek the values of M rational functions $R_l = R_l(x_1, \ldots, x_N)$, $l = 1, \ldots, M$, at N points x_1, \ldots, x_N. Fix a sequence of arithmetic operations $p_i = R'_i \circ R''_i$, $i = 1, \ldots, Q$, such that every symbol o stands for \pm, \times or \div; every R'_i as well as R''_i (for $i = 1, \ldots, Q$) is either a constant, or one of the x_1, \ldots, x_N, or p_j for $j < i$, and $p_{x_i} \equiv R_0$ identically in x_1, \ldots, x_N for $1 \leq s_i \leq Q$ and $l = 1, \ldots, M$. Call such a sequence a \textit{computational program of length} Q for computing the functions R_1, \ldots, R_M (see [1] page 104). See some examples of these programs for $N = 1$ in [1].

Consider such programs for computing a matrix product $C_{mn} = A_{mk}B_{kn}$ and the inverse matrix $D_n = (A_n)^{-1}$. In this case the inputs x_n are given by the entries of the matrices A_{mk}, B_{kn}, and A_n, and the outputs R_l are the entries of the matrices C_{mn} and D_n. Let Q_{mkn} and Q_n denote the lengths of the programs. We naturally arrive at the two problems of devising programs of the minimal lengths for matrix multiplication and inversion. Below we reduce both of them to a single problem expressed through identity (1) below (see parts 1–3 of Theorem 1).

Given four positive integers m, k, n, and R and three matrices $\{U, V, W\} = \{u_{ij}^{(s)}, v_{gh}^{(s)}, w_{lq}^{(s)}\}$ for $g, j = 0, 1, \ldots, k - 1; i, l = 0, 1, \ldots, m - 1; h, q = 0, 1, \ldots, n - 1; s = 1, \ldots, R$, assume the following identities in a_{ij} and b_{gh},

\[
c_i = \sum_{g=0}^{k-1}a_{il}b_{pq} = \sum_{s=1}^{R}u_{il}^{(s)}(\sum_{i=0}^{m-1}a_{ij}^{(s)}u_{jg}^{(s)})(\sum_{g=0}^{n-1}v_{gh}^{(s)})b_{gh}
\]

(1) for $l = 0, \ldots, m - 1$ and $q = 0, \ldots, n - 1$. Then we call \textbf{'1'} \textit{elementary program} for multiplication of matrices A_{mk} and B_{kn}, call the numbers $u_{ij}^{(s)}$, $v_{gh}^{(s)}$, $w_{lq}^{(s)}$ the elements of the program, and call $R = R_{mkn}$ its length. Let q_{mkn} and q_n denote the minimums of the lengths Q_{mkn} and Q_n, respectively, over all computational programs and let r_{mkn} denote the minimum of the length R_{mkn} over all elementary programs.

Clearly, identity \textbf{'1'} still holds where c_{ilq}, a_{iij}, b_{gh} are not numbers but, say, square matrices of a fixed size. For their multiplication we can again apply elementary program \textbf{'1'}. By repeating this recursively, we can reduce general matrix multiplication to multiplication of matrices of small sizes. More precisely, every decrease of the integer value $p = \min_{m,k,n}$ p_{mkn}, for $p_{mkn} = 3 \log_{mkn} r_{mkn}$, implies a decrease of the order of the length q_{KKK} as $K \to \infty$ (see part 1 of Theorem \textbf{'1'} below). The construction in \textbf{[2]} of an elementary program supporting $R_{222} = 7$ has immediately yielded programs of length $Q_{KKK} \leq C(2,2,2)K^{\log_2 7}$ for all K. Furthermore, the orders of magnitude of the values r_{mkn} and q_{mkn} coincide with one another up to within the term $mk + kn + mn$ (see below part 3 of Theorem \textbf{'1'}). Let us state these facts formally and complement them with some estimates for r_{mkn} and q_{mkn}.

Theorem 1. Fix four natural numbers K, m, k, and n. Then

1) (V. Strassen) $Q_{KKK} \leq C(m, k, n)K^{p_{mkn}}$;

\[r_{222} \leq 7 \Rightarrow q_{KKK} \leq C(2,2,2)K^{\log_2 7}.
\]

2) $\frac{1}{6}(q_{2n} - 2q_{n} - 3n^2) \leq q_{mnn} \leq 4q_{n} + 2q_{2n} + n^2 + n$.

3) $(m + n - 1)k \leq r_{mkn} \leq C_1 q_{mkn} + C_2(mk + kn + mn)$.
4) \(q_{mkn} \geq 2(m + n - 1)k - m - n + 1. \)

5) \(r_{mkn} = r_{mkn} = r_{nkm} = r_{knm}. \)

6) \(r_{22n} \geq 3n + 2 \) (for \(n \geq 3 \)); \(r_{222} \geq 7 \) (see [3]); \(15 \leq r_{233} \leq 16; \)
\(r_{234} \geq 19; \) \(r_{333} \geq 18; \) \(r_{244} \leq 27. \)

Here \(C_1 \) and \(C_2 \) are positive constants; \(C(m, k, n) \) does not depend on \(K. \)

Remark 1. The statement in part 4 of the theorem can be made more precise: every program that computes \(c_{gh} = \Sigma_{g=0}^{k-1} a_{gh} b_{gh}; c_{i0} = \Sigma_{g=0}^{k-1} a_{i0} b_{0g}(l = 0, \ldots, m - 1; h = 0, \ldots, n - 1) \) for the input \(a_{gh}, b_{gh} \) \((l = 0, \ldots, m - 1; h = 0, \ldots, n - 1; g = 0, \ldots, k - 1)\), must use at least \((m + n - 1)k \) multiplications and divisions and at least \((m + n - 1)k - m - n - 1 \) additions or subtractions (this is proved by methods that generalize the proof of [1, Theorem 1.1]).

Corollary 1. \(p_{22n} \geq p_{222} \) (for \(n = 1, 2, 3, \ldots \)); \(p_{233} > p_{222}. \)

Next we show an alternative method (distinct from the one of [2]) for fast multiplication of matrices.

Theorem 2. The entries of the three matrices \(U, V, \) and \(W \) support an elementary program \([1]\) of length \(R \) if and only if the following identity in \(a_{ij}, b_{gh}, d_{ql} \) holds,

\[
\Sigma_{i,j=1}^{R} (\Sigma_{a,h}^{s} r_{gh} b_{gh})(\Sigma_{l,q}^{s} u_{lq} d_{ql}) = \Sigma_{i,j,h}^{s} a_{ij} b_{jh} d_{hi}.
\]

The following identity in \(i_{ij}, b_{jh}, d_{ql} \) defines an elementary program \([1]\) where \(R_{nnn} = 0.5n^{3} + 3n^{2} \) and \(n = 2m \) (for \(m = 1, 2, \ldots \)),

\[
\Sigma_{i,j,h=0}^{n-1} i_{ij} + h_{i} = \text{even}(a_{ij} + a_{h+1,i+1})(b_{jh} + b_{i+1,j+1})(d_{hi} + d_{j+1,h+1}) -
\]

\[
\Sigma_{i,j=0}^{n-1} a_{h+1,i+1} \Sigma_{i,j=0}^{n-1} b_{j+1,h+1} \Sigma_{i,j=0}^{n-1} d_{h+1,i+1} = \text{even}(b_{jh} + b_{i+1,j+1})d_{hi} -
\]

\[
\Sigma_{i,j,h=0}^{n-1} a_{ij} b_{jh} d_{hi} + \text{even}(d_{hi} + d_{j+1,h+1}) -
\]

\[
\Sigma_{i,j=0}^{n-1} a_{ij} b_{jh} d_{hi} + \text{even}(a_{ij} + a_{h+1,i+1})b_{jh} d_{j+1,h+1} = \Sigma_{i,j,h}^{s} a_{ij} b_{jh} d_{hi}.
\]

Here \(f_{ln} = f_{00} \) and \(f_{vl} = f_{dl} \) for \(l = 0, 1, \ldots, n \), while \(f \) stands for \(a; b; d \). It follows that \(P_{34, 34, 34} \approx 2.8495 \), that is, this method multiplies matrices by using less than \(O(K^{3}) \) operations.

Let us establish a uniqueness property of the algorithm of the paper [2] for computing \(A_{22}B_{22} \). Two triples \(\{ U, V, W \} \) and \(\{ U', V', W' \} \) defining an elementary scheme \([1]\) are said to be equivalent to one another if

\[
\Sigma_{v,c}^{s} = \Sigma_{v,c}^{s} \gamma_{v} \nu_{jv} u_{vjk}, \quad r_{v}^{s} = \Sigma_{v,c}^{s} \lambda_{v} \mu_{vhk} v_{vck}, \quad \nu_{v}^{s} = \Sigma_{v,c}^{s} \kappa_{v} \beta_{vq} w_{vck},
\]

where the matrices in the three pairs \((\nu_{v}) \) and \((\lambda_{v}) \) and \((\gamma_{v}) \) and \((\mu_{vh}) \) and \((\beta_{vq}) \) are the inverses of one another; \(1 \leq t(s) \leq R; t_{i} \neq t_{s} \) for \(s_{1} \neq s_{2} \), and all \(t_{s} \) are integers.

Theorem 3. An elementary program for computing the matrix product \(A_{22}B_{22} \) has a length \(R_{222} \leq 7 \) if and only if its defining triple \(\{ U, V, W \} \) is equivalent to the triple defining the algorithm of [2].
References

[1] V.Y. Pan, On Methods of Computing the Values of Polynomials. *Uspekhi Matematicheskikh Nauk*, 21, 1(127), 103–134, 1966. [Transl. *Russian Mathematical Surveys*, 21, 1(127), 105–137, 1966.]

[2] V. Strassen, Gaussian Elimination Is Not Optimal. *Numerische Math.* 13, 354–356, 1969.

[3] J.E. Hopcroft and L.R. Kerr, Some Techniques for Proving Certain Simple Programs Optimal. *Proceedings of the Tenth Annual Symposium on Switching and Automata Theory*, pp. 35–45, IEEE Computer Society Press, 1969.

Submitted to the Moscow Mathematical Society on February 23, 1972.