2006

Phlogeny and Biogeography of the Prayer Plant Family

Linda M. Prince
Rancho Santa Ana Botanic Garden

W. John Kress
Smithsonian Institution

Follow this and additional works at: https://scholarship.claremont.edu/aliso

Part of the Botany Commons

Recommended Citation

Prince, Linda M. and Kress, W. John (2006) "Phlogeny and Biogeography of the Prayer Plant Family," *Aliso: A Journal of Systematic and Floristic Botany*. Vol. 22: Iss. 1, Article 51.
Available at: https://scholarship.claremont.edu/aliso/vol22/iss1/51
PHYLOGENY AND BIOGEOGRAPHY OF THE PRAYER PLANT FAMILY: GETTING TO THE ROOT PROBLEM IN MARANTACEAE

LINDA M. PRINCE1,3 AND W. JOHN KRESS2

1Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711-3157, USA; 2National Museum of Natural History, Department of Botany, MRC-166, Smithsonian Institution, Washington, D.C. 20013-7012, USA; 3Corresponding author (linda.prince@cgu.edu)

ABSTRACT

Marantaceae are the second largest family in the order Zingiberales, with approximately 31 genera and 535 species. Earlier studies based on morphological and molecular characters could not confidently determine the relationships among major lineages of the family, nor could they identify the basal branch of the family tree. Phylogenetic analyses of DNA sequence data from all three genomic compartments (chloroplast: matK, ndhF, rbcL, rps16 intron, and trnL-trnF intergenic spacer; mitochondrion: cox1; nucleus: ITS region and the 5'-end of 26S) for a restricted set of taxa were conducted under parsimony criteria to define the root node and to assess geographical distribution patterns. Our results support the recognition of five major lineages, most of which are restricted to a single geographical region (tropical America, tropical Africa, or tropical Asia). The phylogenies and character reconstructions (Fitch parsimony optimization, Bremer ancestral areas, and DIVA) support an African origin for the family, followed by a minimum of two dispersal events to the New World tropics and four or more dispersal events to the Asian tropics. Less likely are two alternative hypotheses: (1) vicariance of a western Gondwanan group (the Americas and Africa) followed by several dispersals to Asia and Africa, or (2) an American origin followed by several dispersals to Africa and Asia. The low specific diversity in Asia may be due to higher extinction rates as a result of shrinking lowland tropical forests during the Tertiary.

Key words: character evolution, Marantaceae, phylogeny, systematics.

INTRODUCTION

The family Marantaceae includes 31 genera and ca. 535 species distributed throughout warm temperate and tropical regions of the world (Andersson 1998), with 14 genera in the New World, 11 in Africa, and 8 in Southeast Asia. Halopegia K. Schum. is the only transcontinental genus with three representatives in Africa and one in Southeast Asia. Species distributions are significantly skewed with the vast majority of the species (ca. 450) restricted to the New World. The numbers of species listed below generally follow Andersson (1998), but may not reflect the current estimates of diversity for some genera.

New World taxa (14 genera/ca. 450 spp.) include the most species-rich genus of the family Calathea G. F. W. Meyer with as many as 300 species. Also found in the New World are Ctenanthe Eichler with ca. 10 spp., Hylaeacanthus A. M. E. Jonker & Jonker (5–6 spp.), Ischnosiphon Körn. (ca. 35 spp.), Maranta L. (ca. 25 spp.), Monophyllantus K. Schum. (1–2 spp.), Monotagma K. Schum. (37 spp.), Pleiostachya K. Schum. (2 spp.), Saranthe (Regel & Körn.) Eichler (5–10 spp.), Streptocarpus Sonder (10–15 spp.), and Thalia L. (5–7 spp.). Thalia is restricted to the New World tropics except for a single species (T. geniculata L.) that is naturalized in both Africa (Andersson 1981) and India (Sijemol et al. 2000). The three monotypic genera from this region are Koernickanthe L. Andersson, Myrosma L. f., and Sanblasia L. Andersson. At least one genus (Calathea) has been shown to be polyphyletic and should be divided into two genera (Prince and Kress in press).

The African genera include Afrocalathea K. Schum. (monotypic), Ataenidia Gagnep. (monotypic), Halopegia (2 African spp.), Haumania J. Léonard (2 spp.), Hypselodelphys (K. Schum.) Milne-Redh. (4 spp.), Marantochloa Brogn. ex Gris (ca. 15 spp.), Megaphrynium Milne-Redh. (4 spp.), Sarcophyrynium K. Schum. (ca. 3 spp.), Thalia (1 sp., introduced), Traumatococcus Bentham (monotypic), and Trachyphyrynium Bentham (monotypic), which were all revised in the 1950s by Milne-Redhead (1950, 1952). A few new African species and subspecies of Marantochloa have been described (D'Orey 1981; Dhetchuvi 1996) and phylogenetic relationships within some genera are currently being investigated (A. Ley pers. comm.). As stated above, the genus Halopegia occurs in both Africa (2 spp.) and Asia (1 sp. from Indonesia).

The Asian taxa (8 genera/ca. 47 spp.) are the least understood, but are currently under investigation using a combination of molecular and morphological methodologies (Suk-sathan and Borschensius pers. comm.). For tropical Asia, Andersson (1998) lists Cominisia Hemsl. (1 sp.), Donax Lour. (3–4 spp.), Halopegia (1 sp. in Asia), Monophrynium K. Schum. (2–3 spp.), Phacelophrynium K. Schum. (ca. 6 spp.), Phrynium Willd. (ca. 20 spp.), Schumannnianthus Gagnep. (2 spp.), and Stachyphyrynium K. Schum. (ca. 10 spp.). The number of species recognized will likely increase and generic circumscriptions of Phacelophrynium, Phrynium, and Schumannnianthus will require modification based on the results of recent investigations using molecular data (Prince and Kress in press; P. Suk-sathan and F. Borschensius pers. comm.).
The family has been divided into two tribes based on the number of fertile locules: Marantaceae with one fertile locule, and Phrynineae with three fertile locules per ovary (Petersen 1889; Loesener 1930a). The results of Andersson (1998), Andersson and Chase (2001), and Prince and Kress (in press) suggest the classifications based on number of fertile locules do not adequately reflect phylogenetic relationships in the family.

Andersson (1998) published an informal classification based on an investigation of a number of morphological, anatomical, and biochemical characters. He recognized five groups plus five genera of uncertain affinity. His Phrynium group was primarily Asian and included Monophrynium, Phacelophrynium, Phrynium, Stachyphrynium, and the African genus Ataenidia. The Donax group was primarily African and included Hypselodelphys, Megaphrynium, Sarco­phyrynium, Trachyphrynium, and the Asian genera Donax and Schumannianthus. The Myrosma group was entirely American and included the genera Ctenanthe, Hylaeanthae, Myrosma, Saranthae, and Stromanthe. The Calathea group was composed entirely of the American taxa Calathea, Ischnosiphon, Monotagma, Pleiostachya, and Sanblasia. Finally, his Maranta group was a mixture of American (Koernickanthe, Maranta, Monophyllante) and African (Afrocala­thea, Marantochloa) genera. The taxa of “uncertain affinity” included representatives from all three continents (Asia: Cominsia and Halopegia; Africa: Halopegia, Haumania, and Thaumatococcus; the Americas: Thalía).

The validity of the earlier formal and informal classifications was tested by Andersson and Chase (2001) using cladistic analyses of plastid rps16 intron data. Their data strongly refute the earlier classifications based on the number of fertile locules and provide support for portions of the Andersson (1998) informal classification. More recently, Prince and Kress (in press) also tested the validity of earlier classification systems using a different set of molecular characters from the plastid genome: the trnK intron and the trnl−trnF intergenic spacer region (IGS). Based on those results, a different informal classification of five major clades was proposed (Table 1).

A few genera (Monophrynium, Monophyllante, and San­blasia) were not included in the analysis and therefore could not be placed in any of the five groups. Additionally, four potentially para- or polyphylectic genera were identified: Calathea, Marantochloa, Phacelophrynium, and Schumannian­thus.

Biogeographic studies of Marantaceae are limited. Raven and Axelrod (1974) may have been the first to formally suggest a western Gondwanan origin for the family based on the distribution of members of the tribe Phrynineae in both South America and Africa. Biogeographical patterns were investigated by Andersson and Chase (2001) using results from Bremer’s (1992) ancestral area methods. They found a rescaled gains-to-losses index of 1.0 for Africa, 0.5 for Asia, and 0.4 for the neotropics. From this, they concluded the primary center of diversity for Marantaceae is Africa. They also proposed three possible scenarios for the present distribution: (1) migration out of an ancestral area prior to the split-up of tropical continents, (2) long-distance dispersal after the split, or (3) a combination of scenarios 1 and 2. They were unable to discriminate between the various scenarios due to a lack of reliable dating for the different lineages. Biogeographical patterns were not investigated by Prince and Kress (in press) due to the lack of resolution and poor statistical support for the relationships among the five clades.

The goal of the current study is to utilize additional molecular data from all three genome compartments in order to: (1) better resolve relationships of the major clades, (2) provide better statistical support for the basal branches of the family phylogeny, and (3) infer biogeographic patterns. The genomic regions sampled include coding or structural regions (cox1, 5.8S, 26S, matK, ndhF, and rbcL) that would be easy to align across all taxa, but which might provide too few characters to fully resolve relationships within Marantaceae. Noncoding regions (rps16 intron, trnL−trnF intergenic spacer) were included to provide additional resolution within Marantaceae, but proved difficult to align across the order.

MATERIALS AND METHODS

Taxa and DNA Regions Examined

Taxon sampling was predominantly from the living collections, many of which were wild collected, of the Smithsonian Institution Botany Research Greenhouses (Table 2). Sampling includes multiple representatives of each of Andersson’s groups (1998) and representatives of all of the taxa.

Table 1. Informal classification of Marantaceae (Prince and Kress in press).

Clade name	Genera included	Geographic distribution
CALATHEA CLADE	**Calathea** (in two parts)	Americas
	Haumania	Africa
	Monotagma	Americas
	Pleiostachya	Americas
DONAX CLADE	**Cominsia**	Asia
	Donax	Asia
	Phrynium	Asia
	Phaceolophrynium	Asia
	Schumannianthus dichotomus	Asia
	Thalía	Americas
MARANTA CLADE	**Ctenanthe**	Americas
	Halopegia	Africa, Asia
	Hylaeanthae	Americas
	Koernickanthe	Americas
	Maranta	Americas
	Myrosma	Americas
	Saranthe	Americas
	Schumannianthus virgata	Asia
	Stromanthe	Americas
STACHYPHRYNIUM	**Afrocalathea**	Africa
CLADE	**Ataenidia**	Africa
	Marantochloa	Africa
	Stachyphrynium	Africa
SARCOPHRYNIUM	**Hypselodelphys**	Africa
CLADE	**Megaphrynium**	Africa
	Sarcophrynium	Africa
	Thaumatococcus	Africa
	Trachyphrynium	Africa
UNCERTAIN	**Monophrynium**	Asia
AFFINITY	**Monophyllante**	Asia
	Sanblasia	Americas
of “uncertain affinity,” as well as the five clades of Prince and Kress (in press). A total of 25 Marantaceae taxa and one representative for each of the other seven families in Zingiberaceae were sampled. Sampling within Marantaceae included 26 species representing 19 genera as currently circumscribed. This represents approximately 61% of the genera and 6% of the species in the family. Taxa included in the analysis were chosen as exemplars of each of the five major clades identified by the earlier analysis of the family (Prince and Kress in press) that sampled 27 genera (87%) and 80 species (18%). Earlier studies provided two of the seven data sets (matK and trnL-trnF IGS) used here.

Genomic regions for analysis were selected to span a range of evolutionary rates. The regions sampled included:

1. mitochondrion: *cox1* (442 basepairs [bp], excluding intron and the co-conversion track; see explanation below)
2. nucleus: 40 bp of 18S through ca. 240 bp of 26S (442 bp, excluding ITS)
3. plastid: *matK* (1388 aligned bp), *ndhF* (2133 aligned bp), *rbcL* (1344 aligned bp), *rps16* intron (1179 aligned bp), and *trnL-trnF* IGS (506 aligned bp)

The mitochondrial *cox1* gene of many flowering plants includes a group 1 intron (Vaughn et al. 1995; Cho et al. 1998; Cho and Palmer 1999; Palmer et al. 2000). The intron encodes a homing endonuclease (Bonitz et al. 1980; Delahodde et al. 1989; Sargueil et al. 1990; Belfort and Roberts 1997) that cuts the gene in a precise position, leaving a small co-conversion track region within the coding portion of the gene as a result of DNA repair mechanisms. The co-conversion track (21 bp) was also excluded from all analyses. Data was also collected for the *nad1* intron, *rpl16* intron, and the *trnE-trnT* IGS, but the alignments were so ambiguous that these data sets were excluded from the analysis.

DNA Extraction, Amplification, and Sequencing

Total genomic DNAs were extracted, amplified, and cycle sequenced following methods described in Kress et al. (2002) using Applied Biosystems (Foster City, California, USA) Big-Dye Terminator Cycle Sequencing Ready Reaction Kit. Both new and previously published primers for PCR and sequencing were used (Table 3). Amplification for *ndhF* was done in two parts following the methods of Pires and Sytsma (2002). All new sequences were generated on an ABI 3100 Genetic Analyzer (Applied Biosystems) at Rancho Santa Ana Botanic Garden. Both strands were sequenced with a minimum of 95% overlap unless otherwise indicated (Table 2). DNA fragments were compiled and edited in Sequencer 3.1.1 (GeneCodes Corporation, Ann Arbor, Michigan, USA), aligned manually in Se-Al vers. 2.0a11 (Rambaut 1996), and imported into PAUP* vers. 4.0b10 (Swofford 2002) for analysis. Alignment was relatively unambiguous for coding and other highly constrained regions (nuclear ribosomal genes, *cox1*, *matK*, *ndhF*, and *rbcL*), but not so for intergenic spacer regions and introns. Alignment for coding and structural regions required the insertion of a number of in-frame gaps. Gaps were also introduced to the IGS and intron matrices. Additionally, ambiguously aligned regions were present in the *rps16* matrix (nine regions totaling 366 characters, or ca. 31% of the matrix) and the *trnL-trnF* IGS matrix (six regions totaling 73 characters, or ca. 14% of the matrix). Analyses in which gaps were coded, ambiguous areas included, or protein-coding sequences translated to amino acid sequence will be presented elsewhere. Ambiguously aligned regions were excluded from all analyses presented here.

Phylogenetic Analyses

The families of the order can be divided into two groups, the “banana families” (Heliconiaceae, Lowiaceae, Musaceae, and Strelitziaceae) and the “ginger families” (Cannaeeae, Costaceae, Marantaceae, and Zingiberaceae). Representatives of all families of Zingiberaceae were included in the analyses, with Musaceae representative *Musella* (Franch.) C. Y. Wu as the defined outgroup taxon for all “order” analyses based on earlier work by Kress et al. (2001). Additional analyses using only members of the ginger families were also conducted in which *Siphonochilus* J. M. Wood and M. Franks (Zingiberaceae) and *Costus* L. (Costaceae) were defined as outgroup taxa.

Maximum parsimony.—Separate and combined Fitch parsimony analyses (Fitch 1971) of all aligned sequence data (excluding ambiguously aligned regions) were conducted. Parallel analyses were run, one set using *Musella* as the designated outgroup, another with representatives of the banana families excluded, and *Siphonochilus + Costus* as the designated outgroup. For each analysis 500 random sequence addition replicates were conducted with tree-bisection-reconnection (TBR) branch swapping, saving all shortest trees.

Estimates of support.—Statistical support for branches was estimated via jackknife (JK: Penny and Hendy 1985) and Bayesian analyses. Jackknife estimates were run on all data sets using the fast JK methods with a large number (10,000) of replicates with 33% replacement (Mort et al. 2000). Bayesian analyses were conducted in MrBayes 3.0 (Huelsenbeck and Ronquist 2001) using three replicates of 5-million generations (sampling every 100 generations) for estimates of support for branches was estimated via jackknife (JK: Penny and Hendy 1985) and Bayesian analyses. Jackknife estimates were run on all data sets using the fast JK methods with a large number (10,000) of replicates with 33% replacement (Mort et al. 2000). Bayesian analyses were conducted in MrBayes 3.0 (Huelsenbeck and Ronquist 2001) using three replicates of 5-million generations (sampling every 100 generations) for each of the individual data partitions and one combined data set as indicated in the maximum parsimony analysis above. The first 40 likelihood values (generations 1–4000) were included as the first data partition. Appropriate burn-in times for each analysis were determined by treating each successive half-million generations (= 5000 trees) as a data pool from which 40 likelihood tree values were randomly drawn, creating a total of 11 “generation” samples per Bayesian analysis. Generation sample likelihood values were subjected to a Bartlett’s test for homogeneity of variance (Bartlett 1937a, b) to determine whether the data were heteroscedastic (as expected due to the inclusion of the first 40 data points). A Tukey-like multiple comparison test for differences among variances (Levy 1975a, b) was used to determine where the change from heteroscedasticity to homoscedasticity occurred. Only the homoscedastic data from the latter part of each MrBayes run were used to calculate posterior probabilities. In all cases at least the first 500,000 generations were discarded as burn-in.

Biogeographical Reconstruction

Studies by Kress and Specht (2006) provide an estimate of at least 95 millions of years ago (mya) for the divergence
Taxon	Voucher	matK	ndhF	rbcL	rps16	trnL-F	coxl	18S–26S
Aiuendia conferta (Benth.) Milne-Redh.	Kress 99-6572 (US)	AY140263	AY656082	AY656111	AY656134	AY140342	AY673012	AY673044
Calathea crotalifera S. Watson	Kress 78-0899 (DUKE)	AY140268	AY656083	AY656112	AY656135	AY140347	AY673013	AY673045
Calathea metallica Planch. & Linden	Kress 99-6586 (US)	AY140275	AY656084	AY656113	AY656136	AY140354	AY673014	AY673046
Calathea rufibarba Fenzl	Kress 01-6856 (US)	AY140281	AY656086	AY656115	AY656138	AY140360	AY673016	AY673048
Calathea warscewiczii (L. Mathieu ex Planch.)	Kress 01-6856 (US)	AY140285	AY656087	AY656116	AY656139	AY140364	AY673017	AY673049
Cominsia gigantea K. Schum.	ex hort. Lyon Arboretum (no voucher)	AY140286	AY656088	AY656116	AY656140	AY140365	AY673018	AY673050
Ctenanthe setosa Eichl.	Kress 99-6572 (US)	AY140286	AY656082	AY656111	AY656134	AY140342	AY673012	AY673044
Donax canniformis (G. Forst.) K. Schum.	Kress 78-0894 (US)	AY140286	AY656083	AY656112	AY656135	AY140347	AY673013	AY673045
Haumania sp. #1	Kress 01-6856 (US)	AY140285	AY656087	AY656116	AY656139	AY140364	AY673017	AY673049
Hypeleodelphys sp. #1	Kress 01-6856 (US)	AY140284	AY656086	AY656115	AY656138	AY140360	AY673016	AY673048
Ischnaphyton helenae L. Andersson	Kress & Bordelon 01-6830 (US)	AY140283	AY656085	AY656114	AY656137	AY140355	AY673015	AY673047
Marantaceae								
Maranta bicolor Ker Gawl.	Kress 99-6572 (US)	AY140263	AY656082	AY656111	AY656134	AY140342	AY673012	AY673044
Marantochloa purpurea (Ridley) Milne-Redh.	Kress 78-0894 (US)	AY140264	AY656083	AY656112	AY656135	AY140347	AY673013	AY673045
Monotagma laxum (Poepp. & Endl.) K. Schum.	Kress 99-6572 (US)	AY140265	AY656084	AY656113	AY656136	AY140348	AY673014	AY673046
Phrynium pubinerve Blume	Kress et al. 00-6798 (US)	AY140266	AY656085	AY656114	AY656137	AY140349	AY673015	AY673047
Pleistachysia prunina (Regel) K. Schum.	Prince s. n. 10 Jun 2001 (US)	AY140267	AY656086	AY656115	AY656138	AY140350	AY673016	AY673048
Saranthysae sp. #1	Kress 99-6572 (US)	AY140268	AY656087	AY656116	AY656139	AY140351	AY673017	AY673049
Sarcophyton brachystachys (Benth.) K. Schum.	Kress & Bordelon 01-6830 (US)	AY140269	AY656088	AY656117	AY656140	AY140352	AY673018	AY673050
Schumannianthus dichotomus (Roxb.) Gagnep.	ex hort. Lyon Arboretum (no voucher)	AY140270	AY656089	AY656118	AY656141	AY140353	AY673019	AY673051
Schumannianthus virgatus Rolfe	Kress 99-6572 (US)	AY140271	AY656090	AY656119	AY656142	AY140354	AY673020	AY673052
Stachyphrynium jagorianum K. Schum.	Kress 99-6572 (US)	AY140272	AY656091	AY656120	AY656143	AY140355	AY673021	AY673053
Thalia geniculata L.	Kress 99-6572 (US)	AY140273	AY656092	AY656121	AY656144	AY140356	AY673022	AY673054
Thaumatococcus daniellii (Bennet) Benth.	Kress 99-6572 (US)	AY140274	AY656093	AY656122	AY656145	AY140357	AY673023	AY673055
Schumannianthus dichotomus (Roxb.) Gagnep.	ex hort. Lyon Arboretum (no voucher)	AY140275	AY656094	AY656123	AY656146	AY140358	AY673024	AY673056
Outgroup taxa								
Cannaceae								
Canna paniculata Ruiz & Pav.	Prince 99-6572 (US)	AY140276	AY656095	AY656124	AY656147	AY140360	AY673025	AY673057
Costaceae								
Costus pulverulentus C. B. Presl.	Turner s. n. (no voucher)	AY140277	AY656096	AY656125	AY656148	AY140361	AY673026	AY673058
of Cannaceae and Marantaceae. It is possible that Marantaceae may owe their current pantropical distribution to dispersal or vicariance events. Fitch parsimony optimization (FPO: Fitch 1971) and Bremer ancestral areas analyses (AA: Bremer 1992) only allow for dispersal, while dispersal-vicariance analysis (DIVA: Ronquist 1996) allows for both vicariance and dispersal events. Since dispersal only and vicariance plus dispersal are possible explanations given the estimated divergence time, both methods were employed here.

Trimmed strict consensus trees from this and earlier studies (Andersson and Chase 2001; Prince and Kress in press) were used to generate a master tree matrix of 37 taxa representing 28 ingroup genera and three outgroup taxa (Cannaceae, Zingiberaceae, and Costaceae). Multiple representatives of the paraphyletic genera Calathea (6 taxa) and Schumannianthus (2 taxa) were included. All other genera of Marantaceae were treated as monophyletic, since prior studies failed to provide strong statistical support (>70% jackknife or bootstrap) of paraphyly. Source trees were redrawn in MacClade (Maddison and Maddison 2000) then imported into PAUP* for matrix translation. Master matrix construction and analysis were also implemented in PAUP*.

RESULTS

Phylogenetic Analyses of Seven DNA Regions

The large number of maximum parsimony and Bayesian posterior probability (PP) analyses conducted prohibits their full discussion here, but a summary of all results is provided (Tables 4, 5), including tree statistics for various maximum parsimony analyses, JK percentages, and PP values. The plastid data sets provided the majority of the clade resolution (Table 5). This was expected given the conservative regions sampled from the nuclear and mitochondrial genome. Similarly, the mitochondrial and nuclear data sets produced phylogenies with low resolution, low statistical support for internal branches, and some anomalous relationships within the ginger families.

The use of Musella lasiocarpa (Musaceae) or Siphonochilus decorus (Zingiberaceae), plus Costus pulverulentus (Costaceae) as the designated outgroup did not alter ingroup topology. The inclusion of the more distantly related taxa (the banana families representatives: Musella lasiocarpa,
Table 3. Primers used in the amplification of DNA from all three genomes to address phylogenetic relationships in Marantaceae.

Genomic region	Primer name	Primer sequence 5' to 3'	Description	Reference
cox1	445F	GCCATATCTGGAGAGGCCATGTA	bp 254–257 of *Croton cox1* (gene)	here (designed by K. J. Wurdack)
cox1	1146F	GGGTCACAGCTGAACTGCTATC	bp 950–972 of *Croton cox1* (intron)	here (designed by K. J. Wurdack)
cox1	1203R	AAGTATGAGGGCAGATCATGTA	bp 1024–1050 of *Croton cox1* (intron)	here (designed by K. J. Wurdack)
cox1	1951R	GCCTGACAGCAGCCTGATC	bp 1715–1736 of *Croton cox1* (gene)	here (designed by K. J. Wurdack)
18S-26S	241R	CACTCTCCCTGGATGGAACA	bp 240–259 of *Zingiber 26S*	here (designed by K. J. Wurdack)
18S-26S	ITS 5a	TTATCACTTTTACAGAGGAAGAGTGG	alternative to ITS 5 from White et al. 1990	here (designed by L. M. Prince)
18S-26S	5.8S-F	TACGGGCAAGCGTACTCTGG	bp 9–9 of 5.8S	here (designed by L. M. Prince)
18S-26S	5.8S-R	ACGGAGCTCTGCAATTCACAC	bp 70–90 of 5.8S	Steele and Vilgalys 1994
matK	8R	AGGCAAGAAGAGATGCAAG	complement of 8F from Steele and Vilgalys 1994	here (designed by L. M. Prince)
matK	8Fa	TACTCTCGATTCCTCCCTGGCC	modification of 8F from Steele and Vilgalys 1994	Steele and Vilgalys 1994
matK	5F	GCTATCTTCTCCATCTATT	see Steele and Vilgalys 1994	here (designed by L. M. Prince)
matK	5Fa	TCTATGGGATTTCTGAGAT	bp 806–825 of tobacco *matK*	here (designed by L. M. Prince)
matK	5R	AGGATCTCTGCAAATCCATAGA	bp 807–828 of tobacco *matK*	here (designed by L. M. Prince)
matK	5Ra	TGAACCGAAAGCTATGCTAG	bp 831–851 of tobacco *matK*	here (designed by L. M. Prince)
matK	mIF	GTCGAATCTGGTGAAGGCTT	bp 164–184 of tobacco *matK*	here (designed by L. M. Prince)
matK	trnK2R	AACATCTGGATGGAGTAG	see Steele and Vilgalys 1994	Steele and Vilgalys 1994
matK	trnK1F	CCAACCTATGAACTCTAGC	see Manos and Steele 1997	here (designed by L. M. Prince)
rbcL	1370R	TCTGTGCTCATTCTACACAGAC	bp 1370–1393 of tobacco *rbcL*	here (designed by L. M. Prince)
rbcL	1F	AGGCTACCCCAACAGGAGCTAAG	bp 1–25 of tobacco *rbcL*	here (designed by L. M. Prince)
rbcL	481F	AGGATGAAACAGTGTGGCTGCTC	bp 481–502 of tobacco *rbcL*	here (designed by L. M. Prince)
rbcL	486R	TAAAGGAGAGGCACTACTCTGTC	bp 486–507 of tobacco *rbcL*	here (designed by L. M. Prince)
rbcL	894F	GCAGTTATGATGACAGAAG	bp 894–914 of tobacco *rbcL*	here (designed by L. M. Prince)
rbcL	894R	TCTTGTATCAATATGTATG	bp 894–914 of tobacco *rbcL*	here (designed by L. M. Prince)
ndhF	32	TACCTTTTCCTCCCTCCAGTT	see Terry et al. 1997	Terry et al. 1997
ndhF	451	TGGAAACTCTTGGAGATG	see Terry et al. 1997	Terry et al. 1997
ndhF	451R	CACATCTCAGAACTCTCCA	see Terry et al. 1997	Terry et al. 1997
ndhF	803	CAGTTGCTAGGGCGGAAATTATT	see Olmstead and Sweere 1994	see Olmstead and Sweere 1994
ndhF	1101	GGAACCTATTTGTTGATTACC	see Terry et al. 1997	Terry et al. 1997
ndhF	1101R	GGTGAAATCTCACCACAGATGCT	see Terry et al. 1997	Terry et al. 1997
ndhF	1318	GAGATACCCCTATTTATACTTT	minor modification of 1318 from Terry et al. 1994	see Olmstead and Sweere 1994
ndhF	1318R	GAAAACATATAAAATGGCTTATACC	minor modification of 1318R from Terry et al. 1994	see Olmstead and Sweere 1994
ndhF	1600R	CATATACTGCTGAGCTGAGG	minor modification of 1603R from Terry et al. 1997	see Olmstead and Sweere 1994
ndhF	2110R	CACCCTATGATCTTACTCCCT	minor modification of 2110R from Terry et al. 1997	see Olmstead and Sweere 1994
rps16	F	GZGGTAAAGGGACAGGGCAATT	see Oxelman et al. 1997	Oxelman et al. 1997
rps16	R2	TGAGTATCGACACATTTGCAAAC	see Oxelman et al. 1997	Oxelman et al. 1997
rps16	1F	TCAATTTCTGGTATTTCTTCC	bp 342–363 of *Maranta bicolor* intron	here (designed by L. M. Prince)
rps16	1R	AAATCTTCTTCTCTGTAAGG	bp 477–496 of *Maranta bicolor* intron	here (designed by L. M. Prince)
trnL-F	lGStrnLe	GGGTCAAGGTCTCCTTCTGCCC	see Taberlet et al. 1991	Taberlet et al. 1991
trnL-F	lGStrnF	ATTTGAACTGGGCAAGG	see Taberlet et al. 1991	Taberlet et al. 1991

Reference:

- **Sweere**
- **Olmstead and Prince**
- **Prince**
- **Oxelman et al.**
- **Taberlet et al.**
- **Terry et al.**
Table 4. Statistics for maximum parsimony analyses of relationships in Marantaceae using data from all three genomes.

Data partition	Outgroup	Character types (characters)	Parsimony informative characters	MPT\(a\)	Islands	Length	CI\(b\)	RI\(c\)	RC\(d\)			
MITOCHONDRIAL												
cox1	Musella	1470	442	363	40	39	156	1	83	0.6747	0.7065	0.4767
cox1	Costus + Siphonochilus	1470	442	369	38	35	130	1	71	0.6901	0.7027	0.4850
NUCLEAR												
18S–26S	Musella	941	442	289	82	71	7035	1	206	0.5146	0.5690	0.2928
18S–26S	Costus + Siphonochilus	941	442	306	77	59	261	1	162	0.5617	0.5943	0.3338
PLASTID												
matK	Musella	1397	1388	930	243	215	8	1	476	0.5714	0.6782	0.3876
matK	Costus + Siphonochilus	1397	1388	980	220	188	4	1	377	0.6260	0.6817	0.4268
ndhF	Musella	2145	2133	1511	319	303	8	1	756	0.5198	0.6063	0.3152
ndhF	Costus + Siphonochilus	2145	2133	1595	290	248	8	1	553	0.5606	0.6185	0.3467
rbcL	Musella	1344	1344	1130	120	94	79	9	239	0.4561	0.6012	0.2742
rbcL	Costus + Siphonochilus	1344	1344	1152	106	86	17	1	200	0.4950	0.6217	0.3078
rps16	Musella	1222	1197	848	218	131	2361	175	266	0.6241	0.7481	0.4669
rps16	Costus + Siphonochilus	1222	1197	888	206	103	45	1	183	0.7049	0.7930	0.5596
trnLF	Musella	527	506	381	66	59	3627	331	126	0.5556	0.7172	0.3984
trnLF	Costus + Siphonochilus	527	506	398	64	44	3570	1	86	0.5930	0.7569	0.4489
COMBINED												
combined	Musella	9046	7452	5452	1008	912	2	1	2225	0.5267	0.6241	0.3287
combined	Costus + Siphonochilus	9046	7452	5688	1001	763	2	1	1688	0.5717	0.6389	0.3652

\(^a\) Maximum parsimony trees
\(^b\) Consistency index
\(^c\) Retention index
\(^d\) Rescaled consistency index
Table 5. Critical relationships and identification of root node for majority rule consensus tree of maximum parsimony and of Bayesian analyses for relationships in Marantaceae using data from all three genomes. Values are jackknife support (≥50%) and posterior probabilities (≥0.95) of clade monophyly. [1.00] indicates support for partial clades.

Data partition	Ginger	CO^+ + ZF	MA^d + CA^d	MA	SaC^d	SiC^d	MC^d	DC	CO^d	Root node	
MITOCHONDRIAL											
coxL_order	n/a			74	1.00	98.00	100	1.00	[98, 1.00]	[1.00]	unresolved
coxL_ginger	n/a			99	1.00	[99, 1.00]					
NUCLEAR											
18S26S_order	n/a			74	0.92	[56, 0.98]	[80, 0.87]	[70-97, 1.00]		Hauanania Siphonochilus [0.67]	
18S26S_ginger	n/a			73	0.91	[55, 0.99]	[83, 0.85]	[83-97, 1.00]		Hauanania [0.64]	
PLASTID											
matK_order 57	1.00	69, 0.97	82, 1.00	100, 1.00	74, 1.00	98, 1.00	100, 1.00	[88, 0.76]	[73-96, 0.69-1.00]	deep split	
matK_ginger n/a				93, 1.00	100, 1.00	68, 1.00	97, 1.00	100, 1.00	[88] 0.74	[74-96, 0.69-1.00]	deep split
ndhF_order 71	1.00	59, 0.54	91, 1.00	100, 1.00	0.71	98, 1.00	[100, 1.00]	[57-97, 0.99-1.00]	Sarcophrynium, Sarcophrynium & Thaumatococcus		
ndhF_ginger n/a				100, 0.99	100, 1.00	52, 0.79	98, 1.00	[100, 1.00]	[57-96, 0.99-1.00]	Sarcophrynium, Sarcophrynium & Thaumatococcus	
PLASTID											
rbcL order 62	0.98	0.79	[83, 0.72-1.00]	93, 1.00	62, 0.97	[99, 1.00]	[98, 0.56-1.00]	Hypselodelphys & Trachyphryniun			
rbcL_ginger n/a				0.91	0.58	[81, 0.69-1.00]	[98, 1.00]	[85, 1.00]	Hypselodelphys & Trachyphryniun		
rps16L_order 96	1.00	100, 1.00	100, 1.00	100, 1.00	98, 1.00	53, 0.83	99, 1.00	[99, 1.00]	[90-92, 0.82]	SaC and Hauanania	
rps16L_ginger n/a				100, 1.00	100, 1.00	55, 0.85	99, 1.00	[98, 1.00]	[90-92, 0.88]	SaC and Hauanania 55, 1.00	
trnLF_order 95	1.00	100, 1.00	100, 1.00	[86, 0.99]	[65, 1.00]	64, 0.61	[73] 0.50	[61-89, 0.76-1.00]	Calathea micas, unresolved		
trnLF_ginger n/a				57	91, 1.00	[85, 0.99]	[61, 1.00]	61, 0.61	[73] 0.58	[58-86, 0.71-1.00]	Calathea micas, unresolved
COMBINED											
combinedL 81	100	100	100, 1.00	100, 1.00	73	96	100	58	[84-100]	SaC and Hauanania	
combinedL_ginger n/a				100, 1.00	65	97	100	52	[83-100]	SaC and Hauanania	

* Ginger = "Ginger families," ^ CO = Costaceae, ^ ZL = Zingiberaceae, ^ MA = Marantaceae, ^ CA = Cannaceae, ^ SaC = Sarcophrynium Clade, ^ SiC = Stachyphryniun Clade, ^ MC = Maranta Clade, ^ DC = Donax Clade, ^ CC = Calathea Clade.
Heliconia irrasa, Orchidanthia fimbriata, and Phenakospermum guayanense) did not alter relationships within the ginger families noticeably, but instead almost uniformly resulted in lower jackknife and posterior probability values, decreased branch resolution, and increased numbers of tree islands.

Overall, parsimony tree topologies within the ingroup were similar to those produced by Bayesian analyses with minor differences in resolution. As expected, combined analyses produced far fewer trees than individual analyses (2 vs. up to 3570; Table 4) and greatly improved clade support (jackknife and posterior probability values), but did not improve general tree indices (consistency index, retention index, and rescaled consistency index). The largest differences in tree topology were related to the method of data analysis. For example, in the nuclear data analyses the position of Cominsia changed depending on analysis method (parsimony vs. Bayesian) but with low statistical support (59–70% JK). Parsimony placed Cominsia sister to Monotagma with 70% JK support (an unexpected location) while Bayesian analysis placed it in a clade with Donax, Schumannianthus virgatus, and Phrynium (0.87 PP).

The ability of individual data sets to resolve critical clades (with significant statistical support) varied dramatically. The mitochondrial and nuclear data analyses did not resolve any of the expected family relationships (Table 5). This is consistent with the expectation of slow substitution rates in these portions of the plant genome (Wolfe et al. 1987; Palmer and Herbon 1989; Palmer 1990). Similarly, only portions of the five Marantaceae clades were resolved. The various plastid data sets were more successful in resolving within and among family relationships. In all cases the expected family relationships were resolved ((Zingiberaceae, Costaceae) (Marantaceae, Cannaceae)), and ingroup clades were also frequently resolved. Two “wild card” ingroup taxa were identified, Haumania and Thalia. Earlier studies (Prince and Kress in press) suggested Haumania was part of the Calathea clade (<50% JK support, <0.95 PP). This study placed Haumania in unresolved polytomies of a more basal position than the earlier study, or as a member of the Sarcophyrum clade (weakly supported, Table 5). Similarly, Thalia was placed within the Donax clade by Prince and Kress (in press) (80% JK, <0.95 PP), but was sometimes placed in the basal polytomies in this study.

Both combined analyses (Musella as outgroup, or Siphonochilus and Costus as the outgroup) produced the two shortest trees (one tree shown in Fig. 1; branches that collapse in the strict consensus tree are shown with dashed lines). These two trees differed in the relationship among the three major clades: the Calathea clade (CC), the Donax clade (DC), and the Maranta (MC) + Stachyphrynium (StC) clades. Bayesian analysis strongly supported (1.00 PP) the tree shown: ((CC, DC) (MC, StC)). Parsimony favored the alternative topology but with weak (57%) JK support. The first diverging taxon in the Marantaceae tree, based on the combined seven region analyses, was Haumania followed by the Sarcophyrum clade.

Supertree Construction

Phylogenetic analysis of the supertree matrix resulted in twelve shortest trees. The trees were identical in topology with the exception of the resolution of Monotagma and Cominsia as indicated by an upward directed arrow in Fig. 2 and 3, and resolution within Calathea I. The figures shown are a summarized (five representatives of Calathea reduced to Calathea I and Calathea II), fully resolved version of the tree used for FPO, AA, and DIVA analyses of biogeography.

Biogeographical Analyses

Biogeographical analysis requires multiple (7–8) migration events within Marantaceae to account for current distribution patterns (Fig. 2, 3; Table 6). Some FPO reconstructions (Fig. 2; ACCTRAN) indicate an African origin for the family, while others suggest an American origin (Fig. 3; both ACCTRAN and DELTRAN), or are equivocal (Fig. 2; DELTRAN). Bremer ancestral area analyses also indicate an African origin for the family (Table 6). DIVA analyses indicate either an African (Fig. 2, max areas = 2; Fig. 3, max areas = 3) or an African-American (Fig. 2, max areas = 2; Fig. 3, max areas = 2 or 3) origin for the family.

DISCUSSION

All prior estimates of relationships based on morphology and anatomy (Kirchoff 1983a, b; Kress 1990; Kress et al. 2001) predict the following relationship among the ginger families: ((Zingiberaceae, Costaceae) (Marantaceae, Cannaceae)). The relationships among these four families have never been contested although Costaceae have been treated as a subfamily or tribe of Zingiberaceae in the past (Schumann 1904; Loesener 1930b; Hutchinson 1934, 1959, 1973), thus it can reasonably be considered a known phylogeny. Independent phylogenetic estimates that deviate from this topology may be due to homoplasry, lack of resolution due to limited sequence divergence (low power) or poor taxon sampling, or analysis limitations such as long branch attraction (e.g., Soltis et al. 2000; Davis et al. 2004). Similarly, overwhelming morphological and anatomical data support the monophyly of each of the four families in the ginger families, including Marantaceae (Kirchoff 1983a, b; Kress 1990; Kress et al. 2001). Finally, earlier molecular studies by Prince and Kress (in press) identified five major lineages within Marantaceae. Each data set was evaluated on its ability to resolve those family-level relationships and major clades as described above.

The addition of almost 5000 nucleotides from all three genome compartments to the earlier plastid data set (Prince and Kress in press) of 2543 characters provides improved resolution for relationships among the major clades of Marantaceae (Fig. 1). Although the additional plastid data sets are the source of most of the characters for tree building, the combined data set provides the best estimate of relationships in the family at this time. The recovery of the same taxa at the base of the family tree using multiple data sets under both Bayesian and parsimony criteria suggests the Haumania + Sarcophrynium clade as the root node or grade. Additional studies will be needed to determine if Haumania is better included within the Sarcophrynium clade or as the earliest diverging taxon in the family. Both Haumania and all members of the Sarcophrynium clade grow in the African tropics, suggesting an African origin for the family. Results of supertree analyses also identify Haumania as the first
Fig. 1.—Cladogram of the two shortest trees produced in a maximum parsimony analysis of all data for members of Marantaceae. Dashed branches indicate branches that collapse in the strict consensus tree. Numbers above branches are fastswap bootstrap values, numbers below branches are posterior probabilities. Sch. = Schumannianthus, Ca. = Calathea.
Fig. 2.—Supertree depicting current estimates of phylogenetic relationships in Marantaceae. Arrows indicate two arbitrarily resolved branches not present in the strict consensus tree. Left side = FPO-ACCTRAN optimization, DIVA (max areas = 2). Right side = FPO-DELTRAN optimization, DIVA (max areas = 3). Sch. = Schumannianthus. Calathea I = C. loeseneri, C. metallica, C. micans, C. rufibarba, and C. warscwichii; Calathea II = C. crotalifera.
Fig. 3.—Modified supertree of Marantaceae with Haumania as part of the Sarcophrynium clade. Arrows indicate two arbitrarily resolved branches not present in the strict consensus tree. Left side = FPO-ACCTRAN optimization, DIVA (max areas = 2). Right side = FPO-DELTRAN optimization, DIVA (max areas = 3). Sch. = Schumannianthus. Calathea I = C. loeseneri, C. metallica, C. micans, C. rufibarba, and C. warschczii; Calathea II = C. crotalifera.
Table 6. Estimated gains and losses for the area cladograms associated with Fig. 2 and 3 under Camin-Sokal (1965) parsimony (= irreversible). Ancestral area value rescaled to a maximum value of 1 (Bremer 1992).

Area	Gains	Losses	Gains/Losses	Ancestral area value
[Tree 1: Fig. 2]				
Africa	5	5	1.00	1.00
America	3	5	0.60	0.60
Asia	3	7	0.43	0.43
[Tree 2: Fig. 3]				
Africa	4	5	0.80	1.00
America	3	4	0.75	0.94
Asia	3	6	0.50	0.63

branch of the Marantaceae family tree (see Fig. 2, 3), followed by the Sarcophrynium clade. These results are not surprising given the overlap in data sets used to generate the supertree matrix.

Biogeographical analyses (FPO, AA, DIVA) differed slightly in their reconstruction of the basal nodes for Marantaceae. DIVA (max areas = 2 or 3), AA, and the FPO-ACCTRAN reconstructions suggest an African origin for the family when Haumania is treated as the first branch of the family phylogeny (Fig. 2; Table 6). An African origin for the family was unexpected since the closest relatives, Canna (Cannaceae), are endemic to the New World (but see Tanaka 2001). This finding is similar to the publication of an African origin for the more distantly related family Zingiberaceae (Kress et al. 2002). Thus, the ginger families may form two pairs of families following parallel biogeographical paths, with the two larger families (Marantaceae and Zingiberaceae) originating in Africa, while their smaller sister families (Cannaceae and Costaceae, respectively) originated in the American tropics.

Inclusion of Haumania in the Sarcophrynium clade results in an American origin for the family only in the FPO analysis (Fig. 3; both ACCTRAN and DELTRAN). There is currently no statistical support for this placement, but the scenario deserves some consideration. Similarly, some DIVA reconstructions (Fig. 2, 3) suggested a more widespread origin for the family, perhaps equivalent to western Gondwana (Africa and America).

Kress and Specht (2006) suggest a divergence of Marantaceae and Cannaceae of at least 95 ± 5 mya, based on a local clock and three fossil calibration points within the order Zingiberales. This date is compatible with a western Gondwanan distribution for the ancestor of Cannaceae and Marantaceae, however, Marantaceae do not begin to diversify until ca. 63 ± 5 mya according to the local clock analysis. Although these numbers may change with the inclusion of additional data sets, we may conclude that Marantaceae are probably not a Gondwanan group, i.e., Marantaceae are not distributed pantropically due to vicariant events ca. 110 mya (Kearey and Vine 1996).

The data presented here suggest that current distribution patterns for Marantaceae may be best explained by long-distance dispersal events. The number and direction of events differs depending on reconstruction method. DIVA analyses require 7–8 dispersal events to account for the current distribution patterns in the family. A large number of possibilities exist from stepping-stone progression around the globe, such as Africa to America to Asia followed by several back migrations.

The lack of resolution regarding migration direction is in sharp contrast to the obvious evidence for localized radiations. Four of the five major clades are strongly associated with a particular geographic region. These strong geographic associations suggest an early dispersal event followed by diversification. For example, one interpretation is that Africa is the source of all historic propagules. Ancient dispersal events brought plants to the Americas in two separate events with subsequent speciation for the Calathea clade and the New World representatives of the Maranta clade. Secondary dispersal into Asia occurred at least three times: (1) Donax clade, (2) Stachyphrynium, and (3) Schumannianthus virgatus and Halopegia pro parte, or as a series of dispersal events to Asia and recolonization events back to Africa.

The above scenario suggests extensive extinction events that are difficult to demonstrate. Specifically, Africa is home to far fewer species than Asia or the Americas. The reduced number of taxa in Africa may be due to extensive extinction as a result of severe climate change (eventual cooling and drying) during the Tertiary. Literature documenting the fossil flora of Africa is limited relative to North America, Europe, and northern Asia, however, plant communities can be reconstructed for several regions and times (Greenway 1970; Axelrod and Raven 1978; Ziegler et al. 1981; Ehleringer et al. 1991; Wing and Sues 1991; Retallack 1992; Cerling et al. 1993; Quade and Cerling 1995). Greenway (1970) specifically describes the shrinking lowland rainforest belts in Africa, the primary community where Marantaceae grow. In contrast, tropical habitats in the Pacific Ocean and between North and South America have been expanding due to the creation of island chains via uplift and volcanic activity.

In summary, the geographic history of Marantaceae is complex and uncertain. Early efforts using molecular phylogenies were hampered by poor resolution along the backbone of the family tree. Current data provides improved resolution and better estimates, although statistical support is still lacking for a few critical nodes. The family has likely undergone several dispersal events from Africa to both the New World and to Asia. The lower specific diversity in Africa may be due to extinction events associated with the constriction of tropical forests during the Tertiary. Extensive diversification, especially in the neotropics, may be due to habit expansion associated with mountain-building processes.

ACKNOWLEDGMENTS

The authors thank Lennart Andersson, Ray Baker, Mike Bordelon, Alan Carle, Mark Collins, Helen Kennedy, Qing-Jun Li, Ida Lopez, John Mood, David Orr, and Yong-Mei Xia for discussion, assistance, and tissue samples that made this investigation possible. We also thank two anonymous reviewers for excellent suggestions to improve the content and structure of the manuscript. This work was funded by the Smithsonian Scholarly Studies Program, the Biotic Surveys and Inventories Program of the National Museum of
Natural History, the National Geographic Society, and an equipment grant to Rancho Santa Ana Botanic Garden from the National Science Foundation (##070377).

LITERATURE CITED

Anderson, L. 1981. Revision of the Thalia geniculata complex (Marantaceae). Nordic J. Bot. 1: 48–56.

———. 1998. Marantaceae, pp. 278–293. In K. Kubitzki [ed.]. The families and genera of vascular plants, Vol. 4. Flowering plants, monocotyledons: Alismataceae and Commelinaceae (except Gramineae). Springer-Verlag, Berlin, Germany.

———, and M. W. Chase. 2001. Phylogeny and classification of Marantaceae. Bot. J. Linn. Soc. 135: 275–287.

Axelrod, D. I., and P. H. Raven. 1978. Late Cretaceous and Tertiary vegetation history of Africa, pp. 77–130. In M. J. A. Werger [ed.]. Biogeography and ecology of southern Africa. Dr. Junk, The Hague, The Netherlands.

Bartlett, M. S. 1937a. Some examples of statistical methods of research in agriculture and applied biology. Journal of the Royal Statistical Society Supplement 4: 137–170.

———. 1937b. Properties of sufficiency and statistical tests. Proceedings of the Royal Statistical Society Ser. A. 160: 268–282.

BeFORT, M., and R. J. Roberts. 1997. Homing endonucleases: keeping the house in order. Nucl. Acids Res. 25: 3379–3388.

Beninda-Emonds, O. R. P., J. L. Gittleman, and M. A. Steel. 2002. The (super)tree of life: procedures, problems, and prospects. Annual Rev. Ecol. Syst. 33: 265–289.

Bonitz, S. G., G. Coruzzi, B. E. Thalenfeld, A. Tzagoloff, and G. Macino. 1980. Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase. J. Biol. Chem. 255: 11927–11941.

Bremer, K. 1992. Ancestral areas: a cladistic reinterpretation of the center of origin concept. Syst. Biol. 41: 436–445.

Camín, J. H., and R. R. Sokal. 1965. A method for deducing branching sequences in phylogeny. Evolution 19: 311–326.

Cerling, T. E., Y. Wang, and J. Quade. 1993. Expansion of C3 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361: 344–345.

Cho, Y., and J. D. Palmer. 1999. Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family. Molec. Biol. Evol. 16: 1155–1165.

———, Y.-L. Qu, P. Kuhlam, and J. D. Palmer. 1998. Explosive invasion of plant mitochondria by a group I intron. Proc. Natl. Acad. Sci. U.S.A. 95: 14244–14249.

Davis, J. I., D. W. Stevenson, G. Petersen, O. Sieberg, J. V. Freudenstein, D. H. Goldman, C. R. Hardy, F. A. Michelangelo, M. P. Simmons, C. D. Specht, F. Vergara-Silva, and M. A. Gandalfo. 2004. A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst. Bot. 29: 467–510.

Delahodde, A. V. Goguel, A. M. Becam, F. Creusot, J. Péree, J. Banroques, and C. Jacc. 1989. Site-specific DNA endonuclease and RNA maturation activities of two homologous intron-encoded proteins from yeast mitochondria. Cell 56: 431–441.

Dieetchuvi, M. M. 1996. Taxonomie et phytogéographie des Marantaceae et Zingiberaceae de l’Afrique centrale (Gabon, Congo, Zaïre, Rwanda et Burundi). Thèse de doctorat, Université Libre de Bruxelles, Brussels, Belgium. 438 p.

D’Orey, J. D. S. 1981. Marantaceae collected by John Gossweiler in Angola present in the Overseas Garden and Agricultural Museum, Lisbon, Portugal. Keys for identification of genera, species and varieties. Garcia de Orta, Sér. Bot. 5: 47–57.

Ehleringer, J. R., R. F. Sage, L. B. Flanagan, and R. W. Peary. 1991. Climate change and the evolution of C4 photosynthesis. Trends Ecol. Evol. 6: 95–99.

Fitch, W. M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406–416.

Greenway, P. J. 1970. A classification of the vegetation of East Africa. Kikar 9: 1–68.

Huelseneck, J. P., and F. Ronquist. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.

Hutchinson, J. 1934. The families of flowering plants II. Monocotyledons arranged according to a new system based on their probable phylogeny. Macmillan and Co., Ltd., London, UK. 243 p.

———. 1959. The families of flowering plants II. Monocotyledons arranged according to a new system based on their probable phylogeny. Ed. 2. Clarendon Press, Oxford, UK. 282 p.

———. 1973. The families of flowering plants arranged according to a new system based on their probable phylogeny, Ed. 3. Clarendon Press, Oxford, UK. 968 p.

Keary, P., and F. V. In. 1996. Global tectonics, Ed. 2. Blackwell Science, Oxford, UK. 333 p.

Kirchoff, B. K. 1983a. Allometric growth of the flowers in five genera of the Marantaceae and in Canna (Cannaceae). Bot. Gaz. 144: 110–118.

———. 1983b. Floral organogenesis in five genera of the Marantaceae and in Canna (Cannaceae). Amer. J. Bot. 70: 508–23.

Kress, W. J. 1990. The phylogeny and classification of the Zingiberaceae. Ann. Missouri Bot. Gard. 77: 698–721.

———, L. M. Prince, W. J. Hain, and E. A. Zimmer. 2001. Unraveling the evolutionary radiation of the families of the Zingiberaceae using morphological and molecular evidence. Syst. Biol. 50: 926–944.

———, and K. J. Williams. 2002. The phylogeny and classification of the gingers (Zingiberaceae): evidence from molecular data. Amer. J. Bot. 89: 1682–1696.

———, and C. D. Specht. 2006. The evolution and biogeographic origin and diversification of the tropical monocot order Zingiberales, pp. 621–632. In J. T. Columbus, E. A. Friat, J. M. Porter, L. M. Prince, and M. G. Simpson [eds.]. Monocots: comparative biology and evolution (excluding Poales). Rancho Santa Ana Botanic Garden, Claremont, California, USA.

Levy, K. J. 1975a. Some multiple range tests for variances. Educational and Psychological Measurement 35: 599–604.

———. 1975b. An empirical comparison of several multiple range tests for variances. Journal of the American Statistical Association 70: 180–183.

Lössener, T. H. 1930a. Marantaceae, pp. 652–693. In A. Engler and K. Prantl [eds.], Die natürlichen Pflanzenfamilien, Ed. 2, 15a. W. Engelmann, Leipzig, Germany.

———. 1930b. Zingiberaceae, pp. 541–640. In A. Engler and K. Prantl [eds.], Die natürlichen Pflanzenfamilien, Ed. 2, 15a. W. Engelmann, Leipzig, Germany.

Madison, D. R., and W. P. Maddison. 2000. MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates, Inc., Sunderland, Massachusetts, USA. 492 p.

Manos, P. S., and K. P. Steele. 1997. Phylogenetic analyses of “higher” Hamamelididae based on plastid sequence data. Amer. J. Bot. 84: 1407–1419.

Milne-redhead, E. 1950. Notes on African Marantaceae: I. Kew Bull. 1950: 157–163.

———. 1952. Notes on African Marantaceae: II. Phrynum Willd. emend. K. Schum. in Africa. Kew Bull. 1952: 167–170.

Mort, M. E., P. S. Solis, D. E. Solis, and M. L. Mabry. 2000. Empirical comparison of three methods for estimating internal support for phylogenetic trees. Syst. Biol. 49: 160–170.

Olmsdtead, R. G., and J. A. Swayne. 1994. Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst. Biol. 43: 467–481.

Oxelman, B., M. Lidén, and D. Berglund. 1997. Chloroplast rps16
intron phylogeny of the tribe Sileneae (Caryophyllaceae). Pl. Syst. Evol. 206: 393–410.

PALMER, J. D. 1990. Contrasting modes and tempo of genome evolution in land plant organelles. Trends Genet. 6: 115–120.

———. K. L. ADAMS, Y. CHO, C. L. PARKINSON, Y.-L. QIU, AND K. SONG. 2000. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc. Natl. Acad. Sci. U.S.A. 97: 6960–6966.

———, AND L. A. HERBON. 1989. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Molec. Evol. 28: 87–97.

PENNY, D., AND M. HENDY. 1985. Testing methods of evolutionary tree construction. Cladistics 1: 266–272.

PETERSEN, O. G. 1889. Marantaceae, pp. 31–43. In A. ENGEL, AND K. Prantl [eds.], Die natürlichen Pflanzenfamilien, Vol. 2(6). W. Engelmann, Leipzig, Germany.

PIRES, J. C., AND K. J. SYTSMA. 2002. A phylogenetic evaluation of a biosystematic framework: Brodiaeae and related petaloid monocots (Themidaceae). Amer. J. Bot. 89: 1342–1359

PONSTEIN, J. 1966. Matrices in graph and network theory. Van Gorcum, Assen, The Netherlands. 124 p.

PRINCE, L. M., AND W. J. KRESS. In press. Phylogenetic relationships and classification in the prayer plant family (Marantaceae): insights from plastid DNA sequence data. Taxon.

QUADE, J., AND T. E. CERLING. 1995. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology 115: 91–116.

RAGAN, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molec. Phylogen. Evol. 1: 53–58.

RAMBAUT, A. 1996. Se-Al (v2.0a11) Sequence Alignment Editor. http://evolve.zoo.ox.ac.uk/software.html?id = seal (Apr 2005).

RAVEN, P. H., AND D. I. AXELROD. 1974. Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard. 61: 539–657.

RETTALLACK, G. J. 1992. Middle Miocene fossil plants from Fort Ternan (Kenya) and the evolution of African grasslands. Paleobiology 18: 383–400.

RONQUIST, F. 1996. DIVA vers. 1.1. http://www.ebc.uu.se/systzoo/research/diva/diva.html (Apr 2005).

SARQUEL, B., D. HATAT, A. DELAHODDE, AND C. JACQ. 1990. In vivo and in vitro analyses of an intron-encoded DNA endonuclease from yeast mitochondria. Recognition site by site-directed mutagenesis. Nucl. Acids Res. 18: 5659–5665.

SCHUMANN, K. M. 1904. Zingiberaceae, pp. 1–458. In A. Engel [ed.] Das Pflanzenreich IV 46. W. Engelmann, Leipzig, Germany.

SIMOL, P. S., K. P. RAJESH, AND P. V. MADHUSOODANAN. 2000. On the occurrence of Thalia geniculata L. (Marantaceae) in India. J. Econ. Taxon. Bot. 24: 727–730.

SOLTIS, D. E., P. S. SOLTIS, M. W. CHASE, M. E. MORT, D. C. ALBACH, M. ZANIS, V. SAVOLAINEN, W. H. HAIN, S. B. Hoot, M. F. FAY, M. AXTELL, S. M. SWENSEN, L. M. PRINCE, W. J. KRESS, K. C. NIXON, AND J. S. FARRIS. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc. 133: 381–461.

STEEL, K. P., AND R. VILGALYS. 1994. Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst. Bot. 19: 126–142.

SWOFFORD, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods). vers. 4.0b10. Sinauer Associates, Inc., Sunderland, Massachusetts, USA.

TABERLET, P., L. GIELLY, G. PAUTOU, AND J. BOUVET. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1109.

TANAKA, N. 2001. Taxonomic revision of the family Cannaceae in the New World and Asia. Makinoa 1: 1–74.

TERRY, R. G., G. K. BROWN, AND R. G. OLMSTEAD. 1997. Examination of the phylogenetic relationships of the subfamily Tillandioideae (Bromeliaceae) using nucleotide sequences of the plastid ndhF. Syst. Bot. 22: 333–345.

VAUGHN, J. C., M. T. MASON, G. L. SPER-WHITIS, P. KUHLMAN, AND J. D. PALMER. 1995. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric ccd gene of Pepperomia. J. Molec. Evol. 41: 563–572.

WHITE, T. J., T. BRUNS, S. LEE, AND J. TAYLOR. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies, pp. 315–322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White [eds.], PCR protocols: a guide to methods and applications. Academic Press, San Diego, California, USA.

WING, S. L., AND H.-D. SUES. 1991. Mesozoic and early Cenozoic terrestrial ecosystems, pp. 327–416. In A. K. Behrensmeyer et al. [eds.], Terrestrial ecosystems through time. Chicago University Press, Chicago, Illinois, USA.

WOLFE, K. H., W. H. LI, AND P. M. SHARP. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA. 84: 9054–9058.

ZIEGLER, A. M., R. K. BAMBACH, J. T. PARRISH, S. F. BARBETT, E. H. GIERLOWSKI, W. C. PARKER, A. RAYMOND, AND J. J. SEPkoski, Jr. 1981. Paleoecological biogeography and climatology, pp. 231–266. In K. J. Niklas [ed.], Paleobotany, paleoecology and evolution, Vol. 2. Praeger Publishers, New York, USA.