Proper Microtubule Structure Is Vital for Timely Progression through Meiosis in Fission Yeast

Akira Yamashita¹, Yoshihiro Fujita², Masayuki Yamamoto¹,²

¹Laboratory of Gene Function, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan, ²Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan

Abstract

Cells of the fission yeast Schizosaccharomyces pombe normally reproduce by mitotic division in the haploid state. When subjected to nutrient starvation, two haploid cells fuse and undergo karyogamy, forming a diploid cell that initiates meiosis to form four haploid spores. Here, we show that deletion of the mal3 gene, which encodes a homolog of microtubule regulator EB1, produces aberrant asci carrying more than four spores. The mal3 deletion mutant cells have a disordered cytoplasmic microtubule structure during karyogamy and initiate meiosis before completion of karyogamy, resulting in twin haploid meiosis in the zygote. Treatment with anti-microtubule drugs mimics this phenotype. Mutants defective in karyogamy or mutants prone to initiate haploid meiosis exaggerate the phenotype of the mal3 deletion mutant. Our results indicate that proper microtubule structure is required for ordered progression through the meiotic cycle. Furthermore, the results of our study suggest that fission yeast do not monitor ploidy during meiosis.

Introduction

Karyogamy, a process in which two haploid nuclei fuse to produce a diploid nucleus, must occur prior to initiation of meiosis in haploid organisms such as the fission yeast Schizosaccharomyces pombe. Haploid fission yeast cells display one of two mating types, designated as h² and h⁻. Homothallic strains, designated as h²mo, undergo frequent switching of mating type between h² and h⁻, whereas heterothallic strains are fixed as either h² or h⁻. When starved for nutrients, particularly nitrogen, haploid cells conjugate with cells of the opposite mating type, after which they undergo karyogamy and form diploid zygotes. In conjugated diploid cells, expression of the mei3 gene is induced [1,2]. The mei3 gene encodes an inhibitor of Pat1 kinase [3]. Pat1 kinase negatively regulates the initiation of meiosis [4,5]. Once Pat1 is inactivated by Mei3, dephosphorylated Mei2, which is a critical target of Pat1, accumulates and triggers the initiation of meiosis [6–8].

Regulation of the temporal order of conjugation, karyogamy, and the initiation of meiosis is crucial for the generation of proper haploid spores. However, several mutants are known to undergo haploid meiosis in the absence of conjugation. For instance, temperature-sensitive pat1 mutants initiate haploid meiosis at elevated temperatures [4,5]. Expression of an activated form of Mei2 that has alanine substitutions at Pat1 target sites also induces haploid meiosis [6]. It is also known that h²/h² and h⁻/h⁻ diploid cells can mate, and the resulting tetraploid cells occasionally produce more than four spores [9]. These spores are derived from “twin meiosis”, in that two nuclei initiate meiosis separately in the absence of karyogamy [9]. This suggests that fission yeast might not monitor the completion of karyogamy prior to undergoing meiosis. Here, we report that twin meiosis occurs even in diploid zygotes. We examined the meiotic phenotype of cells lacking the mal3 gene that encodes a homolog of EB1, a well-characterized microtubule plus-end-tracking protein originally identified as a binding partner of the tumor suppressor protein APC [10]. Mal3 is shown to be a crucial microtubule regulator, both in interphase and during mitotic division [11–13]. mal3Δ cells are characterized by a defective microtubule cytoskeleton, which causes aberrant cell morphology, and by defects in chromosome stability. In the present study, we investigated the meiotic phenotype of the mal3Δ strain, and found that correct cytoplasmic microtubule organization is crucial for proper meiotic progression.

Materials and Methods

Fission Yeast Strains, Genetic Analysis, and Growth Media

Table 1 lists the S. pombe strains used in this study. General genetic analyses of the S. pombe strains followed previously described procedures [14]. Growth media used in the study included complete YE, minimal SD and MM [15], synthetic sporulation SSA [16], and sporulation SPA [14]. A standard protocol was used for gene tagging and deletion [17]. To determine percentage of asci containing 1, 2, 3, 4 or >4 spores, more than 200 asci were examined after incubation on SSA for 3 days (Fig. 1A and 3C) or on SPA for 1 day (Fig. 1D). Standard deviations were calculated from three independent experiments.

References

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17]
Figure 1. The mal3Δ mutant generates aberrant asci containing more than four spores. (A) Micrographs of spore-containing asci. Right panel shows asci produced by mal3Δ mutant cells, each carrying eight spores. Wild-type (JY450) and mal3Δ (JW794) homothallic haploid cells were grown on SSA sporulation medium at 30°C for 4 days to induce conjugation, meiosis, and sporulation. Bar = 5 μm. (B) Percentage of asci containing 1, 2, 3, 4, or >4 spores. Wild-type (JY450), mal3Δ (JW794), dhc1Δ (JW327), ssm4Δ (JW652), mal3Δ dhc1Δ (JW866), and mal3Δ ssm4Δ (J853) strains were induced to sporulate by incubating cells for 3 days on SSA medium at 30°C. More than 200 asci were examined for each strain. Error bars indicate standard deviations from three independent experiments. Asterisks indicate significant difference from the wild-type strain (**p<0.01 (Chi-square test)). (C) Viability of spores of the mal3Δ strain (JW794) from asci carrying 4, 6, or 8 spores. More than 80 spores from each ascus were dissected using a micromanipulator and incubated on rich YE medium at 30°C. (D) Percentage of asci containing 1, 2, 3, 4, or >4 spores generated by the wild-type strain (JY450) on medium containing the anti-microtubule drug thiabendazole. Sporulation was induced by cells at 30°C on SPA medium with or without 100 μg/mL thiabendazole. After incubation for 1 day, more than 200 asci were examined. Error bars indicate standard deviations from three independent experiments. Asterisks indicate significant difference from the wild-type strain (**p<0.01 (Chi-square test)). doi:10.1371/journal.pone.0065082.g001
Live Cell Imaging
To induce meiosis, each strain was grown to mid-log phase in MM medium at 30°C, after which cells were collected, washed, and spotted onto plates containing SPA medium. After incubation for 4–6 hours at 30°C, cells were observed using the PersonalDV microscopy imaging system (Applied Precision, Issaquah, WA, USA) or under a fluorescence microscope (AxioPlan 2; Carl Zeiss, Oberkochen, Baden-Wuerttemberg, Germany) equipped with a chilled CCD camera (CoolSNAP HQ2; PHOTOMETRICS, Tucson, AZ, USA) and MetaMorph software (Molecular Devices, Sunnyvale, CA, USA). To determine percentage of zyogotes containing one or two Mei3-GFP-positive nuclei, more than 200 cells were examined after incubation on SPA. Standard deviations were calculated from three independent experiments.

Results
Mal3 is Essential for Proper Spore Production
The sexual differentiation pathway, which involves mating, meiosis, and sporulation, was induced in mal3Δ cells in order to elucidate the role of Mal3 in meiosis. The mating and sporulation frequencies of the mal3Δ strain were comparable to those of the wild type; however, 21% of the mal3Δ cells generated aberrant ascii containing more than four (at most eight) spores, a phenomenon that was observed infrequently in wild-type cells (Figs. 1A and 1B). We then determined the viability of spores in the aberrant ascii produced by mal3Δ cells, and found that spore viability declined as the number of spores per ascus increased (45%, 15% and 2% in four-, six- and eight-spore ascii, respectively, Fig. 1C). These results suggest that Mal3 plays a significant role in meiosis. Zygotes carrying less than three spores were rarely detected in the wild-type strain, but were observed more frequently in the mal3Δ strain (0.4% in wt versus 9.5% in mal3Δ, Fig. 1B). The higher frequency of zygotes carrying less than three spores could be due to a deficiency in microtubule-dependent nuclear movement during meiotic prophase, as has been shown to occur in dynein-dynactin mutants [18–20].

Mal3 is a crucial microtubule regulator, and consequently disruption of the mal3 gene compromises the structure of microtubules [11]. We therefore examined whether impairment of the microtubule structure leads to the aberrant spore formation. In wild-type cells cultured in the presence of the microtubule-disrupting drug thiabendazole, 11% of the spore-containing ascii contained more than four spores (Fig. 1D), suggesting that disorder in the structure of microtubules is responsible for the extra-spore phenotype of the mal3Δ strain. Consistent with this observation, the ndb1Δ strain, in which cytoplasmic microtubule nucleation is abolished [21–23], also showed the extra-spore phenotype (data not shown).

Meiosis Proceeds without Karyogamy in mal3Δ Cells
We next investigated how the extra-spore phenotype is elicited in the mal3Δ strain. Time-lapse observations made throughout the entire meiotic process, from mating to meiosis II, showed that meiotic divisions occurred before the completion of karyogamy in mal3Δ cells (Fig. 2). We utilized mal3Δ+ and mal3Δ strains carrying the GFP-atb2 fusion gene encoding GFP-tubulin and the cut11-3mRFP gene encoding a fusion protein consisting of the nuclear envelope marker Cut11 [24] and three copies of mRFP. In wild-type cells, karyogamy occurred prior to meiosis I (Fig. 2, a). In mal3Δ cells, cytoplasmic microtubules, which in wild-type cells bridge two approaching nuclei, were severely impaired. During karyogamy in budding yeast, nuclear congression is driven by microtubule dynamics [25,26]. Disruption of the BIM1 gene, which encodes the EB1 homolog in budding yeast, has been shown to lead to a defect in karyogamy [27]. We found that nuclear congression was defective in mal3Δ cells, as in bim1 mutant budding yeast. In addition, mal3Δ cells entered meiosis I in the absence of karyogamy, leading to twin haploid meiosis in single zygotes. These observations suggest that formation of extra spores in mal3Δ cells is caused by the skipping of karyogamy.

We hypothesized that the delay in karyogamy might exacerbate the extra-spore phenotype of mal3Δ cells. To test this hypothesis, we constructed a mutant strain with deletions of both mal3 and dhc1, which encodes the dynein heavy chain, and a mutant strain with deletions of both mal3 and ssm4, which encodes the P150 subunit of the dynactin complex, since nuclear fusion is reportedly delayed in mutants lacking the dynein heavy chain [18]. These double mutant strains showed the exaggerated phenotype, as expected (79% in mal3Δ dhc1Δ and 71% in mal3Δ ssm4Δ versus 21% in mal3Δ, Fig. 1B).

Twin Haploid Meiosis Occurs in mal3Δ Cells
Next, we monitored meiotic initiation by following the expression of Mei3, which is only expressed in cells stimulated to initiate meiosis as a result of nutritional starvation and heterozygosity [1]. Expression of Mei3-GFP was consistently observed in
the fused nucleus of most nitrogen-starved wild-type cells (Figs. 3A and 3B). In clear contrast, the frequency of cells containing two Mei3-GFP-positive nuclei was higher in the mal3Δ mutant. This observation supports the idea that two haploid meioses occur prematurely in the mal3Δ strain. We then examined the effect produced by accelerating the initiation of meiosis by inhibiting the activity of the Pat1 kinase in mal3Δ cells. Pat1 kinase is inhibited by Mei3, thereby triggering meiosis [3]. Introduction of a temperature sensitive mutation in the pat1 gene resulted in exaggerated extra-spore formation in mal3Δ cells cultured at the semi-permissive temperature of the pat1 mutation (Fig. 3C, 30°C).

Figure 2. The mal3Δ strain initiates meiosis I before karyogamy is completed. Fluorescence micrographs of homothallic haploid cells of the wild-type (JT936) and mal3Δ (JT935) strains carrying the microtubule marker GFP-atb2 (green) and nuclear envelope marker cut11-3mRFP (red). Cells were subjected to nitrogen starvation to induce conjugation and meiosis. Serial images taken at indicated times (hr:min) are shown for each zygote. Bar = 5 μm. doi:10.1371/journal.pone.0065082.g002
Figure 3. Twin haploid meiosis proceeds in a single mal3Δ zygote. (A) Percentage of mal3Δ zygotes containing one or two nuclei expressing Mei3-GFP. Wild-type (JT939) and mal3Δ (JT937) homothallic haploid cells carrying mei3-GFP and cut11-3mRFP were subjected to nitrogen starvation to induce conjugation and meiosis. More than 200 cells were examined microscopically following incubation for the indicated times to determine the number of zygotes expressing Mei3-GFP. Error bars indicate standard deviations from three independent experiments. Asterisks indicate significant difference from the wild-type strain (**p < 0.01 (Chi-square test)). (B) Fluorescent micrographs of typical zygotes expressing Mei3-GFP in two nuclei. Wild-type (JT939) and mal3Δ (JT937) homothallic haploid cells were starved for nitrogen as in (A). Mei3-GFP is shown in green and the nuclear membrane marker Cut11-3mRFP is shown in red. Bar = 5 μm. (C) Percentage of asci containing 1, 2, 3, 4, or >4 spores generated by cells of the wild-type (JY450), mal3Δ (JW794), and mal3Δ pat1 (JT165) strains. Sporulation was induced in each strain by growth for 3 days on SSA medium at either 25°C or 30°C. More than 200 asci were examined for each strain. Error bars indicate standard deviations from three independent experiments. Asterisks indicate significant difference from the wild-type strain (**p < 0.01 (Chi-square test)).

doi:10.1371/journal.pone.0065082.g003
Discussion

In the present study, we demonstrated that fission yeast can initiate meiosis before the completion of karyogamy. Nuclear migration during karyogamy depends entirely upon cytoplasmic microtubules. It has been reported that cytoplasmic dynein plays a role in karyogamy, although nuclear fusion is eventually accomplished even in dynein deletion mutants [18]. In the budding yeast Saccharomyces cerevisiae, cytoplasmic microtubule plus-end interactions and depolymerization dependent upon the minus-end-directed kinesin Kar3 is thought to generate forces that drive nuclear congression during karyogamy [25]. Recently, it has been shown that Kar3 anchored at a spindle pole body (SPB) could exert the pulling forces on microtubules nucleated from the SPB of the mating partner nucleus and drive nuclear migration [26]. In fission yeast, zygotes lacking both dhc1, which encodes dynein heavy chain, and klp2, which encodes a kinesin-like protein homologous to Kar3, form asci containing more than four spores at a high frequency, suggesting that Klp2 kinesin is involved in karyogamy [28]. An intriguing question for further investigation centers upon how dynein and kinesin are coordinated in this process.

References

1. McLeod M, Stein M, Beach D (1987) The product of the mei3+ gene, expressed under control of the mating-type locus, induces meiosis and sporulation in fission yeast. EMBO J 6: 729–736.
2. Willer M, Hoffmann L, Stykarsdotir U, Egel R, Davey J, et al. (1993) Two-step activation of meiosis by the mating locus in Schizosaccharomyces pombe. Mol Cell Biol 15: 4964–4970.
3. Li P, McLeod M (1996) Molecular mimicry in development: identification of ste11+ as a substrate and mei3+ as a pseudosubstrate inhibitor of ste11+ kinase. Cell 87: 809–820.
4. Ino Y, Yamamoto M (1985) Mutants of Schizosaccharomyces pombe which sporelate in the haploid state. Mol Gen Genet 198: 416–421.
5. Nurse P (1985) Mutations of the fission yeast Schizosaccharomyces pombe which alter the shift between cell proliferation and sporulation. Mol Gen Genet 198: 497–502.
6. Watanabe Y, Yabana S, Chikashige Y, Hiraoka Y, Yamamoto M (1997) Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast. Nature 386: 187–190.
7. Yamamoto M, Imai Y, Watanabe Y (1997) Mating and sporulation in Schizosaccharomyces pombe. In The Molecular and Cellular Biology of the yeast Saccharomyces, J Pringle, J Broach, E Jones, eds (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press): 1037–1106.
8. Yamamoto M (2003) Initiation of meiosis. In The Molecular Biology of Schizosaccharomyces pombe, R Egel eds (Springer): 297–309.
9. Gutz H, Heslot H, Leupold U, Loprieno N (1974) Premeiotic DNA synthesis in fission yeast. Exp Cell Res 88: 127–134.
10. Su LK, Burrell M, Hill DE, Gyuris J, Brent R, et al. (1995) APC binds to the novel protein EB1. Cancer Res 55: 2972–2977.
11. Brinkkuhler JD, Hagan IM, Hegemann JH, Heig U (1997) Ma3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form. J Cell Biol 139: 717–728.
12. Busch KE, Brunner D (2004) The microtubule plus-end-tracking proteins saltlp and tip1lp cooperate for cell-endo-targeting of interphase microtubules. Curr Biol 14: 548–559.
13. Asakawa K, Toya M, Sato M, Kanaiz M, Kume K, et al. (2005) Ma3, the fission yeast EB1 homologue, cooperates with Bub1 spindle checkpoint to prevent monoclonal attachment. EMBO Rep 6: 1194–1200.
14. Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. In Handbook of Genetics; King RD, editor. New York: Plenum Publishing Corporation. 393–446 p.
15. Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795–823.
16. Egel R, Egel-Mitani M (1974) Premeiotic DNA synthesis in fission yeast. Exp Cell Res 88: 127–134.
17. Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, 3rd, et al. (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14: 943–951.
18. Yamamoto A, West RR, McIntosh JR, Hiraoka Y (1999) A cytoplasmic dynein heavy chain is required for oscillatory nuclear movement of meiotic prophase and efficient meiotic recombination in fission yeast. J Cell Biol 145: 1233–1249.
19. Niccoli T, Yamashita A, Nurse P, Yamamoto M (2004) The p150-Gluad Sun4p regulates microtubular dynamics and nuclear movement in fission yeast. J Cell Sci 117: 5543–5556.
20. Fujita I, Yamashita A, Yamamoto M (2010) Contribution of dynein light intermediate and intermediate chains to subcellular localization of the dynactin-dynactin motor complex in Schizosaccharomyces pombe. Genes Cells 15: 359–372.
21. Savin KE, Lourens PC, Snaith HA (2004) Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fusion yeast centrosomin-related protein Mod20p. Curr Biol 14: 763–775.
22. Venkatram S, Tasto JJ, Frooktistova A, Jennings JL, Link AJ, et al. (2004) Identification and characterization of two novel proteins affecting fission yeast gamma-tubulin complex function. Mol Cell Biol 15: 2287–2301.
23. Zimmerman S, Chang F (2005) Effects of (gamma)-tubulin complex proteins on microtubule nucleation and catastrophe in fission yeast. Mol Biol Cell 16: 2719–2733.
24. West RR, Vaisberg EV, Ding R, Nurse P, McIntosh JR (1998) cut11+; A gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol Biol Cell 9: 2839–2855.
25. Molk JN, Salmon ED, Bloom K (2006) Nuclear congression is driven by cytoplasmic microtubule plus-end interactions in S. cerevisiae. J Cell Biol 172: 27–39.
26. Gibeaux R, Politi AZ, Nedelec F, Antony C, Knop M (2013) Spindle pole body-anchored Kar3 drives the nucleus along microtubules from another nucleus in preparation for nuclear fusion during yeast karyogamy. Genes Dev 27: 335–349.
27. Schwartz K, Richards K, Botstein D (1997) BIM1 encodes a microtubule-binding protein in yeast. Mol Biol Cell 8: 2677–2691.
28. Tressol CL, Swezy MA, West RR, Reed KD, Carson BD, et al. (2001) pkl1+ and klp2+: Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol Biol Cell 12: 3476–3480.
29. Tanaka K, Hirata A (1992) Ascospor development in the fission yeasts Schizosaccharomyces pombe and S. japonicus. J Cell Sci 56: 263–279.
30. Furuya K, Niki H (2009) Isolation of heterothallic haploid and auxotrophic mutants of Schizosaccharomyces japonicus. Yeast 26: 221–233.