Ixcatec ethnoecology: plant management and biocultural heritage in Oaxaca, Mexico

Selene Rangel-Landa¹², Alejandro Casas*¹, Erandi Rivera-Lozoya³, Ignacio Torres-García¹ and Mariana Vallejo-Ramos³

Abstract

Background: Studying motives of plant management allows understanding processes that originated agriculture and current forms of traditional technology innovation. Our work analyses the role of native plants in the Ixcatec subsistence, management practices, native plants biocultural importance, and motivations influencing management decisions. Cultural and ecological importance and management complexity may differ among species according with their use value and availability. We hypothesized that decreasing risk in availability of resources underlies the main motives of management, but curiosity, aesthetic, and ethical values may also be determinant.

Methods: Role of plants in subsistence strategies, forms of use and management was documented through 130 semi-structured interviews and participant observation. Free listing interviews to 38 people were used to estimate the cognitive importance of species used as food, medicine, fuel, fodder, ornament and ceremonial. Species ecological importance was evaluated through sampling vegetation in 22 points. Principal Components Analysis were performed to explore the relation between management, cultural and ecological importance and estimating the biocultural importance of native species.

Results: We recorded 627 useful plant species, 589 of them native. Livelihood strategies of households rely on agriculture, livestock and multiple use of forest resources. At least 400 species are managed, some of them involving artificial selection. Management complexity is the main factor reflecting the biocultural importance of plant species, and the weight of ecological importance and cultural value varied among use types. Management strategies aim to ensure resources availability, to have them closer, to embellish human spaces or satisfying ethical principles.

Conclusion: Decisions about plants management are influenced by perception of risk to satisfy material needs, but immaterial principles are also important. Studying such relation is crucial for understanding past and present technological innovation processes and understand the complex process of developing biocultural legacy.

Keywords: Biocultural heritage, Domestication, Ethnoecology, Tehuacán-Cuicatlán Valley, Ixcatec, Cultural value, Plant management

Background

In most rural areas of Mexico, especially in those inhabited by indigenous peoples, human subsistence patterns generally involve multiple strategies. Agriculture for direct consumption of products is commonly the main activity, complemented by small scale livestock and the use of numerous forest resources destined to direct consumption and commercialization [1]. These activities occur in territories that are settings of multidimensional and complex interrelationships between humans and nature in socio-ecological systems, integrated as totalities with elements and processes mutually influencing their features and changes [2]. Expressions of these interrelationships are management of wild plant and animal species, domesticated organisms and territories of indigenous and local peoples, which constitute part of the biocultural heritage that are created and maintained through long term by the continuous use and management [3–5]. Management or
transformations and decisions made by humans on ecosystems, and on their elements and functions [6], based on TEK are fundamental in the biocultural heritage development process, and constitute a traditional form of facing the uncertainty inherent to complex systems [3, 7–9].

Management may include a broad spectrum of strategies and interactions for appropriation and maintaining natural resources [6, 10, 11]; collective actions to protect them [12], as well as those directed to recover or restore them [6]. These practices (praxis) are based on TEK about species and ecosystems (corpus) that are in turn strongly linked to belief systems (kosmos) [7, 13], which have direct influence on resources and ecosystem management.

Plant management is influenced by ecological and social factors [14–17], including the cultural importance of plant species in human life. Some investigations have found positive correlation between cultural and ecological importance, suggesting that most conspicuous plants have more important use values, but numerous examples have been reported contradicting this hypothesis [18, 19]. More informative for constructing ethnobiological theory has been analyzing the complex of the relationships between cultural significance, ecological importance and management complexity. In edible plants, it has been found that species with high cultural value and limited availability are more intensely managed, as a response to the risk in their availability [14–17]. However, humans are not only respondents of critical situations. Curiosity, attraction for beauty, experimentation, innovation, among other intentions are part of human nature and should also be taken into account as factors influencing people’s decision to manage organisms [20–22].

Understanding the role of plant resources with different use types in human subsistence patterns, how management interactions are, and how are these influenced by social and ecological factors, may help to understand the principles of the construction of management techniques, management systems, how processes of domestication are originated, and how processes of current technical innovations are developed, in order to understand the process of construction of the biocultural heritage [6].

The Tehuacán–Cuicatlán Valley in central Mexico, is an important region of the Mexican biocultural heritage [3], harbouring more than 3,000 species of vascular plant species and human cultures with ancestors nearly 10,000 years old [23, 24]. Currently, the Popoloca, Mazatec, Mixtec, Chinantec, Cuicatec, Ixcatec, Chocho, Náhuatl and Mestizo communities make use of nearly 1,750 plant species, at least 610 of them receiving management practices [11, 25]. These figures make the Tehuacán Valley an ideal setting for studying processes influencing decision, innovation and diffusion of experiences on plant management.

This study was performed in Santa María Ixcatlán, the only town where the Ixcatec currently live in the world. It was directed to document subsistence strategies, plants use and management locally practiced, and the main motives to manage them. Also, we examined how cultural, ecological and management factors interact and determine the importance of native plants with different use type on Ixcatec biocultural heritage.

We analyzed the hypothesis that the main motive of managing plants is decreasing the risk that represent their low availability and in some cases to enhance their abundance and quality. Therefore, subsistence is based on multiple activities, diversified management strategies to prevent risks in staple resources availability; and the high cultural importance and management intensity may be associated with low ecological importance. But, attraction for beauty, curiosity and ethical concerns, beyond the satisfaction of primary needs, should also be important aspects in decisions to manage plant resources.

Methods
Study area
At present, the Ixcatec live only in the community of Santa María Ixcatlán, a town governed by the regime of traditional practices and customs. Land tenure is communal with 41,530 ha [26, 27] belonging to the Tehuacán-Cuicatlán Biosphere Reserve, Mexico (Fig. 1). The whole territory is mountainous, with elevations ranging from 800 to 2600 m. Soils in most of the territory derived from calcareous rocks, with thin layers of black organic soils. The town has temperate climate, with annual mean temperature of 17.2 °C, and annual rainfall averaging 721 mm [28, 29]. The rest of the territory has semiarid climate [29]. Vegetation types are oak forests, tropical dry forest, induced grassland and secondary vegetation [30].

In Santa María Ixcatlán live 175 households and 516 people [31]. There is a high migration of young people to the cities of Tehuacán, México, Orizaba, and more recently to the US [32]. Local households’ economy is based on direct consumption of agricultural products, livestock raising and use of forest products [32, 33]. The Communitarian Assembly, conforming by all adult men, is the maximum authority [32], and people obtain rights to have access to resources and lands of the territory through a system of charges and cooperation to communitarian activities [32]. Practically all families are Catholic [32], and have a complex calendar of ceremonies [27, 32, 33]. Nearly a dozen of persons are fluently speakers of Ixcatec, an almost extinct language [34, 35].

Flora inventory
We conducted ethnoecological studies in Ixcatlán in the period 1999–2001 and in the period 2011–2015 with 16 campaigns of field work. Trial walks accompanied with local informants were carried out to identify vegetation types [36] and collecting botanical voucher specimens.
throughout the territory of the community. Voucher specimens were deposited at MEXU, EBUM, IE-BAJÍÓ and IBUG herbaria with Selene Rangel, Erandi Rivera, and Ricardo collection numbers. Nomenclature and classification of species are presented following the APG III classification system consulted in the site www.theplantlist.org [37].

Interviews
A total of 130 semi-structured interviews to 62 people were conducted to document common names of plants, their use, management practices and motivations to conduct them. Alive plants in their own homegardens, agricultural fields or seen in trial walks, fresh specimens collected a day before, dried specimens and pictures were used as stimulus in these interviews; 22 of the 62 interviewees (9 women and 13 men, with average age of 58.9 years, SD = 22.5) were considered key informants because of their deep knowledge of the territory and plants or because they were Ixcatec speakers. Key informants were selected by the snowball sampling technique, by asking for people with these skills; 15 of them were interviewed from 2 to 11 times in a total of 77 audio or video-recorded sessions, in which on average 17.2 (SD = 23.4) species were reviewed per work session. The other 40 interviewees were considered occasional participants (21 female and 17 male, whose age averaged 53.2 years, SD = 20.8), and they were selected randomly.

More detailed information about informants and activities are included in the Table 6 of Appendix. All interviews used for the analysis showed in this paper were performed in Spanish. All interviews and participant observation data about plant resources use and management were transcribed and systematized into the format of the ethnobotanical data base of Mexico (BADEPLAM) of the
Botanical Garden, UNAM. Audio-visual material was stored in the Ixcatec Culture Archive and The Endangered Languages Archive.

Surveys

Semi-structured surveys with questions on agricultural production and consumption of plant resources were conducted in Spanish between 2000 and 2012 to 21 and 20 households representing the 12% of the households of Ixcatlán in each year (householders averaging 61.2 years old, SD = 17.2). In 2000 households were selected at random, while in 2012, 24% of the households surveyed in 2000 were selected, and the rest were selected at random.

Free listing

In order to identify the plant species with the higher cognitive importance, in 2013 we used the free listing method [38]. We requested in Spanish to 38 people (22 men and 16 women, aging on average 50.6 years, SD = 18.8) to spontaneously listing the names of plants that grow in the territory of Santa María Ixcatlán that are used: 1) as food, 2) to attend illnesses and take care of health, 3) as firewood, 4) to feed livestock, 5) to offer them to Saints, dead people or used in ceremonies, and 6) to embellish the houses and crop land. Once informants stopped listing plants for one use, we asked them to listing plants for other use, and we continued this procedure until finishing the lists of plants for the six uses. Of the 38 people interviewed, 19 were previous informants (13 considered key informants and 6 occasional informants), the other 19 people interviewed were selected at random. Details on the number of lists per use type, the number of items named, the levels of saturation of the datasets, and information about interviewees can be consulted in the Appendix.

Vegetation sampling

We conducted vegetation samplings in 22 points of nine natural and transformed vegetation types in order to estimate the ecological importance value of species [36]: Quercus liebmannii and Quercus laeta forest (3 points), Quercus urbanni forest (1 point), riparian forest of Taxodium huegelii (1 point), Juniperus flaccida forest (2 points), izotal of Beaucarnea stricta (2 points), mxical (2 points), palm scrubland of Brahea dulcis (2 points), grassland (2 points), and agricultural fields (7 points). At each point we established a 500 m² quadrat, where all shrubs and trees were counted and their height and two canopy diameters were measured. Herbs were sampled in five subplots (1 m² each) randomly placed within the area of each 500 m² quadrat. Density and frequency was calculated for each species. Shrubs and trees biomass was calculated through volume formulas of geometric figures [39]. In addition, the floristic composition was sampled in 17 homegardens.

Data analyses

Livelihood analysis was conducted to assess the subsistence strategies [38], and descriptive data of use and management of plants species were estimated.

Series of Principal Component Analyses (PCA) with native plants species (species with wild populations or Mesoamerican species with naturalized populations in Ixcatlán territory), were performed. Species were considered as operational taxonomic units according to its number of uses, cognitive importance, consumption, ecological importance, complexity of management practices, and management place, all of them aspects involved in the definition of their importance to the biocultural heritage of plant species. The scores of the first principal component obtained in each PCA were considered as biocultural importance index by type of use, since these values are linear combinations that integrating information of the variables, species with positive and highest values were considered more important [15, 40]. The most important variables and how they interact was identified by the correlation values between variables and the first two components [41]. We also identified how species are grouped according with all the variables studied by representing the cloud of species in terms of the two first components [41]. These PCAs were made in JMP 8. statistical software [42].

The cognitive importance was estimated through free listing data with the index of Sutrop (S) with the formula $S = F/(N \times mP)$, where F represents the frequency of the species, N the total number of interviewed people per use category, and mP is the medium position in which the term or species was named [43]. We calculated this index with the software FLAME v1.0 [44]. A zero value was assigned to all species that were not listed by consultants [43]. When an informant said that he/she does not know any plant for a given use or when he/she said that all plants could be used for the requested use, we excluded the list of the analysis.

The consumption of products was estimated as the percentage of households that consumed each plant species throughout the year, based on data documented with surveys conducted in 2012.

The ecological importance of species was estimated through the ecological importance value index $EIVI = (\text{Relative frequency} + \text{Relative abundance} + \text{Relative biomass})/3$, calculated by each plant species per sampled site [45]. The floristic composition of homegardens was similarly used to calculate ecological importance.

The complexity of management practices was calculated by the sum of numerical values of management practices. Values were assigned based on the typology proposed by Blancas et al. [11] as follows: a) gathering, simple or planned extraction strategies = 1; b) tolerance or let standing of plants = 2; c) enhancement by promoting abundance of useful plant species or phenotypes = 3; d)
protection of desirable plants = 4; e) transplanting entire individuals = 5; f) propagation as seed sowing and vegetative propagation = 6. In addition, we assigned values of 0.5 to simple foraging by domestic animals, and uproot or deliberate removal individuals of the species in question. Values of each practices was summarized per plant species. The places of management were categorized in natural populations plants distribution sites (in situ = 1) and sites out of their natural distribution (ex situ = 2) [15, 16].

Results

Subsistence strategies

Households are basic units making decisions on economic activities and forest resource management (Fig. 2). Agriculture is the main activity of all households, but maize and beans produced are insufficient to satisfy their annual requirements (Table 1). Multiple-cropping agriculture in the rainy season is carried out in terrains of 1 to 2 ha located around the town (95 % of households), and in homegardens (0.25 to 0.5 ha, managed by 30 % of households) (Figs. 1, 3 and 4). Prayers and rituals drawing or putting crosses made with plants, offering alcoholic beverages to the earth, among other practices, are common during agricultural labours, seed selection and storage, sowing and harvest, as individual farmer or collective petitions for a good rainy season.

All people interviewed referred to difficulties in agriculture, mainly due to a low soil fertility and water scarcity. However, people deal with these problems in homegardens and agricultural fields by adding domestic animals manure, oak forest humus, ash, firewood debris and organic waste; agrochemicals are not used at all. In homegardens, recycling water and spatial arrangement of plants according with their water requirements are common. In agricultural fields, terraces and live fences are common for preventing soil erosion, as well as some dams for the accumulation of soil and moisture (Fig. 4).

Animal husbandry is practiced by almost all households as a saving for emergencies, animal power for agricultural and for gathering activities, only 5 % of households commercialize animals in regional markets (Fig. 2). Nearly 55 % of households raise animals in backyards (1–7 chickens, 1–9 turkeys or 1–4 pigs), 75 % nurture draft animals (1–5 donkeys-mules or 1–4 horses), and 25 % raise livestock (5–80 cows, 10–16 sheep or 5–70 goats) (Fig. 2). Animals feeding bases on domestic sub-products, maize straw, herbs managed in homegardens and agricultural fields, and foraging in communal lands (Figs. 3 and 4).

Gathering and management of native and introduced plants for direct consumption is practiced by all households (Figs. 2 and 3). Plants provide all the firewood and fodder needed and great part of food, medicines, materials for construction, tools, and other goods. Other important plants are ceremonial and ornamental, which are gathered and managed for direct use or as gifts to relatives (Fig. 2).

Few plant resources or their products are destined to economic interchange, the most important are Brahea dulcis and Agave potatorum (Fig. 2). The weaving of hats with Brahea dulcis leaves is carried out by nearly 84 % of the households, while 10 % are specialized in handcrafting baskets, covers for bottles and other products. Hats are interchanged almost every day for maize, food.
or money in local stores. From 2011 to 2015 the price of each hat was 0.16 US dollars (based on an interchange rate of $20.00 Mexican pesos by one American dollar), while in 2000 it was $0.12. A household weave on average 28.9 ± 3.65 hats per week, and each hat requires 4.1 young leaves, which means approximately one million of leaves used in the whole community per year. Leaves extraction is carried out mainly in palm scrublands, where *Brahea dulcis* is promoted, protected and tolerated in areas of agricultural fields, but it is widely distributed throughout the whole territory (Figs. 3 and 4). For extracting palm leaves, people cut the young leaves without damaging the apical meristem and avoid gathering leaves during the new moon, otherwise they consider the growth of new leaves can be delayed. Harvesting palm leaves for direct use and local interchange is allowed but sale to regional sellers is forbidden. Palm is considered staple plant as people said "palms are our life because with palm leaves we make hats and we can get all we need to live".

Approximately 20 % of households prepare mescal with *Agave potatorum* once to 10 times per year (4.8 ± 1.49) (Fig. 2). For 2012 we estimated that the whole community produced 192 mescal batches, using 91.14 ± 9.78 agaves per batch, in total nearly 17,500 agaves per year, whereas for the year 2000 we estimated the use of 4,900 individuals. The price of one litre of mescal was $2.5 US dollars in 2000 and from $6 to $9 in 2011 to 2015. Although *Agave potatorum* is widely distributed in temperate and warm parts of the territory of the community (Figs. 3 and 4), the mescal producers said that they have to go progressively farther to extract agaves and they even complement their needs buying agaves to neighbouring communities; sometimes they complement their batches with the wild *Agave vivipara* extracted in the warm land of the territory. Agave extraction is

Maize	1999–2000	2011–2012	Bean	1999–2000	2011–2012
Consumption per year (kg)	766.38 ± 94.34	701.7 ± 73.6	155.6 ± 19.4	112.2 ± 23	
Production by household (kg)	285.5 ± 79.9	129.7 ± 62.6	76.2 ± 26.9	48 ± 18.6	
Productivity (kg/ha)	289 ± 70.5	82.1 ± 46.7	43.9 ± 10	28.6 ± 9.4	
Community deficit (T)	82.7	100	13.7	11.2	

Table 1 Average and standard deviation of the amounts of maize and beans consumed, produced and productivity (kg/ha) achieved by people of Santa María Ixcatlán, Oaxaca for the periods of the years 1999-2000 and 2011-2012

Data according to surveys realized to 21 households in 2000 and 20 households in 2012. Values are means and standard errors

![Fig. 3](#) Characteristics of landscapes, general environmental units recognized by people in the territory of Santa María Ixcatlán and plant resources use
allowed for all community members; however, the relation between mescal producers and communal authorities has become tense in the last years, since federal environmental authorities are trying to regulate this activity in the region. Since 2011 some mescal producers started to enhance the availability of agaves near their houses or agricultural fields by spreading seeds or cultivating them in homegardens and green houses. Some mescal producers have participated in exchanges of experiences for agave management with other communities, and governmental programs have promoted some actions as reforestations and the construction of a communitarian greenhouse that started to produce agave plants in 2015.

The activities described are supported by using different environments and sites of the territory (Figs. 3 and 4). The whole territory is of common use, but knowledge about distribution, abundance and quality of plant resources are recognized as basic issues to access to any locality and its resources. The subsistence strategy is complemented by economic subsidies from governmental programs for elderly, child scholarships, creole seeds conservation, and agriculture and stockbreeding development (Fig. 2). In 2000 assistance program started to support the 45 % of households, by 2012 nearly 95 % of the households received monetary incomes from those programs. In almost a half of the households at least one member has temporal or
occasional employments at town that allow them to get additional monetary incomes (Fig. 2). Although irregularly, some migrants support their families to pay communal fees for celebrations, maintaining religious monuments and building public infrastructure (Fig. 2).

Plants use
We inventoried 780 vascular plants species belonging to 119 botanical families; 589 of them are native to Ixcatlán, and the other 191 have been introduced from other parts of Mexico and the world (Appendix). In order to satisfy their broad spectrum of needs people make use of 627 plants species with one to 27 use categories (Table 2), 267 species have one use and 360 have between 2 and 11 different use types.

Table 2 Use categories of Santa María Ixcatlán plant species. Data according to 62 people interviewed in 130 work sessions

Use	Native	Introduced	Total
Fodder	238	30	268
Ornamental	160	110	270a
Medicinal	166	53	219
Edible	72	66	138
Ceremonial	73	55	128
Firewood	44	2	46
Utensils	29	4	33
Living fences	24	6	30
Timber products and construction	27	2	29
Shade	12	11	23
Food additive (flavor)	9	6	15
Handcrafts	11	1	12
Insects repellent	8	0	8
Soil control	6	2	8
Animals medicine	1	1	2
Facilitatorb	3	2	5
Toys	5	5	10
Alcoholic beverages	2	1	3
Cosmetic	2	1	3
Soap	2	1	3
Paint	3	0	3
Weather predictors	2	0	2
Aromatizing	1	0	1
Tannin source	1	0	1
Water attracter	1	0	1
Glues	1	0	1
Poisons	1	0	1
Unknown	150	3	153
TOTAL	589	191	780

a = 132 species are considered “luxury of houses”, 80 as “luxury of the mountain”, and 59 as “luxury of houses and mountain”; b = Plants used as stake, hosts and nurse plant

Fodder
A total of 268 plant species are consumed by domestic animals (Table 2, Appendix). 238 species being native to Ixcatlán and 165 of them have other uses mainly as edible, medicinal or as ornamental plants. Of the 30 introduced species 15 are propagated, and some of them are highly valued (Appendix). Zea mays is the most valuable species as fodder, its stubble is used by the 80% of households and during periods of scarcity, 87% of the households have to buy it to regional sellers (Fig. 2, Appendix). Other important introduced plants are Avena fatua and Hordeum vulgare which are cultivated specifically for this use.

Ornamental
Ixcatlán people name as “luxury” (‘lujo’ in Spanish) the plant species that embellish or adornment houses, homegardens, agricultural fields and landscapes, in the two last cases these plants are called “mountain luxury”. High variation was documented about which plants are considered as luxury, as most consultants said “it is something that depends on the appreciation of beauty of things by each person”. People consider that luxury plants embellish the house, calls friendship, invites people to come into the house, allows to strength the heart or spirit and it is motive of proud for the owner. The importance of maintaining these plants varies among people, but generally are appreciated because in addition to the quality of embellish, these plants provide shade, good sites for resting and well-being or are used as fodder, edible and medicine. Nearly 270 species were recognized for its quality of embellish, 160 of them are native to Ixcatlán, 37 of them are not used in other form. 19 luxury plant species are transplanted from forest to houses or are propagated through sexual or asexual propagules. Introduced plants are highly valued (Table 2, Appendix), and are common gift of outsiders that visit the town, or these are obtained through governmental programs or by interchanging palm leaves with outside sellers.

Medicinal
We documented 219 species used as medicine (Table 2), 61 of them exclusively used with this purpose, the rest have other uses mainly fodder, edible or are considered as “luxury plants”. The medicinal plants commonly are used to treat stomach-ache, cold, fever, ear pain, sprains, and cultural illnesses like “sustos” (shocks caused by impressions), “aires” (malaise caused by uncomfortable situations) and “alferecia” (weakness, loss of appetite and irritability in children). Although knowledge about plants used in childbirth is extensive, few young women recognize to use them. In 2000, all people said to use medicinal plants, but in 2012, 15% of people interviewed said they only use allopathic therapies and the rest said to combine traditional and institutional medicine. Of the 53 introduced species some are highly valued for their
medicinal use (Table 2, Appendix) and are cultivated to have them available as it is the cases of Matricaria chamomilla, Tanacetum parthenium and Artemisia ludoviciana.

Edible
We documented 138 plant species used as food, 99 of them have other uses, mainly as fodder, medicinal and ornamental (Appendix, Table 2). Nearly 50 species complement the diet of people which is based on maize tortillas, beans and chili sauces; 66 introduced edible species are cultivated, as it is the cases of maize, beans, vegetables, condiments and fruits (Appendix). These plants are available in the local stores but people say “the little that we harvest is a saving, these plants are things that we do not have to buy”. Other reasons for cultivating are quality; people argued that vegetables locally produced are of better quality than others from outside particularly Coriandrum sativum and Solanum lycopersicum, they consider that local products have better taste, smell and texture.

Ceremonial
A total of 128 plant species are used to offer them to Catholic Saints in altars at homes, hermitages, thumbs, and the church. Some are used in ceremonies and processions (Table 2, Appendix); 117 of them have other uses, 95 are used as ornamental or luxury (Table 2). The introduced plants are highly appreciated (Appendix), and particularly cultivated for their flowers, like Tagetes erecta by 95 % of households during the great feast of the Day of the Dead (Appendix). People recognize several varieties according to the size, colour and form of plants, and it is common to store seeds of their favourite variants to be propagated in the next cycle. Local interchange of ceremonial plants flowers is common among households as gifts or trade, especially of introduced species as Tagetes erecta, Zantedeschia aethiopica, Leucanthemum maximum, between others.

Firewood
We recorded 48 species used as firewood (Table 2), 44 of them are native species, and 46 have other uses. These are the main source of cooking energy (only 35 % of households have gas stoves, but all use firewood for cook “maize tortillas”), and is the unique fuel to mescal production and for baking bread. In the year 2000, consumption of firewood per household was of 143.4 ± 11.3 kg/week, and in 2012 it was 108.8 ± 12 kg/week, a decrease apparently due to a governmental program for installing efficient stoves. For mescal production the consumption increased from 16.2 ton in 2000 to 63.36 ton in 2012; nearly 52 % of these quantities is from alive oaks, which is considered the appropriate wood for baking the agave stems in the process of mescal production.

Plant management
Nearly 82 % of all plants species recorded (636 spp.) are recognized to be under interventions by humans or foraged by domestic animals (Appendix); 424 of them are managed through at least two different practice types and 401 species are under practices directed to maintain or increase their availability.

Gathering is the most common practice for obtaining products of native plants and it is the only practice for 83 species (Table 3). This practice was documented among wild and introduced species, some of which have become naturalized (Appendix). We recorded 251 native and introduced species having special protection (Table 3). In homegardens and agricultural fields protection comprises actions like irrigation, exclusion from herbivorous and competitors, nursing, adding of livestock manure, protection against frost, weeding, pruning, and providing or removing shade. In communal lands, protection of native plants is conducted by avoiding pastoral routes in sites where people know valuable plants occur. Also, the Communitarian Assembly construct regulations for protecting some species, based on principles of favoring direct consumption by local people, forbidding extraction for commercialization and cutting of alive trees. However these regulations as practices directed to prevent unnecessary damage not always are followed.

In total, 206 species are tolerated during clearing vegetation in homegardens and agricultural fields. The main reason is its utility, but 23 species that are not used are tolerated since people said that “plants could be useful in the future”, and “do not interfere with the development of other plants” or because “plants have the right to live” and “are part of nature”. Propagation of 155 species is carried out by seeds, bulbs, corms, rhizomes, tubers, pseudo-bulbs, bulbils, plantlets, shoots, cladoles and sticks; 33 of them are native wild species used mainly as ornamental. Complete individuals of 139 species are transplanted, 71 of them

Management practice	Native	Introduced	Total
Gathering	281	18	299
Foraging	223	20	243
Tolerance	152	54	206
Protection	91	160	251
Trasplanting	71	68	139
Uproot	63	13	76
Propagation	33	122	155
Enhancement	9	25	34
Unknown	143	1	144

Data according to 62 people interviewed in 130 work sessions
from wild populations in forests to homegardens and agricultural fields. Occasionally, some epiphytic bromeliads and orchid species are relocated from one branch or tree to other, when their host’s branches are cutting to allow their survival.

The abundance of 26 species or some variants is promoted by tolerating them until seed production, and in some cases seeds are collected, stored and then sown or dispersed; 76 species (63 of them native) are constantly uprooted in agricultural fields and homegardens (Table 3), some of them are also under practices to maintain them and ensure their availability.

Biocultural importance

Fodder

Variation in biocultural importance of 238 fodder native species is mainly explained by management type and number of uses (38 % of variation in the first principal component), and cognitive prominence and consumption (22 % of variation in the second principal component; Table 4). Species with the highest biocultural importance (blue circle in Fig. 5a) are subject to several management practices, but its use as fodder is low with the exception of *Quercus liebmannii* whose acorns are gathered and stored for feeding pigs, and inflorescences of *Agave* spp. that are occasionally consumed by cattle. *Simsia lagascaeformis* and *Tithonia tubaeformis* (pink circle in Fig. 5a) are the species with highest cognitive value, and are tolerated in homegardens or agricultural fields, where these are also uprooted to control their abundance. Similar situation occurs with *Amaranthus hybridus, Mirabilis xalapa, Sicyos laciniatus* and grass species (green circle in Fig. 5a).

Legumes, oak acorns, herb species and grasses are the main fodder for cattle, goats and sheep. Management practices to ensure their availability are poor or absent (orange and brown circles in Fig. 5a). *Tillandsia gymno-botrya* and *Hechtia oaxacana* are highly valued as fodder, substituting maize stubble (green circle in Fig. 5a). Shepherds drop the epiphytic plants for cattle and goats, and nearly 30 % of households gather and carry them to town for feeding donkeys and horses, extracting 800 to 1920 individuals per year.

Ornamental plants

Biocultural importance of 160 native ornamental plants is explained mainly by their management complexity and number of uses (40 % of the variation explained by the first principal component), and ecological importance and management (25 % of variation explained by the second principal component) (Table 4). The most important plant species (*Brahea dulcis, Juniperus flaccida, Quercus liebmannii, Morus celtidifolia* and *Agave potatorum*), with exception of *Morus celtidifolia* are considered “luxury of the mountain”, all of them are highly valued because of their multiple uses, and have high ecological importance (blue circle in Fig. 5b).

Oaks, grasses and numerous plant species producing beautiful flowers are appreciated to embellish the wilderness and some of them are maintained for this appraisal on agricultural fields or protected against livestock, as it is the case of the terrestrial orchids (*Crytopodium macrobulbon* and *Govenia lagenophora*), among others (brown circle in Fig. 5b).

Some valuable “luxury of the mountain” plants, are carried to homegardens; for instance, *Euchile karwinskii*, several spherical and barrel cacti species (*Mammillaria* spp., *Corysthantha retusa*, and *Ferocactus* spp.), Crassulaceae species, *Tillandsia* spp., among others. These plants are propagated and maintained for embellishing the house and 42 species are used for ceremonial purposes too (green circle in Fig. 5b).

Medicinal plants

The biocultural importance of the 166 native medicinal plant species is explained mainly by their complexity and site of management, and their cognitive prominence in the first principal component (43 % of variation). Number of uses, ecological importance, consumption and cognitive importance are important in the second principal component (29 % of variation) (Table 4). In general, native plants with the highest biocultural importance like

| Table 4 Contribution of socio- ecological factors to explain the variation of native plant species biocultural importance |
|---------------------------------|-----------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Use type | Fodder | Ornamental | Medicinal | Edible | Ceremonial | Firewood |
| Factor | PC1 | PC2 |
| Cognitive importance | -0.09 | 0.78 | 0.55 | 0.31 | 0.72 | -0.58 | 0.44 | -0.18 | 0.54 | 0.24 | 0.69 | -0.17 |
| Consumption | 0.04 | 0.77 | 0.55 | 0.12 | 0.63 | -0.64 | 0.39 | -0.32 | 0.35 | -0.63 | 0.33 | 0.67 |
| Number of uses | 0.76 | 0.16 | 0.74 | 0.47 | 0.52 | 0.69 | 0.47 | 0.73 | 0.65 | 0.61 | 0.75 | 0.29 |
| Ecological importance | 0.48 | 0.21 | 0.53 | 0.52 | 0.31 | 0.65 | 0.32 | 0.82 | 0.51 | 0.68 | 0.61 | 0.57 |
| Management complexity | 0.93 | -0.01 | 0.81 | -0.52 | 0.82 | 0.33 | 0.93 | -0.13 | 0.89 | -0.29 | 0.9 | -0.24 |
| Management site | 0.76 | -0.22 | 0.59 | -0.76 | 0.8 | -0.01 | 0.78 | -0.36 | 0.69 | -0.58 | 0.69 | -0.66 |

Data are correlation values between variables and the first two components of Principal Components Analysis PCAs. Values in bold have high influence in principal components, therefore in the classification of biocultural importance too.
Lippia oaxacana, **Ageratina mairetiana**, **Grindelia inuloides** and **Clinopodium mexicanum** have few uses, high cognitive prominence and low ecological importance (orange circle in Fig. 5c). These plants are mainly gathered and stored to ensure their availability when it could be necessary. Some people have propagated these plants but said that “they are experimenting” but “quality of plants growing in nature is better than the cultivated ones”.

There is another group of plants like **Agave spp.**, **Juniperus flaccida** and **Brahea dulcis**, which have high ecological importance, are subject to complex management and used with numerous purposes, and occasionally used as medicine (blue circle in Fig. 5c). The rest of the species (green circle in Fig. 5c) are occasionally consumed, collected when they are needed, and some of them are also valued for other types of use.

Edible

Principal components analysis shows that biocultural importance of the 72 native plants is explained mainly...
by management practices complexity and management site (ex situ or in situ) in the first principal component (36 % of variation), and ecological importance and number of uses in the second principal component (25 % of variation) (Table 4). Native plants with higher biocultural importance are those with greater management complexity, consumed by more families and have few uses, regardless of their ecological importance (brown circle in Fig. 5d).

One of the most important plant species is Capsicum annuum, consumed by all households, mainly getting it by interchange, but it is also cultivated in homegardens but the wild variety is rarely gathered. Species like Porophyllum ruderae, Porophyllum linaria, Amaranthus hybridus, Opuntia lasianantha, and Dysphania ambrosiodes are consumed by nearly all households and their contribution to diet is greatly important. For instance, the green Amaranthus hybridus is consumed on average 14.4 ± 2.4 times per year from June to September, almost always together with Porophyllum linaria; Dysphania ambrosiodes is cooked with beans and consumed every day by all households. These species are subject to management in agricultural fields and cultivated in homegardens to ensure their availability and to have them close and in case of scarcity are getting in the stores. Physalis philadelphica is consumed in sauces almost always raw to allow its seeds to germinate after dispersed when washing dishes in homegardens, where plants of this species are tolerated, transplanted and protected.

Other species are obtained by gathering (blue circle in Fig. 5d). Some of the most valuable (e.g. Dasylirion serratifolium and Peperomia quadrifolia) are consumed by nearly all households and commonly are shared with relatives, especially elders who are unable to get them by themselves. Some people have tried to propagate them in homegardens but they said that their experiments were unsuccessful because they obtain low production, it was difficult to maintain them, and require long time to harvest their products. Agave species are grouped (green circle in Fig. 5d), have high biocultural values, are intensely managed, abundant and highly valued for multiple purposes, although the consumption of its flowers as food is currently uncommon.

Ceremonial plants
Variation in biocultural importance of the 73 native species is mainly explained by management complexity and number of uses in the first principal component (40 % of variation), ecological importance, consumption and number of uses (28 % of variation explained by the second principal component; Table 4). The species with the highest biocultural value were those more intensely managed and valued for other uses (orange circles in Fig. 5e), for instance oaks that are part of the game of “El palo” played in the celebration of the Day of the Dead, when teams of young men go to the forest to cut whole dead trees and carry them on to the town to be fired in front of the church. Other examples are Brahea dulcis leaves, which are used to weave shoes for deceased people and Juniperus flaccida whose resin is used when Bursera resin is scarce or unavailable.

The most cognitively salient species are appreciated for their flowers smell and beauty (green circle in Fig. 5e), which receive management practices and are extensively used regardless of their low ecological importance. In the extraction of orchid flowers people take care of leaving some bulbs, and after their ceremonial use, their bulbs are transplanted in homegardens as it occurs in the case of Euchile karwinskii. Laelia albida is cultivated in 65 % of homegardens and Laelia anceps in 35 % of them, this management is motivated by the appreciation of their beauty and scarcity in forests. Resin of Bursera biflora is particularly appreciated and used in a high number of rituals, this tree species is protected in situ, cannot be tamed or even damaged for extracting its resin and most people use only the resin of those trees naturally injured by insects located in warm lands to assure the resin quality (Fig. 3). Other species like Chiococca alba, Rhynchochete maculata and Epidendrum radiofrensen are highly valued and frequently used species but rarely transplanted into homegardens, in part because people consider they are abundant, but in part because of the difficulties for their propagation. Some species are used to embellish the “Nativity scenes” (Mammillaria spp., Cactopsis compacta, Tillandsia spp.) are transplanted in homegardens after their use (brown circle in Fig. 5e). Most of ceremonial species are only gathered as it is the case of Lamonrouxia dasyantha (blue circle in Fig. 5e) and in many cases are shared with relatives, especially old people.

Firewood
Principal components analysis shows that biocultural importance of plants used as firewood is mainly explained by the complexity of their management in the first principal component (47 % of variation), and consumption and ecological importance in the second component (23 % of variation) (Table 4). Species used as firewood with the highest biocultural importance are oaks Quercus spp. (orange circle in Fig. 5f), which are consumed by all households, and have the highest cognitive prominence. Oaks are tolerated and protected in agricultural fields, and sometimes people transplanted and take care of them in their houses as ornamental plants. In this group, Agave salmiana subsp. tehuacanensis is valued as good firewood, but its use is uncommon since people prefer to use its dry stalk for house construction. Two important species used as firewood are Brahea dulcis and Juniperus flaccida, which are intensely managed in agricultural fields and homegardens, have high ecological importance, are
frequently used, and are highly culturally valued because of their multiple uses (brown circle in Fig. 5f).

The remaining species receive poor management (green and blue circles in Fig. 5f) and differ in their consumption, cognitive prominence and ecological importance. Some of these species have high biocultural value (Quercus urbanii, Quercus castanea, Quercus conspersa, Rhus chondroloma, Rhus standleyi, and Morus celtidifolia; green circle in Fig. 5f).

Although of the most valuable species for all interviewees are Quercus spp., Arbutus xalapensis and Juniperus flaccida, the “charges” (measurement unit which is the amount of material that a donkey is able to carry) composition highly varied among households, oaks being on average ($X = 79 \%$), the rest are at least 30 species of shrubs managed in agricultural fields and homegardens being Dodonaea viscosa, Acacia spp., Comarostaphylis polyfolia, Eysenhardtia polystachya, and Garrya ovata, among the most common species.

Discussion and conclusions

Subsistence strategy

The multiple use of resources that including a great variety of ecosystems and resources and characterizing the Ixcatec subsistence are expressions of common patterns of interactions between humans and plants found among indigenous peoples of Mesoamerica [1, 3, 39, 46–49]. Such pattern is particularly important in a region like the Tehuacan Valley where the scarcity and uncertainty of rainfall and agricultural yield are also characteristic [17, 33, 39, 50]. Interchange of natural resources in the regional markets for obtaining staple food and other goods is clearly a strategy to face problems of availability of resources since pre-Columbian times [51]. For instance, commercialization and barter of local products like palm leaves, hats, mescal, and domestic animals, is a common strategy in numerous Mesoamerican communities [52–54] and many rural regions in the world to deal with the uncertainty [55].

Other activities like commerce and income subsidized by governmental programs, are part of the process of adaptation that may contribute to face eventual environmental and social adversities, similarly as recently documented among Mayan communities in southern Mexico [53]. The assistance support programmes from Government are progressively more important in the local subsistence strategies, but also, these programmes represent risks for the systems of management of natural resources, as it has been documented for programmes supporting agriculture, which promote the removal of trees and shrubs in agricultural land, thus affecting the maintenance of agroforestry systems [8, 21]. Seasonal employments allow solving some problems [17], but also these may cause the regardless or abandonment of traditional activities, the loss of TEK and, in some cases, the abandonment of the community.

Management diversity

The widely management practices set and other cultural and social strategies documented have allowed to maintain plant species that sustain the multiuse subsistence strategies as it has been reported at regional level [11, 56, 57].

At regional level, gathering and foraging of plant resources by humans and their domestic animals are the most common and simple form of interaction between social and ecological systems [56], but for most useful species recorded people carry out practices directed to maintain and ensure their future availability [11], and a broad variety of strategies are being carried out for such a purpose [17]. These general trends were observed in Santa María Ixcatlán, is practiced in an even higher percentage of plant species (nearly 65 %), which is an expression of the particularly deep of TEK developed by the Ixcatec.

Management practices such as tolerance, enhancing, protection and cultivation (by sowing, planting or transplanting) look for ensuring availability of plant resources and controlling its uncertainty, are primary mechanism in the domestication process for some species [10, 58]. It has allowed through selection of particular individual (phenotypes) and germplasm to start cultivation, maintaining and continuing processes of domestication. These processes were evident in the staple crops, as well as in wild and semi-domesticated Physalis philadelphica, Tagetes erecta and Cosmos bipinnatus in which selection to satisfy particular flavours, colours, and size, among others characteristics is carried out by people.

The socio-cultural strategies documented in all types of use as it is the mobility in resource gathering of valuable species, the diversification of resources to satisfy a need, and the substitution of one species with another or with other materials, have been recognized as buffer mechanisms to uncertainty [17, 59]. Other important strategies based on social interactions as was the interchange of plants as gifts and interchange of information about management techniques, allow important diffusion of experiences among households and communities and are important mechanisms of social cohesion, an important issue to maintain traditional institutions [17, 60]. Strategies associated to governance as it is the case of regulations are being effective for conserving some species. This is for instance the case of Litsea glaucescens and several oak species Quercus spp., whose populations are conserved in Ixcatlán through local regulations that only allow the extraction for direct consumption by households, but in other villages of the region have been severely affected and became extinct [15, 16]. However, in other species regulations have been ineffective for controlling new intensities of extraction required because of socio-economic needs. This is clearly the case of Agave potatorum in which the increasing demand of mescal has been for the moment higher than the capacity for collective regulations and technical responses.
Other interactions like removal (uprooting), opposed to maintenance, shows the complexity of interactions between humans and plants and the importance of detailed knowledge that people may have to take into account to make a decision based on the balance of the negative effects and utility that these species could provide [15]. For instance, in some cases like *Thitonia tubaeiformis, Amaranthus hybridus* and other weeds, which are valuable plants, people control its abundance inside of the agricultural field at begging the cycle in order to prevent competition with maize, but at the same time protect them in the borders to prevent fodder scarcity just in case that maize straw become scarce or to ensure the availability of greens.

The management practices have involved the transformation of ecosystems through intentional or incidental changes in the composition and structure of vegetation, the modification of relief, hydrological systems and biogeochemical processes in soils [61]. Concrete examples of this process are the creation and maintaining of secondary vegetation as induced grasslands and palm scrubland, changes in vegetation structure in forest zones where grazing routes are, erosive process in current and abandoned agricultural fields, and engineering works to retain soil and water for agriculture and livestock (Figs. 1, 2 and 3). Homegardens, crop fields and pasturelands distributed in the three types of environments recognized by the Ixcatec within their territory (Fig. 3), have originated a great variety of landscape units where management of wild and domesticated plant species take place, conforming forest, agroforestry, agro-silvo pastoral, and silvo-pastoral systems [62, 63]. In these systems people maintain a high level of biodiversity; for instance, on average people of Ixcatlán maintain 29 woody native species in their agricultural plots [22]. These systems are biocultural expressions and areas continually generating new biocultural diversity through also continual observation and experimenting management techniques [8, 64]. In the palm scrublands, for instance, which are highly important for the Ixcatec, people have shaped their conformation managing *Brahea dulcis* in order to increase its availability in agricultural and fallow plots, as well as in homegardens. This practice has happened most probably since pre-Columbian times, since this species is important for Ixcatec people [51, 52].

The role of plant species in the Ixcatec subsistence and in the interactions of humans to conserve plant resources may define particularities of their own culture [3, 65]. Management of some plant species is closely related with the form of preparation of food stoves, as it was described for *Physalis philadelphica*. Relation of the Ixcatec with the palm *Brahea dulcis* is particularly significant, this species is part of almost all activities in their daily life, and it has been considered as an indissoluble element of Ixcatec culture [32, 33, 51, 52, 66, 67].

The high levels of diversity and interactions documented in Ixcatlán compared with the regional flora (30 % of the total regional flora, 36 % of all useful plants recorded in the region, and 66 % of managed species identified in the Tehuacán Valley) [11, 24, 25], confirm the importance of the Ixcatec biocultural heritage and the character of the Tehuacan Valley as a priority biocultural region of Mexico [3].

Our research and sampling effort is one of the highest carried out by ethnobotanical studies in the Tehuacán Valley [11, 15–17, 56, 68–71]. This fact confirms that it is still needed continuing efforts to documenting TEK, biocultural processes of diversification and their connection with management innovation and domestication. In this region, archaeological records in caves has been source of information about biocultural construction since prehistory, whereas local studies should continue documenting one of the areas with highest richness of ethnobotanical knowledge of Mexico and a place where ongoing processes for sustainable resource management and local processes of domestication are taking place.

Biocultural importance

The integration of socio-cultural and ecological variables for understanding the importance of plant species, follows the proposal by Castaneda and Stepp [72] for estimating ethnobotanical importance. Our evaluation found that variables associated to management complexity are in general those more contributing to explain the variation in the first principal component of the six use categories analysed. This fact suggests that management is representative of the socio-ecological factors interacting and mutually influencing their properties [73]. In other words, studying management of natural resources is a good methodological basis for understanding socio-ecological systems and construction of biocultural heritage.

Brahea dulcis, Juniperus flaccida, and *Agave salmiana* subsp. *tehuacanensis* have particularly high biocultural importance values in almost all use types analysed. This fact is because of their multipurpose use, their cultural and ecological importance and their intensive management. The positive relation between cultural and ecological importance might be explained through the hypothesis of ecological appearance [18, 74, 75], but we rather propose that the ecological importance currently observed is in part a result of ancient ecosystem management directed to increase their availability. The high resistance to disturbance, reproductive capacity of these species, among other ecological factors have favoured the enhancing of their abundance.

The relation between ecological and cultural importance varied in the different use types analysed. Among plants used as ceremonial and medicinal, the species with higher cognitive prominence and consumption have low availability, and their management is mainly through
socio-cultural strategies, directed to ensure their availability, as the harvest technics to ensure their survival after the harvest, but not necessarily are directed to increase their abundance.

The number of uses was an important factor in edible, medicinal, fodder, ceremonial and ornamental plants; however, among medicinal plants, the species with higher cognitive prominence were those with few uses, in other words their properties determining them specialized medicinal plants, which is apparently related with their quality as resource [76].

Highly cognitive valued species not always are the most consumed or managed. For instance, species highly valued as ceremonial, like orchids have a low consumption because the difficulty to obtain them or be manipulated to increase their availability. These results and those found by several authors studying factors influencing management of edible plants [15, 77, 78], indicate that management motives may be variable not only related with cultural importance and scarcity, which suggests the importance of continuing research in this line.

Conclusion
Management factors and motives
A case that allows observing how people dynamically construct processes of decision making about management is Agave potatorum, in which the perception of risk of disappearing of the resource is the main factor detonating management actions, as documented for other plant resources of the Tehuacán Valley [15]. The strategies developed depend on TEK of both species and ecosystems [17], but there are external factors influencing experimenting innovation in management actions, as illustrated in the cases of several species of Agave [40, 79], in which markets have influenced increasing of extraction and pressures on agave populations and new management techniques [16, 17, 40]. This case illustrates that crises detonate innovation, activating processes of experimenting, monitoring, adapting, testing and interchanging local and external experiences, as well as enhancing processes of social organization, collaboration with governmental and academic sectors, learning and adaptation, in which the communitarian platforms of dialogue are crucial for facing risks and uncertainty [80, 81].

In other cases, the uncertainty in the availability of highly valued resources are motives for managing other species with redundant use and are able to substitute particular desirable resources, as are the cases of Tithonia tubaeformis and Simsia lagascaeformis whose abundance is promoted in controlled ways before the uncertainty of the main fodder of the study area (maize stubble). Such a complex decision making has important consequences in households’ economy [82] and biodiversity conservation in agroforestry systems [21, 22, 83].

Uncertainty operates associated to several factors, and ensuring the products quality is another management motive. People prefer consuming their own crops, which are considered of better quality over those commercialized in stores. Practices to assure the quality not are exclusively on crop plants, others like Bursera biflora have specialized resin extraction techniques that take advantage of natural processes assuring the resin quality avoiding injure the trees, instead of cutting trunks, a common practice in other localities [84]. Moreover, the perception of quality loss discourages ex situ management, in addition to energy investment and difficulties involved in maintaining these species outside their environments, as was noted in Bursera biflora and medicinal plants.

The aesthetical sense, expressed by people that consider that plants embellish the spaces where they occur, as Cook noted [33] in mid 20th century, appears to be an important motive that determining the permanence of numerous native species in homegardens and crop fields as forests conservation. This motive has been reported by other authors in agroforestry systems of the region [21, 22], and our study suggests its high importance because of the high number of species considered as house or “mountain luxury”, which receive some type of management practices.

Ethical principles like the fact that people recognize that plants are living beings with a right to exist, that plants should not be damaged because of whim, are ethical principles that motive management practices as tolerance. Also the including of several species in belief systems and matching cycles of plant management with the rituals calendar, suggest that although the Ixcatec kosmos is permeated by Catholic thinking, it maintains features with other Mesoamerican views of the world reported by other authors [20, 85].

Curiosity was mentioned to be involved in all management practices in response to motives such as uncertainty in plant resources’ availability or aesthetical needs. It enhances testing new techniques or new species or be persistent when reproductive requirements make difficult the plants propagation.

Deepen the study of motivations and socio-economic and cultural factors that influence plant management allow understanding the processes of decision making construction and biocultural legacy. Such studies could provide unique opportunities for strengthening conservation strategies of sustainable forms of management of resources and ecosystems.

Appendix
Plant species of Santa María Ixcatlán. Species, number of uses, management, socio-cultural and ecological aspects; rarefaction curves of S Index, Ixcatec participants details, and botanical experts.
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations

ID	Family	Specie	Voucher number	Common name	Number of uses	Consumption by use (Households %)	Fodder Sutrop Index value	PC value	Ornamental Sutrop Index value	PC value	Medicinal Sutrop Index value	PC value
1	Acanthaceae	Carlowrightia neesiana (Schauer ex Nees) T.F.Daniel	SRL-1385	0	0	0	0	0	0	0	0	0
2	Acanthaceae	Justicia candidans (Nees) L.D.Benson	SRL-1395	0	0	0	0	0	0	0	0	0
3	Acanthaceae	Justicia gonzalezii (Greenm.) Henr. & Hiriart	SRL-1333, SRL-1362	0	0	0	0	0	0	0	0	0
4	Acanthaceae	Justicia spicigera Schltdl	SRL-92, SRL-188, ERL-41, ERL-58, ERL-216, ERL-224	Tintonil	1	0	0	0	0	0.0101	0	0
5	Acanthaceae	Ruellia lactea Cav.	Photo record	0	0	0	0	0	0	0	0	0
20	Aizoaceae	Aptenia cordifolia (L.f.) Schwantes	ERL-46	1	0.0207	1.4999	0	0	0	0	0	0
21	Aizoaceae	Carpobrotus sp.	Photo record	1	0	0	0	0	0	0	0	0
22	Aizoaceae	Mesembryanthemum sp.	ERL-213	1	0	0	0	0	0	0	0	0
28	Alstromeriaceae	Bomarea hirtella (Kunth) Herb.	RLF-290	0	0	0	0	0	0	0	0	0
29	Amaranthaceae	Alternanthera caracasana Kunth	ERL-21, SRL-93	Maravilla	2	0	0	0	0	0	0	0
30	Amaranthaceae	Amaranthus hybridus L.	SRL-79, SRL-80, SRL-1122, SRL-1141, ERL-74, ERL-102	Quelite tintonil	3	0.0207	1.4999	0	0	0	0	0.6125
31	Amaranthaceae	Beta vulgaris L.	Photo record	Betabel, acelga	1	0	0	0	0	0	0	0
33	Amaranthaceae	Celosia argentea L.	Photo record	Moco de pavo	2	0	0	0	0	0	0	0
34	Amaranthaceae	Gomphrena serrata L.	RLF-60, RLF-242, SRL-90, SRL-378, SRL-1175	Gallitos	2	0	0	0	0	0	0	0.6606
35	Amaranthaceae	Iresine schaffneri S.Watson	RLF-320	1	0	0	0	0	0	0	0	0
36	Amaranthaceae	Iresine sp.	SRL-1488	0	0	0	0	0	0	0	0	0
26	Amaryllidaceae	Agapanthus africanus (L.) Hoffmanns.	Photo record	Pando morado	2	0.0016	0	0	0	0	0	0
23	Amaryllidaceae	Allium cepa L.	ERL-177	Cebolla	1	0	0	0	0	0	0	0
24	Amaryllidaceae	Allium sativum L.	Photo record	Ajo	2	0	0	0	0	0	0.0016	0
37	Amaryllidaceae	Crinum x powelli Hort.	ERL-237	Azucena blanca	2	0	0	0	0	0	0	0
Table 5 | Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as S = Sutrop relative prominence index² and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

	Family	Species	Common Name	Photo Record	Uses	Percentage of Families	Sutrop Relative Prominence Index	Biocultural Importance Value	Distribution on Vegetal Types	Importance Ecological Index Value	Specie Origin Region	Ecological Status	Management Practices	Management Site	Wild Populations
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

No.	Family	Species	Spanish common names	Number of uses	Percentage of families consuming it	Cognitive prominence values	Biocultural importance values	Distribution on vegetal types	Importance ecological index value (EIVI)	Specie origin region	Ecological status	Management practices and management site with respect to species wild populations
75	Apocynaceae	Asclepias curassavica L.	ERL-242	1	Ornamental = 6	0	0	0.0738	0			
76	Apocynaceae	Asclepias linaria Cav.	RLF-35, SRL-131	1	Romero cimarrón	0	0	-2.1063	0			
64	Apocynaceae	Cascabela thevetia (L.)	SRL-1336	1		0	0	-1.0487	0			
78	Apocynaceae	Funastrum elegans (Decne.) Schltr.	SRL-443, SRL-1153, SRL-1544	1	Ornamental = 6	0	0	0	0			
79	Apocynaceae	Huernia macrocarpa Schwesin. ex K.Schum.	Photo record	Ornamental = 6	0	0	0	0				
77	Apocynaceae	Matelea purpululis Woodson	SRL-1123	2	Ornamental = 35	0	0	0.0148	0.087			
80	Apocynaceae	Metastelma sp.	RLF-321	2	Ornamental = 12	0	0	0.0156	1.0147			
62	Apocynaceae	Nerium oleander L.	ERL-103, ERL-123, SRL-178	2	Ornamental = 35, ceremonial = 14	0	0	0	0			
81	Apocynaceae	Plumeria rubra L.	Photo record	Ornamental = 12	0	0	0.0252	0				
65	Araceae	Zantedeschia aethiopica (L.) Spreng.	SRL-220, ERL-203	1	Ornamental = 53	0	0	0	0			
66	Araliaceae	Aralia humilis Cav.	SRL-1482, SRL-1507	3	Ornamental = 6	0	0	-0.3989	0			
67	Araliaceae	Schefflera sp.	Photo record	Ornamental = 6	0	0	0	0				
68	Arecaceae	Brahea dulcis (Kunth) Mart.	RLF-155, RLF-191,SRL-462, SRL-463, SRL-1192, SRL-1193	11	Ornamental = 35, ceremonial = 1, firewood = 100, Ornamental = 95	0.0092	7.1968	0.0241	6.7574	0.0035	4.3551	
69	Arecaceae	Brahea dulcis x B. calcarea Mart. x Liebm.	SRL-1229	Palma media sierra	6	Ornamental = 95	0	0.0049	0.1754	0		
70	Arecaceae	Brahea calcarea Liebm.	SRL-219, SRL-461, SRL-1194	Palma blanca	4	Ornamental = 18, ceremonial = 1	0	0.0042	0.8205	0		
71	Arecaceae	Phoenix canariensis Chabaud	Photo record	Ornamental = 18, ceremonial = 1	0	0	0	0				
72	Arecaceae	Washingtonia filifera (Linden ex André) H.Wendl. ex de Bary	Photo record	Ornamental = 12	0	0	0	0				
73	Arecaceae		ERL-50	Palmera	1	Ornamental = 6	0	0	0	0		
74	Aristolochiaceae	Aristolochia teretiflora Pfeifer	SRL-1130	Orejita de ratón	2	Ornamental = 47, 18 = 30	0	0	0.0123 -0.364	0		
6	Asparagaceae	Agave americana L.	Photo record	Maguey de pulque, Maguey de listón	4	Ornamental = 47, 18 = 30	0	0	0.0038	0		
9	Asparagaceae	Agave appplanata Lem. ex Jacobi	Photo record	Maguey cenizo	1	Ornamental = 47, 18 = 30	0	0	0	0		
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

10	Asparagaceae	Asparagaceae	Agave kerchovei Lem.	Photo record	Maguey rabo de león	Edible = 20	0.0020	-0.2532	0	0		
11	Asparagaceae	Asparagaceae	Agave potatorum Zucc.	RLF-285, SRL-403, SRL-1209	Maguey papalomé	Fodder = 5, medicinal = 29, edible = 25, 18 = 20	0.0068	6.6941	0.046	5.3787	0.0388	5.4489
12	Asparagaceae	Asparagaceae	Agave salmiana Otto ex Salm-Dyck subsp. tehuacanensis (Karw. ex Salm-Dyck) Garcia-Mend.	Photo record	Maguey cimarrón	Ornamental = 12	0.0022	6.3299	0.0098	3.672	0.0085	4.315
13	Asparagaceae	Asparagaceae	Agave scaposa Gentry	Photo record	Maguey potro	0	0	0	0.0074	2.0018		
14	Asparagaceae	Asparagaceae	Agave stricta Salm-Dyck	SRL-1520	1	0	0	-0.0825	0			
15	Asparagaceae	Asparagaceae	Agave titanota Gentry	SRL-404	Maguey teso	0	-0.6097	0	0			
16	Asparagaceae	Asparagaceae	Agave triangularis Jacobi	SRL-437	Maguey rabo de león, maguey teso	0	-0.2987	0	0			
17	Asparagaceae	Asparagaceae	Agave tequilana F.A.C. Webe	Photo record	Agave azul	Ornamental = 6	0	0	0			
18	Asparagaceae	Asparagaceae	Agave vivipara L.	SRL-235, SRL-1353, SRL-1389	Maguey espadín	Ornamental = 6	0	0.0147	1.6977	0.0021	2.4585	
533	Asparagaceae	Beaucarnea stricta Lem.	RLF-149	Sotol	Ceremonial = 1	0	0	0				
534	Asparagaceae	Dasylirion serratifolium (Karw. ex Schult. & Schult.f.) Zucc.	SRL-156, SRL-420, SRL-1473, SRL-1521	Cucharilla, manita	Edible = 95, ceremonial = 5	0.0019	0.3359	0	0			
50	Asparagaceae	Echeandia paniculata Rose	SRL-442, SRL-1114	Cebolla de cacalote	0	0	0	-0.6167				
51	Asparagaceae	Echeandia sp.	SRL-319	Pasto	0	-1.0765	0	0				
25	Asparagaceae	Milla biflora Cav.	SRL-1537	Huelo de noche	0	0	0					
555	Asparagaceae	Nolina longifolia (Karw. ex Schult. & Schult.f.) Hemsl.	SRL-228	Sotol	0	0	0					
19	Asparagaceae	Yucca periculosa Baker	SRL-1505	Tohuizote	0	0	0					
18	Asparagaceae	Yucca gigantea Lem.	SRL-1532	Huizote, pita, tehuizote	Ornamental = 12	0	0	0				
215	Balsaminaceae	Impatiens walleriana Hook.f.	Photo record	Belén	Ornamental = 12	0	0	0				
216	Basellaceae	Anredera cordifolia (Ten.) Steenis	ERL-119		0	0	0					
217	Berberidaceae	Berberis pallida Hartw. ex Benth.	SRL-216, SRL-217, SRL-401, SRL-1235, SRL-1399, SRL-1449	Palo tostado	Firewood = 100	0	-0.5351	0	0			
218	Berberidaceae	Berberis sp.	SRL-1428		0	0	0					
219	Bignoniaceae	Jacaranda mimosifolia D.Don	ERL-226	Jacaranda	Ornamental = 12	0	0.0074	0	0			
Table 5: Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial, and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Species, Family	Common Name	Use Type	Number of Uses	Management Status	Management Site	Ecological Status	EIVI	Origin Region	Management Practices	
220 Bignoniaceae	*Podranea ricasoliana* (Tanfani) Sprague	Ornamental	6	0	0	0	0.013	0.6459	0	
221 Bignoniaceae	*Tecoma stans* (L.) Juss. ex Kunth	Tronadora	2	0	-0.3922	0	0.0317	0.3143	0	
222 Boraginaceae	*Antiphytum caespitosum* I.M. Johnst.	Semonilla	1	Medicinal	10	0	0	0.0046	0	
223 Boraginaceae	*Borago officinalis* L.	Gordolobo	1	0	0	0	0	0	0	
224 Boraginaceae	*Cardia curassavica* (Jacq.) Roem. & Schult.	Semonilla	1	Medicinal	10	0	0	0.0046	0	
401 Boraginaceae	*Nama dichotoma* (Ruiz & Pav.) Choisy	Semonilla	1	Medicinal	10	0	0.0046	0.3143	0	
402 Boraginaceae	*Nama sp.*	Semonilla	1	Medicinal	10	0	0.0046	0.3143	0	
403 Boraginaceae	*Wigandia urens* (Ruiz & Pav.) Kunth	Chichicasle de tierra caliente	0	0	0	0	0	0	0	
225 Brassicaceae	*Brassica oleracea* L.	Brócoli, Col	1	0	0	0	0	0	0	
226 Brassicaceae	*Brassica rapa* L.	Mostaza	2	0.0065	0	0	0	0	0	
229 Brassicaceae	*Capsella bursa-pastoris* (L.) Medic.	Lentejilla	1	0	0	0	0	0	0	
230 Brassicaceae	*Descurainia virilis* (E. Fourn.) O. E. Schulz	Mostaza	2	0	0	0	0	0	0	
227 Brassicaceae	*Eruca vesicaria* (L.) Cav.	Jaramón	2	Fodder	40	0.0323	0	0	0	
231 Brassicaceae	*Lepidium virginicum* L.	Lentejilla	3	Ornamental	35	0.6404	0	0.2534	0.0097	
232 Brassicaceae	*Matthiola incana* (L.) R.Br.	Ailela	2	Ornamental	18, ceremonial	10	0	0.0042	0	
234 Brassicaceae	*Nasturtium officinale* R.Br.	Berro	2	Edible	15	0	0	0	0	
233 Brassicaceae	*Raphanus sativus* L.	Rábano	2	0	0	0	0	0	0	
235 Brassicaceae	*Sesuvium portulacastrum* L.	Sesuvio	2	Edible	10	0	0	0.0014	0	
236 Bromeliaceae	*Ananas comosus* (L.) Merr.	Piña	2	Edible	10	0	0	0.0014	0	
237 Bromeliaceae	*Catopsis compacta* Mez	Soluche de jarrita	5	Ornamental	6, ceremonial	22	0	1.1246	0	2.2591
238 Bromeliaceae	*Hechtia oaxacana* Burt-Utley, Utley & Garcia-Mend.	Lechugilla	1	Fodder	10	0.0384	-0.866	0	0	
239 Bromeliaceae	*Hechtia sp.*	Lechugilla de terreno caliente	0	0	0	0	0	0	0	
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIV); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

#	Family	Genus	Accession(s)	Use Type	Code	Cognitive Prominence	Biocultural Importance			
240	Bromeliaceae	Tillandsia acrostachys	SRL-1492	Ceremonial	2	0	-0.4059			
241	Bromeliaceae	Tillandsia bourgaei Baker	SRL-1197	Soluche blanco	3	0	-0.5262			
242	Bromeliaceae	Tillandsia grandis Schidt.	SRL-1472	Jarrilla	3	0.0290	0.6724			
243	Bromeliaceae	Tillandsia gymnobotrya	SRL-1201, SRL-1435	Soluche blanco, soluche de flor colorada	5	0.0827	0.2377	0.0221	0.0008	0.2934
244	Bromeliaceae	Tillandsia juncea (Ruiz & Pav.)	RLF-81, SRL-1246, SRL-1254	Soluche	3	0	-0.5262			
245	Bromeliaceae	Tillandsia macedougallii	RLF-84, SRL-224, SRL-1242, SRL-1250	Soluche	3	0	1.030			
246	Bromeliaceae	Tillandsia recurvata (L. L.)	SRL-211	Soluchito	3	0.0081	-0.1783	0.04357		
247	Bromeliaceae	Tillandsia usneoides (L. L.)	SRL-138, SRL-1245	Apasle	5	0.0144	2.5721			
248	Bromeliaceae	Tillandsia sp.	SRL-1244	Soluche	2	0	0.9401			
249	Bromeliaceae	Tillandsia sp.	SRL-1252	Soluche cimarrón, soluche ixtludo	3	0	1.0465			
250	Bromeliaceae	Tillandsia sp.	SRL-1243	Soluche	4	0	0.2635			
251	Buddlejaceae	Buddleja parviflora Kunth	ERL-197, SRL-371, SRL-1207, SRL-1522	Lengua de vaca, tepozán	3	0	0			
252	Buddlejaceae	Buddleja sp.	RLF-83, SRL-30	1	0	0				
253	Buddlejaceae	Buddleja sp.	SRL-118	0	0	0				
254	Buddlejaceae	Buddleja sp.	RLF-218, RLF-284	0	0	0				
255	Burseraceae	Bursera biflora (Rose)	RJS-11, RLF-122, SRL-1219	Copal colorado, copal amarillo, copal criollo	7	0	3.1524			
256	Burseraceae	Bursera fagaroides (Kunth)	SRL-349	Copallillo	3	0.0075	0.0065			
257	Burseraceae	Bursera galeottiana Engl.	RLF-323	Cuajilote	0	0	0			
258	Burseraceae	Bursera moreletensis Ramirez	SRL-1345	0	0	0				
259	Burseraceae	Bursera pontiventris Rzed., Calderón & Medina	SRL-1271	Copallillo blanco	2	0	0			
260	Burseraceae	Bursera schlechtendalii Engl.	SRL-1367	Aceitillo	2	0.0027	0.0065	0.0008		
261	Burseraceae	Bursera submoniliiformis Engl.	SRL-1341, SRL-1346	Copallillo blanco	0	0	0			
262	Cactaceae	Acanthocereus subinermis	Photo record	Nopalito de cruz	1	0	0	0		

Note: All values are calculated as part of the principal component analysis.
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop relative prominence index^2$ and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

#	Family	Scientific Name	Photo record	Spanish Common Names	Uses	Flora	EIVI Mean	Ecological Status	Management Practices	Management Site	Wild Populations
263	Cactaceae	Cephalocereus columna-trajani (Karv. ex Pfeiff.)	Photo record	Cardón pachón, soldadillo	1	0	-0.1783	0	0	0	
264	Cactaceae	Coryphantha retusa (Pfeiff.) Britton & Rose	Photo record	Bizniaga	1	0	0	0.0074 0.3458	0	0	
265	Cactaceae	Escontria chiotilla (A.A.Weber ex K.Schum.) Rose	Photo record	Jiotilla	1	0	0	0	0	0	
266	Cactaceae	Ferocactus macrodiscus (Mart.) Britton & Rose	SRL-402	Bizniaga	3	1	0.0161 2.7969 0.0074 0.7647	0	0		
267	Cactaceae	Ferocactus recurvus (Mill.) Borg	SRL-1419	Bizniaga grande	3	1	0.0161 3.2785 0.0074 1.2215	0	0		
268	Cactaceae	Hylocereus undatus (Haw.) Britton & Rose	Photo record	Pitahaya	2	0	Ornamental 12 0 0 0	0	0		
270	Cactaceae	Mammillaria carnea Zucc. ex Pfeiff.	SRL-387	Biznaga	0	0	0	0	0	0	
271	Cactaceae	Mammillaria haageana Pfeiff.	SRL-387, SRL-1480	Bizniaga chiquita	2	1	0.0074 0.8648	0	0		
272	Cactaceae	Mammillaria sp.	Photo record	Biznaga	2	0	0	0.0074 0.6323	0	0	
273	Cactaceae	Mammillaria sp.	Photo record	Biznaga	1	0	0	0.0074 1.9051	0	0	
274	Cactaceae	Mammillaria sp.	Photo record	Biznaga	1	0	0	0.0074 1.7930	0	0	
269	Cactaceae	Marginatocereus marginatus (DC.) Backeb.	SRL-237	Orégano	5	1	0.0161 3.2785 0.0074 1.2215	0	0		
275	Cactaceae	Opuntia depressa Rose	SRL-238	Nopal de coyote	3	0	0.007 0.0052 0 0.0139 -0.1499	0	0		
276	Cactaceae	Opuntia ficus-indica (L.) Mill.	Photo record	Nopal de castilla, nopal pelón	2	0	Edible 100 0 0 0	0	0		
277	Cactaceae	Opuntia huajuapensis Bravo	SRL-239	Nopal	3	0	0.0072 1.1617	0	0		
278	Cactaceae	Opuntia lasiacantha Pfeiff.	SRL-477	Nopal pachón	2	0	Edible 100 0 0 0	0	0		
279	Cactaceae	Opuntia sp.	SRL-236	Nopal amarillo	3	0	0.0072 4.1969	0	0		
280	Cactaceae	Opuntia sp.	Photo record	Nopal de coyote, nopal tuna roja	3	0	0.0072 1.0967	0	0		
281	Cactaceae	Opuntia sp.	Photo record	Nopal de sacristán	2	0	0.0072 1.9067	0	0		
282	Cactaceae	Pachycereus weberi (J.M. Coul.) Backeb.	Photo record	Cardón verde	0	0	0	0	0	0	
283	Cactaceae	Pseudomitrocereus fulviceps (F.A.C.Weber ex K.Schum.) Bravo & Buxb.	SRL-1451, SRL-1501	Cardón	0	0	0	0	0	0	
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as S = Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

| No. | Family | Species | Common Name | Elevation | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 | N11 | N12 | N13 | N14 | N15 | N16 | N17 | N18 | N19 | N20 |
|-----|-------------------|--------------------|-----------------------|-----------|
| 284 | Cactaceae | Cactaceae | SRL-1452 | |
| 285 | Calochortaceae | Calochortaceae | SRL-1204 | |
| 286 | Campanulaceae | Campanulaceae | SRL-156, SRL-157 | 2 | | | | | | | -0.7655 | | 1.4404 | | | | | | | | | | | |
| 287 | Cannaceae | Cannaceae | SRL-57, ERL-43, ERL-217 | 2 | Platanillo | 2 | Ornamental = 35, ceremonial = 10 | | | | | | | | | | | | |
| 288 | Cannaceae | Cannaceae | SRL-1354 | |
| 289 | Caparaceae | Caparaceae | SRL-1354 | |
| 290 | Caprifoliaceae | Caprifoliaceae | RLF-28, RLF-199, SRL-1300 | 1 | Barin | 2 | Ornamental = 6 | | | | | | | | | | | | |
| 291 | Caricaeae | Caricaeae | SRL-41 | Ocote corriente, pino | 4 | Ornamental = 35 | | | 0.0588 | 0.0115 | | | | | | |
| 292 | Caricaceae | Caricaceae | SRL-1504 | |
| 293 | Celastraceae | Celastraceae | SRL-1334 | |
| 294 | Chenopodiaceae | Chenopodiaceae | SRL-1139 | Quelte de manteca, flor de huizontle | 2 | Edible = 15 | | | 0.0046 | -0.3023 | 0 | | | | |
| 295 | Chenopodiaceae | Chenopodiaceae | RLF-184, SRL-194, SRL-1121, SRL-1140, SRL-1321 | 3 | Quelte de guajolote | Fodder = 10, medicinal = 40 | 0.0054 | 0 | 0 | | | |
| 296 | Chenopodiaceae | Chenopodiaceae | ERL-32, ERL-33, ERL-168, RLF-89, SRL-1136 | Epazote | 4 | Edible = 100 | | | 0.0123 | 1.3678 | | | | |
| 297 | Chenopodiaceae | Chenopodiaceae | SRL-1140 | Espinaca | 1 | | | | | | | | | | | | | | | | | | | |
| 298 | Cistaceae | Cistaceae | RLF-17 |
| 299 | Commelinaceae | Commelinaceae | RLF-19, RLF-73, SRL-159 | 2 | | | | | | -0.6240 | -1.3004 | | | | | |
| 300 | Commelinaceae | Commelinaceae | SRL-48 |
| 301 | Commelinaceae | Commelinaceae | RLF-190, SRL-430 | Milpa, lengua de cucho | |
| 302 | Commelinaceae | Commelinaceae | ERL-44 | Ornamental = 6 | 1 | | | | | | | | | | | | | | | | | | | |
| 303 | Commelinaceae | Commelinaceae | SRL-149 | -1.0487 |
| 304 | Commelinaceae | Commelinaceae | RLF-15 |
#	Family	Species	Spanish Common Names	Sutrop Relative Prominence Index (S)	Biocultural Importance (Component Value of PCA)
84	Compositae	Acoutria scapiformis (Bacig.) B.L.Turner	SRL-163	1	0 0 -2.1063
85	Compositae	Acoutria sp.	SRL-215, SRL-1468	0	0 0
86	Compositae	Adenophyllum glandulosum (Cav.) Strother	SRL-1264	1	0 -1.0766
87	Compositae	Ageratina espinosarum (A.Gray) R.M.King & H.Rob.	RLF-36, SRL-114, SRL-291, SRL-325, SRL-363, SRL-1279	2	0 0.0391 0 0 -0.347
88	Compositae	Ageratina maietiana (DC.) R.M.King & H.Rob.	SRL-186, SRL-390	3	0 3.3978 0 0.9653 0.15 5.7983
89	Compositae	Ageratina tomentella (Schrad.) R.M.King & H.Rob.	RLF-217, SRL-119, SRL-289, SRL-335, SRL-391, SRL-1191, SRL-1398, SRL-1406	1	0 -0.7561 0 0
90	Compositae	Ageratina sp.	RLF-116, SRL-74	3	0 -0.2987 -1.0819 0 -0.6123
91	Compositae	Ageratina sp.	RLF-4, SRL-153, SRL-287	2	0 -0.6843 -1.36 0
92	Compositae	Ageratina sp.	SRL-208	1	0 0 0 0 -0.8137
93	Compositae	Ageratum tetuacanum R.M.King & H.Rob.	RLF-26, SRL-113	1	0 -1.0765 0 0
94	Compositae	Ambrosia psilostachya DC.	RLF-9	1	Medicinal = 5 0 0 0 -0.5778
95	Compositae	Barkleyanthus salicifolius (Kunth) S. F. Blake	RLF-257, SRL-267, SRL-292, SRL-1241	1	0 -0.9975 0 0
96	Compositae	Barkleyanthus salicifolius (Kunth) H.Rob. & Brettell	SRL-190, SRL-1531, ERL-27, ERL-83, ERL-190, ERL-218	6	Ornamental = 65 0 0 0.6175 0.0291 0.6711
97	Compositae	Bidens bigelovii A.Gray	RLF-140, RLF-196	1	Caual cimarrón 0 0 0 0
98	Compositae	Bidens pilosa L.	SRL-4, SRL-1285	2	Oaxaqueña 0 0 0 0 -0.485
99	Compositae	Bidens pilosa L.	RLF-221, SRL-316, SRL-395, SRL-1288	1	0 0 -0.6451 0 0
100	Compositae	Brickellia veronicifolia (Kunth) A.Gray	RLF-11, RLF-203, RLF-206, SRL-293, SRL-361, SRL-1276, ERL-101	3	Oreganillo, orejita de ratón 0 0 0 0.1215
101	Compositae	Brickellia sp.	SRL-1418	1	0 0 -1.0765 0 0
102	Compositae	Calendula officinalis L.	SRL-49, ERL-22, ERL-24	3	Ornamental = 18 0 0 0 0
Table 5

Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index² and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Species	Common Name	Uses	Sutrop Relative Prominence Index	Biocultural Importance	Ecological Status	Management Practices	Management Site with Respect to Species Wild Populations
106 Compositae **Campanula alvarensis** Rzed. & Calderón	Oaxaqueña 1	0	-1.0765	0	0		
107 Compositae **Chrysanthemum morifolium** Ramat.	Hierba de San Nicolás 1	0	-1.0765	0	0	0.0167 0.3058	
109 Compositae **Cirsium mexicanum DC.**	Lechuga cimarrón 2	0	-0.6097	0	0		
110 Compositae **Cirsium sp.**	Espino del diablo, chicalote de monte 1	0	-1.0765	0	0		
112 Compositae **Coreopsis sp.**	1	0	0.0527	0	0	0	
113 Compositae **Cosmos bipinnatus Cav.**	Jazmín 2	0	0.0167	0	0		
114 Compositae **Dahlia apiculata** (Sherff) P.D.Sorensen	Dalia corriente, ticurrichi 2	0	0	0	1.0674		
115 Compositae **Dahlia coccinea Cav.**	Dalia 2	0	0	0	0.7547		
116 Compositae **Dahlia sp.**	Dalia 2	0	0	0	0	0.015	
117 Compositae **Desmanthodium sp.**	1	0	0	0	0		
118 Compositae **Dysodia papposa** (Vent.) Hitchc.	Cempasuchito 1	0	-1.0765	0	0		
119 Compositae **Dysodia sp.**	1	0	0	0	-2.1063		
120 Compositae **Enigeron kaninskianus DC.**	1	0	0	0	0		
121 Compositae **Enigeron sp.**	0	0	0	0	0		
122 Compositae **Flaveria trinervia** (Spreng.) C.Mohr	Romero cimarrón 0	0	0	0	0		
123 Compositae **Galinsoga parviflora Cav.**	1	0	-1.0765	0	0	0	
108 Compositae **Glebionis coronaria** (L.) Cass. ex Spach	Linda 2	0	0	0	0	0.0131	
124 Compositae **Gnaphalium sp.**	1	0	0	0	-2.1063		
125 Compositae **Gnaphalium sp.**	1	0	0	0	0	-0.6864	
126 Compositae **Gochnatiun hypoleucus (DC.) A.Gray**	Árnica 1	0	0	0	0	0.0938 5.0025	
127 Compositae **Grindelia irioideae** Willd.	Cerilla, popote 2	0	0	0	0	0.0309 0.6436	
128 Compositae **Gymnosperma glutinosum** (Spreng.) Less.	1	0	0	0	0		

Rangel-Landa et al. *Journal of Ethnobiology and Ethnomedicine* (2016) 12:30
	Species	Common Names	Uses						EIVI	Region	Status	Management	Site	Species wild populations
129	Compositae	Helenium mexicanum Kunth	RLF-25, SRL-1116, SRL-1134	Chiche de perro	2	0	0	0	-0.8599					
130	Compositae	Helianthus annuus L.	Photo record	Girasol	2	Ornamental = 6	0	0	0					
131	Compositae	Lactuca sativa L.	Photo record	Lechuga	1	0	0	0						
132	Compositae	Launaea intyacea (Jacq.)	SRL-69	Mostaza	1	0	0	0						
133	Compositae	Leucanthemum maximum (Ramond) DC.	ERL-138	Margarita, margaritón	2	Ornamental = 24, ceremonial = 8	0	0.0095	0					
134	Compositae	Matricaria chamomilla L.	SRL-175	Manzanilla	1	Medicinal = 55	0	0	0.0868					
135	Compositae	Melampodium divericatum (Rich. ex Rich.) DC.	RLF-205	Chimalacate	2	0	-0.7656	0	-1.4404					
136	Compositae	Melampodium longifolium Cerv. ex Cav.	SRL-129, RLF-261	1	0	0	0	1.5115						
137	Compositae	Melampodium sp.	RLF-220	1	0	0	0	2.1063						
138	Compositae	Montanoa tormentosa Cerv.	RLF-300, SRL-2	Oaxaqueña	1	0	0	0	-1.0367					
139	Compositae	Montanoa sp.	RLF-299	1	0	0	-1.0354	0	0					
140	Compositae	Neurolaena lobata (L.) R.Br. ex Cass.	SRL-198	Naranjillo	2	0	0	0	-0.8599					
141	Compositae	Parthenium bipinnatifidum (Ortega) Rollins	ERL-9, RLF-87, RLF-178, SRL-34, SRL-82, SRL-445, SRL-1325	Hierba cenizo	2	0	-0.2194	0	0	-0.507				
142	Compositae	Parthenium tomentosum DC.	SRL-1213, SRL-1375	Palo prieto	2	0	0	0	-0.86					
143	Compositae	Parthenium sp.	RLF-198	0	0	0	0							
144	Compositae	Peymenium discolor Schrad.	SRL-277, SRL-1266	1	0	0	-0.2154	0	0					
145	Compositae	Peymenium mendezii var. angustifolium (Brandegee) J.J.Fay	RLF-110, SRL-351	Cahual delgado	1	0	-1.0332	0	0					
146	Compositae	Peymenium sp.	RLF-251	Cahual	2	0	-0.6097	0	0	-0.8011				
147	Compositae	Pflacitis zinnioides Schrad.	RLF-322	0	0	0	0							
148	Compositae	Pinaropappus roseus (Less.) Less.	RJS-8, SRL-407, SRL-1526	Chipule	1	0	0	0	0.0119	-0.8163				
149	Compositae	Piqueria trinervia Cav.	RLF-8	0	0	0	0	0	-0.8011					
150	Compositae	Porophyllum linaria (Cav.) DC.	RLF-18, SRL-158, SRL-357, SRL-1150, ERL-141	Pepitza	4	Edible = 95	0	0.0098	2.0349	0	3.1943			
151	Compositae	Porophyllum punctatum (Mill.) SF.Blake	SRL-207	Papaloquelite	1	0	0	0	0	0				
Species	Spanish Common Names	Number of Uses	Percentage of Families	Cognitive Prominence Values	Biocultural Importance Values									
-------------------------------	----------------------	----------------	------------------------	-----------------------------	------------------------------									
Rangé-Landa et al.	Journal of Ethnobiology and Ethnomedicine (2016)	12:30												
Species	Spanish common names	Number of uses	Percentage of families that consume it	Cognitive prominence values expressed as $S = \text{Sutrop relative prominence index}^2$	Biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental)	Distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations								
---------	----------------------	----------------	--	---	---	--								
171 Compositae Tagetes erecta L.	Cempasuchí	3	Ornamental = 71, ceremonial = 99	0	0.0189	0.0026								
172 Compositae Tagetes lucida Cav.	Pericón	4	Ceremonial = 50	0	0.0241	-0.1211	0.0523	0.4295						
173 Compositae Tagetes lunulata Ortega	Cempasuchí chiquito	3	Ornamental = 29, ceremonial = 40	0.0027	1.8836	0	1.0404	0						
174 Compositae Tanacetum parthenium (L.) Sch.Bip.	Santa María	3	Ornamental = 53, ceremonial = 10	0	0	0	0.0646							
175 Compositae Taraxacum campylodes G.E.Haglund	Achicoria	3	Ornamental = 18	0	0	0	0.0046							
176 Compositae Tithonia rotundifolia (Mill.) S.F.Blake	Cahual rojo	3	Ornamental = 65, ceremonial = 10	0	0.0062	0								
177 Compositae Tithonia tubaeformis (Jacq.) Cass.	Cahual	3	Fodder = 80, ornamental = 41	0.1501	0.1872	0.002	0.3403	0						
178 Compositae Tridax coronopifolia (Kunth) Hemsl.	1	0	0	0	-1.0487									
179 Compositae Verbena gracilipes B.L.Rob.	Chimalacate	2	0	-0.6097	0	0								
180 Compositae Vernonia kanivskiana DC.	RLF-187, RLF-210	1	0	0	-2.1063	0								
181 Compositae Viguiera cordata (Hook. & Am.) D'Arcy	Cahual menudito, cahual prieto	1	0	-1.0765	0	0								
182 Compositae Viguiera dentata (Cav.) Spreng.	Chimalacate	5	0	0.7128	0	0	0.0591							
183 Compositae Viguiera grammatochloa DC.	Cahual prieto	2	0	-0.2201	0	0	-0.5074							
184 Compositae Viguiera purpusii Brandegee	Cahual cimarrón	1	0	-1.0765	0	0								
185 Compositae Zaluzania sp.	Cahualito	1	0	-1.0765	0	0								
186 Compositae Zinnia elegans L.	Galiloto	2	Ornamental = 6	0	0	0								
187 Compositae Zinnia peruviana (L.) L.	Galiloto	3	Ornamental = 6	0	0.3455	0	0	-0.161						
188 Compositae	1	0	0	0										
191 Compositae	1	0	0	0										
192 Compositae	1	0	0	0										
193 Compositae	1	0	0	0										
Table 5. Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as S = Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIV); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

No.	Family	Accession	Spanish common name	Use Type	EIV Value	Sutrop Relative Prominence Index	First Component Value	BioCultural Importance	Management Region	
194	Compositae	SRL-1214	Jazmínillo, cañuelo blanco	1	0	0	0	0	0	
195	Compositae	SRL-1236	1	0	-1.0765	0	0	0	0	
196	Compositae	SRL-1442, SRL-1530	1	0	0	0	0	0	0	
197	Compositae	SRL-1372	1	0	0	0	0	0	0	
198	Compositae	SRL-1445	0	0	0	0	0	0	0	
199	Compositae	SRL-1355	0	0	0	0	0	0	0	
200	Compositae	SRL-1381	Cahual de hembra	0	0	0	0	0	0	
201	Compositae	SRL-1407	1	0	-1.0765	0	0	0	0	
202	Compositae	SRL-1224	Cahual	0	0	-2.1063	0	0	0	
203	Compositae	SRL-1205	0	0	0	0	0	0	0	
204	Compositae	SRL-1335	0	0	0	0	0	0	0	
205	Compositae	SRL-1360	0	0	0	0	0	0	0	
206	Compositae	SRL-1337	0	0	0	0	0	0	0	
207	Compositae	SRL-1383	0	0	0	0	0	0	0	
208	Compositae	SRL-1377	0	0	0	0	0	0	0	
209	Compositae	ERL-121, SRL-1275	Cahual prieto	1	0	0	0	0	-0.8133	
210	Compositae	SRL-1478	Hierba de ángel, oaxaqueña	1	0	0	0	0	0.0384	
211	Compositae	SRL-1339	Cempasúchitl de molito de campo	1	0	0	0	0	0	
305	Convolvulaceae	Cuscuta sp.	RLF-264, RLF-315, SRL-447	0	0	0	0	0	0	
306	Convolvulaceae	Cuscuta sp.	RLF-1540, RLF-1545	0	0	0	0	0	0	
307	Convolvulaceae	Dichondra argentea Humb. & Bonpl. ex Wild.	RLF-71, SRL-134, SRL-167	Orejita de ratón	1	0	0	0	-0.7399	
309	Convolvulaceae	Ipomoea conzattii Greenm.	SRL-1491, SRL-1510	Jícama de cerro	2	0	-0.6097	0	0	
310	Convolvulaceae	Ipomoea elongata Choisy	RLF-130, RLF-192, SRL-327, SRL-1203	Manto de la virgen del campo	1	0	0	-2.1063	0	
311	Convolvulaceae	Ipomoea pauciflora M.Martens & Galeotti	SRL-1366	0	0	0	0	0		
308	Convolvulaceae	Ipomoea aff. populina House	SRL-1306	Jícama	2	0	-0.6097	0	0	
312	Convolvulaceae	Ipomoea purpurea (L.) Roth	ERL-14, RLF-44, RLF-45, SRL-145, SRL-448	Quiabra platos	1	0	0	0	-0.7546	
Species	Common Names	Use Type	EIVI	Origin Region	Ecological Status	Management Practices	Management Site	Cognition	Biocultural	Remarks
---------	--------------	----------	------	---------------	------------------	---------------------	-----------------	-----------	-------------	---------
Ipomoea ternifolia Cav.	Manto de la Virgen	Ornamental = 12	-1.0765	0	0.0147	0				
Ipomoea tricolor Cav	Photo record	1	0	0	0					
Bryophyllum delagoense (Eckl. & Zeyh.) Druce	Víborita	Ornamental = 12	0	0	0					
Echeveria gigantea Rose & Purpus	Siempreviva grande, lengua de vaca, oreja de toro	Ornamental = 18	0	0.0107	0.9419	0.0025	1.7348			
Echeveria nodulosa (Baker) Otto	Siempreviva chiquita	0	0	0.0033	0.2914	0	1.7058			
Echeveria pulvinata	Photo record	Siempreviva	0	0	0	0				
Echeveria sp.	Photo record	Siempreviva	0	0	0	0				
Echeveria sp.	Photo record	Siempreviva	0	0	0	0				
Kalanchoe blossfeldiana Poelln.	Juanita	Ornamental = 6, ceremonial = 1	0	0	0					
Kalanchoe sp.	Oreja de elefante	Ornamental = 41, ceremonial = 14	0	0	0					
Sedum allantoides Rose	Dedito de Dios	Ornamental = 18	0	0	0	0				
Sedum dendroideum Moc. & Sessé ex DC.	Siempreviva	Ornamental = 29, ceremonial = 14	0	0.0272	2.4485	0.0056	2.5616			
Sedum hemsleyanum Rose	Borreguito	0	0	0	0	0				
Sedum liebmannianum Hemsl.	Siempreviva chiquita	Ornamental = 6	0	3.4262	0.0037	0.9638	0			
Sedum stahlii Salms	0	0	0	0	0	0				
Sedum palmeri S.Watson	Siempreviva	Ornamental = 6	0	0	0	0				
Sedum potosinum Rose	Ornamental = 12	0	0	0	0	0				
Villadia albiflora (Hemsl.) Rose	Borreguito	0	0	0	0	0				
Villadia guatemalensis Rose	Colita de borrego	Ornamental = 6	0	3.4262	0.0037	0.9638	0			
Cucumis melo L.	Melón	1	0	0	0	0	0			
Cucurbita ficifolia Bouché	Chilacayota	Edible = 100	0	0	0	0	0	0		
Cucurbita pedatifolia L.H.Bailey	Calabacita amarga	3	0	0.0916	0	0	-0.3182			
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Table 5	Species	Spanish common names	Number of uses	Edible	Fodder	Firewood	Ceremonial	Ornamental	Management practices	Management site	Distribution on vegetal types	Ecological status	仅为中文标题，无内容							
335	Cucurbitaceae	Cucurbita pepo L.	SRL-184	Calabaza	2	Edible = 100	0	0	0	0	0	0								
337	Cucurbitaceae	Cyclanthera dissecta (Torr. & A.Gray) Arn.	SRL-151	Chayotita	2	0	-0.2201	0	0	0.5074										
338	Cucurbitaceae	Schizocarpum filiforme Schrad.	SRL-1260	Chayotito	2	0	-0.2201	0	0	0.5074										
339	Cucurbitaceae	Sechium edule subsp. edule (Jacq.) Sw.	ERL-56, ERL-215	Chayote	1	Edible = 100	0	0	0	0										
340	Cucurbitaceae	Sicyos laciniatus L.	ERL-100, RLF-90, SRL-14	Chayotillo, pegajosa	2	Fodder = 40	0	-0.0182	0	0	-0.4506									
342	Cupressaceae	Cupressus sempervirens L.	Photo record	Ciprés	1	Ornamental = 24	0	0	0.0294	0										
341	Cupressaceae	Cupressus lusitanica var. benthamii (Endl.) Carrière	RLF-129, SRL-36	Nebro fino	3	Ornamental = 6	0	0	0	0										
343	Cupressaceae	Juniperus flaccida Schltdl.	ERL-187, RLF-126, RLF-134, SRL-123, SRL-412, SRL-1119	Nebro	8	Ornamental = 35, firewood = 100	0.0054	5.2489	0.147	4.8804	0	3.0378								
344	Cupressaceae	Taxodium huegelii C.Lawson	SRL-210, RLF-434, SRL-1294	Sabino	5	Ornamental = 6	0	0	2.3689	0										
345	Cupressaceae	Thuja occidentalis L.	ERL-122	Tuja	1	Ornamental = 6	0	0	0	0										
347	Cyperaceae	Bulbostylus junceoides (Vahl) Kük. ex Herter	SRL-310	Pasto	1	0	-0.4243	0	0	0										
348	Cyperaceae	Carex sp.	RLF-133	Pasto	2	0	-0.6097	0	0	-0.8011										
349	Cyperaceae	Cyperus aggregatus (Willd.) Endl.	SRL-382	Pasto	1	0	-1.0538	0	0	0										
351	Cyperaceae	Cyperus spectabilis Link	RLF-334	Pasto	1	0	0	0	0	0										
352	Cyperaceae	Eriophorum acicularis (L.) Roem. & Schult.	RLF-138	Pasto de arroyo	1	0	0	0	-1.0487											
353	Cyperaceae	Eriophorum montevidensis Kunth	SRL-197	Pasto de arroyo	1	0	0	0	0											
346	Cyperaceae	Fimbristylis mexicana Palla	SRL-304	Pasto	1	0	-0.2720	0	0	0										
354	Cyperaceae	Fimbristylis mexicana Palla	SRL-304	Pasto	1	0	-1.0765	0	0	0										
350	Cyperaceae	Pycreus niger (Ruiz & Pav.) Cufod.	RLF-144	Pasto	1	0	0	-1.0765	0	0										
355	Cyperaceae	Rhynchospora sp.	RLF-145	Pasto fino	1	0	0	-1.0765	0	0										
356	Ebenaceae	Diospyros oaxacana Standl.	RLF-1446	Zapotito	2	0	-0.6097	0	0	0										
357	Equisetaceae	Equisetum sp.	SRL-422	0	0	0														
358	Ericaceae	Arbutus xalapensis Kunth	ERL-172, RLF-124, RLF-279, SRL-1477	Madroño, ollita	4	Ceremonial = 14, firewood = 100	0	0	0	-0.1056										
No.	Family	Species	Common Names	Uses	Firewood	Medicinal	Firewood	Ceremonial	Ornamental	Ornamental	EIVI	Ecological Status	Management Practice	Site with Respect to Wild Populations						
-----	--------------	--------------------------------	---	---------------	----------	-----------	----------	------------	------------	------------	-------	------------------	----------------------	---						
359	Ericaceae	Comarostaphylis polifolia	(Kunth) Zucc. ex Klotzsch	Palo prieto	3	0	0	0	0	0										
360	Euphorbiaceae	Acalypha aff. purpurascens	Kunth	RLF-189, SRL-256	0	0	0	0	0	0										
361	Euphorbiaceae	Bernardia sp.		SRL-1386	0	0	0	0	0	0										
362	Euphorbiaceae	Cnidocactus tehuacanensis	Beeckon	Photo record	Mala mujer	1	0	0	0.0043	-0.9341										
363	Euphorbiaceae	Croton sp.		SRL-441	0	0	0	0	0	0										
364	Euphorbiaceae	Croton sp.		SRL-1444	0	0	0	0	0	0										
365	Euphorbiaceae	Euphorbia colletoides	Benth.	SRL-1359	1	0	0	-1.0765	0	0	0									
366	Euphorbiaceae	Euphorbia cyathophora	Murray	SRL-1369	0	0	0	0	0	0										
367	Euphorbiaceae	Euphorbia cymbifera	(Schldtl) V.W.Steinm.	SRL-1500	0	0	0	0	0	0										
368	Euphorbiaceae	Euphorbia cyri	V.W.Steinm.	SRL-1128	Cordobán	2	Ornamental	12	0	0	0									
369	Euphorbiaceae	Euphorbia dentata	Michx.	RLF-51, SRL-102, SRL-299, SRL-376	Lechillo, limil	1	0.0025	-0.1758	0	0	0									
370	Euphorbiaceae	Euphorbia dioeca	Kunth	ERL-107, RLF-7, SRL-359	Celedonia	1	0	0	0	0	0	-0.7546								
371	Euphorbiaceae	Euphorbia graminea	Jacq.	RLF-288, RLF-311, SRL-317	1	0	0	0	0	0	0									
372	Euphorbiaceae	Euphorbia lactea	Haw.	Photo record	1	0	0	0	0	0	0	-0.8599								
373	Euphorbiaceae	Euphorbia macropus	(Klotzsch & Garcke) Boiss.	SRL-1120	Hierba de chicle	2	0	0	0	0	0	0	0							
374	Euphorbiaceae	Euphorbia pulcherina	Willd. ex Klotzsch	Photo record	Noche buena	2	Ornamental	47, ceremonial	11	0	0.1246	0	0	0	0	0	0			
375	Euphorbiaceae	Euphorbia rossiana	Pax	SRL-1450	0	0	0	0	0	0	0									
376	Euphorbiaceae	Euphorbia sp.		RLF-141	0	0	0	0	0	0	0									
377	Euphorbiaceae	Euphorbia sp.		RLF-301, SRL-254	0	0	0	0	0	0	0									
378	Euphorbiaceae	Euphorbia sp.		RLF-119, RLF-152, RLF-167, SRL-283	0	0	0	0	0	0	0									
379	Euphorbiaceae	Jatropha neopauciflora	Pax	SRL-1357	Sangre de grado, aceitillo	2	0	-0.6097	0	0	0	-0.8011								
380	Euphorbiaceae	Ricinus communis	L.	ERL-116, ERL-144, ERL-145, ERL-243, SRL-23, SRL-1129	Gria	5	0	0	0	0.0161										
381	Euphorbiaceae	Sebastiana aff. pavoniana	(Müll.Arg.) Müll.Arg.	SRL-263	Hierba de venado	1	0	-1.0683	0	0	0									
Species	Spanish common names	Number of Uses	Percentage of families	Cognitive prominence values	Biocultural importance values															
---------	----------------------	----------------	-----------------------	---------------------------	-----------------------------															
382 Euphorbiaceae	Tragia nepetifolia Cav.	SRL-318	0	0	0															
383 Euphorbiaceae		RLF-252	0	0	0															
384 Fagaceae	Quercus acutifolia Née	SRL-1226, SRL-1516	Encino colorado	7	Firewood = 100	0.0153	3.7957	0.0392	2.304	0.0101	2.6129									
385 Fagaceae	Quercus castanea Née	RLF-78, SRL-1233, SRL-1408, SRL-1425, SRL-1431	Encino prieto, encino blanco	7	Firewood = 100	0.0215	1.4099	0.0392	1.4528	0	0.4908									
386 Fagaceae	Quercus conspersa Benth.	SRL-1156	Encino colorado	7	Firewood = 100	0.0153	0.6176	0.0392	0.7792	0.0101	0.1196									
387 Fagaceae	Quercus x dyssophylla Benth.	SRL-1108	Encino de tesmole	3	Firewood = 100	0	0.6263	0.0392	0.5657	0										
388 Fagaceae	Quercus glaucoidea M. Martens & Galeotti	SRL-1109, SRL-1459, SRL-1486, SRL-1513	Encino chaparro	5	Firewood = 100	0.0161	0.3057	0.0686	1.3213	0										
389 Fagaceae	Quercus laeta Liebm.	RLF-68, SRL-143, SRL-253, SRL-385, SRL-1230	Encino prieto, encino amarillo	6	Ornamental = 6, firewood = 100	0.0129	4.1162	0.0392	4.6656	0										
390 Fagaceae	Quercus liebmannii Oerst. ex Trel.	SRL-1107, SRL-1514	Encino amarillo	8	Firewood = 100	0.0108	6.7493	0.0392	4.6656	0										
391 Fagaceae	Quercus obtusata Bonpl.	SRL-1423	Encino prieto	6	Firewood = 100	0.0092	0.9366	0.0392	0.8996	0										
392 Fagaceae	Quercus polymorpha Schidtd. & Cham.	SRL-1503	Encino prieto	5	0	0.6356	0.0392	0.6369	0											
393 Fagaceae	Quercus urbanii Trel	RLF-161, SRL-252, SRL-475, SRL-1228	Encino cucharilla	6	Firewood = 100	0.0081	1.9079	0.0392	1.7423	0										
394 Fagaceae	Garryaceae	Garrya ovata Benth.	SRL-330, SRL-469	Hierba de ardilla	2	Firewood = 100	0.0323	-0.0578	0	0										
395 Geraniaceae	Geranium sp.	RLF-278, SRL-136	0	0	0															
396 Geraniaceae	Pelargonium peltatum (L) L’Hér.	Photo record	Geranio, malva rosa	2	Ornamental = 6	0	0	0												
397 Geraniaceae	Pelargonium zonale (L) L’Hér. ex Aiton	ERL-84, ERL-200	Geranio, malva rosa	2	Ornamental = 88, ceremonial = 43	0	0.0888	0												
398 Geraniaceae		SRL-81	0	0	0															
399 Geraniaceae	Hypoxidaceae	Hydrangea macrophylla (Thunb) Ser.	Photo record	Hortensia	2	0	0	0												
400 Hypoxidaceae	Hypoxis sp.	RLF-37, SRL-141	Pasto	2	0	-0.5563	0	0												
401 Iridaceae	Gladiolus hortulanus L.H. Bailey	Photo record	Gladiolo	2	Ornamental = 41, ceremonial = 22	0	0	0												
402 Iridaceae	Iris x germanica L.	SRL-225	Lirio corriente	2	Ornamental = 29	0	0	0												
403 Iridaceae	Neomarica sp.	Photo record	0	0	0															
404 Iridaceae	Sisyrinchium tenaxfolium Humb. & Bonpl. ex Wild.	RLF-146, SRL-1548	Hierba de camino corriente	1	0	-0.9652	0	0												
405 Iridaceae	Tigridia illecebrosa Cruden	RJS-10	Flor de gamito	2	0	-0.7655	0	-1.4404	0											
Table 5: Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Table 5	Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)		
410	Iridaceae	Tigridia pavonia (L.f.) DC.	RLF-201
410	Iridaceae	Phoradendron tuberosum (Haw.) Greene	RLF-272, RLF-273, SRL-331
411	Juglandaceae	Juglans regia L.	ERL-80, RLF-64, SRL-29, SRL-1146
412	Krameriaceae	Krameria cytisoides Cav.	RLF-97, SRL-251, SRL-1265, SRL-1376
413	Lamiaceae	Clinopodium mexicanum (Benth.) Govaerts	RLF-131, RLF-262, SRL-1190, SRL-1280, SRL-1403
414	Lamiaceae	Hyptis sp.	SRL-209
415	Lamiaceae	Leonotis nepetifolia (L.) R.Br.	SRL-1315
416	Lamiaceae	Marrubium vulgare L.	ERL-8, RLF-64, SRL-29, SRL-1146
417	Lamiaceae	Mentha x piperita L.	ERL-19, ERL-61, ERL-95, SRL-70, SRL-1137
418	Lamiaceae	Ocimum basilicum L.	ERL-1, RLF-194, SRL-116, SRL-273, SRL-1195, SRL-1202, SRL-1397, SRL-1420
419	Lamiaceae	Ocimum majorana L.	ERL-15, ERL-53, ERL-85, ERL-142, SRL-73, SRL-206
420	Lamiaceae	Plectranthus hadiensis (Forssk.) Schweinf. ex Sprenger	Photo record
421	Lamiaceae	Rosmarinus officinalis L.	Photo record
422	Lamiaceae	Salvia aspera M.Martens & Galeotti	SRL-345, SRL-1263
423	Lamiaceae	Salvia cinnamata Cav.	RLF-215, SRL-1291
424	Lamiaceae	Salvia keerlii Benth.	SRL-155, SRL-1456
425	Lamiaceae	Salvia oaxacana Fernald	RLF-232, SRL-1161, SRL-1188
426	Lamiaceae	Salvia pannosa Fernald	RLF-181
427	Lamiaceae	Salvia pungens Cav.	RLF-1, RLF-194, SRL-116, SRL-273, SRL-1195, SRL-1202, SRL-1397, SRL-1420
428	Lamiaceae	Salvia sessei Bent.	RLF-33, RLF-195, SRL-1162
429	Lamiaceae	Salvia thymoides Bent.	RLF-245, SRL-1469

Note: The table continues with additional entries for each species, detailing their uses, cognitive prominence values, and biocultural importance. The specific details include the number of uses, percentage of families that consume it, and other ecological and management attributes.
#	Family	Species	Type	Code	Common Name	CH	Edible	Ceremonial	Fodder	Wild Populations	
432	Lamiaceae	Salvia tiliifolia Vahl.	Rangel-Landa et al.	ERL-28-ERL-112, RLF-162, SRL-3	Chía	2	0	0	0	-0.5632	
433	Lamiaceae	Salvia villosa Fernald	ERL-28	SRL-285		0	0	0	0		
434	Lamiaceae	Salvia sp.	Photo record	Mirto		1	0	0	0	0.0035	-0.7569
435	Lamiaceae	Salvia sp.	RLF-20			0	0	0	0		
436	Lamiaceae	Salvia sp.	RLF-150			0	0	0	0		
437	Lamiaceae	Salvia sp.	SRL-140	Marrubio macho		1	0	0	0	-1.0487	
438	Lamiaceae	Salvia sp.	SRL-1304			1	0	-1.0765	0	0	
439	Lamiaceae	Salvia sp.	SRL-1448			0	0	0	0		
440	Lauraceae	Litsea glaucescens Kunth	Rangel-Landa et al.	SRL-1157, SRL-1515	Laurel	3	Ceremonial = 2	0	0	0	
441	Lauraceae	Persea americana Mill.	ERL-52-ERL-65, RLF-106, SRL-432	Aguacate	2	Edible = 100	0	0	0	0.0013	
442	Leguminosae	Acacia cochlacantha Willd.	Rangel-Landa et al.	SRL-1374	Guaje de espino	1	0	-1.0765	0	0	
443	Leguminosae	Acacia farnesiana (L.) Willd.	Photo record	Espino	2	0.0086	-0.2900	0	0		
444	Leguminosae	Acacia pennatula (Schldtl. & Cham.) Benth.	SRL-1471	Espino	2	0.0076	0.0810	0	0		
445	Leguminosae	Acacia schaffneri (S.Watson) F.J.Herm.	SRL-183,SRL-460	Espino	3	0.0068	0.0056	0	0		
446	Leguminosae	Acaciella tequilana (S.Watson) Britton & Rose	RLF-53	Barba de chivo	1	0	-1.0765	0	0		
447	Leguminosae	Bauhinia sp.	Rangel-Landa et al.	SRL-160, SRL-1443							
448	Leguminosae	Calliandra sp.	SRL-276	Guaje de gambito	2	Edible = 6	0	-0.63	0	0	
449	Leguminosae	Calliandra sp.	Photo record	Crin de caballo	0	0	0	0	0		
450	Leguminosae	Calliandropsis nervosus (Britton & Rose) H.M.Herm. & P.	SRL-1511								
451	Leguminosae	Canavalia villosa Benth.	RLF-226, SRL-1439		1	0	-1.0765	0	0		
452	Leguminosae	Cologania broussonetii (Balb.) DC.	SRL-106		1	0	-1.0765	0	0		
453	Leguminosae	Cologania sp.	RLF-153	Hierba de venado	1	0	-1.0765	0	0		
454	Leguminosae	Cologania sp.	SRL-324	Lentejilla corriente	1	0	-0.7835	0	0		
455	Leguminosae	Crotalaria pumila Ortega	SRL-103, SRL-364		2	0	-0.6097	0	0	-0.8011	
456	Leguminosae	Crotalaria sp.	SRL-13								
457	Leguminosae	Dalea bicolor Willd.	SRL-1461								
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index 2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Species	Common Name	Number of Uses	Prominence Values	Management Practices	Management Site		
Dalea carthagrensis (Jacq.) J.F.Macbr.	RLF-115, RLF-168, RLF-222, SRL-154, SRL-417, SRL-1185, SRL-1299	Hierba de Obo	2	-0.2201	0.0096	0.5388	
Dalea hegewischiana Steud.	SRL-1283	0	0	0			
Dalea tomentosa (Cav.) Willd.	RLF-214, SRL-214	2	-0.5455	0	0	0.7614	
Dalea sp.	RLF-328	1	0	-1.0765	0	0	
Dalea sp.	SRL-348	1	0	0	0		
Dalea sp.	SRL-111, SRL-168	0	0	0			
Desmanthus virginus (L.) Willd.	SRL-368	Guajito de gabito	1	0	0	0	
Desmanthus sp.	RLF-225	Tepeguaje cimarrón	2	0	-0.6097	0	0
Desmodium axillare (Sw.) DC.	RLF-74, SRL-286, SRL-425	Lentejilla corriente	1	0	-0.3076	0	0
Desmodium orbiculare Schltdl.	RLF-216, SRL-1269	Papaloquelede chivo	1	0.0036	-1.0538	0	0
Desmodium subsessile Schltdl.	RLF-114	1	0	-0.9207	0	0	
Erythrina americana Mill.	ERL-175, SRL-181, SRL-458	Hierba de pipi	5	0.0023	0	0.0025	
Eysenhardtia polystachya (Ortega) Sarg.	RLF-253, SRL-346, SRL-476	Coatillo	5	Ornamental = 6, firewood = 100	0.0194	0.5698	-0.1759
Harpalyce formosa DC.	RLF-176, RLF-286, SRL-343	Guaje de caballo	1	0	-1.06	0	0
Havardia sp.	RLF-325	0	0	0			
Hybosma ehenbergii (Schldrl.) Harms	RLF-123, SRL-259	Guajillo de chivo	1	0	-0.8214	0	0
Lens culinaris Medik.	Photo record	Lenteja	1	Edible = 100	0	0	0
Leucaena esculenta (DC.) Benth.	ERL-31, ERL-87, ERL-110, RLF-107, RLF-174, SRL-1167, SRL-1216, SRL-1251, SRL-1343	Guaje colorado, guaje de caballo, guaje de rapia	5	Ornamental = 94, edible = 100, firewood = 100	0.0161	0	0
Leucaena leucocephala (Lam.) de Wit	ERL-88, ERL-209	Guaje de la cana, guaje verdes	1	Edible = 47	0	0	0
Leucaena sp.	SRL-1158	Guaje de gambito	1	Edible = 6	0	0	0
Lupinus leptophyllus Cham. & Schltdl.	SRL-1410	1	0	0	0		
Macroptilium atropurpureum (DC.) Urb.	SRL-426	1	0	-1.0539	0	0	
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as \(S = \text{Sutrop relative prominence index}^2 \) and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIIV); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Species (L.)	Common Name	Ranges	Uses	Edible	FC	Ecological Status	Note							
480 Leguminosae	Macroptilium gibossifolium (Ortega) A.Delgado	RLF-63, SRL-108	2	0	-0.7428	0	0							
481 Leguminosae	Medicago lupulina L.	SRL-192	1	0	0	0	0							
482 Leguminosae	Medicago polymorpha L.	RLF-69, SRL-15, SRL-1328	1	0	0	0	0							
483 Leguminosae	Melilotus indicus (L.) All.	SRL-88, SRL-120	1	0	0	0	0							
484 Leguminosae	Mimosa lacerata Rose	RLF-283	Espino	1	0	0	0							
485 Leguminosae	Mimosa sp.	RLF-85	Garabato, espino	1	0	0	0							
486 Leguminosae	Nissolia sp.	RLF-163	0	0	0	0	0							
487 Leguminosae	Parkinsonia praecox (Ruiz & Pav.) Hawkins	SRL-1396	Palo verde	0	0	0	0							
488 Leguminosae	Phaseolus coccineus L.	ERL-7, ERL-161	Frijol ayocote	2	Edible = 12	0	0	0						
489 Leguminosae	Phaseolus vulgaris L.	ERL-8, ERL-47, ERL-48, ERL-49, ERL-139, ERL-160, SRL-9	Frijol de tierra, frijol de milpa, bayo, amarillo, negro, enredador	2	Edible = 100	0.0352	0	0						
490 Leguminosae	Phaseolus sp.	SRL-144	1	0	-1.0765	0	0							
491 Leguminosae	Phaseolus sp.	RLF-169	0	0	0	0	0							
492 Leguminosae	Phaseolus sp.	SRL-1206	Ejote de venado	2	0	-0.6097	0	0						
493 Leguminosae	Phaseolus sp.	SRL-1231	1	0	-1.0765	0	0							
494 Leguminosae	Piscidia grandifolia (Donn.Sm.) I.M.Johnst.	SRL-1210	2	0	0	0	0	-0.8599						
495 Leguminosae	Pison sativum L.	Photo record	Alberjón	1	0	0	0	0						
496 Leguminosae	Prosopis sativus (Willd.) M.C.Johnst.	SRL-1388	Mezquite	5	0	0.4025	0	0.0035	-0.1182					
497 Leguminosae	Rhynchosia pringlei Rose	RLF-247, SRL-1440	Hierba de venado	1	0	-1.0765	0	0						
498 Leguminosae	Rhynchosia senna Hook.	SRL-284, SRL-366	1	0	-1.0598	0	0	0						
499 Leguminosae	Senna guatemalensis (Donn.Sm.) H.S.Irwin & Barneby	RLF-246, RLF-295	3	Ceremonial = 1	0	-0.2593	0	0	-0.588					
500 Leguminosae	Senna holwayana (Rose) H.S.Irwin & Barneby	ERL-223, RLF-75, RLF-230, SRL-1437	Mostaza corriente	2	Ornamental = 6	0	-0.4532	0	-1.0925	0				
501 Leguminosae	Teramnus labialis (L.f) Spreng.	SRL-396	0	0	0	0	0	0						
502 Leguminosae	Trifolium sp.	SRL-375	2	0	0	0	0	0						
503 Leguminosae	Vicia faba L.	Photo record	Haba	1	0	0	0	0	0					
504 Leguminosae	Zornia reticulata Sm.	SRL-300	2	0	-0.5973	0	0	-0.7935	0					
No.	Family	Species and Code	Common Name	Uses	Sutrop Relative Prominence Index	First Component Value	Biocultural Importance Value	Distribution on Vegetal Types	Importance Ecological Index Value (EIVI)	Species Origin Region	Ecological Status	Management Practices	Species Wild Populations	
-----	----------------------	---------------------------	-------------------	---------------	---------------------------------	-----------------------	-------------------------------	-------------------------------	--	---------------------	----------------	----------------------	---------------------	
505	Leguminosae	RLF-327, SRL-1227 Timbre	5	0.0029	0.3201	0	0							
506	Leguminosae	SRL-1212	Tepeguaje	3	0	0.4545	0						-0.7298	
507	Leguminosae	SRL-1556		0	0	0	0							
508	Leguminosae	SRL-1538		0	0	0	0							
509	Leguminosae	SRL-1113	Guaje que come el venado	0	0	0	0							
510	Leguminosae	RJS-7		1	0	0.765	0							
511	Leguminosae	SRL-1166	Timbre	1	0	0	-0.0825							
512	Leguminosae	SRL-1350		0	0	0	0							
513	Leguminosae	SRL-1370	Guaje de gamito	0	0	0	0							
514	Leguminosae	SRL-1371	Espino	0	0	0	0							
515	Leguminosae	SRL-1498		0	0	0	0							
516	Leguminosae	SRL-1217		2	0	0.6097	0						-0.8011	
517	Lentibulariaceae	Pinguicula moranensis Kunth	RLF-148, SRL-436, SRL-1553, SRL-1496	Siempreviva	0	0	0							
518	Linaceae	Linum scabrellum Planch.	SRL-1462	0	0	0	0							
519	Linaceae	Linum sp.	RLF-175	2	0	0.2201	0						-0.5074	
520	Loasaceae	Mentzelia hispida Wild.	RLF-54, RLF-94, SRL-428	Pegajosa	1	0	0						-0.755	
521	Loranthaceae	Psittacanthus calyculus (DC.) G.Don	SRL-1502	Injerto	1	0	0							
522	Lythraceae	Cuphea sp.	RLF-100, RLF-143, RLF-172, SRL-20, SRL-350, SRL-1178	3	0	0.0939	0						-0.3167	
523	Lythraceae	Cuphea sp.	SRL-25	1	0	0	0							
524	Lythraceae	Cuphea sp.	SRL-105, SRL-296	1	0	0	0							
670	Lythraceae	Punica granatum L.	ERL-38, ERL-39, ERL-70, ERL-71, ERL-104, ERL-206, SRL-43	Granada	5	Ornamental = 71, edible = 10	0	0.0147						
525	Malpighiaceae	Bunchosia sp.	SRL-451	Huevo de gato	2	0	0							
526	Malpighiaceae	Bunchosia sp.	SRL-1351	0	0	0	0							
527	Malpighiaceae	Echinopterys eglandulosa (A.Juss.) Small	SRL-1384	0	0	0								
528	Malpighiaceae	Galphimia multicaulis A.Juss.	RLF-65, RLF-293, SRL-1177	Flor de chivo	2	0	-0.5325						-1.0487	
529	Malpighiaceae	Gaudichaudia galeottiana (Nied.) Chodat	RLF-241		1	0	0							
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as S = Sutrop relative prominence index\(^2\) and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

530	Malpighiaceae	Heteropterys brachiata (L.) DC.	SRL-1342	0	0	0		
531	Malpighiaceae	Malpighia galeottiana A.Juss.	SRL-362, SRL-471, SRL-1272	0.0018	0.3567	0	0	
532	Malvaceae	Alcea rosea L.	ERL-140, ERL-201, ERL-227, SRL-62, SRL-187	0	0.0042	0		
533	Malvaceae	Anoda cristata (L.) Schltdl.	RLF-67, RLF-277, SRL-6, SRL-446, SRL-1125	0.5126	0	-0.4235	-0.1293	
534	Malvaceae	Gossypium hirsutum L.	Photo record	0	0	0		
535	Malvaceae	Hermannia inflata Link & Otto	SRL-1301	0	0	0		
536	Malvaceae	Hibiscus rosa-sinensis L.	ERL-207	0	0	0		
537	Malvaceae	Hibiscus sp.	SRL-1474	0.0194	0	0.0324		
538	Malvaceae	Malva parviflora L.	ERL-111, ERL-210	1.9551	0.0118	3.3295	0	
539	Malvaceae	Malva sylvestris L.	Photo record	0	0	0		
540	Martyniaceae	Proboscidea louisianica (Mill.) Thell.	SRL-21	0	0.6329	0		
541	Meliaceae	Cedrela sp.	ERL-60	0.0165	0.0116	0		
542	Meliaceae	Melia azedarach L.	ERL-2, SRL-53	0.0116	0	0		
543	Meteoriaceae	Meteorium deppei (Hornsch. ex Müll. Hal.) Mitt.	SRL-1432	0.0116	0	0		
544	Moraceae	Ficus benjamina	SRL-1170	0.0116	0.0116	0.0329	0	
545	Moraceae	Ficus carica L.	ERL-125	0.0116	0	0		
546	Moraceae	Ficus crocata (Miq.) Mart. ex Miq.	SRL-76, SRL-1171	0.0116	0.0116	0.0329	0	
547	Moraceae	Ficus microcarpa L. f.	ERL-115	0.0116	0	0		
548	Moraceae	Ficus pertusa L.f.	SRL-433	0.0116	0	0		
549	Moraceae	Morus celtidifolium Kunth	ERL-55, ERL-78, ERL-55, ERL-78, ERL-124, ERL-128, ERL-129, ERL-214, ERL-220, ERL-221, RLF-92, SRL-55, SRL-1517	0.0116	1.9551	0.0118	3.3295	0
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S =$ Sutrop relative prominence index\(^2\) and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)								

550* Musaceae	*Musa × paradisiaca* L.	Photo record	Plátano	2	Ornamental = 12, edible = 100	0	0.0074	0
551* Myrtaceae	*Eucalyptus camaldulensis* Dehnh.	SRL-203	Eucalipto	2	0	0	0	0.0019
552* Myrtaceae	*Psidium guajava* L.	SRL-1528	Guayaba	1	0	0	0	0
556* Nyctaginaceae	*Boerhavia anisophylla* Torr.	SRL-162, SRL-193, SRL-370, SRL-1184, SRL-1303	1	0	-0.5246	0	0	
557* Nyctaginaceae	*Bougainvillea spectabilis* Willd.	SRL-33, SRL-191	Bugambilia	3	Ornamental = 18	0	0.0529	0
558* Nyctaginaceae	*Mirabilis jalapa* L.	ERL-29, ERL-99, SRL-421, SRL-1145	Hierba cuchi, maravilla	3	Fodder = 50, ornamental = 29	0	0.2319	0
559* Oleaceae	*Forestiera rotundifolia* (Brandegee) Standl.	RLF-306, SRL-1259	Tlasisle	3	0.0025	0.0567	0	0
560* Oleaceae	*Fraxinus purpusii* Brandegee	SRL-341, SRL-1463, SRL-1512	Zapotillo, fresno	3	Firewood = 100	0.0076	-0.307	0
561* Oleaceae	*Fraxinus uhdei* (Wenz.) Lingelsh.	SRL-1409	Fresno	1	0	0	0	0
562* Oleaceae	*Ligustrum japonicum* Thunb.	ERL-105, ERL-238, SRL-59, SRL-453	Trueno	4	Ornamental = 18, ceremonial = 22	0	0.0235	0
563* Onagraceae	*Fuchsia* sp.	SRL-386, SRL-393	0	0	0	0		
564* Onagraceae	*Gaura coccinea* Nutt. ex Pursh	SRL-17, SRL-411	Gradiolita	2	0	-0.2194	0	0
565* Onagraceae	*Lopezia racemosa* Cav.	ERL-114, SRL-1, SRL-94, SRL-1323	1	0	0	0	0	
566* Onagraceae	*Oenothera pubescens* Willd. ex Spreng.	RLF-76, RLF-113, SRL-22, SRL-40, SRL-150, SRL-213	Campanita grande	2	Ornamental = 12	0	0	-0.8404
567* Onagraceae	*Oenothera rosea* L’Her. ex Alton	SRL-1127, SRL-1322	Sanguinaria	2	Ornamental = 12	0	0	-0.8404
568* Orchidaceae	*Barkeria lindleyana* subsp. vanneriana (Rchb.f.) Thien	SRL-1509	Monjita de peña	2	Ceremonial = 8	0	0	0.1802
569* Orchidaceae	*Corallorhiza* sp.	RLF-207	Flor de jarrita	0	0	0	0	
571* Orchidaceae	*Cyrtopodium macrobulbon* (Lex.) G.A.Romero & Carnevali	Photo record	Jarrito	2	0	-0.1422	0	-1.0573
572* Orchidaceae	*Dichromanthus cinnabarinus* (Lex.) Garay	RLF-223, RLF-289, SRL-1155, SRL-1172	Cola de león	3	0	0	-1.1298	0
574* Orchidaceae	*Encyclia hanburyi* (Lindl.) Schltr.	SRL-1519	Monjita morada de campo	2	0	0.0074	0.3814	0
Table 5: Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIV); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Code	Family	Species	Common Names	Use Type	Uses	Ecological Status	Ornamental	Ceremonial	EIV	S	First Component Value	Edit Distance
570	Orchidaceae	Epidendrum lignosum Lex.	Flor de cañada	RJS-9, RLF-50, SRL-139	1	0	0	0	-0.0825	0	1.2721	0.9739
571	Orchidaceae	Epidendrum longipetalum A.Rich. & Galeotti	Monjita moradita de varas	RJS-6	1	0	0	0	1.2721	0	0	1.2721
572	Orchidaceae	Epidendrum radiofrensis (Ames, F.T.Hubb. & C.Schweinf.)	Monjita colorada	RJS-3	2	Ornamental = 12, ceremonial = 85	0	0	1.2721	0	0.0139	0.8741
573	Orchidaceae	Euchile karwinskii (Mart.) Christenson	Monjita amarilla	RJS-1	3	Ornamental = 47, ceremonial = 99	0	0	0.045	3.5005	0.0017	2.6178
574	Orchidaceae	Guenon ilgophora Lindl.	Jarrito	SRL-1270	3	0	0.1688	0	0	0	-0.7946	0.9739
575	Orchidaceae	Homalopetalum kienastii (Richb. &) Withner	Monjita blanca	SRL-1249	1	0	0	0	0	0	1.2721	0.9739
576	Orchidaceae	Laelia albida Bateman ex Lindl.	Monjita morada	ERL-126	2	Ornamental = 35, ceremonial = 77	0	0	0.0497	2.6014	0	1.2721
577	Orchidaceae	Malaxis unifolia Michx.	Monjita pinta amorilla	SRL-1196	1	0	0	0	0	0	0	1.2721
578	Orchidaceae	Oncidium brachyandrum Lindl.	Monjita pinta	RJS-5	1	0	0	0	0	0	1.2721	0.9739
579	Orchidaceae	Orobanchaceae Ponthieva mexicana (A.Rich. & Galeotti) Salazar	Monjita de peña	RLF-256, RLF-267	1	0	0	0	0	0	0	1.2721
580	Orchidaceae	Prosthechea concolor (Lex.) W.E.Higgins	Monjita pintita chiquita	RJS-2, SRL-1189	1	0	0	0	0	0	1.2721	0.9739
581	Orchidaceae	Prosthechea vitellina (Lindl.) W.E.Higgins	Monjita pintita	Photo record	1	0	0	0	0	0	1.2721	0.9739
582	Orchidaceae	Rhynchostele maculata (Lex.) Soto Arenas & Salazar	Monjita pinta	ERL-173, SRL-1476	2	Ornamental = 6, ceremonial = 92	0	0	0.0174	0.8134	0	1.2721
583	Orchidaceae	Spirantes sp.	Monjita de peña	RLF-208	1	0	0	0	0	0	0	1.2721
584	Orchidaceae	Buchnera pusilla Kunth	Monjita de peña	Photo record	1	0	0	0	0	0	1.2721	0.9739
585	Orchidaceae	Castilleja tenuifolia M.Martens & Galeotti	Monjita de carmitito largo	Photo record	1	0	0	0	0	0	1.2721	0.9739
586	Orchidaceae	Conopholis alpina Lieb.,	Flor de elote	SRL-218, SRL-1481	2	0	-0.7655	0	0	0	0.9186	0.9739
587	Orchidaceae	Buchnera pusilla Kunth	Romero cimarrón	SRL-117, SRL-223, SRL-329, SRL-1438, SRL-1485	3	0	-0.1987	0	0	0	-0.5504	0.9739
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

SRL	Species, Family	Common Name	Use Type	Uses	Percentage of Families	EIVI	Sutrop Relative Prominence	Biocultural Importance		
722	Orobanchaceae Lamourouxia dayantha (Cham. & Schltdl) W.R.Ernst	Lisión	Ceremonial	17	0	0.0059	-1.2315	0		
723	Orobanchaceae Lamourouxia viscosa Kunth	Moco de pavo, flor de miel	1	0	0	0	1.1914	0		
594	Oxalidaceae Oxalis comiculata L.	Coyule		0	0	0	2.8029	0		
592	Oxalidaceae Oxalis aff. latifolia Kunth	Coyule		0	0	0	0	0		
593	Oxalidaceae Oxalis aff. nelsonii (Small) R.Knuth	Coyule		0	0	0	0	0		
595	Oxalidaceae Oxalis sp.	Coyule delgado	0	0	0	0	0	0		
596	Papaveracea Argemone mexicana L.	Chicalote		0	0	0	0	-0.3555		
597	Passifloraceae Passiflora bryonoiides Kunth	Granadilla		0	0	0	0	0		
598	Passifloraceae Passiflora suberosa L.	Granadilla		0	0	0	0	0		
761	Passifloraceae Turnera diffusa Willd. ex Schult.	Tamorreal	Medicinal	5	0	0	0.037	2.85		
721	Phrymaceae Berendthella leviagata (B.L.Rob. & Greenm.) Thieret	Hierba de pajarito	1	0	-1.0765	0	0	0		
599	Phytolaccaceae Phytolacca icosandra L.	Pino, ocote	Ornamental	47	0	0	0.3331	0		
600	Pinaceae Pinus sp.	Verdelaga	Edible	95	0	0	0	0		
601	Piperaceae Peperomia quadrifolia (L.) Kunth	Verdelaga		0	0	0	0	0		
602	Piperaceae Peperomia sp.	RJS-4		0	0	0	0	0		
603	Piperaceae Piper auritum Kunth	Hierba santa		0	0	0	0	0		
717	Plantaginaceae Antirrhinum majus L.	Perrito	Ornamental	12	0	0	0.0147	0		
718	Plantaginaceae Bacopa monnieri (L.) Wettst.	Verdelaga de agua	Edible	5	0	0	0.2864	0		
724	Plantaginaceae Maunandyia barclaoiana Lindl.	Maunandyia barclaoiana	Ornamental	18	0	0	0.8535	0		
725	Plantaginaceae Penstemon barbatus (Cav.) Roth	Bandera		0	0	0	0	0		
726	Plantaginaceae Penstemon roseus (Cerv. ex Sweet) G.Don	Bandera		0	0	0	0	0		
604	Plantaginaceae Plantago major L.	Bandera		0	0	0	0	0		
727	Plantaginaceae Russelia obtusata S.F.Blake	Bandera		0	0	0	0	0		
728	Plantaginaceae Veronica persica Poir.	Bandera		0	0	0	0	0		
729	Plantaginaceae SRL-1198	Bandera		0	0	0	0	0		
Species	Common Name	Number of Uses	Management Site	Cognitive Prominence Values	Biocultural Importance Values					
---------	-------------	----------------	----------------	-----------------------------	-----------------------------					
Plumbaginaceae	Plumbago pulchella	0	0	0						
Poaceae	Aegopogon cenchroides	SRL-83	Pasto	2	Fodder = 20	0.1738	-0.3545	0.0074	-0.904	0
Poaceae	Aristida adscensionis	RLF-239, SRL-354	Pasto	3	0.1738	0.0074	0			
Poaceae	Aristida jorullensis	SRL-142	Pasto de semilla	2	0.1738	-0.955	0.0074	-1.2392	0	
Poaceae	Aristida schiedean	SRL-309	Pasto	2	0.1738	0.0074	0.5759	0		
Poaceae	Arundo donax	ERL-147, SRL-429	Carrizo	4	0	0	0			
Poaceae	Avena fatua	SRL-1546	Avena	1	Fodder = 10	0.1041	0	0		
Poaceae	Bouteloua curtipendula	RLF-98, RLF-237, RLF-296	Pasto	2	Fodder = 20	0.1738	-0.3545	0.0074	-0.904	0
Poaceae	Chloris rufescens	RLF-99	Pastón, cebadía, gabilla	2	Fodder = 20	0.1738	-0.3545	0.0074	-0.904	0
Poaceae	Chloris submutica	SRL-38	Pastón	2	Fodder = 20	0.1738	-0.3545	0.0074	-0.904	0
Poaceae	Chloris submutica	SRL-38	Pasto	2	Fodder = 20	0.1738	-0.3545	0.0074	-0.904	0
Poaceae	Chondrosum simplex	SRL-305	Pasto	2	0.1738	-0.8225	0.0074	-1.1081	0	
Poaceae	Cymbopogon citratus	Photo record	Té limón, té de pasto	1	0	0	0			
Poaceae	Dactylolovenium aegyptium	SRL-86	Pasto de semilla	2	0.1738	0.0074	0			
Poaceae	Digitaria bicornis	SRL-312	Pasto	2	0.1738	0.0074	0			
Poaceae	Eragrostis intermedia	RLF-164, SRL-306	Pasto	2	Fodder = 20	0.1738	-0.3545	0.0074	-0.904	0
Poaceae	Eragrostis mexicana	SRL-84	Pasto	2	Fodder = 20	0.1738	-0.3545	0.0074	-0.904	0
Poaceae	Eragrostis aff. pectinacea	SRL-85	Pasto legítimo	2	Fodder = 20	0.1738	-0.3545	0.0074	-0.904	0
Poaceae	Erioneuron avenaceum	RLF-292	Pasto	2	0.1738	-0.955	0.0074	-1.2392	0	
Poaceae	Heteropogon contortus	RLF-202	Pasto	2	0.1738	-0.955	0.0074	-1.2392	0	
Poaceae	Hilaria cenchroides	SRL-281, SRL-308	Pasto	2	0.1738	-0.8824	0.0074	-1.1673	0	
Poaceae	Hordeum vulgare	Photo record	Cebada	1	Fodder = 10	0.0794	0	0		
Poaceae	Lasiacis sp.	SRL-1506	Otate	1	0	0.0074	-1.9051	0		
Poaceae	Lycurus philoides	SRL-307	Pasto	2	0.1738	-0.8745	0.0074	-1.1595	0	
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as \(S = \text{Sutrop relative prominence index} \) and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); species origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

	Family	Species, Commonnames	Code	Type	Uses	Nfamilies	Ecological Status	Importance EIVI	Management Practices	Site	Origin Region	Management Site with Respect to Species Wild Populations							
628	Poaceae	Muhlenbergia gigantea (E.Fourn.) Hitchc.	RLF-305	Pastón	2	0	0.0074	-1.1597	0	Pastón	2	0	0	0					
629	Poaceae	Muhlenbergia robusta (E.Fourn.) Hitchc.	RLF-66, SRL-169	Pastón	2	0	0.0074	-1.0966	0	Pastón	2	0	0	0					
630	Poaceae	Nassella tenuissima (Trin.) Barkworth	RLF-258	Pasto	2	0.1738	-0.955	0.0074	-1.2392	0	Pasto	2	0	0	0				
631	Poaceae	Oryza sativa L.	Photo record	Arroz	1	0	0	0	0	Arroz	1	0	0	0					
632	Poaceae	Otatea acuminata (Munro) C.E.Calderón & Soderstr.	RLF-250	Otaie	2	0	0	-1.3925	0	Otaie	2	0	0	0					
633	Poaceae	Panicum maximum Jacq.	RLF-147	Pasto cenizo, pastón	2	0.1738	0.0074	0	0	Pasto	2	0	0	0					
634	Poaceae	Phalaris canariensis L.	ERL-231	Alpiste	1	0	0	0	0	Alpiste	1	0	0	0					
635	Poaceae	Setaria grisebachii E.Fourn.	RLF-231, RLF-358	Pasto de semilla	3	0.1738	-0.4232	0.0074	-0.8164	0	Pasto	3	0	0	0				
636	Poaceae	Sporobolus indicus (L.) R.Br.	RLF-132	Pastón	3	0.1738	-0.4882	0.0074	-0.8807	0	Pasto	3	0	0	0				
637	Poaceae	Triticum aestivum L.	SRL-172	Trigo	2	Edible = 95	0.0573	0	0	Trigo	2	Edible = 95	0.0573	0	0				
638	Poaceae	Zea mays L.	SRL-174	Maíz	3	Edible = 100, Fodder = 80, ceremonial = 1	0.3047	0	0	Maíz	3	Edible = 100, Fodder = 80, ceremonial = 1	0.3047	0	0				
639	Poaceae		RLF-157	Pasto	3	0.1738	-0.4882	0.0074	-0.8807	0	Pasto	3	0	0	0				
640	Poaceae		SRL-311	Pasto de semilla	3	0.1738	-0.3818	0.0074	-0.7755	0	Pasto	3	0	0	0				
641	Poaceae		SRL-258	Pasto	2	0.1738	-0.7199	0.0074	-1.0066	0	Pasto	2	0	0	0				
642	Poaceae		RLF-291	Pasto	2	0.1738	-0.4149	0.0074	-0.705	0	Pasto	2	0	0	0				
643	Poaceae		RLF-316	Pasto	2	0.1738	-0.955	0.0074	-1.2392	0	Pasto	2	0	0	0				
644	Poaceae		RLF-331	Pasto	2	0.1738	-0.955	0.0074	-1.2392	0	Pasto	2	0	0	0				
645	Poaceae		RLF-332	Pasto	2	0.1738	-0.955	0.0074	-1.2392	0	Pasto	2	0	0	0				
646	Poaceae		RLF-333	Pasto	2	0.1738	-0.955	0.0074	-1.2392	0	Pasto	2	0	0	0				
647	Poaceae		RLF-334	Pasto	2	0.1738	-0.955	0.0074	-1.2392	0	Pasto	2	0	0	0				
648	Poaceae		RLF-317	Pasto	2	Fodder = 20	0.1738	-0.3545	0.0074	-0.904	0	Pasto	2	Fodder = 20	0.1738	-0.3545	0.0074	-0.904	0
649	Polemoniaceae	Loeselia caerulea (Cav.) G.Don	RLF-265, SRL-96, SRL-353, SRL-1267, SRL-1282, SRL-1364, SRL-1401, SRL-1458	2	0	-0.2933	0	0	-0.6054	0	0	0	0						
650	Polygalaceae	Polygala compacta Rose	SRL-255	0	0	0	0	0											
651	Polygalaceae	Polygala scoparia Kunth	RLF-224, RLF-287	2	0	-0.4	0	0	-0.8599	0	0	0	0						
Species Family	Scientific Name	Common Names	Number of Uses	Percentage of Families	Cognitive Prominence	Biocultural Importance	Distribution on Vegetal Types	Importance Ecological Index Value (EIVI)	Specie Origin Region	Ecological Status	Management Practices	Management Site with Respect to Species Wild Populations							
----------------	-----------------	--------------	----------------	------------------------	----------------------	-----------------------	-----------------------------	--	----------------------	-----------------	-------------------	--							
653 Polygonaceae	Rumex crispus L.	SRL-1533	0	0	0														
654 Polypodiaceae	Pleopeltis conzattii (Weath.) RM.Tryon & A.F.Tryon	RLF-46, SRL-135, SRL-1237	1	0	-1.0765	0													
655 Polypodiaceae	Pleopeltis pulepise (Roemer ex Kunze) T.Moore	SRL-1434	0	0	0														
656 Polypodiaceae	Polypodium martensii Mett.	RLF-47, SRL-137, SRL-1433	2	0	-0.7655	-1.4404													
658 Polypodiaceae	Polypodium thyssanolepis A.Braun ex Klotzsch	RLF-294	0	0	0														
657 Polypodiaceae	Polypodium sp.	SRL-352	0	0	0														
658 Polypodiaceae	Polypodium sp.	SRL-415	0	0	0														
659 Primulaceae	Anagallis arvensis L.	ERL-108, ERL-228, RLF-200, SRL-87, SRL-100, SRL-1133	3	0	0	0.0065													
662 Proteaceae	Grevillea robusta A.Cunn. ex R.Br.	ERL-6	2	Ornamental = 12	0	0.0042													
663 Pteridaceae	Adiantum capillus-veneris L.	SRL-1518	0	0	0														
664 Pteridaceae	Adiantum piaireti Wikstr.	SRL-202, SRL-427	1	0	0	0	-0.9676												
665 Pteridaceae	Astroplexis crassifolia (Houlston & T.Moore) D.M.Benham & Windham	RLF-34, SRL-389	0	0	0														
666 Pteridaceae	Chelioplecton rigidum (Sw.) Fée	RLF-112, RLF-213, RLF-254, SRL-1457	0	0	0														
667 Pteridaceae	Notholaena sp.	SRL-230	0	0	0														
668 Pteridaceae	Pellaea sp.	RLF-185	0	0	0														
671 Ranunculaceae	Anemone mexicana Kunth	RLF-43, RLF-128, RLF-271, SRL-1240	2	0	-0.7655	-1.4404													
672 Ranunculaceae	Clematis dioica L.	SRL-303, SRL-1305	0	0	0														
673 Ranunculaceae	Consolida ajacis (L.) Schur	ERL-182	2	Ceremonial = 14	0	0.0147													
674 Ranunculaceae	Delphinium bicorumatum Hemsl.	SRL-1200	1	Ceremonial = 8	0	0													
675 Ranunculaceae	Thalictrum gibbosum Lecoy.	RLF-212, RLF-302	1	0	0	0	-1.0487												
676 Rhamnaceae	Condalia mexicana Schtdl.	RLF-86, SRL-457, SRL-1147	3	Ornamental = 29	0	0.0074	0.0446												
677 Rhamnaceae	Ziziphus amole (Sessé & Moc.) M.C.Johnst.	SRL-1329	1	0	0	0													
Species	Spanish common names	Type	Ecological Index Value	Management Practices	Management Site	Wild Populations													
---------	----------------------	------	------------------------	----------------------	----------------	-----------------													
Sp.																			
Rosaceae	Cercocarpus fothergilloides Kunth																		
Rosaceae	Crataegus mexicana Moc. & Sess, ex DC																		
Rosaceae	Eriobotrya japonica (Thunb.) Lindl.																		
Rosaceae	Lindleya mespiloides Kunth																		
Rosaceae	Malacomeles denticulata (Kunth) G.N.Jones																		
Rosaceae	Malus domestica Borkh.																		
Rosaceae	Prunus armeniaca L.																		
Rosaceae	Prunus persica (L.) Batsch																		
Rosaceae	Prunus serotina subsp. capuli (Cav. ex Spreng.) McVaugh																		
Rosaceae	Prunus sp.																		
Rubiaceae	Bouvardia longiflora (Cav.) Kunth																		
Rubiaceae	Bouvardia ternifolia (Cav.) Schldl.																		
Rubiaceae	Chiococca alba (L.) Hitchc.																		
Rubiaceae	Coutaportla ghiesbreghtiana (Bail.) Urb.																		
Rubiaceae	Crusea diversiflora (Kunth) WR.Anderson																		
Rubiaceae	Crusea sp.																		
Rubiaceae	Didymaea alsinoides (Cham. & Schtdl) Standl.																		
Rubiaceae	Galium sp.																		
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = \text{Sutrop relative prominence index}^2$ and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Species, Family	Scientific Name	Botanical Code	Spanish Common Name	Uses	Edible	Medicinal	Firewood	Fodder	Ceremonial	Ornamental	EIVI	Ecological Status	Management Practices	Management Site	J. Ethnobiol. Ethnomed. 12(30) 2016
698 Rubiaceae	Randia capitata DC.	RLF-281, SRL-1208	Limoncito de coyote	1	0	0	0	0	-1.0487						
699 Rubiaceae	Randia thurberi S.Watson	SRL-1344			0	0	0	0							
700 Rutaceae	Casimiroa edulis La Llave	ERL-130, ERL-176	Zapote blanco	4	Edible = 5	0	0	0	0.021						
701 Rutaceae	Citrus aurantiifolia (Christm.) Swingle	Photo record	Limón	3	Ornamental = 71; medicinal = 5; edible = 100	0	0.0189	0.0046							
702 Rutaceae	Citrus maxima (Burm.) Merr.	Photo record	Toronja	1	Ornamental = 6	0	0.0147	0							
703 Rutaceae	Citrus sinensis (L.) Osbeck	Photo record	Naranja	4	Ornamental = 12; edible = 100	0	0.0147	0.0015							
704 Rutaceae	Citrus reticulata Blanco	Photo record	Mandarina	1	0	0	0	0							
705 Rutaceae	Citrus × latifolia (Yu.Tanaka)	Photo record	Lima	2	0	0	0	0.0056							
706 Rutaceae	Ptelea trifoliata L.	ERL-196, RLF-27, RLF-308, SRL-274, SRL-466, SRL-467	Hierba de zorrillo	3	Firewood = 100	0	0	0.0028	-0.2649						
707 Rutaceae	Ruta chalepensis L.	ERL-93, ERL-127, ERL-208, ERL-241, SRL-68	Ruda	2	Ornamental = 53	0	0	0.0427							
708 Rutaceae	Zanthoxylum sp.	SRL-1221			0	0	0	0							
709 Rutaceae	Zanthoxylum sp.	SRL-326			0	0	0	0							
710 Rutaceae	Zanthoxylum sp.	SRL-1348	Hierba de zorrillo	1	0	0	0	0							
711 Sapindaceae	Neopriniglea viscosa (Liebm.) Rose	SRL-337			0	0	0	0							
712 Sapindaceae	Salix bonplandiana Kunth	SRL-204	Sauce	3	0	0	0	0							
713 Sapindaceae	Phoradendron reinchenbachianum (Seem.) Oliv.	RLF-329, SRL-1483	Injerto	0	0	0	0	0							
714 Sapindaceae	Phoradendron sp.	ERL-180, SRL-1558	Injerto, chahuistle	0	0	0	0	0							
715 Sapindaceae	Phoradendron sp.	RLF-228, SRL-1268	Injerto	2	0	-0.298	0	0	-0.5662						
716 Sapindaceae	Dodonaea visciosa (L.) Jacq.	RLF-30, SRL-294, SRL-473, SRL-1118, ERL-189	Cachovenado	4	Firewood = 100	0	0.0147	0.2881							
717 Sapindaceae	Unvilea ulmacea Kunth	SRL-1332		0	0	0	0	0							
718 Sapindaceae	Sideroxylon palmeri (Rose) T.D.Penn.	ERL-219, SRL-454	Tempesquistle	1	Edible = 90	0	0	0							
719 Sapindaceae	Sideroxylon salicifolium (L.) Lam.	RLF-244		0	0	0	0	0	-1.0765						
720 Sapindaceae	Sideroxylon capitum (A.DC.) Pittier	SRL-1508		0	0	0	0	0							
Code	Family	Species, Common Names	Use Types	Cognition Index	Biocultural Importance	Distribution	Ecological Status	Management Practices	Management Site						
------	--------------------	-----------------------	-----------	-----------------	------------------------	--------------	-------------------	----------------------	-----------------						
730	Selaginellaceae	Selaginella lepidophylla (Hook. & Grev.) Spring		1	0	0	0	-1.0487							
731	Simaroubaceae	Castela erecta Turpin		0	0	0	0								
732	Smilacaceae	Smilax moranensis M.Martens & Galeotti		0	0	0	0								
733	Solanaceae	Brugmansia × candida Pers.		2	0	0	0	Ornamental = 12, ceremonial = 17							
734	Solanaceae	Capsicum annuum L.		3	0	0	0	Edible = 120, ornamental = 17							
735	Solanaceae	Capsicum pubescens Ruiz & Pav.		2	0	0	0								
736	Solanaceae	Capsicum sp.		1	0	0	0	-1.0487							
737	Solanaceae	Capsicum sp.		1	0	-1.0765	0								
738	Solanaceae	Datura stramonuim L.		0	0	0	0								
739	Solanaceae	Jaltomata procumbens (Cav.) J.L.Gentry		2	0	0	0	-0.6249							
740	Solanaceae	Lycianthes ciliolata (M.Martens & Galeotti) Bitter		2	0	0	0	0.0051 -0.5422							
741	Solanaceae	Nicotiana glauca Graham		4	0	0	0	Ornamental = 6, firewood = 100	0.0028						
742	Solanaceae	Nicotiana tabacum L.		1	0	0	0								
743	Solanaceae	Physalis philadelphica Lam.		2	0	0	0		0.0069 1.5091						
744	Solanaceae	Solandra maxima (Moc. & Sessé ex Dunal) P.S.Green		1	0	0	0		0.0059						
745	Solanaceae	Solanum americanum Mill.		1	0	0	0								
746	Solanaceae	Solanum erianthum D.Don.		1	0	0	0		-0.7375 0.0046						
747	Solanaceae	Solanum lanceolatum Cav		1	0	0	0		0.0046 -0.6538						
748	Solanaceae	Solanum lesteri Hawkes & Hjert.		1	0	0	0								
749	Solanaceae	Solanum lycopersicum L.		1	0	0	0								
750	Solanaceae	Solanum rostratum Dunal		1	0	0	0		-1.0487						
No.	Family	Species	Common Names	Number of Uses	Distribution	Ecological Status	Species Origin Region	Ecological Index Value (EIVI)	Management Practices and Management Site with Respect to Species Wild Populations						
-----	----------------	-------------------------------	-----------------------	----------------	--------------	-------------------	-----------------------	-----------------------------	--						
751	Solanaceae	Solanum rudepannum Dunal	RLF-22, RLF-95, RLF-120, RLF-275, SRL-128, SRL-302	2	Tepozán	0	0	0.0046	-0.784						
753	Solanaceae	Solanum tridynamum Dunal	SRL-1361, SRL-1391												
754	Solanaceae	Solanum tuberosum L.	Photo record	1	Papa	Edible = 100	0	0	0						
752	Solanaceae	Solanum sp.	SRL-27												
756	Sterculiaceae	Melochia sp.	SRL-1555												
659	Talinaceae	Talinum sp.	SRL-414	1			0	-1.023	0						
757	Thelypteridaceae	Thelyptenis albicaulis (Fée)	SRL-200		Pojalillo										
758	Thelypteridaceae	Thelyptenis sp.	SRL-161, RLF-303	1											
760	Tropaeolaceae	Tropaeolum majus L.	ERL-18, ERL-89, RLF-182, SRL-60, SRL-196	3	Mastuerzo	Ornamental = 18	0	0.0033	0						
762	Typhaceae	Typha sp.	Photo record												
764	Urticaceae	Perietaria pensylvanica Muhl. ex Willd.	ERL-73, RLF-88, RLF-266, SRL-18	1	Paletaria				0.0159	-0.5533					
765	Urticaceae	Pilea microphylla (L.) Liebm.	RLF-171, SRL-1256, SRL-1309	1	Pinolillo	Ornamental = 6	0	0	0.0738						
766	Urticaceae	Urena caracasana (Jacq.) Gaudich. ex Griseb.	SRL-1543	2	Chichicasle				0.0031	-0.5744					
768	Verbenaceae	Citharexylum aff bourgeauianum Greenm.	SRL-1215	1			0	-2.1063							
769	Verbenaceae	Citharexylum tetrarnerum Brandegee	Photo record												
770	Verbenaceae	Glandularia elegans (Kunth) Umber	RLF-5, SRL-110, SRL-279, SRL-1326, SRL-1479	1			0	0	-1.0167						
771	Verbenaceae	Lantana ochryanthifolia Desf.	RLF-61, RLF-62, SRL-109, SRL-152, SRL-369, SRL-1296	2	Hierba buena de monte			-0.2001	0	-0.4950					
772	Verbenaceae	Lantana camara L.	RLF-91, RLF-197, SRL-115, SRL-459, SRL-1112, SRL-1154, SRL-1169, SRL-1365	4	Triundica, siete negritos		0.0054	3.3596	0.8495	0.0056	2.2797				
773	Verbenaceae	Lantana velutina M.Martens & Galeotti	ERL-185, RLF-31, RLF-204, SRL-272, SRL-1115, SRL-1168	4	Triundica blanca, cinco negritos	Ornamental = 12	0	0	1.484	0	2.4772				
774	Verbenaceae	Lippia graveolen Kunth	Oreganillo, salvarreal de castilla	4	Medicinal = 5		0.0065	0.0052	0.0069	0.0526					
775	Verbenaceae	Lippia oaxacana B.L.Rob. & Greenm.	SRL-71, SRL-1378, SRL-1454, SRL-1549	2	Medicinal = 60		0	0	0.2636	10.3582					
776	Verbenaceae	Priva mexicana (L.) Pers.	RLF-29						Piojito						
Table 5: Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as S = Sutrop relative prominence index and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Species (Family)	Common Name	Sutrop Index	Use Type	Origin Region	Ecological Status	Management Practices	Management Site
777 Verbenaceae	Stachytarpheta acuminata A.DC.	SRL-1380	0	0	0		
778 Verbenaceae	Verbena carolina L.	RLF-93, SRL-125, SRL-173, SRL-456	1	0	0	-1.5594	
782 Vitaceae	Cissus sp.	RLF-101, RLF-173, SRL-1373, SRL-1535	2	0	0	-1.2488	
783 Vitaceae	Vitis vinifera L.	SRL-54	2	0	0	0	
784 Xanthorrhoeaceae	Aloe vera (L.) Burm.f.	ERL-188, SRL-78	5	Ornamental = 47	0	0	0.0552
82 Xanthorrhoeaceae	Asphodelus fistulosus L.	SRL-388, SRL-1415	1	Ornamental = 6	0	0	0
83 Xanthorrhoeaceae	Kniphofia uvaria (L.) Oken	ERL-158	2	Ornamental = 24	0	0	0
785 Zygophyllaceae	Morkillia mexicana (DC.) Rose & Painter	SRL-1338, SRL-1349	0	0	0	0	
786 Octavillo	1	Ceremonial = 17	0	0	0	0	

Notes:
- Collectors name: ERL Erandi Rivera Lozoya, RLF Ricardo Lemus Fernández, RJS José Rosario Jiménez Salazar, SRL Selene Rangel Landa
- Fodder plants Sutrop Index details: Number of lists = 31; Average length of lists = 6; Number of cited items = 65; Total number of cited items = 195; Number of collected lists for no new information addition = 14. Sutrop Index rarefaction curve 1
- Ornamental plants Sutrop Index details: Number of lists = 34; Average length of lists = 6; Number of cited items = 85; Total number of cited items = 200; Number of collected lists for no new information addition = 25. Sutrop Index rarefaction curve 2
- Medicinal plants Sutrop Index details: Number of lists = 36; Average length of lists = 8; Number of cited items = 76; Total number of cited items = 285; Number of collected lists for no new information addition = 19. Sutrop Index rarefaction curve 3
- Edible plants Sutrop Index details: Number of lists = 38; Average length of lists = 10; Number of cited items = 83; Total number of collected lists for no new information addition = 185. Sutrop Index rarefaction curve 4
- Ceremony plants Sutrop Index details: Number of lists = 36; Average length of lists = 5; Number of cited items = 41; Total number of cited items = 185; Number of collected lists for no new information addition = 13. Sutrop Index rarefaction curve 5
- Firewood Sutrop Index details: Number of lists = 35; Average length of lists = 7; Number of cited items = 39; Total number of cited items = 244; Number of collected lists for no new information addition = 9. Sutrop Index rarefaction curve 6
- Key to vegetation type: AA Ancient settlements, Bal Urban secondary vegetation, BEA Quercus liebmanni and Quercus laeta forest, BEC Quercus urbani forest, BEM Quercus spp.forest, BG Gallery forest (Taxodium mucronatum), BN Juniperus flacida forest, CaCe Cephalocereus columnna-trajanni shrubland, CaMy Pseudomytrocereus fulviceps shrubland, Iz Izotal (shrubland dominated by rosettes), Ms Mexical, Pal Mescal factories, Palm Palm shrubland of Brahea dulcis, Pizz grassland, SB Tropical dry forest, Sol Homegardens, TS Agricultural fields, VR Riparian vegetation
- Key to Area of Origin: AC American Continent, EAAA Europa, Asia, Africa, Australia, Ixc Ixcatlán (species with wild populations in Ixcatlán territory, and Mesoamerican area native species that have naturalized populations in Ixcatlán territory), Mex Mexico, TCV Tehuacán-Cuicatlán Valley (plants natives of VTC but in Ixcatlán only could be finding in settlements under cultivation), Ux Unknown
- Key to Ecological Status: D Domesticated, R-W Ruderal-Weedy, W Wild
- Key to Management practices: E Enhancement, F Forage, G Gathering, P Protection, Pp Propagation, T Tolerance, Ti Transplanting of individuals, Ur Uproot
- Key to Management site: In situ = when management take place in sites where species wild populations are distributed; ex situ = when management take place in sites out of species wild populations distribution
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as S = Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

ID	Edible	Ceremonial	Firewood	Vegetation type3	EIVI (ecological importance value index)	Origin4	Ecological status5	Management practices6	Management site7
1	0	0	0	SB	0	Ixc	W	P, Prp	ex situ
2	0	0	0	CaCe	0	Ixc	W		
3	0	0	0	CaCe	0	Ixc	W		
4	0	0	0	Sol	0.000153	TCV	W	P, Prp	ex situ
5	0	0	0	BG, Pal	0	Ixc	W	T	in situ
20	0	0	0	Sol	0.000026	EAAA	W	P, Prp	ex situ
21	0	0	0	Sol	0.000026	EAAA	W	P, Prp	ex situ
22	0	0	0	Sol	0.000026	EAAA	W	P, Prp	ex situ
28	0	0	0	Iz	0	Ixc	W		
29	0	0	0	Bal, Sol	0.000153	Ixc	R-W	F, G, T, Ur	in situ
30	0.2516	2.025	0	Bal, Sol, TS	0.006548	Ixc	R-W	E, F, G, P, T, Ur	in situ
31	0.0218	0	0	Sol	0.000051	EAAA	D	P, Prp	ex situ
33	0	0.0296	0	Sol	0.000077	TCV	D	E, P, Prp	ex situ
34	0	0	0	Bal, BEA, BN, Iz, Me, Palm	0.008464	Ixc	W	F, G	in situ
35	0	0	0	Iz	0.000784	Ixc	W	F	in situ
36	0	0	0	Me	0	Ixc	W		
26	0	0	0	Pal, Sol	0.000077	EAAA	D	P, Prp	ex situ
23	0	0	0	Sol	0.000051	EAAA	D	P, Prp	ex situ
24	0	0	0	Sol	0.000153	EAAA	D	P, Prp	ex situ
37	0	0.0588	0	Pal, Sol	0.000153	EAAA	D	P, Prp	ex situ
38	0	0.0056	0	Pal, Sol	0.000128	AC	D	P, Prp	ex situ
39	0	0	0	Pal	0	Ixc	W	T	in situ
40	0	0	0	Me, Sol	0.000026	Ixc	W	E, P, Prp, Ti	ex situ, in situ
41	0	0	0	Me	0	Ixc	W		
42	0	0	0.0092	-0.5723	CaCe, Me, Iz, Palm	0.003085	Ixc	W, G	in situ
43	0	-1.3811	0	CaCe	0	Ixc	W	G	in situ
44	0	0	0	BG, CaCe, Iz, SB, Pal, Sol	0.000026	Ixc	W	F, G, T	in situ
45	0	0.06	0.03	0.2684	BEA, BEC, Me, Pal, SB, TS	0.013869	Ixc	W, F, G, T	in situ
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = \text{Sutrop relative prominence index}^2$ and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

No.	Use Type	EIVI	Habitat Type	Species	Management Practices	Ecosystem Status	Management Site	Management Site Details		
46	0	-0.5044	0	BEA, BEC, Iz, Me, Pal, Palm, TS	0.023686	bc	W	G, T	in situ	
47	0	-0.0476	0	BEA, BN, Iz, Me, BB, TS	0.017724	bc	W	F, G, T	in situ	
48	0	0	0	Sol	0.000026	AC	W	E, P, T, Ti	ex situ	
49	0.0088	0	0	Sol	0.000026	AC	D	P, Prp	ex situ	
52	0	0.0469	0	Sol	0.000205	EAAA	D	E, P, Prp, T, Ti	ex situ	
53	0	0	Bal, BG, Sol	0	bc	W	T		in situ	
54	0.0610	0	0	Sol	0.000205	EAAA	D	E, P, Prp, T, Ti	ex situ	
55	0.0075	0	0	Sol	0	EAAA	D	P, Prp	ex situ	
56	0	0	0	BEA, Paz	0.003360	bc	W	G	in situ	
57	0	0	0	Me	0	bc	W	G	in situ	
58	0	0	0	BEA, BEC	0.001155	bc	W	G	in situ	
59	0.0066	0	0	Sol	0.000051	EAAA	W	P, Prp	ex situ	
60	0.0263	0	0	Sol	0.000128	EAAA	D	P, Prp	ex situ	
61	0	0	0	NE, TS	0	Nat-Uk	W	F, T, Ur	ex situ	
75	0	0	0	Sol	0.000026	bc	W	P, Prp	ex situ, in situ	
76	0	0	0	BEA	0	bc	W			
64	0	0	0	CaCe	0	bc	W	G	in situ	
78	0	0	0	BEA, Sol	0	bc	W	F	in situ	
79	0	0	0	Sol	0.000026	EAAA	W	P, Prp	ex situ	
77	0.0022	-0.5798	0	BEA, Pal, Sol	0	bc	W	G, P, T	in situ	
80	0	0	0	Iz	0	bc	W			
62	0	0.004	0	Sol	0.00153	EAAA	D	P, Prp, Ti	ex situ	
63	0	0.007	0.608	CaMy, Sol	0.000051	bc	W	G, P, Prp	ex situ, in situ	
81	0	0	0	BEA	0	bc	W			
65	0	0.12	0	Pal, Sol	0.000230	EAAA	D	P, Prp, Ti	ex situ	
66	0	0.12	0	BEA, Sol	0.000026	bc	W	G, P, T	in situ	
67	0	0.0469	0	Sol	0.000026	EAAA	W	P, Ti	ex situ	
68	0.0015	3.3156	0	BEA, BEC, BG, BN, Iz, Me, Pal, Palm, TS	0.105714	bc	W	E, F, G, P, T, Ti	in situ	
69	0	0	0	BEA	0	bc	W	G, P	in situ	
70	0	0	0	BEA, Me, Sol	0	bc	W	G, P, Ti	ex situ, in situ	
71	0	0	0	Sol	0.000077	EAAA	W	P, Prp, T, Ti	ex situ	
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index\(^2\) and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

No.	EIVI	Prominence	Use Type	Species	origin	Ecological Status	Management Practices	Site with respect to species wild populations	
72	0	0	0	Sol		0.000051	AC, W	P, Prp, T, Ti, ex situ	
73	0	0	0	Sol		0.000026	EAAA, W	P, T, Ti, ex situ	
74	0	0	0	Sol, TS		0.000205	Mex, D	P, Prp, Ti, ex situ	
6	0	0	0	Sol, TS		0.001780	bc, W	G, T, in situ	
9	0	0	0	Me, Pal, TS		0.001780	bc, W	F, G, in situ	
10	0.0148	-0.8621	0	Iz, Pal		0.000026	bc, W	F, G, in situ	
11	0.0717	3.9275	0	BEA, Iz, Me, Pal, Palm, SB, Sol, TS		0.020100	bc, W	E, F, G, P, Prp, T, Ti, ex situ, in situ	
12	0	3.1267	0.0104	3.0362	0.000026	bc, W	G, P, Ti	ex situ, in situ	
13	0	0	0	BEM, Sol		0.000026	bc, W	G, P, Ti, ex situ	
14	0	0	0	Me, Sol		0.000026	bc, W	G, P, Ti, ex situ	
15	0	-1.1696	0	Iz		0.000026	bc, W	F, G, in situ	
16	0	-1.0057	0	Iz		0.000026	bc, W	F, G, in situ	
17	0	0	0	Pal, Sol		0.000026	Mex, D	P, Prp, Ti, ex situ	
8	0	0	0	CaCe, Iz, Pal, SB, Sol, Ts		0.000026	bc, W	G, P, Prp, ex situ	
553	0	0	-0.75	0	Iz	0.012638	bc, W	G, P, ex situ	
554	0.1098	0.1909	0	-0.6392	0	0.000547	bc, W	F, G, in situ	
50	0	-1.0101	0	0	BEA, Iz, Me		0.000026	bc, W	G, P, ex situ
51	0	0	0	0	BEA, BEC		0.000026	bc, W	G, P, ex situ
25	0	0	0	0	Me, Palm, TS		0.000026	bc, W	T, in situ
555	0	0	-1.1913	0	BEA, Me		0.000026	bc, W	G, P, ex situ
19	0	0	0	AA		0.000026	bc, W	G, P, ex situ	
18	0.0066	0	0	0	Sol	0.000026	bc, W	G, P, ex situ	
215	0	0	0	Sol		0.000026	bc, W	G, P, ex situ	
216	0	0	0	Sol		0.000026	bc, W	G, P, ex situ	
217	0	0	0.0086	-1.2037	BEA, Iz, Me, Palm		0.002781	bc, W	F, G, in situ
218	0	0	0	BEM		0.000026	bc, W	G, P, ex situ	
219	0	0	0	Sol		0.000026	bc, W	G, P, ex situ	
220	0	0	0	Sol		0.000026	bc, W	G, P, ex situ	
221	0	0	0	BEA, BN, Iz, Me		0.000026	bc, W	G, P, ex situ	
222	0	0	0	BN, Me, Palm		0.000026	bc, W	G, P, ex situ	
223	0	0	0	Sol		0.000026	bc, W	G, P, ex situ	
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as S = Sutrop relative prominence index\(^2\) and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIV); species origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Species	Spanish common names	Number of uses	Percentage of families	Ecological Status	Management Practices	Management Site	Distribution on Vegetal Types	Importance Ecological Index Value (EIV)
224	0	0	0	Lx	W	F	in situ	0.000026 EAAA D P, Prp
401	0	0	0	Lx	W	F	in situ	0.000028 Nat-EAAA R-W G, T, Ur
402	0	0	0	Lx	W	T	in situ	0.000026 Nat-EAAA R-W G, T, Ur
403	0	0	0	Lx	W		in situ	0.000026 Nat-EAAA R-W F, G
225	0.0075	0	0	Sol	0.000026 EAAA D P, Prp	Ex situ	0.002183 Nat-EAAA R-W G, T, Ur	Ex situ
226	0.0038	0	0	Bal, Sol, TS	0.000026 Nat-EAAA R-W F, G, T, Ur	Ex situ	0.000153 Lx R-W F, G, P, T	In situ
227	0	0	0	Bal, Sol	0.000026 Nat-EAAA R-W F, G, T, Ur	Ex situ	0.000026 Nat-EAAA R-W G, T, Ur	Ex situ
231	0	0	0	Bal, BEA, Sol	0.000026 Nat-EAAA R-W G, T, Ur	Ex situ	0.000026 Nat-EAAA R-W G, T, Ur	Ex situ
232	0.0261	0	0	Sol	0.000026 Nat-EAAA D P, Prp	Ex situ	0.000153 Lx R-W F, G, P, T	In situ
234	0.0132	0	0	VR	0.000026 Nat-EAAA R-W G	Ex situ	0.000026 Nat-EAAA R-W G, T, Ur	Ex situ
235	0	0	0	Bal	0.000026 Nat-EAAA R-W T	Ex situ	0.000026 Nat-EAAA R-W G, T, Ur	Ex situ
236	0	0	0	Sol	0.000026 AC D P, Prp	Ex situ	0.000026 Nat-EAAA R-W G, T, Ur	Ex situ
238	0	0	0	BEA, Iz, Sol	0.000026 Lx W G, P, Ti	Ex situ, in situ	0.000257 Lx W F, G	In situ
239	0	0	0	CaCe	0.000026 Lx W		in situ	0.000026 Lx W G, P, Ti
240	0.000026	-0.9895	0	Me	0.000026 Lx W Ti		in situ	0.000026 Lx W G, P, Ti
241	0.000026	-1.0578	0	BEA	0.000026 Lx W G		in situ	0.000026 Lx W G, P, Ti
242	0.000026	0.0093	0.7779	CaCe, Me, Sol	0.000026 Lx W		in situ	0.000026 Lx W G, P, Ti
243	0.000026	-0.6966	0.7305	BEA	0.000026 Lx W G		in situ	0.000026 Lx W G, P, Ti
244	0.000026	-1.1767	0	BEA, Sol	0.000026 Lx W G		in situ	0.000026 Lx W G, P, Ti
245	1.116	0	0	BEA, Pal, Sol	0.000026 Lx W		in situ	0.000026 Lx W G, P, Ti
246	0	0	0	Palm, Sol	0.000026 Lx W		in situ	0.000026 Lx W G, T
247	1.7881	0	0	BEA, BEM, Pal, Sol	0.000026 Lx W		in situ	0.000026 Lx W G, P, Ti
248	0	0	0	BEA, Sol	0.000026 Lx W		in situ	0.000026 Lx W G, P, Ti
249	0	0	0	BEA, Pal	0.000026 Lx W		in situ	0.000026 Lx W G, P, Ti
250	0.000026	0	0	BEA	0.000026 Lx W G		in situ	0.000026 Lx W G, T
251	0	0	0.0071	BEA, BG, Palm, Sol	0.000026 Lx W		in situ	0.000026 Lx W G, T
252	0	0	0	BEA, BN, Sol	0.000026 Lx W		in situ	0.000026 Lx W G, T
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = \text{Sutrop relative prominence index}^2$ and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

#	Species	Common Names	Uses	% Families	P ROM	BIC	Dist	EIVI	Origin Region	Status	Management Practices	Site
253	0	0	0	0	0	Bic	0		BEA	0	G, P, Prp, Ti	ex situ, in situ
254	0	0	0	0	0	Bic	0		Iz	0	G, P, Prp, Ti	ex situ, in situ
255	0.0278	2.8995	0.036	1.9672	Iz, Me, SB	0	Bic	0		G, P, Prp, Ti	ex situ, in situ	
256	0	-1.1371	0.036	-1.4632	Me	0.000149	Bic	0	F, G	in situ		
257	0	0	0	0	Iz	0	Bic	0		G, P, Prp, Ti	ex situ, in situ	
258	0	0	0	0	CaCe	0	Bic	0		in situ		
259	0	-1.0042	0.036	-1.2693	Me	0	Bic	0		G, P, Prp, Ti	in situ	
260	0	0	0	0	CaCe	0	Bic	0		F, G, Prp, Ti	in situ	
261	0	0	0	0	CaCe	0	Bic	0		F, G, Prp, Ti	in situ	
262	0	0	0	0	Sol	0.000026	Mex	0	P, Prp	ex situ		
263	0	0	0	0	CaCe, Sol	0	Bic	0		ex situ, in situ		
264	0	0	0	0	Me, Palm, Sol	0.000433	Bic	0	ex situ, in situ			
265	0.0018	0	0	0	TS	0	TCV	0	P, Prp	ex situ		
266	0.0033	1.0957	0	0	Paz, Sol	0.000484	Bic	0	ex situ, in situ			
267	0.0033	1.4159	0	0	Paz, Sol, TS	0.001008	Bic	0	ex situ, in situ			
268	0	0	0	0	Sol	0.000153	Mex	0	P, Prp	ex situ		
269	0	0	0	0	CaCe	0	Bic	0		F, G, Prp, Ti	in situ	
270	0	0	0	0	0.4819	0.0004228	Bic	0	P, Ti	ex situ, in situ		
271	0	0	0	0	0.719	0.0005848	Bic	0	P, Ti	ex situ, in situ		
272	0	0	0	0	CaMy	0	Bic	0		F, G, T, Prp, Ti	ex situ	
273	0	0	0	0	NE, Sol	0.000026	Bic	0	ex situ, in situ			
274	0	0	0	0	AA, Sol	0.000256	TCV	0	P, Prp, Ti	ex situ		
275	0	0	0	0	BEA,TS	0.000281	Mex	0	P, Prp	ex situ		
276	0	0	0	0	Sol	0.00281	Mex	0	P, Prp	ex situ		
277	0	0	0	0	BEA, BEC, BN, Iz, Me, Palm, Paz, TS	0.014066	Bic	0	F, G, T, Ti	in situ		
278	0	0	0	0	Sol, TS	0.000179	Bic	0	P, Prp, Ti	ex situ, in situ		
279	0	0	0	0	Sol	0	TCV	0	F, G, Prp, Ti	ex situ, in situ		
280	0	2.0015	0	0	Palm, Sol	0.000026	Bic	0	ex situ, in situ			
281	0	0	0	0	Palm, TS	0	Bic	0		F, P, T, Ti	in situ	
282	0	0	0	0	SB	0	Bic	0		F, P, T, Ti	in situ	
283	0	0	0	0	CaMy	0	Bic	0		W, T, Ti	in situ	
Table 5

Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = \text{Sutrop relative prominence index}^2$ and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

ID	Uses	Percent of Families	Common Names	Prominence	Biocultural Importance	Distribution	Management Practices	Management Site	Status
284	0	0	CaMy	0	bxc	W			
285	0	0	BEA	0	bxc	W			
286	0	0	BEA, Me, Pal	0	bxc	W		F	in situ
763	0	0.2066	Me, Sol	0.000179	bxc	W		P, T	in situ
287	0	0	Sol	0.000153	TCV	W		P, Prp	ex situ
288	0	0	CaCe	0	bxc	W			
213	0	0	Sol	0.000026	EAAA	W		P, Prp	ex situ
767	0	0	VR	0.000026	bxc	W		F	in situ
289	0.0053	0	Sol	0.000051	Mex	D		P, Prp	ex situ
290	0	0.0147	Sol	0	EAAA	D		P, Prp	ex situ
291	0.0095	0	Sol	0.000153	EAAA	W		P, Ti	ex situ
292	0	0	Me	0	bxc	W			
293	0	0	CaCe	0	bxc	W			
294	0.0222	-0.788	Sol	0.000026	bxc	R-W	F, G, T		in situ
295	0.0081	0	Bal, Sol	0.000128	Nat-EAAA	R-W	F, G, T, Ur		ex situ
296	0.0237	0.7706	Bal, Sol	0.000179	bxc	R-W	E, P, Prp, T		in situ
297	0.0053	0	Sol	0	EAAA	D		P, Prp	ex situ
298	0	0	BEA	0	bxc	W			
299	0	0	BEA, Pal	0.005276	bxc	R-W, W	F		in situ
300	0	0	Sol	0	EAAA	W		P, Prp	ex situ
301	0	0	BG, Iz	0	bxc	W			
302	0	0	Sol	0.000026	TCV	W		P, Prp	ex situ
303	0	0	Me	0	bxc	W		G	in situ
304	0	0	BEA, Me	0.000920	bxc	W		F, G	in situ
84	0	0	BEA	0	bxc	W			
85	0	0	Me	0.004331	bxc	W			
86	0	0	Me	0	bxc	W		F	in situ
87	0	0	BEA, Bec, BG, BN, Iz, Me, Pal, Palm, Sol, TS	0.009661	bxc	R-W, W	F, G, T, Ur		in situ
88	0	0	BEA, Pal, Sol	0.004801	bxc	R-W, W	F, P, T, Ti		ex situ, in situ
89	0	0	BEA, BG, BN, Iz, Me, Palm	0.011943	bxc	R-W, W	F		in situ
90	0	0	Me, Sol	0	bxc	W		F, G	in situ
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

#				Species, Spanish common names	Cognitive Prominence	Biocultural Importance	Management Site		
91	0	0	0	BEA, BN, Me	0.003029	W	F	in situ	
92	0	0	0	Pal, Sol	0	bc	W, G, T	in situ	
93	0	0	0	BEA, BN	0	bc	W, F	in situ	
94	0	0	0	BEA, BN, Me, Paz	0.006536	bc	R-W, W, G	in situ	
97	0	0	0	BEA, BEC, BN, Iz	0.002943	bc	R-W, W, F	in situ	
95	0	0	0	Sol	0.000026	TCV	W, P, Prp	ex situ	
214	0	0	0	Sol, TS	0.008509	bc	W	in situ	
98	0	0	0	BEA	0	bc	R-W, W, G	in situ	
99	0	0	0	0.0082	-0.2179	bc	R-W, W, F, G, T	in situ	
100	0	0	0	VR	0	bc	W, F	in situ	
101	0	0	0	BG, Pal, Sol, TS	0.001353	bc	R-W, W, F, G, T, Ur	in situ	
102	0	0	0	BEA, BEC, BG, Iz, Pal	0.016081	bc	W, F	in situ	
103	0	0	0	BEA, BN, Iz, Me, Pal, Palm, Sol, TS	0.015409	bc	R-W, W, F, G, T	in situ	
104	0	0	0	Paz	0	bc	R-W, W, F	in situ	
105	0	0	0	Sol	0.000077	EAAAA	D, E, P, Prp, T, Ti	ex situ	
106	0	0	0	BEA, Iz, Me	0	bc	W, F	in situ	
107	0	0	0	Palm	0	bc	W, G, P	in situ	
109	0	0	0.1021	Sol	0.000230	EAAAA	D, E, P, Prp, Ti	ex situ	
110	0	-1.1696	0	BG, Pal	0	bc	W, F, G	in situ	
111	0	0	0	BEA, BEM	0	bc	W, F	in situ	
112	0	0	0	BEA, BEC, BN, Me, Palm, Paz	0.042091	bc	R-W, W, F	in situ	
113	0	0	0.0093	Sol	0.000102	Nat-Mex	W, E, P, Prp, T	ex situ	
114	0	1.1027	0	BEA, BEM, Pal, Sol	0.000551	bc	W, G, P, Prp, Ti	ex situ, in situ	
115	0	1.1017	0	BEA, BEM, BG, Me, Pal, Sol	0	bc	W, G, P, Prp, Ti	ex situ, in situ	
116	0	0	0	Sol	0	TCV	D, P, Prp	ex situ	
117	0	0	0	BEA	0.006577	bc	W	in situ	
118	0	0	0	Iz, Pal, Sol	0	bc	R-W	F	in situ
119	0	0	0	BEA	0	bc	W	in situ	
120	0	0	0	BEA	0	bc	W, F	in situ	
121	0	0	0	Bal	0	bc	W, T	in situ	
122	0	0	0	Bal, Sol	0	bc	R-W, T	in situ	
Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = \text{Sutrop relative prominence index}^2$ and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)									
---	---	---	---	---	---	---	---	---	---
123	0	0	BEA, Palm	0	lxc	W	F	in situ	
108	0	0.0023	0	Sol	0.000128	EAAA	D	E, P, Prp, T	ex situ
124	0	0	Iz	0	lxc	R-W, W			
125	0	0	Paz	0	lxc	R-W, W	G	in situ	
126	0	0	Me	0	lxc	W			
127	0	0	BEA, BN, Pal, Palm, Paz, Sol	0.002068	lxc	W	G, P, Prp	ex situ, in situ	
128	0	0	Bal, BEA, BN, Iz, Me, Pal, Palm, Sol, TS	0.016987	lxc	R-W, W	F, G, T, Ur	in situ	
129	0	0	BEA, Palm	0	lxc	W	G	in situ	
130	0	0	Sol	0.000026	Mex	D	P, Prp	ex situ	
132	0.0175	0	Sol	0.000026	EAAA	D	P, Prp	ex situ	
131	0	0	Bal, Sol	0	Nat-EAAA	R-W	F	ex situ	
133	0	0.0417	0	Pal, Sol	0.000102	EAAA	D	P, Prp	ex situ
134	0	0	Sol	0.000051	EAAA	D, R-W	E, P, Prp, T, Ti	ex situ	
135	0	0	Iz	0	lxc	W	F	in situ	
136	0	0	BEA, Pal	0	lxc	W	T, Ur	in situ	
137	0	0	Iz	0	lxc	W			
138	0	0	Iz, Sol	0.000728	lxc	R-W, W	G	in situ	
139	0	0	Iz	0.001532	lxc	W	F	in situ	
150	0	0	-1.4144	0	VR	0	lxc	W	G
140	0	0	Sol	0.000026	lxc	R-W	F, G, T, Ur	in situ	
141	0	0	0	-1.7316	CaCe, SB	0	lxc	W	G
142	0	0	Iz	0	lxc	W			
143	0	0	BEA, BEC, BN, Me, Palm, Paz, TS	0.017574	lxc	W	F, T, Ur	in situ	
144	0	0	Me	0.001615	lxc	W	F	in situ	
145	0	0	Iz	0	lxc	W	F, G	in situ	
146	0	0	Iz	0	lxc	W			
147	0	0	Bal, BG, Iz, Paz	0.002255	lxc	W	G	in situ	
148	0	0	BEA	0	lxc	W	F, G	in situ	
151	0.0784	2.8958	0	BEA, BN, Me, Palm, Paz, Sol, TS	0.011119	lxc	R-W, W	G, P, Prp, T, Ti	ex situ, in situ
153	0	0	Sol	0	TCV	W	P, Ti	ex situ	
152	0.1613	3.3603	0	Me, Sol	0.000625	lxc	W	E, G, P, Prp, T, Ti	ex situ, in situ
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = \text{Sutrop relative prominence index}^2$ and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

				Species, common names	EIVI	Distribution	Ecological status	Management practices	Site	Ex situ, in situ
154	0	0	0	BEA, BEC	0.002022	Ixc	W			
155	0	0	0	BEA, Iz	0.001101	Ixc	W	G, P, Ti		ex situ, in situ
156	0	0	0	BEA	0	Ixc	W			
157	0	0	0	BEA	0	Ixc	W			
158	0	0	0	Me, Palm, Sol, TS	0.003088	Ixc	R-W, W	F, G, T, Ur		in situ
149	0	0	0	Me, Sol	0.000051	Ixc	W	G, P, Ti		ex situ, in situ
159	0	0	0	Palm, Sol, TS	0.015309	Ixc	W	F, G, T, Ur		in situ
160	0	0	0	BEA, BN	0	Ixc	W	F		in situ
161	0	0	0	BEA	0	Ixc	W	F		in situ
162	0	0	0	Sol	0.000102	Nat-EAAA	R-W	G, T, Ur		ex situ
163	0	-1.1394	0	Iz, Pal, Palm	0	Ixc	W	G, T		in situ
164	0	-1.1086	0	BN, Iz, Me, Palm, TS	0.005100	Ixc	R-W, W	F, T, Ur		in situ
165	0	0	0	Paz	0.000463	Ixc	W			
166	0	0	0	BEA, BN	0.002541	Ixc	W			
167	0	0	0	BN, Pal, Sol, TS	0	Ixc	W	G		in situ
168	0	0	0	BEA, Pal	0	Ixc	W	G		in situ
169	0	0	0	Me	0	Ixc	W	G		in situ
170	0	0	0	Pal	0	Ixc	W	F, G		in situ
171	0	0	0	Sol	0.000205	AC	R-W, W	E, P, Prp, T, Ti		ex situ
172	0	0	0	Sol, TS	0.003298	TCV	D	E, P, Prp, T, Ti		ex situ
173	0	0	0	BEA, Paz	0.000128	TCV	D	E, P, Prp, T, Ti		ex situ
174	0	0	0	Sol	0.000230	EAAA	W	E, P, Prp, T		in situ
175	0	0	0	Sol	0.000077	Nat-EAAA	R-W	G, T, Ur		ex situ
176	0	0	0	Sol	0.000281	TCV	W	E, F, P, Prp		ex situ
177	0	0	0	BEA, Iz, Me, Sol, TS	0.001488	Ixc	R-W, W	F, G, T, Ur		in situ
178	0	0	0	BN	0	Ixc	W	G		in situ
179	0	0	0	BEA	0	Ixc	W	F, G		in situ
180	0	0	0	Iz	0	Ixc	W			
181	0	0	0	Bal	0	Ixc	R-W, W	F		in situ
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

182	0	-0.4176	0	BEA, BEC, BG, Iz, Me, Pal, Sol, TS	0	bc	R-W, W	F, G, T, Ur	in situ
183	0	0	0	BG, Iz, Me, Pal, Palm, TS	0	bc	R-W, W	F, G, T, Ur	in situ
184	0	0	0	Iz	0	bc	R-W, W	F	in situ
185	0	0	0	Iz, SB	0	bc	W	F	in situ
186	0	0	0	Sol	0.000026	Mex	D	P, Prp	ex situ
187	0	0	-0.6963	BEA, BN, Iz, Me, Palm, TS	0.009492	bc	R-W, W	F, G, T, Ur	in situ
188	0	0	0	BEA, BEM	0	bc	W		
191	0	0	0	Me	0	bc	W		
192	0	0	0	BEM	0	bc	W		
193	0	0	0	BG	0	bc	W		
194	0	0	-1.6375	SB	0	bc	W	G	in situ
195	0	0	0	BEA	0	bc	W	F	in situ
196	0	0	0	BCe, VR	0	bc	W		
197	0	0	0	CaCe	0	bc	W	G	in situ
198	0	0	0	VR	0	bc	W		
199	0	0	0	CaCe	0	bc	W		
200	0	0	0	SB	0	bc	W		
201	0	0	0	BEA	0	bc	W	F	in situ
202	0	0	0	SB	0	bc	W		
203	0	0	0	Paz	0	bc	W		
204	0	0	0	CaCe	0	bc	W		
205	0	0	0	CaCe	0	bc	W		
206	0	0	0	CaCe	0	bc	W		
207	0	0	0	SB	0	bc	W		
208	0	0	0	Me	0	bc	W		
209	0	0	0	Pal, Sol, VR	0.0000026	bc	W	G, T	in situ
210	0	0	0	BEA	0	bc	W	G	in situ
211	0	0	0	CaCe	0	bc	W	G	in situ
305	0	0	0	BEA, BN, Sol, TS	0.000758	bc	R-W	Ur	in situ
306	0	0	0	Sol	0	bc	R-W	Ur	in situ
307	0	0	0	BEA, BEC, BN, Me, Palm	0.018603	bc	W	G	in situ
Table 5: Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); species origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Species Code	Prominence Value	Percentage of Families	Use Type	Number of Uses	Biocultural Importance	Management Site
309	0.0042	0	CaMy, Me	0	0	W
310	0	0	BEA, Iz, Paz	0	0	R-W, W
311	0	0	CaCe	0	0	W
308	0.0042	0	Me	0	0	W
312	0	0	BEA, Me, Paz, Sol, TS	0.000026	0	R-W, G, T, Ur
313	0	0	CaCe	0	0	W
314	0	0	Sol	0.000051	TCV	W
315	0	0	Sol	0.000026	EAAA	W
316	0	0	Sol	0.000051	EAAA	W
317	0	0	MR, Sol	0.000077	W	G, P, Ti
318	0	0	BEA, Me, Iz, Palm, Sol	0.000823	0	W
319	0	0	Sol	0.000026	TCV	W
320	0	0	NE, Sol	0.000026	W	P, Ti
321	0	0	Sol, VN	0	0	W
322	0	0	Sol	0.000026	EAAA	W
323	0	0	Sol	0.0000179	EAAA	W
324	0	0	Sol	0.000077	TCV	W
325	0	0.0069	NE, Sol	0.000128	bxc	W
326	0	0	MR	0	0	W
327	0	0	BEA, BN, Me, Palm, Sol	0.000026	0	W
328	0	0	Me	0	0	W
329	0	0	Sol	0.000026	Mex	W
330	0	0	Sol	0.000051	Mex	W
331	0	0	MR, Me	0	0	W
332	0	0	Me, MR, Sol	0.000026	0	W
333	0	0	Sol	0	EAAA	D
334	0	0	Sol	0.000256	Mex	D
335	0.0411	0	Bal, Pal, Sol	0.000026	0	W
336	0	0	Sol, TS	0.000256	TCV	D
337	0	0	Me, TS	0	0	R-W, F, G, T, Ur
338	0	0	Sol, TS	0	0	W

Rangel-Landa et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:30
No.	Species	EIVI Value	Management Category	Management Site	Distribution	Ecological Status	Ecological Index Value	Management Practices	Management Site With Respect to Species Wild Populations
339	Sol	0.0128	ex situ						in situ
340	Sol, TS	0.003422	R-W, F, G, T, Ur						
341	Sol	0.000102	W, P, Ti						ex situ
342	Sol	0.000026	TCV, W, P, Ti						ex situ
343	BEA, BEC, BG, BN, Iz, Me, Pal, Palm, Sol, TS	0.085151	W, F, G, P, T, Ti						in situ
344	BG, Pal, Palm, Sol	0.018054	W, G, P, Prp, T, Ti						ex situ, in situ
345	Sol	0.000026	AC, W, P, Ti						ex situ
346	Me, Palm, Paz, TS	0.009787	R-W, W, F, T, Ur						in situ
347	Paz	0.000846	W, F						in situ
348	Iz	0	bc, W						
349	VR	0	bc, W						in situ
350	VR	0	bc, W						in situ
351	VR	0	bc, W						
352	VR	0	bc, W						in situ
353	VR	0	bc, W						in situ
354	Me, Palm, Paz, TS	0.015465	W, F, T, Ur						in situ
355	Paz	0	bc, W						in situ
356	VR	0	bc, W						in situ
357	VR	0	bc, W						
358	BEA, BEC, BEM, BN, Me, TS	0.008534	W, G, T						in situ
359	BEA, BEC, BEM, BN, Me, Palm, TS	0.010056	W, G, T						in situ
360	BEA, Iz, Pal	0.001362	W, T, Ur						in situ
361	CaCe	0	bc, W						
362	Iz, Palm	0.002686	bc, W						in situ
363	Iz	0	bc, W						
364	VR	0	bc, W						
365	CaCe	0	bc, W						
366	CaCe	0	bc, W						
367	CaCe	0	bc, W						
368	Sol	0.000051	TCV, W, P, Prp						ex situ
369	BEA, BEC, BN, Iz, Me, Palm, Paz, TS	0.019153	W, F, T, Ur						in situ
Table 5: Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIV); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

#	Identification	Family	Scientific Name	Sutrop	Biocultural	Management Practice	Management Site
370	0	0	BEA, Sol	0.000026	bxG	W, T, Ur	in situ
371	0	0	BEA, BEC, BG, Iz, Palm, Sol, TS	0.010247	bxG	W, T, Ur	in situ
372	0	0	Sol	0	EAAA	W, P, Ti	ex situ
373	0	-1.2217	Palm	0	bxG	W, G	in situ
374	0	0.0444	Sol	0.000205	Mex	D, P, Prp	ex situ
375	0	0	CaCe, Me	0	bxG	W	
376	0	0	VR	0	bxG	W	
377	0	0	BEA, Iz	0.002724	bxG	W	
378	0	0	BN, Me	0.001886	bxG	W	
379	0	0	CaCe	0	bxG	W, F, G	in situ
380	0	0	Bal, Sol	0.000205	Nat-EAAA	R-W, E, G, P, T, Ur	ex situ
381	0	0	BEA, BN	0.000305	bxG	F	in situ
382	0	0	BEA, BEC	0.001155	bxG	W	
383	0	0	Iz	0	bxG	W	
384	0	0	2.1047 0.2789 2.3609	BEM	0	bxG, W, F, G, P, Ti, ex situ, in situ	
385	0	0	0.4695 0.1446 0.4208	BEA, BEC, BN, TS	0.018170	bxG, W, F, G, T	in situ
386	0	0	0.2952 0.2789 0.2097	BEM	0	bxG, W, F, G, P	in situ
387	0	0	0.0099 -0.3662	0.0099 0.0099	bxG, W, F, G, P	in situ	
388	0	0	0.0155 -0.6322	0.0155 0.0155	bxG, W, F, G	in situ	
389	0	0	3.5799 0.7699 3.806	BEA, BEC, Pal, Sol	0.003111	bxG, W, F, G, P, Prp, T	ex situ, in situ
390	0	0	5.4336 0.7699 5.5501	BEA, Me, Pal, TS	0.048434	bxG, W, F, G, P, Prp, T	in situ
391	0	0	0.0928 0.1446 0.1359	BEM	0	bxG, W, F, G	in situ
392	0	0	-0.0567 0.2136 0.0509	BEA, BEC, TS	0.024545	bxG, W, F, G, P, T	in situ
393	0	0	0.9619 0.2222 0.8145	BEM	0	bxG, W, F, G	in situ
394	0	0	0	0	bxG	T	in situ
395	0	0	0	0	bxG	T	in situ
396	0	0	0	0	bxG	T	in situ
397	0	0	0	0	bxG	T	in situ
398	0	0.0386	0	0	bxG	T	in situ
399	0	0	0	0	bxG	T	in situ
400	0	0	0	0	bxG	T	in situ
401	0	0	0	0	bxG	T	in situ
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S =$ Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

No.	Value	% Use	Common Name	Species, Region	Ecological Status	Management Practices	Site	Status
405	0.1512	0	Sol	0.000179	EAAA D	P, Prp	ex situ	
406	0	0	Pal, Sol	0.000128	EAAA D	P, Prp	ex situ	
407	0	0	Sol	0.000126	EAAA D	P, Prp	ex situ	
408	0	0	BEA, Iz	0.004148	Ixc W	F	in situ	
409	0	0	Me	0.003560	Ixc W	G, P, Ti	ex situ, in situ	
410	0	0	Iz	0.001830	Ixc W	G	in situ	
669	0	0	BEA, BEC, BN, Me, Palm, TS	0.008338	Ixc W	G, T	in situ	
411	0	0	Sol	0.000026	EAAA D	P, Prp	ex situ	
412	0	0	Me, Palm	0.002292	Ixc W	F, G	in situ	
413	0.9569	0	BEA, Me, Pal, Sol, VR	0.003560	Ixc W	G, P, Ti	ex situ, in situ	
414	0	0	BEA	0.001830	Ixc W	G	in situ	
415	0	0	Sol	0.000026	Nat-EAAA R-W	E, P, T, Ur	ex situ	
416	0	0	Sol	0.000026	Nat-EAAA R-W	G, T, Ur	ex situ	
417	0	0	Sol	0.001830	Nat-EAAA R-W	G, T, Ur	ex situ	
418	0.0263	0	Bal, Pal, Sol	0.003560	Ixc W	G	in situ	
419	0	0	Sol	0.000026	Ixc W	G	in situ	
420	0.0183	0	Sol	0.000026	Ixc W	G	in situ	
421	0	0	Sol	0.000026	Ixc W	G	in situ	
422	0	0	Sol	0.000026	Ixc W	G	in situ	
423	0.0159	0	BEA, Iz, Me, Palm	0.0004494	Ixc W	F	in situ	
424	0	0	Me	0.000026	Ixc W	F	in situ	
425	0	0	Me	0.000026	Ixc W	F	in situ	
426	0	0	Palm	0.000026	Ixc W	F	in situ	
427	0	0	BEA	0.000026	Ixc W	F	in situ	
428	0	0	Me, TS	0.000026	Ixc W	F	in situ	
429	0.0159	0	BEA, BEC, BN, Iz	0.006393	Ixc W	G	in situ	
430	0	0	BEA, BEM	0.000179	Ixc W	G	in situ	
431	0	0	Iz, Me	0.000179	Ixc W	G	in situ	
432	0	0	Bal, Sol, TS	0.001376	Ixc W	G	in situ	
433	0	0	BG, BN	0.001376	Ixc W	G	in situ	
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

435	0	0	0	BEA	0	bxc	W			
436	0	0	0	Paz	0	bxc	W			
437	0	0	0	BEA	0	bxc	W	G	in situ	
438	0	0	0	Me	0	bxc	W	F	in situ	
439	0	0	0	VR	0	bxc	W			
440	0.0263	-0.2314	0	0	BEA	0	bxc	W	G, Prp	in situ
441	0.0068	0	0	Pal, Sol, TS	0.000281	TCV	D	P, Prp, T, Ti	ex situ	
442	0	0	0	CaCe	0	bxc	W	F	in situ	
443	0	0	0.0151	-1.4002	NE, TS	0.000647	bxc	W	F, G, T	in situ
444	0	0	0.0151	-1.164	BEA, BEC, Iz, SB, TS	0.014436	bxc	W	F, G, T	in situ
445	0	0	0.0151	-1.2108	Bal, Sol	0	bxc	W	F, G, T	in situ
446	0	0	0	BEA	0	bxc	W	F	in situ	
447	0	0	0	BEA, Pal	0	bxc	W	T	in situ	
448	0	-1.3613	0	0	BEA, BEC, BG, BN, Me	0.005148	bxc	W	F	in situ
449	0	0	0	Me	0	bxc	W			
450	0	0	0	CaMy	0	bxc	W			
451	0	0	0	BEA, Iz	0	bxc	W	F	in situ	
452	0	0	0	BN	0	bxc	W	F	in situ	
453	0	0	0	Paz	0	bxc	W	F	in situ	
454	0	0	0	BEA, BEC, Me	0.010922	bxc	W	F	in situ	
455	0	0	0	BN, Palm	0	bxc	W	F, G	in situ	
456	0	0	0	VR	0	bxc	W			
457	0	0	0	Me	0	bxc	W			
458	0	0	0	BG, Iz, Me, TS	0	bxc	W	F, G, T, Ur	in situ	
459	0	0	0	VR	0	bxc	W			
460	0	0	0	BN, Iz, Palm	0.002394	bxc	W	F, G	in situ	
461	0	0	0	Iz	0	bxc	W	F	in situ	
462	0	-1.382	0	0	Me	0.000310	bxc	W	G	in situ
463	0	0	0	BN, VR	0	bxc	W			
464	0	-1.1696	0	0	Iz	0	bxc	W	F, G	in situ
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Code	X	Y	Z	Common Names	EIVI	Region	Type	Management Practices	Management Site	
466	0	0	0	BEA, BG, BN, Me, Palm, Paz	0.014139	Ixc	W	F, T, Ur	in situ	
467	0	0	0	BEA, Iz, Me	0.000993	Ixc	W	F	in situ	
468	0	0	0	Me	0	Ixc	R-W, W	F, G	in situ	
469	0.0015	0	0	Sol	0.000026	Mex	W	F, P, Prp	ex situ	
470	0	0	0.0155	-0.3836	BG, Iz, Me, Palm, Sol	0.001263	Ixc	R-W, W	F, G, T	in situ
471	0	0	0	Iz, Me	0.000616	Ixc	R-W, W	F	in situ	
472	0	0	0	Iz	0	Ixc	R-W, W			
473	0	0	0	BEA, BEC, BG, BN, Me, Palm	0.009509	Ixc	R-W, W	F	in situ	
474	0.0066	0	0	Sol	0.000026	EAAA	D	P, T	ex situ	
475	0.0716	0	0.0134	AA, Sol	0.000409	TCV	D	G, P, Prp, T, Ti	ex situ	
476	0	0	0	Sol	0.000205	TCV	D	P, Prp, T, Ti	ex situ	
477	0	-1.3842	0	BEA	0	Ixc	W	G	in situ	
478	0	0	0	BG, Palm, Paz	0.000841	Ixc	W	F	in situ	
479	0	0	0	BEA, BN, Palm, Paz	0.000846	Ixc	W	F	in situ	
480	0	0	0	Sol	0	Nat-EAAA	R-W	F	ex situ	
481	0	0	0	Sol	0	EAAA	W	F	ex situ	
482	0	0	0	Sol	0	Nat-EAAA	W	F	ex situ	
483	0	0	0	Palm, TS	0	Ixc	W	T	in situ	
484	0	0	0	Sol	0	Ixc	W	G, T	in situ	
485	0	0	0	Palm, TS	0	Ixc	W	T, Ur	in situ	
486	0	0	0	CaCe	0	Ixc	W			
487	0	0	0	Sol	0.000051	TCV	D	P, Prp	ex situ	
488	0	0	0	Sol, TS	0.000230	TCV	D	P, Prp, T	ex situ	
489	0	0	0	BEA	0	Ixc	W	F	in situ	
490	0	0	0	Palm, TS	0	Ixc	W	T, Ur	in situ	
491	0	0	0	BEA	0	Ixc	W	G	in situ	
492	0	-1.1696	0	Sol	0	EAAA	D	P, T	ex situ	
493	0	0	0	Sol	0	EAAA	D	P, T	ex situ	
494	0	0	0	SB	0	Ixc	W	G	in situ	
495	0.0219	0	0	Sol	0	EAAA	D	P, T	ex situ	
496	0.0016	-0.6126	0	Pal, SB, Sol	0.000051	Ixc	W	F, G, T	in situ	
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

No.	S	P	$EIVI$	Species, Common Names	Ecological Status	Management Practices	Management Site
497	0	0	0	BEA, Iz	W	F	in situ
498	0	0	0	BN, Palm	W	F	in situ
499	0	0	-1.1062	Iz	W	F, G	in situ
500	0	0	0	BEA, Iz, Sol	R-W, W	F, T	in situ
501	0	0	0	BEA, Me	W		
502	0	0	0	BEA	Nat-Uk	W, F, G	ex situ
503	0.0243	0	0	Sol, TS	EAAA	D	ex situ
504	0	0	0	Paz	W		
505	0.0026	0	-1.0672	BEA, BEM, Iz	W	F, G	in situ
506	0	0	0	SB	W	F	in situ
507	0	0	0	CaCe	W		
508	0	0	0	Me	W		
509	0	0	0	Me	W		
510	0	0	0	BEA	W	F	in situ
511	0	0	0	Sol	W	Ti	ex situ, in situ
512	0	0	0	CaCe	W		
513	0	0	0	CaCe	W		
514	0	0	0	CaCe	W		
515	0	0	0	CaMy	W		
516	0	0	0	SB	W	F, G	in situ
517	0	0	0	BG, Me, Palm	W		
518	0	0	0	Me	W		
519	0	0	0	Palm, TS	W	F, G, T, Ur	in situ
520	0	0	0	Bal, BEA, BG	W	G, T, Ur	in situ
521	0	0	0	CaMy, Sol, TS	W	Ur	in situ
522	0	0	-0.8814	Me, Sol, Palm, TS	W	F, G, T, Ur	in situ
523	0	0	-1.4276	BN, Palm, Sol	W	G	in situ
524	0	0	-1.563	BEA, BN, Paz	W	G	in situ
525	0.0129	0	0	Sol	EAAA	E, P, Prp, T, Ti	ex situ
526	0	0	-1.0654	Sol	W	G, T	in situ
527	0	0	0	CaCe	W		
Species	Spanish common names	Number of uses	Percentage of families that consume it	Cognitive prominence values expressed as S = Sutrop relative prominence index²	Biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations	(Continued)	
---------	----------------------	----------------	---	--	--	------------------	
527	0	0	SB	0 xic W			
528	0	0	-1.3063	BEA, BEC, Iz, Me, Palm	0.002876 xic W F, G	in situ	
529	0	0	Iz	0 xic W			
530	0	0	CaCe	0 xic W			
531	0	0	Me, Palm, TS	0.001293 xic W F, G, T			
532	0	0	Sol	0.000128 EAAA D P, Prp			
533	0.0117	-0.4905	Bal, BEA, Pal, Sol, TS	0.0000026 xic R-W F, G, T, Ur			
534	0	0	Sol	0 TCV D P, Prp			
535	0	0	Me	0 xic W			
536	0	0	Sol	0 EAAA W P, Ti			
537	0	0	Bal, Sol, TS	0.000025 Nat-EAAA R-W F, G, T, Ur			
538	0	0	Sol	0.000051 EAAA W P, Prp, Ti			
539	0	0	Bal, Sol	0 xic W			
540	0.0038	-1.148	Bal, Palm, Sol, TS	0.000026 xic W G, T			
541	0	0	Sol	0.000077 Mex W P, Ti			
542	0	0	Sol	0.000026 EAAA W P, Ti			
543	0	0	BEA, BM, Sol	0 xic W			
544	0	0	Sol	0 EAAA W P, Ti			
545	0.0219		Sol	0.000179 EAAA D P, Prp, Ti			
546	0	-0.8491	Sol	0.000026 xic W G, T			
547	0	0	Sol	0.000077 EAAA W P, Ti			
548	0	0	BG	0.001066 xic W			
549	0.0096	0.3611	AA, Sol	0.000384 xic W P, T			
550	0.0132		Sol	0.000051 EAAA D P, Ti			
551	0	0	Pal	0 EAAA W Ti			
552	0.0263		BG	0 Mex D T			
553	0	0	Bal, BEA, Me, Pal, Palm, Sol, TS	0.000241 xic R-W, W F, G, T, Ur			
554	0	0	Sol	0.000077 AC D P, Prp, Ti			
555	0	0	Bal, BG, Sol	0.000128 xic R-W F, G, T, Ur			
556	0	0	BG, Me, TS	0.001730 xic W F, G, T			

(Continued)
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIV)); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Species, Spanish common names	Number of uses	Percentage of families	Cognitive prominence values	Biocultural importance values	Ecological status	Management site				
BEM, Me	0	0.0137	-1.0373							
BEA	0	0								
Sol	0	0	0.000077							
Bal, Sol	0	0	0.00026							
Bal, Sol, TS	0	0	0.006657							
Bal, BEA, Me, Sol	0	0	0.000025							
Bal, Sol	0	0	0.000025							
CaMy	0	0.05508	0							
Iz	0	0	0							
Me	0	0	0.000077							
BEA, Iz, Palm	0	0	0							
BEA, Sol	0	0	0.000025							
BEA, Pal	0	0	0.000025							
BEA, BEM, Pal, Sol	0	0	0.000051							
BEA, Pal, Sol	0	0	0.000025							
AA, Pal, Sol	0	0	0.000053							
BEA	0	0	0							
BEA, BEM, Pal, Sol	0	0	0.000025							
BEA, Iz, Palm	0	0	0							
BEA, Sol	0	0	0.000025							
BEA, Me, Pal	0	0	0.000025							
BEA, Me, Pal	0	0	0.000025							
NE, Sol	0	0	0.000025							
					Species, Spanish common names	Number of uses	Cognitive prominence values expressed as $S = S_{sutrop}$ relative prominence index2	Biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); species origin region, ecological status, management practices and management site with respect to species wild populations (Continued)		
---	---	---	---	---	---	---	---			
719	0	0	0	Iz	0	lxc	W			
720	0	0	-1.0665	0	BEA, BN, Me, Palm	0.003728	lxc	R-W, W	F, G	in situ
591	0	0	0	BEA, Pal	0	lxc	W	F	in situ	
722	0	0	-1.1735	0	BEA, BEC, BEM, Me	0	lxc	R-W, W	G	in situ
723	0	0	-1.4246	0	Iz, Pal, Palm	0.000396	lxc	R-W, W	G, T	in situ
594	0	0	0	Bal, Sol	0	lxc	R-W	T	in situ	
592	0	0	-0.0837	0	Iz, Me, Sol, TS	0.038091	lxc	W	F, P, T	in situ
593	0.0066	1.1688	0	0	Iz, Sol	0.000026	lxc	W	F, G, P, Prp	ex situ, in situ
595	0	0	-0.7869	0	BEA, BEC, BN, Me	0.026267	lxc	W	F, G	in situ
596	0	0	-0.0909	0	Bal, Pal, Sol, TS	0.001314	lxc	R-W	G, T, Ur	in situ
597	0	0	-0.7604	0	Sol	0	lxc	W	G, P, T	in situ
598	0	0	0	Sol	0	lxc	W	G, T	in situ	
761	0	1.1156	0	0	CaCe, SB, Sol	0	lxc	W	G, P, Ti	ex situ, in situ
721	0	0	0	Iz	0	lxc	W	F	in situ	
599	0	0	0	Iz	0	lxc	R-W	G	in situ	
600	0	0	0	Palm, Sol	0.000205	Mex	W	P, Ti	ex situ	
601	0.00697	1.3422	0	0	BEM	0	lxc	W	G, P, Ti	ex situ, in situ
602	0	0	0	BEA	0	lxc	W	F	in situ	
603	0.0103	0	0	Pal, Sol	0.000102	Mex	W	P, Prp, Ti	ex situ	
717	0	0	0	Sol	0.000051	EAAA	D	P, Prp	ex situ	
718	0.0096	-0.9247	0	0	Paz, VR	0.000458	lxc	W	F, G	in situ
724	0	0	0	Sol	0.000077	lxc	R-W, W	T	in situ	
725	0	0	-1.4068	0	BEA, Palm	0.000385	lxc	R-W, W	G	in situ
726	0	0	0	BEA	0	lxc	R-W, W	F	in situ	
604	0	0	0	BG, VR	0	Nat-EAAA	W			
727	0	0	0	BEA, BG, BN, Me	0.003738	lxc	R-W, W	G	in situ	
728	0	0	0	Sol	0	EAAA	W	P, Prp	ex situ	
729	0	0	0	BEA	0	lxc	W	G	in situ	
605	0	0	0	BG, Pal	0	lxc	R-W	T, Ur	in situ	
606	0	0	0	Bal	0	lxc	W	F, G, T, Ur	in situ	
607	0	0	0	BN, Iz, Me	0.001851	Nat-EAAA	W	F, G	ex situ	
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = \text{Sutrop relative prominence index}^2$ and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

608	0	0	0	BEA	0	EAAA	W	F	in situ
609	0	0	0	BEA, BEC, BN, Me, Palm, Paz, TS	0.059386	EAAA	W	F, T, Ur	in situ
610	0	0	0	BG, Pal, Sol, VR	0.001636	Nat-EAAA	W	F, P, Prp	ex situ
611	0	0	0	Bal, Sol, TS	0	Nat-EAAA	D	F, P, Prp, T, Ur	ex situ
612	0	0	0	Bal, Iz, Sol	0	EAAA	W	F, G, T, Ur	in situ
614	0	0	0	Bal	0	EAAA	W	F, G, T, Ur	in situ
615	0	0	0	Bal	0	EAAA	W	F, G, T, Ur	in situ
613	0	0	0	Paz	0.004938	EAAA	W	F	in situ
616	0	0	0	Sol	0.000051	EAAA	W	P, Prp	ex situ
617	0	0	0	Bal	0	Nat-EAAA	R-W	F	ex situ
618	0	0	0	Paz	0.000709	Nat-EAAA	R-W	F	ex situ
620	0	0	0	Paz, TS	0.005333	EAAA	W	F, G, T, Ur	in situ
621	0	0	0	Bal	0	EAAA	W	F, G, T, Ur	in situ
619	0	0	0	Bal	0	EAAA	W	F, G, T, Ur	in situ
622	0	0	0	Iz	0	EAAA	W	F	in situ
623	0	0	0	Iz	0	EAAA	W	F	in situ
624	0	0	0	BN, Palm, Paz	0.002708	EAAA	W	F	in situ
625	0	0	0	Sol, TS	0.000026	EAAA	D	F, Prp, T	ex situ
626	0	0	0	Me	0	EAAA	W	F	in situ
627	0	0	0	Paz	0.003002	EAAA	W	F	in situ
628	0	0	0	Iz	0.001189	EAAA	W	G	in situ
629	0	0	0	BEA, BG	0.003568	EAAA	W	G	in situ
630	0	0	0	Iz	0	EAAA	W	F	in situ
631	0	0	0	Sol	0.000026	EAAA	D	E, P	ex situ
632	0	0	0	Iz	0	EAAA	W	G	in situ
633	0	0	0	Paz	0	Nat-EAAA	R-W	F	ex situ
634	0	0	0	Sol	0.000026	EAAA	D	F, Prp	ex situ
635	0	0	0	BEA, BG, Me, Paz	0.003708	EAAA	W	F, G	in situ
636	0	0	0	Iz, Palm, Paz	0.002422	EAAA	W	F, G	in situ
637	0.0344	0	0	Sol, TS	0	EAAA	D	F, Prp	ex situ
Table 5: Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = \text{Sutrop relative prominence index}^2$ and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

No.	S	U	C	Sutrop Relative Prominence Index	Mex	Ind	P	Prp	T	W	F	G	Ur	R = W	G-T
639	0.0376	0	0	0.0000230	Mex	D	F, P, Prp, T	ex situ							
640	0	0	0	0.0039567	bxc	W	F, G	in situ							
641	0	0	0	0.0087644	bxc	W	F	in situ							
642	0	0	0	0.020134	bxc	W	F	in situ							
643	0	0	0	0.001316	bxc	W	F	in situ							
644	0	0	0	0.000872	bxc	W	F	in situ							
645	0	0	0	0.011792	bxc	W	F, G, T, Ur	in situ							
646	0	0	0	0.007838	bxc	W	F	in situ							
647	0	0	0	0.0030644	bxc	W	F	ex situ							
648	0	0	0	0.00000051	bxc	W	F	ex situ							
649	0	0	0	0.0030644	bxc	W	F	ex situ							
650	0	0	0	0.0030644	bxc	W	F, G	in situ							
651	0	0	0	0.005929	bxc	W	F, G	in situ							
652	0	0	0	0.000872	bxc	W	F	in situ							
653	0	0	0	0.00000051	bxc	W	F	ex situ							
654	0	0	0	0.00000051	bxc	W	F	ex situ							
655	0	0	0	0.00000051	bxc	W	F	ex situ							
656	0	0	0	0.00000051	bxc	W	F	ex situ							
658	0	0	0	0.00000051	bxc	W	F	ex situ							
659	0	0	0	0.00000051	bxc	W	F	ex situ							
660	0	0	0	0.00000051	bxc	W	F	ex situ							
661	0.00066	0	0	0.002474	Nat-EAAA	R-W	G, T	ex situ							
759	0	0	0	0.002474	Nat-EAAA	R-W	G, T	ex situ							
662	0	0	0	0.00000051	EAAA	W	P, Ti	ex situ							
663	0	0	0	0.00000051	EAAA	W	P, Ti	ex situ							
664	0	0	0	0.0048886	bxc	W	G	in situ							
665	0	0	0	0.0048886	bxc	W	G	in situ							
666	0	0	0	0.0048886	bxc	W	G	in situ							
667	0	0	0	0.0048886	bxc	W	G	in situ							
668	0	0	0	0.0048886	bxc	W	G	in situ							
669	0	0	0	0.0048886	bxc	W	G	in situ							
670	0	0	0	0.0048886	bxc	W	G	in situ							
671	0	0	0	0.0048886	bxc	W	G	in situ							
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index 2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIV); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

#	0	0	0	Me, Paz	0	Ixc	W	
673	0	0	0	Sol	0	EAAA	W	E, P, Prp, ex situ
674	0	0	-1.5677	BEA	0	Ixc	W	G
675	0	0	0	Pal, Sol	0	Ixc	W	G
676	0	0	0	CaCe	0	Ixc	W	G
677	0	0	0	Me	0	Ixc	W	G
678	0	0	0	Paz, TS	0	Ixc	D	G, Prp, T, in situ
679	0	0	0	Sol	0	EAAA	D	E, P, Prp, Ti, ex situ
680	0	0	0	Me, SB	0	Ixc	W	G
681	0	0	0	BEA, Bec, BN, Is, Me, Palm, TS	0.045749	Ixc	W	F, G, T
682	0	0.0147	-1.3761	Sol	0	EAAA	D	P, Ti
683	0	0	0	BEA, Bec, Me, Palm, Paz, TS	0.001181	Ixc	W	G
684	0	0	0	Pal, Sol	0	Ixc	D	G, Prp, T, ex situ
685	0	0	0	Paz, TS	0	TCV	D	G, Prp, T, ex situ
686	0	0.0150		Sol	0	EAAA	D	P, Ti
687	0	0.0095		Sol	0	EAAA	D	Prp, Ti, ex situ
688	0	0	0	Sol	0	EAAA	D	P, Ti
689	0	0	0	Me	0	Ixc	W	
690	0	0.0058	-1.6222	Me	0	Ixc	W	G
691	0	0	0.0018	BEA, Bec, Me, Palm, Paz, TS	0.001181	Ixc	W	F, G, T, Ur
692	0	0	0.0061	CaCe, Me, Sol	0.000291	Ixc	W	G, P, Ti, ex situ, in situ
693	0	0	1.7204	Iz	0	Ixc	W	
694	0	0	0	BEA, Me, Palm	0	Ixc	W	
695	0	0	-1.6375	Me, Palm	0	Ixc	W	G
696	0	0	0	BEA, Bec	0.005571	Ixc	W	
697	0	0	0	BEA, Me, Palm, Palm	0.003340	Ixc	W	G
698	0	0	0	BEA, Pal, VR	0	Ixc	W	G
699	0	0	0	CaCe	0	Ixc	W	
700	0	0	0.0095	Sol	0.000153	TCV	D	E, P, Prp, T, ex situ
701	0	0	0	Sol	0.000307	EAAA	D	E, P, T, Ti, ex situ
702	0	0	0	Sol	0.000026	EAAA	D	P, Ti, ex situ
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = $ Sutrop relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Code	No.	No.	Species	Use Type	Cognitive Prominence	BI Component	Management Practices	Site Type
703	0	0	Sol		0.000051 EAAA D	P, T, Ti	ex situ	
705	0	0	Sol		0.000051 EAAA D	P, T, Ti	ex situ	
702	0	0	Sol		0.000026 EAAA D	P, Ti	ex situ	
706	0	0	Sol		0.007574 bxc W	G, T	in situ	
707	0	0	Sol		0.002300 EAAA W	P, Prp	ex situ	
708	0	0	Iz, SB		0.00678 bxc W			
709	0	0	BEA		0 bxc W	G	in situ	
710	0	0	CaCe		0 bxc W	G	in situ	
394	0	0	Me		0.000118 bxc W			
711	0	0	Pal		0 TCV W	Ti	ex situ	
779	0	0	CaMy, BE, Iz		0 bxc W	Ur	in situ	
780	0	0	Me, Sol		0.000051 bxc W	Ur	in situ	
781	0	0	Iz, Me		0 bxc W	G, Ur	in situ	
712	0	0	BEA, BEC, BN, Iz, Me, Palm, Sol, TS		0.021155 bxc W	G, T	in situ	
713	0	0	SB		0 bxc W			
715	0.0132	0	Sol		0.000051 TCV D	P, Prp, T	ex situ	
716	0	0	Iz		0 bxc W	F	in situ	
714	0	0	AA		0 bxc W			
730	0	0	BEA, Me		0 bxc W	G	in situ	
731	0	0	SB		0 bxc W			
732	0	0	BEA		0 bxc W			
733	0	0.0139	Sol		0.000051 AC D	P, Prp	ex situ	
734	0.0065	4.5368	0	SB, Sol	0.000153 bxc D, W	E, G, P, Prp, T, Ti	ex situ, in situ	
735	0.0020	0	Sol		0.000077 AC D	E, P, Prp, T, Ti	ex situ	
736	0	0	Me		0 bxc W	G	in situ	
737	0	0	BEA, Pal, VR		0 bxc W	F	in situ	
738	0	0	Pal		0 bxc R-W, W	T	in situ	
739	0	-1.0133	0	Palm, Sol	0 bxc R-W, W	G, T	in situ	
740	0.0020	-0.9978	0	BEA, BG, Pal, Palm, Sol	0 bxc R-W, W	G, T	in situ	
741	0	0	0.0069 Bal, Pal, Sol, TS	0.000026 Nat-AC R-W	G, T	ex situ		
742	0	0	Sol		0.000077 Mex D	G, T	ex situ	
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index 2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental; distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

Species	Spanish common names	Number of uses	Percentage of families consuming it	Cognitive prominence values	Biocultural importance values	Distribution on vegetal types	Importance ecological index value (EIVI)	Specie origin region, ecological status, management practices and management site	
Sol, Ts	0.01383	0.9152	0	0	Sol, Ts	0.01383	LxC	D, R-W, E, P, Prp, T, Ti	in situ
Sol	0.000026	0.9152	0	0	Sol	0.000026	LxC	R-W, G, T	in situ
Sol	0.000026	0.9152	0	0	Sol	0.000026	LxC	R-W, W, G, T	in situ
BEA, BEC, BG, Palm, Sol	0.005064	0.9152	0	0	BEA, BEC, BG, Palm, Sol	0.005064	LxC	R-W, W, G, T	in situ
Paz	0	0.9152	0	0	Paz	0	LxC	W, G	in situ
Pal, Sol	0.00205	0.9152	0	0	Pal, Sol	0.00205	TCV	D, E, P, Prp, T, Ti	ex situ
BEA	0	0.9152	0	0	BEA	0	LxC	R-W, G	in situ
Sol, BEA, BEC, Me, Pal, Paz	0	0.9152	0	0	Sol, BEA, BEC, Me, Pal, Paz	0	LxC	R-W, W, G	in situ
CaCe	0	0.9152	0	0	CaCe	0	LxC	R-W	in situ
Sol, TS	0	0.9152	0	0	Sol, TS	0	LxC	D, P, Prp	ex situ
Bal	0	0.9152	0	0	Bal	0	LxC	R-W, T	in situ
CaCe	0	0.9152	0	0	CaCe	0	LxC	W	in situ
BG	0.001995	0.9152	0	0	BG	0.001995	LxC	W, F	in situ
Palm	0	0.9152	0	0	Palm	0	LxC	W	in situ
BEA, Iz, Pal	0.00658	0.9152	0	0	BEA, Iz, Pal	0.00658	LxC	W, G	in situ
Sol	0.000077	0.9152	0	0	Sol	0.000077	Nat-AC	R-W, P, Prp, T	ex situ
VR	0	0.9152	0	0	VR	0	LxC	W	in situ
BEA, Pal, Sol, VR	0.000026	0.9152	0	0	BEA, Pal, Sol, VR	0.000026	LxC	W, G, T	in situ
BEA, Me, Sol	0.000026	0.9152	0	0	BEA, Me, Sol	0.000026	LxC	W, P, Prp	ex situ, in situ
Sol	0	0.9152	0	0	Sol	0	LxC	W, G, T	in situ
SB	0	0.9152	0	0	SB	0	LxC	W	in situ
Palm	0	0.9152	0	0	Palm	0	LxC	W	in situ
Bal, BEA, BN, Sol	0.001928	0.9152	0	0	Bal, BEA, BN, Sol	0.001928	LxC	R-W, G	in situ
BEA, BN, Me, Pal, Palm	0.000747	0.9152	0	0	BEA, BN, Me, Pal, Palm	0.000747	LxC	R-W, F, G, T, Ur	in situ
BEA, BEC, BN, CaCe, Iz, Me, Palm, Sol	0.003620	0.9152	0	0	BEA, BEC, BN, CaCe, Iz, Me, Palm, Sol	0.003620	LxC	R-W, F, G, P, Ti	ex situ, in situ
BEA, BEC, BN, Iz, Me, Pal, Palm, Sol	0.010387	0.9152	0	0	BEA, BEC, BN, Iz, Me, Pal, Palm, Sol	0.010387	LxC	R-W, G, T, Ti	ex situ, in situ
CaCe, Me, Pal	0	0.9152	0	0	CaCe, Me, Pal	0	LxC	W, F, G	in situ
Me, Sol	0	0.9152	0	0	Me, Sol	0	LxC	W, G, P, Ti	ex situ, in situ
BEA	0	0.9152	0	0	BEA	0	LxC	R-W	in situ
SB	0	0.9152	0	0	SB	0	LxC	R-W	in situ
Table 5 Species, Spanish common names, number of uses, percentage of families that consume it; cognitive prominence values expressed as $S = Sutrop$ relative prominence index2 and biocultural importance expressed as first component value of the principal component analysis by use type (edible, medicinal, firewood, fodder, ceremonial and ornamental); distribution on vegetal types, importance ecological index value (EIVI); specie origin region, ecological status, management practices and management site with respect to species wild populations (Continued)

ID	Uses	Percentage of Families	Spanish Common Name	EIVI	Management Practices	Management Site			
778	0	0	BEA, Sol	0	lx	R-W	T	in situ	
782	0	0	CaCe, Sol, TS	0	lx	R-W	T, Ur	in situ	
783	0	0	Sol	0	EAAA	D	P, Ti	ex situ	
27	0	0	Sol	0.000025	EAAA	D, R-W	P, Prp, Ti	ex situ	
82	0	0	BEM, Pz, Sol	0.0000026	Nat-EAAA	W	P, T, Ti, Ur	ex situ	
83	0	0	Sol	0.000102	EAAA	W	P, Prp	ex situ	
784	0	0	CaCe	0	lx	W			
785	0	0.025	-1.433	BEM	0	lx	W	G	in situ
Table 6 Santa María Ixcatlán participants and activities in which collaborated

ID	Sex	Age	Language	Main activities	Participants type	Guide in trials	Homegarden²	Agricultural field²	Surveys to estimate agricultural production and consumption	Free lists
1	Male	23	SPA	Mescal production	Key participant	Yes				Yes
2	Male	48	SPA	Agriculture, mescal production	Key participant	Yes	1	16		
3	Male	70	SPA, IXC	Agriculture, palm weaver			6	11		
4	Male	64	SPA	Agriculture, palm weaver						
5	Male	44	SPA	Agriculture, palm weaver	Key participant	Yes	2			Yes
6	Female	42	SPA	Domestic chores, palm weaver	Occasional participant	8	3	15		
7	Female	64	SPA	Domestic chores, palm weaver						
8	Male	SPA	Agriculture, palm weaver			21				
9	Male	SPA	Agriculture, palm weaver			21				
10	Male	46	SPA	Agriculture, commerce	Key participant	Yes	1			Yes
11	Male	60	SPA	Agriculture, mescal production	Key participant	Yes	10			
12	Male	33	SPA	Agriculture, mescal production, palm weaver		13				
13	Male	SPA	Agriculture, palm weaver			13				
14	Male	65	SPA	Agriculture, palm weaver						
15	Female	20	SPA	Palm weaver						

Fig. 6 Rarefaction curves of the Sutrop Index S.
Table 6 Santa María Ixcatlán participants and activities in which collaborated (Continued)

	Gender	Age	Occupation	Activity	Collaboration	Participant Type			
16	Male	71	SPA	Agriculture, mescal production, palm weaver	Yes				
17	Female	SPA	Student						
18	Female	58	SPA	Domestic chores, palm weaver	Occasional participant	13, 2			
19	Female	33	SPA	Domestic chores, palm weaver					
20	Female	60	SPA	Domestic chores, palm weaver	Key participant	15, 7			
21	Male	88	SPA	Domestic chores, palm weaver		7			
22	Male	70	SPA	Agriculture, palm weaver		20			
23	Male	68	SPA	Agriculture, palm weaver	Occasional participant	3			
24	Male	49	SPA	Agriculture, mescal production, palm weaver		17, 5			
25	Male	80	SPA, IXC	Agriculture, palm weaver	Key participant	Yes, 4			
26	Male	SPA	Shepherd		Key participant	Yes			
27	Female	75	SPA	Domestic chores, palm weaver		19			
28	Male	46	SPA	Domestic chores, palm weaver		17, 5			
29	Female	64	SPA	Domestic chores, palm weaver					
30	Male	57	SPA	Agriculture, mescal production, palm weaver	Occasional participant	Yes			
31	Male	SPA	Shepherd		Key participant	Yes			
32	Male	97	SPA, IXC	Palm weaver	Key participant				
33	Female	75	SPA	Domestic chores, palm weaver		19			
34	Female	46	SPA	Domestic chores, palm weaver		17, 5			
35	Male	SPA	Student			Yes			
36	Female	68	SPA	Domestic chores, palm weaver	Occasional participant	7			
37	Female	SPA	Commerce, domestic chores			Yes			
38	Female	16	SPA	Student	Occasional participant				
39	Female	SPA	Domestic chores, palm weaver		Occasional participant	20, Yes			
40	Female	66	SPA	Domestic chores, palm weaver		10			
41	Female	32	SPA	Domestic chores, palm weaver		Yes			
42	Female	62	SPA, IXC	Domestic chores, palm weaver	Key participant	17, 12, Yes			
43	Male	SPA	Agriculture, mescal production, palm weaver		Occasional participant	Yes			
44	Male	SPA	Agriculture, construction worker		Occasional participant	Yes			
45	Male	78	SPA	Agriculture, palm weaver		7			
46	Male	52	SPA	Agriculture, palm weaver		3, 15			
47	Female	SPA	Domestic chores, palm weaver	Occasional participant	10				
48	Female	SPA	Domestic chores, palm weaver	Occasional participant	12				
49	Male	SPA	Commerce	Occasional participant	Yes				
50	Female	39	SPA	Commerce, domestic chores	Yes				
51	Female	33	SPA	Domestic chores, palm weaver	6				
52	Male	74	SPA, IXC	Agriculture, palm weaver	Key participant	Yes	16	9	Yes
53	Male	SPA	Agriculture, palm weaver	Occasional participant	12				
54	Female	43	SPA	Commerce, domestic chores	Occasional participant	6			
55	Male	30	SPA	Agriculture, construction worker, palm weaver	Yes				
56	Female	73	SPA	Domestic chores, palm weaver	4				
57	Female	SPA	Domestic chores, palm weaver	Occasional participant	9				
58	Female	39	SPA	Domestic chores, palm weaver	Key participant	Yes	16	9	Yes
59	Male	36	SPA	Agriculture, palm weaver	Yes				
60	Female	81	SPA	Domestic chores, palm weaver	11				
61	Female	86	SPA, IXC	Domestic chores, palm weaver	Occasional participant	Yes	9	2	
62	Male	30	SPA	Blacksmith	Occasional participant				
63	Female	57	SPA	Domestic chores, palm weaver	Occasional participant	7	1		
64	Male	SPA	Agriculture, mescal production, palm weaver, shepherd	Occasional participant	Yes				
65	Male	71	SPA	Agriculture, palm weaver	Key participant	Yes	9	2	Yes
66	Female	49	SPA, IXC	Domestic chores, palm weaver	Occasional participant	2			
67	Male	18	SPA	Agriculture, palm weaver	Yes				
68	Male	59	SPA	Agriculture, palm weaver	Key participant	Yes	18		
69	Male	SPA	Student	Occasional participant	Yes				
70	Female	69	SPA, IXC	Domestic chores, palm weaver	Occasional participant	4	18	Yes	
71	Male	46	SPA	Painter	Occasional participant				
72	Male	84	SPA	Agriculture, palm weaver	Key participant	Yes	11		
73	Female	80	SPA, IXC	Domestic chores, palm weaver	Key participant	5			
74	Male	36	SPA	Agriculture, construction worker, palm weaver	Yes				
75	Female	55	SPA	Domestic chores, palm weaver	5				
ID	Gender	Age	Location	Activity	Participant Type	Key?	Notes		
----	--------	-----	----------	----------	------------------	------	-------		
76	Female	63	SPA	Domestic chores, palm weaver	Occasional participant	3	Yes		
77	Male	36	SPA	Agriculture, palm weaver	Yes				
78	Female	38	SPA	Domestic chores, palm weaver		10			
79	Male	57	SPA	Agriculture, mescal production, palm weaver	Yes	20	Yes		
80	Male	68	SPA	Agriculture, construction worker, palm weaver	2				
81	Female		SPA	Domestic chores, palm weaver	Yes				
82	Female	60	SPA	Domestic chores, palm weaver	Occasional participant	2			
83	Female	31	SPA, IXC	Domestic chores, palm weaver	Yes				
84	Male	12	SPA	Palm weaver, student	Key participant	6			
85	Male		SPA	Mescal production, palm weaver	Occasional participant	12			
86	Female	53	SPA	Commerce, domestic chores		9			
87	Female		SPA	Domestic chores, palm weaver	Occasional participant				
88	Male	55	SPA	Agriculture, palm weaver	Yes				
89	Female	70	SPA	Domestic chores, palm weaver					
90	Male	24	SPA	Agriculture, palm weaver	Occasional participant	19	Yes		
91	Male	78	SPA	Agriculture, palm weaver	Occasional participant				
92	Female	62	SPA	Domestic chores, palm weaver		13			
93	Female	64	SPA, IXC	Domestic chores, palm weaver, shepherdess	Key participant	1	17	Yes	
94	Male	73	SPA	Agriculture, palm weaver	Occasional participant	5			
95	Male	62	SPA	Agriculture, mescal production, palm weaver	Key participant	7	Yes		
96	Female	72	SPA	Domestic chores, palm weaver		18			
97	Female	77	SPA, IXC	Domestic chores, palm weaver	Key participant	11	14		
98	Male	86	SPA, IXC	Palm weaver	Key participant	14	3		
99	Male		SPA	Baker	Occasional participant	4			
100	Female	82	SPA, IXC	Domestic chores, palm weaver	Key participant	8	4		
101	Female	92	SPA, IXC	Domestic chores, palm weaver		14			
102	Female	31	SPA	Domestic chores, palm weaver					
103	Male	23	SPA	Agriculture, shepherd	Key participant	15	Yes		
104	Female	37	SPA	Domestic chores, palm weaver	Occasional participant	1			
Table 6: Santa María Ixcatlán participants and activities in which collaborated (Continued)

No.	Gender	Age	Activity	Role	Notes	
105	Female	53	SPA	Domestic chores, palm weaver	Occasional participant	
106	Male	SPA	Agriculture, mescal production, palm weaver	Yes		
107	Female	30	SPA	Domestic chores, palm weaver	Occasional participant	Yes
108	Female	SPA	Nurse assistant	Occasional participant	Yes	
109	Female	SPA	Nurse	Occasional participant	Yes	
110	Female	SPA	Domestic chores, palm weaver	Yes		
111	Female	SPA	Domestic chores, palm weaver	Yes		
112	Female	SPA	Domestic chores, palm weaver	Yes		
113	Female	SPA	Domestic chores, palm weaver	Yes		

Note: The data provided make reference to the assigned number to the homegarden and agricultural field, since interview could be made to 1 or more household integrants. In the same case for surveys in which one or two of the householders could provide information about productive activities and consumption of vegetable resources by the household.

Abbreviations
TEK, traditional ecological knowledge; UNAM, Universidad Nacional Autónoma de México; USA, United States of America.

Authors' contributions
SRL main author, involved in the study design, field work, analysis of data, wrote the first draft and concluded the final version of this paper. AC main coordinator-supervisor of the research project; participated in data analyses and reviewed several drafts of the manuscript. ERL, MVR and RLF contributed to field work and reviewed final drafts of the manuscript. ITG contributed to data analyses and reviewed the final drafts of the manuscript. All authors read and approved the final manuscript.

Authors' information
SRL postgraduate student at the Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), UNAM. AC full-time researcher at IIES, UNAM. ERL Master in Sciences student at the Centro de Investigaciones en Geografía Ambiental (CIGA), UNAM. ITG & MVR postdoctoral at IIES & CIGA, UNAM. RLF technician of Pronatura México A.C.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Permits for conducting our investigation were obtained in the two phases of field work, with Federal agencies (SEMARNAT and Tehuacán-Cuicatlán Biosphere Reserve-CONANP), local authorities (municipal and land tenure) and Communitarian Assembly to realize the investigation and collect voucher plants in communal lands. Prior oral informed consent was obtained from all participants to realize the interview, survey, free lists and audio-visual recording or visit and gather plants in their homegardens or agricultural fields. Reports of activities and preliminary investigation outcomes have been doing via oral and written reports to the authorities and public presentations to the community of Ixcatlán.
Author details
1 Instituto de Investigaciones en Ecosistemas y Sustentabilidad, UNAM, Antigua Carretera a Pátzcuaro 8711, Morelia, Michoacán 58190, Mexico.
2 Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria Del. Coyoacan, C. P. 04510 México, Mexico. 3 Centro de Investigaciones en Geografía Ambiental, UNAM, Antigua Carretera a Pátzcuaro 8711, Morelia, Michoacán 58190, Mexico.

Received: 1 March 2016 Accepted: 2 July 2016
Published online: 20 July 2016

References
1. Toledo VM, Ortiz-ESpejel B, Cortés L, Moygel P, de Ordonez M. The multiple use of tropical forests by indigenous peoples in Mexico: a case of adaptive management. Conserv Ecol. 2003;7(2):1–6.
2. Berkes F, Folke C, editors. Linking social and ecological systems: management practices and social mechanisms for building resilience. Cambridge: Cambridge University Press; 1998.
3. Boege E. El patrimonio biocultural de los pueblos indígenas de México. México: Instituto Nacional de Antropología e Historia y Comisión Nacional para el Desarrollo de los Pueblos Indígenas; 2008.
4. Toledo VM, Barrea-Bassols N. La Memoria Biocultural: la importancia ecológica de las sabidurías tradicionales. Barcelona: Icaria Editorial; 2008.
5. Toledo VM, Boege E, Barrea-Bassols N. The biocultural heritage of Mexico: an overview. Landscapes. 2010;2:8–13.
6. Casas A, Camou-Guerrero A, Otero-Arnaiz A, Rangel-Landa S, Cruse-Sanders J, Solís L, et al. Manejo tradicional de biodiversidad y ecosistemas en Mesoamérica: el Valle de Tehuacán. Invest. Ambient Cienc y política pública. 2014;6:23–44.
7. Berkes F, Colding J, Folke C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl. 2000;10:1:251–62.
8. Moreno-Calles AI, Toledo VM, Casas A. Los sistemas agroforestales tradicionales de México: una aproximación biocultural. Bol. Soc. 2013;91:137–98.
9. Pretty J, Adams B, Berkes F, de Athaye SF, Dudley N, Hunn E, et al. The intersections of biological diversity and cultural diversity: Towards: Conserv Soc. 2009;7:100–12.
10. Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A. In situ management and domestication of plants in Mesoamerica. Ann Bot. 2007;100:1101–15.
11. Blancas J, Casas A, Rangel-Landa S, Moreno-Calles A, Torres I, Pérez-Negrón E, et al. Plant management in the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot. 2010;64:287–302.
12. El OE. gobierno de los bienes comunes. La evolución de las instituciones de la disposición de recursos naturales en la Montaña de Guerrero. México: CONACULTA e INEGI; 2009.
13. Toledo VM, Camou-Guerrero A, Otero-Arnaiz A, Rangel-Landa S, Cruse-Sanders J, Solís L, et al. The multiple use of tropical forests by indigenous peoples in Mexico: a case of adaptive management. Conserv Ecol. 2003;7(2):1–6.
14. Berkes F, Colding J, Folke C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl. 2000;10:1:251–62.
15. Moreno-Calles AI, Toledo VM, Casas A. Los sistemas agroforestales tradicionales de México: una aproximación biocultural. Bol. Soc. 2013;91:137–98.
16. Pretty J, Adams B, Berkes F, de Athaye SF, Dudley N, Hunn E, et al. The intersections of biological diversity and cultural diversity: Towards: Conserv Soc. 2009;7:100–12.
17. Blancas J, Casas A, Rangel-Landa S, Moreno-Calles A, Torres I, Pérez-Negrón E, et al. Plant management in the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot. 2010;64:287–302.
18. El OE. gobierno de los bienes comunes. La evolución de las instituciones de la disposición de recursos naturales en la Montaña de Guerrero. México: CONACULTA e INEGI; 2009.
19. Toledo VM, Camou-Guerrero A, Otero-Arnaiz A, Rangel-Landa S, Cruse-Sanders J, Solís L, et al. manejo tradicional de biodiversidad y ecosistemas en Mesoamérica: el Valle de Tehuacán. Invest. Ambient Cienc y política pública. 2014;6:23–44.
20. Berkes F, Colding J, Folke C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol Appl. 2000;10:1:251–62.
21. Moreno-Calles AI, Toledo VM, Casas A. Los sistemas agroforestales tradicionales de México: una aproximación biocultural. Bol. Soc. 2013;91:137–98.
22. Pretty J, Adams B, Berkes F, de Athaye SF, Dudley N, Hunn E, et al. The intersections of biological diversity and cultural diversity: Towards: Conserv Soc. 2009;7:100–12.
23. Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A. In situ management and domestication of plants in Mesoamerica. Ann Bot. 2007;100:1101–15.
24. Blancas J, Casas A, Rangel-Landa S, Moreno-Calles A, Torres I, Pérez-Negrón E, et al. Plant management in the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot. 2010;64:287–302.
25. El OE. gobierno de los bienes comunes. La evolución de las instituciones de la disposición de recursos naturales en la Montaña de Guerrero. México: CONACULTA e INEGI; 2009.
26. Toledo VM, Enoteologia: A conceptual framework for the study of indigenous knowledge of nature. In: Steep JR, editor. Ethnobiology and cultural diversity. USA: International Society of Ethnobiology; 2002. p. 511–22.
27. González-Insuasti MS, Martorell C, Cabraller J. Factors that influence the intensity of non-agricultural management of plant resources. Agrofor Syst. 2008;74:1–15.
28. Blancas J, Casas A, Pérez-Saltrup C, Cabraller J, Vega E. Ecological and socio-cultural factors influencing plant management in Náhuatl communities of the Tehuacán Valley, Mexico. J Ethnobot Ethnomed. 2013;9:39.
29. Arellano Y, Casas A, Arellanne A, Vega E, Blancas J, Vallejo M, et al. Influence of traditional markets on plant management in the Tehuacán Valley. J Ethnobot Ethnomed. 2013;9:38.
30. Blancas J, Pérez-Saltrup D, Casas A. Evaluando la incertidumbre en la disponibilidad de recursos vegetales. Gaia Sci. 2014;263–70.
31. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
32. Albuquerque UP, Solidati GM, Ramos MA, Melo JG, Medeiros PM, Nascimento ALB, et al. The influence of the environment on natural resource use: evidence of apparent. In: Albuquerque UP, Medeiros PM, Casas A, editors. Evolutionary ethnobiology. Switzerland: Springer; 2015. p. 131–47.
33. Zent EL. Jotí ecogony, Venezuelan Amazon. Environ Res Lett. 2013;8:1–15.
34. Toledo VM, Ortiz-ESpejel B, Cortés L, Moygel P, de Ordonez M. The multiple use of tropical forests by indigenous peoples in Mexico: a case of adaptive management. Conserv Ecol. 2003;7(2):1–6.
35. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
36. Albuquerque UP, Solidati GM, Ramos MA, Melo JG, Medeiros PM, Nascimento ALB, et al. The influence of the environment on natural resource use: evidence of apparent. In: Albuquerque UP, Medeiros PM, Casas A, editors. Evolutionary ethnobiology. Switzerland: Springer; 2015. p. 131–47.
37. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
38. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
39. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
40. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
41. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
42. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
43. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
44. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
45. Phillips O, Gentry AH. The useful plants of Tambopata, Peru: II. Additional hypothesis testing in quantitative ethnobotany. Econ Bot. 1993;47:33–43.
et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:30

49. Hunn ES, A Zapotec natural history. United States of America: The University of Arizona Press; 2008.

50. Moreno-Calles AL, Casas A, García-Frapolli E, Torres-García I. Traditional agroforestry systems of multi-crop “milpa” and “chichipe” cactus forest in the arid Tehuacán Valley, Mexico: their management and role in people’s subsistence. Agrofor Syst. 2012;84:207–26.

51. Velázquez DeLaRe G. Relación de lictación, Quíotepec y Tecomahuacahua. In: Acura R, editor. Relaciones Geográficas del siglo XVI: Antequera, vol. I. México: Instituto de Investigaciones Antropológicas, UNAM; 1984. p. 223–41.

52. Rangel-Landa S, Rivero-Lozoya E, Casas A. Uso y manejo de las palmas Brahea spp. (Arecales) por el pueblo ixcateco de Santa María Ixcatlán Oaxaca, México. Gaia Sci. 2014;8:62–78.

53. García-Frapolli E, Toledo VM, Martínez-Alier J. Apropiación de la naturaleza por una comunidad Maya Yucateca: Un análisis económico-ecológico. Rev. Iberoamericana Econ. Ecológica. 2008;7:27–42.

54. Toledo VM, Barrera-Bassols N, García-Frapolli E, Alarcón-Cháires P. Uso múltiple y biodiversidad entre los mayas yucatecos (México). Interciencia. 2008;33:435–52.

55. Belcher B, Pérez-Pérez M, Achdiawan R. Global patterns and trends in the use and management of commercial NTFPs: Implications for livelihoods and conservation. World Dev. 2005;33:1435–52.

56. Casas A, Valiente-Banuet A, Viveros JL, Casas A, Cortés L, Dávila P, et al. Plant resources of the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot. 2001;55:129–66.

57. Casas A, Rangel-Landa S, Torres I, Pérez-Negrón E, Solís L, Para F, et al. In situ management and conservation of plant resources in the Tehuacán-Cuicatlán Valley, México: an ethnobotanical and ecological perspective. In: de Albuquerque UP, Alves M, editors. Current topics in ethnobotany. Kerala: Research Signpost; 2008. p. 1–23.

58. Casas A, Blancas J, Otero-Arnaiz A, Cruse-Sanders J, Lira R, Avendaño A, et al. Evolutionary ethnobotanical studies of indigenous domestication of plants in Mesoamerica. In: Lira R, Casas A, Blancas J, editors. Ethnobotany of Mexico: interactions of people and plants in Mesoamerica. New York: Springer; 2016. p. 257–58.

59. Halstead P, O’Shea J. Bad year economics: cultural responses to risk and uncertainty. Cambridge: Cambridge University Press; 1989.

60. Parke B, Berkès F. Indigenous knowledge of ecological variability and commons management: a case study on berry harvesting from Northern Canada. Hum Ecol. 2006;34:515–28.

61. Casas A, Parra F, Rangel S, Guillén S, Blancas J, Figueredo CJ. Evolutionary ecology and ethnobiology. In: Albuquerque UP, Medeiros PM, Casas A, editors. Evolutionary ethnobiology. Switzerland: Springer; 2015. p. 37–57.

62. Atangana A, Khasa D, Chang S, Degrande A. Tropical agroforestry. Dordecht: Springer; 2014.

63. Nair PKR. Classification of agroforestry systems. Agrofor Syst. 1985;3:97–128.

64. Moreno-Calles AL, Galicia-Luna VJ, Casas A, Toledo VM, Ramos MV, Santos-Fita D, et al. La Etnoagroforestería: el estudio de los sistemas agroforestales tradicionales de México. Etnobiología. 2014;12:1

65. Casas A, Parra F, Blancas J. Evolution of humans and by humans. In: Albuquerque UP, Alves M, editors. Current topics in Ethnobotany. Kerala: Research Signpost; 2008. p. 1

66. Mendoza E. Los eternos tejedores de Santa María Ixcatlán. México: Universidad Nacional Autónoma de México; 2004;57:179–202.

67. Castillo H, Stepp JR. Ethnogeological importance value (EIV) methodology: Assessing the cultural importance of ecosystems as useful plants for the Guaymi people of Costa Rica [Internet]. Ethnobot Res Appl. 2007;5:249–57.

68. Casas A, Parra F, Blanco J, Pimentel M, Galicia-Luna VJ, Toledo VM, et al. Intra-cultural differences in the importance of plant resources and their impact on management intensification in the Tehuacán Valley, Mexico. Hum Ecol. 2011;39:191–202.

69. Torres I, Blancas J, León A, Casas A, TEK, local perceptions of risk, and diversity of management practices of Agave inaequidens in Michoacán, Mexico. J Ethnobiol Ethnomed. 2015;11:1–20.

70. Berkès F, Turner NJ. Knowledge, learning and the evolution of conservation practice for social-ecological. Hum Ecol. 2006;34:470–94.

71. Berkès F. Understanding uncertainty and reducing vulnerability: lessons from resilience thinking. Nat Hazards. 2007;41:283–95.

72. Espinosa-García FJ, Díaz-Pérez R. El uso campesino de plantas arvenses como forrajaje en el Valle de México. Etnoecológica. 1996;3:83–94.

73. Challenger A, Bocco G, Eqhuiva M, Chaparro EL, Mass M. La aplicación del concepto del sistema socio-ecológico: alcances, posibilidades y limitaciones en la gestión ambiental de México. Investig Ambient Cenc y política publica. 2014:61–21.

74. Lucena RFP, Medeiros PM, de Araújo L, E, Alves AGC, Albuquerque UP. The ecological appearance hypothesis and the importance of useful plants in rural communities from northeastem Brazil: an assessment based on use value. J Environ Manage. 2012;96:106–15.

75. Maldonado B, Caballero J, Delgado-Salinas A, Lira R. Relationship between use value and ecological importance of floristic resources of seasonally dry tropical forest in the Balsas river basin, Mexico. Econ Bot. 2013;67:17–29.

76. Medeiros PM, Lado AH, Albuquerque UP. Local criteria for medicinal plant selection. In: Albuquerque UP, Medeiros PM, Casas A, editors. Evolutionary ethnobiology. Switzerland: Springer; 2015. p. 149–62.

77. Camou-Guerrero A. Los recursos vegetales en una comunidad rarámuri: aspectos culturales, económicos y ecológicos, Ph.D. thesis. Mexico: Universidad Nacional Autónoma de México; 2008.

78. González-Insuasti MS, Casas A, Méndez-Ramírez I, Martorell C, Caballero J. Intra-cultural differences in the importance of plant resources and their impact on management intensification in the Tehuacán Valley, Mexico. Hum Ecol. 2011;39:191–202.

79. Torres I, Blancas J, León A, Casas A, TEK, local perceptions of risk, and diversity of management practices of Agave inaequidens in Michoacán, Mexico. J Ethnobiol Ethnomed. 2015;11:1–20.

80. Berkes F, Turner NJ. Knowledge, learning and the evolution of conservation practice for social-ecological. Hum Ecol. 2006;34:470–94.

81. Berkès F. Understanding uncertainty and reducing vulnerability: lessons from resilience thinking. Nat Hazards. 2007;41:283–95.

82. Espinosa-García FJ, Díaz-Pérez R. El uso campesino de plantas arvenses como forrajaje en el Valle de México. Etnoecológica. 1996;3:83–94.

83. Bhagwat S, Willis KJ, Berki HJ, Whittaker RJ. Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evol. 2008;23:261–7.

84. García LE. Aspectos socio-ecológicos para el manejo sustentable del copal en el Ejido de Acateyahualco, Gro, Bachelor thesis. Licenciatura en Ciencias Ambientales, México: Universidad Nacional Autónoma de México; 2012.

85. Silver MR, Lepsényi D. Traditional resource and environmental management. In: Anderson EN, Pearsall DM, Hunn ES, Turner NJ, editors. Ethnobiology. New Jersey: Wiley-Blackwell; 2011. p. 265–304.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit