Root Form and Morphology of Human Permanent Maxillary First Premolars of an Indo-Dravidian Population Based in Southern India: An In Vitro Study

Jeyaraman Venkataraman Karunakaran¹, Anbarasi Kaliyaperumal², Ragavendran Nagappan¹, Senthil Kumar Swaminathan¹, Kaneesh Karthik Arthanari³, Leo Sujith Samuel¹

1Department of Conservative Dentistry, JKK Nataraja Dental College & Hospital, Komarapalayam, Tamilnadu, India, 2Department of Oral Medicine and Radiology, Faculty of Dental Sciences, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India, 3Department of Oral and Maxillofacial Surgery, JKK Nataraja Dental College and Hospital, Komarapalayam, Tamilnadu, India

Aim: The aim of this study was to analyze root form and morphology of human maxillary first permanent premolars of an Indo-Dravidian population from southern India. Materials and Methods: Eight hundred and twenty-two maxillary first permanent premolars were cleansed and stored appropriately. Morphology and root form analysed, segregated into Groups (Gps): Gp I, Gp II, and Gp III, and later divided into subgroups (SGs) based on specific criteria. Gp I was divided into two SGs: SG A (minimal or absence of grooving in the root) (n = 252) and SG B (clear and defined longitudinal groove in the root) (n = 104), and Gp II was divided into SG C (roots dividing in coronal one-third) (n = 154), SG D (roots dividing in the middle one-third) (n = 158), and SG E (roots dividing in the apical one third) (n = 138). Gp III consisted of only one SG F (teeth with three roots) (n = 16). The groups were analyzed separately, their external root form and morphology were recorded. Root form was analyzed, and results were tabulated. This study was compared with other studies and statistically analyzed. Results: Gp II was common with an incidence of 54.74%. Gp I was the next most common with an incidence of 43.3%. Gp III was the least common with an incidence of 1.94%. The number and distribution of roots was also computed. Six types of root form were identified (Type [Ty] A = 30.65%, Ty B = 12.65%, Ty C = 18.73%, Ty D = 19.22%, Ty E = 16.78%, and Ty F = 1.94%). Conclusion: Awareness and assessment of root form, number preoperatively with regard to specific populations before initiation will pave way for successful outcome of therapy.

Keywords: Indo-Dravidian population, longitudinal grooves, maxillary first premolar, root type classification, south Indian population

INTRODUCTION

Differences of form and morphology of maxillary first permanent premolar have been reported as specific to races and populations.[1] Location of all canals is of utmost importance, as untreated canals can lead to failures.[2] The only tooth to have all eight types of canal configuration was maxillary first permanent premolar.[3,4] Missed canals and untreated roots have been reported with an incidence of 42% in teeth, which required retreatment.[5] Approximately, 9.68% failures could be attributed to perforations of root, and 58.66% to

Address for correspondence: Dr. Jeyaraman Venkataraman Karunakaran, Department of Conservative Dentistry and Endodontics, JKK Nataraja Dental College and Hospital, Komarapalayam 638183, Tamil Nadu, India. E-mail: kkaran8@yahoo.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. For reprints contact: reprints@medknow.com

How to cite this article: Karunakaran JV, Kaliyaperumal A, Nagappan R, Swaminathan SK, Arthanari KK, Samuel LS. Root form and morphology of human permanent maxillary first premolars of an Indo-Dravidian population based in southern India: An in vitro study. J Pharm Bioall Sci 2020;12:S601-6.
incomplete obturation of root canal.[6] Single-, two-, and three-root variations have been reported in permanent maxillary first premolars.[7] The aim of this study was to identify incident root forms and morphology of human maxillary first permanent premolar tooth of an Indo-Dravidian population in southern India.

Materials and Methods

Eight hundred and twenty-two extracted human maxillary first permanent premolar teeth were cleansed and observed under magnification for intact occlusal and root morphology. Selected teeth were placed in a solution of 3% sodium hypochlorite for 48 h, and the solution was changed every 6 h. Subsequently, they were washed with 0.5% sodium thiosulfate solution and stored in a 0.1% thymol solution at 4°C. The samples were analyzed for number of roots, and separated into Groups (Gps): Gp I, II, and III. Gp I is single rooted (n = 356), Gp II is two rooted (n = 450), and Gp III is three rooted (n = 16). The observations with regard to the number of roots were recorded. They were divided into subgroups (SGs) based on specific criteria. Gp I was divided into two SGs, namely SG A (minimal or absence of grooving in the root) (n = 252) and SG B (clear and defined longitudinal groove in the root) (n = 104). Gp II was divided into SG C (roots dividing in coronal one-third) (n = 154), SG D (roots dividing in the middle one-third) (n = 158), and SG-E (roots dividing in the apical one-third) (n = 138). Gp III consisted of only one SG F (teeth with three roots) (n = 16). The groups were analyzed separately; their external root form and morphology were recorded.

Results

Gp II was common with an incidence of 54.74%. Gp I was the next most common, with an incidence of 43.3%. Gp III was the least common with an incidence of 1.94% [Table 1]. The number and distribution of roots was also computed [Figure 1]. No statistically significant difference was found between this study where two-rooted form was the most common and other studies with regard to the number of roots (P > 0.05) [Graph 1]. Six different root forms were identified based on the criteria for SGs [Figure 2] (Type [Ty] A = 30.65% [Figure 3A], Ty B = 12.65% [Figure 3B], Ty C = 18.73% [Figure 3C], Ty D = 19.22% [Figure 3D], Ty E = 16.78% [Figure 3E], and Ty F = 1.94%) [Figure 3F].

Discussion

Racial differences and genetically determined variations in form and morphology of root have been recognized. The permanent human maxillary first premolar poses difficulties and challenges during endodontic management. It cannot withstand excessive

Table 1: Incidence of root form

Root form	Incidence
Single root	43.3%
Two roots	54.74%
Three roots	1.94%

Figure 1: Root types distribution

Graph 1: Studies—two-root incidence
instrumentation, and also the technique should be modified based on preoperative morphologic assessment. There is a considerable variation in shape, number, apical curvature, and grooves of roots.

Longitudinal depressions have been observed with an incidence of 72.4% on mesial surface of the root and 52.7% on the distal surface. Mesial surface depressions were found to be deeper than distal surface depressions. An “S”-shaped variation of the shape of the root has also been reported.\(^9\)

Maxillary permanent premolars most often have one or two roots, but in some cases, three roots do occur. Variations due to ethnicity and populations have been noted with the single root being dominant in certain populations.\(^7\) The incidence of single root has been reported in a range of 10%–76.6% [Graph 2]. In this study, single-rooted pattern was the second most common, and two types of root form were identified, namely Ty A and B based on the presence of developmental grooves on roots. Studies on the Chinese

Figure 2: Root form classification

TYPE	Description
A	Minimal or groove absent
B	Defined longitudinal groove
C	Furcation at coronal third
D	Furcation at middle third
E	Furcation at apical third
F	Three root form

Figure 3: (A) Type A—root form. (B) Type B—root form. (C) Type C—root form. (D) Type D—root form. (E) Type E—root form. (F) Type F—root form
population have reported single root as being more common. A maxillary first premolar with decreased length and single roots being more common was reported in the Nepalese population. In Mongoloid populations, single-rooted maxillary first premolars have been found to be more prevalent. East Greenland Eskimos and Aleut Eskimos had an incidence of single root as high as 87%–95%. Sixty percent were considered to be truly single rooted in a study on the southern Chinese population. The incidence of a single root was also higher in the Brazilian population.

Incidence of two roots has been reported to be in the range of 33%–85% [Graph 1]. The incidence of two-root form was most common in this study. The two-rooted pattern presented with a buccal and a palatal root. Three-root form types were identified based on the level of furcation (Ty C, D, and E). Singaporean population considered a Mongoloid stock had an 50.6% incidence of two root form. The author also observed that bifurcation of maxillary first premolar occurred at apical, middle, and coronal thirds of root.

The incidence of three roots has been reported to be in the range of 0.8%–9.2% [Graph 3]. The three-rooted variations are directly attributable to the ethnicity of the population being studied. They are more frequently found in European and Native American populations. The incidence of maxillary first permanent premolars with three-root form has been found more frequently in Caucasian populations compared to that in Mongoloid populations. Incidence of two- and three-root form variations of maxillary first permanent premolars has been found with increased incidence in patients with

Graph 2: Studies—single-root incidence

Graph 3: Studies—three-root incidence
Turner syndrome. External morphology of three-rooted maxillary first premolars varies considerably. Various reasons have been proposed for the formation of the extra root, namely the altered division during tooth development, heredity, tooth bud dichotomy, and dental lamina behavior during the formation of the root. The incidence of three roots was the least common in this study on an Indo-Dravidian population from southern India at 1.94%.

Numerous clinical case reports discuss incidence of variant morphology and suggest methods for effective management. The common variant form of the root reported in case reports is three roots with three canals. Developmental anomalies are very rare in maxillary first premolars. These teeth have often been described as radiculous or ridiculous by the researchers. Modification of access, use of magnification, preoperative assessment, operator experience, and use of special radiology techniques have been suggested to effectively identify and treat these variant premolars. A guideline for easy identification of maxillary permanent premolars with a third root on preoperative radiograph with parallel view has been suggested. When mesiodistal width of center of root on radiograph appears equal to or greater than mesiodistal width of crown, there is a likely chance of a third root being present. Knowledge of incidence of variations among different population groups provides valuable information to the clinician and also has anthropological significance (Table 2).

Contralateral maxillary premolars also show a tendency for symmetry in root morphology. On the basis of the number of morphological variations inherently reported for this tooth, it would be prudent to incorporate sufficient modification of instrumentation process based on the morphology of tooth, which has to be looked into detail before the initiation of therapy. Also, the ethnicity should be factored during preoperative assessment.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Awawdeh L, Abdullah H, Al-Qudah A. Root form and canal morphology of Jordanian maxillary first premolars. J Endod 2008;34:956-61.
2. Vertucci FJ, Gegauff A. Root canal morphology of the maxillary first premolar. J Am Dent Assoc 1979;99:194-8.
3. Vertucci FJ. Root canal morphology and its relationship to endodontic procedures. Endod Top 2005;10:3-29.
4. Vertucci FJ. Root canal anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol 1984;58:589-99.
5. Hoen MM, Pink FE. Contemporary endodontic retreatments: an analysis based on clinical treatment findings. J Endod 2002;28:834-6.
6. Ingle J, Bakland L. Endodontics. 2nd ed. Philadelphia, Pennsylvania: Lea & Febiger; 1976. p. 43.
7. Abella F, Teixidó LM, Patel S, Sosa F, Duran-Sindreu F, Roig M. Cone-beam computed tomography analysis of the root canal morphology of maxillary first and second premolars in a Spanish population. J Endod 2015;41:1241-7.
8. Pécora JD, Saquy PC, Sousa Neto MD, Woelfel JB. Root form and canal anatomy of maxillary first premolars. Braz Dent J 1992;2:87-94.
9. Tian YY, Guo B, Zhang R, Yu X, Wang H, Hu T, et al. Root and canal morphology of maxillary first premolars in a Chinese subpopulation evaluated using cone-beam computed tomography. Int Endod J 2012;45:996-1003.
10. Dashrath K, Nisha A, Subodh S. Root morphology and tooth length of maxillary first premolar in Nepalese population. Dentistry 2015;5:324.
11. Pedersen PO. The East Greenland Eskimo dentition, numerical variations and anatomy. Vol. 129. Copenhagen, Denmark: CA Reitzels Forlag; 1949. p. 158-61.
12. Turner CG. The dentition of the Arctic peoples. PhD dissertation. University of Wisconsin; 1967. p. 140-1.
13. Walker RT. Root form and canal anatomy of maxillary first premolars in a southern Chinese population. Endod Dent Traumatol 1987;3:130-4.
14. Loh HS. Root morphology of the maxillary first premolar in Singaporeans. Aust Dent J 1998;43:399-402.
15. Ahmad IA, Alenezi MA. Root and root canal morphology of maxillary first premolars: a literature review and clinical considerations. J Endod 2016;42:861-72.
16. Chaparro AJ, Segura JJ, Guerrero E, Jiménez-Rubio A, Murillo C, Feito JJ. Number of roots and canals in maxillary first premolars: study of an Andalusian population. Endod Dent Traumatol 1999;15:65-7.
17. Midbø M, Halse A. Root length, crown height, and root morphology in Turner syndrome. Acta Odontol Scand 1994;52:303-14.
18. Beltes P, Kalaitzoglou ME, Kantilieraki E, Beltes C, Angelopoulos C. 3-rooted maxillary first premolars: an ex vivo study of external and internal morphologies. J Endod 2017;43:1267-72.
19. Hess W. Anatomy of the root canals of the teeth of the permanent dentition. Part I. New York: William Wood; 1925. p. 3-49.
20. Mueller AH. Anatomy of the root canals of the incisors, cuspids and bicuspids of the permanent teeth. J Am Dent Assoc 1933;20:1361-86.
21. Pucci FM, Reig R. Conductos radiculares. Barreiro y Ramos: Montevideo; 1944.
22. Ingle JI. Endodontics. 1st edn. Philadelphia: Lea and Febiger; 1965.
23. Carns EI, Skidmore AE. Configurations and deviations of root canals of maxillary first premolars. Oral Surg Oral Med Oral Pathol 1973;36:880-6.
24. Vertucci FJ, Gegauff A. Root canal morphology of the maxillary first premolar. J Am Dent Assoc 1979;99:194-8.
25. De Deus QD. Endodontia. Rio de Janeiro: Medsi; 1986.
26. Woelfel J. Dental anatomy. 8th edn. Philadelphia: Wolters Kluwer; 2012.
27. Pécora JD, Saquy PC, Sousa Neto MD, Woelfel JB. Root form and canal anatomy of maxillary first premolars. Braz Dent J 1992;2:87-94.
28. Walton R, Torabinenjad M. Principles and practice of endodontics. 2nd edn. Philadelphia: W.B. Saunders Co; 1996. p. 177-8.
29. Kartal N, Ozçelik B, Cimilli H. Root canal morphology of maxillary premolars. J Endod 1998;24:417-9.
30. Chaparro AJ, Segura JJ, Guerrero E, Jiménez-Rubio A, Murillo C, Feito JJ. Number of roots and canals in maxillary first premolars: study of an Andalusian population. Endod Dent Traumatol 1999;15:65-7.
31. Lipski M, Woniak K, Lagocka R, Tomasik M. Root and canal morphology of the first human maxillary premolar. Durham Anthropol J 2003;12:2-3.
32. Awawdeh L, Abdullah H, Al-Qudah A. Root form and canal morphology of Jordanian maxillary first premolars. J Endod 2008;34:956-61.
33. Peiris HRD, Pitakotuwage TN, Takahashi M, Sasaki K, Kanazawa E. Root canal morphology of mandibular permanent molars at different ages. Int Endod J 2008;41:828-35.
34. Peiris R. Root and canal morphology of human permanent teeth in a Sriankan and Japanese population. Anthropol Sci 2008;116:123-33.
35. Atieh MA. Root and canal morphology of maxillary first premolars in a Saudi population. J Contemp Dent Pract 2008;9:46-53.
36. Rwenyonyi CM, Kutesa A, Muwazi L, Buwembo W. Root and canal morphology of maxillary first premolar teeth in a Ugandan population. Open J Stomatol 2011;1:7-11.
37. Özcan E, Colak H, Hamidi MM. Root and canal morphology of maxillary first premolars in a Turkish population. J Endod Sci 2012;7:390-4.
38. Gupta S, Sinha DJ, Gowhar O, Tyagi SP, Singh NN, Gupta S, et al. Root and canal morphology of maxillary first premolar teeth in North Indian population using clearing technique: an in vitro study. J Conserv Dent 2015;18:232-6.
39. Mirzaie M, Tork Zaban P, Mohammadi V. Cone-beam computed tomography study of root canals in a Hamadani population in Iran. Avicenna J Dent Res 2012;2014:25-31.
40. Bulut DG, Kose E, Ozcak M, Sekerci AE, Canger EM, Sisman Y. Evaluation of root morphology and root canal configuration of premolars in the Turkish individuals using cone beam computed tomography. Eur J Dent 2015;9:551-7.
41. Dashrath K, Nisha A, Subodh S. Root morphology and tooth length of maxillary first premolar in Nepalese population. Dentistry 2015;5:324.
42. Stosic N, Dacic S, Randelovic M, Jovanicity A, Dordevic I, Cvetcovic M, et al. Morphometric analysis of the upper premolars. Acta Fac Med Naissensis 2016;33:23-9.
43. Sieraski SM, Taylor GN, Kohn RA. Identification and endodontic management of three-canalled maxillary premolars. J Endod 1989;15:29-32.
44. Li YH, Bao SJ, Yang XW, Tian XM, Wei B, Zheng YL. Symmetry of root anatomy and root canal morphology in maxillary premolars analyzed using cone-beam computed tomography. Arch Oral Biol 2018;94:84-92.