Supportive Role Played by Precore and PreS2 Genomic Changes in the Establishment of Lamivudine-Resistant Hepatitis B Virus

Kazuyoshi Ohkawa, Tetsuo Takehara, Michio Kato, Matsuo Deguchi, Masanori Kagita, Hayato Hikita, Akira Sasakawa, Keisuke Kohga, Akio Uemura, Ryotaro Sakamori, Shinjiro Yamaguchi, Takuya Miyagi, Hisashi Ishida, Tomohide Tatsumi, and Norio Hayashi

1Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, and 2Laboratory for Clinical Investigation, Osaka University Hospital, Suita, and 3Department of Gastroenterology, National Hospital Organization Osaka National Hospital, Osaka, Japan

Background. Hepatitis B virus (HBV) establishes lamivudine resistance via the resistance-causative rtM204V/I mutation and the replication-compensatory rtL180M mutation. However, both lamivudine-resistant viruses with and those without rtL180M can exist in clinical settings. To elucidate the differences between viruses with and those without rtL180M, we conducted full-length sequencing analysis of HBV derived from patients with type B chronic hepatitis showing lamivudine resistance.

Methods. The full-length HBV DNA sequences derived from 44 patients showing lamivudine resistance were determined by polymerase chain reaction direct sequencing. Viral replicative competence was examined by in vitro transfection analysis using various HBV-expressing plasmids.

Results. Throughout the HBV genome, a precore-defective A1896 mutation and a short deletion in the preS2 gene were detected more frequently in viruses without rtL180M than in those with it (64% vs. 17% [P < .005] and 50% vs. 10% [P < .01], respectively). In vitro transfection analysis revealed that the level of reduction in intracellular viral replication caused by the introduction of lamivudine resistance–associated mutations was lower in precore-defective and preS2-deleted viruses than in wild-type virus.

Conclusions. Both the precore-defective mutation and the preS2 deletion may play a supportive role in the replication of lamivudine-resistant HBV, which may be a reason for there being no need for the compensatory rtL180M mutation in lamivudine-resistant HBV possessing the precore and preS2 genomic changes.

Therapeutic concepts for hepatitis B virus (HBV) infection have been strikingly modified by the introduction of nucleos(t)ide analogues. Nucleos(t)ide analogues, such as lamivudine, adefovir dipivoxil, entecavir, tenofovir disoproxil fumarate, emtricitabine, telbivudine, and clevudine, have been shown to lead to suppression of viral replication and improvement of liver diseases in chronic HBV infection [1–10]. However, the effectiveness of nucleos(t)ide analogues is debilitated by the emergence of drug-resistant mutant virus. Treatment with lamivudine has been shown to lead to a higher rate of emergence of drug-resistant virus than with other newly developed nucleos(t)ide analogues, such as adefovir dipivoxil and entecavir [11–14]. The incidence of lamivudine resistance has been reported to be 24% at 1 year and 70% at 4 years of therapy [11].

Lamivudine resistance is known to be caused by a point mutation within the reverse transcriptase (rt) domain of the HBV polymerase gene, either rtM204V or rtM204I [15–17]. In addition, an rtL180M mutation has been shown to be frequently found together with the rtM204V/I mutation associated with lamivudine resistance [15–17]. Previous studies using in vitro transfection with the HBV-expressing plasmid have demonstrated that the rtM204V/I mutation principally confers lamivudine resistance but results in a decrease in viral replicative activity [18, 19]. It has also been shown that
the rtL180M mutation has no relevance to lamivudine resistance in itself but restores the reduced replicative activity caused by the lamivudine resistance–associated rtM204V/I mutation [20]. In light of these findings, the rtL180M mutation has been recognized as being compensatory for the support of replication in lamivudine-resistant HBV. Among patients with type B chronic hepatitis (CH-B) showing lamivudine resistance, almost all rtM204V mutations have been detected in conjunction with the rtL180M mutation, and rtM204I/rtL180I mutations have been found either in isolation or together with the rtL180M mutation [15–17]. Thus, the compensatory rtL180M mutation is not always necessary for generating replicative-competent lamivudine-resistant HBV in the clinical setting. Virus without the rtL180M mutation is speculated to possess specific features in the genome that support viral replicative activity, compared with virus with the mutation. However, differences between lamivudine-resistant viruses with and those without the rtL180M mutation have not been elucidated.

To clarify this, we determined the nucleotide sequences of full-length HBV DNA in 44 patients with CH-B who showed lamivudine resistance, by means of the direct sequencing method. Differences in the whole HBV genome were comprehensively investigated in relation to the presence or absence of the rtL180M mutation.

METHODS

Patients. The subjects were 44 consecutive patients with CH-B (37 males and 7 females) who received lamivudine therapy and became refractory to it at Osaka University Hospital and National Hospital Organization Osaka National Hospital. At the beginning of therapy, all patients tested positive for hepatitis B surface antigen (HBsAg) and were positive for HBV DNA by a branched DNA assay (Quantiplex HBV DNA; Chiron) or a polymerase chain reaction (PCR)–based assay (Amplicor HB Monitor; Roche Diagnostics). All patients were negative for antibodies to hepatitis C virus and HIV; none showed evidence of alcoholic liver disorder, autoimmune hepatitis, or drug-induced liver injury. Eight patients (18%) had previously received interferon (IFN) therapy.

All patients were treated with 100 mg of lamivudine daily, and liver function tests and monitoring of HBV markers were conducted during follow-up. In 16 patients (36%), natural IFN-α therapy (Sumiferon; Sumitomo Pharmaceuticals) was administered in combination with lamivudine for the initial 24 weeks (total dose, 432 million units). For all 44 patients, the lamivudine-resistant rtM204V/I mutation was detected by a PCR enzyme-linked minisequence assay (Sumitomo Metal Industries) [21] after an initial reduction and subsequent increase in HBV DNA during therapy. All serum samples for sequencing analysis of full-length HBV DNA were collected after the emergence of the lamivudine-resistant mutant virus and were stored at −80°C until use. The serum sampling points ranged from 0.8 to 5.5 years (median, 2.7 years) after the commencement of lamivudine therapy. In addition, pairwise serum samples obtained before therapy were used to determine the nucleotide sequences in portions of HBV DNA as baseline controls for 23 patients (52%).

Patient characteristics at the point of analysis were as follows. Age ranged from 25 to 74 years (median, 51 years). Hepatitis B e antigen (HBeAg) was found in 31 patients (70%), and antibody to HBeAg developed in all 13 HBeAg-negative patients (30%). Serum HBV DNA levels ranged from 3.5 to >7.6 log₁₀ copies/mL (median, 7.2 log₁₀ copies/mL). Serum alanine aminotransferase (ALT) levels ranged from 11 to 393 IU/L (median, 66 IU/L). Chronic hepatitis was diagnosed in 34 patients (77%), cirrhosis in 6 (14%), and hepatocellular carcinoma in 4 (9%), on the basis of liver biopsy and/or abdominal imaging procedures. Informed consent was obtained from all patients.

Genomic analysis of full-length HBV nucleotide sequences. From the serum sample, full-length HBV DNA was amplified by PCR and directly sequenced as described elsewhere [22]. The full-length HBV DNA sequences derived from the 44 patients with lamivudine-resistant CH-B (GenBank accession numbers AB367392–AB367435) were aligned together with the 12 representative HBV strains of various genotypes by means of CLUSTALW software. Phylogenetic tree analysis was then conducted [23, 24].

Plasmid and transfection. The HBV-expressing plasmid pHBC was derived from the genotype C2 HBV strain aA4d (GenBank accession number X01587) [25]. pHBC was constructed by inserting the 1.2-fold HBV genome into pBluescriptIISK+ pHBc-PC and pHBc-DPS2, which were generated by site-directed mutagenesis, possessed the precore-defective A1986 mutation and the short deletion of 45 bp (nt 11–55) within the preS2 gene. Further site-directed mutagenesis was done to introduce rtM204V and rtL180M, rtM204I and rtL180M, or rtM204I alone into pHBc, pHBc-PC, and pHBc-DPS2. pCMV-SEAP was a secreted alkaline phosphatase–expressing plasmid.

For transfection, 3 × 10⁵ Huh7 cells were seeded on a 35-mm-diameter culture dish and transfected with 1 µg of various HBV-expressing plasmids and 0.06 µg of pCMV-SEAP, using FuGENE6 reagent (Roche Diagnostics). On day 5, the culture supernatant and cell lysate were collected. Transfection efficiency was evaluated by measuring the secreted alkaline phosphatase activity.

Detection of viral progeny DNA and antigen in HBV-expressing cells. For detection of intracellular HBV DNA, cells were lysed in buffer containing 50 mmol/L Tris-Cl (pH 7.5), 1 mmol/L EDTA, and 1% Nonidet-P40. After a 15-min incubation on ice, nuclei were removed by brief centrifugation. Then, the sample was incubated at 37°C for 30 min in the presence of 0.1 mg/mL DNaseI and 10 mmol/L MgCl₂. After the reaction was stopped by adding EDTA, the sample was subjected to over-
night incubation at 37°C in buffer containing 1% sodium dodecyl sulfate and 0.5 mg/mL proteinase K, followed by phenol/chloroform extraction and ethanol precipitation. The DNA sample was subjected to Southern blot analysis to detect HBV DNA, using a nonradioactive detection system (Alkphos Direct; GE Healthcare Life Sciences). Finally, the signals were analyzed quantitatively using ImageJ software (version 1.38). To detect extracellular HBV DNA, the transfection was scaled up to the 60-mm-diameter culture dish. After clarification by centrifugation at 8300 g for 30 min, the culture medium (3 mL) was centrifuged through a 20% sucrose cushion at 192,000 g for 4 h, using the Beckmann SW55Ti rotor. Then, DNA was extracted from the pellet and subjected to Southern blot analysis as described above. HBsAg and HBeAg in the culture medium were measured by chemiluminescent immunoassay.

Statistical analysis. Statistical analysis was performed by the χ² test, Fisher’s exact test, and the Mann-Whitney U test. The results for the in vitro transfection study were examined by 1-way analysis of variance, and pairwise comparison was done by Fisher’s protected least significant difference test. P < .05 was considered to indicate statistical significance.

RESULTS

Patient clinical characteristics and lamivudine resistance–associated mutations. All 44 HBV strains obtained from the patients with lamivudine-resistant CH-B comprised 3161–3230 nt in length and belonged to genotype C2, the most prevalent type in Japan (figure 1). As for lamivudine resistance–associated mutations in these strains, the rtM204V mutation was observed in 16 strains (36%), whereas the remaining 28 strains (64%) had the rtM204I mutation. The compensatory rtL180M mutation was found in 30 strains (68%). All 16 strains with rtM204V and 14 (50%) of the 28 strains with rtM204I possessed the rtL180M
mutation, in agreement with previous reports with respect to the emergence pattern of the rtM204V/I and rtL180M mutations [15–17].

Various patient clinical characteristics were first correlated with the presence or absence of the rtL180M mutation or with the alternative of the rtM204V or rtM204I mutation in our 44 patients with CH-B (table 1). No differences were observed between patients with and those without the rtL180M mutation with respect to age, sex ratio, disease severity, ALT level, HBeAg positivity, serum HBV DNA level, frequency of previous IFN therapy, frequency of combination therapy with IFN, and total duration of lamivudine administration until the point of analysis. Also, there were no significant differences concerning these 9 characteristics between patients with virus having the rtM204V mutation and those with virus having the rtM204I mutation.

Genomic changes throughout the HBV genome associated with lamivudine resistance–associated mutations. Next, the genomic changes, which were significantly correlated with the occurrence of rtL180M or the preference for rtM204V or rtM204I, were investigated for the 44 HBV strains derived from the patients. As shown in table 2, 8 mutations and 1 deletion were identified as viral genomic changes significantly associated with the presence or absence of rtL180M. Among them, the A1896 mutation, which forms the in-frame stop codon in the

Clinical feature	rtL180M positive (n = 30)	rtL180M negative (n = 14)	P
Age, years	48 (25–74)	55 (27–71)	NS
Sex, M/F, no.	25/5	12/2	NS
Liver disease, chronic hepatitis/cirrhosis/hepatocellular carcinoma, no.	26/3/1	8/4/2	NS
ALT level, IU/L	66 (11–331)	67 (25–393)	NS
HBeAg, positive/negative, no.	23/7	8/6	NS
HBV DNA level, log_{10} copies/mL	7.5 (3.5 to >7.6)	7.1 (3.6 to >7.6)	NS
Previous IFN therapy, no. (%)	6 (20)	2 (14)	NS
Combination therapy with IFN, no. (%)	10 (33)	6 (43)	NS
Duration of lamivudine administration until point of analysis, years	2.9 (1.5–5.5)	2.2 (0.8–4.8)	NS

NOTE. Data are median (range) values, unless otherwise indicated. HBeAg, hepatitis B e antigen; IFN, interferon; NS, not significant.

Genomic changes throughout the HBV genome associated with lamivudine resistance–associated mutations. Next, the genomic changes, which were significantly correlated with the occurrence of rtL180M or the preference for rtM204V or rtM204I, were investigated for the 44 HBV strains derived from the patients. As shown in table 2, 8 mutations and 1 deletion were identified as viral genomic changes significantly associated with the presence or absence of rtL180M. Among them, the A1896 mutation, which forms the in-frame stop codon in the

Viral genomic changes	Consensus nucleotide^a	Amino acid substitution	rtL180M, no. (%)	Positive (n = 30)	Negative (n = 14)	P
Mutation						
A373	C	Pol-L426M (rtL82M)	0 (0)	3 (21)	<.05	
T619	C	None	0 (0)	3 (21)	<.05	
G739	T	Pol-M550V (rtM204V), surface-I95R	16 (53)	0 (0)	<.001	
T/C/A741	G	Pol-M550I (rtM204I), surface-W96L/S/stop	14 (47)	14 (100)	<.001	
A1896	G	Precore-V282stop	5 (17)	9 (64)	<.005	
T2102	C	None	0 (0)	3 (21)	<.05	
A/G2660	C	Pol-N118K	0 (0)	3 (21)	<.05	
A2860	T	PreS1-SST, pol-V184D^b	0 (0)	4 (29)	<.01	
Deletion						
6–54-bp deletion within nt 1–55 . . .	Truncation of 2–18 amino acids in preS2^c	3 (10)	7 (50)	<.01		

^a Consensus nucleotides are derived from the genotype C2 HBV strain adr4 (GenBank accession no. X01587) [25].

^b One patient had the pol-V184Q amino acid substitution due to a mutation in the adjacent nucleotide position.

^c Detailed patterns of the preS2 deletion are shown in figure 2.
The precore gene and results in the disability of HBeAg synthesis [26, 27], was found more frequently in viral strains without rtL180M than in those with it (64% vs. 17%; \(P \leq .005\)). Viral strains lacking rtL180M possessed the short deletion in the preS2 gene more frequently than those with rtL180M (50% vs. 10%; \(P \leq .01\)). The lengths of the deletion ranged from 12 to 54 bp, and all deletions were located within codon positions 5 to 22 of the preS2 gene (figure 2). Significant differences were also seen in the occurrences of 5 additional mutations—A373, T619, T2102, A/G2660, and A2860—between strains with and those without rtL180M. The detection rate of these 5 mutations was generally low among the lamivudine-resistant HBV strains obtained in this study. The G739 and T/C/A741 mutations are the causes of the rtM204V and rtM204I amino acid changes, and the occurrences of these mutations differed between viral strains with and those without rtL180M (\(P \leq .001\)), as described above.

Throughout the HBV genome, 5 mutations were significantly associated with the preference for the rtM204V or rtM204I mutation in the 44 lamivudine-resistant HBV strains (table 3). Of them, 3 mutations—C565, A853, and C1568—were found more frequently in strains with rtM204V than in those with rtM204I, but the frequencies of these mutations were considerably low in our lamivudine-resistant HBV strains. The occurrence of the A667 mutation, which accounts for rtL180M, was

Table 3. Differences in the viral genome between lamivudine-resistant hepatitis B virus (HBV) strains with the rtM204V and rtM204I mutations.

Mutation	Consensus nucleotide	Amino acid substitution	rtM204V (n = 16)	rtM204I (n = 28)	\(P\)
C565	T	None	4 (25)	0 (0)	\(<.05\)
T/C646	A	Pol-V519L (rtV173L)	5 (31)	0 (0)	\(<.005\)
A667	T	Pol-L528M (rtL180M)	16 (100)	14 (50)	\(<.001\)
A853	C	None	3 (19)	0 (0)	\(<.05\)
C1568	T	Pol-L826P	3 (19)	0 (0)	\(<.05\)

\(a\) Consensus nucleotides are derived from the genotype C2 HBV strain adr4 (GenBank accession no. X01587) [25].
resistant rtM204V/I, rtL180M, and rtV173L mutations, they were associated with drug resistance–associated mutations during the establishment of lamivudine-resistant virus.

It has been reported that the rtV173L mutation was detected together with the rtM204V and rtL180M mutations and was considered to be associated with lamivudine resistance [17, 28]. Our finding concerning the rtV173L mutation agreed with those of previous reports.

According to these observations, the relevance of the precore-defective A1896 mutation and the preS2 deletion to the absence of rtL180M was the most distinctive feature of the lamivudine-resistant HBV strains on screening of the whole genome. We therefore directed our attention to these precore and preS2 genomic changes and further investigated their role in the establishment of lamivudine-resistant virus.

Serial changes in the precore mutation and the preS2 deletion in lamivudine-resistant virus before and after lamivudine therapy. Serial changes in the precore-defective A1896 mutation, the short deletion in the preS2 gene, and the drug resistance–associated mutations were investigated in the 23 (52%) of 44 patients with CH-B whose serum samples obtained before lamivudine therapy were available (table 4). Of the 11 patients with virus having the precore-defective mutation after the development of lamivudine resistance, 8 had virus that already possessed the mutation before therapy. Thus, the precore-defective mutation was generally a preexisting genomic change in most patients showing lamivudine resistance. On the other hand, of the 5 patients with virus that had the deletion in the preS2 gene after the development of drug resistance, 4 had virus that did not possess the deletion before therapy. The frequent detection of the preS2 deletion in lamivudine-resistant virus compared with virus before therapy indicates that this deletion may be coselected with drug resistance–associated mutations during the establishment of lamivudine-resistant mutant virus. As for the lamivudine-resistant rtM204V/I, rtL180M, and rtV173L mutations, they were not detected in any of the 23 viruses before lamivudine therapy, as expected.

Effect of the precore mutation and the preS2 deletion on the replicative competence of lamivudine-resistant HBV in vitro. We further conducted in vitro transfection analysis to explore the influence of the precore-defective mutation and the preS2 deletion on the replicative competence of lamivudine-resistant HBV. Three plasmids that expressed wild-type virus, precore-defective virus, and virus with the preS2 deletion were prepared. Next, plasmids with rtM204V plus L180M, rtM204I plus L180M, and rtM204I alone were synthesized in each of the 3 HBV-expressing backbone constructs. The level of intracellular HBV DNA was examined in cells transfected with these HBV-expressing plasmids. As shown in figure 3A and 3B, the introduction of lamivudine resistance–associated mutations into the virus with the wild-type backbone led to a decrease in viral replication (lanes 1–4). In addition, the replicative competence of the drug-resistant virus lacking rtL180M tended to be lower than that of the virus having rtL180M, although the difference was not statistically significant. As for the precore-defective virus, its replicative activity at baseline was higher than that of the wild-type virus (lanes 1 and 5). The decline in HBV replication due to the insertion of drug resistance–associated mutations was also observed for the virus with the precore-defective backbone. However, unlike for the virus with the wild-type backbone, the replicative activity of the precore-defective virus with lamivudine-resistant mutations was maintained at a considerable level (lanes 5–8). As for the virus with the preS2-deleted backbone, a reduction in viral replication due to the introduction of lamivudine resistance–associated mutations was also seen, but the degree of the reduction was not as great as that in the wild-type virus (lanes 9–12). Thus, both the precore-defective mutation and the preS2 deletion possessed activity supporting the viral replicative competence of lamivudine-resistant HBV, although the activity with the preS2 deletion was not as strong as that with the precore-defective mutation.

Table 4. Changing pattern of the precore defective A1896 mutation and short deletion in the preS2 gene from the pretreatment baseline to development of lamivudine resistance in relation to the presence or absence of the rtL180M mutation.

Type of mutation	Pattern of mutation	rtL180M, no.		
	Before therapy	After therapy	Positive (n = 15)	Negative (n = 8)
Precore-defective A1896 mutation	−	−	8	2
	+	+	4	4
	−	+	1	2
	+	−	2	0
Short deletion in the preS2 gene	−	−	12	5
	+	+	0	1
	−	+	2	2
	+	−	1	0

* After development of lamivudine-resistant mutant virus.
tendency appeared to be more evident in the drug-resistant virus without the rtL180M mutation. This may be a reason for the compensatory rtL180M mutation not being necessary during the establishment of lamivudine resistance in the HBV strain having the precore and preS2 genomic changes.

When the level of extracellular HBV DNA was examined in cells transfected with various HBV-expressing plasmids (figure 3C and 3D), no significant differences were observed among wild-type, precore-defective, and preS2-deleted viruses with respect to the reduction of viral secretion caused by the introduction of the lamivudine resistance-associated mutation. The discrepant results between the intracellular and extracellular viral DNA levels likely occurred because the extracellular viral DNA assay was less sensitive to minute changes in viral replication than the intracellular viral DNA assay.

As for the levels of production of HBsAg and HBeAg, the virus with the preS2-deleted backbone produced less HBsAg than did the viruses with the wild-type and precore-defective backbones (figure 3E). The wild-type and preS2-deleted viruses secreted HBeAg whereas the precore-defective virus did not (figure 3F).

The lamivudine resistance-associated mutations did not affect the production levels of HBV antigens.

DISCUSSION

HBV establishes lamivudine resistance via the resistance-causative rtM204V/I mutation and the replication-compensatory rtL180M mutation [15–20]. The present study aimed to investigate the genomewide peculiarity of lamivudine-resistant HBV. In particular, we elucidated the differences between viruses with and those without the compensatory rtL180M mutation. For this purpose, we conducted full-length sequencing analysis of lamivudine-resistant viruses derived from patients with CH-B by means of the PCR direct sequencing method. In some patients, the results were also confirmed by the PCR-subcloning method (data not shown). As a result, the precore-defective

Figure 3. Levels of intracellular and extracellular progeny viral DNA and viral antigen production in cultured cells transfected with wild-type, precore-defective, or preS2-deleted hepatitis B virus (HBV)-expressing plasmids with or without lamivudine resistance-associated mutations. A, Representative result of Southern blot analysis to detect the intracellular progeny HBV DNA in cells transfected with various HBV-expressing plasmids. B, Quantitative analysis of the level of intracellular progeny HBV DNA. The progeny HBV DNA level for transfection with pHBC was considered to be 1, and the fold activities for transfection with the mutant HBV-expressing plasmids were calculated. The experiment was done 3 times, and results are shown as mean ± SD values. Statistically significant differences (P < .05) are as follows: lane 1 vs. 2–4, 1 vs. 5, 2 vs. 6 and 10, 3 vs. 7 and 11, 4 vs. 8 and 12, 5 vs. 6 and 8, and 9 vs. 10–12. C, Representative result of Southern blot analysis to detect extracellular progeny HBV DNA in cells transfected with various HBV-expressing plasmids. D, Quantitative analysis of the level of extracellular progeny HBV DNA. The progeny HBV DNA level for transfection with pHBC was considered to be 1, and the fold activities for transfection with the mutant HBV-expressing plasmids were calculated. The experiment was done 4 times, and results are shown as mean ± SD values. A statistically significant difference was not observed by 1-way analysis of variance. E, Levels of hepatitis B surface antigen (HBsAg) in culture medium of cells transfected with various HBV-expressing plasmids. The HBsAg level for transfection with pHBC was considered to be 1, and the fold activities for transfection with the mutant HBV-expressing plasmids were calculated. The experiment was done 3 times, and results are shown as mean ± SD values. Statistically significant differences (P < .05) are as follows: lanes 1 and 5 vs. 9, 3 and 7 vs. 11, and 4 and 8 vs. 12. F, Levels of hepatitis B e antigen (HBeAg) in culture medium of cells transfected with various HBV-expressing plasmids. The HBeAg level for transfection with pHBC was considered to be 1, and the fold activities for transfection with the mutant HBV-expressing plasmids were calculated. The experiment was done 3 times, and results are shown as mean ± SD values. Statistically significant differences (P < .05) are as follows: lanes 1 and 9 vs. 5, 2 and 10 vs. 6, 3 and 11 vs. 7, and 4 and 12 vs. 8. RC, relaxed circular HBV DNA; SS, single-stranded HBV DNA.
A1896 mutation and the short deletion in the preS2 gene were identified as genomic changes significantly associated with the occurrence of the rtL180M mutation. These 2 viral genomic changes were found to be highly relevant to the observation that the rtL180M mutation was not needed for the establishment of the lamivudine-resistant mutant virus. This suggests that the precore-defective mutation and the preS2 deletion may function as surrogates for the compensatory rtL180M mutation and assist replication of lamivudine-resistant HBV. In the serial analysis of the mutations examined before and after lamivudine therapy, the preS2 deletion tended to be coselected with the drug resistance–associated mutation after therapy, although this tendency was not seen in the case of the precore-defective mutation. This also indicates that the preS2 deletion may have some advantage for establishment of lamivudine-resistant HBV.

We further conducted in vitro transfection analysis to verify the possible supportive role played by the precore and preS2 genomic changes in replication of lamivudine-resistant virus. The intracellular viral DNA was measured as a marker of viral replicative competence. In the wild-type virus, lamivudine resistance–associated mutations reduced viral replicative competence, and the rtL180M mutation compensated for viral replication to a certain degree. This agreed with previous findings of some other investigators [18–20]. On the other hand, the reduction in the viral replication level caused by the lamivudine-resistant mutations was lower in the precore-defective and preS2-deleted viruses than in the wild-type virus. Even the lamivudine-resistant virus without the rtL180M mutation maintained a substantial level of replicative activity in the viruses with precore and preS2 genomic changes. Thus, our results contribute evidence for a supportive role of both precore and preS2 genomic changes in the replicative competence of lamivudine-resistant HBV. This tendency was not evident in the case of the extracellular viral DNA assay, which may have been due to this assay’s lower ability to detect slight changes in viral replicative activity.

As for the functional role played by the precore-defective A1896 mutation in the replication competence of lamivudine-resistant HBV, enhanced replicative activity of virus with lamivudine resistance caused by introduction of the precore-defective mutation has been reported for the recombinant HBV–expressing baculovirus system using the genotype D HBV strain [29]. Another previous in vitro transfection analysis using the genotype A HBV strain revealed that experimental insertion of the precore-defective mutation together with the T1858 mutation compensated for the replication competence of the virus possessing lamivudine-resistant mutations [30]. Our experimental result using the genotype C2 HBV strain is consistent with these previous findings. In addition, we showed in the present study that the preS2 deletion may also play a supportive role in the replication yield of lamivudine-resistant HBV, although the enhancement of viral replication caused by the preS2 deletion was not as strong as that caused by the precore-defective mutation.

It remains unclear why the precore-defective mutation leads to an increase in the viral replication of drug-resistant HBV. Previous in vitro transfection analyses have shown that the precore-defective mutation had no influence on viral replicative competence [29–31]. However, in our transfection analysis using the genotype C2 HBV strain, the replicative competence of the precore-defective virus tended to be higher than that of the wild-type virus, even when viruses without the lamivudine resistance–associated mutations were compared. It has recently been shown that the precore-defective mutation caused an elevation in viral replication in the particular HBV strain of genotype B1 [32]. According to this, the precore-defective mutation may in some way enhance HBV replication irrespective of the lamivudine resistance.

As for the involvement of the preS2 deletion in the replicative advantage of lamivudine-resistant HBV, the deletion results in truncation of the polymerase protein as well as the surface protein. Such truncation of the polymerase protein may increase the enzymatic activity and replication capacity of drug-resistant virus. As another possibility, the surface protein with the preS2 deletion may link to incomplete envelopment and subsequent intracellular accumulation of immature viral particles, resulting in an elevated intracellular HBV DNA level. However, this is improbable, because viral envelopment and secretion may be achieved efficiently in preS2-deleted virus as well as wild-type and precore-defective viruses, as was shown in the extracellular viral DNA assay.

In summary, our findings indicate that a precore-defective A1896 mutation and a short deletion in the preS2 gene may support viral replicative activity and substitute for the compensatory rtL180M mutation. Both the precore-defective mutation and the preS2 deletion have been shown to be frequently found during chronic HBV infection [26, 27, 33]. It is noteworthy that such naturally occurring frequent genomic changes in HBV significantly affect the establishment of drug-resistant viral strains. The lamivudine-resistant rtM204V/I mutation has also been reported to be completely or partially involved in resistance to other nucleos(t)ide analogues (emtricitabine, telbivudine, entecavir, and clevudine) [8, 9, 14, 34]. Our findings reveal novel aspects about the establishment of drug-resistant virus possessing the rtM204V/I and rtL180M mutations during the antiviral treatment of patients with CH-B.

References
1. Lai CL, Chien RN, Leung NW, et al. A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. N Engl J Med 1998; 339:61–8.
2. Dienstag JL, Schiff ER, Wright TL, et al. Lamivudine as initial treatment for chronic hepatitis B in the United States. N Engl J Med 1999; 341: 1256–63.
3. Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen-negative chronic hepatitis B. Adefovir Dipivoxil 438 Study Group. N Engl J Med 2003; 348:800–7.

4. Marcellin P, Chang TT, Lim SG, et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. Adefovir Dipivoxil 437 Study Group. N Engl J Med 2003; 348:808–16.

5. Chang TT, Gish RG, de Man R, et al. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. BEHoLD AI463022 Study Group. N Engl J Med 2006; 354:1001–10.

6. Lai CL, Shouval D, Lok AS, et al. Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B. BEHoLD AI463027 Study Group. N Engl J Med 2006; 354:1011–20.

7. van Bommel F, Wunschke T, Mauss S, et al. Comparison of adefovir and tenofovir in the treatment of lamivudine-resistant hepatitis B virus infection. Hepatology 2004; 40:1421–5.

8. Gish RG, Trinh H, Leung N, et al. Safety and antiviral activity of emtricitabine (FTC) for the treatment of chronic hepatitis B infection: a two-year study. J Hepatol 2005; 43:60–6.

9. Lai CL, Leung N, Teo EK, et al. A 1-year trial of telbivudine, lamivudine, and the combination in patients with hepatitis B e antigen-positive chronic hepatitis B. Telbivudine Phase II Investigator Group. Gastroenterology 2005; 129:528–36.

10. Marcellin P, Mommeja-Marín H, Sacks SL, et al. A phase II dose-escalating trial of clevudine in patients with chronic hepatitis B. Hepatology 2004; 40:140–8.

11. Lai CL, Dienstag J, Schiff E, et al. Prevalence and clinical correlates of YMDD variants during lamivudine therapy for patients with chronic hepatitis B. Clin Infect Dis 2003; 36:687–96.

12. Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, et al. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B for up to 5 years. Adefovir Dipivoxil 438 Study Group. Gastroenterology 2006; 131:1743–51.

13. Colombo RI, Rose R, Baldick CJ, et al. Entecavir resistance is rare in nucleoside naive patients with hepatitis B. Hepatology 2006; 44:1656–65.

14. Tenney DJ, Rose RE, Baldick CJ, et al. Two-year assessment of entecavir resistance in lamivudine-refractory hepatitis B virus patients reveals different clinical outcomes depending on the resistance substitutions present. Antimicrob Agents Chemother 2007; 51:902–11.

15. Allen MI, Deslauriers M, Andrews CW, et al. Identification and characterization of mutations in hepatitis B virus resistant to lamivudine. Lamivudine Clinical Investigation Group. Hepatology 1998; 27: 1670–7.

16. Liav YF, Chien RN, Yeh CT, Tsai SL, Chu CM. Acute exacerbation and hepatitis B virus clearance after emergence of YMDD motif mutation during lamivudine therapy. Hepatology 1999; 30:567–72.

17. Westland CE, Yang H, Delaney WE 4th, et al. Activity of adefovir dipivoxil against all patterns of lamivudine-resistant hepatitis B viruses in patients. J Viral Hepat 2003; 10:627–73.

18. Ono-Nita SK, Kato N, Shiratori Y, et al. Susceptibility of lamivudine-resistant hepatitis B virus to other reverse transcriptase inhibitors. J Clin Invest 1999; 103:1635–40.

19. Melegari M, Scaglioni PP, Wands JR. Hepatitis B virus mutants associated with 3TC and famciclovir administration are replication defective. Hepatology 1998; 27:628–33.

20. Ono SK, Kato N, Shiratori Y, et al. The polymerase L528M mutation cooperates with nucleotide-binding-site mutations, increasing hepatitis B virus replication and drug resistance. J Clin Invest 2001; 107:449–55.

21. Kobayashi S, Ide T, Sata M. Detection of YMDD motif mutations in some lamivudine-untreated asymptomatic hepatitis B virus carriers. J Hepatol 2001; 34:584–6.

22. Kanada A, Takehara T, Okhawa K, et al. Type B fulminant hepatitis is closely associated with a highly mutated hepatitis B virus strain. Intervirology 2007; 50:394–401.

23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–20.

24. Saitou N, Nei M. The neighbor-joining method: a new method for estimating evolutionary rates of base substitution. Mol Biol Evol 1987; 4:407–25.

25. Fujiyama A, Miyano A, Nozaki C, Yoneyama T, Ohtomo N, Matsubara K. Cloning and structural analyses of hepatitis B virus DNAs, subtype adr. Nucleic Acids Res 1983; 11:4601–10.

26. Carman WF, Jacyna MR, Hadziyannis S, et al. Mutation preventing formation of hepatitis B e antigen in patients with chronic hepatitis B infection. Lancet 1989; 2:588–91.

27. Okamoto H, Yotsumoto S, Akahane Y, et al. Hepatitis B viruses with precore region defects prevail in persistently infected hosts along with sereconversion to the antibody against e antigen. J Virol 1990; 64:1298–303.

28. Delaney WE 4th, Yang H, Westland CE, et al. The hepatitis B virus polymerase mutation rtV173L is selected during lamivudine therapy and enhances viral replication in vitro. J Virol 2003; 77:11833–41.

29. Chen RY, Edwards R, Shaw T, et al. Effect of the G1896A precore mutation on drug sensitivity and replication yield of lamivudine-resistant HBV in vitro. Hepatology 2003; 37:27–35.

30. Tacke F, Gehrke C, Luedde T, Heim A, Manns MP, Trautwein C. Basal core promoter and precore mutations in the hepatitis B virus genome enhance replication efficacy of lamivudine-resistant mutants. J Virol 2004; 78:8524–35.

31. Tong SP, Diod C, Grippon P, et al. In vitro replication competence of a cloned hepatitis B virus variant with a nonsense mutation in the distal pre-C region. Virology 1991; 181:733–7.

32. Ozasa A, Tanaka Y, Orito E, et al. Influence of genotypes and precore mutations on fulminant or chronic outcome of acute hepatitis B virus infection. Hepatology 2006; 44:326–34.

33. Sugauchi F, Ohno T, Orito E, et al. Influence of hepatitis B virus genotypes on the development of preS deletions and advanced liver disease. J Med Virol 2003; 70:537–44.

34. Brunelle MN, Jacquard AG, Pichoud C, et al. Susceptibility to antivirals of a human HBV strain with mutations conferring resistance to both lamivudine and adefovir. Hepatology 2005; 41:1391–8.