Unique Physical and Chemical Properties of Kian Sand Worm (Siphonosoma ur-pulau) Traditional Medicine: Electrical, Optical and Chemical Response of Edible Powder with Different Sizes

Amrosius Masrikat¹,² and Hendry Izaac Elim¹,⁵*

Affiliation
¹Department of Physics, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon, Indonesia
²Nanoengineering Research Center and Innovative Creation (PNRI-LP3M), Pattimura University, Tual, Ambon, Indonesia
³Multidisciplinary Research Center of Excellence (MoCE), UNPATTI, Rumah Tiga, Ambon, Indonesia
⁴Physics department, Pattimura University, Ambon, Maluku, Indonesia
⁵Development and Innovative Center (PPI) of Pattimura University, Ambon, Indonesia

Corresponding author: Hendry Izaac Elim, Nanomaterials for Photonics Nanotechnology Laboratory (N4PN Lab.), Department of Physics, Faculty of Mathematics and Natural Sciences, Pattimura University, Jl. Ir. M. Putuhena, Peka, Ambon, Indonesia, Tel: + 6285243836774, Email: hendryelim@gmail.com

Citation: Masrikat A and Elim IH. Unique physical and chemical properties of kian sand worm (siphonosoma ur-pulau) traditional medicine: electrical, optical and chemical response of edible powder with different sizes (2019) Biochem Modern Appl 3: 51-55.

Received: Sep 02, 2019
Accepted: Sep 22, 2019
Published: Sep 26, 2019

Abstract
Sea worms or sand worms were widely spread on earth generally in beach areas with a series of different taxonomy sizes. There made a variety of the genus as well as species of such interesting worms. This study explores that traditional medicines fabricated using Kian sand worm (Siphonosoma ur-pulau) with two types of grain sizes. Our significant findings show an attractive potential of it as toxic absorption based traditional medicine besides its normal use as daily foods in the Tual region of Maluku province in the eastern part of Indonesia. Such noteworthy identification was tested and identified in the grain rough size medicine with low concentration related to its integrated multitasking response of electrical, optical and chemical characters such as its lowest absorbance at a moderate transparency of 0.271 a.u (75.528%) pH ~5.09, and stable voltage under thermal effect ~0.7 V. This invention unlocks a various opportunity of the use of Kian sand worm as a multitasking traditional medicine.

Keywords: Kian sand worm (Siphonosoma ur-pulau), Traditional medicine, Toxic absorption, Multitasking traditional medicine.

Introduction
The mystery of healthy natural foods involving herbal medicines extracted from parts of plants or traditional medicine made by parts of animals has been a long time trust among ordinary people with different tribes and nations in small villages or remote islands on earth. Such incredible simple science from generation to generation from ancient times has been an evident history inherited to current 21st century people worldwide. As the advancement of Nano medicine with multitasking understanding or multi-agent system is acceptable among interdisciplinary scientists as well as unconscious ordinary society, the life of healthy people has been a good example to improve cultural behaviors among person to person interactions daily in current ~7.8 billion world people [1-22].

Even though the space of human being on earth has been shrinking to be ~ 50.33 Person/km² in the whole living land area of earth surface. The momentum of lifestyle is a good source of energy contribution for maintaining human being being such as both enzymatic and non-Enzymatic types of giant natural antioxidants to develop either herbal medicines or traditional medicine, for instance in sea or sand worms extracted and taken from the parts of sea worms [1-22]. Such sand worms mostly stayed in the beach sand areas or a land surface on earth very closely connected to the ~70% of world seas/ oceans. Therefore, it is interesting to investigate their unique physical chemistry chemical physics characters for a possibility in integrated traditional medicine based on electrical, optical and chemical responses, respectively.

Many deep investigations have been carried out about different types and locations of sea or sand worms all over the world with their focuses on typical anatomy, environmental behaviors, and food processing and products by using the identification through DNA barcoding, molecular detection worm relationships novel antithrombotic protease protective effects of polysaccharides bioturbation and aquaculture, ecological impact and counterplan [1-4, 23-29]. In this simple and coherent study, the authors present on how Kian sand worm named as Siphonosoma ur-pulau found in the south east part of Maluku province in the eastern part of Indonesia with surrounding over 1340 small islands (~10% of the number of Indonesia islands), and particularly located mostly in Ur-Pulau, Tual region can exhibit a unique physical chemistry chemical physics behavior due to its integrated electrical, optical and chemical...
responses as traditional medicine identified by inserting as fabricated two types of grains traditional medicine based Kian sand worm. The results of this work suggest that Kian sand worm can be generally used as a multitasking traditional medicine as unconsciousness consumed daily food by ordinary local people in Tual region of the eastern part of Indonesia.

Research Experimental Techniques

Kian sand worm (Siphonosoma ur-pulae) traditional medicine was fabricated using traditional modified technique in laboratory of nanomaterial’s for photonics nanotechnology (Lab. N4PN, physics department at Pattimura university (UNPATTI), Ambon, Indonesia) as well as nanotechnology research center and innovative creation (PPNRI, UNPATTI). The worms were collected in the sand beach parts of Ur-pula Island located in Tual region of Maluku province in the eastern part of Indonesia. (Figure 1) shows a typical anatomy of different body parts of Siphonosoma ur-pulae, a new species of sand worm. Such worm was often grouped as sea worm in the world wide view. However, the Kian sand worm was identified as one of the longest sand/sea worm on earth up to present as depicted in (Figure 2). Traditional herbal medicine using Kian sand worm was prepared by cooking it in a hotplate with the inner temperature pan of ~87.6 °C for few minutes.

The measured temperature during the frying time with an infrared thermometer was ~79.1 °C on the body of the Kian worm. The traditional medicine was then grinding into flour. After such process, the separation of the grain sizes was carried out using a separation tool that makes two types of different sizes namely as smooth and rough powders, respectively. In order to test both as prepared traditional medicines, a toxic target of betadine (a common outer medicine samples with its ability to dramatically reduce the toxic by absorbing the toxic during instant interaction. The physical quick response of toxic absorption was indicated by the color changing from dark brown to be light yellow. (Figure 4) In order to find out the detail optical response of such interesting traditional medicines, shows that the high concentration of the rough powder as depicted on the right side of Figure 4 had both low absorbance and transmittance at λ ~390 nm of 1.053 a.u. and 8.858%, respectively. While the low concentration of the rough powder was obtained to be superior at λ ~403.6 nm with the lowest Abs. of 0.271 a.u. and the largest transparency (T) of 53.52% among the four different traditional medicine samples with its ability to dramatically reduce the toxic by decreasing its absorbance from ~1.266 a.u. to ~0.271 a.u. at the nearest peak absorption in UV region. Such physical indicator could be seen in the naked eyes by the much more transparent solution after absorbing the toxic during instant interaction.

Results and Discussion

Depicts two types of traditional medicines as prepared with two types of grains following by its testing results on reducing betadine in drinkable water solvent (Figure 3). The physical quick response of toxic absorption was indicated by the color changing from dark brown to be light yellow. (Figure 4) In order to find out the detail optical response of such interesting traditional medicines, shows that the high concentration of the rough powder as depicted on the right side of Figure 4 had both low absorbance and transmittance at λ ~390 nm of 1.053 a.u. and 8.858%, respectively. While the low concentration of the rough powder was obtained to be superior at λ ~403.6 nm with the lowest Abs. of 0.271 a.u. and the largest transparency (T) of 53.52% among the four different traditional medicine samples with its ability to dramatically reduce the toxic by decreasing its absorbance from ~1.266 a.u. to ~0.271 a.u. at the nearest peak absorption in UV region. Such physical indicator could be seen in the naked eyes by the much more transparent solution after absorbing the toxic during instant interaction.

Citation: Masrikat A and Elim IH. Unique physical and chemical properties of kian sand worm (siphonosoma ur-pulae) traditional medicine: electrical, optical and chemical response of edible powder with different sizes (2019) Biochem Modern App13: 51-54.
Indicates physical chemistry chemical physics properties of pH behavior for the whole fresh samples, and the physical appearance after 8 days in two prepared grain sizes of traditional medicine based Kian sand worm (Figure 5). The lowest concentration of rough powder was the most needed contributor to decrease the pH of toxic solution from 6.39 to be 5.09. This observation and measurement confirms the optical parts as shown in Figure 4. To quantify the integrated understanding of electrical, optical, and chemical response of eatable powders with two different sizes medicines, (Figure 6) denotes the physical chemistry chemical physics characters of traditional medicine made by Kian sand worm according to time (t in s) versus temperature (T in °C), and voltage (V) versus T, respectively particularly in their reactions with the betadine toxic solvent. The traditional medicines show that there are about twice improvement of voltage in toxic solution from ~0.35 V to ~0.7 V in different temperature up to ~62°C. However, the voltage of smooth medicine powder shows a sudden decreasing at 55°C. Such unusual observation may be due to an easy chemical structural changing in the medicine on the particular temperature so that it needs a further study especially in the structural transformation because of physical effects of temperature and a unique current flow. However, the rough grain type of medicine is very promising due to its stability under the thermal influences.

Conclusion

These findings note that traditional medicines fabricated using Kian sand worm have a great potential as toxic absorption based medicine besides its use as daily foods in the Tual region of Maluku province in the eastern part of Indonesia. Such remarkable accuracy was identified by the grain rough size traditional medicine with low concentration as well as the integrated multitasking response of electrical, optical and chemical properties with its lowest abs. at a moderate transparency of 0.271 a.u (T ~53.528%), pH ~5.09, and stable voltage under thermal effect ~0.7 V. In summary, such current discovery of traditional medicine based Kian sand worm opens a widely opportunity of a multitasking traditional medicine.

Acknowledgement

The works of A.M and H.I.E were funded by self-financial grant. While all of the supporting research equipment was provided by PPNRI, UNPATTI.

References

1. Nurhikma N, Nurhayat T, and Purwaningsih S. Amino Acid, Fatty Acid, and Mineral Content of Marine Worm From South East Sulawesi (2017) JPHPI 20: 36-44. https://doi.org/10.17844/jphpi.v20i1.16396
2. Silaban BB. Analysis of Mineral Content of Seasia Sea Wood (Sipunculus Nudus) from Nalahia Beach Nusalaut Beach (2018) Majalah Biam 14: 22-27. http://dx.doi.org/10.29360/mvb.v14i1.3633
3. Ge Y, Tang Y, Guo S, Liu X, Zhu Z et al. Simultaneous Quantitation of Free Amino Acids, Nucleosides and Nucleobases in Sipunculus nudus by Ultra-High Performance Liquid Chromatography with Triple Quadrupole Mass Spectrometry (2016) Molecules 21:408, https://doi.org/10.3390/molecules21040408
4. Kawauchi GY and Gibriet G. Sipunculus nudus Linnaeus, 1766 (Sipuncula): cosmopolitan or a group of pseudo-cryptic species? An integrated molecular and morphological approach (2014) Marine Ecology 35: 478–491. https://doi.org/10.1111/mare.12104
5. Elim IH. Physics of Multitasking Nanomedicine (2017) IHMCR 2: 509-519. https://doi.org/10.22301/ijhmcr.2528-3189.509
6. Elim IH. Nanomedicine with Its Multitasking Applications: A View for Better Health (2017) IJHMCR 2: 353-357. https://doi.org/10.22301/IJHMCR.2528-3189.353

7. Elim IH. The Discovery of New Golobe and its Amazing Healing System (2019) Science Nature 2: 66-70. https://doi.org/10.30598/snvol2iss1pp86-089year2019

8. Elim IH. Scientific Breakthrough Based on Natural Creation: 1 Diamond with 7 Eyes (2018) COJ Reviews and Research 1: 1-4 https://doi.org/10.31031/COJRR.2018.01.000502

9. Elim IH. Multitasking Herbal Nanomedicine: A Frontier Report (2019) Nano scale Reports 2: 22-30 https://doi.org/10.26524/nhr1914

10. Elim IH. Theory, Implementation and the Nature of Truth (TIN) in Nanoscience, Nanotechnology, and Nanomedicine (NNN): From the Beginning of Universe to nm Scale Behavior (2019) Kenkyu Journal of Nanotechnology & Nanoscience 5: 33-36. https://doi.org/10.31872/2018/KJNN-100122

11. Elim IH. The First 1000 Atoms in Healing Process: From Nanotechnology to Nanomedicine (2018) International Journal of Health Medicine and Current Research 3: 1044-1046. https://doi.org/10.22301/IJHMCR.2528-3189.1044

12. Elim IH, Mapanawang AL, and Reddy VM. A Creative Proposal to Improve Woman and Child Health: from the Knowledge of Physical Nanoscience to Nanotechnology Implementation and Products (2019) CPQ Women and Child Health 1: 01-11.

13. Elim IH. Nonlinear Optics and the Frontier of Nanoscience and Nanotechnology (2018) Pattimura University Press, Indonesia 1-144.

14. Elim IH. Metode Fisika Ekspersen: Pelengkap Teori Fisika: To be Perfect like The 1 Who Created Our Incredible Universe (2018) Pattimura University press, Indonesia, 1-155.

15. Mapanawang AL, Sambode F, Killing M, Mapanawang S, Djinimangake B et al. Identification of Antioxidant Activity of Gojule Halmahera (Hornstedia Sp, Zingiberaceae Fruits) Fruit Extract (2016) International Journal of Pharmacy Review & Research 6: 31-34.

16. Elim IH, and Mapanawang AL, the Attractive Differences of Two Types of Herbal Medicine from Zingiberaceae Fruit (Gojule Halmahera) (2018) IJHMCR 3-799-806. https://doi.org/10.22301/IJHMCR.2528-3189.826

17. Mapanawang AL and Elim IH. Chemical Bonding Character of Love Herbal Medicine: A Prominent Medicine Candidate for Preventing HIV virus (2018) Nanotechnology&Applications 1: 1-4. https://doi.org/10.33425/2639-9466.1003

18. Elim IH and Mapanawang AL. Electronics Physical System of Large Antioxidant Structure in Herbal Medicine based Zingiberaceae Fruit: Understanding and Application (2018) Nanotechnology & Applications 1: 1-4. https://doi.org/10.33425/2639-9466.1004

19. Mapanawang AL and Elim IH. Unique Chemical Bonding Behavior of Love Herbal Medicine and Its Conjunction with Chemotherapy Drug (2018) Journal of Nanomedicine and Nanotechnology 9: 1000503. https://doi.org/10.4172/2157-4339.1000503

20. Elim HI, and Chiang YL. Nano chip Medicine: Physical Chemistry Engineering (2019) Science Nature 2: 86-89. https://doi.org/10.30598/snvol2iss1pp86-089year2019

21. Seay IF and Elim HI. The Observation of Fast, Long Term, and Stable Performance of Toxic Absorption in Herbal Blessing Product Based on Galoba Maluku (Zingiberaceae Fruits) (2019) Science Nature 2: 122-127. https://doi.org/10.30598/snvol2iss2pp122-127year2019

22. Mapanawang AL, and Elim HI, Pangi Leaf (Pangium edule Reine) Herbal Medicine: A Marvelous Candidate for the Prominent HIV Herbal Medicine (2019) Science Nature 2: 97-104. https://doi.org/10.30598/snvol2iss2pp97-104year2019

23. Hsu HT, Ning Y, Gwo CJ and Zeng NZ. DNA barcoding reveals cryptic diversity in the peanut worm Sipunculus nudus (2013) Molecular Int Ecology Resources 13: 596-606. https://doi.org/10.1111/j.1755-0998.12907

24. Wang Y, Shi TT, Huang G and Gong J. Molecular Detection of Eukaryotic Diets and Gut Mycobiomes in Two Marine Sediment-Dwelling Worms, Sipunculus nudus and Urechis unicinctus (2018) Microbes Environ 33: 290-300 https://doi.org/10.1264/jume2.ME18065

25. Indrade SCS, Strand M, Schwartz M, Chen H, Kajihara H et al. Disentangling ribbon worm relationships: multi-focus analysis supports traditional classification of the phylum Nemertea (2011) Cladistics 27: 1-19. https://doi.org/10.1111/j.1096-0031.2011.00376.x

26. Ge HY, Chen YY, Zhou GS, Liu X, Tang PY et al. A Novel Antithrombotic Protease from Marine Worm Sipunculus Nudus (2018) Int. J. Mol. Sci 19: 3023. https://doi.org/10.3390/ijms19103023

27. Cui F, Li M, Chen Y, Liu Y, He Y et al. Protective Effects of Polysaccharides from Sipunculus nudus on Beagle Dogs Exposed to c-Radiation (2014) PLoS ONE 9: e104299. https://doi.org/10.1371/journal.pone.0104299

28. Li J, Hu R, Guo Y, Chen S, Xie X et al. Bioturbation of peanut worm Sipunculus nudus on the composition of prokaryotic communities in a tidal flat as revealed by 16S rRNA gene sequences (2019), MicrobiologyOpen 8: e802. https://doi.org/10.1002/mbo3.802

29. Li J, Xie Z, Zhu C, Guo Y, and Chen S. Edible Peanut Worm (Sipunculus nudus) in the Beibu Gulf:Resource, Aquaculture, Ecological Impact and Counterplan (2017) J Ocean Univ China 16: 823-830 https://doi.org/10.1007/s1802-017-3310-z

Citation: Masrikat A and Elim IH. Unique physical and chemical properties of kian sand worm (siphonosoma ur-pulau) traditional medicine: electrical, optical and chemical response of edible powder with different sizes (2019) Biochem Modern Appl13: 51-54.