Recent developments in antiviral agents against enterovirus 71 infection

Chee Wah Tan, Jeffrey Kam Fatt Lai, I-Ching Sam and Yoke Fun Chan

Abstract

Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71 outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71 development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating, translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective vaccine will accelerate eradication of the disease.

Keywords: Enterovirus 71, Enterovirus, Hand, foot and mouth disease, Neurological complications, Antiviral, Virus replication cycle

Introduction

Human enterovirus A71 (EV-71) belongs to the Enterovirus genus within the family of Picornaviridae. The EV-71 genome is a single-stranded, positive sense RNA with approximately 7411 nucleotides, and consists of an open reading frame flanked by 5' and 3' untranslated regions (UTRs) [1]. Internal ribosome entry site (IRES)-dependent translation initiates synthesis of the viral polyprotein, which is subsequently cleaved into structural proteins (VP1-VP4) and non-structural proteins (2A-2C and 3A-3D). The RNA genome is enclosed in an icosahedral capsid assembled from 60 copies of each of the four structural proteins [2].

EV-71 was first described in 1969, after its isolation from a two-month-old infant with aseptic meningitis in California, USA. Several EV-71 epidemics with high mortality rates occurred in Bulgaria and Hungary in 1975 and 1978 [3-5], respectively. Since then, many EV-71 outbreaks have been reported in Taiwan [6], Australia [7], Singapore [8], Malaysia [9], China [10-14], Vietnam [15] and Cambodia [16].

EV-71 infections usually manifest as mild hand, foot and mouth disease (HFMD), characterized by fever, mouth ulcers, and vesicles on the palms and feet. Unlike other HFMD-related enteroviruses, EV-71 also causes severe neurological manifestations, such as poliomelitis-like acute flaccid paralysis and brainstem encephalitis in infants and children below 6 years old [17,18]. The fatal brainstem encephalitis is characterized by rapid progression of cardiopulmonary failure. Patients with neurological involvement who survive often have permanent neurological sequelae, with delayed neurodevelopment and reduced cognitive function [19,20].

Similar to the global poliovirus (PV) eradication initiative, an EV-71 vaccine is likely to be the most effective way to control, and hopefully eradicate disease [21,22]. Several promising EV-71 vaccine candidates are currently under clinical trial [23]. Nevertheless, effective antivirals are still needed for treatment of infected patients with severe disease [21,22]. This review will highlight the potential targets for EV-71 antivirals as well as recent
developments and future prospects of antivirals against EV-71 infections.

Review

EV-71 virus life cycle

Similar to other viruses, EV-71 infection begins with initial attachment to attachment factors present on the cell surface, followed by interaction with entry receptors. EV-71 enters the cells through clathrin-mediated endocytosis and uncoats in the early endosomes. The viral RNA undergoes IRES-dependant translation, and the polyprotein is cleaved by 2A and 3C proteases into structural and non-structural proteins. Non-structural proteins are mainly involved in negative-sense and positive-sense RNA synthesis. The positive-sense viral RNA is then packed into the procapsid, which finally matures into infectious viral particles. Details of the EV-71 replication steps will be discussed according to their therapeutic targets [18,21,22].

Therapeutics targeting viral attachment and entry

Virus-host receptor interaction is the first essential event during virus infection. The ability to recognize and bind to specific receptors determines the host range and tissue tropism [24]. Cell surface carbohydrates such as heparan sulfate glycosaminoglycan and sialic acid are often targeted by pathogens as attachment factors. EV-71 uses cell surface heparan sulfate [25] and sulfated glycan [26,27] as attachment receptors, which could concentrate the virus on the host cell surface and therefore enhance infectivity. Further interaction with entry receptors is required to initiate infection. Two functionally important entry receptors have been identified, scavenger receptor class B2 (SCARB2) and P-selectin glycoprotein ligand-1 (PSGL-1) [28,29]. SCARB2 is expressed in all cell types and regarded as the major EV-71 entry receptor. At low endosomal pH, SCARB2 is needed to induce viral uncoating [30,31]. Human SCARB2 transgenic mice infected with EV-71 showed lethal neurological manifestations with pathological features similar to humans and monkeys, suggesting that SCARB2 contributes to its pathogenesis [32,33]. PSGL-1 is only present on neutrophils and leukocytes. EV-71 binds to PSGL-1 and enters the cells through the caveolar endocytosis pathway [34]. Transgenic mice expressing human PSGL-1 failed to enhance EV-71 infectivity, suggested that PSGL-1 alone does not contribute to its pathogenesis [35].

Since host-receptor interactions are the first event during infection, inhibitors that block this event could act as potential therapeutics. The soluble form of cellular receptors could act as molecular decoys of cell-associated receptors. Soluble SCARB2, PSGL-1, sialic acid and heparin or heparin mimetics have been demonstrated to exhibit inhibitory effects against EV-71 infection in vitro [25,26,28,30,36]. Highly sulfated suramin and its analog, NF449, exhibited antiviral activity against EV-71 infection [25,37]. NF449-resistant mutants consist of two mutations in VP1, E98Q and K244R, implying that NF449 inhibited EV-71 infection by binding to the VP1 protein [37]. Similarly, kappa carrageenan, a sulfated polysaccharide from seaweed, also exhibited significant antiviral activity through targeting EV-71 attachment and entry [38]. The mechanism of these soluble decoys is possibly by disruption of the integrity of the EV-71 capsid structure or steric hindrance of receptor interactions.

Receptor antagonists could also be developed as potential antiviral agents. A peptide derived from EV-71 VP1, designated SP40 peptide (Ac-QMRRKVELFTYMRFD-\(\text{NH}_2\)), was found to exhibit significant antiviral activity against different strains of EV-71 by blocking viral attachment to the cell surface heparan sulfate [39]. An anti-heparan sulfate peptide (Ac-MPRRRRIRRRQK-NH\(_2\)), previously identified by Tiwari et al. [40], also inhibited EV-71 infection [25]. Another antimicrobial peptide, lactoferrin, also exhibited anti-EV-71 properties in vitro and in vivo through blocking viral attachment to the cell surface [41-43].

Therapeutics targeting viral uncoating

The proposed EV-71 uncoating event involves attachment to the entry receptor, triggering a series of conformational changes resulting in A-particle formation that is primed for genome release. A second uncoating event occurs after endocytosis, and an unknown trigger causes RNA expulsion from the A-particles via the 2-fold axis, leaving behind an empty capsid [44]. Formation of the 135S A-particle happens in the presence of SCARB2 receptors and a low pH environment, suggesting that the A-particle is formed in the early endosomes [30,31]. Uncoating inhibitors (pocket binders) have been intensively studied as antiviral agents against many picornaviruses, including rhinovirus [45], PV [45], echovirus [46] and coxsackievirus [47]. The complex of WIN51711 with the EV-71 hydrophobic pocket underneath the canyon depression has recently been resolved by X-ray crystallography [48]. The key success factor of these uncoating inhibitors is their ability to fit into the VP1 hydrophobic pocket, stabilize the capsid structure, and therefore block the receptor-induced uncoating mechanism [48].

A series of modified WIN compounds including BPROZ-194, BPROZ-112, BPROZ-284, BPROZ-103, BPROZ-299, BPROZ-101, BPROZ-033, and BPROZ-074 were effective against EV-71 infection with IC\(_{50}\) values ranging from 0.8 nM to 1550 nM [49-54]. However, a single point mutation in VP1 V192M was sufficient to confer resistance to BPROZ-194 [51]. Other than modified WIN compounds, the broad spectrum enterovirus
inhibitor pleconaril also inhibited EV-71 infection in vitro and in vivo [55,56]. However, pleconaril failed to inhibit the cytopathic effect induced by a Taiwan 1998 EV-71 isolate [49]. Another group of capsid binders, pyridazinyl oxime ethers chemically derived from pirodavir such as BTA39 and BTA188, significantly inhibited EV-71 infection [57]. Crystallographic studies showed the pirodavir predecessor R61837 complexed with rhinovirus 14 by binding to the hydrophobic pocket underneath the canyon floor, similar to the mechanism of WIN compounds [58]. 4′,6-Dichloroflavan (BW683C), previously identified as an anti-rhinovirus compound, was also effective against EV-71 infection [59,60]. Mechanistic studies demonstrated that BW683C binds to and stabilizes rhinovirus to heat or acid inactivation, implying that BW682C acts as viral uncoating inhibitor [61-63].

Therapeutics targeting viral RNA translation
EV-71 protein synthesis commences with translation initiation of the cap-independent IRES element at the 5′ UTR of the EV-71 genome [64]. IRES is a cis-acting element that forms tertiary RNA structures and requires assistance from IRES-specific trans-acting factors (ITAFs) to recruit other cellular translation machinery to the viral RNA. The EV-71 open reading frame (ORF) is translated into a single polyprotein, which is subsequently processed by virus-encoded proteases 2A and 3C into the structural capsid proteins (VP1-VP4) and the nonstructural proteins (2A-2C and 3A-3D) mainly involved in the replication of the viral RNA [65].

The antisense-mediated mechanism consists of oligonucleotides (8-50 nucleotides in length) that bind to RNA through Watson-Crick base pairing and modulate the function of the targeted RNA [66]. RNA interference (RNAi) involves the cleavage of targeted mRNA through the RNA-induced silencing complex. Small interfering RNA (siRNA) targeting highly conserved regions of 5′ UTR [67], VP1, VP2 [68], 2C, 3C, 3D [69,70], and 3′ UTR [69] significantly inhibited EV-71 infection in a dose-dependent manner. In addition, short hairpin RNA (shRNA) was effective against EV-71 infection in vitro and in vivo [70-72]. The use of siRNA in clinical settings is hampered by its short half-life in plasma. Improved siRNA with 2′ O methylation and 2′ fluoro modifications have recently been demonstrated against EV-71 infection [67]. However, siRNA also has poor endosomal uptake which limits the clinical application of these siRNAs. Other translation suppressing nucleotides, for example, peptide conjugated phosphodiimide morpholino oligomers (PPMO) showed promising results in inhibiting PV and coxsackievirus B3 [73,74]. Unlike siRNA or shRNA, PPMO interacts with targeted RNA, especially the IRES region, and blocks ribosome recruitment and therefore inhibits viral RNA translation [66]. PPMO readily penetrates the cells and is resistant to nuclease degradation. Our unpublished data confirms that PMO are highly effective against EV-71.

Compounds that down-regulate the activity of IRES-dependent translation could potentially be developed into antiviral agents. Quinacrine, which impairs IRES-dependent translation by preventing the interaction between polypyrimidine-tract binding protein (PTB) and IRES, has been demonstrated to act against EV-71 infection [75]. Kaempferol, a flavonoid, was found to inhibit EV-71 IRES activity by altering the composition of ITAFs [76]. Geniposide derived from Fructus gardeniae inhibited EV-71 replication via inhibition of viral IRES activity [77]. Amantidine, a tricyclic symmetric amine previously used against influenza A virus infection, was found to suppress EV-71 IRES translation [78-80].

Therapeutics targeting viral polyprotein processing
Maturation cleavage of polyprotein into different viral proteins is a critical step during EV-71 infection. EV-71 2A and 3C protease are the key proteases that cleave the viral precursor polyprotein into each of the component proteins required for viral replication and packaging. Interestingly, EV-71 2A and 3C proteases suppress type I interferon by targeting mitochondrial anti-viral signaling (MAVS) protein and melanoma differentiation associated gene (MDA-5) viral recognition receptor signaling [81,82]. Since EV-71 2A and 3C proteases are involved in multiple roles in EV-71 infection and evasion of host innate immunity, they are important potential targets for development of antiviral therapeutics.

A pseudosubstrate, LVLQTM peptide, could inhibit EV-71 infection through binding to the active site of 2A protease [83]. Rupintrivir (AG7088) is an irreversible peptidomimetic inhibitor of human rhinovirus 3C protease, which reached phase 2 clinical trials with promising outcomes [84-89]. Rupintrivir showed significant inhibition of EV-71 infection in vitro and in vivo but with reduced efficacy as compared with human rhinoviruses [90-93]. X-ray crystallography of the complex of EV-71 3C protease with rupintrivir revealed that the half-closed S2 sub-site and the size reduced S1′ pocket of EV-71 3C protease limits the access of the rupintrivir’s P1′ group which contains a lactam ring [94,95]. A series of 3C protease rupintrivir analogues were designed based on AG7088, with an aldehyde replacement of the α,β-unsaturated ester. Compound 10b significantly inhibited EV-71 infection [96]. An orally bioavailable 3C protease inhibitor, designated as compound 1, also exhibited antiviral activities against multiple rhinovirus serotypes and enteroviruses in vitro [89]. Flavonoids such as fisetin and rutin, have also been identified as 3C protease inhibitors [97].
Therapeutics targeting the membranous viral RNA replication complex and other host factors

The genomic replication of enteroviruses has been shown to occur in membranous compartments in the cytoplasm. The membranous vesicles induced during PV infection have been reported to be associated with autophagy signalling [98,99]. These compartments resemble the autophagosomes and consist of viral proteins as well as microtubule-associated protein 1 light chain 3-II (LC3-II). LC3-II is the membrane-bound form of LC3 that serves as the marker of autophagy induction [100]. During PV infection, these double-membrane vesicles consist of viral particles that undergo autophagic maturation typically characterized by LC3-II co-localization with lysosomal-associated membrane protein 1 (LAMP1) [100]. Similarly, EV-71 induces autophagy formation in RD and SK-N-SH cells, and association between autophagosome-like vesicles and EV-71 VP1 in neurons of the cervical spinal cords of mice was observed [101]. The authors concluded that autophagic signalling induced by EV-71 is crucial for EV-71 replication. This provides an alternative antiviral strategy for EV-71 to target host factors related to autophagy that are crucial for viral replication.

The discovery of antiviral drugs is mainly based on virus targets. The high replication and mutation rates of enteroviruses may generate resistance to these direct-acting antivirals. Targeting host factors may establish a higher genetic barrier to resistance and can be used in combination with viral inhibitors. The compound GW5074, a Raf-1 inhibitor, has been shown to influence EV-71 viral yield [37,102]. Activation of the Raf-1/ERK pathway in host cells induces autophagy signalling [103]. The downstream transducer of this pathway, BNIP3 competes with Beclin 1 for binding with Bcl-2 during autophagy induction [104]. GW5074 may impair autophagy activation through the inhibition of the Raf-1/ERK pathway. Thus, the replication of EV-71 that requires autophagosome formation may be inhibited in the presence of the GW5074 compound. Heat shock protein 90 beta (HSP90β), an isomer of HSP90, has been reported to have crucial roles in EV-71 entry and assembly. Geldanamycin (GA) and its analog, 17-allylamino-17-demethoxygeldanamycin (17-AAG), inhibit HSP90β activities and protect hSCARB2 transgenic mice from the challenge with EV-71 [105].

Inhibitors that target host factors such as those involved in cellular autophagy and HSP90β could be used against multiple EV-71 genotypes and enterovirus serotypes, due to their similar pathways of replication [106,107]. The major drawbacks of these inhibitors that target host factors are specificity and cellular toxicity. Therefore, there is an unmet need to develop specific and non-toxic antivirals that impair the cellular autophagy pathway and HSP90β during EV-71 infection.

The amino acid sequences of the non-structural proteins of EV-71 are highly conserved and have more than 60% similarity to PV. Two hydrophobic regions are found in the 2B viral protein of PV and are pivotal for its viroporin functionality [108]. 2B viroporin mediates the integration of viral protein into the ER membrane and this increases the membrane permeability to promote virus release [108]. A study has reported that EV-71 2B protein might mediate a chloride-dependent current in oocytes. A chloride-dependent current inhibitor, 4,4′-diisothiocyanato-2,2′-stilbenedisulfonic acid (DIDS) has been reported to inhibit EV-71 infection in RD cells [109]. The 2C viral protein of PV consists of Walker A, B and C motifs that are homologous to the motifs found in NTP-binding proteins or in members of the helicase superfamily III [110]. An amphipathic helix domain is located at the N-terminal of 2C viral protein that has the function of promoting oligomerization [110]. Recently, two antiviral compounds, metrifudil (N-(2-methylphenyl) methyl adenosine) and N6-benzyladenosine, blocked EV-71 replication via interaction with 2C viral protein or 2BC precursor protein [37]. Mutants resistant to metrifudil had a mutation in the 2C viral protein (E325G), while N6-benzyladenosine-resistant mutants had double mutations at the 2C viral protein (H118Y and I324M) [37]. However, the mechanism of inhibition is yet to be determined. Both MRL-1237 and TBZE-029, derivatives of benzimidazole, exhibit antiviral activity against various enteroviruses, and have been identified to target the picornaviral 2C viral protein [111,112]. Both of these derivatives may exert potent antiviral activity against EV-71 since EV-71 and PV shared high similarity in all the non-structural proteins. Guanidine hydrochloride is an extensively-studied picornavirus inhibitor [113,114], which inhibits the replication of PV [115,116], coxsackieviruses [117], echoviruses, and foot-and-mouth disease virus [118]. Interestingly, guanidine hydrochloride also inhibits EV-71 infection and a single mutation, M193L at the 2C protein was sufficient to confer resistance [119]. This agent is likely to prevent the association of 2C/2BC with host membrane structures during viral replication [120].

The 3A viral protein of PV contains hydrophobic domains that facilitate its binding with membranous vesicles induced during viral RNA replication [121,122]. A benzimidazole derivative, enviroxime exhibits potent activity against PV and rhinovirus by interacting with 3A viral protein [119]. Strong antiviral effects of enviroxime have been shown against EV-71 [123]. Bifunctional inhibitors AN-12-H5 and AN-23-F6, are enviroxime-like compound that also targets 3A, VP1 and VP3, inhibits EV-71 infection efficiently [124]. However, the precise mechanism of action by enviroxime and AN-12-H5 against EV-71 infection remains unknown. Another
compound, TTP-8307, was identified as a potent 3A inhibitor that significantly inhibited CV-A16 infection, with reduced activity against EV-71 [112].

Therapeutics targeting RNA-dependent RNA polymerase (RdRP) complex

The viral RNA replication of enteroviruses begins with the linkage of genomic RNA with the 3B protein (VPg) at the 5′ end to form the uridylylated state of VPg (VPg-pUpU). Additionally, VPg uridylylation is stimulated by the viral precursor protein 3CD [125]. The positive strand of viral RNA is used as a template to synthesize the negative strand, which in turn serves as the template for the synthesis of new positive strands. The synthesis of both positive and negative strands of viral RNA is primed by VPg-pUpU [126]. Nucleotide site 311 of the RNA-dependent RNA polymerase (RdRP) of EV-71 is pivotal for VPg uridylylation and viral RNA synthesis, as mutations here impair the binding of VPg to RdRP, but did not influence normal RdRP activity [127].

Ribavirin (1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) is a conventional nucleoside analogue that targets the RdRP of picornaviruses [128]. Ribavirin inhibits EV-71 infection with an IC₅₀ of 266 μM, and prevents EV-71

Figure 1 Schematic illustration of EV-71 intracellular infection and summary of the antiviral agents. The antiviral agents are classified according to their mechanism of actions, which include molecular decoys, receptor antagonists, uncoating inhibitors, translation inhibitors, polyprotein processing inhibitors and replication inhibitors.
Table 1 List of antivirals against EV-71 infection tested *in vitro* and *in vivo*

Antivirals	EV-71 genotype tested	IC_{50}/EC_{50}	In vitro cell type	Resistant mutants	In vivo mouse model	Reference
Therapeutics targeting viral attachment and entry						
Molecular decoys						
Recombinant SCARB2	B3	N/R	RD			[28]
PSGL-1	C2	N/R	L-PSGL-1.1			[29]
Heparin mimetics						
Heparin	C2	205 μg/ml	Vero, RD			[25,36]
Heparan sulfate	C2	290 μg/ml	Vero			[36]
Pentosan polysulfate	C2	238 μg/ml	Vero			[36]
Dextran sulfate	B4	N/R	RD			[25]
Suramin/NF449	B1, B3, B4	6.7 μM	RD	VP1 E98Q, K244R		[25,37]
Kappa carrageenan	B4	N/R	Vero			[38]
Enviroxime-like compounds						
AN-12-H5	B1	0.55 μM	RD	VP1 M119L, VP3 R227K		[124]
AN-23-F6	B1	0.15 μM	RD	VP1 A224T		[124]
Receptor antagonists						
Anti-SCARB2 antibodies	B3	N/R	RD			[28]
Anti-PSGL-1 antibodies	B3, B4, C1, C2, C4	N/R	Jurkat			[29]
Bovine lactoferrin	C2, MP4\(^a\)	10.5 – 24.5 μg/ml	RD, Vero, SK-N-SH			[42,43]
Human lactoferrin	N/R	103.3 – 185.0 μg/ml	RD, Vero			[42]
SP40 peptide	A, B4, C2	6 – 93 μM	RD, HeLa, HT-29, Vero			[39]
Anti-heparan sulfate peptide	B4	N/R	RD			[25,40]
Therapeutics targeting viral uncoating						
Pyridyl imidazolidinone						
BPROZ-299	C2	0.02 μM	RD	VP1 V192M		[52]
BPROZ-284	A, B1, C2	0.04 μM	RD	VP1 V192M		[49]
BPROZ-194	C2	1.552 μM	RD	VP1 V192M		[51,52]
BPROZ-160	C2	0.011 μM	RD	VP1 V192M		[52]
BPROZ-112	A, B1, C2	0.04 μM	RD	VP1 V192M		[49]
BPROZ-103	C2	0.13 μM	RD	VP1 V192M		[52]
BPROZ-101	A, B1, C2	0.0012 μM	RD	VP1 V192M		[52,53]
BPROZ-074	A, B1, C2	0.0008 – 0.0018 μM	RD	VP1 V192M		[52,54]
BPROZ-033	A, B1, C2	0.0088 – 0.0099 μM	RD			[52,54]
WINS1711	B3	N/R	RD			[48]
Pleconaril	A	0.13-0.54 μg/ml	RD	1-day old ICR		[56]
BW683C	A	> 10 μM	HEp-2			[59]
Compound 3 g	A	0.45 μM	HEp-2			[59]
BTA39	A	0.001 μM	Vero			[57]
induced paralysis and death in mice [129]. Recently, a piperazine-containing pyrazolo [3,4-d] pyrimidine derivative, DTriP-22, was shown to effectively target the RdRP of EV-71 with IC₅₀ values of 0.15 – 0.98 μM, and suppress the accumulation of both positive and negative strands of viral RNA during EV-71 infection. DTriP-22-resistant

| Table 1 List of antivirals against EV-71 infection tested in vitro and in vivo (Continued) |
|---|-----------------|-----------------|-----------------|
| BTA188 | A | 0.082 μM | Vero | [57] |
| Therapeutics targeting viral translation | | | |
| RNA-based therapeutics | | | |
| siRNA | B4 | < 1 nM | RD | 1-day old Balb/c | [67-72] |
| shRNA | B4 | < 1 nM | RD | 1-day old Balb/c | [67-72] |
| Quinacrine | C4 | 9.71 μM | RD | | [75] |
| Amantadine | | | | | [78] |
| Therapeutics targeting viral polyprotein processing | | | | |
| 2A inhibitor | | | | |
| LVLQTM peptide | C4 | 9.6 μM | HeLa | [83] |
| 3C inhibitors | | | | |
| Rupintrivir | C4 | 0.014 μM | RD | 2-days old ICR | [93] |
| Compound 10b | C2 | 0.018 μM | RD | | [96] |
| Fisetin | CMUH01* | 85 μM | RD | | [97] |
| Rutin | CMUH01* | 110 μM | RD | | [97] |
| Therapeutics targeting viral replication | | | | |
| 2B inhibitor | | | | |
| DIDS | C4 | N/R | RD | | [109] |
| 2C inhibitors | | | | |
| Metrifudil | B1 | 1.3 μM | RD | 2C E325G | [37] |
| N⁶ benzyladenosine | B1 | 0.1 μM | RD | 2C H118Y, I324M | [37] |
| Guanidine-HCl | B3 | N/R | RD | 2C M193L | [119] |
| 3A inhibitors | | | | |
| Enviroxime | A | 0.15 μM | Vero | | [112] |
| AN-12-HS | B1 | 0.55 μM | RD | 3A E39G | [124] |
| AN-23-F6 | B1 | 0.15 μM | RD | | [124] |
| TFF-8307 | A | > 60 μM | Vero | | [112] |
| GW5074 | B1 | 6.4 μM | RD | | [124] |
| 3D inhibitors | | | | |
| DTriP-22 | A, B2, C2 | 0.3 μM | RD | 3D R163K | [130] |
| Ribavirin | C2, M2⁰ | 266 μM | RD, SK-N-Sh, N18| 3D G64R, S264L | 12-days old ICR | [129] |
| Heat-shock protein 90 inhibitor | | | | |
| Geldanamycin | B4, C2 | N/R | RD | | [105] |
| 17-AAG | C2, C4 | N/R | N/R | 7-days old hSCARB-Tg C57BL/6 mice | [105] |

*Mouse-adapted EV-71 strain Tainan/4643/98 (C2); bMouse-adapted EV-71 strain derived from MP4 with additional two passages in mice; *EV-71 strain with unidentified genotype; and N/R means not reported.
RD: rhabdomyosarcoma cells; Vero: African green monkey kidney cells; SK-N-Sh: human neuroblastoma cells; N18: mouse neuroblastoma cells; HeLa: human cervical adenocarcinoma epithelial cells; HT-29: human colon adenocarcinoma cells; HeP-2: HeLa contaminant cells; Jurkat: human T lymphocytes cells; and COS-1: monkey kidney fibroblast cells.
mutants had mutations in the RdRP, implying that DTriP-22 interacts with RdRP and inhibits poly (U) elongation activity, but not Vpg uridylylation [130].

Conclusion

Figure 1 and Table 1 summarizes all the potential targets of antivirals and lists the recent antiviral agents with significant antiviral activities against EV-71 infection as discussed above. Amongst these drugs, modified WIN compounds are antivirals with the lowest IC50. Only bovine lactoferrin, plecanaril, shRNA, siRNA, rupintrivir, ribavirin and 17-AAG have been tested in vivo. Ribavirin and amantadine are already in clinical use for other viruses, and rupintrivir and plecanaril are in clinical development.

The availability of a suitable animal model carrying all the required receptors and attachment factors for testing of the antivirals will accelerate the development of antivirals. The clinical use of other antiviral agents has been hampered by the potential adverse effects to the host and emergence of drug resistance mutants. Combination therapy targeting different replication steps of EV-71 infection cycle has shown synergistic activity [131] and could minimize the emergence of antiviral resistance. A new antiviral strategy to screen all licensed drugs against EV-71 infection would be more promising for clinical use. Other newer antivirals that act as immunomodulators and lethal mutagens offer a new strategy for development of antivirals. With the endemic and epidemic nature of EV-71, the continued efforts to develop antiviral agents for prophylaxis or treatment are crucial in the absence of a vaccine. Together with an effective vaccine, eradication of EV-71 is anticipated.

Abbreviations

EV-71: Enterovirus 71; HFMD: Hand, foot and mouth disease; IRES: Internal ribosome entry site; ITAF: IRES-specific trans-acting factor; MAVS: Mitochondrial anti-viral signaling; MDA-5: Melanoma differentiation-associated gene 5; ORF: Open reading frame; PV: Poliovirus; RdRP: RNA-dependent RNA polymerase; Vpg: Viral protein genome-linked.

Competing interests

CWT and YFC have a pending patent on SP40 peptide.

Authors’ contributions

CWT, JKFL, ICS and YFC drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgement

This work was supported by the High Impact Research grant (UM.C/625/1/HIR/MDHE/MED/41), postgraduate research grants (PV013-2012A and PG114-2012B), and University Malaya Research Grant Scheme (RG522-13HTM) from University Malaya, and the Fundamental Research Grant Scheme (FP015-2012A) and Exploratory Research Grant Scheme (ER017-2013A) from the Ministry of Education, Malaysia.

Received: 29 November 2013 Accepted: 9 February 2014 Published: 12 February 2014

References

1. Brown BA, Pallansch MA: Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus Res 1995, 39:195–205.
2. Pevka P, Perera R, Cardosa I, Kuhn RJ, Rossmann MG: Crystal structure of human enterovirus 71. Science 2012, 336:1274.
3. Chumakov M, Voroshilova M, Shindarov L, Lavrova I, Gracheva L, Korneeva G, Vasilienko S, Brodarica J, Nikolova M, Gurevich S, et al: Enterovirus 71 isolated from cases of epidemic poliomylitis-like disease in Bulgaria. Arch Virol 1979, 60:329–340.
4. Shindarov LM, Chumakov MP, Voroshilova MK, Bojinov S, Vasilienko SM, Jordanov I, Kirov ID, Kamenov E, Leshchinskaya EV, Mitov G, et al: Epidemiological, clinical, and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71. J Hyg Epidemiol Microbiol Immunol 1979, 23:284–295.
5. Nagy G, Takatsy S, Kukan E, Mihaly I, Domok I: Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Arch Virol 1982, 71:217–227.
6. Huang RY, Zhang X, Chung PH, Tsoo KC, Lin TY, Su LH, Chiu CH: Enterovirus 71 in Taiwan, 2004-2006: epidemiological and virological features. Scand J Infect Dis 2008, 40:571–574.
7. Brown BA, Oberste MS, Alexander JP Jr, Kennett ML, Pallansch MA: Molecular epidemiology and evolution of enterovirus 71 strains isolated from 1970 to 1998. J Virol 1999, 73:9969–9975.
8. Chan KP, Goh KT, Chong CY, Teo ES, Lau G, Ling AE: Epidemic hand, foot and mouth disease caused by enterovirus 71, Singapore. Emerg Infect Dis 2003, 9:76–85.
9. Abubaker S, Chee HY, Al-Kobaisi MF, Xiao Q, Chua KB, Lam SK: Identification of enterovirus 71 isolates from an outbreak of hand, foot and mouth disease (HFMD) with fatal cases of encephalomyelitis in Malaysia. Virus Res 1999, 61:1–9.
10. Tan X, Huang X, Zhu S, Chen H, Yu Q, Wang H, Huo X, Zhou J, Wu Y, Yan D, et al: The persistent circulation of enterovirus 71 in People’s Republic of China: causing emerging nationwide epemics since 2008. PLoS One 2011, 6:e25662.
11. Zhang Y, Tan XJ, Wang HY, Yan DM, Zhu SL, Wang DY, Ji F, Wang XJ, Gao YJ, Chen L, et al: An outbreak of hand, foot, and mouth disease associated with subgroup C4 of human enterovirus 71 in Shandong, China. J Clin Virol 2009, 44:262–267.
12. Zhang Y, Wang J, Guo W, Wang H, Zhu S, Wang D, Bai R, Li X, Yan D, Zhu Z, et al: Emergence and transmission pathways of rapidly evolving evolutionary branch C4a strains of human enterovirus 71 in the Central Plain of China. PLoS One 2011, 6:e27895.
13. Zhang Y, Zhu Z, Yang W, Ren J, Tan X, Wang Y, Mao N, Xu S, Zhu S, Cui A, et al: An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China. Virol J 2010, 7:94.
14. Zhu RN, Qian Y, Deng J, Xing JF, Zhao LQ, Wang F, Liao B, Ren XX, Li Y, Zhang Q, Li J: Study on the association of hand, foot and mouth disease and enterovirus 71/CA16 among children in Beijing, 2007. Zhejiang Liu Xing Bing Xue Za Zhi 2007, 28:1004–1008.
15. Le Thoa PK, Chiang PS, Khanh TH, Luo ST, Dan TN, Wang YF, Thuong TC, Chung WH, Hung NT, Wang JL, et al: Genetic and antigenic characterization of enterovirus 71 in Ho Chi Minh city, Vietnam, 2011. PLoS One 2013, 8:e69895.
16. Biswas T: Enterovirus 71 causes hand, foot and mouth disease outbreak in Cambodia. Natl Med J India 2012, 25:316.
17. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T: Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 2010, 9:1107–1109.
18. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH: Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 2010, 10:778–790.
19. Chang LY, Huang LM, Gau SS, Wu YY, Hsia SH, Fan TY, Lin KL, Huang YC, Lu CY, Lin TY: Neurodevelopment and cognition in children after enterovirus 71 infection. N Engl J Med 2007, 356:1226–1234.
20. Shang LQ, Xu MY, Yin Z: Antiviral drug discovery for the treatment of enterovirus 71 infections. Antiviral Res 2013, 97:183–194.
Antiviral activity of pyridyl imidazolidinones against enterovirus 71 variants. *J Virol* 2008, 82:2518–2530.

Chiu, YH, Chan, YL, Tsai, LW, Li, TL, Wu, CJ: Prevention of human enterovirus 71 infection by kappa carrageenan. *Antiviral Res* 2012, 95:128–134.

Tan, CW, Chan, YF, Sinn, KM, Tan, EL, Poh, CL: Inhibition of enterovirus 71 (EV-71) infections by a novel antiviral peptide derived from EV-71 capsid protein VP1. *PloS One* 2012, 7:e57591.

Wang, TF, Wang, HL, Lin, YW, Shao, HY, Lin, HY, Liu, CC, Hsiao, KN, Chitra, E, Tsou, YL, Chang, JS: Sialylation in v27 regulates binding of enterovirus 71 to human PSGL-1. *Cell Chem Biol* 2012, 19:70–76.

He, WC, Li, YL, Li, YL, Liu, CC, Hsiao, KN, Chitra, E, Tsou, YL, Chang, JS: Sialylation in v27 regulates binding of enterovirus 71 to human PSGL-1. *Cell Chem Biol* 2012, 19:70–76.

Lee, CC, Lee, YC, et al: *J Virol* 2013, 87:611–620.

Yang, B, Chuang, H, Yang, K: Sialylated glycans as receptor and inhibitor of enterovirus 71 infection in DLD-1 intestinal cells. *Virology* 2009, 384:141.

Su, PY, Liu, YT, Chang, HY, Huang, SW, Wang, YF, Yu, CK, Wang, JR, Chang, CF: Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells. *BMC Microbiol* 2012, 12:162.

Yamayoshi, S, Yamashita, Y, Li, J, Hanagata, N, Minowa, T, Takekura, M, Koike, S: Scavenger receptor B2 is a cellular receptor for enterovirus 71. *Nat Med* 2009, 15:798–801.

Nishimura, Y, Shimjima, M, Tano, Y, Miyamura, T, Wakita, T, Shimizu, H: Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. *Nat Med* 2009, 15:794–797.

Yamayoshi, S, Ohka, S, Fuji, K, Koike, S: Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. *J Virol* 2013, 87:3335–3347.

Chen, P, Song, Z, Qi, Y, Feng, X, Xu, N, Sun, Y, Wu, X, Yao, M, Qiao, L, Xi, K, et al: Molecular determinants of enterovirus 71 viral entry: clef around GLN-172 on VP1 protein interacts with variable region on scavenger receptor B2. *J Biol Chem* 2012, 287:6409–6420.

Lin, YW, Yu, SL, Shao, HY, Lin, HY, Lee, CC, Hisao, KN, Chitra, E, Tsou, YL, Chang, HW, Shia, et al: Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. *PloS One* 2013, 8:e57591.

Fuji, K, Nagata, N, Sato, Y, Ong, KC, Wong, KT, Yamayoshi, S, Shimjima, M, Shiibata, H, Taya, C, Koike, S: Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. *Proc Natl Acad Sci U S A* 2013, 110:14735–14738.

Lin, HY, Yang, YT, Yu, SL, Hisao, KN, Liu, CC, Sia, C, Choy, WH: Caveolar endocytosis is required for human PSGL-1-mediated enterovirus 71 infection. *J Virol* 2013, 87:9064–9076.

Liu, J, Dong, W, Quan, X, Ma, C, Qin, C, Zhang, L: Transgenic expression of human P-selectin glycoprotein ligand-1 is not sufficient for enterovirus 71 infection in mice. *Arch Virol* 2012, 157:539–543.

Pourianfar, HR, Poh, CL, Fecundo, J, Gollon, L: In vitro evaluation of the antiviral activity of heparan sulphate mimetic compounds against enterovirus 71. *Virus Res* 2012, 169:22–29.

Arita, M, Wakita, T, Shimizu, H: Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity. *J Gen Virol* 2008, 89:2518–2530.

Chiu, YH, Chan, YL, Tsai, LW, Li, TL, Wu, CJ: Prevention of human enterovirus 71 infection by kappa carrageenan. *Antiviral Res* 2012, 95:128–134.

Tan, CW, Chan, YF, Sinn, KM, Tan, EL, Poh, CL: Inhibition of enterovirus 71 (EV-71) infections by a novel antiviral peptide derived from EV-71 capsid protein VP1. *PloS One* 2012, 7:e34589.

Shi, J, Liu, J, Yahi, N, Shukla, D: Anti-heparan sulphate peptides that block herpes simplex virus infection in vivo. *J Biol Chem* 2011, 286:25406–25415.

Chen, HL, Wang, LC, Chang, CH, Yen, CC, Cheng, WT, Wu, SC, Hung, CM, Kuo, MF, Chen, CM: Recombinant porcine lactoferrin expressed in the milk of human embryonal rhabdomyosarcoma cells in vitro. *J Virol Infect Dis* 2002, 186:161–166.

Wang, TY, Chen, LC, Shyu, HW, Chen, SH, Wang, JR, Yu, CK, Lei, HY, Yeh, TM: Lactoferrin inhibits enterovirus 71 infection of human embryonal rhabdomyosarcoma cells in vitro. *J Infect Dis* 2002, 186:161–166.

Wang, TY, Chen, LC, Shyu, HW, Chen, SH, Wang, JR, Yu, CK, Lei, HY, Yeh, TM: Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. *Antiviral Res* 2005, 67:31–37.

Shingler, KL, Yoder, JL, Carnegie, MS, Ashley, RE, Mahov, AM, Conway, JF, Hafenstien, S: The enterovirus 71 A particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoupling. *PloS Pathog* 2013, 9:e1003240.

Fox, MP, Otto, MJ, McKinlay, MA: Prevention of rhinovirus and poliovirus uncoupling by WIN 51711, a new antiviral drug. *Antimicrob Agents Chemother* 1986, 30:110–116.
89. Wang X, Song Z, Li S, Xue J, Li Y, Chen Q, Li X, Yang J, Gao F: Inhibition of coxsackievirus B3 in cell cultures and in mice by peptide-conjugated morpholinol oligomers targeting the internal ribosome entry site. J Virol 2006, 80:11510–11519.

90. Wang J, Du J, Wu Z, Jin Q. Quinacrine impairs enterovirus 71 RNA replication by preventing binding of polyribimyridine-tract binding protein with internal ribosome entry site. PLoS One 2013, 8:e52954.

91. Wang J, Liu M, Hou M, Yao X, Li J, Yan G, Guo Q, Zhao Z. Enterovirus 71 protease 2Apro targets MASEV to inhibit anti-viral type I interferon responses. PLoS Pathog 2013, 9:e1003231.

92. Xie S, Wang K, Yu W, Lu W, Xu K, Wang J, Ye B, Schwarz W, Jin Q, Sun B. Selective inhibition of enterovirus 71 infections and viral IRES activity by Fructus gardeniae and geniposide. Eur J Med Chem 2013, 62:206–213.

93. Yen GR, Hsu JT, Liu HG, Tseng SN, Kung SH. Design, synthesis, and evaluation of 3C protease inhibitors as anti-enterovirus 71 agents. Bioorg Med Chem 2008, 16:798–7969.

94. Rust RC, Landmann L, Grosse T, Blach H, Hau H, Egger D, Bier B. Cellular COPII proteins are involved in production of the vesicles that form the poliovirus replication complex. J Virol 2001, 75:9808–9818.

95. Egger D, Teterina N, Ahrens N, Gierszk S, Bier B. Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J Virol 2000, 74:6750–6580.

96. Wilson JS, Giddings TH, Jr, Taylor MP, Malnaye B, Robavitch M, Kappo RP, Kneegstad KV. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 2005, 3:e156.

97. Xie S, Wang K, Yu W, Lu W, Xu K, Wang J, Ye B, Schwarz W, Jin Q, Sun B. Selective inhibition of enterovirus 71 infections and viral IRES activity. J Virol 2013, 87:1690–1698.

98. Xie S, Wang K, Yu W, Lu W, Xu K, Wang J, Ye B, Schwarz W, Jin Q, Sun B. Selective inhibition of enterovirus 71 infections and viral IRES activity. J Virol 2013, 87:1690–1698.

99. Xie S, Wang K, Yu W, Lu W, Xu K, Wang J, Ye B, Schwarz W, Jin Q, Sun B. Selective inhibition of enterovirus 71 infections and viral IRES activity. J Virol 2013, 87:1690–1698.

100. Xie S, Wang K, Yu W, Lu W, Xu K, Wang J, Ye B, Schwarz W, Jin Q, Sun B. Selective inhibition of enterovirus 71 infections and viral IRES activity. J Virol 2013, 87:1690–1698.
De Palma AM, Thibault HJ, van der Linden L, Lanke K, Heggermont W, Ireland S, Andrews R, Arrimilli M, Ai-Tel TH, de Clercq E, et al.
Mutations in the nonstructural protein 3A confer resistance to the novel enterovirus replication inhibitor TTP-8307. Antimicrob Agents Chemother 2009, 53:1850–1857.

Caliguiri LA, Tammi I. Distribution and translation of poliovirus RNA in guanidine-treated cells. Virology 1968, 36:223–231.

Caliguiri LA, Tammi I. Action of guanidine on the replication of poliovirus RNA. Virology 1968, 35:408–417.

Loizzo B, Ferrari W, Brozzi G, Spanedda A. In vitro inhibition of infectivity of polio viruses by guanidine. Nature 1962, 193:97–98.

Rightsel WA, Dice JR, Mc AR, Timm EA, Mc Li Jr, Dixon GJ, Schabel FM Jr. Antiviral effect of guanidine. Science 1961, 134:598–599.

Herrmann EC Jr, Herrmann JA, Delong DC. Prevention of death in mice infected with coxsackievirus A16 using guanidine HCl mixed with substituted benzimidazoles. Antiviral Res 1982, 2:339–346.

Saunders K, King AM, McCannon D, Newman JW, Slade WR, Forss S. Recombination and oligonucleotide analysis of guanidine-resistant foot-and-mouth disease virus mutants. J Virol 1985, 56:921–929.

Sadeghipour S, Bek EJ, McMinn PC. Selection and characterisation of guanidine-resistant mutants of human enterovirus 71. Virus Res 2012, 169:72–79.

Bienz K, Egger D, Traxler M, Pasamontes L. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J Virol 1990, 64:1156–1163.

Taylor MP, Bungen TB, Kankaagard K, Jackson WT. Role of microtubules in extracellular release of poliovirus. J Virol 2009, 83:6599–6609.

Wessels E, Duijsings D, Notebaart RA, van Kuppeveld FJ. A proline-rich region in the coxsackievirus 3A protein is required for the protein to inhibit endoplasmic reticulum-to-golgi transport. J Virol 2005, 79:5163–5173.

De Palma AM, Vliegen I, de Clercq E, Neyts J. Selective inhibitors of picornavirus replication. Med Res Rev 2008, 28:823–884.

Arita M, Takebe Y, Waki T, Shimizu H. A bifunctional anti-enterovirus compound that inhibits replication and the early stage of enterovirus 71 infection. J Gen Virol 2010, 91:2734–2744.

Pathak HB, Arnold JJ, Wiegand PN, Hargratt MR, Cameron CE. Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex. J Biol Chem 2007, 282:16202–16213.

Paul AV, Rieder E, Kim DW, van Boom JH, Wimmer E. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol 2000, 74:10859–10870.

Sun Y, Wang Y, Shan C, Chen C, Xu P, Song M, Zhou H, Yang C, Xu W, Shi PY, et al. Enterovirus-71 VPg uridylylation uses a two-molecular mechanism of 3Dpol. J Virol 2012, 86:13662–13671.

Grazi JD, Too K, Smidansky ED, Edathil JP, Bart EW, Harki DA, Galanaga JE, Bollinger JM, et al. Lethal mutagenesis of picornaviruses with N-6-modified purine nucleoside analogues. Antimicrob Agents Chemother 2008, 52:971–979.

Li ZH, Li CM, Ling P, Shen FH, Chen SH, Liu CC, Yu CK. Ribavirin reduces mortality in enterovirus 71-infected mice by decreasing viral replication. J Infect Dis 2008, 197:854–857.

Chen TC, Chang HY, Lin PF, Chen JH, Hsu JT, Chang CY, Shih SR. Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71. Antimicrob Agents Chemother 2009, 53:2740–2747.

Thibault HJ, Leysens P, Puerstinger G, Muigg A, Neyts J, De Palma AM. Towards the design of combination therapy for the treatment of enterovirus infections. Antiviral Res 2011, 90:213–217.