The complete mitochondrial genome of the grass emperor, Lethrinus laticaudis (Perciformes: Lethrinidae)

Laura Taillebois a,b, David A. Crook b, Thor Saunders c, Samuel M. Williams d and Jennifer R. Ovenden d

a North Australia Marine Research Alliance, Charles Darwin University, Darwin, NT, Australia; b Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia; c Department of Primary Industry and Fisheries, Northern Territory Government, Berrimah, NT, Australia; d Molecular Fisheries Laboratory, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia

ABSTRACT

The grass emperor Lethrinus laticaudis is a coral reef fish that has high value to fisheries and is vulnerable to overharvesting. The complete mitochondrial genome was assembled from approximately 5.5 million reads produced by Illumina MiSeq. The 16,758 bp consisted of 13 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes (12S and 16S). The genes and RNAs were typically ordered and oriented on the complete mitogenome. Sequence was validated using the MitoAnnotator pipeline on the Mitofish webserver (Iwasaki et al. 2013). Our findings are consistent with what was described in Table 1. Moreover, the base composition was A, 32%, T, 18.7%, G, 21.3%, C, 28% with an A+T base content (50.7%) similar to other Teleosts. De novo annotations of the mitogenome were computed using the MitoAnnotator pipeline on the Mitofish webserver (Iwasaki et al. 2013). The complete mitogenome of L. laticaudis was aligned against the mitogenomes of closely related species chosen based on the classification of bony fishes (Betancur et al. 2013) and considering their availability in GenBank. The phylogenetic tree (Figure 1) showed that our mitogenome grouped together with the other Lethrinidae species. The Sparidae as well as the Nemipteridae species grouped together and formed a sister clade to the Lethrinidae (Figure 1). Our findings are consistent with what was previously reported.
Table 1. Detailed structure of Lethrinus laticaudis mitogenome (KU530221).

Locus	Position	Codon	Intergenic bases (bp)
tRNA-Phe	1-68	H	68
12S rRNA	69-1023	H	955
tRNA-Val	1023-1101	H	79
16S rRNA	1100-2905	H	1806
tRNA-Leu	2906-2980	H	75
ND1	2981-3952	H	972
tRNA-Ile	3957-4025	H	69
tRNA-Gln	4026-4096	H	71
tRNA-Met	4095-4166	H	72
ND2	4166-5212	H	1047
tRNA-Trp	5214-5284	H	71
tRNA-Ala	5284-5352	L	69
tRNA-Asn	5355-5427	L	73
OL	5427-5465	H	39
tRNA-Cys	5465-5531	L	67
tRNA-Tyr	5533-5602	L	70
COX1	5611-7155	H	1545
tRNA-Ser	7158-7227	L	70
tRNA-Asp	7231-7302	H	72
COX2	7310-8008	H	699
tRNA-Lys	8001-8077	H	77
ATP8	8078-8245	H	168
ATP6	8258-8941	H	684
COX3	8941-9726	H	786
tRNA-Gly	9727-9797	H	71
ND3	9798-10148	L	351
tRNA-Arg	10149-10213	H	65
ND4L	10216-10512	L	297
ND4	10506-11891	H	1386
tRNA-His	11887-11955	H	69
tRNA-Ala	11957-12013	H	57
tRNA-Leu	12030-12102	H	73
ND5	12121-13941	L	1821
ND6	13938-14459	L	522
tRNA-Glu	14460-14528	L	69
CYTB	14533-15729	H	1197
tRNA-Thr	15674-15746	H	73
tRNA-Pro	15745-15814	L	70
D-Loop	15815-16758	H	944

Figure 1. Phylogenetic tree of 11 closely related species including Lethrinus laticaudis based on the analysis of mitogenome sequences. The mitogenomes were aligned in Geneious using ClustalW alignment method with default settings. Poorly aligned positions and indels were removed with Gblock v 0.91b (Castresana 2000; Dereeper et al. 2008) using default settings and the D-Loop region was also excluded (total length: 15,323 bp). A heuristic maximum likelihood (ML) search was conducted using RaxML HPC v8 (Stamatakis 2006) on XSEDE, implemented in the CyberInfrastructure for Phylogenetic Research (CIPRES) portal v3.3 (http://www.phylo.org/portal2, Miller et al. 2010). Lutjanus johnii was set as the outgroup species for our analysis. A rapid bootstrap analysis and a search for best-scoring ML tree were performed. Robustness of the nodes was assessed with 1000 bootstrap replicates.
described in Betancur et al. (2013) and validate the accuracy of our mitogenome and species sample. The present genomic information will help lay the foundations for more detailed understanding of the biological and genetic diversity of the species, and contribute to its conservation and sustainable management.

Acknowledgements
The authors thank Mike Travers, Steve Newman and other staff from the Western Australian Department of Agriculture and Fisheries for sample collection and valuable comments.

Disclosure statement
The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Funding information
This research was supported by the Fisheries Research and Development Corporation (Project 2013/017); and the researcher LT was supported by the North Australia Marine Research Alliance (NAMRA – AIMS/ANU/CDU/NT Government) post-doctoral Fellowship.

References
Ayvazian S, Chatfield B, Australia W. 2004. The age, growth, reproductive biology and stock assessment of grass emperor, Lethrinus laticaudis in Shark Bay, Western Australia. North Beach, Western Australia: Department of Fisheries, Research Division, WA Marine Research Laboratories.

Betancur RR, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton II JC. 2013. The tree of life and a new classification of bony fishes. PLoS Curr. 5:1–33.

Carpenter KE, Niem VH. 2001. FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 5. Bony fishes part 3 (Menidae to Pomacentridae). Rome, Italy: FAO Library.

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17:540–552.

Coleman APM. 2003. The national recreational fishing survey: the Northern Territory. Northern Territory Department of Business, Industry and Resources Development. Fishery Report.

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M. 2008. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucl Acids Res. 36:W465–W469.

Grubert MA, Kuhl PJ, Penn JW. 2010. Ecological risk assessment. Northern Territory coastal line fishery. Northern Territory Department of Resources. Fishery Report.

Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M. 2013. MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol. 30:2531–2540.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647–1649.

Miller M, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 2010, IEEE, 1–8.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22:2688–2690.

Travers M, Potter I, Clarke K, Newman S, Hutchins J. 2010. The inshore fish faunas over soft substrates and reefs on the tropical west coast of Australia differ and change with latitude and bioregion. J Biogeogr. 37:148–169.