Antifungal Drug Susceptibility Testing of Dermatophytes: Laboratory Findings to Clinical Implications

Dermatophytes are the most commonly encountered fungi in humans and other vertebrates that spread through direct contact with infected humans, animals, and soil.[1] Infections due to these agents are usually restricted to the stratum corneum and are generally referred as ‘tinea’ or ‘ringworm’ (tinea capitis; tinea barbae; tinea corporis; tinea cruris; tinea manuum; tinea pedis and tinea unguium).[2,3] Dermatophytes belong to 3 closely related genera- *Trichophyton*, *Microsporum* and *Epidermophyton*.[4] Worldwide, several studies have documented a varied prevalence rate of dermatophytosis ranging from 14-26.8% in North America, East Asia and Europe, and 5-31.6% in Africa (Ethiopia, Kenya, Nigeria, and Tanzania).[5-7] The regional variations are mainly due to differences in the lifestyle, socioeconomic conditions, underlying risk factors, and environmental factors of different geographic areas.[1] Epidemics of dermatophytosis have also been reported in the area of overcrowding and poor hygienic conditions.[8-10] In 2005, World Health Organization (WHO) reported a prevalence of up to 19.7% for tinea capitis in the general population of developing countries.[11] High prevalence rates of tinea pedis and onychomycosis have been recognized in certain occupational groups like a marathon runner (22-31%), miners (21-72.9%), and soldiers (16.4-58%).[12,13] *Trichophyton* species are the major causative agents responsible for dermatophytosis with a prevalence rate of 70-90% for onychomycosis and 53-86% for rest of the tinea infections.[14,15] Of these, *Trichophyton rubrum* is the key etiological agent followed by *T. mentagrophytes* complex, *Microsporum canis*, and *M. gypseum*.[16-18] In India, we are presently noticing a significant rise in number of dermatophytosis cases with chronic recalcitrant disease, atypical presentations, frequent relapses, and treatment failures.[19-22] Though the reason for this phenomenon is not yet clear, it is assumed that unchecked availability of cheap and irrational fixed-dose corticosteroid–antifungal–antibacterial combinations sold over the counter in India and *in-vitro* resistance to common antifungals (to some extent) is playing a pivotal role. Due to recent increase in the reports of antifungal drug resistance in dermatophytes, many groups have suggested to perform the antifungal drug susceptibility testing especially for the dermatophytes isolated from chronic/recurrent/recalcitrant cases or those with atypical presentations. Clinical successful treatment does not always correlate with the MIC (minimum inhibitory concentration) value of antifungals (*in-vitro*) [Table 1]. The discordance between the *in-vivo* and *in-vitro* resistance in fungi has been illustrated by the “90–60 rule,” which states that infections due to susceptible strains respond to appropriate therapy in 90% of cases, whereas infections due to resistant strains respond in approximately 60% of patients.[23] The clinical breakpoints (CBP) for different antifungals against dermatophytes, has not been defined due to lack of clinical correlation and pharmacokinetic/pharmacodynamic (PK/PD) studies [Table 1]. This manuscript provides a comprehensive update on the antifungal drugs susceptibility testing and its application in treating dermatophytosis.

Resistance in Dermatophytes

There is not much data available regarding *in-vitro* drug resistance to dermatophytes, but recently many reports suggest that resistance is on rise.[24,25] Though, few reports suggest a good correlation between *in-vitro* resistance and treatment failure, there is no conclusive evidence to implicate *in-vitro* resistance with therapeutic failure in dermatophyte infections.[26] But relapse/recalcitrant infection after completion of recommended therapy in different presentations of dermatophyte infections is now well known. Resistance/recurrence after griseofulvin therapy in patients with *T. rubrum* and *T. tonsurans* is known since 1960s.[27,28] A study from North India also showed that there were non-responders to griseofulvin therapy among the tinea capitis patients.[17] With the emergence of treatment failure with griseofulvin, allylamines became the preferred choice of treatment.[29] Mukherjee *et al.*, in 2003 first reported *T. rubrum* strain exhibiting primary resistance to terbinafine and later Osborne *et al.*, showed single missense amino acid substitution at L393F and F398L leading to terbinafine resistance.[30-32] This missense substitution in *T. rubrum* also contributes to cross-resistance to the other antifungals in this class (allylamines). Recently, Yamada *et al.*, showed the presence of amino acid substitution at one of the four positions (Leu 393, Phe 397, Phe 415, His 440) of the squalene epoxidase protein in 17 isolates with a higher MIC to terbinafine.[33] Rudramurthy *et al.*, in 2018 from India, reported high terbinafine resistance in 17% of *T. interdigitale* and 14.3% of *T. rubrum* isolates, with few strains exhibiting F397L mutation.[29] Another recent study from India also reported L393F and F397L mutations with higher terbinafine MIC’s in isolates.[24] It has been reported that repeated exposure to azole antifungals may be responsible for the development of azole resistance in dermatophytes.[34] *T. rubrum* can develop resistance to azoles, amorolfine and terbinafine after prolonged exposure to sub-inhibitory concentrations of these drugs leading to treatment failures and consequently contributing to persistence and chronicity.
Different techniques have been evaluated to test the antifungal susceptibility of dermatophytes such as agar disc diffusion, agar dilution and macro- and micro broth dilution methods.\cite{40} The standard guidelines by Clinical Laboratory Standards Institute (CLSI), European Committee on Antimicrobial Susceptibility Testing (EUCAST) and British Society of Antimicrobial Chemotherapy (BSAC) are available for testing antifungal susceptibility of yeasts and molds \cite{22}. In 2008, CLSI included a method for antifungal susceptibility testing for dermatophytes\cite{42} in their document on AFST of molds. Many modifications of this standard guideline has been proposed to improve the results.\cite{43,44} Standardization of antifungal susceptibility testing for dermatophytes is generally difficult as there are many variable critical parameters that needs to be considered while performing the test such as inoculum size (i.e., number of conidia/spores), incubation temperature and duration, media to be used, and time and percentage of growth inhibition for end point detection.\cite{45,46}

Standardization of media

Norris et al., evaluated four different culture media with 18 clinical dermatophyte isolates of 3 different species (\textit{T. mentagrophytes}, \textit{T. rubrum}, and \textit{T. tonsurans}).\cite{45} RPMI 1640 (chemically defined media) and Sabouraud’s dextrose agar (chemically non-defined media) supported the growth of all the isolates but antibiotic medium #3 (Penassay; Difco Laboratories, Michigan) (chemically non-defined media), yeast nitrogen base (chemically defined media) with 0.5% dextrose showed a consistent growth of the isolates tested in the experiment. This study recommended RPMI 1640 as a superior media as its chemical composition is defined. Thus this study formed the basis for the establishment of future development of antifungal susceptibility testing.\cite{45}

Though Sabouraud’s dextrose broth and RPMI 1640 shows a similar type of efficiency for the growth of different species of dermatophytes, very few studies have been done to evaluate antifungal susceptibility testing against dermatophytes. McVeigh and Morton (MVM) is also a
chemically defined medium but the interpretation of the results becomes difficult due to the non-transparency of media.[47] Thus various studies concluded that RPMI 1640 should be used as a standard media for a determination of antifungal susceptibility testing of dermatophytes.[44,46,47]

Standardization of Inoculums Size, Incubation Time and Temperature

The initial inoculum size required to start the susceptibility testing is a critical factor while determining the minimum inhibitory concentrations (MIC). Any variation in the inoculum size leads to variable result during interpretation. Thus, an intra and interlaboratory comparison becomes important to validate the inoculums size.[44] Apart from standardization of culture media, Norris and co-researchers also tested 3 different inoculums size: 10^3, 10^4 and 10^5 conidia/ml. Four antifungal drugs such as griseofulvin, itraconazole, terbinafine and fluconazole against 18 dermatophytes isolates tested revealed 10^3 conidia/ml as an optimum inoculum for antifungal susceptibility testing. There was no difference in the MICs of itraconazole and terbinafine with higher inoculums size but higher MICs were observed for fluconazole and griseofulvin.[45]

Norris et al., checked two different temperature conditions i.e. 30°C and 35°C in which no significant difference in their growth was noticed.[45] The studies reported that micro broth dilution method requires incubation at 35°C and should be read at the end of 72-96 hour.[48-50] Though the incubation period of 3-4 days is generally accepted to read the results, the time duration may exceed for a slow growing dermatophyte. Hence, final reading should be read on the basis of presence of growth in the control well.[51] A multi-center study tested 60 dermatophyte isolates against 3 antifungals (clotrimazole, itraconazole and terbinafine) with different incubation time (3, 7, 14 days) and temperature (28°C and 37°C). Significantly better and reproducible results were obtained after 7 days at 28°C.[52] In contrast, Perea et al., determined that sufficient growth of dermatophytes while performing antifungal susceptibility testing not only depends on the incubation time but also on nature of the solvent used to dissolve the drugs. The shorter time duration (48 to 72 h) was required when water was used as a solvent whereas the incubation time increased to 10-14 days’ when polyethylene glycol was used as solvent.[53]

Reliability of In-vitro Antifungal Susceptibility Testing

In 2008, antifungal susceptibility testing protocol for dermatophytes was approved for the first time by CLSI, which was further modified in 2010.[44] Reproducibility of the endpoint should be considered as a principal factor for the detection of any resistance. The experts recommend multicenter studies to develop, and validate accurate optimal conditions for performing antifungal susceptibility testing of dermatophytes.[44,51] Ghannoum and co-researchers...
in 2004 conducted a multicenter study including six laboratories to evaluate the reproducibility of antifungal susceptibility testing results. In this study, the activities of seven antifungal agents (ciclopirox- olamine, fluconazole, griseofulvin, itraconazole, posaconazole, terbinafine and voriconazole) were examined against 5 different species of dermatophytes (T. rubrum, T. mentagrophytes, T. tonsurans, E. floccosum and M. canis). MIC for all the isolates was determined by microbroth dilution method according to CLSI (previously known as NCCLS) M38-A standard. The MIC for all the isolates were determined using the endpoint of 50% and 80% inhibition of growth compared to control. The MIC data generated at different laboratories for all the dermatophytes isolates were analyzed. Values read at 50% inhibition compared with control growths showed an agreement of 92-100% whereas for 80% growth inhibition the agreement was 88 to 99%. Thus, the study concluded that CLSI M38-A standard guidelines for testing antifungal susceptibility of dermatophytes gave reproducible results.[14] Another collaborative study was conducted to define the specific inoculum sizes, incubation temperatures and other procedural end points for performing antifungal susceptibility testing by broth microdilution test against dermatophytes for clotrimazole, itraconazole, and terbinafine. A total of 60 isolates of six different species of dermatophytes including T. mentagrophytes, T. rubrum, T. tonsurans, M. gypseum, M. canis and E. floccosum were evaluated. The study concluded that the optimal condition for in- vitro antifungal susceptibility of dermatophytes requires incubation at 28°C for 7 days with 10^6 CFU/ml inoculum density. The MIC of all the drugs should be determined by 100% growth inhibition.[52] Other than terbinafine, clotrimazole, and itraconazole, newly introduced antifungal drugs including sertaconazole, luliconazole and lanconazole, amorolfine, bifonazole, and miconazole have also been evaluated by in- vitro antifungal testing against dermatophytes.[15-57] ME1111 is a newer antifungal agent mainly used as a topical agent for the treatment of onychomycosis. Ghannoum and co-workers evaluated and standardized the activity of the ME 1111 antifungal agent by performing CLSI M38- A2 methodology against three isolates (T. mentagrophytes, T. rubrum, and E. floccosum) along with ATCC strain of T. rubrum and T. mentagrophytes as quality control. Evaluation of their results showed the interlaboratory agreement of more than 90% for the MIC’s read with 80% inhibition as end point and it reduced to 76.2% when 100% inhibition was taken as criteria to read endpoint. At least on the basis of the above-mentioned studies it is clear that broth microdilution test of CLSI as per the M38-A2 protocol is the standard guideline for performing antifungal susceptibility testing against dermatophytes [Table 3]. Although methods are available for the performance of susceptibility testing, clinical interpretation of the MIC values or the breakpoints to consider whether the agent tested is susceptible or resistant clinically is yet to be defined clearly.[58] In the clinical setting, for better management of patients, clinical breakpoint (CBP) play an important role.[59] CBP depends upon several factors like the MIC distribution, pharmacokinetic/pharmacodynamic (PK/PD) data of the antifungals, and the most importantly, the outcome of disease.[59] Due to paucity of data on clinical outcome with the antifungal susceptibility data, it is hard to decide the CBP for a particular species. Therefore, in such situations, epidemiological cutoff value (ECV) may be determined for any given species and antifungal agent. This is the MIC value that is provisionally used to differentiate the wild-type isolates (generally considered as susceptible) from non-wild-types (generally considered as resistant isolates). This provisional value may help to choose appropriate antifungals while treating the infection. However, it is pertinent to mention that ECV’s are not determinant of successful treatment, it only predicts and separate the population into two categories- wildtype or non-wildtype.[59]

Alternative Susceptibility Testing Methods

Disk diffusion method

Macro broth dilution and micro broth dilution methods are generally laborious and need expertise to perform in laboratories compared to the antimicrobial susceptibility testing by disc diffusion and ‘E’ test method. According to the standard guideline of CLSI, disc diffusion test and E-test are not recommended for dermatophytes antifungal susceptibility testing.[44] But, studies are available comparing disc diffusion with broth microdilution methods.[60,61] Niewerth et al., in 1998, compared two methods of antifungal susceptibility testing to test four different species against five topical antifungal agents (griseofulvin, itraconazole, sertaconazole, terbinafine, and ciclopirox olamine) and found discrepancy in the result obtained from these two methods. The agar dilution method yielded higher MIC value than the broth dilution method.[62] In contrast, Macura et al., reported that disk diffusion technique for antifungals susceptibility for dermatophytes was much simpler and easy to perform in routine clinical settings and provided as consistent results as broth dilution method.[63] Karaca et al., compared these two antifungal susceptibility testing technique using four species of dermatophytes against a large number of antifungal agents (itraconazole, fluconazole, ketoconazole, miconazole, sulconazole, oxiconazole, bifonazole, griseofulvin, ciclopirox olamine and terbinafine). Similar results were obtained from disk diffusion method when compared with the micro- broth dilution methods. So disk diffusion method may be considered as an alternative to gold standard dilution method.[64] E-Test methods are mainly based on agar diffusion method and are used to determine the MIC of fastidious, slow growing or nutritionally deficient microorganisms. Castro Mendez and co-researchers compared the two agar based methods;
Reference	Technique	Total no. of antifungals	Antifungal agents	Dermatophytes tested	Total no. isolates	Inoculum size	Incubation temperature	Duration of incubation	End point criteria	Result/Remarks
Rudramurthy et al., 2018 ^[27]	Micro broth dilution^a	12	F, K, Cl, Ci, L, N, V, A, I, T, S, G	Ti, Tr, Ti	127	1-3 × 10³ CFU/ml	28°C	4-5 days	80% inhibition compared to growth control	20 isolates showed higher MIC to T; 45 isolates showed higher MIC to F
Baghi et al., 2016 ^[48]	Micro broth dilution^a	12	F, I, T, G, L, La, To, Ec, M, Cas, Ani, Bu	Ti, Tr, Ti, Ef, Mc	100	0.5-3 × 10³ CFU/ml	35°C	96 h^a	Read visually to determine MICs and MECs value by comparison with growth control	
Ansari et al., 2016 ^[66]	Micro broth dilution^a	4	F, I, T, G	Ti, Tr, Ti, Ef, Mc, Ab	316	1-3 × 10³ CFU/ml	35°C	48-72 h^a	Read visually to determine MICs and MECs value by comparison with growth control	
Adimi et al., 2013 ^[67]	Micro broth dilution^a	10	F, I, T, G, K, Cl, V, A, N, Ci	Tr, Tr, Ts, Te, Ter, Tr, Tm, Tv, Tve, Ef, Ab, Mc, Mg, Mf, Mfe, Mr	370	1-3 × 10³ CFU/ml	28°C	7 days	For F and G 50% inhibition; other antifungals 100% inhibition	I and T showed lowest and F showed highest MIC value
Silva et al., 2014 ^[68]	Micro broth dilution^a	6	F, I, T, G, K, V	Ti, Tr, Tr, Ts, Tve, Mc, Mg, Ef	70	2-4 × 10⁴ CFU/ml	28°C	4-7 days	For azoles 50%, G 80% and T 100% inhibition	T is most potent followed by V; I, F and G least active
Zalacain et al., 2011 ^[69]	Micro broth dilution^a	5	F, I, T, Ci, Eb	Tr, Tr, Ef, Mc	70	0.5 × 10⁵-5 × 10⁶ spores/ml	30°C	3-5 days	50% inhibition	The activity of both T and Eb significantly higher than other drugs
Barros et al., 2010 ^[70]	Micro broth dilution^a	4	F, I, T, G	Tr, Tr, Tm	100	0.5 × 10⁸-5 × 10⁹	28°C	7 days	F, I, G 80% inhibition and T 100% inhibition compared to growth control	Activities of T and I higher than F and G
Chadeganipour et al., 2004 ^[71]	Micro broth dilution^a	1	G	Tm, Tve, Ef, Mc	50	0.5 McFarland	35°C	14 days	Isolates were most sensitive to M, Amp, K and least sensitive to G and I	12% - higher MIC values for G
Eba et al., 2016 ^[72]	Disk diffusion method^a	5	I, G, K, M, Amp	Tr, Tr, Tm	58	0.5 McFarland	27°C	24-48 h	Zones of inhibition measured	
Nweze et al., 2010 ^[73]	Micro broth dilution^a and Disk diffusion^a	8	F, I, T, G, K, M, V, Ci	Tr, Tr, Tm, Ef, Mc	47	1.0 × 10⁶ conidia/ml	30°C	4-7 days	Zones of inhibition measured	Disk diffusion results similar to microbroth dilution methods
Aktas et al., 2014 ^[40]	E-test[%]	5	F, I, K, Cas, Amp	Tr, Tr, Tm, Tv, Ef, Mc	66	10⁵-10⁶ CFU/mL-1	28°C	72-69 hour	Border of the elliptical inhibition zone intercepted the MIC scale on the E-test strip	Most active agent were Cas, I and F least active

Contd...
Reference	Technique	Total no. of antifungals agents	Dermatophytes tested	Total no isolates	Inoculum size	Incubation temperature	Duration of incubation	End point criteria	Result/Remarks
Moti et al., 2009	Micro broth dilution and disk diffusion	5	F, I, T, G, K, Tr, Tm, Mc	60	0.4-5 × 10^4 cells/ml	28°C	72-120 h	Terbinafine 100% inhibition rest all 80%; reading made every 24 hour until growth in growth control	
Singh et al., 2007	Micro broth dilution and disk diffusion	6	I, T, G, Po, Ra, Ci, Tr, Tt, Tm, Tv, Ef, Mc	63	0.5 × 10^4 - 10^5	30°C	4 days	For fluconazole 50% inhibition and rest all 100% inhibition; measure zone of diameter 2	
Esteban et al., 2005	Micro broth dilution and disk diffusion	3	I, T, Cl, Tr, Tt, Tm, Ef, Mc, Mg	59	1 × 10^3 - 10^4	28°C	3-7 days	Clotrimazole 50% inhibition and rest two 100% inhibition; measure zone of diameter 2	
Méndez et al., 2008	Micro broth dilution, disk diffusion and E-Test	3	F, I, V, Tr, Tm, Mg	46	0.5 × 10^3 - 0.5 × 10^3	35°C	42-72 h 1 and 48 h 2	100% inhibition 1 and measure zone of diameter 2	

Fluconazole- F, Ketoconazole- K, Clotrimazole- Cl, Ciclopinox olamine- Ci, Luliconazole- L, Naftifine- N, Voriconazole- V, Amorolfine- A, Itraconazole- I, Terbinafine- T, Sertaconazole- S, Griseofulvin- G, Lanoconazole-La, Tolnaftate- To, Econazole- Ec, Miconazole- M, Caspofungin-Cas, Anidulafungin-Ani, Butenafine-Bu, Eberconazole- Eb, Amphotericin B- Amp, Posaconazole-Po, Ravaconazole-Ra, T. interdigitale-Ti, T. rubrum- Tr, T. tonsurans- Tt, T. schoenleinii- Ts, T. erinacei- Te, T. eriophytes- Ter, T. mentagrophytes- Tm, T. violaceum- Tv, T. verrucosum- Tve, E. floccosum- Ef, M. canis- Mcc, M. gypseum- Mg, M. fulvum- Mf, M. ferrugineum- Mfe, M. racemosum- Mr, A. benhamiae- Ab, CFU- colony forming units, &- plates with insufficient growth were incubated for 120 h, @- RPMI-1640 medium, @- Sabouraud’s dextrose agar, %- RPMI-1640 agar medium, S- Mueller Hinton agar, !- Dermasel agar, 1- Micro broth dilution, 2- Disk diffusion method and E test
E test and disk diffusion method and CLSI broth dilution method (CLSI M38-A) against three antifungal drugs (fluconazole, itraconazole, voriconazole). The results obtained with this disk diffusion method had low correlation with the results obtained from CLSI broth microdilution method for azoles. E- test and broth dilution methods showed agreement of 45.6% for fluconazole, 19.5% for itraconazole and 52.1% for voriconazole. Although, an agar-based method is much simpler and easier to perform than broth dilution method, further research is essential before incorporating this technique in routine laboratory practice to test dermatophytes susceptibility [44, 51] [Table 3].

In conclusion, various techniques are available for antifungal susceptibility testing of dermatophytes but only broth microdilution technique is currently accepted to determine in-vitro susceptibility of dermatophytes. As this technique is laborious and need expertise, only few mycology laboratories can perform this test. In the present scenario of increasing resistance to the dermatophytes, there is a need to perform antifungal drug susceptibility tests at least in cases with chronic/recurrent dermatophytosis or treatment failure/relapse. As there is no CBP defined as of yet, there is urgent need to establish ECV for fungal infections of the skin of the foot. Sao Paulo Med J 2014;132:127.

Achtern RR, White TC. A foot in the door for dermatophyte research. Heitman J, editor. PLoS Pathog 2012;8:e1002564.

Balakumar S, Rajan S, Thirunalasundari T, Jeeka S. Epidemiology of dermatophytosis in and around Tiruchirapalli, Tamilnadu, India. Asia Pac J Trop Dis 2012;2:286-9.

Garg A, Venkatesh V, Singh M, Pathak KP, Kalapur SP, Agrawal SK. Onychomycosis in central India: A clinicoetiological correlation. Int J Dermatol 2004;43:498-502.

Peerapur BV, Inamdar AC, Pushpa PV, Srikant B. Clinicomycological study of dermatophytosis in Bijapur. Indian J Med Microbiol 2004;22:273-4.

Singal A, Rawat S, Bhattacharyya SN, Mohanty S, Baruah MC. Clinico-mycological profile of tinea capitis in North India and response to griseofulvin. J Dermatol 2001;28:22-6.

Yadav P, Singal A, Pandhi D, Das S. Clinicomycological study of dermatophyte toenail onychomycosis in New Delhi, India. Indian J Dermatol 2015;60:153-8.

Majid I, Sheikh G, Kanth F, Hakak R. Relapse after oral terbinafine therapy in dermatophytosis: A clinical and mycological study. Indian J Dermatol 2016;61:529-33.

Ahmed S, Jeelani S, Lanker A, Qayoom S, Sameen F. Relapse of cutaneous fungal infection in healthy individuals-A rising concern. Br J Med Med Res 2016;11:1-8.

Sahoo AK, Mahajan R. Management of tinea corporis, tinea cruris, and tinea pedis: A comprehensive review. Indian Dermatol Online J 2016;7:77-86.

Dogra S, Upreti S. The menace of chronic and recurrent dermatophytosis in India: Is the problem deeper than we perceive? Indian Dermatol Online J 2016;7:73.

Verma S, Madhu R. The great indian epidemic of superficial dermatophytosis: An appraisal. Indian J Dermatol 2017;62:229-36.

Singh A, Masih A, Khurana A, Singh PK, Gupta M, Hagen F, et al. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses 2018;61:477-84.

Rudramurthy SM, Shankarnarayan SA, Dogra S, Shaw D, Mustaq K, Paul RA, et al. Mutation in the squalene epoxidase gene of Trichophyton interdigitale and Trichophyton rubrum associated with allylamine resistance. Antimicrob Agents Chemother 2018;62:1-9.

Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012;1:2-16.

Michaelides P, Rosenthal SA, Sulzberger MB. A Case demonstrating clinical and in vitro resistance. Archo Dermatol 1961;83:988-90.

Berry CZ. Recurrence of Trichophyton rubrum infection during treatment with griseofulvin. Arch Dermatol 1960;81:982.

Newland JG, Abdel-Rahman SM. Update on terbinafine with a focus on dermatophytoes. Dermatology 2009;2:49-64.

Mukherjee PK, Leidich SD, Isham N, Leitner I, Ryder NS, 2016;147:315-9.

Indian Dermatology Online Journal | Volume 10 | Issue 3 | May-June 2019

References

1. Ames I. Dermatophyotosis. Inst Int Coop Anim Biol 2013;3:1-13.
2. Maraki S. Epidemiology of dermatophytoes in Crete, Greece between 2004 and 2010. G Ital Dermatol Venereol 2012;147:315-9.
3. Abd Elmegeed AS, Ouf SA, Moussa TA, Eltahlawi SM. Dermatophytes and this value may guide the clinician while managing recalcitrant/resistant dermatophytosis.

Sunil Dogra, Dipika Shaw1, Shivaprakash M. Rudramurthy1

Departments of Dermatology, Venereology, and Leprology and 'Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India

E-mail: mrshivprakash@yahoo.com

from clinically normal sites in patients with tinea cruris. Mycopathologia 1992;120:139-41.

10. Rezaei-Matehkolaei A, Rafiei A, Makimura K, Gräser Y, Gharghani M, Sadeghi-Nejad B. Epidemiological aspects of dermatophytosis in Khuzestan, southwestern Iran, an Update. Mycopathologia 2014;181:547-53.

11. Organization WH, Others. Epidemiology and management of common skin diseases in children in developing countries. Geneva World Heal Organ. 2005;54.
Dogra, et al.: Clinical implications of AFST

Ghannoum MA. Clinical *Trichophyton rubrum* strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother 2003;47:82-6.

31. Osborne CS, Leitner I, Favre B, Ryder NS. Amino acid substitution in *Trichophyton rubrum* squalene epoxidase associated with resistance to terbinafine. Antimicrob Agents Chemother 2003;49:2840-4.

32. Osborne CS, Leitner I, Hofbauer B, Fielding CA, Favre B, Ryder NS. Biochemical, biological, and molecular characterization of a new clinical *Trichophyton rubrum* isolate resistant to terbinafine. Antimicrob Agents Chemother 2006;50:2234-6.

33. Yamada T, Maeda M, Alshahni MM, Tanaka R, Yaguchi T, Bontems O, et al. Terbinafine Resistance of *Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene*. Antimicrob Agents Chemother 2017;61:e00115-17.

34. Gupta AK, Kohli Y. Evaluation of *in vitro* resistance in patients with onychomycosis who fail antifungal therapy. Dermatology 2003;207:375-80.

35. Hryncewicz-Gwóźdź A, Kalinowska K, Plomer-Niezgoda E, Bielecki J, Jagielski T. Increase in resistance to fluconazole and itraconazole in *Trichophyton rubrum* clinical isolates by sequential passages *in vitro* under drug pressure. Mycopathologia 2013;176:49-55.

36. Ghelardi E, Celandroni F, Gueye SA, Salvetti S, Senesi S, Bulgheroni A, et al. Potential of ergosterol synthesis inhibitors to cause resistance or cross-resistance in *Trichophyton rubrum*. Antimicrob Agents Chemother 2014;58:2825-9.

37. Ghannoum M. Azole resistance in dermatophytes: Prevalence and mechanism of action. J Am Podiatr Med Assoc 2015;106:79-86.

38. Azambuja CV, Pimmel LA, Klake GB, Xavier MO. Onychomycosis: Clinical, mycological and *in vitro* susceptibility testing of isolates of *Trichophyton rubrum*. An Bras Dermatol 2007;82:591-6.

39. Martínez-Rossi NM, Peres NTA, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia 2008;166:369-83.

40. Aktas AEA, Vigit N, Aktas AEA, Gozubuyuk SG. Investigation of *in vitro* activity of five antifungal drugs against dermatophytes species isolated from clinical samples using the E-test method. Eurasian J Med 2014;46:26-31.

41. Ghannoum MA, Arthington-Skaggs B, Chaturvedi V, Espinel-Ingroff A, Pfaffer MA, Rennie R, et al. An interlaboratory study of quality control isolates for a broth antifungal susceptibility method for the testing of dermatophytes. J Clin Microbiol 2006;44:4353-6.

42. Clsi. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A. Clin Lab Stand Inst 2008:28-52.

43. Jo Stu WJ, Tatsumi Y, Sendha H, Pillai R, Nakamura T, Sone D, et al. *Comparison of in vitro* antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother 2013;57:1610-6.

44. Thatai P, Sapra B. Critical review on retrospective and prospective changes in *in vitro* antifungal susceptibility testing for dermatophytes. Mycoses 2016;59:615-27.

45. Norris HA, Elewski BE, Ghannoum MA. Optimal growth conditions for the determination of the antifungal susceptibility of three species of dermatophytes with the use of a microdilution method. J Am Acad Dermatol 1999;40:89-13.

46. Jessup CJ, Warner J, Isham N, Hasan I, Ghannoum MA. Antifungal susceptibility testing of dermatophytes: Establishing a medium for inducing conidial growth and evaluation of susceptibility of clinical isolates. J Clin Microbiol 2000;38:341-4.

47. Santos DA, Hamdan JS. Evaluation of broth microdilution antifungal susceptibility testing conditions for *Trichophyton rubrum*. J Clin Microbiol 2005;43:1917-20.

48. Baghi N, Shokohi T, Badali H, Makimura K, Rezaei-Matehkoiaei A, Abdollahi M, et al. *In vitro* activity of new azoles luliconazole and lanoconazole compared with ten other antifungal drugs against clinical dermatophyte isolates. Med Mycol 2016;54:757-63.

49. Ghannoum M, Chaturvedi V, Diekema D, Ostrosky-Zeichner L, Rennie R, Walsh T, et al. Multilaboratory evaluation of *in vitro* antifungal susceptibility testing of dermatophytes for ME1111. J Clin Microbiol 2016;54:4662-5.

50. Mohd Nizam T, Binting RA, Mohd Saari S, Kumar TV, Muhammad M, Satim H, et al. *In vitro* antifungal activities against moulds isolated from dermatological specimens. Malaysian J Med Sci 2016;23:32-9.

51. Chand DV, Ghannoum MA. Susceptibility testing of dermatophytes. In: Interactions of Yeasts, Moulds, and Antifungal Agents. Totowa, NJ: Humana Press; 2009. p. 89-95.

52. Fernández-Torres B, Cabañes FJ, Carrillo-Muñoz AJ, Esteban A, Inza I, Abarca L, et al. Collaborative evaluation of optimal antifungal susceptibility testing conditions for dermatophytes. J Clin Microbiol 2002;40:3999-4003.

53. Perea S, Fothergill AW, Sutton DA, Rinaldi MG. *Comparison of in vitro* activities of voriconazole and five established antifungal agents against different species of dermatophytes using a broth macrodilution method. J Clin Microbiol 2001;39:385-8.

54. Ghannoum MA, Chaturvedi V, Pfaffer MA, Rinaldi MG, Warnock DW, Icbrosis JCLINM. *Intra-* and interlaboratory study of a method for testing the antifungal susceptibilities of dermatophytes. J Clin Microbiol 2004;42:2977-9.

55. Schaller M, Borell C, Berger U, Walker B, Schmidt S, Weindl G, et al. Susceptibility testing of amorolfine, bifonazole and ciclopiroxolamine against *Trichophyton rubrum* *in vitro* model of dermatophyte nail infection. Med Mycol 2009;47:753-8.

56. Carrillo-Muñoz AJ, Tur-Tur C, Cárdenes DC, Estivill D, Giusiano G. Sertaconazole nitrate shows fungicidal and fungistatic activities against *Trichophyton rubrum, Trichophyton mentagrophytes*, and *Epidermophyton floccosum*, causative agents of tinea pedis. Antimicrob Agents Chemother 2011;55:4420-1.

57. Carrillo-Muñoz AJ, Fernandez-Torres B, Guarro J. *In vitro* antifungal activity of sertaconazole against 309 dermatophyte clinical isolates. J Chemother 2003;15:555-7.

58. Ghannoum MA, Arthington-Skaggs B, Chaturvedi V, Espinel-Ingroff A, Pfaffer MA, Rennie R, et al. Interlaboratory study of quality control isolates for a broth antifungal susceptibility method for the testing of dermatophytes. J Clin Microbiol 2006;44:4353-6.

59. Clsi. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A. Clin Lab Stand Inst 2008:28-52.

60. Jo Stu WJ, Tatsumi Y, Sendha H, Pillai R, Nakamura T, Sone D, et al. *Comparison of in vitro* antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother 2013;57:1610-6.

61. Singh J, Zaman M, Gupta AK. Evaluation of microdilution and disk diffusion methods for antifungal susceptibility testing of dermatophytes.
dermatophytes. Med Mycol 2007;45:595-602.
62. Niewerth M, Splanemann V, Korting HC, Ring J, Abeck D. Antimicrobial susceptibility testing of dermatophytes—comparison of the agar macrodilution and broth microdilution tests. Chemotherapy 1998;44:31-5.
63. Macura, A B. In vitro susceptibility of dermatophytes to antifungal drugs: A comparison of two methods. Int. J. Dermatol 1993;32:533-6.
64. Karaca N, Koç AN. In vitro susceptibility testing of dermatophytes: Comparison of disk diffusion and reference broth dilution methods. Diagn Microbiol Infect Dis 2004;48:259-64.
65. Méndez CC, Serrano MC, Valverde A, Pemán J, Almeida C, Martín-Mazuelos E. Comparison of E-test, disk diffusion and a modified CLSI broth microdilution (M 38-A) method for in vitro testing of itraconazole, fluconazole and voriconazole against dermatophytes. Med Mycol 2008;46:119-23.
66. Ansari S, Hedayati MT, Moradi K, Pakshir K, Badali H, Rafiei A, et al. Molecular characterization and in vitro antifungal susceptibility of 316 clinical isolates of dermatophytes in Iran. Mycopathologia 2016;181:89-95.
67. Parvaneh Adimi, Seyed Jamal Hashemi, Mahmood Mahmoudi, Hossein Mirhendi, Mohammad Reza Shidfar, Masood Emamjomeh, et al. In-vitro activity of 10 antifungal agents against 320 dermatophyte strains using micro dilution method in Tehran. Iran J Pharm Res 2013;12:537-45.
68. Silva LB, de Oliveira DB, da Silva BV, de Souza RA, da Silva PR, Ferreira-Paim K, et al. Identification and antifungal susceptibility of fungi isolated from dermatomycoses. J Eur Acad Dermatology Venereol 2014;28:633-40.
69. Zalacain A, Obrador C, Martinez JP, Viñas M, Vinuesa T. Characterization of the antimicrobial susceptibility of fungi responsible for onychomycosis in Spain. Med Mycol 2011;49:495-9.
70. Barros MEDS, Santos DDA, Hamdan JS. Evaluation of susceptibility of Trichophyton mentagrophytes and Trichophyton rubrum clinical isolates to antifungal drugs using a modified CLSI microdilution method (M38-A). J Med Microbiol 2007;56:514-8.
71. Chahganioumpour M, Nilipour S, Havaei A. In vitro evaluation of griseofulvin against clinical isolates of dermatophytes from Isfahan. Mycoses 2004;47:503-7.
72. Eba M, Njunda AL, Mouliom RN, Kwenzi ET, Fuh AN, Nchanji GT, et al. Onychomycosis in diabetic patients in Fako Division of Cameroon: Prevalence, causative agents, associated factors and antifungal sensitivity patterns. BMC Res Notes. 2016;9:1-8.
73. Nweze EI, Mukherjee PK, Ghannoum MA. Agar-based disk diffusion assay for susceptibility testing of dermatophytes. J Clin Microbiol 2010;48:3750-2.
74. Esteban A, Abarca ML, Cabañas FJ. Comparison of disk diffusion method and broth microdilution method for antifungal susceptibility testing of dermatophytes. Med Mycol 2005;43:61-6.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.