Abstract. Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

1. Introduction

The role of nuclear power has been emphasized since the middle of the twentieth century. The nuclear safety and security are, however, matters of concern to the entire world. One of the major issues is the management on the radioactive waste in the spent nuclear fuel produced from the nuclear power plant.

In recent years, a research and development has been performed using the partitioning and transmutation technology for the reduction of the high-level radioactive waste [1]. Due to their relatively short half lives of 30 years [3], 137Cs and 90Sr have large radiotoxicities. Indeed, the radiotoxicities in these two LLFP nuclei are predominant (more than 90%) in the first 100 years after the reprocessing of spent fuel. The palladium metal is one of useful materials in HLW but it has a radioactive isotope 107Pd, which is a long-lived fission product with a half-life of 5×10^6 years [3]. In considering a possible mechanism for the reduction in the radioactivities of 137Cs, 90Sr and 107Pd, the related nuclear reaction data are very scarce. Thermal neutron capture reactions were once investigated for these three LLFP nuclei [4–6].

In the present work, the spallation reactions have been performed for 137Cs, 90Sr and 107Pd in the aspect of nuclear waste transmutation for LLFP. The inverse reaction technique was adopted in the present work: the LLFP beams were used and proton/deuteron-induced reactions were conducted by using proton and deuteron targets. The technique allows us to avoid the difficulties associated with
horizontal dashed lines indicate the Z ions could be separated from the spectrometer. Panel (a) displays a two-dimensional plot of Z of a 238U beam at 345 MeV/nucleon incident on a

The secondary beams were produced by in-flight fission and the Center for Nuclear Study, University of Tokyo. The experiment was performed at the RIKEN Radioactive Isotope Beam Factory, operated by RIKEN Nishina Center.

2. Experiment

The experiment was performed at the RIKEN Radioactive Isotope Beam Factory, operated by RIKEN Nishina Center and the Center for Nuclear Study, University of Tokyo. The secondary beams were produced by in-flight fission of a 238U beam at 345 MeV/nucleon incident on a 1-mm-thick beryllium target located at the object point of the BigRIPS separator [7]. Several BigRIPS settings were applied to optimize the transmission of 137Cs, 90Sr and 107Pd, respectively. The particle identification for the secondary beams was made event-by-event by measuring the time of flight (TOF), the magnetic rigidity (Bp), and the energy loss (ΔE) as described in Refs. [8, 9] with similar experimental setups. The beam energies were both 185 MeV/nucleon for 137Cs and 90Sr in front of the secondary targets. For 107Pd, the data were taken at both 196 and 118 MeV/nucleon.

To induce the secondary reactions, three types of targets were used. They were CH$_2$, CD$_2$ [10] and natural carbon. The target thicknesses are summarized in Table 1.

In addition, data were taken by using the target holder with no target-material inserted (empty-target), in order to measure the background contribution.

The reaction residues were collected and analyzed by the ZeroDegree spectrometer [7]. In order to cover a broad range of fragments, several different magnetic rigidity (Bp) settings were applied: -9%, -6%, -3%, 0%, and $+3\%$ relative to the Bp value of the beam. Thus, a sufficient overlap was obtained for neighboring settings. The particle identification was made again using the TOF-Bp-ΔE method in a similar way to BigRIPS. In addition, the mass number A was deduced from the TOF information and a total kinetic energy (TKE) measurement using a LaBr$_3$(Ce) scintillator placed at the final focus of the ZeroDegree spectrometer for the identification of different charge states.

An example of the particle identification for reaction products detected by the ZeroDegree spectrometer is shown in Fig. 1 for the 137Cs secondary beam on the carbon target. It is noted that the fully-stripped ions are contaminated by the lighter fragments with hydrogen-like ($Q = Z - 1$) charge states. In Fig. 1(b), a two-dimensional plot of A versus A/Q is shown and the plot was obtained by selecting the events within $Z = 55 \pm 0.5$, as indicated by the horizontal dashed lines in Fig. 1(a). Using this technique, the fully-stripped ions were unambiguously distinguished from the other charge states.

Table 1. List of targets used in the present work.

Target	Thickness (mg/cm2)	Experimental settings in BigRIPS
CH$_2$	179.2	137Cs and 90Sr at 185 MeV/nucleon, 107Pd at 196 and 118 MeV/nucleon
CD$_2$	218.2	137Cs and 90Sr at 185 MeV/nucleon, 107Pd at 196 and 118 MeV/nucleon
C	226.0	137Cs and 90Sr at 185 MeV/nucleon, 107Pd at 118 MeV/nucleon
C	317.2	107Pd at 196 MeV/nucleon

3. Results

The isotopic distributions of cross sections for the different elements produced by the 137Cs and 90Sr beams on proton and deuteron are displayed in Figs. 2 and 3, respectively. The proton- and deuteron-induced cross sections (σ_p and σ_d) were deduced from the measurements using the CH$_2$ and CD$_2$ targets, respectively, after subtracting the contributions from carbon (using data from the C target run) and beam-line materials (using data from the empty-target run). The data analysis for 107Pd is ongoing.

Figures 2(a) and 3(a) correspond to the charge-pickup reactions. In this channel, the σ_p values are larger than the σ_d ones. It was also found that σ_p is larger than σ_d for the charge-pickup reaction channel of 136Xe [12] at a high reaction energy. Isotopes close to the projectile in mass, such as Cs and Xe (Sr and Rb) in the 137Cs (90Sr) case, are mainly produced from the so-called “peripheral” reactions, where neutron evaporation dominates [14]. For these isotopes, as displayed in Panels (b) and (c) in Figs. 2 and 3, both σ_p and σ_d keep an almost constant value...
Figure 2. The isotopic cross section of residual nuclei from Sb to Ba produced by the reactions 137Cs + p (down-triangle) and 137Cs + d (up-triangle) at 185 MeV/nucleon. The dashed and dotted lines indicate the PHITS [15] calculations on proton and deuteron, respectively. The SPACS results on proton (solid) are displayed for comparison.

Figure 3. Same as Fig. 2, but for the nuclei from Se to Y produced by 90Sr.

Sb, as shown in Fig. 2(d)–(f). In addition, the odd-even staggering effect is overestimated by PHITS.

The experimental data were also compared to the SPACS semi-empirical parameterization [16], which has been recently developed to suit proton- and neutron-induced spallation reactions. The SPACS results are in a reasonable agreement with the isotopic distribution for the proton-induced cross sections. An underestimation is found for the Cs and Sr isotopic chains, as shown in Panel (b) in Figs. 2 and 3. In addition, SPACS overestimates the cross sections in the neutron-rich side for the I, Te and Sb isotopic chains in the 137Cs case, as displayed in Panels (d)–(f) of Fig. 2, and the ones for Kr, Br and Se produced from 90Sr, as shown in Panels (d)–(f) of Fig. 3.

The total spallation cross sections on proton and deuteron are important to evaluate the potential of spallation reaction for the LLFP transmutation. The cross sections for the proton and deuteron were determined to be 1110(17) mb and 1300(15) mb for 137Cs, and 785(10) mb and 998(10) mb for 90Sr [13] by integrating the isotopic distributions in Figs. 2 and 3, respectively. These total spallation cross sections are larger than their thermal neutron-capture cross sections of 270 mb [4] and 10 mb [5]. The large total cross sections indicate that the spallation reaction could be a promising mechanism for the transmutation of 137Cs and 90Sr.

The number of radioactive nuclei with long half-lives created in the spallation reaction is important to evaluate the reduction of radiotoxicities after the reaction. Among the reaction products, the long-lived isotopes 135Cs and 79Se are the main components of radioactivity following the spallation of 137Cs and 90Sr, respectively. Their production cross sections on proton are around 64 mb and 1 mb, respectively. Since the total spallation cross sections for both 137Cs and 90Sr are around 1 barn, the spallation reaction will lead to a considerable reduction in the number of LLFP elements. The half lives of 135Cs and 79Se are 2.3×10^6 and 6.5×10^4 years, respectively, which are much longer than those for 137Cs and 90Sr. Therefore, after the spallation reactions, the radiotoxicities in 137Cs and 90Sr will be reduced.
4. Summary

In summary, spallation reactions have been studied for the long-lived fission products 137Cs, 90Sr and 107Pd on proton and deuteron in inverse kinematics at RIBF. Cross sections on proton and deuteron were obtained at 185 MeV/nucleon for 137Cs and 90Sr. It is found that the difference between σ_d and σ_p becomes larger towards the neutron-deficient side for the light-mass products. An overall agreement is found between the experimental data and the PHITS calculation including both the intranuclear cascade and evaporation processes. The SPACS parameterization also shows a reasonable agreement with the results of the proton-induced reactions. The total spallation cross sections on both proton and deuteron are found to be larger than those for the neutron-capture reactions, suggesting the spallation reaction is promising for the transmutation of 137Cs and 90Sr.

We thank the accelerator staff of RIKEN Nishina Center for providing the U primary beam. This work was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

References

[1] Implication of Partitioning and Transmutation in Radioactive Waste Management, IAEA Technical Reports Series 435 (2004)

[2] K. Nishihara et al., J. Nucl. Sci. Technol. 45, 84 (2008)

[3] W.S. Yang et al., Nucl. Sci. Eng. 146, 291 (2004)

[4] H. Wada et al., J. Nucl. Sci. Technol. 37, 827 (2000)

[5] S. Nakamura et al., J. Nucl. Sci. Technol. 38, 1029 (2001)

[6] S. Nakamura et al., J. Nucl. Sci. Technol. 44, 103 (2007)

[7] T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 (2012)

[8] T. Ohnishi et al., J. Phys. Soc. Jpn. 79, 073201 (2010)

[9] N. Fukuda et al., Nucl. Instrum. Methods Phys. Res. B 317, 323 (2013)

[10] Y. Maeda et al., Nucl. Instrum. Methods Phys. Res. A, 490, 518 (2002)

[11] W. Wlazlo et al., Phys. Rev. Lett. 84, 5736 (2000)

[12] J. Alcántara-Núñez et al., Phys. Rev. C 92, 024607 (2015)

[13] H. Wang et al., Phys. Lett. B 754, 104 (2016)

[14] J. Benlliure et al., Phys. Rev. C 78, 054605 (2008)

[15] T. Sato et al., J. Nucl. Sci. Technol. 50, 913 (2013)

[16] C. Schmitt, K.-H. Schmidt, and A. Kelić-Heil, Phys. Rev. C 90, 064605 (2014)

[17] A. Boudard, J. Cugnon, S. Leray, and C. Volant, Phys. Rev. C 87, 014606 (2013)

[18] S. Furihata, Nucl. Instru. Methods B 171, 251 (2000)