THE EXISTENCE OF NONTRIVIAL SOLUTIONS TO
CHERN-SIMONS-SCHRÖDINGER SYSTEMS

YOUYAN WAN
The Department of Mathematics, Jianghan University
Wuhan, Hubei, 430056, China

JINGGANG TAN
Departamento de Matemática, Universidad Técnica Federico Santa María
Avda. España 1680, Valparaíso, Chile

(Communicated by Yanyan Li)

Abstract. We show the existence of nontrivial solutions to Chern-Simons-
Schrödinger systems by using the concentration compactness principle and the
argument of global compactness.

1. Introduction and main results. We are concerned with the existence of real
function \(u \in H^1(\mathbb{R}^2) \) satisfying the following Chern-Simons-Schrödinger system
(CSS system)

\[
\begin{align*}
-\Delta u + V(x)u + A_0 u + \sum_{j=1}^{2} A_j^2 u &= f(u), \\
\partial_1 A_0 &= A_2 |u|^2, \quad \partial_2 A_0 = -A_1 |u|^2, \\
\partial_1 A_2 - \partial_2 A_1 &= -\frac{1}{2} u^2, \quad \partial_1 A_1 + \partial_2 A_2 = 0,
\end{align*}
\]

where \(V(x) \) is external potential, \(f(u) \) is the appropriate nonlinearity. This system
arises in the study of the standing wave of Chern-Simons-Schrödinger system, which
describes the dynamics of large number of particles in an electromagnetic field.

The system proposed in [11], [12] and [8] consists of the Schrödinger equation
augmented by the gauge field. This feature of the model is important for the
study of the high-temperature superconductor, fractional quantum Hall effect and
Aharonov-Bohm scattering.

Let us denote by \(\phi(t, x_1, x_2) : \mathbb{R}^{1+2} \to \mathbb{C} \) the complex scalar field of particles in
the system, the gauge potential \(A_\mu = (A_0, A_1, A_2) : \mathbb{R}^{1+2} \to \mathbb{R}^3 \), and the covariant
derivative by \(D_\mu = \partial_\mu + i A_\mu \) for \(\mu = 0, 1, 2 \), where \(i \) denotes the imaginary unit,
\(\partial_0 = \frac{\partial}{\partial t}, \quad \partial_1 = \frac{\partial}{\partial x_1}, \quad \partial_2 = \frac{\partial}{\partial x_2} \) for \((t, x_1, x_2) \in \mathbb{R}^3 \). The electromagnetic tensor is
defined by \(F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \). Then the lagrangian of the planar Chern-Simons
model reads

\[
L(A, \phi) = \frac{1}{2} \int_{\mathbb{R}^{2+1}} \text{Im}(\bar{\phi} D_t \phi) + |D_x \phi|^2 - F(\phi) dx dt + \frac{1}{2} \int_{\mathbb{R}^{2+1}} A \wedge dA,
\]

2000 Mathematics Subject Classification. 35J50, 35J10.

Key words and phrases. Chern-Simons gauge field, Schrödinger equation, variational methods.

Y.W. was supported by Scientific Research Program of Hubei Provincial Department of Edu-
cation(B2016299). J.T. was supported by Chile Government grant Fondecyt 1120105, Fondecyt
1160519, Proy. USM 121402, 121568; Spain Government grant MTM2011-27739-C04-01.

* Corresponding author: J. Tan.

2765
where \(F(u) = \int_0^u f(s) \, ds \). Here the energy involves the Chern-Simons term
\[
A \wedge dA = \varepsilon^{\mu\alpha\beta} A_\mu F_{\alpha\beta}.
\]
The Lagrangian reduces the gauge field equations of the Chern-Simons electrodynamics
\[
\varepsilon^{\mu\alpha\beta} F_{\alpha\beta} = J^\mu,
\]
where the density current
\[
J^\mu = (\rho, \text{Im} \bar{\psi} D\psi).
\]

Then the Euler-Lagrange equations of this Lagrangian are given by
\[
\begin{cases}
iD_0 \phi + (D_1 D_1 + D_2 D_2) \phi = f(\phi), \\
\partial_0 A_1 - \partial_1 A_0 = -\text{Im}(\bar{\phi} D_2 \phi), \\
\partial_0 A_2 - \partial_2 A_0 = \text{Im}(\bar{\phi} D_1 \phi), \\
\partial_1 A_2 - \partial_2 A_1 = -\frac{1}{2} |\phi|^2.
\end{cases}
\]

Blowing up time-dependent solutions were investigated by Berge, De Bouard, Saut [3] and local wellposedness was studied by Liu, Smith, Tataru [15].

The (CSS) system \((1.3)\) is invariant under the following gauge transformation \(\phi \to \phi e^{i\chi}, \ A_\mu \to A_\mu - \partial_\mu \chi \) where \(\chi : \mathbb{R}^{1+2} \to \mathbb{R} \) is an arbitrary \(C^\infty \) function. The standing waves of \((1.3)\) have been investigated by Byeon, Huh and Seok in [4]. They were seeking the solutions to \((1.3)\) of type
\[
\phi(t, x) = u(|x|) e^{i\omega t}, \ A_0(t, x) = h_1(|x|), \\
A_1(t, x) = \frac{x_2}{|x|^2} h_2(|x|), \ A_2(t, x) = -\frac{x_1}{|x|^2} h_2(|x|),
\]
where \(\omega > 0 \) is a given frequency and \(u, h_1, h_2 \) are real value functions depending only on \(|x| \). The existence and non-existence standing wave solutions have been shown under the assumptions that \(f(u) = \lambda |u|^{p-1} u, \lambda > 0 \) and \(p > 2 \) by variational methods in [4], see also [9] and [10], [5]. A series of their existence results of solitary waves has been established in [6], [13], [10], [17] and [23]. We studied the existence, non-existence, and multiplicity of standing waves to the nonlinear CSS systems with an external potential \(V(x) \) without the Ambrosetti-Rabinowitz condition in [20], and the concentration of solutions in [21].

We suppose that the gauge field satisfies the Coulomb gauge condition \(\partial_0 A_0 + \partial_1 A_1 + \partial_2 A_2 = 0 \), and \(A_\mu(x, t) = A_\mu(x), \mu = 0, 1, 2 \). Then, we deduce that \(A_1 \partial_1 u + A_2 \partial_2 u = 0 \). Moreover, we see that the standing wave \(\psi(x, t) = e^{i\omega t} u \) satisfies
\[
\begin{cases}
-\Delta u + \omega u + A_0 u + A_1^2 u + A_2^2 u = f(u), \\
\partial_1 A_0 = A_2 u^2, \quad \partial_2 A_0 = -A_1 u^2, \\
\partial_1 A_2 - \partial_2 A_1 = -\frac{1}{2} |u|^2, \quad \partial_1 A_1 + \partial_2 A_2 = 0.
\end{cases}
\]

We find the weak solution of \((1.4)\) by variational methods joined with concentration principle.

Theorem 1.1. Let \(f(u) = |u|^{p-2} u, \ p > 4 \). Then Problem \((1.4)\) has a nontrivial solution.

To prove it, one can obtain the components \(A_j \) of the gauge field represented by
\[
A_1 = -\frac{1}{4\pi} \int_{\mathbb{R}^2} \frac{x_2 - y_2}{|x - y|^2} |u(y)|^2 \, dy,
\]
\[
A_2 = \frac{1}{4\pi} \int_{\mathbb{R}^2} \frac{x_1 - y_1}{|x - y|^2} |u(y)|^2 \, dy,
\]
which come from the constrained condition \(\partial_1 A_2 - \partial_2 A_1 = -\frac{1}{2} |u|^2 \) and the Coulomb gauge condition \(\partial_1 A_1 + \partial_2 A_2 = 0 \). Similarly, the representation of the component \(A_0 \) follows by solving the identity \(\Delta A_0 = \partial_1 (A_2 |u(y)|^2) - \partial_2 (A_1 |u(y)|^2) \). We need establish the existence of critical points of the following functional in \(H^1(\mathbb{R}^2) \)

\[
J_{\omega}(u) = \frac{1}{2} \int_{\mathbb{R}^2} \left(2A_0 F_{12} + |\nabla u|^2 + \omega u^2 + A_1^2 u^2 + A_2^2 u^2 + A_0 u^2 \right) dx - \int_{\mathbb{R}^2} F(u) dx
\]

\[
= \frac{1}{2} \int_{\mathbb{R}^2} \left(|\nabla u|^2 + \omega u^2 + A_1^2 u^2 + A_2^2 u^2 \right) dx - \int_{\mathbb{R}^2} F(u) dx. \tag{1.5}
\]

We assume that the function \(V(x) \) is positive and differentiable in \(\mathbb{R}^2 \) satisfies

(V) \(V \in C^1(\mathbb{R}^2), \ 0 < V_0 := \inf_{x \in \mathbb{R}^2} V(x) < V(x) < V_{\infty} := \liminf_{|x| \to \infty} V(x) \) and \((\nabla V(x), x) \geq 0 \) for a.e. \(x \in \mathbb{R}^2 \).

By combining the variational method and the concentration compactness principle [14], we can obtain the following result.

Theorem 1.2. Let \(f(u) = |u|^{p-2}u, \ p > 4 \) and suppose that \(V \) satisfies the condition (V). Then Problem (1.1) has a nontrivial solution, which solution has the asymptotic behavior \(\lim_{|x| \to \infty} u(x) e^{\theta|x|} = 0 \) for some \(\theta \in (0, 1) \).

We observe that \(J_{\infty} \) as in (1.5) plays the limit functional of problem (1.1). Theorem 1.2 is proven by using the mountain pass theorem [1] and the global compactness argument from [2], [7], [19].

The paper is organized as follows. In Section 2 we introduce the framework and prove some technical lemmas. In Section 3 we show the existence in Theorem 1.1. In Section 4 we study the expansion of the Palais-Smale sequences and demonstrate Theorem 1.2.

2. Mathematical framework. In the section, we outline the variational workframe for the future study.

Let \(H^1(\mathbb{R}^2) \) denote the usual Sobolev space with

\[
||u|| = \left(\int_{\mathbb{R}^2} |\nabla u|^2 + |u|^2 \ dx \right)^{1/2}.
\]

By using \(\partial_1 A_1 + \partial_2 A_2 = 0 \), we observe that

\[
0 = \partial_2 \partial_1 A_0 - \partial_1 \partial_2 A_0 = \partial_2 (A_2 u^2) + \partial_1 (A_1 u^2) = 2u (A_1 \partial_1 u + A_2 \partial_2 u) + u^2 (\partial_1 A_1 + \partial_2 A_2).
\]

This implies that \(\sum_{j=1}^{2} A_j \partial_j u = 0 \). Letting \(\omega = 1 \), we can consider the following system

\[
\begin{align*}
-\Delta u + u + A_0 u + A_1^2 u + A_2^2 u &= |u|^{p-2} u, \\
\partial_1 A_0 &= A_2 u^2, \\
\partial_2 A_0 &= -A_1 u^2, \\
\partial_1 A_1 - \partial_2 A_1 &= -\frac{1}{2} u^2, \\
\partial_1 A_1 + \partial_2 A_2 &= 0.
\end{align*}
\tag{2.1}
\]

Define the functional

\[
J(u) = \frac{1}{2} \int_{\mathbb{R}^2} \left(|\nabla u|^2 + |u|^2 + A_1^2 |u|^2 + A_2^2 |u|^2 \right) dx - \frac{1}{p} \int_{\mathbb{R}^2} |u|^p dx. \tag{2.2}
\]
Note that
\[
\int_{\mathbb{R}^2} A_0 |u|^2 \, dx = -2 \int_{\mathbb{R}^2} A_0 (\partial_1 A_2 - \partial_2 A_1) \, dx
\]
\[
= 2 \int_{\mathbb{R}^2} (A_2 \partial_1 A_0 - A_1 \partial_2 A_0) \, dx = 2 \int_{\mathbb{R}^2} (A_1^2 + A_2^2) |u|^2 \, dx. \tag{2.3}
\]
We have the derivative of \(J \) in \(H^1(\mathbb{R}^2) \) as follow:
\[
\langle J'(u), \eta \rangle = \int_{\mathbb{R}^2} \left(\nabla u \nabla \eta + u \eta + (A_1^2 + A_2^2) u \eta + A_0 u \eta - |u|^{p-2} \eta \right) \, dx, \tag{2.4}
\]
for all \(\eta \in C_0^\infty(\mathbb{R}^2) \). Especially, from (2.3), we obtain that
\[
\langle J'(u), u \rangle = \int_{\mathbb{R}^2} \left(|\nabla u|^2 + |u|^2 + 3(A_1^2 + A_2^2) |u|^2 - |u|^p \right) \, dx. \tag{2.5}
\]

The components \(A_j \) of the gauge field can be represented by solving the elliptic equations
\[
\Delta A_1 = \partial_2 \left(\frac{|u|^2}{2} \right), \quad \Delta A_2 = -\partial_1 \left(\frac{|u|^2}{2} \right),
\]
which provide
\[
A_1 = A_1(u) = K_2 * \left(\frac{|u|^2}{2} \right) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{x_2 - y_2}{|x - y|^2} \frac{|u|^2(y)}{2} \, dy, \tag{2.6}
\]
\[
A_2 = A_2(u) = -K_1 * \left(\frac{|u|^2}{2} \right) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{x_1 - y_1}{|x - y|^2} \frac{|u|^2(y)}{2} \, dy, \tag{2.7}
\]
where \(K_j = -\frac{x_j}{2\pi|x|^2} \), for \(j = 1, 2 \) and \(* \) denotes the convolution. The identity \(\Delta A_0 = \partial_1 (A_2 |u|^2) - \partial_2 (A_1 |u|^2) \), gives the following representation of the component \(A_0 \):
\[
A_0 = A_0(u) = K_1 * (A_1 |u|^2) - K_2 * (A_2 |u|^2). \tag{2.8}
\]

We know that \(J \) is well defined in \(H^1(\mathbb{R}^2) \), \(J \in C^1(\mathbb{H}^1(\mathbb{R}^2)) \), and the weak solution of (2.1) is the critical point of the functional \(J \) from the following properties.

Proposition 2.1. Let \(1 < s < 2 \) and \(\frac{1}{q} - \frac{1}{q'} = \frac{1}{2} \). (i) Then there is a constant \(C \) depending only on \(s \) and \(q \) such that
\[
\left(\int_{\mathbb{R}^2} |Tu(x)|^q \, dx \right)^{\frac{1}{q}} \leq C \left(\int_{\mathbb{R}^2} |u(x)|^q \, dx \right)^{\frac{1}{q}},
\]
where the integral operator \(T \) is given by
\[
Tu(x) := \int_{\mathbb{R}^2} \frac{u(y)}{|x - y|} \, dy.
\]
(ii) If \(u \in H^1(\mathbb{R}^2) \), then we have that for \(j = 1, 2 \),
\[
\| A_j^2(u) \|_{L^q(\mathbb{R}^2)} \leq C \| u \|_{L^{2s}(\mathbb{R}^2)}^2
\]
and
\[
\| A_0(u) \|_{L^q(\mathbb{R}^2)} \leq C \| u \|_{L^{2s}(\mathbb{R}^2)}^2 \| u \|_{L^q(\mathbb{R}^2)}^2.
\]
(iii) For \(q' = \frac{q}{q-1} \), \(j = 1, 2 \)
\[
\| A_j(u) \|_{L^q(\mathbb{R}^2)} \leq \| A_j(u) \|_{L^q(\mathbb{R}^2)}^2 \| u \|_{L^{2q'}(\mathbb{R}^2)}^2.
\]
Proof. (i) This is the Hardy-Littlewood-Sobolev inequality.
(ii) Apply (i) to the gauge potential A_μ, $\mu = 0, 1, 2$, one can see the result holds, see [9].
(iii) The Hölder inequality gives
\[
\int_{\mathbb{R}^2} |A_j(u)|^2 |u|^2 \, dx \leq \left(\int_{\mathbb{R}^2} |A_j(u)|^{2d} \, dx \right)^{\frac{1}{d}} \left(\int_{\mathbb{R}^2} |u|^{\frac{2d}{d+1}} \, dx \right)^{\frac{d+1}{d}}.
\]

We will need the following properties of the convergence for A_j, whose proof comes from the idea of Brezis-Lieb lemma.

Proposition 2.2. Suppose that u_n converges to u a.e. in \mathbb{R}^2 and u_n converges weakly to u in $H^1(\mathbb{R}^n)$. Let $A_{j,n} := A_j(u_n(x))$, $j = 1, 2$. Then $A_{j,n}$ converges to $A_j(u(x))$ a.e. in \mathbb{R}^2; if u_n converges weakly to u in $H^1(\mathbb{R}^n)$ and u_n converges to u a.e. in \mathbb{R}^2 then, \(\int_{\mathbb{R}^2} |A_j(u_n - u)|^2 |u_n - u|^2 \, dx = \int_{\mathbb{R}^2} |A_j(u_n)|^2 |u_n|^2 \, dx - |A_j(u)|^2 |u|^2 \, dx + o_n(1) \).

Proof. We see that
\[
|A_{j,n} - A_j| \leq |T(u_n^2 - u^2)|
\]
\[
\leq \|u_n^2 - u^2\|_{L^4(B_R(x))} \left(\int_{B_R(x)} \frac{\, dy}{|x-y|^\frac{1}{q'}} \right)^{\frac{3}{2}}
\]
\[
+ \|u_n^2 - u^2\|_{L^\frac{4}{3}(B_R(x))} \left(\int_{B_R(x)} \frac{\, dy}{|x-y|^\frac{1}{4}} \right)^{\frac{1}{2}},
\]
where $T(u_n^2 - u^2) = \int_{\mathbb{R}^2} \frac{u_n^2(u) - u^2(u)}{|x-y|} \, dy$. Taking $n \to \infty$ and $R \to \infty$, we obtain that $A_{j,n}(x) \to A_j(x)$ and that $A_j^2(u_n(x))u_n(x) \to A_j^2(u(x))u(x)$, a.e. in \mathbb{R}^2. It is clear that for $q' = \frac{q}{q-1}$,
\[
\left| \int_{\mathbb{R}^2} A_j^2 u_n u(x) \, dx \right| \leq \|A_j^2(u_n)\|_{L^\frac{4}{3}(\mathbb{R}^2)} \|u_n\|_{L^{q'}(\mathbb{R}^2)} \|u\|_{L^{q'}(\mathbb{R}^2)},
\]
\[
\left| \int_{\mathbb{R}^2} A_j^2 u_n^2 \, dx \right| \leq \|A_j^2(u_n)\|_{L^\frac{4}{3}(\mathbb{R}^2)} \|u_n\|_{L^{q'}(\mathbb{R}^2)}^2.
\]

Then the weak convergence implies that
\[
\int_{\mathbb{R}^2} A_{j,n}^2 \, dx, \int_{\mathbb{R}^2} A_{j,n} u_n \, dx \to \int_{\mathbb{R}^2} A_j^2 \, dx.
\]

Hence we can deduce that
\[
\int_{\mathbb{R}^2} |K_j \ast (u_n^2/2)|^2 u_n^2 \, dx - \int_{\mathbb{R}^2} |K_j \ast (|u_n - u|^2 / 2)|^2 u_n^2 \, dx \to \int_{\mathbb{R}^2} A_j^2 u^2 \, dx,
\]
which gives the desired result.

Lemma 2.3. Let $p > 4$. Then there exists $e_1 \in H^1(\mathbb{R}^2)$ such that $J(e_1) < 0$ for large $\rho > 0$ with $\|e_1\|_{H^1(\mathbb{R}^2)} > \rho$.

\[\square\]
Proof. Let $u \in H^1(\mathbb{R}^2)$ and $\gamma_t(u)(x) = t^a u(tx)$. We calculate
\[
\int_{\mathbb{R}^2} |\nabla \gamma_t(u)|^2 \, dx = t^{2a} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx,
\]
\[
\int_{\mathbb{R}^2} \gamma_t(u)^2 \, dx = t^{2a-2} \int_{\mathbb{R}^2} |u|^2 \, dx,
\]
\[
\int_{\mathbb{R}^2} \gamma_t(u)^p \, dx = t^{p\alpha-2} \int_{\mathbb{R}^2} |u|^p \, dx.
\]
Moreover, we have by direct computation that for $j = 1, 2$,
\[
A_j(\gamma_t(u)) = t^{2\alpha-1} A_j(u(tx))
\]
and
\[
\int_{\mathbb{R}^2} A_j^2(\gamma_t(u)) |\gamma_t(u)|^2 \, dx = t^{6\alpha-4} \int_{\mathbb{R}^2} A_j^2(u) |u|^2 \, dx.
\]
Hence, we obtain that
\[
J(\gamma_t(u)) = \frac{t^{2\alpha}}{2} \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \frac{t^{2a-2}}{2} \int_{\mathbb{R}^2} |u|^2 \, dx
\]
\[
+ \frac{t^{6\alpha-4}}{2} \int_{\mathbb{R}^2} (A_j^2(u) |u|^2 + A^2_j(u) |u|^2) \, dx - \frac{t^{p\alpha-2}}{p} \int_{\mathbb{R}^2} |u|^p \, dx. \tag{2.9}
\]
We choose α such that $\frac{2}{p-2} < \alpha < \frac{2}{6-p}$ for $p \in (4, 6)$ and $\alpha > 1$ arbitrary for $p \geq 6$. By the choice of α, we know that $p\alpha > 6\alpha - 2$. Hence we have that $J(\gamma_t(u)) \to -\infty$ as $t \to +\infty$. This implies the existence of e_1 with $J(e_1) < 0$.

The following lemma is given by [4], see also [22].

Lemma 2.4. For given positive constants a_j, a function $\beta(t) = a_1 t^{2\alpha} + a_2 t^{2(\alpha-1)} + a_3 t^{6\alpha-4} - a_4 t^{p\alpha-2}$ has exactly one critical point on $(0, +\infty)$, the maximum point.

Let us denote
\[
G(u) := \alpha \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + (\alpha - 1) \int_{\mathbb{R}^2} |u|^2 \, dx
\]
\[
+ (3\alpha - 2) \int_{\mathbb{R}^2} (A_j^2(u) |u|^2 + A^2_j(u) |u|^2) \, dx - \frac{p\alpha - 2}{p} \int_{\mathbb{R}^2} |u|^p \, dx, \tag{2.10}
\]
where we can get the right hand by differentiating both sides of (2.9) with respect to t at 1. Consider the functional J on the manifold \mathcal{M}
\[
\mathcal{M} := \{u \in H^1(\mathbb{R}^2) \setminus \{0\} \mid G(u) = 0\}, \tag{2.11}
\]
where $\frac{2}{p-2} < \alpha < \frac{2}{6-p}$ for $p \in (4, 6)$ and $\alpha > 1$ arbitrary for $p \geq 6$. We are going to establish the existence of the minimizer of the functional on this manifold, that is,
\[
\inf_{u \in \mathcal{M}} J(u), \tag{2.12}
\]
whose critical points are nontrivial solutions of (1.4).

Lemma 2.5. It holds $0 \notin \partial \mathcal{M}$.

Proof. From the Sobolev inequality
\[
\int_{\mathbb{R}^2} |u|^p \, dx \leq C \left(\int_{\mathbb{R}^2} |\nabla u|^2 + |u|^2 \, dx \right)^{p/2},
\]
we see that
\[
\alpha \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + (\alpha - 1) \int_{\mathbb{R}^2} u^2 \, dx + (3\alpha - 2) \int_{\mathbb{R}^2} (A_1^2 u^2 + A_2^2 u^2) \, dx \\
- \frac{p\alpha - 2}{p} \int_{\mathbb{R}^2} |u|^p \, dx \geq (\alpha - 1)\|u\|^2 - C \frac{p\alpha - 2}{p} \|u\|^p.
\]
From this, one can deduce that \(G\) is strictly positive if \(\|u\|\) is small.

\textbf{Lemma 2.6.} \(\inf J \mid_M > 0\).

\textit{Proof.} We observe that for all \(u \in M\),
\[
J(u) = \left(\frac{1}{2} - \frac{\alpha}{p\alpha - 2}\right) \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \left(\frac{1}{2} - \frac{\alpha - 1}{p\alpha - 2}\right) \int_{\mathbb{R}^2} |u|^2 \, dx \\
+ \left(\frac{1}{2} - \frac{3\alpha - 2}{p\alpha - 2}\right) \int_{\mathbb{R}^2} (A_1^2(u)|u|^2 + A_2^2(u)|u|^2) \, dx.
\]
By Lemma 2.5 we have \(\|u\| > 0\), then it follows that the functional \(J\) on the manifold \(M\) is strictly positive.

It is known in [10] that the stationary solutions of the CSS system satisfy the Derrick-Pohozaev type identity. For the radial case, we can find the Pohozaev identity in [4]. For no sake of completion, we provide the proof for the system (1.1) in Section 4.

\textbf{Proposition 2.7.} Suppose that \(u \in H^1(\mathbb{R}^2)\) be a weak solution of (1.4). Then, we have
\[
\int_{\mathbb{R}^2} |u|^2 + 2A_1^2|u|^2 + 2A_2^2|u|^2 \, dx - 2 \int_{\mathbb{R}^2} F(u) \, dx = 0,
\]
where \(F(u) = \int_0^u f(s) \, ds\).

\textbf{Lemma 2.8.} Let \(u\) be the minimizer of \(\inf_{u \in M} J(u)\). Then \(G'(u) \neq 0\).

\textit{Proof.} Let us denote
\[
a_1 = \int_{\mathbb{R}^2} |\nabla u|^2 \, dx, \quad a_2 = \int_{\mathbb{R}^2} u^2 \, dx, \\
a_3 = \int_{\mathbb{R}^2} (A_1^2(u)|u|^2 + A_2^2(u)|u|^2) \, dx, \quad b_1 = \int_{\mathbb{R}^2} |u|^p \, dx.
\]
Since \(u\) is the minimizers of \(J \mid_M\) and \(G(u) = 0\), we see that
\[
\frac{1}{2} a_1 + \frac{1}{2} a_2 + \frac{1}{2} a_3 - \frac{b_1}{p} = c_1, \quad \frac{1}{2} a_1 + (\alpha - 1)a_2 + (3\alpha - 2)a_3 - \frac{p\alpha - 2}{p} b_1 = 0.
\]
Rewrite the Pohozaev equality
\[
a_2 + 2a_3 - \frac{2}{p} b_1 = 0.
\]
Suppose \(G'(u) = 0\) by contradiction. We have \(\langle G'(u), u \rangle = 0\), that is
\[
2\alpha a_1 + 2(\alpha - 1)a_2 + 6(3\alpha - 2)a_3 - (p\alpha - 2)b_1 = 0.
\]
For any \(p \neq 0, p \neq 2 \), (2.14), (2.15), (2.16), (2.18) have an unique solution on \(a_1, a_2, a_3, \) and \(b_1 \) given by

\[
\begin{align*}
 a_1 &= 3c_1 + 4c_1\alpha + \frac{(4\alpha + 1)(12c_1\alpha - 8c_1)}{2(p\alpha - 6\alpha + 2)}, \\
 a_2 &= -4c_1\alpha - 2c_1 - \frac{2(p - 2)(p - 4)(12c_1\alpha - 8c_1)}{(p - 2)(p\alpha - 6\alpha + 2)}, \\
 a_3 &= \frac{c_1\rho\alpha - 2c_1}{p\alpha - 6\alpha + 2}, \\
 b_1 &= \frac{(12c_1\alpha - 8c_1)p}{(p - 2)(p\alpha - 6\alpha + 2)}.
\end{align*}
\]

Since \(c_1 > 0 \) such that \(\frac{2}{1-p} < \alpha < \frac{2}{6-p} \) for \(p \in (4, 6) \) and \(\alpha > 1 \) arbitrary for \(p \geq 6 \), \(a_2 \) happens to be negative, which is impossible. \(\square \)

Proposition 2.9. Let \(u \) be the minimizes of \(J \) on \(M \). Then we have \(J'(u) = 0 \).

Proof. By the Lagrange multiplier rule, there exists \(\mu \in \mathbb{R} \) such that \(J'(u) = \mu G'(u) \).

That is,

\[
(2\alpha\mu - 1)a_1 + (2(\alpha - 1)\mu - 1)a_2 + (6(3\alpha - 2) - 3)a_3 - ((p\alpha - 2)\mu - 1)b_1 = 0. \tag{2.18}
\]

We claim that \(\mu = 0 \).

Step 1. We shall prove \(2\alpha\mu \neq 1 \). If \(2\alpha\mu = 1 \), for \(p > 4, \alpha > 1, 0 < \mu < \frac{1}{2} \), By using (2.14), (2.15), (2.16), (2.17), we obtain a unique solution on \(a_1, a_2, a_3, \) and \(b_1 \) given by

\[
\begin{align*}
 a_1 &= -\left[4c_1(\alpha - 1)(p - 3)(p - 2 - 4\mu) + 6c_1(3\alpha - 2)(p - 2)(p - 2 - 4\mu) \\
 &- 6c_1(p\alpha - 2)(2 - 4\mu)\right] \left(3\alpha(2 - 4\mu)(p - 2)(p - 2 - 4\mu)\right)^{-1}, \\
 a_2 &= \frac{4c_1(p - 3)}{3(2 - 4\mu)(p - 2)}, \\
 a_3 &= \frac{c_1}{1 - 2\mu}, \quad b_1 = \frac{2c_1\rho}{(p - 2)(p - 2 - 4\mu)}.
\end{align*}
\]

Since \(p > 4, \alpha > 1, 0 < \mu < \frac{1}{2}, \) we get

\[
\begin{align*}
 6c_1(3\alpha - 2)(p - 2)(p - 2 - 4\mu) - 6c_1(p\alpha - 2)(2 - 4\mu) \\
 \geq 6c_1(2 - 4\mu)((p - 2)(3\alpha - 2) - (p\alpha - 2)) \\
 = 6c_1(2 - 4\mu)(2p - 6)(\alpha - 1) > 0.
\end{align*}
\]

Consequently, \(a_1 < 0 \), which is impossible. Hence, \(2\alpha\mu \neq 1 \).

Step 2. We shall prove \(\mu = 0 \). Since \(2\alpha\mu \neq 1 \), from Proposition 2.7 we have

\[
a_2 + 2a_3 - \frac{2}{p}b_1 = \mu[2(\alpha - 1)a_2 + 2(6\alpha - 4)a_3 - \frac{2(p\alpha - 2)}{p}b_1]. \tag{2.20}
\]

Since \(\langle J'(u), u \rangle = \langle \mu G'(u), u \rangle \), we obtain

\[
(2\alpha\mu - 1)a_1 + [2(\alpha - 1)\mu - 1]a_2 + [6(3\alpha - 2)\mu - 3]a_3 - [(p\alpha - 2)\mu - 1]b_1 = 0. \tag{2.21}
\]

From \(G(u) = 0 \), we get

\[
\alpha a_1 + (\alpha - 1)a_2 + (3\alpha - 2)a_3 = \frac{p\alpha - 2}{p}b_1. \tag{2.22}
\]
By \(2.21\) and \(2.22\), we have
\[
a_2 + 2a_3 - \frac{2}{p}b_1 = \mu[2\alpha^2 a_1 + 2(\alpha - 1)\alpha a_2 + 6(3\alpha - 2)\alpha a_3 - (p\alpha - 2)\alpha b_1]. \tag{2.23}
\]
According to \(2.20\) and \(2.23\), we get
\[
\mu[2(\alpha - 1)a_2 + 2(6\alpha - 4)a_3 - \frac{2}{p}(p\alpha - 2)b_1] = \mu[2\alpha^2 a_1 + 2(\alpha - 1)\alpha a_2 + 6(3\alpha - 2)\alpha a_3 - (p\alpha - 2)\alpha b_1]. \tag{2.24}
\]
Substituting \(2.22\) into \(2.24\), we obtain
\[
0 = \mu[-(p\alpha^2 - 2\alpha^2 - 2\alpha)a_1 - \alpha(\alpha - 1)(p - 2)a_2 - (3\alpha - 2)(p\alpha - 6\alpha + 2)a_3].
\]
Since \(- (p\alpha^2 - 2\alpha^2 - 2\alpha)a_1 - \alpha(\alpha - 1)(p - 2)a_2 - (3\alpha - 2)(p\alpha - 6\alpha + 2)a_3\) is negative, we get that \(\mu = 0\).

3. **Concentration compactness principle.** In this section, we complete the proof of Theorem 1.1 by applying the concentration compactness principle \[14\], \[18\] to the constrained minimization problem.

Define critical values for the functional on \(M\)
\[
c = \inf_{u \in M} J(u), \quad c^* = \inf_{\gamma \in C([0,1], H^1(\mathbb{R}^2))} \max_{t \in [0,1]} J(t^* u(t)), \quad c^{**} = \inf_{u \in H^1(\mathbb{R}^2) \setminus \{0\}} \max_{t \geq 0} J(t^* u(t)), \tag{3.1}
\]
where \(\Gamma := \{ \gamma \in C([0,1], H^1(\mathbb{R}^2)) \mid \gamma(0) = 0, J(\gamma(1)) < 0 \} \).

The following properties follows from \[22\].

Proposition 3.1.
\[
c = c^* = c^{**}.
\]

Proof. First, we prove \(c = c^{**}\). In fact, this will follow if we can show that for any \(u \in H^1(\mathbb{R}^2) \setminus \{0\}\) there exists unique \(t_0 > 0\) such that \(t_0^* u(t_0 x)\) is on \(M\) as well as \(J(t_0^* u(t_0 x))\) achieves the maximum of \(J(u)\). On one hand, by Lemma 3.1 in \[1\], there exists an unique \(t_0 > 0\) such that \(J(t_0^* u(t_0 x))\) achieves the maximum of \(J(u)\). On the other hand,
\[
0 = \frac{d}{dt} J(t^* u(t)) \bigg|_{t=t_0}
= \alpha t_0^{3a-1} \int_{\mathbb{R}^2} |\nabla t_0^a u(t_0 x)|^2 dx + (\alpha - 1) t_0^{2a-3} \int_{\mathbb{R}^2} |u|^2 dx
+ (3\alpha - 2) t_0^{a-5} \int_{\mathbb{R}^2} (A_1^2(u) |u|^2 + A_2^2(u) |u|^2) dx - \frac{p\alpha - 2}{p} t_0^{p\alpha-3} \int_{\mathbb{R}^2} |u|^p dx
= t_0^{-3} \left\{ \alpha \int_{\mathbb{R}^2} |\nabla t_0^a u(t_0 x)|^2 d(t_0 x) + (\alpha - 1) \int_{\mathbb{R}^2} |t_0^a u(t_0 x)|^2 d(t_0 x) + (3\alpha - 2) \int_{\mathbb{R}^2} \left(A_1^2(t_0^a u(t_0 x)) |t_0^a u(t_0 x)|^2 + A_2^2(t_0^a u(t_0 x)) |t_0^a u(t_0 x)|^2 \right) d(t_0 x) \right. - \frac{p\alpha - 2}{p} \int_{\mathbb{R}^2} |t_0^a u(t_0 x)|^p d(t_0 x) \left. \right\} \]
\[
= t_0^{-3} G(t_0^a u(t_0 x)).
\]
Since \(t_0 > 0\), we have \(G(t_0^a u(t_0 x)) = 0\), that is, \(t_0^a u(t_0 x)\) is on \(M\).
Next, we prove \(c^* = c^{**} \). It is clear that \(c^{**} \geq c^* \). Let us show \(c^{**} \leq c^* \). For \(u \in H^1(\mathbb{R}^2) \setminus \{0\} \) fixed, let \(t_0 \) be the unique point such that \(t_0^nu(t_0x) \in \mathcal{M} \). Then, we can write \[c^{**} = \inf_{u \in \mathcal{K}} J(u) \] with \(\mathcal{K} = \{ \tilde{u} = t_0^nu(t_0x) : u \in H^1(\mathbb{R}^2), u \neq 0, t_0 < \infty \} \).

Let \(\gamma \in \Gamma \) be a path. If for all \(\gamma \in \Gamma, \gamma \cap \mathcal{K} \neq \emptyset \), then the inequality is proved. If there exists \(\gamma \in \Gamma \) such that \(\gamma(t) \notin \mathcal{K} \) for all \(t \in [0,1] \), then we have
\[
\alpha \int_{\mathbb{R}^2} |\nabla \gamma|^2 \, dx + (\alpha - 1) \int_{\mathbb{R}^2} |\gamma|^2 \, dx \\
+(3\alpha - 2) \int_{\mathbb{R}^2} (A_1^2(\gamma)|\gamma|^2 + A_2^2(\gamma)|\gamma|^2) \, dx > \frac{p\alpha - 2}{p} \int_{\mathbb{R}^2} |\gamma|^p \, dx,
\]
and
\[
J(\gamma) = \frac{1}{2} \int_{\mathbb{R}^2} \left(|\nabla \gamma|^2 + |\gamma|^2 + A_1^2(\gamma)|\gamma|^2 + A_2^2(\gamma)|\gamma|^2 \right) \, dx - \frac{1}{p} \int_{\mathbb{R}^2} |\gamma|^p \, dx \\
> \left(\frac{1}{2} - \frac{\alpha}{p\alpha - 2} \right) \int_{\mathbb{R}^2} |\nabla \gamma|^2 \, dx + \left(\frac{1}{2} - \frac{\alpha - 1}{p\alpha - 2} \right) \int_{\mathbb{R}^2} |\gamma|^2 \, dx \\
+ \left(\frac{1}{2} - \frac{3\alpha - 2}{p\alpha - 2} \right) \int_{\mathbb{R}^2} (A_1^2(\gamma)|\gamma|^2 + A_2^2(\gamma)|\gamma|^2) \, dx
\]
> 0,
which contradicts the mountain pass characterization of \(c^* \). Consequently,
\[
c^* = c^{**}.
\]

\[\square \]

Proposition 3.2. If \(\{u_n\} \in \mathcal{M} \) such that \(J(u_n) \to c \), then \(\{u_n\} \) is bounded in \(H^1(\mathbb{R}^2) \). Moreover, there exists \(\{\xi_n\} \subset \mathbb{R}^2 \) such that if we define \(v_n(\cdot) := u_n(\cdot + \xi_n) \), then \(\{v_n\} \) is precompact.

Proof. We will use the concentration compactness principle given in [14]. Define
\[
\Phi(u) = \left(\frac{1}{2} - \frac{\alpha}{p\alpha - 2} \right) \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + \left(\frac{1}{2} - \frac{\alpha - 1}{p\alpha - 2} \right) \int_{\mathbb{R}^2} |u|^2 \, dx \\
+ \left(\frac{1}{2} - \frac{3\alpha - 2}{p\alpha - 2} \right) \int_{\mathbb{R}^2} (A_1^2(u)|u|^2 + A_2^2(u)|u|^2) \, dx.
\]

Because \(J(u_n) \rightharpoonup c \) and \(u_n \in \mathcal{M} \), for \(n \) large
\[
\Phi(u_n) = c + o_n(1),
\]
where \(A_{1,n} := A_1(u_n) \) and \(A_{2,n} := A_2(u_n) \). It follows that \(\{u_n\} \) is bounded in \(H^1(\mathbb{R}^2) \). For any \(n \in \mathbb{N} \) we consider the measure
\[
\mu_n(\Omega) = \left(\frac{1}{2} - \frac{\alpha}{p\alpha - 2} \right) \int_{\Omega} |\nabla u_n|^2 \, dx + \left(\frac{1}{2} - \frac{\alpha - 1}{p\alpha - 2} \right) \int_{\Omega} |u_n|^2 \, dx \\
+ \left(\frac{1}{2} - \frac{3\alpha - 2}{p\alpha - 2} \right) \int_{\Omega} (A_1^2(u_n)|u_n|^2 + A_2^2(u_n)|u_n|^2) \, dx.
\]
By the concentration compactness lemma in [18], there exists a subsequence of \(\{\mu_n\} \), which we will always denote by \(\{\mu_n\} \), satisfying one of the three following possibilities:

Vanishing. Suppose that there exists a subsequence of \(\{\mu_n\} \), such that for all \(\rho > 0 \)

\[
\lim_{n \to \infty} \sup_{y \in \mathbb{R}^2} \int_{B_\rho(y)} d\mu_n = 0.
\]

Then, \(\{u_n\} \) is also vanishing. That is, there exists a subsequence of \(\{u_n\} \), such that for all \(\rho > 0 \)

\[
\lim_{n \to \infty} \sup_{y \in \mathbb{R}^2} \int_{B_\rho(y)} (|\nabla u_n|^2 + |u_n|^2) \, dx = 0.
\]

By the Lions Lemma [14], \(u_n \overset{\mathcal{H}}{\rightarrow} 0 \), in \(L^s(\mathbb{R}^2) \), \(s \geq 2 \). Since \(u_n \in \mathcal{M} \) and \(\int_{\mathbb{R}^2} |u_n|^p \, dx \overset{n \to \infty}{\to} 0 \), we obtain

\[
\lim_{n \to \infty} \left(\frac{1}{2} - \frac{\alpha}{p \alpha - 2} \right) \int_{\mathbb{R}^2} |\nabla u_n|^2 \, dx + \left(\frac{1}{2} - \frac{\alpha - 1}{p \alpha - 2} \right) \int_{\mathbb{R}^2} |u_n|^2 \, dx + \frac{1}{2} - \frac{3\alpha - 2}{p \alpha - 2} \right) \int_{\mathbb{R}^2} (A_1^2(\mu_n)|u_n|^2 + A_2^2(\mu_n)|u_n|^2) \, dx = 0.
\]

Thus,

\[
0 = \lim_{n \to \infty} \left(\frac{1}{2} - \frac{\alpha}{p \alpha - 2} \right) \int_{\mathbb{R}^2} |\nabla u_n|^2 \, dx + \left(\frac{1}{2} - \frac{\alpha - 1}{p \alpha - 2} \right) \int_{\mathbb{R}^2} |u_n|^2 \, dx + \frac{1}{2} - \frac{3\alpha - 2}{p \alpha - 2} \right) \int_{\mathbb{R}^2} (A_1^2(\mu_n)|u_n|^2 + A_2^2(\mu_n)|u_n|^2) \, dx = c > 0,
\]

which is a contradiction.

Dichotomy. Assume there exist a constant \(\bar{c} \) with \(0 < \bar{c} < c \), sequences \(\{\xi_n\} \subset \mathbb{R}^2 \), \(\{\rho_n\} \) such that \(|\xi_n|, \rho_n \to \infty \) and two nonnegative measures \(\mu_{1,n} \) and \(\mu_{2,n} \) satisfying the following:

\[
0 \leq \mu_{1,n} + \mu_{2,n} \leq \mu_n, \quad \text{supp}(\mu_{1,n}) \subset B_{\rho_n}(\xi_n), \quad \text{supp}(\mu_{2,n}) \subset B_{2\rho_n}(\xi_n),
\]

\[
\mu_{1,n}(\mathbb{R}^2) \overset{n \to \infty}{\rightarrow} \bar{c}, \quad \mu_{2,n}(\mathbb{R}^2) \overset{n \to \infty}{\rightarrow} c - \bar{c}.
\]

Define a cut-off function \(\eta_n \in C_0^1(\mathbb{R}^2) \) such that \(\eta_n \equiv 1 \) in \(B_{\rho_n}(\xi_n) \), \(\eta_n \equiv 0 \) in \(B_{2\rho_n}(\xi_n) \), and \(0 \leq \eta_n \leq 1 \), \(|\nabla \eta_n| \leq 2/\rho_n \). Rewrite \(u_n := u_{1,n} + u_{2,n} \), where

\[
u_{1,n} := \eta_n u_n, \quad u_{2,n} := (1 - \eta_n) u_n.
\]

We note that \(u_{2,n} \) converges to 0 a.e. in \(\mathbb{R}^2 \), and \(A_1(u_{2,n}) \to 0 \) a.e. in \(\mathbb{R}^2 \).

If \(\|(1 - \eta_n)u_n\| \) is bounded and \(\text{supp}(1 - \eta_n)u_n) \subset B_{\rho_n}^c \), then Proposition 2.1 gives

\[
|A_1((1 - \eta_n)u_n)| \leq C \|u_n^2\|_{L^4(B_{\rho_n}(\xi_n))} \left(\int_{B_{\rho_n}(\xi_n)} \frac{dy}{|x - y|^2} \right)^{\frac{1}{2}} \leq C \frac{1}{\rho_n^{1/2}} \overset{n \to \infty}{\rightarrow} 0.
\]
and
\[
\left| \int_{\mathbb{R}^2} K_j(x-y)(1-\eta_n)\eta_n|u_n(y)|^2 \, dy \right|
\leq \|u_n\|^2_{L^4(\Omega_n)} \left(\int_{\Omega_n} \frac{dy}{|x-y|^4} \right)^{\frac{1}{4}} \leq C \frac{1}{\rho_n^{1/2}} \rightarrow 0,
\]
where
\[
\Omega_n := B_{2\rho_n}(\xi_n) \setminus B_{\rho_n}(\xi_n).
\]
(3.2)

Since \(\|u_n\| \leq C\),
\[
\lim_{n \rightarrow \infty} A_j((1-\eta_n)u_n) = 0,
\]
(3.3)
\[
\lim_{n \rightarrow \infty} \int_{\mathbb{R}^2} A_1(u_{1,n})A_1(u_{2,n})|u_{1,n}|^2 \, dx = 0.
\]
(3.4)

We note that for \(q' = \frac{q}{q-1}, \frac{1}{s} - \frac{1}{q} = \frac{1}{2},\)
\[
\left| \int_{\mathbb{R}^2} A_j^2(u_{2,n})u_{1,n}^2(x) \, dx \right| \leq \|A_j^2(u_{2,n})\|_{L^q(\mathbb{R}^2)}\|u_{1,n}\|^2_{L^{2q'}(\mathbb{R}^2)}
\leq C\|u_{2,n}\|^2_{L^{2q'}(\mathbb{R}^2)}\|u_{1,n}\|^2_{L^{2q'}(\mathbb{R}^2)}.
\]
Thus,
\[
\lim_{n \rightarrow \infty} \int_{\mathbb{R}^2} |A_j(u_{2,n})|^2|u_{1,n}|^2 \, dx = 0.
\]
It is easy to see that \(\liminf_{n \rightarrow \infty} \Phi(u_{1,n}) \geq \tilde{c}, \liminf_{n \rightarrow \infty} \Phi(u_{2,n}) \geq c - \tilde{c}\). Moreover, we have that
\[
\mu_n(\Omega_n) \rightarrow 0,
\]
namely,
\[
\int_{\Omega_n} (|\nabla u_n|^2 + |u_n|^2) \, dx \rightarrow 0,
\]
(3.5)
\[
\int_{\Omega_n} (A_1^2(u_n)|u_n|^2 + A_2^2(u_n)|u_n|^2) \, dx \rightarrow 0.
\]
(3.6)

Consequently, we get that
\[
\int_{\Omega_n} (|\nabla u_{1,n}|^2 + |u_{1,n}|^2) \, dx \rightarrow 0,
\]
\[
\int_{\Omega_n} (|\nabla u_{2,n}|^2 + |u_{2,n}|^2) \, dx \rightarrow 0.
\]
Hence, we deduce that
\[
\int_{\mathbb{R}^2} (|\nabla u_n|^2 + |u_n|^2) \, dx = \int_{\mathbb{R}^2} (|\nabla u_{1,n}|^2 + |u_{1,n}|^2) \, dx
+ \int_{\mathbb{R}^2} (|\nabla u_{2,n}|^2 + |u_{2,n}|^2) \, dx + o_n(1)
\]
(3.7)
and that
\[
\int_{\mathbb{R}^2} |u_n|^p \, dx = \int_{\mathbb{R}^2} |u_{1,n}|^p \, dx + \int_{\mathbb{R}^2} |u_{2,n}|^p \, dx + o_n(1).
\]
(3.8)
We note that
\[A_{1,n} = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{x_2 - y_2}{2} |u_{1,n} + u_{2,n}|^2 dy \]
\[= A_1(u_{1,n}) + A_1(u_{2,n}) - \frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{x_2 - y_2}{2} u_{1,n} u_{2,n} dy \]
\[= A_1(u_{1,n}) + A_1(u_{2,n}) + o_n(1). \]

Then
\[\int_{\mathbb{R}^2} A_1^2(u_n)|u_n|^2 dx = \int_{\mathbb{R}^2} (A_1(u_{1,n}) + A_1(u_{2,n}) + o_n(1))^2 |u_{1,n} + u_{2,n}|^2 dx \]
\[= \int_{\mathbb{R}^2} [A_1^2(u_{1,n})|u_{1,n}|^2 + A_1^2(u_{2,n})|u_{2,n}|^2 + 2A_1(u_{1,n})A_1(u_{2,n})(|u_{1,n}|^2 + |u_{2,n}|^2) \]
\[+ A_1^2(u_{1,n})|u_{2,n}|^2 + A_1^2(u_{2,n})|u_{1,n}|^2 + 2(A_1^2(u_{1,n}) + A_1^2(u_{2,n}))u_{1,n}u_{2,n} \]
\[+ 4A_1(u_{1,n})A_1(u_{2,n})u_{1,n}u_{2,n}] dx + o_n(1). \]

Therefore, by using (3.3), we have
\[\int_{\mathbb{R}^2} A_1^2(u_n)|u_n|^2 dx = \int_{\mathbb{R}^2} A_1^2(u_{1,n})|u_{1,n}|^2 dx + \int_{\mathbb{R}^2} A_1^2(u_{2,n})|u_{2,n}|^2 dx + o_n(1). \] (3.9)

Similarly, we obtain
\[\int_{\mathbb{R}^2} A_2^2(u_n)|u_n|^2 dx = \int_{\mathbb{R}^2} A_2^2(u_{1,n})|u_{1,n}|^2 dx + \int_{\mathbb{R}^2} A_2^2(u_{2,n})|u_{2,n}|^2 dx + o_n(1). \] (3.10)

Hence, by (3.7), (3.9), and (3.10), we get
\[\Phi(u_n) = \Phi(u_{1,n}) + \Phi(u_{2,n}) + o_n(1). \]

Then,
\[c = \lim_{n \to \infty} \Phi(u_n) \geq \lim \inf \Phi(u_{1,n}) + \lim \inf \Phi(u_{2,n}) \geq \bar{c} + (c - \bar{c}) = c. \]

Therefore,
\[\lim_{n \to \infty} \Phi(u_{1,n}) = \bar{c}, \quad \lim_{n \to \infty} \Phi(u_{2,n}) = c - \bar{c}. \] (3.11)

By (3.7), (3.8), (3.9), and (3.10), we have
\[0 = G(u_n) \geq G(u_{1,n}) + G(u_{2,n}) + o_n(1). \] (3.12)

By Proposition 3.1 for any \(n \geq 1 \), \(\exists t_n > 0 \), such that \(t_n^\alpha u_{1,n}(t_n x) \in M \), and then
\[\alpha t_n^{2\alpha} \int_{\mathbb{R}^2} |\nabla u_{1,n}|^2 dx + (\alpha - 1)t_n^{2\alpha - 2} \int_{\mathbb{R}^2} |u_{1,n}|^2 dx \]
\[+ (3\alpha - 2)t_n^{6\alpha - 4} \int_{\mathbb{R}^2} [A_1^2(u_{1,n})|u_{1,n}|^2 + A_2^2(u_{1,n})|u_{1,n}|^2] dx \]
\[= \frac{p\alpha - 2}{p} t_n^{p\alpha - 2} \int_{\mathbb{R}^2} |u_{1,n}|^p dx. \] (3.13)

Case 1 Up to a subsequence, \(G(u_{1,n}) \leq 0 \). By (3.13), we obtain
\[\alpha (t_n^{p\alpha - 2} - t_n^{2\alpha}) \int_{\mathbb{R}^2} |\nabla u_{1,n}|^2 dx + (\alpha - 1)(t_n^{p\alpha - 2} - t_n^{2\alpha - 2}) \int_{\mathbb{R}^2} |u_{1,n}|^2 dx \]
\[+ (3\alpha - 2)(t_n^{p\alpha - 2} - t_n^{6\alpha - 4}) \int_{\mathbb{R}^2} [A_1^2(u_{1,n})|u_{1,n}|^2 + A_2^2(u_{1,n})|u_{1,n}|^2] dx \leq 0, \]
which implies that \(t_n \leq 1 \). Since \(t_n^a u_{1, n}(t_n x) \in \mathcal{M} \), we obtain that as \(n \to \infty \),
\[
c \leq J(t_n^a u_{1, n}(t_n x)) = \Phi(t_n^a u_{1, n}(t_n x)) \leq \Phi(u_{1, n}) \to \bar{c} < c,
\]
which is a contradiction.

Case 2 Up to a subsequence, \(G(u_{2, n}) \leq 0 \). We can argue as in the previous case.

Case 3 Up to a subsequence, \(G(u_{1, n}) > 0 \) and \(G(u_{2, n}) > 0 \). By \((3.12)\), we infer that \(G(u_{1, n}) = o_n(1) \) and \(G(u_{2, n}) = o_n(1) \). If \(t_n \leq 1 + o_n(1) \), we can repeat the arguments of Case 1. Suppose that \(\lim_{n \to \infty} t_n = t_0 > 1 \), we have

\[
o_n(1) = G(u_{1, n})
\]

\[
= \alpha \int_{\mathbb{R}^2} |\nabla u_{1, n}|^2 \, dx + (\alpha - 1) \int_{\mathbb{R}^2} |u_{1, n}|^2 \, dx
\]

\[
+ (3\alpha - 2) \int_{\mathbb{R}^2} \left(A_1^2(u_{1, n})|u_{1, n}|^2 + 3A_2^2(u_{1, n})|u_{1, n}|^2 \right) \, dx - \frac{p\alpha - 2}{p} \int_{\mathbb{R}^2} |u_{1, n}|^p \, dx
\]

\[
= \alpha \left(1 - \frac{1}{t_n^{(p\alpha - 2) - 2\alpha}} \right) \int_{\mathbb{R}^2} |\nabla u_{1, n}|^2 \, dx + (\alpha - 1) \left(1 - \frac{1}{t_n^{(p\alpha - 2) - (2\alpha - 2)}} \right) \int_{\mathbb{R}^2} |u_{1, n}|^2 \, dx
\]

\[
+ (3\alpha - 2) \left(1 - \frac{1}{t_n^{(p\alpha - 2) - (6\alpha - 4)}} \right) \int_{\mathbb{R}^2} \left(A_1^2(u_{1, n})|u_{1, n}|^2 + A_2^2(u_{1, n})|u_{1, n}|^2 \right) \, dx.
\]

Consequently, \(u_{1, n} \to 0 \) in \(H^1(\mathbb{R}^2) \). Then, we have a contradiction with \((3.11)\).

Compactness. From the proof above, we obtain that there is a subsequence of \(\{\mu_n\} \) such that it is compact, that is, there is a sequence \(\{\xi_n\} \subset \mathbb{R}^N \) such that for any \(\delta > 0 \) there exists a radius \(\rho > 0 \) such that

\[
\int_{B_\rho(\xi_n)} d\mu_n \geq c - \delta, \quad \text{for all } n.
\]

\[
(3.14)
\]

Strong convergence. We define the new sequence of functions \(v_n(\cdot) = u_n(\cdot - \xi_n) \in H^1(\mathbb{R}^2) \). It is easy to see that \(A_1(v_n(\cdot)) = A_j(u_n(\cdot - \xi_n)), j = 1, 2 \) and hence \(v_n \in \mathcal{M} \). Moreover, by \((3.14)\), we have that for any \(\delta > 0 \) there exists a radius \(\rho > 0 \) such that

\[
\|v_n\|_{H^1(B_\rho^c)} < \delta, \quad \text{uniformly for } n \geq 1.
\]

\[
(3.15)
\]

Since \(\{u_n\} \) is bounded in \(H^1(\mathbb{R}^2) \), \(\{v_n\} \) is also bounded in \(H^1(\mathbb{R}^2) \). Certainly, there exists a subsequence of \(\{v_n\} \) and \(u \in H^1(\mathbb{R}^2) \) such that

\[
v_n \rightharpoonup u \quad \text{weakly in } \quad H^1(\mathbb{R}^2), \quad (3.16)
\]

\[
v_n \to u \quad \text{in } \quad L^s_{\loc}(\mathbb{R}^2) \quad \text{for } 1 \leq s < +\infty. \quad (3.17)
\]

By \((3.15), (3.16), \) and \((3.17)\), we have that, taken \(s \in [2, +\infty) \), for any \(\delta > 0 \) there exists \(\rho > 0 \) such that, for any \(n \geq 1 \) large enough

\[
\|v_n - u\|_{L^s(\mathbb{R}^2)} \leq \|v_n - u\|_{L^s(B_\rho^c)} + \|v_n - u\|_{L^s(B_\rho^c)} \leq \delta + C(\|v_n\|_{H^1(B_\rho^c)} + \|u\|_{H^1(B_\rho^c)}) \leq (1 + 2C)\delta,
\]

where \(C > 0 \) is the constant of the embedding \(H^1(B_\rho^c) \subset L^s(B_\rho^c) \). We deduce that

\[
v_n \to u \quad \text{in } \quad L^s(\mathbb{R}^2) \quad \text{for any } \quad s \in [2, +\infty). \quad (3.18)
\]
Then,
\[v_n \overset{n}{\to} u \text{ a.e in } \mathbb{R}^2. \]
(3.19)

Note that
\[\lim_{n \to \infty} G(v_n) = 0. \]

By (3.16), (3.18), (3.19), and Proposition 2.2, we see that \(\|v_n\| \overset{n}{\to} \|u\| \), which implies \(v_n \) strongly converges to \(u \) in \(H^1(\mathbb{R}^2) \).

\[\text{Proof of Theorem 1.1} \]

By Proposition 3.2, \(u \in \mathcal{M} \) and \(J(u) = c \). Therefore, \(u \) is a solution of (1.4). Since \(u \) has been obtained as a minimize of \(J \) restricted to \(\mathcal{M} \), \(|u| \) is also a minimizer. Using \(|u| \) instead of \(\bar{v} \) in Lemma 2.8 and Proposition 2.9, we obtain that \(|u| \) is a solution.

To prove that the solution \(u \in H^1(\mathbb{R}^2) \) does not change sign. By using Proposition 2.7, we know that
\[J(u) = \int_{\mathbb{R}^2} \left(\frac{1}{2} |\nabla u|^2 + \frac{1}{4} |u|^2 + \left(\frac{1}{2} - \frac{1}{p} \right) \int_{\mathbb{R}^2} |u|^p \right) dx. \]

We observe that for \(u_+ = \max\{u, 0\} \) and \(u_- = u_+ - u \),
\[J(u_+), J(u_-) < J(u_+ - u_-) \]
which implies \(u_- \equiv 0 \) or \(u_+ \equiv 0 \). Hence we assume that \(u \geq 0 \), up to a change of sign. Now combining the Sobolev theorem and the Moser iteration to weak solution \(u \in H^1(\mathbb{R}^2) \) to (1.4). One can obtain that \(u \) is bounded in \(L^\infty(\mathbb{R}^2) \). Thus, for each \(q \in [2, \infty) \), there exists \(C_1 \) such that \(\|u\|_{W^{1,q}(\mathbb{R}^2)} \leq C_1 \). Moreover, we have that \(u \in C^\gamma(\mathbb{R}^2) \) for some \(\gamma \in (0, 1) \). The standard bootstrap argument shows that \(u \in \bigcap_{\gamma=2}^{\infty} W^{2,q}(\mathbb{R}^2) \). The classical elliptic estimate implies \(u \in C^{1,\gamma}(\mathbb{R}^2) \) for some \(\gamma \in (0, 1) \). By the maximum principle, we know that \(u \geq 0 \).

\[\text{□} \]

4. **Global compactness.** In this section we establish Theorem 1.2 by the mountain pass theorem. In order to have a better understanding of the Palais-Smale sequences of the energy functional, we need to investigate more closely the compactness question at the level of critical values.

Let us denote the function space
\[\mathcal{H} := \{ u \mid \int_{\mathbb{R}^2} |\nabla u|^2 + V(x)|u|^2 \, dx < \infty \}, \]
with the equivalent norm
\[\|u\|_\mathcal{H} := \left(\int_{\mathbb{R}^2} |\nabla u|^2 + V(x)|u|^2 \, dx \right)^{1/2}. \]
(4.1)

Define the functional associated to (1.1) in the space \(\mathcal{H} \) by
\[J_V(u) = \frac{1}{2} \int_{\mathbb{R}^2} \left(|\nabla u|^2 + V(x)|u|^2 + A_1^2(u)|u|^2 + A_2^2(u)|u|^2 \right) dx - \frac{1}{p} \int_{\mathbb{R}^2} |u|^p \, dx. \]
(4.2)

We see that \(J_V \) possesses the mountain pass geometry as follows.

Lemma 4.1. (i) There exists \(u_1 \in \mathcal{H} \) such that \(J_V(u_1) < 0 \).
(ii) there are \(\rho > 0 \) and \(\beta > 0 \) such that \(J_V(u) > \beta \) for all \(u \in \mathcal{H} \) with \(\|u\|_\mathcal{H} = \rho \).
Proof. (i) Let
\[\gamma(t) = t^\alpha u(tx), \quad t > 0. \]
We see that
\[\lim_{t \to \infty} J_V(\gamma(t)) = -\infty. \]
Hence, taking \(u_1 = \gamma(t) \), \(t \) sufficiently large, we obtain that \(J_V(u_1) < 0 \).

(ii) We observe that
\[J_V(u) \geq \frac{1}{2} \int_{\mathbb{R}^2} (|\nabla u|^2 + V_0|u|^2) \, dx - \frac{C}{p} \left(\int_{\mathbb{R}^2} (|\nabla u|^2 + V_0|u|^2) \, dx \right)^{\frac{p}{2}}, \]
where \(p > 4 \). Then we can choose \(u \in H \) with \(\|u\|_H = \rho \) such that \(J_V(u) > 0 \). \(\square \)

We observe that \(J_V \in C^1(H, \mathbb{R}) \) satisfies the condition
\[\max\{J_V(0), J_V(v_1)\} \leq 0 < \beta \leq \inf_{\|v\| = \rho} J_V(v), \]
for some \(0 < \beta, \rho > 0 \) and \(v_1 \in H \) with \(\|v_1\| > \rho \). Let \(c_V \geq \beta \) be characterized by
\[c_V = \inf_{\gamma \in \Lambda} \max_{0 \leq \tau \leq 1} J_V(\gamma(\tau)), \tag{4.3} \]
where \(\Lambda = \{ \gamma \in C([0,1], H) : \gamma(0) = 0, \gamma(1) = v_1 \} \) is the set of continuous paths joining \(0 \) and \(v_1 \). Hence \(J_V \) possesses the mountain pass geometry. If we can show any Palais-Smale sequence \(\{u_k\} \subset H \) such that
\[J_V(u_n) \rightharpoonup c_V \geq \beta \quad \text{and} \quad J_V'(u_n) \to 0 \quad \text{in} \quad H^{-1}, \tag{4.4} \]
possesses a convergent subsequence, then \(c_V \) in (4.4) is the critical value of \(J_V \).

To overcome the difficulty of proving the compactness of Palais-Smale sequences for \(J_V \), one can compare it with the energy of the corresponding functional at infinity. For this, we consider the functional related to the limit problem given by
\[J_\infty(u) = \frac{1}{2} \int_{\mathbb{R}^2} \left(|\nabla u|^2 + V_\infty|u|^2 + A_1^2(u)|u|^2 + A_2^2(u)|u|^2 \right) \, dx - \frac{1}{p} \int_{\mathbb{R}^2} |u|^p \, dx, \tag{4.5} \]
where \(V_\infty = \liminf_{|x| \to \infty} V(x) \). Let us denote
\[G_\infty(u) := \alpha \int_{\mathbb{R}^2} |\nabla u|^2 \, dx + (\alpha - 1) \int_{\mathbb{R}^2} V_\infty |u|^2 \, dx \]
\[+ (3\alpha - 2) \int_{\mathbb{R}^2} (A_1^2 + A_2^2)|u|^2 \, dx - \frac{p\alpha - 2}{p} \int_{\mathbb{R}^2} |u|^p \, dx. \tag{4.6} \]

Consider the functional \(J_\infty \) on the manifold \(M_\infty \)
\[M_\infty := \{ u \in H^1(\mathbb{R}^2) \setminus \{0\} \mid G_\infty(u) = 0 \}. \tag{4.7} \]
We observe that the minimizer of the minimizing problem
\[c_\infty := \inf_{u \in M_\infty} J_\infty(u), \]
is achieved at some \(w_0 \in M_\infty \).

Define
\[c^* = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J_\infty(\gamma(t)), \quad c^{**} = \inf_{u \in H \setminus \{0\}} \max_{t \geq 0} J_\infty(t^\alpha u(tx)), \tag{4.8} \]
where \(\Gamma := \{ \gamma \in C([0,1], H) \mid \gamma(0) = 0, J_\infty(\gamma(1)) < 0 \} \). Similar to Proposition 3.1 we have
\[
c_\infty = c_\infty^* = c_\infty^{**}. \quad (4.9)
\]
Moreover, we know Proposition 4.2.

Proposition 4.2.
\[c_V < c_\infty.\]

Proof. Suppose that \(w_0 \) is the minimizer of \(c_\infty \). Then, we obtain that
\[c_V \leq \max_{t>0} J_V(t^0 w_0(tx)) < \max_{t>0} J_\infty(t^0 w_0(tx)) = J_\infty(w_0) = c_\infty.\]

Before we go to demonstrate the compact property, let us state the following the Pohozaev formula, whose proof follows from [10]. For the sake of compactness, we also sketch its demonstration.

Proposition 4.3. Suppose \(u \in H \) be a weak solution of (1.1). Then, we have
\[
\int_{\mathbb{R}^2} |u|^2 + \frac{1}{2} |x, \nabla V(x)||u|^2 + A_0|u|^2 dx - 2 \int_{\mathbb{R}^2} F(u) \, dx = 0, \quad (4.10)
\]
where \(F(u) = \int_0^u f(s) \, ds \).

Proof. Assume that \((u, A_0, A_1, A_2) \) is a solution of (1.1). Multiplying the first equation of (1.1) by \(\sum_{k=1}^{2} x_k (\partial_k u + i A_k u) \) and integrating on \(B_R \), we have
\[
\text{Re} \left\{ \int_{B_R} \sum_{k=1}^{2} x_k (\partial_k u + i A_k u) \Delta u \, dx \right\} = \int_{B_R} \Delta u (x \cdot \nabla u) \, dx = \frac{R}{2} \int_{\partial B_R} |\nabla u|^2 \, d\sigma,
\]
where \(d\sigma \) is the arc length differential of the circle \(\partial B_R \),
\[
\begin{align*}
\text{Re} \left\{ \int_{B_R} (V(x) + A_0 + A_1^2 + A_2^2) u \sum_{k=1}^{2} x_k (\partial_k u + i A_k u) \, dx \right\} &= \int_{B_R} (V(x) + A_0 + A_1^2 + A_2^2) u (x \cdot \nabla u) \, dx \\
&= \frac{R}{2} \int_{\partial B_R} (V(x) + A_0 + A_1^2 + A_2^2) u^2 \, d\sigma - \int_{B_R} \frac{1}{2} (x, \nabla V(x)) |u|^2 \, dx \\
&\quad - \int_{B_R} (V(x) + A_0 + A_1^2 + A_2^2) u^2 \, dx \\
&\quad - \int_{B_R} \frac{u^2}{2} \left(\sum_{k=1}^{2} (x_k \partial_k A_0 + x_k \partial_k A_1^2 + x_k \partial_k A_2^2) \right) \, dx
\end{align*}
\]
and
\[
\text{Re} \left\{ \int_{B_R} f(u) \sum_{k=1}^{2} x_k (\partial_k u + i A_k u) \, dx \right\} = \int_{B_R} f(u) (x \cdot \nabla u) \, dx = -2 \int_{B_R} F(u) \, dx + R \int_{\partial B_R} F(u) \, d\sigma. \quad (4.13)
\]
By using the Coulomb gauge condition, (1.1) and
\[
x_1 u^2 A_1 \partial_1 A_1 + x_2 u^2 A_2 \partial_2 A_2 + x_1 A_2 u^2 \partial_2 A_1 + x_1 A_1 u^2 \partial_2 A_2 \\
x_2 A_2 u^2 \partial_1 A_1 + x_2 A_1 u^2 \partial_2 A_2 = x_1 A_1 u^2 (\partial_1 A_1 + \partial_2 A_2) + x_2 A_2 u^2 (\partial_1 A_1 + \partial_2 A_2) \\
+x_1 (\partial_2 A_1 - \partial_1 A_2) A_2 u^2 + x_2 (\partial_1 A_1 - \partial_2 A_1) A_1 u^2 + x_1 A_2 \partial_1 A_2 + x_2 A_1 \partial_2 A_1,
\]
we obtain that
\[
\text{Re} \left\{ 2i \int_{B_R} \left(\sum_{k=1}^{2} x_k (\partial_k u + i A_k u) \right) \left(\sum_{k=1}^{2} A_k \partial_k u \right) dx \right\}
\]
\[
= 2 \int_{B_R} A_1 \partial_1 u(x_1 A_1 u + x_2 A_2 u) dx + 2 \int_{B_R} A_2 \partial_2 u(x_1 A_1 u + x_2 A_2 u) dx
\]
\[
= - \int_{B_R} \left(A_1^2 u^2 + A_2^2 u^2 + x_1 u^2 \partial_1 A_1^2 + x_2 u^2 \partial_2 A_2^2 \\
+x_1 A_2 u^2 \partial_2 A_1 + x_1 A_1 u^2 \partial_2 A_2 + x_2 A_2 u^2 \partial_1 A_1 + x_2 A_1 u^2 \partial_1 A_2 \right) dx
\]
\[
+ \frac{1}{R} \int_{\partial B_R} \left(x_1^2 A_1^2 u^2 + 2x_1 x_2 A_1 A_2 u^2 + x_2^2 A_2^2 u^2 \right) d\sigma.
\]
Hence,
\[
\int_{B_R} (1 + A_0) u^2 dx - 2 \int_{B_R} F(u) dx + \frac{R}{2} \int_{\partial B_R} |\nabla u|^2 d\sigma
\]
\[
- \frac{R}{2} \int_{\partial B_R} (w + A_0 + A_1^2) u^2 d\sigma + R \int_{\partial B_R} F(u) d\sigma
\]
\[
+ \frac{1}{R} \int_{\partial B_R} (x_1^2 A_1^2 u^2 + 2x_1 x_2 A_1 A_2 u^2 + x_2^2 A_2^2 u^2) d\sigma = 0.
\]
Since \(u \in H^1(\mathbb{R}^2) \), one can establish the desired identity by taking \(R \to \infty \). \(\square \)

The following proposition provides a precise description of a behavior of Palais-Smale sequence for \(J_V \), which provides the the compactness of any Palais-Smale sequence. The proof follows from [19] and [2].

Proposition 4.4. Let \(\{u_n\} \) be a bounded Palais-Smale sequence of \(J_V \) with the critical value \(c_V \). Then there exists a \(u_0 \in \mathcal{H} \) such that \(J_V(u_0) = 0 \) and either \(u_n \) converges to \(u_0 \) in \(\mathcal{H} \) or there are integer \(l_0 \in \mathbb{N} \) and \(\xi_{l,n} \in \mathbb{R}^2 \) with \(|\xi_{l,n}| \nrightarrow \infty \) for each \(1 \leq l \leq l_0 \) such that \(w_l = u_{t,n}(\cdot + \xi_{l,n}) \) weakly converges to nonzero critical point \(w_l \) of \(J_{l,n} \) in \(\mathcal{H} \). Moreover
\[
\lim_{l \to \infty} \int_{\mathbb{R}^2} (1 + A_0) w_l^2 dx - 2 \int_{\mathbb{R}^2} F(w_l) dx + \frac{R}{2} \int_{\partial B_R} |\nabla w_l|^2 d\sigma
\]
\[
- \frac{R}{2} \int_{\partial B_R} (w + A_0 + A_1^2) w_l^2 d\sigma + R \int_{\partial B_R} F(w_l) d\sigma
\]
\[
+ \frac{1}{R} \int_{\partial B_R} (x_1^2 A_1^2 w_l^2 + 2x_1 x_2 A_1 A_2 w_l^2 + x_2^2 A_2^2 w_l^2) d\sigma = 0.
\]

Since \(u \in H^1(\mathbb{R}^2) \), one can establish the desired identity by taking \(R \to \infty \). \(\square \)
Proof. Let $u_{1,n} = u_n - u_0$, that is, $u_{1,n}$ weakly converges to 0. Then by the Brezis-Lieb Lemma and Proposition 2.2,

$$
\int_{\mathbb{R}^2} |u_n - u_0|^2 \, dx = \int_{\mathbb{R}^2} |u_n|^p \, dx - \int_{\mathbb{R}^2} |u_0|^p \, dx + o_n(1),
$$

$$
\int_{\mathbb{R}^2} |A_j(u_{1,n})|^2 |u_{1,n}|^2 \, dx = \int_{\mathbb{R}^2} (|A_j(u_n)|^2 |u_n|^2 - |A_j(u_0)|^2 |u_0|^2) \, dx + o_n(1),
$$

$$
\int_{\mathbb{R}^2} |\nabla u_n - \nabla u_0|^2 \, dx = \int_{\mathbb{R}^2} |\nabla u_n|^2 \, dx - \int_{\mathbb{R}^2} |\nabla u_0|^2 \, dx + o_n(1).
$$

Then

$$J_V(u_0) + J_V(u_n - u_0) = c_V + o_n(1),
$$

$$(J_V)'(u_n - u_0) = o_n(1), \text{ in } \mathcal{H}^{-1}.
$$

Let us denote

$$\sigma_1 = \limsup_{n \to \infty} \sup_{y \in \mathbb{R}^2} \int_{B_1(y)} |u_{1,n}|^2 \, dx.
$$

If $\sigma_1 = 0$, then u_n converges zero in $L^s(\mathbb{R}^2)$, $s \in [2, \infty)$. Since $(J_V)'(u_{1,n}) \to 0$, we have $u_{1,n} \to 0$ in \mathcal{H} and the proof is complete. Otherwise, if there exists $\{\xi_{1,n}\} \subset \mathbb{R}^2$ with $|\xi_{1,n}| \to \infty$ such that

$$\int_{B_1(\xi_{1,n})} |u_{1,n}|^2 \, dx > \frac{\sigma_1}{2}.
$$

Define $w_{1,n} = u_{1,n}(\cdot + \xi_{1,n})$. Then $\{w_{1,n}\}$ is bounded in \mathcal{H}. Then we have that $\forall \eta \in C_0^\infty(\mathbb{R}^2),$

$$o_n(1) = \int_{\mathbb{R}^2} (\nabla u_{1,n}(\cdot + \xi_{1,n}) \nabla \eta + V(\cdot + \xi_{1,n}) u_{1,n}(\cdot + \xi_{1,n}) \eta
$$

$$+ A_1^2(u_{1,n}(\cdot + \xi_{1,n})) u_{1,n}(\cdot + \xi_{1,n}) \eta + A_2^2(u_{1,n}(\cdot + \xi_{1,n})) u_{1,n}(\cdot + \xi_{1,n}) \eta
$$

$$+ A_0(u_{1,n}(\cdot + \xi_{1,n})) u_{1,n}(\cdot + \xi_{1,n}) \eta - |u_{1,n}(\cdot + \xi_{1,n})|^p u_{1,n}(\cdot + \xi_{1,n}) \eta \, dx.
$$

We may extract a subsequence $w_{1,n}$ which weakly converges to $w_1 \neq 0$ in \mathcal{H} and that

$$\|u_n - u_0 - w_{1,n}(\cdot - \xi_{1,n})\|_H \to 0,
$$

$$c_V = J_V(u_0) + J_\infty(w_{1,n}(\cdot - \xi_{1,n})) + o_n(1),
$$

$$(J_\infty)'(w_1) = 0.
$$

Let $u_{2,n} = u_n - u_0 - w_1(\cdot - \xi_{1,n})$. We obtain from the Brezis-Lieb Lemma and Proposition 2.2 that

$$\int_{\mathbb{R}^2} |u_{2,n}|^p = \int_{\mathbb{R}^2} |u_n|^p - |u_0|^p - |w_1|^p \, dx + o_n(1),
$$

$$\int_{\mathbb{R}^2} |A_j(u_{2,n})|^2 |u_{2,n}|^2 \, dx
$$

$$= \int_{\mathbb{R}^2} (|A_j(u_n)|^2 |u_n|^2 - |A_j(u_0)|^2 |u_0|^2 - |A_j(w_{1,n})|^2 |w_{1,n}|^2) \, dx + o_n(1),
$$

$$\int_{\mathbb{R}^2} |\nabla u_{2,n}|^2 = \int_{\mathbb{R}^2} (|\nabla u_n|^2 - |\nabla u_0|^2 - |\nabla w_1|^2) \, dx + o_n(1).$$
Thus,

\[J_V(u_{2,n}) + J_V(u_0) + J_\infty(w_1) = c_V + o_n(1), \]

\[(J_\infty)'(u_{2,n}) = o_n(1), \text{ in } \mathcal{H}^{-1}. \]

Let us denote

\[\sigma_2 = \limsup_{n \to \infty} \sup_{y \in \mathbb{R}^2} \int_{B_t(y)} |u_{2,n}|^2 \, dx. \]

If \(\sigma_2 = 0 \), then \(u_{2,n} \) converges zero in \(L^s(\mathbb{R}^2), s \in [2, \infty) \). Since \((J_\infty)'(u_{2,n}) \to 0\), we have \(u_{2,n} \to 0 \) in \(\mathcal{H} \) and the proof is complete. Otherwise, if there exists \(\{\xi_{2,n}\} \subset \mathbb{R}^2 \) with \(|\xi_{1,n} - \xi_{2,n}| \to \infty \) such that

\[\int_{B_t(\xi_{2,n})} |u_{2,n}|^2 \, dx > \frac{\sigma_2}{2}. \]

Define \(w_{2,n} = u_{2,n}(\cdot + \xi_{2,n}) \). Then \(\{w_{2,n}\} \) is bounded in \(\mathcal{H} \).

By iteration, there exists some finite \(l_0 \in \mathbb{N} \) such that nontrivial solutions \(w_1, w_2, \ldots, w_{l_0} \) (which do not vanish) of problem (1.4) such that

\[\|u_n - u_0 + \sum_{l=1}^{l_0} w_{l,n}(\cdot - \xi_{l,n})\|_\mathcal{H} \to 0, \]

\[c_V = J_V(u_0) + \sum_{l=1}^{l_0} J_\infty(w_{l,n}(\cdot - \xi_{l,n})) + o_n(1). \]

Hence there exists \(t_l \in (0, 1] \) such that \(\gamma(t_l) = t_l^2 u_{l,n}(t_l x) \in \mathcal{M}_\infty \). We observe that \(J_\infty(w_l) \geq c_\infty \). This implies that

\[c_V \geq J_\infty(w_l) + J_V(u_0) \geq c_\infty, \]

since

\[J_V(u_0) = \left(\frac{1}{2} - \frac{1}{p} \right) \int_{\mathbb{R}^2} \left(|\nabla u_0|^2 + V(x)u_0^2 + A_1^2(u_0)u_0^2 + A_2^2(u_0)u_0^2 \right) \, dx \geq 0. \]

Proof of Theorem 1.2. By using the mountain pass theorem, we know that there exists sequence \(\{u_n\} \) of \(J_V \). We next show the boundedness of \(\{u_n\} \). Let us denote

\[a_{1,n} = \int_{\mathbb{R}^2} |\nabla u_n|^2 \, dx, \quad a_{2,n} = \int_{\mathbb{R}^2} V(x)|u_n|^2 \, dx, \quad a_{3,n} = \int_{\mathbb{R}^2} \left(A_1^2(u_n)|u_n|^2 + A_2^2(u_n)|u_n|^2 \right) \, dx, \]

\[b_{1,n} = \int_{\mathbb{R}^2} |u_n|^p \, dx. \]

By the Pohozaev identity, we have \(a_{2,n} + \frac{1}{2} a_{2,n} + 2a_{3,n} = \frac{2}{p} b_{1,n} \). Substituting in the following equations

\[a_{1,n} = b_{1,n} - a_{2,n} - 3a_{3,n} + o_n(1), \]

\[a_{1,n} + a_{2,n} + a_{3,n} - \frac{2}{p} b_{1,n} = 2c_V + o_n(1), \]

gives \(a_{1,n} = \left(\frac{p}{2} - 1 \right) a_{2,n} + \frac{p}{2} a_{2,n} + (p - 3)a_{3,n} \) and \(a_{1,n} - \frac{1}{2} a_{2,n} - a_{3,n} = 2c_V \). Then we deduce that

\[\left(\frac{p}{2} - 1 \right) a_{2,n} + \left(\frac{p}{4} - \frac{1}{2} \right) a_{2,n} + (p - 4)a_{3,n} = 2c_V. \]
Since \((x, \nabla V(x)) \geq 0\), we conclude that \(a_{2,n}, \hat{a}_{2,n}, a_{3,n}\) are bounded if \(p > 4\), which implies that \(a_{1,n}\) is bounded. Having proved the boundedness, by Proposition 4.4 we obtain a nontrivial solution to the system (1.1).

Applying the Sobolev theorem and the Moser iteration to weak solution \(u \in H^1(\mathbb{R}^2)\), we know that \(u\) is bounded in \(L^\infty(\mathbb{R}^2)\). That is, \(u\) is the strong solution to the system (1.1). Thus, for some \(H\) we obtain a nontrivial solution to the system (1.1). Choosing \(a\) implies that \(u\) is bounded. Therefore, we obtain that for \(x \to \infty\),

\[
f(u) - A_1^2(u)u - A_1^2(u)u - A_0(u)u \leq \delta_1 u(x).
\]

Choosing \(\theta = V_0 - \delta_1\), we obtain that for \(|x| > R_0\),

\[-\Delta u + \theta^2 u \leq 0.
\]

Let \(\Phi_1(x) = M_1 e^{-\theta(|x| - R_1)}\), where \(M_1 := \max\{|u(x)| \mid |x| = R_1\}\). Direct computation gives that

\[-\Delta \Phi_1 = (\theta^2 - \theta/|x|) \Phi_1.
\]

Combing the anterior estimate, we see that for \(|x| > R_1 \geq R_0\),

\[-\Delta (\Phi_1 - u) + \theta^2 (\Phi_1 - u) \geq 0.
\]

Therefore, we obtain that for \(|x| > R_1\), \(\Phi_1(x) - u(x) \geq 0\). Analogously, we can derive that \(|x| > R_1\), \(u(x) \geq -\Phi_1(x)\). That is, \(|u(x)| \leq M_1 e^{-\theta(|x| - R_1)}\) for \(|x| > R_1\).

\[\Box\]

Acknowledgments. Both authors would like to thank the support from Jianghan University and CMM in Universidad de Chile.

REFERENCES

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381.

[2] V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains Archi. Rati. Mech. Anal., 99 (1987), 283–300.

[3] L. Berge, A. De Bouard and J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235–253.

[4] J. Byeon, H. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field J. Funct. Anal., 263 (2012), 1575–1608.

[5] J. Byeon, H. Huh and J. Seok, On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations, Journal of Differential Equations, 261 (2016), 1285–1316.

[6] P.L. Cunha, P. d’Avenia, A. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonl. Diff. Equ. Appl., 22 (2015), 1831–1850.

[7] W.-Y. Ding and W.-M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation Arch. Ration. Mech. Anal., 91 (1986), 283–308.

[8] V. Dunne, Self-dual Chern-Simons Theories, Springer, 1995.

[9] H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field J. Math. Phys., 53 (2012), 063702, 8pp.

[10] H. Huh, Nonexistence results of semilinear elliptic equations coupled the the Chern-Simons gauge field Abstr. Appl. Anal. (2013), Art. ID 467985, 5 pp.

[11] R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500–3513.

[12] R. Jackiw and S.-Y. Pi, Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1–40.
[13] Y. Jiang, A. Pomponio and D. Ruiz, Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Communications in Contemporary Mathematics, 18 (2016), 1550074, 20pp.

[14] P. L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223–283.

[15] B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, International Mathematics Research Notices, 23 (2014), 6341–6398.

[16] A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463–1486.

[17] A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. PDEs, 53 (2015), 289–316.

[18] M. Struwe, Variational Methods, Springer-Verlag, 1996.

[19] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187 (1984), 511–517.

[20] Y. Wan and J. Tan, Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition, J. Math. Anal. Appl., 415 (2014), 422–434.

[21] Y. Wan and J. Tan, Concentration of semi-classical solutions to the Chern-Simons-Schrödinger systems, Preprint.

[22] X. Wang and B. Zeng, On concentration of positive bound states of nonlinear Schrödinger equations with competing potential functions, SIAM J. Math. Anal., 28 (1997), 633–655.

[23] J. Yuan, Multiple normalized solutions of Chern-Simons-Schrödinger system, Nonl. Diff. Equ. Appl. 22 (2015), 1801–1816.

Received February 2016; revised November 2016.

E-mail address: wanyouyan@jhu.edu.cn
E-mail address: jinggang.tan@usm.cl