Longer Prehospitalization and Preintubation Periods in Intubated Non-survivors and ECMO Patients With COVID-19: A Systematic Review and Meta-Analysis

Kenji Funakoshi¹, Takayoshi Morita¹* and Atsushi Kumanogoh¹,²,³,⁴

¹ Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan, ² Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, Suita, Japan, ³ Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan, ⁴ Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan

Purpose: There is no clear consensus on the clinical course of critical COVID-19 patients. We examined the clinical course among intubated survivors, non-survivors, and extracorporeal membrane oxygenation (ECMO) patients to reveal the standard clinical course and the difference among critical COVID-19 patients.

Methods: In this systematic review and meta-analysis, we searched PubMed, Web of Science, and Scopus for original studies published until December 11, 2020, including case accumulation and clinical course reporting. Pregnant patients and children were excluded. We followed PRISMA guidelines and registered them with PROSPERO (CRD42021235534).

Results: Of the 11,716 studies identified, 94 met the selection criteria, and 2,549 cases were included in this meta-analysis. The times from intubation to extubation and death were 12.07 days (95% confidence interval 9.80–14.33 days) and 10.14 days (8.18–12.10 days), respectively, and the ECMO duration was 14.72 days (10.57–18.87 days). The time from symptom onset to hospitalization (prehospitalization period) of intubated survivors, non-survivors, and ECMO patients was 6.15 (4.61–7.69 days), 6.45 (4.55–8.34 days), and 7.15 days (6.48–7.81 days), and that from symptom onset to intubation (preintubation period) was 8.58 (7.36–9.80 days), 9.14 (7.26–11.01 days), and 10.54 days (9.18–11.90 days), respectively. Sensitivity analysis showed that the time from intubation to extubation and death was longer in the US and Europe than in East Asia.

Conclusion: For COVID-19, we hypothesize that prehospitalization and preintubation periods are longer in intubated non-survivors and ECMO patients than in intubated survivors. These periods may serve as a predictor of disease severity or death and support therapeutic strategy determination.

Keywords: COVID-19, clinical course, invasive mechanical ventilation, extracorporeal membrane oxygenation, meta-analysis
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was first reported in Wuhan, China, in December 2019 (1). As of August 2021, COVID-19 had spread to 223 countries, areas, or territories, and the global cumulative case numbers have reached 197 million. Over 4.2 million COVID-19 patients have died since the start of the pandemic (2), even though every government has taken aggressive preventive measures such as lockdown (3), universal masking (4), and social distancing (4). The hospitalization rate of COVID-19 is reportedly 14% (almost 10 times higher than influenza) (5–7). Moreover, up to 26.1% of hospitalized COVID-19 patients are admitted to the intensive care unit (ICU) (8). Therefore, COVID-19 has placed an unprecedented burden on the ICU, and in some regions, ICU capacity exceeds 100% with only COVID-19 patients because of the astonishing number, high rate of ICU admission, and long clinical course (9). Furthermore, 71–88% of COVID-19 patients in the ICU need intubation (2.45–4.01 times higher than influenza) (10–14), and 3–27.2% of intubated COVID-19 patients require ECMO (10, 15). Overall, the high occupancy rate of hospital beds and ICUs by COVID-19 patients is a serious problem worldwide.

The clinical course of patients with severe COVID-19 from symptom onset to clinical events is highly informative when considering prognosis, therapeutic strategy, ICU bed management, and medical economy. Nevertheless, comparing each patient’s clinical course with the standard clinical course of COVID-19 is difficult because there is no consensus to date regarding the standard clinical course. For example, the duration of intubation has been reported to be 10–16 days (16, 17), yet both the patients’ backgrounds and regions where the studies were conducted differed in these reports. Moreover, known risk factors for COVID-19 mortality include age (18), sex (19), comorbidities (19), and blood counts (absolute lymphocyte number and CRP) (20); however, few articles have assessed differences in the clinical course between intubated survivors, non-survivors, and ECMO patients.

In this study, we conducted a systematic review and meta-analysis of the clinical course, i.e., time (days) from symptom onset, hospitalization, intubation, and ECMO initiation to each clinical event in critical COVID-19 patients. We also assessed the difference in the clinical course between intubated survivors, non-survivors, and ECMO patients with COVID-19 to reveal whether the clinical course is a prognostic factor. Finally, we conducted sensitivity analysis to assess factors (patient background and region) that may influence the time from intubation to extubation or death.

METHODS

Search Strategy and Selection Criteria

This meta-analysis was performed following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement (Supplementary Table 1) (21). This study searched for articles documenting the clinical course in critical COVID-19 patients: the time (days) from symptom onset to hospitalization (prehospitalization period) to intubation (preintubation period) and to ECMO initiation (pre-ECMO period); the time from hospitalization to intubation (hospitalization-intubation period) and to ECMO initiation (hospitalization-ECMO period), discharge (hospitalization-discharge period), and death (hospitalization-death period); the time from hospitalization to death (hospitalization-death period); the time from intubation to extubation (intubation period), to ECMO (intubation-ECMO period), and to death (intubation-death period); and the time from ECMO initiation to decannulation (ECMO period) and to death (ECMO-death period). Three sources, namely, PubMed, Web of Science, and Scopus, were searched [(COVID-19) OR (SARS-CoV-2) AND (intensive care unit) OR (acute respiratory distress syndrome) OR (mechanical ventilation) OR (extracorporeal membrane oxygenation)], with no language restriction. The searches were performed to identify articles published until December 11th, 2020, when the SARS-CoV-2 vaccine was first approved in the world, including “online first” articles, published until December 11, 2020, when the SARS-CoV-2 vaccine was first approved. The last searches were performed on June 26, 2021.

The inclusion criteria were studies of human subjects, case accumulations, a title or abstract consisting of the clinical course of intubated survivors, non-survivors, and/or ECMO patients with COVID-19, and a link from the search site to the full text (PDF or website) of the article. In this study, “survivors” referred to extubated patients who had not died during the study period. This study excluded studies involving children (under 18 years old) and pregnant women and non-English articles; a case report was also excluded because properly calculating the average value and standard deviation (SD) was difficult. Redundancies between the search sites were eliminated, i.e., individual studies were counted only once in this analysis.

Data Extraction and Quality Assessment

Data were extracted from all studies included in this analysis (author, year of publication, country where the study was conducted, number of patients, age, percentage of males, comorbidities, and treatment); the details are provided in Table 1. The average number of days and SD showing each clinical course or the median number of days and interquartile...
TABLE 1 | Background of critical COVID-19 patients.

IMV/ECMO	Study	Sample size	Location of study	Age mean (SD) or Median (IQR)	Male	HTN	DM	Reported treatment (%)	Risk of bias						
IMV	Abe et al.	2	Japan	64 (4)	50	0	100	ND	100	ND	ND	ND	ND	IVIG (100)	5
IMV	Argenziano et al.	152	US	ND	8										
IMV	Barrasa et al.	20	Spain	ND	8										
IMV	Beigmohammadi et al.	7	Iran	66.67 (11.47)	71.43	57.14	14.23	ND	100	14.29	ND	ND	ND	5	
IMV	Bhatraju et al.	18	US	ND	6										
IMV	Cauchois et al.	5	France	ND	7										
IMV	Chen et al.	2	China	65 (2)	100	ND	6								
IMV	Christie 3rd et al.	2	US	75 (4.11)	50	100	0	ND	ND	ND	ND	ND	ND	6	
IMV	Cummings et al.	163	US	ND	7										
IMV	Dai et al.	5	China	ND	8										
IMV	Dastan et al.	6	Iran	ND	9										
IMV	De Luca et al.	3	Italy	ND	7										
IMV	Dogan et al.	4	Turkey	45.25 (13.94)	75	50	33.33	ND	ND	100	ND	25	Plasmapheresis (100)	6	
IMV	Elder et al.	3	US	73.33 (3.77)	66.67	ND	5								
IMV	Falces-Romero et al.	5	Spain	66.6 (8.36)	60	0	100	100	20	100	0	20	ND	5	
IMV	Flikweert et al.	7	Netherlands	73 (7.48)	71.43	28.57	14.23	ND	57.14	ND	85.71	ND	ND	Heparin (100)	5
IMV	Gavin et al.	53	US	ND	67.92	73.58	45.28	ND	8						
IMV	Grasselli et al.	836	Italy	68 (62–73)	83.73	59.81	21.77	ND	ND	ND	ND	ND	ND	8	
IMV	Grein et al.	19	US	ND	100	ND	ND	7							
IMV	Halvatsiotis et al.	26	Greece	65 (53–70)	80.77	48.15	30.77	ND	ND	ND	ND	ND	ND	8	
IMV	Hernandez-Romieu et al.	63	US	ND	7										
IMV	Kato et al.	7	Japan	ND	7										
IMV	Ketcham et al.	2	US	ND	7										
IMV	Kewan et al.	2	US	ND	ND	ND	ND	ND	ND	0	ND	ND	ND	7	
IMV	Khullar et al.	17	US	57 (Range 25, 75)	64.71	47.06	41.18	ND	8						
IMV	Konopka et al.	3	US	54 (16.5)	66.67	33.33	100	ND	33.33	33.33	66.67	ND	ND	ND	7
IMV	Krishnan et al.	92	US	71 (10)	64.13	40.22	25	58.70	11.96	93.48	ND	ND	ND	ND	8
IMV	Kristinsson et al.	15	Iceland	ND	7										
IMV	Lê et al.	2	France	ND	6										
IMV	LeBrun et al.	3	US	89 (3.74)	66.67	100	66.67	ND	ND	ND	ND	ND	ND	7	
IMV	Lechien et al.	15	Italy	66.8 (11.97)	93.33	ND	8								
IMV	Lee et al.	2	Singapore	62.5 (8.5)	100	ND	7								
IMV	Liu et al.	42	China	ND	8										
IMV/ECMO	Study	Sample size	Location of study	Age mean (SD) or Median (IQR)	Male	HTN	DM	Reported treatment (%)	Risk of bias						
---------	-------	-------------	-------------------	-----------------------------	------	-----	----	--------------------------	-------------						
IMV	Lowe et al.	2	US	59.5 (1.5)	100	50	50	ND ND ND ND ND	ND 6						
IMV	Maritati et al.	2	Italy	67.5 (4.5)	50	100	0	100 100 100 100 50	ND 5						
IMV	Morassi et al.	4	Italy	63.25 (7.36)	100	50	25	ND ND ND ND ND	ND 5						
IMV	Morillas et al.	3	US	62.67 (10.96)	33.33	66.67	33.33	66.67 100 100 100 100	ND 7						
IMV	Navarro-Millán et al.	5	US	61.4 (10.13)	100	80	60	100 20 0 ND ND	ND 6						
IMV	Novelli et al.	3	Italy	ND	ND	ND	ND	ND ND ND ND	ND 8						
IMV	Pan et al.	3	China	ND	ND	ND	ND	ND ND ND ND	ND 6						
IMV	Peng et al.	7	China	56.43 (11.15)	42.86	28.57	14.29	100 ND ND ND	ND 6						
IMV	Piotnikow et al.	37	Argentina	ND	81.8	32.43	29.73	ND ND ND ND	ND 8						
IMV	Radnis et al.	2	US	38 (6)	0	0	0	ND ND ND ND	ND 5						
IMV	Riker et al.	2	US	72 (2)	100	100	0	ND ND ND ND	ND 5						
IMV	Rizo-Téllez et al.	10	Mexico	ND	ND	ND	ND	ND ND ND ND	ND 7						
IMV	Sakr et al.	2	Germany	57.5 (8.5)	100	50	50	ND ND ND ND	ND 6						
IMV	Schaefer et al.	5	US	66 (8.80)	60	80	80	ND ND ND ND	ND 5						
IMV	Shen et al.	3	China	50.67 (12.47)	33.33	33.33	0	100 ND ND ND	ND 100 ND 7						
IMV	Singh et al.	4	US	52.25 (20.56)	100	ND	ND	ND ND ND ND	ND 100 ND 5						
IMV	So et al.	7	Japan	62.23 (12.48)	57.14	42.86	42.86	100 ND ND ND	ND 100 ND 6						
IMV	Søvik et al.	4	Norway	70 [Range 62–78]	100	25	ND	ND ND ND ND	ND 7						
IMV	Stony Brook COVID-19 Research Consortium	87	US	ND	ND	ND	ND	ND ND ND ND	ND 7						
IMV	Wali et al.	3	France	63.33 (4.71)	100	0	33.33	ND ND ND ND	ND 6						
IMV	Wang et al.	97	China	70 (62–77)	76.29	71.13	30.93	ND ND ND ND	ND 7						
IMV	Wang et al.	2	China	66 (3)	100	ND	ND	ND ND ND	ND 5						
IMV	Weiskopf et al.	5	US	60.6 (3.01)	60	ND	ND	ND ND ND	ND 6						
IMV	Wilk et al.	2	US	49 (15)	100	ND	ND	ND ND ND	ND 7						
IMV	Zhang et al.	12	China	71.33 (7.70)	50	58.33	16.67	ND ND ND ND	ND 8						
IMV	Ziehr et al.	41	US	ND	ND	ND	ND	ND ND ND	ND 7						
ECMO	Akitar et al.	18	UK	47.3 (9.8)	88.89	55.56	55.56	ND ND ND ND	ND 7						
ECMO	Alhabteh et al.	13	US	44.54 (9.49)	61.54	38.48	30.77	30.77 69.23 76.92 ND	ND 8						
ECMO	Beyls et al.	12	France	62 (56–66)	83.33	ND	ND	ND ND ND	ND 5						
ECMO	Charrton et al.	16	UK	47.0 (8.4)	75	12.5	6.25	ND ND ND	ND 7						
ECMO	Dastan et al.	3	Iran	ND	ND	ND	ND	ND ND ND	ND 9						
ECMO	Falcoz et al.	17	France	ND	94.12	52.94	17.65	47.06 ND ND	ND 7						
IMV/ECMO	Study	Sample size	Location of study	Age mean (SD) or Median (IQR)	Male	HTN	DM	Reported treatment (%)	Risk of bias						
---------	-------	-------------	-------------------	-------------------------------	------	-----	----	------------------------	-------------						
ECMO	Goursaud et al.	2	France	58.5 (5.5)	ND	ND	ND	100	ND	ND	ND	ND	ND	ND	5
ECMO	Grein et al.	5	US	ND	ND	ND	ND	100	ND	ND	ND	ND	ND	7	
ECMO	Guilhaire et al.	24	France	ND	83.33	20.83	20.83	ND	ND	ND	ND	ND	ND	6	
ECMO	Guo et al.	7	China	69.29 (6.98)	85.71	57.14	28.57	ND	ND	ND	ND	ND	ND	5	
ECMO	Hermann-Ackah et al.	2	US	52 (6)	50	50	50	ND	ND	ND	ND	ND	ND	5	
ECMO	Huette et al.	12	France	ND	ND	ND	ND	100	ND	ND	ND	ND	ND	6	
ECMO	Jäckel et al.	15	Germany	60.8 (54.1–67.0)	73.33	33.33	13.33	ND	ND	ND	ND	ND	ND	8	
ECMO	Jacobs et al.	32	US	52.41 (12.49)	68.75	34.38	15.63	18.75	3.13	ND	ND	Anti-viral therapy (18.75)	8		
ECMO	Kon et al.	27	US	40 (30.5–47)	85.19	18.52	14.81	ND	ND	ND	ND	ND	ND	7	
ECMO	Le Breton et al.	13	France	49.31 (7.45)	76.9	30.77	23.08	92.03	46.15	38.46	ND	ND	ND	6	
ECMO	Li et al.	7	China	69.86 (7.57)	71.43	57.14	28.57	ND	ND	ND	ND	ND	ND	6	
ECMO	Liu et al.	4	China	ND	ND	ND	ND	100	ND	ND	ND	ND	ND	ND	8
ECMO	Liu et al.	6	China	ND	ND	ND	ND	100	ND	ND	ND	ND	ND	ND	8
ECMO	Loforte et al.	4	Italy	49 (8.75)	100	ND	ND	ND	100	100	66.67	ND	6		
ECMO	Matsuura et al.	31	Japan	ND	6										
ECMO	Mike et al.	3	Japan	ND	6										
ECMO	Mustafa et al.	40	US	48.4 (1.5)	75	57.25	25	ND	6						
ECMO	Osho et al.	6	US	47 (43–53)	83.33	50	66.67	ND	50	100	33.33	16.67	ND	7	
ECMO	Ronit et al.	2	Denmark	52.5 (12.5)	50	0	0	ND	5						
ECMO	Schmidt et al.	83	France	49 (41–56)	73.49	38.55	31.33	14.46	9.64	19.28	9.64	22.89	ND	8	
ECMO	Shih et al.	37	US	51 (40–59)	72.97	67.57	51.35	70.27	65.75	45.95	54.06	ND	Convalescent plasma (43.24)	7	
ECMO	Sultan et al.	10	US	ND	70	ND	ND	40	30	100	40	ND	ND	ND	6
ECMO	Usman et al.	10	US	50.7 (47.5–68.8)	70	50	ND	50	60	90	20	0	ND	ND	7
ECMO	Xu et al.	17	China	ND	7										
ECMO	Xuan et al.	5	China	61.6 (9.18)	80	60	80	ND	5						
ECMO	Yang et al.	21	China	58.50 (42.75–67.25)	57.14	ND	8								
ECMO	Zayat et al.	17	Germany	57.0 (53.0, 62.0)	64.71	35.29	35.29	ND	8						
ECMO	Zeng et al.	12	China	50.9 (13.5)	91.67	8.33	8.33	83.33	ND	ND	ND	Anti-viral therapy (100)	6		
ECMO	Zeng et al.	2	China	64.5 (1.5)	100	ND	8								
ECMO	Zhang et al.	43	UK	46 (35.5–52.5)	76.74	23.26	18.60	ND	ND	4.65	9.30	ND	Anakinra (23.26)	8	
ECMO	Zhang et al.	3	US	55.67 (11.73)	ND	7									
ECMO	Zheng et al.	11	China	ND	8										

The total score was calculated based on the study quality assessment tools from the NHLBI.

IMV, invasive mechanical ventilation; ECMO, extracorporeal membrane oxygenation; HTN, hypertension; DM, diabetes mellitus; GC, glucocorticoid; TCZ/SAR, tocilizumab/sarilumab; HCQ, hydroxychloroquine; REM, remdesivir; L/R, lopinavir-ritonavir; IVIG, intravenous immunoglobulin; NR, not reported.
We identified 17,259 articles and excluded 5,543 due to duplication. We also screened 11,716 publications and identified significant. This study was registered with PROSPERO (CRD42021235534).

Data Analysis

A meta-analysis was performed to estimate the clinical course of intubated survivors, non-survivors, and ECMO patients with COVID-19. Clinical data were analyzed using the metamean package. Outcomes are described as the number of days at each event, such as admission, intubation, or death from the onset of COVID-19 (baseline) and 95% confidence intervals (CIs) for each clinical course. For all outcomes, mean differences were calculated using the random-effects model (DerSimonian and Laird method) \(^{(25)}\). \(I^2\) values of 25, 50, and 75% were defined as low, moderate, and high, respectively \(^{(26)}\). All analyses were conducted using R version 4.0.3 (R Project for Statistical Computing) \(^{(27)}\). Sensitivity analyses were carried out with regard to the intubation period and intubation-death period based on region (East Asia, the US, and Europe), age, sex, and comorbidities (hypertension and diabetes mellitus). Spearman’s correlation coefficient was calculated in R version 4.0.3. \(P\) values \(\leq 0.05\) were considered statistically significant. This study was registered with PROSPERO (CRD42021235534).

RESULTS

We identified 17,259 articles and excluded 5,543 due to duplication. We also screened 11,716 publications and identified 94 articles \((15–17, 28–118)\), with 2,549 cases, from among 1,559 articles that underwent full-text assessment \((Figure 1)\). Each article is summarized in **Supplementary Table 1**. The mean age ranged from 38 to 75 years, and the rate of male patients ranged from 0% to 100%. COVID-19 patients were reportedly treated with glucocorticoids, tocilizumab/sarilumab, remdesivir, and hydroxychloroquine; however, treatment was not described in more than 70% of the articles. There were 36 articles from the US, 19 from China, ten from France, seven from Italy, five from Japan, and a few from other countries. Despite several cohort studies, there were few intubated survivors and non-survivors, and most were case accumulations. Therefore, the risk of bias was calculated based on case accumulation. The risk of bias was more than 5 points, with 6.71 points as the average, i.e., moderate risk \((Supplementary Table 2)\).

Moreover, we conducted a meta-analysis on the clinical course of intubated survivors, non-survivors, and ECMO patients with COVID-19. First, we analyzed the intubation period and the intubation-death period of intubated survivors and non-survivors. Thirty-three reports with 325 survivors and 24 reports with 1,225 non-survivors were identified and analyzed \((Figure 2)\). The average intubation period among intubated survivors was 12.07 days \((95\%\ CIs 9.80–14.33\ days)\), and the average intubation-death period was 10.14 days \((8.18–12.10\ days)\). The prehospitalization periods for intubated survivors and non-survivors were 6.15 \((4.61–7.69\ days)\) and 6.45 \((4.55–8.34\ days)\) days, respectively, and the preintubation periods were 8.58 days \((7.36–9.80\ days)\) and 9.64 days \((7.75–11.53\ days)\), respectively. A symptom-death period of 17.86 days \((13.02–22.69\ days)\) was calculated \((Figure 3)\). Additionally, the hospitalization-intubation period among intubated survivors and non-survivors was 2.62 days \((1.66–3.58\ days)\) and 3.28 days \((2.15–4.41\ days)\), respectively; the hospitalization-discharge and hospitalization-death periods were 24.48 days \((12.54–36.41\ days)\) and 12.47 days \((10.56–14.39\ days)\), respectively \((Figure 4)\). Funnel plots are illustrated in **Supplementary Figure 1**.

Regarding the clinical course of those treated with ECMO, the ECMO period of both survivors and non-survivors and the ECMO-death period were 14.72 days \((10.57–18.87\ days)\) and 21.05 days \((12.04–30.07\ days)\), respectively \((Supplementary Figure 2)\). For ECMO patients, the prehospitalization, preintubation, and pre-ECMO periods were 7.15 \((6.48–7.81\ days)\), 10.54 \((9.18–11.90\ days)\), and 14.80 \((13.29–16.31\ days)\) days, respectively, and the hospitalization-intubation, hospitalization-ECMO, and intubation-ECMO periods were 3.39 \((2.08–4.69\ days)\), 5.97 \((3.91–8.02\ days)\), and 4.57 \((3.59–5.54\ days)\) days, respectively (data not shown).
FIGURE 2 | Forrest plot: a meta-analysis of the intubation period and the intubation-death period. The intubation period of intubated COVID-19 survivors (A) and the intubation-death period of intubated COVID-19 non-survivors (B) were calculated using the random effects model. MRAW, the raw data of mean; 95% CI, 95% confidence interval.
FIGURE 3 | Continued

A

Study	Mean	MRAW	95%-CI	Weight (random)
Bhatraju et al.	6.17	[4.47; 7.86]	9.4%	
Christie et al.	10.50	[5.65; 15.35]	5.2%	
Kristinnsson et al.	8.38	[6.59; 10.18]	9.3%	
Lee et al.	7.50	[6.81; 8.19]	10.4%	
Morillas et al.	4.33	[3.80; 4.87]	10.5%	
Shen et al.	2.33	[1.80; 2.87]	10.5%	
Singh et al.	6.50	[5.03; 7.97]	9.7%	
So et al.	8.43	[6.06; 10.80]	8.5%	
Wall et al.	5.33	[2.67; 8.00]	8.0%	
Weiskopf et al.	2.67	[0.34; 4.99]	8.5%	
Ziehr et al.	7.67	[6.73; 8.61]	10.2%	

Random effects model: 6.15 [4.61; 7.69] 100.0%

Heterogeneity: $I^2 = 95\%, \tau^2 = 5.8382, p < 0.01$

B

Study	Mean	MRAW	95%-CI	Weight (random)
Bhatraju et al.	5.08	[3.13; 7.04]	17.4%	
Dai et al.	8.40	[3.94; 12.86]	9.8%	
Kristinnsson et al.	4.00		0.0%	
Lowe et al.	3.50	[2.81; 4.19]	20.7%	
Morassi et al.	7.00	[5.17; 8.83]	17.8%	
Riker et al.	9.00	[4.15; 13.85]	8.9%	
Schaefer et al.	8.00	[4.72; 11.28]	13.0%	
Weiskopf et al.	7.50	[4.04; 10.96]	12.4%	

Random effects model: 6.45 [4.55; 8.34] 100.0%

Heterogeneity: $I^2 = 79\%, \tau^2 = 4.3841, p < 0.01$

C

Study	Mean	MRAW	95%-CI	Weight (random)
Bhatraju et al.	7.00	[4.15; 9.85]	8.9%	
Dastan et al.	6.00	[3.56; 8.44]	10.2%	
Kristinnsson et al.	10.00	[8.28; 11.72]	12.9%	
Lee et al.	8.50	[7.81; 9.19]	16.4%	
Liu et al.	26.00	[9.22; 42.78]	0.5%	
Morillas et al.	7.67	[4.84; 10.49]	9.0%	
Shen et al.	14.33	[8.92; 19.75]	3.9%	
Singh et al.	11.00	[7.33; 14.67]	6.8%	
So et al.	10.43	[8.38; 12.48]	11.6%	
Weiskopf et al.	5.67	[3.53; 7.80]	11.3%	
Ziehr et al.	8.00	[4.99; 11.01]	8.4%	

Random effects model: 8.58 [7.36; 9.80] 100.0%

Heterogeneity: $I^2 = 66\%, \tau^2 = 2.2538, p < 0.01$
The results provided above are summarized in Figure 5. The prehospitalization and preintubation periods of intubated non-survivors and ECMO patients appeared to be longer than those of intubated survivors (no direct comparison).

Finally, sensitivity analysis focusing on regional differences and patient backgrounds was performed. The regions where the studies were conducted were classified into three groups: Europe, the US, and East Asia. The intubation period was 14.87 days (10.99–18.76 days), 12.61 days (10.50–14.72 days), and 9.66 days (5.07–14.25 days) in Europe, the US, and East Asia (Supplementary Figure 3), and the intubation-death period was 13.05 days (9.53–16.58 days), 11.34 days (8.06–14.61 days), and 5.39 days (-1.14–11.91 days), respectively. Both the intubation period and intubation-death period tended to be longer in the US and Europe than in East Asia. Nevertheless, the mean age of intubated survivors did not differ much among Europe [64.85 (60.84–68.85)], the US [58.09 (49.32–66.87)], and Asia [61.64 (57.20–66.07)]; the mean age of intubated non-survivors was 67.86 (65.86–69.86) in Europe and 70.67 (61.88–79.46) in the US [one paper reported that the mean age of non-survivors in
FIGURE 4 | Continued

A

Study	Mean	MRAW	95% -CI	Weight (random)
Abe et al.				
Argenziano et al.	5.00	3.61; 6.39	8.4%	
Bhattraju et al.	2.55	1.69; 3.42	9.4%	
Caouchois et al.	0.83	-0.66; 2.32	8.2%	
Christie et al.	3.80	2.64; 4.96	8.9%	
Elder et al.	5.50	2.04; 8.96	4.4%	
Grein et al.	2.50	1.70; 3.30	9.5%	
Ketcham et al.	0.00		0.0%	
Kristinsson et al.	0.33	-0.20; 0.87	9.9%	
Lee et al.	1.62	0.75; 2.48	9.4%	
Liu et al.	5.00	0.42; 9.58	3.1%	
Radriz et al.	1.00		0.0%	
Shen et al.	0.50	-0.19; 1.19	9.7%	
So et al.	11.75	7.49; 16.01	3.4%	
Weiskopf et al.	2.00	0.10; 3.90	7.3%	
	1.67	0.26; 3.08	8.4%	

Random effects model

-2.62 [1.66; 3.58] 100.0%

Heterogeneity: $I^2 = 89\%$, $\chi^2 = 2.3540$, $p < 0.01$

B

Study	Mean	MRAW	95% -CI	Weight (random)
Argenziano et al.	2.50	1.76; 3.25	8.0%	
Bhattraju et al.	1.78	0.07; 3.49	7.0%	
Chen et al.	0.00		0.0%	
Dai et al.	6.20	5.04; 7.36	7.7%	
Grein et al.	0.00		0.0%	
Ketcham et al.	0.50	-0.19; 1.19	8.1%	
Khullar et al.	2.75	2.09; 3.41	8.1%	
Kristinsson et al.	3.00	1.61; 4.39	7.4%	
Liu et al.	5.67	4.03; 7.31	7.1%	
Love et al.	1.50	0.81; 2.19	8.1%	
Morassi et al.	5.75	2.12; 9.38	4.5%	
Novelli et al.	3.00	0.14; 5.86	5.4%	
Riker et al.	1.50	-0.58; 3.58	6.5%	
Wang et al.	4.67	3.62; 5.71	7.8%	
Weiskopf et al.	0.00	-0.65; 0.65	8.1%	
Zhang et al.	9.50	7.22; 11.78	6.2%	

Random effects model

3.28 [2.15; 4.41] 100.0%

Heterogeneity: $I^2 = 94\%$, $\chi^2 = 4.0067$, $p < 0.01$
China was 65 (±4). We also analyzed age, sex, and comorbidities (diabetes mellitus and hypertension) but found no significant differences (data not shown).

DISCUSSION

This study demonstrated the clinical course and differences among the clinical courses of intubated survivors, non-survivors, and ECMO patients with COVID-19. In this meta-analysis, intubation, intubation-death, and ECMO periods were 12.07 days (9.80–14.33 days), 10.14 days (8.18–12.10 days), and 14.72 days (10.57–18.87 days), respectively. The prehospitalization periods of intubated survivors, non-survivors, and ECMO patients were 6.15 days (4.61–7.69 days), 6.45 days (4.55–8.34 days), and 7.15 days (6.48–7.81 days), respectively, and the preintubation periods were 8.58 days (7.36–9.80 days), 9.14 days (7.26–11.01 days), and 10.54 days (9.18–11.90 days), respectively.
respectively. According to sensitivity analysis, the intubation period in survivors and the intubation-death period were longer in the US and Europe than in East Asia.

For COVID-19, the intubation period in survivors and the intubation-death period appear to be more prolonged than those in patients intubated for other diseases or reasons. In addition, the intubation periods in survivors and nonsurvivors were 12.1 days and 10 days, respectively. In contrast, previously reported intubation periods in ICU patients, including postoperative patients, chronic obstructive pulmonary disease (COPD) patients, pneumocystis pneumonia survivors, acute respiratory distress syndrome (ARDS) patients, community-acquired pneumonia patients, and SARS-CoV-1 pneumonia survivors, were 3.3 ± 3 days (mortality 24.3%) (119), 6.8 ± 4.9 days (mortality 13%) (120), 7.7 ± 8.2 days (121), 8.8 (± 6) days (122), 10–11 days (123), 12.1 ± 6.1 days (124), and 7.3–15 days (mean days are calculated from each original datum) (125–127), respectively. One study comparing COVID-19 with influenza found that the intubation period in COVID-19 patients was longer than that in influenza patients (16.2 vs. 7.3 days) (127). Thus, the intubation period in COVID-19 survivors is prolonged compared with that in patients intubated due to COPD, HIV-PCP, and influenza. However, approximately the same duration has been observed for patients intubated due to community-acquired pneumonia and SARS-CoV-1 or COVID-19.

Moreover, the ECMO period in COVID-19 patients was not longer than that in patients with ARDS for other reasons. Although ECMO is commonly used during cardiac surgery, severe ARDS patients (aPaO2:FIO2 of <80 mmHg, a Murray score >3.0 and pH<7.20) have been treated with ECMO, improving the survival rate to more than 50% (128, 129). Accordingly, critical COVID-19 patients also receive ECMO. In our meta-analysis, the ECMO period with COVID-19 was 14.72 days (10.57–18.87 days); in previous reports, the ECMO period in severe ARDS patients was 10.3 ± 7.5 (mean days were calculated from the data) days (128) and 15 ± 13 days (129), and that in severe ARDS patients with influenza was 10 days (130). These data indicate that the ECMO period in COVID-19 patients is not as long as we expected. We presume that time is needed to improve both ARDS caused by COVID-19 and ARDS caused by other reasons, as recovery in patients with critical ARDS is difficult.

In this study, the preintubation period was longer in intubated survivors than in intubated non-survivors or ECMO patients. This tendency was also observed when assessing data for the prehospitalization and hospitalization-intubation periods, despite no direct comparison. Indeed, the time from symptom onset to pneumonia was longer in COVID-19 patients with severe disease than in those without severe disease (131), the time from symptom onset to dyspnea and hospitalization in ICU COVID-19 patients was longer than that in non-ICU COVID-19 patients, and the time from symptom onset to ICU admission tended to be longer in COVID-19 non-survivors than in COVID-19 survivors (10).

There are two possibilities for these findings. First, hospitalization delay and lack of medical resources may contribute to the result. COVID-19 pandemic forces people to self-restraint, and it leads to hospitalization delay. Moreover, a
hospitalized patients with “silent hypoxia” die (132–134). In fact, the hospitalization-intubation period among non-survivors, and ECMO patients tended to be longer than that among intubated survivors; the hospitalization-intubation period among intubated survivors, non-survivors, and ECMO patients with COVID-19 was 2.62 days (1.66–3.58 days), 3.28 days (2.15–4.41 days), and 3.39 (2.08–4.69 days), respectively. Second, a critical condition itself leads to a long prehospitalization period. Although the mechanism has yet to be elucidated, some of the COVID-19 patients experience asymptomatic hypoxia, which is also called “silent hypoxia.” In COVID-19 patients, 28.1% of hospitalized patients are estimated to have “silent hypoxia;” 33% of hospitalized patients with “silent hypoxia” are admitted to the ICU, and 25.9% of hospitalized patients with “silent hypoxia” die (135). Hence, “silent hypoxia” itself is a critical condition that leads to a long prehospitalization period. In this situation, monitoring blood oxygen, early hospitalization with oxygen supplementation, and systemic management arguably lead to a better prognosis.

The reasons why the intubation period was shorter in East Asia than in the US and Europe may include selection bias, information bias, differences in treatment, ventilator and ICU bed availability, race, and genetics. We detected bias concerning the East Asia data, which showed minor variations in regions and faculties compared to those from the US and Europe because East Asia’s data were mainly from China, especially Wuhan. The shortage of ventilators and ICU beds has been highlighted in the US and Europe (132, 136), and it arguably contributed to a delay of intubation and a prolonged clinical course. Race and genetic background are also possible reasons for the observed clinical differences among regions. For example, data from the US show that Asians were hospitalized less but that Black and Hispanics were hospitalized more (137, 138). Sixteen percent of the genes were derived from Neanderthals, one of the prognostic factors maintained in Europe (almost 0% in East Asia) (139). GWASs have revealed that SNPs and blood type, the percentages of which differ among races and regions, are also prognostic factors. Thus, an international cohort study is needed to reveal the difference in clinical course between race and region.

LIMITATIONS

There were also some limitations in this meta-analysis. Although many studies were included, more studies and patients are needed. Furthermore, heterogeneity was high because it was difficult to standardize the patients’ backgrounds. This study revealed the clinical course of survivors and non-survivors, but a direct comparison with survivors and non-survivors is still needed. Clinical information, for example, age, BMI, cardiac disease, kidney disease, and chronic obstructive disease, was not sufficiently described in the cases we included, and articles in some of the countries reporting were limited. Social information was also not described in the cases we included; however, whether social information, such as patient or national income level, affects the clinical course is of great interest. Moreover, differences in viral strain and treatment including anti-inflammatory treatment, because of the study period. In general, comparing clinical data with our data will reveal more knowledge about COVID-19.

CONCLUSIONS

Our data indicate that prehospitalization and intubation periods were longer in intubated non-survivors and ECMO patients than in intubated survivors with COVID-19. These periods might serve as predictors of disease severity or death and support therapeutic strategy determination. In the near future, viral strains and treatments should be taken into account when evaluating the clinical course of COVID-19.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

KF and TM designed the study, carried out the literature search, independently acquired the data, screened the records, extracted the data, assessed the risk of bias, and performed the statistical analyses. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by research grants from the Center of Innovation program (COISTREAM) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (to AK), the Japan Society for the Promotion of Science (JSPS) KAKENHI (JP18H05282 to AK), the Japan Agency for Medical Research and Development (AMED) (J200705023, J200705710, J200705049, JP18cm016335, JP18cm059042, and J210705582 to AK), a grant from the Kansai Economic Federation (KANKEIREN), and Grants from Mitsubishi Foundation (to AK). This work was also supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (JP21K16287 to TM).

ACKNOWLEDGMENTS

We thank our colleagues from Osaka University Center of Medical Data Science and Advanced Clinical Epidemiology Investigator’s Research Project for their providing insight and expertise for our research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2021.727101/full#supplementary-material
REFERENCES

1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. (2020) 382:1199–207. doi: 10.1056/NEJMoa2001316

2. Weekly Epidemiological Update on COVID-19. (2021). Available online at: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19-s-5--s3--august-2021 (accessed August 5, 2021).

3. Flaxman S, Mishra S, Gandy S, Unwin HJT, Gandy A, Mellan TA, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. (2020) 584:257–61. doi: 10.1038/s41586-020-2405-7

4. Chu DK, Ale EA, Duda S, Solo K, Yacoub S, Schünemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. (2020) 395:1973–87. doi: 10.1016/S0140-6736(20)31422-9

5. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. (2020) 323:1239–42. doi: 10.1001/jama.2020.2648

6. Stokes EZ, Zambrano LD, Anderson KN, Marder EP, Raz KM, El Bouri Felix S, et al. Coronavirus disease 2019 case surveillance - United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep. (2020) 69:759–65. doi: 10.15585/mmwr.mm6924e2

7. CDC. Disease Burden of Influenza. (2020). Available online at: https://www.cdc.gov/flu/about/burden/index.html (accessed June 1, 2021).

8. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 1052 COVID-19 patients in the mild phase in Wuhan city, China. Anaesth Crit Care Pain Med. (2020) 39:553–61. doi: 10.1016/j.acCMP.2020.04.011

9. Bravata DM, Perkins AJ, Myers LJ, Arling G, Zhang Y, Zillich AJ, et al. Association of intensive care unit patient load and demand with mortality rates in US department of veterans affairs hospitals during the COVID-19 pandemic. JAMA Netw Open. (2021) 4:e2034266. doi: 10.1001/jamanetworkopen.2020.34266

10. Yang X, Yu Y, Xu J, Shu H, Xie J, Gao L, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. (2020) 8:475–81. doi: 10.1016/S2213-2600(20)30079-5

11. Arentz M, Yim E, Klafl L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. (2020) 323:1612–6. doi: 10.1001/jama.2020.1585

12. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients with COVID-19 admitted to ICUs of the Lombardy region, Italy. Intensive Care Med. (2020) 46:3071–82. doi: 10.1007/s00134-020-06224-0

13. Pirolo L, Cotenot I, Mariet A-S, Bonniaud P, Coupland H, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. (2020) 584:257–61. doi: 10.1038/s41586-020-2405-7

14. Xie Y, Bowe B, Maddukuri G, Al-Aly Z. Comparative evaluation of clinical outcomes of older patients with coronavirus disease 2019 in New York: retrospective case series. JAMA. (2020) 323:1612–4. doi: 10.1001/jama.2020.4326

15. Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. (2020) 395:1763–70. doi: 10.1016/S0140-6736(20)31889-2

16. Chen T, Dai Z, Mo P, Li X, Ma Z, Song S, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China: a single-centered, retrospective study. J Gerontol A Biol Sci Med Sci. (2020) 75:1788–93. doi: 10.1093/gerona/glaa089

17. Dastan F, Saffaei A, Haseli S, Marjani M, Moniri A, Abtahian Z, et al. Promising effects of tocilizumab in COVID-19: a non-controlled, prospective clinical trial. Int Immunopharmacol. (2020) 88:106869. doi: 10.1016/j.intimp.2020.106869

18. Funakoshi et al. A Critical COVID-19 Clinical Course
COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. *Lancet Rheumatol.* (2020) 2:e465–73. doi: 10.1016/S2665-9913(20)30170-3

39. Dogan L, Kaya D, Sarıktay T, Zengin R, Dincer A, Akinci IO, et al. Plasmapheresis treatment in COVID-19-related autoimmune meningonecrophelial: case series. *Brain Behav Immun.* (2020) 87:355–8. doi: 10.1016/j.bbi.2020.05.022

40. Elder C, Bawa S, Anderson D, Atkinson S, Etzel J, Moritz T. Expectant management of pneumothorax in intubated COVID-19 positive patients: a case series. *J Cardiotorac Surg.* (2020) 15:263. doi: 10.1186/s13019-020-01297-7

41. Falcés-Romoero I, Ruiz-Bastían M, Díaz-Pollán B, Maseda E, GarcíaRodriguez J, SARS-CoV-2 Working Group. Isolation of Aspergillus spp. in respiratory samples of patients with COVID-19 in a Spanish Tertiary Care Hospital. *Mycoses.* (2020) 63:1144–8. doi: 10.1111/myc.13155

42. Flikerewit AW, Grootenboers MJH, Yick DCY, du Mee AWF, van der Meer NJM, Retig TCD, et al. Late histopathologic characteristics of critically ill COVID-19 patients: different phenotypes without evidence of invasive aspergilllosis, a case series. *J Crit Care.* (2020) 59:149–55. doi: 10.1016/j.jcrc.2020.07.002

43. Grasselli G, Greco M, Zanella A, Albanò G, Antonelli M, Bellani G, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. *JAMA Intern Med.* (2020) 180:1345–35. doi: 10.1001/jamainternmed.2020.3539

44. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe Covid-19. *N Engl J Med.* (2020) 382:2327–36. doi: 10.1056/NEJMoa2007016

45. Halvatsiotis P, Kotanidou A, Tsannis K, Jalai E, Magira E, Theodorakopoulou M, et al. Demographic and clinical features of critically ill patients with COVID-19 in Greece: the burden of diabetes and obesity. *Diabetes Res Clin Pract.* (2020) 166:108331. doi: 10.1016/j.diabres.2020.108331

46. Hernandez-Romieu AC, Adelman MW, Hockstein MA, Robichaux CJ, Edwards JA, Fazio JC, et al. Timing of intubation and mortality among critically ill coronavirus disease 2019 patients: a single-center cohort study. *Crit Care Med.* (2020) 48:e1045–53. doi: 10.1097/CCM.0000000000004600

47. Kato H, Shimizu H, Shibue Y, Hosoda T, Iwabuchi K, Nagamine K, et al. Clinical course of novel coronavirus disease (COVID-19) in individuals present during the outbreak on the Diamond Princess cruise ship. *J Infect Chemother.* (2020) 26:865–9. doi: 10.1016/j.jiac.2020.05.005

48. Ketcham SW, Adie SK, Malliott A, Abdul-Aziz AA, Bitar A, Grafton G, et al. Coronavirus disease-2019 in heart transplant recipients in southeastern Michigan: a case series. *J Antimicrob Chemother.* (2020) 75:2657–60. doi: 10.1093/jac/dkaa261

49. Kewan T, Covut F, Al-Jaghbeer MJ, Rose L, Gopalakrishna KV, et al. Coronavirus disease-2019 in heart transplant recipients in Argentina. *Crit Care Med.* (2020) 48:e1102–5. doi: 10.1097/CCM.0000000000004582

50. Khullar R, Shah S, Singh G, Bae J, Gattu R, Jain S, et al. Effects of prone ventilation on oxygenation, inflammation, and lung infiltrates in COVID-19 patients requiring invasive mechanical ventilation in Argentina. *J Crit Care.* (2020) 61:39–44. doi: 10.1016/j.jcrc.2020.09.021

51. Konopka KE, Nguyen T, Jentzen JM, Rayes O, Schmidt CJ, Wilson AM, et al. Coronavirus disease-2019 in heart transplant recipients in the United States: a multicenter European study. *Am J Transplant.* (2020) 20:134–8. doi: 10.1111/ajt.16080

52. Krishnan S, Patel K, Desai R, Sule A, Paik P, Miller A, et al. Clinical course and physiotherapy intervention in 9 patients with COVID-19. *Physiotherapy.* (2020) 109:1–3. doi: 10.1016/j.physio.2020.06.002

53. Konopka KE, Nguyen T, Jentzen JM, Rayes O, Schmidt CJ, Wilson AM, et al. Characteristics and outcomes of patients infected with SARS-CoV-2 in kidney transplant recipients: experience of the italian marceh region. *Transpl Infect Dis.* (2020) 22:e13377. doi: 10.1111/tid.13377

54. Le Brun DG, Konnaris MA, Ghahramani GC, Premkumar A, DeFrancesco CJ, Gruskay JA, et al. Hip fracture outcomes during the COVID-19 pandemic: early results from New York. *J Orthop Trauma.* (2020) 34:403–10. doi: 10.1097/BOT.0000000000001849

55. Low A, Chang DD, Creek G. Multiple fatalities in a family cluster of COVID-19 with acute respiratory distress syndrome. *Oxho J.* (2020) 20:134–8. doi: 10.31486/toj.200056

56. Maritati F, Cerutti E, Zuccatosta L, Fiorentini A, Cicofosco M, et al. SARS-CoV-2 infection in kidney transplant recipients: experience of the italian marceh region. *Transpl Infect Dis.* (2020) 22:e13377. doi: 10.1111/tid.13377

57. Morrisi L, Bagatto D, Cobelli M, D’Agostino S, Gigli GL, Bna C, et al. Stroke in patients with SARS-CoV-2 infection: case series. *J Neurol.* (2020) 267:1895–92. doi: 10.1007/s00415-020-09885-2

58. Novelli L, Raimondi F, Ghirardi A, Pellegrini D, Capodanno D, Sotgiu G, et al. At the peak of COVID-19-age and disease severity but not comorbidities are predictors of mortality: COVID-19 burden in Bergamo, Italy. *Pannimenva Med.* (2021) 63:51–61. doi: 10.23736/S0031-0880.20.04036-X

59. Pan C, Chen L, Lu C, Zhang W, Xia J-A, Sklar MC, et al. Lung recruitability of COVID-19-associated acute respiratory distress syndrome: a single-center observational study. *Am J Respir Crit Care Med.* (2020) 201:1294–7. doi: 10.1164/rccm.202003-0527LE

60. Peng M, Liu X, Li J, Ren D, Liu Y, Meng X, et al. Successful management of seven cases of critical COVID-19 with early noninvasive-invasive sequential ventilation algorithm and bundle pharmacotherapy. *Front Med.* (2020) 14:674–80. doi: 10.1007/s11684-020-0796-3

61. Piotrowik GA, Matesa A, Nadar JM, Alomei M, Nezhat I, Vergara G, et al. Characteristics and outcomes of patients infected with nCoV19 requiring invasive mechanical ventilation in Argentina. *Rev Bras Ter Intensiva.* (2020) 32:348–53. doi: 10.5935/0103-507X.20200062

62. Radnis C, Qiu S, Jhaveri M, Da Silva I, Szwedka A, Koffman L. Radiographic and clinical neurologic manifestations of COVID-19 related hypoxemia. *J Neurol Sci.* (2020) 418:117119. doi: 10.1016/j.jns.2020.117119

63. Riker RR, May TL, Fraser GL, Gagnon DJ, Bandara M, Zemrak WR, et al. Heparin-induced thrombocytopenia with thrombosis in COVID-19 adult respiratory distress syndrome. *Res Pract Thromb Haemost.* (2020) 10:493–46. doi: 10.1002/rth2.12390

64. Rizo-Téllez SA, Méndez-García LA, Flores-Rebollo C, Alba-Flores F, Alcántara-Suárez R, Manjarrez-Reyna AN, et al. The neutrophil-monocyte ratio and lymphocyte-to-neutrophil ratio at admission predict in-hospital mortality in Mexican patients with severe SARS-CoV-2 infection (COVID-19). *Microorganisms.* (2020) 8:1560. doi: 10.3390/microorganisms8101560

65. Schaefer I-M, Padera RF, Solomon IH, Kanjilal S, Hammer MM, Hornick JL, et al. Plasmapheresis treatment in COVID-19-related autoimmune inflammatory myositis. *Mod Pathol.* (2020) 33:2104–14. doi: 10.1038/s41379-020-0595-z
Goursaud S, Descamps R, Daubin C, du Cheyron D, Valette X. 84. Akhtar W, Olusanya O, Baladia MM, Young H, Shah S. SARS-CoV-2 and Pneumomediastinum. 82. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martínez-Colón GJ, McKechnie JL, et al. A single-cell atlas of the peripheral immune response to SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. (2020) 5:eabd2071. 83. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martinez-Colon GJ, McKechnie JL, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. (2020) 26:1070–6. doi:10.1038/s41591-020-0944-y 84. Zhang L, Li J, Zhou M, Chen Z. Summary of 20 tracheal intubation by anesthesiologists for patients with severe COVID-19 pneumonia: retrospective case series. J Anesth. (2020) 34:599–606. doi:10.1007/s00545-020-02778-8 85. Akhtar W, Olusanya O, Baladia MM, Young H, Shah S. SARS-CoV-2 and ECMO: early results and experience. Indian J Thorac Cardiovasc Surg. (2020) 37:53–60. doi:10.1007/s12255-020-01084-y 86. Alnababteh M, Hashmi MD, Vedantam K, Chopra R, Kohli A, Hayat F, et al. Extracorporeal membrane oxygenation for COVID-19 induced hypoxia: single-center study. Perfusion. (2021) 36:564–72. doi:10.1177/0267659120963885 87. Beys C, Huette P, Abou-Arab O, Berna P, Mahjoub Y. Extracorporeal membrane oxygenation for COVID-19-associated severe acute respiratory distress syndrome and risk of thrombosis. Br J Anesth. (2020) 125:e260–2. doi:10.1016/j.bja.2020.04.079 88. Charlton M, Dashey S, Stubbs A, Lai FY, Bird PW, Badhwar V, et al. Comparing SARS-CoV-2 and influenza A(H1N1)pdm09-infected patients requiring ECMO - a single-centre, retrospective observational cohort experience. J Infect. (2021) 82:84–123. doi:10.1016/j.jinf.2020.11.003 89. Falcoz P-E, Monnier A, Puyraveau M, Perrier S, Ludes P-O, Olland A, et al. Extracorporeal membrane oxygenation for critically ill patients with COVID-19-related acute respiratory distress syndrome: worth the effort? Am J Respir Crit Care Med. (2020) 202:460–3. doi:10.1164/rccm.202004-1370LE 90. Goursaud S, Descamps R, Daubin C, du Cheyron D, Valette X. Corticosteroid use in selected patients with severe acute respiratory distress syndrome related to COVID-19. J Infect. (2020) 81:e89–90. doi:10.1016/j.jinf.2020.05.023 91. Guo Z, Sun L, Li B, Tian R, Zhang X, Zhang Z, et al. Anticoagulation management in severe coronavirus disease 2019 patients on extracorporeal membrane oxygenation. J Cardiothorac Vasc Anesth. (2021) 35:389–97. doi:10.1053/j.jvca.2020.08.067 92. Herm- Ackah SM, Su YS, Spadola M, Petrov D, Chen HI, Schuster J, et al. Neurologically devastating intraparenchymal hemorrhage in COVID-19 patients on extracorporeal membrane oxygenation: a case series. Neurosurgery. (2020) 87:E147–51. doi:10.1093/neuros/try198 93. Huette P, Beys C, Guibault M, Coquet A, Berna P, Haye G, et al. Extracorporeal membrane oxygenation for respiratory failure in COVID-19 patients: outcome and time-course of clinical and biological parameters. Can J Anesth. (2020) 67:1486–8. doi:10.1007/s12055-020-01727-z 94. Jäckel M, Rilinger J, Lang CN, Zottmann V, Kaier K, Stachon P, et al. Outcome of acute respiratory distress syndrome requiring extracorporeal membrane oxygenation in COVID-19 or influenza: a single-center study. Artif Organs. (2021) 45:593–601. doi:10.1111/aor.13865 95. Jacobs JP, Stammers AH, St Louis J, Hayanga JW, Firshtenberg MS, Mongero LB, et al. Extracorporeal membrane oxygenation in the treatment of severe pulmonary and cardiac compromise in coronavirus disease 2019: experience with 32 patients. ASAIO J. (2020) 66:722–30. doi:10.1097/MAT.0000000000011185 96. KonZN, Smith DE, Chang SH, Goldenberg RM, Angel LF, Carillo JA, et al. Extracorporeal membrane oxygenation support in severe COVID-19. Ann Thorac Surg. (2021) 111:537–43. doi:10.1016/j.athoracsur.2020.07.002 97. Le Breton C, Besset S, Freita-Ramos S, Amouretti M, Billiet PA, Dao M, et al. Extracorporeal membrane oxygenation for refractory COVID-19 acute respiratory distress syndrome. J Crit Care. (2020) 60:10–12. doi:10.1016/j.jcrc.2020.07.013 98. Li X, Guo Z, Li B, Zhang X, Tian R, Wu W, et al. Extracorporeal membrane oxygenation for coronavirus disease 2019 in Shanghai, China. ASAIO J. (2020) 66:475–81. doi:10.1097/MAT.0000000000011172 99. Liu J, Dong Y-Q, Yin J, He G, Wu X, Li J, et al. Critically ill patients with COVID-19 with ECMO and artificial liver plasma exchange: a retrospective study. Medicine. (2020) 99:e21012. doi:10.1097/MD.0000000000021012 100. Loftorte A, Dal Checco E, Gliozzi G, Benedetto M, Cavalli GG, Mariani C, et al. Veno-venous extracorporeal membrane oxygenation support in COVID-19 respiratory distress syndrome: initial experience. ASAIO J. (2020) 66:734–8. doi:10.1097/MAT.0000000000011198 101. Matsunaga N, Hayakawa K, Terada M, Ohtsu H, Asai Y, Tsuchuki S, et al. Clinical epidemiology of hospitalized patients with COVID-19 in Japan: report of the COVID-19 REGISTRY JAPAN. Clin Infect Dis. (2020). doi:10.1093/cid/ciaa1470 102. Miike S, Sakamoto N, Washino T, Kosaka A, Kuwahara Y, Ishida T, et al. Critically ill patients with COVID-19 in Tokyo, Japan: a single-center case series. J Infect Chemother. (2021) 27:291–5. doi:10.1007/s10156-020-01019-9 103. Mostafa AK, Alexander PJ, Joshi DJ, Tabhanick DR, Cross CA, Pappas PS, et al. Extracorporeal membrane oxygenation for patients with COVID-19 in severe respiratory failure. JAMA Surg. (2020) 155:990–2. doi:10.1001/jamasurg.2020.3950 104. Osho AA, Monsamy P, Hibbert KA, Shelton KT, Tranhans JM, Attia RQ, et al. Veno-venous extracorporeal membrane oxygenation for respiratory failure in COVID-19 patients: early experience from a major academic medical center in North America. Ann Surg. (2020) 272:75–8. doi:10.1097/SLA.0000000000004084 105. Ronit A, Berg RMG, Bay JT, Haugaard AK, Ahiström MG, Burgdorf KS, et al. Compartamental immunophenotyping in COVID-19 ARDS: a case series. J Allergy Clin Immunol. (2021) 147:81–91. doi:10.1016/j.jaci.2020.09.009 106. Schmidt M, Hajage D, Lébreton G, Monsel A, Voiziot G, Levy D, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med. (2020) 8:1121–31. doi:10.1016/S2213-2600(20)30328-3 107. Shih E, DiMaio JM, Squiers JJ, Banwait JK, Meyer DM, George TJ, et al. COVID-19 acute respiratory distress syndrome associated with COVID-19: preliminary results from a statewide experience. J Card Surg. (2020) 35:1410–3. doi:10.1111/jocs.14583
109. Usman AA, Han J, Acker A, Olia SE, Bermudez C, Cucchiara B, et al. A case series of devasting intracranial hemorrhage during venous extracorporeal membrane oxygenation for COVID-19. J Cardiovasc Anesth. (2020) 34:3006–12. doi: 10.1053/j.jvca.2020.07.063

110. Xuan W, Chen C, Jiang X, Zhang X, Zhu H, Zhang S, et al. Clinical characteristics and outcomes of five critical COVID-19 patients treated with extracorporeal membrane oxygenation in Leishenshan Hospital in Wuhan. J Clin Anesth. (2020) 67:110033. doi: 10.1016/j.jclinane.2020.110033

111. Xu J, Xie J, Du B, Tong Z, Qiu H, Bagshaw SM. Clinical characteristics and outcomes of patients with severe COVID-19 induced acute kidney injury. J Intensive Care Med. (2021) 36:319–26. doi: 10.1177/0885066620970858

112. Yang X, Cai S, Luo Y, Zhu F, Hu M, Zhao Y, et al. Extracorporeal membrane oxygenation for coronavirus disease 2019-induced acute respiratory distress syndrome: a multicenter descriptive study. Crit Care Med. (2020) 48:1289–95. doi: 10.1097/CCM.0000000000004447

113. Zayat R, Kalverkamp S, Grottky O, Durak K, Drehre M, Autschbach R, et al. Role of extracorporeal membrane oxygenation in critically ill COVID-19 patients and predictors of mortality. Artif Organs. (2021) 45:E158–70. doi: 10.1111/aor.13873

114. Zeng J-H, Wu W-B, Xu J, Tong Z, Qiu H, Bagshaw SM, et al. Impact of antibiotic guideline compliance on duration of mechanical ventilation in critically ill patients with community-acquired pneumonia. Chest. (2006) 130:93–100. doi: 10.1016/S0012-3692(15)50958-6

115. Zeng Y, Cai Z, Xianyu Y, Yang BX, Song T, Yan Q. Prognosis when using extracorporeal membrane oxygenation in severe COVID-19. J Cardiothorac Vasc Anesth. (2020) 34:3006–12. doi: 10.1053/j.jvca.2020.07.063

116. Zeng J-H, Wu W-B, Xu J, Tong Z, Qiu H, Bagshaw SM, et al. Impact of antibiotic guideline compliance on duration of mechanical ventilation in critically ill patients with community-acquired pneumonia and severe acute respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. (2009) 374:1351–63. doi: 10.1016/S0140-6736(09)61069-2

117. Zhang Q, Shen J, Lai S, Zhang W, Jiang C, et al. Etiologies and characteristics of severe COVID-19 patients with pneumonia. J Intern Med. (2020) 382:1708–20. doi: 10.1016/j.jim.2020.02.032

118. Ranney ML, Griffith V, Jha AK. Critical supply shortages - the need for ventilators and personal protective equipment during the Covid-19 pandemic. N Engl J Med. (2020) 382:e41. doi: 10.1056/NEJMp2006141

119. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. (2020) 382:1708–20. doi: 10.1016/j.nejmoa200303

120. Jagusyte J, Davis SMR, Puzyn T, Chmielowiec J, Croxen MA, Kazda J, et al. Asymptomatic hypoxia in COVID-19 is associated with poor outcome. Int J Infect Dis. (2021) 102:233–8. doi: 10.1016/j.ijid.2020.10.067

121. Ramachandran P, Swamy L, Kaul V, Agrawal A. A national strategy for ventilator and ICU resource allocation during the coronavirus disease 2019 pandemic. Chest. (2020) 158:887–9. doi: 10.1016/j.chest.2020.04.030

122. Cunningham JW, Vaduganathan M, Cagglett BL, Jening KS, Bhatt AS, Rosenthal N, et al. Clinical outcomes in young US adults hospitalized with COVID-19. JAMA Intern Med. (2021) 181:379–81. doi: 10.1001/jamainternmed.2020.5313

123. Karaca-Mandic P, Georgiou A, Sen S. Assessment of COVID-19 hospitalizations by race/ethnicity in 12 States. JAMA Intern Med. (2021) 181:131–4. doi: 10.1001/jamainternmed.2020.3857

124. Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature. (2020) 587:610–2. doi: 10.1038/s41586-020-2818-3

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Funakoshi, Morita and Kumanogoh. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.