ON A GENERALIZATION OF THE PLANK PROBLEM

BY ZS. PÁLES

A strip or a plank S in \mathbb{R}^n is a closed set bounded by two parallel hyperplanes. The distance of these hyperplanes is called the width of S. The minimal width of a convex closed set K is the minimal width of a strip containing K.

The following theorem was conjectured by A. Tarski in 1932 and proved by T. Bang [2] in 1951:

If a closed convex set K in \mathbb{R}^n is covered by a finite number of strips, then the sum of their widths is greater than or equal to the minimal width of K.

This result has recently been generalized to Banach spaces by K. Ball [1].

If $n = 2$ and K is the unit disc then there is an extremally simple proof for the above result.

Assume that the unit disc in \mathbb{R}^2 is covered by strips S_1, \ldots, S_k with widths d_1, \ldots, d_k. Without loss of generality we can also assume that both bounding lines of the strips intersect the unit circle. Now we consider the unit sphere in \mathbb{R}^3 and to each strip S_i in \mathbb{R}^2 we construct a three dimensional strip S_i^* which is of width d_i and intersects the xy-plane in S_i. Since S_1, \ldots, S_k cover the unit disc, hence S_1^*, \ldots, S_k^* cover the unit sphere. The area of the intersection of the unit sphere and the strip S_i^* is $2\pi d_i$ independently of the position of of the i-th strip. (This is a well known fact from calculus, already discovered by Archimedes.) Thus the sum of these areas exceeds the area of the unit sphere, i.e.

$$\sum_{i=1}^{k} 2\pi d_i \geq 4\pi \implies \sum_{i=1}^{k} d_i \geq 2,$$

which was to be proved.

We can interpret this proof in the following way: If S is a subset of the disc then we project it up to the sphere, measure the area of the projection and call this number the μ measure of S. Then the μ measure of a the intersection of a strip and the disc is the width of the strip times 2π. Then the statement is a simple consequence of the subadditivity of μ.

In what follows, we generalize this idea and extend the result discussed above.

An angular domain in \mathbb{R}^2 is a closed convex set D bounded by two halflines. The angle of D is the angle closed by the bounding halflines. The vertex of D is the common endpoint of these two halflines.

Theorem 1. Let two concentric circles k and K be given on the plane with radii r and R, $r < R$. Assume that the disc bounded by k is covered by angular domains whose vertices are within K. Then the sum of the angles of these angular domains is greater than or equal to the view angle of k from an arbitrary point of K.

Remark. This result was proposed as a problem by the author on the 1985 M. Schweitzer competition (see [3]).

Proof. Denote by O the common center of the circles and by D_1, \ldots, D_k the given angular domains with angles $\alpha_1, \ldots, \alpha_k$. An angular domain D will be called regular if the vertex of D is on K and both bounding halflines of D intersect k. Without loss of generality, we can assume that D_1, \ldots, D_k are regular domains.

The idea of the proof is the following: We construct a rotation invariant nonnegative measure μ on the closed disc T bounded by k such that the measure of the intersection of D and T is α, where D is an arbitrary regular angular domain with angle α. Having such a measure we can give a one line proof for the theorem:

$$\sum_{i=1}^{k} \alpha_i = \sum_{i=1}^{k} \mu(D_i \cap T) \geq \mu\left(\bigcup_{i=1}^{k} (D_i \cap T)\right) = \mu(T),$$

and observe that $\mu(T)$ is exactly the view angle of k from any point of K.

Now we construct the desired measure. Let $P \in T$ be an arbitrary point, and denote by ρ the distance of P and O. Then define

$$F(P) = f(\rho) = \frac{1}{\pi} \cdot \frac{1}{R^2 - \rho^2} \cdot \sqrt{\frac{R^2 - r^2}{r^2 - \rho^2}}.$$

If S is a Lebesgue measurable subset of T then let

$$\mu(S) = \int_S F(P) dP.$$

Obviously μ is a rotation invariant nonnegative measure on T. To prove the key property of μ, let D be a regular angular domain with vertex A and angle α. Then we want to show $\mu(D) = \alpha$. Without loss of generality we can assume that one of the bounding halflines of D is tangent to k.

at the point Q. (In the general case D can be obtained as the difference of two such angular domains.) Denote by ε the angle $OAQ < \pi$ and by d the (signed) distance of the other bounding halfline from O. (This distance is positive if O is outside D, and negative if O is inside D.) Then $d = R \sin(\varepsilon - \alpha)$. Using successive integration, we obtain

$$\mu(D) = \int_D F(P) dP = \int_d \int_{-\arccos(d/\rho)}^{\arccos(d/\rho)} f(\rho) \rho d\varphi d\rho$$

$$= \int_d^{2f(\rho)\rho \arccos(d/\rho)} d\rho$$

$$= \int_{R \sin(\varepsilon - \alpha)}^{2f(\rho)\rho \arccos\left(\frac{R \sin(\varepsilon - \alpha)}{\rho}\right)} d\rho.$$

Thus we have to show that

$$\int_{R \sin(\varepsilon - \alpha)}^{r} 2f(\rho)\rho \arccos\left(\frac{R \sin(\varepsilon - \alpha)}{\rho}\right) d\rho = \alpha$$

for all $0 \leq \alpha \leq 2\varepsilon$. Substituting the new variable $t = R \sin(\varepsilon - \alpha)$ this reduces to

$$\int_{t}^{r} 2f(\rho)\rho \arccos(t/\rho) d\rho = \varepsilon - \arcsin(t/R),$$

for $-r \leq t \leq r$. This latter equation is obviously valid for $t = r$, thus it suffices to show that the derivatives of both sides with respect to t are identical, i.e.

$$\int_{t}^{r} \frac{2f(\rho)\rho}{\sqrt{\rho^2 - t^2}} d\rho = \frac{1}{\sqrt{R^2 - t^2}}, \quad -r < t < r.$$

However

$$\int_{t}^{r} \frac{2f(\rho)\rho}{\sqrt{\rho^2 - t^2}} d\rho = \int_{t}^{r} \frac{2}{\pi} \cdot \frac{\rho}{R^2 - \rho^2} \cdot \sqrt{\frac{R^2 - r^2}{(r^2 - \rho^2)(\rho^2 - t^2)}} d\rho$$

$$= \left[\frac{2}{\pi} \cdot \frac{1}{\sqrt{R^2 - t^2}} \cdot \arctan \frac{\sqrt{R^2 - r^2}}{\sqrt{R^2 - t^2}} \cdot \frac{\rho^2 - t^2}{r^2 - \rho^2} \right]_{\rho=r}^{\rho=t}$$

$$= \frac{1}{\sqrt{R^2 - t^2}}.$$
Thus the proof is complete.

Remark. When \(n = 2 \) and \(K \) is the unit disc, then the statement of the plank problem can easily be derived from our theorem. Denote the unit disc by \(T \) and assume that it is covered by strips \(S_1, \ldots, S_k \) (whose bounding lines intersect \(T \)). Take a concentric circle \(K \) with radius \(R \), where \(R \) is sufficiently large. Assume that the two bounding lines of \(S_i \) intersect \(K \) in \(A_i, B_i \) and in \(C_i, D_i \). We choose the notation such that \(S_i \) is covered by the two regular angular domains \(A_iB_iD_i < \) and \(B_iD_iC_i < \). Denote by \(\alpha_i' \) and \(\alpha_i'' \) their angle and by \(d_i \) the width of \(S_i \). Then we have

\[
\frac{d_i}{2R - 2} \geq \tan \alpha_i' \geq \alpha_i', \quad \frac{d_i}{2R - 2} \geq \tan \alpha_i'' \geq \alpha_i''.
\]

Thus the theorem yields

\[
2 \sum_{i=1}^{k} \frac{d_i}{2R - 2} \geq \sum_{i=1}^{k} (\alpha_i' + \alpha_i'') \geq 2\varepsilon \geq 2 \sin \varepsilon \geq \frac{2}{R}.
\]

Now taking the limit \(R \to \infty \) we obtain the statement.

References

[1] K. Ball, The plank problem in general normed spaces, manuscript

[2] T. Bang, A solution of the "Plank problem", Proc. Amer. Math. Soc. 2(1951), 990-993.

[3] B. Brindza—Zs. Páles, Jelentés az 1985. évi Schweitzer Miklás emlékverseny-ről (Report on the 1985 M. Schweitzer memorial competition, in Hungarian), Matematikai Lapok 13(1982-1986), 149-169.

Institute of Mathematics, L. Kossuth University, H-4010 Debrecen, Pf. 12, Hungary.

E-mail address: pales@math.klte.hu