Predictors of long-term outcome in heart failure with preserved ejection fraction: a follow-up from the KaRen study

Angiza Shahim1*, Marion Hourqueig2, Erwan Donal2, Emmanuel Oger3, Ashwin Venkateshvaran1,4, Jean-Claude Daubert2, Gianluigi Savarese1,4, Cecilia Linde1,4, Lars H. Lund1,4 and Camilla Hage1,4

1Department of Medicine, Cardiology Unit, Karolinska Institutet, K2 Medicin, Solna, K2 Cardiologi L Lund, Stockholm, 171 77, Sweden; 2CHU Rennes, Inserm, LTSI – UMR 1099, University of Rennes, Rennes, France; 3CHU Rennes, EA 7449 [Pharmacoepidemiology and Health Services Research] REPERES, University of Rennes, Rennes, France; and 4Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden

Abstract

Aims Heart failure (HF) with preserved ejection fraction (HFpEF) has poor long-term prognosis. We assessed rates and predictors of outcome 10 years after an acute episode of HF.

Methods and results The Karolinska-Rennes (KaRen) study enrolled HFpEF patients with acute HF, ejection fraction ≥45%, and N-terminal pro-brain natriuretic peptide > 300 ng/L in 2007–11. Clinical data were collected at enrolment and after 4–8 weeks including detailed echocardiography. Follow-up data were collected 10 years after study initiation, starting from 6 months after enrolment until 2018 assessed by telephone. Independent predictors of primary (all-cause mortality or HF hospitalization) and secondary (all-cause mortality) outcomes were assessed by multivariable Cox regression. Of 539 patients, long-term follow-up data were available for 397 patients [52% female; median (interquartile range) age 79 (73, 84) years]. Over a follow-up of 5.44 (2.06–7.89) years, 1, 3, 5, and 10 year mortality rates were 15%, 31%, 47%, and 74%, respectively, with an incidence rate of 130/1000 patient-years. The primary outcome was met in 84% of the population, with an incidence rate of 227/1000 patient-years. The independent predictors of the primary outcome were tricuspid regurgitation peak velocity (m/s) [hazard ratio 1.87 (1.34–2.62)], diabetes mellitus [1.75 (1.11–2.74)], and cancer [1.75 (1.01–3.03)] while female sex was associated with reduced risk [0.64 (0.41–0.98)].

Conclusions In HFpEF, 1, 3, 5, and 10 year mortality was 15%, 31%, 47%, and 74% and mortality or first HF hospitalization was 35%, 54%, 67%, and 84%, respectively. Independent predictors of mortality or HF hospitalization were tricuspid regurgitation peak velocity, diabetes mellitus, cancer, and male sex. In clinical management of HFpEF, attention should be paid to both cardiac and non-cardiac conditions.

Keywords HFpEF; Diastolic heart failure; Predictors; Prognosis; Mortality

Received: 19 April 2021; Revised: 20 June 2021; Accepted: 5 July 2021
*Correspondence to: Angiza Shahim, Department of Medicine, Cardiology Unit, Karolinska Institutet, K2 Medicin, Solna, K2 Cardiologi L Lund, 171 77 Stockholm, Sweden. Tel: +46737531404; Fax: 08-34 49 64. Email: angiza.shahim@ki.se

Introduction

Heart failure (HF) accounts for a significant part of the global disease burden affecting 26 million people worldwide.1 According to the European Society of Cardiology guidelines, HF is classified based on left ventricular ejection fraction (LVEF) into HF with preserved LVEF (≥50%; HFpEF), HF with reduced LVEF (<40%; HFrEF), and HF with mid-range LVEF (HFmrEF; LVEF 40–49%).2 HFpEF patients represents almost half of all HF, but the population is highly heterogeneous and poorly characterized.2 Further, HFpEF is associated with mortality rates similar to HFrEF, especially following a hospital admission for HF.3,4 Unlike HFrEF, there are no proven therapies that reduce mortality or morbidity in HFpEF.5–7

Previous studies have suggested a variety of prognostic predictors in HFpEF, including non-cardiac co-morbidities such as
anaemia, diabetes mellitus, and obesity, and echocardiographic measurements representing reduced left ventricular (LV) compliance and right ventricular remodelling. However, their implication on long-term outcome have been inadequately investigated because in most studies the follow-up is limited to 5 years or less. Therefore, longer follow-up data are needed to improve the understanding of this syndrome and the prognostic impact of its different phenotypes.

The Karolinska-Rennes (KaRen) study was designed to enrol patients presenting with acute signs and symptoms of HFrEF, with the purpose of improving the understanding of the pathophysiology and prognostication in this syndrome. The aim of the current analysis was to assess risk for and independent predictors of 10 year mortality and hospital admissions in the KaRen study.

Material and methods

Study design and data

The KaRen study was a prospective, observational, multicentre study aiming to characterize and identify prognostic factors for morbidity and mortality in HFrEF. Patients were included during an acute presentation of HF with signs and symptoms of HF according to Framingham criteria for HF, LVEF ≥ 45% by echocardiography, and brain natriuretic peptide (BNP) > 100 ng/mL or N-terminal pro-brain natriuretic peptide (NT-proBNP) > 300 ng/mL within 72 h of presentation. In total, 539 patients were enrolled at baseline whereof 438 returned for a follow-up visit in stable state after 4–8 weeks, which included a detailed echocardiographic assessment, electrocardiogram, and clinical evaluation. The baseline data in the present analysis were collected at enrolment (clinical characteristics and medical history) and at the stable 4–8 week visit (laboratory assessments and detailed echocardiography). Echocardiography was assessed using Vivid 7 ultrasound systems (GE Healthcare, Horten, Norway) and analysed in the core lab in Rennes, France. Hyponaetraemia was defined as sodium < 135 mmol/L, anaemia was defined as haemoglobin < 12 g/dL in women and <13 g/dL in men (according to World Health Organization), and estimated glomerular filtration rate (eGFR) was calculated according to the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula.

Follow-up and outcomes

Patients were followed by telephone call every 6 up to 18 months regarding potential hospitalizations and mortality until November 2012. For the purpose of the current study, long-term follow-up data were assessed in France and Sweden by a 10 year telephone contact with patients or medical institutions and patient charts, and in Sweden through the Swedish National Patient Register, which provided mortality and HF hospitalization data (through ICD-10 codes) for the time period between 30 September 2012 and 30 September 2018. Patients were followed until death or censored alive at the last follow-up visit or contact with medical institution (seven patients in France) where they were enrolled. Consistent with our previous prognostic analyses in the KaRen study, the primary composite outcome was defined as time to all-cause mortality or first HF hospitalization. The secondary outcome was all-cause mortality.

Statistical analysis

Due to the known sex-based differences in patient characteristics in HFrEF, baseline characteristics were reported in the overall cohort and stratified by sex. Continuous variables were presented as median [interquartile range (IQR)] and compared in women vs. men using the Mann–Whitney test while categorical variables were reported as absolute frequencies (percentages) and compared using the χ^2 test. Missing values for baseline characteristics were presented as numbers (%). The Kaplan–Meier analysis was used to assess and log-rank test to compare the occurrence of the primary and secondary outcomes in women vs. men, across the distribution of tricuspid regurgitation peak velocity (TRV) [i.e. classified as low (<2.8 m/s), medium (2.8–3.1 m/s), or high (>3.1 m/s)] and diastolic dysfunction (with E/e' ratio categorized as >13 or ≤13). The latter two were chosen because they have previously been shown to be important for shorter-term outcomes. Information on TRV was missing in 46% of the patients, and these were excluded from the multivariable analyses. The incidence rate (IR) for each outcome was reported as events per 1000 patient-years.

Associations between clinical characteristics, echocardiographic variables, and the primary and secondary outcomes were analysed by unadjusted and adjusted Cox proportional hazard models and presented as hazard ratio (HR) and 95% confidence intervals (CIs). We conducted univariable analyses on selected clinically relevant characteristics, that is, sex, age, New York Heart Association (NYHA) class before admission, heart rate, body mass index (BMI), eGFR, NT-proBNP, hyponatraemia, ischaemic heart disease, hypertension, atrial fibrillation (AF) or flutter, stroke, diabetes mellitus, anaemia, syncope, pulmonary disease, cancer, angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB), beta-blockers, mineralocorticoid receptor antagonist (MRA), and loop diuretics. We also analysed echocardiographic measurements [LVEF ≥ 50%, TRV, interventricular septal thickness (IVST), E/e' ratio >13 vs. ≤13, and systolic peak of mitral annulus velocity (LV s') to investigate their association with the outcomes. Heart rate, BMI, eGFR,
NT-proBNP, and LVEF were categorized to enhance interpretability, and number of parameters included in the multivariable model were restricted to below 10 events per variable to avoid overfitting. We included these clinical and echocardiographic parameters in a multivariable regression model to investigate the independent predictors of the primary and secondary outcomes. The complete unadjusted and adjusted Cox proportional hazard models for patients with LVEF ≥ 45% and ≥50%, respectively, are provided in Supporting Information, Tables S1–S4. For all the analyses, a P-value ≤ 0.05 indicated statistical significance. Statistical analyses were performed in Stata, StataCorp (2017), Stata Statistical Software: Release 15 (College Station, TX: StataCorp LLC).

Ethical considerations
The KaRen study and the current analysis were reviewed and approved by the French and Swedish ethics committees and conformed to the Declaration of Helsinki. All patients provided written informed consent.

Results
Between 21 May 2007 and 29 December 2011, 539 patients were enrolled in three centres in Sweden and eleven centres in France (whereof one centre in France participated in the present follow-up analysis). Hence, 397 patients (205 in Sweden and 192 in France) were included in the current analysis (Figure 1).

Baseline characteristics
In the overall population at enrolment, median (IQR) age was 78 (72, 84) years; 52% were female. Most patients were in NYHA class II prior to acute presentation (61%), NT-proBNP levels were 2469 (1319, 4860) (ng/L), and eGFR was 62 (46, 79) (mL/min/1.73 m²). In total, 36% were obese, defined as BMI ≥ 30 kg/m², 78% had hypertension, 63% had AF or flutter, 26% had diabetes mellitus, and 45% had anaemia. Out of 291 patients with heart rate ≥ 70 b.p.m., 67% had AF (Table 1).

When compared with men, women were older, less likely to report history of ischaemic heart disease, cancer, anaemia, and renal disease, and more likely treated with digoxin (Table 2). Finally, there were differences in echocardiographic measurements between the sexes (Table 2). Women had higher E/e₀ ratio and supine heart rate, but lower stroke volume, LV end-diastolic volume (LVED), LV end-systolic volume (LVES), LV s₀, and smaller IVST and right atrial area (RA). The severity of TRV did not differ between the sexes.

Survival analysis
Median follow-up was 5.44 years (2.06–7.89). In the overall cohort, the rate of all-cause mortality or first HF hospitalization was 227 per 1000 patient-years, and the mortality rate was 130 events per 1000 patient-years. Event-free survival rate at 1, 3, 5, and 10 years for the primary outcome was 65%, 46%, 33%, and 26%, respectively. The event-free survival rates were higher in women compared with men, that is, for the primary outcome 67% vs. 63% at 1 year, 50% vs. 42% at 3 years, 39% vs. 26% at 5 years, and 18% vs. 12% at 10 years and for the secondary outcome 85% vs. 83% at 1 year, 74% vs. 64% at 3 years, 61% vs. 44% at 5 years, and 30% vs. 21% at 10 years. Survival curves in the overall population and in the strata defined according to sex, TRV, and E/e₀ ratio are depicted in Figure 2 for all-cause mortality or first HF hospitalization and in Figure 3 for all-cause mortality. Women reported lower crude risk of the primary and secondary outcomes compared with men (log-rank P = 0.023 and P = 0.015, respectively; Figures 2B and 3B).

Predictors of prognosis
Figure 4 shows the patient characteristics independently associated with the primary outcome, that is, female sex (HR 0.64 [95% CI 0.41–0.98]; P = 0.040), diabetes mellitus (HR 1.75 [95% CI 1.11–2.74]; P = 0.016), cancer (HR 1.75 [95% CI 1.01–3.03]; P = 0.045), and TRV (HR 1.87 [95% CI 1.34–2.62]; P < 0.001). Patient characteristics independently associated with higher risk of all-cause death were higher age (HR 1.03...
Table 1 Clinical characteristics by sex

Table 1	Clinical characteristics by sex				
	Missing (%)	Male (n = 191)	Female (n = 206)	P-value	
Age (years)	78 (72, 84)	77 (70, 83)	79 (73, 84)	0.045	
BMI (kg/m²)	11 (2.8)	28 (24, 32)	28 (25, 32)	0.254	
Obese (≥30 kg/m²)	11 (2.8)	144 (36)	74 (39)	0.461	
Physical findings					
Systolic blood pressure (mmHg)	2 (0.5)	150 (130, 170)	150 (130, 172)	0.210	
Diastolic blood pressure (mmHg)	2 (0.5)	75 (64, 90)	76 (67, 90)	0.178	
Mean arterial blood pressure (mmHg)	2 (0.5)	100 (88, 114)	103 (90, 117)	0.090	
Supine heart rate (b.p.m.)	3 (0.8)	80 (68, 100)	82 (70, 107)	0.007	
Tachycardia (>100 b.p.m.)	1 (0.3)	127 (32)	40 (21)	<0.001	
NYHA class in stable state before admission, n (%)				0.101	
I	78 (20)	45 (24)	33 (16)		
II	241 (61)	111 (59)	130 (65)		
III	67 (17)	29 (16)	38 (19)		
IV	2 (0.5)	2 (1.1)	0 (0)		
Co-morbidities, n (%)					
Valve disease	1 (0.3)	93 (23)	53 (26)	0.288	
Atrial fibrillation or flutter	1 (0.3)	310 (78)	156 (76)	0.223	
Known heart failure prior to presentation	2 (0.5)	119 (62)	40 (21)	0.755	
Ischaemic heart disease	3 (0.8)	74 (39)	28 (14)	0.838	
History of myocardial infarction	65 (16.4)	27 (13)	38 (19)	0.267	
History of brady syncope	8 (2.0)	7 (3.7)	1 (0.5)	0.208	
History of tachy syncope	39 (10)	11 (5.3)	18 (9.0)	0.502	
History of non-cardiac syncope	38 (9.6)	21 (11)	17 (8.3)	0.396	
Diabetes mellitus	2 (0.5)	58 (31)	43 (23)	0.087	
Stroke	1 (0.3)	22 (12)	10 (5.3)	0.747	
Peripheral vascular disease	3 (0.8)	33 (18)	24 (12)	0.263	
Conventional pacemaker	53 (13)	25 (13)	28 (15)	0.306	
Implantable cardioverter defibrillator	2 (0.5)	0 (0)	0 (0)	1.000	
Coronary artery bypass grafting	7 (2.0)	11 (5.3)	6 (3.0)	0.063	
Any valve intervention	2 (0.5)	3 (1.6)	1 (0.5)	0.609	
Pulmonary disease	2 (0.5)	23 (12)	13 (6.3)	0.504	
Cancer	1 (0.3)	26 (13)	13 (6.3)	0.022	
Liver disease	3 (0.8)	11 (6)	2 (1.0)	1.000	
Smoking	14 (3.5)	118 (65)	57 (28)	<0.001	
History of renal disease	123 (31)	73 (38)	50 (24)	0.003	
Anaemia (<12 g/dL women, <13 g/dL men)	4 (1.0)	108 (57)	69 (34)	<0.001	
Medications at discharge, n (%)					
ACEi or ARB	88 (22.2)	112 (76)	125 (78)	0.689	
Beta-blocker	88 (22.2)	166 (82)	132 (82)	0.475	
MRA	88 (22.2)	42 (28)	45 (28)	1.000	
Loop diuretic	88 (22.2)	125 (85)	139 (86)	0.747	
Thiazide diuretic	88 (22.2)	11 (7.4)	18 (11)	0.330	
Calcium channel blocker	88 (22.2)	43 (29)	38 (24)	0.302	
Digoxin	88 (22.2)	6 (4.1)	23 (14)	0.003	
Nitrate	88 (22.2)	22 (12)	13 (6.3)	0.503	
Anti-arrhythmic	88 (22.2)	12 (6.3)	22 (14)	0.737	
Anticoagulant	88 (22.2)	80 (54)	98 (61)	0.250	
Oral anticoagulant among patients with atrial fibrillation/flutter	88 (22.2)	77 (99)	86 (85)	0.352	
Antiplatelets	88 (22.2)	53 (36)	42 (26)	0.084	
Statins	88 (22.2)	70 (47)	71 (44)	0.648	
Glucose-lowering medication	88 (22.2)	40 (27)	36 (22)	0.357	
Whereof insulin	88 (22.2)	28 (17)	18 (10)	0.101	
Laboratory data					
eGFR (mL/min/1.73 m²)	62 (46, 79)	63 (46, 87)	61.5 (46, 76)	0.237	
NT-proBNP (ng/L)	1 (0.3)	2469 (1319, 4860)	2371 (1419, 4900)	2600 (1310, 4790)	0.980
NT-proBNP among patients with atrial fibrillation/flutter	2605 (1469, 4941)	2359 (1419, 4900)	2878.5 (1485, 4969.5)	0.370	
NT-proBNP among patients without atrial fibrillation/flutter	2292 (1120, 4630)	2394.5 (1360, 5018)	2394.5 (1360, 5018)	0.250	
Haemoglobin (g/L)	4 (1.0)	12.3 (11.3)	12.2 (11.2, 13.6)	0.926	
Sodium (mmol/L)	335 (84)	160 (84)	175 (85)	0.268	

(Continues)
ACE inhibitor, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; eGFR, estimated glomerular filtration rate; MRA, mineralocorticoid receptor antagonists; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association.

Continuous variables are presented as median (interquartile range) and categorical variables as numbers (n) and percentages.

Table 2
Echocardiographic characteristics from 4–8 week clinical visit, by sex

Parameters	Missing (%)	Total (n = 397)	Male (n = 191)	Female (n = 206)	P-value
LV ejection fraction (%)					
Stroke volume (mL)	155 (39.0)	63 (56, 67)	62 (56, 66)	63 (57, 68)	0.151
LV end-diastolic volume (mL/m²)	155 (39.0)	29.6 (25.6, 36.8)	31.4 (26.6, 41.9)	28.8 (25, 33.7)	0.012
LV end-systolic volume (mL/m²)	155 (39.0)	35 (25, 45)	40 (33, 49)	28 (21, 38)	<0.001
LV s’ (cm/s)	145 (36.5)	6.5 (5.5, 7.5)	7 (6, 8)	6 (5, 7)	<0.001
LA volume index (mL/m²)	318 (80.1)	30.9 (21.1, 40.4)	27.1 (22.4, 34.7)	33.1 (21.2, 41.7)	0.298
LA volume index > 34	318 (80.1)	31 (8)	12 (32)	19 (45)	0.260
LV mass index (g/m²)	350 (88.0)	115 (95, 141)	123 (102, 156)	109 (95, 133)	0.113
Men with LVMI > 115	371 (93.5)	15 (58)			
Women with LVMI > 95	376 (94.7)		14 (67)		
Interventricular septal thickness (mm)	156 (39.2)	11 (10, 13)	12 (11, 14)	11 (10, 12)	<0.001
LV longitudinal strain	317 (80.0)	15.5 (13.2, 18.4)	15.2 (12, 18)	16.1 (13.6, 18.6)	0.270
E/e ratio	163 (41.1)	10.8 (8.5, 15.1)	9.8 (8, 13.29)	11.7 (9.1, 16.6)	<0.001
Right atrial area (cm²)	149 (38.0)	20 (17, 24.5)	22 (19, 27)	19 (16, 22)	<0.001
Tricuspid regurgitation (m/s)	182 (45.8)	2.9 (2.5, 3.3)	2.9 (2.4, 3.2)	2.9 (2.6, 3.3)	0.145
Mitral regurgitation: Grade	151 (38.0)	133 (34)	71 (61)	62 (48)	0.018
TRV > 1.8		13 (41)	15 (13)	30 (23)	
TRV > 2.5		14 (4)	3 (2.5)	11 (8.6)	

LA, left atrial; LV s’, systolic peak of mitral annulus velocity; LV, left ventricular; LVMI, LV mass index.

Continuous variables are presented as median (interquartile range) and categorical variables as numbers (n) and percentages.

Discussion

In this long-term outcome analysis of the KaRen HfPEF study, the 1, 3, 5, and 10 year mortality was 15%, 31%, 47%, and 74% and mortality or first HF hospitalization was 35%, 54%, 67%, and 84%, respectively. TRV and female sex were independently associated with both outcomes. Diabetes and cancer were associated with increased risk of all-cause mortality or HF hospitalization whereas higher heart rate, anaemia, and hyponatraemia were independent predictors of all-cause mortality.

Prognosis in heart failure with preserved ejection fraction

Previous studies have reported inconsistent mortality rates in HfPEF, with lower rates in clinical trials compared with epidemiologic studies.15 Mortality rates in HfPEF are comparable...
Figure 2. The Kaplan–Meier survival curves of the primary outcome (all-cause mortality or first heart failure hospitalization)—Survival curves for (A) all subjects and (B) sex and (C) subjects with tricuspid regurgitation peak velocity (TR) classified as low (<2.8 m/s), medium (2.8–3.1 m/s), or high (>3.1 m/s) and (D) E/e₀ ratio classified as >13 or ≤13.

Figure 3. The Kaplan–Meier survival curves of the secondary outcome (all-cause mortality)—Survival curves for (A) all subjects and (B) sex and (C) subjects with tricuspid regurgitation peak velocity (TR) classified as low (<2.8 m/s), medium (2.8–3.1 m/s), or high (>3.1 m/s) and (D) E/e₀ ratio classified as >13 or ≤13.
with HFrEF, although survival seems to increase over time in HFrEF but not in HFpEF, which could be a result of emerging effective treatment in HFrEF but not HFpEF.

In 2006, Bhatia et al. showed that 1 year following a hospital admission for HFpEF (defined as LVEF > 50%), the mortality rate was 22% and composite outcome (all-cause

Figure 4 Predictors of all-cause mortality or first heart failure hospitalization—Forest plot depicting multivariable hazard ratios for the primary outcome (time to all-cause mortality or first heart failure hospitalization), ACE inhibitor, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate; IVST, interventricular septal thickness; LV s', systolic peak of mitral annulus velocity; LVEF, left ventricular ejection fraction; MRA, mineralocorticoid receptor antagonists; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association; TR, tricuspid regurgitation peak velocity.

Predictors	Hazard Ratio (95% CI)	
Clinical characteristics		
Female sex	0.64 (0.41-0.98)	
Age (years)	1.02 (1.00-1.05)	
NYHA class (III-IV vs. I-II)	1.39 (0.86-2.25)	
Heart rate (≥70 vs. <70 bpm)	0.95 (0.63-1.44)	
BMI (≥30 vs. <30 kg/m²)	1.29 (0.87-1.92)	
eGFR (≥60 vs. <60 ml/min/1.73 m²)	0.89 (0.60-1.30)	
NT-proBNP (≥2469 vs. <2469 ng/L)	0.93 (0.63-1.36)	
Hyponatremia	1.55 (0.95-2.54)	
Comorbidities		
Ischemic heart disease	1.30 (0.88-1.92)	
Hypertension	0.90 (0.49-1.29)	
Atrial fibrillation or flutter	1.11 (0.74-1.66)	
Stroke	0.98 (0.55-1.76)	
Diabetes mellitus	1.75 (1.11-2.74)	
Anemia	1.40 (0.95-2.07)	
Syncope	0.80 (0.39-1.65)	
Pulmonary disease	1.49 (0.83-2.68)	
Cancer	1.75 (1.01-3.03)	
Medications at discharge		
ACE inhibitor or ARB	0.87 (0.59-1.29)	
Beta-blockers	1.13 (0.68-1.89)	
MRA	0.78 (0.52-1.17)	
Loop diuretics	1.19 (0.69-2.08)	
Echo measures		
LVEF (≥50%)	0.58 (0.19-1.75)	
TR (m/s)	1.87 (1.34-2.62)	
IVST (mm)	1.03 (0.95-1.11)	
E/e' ratio (>13 vs. ≤13)	1.19 (0.78-1.80)	
LV s' (cm/s)	0.92 (0.80-1.05)	

ESC Heart Failure (2021) DOI: 10.1002/ehf2.13533
mortality/HF hospitalization) rate was 31%\(^3\), which was in accordance with some studies\(^{16,17}\) but lower than large registries.\(^4\) Our study has a lower 1 year mortality rate of 15\% but similar rate of the composite outcome of 35\%. In longer follow-up studies on patients admitted for decompen-
sated HF, 5 year mortality rates were reported between 45\% and 65\%.\(^{16–18}\) In contrast, Shah et al. reported a higher 5 year mortality rate of 75\% among patients with HFrEF, HFmrEF, and HFpEF with similar rate for HF readmission across the whole LVEF spectrum.\(^4\) Our patients with decompen-
sated HF included in 2007–11 had a slightly lower 5-year mortality rate of 47\%.

We present novel insights in prognosis 10 years after an acute episode of decompen-
sated HF, with a 10 year mortality rate of 74\% and 10 year rate of mortality or HF hospitalization of 84\%, implying that prognosis remains very poor over the
long term in HFP EF patients. To our knowledge, there are few studies with 10 year follow-up data; however, two observational studies have shown similar rates. Due to differences in the study design, HFP EF diagnostic criteria, and year of enrolment, it is challenging to compare findings across HFP EF studies. The lower mortality rate in KaRen than previous studies might to some extent be explained by the fact that only 40% of KaRen patients had previous HF diagnosis prior to enrolment and that de novo HFP EF may have better long-term prognosis. The nature of KaRen study design with regular, long-term follow-up mirrors that of clinical trials and could have contributed to lower outcome rates as well.

The female pattern

Our study adds and extends the current understanding of sex differences in HFP EF, demonstrating that women with HF have higher survival rates compared with men over a long study period across a wide range of LVEFs, even after adjusting for clinical characteristics. Women had higher E/e⁰ ratio, which has also been shown in normal subjects, but the absence of differences in estimated systolic pulmonary artery pressures implies that women do not have higher filling pressures than men. In accordance with the NORRE study, LA volume and right heart cavities were slightly smaller in women vs. men. As in healthy women and in HF studies, heart rate was higher in women than in men, independently of the rhythm. Although AF prevalence was the same in women and men, women with AF had higher heart rate, which has also previously been demonstrated. The reason may be the smaller LV volumes in women, suboptimal rate control, or residual congestion at the 4–8 week follow-up. Reflecting longitudinal systolic dysfunction, women in our study had lower LV s/v compared with men, further indicating a reduced risk for overall mortality. Altogether, our findings reflect the overall picture of women with HFP EF having worse diastolic function.

Co-morbidities and associated conditions

Earlier studies reveal that HFP EF patients are often older, women with mainly non-cardiac co-morbidities compared with HFrEF, which is consistent with our findings. Non-cardiac co-morbidities such as anaemia, diabetes mellitus, hypertension, and overweight or obesity are highly prevalent in HFP EF and suggested as potential disease drivers of the myocardial remodelling and dysfunction. The adjusted models for both the primary and secondary outcomes display a clear trend with increased risk of mortality or HF hospitalization and of mortality alone in the presence of co-morbidities and associated conditions.

We found that anaemia and hyponatraemia were both associated with all-cause mortality corroborating previous findings, however not significantly associated with the primary outcome, reflecting a more general pattern of associated conditions in cardiovascular diseases. Anaemia in patients with HF and specifically HFP EF is associated with higher risk of mortality and/or HF hospitalization. Several studies have shown that hyponatraemia is associated with adverse outcomes in HF but its role in HFP EF is more unclear. Park et al. found that hyponatraemia is a risk factor for adverse in-hospital outcomes but had no long-term prognostic value. In our study, more than 80% of patients were on loop diuretics. Diuretic use may be associated with both dilutional and depletional hyponatraemia, which in turn may be a marker of worse HF status. Indeed, our study suggests that hyponatraemia is associated with higher risk of death and may call for tailoring of long-term diuretic dose in HFP EF patients. Natriuretic peptides and chronic kidney disease (CKD) have previously been demonstrated to predict outcome in HFP EF, however, we did not observe any impact of NT-proBNP or CKD on our primary and secondary outcomes, maybe due to collinearity between the covariates in the multivariable models. Diabetes was in our study independently associated with the primary outcome including HF hospitalization but not all-cause mortality. In HFP EF, diabetes and metabolic stress in combination with mechanical stress such as hypertension (present in 78% of our patients) have been suggested as a major mechanism underpinning HFP EF pathophysiology. Finally, cancer contributed to an increased risk of mortality in line with previous studies, but there is a need to further investigate the pathophysiological role of cancer in HFP EF and the cardiotoxicity related to cancer therapy.

Echocardiographic predictors

In HFrEF, TRV is associated with LV systolic and diastolic dysfunctions as well as HF events and increased mortality. TRV may better reflect LV impairment than global insensitive parameters like LVEF. TRV has previously been associated with right ventricular dysfunction, a common feature in HFP EF with elevated pulmonary arterial systolic pressure reflecting increased LV pressure. In our multivariable analysis, TRV was the only echocardiographic measurement associated with increased risk for both outcomes. This confirms recent data from Japan showing in which high TRV was associated with mortality (HR 1.04, 1.00–1.07; P = 0.043; median follow-up 748 days). Diastolic dysfunction as reflected by E/e⁰ ratio has been claimed to be an important prognostic marker and in the mean follow-up of 28 months of this cohort, we reported that E/e⁰ ratio was the only echocardiographic predictor associated with adverse outcome. In this extended follow-up, E/e⁰ ratio > 13 had worse prognosis compared with ≤13 and was significant in the univariable
analyses included a few patients (n = 6) with LVEF ≤ 45% were enrolled meaning that our analyses included a few patients (n = 6) with HFmrEF.

Conclusions

In HFP EF, 1, 3, 5, and 10 year mortality was 15%, 31%, 47%, and 74% and mortality or first HF hospitalization was 35%, 54%, 67%, and 84%, respectively. TRV and female sex were independently associated with both outcomes. Diabetes and cancer were associated with increased risk of all-cause mortality or HF hospitalization whereas higher heart rate, anaemia, and hyponatraemia were independent predictors of all-cause mortality. In addition to early prevention and treatment of co-morbidities, age, female sex, and echocardiographic abnormalities such as TRV, LVEF, and LV s' are important for phenotyping HFP EF and to narrow selection criteria for future clinical intervention trials.

Acknowledgements

The authors are grateful to Kambiz Shahgaldi and Maria Westerlund for echocardiogram assessments and Gunilla Förstedt and Eva Wallgren for patient care, blood sampling, and laboratory analyses.

Conflict of interest

C.H. receives consulting fees from Novartis and Roche Diagnostics and speaker honoraria from Novartis and MSD; E.D. receives research facilities from General Electric Healthcare and a grant from Novartis. He has also teaching facilities provided by Bristol-Myer-Squibb; C.L. receives research grants from Swedish Heart-Lung Foundation and Stockholm County Council and speaker honoraria from Medtronic, Abbot, Micropor, Boston Scientific, Novartis, Vifor, Impulse Dynamics, and Bayer; G.S. reports grants and personal fees from Vifor, grants and non-financial support from Boehringer Ingelheim, personal fees from Società Prodotti Antibiotici, grants from MSD, grants and personal fees from AstraZeneca, personal fees from Roche, personal fees from Servier, grants from Novartis, personal fees from GENESIS, personal fees from Cytokinetics, and personal fees from Medtronic, outside the submitted work; L.H.L. was funded by the Swedish Research Council, the Swedish Heart Lung Foundation, and the Stockholm County Council and receives research grants from AstraZeneca, Novartis, Boehringer Ingelheim, ViforPharma, and Boston Scientific and consulting or speaker’s honoraria from AstraZeneca, Novartis, Boehringer Ingelheim, Vifor Pharma, Bayer, Sanofi, Fresenius, Merck, Myokardia, Medscape, Radcliffe Cardiology, and Lexicon. Other authors have no conflict of interest to declare.

Funding

This work was supported by grants from Stockholm County Council (Region Stockholm) (grant 20180899) and Centre for Gender Medicine, Karolinska Institutet, Stockholm, Sweden (C.H.), and the Swedish Research Council (Vetenskapsrådet) (grants 2013-23897-104604-23, 523-2014-2336), The Swedish Heart & Lung Foundation (Hjärt-Lungfonden) (grant 20150557), and Stockholm County Council and speaker honoraria from General Electric Healthcare and a grant from Novartis. He has also teaching facilities provided by Bristol-Myer-Squibb; C.L. receives research grants from Swedish Heart-Lung Foundation and Stockholm County Council and speaker honoraria from Medtronic, Abbot, Micropor, Boston Scientific, Novartis, Vifor, Impulse Dynamics, and Bayer; G.S. reports grants and personal fees from Vifor, grants and non-financial support from Boehringer Ingelheim, personal fees from Società Prodotti Antibiotici, grants from MSD, grants and personal fees from AstraZeneca, personal fees from Roche, personal fees from Servier, grants from Novartis, personal fees from GENESIS, personal fees from Cytokinetics, and personal fees from Medtronic, outside the submitted work; L.H.L. was funded by the Swedish Research Council, the Swedish Heart Lung Foundation, and the Stockholm County Council and receives research grants from AstraZeneca, Novartis, Boehringer Ingelheim, ViforPharma, and Boston Scientific and consulting or speaker’s honoraria from AstraZeneca, Novartis, Boehringer Ingelheim, Vifor Pharma, Bayer, Sanofi, Fresenius, Merck, Myokardia, Medscape, Radcliffe Cardiology, and Lexicon. Other authors have no conflict of interest to declare.
Predictors of long-term outcome in heart failure with preserved ejection fraction

Table S1. Adjusted and Unadjusted Cox proportional hazard analyses to determine factors associated with primary outcome (all-cause mortality or first HF hospitalization) in 397 subjects with LVEF ≥45%.

Predictor	Adjusted Hazard Ratio (95% CI)	Unadjusted Hazard Ratio (95% CI)
Age 10 yrs	1.17 (1.06–1.29)	1.17 (1.06–1.29)
Diabetes	1.20 (1.05–1.36)	1.20 (1.05–1.36)
CKD	1.23 (1.06–1.42)	1.23 (1.06–1.42)
Prior HF hospitalization	1.21 (1.06–1.39)	1.21 (1.06–1.39)
NYHA class III	1.24 (1.08–1.42)	1.24 (1.08–1.42)
NYHA class II	1.21 (1.06–1.38)	1.21 (1.06–1.38)
NYHA class I	1.18 (1.04–1.35)	1.18 (1.04–1.35)

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

References

1. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev 2017; 3: 7.
2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola V-P, Jankowska EA, Jessup M, Linde C, Niinokawa T, O’Connor CM, Pfeffer MA, Quinn JF, Redfield MM, Csurgai I, Drexler H, Garcia MJ, Global Heart Failure Network, European Society of Cardiology, ESC Heart failure Committee, ESC Heart failure Association, ESC Heart failure Working Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129–2200.
3. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haozui A, Gong Y, Liu PW. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 2006; 355: 260–269.
4. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, Devore AD, Yancy CW, Fonarow GC. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 2017; 70: 2476–2486.
5. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, Martinez F, Packer M, Pfeffer MA, Pieske B, Redfield MM, Rouleau JL, van Veldhuisen DJ, Zannad F, Zile MR, Desai AS, Claggett B, Jhund PS, Boytsov SA, Comin-Colet J, Cland J, Dung H-D, Goncalves E, Katova T, Kerr Saraiva JF, Lelonek M, Merkely B, Senni M, Sha SJ, Zhou J, Rizkala AR, Gong J, Shi VC, Lefkovitz MP. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 2019; 381: 1609–1620.
6. Yusuf S, Pfeffer MA, Sweddberg K, Granger CB, Held P, McMurray JJV, Michelson EL, Olofsson B, Ostergren J. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet 2003; 362: 777–781.
7. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, Clausell N, Desai AS, Diaz R, Fleg JL, Gordere I, Harty B, Heitner JF, Kenwood CT, Lewis EF, O’Meara E, Probstfield J, Shaburishvili T, Shah SJ, Solomon SD, Sweitzer NK, Yang S, McKinlay SM. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 2014; 370: 1383–1392.
8. Iorio A, Senni M, Barbati G, Greene SJ, Poli S, Zambon E, Nora CD, Cioffi G, Tarantini L, Gavazzi A, Sinagra G, Lenardad AD. Prevalence and prognostic impact of non-cardiac co-morbidities in heart failure outpatients with preserved and reduced ejection fraction: a community-based study. Eur J Heart Fail 2018; 20: 1257–1266.
9. Lam CSP, Roelheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction. J Am Coll Cardiol 2009; 53: 1119–1126.
10. Donal E, Lund LH, Oger E, Hage C, Persson H, Reynaud A, Ennezat P-V, Bauer F, Drouet E, Linde C, Daubert C. New echocardiographic predictors of clinical outcome in patients presenting with heart failure and preserved left ventricular ejection fraction: a subanalysis of the Ka (Karolinska) Ren (Rennes) Study. Eur J Heart Fail 2015; 17: 680–688.
11. Donal E, Lund LH, Linde C, Edner M, Lafitte S, Persson H, Bauer F, Ohrvik J, Ennezat P-V, Hage C, Lofman I, Juilliere Y, Logeart D, Derumeaux G, Guerot P, Daubert J-C. Rationale and design of the Karolinska-Rennes (KaRen) prospective study of dysynchrony in heart failure with preserved ejection fraction. Eur J Heart Fail 2009; 11: 198–204.
12. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt J-U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2015; 28: 1–39.e14.

DOI: 10.1002/ehf2.13533
13. Lund LH, Donal E, Oger E, Hage C, Persson H, Haugen-Løfman I, Enneazat P-V, Sportouch-Dukhan C, Drouet E, Daubert J-C, Linde C. Association between cardiovascular vs. non-cardiovascular co-morbidities and outcomes in heart failure with preserved ejection fraction. Eur J Heart Fail 2014; 16: 992–1001.

14. Omote K, Nagai T, Kamiya K, Aikawa T, Tsujinaga S, Kato Y, Komoriyama H, Iwano H, Yamamoto K, Yoshikawa T, Saito Y, Anzai T. Long-term prognostic significance of admission tricuspid regurgitation pressure gradient in hospitalized patients with heart failure with preserved ejection fraction: a report from the Japanese Real-World Multicenter Registry. J Card Fail 2019; 25: 978–985.

15. Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J 2012; 33: 1750–1757.

16. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006; 355: 251–259.

17. Rusinaru D, Houpe D, Szymanski C, Lévy F, Maréchaux S, Tribouilloy C. Coronary artery disease and 10-year outcome after hospital admission for heart failure with preserved and with reduced ejection fraction. Eur J Heart Fail 2014; 16: 967–976.

18. Chen X, Savarese G, Dahlström U, Lund LH, Fu M. Age-dependent differences in clinical phenotype and prognosis in heart failure with mid-range ejection fraction compared with heart failure with reduced or preserved ejection fraction. Clin Res Cardiol 2019; 108: 1394–1405.

19. Stolfo D, Uijl A, Vedin O, Strömberg A, Faxén UL, Rosano GMC, Sinagra G, Dahlström U, Savarese G. Sex-based differences in heart failure across the ejection fraction spectrum. JACC Heart Fail 2019; 7: 505–515.

20. De Sutter J, De Backer J, Van de Veire N, Velgha A, De Buyzere M, Gillebert TC. Effects of age, gender, and left ventricular mass on septal mitral annulus velocity (E) and the ratio of transmitral early peak velocity to E (E/E’). Am J Cardiol 2005; 95: 1020–1023.

21. Gori M, Lam CSP, Gupta DK, Santos ABS, Cheng S, Shah AM, Claggett B, Zile MR, Kraigher-Krainer E, Pieske B, Voors AA, Packer M, Bansford T, Leftowitz M, McMurray J, Solomon SD. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 2014; 16: 535–542.

22. Park YS, Park J-H, Ahn KT, Jang WI, Park HS, Kim JH, Lee J-H, Choi SW, Jeong J-O, Seong I-W. Usefulness of mitral annular systolic velocity in the detection of left ventricular systolic dysfunction: comparison with three dimensional echocardiographic data. J Cardiovasc Ultrasound 2010; 18: 1–5.

23. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 2013; 62: 263–271.

24. Park JJ, Cho Y-J, Oh I-Y, Park H-A, Lee J-H, Choi SW, Jeong J-O, Seong I-W. Short and long-term prognostic value of hypotension in heart failure with preserved ejection fraction versus reduced ejection fraction: an analysis of the Korean Acute Heart Failure registry. Int J Cardiol 2017; 248: 239–245.

25. Rusinaru D, Buicuciuc O, Houpe D, Tribouilloy C. Renal function and long-term survival after hospital discharge in heart failure with preserved ejection fraction. Int J Cardiol 2011; 147: 278–282.

26. Savarese G, Hage C, Orsini N, Dahlström U, Filardi PP, Rosano GMC, Lund LH. Reductions in N-terminal pro-brain natriuretic peptide levels are associated with lower mortality and heart failure hospitalization rates in patients with heart failure with mid-range and preserved ejection fraction. Circ Heart Fail 2016; 9: e003105.

27. Damy T, Goode KM, Kallvikbacka-Bennett A, Lewinter C, Hobirk J, Nikitin NP, Dubois-Randé J-L, Hittinger L, Clark AL, Cleland JGF. Determinants and prognostic value of pulmonary arterial pressure in patients with chronic heart failure. Eur Heart J 2010; 31: 2280–2290.

28. Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Meléndez-V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic F, Filippatos G. How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 2019; 40: 3297–3317.

29. Shah AM, Cikes M, Prasad N, Li G, Getchevski S, Claggett B, Rizkala A, Lukashevich I, O’Meara E, Ryan JJ, Shah SJ, Mullens W, Zile MR, Lam CSP, McMurray J, Solomon SD. Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol 2019; 74: 2838–2873.

30. Sartipy U, Dahlström U, Fu M, Lund LH. Atrial fibrillation in heart failure with preserved, mid-range, and reduced ejection fraction. JACC Heart Fail 2017; 5: 565–574.

31. Machino-Ohtsuka T, Seo Y, Ishizu T, Yamamoto M, Hamada-Harimura Y, Machino T, Yamasaki H, Sekiguchi Y, Nomaki A, Aonuma K, Ieda M. Relationships between maintenance of sinus rhythm and clinical outcomes in patients with heart failure with preserved ejection fraction and atrial fibrillation. J Cardiol 2019; 74: 235–244.

32. Tang ASL, Wells GA, Talajic M, Arnold MO, Sheldon R, Connolly S, Hohnloser SH, Nichol G, Birnie DH, Sapp JL, Yee R, Healey JS, Rouleau JL. Cardiac resynchronization therapy for mild-to-moderate heart failure. N Engl J Med 2010; 363: 2385–2395.

DOI: 10.1002/ehf2.13533