3D Gelatin-Chitosan hybrid Hydrogels combined with human Platelet Lysate highly support human Mesenchymal Stem Cell proliferation and osteogenic differentiation

Federica Re1,2, Luciana Sartore3, Vladimira Moulisova4,5, Marco Cantini5, Camillo Almici6, Andrea Bianchetti6, Clizia Chinello7, Kamol Dey3, Silvia Agnelli3, Cristina Manferdini8, Simona Bernardi1,2, Nicola F. Lopomo9, Emilio Sardini9, Elisa Borsani10,11, Luigi F. Rodella10,11, Fabio Savoldi12,13, Corrado Paganelli12, Pierangelo Guizzi14, Gina Lisignoli8, Fulvio Magni7, Manuel Salmeron-Sanchez5, Domenico Russo1*

1Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, Brescia, Italy,

2CREA (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili di Brescia, Brescia, Italy,

3Mechanical and Industrial Engineering Department, University of Brescia, Brescia, Italy,

4Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic,

5Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom,

6Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, Brescia, Italy,

7Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy,

8IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy,

9Department of Information Engineering, University of Brescia, Brescia, Italy,

10Department of Clinical and Experimental Sciences, Division of Anatomy and Physiopathology, University of Brescia, Brescia, Italy,

11Interdipartimental University Center of Research "Adaptation and Regeneration of Tissues and Organs - (ARTO)", University of Brescia, Brescia, Italy,
12Department of Orthodontics, Dental School, University of Brescia, Brescia, Italy,

13Dental Materials Science, Discipline of Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong,

14UO of Orthopedic and Traumatology, ASST Spedali Civili of Brescia, Brescia, Italy

Corresponding author: *Domenico Russo, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, Brescia, Italy. Tel: +39 0303996812; Fax: +39 0303996811; E-mail: domenico.russo@unibs.it

Supplementary material
Supplementary Figure S1 Live/Dead staining of BM-hMSCs cultivated for 21 days in G-CH1 and G-CH2 hydrogels in the complete medium FBS or complete medium hPL. Scale bar: 100 µm.
Supplementary Figure S2 (A) SEM micrographs of BM-hMSCs cultivated in G-CH1 scaffold and G-CH2 scaffold in complete medium hPL w/o osteogenic differentiation stimuli at 21 days culture. Scale bar: 5 µm.
(B) SEM micrographs of calcium phosphate deposition in G-CH1 and G-CH2 with BM-hMSCs at day 21 with osteogenic differentiation stimuli and hPL. Scale bars: 20 µm and 5 µm.
Supplementary Figure S3 Evaluation of calcium phosphate deposition with SEM-EDX of G-CH1 in OM with hPL, G-CH1 in complete medium hPL, G-CH2 in OM with hPL and G-CH2 in complete medium hPL at day 21. EDX spectra of treated sample area were reported.
Supplementary Figure S4 Enrichment in KEGG pathways (A) and networks (B) based on STRING annotation tool (https://string-db.org/) applied on the list of 59 protein specific of only hPL independently from sample preparation method. Network edges are based on molecular action (Kmeans clustering n=6). FDR=False Discovery Rate.
Supplementary Figure S5 List of significant protein differences obtained comparing hPL and PPP in not depleted samples, based on Peaks Studio, applying the following filters: Fold change≥1.5; pANOVA<0.05; ≥2unique peptides, in at least 4 of 12 replicates.

UNIPROT Accession	Description	Protein Avg Mass (Da)	protein coverage (%)	Unique peptides	Average Normalized Area NOT depleted hPL	NOT depleted PPP	RATIO (hPL/PPP)	
P02775	CXCL7_HUMAN	Platelet basic protein	13894	19	2	1.65E+06	7.38E+04	22.4
P68871	HBB_HUMAN	Hemoglobin subunit beta	15998	32	2	1.81E+06	2.57E+05	7.0
P69905	HBA_HUMAN	Hemoglobin subunit alpha	15258	30	3	6.93E+06	1.14E+06	6.1
P0DOX2	IGA2_HUMAN	Immunoglobulin alpha-2 heavy chain	48935	32	2	3.95E+05	1.63E+05	2.4
P02751	FINC_HUMAN	Fibronectin	262622	26	47	3.24E+06	5.04E+06	0.6
P02671	FIBA_HUMAN	Fibrinogen alpha chain	94973	53	79	1.51E+07	2.84E+07	0.5
P01593	KVD33_HUMAN	Immunoglobulin kappa variable 1D-33	12848	38	2	8.54E+04	2.01E+05	0.4
Supplementary Figure S6 List of significant protein differences obtained comparing hPL and PPP in depleted samples, based on Peaks Studio, applying the following filters: Fold change≥1.5; pANOVA<0.05; ≥2unique peptides, in at least 4 of 12 replicates.

UNIPROT Accession	Description	Protein Avg Mass (Da)	protein coverage (%)	Unique peptides	Average Normalized Area NOT depleted hPL	NOT depleted PPP	RATIO (hPL/PPP)	
P02775	CXCL7_HUMAN	Platelet basic protein	13894	40	4	3.58E+06	8.59E+04	41.7
P07936	TSP1_HUMAN	Thrombospondin-1	129383	3	2	1.02E+06	4.57E+04	22.3
P68871	HBB_HUMAN	Hemoglobin subunit beta	15998	50	4	5.16E+06	8.50E+05	6.1
P69905	HBA_HUMAN	Hemoglobin subunit alpha	15258	36	6	9.66E+06	2.59E+06	3.7
P06681	CO2_HUMAN	Complement C2	83268	7	6	1.56E+06	5.69E+05	2.7
P0C0L5	CO4B_HUMAN	Complement C4-B	192750	36	2	3.78E+05	1.42E+05	2.7
P59666	DEF3_HUMAN	Neutrophil defensin 3	10245	19	2	3.89E+05	1.54E+05	2.5
P21333	FLNA_HUMAN	Filamin-A	280737	5	7	1.11E+06	4.52E+05	2.5
P15814	IGLL1_HUMAN	Immunoglobulin lambda-like polypeptide 1	22963	11	2	2.28E+06	9.48E+05	4.4
P15169	CBPN_HUMAN	Carboxypeptidase N catalytic chain	52286	4	2	3.95E+05	1.88E+05	2.1
O00187	MASP2_HUMAN	Mannan-binding lectin serine protease 2	75702	6	3	2.03E+05	1.00E+05	2.0
P07360	CO8G_HUMAN	Complement component C8 gamma chain	22277	30	5	1.16E+06	6.43E+05	1.8
P01860	IGHG3_HUMAN	Immunoglobulin heavy constant gamma 3	41287	28	2	4.05E+06	2.39E+06	1.7
P02748	CO9_HUMAN	Complement component C9	63173	34	15	3.39E+06	2.02E+06	1.7
P22792	CPN2_HUMAN	Carboxypeptidase N subunit 2	60557	6	2	1.24E+06	7.49E+05	1.7
Q9Y490	TLN1_HUMAN	Talin-1	269765	2	4	1.85E+06	1.14E+06	1.6
P26927	HGFL_HUMAN	Hepatocyte growth factor-like protein	80320	11	4	5.45E+05	3.50E+05	1.6
P01034	CYTC_HUMAN	Cystatin-C	15799	19	2	1.90E+05	1.23E+05	1.5
P00742	FA10_HUMAN	Coagulation factor X	54732	6	3	6.97E+05	1.19E+05	0.6
P05160	F13B_HUMAN	Coagulation factor XIII B chain	75511	15	8	5.81E+05	1.06E+05	0.5
Q9YK7	FGBP_HUMAN	IgGFe-binding protein	572021	1	4	1.90E+05	3.50E+05	0.5
Q8IU80	TMPSE_HUMAN	Transmembrane protease serine 6	90000	4	2	1.40E+06	2.67E+06	0.5
Q15485	FCN2_HUMAN	Ficolin-2	34001	8	2	3.74E+05	7.38E+05	0.5
Supplementary Figure S7 Enrichment in biological processes (A) and networks (B) based on STRING annotation tool (https://string-db.org/) applied on proteins resulted significantly varied in their abundance by label-free relative quantification. Network edges are based on molecular action (Kmeans clustering n=6).
Supplementary Table 1 Enrichment in biological process based on STRING annotation tool (https://string-db.org/) applied on the list of 59 proteins specific of only hPL independently from sample preparation method.