Supporting Information for

Electrochemical Surface Restructuring of Phosphorus Doped Carbon@MoP Electrocatalysts for Hydrogen Evolution

Huimin Jiang¹,³, Liting Yan¹,*, Shuo Zhang³, Yanchao Zhao³, Xue Yang¹, Yameng Wang¹, Jianxing Shen¹, Xuebo Zhao¹,³*, Lianzhou Wang²,*

¹School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501, Daxue Road, Changqing District, Jinan, 250353, P. R. China

²Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia

³College of Chemical Engineering, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China

*Corresponding authors. E-mail: yanlt@qlu.edu.cn (Liting Yan); zhaoxuebo@upc.edu.cn (Xuebo Zhao); l.wang@uq.edu.au (Lianzhou Wang)

S1 Experimental Section

S1.1 Chemicals

Sodium molybdate(VI) dihydrate (Na₂MoO₄·2H₂O), alpha, alpha'-Dibromo-p-xylene (97 wt%), paraformaldehyde (96 wt%), potassium hydroxide (KOH, ≥85.0 wt%), sulfuric acid (95.0~98.0%), hydrochloric acid (36.0~38.0 wt%) and ethanol (≥ 99.7 wt%) were purchased from Sinopharm Chemical Reagent Co. Ltd. Hydrogen bromide (33 wt% in acetic acid) and commercial molybdenum phosphide (99.5%) were purchased from Aladdin. Carbon rod was purchased from Shandong Haike Chemical Group Co., Nafion solution (5 wt% in a mixture of lower aliphatic alcohols and water) and platinum on carbon (Pt/C, 10 wt%) were purchased from Sigma-Aldrich Co. LLC. All reagents were used without further purification.

S1.2 Material Synthesis

S1.2.1 Synthesis of p-xylendenediphosphonic acid (H₄xdp) [S1]:

The ligand was synthesized by reacting alpha, alpha'-Dibromo-p-xylene with triethyl phosphite and followed by refluxing the obtained oil with conc. hydrochloric acid according to the literature method. Block colorless crystals were obtained from the water solution by slow evaporation.

S1.2.2 Synthesis of [(MoO₂)₂(xdp)(H₂O)₂]·2H₂O [S1]

Mo-MOF precursor was prepared according to previous work [S1]. In a typical procedure, Na₂MoO₄·2H₂O (0.240 g, 1.0 mmol) was stirred together with p-xylendenediphosphonic acid (H₄xdp) (0.140 g, 0.5 mmol) in 16ml deionised water. The pH of the solution was adjusted to pH 1 by dropwise addition of conc. hydrochloric acid. The acidified solution was then placed in a 25 cm³ Ace pressure tube and heated at 120 °C for 15 h. The resultant white crystalline material was thoroughly washed with deionised water several times and dried at 80 °C for 12 h under vacuum.
\[A_{ECSA} = \frac{\text{electrochemical capacitance}}{40 \, \text{MF cm}^{-2}} \text{per cm}^2_{ECSA} \] (S1)
S1.6 Calculated Electrochemically Active Surface Area

MoP@PC:

\[
\text{MoP@PC} = \frac{0.9 \text{ mF cm}^{-2}}{40 \mu \text{F cm}^{-2} \text{ per cm}^2_{\text{ECSA}}} = 22.9 \text{ cm}^2
\]

(S2)

A-MoP@PC:

\[
\text{A-MoP@PC} = \frac{5.2 \text{ mF cm}^{-2}}{40 \mu \text{F cm}^{-2} \text{ per cm}^2_{\text{ECSA}}} = 148.7 \text{ cm}^2
\]

(S3)

S1.7 DFT Calculations

All calculations were performed using Vienna Ab-initio Simulation Package (VASP) of MedeA software, the generalized gradient approximation (GGA) of Perdew–Becke–Ernzerhof (PBE) is used for the exchange-correlation functional [S3-S5] The MoP@C\textsubscript{240} model was built by encapsulating a MoP cluster with a graphitic carbon cage C\textsubscript{240}, which performed well in previous study [S6, S7]. In the construction of model MoP@C\textsubscript{239}P\textsubscript{1}, and C\textsubscript{239}P\textsubscript{1}, P atom was introduced by substituting C atom in the carbon cage. All structures were fully relaxed to the ground state and spin-polarization was considered in all calculations. The convergence of energy and forces were set to 1×10^{-4} eV and 0.01 eV Å-1, respectively. An energy cutoff of 400 eV and a Gamma k-point sampling were found to get convergent geometry. For HER, the free energies of the intermediates were obtained by $\Delta G(H^*) = \Delta E(H^*) + \Delta ZPE - T\Delta S$, where $\Delta E(H^*)$, ΔZPE and ΔS is the binding energy, zero-point energy change and entropy change of adsorption H, respectively. The ΔZPE and ΔS were obtained according to the method reported by Norskov [S8, S9].

The adsorption energy (E_{ads}) is given by

\[
E_{\text{ads}} = E_{\text{adsorbed slab + adsorbate}} - (E_{\text{adsorbed slab}} + E_{\text{adsorbate}})
\]

where $E_{\text{adsorbed slab + adsorbate}}$, $E_{\text{adsorbed slab}}$, and $E_{\text{adsorbate}}$ correspond to the total energy of the optimized system, the adsorbed slab, and the isolated adsorbate molecule, respectively.

S2 Supplementary Figures and Tables

![Fig. S1 XRD patterns of Mo-MOF](image_url)
Fig. S2 TGA of Mo-MOF precursor in N₂ atmosphere

Fig. S3 N₂ adsorption/desorption isotherm at 77 K of Mo-MOF

Fig. S4 LSV curves of MoP calcined at 900-1100 °C in 0.5 M H₂SO₄
Fig. S5 a) N$_2$ adsorption/desorption isotherm at 77 K and b) corresponding NLDFT pore diameter distribution of MoP@PC

Fig. S6 XPS spectrum of MoP@PC and A-MoP@PC

Fig. S7 CV curves of A-MoP@PC activation for different time
Fig. S8 Cyclic voltammograms of a) MoP@PC and b) A-MoP@PC after activation with various scan rates.

Fig. S9 a) N₂ adsorption/desorption isotherm at 77 K and b) corresponding NLDFT pore diameter distribution of A-MoP@PC.

Fig. S10 a) and b) SEM image of A-MoP@PC after the stability test.
Fig. S11 a) TEM and b) HRTEM of A-MoP@PC after the stability test

Fig. S12 High resolution XPS of a) Mo 3d, b) P 2p, c) C 1s and d) O 1s of A-MoP@PC after the stability test

Fig. S13 HER polarization curves of MoP@PC activation for different time after addition of 5 mM SCN\(^-\) ions in 0.5 M H\(_2\)SO\(_4\)
Fig. S14 Chronoamperometric stability test of commercial MoP for HER in **a)** 0.5 M H$_2$SO$_4$ and **b)** 1.0 M KOH

Fig. S15 a-c Computational models of C. **d-f** Configurations of adsorbates of structures on C for HER
Fig. S16 a-c Computational models of PC. d-f Configurations of adsorbates of structures on PC for HER

Fig. S17 a-c Computational models of A-MoP@C. d-f Configurations of adsorbates of structures on A-MoP@C for HER
Fig. S18 a-c Computational models of A-MoP@PC. d-f Configurations of adsorbates of structures on A-MoP@PC for HER

Fig. S19 Tafel plots of MoP@PC, A-MoP@PC and Pt/C in 1.0 M KOH
Table S1 Comparison of HER activity for A-MoP@PC and recently reported noble metal-free hydrogen evolution catalysts

Catalyst	η_{10} (mV)	Tafel slope (mV dec$^{-1}$)	Electrolyte	Refs.
N@MoPC$_x$	108	69.4	0.5 M H$_2$SO$_4$	[S2]
MoS$_2$-Me-10%	136	37	0.5 M H$_2$SO$_4$	[S10]
WS$_2$	137	54	0.5 M H$_2$SO$_4$	[S11]
N-MoS$_2$/CN	114	46.8	0.5 M H$_2$SO$_4$	[S12]
Cu3P@NPPC	89	76	0.5 M H$_2$SO$_4$	[S13]
meso-Fe-MoS$_2$/CoMo$_2$S$_4$	122	90	1.0 M KOH	[S14]
O-CoP	98	59.9	1.0 M KOH	[S15]
Fe-N$_2$ SAs/NPC	202	123	1.0 M KOH	[S16]
NiCoFe@C	260	105	1.0 M KOH	[S17]
Mn-doped NiS$_2$/Ni foam	71	57	1.0 M KOH	[S18]
MoP@NCHSs	92	62	1.0 M KOH	[S19]
0.02Ni–MoP	102	58.1	0.5 M H$_2$SO$_4$	
	162	102.6	1.0 M KOH	
Fe$_3$C-Co/NC	298	100.3	0.5 M H$_2$SO$_4$	
	238	108.8	1.0 M KOH	
CoP/NiCoP NTs	125	71	0.5 M H$_2$SO$_4$	
	133	88	1.0 M KOH	
np-\(\eta\)-MoC NSs	122	53	0.5 M H$_2$SO$_4$	
	119	39	1.0 M KOH	
MoP@NPSC	71	75	0.5 M H$_2$SO$_4$	
	50	45	1.0 M KOH	
Ti-MoP	93.6	44.5	0.5 M H$_2$SO$_4$	
MoP/CDs	70	77.49	1.0 M KOH	
P-MoP/Mo$_3$N	89	53	0.5 M H$_2$SO$_4$	
	89	78	1.0 M KOH	
N-MoP-800	175	69	0.5 M H$_2$SO$_4$	
	125	69	1.0 M KOH	
Ni$_3$P/MoP-CC	290	63	0.5 M H$_2$SO$_4$	
	78	64	1.0 M KOH	
A-MoP@PC	**68**	**41**	0.5 M H$_2$SO$_4$	This work
	67	**40**	1.0 M KOH	

Supplementary References

[S1] A.A. Ayi, A.D. Burrows, M.F. Mahon, V.M. Sebestyen, A molybdenum diphosphonate network structure exhibiting reversible dehydration and selective uptake of methanol, CrystEngComm **15**, 9301 (2013). https://doi.org/10.1039/c3ce40484f

[S2] Y. Huang, J. Ge, J. Hu, J. Zhang, J. Hao et al., Nitrogen-doped porous molybdenum carbide and phosphide hybrids on a carbon matrix as highly effective electrocatalysts for the hydrogen evolution reaction. Adv. Energy Mater. **8**, 1701601 (2018). https://doi.org/10.1002/aenm.201701601

[S3] I.J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. **77**, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
[S4] I.G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

[S5] I.K. Hoshino, F. Shimojo, Ab initio molecular dynamics for expanded and compressed liquid alkali metals. J. Phys.: Condens. Matter 8, 9315 (1996). https://doi.org/10.1088/0953-8984/8/47/022

[S6] I.J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang et al., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 8, 14969 (2017). https://doi.org/10.1038/ncomms14969

[S7] I.X. Cui, P. Ren, D. Deng, J. Deng, X. Bao, Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 9, 123 (2016). https://doi.org/10.1039/C5EE03316K

[S8] I.H. Zhang, Z. Ma, J. Duan, H. Liu, G. Liu et al., Active sites implanted carbon cages in core–shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10, 684 (2015). https://doi.org/10.1021/acs.nano.5b05728

[S9] I. J. K. Norskov, T. Bligaard, A. Logadottir, J. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005). https://doi.org/10.1149/1.1856988

[S10] I.H. Kwak, I.S. Kwon, T.T. Debela, J. Seo, J.P. Ahn et al., Two-dimensional MoS2–melamine hybrid nanostructures for enhanced catalytic hydrogen evolution reaction. J. Mater. Chem. A 7, 22571 (2019). https://doi.org/10.1039/C9TA07802A

[S11] M. Wang, L. Zhang, M. Huang, Q. Zhang, X. Zhao et al., One-step synthesis of a hierarchical self-supported WS2 film for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 7, 22405 (2019). https://doi.org/10.1039/C9TA07868A

[S12] H. Wang, X. Xiao, S. Liu, C.L. Chiang, X. Kuai et al., Structural and electronic optimization of MoS2 edges for hydrogen evolution. J. Am. Chem. Soc. 141, 18578 (2019). https://doi.org/10.1021/jacs.9b09932

[S13] R. Wang, X.Y. Dong, J. Du, J.Y. Zhao and S.Q. Zang, MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 30, 1703711(2018). https://doi.org/10.1002/adma.201703711

[S14] Y. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia et al., Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic–metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 14, 4141 (2020). https://doi.org/10.1021/acsnano.9b08904

[S15] Z. Liu, J. Ai, M. Sun, F. Han, Z. Li et al., Phosphorous-doped graphite layers with outstanding electrocatalytic activities for the oxygen and hydrogen evolution reactions in water electrolysis. Adv. Funct. Mater. 30, 1910741 (2020). https://doi.org/10.1002/adfm.201910741

[S16] Y. Pan, S. Liu, K. Sun, X. Chen, B. Wang et al., A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site:a superior trifunctional catalyst for overall water splitting and Zn–air batteries. Angew. Chem. Int. Ed. 57, 8614 (2018). https://doi.org/10.1002/anie.201804349

[S17] X. Lu, X. Tan, Q. Zhang, R. Daiyan, J. Pan et al., Versatile electrocatalytic processes realized by Ni, Co and Fe alloyed core coordinated carbon shells. J. Mater. Chem. A 7, 12154 (2019). https://doi.org/10.1039/C9TA01723B
L. Zeng, Z. Liu, K. Sun, Y. Chen, J. Zhao et al., Multiple modulations of pyrite nickel sulfides via metal heteroatom doping engineering for boosting alkaline and neutral hydrogen evolution. J. Mater. Chem. A 7, 25628 (2019). https://doi.org/10.1039/C9TA08030A

D. Zhao, K. Sun, W.C. Cheong, L. Zheng, C. Zhang et al., Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO₂/CH₄ separation. Angew. Chem. Int. Ed. 58, 2 (2019). https://doi.org/10.1002/anie.201813331

W. Xiao, L. Zhang, D. Bukhvalov, Z. Chen, Z. Zou et al., Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy 70, 104445 (2020). https://doi.org/10.1016/j.nanoen.2020.104445

C.C. Yang, S.F. Zai, Y.T. Zhou, L. Du and Q. Jiang, Fe₃C-Co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER. Adv. Funct. Mater. 25, 1901949 (2019). https://doi.org/10.1002/adfm.201901949

Y. Lin, K. Sun, S. Liu, X. Chen, Y. Cheng et al., Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv. Energy Mater. 9, 1901213 (2019). https://doi.org/10.1002/aenm.201901213

C. Tang, H. Zhang, K. Xu, Q. Zhang, J. Liu et al., Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction. J. Mater. Chem. A 7, 18030 (2019) https://doi.org/10.1039/C9TA04374H

Y. Jiao, H. Yan, R. Wang, X. Wang, X. Zhang et al., Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst. ACS Appl. Mater. Interfaces 12, 49596 (2020). https://doi.org/10.1021/acsami.0c13533

I. Jang, K. Im, H. Shin, K.-S. Lee, H. Kim et al., Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production. Nano Energy 78, 105151 (2020). https://doi.org/10.1016/j.nanoen.2020.105151

H. Song, Y. Li, L. Shang, Z. Tang, T. Zhang et al., Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy 72, 104730 (2020). https://doi.org/10.1016/j.nanoen.2020.104730

Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang et al., Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem. Int. Ed. 60, 6673 (2021). https://doi.org/10.1002/anie.202016102

Y. Li, N.P. Nidamanuri, A. Jiang, Z. Wang, Q. Li et al., In situ construction of tandem nitrogen-doped MoP nanocrystals for high-efficient electrocatalytic hydrogen evolution. Electrochimica Acta 342, 136059 (2020). https://doi.org/10.1016/j.electacta.2020.136059

Y. Xu, M. Yan, Z. Liu, J. Wang, Z. Zhai et al., Nanostructures Ni₃P/MoP @ N – doping porous carbon for efficient hydrogen evolution over a broad pH range. Electrochimica Acta 363, 137151 (2020). https://doi.org/10.1016/j.electacta.2020.137151