Melatonin Attenuates Potato Late Blight by Disrupting Cell Growth, Stress Tolerance, Fungicide Susceptibility and Homeostasis of Gene Expression in *Phytophthora infestans*

Shumin Zhang¹,²†, Xianzhe Zheng ††, Russel J. Reiter³, Shun Feng¹, Ying Wang¹, Sen Liu⁴, Liang Jin*¹, Zhengguo Li¹, Raju Datla⁵ and Maozhi Ren*¹

¹ School of Life Sciences, Chongqing University, Chongqing, China, ² School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China, ³ Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States, ⁴ College of Agronomy and Biotechnology, Southwest University, Chongqing, China, ⁵ Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada

Phytophthora infestans (*P. infestans*) is the causal agent of potato late blight, which caused the devastating Irish Potato Famine during 1845-1852. Until now, potato late blight is still the most serious threat to potato growth and has caused significant economic losses worldwide. Melatonin can induce plant innate immunity against pathogen infection, but the direct effects of melatonin on plant pathogens are poorly understood. In this study, we investigated the direct effects of melatonin on *P. infestans*. Exogenous melatonin significantly attenuated the potato late blight by inhibiting mycelial growth, changing cell ultrastructure, and reducing stress tolerance of *P. infestans*. Notably, synergistic anti-fungal effects of melatonin with fungicides on *P. infestans* suggest that melatonin could reduce the dose levels and enhance the efficacy of fungicide against potato late blight. A transcriptome analysis was carried out to mine downstream genes whose expression levels were affected by melatonin. The analysis of the transcriptome suggests that 66 differentially expressed genes involved in amino acid metabolic processes were significantly affected by melatonin. Moreover, the differentially expressed genes associated with stress tolerance, fungicide resistance, and virulence were also affected. These findings contribute to a new understanding of the direct functions of the melatonin on *P. infestans* and provide a potential eco-friendly biocontrol approach using a melatonin-based paradigm and application to prevent potato late blight.

Keywords: *Phytophthora infestans*, melatonin, potato late blight, stress tolerance, fungicide susceptibility, transcriptome
INTRODUCTION

Phytophthora infestans is a notorious oomycete pathogen, as the causal agent of potato late blight, which triggered the Great Irish Famine in the mid-nineteenth century (Pearson, 2011). Potato late blight is the most serious threat to potato plants and causes significant economic losses worldwide (Haeverkort et al., 2008). In recent decades, several chemical fungicides have been developed and applied for controlling potato late blight by targeting the typical mechanisms of impairing the respiratory chain, disrupting metabolic homeostasis and inhibiting RNA polymerase of P. infestans (Matheron and Porchas, 2000; Mitani et al., 2001; Gullino et al., 2010). However, the highly complex and huge genome of P. infestans confers this pathogen the capacity of rapid evolution to overcome these chemical fungicides by altering a single gene (Haas et al., 2009). Moreover, it is important that the environmental, health and safety concerns associated with the chemical fungicides be taken into consideration. Thus, the need to develop alternatives to fungicide-based approaches that offers less toxicity, more target-specific and environmental-sustainability is desired and preferred.

Melatonin, a natural product also referred as N-acetyl-5-methoxytryptamine, is widely present in animals, plants, and microbes (Arendt, 2005; Pandi-Perumal et al., 2006; Reiter et al., 2014). Initially, its function is known to regulate circadian rhythms. Subsequently, other functions including the modulation of mood, sleep, metabolism, and antioxidant are also established in diverse organisms (Reiter et al., 2009, 2015, 2016; Arnao and Hernandezruiz, 2015; Manchester et al., 2015). Specifically, melatonin has been reported to be effective in inhibiting the cell growth in some human pathogens by impairing their mitochondrial functions, inhibiting biofilm formation, and reducing intracellular substrates (Tekbas et al., 2008; Elmahallawy et al., 2014; Yang et al., 2014). For example, melatonin inhibits Leishmania via impairing the mitochondrial functions (Elmahallawy et al., 2014). Besides, melatonin mediated inhibition of the growth of a variety of cancer cells, such as hepatoma via the interference of fatty acid metabolism (Blask et al., 1999a,b; Sauer et al., 2001), colorectal cancer via the decrease of MT1 (melatonin receptor 1) (Farriol et al., 2000; Nemeth et al., 2011), pituitary tumor via the disturbance of nuclear receptor (Karasek et al., 2003). Importantly, a number of clinical trials have also confirmed that the use of melatonin is an effective measure to control a variety of disease, including the infectious diseases caused by pathogenic bacteria or virus, such as sepsis, Herpes (Sanchezbarcelo et al., 2010).

In plants, melatonin increases the resistance against pathogens via activating the expression of defense genes, elevating NO production, and thickening the cell wall (Yin et al., 2013; Lee et al., 2014, 2015; Qian et al., 2015; Shi et al., 2015, 2016; Zhao et al., 2015; Lee and Back, 2016; Wei et al., 2017). For example, various pathogenesis-related (PR) and defense genes that are activated by salicylic acid (SA) and ethylene (ET), have also been shown to be induced by melatonin in the Arabidopsis and tobacco (Lee et al., 2014, 2015). Melatonin also induces NO production, which plays an important role in plant innate immunity response against bacterial pathogen attacks (Shi et al., 2015). It is also observed that melatonin is effective for thickening cell wall by inducing the accumulation of cellulose, galactose, xylose, and callose in plants to prevent pathogen infection (Qian et al., 2015; Zhao et al., 2015). Recently, studies on melatonin against plant pathogens indirectly by triggering the plant immunity have been explored. However, little is known about the direct interaction between melatonin and plant pathogens (Arnao and Hernandezruiz, 2015).

In this study, we investigated the direct effects of melatonin on P. infestans. The results and observations showed that the mycelial growth, cell ultrastructure, stress tolerance, and fungicide susceptibility of P. infestans could be significantly altered in the presence of melatonin. Because of the lack of the potato varieties resistant to late blight, the control of this notorious disease largely depends on the high dosage and frequency of fungicide application. Interestingly, the dosage of fungicide can be significantly reduced when it was combined with melatonin, which would be important for human health and the environment. Majority of the previous transcriptome studies focused on the host-P. infestans interaction (Gao et al., 2013; Ali et al., 2014; Frades et al., 2015; Ah-Fong et al., 2017), but our analysis of transcriptome were focused to reveal the underlying mechanism of melatonin against P. infestans. The key findings of this study will be useful to explore the melatonin-based alternate approaches for the late blight control in potato.

MATERIALS AND METHODS

P. infestans Strain, Media, and Culture Conditions

T30-4 (A1 mating type) is the sequenced P. infestans isolate that is commonly used in laboratory research worldwide (Haas et al., 2009). It was provided by Dr. Suomeng Dong, Nanjing Agriculture University, China. The strain was cultured on Rye A agar at 18°C in the dark as described in previous report (Avrova et al., 2003).

Effects of Melatonin on Late Blight of Potato Infected by P. infestans T30-4

P. infestans strain T30-4 was cultured on Rye A agar at 18°C in the dark for 14 days (Avrova et al., 2003). Then, the potato leaves and the tuber slices (2 cm 3 cm 3 mm in size) were sprayed with melatonin solution in varying concentrations (0, 1, 3, 6, 8, 10 mM) dissolved in DMSO, and the same volumes of DMSO as the control, and the water also as the control (CK) (excluding the influence on leaves and tubers by melatonin or DMSO). Then, the 7-mm-diameter T30-4 mycelial disks were put on the potato tuber slices and leaves (the melatonin team and DMSO team), then incubated at 18°C with a 12-h/12-h light/dark cycle for 5 days. The size of each lesion was measured then analyzed with the Student’s t-test. Three biological repeats were performed for each experiment.
Measuring the Effects of Melatonin on Mycelial Growth of *P. infestans*

The 7-mm-diameter T30-4 mycelial disks were cultured on Rye A agar plates supplemented with varying concentrations of melatonin solution (0, 1, 1.5, 2, 3, and 5 mM), and the same volumes of DMSO as the control. The diameters of the colony were measured at the 9th day and 14th day. The inhibition rates were calculated using the diameter of control colony (D), drug-treated colony (M) as follows: \(\frac{(D - M)}{(D - 0.7)} \times 100\%\). All experiments were repeated three times.

Measurements of the Effects of Melatonin on Cell Viability of *P. infestans*

MTT, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide can be converted to formazan by the
FIGURE 2 | Melatonin can suppress the growth of *P. infestans* in vitro. (A) Mycelial phenotypes of *P. infestans* grown on the medium supplemented with melatonin for 9 days (upper panel) and 14 days (below panel). The strain T30-4 was cultured for on Rye A agar amended with 3 or 5 mM melatonin. (B) Dose-dependent effect of melatonin on the mycelial inhibition rate of T30-4 at 9 and 14 days. The strain T30-4 was treated with DMSO (control) and melatonin at 1, 1.5, 2, 3, and 5 mM, respectively (*P* < 0.05, **P* < 0.01, ***P* < 0.001). Each data point was averaged of three independent biological replicates. (C) MTT reduction assay showed that cell viability of *P. infestans* T30-4 under melatonin treatment for 24 h. The strain T30-4 was treated with DMSO (control) and melatonin at 3, 6, 10 mM (*P* < 0.05, **P* < 0.01, ***P* < 0.001).

mitochondrial reductase of living cells. The 7-mm-diameter T30-4 mycelial disks were cultured on 96-well plates supplemented with DMSO (as control), melatonin (0, 3, 6, 10 mM), Infinito (0, 0.01, 0.05, 0.1 ml/L, ml/L stands for the volume of fungicide in 1 L water), and various combinations of melatonin + Infinito (3 + 0.01, 6 + 0.05, 10 mM + 0.1 ml/L), and incubated at 18°C for 24 h. After 24 h, 10 μL MTT solution was added and incubated at 18°C for 4 h. Then, the samples were measured in an automatic microplate reader working at a wavelength of 490 nm. The cell viability (%) = [A (drug) – A (mock)]/[A (control) – A (mock)].

Electron Microscopy
The T30-4 was cultured in liquid Rye A agar medium containing 6 mM melatonin and the same volumes of DMSO were set as the control, then incubated at 18°C in the dark for 9 days. Next, the mycelia were collected, fixed, observed for scanning electron microscope (SEM) and transmission electron microscope (TEM) as described in the literatures (Cao et al., 2014; Chen et al., 2017).

Stress Tolerance Assay
(1). The 7-mm-diameter T30-4 mycelial disks were cultured on Rye A agar plates with different supplements: DMSO (as a control), melatonin (3 mM), NaCl (0.1 M)/H2O2 (0.1 mM), and a combination of melatonin + NaCl/H2O2. Then the disks were incubated at 18°C in the dark for 14 days.

(2). The 7-mm-diameter T30-4 mycelial disks were cultured on Rye A agar plates with different treatments: DMSO (as a control), melatonin (3 mM), UV (1,350 Mw/mm²) for 30 mins/37°C for 2 h/4°C for 24 h, and a combination of melatonin + UV/37°C/4°C. Then, the disks were incubated at 18°C in the dark for 14 days.
(3). After the 14 days, we measured the diameter of the colony and calculated the inhibition rates. All experiments were repeated three times.

Analysis of Synergism/Antagonism Effect of the Combination of Melatonin and Fungicide on *P. infestans*

Infinito is a famous fungicide, manufactured by Bayer (Germany), mainly composed of Fluopicolide and Propamocarb hydrochloride. The 7-mm-diameter T30-4 mycelial disks were cultured on Rye A agar plates supplemented with DMSO (as control), melatonin solution in DMSO (0, 1, 2, 3 mM), fungicide (0, 0.001, 0.005, 0.01 ml/L, ml/L stands for the volume of fungicide in 1 L water), and various combinations of melatonin + Infinito (1 + 0.001, 1 + 0.005, 1 + 0.01, 2 + 0.001, 2 + 0.005, 2 + 0.01, 3 + 0.001, 3 + 0.005, 3 mM + 0.01 ml/L), and incubated at 18°C for 14 days. Then, the diameters of the colony were measured and the inhibition rates were analyzed.
FIGURE 4 | Growth pattern of *P. infestans* in response to the treatment of DMSO, melatonin, stress, and melatonin + stress. Colony morphology of *P. infestans* grown on Rye A agar medium treated by (A–L) DMSO, 3 mM melatonin, UV, 3 mM melatonin + UV, 0.1 M NaCl, 3 mM melatonin + 0.1 M NaCl, 0.1 mM H$_2$O$_2$, 3 mM melatonin + 0.1 mM H$_2$O$_2$, 37°C, 3 mM melatonin + 37°C, 4°C, 3 mM melatonin + 4°C. (M) Colony diameter of *P. infestans* grown on Rye A agar medium treated by DMSO, 3 mM melatonin, UV/NaCl/H$_2$O$_2$/37°C/4°C, 3 mM melatonin + UV/NaCl/H$_2$O$_2$/37°C/4°C. Capitalized letters indicate significant difference, *p* < 0.01. by using the Student's *t*-test. Each datum was from the average of three independent biological replicates. The interaction between melatonin and fungicide (Infinito) was quantitatively measured using Combination index (CI) value (Xiong et al., 2017). The levels of reagent interaction were defined following the previous report (Chou, 2006), synergism (CI < 1), additive
FIGURE 5 | Synergistic growth inhibition of *P. infestans* induced by co-application of the melatonin and Infinito. (A) Colony morphology on Rye A agar medium that contains DMSO, 3 mM melatonin (IC50), 0.005 ml/L Infinito (IC50), 2 mM melatonin + 0.0005 ml/L Infinito (IC50), 3 mM melatonin + 0.005 ml/L Infinito. (B) Mycelial inhibition rate of *P. infestans* T30-4 under DMSO, melatonin, Infinito, and melatonin + Infinito treatment for 14 days. Each data point was averaged from three independent biological replicates. Capitalized letters indicate significant difference, *p* < 0.01. (C) Fa-CI curve showed synergism (CI < 1) generated by melatonin + Infinito treatment. (D) MTT reduction assay showed that cell viability of *P. infestans* T30-4 under DMSO, melatonin, Infinito, and melatonin + Infinito treatment for 24 h. Lower case letters indicate significant difference, *p* < 0.05.

Pathogenicity Test of *P. infestans* by Using the Combination of Melatonin and Fungicide

P. infestans strain T30-4 was cultured on Rye A agar at 18°C in the dark for 14 days (Avrova et al., 2003). Then, potato leaves and tuber slices (2 cm × 3 cm × 3 mm in size) were sprayed with DMSO (as control), melatonin solution (3, 6, 8 mM), Infinito (0.0025, 0.025, 0.25 ml/L), and melatonin + Infinito (3 + 0.0025, 3 + 0.025, 3 + 0.25, 6 + 0.0025, 6 + 0.025, 6 + 0.25, 8 + 0.0025, 8 + 0.025, 8 mM + 0.25 ml/L). The 7-mm-diameter T30-4 mycelial disks were put on the potato tuber slices and leaves, and incubated at 18°C with a 12-h/12-h light/dark cycle for 5 days. Then, the size of each lesion was measured and analyzed with the Student’s *t*-test. Three biological repeats were performed for each experiment.

Transcriptome Assay and the Dataset Analysis

The T30-4 was chosen for the RNA-Seq (Haas et al., 2009). The T30-4 was cultured for 14 days in liquid Rye A agar medium at 18°C in the dark. Then the mycelia were transplanted to liquid Rye A agar medium containing 3 mM melatonin (IC50: half maximal inhibitory concentration) and the same volumes of DMSO as the control, where mycelia were cultured at 18°C in the dark for 24 h. The mycelia were collected and frozen in liquid nitrogen for transcriptome studies. The total RNA was extracted from the samples using the RNAprep Pure Plant Kit (TianGen Biotech, Beijing, China). Three biological replicates were employed in the transcriptome experiments. The sequencing libraries were generated using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA) following the manufacturer's recommendations. These libraries were sequenced on an Illumina Hiseq platform and 125 bp/150 bp paired-end reads were generated. Reference genome and
FIGURE 6 | Disease symptoms of potato late blight on leaves and tubers slices infected by *P. infestans* for 5 days in the presence of melatonin and Infinito. (A) Disease symptoms of potato leaves with the treatment of DMSO, 6 mM melatonin, 0.025 mL/L Infinito, 6 mM melatonin + 0.025 mL/L Infinito, respectively, after 5 days. (B) Disease symptoms of potato tuber slices with the treatment of DMSO, 6 mM melatonin, 0.025 mL/L Infinito, 6 mM melatonin + 0.025 mL/L Infinito, respectively, after 5 days. (C) Lesion size of leaves with the treatment of 6 mM melatonin, 0.025 mL/L Infinito, 6 mM melatonin + 0.025 mL/L Infinito, respectively, after 5 days. (D) Lesion size of tuber slices with the treatment of 6 mM melatonin, 0.025 mL/L Infinito, 6 mM melatonin + 0.025 mL/L Infinito, respectively, after 5 days. (E) The lesion size of leaves infected by *P. infestans* treated with 6 mM melatonin, 0.025 mL/L Infinito, 3 mM melatonin + 0.0025 mL/L Infinito, respectively, after 5 days. (F) The lesion size of tuber slices under the treatment of 6 mM melatonin, 0.025 mL/L Infinito, 3 mM melatonin + 0.0025 mL/L Infinito, respectively, after 5 days. Each data point was averaged of three independent biological replicates. Capitalized letters indicate significant difference, *p* < 0.01.
was performed using the DESeq R package (1.18.0). Genes with an adjusted \(p < 0.05 \) found by DESeq were regarded as the differentially expressed ones. Gene Ontology (GO) enrichment analysis of differentially expressed genes was implemented by the GO seq R package. GO terms with corrected \(p < 0.05 \) were considered as significant ones. The KOBAS software was used to test the statistical enrichment of differential expression genes in KEGG pathway. The transcriptome datasets were submitted to NCBI and the accession number—PRJNA415528.

RESULTS AND DISCUSSION

Potato Late Blight Can Be Significantly Attenuated by Melatonin in Vivo

It has been proven that melatonin displays multiple effects on the cell growth and development of plants, animals and humans (Pandi-Perumal et al., 2006; Reiter et al., 2014), but the impact of melatonin on *P. infestans* has not been explored.
For this aim, the T30-4 strain, was inoculated on the potato leaves and tuber slices which were pretreated with DMSO (mock) and various concentrations of melatonin solution. The in vivo assay showed that the lesion sizes of leaves and tuber slices infected by P. infestans were gradually reduced by increasing melatonin concentrations, and no toxic effects to leaves or tuber even at the highest concentration of melatonin were observed (Figures 1A–D). The occurrence of potato late blight can be prevented on leaves and tuber slices when the concentration of melatonin reached 10 mM (Figures 1A–D). Thus, these in vivo observations suggested that melatonin could directly suppress the cell growth of potato late blight, which was consistent with the previous studies that exogenous melatonin directly resists the human pathogens in vitro, including Leishmania infantum, Candida parapsilosis, Staphylococcus aureus (Tekbas et al., 2008; Elmahallawy et al., 2014; Yang et al., 2014).

Influencing the Ultrastructure of P. infestans by melatonin

To understand the growth inhibition phenotypes of P. infestans caused by melatonin treatment, the cell ultrastructure of the melatonin-treated P. infestans was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). As shown in Figures 3A,B, the disorganized hyphal growth pattern, and aberrant and distorted hyphae were observed in melatonin-treated P. infestans in comparison with the untreated controls; this could result in the inhibition of hyphal growth of P. infestans. In melatonin-treated P. infestans, the branched hyphae and blunt hyphal tip (Figures 3B,D), possibly was a result of suppressing the apical dominance of the hyphal tip that could lead to the inhibition of hyphal elongation (Semighini and Harris, 2008; Zhao et al., 2011). Furthermore, the TEM analysis showed that more vacancies and fewer lipid droplets appeared in the cells of P. infestans with melatonin treatment compared to the control (Figures 3E,F), indicating that the melatonin treatment resulted in the decrease of lipid droplets.

TABLE 1 | Nineteen GO terms related to metabolism in top30 GO terms in transcriptome.

Description	Classification	Number of genes up regulated	Number of genes down regulated
Organic acid metabolic process	Organic acid metabolic process	27	30
Oxoacid metabolic process	Organic acid metabolic process	27	30
Carboxylic acid metabolic process	Organic acid metabolic process	27	29
Pyruvate metabolic process	Organic acid metabolic process	0	12
Branched-chain amino acid biosynthetic process	Cellular amino acid metabolic process	0	8
Cellular amino acid biosynthetic process	Cellular amino acid metabolic process	17	8
Branched-chain amino acid metabolic process	Cellular amino acid metabolic process	0	8
ATP generation from ADP	Nucleotide metabolic process	0	11
ADP metabolic process	Nucleotide metabolic process	0	11
Purine ribonucleoside diphosphate metabolic process	Nucleoside phosphate metabolic process	0	11
Ribonucleoside diphosphate metabolic process	Nucleoside phosphate metabolic process	0	11
Purine nucleoside diphosphate metabolic process	Nucleoside phosphate metabolic process	0	11
rRNA processing	Nucleic acid metabolic process	14	0
rRNA metabolic process	Nucleic acid metabolic process	14	0
ncRNA processing	Nucleic acid metabolic process	22	0
RNA processing	Nucleic acid metabolic process	32	0
Oxidation-reduction process	Single-organism metabolic process	44	45
Single-organism carbohydrate catabolic process	Carbohydrate catabolic process	1	11
Glycolytic process	Carbohydrate catabolic process	0	11

The classification based on quick GO, website: http://www.ebi.ac.uk/QuickGO/.
TABLE 2 | Twenty-six KEGG pathways related to metabolism in top30 KEGG pathways in transcriptome.

Description	Classification	Number of genes up regulated	Number of genes down regulated
Glycolysis/Gluconeogenesis	Metabolism; Carbohydrate metabolism	4	16
Pyruvate metabolism	Metabolism; Carbohydrate metabolism	4	6
Galactose metabolism	Metabolism; Carbohydrate metabolism	0	4
Fructose and mannose metabolism	Metabolism; Carbohydrate metabolism	0	3
Pentose and glucuronate interconversions	Metabolism; Carbohydrate metabolism	5	1
Ascorbate and aldarate metabolism	Metabolism; Carbohydrate metabolism	3	0
Glycolipid metabolism	Metabolism; Lipid metabolism	4	6
Alanine, aspartate and glutamate metabolism	Metabolism; Amino acid metabolism	6	1
Cysteine and methionine metabolism	Metabolism; Amino acid metabolism	4	0
Valine, leucine and isoleucine degradation	Metabolism; Amino acid metabolism	6	0
Valine, leucine and isoleucine biosynthesis	Metabolism; Amino acid metabolism	0	4
Arginine and proline metabolism	Metabolism; Amino acid metabolism	9	1
Glutathione metabolism	Metabolism; Metabolism of other amino acids	3	4
Cysteineamino acid metabolism	Metabolism; Metabolism of other amino acids	3	3
Beta-Alanine metabolism	Metabolism; Metabolism of other amino acids	3	0
Taurine and hypotaurine metabolism	Metabolism; Metabolism of other amino acids	1	1
Pyrimidine metabolism	Metabolism; Nucleotide metabolism	19	2
Purine metabolism	Metabolism; Nucleotide metabolism	19	5
Biosynthesis of amino acids	Metabolism; Overview	9	16
Carbon metabolism	Metabolism; Overview	4	20
Degradation of aromatic compounds	Metabolism; Overview	1	2
2-Oxocarboxylic acid metabolism	Metabolism; Overview	2	5
Pantothenate and CoA biosynthesis	Metabolism; Metabolism of cofactors and vitamins	0	5
Porphyrin and chlorophyll metabolism	Metabolism; Metabolism of cofactors and vitamins	2	3
Folate biosynthesis	Metabolism; Metabolism of cofactors and vitamins	3	0
Nitrogen metabolism	Metabolism; Energy metabolism	2	3

The classification based on the KEGG pathway database, http://www.genome.jp/kegg/.

droplets in *P. infestans*. It is well-known that lipid droplets play an important role in various biological processes, such as facilitation of cell growth, propagation as well as infection of fungus, viral and bacterium (Bago et al., 2002; Stehr et al., 2012; Radulovic et al., 2013; Kobae et al., 2014; Bi et al., 2016). Thus, the reduction of lipid droplets could result in the inhibition of growth of *P. infestans*.

Enhanced Susceptibility of *P. infestans* to Various Environmental Stresses in the Presence of Melatonin

The tolerance of *P. infestans* to environmental stresses derived from salt, heat, cold and Ultra Violate (UV) radiation can promote the successful occurrence and epidemics of potato late blight (Ortizurquiza and Keyhani, 2014). We therefore explored the tolerance of *P. infestans* to these stresses and the combination of these stresses with melatonin. The mycelial growth of *P. infestans* was inhibited when using salt, UV, heat, H$_2$O$_2$ and cold, respectively (Figures 4A–C,E,G,I,K,M), indicating that *P. infestans* was sensitive to these types of environmental stresses. Interestingly, the mycelial growth of *P. infestans* was more severely inhibited by the pairwise combination of melatonin and these stresses (UV/salt/heat) than that of melatonin or any of these stresses alone (Figures 4A–F,I,J,M). These results indicated that melatonin reduced the stress tolerance of *P. infestans* under challenging environmental conditions.

Melatonin and Chemical Fungicide Synergistically Inhibit the Growth of *P. infestans in Vitro*

Currently, the control of potato late blight mainly depends on high dosage and frequency of fungicide applications. These practices result in many health and environmental issues. Reduced fungicide doses are important for a sustainable environment. It has been reported that melatonin could be used as a synergist to reduce the use of some drugs and enhance the drug effect, for example, vincristine, atorvastatin, vitamin C and E (Lissoni et al., 1999; Gitto et al., 2001; Casadozapico et al., 2010; Dayoub et al., 2011). We therefore examined whether the synergistic effects exist in combined application of melatonin and fungicide against *P. infestans*. Infinito is one of the most effective, expensive and extensively used chemical fungicides for potato late blight control. The results showed that the inhibitory effects of T30-4 treated with
Infinito + melatonin was more significantly enhanced than that of Infinito or melatonin alone (Figures 5A,B); this suggested that melatonin can promote *P. infestans* to become more susceptible to Infinito. The IC50s of melatonin, Infinito, and melatonin + Infinito were also examined, and the values were 3 mM, 0.005 ml/L, 2 mM + 0.0005 ml/L, respectively. A significant reduction of Infinito dose (10-fold reduction) was generated by co-applying melatonin (Figure 5A), which indicated that the chemical fungicide dose was decreased when combined with melatonin for potato late blight control. Moreover, CI<1 was observed, confirming that the synergistic effects exist in the melatonin + Infinito (Figure 5C). The MTT reduction assay also confirmed that the cell viability of T30-4 treated with Infinito + melatonin was more significantly decreased than that of Infinito or melatonin alone (Figure 5D). Thus, these observations provide new insights into the synergistic antifungal effects of Infinito with melatonin on *P. infestans*, and expand the understanding of the synergistic effect of melatonin (Lissoni et al., 1999; Casadozapico et al., 2010; Dayoub et al., 2011).

Melatonin Reduced the Fungicide Dose for Potato Late Blight Control in Vivo

Next, the *in vivo* assay of synergistic inhibition was conducted. When treated with melatonin + Infinito, the lesion sizes infected by *P. infestans* on the potato leaves and tuber slices were much smaller than that of melatonin or Infinito alone (Figures 6A–D, and Figures S1A,B). The 6 mM melatonin + 0.025 ml/L Infinito was the optimal concentration among these combinations (the lowest concentration of Infinito for reaching the same small lesion size, while the concentration of melatonin was modest) (Figures S1A,B). A significant reduction of Infinito dose (10-fold reduction) was achieved by the combination with melatonin *in vivo* (Figures 6E,F). This result revealed an eco-friendly potential for the reduced use of fungicides by co-application of melatonin in potato late blight control.

Analysis of Melatonin Effects on *P. infestans* by the Transcriptome

To further investigate the underlying molecular mechanism about the roles of melatonin in the growth and development of

TABLE 3 | The prominent down-regulated genes in 14 GO terms and 14 KEGG pathways related to metabolism in transcriptome.

GO TERM	Classification	Number of genes up regulated	Number of genes down regulated
Organic acid metabolic process	Organic acid metabolic process	27	30
Oxoacid metabolic process	Organic acid metabolic process	27	30
Carboxylic acid metabolic process	Organic acid metabolic process	27	29
Pyruvate metabolic process	Organic acid metabolic process	0	12
Branched-chain amino acid biosynthetic process	Cellular amino acid metabolic process	0	8
Branched-chain amino acid metabolic process	Cellular amino acid metabolic process	0	8
ATP generation from ADP	Nucleotide metabolism	0	11
ADP metabolic process	Nucleotide metabolism	0	11
Purine ribonucleoside diphosphate metabolic process	Nucleotide metabolism	0	11
Ribonucleoside diphosphate metabolic process	Nucleotide metabolism	0	11
Purine nucleoside diphosphate metabolic process	Nucleotide metabolism	0	11
Oxidation-reduction process	Single-organism metabolic process	44	45
Single-organism carbohydrate catabolic process	Carbohydrate catabolic process	1	11
Glycolytic process	Carbohydrate catabolic process	0	11

KEGG PATHWAY	Classification	Number of genes up regulated	Number of genes down regulated
Glycolysis/Gluconeogenesis	Metabolism; Carbohydrate metabolism	4	16
Pyruvate metabolism	Metabolism; Carbohydrate metabolism	4	6
Galactose metabolism	Metabolism; Carbohydrate metabolism	0	4
Fructose and mannose metabolism	Metabolism; Carbohydrate metabolism	0	3
Glycerolipid metabolism	Metabolism; Lipid metabolism	4	6
Valine, leucine and isoleucine biosynthesis	Metabolism; Amino acid metabolism	0	4
Glutathione metabolism	Metabolism; Metabolism of other amino acids	3	4
Biosynthesis of amino acids	Metabolism; Overview	9	16
Carbon metabolism	Metabolism; Overview	4	20
Degradation of aromatic compounds	Metabolism; Overview	1	2
2-Oxocarboxylic acid metabolism	Metabolism; Overview	2	5
Pantothenate and CoA biosynthesis	Metabolism; Metabolism of cofactors and vitamins	0	5
Porphyrin and chlorophyll metabolism	Metabolism; Metabolism of cofactors and vitamins	2	3
Nitrogen metabolism	Metabolism; Energy metabolism	2	3
TABLE 4 | The GO term or KEGG pathway related to metabolism of amino acid, carbohydrate, nucleic acid, lipid.

Amino acid metabolic process	GO Term	Description
	Branches-chain amino acid biosynthetic process	
	Cellular amino acid biosynthetic process	
	Branched-chain amino acid metabolic process	
KEGG pathway	Description	
	Branched-chain amino acid biosynthetic process	
	Branched-chain amino acid metabolic process	
	Alanine, aspartate and glutamate metabolism	
	Cysteine and methionine metabolism	
	Valine, leucine and isoleucine degradation	
	Valine, leucine and isoleucine biosynthesis	
	Arginine and proline metabolism	
	Glutathione metabolism	
	Cyanoamino acid metabolism	
	Beta-Alanine metabolism	
	Taurine and hypotaurine metabolism	
	Biosynthesis of amino acids	

Nucleic acid metabolic process	GO Term	Description
	rRNA processing	rRNA metabolic process
	ncRNA processing	RNA processing
KEGG pathway	Description	
	Pyrimidine metabolism	Purine metabolism

Nucleotide metabolic process	GO Term	Description
	ATP generation from ADP	ADP metabolic process
KEGG pathway	Description	
	Pyrimidine metabolism	Purine metabolism

Nucleoside phosphate metabolic process	GO Term	Description
	Ribonucleoside diphosphate metabolic process	Purine nucleoside diphosphate metabolic process
	Purine ribonucleoside diphosphate metabolic process	

Organic acid metabolic process	GO Term	Description
	Organic acid metabolic process	Oxoacid metabolic process

(Continued)

Carbohydrate metabolic process	GO Term	Description
	Glycolytic process	Single-organism carbohydrate catabolic process
KEGG pathway	Description	
	Glycolysis/Gluconeogenesis	Pyruvate metabolism
	Galactose metabolism	Fructose and mannose metabolism
	Pentose and glucuronate interconversions	Ascorbate and aldarate metabolism

Lipid metabolism	KEGG pathway	Description
	Glycerolipid metabolism	

Cofactors and vitamins metabolism	KEGG pathway	Description
	Pantothenate and CoA biosynthesis	Porphyrin and chlorophyll metabolism
	Folate biosynthesis	

P. infestans, we performed transcriptome analysis to assess the global transcriptional profile revealing differentially expressed genes (DEGs) induced by melatonin. The T30-4 strain was treated with DMSO (mock) and 3 mM melatonin for 24 h and the samples were collected for transcriptome assay. After trimming for quality and adapter sequences, 45.79 and 47.89 million transcriptome reads were obtained with the treatments of 3 mM melatonin and DMSO as the control, respectively (Figure 7A), of which 85.73, 5.88, and 79.85% reads could be mapped to the annotated genome, multiple genes, and unique genes of P. infestans, respectively (Figure 7B). 1,279 DEGs out of 10,844 detected genes were identified in the melatonin- treated samples in contrast to DMSO-treated one (Table S2). Among these DEGs, 809 were significantly up-regulated and 470 significantly down-regulated (Figure 7C). The heat-map also showed that melatonin treatment was tend to increase the gene expression level (FPKM) of the DEGs (Figure 7D and Figure S2, Table S3).

To investigate the detailed functions of melatonin’s effects on P. infestans, the GO terms and KEGG pathways were analyzed. In the transcriptome, among the top 30 GO terms and KEGG pathways (sorted by their p-values in the descending order; Tables S4A,B, S5A,B), there were 19 GO terms and 26 KEGG pathways associated with the metabolism of carbohydrates, lipids, nucleic acid, amino acid, cofactors and vitamins (Tables 1, 2). Notably, among 19 GO terms
and 26 KEGG pathways, the down-regulated genes were predominated in 14 GO terms and 14 KEGG pathways (Table 3), suggesting that the various metabolic processes in *P. infestans* are dramatically suppressed after melatonin treatment.

Differentially Expressed Genes Related to Amino Acid Metabolism of *P. infestans* Were Significantly Affected by Melatonin

Among these altered metabolic processes in transcriptome (top 30 GO terms and KEGG pathways), the number of GO terms and KEGG pathways related to amino acid metabolism was the largest (three GO terms and ten KEGG pathways) (Table 4, Table S6A). This result indicated that the amino acid metabolism was the most significantly targeted metabolic process by melatonin. Among these GO terms and KEGG pathways associated with amino acid metabolism (Tables S6A,B), the biosynthesis of amino acids was the overview pathway in which the down-regulated genes were predominant (Table 3).

Gene_id	Log2Fold change	Padj	Interpro description
PITG_05579	0.67299	0.024625	Catalase-peroxidase, putative
PITG_10772	0.47203	0.026249	Putative GPI-anchored elicin IN11b-like protein
PITG_12561	0.8956	0.008554	Elicitin INF2A-like protein
PITG_12555	1.0902	7.53E-07	Elicitin-like protein, putative
PITG_06373	0.93318	0.001776	Putative GPI-anchored serine-rich elicin INL3b-like protein
PITG_16907	1.5662	4.22E-20	Elicitin-like protein
PITG_10284	−1.3374	7.98E-11	Cellulose binding elicitor lectin (CBEL), putative
PITG_11249	−0.90696	7.63E-08	Heat shock 70 kDa protein
PITG_05498	−0.52905	0.005572	Heat shock protein 90, putative
PITG_13826	−0.45753	0.02728	Hybrid signal transduction histidine kinase, putative
PITG_20715	−0.52667	0.008664	Decoyribodipyrimidine photolyase, putative
PITG_11247	−0.72089	7.62E-05	Heat shock 70 kDa protein
PITG_02805	−0.73632	3.88E-05	DNA mismatch repair protein Msh2, putative
PITG_22799	−1.1375	0.006449	Elicitin-like protein INL3B
PITG_04709	−0.43251	0.043581	DNA ligase

Particularly, the genes encoding rate-limiting enzymes: pyruvate kinase, fructose-bisphosphate aldolase, isocitrate dehydrogenase [NADP] were down-regulated as well (Table 5, Tables S6A,B). The genetic mutation of these rate-limiting enzymes can reduce amino acid metabolism levels (Heneka et al., 2001; Malay et al., 2005; Gupta and Bamezai, 2010; Grace et al., 2015; Lv et al., 2017), indicating that the amino acid metabolism was suppressed after melatonin treatment. Collectively, the results and observations from the transcriptome suggest that amino acid metabolism of *P. infestans* is likely the main target of melatonin.

Carbohydrate metabolism and lipid metabolism were also altered in transcriptome (Tables 1, 2, 4 and Tables S6C,D). For example, the down-regulation of the rate-limiting enzyme 6-phosphofructokinase (PFK) in the transcriptome (Table S6C) would reduce the carbohydrate metabolism levels of *P. infestans* by melatonin (Raben et al., 1995; Wegener and Krause, 2002). The down-regulation of another rate-limiting enzyme fatty acid synthase (FASN) in transcriptome (Table S6D) documented that the suppression of lipid metabolism of *P. infestans* by melatonin (Smith et al., 2003), which is possibly the reason for the decrease in lipid droplets observed in TEM analysis of melatonin-treated samples.

In summary, the transcriptome analysis showed that multiple metabolic processes were affected by melatonin in *P. infestans*, especially amino acid metabolism. The perturbation of amino acid metabolism leads to cell death (Mizushima, 2005; Green et al., 2014), indicating that the disruption of amino acid metabolism homeostasis by melatonin may significantly...
contribute to the inhibition of growth in *P. infestans*. The previous study also showed that amino acid metabolism of *P. infestans* may be an important metabolic target for fungicides (Grenvillebriggs et al., 2005). Additionally, the amino acid metabolism has been a target to control the plant pathogens by some fungicides, such as pyrimethanil (Milling and Richardson, 1995). Thus, the results from this study imply that the target of amino acid metabolism in *P. infestans* by melatonin could be a novel alternative for the biocontrol of potato late blight.

Differentially Expressed Genes Related to Stress Tolerance of *P. infestans* Were Affected by Melatonin

Though metabolic processes in *P. infestans* were significantly suppressed after melatonin treatment, the expression of some DEGs related to stress tolerance was also affected by melatonin. The transcriptome data showed that 15 DEGs were related to stress tolerance (Table 6). Among them, 9 DEGs were down-regulated and 6 DEGs were up-regulated. Especially, two DEGs encoding the heat shock 70 kDa protein (HSP70) were significantly down-regulated. The HSP70 is one of the most prominent stress proteins and can be induced by a variety of stresses, such as UV radiation, heat shock, hypertonicity and low temperature (Tavares et al., 1996; Alfieri et al., 2002; Fulgentini et al., 2015). This result showed that the deregulation of genes associated with the stress tolerance and especially the down-regulation of the genes encoding the HSP70, probably causing the suppression of stress tolerance of *P. infestans* under the melatonin treatment.

Differentially Expressed Genes Related to Drug Resistance of *P. infestans* Were Affected by Melatonin

The transcriptome data also showed that the expression of some DEGs related to drug resistance was also affected by melatonin. The down-regulation of drug resistance genes by melatonin treatment was possibly the reason for the synergistic effects with Infinito. For example, among the 25 most down-regulated differentially expressed genes, there were two genes encoding major facilitator superfamilies (MFS) (Figure S3). MFS is regarded as a major mechanism of drug resistance by transporting the drug from the cytoplasm to extracellular space (Kumar et al., 2013). The overexpression of MFS can confer the cell with resistant to many toxic compounds, while the mutant of MFS cannot (Morschhauser, 2010; Kumar et al., 2013). These results suggested that the down-regulation of MFS gene expression could lead to the reduction of the drug resistance of *P. infestans*. Thus, the down-regulated MFS in transcriptome could weaken the drug resistance of *P. infestans*, leading to the synergistic effects of melatonin combination with Infinito, such as reducing the use and increasing cytotoxicity of Infinito. Furthermore, consistent with the previous study, melatonin is able to overcome the clofarabine resistance in leukemic cell lines:

Table 7: The differentially expressed genes related to pathogenesis in transcriptome

Gene_id	Log2Fold change	Padj	Interpro description
PITG_01370	−0.8879	0.000424	ATP-binding Cassette (ABC) Superfamily
PITG_05987	1.199	3.91E-07	ATP-binding Cassette (ABC) Superfamily
PITG_06852	−0.73087	2.83E-05	ATP-binding Cassette (ABC) Superfamily
PITG_06890	1.2086	0.004669	ATP-binding Cassette (ABC) Superfamily
PITG_06892	0.99317	0.01237	ATP-binding Cassette (ABC) Superfamily
PITG_06893	1.038	3.53E-10	ATP-binding Cassette (ABC) Superfamily
PITG_07134	0.86538	0.000928	ATP-binding Cassette (ABC) Superfamily
PITG_07716	0.60179	0.001174	ATP-binding Cassette (ABC) Superfamily
PITG_07717	0.53475	0.00836	ATP-binding Cassette (ABC) Superfamily
PITG_11373	−0.56642	0.025893	ATP-binding Cassette (ABC) Superfamily
PITG_13282	0.58644	0.007202	ATP-binding Cassette (ABC) Superfamily
PITG_13558	−0.6312	0.000553	ATP-binding Cassette (ABC) Superfamily
PITG_13575	0.48026	0.021395	ATP-binding Cassette (ABC) Superfamily
PITG_15731	0.56494	0.009076	ATP-binding Cassette (ABC) Superfamily
PITG_17053	0.8252	1.21E-05	ATP-binding Cassette (ABC) Superfamily
PITG_20815	1.5519	2.82E-21	ATP-binding Cassette (ABC) Superfamily
PITG_04809	−0.62118	0.006352	Crinkler (CRN) domain, pseudogene
PITG_14319	−4.8844	0.008491	Crinkler (CRN) family protein
PITG_04435	−0.54746	0.030686	Crinkler (CRN) family protein
PITG_22856	−0.66451	0.01265	Crinkler (CRN) family protein
PITG_23273	−1.3231	3.6E-06	Crinkler (CRN) family protein
PITG_14343	−0.66068	0.028973	Crinkler (CRN) family protein
PITG_16584	−0.45693	0.037047	Crinkler (CRN) family protein
PITG_16614	−0.73791	0.042338	Crinkler (CRN) family protein
PITG_16619	−0.79746	0.000681	Crinkler (CRN) family protein
PITG_18503	−0.82318	0.010154	Crinkler (CRN) family protein
PITG_19589	−0.88915	0.000276	Crinkler (CRN) family protein
PITG_20171	−0.63579	0.00405	Crinkler (CRN) family protein
PITG_22186	−0.63336	0.034212	Crinkler (CRN) family protein pseudogene
PITG_03400	−0.51195	0.017922	Crinkler (CRN) family protein
PITG_04786	−0.52386	0.048344	Crinkler (CRN) family protein
PITG_17517	−0.70149	0.000199	Crinkler (CRN) family protein
PITG_07699	−1.3195	6.58E-15	Cytochrome P450, putative
PITG_14013	−0.74111	3.33E-05	Cytochrome P450, putative
PITG_14388	−0.58475	0.029646	Cytochrome P450, putative
PITG_21524	0.95041	1.23E-06	Cytochrome P450, putative
PITG_12561	0.8998	0.008554	Elicitin IN12A-like protein
PITG_16907	1.5662	4.22E-20	Elicitin-like protein
PITG_20414	−0.66577	0.001178	Elicitin-like protein
PITG_22799	−1.1375	0.006449	Elicitin-like protein IN1L3B
PITG_12555	1.0902	7.53E-07	Elicitin-like protein, putative
PITG_10772	0.47203	0.026249	Putative GPI-anchored elicin IN11b-like protein
PITG_20412	0.53758	0.010979	Putative GPI-anchored serine rich elicin
PITG_06373	0.93318	0.001776	Putative GPI-anchored serine-rich elicin IN1L3b-like protein
PITG_02830	−2.3632	6.03E-28	Secreted RxLR effector peptide protein, putative
PITG_15235	−2.1923	5.28E-17	Secreted RxLR effector peptide protein, putative

(Continued)
A combination of melatonin and clofarabine significantly increase cytotoxicity in resistant leukemic cell lines (Yamanishi et al., 2015).

Differentially Expressed Genes Related to Virulence of *P. infestans* WereAffected by Melatonin

The transcriptome data also showed that the expression of some DEGs related to virulence was also affected by melatonin. *P. infestans*, like other pathogens, can employ proteins related to virulence to facilitate colonization and infection, such as the apoplastic effectors which are secreted into the plant extracellular, cytoplasmic effectors which are translocated into the plant cell, Cytochrome P450, (Haas et al., 2009; Tian et al., 2009; Dong et al., 2014). Elicitins are apoplastic effectors for helping pathogen invasion into plants in a negative manner (Schornack et al., 2009). The reduced expression of elicints help the pathogen to evade the host innate immunity, and the mutations of elicitin INF1 of *P. infestans* could cause the disease lesions (Kamoun et al., 1998; Schornack et al., 2009). Our transcriptome data showed that six genes encoding elicitin proteins were up-regulated but two were down-regulated in response to melatonin treatment (Table 7), suggesting that the virulence of *P. infestans* was reduced by melatonin. Most of these virulence-related proteins likely help pathogen to more access and entry into plants and in causing serious disease, by higher expression, such as: CBEL (apoplastic effector), Crinkler protein (CRN) (more than 200) (cytoplasmic effectors), and many Cytochrome P450 (Beyer et al., 2001; Gaulin et al., 2002; Haas et al., 2009). For example, the CRN protein mutant reduced the virulence of pathogen (Amaro et al., 2017). The down-regulated genes encoding CRN, CBEL, and Cytochrome P450 were major in the transcriptome data (Table 7), indicating that the virulence of *P. infestans* was impaired by melatonin. Thus, deregulation of genes by melatonin associated with the virulence might reduce the virulence of the pathogen invading the host, which could be one of the reasons for the attenuation of potato late blight in our observations.

Differentially Expressed Genes Related to Circadian Rhythms of *P. infestans* Treated by Melatonin Were Not Observed

The function of melatonin is well known to regulate circadian rhythms. The circadian rhythms also may regulate the physiological function of fungus, including virulence and mycelia (Liu and Bellpedersen, 2006; Brody et al., 2010; Hevia et al., 2015). Therefore, we investigated whether melatonin altered circadian rhythms-related genes of *P. infestans*. However, the core circadian rhythms genes of fungus, such as FRQ, WC-1, WC-2 (Liu and Bellpedersen, 2006; Salichos and Rokas, 2010), were not observed in the transcriptome data; the GO terms or KEGG pathway involved in circadian rhythms were also not detected in transcriptome data (Tables S4, S5). This observation likely caused by the continuous darkness growth condition of *P. infestans* in this study.

Validation of Gene Expression Profiles Using RT-qPCR

To confirm these transcriptome-based observations, nine DEGs encoding rate-limiting enzymes in metabolism, and four DEGs involved in pathogenesis were selected for the real-time PCR (RT-qPCR) based confirmation studies. The results were highly consistent with these in the in transcriptome dataset (Figure S4), suggesting that the datasets derived from the transcriptome assay are reliable and valid.
CONCLUSION

In this study, exogenous application of melatonin significantly attenuated the potato late blight by inhibiting mycelial growth, changing cell ultrastructure, reducing the virulence and impairing stress tolerance of \textit{P. infestans}. Importantly, melatonin reduced the doses and enhanced the effects of fungicide for potato late blight control, because of the synergistic inhibitory effects generated by co-treating with melatonin and fungicide. The analysis of the transcriptome suggests that the inhibitory effects of melatonin on \textit{P. infestans} is most likely due to altering the homeostasis of amino acid metabolism. Furthermore, melatonin also altered the expression of important factors associated to stress tolerance, fungicide resistance and virulence. These observations also revealed the direct inhibitory effects of melatonin on the growth of \textit{P. infestans} for the first time and provided new insights into the mechanisms of the direct interaction between melatonin and plant pathogens. Melatonin treatment showed some advantages in for the control of potato late blight in comparison with traditional chemical fungicides and potential application valuable in the cultivation of resistant variety. Firstly, the commonly used chemical fungicides usually display toxicity to humans and animals, whereas melatonin shows less toxicity even under high concentrations. Secondly, as a potential synergist, melatonin has great potential to reduce the use of chemical fungicides. It not only maximizes the efficiency of chemical fungicides and minimizes the use of chemical fungicides, but also reduces fungicide pollution. Additionally, there is potential to develop novel transgenic potato plants which may not only produce more melatonin but also generate the small RNA targeting the key regulators of amino acid metabolism in \textit{P. infestans}, by manipulating the key genes controlling the biogenesis of melatonin in potato and amino acid metabolism in \textit{P. infestans}, respectively.

AUTHOR CONTRIBUTIONS

MR and SZ designed the research; SZ, XZ, SF, SL, IJ, and YW performed research; MR, SZ, RR, ZL, and RD analyzed data; MR, SZ, RR wrote the paper.

ACKNOWLEDGMENTS

This financial support from the Grants: the National Natural Science Foundation of China (No. 31672206); National Key R&D Program for Crop Breeding (No. 2016YFD0100306); Chongqing Social Undertakings and People's livelihood Science and technology innovation Project: Tuber Crop Special New Varieties Creating and Clean & Safe Processing (No. CSTC2015shms-ztzx80003); Fundamental Research Funds for the Central Universities (No. 106112017CDJQJ29883) are acknowledged.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2017.01993/full#supplementary-material

REFERENCES

Ah-Fong, A. M., Kim, K. S., and Judelson, H. S. (2017). RNA-seq of life stages of the oomycete \textit{Phytophthora infestans} reveals dynamic changes in metabolic, signal transduction, and pathogenesis genes and a major role for calcium signaling in development. \textit{BMC Genomics} 18:198. doi: 10.1186/s12864-017-3585-x

Ali, R. R., Bonelli, M. A., Petronini, P. G., and Borghetti, A. F. (2002). Stabilization of hisp70 mRNA on prolonged cell exposure to hyponcicity. \textit{Biochim. Biophys. Acta} 1592: 135–140. doi: 10.1016/S0167-4889(02)00291-4

Ali, A., Alexandersson, E., Sandin, M., Resjo, S., Lenman, M., Hedley, P. E., et al. (2014). Quantitative proteomics and transcriptomics of potato in response to \textit{Phytophthora infestans} in compatible and incompatible interactions. \textit{BMC Genomics} 15:497. doi: 10.1186/1471-2164-15-497

Amaro, T. M., Thilliez, G. J., Motion, G. B., and Huijema, E. (2017). A perspective on CRN proteins in the genomes age: evolution, classification, delivery and function revisited. \textit{Front. Plant Sci.} 8:99. doi: 10.3389/fpls.2017.00999

Arendt, J. (2005). Melatonin: characteristics, concerns, and prospects. \textit{J. Biol. Rhythms} 20, 291–303. doi: 10.1177/0748730405277492

Arnao, M. B., and Hernandezruiz, J. (2015). Functions of melatonin in plants: a review. \textit{J. Pineal Res.} 59, 133–150. doi: 10.1111/jpi.12253

Avrova, A. O., Venter, E., Birch, P. R., and Whisson, S. C. (2003). Profiling and quantifying differential gene transcription in \textit{Phytophthora infestans} prior to and during the early stages of potato infection. \textit{Fungal Genet. Biol.} 40, 4–14. doi: 10.1016/S1087-1845(03)00063-X

Bago, B., Zipfel, W., Williams, R. M., Jun, J., Arreola, R., Lammers, P. J., et al. (2002). Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. \textit{Plant Physiol.} 128, 108–124. doi: 10.1104/pp.010466

Beyer, K., Binder, A., Boller, T., and Collinge, M. (2001). Identification of potato genes induced during colonization by \textit{Phytophthora infestans}. \textit{Mol. Plant Pathol.} 2, 125–134. doi: 10.1046/j.1364-373X.2001.00095.x

Bi, K., He, Z., Gao, Z., Zhao, Y., Fu, Y., Cheng, J., et al. (2016). Integrated omics study of lipid droplets from Plasmidoiaphora brassicae. \textit{Sci. Rep.} 6:36965. doi: 10.1038/srep36965
Melatonin Prevents Potato Late Blight

Grace, R. F., Zanella, A., Neufeld, E. J., Morton, D. H., Eber, S., Yaish, H., et al. (2015). Erythrocye pyruvate kinase deficiency: 2015 status report. Am. J. Hematol. 90, 825–830. doi: 10.1002/ajh.24088

Green, D. R., Galluzzi, L., and Kroemer, G. (2014). Metabolic control of cell death. Science 345:1250256. doi: 10.1126/science.1250256

Grenville-Briggs, L. J., Arroyo, O., Ber, C. R., Williams, A., Whisson, S. C., Birch, P. R., et al. (2005). Elevated amino acid biosynthesis in Phytophthora infestans during appressorium formation and potato infection. Fungal Genet. Biol. 42, 244–256. doi: 10.1016/j.fgb.2004.11.009

Gullino, M. L., Tinivella, F., Garibaldi, A., Kemmott, G. M., Bacci, L., and Sheppard, B. L. (2010). Mancozeb: past, present, and future. Plant Dis. 94, 1076–1086. doi: 10.1094/PDIS-9-4-1076

Gupta, V., and Bamezai, R. N. K. (2010). Human pyruvate kinase M2: a multifunctional protein. Protein Sci. 19, 2031–2044. doi: 10.1002/pro.505

Haas, B. J., Kamoun, S. Zody, M. C., Jiang, R. H., Handshaker, R. E., Cao, L. M., et al. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461, 393–398. doi: 10.1038/nature08358

Haverkort, A. J., Boonkamp, P. M., Huttun, R. C. B., Jacobsen, E., Lotz, L. P. A., Kessel, G. J. T., et al. (2008). Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res. 51, 47–57. doi: 10.1007/s11540-008-9089-y

Heneka, M. T., Wiesinger, H., Dumitsescu-Ozimek, L., Riederer, P., Feinstein, D. L., and Klockgether, T. (2001). Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 906–916. doi: 10.1093/jnen/60.9.906

Hevia, M. A., Canessa, P., Mulleresparza, H., and Larrondo, L. F. (2015). A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 112, 8744–8749. doi: 10.1073/pnas.1508432112

Kamoun, S., Van West, P., Vleeshouwers, V. G. A. A., De Groot, K. E., and Govers, F. (1998). Resistance of nicotiana benthamiana to phytophthora infestans is mediated by the recognition of the elicitor protein INP1. Plant Cell 10, 1413–1425. doi: 10.1105/tpc.109.1413

Karasek, M., Gruziska, A., Lawnicka, H., Kunertzadke, J., and Pawlikowski, M. (2003). Melatonin inhibits growth of diethylstilbestrol-induced prolatin-secreting pituitary tumor in vitro: possible involvement of nuclear RZR/ROR receptors. J. Pineal Res. 34, 294–296. doi: 10.1034/j.1600-079X.2003.00046.x

Kobaé, Y., Gujijah, C., Paszkowski, U., Kojima, T., Fujiwara, T., and Hata, S. (2014). Lipid droplets of arbuscular mycorrhizal fungi emerge in concert with arbuscule collapse. Plant Cell Physiol. 55, 1945–1953. doi: 10.1093/pcp/pcu123

Kumar, S., Mukherjee, M. M., and Varela, M. F. (2013). Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int. J. Bacteriol. 2013:204141. doi: 10.1155/2013/204141

Lee, H. Y., and Back, K. (2016). Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants. J. Pineal Res. 60, 327–335. doi: 10.1111/jpi.12314

Lee, H. Y., Byeon, Y., and Back, K. (2014). Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J. Pineal Res. 57, 262–268. doi: 10.1111/jpi.12165

Lee, H. Y., Byeon, Y., Tan, D., Reiter, R. J., and Back, K. (2015). Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J. Pineal Res. 58, 291–299. doi: 10.1111/jpi.12214

Lissoni, P., Barni, S., Mandåå, M., Aridzioza, A., Paolorossi, F., Vaghi, M., et al. (1999). Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumor patients with poor clinical status. Eur. J. Cancer 35, 1688–1692. doi: 10.1016/S0959-8499(99)00159-8

Liu, Y., and Belpederesen, D. (2006). circadian rhythms in neurospora crassa and other filamentous fungi. Eukaryotic Cell 5, 1184–1193. doi: 10.1128/EC.00133-06

Lv, P., Tang, W., Wang, P., Cao, Z., and Zhu, G. (2017). Enzymatic characterization and functional implication of two structurally different isocitrate dehydrogenases from Xylella fastidiosa. Biotechnol. Appl. Biochem. doi: 10.1002/bab.1560. [Epub ahead of print].

Malay, A. D., Allen, K. N., and Tolan, D. R. (2005). Structure of the thermolabile mutant aldolase B, A149P: molecular basis of hereditary fructose intolerance. J. Mol. Biol. 347, 135–144. doi: 10.1016/j.jmb.2005.01.008
Manchester, L. C., Cotomontes, A., Boga, J. A., Andersen, L. P., Zhou, Z., Galano, A., et al. (2015). Melatonin: an ancient molecule that makes oxygen metabolically tolerable. *J. Pineal Res.* 59, 403–419. doi: 10.1111/jpi.12267

Matheson, M., and Porchas, M. (2000). Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. *Plant Dis.* 84, 454–458. doi: 10.1094/PDIS.2000.84.4.454

Milling, R. J., and Richardson, C. J. (1995). Mode of action of the anilino-pyrimidine fungicide pyrimethanil. 2. Effects on enzyme secretion in Botrytis cinerea. *Pesticide Sci.* 45, 43–48. doi: 10.1002/ps.2870450107

Mitani, S., Araki, S., Yamaguchi, T., Takii, Y., Ohshima, T., and Matsuo, N. (2001). Antifungal activity of the novel fungicide cyazofamid against *Phytophthora infestans* and other plant pathogenic fungi in vitro. *Pesticide Biochem. Physiol.* 72, 92–99. doi: 10.1006/pest.2001.2541

Mizushima, N. (2005). The pleiotropic role of autophagy: from protein metabolism to bactericide. *Cell Death Diff.* 12, 1533–1541. doi: 10.1038/sj.cdd.4401728

Morschhauser, I. (2010). Regulation of multidrug resistance in pathogenic fungi. *Fungal Genet. Biol.* 47, 94–106. doi: 10.1016/j.fgb.2009.08.002

Nemeth, C., Humperle, S., Kallay, E., Mesteri, I., Svoboda, M., Rogelsperger, O., et al. (2011). Decreased expression of the melatonin receptor 1 in human colorectal adenocarcinomas. *J. Biol. Regul. Homeost. Agents* 25, 531–542.

Ortizurquiza, A., and Keyhani, N. O. (2014). Stress response signaling and virulence: insights from entomopathogenic fungi. *Curr. Genet.* 61, 239–249. doi: 10.1007/s00294-014-0439-9

Pandi-Perumal, S. R., Srinivasan, V., Maestroni, G. J., Cardinali, D. P., Poeggeler, B., and Hardeland, R. (2006). Melatonin: nature’s most versatile biological signal? *FEBS Lett.* 573, 2813–2838. doi: 10.1111/j.1742-4658.2006.05322.x

Pearson, K. (2011). Potato: a history of the propitious esculent (review). *J. World Potato Hist.* 17, 2070–2095.

Qian, Y., Tan, D.-R., Reiter, R. J., and Shi, H. (2015). Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in *Arabidopsis*. Sci. Rep. 5:15815. doi: 10.1038/srep15815

Raben, N., Exelbert, R., Spiegel, R., Sherman, J. B., Nakajima, H., Plo tz, P., et al. (2013). The emergence of lipid droplets in yeast: genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency. *Am. J. Hum. Genet.* 56, 131–141.

Radulovic, M., Knittelfelder, O., Cristobal-Sarramian, A., Kolb, D., Wolinski, H., and Kohlwein, S. D. (2013). The emergence of lipid droplets in yeast: current status and experimental approaches. *Curr. Genet.* 59, 231–242. doi: 10.1007/s00294-013-0407-9

Reiter, R. J., Mayo, J. C., Tan, D., Sainz, R. M., Alatorrejimenez, M. A., and Qin, L. (2015). Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in *Arabidopsis*. *J. Pineal Res.* 59:102. doi: 10.1111/jpi.12244

Shi, H., Wei, Y., and He, C. (2016). Melatonin-induced CBF/DREBs are essential for diurnal change of disease resistance and CCA1 expression in *Arabidopsis*. *Plant Physiol. Biochem.* 100, 150–155. doi: 10.1016/j.plaphy.2016.01.018

Smith, S., Witkowski, A., and Joshi, A. K. (2003). Structural and functional organization of the animal fatty acid synthase. *Crit. Rev. Biochem. Mol. Biol.* 38, 227–278. doi: 10.1080/10409230390344914

Yang, H. P., Tsang, P. C., and Tsang, P. W. (2014). Melatonin inhibits biofilm formation in Candida parapsilosis. *J. Mycol. Med.* 24, 360–361. doi: 10.1016/j.jmymed.2014.05.003

Yin, L., Wang, P., Li, M., Ke, X., Li, C., Liang, D., et al. (2013). Exogenous melatonin improves Malus resistance to *Marssonina* apple blotch. *J. Pineal Res.* 54, 424–434. doi: 10.1111/jpi.12038

Zhao, C., Waalwijk, C., De Wit, P. J. G. M., Der Lee, T. V., and Tang, D. (2011). EBR1, a novel Zn2Cys6 transcription factor, affects virulence and apical dominance of the hyphal tip in fusarium graminearum. *Funct. Integr. Genomic* 11, 233–249. doi: 10.1111/j.1568-9956.2011.00188.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Zhang, Zheng, Reiter, Feng, Wang, Liu, Jin, Dalila and Ren. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.