Socio-Cultural Practices and Beliefs Influencing Infant and Young Child Feeding in Lubao Sub-Location Kakamega County

Abstract

Background: Optimal feeding practices for children aged below 24 months are important for the growth and Development and also for reducing childhood mortality and morbidity for this critical group. Social cultural beliefs and practices dictate behavior and practices of the people hence they influence feeding practices.

Objective: The purpose of this study was to find out how the socio-cultural beliefs and practices influence the feeding practices for children aged below 24 months in Lubao sub location in Kakamega County.

Methods: This study was a cross-section study conducted between from January to March, 2016 in the rural western region amongst primary care givers of children aged below 2 years. Random sampling technique was utilized to select the target sample and from a target population of 1000, a sample of 166 was calculated. Structured questionnaires were used to collect data on socio-cultural beliefs influencing the feeding practices.

Findings: The level of education and knowledge of forbidden foods had a positive correlation (r=0.328) at (p>0.01). Approximately, 20(20%) reported foods recommended for the infants and young children while 80(80%) reported no specific foods recommended. Reasons associated with the recommended foods were; 4(20%) culture, 9(45%) lack of knowledge, 7(35%) due to other reasons.

Conclusion: Cultural beliefs and taboos i.e. food taboos/restriction, beliefs associated with certain foods, have a strong influence on infant feeding and undermines optimal infant feeding practices; breastfeeding and complementary feeding.

Keywords: Socio-cultural practices; Beliefs; Infant and young child feeding

Abbreviations: CF: Complementary Feeding; BF: Breast Feeding; EBF: Exclusive Breast Feeding; IYCF: Infant and Young Child Feeding; WHO: World Health Organization; UNICEF: United Nations Children’s Fund; K DHS: Kenya Demographic Health Survey; USAID: United States Agency for International Development; IBFAN: International Baby Food Action Network; MTCT: Mother to Child Transmission

Background

Globally, only a third of breastfed infants 6-23 months of age meet the criteria of dietary diversity and feeding frequency that are appropriate for their age [1]. Infant and young child feeding practices in 33 countries located in Africa, Asia, Latin America, and the Caribbean showed high rates of noncompliance with infant and young child feeding (IYCF) recommendations International Baby Food Action Network [2]. In Kenya, despite the adoption of a set of high impact IYCF policies and guidelines, only 39% of all children age 6-23 months are fed in accordance with the recommendations. In Kenya, 61 percent of children less than six months are exclusively breastfed. More than half of children in Kenya are still breastfeeding at age 20-23 months (51 percent). The proportion of breastfed children declines with age; breastfeeding is nearly universal in a child’s first month of life, but the proportion breastfed drops to 61 percent by the time a child is 18-23 months. Under nutrition in the 6-24 month age group in developing countries is a direct consequence of caregiver complementary feeding practices Kikafunda et al. [3] in turn resulting in significant childhood morbidity and mortality since the surviving children have increased susceptibility to and have compromised physical growth, impaired cognitive development and reduced lifetime earnings [4]. Evidence shows that decline in length-for-age mainly occurs during the complementary feeding period, between 6 and 24 months of age [5]. Indeed, poor complementary feeding has been identified as a risk factor associated directly with stunting [6].

About 220 000 child lives could be saved every year with promotion of optimal breastfeeding and appropriate complementary feeding WHO [1]. Interventions promoting optimal complementary feeding could prevent up to 6% of deaths in countries with high mortality rates [7,8]. The complementary feeding period represents a significant window of opportunity...
Socio-Cultural Practices and Beliefs Influencing Infant and Young Child Feeding in Lubao Sub-Location Kakamega County

Karigi LN, Mutuli LA, Bukhala P (2016) Socio-Cultural Practices and Beliefs Influencing Infant and Young Child Feeding in Lubao Sub-Location Kakamega County. J Nutr Health Food Eng 5(1): 00160. DOI: 10.15406/jnhfe.2016.05.00160

Results
A total of 100 participants met the eligibility criteria and were recruited to participate in the study. Of the sample size, 47 (47%) were exclusively breastfed, while 53 (53%) were mixed fed. Reasons for lack of exclusive breastfeeding included, 14 (26%) of the 53 was as a result of lack of knowledge, 14 (26%) cultural factors, 19 (36%) mother’s unavailability, and 5 (9%) due to other reasons. Among the breastfeeding infants and young children, 44 (44%) breastfeeding was initiated 30 min after birth, 40 (40%) within 1-2 hours, and 16 (16%) was done after 2 hours and beyond. Reasons for late initiation of breastfeeding included sickness of the mother 10 (10%), lack of knowledge 10 (10%), culture 17 (17%), and lack of breast milk 14 (14%).

Introduction of breastfeeding correlated positively (rho=0.32=98), but statistically insignificant (p>0.01) with the education level of the caregiver. Colostrum feeding frequencies were as follows; 91% of the study participants were fed on colostrum, and 9% were not. For this 9% not fed on colostrum, 6 (67%) was due to cultural factors and 3 (33%) was due to lack of knowledge. Among the 100 study participants, 11 (11%), were given prelacteal foods and 89 (89%) did not receive prelacteal feeds. Introduction of these feeds was due to various factors; of the 11 who received prelacteal feeds, 4 (36%) was due to culture, 5 (46%) was due to lack of breast milk and 2 (18%) was due to inadequate knowledge.

Place of birth and introduction of prelacteal feeds were correlated both positively (rho=0.264) and highly significantly (p<0.01). Determinants of breastfeeding frequency included; child’s demand 33 (33%), mothers availability 57 (57%) and other determinants contributed to 10%. Provider of breastfeeding education was as follows; 78 (78%) received breastfeeding education from healthcare provider out of which only 37 (47%) practiced EBF while 41 (53%) did not practice EBF. 5 of the participants received BF education from their relatives but only 2 of the participants who received BF education from their fellow women with children, 3 (43%) did not practice EBF while 4 (57%) did not exclusively breastfeed. EBF positively correlated with the kind of breastfeeding education provider (rho=0.857) but insignificantly (p>0.01). Among the 100 participants, 47% were introduced to complementary foods before 6 months of age. 13 (25%) of this was due to lack of knowledge, 9 (17%) cultural reasons and 22 (41%) mothers unavailability and 9 (17%) was due to other reasons. 31 of the participants reported forbidden foods for infants and young children and 69 reported there were no forbidden foods. Reasons associated with the forbidden foods were; 17 (54%) were culture, lack of knowledge 7 (23%) and 7 (23%) was due to other reasons. The level of education and knowledge of forbidden foods had a positive correlation (rho=0.328) but insignificant (p>0.01). 20 (20%) participants reported that there were foods recommended for the infants and young children while 80 (80%) reported no specific foods recommended. Reasons associated with the recommended foods were; 4 (20%) culture, 9 (45%) lack of knowledge, 7 (35%) due to other reasons.

The relationship between early CF and recommended foods included was 7 (23%) of the 31 who received EBF education from their friends without children, 13 (42%) due to lack of knowledge, 14 (45%) cultural and 5 (16%) due to other reasons. The level of education and knowledge of recommended foods had a positive correlation (rho=0.328) but insignificant (p>0.01). 7 (23%) of the 31 who received EBF education from their friends without children, 13 (42%) due to lack of knowledge, 14 (45%) cultural and 5 (16%) due to other reasons.

Methodology
This study was a cross-section study conducted between January to March, 2016 in the rural western region amongst primary care givers of children aged below 2 years. The rural region was purposively sampled due to the high impact of culture on children feeding practices. Random sampling technique was utilized to select the target sample and from a target population of 1000, a sample of 166 was calculated. Inclusion criteria were caregivers of children below 2 years and care givers with children of chronic illnesses were excluded from the study. Before data collection, the respondents were informed of the objective and importance of the study to them, there after an informed consent was sought. Principles of ethics; beneficence, justice and non-malfeasance were maintained during the study. Data were collected using structured questionnaires with most of closed ended questions. Data from the questionnaire was entered into the computer design framework using excel. Data were then be exported to statistical package for social science (SPSS) for analysis Descriptive and statistics was used. Correlation was used to find out the association between cultural beliefs, breastfeeding and complementary feeding of infants and children [12-20].

Discussion
The results of my study showed that social cultural practices and beliefs influenced feeding of feeding and young children. The social practices that influenced feeding were the demographic
characteristics that ranged from level of education of care giver, the burden of responsibilities of the care giver. The cultural factors were the beliefs associated with certain foods; food taboos/ restrictions and influence of the cultural custodians on the feeding of infant and young children. The introduction of prelacteal feeds, commonly water added sugar and salt and few using herbal drops significantly led to reduced prevalence of EBF. The prelacteal beliefs were associated with the cultural beliefs evidenced by the statements “opened up the infants intestines” and cleaned the stomach of the dirty contents by inducing vomiting. The cultural custodians especially the child’s grandparents had a significant influence prelacteal feeding. Feeding of the prelacteal feeds delayed initiation of breastfeeding within the recommended 30 minutes and this undermined suboptimal breastfeeding. Also maternal factors like lack of breast milk, mothers’ sickness and lack of knowledge led to prelacteal feeding. A small percentage of the respondents admitted not feeding their children with colostrum. Customary it was believed that colostrum was “dirty milk” and “waste” from the mother hence should not be fed to infants. Also lack of knowledge lead the mothers not feeding their infants on colostrum. This made the children miss the opportunity of receiving the anti-infective property of colostrum milk hence undermining optimal infant feeding practices. In this study there was a noticeable practice of late initiation of breastfeeding, this was as a result as cultural beliefs held against colostrum where the colostrum had to be first expressed several times and discarded and this delayed breastfeeding and also prelacteal feeding delayed initiation of breastfeeding. The source of breastfeeding information by the relatives especially the respected members who were cultural custodians influenced EBF as evidenced in the study were some mothers who received breastfeeding information from their relatives did not practice EBF. According to the study the mother’s unavailability influenced optimal breastfeeding where due to increased burden of responsibilities the mother had to introduce foods early to due reduced frequency of breastfeeding as a result of lack of time. This undermined the optimal BF practice due to mixed feeding. According to study the prevalence of early introduction of complementary feeds was quiet high, 47%. The reasons linked to the early introduction of feeds ranged from cultural influences, lack of maternal knowledge and increased maternal responsibilities. Increased maternal burden of responsibilities led to early introduction of other foods before 6 months of age as the mothers could not afford time to adequately breastfeed the child. Lack of knowledge about child feeding as exampled in perception of “insufficient breast milk” by so many of the respondents led to early introduction of foods.

Various diet restrictions and food taboos imposed on infant feeding and also beliefs associated with certain foods influenced both EBF and CF. This study found a common taboo that most infants and young children were not fed on eggs as it was believed that the eggs made the “tongue heavy” hence would cause the child not be able to talk in the or would delay. This belief compromised appropriate CF as children missed on the nutrients provided by the eggs. Also customs regarding gender and food distribution in the households affected child feeding as care givers reported that men were served the large and better portions of food first before children and women, also there were some parts of meats especially organ meats that could not be eaten by children and women. There was a gap in knowledge as most mothers believed that protein foods like fish were not appropriate for their children.

A small number of the respondents reported a local belief of a practice that involved burning a certain kind of fish and a small amount of the ashes were fed to the infant or the young child. This helped soothe the baby to sleep as the baby would adapt the character of the fish which was asleep and it’s dormant most times. Most caregivers had a high preference for feeding their infants on porridge as early as during the first month as many explained that porridge was good to make the child strong, this showed a large gap in child feeding knowledge [20-42].

Conclusion

Several factors that undermine appropriate child feeding have a direct impact on the child’s health, growth and development. The factors ranged from inadequate maternal knowledge, ignorance, socio factors, burdens and patterns of responsibilities, to cultural beliefs and taboos.

Cultural beliefs and taboos i.e. food taboos, restriction, beliefs associated with certain foods, have a strong influence on infant feeding and undermines optimal infant feeding practices; breastfeeding and complementary feeding.

Despite the guidelines and policies put in place to promote EBF and appropriate complementary feeding the prevalence of EBF and appropriate CF is still low due to many factors and one being sociocultural practices and beliefs.

References

1. http://www.who.int/mediacentre/factsheets/fs178/en/.
2. International Baby Food Action Network (2010) The state of breastfeeding in 33 countries 2010: Tracking Child and Young Child Feeding Policies and Programmes Worldwide, IBFAN.
3. Kilifi J, Walker A, Tumwine J (2003) Weaning foods and practices in central Uganda: A cross-sectional study. African Journal of Food, Agriculture, Nutrition and Development 3 (2).
4. Haas JD, Murdoch S, Rivera J, Martorell R (1996) Early nutrition and later physical work capacity. Nutr Rev 54 (2 pt 2): 541-548.
5. Dewey KG, Huffman S (2009) Maternal, infant, and young child nutrition: combining efforts to maximize impacts on child growth and micronutrient status. Food Nutr Bull 30(2): S187-S189.
6. Bhatta ZA, Das JK, Rizvi A, Gaffey MF, Walker N, et al. (2013) Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet 382(9890): 452-477.
7. Jones G, Steketee RW, Black RE, Bhatta ZA, Morris SS, et al. (2003) How many child deaths can we prevent this year? Lancet 362(9377): 65-71.
8. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, et al. (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380(9859): 2095-2128.
9. http://www.who.int/nutrition/topics/earlyfeeding/en/.
10. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, et al. (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. 143(4): 592-605.
11. Agostoni C, Decsi T,Fewtrell M, Goulet O, Kolacek S, et al. (2008)
Complementary feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 46(1): 99-110.

12. Arora S, Meijunkin C, Weber J, Kuhn P (2000) Major factors influencing breastfeeding rates: Mother’s perception of father’s attitudes and milk supply. Pediatrics 106(5): E67.

13. (2012) Breastfeeding and the use of human milk. Pediatrics 129(3): e827-841.

14. Anderson J, Malley K, Snell R (2009) Is 6 months still the best for exclusive breastfeeding and introduction of solids? A literature review with consideration to the risk of the development of allergies. Breastfeed Rev 17(2): 23-31.

15. Arifeen S, Black RE, Antelman G, Baqui A, Caulfield L, et al. (2001) Exclusive breastfeeding reduces acute respiratory infection and diarrhea deaths among infants in Dhaka slums. Pediatrics 108(4): E67.

16. Arts M, Geelhoed D, De Schacht C, Prosser W, Alons C, et al. (2011) Knowledge, beliefs, and practices regarding exclusive breastfeeding of infants younger than 6 months in Mozambique: a qualitative study. J Hum Lact 27(1): 25-32.

17. Black RE, Blair JP, Jones VN, DuRant RH (1990) Infant feeding decisions among pregnant women from a WIC population in Georgia. J Am Diet Assoc 90(2): 255-259.

18. Ergenekon OP, Elmaci N, Ertem M, Saka G (2006) Breastfeeding beliefs and practices among migrant farmer’s mothers in slums of Diyarbakir, Turkey. 2001 Eur J Public Health 16(2): 143-148.

19. Ford K, Labbok M (1990) Who is breast-feeding? Implications of associated social and biomedical variables for research on the consequences of method of infant feeding. Am J Clin Nutr 52(3): 451-456.

20. Gerrard JW, Peremhuter L (1986) IgE-mediated allergy to peanut, cow’s milk, and egg in children with special reference to maternal diet. Ann Allergy 56(4): 351-354.

21. Jordan PL, Wall VR (1990) Breastfeeding and fathers: illuminating the darker side. Birth 17(4): 210-213.

22. Kakute PN, Ngum J, Mitchell P, Kroll KA, Forgwei GW, et al. (2005) Cultural barriers to exclusive breastfeeding by mothers in a rural area of Cameroon, Africa. J Midwifery Women’s Health 50(4): 324-328.

23. Kalanda BF, Verhoeoff FH, Brabin BJ (2006) Breast and complementary feeding practices in relation to morbidity and growth in Malawian infants. Eur J Clin Nutr 60(3): 401-407.

24. Kessler LA, Gielen AC, Diener-West M, Paige DM (1995) The effect of a woman’s significant other on her breastfeeding decision. J Hum Lact 11(2): 103-109.

25. Kier, Rajuwan N, Goldberg MR, Eisenberg E, Heyman E, et al. (2010) Early exposure to cow’s milk protein is protective against Ig-E mediated cow’s milk protein allergy. J Allergy Clin Immunol 126(1): 77-82.

26. Kimani Murage EW, Madise NJ, Fotsio JC, Kjøbvik C, Mutua MK, et al. (2011) Patterns and determinants of breastfeeding and complementary feeding practices in urban informal settlements, Nairobi, Kenya. BMC Public Health 11:396.

27. Kramer MS, Kakuma R (2001) The optimal duration of exclusive breastfeeding: a systematic review. Geneva: World Health Organization, pp.47.

28. Sibeko L, Dhansay MA (2005) Beliefs, Attitudes, and Practices of Breastfeeding Mothers From a Periurban Community in South Africa. J Hum Lact 21(1): 31-38.

29. Littman H, Medendorp S, Goldfarb J (1994) The decision to breastfeed: The importance of fathers’ approval. Clin Pediatr 33(4): 214-219.

30. Maru Y, Haidar J (2009) Infant feeding practice of HIV positive mothers and its determinants in selected health institutions of Addis Ababa, Ethiopia. Ethiop J Health Professions, 23(2):107-114.

31. Meyerink RO, Marquis GS (2002) Breastfeeding initiation and duration among low-income women in Alabama: The importance of personal and familial experiences in making infantfeeding choices. J Hum Lact 18(1): 38-45.

32. Nwaru BI, Erkkola M, Ahonen S, Kallal M, Haapala AM, et al. (2010) Age at the introduction of solid foods during the first year and allergic sensitization at age 5 years. Pediatrics 125(1): 50-59.

33. Oddy WH, Sly PD, de Klerk NH, Landau L, Kendall GE, et al. (2003) Breastfeeding and respiratory morbidity in infancy: a birth cohort study. Arch Dis Child 88(3): 224-228.

34. Omwega AM1, Oguta Tj, Sehmi JK (2006) Maternal knowledge on mother-to-child transmission of HIV and breast milk alternatives for HIV positive mothers in Homa Bay District Hospital, Kenya. East Afr Med J 83(11): 610-618.

35. Rempel LA, Rempel JK (2004) Partner influence on health behavior decision-making: Increasing breastfeeding duration. Journal of Social and Personal Relationships 21(1): 92-111.

36. Scott JA, Baines CW (1999) Factors associated with the initiation and duration of breastfeeding: A review of the literature. Breastfeed Rev 7(1): 5-16.

37. Shirima R, Greiner T, Kyberg E, Gebre-Medhin M (2001) Exclusive breastfeeding is rarely practiced in rural and urban Morogoro, Tanzania. Public Health Nutr 4(2): 148-151.

38. Spencer RL (2008) Research methodologies to investigate the experience of breastfeeding: a discussion paper. Int J Nurs Stud 45 (12): 1823-1830.

39. World Health Organization (2009) Infant and young child feeding: model chapter for textbooks for medical students and allied health professionals. Geneva: World Health Organization.

40. World Health Organization (2001) Summary of guiding principles for complementary feeding of the breastfed child. Geneva: World Health Organization. Complementary feeding: report of the global consultation pp.5.

41. Adejobiye E, Oriji E, Onayade A, Makinde N, Anyabolu H (2008) Infant Feeding Intentions and Practices of HIV-Positive Mothers in Southwestern Nigeria. J Hum Lact. 24(3): 303-310.

42. Subedi N, Paudel S, Rana T, Poudyal AK (2012) Infant and young child feeding practices in chepang communities. J Nepal Health Res Counc. 10(21): 141-146.

43. http://www.ifra-nigeria.org/IMG/pdf/Sika.pdf.