Natural killer cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective

Cristina Eguizabal1, Olatz Zenarruzabeitia2, Jorge Monge1, Silvia Santos1, Miguel Angel Vesga1, Natalia Maruni3, Arantza Arrieta3, Marta Riñón3, Estibaliz Tamayo-Orbego3, Laura Amo3, Susana Larrucea3 and Francisco Borrego2,4*

1 Basque Center for Transfer of Human Tissues, Galdakao, Spain
2 Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain
3 Regulation of the Immune System Group, BioCruces Health Research Institute, Barakaldo, Spain
4 Ikerbasque, Basque Foundation for Science, Bilbao, Spain

*Correspondence: francisco.borrego@bio-cruces.es

Edited by:
Angela Santoni, University Sapienza

Reviewed by:
Evelyn Ulrich, Goethe University
Chiara Romagnani, Deutsches Rheuma Forschungszentrum, Germany

INTRODUCTION

Natural killer (NK) cells are innate lymphoid cells that have an important role in regulating the defenses to viral infections and cancer development (1–6). The vast majority of circulating mature human NK cells in healthy donors are identified as CD3−CD56+ lymphocytes. Approximately, 90% of peripheral blood and spleen NK cells belong to the CD56dimCD16+ subset, which is characterized by a potent cytotoxic activity after interaction with target cells. On the other hand, NK cells on lymph nodes and tonsils are mostly CD56brightCD16dim/− and have poor cytotoxic activity, while they produce very significant amounts of cytokines, such as interferon (IFN)-γ, in response to IL-12, IL-15, IL-18, and type I IFN stimulation (7, 8). NK cells are equipped with an array of activating and inhibitory receptors that stimulate or dampen NK-cell activity, respectively. Inhibitory receptors include the MHC class I ligands killer-cell immunoglobulin-like receptors (KIRs) with two or three extracellular immunoglobulin domains and long cytoplasmic tail (KIR2DL and KIR3DL), leukocyte immunoglobulin-like receptor subfamily member 1 (LILRB1) and CD94/NKG2A, and other inhibitory receptors such as CD300a, leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), and others. Activating receptors include cytokine and chemokine receptors, and those that interact with ligands expressed on target cells. The latter include, among others, the natural cytotoxicity receptors or NCRs (NKp30, NKp44, and NKp46), NKG2D, KIR with short cytoplasmic tail (KIR2DS and KIR3DS), CD94/NKG2C, CD244, and DNAM-1. In addition, NK cells also express the death ligands FasL and TRAIL that, after interaction with death receptors Fas and DR5, respectively, initiate a signaling cascade resulting in apoptosis of the target cell. Finally, NK cells express FcyRIIaA or CD16, the receptor that exerts antibody-dependent cell-mediated cytotoxicity (ADCC) (4, 9–13).

Natural killer-cell effector functions are dynamically regulated, and the killing or sparing of target cells depends on the integration of distinct signals that emanate from NK-cell receptors after their interaction with ligands expressed on target cells. NK cells spare healthy cells that express MHC class I molecules and low amounts of stress-induced self-molecules, while they kill target cells that up-regulate stress-induced self-molecules and/or down-regulate MHC class I molecules (4, 5, 11, 12). The latter are common features of virus-infected cells and tumors (14, 15). The investigation of NK-cell reactivity has revealed the basis of tumor recognition, and several lines of evidence have shown that
NK cells have a critical role in host immunity against cancer (2, 16–19). In response, tumors have evolved mechanisms to escape control from NK cells, such as the modulation of NK-cell receptor-ligand expression patterns and the secretion of immunoregulatory molecules or immunosuppressive modulators such as IDO, PGE2, and TGF-β, that down-regulate NK-cell effector functions (20–24).

So far, all the amassed knowledge has driven efforts to harness NK cells with the purpose to improve the therapeutic options for patients living with cancer. Indeed, NK-cell-based adoptive cell immunotherapy is emerging as a promising approach for treatment of many cancers (25–27). Therapeutic NK cells can be derived from different sources, including peripheral blood or cord blood cells, adult hematopoietic stem cells (HSCs), embryonic stem cells (ESCs), or induced pluripotent stem cells (iPSCs).

**NK-CELL-BASED IMMUNOTHERAPY**

Given the role that NK cells have in the defense against tumor development, the therapeutic use of NK cells to treat malignancies is currently being exploited. It is very well established that NK cells have a very important role in the anti-tumor effect of therapeutic antibodies that use ADCC as a mechanism of action (28–31). In addition, in the clinical context, several approaches have been proposed for NK-cell-based immunotherapy, including *in vivo* cytokine-mediated expansion of endogenous NK cells, as well as the adoptive transfer of unmodified or *ex vivo* activated and expanded autologous and allogeneic NK cells, and some NK-cell lines, such as NK-92 (26, 32–41). Furthermore, genetically modified NK cells expressing cytokine genes or chimeric antigen receptor (CAR), are being studied for potential use in the clinic (26, 42–44). In clinical trials, NK-cell infusions alone or in the course of allogeneic hematopoietic stem cell transplantation (HSCT), are being tested as therapy for refractory tumors. In addition, they are also tested as consolidation immunotherapy, which could be an important therapeutic tool in high risk hematological malignancies during the remission phase after chemotherapy, and when allogeneic HSCT is not indicated due to its high degree of toxicity (45, 46).

Early studies were aimed to *in vivo* expand endogenous NK cells and to improve their anti-tumor activity by administering systemic cytokines, such as IL-2, into patients (47–49). Other strategies included the *ex vivo* activation and expansion of autologous NK cells, following their adoptive transfer into the patients in combination with IL-2 (32, 50–53). These approaches offered poor clinical outcomes due to high toxicity of IL-2 (54). Moreover, this cytokine promoted the expansion not only of NK cells but also of regulatory T (Treg) cells, therefore dampening NK cells effector functions (55). Others have assessed the effects of low-dose IL-2 administration and IL-2 boluses on NK-cell activation after autologous HSCT (39, 56). Whereas IL-2 significantly expanded the number of circulating NK cells *in vivo*, these NK cells did not exhibit maximal cytotoxic potential as determined by *in vitro* assays (39). In addition, although the infusion of IL-2-activated NK-cell-enriched populations or intravenous IL-2 infusions combined with subcutaneous IL-2 augmented *in vivo* the NK-cell function, there was a lack of consistent clinical efficacy of autologous NK-cell-based therapy in patients with lymphoma and breast cancer when compared with cohorts of matched controls (56).

Although relatively safe, the lack of significant efficacy of therapy with autologous NK cells could be due to the interaction of MHC class I molecules expressed on cancer cells that, after their interaction with MHC class I-specific inhibitory receptors on NK cells, suppress their activation (4, 10–12). Specifically, since human NK cells are regulated by KIRs that interact with specific HLA class I molecules, it is expected that in HLA-non-identical transplantation where the recipients lack the class I epitope specific for the donor’s inhibitory KIRs (i.e., receptor-ligand mismatch), donor NK cells will be not inhibited, leading to a better prognosis due to a decreased risk of relapse. In fact, clinical data have shown that haploidentical KIR ligand-mismatched NK cells play a very important role as anti-leukemia effector cells in the haploidential T cell-depleted transplantation settings (57, 58). Several publications have revealed that patients with acute myeloid leukemia (AML) are significantly more protected against leukemia relapse when they receive a transplant from NK alloreactive donors (38, 57–62). Furthermore, several strategies using adoptively transferred allogeneic NK cells have been shown to be successful for cancer immunotherapy, including those against leukemia and solid tumors (36, 63–66). Table 1 depicts a summary of completed clinical trials that have used infusion of allogeneic NK cells. Importantly, the infusion of allogeneic NK cells has also been demonstrated to be a safe therapy with low toxicity (38). Prominently, there are also clinical studies that have confirmed that infusion of donor–recipient inhibitory KIR-HLA-mismatched NK cells, following mild conditioning, is well tolerated by pediatric patients, which indicates that this is a promising novel therapy for reducing the risk of relapse in children with tumors (45, 67).

Using NK-cell lines as source for the treatment of cancer may also be beneficial. Specifically, the use of NK-92 cell line has been demonstrated to be a safe therapy with anti-tumor effects (41, 68, 69). In fact, the FDA has approved the testing of NK-92 infusions in patients with advanced solid tumors (68).

The successful use in the clinic of CAR-expressing T cells in the treatment of hematological malignancies has prompted the development of other CAR-expressing cytotoxic cells. In this context, preclinical studies are being carried out investigating the targeting of tumors using CAR-redirected NK cells (43, 70–79). Although the majority of these studies have been performed against targets of hematological origin, it has also been described as promising results with NK cells transduced with CARs specific for antigens expressed on solid tumors (75, 78, 79). Mostly, all these studies have been done with the NK-92 cell line transduced with the specific CAR, although *in vitro* stimulated NK cells from healthy donors and pediatric leukemia patients have also been used (70).

In order to successfully use NK-cell infusions in the clinical setting, a sufficient number of highly enriched NK cells must be obtained. Allogeneic unmodified NK cells can be adoptively transferred after leukapheresis products are T cell-depleted, in...
Table 1 | Selected completed clinical trials that have used infusion of allogeneic NK cells in https://clinicaltrials.gov.

| Indication | Cell product | Combined | Center (country) | Clinicaltrials.gov identifier |
|------------|--------------|----------|------------------|-----------------------------|
| Advanced cancer | NK cells | Allogeneic HSCT | Asan Medical Center (Korea) | NCT00823524 |
| AML | IL2 activated NK cells | Chemotherapy, IL2, and denileukin diftitox | Masonic Cancer Center, University of Minnesota (USA) | NCT01106950 |
| AML | NK cells | Chemotherapy and IL2 | St. Jude Children's Research Hospital (USA) | NCT00187096 |
| AML | IL2 activated NK cells | Chemotherapy and IL2 | Masonic Cancer Center, University of Minnesota (USA) | NCT00274846 |
| AML | UCB NK cells | Chemotherapy, IL2, TBI, and UCB transplant | Masonic Cancer Center, University of Minnesota (USA) | NCT00871689 |
| AML and MDS | IL2 activated NK cells | Chemotherapy, IL2, and allogeneic HSCT | M.D. Anderson Cancer Center (USA) | NCT00402558 |
| Breast cancer | IL2 activated NK cells | Chemotherapy, IL2, and TBI | Masonic Cancer Center, University of Minnesota (USA) | NCT00376805 |
| Hematological malignancies | UCB NK cells | IL2, TBI, UCB transplantation | Masonic Cancer Center, University of Minnesota (USA) | NCT00354172 |
| Hematological malignancies | NK cells | Autologous HSCT | Tufts Medical Center (USA) | NCT00660166 |
| Hematological malignancies | NK cells | Rituximab, Rhu-GMCSF, and allogeneic HSCT | M.D. Anderson Cancer Center (USA) | NCT00383994 |
| Hematological malignancies | NK cells | Haploidentical HSCT | Asan Medical Center (Korea) | NCT00569283 |
| Hematological malignancies | NK cells | Allogeneic-matched HSCT | Duke University Medical Center (USA) | NCT00586690 |
| Hematological malignancies | NK cells | Allogeneic-mismatched HSCT | Duke University Medical Center (USA) | NCT00586703 |
| Lymphoma and solid tumors | IL2 expanded with irradiated autologous feeder cells | | Seoul National University Hospital (Korea) | NCT01212341 |
| Melanoma | NK cells | Chemotherapy and IL2 | Seoul National University Hospital (Korea) | NCT00848833 |
| Multiple myeloma | NK cells | Chemotherapy, IL2, and autologous HSCT | University of Arkansas (USA) | NCT00089453 |
| NHL or CLL | IL2 activated NK cells | Rituximab, IL2, and chemotherapy | Masonic Cancer Center, University of Minnesota (USA) | NCT00625729 |
| Non-B lineage hematologic malignancies and solid tumors | Expanded NK cells | Chemotherapy and IL2 | St. Jude Children's Research Hospital (USA) | NCT00640796 |
| Ovarian, fallopian tube, and primary peritoneal cancer | IL2 activated NK cells | Chemotherapy, IL2, and TBI | Masonic Cancer Center, University of Minnesota (USA) | NCT00652899 |
| Ovarian, fallopian tube, peritoneal, and breast cancer | IL2 activated NK cells | Chemotherapy and IL2 | Masonic Cancer Center, University of Minnesota (USA) | NCT01105650 |
| Poor prognosis non-AML hematologic malignancies | NK cells | Chemotherapy and IL2 | St. Jude Children's Research Hospital (USA) | NCT00697671 |
| Solid tumors | IL15 activated NK cells | Haploidentical HSCT | Hospital Infantil Universitario Niño Jesús (Spain) | NCT01337544 |

AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; HSCT, hematopoietic stem cell transplantation; MDS, myelodysplastic syndrome; NHL, non-Hodgkin lymphoma; TBI, total body irradiation; UCB, umbilical cord blood.
combination with B cell depletion and/or NK-cell enrichment (67, 80, 81). In the context of allogeneic HSCT, the transfer of unmodified NK cells or CD3/CD19-depleted grafts results in recovery of elevated NK-cell numbers, which can also expand in vivo (67, 81, 82). In the absence of HSCT, successful NK-cell expansion in vivo is achieved by the administration of IL-2 in combination with products that deplete Treg cells (80).

Various methods for large-scale and clinical-grade ex vivo NK-cell expansion have been reported with this aim (83–92). Due to the advantage of aseptic conditions in a closed system, peripheral blood mononuclear cells (PBMCs) collected by leukapheresis are frequently used as source for goods manufacturing practice (GMP)-compliant expansion of NK cells (84, 85, 87). In general, the expansion of allogeneic NK cells involves two sequential steps. The first consists in the magnetic depletion of CD3+ T lymphocytes, followed by a second step of enrichment of CD56+ NK cells (83, 85, 87, 90). To expand the purified NK cells, they are cultured with cytokines, such as IL-2, IL-12, IL-15, and IL-21 (84, 85, 87, 93, 94). In order to further encourage NK-cell proliferation, several authors have used irradiated feeder cells in the culture, such as PBMCs, Epstein–Barr virus-transformed lymphoblastoid cell lines or engineered leukemic cell lines (83, 86, 90, 95). Irradiated feeder cells stimulate NK cells through both humoral factors and direct cell-to-cell contact. However, there are technical disadvantages by using supportive feeder cell lines that could lead to problems with the regulatory agencies.

CD34+ hematopoietic progenitors from umbilical cord blood (UCB) are also being considered as a source for the production of a large number of allogeneic NK cells (89, 91, 92, 96, 97). Some groups have described different protocols for the generation of NK cells from CD34+ cells using coculture systems with stromal cell lines and a combination of cytokines that promote the development of NK cells (88, 97, 98). Very importantly, other authors have been able to generate large numbers of UCB CD34+ cell-derived NK-cell products for adoptive immunotherapy in closed, large-scale bioreactors, and stromal cell lines free, for use in future clinical trials (91, 92). These NK cells have been shown to efficiently target bone marrow-resident human leukemia cells in preclinical studies (96). It is important to investigate, which cytokines added to these cultures favors the generation of higher numbers of mature NK cells with enhanced effector functions. For example, it has been shown that IL-12 directs human NK-cell differentiation ex vivo from CD34+ cord blood precursors toward more mature NK cells with improved properties (93).

Obtaining a significant number of pure and functional NK cells is a critical factor for NK-cell-based immunotherapy. Several authors have shown the efficient generation of a large number of functional and mature NK cells from human embryonic stem cells (hESCs) and iPSCs, suggesting that the clinical use of these NK cells may be a reasonable expectation for the future of cancer immunotherapy (99–104).

**PLURIPOTENT STEM CELLS: ESCs AND iPSCs**

Since the derivation of hESCs, more than 20 years ago by Thomson et al., numerous groups have successfully differentiated these cells into fully mature and functional cells from each germ layer (105). Shortly, after the original derivation of hESCs, various groups demonstrated the hematopoietic development using an in vitro model and defined conditions (103, 104, 106–111).

One of the scientific breakthroughs of the last years has been to determine that pluripotency can be recovered by several differentiated somatic cell types through the overexpression of just four transcription factors (OCT4, SOX2, cMYC, and KLF4) (112–114). These cells are named iPSCs. Depending on the donor’s somatic cell type, the reprogramming process is accomplished with different efficiency. Just 7–12 days are required to reprogram mouse embryonic fibroblasts (MEFs) (115), whereas human foreskin fibroblasts take 20–25 days, using retrovirus technology in both cases (116). Compared with fibroblasts, human keratinocytes can be reprogrammed 100 times more efficiently and twofold faster (116). After choosing the target donor somatic cell type, it is necessary to select a cocktail of reprogramming factors that usually are the four above mentioned. In few situations less than four factors are needed, such as in the case of cord blood CD133+ cells and keratinocytes (117). Through the reprogramming process, the chromatin remodeling plays an essential role in the procurement of pluripotency. So far, it has been described that the use of some chemical compounds is able to alter the DNA methylation and induce chromatin remodeling that results in an improvement of the reprogramming process. For example, treatment with DNA methyltransferase inhibitor (5′-azacytidine) and histone deacetylase inhibitors (SAHA, TSA, and VPA) improves reprogramming efficiency in MEFs. Also, during the reprogramming process, it is important to maintain the pluripotency state. This can be achieved by using compounds that inhibit glycolen synthesize kinase 3, lysine-specific demethylase 1, or G9a (118–122). Once iPSCs are generated, they have the capability to differentiate toward ectodermal, mesodermal, endodermal, and germ cells. This is achieved by the addition to the culture media of some growth factors and several compounds that provide specific signals allowing iPSCs to differentiate in the cell type of interest (123).

Another important issue during the reprogramming process is the method for the delivery of the transcription factors into the somatic cells. Currently, there are integrative delivery systems (retrovirus, lentivirus, linear DNA, and piggyBac transposon) and non-integrative systems (adenovirus, Sendai viral vectors, episcopal vectors, synthetic mRNA, and proteins) (123, 124). The choice of one or another system will depend on the final use of the human-induced pluripotent stem cells (hiPSCs). For research purposes, the usual methods are the integrative systems, whereas if hiPSCs are intended for future clinical use, the non-integrative methods should be more appropriated.

**GENERATION OF NK CELLS FROM hESCs AND hiPSCs**

Pluripotent stem cells (PSCs) are an important advance in stem cell research, as they allow researchers to obtain stem cells, which, in addition to be very useful tools for research, they may have therapeutic uses. Because hiPSCs are developed from a patient’s own somatic cells, it is believed that hiPSCs-based therapy would be very poorly or non-immunogenic, whereas hESCs are not (125–128). The use of these cells provides an accessible, genetically tractable, and homogenous starting cell population to efficiently study human blood cell development among others (106, 103, 108, 111, 129). hESCs and hiPSCs can provide important starting
cell populations to develop new cell-based therapies that have the potential to treat both malignant and non-malignant diseases. The clinical applications of this type of cell-based therapy depend on the thoroughly understanding of the normal development and physiology of the PSCs and of the desired “final” cell population. Several groups have already demonstrated the ability of hESC and hiPSC-derived hematopoietic progenitor cells to produce functional NK cells that, hypothetically at least, could serve as a “universal” source of anti-tumor lymphocytes for cancer immunotherapy (99–104, 130, 131) (Figure 1). In addition, hiPSCs, which can be reliably engineered in vitro, provide an important new model system to study human NK-cell development, as well as a model for NK-cell deficiency and diseases with significant defects on NK-cell functions (108).

Generating CD34+ hematopoietic precursors is the first important step in the specific hematopoietic lineage differentiating protocols from hESCs and hiPSCs. The initial protocols achieved to obtain up to 20% of CD34+ cells by coculturing the hESCs with the OP9 mouse bone marrow stromal cells (111). Other groups obtained similar results using the S17 or M210-B4 mouse bone marrow stromal cell lines, and they were able to in vitro generate CD34+CD45− and CD34+CD45+ precursors (104, 131, 132). It has been described that hESCs-derived CD34+CD45+ cells contain more hematopoietic progenitors, and consequently are more suitable for the NK-cell differentiation when compared with the CD34+CD45− population (104). Usually, after the generation of hESCs- and hiPSCs-derived CD34+ hematopoietic precursors, these are sorted and subsequently cultured under conditions that favor the development of NK cells. For example, sorted hESCs-derived CD34+ cells were placed in culture with the murine fetal liver-derived AFT024 stromal cell line as feeder cells in medium supplemented with IL-15, IL-3, IL-7, SCF, and fms-like tyrosine kinase receptor-3 ligand (Flt3L) (104). At the end of the culture process, after 30 days, NK cells expressed maturation markers including KIRs, CD94/NKG2A, NCRs, and CD16 (104). In addition, these cells could lyse malignant cells by both direct cell-mediated cytotoxicity and ADCC. On the other hand, Knorr et al. have also proved the trafficking of hESC-derived NK cells to K562 tumor cells engrafted in sublethally irradiated mice for 4 days before NK-cell injection (130).

Other approach for the generation of CD34+ hematopoietic precursors in vitro is to differentiate both types of PSCs by

![Figure 1](https://www.frontiersin.org)
embryoid body (EB) assays followed by a coculture system with the OP9 stromal cell line and a cocktail of cytokines, such as BMP4, VEGF, SCF, FGF, TPO, and Flt3L (129, 133). EBs are three-dimensional aggregates of PSCs, which resembles the embryonic development, including the differentiation toward cells of the hematopoietic lineage. Knorr and colleagues have used a refined method of the EBs assay, termed spin EBs, in the presence of BMP4 and VEGF and, after a period of 11 days of spin EB differentiation, they add IL-3, IL-7, IL-15, and Flt3L, that favors the development of NK cells (100, 130).

Other important factor for the in vitro differentiation of NK cells from PSCs is the role of the HOXB4 homeoprotein. Larbi et al. have described that HOX84 delivery promotes the enrichment and expansion of EB-derived hematopoietic precursors that could differentiate into fully mature and functional NK cells (101). HOX84 protein, in combination with stromal cells, has an important role in the development of NK cells from hESCs, suggesting the potential use of this protein for NK-cell enrichment from PSCs.

A step forward is the clinical-scale production of NK cells derived from PSCs for future cancer immunotherapy applications. Kaufman’s group has improved the method for the clinical-scale generation of NK cells. They used a two-stage culture system to efficiently generate NK cells from hESCs and iPSCs in the absence of cell sorting and without the need for xenogenic stromal cells. As mentioned above, the method is based on the combination of spin EB formation using defined conditions and membrane-bound interleukin 21—expressing artificial antigen-presenting cells that allow the production of mature and functional NK cells from several different hESC and iPSC lines. They are able to generate enough cytotoxic and mature NK cells to treat a single patient starting from fewer than 250,000 input hESCs/iPSCs that could be maintained and continuously expanded for at least 2 months (100).

**FUTURE DIRECTIONS**

Adaptive immunotherapy with NK-cell infusions is currently used in patients with high risk of relapse after HSCT (34, 38, 67). Even though preliminary results are encouraging, still critical issues remain unanswered, such as the characterization of standardized protocols for GMP-compliant production of clinical-grade NK cells. Apart from that, with continued advances in the stem cell field, it is likely that hPSC-derived NK cells will relatively soon be able to be efficiently derived on a patient-specific basis. Actually, hESC and hiPSC-derived NK cells express activating and inhibitory receptors similar to NK cells isolated from adult peripheral blood (100, 104, 108, 130). The hESC-derived NK cells are also highly efficient at direct cell-mediated cytotoxicity and ADCC, as well as cytokine (IFN-γ) production. And importantly, stromal cells-free protocols have successfully been described (100, 130). It is clear that hiPSC-derived NK cells provide a genetically manageable system to study human NK-cell development and function. In addition, these NK cells could provide an important source of lymphocytes for cancer therapy. There are several and serious obstacles to be overcome before PSC-derived NK cells can be considered for cancer immunotherapy. Safe methods for hiPSC generation and high reprogramming efficacy are of the highest importance. Furthermore, the irreversible nature of hPSC-based therapy requires special precautions to be taken in any clinical trial. We have to be realistic and accept that multiple technical, safety, and regulatory obstacles are in the way for successful translation of hPSC-derived NK cells into the clinic. But hopefully, in a not so far future, all these hurdles will be surmounted and the use of hPSCs-based cancer therapies will be a reality.

**ACKNOWLEDGMENTS**

This work was supported by the Health Department, Basque Government (Grant 2013111034) and SAIOTEK, Basque Government (Grant SAIO13-PE13BF006).

**REFERENCES**

1. Lee SH, Miyagi T, Biron CA. Keeping NK cells in highly regulated antiviral warfare. Trends Immunol (2007) 28:252–9. doi:10.1016/j.ti.2007.04.001
2. Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol (2014) 122:91–128. doi:10.1016/B978-0-12-800267-4.00003-1
3. Orange JS. Natural killer cell deficiency. Adv Cancer Res (2007) 95:299–322. doi:10.1016/S0065-230X(06)50004-2
4. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. In innate or adaptive immunity? The example of natural killer cells. Science (2011) 331:44–9. doi:10.1126/science.1188687
5. Caligiuri MA. Human natural killer cells. Blood (2008) 113:461–9. doi:10.1182/blood-2007-09-077438
6. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer cell subsets. Trends Immunol (2001) 22:633–40. doi:10.1016/S1471-4906(01)02060-9
7. Montalbo E, Del Zotto G, Della Chiesa M, Mingari MC, Moretta A, De Maria A, et al. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A (2013) 83:702–15. doi:10.1002/cyto.a.22302
8. Horst D, Verweij MC, Davison AJ, Ressing ME, Wiertz EJ. Viral evasion of T cell immunity: ancient mechanisms offering new applications. Curr Opin Immunol (2011) 23:96–103. doi:10.1016/j.coi.2011.10.005
9. Karrer K, Ljunggren HG, Hämmerling U. Role of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol (2002) 38:637–60. doi:10.1016/S0161-5890(01)00107-9
10. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol (2008) 9:495–502. doi:10.1038/ni1581
11. Lanier LL. The biology of natural killer cells and natural killer T cells in cancer. Nat Rev Immunol (2012) 12:239–52. doi:10.1038/nri3174
12. Montalbo E, Del Zotto G, Della Chiesa M, Mingari MC, Moretta A, De Maria A, et al. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A (2013) 83:702–15. doi:10.1002/cyto.a.22302
13. Horst D, Verweij MC, Davison AJ, Ressing ME, Wiertz EJ. Viral evasion of T cell immunity: ancient mechanisms offering new applications. Curr Opin Immunol (2011) 23:96–103. doi:10.1016/j.coi.2011.10.005
14. Horst D, Verweij MC, Davison AJ, Ressing ME, Wiertz EJ. Viral evasion of T cell immunity: ancient mechanisms offering new applications. Curr Opin Immunol (2011) 23:96–103. doi:10.1016/j.coi.2011.10.005
15. Karrer K, Ljunggren HG, Hämmerling U, Schmitt D, Mebius RE, Zandstra PW, et al. Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A (2013) 83:702–15. doi:10.1002/cyto.a.22302
16. Hakim A, Smyth MJ, Innate immune recognition and suppression of tumors. Adv Cancer Res (2006) 95:293–322. doi:10.1016/S0065-230X(06)50088-8
17. Kim S, Izuka K, Aguiari HL, Weissman IL, Yokoyama WM. In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci U S A (2000) 97:2731–6. doi:10.1073/pnas.050588297
18. Ljunggren HG, Malmberg KJ. Prospects for the use of cells in immunotherapy of human cancer. Nat Rev Immunol (2007) 7:329–39. doi:10.1038/nri2073
19. Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res (2003) 83:127–56. doi:10.1016/S0065-230X(03)01900-4
investigational pharmacological strategies aiming at restoring NK-mediated anti-tumor activity. Front Immunol (2014) 5:122. doi:10.3389/fimmu.2014.00122

21. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol (2010) 10:554–67. doi:10.1038/nri2808

22. Ma X, Holt D, Kundu N, Reader J, Goloubcheva O, Take Y, et al. A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE-mediated immunosuppression and inhibits breast cancer metastasis. Oncology immunology (2013) 2:22667. doi:10.4161/onci.22647

23. Salih HR, Goehlisch D, Steinhle A. Release of MICB molecules by tumor cells: a mechanism and soluble MICB in sera of cancer patients. Hum Immunol (2006) 67:188–95. doi:10.1016/j.jimmun.2006.02.008

24. Wagner D, Saga Y, Mizukami H, Sato N, Nonaka H, Fujiwara H, et al. Indoleamine-2,3-dioxygenase, an immunosuppressive enzyme that inhibits natural killer cell function, as a useful target for ovarian cancer therapy. Int J Oncol (2012) 40:929–34. doi:10.3892/ijoi.2011.1295

25. Ames E, Murphy WJ. Advantages and clinical applications of natural killer cells in cancer immunotherapy. Cancer Immunol Immunother (2014) 63:21–8. doi:10.1007/s00262-013-1469-8

26. Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol (2013) 10:230–50. doi:10.1038/cmi.2013.10

27. Termé M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L. Natural killer cell-mediated immunotherapy in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother (1994) 39:168–76. doi:10.1007/BF00155386

28. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev (2005) 24:487–99. doi:10.1007/s10623-005-0555-2–6192-2

29. Jiang XR, Song A, Bergelson S, Arroll T, Parekh B, May K, et al. Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat Rev Drug Discov (2011) 10:101–11. doi:10.1038/nrd3665

30. Tarek N, Le Luduque JB, Gallagher MM, Zheng J, Venstrom JM, Chamberlain E, et al. Unlicensed NK cells target neuroblastoma following anti-CD2 antibody treatment. J Clin Invest (2012) 122:3260–70. doi:10.1172/JCI62749

31. Zhou Q, Gil-Krzewska A, Peruzzi G, Borrego F. Matrix metalloproteinases inhibition promotes the polyfunctionality of human natural killer cells in therapeutic antibody-based anti-tumor immunotherapy. Clin Exp Immunol (2013) 173:311–9. doi:10.1111/cei.12985

32. Boizard A, Silvani A, Ruffini PA, Rivoltini L, Parmiani G, Broggi G, et al. Loco-regional immunotherapy with recombinant interleukin-2 and adenovirus-derived lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunol Immunother (1994) 39:193–7. doi:10.1007/BF01533586

33. Cheng M, Zhang J, Jiang W, Chen Y, Tian Z. Natural killer cell lines in tumor immunotherapy. J Leukoc Biol (2008) 84:109–15. doi:10.1189/jlb.0608409

34. Ishikawa E, Tsuobi K, Sajo K, Harada H, Takano S, Nose T, et al. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res (2004) 24:1861–71.

35. Miller JS, Seigfried T, Der Marder E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunity and immunotherapy. Immunol Rev (2004) 202:275–93. doi:10.1111/j.0699-5688.2004.00199.x

36. Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy (2013) 15:1563–70. doi:10.1016/j.jcyt.2013.06.017

37. Muller T, Uherk M, Maki G, Chow KU, Schimpf A, Klingemann HG, et al. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother (2008) 57:411–23. doi:10.1007/s00262-007-0833-3

38. Zhang J, Sun R, Wei H, Zhang J, Tian Z. Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica (2004) 89:338–47.

39. Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol (2010) 28:955–9. doi:10.1200/JCO.2009.24.4590

40. Vermeer MR, Grupp SA. Natural killer cell consolidation for acute myelogenous leukemia: a cell therapy ready for prime time? J Clin Oncol (2010) 28:909–10. doi:10.1200/JCO.2009.26.4002

41. Atkins MB, Kunkel L, Sznol M, Rosenberg SA. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am (2000) 6(Suppl 1):S11–4.

42. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol (1999) 17:2105–16.

43. Fisher RI, Rosenberg SA, Fyfe G. Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am (2000) 6(Suppl 1):S55–7.

44. Krause SW, Gastpar R, Arendse R, Gross C, Ullrich H, Thonigs G, et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res (2004) 10:5697–709. doi:10.1158/1078-0432.CCR-03-0683

45. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res (2011) 17:6287–97. doi:10.1158/1078-0432.CCR-11-1347

46. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Etinghausen SE, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med (1985) 313:1485–92. doi:10.1056/NEJM198512053133327

47. Rosenberg SA, Vanneli IR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin-2. J Natl Cancer Inst (1994) 86:1159–66. doi:10.1093/jnci/86.15.1159

48. Ma C, Armstrong AW. Severe adverse events from the treatment of advanced melanoma: a systematic review of severe side effects associated with ipilimumab, vemurafenib, interference alfa-2b, dacarbazine and interleukin-2. J Dermatol Treat (2014) 25:401–8. doi:10.3109/09546463.2013.813897

49. Balazsirina N, Poli A, Michel T, Poes L, Andre S, Hengs F, et al. Control of NK cell functions by CD4+CD25+ regulatory T cells. J Leukoc Biol (2007) 81:144–53. doi:10.1189/jlb.0606049

50. Burns JS, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, et al. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase 1/II trial. Bone Marrow Transplant (2003) 32:177–86. doi:10.1038/sj.bmt.1704806

51. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in HLAmismatched hematopoietic stem cell transplantation. Blood (1999) 94:333–9.

52. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched
hematopoietic transplants. *Science* (2002) 295:2097–100. doi:10.1126/science.1068440

59. Pende D, Marcerano S, Falco M, Martini S, Bernardo ME, Montagna D, et al. Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploid-identical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. *Blood* (2009) 113:3119–29. doi:10.1182/blood-2008-06-161403

60. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, et al. Donor natural killer cell alloreactivity of missing self in haploidentical hematopoietic- etnic transplantation for acute myeloid leukemia: challenging its predictive value. *Blood* (2007) 110:433–40. doi:10.1182/blood-2006-07-038687

61. Venstrom JM, Pittari G, Gooley TA, Chevning JH, Spellman S, Haagenson M, et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. *N Engl J Med* (2012) 367:805–16. doi:10.1056/NEJMoa1205053

62. Willemsen R, Rodrigues CA, Labopin M, Sanz G, Michel G, Socie G, et al. KIR-ligand incompatibility in the graft-vs-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. *Leuk Lymphoma* (2009) 23:492–500. doi:10.1080/01453056.2008.365

63. Curti A, Ruggeri L, D’Addio A, Bontadini A, Dan E, Motta MR, et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. *Blood* (2011) 118:3273–9. doi:10.1182/blood-2011-01-329508

64. Geller MA, Cooley S, Judson PL, Ghebre R, Carson LF, Argenta PA, et al. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. *Cyttheraphy* (2011) 13:98–107. doi:10.1016/j.cit.2010.01.002

65. Geller MA, Miller JS. Use of allogeneic NK cells for cancer immunotherapy. *Immunotherapy* (2011) 3:445–59. doi:10.2217/ttm.11.131

66. Rizzieri DA, Storms R, Chen DF, Long G, Yang Y, Nikcevich DA, et al. Natural killer cell-enriched donor lymphocyte infusions from a 3-6/6 HLA matched family member following myeloablative allogeneic stem cell transplantation. *Blood Marrow Transplant* (2010) 16:1107–14. doi:10.1038/bmt.2010.018

67. Stern M, Passweg JR, Meyer-Monard S, Esser R, Tonn T, Soerensen J, et al. Pre-emptive immunotherapy with purified natural killer cells after haploidentical SCT: a prospective phase II study in two centers. *Bone Marrow Transplant* (2013) 48:433–8. doi:10.1038/bmt.2012.162

68. Ari A, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, et al. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. *Cyttheraphy* (2008) 10:625–32. doi:10.1016/j.cit.2008.03.1872

69. Tam YK, Martinson JA, Doligosa K, Klingemann HG. Ex vivo expansion of the KIR2DS1 gene enhances natural killer cell activation and killing of multiple myeloma cells. *Mol Oncol* (2014) 8:297–310. doi:10.1016/j.molonc.2013.12.001

70. Oberoi P, Wells WS. Arming NK cells with enhanced antitumor activity: CARs and beyond. *Oncoimmunology* (2013) 2:e25220. doi:10.4161/onci.25220

71. Sahn C, Schonfeld K, Wells WS. Expression of the IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. *Cancer Immunol Immunother* (2012) 61:1451–61. doi:10.1007/s00262-012-1212-x

72. Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG, et al. Retargeting of natural killer-cell cytotoxic activity to Erbb2-expressing cancer cells results in efficient and selective tumor cell destruction. *Blood* (2002) 100:1265–73.

73. Bachanova V, Cooley S, Defor TE, Verneris MR, Zhang B, McKenna DH, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. *Blood* (2014) 123:3855–63. doi:10.1182/blood-2013-10-532531

74. Kildg M, Friedrichs B, Meing I, Gentilini C, Bulkington N, Lodkaemper C, et al. Tracking in vivo dynamics of NK cells transferred in patients undergoing stem cell transplantation. *Eur J Immunol* (2014). doi:10.1007/s00017-014-2445-6

75. Bethge WA, Faul C, Bornhauser M, Stuhler G, Beelen DW, Lang P, et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: an update. *Blood Cells Mol Dis* (2008) 40:13–9. doi:10.1016/j.bcmd.2007.07.001

76. Berg M, Lundqvist A, McCoy P, Samuel L, Fan Y, Tawab A, et al. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. *Cyttheraphy* (2009) 11:341–35. doi:10.1016/j.cit.2009.08.07034

77. Koehli O, Brehm C, Hauerneck S, Zimmermann SY, Klöss S, Bremm M, et al. Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol. *Front Oncol* (2013) 3:118. doi:10.3389/fonc.2013.00118

78. Koopsa LL, Miller JS, McKenna DH Jr. Natural killer cells: a review of manufacturing and clinical utility. *Transfus* (2013) 53:404–10. doi:10.1111/ttf.12055

79. Lapteva N, Durett AG, Sun J, Rollins LA, Huye LL, Fang J, et al. Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. *Cyttheraphy* (2012) 14:1131–43. doi:10.1016/j.cit.2012.07.067

80. Lim O, Lee Y, Chung H, Her JH, Kang SM, Jung MY, et al. GMP-compliant, large-scale expanded allogeneic natural killer cells have potent cytolytic activity against cancer cells in vitro and in vivo. *PLoS One* (2013) 8:e53611. doi:10.1371/journal.pone.0053611

81. Luevano M, Domogala A, Blindell M, Jackson N, Pedroza-Pacheco I, Derniame S, et al. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells. *PLoS One* (2014) 9:e87086. doi:10.1371/journal.pone.0087086

82. Luevano M, Madrigal A, Saudermont A, Geissler G, Mehren A, et al. Good manufacturing practice-compliant cell sorting and large-scale expansion of single KIR-positive alloreactive human natural killer cells for multiple infusions to leukemia patients. *Cyttheraphy* (2010) 12:575–83. doi:10.3109/14653420903786155

83. Spanholtz J, Preijers F, Tordoir M, Trilsbeek C, Paardekooper J, de Witte T, et al. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. *PLoS One* (2011) 6:e20740. doi:10.1371/journal.pone.0020740

84. Spanholtz J, Tordoir M, Eissens D, Peire S, van der Meer A, Joosten E, et al. High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34+ positive cells for adoptive cancer immunotherapy. *PLoS One* (2010) 5:e9221. doi:10.1371/journal.pone.0009221

85. Lehmann D, Spanholtz J, Sturtzel C, Tordoir M, Schlechta B, Groenewegen D, et al. IL-12 directs further maturation of ex vivo differentiated NK cells
111. Vodyanik MA, Bork JA, Thomson JA, Slukvin II. Human embryonic stem cell-based serum-free culture system designed for cord blood expansion. *Cytotherapy* (2013) 15:64384. doi:10.1371/journal.pone.0064384.

112. Eguizabal C, Montserrat N, Vassena R, Barragán M, Garreeta E, Garcia-Quevedo L, et al. Complete meiosis from human induced pluripotent stem cells. *Stem Cells* (2011) 29:1186–95. doi:10.1002/stem.672.

113. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. *Cell* (2007) 131:861–72. doi:10.1016/j.cell.2007.11.019.

114. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* (2006) 126:663–76. doi:10.1016/j.cell.2006.07.024.

115. Gonzalez F, Barragán Monasterio M, Tiscornia G, Montserrat Pulido N, Vassena R, Battle Morrera L, et al. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. *Proc Natl Acad Sci U S A* (2009) 106:8918–22. doi:10.1073/pnas.0914711106.

116. Aasen T, Raya A, Barrero MJ, Garreeta E, Consiglio A, Gonzalez F, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. *Nat Biotechnol* (2008) 26:1276–84. doi:10.1038/nbt.1503.

117. Giorgetti A, Montserrat N, Aasen T, Gonzalez F, Rodriguez-Piza I, Vassena R, et al. Generation of induced pluripotent stem cells from human cord blood using OC14 and SOX2. *Cell Stem Cell* (2009) 3:535–7. doi:10.1016/j.stem.2009.09.008.

118. Feldman N, Gerson A, Fang J, Li F, Zhang Y, Shinakai Y, et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. *Nat Cell Biol* (2006) 8:188–94. doi:10.1038/ncb1353.

119. Huangfu D, Maehr R, Guo W, Eikenboom A, Snitow M, Chen AE, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. *Nat Biotechnol* (2008) 26:797–8. doi:10.1038/nbt1418.

120. Huangfu D, Oustone K, Maehr R, Guo W, Eikenboom A, Chen S, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. *Nat Biotechnol* (2008) 26:1269–75. doi:10.1038/nbt.1502.

121. Li W, Zhou H, Abujarour R, Zhu S, Young Joo L, Lin T, et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. *Stem Cells* (2009) 27:2992–3000. doi:10.1002/stem.240.

122. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. *Cell Stem Cell* (2008) 3:568–74. doi:10.1016/j.stem.2008.10.004.

123. Gonzalez F, Boue S, Izsipa Belmonte JC. Methods for making induced pluripotent stem cells: reprogramming a la carte. *Nat Rev Genet* (2011) 12:231–42. doi:10.1038/nrg2838.

124. Eguizabal C, Montserrat N, Veiga A, Izsipa Belmonte JC. Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. *Semin Reprod Med* (2013) 31:82–94. doi:10.1053/j.srmd.2013.0802.

125. Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. *Nature* (2013) 494:100–4. doi:10.1038/nature11807.

126. Cao J, Li X, Lu X, Zhang C, Yu H, Zhao T. Cells derived from iPSC can be immunogenic – you or not? *Protein Cell* (2014) 5:1–5. doi:10.1007/s13238-013-0003-2.

127. Gulpa P, Morgan JW, Mostoslavsky G, Rodrigues-NP, Bord AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. *Stem Cells* (2013) 12:407–12. doi:10.1002/stem.2013.01.006.

128. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. *Nature* (2011) 474:212–5. doi:10.1038/nature10135.

129. Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, et al. Disease-correlated hematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. *Nature* (2009) 460:3–9. doi:10.1038/nature08129.

130. Knorr DA, Bock A, Brentjens RJ, Kaufman DS. Engineered human embryonic stem cell-derived lymphocytes to study in vivo trafficking and immunotherapy. *Stem Cells Dev* (2015) 24:1861–9. doi:10.1007/s10440-012-0608.

131. Ni Z, Knorr DA, Clouser CL, Hexum MK, Southern P, Mansky LM, et al. Generation of induced pluripotent stem cells from human lymphoid hematopoietic niches. *Cell Stem Cell* (2010) 3:85–91. doi:10.1016/j.stem.2009.08.001.

132. Woll PS, Morris JK, Painslab MB, Marcus RK, Kohn AD, Biechele TL, et al. Wnt signaling promotes hematopoietal development from human embryonic stem cells. *Blood* (2008) 111:122–31. doi:10.1182/blood-2007-04-084186.
Tabatabaei-Zavareh N, Vlasova A, Greenwood CP, Takei F. Characterization of developmental pathway of natural killer cells from embryonic stem cells in vitro. PLoS One (2007) 2:e232. doi:10.1371/journal.pone.0000232

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 13 June 2014; accepted: 29 August 2014; published online: 15 September 2014. Citation: Eguizabal C, Zenarruzabeitia O, Monge J, Santos S, Vega MA, Marsuri N, Arrieta A, Ríñón M, Tamayo-Orbegozo E, Amo L, Larrucea S and Borrego F (2014) Natural killer cells for cancer immunotherapy: pluripotent stem cell-derived NK cells as an immunotherapeutic perspective. Front. Immunol. 5:439. doi: 10.3389/fimmu.2014.00439 This article was submitted to NK Cell Biology, a section of the journal Frontiers in Immunology. Copyright © 2014 Eguizabal, Zenarruzabeitia, Monge, Santos, Vega, Marsuri, Arrieta, Ríñón, Tamayo-Orbegozo, Amo, Larrucea and Borrego. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | NK Cell Biology September 2014 | Volume 5 | Article 439 | 10