THE POTENTIAL OF EXOSOMES FOR THE DIAGNOSIS AND TREATMENT OF DUCHENNE MUSCULAR DYSTROPHY

Galkin II1,2, Egorova TV1,3

1 Marlin Biotech LLC, Moscow, Russia
2 A. N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
3 Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia

Duchenne muscular dystrophy is the most common type of muscular dystrophy. There is no effective cure for this disease. Recently, researchers have started to look at the therapeutic potential of exosomes — small (40–100 nm) vesicles secreted by cells into the extracellular environment. They transport a few types of macromolecules, including microRNA and proteins, that can be analyzed to estimate the efficacy of the applied therapy. Besides, exosomes can be harnessed for delivering therapeutic components (microRNA, antisense oligonucleotides) to the target tissue. Below, we analyze the available literature and assess the feasibility of using exosomes in the diagnosis and treatment of Duchenne muscular dystrophy. We conclude that exosomes can have their place in the arsenal of researchers and clinicians once some technical issues are solved.

Keywords: Duchenne muscular dystrophy, exosomes, targeted drug delivery, liquid biopsy, gene therapy

Author contribution: Galkin II, Egorova TV — literature analysis and manuscript preparation.

Correspondence should be addressed: Tatiana V. Egorova
Vavilova 34/5, Moscow, 119334; t.dimitrieva@marlinbiotech.com

Received: 21.07.2019 Accepted: 05.08.2019 Published online: 12.08.2019

DOI: 10.24075/brsmu.2019.049

Miodyistrofija Djušenuna (MDD) — X-sepslennoe reesessivnoe baleka dystrofina либо к синтезу его нефункциональной формы. Болезнь проявляется в постепенной деградации мышечной ткани и развития фиброза. В возрасте 8–12 лет пациент теряет способность двигаться самостоятельно, смерть чаще всего наступает от дыхательной или сердечной недостаточности в возрасте около 20 лет. При незначительной потере функциональность дистрофина развивается более мягкой формой — дистрофия Беккера.

Большинство применяемых на сегодняшний день методов лечения можно отнести к симптоматическим. Среди них — поддерживающая физкультура, легкие ортопедические вмешательства для предотвращения контрактур, респираторная поддержка, назначение глюкокортикOIDов [1]. Эти меры позволяют продлить как период самостоятельной двигательной активности, так и продолжительность жизни (до 30 лет). Очевидно, данные подходы не направлены на устранение основной причины возникновения заболевания — недостатка или отсутствия функционирующего дистрофина. Восполнить недостаток этого белка можно с помощью разрабатываемых методов генной терапии. Основные подходы — доставка укороченного гена дистрофина (микродистрофина) с помощью аденоассоциированных вирусов (AAV) [2], модификация процессинга pre-mRNK (пропуск эксонов, или экзон-скипинг) с помощью модифицированных олигонуклеотидов [3] или системы CRISPR-Cas. Подход, связанный с доставкой гена с помощью AAV, ограничен из-за возникновения иммунного ответа на белки капсиды, а небольшая емкость капсиды вынуждает использовать укороченные формы дистрофина, уступающие по функциональности полноформатному белку. Методы, основанные на пропуске экзонов, демонстрируют низкую функциональную эффективность. К тому же их применение ограничено конкретными мутациями, поэтому каждое лекарственное средство может быть
применено для лечения только небольшой доли пациентов [3]. Общей проблемой, снижающей эффективность как существующих способов лечения МДД, так и перспективных методов генной терапии, является затруднение доставки действующего вещества в целевую ткань. Таким образом, и существующие, и перспективные методы терапии МДД имеют ряд серьезных ограничений и недостатков, и разработка новых подходов представляется крайне обнадеживающей. В последнее время появляется большое количество исследований, посвященных экзосомам, в том числе как потенциальным переносчикам действующих веществ [4].

Экзосомы — это класс внеклеточных везикул, секретируемых клетками, отшнуровывающимися от клеточной мембраны (диаметр 100–300 нм), в отличие от других внеклеточных везикул — апоптотических тел (диаметр 50–1000 нм) и микровезикул, отшнуровывающихся от клеточной мембраны (диаметр 100–300 нм) [5]. Апоптоз — это процесс, при котором клетка умирает без воспалительного ответа и апоптотические тела представляют собой чрезвычайно маленькие и стабильные везикулы, которые могут быть определены в крови, лимфе, среде роста и т. д. Среди всех внеклеточных везикул экзосомы — наименьшие; в большинстве источников их размер определяют как 40–100 нм, реже 150 нм. Они содержат нуклеиновые кислоты (ДНК и РНК), белки, низкомолекулярные соединения (ингибиторы, антисмысловые аналоги), которые могут быть полезны для переноса действующего вещества в целевую ткань [6]. Экзосомы содержат низкомолекулярные компоненты, которые могут быть полезны для переноса действующего вещества в целевую ткань [6].

Применение экзосом при дистрофии Дюшенна: терапия нативными экзосомами

Попытки использовать стволовые клетки для лечения различных патологий предпринимают достаточно давно. В моделях МДД применяют стволовые клетки, полученные из кровеносных сосудов. Они применяют молекулярно-биологические методы (ПЦР, секвенирование), которые позволяют определить точную локализацию и тип мутации. Биопсия ткани пациента, применяющаяся в сложных случаях, позволяет определить наличие и локализацию дистрофии и состояние мышечной ткани. Однако контроль за состоянием пациента необходим и в процессе лечения. Неоднократное взятие биопсии не практикуют, так как его может тяжело переносить пациент, к тому же биопсия позволяет оценить состояние только небольшой области одной мышцы. Вместе с тем, функциональный тест 6-минутной ходьбы позволяет оценивать состояние лишь амбулаторных пациентов, а результат выполнения теста зависит от внимательности пациента, его желаний и способности следовать методике. Поэтому весьма актуальной представляется задача разработки малонавязчивого и надежного метода для оценки динамики состояния пациента с миодистрофией на протяжении и после терапии. Решением проблемы может оказаться подход, аналогичный жидкостной биопсии (от англ. «liquid biopsy») — анализ экзосомальных микроРНК, полученных из крови пациента. Известен ряд микроРНК (miR-1, miR-21, miR-29, miR-31, miR-29, miR-133, miR-133b, miR-206), которые принимают участие в процессах регенерации и дифференцировки мышечной ткани. Три основные «мышечные» микроРНК (miR-1, miR-133 и miR-206) повышаются в сыворотке крови больных МДД, причем повышение уровня miR-206 обнаруживается даже у женщин — носительниц дефектного гена [10]. Есть данные о еще большей группе микроРНК (miR-22, miR-30, miR-95, miR-181, miR-193b, miR-208a, miR-208b, miR-378 и miR-499), которые также могут послужить маркерами заболевания, однако в этом вопросе требуется подтверждение. Тем не менее, анализ содержания экзосомальных микроРНК во время лечения, например с помощью ПМО (phosphorodiamidate morpholino oligomers — морфолиновые олигонуклеотиды), позволяющий мониторировать динамику состояния одной мышцы, показывает, что это может быть полезным методом для оценки эффективности терапии [10].

Применение экзосом при дистрофии Дюшенна: терапия нативными экзосомами

Попытки использовать стволовые клетки для лечения различных патологий предпринимают достаточно давно. В моделях МДД применяют стволовые клетки, полученные из кровеносных сосудов («клетки, полученные из сердечной стромы»). Это позволяет использовать стволовые клетки в целевых исследованиях или в стационарных исследованиях. Важным преимуществом использования стволовых клеток является то, что они могут быть использовать для лечения различных патологий. Важным преимуществом использования стволовых клеток является то, что они могут быть использовать для лечения различных патологий. Важным преимуществом использования стволовых клеток является то, что они могут быть использовать для лечения различных патологий. Важным преимуществом использования стволовых клеток является то, что они могут быть использовать для лечения различных патологий. Важным преимуществом использования стволовых клеток является то, что они могут быть использовать для лечения различных патологий. Важным преимуществом использования стволовых клеток является то, что они могут быть использовать для лечения различных патологий. Важным преимуществом использования стволовых клеток является то, что они могут быть использовать для лечения различных патологий.
действия трансплантантов других носителей патологии. В то же время анализ экзосом пациента может вызывать экзосомы, полученные из других источников — клеток, трансформированных консторукций, кодирующих экзосомы активных веществ. Идея решения ключевой проблемы — отсутствия дистрофина. Решить эту проблему помогло бы использование экзосом как переносчиков активных веществ. Идея доставлять полноразмерный белок или его ген, или хотя бы редуцированную форму (микродистрофин) выглядит очень привлекательной. Однако длина полноразмерного дистрофина составляет примерно 150–180 нм, что превосходит верхнюю оценку диаметра экзосом. Поэтому, по всей видимости, загрузка в экзосомы белка потребует дальнейшей оптимизации. Следует уделять внимание и иммуногенности экзосом, которая пока недостаточно изучена. Весьма интересной выглядит комбинация обсуждаемых подходов: использование экзосом с регенеративной функцией, загрузка их ACO и модификация поверхностных белков мышечно-специфических пептидами.
References

1. Birnkrant DJ, Bushby K, Bamlett CM, Apkon SD, Brumbaugh D, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018; 17 (3): 251–67. DOI: 10.1016/S1474-4422(18)30024-3. PubMed PMID: 29395989; PMCID: PMC5869704.

2. Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther. 2018; 26 (10): 2337–56. DOI: 10.1016/j.ymthe.2018.07.011. PubMed PMID: 30093306; PMCID: PMC6171037.

3. Lim KR, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther. 2017; (11): 533–45. DOI: 10.2147/DDDT.S97635. PubMed PMID: 28280301; PMCID: PMC5358848.

4. Bungkulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology. 2018; 16 (1): 81. DOI: 10.1186/s12951-018-0403-9. PubMed PMID: 30326899; PMCID: PMC6190562.

5. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of cell biology. 2013; 200 (4): 373–83. DOI: 10.1083/jcb.201211138. PubMed PMID: 23420871; PMCID: PMC3575529.

6. Gao X, Han N, Dong X, Zuo B, Yang R, Zhou Q, Moulton HM, Seow Y, Yin H. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostic and therapeutic applications. Sci Transl Med. 2018; 10 (444). DOI: 10.1126/scitranslmed.aat0195. PubMed PMID: 29875202.

7. Kamerkar S, LeBluvs VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017; 546 (7659): 498–503. DOI: 10.1038/nature22341. PubMed PMID: 28607485; PMCID: PMC5538883.

8. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhali S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011; 29 (4): 341–5. DOI: 10.1038/nbt.1807. PubMed PMID: 21423189.

9. Kim YS, Ahn JS, Kim S, Kim HJ, Kim SH, Kang JS. The potential therapeutic (diagnostic + therapeutic) application of exosomes in diverse biomedical fields. Korean J Physiol Pharmacol. 2018; 22 (2): 113–25. DOI: 10.4196/kjpp.2018.22.2.113. PubMed PMID: 29520164; PMCID: PMC5840070.

10. Coenen-Stass AM, Wood MA, Roberts TC. Biomarker Potential of Extracellular miRNAs in Duchenne Muscular Dystrophy. Trends Mol Med. 2017; 23 (11): 989–1001. DOI: 10.1016/j.molmed.2017.09.002. PubMed PMID: 28988850.

11. Aminzadeh MA, Rogers RG, Fourmier M, Tobin RE, Guan X, Childers MK, et al. Exosome-Mediated Benefits of Cell Therapy in Mouse and Human Models of Duchenne Muscular Dystrophy. Stem Cell Reports. 2018; 10 (3): 942–55. DOI: 10.1016/j.stemcr.2018.01.023. PubMed PMID: 29478899; PMCID: PMC5918344.

12. Rogers RG, Fourmier M, Sanchez L, Ibrahim AG, Aminzadeh MA, Lewis MI, et al. Disease-modifying bioactivity of intravenous cardiosphere-derived cells and exosomes in mdx mice. JCI Insight. 2019; 4 (7). DOI: 10.1172/jci.insight.125754. PubMed PMID: 30944252; PMCID: PMC6485717.

13. Su X, Shen Y, Jin Y, Jiang M, Weintraub N, Tang Y. Purification and Transplantation of Myogenic Progenitor Cell Derived Exosomes to Improve Cardiac Function in Duchenne Muscular Dystrophic Mice. J Vis Exp. 2019; (146). DOI: 10.3791/59320. PubMed PMID: 31033952.

14. Bier A, Berenstein P, Kronfeld N, Morgoulis D, Ziv-Av A, Goldstein H, et al. Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy. Biomaterials. 2018; (174): 67–78. DOI: 10.1016/j.biomaterials.2018.04.055. PubMed PMID: 29783118.