Photoinduced Viscosity Control of Lecithin-Based Reverse Wormlike Micellar Systems Using Azobenzene Derivatives

Masaaki Akamatsu,* Mayu Shiina,¹ Rekha Goswami Shrestha,¹ Kenichi Sakai,¹, ² Masahiko Abe,² and Hideki Sakai*¹, ²
¹Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
²Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

Supplementary Information
Figure S1. Variations in UV/vis absorption spectra of 105 mM SoyPC/55 mM D-ribose/decane solutions containing 1 (a) or 3 (b) after UV light irradiation.
Figure S2. Infrared absorption spectra of SoyPC/decane solution with D-ribose, or azobenzene derivative 4–7.
Figure S3. Photographs of the mixture of 2 (15 mM) and decane before and after UV light irradiation.
**Figure S4.** Infrared absorption spectra of 2-D-ribose/SoyPC/decane mixture.
Figure S5. $^1$H-NMR spectrum of 1 in CDCl$_3$.

Figure S6. $^{13}$C-NMR spectrum of 1 in CDCl$_3$. 
Figure S7. $^1$H-NMR spectrum of 2 in CDCl$_3$.

Figure S8. $^{13}$C-NMR spectrum of 2 in CDCl$_3$. 

7
Figure S9. $^1$H-NMR spectrum of 3 in CDCl$_3$.

Figure S10. $^{13}$C-NMR spectrum of 3 in CDCl$_3$. 