Metyltetraprole activity against plant pathogens with relatively rare cytochrome \(b \) haplotypes for azoxystrobin resistance

Yuichi Matsuzaki\(^1\) · Yukie Uda\(^1\) · Toshiyuki Harada\(^1\) · Fukumatsu Iwahashi\(^1\)

Received: 6 March 2022 / Accepted: 2 June 2022 / Published online: 23 July 2022
© The Author(s) 2022

Abstract
Metyltetraprole is a novel quinone outside inhibitor (QoI) fungicide designed to avoid cross-resistance in cytochrome \(b \) G143A-harboring QoI-resistant phytopathogenic fungi. The resistance factors of G143A-harboring fungal isolates for metyltetraprole are around 1, but > 200 for the reference QoI fungicide azoxystrobin. In this study of metyltetraprole activities against azoxystrobin-resistant isolates carrying G137R, G137S, L299F, N256S + L299F, or L275F + L299F in cytochrome \(b \), metyltetraprole had potent activity against all isolates with these cytochrome \(b \) haplotypes. The resistance factors ranged from 0.7 to 2.9 for metyltetraprole and from 3.0 to 175.1 for azoxystrobin. We revealed unique metyltetraprole inhibitory activities against QoI-resistant plant pathogens.

Keywords
Metyltetraprole · Cytochrome \(b \) · Fungicide resistance · QoI fungicide

Introduction
Quinone outside inhibitor (QoI) fungicides are widely used on various crops worldwide (Fig. S1). However, QoI-resistant mutants with mutations relevant to G143A or F129L substitutions in cytochrome \(b \) (Cytb), the target site of QoI fungicides, threaten the sustainable use of these fungicides. G143A is the most frequently detected substitution and induces a resistance factor (RF) > 200 for most QoIs, whereas F129L is the second most frequent substitution and induces RF: 5–20; Matsuzaki et al. 2020a; Sierotzki 2015. To solve the resistance issue of QoI fungicides, metyltetraprole, characterized by a tetrazoline pharmacophore and 3-substituent in the central benzene ring, was designed to avoid steric hindrance between the molecule and Cytb with G143A substitution (Matsuzaki et al. 2020b). Interestingly, metyltetraprole retained potent activity against both G143A and F129L types and its practical efficacy was not affected substantially by the two Cytb substitutions (Matsuzaki et al. 2020a; Suemoto et al. 2019). The mean EC\(_{50}\) values for metyltetraprole did not differ significantly between the wild-type isolates (0.00027 mg l\(^{-1}\), \(N = 19 \)) and G143A-harboring isolates (0.00022 mg l\(^{-1}\), \(N = 358 \)) in Zymoseptoria tritici (Mann–Whitney \(U \) test). In contrast, the small difference in EC\(_{50}\) for metyltetraprole between F129L-harboring isolates of Pyrenophora teres and the wild-type isolates was significant (RF = 1.5; mean metyltetraprole EC\(_{50}\) value was 0.016 mg l\(^{-1}\) for 20 wild-type isolates and 0.030 mg l\(^{-1}\) for 15 F129L-harboring isolates).

Although very minor, a few other substitutions in Cytb have been reported, including G137R in Pyrenophora triticirepentis (Sierotzki et al. 2007), G137S in Venturia effusa (Standish et al. 2016, 2019), and L299F, N256S + L299F, and L275F + L299F in Puccinia horiana (Matsuzaki et al. 2021a, b). These substitutions can confer moderate levels of resistance to a few of the most widely used QoI fungicides, such as azoxystrobin (5–170 RF for azoxystrobin, Matsuzaki et al. 2021a, b; Sierotzki et al. 2007; Standish et al. 2016, 2019). We investigated the inhibitory activities of metyltetraprole against these mutants in each fungal species. In addition, some unique QoI fungicides are available in Japan but are not frequently used in other countries. Among them, pyribencarb is characterized by its benzyl-carbamate pharmacophore and known to retain some activity against G143A-harboring isolates in some fungal species (RF ranges 15–60, Kataoka et al. 2010). Mandestrobin, with a methoxy-acetamide pharmacophore, is characterized by its potent activities against fungi belonging to Sclerotiniaceae (Hirotomi et al. 2016). Metominostrobin and orysastrobin with oximino-acetamide pharmacophore are
highly systemic and mainly used in paddy rice (Masuko et al. 2001; Stammler et al. 2007). Interestingly, their pharmacophore structures are different from globally used QoSIs such as azoxystrobin (methoxy-acrylate), kresoxim-methyl (oximino-acetate), picloxystrobin (methoxy-acrylate), trifloxystrobin (oximino-acetate), and pyraclostrobin (methoxy-carbamate) (Fig. S1, FRAC 2021). Therefore, it is interesting to examine these unique QoI fungicides and their inhibitory activities against fungal isolates with Cytb haplotype G137R/S, L299F, L256S + L299F, or L275F + L299F.

We tested the in vitro sensitivity of P. tritici-repentis carrying G137R (Sierotzki et al. 2007), V. effusa carrying G137S (Standish et al. 2016, 2019), and P. horiana carrying L299F, N256S + L299F, and L275F + L299F substitutions in Cytb to metyltetraprole, mandestrobin, metominostrobin, orysastrobin, and pyribencarb (Matsuzaki et al. 2021a, b). The efficacy of the fungicides against P. horiana isolates was also assessed on chrysanthemum plants because the degree of resistance of this fungus requires in planta assays (Matsuzaki et al. 2021a, b).

Materials and methods

Chemicals

Chemical structures of QoI fungicides and fluazinam are shown in Fig. S1. For in vitro assays, metyltetraprole and mandestrobin were synthesized as previously described (Hirotomi et al. 2016; Matsuzaki et al. 2020b). Azoxystrobin, metominostrobin, orysastrobin, pyribencarb, and fluazinam were purchased from Sumitomo Chemical as previously described (Yoshimoto et al. 2013). Sukurea® (mandestrobin 40% SC formulation) and Fantasista® (pyribencarb 40% water dispersible granule formulation) were purchased from Sumitomo Chemical (Tokyo, Japan) and Kumiai Chemical Industry (Tokyo, Japan), respectively.

Fungal isolates

The origin and genotypes of the fungal isolates are shown in Table 1. The P. tritici-repentis isolate carrying the G137R substitution in Cytb was provided by Dr. Friedrich Felsenstein of EpiLogic, GmbH, Germany. Wild-type isolates of P. tritici-repentis were collected from wheat fields in Germany and Poland in 2018. Haplotypes of the Cytb gene of all isolates were checked using a previously described method (Sierotzki et al. 2007). The wild-type and G137S-carrying isolates of V. effusa were provided by Dr. Tim Brenneman of the University of Georgia, USA. Puccinia horiana monopsotule isolates were collected in Japan in our previous studies (Matsuzaki et al. 2021a, b).

In vitro microtiter plate tests for Pyrenophora tritici-repentis and Venturia effusa

A microtiter plate test (Spiegel and Stammler 2006) was used for P. tritici-repentis and V. effusa as a suitable method to assess the metyltetraprole sensitivity of fungi (Matsuzaki et al. 2021c).

For P. tritici-repentis, conidia of each isolate were obtained from V8 agar plates using published methods (James et al. 1991) and adjusted to 1 × 10^5 conidia ml^-1 in YBA (yeast extract 10 g l^-1, peptone 10 g l^-1, and sodium acetate 20 g l^-1) in distilled water. Stammler and Speakman 2006). Conidia of V. effusa were obtained from malt extract yeast agar (MYA, 10 g malt, 4 g yeast extract, 4 g glucose, 20 g agar) cultured in the dark at 18 °C for 2 weeks and adjusted to 1 × 10^4 conidia ml^-1 in potato dextrose broth (PDB, 24 g l^-1). A 100-fold dilution series of fungicides (0.03, 0.1, 0.3, 1, 3, 10, 30, 100, and 300 mg l^-1 in DMSO, corresponding to final concentrations of 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, and 3 mg l^-1 in the medium, respectively) were prepared for each test. Samples (1 μl) of each fungicide were mixed with the fungal culture medium (99 μl) and added to the wells in 96-well microtiter plates and incubated at 23 °C for 3 days (P. tritici-repentis) or 7 days (V. effusa). The tests were performed with four replicates per treatment. Fungal growth was assessed by measuring the optical density (OD) of each medium at a wavelength of 600 nm using a microplate reader SH-9000 Lab (Corona Electric, Ibaraki, Japan) with a 3 × 3 matrix of scanning points. The OD values were corrected using a blank well containing one of the respective dilutions without the inoculum. The EC50 was calculated from the mean of the OD values of each fungicide concentration using the nonlinear regression (curve fit) of GraphPad Prism8. The resistance factor (RF) was calculated as RF = (Mean EC50 of less-sensitive isolates with the non-wild-type Cytb haplotype)/(Mean EC50 of sensitive isolates with the wild-type Cytb haplotype).

In vitro basidiospore germination tests for Puccinia horiana

Because P. horiana is an obligate parasite and its mycelium does not grow in isolation, basidiospore germination was tested as previously described (Matsuzaki et al. 2021a, b). DMSO solutions of fungicides were adjusted to final concentrations of 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1,
0.3, 1, 3, and 10 mg l\(^{-1}\) in melted water agar (WA) and solidified in petri plates; one plate was used for each concentration and isolate. The DMSO concentration in WA was 0.1% (v/v). Cut leaves with fresh teliospore pustules were attached to the lid of Petri dishes and placed 5–6 mm above the WA surface. After 2 h of incubation at 18 °C with 100% humidity to form and disperse basidiospores from teliospore pustules, leaves were removed from the lid of Petri dishes. After 18 h at 18 °C with 100% humidity, 20 basidiospores from each of five independent pustules for each fungicide concentration were assessed for germination with a light microscope. The inhibition of germination (%) was normalized to the percentage germination in fungicide-free 0.1% DMSO controls, and EC\(_{50}\) and RF values were determined similarly to microtiter plate tests.

In planta efficacy tests of fungicides against *P. horiana*

The efficacy of metyltetraprole, mandestrobin, and pyribencarb was tested against *P. horiana* if the trend observed in basidiospore germination tests was also observed in vivo and in planta. The test procedures were similar to those reported by Matsuzaki et al. (2021a, b). Chrysanthemum root cuttings of Shuho-no-Chikara variety were purchased from Misaki-Engei (Gifu, Japan) and grown in a 23 °C greenhouse. Fungicides were sprayed on chrysanthemum plants at the 12- to 14-leaf stage in 8-cm-diameter plastic pots with a sufficient volume of water to cause runoff. Each fungicide was applied at the labeled use rate and 1/3 and 1/9 recommended for Fantasista\(^\text{®}\) (pyribencarb) for the control of chrysanthemum white rust in Japan. Metyltetraprole and mandestrobin were also tested at the same rate as pyribencarb, although neither compound has been registered for chrysanthemum white rust protection. Each fungicide was applied at 13, 44, or 133 mg l\(^{-1}\) active ingredient, then 18 h later, the plants were placed adjacent to chrysanthemums with fresh *P. horiana* pustules in a damp chamber with 100% humidity at 23 °C for 18 h. Test plants were then grown in a 23 °C greenhouse for 12–14 days when symptoms on untreated plants were optimal for assessment. The lesion-covered areas (0–100%) of the upper four leaves that had already unfolded during spraying were visually estimated by the same person. The mean lesion-covered areas of each treated and untreated plants were calculated as the disease severity. The control efficacy (%) of each treatment was calculated using the following formula:

\[
\text{Control efficacy } (%) = 100 \times [1 - (\text{Disease severity on fungicide} - \text{treated plants}) / \text{Disease severity on untreated plants}]\]
In planta test for *Puccinia horiana* isolates

The control efficacy of metyltetraprole was >90%, approximately 90%, and approximately 80% at 133, 44, and 15 mg l⁻¹, respectively (Fig. 2a–c). The efficacies of metyltetraprole did not significantly differ among isolates. Mandestrobine and pyribencarb performed similarly to metyltetraprole in wild-type isolates (Fig. 2d–i). However, their efficacies were significantly lower in most isolates with Cytb substitutions, especially at lower treatment rates (Fig. 2d, e, g, h). For mandestrobine, the reduction in efficacy at 44 mg l⁻¹ was greater in L275F + L299F-harboring isolates (Fig. 2e). For pyribencarb at the same rate, the reduction was significant for both L275F + L299F-harboring isolates and N256S + L299F-harboring isolates, whereas the efficacy was not as reduced in single L299F-harboring isolates (Fig. 2h).

Discussion

The chemical structure of metyltetraprole was designed to avoid steric hindrance with Cytb carrying G143A by using a tetrazolinone substructure as a smaller pharmacophore (Matsuzaki et al. 2020b). As a result, the activity of metyltetraprole against the wild-type isolates and the G143A-carrying isolates is very similar (Matsuzaki et al. 2020a, b). Interestingly, this strategy to avoid steric hindrance resulted in a significantly smaller impact of the F129L Cytb substitution on metyltetraprole activity (Suemoto et al. 2019; Matsuzaki et al. 2020a). In this study, metyltetraprole retained potent activity against isolates carrying the G137R/S, L299F, N256S + L299F, and L299F + L299F Cytb haplotypes. The structural mechanisms to reduce RF for isolates carrying each substitution remain unclear and should be better elucidated. Nevertheless, a small pharmacophore structure might help mitigate the negative impacts of various amino acid substitutions at the Qo site. Metyltetraprole did not increase the frequency of G143A-carrying isolates in *Zymoseptoria tritici* in the field (Matsuzaki et al. 2020a), because it had sufficient efficacy against these QoI-resistant isolates. However, if isolates with QoI resistance that is mediated by other amino acid substitutions in Cytb are insensitive
to metyltetraprole, they could be rapidly selected when metyltetraprole is used. Our study demonstrated that this situation would not occur for G137R/S, L299F, N256S + L299F, L275F + L299F, and wild-type Cytb haplotypes. Nevertheless, the sensitivity of fungal strains to metyltetraprole should be continuously monitored in fields to prevent the undesired spread of metyltetraprole-resistant populations. For example, before we began our studies in 2021, Matsuura (2019) first reported *P. horiana* isolates with L275F in Cytb, but their entire Cytb sequence has not been elucidated, and the mechanism responsible for low azoxystrobin sensitivities remains unclear. The metyltetraprole activities against those isolates should be investigated in future studies.

Among the four remaining QoI fungicides tested in this study, Kataoka et al. (2010) reported that the efficacy of pyribencarb is less affected by the G143A Cytb substitution in *Botrytis cinerea* and *Corynespore cassicola* (RF 65 and 15, respectively) than that of azoxystrobin (RF 300 and 1200, respectively). However, the reduction in the activity of pyribencarb in G137R-carrying *P. tritici-repentis*, G137S-carrying *V. effusa*, and L299F-carrying *P. horiana* was not substantially smaller (RF > 3.0 except for G137R) than that of mandidestrobin, metominostrobin, and orysastrobin (RF > 3.0 in most cases). This finding supports the validity of the QoI use recommendations by the Fungicide Resistance Action Committee (FRAC) to categorize pyribencarb in the same group with other QoI fungicides as Code 11 and assigning metyltetraprole to a distinct subgroup, Code 11A (FRAC 2021).

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10327-022-01081-6.

Acknowledgements We thank Dr. Friedrich Felsenstein, Dr. Tim Brenneman, and Dr. Akiho Harada for providing G137S-carrying *P. tritici-repentis*, G137S-carrying (and also the reference wild-type) isolates of *V. effusa*, and CWR1 isolate of *P. horiana*, respectively.
Declarations

Conflict of interest All authors are employees of Sumitomo Chemical Co., Ltd., the manufacturer of metyltetraprole and mandestrobinsk.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

FRAC (2021) FRAC mode of action poster©. Available via DIALOG. https://www.frac.info/home/news/2020/05/07/the-update-of-the-frac-moa-poster-2020-is-now-available-for-download. Accessed 18 Dec 2021

Guo Z-j, Miyoshi H, Komyoji T, Haga T, Fujita T (1991) Uncoupling activity of metyltetraprole against the existing QoI-resistant isolates of Puccinia horiana, the causal agent of chrysanthemum white rust. Plant Pathol 70:377–386. https://doi.org/10.1111/paa.13298

Matsuzaki Y Harada T, Iwahashi F (2021b) New cytochrome b haplotypes, harboring L299F or N256S + L299F substitutions, were found in azoxystrobin-resistant Puccinia horiana, the causal agent of chrysanthemum white rust. Eur J Plant Pathol 160:963–972. https://doi.org/10.1007/s10658-021-02299-4

Matsuzaki Y, Uda Y, Kurahashi M, Iwahashi F (2021c) Respiration inhibitors: complex III. In: Ishii H, Hollomon DW (eds) Fungicide resistance in plant pathogens—principles and a guide to practical management. Springer, Tokyo, pp 119–143

Sierotzki H (2015) Respiration inhibitors: complex III. In: Ishii H, Hollomon DW (eds) Fungicide resistance in plant pathogens—principles and a guide to practical management. Springer, Tokyo, pp 119–143

Sierotzki H, Frey R, Wullschleger J, Palermo S, Karlin S, Godwin J, Gisi U (2007) Cytochrome b gene sequence and structure of Pyrenopeziza teres and P. triticci-repentis and implications for QoI resistance. Pest Manag Sci 63:225–233. https://doi.org/10.1002/ps.1330

Spiegel J, Stammler G (2006) Baseline sensitivity of Monnilinia laxa and M. fructigena to pyraclostrobin and boscalid. J Plant Dis Prot 113:199–206. https://doi.org/10.1007/BF03356181

Stammler G, Spekanan J (2006) Micotikor metabolite to test the sensitivity of Botrytis cinerea to boscalid. J Plant Pathol 154:508–510. https://doi.org/10.1111/j.1439-0434.2006.01139.x

Stammler F, Itoh M, Hino I, Watanabe A, Kojima K, Motoyoshi M, Koch A, Haden E (2007) Efficacy of orysastrobin against blast and sheath blight in transplanted rice. J Pestic Sci 32:10–15. https://doi.org/10.1584/jpestics.G06-22

Standish JR, Avenot HF, Brenneman TB, Stevenson KL (2016) Location of an intron in the cytochrome b gene indicates a reduced risk of QoI fungicide resistance in Fusarium oxysporum. Plant Dis 100:2294–2298. https://doi.org/10.1094/PDIS-05-16-0658-RE

Standish JR, Brenneman TB, Stevenson KL (2019) Quantifying the effects of a G137S substitution in the cytochrome bcl of Venturia effusa on azoxystrobin sensitivity using a detached leaf assay. Plant Dis 103:841–845. https://doi.org/10.1094/PDIS-08-18-1419-RE

Suemoto H, Matsuzaki Y, Iwahashi F (2019) Metyltetraprole, a novel putative complex III inhibitor, targets new QoI-resistant strains of Zymoseptoria tritici and Pyrenopeziza teres. Pest Manag Sci 75:1181–1189. https://doi.org/10.1002/ps.5288

Yoshimoto Y, Arimori S, Matsuzaki Y (2013) Tetrazolinone compounds and their use as pesticides. PCT patent application: WO2013162072A1

Publisher’s Note Springer Nature and the Phytopathological Society of Japan remain neutral with regard to jurisdictional claims in geographical names, published maps and institutional affiliations.