Appraisal of Artificial Screening Techniques of Tomato to Accurately Reflect Field Performance of the Late Blight Resistance

Marzena Nowakowska¹, Marcin Nowicki¹, Urszula Kłosińska¹, Robert Maciorowski², Elżbieta U. Kozik¹*

¹ Department of Genetics, Breeding, and Biotechnology of Vegetable Crops, Research Institute of Horticulture, Skierniewice, Poland, ² Unit of Economics and Statistics, Research Institute of Horticulture, Skierniewice, Poland

Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant). In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with the field experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultivar tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato.

Citation: Nowakowska M, Nowicki M, Kłosińska U, Maciorowski R, Kozik EU (2014) Appraisal of Artificial Screening Techniques of Tomato to Accurately Reflect Field Performance of the Late Blight Resistance. PLoS ONE 9(10): e109328. doi:10.1371/journal.pone.0109328

Editor: Mark Gijzen, Agriculture and Agri-Food Canada, Canada

Received May 3, 2014; Accepted September 10, 2014; Published October 3, 2014

Copyright: © 2014 Nowakowska et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Raw bio-assay data are available upon request (M.Nowakowska; marzena.nowakowska@inhort.pl). Pooled data are presented in the manuscript.

Funding: This research was supported by The Polish Ministry of Agriculture and Rural Development (Grant # HOR hn-801-15/13; “Searching for new sources of resistance to tomato late blight with regard to pathogenicity changes in Phytophthora infestans populations and attempts of markers identification linked with resistance genes”), carried out in the period 2008–2013. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: elzbieta.kozik@inhort.pl

Introduction
Tomato (Solanum lycopersicum L.) is the fourth most economically important crop in the world: after rice, wheat, and soybean [1,2]. Of the 200 pathogens affecting tomato production worldwide, Phytophthora infestans (Mont.) de Bary, the oomycete causing late blight (LB), is the primary cause of tomato crop loss [2]. Losses are more frequent and more severe in areas where tomato is grown near potato [3].

Research on plant age-dependent expression of P. infestans resistance in tomato is needed, especially for the method of inoculation, plant evaluation, and inoculum concentration. In contrast, numerous studies have been done on the methods for testing P. infestans resistance in potato [4–14]. Tomato germplasm exist with resistance against P. infestans [15–20]; however, little information is available on standardized methods for evaluating LB resistance in tomato. Information on the correlation between seedlings and mature plant resistance is also limited [21–23]. Moreover, the last systematic comparison of methods for testing tomato LB resistance was reported over 40 years ago [24]. Lack of standardization already causes problems. For example, the wild tomato accession S. pimpinellifolium L. 3708 was reported to have LB resistance conferred by one incompletely dominant gene [15,25]. That was amended a mere seven years later, when other studies reported complex inheritance of the trait [26–29]. Similarly, the accession S. habrochaites LA 1033 was designated Ph - 4 and used as a LB resistance standard by several research centers [30–32], despite evidence of multiple QTLs conferring the trait [17,33–35]. Such discrepancies make it difficult for tomato breeders to use resistant germplasms.

The objective of this study was to (i) systematically compare the P. infestans resistance in the previously and recently reported resistant tomatoes using an array of methods, both in the field (naturally occurring infections) and with artificial inoculation (employing whole plant and detached leaf/leaflet bio-assays); (ii) determine the importance of the age-dependent expression of LB resistance; and (iii) investigate the level and stability of LB resistance of four sources of this trait in a multi-year field experiment.

Materials and Methods
Plant material
Tomato germplasm used in this study included commercial cultivars, breeding lines, landraces, and wild tomato accessions from the tomato germplasm collection at the Research Institute of Horticulture (RIH; Skierniewice, Poland), collectively referred to as ‘cultigens’. Cultigens included three accessions of S. pimpinellifolium L. 3708, S. habrochaites LA 1033, and S. pimpinellifolium L. 3708 was reported to have LB resistance conferred by one incompletely dominant gene [15,25]. That was amended a mere seven years later, when other studies reported complex inheritance of the trait [26–29]. Similarly, the accession S. habrochaites LA 1033 was designated Ph - 4 and used as a LB resistance standard by several research centers [30–32], despite evidence of multiple QTLs conferring the trait [17,33–35]. Such discrepancies make it difficult for tomato breeders to use resistant germplasms.

The objective of this study was to (i) systematically compare the P. infestans resistance in the previously and recently reported resistant tomatoes using an array of methods, both in the field (naturally occurring infections) and with artificial inoculation (employing whole plant and detached leaf/leaflet bio-assays); (ii) determine the importance of the age-dependent expression of LB resistance; and (iii) investigate the level and stability of LB resistance of four sources of this trait in a multi-year field experiment.

Materials and Methods
Plant material
Tomato germplasm used in this study included commercial cultivars, breeding lines, landraces, and wild tomato accessions from the tomato germplasm collection at the Research Institute of Horticulture (RIH; Skierniewice, Poland), collectively referred to as ‘cultigens’. Cultigens included three accessions of S. pimpinellifolium L.
of five of *S. habrochaites*, three of *S. huaylasense*, two of *S. corneliomuelleri*, three of *S. peruvianum*, and four of *S. lycopersicum*. ‘Rumba’ (*S. lycopersicum*; PNOS Ozarow, Poland) served as the LB susceptible control, and it was readily infected by *P. infestans* under field conditions. The cultigens used in this study, their origin, and LB resistance background (if known) are listed in Table 1.

Table 1. Tomato cultigens used in the study, their origin, and LB resistance status (if known).

Cultigen*	Origin	Seed source		
S. pimpinellifolium				
West Virginia 700 (WVa 700)	-	-	INRA, Montfavet, France	
L 3707 (PI 365951)	Peru	Lima	Pisiquillo	Bar-Ilan University, Ramat-Gan, Israel
L 3708 (PI 365957)	Peru	-	-	Bar-Ilan University, Ramat-Gan, Israel
5. habrochaites				
LA 1033 (6326A)	Peru	Lambayeque	Hacienda Tanlis	NCSU, Raleigh, USA
LA 1353 (365934)	Peru	Cajamarca	Contumasa	TGRC, Davis, USA
LA 2552 (PE 36)	Peru	Cajamarca	Las Flores	TGRC, Davis, USA
LA 2650 (PI 503514)	Peru	Prura	Ayabaca	TGRC, Davis, USA
LA 407	Ecuador	-	-	TGRC, Davis, USA
5. huaylasense				
LA 1360 (PI 365952)	Peru	Ancash	Apricot	TGRC, Davis, USA
LA 1365 (PI 365953)	Peru	Ancash	Cañarquillo	TGRC, Davis, USA
LA 1983	Peru	Ancash	Rio Manta	TGRC, Davis, USA
5. corneliomuelleri				
LA 1395 (PI 379014)	Peru	Amazonas	Chachapoyas	TGRC, Davis, USA
LA 1910	Peru	Huancavelica	Tambo	TGRC, Davis, USA
5. peruvianum				
LA 1929	Peru	Ica	La Yapana	TGRC, Davis, USA
LA 2581	Chile	Arica i Parinacota	Chacarilla	TGRC, Davis, USA
LA 2744	Chile	Arica i Parinacota	Sobraya	TGRC, Davis, USA
5. lycopersicum				
LA 1673	Peru	Lima	Nana	TGRC, Davis, USA
LA 2416	-	-	-	TGRC, Davis, USA
LA 3845 (NC EBR-5)	-	-	-	NCSU, Raleigh, USA
LA 3846 (NC EBR-6)	-	-	-	NCSU, Raleigh, USA
‘New Yorker’ (‘NY’)	-	-	-	INRA, Montfavet, France
LB susceptible control	-	-	-	

*Plant introductions numbers (PI or PE) were added where available.

*Source of Ph-2; single incomplete-dominant gene mapped to the long arm of chromosome 10 [19,24,38].

*Source of race-non-specific LB resistance conferred by two independent genes: A partially-dominant gene and a dominant epistatic gene, both mapped to chromosome 9 [46,47].

*Source of race-specific LB resistance dubbed Ph-3; originally reported as conferred by single incomplete-dominant gene, corrected by subsequent research; resistance conferred by at least two QTLs [15,25–29,31–33,46,67].

*Source of polygenic LB resistance, conferred by several QTLs [16,17,31–35].

*Source of LB resistance dubbed Ph-1, conferred by a single completely dominant gene mapped to the distal end of chromosome 7 with morphological markers [36–39].

doi:10.1371/journal.pone.0109328.t001

Field evaluations

In 2007 and 2008, all cultigens were evaluated for resistance against *P. infestans* under epiphytotic conditions at the Department of Genetics, Breeding, and Biotechnology experimental field area (RIH, Skiermiewice, Poland). Four- to five-week old plants were transplanted to the field in a randomized complete block design, with three replications. Each plot consisted of ten *S. lycopersicum* plants or five plants of the wild tomato cultigens, spaced 50 × 100 cm (within rows × between rows, respectively). Additionally, plants of the LB susceptible ‘Rumba’ were planted around the border of the experimental field to ensure high and uniform pathogen pressure. We also included a *S. lycopersicum* cv. ‘New Yorker’ (‘NY’) which carries the LB resistance gene Ph-1 [36–
Pathogen cultures and inoculum preparation

Seedling tests

The detached leaflet assay

The detached leaf assay

Pathogen cultures and inoculum preparation

P. infestans isolates used in this study, collected from tomato plants grown in different regions of Poland and tested in a pilot study (Fig. 1), were deposited at RIH (Skierniewice; n = 19) or obtained from IHAR (the Plant Breeding and Acclimatization Institute - National Research Institute, Młocho´w, Poland; n = 27 isolates). Isolates were transferred from rye agar onto leaflets of cv. Rumba and cultured for at least two generations, each 7 to 8 days long, with incubations in darkness at 100% RH and 16°C [40]. Inoculum consisted of a sporangial suspension that was washed off the sporulating lesions on the ‘Rumba’ leaflets using distilled water. Sporangia counting was done with a haemocytometer, and final inoculum concentrations (inocula loads) were adjusted according to the assay protocol described below. Prior to dilution, the suspension was chilled for 2 h at 4°C, and then incubated at RT for 30 min.

The isolate IWP 13, collected in 2008 from our experimental field (RIH Skierniewice), was used in all subsequent tests. Detailed isolate characteristics are as follows: race according to Black [3,4,7,10,11], mating type A1, mtDNA haplotype Ia, and intermediate resistance to metalaxyl [41]. This isolate was chosen based on the results of three independent disease severity tests. These tests were performed with 46 isolates of P. infestans on the detached leaflets of cv. Rumba, where it induced the highest disease severity (DSI = 1.7 ±0.1). Moreover, it produced the smallest variation in symptoms among the isolates tested in a pilot study on ‘Rumba’ (Fig. 1).

Resistance screening experiments under controlled conditions were conducted in growth chambers and in greenhouse at the RIH, Skierniewice, Poland. These assays included detached leaflet, detached leaf, and whole plant bio-assays, and are described in detail in the paragraphs that follow. In all test methods we evaluated the influence of plant developmental stage (age in weeks) and inoculum concentration on the disease severity in four tomato cultigens with various levels of P. infestans resistance/susceptibility: WVa 700, L 3708, LA 1033, and ‘Rumba’. All tests were conducted in the spring and summer (April to September) of 2011 to 2013.

The detached leaflet assay

We determined the effects of the plant age (4- to 8-week old plant, in one week increments) and the inoculum concentration (5 × 10³, 10⁴, 5 × 10⁴ sporangia/ml) on disease symptoms development. Each treatment combination (inoculum concentration vs. plant age) was tested in a series of three independent trials with 25 leaflets per cultigen. The third to fifth fully expanded leaves, counting from the plant’s top, were collected. This criterion was established by our earlier experiments as well as by previous studies [42] on the relationship between the intensity of LB symptoms and leaf position on plants. Side leaflets were detached with scissors and immediately placed on wet cellulose wadding in a plastic tray. Sporangial suspension (40 μl) was placed on the center of the abaxial side of each leaflet. Trays with leaflets were covered with glass to maintain 90 to 100% RH and incubated at 16°C. After an initial 24 h incubation in the dark, the leaflets were turned abaxial side down and incubated at the same temperature and RH for 6 days under 12 h photoperiod and a light intensity (PPFD) of 650 μmol/m²/s. Symptoms of LB were assessed 7 days after inoculation, using the DSI scale described earlier.

In our preliminary tests with 20 local isolates of the pathogen, individual leaflets of the resistant cultigens displayed high variability in LB reaction. Additionally, the size of necrotic lesions did not correspond with the intensity of sporulation. Within susceptible cultigens (i.e., compatible reactions) that was not observed, and in agreement with other studies [43] the sporulation often preceded the necrosis. These differences caused difficulties in classifying cultigens using this method. Therefore, at the time of assessment by the DSI scale described above, the inoculated leaflets were tested for sporulation intensity by shaking off the sporangia (vortexing each sample for 30 sec in 1 ml of water) and counting the sporangia with a haemocytometer.

Tomato Late Blight Re-Visited: Multi-Cultigen Method Comparison

Tomato Late Blight Re-Visited: Multi-Cultigen Method Comparison
Leaves of each cultigen were evaluated using the scale described earlier (1 = 97.1–100% leaf area covered with lesions or dead; to 9 = no lesions). For each of the four cultigens undergoing evaluation, and for each treatment combination (inoculum concentration vs. plant age), a different number of leaves (12 to 24) per cultigen was used due to availability of plant materials. In addition, each treatment combination was examined in three independent sets of experiments.

The whole plant assay

LB severity on whole plants was tested at six developmental stages (3- to 8-weeks of age, in one week increments) of greenhouse-grown plants, using three concentrations of inoculum (5×10³, 10⁴, 5×10⁴ sporangia/ml). Plants were hand-sprayed with the sporangial suspension until complete leaf coverage and excess run-off was observed. The inoculated seedlings were incubated in the dark at growth chamber for 24 h, at 16°C and 100% RH. After this initial incubation, the inoculated seedlings were grown at 16°C with 12 h of light. The plants were rated individually seven days after inoculation. The symptomatic area of both leaves and stems were evaluated using the DSI scale described earlier. Each treatment combination (developmental stage vs. inoculum concentration) was repeated three to seven times, with each cultigen represented by 12 to 72 plants depending on the experiment.

Statistical analyses

Data from all experiments were analyzed by means of the general linear model with year, location, cultigen, plant age, inoculum concentration, and their interaction as the tested variables. Means were separated with the Tukey multiple comparison procedure at significance level of 0.05. Regression and correlation analyses were used to compare results from the different testing methods. All calculations were done with the statistical software STATISTICA 8.0 (StatSoft, Inc. 2009).

Results

Field evaluations

Based on the results from the initial field experiments in 2007 and 2008 (Table 2), four tomato cultigens were chosen (LA 1033, L 3708, L 3707, WVa 700) from the original experimental group of 20 cultigens, to verify their P. infestans resistance in the field at two separate locations (Skiernewice, Boguchwała).

Comparative analysis of the LB resistance levels among the tested tomato cultigens indicated significant differences across the five years of study (2009 to 2013), at both locations (Table 3). The highest and most stable level of LB resistance in the field, comparable with the baseline years 2007 and 2008, was found in LA 1033 S. habrochaites (DSI ranging from 7.2 to 9.0, depending on the year). Plants of this cultigen were either free from any LB symptoms, or developed only slight infection symptoms (classes 6 to 8). Indeed, this cultigen demonstrated high levels of resistance in the field, even under strong P. infestans pressure. For example, in 2011, both locations experienced conditions particularly conducive to LB, as confirmed by disease intensities recorded for both susceptible tested tomato cultigens (‘Rumba’, ‘NY’), while LA 1033 showed no LB symptoms (DSI ranging from 4.3 to 6.3). In the remaining years of the study, the ‘NY’ Ph-1 plants displayed a moderate infection intensity on leaves and stems only in the first week of September 2012 (DSI = 4.9 ± 1.0 and 4.5 ± 1.1, respectively). In the Skiernewice experimental field.

Intensity of LB symptoms on the S. pimpinellifolium accessions L 3708 and L 3707 which ranged from DSI = 7.4 to 8.8, was generally comparable with S. habrochaites LA 1033, and depended on the location and the year. The WVa 700 plants displayed significant differences in LB intensity levels, depending on the location and the year (Table 3). In Skiernewice, we recorded partial infection of this cultigen in all years of testing (DSI ranging from 4.3 to 6.1). The ‘NY’ (Ph-1)
developed intensive LB symptoms, at levels comparable with the susceptibility control ‘Rumba’, irrespective of the location or year of study (DSI = 1.0 to 4.3).

The detached leaflet assay

Experimental results indicated significant effects of the plant age on the LB intensity levels across all tested cultigens. Leaflets from 4- to 5-week old plants of both *S. pimpinellifolium* cultigens tested (WVa 700, L 3708) exhibited higher degrees of infection than those from 7- to 8-week old plants, irrespective of the inoculum concentration used (Fig. 2). The LA 1033 leaflets showed the highest intensity of LB symptoms when inoculated with the 5 × 10^3 sporangia/ml (DSI = 4.8 to 5.8, dependent on plant age). Comparatively, at the two lower inoculum concentrations used, the disease symptoms proved significantly decreased at all developmental stages tested.

We found a broad range of intra-cultigen variation in the lesion area of individual leaflets of resistant cultigens (WVa 700, L 3708, LA 1033) inoculated with *P. infestans*. This variation was consistent high and uniform disease symptoms in all detached leaflet assays (Fig. 2), regardless of plant age or inoculum load.

The detached leaf assay

Significant effects of all variables tested (cultigen, plant age, and inoculum concentration) on the LB intensity were observed. The highest variation was observed for the interaction between cultigen and plant age, and the lowest was between plant age and inoculum concentration.

‘Rumba’ leaves displayed the highest degree of LB infection (DSI = 1.0 to 1.1), regardless of the plant age, and lacked significant differences in their respective DSI scores (Fig. 3). Relationships between plant age and degree of disease symptoms were observed for all three remaining cultivars in the study (WVa 700, L 3708, LA 1033). Additionally, we noted a different trend in each of the three resistant cultivars. The WVa 700 leaves showed low levels of LB intensity, irrespective of plant age or inoculum concentration. The lowest LB symptoms levels displayed by L 3708 were similar to those of WVa 700, but proved comparatively more dependent on plant age and inoculum concentration (Fig. 3).
In L 3708, at the lowest inoculum concentration tested, the impact of plant age on LB intensity was evident, as response dropped below the significance level in 10-week old and older plants. Cultigen LA 1033 also showed varied reactions to *P. infestans* inoculation, dependent on plant age; the observed differences greatly surpassed those noted for WVa 700 or L 3708 (Fig. 3). The lowest degree of disease symptoms in LA 1033 was observed in the leaves of 15-week old plants (DSI = 8.8 ± 0.4), after application of the lowest concentration of inoculum.

The whole plant assay

As in the detached leaf experiments, also in the whole plant assays we found significant effects of all variables tested (cultigen, plant age, inoculum concentration) on the intensity of LB symptoms. This necessitated an independent analysis for each variable.

In ‘Rumba’, we observed a significant interaction between the disease severity and the inoculum concentration (Fig. 4). Plants inoculated with the highest inoculum concentration exhibited high disease severity levels (DSI = 1.0 to 1.6, depending on plant age) in all tested stages of development (3 to 8 weeks of age). In contrast, plants treated with the lowest inoculum concentration showed lower intensity of disease symptoms (DSI = 2.6 to 5.4, depending on plant age). This wide DSI range was dependent on plant age, and for each developmental stage tested was distributed over at least two of the nine severity rating classes (reaching max. 7 classes of spread). A low degree of disease symptoms coupled with large variation in the LB susceptible ‘Rumba’ under 5 x 10^3 sporangia/

Table 3. Late blight symptoms severity on chosen tomato cultigens under natural *P. infestans* field infections.

Year	Cultigen	DSI^b	
		Skierniewice	Boguchwała
2009	LA 1033	8.9 ± 0.1	8.7 ± 0.4
2010		8.8 ± 0.2	8.8 ± 0.2
2011		9.0 ± 0.0	8.0 ± 1.1
2012		7.2 ± 0.8	9.0 ± 0.0
2013		7.8 ± 0.7	8.2 ± 0.6
2009	WVa 700	8.0 ± 0.4	6.1 ± 0.9
2010		8.4 ± 0.3	5.7 ± 1.0
2011		4.9 ± 1.0	5.0 ± 0.7
2012		8.0 ± 0.4	5.7 ± 0.5
2013		4.5 ± 1.1	4.3 ± 1.3
2009	L 3708	7.9 ± 0.4	7.9 ± 0.3
2010		8.6 ± 0.2	8.5 ± 0.2
2011		8.7 ± 0.0	8.0 ± 0.3
2012		8.3 ± 0.4	8.8 ± 0.2
2013		8.2 ± 0.4	7.9 ± 0.7
2009	L 3707	7.8 ± 0.4	7.4 ± 0.6
2010		8.5 ± 0.3	7.5 ± 0.8
2011		8.3 ± 0.7	8.0 ± 0.3
2012		8.3 ± 0.2	8.2 ± 0.2
2013		7.4 ± 0.5	8.3 ± 0.7
2009	‘NY’	4.3 ± 1.4	1.0 ± 0.0
2010		2.4 ± 1.2	1.2 ± 0.2
2011		1.0 ± 0.0	1.2 ± 0.2
2012		1.0 ± 0.0	2.6 ± 0.3
2013		1.7 ± 1.3	1.0 ± 0.0
2009	‘Rumba’	3.6 ± 1.4	1.0 ± 0.0
2010		2.7 ± 1.7	1.4 ± 0.2
2011		1.0 ± 0.0	1.1 ± 0.2
2012		1.0 ± 0.0	1.0 ± 0.0
2013		1.8 ± 0.9	1.0 ± 0.0

^aData were collected from 2009 to 2013 in two locations (Skierniewice, Boguchwała).

^bThe disease assessment scale is based on the % area of leaf and stem infection (1 = 100% percent area infected; 9 = lack of symptoms or few small necrotic spots). Disease symptoms were scored yearly, when LB susceptible control ‘Rumba’ reached maximal intensity of LB symptoms. Data presented is the mean ± SD from DSI recorded on leaves and stems. LSD_{0.05} calculated according to Tukey procedure for comparing cultigens in each year and in either location: 0.76, and for comparing cultigens in each year and between locations: 0.55.

doi:10.1371/journal.pone.0109328.t003
ml, rendered this inoculum concentration unsuitable to correctly differentiate between the LB resistant and LB susceptible plants.

Of the resistant cultigens, WVa 700 had the lowest variation in LB symptoms at different phases of development. Indeed, WVa 700 exhibited a low degree of infection (DSI = 7) at all stages of development, regardless of inoculum concentration (Fig. 4), with one exception: the 3-week old plants had increased disease severity with DSI ratings spread over all nine rating classes at the highest inoculum concentration used. We found the lowest, most uniform levels of LB intensity in 7-week old and older WVa 700 plants, regardless of inoculum concentration.

In L 3708, we observed variable levels of LB symptoms intensity, dependent on plant age and inoculum concentration (Fig. 4). Generally, younger plants (3- and 4-week old) exhibited distinctly higher levels of LB symptoms than older plants (7- and 8-week old). We also observed higher variation in the range of severity ratings in younger plants compared with older plants. Moreover, the range of variation in severity ratings depended on the inoculum concentration used and correspondingly increased. In addition, we observed an inverse relationship between plant age and inoculum concentration on LB intensity levels. Older plants showed a more uniform intensity of disease symptoms across inoculum loads tested, than did the younger plants. Indeed, among the L 3708 developmental stages tested, the lowest and most uniform levels of LB symptoms were observed in 7- and 8-week old plants at all inoculum concentrations tested.

LA 1033 displayed a more diverse response to P. infestans challenges than WVa 700 or L 3708 plants. This reaction, however, remained dependent on plant age at all tested inoculum concentrations (Fig. 4). A comparative analysis of DSI values for all inoculum concentrations at all developmental stages examined in this cultigen showed greater severity of LB symptoms, compared with WVa 700 or L 3708. The lowest level of LB intensity (DSI = 8.2 ± 0.6) was found in 8-week old plants inoculated with the lowest concentration of inoculum. Higher inoculum concentrations caused an increase in the severity of symptoms, with only sporadic significant increases in the variation of severity ratings (Fig. 4).

In general, all control conditions assays indicated an impact of plant age on the intensity of LB symptoms at levels specific for a given tomato cultigen. Symptoms of LB tended to decrease with plant age. High variability noted for the detached leaflet assay makes this method unreliable for standard testing of the LB resistance, or requires additional assessments (e.g., sporulation intensity), but the assays may be used for efficient identification of the LB susceptible individuals, such as during the early stages of selection and breeding.

Cross-test comparison

Pooled data from the controlled condition tests (detached leaflet, detached leaf, whole plant) from all treatment combinations (cultigens, inoculum concentrations, plant ages), were individually
compared with the data of field experiments. All tested laboratory techniques showed significant linear relationships with the field results. But, the detached leaf assay and whole plant assay correlated better with the field assay than did the detached leaflet assay. The determination coefficients were: 0.94, 0.83, and 0.41, respectively (Fig. 5). The stronger relationship observed for the detached leaf assay and whole plant assay with reference to the field data resulted from lower variation within the plant materials, and the domination of extreme DSI values from the field observations.

In summary, this indicates that the detached leaf and the whole plant assays may serve as reliable tools for testing tomato LB resistance. These assays could thus replace the field trials at the early stages of testing. Additionally, it is noteworthy that at high disease intensity (DSI = 1 to 3) the detached leaflet assay showed good correlation with the field results, which further supports our suggestion to use this method for initial testing in tomato LB resistance breeding.

Discussion

The choice of methods for accurate testing of genotypes for LB resistance is an important area for plant breeding programs, including the tomato-P. infestans pathosystem. Lack of agreement among published reports for LB resistance in several tomato cultivars (e.g., L 3708, LA 1033) prompted the current study. Here, our aim was to standardize and compare several methods for testing the P. infestans resistance under controlled conditions using four tomato cultivars, over several plant ages and inoculum concentrations. This would allow us to establish a uniform approach to assess the benefit of each cultigen for use in breeding for LB resistance. We also attempted to optimize the methods and to relate the results to those from natural field infection experiments.

Results of the multi-year (2008 to 2013) field experiments, from two locations (approx. 300 km apart), show that S. habrochaites LA 1033 had the lowest and most stable P. infestans infection levels of the cultigens tested. These findings are in agreement with other studies for LA 1033 reporting high resistance under natural field infection against a diverse set of P. infestans isolates, in the USA [17,33,35]. In other studies, isolates from Taiwan succeeded in infecting LA 1033 [16,31,34]. Our results of LA 1033 showing modest LB symptoms in the field could not be confirmed with detached leaf assay using P. infestans isolates derived from symptomatic LA 1033 plants (Nowakowska et al., unpublished data). The latter observation is in agreement with potato-LB studies, where P. infestans isolates derived from LB-symptomatic potato plants, carrying the Rpi-phu1 gene conferring high levels of potato LB resistance, and grown in the field [44], failed to induce the disease symptoms in the laboratory [45]. This demonstrates the complexity of the pathosystem under field conditions.

Other tomatoes with outstanding LB resistance in the field, including the S. pimpinellifolium cultivars L 3707 and L 3708 [46,47], performed insignificantly lower than LA 1033. We observed, however, their stable low LB intensities in the field at all study years and in both locations, even with high P. infestans

Figure 3. Severity of LB symptoms on tomato cultigens in the detached leaves assay. Third to fifth fully expanded leaves were collected for testing from the plants (● Rumba; ■ WVa 700; ◆ L 3708; ▲ LA 1033) at indicated ages (weeks). Detached leaves of the tested tomato cultigens (12 to 24 leaves per cultigen and per developmental stage) were inoculated with suspension of the P. infestans isolate IWP 13, by spraying at indicated concentration. Presented data, for each treatment combination, are the means of ratings from three independent experiment sets. Vertical bars at each data point signify the standard deviations (SD). LSD0.05 calculated according to Tukey procedure (inset) for comparing cultigens at each plant age and inoculum concentration (C × I): 0.58, and for comparing inoculum concentration for each cultigen and plant age (C × A): 0.74. doi:10.1371/journal.pone.0109328.g003
incidence. High LB resistance has been reported in these cultigens [15,46,47], despite a lack of clear elucidation of the trait’s genetic background [3,26–29]. These cultigens have been successfully used as sources for pyramiding \(\text{Ph-}3 \) with \(\text{Ph-2} \) LB resistance into new tomato cultivars [48–51]. Only few research groups reported rare instances, when high pathogen pressure, under highly conducive conditions, led to overcoming the resistance of \(\text{L} \). 3708, particularly in controlled condition assays [15,30,31,52].

In contrast to the aforementioned LB resistant cultigens, \(\text{WVa} \) 700 [19,38,53] exhibited varying levels of LB symptoms in the field, depending on the study year and location. These findings indicate the differences in the local pathogen populations. Consequently, such unstable expression of LB resistance in \(\text{WVa} \) 700 may occur due to a simpler genetic background for this trait, compared with those found in the other resistant cultigens. Similarly to our findings, this cultigen has failed to display stable LB resistance in other studies [19,30,31,54,55]. Finally, the \(\text{Ph-1} \) gene present in ‘NY’ [36–39] provides no reliable protection against \(\text{P. infestans} \) for field tomatoes grown in Poland, as well as in other locations [2,24,30,32,56,57].

Collectively, the field studies indicated that under Polish conditions, \(\text{LA} \) 1033, \(\text{L} \) 3707, and \(\text{L} \) 3708 could be considered promising sources for breeding tomato for LB resistance. This has implications for Central Europe, with field production of both tomatoes and potatoes [1].

In the controlled conditions testing methods used, \(\text{LA} \) 1033 showed the largest variability in age-dependent reaction to \(\text{P. infestans} \) inoculation. Furthermore, in contrast to its consistently superior performance in the field assays, \(\text{LA} \) 1033 proved inferior to both \(\text{WVa} \) 700 and \(\text{L} \) 3708 cultivars in the detached leaf and whole plant tests. This observation underscores that the assays under controlled conditions may differ from the field tests (weather conditions, plant age, heterogenic isolate mixture, constant pathogen pressure, presence of other (a)biotic stresses). These results also suggest that full expression of LB resistance in \(\text{LA} \) 1033 occurs later than the oldest developmental stages investigated (3- to 8-week old). Our observation of lower LB intensities in the detached leaves of the 13- to 15-week old plants of this cultigen further supports this hypothesis. The abundant growth of this cultigen may pose problems with generation of appropriate plant materials in the greenhouse for large scale bio-assays. This problem, however, can be solved using the detached leaf tests.

In our study, \(\text{L} \) 3708 showed higher symptoms variability relative to plant age compared with the \(\text{WVa} \) 700 cultigen. For \(\text{L} \) 3708, the trait reached stable expression in 7- to 8-week old plants in the whole plant assays, or in 10-week old leaves. This is in contrast to other studies on \(\text{L} \) 3708 [15,25], which described high levels of LB resistance when testing only 5-week old plants. Possible reasons for these discordant results include differences in the assumed methodology (isolates used, inoculum preparation and load, conditions of the assays) or in the climatic conditions related to location (e.g., intensity of sun exposure, length of day).

In the detached leaf and whole plant assays, we recorded the lowest variability for \(\text{WVa} \) 700, with low LB symptoms levels in plants of this cultigen older than 3 weeks. Moderate LB intensities were seen in whole plant assays. Turkensteen [24] reported age-
dependent and progressively increasing LB resistance in the detached leaf assays of 6- to 8-week old WVa 700. Similarly, the 6-week old seedlings of this cultigen exhibited high resistance against both pathogen isolates tested by Moreau et al. [19]. In contrast to our results showing high LB infection in 3- to 4-week old WVa 700 plants, under 5×10^3 sporangia/ml, previous studies reported low LB intensity in this cultigen, under comparable developmental stages and inoculum concentrations [50,59]. The most likely reasons for the observed discrepancies are the pathogen isolates used or the assumed methodology, including the double isolate activation employed in our study.

Apart from the significant influence of plant developmental stage and inoculum concentration on the intensity of LB symptoms in the detached leaflet assay, we observed that LB intensity decreases with plant age. Variability of lesion size on leaflets observed using this assay, particularly in the resistant cultigens, indicated the need for improved methods for testing LB resistance (e.g., sporulation intensity). Thus, the detached leaflet assays were an inefficient testing method, although it is fast and easy. The detached leaflet assays can be used only for identification of susceptible genotypes in initial stages of breeding. Our results of tomato LB intensities are in line with the studies of LB in potato [5,9,60,61], where reported problems regarded high variability, especially for potato genotypes with moderate resistance. Although several tomato LB studies used the detached leaflet method to evaluate LB intensity [16,33,34,42,43,62], they generally included additional evaluations, such as sporulation intensity. In contrast to the detached leaflet assays, other methods used in this study (detached leaf and whole plant assays) proved more reliable for testing tomato LB resistance under controlled conditions. The observed variability among cultigens tested with these methods was significantly lower than this observed for the detached-leaflet assays. These two most effective methods, however, required different inoculum concentrations for successful separation of resistant genotypes. Both detached leaf and whole plant assays suggested an age-related LB intensity. Our results are similar to those using detached leaflet assays, except for more accurate distinction of the resistant genotypes.

Inoculation and incubation conditions influenced the reproducibility of our results. Here, infection and subsequent development of LB symptoms clearly depended on changes in temperature or RH, in accordance with the biology of the pathogen [5,8,35,57,60,63]. Standardizing the test methods (choice of isolate, preparation of inoculum, concentration of inoculum, and conditions of incubation after inoculation) resulted in greater precision in distinguishing LB resistant plants. In the light of our findings, we postulate it very useful to study the plant LB resistance in an age-dependent manner and under the controlled conditions, for each cultigen being reported, in order to better reflect field performance. This might provide an explanation for the differences in mapping of the genes or QTLs controlling the LB resistance trait [15,25,26,28,64–67], and might be of help in detailed analyses of the emerging cultigens reported as LB resistant [16,18,20,34,50].

Of the methods studied, the detached leaf and the whole plant tests resulted in the lowest discrepancies, when compared with the field experiments. This may be due to inoculation of larger plant surface area, which may generate lower assessment errors and permit a more accurate evaluation of LB resistance. Both leaf and leaflet assays may additionally exhibit reactions to *P. infestans* inoculation different from those of whole plants. These may be due to differences in environmental conditions or influences on the physiological and/or biochemical processes, as a result of detachment from the plant. Thus, we propose the whole plant
assays as the most reliable method of testing the tomato LB resistance under controlled conditions. This, in the case of some cultivars (notably LA 1033), may pose other challenges, to be circumvented by using alternative methods, such as the detached leaf assays. We agree with previous reports on potato-LB [4–12,14] and tomato-LB pathogens [21–23], that the ultimate assessment of LB resistance should be performed with field tests.

Conclusions

Our five-year study under natural field infection, in two distinct Polish locations, confirmed low and stable levels of LB symptoms in LA 1033, L 3708, and L 3707 tomato cultivars. These cultivars are useful for resistance breeding programs for Central Europe. Based on field results, we consider the cultivars carrying the Ph-1 gene (e.g., ‘New Yorker’) an unsuitable source of LB resistance in Poland. The same is true for cultivars carrying Ph-2 (e.g., WVa 700) if they are used as the only source of LB resistance. Our comparison of three methods for assessing tomato resistance against P. infestans under controlled conditions indicated that each method may be used for different purposes in the resistance breeding. The detached leaflet assay proved useful only to separate the LB susceptible genotypes (such as within the segregating populations) and to maintain the pathogen isolates, but was unreliable for systematic screening due to high variability. Tests on detached leaves and whole plants (greenhouse) generated lower variability than those performed on the detached leaflets and were also found to be highly correlated with field tests. Our results indicate congruent trends for age-dependent expression of LB resistance in all tested tomato cultivars, irrespective of the testing method. The plant age-related LB resistance in tomato reported here, shows the need to optimize and standardize the testing parameters when reporting new sources of resistance. As documented in this study, the reliable comprehensive evaluation of a given cultivar, by means of the optimized and well-suited assays, remains crucial to maximize the benefits from the best performing crops.

Acknowledgments

The Authors are thankful to Krystyna Szewczyk and Marzena Czajka for skillful technical assistance. Dr. Dorothy M. Tappenden PhD (Michigan State University) and Dr. Todd C. Wehner (North Carolina State University) are gracefully recognized for copy editing and critical reading of this manuscript.

Author Contributions

Conceived and designed the experiments: M. Nowakowska EUK. Performed the experiments: M. Nowakowska EUK. Analyzed the data: M. Nowakowska M. Nowicki RM UK EUK. Contributed reagents/materials/analysis tools: M. Nowakowska M. Nowicki EUK. Wrote the paper: M. Nowakowska M. Nowicki EUK.

References

1. Anonymous (2011) FAOSTAT final 2011 data. pp. http://faostat.fao.org/site/339/default.aspx.
2. Nowicki M, Kozik EU, Foolad MR (2013) Late blight of tomato. In: Yaroslav RK, Tuberose R, editors. Translational genomics for crop breeding. John Wiley & Sons Ltd. pp. 241–263.
3. Nowicki M, Foolad MR, Nowakowsa M, Kozik EU (2012) Potato and tomato late blight caused by Phytophthora infestans: An overview of pathology and resistance breeding. Plant Disease 96: 4–17.
4. Darsene U (2004) The use of four different assessment methods to establish relative potato tuber blight resistance for breeding. Potato Research 47: 163–174.
5. Dorrance AE, Inglis DA (1997) Assessment of greenhouse and laboratory screening methods for evaluating potato foliage for resistance to late blight. Plant Disease 81: 1206–1213.
6. Dorrance AE, Inglis DA (1998) Assessment of laboratory methods for evaluating potato tubers for resistance to late blight. Plant Disease 82: 442–446.
7. Douches DS, Kirk WW, Bertram MA, Coombs JJ, Nimira BA (2002) Foliar and tuber assessment of late blight (Phytophthora infestans (Mont. de Bary) in cauliflower (Brassica oleracea)). Plant Disease 86: 215–224.
8. Huang S, Vlehoushers VGAA, Visser RGF, Jacobsen E (2005) An accurate in vitro assay for high-throughput disease testing of Phytophthora infestans in potato. Plant Disease 89: 1263–1267.
9. Michalka AM, Zimnoch-Guzowska E, Sobiowski S, Pich J (2011) Resistance of potato to stem infection by Phytophthora infestans and a comparison to detached leaflet and field resistance assessments. American Journal of Potato Research 88: 367–373.
10. Park T-H, Vlehoushers VGAA, Kim J-B, Hutton RCB, Visser RGF (2005) Dissection of foliage and tuber late blight resistance in mapping populations of potato. Euphytica 143: 75–83.
11. Sharma RP, Forbes GA, Mannandkar HK, Shrestha SM, Thapa RB (2013) Determination of resistance to Phytophthora infestans on potato plants in field, laboratory and greenhouse conditions. Journal of Agricultural Science 5: 5146.
12. Tai G (1998) Relationship between resistance to late blight in potato foliage and tubers of cultivars and breeding selections with different resistance levels. American Journal of Potato Research 75: 173–178.
13. Visker M (2005) Association between late blight resistance and foliage maturity type in potato. Physiological and genetic studies. 160 pp. pp.
14. Vlehoushers VGAA, van Doosijewert W, Keizer LCP, Sijpkes L, Govers F, et al. (1999) A laboratory assay for Phytophthora infestans resistance in various Solanum species reflects the field situation. European Journal of Plant Pathology 105: 241–250.
15. Chumwongse J, Chumwongse C, Black L, Hanson P (2002) Molecular mapping of the Ph-3 gene for late blight resistance in tomato. Journal of Horticultural Science & Biotechnology 77: 201–206.
16. Liu J, Liu L, Bai Y, Finkers R, Wang F, et al. (2011) Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum tuberosum. LA1777. Euphytica 179: 427–438.
17. Lough RC, Gardner RG (2000) Inheritance of tomato late blight resistance derived from Elytrigia arenaria LA1003 and identification of molecular markers. Hortscience 35: 490.
18. Merk I, Ashrafi H, Foolad MR (2012) Selective genotyping to identify late blight resistance genes in an accession of the tomato wild species Solanum pimpinellifolium. Euphytica 187: 63–75.
19. Moreau P, Thoquet P, Olivier J, Laterrot H, Grimley N (1996) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Molecular Plant-Microbe Interactions 11: 259–269.
20. Smart CD, Tansley SD, Mayton H, Fry WE (2007) Resistance to Phytophthora infestans in Lycopersicon pennellii. Plant Disease 91: 1045–1049.
21. Akhtar KP, Saleem MY, Aqhar M, Ali S, Sarwar N, et al. (2012) Resistance of Solanum species to Phytophthora infestans evaluated in the detached-leaf and whole-plant assays. Pak J Bot 44: 1141–1146.
22. Kim BS (2012) Evaluation of tomato genetic resources for the development of resistance breeding lines against late blight. Research in Plant Disease 18(1): 342–350.
23. Luo D, Zhang XC, Wen XH (2013) Identification and screening of introduced tomato varieties resistant to late blight. Advanced Materials Research 610: 3472–3477.
24. Turkensteen IJ (1973) Partial resistance of tomatoes against Phytophthora infestans, the late blight fungus. Wageningen, The Netherlands: Wageningen University.
25. Chumwongse J, Chumwongse C, Black LL, Hanson P (1998) Mapping of the Ph-3 gene for late blight from L. pimpinellifolium L3708. Rep Tomato Genet Cooperative 48: 13–16.
26. Chen A-L, Liu C-Y, Chen C-H, Wang J-F, Liao Y-C, et al. (2014) Reassessment of QTLs for late blight resistance in the tomato accession L3708 using a restriction site associated DNA (RAD) linkage map and highly aggressive isolates of Phytophthora infestans. PLoS One 9: e96417.
27. Frary A, Graham E, Jacobs J, Chetelat RT, Tanksley SD (1998) Identification of QTL for late blight resistance from L. pimpinellifolium L3708. Tomato Genetics Cooperative Report 48: 19–21.
28. Kim MJ, Mutschler MA (2005) Transfer to processing tomato and characterization of late blight resistance derived from Solanum pimpinellifolium L. L3708. Journal of the American Society for Horticultural Science 130: 877–894.
29. Kim MJ, Mutschler MA (2006) Characterization of late blight resistance derived from Solanum pimpinellifolium L3708 against multiple isolates of the pathogen Phytophthora infestans. Journal of the American Society for Horticultural Science 131: 637–645.
31. Chen C-H, Shiu Z-M, Wang T-C (2008) Host specificity and tomato-related race composition of Phytophthora infestans isolates in Taiwan during 2004 and 2005. Plant Disease 92: 731–735.
32. Wang TC, Chen CH (2005) The variation of race composition of Phytophthora infestans in Taiwan during 1991–2004. 2005 APS Annual Meeting, Austin, TX: APS: Phytopathology. pp. S109.
33. Kim M, Mutschler M (2000) Differential response of resistant lines derived from the L. pimpinellifolium accession L5708 and L. hirsutum accession LA 1033 against different isolates of Phytophthora infestans in detached leaf lab assays. Tomato Genetics Cooperative Report 540: 23–25.
34. Li J (2010) Exploration of wild relatives of tomato for enhanced stress tolerance. In: Razdan MK, Matteo AK, editors. Genetic improvement of Solanaceous crops: Tag & Francis Science Publishers. pp. 421–456.
35. Nelson HE (2006) Bioassay to detect small differences in resistance of tomato to Phytophthora infestans. Rep Tomato Genet Coop 21: 30.
36. Norwicki M, Lichocka M, Nowakowska M, Klosinska U, Kozik EU (2012) A simple dual stain for detailed investigations of plant-fungal pathogen interactions. Vegetable Crops Research Bulletin 77: 61–74.
37. Nelson HE (2006) Bioassay to detect small differences in resistance of tomato to Phytophthora infestans in detached leaf path assay. Preparation of the inoculum. The methods of evaluation and selection applied in potato research and breeding Monografie i rozprawy naukowe IHAR, 10a [in Polish]: 75–77.
38. Peirce LC (1971) Linkage tests with Ph conditioning resistance to race 0, Phytophthora infestans. Rep Tomato Genet Coop 21: 30.
39. Zarzycka H (2001) Evaluation of resistance to Phytophthora infestans in leaf path assay. Preparation of the inoculum. The methods of evaluation and selection applied in potato research and breeding Monografie i rozprawy naukowe IHAR, 10a [in Polish]: 75–77.
40. Nowicki M, Lichocka M, Nowakowska M, Klosinska U, Kozik EU (2012) A simple dual stain for detailed investigations of plant-fungal pathogen interactions. Vegetable Crops Research Bulletin 77: 61–74.
41. Peirce LC (1971) Linkage tests with Ph conditioning resistance to race 0, Phytophthora infestans. Rep Tomato Genet Coop 21: 30.
42. Nelson HE (2006) Bioassay to detect small differences in resistance of tomato to Phytophthora infestans in detached leaf path assay. Preparation of the inoculum. The methods of evaluation and selection applied in potato research and breeding Monografie i rozprawy naukowe IHAR, 10a [in Polish]: 75–77.
43. Peirce LC (1971) Linkage tests with Ph conditioning resistance to race 0, Phytophthora infestans. Rep Tomato Genet Coop 21: 30.
44. Peirce LC (1971) Linkage tests with Ph conditioning resistance to race 0, Phytophthora infestans. Rep Tomato Genet Coop 21: 30.