Larger photovoltaic effect and hysteretic photocarrier dynamics in Pb[(Mg\(_{1/3}\)Nb\(_{2/3}\))\(_{0.70}\)Ti\(_{0.30}\)]O\(_3\) crystal

A S Makhort, G Schmerber and B Kundys

Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, 23 rue du Loess, F-67000 Strasbourg, France

Keywords: ferroelectrics, photovoltaics, photopolarization

Abstract
Following the recent discovery of a bulk photovoltaic effect in the Pb[(Mg\(_{1/3}\)Nb\(_{2/3}\))\(_{0.68}\)Ti\(_{0.32}\)]O\(_3\) crystal, we report here more than one order of magnitude improvement of photovoltaicity as well as its poling dependence in the related composition of lead magnesium niobate-lead titanate noted Pb[(Mg\(_{1/3}\)Nb\(_{2/3}\))\(_{0.7}\)Ti\(_{0.30}\)]O\(_3\). Photocurrent measurements versus light intensity reveal a remarkable hysteresis in photocarrier dynamics clearly demonstrating charge generation, trapping and release processes.

1. Introduction

Ultimately approaching fundamental limit [1, 2] of semiconductor photovoltaic (PV) technology stimulates the development of an alternative to p-n junction-based solar energy conversion. One of the promising routes can be found in electrically polar materials where non-zero intrinsic electric field can replace p-n region of semiconducting photovoltaic cells with an ability to generate above bandgap photovoltages [3, 4]. Indeed, electrically polar photovoltaic materials have gain renewed attention in photovoltaics [5–11] and related multifunctionalities [12–21]. Although photovoltaic effect in non-centrosymmetric crystals have long been known [22], renewed attention occurred after the discovery of photovoltaic effects in the multiferroic BiFeO\(_3\) [23, 24] with recent progress in photovoltaic efficiency of Bi\(_2\)FeCrO\(_6\) films, reporting a record value of 8.1% [25]. Because the bulk photovoltaic effect (BPVE) can be modified by extrinsic contributions (i.e. possible surface/interface effects in films [26] or grain size dependence in ceramics [27]) investigations on single crystals offer unique fundamental insight into photoelectric property. Among the still scarce PV compounds the initially non-photovoltaic ferroelectric (FE) Pb[(Mg\(_{1/3}\)Nb\(_{2/3}\))\(_{0.64}\)Ti\(_{0.36}\)]O\(_3\) (PMN-PT36%) crystals were reported to exhibit the PV effect after doping with WO\(_3\) [28]. Although this compound belongs to the well-known family of piezoelectric crystals with multifunctional phase diagram, other members of this composition were not tested until recently [29]. Since a much larger photovoltaic effect was found even in the undoped PMN-PT32% crystal with a composition closer to the morphotropic phase boundary, a careful study of other compounds in the phase boundary region occurring between PT = 30 and PT = 35% [30] becomes very promising. Here we report the existence of a photovoltaic effect in the PMN-PT30% compound which exceeds by more than 1 order of magnitude the effect reported for the PMN-PT32% counterpart. We further compare photovoltaic and ferroelectric performances of the two compositions and report unprecedented light-induced charge dynamics responsible for this effect.

2. Experimental details

The crystals had (001) orientation supplied by Crystal-Gmbh (Germany) in square shape with edges along [010] and [100] directions (figure 1(a) (inset)). Electrodes were formed with silver paste covering the edges in the planes parallel to 2y. The hysteresis loop of polarization versus electric field was taken at room temperature by
using a quasi-static FE loop tracer similar to that described in [31], reducing FE fatigue by ultralow frequency (0.01 Hz) measurements. The sample was illuminated with a 365 nm (3.4 eV) UV-LED with 30 nm spectral linewidth with an intensity of 153 mW cm$^{-2}$ in order to investigate the change in the FE polarization response. The current was monitored by a Keithley electrometer (Model 6517B) at the time constant of 0.36 s. The temperature of the sample measured by a thermal camera (Therm-app) increases by "1.9 K under light illumination and such temperature change made no noticeable difference to the FE loop.

3. Results and discussions

The FE loop measured in darkness along [100] direction reveals a classical hysteresis behavior resulting in the two polarization states of about ±29 μC cm$^{-2}$, in agreement with the literature data (figure 1(a)). However when illumination of 365 nm light is applied the apparent polarization increases by more than 4 times. As a consequence of free charge generation by light, the sample becomes leakier FE with apparent increase in the both FE polarization and FE coercive force (figure 1(b)). The observed light-induced change in the ferroelectric loop largely exceeds in magnitude all previous observations [29, 32–34]. The corresponding volt-ampere characteristics further illustrate the photoinduced change in electric properties (figure 1(b)). The main three effects arise under light illumination: (i) the significant increase of current related to dipole reorientation (ferroelectric peak); (ii) the general increase in the sample conductivity; and (iii) a noticeable shift in abscissa of the FE loop as a result of light generated charges contribution to the total intrinsic electric field. The difference between FE currents in darkness and under illumination is presented in figure 1(c). As it can be seen the maximum of the light induced effect is achieved at the ferroelectric peak that is strongly poling history dependent in ferroelectrics. The change in the basic parameters of the photovoltaic effect is better illustrated in the zoomed region (figure 1(d)). The initial values of short circuit photocurrent I_{sc} and open circuit photovoltage V_{oc} increase largely after poling with ±1 kV cm$^{-1}$. In particular, there is also a noticeable down shift of the loop along γ-axis, so the absolute the value of I_{sc} after pooling with +1 kV cm$^{-1}$ is smaller than the value of I_{sc} obtained after pooling with −1 kV cm$^{-1}$ Same effect is also seen for open circuit photovoltage V_{ac}. Because I_{sc} and V_{ac} are used to evaluate photovoltaic efficiency, the electric tuning becomes possible. These

Figure 1. Ferroelectric polarization (a) and current loops (b) in darkness and under light (365 nm, 153 mW cm$^{-2}$). Inset to figure 1(a) shows schematics of the experiment. Figure (c) represents the difference between FE currents under light and in darkness. Figure (d) shows a zoomed evolution the ferroelectric current under light in the remanent polarization state with ±1 kV cm$^{-1}$ electric field amplitude.
extraordinary properties were more clearly observed by us in the photovoltaic Bi$_2$FeCrO$_6$ films [35] and can be expected to be a general and technologically important electrically switchable feature for photovoltaic ferroelectric compounds.

At ferroelectric remanence the voltage change versus light intensity shows a ~20-times larger effect than in the PMN-PT32% crystal (figure 2) in agreement with much larger effect of the light on the FE loop (figure 1(a) and [29]). The nonlinear behavior as a function of light intensity with a characteristic peak is observed for both compounds. The form of curves can be explained by the occurrence of two competing mechanisms: the light induced charge generation dominant at low light intensities and the charge recombination processes at higher intensities (figure 2). These opposing processes give rise to the peak as a function of light intensity at the value where numbers of generated and recombined carriers are expected to become comparable. Notably, the maximum photovoltaic effect is reached faster for the PMN-PT30% (~59 mW cm$^{-2}$) than for PMN-PT32% (74 mW cm$^{-2}$). In order to get insight into the origin of the observed behavior we have measured the related electric current as a function light intensity (so-called Lux-Ampere-like characteristic (figure 3)). Prior to measurements the sample was set to the remanent polarization state by sweeping the electric field from -0.4 MV m$^{-1}$ to $+0.4$ MV m$^{-1}$ and then to zero, to ensure a monodomain configuration. The light intensity was then increased and the current was monitored by a Keithley electrometer (Model 6517B) with a related time constant of 0.36 s. The observed behavior can be tentatively explained as follows. The charges, initially generated by light, move in the previously defined polarization direction, and therefore create a current (linear part,
indeed shows a slightly larger remanent polarization. Although this mechanism is possible, its contribution is unlikely dominant here because the symmetry dependent mechanism of light induced charge generation may come into play deserving a separate study including loops of both compounds in darkness.

Consequently, the larger is the piezoelectric coefficient, the light-generated charges can contribute more efficiently to the electric field-assisted transformation between the thermodynamically equivalent phases at the morphotropic phase boundary. The light then induces changes in polarization that are connected to stress. Consequently, the larger is the piezoelectric coefficient, the larger light-induced effect is expected on the lattice deformation [38], which, in turn can modify the bandgap [39–41] of the material leading to the increased photovoltaic effect. Although this mechanism is possible, its contribution is unlikely dominant here because the piezoelectric coefficients do not differ by the order of magnitude in both compounds [30]. The intrinsic mechanism of light induced charge generation may come into play deserving a separate study including symmetry dependent [29] and defect dependent [42] arguments.

4. Conclusions

In conclusion, an enhancement in the photovoltaic effect of more than one order of magnitude has been found in the Pb[(Mg0.68Ti0.32)0.30]O3 compound, with the composition at the lower border of the morphotropic phase diagram. The much larger photovoltaic effect at the lower border of the MPB and unprecedented Lux-Ampere-like characteristic demonstrating hysteretic photo carrier dynamics for the first time should be regarded as key basic findings. This study should rapidly prompt a screen of other compounds of the same family.

Figure 4. Comparison of ferroelectric loops in darkness between Pb[(Mg0.68Nb0.32)0.30]O3(32%) and Pb[(Mg0.68Nb0.32)0.70]O3(30%) crystals. Insets shows pictures of the both crystals on white background indicating larger absorption in the case of Pb[(Mg0.68Nb0.32)0.30]O3(32%) (yellow color).
as well as similar compositions [43–45] in which photovoltaic effects can occur thanks to acentricity [46] with the aim to better understand and optimize their photovoltaic properties.

References

[1] Shockley W and Queisser H J 1961 Detailed balance limit of efficiency of p–n junction solar cells J. Appl. Phys. 32 510–9
[2] Huang J, Yuan Y, Shao Y and Yan Y 2017 Understanding the physical properties of hybrid perovskites for photovoltaic applications Nat. Rev. Mater. 2 17042
[3] Pérez-Tomás A, Lira-Cantú M and Catalán G 2016 Above-Bandgap Photovoltaics in Antiferroelectrics Adv. Mater. 28 9644–7
[4] Yang SY et al 2010 Above-bandgap voltages from ferroelectric photovoltaic devices Nat. Nanotechnol. 5 143–7
[5] Butler K T, Frost J M and Walsh A 2015 Ferroelectric materials for solar energy conversion: photoferrics revisited Energy Environ. Sci. 8 838–48
[6] Paillard C, Bai X, Infante I C, Guennou M, Geneste G, Alexe M, Kreisel J and Dkhil B 2016 Photovoltaics with ferroelectrics: current status and beyond Adv. Mater. 28 5153–68
[7] Grinberg I et al 2013 Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials Nature 503 509–12
[8] Lopez-Varo P et al 2016 Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion Phys. Rep. 653 1–40
[9] Matsuo H, Noguchi Y and Miyayama M 2017 Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications Nat. Commun. 8 207
[10] Spanier J E et al 2016 Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator Nat. Photonics 10 611–6
[11] Inoue R, Ishikawa S, Imura R, Kitanka Y, Oguchi T, Noguchi Y and Miyayama M 2015 Giant photovoltaic effect of ferroelectric domain walls in perovskite single crystals Sci. Rep. 5 14741
[12] Kundys B, Viret M, Colson D and Kundys D O 2010 Light-induced size changes in BiFeO3 crystals Nat. Mater. 9 803
[13] Kreisel J, Alexe M and Thomas P A 2012 A photoferroelectric material is more than the sum of its parts Nat. Mater. 11 260–26
[14] Mettout B and Gisse P 2017 Theory of the photovoltaic and photo-magneto-electric effects in multiferroic materials Ferroelectrics 506 93–110
[15] Rubio-Marcos F, Ochoa D A, Campo A D, García M A, Castro G R, Fernández J F and García J E 2018 Reversible optical control of macroscopic polarization in ferroelectrics Nat. Photonics 12 29
[16] Dejnaka A and Tyunina M 2015 Elasto-optic behaviour in epitaxial films of perovskite oxide ferroelectrics Adv. Appl. Ceram. 117 62–5
[17] Jurchuk V et al 2016 Optical writing of magnetic properties by remnant photostriiction Phys. Rev. Lett. 117 107403
[18] Manz S, Matsubara M, Lottermoser T, Büchi J, Jyama A, Kimura T, Meier D and Fiebig M 2016 Reversible optical switching of antiferromagnetism in TbMnO3 Nat. Photonics 10 6553
[19] Páez-Margarit D, Rubio-Marcos F, Ochoa D A, Del Campo A, Fernández J F and García J E 2018 Light-Induced capacitance tunability in ferroelectric crystals ACS Appl. Mater. Interfaces 10 21804–7
[20] Bai Y, Vats G, Seidel J, Jantunen H and Juuti J 2018 Boosting photovoltaic output of ferroelectric ceramics by optoelectric control of domains Adv. Mater. 30 1803821
[21] Li Y, Cui X, Sun N, Du J, Li X, Jia G and Hao X 2018 Region-Dependent and stable ferroelectric photovoltaic effect driven by novel in-plane self-polarization in narrow-bandgap BiFeO3, Nb2O5 thin films Adv. Opt. Mater. 0 1801105
[22] Fridkin V 1979 Photoferroelectrics (Berlin: Springer–Verlag)
[23] Choi T, Lee S, Choi Y J, Kiyukhin V and Cheong S-W 2009 Switchable Ferroelectric diode and photovoltaic effect in BiFeO3 Science 324 63–6
[24] Yi H T, Choi T, Choi S G, Oh Y S and Cheong S-W 2011 Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3 Adv. Mater. 23 3403–7
[25] Nechache K, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J and Rosé F 2015 Bandgap tuning of multiferroic oxide solar cells Nat. Photonics 9 61–7
[26] Calzada M L, Jiménez R, González A, García-López J, Leinen D and Rodríguez-Castellón E 2005 Interfacial phases and electrical characteristics of ferroelectric strontium bismuth tantalate thin films on Pt/TiOx and Ti/Pt/Ti heterostructure electrodes Chem. Mater. 17 1441–9
[27] Takagi K, Kikuchi S, Li J-F, Okamura H, Watanabe R and Kawasaki A 2004 Ferroelectric and photostrictive properties of fine-grained PLZT ceramics derived from mechanical alloying J. Am. Ceram. Soc. 87 1477–82
[28] Tu C-S, Wang F-T, Chien R R, Schmidt V H, Hung C-M and Tseng C-T 2006 Dielectric and photovoltaic phenomena in tungsten-doped Pbx(Mg1-xNb2/3-yTi1/3)yO3 crystal Appl. Phys. Lett. 88 032902
[29] Makhort A S, Chevrier F, Kundys D, Doulin B and Kundys B 2018 Photovoltaic effect and photopolarization in Pb(Mg1/3Nb2/3)O3 crystal Phys. Rev. Mater. 2 012401
[30] Guo Y, Luo H, Ling D, Xu H, He T and Yin Z 2003 The phase transition sequence and the location of the morphotropic phase boundary region in (1-x)(Pb(Mg1/3Nb2/3)yO3)xPbTiO3 single crystal J. Phys. Condens. Matter 15 L77
[31] Mastner J 1968 A quasiisometric hysteresis loop tracer J. Phys. [E] 1 1129
[32] Khodkin A L, Iakovlev S O and Baptista J L 2001 Direct effect of illumination on photovoltaic properties of lead zirconate titanate thin films Appl. Phys. Lett. 79 2055–7
[33] Borkar H, Tomar M, Gupta V, Katiyar R S, Scott J F and Kumar A 2017 Optically controlled polarization in highly oriented ferroelectric thin films Mater. Res. Express 4 086402
Borkar H, Rao V, Tomar M, Gupta V, Scott J F and Kumar A 2017 Experimental evidence of electronic polarization in a family of photo-ferroelectrics RSC Adv. 7 12842–55

Quattropani A et al 2018 Tuning photovoltaic response in Bi$_2$FeCrO$_6$ films by ferroelectric poling Nanoscale 10 13761–6

Tang Y and Luo H 2009 Investigation of the electrical properties of (1−x)Pb(Mg$_{1/3}$Nb$_{2/3}$)$_3$O$_3$−xPbTiO$_3$ single crystals with special reference to pyroelectric detection J. Phys. Appl. Phys. 42 075406

Chan K Y, Tsang W S, Mak C L, Wong K H and Hui P M 2004 Effects of composition of PbTiO$_3$ on optical properties of (1−x)Pb(Mg$_{1/3}$Nb$_{2/3}$)$_3$O$_3$−xPbTiO$_3$ thin films Phys. Rev. B 69 144111

Quattropani A et al 2018 Tuning photovoltaic response in Bi$_2$FeCrO$_6$ films by ferroelectric poling Nanoscale 10 13761–6

Dejneka A, Chvostova D, Pacherova O, Kocourek T, Jelinek M and Tusnina M 2018 Optical effects induced by epitaxial tension in lead titanate Appl. Phys. Lett. 112 031111

Rai D P, Kaur S and Srivastava S 2018 Band gap modulation of mono and bi-layer hexagonal ZnS under transverse electric field and biaxial strain: a first principles study Phys. B Condens. Matter 531 90–4

Kundys B 2015 Photostrictive materials Appl. Phys. Rev. 2 011301

Li Y, Tang Y, Wang F, Zhao X, Chen J, Zeng Z, Yang L and Luo H 2018 Optical properties of Mn−doped 0.15Pb(In$_{1/2}$Nb$_{1/2}$)$_3$O$_3$−0.57Pb(Mg$_{1/3}$Nb$_{2/3}$)$_3$O$_3$−0.28PbTiO$_3$ single crystal Appl. Phys. A 124 276

He C, Chen Z, Chen H, Wu T, Wang J, Gu X, Liu Y and Zhu K 2018 Anisotropy electric and optical properties of PIMNT single crystal J. Nanophotonics 12 046019

von Baltz R and Kraut W 1981 Theory of the bulk photovoltaic effect in pure crystals Phys. Rev. B 23 5590–6