Birth weight and breast cancer risk

R Troisi*1,2, EE Hatch3, L Titus-Ernstoff3, JR Palmer4, M Hyer5, WC Strohsnitter6, SJ Robboy7, R Kaufman8, A Herbst9, E Adam10 and RN Hoover1

1Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA; 2Department of Community and Family Medicine, Dartmouth Medical School, Hanover, NH 03755, USA; 3Department of Epidemiology and Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; 4Stone Epidemiology Unit, Boston University, Boston, MA 02215, USA; 5Information Management Services, Inc., Rockville, MD 20892, USA; 6Department of Obstetrics and Gynecology, New England Medical Center, Boston, MA 02111, USA; 7Pathology Department, Duke University Medical Center, Durham, NC 27710, USA; 8Obstetrics and Gynecology Physicians Organization, Methodist Hospital, Houston, TX 77030, USA; 9Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; 10Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA

Many, but not all studies of birth weight and subsequent breast cancer risk suggest a positive association, with the most consistent finding being an association in younger or premenopausal women, often with either no or a reduced association among postmenopausal women (Ekobom et al, 1992; Michels et al, 1996; Sanderson et al, 1996; De Stavola et al, 2000; Innes et al, 2000; Andersson et al, 2001; Hilakivi-Clarke et al, 2001; Titus-Ernstoff et al, 2002; Vatten et al, 2002, 2005; Ahlgren et al, 2003; Kaijser et al, 2003; McCormack et al, 2003; Mellomkjær et al, 2003; dos Santos Silva et al, 2004; Lahmann et al, 2004).

We evaluated the association of birth weight and breast cancer risk in the National Cancer Institute’s (NCI) Combined Diethylstilbestrol (DES) Cohorts Follow-up Study. The strengths of this resource are the availability of weight from birth records, adult breast cancer risk factor data from three phases of questionnaire follow-up, and a subset of the population receiving very high pharmacologic doses of oestrogen, which could inform some of the speculation about possible hormonal mechanisms.

MATERIALS AND METHODS

Approvals for the study were obtained from the committees for the review of research involving human subjects at the field centres and the NCI.

The NCI DES Combined Cohort Study started in 1992 with the aggregation of prior US cohorts of individuals with medical record documentation of DES exposure and a comparable cohort of unexposed women (Bibbo et al, 1977; Labarthe et al, 1978; Greenberg et al, 1984). Questionnaires were mailed to participants in 1994, 1997, and 2001, and the National Death Index (NDI)-Plus was used to identify women whose whereabouts were unknown. Of the 5847 eligible subjects with birth weight data who were free of breast cancer at the start of follow-up, 97 developed breast cancer and 1245 were lost before the end of follow-up in 2001; the remaining 4505 were followed through the 2001 data collection phase. Incident cases of breast cancer were identified through questionnaire self-reports and searches of the NDI-Plus. Pathology reports or death certificates were obtained for 91% of the reported breast cancer cases eligible for analysis, confirming invasive disease in 88% and in situ disease in an additional 11%. Only primary invasive cases were analysed.

Data on birth weight and gestational age were available from obstetrical charts for 80% of the women. For the remaining 20%, these data were ascertained from the mothers at the time of their daughter’s original enrollment in the study (the average age of the daughters = 24 years). Information on covariates was obtained from the study questionnaires, obstetrical records or interviews, or from earlier questionnaires from the original cohort studies.

Follow-up began on 1 January 1978 (or the date of first enrollment if it occurred later). Person-years accrued until the earliest of the following dates: first breast cancer diagnosis, last known follow-up, death, or return of the 2001 questionnaire. The median number of follow-up years was 23.5 (0.1–25.9 years) for a total of 118 985 person-years.

Poisson regression analysis was used to estimate the age-adjusted incidence rate ratios of breast cancer for each category of birth weight and gestational age. A test for trend was assessed by using an ordinal variable for the birth weight categories. To assess confounding, estimates were individually adjusted for each of the covariates. As a hypothesis-generating exercise, interactions of birth weight with the collected covariates were assessed.
RESULTS

Birth weight was not associated with attained age, age at first birth/parity, menopausal status, or family history of breast cancer, but was inversely associated with mother’s smoking status and use of DES during pregnancy (Table 1). An inverse association between birth weight and age at menarche was also suggested. Birth weight tended to be positively associated with adult height ($r = 0.25$, $P < 0.0001$), BMI ($r = 0.03$, $P = 0.06$), and BMI at age 20 ($r = 0.04$, $P = 0.01$).

Overall, there was no association between birth weight and breast cancer risk comparing women who weighed <3000 g (rate ratio (RR) = 0.93) or >3500 g (RR = 1.09) with women who weighed 3000 – 3499 g at birth (P for trend = 0.69) (Table 2), and there was no obvious pattern in the association of gestational age with breast cancer incidence (P for trend = 0.66). These results

Table 1 Distribution of characteristics (person-years (%)) by birth weight category

Characteristic	<3000	3000–3499	3500+
Birth weight (g)	42 054	46 398	30 533
Cohort			
DESAD	37 246(36.1)	39 900(38.6)	26 000(25.2)
Dieckmann	4006(29.3)	5695(41.7)	3943(28.8)
WHS offspring	802(36.5)	803(36.8)	589(26.8)
Age (years)			
<40	28 690(35.7)	31 027(38.6)	20 495(25.5)
40+	13 364(34.4)	15 371(39.6)	10 038(25.8)
Education			
Some college or less	14 530(35.2)	15 286(37.1)	11 412(27.7)
Completed college	12 853(35.4)	14 146(38.9)	9 308(25.6)
Graduate school	10 959(37.0)	12 002(40.5)	6 643(22.4)
Missing	3712(31.3)	4964(41.9)	3169(27.6)
Age at menarche (years)			
<= 11	7023(33.6)	7196(38.0)	4399(28.2)
12–13	25 222(35.3)	28 179(39.5)	17 907(25.1)
14+	9599(37.7)	10 833(38.6)	8052(23.6)
Missing	211(36.6)	190(33.0)	174(30.3)
Parity			
Nulliparous	19 705(37.0)	20 338(38.1)	13 212(24.8)
Age at first birth < 30 years	16 005(33.8)	18 695(39.5)	12 544(26.5)
Age at first birth 30+ years	4831(33.6)	5899(41.0)	3637(25.3)
Missing	1513(36.7)	1466(35.6)	1139(27.6)
Menopausal status			
Premenopausal	35 152(35.5)	38 500(38.9)	25 154(25.4)
Postmenopausal	3063(34.5)	3533(39.8)	2261(25.5)
Unknown/censored	3839(33.9)	4365(38.5)	3118(27.5)
Height (in)			
<= 66	27 259(41.8)	24 940(38.3)	12 869(19.7)
66+	13 660(27.0)	19 993(39.6)	16 775(33.2)
Missing	1135(32.5)	1466(42.0)	889(25.4)
Body mass index			
<= 25	28 434(36.3)	30 740(39.3)	18 972(24.2)
25+	12 379(34.4)	14 142(38.2)	10 488(28.3)
Missing	1241(34.5)	1517(38.8)	1073(26.5)
Mother’s smoking status during pregnancy			
No	18 546(29.4)	25 302(40.1)	19 129(30.3)
Yes	18 261(45.9)	14 629(36.8)	6 833(17.2)
Missing	5247(32.2)	6468(39.7)	4571(28.0)
DES exposure			
No	7238(25.0)	12 234(42.3)	9395(32.5)
Yes	34 816(38.6)	34 164(37.9)	21 138(23.4)
Missing	2161(30.7)	2827(40.2)	2031(28.9)
Family history of breast cancer			
No	35 022(35.8)	37 984(38.8)	24 680(25.2)
Yes	4871(34.1)	5588(39.1)	3821(26.7)
Missing	2161(30.7)	2827(40.2)	2031(28.9)

DES = diethylstilbestrol.
DISCUSSION

Most studies find evidence of a positive association between birth weight and breast cancer risk, but several have not (Ekobom et al, 1997; Sanderson et al, 1998, 2002; Titus-Ernstoff et al, 2002; Hodgson et al, 2004). Although not associated overall in our data, risk was elevated, albeit not statistically significantly, with high birth weight in younger women consistent with previous observations (Michels et al, 1996; Sanderson et al, 1996; De Stavola et al, 2006; Innes et al, 2006; Møllemkjaer et al, 2003; McCormack et al, 2005).

The effect of birth weight varied by level of education with an increased risk for high birth weight in more educated women and an apparent risk reduction in the less-educated women. While earlier studies controlled for social class (Ekobom et al, 1997; De Stavola et al, 2000; Sanderson et al, 2002; Vatten et al, 2002, 2005; Titus-Ernstoff et al, 2002; McCormack et al, 2003, 2005; Lahmann et al, 2004; Lahmann et al, 2004; dos Santos Silva et al, 2004), none found evidence of confounding of the birth weight and breast cancer association. Only one investigated the interaction of birth weight and education (Titus-Ernstoff et al, 2002), reporting a stronger association of high birth weight with breast cancer risk in women whose fathers were the most educated. As discussed elsewhere (Hodgson et al, 2004), most studies have been conducted in Caucasians from high-risk populations. Results from studies in a relatively disadvantaged population in the US (Hodgson et al, 2004) and in Chinese women with limited education (Sanderson et al, 2002) suggest an inverse association of birth weight and breast cancer. If the association of birth weight with breast cancer differs by social class, this might explain some of the heterogeneity of findings reported in the literature on birth weight and breast cancer risk. It would be useful to know if any of the other studies with information on socioeconomic status have similar findings.

If the positive association of birth weight and breast cancer risk observed among younger women and those with more education is real and reflects differences in biology, our observation argues against the hypothesis that the operable mechanism is mediated through higher levels of oestrogen. Most of these women (and all in the analyses restricted to DES-exposed women), regardless of their birth weight, received pharmacologic doses of oestrogen during prenatal breast development. Recent observations that cord blood estrogen levels – reflecting fetal exposure – are not associated with birth weight (Troisi et al, 2003) also undermine the proposed oestrogen mechanism.

In conclusion, while there was no overall association, we found an elevated risk of breast cancer with high birth weight among younger women and those of higher educational attainment, findings consistent with several other observations. If true, these subgroup differences might explain some of the inconsistencies between existing studies of this relationship. In addition, the

Table 2 Rate ratios (RR) and 95% confidence intervals (CI) for breast cancer according to birth weight and gestational age

Birth weight (g)	No. of cases	No. of person-years	Age-adjusted RR	95% CI
<3000	32	42,054	0.98 (0.61–1.6)	
3000–3499	36	46,399	1.0	
3500+	27	30,533	1.09 (0.66–1.8)	
Gestational age (weeks)	21	34,983	0.77 (0.42–1.4)	
<39	28	23,491	1.38 (0.78–2.4)	
39	21	24,246	1.0	
41+	13	21,772	0.68 (0.34–1.4)	
Missing	14	14,493	1.33 (0.67–2.6)	

Table 3 Rate ratios (RR) and 95% confidence intervals (CI) for birth weight (g) and breast cancer by age, education, and DES exposure

Age <40 years	No. of cases	Age-adjusted RR	95% CI
<3000	16	1.09 (0.55–2.2)	
3000–3499	16	1.0	
3500+	2	0.17 (0.04–0.74)	
Age 40+ years	No. of cases	Age-adjusted RR	95% CI
<3000	7	0.75 (0.29–1.9)	
3000–3499	9	1.0	
3500+	9	1.27 (0.52–3.1)	
Graduate school	No. of cases	Age-adjusted RR	95% CI
<3000	7	1.05 (0.38–2.9)	
3000–3499	8	1.0	
3500+	10	2.27 (0.90–5.8)	
DES exposed	No. of cases	Age-adjusted RR	95% CI
<3000	15	0.88 (0.51–1.5)	
3000–3499	29	1.0	
3500+	18	1.01 (0.56–1.8)	
DES unexposed	No. of cases	Age-adjusted RR	95% CI
<3000	7	1.32 (0.49–3.5)	
3000–3499	9	1.0	
3500+	9	1.36 (0.54–3.4)	

*Tests for interaction: P = 0.22 for age, P = 0.004 for education, and P > 0.50 for DES exposure. †Eleven cases were missing education. DES = diethylstilbestrol.
presence of the association in our DES-exposed population argues against the popular hypothesis that such a mechanism is oestrogen mediated.

ACKNOWLEDGEMENTS

We thank the field centre study managers, Diane Anderson, Elizabeth Barnard, Cheryl Robie, Amy Roth, Kathleen Rowlings, and Mary Ziegler for their assistance with participant follow-up and medical record and specimen collection, and Cathy Ann Grundmayer, Joan Pinsky, and Bob Saal of Westat, Inc. for study-wide coordination efforts. We appreciate the efforts of Drs Nancy Potischman and Lars Vatten in reviewing and commenting on the manuscript. Finally, we thank the DES-exposed and unexposed daughters who participated in this study for their longstanding cooperation.

REFERENCES

Ahlgren M, Sørensen T, Wohlfahrt J, Hafidleadóttir Á, Holst C, Melbye M (2003) Birth weight and risk of breast cancer in a cohort of 106,504 women. Int J Cancer 107: 997 – 1000

Andersson SW, Bengtsson C, Hallbert L, Lapidus L, Niklasson A, Wallgren A, Hulthén L (2001) Cancer risk in Swedish women: the relation to size at birth. Br J Cancer 84: 1193 – 1198

Bibbo M, Gill WB, Azizi F, Blough R, Fang VS, Rosenfield RL, Schumacher GF, Sleeper K, Sonnek MG, Wied GL (1977) Follow-up study of male and female offspring of DES-exposed mothers. Obstet Gynecol 49: 1 – 8

De Stavola BL, Hardy R, Kuh D, dos Santos Silva I, Wadsworth M, Swerdlow AJ (2000) Birthweight, childhood growth and risk of breast cancer in a British cohort. Br J Cancer 83: 964 – 968

dos Santos Silva I, De Stavola BL, Hardy RJ, Kuh DJ, McCormack VA, Wadsworth ME (2004) Is the association of birth weight with premenopausal breast cancer mediated through childhood growth? Br J Cancer 91: 519 – 524

Ekbohm A, Chung-Cheng H, Lipworth L, Adami HQ, Trichopoulos D (1997) Intrauterine environment and breast cancer risk in women: a population-based study. J Natl Cancer Inst 89: 71 – 76

Greenberg ER, Barnes AB, Resseguei L, Barrett JA, Burnside S, Lanza LL, Neff RK, Stevens M, Young RH, Colton T (1984) Breast cancer in mothers given diethylstilbestrol in pregnancy. N Engl J Med 311: 1393 – 1398

Hilakivi-Clarke L, Forsen T, Eriksson JG, Luoto R, Tuomilehto J, Osmond C, Barker DJP (2001) Tallness and overweight during childhood have given diethylstilbestrol in pregnancy. Br J Cancer 83: 1664 – 1668

Hodgson ME, Newman B, Millikan RC, Luoto R, Tuomilehto J, Osmond C, Barker DJP (2001) Tallness and overweight during childhood have opposing effects on breast cancer risk. Br J Cancer 83: 1680 – 1684

Innes K, Byers T, Schymura M (2000) Birth characteristics and subsequent risk for breast cancer in very young women. Am J Epidemiol 152: 1121 – 1128

Kajiser M, Akre O, Canningtingius S, Ekbohm A (2003) Preterm birth, birth weight, and subsequent risk of female breast cancer. Br J Cancer 89: 1664 – 1666

Labarthe D, Adam E, Noller KL, O’Brien PC, Robboy SJ, Tilley BC, Townsend D, Barnes AB, Kaufman RH, Decker DG, Fish CR, Herbst AL, Gunderson J, Kurland LT (1978) Design and preliminary observations of the National Cooperative Diethylstilbestrol Adenosin (DESAD) Project. Obstet Gynecol 51: 453 – 458

Lahmann PH, Gullberg B, Olsson H, Boeing H, Berglund G, Lissner L (2004) Birth weight is associated with postmenopausal breast cancer risk in Swedish women. Br J Cancer 91: 1666 – 1668

McCormack VA, dos Santos Silva I, De Stavola BL, Møhnes L, Leon DA, Lilley H HO (2003) Fetal growth and subsequent risk of breast cancer: results from long term follow up of Swedish Cohort. Br Med J 326: 248 – 253

McCormack VA, dos Santos Silva I, Koupil I, Leon DA, Lilley H HO (2005) Birth characteristics and adult cancer incidence: Swedish cohort of over 11,000 men and women. Int J Cancer 115: 611 – 617

Møllemkjær L, Olsen ML, Sørensen HT, Thulstrup AM, Olsen J, Olsen JH (2003) Birth weight and risk of early-onset breast cancer (Denmark). Cancer Cause Control 14: 61 – 64

Michels KB, Trichopoulos D, Robins J M, Rosner BA, Manson JE, Hunter DJ, Colditz GA, Hankinson SE, Speizer FE, Willett WC (1996) Birthweight as a risk factor for breast cancer. Lancet 348: 1542 – 1546

Sanderson M, Shu X O, Jin F, Dai Q, Ruan Z, Gao Y T, Zheng W (2002) Weight at birth and adolescence and premenopausal breast cancer risk in a low-risk population. Br J Cancer 86: 84 – 88

Sanderson M, Williams MA, Daling JR, Holt VL, Malone KE, Self SG, Moore DE (1998) Maternal factors and breast cancer risk among young women. Paediatr Perinat Epidemiol 12: 397 – 407

Sanderson M, Williams MA, Malone KE, Stanford JL, Emanuel I, White E, Daling JR (1996) Perinatal factors and risk of breast cancer. Epidemiology 7: 34 – 37

Titus-Ernstoff L, Egan KM, Newcomb PA, Ding J, Trentham-Dietz A, Greenberg ER, Baron JA, Trichopoulos D, Willett WC (2002) Early life factors in relation to breast cancer risk in postmenopausal women. Cancer Epidemiol Biomarker Prev 11: 207 – 210

Troisi R, Pottschman N, Roberts JM, Sizer I, Hoover RN (2003) Associations of maternal and umbilical cord hormone concentrations with maternal, gestational and neonatal factors. Cancer Causes Control 14: 347 – 355

Vatten LJ, Maehle BO, Lund Nielsen TI, Tretli S, Hsieh C-C, Trichopoulos D, Stuver SO (2002) Birthweight as a predictor of breast cancer: a case–control study in Norway. Br J Cancer 86: 99 – 101

Vatten LJ, Nielsen TI, Tretli S, Trichopoulos D, Romundstad PR (2003) Size at birth and risk of breast cancer: prospective population-based study. Int J Cancer 114: 461 – 464