Convergence of the meshfree collocation methods for fully nonlinear parabolic equations

Yumiharu Nakano

Graduate School of Innovation Management
Tokyo Institute of Technology
2-12-1 W9-117 Ookayama 152-8552, Tokyo, Japan
e-mail: nakano.y.ai@m.titech.ac.jp

August 29, 2014

Abstract

We prove the convergence of the meshfree collocation methods for the terminal value problems of linear and fully nonlinear parabolic partial differential equations in the framework of viscosity solutions, provided that the basis function approximations of the terminal condition and the nonlinearities are successful at each time step. A numerical experiment with a radial basis function demonstrates the convergence property.

Key words: meshfree methods, parabolic equations, viscosity solutions, radial basis functions.

AMS MSC 2010: 35K55, 65M70.

1 Introduction

In this paper, we are concerned with the numerical methods for the terminal value problems of the parabolic partial differential equations:

\[
\begin{align*}
-\partial_t v + F(t, x, v(t, x), Dv(t, x), D^2v(t, x)) &= 0, \quad (t, x) \in [0, T) \times \mathbb{R}^d, \\
v(T, x) &= f(x), \quad x \in \mathbb{R}^d,
\end{align*}
\]

where \(F : [0, T] \times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{S}^d \to \mathbb{R} \), and \(\mathbb{S}^d \) stands for the totality of symmetric \(d \times d \) real matrices. Here we have denoted by \(\partial_t \) the partial differential operator with respect to the time variable \(t \), by \(D^j \equiv D^j_x \) the \(j \)-th order partial differential operator with respect to the space variable \(x \). The conditions imposed on the function \(F \) is described in Section 2 below. The terminal value problem (1.1) mainly appears from probabilistic problems. In linear cases the solution to (1.1) is given by the expectation of a diffusion process, whereas in nonlinear cases of Hamilton-Jacobi-Bellman type, the solution is given by the value function of a stochastic control problem.
Existing numerical methods applicable to (1.1) are the finite difference methods (see, e.g., Kushner and Dupuis [11] and Bonnans and Zidani [2]), the finite-element like methods (see, e.g., Camilli and Falcone [3] and Debrabant and Jakobsen [5]), and the probabilistic methods (see, e.g., Pages et al. [12] and Fahim et al. [7]). It should be mentioned that these methods have difficulties in applying to the problems with high-dimensional state space, which appear as an application of (1.1). For example, in the finite difference methods, the diffusion matrix in the Hamiltonian should basically be diagonally dominant for ensuring its convergence (see, e.g., [11]). Also, the finite-element like methods require the interpolation of the solutions in the state space that preserve a monotonicity condition, and need involved computational procedures for the implementation in high-dimensional problems (see Carlini et al. [4]).

Another possible approach to (1.1) is to use the meshfree collocation method proposed by Kansa [9]. In this method, we seek an approximate solution of the form of a linear combination of a radial basis function (e.g., multiquadrics in the Kansa’s original work). Substituting this form into a partial differential equation leads to an equation for the collocation points. Then the approximate solution is constructed by the meshfree interpolation of these collocation points. In general, this procedure allows for a simple numerical implementation with relatively less computational time even for high-dimensional problems. As for the convergence, Huang et al. [8] numerically shows the case of a Hamilton-Jacobi-Bellman equation of the first order, a special case of (1.1). However, to the best of our knowledge, the rigorous convergence issue for (1.1) has not been addressed in the literature.

In this paper, we aim to prove the rigorous convergence of the collocation method for (1.1). In doing so, we consider solutions of (1.1) in the viscosity sense since the smoothness of solutions cannot be expected in our nonlinear cases. In this framework, it is known that the abstract method proposed by Barles and Souganidis [1] is a powerful tool for checking the convergence of a given family of functions to a unique viscosity solution. Roughly speaking, if an operator that constructs the possible approximate solution has monotonicity, stability, and consistency properties, then by the arguments in [1] we can basically prove its convergence. In our case, however, this technique cannot be applied in a trivial way since the collocation method includes the derivative terms and thus violates the monotonicity condition. We find that a key to overcoming this difficulty is Lemma 4.1 in Kohn and Serfaty [10]. Using this lemma, they show that an approximation scheme with a max-min representation has the consistency property. The statement of this lemma, however, suggests that its converse is also true, i.e., every smooth consistent method has the max-min representation with a negligible term and so has the monotonicity in an approximation sense, since their max-min representation is clearly monotone. Therefore our task is to justify this observation in our situation.

The present paper is organized as follows. In Section 2 we briefly review the meshfree interpolation theory and derive a general collocation method for (1.1). We rigorously state our assumptions and prove the convergence property in Section 3. Section 4 exhibits a numerical example.
2 Generalization of Kansa’s method

Throughout this paper, for \(a = (a_i) \in \mathbb{R}^\ell \) and \(\tilde{a} \in \mathbb{R}^{\ell_1 \times \ell_2} \), we write \(|a| = (\sum_{i=1}^{\ell} a_i^2)^{1/2} \) and \(|\tilde{a}| = \sup_{y \in \mathbb{R}^{\ell_2 \setminus \{0\}}} |\tilde{a}y|/|y| \), respectively. We denote by \(a^T \) the transpose of a vector or matrix \(a \). By \(C \) we denote positive constants that may not be necessarily equal with each other. We also write \(C_{\kappa_1, \ldots, \kappa_\ell} \) for a positive constant \(C \) depending only on parameters \(\kappa_1, \ldots, \kappa_\ell \). For a multiindex \(\alpha = (\alpha_1, \ldots, \alpha_\ell) \) of nonnegative integers and a function \(u \), we define \(D^\alpha u(x) \) by the usual manner, i.e.,

\[
D^\alpha u(x) = \frac{\partial^{|\alpha|} u(x)}{\partial x_1^{\alpha_1} \cdots \partial x_\ell^{\alpha_\ell}}
\]

with \(|\alpha| = \alpha_1 + \cdots + \alpha_\ell \). For \(m \in \mathbb{N} \) we denote by \(\Pi_m(\mathbb{R}^\ell) \) the set of all \(\mathbb{R}^\ell \)-valued polynomial of degree at most \(m \).

In this section, we describe a meshfree collocation method for (1.1), which is a generalization of Kansa’s method in the parabolic cases. First, we briefly review the basis of the interpolation theory with conditionally positive definite kernels. We refer to Wendland [13] for a complete account. In general, a meshfree method seeks an approximate function in the space spanned by a prespecified kernels. As the kernel we consider a smooth, symmetric conditionally positive definite kernel \(\Phi : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R} \) of order \(m \). More precisely, \(\Phi \) is assumed to satisfy the following:

(i) \(\Phi \in C^{2\nu}(\mathbb{R}^d \times \mathbb{R}^d) \) for some \(\nu \geq 2 \);

(ii) \(\Phi(x, y) = \Phi(y, x) \) for \(x, y \in \mathbb{R}^d \);

(iii) for every \(\ell \in \mathbb{N} \), for all pairwise distinct \(y_1, \ldots, y_\ell \in \mathbb{R}^d \) and for all \(\alpha \in \mathbb{R}^\ell \setminus \{0\} \) satisfying

\[
\sum_{j=1}^{\ell} \alpha_j \pi(y_j) = 0, \quad \pi \in \Pi_{m-1}(\mathbb{R}^d),
\]

we have

\[
\sum_{i,j=1}^{\ell} \alpha_i \alpha_j \Phi(y_i, y_j) > 0.
\]

If (2.2) holds without (2.1), then \(\Phi \) is simply called a positive definite kernel.

Example 2.1. Here are some examples of the conditionally positive definite kernels. In each case, \(\Phi \) is given by \(\Phi(x, y) = \phi(|x - y|) \), where \(\phi : [0, \infty) \rightarrow \mathbb{R} \), called a radial basis function (RBF).

(i) Gaussian RBF: \(\phi(x) = e^{-\alpha|x|^2} \), \(x \in \mathbb{R}^d \), with \(\alpha > 0 \). In this case, \(\Phi \) is positive definite.

(ii) Multiquadrics RBF: \(\phi(x) = (\alpha^2 + |x|^2)^\beta \), \(x \in \mathbb{R}^d \), with \(\alpha \in \mathbb{R} \), \(\beta \in \mathbb{R} \setminus (\mathbb{N} \cup \{0\}) \). In this case, \(\Phi \) is positive definite for \(\beta < 0 \).
Let \(\Omega \) be a bounded open subset of \(\mathbb{R}^d \). Suppose that we are in a position to compute a numerical solution of (1.1) on \(\Omega \). Suppose moreover that \(\Omega \) satisfies an interior cone condition, i.e., there exists \(\theta \in (0, \pi/2) \) and \(r > 0 \) such that for any \(x \in \Omega \),

\[
C(x, \zeta(x), \theta, r) := \left\{ x + \lambda y : y \in \mathbb{R}^d, |y| = 1, y^T \zeta(x) \geq \cos \theta, \lambda \in [0, r] \right\} \subset \Omega
\]

holds for some \(\zeta(x) \in \mathbb{R}^d \) with \(|\zeta(x)| = 1\).

Let \(X = \{x^{(1)}, \ldots, x^{(N)}\} \) be a set of pairwise distinct points in \(\Omega \). Let \(\pi_1, \ldots, \pi_Q \) be a basis of \(\Pi_{m-1}(\mathbb{R}^d) \), where \(Q = \dim(\Pi_{m-1}(\mathbb{R}^d)) = (m + d)!/(m!d!) \). Denote \(P = (\pi_\ell(x^{(j)})) \in \mathbb{R}^{N \times Q} \) and \(A_{\Phi,X} = \{\Phi(x^{(i)}, x^{(j)})\}_{1 \leq i,j \leq N} \). We assume that \(X \) is a \(\Pi_{m-1}(\mathbb{R}^d) \)-unisolvent set, i.e., \(\pi \in \Pi_{m-1}(\mathbb{R}^d) \) with \(\pi(x) = 0 \) on \(X \) must be zero polynomial. Then, it follows from [13, Theorem 8.21] that the system

\[
\begin{pmatrix}
A_{\Phi,X} & P \\
P^T & 0
\end{pmatrix}
\begin{pmatrix}
\xi \\
\eta
\end{pmatrix}
= \begin{pmatrix}
b \\
0
\end{pmatrix}
\]

has a unique solution \((\xi(b), \eta(b)) \in \mathbb{R}^N \times \mathbb{R}^Q \) for any \(b \in \mathbb{R}^N \). Thus, the function

\[
I_{g,X}(x) = \sum_{j=1}^{N} \xi_j(g|x)\Phi(x,x^{(j)}) + \sum_{i=1}^{Q} \eta_i(g|x)\pi_i(x), \quad x \in \Omega,
\]

that interpolates \(g \) on \(X \) becomes an approximation of \(g \). Here, \(\xi_j(b) = (\xi_1(b), \ldots, \xi_N(b))^T \), \(\eta(b) = (\eta_1(b), \ldots, \eta_Q(b))^T \) for \(b \in \mathbb{R}^N \), and we have set \(g|x = (g(x^{(1)}), \ldots, g(x^{(N)}))^T \).

Remark 2.2. If \(\Phi \) is positive definite, then the matrix \(A_{\Phi,X} \) is invertible and for \(b \in \mathbb{R}^N \) the solution of (2.3) is given by

\[
\xi(b) = A_{\Phi,X}^{-1}b, \quad \eta(b) = 0.
\]

In particular, we can drop the polynomial term in the interpolation.

Next we recall the error estimation results for interpolation by conditionally positive definite kernels. Let \(\mathcal{N}_\Phi(\Omega) \) be the native space corresponding to \(\Phi \). See [13] for a precise definition. Here, we remark that \(\mathcal{N}_\Phi(\Omega) \) is a linear subspace of \(C(\Omega) \) equipped with a semi-inner product \((\cdot, \cdot)_\Phi(\Omega)\). If \(g, g' \in C(\Omega) \) are of the form

\[
g(x) = \sum_{j=1}^{M} \alpha_j \Phi(x,y_j), \quad g'(x) = \sum_{j=1}^{M'} \alpha'_j \Phi(x,y'_j), \quad x \in \Omega,
\]

where \(M, M' \in \mathbb{N}, \alpha, \alpha' \in \mathbb{R}^N, y_1, \ldots, y_M, y'_1, \ldots, y'_{M'} \in \Omega \), with \(\sum_{j=1}^{M} \alpha_j \pi(y_j) = \sum_{j=1}^{M'} \alpha'_j \pi(y'_j) = 0 \) for all \(\pi \in \Pi_{m-1}(\mathbb{R}^d) \), then

\[
(g, g')_{\mathcal{N}_\Phi(\Omega)} = \sum_{j=1}^{M} \sum_{\ell=1}^{M'} \alpha_j \alpha'_\ell \Phi(y_j, y'_\ell).
\]

Example 2.3. Suppose that \(\Phi \) is given by \(\Phi(x,y) = \phi(|x-y|) \) where \(\phi \) is some function on \([0, \infty)\) such that \(x \mapsto \phi(|x|) \) is integrable and has a Fourier transform that decays as \((1 + |\cdot|^2)^{-k}\), \(k \in \mathbb{N}, k > d/2 \). Suppose moreover that \(\Omega \) has a Lipschitz boundary. Then \(\mathcal{N}_\Phi(\Omega) \) coincides with the \(L^2 \)-Sobolev space on \(\Omega \) of order \(k \) with equivalent norms.
The error of the interpolation is estimated as follows: for every \(g \in \mathcal{N}_\Phi(\Omega) \) and every multi-index \(\alpha \) with \(|\alpha| \leq \nu\),

\[
|D^\alpha g(x) - D^\alpha I_g^\nu(x)| \leq C_{\nu,R} \Delta_{X,\Omega}^{\nu-|\alpha|} |g|_{\mathcal{N}_\Phi(\Omega)}, \quad x \in \Omega,
\]

where \(| \cdot |_{\mathcal{N}_\Phi(\Omega)} = (\cdot, \cdot)_{\mathcal{N}_\Phi(\Omega)}^{1/2}\) and \(\Delta_{X,\Omega}\) is the fill distance defined by

\[
\Delta_{X,\Omega} = \sup_{x \in \Omega} \min_{j=1,\ldots,N} |x - x^{(j)}|.
\]

In the above, we have assumed that \(\Omega\) satisfies an interior cone condition and \(X\) is \(\Pi_m-1(\mathbb{R}^d)\)-unisolvent. Typical examples are the cases that \(\Omega\) is a ball or rectangular and the sequence \((x^{(1)}_{\ell}, \ldots, x^{(N)}_{\ell})\) is pairwise distinct for any \(\ell = 1, \ldots, d\), which is the case of the equi-spaced grid points. These would be known facts, but for reader’s convenience, we give proofs.

Proposition 2.4. We have the following:

(i) Let \(x_0 \in \mathbb{R}^d\) and \(R > 0\) be given. Then the set \(\{x \in \mathbb{R}^d : |x - x_0| < R\}\) satisfies an interior cone condition.

(ii) Let \(a_\ell, b_\ell \in \mathbb{R}\) with \(a_\ell < b_\ell, \ \ell = 1, \ldots, d\), be given. Then the set \(\Pi_{d-1}(a_\ell, b_\ell)\) satisfies an interior cone condition.

(iii) Suppose that \(N \geq m\) and that for any \(\ell = 1, \ldots, d\), the sequence of \(\ell\)-th coordinate \((x^{(1)}_{\ell}, \ldots, x^{(N)}_{\ell})\) is pairwise distinct. Then \(X\) is \(\Pi_m-1(\mathbb{R}^d)\)-unisolvent.

Proof. To prove (i), set \(r = R/(1 + \sqrt{2})\) and \(\theta = \pi/4\) and denote by \(\Omega_1\) the open ball. For \(x_0 \in \Omega_1\), any choice for \(\zeta(x_0)\) yields \(C(x_0, \zeta(x_0), \theta, r) \subset \Omega\). For \(x \in \Omega_1 \setminus \{x_0\}\), define \(\zeta(x) = -(x - x_0)/|x - x_0|\). Let \(\lambda \in [0, r]\) and \(y \in \mathbb{R}^d\) with \(|y| = 1\) and \(y^T \zeta(x) \geq \cos \theta\). If \(|x - x_0| < \sqrt{2}r\), then

\[
|x + \lambda y - x_0| \leq |x| + \lambda |y| < \sqrt{2}r + r = R.
\]

If \(|x - x_0| \geq \sqrt{2}r\), then

\[
|x + \lambda y - x_0|^2 = |x - x_0|^2 + 2\lambda y^T(x - x_0) + \lambda^2 \leq |x - x_0|^2 - \sqrt{2}|x - x_0|\lambda + \lambda^2.
\]

The quadratic function of \(\lambda\) on the right-hand side in the above inequality attains its maximum over \([0,r]\) at \(\lambda = 0\). Thus \(|x + \lambda y - x_0| < R\). Therefore we obtain \(C(x, \zeta(x), \theta, r) \subset \Omega_1\).

We turn to the next assertion. The case \(d = 1\) is easy to show, thus we assume \(d \geq 2\). As an preliminary, we first confirm the following simple fact: for \(y = (y_1, \ldots, y_d)^T \in \mathbb{R}^d\),

\[
\sum_{i=1}^d y_i^2 = 1, \quad \sum_{i=1}^d y_i \geq \sqrt{d-1} \quad \Longrightarrow \quad y_i \geq 0, \ i = 1, \ldots, d.
\]

To see this, let \(k \in \{1, \ldots, d\}\) be arbitrary. Then by Cauchy-Schwartz inequality,

\[
\sqrt{d-1} - y_k \leq \sum_{i \neq k} y_i \leq \sqrt{d-1} \left(\sum_{i \neq k} y_i^2\right)^{1/2} = \sqrt{(d-1)(1-y_k^2)}.
\]
Since $|y_k| \leq 1$, we have $\sqrt{d-1} - y_k \geq 0$. Thus the inequality above is equivalent to $d - 1 - 2\sqrt{d-1}y_k + y_k^2 \leq (d-1)(1-y_k^2)$ and this is also equivalent to $y_k(dy_k - 2\sqrt{d-1}y_k) \leq 0$. Hence we find that $y_k \geq 0$.

Now set $r = \min((b_1-a_1)/4$ and $\theta \in (0,\pi/2)$ such that $\cos \theta = \sqrt{(d-1)/d}$ and denote by Ω_2 the open rectangular set. Fix $x = (x_1,\ldots,x_d)^T \in \Omega_2$. Define $\zeta(x) = (\zeta(x),\ldots,\zeta(x)_d)^T$ by $\zeta(x)_i = 1$ if $x_i \leq (a_i + b_i)/2$, $= -1$ otherwise. Moreover define

$$I_+(x) = \{k \in \{1,\ldots,d\} : \zeta_k(x) > 0\}, \quad I_-(x) = \{k \in \{1,\ldots,d\} : \zeta_k(x) < 0\}.$$

Suppose that $x + \lambda y \in C(x, \zeta(x), \theta, r)$. Then,

$$\sum_{k \in I_+(x)} (-y_k)^2 + \sum_{k \in I_-(x)} y_k^2 = 1, \quad \sum_{k \in I_+(x)} (-y_k) + \sum_{k \in I_-(x)} y_k \geq \sqrt{d-1}.$$

It follows from \eqref{2.5} that $y_k \geq 0$ for $k \in I_+(x)$ and $y_k \leq 0$ for $k \in I_-(x)$. Thus, for the case $k \in I_+(x)$ we see $a_k < x_k \leq x_k + \lambda y_k \leq (a_k + b_k)/2 + (b_k - a_k)/2 < b_k$ for $\lambda \in [0, r]$. For the case $k \in I_-(x)$, we have $x_k + \lambda y_k \leq x_k < b_k$ and $x_k + \lambda y_k > (a_k + b_k)/2 - r \geq (a_k + b_k)/2 - (b_k - a_k)/2 = a_k$. Consequently, we deduce that $C(x, \zeta(x), \theta, r) \subset \Omega_2$.

Finally, we prove (iii) by the induction on d. To this end, define

$$X_\ell = \{(x_1^{(1)}, \ldots, x_\ell^{(1)})^T, \ldots, (x_1^{(N)}, \ldots, x_\ell^{(N)})^T\}, \quad \ell = 1, \ldots, d.$$

Let $\pi \in \Pi_{m-1}(\mathbb{R})$ and represent this as $\pi(x) = \sum_{j=0}^{m-1} c_j x^j, x \in \mathbb{R}$. Then, $\pi = 0$ on X_1 is equivalent to

$$\begin{pmatrix} 1 & \cdots & x_1^{(1)} & \cdots & x_1^{(m-1)} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_1^{(N)} & \cdots & x_1^{(m-1)} \end{pmatrix} \begin{pmatrix} c_0 \\ \vdots \\ c_{m-1} \end{pmatrix} = 0.$$

Since $x_1^{(j)}$'s are pairwise distinct, the Vandermonde matrix in the above equality has the full rank. This and $N \geq m$ means $c_0 = \cdots = c_{m-1} = 0$. Thus $\pi = 0$ on \mathbb{R}.

Now assume that X_ℓ is $\Pi_{m-1}(\mathbb{R}^\ell)$-unisolvent. Let $\pi \in \Pi_{m-1}(\mathbb{R}^{\ell+1})$ and represent this as $\pi(x) = \sum_{j=0}^{m-1} \pi_j(\tilde{x}) x_\ell^{(j)}$ for $x = (x_1, \ldots, x_\ell)^T$, where $\pi_j \in \Pi_{m-1-j}(\mathbb{R}^\ell)$, $j = 0, \ldots, m-1$, and $\tilde{x} = (x_1, \ldots, x_\ell)^T$. Suppose that $\pi = 0$ on $X_{\ell+1}$. Then we have

$$\begin{pmatrix} 1 & \cdots & x_{\ell+1}^{(1)} & \cdots & x_{\ell+1}^{(m-1)} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_{\ell+1}^{(N)} & \cdots & x_{\ell+1}^{(m-1)} \end{pmatrix} \begin{pmatrix} \pi_0(\tilde{x}) \\ \vdots \\ \pi_{m-1}(\tilde{x}) \end{pmatrix} = 0$$

for any $\tilde{x} \in X_{\ell}$. As in the above arguments, we deduce that $\pi_j(\tilde{x}) = 0$, $j = 0, \ldots, m-1$, for any $\tilde{x} \in X_{\ell}$. Thus by the assumption of the induction, we obtain $\pi_0 = \cdots = \pi_{m-1} = 0$ on \mathbb{R}^ℓ. This means $\pi = 0$ on $\mathbb{R}^{\ell+1}$.

Now, let us describe the meshfree collocation methods for our parabolic equations. We start with the formal time discretization of \eqref{1.1} to get

$$\frac{v(t_{k+1},x) - v(t_k,x)}{h} \simeq \theta F(t_{k+1},x; v(t_{k+1},\cdot)) + (1 - \theta) F(t_k,x; v(t_k,\cdot))$$

\begin{equation}
\tag{2.6}
\label{2.6}
\end{equation}
where \(t_k = kh, k = 0, \ldots, n \) and \(h = T/n, \theta \in [0, 1] \), and for any \(\varphi \in C^2(\mathbb{R}^d) \)
\[
F(t,x;\varphi) = F(t,x,\varphi(x),D\varphi(x),D^2\varphi(x)), \quad x \in \mathbb{R}^d.
\]

Let us denote by \(v_{k,j}, k = 0, \ldots, n, j = 1, \ldots, N \), an approximate solution of (1.1) at \(\{t_0, \ldots, t_n\} \times X \), and set \(v^h(t_k, \cdot) \) by the meshfree interpolation of \(\{v_{k,j}\}_{j=1}^{N} \), i.e.,
\[
v^h(t_k, x) = \sum_{j=1}^{N} \xi_j(v_k) \Phi(x, x^{(j)}) + \sum_{\ell=1}^{Q} \eta_{\ell}(v_k) \pi_{\ell}(x), \quad x \in \Omega,
\]
where \(v_k = (v_{k,1}, \ldots, v_{k,N})^T \). Moreover, assume that \(v^h \) satisfies (2.6) with equality on \(X \). Then,
\[
v_{k+1,j} - v_{k,j} = h\theta \tilde{F}_{k+1,j}(v_k) + h(1-\theta)\tilde{F}_{k,j}(v_k), \quad k = 0, \ldots, n-1, \quad j = 1, \ldots, N.
\]
Here, \(\tilde{F}_{k,j}(v_k) = F(t_k, x^{(j)}; v^h(t_k, \cdot)) \). Thus, denoting \(\tilde{F}_k(v_k) = (\tilde{F}_{k,1}(v_k), \ldots, \tilde{F}_{k,N}(v_k))^T \), we get (2.7)
\[
v_k + h(1-\theta)\tilde{F}_k(v_k) = v_{k+1} - h\theta \tilde{F}_{k+1}(v_{k+1}), \quad k = 0, \ldots, n-1.
\]
The terminal condition \(v^h(t_n, \cdot) \) is given by
\[
v^h(t_n, x) = I_{f,x}(x), \quad x \in \Omega.
\]
The linearity of \((\xi(b), \eta(b)) \) with respect to \(b \) yields
\[
v^h(t_k, x) = v^h(t_{k+1}, x) - h(1-\theta)I_{f(t_k, \cdot), \varphi(t_k)}(x) - h\theta I_{f(t_{k+1}, \cdot), \varphi(t_{k+1})}(x), \quad x \in \Omega.
\]

Remark 2.5. In the case of \(\theta = 1 \), the equation (2.7) becomes a simple recursion formula, and then the function \(v^h \) is computed by the repeated interpolation procedures, i.e.,
\[
v^h(t_k, x) = v^h(t_{k+1}, x) - hI_{f(t_{k+1}, \cdot), \varphi(t_{k+1})}(x), \quad x \in \Omega.
\]

3 Convergence

We consider the terminal value problem (1.1) under the following assumptions:

Assumption 3.1. \(\quad (i) \) For \(t \in [0,T], x \in \mathbb{R}^d, z \in \mathbb{R}, p \in \mathbb{R}^d, \) and \(\Gamma, \Gamma' \in \mathbb{S}^d \) with \(\Gamma \geq \Gamma' \),
\[
F(t,x,z,p,\Gamma) \leq F(t,x,z,p,\Gamma').
\]

(ii) There exist a continuous function \(F_0 \) on \([0,T] \times \mathbb{R}^d \times \mathbb{R} \) and a constant \(K_0 \in (0,\infty) \) such that
\[
|F(t,x,z,p,\Gamma) - F(t',x',z',p',\Gamma)| \leq |F_0(t,x,z) - F_0(t',x',z')| + K_0(|p - p'| + |\Gamma - \Gamma'|)
\]
for \(t, t' \in [0,T], x, x' \in \mathbb{R}^d, z, z' \in \mathbb{R}, p, p' \in \mathbb{R}^d, \) and \(\Gamma, \Gamma' \in \mathbb{S}^d. \)
Assumption 3.4. There exists v the bound of definite of order m

Assumption 3.3. The equation (2.7) has a unique solution w

Assumption 3.2. supersolution of (1.1).

We say that w bounded lower-semicontinuous viscosity supersolution ∂_k viscosity subsolution of (1.1) if the following two conditions hold:

(i) for every $(t, x) \in [0, T) \times \mathbb{R}^d$ and every smooth function ϕ such that $u - \phi$ has a local maximum at (t, x) we have

$$-\partial_t \phi(t, x) + F(t, x, u(t, x), D\phi(t, x), D^2 \phi(t, x)) \leq 0;$$

(ii) $u(T, x) \leq f(x), x \in \mathbb{R}^d$.

Similarly, an \mathbb{R}-valued, lower-semicontinuous function u on $[0, T) \times \mathbb{R}^d$ is said to be a viscosity supersolution of (1.1) if the following two conditions hold:

(i) for every $(t, x) \in [0, T) \times \mathbb{R}^d$ and every smooth function ϕ such that $u - \phi$ has a local minimum at (t, x) we have

$$-\partial_t \phi(t, x) + F(t, x, u(t, x), D\phi(t, x), D^2 \phi(t, x)) \geq 0;$$

(ii) $u(x) \geq f(x), x \in \mathbb{R}^d$.

We say that u is a viscosity solution of (1.1) if it is both a viscosity subsolution and a viscosity supersolution of (1.1).

We assume that the following comparison principle holds:

Assumption 3.2. For every bounded, upper-semicontinuous viscosity subsolution u of (1.1) and bounded lower-semicontinuous viscosity supersolution w of (1.1), we have

$$u(t, x) \leq w(t, x), \quad (t, x) \in [0, T) \times \mathbb{R}^d.$$

Assumption 3.3. The equation (2.7) has a unique solution $v_{k,j}, k = 0, \ldots, n - 1, j = 1, \ldots, N$.

Notice that Assumption 3.3 is trivially satisfied when $\theta = 1$.

Set $L_N = |A_{\phi, X}^{-1}|$ if Φ is simply positive definite and $L_N = |\tilde{A}_{\phi, X}^{-1}|$ if Φ is conditionally positive definite of order $m \geq 1$, where $\tilde{A}_{\phi, X}$ denotes the matrix on the left-hand side in (2.3). To control the bound of ψ, we make the following assumptions:

Assumption 3.4. There exists $K_3 \in (0, \infty), \delta \in (0, 1/5), h_0 \in (0, 1), \text{and } N_0 \geq 1$ such that

$$h^\delta \sqrt{N}L_N \exp(2TK_1K_2(1 + \sqrt{N})L_N) \leq K_3, \quad h \leq h_0, \quad N \geq N_0,$$

where $K_1 = K_{1, \Omega}$ is as in Assumption 3.1 and

$$K_2 = \max \left\{ \left(\sum_{|\alpha| \leq 3} \max_{x \in \Omega} |D^\alpha \Phi(x, y)|^2 \right)^{1/2}, \left(\sum_{|\alpha| \leq 3} \max_{x \in \Omega} \sum_{j=1}^Q |D^\alpha \pi_j(x)|^2 \right)^{1/2} \right\}.$$

Here, $D^\alpha \Phi(x, y)$ is interpreted as the partial derivative of Φ with respect to the first argument.
To discuss Assumption 3.4, recall that the set of data sites is said to be quasi-uniform with respect to a constant \(c_{qu} > 0 \) if

\[q_X \leq \Delta \Omega_X \leq c_{qu}q_X, \]

where \(q_X \) is the separation distance of \(X \), defined by

\[q_X = \frac{1}{2} \min_{i \neq j} |x^{(i)} - x^{(j)}|. \]

A typical example of quasi-uniform data sites is, of course, a set of equi-spaced grid points. It is known that if \(X \) is quasi-uniform with respect to \(c_{qu} > 0 \), then there exists constants \(c_1, c_2 > 0 \), only depending on \(d \) and \(c_{qu} \), such that

\[c_1 N^{-1/d} \leq q_X \leq c_2 N^{-1/d}. \]

Example 3.5. (i) In the case of \(\Phi(x, y) = e^{-\alpha |x-y|^2} \), \(\alpha > 0 \), it is known that

\[|A_{\Phi, X}^{-1}| \leq \frac{(2\alpha)^{d/2}}{\tilde{c}_{d,1}} \frac{d^d}{\pi \Gamma((d+2)/2)} \frac{\exp(40.71d^2/(\alpha q^2))}{|\Omega|^2}. \]

where

\[\tilde{c}_{d,1} = \frac{1}{2 \Gamma((d+2)/2)} \left(\frac{\tilde{c}_{d,2}}{\sqrt{\pi}} \right)^d, \quad \tilde{c}_{d,2} = 12 \left(\frac{\pi \Gamma^2((d+2)/2)}{9} \right)^{1/(d+1)}, \]

and \(\Gamma \) denotes the Gamma function (see [13, Chapter 12]). Thus, if \(X \) is quasi-uniform, then

\[L_N = |A_{\Phi, X}^{-1}| \leq \frac{(2\alpha)^{d/2}}{\tilde{c}_{d,1}} c_2^{-1} e^{40.71d^2/(\alpha q^2)}. \]

(ii) In the case of \(\Phi(x, y) = (\alpha^2 + |x-y|^2)^{-\beta} \), \(\alpha, \beta > 0 \), it is known that

\[|A_{\Phi, X}^{-1}| \leq \tilde{c}_{d,\alpha, \beta} d^d x^d e^{\beta d^d/(2\alpha)} \exp(2\beta d^d/(\alpha q^2)) \]

with an explicitly known constant \(\tilde{c}_{d,\alpha, \beta} \) (see [13, Ch. 12]). Thus, if \(X \) is quasi-uniform, then

\[L_N = |A_{\Phi, X}^{-1}| \leq \tilde{c}_{d,\alpha, \beta} c_2^{-1} e^{\beta d^d/(2\alpha)} N^{-\beta d^d/(2\alpha)} e^{2\beta d^d/(\alpha q^2)/c_1}. \]

To ensure the convergence of the interpolation at each time step, we impose the following conditions in view of (2.4):

Assumption 3.6. (i) The terminal data \(f \) and the function \(F(t_k, \cdot, v^h(t_k, \cdot)) \) belong to \(N_\Phi(\Omega) \) for every \(k = 0, \ldots, n-1 \).

(ii) The number \(N \) of data sites is a function of the time step \(h \) and

\[\Delta_X \leq 1 + \sup_{k=0, \ldots, n-1} |F(t_k, \cdot, v^h(t_k, \cdot))|_{N_\Phi(\Omega)} \to 0, \quad h \to 0. \]
To prove the convergence, we define \(v^h(s, x) \) for \(s \in (t_k, t_{k+1}) \) by any continuous interpolation of \(v^h(t_k, x) \) and \(v^h(t_{k+1}, x) \), \(k = 0, \ldots, n - 1 \).

Theorem 3.7. Suppose that Assumptions \(3.1, 3.4, 3.6 \) hold. Then we have
\[
\lim_{h \to 0, s \to t, x \in \Omega} \sup_{s \in (t_k, t_{k+1})} |v^h(s, x) - v(t, x)| = 0.
\]

Remark 3.8. In the theorem above, in addition to Assumptions \(3.1, 3.4, 3.6 \) we have assumed \(\Omega \) to be a bounded open subset of \(\mathbb{R}^d \) and to satisfy an interior cone condition, and \(X \) to be \(\Pi_{m-1}(\mathbb{R}^d) \)-unisolvent. All these conditions are satisfied when \(\Omega \) is an open rectangular set and \(X \) is a set of equi-spaced grid points of \(\Omega \) with \(N \geq m \).

To prove Theorem 3.7, we need some preliminaries.

Lemma 3.9. Suppose that Assumptions \(3.1, 3.4 \) hold. Then, there exist \(h \leq h_1 \) and \(N \geq N_1 \) such that for \(h \leq h_1 \) and \(N \geq N_1 \)
\[
\max_{k=0, \ldots, n-1} |v_k| \leq \left(\sup_{x \in \Omega} |f(x)| + \frac{1}{K_2} \right) \exp(2TK_1K_2\sqrt{N}(1 + \sqrt{N})L_N).
\]

Proof. Since \(|\xi(v_k)| + |\eta(v_k)| \leq L_N|v_k| \) for any \(k \), we have
\[
\sum_{j=0}^{2} |D^j v^h(t_k, x)| \leq K_2(\sqrt{N}|\xi(v_k)| + |\eta(v_k)|) \leq K_2(1 + \sqrt{N})L_N|v_k|.
\]

This and Assumption \(3.1 \) imply
\[
|\tilde{F}_{k,j}(v_k)| \leq K_1 + K_1 \sum_{j=0}^{2} |D^j v^h(t_k, x^{(j)})| \leq K_1 + K_1K_2(1 + \sqrt{N})L_N|v_k|.
\]

Using \(y \leq \sqrt{N} \max_{j=1, \ldots, N} |y_j| \) for \(y = (y_1, \ldots, y_N)^T \in \mathbb{R}^N \), we find that
\[
|\tilde{F}_k(v_k)| \leq K_1\sqrt{N} + K_1K_2\sqrt{N}L_N|v_k| + K_1K_2NL_N|v_k|.
\]

Hence,
\[
|v_k| \leq |v_{k+1}| + h(1 - \theta)|\tilde{F}_k(v_k)| + h\theta|\tilde{F}_{k+1}(v_{k+1})| \\
\leq (1 + h\theta K_1K_2\sqrt{N}(1 + \sqrt{N})L_N)|v_{k+1}| + h(1 - \theta)K_1K_2\sqrt{N}(1 + \sqrt{N})L_N|v_k| + hK_1\sqrt{N}.
\]

Since Assumption \(3.4 \) implies
\[
h(1 - \theta)K_1K_2\sqrt{N}L_N(1 + \sqrt{N}) \leq \frac{1}{2}, \quad h \leq h_1, \quad N \geq N_1
\]
for some \(h_1 \leq h_0 \) and \(N_1 \geq N_0 \), it follows that for any \(k = 0, \ldots, n - 1, h \leq h_1 \) and \(N \geq N_1 \),
\[
|v_k| \leq \frac{1 + h\theta K_1K_2\sqrt{N}(1 + \sqrt{N})L_N}{1 - h(1 - \theta)K_1K_2\sqrt{N}(1 + \sqrt{N})L_N}|v_{k+1}| + \frac{hK_1\sqrt{N}}{1 - h(1 - \theta)K_1K_2\sqrt{N}(1 + \sqrt{N})L_N} \\
\leq (1 + 2hK_1K_2\sqrt{N}(1 + \sqrt{N}L_N))|v_{k+1}| + 2hK_1\sqrt{N}.
\]
Therefore, we have, for any \(k \)
\[
|v_k| \leq (1 + 2hK_1K_2\sqrt{N}(1 + \sqrt{N})L_N)^n \sup_{x \in \Omega} |f(x)|
\]
\[
+ 2hK_1\sqrt{N} \times \left(1 + 2hK_1K_2\sqrt{N}(1 + \sqrt{N})L_N)^n - 1\right)
\]
\[
\leq \exp(2TK_1K_2\sqrt{N}(1 + \sqrt{N})L_N) \sup_{x \in \Omega} |f(x)|
\]
\[
+ \frac{1}{K_2(1 + \sqrt{N})L_N} \left(\exp(2TK_1K_2\sqrt{N}(1 + \sqrt{N})L_N) - 1\right),
\]
leading to the conclusion of the lemma. \(\square \)

Lemma 3.10. Suppose that Assumptions \([3.1], [3.3], \) and \([3.4]\) hold. Then there exist a constant \(K_4 \in (0, \infty), h_2 \in (0, 1) \) and \(N \geq N_2 \) such that for \(h \leq h_2, N \geq N_2 \) we have the following:

(i) \(\sum_{|\alpha| \leq 3} |D^\alpha v^h(t_k, x)| \leq K_4h^{-\delta} \) for \(k = 0, \ldots, n - 1 \) and \(x \in \Omega \).

(ii) \(\sum_{|\alpha| \leq 3} |D^\alpha v^h(t_{k+1}, x) - D^\alpha v^h(t_k, x)| \leq K_4h^{1-2\delta} \) for \(k = 0, \ldots, n - 2 \) and \(x \in \Omega \).

Proof. Fix \(k = 0, \ldots, n - 1 \) and let \(h_1 \) and \(N \geq N_1 \) be as in Assumption \([3.4]\). Using the previous lemma, we observe
\[
\sum_{|\alpha| \leq 3} |D^\alpha v^h(t_k, x)| \leq K_2(1 + \sqrt{N})L_N |v_k|
\]
\[
\leq 2 \left(1 + K_2 \sup_{x \in \Omega} |f(x)|\right) \sqrt{N}L_N \exp(2TK_1K_2\sqrt{N}(1 + \sqrt{N})L_N)
\]
\[
\leq 2 \left(1 + K_2 \sup_{x \in \Omega} |f(x)|\right) K_4h^{-\delta}
\]
for \(h \leq h_1 \) and \(N \geq N_1 \). Thus the first assertion follows.

Next, since \(\xi(b) \) and \(\eta(b) \) is linear in \(b \), we obtain
\[
\sum_{|\alpha| \leq 3} |D^\alpha v^h(t_{k+1}, x) - D^\alpha v^h(t_k, x)| \leq K_2\sqrt{N} |\xi(v_{k+1}) - \xi(v_k)| + K_2|\eta(v_{k+1}) - \eta(v_k)|
\]
\[
\leq K_2(1 + \sqrt{N})L_N |v_{k+1} - v_k|.
\]

Using Assumption \([3.1]\) and the first assertion in this lemma, we see
\[
|\tilde{F}_k(v_k)| \leq \left(\sum_{j=1}^{N} K_1^2 \left(1 + 2 \sum_{i=0}^{n} |D^i v^h(t_i, x(j))| \right)^2 \right)^{1/2} \leq \sqrt{NK_1} \left(1 + \sum_{i=0}^{n} \sup_{x \in \Omega} |D^i v^h(t_i, x)| \right)
\]
\[
\leq C\sqrt{Nh^{-\delta}}
\]
for \(h \leq h_1 \) and \(N \geq N_1 \). Hence,
\[
|v_{k+1} - v_k| \leq h|\tilde{F}_k(v_k)| + h|\tilde{F}_{k+1}(v_{k+1})| \leq C\sqrt{Nh^{1-\delta}}.
\]
Therefore, in view of Assumption 3.4
\[
\sum_{|\alpha| \leq 3} |D^\alpha \psi(t_{k+1}, x) - D^\alpha \psi(t_k, x)| \leq C(1 + \sqrt{N})\sqrt{NL_N}h^{1-\delta} \leq Ch^{1-2\delta}
\]
for sufficiently small \(h\) and large \(N\). Thus the second assertion follows.

Let \(K_4\) as in the previous lemma. For \(h > 0\) and \(\kappa > 0\) define
\[
\mathcal{D}_{h, \delta} = \left\{ (p, \Gamma) \in \mathbb{R}^d \times \mathbb{R} : |p|, |\Gamma| \leq K_4 h^{-\delta} \right\}, \quad \mathcal{X}_{h, \kappa} = \left\{ w \in \mathbb{R}^d : |w| \leq h^{-\kappa} \right\}.
\]
The following lemma is a variant of Lemma 4.1 in [10].

Lemma 3.11. Let \(O \subset \mathbb{R}^d\) be open and bounded. Then there exist \(h_3 \in (0, 1], \beta \in (0, \infty), \kappa \in (0, \infty)\) such that for \((t, x, z) \in [0, T] \times O \times \mathbb{R}\), \(\{\varphi^h\}_{h \in (0, h_3]} \subset C^3(O)\) with \(\sum_{|\alpha| \leq 3} \sup_{y \in O} |D^\alpha D^\beta \varphi^h(y)| \leq K_4 h^{-\delta}\), and \(h \in (0, h_3]\),
\[
\left| \varphi^h(x) - hF(t, x, z, D\varphi^h(x), D^2 \varphi^h(x)) \right| - \sup_{(p, \Gamma) \in \mathcal{D}_{h, \delta}} \inf_{w \in \mathcal{X}_{h, \kappa}} \left(\varphi^h(x + \sqrt{h}w) - \sqrt{h}w^T p - \frac{h}{2} w^T \Gamma w - hF(t, x, z, p, \Gamma) \right) \leq C_0 h^{1+\beta}.
\]

Proof. First, an fix arbitrary \(\varphi^h \in C^3(O)\) with \(\sum_{|\alpha| \leq 3} \sup_{y \in O} |D^\alpha D^\beta \varphi^h(y)| \leq K_4 h^{-\delta}\) and \((t, x, z) \in [0, T] \times O \times \mathbb{R}\). Then set \(\varphi = \varphi^h\) and \(p_0 = D\varphi(x)\), \(\Gamma_0 = D^2 \varphi(x)\). Also, for simplicity, we write \(F(p, \Gamma) = F(t, x, z, p, \Gamma)\) for \((p, \Gamma) \in \mathcal{D}_{h, \delta}\). Since \(\delta < 1/5\), there exists \(\epsilon > 0\) such that \(\delta < 1/(5 + \epsilon)\). Then define \(\kappa > 0\) by
\[
\kappa = \frac{1}{3} \left(\frac{5}{10 + 2\epsilon} - \delta \right).
\]

Next, take \(h_3 \in (0, 1]\) such that \(x + \sqrt{h}w \in \Omega\) for all \(w \in \mathcal{X}_{h, \kappa}\), and \(h \in (0, h_3]\). By Taylor expansion of \(\varphi\) up to the second term, we have
\[
\sup_{(p, \Gamma) \in \mathcal{D}_{h, \delta}} \inf_{w \in \mathcal{X}_{h, \kappa}} \left(\varphi(x + \sqrt{h}w) - \sqrt{h}w^T p - \frac{h}{2} w^T \Gamma w - hF(p, \Gamma) \right) \geq \varphi(x) - Ch^{-\delta+3/2-3\kappa} + \sup_{(p, \Gamma) \in \mathcal{D}_{h, \delta}} \inf_{w \in \mathcal{X}_{h, \kappa}} \left(\sqrt{h}w^T (p_0 - p) + \frac{h}{2} w^T (\Gamma_0 - \Gamma)w - hF(p, \Gamma) \right).
\]
Then, considering \(p = p_0\) and \(\Gamma = \Gamma_0\), we find that the right-hand side in the above inequality is greater than \(\varphi(x) - Ch^{1+\epsilon/(10+2\epsilon)} - hF(p_0, \Gamma_0)\).

To show the reverse inequality, let \((p, \Gamma) \in \mathcal{D}_{h, \delta}\). Since \(2\kappa - \delta = (5/3)(1/(5 + \epsilon) - \delta) > 0\), we can take \(\gamma \in (0, 2\kappa - \delta)\). Suppose that the minimum eigenvalue of \(\Gamma_0 - \Gamma\) is greater than or equal to \(-h^2\). Then \(\Gamma \leq \Gamma_0 + h^2 I\) so that
\[
F(p, \Gamma) \geq F(p, \Gamma_0 + h^2 I) \geq F(p_0, \Gamma_0) - K_0 |p - p_0| - K_0 h^2.
\]
for any sufficiently small h since there exists $h' \in (0, h_3]$ such that $-h^{1/2+\delta} + K_0 h \leq 0$ for all $h \in (0, h'_3]$.

Suppose that the minimum eigenvalue μ of $\Gamma_0 - \Gamma$ is less than $-h^\gamma$. Then take $w \neq 0$ as an eigenvector with respect to μ such that $(p_0 - p)^T w \leq 0$ and $|w| = h^{-\kappa}$. This choice yields

\[
\sqrt{h}(p_0 - p)^T w + \frac{h}{2} w^T (\Gamma_0 - \Gamma) w - hF(p, \Gamma) \\
\leq \sqrt{h}(p_0 - p)^T w + K_0 h^{1-\delta} |w|^2 - hF(p_0, \Gamma_0) + K_0 h |p - p_0| + K_0 h^{1+\gamma}.
\]

In case $p = p_0$ we take $w = 0$ so that the right-hand side in (3.1) becomes $-hF(p_0, \Gamma_0) + K_0 h^{1+\gamma}$.

Otherwise, by the choice $w = -h^{\delta}(p_0 - p)/|p_0 - p|$, the right-hand side in (3.1) becomes

\[
-h^{1/2+\delta} |p_0 - p| + K_4 h^{1+\delta} - hF(p_0, \Gamma_0) + K_0 h |p - p_0| + K_0 h^{1+\gamma} \\
= |p_0 - p|(-h^{1/2+\delta} + K_0 h) - hF(p_0, \Gamma_0) + K_4 h^{1+\delta} + K_0 h^{1+\gamma} \\
\leq -hF(p_0, \Gamma_0) + (K_0 + K_4) h^{1+\max\{\gamma, \delta\}}
\]

and the right-hand side in the last inequality just above is at most $-hF(p_0, \Gamma_0)$ for any sufficiently small h since there exists $h'' \in (0, h'_3]$ such that $-h^{1+\gamma-2\kappa+\delta} + 8K_0K_4 h \leq 0$ for all $h \in (0, h''_3]$.

Therefore, we have proved that for any $(p, \Gamma) \in \mathcal{G}_{h, \delta}$,

\[
\inf_{w \in \mathcal{X}_h} \left[\sqrt{h}(p_0 - p)^T w + \frac{h}{2} w^T (\Gamma_0 - \Gamma) w - hF(p, \Gamma) \right] \leq -hF(p_0, \Gamma_0) + Ch^{1+\beta}
\]

for some $\beta = \beta_\delta$. Combining this with Taylor expansion of φ up to the second term, we obtain

\[
\sup_{(p, \Gamma) \in \mathcal{G}_{h, \delta}} \inf_{w \in \mathcal{X}_h} \left[\varphi(x + \sqrt{h}w) - \sqrt{h}p^T w - \frac{h}{2} w^T \Gamma w - hF(p, \Gamma) \right] \leq -hF(p_0, \Gamma_0) + Ch^{1+\beta},
\]

which completes the proof of the lemma.

The function ν^h is actually bounded with respect to h and x.

Lemma 3.12. Under the assumptions imposed in Theorem 3.7, there exist $h_4 \in (0, 1]$ and a positive constant K_5 such that $|\nu^h(t_k, x)| \leq K_5$ for $k = 0, \ldots, n, h \leq h_4$, and $x \in \Omega$.

13
Proof. Assumption \([3.6]\) and \(f \in C(\Omega)\) mean

\[|v^h(t_n,x)| \leq L_n, \quad x \in \Omega, \ h \in (0, 1)\]

for some positive constant \(L_n\). So suppose that for \(k \leq n - 1\) there exists \(L_{k+1} > 0\) such that

\[|v^h(t_{k+1},x)| \leq L_{k+1}, \quad x \in \Omega, \ h \in (0, h_4]\]

with some \(h_4 \in (0, 1]\) to be determined below. To get a bound of \(v^h(t_k, \cdot)\), rewrite \(v^h(t_k, x)\) as

\[v^h(t_k, x) = v^h(t_{k+1}, x) - hF(t_{k+1}, x; v^h(t_{k+1}, \cdot)) + hR^h_1 + hR^h_2 + hR^h_3,\]

where

\[R^h_1 = (1 - \theta) \left(F(t_k, x; v^h(t_k, \cdot)) - I_{F(t_k, \cdot; v^h(t_k, \cdot))}, x, (x) \right),\]
\[R^h_2 = \theta \left(F(t_{k+1}, x; v^h(t_{k+1}, \cdot)) - I_{F(t_{k+1}, \cdot; v^h(t_{k+1}, \cdot))}, x, (x) \right),\]
\[R^h_3 = (1 - \theta) \left(F(t_{k+1}, x; v^h(t_{k+1}, \cdot)) - F(t_k, x; v^h(t_k, \cdot)) \right).\]

Assumption \([3.6]\), Lemma \([3.10]\) and \((3.4)\) guarantee \(R^h_1, R^h_2, R^h_3 \to 0\) as \(h \to \infty\). Hence these are bounded with respect to \(h\). Thus Lemma \([3.11]\) yields \(|v^h(t_k, x)| \leq |Q| + Ch\) where

\[Q = \sup_{(p, \Gamma) \in \mathcal{P}_{h, \delta}} \inf_{w \in \mathcal{F}_{h,k}} \left[v^h(t_{k+1}, x + \sqrt{h}w) - \sqrt{h}pw \Gamma w - hF(t, x, v^h(t_{k+1}), p, \Gamma) \right].\]

Considering \(p = 0\) and \(\Gamma = 0\), we see \(Q \geq -(1 + K_1h)L_{k+1} - K_1h\).

To obtain an upper bound, observe

\[Q \leq L_{k+1} + \sup_{(p, \Gamma) \in \mathcal{P}_{h, \delta}} \inf_{w \in \mathcal{F}_{h,k}} Q_{p, \Gamma, w},\]

where

\[Q_{p, \Gamma, w} = -\sqrt{h}pw \Gamma w - hF(t, x, v^h(t_{k+1}, x), p, \Gamma).\]

Then we will show that for any \((p, \Gamma) \in \mathcal{P}_{h, \delta}\) we can find \(w \in \mathcal{F}_{h,k}\) satisfying \(Q_{p, \Gamma, w} \leq K_1hL_{k+1} + Ch\). So fix \((p, \Gamma) \in \mathcal{P}_{h, \delta}\). First assume that the minimum eigenvalue of \(-\Gamma\) is greater than or equal to \(-h^\gamma\). If \(p = 0\) then we may take \(w = 0\), leading to \(Q_{p, \Gamma, w} \leq -hF(t, x, v^h(t_{k+1}, x), 0, h^\gamma I) \leq K_1h + K_1h^{1+\gamma}\). Otherwise, take \(w = p/|p|\). Then we see

\[Q_{p, \Gamma, w} \leq -\sqrt{h}|p| + \frac{h^{1+\gamma}}{2} + K_1h(1 + L_{k+1}) + K_1h|p| + K_1h^{1+\gamma}\]

\[\leq |p| (-\sqrt{h} + K_1h) + Ch + K_1hL_{k+1} \leq Ch + K_1hL_{k+1}\]

since \(-\sqrt{h} + K_1h \leq 0\) for \(h \in (0, h_4]\) with some \(h_4 \in (0, h_3]\).

Next assume that the minimum eigenvalue of \(-\Gamma\) is less than \(-h^\gamma\). Then take \(w\) to be the corresponding eigenvector satisfying \(-p^Tw \leq 0\) and \(|w| = h^{-\kappa}\). This choice leads to

\[Q_{p, \Gamma, w} \leq -\frac{h^{1+\gamma-2\kappa}}{2} + K_1h(1 + L_{k+1}) + 2K_1h^{1-\delta} \leq K_1h(1 + L_{k+1})\]
since there exists $h_4 \in (0, h'_4]$ such that $-h^{1+\gamma-2K-\delta} + 4K_1h \leq 0$ for $h \in (0, h_4]$. Therefore we deduce that $|Q| \leq (1 + K_1h)L_{k+1} + Ch$ for $h \leq h_4$. Denoting the right-hand side by L_k, we obtain the sequence $\{L_k\}$ satisfying $L_k = (1 + K_1h)L_{k+1} + Ch$. By a routine argument we have $L_k \leq e^{Tk_1}L_n + Ce^{Tk_1}$ for all k. Thus the lemma follows.

We prove the first part of Theorem 3.7 in the following proposition:

Proposition 3.13. Suppose that Assumptions 3.1-3.2 holds. Then there exists a unique viscosity solution $v \in C([0,T] \times \mathbb{R}^d)$ of (1.1).

Proof. Define the family $\{v^h(t_k, \cdot)\}_{k=0}^n$ of functions by

\[
\begin{aligned}
\phi^h(t_n, x) &= f(x), \quad x \in \mathbb{R}^d, \\
\phi^h(t_k, x) &= \Phi^h \left[\phi^h(t_{k+1}, \cdot) \right](t_k, x), \quad x \in \mathbb{R}^d
\end{aligned}
\]

with

\[
\Phi^h[\varphi](t, x) = \sup_{(p, \Gamma) \in \partial \phi^h} \inf_{w \in \mathbb{R}^d} \left[\phi(x + \sqrt{h}w) - \sqrt{h}w^T p - \frac{h}{2}w^T \Gamma w - hF(t, x, \varphi(.), x, p, \Gamma) \right].
\]

Then, using Lemmas 3.11 and 3.12 we can show that Φ^h has the following properties.

(i) Monotonicity: for functions φ_1, φ_2 on \mathbb{R}^d with $\varphi_1 \leq \varphi_2$, we have $\Phi^h[\varphi_1] \leq \Phi^h[\varphi_2]$.

(ii) Consistency: for $\varphi \in C^2([0, T] \times \mathbb{R}^d)$,

\[
\lim_{h \to 0} \frac{1}{h} \left[\Phi^h[\varphi(s + h, \cdot) + c](s, y) - (\varphi(s, y) + c) \right] = \partial_t \varphi(t, x) - F(t, x; \varphi(t, \cdot)).
\]

(iii) Stability: $\phi^h(t_k, x)$ is bounded uniformly in h and locally in x.

With this property and the viscosity solution method as in [11], we conclude that the limit $v(t, x) = \lim_{(s, y) \to (t, x), h \to 0} \phi^h(s, y)$ exists and is a unique viscosity solution.

Remark 3.14. For a complete argument after verifying (i)-(iii) in the proof above, we refer to [11], [10], and the proof of Theorem 3.7 below.

Proof of Theorem 3.7. We adopt the viscosity solution method as stated in [11]. To this end, we set $v^h(t, x) = v(t, x)$ for $(t, x) \in [0, T] \times (\mathbb{R}^d \setminus \Omega)$ and consider

$v(t, x) = \limsup_{(s, y) \to (t, x), h \to 0} v^h(s, y)$,

$(t, x) \in [0, T] \times \mathbb{R}^d$

to show that v is a viscosity subsolution of (1.1). Lemma 3.12 implies that v is finite on $[0, T] \times \mathbb{R}^d$.

Fix $(t, x) \in [0, T] \times \Omega$ and let $\varphi \in C^3([0, T] \times \Omega)$ such that $v - \varphi$ has a local maximum at (t, x). Then, take $r > 0$ such that

$(v - \varphi)(s, y) \leq (v - \varphi)(t, x)$,

$(s, y) \in B_r(t, x)$,
where \(B_r(t, x) \) is the closed ball centered at \((t, x)\) with radius \(r\), and that \(B_r(t, x) \subset [0, T] \times \Omega \). Next, for \((s, y) \in B_r(t, x)\) set

\[
\phi(s, y) = \phi(s, y) - (\phi(t, x) - \nu(t, x)) + |s-t|^2 + |y-x|^2.
\]

It follows that \(\nu(t, x) = \hat{\phi}(t, x) \) and that \((t, x)\) is a strict maximum of \(\nu - \hat{\phi} \) on \(B_r(t, x) \). By abuse of notation, we write \(\phi \) for \(\hat{\phi} \).

By definition of \(\nu \), there exist \(h_k \) and \((\bar{s}_k, \bar{y}_k) \in B_r(t, x)\) such that, as \(m \to \infty \),

\[
h_m \to 0, \quad (\bar{s}_m, \bar{y}_m) \to (t, x), \quad \nu(h_m)(\bar{s}_m, \bar{y}_m) \to \nu(t, x).
\]

Take \(s_m \) and \(y_m \) so that \(s_m = i h_m \) for some \(i = i_m = 0, \ldots, n-1 \) and that

\[
(3.2) \quad (\nu(h_m) - \phi)(s_m, y_m) \geq \sup_{(s, y) \in B_r(t, x)} (\nu(h_m) - \phi)(s, y) - h_m^{3/2}.
\]

Moreover, the sequence \((s_m, y_m), m \geq 1\), can be taken from the bounded set \(B_r(t, x) \), so there exists a limit point \((\bar{t}, \bar{x}) \in B_r(t, x)\) possibly along a subsequence. Thus, denoting \(c_m = (\nu(h_m) - \phi)(s_m, y_m) \), we have

\[
0 = (\nu - \phi)(t, x) = \lim_{m \to \infty} (\nu(h_m) - \phi)(\bar{s}_m, \bar{y}_m) \leq \liminf_{m \to \infty} c_m \leq \limsup_{m \to \infty} c_m \leq (\nu - \phi)(\bar{t}, \bar{x}).
\]

Since \((t, x)\) is a strict maximum, we deduce that \((\bar{t}, \bar{x}) = (t, x)\). Therefore, it follows that \((s_m, y_m) \to (t, x)\) and \(c_m \to 0 \). By (3.2), for any \(y \) near \(x \),

\[
(3.3) \quad \phi(s_m + h_m, y) + c_m + h_m^{3/2} \geq \nu(h_m)(s_m + h_m, y).
\]

Now, by Lemma 3.10 we have

\[
\sum_{i=0}^{2} |D^i\nu(h_m)(s_m + h_m, y_m) - D^i\nu(h_m)(s_m, y_m)| \to 0,
\]

as \(m \to \infty \). In particular,

\[
\lim_{m \to \infty} \nu(h_m)(s_m + h_m, y_m) = \lim_{m \to \infty} \nu(h_m)(s_m, y_m) = \phi(t, x).
\]

Also, by Assumption 3.1,

\[
(3.4) \quad |F(s_m + h_m, y_m; \nu(h_m)(s_m + h_m, \cdot)) - F(s_m, y_m; \nu(h_m)(s_m, \cdot))|
\]

\[
\leq |F_0(s_m + h_m, y_m, \nu(h_m)(s_m + h_m, y_m)) - F_0(t, x, \phi(t, x))|
\]

\[
+ |F_0(t, x, \phi(t, x)) - F_0(s_m, y_m, \nu(h_m)(s_m, y_m))|
\]

\[
+ K_0 |D\nu(h_m)(s_m + h_m, y_m) - D\nu(h_m)(s_m, y_m)| + |D^2\nu(h_m)(s_m + h_m, y_m) - D^2\nu(h_m)(s_m, y_m)|.
\]

As in the proof of Lemma 3.12 rewrite \(\nu(h_m)(s_m, y_m) \) as

\[
(3.5) \quad \nu(h_m)(s_m, y_m) = \nu(h_m)(s_m + h_m, y_m) - h_m F(s_m + h_m, y_m; \nu(h_m)(s_m + h_m, \cdot))
\]

\[
+ h_mR_1^m + h_mR_2^m + h_mR_3^m,
\]
where
\[
R^n_1 = (1 - \theta) \left(F(s_m, y_m; v^{h_n}(s_m, \cdot)) - I_{F(s_m; v^{h_n}(s_m, \cdot))}(y_m) \right),
\]
\[
R^n_2 = \theta \left(F(s_m + h_m, y_m; v^{h_n}(s_m + h_m, \cdot)) - I_{F(s_m; v^{h_n}(s_m, \cdot))}(y_m) \right),
\]
\[
R^n_3 = (1 - \theta) \left(F(s_m + h_m, y_m; v^{h_n}(s_m + h_m, \cdot)) - F(s_m, y_m; v^{h_n}(s_m, \cdot)) \right).
\]

Assumption 3.6, Lemma 3.10 and (3.4) guarantee \(R^n_1, R^n_2, R^n_3 \to 0 \) as \(m \to \infty \). With the representation (3.5), we apply Lemma 3.11 for the family \(\{v^h(s_m + h, \cdot), \varphi(s_m + h, \cdot)\}_{h \in (0, 1], m \geq 1} \) and use the inequality (3.3) to get, for any sufficiently large \(m \),
\[
v^{h_n}(s_m, y_m) \leq \sup_{(p, \Gamma) \in \mathcal{D}_{h_n, \delta}} \inf_{w \in \mathcal{D}_{h_n, x}} \left[v^{h_n}(s_m + h_m, y_m + \sqrt{h_n}w) - \sqrt{h_n}p^T w - \frac{h_n}{2} w^T \Gamma w \right.
\]
\[
- h_n F(s_m + h_m, y_m, v^{h_n}(s_m + h_m, y_m), p, \Gamma) \right] + h_n R^n_1 + h_n R^n_2 + h_n R^n_3 + Ch^{1+\beta}
\]
\[
\leq \sup_{p, \Gamma} \inf_w \left[\varphi(s_m + h_m, y_m + \sqrt{h_n}w) - \sqrt{h_n}p^T w - \frac{h_n}{2} w^T \Gamma w \right.
\]
\[
- h_n F(s_m + h_m, y_m, v^{h_n}(s_m + h_m, y_m), p, \Gamma) \right] + c_m + h_n^{3/2} + h_n R^n_1 + h_n R^n_2 + h_n R^n_3 + Ch^{1+\beta}
\]
\[
\leq \varphi(s_m + h_m, y_m) - h_n F(s_m + h_m, y_m, v^{h_n}(s_m + h_m, y_m), D\varphi(s_m + h_m, y_m), D^2\varphi(s_m + h_m, y_m))
\]
\[
+ c_m + h_n^{3/2} + h_n R^n_1 + h_n R^n_2 + h_n R^n_3 + Ch^{1+\beta}
\]

This and \(v^{h_n}(s_m, y_m) = c_m + \varphi(s_m, y_m) \) imply
\[
(3.6) \quad - \frac{1}{h_n} \left(\varphi(s_m + h_m, y_m) - \varphi(s_m, y_m) \right)
\]
\[
+ F(s_m + h_m, y_m, v^{h_n}(s_m + h_m, y_m), D\varphi(s_m + h_m, y_m), D^2\varphi(s_m + h_m, y_m)) \leq o(1)
\]
for any sufficiently large \(m \). Letting \(m \to \infty \), we arrive at
\[
(3.7) \quad - \partial_t \varphi(t, x) + F(t, x, \nabla(t, x), D\varphi(t, x), D^2\varphi(t, x)) \leq 0.
\]

Thus the subsolution property at \((t, x)\) follows.

In the case \((t, x) \in \{T\} \times \mathbb{R}^d\), from the definition of \(v^h \) and Assumption 3.6 (i) we have \(\nabla(t, x) = f(x) \). Thus the subsolution property immediately follows.

Next consider the case \((t, x) \in [0, T) \times \partial \Omega\). As in the first part of the proof, we can take the sequence \((h_m, s_m, y_m), m \geq 1\), satisfying (3.3) and \((s_m, y_m) \to (t, x)\). Moreover,
\[
v^{h_n}(s_m, y_m) = c_m + \varphi(s_m, y_m) \to \varphi(t, x) = \nabla(t, x).
\]

Then, if there exists \(m_0 \geq 1 \) such that \(y_m \in \mathbb{R}^d \setminus \Omega \) for all \(m \geq m_0 \), we see
\[
v^{h_n}(s_m, y_m) = v(s_m, y_m) \to v(t, x), \quad m \to \infty.
\]
Thus the subsolution property follows. Otherwise, there exists a subsequence \(\{y_{m_j}\} \) such that
\(y_{m_j} \in \Omega \) and \(y_{m_j} \to x, j \to \infty \). With this sequence we obtain the inequality (3.6) with \((h_m, s_m, y_m)\) replaced by \((h_{m_j}, s_{m_j}, y_{m_j})\). Then letting \(j \to \infty \), we obtain (3.7) at \((t, x) \in [0, T) \times \partial \Omega\).

By similar arguments, we can show that \(v(t, x) = \liminf_{s \to t, y \to x} v^h(s, y) \), \((t, x) \in [0, T] \times \mathbb{R}^d\)
is a viscosity supersolution of (1.1). The comparison principle now implies that \(v \leq \bar{v} \). However, by definition, \(\bar{v} \geq v \). Hence we obtain \(v = \bar{v} \), as asserted.

4 A numerical example

Here we consider the following two-dimensional deterministic KPZ equation

\[
\begin{aligned}
&\partial_t v + \frac{1}{2} \text{tr}(D^2 v) + \frac{1}{2} |Dv|^2 = 0, \\
v(1, x) = f(x).
\end{aligned}
\]

By Cole-Hopf transformation (see, e.g., Evans [6]), the unique solution is represented as

\[v(t, x) = \log \mathbb{E}[\exp(f(x + W_{1-t}))], \quad (t, x) \in [0, 1] \times \mathbb{R}^2, \]

where \(\{W_t\}_{0 \leq t \leq 1} \) is a 2-dimensional standard Brownian motion and \(\mathbb{E} \) is the expectation operator on a probability space.

We examine the case of the terminal data given by

\[f(x_1, x_2) = \cos(x_1) \cos(x_2) \]

and compute the solution in \(\{0\} \times [-\pi/4, \pi/4]^2 \) by our collocation method with \(\theta = 1 \) and Gaussian RBF. We use the equi-spaced grids on \([-\pi/2, \pi/2]^2\) consisting of \(N \) points for the set \(X \) of the data sites. Notice that we take the larger region \([-\pi/2, \pi/2]^2\) to expect a better performance near the boundary of \([-\pi/4, \pi/4]^2\). As the benchmark, the exact solution \(v(0, x) \) is estimated by the Monte-Carlo method with \(10^6 \) samples. Table 4 shows the root mean square errors and the maximum errors, defined by

\[
\text{RMS error} = \sqrt{\frac{1}{625} \sum_{x \in X_0} |v^{h,N}(0, x) - v(0, x)|^2}, \quad \text{Max error} = \max_{x \in X_0} |v^{h,N}(0, x) - v(0, x)|,
\]

respectively, where \(X_0 \) is the set of evaluation points consisting of \(25^2 \) equi-spaced grid points in \([-\pi/4, \pi/4]^2\). The adjustable parameter \(\alpha \) for the kernel is set as \(\alpha = 1/\varepsilon^2 \) where \(\varepsilon \) is the Euclidean norm between the evaluation grid points.

Acknowledgements

This study is partially supported by Grant-in-Aid for Young Scientists (B) (Grant No. 26800079) from JSPS.
Table 4.1: RMS and Max errors for several choices of N with $h = 10^{-2}$

	$N = 9$	$N = 16$	$N = 25$
RMS error	0.0409921405159	0.0128968947645	0.00273912837108
Max error	0.0469188454774	0.0166425004758	0.00490893471041

Figure 4.1: The analytical solution (left) and the numerical solution (right) with $h = 10^{-2}$ and $N = 25$.

References

[1] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear second order equations. *Asymptot. Anal.*, 4:271–283, 1991.

[2] F. Bonnans and H. Zidani. Consistency of generalized finite difference schemes for the stochastic HJB equation. *SIAM J. Numer. Anal.*, 41:1008–1021, 2003.

[3] F. Camilli and M. Falcone. An approximation scheme for the optimal control of diffusion processes. *Math. Model. Numer. Anal.*, 29:97–122, 1995.

[4] E. Carlini, M. Falcone, and R. Ferretti. An efficient algorithm for Hamilton-Jacobi equations in high dimension. *Comput. Visual. Sci.*, 7:15–29, 2004.

[5] K. Debrabant and E. R. Jakobsen. Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. *Math. Comp.*, 82:1433–1462, 2013.

[6] L. C. Evans. *Partial differential equations*. American Mathematical Society, Providence, 1998.

[7] A. Fahim, N. Touzi, and X. Warin. A probabilistic numerical method for fully nonlinear parabolic PDEs. *Ann. Appl. Probab.*, 21:1322–1364, 2011.

[8] C.-S. Huang, S. Wang, C. S. Chen, and Z.-C. Li. A radial basis collocation method for Hamilton-Jacobi-Bellman equations. *Automatica*, 42:2201–2207, 2006.
[9] E. J. Kansa. Multiquadricsa scattered data approximation scheme with application to computational fluid-dynamicsII. *Computers Math. Applic.*, 19:147–161, 1990.

[10] R. V. Kohn and S. Serfaty. A deterministic-control-based approach to fully nonlinear parabolic and elliptic equations. *Comm. Pure Appl. Math.*, 63:1298–1350, 2010.

[11] H. J. Kushner and P. Dupuis. *Numerical methods for stochastic control problems in continuous time*. Springer-Verlag, New York, 2001.

[12] G. Pagès, H. Pham, and J. Printems. An optimal Markovian quantization algorithm for multidimensional stochastic control problems. *Stoch. Dyn.*, 4:501–545, 2004.

[13] H. Wendland. *Scattered data approximation*. Cambridge University Press, Cambridge, 2010.