THE NOVIKOV-BOTT INEQUALITIES

MAXIM BRAVERMAN AND MICHAEL FARBER

ABSTRACT. We generalize the Novikov inequalities for 1-forms in two different directions: first, we allow non-isolated critical points (assuming that they are non-degenerate in the sense of R. Bott), and, secondly, we strengthen the inequalities by means of twisting by an arbitrary flat bundle. We also obtain an L^2 version of these inequalities with finite von Neumann algebras.

The proof of the main theorem uses Bismut’s modification of the Witten deformation of the de Rham complex; it is based on an explicit estimate on the lower part of the spectrum of the corresponding Laplacian.

1. The generalized Novikov numbers. Let M be a closed manifold and let \mathcal{F} be a complex flat vector bundle over M. We will denote by $\nabla : \Omega^i(M, \mathcal{F}) \to \Omega^{i+1}(M, \mathcal{F})$ the covariant derivative on \mathcal{F}. Given a closed 1-form $\omega \in \Omega^1(M)$ on M with real values, it determines a family of connections on \mathcal{F} (the Novikov deformation) parameterized by the real numbers $t \in \mathbb{R}$

$$\nabla_t : \Omega^i(M, \mathcal{F}) \to \Omega^{i+1}(M, \mathcal{F}), \quad \nabla_t : \theta \mapsto \nabla \theta + t \omega \wedge \theta. \quad (1)$$

All the connections ∇_t are flat, i.e. $\nabla_t^2 = 0$. Denote by \mathcal{F}_t the flat vector bundle defined by the connection (1). Note that changing ω by a cohomologious 1-form determines a gauge equivalent connection ∇_t and so the cohomology $H^i(M, \mathcal{F}_t)$ depends only on the cohomology class $\xi = [\omega] \in H^1(M, \mathbb{R})$ of ω. One can show that there exists a finite subset $S \subset \mathbb{R}$ (the set jump points) such that $\dim H^i(M, \mathcal{F}_t)$ is constant for $t \notin S$ and it jumps up for $t \in S$. The dimension of $\dim H^i(M, \mathcal{F}_t)$ for $t \notin S$ is called the i-th (generalized) Novikov number $\beta_i(\xi, \mathcal{F})$.

2. Assumptions on the 1-form. Let C denote the set of critical points of ω (i.e. the set of points of M, where ω vanishes). We assume that ω is non-degenerate in the sense of Bott, i.e. C is a submanifold of M and that the Hessian of ω is a non-degenerate quadratic form on the normal bundle $\nu(C)$ to C in M. Here by the Hessian of ω we understand the Hessian of the unique function f defined in a tubular neighborhood of C and such that $df = \omega$ and $f|_C = 0$.

3. The main result. Let Z be a connected component of the critical point set C and let $\nu(Z)$ denote the normal bundle to Z in M. Since the Hessian of ω is non-degenerate, the bundle $\nu(Z)$ splits into the Whitney sum of two subbundles $\nu(Z) = \nu^+(Z) \oplus \nu^-(Z)$, such that the Hessian is strictly positive on $\nu^+(Z)$ and strictly negative on $\nu^-(Z)$. The dimension of the bundle $\nu^-(Z)$ is called the index of Z (as a critical submanifold of ω) and is denoted by $\text{ind}(Z)$. Let $o(Z)$ denote the

The research was supported by grant No. 449/94-1 from the Israel Academy of Sciences and Humanities.
orientation bundle of $\nu^{-}(Z)$, considered as a flat line bundle. Consider the twisted Poincaré polynomial of Z

$$\mathcal{P}_{Z,\mathcal{F}}(\lambda) = \sum \lambda^{i} \dim_{\mathbb{C}} H^{i}(Z, \mathcal{F}_{|Z} \otimes o(Z))$$

(here $H^{i}(Z, \mathcal{F}_{|Z} \otimes o(Z))$ denote the cohomology of Z with coefficients in the flat vector bundle $\mathcal{F}_{|Z} \otimes o(Z)$) and define using it the following Morse counting polynomial

$$\mathcal{M}_{\omega,\mathcal{F}}(\lambda) = \sum_{Z} \lambda^{\text{ind}(Z)} \mathcal{P}_{Z,\mathcal{F}}(\lambda),$$

where the sum is taken over all connected components Z of C.

With one-dimensional cohomology class $\xi = [\omega] \in H^{1}(M, \mathbb{R})$ and the flat vector bundle \mathcal{F}, one can associate the Novikov polynomial

$$\mathcal{N}_{\xi,\mathcal{F}}(\lambda) = \sum_{i=0}^{n} \lambda^{i} \beta_{i}(\xi, \mathcal{F}), \quad n = \dim M.$$

Theorem 4. There exists a polynomial $Q(\lambda)$ with non-negative integer coefficients, such that

$$\mathcal{M}_{\omega,\mathcal{F}}(\lambda) - \mathcal{N}_{\xi,\mathcal{F}}(\lambda) = (1 + \lambda) Q(\lambda).$$

The main novelty in this theorem is that it is applicable to the case of 1-forms with non-isolated singular points. Thus, we obtain, in particular, a new proof of the degenerate Morse inequalities of R.Bott. Moreover, Theorem 4 yields a generalization of the Morse-Bott inequalities to the case of an arbitrary flat vector bundle \mathcal{F}; this generally produces stronger inequalities as shown in Section 7.

Corollary 5 (Euler-Poincaré theorem). Under the conditions of Theorem 4, the Euler characteristic of M can be computed as $\chi(M) = \sum (\chi(Z) - \text{ind}(Z)) \chi(Z)$, where the sum is taken over all connected components $Z \subset C$.

6. The case of isolated critical points. Consider now the special case when all critical points of ω are isolated. Theorem 4 gives the inequalities

$$\sum_{i=0}^{p} (-1)^{i} m_{p-i}(\omega) \geq d^{-1} \cdot \sum_{i=0}^{p} (-1)^{i} \beta_{p-i}(\xi, \mathcal{F}), \quad p = 0, 1, 2, \ldots,$$

where $d = \dim \mathcal{F}$ and $m_{p}(\omega)$ denotes the number of critical points of ω of index p. The last inequalities coincide with the Novikov inequalities [N1] when $\mathcal{F} = \mathbb{R}$ with the trivial flat structure. Examples described in Section 7, show that using of flat vector bundles \mathcal{F} gives sharper estimates in general.

On the other hand, (6) also generalizes the Morse type inequalities obtained by S.P.Novikov in [N2], using Bloch homology (which correspond to the case, when $[\omega] = 0$ in (6)).
7. Examples. Here we describe examples, where the Novikov numbers twisted by a flat vector bundle F (as defined above) give greater values (and thus stronger inequalities) than the usual Novikov numbers (where $F = \mathbb{R}$ or \mathbb{C}, cf. [N1, Pa]).

Let $k \subset S^3$ be a smooth knot and let the 3-manifold X be the result of $1/0$-surgery on S^3 along k. Note that the one-dimensional homology group of X is infinite cyclic and thus for any complex number $\eta \in \mathbb{C}$, $\eta \neq 0$, there is a complex flat line bundle F_η over X such that the monodromy with respect to the generator of $H_1(X)$ is η. By a choice of the knot k and the number $\eta \in \mathbb{C}^\ast$, we may make the group $H^1(X, F_\eta)$ arbitrarily large, while $H^1(X, \mathbb{C})$ is always one-dimensional.

Consider now the 3-manifold M which is the connected sum $M = X \# (S^1 \times S^2)$. Thus $M = X_+ \cup X_-$, where $X_+ \cap X_- = S^2$, $X_+ = X - \{\text{disk}\}$ and $X_- = (S^1 \times S^2) - \{\text{disk}\}$. Suppose F is a flat complex line bundle F over M such that its restriction to X_+ is isomorphic to $F_\eta|_{X_+}$. Consider the class $\xi \in H^1(X, \mathbb{R})$ such that its restriction onto X_+ is trivial and its restriction to X_- is the generator.

By using the Mayer-Vietoris sequence, we show that $\beta_1(\xi, F) = \dim_{\mathbb{C}} H^1(X, F_\eta)$. As we noticed above, this number can be arbitrarily large, while $\dim_{\mathbb{C}} H^1(M, \mathbb{C}) = 2$.

8. Sketch of the proof of Theorem 4. Our proof of Theorem 4 is based on a slight modification of the Witten deformation [Wi] suggested by Bismut [Bi] in his proof of the degenerate Morse inequalities of Bott. However our proof is rather different from [Bi] even in the case $[\omega] = 0$. We entirely avoid the probabilistic analysis of the heat kernels, which is the most difficult part of [Bi]. Instead, we give an explicit estimate on the number of the “small” eigenvalues of the deformed Laplacian. We now will explain briefly the main steps of the proof.

Let U be a small tubular neighborhood of C in M. We identify U with a neighborhood of the zero section in the normal bundle $\nu(C)$. Fix an affine connection on $\nu(C)$. This connection defines a bigrading

$$\Omega^\bullet(M, F) = \bigoplus \Omega^{i,j}(M, F),$$

where $\Omega^{i,j}(M, F)$ is the space of forms having degree i in the horizontal direction and degree j in the vertical direction. For $s \in \mathbb{R}$, let τ_s be the map from $\Omega^\bullet(M, F)$ to itself which sends $\alpha \in \Omega^{i,j}(M, F)$ to $s^i \alpha$.

Following Bismut, we introduce a 2-parameter deformation

$$\nabla_{t, \alpha} : \Omega^\bullet(M, F) \rightarrow \Omega^{\bullet+1}(M, F), \quad t, \alpha \in \mathbb{R}$$

of the covariant derivative ∇, such that, for large values of t, α the Betti numbers of the deformed de Rham complex $\left(\Omega^\bullet(M, F), \nabla_{t, \alpha}\right)$ are equal to the Novikov numbers $\beta_\nu(\xi, F)$. Let $e(\omega) : \Omega^\bullet(M, F) \rightarrow \Omega^{\bullet+1}(M, F)$ denote the external multiplication by ω. Then on U the deformation (7) is given by

$$\nabla_{t, \alpha} = (\tau_{t\sqrt{2}})^{-1} \circ \left(\nabla + t\omega e(\omega)\right) \circ \tau_{\sqrt{2}},$$

while outside of some larger neighborhood $V \supset U$, we have $\nabla_{t, \alpha} = \nabla + t\omega e(\omega)$.

There exists a unique function $f : U \rightarrow \mathbb{R}$ such that $df = \omega$ and $f|_C = 0$. By the parameterized Morse lemma there exist an Euclidean metric $h^{\nu(C)}$ on $\nu(C)$ such that $\nu(C)$ decomposes into an orthogonal direct sum $\nu(C) = \nu^+(C) \oplus \nu^-(C)$ and if $(y^+, y^-) \in U$, then $f(y) = \frac{|y^+|^2}{2} - \frac{|y^-|^2}{2}$. Fix an arbitrary Riemannian metric g^C on
The metrics $h^\nu(C), g^C$ define naturally a Riemannian metric $g^\nu(C)$ on $\nu(C)$ (here we consider $\nu(C)$ as a non-compact manifold).

Let g^M be any Riemannian metric on M whose restriction to U is equal to $g^\nu(C)$. We also choose a Hermitian metric h^F on F. Let us denote by $\Delta_{t,\alpha}$ the Laplacian associated with the differential (7) and with the metrics g^M, h^F.

Fix $\alpha > 0$ sufficiently large. It turns out that, when $t \to \infty$, the eigenfunctions of $\Delta_{t,\alpha}$ corresponding to “small” eigenvalues localize near the critical points set C of ω. Hence, the number of the “small” eigenvalues of $\Delta_{t,\alpha}$ may be calculated by means of the restriction of $\Delta_{t,\alpha}$ on U. We are led, thus, to study of a certain Laplacian on $\nu(C)$. The latter Laplacian may be decomposed as $\bigoplus_Z \Delta^Z_{t,\alpha}$ where the sum ranges over all connected components of C and $\Delta^Z_{t,\alpha}$ is a Laplacian on the normal bundle $\nu(Z) = \nu(C)|_Z$ to Z. We denote by $\Delta^Z_{t,\alpha}$ ($p = 0, 1, 2, \ldots$) the restriction of $\Delta^Z_{t,\alpha}$ on the space of p-forms.

It follows from (8), that the spectrum of $\Delta^Z_{t,\alpha}$ does not depend on t. Moreover, if $\alpha > 0$ is sufficiently large, then

$$\dim \ker \Delta^Z_{t,\alpha} = \dim H^{p-\text{ind}(Z)}(Z, F|_Z \otimes o(Z)).$$

In the case when F is a trivial line bundle, (9) is proven by Bismut [Bi, Theorem 2.13].

Let $E^p_{t,\alpha}$ ($p = 0, 1, \ldots, n$) be the subspace of $\Omega^p(M, F)$ spanned by the eigenvectors of $\Delta_{t,\alpha}$ corresponding to the “small” eigenvalues. The cohomology of the de Rham complex $\left(\Omega^p(M, F), \nabla_{t,\alpha}\right)$ may be calculated as the cohomology of the subcomplex $\left(E^p_{t,\alpha}, \nabla_{t,\alpha}\right)$.

Using the method of [Sh1], we show that, if the parameters t and α are large enough, then

$$\dim E^p_{t,\alpha} = \sum_Z \dim \ker \Delta^Z_{t,\alpha},$$

where the sum ranges over all connected components Z of C. The Theorem 4 follows now from (9),(10) by standard arguments (cf. [Bo2]).

Remark. In [HS], Helffer and Sjöstrand gave a very elegant analytic proof of the degenerate Morse inequalities of Bott. Though they also used the ideas of [Wi], their method is completely different from [Bi]. It is not clear if this method may be applied to the case $\xi \neq 0$.

9. L^2 generalization. Our Theorem 4, combined with the results of W.Lück [Lü], gives the following L^2 version of the Novikov-Bott inequalities (5). Recall that L^2 generalization of the usual Morse inequalities for Morse functions were obtained first by S.P.Novikov and M.A.Shubin in [NS]. L^2-version of Novikov inequalities for 1-forms (allowing only isolated critical points) is considered in a recent preprint [MS] of V.Mathai and M.Shubin. They use different technique and their assumptions do not require residual finiteness.

Let π be a countable residually finite group and let $\mathcal{N}(\pi)$ denote the von Neumann algebra of π acting on the Hilbert space $l^2(\pi)$ from the left and commuting with the standard action of π on $l^2(\pi)$ from the right. The algebra $\mathcal{N}(\pi)$ is supplied with the
canonical finite trace and all von Neumann dimensions later will be understood with respect to this trace.

Suppose that a flat bundle L^π of Hilbert $\mathcal{N}(\pi)$-modules $l^2(\pi)$ over a closed manifold M is given. (Here π is not necessarily the fundamental group of M). Any such bundle can be constructed by the standard construction from a representation of the fundamental group of M into π. Let F denote a finite dimensional flat vector bundle over M as above. The tensor product $L^\pi \otimes F$ (the tensor product taken over C) is again a bundle of Hilbert $\mathcal{N}(\pi)$-modules over M.

Let ω be a closed real valued 1-form on M, which is non-degenerate in the sense of Bott. It determines a family of flat bundles F_t as in Section 1. Then there exists a countable subset $S \in \mathbb{R}$ (the set of jump points) such that the von Neumann dimension $\text{dim}_{\mathcal{N}(\pi)} H^i_2(M, L^\pi \otimes F_t)$ is constant for $t \notin S$ and it jumps up for $t \in S$. This fact follows from Theorem 0.1 of Lück [Lück]. We will define the von Neumann - Novikov numbers $\beta_i(\xi, L^\pi \otimes F)$ as the value of $\text{dim}_{\mathcal{N}(\pi)} H^i_2(M, L^\pi \otimes F_t)$ for $t \notin S$. This value clearly depends only on the cohomology class $\xi \in H^1(M, \mathbb{R})$ of ω. Define the von Neumann - Novikov polynomial $N_{\xi, L^\pi \otimes F}(\lambda) = \sum \lambda^i \beta_i(\xi, L^\pi \otimes F)$.

For any component Z of the set of critical points C of ω define the following von Neumann - Poincaré polynomial $P_{Z, L^\pi \otimes F}(\lambda) = \sum \lambda^i \text{dim}_{\mathcal{N}(\pi)} H^i_2(Z, L^\pi_{|Z} \otimes F_{|Z} \otimes o(Z))$, and then the von Neumann - Morse counting polynomial $M_{\omega, L^\pi \otimes F}(\lambda) = \sum_{Z} \lambda^{\text{ind}(Z)} P_{Z, L^\pi \otimes F}(\lambda)$, the sum is taken over the set of connected components Z of C.

Theorem 10. There exists a polynomial $Q(\lambda)$ with real non-negative coefficients, such that

$$M_{\omega, L^\pi \otimes F}(\lambda) - N_{\xi, L^\pi \otimes F}(\lambda) = (1 + \lambda) Q(\lambda).$$

The proof is based on theorem (0.1) of Lück [Lück] and Theorem 4. Let’s briefly indicate the main points.

Let $\pi \supset \Gamma_1 \supset \Gamma_2 \supset \ldots$ be a sequence of subgroups of finite index in π having trivial intersection. The flat $\mathcal{N}(\pi)$ bundle L^π is constructed by means of a representation $\psi : \pi_1(M) \to \pi$. Let $\psi_m : \pi_1(M) \to \pi/\Gamma_m$ denote the composition of ψ with the reduction modulo Γ_m. The representation ψ_m determines a flat vector bundle L^π_m whose fiber is the group ring $\mathbb{C}[\pi/\Gamma_m]$ for any m. Slightly generalizing theorem (0.1) of Lück [Lück], we obtain that

$$\text{dim}_{\mathcal{N}(\pi)} H^i_2(M, L^\pi \otimes F) = \lim_{m \to \infty} |\pi/\Gamma_m|^{-1} \text{dim}_C H^i(M, L^\pi_m \otimes F)$$

This allows to approximate the von Neumann - Novikov polynomial $N_{\xi, L^\pi_m \otimes F}(\lambda)$ by the polynomials $|\pi/\Gamma_m|^{-1}N_{\xi, L^\pi_m \otimes F}(\lambda)$.
Similarly, the von Neumann - Morse polynomial $\mathcal{M}_{\omega, L^\pi \otimes F}(\lambda)$ is approximated by the polynomials $|\pi/\Gamma_m|^{-1} \mathcal{M}_{\omega, L^\pi m \otimes F}(\lambda)$. Application of Theorem 4 then finishes the proof.

REFERENCES

[Bi] J.-M. Bismut, *The Witten complex and the degenerate Morse inequalities*, J. Dif. Geom. **23** (1986) 207–240.

[Bo1] R. Bott, *Non degenerate critical manifolds*, Ann. of Math. **60** (1954) 248–261.

[Bo2] R. Bott, *Morse theory indomitable*, Publ. Math. IHES **68** (1988), 99–114.

[Fa] M.S. Farber, *Exactness of the Novikov inequalities*, Functional Anal. Appl. **19** (1985) 40–48.

[HS] B. Helffer, J. Sjöstrand, *A proof of the Bott inequalities*, in Algebraic Analysis, Vol I, M. Kashiwara, T. Kawai ed., New-York, Academic Press, 1988, 171–183.

[Lü] W. Lück, *Approximating L^2-invariants by their finite-dimensional analogues*, GAFA **4** (1994) 455–481.

[MS] V. Mathai, M. Shubin, *Twisted L^2 invariants of non-simply connected manifolds*, Preprint, 1995.

[N1] S.P. Novikov, *Multivalued functions and functionals. An analogue of the Morse theory*, Soviet Math. Dokl. **24** (1981) 222–226.

[N2] ———, *Bloch homology, critical points of functions and closed 1-forms*, Soviet Math. Dokl. **33** (1986) 551–555.

[NS] S.P. Novikov, M.A. Shubin, *Morse inequalities and Von Neumann II$_1$ factors*, Soviet Math. Dokl. **34** (1987) 79–82.

[Pa] A. Pazhitnov, *Morse theory of closed 1-forms*, Lecture Notes in Math., **1474**, Springer, Berlin, 1991.

[Sh1] M.A. Shubin, *Semiclassical asymptotics on covering manifolds and Morse inequalities*, Preprint, 1994.

[Wi] E. Witten, *Supersymmetry and Morse Theory*, J. of Diff. Geom. **17** (1982) 661–692

School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel

E-mail address: maxim@math.tau.ac.il, farber@math.tau.ac.il