The association between physical activity with incident obesity, coronary heart disease, diabetes and hypertension in adults: a systematic review of longitudinal studies published after 2012

Laura Cleven1*, Janina Krell-Roesch1,2, Claudio R. Nigg1,3 and Alexander Woll1

Abstract

Background: A growing body of studies that investigated the longitudinal association between physical activity (PA) and the outcome of incident obesity, coronary heart disease (CHD), diabetes and hypertension has become available in recent years. Thus, the purpose of this systematic review was to provide an update on the association between PA and onset of obesity, CHD, diabetes and hypertension in individuals aged ≥18 years who were free of the respective conditions at baseline.

Methods: We systematically searched OVID, PubMed, and Web of Science databases for pertinent literature published between January of 2012 and February of 2019. To ensure that conclusions are based on high quality evidence, we only included longitudinal studies conducted in samples of ≥500 participants and with ≥5 years of follow-up.

Result: The search yielded 8929 records of which 26 were included in this review. Three studies were conducted on the outcome of incident obesity, eight on incident CHD, nine on incident diabetes, four on incident hypertension, one on the outcome of both diabetes and hypertension, and one on the outcome of CHD, diabetes and hypertension. Overall, there was an association between PA and lower risk of incident obesity, CHD and diabetes, but not hypertension. Higher levels or amount of PA were associated with a reduced risk of new onset of the respective diseases in 20 studies (77%). Whereas four studies reported an elevated risk of incidence of diseases with lower PA levels (15%). PA was not associated with incidence of diseases in two studies (8%).

*(Continued on next page)
Background
The World Health Organization identified non-communicable diseases (NCDs), such as diabetes mellitus or cardiovascular diseases to be a major threat to economies and societies [1]. NCDs are implicated in 73% of all global deaths in 2017, with 28.8 million deaths attributed to risk factors like high blood pressure, high blood glucose, or high body mass index (BMI) [2]. Furthermore, NCDs are forecasted to account for 81% of all global deaths in 2040 [3].

NCDs usually develop over a long time period and may be impacted by an individual’s health behaviors [4]. As such, many NCDs may be preventable by decreasing metabolic risk factors such as hypertension, overweight and obesity, or hyperglycemia, as well as by decreasing behavioral risk factors like tobacco or alcohol use, an unhealthy diet, and physical inactivity [1, 5].

A growing body of research suggests that high levels of physical activity (PA) may have a protective effect on various health conditions including but not limited to overweight and obesity [6], coronary heart disease (CHD) [7, 8], type 2 diabetes mellitus [9, 10], hypertension [11, 12], and hyperglycemia [13, 14]. In addition, several longitudinal studies have become available that examine the association between PA and new onset of NCDs [15–20].

The current systematic review presents an update of a previously published review by our group [20], that examined the long-term effects of PA on type 2 diabetes mellitus, CHD, overweight/obesity and dementia by including studies published before 2012. Given the high significance of this topic and since we expected a substantial amount of relevant studies published after 2012, we provide an updated review of longitudinal studies on the association between PA and incident obesity, CHD, diabetes and hypertension over the past 7 years. Hypertension has been added to the current review as it is widely regarded as a major risk factor for several NCDs [21].

Methods
This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline [22]. The protocol was registered in the PROSPERO register of systematic reviews (CRD42019124474).

Search strategy
Pertinent articles published between January of 2012 and February of 2019 were searched in electronic databases (PubMed, Web of Science and EMBASE by OVID) by applying a combination of one or more of the following search terms: “longitudinal and/or long-term”; “physical activity/exercise”; “adult”; “overweight and/or obesity”, “coronary heart disease and/or coronary artery disease and/or ischemic disease”, “diabetes mellitus and/or diabetes type 2”, “hypertension and/or blood pressure”. Both titles and abstracts were searched. After identification of studies, their bibliographies were searched manually to identify additional relevant studies.

Study inclusion & exclusion criteria
We defined the following inclusion criteria for this systematic review: (1) Longitudinal, i.e. prospective cohort study design; (2) Studies reporting the association between PA and new onset of obesity, CHD, type 2 diabetes mellitus and/or hypertension; (3) Studies providing information on the assessment of PA (predictor variable). PA could be leisure-time/habitual PA, work-related PA, transportation related PA, organized and unorganized PA, etc.; (4) Only studies with ≥5 years of follow-up were included to allow for a meaningful conclusion on the longitudinal association between PA and selected outcomes of interest; (5) Studies with males and females aged ≥18 years, that were free of the diseases of interest at baseline; (6) Studies with more than 500 participants were included, to improve the probability to capture a substantial amount of incidence cases; and (7) articles written in English.

Excluded from this review were (1) studies investigating the effect of a specific PA intervention, as well as (2) clinical trials, cross-sectional studies, systematic reviews and meta-analyses.
Screening & data extraction
All pertinent studies detected after searching the electronic databases were imported to a reference manager software (Citavi 6) and duplicates were removed. The study selection process was divided into three phases. Two independent reviewers (LC & JKR) screened the titles of the articles, followed by the abstracts, and finally the full-texts based on the inclusion criteria. All studies meeting the eligibility criteria were included in this review. Disagreement was resolved by consensus or by consulting a third author (CN). The following information was extracted by one reviewer (LC): first author’s name, publication year, study design, study setting, sample size, follow-up time, participant characteristics (e.g. age, sex, BMI) at baseline, assessment and type of PA (e.g. type, duration, intensity), assessment and type of outcomes of interest (i.e. obesity, CHD, diabetes and hypertension), and main results/ findings of the study (e.g. hazard ratios, relative risk). Extracted data were verified by another author (JKR).

Quality assessment and risk of bias
The quality of included studies was evaluated independently by two authors (LC & JKR) using the 22-item Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement version 4 [23]. Similarly, potential risk of bias of each study included in this systematic review was assessed through the Tool to Assess Risk of Bias in Cohort Studies [24] by the same authors (LC & JKR). Any discrepancies between the two reviewers were resolved by discussion or by consulting a third reviewer (CN).
Results
Overall, we identified 8929 articles, of which 8903 articles were excluded as they did not meet the inclusion criteria as described above. The reader is referred to Fig. 1 for a flow chart summarizing the search process and number of studies at each step. Twenty-six studies were included in this review with a combined N of 1,145,298 participants, and follow-up times ranging between 5 and 34 years. Three articles examined the association between PA and incident obesity [25–27], eight studies examined the association between PA and CHD [28–35], nine studies examined the association between PA and incident diabetes [36–44], and four studies examined the association between PA and incident hypertension [45–48]. In addition, one study reported the association between both PA and diabetes as well as PA and hypertension [49], and another study reported the association between PA and CHD, diabetes, and hypertension [50].

Association between PA and obesity
The studies included in this review showed an overall association between higher PA and lower risk of incident obesity. Two out of three studies reported a reduced risk of becoming obese for individuals with high PA levels as compared to low PA [25, 27]. One study showed an elevated risk (142%) of becoming obese for persons who were physically inactive [26]. The characteristics of the included studies are summarized in Table 1.

Association between PA and CHD
Overall, there was an association between higher levels or amount of PA and a decreased risk of incident CHD. Seven out of nine studies reported a reduced risk of new onset of CHD with increasing PA levels as compared to low or no PA [28, 32–35], whereas one study revealed an association between PA and decreased CHD risk only for vigorous intensity PA [29]. One study did not find a significant association for occupational PA and CHD risk [30]. Two out of nine studies examined the impact of change in PA levels over time as predictor variable and failed to detect a significant association with incident CHD [31, 33]. Please refer to Table 2 for a summary of studies on PA and incident CHD.

Association between PA and diabetes
The studies included in this review provide evidence of an association between increasing PA levels and a decreased risk of incident diabetes. Nine out of 11 studies reported a gradual inverse association between increasing PA levels with up to high/vigorous-intensity and a decreased risk of incident diabetes [36–39], [27].

Table 1 Overview of longitudinal studies on the association between PA and the outcome of obesity (BMI ≥ 30 kg/m²)

Author	Country	Characteristics	Follow-up time	Predictor variable: Physical activity	Outcome of interest	Main results
Bell et al. (2014) [25]	UK, Whitehall II study	N = 3670, 73% male, 55.5 ± 6.0 years	10 years: Baseline 1997–1999 Follow-up: 2002–2004, 2007–2009	Self-reported, duration of MVPA (h/wk)	Incident obesity	OR [95% CI]: low level PA as referencea: High level PA 0.64 [0.44, 0.93] after 5 years
				-Low: 0–1.5		-High level PA 0.63 [0.45, 0.88] after 10 years
				-Intermediate: 1.56–4.25		
				-High: 4.27–20.56		
Montgomerie et al. (2014) [26]	Australia	N = 1521, 50.6% male, age 44.6 ± 16.22 years	2898.9 ± 402.29 days Baseline: 1999–2003, follow-up: 2004–2006, 2008–2010	Self-reported, score: frequency x time per session x intensity	Incident obesity	RR [95% CI]: Association between physical inactivity & incident obesityb: -1.42 [1.03, 1.95] p = 0.030
				-Inactive: < 100 sedentary, 100–1600 low		
				-Active: 1600–3200 moderate, > 3200 high		
Pavey et al. (2016) [27]	Australia	N = 2735 women, age 24.6 ± 28.5 years	12 years: Baseline: 2000 Follow-up: 2012	Self-reported, score (MET-min/wk)	Change in BMI category	OR [95% CI]: increasing cumulative PA with very low activity as referencec: -Transition to obesity: 0.73 [0.59, 0.90], p < .05
				-Very low (< 250)		OR [95% CI], very high cumulative PA with very low activity as referencec: -Transition to obesity 0.52 [0.30, 0.92], p < .05
				-Low (250 to < 500)		
				-Active (500 to < 1000)		
				-Very active (> 1000)		

Abbreviation: BMI Body Mass Index, CI confidence interval, h hour, MET metabolic equivalent, min minutes, MVPA moderate-to-vigorous physical activity, N number of participants, OR odds ratio, p p-value, PA physical activity, RR relative risk, SD Standard deviation, wk week
a Model adjusted for age, sex, ethnicity; b Model adjusted for age, sex, chronic conditions (diabetes, asthma, chronic obstructive pulmonary disease, cardiovascular disease and mental health); c Model adjusted for educational level, area of residence, number of children, occupation, work time walking, work time in heavy labor, smoking status, alcohol consumption, energy intake, dieting, oral contraceptive pill use, number of chronic conditions
Table 2 Overview of longitudinal studies on the association between PA and the outcome of CHD

Author	Country	Characteristics	Follow-up time	Predictor variable: Physical activity	Outcome of interest	Main results			
Chomistek et al. (2016)	USA, Nurses' Health Study II	N = 97,230 women, 36.6 ± 4.6 years	20 years Baseline: 1991	Self-reported LTPA (MET-h/wk, in quintiles) - < 1	Incident CHD (nonfatal MI, fatal CHD)	HR [95% CI] of CHD event for total LTPA:			
	(NHSII)			Follow-up: 2011					
				- 1–5.9	0.86 [0.68, 1.08]				
				- 6–14.9	0.66 [0.52, 0.84]				
Delaney et al. (2013)	USA, Multi-Ethnic Study of	N = 5656, 47.4% male, 61.3 ± 5.4 kg/m²	5 years Baseline 2000–2002	Self-reported PA (total min/d, total MET-min/d)	Incident CAC	RR [95% CI] of PA and incident CAC:			
	Atherosclerosis (MESA)			Follow-up: 2005–2007					
				- Vigorous activity: 0.97 [0.94, 1.00], p = 0.048	No association between intentional, sedentary, MVPA and conditioning PA and incident CAC.				
Ferrario et al. (2018)	Italy, MONICA, PAMELA, SEMM	N = 3574 men, 25–64 years	Median 14 years (IQR 12.9–15.9) Baseline: 1989–1996	Self-reported, OPA score 1–5 (tertiles, cut-offs at 2.5, 3.125), SpPA index (min/wk of MPA or VPA based on METs of task)	Incident CHD (first acute coronary event as MI, acute coronary syndrome or coronary revascularization)	HR [95% CI] of first CHD event (fatal or non-fatal) by OPA group:			
				Follow-up: 2008					
				- Poor: 0		- Low: 1.66 [1.06, 2.59]			
				- Intermediate: 1–149 MPA or 1–74 VPA or 1–149 MPA plus VPA		- Intermediate: 1.0 (reference)			
				- Recommended: ≥150 MPA or ≥75 VPA or ≥150 MPA plus VPA		- High: 1.18 [0.72, 1.94]			
				- Recommended: ≥150 MPA or ≥75 VPA or ≥150 MPA plus VPA		HR [95% CI] of first CHD event (fatal or non-fatal) by PA group:			
Jefferis et al. (2014)	UK, British Regional Heart Study	N = 3320 men, 68.3 ± 5.4 years	Median 11 years Baseline 1996–2000 Follow-up: 2010	Self-reported usual PA (score) - Inactive (0–2) - Occasional (3–5) - Light (6–8) - Moderate (9–12) - Moderately vigorous (13–20) - Vigorous (>21) Change in PA (1996–2000) - Always inactive	Incident CHD (First fatal or nonfatal MI events, ICD-9 Code 410–414, ICD – 10 Code I21-I23, I252)	HR [95% CI] of first CHD event (fatal or non-fatal) by PA group:			
						- None: 1.0 (reference)			
						- Occasional: 0.52 [0.34, 0.79]			
						- Light: 0.47 [0.30, 0.74]			
						- Moderate: 0.51 [0.32, 0.82]			
						- Moderately vigorous and vigorous: 0.44 [0.29, 0.65]			
						p = 0.004			
						HR [95% CI] of first CHD event (fatal or non-fatal) by PA group:			
Author	Country	Characteristics	Follow-up time	Predictor variable: Physical activity	Outcome of interest	Main results			
------------------------	--------------------------------	------------------------------	----------------	--	--	--			
Koolhaas et al. (2016)	Netherlands, The Rotterdam Study	N = 5901, median age 67 years	15 years Baseline 1997–2001 Follow-up: 2012	Self-reported PA, tertiles (median (range) MET-h/wk in total PA)	Incident CHD (fatal or non-fatal MI, surgical/percutaneous coronary revascularization procedure)	Total PA and risk of incident CHD event: HR [95% CI]			
				- Tertiles 1: 42.0 (≤61.4) ≥ 1.5 h/d at 4 METs	- Tertile 1: 1.0 (reference)	- Tertile 1: 1.0 (reference)			
				- Tertiles 2: 77.5 (61.5–96.9) ≥ 2.8 h/d at 4 METs	- Tertile 2: 0.76 [0.63, 0.92]	- Tertile 2: 0.76 [0.63, 0.92]			
				- Tertiles 3: 126.7 (≥97.0) ≥ 4.5 h/d at 4 METs	- Tertile 3: 0.73 [0.53, 1.02]	- Tertile 3: 0.73 [0.53, 1.02]			
Petersen et al. (2012)	Denmark, Copenhagen City Heart Study	N = 10,443, 57% female, median age 58 years	Baseline 1976–78 Follow-up: 1981–1983, 2008	Self-reported LTPA Sedentary Light - Moderate Vigorous Change in PA categories (1976/78–1981/83)	Incident CHD fatal and non-fatal cases (MI: ICD-8 Code 410, ICD-10 Code I21–22; IHD: ICD-8 Code 410–414, ICD-10 Code 20–25)	HR [95% CI] of IHD by PA change: Women	Men		
				- 2/–3 categories - 1 category - 0 (stable) - + 1 category - + 2/+ 3 categories	- -2: 1.60 [1.02, 2.32]	1.33 [0.97, 1.83]	- 1: 1.28 [1.10, 1.49]	1.12 [0.96, 1.31]	- 0: 1.0 (reference)
					- 1: 0.97 [0.85, 1.12]	1.09 [0.96, 1.25]	- 2: 1.01 [0.75, 1.38]	1.16 [0.89, 1.51]	- 0: 1.0 (reference)
Soares-Miranda et al. (2016)	USA	N = 4207, 39% males, 72.5 ± 5.5 years	10 years Baseline: 1989 Follow-up: 1999	Self-reported LTPA (kcal/wk), exercise intensity None Low	Incident CHD (fatal & nonfatal MI & CHD death)	HR [95% CI] for exercise intensity: Low, none as reference:			
					- Low: 0.56 [0.43, 0.72], p < 0.001	- Low: 0.56 [0.43, 0.72], p < 0.001			
					- Moderate: 0.53 [0.41, 0.69], p < 0.001	- Moderate: 0.53 [0.41, 0.69], p < 0.001			
Table 2. Overview of longitudinal studies on the association between PA and the outcome of CHD (Continued)

Author & Year	Country	Characteristics	Follow-up time	Predictor variable: Physical activity	Outcome of interest	Main results
Tikkanen et al. (2018)	UK	N = 502,635, 54% female, 56.5 ± 8.1 years	Median 6.1 years (Baseline: 2006–10, Follow-up: 2015–2016)	Self-reported (MET-h/wk)	Incident CHD (ICD-9 Code 410–411, ICD-10 Code I20, I21, I22)	- High: 0.47 [0.32, 0.69], p < 0.001
Williams & Thompson (2012)	USA	N = 47,921	Median 6.2 years (Baseline: 1998–1999, Follow-up: 2006)	Self-reported PA MET-h/d	Incident CHD (MI, CABG, percutaneous coronary intervention, and angina pectoris)	Greater MET-h/d is associated with lower risk of incident CHD: HR [95% CI]

Abbreviation: BMI Body Mass Index, CABG coronary artery bypass graphs, CAC coronary artery calcification, CHD coronary heart disease, CI confidence interval, d day, h hour, HDL high density lipoprotein, HR hazard ratio, ICD International Classification of Diseases, IHD ischemic heart disease, IQR interquartile range, kcal kilocalories, LTPA leisure time physical activity, MET metabolic equivalent, MI Myocardial Infarction, min minutes, MPA moderate physical activity, MVPA moderate to vigorous physical intensity, N number of participants, OPA occupational physical activity, p p-value, PA physical activity, RR relative risk, SpPA sport physical activity, VPA vigorous physical activity, wk week

40–42, 44, 50], whereas one study revealed an association only between moderate intensity PA and reduced diabetes risk [39]. Two out of 11 studies reported an increased risk of incident diabetes (179 and 145%, respectively) for participants engaging in low amount of leisure time PA as compared to the highly active reference group [43, 49]. For a summary of included studies on the association between PA and diabetes please refer to Table 3.

Association between PA and hypertension

Overall, there was no consistent association between PA and incident hypertension. Three out of six studies reported a gradual inverse association between PA levels (running and walking, moderate and moderate-vigorous PA) and incident hypertension [46, 48, 50], whereas one study found an association only for a specific age group (51–60 years) [48]. Two out of six studies found no significant association between PA and incident hypertension [45, 47]. One out of six studies reported an increased risk of incident hypertension (137%) for persons with low leisure time PA as compared to the highly active reference group [49]. Please refer to Table 4 for an overview of included studies.

Discussion

The purpose of this research was to review studies published after January of 2012 and up to February of 2019 that investigated the long-term association between PA and new onset of obesity, CHD, diabetes and hypertension. Overall, we observed an association between PA and a decreased risk of incident obesity, CHD and diabetes but not hypertension. This is in line with systematic reviews published by our group and others that also found beneficial associations of PA with overweight obesity, CHD and diabetes [20, 51–53]. Furthermore, it is also consistent with our hypothesis derived from both interventional and observational studies [54–57].

The included studies that examined the association between PA and incident hypertension reported conflicting results. This is partly in accordance with two other meta-analyses [58, 59]. One meta-analysis reported a
Author et al. (Year)	Country	Characteristics	Follow-up time	Predictor variable: Physical activity	Outcome of interest	Main results	
Carlsson et al. (2013) [36]	Sweden (Swedish Twin Registry)	N = 23,539	Baseline: 1967–1972	Self-reported LTPA	Incident type 2 diabetes	Risk of type 2 diabetes decreased with PA: HR [95% CI]	
Elwood et al. (2013) [40]	UK (Caerphilly Prospective Study CaPS)	N = 2235 men, 45–59 years	30 years	Self-reported PA	Incident diabetes (self-reported)	OR [95% CI] for regular activity and incident diabetes	
Grøntved et al. (2014) [41]	USA (Nurses’ Health Study NHS I and II)	N = 99,316 women	8 years	Self-reported PA (time spent on resistance exercise per week, lower intensity muscular conditioning exercises (yoga, stretching, toning), aerobic MVPA)	Incident diabetes (self-reported confirmed using standardized criteria; validated in sub-sample through medical chart review)	RR [95% CI] for incident diabetes for aerobic MVPA	
Hjerkind et al. (2017) [37]	Norway (Nord-Trøndelag Health Study)	N = 38,413 with information on PA, 47% males	11 years	Self-reported LTPA	Incident diabetes (self-reported; validated through medical record)	Risk of diabetes decreased with PA: RR [95% CI] Women	Men:
Ekelund et al. (2012) [42]	8 European countries (EPIC-InterAct Study)	N = 11,669 men, 15,695 women	Median 12.3 years	Self-reported PA (OA, LTPA)	Incident diabetes	A one level difference in PA (e.g. between inactive and moderately inactive) was associated with a 13% relative reduction in risk of incident diabetes in males (HR [95% CI] 0.87 [0.80, 0.94]) and 7% risk	
Author	Country	Characteristics	Follow-up time	Predictor variable: Physical activity	Outcome of interest	Main results	
------------------------	--------------------	-----------------	----------------	--	---------------------	--------------	
Jefferis et al. (2012)	UK	N = 3012 men, 68.3 years	Median 7.1 years	Self-reported PA (baseline and follow-up)	Incident type 2 diabetes (self-report)	Risk of diabetes decreased with PA: Dose-response association\(c\): HR [95% CI] - None: 1.0 (reference) - Occasional: 0.54 [0.31, 0.96] - Light: 0.34 [0.18, 0.65] - Moderately vigorous: 0.33 [0.17, 0.65] - vigorous: 0.26 [0.13, 0.53] \(p < 0.01\) Taking up at least moderate intensity PA also associated with lower risk of diabetes.	
Koloverou et al. (2017)	Greece (Attica Study)	N = 1485, 49% males	10 years	Self-reported PA (MET-min/wk)	Incident diabetes (measured in biological sample or self-reported)	Moderate intensity PA associated with lower risk of incident diabetes\(d\): OR [95% CI] - Very low \(\leq 150\) - Low = 150–330 - Moderate = 331–1484 - High \(\geq 1484\) - Very low: 1.0 (reference) - Low: 0.77 [0.41, 1.49] - Moderate: 0.47 [0.24, 0.93] - High: 1.04 [0.59, 1.82] Participants with leisure PA < 1 MET-min/wk had increased risk of incident diabetes (HR 1.45 [95% CI: 1.10, 1.92]) as compared to reference group \(\geq 1200\) MET-min/wk of MVPA; \(p = 0.008\) No association between occupational and total PA and diabetes risk.	
Medina et al. (2018)	Mexico (Mexico City Diabetes Study)	N = 1883, median 45 years (IQR 39–52); 42.7% males	Median 14.4 person years	Self-reported PA (occupational, leisure, total PA in MET-min/wk of MVPA) - 1 = < 1	Incident type 2 diabetes (measured, self-reported, taking medication)	LTTPA is associated with an elevated risk in incident diabetes: HR [95% CI]\(f\) - Non-obese, active: 1.0 (reference) - Non-obese, inactive: 1.79 [1.15, 2.79] - Obese, active: 2.43 [1.44, 4.09] - Obese, inactive: 11.7 [6.28, 21.8]	
Mehlig et al. (2014)	Sweden	N = 1448 women, 38–60 years	34 years	Self-reported LTPA	Incident diabetes	Total PA is associated with a reduced risk in incident diabetes: HR [95% CI] for MET level\(g\)	
Shi et al. (2013)	China	N = 51,464 men, 54.1 ± 9.3 years	Median 5.4 years	Self-reported PA MET level (in quintiles)	Incident diabetes (self-reported)	- Active reduction in females (0.93 [0.89, 0.98])	
Table 3 Overview of longitudinal studies on the association between PA and the outcome of diabetes (Continued)

Author	Country	Characteristics Follow-up time	Predictor variable: Physical activity	Outcome of interest	Main results
Williams & Thompson (2012) [50]	USA	N = 48,116 Median 6.2 years	- Q1 < 4.3	Incident diabetes	Greater MET-h/d is associated with lower risk of incident diabetes: HR [95% CI]^a^
		Baseline: 2002–2006	- Q2 4.3–6.5		- Q1: 1.0 (reference)
		Follow-up: 2004–2008, 2008–2011	- Q3 6.5–8.9		- Q2: 0.84 [0.72, 0.99]
			- Q4 8.9–12.1		- Q3: 0.72 [0.61, 0.85]
			- Q5 ≥ 12.1		- Q4: 0.66 [0.55, 0.78]
			- Light		- Q5: 0.65 [0.54, 0.77]

Abbreviation: BP - CI confidence interval, d day, h hour, HR hazard ratio, IQR interquartile range, LTPA leisure time physical activity, MET metabolic equivalent, min minutes, MVPA moderate to vigorous physical activity, N number of participants, OPA occupational physical activity, OR odds ratio, PA physical activity, RR relative risk, wk week

*: Model adjusted for age; education, alcohol frequency in the past 2 weeks, smoking, blood pressure medication use, prevalent cardiovascular disease, BMI, PA summary score; b Model adjusted for study center, education, smoking status, alcohol consumption, energy intake, BMI; 1 Model adjusted for age & region; 4 Model adjusted for age, sex, family history of diabetes, hypertension, hypercholesterolemia, smoking status, education, physical activity, waist circumference, adherence to the Mediterranean diet, fasting glucose, triglycerides; 5 Model adjusted for sex, age, education levels, marital status, current smoking, alcohol intake, total energy intake, parent history of diabetes, sleeping hours, leisure/working MET-min/wk; 6 Model adjusted for baseline covariates age, education, smoking, consumption of alcohol, triglycerides, hypertension, parental history of diabetes (diabetes only); 9 Model adjusted for age at interview, energy intake, smoking, alcohol consumption, education level, occupation, income level, hypertension, family history of diabetes; 15 Model adjusted for baseline age (age, age^2); sex, race, education, smoking, intakes of red meat, fruit, alcohol, preexisting CHD at baseline

reduction of incident hypertension by 6% for each 10 metabolic equivalent of task hours per week increment of leisure time PA [58]. However, another meta-analysis detected an inverse association for recreational PA and incident hypertension but not for occupational PA [59]. Of note, the causes of hypertension are multifactorial and the way they interact and ultimately contribute to the development of hypertension is unclear. Thus, potential mechanisms for prevention of hypertension through PA also remain unclear.

Some studies included in this review also reported findings stratified by sex and body weight. For example, one study observed a gradual inverse association between frequency, duration and intensity of PA and risk of incident diabetes in males, but only a gradual inverse association between frequency and intensity of PA and risk of incident diabetes in females [37]. Additionally, another study reported that, while overall PA irrespective of body weight was not associated with the outcome of incident hypertension, obese males with high PA had a significantly lower risk of hypertension than obese males with low PA [47].

The quality of included studies was independently assessed by two reviewers and was rated as moderate to good, with scores ranging between 16 and 22 (total range: 0–22). This is not surprising since we only included studies published in or after 2012 that may already have followed quality guidelines on reporting findings of observational studies such as STROBE [23]. The potential risk of bias was rated moderate to poor and there were several concerns that warrant brief discussion: 1) All studies included in this review assessed PA through self-reported questionnaires which may be prone to recall bias. However, given the large sample sizes and since the baseline measurements of PA of many studies took place several years or even decades ago, objective measurement of PA might not have been feasible. There is good reason to believe that more longitudinal studies using novel objective techniques such as accelerometry (e.g. [60, 61]) will become available in the near future. 2) The studies differed regarding the assessment of the outcomes of interest, e.g. some studies objectively measured blood glucose levels or blood pressure (e.g. [47, 49]) whereas others relied on self-reported information by the study participants and/or medical chart review (e.g. [40, 48]). 3) The studies differed in terms of adjustment for potential confounders and mediators which makes a comparison of findings between studies difficult. 4) Five studies were conducted only among males [30, 31, 38, 40, 44] and five studies were conducted only among females [28, 41, 43, 46, 48].

We did not investigate potential mechanisms underlying the associations between PA and incident obesity,
Author	Country	Characteristics	Follow-up time	Predictor variable: Physical activity	Outcome of interest	Main results	
Cohen et al.	USA (Nurses’ Health Study I cohort)	N = 78,590 women; 49 years (IQR 44–56)	20 years	Self-reported PA, METs/wk for vigorous exercise in quintiles (Q1–5)	Incident hypertension (self-reported; validated in NHS I cohort)	Association between PA and incident hypertension varies by age (p-value for interaction < 0.001). HR [95% CI] lowest for PA Q5 as compared to Q1.	
			Baseline: 1984			- Age ≥ 50: Q1 1.0 (reference); Q2 1.00 [0.91, 1.11]; Q3 1.03 [0.94, 1.14]; Q4 1.01 [0.91, 1.12]; Q5 0.87 [0.78, 0.97]	
			Follow-up: 2004			- Age 51–60: Q1 1.0 (reference); Q2 0.94 [0.88, 1.00]; Q3 0.94 [0.88, 1.00]; Q4 0.91 [0.85, 0.97]; Q5 0.86 [0.80, 0.92]	
						- Age ≥ 61: Q1 1.0 (reference); Q2 1.03 [0.97, 1.09]; Q3 0.98 [0.93, 1.04]; Q4 0.99 [0.93, 1.03]; Q5 0.95 [0.90, 1.01]	
Lu et al.	China	N = 1009, 35.48 ± 0.19 years, 63.4% males	Median 4.7 years	Self-reported PA - Frequent, - Occasional	Incident hypertension	No significant association between PA and risk of hypertension a: HR [95% CI]	
			Base line: 2004			- Occasional: 0.74 [0.40, 1.39]	
			Follow-up: 2012			- Frequent: 0.96 [0.51, 1.83]	
						- Everyday: 1.0 (reference)	
Medina et al.	Mexico (Mexico City Diabetes Study)	N = 1541, median 45 (IQR 39–52) years; 45.1% males	Median 11.8 years	Self-reported PA (occupational, leisure, total activity in MET-min/wk of MVPA) - 1 = < 1	Incident hypertension (measured by study team)	Participants with < 1 MET-min/wk of leisure (HR 1.37 [95% CI 1.07, 1.75], p = 0.015) or occupational MVPA (HR 1.52 [1.17, 1.97], p = 0.001) had increased risk of hypertension as compared to reference group (≥ 1200 MET-min/wk)	
			Baseline: 1989–1990			No association was observed between total PA and hypertension.	
			Follow-up: 1993–1994, 1997–1998, 2008–2009				
Pavey et al.	Australia (Australian Longitudinal Study on Women’s Health)	N = 11,285 women, mean age 49.5 years	Baseline: 1998	Self-reported PA (MET-min/wk) - None	Occurrence of hypertension (self-reported)	OR [95% CI] for hypertension declined with increasing PA volume; decline slightly greater in MVPA than MPA group MPAMVPA:	
			Follow-up: 2001, 2004, 2007, 2010			- None: 1.0 (reference)	
						- > 0– < 250: 0.92 [0.83, 1.02]	0.87 [0.63, 1.04]
						- 250– < 500: 0.90 [0.81, 1.00]	N.A.
						- 500– < 1000: 0.82 [0.75, 0.91]	0.73 [0.62, 0.86]
						- 1000– < 1500: 0.74 [0.66, 0.82]	0.65 [0.55, 0.76]
						- 1500– < 2000: 0.78 [0.68, 0.90]	0.63 [0.54, 0.74]
						- > 2000: 0.80 [0.70, 0.93]	0.56 [0.49, 0.64]
Stenehjem et al.	Norway (Nord-Trøndelag Health Study)	N = 21,892, 42.7% males	11 years	Self-reported LTPA Total score - Low	Incident hypertension (measured by study team)	Risk of hypertension not associated with LTPA total scoreb: RR [95% CI]	
			Baseline: 1984–1986			Women	Men
			Follow-up: Medium			- Low: 1.0 (reference)	
Table 4 Overview of longitudinal studies on the association between PA and the outcome of hypertension (Continued)

Author	Country	Characteristics	Follow-up time	Predictor variable: Physical activity	Outcome of interest	Main results	
Thompson et al. (2012) [50]	USA	N = 43,893	Median 6.2 years	Self-reported PA MET-h/d	Incident hypertension	Greater MET-h/d is associated with lower risk of incident hypertension: HR [95% CI]	
			1995–1997	High		- Medium: 0.98 [0.92, 1.05]	0.96 [0.90, 1.03]
				Frequency (per wk)		- High: 0.96 [0.90, 1.01]	0.97 [0.90, 1.03]
				- None		p = 0.138	p = 0.276
				- < 1		Frequency of PA associated with reduced risk of hypertension only in males (24/wk)	
				- 1		RR 0.87 [0.78, 0.98]	
				- 2–3		Obese males with high PA have lower risk of hypertension (RR 1.16 [0.79, 1.70])	
				- ≥4		than obese males with low PA (RR 1.50 [1.27, 1.77]).	
				Intensity		Obese females with low PA have increased risk of hypertension (RR 1.55 [1.35, 1.77]).	
				- None			
				- Low			
				- Medium/high			

Abbreviation: CI confidence interval, d day, h hour, HR hazard ration, IQR interquartile range, LTPA leisure time physical activity, MET metabolic equivalent, min minutes, MPA moderate physical activity, MVPA moderate to vigorous physical activity, N number of participants, N.A. not available, p p-value, PA physical activity, RR relative risk, SE standard error, wk week.

* Model adjusted for age, gender and follow-up time; † Model adjusted for sex*time, age, education levels, marital status, current smoking, alcohol intake*time, total energy intake, sleeping hours, leisure/working METs/min/wk; § Model adjusted for sociodemographic (age, education, marital status, area of residence), behavioral (smoking, alcohol, and sitting), chronic conditions covariates; ‡ Model adjusted for age, marital status, education, smoking, alcohol frequency last 2 weeks, BMI, PA summary score; Key Model adjusted for baseline age (age, age2), sex, race, education, smoking, intakes of red meat, fruit, alcohol, preexisting CHD at baseline

diabetes and CHD. However, it has previously been postulated that there are acute and chronic effects of PA on insulin resistance, which may account for improvements in insulin action and decreased blood glucose levels as a response to engagement in PA [62]. Additionally, PA impacts energy balance by increasing total energy expenditure, which in turn causes an energy deficit and may lead to lower body weight [63]. Stimulating responses in adipose and body tissues by PA may also influence total energy balance and body composition [63]. Furthermore, studies suggest that regular PA increases capillarization and may reverse endothelial alterations, which is a major risk factor for CHD [64].

The strengths of this review are the rigorous search and selection strategy following published guidelines and conducted by two reviewers. Also, both quality and potential risk of bias were assessed by two authors independently. We deliberately focused on studies published after January of 2012 in order to provide an update of a systematic review previously published by our group [20]. In addition, even though unintentional, our review included studies from various countries such as Sweden, Norway, UK, Greece, Mexico, China, Australia, Italy, US, the Netherlands, Germany, France, Spain and Denmark which may add to the generalizability of our observations. The major limitations of this review pertain to the relatively small number of included studies. This may be due to the fact that we only included studies with large sample size (N ≥ 500) and relatively long follow-up time of ≥5 years. However, we believe that these criteria ensure validity of our conclusions and a higher probability of generalizability of the study findings. In addition, a large body of research on PA and overweight/obesity published after 2012 focused on change in BMI or body weight over time. We opted to not include these studies in our review as we chose our outcome of interest to be incident obesity, and information on change in BMI or body weight over time is thus not sufficient. For instance, a person could be underweight at baseline and an increase in BMI or weight might actually reflect progression to a healthier body constitution. At the same time, we also acknowledge that particularly obesity and
hypertension are conditions for which individuals can take action to improve, i.e., a person develops incident obesity but may be able to decrease body weight in order to progress back to overweight or normal weight. Furthermore, our search terms may have been too narrow or not comprehensive enough and there may be published studies that we were not able to identify. However, in order to compensate for this potential shortcoming, we also manually searched bibliographies of included studies. Finally, the studies differed with regard to the depth of investigating PA variables. As such, PA was only one of many predictors in some studies (e.g. [36, 42]) and thus only one finding related to PA and the outcome of interest was reported. Whereas in other studies, the association between various PA parameters (e.g. type, intensity, frequency, duration) and the outcome of interest was examined (e.g. [30, 47]).

More research to untangle the association and potential underlying mechanisms between PA and the outcome of incident overweight, CHD, diabetes and hypertension is needed, preferably using prospective cohort studies with large sample sizes, long follow-up and objective measurement of both predictor variable (i.e. PA) and the outcomes of interest. In addition, meta-analytic approaches to address research questions pertaining the association between PA and various health outcomes are warranted.

Conclusion
Overall, this systematic review replicates, updates, and extends the growing body of research on the associations between PA and incident obesity, CHD and diabetes. No clear association between PA and reduced risk for hypertension was detected. This review emphasises the contribution of PA in the prevention of various chronic diseases. Reducing the risk of new onset of NCDs and thereby reducing the economic burden on health systems is of high importance to societies worldwide. Regional and global action plans and preventive strategies (e.g. [65]) should highlight the beneficial impact of regular PA and support national governments in the implementation of concrete actions towards achieving a higher engagement in PA among individuals across all ages.

Abbreviations
BMI: Body mass index; CHD: Coronary heart disease; NCDs: Non-communicable diseases; PA: Physical activity; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis

Acknowledgements
Not applicable.

Authors’ contributions
LC & JKR conducted the literature search, and extracted and interpreted data. LC wrote the first draft of the manuscript. JKR, CN and AW revised the manuscript. All authors read and approved the final manuscript.

Funding
CN received funding by the German Academic Exchange Service (DAAD) for a visiting professorship at KIT.

Availability of data and materials
All data generated or analyzed during this study is included in this published article.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
All authors declare no conflicts of interest pertaining to this manuscript.

Author details
1Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany. 2Translational Neuroscience and Aging Laboratory, Mayo Clinic, Scottsdale, AZ, USA. 3Present address: Institute of Sports Science, University of Bern, Bern, Switzerland.

Received: 29 May 2019 Accepted: 15 April 2020
Published online: 19 May 2020

References
1. World Health Organization. Global status report on noncommunicable diseases 2014. Geneva: World Health Organization; 2014.
2. The Lancet. GBD 2017: a fragile world. Lancet. 2018;392:1683. https://doi.org/10.1016/S0140-6736(18)32858-7.
3. Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet. 2018;392:2052–90. https://doi.org/10.1016/S0140-6736(18)31694-5.
4. Arts J, Fernandez ML, Lofgren IE. Coronary heart disease risk factors in college students. Adv Nutr. 2014;5:177–87. https://doi.org/10.3945/an.113.005447.
5. Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388:1659–724. https://doi.org/10.1016/S0140-6736(16)31679-8.
6. Majeed A, Taylor MA, Shafiee Neek L, Delavari A, Malekzadeh R, Macdonald IA, Farshchi HR. Effect of weekly physical activity frequency on weight loss in healthy overweight and obese women attending a weight loss program: a randomized controlled trial. Am J Clin Nutr. 2016;104:202–8. https://doi.org/10.3945/ajcn.116.136408.
7. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2003;349:454–60. https://doi.org/10.1056/NEJM200002173420702.
8. Colditz GA, Philpott SE, Hankinson SE. The impact of the Nurses’ health study on population health: prevention, translation, and control. Am J Public Health. 2016;106:1540–5. https://doi.org/10.2105/AJPH.2016.303343.
9. Johannsen NW, Swift DL, Lavie CJ, Earnest CP, Blair SN, Church TS. Categorical analysis of the impact of aerobic and resistance exercise training, alone and in combination, on cardiometabolic fitness levels in patients with type 2 diabetes: results from the HART-D study. Diabetes Care. 2013;36:3305–12. https://doi.org/10.2337/dc12-2194.
10. Church TS, Blair SN, Cocohsah N, Johannsen N, Johnson W, Kramer K, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2010;304:2253–62. https://doi.org/10.1001/jama.2010.1710.
51. Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol. 2015;30:529–42. https://doi.org/10.1007/s10654-015-0056-z.

52. Sattelmair J, Pertman J, Ding EL, Kohl HW, Haskell W, Lee I-M. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011;124:789–95. https://doi.org/10.1161/CIRCULATIONAHA.110.010710.

53. Chin S-H, Kanhathuduwa CN, Binks M. Physical activity and obesity: what we know and what we need to know. Obes Rev. 2016;17:1226–44. https://doi.org/10.1111/obr.12460.

54. Shaw K, Gennat H, O’Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;CD003817. https://doi.org/10.1002/14651858.CD003817.pub3.

55. Tam G, Yeung MPS. A systematic review of the long-term effectiveness of work-based lifestyle interventions to tackle overweight and obesity. Prev Med. 2018;107:54–60. https://doi.org/10.1016/j.ypmed.2017.11.011.

56. Rodrigues AL, Ball J, Ski C, Stewart S, Carrington MJ. A systematic review and meta-analysis of primary prevention programmes to improve cardiometabolic risk in non-urban communities. Prev Med. 2016;87:22–34. https://doi.org/10.1016/j.ypmed.2016.02.011.

57. Wilks DC, Besson H, Lindroos AK, Ekelund U. Objectively measured physical activity and obesity prevention in children, adolescents and adults: a systematic review of prospective studies. Obes Rev. 2011;12:e119–29. https://doi.org/10.1111/j.1467-789X.2010.00775.x.

58. Liu X, Zhang D, Liu Y, Sun X, Han C, Wang B, et al. Dose-response association between physical activity and incident hypertension: a systematic review and meta-analysis of cohort studies. Hypertension. 2017;69:813–20. https://doi.org/10.1161/HYPERTENSIONAHA.116.08994.

59. Huai P, Xun H, Reilly KH, Wang Y, Ma W, Xi B. Physical activity and risk of hypertension: a meta-analysis of prospective cohort studies. Hypertension. 2013;62:1021–6. https://doi.org/10.1161/HYPERTENSIONAHA.113.01965.

60. Lee I-M, Shiroma EJ, Evenson KR, Kamada M, LaCroix AZ, Buring JE. Accelerometer-measured physical activity and sedentary behavior in relation to all-cause mortality: the Women’s health study. Circulation. 2018;137:203–S. https://doi.org/10.1161/CIRCULATIONAHA.117.031300.

61. LaCroix AZ, Bellettiere J, Rilamas-Sun E, Di C, Evenson KR, Lewis CE, et al. Association of Light Physical Activity Measured by Accelerometry and incidence of coronary heart disease and cardiovascular disease in older women. JAMA Netw Open. 2019;2:e190419. https://doi.org/10.1001/jamanetworkopen.2019.0419.

62. Colberg SR, Sigal RJ, Fennhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33:e147–67. https://doi.org/10.2337/dc10-9990.

63. Jakicic JM, Rogers RJ, Davis KK, Collins KA. Role of physical activity and exercise in treating patients with overweight and obesity. Clin Chem. 2018;64:99–107. https://doi.org/10.1373/clinchem.2017.272443.

64. Winzer EB, Woitek F, Linke A. Physical activity in the prevention and treatment of coronary artery disease. J Am Heart Assoc. 2018. https://doi.org/10.1161/JAHA.117.007725.

65. Mnich C. Is there Europeanization of physical activity promotion? - a neofunctional approach. Health Policy. 2019;123:317–26. https://doi.org/10.1016/j.healthpol.2019.01.004.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.