Modelling and Optimizing Process Parameters of AISI D2 Tool Steel for WEDM automation

Aneesh Kumar
Department of Mechanical Engineering, GLA University, Mathura-281406, Uttar Pradesh, India.

* Corresponding author: aneesh.kumar@gla.ac.in

Abstract. The AISI D2 tool steel are the material that for machining of heat treated AISI D2 tool steel, a highly developed method must be employed. Due to exceptional thermo-mechanical properties and superior wear resistance AISI D2 tool steel are finding widespread applications in a lot of manufacturing industries. WEDM is one of the highly developed and sophisticated methods for making of intricate shapes and convoluted details as required for dies and punches. For efficient machining, the need of optimization and appropriate choices of process parameters such as Material Removal Rate and Surface Roughness is utmost goal.

Keywords: Wire Electro Discharge Machining (WEDM); Micro-machining; Residual Stresses; AISI D2 tool steel Feed Rate.

1. Introduction
Wire electric discharge machining (WEDM) technique can machine everything that is electrically conductive in spite of the hardness where electric discharge occurs between an electrode wire which is constantly feed to the machining zone and a work piece detached by a flow of dielectric fluid ShajanKuriakose et al. resulting into the cutting of work piece in a required formation. The thin wire actually feed through the work piece constantly by microprocessors that enable part of intricate shapes to be machined with extremely high precision Vamsi Krishna et al.

![Figure 1. WEDM Machining Process](image-url)
Figure 2. WEDM Machine

WEDM makes use of electrical energy between the two terminals and changes it to heat energy at a temperature in the range of 8000 °C -12,000 °C to melt the workpiece through heat energy of an arc along with removal of machining dust. The remains resulting from the melting and or vapourization of surface of workpiece as well as the EDM wire electrode is enclosed in gaseous covering. This plasma ultimately quenched by the dielectric fluid to from solid debris and consequently leaves no residual burrs on the workpiece. Due to the excellent precision the process reduces or completely eliminates the need for following finishing operations. Also, the WEDM wire actually doesn’t touch the workpiece and has to make a number of machining passes alongside the contour to be machined to attain the necessary dimensional precision and surface finish. Thus, no stresses generated due to physical pressure on the workpiece as compared to machining through grinding wheels or milling cutters etc. WEDM also eliminates the requirement for sophisticated preshaped electrodes as are generally essential in EDM for roughing and finishing operations Klocke et al.

Figure 3. WEDM Machine Programming
Now a day’s WEDM processes are generally conducted on the work pieces completely submerged in a tank filled with dielectric fluid. The submerged technique of WEDM has an advantage of thermal stability and effective flushing particularly in the case where work piece has changeable dimensions. To enhance the exactness of the finishing operations, the possibility of conducting dry WEDM in gas atmosphere without using dielectric fluid tested by Kunieda and Furudate. The dielectric fluid within the sparking zone of WEDM can have deionised water as an alternative to hydrocarbon oil. Although it is inappropriate for conventional EDM due to quick electrode wear however, the low viscosity and high cooling rate of deionised water makes it a candidate for WEDM.

![Figure 4. Work piece](image)

The WEDM material removal rate and surface integrity etc can get affected by various process parameters such as

- polarity
- gap voltage
- discharge current
- Feed control mechanism
- pulse duration and frequency
- wire electrode (type, diameter and feed of wire)
- work piece material (structure, conductivity, thickness)
- dielectric liquid (type, impurities, flow rate, temperature)

For enhancing the value of goods manufactured particularly in the improvement of designs for studying the deviations and choices of process parameters with separation of control and noise factors a statistical way has been suggested by Taguchi. The nullification of the effect of noise factors are to be taken care by proper selection of control factors. To carry out the set of experiments, Orthogonal Arrays (OA) are used that can give the absolute information of all the factors affecting performance parameters along with analysis of data and prediction of the quality of components to be produced. Genetic algorithms also have been used to evaluate the maximum or minimum of a function.

S. No	Properties	Units	Value
1	Hardness	HRC	64
2	Density	g/cm³	7.7
3	Melting Point	K	1694
4	Thermal Conductivity	W/m K	20
5	Modulus of Elasticity	GPa	190-210
6	Compressive yield strength	MPa	1650-2200
2. Experimental Setup

2.1. Machine Specification and Setup

Specification	Details
Machine Name	ELECTRA SUPERCUT 734
Cutting Tool Material	Zinc Coated Brass Wire
Diameter of Wire	0.25mm
Wire Feed Rate	3mm/min
Work piece material	D2 tool steel
Work piece dimension	160mmx80mmx8mm
Number of holes	9
Hole dimension	10mmx10mmx8mm

A program was developed by using Auto CAD and following are process parameters of wire EDM process and need to be understood:

i. **Pulse on time** (T_{ON}-μs): The voltage applied across the electrodes. T_{ON} setting is directly related to the pulse on period.

ii. **Pulse off time** (T_{OFF}-μs): No voltage is applied for the gap during this period. T_{OFF} setting is also directly related to the pulse off period.

iii. **Peak current** (I-Ampere): Peak current is the maximum value either positive or negative that a waveform attains.

iv. **Servo feed rate** (mm/min): It is the relative velocity at which cutter is advanced along the work piece.

Experiment Number	Peak current (I-Ampere)	Servo feed rate (mm/min)	Pulse on time (T_{ON}-μs)	Pulse off time (T_{OFF}-μs)
1	120	1015	18	56
2	120	1018	22	50
3	120	1020	25	45
4	150	1015	22	45
5	150	1018	25	56
6	150	1020	18	50
7	180	1015	25	50
8	180	1018	18	45
9	180	1020	22	56

Process Parameter	Level 1	Level 2	Level 3
Peak current(I-Ampere)	120	150	180
Servo feed rate(mm/min)	1015	1018	1020
Pulse on time(T_{ON}-μs)	18	22	25
Pulse off time(T_{OFF}-μs)	56	50	45
2.2. Measurement of Surface Roughness

Surface finish or surface texture comprises of the small local deviations of a surface from the perfectly flat plane. Following are the number of useful techniques for measuring surface roughness.

i. Observation or Touch method

ii. Stylus based equipment method

iii. Interferometry method

![Figure 5. Surface Roughness Testing Machine](image)

Stylus equipment method was used for study, as it can track minute changes in surface height along with large changes in surface height with the help of a skid.

2.3. Measurement of Material Removal Rate (MRR)

Ratio of the volume of material removed to the machining time is the Material removal rate (MRR) and is given by:

\[
MRR \ (mm^3/\min) = \text{Cutting speed} \times \text{Width of cut} \times \text{Height of work piece}
\]

Application/Software Packages

1. Minitab is simple and effective software for statistical data input, its manipulation for identification of trends as well as patterns and then extrapolation of answers to the problem.

2. Matlab is numerical computing software that allows manipulation of matrix, mathematical data and function plots, algorithm implementation and many other creations of interfaces written in languages such as C, C++, Java, FORTRAN, and Python etc.

Experiment Number	Peak current (I_p) (Ampere)	Servo feed rate (mm/min)	Pulse on time (T_on - μs)	Pulse off time (T_off - μs)	Material Removal Rate (MATERIAL REMOVAL RATE)	Surface Roughness (SURFACE ROUGHNESS)
1	120	1015	18	56	5.68	1.70
2	120	1018	22	50	6.38	2.45
3	120	1020	25	45	6.54	2.20
4	150	1015	22	45	7.80	1.64
3. Results and Discussion
Experiments were performed by using MINITAB and MATLAB software and it is shown in tabulated form.

3.1. Effects of process parameters on Surface Roughness

5	150	1018	25	56	8.27	1.62
6	150	1020	18	50	6.94	2.10
7	180	1015	25	50	7.82	1.52
8	180	1018	18	45	7.34	1.85
9	180	1020	22	56	8.66	2.15

Figure 6. Graph of Process Parameters for Surface Roughness

3.2. Graph of Peak Current for Surface Roughness

Figure 7. Graph of Peak Current for Surface Roughness
3.3. Graph of Servo Feed Rate for Surface Roughness

![Graph of Servo Feed Rate for Surface Roughness](image1)

Figure 8. Graph of Servo Feed Rate for Surface Roughness

3.4. GRAPH OF T\text{ON} FOR SURFACE ROUGHNESS

![Graph of T\text{ON} for Surface Roughness](image2)

Figure 9. Graph of T\text{ON} for Surface Roughness
3.5. GRAPH OF T_{OFF} FOR SURFACE ROUGHNESS

![Graph of T_{OFF} for Surface Roughness](image)

Figure 10. Graph of T_{OFF} for Surface Roughness

S. No	Process Parameters	Correlation Coefficient
1	Peak current (I_p-Ampere)	-0.373
2	Servo feed rate(mm/min)	0.725
3	Pulse on time(T_{ON}-μs)	-0.107
4	Pulse off time (T_{OFF}-μs)	-0.112

3.6. PROCESS PARAMETERS GRAPH FOR MATERIAL REMOVAL RATE

![Graph of Process Parameters for MATERIAL REMOVAL RATE](image)

Figure 11. Graph of Process Parameters for MATERIAL REMOVAL RATE
3.7. **GRAPH OF PEAK CURRENT FOR MATERIAL REMOVAL RATE**

![Graph of Normal Probability Plot, Residuals Versus Fits, Histogram, and Residuals Versus Order for MRR.](image)

Figure 12. Graph of Peak Current for MATERIAL REMOVAL RATE

3.8. **GRAPH OF SF FOR MATERIAL REMOVAL RATE**

![Graph of Normal Probability Plot, Residuals Versus Fits, Histogram, and Residuals Versus Order for MRR.](image)

Figure 13. Graph Of SF For MATERIAL REMOVAL RATE
3.9. GRAPH OF T\text{ON} FOR MATERIAL REMOVAL RATE

![Figure 14. Graph of T\text{on} for MATERIAL REMOVAL RATE](image)

3.10. GRAPH OF T\text{OFF} FOR MATERIAL REMOVAL RATE

![Figure 15. GRAPH OF TOFF FOR MATERIAL REMOVAL RATE](image)

Table 6. Correlation coefficient values for Material Removal Rate

S. No	Process Parameters	Correlation Coefficient
1	Peak current (I\text{p-Ampere})	0.779
2	Servo feed rate(mm/min)	0.130
3	Pulse on time(T\text{ON}-\mu s)	0.419
4	Pulse off time (T\text{OFF}-\mu s)	0.148
4. Conclusion

- **For Material Removal Rate (MATERIAL REMOVAL RATE)**
 - Peak current (I_P) > Pulse on time (T_{ON}) > Pulse off time (T_{OFF}) > Servo feed rate

- **For Surface Roughness (SURFACE ROUGHNESS)**
 - Servo feed rate > Pulse off time (T_{OFF}) > Pulse on time (T_{ON}) > Peak current (I_P)

- Knowledge of optimized process parameters opens the way for automation. This process can now be automated for D2 Tool Steel.

- The procedure can be useful for automating various hard and difficult to machine materials.

- It is very effective, useful and potent technique and has ample amount of scope in future.

5. References

[1] J. Corbett, P.A. McKeon, G.N. Peggs, R. Whatmore, Nanotechnology: international developments and emerging products, Annals of CIRP 49 (2000) 523–546.

[2] M.J. Madou, Fundamentals of Micro-fabrication, CRC Press, Boca Raton, 1997.

[3] M. Weck, S. Fischer, M. Vos, Fabrication of micro components using ultra precision machine tools, V Nanotechnology 8 (1997) 145–148.

[4] W. Lang, Reflexions on the future of micro-systems, Sensor and Actuators 72 (1999) 1–15.

[5] X. Liu, R.E. DeVor, S.G. Kapoor, K.F. Ehman, The mechanics of machining at the micro scale: assessment of the current state of the science, Journal of Manufacturing Science and Engineering 126(2004) 666–678.

[6] X. Liu, M.B. Jun, R.E. DeVor, S.G. Kappor, Cutting Mechanisms and their Influence on Dynamic Forces, Vibrations and Stability in Micro-end Milling Proceedings ASME International Mechanical Engineering Congress and Exposition, Anaheim California, (Nov, 2004) 13-20

[7] J. Chae, S.S. Park*, T. Freiheit, Investigation of micro-cutting operations(2006) 313-332.

[8] J. Rheot Mayor, Jun Ni, A static model of chip formation in micro-scale milling (2003) 110-118.

[9] M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen5, Determination of Residual Stresses by X-ray Diffraction.(2005) 52-56.

[10] A.G. EVANS†, Residual Stress Measurement Using Acoustic Emission (2004) 239-243.

[11] M.P. Vogler, X. Liu, S.G. Kapoor, R.E. Devor, K.F. Ehmann, Development of meso-scale machine tool (mMT) systems, Society of Manufacturing Engineers MS n MS02-181 (2002) 1–9.

[12] M.C. Shaw, Precision finishing, Annals of CIRP 44 (1) (1995) 343–348.

[13] Jatinder Kapoor, Dr. Sehijpal Singh, DrJaimal Singh Khamba, Recent developments in Wire Electrodes for High performance WEDM.

[14] Manish Vishwakarma , Vishal Parashar , V.K. Khare, Advancement in EDM on metal matrix composite materials.

[15] K.Kumar , R. Ravikumar , Modeling and optimization of WEDM process.

[16] K.Hari Narayana , Dr. B.BaluNaik , Surface roughnessinivasaNandam and A.Anand Rao , Experimental Investigations of HSS M2 Alloy on WEDM Process using Taguchi Methodology.

[17] Harshad C. Patel, Kaushal R. Patel, Shekhar A. Prajapati ,Jenish Patel , Review on Current Research Trends in WEDM.

[18] Trezise KE (1982) A physicist’s view of wire EDM. Proceedings of the International Conference on Machine Tool Design and Research 23:413-419

[19] Rajurkar KP, Wang WM (1993) Thermal modeling and on-line monitoring of wire-EDM. J Mater Process Technol 38(1–2): 417–430

[20] Tarng YS, Ma SC, Chung LK (1995) Determination of optimal cutting parameters in wire electrical discharge machining. Int J Mach Tools Manuf 35(129):1693–1700

[21] Scott D, Boyina S, Rajurkar KP (1991) Analysis and optimization of parameter combination in wire electrical discharge machining. Int J Prod Res 29(11):2189–2207
[22] Lok YK, Lee TC (1997) Processing of advanced ceramics using the wire-cut EDM process. J Mater ProcesTechnol 63(1–3):839–843
[23] Huang JT, Liao YS, Hsue WJ (1999) Determination of finishcutting operation number and machining parameters setting in wire electrical discharge machining. J Mater Process Technol 87:69–81
[24] Rozenek M, Kozak J, Dabrowiak L, Lubkowiski K (2001) Electrical discharge machining characteristics of metal matrix composites. J Mater Process Technol 109:367–370
[25] Tosun N, Cogun C (2003) An investigation on wire wear in WEDM. J Mater Process Technol 134(3):273–278
[26] Tosun N, Cogun C, Pihtili H (2003) The effect of cutting parameters on wire crater sizes in wire EDM. Int J AdvManufTechnol 21:857–865
[27] Shih H, Orimo T, Fukui M (1989) The effect of electrode materials on the characteristics of machinability of wire electro discharge machines,. Proceedings of the International Symposium for Electro Machining (ISEM-9) Nagoya 219–222
[28] Peace SG (1993) Taguchi methods: a hands on approach. Addison-Wesley, New York
[29] Phadke MS (1989) Quality engineering using robust design. Prentice Hall Eaglewood Cliffs, New Jersey
[30] Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor, Michigan