Introduction

Initial exposure to the varicella zoster virus (VZV) causes chickenpox (varicella). Upon recovery from the initial infection, VZV establishes latency and if reactivated, it will cause shingles (herpes zoster; HZ) (Gershon et al. 2010). As long as the host maintains sufficient VZV-specific cell-mediated immunity, the virus can remain latent indefinitely. Approximately one of three people in the United States will develop HZ in their lifetime, resulting in >1 million cases every year [Centers for Disease Control and Prevention (CDC) 2011a; Gershon et al. 2010]. The risk of HZ increases in the elderly and in people with immunosuppressive illnesses and/or those taking immunosuppressive medications (CDC 2011a). Other risk factors for HZ include diabetes, female sex, Caucasian race, medical trauma, and psychological stress (Gershon et al. 2010).

Interestingly, medical case reports dating back to the early 1900s have documented the appearance of fine punctate irritating rashes, herpetiform skin eruptions, and HZ in people shortly after they recovered from acute and subchronic arsenic poisoning (Bartolomé et al. 1999; Carllill 1917; Hope-Simpson 1965; Jacob 1931; Satterlee 1960; Uede and Furukawa 2003; Walsh 1900). More recently, clinicians have identified HZ as a common side effect for patients with acute promyelocytic leukemia (APL) after they received treatment with arsenic trioxide (Au and Kwong 2005; Douer and Tallman 2005; Nouri et al. 2006; Rousselet et al. 2004; Subbarayan et al. 2007; Tanvetyanon and Nand 2004). Although no study has been conducted to determine whether HZ is more common among APL patients who receive arsenic trioxide versus other treatments, physicians have commented that only the patients treated with arsenic trioxide developed HZ (Tanvetyanon and Nand 2004). There is evidence from animal models and in vitro studies that arsenic exposure can alter the immune response (Dangleben et al. 2013). However, it is unknown whether exposure to arsenic from environmental sources affects the VZV immune response.

Currently, two National Health and Nutrition Examination Surveys (NHANES) included both VZV IgG serology testing and urinary arsenic measurements. Using these data, we sought to determine whether arsenic exposure in the general U.S. population is a risk factor for VZV IgG seronegativity. Our hypothesis was that higher urinary arsenic concentrations would be associated with a higher seronegative prevalence of VZV IgG.
seroprevalence status across survey cycles to identify 98 seronegative and 3,250 seropositive individuals who were used in the combined analysis.

NHANES 2003–2004. VZV IgG was measured in serum using a whole cell enzyme immunoassay (EIA). This assay was developed by the Immunoserosology Unit of the California State Department of Health Services Viral and Rickettsial Disease Laboratory and has been previously described (Forghani et al. 1978). This protocol yields an index of optical density (OD) reading, where an OD > 1 indicates the presence of the VZV antibody (seropositive) and an OD < 1 indicates that the antibody was not detected (seronegative). A negative VZV IgG test is useful to determine whether an individual is susceptible to infection by the virus (CDC 2011b). Subsequently, the CDC retested a subsample from this survey cycle using a gp-ELISA, which is considered to have higher sensitivity and specificity compared to the EIA method, and determined that the EIA produced false-negative results for 26% of participants ages 6–19 years (Reynolds et al. 2010). NHANES made the gp-ELISA data available in 2009. Subsequently, we used data from both the EIA and the available gp-ELISA to classify VZV status in this cycle. Specifically, the EIA and the gp-ELISA methods agreed on 40 negative and 37 positive VZV individuals who were retested. Sixteen individuals who were initially identified as VZV negative by the EIA were reclassified as seropositive based on the gp-ELISA results. Finally, 14 individuals—using an equivocal gp-ELISA result—were left as initially identified by the EIA method. This resulted in 69 seronegative and 1,568 seropositive individuals for this cycle.

NHANES 2009–2010. In this survey the CDC evaluated the presence of the VZV antibody using an EIA as described above. However, all samples that tested negative (OD < 1) or in the equivocal range were reevaluated using the gp-ELISA method. Therefore, all negative VZV IgG results in this survey were confirmed, yielding greater accuracy for the serological classification. This resulted in 29 seronegative and 1,682 seropositive individuals in this cycle.

Urinary arsenic assessment. Urinary arsenic concentrations were measured in a spot sample collected during the physical examination and analyzed within 3 weeks of collection using high-performance liquid chromatography (HPLC) coupled to induc-tively coupled-plasma dynamic reaction cell–mass spectrometry (ICP-DRC-MS). Seven urinary arsenic species were evaluated with this method: arsenite (As\textsubscript{III}), arsenate (As\textsubscript{V}), arsenobetaine (AsB), arsenocholine (AsC), monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and trimethylarsine oxide, as well as total urinary arsenic (CDC 2007). The corresponding limits of detection (LODs) for the urinary arsenic species used were 0.4 μg/L, 0.6 μg/L, 1.2 μg/L, 1.0 μg/L, 0.9 μg/L, and 1.7 μg/L for AsB, AsC, As\textsubscript{III}, As\textsubscript{V}, MMA, and DMA, respectively. The LOD for total urinary arsenic in the 2003–2004 cycle was 0.6 μg/L and changed in the 2009–2010 cycle to 0.74 μg/L. Samples with arsenic measurements below the LOD were assigned a level equal to the LOD divided by the square root of two. The proportion of samples below the LOD in 2003–2004 was 44.57% for AsB, 98.9% for AsC, 93.28% for As\textsubscript{III}, 92.61% for As\textsubscript{V}, 60.26% for MMA, 11.46% for DMA, and 1.49% for total arsenic. In 2009–2010, the proportion of samples below the LOD was 37.14% for AsB, 98.2% for AsC, 94.97% for As\textsubscript{III}, 97.29% for As\textsubscript{V}, 67.39% for MMA, 19.93% for DMA, and 0.77% for total arsenic.

AsB and AsC are arsenoorganics present in seafood and are considered to be nontoxic (Müller et al. 1992). We defined total urinary arsenic (TUA) using two approaches. The first approach (TUA1) was defined as the sum of As\textsubscript{III}, As\textsubscript{V}, MMA, and DMA. The second approach (TUA2) was defined as total arsenic minus AsB and AsC. Because NHANES includes multiple demographic groups, it has been recommended that urinary analyte concentrations be evaluated as an unadjusted analyte concentration and have urinary creatinine as a separate independent variable to account for differences in urine dilution (Barr et al. 2005).

Adjustment variables. Variables that were considered in the analyses a priori as potential confounders for the association between VZV status and urinary arsenic concentrations included age, sex, race/ethnicity, family poverty–income ratio, body mass index (BMI), urinary creatinine levels, and survey cycle. Race/ethnicity was self-reported as non-Hispanic white, non-Hispanic black, other Hispanics, Mexican American, and other race including multiracial. "Other Hispanics" were collapsed into a single category with the other race category including multiracial. "Other Hispanics" were collapsed into a single category with the other race category including multiracial for both survey cycles. BMI was calculated by dividing measured weight in kilograms by measured height in meters squared. BMI was classified as underweight (< 18.5), normal (18.5–24.9), overweight (25–29.9), and obese (≥ 30). For participants < 20 years of age, BMI classification was defined using the CDC growth charts for age- and sex-specific cutoffs. Urinary creatinine was right-skewed and subsequently natural log (ln)-transformed.

Statistical analysis. All statistical analyses were performed in Stata using the survey command to account for the complex sampling design (version 12.1; StataCorp LP). UnWeighted sample sizes are presented along with weighted prevalence and geometric means (GMs) for each covariate. Standard errors (SEs) and confidence intervals (CIs) were estimated using the Taylor linearization method. The statistical significance level was set at α = 0.05, and all statistical tests were two-tailed. The association was evaluated for the two survey cycles independently. The two survey cycles were also combined to increase the precision for the estimated relationship, and survey weights were rescaled to match the U.S. population at midpoint for the combined survey cycles.

TUA concentrations (TUA1 and TUA2) were right-skewed and ln-transformed for the analyses. Linear regression models were used to calculate the GM and SE of TUA by the prevalence of VZV status, and all covariates were evaluated for both survey cycles and for the combined sample. Associations between all covariates and urinary arsenic were evaluated using a Wald test for significance to evaluate the overall association. The models estimating the GM of TUA for each strata always included urinary creatinine.

Logistic regression models were used to evaluate the association between seronegative VZV status and ln-TUA for the combined sample and for the two survey cycles independently. This approach included all a priori covariates that were considered risk factors for VZV (e.g., age, sex, race/ethnicity, family poverty–income ratio, BMI), NHANES survey year, and ln-urinary creatinine. For the combined sample, we tested the interaction between survey cycle and arsenic exposure in the adjusted model. These interactions were not significant for TUA1 (p = 0.68) and TUA2 (p = 0.39), which suggested that the associations did not differ by survey year and further supported combining the two survey cycles. As a sensitivity analysis we also analyzed these logistic regression models without the sample weights (unweighted). This unweighted approach would prevent spurious associations that could result if a heavy weight was attached to few individuals. Further, weighted penalized splines were used to evaluate nonlinear relationships with knots at the 5th, 25th, 50th, and 95th percentiles of exposure. Because weighted penalized splines using the pooled data may produce unreliable 95% CIs, we used generalized additive models to evaluate nonlinear relationships and compute 95% CIs without including survey weights.

Results

Across both survey cycles, a total of 3,348 participants had TUA1 measurements and 3,283 participants had TUA2 measurements. The difference in sample size (n = 65)
resulted from missing measurements used in computing TUA2. There were 98 individuals who were seronegative for the VZV IgG in the pooled study sample. For the pooled sample, the overall GM TUA1 and TUA2 were 6.57 μg/L (95% CI: 6.26, 7.91 μg/L) and 5.64 μg/L (95% CI: 5.20, 6.12 μg/L), respectively. The population characteristics for the pooled sample are provided in Table 1. TUA was significantly associated with race/ethnicity, age, and VZV serology based the overall creatinine-adjusted Wald test (Table 2). In the pooled sample, TUA1 and TUA2 were slightly higher among VZV-seronegative IgG participants compared with seropositive individuals (8.31 μg/L vs. 6.77 μg/L, p = 0.01; and 7.62 μg/L vs. 5.85 μg/L, p = 0.02). Only TUA1 was associated with BMI classification. The GMs of total urinary arsenic, which were adjusted for creatinine, were not different by sex or family poverty–income ratio (Table 2).

In adjusted models for the pooled survey sample, odds ratios (aORs) for a negative VZV IgG result in association with 1-unit increases in ln-TUA1 and ln-TUA2 were 1.87 (95% CI: 1.03, 3.44) and 1.40 (95% CI: 1.0, 1.97), respectively (Table 3). These models were adjusted for age, ln- creatinine, sex, race/ethnicity, family poverty–income ratio, BMI classification, and survey cycle. Because of the relatively small sample size and because some data were missing, we also analyzed the association between arsenic and VZV status using a more parsimonious approach that only controlled for age, survey cycle, and urinary creatinine. These models without as much missing data yielded consistent results where the odds of having a negative VZV result increased with each increase in ln-TUA1 (aOR = 2.24; 95% CI: 1.37, 3.56) and ln-TUA2 (aOR = 1.58; 95% CI: 1.17, 2.13).

Furthermore, the unweighted adjusted models yielded consistent results, suggesting that the observed association was not driven by spurious data that can result if a few individuals are given a greater weight. Finally, additional analysis that examined the association between TUA and VZV seroprevalence in each survey cycle independently yielded a consistent association between negative VZV IgG seroprevalence and arsenic (Table 3).

The shape of the dose–response relationship between TUA and VZV seronegative status was modeled using penalized splines as both weighted and unweighted samples (Figure 1). The shape of the dose–response relationships was approximately linear for unweighted spline models of TUA1 and TUA2 (Figure 1A and 1B, respectively). The weighted dose–response curves were more attenuated and nonlinear for TUA1 and TUA2 (Figure 1C and 1D, respectively). Despite these subtle differences in the shape of the dose–response curve between arsenic and VZV seronegative status, the weighted and unweighted analyses yielded a consistent positive association.

Discussion

In a representative sample of the U.S. population 6–49 years of age, higher concentrations of TUA were associated with a higher prevalence of negative VZV serology results after adjusting for other risk factors. Although the shape of the dose–response relationship could have been biased by accounting for urinary metabolites that were below the limit of detection, a significant positive association was observed in two NHANES surveys taken 6 years apart, where the odds of a negative VZV result increased approximately 40–95% for each unit increase in TUA1 or TUA2. The association was consistent in the pooled analytic sample and across each survey cycle. These findings, which are the first to look at the association between arsenic exposures and VZV status in the U.S. general population and across a relatively modest range of exposures, build upon prior experimental evidence and clinical observations that showed that therapeutic doses of inorganic arsenic affect and/or suppress specific immune functions; our findings also support the hypothesis that arsenic exposure diminishes VZV immunity.

Arsenic is a common environmental contaminant that can be found in ground-water and in the food chain. In our study, it was not possible to determine the route of arsenic exposure or the species of arsenic that comprised the exposure because only a spot urine sample was collected for arsenic measurement. However, in the United States, arsenic-contaminated drinking water is considered to be the dominant source of exposure and is mostly a concern for communities that rely on groundwater as their source of potable water (U.S. Environmental Protection Agency (EPA) 2001). A 2001 study that used data collected by the U.S. EPA estimated that 34 million Americans were drinking water with average arsenic concentrations > 50 μg/L, which was the maximum contaminant

Table 1. Population characteristics [n (%)] for the combined NHANES 2003–2004 and 2009–2010 presented as unweighted sample sizes and weighted percentages.

Characteristic	TUA1	TUA2	
Total sample size (n)	3,348	3,283	
Sex	Male	1,673 (50.3)	1,649 (50.6)
	Female	1,675 (49.7)	1,634 (49.4)
Race	Non-Hispanic white	1,215 (63.7)	1,177 (62.3)
	Non-Hispanic black	845 (12.9)	839 (13.1)
	Mexican American	888 (12.1)	853 (12.2)
	Other/Other Hispanic	420 (12.3)	414 (12.4)
Family poverty–income ratio	≤ 1 (below poverty level)	943 (19.6)	926 (20.2)
	> 1 (above poverty level)	2,185 (81.4)	2,193 (79.8)
Missing	220	218	
BMI (kg/m²)	< 18.5 (underweight)	86 (2.2)	85 (2.2)
	18.5–24.9 (normal)	1,498 (41.2)	1,469 (41.0)
	25–29.9 (overweight)	825 (23.0)	813 (28.1)
	≥ 30 (obese)	909 (26.6)	916 (29.7)
Missing	30	23	
Age (years)	6–11	514 (11.5)	534 (11.1)
	12–19	1,002 (17.6)	1,063 (17.8)
	≥ 20	1,588 (70.9)	1,686 (71.1)
TUA1 (μg/L)	≤ 4.8 (tertile 1)	1,032 (33.7)	—
	> 4.8 to 7.5 (tertile 2)	1,116 (32.3)	—
	> 7.5 to 13 (tertile 3)	1,200 (34.0)	—
TUA2 (μg/L)	≤ 3.7 (tertile 1)	—	1,004 (33.0)
	> 3.7 to 8.4 (tertile 2)	—	1,132 (33.2)
	> 8.4 to 30 (tertile 3)	—	1,147 (33.8)
Creatinine (mg/dL)	≤ 80 (tertile 1)	960 (31.6)	917 (30.4)
	> 80 to 153 (tertile 2)	1,122 (32.6)	1,113 (33.1)
	> 153 to 768 (tertile 3)	1,263 (35.8)	1,253 (36.5)
VZV IgG	Seropositive	3,250 (97.8)	3,187 (97.8)
	Seronegative	98 (2.2)	96 (2.9)

\(TUA1 = \text{As}^{III} + \text{As}^{V} + \text{MMA} + \text{DMA}. \) TUA2 = Total As – AsC – AsB.
level (MCL) for drinking water at that time (Mushak 2000). In 2001, the U.S. EPA lowered the arsenic MCL to 10 μg/L because of concerns about elevated risk of internal cancers; municipalities had until 2006 to comply (Abedin et al. 2002). Private drinking-water wells, however, are not monitored or regulated by the U.S. EPA, and survey data suggests that 11–19% of private wells exceed 10 μg As/L (Focazio et al. 2006; Montgomery et al. 2003; Twarakavi and Kaluarachchi 2006). Crops, particularly rice and cereal grains, can also take up arsenic from the soil and irrigation water (Cascio et al. 2011), and grains, can also take up arsenic from the soil and irrigation water (Cascio et al. 2011), and natural, unprocessed foods can also serve as a route of exposure (Michelles et al. 2008).

The health effects of arsenic are not well understood. Researchers have shown that arsenic trioxide prevents the loss of virions from the perinuclear cell region, leading to an increase in cellular vector genome retention (Mitchell et al. 2013). There is also considerable evidence from in vitro and in vivo experimental studies that inorganic arsenicals are potent immunomodulators. High doses of inorganic arsenic are known to suppress IgM and IgG antibody formation; inhibit antigen-driven T-cell proliferation and macrophage activity; block the differentiation of monocytes into functional macrophages; decrease CD4+ splenic cell numbers; and alter the development, activation, and proliferation of T cells (Bourdonnay et al. 2009; Burchiel et al. 2009; Burns and Munson 1993; Conde et al. 2007; Dangleben et al. 2013; de la Fuente et al. 2002; Galicia et al. 2003; Hernández-Castro et al. 2009; Kozul et al. 2009a; Lemaire et al. 2006a, 2006b; Martin-Chouly et al. 2011; Nain and Smits 2012; Patterson et al. 2004; Sikorski et al. 1989; Soto-Peña et al. 2006; Yoshida et al. 1987. In addition, data from experimental models show that high doses of inorganic arsenic influence viral pathogenesis (Dangleben et al. 2013; Kozul et al. 2006b; Martin-Chouly et al. 2011; Mitchell et al. 2013; Patterson et al. 2004; Ramsey et al. 2013; Sebastian et al. 2006). Less is known about the effects of methylated arsenical species on immunological outcomes. The best way to reduce the risk of chicken pox and HZ is to be vaccinated for VZV. Since 1996, the Advisory Committee on

Table 2. Weighted geometric mean (GM) and SE of total urinary arsenic (μg/L) by demographic characteristics in the NHANES 2003–2004 cycle, 2009–2010, and a pooled sample (2003–2004 and 2009–2010).

Characteristic	2003–2004	2009–2010	Pooled	
TUA1 (GM) (SE)	2003–2004	2009–2010	Pooled	
Sex	69	69	29	29
Male	0.27	0.94	0.09	0.01
Female	6.96	5.83	6.68	5.94
Race	< 0.001	< 0.001	< 0.001	< 0.001
Non-Hispanic white	6.42	5.23	5.92	5.28
Non-Hispanic black	6.52	5.63	6.00	5.22
Mexican American	7.89	6.85	7.19	5.77
Other/Other Hispanic	10.79	11.76	10.66	10.42
Family poverty-income ratio	0.69	0.95	0.54	0.15
BMI (kg/m²)	0.002	0.36	0.70	0.05
< 18.5 (underweight)	7.16	6.11	6.41	6.44
18.5–24.9 (normal)	7.17	6.11	6.52	6.52
25–29.9 (overweight)	6.93	5.84	6.56	6.20
≥ 30 (obese)	6.46	5.51	6.33	5.50
Age (years)	0.002	< 0.001	< 0.001	< 0.001
6–11	7.51	6.78	7.25	6.57
12–19	6.41	4.66	5.60	3.96
≥ 20	7.27	5.93	6.62	6.15
VZV IgG	0.08	0.06	0.04	0.02
Seropositive	7.09	6.16	6.47	5.61
Seronegative	8.61	8.21	8.18	7.62

Table 3. Adjusted odds ratios (aORs) and 95% CIs for seronegative VZV status in association with a 1-unit increase in ln-transformed TUA (μg/L) for the combined NHANES sample (2003–2004 and 2009–2010).

Characteristic	2003–2004	2009–2010	Pooled
In-TUA1	1.67	2.03	2.29
In-TUA2	1.26	1.36	1.67

TUA1 = AsIII + AsV + MMA + DMA. TUA2 = Total As – AsC – AsB.

*Models adjusted for ln-transformed creatinine.
Immunization Practices has recommended routine VZV vaccination of all children 18 months to 2 years of age, susceptible adolescents, and adults that are at high risk of exposure to the virus (Marin et al. 2007). The vaccine contains live attenuated VZV, which is very effective and induces immunity in >95% of the people who receive it (Reynolds et al. 2010). The vaccine results in latent infection, which can be reactivated and cause HZ, although studies have shown that the risk of reactivation after the vaccine is lower than for people who were infected with wild-type VZV (Reynolds et al. 2010). It would be useful for future studies to consider whether the arsenic–VZV sero prevalence association is only in those with wild-type VZV compared with people who have been vaccinated against VZV.

Important strengths of the present study include the use of a representative sample of the U.S. population exposed to arsenic at environmental concentrations. We also used urinary biomarkers to assign personal exposure levels of arsenic. Further we adjusted for relevant risk factors for VZV and urinary arsenic concentrations. The rigorous quality control procedures implemented in NHANES is also an important strength of the quality of the data presented. Although the protocol for the VZV assay changed between cycles, there was improved precision in the data collected in 2009–2010, which is likely a function of the gp-ELISA for determining VZV status. This assay has a higher sensitivity and specificity for VZV antibodies produced by vaccination, which likely accounts for the more precise ORs in this cycle, even though the actual number of VZV-seronegative samples was lower. Finally, the reproducibility of the effect and the observation of an exposure–response relationship between increasing TUA concentration and VZV serology in two different survey cycles is reassuring.

There are also limitations to our study that must be considered. NHANES is a cross-sectional study, and the temporality between arsenic exposure and VZV serology cannot be assessed. NHANES measures urinary arsenic concentrations only in one-third of the participants, and urinary arsenic metabolites have a relatively short half-life, which limits their use for estimating historical or long-term exposures (Buchet et al. 1981). The presence of unmeasured confounders cannot be ruled out because serum-specific IgG response resulting from vaccination or natural infection could be modified by other immune-suppressive conditions or chronic infections. Yet, we accounted for several important risk factors in the population, including age, race, sex, and BMI. Also, the seronegative VZV prevalence was low in both cycles for our combined sample. It is possible that participants who were infected with VZV previously but did not mount a sufficient IgG response that could allow for accurate serology testing could have been misclassified. Furthermore, a negative VZV IgG result could indicate that an individual has not been previously infected with the virus and that arsenic exposure was protective. This interpretation, however, seems unlikely because arsenic is known to be immunotoxic, clinical reports have noted VZV reactivation after arsenic exposure, an estimated 99.5% of people born in the United States who are ≥40 years of age have serological evidence of previous VZV, and VZV vaccines were widely adopted after 1996 (CDC 2012). Unfortunately, there was no available information on other antibodies, such as IgM, to improve our classification of VZV status. We were also not able to evaluate the observed

Figure 1. Adjusted odds ratios (aORs) from penalized spline models for negative VZV IgG by TUA. (A) TUA1 unweighted. (B) TUA2 unweighted. (C) TUA1 weighted. (D) TUA2 weighted. aORs are based on penalized splines for ln-transformed total arsenic exposure. Models fully adjusted for age, ln-urinary creatinine, sex, race/ethnicity, family poverty–income ratio, BMI classification, and survey cycle. (A) and (B) are unrestricted splines with 95% CIs; (C) and (D) were estimated from weighted models restricted to knots at the 5th, 25th, 50th, and 95th percentiles of exposure. TUA1 = AsIII + AsV + MMA + DMA. TUA2 = Total As – AsC – AsB.
association in children < 6 years of age or adults > 45 years of age. VZV reactivation is a common problem among older adults, with the incidence of zoster increasing at 50–60 years, so the impact of arsenic exposure on this group may be different (Harpaz et al. 2008).

Conclusions
TUA concentration was positively associated with seronegative VZV IgG prevalence in a population with modest arsenic exposure. This information builds upon experimental studies and clinical observations showing an association between acute exposures to high levels of arsenic with herpes zoster and supports a link between environmental and arsenic exposure and VZV-specific immune response. Additional studies are needed to more fully evaluate the effect of arsenic on other parameters of immune functioning and its ability to cause VZV reactivation. From a public health perspective, confirmation of arsenic’s ability to suppress specific immune functioning has important implications for vaccine-preventable illnesses.

References
Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J 2002. Arsenic accumulation and metabolism in rice (Oryza sativa L). Environ Sci Technol 36(5):962–966.

Cdc Stats

Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Au WY, Kwong YL. 2005. Frequent varicella zoster virus reactivation. From a public health perspective, confirmation of arsenic’s ability to suppress specific immune functioning has important implications for vaccine-preventable illnesses.

References
Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J 2002. Arsenic accumulation and metabolism in rice (Oryza sativa L). Environ Sci Technol 36(5):962–966.

Cdc Stats

Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Au WY, Kwong YL. 2005. Frequent varicella zoster virus reactivation. From a public health perspective, confirmation of arsenic’s ability to suppress specific immune functioning has important implications for vaccine-preventable illnesses.

References
Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J 2002. Arsenic accumulation and metabolism in rice (Oryza sativa L). Environ Sci Technol 36(5):962–966.
Water, Its Health Effects, and EPA’s Outdated Arsenic Tap Water Standard. Available: http://www.nrdc.org/water/drinking/arsenic/aolinx.asp [accessed 15 January 2013].

Nain S, Smits JEG. 2012. Pathological, immunological and biochemical markers of subchronic arsenic toxicity in rats. Environ Toxicol 27(4):244–254.

Nouri K, Ricotti CA Jr, Bouzari N, Chen H, Ahn E, Bach A. 2006. The incidence of recurrent herpes simplex and herpes zoster infection during treatment with arsenic trioxide. J Drugs Dermatol 5(2):182–185.

Patterson R, Vega L, Trouba K, Bortner C, Germolec D. 2004. Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice. Toxicol Appl Pharm 198(3):454–443.

Raney RE, Foong RE, Sly PD, Larcombe AN, Zosky GR. 2013. Early life arsenic exposure and acute and long-term responses to influenza A infection in mice. Environ Health Perspect 121:1187–1193; doi:10.1289/ehp.1306748.

Reynolds MA, Kruszon-Moran D, Jumaan A, Schmid DS, McQuillan GM. 2010. Varicella seroprevalence in the U.S.: data from the National Health and Nutrition Examination Survey, 1999–2004. Public Health Rep 125(6):860–869.

Rousselot P, Larghero J, Arnulf B, Poupon J, Royer B, Tibi A, et al. 2004. A clinical and pharmacological study of arsenic trioxide in advanced multiple myeloma patients. Leukemia 18(9):1516–1521.

Satterlee HS. 1960. The arsenic-poisoning epidemic of 1960—its relation to lung cancer in 1960—an exercise in retrospective epidemiology. N Engl J Med 263(4):679–684.

Sebastian S, Sokolskaja E, Luban J. 2006. Arsenic counteracts human immunodeficiency virus type 1 restriction by various TRIM5 orthologues in a cell type-dependent manner. J Virol 80(4):2051–2054.

Sikorski EE, McCay JA, White KL Jr, Bradley SG, Munson AE. 1989. Immunotoxicity of the semiconductor gallium arsenide in female B6C3F1 mice. Fund Appl Toxicol 13(4):843–858.

Soto-Peña GA, Luna AL, Acosta-Saavedra L, Conde P, López-Carrillo L, Cebrián ME, et al. 2006. Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic. FASEB J 20(8):779–780.

Subbarayan PR, Lima M, Ardalan B. 2007. Arsenic trioxide/ascorbic acid therapy in patients with refractory metastatic colorectal carcinoma: a clinical experience. Acta Oncol 46(4):557–561.

Tanvetyanon T, Nand S. 2004. Herpes zoster during treatment with arsenic trioxide. Ann Hematol 83(3):198–200.

Uede K, Furukawa F. 2003. Skin manifestations in acute arsenic poisoning from the Wakayama curry-poisoning incident. Br J Dermatol 149(4):757–762.

Walsh D. 1900. Arsenic in beer. Lancet 2:1662.

Watanabe K, Shimamura T, Shigeta S. 1987. Enhancement of the immune response in vitro by arsenic. Int J Immunopharmacol 9(3):411–415.