Abstract. Non-relativistic conformal ("Schrödinger") symmetry is derived in a Kaluza-Klein type framework. Reduction of the massless Dirac equation from 5D Minkowski space yields Lévy-Leblond’s non-relativistic equation for a spin 1/2 particle. Combining with the osp(1,1) SUSY found before provides us with a super-Schrödinger symmetry.

1. Introduction.
Twenty years ago Niederer, Hagen, and Jackiw, [1] found that the maximal invariance group of the Schrödinger equation of a free, non-relativistic particle was larger than just the Galilei group and contains in fact two more ‘conformal’ generators, namely

\[D = tH - \frac{1}{4}\{p, r\} \quad \text{and} \quad K = t^2 H - 2tD + \frac{m^2}{2}r^2 \]

(1.1) dilatations expansions

These operators generate, with the Hamiltonian \(H = p^2/2m \), an \(o(2,1) \) symmetry algebra. Adding the Galilei group yields the Schrödinger group (2.4).

That the Schrödinger equation has a symmetry larger than the Galilei group is in contrast with the relativistic case, where the free Klein-Gordon equation admits the Poincaré group as symmetry, and the conformal group \(o(4,2) \) only occurs for massless particles.

The \(o(2,1) \) in Eq. (1.1) is also a symmetry for a charged, spin 0 particle in a Dirac monopole field [2] and even for the Pauli Hamiltonian

\[H = \frac{1}{2m} \left(\pi^2 - q \frac{r_3}{r^2} \right), \quad \pi = -i\nabla - qA_D \]

(1.2) of a non-relativistic spin \(\frac{1}{2} \) particle in the field of a Dirac monopole [3]. Eq. (1.2) has, furthermore, a superconformal symmetry: the fermionic charges

\[Q = \frac{1}{\sqrt{2m}} \pi.\sigma \quad \text{and} \quad S = \sqrt{\frac{m}{2}} r.\sigma - tQ \]

(1.3) close into the symmetry algebra \(osp(1,1)_{superconf} \) (see eqn. (3.6) below).

It was argued [4-5] that the proper arena for non-relativistic physics is extended ‘Bargmann’ spacetime \(M \), endowed with a metric \(g \) with signature \((-,+,+,+,+))\), and with a covariantly-constant null vector \(\xi \). Classical motions are massless

(1) In Proc. XXIth Int. Conf. on Diff. Geom. Meths. in Phys., Nankai’92. Editors C. N. Yang, M. L. Ge, X. W. Zhou. Int. J. Mod. Phys. A (Proc. Suppl.) 3A:339-342 (1993). Singapore: World Scientific.
geodesics in M and hence *conformally invariant*. Our construction differs from Kaluza-Klein theory in that the extra dimension is null, rather than space-like.

2. Spinless particles.

For a spinless, free particle the extended space is $M = \{t, r, s\} = \mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}$, endowed with the flat metric $g_{\mu\nu}dx^\mu dx^\nu = dr^2 + 2dt ds$, and with the null Killing vector $\xi = \partial_s$. Viewing the wave function as an equivariant function on extended space, $\partial_s \Phi = im\Phi$, the free Schrödinger equation $-\Delta \varphi = 2mi\partial_t \varphi$ (where Δ is the Laplacian on ordinary 3-space) can be written as

$$
\Delta_g \Phi = 0.
$$

g being the Laplacian on M and $\Phi = e^{ims}\varphi$. Consider now those ξ-preserving conformal isometries C of M,

$$
C^* g = \Omega^2 g, \quad C^* \xi = \xi.
$$

called *non-relativistic conformal transformations*. For a free particle for example, the conformal diffeomorphisms form $O(5, 2)$ which is reduced by the ξ-constraint to a 13 dimensional subgroup. Its infinitesimal action on extended spacetime $\{t, r, s\}$ is

$$
(\kappa t^2 + \delta t + \epsilon, \omega \times r + (\frac{\delta}{2} + \kappa t)r + \beta t + \gamma, -\frac{1}{2}kr^2 + \beta r + \eta),
$$

where $\omega \in so(3)$, $\beta, \gamma \in \mathbb{R}^3$, $\epsilon, \delta, \kappa, \eta \in \mathbb{R}$. This is the extended Schrödinger algebra, with ω representing rotations, β Galilei boosts, γ space-translations, ϵ time-translations, δ dilatations, κ expansions, and η translations in the vertical direction.

The associated conserved quantities L, b, p, H, D, K and m satisfy the commutation relations of the extended Schrödinger algebra,

$$
[L, L] = iL \quad [L, b] = ib \quad [L, p] = ip \quad [L, H] = 0
$$

$$
[b, H] = ip \quad [b, b] = 0 \quad [b, p] = im \quad [p, p] = [p, H] = 0
$$

$$
[H, D] = iH \quad [H, K] = 2iD \quad [D, K] = iK
$$

$$
[p, D] = \frac{i}{2}p \quad [b, D] = -\frac{i}{2}b \quad [p, K] = -ib \quad [b, K] = 0
$$

$$
[L, K] = 0 \quad [L, D] = 0 \quad [b, K] = 0
$$

and all generators commute with m. The action of conformal transformations on a wavefunction can be deduced from that of $O(2, 5)$ on M, yielding a representation of the extended Schrödinger group.

Another application is provided by the harmonic oscillator. The Bargmann space is again $M = \mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}$, endowed with the metric $g = dx^2 + 2ds dt - \omega^2 r^2 dt^2$. Now the transformation $f : (t, x, s) \mapsto (\tau, \xi, \sigma)$ where

$$
\tau = \frac{1}{\omega} \tan \omega t, \quad \xi = \frac{x}{\cos \omega t}, \quad \sigma = s - \frac{\omega r^2}{2} \tan \omega t
$$
satisfies \(f^*(d\xi^2 + 2d\sigma d\tau) = (\cos \omega t)^{-2}g \), so that (every half period of) the harmonic oscillator is mapped onto a free motion. The two systems have therefore the same symmetries [6].

Electromagnetic fields can be included as external fields. We only consider the theory obtained by minimal coupling, \(\partial_t \mapsto \partial_t + ieV, \ p \mapsto \pi = p - eA \). Those conformal space-time symmetries which preserve the electromagnetic fields will still act as symmetries.

For example, the Bargmann space of a Dirac monopole is \(\{(t, r, s)\} = \mathbb{R} \times \mathbb{R}^3 \setminus \{0\} \times \mathbb{R} \), with the flat metric above. Its conformal symmetries form the subgroup of the Schrödinger group which preserves the origin and are readily identified with \(SO(3) \times SL(2, \mathbb{R}) \), generated by the angular momentum \(L = r \times \pi - q\hat{r} \), and by \(H = \pi^2/2m \), and \(D \) and \(K \) in (1.1). Since they also preserve the electromagnetic field, they are symmetries.

3. Spinning particles and Supersymmetry.

Chosing Dirac matrices to satisfy \(\{\gamma^\mu, \gamma^\nu\} = 2g^{\mu\nu} \) on 5-dimensional extended space, spin \(\frac{1}{2} \) particles are described by the massless minimally coupled Dirac equation,

\[
\hat{D}\Psi \equiv \gamma^\mu D_\mu \Psi = 0,
\]

Using the particular form of the Bargmann metric, one gets the Lévy-Leblond [7] equation

\[
\sigma \cdot \pi \varphi + 2m\chi = 0
\]

\[
(i\partial_t - eV)\varphi - \sigma \cdot \pi \chi = 0
\]

Since

\[
\hat{D}^2 = \left[2m(i\partial_t - eV) - \pi^2 - e\sigma \cdot B \right],
\]

each component satisfies the Pauli equation.

Since we are working with the massless Dirac equations, all \(\xi \)-preserving conformal transformations of extended space are symmetries. For a free particle, we get an irreducible representation of the centrally extended Schrödinger group [8].

For the Dirac monopole, the origin-preserving subgroup \(SO(3) \times SL(2, \mathbb{R}) \) of the Schrödinger group yields the bosonic symmetry algebra for the Lévy-Leblond equation and thus also for its square, the Pauli equation.

For an arbitrary static magnetic field \(A \), the helicity operator

\[
Q = \frac{1}{\sqrt{2m}} \sigma \cdot \pi
\]

is conserved, \([Q, \hat{D}] = 0\). Commuting the free helicity operator \(Q = \sigma \cdot p \) with the generators of the Schrödinger group yields two new supercharges, namely

\[
\Sigma = i[Q, b] = \sqrt{\frac{m}{2}} \sigma \quad \text{and} \quad S = -i[K, Q] = \frac{1}{\sqrt{2m}} \sigma \cdot b.
\]
The commutation relations are deduced from those of the extended Schrödinger group. This yields, for a free article with spin 1/2, the ‘super-Schrödinger algebra’ [9] with commutation relations (2.4) (with the total angular momentum, $J = L + \frac{1}{2} \sigma$, replacing L), supplemented with

\[
\begin{align*}
\{Q, D\} &= \frac{i}{2} Q \\
\{Q, J\} &= 0 \\
\{Q, b\} &= -i \Sigma \\
\{Q, p\} &= 0 \\
\{Q, H\} &= 0 \\
\\end{align*}
\]

(3.6)

\[
\begin{align*}
\{S, J\} &= 0 \\
\{\Sigma, J\} &= i \Sigma \\
\{S, p\} &= i \Sigma \\
\{S, K\} &= 0 \\
\{Q, Q\} &= 2 H \\
\{Q, S\} &= -2 D \\
\{S, S\} &= 2 K \\
\{\Sigma, \Sigma\} &= m \\
\{\Sigma, Q\} &= p \\
\{\Sigma, S\} &= b \\
\end{align*}
\]

Having Q act on the o(2,1) subalgebra yields an osp(1,1) sub-superalgebra spanned by H, D and K and by the odd charges Q and S. These are the symmetries which remain unbroken when a Dirac monopole is added [3].

Acknowledgement. I am indebted to C. Duval and G. W. Gibbons in collaboration with whom these results were obtained.

References

[1] U. Niederer, Helv. Phys. Acta 45, 802 (1972); C. R. Hagen, Phys. Rev. D5, 377 (1972); R. Jackiw, Phys. Today 25, 23 1972.

[2] R. Jackiw, Ann. Phys. (N. Y.) 129, 183 (1980).

[3] E. D’Hoker and L. Vinet, Phys. Lett. 137B, 72 (1984). See G. Gibbons, R.H. Rietdijk, and J.W. van Holten, Nucl. Phys. B404, 42 (1993) [hep-th/9303112]; De Jonghe, A.J. Macfarlane, K. Peeters, J.W. van Holten, Phys. Lett. B359, 114 (1995) [hep-th/9507046]; P. A. Horvathy, Rev. Math. Phys. 18, 329 (2006) [hep-th/0512233] for further developments. Non-linear supersymmetries appear in Correa et al. arXiv: 0801.1671 [hep-th] and in arXiv: 0806.1614 [hep-th].

[4] C. Duval, G. Burdet, H. P. Künzle and M. Perrin, Phys. Rev. D31, 1841 (1985); C. Duval, in Proc. XIVth Int. Conf. Diff. Geom. Meths. in Math. Phys., Salamanca ’85, Garcia, Pérez-Rendón (eds). Springer LNM 1251, p. 205 Berlin (1987); in Proc.’85 Clausthal Conf., Barut and Doebner (eds), Springer LNPhysics 261, p. 162 (1986); C. Duval, G. Gibbons and P. Horváthy, Phys. Rev. D43, 3907 (1991) and references therein.

[5] W. M. Tulczyjew, J. Geom. Phys. 2, 93 (1985); M. Omote, S. Kamefuchi, Y. Takahashi, Y. Ohnuki, in Symmetries in Science III, Proc ’88 Schloss Hofen Meeting, Gruber and Iachello (eds), p. 323 Plenum : N. Y. (1989).

[6] U. Niederer, Helv. Phys. Acta 46, 192 (1973); G. Burdet, C. Duval and M. Perrin, Lett. Math. Phys. 10, 255 (1985).
[7] J-M. Lévy-Leblond, Comm. Math. Phys. 6, 286 (1967).

[8] C. Duval, P. A. Horvathy and L. Palla, Annals Phys. 249, 265 (1996) [hep-th/9510114].

[9] J. P. Gauntlett, J. Gomis and P. K. Townsend, Phys. Lett. B248, 288 (1990). SuperSchrödinger symmetry has been found by M. Leblanc, G. Lozano, and H. Min, Ann. Phys. 219, 328 (1992) [hep-th/9206039] for Chern-Simons vortices. See C. Duval and P. A. Horváthy, J. Math. Phys. 35, 2516 (1994) [hep-th/0508079] for a systematic construction of non-relativistic supersymmetries, and M. Sakaguchi and K. Yoshida arXiv:0805.2661 [hep-th] for further developments.