EPR and Linear GUP

Ahmed Farag Ali

\[\Delta \text{ Dept. of Physics, Benha University, Benha 13518, Egypt} \]
\[\nabla \text{ Essex County College, 303 University Ave, Newark, NJ, USA 07102}\]

It was found by Einstein, Podolsky, and Rosen that the non-simultaneous reality of position and momentum implies that quantum mechanics cannot be considered a complete theory of reality. We show that the linear generalized uncertainty principle (LGUP) implies a simultaneous reality of position and momentum as a possible state in quantum mechanics. This possible state may ameliorate the EPR argument.

The Einstein–Podolsky–Rosen (EPR) argument \[1\] proved through logical analysis that the description of physical reality provided by quantum mechanics is incomplete due to non-simultaneous reality of incompatible quantities (in particular position and momentum). This can be expressed by the non-commutative relation between position and momentum as follows

\[[x_i, p_j] = i \delta_{ij} \hbar \]

(1)

The position and momentum cannot have real eigenvalue for the same eigenstate. The EPR argument was extended by Bohm \[2\] into deriving paradox with Einstein’s theory of relativity. Simply if spin 0 particle decays into two particles, one particle of them will be measured with Spin 1/2 and simultaneously the other particle will be measured as Spin -1/2. This may imply simultaneous communication between the two particles that sets paradox with Einstein’s theory of relativity. Furthermore, The EPR was studied in details by Bell \[3\] where he defined Bell’s inequalities that give information about the correlations two entangled particles. It was found that Bell’s inequalities are violated by experiments \[1, 5\]. The violation of Bell’s inequalities has been interpreted as following: Either physical reality or locality is wrong. If quantum mechanics describes physical reality, it seems to be “non-local”.

It is clear that EPR sets a dilemma between locality and completeness. A possible way to solve this dilemma is to seek the possible physical state in which incompatible quantities (position and momentum) can have a simultaneous reality. Why do we seek this physical state? Because the physical reality in this state would be considered complete, and at the same time it could explain the instantaneous message between the two entangled particles according to the interpretation of the violation of Bell’s inequalities.

In order to find a physical state in which incompatible quantities (position and momentum) have simultaneous reality, we investigate the modified theories of the uncertainty principle that is collectively known as the generalized uncertainty principle (GUP). Various approaches to quantum gravity such as string theory, loop quantum gravity, and quantum geometry suggest a generalized form of the uncertainty principle (GUP) that implies the existence of a minimum measurable length. Several forms of the GUP that include non-relativistic and relativistic forms have been proposed in \[6–14\]. Phenomenological and experimental implications of the GUP have been investigated in low and high energy regimes. These include atomic systems \[12, 16\], quantum optical systems \[17\], gravitational bar detectors \[18\], gravitational decoherence \[19\], composite particles \[20\], astrophysical systems \[21\], condensed matter systems \[22\], and macroscopic harmonic oscillators \[24\]. Reviews of the GUP, its phenomenology, and its experimental implications can be found in \[24, 25\]. The GUP motivated by string theory takes the following form:

\[\Delta x \Delta p \geq \frac{\hbar}{2} (1 + \beta \Delta p^2) \]

(2)

where \(\beta = \beta_0 \ell_p^2 / \hbar^2 \), \(\beta_0 \) is a dimensionless constant, and \(\ell_p = 1.6162 \times 10^{-35} \text{m} \) is the Planck length. In 1926, Dirac realized that the commutator between any two variable in quantum mechanics is isomorphic to the Poisson bracket \[26\]. The isomorphic Poisson bracket to the quadratic GUP commutator is given by \[27\]

\[\{x_i, p_j\} = [\delta_{ij} + \beta \delta_{ij} p^2 + 2 \beta p_i p_j] \]

(3)

where \(x_i \) and \(p_j \) are now c-numbers. If we look at the quadratic GUP model in Eq. \[3\], we see that the Poisson bracket can equal to zero if we allow the right hand side of Eq. \[3\] to be zero as follows

\[\delta_{ij} + \beta \delta_{ij} p^2 + 2 \beta p_i p_j = 0 \]

(4)

For simplicity, let us consider one dimensional case

\[1 + 3 \beta p^2 = 0 \]

(5)

which has an imaginary solution as follows

\[p = \frac{i}{\sqrt{3} \beta} \]

(6)

Based on the isomorphism between Poisson bracket and quantum commutator, the solution in Eq. \[6\] set a
Let us look at another model that is known as Linear GUP which was motivated by doubly special relativity (DSR) that was proposed by Magueijo and Smolin [28]. DSR suggests the existence of an invariant length/energy scale in addition to the invariance of the speed of light. The corresponding uncertainty principle of doubly special relativity was introduced in [22] and was further investigated in [13, 30]. Moreover, when linear GUP was studied with Schrödinger equation, Klein-Gordon equation and Dirac equation, a discrete picture of space is obtained along with discrete picture of energy from the same wavefunction solutions [13, 30].

The discreteness results have been obtained in weak gravity cases [31] and strong gravity case [32]. The linear GUP reads

\[[x_i, p_j] = i\hbar \left[\delta_{ij} - \alpha \left(p\delta_{ij} + \frac{p_i p_j}{p} \right) \right] \]

where \(\alpha = \alpha_0 l_p / \hbar \), and \(\alpha_0 \) is a dimensionless constant.

The corresponding Poisson bracket of linear GUP takes the form

\[\{x_i, p_j\} = \left[\delta_{ij} - \alpha \left(p\delta_{ij} + \frac{p_i p_j}{p} \right) \right] \]

where \(x_i \) and \(p_j \) are c-numbers in Eq. [3]. Let us see a case at which Poisson bracket vanishes. This can be achieved if we allow for the right hand side of Eq. [8] to be equal to zero

\[\delta_{ij} - \alpha \left(p\delta_{ij} + \frac{p_i p_j}{p} \right) = 0 \]

Multiplying both sides of Eq. [9] by \(\delta_{ij} \), we get

\[3 - \alpha \left(3p + \frac{p_j^2}{p} \right) = 0 \]

where \(p^2 = p_i p_j \). Eq. [10] can be rearranged as follows

\[3 = 4\alpha p \]

This lead to a solution in 3 dimensional case as

\[p = \frac{3}{4\alpha} \]

This solution is the maximal energy that corresponds to a minimal length in the linear GUP model. This solution represents the simultaneous reality between \(x \) and \(p \) through the isomorphism or correspondence between the quantum commutator and Poisson bracket. This indicates that the position and momentum will commute with each other at the minimal length scale provided by linear GUP. This implies that incompatible quantities (position and momentum) would have simultaneous reality at the minimal length scale. This simultaneous reality induces a complete picture of quantum mechanics according to the logical analysis presented in EPR analysis [1]. On the other hand, this simultaneous reality may be used to explain the instantaneous and non-local correlations when measuring the spin of two entangled particles as we explained above which was set by violation of Bell’s inequalities. Possible conceptual connection between minimal length implied by Linear GUP and spin concept was studied in [34].

In the last decade, GUP has been used to explain several phenomenological and experimental points in low and high energy systems such as atomic systems [15, 16], quantum optical systems [17], gravitational bar detectors [18], gravitational decoherence [19], composite particles [20], astrophysical systems [21], condensed matter systems [22], and macroscopic harmonic oscillators [23]. In this letter, we show that linear GUP could explain the quantum entanglement and non-local correlations of quantum mechanics.

To conclude, linear GUP is found to generate a physical state of simultaneous reality between position (minimal length) and momentum (maximum energy). This state may contain a loophole to introduce a complete picture of quantum mechanics and the EPR argument still holds.

[1] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum mechanical description of physical reality be considered complete?” *Phys. Rev.* 47 (1935) 777–780.

[2] D. Bohm, “Quantum Theory. New York: Prentic-Hall,” 1951.

[3] J. S. Bell, “On the einstein podolsky rosen paradox.” *Physics Physique Fizika* 1 no. 3, (1964) 195.

[4] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” *Physical review letters* 23 no. 15, (1969) 880.

[5] A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” *Physical review letters* 49 no. 25, (1982) 1804.

[6] D. Amati, M. Ciafaloni, and G. Veneziano, “Can
Space-Time Be Probed Below the String Size?,"
Phys. Lett. B **216** (1989) 41–47

[7] L. J. Garay, “Quantum gravity and minimum length,”
Int. J. Mod. Phys. A **10** (1995) 145–166
arXiv:gr-qc/9403008

[8] F. Scardigli, “Generalized uncertainty principle in quantum gravity from micro – black hole Gedanken experiment,”
Phys. Lett. B **452** (1999) 39–44
arXiv:hep-th/9904025

[9] F. Brau, “Minimal length uncertainty relation and hydrogen atom,”
J. Phys. A **32** (1999) 7691–7696
arXiv:quant-ph/9905033

[10] A. Kempf, G. Mangano, and R. B. Mann, “Hilbert space representation of the minimal length uncertainty relation,”
Phys. Rev. D **52** (1995) 1108–1118

[11] M. Maggiore, “A Generalized uncertainty principle in quantum gravity,”
Phys. Lett. B **304** (1993) 65–69
arXiv:hep-th/9301067

[12] S. Capozziello, G. Lambiase, and G. Scarpetta, “Generalized uncertainty principle from quantum geometry,”
Int. J. Theor. Phys. **39** (2000) 15–22
arXiv:gr-qc/9910017

[13] A. F. Ali, S. Das, and E. C. Vagenas, “Discreteness of Space from the Generalized Uncertainty Principle,”
Phys. Lett. B **678** (2009) 497–499
arXiv:0906.5396 [hep-th]

[14] V. Todorinov, P. Bosso, and S. Das, “Relativistic Generalized Uncertainty Principle,”
Annals Phys. **405** (2019) 92–100
arXiv:1810.11761 [gr-qc]

[15] A. F. Ali, S. Das, and E. C. Vagenas, “A proposal for testing Quantum Gravity in the lab,”
Phys. Rev. D **84** (2011) 044013
arXiv:1107.3164 [hep-th]

[16] S. Das and E. C. Vagenas, “Universality of Quantum Gravity Corrections,”
Phys. Rev. Lett. **101** (2008) 221301
arXiv:0810.5333 [hep-th]

[17] I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and C. Brukner, “Probing Planck-scale physics with quantum optics,”
Nature Phys. **8** (2012) 393–397
arXiv:1111.1979 [quant-ph]

[18] F. Marin et al., “Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables,”
Nature Phys. **9** (2013) 71–73

[19] L. Petruzziello and F. Illuminati, “Quantum gravitational decoherence from fluctuating minimal length and deformation parameter at the Planck scale,”
Nature Commun. **12** no. 1, (2021) 4449
arXiv:2011.01255 [gr-qc]

[20] S. P. Kumar and M. B. Plenio, “On Quantum Gravity Tests with Composite Particles,”
Nature Commun. **11** no. 1, (2020) 3900
arXiv:1908.11164 [quant-ph]

[21] H. Moradpour, A. H. Ziaie, S. Ghaffari, and F. Feleppa, “The generalized and extended uncertainty principles and their implications on the Jeans mass,”
Mon. Not. Roy. Astron. Soc. **488** no. 1, (2019) L69–L74
arXiv:1907.12940 [gr-qc]

[22] A. Iorio, P. Pais, I. A. Elmashtad, A. F. Ali, M. Faizal, and L. I. Abou-Salem, “Generalized Dirac structure beyond the linear regime in graphene,”
Int. J. Mod. Phys. D **27** no. 08, (2018) 1850080
arXiv:1706.01332 [physics.gen-ph]

[23] M. Bawaj et al., “Probing deformed commutators with macroscopic harmonic oscillators,”
Nature Commun. **6** (2015) 7503
arXiv:1411.6410 [gr-qc]

[24] A. Addazi et al., “Quantum gravity phenomenology at the dawn of the multi-messenger era – A review,”
arXiv:2111.05659 [hep-ph]

[25] S. Hossenfelder, “Minimal Length Scale Scenarios for Quantum Gravity,”
Living Rev. Rel. **16** (2013) 2
arXiv:1203.6191 [gr-qc]

[26] P. A. M. Dirac, “On the theory of quantum mechanics,”
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character **112** no. 762, (1926) 661–677.

[27] L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, “The Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem,”
Phys. Rev. D **65** (2002) 125028
arXiv:hep-th/0201017

[28] J. Magueijo and L. Smolin, “Lorentz invariance with an invariant energy scale,”
Phys. Rev. Lett. **88** (2002) 190403
arXiv:hep-th/0112090

[29] J. L. Cortes and J. Gamboa, “Quantum uncertainty in doubly special relativity,”
Phys. Rev. D **71** (2005) 065015
arXiv:hep-th/0405285

[30] S. Das, E. C. Vagenas, and A. F. Ali, “Discreteness of Space from GUP II: Relativistic Wave Equations,”
Phys. Lett. B **690** (2010) 407–412
arXiv:1005.3368 [hep-th] [Erratum: Phys.Lett.B 692, 342–342 (2010)].

[31] S. Deb, S. Das, and E. C. Vagenas, “Discreteness of Space from GUP in a Weak Gravitational Field,”
Phys. Lett. B **755** (2016) 17–23
arXiv:1601.07893 [gr-qc]

[32] A. Das, S. Das, and E. C. Vagenas, “Discreteness of Space from GUP in Strong Gravitational Fields,”
Phys. Lett. B **809** (2020) 135772
arXiv:2006.05781 [gr-qc]

[33] A. F. Ali, “Minimal Length in Quantum Gravity, Equivalence Principle and Holographic Entropy Bound,”
Class. Quant. Grav. **28** (2011) 065013
arXiv:1101.4181 [hep-th]

[34] A. F. Ali and B. Majumder, “Discreteness of space from anisotropic spin–orbit interaction,”
Eur. Phys. J. C **81** no. 4, (2021) 360
arXiv:2104.14563 [gr-qc]