INTRODUCTION

Gastrointestinal (GI) perforation is a typical disease requiring urgent surgical treatment. It is a life-threatening condition, which reportedly has a mortality rate of 20% despite advances in surgical skill.[1,2] Clinical outcomes after surgery for GI perforation are known to be affected by various factors such as cause of perforation, underlying comorbidities, operative findings, and nutritional status. Hypoalbuminemia is a known risk factor for in-hospital mortality after surgery for GI perforation.[3,4] It is a representative biochemical parameter that is considered to reflect nutritional status; however, it is reported that hypoalbuminemia is not suitable for accurate nutritional assessment because it...
is easily affected by an acute phase response in critically ill patients.[5,6] According to a study conducted by Putwatana et al. [7] a hypoalbuminemia level of less than 3.5 g/dL is a risk factor for complications after major abdominal surgery, but hypoalbuminemia does not properly reflect a patient’s recent nutritional status because it can fluctuate depending on changes other than nutritional status such as water distribution or accumulation and disease statuses. Therefore, to demonstrate whether nutritional status affects clinical prognosis after surgery for GI perforation, the result of a comprehensive nutritional assessment, not that of a single parameter, should be included in the analysis.

This study aimed to evaluate the effect of malnutrition on in-hospital mortality after surgery for GI perforation and emphasized the importance of nutritional support in patients at risk of GI perforation.

MATERIALS AND METHODS

This was a retrospective cohort study whose protocol was approved by the institutional review board (IRB) of Seoul National University Hospital (SNUH) (IRB No. 1711-109-901). All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1964 and later versions and adhered to the relevant guidelines.

This study was performed on adult patients (age ≥18 years) who underwent gastrointestinal perforation at SNUH between 2013 and 2017. Data collection was performed by a retrospective review of electronic medical records.

Nutritional status was evaluated using the Seoul National University Hospital-Nutrition Screening Index (SNUH-NSI) developed by SNUH. SNUH-NSI consists of body weight change, appetite status, digestive symptoms, most recent laboratory results including serum levels of albumin, total cholesterol, hemoglobin, C-reactive protein (CRP) and total lymphocyte count within 2 weeks prior to hospitalization, age, body mass index (BMI), and diet type on the first day of hospitalization. Each factor is divided into three stages, R1, R2, and R3 according to the degree to which the severity of malnutrition is reflected. After combining all factors, the patients were finally classified into three groups: high-risk, moderate-risk, and low-risk groups. Initial nutritional assessment using SNUH-NSI was performed within 24 hours after admission for all hospitalized patients admitted to the SNUH (Table 1). This tool was validated by comparing the results of nutritional status assessment with those obtained from the Patient Generated Subjective Global Assessment (PG-SGA) from 174 patients who underwent gastrectomy.[8]

Data were collected regarding (1) patient demographics (age, sex, BMI, and underlying comorbidities), (2) preoperative factors (nutritional status, and laboratory test results), and (3) operation-related factors (type of operation, site of perforation, cause of perforation, and character of ascites).

While comparing patient characteristics, a P-value<0.05 was considered statistically significant. Statistical analyses were performed using IBM SPSS Statistics 22 (IBM Cor. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.).

RESULTS

Among the 489 included patients, 50 patients were classified into the in-hospital mortality group and the others were

Table 1. Seoul National University Hospital-Nutrition Screening Index (SNUH-NSI)

R1	R2	R3	
Appetite	Bad	-	Normal/good
Change of weight	Yes	-	No
Difficulty in disgesting	-	Yes	No
Diet type	Fluid diet	Soft blended diet of NPO	Normal regular diet
Serum-albumin (g/dL)	<2.8	2.8–3.3	≥3.3
Serum-cholesterol (mg/dL)	-	<130	≥130
Total lymphocyte count (cells/mm³)	<800	800–1,500	≥1,500
Hemoglobin (g/dL)	-	Male <13.0	Male ≥13.0
C-reactive protein (mg/dL)	-	>1	≤1
BMI (kg/m²)	<18 or ≥ 25	18–25	
Age (years)	>75	≤75	
Status of malnutrition	· P1; High-risk group of malnutrition; (more than 2 of R1) or (1 of R1 and more than 2 of R2)	· P2; Medium-risk group of malnutrition; (1 of R1) or (more than 2 of R2)	· P3; Low-risk group of malnutrition; the others

BMI = body mass index; R = risk factor; NPO = nothing by mouth.
classified into the survival group. There were no significant differences between the two groups in age, sex, BMI, and several comorbidities including hypertension, diabetes mellitus, coronary artery disease, and cerebrovascular disease. The in-hospital mortality group showed significantly higher rates of chronic liver disease (9 [18.0%] vs. 38 [8.7%], P=0.035) and chronic kidney disease (11 [22.4%] vs. 38 [8.7%], P=0.003) than the survival group (Table 2).

Nutritional status was poorer and the rate of high risk of malnutrition was higher (93.6% vs. 65.9%, P<0.001) in the in-hospital mortality group than in the survival group. Regarding preoperative laboratory tests, albumin (2.5±0.6 vs. 3.2±0.7, P<0.001) and total protein (4.9±1.3 vs. 6.1±2.4, P=0.001) levels were lower, and levels of blood urea nitrogen (35.1±20.1 vs. 22.1±15.3, P<0.001) and creatinine (1.83±1.46 vs. 1.27±1.27, P=0.004) were higher in the in-hospital mortality group than in the survival group (Table 3).

As for operation related factors, emergency operation (P=0.018), lymphoma as a cause of GI perforation (P<0.001), and fecal-contaminated ascites (P=0.014) were identified as associated factors with in-hospital mortality group (Table 4).

In the multivariate analysis, a high risk of malnutrition, lymphoma as a cause of GI perforation, preoperative hypoalbuminemia less than 2.8 g/dL, and high preoperative BUN were identified as risk factors for in-hospital mortality after surgery for GI perforation. In particular, in the case of patients with a high risk of malnutrition, it was confirmed that the hazard ratio was more than 5 times higher (HR=5.714, 95% CI 1.381–26.019, P=0.017) than that in those who are not at a high risk of malnutrition (Table 5). Moreover, in the receiver-operating characteristic (ROC) curve analysis using preoperative albumin, a representative factor reflecting nutritional status, the area under the curve was 0.790 (95% CI 0.726–0.852) (Figure 1).

DISCUSSION

Factors known as risk factors in the clinical course of peritonitis include age, sex, cause of peritonitis, severity of peritonitis, and characteristics of ascites. Mannheim et al. created a scoring system that predicts the prognosis of peritonitis by considering the degree of influence of each factor. However,

Table 2. Patient demographics

	Survival (n=439)	In-hospital mortality (n=50)	P-value
Age (years)	60.4±17.0	65.1±14.1	0.057
Sex (M:F)	261:178	26:24	0.311
BMI (kg/m²)	21.8±3.5	21.2±3.6	0.228
Comorbidities			
Hypertension	178 (40.6%)	23 (46.0%)	0.466
Diabetes	71 (16.2%)	11 (22.0%)	0.300
Chronic liver disease	38 (8.7%)	9 (18.0%)	0.035
Chronic kidney disease	38 (8.7%)	11 (22.4%)	0.003
Coronary artery disease	27 (6.2%)	6 (12.0%)	0.119
Cerebrovascular disease	18 (4.1%)	4 (8.0%)	0.266

Data are presented as mean±SD, or number (%). BMI = body mass index.

Table 3. Preoperative factors

	Survival (n=439)	In-hospital mortality (n=50)	P-value
Nutritional risk			< 0.001
Low risk	30 (6.9%)	0 (0.0%)	
Moderate risk	119 (27.2%)	3 (6.4%)	
High risk	288 (65.9%)	44 (93.6%)	< 0.001
Albumin (g/dL)	3.2±0.7	2.5±0.6	< 0.001
Total protein (g/dL)	6.1±2.4	4.9±1.3	0.001
Blood urea nitrogen (mg/dL)	22.1±15.3	35.1±20.1	< 0.001
Creatinine (mg/dL)	1.27±1.27	1.83±1.46	0.004
C-reactive protein (mg/dL)	13.1±12.1	14.9±11.1	0.349

Data are presented as mean±SD, or number (%).
based on the results of several studies conducted after the Mannheim Prognostic Index, unstable hemodynamic status, preoperative anemia, high CRP levels, and some of the parameters used to assess nutritional status were identified as new risk factors for mortality due to peritonitis.

Low preoperative albumin and cholesterol levels, known to reflect nutritional status, are the representative risk factors for in-hospital mortality after surgery for GI perforation. It is known that more energy than usual is required for recovery after surgery,[9,10] but in most cases of surgery due to GI perforation, patients should fast for a few days. Even if adequate parenteral nutrition is performed during this period, the baseline nutritional status of the patient is inevitably deteriorated, so the baseline nutritional status is very important to withstand this period. In this study, it was demonstrated that a high risk of malnutrition assessed using a composite tool, as well as preoperative hypoalbuminemia, is a risk factor for in-hospital mortality after surgery for GI perforation, and its hazard ratio was five times higher than that of each nutritional parameter.

SNUH-NSI is a nutrition screening tool for screening patients with a high risk of malnutrition. To assess the nutritional status of a patient, a comprehensive evaluation of various parameters such as biochemical, clinical, and dietary parameters is required rather than using a single parameter.[11] Comprehensive nutritional assessment tools include the Subjective Global Assessment (SGA) and Patient Generated-SGA (PG-SGA); however, it is difficult to select patients with malnutrition by conducting an in-depth nutritional assessment.
for all hospitalized patients.[12] For this reason, the Nutrition Risk Screening-2002 (NRS-2002), a tool that selects patients at risk of malnutrition through nutrition screening for many patients in a short time, was developed.[13] SNUH-NSI is also a type of nutrition screening tool, and all parameters except biochemical parameters should be entered during the history taking process at the time of hospitalization, and are automatically calculated and reported using these information. Therefore, it is efficient in terms of time required.

Lymphoma as a cause of perforation is another well-known risk factor for in-hospital mortality after surgery for GI perforation. GI perforation in lymphoma is a common complication. It is caused by the involvement of the tumor itself, but can also be caused by rapid tumor necrosis and tissue impairment after chemotherapy.[14-17] In the case of GI perforation after chemotherapy for lymphoma, it has been reported that the mortality rate is quite high because of the immunocompromised condition of the patient.[18,19] For this reason, preemptive surgical resection of the involved site before initiation of chemotherapy is considered in selected cases.

This study has several limitations. First, since GI perforation requires surgical treatment as soon as possible after diagnosis, there is no time for nutritional support before surgery. For the results of this study to be of great practical significance, preoperative intervention, for example, correction of hypoalbuminemia or transfusion, to improve nutritional status for a short period preoperatively, should have a positive effect on clinical outcomes. Second, since this was a retrospective study, there were missing data in some of the preoperative laboratory tests and operation-related factors. Moreover, there are many patients whose parameters already known to affect clinical prognosis, such as preoperative lactate level, were not measured. Therefore, such variables could not be included in the analysis.

In conclusion, a high risk of malnutrition assessed by composite index is significantly associated with in-hospital mortality after surgery for GI perforation. Prospective studies on whether correction of nutritional parameters during a short interval from diagnosis to emergency surgery can improve clinical prognosis are needed.

CONFLICTS OF INTEREST

The authors of this manuscript have no conflicts of interest to disclose.

ORCID

Seung-Young Oh, https://orcid.org/0000-0001-8281-2851
Hannah Lee, https://orcid.org/0000-0002-4001-1826
Ho Geol Ryu, https://orcid.org/0000-0001-8952-6049
Hyuk-Joon Lee, https://orcid.org/0000-0002-9530-647X

REFERENCES

1. Bielecki K, Kamiński P, Klukowski M. Large bowel perforation: morbidity and mortality. Tech Coloproctol 2002;6:177-82.
2. Pisanu A, Cois A, Uccheddu A. Surgical treatment of perforated diverticular disease: evaluation of factors predicting prognosis in the elderly. Int Surg 2004;89:35-58.
3. Lee JY, Lee SH, Jung MJ, Lee JG. Perioperative risk factors for in-hospital mortality after emergency gastrointestinal surgery. Medicine (Baltimore) 2016;95:e4530.
4. Shin R, Lee SM, Sohn B, Lee DW, Song I, Chai YJ, et al. Predictors of morbidity and mortality after surgery for intestinal perforation. Ann Coloproctol 2016;32:221-7.
5. Raguso CA, Dupertuis YM, Pichard C. The role of visceral proteins in the nutritional assessment of intensive care unit patients. Curr Opin Clin Nutr Metab Care 2003;6:211-6.
6. Martindale RG, McClave SA, Vanek VW, McCarthy M, Roberts P, Taylor B, et al.; American College of Critical Care Medicine; A.S.P.E.N. Board of Directors. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: executive summary. Crit Care Med 2009;37:1757-61.
7. Putwatana P, Reodecha P, Sirapo-ngam Y, Lertsithichai P, Sumboonnanonda K. Nutrition screening tools and the prediction of postoperative infectious and wound complications: comparison of methods in presence of risk adjustment. Nutrition 2005;21:691-7.
8. Kim Y, Kim WG, Lee HJ, Park MS, Lee YH, Kong SH, et al. Comparison of the impact of malnutrition by nutritional assessment and screening tools on operative morbidity after gastric cancer surgery. J Clin Nutr 2011;4:7-15.
9. Silva TA, Maia FCP, Zocrato MCA, Maurício SF, Correia MITD, Generoso SV. Preoperative and postoperative resting energy expenditure of patients undergoing major abdominal operations. JPEN J Parenter Enteral Nutr 2021;45:152-7.
10. Lobo DN, Gianotti L, Adiamah A, Barazzoni R, Deutz NEP, Dhatairya K, et al. Perioperative nutrition: recommendations from the ESPEN expert group. Clin Nutr 2020;39:3211-27.
11. Lee MS. Nutritional management in gastric cancer patients. J Korean Gastric Cancer Assoc 2003;3:172-7.
12. Charney P. Nutrition screening vs nutrition assessment: how do they differ? Nutr Clin Pract 2008;23:366-72.
13. Kondrup J, Rasmussen HH, Hamberg O, Stanga Z; Ad Hoc ESPEN Working Group. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr 2003;22:321-36.
14. Møller MB, Pedersen NT, Christensen BE. Diffuse large B-cell lymphoma: clinical implications of extranodal versus nodal presentation—a population-based study of 1575 cases. Br J Haematol 2004;124:151-9.
15. Vaidya R, Habermann TM, Donohue JH, Ristow KM, Maurer MJ, Macon WR, et al. Bowel perforation in intestinal lymphoma: incidence and clinical features. Ann Oncol
16. Vaidya R, Witzig TE. Incidence of bowel perforation in gastrointestinal lymphomas by location and histology. Ann Oncol 2014;25:1249-50.

17. Ahmed G, ElShafiey M, Abdelrahman H, Semary S, Elkinaai N, Romeih M, et al. Surgery in perforated pediatric intestinal lymphoma. Eur J Surg Oncol 2019;45:279-83.

18. Paulson S, Sheehan RG, Stone MJ, Frenkel EP. Large cell lymphomas of the stomach: improved prognosis with complete resection of all intrinsic gastrointestinal disease. J Clin Oncol 1983;1:263-9.

19. Baildam AD, Williams GT, Schofield PF. Abdominal lymphoma--the place for surgery. J R Soc Med 1989;82:657-60.