Pridham, J. P.

Non-commutative derived moduli prestacks. (English) Zbl 07759057
Adv. Math. 433, Article ID 109300, 51 p. (2023)

Summary: We introduce a formalism for derived moduli functors on differential graded associative algebras, which leads to non-commutative enhancements of derived moduli stacks and naturally gives rise to structures such as Hall algebras. Descent arguments are not available in the non-commutative context, so we establish new methods for constructing various kinds of atlases. The formalism permits the development of the theory of shifted bi-symplectic and shifted double Poisson structures in the companion paper [27].

MSC:
14A22 Noncommutative algebraic geometry
14A30 Fundamental constructions in algebraic geometry involving higher and derived categories (homotopical algebraic geometry, derived algebraic geometry, etc.)
14D20 Algebraic moduli problems, moduli of vector bundles

Keywords:
derived algebraic geometry; noncommutative algebraic geometry; moduli theory

Full Text: DOI arXiv

References:
[1] Balchin, S., Augmented homotopical algebraic geometry (2017)
[2] Benzeghib, B., Géométricité artinienne de l'champs des éléments de Maurer-Cartan (2012)
[3] Benzeghib, B., Un schéma simplicial de Grothendieck-Pridham (2013)
[4] Bridgeland, T., An introduction to motivic Hall algebras. Adv. Math., 1, 102-138 (2012) · Zbl 1234.14011
[5] Block, J.; Smith, A. M., The higher Riemann-Hilbert correspondence. Adv. Math., 382-405 (2014) · Zbl 1304.18036
[6] Dyckerhoff, T.; Kapranov, M., Higher Segal Spaces. Lecture Notes in Mathematics (2019), Springer: Springer Cham
[7] Efimov, A. I.; Lunts, V. A.; Orlov, D. O., Deformation theory of objects in homotopy and derived categories I: general theory. Adv. Math., 3, 399-421 (2009) · Zbl 1180.18006
[8] Goerss, P. G.; Jardine, J. F., Simplicial Homotopy Theory. Progress in Mathematics (1999), Birkhäuser Verlag: Birkhäuser Verlag Basel
[9] Hirschhorn, P. S., Model Categories and Their Localizations. Mathematical Surveys and Monographs (2003), American Mathematical Society: American Mathematical Society Providence, RI
[10] Hovey, M., Model Categories. Mathematical Surveys and Monographs (1999), American Mathematical Society: American Mathematical Society Providence, RI
[11] Kapranov, M., Noncommutative geometry based on commutator expansions. J. Reine Angew. Math., 73-118 (1998) · Zbl 0918.14001
[12] Kawamata, Y., On multi-pointed non-commutative deformations and Calabi-Yau threefolds. Compos. Math., 9, 1815-1842 (2018) · Zbl 1423.14017
[13] Keller, B., On differential graded categories, 151-190 · Zbl 1140.18008
[14] Katzarkov, L.; Kontsevich, M.; Pantev, T., Hodge theoretic aspects of mirror symmetry, 87-174 · Zbl 1206.14009
[15] Kontsevich, M.; Soibelman, Y., Notes on \((A_\infty)^{\text{infy}}\)-algebras, \((A_\infty)^{\text{infy}}\)-categories and non-commutative geometry, 153-219 · Zbl 1202.81120
[16] Lurie, J., Derived Algebraic Geometry (2004), M.I.T, or
[17] Manetti, M., Extended deformation functors. Int. Math. Res. Not., 719-756 (2002) · Zbl 1063.58007
[18] Orlov, D., Smooth and proper noncommutative schemes and gluing of dg categories (2014)
[19] Pridham, J. P., Unifying derived deformation theories. Adv. Math., 4, 2554-2556 (2011), corrigendum · Zbl 1223.14011
[20] Pridham, J. P., Notes characterising higher and derived stacks concretely (2011)
[21] Pridham, J. P., Derived moduli of schemes and sheaves. J. K-Theory, 1, 41-85 (2012) · Zbl 1257.14008
[22] Pridham, J. P., Representability of derived stacks. J. K-Theory, 2, 413-453 (2012) · Zbl 1257.14009
[23] Pridham, J. P., Presenting higher stacks as simplicial schemes. Adv. Math., 184-245 (2013) · Zbl 1328.14028
[24] Pridham, J. P., Shifted Poisson and symplectic structures on derived \((N) \)-stacks. J. Topol., 1, 178-210 (2017) · Zbl 1401.14017
[25] Pridham, J. P., An outline of shifted Poisson structures and deformation quantisation in derived differential geometry (2018)
[26] Pridham, J. P., A note on étale atlases for Artin stacks, Poisson structures and quantisation (2019)
[27] Puppe, V., A remark on “homotopy fibrations”. Manuscr. Math., 113-120 (1974) · Zbl 0277.55015
[28] Porta, M.; Yue, T. Y., Representability theorem in derived analytic geometry (2017)
[29] Schlessinger, M., Functors of Artin rings. Trans. Am. Math. Soc., 208-222 (1968) · Zbl 0167.49503
[30] Tabuada, G., Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories. C. R. Math. Acad. Sci. Paris, 1, 15-19 (2005) · Zbl 1060.18010
[31] Toda, Y., Non-commutative thickening of moduli spaces of stable sheaves. Compos. Math., 6, 1153-1195 (2017) · Zbl 1371.14018
[32] Toën, B., The homotopy theory of \(\text{dg} \)-categories and derived Morita theory. Invent. Math., 3, 615-667 (2007) · Zbl 1118.18010
[33] Toën, B.; Vezzosi, G., Homotopical algebraic geometry. I. Topos theory. Adv. Math., 2, 257-372 (2005) · Zbl 1120.14012
[34] Toën, B.; Vezzosi, G., Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Amer. Math. Soc., 902 (2008), x+224
[35] Weibel, C. A., An Introduction to Homological Algebra (1994), Cambridge University Press: Cambridge University Press

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.