An antibiotic-susceptible and hypermucoviscous clinical isolate of _Klebsiella variicola_ (K. variicola 8917) was obtained from the sputum of an adult patient. This work reports the complete draft genome sequence of _K. variicola_ 8917 with 103 contigs and an annotation that revealed a 5,686,491-bp circular chromosome containing a total of 5,621 coding DNA sequences, 65 tRNA genes, and an average G+C content of 56.98%.

In the last decade, a new hypervirulent (hypermucoviscous) variant of _Klebsiella pneumoniae_ has been described (1). Most isolates of hypervirulent _K. pneumoniae_ are very susceptible to antimicrobials (except ampicillin). However, a multidrug-resistant and hypervirulent variant of _K. pneumoniae_ has also been described as the next “superbug” (2). On the other hand, _Klebsiella variicola_ is a Gram-negative rod of the _Enterobacteriaceae_ family; it was described as a new bacterial species in 2004 (3). Currently, _K. variicola_ is known to be an endophyte of plants (3, 4), a symbiont in insects (5), and a pathogen in humans (3). A susceptible and multiresistant phenotype of _K. variicola_ has been identified, corresponding to an extended spectrum β-lactamase (ESBL)—producing _K. variicola_, encoding the SHV-type and CTX-M-15 genes (6, 7).

It is difficult to distinguish _K. variicola_ from _K. pneumoniae_ biochemically as bacterial species. Therefore, it is necessary to use molecular tools such as the _rpoB_ analysis. Accordingly, our team developed a multiplex PCR assay for the proper differentiation of these sister bacteria (7). Using this molecular tool, a screening for antibiotic-susceptible and multiresistant _K. pneumoniae_ clinical isolates was carried out in several Mexican hospitals (7). As a result, the susceptible _K. variicola_ clinical isolate 8917 was identified. This isolate was obtained from the sputum of a 76-year-old man at the Hospital Regional Centenário de la Revolución Mexicana in Morelos, Mexico, in 2011. This isolate was initially identified as a susceptible (except to ampicillin) _K. pneumoniae_ isolate using a MicroScan Walkaway system (Dade Behring, West Sacramento, CA, USA). Subsequently, it was identified as _K. variicola_ using the M-PCR-1; this was confirmed by the phylogeny analysis of the _rpoB_ gene (7). The hypermucoviscous phenotype of _Klebsiella variicola_ isolate 8917 was determined using the semiquantitative string test (8) and then was considered for whole-genome sequencing.

A total genomic sample of _K. variicola_ isolate 8917 was extracted and purified using the DNeasy kit (Qiagen, Germany). The whole-genome sequence was generated using pyrosequencing on the 454 Roche FLX Titanium platform. The sequence data totaled 250,217 reads, with a range in length of 30 to 953 bp. Reads longer than 500 bp were used for _de novo_ assembly with the CLC Genomics Workbench version 4.0 (CLC bio). In total, 103 contigs with an _N_50 of 257,189 bp were obtained. The estimated genome size was 5,686,491 bp with a 20X coverage, and 99.93% of the bp were above Q40. Gene prediction and annotation were carried out using the bioinformatic MicroScope platform (9). A total of 5,621 coding DNA sequences and 65 tRNA genes were determined. The BLAST searching analysis of the _magA_, _rmpA_, and _rmpA2_ genes described in hypervirulent _K. pneumoniae_ turned out to be negative on the hypermucoviscous _K. variicola_ 8917 genome. However, the following virulence-associated determinants were positive with different amino acid identities: _uge_ (99.10%), _ureA_ (100%), _wabG_ (99.47%), _iroA_ (64.9%), _iutA_ (72.9%), _kiuABC_ (>98.6%), _mceG_ (53.1%), _mrkABCDFHIIJ_ (>86.8%), and _entB_ (99.6) and a nucleotide identity of 100% with _wzc-932_ (serotype). Further analyses are required to identify the genes involved in the hypermucoviscous phenotype on _K. variicola_ clinical isolate 8917.

Nucleotide sequence accession number. The annotated genome sequence is available at the European Nucleotide Archive under the accession number CEGG01000001.

ACKNOWLEDGMENT

This work was funded by the Consejo Nacional de Ciencia y Tecnología (CONACyT) (SEP-CONACYT grant 130224).

REFERENCES

1. Kong Q, Beanan JM, Olson R, MacDonald U, Shon AS, Metzger DJ, Pomakov AO, Russo TA. 2012. Biofilm formed by a hypervirulent (hypermucoviscous) variant of _Klebsiella pneumoniae_ does not enhance serum resistance or survival in an _in vivo_ abscess model. Virulence 3:309–318. http://dx.doi.org/10.4161/viru.20383.

2. Shon AS, BJaya RP, Russo TA. 2013. Hypervirulent (hypermucoviscous)
3. Rosenblueth M, Martínez L, Silva J, Martínez-Romero E. 2004. *Klebsiella variicola*, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27:27–35. http://dx.doi.org/10.1078/0723-2020-00261.

4. Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Budger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LF, Krogfelt KA, Struwe C, Triplett EW, Methé BA. 2008. Complete genome sequence of the N₂-fixing broad host range endophyte *Klebsiella pneumoniae* 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141. http://dx.doi.org/10.1371/journal.pgen.1000141.

5. Pinto-Tomás AA, Anderson MA, Suen G, Stevenson DM, Chu FS, Cleland WW, Weimer PJ, Currie CR. 2009. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123. http://dx.doi.org/10.1126/science.1173036.

6. Garza-Ramos U, Martínez-Romero E, Silva-Sánchez J. 2007. SHV-type extended-spectrum beta-lactamase (ESBL) are encoded in related plasmids from enterobacteria clinical isolates from Mexico. Salud Publica Mex 49:415–421. http://dx.doi.org/10.1590/S0036-36342007000600008.

7. Garza-Ramos U, Silva-Sánchez J, Martínez-Romero E, Tinoco P, Pina-Gonzales M, Barrios H, Martinez-Barnetche J, Gómez-Barreto RE, Tellez J. 2015. Development of a multiplex-PCR probe system for the proper identification of *Klebsiella variicola*. BMC Microbiol 15:64. http://dx.doi.org/10.1186/s12866-015-0396-6.

8. Fang CT, Chuang YP, Shun CT, Chang SC, Wang JT. 2004. A novel virulence gene in *Klebsiella pneumoniae* strains causing primary liver abscess and septic metastatic complications. J Exp Med 199:697–705. http://dx.doi.org/10.1084/jem.20030857.

9. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fèvre F, Longin C, Mornico D, Roche D, Rouy Z, Salvignol G, Scarpelli C, Thil Smith AA, Weiman M, Médigue C. 2013. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41:D636–D647. http://dx.doi.org/10.1093/nar/gks1194.