Counting stationary points of the loss function in the simplest constrained least-square optimization

Yan V. Fyodorov 1 and Rashel Tublin 1

1 King’s College London, Department of Mathematics, London WC2R 2LS, United Kingdom

February 18, 2022

Abstract

We use Kac-Rice method to analyze statistical features of an “optimization landscape” of the loss function in a random version of the Oblique Procrustes Problem, one of the simplest optimization problems of the least-square type on a sphere.

1 Introduction

One of the simplest optimization problems of the least-square type arising in the Multiple Factor Data Analysis is the following

Oblique Procrustes Problem: For a given pair of $M \times N$ matrices A and B find such $N \times N$ matrix X that the equality $B = AX$ holds as close as possible and columns $x_i \in \mathbb{R}^N$, $i = 1, \ldots, N$ are all of the same fixed length: $\|x\|_2 := \sqrt{\sum_i x_i^2} = \text{const}$.

For $M > N$ the associated system of linear equations is over-complete and a solution can be found separately for each column x by minimizing the

*The text is based on the presentation at the workshop “Random Matrix Theory: Applications in the Information Era”, 29 Apr 2019 – 3 May 2019, Krakow, Poland
loss/cost function

\[H(x) = \frac{1}{2} \|A x - b\|^2 := \frac{1}{2} \sum_{k=1}^{M} \left[\sum_{j=1}^{N} A_{kj} x_j - b_k \right]^2, \quad \|x\|_2 := \text{const}. \quad (1) \]

The problem was first analysed in that setting by Browne in 1967 [3], and then independently by numerical mathematicians (see e.g. [15, 16]) who used the Lagrange multiplier to take care of the spherical constraint. Introducing the Lagrangian \(L_{\lambda,x}(x) = H(x) - \frac{\lambda}{2}(x, x) \), with real \(\lambda \) being the Lagrange multiplier, the stationary conditions \(\nabla L_{\lambda,x}(x) = 0 \) yield a linear system:

\[A^T [A x - b] = \lambda x, \quad \Rightarrow x = (A^T A - \lambda I_N)^{-1} A^T b \]

(2)

We find it convenient to use the normalization such that the radius of the sphere is \(\|x\|_2 := \sqrt{N} \), with the spherical constraint yielding the equation for \(\lambda \) in the form:

\[b^T A \frac{1}{(A^T A - \lambda I_N)^2} A^T b = N \]

(3)

which is equivalent to a polynomial equation of degree 2\(N \) in \(\lambda \). Each real solution for the Lagrange multiplier \(\lambda_i \) corresponds to a stationary point \(x_i \) of the loss function \(H(x) = \frac{1}{2} \|A x - b\|^2 \) on the sphere \(x^2 = N \) and one can show that the order \(\lambda_1 < \lambda_2 < \ldots < \lambda_N \) implies \(H(x_1) < H(x_2) < \ldots < H(x_N) \) [3]. Thus the minimal loss is given by \(E_{\text{min}} = H(x_1) \).

Actually, the loss function (1) is one of the simplest examples of the “optimization landscape”, interest in which governs developing various search algorithms efficiently converging to the global minimum. To consider a “typical” landscape it makes sense to assume that the parameters of the model, i.e. the matrix \(A \) and the vector \(b \), are random. Geometrical and topological properties of random landscapes have general and intrinsic mathematical interest, see e.g. [12], and attracted considerable attention in recent years due to their relevance in the area of “deep learning” and optimization, see e.g. [5, 19]. Fruitful analogies with spin glasses where “energy landscapes” have been under intensive investigation for some time, see [1, 2, 4, 7, 8, 9, 13, 14], plays an important role in guiding the intuition in this area. In this context the goal of the present research is to investigate the simplest landscape Eq.(1) by counting the stationary points via the Lagrange multipliers \(\lambda_i, i = 1, \ldots, N \leq 2N \) and eventually find the minimal loss \(E_{\text{min}} \). For concreteness and analytical tractability we assume the entries
A_{kj} of $M \times N$, $M > N$ matrix A to be i.i.d. normal real variables such that $A^T A = W$ is $N \times N$ Wishart with the probability density

$$P_{N,M}(W) = C_{N,M} e^{-\frac{N}{2} \text{Tr} W} (\det W)^{\frac{M-N-1}{2}}$$ \hspace{1cm} (4)

We will also assume for convenience that the vector b is normally distributed: $b = \sigma \xi$ with $\sigma > 0$ and the components of $\xi = (\xi_1, \ldots, \xi_M)^T$ are mean zero standard normals.

2 Qualitative considerations and the Kac-Rice method.

The equation Eq.(5) for the Lagrange multiplier can be conveniently written in terms of N nonzero eigenvalues s_1, \ldots, s_N of $M \times M$ matrix $W(a) = A A^T$ and the associated eigenvectors v_i:

$$\sum_{i=1}^{N} \frac{s_i}{(\lambda - s_i)^2} (\xi^T v_i)^2 = \frac{N}{\sigma^2}$$ \hspace{1cm} (5)

The left-hand side is a positive function of λ having a single minimum between every consecutive pair of eigenvalues of $W(a)$. This implies there are 0 or 2 solutions of (5) (and 1 solution with probability zero) for λ between every consecutive pair of eigenvalues, plus two more solutions: one in $\lambda \in (-\infty, s_1)$ and another one in $\lambda \in (s_N, \infty)$. Note that the latter two solutions exist for any value of $\sigma \in [0, \infty]$, whereas by changing σ one changes the number of solutions available between consecutive eigenvalues. In particular, in the limit of vanishing noise (i.e. $\sigma \to 0$ hence $||b||_2 = 0$) every stationary point solution for the Lagrange multiplier corresponds to an eigenvalue s_n of the Wishart matrix, with, $x = \pm e_n$ being the associated eigenvectors (hence there are $2N$ stationary points). On the other hand when $\sigma \to \infty$ the ratio N/σ^2 in the right-hand side becomes smaller than the global minimum of the left-hand side in $[s_1, s_N]$. Then only two stationary points remain outside that interval. Obviously, in every particular realization the number of stationary points will gradually change between the two limits as a function of growing σ, forming a staircase $N_{st}(\sigma)$. Let us illustrate this on a simple example in the case of small $N = 5$, see Fig. 1.
This is exactly the “gradual topology trivialization” phenomenon discussed (as the function of magnetic field) for the standard GOE-based spherical model in [11] (see also [8,9]) by adopting formulas derived in the general case by Auffinger et al. [1,2]. It is quite easy to see from (5) that the trivialization happens on the scale $\sigma^2 \sim 1/N$ as only for such values the left hand-side is of the same order as the right-hand side for a generic $\lambda \in [s_l, s_{l+1}]$ (in our normalization the typical distance $|s_l - s_{l+1}| = O(1/N)$). When averaged over the realizations the staircase is replaced by smoothly decreasing function $\langle N_{st}(\sigma) \rangle$ which we will find explicitly using the Kac-Rice approach, and investigate its asymptotics as $N \to \infty$.

The number $N_{st}[a,b]$ of real solutions of the Lagrange equation Eq.(2), i.e. $A^T[Ax - b] - \lambda x = 0$ on the sphere $x^2 = N$ such that $\lambda \in [a, b]$ can be counted by employing the Kac-Rice type formula

$$N_{st}[a,b] = \int_{a}^{b} d\lambda \int \delta \left[A^T(Ax - b) - \lambda x \right] \delta(x^2 - N) \left| \det \begin{pmatrix} A^T A - \lambda I_N & x \\ -2x^T & 0 \end{pmatrix} \right| dx$$

(6)

Using Gaussianity of both the matrix entries $A_{ij} \sim \mathcal{N}(0,1)$ and the vector components $b \sim \mathcal{N}_M(0, I_M \sigma^2)$ and introducing the parameter $\delta = \frac{1}{2} \ln(1 + \sigma^2)$ one can eventually find the mean number of solutions as

$$\mathbb{E}\{N_{st}[a,b]\} = \int_{a}^{b} p(\lambda) d\lambda$$
with the density $p(\lambda)$ for $\lambda > 0$ given by

$$p(\lambda \geq 0) = 2\sqrt{N} \frac{e^{-\frac{M+N-1}{2}\delta}}{\sinh \delta} \left(\frac{N\lambda}{2\sinh \delta} \right) e^{\frac{\lambda^2}{2} \coth \delta \langle \rho_N(\lambda) \rangle} \sqrt{\lambda}$$

(7)

where $K_{\nu}(z)$ is the Bessel-Macdonald function, and $\langle \rho_N(\lambda) \rangle$ stands for the mean eigenvalue density of $N \times N$ real Wishart matrices W distributed according Eq.(4). Such density for any values $M \geq N$ can be found in [17]. For negative values of the Lagrange multiplier λ we have instead:

$$p(\lambda < 0) = \frac{N!N^{(M-N)/2}}{2(M+N-3)/2} \frac{1}{\Gamma \left(\frac{N}{2} \right) \Gamma \left(\frac{M}{2} \right)} \frac{e^{-(M+N-1)\delta/2}}{\sinh \delta} e^{-\frac{1}{2}N|\lambda|(\coth \delta-1)|\lambda|^{(M-N)/2}}$$

$$\times \left[\sum_{j=0}^{N-1} \left(\frac{M-1}{N-1-j} \right) \frac{1}{j!} (N|\lambda|)^j \right] K_{\frac{M-N}{2}} \left(\frac{N|\lambda|}{2\sinh \delta} \right)$$

(8)

These formulas are exact, and we can compare them with the direct numerical simulations in Fig.2 for moderate matrix sizes.

![Fig.2. Evolution of the density $p(\lambda)$ for $N = 20$, $M = 30$ as the function of variance $\sigma^2 = 0.005; 0.25; 0.70$. The blue histograms correspond to 10000 realizations.]

Our next goal is to investigate the limit $N \& M \to \infty$.

2.1 Asymptotic analysis.

2.1.1 “Bulk” Scaling Regime: extensive number of stationary points

As $N \& M \to \infty$ in such a way that $1 < \mu = M/N < \infty$ the number of stationary points in the loss function landscapes shows three different regimes depending on the magnitude of the parameter $\delta = \frac{1}{2} \ln (1 + \sigma^2)$. The first
regime is associated with the “bulk scaling” corresponding to small enough $\delta \sim 1/N$ so that $\gamma = \frac{4N}{3} < \infty$. For such a regime one finds that the total number of solutions \mathcal{N} is extensive, namely:

$$\lim_{N \to \infty} \frac{\mathbb{E}\{\mathcal{N}\}}{N} = \int_{s_-}^{s_+} p_B(\lambda) \, d\lambda > 0, \quad s_{\pm} = (\sqrt{\mu} \pm 1)^2,$$

where the density function $p_B(\lambda)$ is expressed via the Marchenko-Pastur limiting eigenvalue density $p_{\text{MP}}(\lambda)$ for the Wishart ensemble as

$$p_B(\lambda) = 2p_{\text{MP}}(\lambda) \exp \left[-\frac{\gamma}{\lambda} (\lambda - s_-)(s_+ - \lambda) \right], \quad p_{\text{MP}}(\lambda) = \frac{1}{2\pi \lambda} \sqrt{(\lambda - s_-)(s_+ - \lambda)}$$

(10)

For $\gamma = 0$ we obviously have $\mathbb{E}\{\mathcal{N}\} = 2N$ whereas for $\gamma \gg 1$ we have asymptotically:

$$\lim_{N \to \infty} \frac{\mathbb{E}\{\mathcal{N}\}}{N} \bigg|_{\gamma \gg 1} \approx \frac{1}{4\sqrt{\pi}} \frac{\gamma^{3/2}}{\gamma^{3/2}} \ll 1$$

Evaluating the above for $\gamma \sim N^{2/3}$ (i.e. $\delta \sim N^{-1/3} \gg 1/N$) indicates that the mean number of stationary points for such γ becomes of order of unity as $N \gg 1$ defining a different scaling regime, cf. [11].

2.1.2 "Edge" Scaling Regime: finite number of stationary points

The density of Lagrange multipliers for $\delta \sim N^{-1/3}$ is dominated by the vicinities of the spectral edges

$$|\lambda - s_{\pm}| \sim N^{-2/3} \left(\frac{4s_{\pm}^2}{s_+ - s_-} \right)^{1/3} \xi$$

where the Marchenko-Pastur law is no longer valid and has to be replaced by a more precise “edge density” given by [6]

$$p_{\text{MP}}(\lambda) \longrightarrow \left(\frac{s_+ - s_-}{4Ns_{\pm}^2} \right)^{1/3} \rho_{\text{edge}}(\xi),$$

(11)

with

$$\rho_{\text{edge}}(\xi) = [Ai' (\xi)]^2 - \xi [Ai(\xi)]^2 + \frac{1}{2} Ai(\xi) \left(1 - \int_{\xi}^{\infty} Ai(\eta) \, d\eta \right)$$

(12)

where $Ai(\xi) = \frac{1}{2\pi i} \int_{\Gamma} e^{v^3}\, dv$ is the Airy function solving $Ai''(\xi) - \xi Ai(\xi) = 0.$
Introducing the scaling parameter $\omega = N^{1/3} \delta \left(\frac{s_1 - s_-}{4} \right)$ one then finds the total number of stationary points in this regime is finite as $N \to \infty$:

$$\lim_{N \to \infty} \mathbb{E}\{N\} = 2 \int_{-\infty}^{\infty} \left[\exp\left(-\frac{\omega^3}{3s_-} + \frac{\omega\zeta}{s_-^{1/3}} \right) + \exp\left(-\frac{\omega^3}{3s_+} + \frac{\omega\zeta}{s_+^{1/3}} \right) \right] \rho_{\text{edge}}(\zeta) \, d\zeta$$

(13)

In particular, that number tends to just $\lim_{N \to \infty} \mathbb{E}\{N\} = 2$ as long as $\omega \to \infty$, indicating that for any fixed and finite variance $0 < \sigma^2 < \infty$ only two stationary points typically exist: one maximum and one minimum, cf. [11].

Comparison with results numerical simulations is shown in Fig.4.

2.2 Large Deviations for the smallest Lagrange multiplier

For large $N \to \infty$, fixed $1 < \mu = M/N < \infty$ and fixed finite $\sigma^2 > 0$ the probability density for the smallest Lagrange multiplier λ_{min} has the Large
Deviation form:

\[p(\lambda_{\min} < s_-) \sim e^{-\frac{N}{2} \Phi(\lambda_{\min})}, \quad \Phi(\lambda) = L_1(\lambda) + L_2(\lambda) + \frac{(\mu + 1)}{2} \ln (1 + \sigma^2), \]

where \(s_- = (\sqrt{\mu} - 1)^2 \) is the 'Marchenko-Pastur' left edge and for \(\kappa = \frac{(\mu-1)\sigma^2}{2\sqrt{1+\sigma^2}} \)

we defined

\[L_1(\lambda) = (\mu - 1) \left\{ \frac{\sqrt{\lambda^2 + \kappa^2}}{\kappa} - \ln \left(\kappa + \sqrt{\lambda^2 + \kappa^2} \right) - \lambda \frac{\sqrt{(\mu - 1)^2 + \kappa^2}}{(\mu - 1)\kappa} \right\} \]

and

\[L_2(\lambda) = -\sqrt{(\lambda - s_-)(\lambda - s_+)} - 2 \ln \left(\mu + 1 - \lambda + \sqrt{(\lambda - s_-)(\lambda - s_+)} \right) \]

\[+ 2(\mu - 1) \ln \frac{\mu - 1 + \lambda + \sqrt{(\lambda - s_-)(\lambda - s_+)}}{2\sqrt{\mu}} \]

Comparison with the probability density of the smallest solution of Eq. (3) found numerically is shown in Fig.5.
One then finds that $\Phi(\lambda)$ is minimized for

$$\lambda = \lambda_* = (\sqrt{\mu} - \sqrt{1 + \sigma^2}) \left(\sqrt{\mu} - \frac{1}{\sqrt{1 + \sigma^2}} \right)$$

(16)

providing the most probable/typical value of the smallest Lagrange multiplier. Substituting this value to Eq. (2) and then to Eq. (1) eventually gives the most probable value of the minimal loss/error:

$$\lim_{N \to \infty} \frac{\mathcal{E}_{\text{min}}}{N} = \frac{1}{2} \left[\sqrt{\mu(1 + \sigma^2)} - 1 \right]^2$$

(17)

Fig. 5. The large deviation function for the smallest Lagrange multiplier vs. simulations for different matrix sizes N and different number of samples.

2.3 Open questions

In conclusion, we counted the mean number of stationary points of the simplest “least-square” optimization problem on a sphere via the Lagrange multipliers in various scaling regimes, and found the typical minimal loss \mathcal{E}_{min}.
The following questions remain open: (i) fluctuations of the counting function, (ii) large/small deviations of the minimal loss \(E_{\text{min}} \), (iii) gradient search dynamics on the sphere (iv) understanding the landscapes for ’least-square’ optimization of more general type, e.g. involving nonlinearities etc., cf. [10]. We hope to address some of these issues in future publications.

References

[1] A. Auffinger, G. Ben Arous. Complexity of random smooth functions on the high-dimensional sphere. *Ann. Prob.* 41, Issue 6, 4214–4247(2013)

[2] A. Auffinger, G. Ben Arous, and J. Cerny, Random matrices and complexity of spin glasses, *Commun. Pure. Appl. Math.* 66, 165–201 (2013).

[3] M. W. Browne. On Oblique Procrustes Rotation. *Psychometrika* 32 (2), 125–132, (1967)

[4] A. J. Bray and D. S. Dean. Statistics of Critical Points of Gaussian Fields on Large-Dimensional Spaces. *Phys. Rev. Lett.* 98, 150201 (2007)

[5] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun. The loss surfaces of multilayer networks. In *AISTATS*, 2015.

[6] P. J. Forrester. Large deviation eigenvalue density for the soft edge Laguerre and Jacobi \(\beta \)-ensembles. *J. Phys. A: Math. Theor.* 45 (14), 145201 (2012)

[7] Y.V. Fyodorov. Complexity of Random Energy Landscapes, Glass Transition, and Absolute Value of the Spectral Determinant of Random Matrices. *Phys. Rev. Lett.* 92, issue 24 , 240601 (2004); Erratum *ibid* 93, Issue 14 , 149901(E)(2004)

[8] Y. V. Fyodorov, High-Dimensional Random Fields and Random Matrix Theory, *Markov Proc. Rel. Fields* 21, no.3, 483–518 (2015).

[9] Y. V. Fyodorov, Topology trivialization transition in random non-gradient autonomous ODEs on a sphere, *J. Stat. Mech.: Theor. Exp.* 2016, 124003 (2016).
[10] Y. V. Fyodorov. A spin glass model for reconstructing nonlinearly encrypted signals corrupted by noise. *J Stat. Phys.*, **175**(5), 789–818 (2019)

[11] Y. V. Fyodorov and P. Le Doussal. Topology Trivialization and Large Deviations for the Minimum in the Simplest Random Optimization. *J. Stat Phys.* **154**, Issue 1-2, 466-490 (2014)

[12] Yan V. Fyodorov, Antonio Lerario, Erik Lundberg. On the number of connected components of random algebraic hypersurfaces. *J. Geometry and Physics* **95**, 1—20 (2015)

[13] Y. V. Fyodorov and C. Nadal. Critical Behavior of the Number of Minima of a Random Landscape at the Glass Transition Point and the Tracy-Widom Distribution *Phys. Rev. Lett.* **109**, 167203 (2012)

[14] Y. V. Fyodorov and I. Williams. Replica Symmetry Breaking Condition Exposed by Random Matrix Calculation of Landscape Complexity. *J. Stat. Phys.* **129**(5), 1081–1116 (2007)

[15] W. Gander. Least Squares with a Quadratic Constraint. *Numer. Math.* **36**, 291-307 (1981)

[16] Gene H. Golub and Urs von Matt. Quadratically constrained least squares and quadratic problems. *Numerische Mathematik* **59**, Issue 1, 561—580 (1991)

[17] G. Livan, M. Novaes, P. Vivo. Introduction to Random Matrices: Theory and Practice. (Springer, 2018)

[18] V. A. Marchenko and L. A. Pastur. Distribution of eigenvalues in certain ensembles of random matrices. *Mat. Sb.* **72**, 507–536 (1967)

[19] V. Ros, G. Ben Arous, G. Biroli, C. Cammarota. Complex energy landscapes in spiked-tensor and simple glassy models: ruggedness, arrangements of local minima and phase transitions. *Phys. Rev. X* **9**, 011003 (2019)