Experimental multistable states for small network of coupled pendula

Dawid Dudkowski1, Juliusz Grabski1, Jerzy Wojewoda1, Przemyslaw Perlikowski1, Yuri Maistrenko1,2,3 and Tomasz Kapitaniak1

Chimera states are dynamical patterns emerging in populations of coupled identical oscillators where different groups of oscillators exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in the large ensembles of oscillators, recently it has been shown that so-called weak chimera states may occur in the systems with small numbers of oscillators. Here, we show that similar multistable states demonstrating partial frequency synchronization can be observed in simple experiments with identical mechanical oscillators, namely pendula. The mathematical model of our experiment shows that the observed multistable states are controlled by elementary dynamical equations, derived from Newton’s laws that are ubiquitous in many physical and engineering systems. Our finding suggests that multistable chimera-like states are observable in small networks relevant to various real-world systems.

Chimera states correspond to the spatiotemporal patterns in which synchronized and phase locked oscillators coexist with desynchronized and incoherent ones1–12. These patterns have been reported both in simulations1–18 and experiments19–25 of the large networks of coupled oscillators with a variety of topologies. Recently, Ashwin & Burylko26 defined a weak chimera state as one referring to a trajectory in which two or more oscillators are frequency synchronized and one or more oscillators drift in phase and frequency with respect to the synchronized group. It has been found that these states can be observed in small networks as few as 4 phase oscillators (two groups of in-phase and antiphase oscillators)27–29.

Up to now weak chimera states in small networks have been reported in simulation and theory of coupled phase oscillators. Here, we show that similar multistable chimera-like states can be observed experimentally in small networks of more general oscillators. As a proof of concept, we use the network of four coupled externally excited double pendula. Each pendulum is characterized by the coexistence of rotational or oscillatory periodic solutions of different frequencies. We argue that such multistability implies the occurrence of these states and present evidence that they can persist for a positive measure set of coupling strength.

We consider the system of 4 identical coupled double pendula arranged into a cross configuration, as shown in Fig. 1(a). The lower pendula’s bobs (marked with symbols II, i = 1, 2, 3, 4) can rotate or oscillate around their horizontal axes at points D1, D2, D3, D4. The displacements of these bobs are given by \(\varphi_2(t) \). Lower bobs are connected to the upper bobs by the rotational pivots at D3. The upper bobs (I) can only oscillate around the horizontal axes marked by A1, A2, A3, and A4 and located on the base III. One of the bobs ends is connected to the base by the rotational pivot at A3, and the second ends are suspended on the springs characterized by the stiffness coefficient \(k_i \). The displacements of upper bobs are given by \(\varphi_1(t) \). The upper bobs I of length \(\eta_1 \) have mass \(m_1 \) and moment of inertia \(J_1 \), while the lower bobs II of length \(\eta_2 \) have mass \(m_2 \) and moment of inertia \(J_2 \). The detailed geometry is shown in Fig. 1(b). The viscoelastic damping is assumed in the pivots at D3 (with damping coefficient \(c_1 \) and \(c_2 \)) and A3 (with damping coefficient \(k_i \)). The base, mounted on the shaker, is excited in the vertical direction by the kinematic displacement, \(y = Acos \omega t \). The upper pendula’s bobs are coupled to the nearest neighbor by the plane springs (with stiffness coefficient \(c \)) shown in green. The similar system in which pendula have not been coupled i.e., the system without plane springs has been considered by Strzalko et al.30.

The dynamics of the system of Fig. 1(a,b) can be analyzed using the equations of motion (see Methods).

1Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, Poland. 2Institute of Mathematics and Centre for Medical and Biotechnical Research, National Academy of Sciences of Ukraine, Tereshchenkivska st. 3, 01030 Kyiv, Ukraine. 3Institut fur Theoretische Physik, Technische Universitat Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany. Correspondence and requests for materials should be addressed to T.K. (email: tomaszka@p.lodz.pl)
Results

In the absence of coupling (when one removes green planar springs and thus, coupling parameter $\alpha = 0$ in Equation (1) in Methods) it is possible to identify excitation parameters (A and ω) for which each double pendulum exhibits multistability. In Fig. 2 we present regions of existence of various $N:M$, where N is the number of rotation/oscillation of lower pendulum $H_{I,4}$ and M is the number of periods of excitations, eg., 1:1 means that pendula $H_{I,4}$ oscillate or rotate with the frequency of the excitation ω, 2:1 (pendula $H_{I,4}$ oscillate or rotate with the frequency of the excitation $1/2 \omega$), etc. One can identify six main regions, indicated from 1 to 6 in Fig. 2, in which the excited double pendulum is multistable. In region 1 three solutions exist: 1:1 rotations (above the green line), 1:4 oscillations (between the dashed red lines) and 1:2 rotations (between solid black lines). Region 2 is characterized by the co-existence of four solutions: 1:1 rotations (above the green line), 1:4 oscillations (between the dashed red lines), 1:2 rotations (between solid black lines) and 3:6 rotations (between solid orange lines). Four solutions are stable also in region 3:1:1 rotations (above the green line), 1:6 oscillations (between the dashed black lines), 1:2 rotations (between solid black lines), 1:3 rotations (between solid yellow lines). Three solutions: 1:1 rotations (above the green line), 1:6 oscillation (between dashed black lines), 1:2 rotation (between solid black lines) can be observed in region 4. Region 5 is another example of the co-existence of three solutions: 1:1 rotations (above the green line), 1:2 rotations (between solid black lines), 1:3 rotation (between solid yellow lines). Finally in region 6 we observe four solutions: 1:1 rotations (above green line), 1:4 oscillations (between the dashed black lines), 3:6 rotations (between solid orange lines).

In regions 1–6 each of four uncoupled double pendula can exhibit M (equal to 3 or 4) various independent dynamical responses, i.e., 1:1, 2:1 or 3:1 rotational and oscillatory solutions. The set of 4 pendula is characterized by M^4 configurations. One can see that the number of configurations grows exponentially with the number of pendula (i.e., in the case of n pendula we have M^n configurations) so there is spatial chaos\(^1\) in an uncoupled system. For sufficiently small coupling one can observe multistable chimera-like states which persist over the wide range of system parameters and can be captured experimentally. These states coexist with various cases of complete, phase and cluster synchronous states.

Experimentally observed multistable chimera-like states are illustrated in Fig. 3(a–f). Upper images present general view of the pendula’s configurations while lower plots show time series of the lower pendula bobs.

Figure 1. (a) Model of a set of ($N = 4$) double pendula located at an oscillating platform, (b) geometry of i-th double pendulum.

Figure 2. Regions of existence of different types of rotational or oscillatory responses of the uncoupled pendulum in the space of parameters A and ω. In regions 1–6 double pendulum is multi stable with co-existing solutions of different frequencies. In these regions for $\alpha > 0$ the multistable chimera-like states can be observed.
Figures present a kind of a stroboscope type images of the pendula motion in different cases. All experiments have been recorded using Vision Research Phantom v711 high speed camera. Typical recording speed was 1000 frames per second (fps) and for the purpose of a still photograph visualization a set of 5 of them every fifth frame: $5 \times 0.001 = 0.005$ seconds have been chosen. Then, the images were combined to a single image presenting all chosen images overlaid with the assumed transparency level. The wider area covered by the set of frozen images of each pendulum, the faster speed of its rotation or oscillation and vice versa. In Fig. 3(a–d) we show multistable states in which all the pendula rotate ($A = 0.01 \text{[m]}, \omega = 18\pi \text{[rad/s]}$–region 5 of Fig. 2). In Fig. 3(e,f) $A = 0.005 \text{[m]}, \omega = 10\pi \text{[rad/s]}$–region 1 of Fig. 2): (a) pendula 1 and 2 rotate with frequency $\frac{1}{3}\omega$, pendula 3 and 4 with frequency $\frac{1}{2}\omega$, (b) pendula 1, 3 and 4 rotate with frequency $\frac{1}{2}\omega$ and pendulum 2 with frequency $\frac{1}{3}\omega$, (c) pendulum 1 rotates with frequency $\frac{1}{3}\omega$, pendula 2 and 3 with frequency ω and pendulum 4 with frequency $\frac{1}{2}\omega$, (d) pendula 1, 2 and 4 rotate with frequency $\frac{1}{2}\omega$ and pendulum 3 with frequency ω, (e) pendula 1, 3 and 4 rotate with frequency $\frac{1}{3}\omega$, pendulum 2 oscillates with frequency $\frac{1}{2}\omega$, (f) pendula 1 and 4 rotate with frequency ω, pendulum 2 rotates with frequency $\frac{1}{2}\omega$ and pendulum 3 oscillates with the frequency $\frac{1}{4}\omega$.

Figure 3. Experimentally observed multistable chimera-like states: (a–d) $A = 0.01 \text{[m]}, \omega = 18\pi \text{[rad/s]}$–region 5 of Fig. 2), (e,f) $A = 0.005 \text{[m]}, \omega = 10\pi \text{[rad/s]}$–region 1 of Fig. 2): (a) pendula 1 and 2 rotate with frequency $\frac{1}{3}\omega$, pendula 3 and 4 with frequency $\frac{1}{2}\omega$, (b) pendula 1, 3 and 4 rotate with frequency $\frac{1}{2}\omega$ and pendulum 2 with frequency $\frac{1}{3}\omega$, (c) pendulum 1 rotates with frequency $\frac{1}{3}\omega$, pendula 2 and 3 with frequency ω and pendulum 4 with frequency $\frac{1}{2}\omega$, (d) pendula 1, 2 and 4 rotate with frequency $\frac{1}{2}\omega$ and pendulum 3 with frequency ω, (e) pendula 1, 3 and 4 rotate with frequency $\frac{1}{3}\omega$, pendulum 2 oscillates with frequency $\frac{1}{2}\omega$, (f) pendula 1 and 4 rotate with frequency ω, pendulum 2 rotates with frequency $\frac{1}{2}\omega$ and pendulum 3 oscillates with the frequency $\frac{1}{4}\omega$.
other (see movie W1). The case in which pendula 1, 3 and 4 rotate with frequency $\frac{1}{2}\omega$ and pendulum 2 with frequency $\frac{1}{2}\omega$ is shown in Fig. 3(b). Pendula 1 and 4 are synchronized in phase and pendulum 3 is in antiphase to pendula 1 and 4 (see movie W2). Configuration of Fig. 3(c) presents the case when pendulum 1 rotates with a frequency $\frac{1}{2}\omega$, pendula 2 and 3 with frequency ω and pendulum 4 with frequency $\frac{1}{2}\omega$. Pendula 2 and 3 are synchronized (see movie W3). Figure 3(d) shows the configuration in which pendula 1, 2 and 4 rotate with frequency $\frac{1}{2}\omega$ and pendulum 3 with frequency ω. Pendula 1 and 2 are synchronized in phase (see movie W4).

In Fig. 3(e,f) we observe multistable states in which the pendula show both rotational and oscillatory behavior ($A = 0.005$[m]), $\omega = 10\pi$ [rad/s] – region 1 of Fig. 2). Figure 3(e) shows the chimera-like state in which pendula 1, 2, 3 and 4 rotate with frequency $\frac{1}{2}\omega$ while pendulum 2 oscillates with frequency ω. Pendula 1 and 4 are synchronized in phase (see movie W5). The chimera-like state shown in Fig. 3(f) is characterized by 3 rotating and one oscillating pendula. Pendula 1 and 4 rotate with the frequency ω and are synchronized in phase. Pendula 2 and 3 respectively rotate with frequency $\frac{1}{2}\omega$ and oscillate with frequency ω (see movie W6).

The presented multistable states coexist with various synchronous states. Movies W7–W9 present the case of the complete synchronization of all pendula in rotational motion (W7), the case when all pendula oscillate with frequency ω and pendula 2, 3, 4 are synchronized in phase and pendulum 1 is in antiphase to them (W8) and the case when all pendulum oscillate with the frequency ω and pendula 1, 2 and 3 have two clusters of phase synchronized pendula respectively. These clusters are in antiphase to each other (W9).

In conclusion, we have constructed the simple experimental setup to explore the spatio-temporal dynamics of the small network of the locally coupled pendula. The nodes in the network are externally excited double pendula. Despite a small number of nodes, namely 4, we observe the formation of spatio-temporal patterns of multistable general oscillators relevant to various real-world systems.

Methods

The dynamics of the system of coupled pendula shown in Fig. 1(a) is given by:

$$
\begin{align*}
(I_1 + m_1\xi_1^2 + m_2\xi_2^2)\ddot{\varphi}_{12} + k_1\varphi_{11} + \frac{1}{2}\eta_1^2k_1\sin 2\varphi_{11} + m_2\xi_2^2(\varphi_{12}\sin(\varphi_{11} - \varphi_{12})) \\
-\varphi_2^2\cos(\varphi_{11} - \varphi_{12}) - (m_1\xi_1 + m_2\xi_2)(A\omega^2\cos\omega t + g)\cos\varphi_{11} + \alpha\eta_1(\varphi_{11} - \varphi_{(t+1)})) \\
+\alpha\eta_1(\varphi_{11} - \varphi_{(t+1)})) = 0, \\
(I_2 + m_2\xi_2^2)\ddot{\varphi}_{12} + m_2\xi_2^2(A\omega^2\cos\omega t + g)\sin\varphi_{11} \\
+ m_2\xi_2^2(\varphi_{12}\cos(\varphi_{11} - \varphi_{12}) + \varphi_{11}\sin(\varphi_{11} - \varphi_{12})) + \epsilon_2\varphi_{12} = 0,
\end{align*}
$$

where $i = 1, 2, 3, 4$.

Numerical simulations. We used the following parameter values: $I_1 = 4.521 \times 10^{-3}[\text{kgm}^2]$, $J_2 = 2.908 \times 10^{-3}[\text{kgm}^2]$, $m_1 = 0.5562[\text{kg}]$, $m_2 = 0.0166[\text{kg}]$, $\xi_1 = 0.153[\text{m}]$, $\xi_2 = 0.096[\text{m}]$, $s_1 = 0.180[\text{m}]$, $\eta_1 = 0.315[\text{m}]$, $s_2 = 0.145[\text{m}]$, $k_1 = 6850[\text{N/m}]$, $c_1 = 0.5 \times 10^{-4}[\text{Nms}]$ and $k_2 = 0.050[\text{Nms}]$. The parameters values used in experiment have been independently measured.

Eqs (1) have been integrated by the 4th order Runge-Kutta method. Bifurcation curves in Fig. 2 have been calculated using path following method AUTO32.

Experimental observations. In our experiments, the rig with four coupled double pendula has been mounted on the shaker LDS V780 Low Force Shaker (basic data are as follows: sine force peak 5120[N], max random force (rms) 4230[N], max acceleration sine peak $g_n = 111$[g], system velocity sine peak 1.9[m/s], displacement pk-pk $g_n = 25.4$[mm], moving element mass 4.7[kg]). The shaker introduces practically kinematic periodic excitation $A \cos \omega t$, where A and ω are the amplitude and the frequency of the excitation, respectively. All experiments were recorded at motion videos taken by Vision Research Phantom v711 high speed camera. Typical recording speed used was 1000 frames per second (fps). Different random initial conditions have been given to each pendulum.

References

1. Kuramoto, Y. & Battogtokh, D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. *Nonlinear Phen. Complex Syst.* 5, 380–385 (2002).
2. Abrams, D. M. & Strogatz, S. H. Chimera states for coupled oscillators. *Phys. Rev. Lett.* 93, 174102 (2004).
3. Abrams, D. M., Mirolo, R., Strogatz, S. H. & Wiley, D. A. Solvable model for chimera states of coupled oscillators. *Phys. Rev. Lett.* 101, 084103 (2008).
4. Martens, E. A., Laing, C. R. & Strogatz, S. H. Solvable model of spiral wave chimeras. *Phys. Rev. Lett.* 104, 044101 (2010).
5. Motter, A. E. Nonlinear dynamics: Spontaneous synchrony breaking. *Nat. Phys.* 6, 164–165 (2010).
6. Omelchenko, I., Maistrenko, Y. L., Hövel, P. & Schöll, E. Loss of coherence in dynamical networks: Spatial chaos and chimera states. *Phys. Rev. Lett.* 106, 234102 (2011).
7. Omelchenko, I., Riemensneider, B., Hövel, P., Maistrenko, Y. L. & Schöll, E. Transition from spatial coherence to incoherence in coupled chaotic systems. *Phys. Rev. E* 85, 026212 (2012).
8. Laing, C. R. The dynamics of chimera states in heterogeneous Kuramoto networks. *Physica D* 238, 15691588 (2009).
9. Laing, C. R. Chimeras in networks of planar oscillators. *Phys. Rev. E* 81, 066221 (2010).
10. Laing, C. R. Fronts and bumps in spatially extended Kuramoto networks. *Physica D* 240, 1960–1971 (2011).
11. Martens, E. A. Bistable chimera attractors on a triangular network of oscillator populations. *Phys. Rev. E* 82, 016216 (2010).
12. Martens, E. A. Chimeras in a network of three oscillator populations with varying network topology. *Chaos* **20**, 043122 (2010).
13. Wolfrum, M. & Omelchenko, O. E. Chimera states are chaotic transients. *Phys. Rev. E* **84**, 015201 (2011).
14. Sethia, G. C., Sen, A. & Atay, M. F. Clustered chimera states in delay-coupled oscillator systems. *Phys. Rev. Lett.* **100**, 144102 (2008).
15. Waller, I. & Kapral, R. Spatial and temporal structure in systems of coupled nonlinear oscillators. *Phys. Rev. A* **30**, 20472055 (1984).
16. Zakharova, A., Kapeller, M. & Scholl, E. Chimera death: Symmetry breaking in dynamical networks. *Phys. Rev. Lett.* **112**, 154101 (2014).
17. Jaros, P., Maistrenko, Yu. & Kapitaniak, T. Chimera states on the route from coherence to rotating waves. *Phys. Rev. E* **91**, 022907 (2015).
18. Dudkowski, D., Maistrenko, Yu. & Kapitaniak, T. Different types of chimera states: An interplay between spatial and dynamical chaos. *Phys. Rev. E* **90**, 032920 (2014).
19. Hagerstrom, A. M. *et al.* Experimental observations of chimera states in coupled-map lattices. *Nat. Phys.* **8**, 658 (2012).
20. Tinsley, M. R., Nkomo, S. & Showalter, K. Chimera and phase-cluster states in populations of coupled chemical oscillators. *Nat. Phys.* **8**, 662 (2012).
21. Martens, E. A., Thutupalli, S., Fourriere, A. & Hallatschek, O. Chimera states in mechanical oscillator networks. *Proc. Nat. Acad. Sciences* **110**, 10563 (2013).
22. Larger, L., Penkovsky, B. & Maistrenko, Y. L. Virtual chimera states for delayed-feedback systems *Phys. Rev. Lett.* **111**, 054103 (2013).
23. Larger, L., Penkovsky, B. & Maistrenko, Yu. Laser chimeras as a paradigm for multistable patterns in complex systems. *Nat. Commun.* **6**, 7752 (2015).
24. Kapitaniak, T., Kuzma, P., Wojewoda, J., Czolczynski, K. & Maistrenko, Yu. Imperfect chimera states for coupled pendula. *Sci. Rep.* **4**, 6379 (2014).
25. Olmi, S., Martens, E. M., Thutupalli, S. & Torcini, A. Intermittent chaotic chimeras for coupled rotators. *Phys. Rev. E* **92**, 03090(R) (2015).
26. Panaggio M. & Abrams, D. 2015 Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. *Nonlinearity* **28**, 67–87 (2015).
27. Ashwin, P. & Burylko, O. Weak chimeras in minimal networks of coupled phase oscillators. *Chaos* **25**, 013106 (2015).
28. Panaggio, M. J., Abrams, D. M., Ashwin, P. & Laing, C. Chimera states in networks of phase oscillators: the case of two small populations. *Phys. Rev. E* **93**, 012218 (2016).
29. Bick, Ch. & Ashwin, P. Chaotic weak chimeras and their persistence in coupled populations of phase oscillators. *Nonlinearity* **29**, 1468 (2016).
30. Strzalko, J., Grabski, J., Wojewoda, J., Wiercigroch, M. & Kapitaniak, T. Synchronous rotation of the set of double pendula: Experimental observations. *Chaos* **22**, 047503 (2012).
31. Nizhnik, L. P., Nizhnik, I. L. & Hasler, M. Stable stationary solutions in reaction-diffusion systems consisting of a 1-D array of bistable cells. *Int. J. Bifurcation Chaos* **12**, 261 (2002).
32. Doedel, E. J. & Oldeman, B. E. Auto-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, Concordia University, Montreal, Canada, 2009.

Acknowledgements

We thank B. Jagiello for the technical assistance in the experiments. This work has been supported by the Polish National Science Centre, MAESTRO Programme–Project No 2013/08/A/ST8/00/780.

Author Contributions

Y.M. and T.K. initiated this work, P.P., J.G. and D.D. performed the modeling and simulations, J.W. and T.K. designed the experiment, J.W. build experimental set up and performed experiments. D.D., J.G., J.W., P.P., Y.M. and T.K. wrote the paper.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Dudkowski, D. *et al.* Experimental multistable states for small network of coupled pendula. *Sci. Rep.* **6**, 29833; doi: 10.1038/srep29833 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/