Systematic review examining changes over time and variation in the incidence and prevalence of psoriasis by age and gender*

I.Y.K. Iskandar 1,2, R. Parisi 1,3, C.E.M. Griffiths 2,4 and D.M. Ashcroft 1,2 on behalf of the Global Psoriasis Atlas

1Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
2NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
3Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
4Dermatology Centre, Salford Royal NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK

Correspondence
Ireny Y.K. Iskandar.
Email: ireny.iskandar@manchester.ac.uk

Accepted for publication
24 April 2020

Funding sources
The Global Psoriasis Atlas has been supported by grants and sponsorship from the LEO Foundation, AbbVie, Eli Lilly UK and Company Limited, Novartis Pharma AG, UCB, Celgene and Almirall. The funders and sponsors had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; or the decision to submit the manuscript for publication.

D.M.A. and C.E.M.G. are funded in part by the National Institute for Health Research Manchester Biomedical Research Centre.

Conflicts of interest
C.E.M.G. has received honoraria and/or research grants from AbbVie, Almirall, AstraZeneca, BMS, Celgene, Eli Lilly, Galderma, LEO Pharma, Janssen, MSD, Novartis, Pfizer, Sandoz, Stiefel GSK, Sun Pharmaceuticals and UCB Pharma. D.M.A. has received grant funding from AbbVie, Almirall, Celgene, Eli Lilly, Novartis, UCB and the LEO Foundation. The remaining authors declare they have no conflicts of interest.

*Plain language summary available online

DOI 10.1111/bjd.19169

Summary

Background There is a lack of any overview of changes over time and variation in the epidemiology of psoriasis with age and between genders.

Objectives To perform a systematic review of published population-based studies on variations in psoriasis incidence and prevalence with age and between genders, and to explore trends in psoriasis epidemiology over time.

Methods Eleven electronic and regional databases were searched from their inception dates to October 2019. No language restrictions were applied. Studies were eligible if they reported on changes in psoriasis incidence and/or prevalence over time and/or by age group and gender.

Results In total 308 papers were critically appraised, from which 90 studies from 22 countries were included. Incidence data confirmed a clear bimodal age pattern in psoriasis onset, with the first and second peaks at around 30–39 and 60–69 years of age, respectively, and evidence suggesting that it presents slightly earlier in women than in men. Prevalence data showed an increasing trend with age until around 60 or 70 years, after which it decreases. Although there was lack of agreement on specific gender differences in psoriasis incidence and prevalence, a slight male predominance was reported in several studies. Studies worldwide suggested a stable or slightly decreasing trend in psoriasis incidence, while an increasing trend in psoriasis prevalence has been consistently reported. One particular challenge faced was the vastly different methodologies used in the included studies, which contributed to some of the heterogeneity of the results.

Conclusions Studies on changes over time in the occurrence of psoriasis have contributed to a greater appreciation of the increasing burden of the disease. However, further research is required to determine the reasons driving the increase in psoriasis prevalence over time.

What is already known about this topic?

- Systematic reviews examining the global epidemiology of psoriasis have explored variations in the incidence and prevalence of psoriasis in children and adults, and in the overall population.
- The extent to which the occurrence of psoriasis varies over time, as well as by gender and with age, has not been systematically explored.
Psoriasis has been recognized by the World Health Organization as a serious, disfiguring, disabling, noncommunicable disease that represents a significant public health challenge due to its psychological, social and economic burden. In 2016, the World Health Organization emphasized the need to understand the better the global epidemiology of psoriasis so as to inform policymakers and healthcare professionals on the public health impact of the disease.

The Global Psoriasis Atlas (GPA) aims to improve the understanding of psoriasis epidemiology and its comorbidities, and to provide a common benchmark on the global burden of psoriasis. Recently, the GPA group generated global, regional and country-specific estimates of the prevalence of psoriasis in children, in adults and in the overall population. However, the extent to which the incidence and prevalence of psoriasis vary with age, between genders and over time has not yet been systematically examined. In recent years, a number of studies have been published examining the epidemiology of psoriasis and providing data on temporal trends in the incidence and prevalence of this important skin disease. Such data are important in order to determine whether the global burden of the disease is changing in the context of an ageing population.

Therefore, the aims of this systemic review were to examine worldwide variations in the prevalence and incidence of psoriasis on the basis of age and gender, and to explore trends in its epidemiology over time.

Methods

Study design

This systematic review was conducted and reported in accordance with the PRISMA guidelines (Figure 1) and was registered with PROSPERO, a registry of systematic reviews (registration no. CRD42019160796).

Literature searches and selection

Eleven electronic (Embase, MEDLINE, Web of Science, SciELO, Korean Journal Databases, Russian Science Citation Index) and regional (Western Pacific Region Index Medicus, SaudiMedLit, Informit, IndMED and Health Research and Development Information Network) databases were searched systematically from their respective inception dates to October 2019. The search strategy incorporated three concepts using the following key search terms: ’psoriasis’ (’psoriasis’, ’psoriatic skin’, ’pustulosis’), ’incidence’ (’incident stud*’ or ’cohort stud*’) and ’prevalence’ (’prevalent stud*’ or ’cross-sectional stud*’).

There were no language restrictions and studies were limited to humans. Further details of the search strategy are provided in Appendix S1 (see Supporting Information).

Inclusion and exclusion criteria

Studies were included if they were population based and reported on changes in psoriasis prevalence and/or incidence by age and/or gender and/or over time. Conversely, studies using hospital or dermatology clinic case series; or specific subgroups of the population; or only focusing on psoriatic arthritis; or not providing sufficient information to calculate prevalence and/or incidence rates by age, by gender or over time were excluded.

Data extraction

The titles and abstracts of all records were independently screened for eligibility by two authors (I.Y.K.I. and R.P.). The full texts of papers deemed potentially eligible were critically appraised and assessed for eligibility. Any disagreement on the inclusion or exclusion of a paper between the two investigators was reviewed by a third investigator (D.M.A.) to reach consensus.

Data extracted from each study included citation data (title of the study, authors, publication year); study design (study aim, period, setting, database and disease codes, if used); study population (country, ethnicity, age group, gender); study methods [diagnostic method (e.g. dermatologist, physician or self-reported), case definition and validation]; outcome measure (incidence and/or prevalence); type of prevalence measure (point, period or lifetime); and study findings [number of people with psoriasis, number of people at risk and/or

What does this study add?

- Incidence data confirm a clear bimodal age pattern in psoriasis onset, with evidence suggesting it presents slightly earlier in women than in men.
- Psoriasis prevalence shows an increasing trend with age until 60 or 70 years, after which it decreases.
- There is lack of agreement on specific gender differences in psoriasis incidence and prevalence; however, several studies report a slight male predominance.
- The increasing trend in psoriasis prevalence, despite a stable or a slightly decreasing trend in its incidence, warrants further investigation.
Records identified through electronic databasea searching
\((n = 39\,659)\)

Records identified through regional databaseb searching
\((n = 14\,82)\)

Additional papers identified from screening reference list of eligible studies
\((n = 23)\)

Records before duplicates removed
\((n = 41\,164)\)

Duplicates removed
\((n = 11\,502)\)

Records after duplicates removed
\((n = 29\,662)\)

Records screened
\((n = 29\,662)\)

Records excluded
\((n = 29\,354)\)

Full-text articles assessed for eligibility
\((n = 308)\)

Full-text articles excluded
\((n = 218)\)

Studies included in the systematic review
\((n = 90)\)

Studies on incidence of psoriasis
\((n = 9)\)

Studies on prevalence of psoriasis
\((n = 69)\)

Studies on prevalence and incidence of psoriasis
\((n = 12)\)

Figure 1 PRISMA flow diagram detailing the stages of the systematic review and numbers of records included or excluded. aEmbase, MEDLINE, Web of Science, SciELO, Korean Journal Databases and Russian Science Citation Index. bWestern Pacific Region Index Medicus, SaudiMedLit, Informit, IndMED and Health Research and Development Information Network. cReasons for exclusion included: (i) studies not carried out on the general population (i.e. patients were identified from specific populations such as dermatology clinics, hospital admission/visits or specific subgroups of the population); (ii) studies not providing sufficient information to calculate prevalence and/or incidence rates for psoriasis; (iii) studies only focused on psoriatic arthritis; and (iv) studies not providing information on trends in prevalence and/or incidence over time, or information on the prevalence and/or incidence by age groups or gender.
denominator, values of the prevalence and/or incidence reported and their 95% confidence intervals (CIs)).

Quality assessment

An assessment of the quality of all included studies was performed using the Appraisal tool of Cross-Sectional Studies (AXIS). The tool includes 20 items pertaining to the identification of research aims, appropriateness of study design, use of valid measures and statistical analyses and consideration of potential bias. Studies were classified as having high, medium or low risk of bias, or unclear rating (if there was insufficient information) according to the overall quality of the study design, methods and reporting of the results.

Data analysis

Prevalence measures are presented as percentage values, while incidence rates are presented as the rate per 100 000 person-years. Values were checked for potential errors (when possible) on the basis of the number of cases of psoriasis and the population sample size. Missing information, such as the prevalence and/or incidence rates and their 95% CIs, were calculated when not reported in the study, if information on the number of cases of psoriasis and population sample size were provided. Nevertheless, it was not possible to estimate the 95% CIs for some studies due to the lack of information reported. Negative lower bounds of CIs were replaced by zero.

Results

Literature search

In total, 41 164 records were identified from searching the databases and reviewing the reference lists of eligible studies. Of the 308 studies that were critically appraised and assessed for eligibility, 90 studies met all eligibility criteria and were included in the systematic review (Figure 1). The characteristics of the included studies are summarized in Tables S1 and S2 (see Supporting Information). Nine studies reported on the incidence of psoriasis (Table S1), 69 studies reported on the prevalence of psoriasis (Table S2) and 12 studies reported on both incidence and prevalence. Data were available from 22 countries (Figure 2).

Quality assessment found that the majority of the included studies complied with most of the criteria of the AXIS tool (Table S3; see Supporting Information). However, 11 of the 90 studies were given high risk of bias as they met fewer criteria. Where an ‘unclear’ response was assigned, it was most commonly associated with lack of clarity in reporting.

Variation in incidence and prevalence by age

Only one study, conducted in the USA, reported on psoriasis incidence by age in children. This indicated that the incidence increased with age from 13.5 per 100 000 person-years at the age of 0–3 years to 53.1 per 100 000 person-years at the age of 14–17 years (Table 1). Despite higher estimates of psoriasis incidence in European countries compared with the USA, studies both in adults and for all ages showed bimodal trends of increasing psoriasis incidence with age up to either 30–39 or 35–44 years (UK, USA and Italy), which then decreased, before it increased again with a second peak at around either 60–69 or 65–74 years of age (UK, USA and Italy). The incidence of psoriasis then decreased towards the end of life (Tables 1 and 2). One recent study, from Israel, reported that the first peak in psoriasis incidence occurred at a slightly younger age (25–34 years) compared with the findings from other countries (Table 2).

Before the age of 9 years, the prevalence of psoriasis varied from 0% (China and Norway) to 0.55% (UK; Table S4; see Supporting Information), indicating that psoriasis is uncommon in children. There was an increasing trend in psoriasis prevalence with age in children, from 0.13% at the age of 0–2 years to 0.67% at the age of 14–18 years (Table S4). In adults, some studies showed a trend of increasing psoriasis prevalence with age up to either 20–29 or 30–39 years of age, which then decreased at the age of 40–49 years, before it increased again with a second peak at around either 50–59 or 60–69 years of age. However, most studies reported an increasing trend with age until around 60 or 70 years, after which the prevalence decreased (Table S4).

Variation in incidence and prevalence by gender

In children, although the overall incidence rate was lower in boys than in girls (27-9 vs. 43.9 per 100 000 person-years, respectively), this pattern was not consistent across all age bands (Table 1). In adults and in people of all ages, several studies reported a higher incidence in women than in men, but some reported the opposite finding (Table 1). Furthermore, the pattern in variation in psoriasis incidence between genders was not consistent over time (Table 2). When looking at variation in psoriasis incidence between genders by age bands in adults, the two peaks for age at onset in men more frequently occurred around 30–39 and 60–69 years of age, whereas in women they occurred more frequently around 18–29 and 50–59 or 60–69 years of age (Table 1).

There was no difference in the prevalence of psoriasis between boys and girls in Brazil and Taiwan. Contrarily, studies from Denmark, Germany and Sweden reported a prevalence measure that was slightly higher in girls than in boys (Table S5; see Supporting Information). An exception was the findings from one study in China, which reported a prevalence rate that was five times higher in girls than in boys. However, this study was conducted in adolescents (age 12–20 years). Likewise, for adults, several studies found higher prevalence rates in men than in women, but other studies reported contrasting
findings (Table S6; see Supporting Information).14,21,22,29,65–71 When examining variation in psoriasis prevalence between genders for all ages, the majority of the studies reported a higher prevalence rate in male than in female patients.16,18,23,24,30,33,34,36–38,40,51,72–81 However, studies from Denmark,31 Norway,17,25,82 Poland,83,84 Scotland16 and Sweden85 reported contrasting findings (Table S7; see Supporting Information). Nevertheless, the absolute magnitude of the difference between genders in most of the studies was very small, except for a study from Australia, which reported a prevalence rate in men that was almost double that in women.56 It is important to note that the patterns in variation in psoriasis prevalence between genders in adults and in people of all ages were not consistent across all age bands (Table S4; see Supporting Information).

Variation in incidence and prevalence over time

There has been lack of agreement about variation in psoriasis incidence over time. In children, although a study conducted in the USA reported an increasing trend in the incidence of psoriasis between 1970 and 1999 (from 40·8 to 62·7 per 100 000 person-years),9 data from Italy showed that the incidence of psoriasis was fairly constant between 2006 and 2012 (from 61·0 to 57·0 per 100 000 person-years; Table 3).86 In adults, while Icen et al.12 reported a steadily increasing trend in psoriasis incidence in the USA between 1970 and 1999 (from 78·9 to 10·5 per 100 000 person-years), Eder et al.87,88 (from 111·1 to 68·7 per 100 000 person-years between 2000 and 2015), Vena et al.61 (from 321·0 to 230·0 per 100 000 person-years between 2001 and 2005) and Wei et al.89 (from 42·0 to 30·3 per 100 000 person-years between 2001 and 2013) reported a steadily decreasing trend in psoriasis incidence in Canada, Italy and Taiwan, respectively (Table 2).

When examining trends in psoriasis incidence over time in people of all ages, data from Germany,41 the Netherlands,90 Israel,15,91 the UK43 and Russia92–94 demonstrate that psoriasis incidence either remains fairly stable or decreases slightly over time. However, in Denmark the incidence of psoriasis in people of all ages has been inconsistent over time, with a decrease in incidence from 140·1 to 104·0 per 100 000 person-years between 2003 and 2005, followed by an increase to 181·0 per 100 000 person-years in 2010, which then decreased to 151·2 per 100 000 person-years in 2012 (Table 4).31

Only one study, conducted in Italy, reported on variation of psoriasis prevalence over time in children, indicating an increasing trend in prevalence between 2006 and 2012 (from 0·09% to 0·22%; Table S5; see Supporting Information).86 In adults, Eder et al.87,88 (from 1·74% to 2·32% between 2000 and 2015) and Wei et al.89 (from 0·18% to 0·28% between 2000 and 2013) reported a steadily increasing trend in psoriasis prevalence in Canada and Taiwan, respectively (Table S6; see Supporting Information). A similar pattern of a steadily increasing trend in psoriasis prevalence in individuals of all ages has been reported in Germany,41 Israel,15 Korea,95,96 Russia,92–94 Taiwan97 and the UK43 (Table S7; see Supporting Information).

Discussion

This systematic review provides a comprehensive critique of published data on the worldwide variation of psoriasis incidence and prevalence on the basis of age, gender and passage of time. Studies reporting on the age-specific incidence of
psoriasis consistently showed a dual peak for psoriasis onset, with evidence suggesting that the two peaks for age at onset occur slightly earlier in women than in men. Studies reporting the age-specific prevalence of psoriasis showed an increasing trend with age until around 60 or 70 years of age, after which it decreases. There was no agreement on differences in psoriasis incidence and prevalence between genders. However, the absolute magnitude of the difference between genders observed in most of the studies was small. Studies consistently reported an increasing trend in psoriasis prevalence over time, while studies reporting on trends in psoriasis incidence reported a stable or a slightly decreasing trend, except for two studies from the USA, which reported a steadily increasing trend in psoriasis incidence.

Incidence data revealed a clear bimodal age pattern in psoriasis onset, with the first peak of psoriasis incidence around 30–39 years of age and a second peak around 60–69 years of age. This is entirely consistent with the accepted classification of chronic plaque psoriasis as ‘type I’ (early onset) and ‘type II’ (late onset) disease, which are defined as presenting at ≤ 40 and > 40 years of age, respectively. Furthermore, the results from this systematic

Table 1 Studies reporting incidence rates by gender in children and adults

Study	Country	Study period	Diagnostic method	Age (years)	People with Ps	Incidence rate per 100 000 person-years (95% CI)a
Children						
Tollefsen 2010a	USA	1970–1999	D/Ph	< 18	357	40.8 (36.6–45.1)b
				0–3	27	13.5 (11.4–15.6)b
				4–7	84	42.2 (40.4–44.5)
				8–10	69	40.0 (37.5–42.7)
				11–13	75	52.2 (49.9–54.8)
				14–17	102	53.1 (49.9–56.6)
Adults						
Pezzolo 2019a	Italy	2003–2004	SR	25–75+	302	302 (232–392)
				< 35	186	186 (95–365)
				35–44	342	342 (193–605)
				45–54	211	211 (110–435)
				55–64	385	385 (223–665)
				65–74	420	420 (253–697)
				> 74	–	–
Khalid 2013a	UK	2007–2009	Ph	18–80+	10 832	280 (280–290)b
				18–29	350	350 (320–380)
				30–39	320 (280–350)	
				40–49	320 (280–350)	
				50–59	320 (300–350)	
				60–69	320 (280–350)	
				70–79	290 (250–320)	
				≥ 80	160 (130–190)	
Tillett 2017a	UK	1998–2014	Ph	18–89	88 858	183 (182–184)
				18–29	186 (184–188)	
				29–39	193 (188–197)	
				30–40	182 (178–186)	
				40–49	158 (155–162)	
				50–59	200 (196–204)	
				60–69	217 (212–222)	
				70–79	196 (191–201)	
				≥ 80	145 (139–151)	
Icen 2009b	USA	1970–1999	D/Ph	≥ 18	1633	78.9 (75.0–82.9)b,c
				18–29	75.6	75.6 (68.0–82.8)b,c
				30–39	69.2	69.2 (63.5–75.0)
				40–49	73.6	73.6 (67.0–80.6)
				50–59	85.2	85.2 (78.5–91.8)b,c
				60–69	115.3	115.3 (103.1–129.0)
				70–79	77.9	77.9 (70.3–85.7)
				≥ 80	80.0	80.0 (72.5–87.5)

CI, confidence interval; D, dermatologist; Ph, physician; Ps, psoriasis; SR, self-reported. All values are as reported in the studies. Adjusted for age and/or gender. Rate adjusted by linear interpolation between census years.
Study	Country	Study period	Diagnostic method	Age (years)	People with Ps	Incidence rate per 100 000 person-years (95% CI)a		
						Overall	Female	Male
Schonmann	Israel	2015	D	< 1		23.0		
				1–4		58.0		
				5–14		117.0		
				15–24		186.0		
				25–34		315.0		
				35–44		299.0		
				45–54		302.0		
				55–64		347.0		
				65–74		350.0		
				75–84		288.0		
				≥ 85		173.0		
Znamenskaya	Russian Federation	2009	Ph	0–18+	99,988	70.5		
				0–14	6069	28.8		
				15–17	5864	118.2		
		2010		≥ 18	88,055	76.0		
				0–18+	99,348	69.8		
				0–14	6045	28.2		
				15–17	5873	128.2		
		2011		≥ 18	87,430	75.4		
				0–18+	99,436	69.6		
				0–14	6104	28.0		
				15–17	5681	126.7		
				≥ 18	87,651	75.2		
Kubanova	Russian Federation	2010	Ph	0–18+	99,988	69.8		
				0–14	6009	27.9		
				15–17	5864	127.2		
		2011		≥ 18	88,055	75.4		
				0–18+	99,348	69.6		
				0–14	6045	28.0		
				15–17	5873	126.7		
		2012		≥ 18	87,430	75.2		
				0–18+	99,436	69.6		
				0–14	6104	28.0		
				15–17	5681	126.7		
				≥ 18	87,651	75.2		
		2013		0–18+	99,988	69.8		
				0–14	6069	27.9		
				15–17	5864	118.8		
		2014		≥ 18	88,055	74.2		
				0–18+	99,348	69.6		
				0–14	6045	28.0		
				15–17	5873	118.8		
		2015		≥ 18	87,430	74.2		
				0–18+	99,436	69.6		
				0–14	6104	28.0		
				15–17	5681	115.6		
		2016		≥ 18	87,651	71.7		
				0–18+	99,988	69.8		
				0–14	6009	27.9		
				15–17	5864	108.4		
		2015		≥ 18	88,055	72.4		
				0–18+	99,348	69.6		
				0–14	6045	28.0		
				15–17	5873	95.6		
		2016		≥ 18	87,651	72.6		
Huerta 200711	UK	1996–1997 Ph	0–80+	3994	140.0	121.0	110.0	
review are consistent with what is already known, that
care tend to have a higher incidence of early-onset psoriasis and the peak of psoriasis occurs in their late teens and early twenties. The corresponding peak of early-onset psoriasis in men appeared later, in their thirties. However, this difference is not observed in late-onset psoriasis, in which the pattern of incidence by age did not appear to differ between men and women.10–13,44

There was lack of agreement on specific gender differences in psoriasis incidence and prevalence, with some studies reporting no difference between the genders while others reported an increased incidence and/or prevalence in one gender compared with the other. However, a male preponderance was reported in the vast majority of the studies.16,18,20,23,24,27,28,30,33,36–38,49,51,56–64,72–81 The reason for this is unclear.99 However, societal taboo (for women), racial differences,100 and differences in self-directed health behaviours (e.g. diet, exercise, smoking or alcohol consumption)101 are some reasons that have been speculated to cause the difference in the incidence and prevalence of psoriasis observed between genders. Nevertheless, it is important to note that the absolute magnitude of the difference between genders observed in most of the studies was small, and its clinical implications are therefore questionable.

Longitudinal studies of the incidence and prevalence of psoriasis were scarce. Results from several studies suggested a stable or slightly decreasing trend in psoriasis incidence in children, adults and populations of all ages. However, two studies from the USA using the Rochester Epidemiology Project database suggested an increasing trend of incident cases of psoriasis over a 30-year period both in children9 and in adults.12 Nevertheless, it was unclear whether this represented a true change in psoriasis incidence in the USA, a change in the pattern of diagnosis and awareness of the disease over time,12 or an increase in risk factors (obesity, stress, psychological conditions) for psoriasis.9

Studies on the prevalence of psoriasis longitudinally suggested a steadily increasing trend in psoriasis prevalence in children, adults and populations including all ages. This observed increase in psoriasis prevalence has previously been speculated to be related to a better awareness of the disease among physicians and in the general population rather than a real increase in the prevalence of the disease.36 However, recently, Springate et al.43 and Schonmann et al.15 were able to consider this steady increase in psoriasis prevalence in the context of a decreasing risk of mortality. Further epidemiological studies are required to examine simultaneously the longitudinal trends in incidence, prevalence and mortality of patients with psoriasis to determine whether the increase in psoriasis prevalence over time is driven by increasing trends in incidence (more new cases of psoriasis) or, as seems more likely, whether patients are living longer with psoriasis due to a reduction in early mortality.

One of the key strengths of this systematic review is the extensive search of all published literature since inception, using 11 electronic and regional databases with no language restrictions. Furthermore, using the AXIS tool to assess the quality of the included studies we were able to assess each aspect of the study design and also to incorporate risk of bias and quality of reporting when making a judgement on the overall quality of the study – a feature that is not provided by other quality-assessment tools.101,103

One particular challenge faced was the vastly different methodologies used in the included studies, namely type of measure (point, period or lifetime estimate), age groups studied, case definition (patient reported vs. physician diagnosis) and sampling techniques (questionnaires, clinical examination and electronic health records). This undoubtedly contributed to...
Table 3: Studies reporting incidence rates in children and adults, over time and by gender

Study	Country	Study period	Diagnostic method	Age (years)	People with Ps	Incidence rate per 100,000 person-years (95% CI)*			
						Overall	Female	Male	
Children									
Cantarutti 2015	Italy	2006	FP	≤ 14		61.0 (50.0–80.0)			
		2007				45.0 (30.0–60.0)			
		2008				54.0 (40.0–70.0)			
		2009				53.0 (40.0–70.0)			
		2010				53.0 (40.0–70.0)			
		2011				40.0 (30.0–50.0)			
		2012				57.0 (40.0–80.0)			
Tolleson 2010	USA	1970–1999	D/Ph	< 18	357	40.8 (36.6–45.1)b	43.9 (37.6–50.2)b	37.9 (32.2–43.6)b	
		1970–1974				29.6 (20.9–38.3)b			
		1975–1979				35.7 (25.9–45.5)b			
		1980–1984				31.4 (22.0–40.8)b			
		1985–1989				42.7 (31.8–53.7)b			
		1990–1994				40.0 (29.7–50.3)b			
		1995–1999				62.7 (50.4–65.0)b			
Adults									
Eder 2017	Canada	2000	Ph	≥ 20		114.0 (112.0–116.0)b			
		2001				111.0 (109.0–113.0)b			
		2002				103.0 (101.0–105.0)b			
		2003				101.0 (99.0–103.0)b			
		2004				101.0 (99.0–103.0)b			
		2005				97.0 (95.0–99.0)b			
		2006				97.0 (95.0–99.0)b			
		2007				96.0 (94.0–98.0)b			
		2008				96.0 (94.0–98.0)b			
		2009				95.0 (93.0–97.0)b			
		2010				95.0 (93.0–97.0)b			
		2011				98.0 (96.0–100.0)b			
		2012				100.0 (98.0–102.0)b			
		2013				105.0 (103.0–107.0)b			
		2014				102.0 (100.0–104.0)b			
		2015				105.0 (103.0–107.0)b			
Eder 2019	Canada	2000	Ph	≥ 20	9873	111.1 (108.9–113.4)b			
		2001			9849	108.6 (106.5–110.8)b			
		2002			9203	99.7 (97.6–101.8)b			
		2003			9111	97.3 (95.3–99.3)b			
		2004			9060	95.3 (93.3–97.3)b			

(continued)
Table 3 (continued)

Study	Country	Study period	Diagnostic method	Age (years)	People with Ps	Incidence rate per 100,000 person-years (95% CI)*	Overall	Female	Male
Vena 2010c,d	Italy	2001–2005	Ph	≥ 18	5792				
		2001							
		2005							
		2002							
		2003							
		2004							
		2005							
		2006							
		2007							
		2008							
		2009							
		2010							
		2011							
		2012							
		2013							
		2014							
		2015							
Pezzolo 2019e	Italy	2003–2004	SR	25–75+	333	302.0 (232.0–392.0)	380.0 (270.0–535.0)	296.0 (197.0–443.0)	
		2001							
		2002							
		2003							
		2004							
		2005							
		2006							
		2007							
		2008							
		2009							
		2010							
		2011							
		2012							
		2013							
Wei 2018f,g	Taiwan	2001–2004	SR	25–75+	333	42.0 (37.5–46.5)	44.1 (37.5–51.8)	44.1 (37.5–51.8)	
		2001							
		2002							
		2003							
		2004							
		2005							
		2006							
		2007							
		2008							
		2009							
		2010							
		2011							
		2012							
		2013							
Tillett 2017h,i	UK	1998–2014	Ph	18–89	88,858	183.0 (182.0–184.0)	186.0 (184.0–188.0)	179.0 (184.0–181.0)	
		1970–1999	D/Ph	≥ 18	1633	78.9 (75.0–82.9)	73.2 (68.0–78.4)	85.5 (79.5–91.6)	
		1970–1974	D/Ph						
		1975–1979	D/Ph						
		1980–1984	D/Ph						
		1985–1989	D/Ph						
		1990–1994	D/Ph						
		1995–1999	D/Ph						
Ieen 2009j,k	USA	1998–2014	Ph	18–89	88,858	183.0 (182.0–184.0)	186.0 (184.0–188.0)	179.0 (184.0–181.0)	
		1970–1999	D/Ph	≥ 18	1633	78.9 (75.0–82.9)	73.2 (68.0–78.4)	85.5 (79.5–91.6)	
		1970–1974	D/Ph						
		1975–1979	D/Ph						
		1980–1984	D/Ph						
		1985–1989	D/Ph						
		1990–1994	D/Ph						
		1995–1999	D/Ph						

CI, confidence interval; D, dermatologist; FP, family paediatrician; Ph, physician; Ps, psoriasis; SR, self-reported diagnosis. *All values are as reported in the studies. **Adjusted for age and/or gender. *Rate adjusted with linear interpolation between census years.
Study	Country	Study period	Diagnostic method	Age (years)	People with Ps	Incidence rate per 100,000 person-years (95% CI)¹		
				Overall	Female	Male		
Egeberg 2017²¹	Denmark	2003	Ph	0–70+		140.1 (137.1–143.2) 146.8 133.4		
		2004				122.2 (119.4–125.1) 130.7 113.6		
		2005				104.0 (101.4–106.7) 107.5 100.5		
		2006				105.5 (102.9–108.2) 110.4 100.4		
		2007				111.5 (108.7–114.2) 110.8 112.2		
		2008				128.6 (125.7–131.6) 128.8 128.4		
		2009				174.8 (171.4–178.3) 192.6 156.8		
		2010				181.0 (177.5–184.5) 199.5 162.3		
		2011				171.3 (167.9–174.7) 187.9 154.5		
		2012				151.2 (148.0–154.5) 165.9 136.4		
Sewerin 2019²¹	Germany	2009				463.3 (458.2) 354.5 (343.0–350.3) 354.5–350.3		
		2010				353.3 (345.6) 264.4 (263.0–263.4)		
		2011				217.3 (210.5) 17.3 (14.1–29.3)		
		2012				19.1 (19.1–26.4) 17.1–26.3		
Shalom 2018²¹	Israel	2016	D	0–85+	9770	246.0 (241.0–251.0) 243.0 (239.0–248.0)		
		2017				243.0 (239.0–248.0) 243.0 (239.0–248.0)		
Schonmann 2019²¹	Israel	2011	D	0–85+	9796	282.0 (276.0–288.0) 268.0 (261.0–276.0) 296.0 (287.0–305.0)		
		2012			10 430	278.0 (272.0–284.0) 273.0 (265.0–281.0) 283.0 (275.0–292.0)		
		2013			10 072	291.0 (285.0–297.0) 278.0 (270.0–286.0) 304.0 (295.0–312.0)		
		2014			10 333	276.0 (271.0–282.0) 263.0 (256.0–271.0) 290.0 (281.0–298.0)		
		2015			10 033	273.0 (267.0–279.0) 257.0 (250.0–265.0) 289.0 (280.0–297.0)		
		2016			10 505	281.0 (276.0–287.0) 269.0 (261.0–276.0) 294.0 (286.0–302.0)		
		2017			10 489	276.0 (270.0–281.0) 263.0 (256.0–271.0) 288.0 (280.0–296.0)		
Znamenskaya 2012²¹	Russian Federation	2009	Ph	0–18+	99 988	70.5		
		2010			99 348	69.8		
		2011			99 436	69.6		
Kubanova 2017²¹	Russian Federation	2010	Ph	0–18+		69.8		
		2011				69.6		
		2012				68.4		
		2013				65.9		
		2014				64.7		
		2015				62.8		
		2016				65.0		
Odinets 2017²¹	Russian Federation	2010	Ph	0–18+	11 800	42.5		
		2011			11 136	40.8		
		2012			12 575	45.1		
		2013			87 5	31.4		
		2014			94 5	33.8		
Study	Country	Study period	Diagnostic method	Age (years)	People with Ps	Incidence rate per 100 000 person-years (95% CI)		
-----------	---------------	--------------	-------------------	-------------	----------------	---		
						Overall	Female	Male
Donker 199890	the Netherlands	1987–1988	Ph	0–65+	106	130.0 (120.0–140.0)b		
		1995			24	120.0 (70.0–190.0)b		
Springate 201743	UK	1999	Ph	0–100	4279	159.0 (155.0–164.0)b		
		2000			5398	163.0 (158.0–167.0)b		
		2001			6286	164.0 (160.0–168.0)b		
		2002			7259	170.0 (166.0–174.0)b		
		2003			7977	172.0 (168.0–176.0)b		
		2004			8209	166.0 (163.0–170.0)b		
		2005			8522	165.0 (162.0–169.0)b		
		2006			8499	161.0 (158.0–165.0)b		
		2007			8807	165.0 (162.0–168.0)b		
		2008			8964	163.0 (160.0–167.0)b		
		2009			8518	155.0 (152.0–158.0)b		
		2010			7715	143.0 (140.0–146.0)b		
		2011			7499	140.0 (137.0–143.0)b		
		2012			6992	131.0 (128.0–134.0)b		
		2013			6350	129.0 (126.0–133.0)b		
Bell 199113	USA	1980–1983	D/Ph	0–70+	132	59.9 (49.5–70.3)b		

CI, confidence interval; D, dermatologist; Ph, physician; Ps, Psoriasis. *All values are as reported in the studies. +Adjusted for age and/or gender.
some of the heterogeneity of the results. One of the main goals of the GPA is to improve the quality of reporting of epidemiological studies on the occurrence of psoriasis. Specifically, future studies are encouraged to select an appropriate population base that closely represents the general population so as not to provide an underestimate. For example, estimates generated using data from insurance databases are generally lower than those based on electronic health record databases or population surveys. This is probably because insurance databases likely represent a proportion of the general population (e.g. employed), but may under-represent other subgroups (e.g. the unemployed and retired), or because limited periods of enrolment may result in more restricted observable person-time.100,104 Furthermore, it is recommended that future studies should adopt a more consistent approach for the accurate identification of cases so as to minimize the biases that could arise due to variation of patient-reported diagnosis, sampling and other methodological differences. Finally, studies should routinely provide standardized information on the prevalence and incidence of psoriasis by age bands and gender to facilitate the comparison of results between different studies.

Conclusions

We found an increasing number of studies examining the epidemiology of psoriasis, which have improved our understanding of the variation in disease incidence and prevalence with age and between genders. Furthermore, considering population growth and ageing, and the fact that psoriasis is a chronic, disabling, stigmatizing condition that mainly affects adults, studies examining variation in psoriasis epidemiology over time have contributed to a greater appreciation of its increasing burden to society. Nevertheless, there are considerable gaps in coverage of the geographical areas reporting this information. There is a need for future international research collaborations using standardized methodology, and reporting of the incidence and prevalence of the disease by age bands and genders, to address knowledge gaps that still exist. Specifically, the increase in psoriasis prevalence over time despite a stable or a slightly decreasing trend in its incidence warrants further investigation. Information gained from epidemiological studies can be positioned to quantify the social and economic burden of the disease and ultimately inform policy decisions on the delivery of healthcare services and resource allocation to reduce the morbidity associated with the disease.

Acknowledgments

The authors are grateful to Rebekah Swan, GPA Programme Manager. We also acknowledge the enthusiastic collaboration of all of the members of the GPA board of governors, steering committee and regional coordinators, and the other dermatologists worldwide who provided the data. We are also grateful to Professor Ellen Schafheutle, Professor Jacek C. Szepietowski, Dr Svitlana Kurinna and Dr Teng-Chou Chen for help with the translation of articles published in German, Polish, Russian and Mandarin, respectively. The authors acknowledge the substantial contribution of the GPA project teams at The University of Manchester and University of Hamburg to the administration of the project. The authors also acknowledge the key role played by the GPA collaborating organizations in the establishment and organization of the GPA: the International Psoriasis Council, the International Federation of Psoriasis Associations, and the International League of Dermatological Societies. The views and opinions expressed herein are those of the authors and do not necessarily reflect those of the GPA collaborating organizations.

This review article is part of a special BJD issue on the global burden of skin diseases.

References

1. World Health Organization. Global report on psoriasis. Available at: https://apps.who.int/iris/handle/10665/204417 (last accessed 18 May 2020).
2. Griffiths CEM, van der Walt JM, Ashcroft DM et al. The global state of psoriasis disease epidemiology: a workshop report. Br J Dermatol 2017; 177:e4–7.
3. Parisi R, Iskandar IYK, Kontopantelis E et al. National, regional and worldwide estimates of the epidemiology of psoriasis: a systematic analysis and modelling study. BMJ 2020; 369:m1590.
4. Global Psoriasis Atlas. National, regional and worldwide estimates of the epidemiology of psoriasis. Available at: https://globalpsoriasisatlas.org/statistics/prevalence (last accessed 18 May 2020).
5. World Health Organization. Active ageing: a policy framework. Available at: https://www.who.int/ageing/publications/active_aging/en (last accessed 18 May 2020).
6. United Nations. World population prospects. Available at: https://population.un.org/wpp (last accessed 18 May 2020).
7. Mohler D, Liberati A, Tetzlaff J et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA Statement. PLOS Med 2009; 6:e1000977.
8. Downes MJ, Brennan ML, Dean RS et al. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 2016; 6:e011458.
9. Tollefson MM, Crowson CS, McEvoy MT et al. Incidence of psoriasis in children: a population-based study. J Am Acad Dermatol 2010; 62:979–87.
10. Tillet W, Charlton R, Nightingale A et al. Interval between onset of psoriasis and psoriatic arthritis comparing the UK Clinical Practice Research Datalink with a hospital-based cohort. Rheumatology 2017; 56:2109–13.
11. Huerta C, Rivero E, Rodriguez LAG. Incidence and risk factors for psoriasis in the general population. Arch Dermatol 2007; 143:1559–65.
12. Icen M, Crowson CS, McEvoy MT et al. Trends in incidence of adult-onset psoriasis over three decades: a population-based study. J Am Acad Dermatol 2009; 60:394–401.
13. Bell LM, Sedlack R, Beard CM et al. Incidence of psoriasis in Rochester, Minn, 1980–1983. Arch Dermatol 1991; 127:1184–7.
14. Pezzolo E, Cazzaniga S, Colombo P et al. Psoriasis incidence and lifetime prevalence: suggestion for a higher mortality rate in older age-classes among psoriatic patients compared to the general population in Italy. Acta Derm Venereol 2019; 99:400–3.
15. Schonmann Y, Ashcroft DM, Iskandar IYK et al. Incidence and prevalence of psoriasis in Israel between 2011 and 2017. J Eur Acad Dermatol Venereol 2019; 33:2075–81.
Epidemiology of psoriasis over time and by age and gender, I.Y.K. Iskandar et al.

256

16 Ding XL, Wang TL, Shen YW et al. Prevalence of psoriasis in China: a population-based study in six cities. Eur J Dermatol 2012; 22: 663–7.
17 Braathen LH, Botten G, Bjerkedal T. Prevalence of psoriasis in Norway. Acta Derm Venereol Suppl 1989; 142: 5–8.
18 Gelfand JM, Weinstein R, Porter SB et al. Prevalence and treatment of psoriasis in the UK: a population-based study. Arch Dermatol 2005; 141: 1537–41.
19 Augustin M, Radtke MA, Glaeske G et al. Epidemiology and comorbidity in children with psoriasis and atopic eczema. Dermatology 2015; 231: 35–40.
20 Brandrup F, Green A. The prevalence of psoriasis in Denmark. Acta Derm Venereol 1981; 61: 344–6.
21 Egeberg A, Andersen JMY, Thyssen JP. Prevalence and characteristics of psoriasis in Denmark: findings from the Danish skin cohort. BMJ Open 2019; 9:e028116.
22 Yang YC, Cheng YW, Lai CS et al. Prevalence of childhood acne, ephelides, warts, atopic dermatitis, psoriasis, alopecia areata and keloid in Kaohsiung County, Taiwan: a community-based clinical survey. J Eur Acad Dermatol Venereol 2007; 21: 643–9.
23 Chen G-Y, Cheng Y-W, Wang C-Y et al. Prevalence of skin diseases among schoolchildren in Magong, Penghu, Taiwan: a community-based clinical survey. J Formos Med Assoc 2008; 107: 21–9.
24 Blekgud C, Egeberg A, Tind Nielsen TE et al. Autoimmune disease in children and adolescents with psoriasis: a cross-sectional study in Denmark. Acta Derm Venereol 2017; 97: 1225–9.
25 Augustin M, Glaeske G, Radtke MA et al. Epidemiology and comorbidity of psoriasis in children. Br J Dermatol 2010; 162: 633–6.
26 Kempfe SM, Augustin M, Schafer I et al. Prevalence and health care situation of juvenile psoriasis in Germany. Exp Dermatol 2012; 21:e21.
27 Augustin M, Reich K, Glaeske G et al. Drug supply for children with psoriasis in Germany. J Dtsch Dermatol Ges 2013; 11: 751–5.
28 Matsusiewicz D, Koerber A, Schadenhorst D et al. Childhood psoriasis – an analysis of German health insurance data. Pdiatr DERMATOL 2014; 11:8–13.
29 Jacobi A, Kis A, Radtke MA et al. [Regional differences of health care for juvenile psoriasis in Germany]. Actuelle Dermatol 2015; 41:333–9 (in German).
30 Larsson PA, Liden S. Prevalence of skin diseases among adolescents 12–16 years of age. Acta Derm Venereol 1980; 60: 415–23.
31 Wang R-L, Cao L-S, Zhou C et al. Prevalence of 15 skin diseases in adolescents from Liangshan prefecture in Sichuan Province. Chin J Dermatol 2012; 45: 270–2.
32 Plunkett A, Merlin K, Gill D et al. The frequency of common non-malignant skin conditions in adults in central Victoria, Australia. Int J Dermatol 1999; 38: 901–8.
33 Richard MA, Corgibet F, Be窑t-Barr M et al. Sex- and age-adjusted prevalence estimates of five chronic inflammatory skin diseases in France: results of the «OBJECTIFS PEAU» study. J Eur Acad Dermatol Venereol 2018; 32:1967–71.
34 Radtke MA, Schafer I, Jacobi A et al. Prevalence and comorbidity of atopic dermatitis in comparison to psoriasis – analysis of country wide health insurance scheme data. J Dtsch Dermatol Ges 2015; 13 (Suppl. 1):124.
35 Sardu C, Cocco E, Mercuri A et al. Population based study of 12 autoimmune diseases in Sardinia, Italy: prevalence and comorbidity. PLOS ONE 2012; 7:e32487.

British Journal of Dermatology (2021) 184, pp243–258 © 2020 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists
Epidemiology of psoriasis over time and by age and gender, I.Y.K. Iskandar et al. 257

60 Modalsli EH, Snevik I, Asvold BO et al. Validity of self-reported psoriasis in a general population: the HUNT study, Norway. J Invest Dermatol 2016; 136:323–5.
61 Sanders MGH, Pardo LM, Verkouteren JAC et al. Dermatological screening of a middle-aged and elderly population: the Rotterdam Study. Br J Dermatol 2017; 177:e98–100.
62 Hellmick CG, Lee-Han H, Hirsch SC et al. Prevalence of psoriasis among adults in the US: 2003–2006 and 2009–2010 National Health and Nutrition Examination Surveys. Am J Prev Med 2014; 47:37–45.
63 Rachakonda TD, Schupp CW, Armstrong AW. Psoriasis prevalence among adults in the United States. J Am Acad Dermatol 2014; 70:512–16.
64 Svensson A, Ofenloch RF, Bruze M et al. Prevalence of skin disease in a population-based sample of adults from five European countries. Br J Dermatol 2018; 178:1111–18.
65 Jensen P, Thyssen JP, Zachariae C et al. Cardiovascular risk factors in subjects with psoriasis: a cross-sectional general population study. Int J Dermatol 2013; 52:681–3.
66 Danielsen K, Duvertorp A, Iversen L et al. Prevalence of psoriasis and psoriatic arthritis and patient perceptions of severity in Sweden, Norway and Denmark: results from the Nordic patient survey of psoriasis and psoriatic arthritis. Acta Derm Venereol 2019; 99:18–23.
67 Cooksey R, Brophy S, Kennedy J et al. Cardiovascular risk factors predicting cardiac events are different in patients with rheumatoid arthritis, psoriatic arthritis, and psoriasis. Semin Arthritis Rheum 2018; 48:367–73.
68 Kurel SK, Gelfand JM. The prevalence of previously diagnosed and undiagnosed psoriasis in US adults: results from NHANES 2003–2004. J Am Acad Dermatol 2009; 60:218–24.
69 Kavli G, Forde OH, Arnesen E et al. Psoriasis: familial predisposition and environmental factors. BMJ Clin Res Ed 1985; 291:999–1000.
70 Bo K, Thoresen M, Dalgard F. Smokers report more psoriasis, but not atopic dermatitis or hand eczema: results from a Norwegian population survey among adults. Dermatology 2008; 216:40–5.
71 DiBonaventura M, Carvalho AVE, Souza CDS et al. The association between psoriasis and health-related quality of life, work productivity, and healthcare resource use in Brazil. An Bras Dermatol 2018; 93:197–204.
72 Henan Dermatoses Survey Group. An analysis of 487 cases of psoriasis among adults in the United States. J Am Acad Dermatol 2014; 70:512–16.
73 Schafer I, Radike MA, Glaeske G et al. Epidemiology of psoriasis in Germany: evaluation of routine data of a legal medical insurance. J Dtsch Dermatol Ges 2009; 7:194.
74 Augustin M, Schafer I, Reich K et al. Systemic treatment with corticosteroids in psoriasis – health care provision far beyond the S3-guidelines. J Dtsch Dermatol Ges 2011; 9:833–8.
75 Radike MA, Schafer I, Glaeske G et al. Prevalence and comorbidities in adults with psoriasis compared with atopic dermatitis: analysis of health insurance data in Germany. Br J Dermatol 2014; 171:e117–18.
76 Boca AN, Ilies RF, Vesa S et al. The first nation-wide study revealing epidemiologic data and life quality aspects of psoriasis in Romania. Exp Ther Med 2019; 18:900–4.
77 Hellgren L. Psoriasis. Prevalence in Sex, Age and Occupational Groups in Total Populations Sweden. Morphology, Inheritance and Association With Other Skin and Rheumatic Diseases. Stockholm: Almqvist and Wikells, 1967.
78 Chang Y-T, Chen T-J, Liu P-C et al. Epidemiological study of psoriasis in the national health insurance database in Taiwan. Acta Derm Venereol 2009; 89:262–6.
79 Ferrandiz C, Bordas X, Garcia-Patos V et al. Prevalence of psoriasis in Spain (Ederma Project: phase I). J Eur Acad Dermatol Venereol 2001; 15:20–3.
80 Cakir N, Pamuk ON, Derivis E et al. The prevalences of some rheumatic diseases in western Turkey: Hava study. Rheumatol Int 2012; 32:985–908.
81 Serdaroglu S, Parlak AH, Engin B et al. The prevalence of psoriasis and vitiligo in a rural area in Turkey. J Turk Acd Dermatol 2012; 6:1261a2.
82 Hegvik TA, Instanes JT, Haavik J et al. Associations between attention-deficit/hyperactivity disorder and autoimmune diseases are modified by sex: a population-based cross-sectional study. Eur Child Adolesc Psychiatry 2018; 27:663–75.
83 Borzeczki A, Koncvezicz A, Raszewska-Famielec M, Dudra-Jastrzebska M. Epidemiology of psoriasis in the years 2008–2015 in Poland. Przegl Dermatol 2018; 105:693–700.
84 Borzeczki A, Dudra-Jastrzebska M, Sajdak-Wojtaluk A. [Epidemiology of psoriasis in District of Lublin in 2005–2009 period]. Dermatol Klin 2012; 14:149–53 (in Polish).
85 Lofvendahl S, Theander E, Svensson A et al. Validity of diagnostic codes and prevalence of physician-diagnosed psoriasis and psoriatic arthritis in southern Sweden – a population-based register study. PLOS ONE 2014; 9:e89024.
86 Cantarutti A, Dona D, Visentin F et al. Epidemiology of frequently occurring skin diseases in Italian children from 2006 to 2012: a retrospective, population-based study. Pediatr Dermatol 2015; 32:668–78.
87 Eder L, Widdifield J, Rosen CF et al. Increasing population burden of psoriatic disease in Ontario, Canada – a longitudinal cohort study. Presented at the 2017 American College of Rheumatology/Association of Rheumatology Health Professionals Annual Meeting, San Diego, CA, USA, 3–8 November 2017; abstr. 994.
88 Eder L, Widdifield J, Rosen CF et al. Trends in the prevalence and incidence of psoriasis and psoriatic arthritis in Ontario, Canada: a population-based study. Arthritis Care Res (Hoboken) 2019; 71:1084–91.
89 Wei JCC, Shi LH, Huang JY et al. Epidemiology and medication pattern change of psoriatic diseases in Taiwan from 2000 to 2013: a nationwide, population-based cohort study. J Rheumatol 2018; 45:385–92.
90 Donker GA, Foets M, Spreeuwenberg P et al. Management of psoriasis in general practice now more in agreement with the guidelines of the Dutch College of General Practitioners (NHG). Ned Tijdschr Geneeskd 1998; 142:1379–83 (in Dutch).
91 Shalom G, Zisman D, Babev M et al. Psoriasis in Israel: demographic, epidemiologic, and healthcare services utilization. Int J Dermatol 2018; 57:1068–74.
92 Znamenskaya LF, Melekhina LY, Bogdanova YY et al. [Psoriasis incidence and prevalence in the Russian Federation]. Vestn Dermatol Venereol 2012; 88:20–9 (in Russian).
93 Kubanova AA, Kubanov AA, Melekhina LE, Bogdanova EV. The assessment of the incidence of skin disorders in the Russian Federation in 2003–2016. Vestn Dermatol Venereol 2017; 93:22–33.
94 Oedinets AV. The incidence of skin diseases in Stavropol territory in 2010–2016. Klin Dermatol Venereol 2017; 16:32–7.
95 Lee JY, Kang S, Park JS et al. Prevalence of psoriasis in Korea: a population-based epidemiological study using the Korean National Health Insurance Database. Ann Dermatol 2017; 29:761–7.
96 Han JH, Lee JH, Han KD et al. Epidemiology and medication trends in patients with psoriasis: a nationwide population-based cohort study from Korea. Acta Derm Venereol 2018; 98:396–400.
Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Appendix S1 Search strategy.

Table S1 Characteristics of studies reporting on the incidence of psoriasis.

Table S2 Characteristics of studies reporting on the prevalence of psoriasis.

Table S3 Quality assessment of studies reporting on the incidence and prevalence of psoriasis using the AXIS tool.

Table S4 Studies reporting prevalence rates in children, adults and all ages by age and gender.

Table S5 Studies reporting prevalence rates in children over time and by gender.

Table S6 Studies reporting prevalence rates in adults over time and by gender.

Table S7 Studies reporting prevalence rates in all ages over time and by gender.

Powerpoint S1 Journal Club Slide Set.