Changing Etiology of Urinary Tract Infections and Emergence of Totally Resistant Uropathogens in and around Nanded (Maharashtra) A Seven-Year Study

Bhausaheb Munde¹, Suresh Kandle², Vimal Rathod³, Vijayraj Shegokar⁴, Supriya Emekar⁵, Prerana Lahane⁶

Abstract

Background: Urinary tract infections (UTIs) remain the most common bacterial infections in developing countries. Knowledge of susceptibility pattern of uropathogens in a specific geographical location is an important factor for choosing suitable antibacterial treatment.

Objectives: A study was undertaken to ascertain the spectrum of causative agents responsible for UTIs and to determine the magnitude of drug resistance among them.

Results: A total of 1806 organisms were isolated from 3559 urine samples studied during 2010–2016. There is a shift in causative agents of UTI. Escherichia coli have been reappearing and replacing the current pathogen Klebsiella. Coagulase-positive Staphylococci have been significantly replaced by coagulase-negative Staphylococci. Other Gram-negative bacilli belonging to Proteus and Pseudomonas, which were supposed to be major pathogens of UTI particularly in tertiary care hospitals, are surprisingly being less encountered recently. It has been observed that 55.48% of strains were resistant to the antibiotics tested and there was sudden increase in incidence of totally resistant uropathogens during the year 2014. Majority of the totally resistant strains could be seen with Klebsiella (66.23%) followed by Citrobacter (63.28%).

Conclusion: These observations indicate extremely high degree of resistance in uropathogens and warrant change in the antibiotic usage as well as formulation of policy for rational use of antibiotics to reduce the emergence of drug resistance in future.

Keywords: Totally Resistant Bacteria, UTI

Introduction

Urinary tract infections (UTIs) continues to be the most common bacterial infection in medical practice today with an estimated 150 million UTIs per annum worldwide.¹ ² Escherichia coli has been recognized as the major causative agent of primary

¹Associate Professor, Dept. of Microbiology, Government Medical College, Chandrapur, Maharashtra.
²Professor and Head, ³Associate Professor, ⁴Assistant Professor, ⁵JR, Dept. of Microbiology, Dr. Shankarrao Chavan Government Medical College, Nanded.
⁶OSD, Directorate of Medical Education and Research, Mumbai.

Correspondence: Dr. Suresh Kandle, Dept. of Microbiology, Dr. Shankarrao Chavan Government Medical College, Nanded.

E-mail Id: sureshkandle3@gmail.com

Orcid Id: http://orcid.org/0000-0002-8168-3637

How to cite this article: Munde B, Kandle S, Rathod V et al. Changing Etiology of Urinary Tract Infections and Emergence of Totally Resistant Uropathogens in and around Nanded (Maharashtra) A Seven-Year Study. J Commun Dis 2017; 49(4): 9-12.

Digital Object Identifier (DOI): https://doi.org/10.24321/0019.5138.201728

ISSN: 0019-5138

© ADR Journals 2017. All Rights Reserved.
UTI causing this syndrome. The etiology of UTI varies from place to place and to some extent is influenced by microbial flora prevalent in hospital environment. This study was undertaken to ascertain the spectrum of causative agents responsible for UTIs and to determine the magnitude of drug resistance in common important etiological agents.

Materials and Methods

Urine specimens were collected by conventional method from patients attending outdoor department as well as those admitted to the Dr. SC Govt. Hospital and Medical College, Nanded, from Jan. 2010 to Dec. 2016. The specimens were processed bacteriologically as per the recommended method and isolates identified on the basis of tests described elsewhere. The antibiotic susceptibility testing was done by the modified Kirby-Bauer method as described by the National Committee on Clinical Laboratory Standards (NCCLS), using standard ATCC strains as controls. The antibiotics discs and their concentrations per disc included Penicillin (10 IU/disc), Amikacin (30 μg), Gentamicin (10 μg), Erythromycin (30 μg), Norfloxacin (10 μg), Ciprofloxacin (10 μg), Cotrimoxazole (25 μg), Ofloxacin (5 μg), and Nitrofurantoin (300 μg). The source of Muller Hinton Agar (MHA) and antibiotics discs was Hi-media, India.

Result and Discussion

A total of 1806 organisms were isolated from 3559 urine samples from various patients. Of the 1806 isolates for which significant bacteriuria was demonstrated, 418 (23.14%) were E. coli and 385 (21.31%) isolated could be identified as Klebsiella species. Coagulase-negative staphylococci (CONS), Citrobacter species and coagulase-positive staphylococci (COPS) were isolated in 494 (27.35%), 207 (11.46%) and 127 (7.03%) patients respectively. Various other organisms collectively constituted 9.68% of the isolates. It has been observed that there is a changing trend in causative agent of UTI. E. coli have been re-emerging and replacing the current pathogen Klebsiella. Klebsiella was the predominant uropathogen till 2010. However from 2011, E. coli has reappeared as a major uropathogen. Similarly, COPS have been significantly replaced by CONS. Other Gram-negative bacilli belonging to genus Citrobacter, Proteus and Pseudomonas, which were supposed to be major pathogens of UTI particularly in tertiary care hospitals, are surprisingly being less encountered recently (Table 1).

Organisms	2010	2011	2012	2013	2014	2015	2016	Total Isolates %
E. coli	12.55	19.37	19.08	19.84	25.51	28.76	32.22	23.14%
Klebsiella	28.87	20.94	22.82	20.63	20.34	19.17	17.94	21.31%
CONS	17.15	11.51	29.87	30.95	31.03	31.84	32.55	27.35%
COPS	10.04	7.85	6.22	5.95	5.86	8.90	4.98	7.03%
Citrobacter	21.75	22.51	11.20	9.92	8.27	6.16	5.98	11.46%
Proteus, Pseudomonas other GNB	9.62	17.80	10.78	12.69	8.96	5.13	6.31	9.68%
Total Isolates	239	191	241	252	290	292	301	1806%
Sterile	220	160	196	204	236	233	245	1494%
Insignificant Bacteriuria	30	35	42	28	43	38	43	259%
Total Samples	489	386	479	484	569	563	589	3559%

The last decades of 20th century withstand a sharp increase in the global incidence of severe emerging and re-emerging infectious diseases. UTIs represent considerable health problem in all age groups with higher incidence of complication among women. Almost all known bacterial pathogens have been incriminated as possible causative agents of this clinical syndrome. E. coli has been recognized as the most important single primary cause of UTI worldwide, and various studies have shown 80–85% isolation rate of this organism from the community. In patients who have been exposed to hospital environment or in whom local and general resistance has been impaired, the flora from hospital environment may be the predominant cause of UTI. In a study in USA on the important cause of nosocomial infections, E. coli, Klebsiella, COPS and Pseudomonas aeruginosa were found to be responsible for UTI in 30.7%, 8%, 1.6% and 12.7% respectively. E. coli was the commonest isolated organisms followed by Klebsiella, Proteus species and P. aeruginosa. In yet another study in Aurangabad, Klebsiella (37.35%) was the commonest isolate followed by E. coli (34.4%) and P. aeruginosa (9.64%), COPS (6.93%) and others (11.75%). These observations indicate the variable etiological pattern of UTI in different hospitals or community setting. The overwhelming preponderance of E. coli as the causative agent of UTI may be true in primary UTI. In heterogeneous population this does not seem to hold true as has been shown elsewhere as well as in our study.

It is a general practice for a microbiologist to report on multidrug-resistant strains of one or more species that are either prevalent in a hospital environment or on those isolated during a community outbreak or hospital outbreak of infection. However, prevalence of totally resistant
bacteria over a significant period is not known. It is a general trend among practitioners to prescribe newer antibiotics empirically or based on sensitivity reports because initial response to any new antibiotic is quite encouraging. But bacteria are capable of developing resistance to virtually any kind of antibiotics and initial dramatic relief provided by the newer antibiotics and the confidence of clinician to prescribe them empirically becomes more or less an illusion.

In our study, a total of 55.48% strains were resistant to the antibiotics tested (total resistance). Klebsiella species showed highest number of totally resistant strains (66.23%) followed by Citrobactor (63.28%) and E. coli (54.78%) (Table 2). It could be seen that there was sudden increase in incidence of totally resistant strains during the year 2014. Incidence of totally resistant strains was 46.07% in the year 2011 which suddenly increased to 64.82% in the year 2014, and later dropped every year to reach back to the original incidence of 51.82% in 2016. This is expected that increased usage of newer antibiotics empirically for the treatment increased the incidence of totally resistant strains in the year 2014.

Table 2. Distribution of Totally Resistant Uropathogens during 2010–2016

Organisms	Total Isolates %							
	2010	2011	2012	2013	2014	2015	2016	Total
E. coli	50.00	43.24	45.65	56.00	68.91	55.95	52.57	54.78
Klebsiella	66.66	55.00	65.45	69.23	71.18	67.85	64.81	66.23
CONS	48.78	40.90	41.66	50.00	56.66	52.68	42.85	48.58
COPS	45.83	33.33	46.66	46.66	58.82	53.84	53.33	48.81
Citrobacter	57.69	55.81	59.25	72.00	75.00	72.22	66.66	63.28
Proteus, Pseudomonas other GNB	52.17	35.29	46.15	56.25	61.53	46.66	42.10	48.57
Total Isolates	56.06	46.07	50.62	57.93	64.82	57.53	51.82	55.48

Irrational use of antimicrobial agents has selected various resistant organisms. This is not considered as an all-pervasive phenomenon. In the present study, the prevalence of drug resistance has been found in large number of isolates. The most important reason for failure of treatment of UTI is antimicrobial resistance in the infecting urinary tract pathogens. This is a major and increasing problem. The drugs against which antimicrobial susceptibility was ascertained in this study have been in use for many years, thus facilitating the selection and propagation of resistant strains. There is thus an urgent need to evaluate the prevalent flora against the new drugs for better management. Significant rise in drug resistant uropathogens warrants change in the antibiotic usage as well as rational use of antibiotics to reduce the emergence of drug resistance in future.

Conflict of Interest: None

References

1. Pattin JP, Nash DB, Abrutyn E. Urinary tract infections: economic considerations. Med Clin. Nor. Am 1991; 75(49): S513-0.
2. Gales AC, Sader HS, Jones RN. The SENTRY Participants Group (Latin America). Urinary tract infection trends in Latin American hospitals: Report from the SENTRY antimicrobial surveillance program (1997-2000). Diagn Microbiol Infect Dis 2002; 44: 289-99.
3. Raghubanshi BR, Shrestha D, Chaudhary M et al. Bacteriology of UTI in paediatric patients at KIST medical college teaching Hospital. J of Kathmandu Med Coll 2014; 3(1) 7: 21-25.
4. Maskell R. Paed L, Sandeson RA. Fastidious bacteria and urethral syndrome: A two year Clinical and bacteriological study of 51 women. Lancet 1983; 2: 495-513.
5. Gupta V, Yadav A, Joshi RM. Antibiotic resistance pattern in uropathogens. Indian J Med Microbiol 2002; 20: 96-98.
6. Mokta KK, Jatinder K, Mokta JK et al. Bacterial etiology and antibiotic susceptibility pattern of UTI in sub-Himalayan region of India- A retrospective study of clinical isolates. National Journal of Medical and Allied Sciences 2015; 4(1): 38-45.
7. Razak SK, Gurushantappa V. Bacteriology of urinary tract infection and antibiotic susceptibility pattern of UTI in sub-Himalayan region of India- A retrospective study of clinical isolates. Indian Journal of Medical Science and Public Health 2012; 1(2): 109-12.
8. Manjula NG, Math GC, Patil SA et al. Incidence of urinary tract infections and its aetiological agents among pregnant women in Karnataka region. Advances in Microbiology 2013; 3: 473-78.
9. Stamm WE. Measurement of Pyuria and its relationship of bacteriuria. AM J Med 1983; 75: 53-58.
10. Kunin CM. Detection, prevention and management of urinary tract infections Ed. Lea and – Philadelphia. 1983.
11. Pappas PG. Laboratory in the diagnosis and management of urinary tract infections. Med. Clin. Nor. Am 1992; 75: 213-25.
12. Betty AF, Daniel FS, Alice SW. Overview of bacterial identification and strategies. In: Bailey and Scott’s Diagnostic Microbiology. 12th ed. Philadelphia: Mosby 2007; 216-47.
13. Matthew AW, Franklin RC, William AC et al. Performance standards for antimicrobial disc susceptibility test, Approved standard in Clinical and Laboratory Standards Institute (CLSI). M2-A9. 9th ed. Pennsylvania: Wayne 2006; 26.

14. Stamm WE. Protocol for the diagnosis of urinary tract infection: Reconsidering the criterion for significant bacteriuria, Urology 1988; 32: Suppl (2): 6-12.

15. Wilkie ME, Almond MK, Marsh FP. Diagnosis and management of urinary tract infection in adults. Br. Med. Jour 1992; 305: 1137-40.

16. Farmer JJ III, Kelly MT. Enterobacteriacea. In Manual of Clinical Microbiology, 5th Ed. Balows et al. eds. Washington: American Society for Microbiology 1991; 360.

17. Varma NC, Taneja GP, Saxena SN. Recurrent urinary tract infections in females. J. Ind. Med. 1972; 58: 155-58.

18. Bajaj JK, Karyakarte RP, Kulkarni JD et al. Changing etiology of UTI and emergence of drug resistance as a major problem. J. Commun. Dis 1999; 31(3): 181-84.

Date of Submission: 2017-10-25
Date of Acceptance: 2017-11-28