A General Notion of Useful Information

Philippe Moser
Department of Computer Science, National University of Ireland Maynooth, Co. Kildare, Ireland.
pmoser(at)cs.nuim.ie

In this paper we introduce a general framework for defining the depth of a sequence with respect to a class of observers. We show that our general framework captures all depth notions introduced in complexity theory so far. We review most such notions, show how they are particular cases of our general depth framework, and review some classical results about the different depth notions.

1 Introduction

A traditional way (in the sense of algorithmic information theory) to define the complexity of a system is to look at the number of bits required to describe the system (its Kolmogorov complexity) i.e., the more bits needed to describe the system the higher its complexity. An alternative view was proposed by Bennett in [2], with the concept of useful information or logical depth. Bennett’s original idea is that any system can be either simple, random or deep; where simple systems being completely predictable contain no useful information; random ones, being completely unpredictable, do not contain any useful information either; both (trivial and random) being therefore shallow objects. On the other hand, systems that are neither random nor trivial i.e., that are neither fully predictable nor completely unpredictable, contain useful information; they are called deep objects. Although random sequences contain a lot of information (in the sense of algorithmic information theory), this information is not of much value, and such sequences are shallow. Contrast this with a ten days weather forecast; although it contains no more information than the differential equations from which it was originally simulated (i.e. the number of bits to describe the system is small), it saves its owner the effort of running the (costly) simulation again.

Bennett argued that deep structures, because they contain complex well-hidden patterns, cannot be created by short computations. This observation was formalized in the so-called slow growth law, which states that no short computation (truth table reduction) can transform a shallow sequence into a deep sequence.

Bennett’s logical depth is based on Kolmogorov complexity. Intuitively, a binary sequence is deep, if the more time an algorithm is given, the better it can compress the sequence. Although Bennett’s formulation is theoretically very elegant, it is uncomputable, due the uncomputability of Kolmogorov complexity.

To overcome the uncomputability of logical depth, several notions of feasible depth have been proposed so far. In [7] Juedes, Lathrop and Lutz proposed a recursive version of depth, called recursive computational depth. Although recursive depth gets rid of the uncomputability in Bennett’s formulation, it is still far from feasible and cannot be used in complexity theory, as most languages of interest in complexity theory –e.g. any NP-complete language– being computable, are neither recursive-deep nor Bennett deep. This strongly motivates the study of polynomial depth notions in complexity theory, and several such notions have been studied so far. Antunes, Fortnow, Melkebeek and Vinodchandran introduced a depth notion based on polynomial distinguishing complexity in [1]. Doty and Moser studied a depth notion based on polynomial time predictors [3], and a notion based on polynomial monotone com-
pressors was introduced in [8]. In an attempt to reduce the time bounds even further, Doty and Moser [3]
introduced a finite state versions of depth (based on finite-state compressors).

As seen by the many notions of depth that were studied, depth is not an absolute but a relative notion
i.e., a deep sequence is always deep with respect to some class of observers. As an example a book of
Chinese poetry will look like a sequence of randomly ordered symbols to an observer that does not read
Chinese i.e., not deep from his point of view. On the other hand, for Chinese readers, the more they read
and study the book, the more information they will be able to extract from it, therefore considering it
deep from their point of view.

In this paper we introduce a general framework for defining the depth of a sequence with respect to a
class of observers G. Informally we say a sequence is deep relative to G (or G-deep) if for any observer A
from G there is an observer A' from G such that A' can extract more information from S than A can. More
formally suppose we have a class G of algorithms that compute on binary strings, together with a function
Perf that measures (by a number between 0 and 1) how well an algorithm A in G performs on an input
string x. For example, if G is a class of compression algorithms, then given a compression algorithm
A in G and a string x, a possible performance measure of A on x is the compression ratio $\frac{|A(x)|}{|x|}$. As another
example suppose G is a class of predictors, trying to predict the bits of the characteristic sequence of an
NP-complete language like SAT, a possible performance measure is the number of correct predictions
divided by the total number of bits. The class G together with the performance function yields a natural
notion of depth relative to G i.e., a definition of useful information in the eye of observers drawn from
class G.

Similarly to Bennett’s notion, both simple and random (with respect to G) sequences are not deep
relative to G; indeed if a sequence is simple with respect to G meaning there is an observer in G that can
fully describe the sequence, then no observer in G can do any better i.e., the sequence is not G-deep. In
the same vein, if a sequence is random with respect to G, then no observer in G can predict the sequence,
hence all observers in G are equally bad at predicting it i.e., the sequence is not G-deep.

As we show in this paper, our general framework actually captures all depth notions introduced in
complexity theory so far [2, 7, 1, 3, 8], which can all be seen as particular instances of our general depth
framework. Most of these notions, are based on some class of compression algorithm, which as seen by
our general depth framework, is only one–among many others–particular way to define the depth of a
sequence, therefore leaving the door open to the study of new depth notions, not necessarily based on the
compression paradigm.

The rest of the paper is organized as follows: in Section 3 we introduce our general depth framework.
In Section 4, we review most depth notion that were introduced so far in complexity theory, show how
they are particular cases of our general depth framework, and review some classical results about the
different depth notions.

2 Preliminaries

We write \mathbb{N} for the set of all nonnegative integers. Let us fix some notations for strings and languages. A
string is an element of $\{0, 1\}^n$ for some integer n. For a string x, its length is denoted by $|x|$. The empty
string is denoted by λ. We denote by $\lambda, s_0, s_1, s_2, \ldots$ the standard enumeration of strings in lexicographical
order. For a set of strings S, let First(S) denote the first (with respect to the lexicographical order)
string of S. We say string y is a prefix of string x, denoted $y \sqsubseteq x$ (also $y \subseteq x$), if there exists a string a such
that $x = ya$. A set of strings is prefix free if no string in the set is the prefix of another string in the set.

A sequence is an infinite binary string, i.e. an element of $\{0, 1\}^\omega$. For $S \in \{0, 1\}^\omega$ and $i, j \in \mathbb{N}$, we
write $S[i..j]$ for the string consisting of the i^{th} through j^{th} bits of S, with the convention that $S[i..j] = \lambda$ if $i > j$, and $S[0]$ is the leftmost bit of S. We write $S[i]$ for $S[i..i]$ (the i^{th} bit of S). Unless otherwise specified, logarithms are taken in base 2.

A language is a set of strings. The characteristic sequence of a language L is the sequence $\chi_L \in \{0,1\}^\infty$, whose n^{th} bit is one iff $s_n \in L$. We will often use the notation L for χ_L.

TM stands for Turing machine. A monotone TM is a TM such that for any strings x,y, $M(x) \subseteq M(xy)$. A TM is called prefix free if the set of admissible programs is a prefix free set.

3 A general notion of depth

Before giving the formal definition of our depth framework, let us generalize the informal description given in the introduction to two classes of observers instead of one i.e., suppose we have two classes G, G' of algorithms that compute on binary strings, together with a function Perf that measures (by a number between 0 and 1) how well an algorithm A in $G \cup G'$ performs on an input string x.

The classes G, G' together with the performance function yields a natural notion of depth relative to G, G', i.e. a definition of useful information in the eye of observers competing against each other and drawn from class G and G'. Informally a sequence S is (G,G')-deep, if for any algorithm A in G there is an algorithm A' in G' such that A' performs better on S than A.

More formally let G, G' be two classes of algorithms computing on binary strings. Let $\text{Perf} : (G \cup G') \times \{0,1\}^* \rightarrow [0,1]$ be a function that measures how well an algorithm A in $G \cup G'$ performs on an input string x, where 1 (resp. 0) means optimal performance (resp. worst performance). Usually G' is at least as powerful (or equal to) as G (formally for every $A \in G$ there exists $A' \in G'$ such that for any string x, $\text{Perf}(A',x) \geq \text{Perf}(A,x)$). Let M be a family of polynomial time computable functions, where for every $m \in M$ and every integer n, $1 \leq m(n) \leq n$; for example $M = O(\log n)$. M will measure by how much an algorithm A' performs better than algorithm A. We thus have all the tools to define depth with respect to (G,G').

Definition 1 A sequence $S \in \{0,1\}^\infty$ is (G,G')-deep if there exists a bound $m \in M$ such that for every $A \in G$ there exists $A' \in G'$ such that for infinitely many $n \in \mathbb{N}$

$$\text{Perf}(A',S[1..n]) - \text{Perf}(A,S[1..n]) \geq \frac{m(n)}{n}.$$

Other variations that have been considered are obtained by replacing “there exists a bound $m \in M$” by “for all bounds $m \in M$”, and/or “for infinitely many $n \in \mathbb{N}$” by “for almost every $n \in \mathbb{N}$” (the latter being sometimes referred to as strongly deep). However subtle the influence of those small changes on the corresponding depth notion is, they are not relevant to the high level understanding of the notion of depth we aim at in the present paper, and can all be seen as variations of a same common theme, which is captured by our general depth framework, and that in essence says that a sequence is deep with respect to (G,G') if given any algorithm in G there is an algorithm in G' that performs better (as measured by M) on the sequence.

This general definition actually captures all depth notions introduced in complexity theory so far [2 7 1 3 8], as we shall see in the next section, where we will review some of these notions together with some of the results that were obtained for each of them.
4 A review of some computational depth notion

4.1 Bennett’s logical depth

The first notion of depth, Bennett’s logical depth [2], is based on Kolmogorov complexity. We rephrase it in our general depth framework. We need the following broad definition of compressor.

Definition 2 A compressor is a one-to-one function $C : \{0,1\}^* \rightarrow \{0,1\}^*$.

A compressor is computable if there is a TM T such that for any string x, $T(x) = C(x)$. For the rest of this paper fix a prefix-free universal TM U. The universal compressor is given by

$$C_U(x) = \text{First}\{p \mid U(p) = x\}$$

i.e. its the first (hence shortest) program that makes U output x. It is well known that the choice of U affects the definition of C_U only up to an additive constant. We therefore omit U in the notation and write C_K. Bennett’s logical depth is obtained by letting

$$G = \{C \mid C \text{ is a computable compressor}\}$$

$$G' = \{C_K\}$$

$$\text{Perf}(C, x) = 1 - \frac{|C(x)|}{|x|}$$

$$M = \mathbb{N}$$

i.e. S is Bennett-deep if for every $C \in G$, every $m \in \mathbb{N}$ and almost every $n \in \mathbb{N}$

$$|C(S[0..n])| - |C_K(S[0..n])| \geq m.$$

Among others, Bennett showed in [2] that both Martin-Löf random and recursive sequences are shallow (i.e. not deep), logical depth satisfies a slow growth law for truth-table reductions, and that the Halting language is deep. This was later generalized by Juedes, Lathrop and Lutz [5] to the class of weakly useful languages –a language is weakly useful if the set of languages reducible to it is not small (in a computable Lebesgue measure sense; see [5] for more details)– where it was shown that every weakly useful language is Bennett-deep.

The main limitation of Bennett’s notion is that the universal compressor C_K is not computable. A way to overcome this was proposed by Juedes, Lathrop and Lutz in [7], by replacing G' with G, in Bennett’s formulation, which we describe in the next section.

4.2 Recursive computational depth

Recursive computational depth was proposed in [7] as a way to overcome the uncomputability in Bennett’s definition. It is obtained by letting

$$G = G' = \{C \mid C \text{ is a computable compressor}\}$$

$$\text{Perf}(C, x) = 1 - \frac{|C(x)|}{|x|}$$

$$M = \mathbb{N}$$
i.e. \(S \) is recursive deep if for every \(C \in G \), and every \(m \in \mathbb{N} \) there exists \(C' \in G \) such that for almost every \(n \in \mathbb{N} \)

\[
|C(S[0..n])| - |C_K(S[0..n])| \geq m.
\]

Among others it was shown in [7] that Bennett’s depth and recursive depth are two separate notions, that recursive depth also satisfies a slow growth law for truth-table reductions and that both Martin-Löf random and recursive sequences are not recursive deep.

Although recursive depth gets rid of the uncomputable universal compressor \(C_K \), it is still far from feasible and cannot be used in complexity theory, as most languages of interest in complexity theory – e.g. any \(\text{NP} \)-complete language – being computable, are neither recursive-deep nor Bennett deep. This motivates a notion of polynomial depth in the context of complexity theory. We review the first such notion in the following section.

4.3 Distinguishers based polynomial time depth

Antunes, Fortnow, Melkebeek and Vinodchandran introduced three depth notions in [1]. The first two are only “half polynomial” in the sense that \(G' \) contains the universal compressor \(C_K \). The third notion was obtained via the notion of distinguisher. Here is a definition.

Definition 3 A distinguisher \(D \) for a string \(x \) is a function \(D : \{0,1\}^* \rightarrow \{0,1\} \), such that for any string \(z \)

\[
D(z) = \begin{cases}
1 & \text{if } z = x \\
0 & \text{otherwise}.
\end{cases}
\]

A polynomial time distinguisher for \(x \) is a distinguisher \(D \) for \(x \) that is computable in time polynomial in \(x \).

The third depth notion in [1] is obtained by letting

\[
G = \{D | D(x) = \text{First}\{p \mid U(p) = x \text{ in time polynomial in } |x|\}\}
\]

\[
G' = \{C | C(x) = \text{First}\{p \mid U(p, x) \text{ is a polynomial distinguisher for } x\}\}\}
\]

\[
\text{Perf}(A,x) = 1 - \frac{|A(x)|}{|x|} \quad \text{for any } A \in G \cup G'
\]

\[
M = O(\log n).
\]

The relationship between \(G \) and \(G' \) i.e. between distinguishing a string and producing a string in polynomial time is not known, (beyond the fact that producing implies distinguishing).

Connections were demonstrated between depth and average-case complexity, nonuniform circuit complexity, and efficient search for satisfying assignments to Boolean formulas in [1], and the third depth notion was shown to satisfy a slow growth law for restricted polynomial time reductions.

As mentioned earlier, the two first notions have non-computable \(G' \). For the third notion it is currently not known whether \(G \) and \(G' \) are computable in polynomial time, i.e. given \(A \in G \) (or \(G' \)), it is not known if \(A \) is polynomial time computable (we only know that \(A \) is exponential time computable). An attempt to overcome this difficulty was proposed by Doty and Moser in [2], by considering polynomial time predictors. We review their notion in the following section.

4.4 Predictors based polynomial depth

The depth notion from Doty and Moser [3] is based on polynomial time oblivious predictors, that try to predict the next bit of the characteristic sequence of a language without having access to the history of previously seen bits; here is a definition

Definition 4 An oblivious predictor is a function \(p : \{0, 1\}^* \times \{0, 1\} \to [0, 1] \) such that, for all \(x \in \{0, 1\}^* \), \(p(x, 0) + p(x, 1) = 1 \).

Intuitively, when trying to predict a language \(L \), \(p(x, 1) \) is the probability with which the predictor predicts that \(x \in L \). To measure how well a predictor \(p \) predicts \(L \), we consider its associated martingale \(p : \{0, 1\}^* \to [0, \infty) \) given by

\[
d_p(L \upharpoonright n) = 2^n \prod_{y \leq s_n} P(y, L(y)).
\]

This definition can be motivated by the following betting game in which gambler \(d_p \) puts bets on the successive membership bits of the hidden language \(L \). The game proceeds in infinitely many rounds where at the end of round \(n \), it is revealed to the gambler whether \(s_n \in L \) or not. The game starts with capital 1. Then, in round \(n \), \(d_p \) bets a certain fraction \(\epsilon_w p(w) \) of his current capital \(d_p(w) \), that the \(n \)th word \(s_n \in L \), and bets the remaining capital \((1 - \epsilon_w) d_p(w) \) on the complementary event \(s_n \notin L \). The game is fair, i.e. the amount put on the correct event is doubled, the one put on the wrong guess is lost. The value of \(d_p(w) \), where \(w = \chi_L[0..n] \) equals the capital of \(d_p \) after round \(n \) on language \(L \).

A polynomial predictor \(p \) is a predictor such that \(p(s_n, b) \) is computable in time polynomial in \(n \). Polynomial predictors were used in [3] to define a polynomial depth notion by letting

\[
G = G' = \{ p \mid p \text{ is a polynomial time predictor} \}
\]

\[
\text{Perf}(p, x) = \log d_p
\]

\[
M = \{ \log \log n + O(1) \}
\]

It was shown in [3] that this depth notion satisfies a slow growth law for restricted polynomial time reductions, that similarly to Bennett’s notion, polynomial time weakly useful languages (a polynomial version of weakly useful languages) are polynomial deep, and that the corresponding polynomial time version of random and computable sets are not polynomial deep.

Polynomial oblivious predictors are somehow restricted because they cannot access the history of previously seen bits. As an attempt to overcome this limitation, a notion of depth based on monotone polynomial time compressors was introduced in [8], where it was shown that this depth notion satisfies a slow growth law for restricted polynomial time reductions, that the corresponding polynomial time version of random and computable sets are not polynomial deep, and that the set of Levin random strings is deep in the sense of monotone polynomial depth.

Secondly, although the predictors are polynomial time computable, we have no control over the polynomial exponent. In an attempt to reduce the computational power of the algorithms even further, a finite state version of depth was introduced by Doty and Moser in [8], which we review next.

4.5 Finite-state Depth

Finite-state depth [3] is based on the standard model of finite-state transducer. A finite-state transducer (FST) is a 4-tuple \(T = (Q, \delta, \nu, q_0) \), where

- \(Q \) is a nonempty, finite set of states,
A General Notion of Useful Information

- \(\delta : Q \times \{0,1\} \rightarrow Q \) is the transition function,
- \(\nu : Q \times \{0,1\} \rightarrow \{0,1\}^* \) is the output function,
- \(q_0 \in Q \) is the initial state.

As usual we consider the canonical extension of the transition function, i.e. for all \(x \in \{0,1\}^* \) and \(a \in \{0,1\} \), define \(\tilde{\delta} : \{0,1\}^* \rightarrow Q \) by the recursion

\[
\tilde{\delta}(\lambda) = q_0, \quad \text{and} \quad \tilde{\delta}(xa) = \delta(\tilde{\delta}(x), a).
\]

For \(x \in \{0,1\}^* \), we define the output of \(T \) on \(x \) to be the string \(T(x) \) defined by the recursion

\[
T(\lambda) = \lambda, \quad \text{and} \quad T(xa) = T(x)\nu(\tilde{\delta}(x), a)
\]

for all \(x \in \{0,1\}^* \) and \(a \in \{0,1\} \).

An FST can trivially act as an “optimal compressor” by outputting \(\lambda \) on every transition arrow, but this is, of course, a useless compressor, because the input cannot be recovered. An FST \(T = (Q, \delta, \nu, q_0) \) is information lossless (IL) if the function \(x \mapsto (T(x), \tilde{\delta}(x)) \) is one-to-one; i.e., if the output and final state of \(T \) on input \(x \in \{0,1\}^* \) uniquely identify \(x \). A finite state compressor, is an information lossless finite-state transducer (ILFST). We write ILFST to denote the set of all information lossless finite-state transducers.

It is a remarkable fact [4, 6] that the function from \(\{0,1\}^* \) to \(\{0,1\}^* \) computed by an ILFST can be inverted – in an approximate sense – by another ILFST, i.e. if the compression can be done by an ILFST then there exists a decompressor that is also an ILFST.

The finite state depth notion from [3] is obtained by considering finite state compressors, i.e. by letting

\[
G = G' = \text{ILFST}
\]

\[
\text{Perf}(C,x) = 1 - \frac{|C(x)|}{|x|}
\]

\[
M = \{m(n) = \alpha n \mid n \in [0,1] \}
\]

It is shown in [3] that FS-deep sequences exist, that FS-depth satisfies a slow growth law for information lossless finite state transducers, and that the corresponding finite-state versions of random and computable sets are not finite-state deep.

5 Conclusion

We proposed a general framework for defining the depth of a sequence, that captures all existing notions of depth studied so far in complexity theory. Although most depth notions studied so far concentrated on the compression point of view, it is only one particular case of the more general depth framework proposed here. We therefore anticipate the arising of new depth notions –not necessarily compression algorithm based– that will shed new light on the theory of computational depth.
References

[1] L. Antunes, L. Fortnow, D. van Melkebeek, and N. Vinodchandran. Computational depth: Concept and applications. *Theoretical Computer Science*, 354:391–404, 2006.

[2] C. H. Bennett. Logical depth and physical complexity. *The Universal Turing Machine, A Half-Century Survey*, pages 227–257, 1988.

[3] D. Doty and P. Moser. Feasible depth. In S. B. Cooper, B. Löwe, and A. Sorbi, editors, *CiE*, volume 4497 of *Lecture Notes in Computer Science*, pages 228–237. Springer, 2007.

[4] D. A. Human. Canonical forms for information-lossless finite-state logical machines. *IRE Trans. Circuit Theory CT-6 (Special Supplement)*, pages 41–59, 1959.

[5] D. W. Juedes, J. I. Lathrop, and J. H. Lutz. Computational depth and reducibility. *Theor. Comput. Sci.*, 132(2):37–70, 1994.

[6] Z. Kohavi. Switching and finite automata theory (second edition). *McGraw-Hill*, 1978.

[7] J. I. Lathrop and J. H. Lutz. Recursive computational depth. *Inf. Comput.*, 153(1):139–172, 1999.

[8] P. Moser. The set of Levin Kt-random strings is polynomially deep. *submitted*, 2008.