Post stroke depression and its effects on functional rehabilitation of patients: socio-cultural disability communities

Alexandros Argyriadis, Christodoulos Fylaktou, Panagiota Bellou-Mylona, Maritsa Gourni, Evanthia Asimakopoulou, Despina Sapountzi-Kreepia

doi: 10.12681/healthresj.22512

To cite this article:

Argyriadis, A., Fylaktou, C., Bellou-Mylona, P., Gourni, M., Asimakopoulou, E., & Sapountzi-Kreepia, D. (2020). Post stroke depression and its effects on functional rehabilitation of patients: socio-cultural disability communities. Health & Research Journal, 6(1), 3–20. https://doi.org/10.12681/healthresj.22512
POST STROKE DEPRESSION AND ITS EFFECTS ON FUNCTIONAL REHABILITATION OF PATIENTS: SOCIO-CULTURAL DISABILITY COMMUNITIES

Alexandros Argyriadis¹, Christodoulos Fylaktou², Panagiota Bellou-Mylona³, Maritsa Gourni⁴, Evanthis Asimakopoulou⁵, Despina Sapountzi-Krepiα⁶

1. RN, PhD, Assistant Professor, Frederick University, Cyprus
2. RN, MSc, Nurse, Frederick University, Cyprus
3. RN, PhD, Professor, Frederick University, Cyprus
4. RN, PhD, Professor, Frederick University, Cyprus
5. RN, PhD, Lecturer, Frederick University, Cyprus
6. RN, PhD, Professor, Frederick University, Cyprus

DOI:

Abstract

Background: Stroke is considered to be the third, most frequent cause of death and the leading cause of disability in Western societies. Apart from physical problems, stroke can cause psychological and social problems, too as Post Stroke Depression (PSD) which is the most common emotional disorder that usually occurs in the first months, in about 1/3 of patients surviving after stroke.

Aim: To describe the frequency of post stroke depression (PSD) and its effects on functional recovery of patients.

Method: A systematic review was conducted on databases MEDLINE, PUBMED, CINAHL, and the web using Google Scholar.

Results: Thirty articles were retrieved, from 2000 and onwards which met the selection criteria. According to the results, PSD is a common and serious complication after stroke. Approximately 1/3 of the patients have a type of depression in the first year after stroke, with the risk increasing, the first months of the onset of stroke. The researchers suggest that there is a collaborative relationship between stroke and depression, which leads to inability to perform activities of daily living and slows the rehabilitation of patients.

Conclusion: Early detection of PSD and the implementation of appropriate therapeutic interventions in rehabilitation units help to speed up the recovery process and reintegration of patients into society.

Key words: Post Stroke Depression-PSD, stroke, functional rehabilitation, treatment.

Corresponding Author: Alexandros Argyriadis, 7 Yianni Fredericou, 1036, Nicosia, Cyprus, E-mail: hsc.arg@frederick.ac.cy

Cite as: Argyriadis, A., Fylaktou, C., Bellou-Mylona, P., Gourni, M., Asimakopoulou, E., Sapountzi-Krepa, D. (2019). Post stroke depression and its effects on functional rehabilitation of patients. Health and Research Journal, 6(1), 3-21. https://ejournals.epublishing.ekt.gr/index.php/HealthResJ
INTRODUCTION

Several studies in America and Europe have shown that depression is the most common emotional disorder occurring in one out of three patients after stroke. Major depression occurs in 10-25% of patients after stroke and mild depression in 10-40% of patients. The period at a higher risk of developing depression after PSD is considered to be the first months after stroke. As the incidence of PSD increases, it rises from the initial weeks after the stroke, up to three months. UK’s National Clinical Guidelines for Stroke reports that the most appropriate time to evaluate depression is one month after stroke occurrence. PSD is associated with worsening physical disability and negative effects on patient recovery. An improvement in depressive symptoms after antidepressant therapy appears to have a positive effect on the functional rehabilitation of patients. Appropriate diagnosis and treatment of depression can bring significant results to those recovering from stroke, improving their health status, quality of life, while reducing pain and disability. Treatment for depression can also shorten the recovery process, leading to faster recovery and a quicker return to daily habits; it also reduce health costs.

The literature review identifies various problems in assessing depression in patients with stroke, such as aphasic patients, which cannot be done in the same way as for those without aphasia; a different tool should be used like the Aphasic Depression Rating scale (ADRS), a scale of 9 points that measures depression in these patients. Another problem that makes it difficult to interpret and compare the results of different surveys is the use of different tools for assessing depression. However, what is supported by the majority of researchers is using two or three tools to evaluate PSD to avoid a misinterpretation of stroke symptoms of stroke that resemble symptoms of depression. Timely diagnosis and treatment are considered very important because depression prevents recovery, social reintegration, and motor and cognitive functions and affects quality of life. The involvement of the family as well as the structure of psychosocial rehabilitation are very important in treatment. Rehabilitation programs that include patient and family training, sleep improvement, improved nutrition and frequent physical exercise significantly contribute to reducing the prevalence of PSD. When the patient co-operates, his participation in behavioral and cognitive psychotherapy, with or without drug therapy or short psychodynamic therapy and group and interpersonal psychotherapy, has encouraging results. However, there is reduced research activity on that issue and this study aims to cover this research gap by recording articles about post stroke depression.

AIM

The aim of the present review was to describe the frequency of post stroke depression (PSD) and its effects on functional recovery of patients.

MATERIAL AND METHODS

A systematic review was conducted on MEDLINE, PUBMED, CINAHL, and the global web with Google Scholar. The key words used in all possible combinations were post-stroke depression (Post Stroke Depression - PSD), vascular stroke, functional rehabilitation, treatment.

Inclusion criteria for studies

Articles were included from 2000 onwards in patients with a clinical diagnosis of stroke, who were evaluated for mood during rehabilitation at certain times. They had depressive disorder, depressive symptoms, major depressive disorder, mild depression or dysthymia according to DSM III, III-R, IV (or other standardized diagnostic criteria). Also included were references to full texts accessed from the bibliographic review of the subject.

Exclusion criteria for studies

Investigations referring to mixed diagnoses such as stroke and brain injury were not included. Studies published in other language than Greek or English were also not included. Studies not clearly mentioned in a diagnosis of depressive disorder were also rejected. Finally, articles which lack full access or they are written in another language than Greek or English, were also rejected.

Detailed search process

The same search strategy was applied to all databases using...
the same keywords. In the first phase, key words were introduced in different combinations to the databases. The search resulted in 1213 article titles, which were assessed to the extent that they belonged to the subject under investigation and whether access to the full text of the articles was available. Any articles deemed not relevant to the matter being investigated, and with no access to the full text, were rejected. From this process, a total of 750 articles were rejected and the remainder went on to the next stage. For articles for which there was no access to the full text, a study of the references was selected; those related to the subject were selected and the full text was accessed and passed to the next phase (total 15).

During the second phase, the summaries of the articles passed at this stage were studied. 124 articles were rejected because their summaries were not relevant to the subject under investigation and because they were published in a language other than Greek or English. The remaining 144 passed to the next stage.

In the third phase, the full text of the articles that were passed was studied. Of these, 96 were not relevant to the subject under investigation and were rejected. A total of 48 articles remained for review. In the fourth phase, the 48 articles were evaluated qualitatively on the basis of specific criteria and 18 were rejected. Thus, the totality of the articles included in the review was ultimately 30. The steps of the review of the literature are presented in Table 1.

RESULTS

Of the 30 articles included in the review, 7 were cohort studies of which one was retrospective (Nanetti et al., 2005). The rest were descriptive studies, descriptive correlations, randomized clinical trials, cross-sectional and bibliographic reviews. The sampling method used in the majority of surveys was occasional. In the other surveys, a random sampling and random allocation to a control and intervention groups was followed. The participants ranged from 11 to 459.

Frequency of PSD appearance

Badaru et al., in 2013, found through a cross-sectional study in Nigeria that evaluated fluctuations in functional independence in basic and functional daily activities in patients with stroke, of the 65 patients who participated, 15 (23.1%) were diagnosed with PSD.16 Similarly, Matsuzaki et al., in 2015, in a prospective study from 2011-2013, involving 117 stroke patients hospitalized in a rehabilitation unit in a hospital in Japan, reported that 23.9% were diagnosed with depression.17 Brown et al., in 2012, conducted a prospective longitudinal study from 2003 to 2005, which included 182 patients with stroke. They found that 15 to 19% were depressed of which 58-59% are men. The percentage of patients with PSD did not differ significantly at the three time points of data collection: 2 weeks after discharge, and 3 and 12 months post-stroke. Also, while none of the three time points had an association with age in contrast to other studies, women were deemed more likely to develop PSD the first time, or 2 weeks after discharge.18 Cassidi et al., in 2004, studying 50 post-stroke patients in a rehabilitation unit in Ireland, found that 20% of the patients had depression, with women showing twice as many depressive symptoms as men. Gainotti et al., (2001), studying the data of 64 patients with stroke from an earlier prospective survey conducted in Italy from 1994-1997, found that 49 of them had PSD. Furthermore, Hama et al., (2007) conducted a study with a larger sample (N = 237) of people with stroke in Japan, aiming to investigate the effects of depression or apathy on functional rehabilitation. Of the 237 stroke patients, 75 (31.6%) had PSD.19 Goodwin & Devanand in 2008, studied the data of a large population survey conducted in 48 US states from 1995-1996 to determine the relationship between stroke, depression and functional results. It showed that of the 24 people who had stroke, 7 had PSD.20 Greater PSD (47.1%) in patients 6 months after stroke was found by Unalan et al., (2008), with PSD being positively related to age and negatively with quality of life and functional status.21

PSD Relationship and functionality

According to Gillen et al., in 2001, the increased number of depressive symptoms in the acute phase of stroke leads to the inefficient use of rehabilitation services by patients. In their research, 243 patients were enrolled in post-stroke rehabilita-
trials that were effective are tricyclic antidepressants and a placebo, for 12 weeks. The group of patients included 104 patients with stroke. Patients were administered randomly notriptyline, a tricyclic antidepressant, fluoxetine, belonging to selective inhibitors of serotonin reuptake, and a placebo, for 12 weeks. The group of patients experienced a depressive disorder. It was found that patients with high scores in GDS, compared to those with low scores, showed slower progress in regaining basic skills, such as movement, dressing and feeding. The above results seem to be consistent with Lai’s research et al., in 2002, involving 459 post-stroke patients, of whom 131 were depressed. In particular, depressed patients were 0.3 times less likely to score ≥95 in normal daily activities (BADL) than the non-depressed and were 0.4 times less likely to be independent in three or more complex daily activities (IADLs). In six months, depressed patients showed slower progress in achieving independence in BADL and IADL compared with the non-depressed. Equally important are the research results of Žikić et al., in 2014, where two groups studied depression patients post-stroke (N = 30) and those without depression (N = 30). They concluded that there is relative depression and disability severity. In particular, PSD patients showed a more functional impairment than patients without depression (p < 0.001). Similarly, Srivastava et al., in 2010, in a cross-sectional study of 51 patients following stroke in recovery units found that 18 experienced a depressive disorder. At one follow-up, the results showed that PSD was associated with functional ability, since PSD subjects showed a lower average on all scores of the functional parameter assessment scales, such as mental, equilibrium, mobility, walking ability and independence of basic functions compared to people who did not have PSD. Similarly, Brown et al., in 2012, showed that patients with severely depressed stroke had lower functionality. At the time of data collection, i.e., at 2 weeks, 3 months and 12 months after stroke, PSD had a statistically-significant correlation with functionality. In a survey by Badaru et al., in 2013, with a view to assessing fluctuations in functional independence in both basal and complex daily life activities in patients after stroke (N = 65), a negative correlation was found between PSD and functional rehabilitation. Chau et al., in 2010, found in that depression experienced by patients after stroke was associated with low levels of self-esteem and satisfaction with social support. Van De Port et al., in 2006, performing a prospective cohort study, they found that, out of the 205 patients with stroke who participated in the research, 21% experienced a progressive decline in mobility. They concluded that one-fifth of the patients had a significant reduction in mobility/long-term mobility even one year after stroke. Nannetti et al. in 2005, who followed up patients for three months, showed that depression did not affect kinetic and functional rehabilitation during this time. What they found, however, was that after the deprivation of the symptoms of depression increased, the degree of patient functionality diminished. Hama et al., studying in 2011 the effect of apathy and depression in the functional recovery of patients after stroke, point out that psychological symptoms do not cause functional disability but may be related to the interaction with the rehabilitation process. Apathy was a stronger prognostic factor for poor rehabilitation than depression, which should not be disregarded when rehabilitating patients. In a more recent survey, the researchers claim that improvements in day-to-day activities--the ability to walk--have a positive effect on mood disorders. Applying medication therapy to treat depression and the results in functional rehabilitation Hacket et al., in 2009, in a literature review, studied 17 trials, of which 13 were pharmaceutical clinical trials and 3 physiotherapy. The results showed that drug therapy was beneficial to the extent of a complete recession of depression and a decrease in scores on depression assessment scales as well as in the improvement of mental and functional rehabilitation. However, this comes with an increase in side effects. The types of drugs used primarily in clinical trials that were effective are tricyclic antidepressants and SSRIs. Robinson et al. in 2000, conducted a randomized, blind clinical trial that included 104 patients with stroke. Patients were administered randomly notriptyline, a tricyclic antidepressant, fluoxetine, belonging to selective inhibitors of serotonin reuptake, and a placebo, for 12 weeks. The group of patients
taking notriptyline showed significant improvement in HDRS at 77% compared to the other two groups (fluoxetine at 14% and a placebo at 31%).

Narushima et al., in 2002, in a small-scale study that included 48 patients also looked at the same classes of drugs; their results showed that both were effective in preventing PSD. They found a higher rebound effect of depression after discontinuation of therapy in patients taking notriptyline.

Studying the effect of SSRIs on improving functional rehabilitation over a longer period (6 months) in 11 PSD patients, Bilge et al., in 2008, concluded that while at the start of the study, depressed patients had poor functional rehabilitation compared to the non-depressed (p < 0.05), in the following months they showed depression recession and improved functional rehabilitation at similar rates to the non-depressive patients. The drug given was citalopram 20 mg.

Gainotti et al., in 2001, studied the data of earlier cohort research. They chose 64 stroke patients who met the inclusion criteria. Of these, 49 people experienced depression and some had antidepressant therapy (N = 24) and some (N = 25). They concluded that patients with untreated depression had the lowest rates of improvement in functional rehabilitation, while those who were depressed and treated had the same improvement in functional rehabilitation as the patients with no symptoms. The drug of choice in this study was fluoxetine.

For Llorca et al. in 2015, SSRIs are considered to be the safest drugs in the case of stroke patients because they have fewer side effects. Plus, they act more quickly with a latency period of 7–10 days and have an anxiolytic effect. They are first-class antidepressants for these patients who are mainly elderly with cardiovascular problems and other co-morbidities and are taking too many drugs with a risk of interaction.

Applying other interventions to treat depression and the results in functional rehabilitation

There is a study that refers to the effect of cognitive behavioral therapy on depression treatment and, consequently, on improving the functioning of patients with stroke by Chang et al., in 2011. This randomized clinical trial randomly distributed 77 stroke patients into two groups: medication + rehabilitation training and the intervention group, where the patients received conventional therapy + counseling (cognitive behavioral therapy). Patients in the intervention group experienced significant improvement in anger management, hostility, depression, quality of life and functionality in their day-to-day activities (p < 0.001) relative to the control group.

Mitchel et al., in 2009, additionally studied the duration of the effect of combining the psychosocial/behavioral treatment with antidepressant therapy to reduce depression and improve mobility and social participation. The 101 stroke patients enrolled were evaluated at 9 weeks, 21 weeks, 12 months and 24 months. One group received psychosocial/behavioral intervention and antidepressant therapy, while the control group got the usual care and antidepressant treatment. The results showed that the combination of psychosocial/behavioral treatment and antidepressants is very effective in reducing depression short term, and the result remains stable for 2 years. The control group experienced a decrease in depression in the first year but at a slower pace and to a lesser extent.

CONCLUSIONS

In this systematic review, the PSD incidence rate estimate was not easy to determine due to the methodological differences in the investigations included. The percentage ranged from 15% to 47.1%, a result consistent with previous literature reviews.

Researchers use different diagnostic tools, although most of the investigations followed DSM - IV criteria. In addition, the evaluation time differs; in some surveys, the evaluation was done in the acute phase while in others in the subacute phase. Differences were also observed in the assessment area where the investigations took place in hospitals, as compared to rehabilitation units. All these factors may affect the correct diagnosis of PSD. All researchers have pointed out that PSD is a problem seen in the rehabilitation of SNE patients, but the diagnosis is often undecided. The time when the evaluation is performed affects the number of patients who are diagnosed with depression. The results of the review are consistent with the above after a consideration of the difference in incidence rates of depression in the initial stages of stroke and later on.

The guidelines recommend the evaluation of depression in all patients with stroke and the application of antidepressant ther-
apy for 6 months for efficacy. Both during application and after discontinuation of treatment, they should be closely monitored by a trained health professionals. However, it is unclear whether treatment should be given prophylactically, what kind of drugs are most effective and their effect on patients' functional rehabilitation. This is why more research is needed in the field.

There is a complex interaction between biological factors (the magnitude of damage and number of lesions) and experiential factors (individual history, social status and psychological state), leading to the pathophysiology of PSD. To address depression and apathy requires a multidisciplinary approach focused on the neuroanatomic/ neurobiological, emotional and physical aspects of patient rehabilitation. Simple conventional therapies help, but the combination of these therapies with counseling and cognitive behavioral therapy gives better and time-resistant results.

REFERENCES

1. Gainotti G, Antonucci G, Marra C, and Paolucci S. Relation between depression after stroke, antidepressant therapy, and functional recovery. Journal of Neurology, Neurosurgery, and Psychiatry, 2001; 71(2): 258–61.

2. Hackett M L, Yapa C, Parag V, and Anderson C S. Frequency of depression after stroke: A systematic review of observational studies. Stroke, 2005; 36(6): 1330–1340.

3. Hill K M, West R M, Hewison J, and House A O. The Stroke Outcomes Study 2 (SOS2): a prospective, analytic cohort study of depressive symptoms after stroke. BMC cardiovascular disorders, 2009; 9(22).

4. West R, Hill K, Hewison J, Knapp P, & House A. Psychological disorders after stroke are an important influence on functional outcomes: A prospective cohort study. Stroke, 2010; 41(8): 1723–1727.

5. Townend B S, Whyte S, Desborough T, Crimmins D, Markus R, Levi C, and Sturm J W. Longitudinal prevalence and determinants of early mood disorder post-stroke. Journal of Clinical Neuroscience, 2007; 14(1): 429–434.

6. Argyriadis A, Argyriadi A and Marvaki Ch. Beliefs and attitudes of caregivers of autistic children on special diets and their effectiveness. The Rostrum of Asclepius 2015; 1(2):203-220.

7. Chemerinski E, Robinson R G, Kosier J T. Improved recovery in activities of daily living associated with remission of Post Stroke Depression. Stroke, Journal of the American Heart Association, 2001; 32(1): 113-117.

8. NIMH. Depression and stroke, 2002; Available at: http://www.nimh.nih.gov/publicat/index.cfm.

9. Salter K. Post stroke depression. In Hospital medicine, 2013; pp. 1–104.

10. Hinojosa R, Haun J, Sberna Hinojosa M, and Rittman M. Social isolation poststroke: relationship between race/ethnicity, depression, and functional independence. Topics in stroke rehabilitation, 2011; 18(1): 79–86.

11. Paolucci S. Epidemiology and treatment of post-stroke depression. Neuropsychiatric Disease and Treatment, 2008; 4(1): 145–154.

12. Dafer R M, Rao M, Shareef A, and Sharma A. Post-stroke depression. Topics in stroke rehabilitation, 2008; 15(1): 13–21.

13. Hilla R, Pettita J, Lewinsohn P, Seeley J, Kleinc D. Escalation to Major Depressive Disorder among Adolescents with Subthreshold Depressive Symptoms: Evidence of Distinct Subgroups at Risk. Affect Disord. 2014; 158: 133–138.

14. Benaim C, Cailly B, Perennou D, and Pelissier J. Validation of the aphasic depression rating scale. Stroke, 2004; 35(7): 1692–1696.

15. Kouwenhoven S E, Kirkevold M, Engedal K, and Kim H S. Depression in acute stroke: prevalence, dominant symptoms and associated factors. A systematic literature review. Disability and Rehabilitation, 2011; 33(7): 539–556.

16. Badaru U M, Ogwumike O O, Adeniyi A F, and Olowe O O. Variation in functional independence among stroke survivors having fatigue and depression. Neurology Research International, 2013, pp.1–6.

https://ejournals.epublishing.ekt.gr/index.php/HealthResJ
17. Matsuzaki S, Hashimoto M, Yuki S, Koyama A, Hirata Y, and Ikeda M. The relationship between post-stroke depression and physical recovery. Journal of Affective Disorders, 2015; 176(1): 56–60.
18. Brown C, Hasson H, Thyselius V, and Almborg A H. Post-stroke depression and functional independence: A conundrum. Acta Neurologica Scandinavica, 2012; 126(1): 45–51.
19. Cassidy E, O’Connor R and O’Keane V. Prevalence of post-stroke depression in an Irish sample and its relationship with disability and outcome following inpatient rehabilitation. Disability and Rehabilitation, 2004; 26(2): 71–7.
20. Goodwin R D and Devanand P. Stroke, Depression, and Functional Health Outcomes Among Adults in the Community. Journal of Geriatric Psychiatry and Neurology, 2008; 21(1): 41–46.
21. Unalan D, Ozsoy S, Soyuş F, and Ozturk A. Post-stroke depressive symptoms and their relationship with quality of life, functional status, and severity of stroke. Neurosciences, 2008; 13(4): 395–401.
22. Gillen R, Tennen H, McKee T E, Gernert-Dott P, and Affleck G. Depressive symptoms and history of depression predict rehabilitation efficiency in stroke patients. Archives of Physical Medicine and Rehabilitation, 2001; 82(12): 1645–1649.
23. Lai S M, Duncan P W, Keighley J, and Johnson D. Depressive symptoms and independence in BADL and IADL. J Rehabil Res Dev, 2002; 39(5): 589–596.
24. Argyriadis A, and Argyriadi A. Mobile apps for students with autistic spectrum disorders. Nova Science Publishers, Inc., 2017.
25. Srivastava A, Taly A B, Gupta A, and Murali T. Post-stroke depression: prevalence and relationship with disability in chronic stroke survivors. Annals of Indian Academy of Neurology, 2010; 13(2): 123–7.
26. Chau J P C, Thompson D R, Chang A M, Woo J, Twinn S, Cheung S K, et al. Depression among Chinese stroke survivors six months after discharge from a rehabilitation hospital. Journal of Clinical Nursing, 2010; 19(21–22): 3042–3050.
27. Van De Port I G L, Kwakkel G, Van Wijk I, and Lindeman E. Susceptibility to deterioration of mobility long-term after stroke: A prospective cohort study. Stroke, 2006; 37(1): 167–171.
28. Nannetti L, Paci M, Pasquini J, Lombardi B, Taiti PG. Motor and functional recovery in patients with post-stroke depression. Disability and rehabilitation, 2015; 27(4): 170–5.
29. Hama S, Yamashita H, Yamawaki S, and Kurisu K. Post-stroke depression and apathy: Interactions between functional recovery, lesion location, and emotional response. Psychogeriatrics, 2011; 11(1): 68–76.
30. Hackett M L, Anderson CS, House A, Xia J. Interventions for treating depression after stroke. Stroke, 2009; 40(7): 487–489.
31. Robinson R G. & Spalletta G. Poststroke depression: A review. Canadian Journal of Psychiatry, 2010; 55(6): 341–349.
32. Narushima K, Kosier J T. and Robinson R G. Preventing post-stroke depression: A 12-week double-blind randomized treatment trial and 21-month follow-up. J Nerv Ment Dis, 2002; 190(5): 296–303.
33. Bilge C, Kocer E, Kocer A, Turk Boruk U. Depression and functional outcome after stroke: the effect of antidepressant therapy on functional recovery. EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE, 2008; 44(1): 13–18.
34. Gainotti G, Antonucci G, Marra C, and Paolucci SR. Relation between depression after stroke, antidepressant therapy, and functional recovery. Journal of Neurology, Neurosurgery, and Psychiatry, 2001; 71(2): 258–61.
35. Argyriadis A. The relation between health professionals and hospital education. Cyprus Nursing Chronicles. 2017 Jun 1;17(2).
36. Chang K, Zhang H, Xia Y, and Chen C. Testing the Effectiveness of Knowledge and Behavior Therapy in Pa-
tients of Hemiplegic Stroke. Topics in stroke rehabilitation, 2011; 18(5): 525–35.

37. Mitchell P H, Veith R C, Becker K J, Buzaitis A, Cain K C, Fruin M, et al. Brief psychosocial-behavioral intervention with antidepressant reduces post-stroke depression significantly more than usual care with antidepressant: Living Well with Stroke randomized controlled trial. Stroke, 2009; 40(9): 3073–3078.
FIGURE 1. Flow chart displaying the steps conducted for the review.

Total articles resulting from the search
n = 1213

Studies rejected due to lack of access to the full text
n = 750

Studies that have emerged from further evaluation
n = 463

Studies that were rejected after the title reading
n = 210

Studies added to the review after searching for more references
n = 15

Studies that have emerged from further evaluation
n = 253

Studies that were rejected after the abstract reading
n = 124

Total articles for review
n = 30
### TABLE 1. Characteristics of the studies investigating post stroke depression.

| Researchers       | Country  | Purpose                                                                 | Type of study | Sample                                      | Results                                                                 |
|-------------------|----------|-------------------------------------------------------------------------|---------------|---------------------------------------------|------------------------------------------------------------------------|
| 1. Alfred & Beard, 2002 | USA      | Determine the relationship between depression and patient function after stroke and the strategic interventions for physical recovery and drug therapy | Metanalysis   | 31 Studies related to depression and functional status after stroke since 1989 | Development of a theoretical model: depression and post-stroke functional status 1. Negative relation between depression and functional status 2. Physical recovery and drug therapy for depression increase the patient’s functional status |
| 2. Badaru et al., 2013 | Nigeria | Evaluate fluctuations in functional independence and in the basic activities of everyday life of patients with depression after stroke | Synchronous   | N = 65 patients who survived stroke          | PSD patients showed reduced independence in basic and functional activities of everyday life during physical recovery |
| 3. Bilge et al., 2008 | Turkey   | Study the differences in functional rehabilitation between depressed patients with stroke and non-depressed patients over 6 months | Clinical trial | Patients with stroke N = 40 Depressive N = 11 Non-depressant N = 29 | Depressed patients had poor functional rehabilitation. Depressed patients experienced depression in the first months after treatment and improvement in functional rehabilitation at similar rates to non-depressed patients |
| 4. Brown et al., 2011 | Sweden   | Explore the PSD-related | Review       | Patients after stroke                        | 15-19% of the participants |
| 2 | factors to improve recovery efforts to reduce the incidence of PSD. | N = 181 | The degree of dependence in day-to-day activities was related to the seriousness of the PSD. Age was not associated with PSD. |
|---|---|---|---|
| 5. Cassidy et al., 2004 | To investigate the prevalence of depressive symptoms and depressive disorder in Irish patients in a post-stroke rehabilitation unit To investigate prognostic factors for PSD Investigate the relationship between PSD and the outcome after transfer to a special unit. | Descriptive N = 50 patients admitted to a post-stroke rehabilitation unit. | 1. 20% of patients with stroke experienced PSD. 2. Women had twice as many depressive symptoms as men. 3. No relationship between injury and depression was found. 4. No relationship between previous psychiatric history and PSD was found 5. There was no relationship between depression and disability after SNE. 6. The best functional indicator of the effectiveness of rehabilitation was initial functional disability. |
| 6. Chang et al., China, 2011 | Exploring demographic variables related to anger and well-being in patients with stroke. Investigating the hypothesis that cognitive behavioral | randomized clinical trial | Patients with stroke N = 77 Control group: conventional therapy Intervention team: conventional therapy + Patients in the intervention group experienced significant improvement in anger management, hostility, depression and function in day-to-day activities |
therapy improves the emotional and physical well-being of patients.
Discovering psychological variables associated with therapeutic effects.

| 7. Chau et al., 2010 | China | To investigate the prevalence of PSD in patients with stroke 6 months after their discharge from a rehabilitation hospital and the relationship to psychological, social, physical outcomes and demographic characteristics. | Synchronous | N = 210 Patients with stroke Rehabilitation hospitals | Depression was associated with low levels of self-esteem, satisfaction with social support and functional capacity. |
|---------------------|-------|-------------------------------------------------|-------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 8. Flaster et al., 2013 | USA | Analyze the complex pathogenesis of PSD and summarize options for pharmacological treatment | Review | PSD appears in 33% of stroke patients. It adversely affects functional rehabilitation and improvement and increases mortality. Antidepressants, especially early onset SSRI, reduces depression and helps improve functionality. |
| 9. Gainotti et al., 2001 | Italy | Assess the effects of PSD and antidepressant therapy on improving motor function | Clinical trial | N = 64 stroke patients 49 with depression (24 received treatment and 25 PSD has a negative impact on functional recovery of stroke patients and antide- | |

Argyriadis et al. 14  https://ejournals.epublishing.ekt.gr/index.php/HealthResJ
10. Gillen et al., USA, 2001
Investigate how depressive symptoms, history of depression and cognitive functioning contribute to predicting the effectiveness of rehabilitation in patients with stroke.

11. Goodwin & Devanand, USA, 2008
Determine the relationship between SNE, depression and functionality

12. Hacket et al., Australia, 2005
Investigate the incidence of depression after stroke

13. Hacket et al., Australia, 2009 b
Determine whether pharmacological, psychological therapy or electroconvulsive therapy is scoring and disability and see whether the negative effects of PSD on functional rehabilitation can be offset by antidepressant therapy.

without treatment) and 15 without depression

The increased number of depressive symptoms in the acute phase of stroke leads to inefficient use of rehabilitation services by patients. Patients with a history of depression also experienced a prolongation of their stay in recovery facilities and difficulty in achieving basic day-to-day activities.

SNEs and depression were individually associated with disability in day-to-day physical activities.

Pharmacotherapy has been shown to be beneficial for depression, but it causes unwanted effects. There
14. Hama et al., 2007
Japan
To investigate the effects of depression or apathy on the functional rehabilitation of people after stroke

| Study | Year | Country | Objective | Study Type | Sample Size | Findings |
|-------|------|---------|-----------|------------|-------------|----------|
|       |      |         | PSD can improve outcomes |          |             | has been no beneficial effect from psychotherapy. There is no research on electroconvulsive therapy. |
| Hama et al., 2007 | Japan | To investigate the effects of depression or apathy on the functional rehabilitation of people after stroke | descriptive | N = 237 people with stroke (75 were depressed and 95 had apathy) | Apathy is a stronger prognostic factor for poor rehabilitation than depression. |
| Hama et al., 2011 | Japan | Define the two dimensions of PSD: emotional depressive dimension and absurdity and the way they affect functional rehabilitation in patients with stroke | descriptive | N = 237 stroke patients | Depression and apathy overshadow each other and may coexist but may also exist independently after stroke. They adversely affect attention and memory, causing problems in functional rehabilitation. |
| Lai et al., 2002 | USA | To investigate the relationship between depressive symptoms and the time of recovery of independence in BADL and IADL | Research | N = 459 stroke patients N = 131 depressants | Depressed patients had lower scores in BADL and IADL than non-depressed and slower progress in achieving independence after six months of follow-up. |
| Li et al., 2008 | China | To investigate the efficacy and tolerability of Free and Easy Wanderer Plus (FEWP) in patients with PSD | randomized clinical trial | N = 150 patients with PSD Group 1 (v = 60): FEWP Group 2 (n = 60): Fluoxetine | In the second week, the group receiving FEWP showed more improvement in depression than the fluoxetine- treated |
Group 3 (v = 30): placebo group. At the end of the study, the group receiving FEWP showed more improvement in baseline activities than the fluoxetine group. The FEWP shows good efficacy, safety and tolerability in patients with PSD.

| 18. Llorca et al., 2015 | Spain | Determine the incidence of depression, how the different types of stroke affect depression, whether the injury area is related to depression, and what the appropriate drug is for PSD | Review | One in 3 stroke patients is depressed. Several biological, behavioral and social factors are related to the pathogenesis of depression. Symptoms occur during the first 3 months after stroke. The best treatment for choice are SSRIs.

| 19. Mitchel et al., 2009 | USA | Determine the effect of providing psychosocial / behavioral therapy in patients with depression and stroke. Describe the time it takes to reduce depression and determine the effect of the intervention on functional ability and the social participation of patients | randomized clinical trial | N = 101 stroke patients intervention team: psychosocial / behavioral therapy + antidepressants Control group: routine care + antidepressants Hospitals | The combination of psychosocial / behavioral therapy + antidepressants is very effective in reducing depression and thus improves functional abilities. |
|   | Authors, Year | Country | Aims | Study Design | Sample Size | Findings |
|---|--------------|---------|------|--------------|-------------|----------|
| 20. | Matsuzaki et al., 2015 | Japan | To investigate the relationship between PSD and physical rehabilitation in post-stroke patients at a rehabilitation nursing home. | Research | N = 117 stroke patients hospitalized in rehabilitation hospital | Depression and apathy can occur after stroke and affect rehabilitation independently. The number of patients with PSD decreased during hospitalization, and there was a difference in the results of self-complemented evaluation and observation tools. |
| 21. | Nannetti et al., 2005 | Italy | Assess the prevalence of PSD and its effect on kinetic and functional rehabilitation. | Research | N = 117 stroke patients | PSD does not seem to affect the kinetics and functional recovery in patients admitted to rehabilitation units in the first three months after stroke. However, after discharge, the symptoms of depression appear to increase and the degree of functionality decreases. |
| 22. | Narushima et al., 2002 | USA | To investigate the effect of antidepressants on PSD prevention | Randomized clinical trial | N = 48 non-depressed stroke patients | Nortriptyline and fluoxetine were effective in preventing depression; however, after nortriptyline discontinuation after discontinuation, patients had recurrence of depression. |
| Number | Authors                  | Country   | Study Objective                                                                 | Study Type | N = Stroke Patients | N = Control Group | Notes                                                                 |
|--------|--------------------------|-----------|----------------------------------------------------------------------------------|------------|---------------------|--------------------|----------------------------------------------------------------------|
| 23     | Ojagbemi et al., 2014    | Nigeria   | Determine the frequency and prognostic factors of the Major Depressive Disorder in survivors of SNEs undergoing rehabilitation. | Cohort     | 130 stroke patients | 130 control group  | PSD is common in patients after stroke in the process of recovery and is associated with cognitive impairment and the inability to perform daily activities. It affects the recovery process. The application of treatment not only affects mood but also physical and cognitive restoration. |
| 24     | Paolucci et al., 2008    | Italy     | To describe the epidemiological and therapeutic approaches PSD                   | Review     |                    |                    |                                                                      |
| 25     | Robinson et al., 2000    | Argentina | Compare the effect of nortriptyline, fluoxetine and a placebo in treating depression and restoring physical and mental disability | Randomized | 104 stroke patients |                    | Nortriptyline was more effective in treating depression and in improving the recovery of daily activities as measured by the FIM. |
| 26     | Salter et al., 2013      | Canada    | Assess the prevalence, physical course and risk factors for PSD, as well as issues related to its evaluation and impact on rehabilitation | Review     |                    |                    | PSD affects one third of stroke patients. The highest rates occur in the first few months after the SNE. While there may be improvement, depression may remain for years. |
| Study | Country | Objective | Design | Participants | Results |
|-------|---------|-----------|--------|--------------|---------|
| Srivastava et al., 2010 | India | To assess: A) the prevalence of depressive disorder in chronic stroke patients B) PSD's relationship to disability | Synchronous | N = 51 stroke patients | 18 patients (35.29%) were depressed. The variables associated with PSD were male sex, married, if subject lived in a nuclear family, if subject lived in the city and had a high score on HDRS. PSD was associated with functional disability, but the results were not statistically significant (p > 0.05) |
| Unalan et al., 2008 | Turkey | To investigate the relationship between depressive symptoms six months after stroke and quality of life, clinical and socio-demographic characteristics, functional status and severity of stroke. | Description | N = 70 stroke patients | 47.1% were depressed. PSD appears to be positively related to age and negatively with educational level, quality of life and functional status |
| Žikić et al., 2014 | Serbia | To investigate the effect of PSD on the outcome of the disease, e.g. the degree of disability and quality of life after the SNE | Research | N = 60 two groups | PSD patients had a more severe disability than non-depressed patients both in the initial phase and after rehabilitation. The prospect of improved functionality was lower in depressed than non-depressed. |
The quality of life was worse in the depressed areas of emotional functioning with social relationships being more affected.

| Author(s) | Country | Study Design | Results |
|-----------|---------|--------------|---------|
| Van De Port et al., 2006 | Holland | To identify clinical determinants that affect patient mobility decline 1-3 years after stroke | In one-fifth of patients, functional and mobility deteriorated 1-3 years after stroke. Among the predisposing factors of deprivation of function was depression. |