Elevated Serum Levels of NSE and S-100β Correlate with Increased Risk of Acute Cerebral Infarction in Asian Populations

A Ke Li
B JianJun Jia
C ZhenFu Wang
BFG ShanChun Zhang

Corresponding Author: Ke Li, e-mail: like_like00@163.com
Source of support: Departmental sources

Background: We investigated the clinical value of serum levels of neuron-specific enolase (NSE) and human soluble protein-100β (S-100β) in acute cerebral infarction (ACI) patients.

Material/Methods: A literature search of electronic databases identified relevant case-control studies that examined the correlations between NSE and S-100β serum levels, and ACI. The retrieved studies were screened based on our strict inclusion and exclusion criteria, and high-quality studies were subsequently selected for meta-analysis. STATA software (Version 12.0, Stata Corporation, College Station, TX, USA) was utilized for statistical analysis.

Results: A total of 13 case-control studies, containing 911 ACI patients and 686 healthy controls, were enrolled in this meta-analysis. The results of the meta-analysis showed that serum levels of NSE and S-100β in ACI patients were significantly higher than the control group. Subgroup analysis based on ethnicity revealed that the serum levels of NSE and S-100β in ACI patients were significantly higher than the control group in Asian population. In Caucasian population, the serum levels of NSE in case group was significantly higher than the control group, but no significant differences in serum levels of S-100β were observed between ACI patients and the control group.

Conclusions: Based on our results, we conclude that serum levels of NSE and S-100β strongly correlate with ACI in Asian population, and may be important clinical markers for diagnosis and treatment of ACI.

MeSH Keywords: Brain Abscess • Diagnosis • Infarction, Anterior Cerebral Artery • Meta-Analysis • Phosphopyruvate Hydratase • Technetium Tc 99m Aggregated Albumin

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/893615
Background

Stroke is the second leading cause of death in people over 60 years of age, and the fifth leading cause of death among the 15–59 age group [1]. Stroke is also the leading cause of morbidity and mortality in industrialized nations, and the leading cause of disability worldwide [2]. Stroke is the second most common cause of death in China, and patients with acute cerebral infarction (ACI), also known as acute ischemic stroke, account for 60-80% of all the stroke patients [3–5]. Most ACIs are caused by an embolic or thrombotic occlusion of an intracranial artery [6]. Dietary factors elevate ACI risk through their influence on blood pressure, thrombosis, insulin resistance, platelet function, oxidation and systemic inflammation [7]. Arterial revascularization to restore antegrade perfusion to the ischemic territory remains the principal therapeutic approach in ACI [8]. However, prevention and early intervention is critical for improved clinical outcomes, and in this context, the discovery of biomarkers useful in predicting ACI severity and clinical prognosis has received special attention in recent years [9].

Neuron specific enolase (NSE) is one such biomarker. It is a dimeric isoenzyme of the glycolytic enzyme enolase and is mainly found in the neurons [10]. Ectopic expression of NSE is used as an auxiliary test in diagnosis of small cell carcinoma of lung, neuroendocrine tumors and Alzheimer’s disease [11–13]. Human soluble protein-100β (S-100β) is a low molecular weight calcium-binding protein and is found in glial cells of the central and peripheral nervous system [14,15]. S-100β is mainly expressed in astrocytes but is also present in oligodendrocytes, microglia, neurons, and extracerebral tissues [16], and elevated serum S-100β level is observed in cerebral infarction, traumatic brain injury, cerebral infarction or subarachnoid hemorrhage [17,18]. The serum levels of NSE and S-100β are elevated after various types of brain damage, such as focal and global ischemia, head injury and hemorrhagic brain damage [19]. Several previous studies showed that NSE and S-100β protein levels predict the clinical outcome of ACI, and NSE positively correlates with infarct volume in ACI patients [10,20,21]. However, other studies failed to confirm the relationship between NSE and ACI severity [22]. In order to address this issue with a larger dataset, we used meta-analysis approach to further investigate the clinical value of serum NSE and S-100β levels in ACI.

Material and Methods

Literature search strategy

We searched PubMed, EBSCO, Ovid, SpringerLink, Web of Science, Embase, Wanfang, China National Knowledge Infrastructure (CNKI) and VIP Information databases for relevant studies published prior to September, 2014. We used combinations of terms to achieve optimal search sensitivity and specificity. Our search strategy was as follows: (“stroke” or “brain infarction” or “cerebral infarction” or “cerebral ischemic stroke” or “cerebral stroke” or “ischemic stroke” or “acute cerebral infarction”), (“phosphopyruvate hydratase” or “2-phospho-D-glycerate hydratase” or “enolase” or “NSE” or “neuron-specific enolase” or “muscle specific enolase” or “nervous system specific enolase”) and (“S100B protein, human” or “S100 beta protein, human”).

Study selection

Our study inclusion criteria were: (1) studies that investigated the correlation of ACI with serum levels of NSE and S-100β; (2) case-control studies; (3) study subjects are patients with ACI in case group and healthy controls in control group; (4) studies providing complete information related to country, ethnicity, publication year, age, gender, detection method and sample size, and the outcome indicators were serum NSE and S-100β levels. The exclusion criteria were: (1) the diagnostic basis was undefined; (2) incomplete data was provided; (3) studies that were published repeatedly. In case of duplicate reports, we used data from the study that included the largest number of patients or individual patient data from each study when available. We contacted authors for clarification on the study sample or missing data.

Data extraction

Two investigators independently collected data using a standardized data abstraction form. We abstracted information associated to first author, publication year, country, language, ethnicity, age, gender, detection method, serum levels of NSE and S-100β. Any disagreements in data extraction were resolved through discussion with multiple investigators.

Statistical analysis

All statistical analyses were performed using STATA software (Version 12.0, Stata Corporation, College Station, TX, USA). The correlation between serum levels of NSE and S-100β and ACI was measured by the standard mean difference (SMD) and 95% confidence interval (95%CI) with a random or fixed effects model. The overall effect size was detected by Z test [23]. Heterogeneity among studies was evaluated by the Cochran’s Q-statistic (if P<0.05 heterogeneity existed) and I² test, which is an appraisement of the percentage of total variation across studies ranging from 0 to 100% [24,25]. A random effects model was applied if there was significant heterogeneity (P<0.05 or I²>50%), otherwise, a fixed effects model was utilized [26]. Univariate and multiple meta-regression analyses were used...
Table 1. Baseline characteristics of all included studies.

First author	Year	Country	Sample size	Gender (M/F)	Age (years)	Method	
				Case/Control	Case/Control		
Yu WH	2014	China	Large	72/46	48–79	46–75	ELISA
Singh HV	2013	India	Large	70/30	59.71±12.6	61.31±12.37	ELISA
An SA	2013	Korea	Large	101/87	66±11	61±9	ELISA
Lv LZ	2012	China	Large	45/33	36–73	55.9	ELISA
Gonzalez Garcia S	2012	Cuba	Large	23/38	32–88	30–98	ELISA
Wang QF	2010	China	Small	–	25/15	44–73	–
Brouns R	2010	Belgium	Large	50/39	71.1±13.2	68.1±12.5	ECLI A
Su XH	2009	China	Large	24/21	48–69	45–68	ELISA
Zhang XN	2008	China	Small	–	15/10	45–78	ECLI A
Ma XN	2007	China	Small	–	22/18	59.85±8.24	–
Li Z	2007	China	Small	34/23	60.2±8.7	48±13.2	ECLI A
Cao GB	2006	China	Small	27/31	46–68	26–65	ELISA
Gao D	2002	China	Small	28/17	64.2±9.5	62.8±7.8	ELISA

M – male; F – female; ELISA – enzyme linked immunosorbent assay; ECLI – electro-chemiluminescence immunoassay.

Correlation between ACI and serum levels of NSE

A total of 13 studies reported serum levels of NSE in ACI patients. Heterogeneity test suggested that heterogeneity existed across studies (I²=95.3%, P<0.001), thus a random effects model was applied. The result of this meta-analysis revealed that serum levels of NSE were significantly higher in ACI patients compared to control group, and the difference was statistically significant (SMD=1.96, 95%CI=1.83–2.09, P<0.001) (Figure 1). Additionally, subgroup analysis based on ethnicity indicated that serum levels of NSE were markedly higher in ACI patients compared to the control group, in both Asians and Caucasians (Asian: SMD=2.11, 95%CI=1.96–2.25, P<0.001; Caucasian: SMD=1.32, 95%CI=1.02–1.61, P<0.001). A subgroup analysis based on sample size showed that serum levels of NSE in ACI patients of both large sample size (≥100) and small sample size (<100) were notably higher than the control group (large sample size: SMD=2.01, 95%CI=1.86–2.17, P<0.001; small sample size: SMD=1.80, 95%CI=1.55–2.05, P<0.001) (Figure 2). Univariate meta-regression analysis suggested that publication year, country, ethnicity and sample size were not the main sources of heterogeneity or the critical factors in influencing the overall effect size (P>0.05) (Figure 3A). Multiple meta-regression analysis also indicated that year of

to estimate the source of heterogeneity, and Monte Carlo simulation (MCS) was performed to verify the results [27,28]. Sensitivity analysis was employed by deleting one included study at a time to evaluate the influence of one single study on the overall results. The publication bias that assesses the reliability of the result was evaluated by funnel plot and the Egger test [29].

Results

Study selection and study characteristics

Our search strategy retrieved 117 citations after removal of duplicates. Forty three papers were remaining after excluding 2 duplicates, 22 animal studies, 8 letters, reviews, or meta-analyses and 44 studies unrelated to the research topic. We further excluded 4 cohort studies, 12 studies not relevant to NSE and S-100β, 11 studies unrelated to ACI, and 3 studies that had insufficient information. Finally, 13 case-control studies published between 2002 and April 2014 [2,30–41], containing 911 ACI patients in case group and 686 healthy controls in control group, were finally selected for this meta-analysis. Among these 13 studies, study subjects in 11 trials were Asians, 2 trials were performed in Caucasians. A total of 9 studies were from China and 1 each from India, Korea, Cuba, Belgium. Sample sizes ranged from 58 to 236. Serum levels of NSE and S-100β were detected by enzyme linked immunosorbent assay (ELISA) or electro-chemiluminescence immunoassay (ECLI). The baseline characteristics all included case-control studies are shown in Table 1.
Correlation between ACI and serum levels of S-100β

Twelve studies investigated the serum levels of S-100β in ACI patients. There was no heterogeneity among these studies ($I^2=98.5\%, P<0.001$), thus a fixed-effects model was performed. Results of the meta-analysis suggested that the serum levels of S-100β in ACI patients were higher than in healthy controls (SMD=2.69, 95%CI=2.51–2.86, $P<0.001$) (Figure 1). Additionally, subgroup analysis by ethnicity indicated that serum levels of S-100β in ACI patients was markedly higher than the control group in Asians (SMD=2.84, 95%CI=2.66–3.02, $P<0.001$), while no significant differences in S-100β levels were observed in a Caucasian population between ACI patients and the control group (SMD=−0.56, 95%CI=−1.37–0.24, $P=0.172$). Subgroup analysis by sample size showed that the serum levels of S-100β in ACI patients in both large sample size (n≥100) and small sample size (n<100) were notably higher than in the control group (large sample size: SMD=2.90, 95%CI=2.69–3.12, $P<0.001$; small sample size: SMD=2.33, 95%CI=2.05–2.61, $P<0.001$) (Figure 2). Univariate meta-regression analysis suggested that publication year, country, ethnicity and sample size were not the main sources of heterogeneity or the critical factors in affecting the overall effect size ($P>0.05$) (Figure 3B). Multiple meta-regression analysis also indicated that publication year, country, ethnicity, and sample size were not the sources of heterogeneity (Table 3).

Sensitivity analysis and publication bias

Sensitivity analysis suggested that no single study affected the statistical significance of overall results (Figure 4). $P<0.05$ suggested there was publication bias among studies. Both the summary of funnel plot and Egger test showed no evident
publication bias in NSE and S-100β levels between ACI patients and control group (NSE: P=0.459; S-100β: P=0.314) (Figure 5).

Discussion

In this meta-analysis, we investigated the clinical value of NSE and S-100β in ACI patients, based on the data extracted from previous studies. We found that serum levels of NSE and S-100β in ACI patients were significantly higher than in the control group, suggesting that NSE and S-100β might be reliable markers for ACI. S-100β is a dimeric calcium-binding protein with α and β subunits. The β subunit is highly specific to the brain and is synthesized in glial cells throughout the central nervous system [42]. Depending on its concentrations in the extracellular space, S-100β may either be beneficial for recovery after brain injury, or become neurotoxic [43]. At normal concentrations, in the nanomolar range, S-100β stimulates neurite outgrowth, glial cell proliferation, and regeneration of injured nerves. Its neuroprotective function also includes enhancing neuronal cell maintenance, preventing motor neuron degeneration, and enhancing the survival of neurons [44]. However, in the micromolar range, the excessive levels of S-100β result in production of reactive oxidative species, cytochrome C release, and activation of the caspase death cascade, leading to induction of apoptosis [44,45]. S-100β protein can be detected in very low amounts in blood in normal healthy individuals. In acute and chronic brain damage, glial cells respond to the injury by increasing S-100β levels between ACI patients and the healthy controls.

Figure 2. Forest plots of subgroup analyses by ethnicity and sample size on the differences in serum levels of NSE and S-100β between acute cerebral infarction patients and the healthy controls.
Table 2. Meta-regression analyses of potential source of heterogeneity (NSE).

Heterogeneity factors	Coefficient	SE	t	P (Adjusted)	95% CI
Year	0.0960	0.246	0.39	0.937	LL: -0.472, UL: 0.664
Country	-0.687	1.254	-0.55	0.863	LL: -3.578, UL: 2.204
Ethnicity	0.971	4.310	0.23	0.987	LL: -8.967, UL: 10.909
Sample	-0.000	0.014	-0.01	1.000	LL: -0.034, UL: 0.034

NSE – neuron specific enolase; SE – standard error; CI – confidence interval; LL – lower limit; UL – upper limit.
directly through the disrupted blood-brain barrier or first into CSF and subsequently into the blood through the arachnoid villi [46]. In contrast to astrocyte-derived S-100β protein, NSE originates predominantly from neurons [47]. NSE concentration strongly correlates with the volume of infarcted brain areas, and is an indicator of the severity of clinical features, such as disability. Neuronal injury results in the release of intracellular NSE from injured neurons into CSF and blood circulation [30]. Our results suggest that serum NSE levels are tightly associated with ACI, consistent with a previous study.

Heterogeneity factors	Coefficient	SE	t	P (Adjusted)	95% CI
Year	0.244	0.576	0.42	0.925	−1.117 – 1.605
Country	−8.371	4.550	−1.84	0.264	−19.128 – 2.387
Ethnicity	17.266	11.465	1.51	0.366	−9.843 – 44.376
Sample	0.018	0.031	0.57	0.867	−0.056 – 0.091

S-100β – human soluble protein-100β; SE – standard error; CI – confidence interval; LL – lower limit; UL – upper limit.

Figure 4. Sensitivity analysis on the differences in serum levels of NSE and S-100β between acute cerebral infarction patients and the healthy controls.
which reported that NSE concentrations in was serum correlated with clinical outcomes in stroke and neurotrauma patients [48]. Additionally, we also predicted that the serum levels of NSE and S100B also could be good predictive indicators in the treatment of ACI, as a previous study reported by García S et al. that suggested serum concentrations of NSE and S100B after acute stroke might be clinically relevant for predicting the outcome of neurological function and post-stroke depression [21]. Furthermore, the results of another study by Kac-Oryńska M et al. demonstrated that significant differences in NSE and S100B levels existed between stroke patients and the control group, but only the S100B protein level was associated with stroke volume, neurological status at admission, and the functional outcome compared with NSE [49].

Subgroup analysis by ethnicity revealed that the serum levels of NSE in Asian and Caucasian ACI patients were significantly higher than in healthy controls. A second subgroup analysis indicated that in Asian populations, the serum level of S-100β in ACI patients was markedly higher than in healthy controls, while this difference was not statistically significant in Caucasian populations. Different regions, life-styles, and ethnicities may have underlying variations that could have contributed to this result. Subgroup analysis by sample size suggested that in both large and small sample sizes, the serum levels of NSE and S-100β were markedly higher in ACI patients compared to healthy controls, further confirming the main result of the present meta-analysis.

When interpreting our results, several limitations should be considered. First, 11 of the total 13 trials were in Asian populations, and this might bias the overall results to some extent. However, there was also statistical evidence for the clinical value in diagnosis of ACI in Asian populations. Second, the different detection methods may vary in specificity and sensitivity of S-100β and NSE measurement, and thus may bias the comparisons and results. Third, we could not perform sensitivity analyses related to age, sex, life-style variables, or family history, due to the varied data presentations or absence of the data in the included studies. Finally, other neurological

Figure 5. Publication bias of the differences in serum levels of NSE and S-100β between acute cerebral infarction patients and the healthy controls.
diseases and risky behavior also influence serum S-100β protein concentrations [50,51].

Conclusions

Serum levels of NSE and S-100β were significantly higher in ACI patients in Asian populations compared to their healthy counterparts, suggesting that the 2 proteins strongly correlate with ACI and could be used as important biological indicators in diagnosis and treatment of ACI in Asians.

References:

1. Liu L, Wang D, Wang KS, Wang Y: Stroke and stroke care in China: huge burden, significant workload, and a national priority. Stroke, 2011; 42: 3651–54
2. Yu WH, Wang WH, Dong QX et al: Prognostic significance of plasma co-epitope detection compared with multiple biomarkers in intracerebral hemorrhage. Clin Chim Acta, 2014; 433: 174–78
3. Pereira VM, Graña J, Davalos A et al: Prospective, multicenter, single-arm study of mechanical thrombectomy using Solitaire Flow Restoration in acute ischemic stroke. Stroke, 2013; 44: 2802–7
4. Liao XL, Wang CX, Wang YL et al: Implementation and outcome of thrombolysis with alteplase 3 to 4.5 h after acute stroke in Chinese patients. CNS Neurosci Ther, 2013; 19: 43–47
5. Liu M, Wang HR, Liu JF et al: Therapeutic effect of recombinant tissue plasminogen activator on acute cerebral infarction at different times. World J Emerg Med, 2013; 4: 205–9
6. Chimonowitz Mi: Endovascular treatment for acute ischemic stroke – still unproven. N Engl J Med, 2013; 368: 952–55
7. Larsson SC, Virtamo J, Wolk A: Potassium, calcium, and magnesium intakes and risk of stroke in women. Am J Epidemiol, 2011; 174: 35–43
8. Fang Q, Zeng Q, Liu X et al: Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke, 2011; 42: 693–99
9. Brea D, Sobrino T, Blanco M et al: Temporal profile and clinical significance of serum neuron-specific enolase and S100 in ischemic and hemorrhagic stroke. Clin Chem Lab Med, 2009; 47: 1513–18
10. Azheer S, Beg M, Rizvi I et al: Correlation between serum neuron specific enolase and functional neurological outcome in patients of acute ischemic stroke. Ann Indian Acad Neurol, 2013; 16: 504–8
11. Song WA, Liu X, Tian XD et al: Utility of squamous cell carcinoma antigen, carinoembryonic antigen, Cyfra 21-1 and neuron specific enolase in lung cancer diagnosis: a prospective study from China. Chin Med J (Engl), 2011; 124: 3244–48
12. Yao JC, Pavel M, Phan AT et al: Chromogranin A and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with everolimus. J Clin Endocrinol Metab, 2011; 96: 3741–49
13. Schmidt FM, Merigli R, Stach B et al: Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer’s disease. Neurosci Lett, 2014; 570: 81–85
14. Erenreich H, Kastner A, Weissborn K et al: Circulating damage marker profiles support a neuroprotective effect of erythropoietin in ischemic stroke patients. Mol Med, 2011; 17: 1306–10
15. Neselius S, Brishiy H, Theodorsson A et al: CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS One, 2012; 7: e33606
16. Mondello S, Linnet A, Buki A et al: Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery, 2012; 70: 666–75
17. Zurek J, Fedora M: The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir (Wien), 2012; 154: 93–103; discussion 103
18. Towend W, Dibble C, Abid K et al: Rapid elimination of protein S100B from serum after minor head trauma. J Neurotrauma, 2006; 23: 149–55
19. Palmio J, Huuhika M, Laine S et al: Electroconvulsive therapy and biomarkers of neuronal injury and plasticity: Serum levels of neuron-specific enolase and S-100β protein. Psychiatry Res, 2010; 177: 97–100
20. Bharosay A, Bharosay VV, Varma M et al: Correlation of brain biomarker Neuron Specific Enolase (NSE) with degree of disability and neurological worsening in cerebrovascular stroke. Indian J Clin Biochem, 2012; 27: 186–90
21. Gonzalez-Garcia S, Gonzalez-Quevedo A, Fernandez-Conception O et al: Short-term prognostic value of serum neuron specific enolase and S100B in acute stroke patients. Clin Biochem, 2012; 45: 1302–3
22. Anand N, Stead LG: Neuron-specific enolase as a marker for acute ischemic stroke: a systematic review. Cerebrovasc Dis, 2005; 20: 213–19
23. Chen H, Manning AK, Dupuis J: A method of moments estimator for random effect multivariate meta-analysis. Biometrics, 2012; 68: 1278–84
24. Jackson D, White IR, Riley RD: Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Stat Med, 2012; 31: 3805–20
25. Peters JL, Sutton AJ, Jones DR et al: Comparison of two methods to detect publication bias in meta-analysis. JAMA, 2006; 295: 676–80
26. Zintzaras E, Ioannidis JP: Heterogeneity testing in meta-analysis of genome searches. Genet Epidemiol, 2005; 28: 123–37
27. Huizenga HM, Visser J, Dolan CV: Testing overall and moderator effects in random effects meta-regression. Br J Math Stat Psychol, 2011; 64: 1–19
28. Ferrenberg AM, Swensden RH: New Monte Carlo technique for studying phase transitions. Phys Rev Lett, 1988; 61; 2635–38
29. Egger M, Davey Smith G, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997; 315: 629–34
30. Singh HV, Pandey A, Shrivastava AK et al: Prognostic value of neuron specific enolase and IL-10 in ischemic stroke and its correlation with degree of neurological deficit. Clin Chim Acta, 2013; 419: 136–38
31. An SA, Kim J, Kim OI et al: Limited clinical value of multiple blood markers in the diagnosis of ischemic stroke. Clin Biochem, 2013; 46: 710–15
32. Lv LZ, Han CH, Yang WD: Acute cerebral infarction patients serum MMP-9 and NSE and S-100β protein level changes and clinical value. Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease, 2012; 02: 977–78
33. Gonzalez-Garcia S, Gonzalez-Quevedo A, Pena-Sanchez M et al: Serum neuron-specific enolase and S100 calcium binding protein B biomarker levels do not improve diagnosis of acute stroke. J R Coll Physicians Edinb, 2012; 42: 199–204
34. Wang QF, Liu HM: Clinical correlation study between the serum s-100β, NSE and acute cerebral infarction. China Practical Medical, 2010; 05: 49–51
35. Brouns R, De Vil B, Cras P et al: Neurobiochemical markers of brain damage in cerebrospinal fluid of acute ischemic stroke patients. Clin Chem, 2010; 56: 451–58
36. Su XH, Zhou Q, Song Y et al: Clinical study of plasma in patients with acute stroke et, S-100b protein and NSE content and nerve function defect. Hebei Medical Journal, 2009; 31: 673–74
37. Zhang XN, Yu Y, Wang J et al: Correlation between levels of serum S-100B protein and nerum specific enolase and prognosis of acute cerebral infarction. Progress in Modern Biomedicine, 2008; 08: 2520–22

Acknowledgments

We would like to gratefully thank the investigators for having provided original data from their studies. We also thank the reviewers for their valuable comments on this article.

Conflict of interest statement

The authors have no conflict of interest.
38. Ma LX, Chen P, Li ZR et al: The clinical significance of NSE and S-100 protein in patients with acute stroke. Inner Mongolia Medical Journal, 2007; 792–94
39. Li Z, Liu WH, Xie TG, Wang JF: Serum neuron specific enolase (Nse) and the clinical significance of S-100B protein in evaluating prognosis of patients with acute cerebral infarction. Journal of Dalian Medical University, 2007; 29: 494–96
40. Cao GB, Li B, Chen SQ: The detection and significance of sera S100B and NSE of patients with acute cerebrovascular disease. Lingnan Journal of Emergency Medicine, 2006; 11: 184–85
41. Gao D, Wang JZ, Zhang LL et al: Assay of S-1 00 protein and neuron-specific enolase in cerebrospinal fluid of patients with cerebral inarction and mul ti-infarct dementia. Chinese Journal of Critical Care Medicine, 2002; 22: 8–10
42. Grandi C, Tomasi CD, Fernandes K et al: Brain-derived neurotrophic factor and neuron-specific enolase, but not S100beta, levels are associated to the occurrence of delirium in intensive care unit patients. J Crit Care, 2011; 26: 133–37
43. Sorci G, Ruzzo F, Arcuri C et al: S100B protein in tissue development, repair and regeneration. World J Biol Chem, 2013; 4: 1–12
44. Koh SX, Lee JK: S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med, 2014; 44: 369–85
45. Calik M, Abuhandan M, Kandemir H et al: Interictal serum S-100B protein levels in intractable epilepsy: a case-control study. Neurosci Lett, 2014; 558: 58–61
46. Yardan T, Erenler AK, Baydin A et al: Usefulness of S100B protein in neurological disorders. J Pak Med Assoc, 2011; 61: 276–81
47. Brandner S, Thaler C, Lewczuk P et al: Neuroprotein dynamics in the cerebrospinal fluid: intradividual concomitant ventricular and lumbar measurements. Eur Neurol, 2013; 70: 189–94
48. Brandner S, Thaler C, Buchfelder M, Kleindienst A: Brain-derived protein concentrations in the cerebrospinal fluid: contribution of trauma resulting from ventricular drain insertion. J Neurotrauma, 2013; 30: 1205–10
49. Kaca-Orynska M, Tomasiuk R, Friedman A: Neuron-specific enolase and S 100B protein as predictors of outcome in ischaemic stroke. Neurol Neurochir Pol, 2010; 44: 459–63
50. Steiner J, Bogerts B, Schroeter ML, Bernstein HG: S100B protein in neurodegenerative disorders. Clin Chem Lab Med, 2011; 49: 409–24
51. Lange RT, Brubacher JR, Iverson GL et al: Differential effects of alcohol intoxication on S100B levels following traumatic brain injury. J Trauma, 2010; 68: 1065–71