PRIME Immunology: Self-directed Introduction to Medical School Immunology

Alessandra G. Tomasi1,2 · Thomas Belhorn3 · Frank C. Church4

Accepted: 20 May 2021 / Published online: 16 June 2021 © The Author(s) 2021

Abstract

Introduction Medical students find immunology difficult to understand and relate to clinically and are often frustrated by the amount of detailed material. We created PRIME Immunology: Preview or Review of Important Material for Everyone: (i) video modules, (ii) Instagram site, and (iii) vocabulary files called Immunology Language.

Methods The self-paced modules introduced key topics in immunology for students to complete prior to their instructional block.

Results and Conclusions Use of PRIME Immunology during a 3-year period suggested that providing students with an overview of key topics before the start of their course may (i) reduce student angst about immunology and (ii) improve retention of immunology.

Keywords Immunology · Self-paced learning · Online learning · Innate and adaptive immunity · Complement

Background

Coursework in immunology is typically not required for matriculation into most medical schools. Regardless of students’ background, studies show that medical students find immunology difficult to understand and relate to clinically [1, 2]. A source of frustration is an inability to visualize how the immune system works as a whole within the context of pathogen invasion [3]. Due to this often limited and highly variable exposure to the subject prior to medical school, professors and students face a challenge in presenting and learning the material.

Teaching methods that are centered on self-paced or self-directed study may help overcome this challenge [4–8]. As medical education continues to evolve, in many medical schools, basic medical science subjects have become integrated into organ system blocks [9–13]. Medical education institutions using structured integrated curricula have been exploring such methods [14, 15]. Specifically, several studies have demonstrated the efficacy of online modules for medical students, linking their use to improved retention of material and increased effectiveness of subsequent classroom learning [4, 16].

This project was called PRIME Immunology: Preview or Review of Important Material for Everyone, and it consisted of three components: (i) video modules, (ii) an Instagram site called “Insta.Immunology,” and (iii) Anki-based word files called Immunology Language (described in Fig. 1). For the first component (further reviewed here), we created online self-paced video modules that offered a broad introduction to immunological systems for matriculating medical students. By ensuring that every student, regardless of their prior exposure to the subject, would be familiar with key terminologies underlying the foundations of immunology, we hypothesized that the use of the PRIME Immunology curriculum would improve overall retention and effectiveness of future lectures and assignments.

Activity

Using Keynote software, we created a standardized set of video modules covering key topics in immunology to provide an effective introduction for those with little or no background knowledge in immunology as well as a review for those who had previous education in the field. We created
Fig. 1 Components of PRIME Immunology. A brief description of the PRIME Immunology curriculum that consists of self-paced videos, Instagram site, and vocabulary files.

Components to PRIME Immunology

Self-paced Videos	**“Insta.Immunology” on Instagram**	**“Immunology Language (IL)”**
• Innate Immunity	• Posts on Instagram under the host name: Insta.immunology	[IL-1, IL-2, etc.]
• Adaptive Immunity	First-order-questions (and answers) will be posted on Instagram during the Block. Furthermore, the science and medicine of Immunology will be highlighted during the school year.	We used Anki to prepare several sets of words and phrases with definitions; to assist in the expansion (and knowledge) of medical student science and vocabulary.
• Complement		
• Self-assessment Q&A		

The self-assessment Q&A video has 15 questions to assess pre-existing knowledge of the immune system. The goal is to view all four videos before the block begins.

Results and Discussion

First-year students were surveyed over the course of 3 years to assess their level of exposure to immunology prior to medical school. Of the students who responded, 17% (n = 22) had taken at least one course in immunology, defined as > 5 lectures on the subject, while 46% (n = 57) had received 5 or fewer lectures on the material (data not shown). A total of 38% (n = 47) had no exposure to the field at all (data not included).

Students were surveyed on their use and efficacy of PRIME Immunology at the end of their immunology block in years 2017–2019. Of those who responded, 82% (n = 101) watched the videos and completed the self-assessment prior to the start of their course (data not shown).

We asked students to rate the efficacy of PRIME Immunology in navigating their immunology block (Fig. 2A). These results suggest the majority of students found these supplemental learning modules positively impacted their learning. A limitation of our study was a low rate of survey completion, with fewer than half of medical students responding. Nevertheless, our findings support other studies in undergraduate medical education in which both students and faculty have found multimedia e-learning to enhance teaching and learning due to accessibility, increased content standardization, and ease of use [17, 18].

Final course numerical grades for students the 2 years before and 3 years during the use of PRIME Immunology were compared to help assess whether introduction of this curriculum had any effect on overall class performance or failure rates. Data from the 2 years immediately preceding the use of PRIME Immunology (2015 and 2016) showed a mean final block grade of 86.8 and 87.96, respectively (Fig. 2B). Data from the first three semesters of using PRIME Immunology (2017, 2018, and 2019) showed a mean final block grade of 85.28, 86.24, and 88.5, respectively (Fig. 2B). There was no statistically significant improvement in overall class performance when comparing the pre-intervention and intervention groups (Fig. 2B). The pre-determined numerical cut-off for a passing grade for all instructional blocks is 70 out of 100. In the pre-intervention groups (class years 2015 and 2016), it was noted that four students did not earn a passing grade in the block, whereas in the intervention groups (class years 2017–2019), no
students received a failing grade (Fig. 2C). Multiple factors can contribute to student underperformance. However, particularly for a challenging subject such as immunology, the availability of online materials for self-instruction can help make the complexity and breadth of educational content more manageable [18–22].

In summary, we designed an educational curriculum called PRIME Immunology to provide an effective introduction for students with little background in immunology as well as a review for those who had previous education in this field. The curriculum was thought to be effective by many students and may have been especially beneficial for students who may have otherwise been at risk of failing the immunology course. Ultimately, new developments of online tools to improve the effectiveness of teaching and learning for both students and faculty will undoubtedly continue to redefine standards for medical education.

Acknowledgements We are most grateful to all of the first-year medical students; it has been an honor teaching you and to allow us the opportunity to develop and implement the immunology-based self-directed learning modules described here. We thank Dr. Gary L. Beck Dallaghan and Dr. Kurt O. Gilliland for their useful suggestions in preparing the manuscript. F.C.C. gratefully acknowledges Dr. Russell R. Broaddus, the Joe W. and Evelyn M. Grisham Distinguished Professor and Department Chair, in the Department of Pathology and Laboratory Medicine at UNC School of Medicine, for continued support of his education scholarship.

Author Contribution All authors contributed from the conceptualization of the article, to the writing of the article, and have read and agreed to the final version of the submitted manuscript.

Declarations

Ethical Approval This study was conducted under the guidelines of UNC IRB Study 20–1152.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References

1. Bansal AS. Medical students’ views on the teaching of immunology. Acad Med. 1997;72(8):662.
2. Lee A, Malau-Aduli B. Medical students’ learning experiences and perceptions of immunology. Int J Med Educ. 2013;3(1):1–12.
3. Manglik N, Dudrey EF, Baatar D, Piskurich JF. Immune response to bacteria: an integrated learning module to enhance preclinical students’ competency in immunology. MedEdPORTAL. 2017;13.
4. Bryner BS, Saddawi-Konefka D, Gest TR. The impact of interactive, computerized educational modules on preclinical medical education. Anat Sci Educ. 2008;1(6):247–51.
5. Breckler J, Azzam A. The basic science learning station: an innovative kinesthetic learning approach in one medical school. Med Sci Educator. 2011;19:72–9.
6. Dong C, Goh PS. Twelve tips for the effective use of videos in medical education. Med Teach. 2015;37(2):140–5.
7. Greenhalgh T. Computer assisted learning in undergraduate medical education. BMJ. 2001;322(7277):40–4.
8. Chen F, Lui AM, Martinelli SM. A systematic review of the effectiveness of flipped classrooms in medical education. Med Educ. 2017;51(6):585–97.
9. Bandiera G, Kuper A, Mylopoulos M, Whitehead C, Ruetalo M, Kulasegaram K, et al. Back from basics: integration of science and practice in medical education. Med Educ. 2018;52(1):78–85.
10. Chaudhary ZK, Mylopoulos M, Barnett R, Sockalingam S, Hawkins M, O’Brien JD, et al. Reconsidering basic: integrating social and behavioral sciences to support learning. Acad Med. 2019;94(11S):S73–8.
11. Fincher R-ME, Wallach PM, Richardson WS. Basic science right, not basic science lite: medical education at a crossroad. J Gen Intern Med. 2009;24(11):1255–8.
12. Sibbald M, Neville A. A hundred years of basic science in medical education. Perspectives on medical education. 2016;5(3):136–7.
13. Kulasegaram KM, Martimianakis MA, Mylopoulos M, Whitehead CR, Woods NN. Cognition before curriculum: rethinking the integration of basic science and clinical learning. Acad Med. 2013;88(10):1578–85.
14. Murad MH, Coto-Yglesias F, Varkey P, Prokop LJ, Murad AL. The effectiveness of self-directed learning in health professions education: a systematic review. Med Educ. 2010;44(11):1057–68.
15. Prober CG, Khan S. Medical education reimagined: a call to action. Acad Med. 2013;88(10):1407–10.
16. Vacharathit V, Newman JH, Pettepher CC. Design and effectiveness of an animated module that integrates basic and clinical pulmonary mechanics for medical students. Medical Science Educator. 2015;25(1):13–8.
17. Abdelhai R, Yassin S, Ahmad MF, Fors UG. An e-learning reproductive health module to support improved student learning and interaction: a prospective interventional study at a medical school in Egypt. BMC Med Educ. 2012;12(1):11.
18. Ruiz JG, Mintzer MJ, Leipzig RM. The impact of e-learning in medical education. Acad Med. 2006;81(3):207–12.
19. Arroyo-Jimenez MDM, Marcos P, Martinez-Marcos A, Artacho-Pérula E, Blaizot X, Muñoz M, et al. Gross anatomy dissections and self-directed learning in medicine. Clinical Anatomy: The Official Journal of the American Association of Clinical Anatomists and the British Association of Clinical Anatomists. 2005;18(5):385–91.
20. Barrows HS. Problem-based, self-directed learning. JAMA. 1983;250(22):3077–80.
21. Dornan T, Hadfield J, Brown M, Boshuizen H, Scherpbier A. How can medical students learn in a self-directed way in the clinical environment? Design-based research. Med Educ. 2005;39(4):356–64.
22. Findlater GS, Kristmundsdottir F, Parson SH, Gillingwater TH. Development of a supported self-directed learning approach for anatomy education. Anat Sci Educ. 2012;5(2):114–21.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.