Translational control of SCL isoform expression in hematopoietic lineage choice

Calkhoven, Cornelis F; Muller, Christine; Martin, Richard; Krosl, Goradz; Pietsch, Hubertus; Hoang, Trang; Leutz, Achim

Published in:
Genes & Development

DOI:
10.1101/gad.251903

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Calkhoven, C. F., Muller, C., Martin, R., Krosl, G., Pietsch, H., Hoang, T., & Leutz, A. (2003). Translational control of SCL isoform expression in hematopoietic lineage choice. Genes & Development, 17(8), 959-64. https://doi.org/10.1101/gad.251903

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Translational control of SCL-isoform expression in hematopoietic lineage choice

Cornelis F. Calkhoven,1,3 Christine Müller,1,3 Richard Martin,2 Goradz Krosl,1,2 Trang Hoang,2 and Achim Leutz1,4

1Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; 2Laboratory of Hemopoiesis and Leukemia, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada.

We investigated the translational regulation of SCL protein expression and its role in hematopoietic lineage choice. We show that the expression of different SCL protein isoforms is regulated by signal transduction pathways that modulate translation initiation factor (eIF) function. A conserved small upstream open reading frame (uORF) in SCL transcripts acts as a cis-regulatory element for isoform expression. At the onset of erythroid differentiation, truncated SCL protein isoforms arise by alternative translation initiation and favor the erythroid lineage. In comparison, full-length SCL proteins are more efficient at enhancing the megakaryocyte lineage. Together, our studies unravel translational control as a novel mechanism regulating hematopoietic outcome.

Received October 9, 2002, revised version accepted February 18, 2003.

The basic helix–loop–helix (bHLH) transcription factor SCL is essential for vertebrate hematopoiesis and vasculogenesis (Porcher et al. 1996). Deregulated expression of the scl gene is among the most common molecular abnormalities found in human T-cell acute lymphoblastic leukemia [T-ALL; for review, see Robb and Begley 1997]. Intriguingly, full-length and a number of smaller SCL protein isoforms are expressed from mRNAs that contain the entire SCL reading frame (Pulford et al. 1995). Results presented here show that SCL protein isoforms with various portions of the N terminus are differentially expressed by a translation control mechanism. In addition, we show that distinct SCL isoforms mediate commitment and differentiation towards alternative hematopoietic lineages. It is intriguing that a similar situation exists with translationally controlled expression of C/EBPα and C/EBPβ isoforms that were shown to differentially recruit various chromatin remodeling and basic transcription factors to decisively affect proliferation and differentiation [Kowenz-Leutz and Leutz 1999; Calkhoven et al. 2000; Pedersen et al. 2001].

[Keywords: Hematopoiesis, lineage commitment, translation initiation, uORF, eIF4E, eIF2α]

*These authors contributed equally to this work.

E-MAIL: aleutz@mdc-berlin.de; FAX 49-30-9406-3298.

Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/gad.251903.

Results and Discussion

Expression of truncated SCL protein isoforms is induced upon erythroid differentiation

Erythroid differentiation is induced by inactivation of a temperature sensitive (ts) v-erbB oncogene kinase in the chicken HD3 erythroblast cell line [Beug et al. 1982]. Similarly, in the human erythroid leukemia cell lines HEL or TF-1 erythroid differentiation is induced by DMSO and erythropoietin, respectively. In all three cases, we observed the appearance of faster migrating SCL peptides in addition to the full-length proteins after induction of differentiation, as shown in Figure 1A and B. The appearance of different SCL isoforms was altered by drugs that interfere with different signaling pathways that regulate translation initiation [De Benedetti and Baglioni 1983; Gingras et al. 2001]. Rapamycin (Rap, inhibitor of mTOR) inhibits the appearance of short isoforms in erythroid cells [Fig. 1A], whereas 2-aminopurine (2AP, inhibitor of eIF2α-kinases) represses long isoforms [Fig. 1B]. Moreover, transient expression of full-length human SCL cDNA in COS1 cells yields a similar isoform pattern that was also rapamycin sensitive [Fig. 1C].

The notion that SCL isoforms are generated by differential translation initiation was further supported by the observation that 5’-truncated cDNAs, which permit initiation from consecutive downstream AUG-codons, comigrate with the isoforms observed in HD3 or HEL cells [Fig. 1A,C]. These results indicate that translational up-regulation of truncated SCL isoforms occurs early in erythroid differentiation, and that translational control of SCL isoform expression is conserved in vertebrates.

The eukaryotic translation initiation factor eIF2α and eIF4E are rate limiting and decisive for regulated initiation of translation of a subset of mRNAs that have cis-regulatory small upstream open reading frames (uORFs; Dever 2002). To further examine the effect of translation initiation factor activity on SCL isoform expression, a kinase-inactive and dominant-negative form of the eIF2α-kinase PKR [PKRΔ6] that results in hypophosphorylation and constitutive activation of eIF2α [Koromilas et al. 1992], or the cap-binding eIF4E were cotransfected with HA-tagged SCL in HEK293A cells. Figure 2A shows that activation of eIF2 by PKRΔ6 or overexpression of eIF4E both enhance expression of truncated SCL isoforms C and D and an isoform that initiates at an alternative CUG-codon [Fig. 2A,C]. Similarly, retroviral transfer of PKRΔ6 or eIF4E into HD3 cells enhanced expression of the endogenous SCL isoforms C and D [Fig. 2B]. Expression of PKRΔ6 in HEL cells results in a shift in SCL isoform expression towards more truncated isoforms [Fig. 2C]. Analysis of polyA+ RNA by Northern blotting showed that the scl-splicing pattern was not altered by either PKRΔ6 or eIF4E expression in HD3 or HEL cells. Hence, activation of translation initiation by enhancing eIF2 or eIF4E function favors expression of truncated SCL isoforms.
Differential expression of SCL isoforms depends on conserved mRNA features

The structure of the SCL gene with respect to composition of coding exons and their boundaries is highly conserved (Göttgens et al. 2000). As shown in Figure 1D, three in-frame translation initiation sites designated A, B, and C lie on the same exon IV, whereas initiation site D lies on exon V (Fig. 1D, human exon nomenclature). All but one mRNA splice variants converge on the non-coding exon III. Exon III carries a highly conserved uORF in front of the first SCL initiation codon on exon IV (Aplan et al. 1990). The uORF is out-of-frame with respect to the SCL reading frame (initiation site Φ), overlaps the first SCL initiation A-site, and terminates upstream of the second initiation B-site [Fig. 1D].

To analyze a potential regulatory function of the uORF in SCL-isoform generation and to rule out a proteolytic origin of SCL isoforms, we used a mutagenesis approach as described previously for the analysis of the translational control of C/EBPα and C/EBPβ (Calkhoven et al. 2000). First, we determined whether the small SCL-uORF serves as a cis-regulatory element in SCL protein isoform expression [Fig. 3A]. The uORF was either destroyed by deleting its initiation site (Φ−), or converted into a weaker initiation site (Φ+) or an optimal initiation site (Φ+) and compared to the wild-type uORF (wt U). As shown in Figure 3A, alteration of uORF initiation site strength drastically alters the distribution of SCL isoforms: Increasing the initiation strength at the uORF (Φ+) enhances expression of truncated SCL isoforms. In contrast, reducing initiation strength (Φ−), or removal of the uORF initiation site (Φ−), diminishes or nearly abolishes expression of truncated isoforms, respectively. In addition, removal of the uORF also abrogates rapamycin and 2-amino purine sensitivity (data not shown). Mutations of the initiation sites of SCL isoforms into noninitiation sites (Fig. 3B, ΦA, ΦB, and ΦC) abolished expression of the corresponding SCL isoforms. Notably, mutations that abrogated expression from upstream ini-
tiation sites (A, B) simultaneously enhanced expression from downstream initiation sites. Introduction of a novel initiation codon between sites B and C, designated site X (Fig. 3B), generated a novel peptide at the expense of the isoform initiated at site C. Importantly, also expression from the engineered site X was abolished when the uORF was destroyed (Fig. 3B). These results are in accordance with differential translation initiation by a ribosomal scanning and reinitiation mechanism but are not compatible with a proteolytic mechanism of SCL-isoform generation. In summary, these data show that the SCL uORF directs expression of SCL isoforms.

Differential SCL-isoform expression determines megakaryocytic versus erythroid lineage outcome

Regulated expression of various SCL isoforms during erythroid differentiation suggested distinct biological functions of individual isoforms. Indeed, retroviral transfer of SCL-A isoform in the HEL cell line results in a strong increase of cells that express the megakaryocytic cell surface marker CD41a, whereas the truncated SCL-D isoform failed to do so (Fig. 4A). These results indicated that the long SCL isoforms preferentially supports megakaryopoiesis.

Differential functions of long versus short isoforms in hematopoiesis were further assessed by introducing the full-length SCL-A isoform, the truncated SCL-D isoform, or a negative control into mouse bone marrow cells by retroviral gene transfer (Fig. 4B). As shown in Figure 4C, the frequency of megakaryocyte colonies was increased threefold by SCL-A, whereas SCL-D was not efficient in inducing megakaryocyte colony formation (Fig. 4C).

Figure 2. The SCL protein isoform ratio is modulated by translation initiation factor activity. (A) HA-tagged SCL was cotransfected with PKRΔ6 (to activate eIF2α), eIF4E, or control empty vector (−) into HEK293A. SCL expression was analyzed by immunoblotting using a HA-epitope-specific antiserum. The schematic representations of the SCL mRNA on the left indicate SCL initiation sites in relation to the protein bands. An alternative CUG initiation codon is depicted with an arrowhead. (B) HD3 erythroblasts were infected with retrovirus encoding PKRΔ6, eIF4E, or a control vector (−) and endogenous SCL was examined by immunoblotting using chicken SCL-C terminus-specific antiserum. (C) HEL cells were infected with PKRΔ6 or control virus (−) and endogenous SCL expression was examined by immunoblotting using human SCL-C terminus-specific antiserum. An alternative CUG initiation codon is depicted with an arrowhead. Expression of eIF4E transgene was controlled by immunoblotting. eIF2α-specific and eIF2α phosphorylation-specific antibodies (eIF2α-P) were used to determine the effect of PKRΔ6 on eIF2α. Because the antibody raised against human eIF2α fails to detect the chicken homolog, a nonspecific band (*) detected by the eIF2α-P antibody serves as an internal control for the loading of HD3 extracts. Northern blots of polyA+ RNA revealed no alterations in scl RNA splicing pattern between control (−) and cells expressing PKRΔ6 or eIF2α.

Figure 3. The uORF of SCL controls translation initiation at alternative initiation sites. COS-1 cells were transiently transfected with SCL constructs and analyzed by immunoblotting using HA-epitope-specific antiserum. (A) The wild-type uORF initiation site (wtΦ) was compared to an optimized initiation context (Φ+), a weakened context (Φ−), or a noninitiation site (ΔΦ). (B) Mutation of alternative translation initiation sites affects SCL-isoform expression. Null (Δ) mutations of the individual initiation sites (A, B, or C) are shown. X indicates an additional initiation site engineered between sites B and C with the uORF initiation codon in wild-type context (X) or removed (XΔΦ). Schematic representations of the SCL mRNA with initiation sites indicated in relation to the protein bands is shown at the left. An alternative CUG initiation codon is depicted with an arrowhead (Φ).
comparison, the effect of SCL-A and SCL-D on multipotent colonies was more modest (1.7- and 1.4-fold increase over control, respectively). Alteration in erythroid differentiation was examined by scoring for secondary erythroid colonies (CFU-E) derived from individual multipotent progenitor cells. As shown in Figure 4D, a strong enhancement of CFU-E formation was observed with SCL-D. Expression of the full-length SCL-A isoform increased the number of CFU-Es only to some extent (Fig. 4D). Consistent with CFU-E colony assays, molecular probing of cDNA samples derived from individual colonies displayed highest β-globin levels in SCL-D isoform-expressing cells [data not shown]. Taken together, these observations show that differential expression of alternative SCL isoforms determines cell fate during hematopoietic differentiation: SCL-D favors erythroid differentiation, whereas the SCL-A isoform favors megakaryocyte differentiation.

Translational control as a regulatory event in hematopoietic cell fate determination

In addition to the bHLH domain, parts of the N-terminal SCL sequences, including those involved in transactivation, are highly conserved between vertebrates suggesting additional functions that have not yet been addressed. Our data show that differential expression of SCL protein isoforms that contain various portions of the N terminus modify lineage output in hematopoiesis. Since distinct SCL isoforms arise from alternative initiation sites, the data entail translational control as a regulatory event in hematopoietic cell fate determination. The translational regulation of SCL depends on its uORF. uORFs relay the activity of eukaryotic translation initiation factors [eIFs] to determine initiation from alternative sites (Fig. 5; Morris and Geballe 2000; Dever 2002). uORF-dependent initiation site selection by sensing activities of eukaryotic initiation factors, eIF2 and eIF4E, has also been observed with the “hematopoietic” transcription factors, C/EBPδ and GATA1, respectively, in acute myeloid leukemia or Down’s syndrome-related acute megakaryocytic leukemia, the translationally controlled transcription factors C/EBPs and GATA1, respectively, are targets for mutations that disrupt proper isoform expression (Pabst et al. 2001; Wechsler et al. 2002).
Materials and methods

DNA constructs

SCL 5'UTR (exon III) and coding sequences were isolated by reverse transcriptase PCR (RT–PCR) from K562 cells. Constructs were C-terminally tagged with HA-epitope and cloned in pSG5. All genes were generated on the SCL-HA-pSG5 by PCR or site-directed mutagenesis using oligonucleotide primers containing the following mutated sequences: A, ACCATGCC; B, ACCATGCC; C, ACCATGCTG; D, ACCATGTC; E, ACCATGGAX; ACGGCGGAA → ACCATGCAA; ΔA, ACGATGCC → ACCATGACC; ΔB, AGCATGCC → ACCATGCC; ΔC, GCCATGCTG → GCCCAGCTG; ΔD, AATATGCCC → ACCATGCCC; ΔE, AATATGCCC → ACCATGCCC; ΔF, AATATGCCC → AATATGCCC. Human SCL cDNAs, encoding A or D isoforms were cloned into the AATTATTCCC. Human SCL cDNAs, encoding A or D isoforms were cloned into the EcoRI site of pMSCV-neo (Hawley et al. 1994). The mutated SCL sequences as probes recognizing all known splice variants.

FACS analysis

For FACS analysis 2 × 10^6 cells were stained with FITC-conjugated antihuman CD41a antibody (R&D systems). Control cells were treated with IgGa-FITC. After staining with 1 µg/ml propidium iodide, cells were examined on a FACS Calibur (Beckton Dickinson). Viability gates were set by propidium iodide exclusion.

Bone marrow infection and colony assays

Bone marrow cells were collected from 5-fluorouracil-treated mice and infected as described previously (Krol et al. 1998). Cells were plated in prestimulation medium (IMDM, supplemented with 15% fetal bovine serum, 5 ng/ml IL-3, 100 ng/ml Steel factor, and 10 ng/ml IL-6) for 2 d. Cells were then infected by cocultivation on confluent monolayers of HEL or TF-1 cells with 6 µg h-SCL-HA-pSG5, 2 µg PKRΔΔ or pSG5, and 2 µg carrier pSG5 DNA using a calcium phosphate method. HD3 cells were propagated in DMEM/8% FCS/2% chicken serum/50 µM β-mercaptoethanol/10 mM HEPES at pH 7.4 at 37°C or 42°C. HEL and TF-1 cells were propagated in RPMI/10% FCS (GIBCO) at 37°C. Erythroid differentiation was induced by 1.5% DMSO for 2 d. HD3 and HEL cells were infected with the retroviral PKRΔΔ-pMSCV or eIF2α-pMSCV expression constructs as described in Calkhoven et al. (2000) using the GP2-virus producer cell line (Clontech). Rapamycin was used in a concentration of 1 µM, 2-amino purine was used in a concentration of 5 mM (Calbiochem).

Western blot analysis

Cell extracts were prepared and Western blot analysis was performed as described (Calkhoven et al. 1994; Lecuyer 2002). Hippuric acid (HA)-labeled proteins were identified using the monoclonal anti-HA antibody HA.11 (BabCO, 1:1000). The chicken SCL antisera was raised against the C-terminal peptide HHAILPVEQGAQR in rabbits (1:1000). Protein bands were quantified by densitometry of X-ray films using the FUJIFILM Science Lab/Image Gauge computer program.
mRNA is dictated by a small 5′ open reading frame. *Nucleic Acids Res.* **22**: 5540–5547.

Calkhoven, C.F., Muller, C., and Leutz, A. 2000. Translational control of C/EBPα- and C/EBPβ-isomform expression. *Genes & Dev.* **14**: 1920–1932.

Calkhoven, C.F., Muller, C., and Leutz, A. 2002. Translational control of gene expression and disease. *Trends Mol. Med.* **8**: 577–583.

De Benedetti, A. and Baglioni, C. 1983. Phosphorylation of initiation factor eIF-2, binding of mRNA to 48 S complexes, and its reutilization in initiation of protein synthesis. *J. Biol. Chem.* **258**: 14556–14562.

Dever, T.E. 2002. Gene-specific regulation by general translation factors. *Cell* **108**: 545–556.

Gingras, A.C., Raught, B., and Sonenberg, N. 2001. Regulation of translation initiation by FRAP/mTOR. *Genes & Dev.* **15**: 807–826.

Koromilas, A.E., Roy, S., Barber, G.N., Katze, M.G., and Sonenberg, N. 1992. Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. *Science* **257**: 1685–1689.

Kowenz-Leutz, E. and Leutz, A. 1999. A C/EBPα isoform recruits the SWI/SNF complex to activate myeloid genes. *Mol. Cell* **4**: 735–743.
Erratum

Genes & Development 17: 959–964 (2003)

Translational control of SCL isoform expression in hematopoietic lineage choice
Cornelis F. Calkhoven, Christine Müller, Richard Martin, Goradz Krosl, Hubertus Pietsch, Trang Hoang, and Achim Leutz

Due to a production error, Hubertus Pietsch was omitted from the list of authors for the above-mentioned paper. The corrected list of authors appears above. Hubertus Pietsch is affiliated with the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
Translational control of SCL-isoform expression in hematopoietic lineage choice

Cornelis F. Calkhoven, Christine Müller, Richard Martin, et al.

Genes Dev. 2003, 17:
Access the most recent version at doi:10.1101/gad.251903

Related Content

Errata for vol. 17, p. 959
Genes Dev. June , 2003 17: 1554

References

This article cites 27 articles, 15 of which can be accessed free at:
http://genesdev.cshlp.org/content/17/8/959.full.html#ref-list-1

Articles cited in:
http://genesdev.cshlp.org/content/17/8/959.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.