Almost everywhere divergence of spherical harmonic expansions and equivalence of summation methods

Xianghong Chen, Dashan Fan and Juan Zhang

Abstract. We show that there exists an integrable function on the n-sphere ($n \geq 2$), whose Cesàro ($C,(n-1)/2$) means with respect to the spherical harmonic expansion diverge unboundedly almost everywhere. This extends results of Stein (1961) for flat tori and complements the work of Taibleson (1985) for spheres. We also study relations among Cesàro, Riesz, and Bochner–Riesz means.

In memoriam: Elias M. Stein

1. Introduction

Let S^n ($n \geq 2$) be the n-dimensional sphere equipped with the uniform measure. We consider for $f \in L^1(S^n)$ the spherical harmonic expansion

\begin{equation}
 f \sim \sum_{k=0}^{\infty} \text{proj}_k f,
\end{equation}

where proj$_k$ denotes the orthogonal projection operator from $L^2(S^n)$ to the space of spherical harmonics of degree k (see Chapter IV, Section 2 in [25]). It is well known that the series in (1.1) diverges for general $f \in L^1(S^n)$. So it is natural to consider summation methods that guarantee the convergence of (1.1). In this regard, we consider the Cesàro (C,δ) means, $S^\delta_N f$, $N = 0, 1, \ldots$, for the series in (1.1). Bonami and Clerc [2] showed that $S^\delta_N f$ converges almost everywhere to f provided $\delta > \delta_0 := (n-1)/2$. For $\delta < \delta_0$, Meaney [19] showed that there exists a zonal function $f \in L^1(S^n)$ such that $S^\delta_N f$ diverges almost everywhere. At the critical index $\delta = \delta_0$, a general result of Christ and Sogge [5] implies that $S^\delta_N f$
always converges in measure to f. Chanillo and Muckenhoupt [3] showed that, if moreover f is zonal, then $S_N^0 f$ converges almost everywhere to f.

In view of Kolmogoroff’s counterexample [16] on S^1 and Stein’s counterexample [23] on the tori \mathbb{T}^n ($n \geq 2$), it can be expected that there exists an $f \in L^1(\mathbb{S}^n)$ such that $S_N^0 f$ diverges almost everywhere on \mathbb{S}^n. Indeed, such a result is claimed in a paper by Taibleson [27] with f belonging to the Hardy space $H^1(\mathbb{S}^n)$ (see also remarks in [6], [30]; note that $H^1 \subset L^1$). However, Taibleson addresses only how to obtain such a result from the corresponding result with $f \in L^1(\mathbb{S}^n)$, by adapting an idea of Stein in [24] for \mathbb{T}^n. The main purpose of this paper is to give a complete proof of Taibleson’s claim by constructing an $f \in L^1(\mathbb{S}^n)$ such that $S_N^0 f$ diverges almost everywhere (Theorem 3.1 in Section 3). Although our proof bears some similarity to those for S^1 and \mathbb{T}^n, some aspects are new and may provide motivation for the study of more general settings and of more refined questions.

The construction of f relies on precise estimates of the summation kernel. In the case of tori [23] and compact semisimple Lie groups [4], such estimates were obtained using the Poisson summation formula. However, except for some special cases, such an approach does not seem to carry over to \mathbb{S}^n. Based on detailed study of the Jacobi polynomials (cf. [26]), Bonami and Clerc [2] were able to obtain rather precise estimates of the Cesàro kernels on \mathbb{S}^n. They applied the estimates mainly with $\delta > \delta_0$ in [2]. For the sake of self-containment, in Section 2 we give a detailed presentation for the case $\delta = \delta_0$ following their approach.

With the kernel estimates, to obtain the almost everywhere divergence result, we combine ideas of Stein [23] in his treatments of S^1 and resp. \mathbb{T}^n, as well as the treatment of compact semisimple Lie groups by the first two authors in [4]. More precisely, as in [4] we first use Young’s inequality and the weak $(1, 1)$ boundedness of the Hardy–Littlewood maximal function to remove the influence of the global part of the kernel. We then need to find an appropriate $f \in L^1(\mathbb{S}^n)$ to blow up the local part of the kernel. For this we use an idea of Stein in his treatment of S^1, that is to replace f by an appropriate probability measure μ whose mass is equally distributed on finitely many points. The points in the support of μ need to be suitably equidistributed, and the distance functions generated by them need to be rationally independent almost everywhere. In the case of compact semisimple Lie groups, such points were constructed in [4] using a probabilistic approach similar to that of Kahane [15] for S^1. However, the probabilistic approach is somewhat limited and provides limited information about details of the divergence. Therefore we opt for a deterministic approach for \mathbb{S}^n. As the proofs will show, this approach provides much more flexibility in choosing the points. In particular, it will be shown that the equidistribution property is satisfied for any sufficiently dense packing of \mathbb{S}^n (or modifications thereof; see Lemma 3.5 below). It will also be shown that the rational independence property holds whenever the points are distinct and contain no antipodal pairs (Lemma 3.6). It is worth mentioning that the latter requires knowledge about the analyticity of the distance functions on \mathbb{S}^n (see [1], [23] for the case of \mathbb{R}^n); in particular, it is used in the proof that the cut loci of \mathbb{S}^n are singletons. Interestingly, similar considerations are not needed in the case of \mathbb{T}^n. This is because the global part of the kernel on \mathbb{T}^n already diverges almost
everywhere, so that one can simply take \(\mu \) to be a point mass, see [23] (see also Chapter VII, Section 4 in [25]).

In Section 4 we study relations among the Cesàro, Riesz, and Bochner–Riesz means. These summation methods are known to give rise to the same order of summability (i.e., the critical \(\delta \)) at every point on \(\mathbb{S}^n \) (cf. Hardy–Riesz [10]). In particular, the almost everywhere divergence of Cesàro \((C, \delta_0) \) means implies that of the Riesz and Bochner–Riesz means of the same order. On the other hand, it is not clear if the divergence behaviors are exactly the same for these summation methods (cf. Kuttner [17]). Using a result of Ingham [14], we show that, if appropriately defined, the differences among the three summation processes are bounded almost everywhere when \(\delta = \delta_0 \) and \(f \in L^1(\mathbb{S}^n) \).

Throughout the paper, unless otherwise stated, \(C \) denotes a positive, dimensional constant whose value may change from line to line, and \(A = O(B) \) means that \(|A| \leq \tilde{C}B \) holds for a constant \(\tilde{C} > 0 \) independent of the testing inputs (which will usually be clear from the context).

2. Notation and preliminaries

In what follows, we denote by \(\mathbb{S}^n \) the unit sphere in \(\mathbb{R}^{n+1} \) (\(n \geq 2 \)) equipped with the standard round metric. Denote by \(\Delta \) the Laplace–Beltrami operator on \(\mathbb{S}^n \). For \(k = 0, 1, \ldots \), denote by \(\mathcal{H}^n_k \) the space of spherical harmonics of degree \(k \) (for background on spherical harmonics, we refer to [29], [7], and Chapter IV in [25]). It is well known that we have the orthogonal decomposition

\[
L^2(\mathbb{S}^n) = \bigoplus_{k=0}^{\infty} \mathcal{H}^n_k;
\]

moreover,

\[
(2.1) \quad \Delta Y_k = -k(k + n - 1) Y_k, \quad \forall Y_k \in \mathcal{H}^n_k,
\]

\[
\dim \mathcal{H}^n_k = \binom{k+n}{k} - \binom{k-2+n}{k-2}.
\]

Denote by

\[
\text{proj}_k : L^2(\mathbb{S}^n) \to \mathcal{H}^n_k
\]

the orthogonal projection from \(L^2(\mathbb{S}^n) \) to \(\mathcal{H}^n_k \). Set

\[
\lambda = \frac{n-1}{2}.
\]

Let \(C^\lambda_k(t) \) be the Gegenbauer polynomial of degree \(k \) and index \(\lambda \). Equivalently,

\[
(2.2) \quad C^\lambda_k(t) = \frac{\Gamma(\lambda + 1/2)}{\Gamma(2\lambda)} \frac{\Gamma(k + 2\lambda)}{\Gamma(k + \lambda + 1/2)} P^\lambda_{k-1/2, \lambda-1/2}(t),
\]
where $P^\alpha_\beta_k$ is the Jacobi polynomial of degree k (cf. Szegö [26], p. 80). Denote by $|x - y| \in [0, \pi]$ the great-circle distance between x and y on \mathbb{S}^n. It is a standard fact that

\begin{equation}
\text{proj}_k f = \int_{\mathbb{S}^n} Z_k(\cdot, y) f(y) \, dy,
\end{equation}

where

\[Z_k(x, y) = \frac{k + \lambda}{\lambda} C^\lambda_k(\cos|x - y|). \]

Note that $\cos|x - y| = \langle x, y \rangle$ represents the inner product in \mathbb{R}^{n+1}. Note also that, by (2.2) and Theorem 7.32.2 in Szegö [26], we have

\begin{equation}
|Z_k(x, y)| \leq C(k + 1)^{(n-1)/2} |x - y|^{-(n-1)/2} |x - \hat{y}|^{-(n-1)/2}, \quad k = 0, 1, \ldots,
\end{equation}

where \hat{y} denotes the antipodal point of y on \mathbb{S}^n. (See also Bonami–Clerc [2], p. 231.)

For $f \in L^1(\mathbb{S}^n)$, we can consider the formal spherical harmonic expansion

\[f \sim \sum_{k=0}^{\infty} \text{proj}_k f, \]

with $\text{proj}_k f \in \mathcal{H}_k^n$ given by (2.3). Let $\delta > -1$. The corresponding Cesàro (C, δ) means are defined by

\[S^\delta_N f = \frac{1}{A^\delta_N} \sum_{k=0}^{N} A^\delta_{N-k} \text{proj}_k f, \quad N = 0, 1, \ldots, \]

where

\[A^\delta_k = \binom{k + \delta}{k} = \frac{(\delta + k)(\delta + k - 1) \cdots (\delta + 1)}{k(k-1) \cdots 1} = \frac{\Gamma(k + \delta + 1)}{\Gamma(k + 1) \Gamma(\delta + 1)}. \]

By (2.3), we can also write

\[S^\delta_N f = \int_{\mathbb{S}^n} K^\delta_N(\cdot, y) f(y) \, dy \]

where

\[K^\delta_N(x, y) = \frac{1}{A^\delta_N} \sum_{k=0}^{N} A^\delta_{N-k} Z_k(x, y) \]

is called the $(N$-th) Cesàro kernel of order δ. Note that $K^\delta_N(x, y)$ depends only on $|x - y|$. In general, for kernels $K(x, y)$ satisfying this property, we will write

\[K * f := \int_{\mathbb{S}^n} K(\cdot, y) f(y), \, dy. \]

In particular, we will write

\[S^\delta_N f = K^\delta_N * f. \]
In what follows, we will focus on the case
\[\delta = \delta_0 = \frac{n - 1}{2}. \]

For simplicity, we will write
\[K_N(x, y) = K_N^{(0)}(x, y). \]

Following Bonami–Clerc [2], we first decompose \(K_N(x, y) \) as
\[K_N(x, y) = K_N^{(0)}(x, y) + K_N^{(\pi)}(x, y) \]
where
\[K_N^{(0)}(x, y) = K_N(x, y) \mathbb{1}_{|x - y| \leq \pi/2}, \]
\[K_N^{(\pi)}(x, y) = K_N(x, y) \mathbb{1}_{|x - y| > \pi/2}. \]

We will need the following estimate for \(K_N^{(\pi)}(x, y) \). See Corollary 2.5 in [2].

Lemma 2.1. There exists a constant \(C > 0 \) such that
\[|K_N^{(\pi)}(x, y)| \leq C |x - \hat{y}|^{-(n-1)/2}, \quad N = 0, 1, \ldots \]

To estimate \(K_N^{(0)}(x, y) \), following [2], we will use the following formula. See Szegő [26], p. 261.

Lemma 2.2. For \(N = 1, 2, \ldots \), we have
\[K_N(x, y) = C_N P_N^{(n-1/2, (n-2)/2)}(\cos |x - y|) + E_N(x, y), \]
where
\[C_N = \frac{1}{A_N^{\delta_0}} \left\{ 2^\delta_0 \Gamma \left(\frac{n}{2} \right) \frac{\Gamma(N + n/2)}{\Gamma(N + 3n/2 - 1)} \frac{\Gamma(2N + 2n - 1)}{\Gamma(2N + 3n/2)} \right\}^{-1}, \]
\[E_N(x, y) = -\sum_{\ell=1}^{\infty} (-1)^\ell \left(\begin{array}{c} \delta_0 \\ \ell \end{array} \right) \frac{(N + \delta_0 + 1) \cdots (N + \frac{2n+1}{2} + \ell - 1)}{(2N + \frac{3n}{2}) \cdots (2N + \frac{2n}{2} + \ell)} K_N^{(0)}(x, y). \]

Regarding the coefficients in Lemma 2.2, we have
\[\lim_{N \to \infty} \frac{C_N}{N^{1/2}} = 2^{-3(n-4)/2} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)}, \]
and
\[\sum_{\ell=1}^{\infty} \left| \left(\begin{array}{c} \delta_0 \\ \ell \end{array} \right) \frac{(N + \delta_0 + 1) \cdots (N + \frac{2n+1}{2} + \ell - 1)}{(2N + \frac{3n}{2}) \cdots (2N + \frac{2n}{2} + \ell)} \right| \leq \sum_{\ell=1}^{\infty} \left| \left(\begin{array}{c} \delta_0 \\ \ell \end{array} \right) \right| < \infty, \]
where the last series converges because
\[\left| \left(\begin{array}{c} \delta_0 \\ \ell \end{array} \right) \right| = \frac{|\delta_0(\delta_0 - 1) \cdots (\delta_0 - \ell + 1)|}{1 \cdot 2 \cdots \ell} \leq C \ell^{-1-\delta_0}. \]

We will need the following asymptotic formula for the Jacobi polynomial. See Theorem 8.21.8 in Szegő [26].
Lemma 2.3. For every \(t = \cos |x - y| \in (-1, 1) \),
\[
P_N^{(n-1/2, (n-2)/2)}(t) = N^{-1/2} k(x, y) \cos \left(\left(N + \frac{3n-1}{4} \right) |x - y| - \frac{n\pi}{2} \right) + O(N^{-3/2}),
\]
where
\[
k(x, y) = \pi^{-1/2} \left(\sin \frac{|x - y|}{2} \right)^{-n} \left(\sin \frac{|x - \hat{y}|}{2} \right)^{-(n-1)/2}.
\]

To estimate \(E_N(x, y) \) in Lemma 2.2, we will use the following lemma. See Hardy [9], p. 100–101.

Lemma 2.4. Let \(\{a_k\}_{k=0}^\infty \) be a sequence of numbers. For \(\delta > -1 \), let
\[
S_\delta^N = \frac{1}{A_N} \sum_{k=0}^N A_{N-k}^\delta a_k, \quad N = 0, 1, \ldots
\]
Then for any \(\rho > 0 \), we have
\[
|S_\delta^{N+\rho}| \leq \max_{0 \leq k \leq N} |S_k^\delta|, \quad N = 0, 1, \ldots
\]

We will also need the following estimates for \(K_0^{N+1} \). See Corollary 2.5 in [2].

Lemma 2.5. (i) When \(|x - y| \leq \pi/2 \),
\[
|K_0^{N+1}(x, y)| \leq C N^n, \quad N = 1, 2, \ldots
\]
(ii) When \(2/N \leq |x - y| \leq \pi/2 \),
\[
|K_0^{N+1}(x, y)| \leq C N^{-1} |x - y|^{-n-1}.
\]

Let \(\nu \) be a finite Borel measure on \(\mathbb{S}^n \). Denote by
\[
M(\nu)(x) = \sup_{r > 0} \frac{\nu(B(x, r))}{|B(x, r)|}, \quad x \in \mathbb{S}^n,
\]
the Hardy–Littlewood maximal function of \(\nu \) on \(\mathbb{S}^n \), where
\[
B(x, r) = \{ y \in \mathbb{S}^n : |x - y| < r \}.
\]
Note that, for a suitable constant \(C > 1 \), we have
\[
r^n / C \leq |B(x, r)| \leq C r^n, \quad 0 < r \leq \pi.
\]
Using a standard argument (see Theorem 2.2 in [12]), we have the weak-type \((1, 1)\) inequality
\[
\left| \{ x \in \mathbb{S}^n : M(\nu)(x) > t \} \right| \leq C \frac{\|\nu\|}{t}, \quad t > 0.
\]
In particular, by taking \(t \to \infty \), we have
\[
M(\nu)(x) < \infty, \quad \text{a.e. } x \in \mathbb{S}^n.
\]
Using Lemma 2.5 and a dyadic decomposition, we also have

\[(2.12) \quad \sup_{N \geq 0} \left| \int_{|x-y| \leq \pi/2} K^{\delta_0+1}_N(x, y) \, d\nu(y) \right| \leq C M(\nu)(x), \quad x \in \mathbb{S}^n. \]

Now, let us denote (following the notations in Lemma 2.2)

\[(2.13) \quad \tilde{K}^{(0)}_N(x, y) = C_{\nu} P_N^{(n-1)/2,(n-2)/2} (\cos |x-y|) \mathbb{1}_{\{|x-y| \leq \pi/2\}}, \]

\[(2.14) \quad E^{(0)}_N(x, y) = E_N(x, y) \mathbb{1}_{\{|x-y| \leq \pi/2\}}. \]

Then we can further decompose

\[K_N(x, y) = \tilde{K}^{(0)}_N(x, y) + E^{(0)}_N(x, y) + K^{(\pi)}_N(x, y), \quad N = 1, 2, \ldots \]

Applying Lemma 2.4 with \(\delta = \delta_0 + 1 \),

\[a_k = \int_{|x-y| \leq \pi/2} Z_k(x, y) \, d\nu(y), \]

and \(\rho = 1, 2, \ldots \), we see that for \(\ell = 1, 2, 3, \ldots \),

\[\left| \int_{|x-y| \leq \pi/2} K^{\delta_0+\ell}_N(x, y) \, d\nu(y) \right| \leq \sup_{N \geq 0} \left| \int_{|x-y| \leq \pi/2} K^{\delta_0+1}_N(x, y) \, d\nu(y) \right|. \]

Thus, it follows from (2.6) that

\[|E^{(0)}_N \ast \nu(x)| \leq C \sup_{N \geq 0} \left| \int_{|x-y| \leq \pi/2} K^{\delta_0+1}_N(x, y) \, d\nu(y) \right|, \quad N = 1, 2, \ldots. \]

Combining this with Lemma 2.1 and (2.12), we obtain the desired estimate:

Lemma 2.6. There exists a constant \(C > 0 \) such that, for any finite Borel measure \(\nu \) on \(\mathbb{S}^n \),

\[|(K_N - \tilde{K}^{(0)}_N) \ast \nu| \leq C M(\nu) + C k^{(\pi)} \ast |\nu|, \quad N = 1, 2, \ldots, \]

where

\[k^{(\pi)}(x, y) = |x - \hat{y}|^{-(n-1)/2}. \]

3. Almost everywhere divergence of Cesàro means

With Lemma 2.6, we can now prove the main theorem.

Theorem 3.1. There exists a function \(f \in L^1(\mathbb{S}^n) \) such that

\[\limsup_{N \to \infty} \left| S_N^{(n-1)/2} f(x) \right| = \infty, \quad a.e. \ x \in \mathbb{S}^n. \]
In a similar spirit as in [23], we will deduce Theorem 3.1 from the following lemma. Denote by \(P(S^n) \) the set of Borel probability measures on \(S^n \).

Lemma 3.2. Given \(L > 1 \), there exists a finitely supported measure \(\mu \in P(S^n) \) such that
\[
\limsup_{N \to \infty} \left| K_N(0)^\star \mu(x) \right| > L, \quad \text{a.e. } x \in S^n.
\]

The proof of Lemma 3.2 is postponed to the end of this section. By using Lemma 2.6 and (2.11), the next lemma follows easily from Lemma 3.2.

Lemma 3.3. Given \(L > 1 \) and \(\varepsilon > 0 \), there exists a finitely supported measure \(\mu \in P(S^n) \) such that
\[
\limsup_{N \to \infty} \left| K_N^\star \mu(x) \right| > L
\]
holds on a set \(E \subset S^n \) with \(|S^n \setminus E| < \varepsilon \).

By a standard limiting argument, the supremum above may be truncated at a large enough \(N_0 \). Furthermore, by convolving with \(K_N^{\delta_0+1} \) for a large enough \(N_1 \), the measure \(\mu \) above can be replaced by a function \(f \in L^1(S^n) \). We call \(f \) a polynomial of degree \(N \) if
\[
\text{proj}_N f \neq 0 \quad \text{and} \quad \text{proj}_k f = 0, \quad \forall k \geq N + 1.
\]

Lemma 3.4. Given \(L > 1 \) and \(\varepsilon > 0 \), there exist a polynomial \(f \) with \(\|f\|_{L^1(S^n)} \leq 1 \), and an integer \(N_0 \), such that
\[
\max_{0 \leq N \leq N_0} \left| K_N \ast f(x) \right| > L
\]
holds on a set \(E \subset S^n \) with \(|S^n \setminus E| < \varepsilon \).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. The proof is an adaptation of the argument in p. 273–274 of [25]. The function \(f \) will be taken to be of the form
\[
f = \sum_{j=0}^{\infty} \eta_j f_j,
\]
where \(\{\eta_j\}_{j=0}^{\infty} \in \ell^1 \) is a sequence of positive numbers, and each \(f_j \) is a polynomial satisfying \(\|f_j\|_{L^1(S^n)} \leq 1 \). Obviously,
\[
\|f\|_{L^1(S^n)} \leq \sum_{j=0}^{\infty} \eta_j < \infty.
\]

Each \(f_j \) will have an associated integer, denoted by \(N_j \). The choice of \(\eta_j, f_j, N_j \) is based on induction. More precisely, set \(\eta_0 = 1, f_0 = 0, N_0 = 0 \). Assuming that \(\eta_{j-1}, f_{j-1}, N_{j-1} \) have been chosen, we now describe how we choose \(\eta_j, f_j, N_j \).
First, choose \(\eta_j > 0 \) so small that

\[
(3.1) \quad \eta_j \leq \eta_{j-1}/2
\]

and so that

\[
(3.2) \quad \eta_j \max_{0 \leq N \leq N_{j-1}} \|K_N\|_\infty \leq 1.
\]

With \(\eta_j \) chosen, by Lemma 3.4 we can find a polynomial \(f_j \) with \(\|f_j\|_{L^1(S^n)} \leq 1 \) and an integer \(N_j \), such that

\[
(3.3) \quad \eta_j \max_{0 \leq N \leq N_j} \|K_N \ast f_j(x)\| > \sup_{N \geq 0} \|K_N \ast (\eta_0 f_0 + \cdots + \eta_{j-1} f_{j-1})\|_\infty + j
\]

holds on a set \(E_j \subset S^n \) with \(|S^n \setminus E_j| < j^{-1} \) (note that the right-hand side of (3.3) is finite because \(\eta_0 f_0 + \cdots + \eta_{j-1} f_{j-1} \) is a polynomial). By induction, this completes the choice of \(\eta_j, f_j, N_j \) for all \(j \).

Now set

\[
E = \bigcap_{i=1}^{\infty} \bigcup_{j \geq i} E_j.
\]

It is easy to see that \(|S^n \setminus E| = 0 \). To complete the proof, we will show that

\[
\limsup_{N \to \infty} |K_N \ast f(x)| = \infty, \quad \forall x \in E.
\]

Fix \(x \in E \). By definition, there are infinitely many \(j \)'s for which \(x \in E_j \). Fix such an index \(j_0 \). We can write

\[
K_N \ast f(x) = K_N \ast \left(\sum_{j < j_0} \eta_j f_j \right)(x) + \eta_{j_0} K_N \ast f_{j_0}(x) + K_N \ast \left(\sum_{j > j_0} \eta_j f_j \right)(x)
\]

\[= I + II + III.\]

By (3.1) and (3.2), for \(N \leq N_{j_0} \) we have

\[
|III| \leq \|K_N\|_\infty \sum_{j > j_0} \eta_j \|f_j\|_{L^1(S^n)} \leq \left(\sum_{j > j_0} \eta_j \right) \max_{0 \leq N \leq N_{j_0}} \|K_N\|_\infty \leq 2\eta_{j_0+1} \max_{0 \leq N \leq N_{j_0}} \|K_N\|_\infty \leq 2.
\]

Combining this with (3.3), we see that

\[
\max_{0 \leq N \leq N_{j_0}} |K_N \ast f(x)| \geq \max_{0 \leq N \leq N_{j_0}} |I| - \max_{0 \leq N \leq N_{j_0}} |II| - \max_{0 \leq N \leq N_{j_0}} |III| \geq j_0 - 2.
\]

Since \(j_0 \) can be chosen arbitrarily large, we obtain

\[
\sup_{N \geq 0} |K_N \ast f(x)| = \infty.
\]

Since \(|K_N \ast f(x)| < \infty \) for all \(N \), this completes the proof of Theorem 3.1. \(\Box \)
It remains to prove Lemma 3.2. Let \(r > 0 \). We will call \(\{y_j\}_{j=1}^m \subset S^n \) an \(r \)-separated set if
\[
|y_j - y_{j'}| \geq r \quad \text{whenever} \quad j \neq j'.
\]
We call \(\{y_j\}_{j=1}^m \) a maximal \(r \)-separated set if it is not strictly contained in another \(r \)-separated set. By successively adding points to a singleton, it is easy to see that maximal \(r \)-separated sets exist for all \(r > 0 \); moreover, when \(0 < r \leq \pi \), by (2.10), the corresponding cardinality \(m \) must satisfy
\[
r^{-n}/C \leq m \leq Cr^{-n}
\]
for a suitable constant \(C > 1 \).

Lemma 3.5. Let \(\{y_j\}_{j=1}^m \subset S^n \) be a maximal \(r \)-separated set with \(0 < r \leq \pi \). Then
\[
\frac{1}{m} \sum_{j=1}^m \frac{1}{|x - y_j|^n} \geq C \log(\pi/r), \quad \forall x \in S^n.
\]

Proof. The proof follows easily from a \(C \)-adic (with \(C > 1 \) sufficiently large) decomposition around \(x \), and the mass distribution principle (for the latter, see Theorem 5.7 in [18]). \(\square \)

Let \(\{y_j\}_{j=1}^m \subset S^n \) satisfy (3.4). By a small perturbation of \(\{y_j\}_{j=1}^m \), we may assume that \(\{y_j\}_{j=1}^m \) contains no antipodal pairs.

Lemma 3.6. Let \(\{y_j\}_{j=1}^m \subset S^n \) be a set of \(m \) distinct points which contains no antipodal pairs. Then the following hold.

(i) For almost every \(x \in S^n \), the numbers \(\pi, |x - y_1|, \ldots, |x - y_m| \) are rationally independent.

(ii) If moreover \(\{y_j\}_{j=1}^m \) satisfies (3.4), then, letting
\[
\mu = \frac{1}{m} \sum_{j=1}^m \delta_{y_j}
\]
(where \(\delta_y \) is the Dirac delta at \(y \)), we have
\[
\limsup_{N \to \infty} |\hat{K}_N^{(0)} * \mu(x)| \geq C \log(\pi/r) - \tilde{C}, \quad \text{a.e.} \quad x \in S^n,
\]
where \(\tilde{C} > 0 \) is a constant depending only on \(n \).

Proof. (i) It suffices to show that, for any \(q_0, q_1, \ldots, q_m \in \mathbb{Q} \) not all of which are zero, letting
\[
F(x) = q_0 \pi + \sum_{j=1}^m q_j |x - y_j|,
\]
the zero set
\[
Z = \{x \in S^n : F(x) = 0\}
\]
Divergent spherical harmonic expansions

has measure zero. Without loss of generality, we may assume that q_1, \ldots, q_m are not all equal to zero, since otherwise $F(x) \equiv q_0 \pi \neq 0$. Notice that $F(x)$ is real-analytic on

$$U = \mathbb{S}^n \setminus \left(\{y_j\}_{j=1}^m \cup \{\hat{y}_j\}_{j=1}^m \right),$$

and is not constantly zero on U (since $F(x)$ is non differentiable at the y_j’s for which $q_j \neq 0$). It follows that Z must have measure zero (see Chapter VII, Lemma 4.17 in [25]; see also [20]).

(ii) Note that

$$\tilde{K}_N^{(0)}(x,y) = 1 m \sum_{j=1}^m \tilde{K}_N^{(0)}(x,y_j).$$

By (2.13), (2.5), and Lemma 2.3, for $x \in U$ we have

$$\tilde{K}_N^{(0)}(x,y) = \frac{\theta_N}{m} \sum_{j=1}^m k^{(0)}(x,y_j) \cos \left(\left(N + \frac{3n - 1}{4} \right) |x - y_j| - \frac{n\pi}{2} \right) + O(N^{-1}),$$

where $\theta_N = C_N N^{-1/2}$ satisfies (2.5),

$$k^{(0)}(x,y) = I_{\{|x-y| \leq \pi/2\}} k(x,y)$$

(with $k(x,y)$ given by (2.7)). By (i), for almost every $x \in U$, the numbers $2\pi, |x - y_1|, \ldots, |x - y_m|$ are rationally independent. It follows from Kronecker’s theorem (see Theorem 442 in Chapter 23 of [11]) that, for such x,

$$\limsup_{N \to \infty} |\tilde{K}_N^{(0)}(x,y)| = \frac{C}{m} \sum_{j=1}^m k^{(0)}(x,y_j).$$

On the other hand, by (2.7),

$$\frac{C}{m} \sum_{j=1}^m k^{(0)}(x,y_j) \geq \frac{C}{m} \sum_{j=1}^m I_{\{|y_j| \leq 2r\}} \frac{1}{|x - y_j|^n}$$

$$= \frac{C}{m} \sum_{j=1}^m \frac{1}{|x - y_j|^n} - \frac{C}{m} \sum_{j=1}^m I_{\{|y_j| > \pi/2\}} \frac{1}{|x - y_j|^n} \geq \frac{C}{m} \sum_{j=1}^m \frac{1}{|x - y_j|^n} > \tilde{C}.$$

Combining this with the assumption that $\{y_j\}_{j=1}^m$ satisfies (3.4), the proof of (ii) is complete.

Proof of Lemma 3.2. Lemma 3.2 now follows immediately by taking

$$\mu = \frac{1}{m} \sum_{j=1}^m \delta_{y_j},$$

where $\{y_j\}_{j=1}^m$ is as in Lemma 3.6 (ii), with $r > 0$ chosen small enough that $C \log(\pi/r) - \tilde{C} > L$.

\[\square\]
4. Equivalence of summation methods

It is known that the Cesàro means can be written as linear transformations of the Riesz means of the same order, and vice versa (cf. Hardy–Riesz [10], Gergen [8], Kuttner [17]). Consequently, the corresponding maximal functions are comparable up to multiplicative constants. In particular, one obtains from Theorem 3.1 almost everywhere divergence of the Riesz and Bochner–Riesz means of the same order, with the same set of divergence.

In order to obtain more precise information about the latter summation processes, instead of comparing the maximal functions, it seems desirable to also make a term-by-term comparison. In what follows, we sketch an approach which shows that, if appropriately defined, the differences among the Cesàro, Riesz, and Bochner–Riesz means are bounded almost everywhere when \(\delta = \frac{(n - 1)}{2} \) and \(f \in L^1(S^n) \). This alternate approach originates in the work of Hardy [9], p. 113–114, Ingham [14], and Trebels [28], p. 47–48 (see also Riesz [21], and Section 58 in Hobson [13] for related treatments).

4.1. Cesàro means vs. Riesz means

Let \(\delta > 0 \). The Riesz \((R, \delta) \) means of \(f \in L^1(S^n) \) are defined by

\[
\sigma^\delta_R f = \sum_{k < R} \left(1 - \frac{k}{R} \right)^\delta \text{proj}_k f, \quad R > 0.
\]

To compare (4.1) with the Cesàro means, we invoke the following special case of a theorem of Ingham [14].

Lemma 4.1 (Theorem B of [14]). Let \(\delta > 0 \) and let \(m = [\delta] + 2 \). There exist constants \(c_1, \ldots, c_m \), such that

\[
\left(\frac{k + \delta}{k} \right) = \sum_{j=1}^{m} c_j \left(k + \frac{j}{m} \right)^\delta + O((k + 1)^{-2}), \quad k = 0, 1, \ldots
\]

Note that, by taking \(k \to \infty \) in (4.2), it is implied that

\[
\sum_{j=1}^{m} c_j = \frac{1}{\Gamma(\delta + 1)}.
\]

Lemma 4.1 immediately leads to the following.

Lemma 4.2. Let \(\delta, m, \) and \(c_j \ (j = 1, \ldots, m) \) be as in Lemma 4.1. Then

\[
S_N^\delta f = \Sigma_N^\delta f + \eta_N^\delta f,
\]

where

\[
\Sigma_N^\delta f = \sum_{j=1}^{m} c_j \left(N + j/m \right)^\delta \frac{A_N^j}{A_N^{j+m}} \sigma_{N+j/m}^\delta f,
\]

\[
\eta_N^\delta f = O(1) \max_{k \leq N} \frac{|\text{proj}_k f|}{(k + 1)^{\delta}}, \quad N = 0, 1, \ldots
\]
Since
\[\lim_{N \to \infty} \frac{1}{A_N} \sum_{j=1}^{m} c_j \frac{(N + j/m)^\delta}{A_N} = 1, \]
\[\Sigma_N f \] can be regarded as an average of \(\sigma_N^f \) as \(R \) ranges over \((N, N+1] \).

Thus \(\eta_N^f \) may be regarded as measuring the difference between the Cesàro \((C, \delta) \) and the Riesz \((R, \delta) \) means.

In the case \(\delta = (n-1)/2 \), it can be shown that \(\eta_N^f \) converges to zero almost everywhere. This is an easy consequence of (4.5) and the following lemma.

Lemma 4.3. There exists a constant \(C > 0 \), such that for any \(f \in L^1(S^n) \),
\[\left(\sup_{k \geq 0} \frac{|\text{proj}_k f|}{(k+1)^{n-1}/2} \right)_{L^1(S^n)} \leq C \|f\|_{L^1(S^n)}. \]

Proof. This follows easily from (2.4) and Fubini’s theorem. \qed

4.2. Riesz means vs. Bochner–Riesz means

The comparison between the Riesz \((R, \delta) \) and the Bochner–Riesz means will be done by comparing their appropriately normalized and ‘shifted’ versions.

Let \(c \in \mathbb{R} \). Define the **shifted Riesz** \((R, \delta) \) means by
\[\sigma_{R}^{\delta, c} f = \sum_{k + c < R} \left(1 - \frac{k + c}{R}\right)^\delta \text{proj}_k f, \ \ R > 0. \]

Note that when \(R > c \), we have
\[\sigma_{R}^{\delta, c} f = \left(1 - \frac{c}{R}\right)^\delta \sigma_{R-c}^\delta f. \]

Thus \(\sigma_{R}^{\delta, c} f \) is essentially the same as \(\sigma_{R-c}^\delta f \), as \(R \to \infty \). Note also that, when \(\delta = \delta_0 + 1 \), it follows from Theorem 3.3 in [2] and (4.8) that, for any \(f \in L^1(S^n) \) and \(c \in \mathbb{R} \),
\[\sup_{R > 0} |\sigma_{R}^{\delta+1, c} f(x)| < \infty, \ \ a.e. \ x \in S^n. \]

Now let \(c \geq 0 \). Define the shifted Riesz \((R, \delta) \) means of quadratic type by
\[B_{R}^{\delta, c} f = \sum_{k + c < R} \left(1 - \frac{(k + c)^2}{R^2}\right)^\delta \text{proj}_k f, \ \ R > 0. \]

Lemma 4.4. For any \(\delta > 0 \) and \(c \geq 0 \), we have
\[B_{R}^{\delta, c} f = 2^\delta \sigma_{R}^{\delta, c} f + O\left(\sup_{r \leq R} |\sigma_{r}^{\delta+1, c} f|\right), \ \ R > 0, \]
where the implied constant depends only on \(\delta \).

\[^1 \text{Note that allowing } R \text{ to take noninteger values is crucial for the equivalence of Cesàro and Riesz means, see Riesz [22] (see also Hardy [9], p. 114).} \]
Proof. Observe that, by a Taylor expansion of \((1 + t)^{\delta}\) about \(t = 1\), we have
\[
(1 - t^2)^{\delta} = 2^\delta (1 - t)^\delta + 2^\delta \sum_{\ell=1}^\infty \left(\frac{\delta}{\ell}\right) \frac{(-1)^\ell}{2^\ell} (1 - t)^{\delta + \ell}, \quad t \in [0, 1).
\]
This leads to the identity
\[
B_{\delta,c}^{\delta,c} f = 2^\delta \sigma_{\delta,c}^{\delta,c} f + 2^\delta \sum_{\ell=1}^\infty \left(\frac{\delta}{\ell}\right) \frac{(-1)^\ell}{2^\ell} \sigma_{\delta + \ell,c}^{\delta + \ell,c} f.
\]
The desired bound (4.11) then follows from the fact that, for any \(\ell \geq 1\),
\[
|\sigma_{\delta + \ell,c}^{\delta + \ell,c} f| \leq \sup_{r \leq R} |\sigma_{\delta + 1,c}^{\delta + 1,c} f|, \quad R > 0.
\]
See Theorem 16 in [10] (see also [25], p. 269–270).

Finally, recall that the Bochner–Riesz means of order \(\delta\) are defined by
\[
B_{\delta}^{\delta} f = \sum_{k(k+n-1) < R^2} \left(1 - \frac{k(k+n-1)}{R^2}\right)^{\delta} \text{proj}_k f, \quad R > 0,
\]
where \(-k(k+n-1)\) is the eigenvalue of the Laplace–Beltrami operator shown in (2.1). Observe that, with \(c = (n-1)/2\), we have
\[
B_{\delta}^{\delta} f = \left(1 + \frac{c^2}{R^2}\right)^{\delta} \frac{B_{\delta,c}^{\delta,c} f}{\sqrt{R^2 + c^2}}.
\]
Combining this with Lemma 4.4, (4.8), and (4.9), we see that, essentially, the difference between \(B_{\delta}^{\delta} f\) and \(2^\delta \sigma_{\delta}^{\delta,c} f\) is bounded almost everywhere when \(\delta = (n-1)/2\) and \(f \in L^1(S^n)\) (it also follows that the difference between \(B_{\delta}^{\delta} f\) and \(\sigma_{\delta}^{\delta,c} f\) can diverge unboundedly almost everywhere).

Acknowledgments. We would like to thank Stephen Wainger and Sergey Denisov for the suggestion of using a deterministic construction, and Andreas Seeger and Jongchon Kim for enlightening discussions on related topics.

Elias Stein passed away on December 23, 2018. We are grateful for his valuable comments on an earlier version of this paper.

References

[1] Bochner, S.: Summation of multiple Fourier series by spherical means. Trans. Amer. Math. Soc. 40 (1936), no. 2, 175–207.

[2] Bonami, A. and Clerc, J.-L.: Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques. Trans. Amer. Math. Soc. 183 (1973), 223–263.
DIVERGENT SPHERICAL HARMONIC EXPANSIONS

15

[3] Chanillo, S. and Muckenhoupt, B.: Weak type estimates for Cesàro sums of Jacobi polynomial series. Mem. Amer. Math. Soc. 102 (1993), no. 487.

[4] Chen, X. and Fan, D.: On almost everywhere divergence of Bochner–Riesz means on compact Lie groups. Math. Z. 289 (2018) no. 3-4, 961–981.

[5] Christ, F. M. and Sogge, C. D.: The weak type L^1 convergence of eigenfunction expansions for pseudodifferential operators. Invent. Math. 94 (1988), no. 2, 421–453.

[6] Colzani, L., Tidblad, M. H. and Weiss, G.: Maximal estimates for Cesàro and Riesz means on spheres. Indiana Univ. Math. J. 33 (1984), no. 6, 873–889.

[7] Dai, F. and Xu, Y.: Approximation theory and harmonic analysis on spheres and balls. Springer Monographs in Mathematics, Springer, New York, 2013.

[8] Gergen, J. J.: Summability of double Fourier series. Duke Math. J. 3 (1937), no. 2, 133–148.

[9] Hardy, G. H.: Divergent series. Oxford, Clarendon Press, 1949.

[10] Hardy, G. H. and Riesz, M.: The general theory of Dirichlet’s series. Cambridge Tracts in Mathematics and Mathematical Physics 18, Stechert-Hafner, New York, 1964.

[11] Hardy, G. H. and Wright, E. M.: An introduction to the theory of numbers. Sixth edition. Oxford University Press, Oxford, 2008.

[12] Heinonen, J.: Lectures on analysis on metric spaces. Universitext, Springer-Verlag, New York, 2001.

[13] Hobson, E. W.: The theory of functions of a real variable and the theory of Fourier’s series. Vol. II. Dover Publications, New York, NY, 1958.

[14] Ingham, A. E.: The equivalence theorem for Cesàro and Riesz summability. Publ. Ramanujan Inst. 1 (1968/1969), 107–113 (1 plate).

[15] Kahane, J.-P.: Sur la convergence presque sûre presque partout de certaines séries de Fourier aléatoires. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3–4 (1960/1961), 101–108.

[16] Kolmogoroff, A.: Une série de Fourier-Lebesgue divergente presque partout. Fund. Math. 4 (1923), no. 1, 324–328.

[17] Kuttner, B.: Some theorems on Riesz and Cesàro sums. Proc. London. Math. Soc. 45 (1939), 398–409.

[18] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Advanced Mathematics 44, Cambridge University Press, Cambridge, 1995.

[19] Meaney, C.: Divergent Cesàro and Riesz means of Jacobi and Laguerre expansions. Proc. Amer. Math. Soc. 131 (2003), no. 10, 3123–3128.

[20] Miyagin, B.: The zero set of a real analytic function. Preprint, arXiv:1512.07276, 2015.

[21] Riesz, M.: Une méthode de sommation équivalente à la méthode des moyennes arithmétiques. C. R. Acad. Sci. Paris 152 (1911), 1651–1654.

[22] Riesz, M.: Sur l’équivalence de certaines méthodes de sommation. Proc. London Math. Soc. (2) 22 (1924), 412–419.

[23] Stein, E. M.: On limits of sequences of operators. Ann. of Math. (2) 74 (1961), 140–170.
[24] Stein, E. M.: An H^1 function with nonsummable Fourier expansion. In *Harmonic analysis (Cortona, 1982)*, 193–200. Lecture Notes in Math. 992, Springer, Berlin, 1983.

[25] Stein, E. M. and Weiss, G.: *Introduction to Fourier analysis on Euclidean spaces.* Princeton Mathematical Series 32, Princeton University Press, Princeton, NJ, 1971.

[26] Szegö, G.: *Orthogonal polynomials.* Fourth edition. Colloquium Publications 23, American Mathematical Society, Providence, RI, 1975.

[27] Taibleson, M. H.: Estimates for finite expansions of Gegenbauer and Jacobi polynomials. In *Recent progress in Fourier analysis (El Escorial, 1983)*, 245–253. North-Holland Math. Stud. 111, North-Holland, Amsterdam, 1985.

[28] Trebels, W.: *Multipliers for (C,α)-bounded Fourier expansions in Banach spaces and approximation theory.* Lecture Notes in Mathematics 329, Springer-Verlag, Berlin-New York, 1973.

[29] Wang, K. and Li, L.: *Harmonic analysis and approximation on the unit sphere.* Science Press, Beijing, 2000.

[30] Založnik, A.: Function spaces generated by blocks associated with spheres, Lie groups and spaces of homogeneous type. *Trans. Amer. Math. Soc.* 309 (1988), no. 1, 139–164.

Received June 15, 2018; revised July 14, 2018. Published online January 7, 2020.

Xianghong Chen: School of Mathematics, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China.

E-mail: chenxiangh@mail.sysu.edu.cn

Dashan Fan: Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.

E-mail: fan@uwm.edu

Juan Zhang (corresponding author): School of Mathematical Sciences, Beijing Forestry University, Beijing 100083, People’s Republic of China.

E-mail: zhangjuanw@mail.bnu.edu.cn

Dashan Fan was supported by the National Natural Science Foundation of China (Grant Nos. 11471288 and 11971295) and the Natural Science Foundation of Shanghai (No. 19ZR1417600).