Very Low Risk of Lymph Node Metastasis in Epstein-Barr Virus-associated Early Gastric Carcinoma With Lymphoid Stroma

Yuqing Cheng
the Affiliated Changzhou Second People’s Hospital of Nanjing Medical University
https://orcid.org/0000-0003-1806-9893

Xiaoli Zhou
the affiliated Changzhou Second People’s Hospital of Nanjing Medical University

Kequn Xu
the affiliated Changzhou Second People’s Hospital of Nanjing Medical University

Jin Huang
the affiliated Changzhou Second People’s Hospital of Nanjing Medical University

Qin Huang (✉ qinhuang0122@gmail.com)
https://orcid.org/0000-0003-2452-9884

Research article

Keywords: Stomach, Carcinoma, Early gastric carcinoma, Gastric carcinoma with lymphoid stroma, Epstein-Barr virus, Lymph node metastasis

DOI: https://doi.org/10.21203/rs.3.rs-28289/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Epstein-Barr virus-associated early gastric carcinoma with lymphoid stroma (EBV-GCLS) is a rare variant of early gastric carcinomas. Clinicopathological features of this variant remain obscure, especially in Chinese patients. By a retrospective review of 595 consecutive radical gastrectomies for early gastric carcinoma from 2006 to 2018, we identified 8 (1.3%, 8/595) EBV-GCLS cases. Clinicopathologic characteristics were compared between EBV-GCLSs and 109 conventional early gastric carcinomas, which were divided into 3 subgroups, according to the invasion depth. All 8 EBV-GCLSs occurred in male patients and invaded deep submucosa (SM2) without lymph node metastasis (LNM), four (50%) of which had synchronous non-gastric malignant tumors (3 gastric gastrointestinal stromal tumors and 1 primary clear cell renal cell carcinoma), and four (50%) arose in the proximal stomach. Compared to conventional early gastric carcinomas, EBV-GCLS was more frequent with SM2 invasion, poor differentiation, and synchronous non-gastric carcinoma tumor, but not in age, gender, macroscopic type, location, size, perineural invasion, lymphovascular invasion, and pathologic stage. In invasion-depth stratified comparisons with the SM2 subgroup, the frequency of LNM in EBV-GCLS was significantly lower than that of conventional early gastric carcinomas (p < 0.05) and the 5-year survival rate of patients with EBV-GCLS was better than that of conventional early gastric carcinomas in 3 subgroups (100% vs 91.5%, 85.7%, 83.9%, respectively), although the differences did not reach a statistically significant level due to the small sample size. In conclusion, even with poor differentiation and SM2 invasion, EBV-GCLS showed very low risk of LNM and may be a candidate for endoscopic therapy.

Background

According to the World Health Organization statistical data, gastric cancer is the fifth most common cancer and the third leading cause of cancer-related deaths in the world.[1] In China, gastric cancer remains a major health risk, ranks the second in cancer prevalence and mortality, and shows very poor prognosis.[1] At present, the only hope for improving gastric cancer patient outcomes is early detection and prompt resection of early gastric carcinoma, defined as invasive cancer with the depth up to the submucosa, regardless of lymph node status.[2] With the improvement in endoscopic technology and accumulating operative experience among endoscopists, endoscopic therapy, such as endoscopic submucosal dissection, has become the treatment of choice for early gastric carcinoma in many countries, including China.[3]

Gastric carcinoma with lymphoid stroma is a rare variant of gastric carcinomas and associated with Epstein-Barr virus infection in about 80% of cases.[4–7] Epstein-Barr virus-associated early gastric carcinoma with lymphoid stroma (EBV-GCLS) shares some morphologic characteristics with lymphoepithelioma-like carcinoma of the lung, such as poorly differentiated neoplastic cells embedded in the prominent lymphoid stroma.[8] Despite the unfavorable tumor morphology, gastric carcinoma with lymphoid stroma has been reported in previous studies to show low risk of lymph node metastasis (LNM) and good prognosis.[6, 7, 9, 10] However, the clinicopathological features and prognosis of EBV-GCLS, especially in the Chinese patient population, have not been well studied.
In the present study, we aimed to analyze the clinicopathology and prognosis of EBV-GCLS and to compare them with those of invasion-depth stratified conventional early gastric carcinomas without lymphoid stroma or micropapillary components.

Methods

Patient selection

Between January 2006 and December 2018, 3039 gastric cancer patients were identified after a search of electronic pathology database for gastric cancer with gastrectomy and lymphadenectomy at the Changzhou Second People’s Hospital, which is one of tertiary medical centers in gastric cancer endemic regions in China. Each electronic pathology report was scrutinized for the final diagnosis of early gastric carcinoma on the basis of the World Health Organization definition.[2] Excluded were synchronous gastric carcinomas, gastric stump carcinoma, and lymphoma. Micropapillary adenocarcinoma, an aggressive variant of gastric carcinoma as described in our previous study, was also eliminated.[11] Among 595 qualified early gastric carcinomas, 11 cases with lymphoid stroma were identified, 8 of which were positive for EBV infection by a conventional in situ hybridization test (further defined below) and served as the study group. During the period from January 2010 to December 2012, 109 consecutive cases of conventional early gastric carcinomas with follow-up information were enrolled in the study as the control group for comparison, while 20 cases without follow-up information in this study period were excluded. All enrolled patients underwent D1 or D2 lymphadenectomy and all patients with EBV-GCLS underwent D2 lymphadenectomy. Conventional early gastric carcinomas were grouped into 3 sub-groups, according to the invasion depth as intramucosa, superficial (SM1) or deep (SM2) submucosa. All patient private information was deleted and each case was coded with a pathology accession number to protect patient privacy. The study protocol was approved by the Medical Ethics Committee of the Changzhou Second People’s Hospital in China (document number [2019]KY031-01).

Clinicopathological Investigation

The clinicopathological information on patient age, gender, tumor location, size, and gross feature was retrieved from the electronic pathology archives. The stomach was divided into 5 regions: 1) cardia, defined as the proximal gastric region of about 3 cm below the gastroesophageal junction, 2) fundus, 3) corpus, 4) incisura angularis, and 5) antrum-pylorus. Tumor macroscopic patterns were categorized into 5 groups in accordance with the Paris classification: 1) type 0-I (protruded), 2) type 0-IIa (superficial elevated), 3) type 0-IIb (flat), 4) type 0-IIc (superficial depressed) and 5) 0-III (excavated).[12] For early gastric carcinoma with mixed macroscopic patterns, the predominant pattern was recorded. The degree of tumor penetration was assessed microscopically and tabulated into 3 subgroups: 1. intramucosa: carcinoma involvement of the lamina propria and muscularis mucosae, 2. SM1: carcinoma penetrating into superficial submucosa (up to 500 µm from the muscularis mucosae), 3. SM2: carcinoma invading
into deep submucosa (beyond 500 µm from the muscularis mucosae). The tumor pathologic stage was assigned, according to the 8th edition of the American Joint Committee on Cancer staging manual.[13]

All histology slides of each qualified early gastric carcinoma case were reviewed by two experienced study pathologists. The discrepancy in opinion was minimal and resolved by a joint review. The histological diagnostic criteria for gastric carcinoma with lymphoid stroma were as follows: 1) well-demarcated tumor border, 2) poorly differentiated tumor cells with indistinct cytoplasmic border in nest, sheet, anastomosing, or isolated cell growth patterns, 3) dense lymphocytic infiltration in the neoplastic epithelium and throughout the tumor stroma. Lymphovascular invasion, perineural invasion, and tumor budding were also tabulated and analyzed with the methods described in our previous study.[14]

EBV Detection

The presence of EBV in early gastric carcinoma cases was assessed with the EBV-encoded RNA (EBER) chromogenic in situ hybridization test. This was performed manually on 3 µm thick unstained tumor sections, using a probe complementary to the EBV-encoded RNA (Zhongshan Jinqiao, Beijing, China). The hybridization signal was detected with an anti-digoxigenin antibody-horseradish peroxidase conjugate and counterstained with hematoxylin. A known EBV-positive nasopharyngeal carcinoma tissue section, served as the positive control, were included in each test run. Positive staining results were recognized as dark brown tumor nuclear staining with negative signal in surrounding lymphocytes and non-neoplastic tissue. A negative control was included in each run by eliminating the EBV-encoded RNA probe.

Patient Survival Investigation

In 8 EBV-GCLSs and 109 consecutive cases of conventional early gastric carcinoma over the period from 2010 to 2012, patient survival investigation was carried out via a review of patient's electronic medical archive, or telephone interview by the authors to patients or patient family members. The number of survival months after radical gastrectomy was calculated from the month of surgical resection to the month of the last follow-up interview or patient death of all causes.

Statistical analysis

Clinicopathological features, including patient age, gender, tumor location, size, macroscopic pattern, tumor differentiation, invasion depth, lymphovascular invasion, LNM, perineural invasion, pathological stage, synchronous non-gastric carcinoma tumor, and survival were statistically analyzed and compared. Comparisons of categorical variables between groups were determined using the Chi-square or Fisher’s exact test. Overall survival rates were estimated with the Kaplan-Meier method. A P value less than 0.05 was considered statistically significant. All statistical analyses were performed with IBM SPSS Statistics version 19.0 (IBM, Armonk, NY, USA).
Results

Clinicopathologic characteristics

Gastric carcinoma with lymphoid stroma was found in 11 cases among 595 qualified early gastric carcinomas, which were identified from 3039 consecutive radical gastrectomies with lymphadenectomies for gastric cancer. Eight of 11 those cases were EBV-positive (1.3%, 8/595) as the study group (Table 1). The control group consisted of 109 conventional early gastric carcinomas (carcinomas without lymphoid stroma nor micropapillary components) with the follow-up data and were further sub-grouped into intramucosal (45.9%, 50/109), SM1 (25.7%, 28/109), SM2 (28.4%, 31/109) subgroups. In the control group, 2 cases were EBV-positive by the EBER in situ hybridization test but did not have lymphoid stroma; 2 additional cases (1.8%, 2/109) were found to have synchronous non-gastric malignant tumors: one as gastrointestinal stromal tumor (pT1N0M0) located in the stomach and another as uterine leiomyoma. The average numbers of retrieved lymph nodes were 22.3, 18.1, 20.5 and 20.7 in the EBV-GCLS group, intramucosal, SM1, and SM2 subgroups of control conventional early gastric carcinomas, respectively.
Case	Sex	Age(eyear)	Macrosis	Location	Siz(cm)	Propion	Invasion	Lympheov	Phym	Eutrophic	Lymphovascular invasion	Lymphnode metastasis	Perineural invasion	Sympathetic nerve involvement	Follow-up (month)	Status	
1	M	66	IIC	Antrum	1.1	5	0	0	0	0	0	GI ST in gastric car dia	12	6	Dead of other disease		
2	M	57	IIla+IIc	Antrum	2.5	0	S M 2	0	0	0	0	Alive without disease	72	Alive without disease			
3	M	44	III	Fundus	3.3	45	S M 2	0	0	0	0	Alive without disease	90	Alive without disease			
4	M	60	IIa	Cardia	2	20	S M 2	0	0	0	0	GI ST in gastric car dia	60	Alive without disease			
5	M	63	III	Cardia	1.8	2	S M 2	0	0	0	0	Alive without disease	62	Alive without disease			
6	M	55	III+IIa	Antrum	3	10	S M 2	present	0	0	0	Alive without disease	52	Alive without disease			
7	M	67	IIc	Antrum	2	20	S M 2	0	0	0	0	ccRCC	42	Alive without disease			

NOTE: GIST: gastrointestinal stromal tumor; ccRCC: clear cell renal cell carcinoma; 0: absent.
Case	Sex	Age (year)	Macroscopic type	Tumor Location	Size (cm)	Propagation	Invasion	Lymphovascular invasion	Perineural invasion	Pathological Stage	Follow-up (month)	Status
8	M	74	IIC	Cardia	1.5	0	0	0	0	SM2	18	Alive without disease

NOTE: GIST: gastrointestinal stromal tumor; ccRCC: clear cell renal cell carcinoma; 0: absent.

As shown in Table 2, compared to conventional early gastric carcinomas, EBV-GCLS showed no significant differences in patient age, gender, tumor macroscopic pattern, size, lymphovascular invasion, perineural invasion, and pathological stage. However, poor tumor differentiation (100% vs 26%, 25%, and 35.5% respectively, \(p < 0.01 \), for intramucosal, SM1, and SM2 subgroups, respectively) and synchronous non-gastric carcinoma tumor (50% vs 2%, 3.6%, and 0%, respectively) were significantly more frequent in the EBV-GCLS group than in the control conventional early gastric carcinoma groups \((p < 0.01) \). As reported previously,[6, 15, 16] EBV-GCLS was commonly (50%, 4/8) discovered in the proximal stomach (3 in the cardia and 1 in the fundus). Although the prevalence of SM2 invasion (100% vs 28.4%, \(p < 0.01 \)) was significantly higher in the EBV-GCLS group than in the conventional early gastric carcinoma group, LNM (0% vs 38.7%, \(p < 0.05 \)) was significantly lower in the former than in the latter in SM2 subgroup (Table 2).
Table 2
Comparison of clinicopathological features between EBV-associated early gastric carcinoma with and without lymphoid stroma

Feature	EBV-associated early gastric carcinoma with lymphoid stroma (n = 8)	Conventional early gastric carcinoma without lymphoid stroma (n = 109)		
	intramucosa (n = 50)	Superficial submucosa (SM1) (n = 28)	Deep submucosa (SM2) (n = 31)	
	Conventional early gastric carcinoma without lymphoid stroma (n = 109)	P	P	P
Age (year)	1.000	0.694	1.000	
≤ 61	4	24	17	17
≥ 62	4	26	11	14
Gender	0.172	0.076	0.168	
Male	8	35	18	23
Female	0	15	10	8
Location	0.066	0.176	0.262	
Cardia-fundus	4	10	7	9
Corpus-antrum-angularis	4	40	21	22
Macroscopic pattern	1.000	1.000	0.668	
Non-ulcerated	6	39	19	19
Ulcerated	2	11	9	12
Tumor size (cm)	0.553	1.000	0.686	
≤ 2	4	34	16	11
≥ 2	4	16	12	20
Tumor differentiation	0.000	0.003	0.001	
Well/moderate	0	37	21	20

Feature	EBV-associated early gastric carcinoma with lymphoid stroma (n = 8)	Conventional early gastric carcinoma without lymphoid stroma (n = 109)	
	intramucosa (n = 50)	Superficial submucoosa (SM1) (n = 28)	
Poorly	8	13	7
			11
Lymphovascular invasion			0.259
Absent	7	49	25
Present	1	1	3
			10
Perineural invasion	NA	NA	1.000
Absent	8	50	28
Present	0	0	0
			3
Lymph node metastasis	1.000	0.566	0.042
Absent	8	48	23
Present	0	2	5
			12
Pathologic stage	1.000	1.000	0.168
I	8	49	26
II	0	1	2
Synchronous tumor	0.001	0.005	0.001
Absent	4	49	27
Present	4	1	1
			0

Histopathologic features of EBV-associated early gastric carcinoma with lymphoid stroma

All 8 cases of EBV-GCLS showed an expansile growth pattern with a pushing invasion front at low-power evaluation. The tumor was composed of sheets, nests of, and isolated tumor cells. The anastomosing
neoplastic tubular component in the lace-like pattern was present in the lamina propria of 5 (62.5%, 5/8) tumors. Cytologically, poorly differentiated tumor cells appeared to be syncytial with indistinct cell borders, round, oval vesicular nuclei with open chromatin, and distinct nucleoli. Malignant desmoplastic reaction frequently associated with poorly differentiated conventional carcinoma in the submucosa was characteristically absent in all 8 EBV-GCLS cases. A minor component of the tubular growth pattern was seen in 7 (87.5%, 7/8) cases, ranging from 2–45% in proportion. Intra-tumoral lymphocytic infiltration was prominent in neoplastic epithelial cells and stroma (Fig. 1). The neoplastic epithelial cells showed diffuse positivity in nuclear staining with the EBER in situ hybridization test (Fig. 2). As shown in Table 1, LNM was absent in all 8 cases, and lymphovascular invasion was seen in only 1 (12.5%, 1/8) case. No tumor budding was recognized in any cases. Remarkably, four patients (50%, 4/8) with EBV-GCLS had pathologically confirmed synchronous non-gastric malignant tumors: 3 as gastrointestinal stromal tumor (pT1N0M0) in the stomach and one as clear cell renal cell carcinoma (pT1aN0M0).

Prognosis

The median follow-up period was 61 months (range, 18 to 126) in all 117 patients of the cohort (the study group: N = 8; and the control group: N = 109). Patients with EBV-GCLS demonstrated a higher 5-year overall survival rate (100%), compared to those with conventional early gastric carcinomas in 3 subgroups (96.5%, 85.7%, 83.9% for intramucosal, SM1, and SM2 subgroups, respectively). However, the difference in survival did not reach a statistically significant level because of the small numbers of the study cases.

Discussion

EBV-GCLS is indeed a very rare (1.3%, 8/595) variant of early gastric carcinoma but demonstrated in this cohort several important clinicopathologic features as follows: 1. High susceptibility (50%, 4/8) in the gastric cardia and fundus of male patients; 2. Low propensity for lymphovascular invasion (12.5%, 1/8) and the absence of LNM (0%, 0/8); 3. Overwhelming predominance in deep submucosal (SM2) invasion (100%, 8/8); 4. Universally poor differentiation (100%, 8/8); 5. Excessive prevalence (50%, 4/8) for synchronous non-gastric malignant tumors in the stomach (gastrointestinal stromal tumor) and extragastric organs (clear cell renal cell carcinoma); and 6. A higher 5-year survival rate, although a significant statistical level was not reached because of the small sample size of study patients. These features, if confirmed with larger samples in the future, may have a significant impact on clinical management of patients with this rare variant of early gastric carcinomas.

Gastric carcinoma with lymphoid stroma was first report by Watanabe et al in 1976,[17] and its prevalence ranges from 1–4% for all gastric carcinomas.[5, 18] The variation in prevalence of gastric carcinoma with lymphoid stroma is much greater in early gastric carcinomas, ranging from 0.6–8%.[7, 16] The wide range in prevalence may be due to different study methods used for case selection.[7, 16] Several studies in Asia, Europe, and America reveal the prevalence close to 9% for EBV-associated early
and advanced gastric carcinomas.[16, 19–21] In our present study, the frequency of EBV infection in gastric carcinoma with lymphoid stroma (72.7%, 8/11) is in agreement with that of previous studies.[5–7, 10, 22] The prevalence of EBV infection in conventional early gastric carcinoma in our study (1.8%, 2/109) was lower than that previously reported.[20] The discrepancy may be related to the exclusion of gastric stump carcinoma and synchronous gastric carcinoma in our cohort, because up to 35% gastric stump carcinomas showed EBV infection and EBV-associated gastric carcinoma often have multiple synchronous gastric carcinomas.[19, 23, 24]

As illustrated in the present study, EBV-GCLS demonstrated histopathologic patterns characterized by a pushing tumor invasion front, dense intra-tumoral lymphocytic infiltration, poor tumor cell differentiation, high nuclear grade, and sheet, cluster, or nest growth patterns, as described previously.[5, 15, 25] Tubular-glandular components in various proportions were also observed.[5, 22] Some rare morphologic manifestations, such as epithelioid granulomas, mucinous or signet-ring cell component, and squamous differentiation were not observed in our cohort, but have been reported previously.[26–28] Overall, it is not difficult to make a correct diagnosis for this rare cancer in resection specimens. However, it would be challenging to accurately diagnose this rare early gastric carcinoma in small biopsies, especially in cases with conventional tubular adenocarcinoma showing focal dense lymphocytic infiltrate. Sometimes, the diffuse lymphoid infiltration may lead to a suspicion of mucosa-associated lymphoid tissue lymphoma.[4, 17] However, the intramucosal irregularly anastomosing tubules and cords in a lace-like growth pattern seen in 5 of 8 our cases of EBV-GCLS may be the most important histologic clue for this rare carcinoma in a small biopsy.[16, 29, 30] The cytokeratin immunostaining and EBER in situ hybridization tests would be helpful to rule out the diagnosis of lymphoma by highlighting the existence of neoplastic epithelial cells with characteristic architecture in EBV-GCLS.[27, 30]

We showed that EBV-GCLS occurred mainly in male patients and was located primarily in the proximal stomach, poorly differentiated, and invaded deep submucosa (SM2), which parallel to those reported before.[6, 7, 31] Poor tumor differentiation and SM2 invasion in early gastric carcinoma are expected to have a high risk of LNM and should be excluded from endoscopic therapy.[32] Surprisingly, LNM was absent in all 8 cases of EBV-GCLS in our series. Our findings confirmed the result of previous study by Lim et al, that the frequency of LNM in early gastric carcinoma with lymphoid stroma is significantly lower than that in conventional early gastric carcinoma in T1b stage-matched comparison cases.[6] The very low risk of LNM in EBV-associated gastric carcinoma has been repeatedly reported in both early and advanced gastric carcinomas.[9, 16, 18, 27, 33] The frequency of LNM reported in previous studies of EBV-associated early gastric carcinomas varies from 4.2–9.1%.[6, 16] Because all EBV-GCLS cases underwent D2 lymphadenectomy and the average number of retrieved lymph node was 22.3 per case, the differences in frequency of LNM between the previous reports and our current study may be due to the small sample size in the present study, but not related to the surgery quality or methods. Therefore, the results of our study along with those of previous reports suggest the potential benefits of endoscopic therapy for EBV-GCLS cases that don't meet the current curability indications.
The prognosis of patients with gastric carcinoma with lymphoid stroma has been reported to be better than that of conventional gastric carcinoma.[6, 9, 10, 34] In fact, EBV infection has been found to be an independent risk factor for better overall survival among patients with gastric carcinoma with lymphoid stroma.[5] In our cohort, the overall 5-year survival rate of patients with EBV-GCLS is better than that with conventional gastric carcinoma, irrespective of invasion depth; yet the difference was not statistically significant, which appear to be related to the small sample size.

One novel, but intriguing finding in our study was the significantly more frequent presence of synchronous non-gastric malignant tumors in patients with EBV-GCLS than those with conventional early gastric carcinomas. To the best of our knowledge, only one previous study described the similar finding in gastric carcinoma with lymphoid stroma, in which 2 of 7 cases were associated with gastrointestinal stromal tumor or leiomyoma.[27] Although the underlying mechanism for the association remains to be investigated, the implication of this finding is considerable as to appropriate clinical management of patients with EBV-GCLS. Thus, resection strategies for two different tumors in the same patient may need to be carefully evaluated in the decision-making process to balance the pros and cons between endoscopic and surgical resection approaches. For patients with EBV-GCLS and synchronous non-gastric malignant tumors, as shown in case 5 of our series, it is particularly important to discuss the curability of endoscopic treatment for EBV-GCLS, especially in the patient who may be unable to tolerate two surgical resections because of poor overall functionality.

There are several limitations to our current investigation. First, any retrospective study inherits selection bias, which was, however, minimized in this study by collecting consecutive cases for this project. Second, although this is the first case series in small case number focused on EBV-GCLS in the Chinese population, the results in our study may not be generalized to other patient populations. Our data require validations by future studies with large samples, especially in other ethnic patient populations.

Conclusions

Despite the unfavorable pathological features, such as deep submucosal invasion (SM2) and poor tumor differentiation, EBV-GCLS shows very low risk for LNM, which suggests a role of endoscopic therapy in the treatment of this early gastric carcinoma. Further multicenter studies with larger samples are urgently needed to validate our preliminary findings.

Abbreviations

EBV-GCLS: early gastric carcinoma with lymphoid stroma; LNM: lymph node metastasis; EBV: Epstein-Barr virus; EBER: EBV-encoded RNA

Declarations
Ethics approval and consent to participate

The study protocol was approved by the Medical Ethics Committee of the Changzhou Second People’s Hospital in China (document number [2019]KY031-01). Written informed consents from the patients for the use of the tumor tissue for research were obtained prior to the resection procedure.

Consent to publish

Written consents were obtained from the patients or the patients’ family for the publication of the patients’ details.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

Competing interests

Qin Huang currently serves as an editorial board member for BMC Gastroenterology. All other authors declare that they have no competing interests.

Funding

The study was supported by a research grant from the Youth Talents Program of the Health Commission of Changzhou City (QN201935 to Yuqing Cheng) in China. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors’ contributions

YC designed the study, reviewed the cases, analyzed the data, and wrote the manuscript draft. XZ reviewed the cases and analyzed the data. KX and JH gathered and evaluated the clinical data. QH conceptualized, helped design the study, reviewed and modified the manuscript. All authors have read and approved the manuscript.

Acknowledgements

The study was supported by a research grant from the Youth Talents Program of the Health Commission of Changzhou City (QN201935 to Yuqing Cheng) in China.

Conflict of interests
Qin Huang currently serves as an editorial board member for BMC Gastroenterology. All other authors declare that they have no competing interests.

References

1. Ferlay J, Ervik M, Lam F, et al. Global Cancer Observatory: Cancer Today. https://gco.iarc.fr/today. Accessed date: 10 December 2019.

2. Lauwers GY, Franceschi S, Carneiro F, et al. Gastric carcinoma. In: Bosman FT, Carneiro F, Hruban RH et al, editors. WHO classification of tumours of the digestive system. 4th ed. France: International Agency for Research on Cancer; 2010. pp. 48–54.

3. Kim MY, Cho JH, Cho JY. Ever-changing endoscopic treatment for early gastric cancer: yesterday-today-tomorrow. World J Gastroenterol. 2014;20:13273–83.

4. Herath CH, Chetty R. Epstein-Barr virus-associated lymphoepithelioma-like gastric carcinoma. Arch Pathol Lab Med. 2008;132:706–9.

5. Min BH, Tae CH, Ahn SM, Kang SY, Woo SY, Kim S, et al. Epstein-Barr virus infection serves as an independent predictor of survival in patients with lymphoepithelioma-like gastric carcinoma. Gastric Cancer. 2016;19:852–9.

6. Lim H, Lee IS, Lee JH, Park YS, Kang HJ, Na HK, et al. Clinical application of early gastric carcinoma with lymphoid stroma based on lymph node metastasis status. Gastric Cancer. 2017;20:793–801.

7. Park S, Choi MG, Kim KM, Kim HS, Jung SH, Lee JH, et al. Lymphoepithelioma-like carcinoma: a distinct type of gastric cancer. J Surg Res. 2015;194:458–63.

8. Chirieac LR, Chang Y-L, Yatabe Y. Lymphoepithelioma-like carcinoma. In: Travis WD, Brambilla E, Burke AP et al, editors. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. 4th ed. France: International Agency for Research on Cancer; 2015. pp. 95–6.

9. Wu MS, Shun CT, Wu CC, Hsu TY, Lin MT, Chang MC, et al. Epstein-Barr virus-associated gastric carcinomas: relation to H. pylori infection and genetic alterations. Gastroenterology. 2000;118:1031–8.

10. Cheng N, Hui DY, Liu Y, Zhang NN, Jiang Y, Han J, et al. Is gastric lymphoepithelioma-like carcinoma a special subtype of EBV-associated gastric carcinoma? New insight based on clinicopathological features and EBV genome polymorphisms. Gastric Cancer. 2015;18:246–55.

11. Cheng Y, Du M, Wang Y, Liu T, Zhou X, Chen L, et al. Micropapillary early gastric carcinoma with distinct clinicopathological features, high risk for lymph node metastasis, and dismal prognosis: a multicenter clinicopathological study of 29 cases identified in 1890 early gastric carcinoma radical gastrectomies. Hum Pathol. 2019;83:149–58.

12. The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002. Gastrointest Endosc. 2003;58:3–43.

13. Ajani JA, In H Sano. Takeshi, et al. Stomach. In: Amin MB, Edge SB, Greene FL et al, editors. AJCC Cancer Staging Manual. 8th ed. New York: Springer; 2017. pp. 211–2.
14. Du M, Chen L, Cheng Y, Wang Y, Fan X, Zhang Y, et al. Tumor Budding and Other Risk Factors of Lymph Node Metastasis in Submucosal Early Gastric Carcinoma: A Multicenter Clinicopathologic Study in 621 Radical Gastrectomies of Chinese Patients. Am J Surg Pathol. 2019;43:1074–82.

15. Lee JY, Kim KM, Min BH, Lee JH, Rhee PL, Kim JJ. Epstein-Barr virus-associated lymphoepithelioma-like early gastric carcinomas and endoscopic submucosal dissection: case series. World J Gastroenterol. 2014;20:1365–70.

16. Osumi H, Kawachi H, Yoshio T, Ida S, Yamamoto N, Horiuchi Y, et al. Epstein-Barr virus status is a promising biomarker for endoscopic resection in early gastric cancer: proposal of a novel therapeutic strategy. J Gastroenterol. 2019;54:774–83.

17. Watanabe H, Enjoji M, Imai T. Gastric carcinoma with lymphoid stroma. Its morphologic characteristics and prognostic correlations. Cancer. 1976;38:232–43.

18. Song HJ, Srivastava A, Lee J, Kim YS, Kim KM, Ki Kang W, et al. Host inflammatory response predicts survival of patients with Epstein-Barr virus-associated gastric carcinoma. Gastroenterology. 2010;139:84–92.e2.

19. Murphy G, Pfeiffer R, Camargo MC, Rabkin CS. Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology. 2009;137:824–33.

20. Ribeiro J, Oliveira A, Malta M, Oliveira C, Silva F, Galaghar A, et al. Clinical and pathological characterization of Epstein-Barr virus-associated gastric carcinomas in Portugal. World J Gastroenterol. 2017;23:7292–302.

21. van Beek J, zur Hausen A, Klein Kranenberg E, van de Velde CJ, Middeldorp JM, van den Brule AJ, et al. EBV-positive gastric adenocarcinomas: a distinct clinicopathologic entity with a low frequency of lymph node involvement. J Clin Oncol. 2004;22:664–70.

22. Hissong E, Ramrattan G, Zhang P, Zhou XK, Young G, Klimstra DS, et al. Gastric Carcinomas With Lymphoid Stroma: An Evaluation of the Histopathologic and Molecular Features. Am J Surg Pathol. 2018;42:453–62.

23. Kim YB, Hur H, Lee D. Frequent EBV positivity in conventional adenocarcinomas occurring simultaneously with EBV-associated gastric cancers. Pathology. 2016;48:616–8.

24. Matsunou H, Konishi F, Hori H, Ikeda T, Sasaki K, Hirose Y, et al. Characteristics of Epstein-Barr virus-associated gastric carcinoma with lymphoid stroma in Japan. Cancer. 1996;77:1998–2004.

25. Namikawa T, Fujisawa K, Munekage E, Munekage M, Oki Y, Maeda H, et al. Epstein-Barr virus-associated early gastric carcinoma with lymphoid stroma, accompanied with lymph node metastasis. Mol Clin Oncol. 2018;8:561–6.

26. Tamura T, Hamada T, Sako T, Makihara K, Yamada K, Kashima K, et al. Lymphoepithelioma-Like Carcinoma of the Stomach with Epithelioid Granulomas. Case Rep Gastroenterol. 2010;4:361–8.

27. Ramos M, Pereira MA, Dias AR, Faraj SF, Zilberstein B, Cecconello I, et al. Lymphoepithelioma-like gastric carcinoma: clinicopathological characteristics and infection status. J Surg Res. 2017;210:159–68.
28. Ji-Hoon K, Dae-Woon E. A case of multifocal EBV associated gastric carcinoma with focal squamous differentiation. Indian J Pathol Microbiol. 2019;62:505–7.

29. Fukayama M, Ushiku T. Epstein-Barr virus-associated gastric carcinoma. Pathol Res Pract. 2011;207:529–37.

30. Shinozaki-Ushiku A, Kunita A, Fukayama M. Update on Epstein-Barr virus and gastric cancer (review). Int J Oncol. 2015;46:1421–34.

31. Huang Q, Fang C, Shi J, Sun Q, Wu H, Gold JS, et al. Differences in Clinicopathology of Early Gastric Carcinoma between Proximal and Distal Location in 438 Chinese Patients. Sci Rep. 2015;5:13439.

32. Ono H, Yao K, Fujishiro M, Oda I, Nimura S, Yahagi N, et al. Guidelines for endoscopic submucosal dissection and endoscopic mucosal resection for early gastric cancer. Dig Endosc. 2016;28:3–15.

33. Huang Q, Cheng Y, Chen L, Mingzhan D, Wang Y, Xu G, et al. Low risk of lymph node metastasis in 495 early gastric cardiac carcinomas: a multicenter clinicopathologic study of 2101 radical gastrectomies for early gastric carcinoma. Mod Pathol. 2018;31:1599–607.

34. Kang BW, Seo AN, Yoon S, Bae HI, Jeon SW, Kwon OK, et al. Prognostic value of tumor-infiltrating lymphocytes in Epstein-Barr virus-associated gastric cancer. Ann Oncol. 2016;27:494–501.

Figures
Figure 1

Histopathologic characteristics of Epstein-Barr virus-associated early gastric carcinoma with lymphoid stroma (H&E). A. The tumor was well-circumscribed with a pushing front and dense intra-tumor lymphocytic infiltration. B. Tumor cells showed a syncytial growth pattern and poorly formed glandular structures with abundant lymphocytes. C. The tumor exhibited focally moderately differentiated tubular adenocarcinoma histology with dense lymphocytic infiltration. D. A lace-like pattern was characterized with anastomosing cords and tubules.
Neoplastic cells, which were inconspicuous in hematoxylin-eosin–stained section (A), were highlighted with nuclear-positivity for Epstein-Barr virus-encoded small RNA in situ hybridization, while lymphocytes and non-neoplastic mucosa were negative as internal controls (B).