Three new infrared bands of the He - OCS complex

J. Norooz Oliae, 1 B.L. Brockelbank, 1 A.R.W. McKellar, 2 N. Moazzen-Ahmadi 1*

1 Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada.
2 National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.

Abstract

Three new infrared bands of the weakly-bound He-OCS complex are studied, using tunable lasers to probe a pulsed supersonic slit jet expansion. They correspond to the (04^00) ← (00^00), (10^01) ← (00^00), and (04^01) ← (00^00) transitions of OCS at 2105, 2918, and 2937 cm^{-1}, respectively. The latter band is about 7900 times weaker than the previously studied OCS ν_1 fundamental. Vibrational shifts relative to the free OCS monomer are found to be additive. Since carbonyl sulfide has previously been shown to be a valuable probe of superfluid quantum solvation effects in helium clusters and droplets, the present results could be useful for future studies of vibrational effects in such systems.

Address for correspondence: Prof. N. Moazzen-Ahmadi, Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada.

* Corresponding author. Tel: 1-403-220-5394
1. Introduction

Intermolecular interactions between He and OCS are of basic interest, but also have taken on practical importance because OCS turns out to be an especially useful probe of microscopic superfluid effects in helium clusters and droplets. This has led to numerous studies of “quantum solvation” in helium probed by OCS, both experimental [1 - 9] and theoretical [11 - 16]. Detailed intermolecular interaction potentials have been calculated for He-OCS, with increasing accuracy over the years [17 - 24]. These potentials can be rigorously tested by comparison with experimental bound-state energy levels of the He-OCS van der Waals complex derived from high-resolution spectra, as observed in the microwave [17, 25] and infrared [26 - 28] regions.

Previous infrared studies of binary He-OCS complexes, and of He\(_x\)-OCS clusters, have been limited to the strong \(\nu_1\) fundamental (C-O stretch) band of OCS located at 2062 cm\(^{-1}\). In the present paper, we extend the infrared study of He-OCS to three OCS combination bands at 2105, 2918, and 2937 cm\(^{-1}\). Though these transitions are much weaker than \(\nu_1\), they already provide new information on vibrational shift effects, and could prove useful for future studies of vibrational effects in superfluid helium clusters.

The He-OCS complex has a T-shaped structure, with a binding energy \((D_0)\) of about 19 cm\(^{-1}\) [23], a center of mass separation of about 3.83 Å, and an effective angle of about 66° between the O-C-S molecular axis and the line connecting the centers of mass [6]. It is thus a prolate asymmetric rotor with the \(a\)- and \(b\)-inertial axes approximately aligned with the O-C-S and He-C axes, respectively, and the \(c\)-axis perpendicular to the plane. Since the permanent dipole moment, and stretching transition moments, lie along the O-C-S axis, observed
microwave and infrared transitions are predominately \(a \)-type (\(\Delta K_a = 0, \Delta K_c = \pm 1 \)) with a weaker \(b \)-type (\(\Delta K_a = \pm 1, \Delta K_c = \pm 1 \)) contribution.

2. Results

Spectra were recorded at the University of Calgary using a pulsed supersonic slit jet expansion probed by a tunable infrared diode laser (for 2105 cm\(^{-1}\)) or optical parametric oscillator source (for 2918 and 2937 cm\(^{-1}\)) as described previously [28-31]. A typical expansion mixture contained 0.1 - 0.2% carbonyl sulfide in helium carrier gas with a jet backing pressure of 10 - 17 atmospheres. Spectral assignment and simulation were made using the PGOPHER software.\(^{32}\) We label the OCS vibrational states using \((v_1, v_2^l, v_3)\), where \(v_1\) represents the C-O stretch, \(v_2\) the bend (with angular momentum, \(l_2\)), and \(v_3\) the C-S stretch, with fundamental values of 2062.2, 520.4, and 859.0 cm\(^{-1}\) for \(^{16}\)O\(^{12}\)C\(^{32}\)S. The He-OCS band in the region of the \(v_1\) fundamental band has been studied previously in detail [26 - 28], including some isotopically substituted forms (\(^3\)He, \(^{34}\)S, \(^{13}\)C) in addition to the main isotopologue, \(^4\)He\(^{16}\)O\(^{12}\)C\(^{32}\)S.

The OCS combination band \((04^00) \leftarrow (00^00)\) is located at 2104.828 cm\(^{-1}\). This is 42.627 cm\(^{-1}\) above the \(v_1\) fundamental band, from which it “steals” some intensity through anharmonic (Fermi) interaction. As a result, the \((04^00) \leftarrow (00^00)\) band is much stronger than it would otherwise be, though still about 250 times weaker than \((10^00) \leftarrow (00^00)\) [33 - 35]. We have now observed the spectrum of He-OCS in this region, as shown in the top panel of Fig. 1. Rotational analysis of this band was relatively easy, and we assigned a total of 60 transitions with values of \(J'\) and \(K_a'\) up to 6 and 3, respectively. For comparison, in the fundamental band it was possible to observe 133 transitions up to \((J', K_a') = (8, 4)\) [28].
Figure 1. Observed and simulated spectra of He-OCS accompanying three combination bands of OCS. Gaps in the experimental traces are regions obscured by OCS monomer transitions.
Table 1. Molecular parameters for He - OCS complexes (in cm\(^{-1}\)).\(^a\)

Parameter	\((00^00)\)	\((10^00)\)	\((04^00)\)	\((10^01)\)	\((04^01)\)
\(\nu_0\)	2062.3125(2)	2105.0997(4)	2918.2810(3)	2937.4832(4)	
\(\Delta \nu_0\)	+0.1117	+0.2720	+0.1761	+0.3364	
\(A\)	0.440779(3)	0.43622(15)	0.45326(68)	0.43818(21)	0.45134(54)
\(B\)	0.18337(4)	0.18304(9)	0.18731(14)	0.182562(48)	0.18120(26)
\(C\)	0.12236(4)	0.12136(9)	0.11928(15)	0.121066(38)	0.12326(26)
\(10^3 \times A\)_K	1.694(5)	0.94(3)	10.47(20)	1.680(35)	5.40(11)
\(10^5 \times A\)_JK	3.97(18)	5.6(12)	10.5(66)	2.98(104)	45.0(62)
\(10^5 \times A\)_J	3.105(11)	2.97(9)	9.65(23)	3.247(60)	-2.79(86)
\(10^4 \times \delta\)_K	1.96(21)	4.3(5)	16.31(49)	4.36(12)	-3.6(13)
\(10^5 \times \delta\)_J	1.086(3)	1.07(7)	3.24(10)	1.244(34)	
\(10^4 \times H\)_K	0.270(15)	-1.8(3)	7.91(12)	0.400(15)	
\(10^5 \times H\)_KJ	2.05(13)	0.5(3)	4.99(99)	0.397(97)	
\(10^5 \times H\)_J	-0.35(3)	0.07(8)	0.56(13)		
\(10^7 \times H\)_J	-0.25(4)	-0.37(12)			
\(10^5 \times h\)_K	-1.9(3)	1.5(7)	1.42(12)		
\(10^7 \times h\)_J	-0.46(3)	-0.21(11)			
rms error	0.0008	0.00085	0.00068	0.00057	

\(^a\) Uncertainties in parentheses are 1\(\sigma\) from the least-squares fits, expressed in units of the last quoted digit. The \((00^00)\) and \((10^00)\) parameters are from [28]; remaining parameters are the current work.
The $v_1 + v_3$ combination band of OCS, located at 2918.105 cm$^{-1}$, is about 70 times weaker than v_1, which makes it about 3.5 times stronger than the 4v_2 band just described. Our observed spectrum of He-OCS in this region is shown in the middle panel of Fig. 1. Here, we assigned 114 transitions up to $(J', K_a') = (8, 4)$.

Just as the (04^00) state steals intensity from (10^00), so (04^01) also steals from (10^01). However, in the latter case the separation of the two states is only 19 cm$^{-1}$ (as compared to 43 cm$^{-1}$), so the interaction is somewhat stronger, and the $(04^01) \leftarrow (00^00)$ band turns out to be about 110 times weaker than $(10^01) \leftarrow (00^00)$, and hence about 7900 times weaker than v_1 [33]. Our observed spectrum of He-OCS in this region is shown in the bottom panel of Fig. 1. It is immediately evident that the signal to noise ratio in this spectrum is much worse than the others, which is not surprising given the weakness of the OCS band. Detection of this band was possible by implementation of quantum-correlated twin beams (idler and signal) for cancellation of the power fluctuations in the rapid-scan mode [36]. Even so, we were able to assign 23 transitions up to $(J', K_a') = (5, 2)$ and these assignments were virtually unambiguous, thanks to the relatively simple and widely-spaced nature of the He-OCS spectrum.

We fitted the observed transitions using the Watson A-reduced Hamiltonian with results as shown in Table 1. Ground state parameters were fixed at those determined previously [28] using microwave [17, 25] and v_1 fundamental band [28] data. The table includes these ground and v_1 state parameters, for comparison with the new results. Complete lists of observed and calculated line positions are given in Tables A1-A3. The root mean square errors of the fits were 0.00085, 0.00068, and 0.00057 cm$^{-1}$ for the three new bands, (04^00), (10^01), and (04^01), respectively. These values are similar to that achieved for the v_1 fundamental [28], but larger
than the estimated relative experimental accuracy which is about 0.0002 to 0.0003 cm$^{-1}$. This may be a reflection of the inadequacy of a conventional (semi-rigid molecule) Hamiltonian to fit the rotational levels of a floppy and weakly-bound complex such as He-OCS, in spite of including many centrifugal distortion parameters. Similarly, note that the ratios of the number of fitted (upper state) levels to the number of varied parameters were relatively small: 28/13, 49/13, and 18/9 for the three bands. For these reasons, one should be cautious about the significance of the parameters in Table 1 (especially the higher-order ones) and be aware that their quoted standard deviations likely underestimate the true uncertainties.

3. Discussion and conclusions

It is interesting to consider the He-OCS band origins in terms of their shift, Δv_0, relative to the free OCS molecule, as summarized near the top of Table 1. In all cases, there is a small positive ("blue") shift (0.11 to 0.34 cm$^{-1}$), indicating that the van der Waals bond becomes slightly weaker in the excited vibrational states. The shifts observed here for the combination bands are larger than that of the v_1 fundamental. Most notable is the fact that the shift for the (0401) upper state is exactly equal (within experimental error) to the sum of the shifts for (0400) and (1001) minus the shift for (1000). This is just what one would expect if the shifts were simple additive functions of the OCS vibrational quantum numbers. In this context, it would be interesting to measure the He-OCS shift for the OCS v_3 fundamental band at 859 cm$^{-1}$, which should be equal to +0.0644 cm$^{-1}$ if this trend continued.

Experimental line widths in the current spectra (\approx0.003 cm$^{-1}$) were limited by residual Doppler broadening due to the (multi-passed) laser beam not being perfectly orthogonal to the velocities of the molecules in the supersonic expansion. There was no evidence of further
broadening due to predissociation, that is, due to finite upper state lifetimes. The present results show that it is now possible to detect spectra of weakly-bound complexes even for fairly weak infrared bands. In particular, the current result for the \((04^1 1) \leftarrow (00^0 0)\) band of OCS (transition dipole moment \(\approx 0.0036\) Debye [33]) probably represents the weakest of many such bands studied using our apparatus over the past ten years.

Acknowledgments

Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. We thank A.J. Barclay and K. Esteki for assistance with the experiment.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version at http://dx.doi.org/10.1016/j.jms.2017.xx.xxx.
References

[1] S. Grebenev, M. Hartmann, M. Havenith, B. Sartakov, J.P. Toennies, A.F. Vilesov, J. Chem. Phys. 112 (2000) 4485.

[2] S. Grebenev, J.P. Toennies, A.F. Vilesov, Science 279 (1998) 2083.

[3] S. Grebenev, M. Havenith, F. Madeja, J.P. Toennies, A.F. Vilesov, J. Chem. Phys. 113 (2000) 9060.

[4] M. Kunze, P.R.L. Marwick, N. Pörtner, J. Reuss, M. Havenith, J. Chem. Phys. 116 (2002) 7473.

[5] J. Tang, Y. Xu, A.R.W. McKellar, W. Jäger, Science 297 (2002) 2030.

[6] J. Tang, A.R.W. McKellar, J. Chem. Phys. 119 (2003) 5467.

[7] Y. Xu, W. Jäger, J. Chem. Phys. 119 (2003) 5457.

[8] A.R.W. McKellar, Y. Xu, W. Jäger, Phys. Rev. Lett. 97 (2006) 183401.

[9] A.R.W. McKellar, Y. Xu, W. Jäger, J. Phys. Chem. A 111 (2007) 7329.

[10] B.G. Sartakov, J.P. Toennies, A.F. Vilesov, J. Chem. Phys. 136 (2012) 134316.

[11] Y. Kwon, K.B. Whaley, J. Chem. Phys. 115 (2001) 10146.

[12] F. Paesani, F.A. Gianturco, K.B. Whaley, J. Chem. Phys. 115 (2001) 10225.

[13] S. Moroni, A. Sarsa, S. Fantoni, K.E. Schmidt, S. Baroni, Phys. Rev. Lett. 90 (2003) 143401.

[14] F. Paesani, A. Viel, F.A. Gianturco, K.B. Whaley, Phys. Rev. Lett. 90 (2003) 073401.

[15] S. Paolini, S. Fantoni, S. Moroni, S. Baroni, J. Chem. Phys. 123 (2005) 114306.

[16] S. Miura, J. Chem. Phys. 126 (2007) 114309.

[17] K. Higgins, W. Klemperer, J. Chem. Phys. 110 (1999) 1383.

[18] M. Keil, L. Rawluck, T.W. Dingle, J. Chem. Phys. 96 (1992) 6621.

[19] J. Sadlej, D. Edwards, Int. J. Quantum Chem. 46 (1993) 623.

[20] J.M.M. Howson, J. Hutson, J. Chem. Phys. 115 (2001) 5059.
[21] F. A. Gianturco, F. Paesani, J. Chem. Phys. 113 (2000) 3011.

[22] F. Paesani, K.B. Whaley, J. Chem. Phys. 121 (2004) 4180.

[23] H. Li, Y.-T. Ma, J. Chem. Phys. 137 (2012) 234310.

[24] Z. Wang, E. Feng, C. Zhang, C. Sun, J. Chem. Phys. 141 (2014) 174308.

[25] Y. Xu, W. Jäger, J. Mol. Spectrosc. 251 (2008) 326.

[26] J. Tang, A.R.W. McKellar, J. Chem. Phys. 115 (2001) 3053.

[27] J. Tang, A.R.W. McKellar, J. Chem. Phys. 117 (2002) 2586.

[28] Z. Abusara, L. Borvayeh, N. Moazzen-Ahmadi, A.R.W. McKellar, J. Chem. Phys. 125 (2006) 144306.

[29] M. Dehghany, M. Afshari, Z. Abusara, C. Van Eck, N. Moazzen-Ahmadi, J. Mol. Spectrosc. 247 (2008) 123.

[30] M. Rezaei, K.H. Michaelian, N. Moazzen-Ahmadi, J. Chem. Phys. 136 (2012) 124308.

[31] M. Rezaei, S. Sheybani-Deloui, N. Moazzen-Ahmadi, K.H. Michaelian, A.R.W. McKellar, J. Phys. Chem. A 117 (2013) 9612.

[32] C.M. Western, PGOPHER, a program for simulating rotational structure version 8.0, 2014, University of Bristol Research Data Repository, doi:10.5523/bris.huflggypcuc1zvliqed497r2

[33] A.G. Maki, J.S. Wells, “Wavenumber calibration tables from heterodyne frequency measurements,” NIST Special Publication 821, U.S. Government Printing Office, 1991.

[34] A. Foord, A.G. Whiffen, Mol. Phys. 26 (1973) 959.

[35] N. Hunt, S.C. Foster, J.W.C. Johns, A.R.W. McKellar, J. Mol. Spectrosc. 111 (1985) 42.

[36] J. Norooz Oliaee, B. Brockelbank, N. Moazzen-Ahmadi, “Use of quantum-correlated twin beams for cancellation of power fluctuations in a continuous-wave optical parametric oscillator for high-resolution spectroscopy in the rapid scan,” The 25th Colloquium on High Resolution Molecular Spectroscopy, 20-25 August, Helsinki, Finland (2017).
Appendix A

Table A1. Observed and calculated transitions in the (0400) \leftarrow (0000), band of He-OCS dimer around 2105 cm$^{-1}$ (units of cm$^{-1}$).

J'	K_a'	K_c'	J''	K_a''	K_c''	Observed	Calculated	Obs-Calc
0	0	0	1	0	1	2104.79448	2104.79406	0.00041
0	0	0	1	1	1	2104.53816	2104.53790	0.00025
1	1	0	2	1	1	2104.43374	2104.43479	-0.00105
1	1	0	1	1	1	2105.16416	2105.16492	-0.00076
1	1	0	1	0	1	2105.42031	2105.42108	-0.00077
1	0	1	2	0	2	2104.49866	2104.49887	-0.00001
1	0	1	0	0	0	2105.40609	2105.40587	0.00021
1	0	1	1	1	1	2104.78455	2104.78404	0.00050
1	1	1	2	1	2	2104.55316	2104.55320	-0.00004
1	1	1	1	1	0	2105.04400	2105.04362	0.00037
1	1	1	0	0	0	2105.66549	2105.66545	0.00003
2	0	2	1	0	1	2105.70206	2105.70231	-0.00025
2	0	2	2	1	1	2104.71582	2104.71602	-0.00020
2	1	2	1	0	1	2105.91034	2105.90944	0.00089
2	1	2	2	1	1	2104.92392	2104.92314	0.00077
2	1	2	3	1	3	2104.28394	2104.28296	0.00097
2	1	2	1	1	1	2105.65414	2105.65327	0.00086
2	2	0	1	1	1	2106.54866	2106.54829	0.00036
2	2	0	2	2	1	2105.06737	2105.06721	0.00015
2	1	1	1	1	0	2105.77418	2105.77538	-0.00120
2	1	1	2	1	2	2105.28401	2105.28496	-0.00095
2	1	1	2	0	1	2105.48915	2105.49020	-0.00105
2	2	1	2	2	0	2105.04995	2105.05009	-0.00014
3	1	2	3	0	3	2105.60652	2105.60714	-0.00062
3	1	2	2	1	1	2106.10054	2106.10155	-0.00101
3	1	2	3	1	3	2105.46111	2105.46137	-0.00026
3	2	2	3	2	1	2105.01643	2105.01635	0.00007
3	2	2	2	2	1	2105.97275	2105.97321	-0.00046
3	2	2	3	1	3	2106.08291	2106.08399	-0.00108
3	3	0	2	2	1	2107.35775	2107.35732	0.00042
3	3	0	3	3	1	2105.08090	2105.08102	-0.00012
3	0	3	2	0	2	2105.97987	2105.98038	-0.00051
3	0	3	3	1	2	2104.59845	2104.59849	-0.00004
3	1	3	3	1	2	2104.74660	2104.74520	0.00139
3	1	3	2	1	2	2105.92271	2105.92185	0.00085
3	1	3	2	0	2	2106.12784	2106.12709	0.00074
3	2	1	2	2	0	2106.00260	2106.00208	0.00051
3	2	1	3	1	2	2105.76595	2105.76509	0.00085
3	2	1	3	2	2	2105.09890	2105.09784	0.00105
3	3	1	3	3	0	2105.08050	2105.07991	0.00058
3	3	1	2	2	0	2107.34707	2107.34794	-0.00087
4	0	4	3	1	3	2106.09208	2106.09218	-0.00010
4	0	4	3	0	3	2106.23729	2106.23796	-0.00067
4	1	4	3	1	3	2106.18511	2106.18506	0.00004
4	2	2	3	2	1	2106.32845	2106.32952	-0.00107
---	---	---	---	---	---	----------------	----------------	----------
4	2	2	4	2	3	2105.16416	2105.16430	-0.00014
4	1	3	3	1	2	2106.41556	2106.41529	0.00026
4	1	3	4	1	4	2105.69117	2105.68869	0.00247
4	2	3	4	2	2	2104.93971	2104.94026	-0.00055
4	2	3	3	2	2	2106.26965	2106.27036	-0.00071
5	1	4	4	1	3	2106.71492	2106.71285	0.00206
5	2	4	4	2	3	2106.56175	2106.56133	0.00041
5	2	4	5	2	3	2104.81167	2104.81105	0.00061
5	0	5	4	0	4	2106.47992	2106.48103	-0.00111
5	0	5	4	1	4	2106.38836	2106.38885	-0.00049
5	1	5	4	1	4	2106.44136	2106.44243	-0.00107
5	1	5	4	0	4	2106.53355	2106.53462	-0.00107
6	0	6	5	0	5	2106.71940	2106.71724	0.00215
6	1	6	5	1	5	2106.69284	2106.69322	-0.00038
6	1	5	5	1	4	2106.99152	2106.99296	-0.00144
Table A2. Observed and calculated transitions in the (1001) ↔ (0000) band of He-OCS dimer around 2918 cm⁻¹ (units of cm⁻¹).

J'	Kα'	Kc'	J''	Kα''	Kc''	Observed	Calculated	Obs-Calc
0	0	0	1	1	1	2917.7191	2917.7192	-0.00010
0	0	0	1	0	1	2917.9758	2917.9753	0.00045
1	1	0	1	0	1	2918.5937	2918.5934	0.00033
1	1	0	2	1	1	2917.6070	2917.6071	-0.00004
1	0	1	1	1	0	2917.9631	2917.9626	0.00045
1	0	1	2	1	2	2917.4718	2917.4722	-0.00039
1	0	1	2	0	2	2917.6772	2917.6774	-0.00017
1	0	1	0	0	0	2918.5847	2918.5848	0.00019
1	1	1	1	0	1	2918.2181	2918.2174	0.00065
1	1	1	2	2	0	2916.7876	2916.7873	0.00028
1	1	1	2	0	2	2917.9328	2917.9322	0.00057
1	1	1	2	1	2	2917.7270	2917.7270	0.00004
1	0	1	1	0	1	2918.8757	2918.8761	-0.00036
1	0	2	1	1	1	2918.8962	2918.8981	-0.00019
1	0	2	3	0	3	2917.3950	2917.3954	-0.00037
1	1	2	1	1	1	2918.8240	2918.8242	-0.00018
1	1	2	3	1	3	2917.4538	2917.4539	-0.00009
1	1	2	2	1	1	2918.0944	2918.0940	0.00035
1	1	2	3	0	3	2917.5994	2917.5996	-0.00022
1	1	2	1	0	1	2919.0805	2919.0803	0.00011
1	2	0	1	1	1	2919.7587	2919.7587	0.00005
1	2	0	3	2	1	2917.3204	2917.3207	-0.00027
1	2	0	2	1	1	2919.0288	2919.0285	0.00029
1	2	0	2	2	1	2918.2779	2918.2776	0.00037
1	1	1	2	0	2	2918.6575	2918.6572	0.00005
1	1	1	2	1	2	2918.4525	2918.4522	0.00030
1	1	1	3	1	2	2917.2755	2917.2756	-0.00004
1	1	1	2	2	0	2917.5125	2917.5126	-0.00008
1	1	1	1	1	0	2918.9421	2918.9427	-0.00051
2	1	1	2	2	0	2918.2599	2918.2595	0.00040
2	2	1	3	2	2	2917.3551	2917.3553	-0.00021
3	1	2	4	1	3	2916.9525	2916.9523	-0.00016
3	1	2	3	2	1	2917.5542	2917.5548	-0.00060
3	1	2	2	2	1	2919.2627	2919.2626	0.00000
3	1	2	3	0	3	2918.7681	2918.7682	-0.00017
3	1	2	3	1	3	2918.6220	2918.6225	-0.00049
3	2	2	2	2	1	2919.1756	2919.1756	0.00000
3	2	2	4	2	3	2917.0534	2917.0535	-0.00014
3	2	2	3	2	1	2918.2181	2918.2188	-0.00069
3	2	2	2	1	1	2919.9263	2919.9263	-0.00024
3	3	0	4	3	1	2917.0209	2917.0197	0.00114
3	3	0	2	2	1	2920.5314	2920.5317	-0.00024
3	0	3	4	1	4	2917.0395	2917.0394	0.00018
3	0	3	4	0	4	2917.1313	2917.1315	-0.00019
3	0	3	3	1	2	2917.7659	2917.7660	-0.00003
3	0	3	2	0	2	2919.1478	2919.1479	-0.00002
3	1	3	3	1	2	2917.91109	2917.91124	-0.00014
---	---	---	---	---	---	-------------	-------------	----------
3	1	3	4	1	4	2917.18463	2917.18463	-0.00000
3	1	3	2	1	2	2919.08776	2919.08789	-0.00012
3	2	1	3	2	2	2918.30569	2918.30554	0.00015
3	2	1	2	0	2	2920.35486	2920.35469	0.00016
2	1	2	1	2	2920.14927	2920.14945	-0.00017	
2	1	3	1	2	2918.97246	2918.97280	-0.00033	
2	1	2	2	0	2919.20982	2919.20978	0.00003	
2	1	4	2	2	2916.97513	2916.97543	-0.00030	
3	1	2	2	0	2920.52174	2920.52184	-0.00009	
3	1	4	3	2	2917.02619	2917.02432	0.00186	
4	0	4	3	1	3	2919.25196	2919.25196	0.00000
4	0	4	3	0	3	2919.39775	2919.39773	0.00001
4	1	4	3	1	3	2919.34350	2919.34387	-0.00036
4	1	4	3	0	3	2919.48922	2919.48964	-0.00042
4	1	4	5	1	5	2916.91980	2916.91933	0.00046
4	2	2	4	2	3	2918.37430	2918.37389	0.00041
4	2	2	3	1	3	2920.60720	2920.60675	0.00044
4	2	2	5	2	3	2916.62354	2916.62361	-0.00007
4	2	2	3	2	1	2919.53903	2919.53911	-0.00007
4	3	2	3	3	1	2919.47374	2919.47497	-0.00123
4	3	2	4	3	1	2918.23955	2918.23933	0.00021
4	3	2	3	2	1	2920.79294	2920.79441	-0.00146
4	4	0	4	4	1	2918.23442	2918.23447	0.00005
4	1	3	5	1	4	2916.64257	2916.64199	0.00057
4	1	3	4	0	4	2918.93435	2918.93518	-0.00082
4	1	3	3	1	2	2919.56938	2919.56959	-0.00021
4	2	3	5	2	4	2916.75684	2916.75671	0.00012
4	2	3	3	2	2	2919.46236	2919.46250	-0.00013
4	2	3	3	1	2	2920.12934	2920.12976	-0.00041
4	2	3	4	2	2	2918.13223	2918.13239	-0.00016
4	3	1	3	3	0	2919.47886	2919.47979	-0.00092
4	4	1	4	4	0	2918.23442	2918.23437	0.00004
5	1	4	4	1	3	2919.85793	2919.85866	-0.00073
5	1	4	6	1	5	2916.35100	2916.34924	0.00176
5	2	4	4	2	3	2919.73941	2919.73956	-0.00014
5	3	2	5	3	3	2918.25463	2918.25415	0.00047
5	3	2	4	3	1	2919.78420	2919.78328	0.00092
5	3	2	4	2	3	2921.17306	2921.17313	-0.00007
5	0	5	6	0	6	2916.63318	2916.63291	0.00027
5	0	5	4	0	4	2919.63102	2919.63150	-0.00048
5	1	5	4	1	4	2919.59111	2919.59195	-0.00084
5	1	5	6	1	6	2916.65823	2916.65729	0.00093
5	2	3	6	2	4	2916.27750	2916.27659	0.00091
5	2	3	4	2	2	2919.86917	2919.86908	0.00009
5	3	3	4	2	2	2921.02800	2921.03048	-0.00247
5	3	3	4	3	2	2919.76732	2919.76730	0.00002
6	0	6	7	0	7	2916.38537	2916.38382	0.00155
6	0	6	5	0	5	2919.85793	2918.85775	0.00018
6	1	6	5	1	5	2919.83159	2918.83265	-0.00106
6	1	6	7	1	7	2916.39960	2916.39727	0.00233
	1	6	5	0	5	2919.88394	2919.88556	-0.00161
----	-----	----	----	----	----	------------	------------	----------
6	2	4	5	2	3	2920.18867	2920.18846	0.00020
6	3	4	5	3	3	2920.05376	2920.05302	0.00073
6	1	5	5	1	4	2920.12534	2920.12545	-0.00010
6	2	5	5	2	4	2920.00599	2920.00574	0.00025
6	3	3	5	3	2	2920.09400	2920.09212	0.00188
7	1	6	6	1	5	2920.36824	2920.36807	0.00017
7	2	6	6	2	5	2920.26151	2920.26090	0.00060
7	3	4	6	3	3	2920.40870	2920.40792	0.00077
7	0	7	6	1	6	2920.05376	2920.05310	0.00065
7	1	7	6	1	6	2920.06592	2920.06672	-0.00080
7	2	5	6	2	4	2920.48824	2920.48998	-0.00173
7	3	5	6	3	4	2920.32950	2920.33080	-0.00129
8	0	8	7	0	7	2920.30258	2920.30307	-0.00048
8	1	7	7	1	6	2920.59034	2920.59011	0.00022
8	2	7	7	2	6	2920.50625	2920.50625	0.00000
Table A3. Observed and calculated transitions in the (0401) \leftrightarrow (0000) band of He-OCS dimer around 2938 cm$^{-1}$ (units of cm$^{-1}$).

J'	Ka'	Kc'	J''	Ka''	Kc''	Observed	Calculated	Obs-Calc
0	0	0	1	0	1	2937.17651	2937.17754	-0.00102
1	1	0	2	1	1	2936.81893	2936.81832	0.00061
1	0	1	0	0	0	2937.78770	2937.78772	-0.00002
1	0	1	2	0	0	2936.88066	2936.88072	-0.00005
1	1	1	2	1	2	2936.93922	2936.93859	0.00062
1	1	1	1	1	0	2937.42894	2937.42901	-0.00006
2	0	2	1	0	0	2938.08216	2938.08194	0.00022
2	0	2	3	0	3	2936.60214	2936.60124	0.00089
2	1	2	1	1	1	2938.03759	2938.03772	-0.00013
2	1	2	2	1	1	2937.30659	2937.30759	-0.00100
2	1	2	3	1	3	2936.66705	2936.66741	-0.00035
2	2	0	2	2	1	2937.46284	2937.46386	-0.00101
2	1	1	1	1	0	2938.15625	2938.15578	0.00046
2	2	1	2	2	0	2937.44570	2937.44479	0.00090
3	1	2	2	1	1	2938.47898	2938.47940	-0.00041
3	0	3	2	0	2	2938.35840	2938.35818	0.00022
3	1	3	2	1	2	2938.30508	2938.30434	0.00073
4	0	4	3	0	3	2938.61401	2938.61420	-0.00019
4	1	4	3	1	3	2938.56394	2938.56460	-0.00065
4	2	2	3	2	1	2938.73482	2938.73470	0.00011
4	1	3	3	1	2	2938.79062	2938.79075	-0.00013
5	0	5	4	0	4	2938.85581	2938.85592	-0.00010
5	1	5	4	1	4	2938.81945	2938.81905	0.00040