Co-infection of Anaplasma and Ehrlichia in Hedgehogs from China.

CURRENT STATUS: UNDER REVIEW

Author	Affiliation
Xiao Xiao	Wuhan University
Hui-Ju Han	Wuhan University
Rui Qi	Wuhan University
Xiao-Qing Gong	Wuhan University
Si-Cong Lei	Wuhan University
Jian-Wei Liu	Wuhan University
Xiang-Rong Qin	Wuhan University
Chuan-Min Zhou	Wuhan University
Li-Zhu Fang	Wuhan University
Xiao-Juan Ma	Wuhan University
Min Chu	Wuhan University

Xue-Jie Yu
Corresponding Author
yuxuejie@whu.edu.cn
University of Texas Medical Branch at Galveston
ORCID: 0000-0003-2665-3811

DOI:
SUBJECT AREAS
 Small Animal Medicine Large Animal Medicine
KEYWORDS
 Hedgehogs, tick, Anaplasma, Ehrlichia, Candidatus. Neoehrlichia, Rickettsia.
Abstract

Hedgehogs (Erinaceus amurensis) is an insectivorous mammal frequently observed in the wild and around the residential areas. However, information about tick-borne diseases in this species is not well known. We investigated tick-borne rickettsial pathogens including Anaplasma, Ehrlichia, Candidatus Neoehrlichia and Rickettsia in hedgehogs collected in central China. Hedgehogs were captured from Hubei and Jiangxi Province with living traps. PCR amplification and DNA sequencing showed that 26% (19/73) hedgehogs were positive to Anaplasma bovis, 20.5% (15/73) were positive to a tentative new Ehrlichia species; in addition, 13.7% (10/73) hedgehogs were positive to A. bovis and Ehrlichia simultaneously. Candidatus Neoehrlichia and Rickettsia species was not detected among the 73 hedgehogs. We concluded that hedgehogs from central China were widely infected with Anaplasma and Ehrlichia, suggesting hedgehogs may play a role in the ecology of Anaplasma and Ehrlichia.

Background

Bacteria of the order Rickettsiales (Alphaproteobacteria) are obligate intracellular parasites of eukaryotes. At present, the order contains three established families (Rickettsiaceae, Holosporaceae, and Anaplasmataceae) as well as one proposed family (Candidatus Midichloriaceae) [1, 2]. Most described species of Rickettsiales are well known as emerging or reemerging zoonotic pathogens that may cause life-threatening diseases, including rickettsioses, ehrlichiosis, anaplasmosis and scrub typhus in humans and also be linked with devastating agricultural losses by infecting meat and milk producing animals [3, 4]. The number of newly discovered organisms in the Rickettsiales has markedly increased over the last 20 years and even bacteria that had previously been considered nonpathogenic are now associated with human disease [5, 6]. Rickettsiales are associated
with a diverse host range, including diverse protists, annelids, arthropods, mammals and birds [5, 7, 8]. Although numerous studies conducted worldwide have focused on the ecology of Rickettsiales, investigation related to vector-pathogen interaction and the role of vertebrate hosts in the maintenance and dissemination of Rickettsiales in nature remain scarce [9].

Previous investigations showed that ectoparasites in hedgehogs carried several rickettsial agents [10, 11]. *Rickettsia helvetica*, *Candidatus Neoehrlichia mikurensis* and *Anaplasma phagocytophilum* were also detected in European hedgehogs (*Erinaceus europaeus*) in Europe [10, 12-14]. *Erinaceus europaeus* has also been suggested as reservoir hosts for *A.phagocytophilum* and different genospecies of the *Borrelia burgdorferi* sensu lato complex [15, 16]. Thus, hedgehog may play an important role in the transmission cycle of Rickettsia species as well as acting as a reservoir. The aim of this study was to investigate the prevalence of *Rickettsia*, *Anaplasma* and *Ehrlichia* in hedgehogs from central China.

Results

Anaplasma in hedgehogs

PCR amplification with *Anaplasma rrs* primers showed that 19 (26%) hedgehogs were positive. DNA sequences analysis revealed that the sequences were 98.6-100% homologous to each other and they were 98.6-100% identical to *A.bovis* sequences derived from the blood of cattle and goat in Shaanxi Province, China (GenBank: MH255934 and MH255938). Phylogenetic analysis of two representative *rrs* sequences showed sequences from hedgehogs were in the same cluster with *A. bovis* detected in China, Japan, Korea and Malaysia (Fig.2). Additionally, all *Anaplasma rrs* positive samples were further genotyped using semi-nested PCR by targeting the *groEL* gene. A total of 18 highly identical (97.3%-100%) *groEL* sequences were finally obtained. BLAST analysis indicated
all sequences were 97.86%-99.64% identical to the partial groEL sequence of A. bovis derived from a goat in Shaanxi Province (GenBank: MH255898). Phylogenetic analysis showed two representative groEL sequences obtained in the present study clustered with A. bovis detected in goats/cattle/ticks/mosquitos from Shaanxi and Hubei Province. They clearly formed a distinct clade and differ from A. bovis in other parts of China and the world (Fig.2).

Ehrlichia in hedgehogs

PCR amplification with *Ehrlichia rrs* primers showed that 15 hedgehogs were positive. The 15 *rrs* positive hedgehogs were further amplified for the groEL and gltA genes. All 15 hedgehogs were positive to the groEL, but only 4 were gltA positive. BLAST analysis showed that the *rrs* sequences from hedgehogs were 99.13-99.35% identical to an *Ehrlichia* sequence (GenBank: KJ410252) derived from ticks in Xinjiang Province in western China. The four gltA sequences were 99.5-100% homologous and the groEL sequences detected from 15 hedgehogs were 99.1-100% identical to each other. In consistence with the *rrs* sequences, the gltA and groEL were highly homologous to *Ehrlichia* detected in ticks from various places in China including Xinjiang, Zhejiang, and Hubei in China, and *E. ewingii* (93.79%-95.04% for groEL and 91%-91.47% for gltA). Phylogenetic analysis based on the *rrs* showed that *Ehrlichia* sequences detected from hedgehogs formed a clade together with uncultured *Ehrlichia* species from ticks in Daishan County, Xinjiang provinces and *E. ewingii* (Fig.3). Phylogenetic analysis of groEL and gltA genes also showed that *Ehrlichia* detected in hedgehogs clustered together with uncultured *Ehrlichia* that was previously reported in ticks in Wuhan City, Xinjiang and Zhejiang provinces of China, and *E. ewingii* (Fig.4). The results indicated that the *Ehrlichia* from hedgehogs appeared to be a tentative new species which is taxonomically closely related to *E. ewingii*.
The infection rates of hedgehogs

The overall infection rate of *A. bovis* and *Ehrlichia* in hedgehogs was 26% and 20.5%, respectively. Co-infections were found in 10 hedgehogs (13.7%) (Table 2). No genomic DNA of *Ca. Neoehrlichia* and *Rickettsia* was detected in our survey.

Histopathological examination of a road-killed hedgehog

A seemingly intact but seriously road-injured adult hedgehog was found near a collection site in Wuhan city. The animal was later dead and dissected, tissue samples from liver, lung, kidney and spleen were fixed in 10% formalin for further analysis and subsequent use (Fig.5). After 72 h, the samples were dehydrated, embedded in paraffin and cut into 5-mm thickness and strained with hematoxylin & eosin (H&E) (Fig.6). The animal was later molecularly screened positive both for *Anaplasma* and *Ehrlichia*.

Discussion

To the best of our knowledge, this is the first identification of *A. bovis* and a tentative new *Ehrlichia* sp. in peripheral blood of hedgehogs. These results suggest that hedgehogs could play a role in the circulation of *A. bovis* and this tentative new *Ehrlichia* species. In several studies, *Candidatus* Neoehrlichia mikurensis were identified in mosquitoes, rodents and humans in China [9, 27]. *Rickettsia japonica* is widely distributed in China [28, 29]. We tested the primers for *Rickettsia* by PCR with positive *R. japonica* sample and demonstrated that all primers worked well, suggesting that the hedgehogs tested in this study were truly negative to *Rickettsia* species. We do not have *Ca. Neoehrlichia* DNA and did not test the *Ca. Neoehrlichia* primers with positive control in our laboratory although the primers has been repeatedly demonstrated to work well by other investigators [24]. Therefore, we do not know the hedgehogs were truly negative or not to *Ca. Neoehrlichia*. This need to be further investigated by calibrating the primers and increasing sample size. *Anaplasma bovis* cause disease in livestock affecting animal health and economy.
The major clinical symptoms of *A. bovis* infection include fever, anemia, drowsiness, convulsions, weight loss, and enlargement of lymph nodes [30-32]. There are several reports of ruminants, raccoons, cats and deer infected with *A. bovis* worldwide [33-36], but information about the epidemiology of this agent is scarce in small mammals. Previous phylogenetic analysis based on *groEL* gene revealed that all currently available *A. bovis* sequences in GenBank database were divided into four lineages, and all sequences reported in China were classified into three lineages, suggesting a great diversity of *A. bovis* in and outside China [20].

Our study revealed that *A. bovis* infection is common in hedgehogs and the infected individuals may be subclinical since all the molecularly detected agents were found in apparently healthy animals. The histopathological examination of the infected road-killed hedgehog also supported this inference. The maintenance of *Ehrlichia* involve complex zoonotic systems including ticks and reservoir hosts. Previous studies indicated wide distribution and genetic diversity of *Ehrlichia* in Hubei [9, 21, 37, 38]. However, the natural system of *Ehrlichia* in this region is still little known. In traditional Chinese medicine, the skin of hedgehogs has long been used in treatments for hemorrhoids, thus this species is frequently taken from the wild and eaten across central China. Also, hedgehogs frequently forage long distances and hibernate near areas where humans and domestic animals live. Thus, hedgehogs may spread ticks and tick-borne diseases to humans and animals around and in long distance.

Conclusions

We first time detected *A.bovis* and a tentative new *Ehrlichia* species in hedgehogs collected from central China, suggesting that hedgehogs may be important in the ecology of these tick borne intracellular bacteria.
Methods

Hedgehog samples

From April, 2018 to June, 2019, hedgehogs were captured using traps baited with meat, and road killed or injured individuals were also permitted to be collected from Wuhan and Xianning cities, Hubei Province and Jiujiang city, Jiangxi Province of China (Fig.1). The hedgehogs were morphologically identified as *Erinaceus amurensis* as described previously [17]. Animals were classified into two age groups: young and adults. Age was estimated from the appearance of the animal, following the criteria set out by Robinson [18], gender was identified and recorded. Captured hedgehogs were anesthetized by an intramuscular injection (20 mg/kg) of Ketamine. One of the front feet was sterilized immediately after sedation, and one nail was clipped 3 mm short. Blood samples were immediately collected with 5ml centrifuge tubes and disposable plastic transfer pipettes. The sample volume ranged from 0.2-1ml. All blood samples were preserved with dry ice, and later stored in -80°C for further use. All sampled individuals were later released back to the wild.

PCR amplification of *Rickettsia*, *Anaplasma*, Ca.Neoehrlichia and *Ehrlichia*

Hedgehog blood DNA was extracted with the Qiagen DNA Kit (Qiagen, Hilden, Germany). DNA concentration and purity were measured with an absorbance ratio of 260 to 280 nm by using DeNovix DS-11 spectrophotometer (DeNovix, Wilmington, DE, USA) and were stored at -20°C until used. Mean quantity of DNA obtained was 38 ± 9.7 ng/ul and the 260/280nm ratio of all samples were 1.66 ± 0.27. Blood DNA samples were used as templates for PCR amplification of *Ehrlichia*, Ca.Neoehrlichia, *Rickettsia* and *Anaplasma* DNA with primers described in Table 1. *Anaplasma* 16S rRNA (*rrs*) gene was amplified with a nested PCR by using the primers EHR1/EHR2 in the first-round reaction, and EHR3/EHR4 in the second-round reaction [19]. For *rrs* positive samples, *groEL* gene was targeted for
further genotyping as described previously [20]. For *Ehrlichia*, nested PCR amplifications of *rrs*, heat sock protein gene (*groEL*) and citrate synthase gene (*gltA*) were performed [21, 22]. For detection of *Rickettsia*, nested PCR amplifications of *Rickettsiarrs*, *gltA*, and outer membrane protein B gene (*ompB*) were performed [23]. For *Ca. Neoehrlichia* detection, 16S rRNA were targeted [24]. DNA isolated from *A. bovis*, *E. chaffeensis* and *R. japonica* was served as positive controls. To avoid contamination, all steps were performed in separate rooms. Negative control with distilled water was run for each reaction.

PCR products were separated with 1.2% agarose gel electrophoresis and visualized with UV light after ethidium bromide staining. PCR products with expected sizes were excised from gels and extracted using a Gel Extraction Kit (Promega, Madison, WI, USA), which were then cloned into the pMD19-T vector (TaKaRa, Shiga, Japan). M13F-47, M13R-48 Universal Primers were used for Sanger dideoxy sequencing in TingKe Biotech Company (Wuhan, China) on both strands.

Phylogenetic analysis

All sequences were searched using BLAST in the GenBank database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). After alignment by ClustalW with MEGA 7.0 [25], the datasets were analyzed by jModeltest2 and the best evolutionary models were chosen [26]. Phylogenetic trees were constructed using the Maximum Likelihood method with the best model in MEGA 7.0, and the robustness of the trees was tested with 1,000 bootstrap replications.

Declarations

Ethics approval and consent to participate

This study was approved by the Ethics Committee of Wuhan University (2018010).

Hedgehogs were handled in accordance with good animal practices required by the Animal
Ethics Procedures and Guidelines of the People’s Republic of China.

Consent for publication

Not applicable

Availability of data and materials

The Anaplasma and Ehrlichia sequences obtained in this study were deposited in GenBank under the following accession numbers: MH900201, MH900209, MN199181, MN199182, MH893644, MH893645, MH893652, MH893657, MH893658, MH893659, MH985746, MH934951, MH879865, and MH879866.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was financially supported by grants from National Natural Science Funds of China (Nos. 31570167). The funder had no role in study design, data collection and analysis, interpretation of data or writing of the manuscript.

Authors’ contributions

XX and XJY designed the study. HJH, RQ, JWL, XX, XRQ, SCL, MC, CMZ, LZF, XJM and XQG participated in hedgehog sampling and performed the experiments. HJH and RQ helped in data analysis. XX and XJY wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments

The authors would like to thank Li-Bin Duan for the assistance of hedgehog collection.

References

1. Driscoll T, Gillespie JJ, Nordberg EK, Azad AF, Sobral BW: Bacterial DNA sifted from the Trichoplax adhaerens (Animalia: Placozoa) genome project reveals a putative
rickettsial endosymbiont. Genome Biol Evol. 2013, 5(4):621-645.

2. Montagna M, Sassera D, Epis S, Bazzocchi C, Vannini C, Lo N, Sacchi L, Fukatsu T, Petroni G, Bandi C: "Candidatus Midichloriaceae" fam. nov. (Rickettsiales), an ecologically widespread clade of intracellular alphaproteobacteria. Appl Environ Microbiol. 2013, 79(10):3241-3248.

3. Parola P, Paddock CD, Raoult D: Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev. 2005, 18(4):719-756.

4. Aubry P, Geale D: A review of bovine anaplasmosis. Transbound Emerg Dis. 2011, 58(1):1-30.

5. Eremeeva ME, Dasch GA: Challenges Posed by Tick-Borne Rickettsiae: Eco-Epidemiology and Public Health Implications. Front Public Health. 2015, 3:55.

6. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, Abdad MY, Stenos J, Bitam I, Fournier PE et al: Update on Tick-Borne Rickettsioses around the World: a Geographic Approach. Clin Microbiol Rev. 2013, 26(4):657-702.

7. Rar V, Golovljova I: Anaplasma, Ehrlichia, and "Candidatus Neoehrlichia" bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol. 2011, 11(8):1842-1861.

8. Merhej V, Raoult D: Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc. 2011, 86(2):379-405.

9. Guo WP, Tian JH, Lin XD, Ni XB, Chen XP, Liao Y, Yang SY, Dumler JS, Holmes EC, Zhang YZ: Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species. Sci Rep. 2016, 6:38770-38770.

10. Speck S, Perseke L, Petney T, Skuballa J, Pfäffle M, Taraschewski H, Bunnell T, Essbauer S, Dobler G: Detection of Rickettsia helvetica in ticks collected from European hedgehogs (Erinaceus europaeus, Linnaeus, 1758). Ticks Tick Borne Dis.
11. Khaldi M, Socolovschi C, Benyettou M, Barech G, Biche M, Kernif T, Raoult D, Parola P: Rickettsiae in arthropods collected from the North African Hedgehog (Atelerix algirus) and the desert hedgehog (Paraechinus aethiopicus) in Algeria. Comp Immunol Microbiol Infect Dis. 2012, 35(2):117-122.

12. Silaghi C, Skuballa J, Thiel C, Pfister K, Petney T, Pfäffle M, Taraschewski H, Passos LMF: The European hedgehog (Erinaceus europaeus) - A suitable reservoir for variants of Anaplasma phagocytophilum? Ticks Tick Borne Dis. 2012, 3(1):49-54.

13. Jahfari S, Ruyts SC, Frazer-Mendelewksa E, Jaarsma R, Verheyen K, Sprong H: Melting pot of tick-borne zoonoses: the European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles urban and suburban areas. Parasit Vectors. 2017, 10(1):134.

14. Gábor F, Setareh J, Krisztina R, Mónika J, Sándor S, Gábor M, Mária T, Viktor M, Elena CC, Hein S: Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in Urban Hedgehogs. Emerg Infect Dis.2014, 20(3):496.

15. Skuballa J, Petney T, Pfäffle M, Taraschewski H: Molecular Detection of Anaplasma phagocytophilum in the European Hedgehog (Erinaceus europaeus) and its Ticks. Vector Borne Zoonotic Dis. 2010,10:1055-1057.

16. Skuballa J, Oehme R, Hartelt K, Petney T, Bücher T, Kimmig P, Taraschewski H: European Hedgehogs as Hosts for Borrelia spp., Germany. Emerg Infect Dis. 2007, 13(6):952-953.

17. Smith AT, Xie Y, Hoffmann RS, Lunde D, MacKinnon J, Wilson DE, Wozencraft WC, Gemma F: A guide to the mammals of China: Princeton University Press; 2010.

18. Robinson I, Routh A: Veterinary care of the hedgehog. In Practice 1999, 21(3):128-137.
19. Rar VA, Livanova NN, Panov VV, Doroschenko EK, Pukhovskaya NM, Vysochina NP, Ivanov LI: Genetic diversity of Anaplasma and Ehrlichia in the Asian part of Russia. Ticks Tick Borne Dis. 2010, 1(1):57-65.

20. Guo WP, Wang X, Li YN, Xu G, Wang YH, Zhou EM: GroEL gene typing and genetic diversity of Anaplasma bovis in ticks in Shaanxi, China. Infect Genet Evol. 2019, 74:103927.

21. Zhou SH, Xiao X, Sun YN, Xu XH, Ding X, Zhang SY, Zhang M, Lv WL, Gao QH: Ehrlichia species in pond-farmed leeches (Hirudinaria sp.) in Hubei Province, China. PloS one. 2019, 14(4):e0215082.

22. Luo L, Sun J, Yan J, Wang C, Zhang Z, Zhao L, Han H, Tong Z, Liu M, Wu Y et al: Detection of a Novel Ehrlichia Species in Haemaphysalis longicornis Tick from China. Vector Borne Zoonotic Dis. 2016, 16(6):363-367.

23. Huang Y, Zhao L, Zhang Z, Liu M, Xue Z, Ma D, Sun X, Sun Y, Zhou C, Qin X: Detection of a novel Rickettsia from Leptotrombidium scutellare mites (Acari: Trombiculidae) from Shandong of China. J Med Entomol. 2017, 54(3):544-549.

24. Jha P, Kim CM, Kim DM, Yoon NR, Jha B, Park JW, Chung JK: First detection and identification of Candidatus Neoehrlichia mikurensis in South Korea. PLoS One. 2018, 13(12):e0209685.

25. Kumar S, Stecher G, Tamura K: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016, 33(7):1870-1874.

26. Darriba D, Taboada GL, Doallo R, Posada D: jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012, 9(8):772.

27. Li H, Jiang J, Tang F, Sun Y, Li Z, Zhang W, Gong Z, Liu K, Yang H, Liu W: Wide distribution and genetic diversity of “Candidatus Neoehrlichia mikurensis” in rodents from China. Appl Environ Microbiol 2013, 79(3):1024-1027.
28. Li J, Hu W, Wu T, Li H-B, Hu W, Sun Y, Chen Z, Shi Y, Zong J, Latif A: Japanese spotted fever in eastern China, 2013. Emerg Infect Dis. 2018, 24(11):2107.

29. Qin XR, Han HJ, Han FJ, Zhao FM, Zhang ZT, Xue ZF, Ma DQ, Qi R, Zhao M, Wang LJ: *Rickettsia japonica* and Novel *Rickettsia* Species in Ticks, China. Emerg Infect Dis. 2019, 25(5):992.

30. Ooshiro M, Zakimi S, Matsukawa Y, Katagiri Y, Inokuma H: Detection of *Anaplasma bovis* and *Anaplasma phagocytophilum* from cattle on Yonaguni Island, Okinawa, Japan. Vet Parasitol. 2008, 154(3-4):360-364.

31. Qin XR, Han FJ, Luo LM, Zhao FM, Han HJ, Zhang ZT, Liu JW, Xue ZF, Liu MM, Ma DQ: *Anaplasma* species detected in *Haemaphysalis longicornis* tick from China. Ticks Tick Borne Dis. 2018, 9(4):840-843.

32. Uilenberg G: General review of tick-borne diseases of sheep and goats world-wide. Parassitologia. 1997, 39(2):161-165.

33. Said MB, Belkahia H, Karaoud M, Bousrih M, Yahiaoui M, Daaloul-Jedidi M, Messadi L: First molecular survey of *Anaplasma bovis* in small ruminants from Tunisia. Vet Microbiol. 2015, 179(3-4):322-326.

34. Koh FX, Panchadcharam C, Sitam FT, Tay ST: Molecular investigation of *Anaplasma* spp. in domestic and wildlife animals in Peninsular Malaysia. Vet Parasitol Reg Stud Reports. 2018, 13:141-147.

35. Sasaki H, Ichikawa Y, Sakata Y, Endo Y, Nishigaki K, Matsumoto K, Inokuma H: Molecular survey of *Rickettsia, Ehrlichia,* and *Anaplasma* infection of domestic cats in Japan. Ticks Tick Borne Dis. 2012, 3(5-6):308-311.

36. Sashika M, Abe G, Matsumoto K, Inokuma H: Molecular survey of *Anaplasma* and *Ehrlichia* infections of feral raccoons (*Procyon lotor*) in Hokkaido, Japan. Vector Borne Zoonotic Dis. 2011, 11(4):349-354.
37. Zhang H, Chang Z, Mehmood K, Wang Y, Rehman MU, Nabi F, Sabir AJ, Liu X, Wu X, Tian X: First report of *Ehrlichia* infection in goats, China. Microbial pathogenesis. 2017, 110:275-278.

38. Lu M, Tian JH, Yu B, Guo WP, Holmes EC, Zhang YZ: Extensive diversity of rickettsiales bacteria in ticks from Wuhan, China. Ticks Tick Borne Dis. 2017, 8(4):574-580.

Tables

Table 1. PCR primers used in this study.

Organisms	PCR method	Primer	Primer sequences (5’→3’)	Target gene	Annealing temp (°C)	Amplicon size (bp)	References
Ca. Neoehrlichia	Nested PCR	16S-EC9-F	TACCTTGTTACGACCTT rrs	41	1462	[24]	
		16S-EC12A-R	TGGATCTTGCTCAGAACGAA CG	54	488		
		16S-IS58-62f	GGAATAGCTGTTAGAAATGA CA				
		16S-IS58-594r	CTATCTCTCTCGATCTCTAG TTT				
Ehrlichia	Nested PCR	EC9	TACCTTGTTACGACCTT rrs	52	1462	[21]	
		EC12A	TGGATCTTGCTCAGAACGAA CG	55	923		
		HF51f	AAGTCTGAACGGACAAATTACC				
		HF954r	GTAGGCGGATACGACCTTC				
		5gltA-out	GGCATTTTTCTGATGACATGAT	gltA	60	897	[22]
		3gltA-out	ATACCATGAGCCGACCAGGC				
		5gltA-in	AGCAGTCTCAAAATTCAGG	56	426		
		3gltA-in	ATCTATGGCCAAAAACCAT TA				
		5GroEL-out	GTACCGTGAGCCTAAGGAC	groEL	60	701	[22]
		3GroEL-out	AGTGCTGAGGAGCTGACCTTC				
		5GroEL-in	ATGGGGCACCAGAAAGTTACA	56	422		
		3GroEL-	CCACGATCAAATTGCATACC				
Nested PCR	Primer Name	Sequence	Gene	Start	End	Reference	
------------	-------------	----------	------	-------	------	-----------	
Anaplasma	EHR1	GAACGAACGCTGGCGGCAA GC AGTA[T/C][G/A][G]ACCAGAT AGCCGC	rrs	57	691	[19]	
	EHR2	TCATAGGAATCTACCTAGT AG CTAGGAATTCCGCTATCCTCT					
	EHR3	GAACGAACGCTGGCGGCAA GC AGTA[T/C][G/A][G]ACCAGAT AGCCGC					
	EHR4	TGCATAGGAATCTACCTAGT AG CTAGGAATTCCGCTATCCTCT					
	groEL-F1	GTTCGCAGATTATTGCCAGT	groEL	50	150	[20]	
	groEL-R	CTGCRTTCAGAGTCATAAT AC					
	groEL-F2	ATCTGGAAGRCCACTATTGA T					
	groEL-R	CTGCRTTCAGAGTCATAAT AC					
Rickettsia	S1	TGATCCCTGGCTCAGAACGAC	rrs	55	1486	[23]	
	S2	TAAGGGAGTAAATCCAGCCGC		52	1371		
	S3	AACACATGCAAGTCGRACGG					
	S4	GGCTGCCTTTGCGGTAGCT					
	gltA1f	GATTGGCTTTACTTACGACCC	gltA	52	1087	[23]	
	gltA1r	TGCATTTCCTTCATTGTGC					
	gltA2f	TATAGACGGGTGATAAAGGAA TC					
	gltA2r	CAGAACTACCGATTCTTTTAA GC					
	B1f	ATATGCAGGTATCGGTACT	omPB	56	1355	[23]	
	B1r	CCATATACCGTAAGCTACAT					
	B2f	GCAGGTATCGGTACTATAAA C					
	B2r	AATTACGAAACGATTCTTC CGG					

Table 2. PCR detection of *A. bovis* and *Ehrlichia* from hedgehogs captured in central China from April, 2018-June, 2019.
Location	Hedgehogs	A. bovis (%)	Ehrlichia sp. (%)	Co-infection (%)
Wuhan	31	6 (19.4)	6(19.4)	1(3.2)
Xianning	21	7(33.3)	5(23.8)	5(23.8)
Jiujiang	21	6(28.6)	4(19)	4(19)
Total	73	19(26)	15(20.5)	10(13.7)

Age	Hedgehogs	A. bovis (%)	Ehrlichia sp. (%)	Co-infection (%)
Adult	45	14(31.1)	10(22.2)	9(20)
Young	28	5(17.9)	5(17.9)	1(3.6)

Gender	Hedgehogs	A. bovis (%)	Ehrlichia sp. (%)	Co-infection (%)
Male	42	12(28.6)	8(19)	7(16.7)
Female	31	7(22.6)	7(22.6)	3(9.7)

Figures
The location of collection sites (red) of hedgehogs in central China. The map was constructed using R 3.3.2 software (https://www.r-project.org/).
Maximum likelihood phylogenetic trees of Anaplasma based on the rrs and groEL genes. The trees were constructed with the rrs sequences (524bp) and groEL sequences (840bp) by using the Kimura 2-parameter model with MEGA 7.0 (http://www.megasoftware.net); we calculated bootstrap values with 1,000 replicates. Sequences number of Anaplasma detected in hedgehogs in this study are in bold print and marked by circles. Scale bar indicates nucleotide substitutions per site.

Figure 2
Maximum likelihood phylogenetic tree based on the rrs gene of Ehrlichia. The phylogenetic trees were constructed by using the Kimura 2-parameter model with MEGA 7.0 (http://www.megasoftware.net). The bootstrap values were calculated with 1,000 replicates. Sequences number of Ehrlichia detected in hedgehogs in this study are in bold print and marked by circles. Scale bar indicates nucleotide substitutions per site.
Figure 4

Maximum likelihood phylogenetic tree based on the gltA and groEL genes of Ehrlichia. The phylogenetic trees were constructed by using the Kimura 2-parameter model and general time reversible model respectively with MEGA 7.0 (http://www.megasoftware.net). The bootstrap values were calculated with 1,000 replicates. Sequences number of Ehrlichia detected in hedgehogs in this study are in bold print and marked by circles. Scale bar indicates nucleotide substitutions per site.
Figure 5

The physical examination of the road-killed hedgehog. a. Ticks bite on the skin; b. Normal body appearance; c. Lung; d. Unknown worms parasitized in liver.
Figure 6

The physical examination of the road-killed hedgehog. a. Ticks bite on the skin; b. Normal body appearance; c. Lung; d. Unknown worms parasitized in liver.