Abstract. We investigate intersections of geodesic lines in \mathbb{H}^2 and in an associated tree T, proving the following result. Let M be a punctured hyperbolic torus and let γ be a closed geodesic in M. Any edge of any triangle formed by distinct geodesic lines in the preimage of γ in \mathbb{H}^2 is shorter than γ. However, a similar result does not hold in the tree T. Let W be a reduced and cyclically reduced word in $\pi_1(M) = \langle x, y \rangle$. We construct several examples of triangles in T formed by distinct axes in T stabilized by conjugates of W such that an edge in those triangles is longer than $L(W)$. We also prove that if W overlaps two of its conjugates in such a way that the overlaps cover all of W and the overlaps do not intersect, then there exists a decomposition $W = BC^kI, k > 0$, with B a terminal subword of C and I an initial subword of C.

1. Introduction

The study of curves on surfaces is a classical subject going back to the origins of topology, [1]. Of particular interest are closed geodesics which can be investigated by looking at their lifts in covering spaces of the surface, [2], [3], [4], [6], [7], [9]. In this paper we consider hyperbolic surfaces and study the intersections of geodesic lines in \mathbb{H}^2, [5]. In general, the patterns of such intersections are very complicated, so we restrict ourselves to three geodesic lines in \mathbb{H}^2 which are lifts of the same closed geodesic in a punctured hyperbolic surface. For the sake of clarity we choose the surface to be a punctured torus.

An important tool in studying geodesic lines in \mathbb{H}^2 is the tree T in \mathbb{H}^2, defined as follows, cf. [5], pp.111-112.

Let M be a hyperbolic punctured torus and let x_0 and y_0 be disjoint infinite geodesic arcs on M such that M cut along $x_0 \cup y_0$ is an open two-dimensional disk D. There exist closed geodesics x and y in M such that $x \cap x_0 =$ point, $x \cap y_0 = \emptyset$, $y \cap x_0 = \emptyset$, and $y \cap y_0 =$ point, which generate the fundamental group of M. Note that the fundamental group of M is a free group of rank two, $\pi_1(M) = \langle x, y \rangle$.

The universal cover of M is the hyperbolic plane \mathbb{H}^2, so $M = \pi_1(M) \setminus \mathbb{H}^2$. Let \tilde{D} be a lift of the disc D to \mathbb{H}^2. Note that \mathbb{H}^2 is tiled by the translates of the closure of \tilde{D} by $\pi_1(M)$. Let T be the graph in \mathbb{H}^2 dual to this tiling, i.e. the vertices of T are located one in each translate of \tilde{D}, and each edge of T connects two vertices of T in adjacent copies of \tilde{D}, so each edge intersects one lift of either x_0 or y_0 once. As \mathbb{H}^2 is simply connected, T is a tree. Note that T is the Cayley graph of $\pi_1(M) = \langle x, y \rangle$.

Define the distance $d_T(v, u)$ between two vertices of T to be the number of edges in a shortest path in T connecting v and u.

Date: June 12, 2018.

2010 Mathematics Subject Classification. Primary: 53C22; Secondary: 30F45, 20E05, 20E45.
Any element \(f \) of \(\pi_1(M) \) acts on \(T \) leaving invariant a unique line, called the axis of \(f \), which contains all vertices \(v \) with minimum \(d_T(v, f(v)) \). That minimum is called the translation length of \(f \), and is equal to the length of the word \(W \) in \(\pi_1(M) = \langle x, y \rangle \) obtained from \(f \) by reduction and cyclic reduction. Denote the length of the word \(W \) in \(\pi_1(M) = \langle x, y \rangle \) by \(L(W) \).

We prove the following result in Section 2.

Theorem 1. Let \(M \) be a punctured hyperbolic torus and let \(\gamma \) be a closed geodesic in \(M \). Any edge of any triangle formed by distinct geodesic lines in the preimage of \(\gamma \) in \(\mathbb{H}^2 \) is shorter than \(\gamma \).

However, a similar result does not hold in the tree \(T \). In Section 3 we construct several examples of triangles in \(T \) formed by distinct axes in \(T \) stabilized by conjugates of \(W \), such that an edge in those triangles is longer than \(L(W) \).

In Section 4 we determine the general form of a reduced and cyclically reduced word \(W \) in \(\pi_1(M) = \langle x, y \rangle \) which overlaps two of its conjugates in such a way that the overlaps cover all of \(W \), proving the following result.

Theorem 2. Let \(W \) be a reduced and cyclically reduced word in \(\pi_1(M) = \langle x, y \rangle \) which overlaps two of its conjugates in such a way that the overlaps cover all of \(W \) and the overlaps do not intersect. Then there exists a decomposition \(W = BC^kI, k > 0 \), with \(B \) a terminal subword of \(C \) and \(I \) an initial subword of \(C \).

2. Triangles in \(\mathbb{H}^2 \)

We use the notation from the previous section.

Lemma 1. Let \(f \) be an element in \(\pi_1(M) = \langle x, y \rangle \) and let \(W \) be its reduced and cyclically reduced conjugate. Consider two axes in the tree \(T \) stabilized by \(f \) and its conjugate \(f' \in \pi_1(M) \). If such axes intersect in an interval labeled with a word \(W_0 \) such that \(L(W_0) = L(W) - 1 \) then they coincide.

Proof. WLOG \(W_0 \) is an initial subword of \(W \), hence WLOG there exists a decomposition \(W = W_0x \), where \(x \) is a generator of \(\pi_1(M) = \langle x, y \rangle \). Let \(W' \) be a reduced and cyclically reduced conjugate of \(f' \) containing \(W_0 \). Then the abelianization of \(W \) implies that either \(W' = xW_0 \) or \(W' = W_0x = W \). In both cases the axes coincide. \(\square \)

Proof of Theorem 1

Assume to the contrary that there exists a triangle in \(\mathbb{H}^2 \) formed by geodesic lines \(l, m, \) and \(n \), which are distinct lifts of the geodesic \(\gamma \), such that the length of the side lying in \(l \) is longer than \(\gamma \). Note that \(l \) is stabilized by some element \(f \) in \(\pi_1(F) \) which acts as a hyperbolic isometry of \(\mathbb{H}^2 \). Let \(P \) be the intersection of \(l \) and \(n \), and let \(X \) be the intersection of \(l \) and \(m \). The length of \(\gamma \) is equal to the length of the segment \(Pf(P) \) which is equal to the length of the segment \(f(P)f^2(P) \).

Consider two cases.

Case 1. The side \(PX \) of the triangle formed by lines \(l, m, \) and \(n \) is shorter than the segment \(Pf^2(P) \).

See Figure 1.
By assumption, the side PX is longer than γ, so the segment $Xf^2(P)$ is shorter than the segment PX. Consider the geodesics $f(n)$ and $f^2(n)$. As f is an isometry, the geodesics $n, f(n)$, and $f^2(n)$ make the same angle with l. Then as $Xf^2(P)$ is shorter than PX, the angle between n and l is equal to the angle between $f^2(n)$ and l, and the opposite angles between m and l are equal, it follows that m and $f^2(n)$ intersect, as shown in Figure 1.

Let T be the tree in \mathbb{H}^2 defined above and let W be a reduced and cyclically reduced word conjugate to f in $\pi_1(F)$. The geodesic lines l, m, n are transversal to the lifts of the geodesics x_0 and y_0 in \mathbb{H}^2. Consider the intersections of the lifts of the geodesics x_0 and y_0 with lines l, m, n. Choose a projection $s: \mathbb{H}^2 \to T$ which respects the action of $\pi_1(F)$ on \mathbb{H}^2. It can be arranged that the restriction of s to each component of the lift of γ in \mathbb{H}^2 is monotone, so s maps each component of the lift of γ onto a geodesic in T.

Let b lifts of x_0 and y_0 intersect both l and n to the left of the point P and let a lifts of x_0 and y_0 intersect both l and n to the right of the point P. Then there are $a + b$ lifts of x_0 and y_0 crossing l and n, hence the length of the intersection $s(l) \cap s(n)$ is $a + b$. Lemma 1 implies that $a + b < L(W) - 1$. By a similar argument, the number c of the lifts of x_0 and y_0 intersecting both l and m is also less than $L(W) - 1$. As f is an isometry, there are b lifts of x_0 and y_0 crossing l and $f^2(n)$ to the left of $f^2(P)$. Then the total number of the lifts of x_0 and y_0 crossing l between the points P and $f^2(P)$ is $a + b + c$, which is strictly less than $2L(W)$. However by construction, the number of the lifts of x_0 and y_0 crossing l between the points P and $f^2(P)$ should be equal to $2L(W)$. This contradiction completes the proof of Theorem 1 in Case 1.
Case 2. The side PX of the triangle formed by lines $l, m,$ and n is longer or equal than the segment $Pf^2(P)$.
See Figure 2.

Let a lifts of x_0 and y_0 intersect both l and n to the right of the point P. Then the length of the intersection $s(l) \cap s(n)$ is not shorter than a, hence Lemma 1 implies that $a < L(W) - 1$. Let c be the number of the lifts of x_0 and y_0 intersecting both l and m to the left of the point $f^2(P)$. Then the length of the intersection $s(l) \cap s(m)$ is not shorter than c, hence Lemma 1 implies that $c < L(W) - 1$. Therefore the total number of the lifts of x_0 and y_0 crossing l between the points P and $f^2(P)$ is $a + c$, which is strictly less than $2L(W)$. However by construction, the number of the lifts of x_0 and y_0 crossing l between the points P and $f^2(P)$ should be equal to $2L(W)$.
This contradiction completes the proof of Theorem 1 in Case 2. \Box

The author would like to thank Max Neumann-Coto for sharing his ideas about Theorem 1.

3. Triangles in the Tree T

Consider again the tree T defined above. As was mentioned already, T can be considered to be the Cayley graph of the free group $\pi_1(M) = \langle x, y \rangle$. Let W be a reduced and cyclically reduced word in $\{x, y, x^{-1}, y^{-1}\}$. Consider three distinct axes in T stabilized by the word W and two of its conjugates f_1 and f_2. Call the axes $\lambda, \lambda_1,$ and λ_2. Let \tilde{W} denote the bi-infinite product of the word W. Note that all the axes $\lambda, \lambda_1,$ and λ_2 are labeled by the bi-infinite word \tilde{W}.
Choose a copy of the word W in λ. We will work with that chosen copy. Assume that the axes intersect in such a way that $\lambda_1 \cap \lambda$ and $\lambda_2 \cap \lambda$ cover the word W in λ. Note that the intervals $\lambda_1 \cap \lambda, \lambda_2 \cap \lambda,$ and $\lambda_1 \cap \lambda_2$ form a tripod in the tree T which is a degenerate triangle. Denote the label of the interval $\lambda \cap \lambda_1$ by U and the label of the interval $\lambda \cap \lambda_2$ by V. The four examples below show that, in contrast with Theorem 1, $W, \lambda_1,$ and λ_2 can be chosen in such a way that $L(U \cup V) \geq L(W)$.

Note that Lemma 1 implies that $L(U) \leq L(W) - 2$ and $L(V) \leq L(W) - 2$, so $L(U \cup V) \leq 2L(W) - 4$.

Let $\mu_i, i = 1, 2$ be a subinterval of λ_i containing $\lambda_i \cap \lambda$ such that its label W_i is a reduced and cyclically reduced conjugate of f. Then W_1 contains U and W_2 contains V.

Example 1. See Figure 3.

Let $W = xyxyx, W_1 = x^{-1}Wx = yxyx^2,$ and $W_2 = xWx^{-1} = x^2yxy$. Then $U = W_1 \cap W = xyx$ and $V = W_2 \cap W = xyx$, so that $U \cap V = x$. Then $(W_1 \cup W_2) \cap W = U \cup V = W$.

![Image of Figure 3](image-url)

Example 2. See Figure 4.

Let $W = xy^2x y^2x, W_1 = y^{-1}x^{-1}Wxy = yxy^2x^2y,$ and $W_2 = xWx^{-1} = x^2y^2xy^2$. Then $U = W_1 \cap W = xy^2x$ and $V = W_2 \cap W = xy^2x$, so that $U \cap V = x$. Then $(W_1 \cup W_2) \cap W = U \cup V = W$.
Example 3. See Figure 5.

Let $W = yxy^2xy^2x$, $W_1 = y^{-1}Wy = xy^2xy^2y$, and $W_2 = y^2xWx^{-1}y^{-2} = y^2xyxy^2x$. Then $U = W_1 \cap W = yxy^2xy$ and $V = W_2 \cap \tilde{W} = yxy$, so that $U \cap V = \text{point}$. Then $(W_1 \cup W_2) \cap \tilde{W} = (U \cup V) \cap \tilde{W} = Wy$.

Figure 4
Example 4. See Figure 6.
Let $W = yxyxyxyxyxyx$, $W_1 = x^{-1}y^{-1}x^{-1}y^{-1}Wyxxy = yxyxyxyxyxyx$, and let $W_2 = xWx^{-1} = xyxyxyxyxyxyxy$. Then $U = W_1 \cap W = yxyxyxyxyxyx$ and $V = W_2 \cap \tilde{W} = yxyxy$, so $U \cap V = \text{point}$.
Hence $(W_1 \cup W_2) \cap \tilde{W} = (U \cup V) \cap \tilde{W} = Wyxxy$.
4. CONJUGATE WORDS IN A FREE GROUP

Let W and \tilde{W} be as in the previous section. Note that \tilde{W} has a Z-shift.

Lemma 2. Assume that there exists an initial subword U of W such that \tilde{W} contains a nonequivalent (i.e., not obtained by the Z-shift) copy of U. Call it U_2. If U and U_2 overlap in such a way that the beginning of U_2 lies in U and $L(U \cap U_2) > 0$, then there exist decompositions $U = BC^k$ and $U \cup U_2 = BC^{k+1}$ with $k > 0$ such that B is a terminal subword of C. If $U \cup U_2$ contains W, then there exists a decomposition $W = BC^kI$, $k > 0$, where B is a terminal subword of C and I is an initial subword of C. If $U \cup U_2 = W$, then there exists a decomposition $W = BC^k$, $k > 1$, where B is a terminal subword of C.

Figure 6
Proof. Let P be the overlap of U and U_2. Then there exists a decomposition $U_2 = PC$, and $L(U_2) = k \cdot L(C) + n$ with $k > 0$. As $U = U_2$, it follows that $U = BC^k$, where B is a terminal subword of C, and $L(B) = n$, see Figure 7. Then $U \cup U_2 = BC^{k+1}$. If $U \cup U_2$ contains W, then W is a proper initial subword of BC^{k+1} containing U. Hence $W = BC^k I, k > 0$, where B is a terminal subword of C and I is an initial subword of C. If $U \cup U_2 = W$, then I is trivial and there exists a decomposition $W = BC^k, k > 1$, where B is a terminal subword of C. \hfill \square

Remark 1. Note that $U \cup U_2$ might be a proper subword of W. In that case we do not have much information about W.

Proof of Theorem 2

Let W_1, W_2, U and V be as in the previous section. Assume that $U \cap V =$ point and $U \cup V = W$, hence U is a proper initial subword of W and V is a proper terminal subword of W. Assume WLOG that $L(U) > L(V)$, (the case $L(U) = L(V)$ is considered separately at the end of the section). Then $L(U) > \frac{1}{2}L(W)$.

As the axes are generated by conjugate elements, there exist non-equivalent (i.e. not obtained by the Z-shift on \tilde{W}) copies of the words U and V in \tilde{W}. As $L(U) > \frac{1}{2}L(W)$ there exists a non-equivalent copy of U in \tilde{W} whose beginning is contained in U. Call that copy U_2. Also there exists a non-equivalent copy of V in \tilde{W} whose beginning is contained in W. Call that copy V_2.

Figure 7
As U and U_2 satisfy the conditions of Lemma 2, there exist decompositions $U = BC^k$ and $U \cup U_2 = BC^{k+1}$ with $k > 0$ such that B is a terminal subword of C. If $W = U \cup V \subseteq U \cup U_2$, then Theorem 2 follows from Lemma 2. Hence we need to rule out the case $U \cup U_2 \subset U \cup V$.

Assume that $U \cup U_2 \subset U \cup V$. It follows that V and, hence V_2, begin with C. Note that either $V_2 \cap V \neq \emptyset$ or $V_2 \subset U$.

Consider 4 cases.

Case 1.
$V_2 \subset U$ and the beginning C of V_2 is "standard" in U, i.e. it is one of the k copies of C defined by the decomposition $U = BC^k$. See Figure 8.

![Figure 8](image)

It follows that $V_2 = V = C^lD$, where $l > 0$ and D is an initial subword of C. So the word U_2 in \tilde{W} is followed by the word $C^{l-1}D$. Note that the word U_2 in \tilde{W} corresponds to the word U in W_1, so in the word W_1 the word U is followed by a copy of the word $C^{l-1}D$, call it V'. However, the word U in W is followed by a copy of the word C. If the word V' is non-trivial, it should have non-trivial intersection with that copy of the word C in W, so the intersection of W_1 with W should be longer than U. This contradiction implies that $l = 1$ and D is trivial, hence $V_2 = V = C$. Note that the word V in \tilde{W} corresponds to the word V_2 in W_2. As the word V_2 in W is preceded by the word B, the word V in W_2 is preceded by...
a copy of the word B, hence the intersection of W_2 and \tilde{W} should be longer than V. This contradiction shows that Case 1 cannot happen.

Case 2.

$V_2 \subset U$ and the beginning C of V_2 is "non-standard" in U. See Figure 9.

![Figure 9](image)

Note that there exist decompositions $C = C_1C_2 = C_2C_1$, see Figure 9 and Figure 10.
As C_1 and C_2 commute, they are powers of some C_0.\footnote{p.10} It follows that $C = C_0^m, m > 1$ and $U = BC^k = BC_0^{km}$. As B is a terminal subword of C, it follows that $B = B_0 C_0^l, l \geq 0$, where B_0 is a terminal subword of C_0 which might be empty. So $U = BC^k = B_0 C_0^{m+k+1}$ and $V_2 = V = C_0^n D_0$, where $l > 0, n > 0$ and D_0 is an initial subword of C_0. Note that C_0 is standard in both U and V. Hence we can apply the same argument as in Case 1, demonstrating that Case 2 cannot happen.

Case 3.
$V \cap V_2 \neq \emptyset$ and the initial C of V_2 is in U.
If the beginning C of V_2 is "standard" in U, we can use the same argument as in Case 1, to obtain a contradiction.
If the beginning C of V_2 is "non-standard" in U, we can use the same argument as in Case 2, to obtain a contradiction.
Therefore Case 3 is impossible.

Case 4.
$V \cap V_2 \neq \emptyset$ and the initial C of V_2 intersects V.
We can use the same argument as in Case 2 to obtain a contradiction, so Case 4 is also impossible.

Therefore $U \cup V \subset U \cup U_2$, proving Theorem 2 when $L(U) > L(V)$.

Figure 10

As C_1 and C_2 commute, they are powers of some C_0. It follows that $C = C_0^m, m > 1$ and $U = BC^k = BC_0^{km}$. As B is a terminal subword of C, it follows that $B = B_0 C_0^l, l \geq 0$, where B_0 is a terminal subword of C_0 which might be empty. So $U = BC^k = B_0 C_0^{m+k+1}$ and $V_2 = V = C_0^n D_0$, where $l > 0, n > 0$ and D_0 is an initial subword of C_0. Note that C_0 is standard in both U and V. Hence we can apply the same argument as in Case 1, demonstrating that Case 2 cannot happen.
Now consider the case when \(L(U) = L(V) = \frac{1}{2}L(W) \).
If \(U_2 = V \), then \(W = U^2 \) and the axes \(\lambda, \lambda_1, \text{and} \lambda_2 \) (defined in the previous section) coincide, contradicting their choice to be distinct.
If \(U_2 \neq V \) then \(U \) and \(U_2 \) have a non-trivial intersection. If the beginning of \(U_2 \) is contained in \(U \) then Lemma 2 implies that there exists a decomposition \(U \cup U_2 = BC^{k+1} \), where \(B, C, \text{and} k \) are defined above. If the beginning of \(U \) is contained in \(U_2 \) we can reduce this case to the previous one by considering the words \(W_0 = U^{-1}V^{-1}, U^{-1}, \text{and} V^{-1} \) instead of \(W, U, \text{and} V \).
So \(U \cup U_2 \subset W \subseteq U \cup V \). It follows again that \(V \) and, hence \(V_2 \), begin with \(C \).
Consider the word \(V_2 \). If \(V_2 = U \), then \(W = V^2 \) and the axes \(\lambda, \lambda_1, \text{and} \lambda_2 \) (defined in the previous section) coincide, contradicting their choice to be distinct.
Otherwise, \(V \cap V_2 \neq \emptyset \). Consider two cases.

Case 5.
\(V \cap V_2 \neq \emptyset \) and the initial \(C \) of \(V_2 \) is in \(U \).
If the beginning \(C \) of \(V_2 \) is "standard" in \(U \) then, as in Case 1(above), \(V = V_2 = C \).
As \(L(V) = L(U) \), it follows that \(U = C \), hence \(W = C^2 \) and the axes \(\lambda, \lambda_1, \text{and} \lambda_2 \) (defined in the previous section) coincide, contradicting their choice to be distinct.
If the beginning \(C \) of \(V_2 \) is "non-standard" in \(U \) then, as in Case 2(above), \(C = C^m \). Hence as in Case 2(above), it follows that \(V = V_2 = C^m = C \). We got a contradiction with the assumptions that \(V_2 \subset U \) and \(V \cap V_2 \neq \emptyset \). Therefore this case is impossible.

Case 6.
\(V \cap V_2 \neq \emptyset \) and the initial \(C \) of \(V_2 \) intersects \(V \).
As in Case 2(above) it follows that \(V = V_2 = C \), hence as \(L(V) = L(U) \) it follows that \(W = U^2 = C^2 \) and the axes \(\lambda, \lambda_1, \text{and} \lambda_2 \) (defined in the previous section) coincide, contradicting their choice to be distinct.
Therefore in the special case when \(L(U) = L(V) = \frac{1}{2}L(W) \) the axes \(\lambda, \lambda_1, \text{and} \lambda_2 \) (defined in the previous section) coincide, contradicting their choice to be distinct.
That contradiction completes the proof of Theorem 2.

Remark 2. Note that there exists a decomposition \(C = IT \), where \(T \) is a terminal subword of \(C \). If \(T = B \), then \(W \) is a conjugate of \(C^{k+1} \), so the axes \(\lambda, \lambda_1, \text{and} \lambda_2 \) (defined in the previous section) coincide, contradicting their choice to be distinct.
What can be said about \(W \) if \(T \neq B \)?

The following conjecture was formulated by Max Neumann-Coto.

Conjecture Assume that \(W \) overlaps two of its conjugates in such a way that the overlaps cover all of \(W \) and the overlaps do not intersect. Then \(W = DC^k \), where \(C \) is non-trivial and \(k > 1 \) and the conjugates have the form \(C^rDC^{k-r} \) and \(C^sDC^{k-s} \).

5. **Acknowledgment**
The author would like to thank Peter Scott for helpful conversations.

References
[1] G.D. Birkhoff, *Dynamical Systems with Two Degrees of Freedom*, Trans. AMS, 18(1917), 199-300.
[2] M. Freedman, J. Hass, and P. Scott, *Closed Geodesics on Surfaces*, Bull. LMS, 14 (1982), 385-391.

[3] M. Gage, *Curve Shortening Makes Convex Curves Circular*, Invent. Math., 76 (1984), 357-364.

[4] M. Grayson, *Shortening Embedded Curves*, Ann. of Math. (2), 129 (1989), 71-111.

[5] J. Hass and P. Scott, *Intersections of Curves on Surfaces*, Israel J. Math., 51 (1985), 90-120.

[6] J. Hass and P. Scott, *Curve Flows on Surfaces and Intersections of Curves*, Proc. Symp. Pure Math., 54 (1993) Part 3, 415-421.

[7] J. Hass and P. Scott, *Shortening Curves on Surfaces*, Topology, 33 (1994), 25-43.

[8] R. C. Lyndon and P. E. Schupp, *Combinatorial Group Theory*, 1977, Springer, Berlin, Heidelberg, New York.

[9] M. Neumann-Coto, *A Characterization of Shortest geodesics on Surfaces*, Algebraic and Geometric Topology, 1 (2001), 349-368.

Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109

E-mail address: ritagtk@umich.edu