Exome sequencing identifies a recurrent variant in
SERPINA3 associating with hereditary susceptibility to
breast cancer

Susanna Koivuluoma a, Anna Tervasmäki a, Saila Kauppila b,
Robert Winqvist a, Timo Kumpula a, Outi Kuismin c, Jukka Moilanen c,
Katri Pylkäs a,*

a Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu,
NordLab Oulu, University of Oulu, Oulu, Finland
b Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
¢ Department of Clinical Genetics, Oulu University Hospital, Medical Research Center Oulu and PEDEGO Research Unit,
University of Oulu, Oulu, Finland

Received 2 September 2020; received in revised form 28 October 2020; accepted 28 October 2020
Available online 3 December 2020

KEYWORDS
Exome sequencing;
Breast cancer;
Hereditary
predisposition;
SERPINA3;
Founder variant

Abstract Background: Breast cancer is strongly influenced by hereditary risk factors. Yet,
the known susceptibility genes and genomic loci explain only about half of the familial compo-
nent of the disease. To identify novel breast cancer predisposing gene defects, here we have
performed massive parallel sequencing for Northern Finnish breast cancer cases.

Methods: Ninety-eight breast cancer cases with indication of hereditary disease susceptibility
were exome sequenced. Data filtering strategy focused on predictably deleterious rare variants
that were still enriched in the sequenced cohort. Findings were confirmed with additional,
geographically matched breast cancer cohorts.

Results: A recurrent heterozygous splice acceptor variant, c.918-1G>C, in SERPINA3, was
identified, and it was significantly enriched both in the hereditary (6/201, 3.0%, p = 0.006,
OR 5.1, 95% CI 1.7–14.8) and unselected breast cancer cohort (26/1569, 1.7%, p = 0.009,
OR 2.8, 95% CI 1.3–6.2). SERPINA3 c.918-1G>C carriers were also significantly more likely
to have a rare tumor subtype, medullary breast cancer, than the non-carriers (4/26, 15.4%,
p = 0.000014, OR 42.9, 95% CI 11.7–157.1).

* Corresponding author: Biocenter Oulu, Aapistie 5A, 90220, Oulu, Finland.
E-mail address: katri.pylkas@oulu.fi (K. Pylkäs).

https://doi.org/10.1016/j.ejca.2020.10.033
0959-8049/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Since the identification of the major breast cancer susceptibility genes, BRCA1 and BRCA2, extensive efforts have been taken to find additional inherited risk factors [1]. This has led into discovery of several breast cancer-associated genes and genomic loci with variable levels of disease risk [2]. The majority of the moderate-to-high-risk breast cancer susceptibility genes, including BRCA1 and BRCA2, but also others such as PALB2, CHEK2 and ATM, encode essential DNA damage response (DDR) proteins. Even in the era of massive parallel sequencing, the analysis has often been limited to DDR pathway and has resulted in the identification of rare breast cancer predisposing alleles e.g. in RECQL, FANCM and ERCC3 genes [3–6]. The moderate-to-high-risk susceptibility genes are all characterized by rare, mostly loss-of-function pathogenic variants conferring breast cancer predisposition. Despite these findings, so far identified genetic susceptibility factors explain only about half of the familial component of breast cancer [7], making the identification of additional inherited risk factors and understanding their contribution to disease onset imperative. For this purpose, here we have performed exome sequencing for 98 Northern Finnish breast cancer patients with indication of hereditary disease susceptibility. The founder populations provide advantage for the rare variant approach, as they harbor founder variants of higher prevalence than outbred populations. The contribution of a gene to the disease is easier to prove, if several families with the same predisposing variant can be identified. This has been shown to be the case for instance for PALB2 [8] and MCPH1 [9] founder variants identified in Finnish population.

Using a filtering strategy not limited to any predefined functional pathway, we identified a recurrent splice acceptor variant in SERPINA3 gene, encoding a member of the serine protease inhibitor class, significantly enriched in the analyzed patient cohorts. Based on the results, we propose a novel link between SERPINA3 and inherited breast cancer predisposition.

2. Materials and methods

2.1. Discovery cohort in exome sequencing

Patient cohort selected for exome sequencing consisted of 98 index cases affected with breast cancer from Northern Finnish families negative for BRCA1, BRCA2 and PALB2 gene pathogenic founder variants [10,11]. The following selection criteria, indicating an inherited predisposition to the disease, were used: 1) index cases from families with three or more breast and/or ovarian cancer cases in first- or second-degree relatives (n = 83), 2) index cases from families with two cases of breast, or breast and ovarian cancer in first- or second-degree relatives, of which at least one with early disease onset (<35 years), bilateral disease or multiple primary tumors (n = 7) and 3) breast cancer cases diagnosed at or below the age of 40 (n = 8). TruSeq Rapid Exome Library Prep Kit, covering 45 Mb of the genome and 99.4% of the RefSeq genes, was used for library preparation. Sequencing was done using Illumina’s NextSeq550 platform in high-output, pair-ended 2 x 76 cycles mode, followed by FASTQ generation within BaseSpace (Illumina). This resulted in mean read depth of 66.3x for the samples for the captured region. In total, mean of 90.2% of the captured region was covered at least by 10 reads for the analyzed samples. Data analysis was done within BaseSpace Biocomputing environment using BWA enrichment (BWA Genome Alignment Software, GATK Variant Caller) v.2.1.2.0 and VariantStudio v.3.0 for sequence alignment to reference genome (human genome 19), variant calling, annotation, filtering and classification of the variants. The manual examination and visualization of the sequence data were done using the Integrative Genomics Viewer v.2.4.19. Exome Aggregation Consortium (ExAC, http://exac.broadinstitute.org/) and Sequencing Initiative Suomi (SISu, http://www.sisuproject.fi/) databases were used for filtering out common variants.

Variants identified in exome sequencing of 98 index cases were filtered using the following criteria: 1) inclusion of variants with predicted harmful effect on protein: protein truncations (non-sense, frameshift and splice site variants), in-frame insertions/deletions and amino acid changes predicted to be deleterious using two different algorithms (PolyPhen and SIFT), 2) inclusion of variants absent from or with minor allele frequency <0.01 in dbSNP, Ensembl, ExAC and SISu databases, 3) exclusion of known non-pathogenic/pathogenic variants and 4) inclusion of variants that were observed at least in three individuals in the discovery cohort.

2.2. Variant genotyping

Variants passing the filtering criteria were genotyped using Agena Bioscience MassARRAY System

Conclusion: These findings demonstrate that c.918-1G>C germline variant in SERPINA3 gene, encoding a member of the serine protease inhibitor class, is a novel breast cancer predisposing allele.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
(Sequenom Inc., FIMM) and High-Resolution Melt (HRM) analysis (CFX96, Bio-Rad) with Type-It HRM reagents (Qiagen). Sanger sequencing (ABI3500xL Genetic Analyzer, Applied Biosystems) was used for confirmation of the variants.

2.3. Case–control cohorts

The frequency of variants passing the filtering was evaluated in geographically matched Northern Finnish unselected breast cancer case cohort. This consisted of 1569 consecutive breast cancer cases unselected for the family history of cancer and age at disease onset, diagnosed at the Oulu University Hospital during the years 2000–2016. Clinical parameters for unselected breast cancer cases were obtained from pathology reports and included KI-67 status, tumor grade, TNM (tumor, nodes, metastasis) classification, tumor morphology, estrogen (ER), progesterone (PR) and HER2 receptor status, and tumor subtype.

An additional cohort of 103 breast cancer cases with indication of inherited predisposition was used for genotyping of SERPINA3 c.918-1G>C. This consisted of index cases from BRCA1, BRCA2, PALB2 and MCPH1 pathogenic founder variant negative [9–11] breast cancer families with 1) with three or more breast and/or ovarian cancer cases in first- or second-degree relatives (n = 42), 2) two cases of breast, or breast and ovarian cancer in first- or second-degree relatives, of which at least one with early disease onset (<35 years), bilateral disease or multiple tumors (n = 22) and 3) two cases of breast cancer in first- or second-degree relatives (n = 39).

Finrisk data from Northern Ostrobothnia (Sequencing Initiative Suomi (SISu), http://www.sisuproject.fi/) and/or geographically matched anonymous Northern Finnish Red Cross blood donors were used as controls (n = 985–1327) for comparison.

This study included written informed consent from all the participating individuals. The research is covered by appropriate ethical and research permits (Northern Ostrobothnia Health Care District Research permit [285/2016] and Ethical Committee statement [100/2016], and National institute for health and welfare permit [THL/1670/5.05.00/2016]).

2.4. Statistical analyses

χ² test or Fisher’s exact test was used to compare the allele frequencies between cases and controls, and also for the comparison of the tumor characteristics between the SERPINA3 c.918-1G>C carrier and non-carrier patients. All p-values were two-sided. Benjamini–Hochberg method was used to control the false discovery rate (FDR) for multiple comparisons for the tested germline variants [12]. After Benjamini–Hochberg procedure (FDR = 0.05), p-values below 0.01 were considered statistically significant. The 5-year breast cancer–specific survival (BCSS) between the SERPINA3 c.918-1G>C carriers (n = 26) and non-carriers (n = 1417) from the unselected breast cancer cohort was compared by univariate Kaplan–Meier analysis and Cox regression. The time from date of diagnosis to the last follow-up or death was calculated as survival time. All statistical analyses were performed using IBM SPSS Statistics 26.0 for Windows (IBM Corp.).

2.5. In silico analysis for effects on splicing

In silico tools (BDGP Splice Site Prediction [13] (https://www.fruitfly.org/seq_tools/splice.html) and NetGene2 [14] (http://www.cbs.dtu.dk/services/NetGene2/)) were used to predict the consequences of the splice acceptor variant SERPINA3 c.918-1G>C.

2.6. Loss of heterozygosity analysis

Genomic DNA was extracted from 14 FFPE tumors of SERPINA3 c.918-1G>C carriers using GeneRead DNA FFPE Kit (Qiagen). Loss of heterozygosity (LOH) was evaluated by sequencing of a 147 bp amplicon flanking the variant site. Peak height values from sequence chromatograms were compared between tumor and corresponding normal DNA samples to assess the allelic ratios. Allelic imbalance values >1.67 or <0.60 were considered as indicators of LOH.

3. Results

In total, 36 variants passed the filters (2 non-sense, 1 frameshift, 5 splice site, 1 in-frame insertion, 1 in-frame deletion and 26 predicted deleterious missense variants) and were analyzed further in additional geographically matched cohorts (Table S1). Of these, splice acceptor variant in SERPINA3 (serpin peptidase inhibitor, clade A member 3, NM_001085.4:c.918-1G>C, rs199710314) was found significantly enriched in the unselected breast cancer cohort used for validation and thus selected for more detailed investigation.

SERPINA3 c.918-1G>C was present in 4/98 of the exome-sequenced index cases (4.1%). All four heterozygous carriers were negative for any other previously reported breast cancer–associated variants. SERPINA3 encodes for a 423 amino acid protein SERPINA3, also known as α1-antichymotrypsin (α1-ACT), that acts as a plasma protease inhibitor [15]. Unlike other serpins, SERPINA3 has the ability to bind to DNA (Fig. 1a), although the functional significance of DNA binding is unclear [15]. By binding targeted proteases to the reactive center loop (RCL) (Fig. 1a), SERPINA3 proteolytically inhibits the activity of several serine proteases including chymotrypsin, cathepsin G and mast cell chymases. In silico tools predicted that the SERPINA3 c.918-1G>C variant abolishes the canonical splice

In silico tools (BDGP Splice Site Prediction [13] (https://www.fruitfly.org/seq_tools/splice.html) and NetGene2 [14] (http://www.cbs.dtu.dk/services/NetGene2/)) were used to predict the consequences of the splice acceptor variant SERPINA3 c.918-1G>C.
acceptor and activates a new acceptor site right next to the original splice site. This results in deletion of two nucleotides and frameshift, thereby creating a premature stop at the codon position 309 (Fig. 1b) and eliminating the RCL domain of the protein.

In total, the frequency of \textit{SERPINA3} c.918-1G>C was evaluated in 1770 breast cancer cases: 201 cases with suspected inherited susceptibility for the disease (hereafter referred as hereditary cohort) and 1569 cases unselected for family history of cancer (Table 1). The highest prevalence for \textit{SERPINA3} c.918-1G>C was observed among cases from the hereditary cohort (6/201, 3.0%), whereas only 8 of the 1327 healthy controls (0.6%) carried the variant (\(p = 0.006\), OR 5.1, 95% CI 1.7–14.8). The association with breast cancer was replicated with the unselected breast cancer cohort, where 26 additional \textit{SERPINA3} c.918-1G>C carriers were identified (26/1569, 1.7%, \(p = 0.009\), OR 2.8, 95% CI 1.3–6.2).

All available information and additional DNA samples from the identified \textit{SERPINA3} c.918-1G>C carrier families were used to study the potential segregation of the variant with cancer phenotype (Table S2). One-third (9/26) of the unselected cases had at least one breast cancer case among their first- or second-degree relatives, providing further support for breast cancer association. Besides initially studied index cases, four samples from relatives affected with breast cancer were available for variant testing. Of these, three were positive for \textit{SERPINA3} c.918-1G>C. The relatives of \textit{SERPINA3} c.918-1G>C carriers were also reported to have several other types of malignancies, the most common being stomach cancer occurring in 22% of the families (7/32), and head and neck cancers (5/32, 16%).

The comparison of the tumor characteristics (Table S3) between \textit{SERPINA3} c.918-1G>C carriers and non-carriers from the unselected cohort showed a significant enrichment of medullary breast cancer, a rare tumor subtype, among the carriers (4/26, 15.4%, \(p = 0.000014\), OR 42.9, 95% CI 11.7–157.1). Although based on small sample sizes, this rare subtype enrichment supports the contribution of this germline variant to the tumorigenesis in the carriers. No other associations with the tumor characteristics or 5-year BCSS were detected (Fig. S1). There was no difference in the average age at disease onset between the carriers (mean = 58 years, variation 36–87 years) and non-carriers (mean = 58 years, variation 28–93 years) in the unselected cohort. The LOH analysis of the \textit{SERPINA3} locus demonstrated that the wild-type allele was retained in the breast tumors (Fig. S2), a feature that is typical for moderate risk breast cancer alleles [2].

Table 1

Frequency of the \textit{SERPINA3} c.918-1G>C variant in breast cancer cases and controls.

Cohort	N	WT	%	Mut\(^a\)	%	OR	95% CI	\(p^d\)
Hereditary BC\(^b\)	201	195	97.0	6	3.0	5.1	1.7–14.8	0.006
Unselected BC	1569	1543	98.3	26	1.7	2.8	1.3–6.2	0.009
All BC	1770	1738	98.2	32	1.8	3.0	1.4–6.6	0.003
Controls\(^c\)	1327	1319	99.4	8	0.6			

\(BC\), breast cancer; \(CI\), confidence interval; \(Mut\), variant carrier; \(OR\), odds ratio; \(WT\), wild-type.

\(^a\) Includes the 98 exome-sequenced cases.

\(^b\) SISu North Ostrobothnia.

\(^c\) All heterozygous.

\(^d\) \(\chi^2\) test or Fisher’s exact test.
4. Discussion

Current study provides strong genetic evidence for the association of SERPINA3 c.918-1G>C with inherited breast cancer predisposition in the Finnish population. In the currently analyzed cohorts SERPINA3 c.918-1G>C was identified in 3.0% cases with indication of hereditary predisposition to the disease and in 1.7% of the breast cancer cases unselected for family history of the disease or age at diagnosis. Based on the case–control comparisons, the risk conferred by SERPINA3 c.918-1G>C allele falls in the range typical for moderate risk alleles [16] (2.8-fold based on unselected cases and fivefold based on hereditary cases). The variant showed significant association with medullary carcinoma, a rare subtype with relatively favorable prognosis, and curiously also enriched in BRCA1 germline mutation carriers [17]. The SERPINA3 c.918-1G>C carrier families had also history of several other cancer types, including stomach cancer and cancers of the head and neck, indicating that the cancer spectrum associated with SERPINA3 variants might extend beyond breast cancer.

The encoded SERPINA3 is an inhibitor of several serine proteases and acts as an acute phase reactive protein. It has been reported to have roles in a variety of physiological activities such as inflammatory response [18], complement activation [19], regulation of lipid metabolic processes [20], wound healing, extracellular matrix remodeling [21] and apoptosis [15]. Variants of this gene can influence protease targeting and thereby also be tissue specific. Overexpression of SERPINA3 has been observed in several cancer types, including endometrial cancer, melanoma, glioma and breast cancer [22–25]. Its high expression has been demonstrated to positively correlate with poor prognosis in patients with colon [26], breast [27], lung [28,29] and gastric cancers [30]. Recently, a new role for SERPINA3 was discovered as a transcriptional regulator of genes related to hepatocellular carcinoma progression by inducing telomere elongation, cell proliferation, migration and invasion [31]. SERPINA3 has been reported to be estrogen-inducible, and its mRNA level has been suggested to be significant predictor of good prognosis in hormone receptor (ER and/or PR)-positive breast cancer patients [25]. Taken together, various lines of evidence suggest that alterations in multifunctional SERPINA3 have a role in malignancy development.

In conclusion, the current genetic data demonstrates that germline variant in SERPINA3 gene, c.918-1G>C, associates with breast cancer. Based on the case–control comparison, the risk associated with it is about threefold compared with non-carriers. Although rare, this Finnish founder allele is enriched in Northern Finland with statistically significant association with breast cancer. According to GnomAD database (https://gnomad.broadinstitute.org/), this gene harbors other deleterious alleles that could be relevant in other populations. Addition of SERPINA3 to the growing list of genes with functions beyond DDR pathway to harbor predisposing alleles underscores that diverse mechanisms are likely to be relevant to breast cancer pathogenesis. Which of the numerous functions of SERPINA3 is relevant for breast cancer predisposition in particular, warrants further investigation.

Funding

This work was supported by the Academy of Finland (grant numbers 307808, 314183, 335242) and the Cancer Foundation of Finland sr. Funders had no role in the study design, collection, analysis and interpretation of data, writing of the report and the decision to submit the article for publication.

Author contributions

Katri Pylkäs, Susanna Koivuluoma, Anna Tervasmäki, Jukka Moilanen and Outi Kuismäinen conceived and designed the study. Outi Kuismäinen, Saila Kaupilla, Robert Winqvist and Katri Pylkäs provided the study material. Katri Pylkäs, Susanna Koivuluoma, Anna Tervasmäki and Timo Kumpula performed the experiments and data analysis. Susanna Koivuluoma and Katri Pylkäs wrote the manuscript, and all the authors read and approved the final manuscript.

Conflict of interest statement

The authors declare no conflict of interest.

Acknowledgements

We thank all the patients and their family members for volunteering to participate in this study, and Leena Keskitalo and Meeri Otsukka for technical assistance. Biocenter Oulu sequencing center is acknowledged for providing sequencing services.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejca.2020.10.033.

References

[1] Turnbull C, Rahman N. Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genom Hum Genet 2008;9:321–45.
[2] Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet 2008;40:17–22.
[3] Cybulski C, Carrot-Zhang J, Kulniak W, et al. Germline RECQL mutations are associated with breast cancer susceptibility. Nat Genet 2015;47:643–6.
[4] Sun J, Wang Y, Xia Y, et al. Mutations in RECQL gene are associated with predisposition to breast cancer. PLoS Genet 2015;11.
[5] Kiuski JJ, Pelttari LM, Khan S, et al. Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. Proc Natl Acad Sci USA 2014;111:15172–7.
[6] Vijai J, Topka S, Villano D, et al. A recurrent ERCC3 truncating mutation confers moderate risk for breast cancer. Cancer Discov 2016;6:1267–75.
[7] Couch FJ, Nathanson KL, Offit K. Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science 2014;343:1466–70.
[8] Erkko H, Dowty JG, Nikkilä J, et al. Penetrance analysis of the PALB2 c.1592delT founder mutation. Clin Cancer Res 2008;14:4667–71.
[9] Mantere T, Winqvist R, Kauppila S, et al. Targeted next-generation sequencing identifies a recurrent mutation in MCPH1 associated with hereditary breast cancer susceptibility. PLoS Genet 2016;12.
[10] Huusko P, Paakkonen K, Launonen V, et al. Evidence of founder mutations in Finnish BRCA1 and BRCA2 families [4]. Am J Hum Genet 1998;62:1544–8.
[11] Erkko H, Xia B, Nikkilä J, et al. A recurrent mutation in PALB2 in Finnish cancer families. Nature 2007;446:316–8.
[12] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 1995;57:289–300.
[13] Reese MG. Improved splice site detection in Genie. J Comput Biol 1997;4:311–23.
[14] Brunak S, Englbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 1991;220:49–65.
[15] Baker C, Belbin O, Kalgheker N, Morgan K. SERPINA3 (aka alpha-1-antichymotrypsin). Front Biosci 2007;12:2821–35.
[16] Hollestelle A, Wasielewski M, Martens JWM, Schutte M. Discovering moderate-risk breast cancer susceptibility genes. Curr Opin Genet Dev 2010;20:268–76.
[17] Stratton MR. Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Lancet 1997;349:1505–10.
[18] Sun YX, Wright HT, Janciakuskiene S. Glioma cell activation by Alzheimer’s peptide Aβ1–42, z1-antichymotrypsin, and their mixture. Cell Mol Life Sci 2002;59:1734–43.
[19] Bodmer JL, Schnelli HP. Plasma protease inhibitors. Schweiz Med Wochenschr 1984;114:1359–63.
[20] Sun Y-, Wright HT, Janciakuskiene S. z1-antichymotrypsin/Alzheimer’s peptide Aβ1-42 complex perturbs lipid metabolism and activates transcription factors PPARγ and NFκB in human neuroblastoma (Kelly) cells. J Neurosci Res 2002;67:511–22.
[21] Matsumoto NM, Aoki M, Okubo Y, et al. Gene expression profile of isolated dermal vascular endothelial cells in keloids. Front Cell Dev Biol 2020;8.
[22] Yang G-, Yang X-, Lu H, et al. SERPINA3 promotes endometrial cancer cells growth by regulating G2/M cell cycle checkpoint and apoptosis. Int J Clin Exp Pathol 2014;7:1348–58.
[23] Zhou J, Cheng Y, Tang L, Martinka M, Kalia S. Up-regulation of SERPINA3 correlates with high mortality of melanoma patients and increased migration and invasion of cancer cells. Oncotarget 2017;8:18712–25.
[24] Luo D, Chen W, Tian Y, et al. Serpin peptidase inhibitor, clade A member 3 (SERPINA3), is overexpressed in glioma and associated with poor prognosis in glioma patients. Oncotargets Ther 2017;10:2173–81.
[25] Yamamura J, Miyoshi Y, Tamaki Y, et al. mRNA expression level of estrogen-inducible gene, a 1-antichymotrypsin, is a predictor of early tumor recurrence in patients with invasive breast cancers. Canc Scien 2004;95:887–92.
[26] Karashima S, Kataoka H, Itoh H, Maruyama R, Koono M. Prognostic significance of alpha-1-antitrypsin in early stage of colorectal carcinomas. Int J Canc 1990;45:244–50.
[27] Hurlimann J, Van Melle G. Prognostic value of serum proteins synthesized by breast carcinoma cells. Am J Clin Pathol 1991;95:835–43.
[28] Higashiyama M, Doi O, Yokouchi H, Kodama K, Nakamori S, Tateishi R. Alpha-1-antichymotrypsin expression in lung adenocarcinoma and its possible association with tumor progression. Cancer 1995;76:1368–76.
[29] Zelvyte I, Wallmark A, Pittulainen E, Westin U, Janciakusiene S. Increased plasma levels of serine protease inhibitors in lung cancer patients. Anticancer Res 2004;24:241–7.
[30] Tahara E, Ito H, Taniyama K, Yokozaki H, Hata J. Alpha1-antitrypsin, alpha1-antichymotrypsin, and alpha2-macroglobulin in human gastric carcinomas: a retrospective immunohistochemical study. Hum Pathol 1984;15:957–64.
[31] Ko E, Kim J-, Baek JW, Kim J, Park S-, Jung G. SERPINA3 is a key modulator of HNRNP-K transcriptional activity against oxidative stress in HCC. Redox Biol 2019;24.
[32] SERPINA3 - alpha-1-antichymotrypsin precursor - Homo sapiens (Human) - SERPINA3 gene & protein. UniProt; 2020. Available at: https://www.uniprot.org/uniprot/P01011. [Accessed 12 May 2020].