Multiagent Transition Systems with Faults: A Compositional Foundation for Fault-Resilient Distributed Computing

Ehud Shapiro
Weizmann Institute of Science, Rehovot, Israel
ehud.shapiro@weizmann.ac.il

Abstract. We present a novel mathematical framework for the specification, implementation and analysis of distributed computing systems, with the following novel components:
1. Transition systems with faults, which allow the specification and analysis of computations with safety and liveness faults and their fault resilience.
2. A notion of correct implementations among transition systems that requires both safety and liveness, and their composition, with which the correctness (safety and liveness) of a protocol stack as a whole follows from each protocol implementing correctly the protocol above it in the stack.
3. Applying the notion of monotonicity, pertinent to histories of distributed computing systems, to ease the specification and proof of correctness of implementations among distributed computing systems.
4. Multiagent transition systems, further characterized as centralized/distributed and synchronous/asynchronous.
5. The notion of safety and liveness fault-resilient implementations and their composition.
6. An algebraic definition and operational characterization of the notion of a grassroots family of distributed multiagent transition systems, in which disjoint instances may be deployed independently at multiple locations and over time, and can subsequently interoperate once interconnected; sufficient condition for such a family to be grassroots; and a notion of a grassroots implementation of such a family.

While new, the framework is being employed in the specification of a grassroots ordering consensus protocol stack [33], with sovereign cryptocurrencies [31], an NFT trade network [34], and an efficient Byzantine atomic broadcast protocol [20] as the first applications.

Keywords: Distributed Computing · Multiagent Transition Systems · Fault Resilience · Protocol Stack

1 Introduction and Related Work

This paper presents a mathematical framework for specifying and proving correct in a compositional way a fault-resilience distributed protocol stack. Different aspects of this problem have been addressed for almost half a century.
Process calculi have been proposed for the compositional specification and proof of concurrent systems [17,26,27], mostly focusing on synchronous communication, although variants for asynchronous distributed computing have been investigated [3,11], including their resilience to fail-stop failures [12].

Transition systems are a standard way of specifying computing systems without committing to a specific syntax. The use of transition systems for the specification of concurrent and distributed systems has been investigated extensively [16,1,25], including the notion of implementations among transition systems and their composition [2,25,18]. The composition of implementations has been investigated in the context of multi-phase compilation [23,29], where the correctness of the compiler as a whole following from the correctness of each phase in the compilation. Due to the deterministic and centralized nature of compilation, this task did not require addressing questions of liveness, completeness, and fault tolerance. Transition systems have been also employed to specify and prove the fault-resilience of distributed systems [36].

Fault-resilient distributed computing, especially the problems of Byzantine Agreement [35], Byzantine Reliable Broadcast [1,17], Byzantine Atomic Broadcast (ordering consensus) [37,19,13], and blockchain consensus [28], have been investigated extensively. Methods for reasoning about distributed systems have been developed [21,32,24], including their fault resilience [36]. Formal framework for the specification and proof of distributed systems were developed [25,22,36]. However, the reality of research at the frontier of distributed systems is that novel protocols and their proofs, e.g. [6,37,19,13,8], are typically presented outside any formal framework, probably due to the sheer complexity of the protocols and their proofs.

To the best of our knowledge, a mathematical framework for specifying and proving correct in a compositional way a fault-resilience distributed protocol stack, in which each protocol implements the protocol above it and serves as a specification for the protocol below it, is novel. We developed the framework with the goal of specifying and proving the correctness and fault-resilience of a particular protocol stack: One that commences with with an open dissemination protocol that can support the grassroots formation of a peer-to-peer social network; continues with a protocol for equivocation exclusion that can support sovereign cryptocurrencies and an equivocation-resilient NFT trade network [34]; and culminates in a group consensus protocol for ordering transactions despite Byzantine faults, namely Byzantine Atomic Broadcast [20].

Here, we present and prove correct two rather abstract protocol stacks, depicted in Figure 1 as example applications of the mathematical framework. A more concrete, complex, and practical protocol stack based on the blocklace (a partially-ordered generalization of the blockchain data structure) is presented elsewhere [33].

A key goal of this work is the development grassroots protocols: A grassroots protocol can be deployed independently at different locations and over times, with initially disjoint communities operating the protocol independently, and over time—once connected—forming an ever-growing and interacting networked
community. To that end we characterize the notion of a protocol being grassroots, both algebraically and operationally, analyze whether protocols in the abstract protocol stack are grassroots or not, and discuss whether client-server protocols (e.g., all major digital platforms), consensus protocols (e.g. reliable broadcast, Byzantine agreement), majoritarian decision making protocols (e.g. democratic voting), and protocols that employ a non-composable data structure (e.g., blockchain), are grassroots, and if not, then whether and how can they be made so.

![Diagram](image.png)

Fig. 1. Example Transition Systems and Their Implementations, resulting in two protocol stacks. **A.** Generic (Example 1), Single-Chain (Ex. 2), and Longest Chain (Ex. 3) transition systems and their implementations σ_1 (Proposition 2) and σ_2 (Def. 10 and Prop. 5). **B.** Generic Shared-Memory (Ex. 4), Single-Chain Consensus (Ex. 5), Longest-Chain Consensus (Ex. 6), and Asynchronous Block Dissemination (Ex. 7) multiagent transition systems and their implementations σ_{1m} (Prop. 7), σ_{2m} (Prop. 8), and σ_3 (Prop. 11).

Our approach is different from that of universal composability [5], devised for the analysis of cryptographic protocols, in at least two respects: First, it does not assume, from the outset, a specific notion of communication. Second, its notion of composition is different: Universal composability uses function composition as is common in the practice of protocol design (e.g. [19,7,31]). Here, we do not compose protocols, but compose implementations among protocols, resulting in a new single implementation that realizes the high-level protocol using the primitives of the low-level protocol. For example, it seems that the universality results of Sections 2 and 3 cannot be expressed in the model of universal composability.
Grassroots composition is an instance of parallel composition, a notion that has been explored extensively \cite{17, 22, 25}:

Grassroots composition takes components that have the capacity to operate independently of each other, and ensures that they can still operate independently even when composed, but also interact in novel ways after composition. While grassroots composition leaves open the possibility that components may interact once composed, it does not specify how they might interact; such interactions are a consequence of the specifics of the composed transition systems.

The rest of the paper is organized as follows. Section 2 presents transition systems, implementations among them, and the composition of such implementations, and includes the example protocol stack of Figure 1A. It also introduces the notion of monotonicity of transition systems \cite{30, 15}, and shows that it can ease the proof of correctness of an implementation.

Section 3 presents multiagent transition systems, further characterized as centralized or distributed, with the latter being synchronous or asynchronous, and includes the example multiagent protocol stack of Figure 1B.

Section 4 introduces safety faults and liveness faults, implementations that are resilient to such faults, and their composition.

Section 5 introduces the notion of a family of multiagent transition systems, which is our proposed formal notion of a protocol. It then introduces grassroots protocols, their characterization and implementation.

Section 6 concludes the paper.

2 Transition Systems, Implementations and their Composition

Here, we introduce the notions of transition systems, implementations among them, and their composition, together with the examples of Figure 1A.

2.1 Transition Systems and Their Implementation

Given a set S, S^* denotes the set of sequences over S, S^+ the set of nonempty sequences over S, and Λ the empty sequence. Given $x, y \in S^*$, $x \cdot y$ denotes the concatenation of x and y, and $x \preceq y$ denotes that x is a prefix of y. Two sequences $x, y \in S^*$ are consistent if $x \preceq y$ or $y \preceq x$, inconsistent otherwise.

Definition 1 (Transition System, Computation, Run). Given a set S, referred to as states, the transitions over S are all pairs $(s, s') \in S^2$, also written $s \rightarrow s'$. A transition system $TS = (S, s_0, T, \lambda)$ consists of a set of states S, an initial state $s_0 \in S$, a set of correct transitions $T \subseteq S^2$, and a liveness condition λ which is a set of sets correct transitions; when λ is omitted the default liveness condition is $\lambda = \{T\}$. A computation of TS is a sequence of transitions $r = s \rightarrow s' \rightarrow \cdots \subseteq S^2$. A run of TS is a computation that starts from s_0.
Recall that safety requires that bad things don’t happen, and liveness that good things do happen, eventually. For example, “a transition that is enabled infinitely often is eventually taken”. Heraclitus said that you cannot step into the same river twice. Similarly, in a transition system you cannot take the same transition in different states as, by definition, it is a different transition. Hence, a liveness requirement is on a set of transitions, rather than a single transition. For example, the set of all transitions in which ‘p receives message m from q’, even if the state of p or of other agents changes. In multiagent transition systems, defined below, liveness may require each agent to act every so often. In such a case we consider all transitions by the same agent for the liveness requirement. To specify the liveness condition, λ considers sets of correct transitions with a liveness requirement placed on each set.

Definition 2 (Safe, Live and Correct Run). Given a transition system \(TS = (S, s_0, T, \lambda) \), a computation \(r \) is safe, also \(r \subseteq T \), if every transition of \(r \) is correct, and \(s \xrightarrow{\cdot} s' \subseteq T \) denotes the existence of a safe computation (empty if \(s = s' \)) from \(s \) to \(s' \).

A transition \(s' \rightarrow s'' \in S^2 \) is enabled on \(s \) if \(s = s' \). A run is live wrt \(L \in \lambda \) if either \(r \) has a nonempty suffix in which no transition in \(L \) is enabled, or every suffix of \(r \) includes an \(L \) transition. A run \(r \) is live if it is live wrt every \(L \in \lambda \). A run \(r \) is correct if it is safe and live.

Observation 1 (Final State) A state is final if no correct transition is enabled on it. A live computation is finite only of its last state is final.

Proof. Assume by way of contradiction that the live computation \(r \) is finite and its last state \(s \) is not final. Hence there is a correct transition \(t \) enabled on \(s \), and \(r \) violates both liveness requirements: First, that \(r \) has a nonempty suffix in which no correct transition is enabled, since \(t \) is enabled on every nonempty suffix of \(r \). Second, that every suffix of \(r \) includes an correct transition, since the suffix that include only \(s \) does not. Hence \(r \) is not live. A contradiction. \(\Box \)

The following is an example of a generic transition system over a given set of states. Here and in the other examples in this section the liveness condition \(\lambda \) is omitted and a computation is live if it is live wrt the correct transitions.

Example 1 (G: Generic). Given a set of states \(S \) with a designated initial state \(s_0 \in S \), a generic transition system over \(S \) is \(G = (S, s_0, TG) \) for some \(TG \subseteq S^2 \).

Definition 3 (Specification; Safe, Live, Correct and Complete Implementation). Given two transition systems \(TS = (S, s_0, T, \lambda) \) (the specification) and \(TS' = (S', s'_0, T', \lambda') \), an implementation of \(TS \) by \(TS' \) is a function \(\sigma : S' \rightarrow S \) where \(\sigma(s'_0) = s_0 \), in which case the pair \((TS', \sigma) \) is referred to as an implementation of \(TS \). Given a computation \(r' = s'_1 \rightarrow s'_2 \rightarrow \ldots \) of \(TS' \), \(\sigma(r') \) is the (possibly empty) computation \(\sigma(s'_1) \rightarrow \sigma(s'_2) \rightarrow \ldots \), with stutter transitions in which \(\sigma(s'_i) = \sigma(s'_{i+1}) \) removed. The implementation \((TS', \sigma) \) of \(TS \) is safe/live/correct if \(\sigma \) maps every safe/live/correct \(TS' \) run \(r' \) to a safe/live/correct \(TS \) run \(\sigma(r') \), respectively, and is complete if every correct run \(r \) of \(TS \) has a correct run \(r' \) of \(TS' \) such that \(\sigma(r') = r \).
Definition 4 (σ: Locally Safe, Productive, Locally Complete). Given two transition systems $TS = (S, s_0, T, \lambda)$ and $TS' = (S', s'_0, T', \lambda')$ and an implementation $\sigma: S' \rightarrow S$. Then σ is:

1. **Locally Safe** if $s'_0 \xrightarrow{\sigma} y_1 \rightarrow y_2 \subseteq T'$ implies that $s_0 \xrightarrow{x_1} x_2 \subseteq T$ for $x_1 = \sigma(x'_1)$ and $x_2 = \sigma(x'_2)$ in S. If $x_1 = x_2$ then the T' transition $x'_1 \rightarrow x'_2$ stutters T.

2. **Productive** if for every $L \in \lambda$ and every correct run r' of TS', either r' has a nonempty suffix r'' such that L is not enabled in $\sigma(r'')$, or every suffix r'' of r' activates L, namely $\sigma(r'')$ has an L-transition.

3. **Locally Complete** if $s_0 \xrightarrow{x_1} x_2 \subseteq T$, implies that $s'_0 \xrightarrow{x'_1} x'_2 \subseteq T'$ for some $x'_1, x'_2 \in S'$ such that $x_1 = \sigma(x'_1)$ and $x_2 = \sigma(x'_2)$.

Proposition 1 (σ Correct). If an implementation σ is locally safe and productive then it is correct, and if in addition it is locally complete then it is complete.

Proof (of Proposition 4). We prove the proposition by way of contradiction. Assume that σ is locally safe but not safe. Hence, there is a computation $r' \subseteq T'$ with an incorrect transition $t \in \sigma(r') \setminus T$. Consider a prefix r'' of r' for which $t \in \sigma(r'')$. This prefix violates local safety. A contradiction.

Assume that σ is productive but not live. Then there is a set of transitions $L \in \lambda$ and a computation $r' \subseteq T'$ for which $\sigma(r')$ is not live wrt L. This means that in every nonempty suffix of $\sigma(r')$ L is enabled, and there is a suffix of $\sigma(r')$ that does not include an L transition. This violates both alternative conditions for σ being productive: that r' has a nonempty suffix r'' such that L is not enabled in $\sigma(r'')$, and that every suffix r'' of r' activates L. A contradiction.

Assume that σ is locally complete but not complete. Then there is a run $r \subseteq T$ for which there is no run $r' \subseteq T'$ such that $\sigma(r') = r$. Then there must be a prefix $\tilde{r} \prec r$ of r for which for no run $r' \subseteq T'$, $\tilde{r} \not\subseteq \sigma(r')$. Thus \tilde{r} violates local completeness, a contradiction. This completes the proof. \(\square\)

Intuitively, in an implementation (TS', σ) of TS, TS' can be thought of as the ‘virtual hardware’ (e.g. the instruction set of a virtual machine or the machine language of an actual machine) and σ as specifying a ‘compiler’, that compiles programs in the high-level language $TS' \rightarrow$ machine-language programs in TS'. The mapping σ from TS' to TS is in inverse direction to that of a compiler; it thus specifies the intended behavior of compiled programs in terms of the behavior of their source programs, and in doing so can serve as the basis for proving a compiler correct. Note, though, that transition systems have no formal syntax, and can be thought of as specifying the operational semantics of existing or hypothetical programming languages.

Preparing an example implementation, we present the universal single-chain transition system SC, and then show how it can implement any generic transition system G, justifying the title ‘universal’.

Example 2 (SC: Single-Chain). Given a set S with a designated initial state $s_0 \in S$, the single-chain transition system over S is $SC = (S^+, s_0, TSC)$, where TSC includes every transition $x \rightarrow x \cdot s$ for every $x \in S^+$ and $s \in S$.

Namely, an SC run can generate any sequence over S.

From a programming-language perspective, some transition systems we will be concerned with are best viewed as providing the operational semantics for a set of programs over a given domain. With this view, in the current abstract setting, the programming of a transition system, namely choosing a program from this potentially-infinite set of programs, is akin to identifying a (computable) subset of the transition system. In our example, for the universal single-chain transition system SC to implement a specific instance of the generic transition system G, a subset of SC has to be identified that corresponds to the transitions of G, as shown next. But first we define the notion of a transition system subset.

Definition 5 (Transition System Subset). Given a transition system $TS = (S, s_0, T, \lambda)$, a transition system $TS' = (S', s'_0, T', \lambda')$ is a subset of TS, $TS' \subseteq TS$, if $s'_0 = s_0$, $S' \subseteq S$, $T' \subseteq T$, and λ' is λ restricted to T'.

The definition suggests at least two specific ways to construct a subset: Choosing a subset of the states and restricting the transitions to be only among these states; or choosing a subset of the transitions. Specifically, (i) Choose some $S' \subseteq S$ and define $T' := T/S'$, namely $T' := \{(s \rightarrow s' \in T : s, s' \in S')\}$. (ii) Choose some $T' \subset T$. We note that in practice there must be restrictions on the choice of a subset; to begin with, S' and T' should be computable.

We want to show that the universal single-chain transition system can implement any generic transition system. Hence the following definition:

Definition 6 (Can Implement). Given transition systems $TS = (S, s_0, T, \lambda)$, $TS' = (S', s'_0, T', \lambda')$, TS' can implement TS if there is a subset $TS'' = (S'', s'_0, T'', \lambda'')$, $TS'' \subseteq TS'$ and a correct and complete implementation $\sigma : S'' \rightarrow S$ of TS by TS''.

The following proposition demonstrates the application of the definitions provided so far:

Proposition 2. The single-chain transition system SC over S can implement any generic transition system G over S.

Proof. Given a generic transition system $G = (S, s_0, TG)$ over S, we define a subset $SC1$ of SC and a mapping σ_1 from $SC1$ to G that together implement G. The transition system $SC1 = (S^+, s_0, TSC1)$ has the transition $x \cdot s \rightarrow x \cdot s \cdot s' \in TSC1$ for every $x \in S^*$ and every transition $s \rightarrow s' \in TG$. The mapping $\sigma_1 : S^+ \rightarrow S$ takes the last element of its input sequence, namely $\sigma_1(x \cdot s) := s$.

To prove that σ_1 is correct we have to show that σ_1 is:

1. **Locally Safe:** $s_0 \xrightarrow{x} y \xrightarrow{y} TG$ implies that $s_0 \xrightarrow{x} x' \subseteq TG$ for $x = \sigma_0(y)$ and $x' = \sigma_0(y')$ in S.

 Let $y = s_0 \cdot s_1 \cdot \ldots \cdot s_k$, $y' = y \cdot s_{k+1}$, for $k \geq 1$. For each transition $s_0 \cdot s_1 \cdot \ldots \cdot s_i \rightarrow s_0 \cdot s_1 \cdot \ldots \cdot s_i \cdot s_{i+1}$, $i \leq k$, the transition $s_i \rightarrow s_{i+1} \in TG$ by definition of $TSC1$. Hence $s_0 \xrightarrow{x} x' \subseteq TG$, satisfying the safety condition.
2. **Productive**: \(TSC_1 \) is the only set in the liveness condition, and any \(TSC_1 \) transition from any state of \(SC_1 \) activates \(TG \).

3. **Locally Complete**: \(s_0 \xrightarrow{\cdot} x \to x' \subseteq TG \) implies that there are \(y, y' \in S^+ \) such that \(x = \sigma_1(y), x' = \sigma_1(y') \), and \(s_0 \xrightarrow{\cdot} y \to y' \subseteq TSC_1 \).

 Let \(x = s_k, x' = s_{k+1}, k \geq 1 \), and \(s_0 \xrightarrow{\cdot} s_1 \to \ldots \to s_k \to s_{k+1} \in TG \). Then \(y = s_0 \cdot s_1 \cdot \ldots \cdot s_k \) and \(y' = y \cdot s_{k+1} \) satisfy the completeness condition.

 This completes the proof. \(\square \)

2.2 Composing Implementations

The key property of correct and complete implementations is their transitivity:

Proposition 3 (Transitivity of Correct & Complete Implementations). The composition of safe/live/correct/complete implementations is safe/live/correct/complete, respectively.

Proof (of Proposition 3). Assume transition systems \(TS_1 = (S_1, s_1, T_1, \lambda_1) \), \(TS_2 = (S_2, s_2, T_2, \lambda_2) \), \(TS_3 = (S_3, s_3, T_3, \lambda_3) \) and implementations \(\sigma_{21} : S_2 \to S_1 \) and \(\sigma_{32} : S_3 \to S_2 \), and let \(\sigma_{31} := \sigma_{21} \circ \sigma_{32} \).

Assume that \(\sigma_{32} \) and \(\sigma_{21} \) are safe. Let \(r \subseteq T_3 \) be a safe \(TS_3 \) run. Then \(\sigma_{32}(r) \) is a safe \(TS_2 \) run by the safety of \(\sigma_{32} \), and hence \(\sigma_{21}(\sigma_{32}(r)) \) is a safe run by the safety of \(\sigma_{21} \). Hence \(\sigma_{31} \) is safe.

Assume that \(\sigma_{32} \) and \(\sigma_{21} \) are live. Let \(r \subseteq T_3 \) be a live \(TS_3 \) run. Then \(\sigma_{32}(r) \) is a live \(TS_2 \) run by the liveness of \(\sigma_{32} \), and hence \(\sigma_{21}(\sigma_{32}(r)) \) is a live run by the liveness of \(\sigma_{21} \). Hence \(\sigma_{31} \) is live.

A safe and live run is correct, hence if \(\sigma_{32} \) and \(\sigma_{21} \) are correct then so is \(\sigma_{31} \).

Assume that \(\sigma_{32} \) and \(\sigma_{21} \) are complete. Let \(r_1 \subseteq T_1 \) be a correct \(TS_1 \) run. By completeness of \(\sigma_{21} \) there is a correct \(TS_2 \) run \(r_2 \subseteq T_2 \) such that \(\sigma_{21}(r_2) = r_1 \).

By completeness of \(\sigma_{32} \) there is a correct \(TS_3 \) run \(r_3 \subseteq T_3 \) such that \(\sigma_{32}(r_3) = r_2 \). Hence \(\sigma_{31}(r_3) = r_1 \), establishing the completeness of \(\sigma_{31} \).

This completes the proof. \(\square \)

Our next example is the longest-chain transition system, which can be viewed as an abstraction of the longest-chain consensus protocols (e.g. Nakamoto [28]), since its consistency requirement entails that only the longest chain may be freely extended; other chains are bound to copy their next sequence element from a longer chain till they catch up, if ever, and only then may contribute a new element to the chain.

Example 3 (LC: Longest-Chain). Given a set \(S \) and \(n > 0 \), the LC longest-chain transition system over \(S \), \(LC = ((S^n)^n, c_0, TLC) \), has sets of \(n \) sequences over \(S \) as states, referred to as \(n \)-chain configurations over \(S \), initial state \(c_0 = A^n \), and as transitions \(TLC \) every \(c \to c' \) where \(c' \) is obtained from \(c \) by extending one sequence \(x \in c \) to \(x \cdot s \), \(s \in S \), provided that either \(x \) is a longest sequence in \(c \) or \(x \cdot s \) is a prefix of some \(y \in c \).
We wish to prove that the longest-chain transition system LC can implement
the single-chain transition system SC, and by transitivity of correct implementa-
tions, also implement any generic transition systems G. The mathematical
machinery developed next will assist in achieving this.

2.3 Monotonic Transition Systems for Distributed Computing

Unlike shared-memory systems, distributed systems have a state that increases
in some natural sense as the computation progresses, e.g. through accumulating
messages and extending the history of local states. This notion of monotonicity,
once formalized, allows a simpler and more powerful mathematical treatment of
transition systems for distributed computing.

So far we have used \(\preceq\) to denote the prefix relation, which is a specific partial
order. In the following we also use \(\preceq\) to denote a general partial order; the use
should be clear from the context.

Definition 7 (Partial Order). A reflexive partial order on a set \(S\) is denoted
by \(\succeq_S\) (with \(S\) omitted if clear from the context), \(s \prec s'\) stands for \(s \preceq s'\) \& \(s' \not\preceq s\), and \(s \preceq s'\) for \(s \preceq s'\) \& \(s' \preceq s\). The partial order is strict if \(s \preceq s'\) implies \(s = s'\) and unbounded if for every \(s \in S\) there is an \(s' \in S\) such that \(s \prec s'\), has an infinite descending chain if there is an infinite sequence \(s_1, s_2, \ldots\) such
that \(s_{i+1} \prec s_i\) for every \(i \geq 1\). We say that \(s, s' \in S\) are consistent wrt
\(\preceq\) if \(s \preceq s'\) or \(s' \preceq s\) (or both).

It is often possible to associate a partial order with a distributed system, wrt
which the local state of each agent only increases. Therefore we focus on the
following type of transition systems:

Definition 8 (Monotonic & Monotonically-Complete Transition Sys-
tem). Given a partial order \(\preceq\) on \(S\), a transition system \(TS = (S, s_0, T, \lambda)\) is
monotonic with respect to \(\preceq\) if \(s \rightarrow s' \in T\) implies \(s \preceq s'\). It is monotonically-
complete wrt \(\preceq\) if, in addition, \(s_0 \xrightarrow{\cdot} s \subseteq T\) and \(s \preceq s'\) implies that \(s \xrightarrow{\cdot} s' \subseteq T\).

Namely, computations of a monotonically-complete transition system not only
ascend in the partial order, but may also reach, from any state, any larger
state in the partial order. Note that since the partial order is unbounded, a
monotonically-complete transition system has no final states.

When transition systems are monotonically-complete wrt a partial order, the
following Definition 9 and Theorem 1 can be a powerful tool in proving that one
can correctly implement the other.

Definition 9 (Order-Preserving Implementation). Let transition systems
\(TS = (S, s_0, T, \lambda)\) and \(TS' = (S', s'_0, T', \lambda')\) be monotonic wrt the partial orders
\(\preceq\) and \(\preceq'\), respectively. Then an implementation \(\sigma : S' \rightarrow S\) of \(TS\) by \(TS'\) is
order-preserving wrt \(\preceq\) and \(\preceq'\) if:

1. Up condition: \(y_1 \preceq' y_2\) implies that \(\sigma(y_1) \preceq \sigma(y_2)\)
2. **Down condition:** $s_0 \xrightarrow{\sigma} x_1 \subseteq T$, $x_1 \preceq x_2$ implies that there are $y_1, y_2 \in S'$ such that $x_1 = \sigma(y_1)$, $x_2 = \sigma(y_2)$, $s'_0 \xrightarrow{\sigma} y_1 \subseteq T'$ and $y_1 \preceq' y_2$.

Note that if \preceq' is induced by σ and \preceq, namely defined by $y_1 \preceq' y_2$ if $\sigma(y_1) \preceq \sigma(y_2)$, then the Up condition holds trivially. The following Theorem is the linchpin of the proofs of protocol stack theorems here and in other distributed computing applications of the framework.

Theorem 1 (Correct & Complete Implementation Among Monotonically-Complete Transition Systems). Assume two transition systems $TS = (S, s_0, T, \lambda)$ and $TS' = (S', s'_0, T', \lambda')$, monotonically-complete wrt the unbounded partial orders \preceq and \preceq', respectively, and an implementation $\sigma : S' \rightarrow S$ of TS by TS'.

If σ is order-preserving and productive then it is correct and complete.

Proof (of Theorem 1). According to Proposition 8, to show that a productive σ is correct and complete it is sufficient to show that σ is:

1. **Locally Safe:** $s'_0 \xrightarrow{\sigma} y \rightarrow y' \subseteq T'$ implies that $s_0 \xrightarrow{\sigma} x \rightarrow x' \subseteq T$ for $x = \sigma(y)$ and $x' = \sigma(y')$ in S.

 By monotonicity of TS' it follows that $s'_0 \leq y \preceq' y'$; by the Up condition on σ, it follows that $s_0 \leq \sigma(y) \preceq \sigma(y')$; by assumption that TS is monotonically-complete it follows that $s_0 \xrightarrow{\sigma} x \rightarrow x' \subseteq T$ for $x = \sigma(y)$ and $x' = \sigma(y')$ in S.

 Hence σ is safe.

2. **Locally Complete:** $s'_0 \xrightarrow{\sigma} x \rightarrow x' \subseteq T$ implies $s'_0 \xrightarrow{\sigma} y \rightarrow y' \subseteq T'$ for some $y, y' \in S'$ such that $x = \sigma(y)$ and $x' = \sigma(y')$.

 Let $s_0 \xrightarrow{\sigma} x \rightarrow x' \subseteq T$. By monotonicity of TS, $s_0 \leq x \preceq x'$; by the Down condition on σ, there are $y, y' \in S'$ such that $x = \sigma(y)$, $x' = \sigma(y')$, and $y \preceq y'$; by assumption that TS' is monotonically-complete, $s'_0 \xrightarrow{\sigma} y \rightarrow y' \subseteq T'$. Hence σ is complete.

This completes the proof of correctness and completeness of σ. \qed

If all transition systems in a protocol stack are monotonically-complete, then Theorem 1 makes it sufficient to establish that an implementation of one protocol by the next is order-preserving and productive to prove it correct. A key challenge in showing that Theorem 1 applies is proving that the implementation satisfies the Down condition (Def. 9), which can be addressed by finding an ‘inverse’ to σ as follows:

Observation 2 (Representative Implementation State) Assume TS and TS' as in Theorem 1 and an implementation $\sigma : S' \rightarrow S$ that satisfies the Up condition of Definition 9. If there is a function $\hat{\sigma} : S \rightarrow S'$ such that $x = \sigma(\hat{\sigma}(x))$ for every $x \in S$, and $x_1 \preceq x_2$ implies that $\hat{\sigma}(x_1) \preceq' \hat{\sigma}(x_2)$, then σ also satisfies the Down condition.

Proof (of Observation 2). As TS' is monotonically-complete, it has a computation $\hat{\sigma}(x) \xrightarrow{\hat{\sigma}} \hat{\sigma}(x') \subseteq T'$ that satisfies the Down condition. \qed

Next we prove:
Proposition 4. LC can implement SC.

Proof (outline of Proposition 4). We show that both SC and LC are monotonically-complete wrt the prefix relation \preceq (Observations 3, 4) and that the implementation σ_2 of SC by LC is order preserving and productive (Proposition 5). Hence, according to Theorem 1, σ_2 is correct and complete. \Box

Observation 3 SC is monotonically-complete wrt \preceq.

Proof (of Observation 3). SC is monotonic wrt \preceq since every transition increases its sequence. Given two sequences $x, x' \in S^*$ such that $x \preceq x'$, let $x' = x \cdot s_1 \cdot \ldots \cdot s_k$, for some $k \geq 1$. Then $x \rightarrow x'$ via the sequence of transitions $x \rightarrow x \cdot s_1 \rightarrow \ldots \rightarrow x \cdot s_1 \cdot \ldots \cdot s_k$. Hence SC is monotonically-complete. \Box

Observation 4 LC is monotonically-complete wrt \preceq.

The proof is similar to the proof of Observation 3.

Observation 5 (LC Configurations are Consistent) An n-chain configuration c is consistent if every two chains in c are consistent. Let r be a run of LC and $c \in r$ a configuration. Then c is consistent.

Proof (of Observation 5). The proof is by induction on the index k of a configuration in r. All empty sequences of the initial configuration of r are pairwise consistent. Assume the k^{th} configuration c of r is consistent and consider the next r transition $c \rightarrow c' \in TLC$. The transition adds an element s to one sequence $x \in c$ that either is a longest sequence, or $x \cdot s$ is consistent with another longer sequence $x' \in c$. As all sequences in c are pairwise consistent by assumption, then they are also consistent with $x \cdot s$ by construction. Hence all sequences of c' are pairwise consistent and hence c' is consistent. \Box

Hence the following implementation of SC by LC is well-defined.

Definition 10 (σ_2). The implementation σ_2 maps every n-chain configuration c to the longest chain in c if it is unique, and is undefined otherwise.

Proposition 5. σ_2 is order-preserving wrt the prefix relation \preceq over consistent n-chain configurations and is productive.

Proof (of Proposition 5). To show that σ_2 is order-preserving it is sufficient to show (Proposition 1) that:

1. Up condition: $y \preceq y'$ for $y, y' \in S^1$ implies that $\sigma_2(y) \preceq \sigma_2(y')$ and $y < y'$ for $y, y' \in S^1$ implies that $\sigma_2(y) < \sigma_2(y')$.
2. Down condition: $s_0 \xrightarrow{x} x \in T_0, x \preceq x'$ implies that there are $y, y' \in S^1$ such that $x = \sigma_2(y), x' = \sigma_2(y'), c_0 \xrightarrow{y} y \subseteq T_1$ and $y \preceq y'$.

Regarding the Up condition, assume that \(y \preceq y' \) are consistent and that \(y'_p \) is the unique longest chain in \(y' \). Then \(\sigma_2(y) = y_p \preceq y'_p = \sigma_2(y') \), and if \(y \prec y' \), \(\sigma_2(y) = y_p \prec y'_p = \sigma_2(y') \).

Regarding the Down condition, define \(y_p := x \), \(y'_p := x' \), and \(y_q := y'_q := A \) for every \(q \neq p \in P \). Then \(x = y_p = \sigma_2(y) \), \(x' = y'_p = \sigma_2(y') \), \(c_0 \xrightarrow{} y \subseteq T1 \) by the same transitions that lead from \(s0 \) to \(x \), and \(y \preceq y' \) by construction.

To see that \(\sigma_2 \) is productive, note that every LC transition extends one of the chains in a configuration. Hence, after a finite number of transitions, the next LC chain will extend the longest chain in the configuration, and activate SC.

\[\square \]

In our example, the longest-chain transition system LC implements the single-chain transition system SC. But SC does not implement the generic transition system G – a subset of it, SC1, does. So, in order to prove that LC can implement G, solely based on the implementation of SC by LC, without creating a custom subset of LC for the task, the following Proposition is useful.

Proposition 6 (Restricting a Correct Implementation to a Subset). Let \(\sigma : C2 \rightarrow S1 \) be an order-preserving implementation of \(TS1 = (S1, s1, T1\lambda1) \) by \(TS2 = (C2, s2, T2\lambda2) \), monotonically-complete respectively with \(\preceq_1 \) and \(\preceq_2 \). Let \(TS1' = (S1', s1, T1', \lambda1') \subseteq TS1 \) and \(TS2' = (C2', s2, T2', \lambda2') \subseteq TS2 \) defined by \(C2' := \{ s \in C2 : \sigma(s) \in S1' \} \), with \(T2' := T2/C2' \), and assume that both subsets are also monotonically-complete wrt \(\preceq_1 \) and \(\preceq_2 \), respectively. If \(y_1 \rightarrow y_2 \in T2' \) & \(\sigma(y_1) \in S1' \) implies that \(\sigma(y_2) \in S1' \) then the restriction of \(\sigma \) to \(C2' \) is a correct and complete implementation of \(TS1' \) by \(TS2' \).

Proof (of Proposition 6). Assume \(TS1, TS2, TS1', TS2' \) and \(\sigma \) as in the Proposition and that \(y \rightarrow y' \subseteq T2 \) & \(\sigma(y) \in S1' \) implies that \(\sigma(y') \in S1' \). Define \(\sigma' : C2' \rightarrow S1' \) to be the restriction of \(\sigma \) to \(C2' \). We have to show that \(\sigma' \) is correct. To do that, it is sufficient to show that \(\sigma' \) is:

1. **Locally Safe:** \(s2 \xrightarrow{} y \rightarrow y' \subseteq T2' \) implies that \(s1 \xrightarrow{} x \xrightarrow{} x' \subseteq T1' \) for \(x = \sigma'(y) \) and \(x' = \sigma'(y') \) in \(S1 \).

 This follows from the safety of \(\sigma, S1' \subseteq S1 \) and the assumption that \(y \rightarrow y' \subseteq T2' \) & \(\sigma(y) \in S1' \) implies that \(\sigma(y') \in S1' \).

2. **Productive:** if any suffix of any infinite correct computation of \(TS2' \) activates \(T1' \).

 By monotonicity of \(TS2' \), any infinite correct computation \(r \) of \(T2' \) from \(x' \) has a transition \(t \) that is strictly increasing, and hence by \(\sigma \) satisfying the Up condition, the transition \(t \) activates \(T1' \).

3. **Locally Complete:** \(s1 \xrightarrow{} x \rightarrow x' \subseteq T1' \), implies that there are \(y, y' \in C2' \) such that \(x = \sigma'(y) \), \(x' = \sigma'(y') \), and \(s2 \xrightarrow{} y \xrightarrow{} y' \subseteq T2' \).

 By completeness of \(\sigma \), there are \(y, y' \in C2' \) such that \(x = \sigma(y) \), \(x' = \sigma(y') \), and \(s2 \xrightarrow{} y \xrightarrow{} y' \subseteq T2 \). By definition of \(C2' \) as the domain of \(\sigma \), \(y, y' \in C2' \). As \(y \xrightarrow{} y' \subseteq T2 \), then \(y \preceq_2 y' \). By assumption that \(TS2' \) is monotonically-complete, there is a computation \(s2 \xrightarrow{} y \xrightarrow{} y' \subseteq T2' \).

This completes the proof. \[\square \]
Fig. 2. Some Steps in the Proof of Proposition 6 (with an example in yellow): While TS_2 (a subset of Messaging) implements TS_1 (Dissemination), which in turn implements TS_0 (Reliable Broadcast), TS_1' (a subset of Dissemination) is sufficient to implement TS_0. Hence, it may be more efficient to employ the subset TS_2' (of Messaging) instead of the full TS_2 for the composed implementation of TS_0. Still, TS_1 (Dissemination) may have other applications (e.g. grassroots social network, sovereign cryptocurrencies [34]), hence it would be useful to implement the entire TS_1, but then use only the subset TS_2' of TS_2 in the composed implementation of TS_0. Proposition 6 provides conditions that enable that.

Corollary 1. The longest-chain transition system LC is universal for generic transition systems.

Proof (of Corollary 1). Given a generic transition system G over S, a correct implementation σ_1 of G by SC exists according to Proposition 2. The implementation σ_2 of SC by LC is correct according to Proposition 4. Then, Propositions 3 and 6 ensure that even though a subset SC_1 of SC was used in implementing G, the result of the composition $\sigma_{21} := \sigma_2 \circ \sigma_1$ is a correct implementation of G by LC.

More generally, Proposition 6 is useful in the following scenario. Assume that protocols are specified via transition systems, as elaborated below. Then in a protocol stack of, say, three protocols P_1, P_2, P_3, each implementing its predecessor, it may be the case that for the middle protocol P_2 to implement the full top protocol P_1, a subset P_2' of P_2 is needed. But, it may be desirable
for P3 to implement the full protocol P2, not just its subset P2′, as P2 may have additional applications beyond just implementing P1. In particular, there are often application for which an implementation by a middle protocol in the stack is more efficient than an implementation by the full protocol stack. The following proposition enables that, see Figure 2. Note that, as shown in the figure, the implementing transition system TS2 that implements TS1 could in turn be a subset of a broader unnamed transition system.

3 Multiagent Transition Systems: Centralized, Distributed, Synchronous and Asynchronous

3.1 Multiagent Transition Systems

We assume a domain \(\Pi \) of agents. While the set \(\Pi \) may be infinite, here we only consider finite subsets of \(\Pi \). In the following, we use \(a \neq b \in X \) as a shorthand for \(a \in X \land b \in X \land a \neq b \).

In the context of multiagent transition systems, the state of the system is referred to as configuration, so as not to confuse it with the local states of agents in a distributed multiagent transition system, defined next.

Definition 11 (Multiagent Transition System). Given agents \(P \subseteq \Pi \), a transition system \(TS = (C,c_0,T,\lambda) \), with configurations \(C \), initial configuration \(c_0 \), correct transitions \(T \subseteq C^2 \), and a liveness condition \(\lambda \) on \(T \), is **multiagent** over \(P \) if there is a multiagent partition \(C^2 = \bigcup_{p \in P} T_p \) of \(C^2 \) into disjoint sets \(T_p \) indexed by \(P \), \(T_p \cap T_q = \emptyset \) for every \(p \neq q \in P \). A transition \(t = s \rightarrow s' \in T_p \) is referred to as a **p-transition**, which is **correct** if \(t \in T \).

Note that \(T_p \) includes all possible behaviors of agent \(p \), both correct and incorrect.

Definition 12 (Safe, Live and Correct Agents). Given a multiagent transition system \(TS = (C,c_0,T,\lambda) \) over \(P \) and a run \(r \) of \(TS \), an agent \(p \) is **safe** in \(r \) if \(r \) includes only correct \(p \)-transitions, and \(p \) is **live** in \(r \) if for every \(L \in \lambda \) for which \(L \subseteq T_p \), \(r \) is live wrt \(L \). Agent \(p \) is **correct** in \(r \) if \(p \) is safe and live in \(r \).

Note that if \(\lambda = \{ T_p \cap T : p \in P \} \), namely the liveness condition is the multiagent partition restricted to correct transitions, then an agent \(p \) is live if it is live wrt its correct \(p \)-transitions \(T_p \cap T \).

Next, the generic transition system (Example 1) is modified to be multiagent. In the generic shared-memory multiagent transition system GS defined next, all agents operate on the same shared global state. Yet, the transitions of different agents are made disjoint by capturing abstractly the reality of shared-memory multiprocessor systems: Each configuration incorporates, in addition to a shared global state \(s \in S \), also a unique program counter for each agent. The program counter of agent \(p \) is advanced when a \(p \)-transition is taken.
Example 4 (GS: Generic Shared Memory). Given a set of agents $P \subseteq \Pi$ and states S with a designated initial state s_0, a generic shared-memory multiagent transition system over P and S, $GS = (C, c_0, TGS)$, has configurations $C = S \times \mathbb{N}^P$ that include a shared global state in S and a program counter $i_p \in \mathbb{N}$ for each agent $p \in P$, initial state $c_0 = (s_0, \{0\}^P)$, and transitions $TGS = \bigcup_{p \in P} TGS_p \subseteq C^2$, where each p-transition $(s, i) \rightarrow (s', i') \in TGS_p$ satisfies $i'_p = i_p + 1$ and $i'_q = i_q$ for every $q \neq p \in P$.

Note that TGS is arbitrary, and different agents may or may not be able to change the shared global state in the same way. But each transition identifies the agent p making the change by advancing p’s program counter.

Next, the single-chain transition system SC (Example 2) is modified to the multiagent transition system for single-chain consensus SCC. As SCC is monotonic, program counters are not needed; it is sufficient to identify the agent contributing the next element to the shared global chain to make transitions by different agents disjoint.

Example 5 (SCC: Single-Chain Consensus). Given a set of agents $P \subseteq \Pi$ and a set S, the single-chain consensus multiagent transition system over P and S is $SCC = ((S \times P)^*, \Lambda, TS\text{CC})$, with each configuration being a sequence of agent-identified states (s, p) of a state $s \in S$ and an agent $p \in P$, and $TS\text{CC}$ includes every transition $x \rightarrow x \cdot (s, p)$ for every $x \in (S \times P)^*$, $s \in S$ and $p \in P$.

Namely, an SCC run can generate any sequence of agent-identified elements of S, where any agent may contribute any element to any position in the sequence.

Next, we show that SCC can implement GS, making single-chain consensus universal for shared-memory multiagent transition systems.

Proposition 7. SCC over $P \subseteq \Pi$ and S can implement any generic shared-memory multiagent transition system GS over P and S.

Proof (outline of Proposition 7). The proof is similar to that of Proposition 2. Given a generic shared-memory multiagent transition system $GS = (S \times \mathbb{N}^P, c_0, TGS)$ over P and S, we define a subset SCC1 of SCC and a mapping σ_{1m} from SCC to GS that together implement GS. The transition system SCC1 $= ((S \times P)^+, s_0, TS\text{CC}1)$ has the p-transition $x \cdot (q, s) \rightarrow x \cdot (q, s) \cdot (p, s') \in TS\text{CC}1$ for every $x \in (S \times P)^+$, $q \in P$, and every p-transition $(s, i) \rightarrow (s', i') \in TGS$. The mapping $\sigma_{1m} : (S \times P)^+ \rightarrow S \times \mathbb{N}^P$ takes the last element of its input sequence and computes the ‘program counter’ of every agent based on the number of elements by that agent in the input sequence, namely $\sigma_{1m}(x \cdot (s, p)) := (s, i)$, where $i \in \mathbb{N}^P$ is defined by i_q being the number of occurrences of q in $x \cdot (s, p)$ for every $q \in P$. The proof that σ_{1m} is correct and complete has the same structure as the proof of σ_1 in Proposition 2.

3.2 Centralized and Distributed Multiagent Transition Systems

Having introduced centralized/shared-memory multiagent transition systems, and before introducing a distributed multiagent transition system, we formalize the two notions:
Definition 13 (Centralized and Distributed Multiagent Transition System). A multiagent transition system $TS = (C, c_0, T, \lambda)$ over P is distributed if:

1. $C = S^P$ for some set S, referred to as local states, namely each configuration $c \in C$ consists of a set of local states in S indexed by P, in which case we use $c_p \in S$ to denote the local state of $p \in P$ in configuration $c \in C$, and
2. Any p-transition $c \rightarrow c' \in T$ satisfies that $c'_p \neq c_p$ and $c'_q = c_q$ for every $q \neq p \in P$.

Else TS is centralized.

Namely, in a distributed transition system a p-transition (correct or incorrect) can only change the local state of p. As a shorthand, we will omit ‘multiagent’ from distributed multiagent transition systems, and instead of presenting a distributed multiagent transition system over P and S as $TS = (S^P, c_0, T, \lambda)$, we will refer to it as the distributed transition system $TS = (P, S, c_0, T, \lambda)$.

Next, we modify the longest-chain transition system LC (Example 3) to become the distributed transition system for longest-chain consensus LCC, in which each agent has a chain as its local state.

Example 6 (LCC: Longest-Chain Consensus). Given a set of agents $P \subseteq \Pi$ and states S, the LCC distributed longest-chain transition system, $LCC = (P, (S \times P)^*, e0, TLCC, \lambda)$, has sequences over $S \times P$ as local states, an empty sequence as the initial local state $e0 = \{A\}^P$, and as p-transitions $TLCC$ every $c \rightarrow c'$ where c' is obtained from c by only extending c_p, $c'_p = c_p \cdot (s,p')$, $s \in S$, $p' \in P$, and $c'_q = c_q$ for every $q \neq p \in P$, provided that either $p = p'$ and c_p is a longest sequence in c, or $p' \neq p$ and $c_p \cdot (s,p')$ is a prefix of $c_q \in c$ for some $q \neq p \in P$. The liveness condition $\lambda = \{T_p \cap T : p \in P\}$ is the multiagent partition restricted to correct transitions.

Note that the transition system, while distributed, is synchronous (a notion defined formally below), as an agent may or may not be able to extend its local chain depending on the present local states of other agents. Next, we show that LCC can implement SCC, making the longest-chain consensus distributed transition system LCC universal for shared-memory multiagent transition systems.

Proposition 8. LCC can implement SCC.

Proof (outline of Proposition 8). The proof is similar to that of Proposition 4. We observe that, similarly to SC and LC, both SCC and LCC are monotonically-complete wrt the prefix relation. For the implementation of SCC by LCC, σ_{2m} is the same as σ_2, except that it returns the longest proper chain in its input, namely a sequence over $S \times P$ (this will prove useful later in showing that σ_{2m} is resilient to certain faults). The proof that σ_{2m} is order-preserving wrt \preceq and productive is the same as that of Proposition 5. Hence, according to Theorem 1, σ_{2m} is correct and complete, which completes the proof.

We noted informally why we consider LCC synchronous. Next, we define the notions of synchronous and asynchronous distributed transition systems, prove
that LCC is synchronous and investigate an asynchronous distributed transition system and its implementation of the LCC.

3.3 Synchronous and Asynchronous Distributed Multiagent Transition Systems

A partial order \preceq over a set of local states S naturally extends to configurations $C = S^P$ over $P \subseteq \Pi$ and S by $c \preceq c'$ for $c, c' \in C$ if $c_p \preceq c'_p$ for every $p \in P$.

Definition 14 (Distributed Transition System; Synchronous and Asynchronous). Given agents $P \subseteq \Pi$, local states S, and a distributed transition system $TS = (P, S, c_0, T, \lambda)$, then TS is asynchronous wrt a partial order \preceq on S if:

1. TS is monotonic wrt \preceq, and
2. for every p-transition $c \rightarrow c' \in T$, T also includes the p-transition $d \rightarrow d'$ for every $d, d' \in C$ that satisfy the following asynchrony condition:

$$c \preceq d, d_p = c_p, d'_p = c'_p, \text{ and } d'_q = d_q \text{ for every } q \neq p \in P.$$

If no such partial order on S exists, then TS is synchronous.

With this definition, we note that the distributed longest-chain transition system LCC is not asynchronous wrt the prefix relation, as an enabled transition to extend the local chain can become disabled if some other chain extends and becomes longer. We argue that this is the case wrt any partial order.

Proposition 9. LCC is synchronous.

Proof. We have to show that there is no partial order wrt LCC is asynchronous. By way of contradiction, assume that for $LCC = (P, (S \times P)^*, c_0, TLCC)$ there is a partial order \preceq on $(S \times P)^*$ wrt which LCC is asynchronous. In such a case, by definition, LCC is monotonic wrt \preceq. Let c be a configuration in which c_p is a longest chain, and let $c \xrightarrow{q} \tilde{c}$ be a computation of q-transitions in which the chain of q is increased until \tilde{c}_q is longer than c_p. By monotonicity of LCC, $c \preceq \tilde{c}$. Let $c \rightarrow c'$ be the p-transition $c_p \rightarrow c'_p \cdot (s, p)$, with $s \in S$. Let d be the configuration identical to c except that $d_q := \tilde{c}_q$, and let d' be identical to d except that $d'_p := c'_p$. Hence d, d' satisfy the asynchrony condition (Definition 14) wrt c, c', and by assumption that LCC is asynchronous wrt \preceq it follows that the p-transition $d \rightarrow d' \in TLCC$. However, this p-transition extends p even though d_p is not the longest chain (d_q is longer by construction). A contradiction. □

Next we devise an asynchronous distributed dissemination transition system ADD, and prove its universality by using it to implement the synchronous LCC.

Definition 15 (Block). Given agents $P \subseteq \Pi$ and states S, a block over P and S is a triple $(p, i, s) \in P \times \mathbb{N} \times S$. Such a block is referred to as an i-indexed p-block with payload s.

Example 7 (ABD: Asynchronous Distributed Block Dissemination). Given a set of agents $P \subseteq \Pi$ and states S that do not include the undefined element $\bot \notin S$, the asynchronous distributed block dissemination transition system, $\text{ABD} = (P,B,c_0,TABD,\lambda)$, has local states B being all finite sets of blocks over P and $S \cup \{\bot\}$, an empty set as the initial local state $c_0 = \{\emptyset\}^P$, and $TABD$ has every p-transition $c \rightarrow c'$ for every $p \in P$, where c' is obtained from c by adding a block $b = (p',i,s)$ to c_p, $c'_p = c_p \cup \{b\}$, $p' \in P$, $i \in \mathbb{N}$, $s \in S \cup \{\bot\}$, and either

1. p-Creates-b: $p' = p$, $i = i' + 1$, where $i' := \max \{j : (p,j,s) \in c_p\}$, or
2. p-Receives-b: $p' \neq p$, $(p',i,s) \in c_q \setminus c_p$ for some $q \neq p \in P$.

The liveness condition λ is induced by the transition labels p-Creates-b and p-Receives-b: Two transitions are placed by λ into the same set if they have the same label.

In other words, every agent p can either add a consecutively-indexed p-block to its local state, possibly with \bot as payload, or obtain a non-p-block it does not have from some other agent.

Next, we explore some properties of ABD: Fault-resilient dissemination and equivocation detection. We use ‘p knows b’ in a run r to mean that $b \in c_p$ for some $c \in r$.

While in ABD agents do not explicitly disseminate blocks they know to other agents, only receive blocks that they do not know from other agents, faulty agents may cause partial dissemination by deleting a block from their local state after only some of the agents have received it. The following proposition states that faulty agents cannot prevent correct agents from eventually sharing all the blocks that they know, including blocks created and partially disseminated by faulty agents.

Proposition 10 (ABD Block Liveness). In an ABD run, if a correct agent knows a block b then eventually all correct agents know b.

Proof (of Proposition 10). If in configuration c there is a block b known by q but not by p, both correct, then this holds in every subsequent configuration unless p receives b. Hence, due to liveness of p-Receives-b, either the p-Receives-b from q transition is eventually taken, or p receives b through a p-Receives-b transition from another agent. In either case, p eventually receives b. \hfill \Box

Definition 16 (Equivocation). An equivocation by agent p consists of two p-blocks $b = (p,i,s)$, $b' = (p,i',s')$ where $i = i'$ but $s \neq s'$. An agent p is an equivocator in B if B includes an equivocation by p. A set of blocks B is equivocation-free if it does not include an equivocation.

The following corollary states that if an agent p tries to mislead (e.g. double spend) correct agents by disseminating to different agents equivocating blocks, then eventually all correct agents will know that p is an equivocator.

Corollary 2 (ABD Equivocation Detection). In an ABD run, if two blocks b,b' of an equivocation by agent p are each known by a different correct agent, then eventually all correct agents know that p is an equivocator.
Next, we prove that asynchronous distributed block dissemination ABD can implement the synchronous distributed longest-chain LCC. In fact, this implementation offers a naive distributed asynchronous ordering consensus protocol. Its lack of resilience to equivocation and to fail-stop agents, implied by the FLP theorem [10], is discussed in the next section. This limitation reflects on the implementation presented here and on ABD: The Cordial Miners family of protocols [20] employs a more concrete and practical (blocklace-based) variant of asynchronous block dissemination to construct Byzantine fault-resilient order consensus protocols for the models of asynchrony and eventual synchrony.

Proposition 11. ABD can implement LCC.

Proof (outline of Proposition 11). Given LCC = \((P, (S \times P)^*, c0, TLCC)\) and ABD = \((P, B, c0, TABD, \lambda)\), observe that ABD and LCC are monotonically-complete wrt \(\subseteq\) and \(\preceq\), respectively. Define \(\sigma_3\) for each configuration \(c \in C\) by \(\sigma(c)_p := \sigma'_3(c_p)\), where \(\sigma'_3\) is defined as follows. Given a set of blocks \(B\), let \(\text{sort}(B)\) be the sequence obtained by sorting \(B\) lexicographically, removing \(\perp\) blocks and then possibly truncating the output sequence, where blocks \((p, i, s)\) are sorted first according to the index of the block \(i \in \mathbb{N}\) and then according to the agent \(p \in P\), and truncation occurs at the first gap if there is one, namely at the first index \(i\) for which the next agent in order is \(p\) but there is no block \((p, i, s) \in B\) for any \(s \in S \cup \{\perp\}\). Proposition 12 argues that \(\sigma_3\) is order-preserving, which allows the application of Theorem 1 and completes the proof. \(\Box\)

Namely \(\sigma_3\) performs for each agent \(p\) a ‘round robin’ complete total ordering of the set of block of its local state \(c_p\), removing undefined elements along the way, until some next block missing from \(c_p\) prevents the completion of the total order.

First, we observe that for every configuration \(c \in r\) in an ABD run \(r\), the sequences in \(\sigma_3(c)\) are consistent. Note that if \(x \preceq y\) and \(x' \preceq y\) then \(x\) and \(x'\) are consistent.

Observation 6 (Consistency of \(\sigma_3\)). Let \(r\) be a correct run of ABD. Then for every configuration \(c \in r\), the chains of \(\sigma(c)\) are mutually consistent.

Proof (of Observation 6). First, note that in a correct run \(r\), every configuration \(c \in r\) is equivocation free. Also note that \(\sigma'_3\) is monotonic wrt \(\subseteq\) and \(\preceq\), namely if \(B \subseteq B'\) and both \(B, B'\) are equivocation free, then \(\sigma'_3(B) \preceq \sigma'_3(B')\). For a configuration \(c \in r\), \(c_p \subseteq B(c)\) for every \(p \in P\) and hence \(\sigma'_3(c_p) \preceq \sigma'_3(B(c))\), and therefore every two sequences \(\sigma'_3(c_p), \sigma'_3(c_q)\) are consistent. \(\Box\)

Next, we show that \(\sigma_3\) is order preserving.

Proposition 12. \(\sigma_3\) is order preserving wrt \(\subseteq\) and \(\preceq\).

Proof. According to definition 9 we have to prove two conditions. For the Up condition, we it is easy to see from the definition of \(\sigma_3\) that \(c_1' \subseteq c_2'\) for \(c_1', c_2' \in B^P\) implies that \(\sigma(c_1') \preceq \sigma(c_2')\), as the output sequence of the sort procedure can only increase if its input set increases.
For the Down condition, we construct an ABD representative configuration for a LCC configuration so that if the \(i \)th element of the LCC longest chain is \((p, s)\), then the ABD configuration has the block \((p, i, s)\), as well as the blocks \((q, i, \bot)\) for every other agents \(q \neq p \). Specifically, given a LCC configuration \(c \) with a longest chain \(c_l = (s_0, p_0), (s_1, p_1), \ldots, (s_k, p_k) \) for some \(l \in P \), we define the representative ABD configuration \(c' \) as follows. First, let \(B \) be the following set of blocks \(B \): For each \(i \in [k] \) \(B \) has the block \((p_i, i, s_i)\) and the blocks \((q, i, \bot)\) for every \(q \neq p \). Clearly \(\sigma_3^j(B) = c_l \) by construction. Let \(B^j := \{(p, j, s) \in B : j \leq i\} \). It is easy to see that for each \(i \in [k] \), \(\sigma_3^j(B^j) \) is the \(i \)-prefix of the longest chain \(c_l \). Then for each \(p \in P \), where \(|c_p| = i\), we define \(c'_p := B^j \). Hence, \(\sigma_3^j(c'_p) = c_p \) for every \(p \in P \) and thus \(\sigma_3(c') = \sigma(c) \).

\[\blacksquare \]

4 Safety Faults, Liveness Faults, and their Resilience

A safety fault is a subset (or all) of the incorrect transitions, and a liveness fault is a subset of the liveness condition. A computation performs a safety fault \(F \) if it includes an \(F \) transition. It performs a liveness fault \(\lambda' \subseteq \lambda \) if it is not live w.r.t a set \(L \in \lambda' \). Formally:

Definition 17 (Safety and Liveness Faults). Given a transition system \(TS = (S, s_0, T, \lambda) \), a safety fault is a set of incorrect transitions \(F \subseteq S^2 \setminus T \). A computation performs a safety fault \(F \) if it includes a transition from \(F \). A liveness fault is a a subset \(\lambda' \subseteq \lambda \) of the liveness condition \(\lambda \). An infinite run performs a liveness fault \(\lambda' \) if it is not live w.r.t \(L \) for some \(L \in \lambda' \).

Note that any safety fault can be modelled with the notion thus defined, by enlarging \(S \) and thus expanding the set of available incorrect transitions \(S^2 \). Similarly, any liveness fault can be modeled by revising \(\lambda \) accordingly.

Definition 18 (Safety-Fault Resilience). Given transition systems \(TS = (S, s_0, T, \lambda) \), \(TS' = (S', s'_0, T', \lambda') \) and a safety fault \(F \subseteq S^2 \setminus T' \), a correct implementation \(\sigma : S' \to S \) is \(F \)-resilient if for any live \(TS' \) run \(r' \subseteq T \cup F \), the run \(\sigma(r') \) is correct.

In other words, a safety-fault resilient implementation does not produce incorrect transitions of the specification even if the implementation performs safety faults, and it produces a live run if the implementation run is live.

Next we compare the resilience of single-chain consensus SCC and longest-chain consensus LCC to the safety fault in which an agent trashes the chain by adding junk to it. We show that the implementation of the generic shared-memory GS by LCC is more resilient to such faults than the implementation by SCC: In SCC such a faulty transition terminates the run, violating liveness; in LCC it does not, as long as there is at least one non-faulty agent.

Example 8 (Resilience to Safety Faults in Implementations by SCC and LCC). For SCC, consider the safety fault \(F1 \) to be the faulty transitions \(c \to c \cdot 0 \) for every configuration \(c \) and some \(q \in P \). For LCC, consider the safety fault \(F2 \) to
be the faulty q-transitions $c_q \rightarrow c_q \cdot 0$ for every configuration c and some agent $q \in P$. Then a faulty SCC run r with an $F1$ transition cannot be continued, and hence $\sigma_2(r)$ is not live and hence incorrect. On the other hand, in a faulty LCC run r with $F2$ transitions, the faulty transitions are mapped by σ_{2m} to stutter, the run can continue and the implementation is live as long as at least one agent is not faulty. Note that this holds for the implementation of SCC by LCC, as well as for the composed implementation of GS by LCC, as stated by the following Theorem 2 (the $F3$ case).

The following Theorem addresses the composition of safety-fault resilient implementations. See Figure 3.

Theorem 2 (Composing Safety-Fault Resilient Implementations). Assume transition systems $TS_1 = (S_1, s_1, T_1, \lambda_1)$, $TS_2 = (S_2, s_2, T_2, \lambda_2)$, $TS_3 = (S_3, s_3, T_3, \lambda_3)$, correct implementations $\sigma_{21} : S_2 \rightarrow S_1$ and $\sigma_{32} : S_3 \rightarrow S_2$, and let $\sigma_{31} := \sigma_{21} \circ \sigma_{32}$. Then:

1. If σ_{32} is resilient to $F3 \subseteq S_3^2 \setminus T_3$, then σ_{31} is resilient to $F3$.
2. If σ_{21} is resilient to $F2 \subseteq S_2^2 \setminus T_2$, and $F3 \subseteq S_3^2 \setminus T_3$ satisfies $\sigma_{32}(F3) \subseteq F2$, then σ_{31} is resilient to $F3$.
3. These two types of safety-fault resilience can be combined for greater resilience: If σ_{21} is $F2$-resilient, σ_{32} is $F3$-resilient, $F3' \subseteq S_3^2 \setminus T_3$, and $\sigma_{32}(F3') \subseteq F2$, then σ_{31} is resilient to $F3 \cup F3'$.

Proof (of Theorem 2). Assume transition systems and implementations as in the theorem statement. As the composition of live implementations is live, and the
assumption is that the runs with safety faults are live, we only argue for safety and conclude correctness.

1. Assume that σ_{32} is resilient to $F3 \subseteq S3^2 \setminus T3$. We argue that σ_{31} is resilient to $F3$. Then for any $TS3$ run $r \subseteq T3 \cup F3$, the run $\sigma_{31}(r) \in TS1$ is correct, namely $\sigma_{31}(r) \in T1$, since σ_{32} is $F3$-resilient by assumption, and hence $r' = \sigma_{32}(r)$ is correct, and σ_{21} is correct by assumption, and hence $\sigma_{21}(r)$ is correct, namely $\sigma_{31}(r) = \sigma_{21} \circ \sigma_{32}(r) \in T1$.

2. Assume σ_{21} is resilient to $F2 \subseteq S2^2 \setminus T2$, and $F3 \subseteq S3^2 \setminus T3$ satisfies $\sigma_{32}(F3) \subseteq F2$. We argue that σ_{31} is resilient to $F3$. For any $TS3$ run $r \subseteq T3 \cup F3$, the run $\sigma_{32}(r) \in TS2 \cup F2$ by assumption. As σ_{21} is $F2$-resilient by assumption, the run $\sigma_{21} \circ \sigma_{32}(r) = \sigma_{31}(r)$ is correct.

3. Assume that σ_{21} is $F2$-resilient, σ_{32} is $F3$-resilient, $F3' \subseteq S3^2 \setminus T3$, and $\sigma_{32}(F3') \subseteq F2$. We argue that σ_{31} is resilient to $F3 \cup F3'$. For any $TS3$ run $r \subseteq T3 \cup F3 \cup F3'$, the run $\sigma_{32}(r) \in TS2 \cup F2$ by assumption. As σ_{21} is $F2$-resilient by assumption, the run $\sigma_{21} \circ \sigma_{32}(r) = \sigma_{31}(r)$ is correct.

\[\square\]

Next we consider the implementation of longest-chain consensus LCC by asynchronous block dissemination ABD, and it non-resilience to the safety fault of equivocation.

Example 9 (Non-Resilience to Equivocation of the implementation of LCC by ABD). Consider the implementation σ_3 of LCC $\langle P, (S \times P)^\ast, 0, TLCC \rangle$ by ABD $\langle P, B, c0, TABD, \lambda \rangle$, and let $F \subseteq (B^P)^2$ include equivocations by a certain agent $p \in P$ for every configuration, namely for every configuration $c \in B^P$ in which c_p includes a p-block $b = (p, i, s)$, F includes the p-transition $c_p \rightarrow c_p \cup \{b'\}$ for $b' = (p, i, s')$ for some $s' \neq s \in S$. A run r with such an equivocating transition by p may include subsequently a q-Receives-b and q'-Receives-b' transitions, following which, say in configuration c', the chain computed by $\sigma_3(c')$ for q and for q' would not be consistent, indicating $\sigma_3(r)$ to be faulty (not safe).

Definition 19 (Can Implement with Safety-Fault Resilience). Given transition systems $TS = (S, s0, T, \lambda)$, $TS' = (S', s0', T', \lambda')$ and $F \subseteq S^2 \setminus T'$, TS' **can implement TS with F-resilience** if there is a subset $TS'' = (S'', s0'', T'', \lambda'') \subseteq TS'$, $F \subseteq S'' \times S''$, and an F-resilient implementation $\sigma : S'' \rightarrow S$ of TS by TS''.

The requirement $F \subseteq S'' \times S''$ ensures that the subset TS'' does not simply ‘define away’ the faulty transitions F.

Definition 20 (Can Implement with Liveness-Fault Resilience). Given transition systems $TS = (S, s0, T, \lambda)$, $TS' = (S', s0', T', \lambda')$, then TS' **can implement TS with \(\lambda\)-resilience**, $\lambda \subseteq \lambda'$, if there is a subset $TS'' = (S'', s0'', T'', \lambda'') \subseteq TS'$, and an implementation $\sigma : S'' \rightarrow S$ of TS by TS'', resilient to λ restricted to λ''.

As an example of resilience to a liveness fault, consider the following:
Example 10 (Resilience to fail-stop agents of the implementation of SCC and GC by LCC). Consider \(\text{LCC} = (\mathcal{P}, (S \times \mathcal{P})^*, c_0, T_{\text{LCC}}, \lambda) \), and recall that the liveness condition \(\lambda = \{ T_p \cap T : p \in \mathcal{P} \} \) is the multiagent partition restricted to correct transitions. An LCC run \(r \) with a liveness fault \(\lambda' \) may have all agents \(p \) for which \(T_p \in \lambda' \) fail-stop after some prefix of \(r \). Still, at least one live agent remains by the assumption that \(\lambda' \) is a strict subset of \(\lambda \), and hence \(\sigma_2(r) \) is a live (and hence correct) LCC run. Thus \(\sigma_3 \) is resilient to any liveness fault of LCC provided at least one agent remains live. Next, consider the implementation of GC by LCC. First, we defined a subset SCC1 of SCC to implement GC. Then we defined LCC1 a subset of LCC to implement SCC1. Such a composed implementation is resilient to fail-stop agents (\(\bar{\lambda} \) in the example above), where their transitions are restricted to LCC1 (\(\lambda'' \) in the definition above).

5 Family of Multiagent Transition Systems, Grassroots Composition and Implementation

In the following we assume that the set of local states \(S \) is a function of the set of participating agents \(\mathcal{P} \subset \Pi \). Intuitively, the local states could be sets of signed and/or encrypted messages sent by members of \(\mathcal{P} \) to members of \(\mathcal{P} \); NFTs created by and transferred among members of \(\mathcal{P} \); or blocks signed by members of \(\mathcal{P} \), with hash pointers to blocks by other members of \(\mathcal{P} \). With this notion, we define a family of transition systems to have for each set of agents \(\mathcal{P} \subset \Pi \) one transition system \(T \mathcal{S}(\mathcal{P}) = (C(\mathcal{P}), c_0(\mathcal{P}), T(\mathcal{P}), \lambda(\mathcal{P})) \in \mathcal{F} \) with configurations \(C(\mathcal{P}) \) over \(\mathcal{P} \) and \(S(\mathcal{P}) \), transitions \(T(\mathcal{P}) \) over \(C(\mathcal{P}) \) and a liveness condition \(\lambda(\mathcal{P}) \). The states of \(\mathcal{F} \) are \(S(\mathcal{F}) := \bigcup_{\mathcal{P} \subset \Pi} S(\mathcal{P}) \).

Definition 21 (Family of Multiagent Transition Systems). Assume a function \(S \) that maps each set of agent \(\mathcal{P} \subset \Pi \) into a set of local states \(S(\mathcal{P}) \). A family \(\mathcal{F} \) of multiagent transition systems over \(S \) is a set of transition systems such that for each set of agents \(\mathcal{P} \subset \Pi \) there is one transition system \(T \mathcal{S}(\mathcal{P}) = (C(\mathcal{P}), c_0(\mathcal{P}), T(\mathcal{P}), \lambda(\mathcal{P})) \in \mathcal{F} \) with configurations \(C(\mathcal{P}) \) over \(\mathcal{P} \) and \(S(\mathcal{P}) \), transitions \(T(\mathcal{P}) \) over \(C(\mathcal{P}) \) and a liveness condition \(\lambda(\mathcal{P}) \). The states of \(\mathcal{F} \) are \(S(\mathcal{F}) := \bigcup_{\mathcal{P} \subset \Pi} S(\mathcal{P}) \).

For simplicity and to avoid notational clutter, we often assume a given set of agents \(\mathcal{P} \) and refer to the representative member of \(\mathcal{F} \) over \(\mathcal{P} \), rather than to the entire family \(\mathcal{F} \), and refer to it as a protocol. Furthermore, when the family \(\mathcal{F} \) and the set of agents \(\mathcal{P} \) are given we sometimes refer to the protocol \(T \mathcal{S}(\mathcal{P}) = (C(\mathcal{P}), c_0(\mathcal{P}), T(\mathcal{P}), \lambda(\mathcal{P})) \in \mathcal{F} \) simply as \(T = (C, c_0, T, \lambda) \) over \(\mathcal{P} \).

Next, we define the notion of a grassroots family of multiagent transition systems. Intuitively, in a grassroots family, the behavior of agents in a small community is not constrained by its context, for example by this community being composed with another community or, equivalently, being embedded within a larger community. Yet, agents in two communities placed together may behave in new ways not possible when the two communities operate in isolation, in particular interact with each other across community boundaries. Clearly, a grassroots family is ‘permissionless’, in the sense that one group of agents
cannot prevent another agent or another group of agents from participating in the protocol. Hence, each community performing a protocol in the family can form and grow, initially without being aware of other communities, but may interoperate with other communities later as members of different communities become aware of each other, typically through new joint members. In particular, a community may form spontaneously and operate independently, without requiring access to any centralized resource. This supports the grassroots deployment of a distributed system – multiple independent disjoint deployments at different locations and over time, which may subsequently interoperate once interconnected.

We define the notion of grassroots with two auxiliary notions: subsidiarity and interactivity. They require the notions of projection of configuration and union of distributed transition systems, defined next.

Definition 22 (Projection of a Configuration). Let $P' \subset P \subset \Pi$ and let $TS = (C,c_0,T)$ be a distributed transition system over P. The projection of a configuration $c \in C$ over P', c/P', is the configuration c' over P' satisfying $c'_{p} = c_{p}$ for all $p \in P'$.

The union of two distributed transition systems over disjoint sets of agents includes all transitions in which one component makes its own transition and the other component stands still, implying that the runs of the union include exactly all interleavings of the runs of its components.

Definition 23 (Union of Distributed Transition Systems). Let $TS_1 = (C_1,c_{01},T_1)$, $TS_2 = (C_2,c_{02},T_2)$ be two distributed transition systems over $P_1,P_2 \subset \Pi$ and S_1,S_1, respectively, $P_1 \cap P_2 = \emptyset$. Then the union of TS_1 and TS_2, $TS := TS_1 \cup TS_2$, is the multiagent transition systems $TS = (C,c_0,T)$ over $P_1 \cup P_2$, with C being configurations over $P_1 \cup P_2$ and $S_1 \cup S_2$, initial state c_0 satisfying $c_0/P_1 = c_{01}$, $c_0/P_2 = c_{02}$, and all p-transitions $c \rightarrow c' \in T$, $p \in P$, satisfying $p \in P_1 \land (c/P_1 \rightarrow c'/P_1) \in T_1 \land c/P_2 = c'/P_2$ or $p \in P_2 \land (c/P_2 \rightarrow c'/P_2) \in T_2 \land c/P_1 = c'/P_1$.

Union of transition systems is a rather weak notion, as agents from the two disjoint components of the composed transition system do not interact; each component can only perform the same computations it could do independently, but now interleaved with the other component. We say that a family of transition systems is upholds subsidiarity if a composed system includes all computations each component can do on its own, or, in other words, the composition does not prevent each component to behave independently, as if it is on its own.

Definition 24 (Subsidiarity). A family of distributed transition systems \mathcal{F} upholds subsidiarity if for every $\emptyset \subset P_1, P_2 \subset \Pi$ such that $P_1 \cap P_2 = \emptyset$, the following holds:

$$TS(P_1) \cup TS(P_2) \subseteq TS(P_1 \cup P_2)$$

Example 11 (Synchronous LCC does not uphold subsidiarity; Asynchronous ABD does). We note that the union of two longest-chain consensus LCC transition
systems over disjoint sets of agents is not an LCC transition system. The reason is that since the component transition systems operate independently, the chains they create can be inconsistent, and in particular their longest chains. Hence their union \(\text{LCC}(P_1) \cup \text{LCC}(P_1) \) may have computations that reach inconsistent states, computations that are not in \(\text{LCC}(P_1 \cup P_2) \). Hence LCC does not uphold subsidiarity. On the other hand, ABD does hold subsidiarity: In two disjoint components \(ABD(P_1) \) and \(ABD(P_2) \) agents create and receive blocks among themselves. These behaviors (and others, as we see below) are also available in \(ABD(P_1 \cup P_2) \).

We say that a family of transition systems is interactive if two sets of agents can perform together computations they cannot perform in isolation.

Definition 25 (Interactive). A family of distributed transition systems \(F \) is **interactive** if for every \(\emptyset \subset P_1, P_2 \subset \Pi \) such that \(P_1 \cap P_2 = \emptyset \), the following holds:

\[
\text{TS}(P_1 \cup P_2) \not\subseteq \text{TS}(P_1) \cup \text{TS}(P_2)
\]

Example 12 (ABD is interactive). It is easy to see that the family of asynchronous block dissemination ABD transition systems is interactive, as in the union of two components each component can perform \(p\text{-Receives-}b \) transitions for blocks created by agents in the other component.

Finally, the notion of grassroots composition combines the two concepts: It requires the composed system to include all computations each component can do on its own, and then some. In other words, each component of the composed transition system can still behave independently, as if it is on its own; but put together, the composed system has additional behaviors.

Definition 26 (Grassroots). A family of distributed transition systems \(F \) supports **grassroots composition**, or is **grassroots**, if for every \(\emptyset \subset P_1, P_2 \subset \Pi \) such that \(P_1 \cap P_2 = \emptyset \), the following holds:

\[
\text{TS}(P_1) \cup \text{TS}(P_2) \subset \text{TS}(P_1 \cup P_2)
\]

Observation 7 A family of transition systems is grassroots iff it upholds subsidiarity and is interactive.

Proof (of Observation 7). Upholding subsidiarity implies the ‘subset or equal’ relation. Interactivity excludes the ‘equal’ part, leaving the strict subset in the definition of grassroots.

Example 13 (ABD is grassroots, LSC is not). As a corollary to Observation 7 and the discussion above, we conclude that ABD is grassroots since it upholds subsidiarity and is interactive, whereas LCC is not since it does not uphold subsidiarity.
Clearly, global platforms such as Facebook, Amazon, Uber, are not grassroots. Two disjoint sets of agents cannot operate them independently as there is only one global address for each such platform, and behind it one centralized system serving all its users (or, in case of regional subsidiaries, one global address per region or country).

The case of global cryptocurrencies such as Bitcoin is more interesting as, intuitively, they may appear to be grassroots. However, Bitcoin also employs global addresses, as when started for the first time, programs query one or more hard-coded DNS names, called DNS seeds [9]. Two disjoint sets of miners may operate Bitcoin initially independently (e.g. by each employing a different seed). However, eventually communication among the seeds will cause the longest chain among the two to take over and the losing set of miners to abandon their chain and join the winning chain, violating subsidiarity. One can easily imagine two independent Bitcoins that use disjoint seeds that do not communicate with each other. Indeed two such systems can operate indefinitely without violating subsidiarity; but they will violate interactivity: The two systems will not have additional behaviors as a result of being put together.

Hence, either way, the Bitcoin architecture is not grassroots, which is commensurate with its goal: To establish a global dominant cryptocurrency. A key part of our research agenda is the development of grassroots protocols and applications, including grassroots alternatives to global platforms and global cryptocurrencies [34].

Next, we provide an operational characterization of grassroots via the notion of interleaving.

Definition 27 (Joint Configuration, Interleaving). Let F be a family of distributed transition systems, $P_1, P_2 \subset \Pi$, $P_1 \cap P_2 = \emptyset$. Then a **joint configuration** c of $c_1 \in C(P_1)$ and $c_2 \in C(P_2)$, denoted by (c_1, c_2), is the configuration over $P_1 \cup P_2$ and $S(P_1) \cup S(P_2)$ satisfying $c_1 = c / P_1$ and $c_2 = c / P_2$. Let $r_1 = c_1 \rightarrow c_1 \rightarrow c_2 \rightarrow \ldots$ be a run of $TS(P_1)$, $r_2 = c_2 \rightarrow c_1 \rightarrow c_2 \rightarrow \ldots$ a run of $TS(P_2)$. Then an **interleaving** r of r_1 and r_2 is a sequence of joint configurations $r = c_0 \rightarrow c_1 \rightarrow c_2 \rightarrow \ldots$ over $P_1 \cup P_2$ and $S(P_1) \cup S(P_2)$ satisfying:

1. $c_0 = (c_{10}, c_{20})$
2. For all $i \geq 0$, if $c_i = (c_{1j}, c_{2k})$ then $c_{i+1} = (c_{1j'}, c_{2k'})$ where either $j' = j + 1$ and $k' = k$ or $j' = j$ and $k' = k + 1$.

Note that for $c_i = (c_{1j}, c_{2k})$, $i = j + k$ for all $i \geq 0$.

Theorem 3 (Operational Characterization of Grassroots). Let F be a family of distributed transition systems with no redundant configurations. Then F is grassroots iff for every $\emptyset \subset P_1, P_2 \subset \Pi$ such that $P_1 \cap P_2 = \emptyset$, the following holds:

One can imagine going one step further, endowing each Bitcoin system with a different port number so that combining the two systems will allow each miner to participate in both Bitcoins, creating additional behaviors; but then some agency will have to allocate port numbers to the different Bitcoins, as collisions would violate subsidiarity, and we are back to square one.
For every two runs \(r_1 \) of \(TS(P_1) \in \mathcal{F} \) and \(r_2 \) of \(TS(P_2) \in \mathcal{F} \), every interleaving \(r = c_0 \rightarrow c_1 \rightarrow \ldots \) of \(r_1 \) and \(r_2 \) is a run of \(TS(P_1 \cup P_1) \in \mathcal{F} \), and

\[\mathcal{F} \subseteq \text{every two runs } r_1 \text{ of } TS(P_1) \in \mathcal{F} \text{ and } r_2 \text{ of } TS(P_2) \in \mathcal{F}, \text{ every interleaving } r = c_0 \rightarrow c_1 \rightarrow \ldots \text{ of } r_1 \text{ and } r_2 \text{ is a run of } TS(P_1 \cup P_1) \in \mathcal{F}, \text{ and} \]

\[\exists \text{ There is a run } r \text{ of } TS(P_1 \cup P_1) \in \mathcal{F} \text{ that is not an interleaving of any two runs } r_1 \text{ of } TS(P_1) \in \mathcal{F} \text{ and } r_2 \text{ of } TS(P_2) \in \mathcal{F}. \]

Proof (outline of Theorem 3). The Theorem follows from the following Propositions 13 and 14, and from Observation 7.

Definition 25 of interactivity is algebraic. The following Proposition 13 provides an alternative operational characterization of interactivity via interleavings of runs of its component transition systems, defined next.

Proposition 13 (Operational Characterization of Interactivity). Let \(\mathcal{F} \) be a family of distributed transition systems. Then \(\mathcal{F} \) is interactive iff for every \(\emptyset \subset P_1, P_2 \subset \Pi \) such that \(P_1 \cap P_2 = \emptyset \), there is a run of \(TS(P_1 \cup P_1) \in \mathcal{F} \) that is not an interleaving of any run of \(TS(P_1) \in \mathcal{F} \) and any run of \(TS(P_2) \in \mathcal{F} \).

Proof. To prove the ‘if’ direction by way of contradiction, assume that the condition holds and that \(\mathcal{F} \) is not interactive. Then there are \(P_1, P_2 \) as stated for which every member of \(TS(P_1) \cup TS(P_2) \) is a member of \(TS(P_1 \cup P_2) \). For every run \(r \) of \(TS(P_1 \cup P_1) \in \mathcal{F} \) there are two runs \(r_1 \) of \(TS(P_1) \in \mathcal{F} \) and \(r_2 \) of \(TS(P_2) \in \mathcal{F} \) for which \(r \) is their interleaving. By Definition 27, \(TS(P_1 \cup P_1) \) includes all \(p \)-transitions \(c \rightarrow c' \in T, p \in P \), satisfying \(p \in P_1 \land (c/P_1 \rightarrow c'/P_1) \in T_1 \land c/P_2 = c'/P_2 \) or \(p \in P_2 \land (c/P_2 \rightarrow c'/P_2) \in T_2 \land c/P_1 = c'/P_1 \). This satisfies the condition of Definition 28 of union, namely \(TS(P_1 \cup TS(P_1) \subseteq TS(P_1 \cup P_2) \). A contradiction.

To prove the ‘only if’ direction by way of contradiction, assume that \(\mathcal{F} \) is interactive but that the condition does not hold. Hence for every run \(r \) of \(TS(P_1 \cup P_1) \in \mathcal{F} \) there are two runs \(r_1 \) of \(TS(P_1) \in \mathcal{F} \) and \(r_2 \) of \(TS(P_2) \in \mathcal{F} \) for which \(r \) is their interleaving. By Definition 28 of union, this implies that \(TS(P_1) \cup TS(P_2) \supseteq TS(P_1 \cup P_2) \), a contradiction. This completes the proof.

We say that a configuration in a transition system is redundant if it is not reachable by a run of the transition system.

Proposition 14 (Operational Characterization of Subsidiarity). Let \(\mathcal{F} \) be a family of distributed transition systems with no redundant configurations. Then \(\mathcal{F} \) upholds subsidiarity iff for every \(P_1, P_2 \subset \Pi \) such that \(P_1 \cap P_2 = \emptyset \), and every two runs \(r_1 \) of \(TS(P_1) \in \mathcal{F} \) and \(r_2 \) of \(TS(P_2) \in \mathcal{F} \), every interleaving \(r = c_0 \rightarrow c_1 \rightarrow \ldots \) of \(r_1 \) and \(r_2 \) is a run of \(TS(P_1 \cup P_1) \in \mathcal{F} \).

Proof. To prove the ‘if’ direction by way of contradiction, assume that the condition holds and that \(\mathcal{F} \) does not uphold subsidiarity. Then there are \(P_1, P_2 \) satisfying the condition, and two transitions \(c_1 \rightarrow c_1' \in T(P_1), c_2 \rightarrow c_2' \in T(P_2) \), such that the \(p \)-transition \((c_1,c_2) \rightarrow (c_1',c_2') \notin T(P_1 \cup P_2) \). Since \(\mathcal{F} \) has no redundant configurations, there are runs \(r_1 = c_01 \rightarrow c_1' \in T(P_1) \) and \(r_2 = c_02 \rightarrow c_2' \in T(P_1) \), and consider their interleaving \(r \), in which the last
transition is \((c_1, c_2) \rightarrow (c_1', c_2')\). By construction, the last transition of the run \(r\) is \((c_1, c_2) \rightarrow (c_1', c_2')\), implying that it is in \(T(P_1 \cup P_2)\), a contradiction.

To prove the ‘only if’ direction by way of contradiction, assume that \(F\) upholds subsidiarity but that the condition does not hold. Hence there are runs \(r_1\) and \(r_2\) of \(TS(P_1)\) and \(TS(P_2)\), with an interleaving \(r\) that is not a run of \(TS(P_1 \cup P_2)\). Consider the maximal prefix \(\hat{r} = (c_1, c_2) \rightarrow (c_1, c_2)\) of \(r\) that is a run of \(TS(P_1 \cup P_2)\). Consider the \(r\) transition \((c_1, c_2) \rightarrow (c_1', c_2')\) that extends \(\hat{r}\). By definition of union of transition systems, the transition \((c_1, c_2) \rightarrow (c_1', c_2')\) is a transition of \(TS(P_1) \cup TS(P_1)\). By the assumption that \(F\) is grassroots, it follows that \((c_1, c_2) \rightarrow (c_1', c_2') \in TS(P_1 \cup P_2)\), and therefore \(\hat{r}\) is not maximal as constructed, a contradiction. \(\square\)

Next, we describe a sufficient condition for a family of multiagent transition systems to be grassroots:

Definition 28 (Monotonic and Asynchronous Family of Multiagent Transition Systems). Let \(F\) be a family of multiagent transition systems. A partial order \(\preceq\) over \(S(\mathcal{F})\) is **preserved under projection** if for every \(P_2 \subseteq P_1 \subseteq P\) and every two configurations \(c, c'\) over \(P_1\) and \(S(P_1)\), \(c \preceq c'\) implies that \(c/P_2 \preceq c'/P_2\). A family \(\mathcal{F}\) of multiagent transition systems is **monotonic wrt a partial order \(\preceq\)** over \(S(\mathcal{F})\) if \(\preceq\) is preserved under projection and every member of \(\mathcal{F}\) is monotonic wrt \(\preceq\); it is **asynchronous** wrt \(\preceq\) if, in addition, it is distributed and every member of \(\mathcal{F}\) is asynchronous wrt \(\preceq\).

A family of distributed transition systems is non-interfering if a transition that can be carried out by a group of agents can still be carried out if there are additional agents that observe it from their initial state. Formally:

Definition 29 (Non-Interfering Family). A family \(\mathcal{F}\) of distributed transition systems is **non-interfering** if for every \(P' \subseteq P \subseteq P\) with transition systems \(TS = (C, c_0, T), TS' = (C', c_0', T') \in \mathcal{F}\) over \(P, P'\), respectively, and every transition \(c_1' \rightarrow c_2' \in T'\), \(T\) includes the transition \(c_1 \rightarrow c_2\) for which \(c_1' = c_1/P', c_2' = c_2/P',\) and \(c_{1_p} = c_{2_p} = c_{0_p}\) for every \(p \in P \setminus P'\).

Theorem 4 (Grassroots). An interactive, non-interfering family of asynchronous distributed transition systems is grassroots.

Proof. Let \(\mathcal{F}\) be a non-interfering family of distributed transition systems that is monotonic and asynchronous wrt a partial order \(\preceq\), \(P_1, P_2 \subseteq P\) such that \(P_1 \cap P_2 = \emptyset\), \(r_1\) a run of \(TS(P_1) \in \mathcal{F}\), \(r_2\) a run of \(TS(P_2) \in \mathcal{F}\), \(r = c_0 \rightarrow c_1 \rightarrow \ldots\) an interleaving of \(r_1\) and \(r_2\). We argue that \(r\) is a run of \(TS(P_1 \cup P_1)\) (See Figure 4). Consider any \(p\)-transition \((c_1, c_2) \rightarrow (c_1', c_2')\) in \(r\). Wlog assume that \(p \in P_1\) (else \(p \in P_2\) and the symmetric argument applies) and let \(\hat{c}, \hat{c}'\) be the \(TS(P_1 \cup P_1)\) configurations for which \(\hat{c}/P_1 = c/P_1, \hat{c}'/P_1 = c'/P_1,\) and \(\hat{c}/P_2 = \hat{c}'/P_2 = c_0/P_2\). Since \((c_1 \rightarrow c_1') \in T(P_1), \mathcal{F}\) is non-interfering, and in \(\hat{c}, \hat{c}'\) members of \(P_2\) stay in their initial state, then by Definition 29 it follows that the \(p\)-transition \(\hat{c} \rightarrow \hat{c}' \in T(P_1 \cup P_2)\). Since \(c_p = \hat{c}_p\) by construction,
Fig. 4. Some Steps in the Proof of Theorem 4

c_0(P_2) \preceq c_2 by monotonicity of TS(P_2), c_0(P_1 \cup P_2) \preceq c by monotonicity of TS(P_1 \cup P_2) and the assumption that \preceq is preserved under projection, it follows that \(c \rightarrow c' \in T(P_1 \cup P_2) \) by the assumption that it is asynchronous wrt \(\preceq \) (Definition 11). As \(c \rightarrow c' \) is a generic transition of \(r \), it follows that \(r \subseteq T(P_1 \cup P_2) \), satisfying the condition of Proposition 14, implying that \(F \) upholds subsidiarity. Together with the assumption that \(F \) is interactive, we use Observation 7 to conclude that \(F \) is grassroots. □

Example 14 (ABD is grassroots, again). Examining ABD, it can be verified that it is a family of interactive, non-interfering family of asynchronous distributed transition systems. We have argued above that ABD is interactive. It is non-interfering as agent in their initial state do not interfere with other agents performing \(p\text{-}\text{creates-}b \) or \(p\text{-}\text{receives-}b \) amongst themselves. And we have already concluded (Example 7) that ABD is asynchronous.

Definition 30 (Correct and Local Implementation among Families; Grassroots Implementation). Let \(F, F' \) be families of multiagent transition systems over \(S, S' \), respectively. A function \(\sigma \) that provides a mapping \(\sigma : C'(P) \rightarrow C(P) \) for every \(P \subseteq \Pi \) is a correct implementation of \(F \) by \(F' \) if for every \(P \subseteq \Pi \), \(\sigma \) is a correct implementation of \(TS(P) \) by \(TS'(P) \), and it is local if \(\sigma(c)_p = \sigma(c'_p) \) for every configuration \(c \in C(P) \), \(P \subseteq \Pi \). Such a correct and local implementation \(\sigma \) is grassroots if \(F' \) is grassroots.

Namely, \(\sigma \) is local if it is defined for each local state independently of other local states.

Example 15 (The implementation of LCC by ABD is not local). The reason why \(\sigma_3 \) that implements LCC by ABD is not local is that it depends on knowledge...
of the set of agents P – the sort procedure cannot proceed beyond index i if an i-indexed p-block is missing, for some $p \in P$.

In line with the example above, the following theorem shatters the hope of a non-grassroots protocol to have a grassroots implementation, and can be used to show that a protocol is grassroots by presenting a grassroots implementation of it.

Theorem 5 (Grassroots Implementation). A family of distributed transition systems that has a correct grassroots implementation is grassroots.

Proof. We apply Theorem 3 in both directions. See Figure 5 roman numerals (i)-(v) in the proof refer to the Figure. Let F, F' be families of multiagent transition systems over S, S', respectively, σ a correct implementation of F by F' and assume that F' is grassroots. Let $P_1, P_2 \subseteq \Pi$ such that $P_1 \cap P_2 = \emptyset$, $r_1 \in T(P_1)$ a run of $TS(P_1) \in F$, $r_2 \in T(P_2)$ a run of $TS(P_2) \in F$; (i) and $r = c_0 \rightarrow c_1 \rightarrow \ldots$ an interleaving of r_1 and r_2 (Def. 27). Since σ is a local and correct implementation of $TS(P_1)$ by $TS'(P_1)$, there is a run $r_1' \in T'(P_1)$ of $TS'(P_1)$, such that $\sigma(r_1') = r_1$: the same holds for P_2, r_2' and r_2. (ii) Let r' be the interleaving of r_1' and r_2' for which $\sigma(r') = r$; such an interleaving can be constructed iteratively, with each p-transition of $TS(P_1)$ realized by the implementing computation of $TS'(P_1)$ for $p \in P_1$, and similarly for $p \in P_2$. (iii) Since F' is grassroots by assumption, then by Proposition 3 the ‘only if’ direction, $r' \in T'(P_1 \cup P_1)$ is a run of $TS'(P_1 \cup P_1) \in F$. (iv) By assumption, σ is a correct implementation of $TS(P_1 \cup P_2)$ by $TS'(P_1 \cup P_2)$. Hence $\sigma(r') = r \in T(P_1 \cup P_1)$ is a correct computation of $TS'(P_1 \cup P_1)$, (v)
satisfying the conditions for the ‘if’ direction of Proposition 3 and concluding the \mathcal{F} is grassroots.

The theorem and examples above do not mean that grassroots ordering consensus protocols are not possible. In fact, they are possible, provided that the agents that participate in a particular ordering consensus protocol are not provided a priori, an in LCC, but are determined in a grassroots fashion. A blocklace-based grassroots consensus protocol stack that demonstrates that is presented elsewhere [33].

6 Conclusions

Multiagent transition systems come equipped with powerful tools for specifying distributed protocols and for proving the correctness and fault-resilience of implementations among them. The tools are best applied if the transition systems are monotonically-complete wrt a partial order, as is often the case in distributed protocols and algorithms. Employing this framework in the specification of a grassroots ordering consensus protocol stack has commenced [33], with sovereign cryptocurrencies [34], an NFT trade network [34], and an efficient Byzantine atomic broadcast protocol [20] as the first applications.

Acknowledgements

I thank Nimrod Talmon, Ouri Poupko, Oded Naor and Idit Keidar and the anonymous referees for discussions and feedback. Ehud Shapiro is the Incumbent of The Harry Weinrebe Professorial Chair of Computer Science and Biology at the Weizmann Institute.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Science 82(2), 253–284 (1991)
2. Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Programming Languages and Systems (TOPLAS) 15(1), 73–132 (1993)
3. Boudol, G.: Asynchrony and the pi-calculus. Ph.D. thesis, INRIA (1992)
4. Bracha, G.: Asynchronous byzantine agreement protocols. Information and Computation 75(2), 130–143 (1987)
5. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science. pp. 136–145. IEEE (2001), https://eprint.iacr.org/2000/067.pdf, revised 2020
6. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic broadcast: From simple message diffusion to byzantine agreement. Information and Computation 118(1), 158–179 (1995)
7. Das, S., Xiang, Z., Ren, L.: Asynchronous data dissemination and its applications. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. pp. 2705–2721 (2021)
8. Das, S., Xiang, Z., Ren, L.: Asynchronous data dissemination and its applications. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. p. 2705–2721. CCS ’21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3460120.3484808
9. Developer, B.: P2p network (Retrieved 20222), https://developer.bitcoin.org/devguide/p2p_network.html
10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM (JACM) 32(2), 374–382 (1985)
11. Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages. pp. 372–385 (1996)
12. Francalanza, A., Hennessy, M.: A theory for observational fault tolerance. The Journal of Logic and Algebraic Programming 73(1-2), 22–50 (2007)
13. Giridharan, N., Kokoris-Kogias, L., Somnino, A., Spiegelman, A.: Bullshark: Dag bft protocols made practical. arXiv preprint arXiv:2201.05677 (2022)
14. Guarraoui, R., Kuznetsov, P., Monti, M., Pavlović, M., Seredinschi, D.A.: The consensus number of a cryptocurrency. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. pp. 307–316 (2019)
15. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L., Setty, S., Zill, B.: Ironfleet: proving safety and liveness of practical distributed systems. Communications of the ACM 60(7), 83–92 (2017)
16. Hesselink, W.H.: Deadlock and fairness in morphisms of transition systems. Theoretical computer science 59(3), 235–257 (1988)
17. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM 21(8), 666–677 (1978)
18. Hur, C.K., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and kripke logical relations. ACM SIGPLAN Notices 47(1), 59–72 (2012)
19. Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All you need is dag. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing. p. 165–175. PODC’21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3465084.3467905
20. Keidar, I., Naor, O., Shapiro, E.: Cordial miners: A family of simple, efficient and self-contained consensus protocols for every eventuality. arXiv preprint arXiv:2205.09174 (2022)
21. Krogh-Jespersen, M., Timany, A., Ohlenbusch, M.E., Gregersen, S.O., Birkedal, L.: Aneris: A mechanised logic for modular reasoning about distributed systems. In: ESOP. pp. 336–365 (2020)
22. Lamport, L.: Specifying concurrent systems with tla+. NATO ASI SERIES F COMPUTER AND SYSTEMS SCIENCES 173, 183–250 (1999)
23. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reasoning 43(4), 363–446 (2009)
24. Lesani, M., Bell, C.J., Chlipala, A.: Chapar: certified causally consistent distributed key-value stores. ACM SIGPLAN Notices 51(1), 357–370 (2016)
25. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. Laboratory for Computer Science, Massachusetts Institute of Technology (1988)
26. Milner, R.: A calculus of communicating systems. Springer (1980)
27. Milner, R.: Communicating and mobile systems: the pi calculus. Cambridge university press (1999)
28. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). The essence of monotonic state. In: Proceedings of the 7th ACM SIGPLAN workshop on Types in language design and implementation. pp. 73–86 (2011)
29. Paraskevopoulou, Z., Li, J.M., Appel, A.W.: Compositional optimizations for cer-ticoq. Proceedings of the ACM on Programming Languages 5(ICFP), 1–30 (2021)
30. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Proceedings of the 7th ACM SIGPLAN workshop on Types in language design and implementation. pp. 73–86 (2011)
31. Princehouse, L., Chenchu, R., Jiang, Z., Birman, K.P., Foster, N., Soulé, R.: Mica: A compositional architecture for gossip protocols. In: European Conference on Object-Oriented Programming, pp. 644–669. Springer (2014)
32. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed protocols. Proceedings of the ACM on Programming Languages 2(POPL), 1–30 (2017)
33. Shapiro, E.: The blocklace: A partially-ordered generalization of the blockchain and its grassroots consensus protocol stack. To appear. Also accessible as Section 4 of an earlier version of this paper: https://arxiv.org/abs/2112.13650v8 (2022)
34. Shapiro, E.: Sovereign cryptocurrencies: Foundation for grassroots cryptoeconomy. arXiv preprint arXiv:2202.05619 (2022)
35. Shostak, R., Pease, M., Lamport, L.: The byzantine generals problem. ACM Transactions on Programming Languages and Systems 4(3), 382–401 (1982)
36. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Anderson, T.: Verdi: a framework for implementing and formally verifying distributed systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation. pp. 357–368 (2015)
37. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. pp. 347–356 (2019)