Rpp-Gene pyramiding confers higher resistance level to Asian soybean rust

Maiara Cecilia Panho · Rogê Afonso Tolentino Fernandes · Caroline Patrícia Menegazzi · Otávio Ramos Campagnolli · Felipe Chade de Quadra · Laura Alexandra Madella · Daniela Meira · Gaspar Malone · Salvador Lima Brito Junior · Giovani Benin

Received: 19 April 2022 / Accepted: 30 October 2022 / Published online: 14 November 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract Asian soybean rust (ASR) causes large reductions in soybean yield, affecting the entire grain market. With low fungicide efficiency, the use of resistant cultivars can be an economical, safe, efficient, and sustainable control alternative. However, the great variability and aggressiveness of ASR and the use of Rpp genes are limited. Thus, gene pyramiding is a promising strategy for the development of cultivars with high resistance to a greater number of isolates. Thus, the objective of this study was to evaluate sister lines, previously evaluated by Meira et al. (2022). https://doi.org/10.1007/s10681-020-02667-x), presenting different Rpp-pyramided genes for resistance to Phakopsora pachyrhizi to clarify the pyramiding effect of two originally developed Rpp-pyramided lines compared to two existing lines or lines possessing only a single Rpp of resistance under field conditions. Rpp-pyramided lines 52117-1 (Rpp2 + Rpp1-b), 52117-57 (Rpp2 + Rpp1-b), 52117-59 (Rpp2 + Rpp1-b) + 52117-60 (Rpp2 + Rpp4) showed high resistance levels compared to resistant sources and resistance control, carrying a single Rpp gene PI 200487 (Rpp5), PI 200492 (Rpp1), PI 230970 (Rpp2), PI 459025A (Rpp4), and PI 506764 (Rpp3 + Rpp5) with significant reductions in sporulation levels (SL), number of uredinia per lesion (NoU), and frequency of lesions with uredinia (%LU). Only, the line 52117-54 (Rpp2 + Rpp1-b), and 52117-63 (Rpp2 + Rpp4) showed resistance level smaller than PI 594723 (Rpp1-b) and similar resistance levels than PI 230970 (Rpp2), respectively. Rpp-pyramided lines carrying Rpp2 + Rpp1-b (52115-64, 52116-74, 52117-21, 52117-59 and 52117-60), and Rpp2 + Rpp4 (52117-60), and single gene Rpp1-b were classified as “highly resistant” and “resistant”. Furthermore, one sister line, 52117-57 (Rpp2 + Rpp1-b), showed immunity under field conditions. The Rpp-pyramided genes are an alternative for achieving high resistance levels against ASR.

Keywords Phakopsora pachyrhizi · Rpp genes · Genetic resistance · Pyramiding

Introduction

Year after year, soybean farmers face numerous adversities caused by biotic and abiotic stresses, with the potential to damage the crop. Plant diseases are
responsible for huge crop losses and are a threat to global food security and agricultural sustainability. Asian soybean rust (ASR) is one of the most economically important diseases of crops, especially in tropical and subtropical countries, where reductions in grain yield can reach up to 80% (Godoy et al. 2016). In addition, ASR directly impacts the soy market, as it leads to a drop in productivity (grain) and consequently of its derivatives (oil, bran, protein) (Ishiwata and Furuya 2020).

ASR is caused by the fungus Phakopsora pachyrhizi (Sydow and Sydow), an obligatory biotrophic basidiomycete, which has multiple infection cycles in the same crop, with a high capacity to produce uredospores and to easily disseminate (Chander et al. 2019). In addition, it has a high intraspecific variability of isolates and wide geographic distribution and is extremely severe and difficult to control (Darben et al. 2020). These characteristics drive the efforts of scientists, research agencies, and institutions from different countries, who work in a continuous search for management strategies to control the disease (Meira et al. 2020).

Currently, fungicide use is the most commonly used method to manage ASR (Murithi et al. 2021). However, fungicide costs are extremely high ($2.2 billion per harvest), and their ineffectiveness has increased with pathogen insensitivity every cropping season (Godoy et al. 2016). Thus, the use of resistant cultivars may be a promising strategy, being more economical, safe, efficient, and sustainable (Godoy et al. 2016; Ishiwata and Furuya 2020; Murithi et al. 2021).

Genetic resistance can be characterized as the ability of a plant to prevent and/or delay pathogen entry and development in its tissues. This mechanism can occur through resistance directly or indirectly controlled by genes, which can detect the presence of pathogens and initiate a signal cascade, resulting in resistance mechanism activation (Nelson et al. 2018; Zaidi et al. 2018). Resistance can be considered qualitative, when governed by a gene with a greater effect (major genes), or quantitative when governed by several genes with less effect (Nelson et al. 2018). Seven major ASR resistance genes have been reported in soybean, known as Rpp1 to Rpp7 (Resistance to P. pachyrhizi) (Bromfield and Melching 1982; Childs et al. 2018; Garcia et al. 2008; Hartwig 1986; Hyten et al. 2007; Li et al. 2012; Yu et al. 2015). These genes interact with pathogen avirulence genes, resulting in different resistance reactions, ranging from reddish-brown lesions (RB), with little or no sporulation, to immunity (absence of lesions) according to isolate severity (Godoy et al. 2016; Langenbach et al. 2016).

In Brazil, genetic resistance to ASR has been used in soybean breeding programs through the release of resistant cultivars. Resistant cultivars have a technology named according to the breeding company such as Inox® of TMG (Tropical Melhoramento e Genética), Shield® of Embrapa (Empresa Brasileira de Pesquisa Agropecuária) (Aoyagi et al. 2020), and TF of GDM (Grupo Don Mario) Genética do Brasil S.A. It is known that there is huge variability in P. pachyrhizi isolates with different degrees of severity and aggressiveness, which can increase the chances of breaking down the rust resistance gene (Darben et al. 2020; Yamanaka et al. 2015). Thus, a broad, effective, and long-lasting range of resistance can be developed through gene pyramiding (Mundt 2018).

Gene pyramiding combines multiple resistance genes in a single genotype (Chander et al. 2019; Mundt 2018). Several studies have been successfully used to improve disease resistance, mainly ASR (Lemos et al. 2011; Parhe et al. 2017; Vigano et al. 2018; Yamanaka et al. 2013; Yamanaka et al. 2015; Yamanaka and Hossain 2019). However, there is little information about the effectiveness of Rpp gene combinations and the pyramiding effect in controlling ASR (Yamanaka and Hossain 2019). Furthermore, the genetic bases are individual of each plant, and the interaction of Rpp-pyramided lines with the environment can result in different resistance phenotypes. Thus, to understand the pyramiding effect, it is necessary to develop and evaluate sister lines, mainly under field conditions (Yamanaka et al. 2015).

Thus, the objective of this study was to evaluate sister lines, previously evaluated by Meira et al. (2022), presenting different Rpp-pyramided genes for resistance to P. pachyrhizi and to clarify the pyramiding effect of two originally developed Rpp-pyramided lines compared to two existing lines or lines possessing only a single Rpp of resistance under field conditions.
Material and methods

Plant material

Seven sister lines from three populations, carrying two Rpp-pyramided genes, four resistance sources (PI 594723-Rpp1-b, PI 594538A-Rpp1-b, PI 230970-Rpp2, PI 459025A-Rpp4) and four resistance control (PI 200487-Rpp5, PI 200492-Rpp1, PI 506764-Rpp3+Rpp5, and PI 587880A-Rpp1-b) (Plant introduction: PI), and five resistant and six susceptible commercial cultivars were evaluated in this study (Table 1; Fig. 1). The Rpp-pyramided lines were developed from double crosses between F1 plants, obtained from susceptible Brazilian commercial cultivars (63I64RSF IPRO and 55I57RSF IPRO) and four different ASR resistance sources (PI 594723-Rpp1-b, PI 594538A-Rpp1-b, PI 230970-Rpp2, PI 459025A-Rpp4) (Table 1) obtained from previous studies by Meira et al. (2022). These lines were selected through marker-assisted selection in the F2 and F3 generations to confirm the presence of two Rpp genes. Information on molecular markers of all strains used in the present study is available at Meira et al. (2022), and they can see Supplemental Table 1. The F4 generation of the lines was evaluated under field conditions. These Rpp-pyramided lines were developed by the breeding company GDM Genética do Brasil S.A.

Table 1 Description and pedigree information of Rpp-pyramided sister lines, resistance source and resistance control (PI) and commercial resistant and susceptible cultivars evaluated

Population	Genotype	Gene	Phenotype	Pedigree
P1*2^b	52116-54	Rpp2+Rpp1-b	gNI	[(PI 230970×55I57RSF)×(PI 594723×63I64RSF)]
P1*2	52116-74	Rpp2+Rpp1-b	NI	[(PI 230970×55I57RSF)×(PI 594723×63I64RSF)]
P1b2	52117-21	Rpp2+Rpp1-b	NI	[(PI 230970×55I57RSF)×(PI 594538A×63I64RSF)]
P1b2	52117-57	Rpp2+Rpp1-b	NI	[(PI 230970×55I57RSF)×(PI 594538A×63I64RSF)]
P1b2	52117-59	Rpp2+Rpp1-b	NI	[(PI 230970×55I57RSF)×(PI 594538A×63I64RSF)]
P24	52117-60	Rpp2+Rpp4	NI	[(PI 230970×55I57RSF)×(PI 459025A×63I64RSF)]
P24	52117-63	Rpp2+Rpp4	NI	[(PI 230970×55I57RSF)×(PI 459025A×63I64RSF)]
–	b95R51	No Rpp gene	Susceptible	–
–	b95Y72	No Rpp gene	Susceptible	–
–	^BMX Raio IPRO	No Rpp gene	Susceptible	–
–	^BMX Zeus IPRO	No Rpp gene	Susceptible	–
–	BRS 511	Rpp5	Resistant	–
–	BRS 531	Rpp1-b	Resistant	–
–	BRS 539	Rpp1-b+Rpp4	Resistant	–
–	^NK 6201	No Rpp gene	Susceptible	–
–	^NS 6700	No Rpp gene	Susceptible	–
–	^PI 200487	Rpp5	Resistant	–
–	^PI 200492	Rpp1	Resistant	–
–	^PI 230970	Rpp2	Resistant	–
–	^PI 459025A	Rpp4	Resistant	–
–	^PI 506764	Rpp3+Rpp5	Resistant	–
–	^PI 587880A	Rpp1-b	Resistant	–
–	^PI 594538A	Rpp1-b	Resistant	–
–	^PI594723	Rpp1-b	Resistant	–
–	^TMG7058	NI	Resistant	–
–	^TMG7062	NI	Resistant	–

^AGDM genética do Brasil S.A., ^bPioneer seeds, ^BMX: Embrapa – Empresa Brasileira de Pesquisa Agropecuária, ^syngenta seeds, ^US National Plant Germplasm System, ^TMG – Tropical Melhoramento e Genética, ^– no information, ^Population code. For more information view Meira et al. (2022)
Field experiments

The Rpp-pyramided lines, four resistance control, four resistance sources and resistant and susceptible commercial cultivars (Table 1) were evaluated under field conditions at the experimental area at the Federal University of Technology – Paraná (UTFPR), Campus Pato Branco (26° 13’ 43” S; 52° 40’ 14” O; 760-m altitude), in Pato Branco, State of Paraná, Brazil. The climate is classified as Cfa (temperate climate, without a dry season and hot summer) according to the Köppen climate classification (Alvares et al. 2013).

Four weeks before sowing, the border area was sowed to increase pathogen occurrence. Sowing was realized on a non-preferential date (December 1st 2020) to enable the natural occurrence and development of ASR, and no fungicide was used to control the disease. The field experiments were performed using a randomized block design with three replications. Each plot was composed of two 3-m rows spaced 0.5 m apart, totaling 3 m², with a seed density of 14 seeds m⁻¹. Fertilizer management and pest control were performed in accordance with the technical recommendations for soybean crops, and weed control was performed manually.

Resistance evaluation

Ten leaflets from the middle third of the soybean plants in each plot were collected at the R5 growth stage (Fehr and Caviness 1977). Leaflets were analyzed in the laboratory to determine the number of lesions (NL), sporulation level (SL), frequency of lesions with uredinia (%LU), and number of uredinia per lesion (NoU) in 1 cm² of leaf tissue. These evaluations were performed using a binocular stereo microscope with a magnification of 4× and 10× objective lens, resulting in a magnification used of 14×. According to the data obtained from each plot, the

Fig. 1 Phakopsora pachyrhizi sporulation in soybean Rpp-pyramided lines, resistance source and commercial resistant and susceptible cultivars. Photographs of the abaxial leaf segment, with 14 × magnification. S susceptible, R resistant, NI no information
classification criteria to determine the resistance of ASR were by Yamanaka et al. 2020 (Tables 2 and 3). Collected data of NL, %LU, NoU, and SL were submitted to analysis of variance, and when a significant effect to genotype factor was detected using test $F (p<0.01)$, the mean was grouped using Skott Knott test ($p<0.05$). Data analysis was performed using ExpDes.pt package (Ferreira et al. 2014) in R software v. 4.0.3 (R Development Core Team 2020).

ASR lesion type (RB): according to a visual scale adapted from Yamanaka et al. (2010) and Miles et al. (2011), five infected leaves of different plants in the middle third of the plants were visually evaluated. Lesion types were recorded as immune (IM), no sporulation of reddish-brown lesions (RB1), little sporulation (RB2), moderate sporulation (RB3), and reaction for abundant sporulation (TAN).

Results

The variance analysis showed significant effects on all evaluated resistance characteristics: number of lesions (NL), frequency of lesions per uredinia (%LU), number of uredinia per lesion (NoU), and sporulation level (SL) (Table 4). The heritability ranged from 0.91 to 0.97, showing the highest genetic effects.

The border sowed a few times before the Rpp-pyramided lines, resistance sources, and commercial cultivars contributed to the presence of pathogen inoculum in the area. The presence of ASR in the experimental area was confirmed by susceptible lesions with abundant sporulation (TAN) in the susceptible commercial cultivars (NK6201, NS6700, 95R51, 95Y72, BMX Zeus IPRO, and BMX Raio IPRO) (Fig. 1, Table 5). The resistance characteristics to ASR on Rpp-pyramided lines, resistance sources, resistance control, and resistant and susceptible commercial cultivars are presented in Fig. 1 and Table 5.

The Rpp-pyramided lines 52116-74 [(PI 230970 × 55i57RSF) × (PI 594723 × 63i64RSF)], 52117-21, 52117-57 [(PI 230970 × 55i57RSF) × (PI 594538A × 63i64RSF)], carrying $Rpp2 + Rpp1-b$ genes, showed no sporulation (SL = 0). Furthermore, these lines were statically similar to their parents carrying $Rpp1-b$ (PI 594723 and PI 594538A) (Table 5). However, line 52117-59 [(PI 230970 × 55i57RSF) × (PI 594538A × 63i64RSF)],

Table 2 Classification criteria to determine resistance of differential genotypes: frequency of lesions with uredinia (%LU), number of uredinia per lesion (NoU), and sporulation level (SL), by Yamanaka et al. (2020)

Resistance characters	Resistant (R)	Susceptible (S)
%LU	0.0 ≤ x < 70.0	70.0 ≤ x ≤ 100.0
NoU	0.0 ≤ x ≤ 2.0	2.0 ≤ x
SL	0.0 ≤ x ≤ 2.0	2.0 ≤ x ≤ 3.0

Table 3 Classification criteria of rust resistance of soybean genotypes, by Yamanaka et al. (2020)

Resistance categories	Criteria
Immune (IM)	Having no lesions
Highly resistant (HR)	Having lesions showing the resistant phenotype for all three characters and without uredinia
Resistant (R)	Having lesions showing the resistant phenotype in all three resistance characters with uredinia
Slightly resistant (SR)	Having lesions showing the resistant phenotype for any of three resistance characters
Susceptible (S)	Having lesions showing the susceptible phenotypes for all three resistance characters

Table 4 Analysis of variance to resistance characters number of lesions (NL), frequency of lesions per uredinia (%LU), number of uredinia per lesion (NoU) and sporulation level (SL) of Rpp-pyramided sister lines, resistance sources and resistance control and commercial cultivars resistant and susceptible to ASR

Parameters	NL	%LU	NoU	SL
Heritability	0.97	0.91	0.94	0.97
Genotypic variance	534.75**	0.17**	1.78**	1.47**
Residual variance	56.43	0.05	0.31	0.15
Mean	26.23	0.35	1.63	1.50
CV (%)	28.64	34.50	34.58	25.40

CV coefficient of variation

**Significant at 1% by F test, respectively
showed higher values of SL = 0.63 compared to its sisters.

The Rpp-pyramided line 52117-60 developed by double crossing [(PI 230970 × 55i57RSF) × (PI 459025A × 63i64RSF)], carrying Rpp2 + Rpp4 presented no sporulation (SL = 0), and shows better results than those of parents PI 230970 (SL = 1.33) and PI 459025A (SL = 3) (Fig. 1, Table 5). Among the evaluated lines, 52117-63 (Rpp2 + Rpp4, SL = 2), followed by 52116-54 (Rpp2 + Rpp1-b, SL = 1), showed the highest sporulation levels.

Higher SL was observed in susceptible commercial cultivars 95R51, 95Y72, BMX Raio IPRO, BMX Zeus IPRO, NK6201, and NS6700 (Table 5). In addition, the resistant commercial cultivars TMG7062 and PI 459025A (Rpp4) showed high SL (SL = 3). It is worth mentioning that the resistant commercial cultivars BRS531 (Rpp1-b) and BRS539 (Rpp1-b + Rpp4) showed no sporulation (SL = 0).

The sister lines 52117-21 and 52117-57, descendants of double crossing [(PI 230970 × 55i57RSF) × (PI 594538A × 63i64RSF)] (Rpp2 + Rpp1-b), 52117-60 [(PI 230970 × 55i57RSF) × (PI 459025A × 63i64RSF)], showed null %LU and NoU (Table 5). These lines showed lower values than their resistant parent, carrying a single Rpp gene PI 230970 (Rpp2, NoU = 1.01; %LU = 76.67), PI 459025 (Rpp4, NoU = 2.88; %LU = 100), and its sister line 52117-59 (Rpp2 + Rpp1-b, NoU = 0.86; %LU = 33.33). On the other hand, the line 52117-74 (Rpp2 + Rpp1-b) showed similar values of NoU and %LU to its genitors, PI 594723 (Rpp1-b, NoU = 0; %LU = 0) and PI

Table 5 Phenotypic classification (Class) based in characters’ resistant of Phakopsora pachyrhizi: number of lesions (NL), frequency of lesions with uredinia (%LU), number of uredinia per lesion (NoU), sporulation level (SL) and lesion type (RB) in soybean Rpp-pyramided sister lines, commercial cultivars resistant and susceptible, resistance sources and resistance control

Genotype	Gene	SL	%LU	NoU	NL	Class¹	RB
52116-54	Rpp2 + Rpp1-b	1.00c	18.79b	0.33d	14d	R	RB1
52116-74	Rpp2 + Rpp1-b	0.00d	0.00b	0.00d	5e	HR	RB1
52117-21	Rpp2 + Rpp1-b	0.00d	0.00b	0.00d	1e	HR	IM/RB
52117-57	Rpp2 + Rpp1-b	0.00d	0.00b	0.00d	0e	IM	IM/RB
52117-59	Rpp2 + Rpp1-b	0.67c	33.33b	0.86c	7e	R	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	HR	IM/RB
52117-63	Rpp2 + Rpp4	2.00b	100.00a	1.65c	27d	SR	RB3
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
52117-60	Rpp2 + Rpp4	0.00d	0.00b	0.00d	1e	IM/RB	IM/RB
594538A (\textit{Rpp1-b}, NoU = 0.33; %LU = 33) (Table 5, Fig. 1).

The lines 52116-54 (\textit{Rpp2 + Rpp1-b}) [(\textit{PI 230970 × 55i57RSF}) × (\textit{PI 594723 × 63i64RSF})], and 52117-59 [(\textit{PI 230970 × 55i57RSF}) × (\textit{PI 594538A × 63i64RSF})] showed lower values of %LU, by 18.79 and 33.33, and NoU 0.33 and 0.86, respectively. Although these lines present lesions with uredinia these values are lower than the observed values for resistance sources and resistance control carrying a single \textit{Rpp} gene such as PI 200487 (\textit{Rpp5}, %LU = 94.87; NoU = 1.33), PI 200492 (\textit{Rpp1}, %LU = 100.00; NoU = 2.36), PI 230970 (\textit{Rpp2}, %LU = 76.67; NoU = 1.01), PI 459025A (\textit{Rpp4}, %LU = 100.00; NoU = 2.88), PI 506764 (\textit{Rpp3 + Rpp5}, %LU = 100.00; NoU = 2.31), and PI 587880A (\textit{Rpp1-b}, %LU = 63.14; NoU = 1.14).

Higher %LU values were observed for commercial cultivars 95R51, 95Y72, BMX Raio IPRO, BMZ Zeus IPRO, BRS511, NK6201, NS6700, TMG7058, and TMG7062 and to resistant control PI 200492, and PI 506764, and resistance source PI 459025A, which showed 100.00. Genotypes BRS539 (%LU = 66.67), PI 200487 (%LU = 94.87), PI 230970 (%LU = 76.67), and PI 587880A (%LU = 63.14) and the \textit{Rpp}-pyramided line 52117–63 (%LU = 100.00) also showed higher values of %LU and did not differ from susceptible commercial cultivars. Higher values of NoU (>3.00) were detected in 95R51, 95Y72, BMX Raio IPRO, BMZ Zeus IPRO, BRS511, NK6201, NS6700, and TMG7062.

All susceptible commercial cultivars, as controls, showed susceptible phenotypic reactions characterized by TAN lesions (Table 5). Immunity associated with few reddish brown lesions without sporulation (IM/RB1) was observed in \textit{Rpp}-pyramided lines 52117-21, 52117-57, 52117-59, 52117-60, and BRS531. In addition, reddish brown lesions without sporulation (RB1) were present in \textit{Rpp}-pyramided lines 52116-54 and 52116-74 in PI 594538A and PI 594723, and in the commercial cultivar BRS539. Only the line 52117-63 showed RB3 type lesion.

The NoU and %LU values for each genotype enabled the classification of ASR resistance (Table 5). Only the \textit{Rpp}-pyramided line 52117-57 [(\textit{PI 230970 × 55i57RSF}) × (\textit{PI 594538A × 63i64RSF})] carrying \textit{Rpp2 + Rpp1-b} was classified as immune (IM) because of the absence of lesions, no uredinias, and no sporulation (NL, NE, NoU, and %LU = 0). \textit{Rpp}-pyramided lines 52116-74, 52117-21, and 52117-60 were classified as highly resistant (HR), along with the commercial cultivar BRS531 and resistance source PI 594723. The genotypes 52116-54, 52117-59, BRS539, PI 587880A, and PI 594538A were phenotypically classified as resistant (R) (Table 5). The \textit{Rpp}-pyramided line 52117-63, commercial cultivars BRS511 and TMG7058, and resistance control PI 200487 and resistance source PI 230970 were classified as slightly resistant (SR) (Table 5).

Genotypes that showed values of NoU and NE ≥ 2.0 and %LU > 70.0 were classified as susceptible (S). The commercial cultivars, susceptible controls (95R51, 95Y72, BMX Raio IPRO, BMZ Zeus IPRO, BRS511, NK6201, and NS6700) presented highest values for NE, %LU, and NoU. Furthermore, the resistant commercial cultivar TMG7062 was phenotypically classified as S, together with resistance source PI 459025A, and resistance control PI 506764, and PI 200492 (Table 5).

The number of genotypes by pyramids and by phenotypic classification is presented in Fig. 2. \textit{Rpp}-pyramided gene combinations resulted in IM genotype 52117–57, carrying \textit{Rpp2 + Rpp1-b}, developed by double crosses among the parents [(\textit{PI 230970 × 55i57RSF}) × (\textit{PI 594538A × 63i64RSF})]. \textit{Rpp}-pyramided lines carrying \textit{Rpp2 + Rpp4}, two lines carrying \textit{Rpp2 + Rpp1-b}, two genotypes carrying \textit{Rpp1-b} were classified as highly resistant (HR) to ASR. Two PIs carrying a single \textit{Rpp1-b} gene were classified as R. Two \textit{Rpp}-pyramided lines carrying \textit{Rpp1-b} were classified as highly resistant (HR) to ASR. Two PIs carrying a single \textit{Rpp1-b} gene were classified as R (Fig. 2, Table 5).

The resistant source carrying single gene \textit{Rpp2} and resistance control carrying single gene \textit{Rpp5}, and the \textit{Rpp}-pyramided population carrying \textit{Rpp2 + Rpp4} were classified as slightly resistant (SR) to ASR. Furthermore, the susceptible commercial cultivars (carrying no \textit{Rpp} genes) and resistance control carrying \textit{Rpp4}, \textit{Rpp3 + Rpp5}, and \textit{Rpp1} showed susceptible (S) phenotypic classification under field conditions.
Pyramidation consists of the combination of several genes in the same genotype, resulting in their simultaneous expression in the host (Chander et al. 2019). This provides broader, longer lasting, and higher-level resistance because of the effects of multiple genes against Phakopsora pachyrhizi (Yamanaka et al. 2015; Yamanaka and Hossain 2019; Chander et al. 2019).

The lines evaluated in the present study were developed and validated by molecular markers by Meira et al. (2022). In their study, Meira et al. (2022) identified lines with different resistance reactions (IM, RB1, RB2, RB3, and TAN), and only populations of the best combinations of Rpp-pyramided genes (showing IM and RB1 resistance reactions), and with enough seed to perform field trials, with replicates, were selected to be further evaluated in this study. Sporulation levels, number of uredia per lesion, frequency of lesions with uredia, number of lesions, in addition to photographs of lesions of each line, resistance source and resistance control (PI), and susceptible and resistant cultivars were performed in the present study. Subsequently, these were classified according to Yamanaka et al. (2020). Therefore, more generous information on combinations of Rpp-pyramided genes and resistance sources and resistance control is described in the present study.

In the present study, Rpp-pyramided lines 52117-21 (Rpp2+Rpp1-b), 52117-57 (Rpp2+Rpp1-b), 52117-59 (Rpp2+Rpp1-b)+52117-60 (Rpp2+Rpp4) showed high resistance levels compared to resistant control, carrying a single Rpp gene such as PI 200487 (Rpp5), PI 200492 (Rpp1), and PI 506764 (Rpp3+Rpp5), and resistance source PI 230970 (Rpp2), PI 459025A (Rpp4). Similar results were reported by Yamanaka et al. (2015), who showed higher resistance in pyramided lines No6-12-B (Rpp4+Rpp5), Oy49-4 (Rpp2+Rpp3+Rpp4), and No6-12-1 (Rpp2+Rpp4+Rpp5) than in the resistant sources PI 230970 (Rpp2), PI 506764 (Rpp3+Rpp5), PI 459025 (Rpp4), and PI 200487 (Rpp5). Lemos et al. (2011) also reported successful
results for Rpp-pyramided lines. These authors obtained higher resistance levels to lines carrying Rpp2 + Rpp4 + Rpp5 than their parents carrying a single Rpp gene (PI 230970, PI459025, and PI 200487). The line 52117-54 (Rpp2 + Rpp1-b), showed high resistance levels compared to resistant source PI 230970 (Rpp2), but showed resistance level smaller than PI 594723, the resistance source of Rpp1-b. The line 52117-63 (Rpp2 + Rpp4) showed similar resistance levels than resistance source PI 230970 (SR). Similar results were reported by Yamanaka and Hossain (2019) when line No12-1A carrying Rpp2 + Rpp5 showed resistance levels less than source resistance PI 200487 (Rpp5). The authors suggested that genetic factors important to resistance to ASR were lost with the pyramiding.

The Number of uredinia per lesion (NoU) and frequency of lesions with uredinia (%LU) are reliable parameters for determining resistance to ASR, classifying resistant and susceptible genotypes (Kashiwa et al. 2020). In our studies, Rpp-pyramided lines showed less %LU and NoU than those of their parents and resistance control. Similar results have been reported in several studies, with different gene pyramiding combinations (Lemos et al. 2011; Yamanaka et al. 2013, 2015; Yamanaka and Hossain 2019). In addition, the lines 52117-21, 52117-57, 52116-74 and 52117-60 showed no sporulation (Fig. 1, Table 5). These results corroborate those of Yamanaka et al. (2013) and Yamanaka and Hossain (2019), who observed the absence of uredinia formation and sporulation in lines with pyramided Rpp genes.

Gene pyramiding directly affects the formation of the pathogen’s reproductive structures, preventing and/or reducing uredinia formation and sporulation. Uredinias are responsible for the release of spores, which spread the fungus (Kashiwa et al. 2020). With the reduction of these structures, damage to the leaf area is minimized, maintaining a larger photosynthetically active area, and improving light interception, generating a greater accumulation of photoassimilates, resulting in higher yields (Godoy et al. 2016).

Among the Rpp-pyramided combinations, lines carrying Rpp2 + Rpp1-b showed immunity and high resistance phenotypic reactions (IM, HR, and R respectively), and lines carrying Rpp2 + Rpp4 presented HR and SR levels (Fig. 2). The level of resistance of the genotype is influenced by the number of genes and the combination of genes in the plant (Nelson et al. 2018). Within the same combination, with the same genetic basis, it was possible to observe differences between the levels of resistance of the sister lines (showed in Rpp2 + Rpp1-b and Rpp2 + Rpp4, for example). Small allelic differences in resistance genes, as well as different interactions between Rpp-pyramided genes, unknown genetic factors (in addition to Rpp genes), and the interaction by Rpp genes with plant genetic basis, besides environmental effects can influence resistance level (Yamanaka et al. 2015; Nelson et al. 2018; Kashiwa et al. 2020). All these factors may be contributing to different phenotypes in genotypes with the same genetic basis. Therefore, within the same combination of Rpp-pyramided genes, using the same parents, it is possible to observe differences in the phenotypic reactions to ASR as is between lines 52117-60 and 52117-63.

Among the resistance sources and resistance control evaluated in this study, the PI carrying Rpp1-b (PI 594538A, and PI 594723), and resistance control PI 587880A, and the resistant commercial cultivar BRS531 showed higher resistance levels (HR and R classification) (Fig. 1, Table 5). Genotypes carrying Rpp1-b have been reported to show high levels of resistance, especially against South American P. pachyrhizi isolates (Akamatsu et al. 2017; Hossain et al. 2015; Yamanaka et al. 2016) and African isolates (Murithi et al. 2021), corroborating the results obtained in this study. Thus, using the Rpp1-b gene as a resistance source can be a promising strategy for breeding programs with higher levels of resistance, particularly against highly aggressive isolates of ASR in South America (Hossain et al. 2015). However, it is worth noting that no isolated strategy can maintain the sustainability of the culture (Chander et al. 2019).

Thus, the genetic resistance promoted by simple or pyramided genes needs to be used strategically, maintaining an integrated long-term management to increase its durability and efficiency (Chander et al. 2019). The use of fungicides, for example, associated with the use of resistant cultivars, can help reduce inoculum, as well as reduce selection pressure applied by P. pachyrhizi on resistance genes (Godoy et al. 2016). Likewise, the use of resistant cultivars helps to reduce the selection pressure on fungicides by reducing the number of applications during the crop cycle.
Kato et al. (2022), for example, evaluated two soybean cultivars carrying three pyramided genes for resistance to ASR under field conditions, with and without fungicide application. The authors observed higher levels of resistance of cultivars with pyramided genes compared to susceptible parents, regardless of fungicide application. In other words, the association of the two control methods further increases the field resistance against ASR. In this way, using different management methods in an integrated way, in addition to increasing resistance levels, can help prevent fungicide resistance, in addition, increase the durability of genetic resistance.

In conclusion, Rpp-pyramided lines showed higher resistance levels to ASR, with significant reductions in SL, NoU, and %LU. The line 52117-57 carrying Rpp2+Rpp1-b showed phenotypic reaction of immunity under field conditions, and all evaluated Rpp-pyramided lines were classified as HR and R. Only the line 52117-63 showed resistance level SR, close to susceptibility. Furthermore, the different phenotypic reactions to ASR observed in sister lines highlighted the difference between genetic bases and phenotypic reactions.

Acknowledgements To Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting the masters and doctoral scholarships. We also thank GDM Genética do Brasil S.A. for providing funds and resources to support this project.

Author’s contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MCP, RATF, CPM, ORC, FCQGB. The first draft of the manuscript was written by MCP. LAM, DM, GM and SLBJ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Data availability The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Akamatsu H, Yamanaka N, Soares RM et al (2017) Pathogenic variation of South American Phakopsora pachyrhizi populations isolated from soybeans from 2010 to 2015. Japan Agric Res Q: JARQ 51:221–232. https://doi.org/10.6090/jarq.51.221

Alvarenga CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

Aoyagi LN, Murakï Y, Yamanaka N (2020) Characterization of three soybean landraces resistant to Asian soybean rust disease. Mol Breed 40:53. https://doi.org/10.1007/s11032-020-01132-w

Bromfield KR, Melching JS (1982) Sources of specific resistance to soybean rust

Chander S, Ortega-Beltran A, Bandyopadhyay R et al (2019) Prospects for durable resistance against an old soybean enemy: a four-decade journey from Rpp1 (resistance to Phakopsora pachyrhizi) to Rpp7. Agronomy 9:348. https://doi.org/10.3390/agronomy9070348

Childs SP, King ZR, Walker DR et al (2018) Discovery of a seventh Rpp soybean rust resistance locus in soybean accession PI 605823. Theor Appl Genet 131:27–41. https://doi.org/10.1007/s00122-017-2983-4

Darben LM, Yokoyama A, Castanho FM et al (2020) Characterization of genetic diversity and pathogenicity of Phakopsora pachyrhizi mono-uredinial isolates collected in Brazil. Eur J Plant Pathol 156:355–372. https://doi.org/10.1007/s10658-019-01872-2

Fehr W, Cavinnes C (1977) Stages of soybean development.

Ferreira EB, Cavalcanti PP, Nogueira DA (2014) ExpDes: an R package for ANOVA and experimental designs. Appl Math 5:2952–2958. https://doi.org/10.4236/am.2014.519280

Garcia A, Calvo ES, de Souza Kiihl RA et al (2008) Molecular mapping of soybean rust (Phakopsora pachyrhizi) resistance genes: discovery of a novel locus and alleles. Theor Appl Genet 117:545. https://doi.org/10.1007/s00122-008-0798-z

Godoy CV, Seixas CDS, Soares RM et al (2016) Asian soybean rust in Brazil: past, present, and future. Pesqui Agropecu Bras 51:407–421. https://doi.org/10.1590/S0100-204X2016000500002

Hartwig EE (1986) Identification of a fourth major gene conferring resistance to soybean rust1. Crop Sci 26:1135. https://doi.org/10.2135/cropsci1986.00111833X002600060010x

Hossain MM, Akamatsu H, Morishita M et al (2015) Molecular mapping of Asian soybean rust resistance in soybean landraces PI 594767A, PI 587905 and PI 416764. Plant Pathol 64:147–156. https://doi.org/10.1111/ppa.12226

Hyten DL, Hartman GL, Nelson RL et al (2007) Map location of the Rpp1 locus that confers resistance to soybean rust in soybean. Crop Sci 47:837–838. https://doi.org/10.2135/cropsci2006.07.0484

Ishiwata YI, Furuya J (2020) Evaluating the contribution of soybean rust–resistant cultivars to soybean production
and the soybean market in Brazil: a supply and demand model analysis. Sustainability 12:1422. https://doi.org/10.3390/su12041422

Kashiwa T, Muraki Y, Yamanaka N (2020) Near-isogenic soybean lines carrying Asian soybean rust resistance genes for practical pathogenicity validation. Sci Rep 10:13270. https://doi.org/10.1038/s41598-020-70188-7

Kato M, Morel A, Yamanaka N (2022) Resistance to Asian soybean rust and yield of new soybean cultivars, JFNC 1 and JFNC 2, harboring three resistance genes. Trop Plant Pathol. https://doi.org/10.1007/s40858-022-00516-x

Langenbach C, Campe R, Beyer SF et al (2016) Fighting Asian soybean rust. Front Plant Sci 7:797

Lemos NG, de Lucca e Braccini A, Abdelnoor RV et al (2011) Characterization of genes Rpp_2, Rpp_4, and Rpp_5 for resistance to soybean rust. Euphytica 182:53. https://doi.org/10.1007/s10681-011-0465-3

Li S, Smith JR, Ray JD, Frederick RD (2012) Identification of a new soybean rust resistance gene in PI 567102B. Theor Appl Genet 125:133–142. https://doi.org/10.1007/s00122-012-1821-y

Meira D, Woyann LG, Bozi AH et al (2020) Asian soybean rust: a scientometric approach of Phakopsora pachyrhizi studies. Euphytica 216:133. https://doi.org/10.1007/s10681-020-02667-x

Meira D, Panho MC, Beche E et al (2022) Gene pyramiding combinations confer resistance of Asian soybean rust. Crop Sci 62:792–801. https://doi.org/10.1002/csc2.20700

Miles MR, Bonde MR, Nester SE et al (2011) Characterizing resistance to Phakopsora pachyrhizi in soybean. Plant Dis 95:577–581. https://doi.org/10.1094/PDIS-06-10-0450

Mundt CC (2018) Pyramiding for resistance durability theory and practice. Phytopathology® 108:792–802. https://doi.org/10.1094/PHYTO-12-17-0426-RVW

Murithi HM, Soares RM, Mahuku G et al (2021) Diversity and distribution of pathotypes of the soybean rust fungus Phakopsora pachyrhizi in East Africa. Plant Pathol 70:655–666. https://doi.org/10.1111/ppa.13324

Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19:21–33. https://doi.org/10.1038/nrg.2017.82

Parhe SD, Chimote VP, Deshmukh MP et al (2017) Marker-assisted pyramiding of four QTLgenes for Asian rust (Phakopsora pachyrhizi) resistance in soybean. J Crop Improv 31:689–711. https://doi.org/10.1080/15427528.2017.1347593

R Development Core Team (2020) R: the R project for statistical computing

Viganó J, Braccini AL, Schuster I, Menezes VMPS (2018) Microsatellite molecular marker-assisted gene pyramiding for resistance to Asian soybean rust (ASR). Acta Sci Agron. https://doi.org/10.4025/actasciagron.v40i1.39619

Yamanaka N, Hossain MdM (2019) Pyramiding three rust-resistance genes confers a high level of resistance in soybean (glycine max). Plant Breed 138:686–695. https://doi.org/10.1111/pbr.12720

Yamanaka N, Yamaoka Y, Kato M et al (2010) Development of classification criteria for resistance to soybean rust and differences in virulence among Japanese and Brazilian rust populations. Trop Plant Pathol 35:153–162. https://doi.org/10.1590/S1982-56762010000300003

Yamanaka N, Lemos NG, Uno M et al (2013) Resistance to Asian soybean rust in soybean lines with the pyramided three Rpp genes. Crop Breed Appl Biotechnol 13:75–82. https://doi.org/10.1590/S1984-70322013000100009

Yamanaka N, Morishita M, Mori T et al (2015) Multiple Rpp-gene pyramiding confers resistance to Asian soybean rust isolates that are virulent on each of the pyramided genes. Trop Plant Pathol 40:283–290. https://doi.org/10.1007/s40858-015-0038-4

Yamanaka N, Morishita M, Mori T et al (2016) The locus for resistance to Asian soybean rust in PI 587855. Plant Breed 135:621–626. https://doi.org/10.1111/pbr.12392

Yamanaka N, Kato M, Akamatsu H, Yamaoka (2020) Laboratory manual for studies on soybean rust resistance. JIRCAS website. https://www.jircas.go.jp/en/publication/manual_guideline/30

Yu N, Kim M, King ZR et al (2015) Fine mapping of the Asian soybean rust resistance gene Rpp_2 from soybean PI 230970. Theor Appl Genet 128:387–396. https://doi.org/10.1007/s00122-014-2438-0

Zaidi SS-A, Mukhtar MS, Mansoor S (2018) Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol 4:898–906. https://doi.org/10.1016/j.tibtech.2018.04.005

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.