Eigenvalue estimates for the higher order buckling problem

Guangyue Huang, Xingxiao Li
Department of Mathematics, Henan Normal University
Xinxiang 453007, Henan, P.R. China

Abstract. In this paper, we consider lower order eigenvalues of Laplacian operator with any order in Euclidean domains. By choosing special rectangular coordinates, we obtain two estimates for lower order eigenvalues.

Mathematics Subject Classification 35P15.

Keywords and phrases lower order eigenvalue, Rayleigh-Ritz inequality, buckling problem.

1 Introduction

Let \(\Omega \) be a bounded domain in an \(n(\geq 2) \)-dimensional Euclidean space \(\mathbb{R}^n \) with smooth boundary \(\partial \Omega \). In the present article, we consider the eigenvalue estimate for the following problem:

\[
\begin{aligned}
(\Delta)^p u &= \Lambda(\Delta)u, & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = \cdots = \frac{\partial^{p-1} u}{\partial \nu^{p-1}} &= 0 & \text{on } \partial \Omega,
\end{aligned}
\]

(1.1)

where \(\nu \) denotes the outward unit normal vector field of \(\partial \Omega \) and \(p \) is a positive integer. Let \(0 < \Lambda_1 < \Lambda_2 \leq \Lambda_3 \leq \cdots \rightarrow +\infty \) denote the successive eigenvalues for (1.1), where each eigenvalue is repeated according to its multiplicity.

When \(p = 2 \), the eigenvalue problem (1.1) is called the buckling problem. For the buckling problem, Payne-Pólya-Weinberger [11] proved, in the case of \(n = 2 \), that

\[
\Lambda_2 \leq 3\Lambda_1.
\]

(1.2)

Following the method of Payne-Pólya-Weinberger in [11], the inequality (1.2) can be generalized to \(\Omega \subset \mathbb{R}^n \) as (see [2]):

\[
\Lambda_2 \leq \left(1 + \frac{8}{n+2}\right)\Lambda_1.
\]

In 1984, Hile and Yeh [10] improved the above results as follows:

\[
\Lambda_2 \leq \frac{n^2 + 8n + 20}{(n+2)^2}\Lambda_1.
\]
On the other hand, Ashbaugh [1] proved another inequality as the following form:

$$\sum_{i=1}^{n} (\Lambda_{i+1} - \Lambda_1) \leq 4\Lambda_1. \quad (1.3)$$

To answer a question of Ashbaugh given in [1], Cheng-Yang [4] obtained in 2006 a universal inequality for higher eigenvalues of (1.1) with $p = 2$. In fact, they proved that

$$\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \leq \frac{4(n+2)}{n^2} \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)\Lambda_i. \quad (1.4)$$

As a generalization of (1.4), Huang and Li [7] proved the following inequality of eigenvalue estimate for the problem (1.1) with $p \geq 2$:

$$\sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)^2 \leq \frac{4(p-1)(n+2p-2)}{n^2} \sum_{i=1}^{k} (\Lambda_{k+1} - \Lambda_i)\Lambda_i. \quad (1.5)$$

Estimates for higher order eigenvalues of (1.1) has been recently studied by many mathematicians. For the other related development in this direction, we refer to [3, 5–8, 12, 13] and the references therein.

In particular, Cheng-Ichikawa-Mametsuka considered in [9] the eigenvalue estimate for the problem

$$\begin{cases} (-\Delta)^p u = \lambda u, & \text{in } \Omega, \\ u = \frac{\partial u}{\partial \nu} = \cdots = \frac{\partial^{p-1} u}{\partial \nu^{p-1}} = 0 & \text{on } \partial \Omega, \end{cases} \quad (1.6)$$

and proved the following inequalities:

$$\sum_{i=1}^{n} (\Lambda_{i+1} - \Lambda_1) \leq 4p(2p-1)\lambda_1 \quad \text{for } p \geq 2, \quad (1.7)$$

$$\sum_{i=1}^{n} (\Lambda_{i+1}^p - \Lambda_1^p)^{p-1} \leq (2p-1)^p \lambda_1^{\frac{p-1}{p}} \quad \text{for } p \geq 2. \quad (1.8)$$

Inspired by [9], we consider the eigenvalue problem (1.1) with $p \geq 2$ and wish to obtain the similar results as (1.7) and (1.8). Our main results of this paper are stated as follows:

Theorem 1.1. Let Ω be a bounded domain in an $n(\geq 2)$-dimensional Euclidean space \mathbb{R}^n. Assume that Λ_i is the i-th eigenvalue of the problem (1.1) with $p \geq 2$. Then,

$$\sum_{i=1}^{n} (\Lambda_{i+1} - \Lambda_1) \leq 4[p(2p+n-2)-n]\Lambda_1. \quad (1.9)$$

Theorem 1.2. Let Ω be a bounded domain in an $n(\geq 2)$-dimensional Euclidean space \mathbb{R}^n. Assume that Λ_i is the i-th eigenvalue of the problem (1.1) with $p \geq 3$. Then,

$$\sum_{i=1}^{n} (\frac{\Lambda_{i+1}^p}{\Lambda_1^p} - \frac{\Lambda_{i+1}^{p-1}}{\Lambda_1^{p-1}})^{p-2} \leq (2p-2)\Lambda_1^{\frac{p-2}{p-1}}. \quad (1.10)$$
2 Proof of Theorem 1.1

Let \(u_i \) be the orthonormal eigenvalue function of the problem (1.1) with respect to \(L^2 \) inner product corresponding to \(\Lambda_i \), that is,

\[
\left\{ \begin{array}{ll}
(\Delta)^p u_i = \Lambda_i (\Delta) u_i & \text{in } \Omega, \\
u_i = \frac{\partial u_i}{\partial \nu} = \cdots = \frac{\partial^{p-1} u_i}{\partial \nu^{p-1}} = 0 & \text{on } \partial \Omega, \\
\int_{\Omega} \langle \nabla u_i, \nabla u_j \rangle = \delta_{ij}.
\end{array} \right.
\]

We first choose rectangular coordinates for \(\mathbb{R}^n \) by taking as origin the center of gravity of \(\Omega \) with mass-distribution \(|\nabla u_1|^2 \) such that

\[
\int_{\Omega} \langle \nabla (x_i u_1), \nabla u_1 \rangle = 0 \quad \text{for } i = 1, 2, \cdots, n.
\]

Then, by a rotation of the coordinate system if necessary, we may also assume

\[
\int_{\Omega} \langle \nabla (x_i u_1), \nabla u_j \rangle = 0 \quad \text{for } 2 \leq j \leq i \leq n,
\]

and hence we arrive at

\[
\int_{\Omega} \langle \nabla (x_i u_1), \nabla u_j \rangle = 0 \quad \text{for } 1 \leq j \leq i \leq n.
\]

Let \(\varphi_i = x_i u_1 \). Then \(\varphi_i = \frac{\partial \varphi_i}{\partial \nu} = \cdots = \frac{\partial^{p-1} \varphi_i}{\partial \nu^{p-1}} = 0 \) on \(\partial \Omega \) and

\[
\int_{\Omega} \langle \nabla \varphi_i, \nabla u_j \rangle = 0 \quad \text{for } 1 \leq j \leq i \leq n.
\]

From the Rayleigh-Ritz inequality, one gets

\[
\Lambda_{i+1} \leq \frac{\int_{\Omega} \varphi_i (\Delta)^p \varphi_i}{\int_{\Omega} |\nabla \varphi_i|^2}.
\]

(2.1)

Note that

\[
(\Delta)^p \varphi_i = (\Delta)^p (x_i u_1) = \Lambda_1 x_i (\Delta) u_1 - 2p (\Delta)^{p-1} u_{1,x_i},
\]

where \(u_{1,x_i} = \partial u_1 / \partial x_i \). It follows that

\[
\int_{\Omega} \varphi_i (\Delta)^p \varphi_i = \int_{\Omega} \varphi_i [\Lambda_1 x_i (\Delta) u_1 - 2p (\Delta)^{p-1} u_{1,x_i}]
= \int_{\Omega} \varphi_i [\Lambda_1 (\Delta) (x_i u_1) + 2\Lambda_1 u_{1,x_i} - 2p (\Delta)^{p-1} u_{1,x_i}]
= \Lambda_1 \int_{\Omega} |\nabla \varphi_i|^2 + 2\Lambda_1 \int_{\Omega} x_i u_{1,u_{1,x_i}} - 2p \int_{\Omega} \varphi_i (\Delta)^{p-1} u_{1,x_i}
= \Lambda_1 \int_{\Omega} |\nabla \varphi_i|^2 - \Lambda_1 \int_{\Omega} u_1^2 - 2p \int_{\Omega} \varphi_i (\Delta)^{p-1} u_{1,x_i}.
\]

(2.2)
Combining with (2.1) and (2.2) yields
\[
(\Lambda_{i+1} - \Lambda_1) \int_\Omega |\nabla \varphi_i|^2 \leq -\Lambda_1 \int_\Omega u_1^2 - 2p \int_\Omega \varphi_i (-\Delta)^{p-1} u_{1,x}. \tag{2.3}
\]
Using integration by parts, we have
\[
\int_\Omega \langle \nabla \varphi_i, \nabla u_{1,x} \rangle = - \int_\Omega \langle \nabla (x_i u_1), \nabla u_1 \rangle = -1 - \int_\Omega u_{1,x}^2 - \int_\Omega \langle [\nabla (x_i u_1) - u_1 \nabla x_i], \nabla u_{1,x} \rangle
\]
\[
= -1 - 2 \int_\Omega u_{1,x}^2 - \int_\Omega \langle \nabla \varphi_i, \nabla u_{1,x} \rangle.
\]
Hence,
\[
1 \leq 1 + 2 \int_\Omega u_{1,x}^2 = -2 \int_\Omega \langle \nabla \varphi_i, \nabla u_{1,x} \rangle. \tag{2.4}
\]
By Cauchy inequality one knows from (2.4) that
\[
1 \leq 4 \left(\int_\Omega \langle \nabla \varphi_i, \nabla u_{1,x} \rangle \right)^2 \leq 4 \int_\Omega |\nabla \varphi_i|^2 \int_\Omega |\nabla u_{1,x}|^2. \tag{2.5}
\]
Then from (2.3) and (2.5), it is easily seen that
\[
\sum_{i=1}^n (\Lambda_{i+1} - \Lambda_1) \leq 4 \sum_{i=1}^n \left\{ (\Lambda_{i+1} - \Lambda_1) \int_\Omega |\nabla \varphi_i|^2 \int_\Omega |\nabla u_{1,x}|^2 \right\}
\]
\[
\leq 4 \sum_{i=1}^n \left\{ -\Lambda_1 \int_\Omega u_1^2 - 2p \int_\Omega \varphi_i (-\Delta)^{p-1} u_{1,x} \right\} \int_\Omega |\nabla u_{1,x}|^2 \right\}
\]
\[
\leq 4 \left\{ -\Lambda_1 \int_\Omega u_1^2 - 2p \int_\Omega \varphi_i (-\Delta)^{p-1} u_{1,x} \right\} \left\{ \sum_{i=1}^n \int_\Omega |\nabla u_{1,x}|^2 \right\}. \tag{2.6}
\]
Denote
\[
\nabla^r = \begin{cases}
\Delta^{r/2} & \text{when } r \text{ is even,} \\
\nabla (\Delta^{(r-1)/2}) & \text{when } r \text{ is odd.}
\end{cases}
\]
Then we have the following lemma:

Lemma 2.1. [7] Let \(u_1 \) be the eigenfunction of the problem (1.3) corresponding to the eigenvalue \(\Lambda_1 \). Then we have
\[
\int_\Omega |\nabla^r u_1|^2 \leq \Lambda_1^{(r-1)/(p-1)} \quad \text{for } r = 2, 3, \ldots, p. \tag{2.7}
\]

Proof. First we prove the inequality
\[
\left(\int_\Omega u_1 (-\Delta)^r u_1 \right)^{1/(r-1)} \leq \left(\int_\Omega u_1 (-\Delta)^{r+1} u_1 \right)^{1/r}. \tag{2.8}
\]
For $r = 2$, we have
\[
\int_{\Omega} u_1 (-\Delta)^2 u_1 = \int_{\Omega} \langle \nabla u_1, \nabla (-\Delta) u_1 \rangle \\
\leq \left(\int_{\Omega} |\nabla u_1|^2 \right)^{1/2} \cdot \left(\int_{\Omega} |\nabla (-\Delta) u_1|^2 \right)^{1/2} \\
= \left(\int_{\Omega} u_1 (-\Delta)^3 u_1 \right)^{1/2}.
\]

Suppose that inequality (2.7) holds for $r-1$, that is,
\[
\left(\int_{\Omega} u_1 (-\Delta)^{r-1} u_1 \right)^{1/(r-2)} \leq \left(\int_{\Omega} u_1 (-\Delta)^r u_1 \right)^{1/(r-1)}.
\]

Then, for integer r,
\[
\int_{\Omega} u_1 (-\Delta)^r u_1 = - \int_{\Omega} \langle \nabla^{r-1} u_1, \nabla^{r+1} u_1 \rangle \\
\leq \left(\int_{\Omega} |\nabla^{r-1} u_1|^2 \right)^{1/2} \cdot \left(\int_{\Omega} |\nabla^{r+1} u_1|^2 \right)^{1/2} \\
= \left(\int_{\Omega} u_1 (-\Delta)^{r-1} u_1 \right)^{1/2} \cdot \left(\int_{\Omega} u_1 (-\Delta)^{r+1} u_1 \right)^{1/2} \\
\leq \left(\int_{\Omega} u_1 (-\Delta)^r u_1 \right)^{(r-2)/2(r-1)} \cdot \left(\int_{\Omega} u_1 (-\Delta)^{r+1} u_1 \right)^{1/2},
\]
which gives
\[
\left(\int_{\Omega} u_1 (-\Delta)^r u_1 \right)^{1/(r-1)} \leq \left(\int_{\Omega} u_1 (-\Delta)^{r+1} u_1 \right)^{1/r}.
\]

This means that inequality (2.8) holds. Repeatedly using inequality (2.8), we deduce
\[
\left(\int_{\Omega} u_1 (-\Delta)^r u_1 \right) \leq \left(\int_{\Omega} u_1 (-\Delta)^{p+1} u_1 \right)^{1/(p-1)} = \Lambda_1^{1/(p-1)}.
\]

This concludes the proof of Lemma 2.1. \qed

From (2.7) and Schwarz inequality it follows that
\[
1 = \left(\int_{\Omega} |\nabla u_1|^2 \right)^2 = \left(\int_{\Omega} u_1 (-\Delta) u_1 \right)^2 \\
\leq \int_{\Omega} u_1^2 \int_{\Omega} u_1 (-\Delta)^2 u_1 \leq \Lambda_1^{p-1} \int_{\Omega} u_1^2.
\] (2.9)
A direct computation yields
\[
\int_{\Omega} \varphi_i(-\Delta)^{p-1} u_{1,x_i} = \int_{\Omega} u_{1,x_i} (-\Delta)^{p-1}(x_i u_1)
\]
\[
= \int_{\Omega} u_{1,x_i} \left(x_i (-\Delta)^{p-1} u_1 - 2(p-1)(-\Delta)^{p-2} u_{1,x_i} \right)
\]
\[
= - \int_{\Omega} u_1 \left((-\Delta)^{p-1} u_1 + x_i (-\Delta)^{p-1} u_{1,x_i} \right)
\]
\[
+ 2(p-1) \int_{\Omega} u_1 (-\Delta)^{p-2} u_{1,x_i}
\]
\[
= - \int_{\Omega} \varphi_i(-\Delta)^{p-1} u_{1,x_i} - \int_{\Omega} u_1 (-\Delta)^{p-1} u_1
\]
\[
+ 2(p-1) \int_{\Omega} u_1 (-\Delta)^{p-2} u_{1,x_i},
\]
(2.10)
which shows that
\[
\sum_{i=1}^{n} \int_{\Omega} \varphi_i(-\Delta)^{p-1} u_{1,x_i}
\]
\[
= \sum_{i=1}^{n} \left(-\frac{1}{2} \int_{\Omega} u_1 (-\Delta)^{p-1} u_1 + (p-1) \int_{\Omega} u_1 (-\Delta)^{p-2} u_{1,x_i} \right)
\]
\[
= -\frac{2p+n-2}{2} \int_{\Omega} u_1 (-\Delta)^{p-1} u_1
\]
\[
\geq -\frac{2p+n-2}{2} \Lambda_{1}^{\frac{p-2}{p-1}}.
\]
(2.11)
On the other hand, it easy to see that
\[
\sum_{i=1}^{n} \int_{\Omega} |\nabla u_{1,x_i}|^2 = -\sum_{i=1}^{n} \int_{\Omega} u_1 (-\Delta) u_{1,x_i} = \int_{\Omega} u_1 (-\Delta)^2 u_1 \leq \Lambda_{1}^{\frac{p}{p-1}}. \tag{2.12}
\]
Finally, applying (2.9), (2.11) and (2.12) to (2.5), one finds
\[
\sum_{i=1}^{n} (\Lambda_{i+1} - \Lambda_1) \leq 4[p(2p + n - 2) - n] \Lambda_1,
\]
completing the proof of Theorem 1.1. \qed

3 Proof of Theorem 1.2

By virtue of (2.9), it holds that
\[
\Lambda_1 \int_{\Omega} u_1^2 \geq \Lambda_{1}^{\frac{p-2}{p-1}}. \tag{3.1}
\]
And from (2.10) one finds that
\[
\int_{\Omega} \varphi_i(-\Delta)^{p-1} u_{1,x_i} = -\frac{1}{2} \int_{\Omega} u_1 (-\Delta)^{p-1} u_1 + (p-1) \int_{\Omega} u_1 (-\Delta)^{p-2} u_{1,x_i}
\]
\[
\geq -\frac{1}{2} \Lambda_{1}^{\frac{p-2}{p-1}} - (p-1) \int_{\Omega} |\nabla^{p-2} u_{1,x_i}|^2,
\]
(3.2)
Lemma 3.1. Let Λ_i be the i-th eigenvalue of problem (1.1) with $p \geq 2$, and u_i be the orthonormal eigenfunction corresponding to Λ_i. Then for $1 \leq i \leq n$, either
\[
\sum_{k=1}^{p-2} \frac{1}{\Lambda_{i+1}^{p-1}} \left(\Lambda_{i+1}^{p-1} - \Lambda_{i+1}^{p-k} \right) \leq 2p(p-1) \int_{\Omega} |\nabla^{p-2} u_{1,x_i}|^2, \tag{3.4}
\]
or
\[
\Lambda_{i+1}^{\frac{1}{p-1}} - \Lambda_{i}^{\frac{1}{p-1}} \leq 4 \int_{\Omega} |u_{1,x_i}|^2. \tag{3.5}
\]

Proof. Suppose that there exists an i such that neither (3.4) nor (3.5) holds. Then by (3.3)
\[
(L_{i+1} - L_{1}) \int_{\Omega} |\nabla \varphi_i|^2 \leq (p-1)L_{1}^{\frac{p-2}{p-1}} + 2p(p-1) \int_{\Omega} |\nabla^{p-2} u_{1,x_i}|^2
\]
\[
< (p-1)L_{1}^{\frac{p-2}{p-1}} + \sum_{k=1}^{p-2} \Lambda_{k-1}^{1} \left(\Lambda_{i+1}^{\frac{p-1-k}{p-1}} - \Lambda_{i}^{\frac{p-1-k}{p-1}} \right)
\]
\[
= \sum_{k=1}^{p-1} \Lambda_{k-1}^{\frac{p-1-k}{p-1}} \Lambda_{i+1}^{\frac{k-1}{p-1}} = \frac{\Lambda_{i+1} - \Lambda_{i}}{\Lambda_{i+1}^{\frac{1}{p-1}} - \Lambda_{i}^{\frac{1}{p-1}}},
\]
which shows that
\[
(L_{i+1}^{\frac{1}{p-1}} - L_{i}^{\frac{1}{p-1}}) \int_{\Omega} |\nabla \varphi_i|^2 < 1. \tag{3.6}
\]

On the other hand, it follows from (2.5) that
\[
1 \leq 4 \int_{\Omega} |\nabla \varphi_i|^2 \int_{\Omega} |u_{1,x_i}|^2 < (L_{i+1}^{\frac{1}{p-1}} - L_{i}^{\frac{1}{p-1}}) \int_{\Omega} |\nabla \varphi_i|^2,
\]
which contradicts with (3.6). This concludes the proof of Lemma 3.1. □

Lemma 3.2. Let Λ_i be the i-th eigenvalue of problem (1.1) with $p \geq 2$, and u_i be the orthonormal eigenfunction corresponding to Λ_i. Then
\[
\left(\int_{\Omega} |\nabla^r u_{1,x_i}|^2 \right)^{\frac{1}{r+1}} \leq \left(\int_{\Omega} |\nabla^{r+1} u_{1,x_i}|^2 \right)^{\frac{1}{r+2}} \quad \text{for } r = 1, 2, \ldots, p-2. \tag{3.7}
\]

Proof. For $r = 1$, we have
\[
\int_{\Omega} |\nabla u_{1,x_i}|^2 = - \int_{\Omega} \langle \nabla^2 u_{1,x_i}, u_{1,x_i} \rangle \leq \left(\int_{\Omega} |\nabla^2 u_{1,x_i}|^2 \right)^{\frac{1}{2}} \left(\int_{\Omega} |u_{1,x_i}|^2 \right)^{\frac{1}{2}} \leq \left(\int_{\Omega} |\nabla^2 u_{1,x_i}|^2 \right)^{\frac{1}{2}} = \left(\int_{\Omega} |\nabla u_{1,x_i}|^2 \right)^{\frac{1}{2}}.
\]
Assume that (3.7) is true for $r - 1$, that is,
\[
\left(\int_\Omega |\nabla^{r-1} u_{1,x_i}|^2 \right)^{\frac{1}{r-1}} \leq \left(\int_\Omega |\nabla^r u_{1,x_i}|^2 \right)^{\frac{1}{r}}.
\]
Then for r
\[
\int_\Omega |\nabla^r u_{1,x_i}|^2 = - \int_\Omega \langle \nabla^{r-1} u_{1,x_i}, \nabla^{r+1} u_{1,x_i} \rangle \\
\leq \left(\int_\Omega |\nabla^{r-1} u_{1,x_i}|^2 \right)^{\frac{1}{r-1}} \left(\int_\Omega |\nabla^{r+1} u_{1,x_i}|^2 \right)^{\frac{1}{r+1}},
\]
which gives that
\[
\left(\int_\Omega |\nabla^r u_{1,x_i}|^2 \right)^{\frac{1}{r}} \leq \left(\int_\Omega |\nabla^{r+1} u_{1,x_i}|^2 \right)^{\frac{1}{r+1}},
\]
and Lemma 3.2 is obtained. □

Making use of Lemma 3.1 and Lemma 3.2, we can prove the following lemma:

Lemma 3.3. If $p \geq 3$, then
\[
\Lambda_{i+1}^{\frac{1}{p-1}} - \Lambda_1^{\frac{1}{p-1}} \leq 2p \left(\int_\Omega |\nabla^{p-2} u_{1,x_i}|^2 \right)^{\frac{1}{p-2}} \tag{3.8}
\]
holds for $1 \leq i \leq n$.

Proof. By Lemma 3.1 either (3.4) or (3.5) holds.

(1) If (3.4) holds, then
\[
2p(p-1) \int_\Omega |\nabla^{p-2} u_{1,x_i}|^2 \geq \sum_{k=1}^{p-2} \Lambda_1^{\frac{k-1}{p-1}} \left(\Lambda_{i+1}^{\frac{p-1-k}{p-1}} - \Lambda_1^{\frac{p-1-k}{p-1}} \right) \\
\geq \sum_{k=1}^{p-2} \Lambda_1^{\frac{k-1}{p-1}} \left(\Lambda_{i+1}^{\frac{p-1-k}{p-1}} - \Lambda_1^{\frac{p-1-k}{p-1}} \right) \\
= \sum_{k=1}^{p-2} \Lambda_1^{\frac{p-3-k}{p-1}} \left(\Lambda_{i+1}^{\frac{1}{p-1}} - \Lambda_1^{\frac{1}{p-1}} \right) \\
= (p-2) \Lambda_1^{\frac{p-3}{p-1}} \left(\Lambda_{i+1}^{\frac{1}{p-1}} - \Lambda_1^{\frac{1}{p-1}} \right). \tag{3.9}
\]

Since
\[
\int_\Omega |\nabla^{p-2} u_{1,x_i}|^2 \leq \sum_{i=1}^n \int_\Omega |\nabla^{p-2} u_{1,x_i}|^2 = \int_\Omega |\nabla^{p-1} u_{1}|^2 \leq \Lambda_1^{\frac{p-2}{p-1}},
\]
we obtain from (3.9) that
\[
2p(p-1) \int_\Omega |\nabla^{p-2} u_{1,x_i}|^2 \geq (p-2) \Lambda_1^{\frac{p-3}{p-1}} \left(\Lambda_{i+1}^{\frac{1}{p-1}} - \Lambda_1^{\frac{1}{p-1}} \right) \\
\geq (p-2) \left(\int_\Omega |\nabla^{p-2} u_{1,x_i}|^2 \right)^{\frac{p-3}{p-2}} \left(\Lambda_{i+1}^{\frac{1}{p-1}} - \Lambda_1^{\frac{1}{p-1}} \right).
\]
Thus, for \(p \geq 3 \), one gets

\[
\Lambda_{i+1}^{\frac{1}{p}} - \Lambda_i^{\frac{1}{p}} \leq \frac{2p(p-1)}{p-2} \left(\int_{\Omega} |\nabla^{p-2}u_{1,x_i}|^2 \right)^{\frac{1}{p-2}} \leq 2p \left(\int_{\Omega} |\nabla^{p-2}u_{1,x_i}|^2 \right)^{\frac{1}{p-2}}. \tag{3.10}
\]

(2) If \((3.5)\) holds, then using \((3.7)\), it is easy to see

\[
\Lambda_{i+1}^{\frac{1}{p}} - \Lambda_i^{\frac{1}{p}} \leq 4 \int_{\Omega} |\nabla u_{1,x_i}|^2 \leq 2p \int_{\Omega} |\nabla u_{1,x_i}|^2 \leq \ldots \leq 2p \left(\int_{\Omega} |\nabla^{p-2}u_{1,x_i}|^2 \right)^{\frac{1}{p-2}}. \tag{3.11}
\]

Thus \((3.8)\) holds anyway. \(\square\)

Now summing up \((3.8)\) over \(i\) from 1 to \(n\) yields

\[
\sum_{i=1}^{n} (\Lambda_{i+1}^{\frac{1}{p}} - \Lambda_i^{\frac{1}{p}}) \leq (2p)^{p-2} \sum_{i=1}^{n} \int_{\Omega} |\nabla^{p-2}u_{1,x_i}|^2 = (2p)^{p-2} \sum_{i=1}^{n} \int_{\Omega} |\nabla^{p-1}u_{1,x_i}|^2 \leq (2p)^{p-2} \Lambda_{1}^{\frac{1}{p-1}},
\]

concluding the proof of Theorem 1.2. \(\square\)

References

[1] M.S. Ashbaugh. Isoperimetric and universal inequalities for eigenvalues. In: Davies, E.B., Safarov, Y.(eds.) Spectral theory and geometry, 1998. London Math. Soc. Lecture Notes, vol 273, pp 95-139. Cambridge University Press, Cambridge(1999)

[2] M.S. Ashbaugh. On universal inequalities for the low eigenvalues of the buckling problem. (English summary) Partial differential equations and inverse problems, 13-31, Contemp. Math., 362, Amer. Math. Soc., Providence, RI, 2004

[3] Z.C. Chen and C.L. Qian. On the upper bound of eigenvalues for elliptic equations with higher orders. J. Math. Anal. Appl. 186 (1994), 821-834

[4] Q.M. Cheng and H.C. Yang. Universal bounds for eigenvalues of a buckling problem. Commun. Math. Phys. 262 (2006), 663-675

[5] G.Y. Huang and W.Y. Chen. Universal bounds for eigenvalues of Laplacian operator with any order. To appear in Acta Math. Sci. Ser. B Engl. Ed. 2010, vol 30(1)

[6] G.Y. Huang, X.X. Li and L.F. Cao. Universal bounds on eigenvalues of the buckling problem on spherical domains (preprint)

[7] G.Y. Huang and X.X. Li. Universal inequalities for eigenvalues of Laplacian with any order (preprint)

[8] G.Y. Huang, X.X. Li and X.R. Qi. Estimates on the first two buckling eigenvalues on spherical domains (preprint)
[9] Q.M. Cheng, T. Ichikawa and S. Mametsuka. Inequalities for eigenvalues of Laplacian with any order (preprint)

[10] G.N. Hile and R.Z. Yeh. Inequalities for eigenvalues of the biharmonic operator. Pacific J. Math. 112(1984), 115-133

[11] L.E. Payne, G. Pólya and H.F. Weinberger. On the ratio of consecutive eigenvalues. J. Math. Phys. 35(1956), 289-298

[12] Q.L. Wang and C.Y. Xia. Universal inequalities for eigenvalues of the buckling problem on spherical domains. Commun. Math. Phys. 270(2007), 759-775

[13] F.E. Wu and L.F. Cao. Estimates for eigenvalues of Laplacian operator with any order. Sci. China Ser. A, 50(2007), 1078-1086