Research Article

Evaluation of Corrosion Resistance of Corrosion Inhibitors for Concrete Structures by Electrochemical Testing in Saturated Ca(OH)\textsubscript{2} Solutions with NaCl and Na\textsubscript{2}SO\textsubscript{4}

Hwa Sung Ryu1, Chang Gil Lim, Tae Won Kang, Seungmin Lim3, Hong Tae Kim,4 and Sang Heon Shin1

1Hanyang E&C, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
2Sammyung E&C, 8 Jungang-daero 1473 Beon-gil Dongnae-ru, Busan 47711, Republic of Korea
3Department of Architectural Engineering, Hanyang University, Ansan 15588, Republic of Korea
4Department of Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Correspondence should be addressed to Sang Heon Shin; ssh8065@hanyang.ac.kr

Received 28 June 2018; Revised 25 January 2019; Accepted 28 February 2019; Published 15 April 2019

1. Introduction

The corrosion of steel reinforcements within concrete occurs as the passive films, formed on the steel surfaces in the alkaline environment of concrete, are destroyed. The passivity of reinforcing steel is promoted by the alkalinity of concrete, arising from the high pH of the concrete pore solution. However, protective oxides and passive films can be destroyed by the weakening of concrete and the ingress of harmful ions caused by the carbonation, sulfates attack, and acidic substances in industrial areas. The corrosion of steel can also be alleviated by using corrosion-resistant steels, cathodic protection, fusion-bonded epoxy coatings, corrosion inhibitors, and admixtures. Among these methods, corrosion inhibitors are the most widely used, with high cost-effectiveness and convenient usage. Inhibitors prevent the onset of corrosion by increasing the concrete pH or by fixing harmful ions that can cause the corrosion of steel [1, 2]. Frequently used corrosion inhibitors include inorganic nitrites [3–5], inorganic phosphate [6] and molybdenum [7], monofluorophosphate that is applied to the surface of the concrete [8], and organic inhibitors, such as alkanolamine and amine groups [9–15].
Inorganic corrosion inhibitors are mostly nitrites, which have been used since the 1940s. Nitrite-based corrosion inhibitors are environmentally unfriendly with hazardous biological effects [16]. To replace nitrite-based corrosion inhibitors, organic-based inhibitors have been developed and used since the 1990s. Organic corrosion inhibitors show chelating effects with iron, which forms covalent bonds with lone pairs of electrons of the heteroatoms in the organic compound. The heteroatoms act as nucleophiles of iron, which is an electrophile. The lone pairs of the heteroatoms are donated to the vacant d-orbital of iron atoms, forming very strong covalent bonds. In this way, the organic inhibitor is adsorbed on the metal surface, yielding a very protective inert film [17, 18]. Organic inhibitors, especially amine- and alkanolamine-containing effectors, are frequently used as corrosion inhibitors owing to their high solubilities in aqueous solutions. Because of the functional groups of organic inhibitors, nitrogen and oxygen atoms are adsorbed on the metal surface with their lone pairs of electrons; the iron ions act as Lewis acids, accepting electrons from the nitrogen and oxygen donors. Very strong covalent bonds are formed between nitrogen/oxygen and iron metal, and considerable amounts of nitrogen and oxygen are adsorbed on the surface of the reinforcing steel [19]. Such organic inhibitors reduce or impede the corrosion of reinforcing steel through the adsorption of polar heteroatom groups, which form very thin protective layers. Therefore, inhibitors containing amino groups are commonly used to decrease the corrosion of reinforcing steel in contaminated concrete.

Before corrosion begins or at relatively low corrosion levels, amino alcohol inhibitors are more effective [20, 21]. Martin and Miskic reported that dimethylethanolamine blocks active sites and acts as a cathodic inhibitor. The oxygen absorbs electrons, thereby being reduced to OH− and adsorbing on the anode. Amino alcohol inhibitors act more effectively than nitrite inhibitors, i.e., lithium nitrite, in both acceleration tests and saturated Ca(OH)2 solutions with different concentrations of chloride ions [22].

Studies about corrosion of reinforcing steel-simulating concrete environments using saturated Ca(OH)2 solutions have been reported elsewhere [23–25]. However, only a few corrosion studies have been performed for amine-based corrosion inhibitors in saturated Ca(OH)2 solutions bearing sulfate and chloride ions via electrochemical methods [26, 27]. Sulfate attack on concrete is a chemical deterioration mechanism where sulfate ions attack components of the cement paste to form expansive crystalline products called ettringite. Expansion due to ettringite formation results in stresses, and cracks develop in the concrete; therefore, it can accelerate corrosion by destroying the passive state of the rebar through lowering of the pH in the concrete pore environment [28].

In this study, the effects of inorganic nitrite and amino alcohol inhibitors on corrosion resistance and the pH of the solution with various concentrations of Na2SO4 in saturated Ca(OH)2 contained NaCl, which simulated the concrete environment, were investigated. The corrosion resistance of inhibitors was evaluated by various electrochemical tests, such as potential times, electrochemical impedance spectroscopy, and potentiodynamic techniques.

2. Materials and Methods

2.1. Materials. Commercially available inorganic nitrite corrosion inhibitor and amino acid corrosion inhibitors were used, and their physical properties are shown in Table 1. The pH of the saturated Ca(OH)2 solution was 12.8 at room temperature (25°C ± 1°C). The pH was measured after mixing 0.98 g/L NaCl and various concentrations of Na2SO4 into the saturated Ca(OH)2. Since the pH adjustment is very delicate work in mixed solutions, the pH was set by the measurement after the preparation of solutions. The corrosion inhibitors of various concentrations were mixed in the Ca(OH)2/NaCl/Na2SO4 solutions.

Steel specimens of 16 mm in diameter were cut and placed in acid/alkali-resistant thermosetting resin. The mounted samples were polished with 180–1,200 μm sandpapers. The chemical composition of the steel specimens used in the test is shown in Table 2.

In this study, the effects of the inhibitors on corrosion resistance and the pH of the solution with various concentrations of chloride and sulfate ions, which simulated the concrete environment, were investigated. For this, the chloride ion concentration was fixed in the Ca(OH)2 solution, and by adjusting the admixing amount of sulfate ions, electrochemical tests were conducted to evaluate the performance of four different corrosion inhibitors. Table 3 shows the mixtures of each tested solution.

2.2. Electrochemical Testing. Electrochemical testing was conducted with a three-electrode system, in which the steel specimen acted as the work electrode (WE), platinum wire as the counterelectrode (CE), and silver chloride as the reference electrode (RE). The areas of the working electrodes were 0.78 cm2, held constant for all specimens. The steel specimens were exposed to the solutions, and the potential was stabilized with a potentiostat before the test.

Electrochemical impedance spectroscopy (EIS) was performed by changing the frequency of a 10 mV sinusoidal voltage from 0.1 Hz to 100 kHz. The DC polarization was performed from −0.3 V to +0.3 V vs. the open-circuit potential with a scanning rate of 1 mV/s. The potentiostat was a VersaSTAT system (Princeton Applied Research, Oak Ridge, TN, USA), and data analysis was conducted by fitting the test data to the constant phase element (CPE) model using Metrohm Autolab Nova 1.10 software.

3. Results and Discussion

3.1. pH Measurement. Cement consists of calcium silicate phases termed C2S and C3S and calcium aluminate phases termed C3A and C4AF in cement chemistry notation. Among these compounds, C2S (belite) and C3S (alite)
account for >70% of cement, and these two phases produce C-S-H and calcium hydroxide through hydration. In general, when the cement is completely hydrated, calcium hydroxides corresponding to ~20% of the prehydration weight are formed, thereby maintaining a high pH [29].

\[
\begin{align*}
C_2S(C_3S) + H_2O &\rightarrow C-S-H \\
+ Ca(OH)_2 (\text{calcium hydroxide}) &
\]

When sulfates penetrate the concrete, calcium hydroxide reacts with them to produce dihydrate gypsum. Through this process, an inflation pressure accumulates inside the concrete during the phase transition from hexagonal plates of calcium hydroxide to columns of dihydrate gypsum. Above a certain level of dihydrate gypsum generation, or upon localized concentration of dihydrate gypsum under continued sulfate attack, cracks form in the concrete. Furthermore, a pH decreases because the calcium hydroxide, which maintains the high pH of the concrete, is changed to plaster; therefore, damage is expected to occur in the passive film of reinforcing steel in the acidifying environment.

Figure 1 shows the measured pH for each aqueous solution. The pH of the Ca(OH)_2 solution was 12.78; with admixing of Na_2SO_4, the pH was dropped to ~11.7. Following the admixing of the corrosion inhibitors, pH recovery was confirmed; the nitrite and amino acid corrosion inhibitors show the pH recovery functions of 6% and 3–6%, respectively. 4-Aminobutyric acid showed the lowest recovery rate of 3%. It is confirmed that the pH is reduced due to the reaction of calcium hydroxide with sulfate ion to produce dihydrate gypsum. It is considered that the pH can be recovered due to the immobilization reaction of sulfate ion by incorporating inhibitors.

3.2. Corrosion Potential. Corrosion potential was measured for the steel specimens in saturated Ca(OH)_2 solutions containing different concentrations of NaCl, Na_2SO_4, and corrosion inhibitors. The changes in the corrosion potential are shown in Figure 2, which provides information about the initiation of corrosion at the surface of the reinforcing steel.
The corrosion potential (absolute value) increases actively as the concentration of NaCl is increased. The steel surface is deteriorated more easily by NaCl in the Ca(OH)$_2$ solution, and corrosion of the steel specimen is increased [30]. Figure 2 shows a reduction in corrosion potential as the concentration of Na$_2$SO$_4$ increases because the reduction in pH could accelerate the corrosion at the surface of the steel. However, it is apparent that the corrosion potential increases when the inhibitors are mixed in the solution. This indicates the surface of the steel specimen is less active than the specimen without the inhibitor. The inhibitor could be adsorbed on the surface of the specimens and passivated them, thereby decreasing the corrosion reaction. The specimen with lithium nitrite shows similar corrosion potential to that without inhibitors at 1.77 g/L Na$_2$SO$_4$. A similar trend is observed in the activation of the corrosion potential for diethanolamine and methyl diethanolamine. The specimen with 4-aminobutyric acid has the best corrosion resistance with the lowest corrosion potential regardless of the concentration of Na$_2$SO$_4$.

3.3. Electrochemical Impedance Spectroscopy. In the saturated Ca(OH)$_2$ solutions containing 0.98 g/L NaCl and 0.89, 1.77 g/L Na$_2$SO$_4$, EIS was conducted for steel specimens with various corrosion inhibitors. The size of the semicircular loop in the EIS is decreased as the concentration of sulfate ions increases (Figure 3). This can promote the corrosion of the reinforcing steel by increasing the concentration of anions in the solutions [31].

Figure 4 shows the impedance-frequency plots of reinforcing steels in the Ca(OH)$_2$ solutions mixed with various concentrations of Na$_2$SO$_4$. As the concentration of sulfate ions is increased, the pH decreases and the resistance of the passive film decreases due to the film conductivity. Because chloride ions are present in the solution along with the sulfate ions, a reaction can occur at the activated region of the metal/solution interface [32]:

\[
\text{Fe} \rightarrow \text{Fe}^{2+} + 2e^- \quad \text{(anodic)}
\]
\[
\frac{1}{2} \text{O}_2 + \text{H}_2\text{O} + 2e^- \rightarrow 2\text{OH}^- \quad \text{(cathodic)}
\]

For all reactions, it can be written as follows:

\[
\text{Fe} + \frac{1}{2} \text{O}_2 + \text{H}_2\text{O} \rightarrow \text{Fe(OH)}_2
\]

Fe(OH)$_2$ is unstable; by reacting with chloride ions in the solution, acidic ferrous chloride is formed:

\[
\text{Fe(OH)}_2 + 2\text{Cl}^- \rightarrow \text{FeCl}_2^- + \text{H}_2\text{O}
\]

\[
\text{FeCl}_2^- + \text{H}_2\text{O} \rightarrow \text{FeCl}_3 + 2\text{OH}^-
\]
FeCl₂ (acidic ferrous chloride) and OH⁻ at the anode and cathode parts induce the anodic dissolution of the reinforcing steel [33].

Reinforcing steel is in the passive state in alkaline concrete environments. When the concentration of chloride ions increases or the pH decreases below 12.5, the passivity can be destroyed. The pH can be decreased by the carbonation of concrete via acidic substances present in solution. This reduction in pH causes destruction of the passive film, and in the presence of anions such as Cl⁻, the steel rebars produce corrosion products by the same reaction as in equations (4) and (5). In this study, the sodium sulfate admixed in the saturated Ca(OH)₂ solution decreases the pH; because chloride ions are present, the passive film on the steel specimen surface becomes hydrated.

Nyquist plots and impedance-frequency bode plots of the steel specimens in the solution with various inhibitors are shown in Figures 5 and 6, respectively. Figure 5 shows the Nyquist plots; when the concentration of corrosion inhibitor is increased, the size of the semicircular loop increases. It was confirmed that the capacitance increases with the incorporation of the corrosion inhibitor. This result indicated that the corrosion inhibitor is adsorbed on the surface of the steel specimen to form a protective inactive film. The concentration of the inhibitor is important in strengthening the passive film. In this process, the corrosion inhibitor provides a passive film and homogeneity. This result implies that the inhibitor substitutes chloride ions on the steel surface and forms a protective inert film [34]. Figure 6 shows the total impedance at a low frequency (0.1 Hz). The impedance values are higher in the presence of inhibitors compared to that without an inhibitor, and the highest impedance value occurs with 4-aminobutyric acid. The corrosion inhibitor is adsorbed on the steel surface, thereby homogenizing the passive film. It is confirmed that the corrosion inhibition performance of 4-aminobutyric acid is the highest. Figure 7 shows a graph of the phase frequencies in the electrochemical corrosion measurements of each aqueous solution.

In the case of 0.98 g/L NaCl and 1.77 g/L NaSO₄ mixed in the saturated Ca(OH)₂ solutions, the inhibitor effects are confirmed with 0.6 mol lithium nitrite, diethanolamine, methyl diethanolamine, and 4-aminobutyric acid, as shown in Figures 8 and 9. The semicircle loop sizes for the steel specimens are increased in the Ca(OH)₂ solution mixed with 0.6 mol inhibitor compared to the case of 1.2 mol inhibitor (Figure 8). This is because of the capacitive characteristic of the passive film formed by the inhibitor. The passive film on the steel specimen becomes weaker in the Ca(OH)₂ solution containing 1.77 g/L Na₂SO₄ compared to that containing 0.89 g/L Na₂SO₄. With this result, it is determined that not only the decrease of pH but also the concentration increase of sulfate ions hinders the passivating effect of the inhibitor. Figure 10 shows a graph of the phase-frequencies in the electrochemical corrosion measurements of each aqueous solution.

Compared to the case without an inhibitor, the increase of the semicircle loop is larger with the organic diethanolamine, methyl diethanolamine, and 4-aminobutyric acid corrosion inhibitors than that with the inorganic lithium nitrite corrosion inhibitor. With equal concentrations of chloride ions, the loop increase of methyl diethanolamine is high for low concentrations of sulfate ions and that of 4-aminobutyric acid is high for high concentrations of sulfate ions. In Figure 9, it can be confirmed that the impedance value is decreased more at the low frequency (0.1 Hz) in the aqueous solution containing a high concentration of sulfate ions because of the hindrance of sulfate ions, compared to the case of low concentration. With 4-aminobutyric acid, the high impedance value is also maintained in the aqueous solution bearing highly concentrated sulfate ions.

For 0.98 g/L NaCl and 0.89 g/L Na₂SO₄ mixed in the saturated Ca(OH)₂ solution, polarization resistance of the steel specimen was measured following the addition of the corrosion inhibitors. The polarization resistance
decreases as the conductivity of the solution is increased. An increase in the conductivity of the solution, i.e., distribution of anions such as chloride ions that destroy the passive film, induces localized corrosion of the steel. Table 4 shows the polarization resistance values for each solution. According to the admixing of the corrosion inhibitor, the polarization resistance increases, and as the mixing amount of sodium sulfate increases, the polarization resistance decreases. In the case of 0.89 g/L Na$_2$SO$_4$, the corrosion inhibitor becomes homogenized, thereby strengthening the inert characteristic of the film, but at a high concentration (1.77 g/L) of Na$_2$SO$_4$, the formation of the inert layer between the steel interface and solution is hindered.

The efficiency of each corrosion inhibitor can be calculated with the following equation [35]:

$$\eta(\%) = \frac{R_{pore} - R_{pore}^0}{R_{pore}} \times 100,$$

where R_{pore} and R_{pore}^0 are the polarization resistance with and without the inhibitor, respectively. As the amount of NaSO$_4$ increases, the efficiency of the corrosion inhibitor decreases. In the solution mixed with a low concentration of 0.89 g/L Na$_2$SO$_4$, the lithium nitrite inhibitor had 69.36% efficiency, diethanolamine inhibitor 39.91%, methyl diethanolamine inhibitor 69.09%, and 4-aminobutyric acid 77.80%. Furthermore, in the solution mixed with a high concentration of 1.77 g/L Na$_2$SO$_4$, the lithium nitrite inhibitor had 75.93% efficiency, diethanolamine inhibitor 35.69%, methyl diethanolamine inhibitor 66.07%, and 4-aminobutyric acid 67.87%. Overall, the 4-aminobutyric acid inhibitor has the highest efficiency.

3.4. Potentiodynamic Test. Potentiodynamic tests were performed for steel specimens with various corrosion inhibitors in the saturated Ca(OH)$_2$ solutions containing 0.98 g/L NaCl and 0.89 or 1.77 g/L Na$_2$SO$_4$. Figure 11 shows the potentiodynamic plots according to the admixed amount of sulfate ions. When chloride ions are present, pitting corrosion is induced on the steel specimen in the saturated Ca(OH)$_2$ solution; as the sulfate ions are admixed, the corrosion current density (I_{corr}) increases and the corrosion potential (E_{corr}) is changed more significantly.

Figure 12 shows the potentiodynamic plots for the cases of 0.98 g/L NaCl and 0.89 g/L Na$_2$SO$_4$ mixed in the saturated Ca(OH)$_2$ solutions. In Figure 12, the corrosion current density decreases and the corrosion potential moves in the positive direction with the addition of corrosion inhibitor. This result implies that the corrosion inhibitor, which has adsorption characteristics, exists on the steel specimen surface, thereby preventing reactions between iron ions and anions that cause corrosion. The current densities of the organic inhibitors, i.e., diethanolamine, methyl...
Table 4: Polarization resistance of steel specimens and Efficiency of inhibitors exposed in saturated Ca(OH)$_2$ solution 0.98 g/L NaCl and different concentrations of Na$_2$SO$_4$.

Inhibitors	Concentration of NaCl (g/L)	Concentration of Na$_2$SO$_4$ (g/L)	Concentration of inhibitor (g/L)	Polarization resistance, R_{pore} (Ω·cm2)	Efficiency, η (%)
None	0.89	0.00		4356	
Lithium nitrite (LiNO$_2$)	1.77	0.89	2.04	3227	
Diethanolamine (HN(CH$_2$CH$_2$OH)$_2$)	0.89	0.51		14219	69.36
Methyl diethanolamine (C$_5$H$_{13}$NO$_2$)	1.77	0.50		13407	75.93
4-Aminobutyric acid (H$_2$N(CH$_2$)$_3$COOH)	0.89	0.38		5018	39.91
	1.77			5018	35.69
	1.77			14093	69.09
	0.89			9512	66.07
	0.89			20444	77.80
	1.77				67.87

Figure 10: Phase-frequency bode plots of steel specimens exposed in saturated Ca(OH)$_2$ solution with 0.98 g/L NaCl, 1.77 g/L Na$_2$SO$_4$, and inhibitors.

Figure 11: Continued.
Figure 11: Potentiodynamic plots of steel specimens exposed in saturated Ca(OH)$_2$ solution with 0.98 g/L NaCl and different concentrations of Na$_2$SO$_4$. (a) C0.98-S0; (b) C0.98-S0.89; (c) C0.98-S1.77.

Figure 12: Potentiodynamic plots of steel specimens exposed in saturated Ca(OH)$_2$ solution with 0.98 g/L NaCl, 0.89 g/L Na$_2$SO$_4$, and inhibitors. (a) C0.98-S0.89-L2.04; (b) C0.98-S0.89-D0.51; (c) C0.98-S0.89-M0.50; (d) C0.98-S0.89-A0.38.
diethanolamine, and 4-aminobutyric acid, are lower than that of the inorganic inhibitor, i.e., lithium nitrite; in the aqueous solution containing 4-aminobutyric acid, the current density is the lowest and the corrosion potential is the most enhanced.

Figure 13 shows the potentiodynamic plots of steel specimens exposed in saturated Ca(OH)₂ solution with 0.98 g/L NaCl, 1.77 g/L Na₂SO₄, and inhibitors, (a) C0.98-S1.77-L2.04; (b) C0.98-S1.77-D0.51; (c) C0.98-S1.77-M0.50; (d) C0.98-S1.77-A0.38.

Figure 13: Potentiodynamic plots of steel specimens exposed in saturated Ca(OH)₂ solution with 0.98 g/L NaCl, 1.77 g/L Na₂SO₄, and inhibitors, (a) C0.98-S1.77-L2.04; (b) C0.98-S1.77-D0.51; (c) C0.98-S1.77-M0.50; (d) C0.98-S1.77-A0.38.

diethanolamine, and 4-aminobutyric acid, are lower than that of the inorganic inhibitor, i.e., lithium nitrite; in the aqueous solution containing 4-aminobutyric acid, the current density is the lowest and the corrosion potential is the most enhanced.

Figure 13 shows the potentiodynamic plots for the case of 0.98 g/L NaCl and 1.77 g/L Na₂SO₄ mixed in the saturated Ca(OH)₂ solution. Compared to Figure 12, the current density is increased and the corrosion potential is decreased due to the increased concentration of sulfate ions. Furthermore, it is confirmed that several pitting-type corrosions can occur at the lower corrosion potential. Alleviation of the corrosion is also confirmed in the aqueous solution, in which the corrosion possibility becomes high with the increase of sulfate ions. In terms of the current density and corrosion potential, 4-aminobutyric acid has the most corrosion inhibition ability among the organic inhibitors.

The principle of corrosion inhibiting is that the functional groups of the inhibitor react with iron ions, thereby forming a protective film. For inorganic lithium nitrite, the nitrite reacts with the iron ions and forms a passive film. For organic diethanolamine and methyl diethanolamine, containing hydroxyl and amine groups, they act as nucleophiles and react with the metal. Afterwards, the diethanolamine and methyl diethanolamine inhibitors form very thin and protective oxide layers on the surfaces of reinforcing steels. Furthermore, 4-aminobutyric acid contains carboxyl and amine groups; like the other organic inhibitors, it acts as a nucleophile, thereby donating to the vacant d-orbitals of iron atoms and forming coordinated covalent bonds. Therefore, the inhibitor is
adsorbed on the steel surface and forms a uniform corrosion-preventing layer.

4. Conclusions

This study evaluated the performances of inorganic nitrite and amino acid corrosion inhibitors and their effects on the pH with various concentrations of Na2SO4 in saturated Ca(OH)2 solutions that contained NaCl, which simulated the concrete environment. The results are as follows:

1. In the saturated Ca(OH)2 solution bearing a certain concentration of NaCl, the electrochemical corrosion tendency of the steel specimen changed depending on the concentration of Na2SO4.
2. In the Ca(OH)2 solution mixed with NaCl and Na2SO4, the lithium nitrite inhibitor had a corrosion prevention efficiency of 69.36–75.93%, diethanolamine 35.69–39.91%, methyl diethanolamine 66.07–69.09%, and 4-aminobutyric acid 67.87–77.80%.
3. In the Ca(OH)2 solution mixed with NaCl, as the Na2SO4 concentration increased, the corrosion prevention efficiency decreased.
4. EIS studies confirmed the corrosion resistance of the inhibitors with different concentrations of NaCl and Na2SO4.
5. The results of potentiodynamic tests with the inhibitors showed the passivation behavior of reinforcing steel in the Ca(OH)2 solution in which chloride and sulfate ions were present.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This research was supported by the research grant 18CTAP-C130223-02 through the Korea Agency for Infrastructure Technology Advancement funded by the Ministry of Land, Infrastructure and Transport of Korean Government.

References

[1] L. Bertolini, B. Elsener, P. Pedeferi, and R. Polder, *Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair*, Wiley, Weinheim, Germany, 2013.
[2] P. Garcés, P. Saura, E. Zornoza, and C. Andrade, “Influence of pH on the nitrite corrosion inhibition of reinforcing steel in simulated concrete pore solution,” *Corrosion Science*, vol. 53, no. 12, pp. 3991–4000, 2011.
[3] M. B. Valcarce and M. Vázquez, “Carbon steel passivity examined in solutions with a low degree of carbonation: the effect of chloride and nitrite ions,” *Materials Chemistry and Physics*, vol. 115, no. 1, pp. 313–321, 2009.
[4] A. Królkowski and J. Kuziak, “Impedance study on calcium nitrite as a penetrating corrosion inhibitor for steel in concrete,” *Electrochimica Acta*, vol. 56, no. 23, pp. 7845–7853, 2011.
[5] M. Balonis and F. P. Glasser, “Calcium nitrite corrosion inhibitor in Portland cement: influence of nitrite on chloride binding and mineralogy,” *Journal of the American Ceramic Society*, vol. 94, no. 7, pp. 2230–2241, 2011.
[6] F. Shao, K. Yang, H. Zhao, C. Liu, L. Wang, and S. Tao, “Effects of inorganic sealant and brief heat treatments on corrosion behavior of plasma sprayed Cr2O3-Al2O3 composite ceramic coatings,” *Surface and Coatings Technology*, vol. 276, no. 25, pp. 8–15, 2015.
[7] T. Hřátková and A. Kalendova, “Corrosion—inhibiting properties of molybdenum-containing pigments in coatings,” *Anti-Corrosion Methods and Materials*, vol. 63, no. 1, pp. 14–28, 2016.
[8] Y. Tang, G. Zhang, and Y. Zuo, “The inhibition effects of several inhibitors on rebar in acidified concrete pore solution,” *Construction and Building Materials*, vol. 28, no. 1, pp. 327–332, 2012.
[9] E. Rakanta, T. Zafeirooulos, and G. Batis, “Corrosion protection of steel with DMEA-based organic inhibitor,” *Construction and Building Materials*, vol. 44, pp. 507–513, 2013.
[10] H.-S. Ryu, J. K. Singh, H.-M. Yang, H.-S. Lee, and M. A. Ismail, “Evaluation of corrosion resistance properties of N,N′-dimethyl ethanolamine corrosion inhibitor in saturated Ca(OH)2 solution with different concentrations of chloride ions by electrochemical experiments,” *Construction and Building Materials*, vol. 114, pp. 223–231, 2016.
[11] C. Xu, W. L. Jin, H. L. Wang et al., “Organic corrosion inhibitor of triethylenetetramine into chloride contamination concrete by electro-injection method,” *Construction and Building Materials*, vol. 115, pp. 602–617, 2016.
[12] S. Jiang, L. Jiang, Z. Wang et al., “Deoxyribonucleic acid as an inhibitor for chloride-induced corrosion of reinforcing steel in simulated concrete pore solutions,” *Construction and Building Materials*, vol. 150, pp. 238–247, 2017.
[13] Y.-Q. Wang, G. Kong, C.-S. Che, and B. Zhang, “Inhibitive effect of sodium molybdate on the corrosion behavior of galvanized steel in simulated concrete pore solution,” *Construction and Building Materials*, vol. 162, pp. 383–392, 2018.
[14] H. B. Mansour, L. Dhoubi, and H. Idrissi, “Effect of phosphate-based inhibitor on prestressing tendons corrosion in simulated concrete pore solution contaminated by chloride ions,” *Construction and Building Materials*, vol. 171, pp. 250–260, 2018.
[15] H.-S. Lee, H.-M. Yang, J. K. Singh, S. K. Prasad, and B. Yoo, “Corrosion mitigation of steel rebars in chloride contaminated concrete pore solution using inhibitor: an electrochemical investigation,” *Construction and Building Materials*, vol. 173, pp. 443–451, 2018.
[16] C. S. Huangfu, Q. Shi, and Y. H. Li, “Harm-benefit analysis of nitrite relative to human health,” *Environment and Health*, vol. 27, no. 8, pp. 733–736, 2011.
[17] T. A. Söylev and M. G. Richardson, “Corrosion inhibitors for steel in concrete: state-of-the-art report,” *Construction and Building Materials*, vol. 22, no. 4, pp. 609–622, 2008.
[18] M. Ornellese, L. Lazzari, S. Goidanich, G. Fumagalli, and A. Brenna, “A study of organic substances as inhibitors for chloride-induced corrosion in concrete,” *Corrosion Science*, vol. 51, no. 12, pp. 2959–2968, 2009.
[19] A. Y. Musa, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff, A. R. Daud, and S. K. Kamarudin, “Adsorption isotherm mechanism of amino organic compounds as mild steel corrosion inhibitors by electrochemical measurement method,” Journal of Central South University of Technology, vol. 17, no. 1, pp. 34–39, 2010.

[20] M. F. Montemor, D. V. Snihirova, M. G. Taryba et al., “Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molybdate nanocontainers filled with corrosion inhibitors,” Electrochimica Acta, vol. 60, no. 15, pp. 31–40, 2012.

[21] P. Martin and BA. Miksic, “Corrosion inhibition in reinforced cement,” Canadian Patent No. 1258473, 1989.

[22] H.-S. Lee, H.-S. Ryu, W.-J. Park, and M. Ismail, “Comparative study on corrosion protection of reinforcing steel by using amino alcohol and lithium nitrite inhibitors,” Materials, vol. 8, no. 1, pp. 251–269, 2015.

[23] S. M. Abd El Haleem, S. Abd El Wanees, E. E. Abd El Aal, and A. Diab, “Environmental factors affecting the corrosion behavior of reinforcing steel II. Role of some anions in the initiation and inhibition of pitting corrosion of steel in Ca(OH)2 solutions,” Corrosion Science, vol. 52, no. 2, pp. 292–302, 2010.

[24] L. Feng, H. Yang, and F. Wang, “Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution,” Electrochimica Acta, vol. 58, no. 30, pp. 427–436, 2011.

[25] Y. Li, H. Zhang, X. Wang, J. Li, and F. Wang, “Growth kinetics of oxide films at the polyaniline/mild steel interface,” Corrosion Science, vol. 53, no. 12, pp. 4044–4049, 2011.

[26] W. Müllauer, R. E. Beddoe, and D. Heinz, “Sulfate attack expansion mechanisms,” Cement and Concrete Research, vol. 52, pp. 208–215, 2013.

[27] M. Komljenović, Z. Bačkarević, N. Marjanović, and V. Nikolić, “External sulfate attack on alkali-activated slag,” Construction and Building Materials, vol. 49, pp. 31–39, 2013.

[28] X. Zhou, H. Yang, and F. Wang, “Investigation on the inhibition behavior of a pentaerythritol glycoside for carbon steel in 3.5% NaCl saturated Ca(OH)2 solution,” Corrosion Science, vol. 54, pp. 193–200, 2012.

[29] D. A. Jones, Principles and Prevention of Corrosion, Prentice-Hall, Upper Saddle River, NJ, USA, 1996.

[30] J. K. Singh and D. D. N. Singh, “The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH,” Corrosion Science, vol. 56, pp. 129–142, 2012.

[31] E. S. M. Sherif, “Corrosion and corrosion inhibition of pure iron in neutral chloride solutions by 1,1’-thiocarbonyldiimidazole,” International Journal of Electrochemical Science, vol. 6, pp. 3077–3092, 2011.

[32] M. L. S. Rivetti, J. S. A. Neto, N. S. Amorim Jr., and D. V. Ribeiro, Corrosion Inhibitors, Principles and Recent Applications: Chapter 2. Corrosion Inhibitors for Reinforced Concrete, IntechOpen, UK, 2018, ISBN:978953513918.
