Remarks on planar edge-chromatic critical graphs

Ligang Jin, Yingli Kang, Eckhard Steffen

Abstract

The only open case of Vizing’s conjecture that every planar graph with $\Delta \geq 6$ is a class 1 graph is $\Delta = 6$. We give a short proof of the following statement: there is no 6-critical plane graph G, such that every vertex of G is incident to at most three 3-faces. A stronger statement without restriction to critical graphs is stated in [7]. However, the proof given there works only for critical graphs. Furthermore, we show that every 5-critical plane graph has a 3-face which is adjacent to a k-face ($k \in \{3, 4\}$).

For $\Delta = 5$ our result gives insights into the structure of planar 5-critical graphs, and the result for $\Delta = 6$ gives support for the truth of Vizing’s planar graph conjecture.

Keywords: planar graph; edge coloring; Vizing’s conjecture; critical graph

1 Introduction

We consider finite simple graphs G with vertex set $V(G)$ and edge set $E(G)$. The vertex-degree of $v \in V(G)$ is denoted by $d_G(v)$, and $\Delta(G)$ denotes the maximum vertex-degree of G. If it is clear from the context, then Δ is frequently used. A graph is planar if it is embeddable into the Euclidean plane. A plane graph (G, Σ) is a planar graph G together with an embedding Σ of G into the Euclidean plane. If (G, Σ) is a plane graph, then

\[\text{supported by Deutsche Forschungsgemeinschaft (DFG) grant STE 792/2-1; Paderborn Institute for Advanced Studies in Computer Science and Engineering, Paderborn University, Warburger Str. 100, 33102 Paderborn, Germany; ligang@mail.upb.de} \]

\[\text{†Fellow of the International Graduate School ”Dynamic Intelligent Systems”; Paderborn Institute for Advanced Studies in Computer Science and Engineering, Paderborn University, Warburger Str. 100, 33102 Paderborn, Germany; yingli@mail.upb.de} \]

\[\text{‡Paderborn Institute for Advanced Studies in Computer Science and Engineering, Paderborn University, Warburger Str. 100, 33102 Paderborn, Germany; es@upb.de} \]
$F(G)$ denotes the set of faces of (G, Σ). The degree $d_{(G, \Sigma)}(f)$ of a face f is the length of its facial circuit. A face f is a k-face if $d_G(f) = k$, and it is a k^+-face if $d_G(f) \geq k$.

The edge-chromatic number $\chi'(G)$ of a graph G is the minimum k such that G admits a proper k-edge-coloring. Vizing [4] proved that $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$. If $\chi'(G) = \Delta(G)$, then G is a class 1 graph, and it is a class 2 graph otherwise. A class 2 graph H is k-critical, if $\Delta(H) = k$ and $\chi'(H') < \chi'(H)$ for every proper subgraph H' of H.

Vizing [4] showed for each $k \in \{2, 3, 4, 5\}$ that there is a planar class 2 graph G with $\Delta(G) = k$. He proved that every planar graph with $\Delta \geq 8$ is a class 1 graph, and conjectured that every planar graph with $\Delta \in \{6, 7\}$ is a class 1 graph. Vizing’s conjecture is proved for planar graphs with $\Delta = 7$ by Grünwald [1], Sanders, Zhao [3], and Zhang [7] independently. It is still open for the case $\Delta = 6$. The paper provides short proofs for the following statements.

Theorem 1.1. There is no 6-critical plane graph (G, Σ), such that every vertex of G is incident to at most three 3-faces.

If Vizing’s conjecture is not true, then every 6-critical graph has the following property.

Corollary 1.2. Let (G, Σ) be a plane graph. If G is 6-critical, then there is a vertex of G which is incident to at least four 3-faces.

Theorem 1.3. Let (G, Σ) be a plane graph. If G is 5-critical, then (G, Σ) has a 3-face which is adjacent to a 3-face or to a 4-face.

A significant longer proof of Theorem 1.1 is given in [5], but the statement is formulated for plane graphs. However, the proof works for critical graphs only. The assumption that a minimal counterexample is critical is wrong. It might be that a subgraph of this minimal counterexample G does not fulfill the pre-condition of the statement. For example, if G has a triangle $[vxyv]$ and a bivalent vertex u such that u is the unique vertex inside $[vxyv]$ and u is adjacent to x and y, then the removal of u increases the number of 3-faces containing v (see Figure 1).

2 Proofs of Theorems 1.1 and 1.3

We will use the following two lemmas.

Lemma 2.1 ([2]). If G is a 6-critical graph, then $|E(G)| \geq \frac{1}{2}(5|V(G)| + 3)$.

Lemma 2.2 ([6]). If G is a 5-critical graph, then $|E(G)| \geq \frac{15}{4}|V(G)|$.

Proof of Theorem 1.1

Suppose to the contrary that there is a counterexample to the statement. Then there is a 6-critical graph \(G \) which has an embedding \(\Sigma \) such that every \(v \in V(G) \) is incident to at most three 3-faces. With Euler’s formula and Lemma 2.1 we deduce
\[
\sum_{f \in F(G)} (d_G(f) - 4) = 2|E(G)| - 4|F(G)| = 2|E(G)| - 4(|E(G)| + 2 - |V(G)|) \leq -|V(G)| - 11. \]
Therefore, \(|V(G)| + \sum_{f \in F(G)} (d_G(f) - 4) \leq -11\).

Give initial charge 1 to each \(v \in V(G) \) and \(d_G(f) - 4 \) to each \(f \in F(G) \). Discharge the elements of \(V(G) \cup F(G) \) according to the following rule:

\textbf{R1:} Every vertex sends \(\frac{1}{3} \) to its incident 3-faces.

The rule only moves the charge around and does not affect the sum. Furthermore, the final charge of every vertex and face is at least 0. Therefore, \(0 \leq \sum_{v \in V(G)} 1 + \sum_{f \in F(G)} (d_G(f) - 4) = |V(G)| + \sum_{f \in F(G)} (d_G(f) - 4) \leq -11, \) a contradiction.

Proof of Theorem 1.3

Suppose to the contrary that there is a counterexample to the statement. Then there is a 5-critical graph \(G \) which has an embedding \(\Sigma \) such that every 3-face is adjacent to 5+-faces only. Hence, every vertex of \(G \) is incident to at most two 3-faces, and every vertex which is incident to a 3-face is also incident to a 5+-face. By Lemma 2.2 we have
\[
\sum_{f \in F(G)} (d_G(f) - 4) \leq -\frac{2}{7}|V(G)| - 8. \]
Therefore, \(\frac{2}{7}|V(G)| + \sum_{f \in F(G)} (d_G(f) - 4) \leq -8. \)

Give initial charge of \(\frac{2}{7} \) to each vertex and \(d_G(f) - 4 \) to each face of \(G \). Discharge the elements of \(V(G) \cup F(G) \) according to the following rules:

\textbf{R1:} Every vertex sends \(\frac{1}{3} \) to its incident 3-faces.

\textbf{R2:} Every 5+-face sends \(\frac{d_G(f) - 4}{d_G(f)} \) to its incident vertices.

Denote the final charge by \(ch^* \). Rules R1 and R2 imply that \(ch^*(f) \geq 0 \) for every \(f \in F(G) \). Let \(n \leq 2 \) and \(v \) be a vertex which is incident to \(n \) 3-faces. If \(n = 0 \), then
$\text{ch}^*(v) \geq \frac{2}{7} > 0$. If $n = 1$, then v is incident to at least one 5^+-face, and therefore, $\text{ch}^*(v) \geq \frac{2}{7} + \frac{1}{5} - \frac{1}{3} > 0$ by rule R2. If $n = 2$, then v is incident to at least two 5^+-faces, and therefore $\text{ch}^*(v) \geq \frac{2}{7} + 2 \times \frac{1}{5} - 2 \times \frac{1}{3} = \frac{2}{105} > 0$, by rule R2. Hence, $0 \leq \sum_{v \in V(G)} \frac{2}{7} + \sum_{f \in E(G)} (d_G(f) - 4) \leq -8$, a contradiction.

References

[1] S. Grünewald, Chromatic Index Critical Graphs and Multigraphs, Dissertation, Fakultät für Mathematik, Universität Bielefeld (2000).

[2] R. Luo, L. Miao and Y. Zhao, The size of edge chromatic critical graphs with maximum degree 6, J. Graph Theory 60 (2009) 149 - 171.

[3] D. P. Sanders, Y. Zhao, Planar graphs of maximum degree seven are class 1, J. Combin. Theory Ser. B 83 (2001) 201-212.

[4] V. G. Vizing, On an estimate of the chromatic index of a p-graph, Metody Diskret. Analiz 3 (1964) 25-30 (in Russian).

[5] Y. Wang, L. Xu, A sufficient condition for a plane graph with maximum degree 6 to be class 1, Discrete Appl. Math. 161 (2013) 307-310.

[6] D. R. Woodall, The average degree of an edge-chromatic critical graph, Discrete Math. 308 (2008) 803-819.

[7] L. Zhang, Every graph with maximum degree 7 is of class 1, Graphs Combin. 16 (2000) 467-495.