Tumour necrosis is a postoperative prognostic marker for pancreatic cancer patients with a high interobserver reproducibility in histological evaluation

N Hiraoka1, Y Ino1, S Sekine1, H Tsuda2, K Shimada3, T Kosuge4, J Zavada4, M Yoshida2, K Yamada2, T Koyama2 and Y Kanai1

1Pathology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; 2Clinical Laboratory Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; 3Hepato-Biliary and Pancreatic Surgery Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; 4Institute of Organic Chemistry and Biochemistry, Flemingova nam.2, 166 10 Prague 6, Czech Republic

BACKGROUND: Tumour necrosis reflects the presence of hypoxia, which can be indicative of an aggressive tumour phenotype. The aim of this study was to investigate whether histological necrosis is a useful predictor of outcome in patients with pancreatic ductal carcinoma (PDC).

METHODS: We reviewed histopathological findings in 348 cases of PDC in comparison with clinicopathological information. We counted small necrotic foci (micronecrosis) as necrosis, in addition to massive necrosis that had been only defined as necrosis in previous studies. The reproducibility of identifying histological parameters was tested by asking five independent observers to blindly review 51 examples of PDC.

RESULTS: Both micronecrosis and massive necrosis corresponded to hypoxic foci expressing carbonic anhydrase IX detected by immunohistochemistry. Multivariate survival analysis showed that histological necrosis was an independent predictor of poor outcome in terms of both disease-free survival (DFS) and disease-specific survival (DSS) of PDC patients. In addition, metastatic status, and lymphatic, venous, and intrapancreatic neural invasion were independent prognostic factors for shorter DFS and metastatic status, margin status, lymphatic invasion, and intrapancreatic neural invasion were independent prognostic factors for DSS. The interobserver reproducibility of necrosis identification among the five independent observers was ‘almost perfect’ (k-value of 0.87).

CONCLUSION: Histological necrosis is a simple, accurate, and reproducible predictor of postoperative outcome in PDC patients.

British Journal of Cancer (2010) 103, 1057–1065. doi:10.1038/sj.bjc.6605854 www.bjcancer.com
Published online 24 August 2010
© 2010 Cancer Research UK

Keywords: necrosis; pancreatic cancer; prognostic factor; interobserver reproducibility; hypoxia

Pancreatic cancer (pancreatic ductal carcinoma (PDC)) is the fourth and fifth leading cause of cancer-related death in the United States and Japan, respectively (Center for Cancer Control and Information Services and National Cancer Center, 2009; Jemal et al, 2009). Because of its aggressive growth and early metastatic dissemination, the overall 5-year survival rate for patients with pancreatic cancer is 3–5%, and that of patients treated by curative resection is 15–25% (Klöppel et al, 2000; Lim et al, 2003; Hruban et al, 2007; Jemal et al, 2009). The mortality rate has not shown any obvious improvement for decades. The development of predictive biomarkers to assist the selection of patient subsets is useful for studies aimed at reducing the mortality of PDC patients, especially in phase clinical studies evaluating various therapeutic approaches (Philip et al, 2009).

Several histopathological parameters such as tumour size (Yeo et al, 1995; Sohn et al, 2000; Lim et al, 2003; Shimada et al, 2006), tumour histological grade (Luttges et al, 2000; Adsay et al, 2005), lymph nodal metastasis (Trede et al, 1990; Lim et al, 2003; Schnelldorfer et al, 2008), and lymphatic, venous (Luttges et al, 2000; Takai et al, 2003), and neural invasion (Mitsunaga et al, 2005, 2007) have been proposed as hallmarks predictive of postoperative outcome in patients with PDC. Stage is the most important prognosticator (Klöppel et al, 2000; Hruban et al, 2007), although majority of resectable cases were classified into advanced stage, stage IIIB of the International Union Against Cancer (UICC) tumour–node–metastasis (TNM) classification and were not able to be stratified more precisely. Histopathological evaluation of PDC can be performed using routine diagnostic techniques in pathology departments without any additional equipment or special expertise. The predictive values of the above mentioned parameters are sometimes controversial and complex, and some have problems related to interobserver reproducibility. To avoid these pitfalls and to stratify PDCs in a distinct and objective manner, molecular or genetic markers have been developed, although these often require special equipment or expertise and cannot usually be performed on a routine basis. Therefore, simpler, more reproducible, and easily assessable histopathological predictors are needed.
Hypoxia is a common feature of human cancers, which induces a transcription programme mediated mainly by hypoxia-inducible factor-1α (HIF-1α) that promotes aggressive tumour phenotype (Harris, 2002; Vaupel and Mayer, 2007; Bristow and Hill, 2008). It is a prognostic indicator in many solid tumours (Vaupel and Mayer, 2007), and is often detected by examining the expression of carbonic anhydrase IX (CAIX) (Chia et al, 2001), which is a regulator of cellular pH and its expression is induced by HIF-1α (Harris, 2002; Bristow and Hill, 2008). Intratumoural hypoxia is reflected histologically by the presence of necrosis, which has also been reported to be a prognostic factor in patients with breast (Giclchrist et al, 1993) and bladder (Ord et al, 2007) cancers. Hypoxia is evident in PDCs, in which expression of HIF-1α and CAIX has been detected in 60–70% and 78% of cases, respectively (Kitada et al, 2003; Couvelard et al, 2005; Sun et al, 2007), whereas histological necrosis has been found in only 30–40% of PDCs in previous studies (Couvelard et al, 2005; Mitsunaga et al, 2005). Neither large-scale study nor multivariate survival study has been performed to evaluate prognostic value of hypoxia in PDC patients.

In this study, we found that necrotic areas were present in more than 60% of PDCs when small necrotic foci were taken into account. We also found that CAIX were expressed in and around these necrotic lesions, indicating that these areas were in a condition of hypoxia. Therefore, detection of necrosis using our definition may offer a chance of stratifying PDC patients for tissue hypoxia more accurately. In this study, with the aim of investigating whether histologically evident necrosis is useful for prediction of patient outcome among various histopathological parameters, and we reviewed histopathological findings in 348 cases of PDC in comparison with clinicopathological information.

MATERIALS AND METHODS

Study population

This study was approved by the Ethics Committee of the National Cancer Center, Japan. Clinical and pathological data were obtained through a detailed retrospective review of the medical records of all 348 patients with ductal carcinoma of the pancreas that had undergone initial surgical resection between 1990 and 2005 at the National Cancer Center Hospital. None of the patients had received any previous therapy. All patients received standard therapy appropriate for their clinical stages. The operative procedures included 228 pancreaticoduodenectomies or pylorus-preserving pancreaticoduodenectomies, 104 distal pancreatectomies, and 16 total pancreatectomies. Along with tumour extension, lymphadenectomy was performed at the hepatoduodenal ligament and around the abdominal aorta. All the patients included in this study underwent macroscopic curative resection, which was defined as the macroscopic removal of all gross tumours without liver metastases, macroscopic peritoneal dissemination, bulky lymph node involvement, or apparent tumour invasion around the common hepatic or superior mesenteric arteries after routine examination using intraoperative ultrasonography. All of the cases were conventional ductal carcinomas and adenocarcinomas originating in intraductal papillary mucinous neoplasms or mucinous cystic neoplasms were excluded. Secondary tumours and post-neoadjuvant cases were also excluded. The clinicopathological characteristics of the patients were summarized in Table 1. All M1 patients had nodal metastasis around the abdominal aorta, without any other form of metastasis. Males accounted for 206 patients and females for 142; the mean patient age was 62.9 years (range, 27–87 years). Every patient was followed up in the outpatient clinic every 1–3 months during the first postoperative year, and every 6–12 months thereafter. Patients underwent physical examination, laboratory tests, chest radiography, abdominal computed tomography, and/or ultrasonography, unless there was a confirmed relapse. The tumour markers carcinoembryonic antigen and carbohydrate antigen 19-9 were also measured until relapse. Recurrence was suspected when a new local or distant metastatic lesion was found on serial images and an increase in tumour marker levels was recognised. When progression of the disease was confirmed by repeated imaging studies, the date of the first suspicious radiologic finding was used as the date of initial disease recurrence. The median follow-up period after surgery was 17.9 (1.3–210) months for the patients overall: 69 patients (19.8%) were alive at the census date (June 2009), 239 (68.7%) died because of pancreatic cancer, and 40 (11.5%) died of other causes. Postresection adjuvant therapy information was available for 327 patients, of whom 19 received chemotherapy and radiotherapy, 134 received chemotherapy only, 2 received radiotherapy only, and 172 did not receive any additional therapy.

Pathological examination

All of the ductal carcinomas were pathologically reexamined and were classified according to the World Health Organisation classification (Kloppel et al, 2000), UICC TNM classification (Wittekind et al, 2005), and the Classification of Pancreatic Carcinoma of the Japan Pancreas Society (JPS) (Japan Pancreas Society, 2003). Surgically resected specimens were fixed in 10% formalin and cut into serial 5-mm-thick slices,horizontally in the pancreas head, and sagittally in the pancreas body and tail. All the sections were stained with haematoxylin and eosin for pathological examination. The following histopathological variables were evaluated according to the classification of JPS: tumour histological grade, nerve plexus invasion, and lymphatic, venous, and intrapancreatic neural invasion.

Tumour necrosis in PDCs was reported previously (Couvelard et al, 2005; Mitsunaga et al, 2005), having been defined as ‘confluent cell death in invasive areas of primary cancer, visible at an objective lens magnification of ×4’ (Mitsunaga et al, 2005), which is the same to the definition having been mentioned in breast cancer. Tumour histology often varies among the organs in which tumours develop. We noticed that small areas of necrosis were evident in PDCs, wherein gland formation by cancer cells was ruptured, usually in association with neutrophil infiltration. We refer to this hereafter as micronecrosis. As sometimes it is difficult to differentiate necrotic lesions into either of these two patterns, we combined these two types of lesions solely as ‘necrosis’. The definition of histological necrosis is as follows. Necrosis occurs in cancer tissue regardless of its extent, and is usually found in both cancer cells and cancer stroma (Figure 1). When coagulation necrosis is extensively developed (massive necrosis), it corresponds to what was referred to as necrosis previously (Couvelard et al, 2005; Mitsunaga et al, 2005). Smaller areas of necrosis (micronecrosis) often recognised adjacent to ruptured cancer-forming tubules is almost always accompanied by neutrophil infiltration (Figure 1).

Interobserver reproducibility in identifying histological characteristics

To test the reproducibility of identification of histological characteristics, five independent observers (SS, HT, MY, KY, and TK) were asked to review 51 examples of IDC that were consecutive cases surgically resected between 1997 and 2000. One slide was selected from each of the 51 cases. This slide was one of the slides containing the maximum cut section of the tumour. The complete set of slides from the 51 cases was sent to the five independent observers, all of whom are general surgical pathologists with no specific expertise in the pancreas, and who encounter pancreas specimens rarely. One observer (HT) specialises in breast and female genitourinary pathology and one (SS) in
Table I (Continued)

Table 1 Relationship between clinicopathological characteristics and histological necrosis

Characteristics	No. of patients	Presence	Absence	P
Age, years				
<60	123	75	48	0.414
≥60	225	148	77	
Sex				
Male	206	143	63	0.017
Female	142	80	62	
Localisation				
Pancreas head	228	147	81	
Pancreas body or tail	109	70	39	1.000
Size (mm)				
<30	83	42	41	
≥30	265	181	84	0.004
Pathologic tumour status				
T1	6	1	5	
T2	3	2	0	
T3	339	219	120	
T4	0	0	0	
Pathologic node status				
N0	64	33	31	
N1	284	190	94	0.030
Pathologic metastasis status				
M0	310	193	117	0.049
M1	38	30	8	
Stage				
IA	3	0	3	
IB	2	2	0	
IIA	59	31	28	
IIB	246	160	86	
III	0	0	0	
IV	38	30	8	0.009a
Tumour histological grade¹				
W/D	90	41	49	
M/D	181	122	59	
P/D	77	60	17	<0.0001*
Tumour margin status				
Negative	249	166	82	0.085
Positive	100	57	43	
Nerve plexus invasion¹				
Absence	112	65	47	0.120
Presence	236	158	78	
Lymphatic invasion¹				
0, 1	102	58	44	
2, 3	246	165	81	0.086
Venous invasion¹				
0, 1	124	63	61	
2, 3	224	160	64	0.0002
Intrapancreatic neural invasion¹				
0, 1	141	86	55	0.363
2, 3	207	137	70	
Recurrent site²				
Local	54	39	15	
Distant sites	198	134	64	0.620

Abbreviations: CAIX = carbonic anhydrase IX; M/D = moderately differentiated adenocarcinoma; P/D = poorly differentiated adenocarcinoma; W/D = well-differentiated adenocarcinoma. aComparisons of qualitative variables are performed using the χ² test, and otherwise by Fisher’s exact test. bClassified according to the classification of pancreatic carcinoma of Japan Pancreas Society. cNumber of patients with tumour recurrence was 252. dNumber of patients used in the immunohistochemical analysis was 203. Statistically significant in bold values.

Immunohistochemical analysis
Immunohistochemistry was performed on formalin-fixed, paraffin-embedded tissue sections as described previously (Takahashi et al, 2007), using antibodies against CAIX (M75, 1 : 200) (Pastorekova et al, 1992; Zavada et al, 2000) and HIF-1α (54, 1 : 500, BD Transduction Laboratories, Franklin Lakes, NJ, USA). Avidin–biotin complex method and CSA system (DAKO, Glostrup, Denmark) were used for these immunohistochemistry, respectively. The sections were autoclaved in the buffer (pH 9.0, Nichirei Biosciences, Tokyo, Japan) for antigen retrieval. For immunohistochemical examination of CAIX in PDCs, we used sections of representative blocks from 203 cases of PDC. Carbonic anhydrase IX is expressed always in the crypt enterocytes of the duodenum and sometimes in normal epithelial cells of the pancreatic duct and pancreatic intraepithelial neoplasm. These cells were used as the positive control for CAIX immunohistochemistry. Immunohistochemistry was performed without primary antibody for negative control. When more than 20% of cancer cells in the specimen expressed CAIX, the case was judged as positive for CAIX in cancer cells. When there were any stromal cells expressing CAIX in cancer tissue, the case was judged as presence of histological necrosis and each of the grades of lymphatic, venous, and neural invasion evident within each of the provided slides. These observers were blind to the identity of the original reviewers or those of each other. They were also not provided with any clinical information on the outcome of the patients.

Statistical analysis
Comparisons of qualitative variables were performed using the χ² test or Fisher’s exact test. One-way analysis of variance was used to compare the means of three or more groups. The postoperative disease-free survival (DFS) and disease-specific survival (DSS) rates were calculated by the Kaplan–Meier method. Univariate analysis was performed for prognostic factors using the log-rank test. The factors found to be predictive by univariate analysis were subjected to multivariate analysis using the Cox proportional hazards model (backward elimination method). Interobserver
agreement (reproducibility) was tested by obtaining the k-scores (Fleiss, 1971; Landis and Koch, 1977). Differences at $P<0.05$ were considered statistically significant. Statistical analyses were performed with StatView-J 5.0 software (Abacus Concepts, Berkeley, CA, USA).

RESULTS

Correspondence of both massive necrosis and micronecrosis with hypoxic foci

Immunohistochemical analysis revealed that CAIX was expressed in cancer cells or stromal cells within or around areas of both massive necrosis and micronecrosis (Figure 2).

Prognostic significance of the presence of hypoxic foci detected by expression of CAIX in cancer stromal cells

Survival analysis showed that the presence of hypoxic foci with expression of CAIX in stromal cells in cancer tissue was closely associated with shorter DFS ($P=0.004$) and DSS ($P=0.003$) (Figure 3). The presence of cancer cells expressing CAIX was also associated with shorter survival rates (Figure 3), although its occasional expression in cancer cells forming well-differentiated glands distant from necrotic areas probably indicated a cellular phenotype similar to that of normal ductal epithelial cells, and was unrelated to hypoxia. Then we used expression of CAIX in cancer stromal cells as hypoxic marker in this study. Multivariate Cox regression analysis revealed that the presence of hypoxic foci was an independent predictor of shorter DFS ($P=0.005$) and DSS ($P=0.011$) (Supplementary Table 1). The presence of necrosis was significantly correlated with the presence of hypoxic foci (Table 1). More CAIX-expressing cells were found in larger areas of necrosis.

Histopathological evaluation of PDC

Table 1 lists the clinicopathological features of patients with PDC. When correlations with these clinicopathological features were analyzed, the presence of necrosis was found to be more likely in cases with large tumours ($P=0.004$), higher tumour status ($P=0.023$), presence of nodal metastasis ($P=0.030$), presence of distant metastasis ($P=0.049$), higher TNM stage ($P=0.009$), poorer tumour differentiation ($P<0.0001$), and more frequent venous invasion ($P=0.0002$).

Prognostic significance of the histopathological valuables

Survival analysis demonstrated an association between the presence of necrosis and shorter DFS ($P<0.0001$; HR $=2.007$; 95% CI: 1.531–2.630) and DSS ($P<0.0001$; HR $=2.196$; 95% CI: 1.712–2.863).
1.659–2.905) (Figure 4). A similar association was found in patients with PDC at each TNM stages (Figure 4).

The average survival periods for patients having PDC with and without necrosis were 24.62 ± 1.42 months and 47.36 ± 2.75 months, respectively. One-year survival rates for patients having PDC with and without necrosis were 63.3 ± 3.3% and 89.1 ± 2.9%, respectively; the 2-year rates were 36.2 ± 3.4% and 69.0 ± 4.3%, and the 5-year rates were 17.1 ± 2.9% and 40.1 ± 4.8%.

Multivariate Cox regression analysis showed that necrosis (P<0.0001; HR = 1.853; 95% CI: 1.407–2.440), metastatic status,
lymphatic invasion, venous invasion, and intrapancreatic neural invasion were independent predictors of DFS, and that necrosis \((P < 0.0001; \text{HR} = 2.238; 95\% \text{CI: } 1.686–2.971)\), metastatic status, margin status, lymphatic invasion, and intrapancreatic neural invasion were independent predictors of DSS (Table 2).

When massive necrosis and micronecrosis were separated as distinct variables, univariate survival analysis demonstrated an association between the presence of massive necrosis and shorter DFS \((P < 0.0001)\) and DSS \((P < 0.0001)\), and between the presence of micronecrosis and shorter DFS \((P = 0.004)\) and DSS \((P = 0.001)\) (Supplementary Table 2). Multivariate Cox regression analysis showed that massive necrosis \((P = 0.0006)\) and micronecrosis \((P = 0.0004)\) were independent predictors of shorter DFS and that massive necrosis \((P < 0.0001)\) and micronecrosis \((P < 0.0001)\) were independent predictors of shorter DSS (Supplementary Table 2).

Reproducibility of necrosis identification by independent observers

Interobserver agreement (reproducibility) regarding the identification of necrosis among the five independent observers who reviewed the 51 slides blindly had a \(k\)-value of 0.87. On the other hand, the corresponding \(k\)-values for grading (0–3) of lymphatic, venous, and neural invasion were 0.11, 0.11, and 0.31, respectively. According to the widely used statistical chart that grades the strength of agreement (Fleiss, 1971; Landis and Koch, 1977) into 6 categories (poor \((k\)-value, < 0.00), slight (0.00–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80), and almost perfect (0.81–1.00)), the agreement for identification of necrosis and the grading for lymphatic, venous, and neural invasion were categorized as ‘almost perfect’, ‘slight’, ‘slight’, and ‘fair’, respectively. When the grades for lymphatic, venous, and neural
Invasion was combined into two categories (grades 0 and 1 and grades 2 and 3) as used in the survival analysis, the k-values for lymphatic, venous, and neural invasion were 0.55 (moderate), 0.62 (substantial), and 0.62 (substantial), respectively.

Survival analysis was performed using the data for necrosis identification by the five independent observers, and this yielded similar results, that is, patients having PDC with necrosis showed significantly shorter survival. P-values calculated for each of these analyses were 0.0004, 0.0005, 0.002, 0.005, 0.006, and 0.008 for DFS, and 0.0001, 0.0004, 0.003, 0.005, 0.005, and 0.008 for DSS.

DISCUSSION

Pancreatic ductal carcinoma is one of the most aggressive cancers, with almost equivalent incidence and mortality rates. Several histopathological prognostic variables for patients with PDC have been reported (Trede et al, 1990; Yeo et al, 1995; Luttges et al, 2000; Sohn et al, 2000; Lim et al, 2003; Takai et al, 2003; Adsay et al, 2003; Mitsuagana et al, 2005, 2007; Shimada et al, 2006; Schnellendorfer et al, 2008). These are sometimes controversial and complex, and some have problems related to interobserver reproducibility. We need prognostic indicators being simpler, more reproducible, and accurate.

In this study, we reviewed the histopathological findings in 348 cases of PDC in comparison with the corresponding clinicopathological information, and obtained several histopathological prognosticators of both DFS and DSS for patients with PDC by univariate survival analyses employing histological necrosis, tumour size, tumour status, node status, metastatic status, margin status, nerve plexus invasion, and lymphatic, venous, and intrapancreatic neural invasion as variables. Multivariate survival analyses revealed that histological necrosis was an independent predictive factor for both shorter DFS ($P<0.0001$) and shorter DSS ($P<0.0001$) of PDC patients (Table 2). In addition, metastatic status, lymphatic invasion, venous invasion, and intrapancreatic neural invasion were factors that were independently predictive of shorter DFS, whereas metastatic status, margin status, lymphatic invasion, and intrapancreatic neural invasion were factors independently predictive of shorter DSS (Table 2). Necrosis was also able to predict patient outcome in populations at stage IIB, into which the majority of resectable PDCs were stratified (Figure 4). Furthermore, the reproducibility of necrosis identification was found to be ‘almost perfect’ (k-value, 0.87) when the 51 slides of PDC were assessed by five independent observers. In contrast, the reproducibility of the systems of grading for lymphatic, venous, and neural invasion was low with low k-values. Moreover, these five independent observers all provided the same result, that is, that patients having PDC with necrosis showed

Table 2

Univariate and multivariate analyses of prognostic factors associated with disease-free survival in patients with ductal carcinoma of the pancreas ($n=348$)

Variables	Univariate analysis	Multivariate analysis		
	HR (95% CI)	P-value	HR (95% CI)	P-value
Age (≥60 years/ <60 years)	1.159 (0.895 – 1.501)	0.263	1.319 (1.030 – 1.694)	0.027
Gender (male/female)	0.917 (0.756 – 1.107)	0.364	0.933 (0.764 – 1.140)	0.939
Localisation (pancreas head/body or tail)	0.903 (0.634 – 1.281)	0.566	0.904 (0.630 – 1.299)	0.604
Tumour size (≥30 mm/ <30 mm)	1.505 (1.064 – 2.111)	0.020	1.509 (1.047 – 2.170)	0.020
Pathologic grade (W/D/M/D, P/D)	1.544 (1.050 – 2.269)	0.025	1.544 (1.050 – 2.269)	0.025
Pathologic metastasis status (M0/M1)	2.238 (1.500 – 3.378)	0.0003	2.238 (1.500 – 3.378)	0.0003
Histological grade (W/D/M/D, P/D)	1.505 (1.064 – 2.111)	0.020	1.505 (1.064 – 2.111)	0.020
Tumour margin status (negative/positive)	1.709 (1.121 – 2.630)	0.003	1.709 (1.121 – 2.630)	0.003
Lymphatic invasion (0, 1/2, 3)	2.040 (1.531 – 2.630)	<0.0001	2.040 (1.531 – 2.630)	<0.0001
Venous invasion (0, 1/2, 3)	1.985 (1.508 – 2.614)	0.0005	1.985 (1.508 – 2.614)	0.0005
Intrapancreatic neural invasion (0, 1/2, 3)	1.655 (1.269 – 2.157)	0.003	1.655 (1.269 – 2.157)	0.003
Histological necrosis (absence/presence)	2.007 (1.531 – 2.630)	<0.0001	2.007 (1.531 – 2.630)	<0.0001

Table 3

Univariate and multivariate analyses of prognostic factors associated with disease-specific survival in patients with ductal carcinoma of the pancreas ($n=348$)

Variables	Univariate analysis	Multivariate analysis		
	HR (95% CI)	P-value	HR (95% CI)	P-value
Age (≥60 years/ <60 years)	1.159 (0.895 – 1.501)	0.263	1.319 (1.030 – 1.694)	0.027
Gender (male/female)	0.917 (0.756 – 1.107)	0.364	0.933 (0.764 – 1.140)	0.939
Localisation (pancreas head/body or tail)	0.903 (0.634 – 1.281)	0.566	0.904 (0.630 – 1.299)	0.604
Tumour size (≥30 mm/ <30 mm)	1.505 (1.064 – 2.111)	0.020	1.509 (1.047 – 2.170)	0.020
Pathologic grade (W/D/M/D, P/D)	1.544 (1.050 – 2.269)	0.025	1.544 (1.050 – 2.269)	0.025
Pathologic metastasis status (M0/M1)	2.238 (1.500 – 3.378)	0.0003	2.238 (1.500 – 3.378)	0.0003
Histological grade (W/D/M/D, P/D)	1.505 (1.064 – 2.111)	0.020	1.505 (1.064 – 2.111)	0.020
Tumour margin status (negative/positive)	1.709 (1.121 – 2.630)	0.003	1.709 (1.121 – 2.630)	0.003
Lymphatic invasion (0, 1/2, 3)	2.040 (1.531 – 2.630)	<0.0001	2.040 (1.531 – 2.630)	<0.0001
Venous invasion (0, 1/2, 3)	1.985 (1.508 – 2.614)	0.0005	1.985 (1.508 – 2.614)	0.0005
Intrapancreatic neural invasion (0, 1/2, 3)	1.655 (1.269 – 2.157)	0.003	1.655 (1.269 – 2.157)	0.003
Histological necrosis (absence/presence)	2.007 (1.531 – 2.630)	<0.0001	2.007 (1.531 – 2.630)	<0.0001

Abbreviations: CI = confidence interval; HR = hazards ratio; M/D = moderately differentiated adenocarcinoma; P/D = poorly differentiated adenocarcinoma; PL = nerve plexus invasion; W/D = well-differentiated adenocarcinoma. *Classified according to the classification of pancreatic carcinoma of Japan Pancreas Society.
significantly shorter survival in terms of both DFS and DSS. These findings indicate that histological necrosis is a simple, accurate, and reproducible predictor of postoperative outcome for PDC patients. Histological necrosis was found in 223 (64.1%) out of 348 cases of PDC. We defined necrosis as covering both massive necrosis and micronecrosis, the latter being often evident in PDCs, although not noted previously or being hidden as smaller foci (Couvelard et al, 2005; Mitsuana et al, 2005). The expression of CAIX (Figure 2) and HIF-1α (data now shown) in and around the necrotic areas was detected immunohistochemically, together with that the presence of necrosis was significantly correlated with expression of CAIX (Table 1), indicating that both patterns of necrosis were closely related to hypoxia. Hasebe’s group reported that necrosis was an independent prognostic factor in both DFS and DSS when they investigated histopathological findings in 101 PDC patients (Nakatsura et al, 1997; Mitsuana et al, 2005). Couvelard et al (2005) reported that necrosis was associated with poorer DFS in univariate analysis, and also showed that necrosis was significantly associated with CAIX expression. Only 30–40% of PDC cases had necrosis in those studies, whereas 60–80% of PDCs had hypoxia, as necrosis was defined roughly by these two groups as massive necrosis only. When massive necrosis and micronecrosis were separated as distinct variables, univariate and multivariate survival analyses demonstrated that both types of necrosis were significantly associated with shorter DFS and DSS (Supplementary Table 2). Massive necrosis and micronecrosis was detected in 27.9 and 43.4% (overlapped 7.2%) of PDCs in our series, respectively. These findings suggest that the presence of necrosis, even when the lesion is small, is closely associated with patient outcome, probably because the presence of necrosis represents a hypoxia-associated aggressive tumour phenotype. In fact, in this series, the presence of necrosis was significantly correlated with a large tumour size, higher T factor, presence of nodal and distant metastasis, higher TNM stage, more severe venous invasion, and a higher tumour histological grade (Table 1), suggesting that necrosis is positively correlated with tumour growth, invasion, and angiogenesis, that is, an aggressive phenotype. Hypoxia is a characteristic of invasive cancers that can lead to the development of an aggressive phenotype through a mechanism mediated mainly by HIF-1α, which includes cell immortalisation and dedifferentiation, pH regulation, autocrine growth/survival, angiogenesis, invasion/metastasis, and resistance to chemotherapy (Semenza, 2006, 2009; Grothey and Galanis, 2009). In fact, the presence of hypoxic foci with expression of CAIX was an independent worse prognostic factor for PDC patients (Supplementary Table 1) that we demonstrated at first time using large series of cases. Recently, HIF-1 targeting therapy and antiangiogenesis therapy have been reported to yield promising anti-cancer effects (Sessa et al, 2008; Grothey and Galanis, 2009; Semenza, 2009). It is suggested that evaluation of histological necrosis would be useful not only for decision making about postoperative clinical management, but also for stratifying patients for clinical trials aimed at evaluating HIF-1 targeting or anti-angiogenesis therapies.

In conclusion, we reviewed the histopathological findings in 348 PDCs for which the presence of necrosis was redefined, and found that histological necrosis was an independent predictor of shorter DFS and DSS for the affected patients. Interobserver reproducibility for the detection of necrosis was assessed as ‘almost perfect’ when 51 slides of PDC were reviewed by five independent observers. These findings indicate that histological necrosis is a simple, accurate, and reproducible predictor of postoperative outcome in PDC patients.

ACKNOWLEDGEMENTS

Research support: This work was supported by a Grant-in-Aid for Third Term Comprehensive 10-year Strategy for Cancer Control from the Ministry of Health, Labor and Welfare of Japan (NH and YK), the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (YK), and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (NH). The authors thank Dr Hidenori Ojima, Dr Yoshihiro Sakamoto, Dr Minoru Esaki, and Dr Satoshi Nara for useful discussion.

Supplementary Information accompanies the paper on British Journal of Cancer website (http://www.nature.com/bjc)

REFERENCES

Adsay NV, Basturk O, Bonnett M, Kilinc N, Andea AA, Feng J, Che M, Aulicino MR, Levi E, Cheng JD (2005) A proposal for a new and more practical grading scheme for pancreatic ductal adenocarcinoma. Am J Surg Pathol 29: 724 – 733
Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8: 180 – 192
Center for Cancer Control and Information Services, National Cancer Center Japan (2009) Cancer Statistics in Japan
Chia SK, Wykoff CC, Watson PH, Han C, Leek RD, Pastorek J, Gatter KC, Ratcliffe P, Harris AL (2001) Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. J Clin Oncol 19: 3660 – 3668
Couvelard A, O’Toole D, Leek R, Turley H, Sauvanet A, Degott C, Ruszniewski P, Belghiti J, Harris AL, Gatter K, Pezzella F (2005) Expression of hypoxia-inducible factors is correlated with the presence of a fibrotic focus and angiogenesis in pancreatic ductal adenocarcinomas. Histopathology 46: 666 – 676
Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76: 378 – 382
Gilchrist KW, Gray R, Fowble B, Tormey DC, Taylor SG (1993) Tumor necrosis is a prognostic predictor for early recurrence and death in lymph node-positive breast cancer: a 10-year follow-up study of 728 Eastern Cooperative Oncology Group patients. J Clin Oncol 11: 1929 – 1935
Grothey A, Galanis E (2009) Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol 6: 507 – 518
Harris AL (2002) Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38 – 47
Hruban RH, Pitman MB, Klimstra DS (2007) Ductal adenocarcinoma. In AFIP Atlas of Tumor Pathology. Tumors of the Pancreas, Hruban RH, Pitman MB, Klimstra DS (eds) 4th edn, pp 111 – 164. ARP Press: Washington, DC
Japan Pancreas Society (2003) Classification of Pancreatic Cancer. 2nd English edn, Kanehara: Tokyo, Japan
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59: 225 – 249
Kitada T, Seki S, Sakaguchi S, Sawada T, Hirakawa K, Wakasa K (2003) Clinicopathological significance of hypoxia-inducible factor-α-lambda expression in human pancreatic carcinoma. Histopathology 43: 550 – 555
Klöppel G, Adler G, Hruban RH, Kern SE, Longnecker DS, Partanen TJ (2000) Ductal adenocarcinoma of the pancreas. In World Health Organization Classification of Tumours. Pathology & Genetics. Tumours of the Digestive System, Hamilton SR, Aaltonen LA (eds), pp 221 – 230. IARC Press: Lyon
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33: 159 – 174
Lim JE, Chien MW, Earle CC (2003) Prognostic factors following curative resection for pancreatic adenocarcinoma: a population-based, linked database analysis of 396 patients. Ann Surg 237: 74 – 85
Semenza GL (2009) HIF-1 inhibitors for cancer therapy: from gene expression to drug discovery. "Curr Pharm Des" 15: 3839–3843

Sessa C, Guibal A, Del Conte G, Ruegg C (2008) Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? "Nat Clin Pract Oncol" 5: 378–391

Shimada K, Sakamoto Y, Sano T, Kosuge T, Hiraoka N (2006) Reappraisal of the clinical significance of tumor size in patients with pancreatic ductal carcinoma. "Pancreas" 33: 233–239

Sohn TA, Yeo CJ, Cameron JL, Koniaris L, Kaushal S, Abrams RA, Sauter PK, Coleman J, Hruban RH, Lillemoe KD (2000) Resected adenocarcinoma of the pancreas—616 patients: results, outcomes, and prognostic indicators. "J Gastrointest Surg" 4: 567–579

Sun HC, Qiu ZJ, Liu J, Sun J, Jiang T, Huang KJ, Yao M, Huang C, Sun H-C, Qiu Z-J, Liu J, Sun J, Jiang T, Huang K-J, Yao M, Huang C (2007) Expression of hypoxia-inducible factor-1 alpha and associated proteins in pancreatic ductal adenocarcinoma and their impact on prognosis. "Int J Oncol" 30: 1359–1367

Takahashi Y, Akishima-Fukasawa Y, Kobayashi N, Sano T, Kosuge T, Nimura Y, Kanai Y, Hiraoka N (2007) Prognostic value of tumor architecture, tumor-associated vascular characteristics, and expression of angiogenic molecules in pancreatic endocrine tumors. "Clin Cancer Res" 13: 187–196

Takai S, Satoi S, Toyokawa H, Yanagimoto H, Sugimoto N, Tsuji K, Araki H, Matsui Y, Imamura A, Kwon AH, Kamiyama Y (2003) Clinicopathologic evaluation after resection for ductal adenocarcinoma of the pancreas: a retrospective, single-institution experience. "Pancreas" 26: 243–249

Trede M, Schwall G, Saeger HD (1990) Survival after pancreatectoduodenectomy. 118 consecutive resections without an operative mortality. "Ann Surg" 211: 447–458

Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. "Cancer Metastasis Rev" 26: 225–239

Wittkeind C, Greene FL, Hutter RVP, Klimpfinger M, Sobin LH (2005) UICC TNM Atlas 5th edn, Springer: New York, NY

Yeo CJ, Cameron JL, Lillemoe KD, Sitzmann JV, Hruban RH, Goodman SN, Dooley WC, Coleman J, Pitt HA (1995) Pancreatectoduodenectomy for cancer of the head of the pancreas. 201 patients. "Ann Surg" 221: 721–731; discussion 731–733

Zavada J, Zavadova Z, Pastorek J, Biesova Z, Jezek J, Velek J (2000) Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. "Br J Cancer" 82: 1808–1813