Generalized Hermite–Gauss decomposition of the two-photon state produced by spontaneous parametric down conversion

S P Walborn and A H Pimentel

Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
E-mail: swalborn@if.ufrj.br

Received 6 May 2012, in final form 25 June 2012
Published 23 July 2012
Online at stacks.iop.org/JPhysB/45/165502

Abstract
We provide a general decomposition of the two-photon state produced by spontaneous parametric down conversion in Hermite–Gaussian modes, in the case that the pump beam is described by a Hermite–Gaussian beam of any order. We show that the spatial correlations depend explicitly on the order of the pump beam, as well as other experimental parameters. We use the decomposition to demonstrate a few interesting cases. Our results are applicable to the engineering of two-photon spatial entanglement, in particular for non-Gaussian states.

1. Introduction
The spatial correlations of photon pairs have been extensively studied in the context of quantum optics and quantum information [1]. In particular, spatial correlations have played an important role in the understanding of fundamental quantum phenomena such as non-local interference [2, 3] and entanglement [4–9]. Moreover, these spatial correlations may be useful for applications such as quantum imaging [10, 11, 2, 12–14] and cryptography [15, 16]. For most investigations, correlated photon pairs are produced via spontaneous parametric down conversion (SPDC) [1], which has served as a robust and controllable entanglement source.

It is possible to explore continuous variable (CV) aspects of spatial correlations, and in this case one typically considers the near- and far-field variables of some reference plane. In this CV context, entanglement and non-locality have been observed using second-order Gaussian criteria [4, 5, 7, 17], as well as higher order criteria that are more successful for certain non-Gaussian states [8, 18]. It has also been shown that basic CV quantum gates can be implemented using spatial variables [19]. CV spatial correlations can also be used to produce entangled D-dimensional systems [20, 21].

One can also decompose the fields into a discrete set of transverse modes, such as the Laguerre–Gauss (LG) [22–30] or Hermite–Gauss (HG) modes [31–36]. Using the LG modes, the majority of experiments have been concerned with entanglement in orbital angular momentum [22, 26, 37, 33, 38]. In terms of the HG modes, entanglement in the mode parity has been exploited for experimental violation of Bell’s inequality [39]. Propagation of entangled transverse modes through atmospheric turbulence [40] and optical fibres has been studied [41]. Investigations of quantum information protocols have relied on the entanglement in transverse modes [42–44]. To perform projective measurements in transverse modes, phase masks or plane wave holograms, along with single-mode fibres, are typically used. For the HG modes, the phase masks introduce a phase shift according to $\arg[H_n(x)H_m(y)]$, where H_n is the Hermite polynomial of order n [35]. Images of the first-order plane wave holograms are shown in [43]. Both of these devices transform a higher order HG mode into the fundamental Gaussian mode, which can be selected using a single-mode optical fibre.

An expansion of the two-photon state into a basis of orthogonal transverse modes can be written as

$$|\psi\rangle = \sum_{j,k,i,l} C_{jkil} |jk; \sigma_1\rangle_1 |il; \sigma_2\rangle_2.$$

(1)
where \([jk; \sigma]\) is single photon in some transverse mode described by discrete indices \(j, k\). Here \(\sigma_1\) and \(\sigma_2\) describe the widths of the transverse modes. The orthogonality condition is

\[
\langle ab; \sigma | a'b'; \sigma \rangle = \delta_{a,a'} \delta_{b,b'}. \tag{2}
\]

Experimentally, one is free to choose the values of \(\sigma_1\) and \(\sigma_2\) by appropriate coupling into an optical system, such as a single-mode fibre [22, 42, 35]. An experimental study of this point has been reported in [30]. In the case of a Gaussian pump beam, under certain conditions this expansion has been studied theoretically for the LG modes [23, 25, 33, 28, 29] and HG modes [45, 35, 36]. Walborn et al [31, 34] considered higher order HG pump beams under the condition that \(\sigma_1 = \sigma_2 = \sqrt{2}w_p\), where \(w_p\) is the radius of the HG pump beam.

Here we derive the expansion of the two-photon state produced by SPDC for HG pump beams of arbitrary order, using the Gaussian approximation of the phase matching function [46, 47, 29]. In sections 2 and 3 we review the two-photon state and the expansion in HG modes. Explicit calculations are provided in the appendix. In section 4 we discuss our results and some interesting examples. We show that, under certain conditions, the two-photon state is similar to a classical optical beam, and/or photon number states at the output of a beam splitter. Our results are applicable to the engineering of two-photon non-Gaussian quantum states [8, 18].

2. Two-photon state

Here we will be concerned with spatial correlations only. We thus assume that the pump laser and down-converted fields are monochromatic, paraxial and have well-defined polarizations. These assumptions are justified experimentally by the crystal type and geometry, and by using narrow-band interference filters and polarizers, if necessary. For a sufficiently weak cw laser, the two-photon quantum state generated by SPDC is [1, 11]

\[
|\psi\rangle = \int dq_1 dq_2 \Phi(q_1, q_2)|q_1\rangle|q_2\rangle. \tag{3}
\]

The ket \(|q_i\rangle\) describes a single-photon in a plane wave mode. The vector \(q = (q_x, q_y)\) is the transverse component of the wave vector \(k\). The normalized angular spectrum of the two-photon state \(\Phi(q_1, q_2)\) is given by

\[
\Phi(q_1, q_2) = \frac{1}{\pi} \sqrt{\frac{2L}{K}} \mathcal{V}(q_1 + q_2) \sin\left(\frac{L|q_1 - q_2|^2}{4K}\right), \tag{4}
\]

where \(\mathcal{V}(q)\) is the normalized angular spectrum of the pump beam, \(L\) is the length of the nonlinear crystal and \(K\) is the wave number of the pump field.

We now consider that the nonlinear crystal is pumped with a HG beam \(HG_{nm}\), generating a two-photon state \(|\psi_{nm}\rangle\). We will denote \(\psi_{nm}(q)\) as the normalized two-dimensional angular spectrum of the HG mode. The HG modes are separable in \(x\) and \(y\)-coordinates, so that \(\psi_{nm}(q_x, q_y) = \psi_{nm}(q_x)\psi_{nm}(q_y)\), where

\[
v_{nm}(q; w) = \sqrt{w}D_n H_n(wq) \exp\left(-\frac{w^2 q^2}{2}\right) \tag{5}
\]

and

\[
D_n = -i^n \frac{1}{2(n+1)! n!}. \tag{6}
\]

Here \(H_n(x)\) is the \(n\)th-order Hermite polynomial. We have included the width parameter \(w\) explicitly in the definition of the one-dimensional HG modes. Also interesting are the diagonal HG modes [48], which can be defined as

\[
v_{nm}(q_x, w)\psi_{nm}(q_y, w) = \sum_{k=0}^{n+m} B(n, m, k)v_{nm}(q_x)\psi_{nm}(q_y), \tag{7}
\]

where \(q_x = q_x \pm q_y\) and

\[
B(n, m, k) = \sqrt{\frac{(n+m-k)!}{k!m!(1-t)^m(1+t)^m}}, t = 0. \tag{8}
\]

3. HG mode decomposition

Since the HG beams form a complete basis, we can expand the two-photon state (3) as

\[
|\psi_{nm}\rangle = \sum_{j,k,l,t=0}^{\infty} C_{jklt}^{(nm)} |jk; \sigma_1\rangle|st; \sigma_2\rangle, \tag{9}
\]

where we define

\[
|\alpha\beta; \sigma\rangle = \int dq_1 dq_2 \psi_{nm}(q_1; \sigma)\psi_{nm}(q_2; \sigma)\psi_{nm}(q). \tag{10}
\]

The expansion coefficients are given by the scalar product

\[
C_{jklt}^{(nm)} = \langle st; \sigma_2 |jk; \sigma_1|\psi_{nm}\rangle. \tag{11}
\]

In [31], explicit analytical expressions for the coefficients \(C_{jklt}^{(nm)}\) were derived for the two-photon state of the form (3) with angular spectrum (4). There, it was considered that the width of the down-converted modes was \(\sigma_1 = \sigma_2 = \sqrt{2}w_p\), where \(w\) is the width of the pump field. In [45], it was shown that for a thin crystal and a plane wave pump beam \(\mathcal{V}(q) \approx \delta(q)\), the down-converted photons are highly correlated in transverse modes, such that \(C_{jklt}^{(00)} \approx \delta_{j1}\delta_{k2}\).

In many experimental conditions, the sinc function in (4) can be approximated by a Gaussian function, such that

\[
C_{jklt}^{(nm)} \approx V_0|q_1 - q_2|^{-\delta} \approx V_0|q_1 - q_2|^2/4K, \tag{12}
\]

where \(\delta \approx 0.257\sqrt{L/4K}\), so that the two functions have the same width at half maximum [47]. The validity of the Gaussian approximation has been discussed in [49, 29]. In this Gaussian approximation, the two-photon angular spectrum is separable in the \(x\) and \(y\)-coordinates, and can be written as

\[
\Phi(q_1, q_2) = \psi_{nm}(q_1 + q_2; w_1)v_{nm}(q_1)\psi_{nm}(q_2)w_2 v_{nm}(q_2)\psi_{nm}(q_1), \tag{13}
\]

Likewise, the HG expansion coefficients can be separated as \(C_{jklt}^{(nm)} = C_{jk}^{(00)} C_{lt}^{(nm)}\). In [35], an analytic expression was derived for the case of a Gaussian pump beam when the
down-converted modes are characterized by widths \(\sigma = \sigma' = \sqrt{w\delta/2} \).

Here we consider the general situation in which the down-converted modes are described by arbitrary width \(\sigma \), as well as the case of higher order HG pump beams \(V_{nm} \). From these, one can construct the coefficients complete \(C_{j,k,0}^{(nm)} \). In particular, for \(\sigma_1 = \sigma_2 = \sigma \), we find

\[
C_{ab}^{(n)} = \sum_{k=0}^{N} B(a, b, k) I(w, \sigma, n, N - k) I(\delta, 0, k),
\]

where \(B(a, b, k) \) is a coefficient defined in equation (8) and

\[
I(\gamma, \sigma, \tau, s) = \int dq \sqrt{2q} \gamma u_q(\sigma). \tag{15}
\]

In the appendix, we derive an explicit expression for the coefficients \(C_{ab}^{(n)} \). Our results confirm earlier results that the parity is conserved in SPDC \([31, 34, 35]\), so that parity \(\langle a + b = \text{parity}(n) \rangle \). Below, we provide some numerical examples and discuss some interesting cases.

4. Interesting cases

4.1. Two-mode squeezed state

By adjusting the width of the collected down-converted modes, one can manipulate the terms in the expansion (9). A particularly interesting case is when \(\sigma = \sigma' = \sqrt{2w\delta} \) and the pump beam is a Gaussian. Here the coefficients are given by

\[
C_{j,s}^{(0)} = \delta_{j,s} \frac{w\delta (w - \delta)'}{2 (w + \delta)^{(j+1)}}, \tag{16}
\]

where \(\delta_{j,s} \) is the Kronecker delta. This corresponds to the Schmidt decomposition calculated and observed in [35]:

\[
|\psi_{\text{NM}} \rangle = \sum_{ab=0}^{\infty} \sqrt{\lambda_{ab}} |ab; \sigma'\rangle |ab; \sigma'\rangle,
\]

(17)

where \(\sqrt{\lambda_{ab}} = \lambda_{aa} \) and we specify explicitly that the down-converted modes have widths \(\sigma' \). This is similar to the two-mode squeezed vacuum state for intense fields, which displays photon number correlations between the modes [50]. Here, the correlation is between the HG mode indices in both the x- and y-directions. For \(w = \delta \), only one coefficient \(C_{ab}^{(00)} = C_{00}^{(00)} = \lambda_0 \) is nonzero, and the state is separable. This is true only in the Gaussian approximation. However, for the wavefunction given in equation (4), the state displays a minimum amount of entanglement [46, 34].

4.2. Correlated HG states

For the same width parameter \(\sigma' \), and considering now higher order HG pump beams, the two-photon state takes the simplified form \(|\psi\rangle_{nm} = |\phi_n\rangle |\phi_m\rangle \), where

\[
|\phi_n\rangle = \sum_{r=0}^{\infty} \sum_{\alpha=0}^{n} \alpha \gamma_{\alpha} r \gamma_{\alpha} r_{\alpha} r_{\alpha}, \tag{18}
\]

and similarly for \(|\phi_m\rangle \). Here \(|\alpha\rangle \) are single photons in one-dimensional HG modes, in analogy to equation (10). For

\[
n, m \neq 0, \text{ these states are always entangled. Figures 1–3 show the coefficients } C_{ab}^{(n)} \text{ for the cases } n = 1, 2, 5, \text{ respectively. Different plots in each figure correspond to different values}
\]

![Figure 1](image1.png)

Figure 1. The coefficients \(C_{ab}^{(n)} \) for several values of \(w/\delta \), with \(\sigma = \sqrt{2w\delta} \). The intensity scale goes from the largest negative value to the largest positive value.

![Figure 2](image2.png)

Figure 2. The coefficients \(C_{ab}^{(n)} \) for several values of \(w/\delta \), with \(\sigma = \sqrt{2w\delta} \). The intensity scale goes from the largest negative value to the largest positive value.
of w/δ, the ratio between the width of the pump beam and the phase matching function. Correlation of the form given by equation (18) can be observed. For $w/\delta = 1$, the states show the minimal amount of entanglement for each value of n, as has been shown in other studies [46]. In addition, the minimal number of HG modes in the expansion increases with n, indicating that entanglement also increases with n [34]. We note the alternating phase changes along the diagonal of the figures for coefficients of the HG decomposition when $w/\delta = 1$, which display interesting properties. We expect the wavefunction of state $|\phi_n\rangle$ to display additional novel features [52].

The quantum state describing the spatial variables of the photon pair is analogous to other physical situations in classical and quantum optics, as illustrated in figure 4. The states $|\phi_n\rangle$ in (19) are then analogous to the usual diagonal HG beams in classical optics [48] defined in equation (7), with index $m = 0$. In this case, it is straightforward to see that

$$B(n, 0, k) = \sqrt{\frac{n!}{2^n n! (n-k)!}}$$

giving

$$v_n(q_+: w) v_0(q_-; w) = \sum_{k=0}^{n} \sqrt{\frac{n!}{2^n n! (n-k)!}} \times v_{n-k}(q_+: w) v_k(q_-; w).$$

The two-photon quantum state (19) is thus analogous to the two-dimensional classical beam defined in equation (21), where the one transverse spatial variable of each photon—say q_1 or q_2—plays the role of the transverse wave vectors q_1 and q_2 of the beam. Similar two-photon states with this property have been observed for LG modes [51, 52].

To make an analogy with quantum optics of field modes, the wavefunction of state $|\phi_n\rangle$ is equivalent to combining a photon number state $|n\rangle$ and a vacuum state on a 50/50
that a number of interesting two-photon states can be produced by changing the Hermite–Gauss indices of the pump, as well as the width of the pump beam and the phase-matching function. An interesting feature of the HG mode expansion is the fact that, under certain conditions, one can consider a single spatial dimension for each photon. This allows for simplification of the theoretical analysis and experimental investigations [35]. We have also shown that in certain cases the two-photon state in one spatial dimension is analogous to a diagonal Hermite–Gaussian beam in classical optics, and also to a photon number state superposed with vacuum at a beam splitter. The analogy between a single spatial dimension and a single harmonic oscillator allows for interesting parallels to be drawn. For instance, viewing the spatial correlations as forming a ‘two-photon beam’, as illustrated in figure 4(a), allows one to identify interesting features, such as the correlation vortex reported in [51, 52]. Since this image relies on a single spatial dimension of each photon, it is more adequately described using the HG modes, described in Cartesian coordinate systems. We expect our results to be useful in the engineering of spatial correlations, in particular in the case where non-Gaussian properties of the quantum state are to be explored [8, 18, 51].

Acknowledgments

Financial support was provided by Brazilian agencies CNPq, CAPES, FAPERJ and the Instituto Nacional de Ciência e Tecnologia (INCT)—Informação Quântica.

Appendix

The one-dimensional expansion coefficients are \(C^{(n)}_{ab} = \langle \psi_0 | \psi_n \rangle \). Using the definition of HG modes (5) and the two-photon state (3), we have

\[
C^{(n)}_{ab} = \int \int v_a(q_1 + q_2; w_p) v_0(q_1 - q_2; \delta) v_b^*(q_1; \sigma_1) v_b^*(q_2; \sigma_2) dq_1 dq_2. \tag{A.1}
\]

Defining

\[
q_\pm = \frac{1}{\sqrt{2}} (q_1 \pm q_2), \tag{A.2}
\]

we can rewrite the integral in terms of \(q_\pm \) variables. Let us consider that the down-converted modes satisfy \(\sigma_1 = \sigma_2 \equiv \sigma \). Using the definition of the HG modes (7), we can rewrite equation (A.1) as

\[
C^{(n)}_{ab} = \sum_{k=0}^{N} b(a, b, k) \int dq_+ v_n(\sqrt{2} q_+; w_p) v_{N-k}^* (q_+; \delta) \times \int dq_- v_0(\sqrt{2} q_-; \delta) v_k^*(q_-; \sigma), \tag{A.3}
\]

where \(N = a + b \) and \(b(a, b, k) \) is defined in equation (8). The integrals in equation (A.3) can be solved separately. Then coefficients can then be written as

\[
C^{(n)}_{ab} = \sum_{k=0}^{N} b(a, b, k) I(w_p, \sigma, n, N-k) I(\delta, \sigma, 0, k), \tag{A.4}
\]
where

\[
I(\gamma, \sigma, t, s) = \int dqv_1(\sqrt{2q}; \gamma) v_2^*(q; \sigma).
\]

(A.5)

Expanding the Hermite polynomials in power series [53] and integrating each term, one obtains

\[
I(\gamma, \sigma, t, s) = \frac{\gamma^s \sigma^t D_{s/2}^t s!}{\sqrt{2^s \sigma^2}} \sum_{j=0}^{\infty} \frac{(-1)^j}{\ell!} \left(t - \frac{2j}{\ell} \right)!
\]

\[
\times \left(\sqrt{\frac{\gamma}{\sigma}} D_{s/2}^t \right) \left(\sqrt{\frac{\gamma}{\sigma}} \right)^{s-2j} \left(\frac{\sigma}{\gamma} \right)^{2j} \Gamma\left(\frac{1}{2} + \frac{t-s}{2} - \frac{j}{\ell} \right).
\]

(A.6)

where \(\Gamma \) is the usual Gamma function.

When \(t = 0 \), \(I(\gamma, \sigma, 0, s) \) can be simplified to

\[
I(\gamma, \sigma, 0, s) = \frac{\sqrt{\pi} \gamma \sigma D_{s/2}^s s!}{4^{s} \Gamma(s/2 + 1)} \left(\frac{\sigma}{\gamma} \right)^{s/2} = \frac{\gamma^{s/2} \sigma^{s/2} D_{s/2}^s s!}{4^{s} \Gamma(s/2 + 1)}
\]

(A.7)

References

[1] Walborn S P, Monken C H, Pádua S and Ribeiro P H S 2010 Spatial correlations in parametric down-conversion Phys. Rep. 495 87–139
[2] Fonseca E J S, Monken C H and Pádua S 1999 Measurement of the de Broglie wavelength of a multithoton wave packet Phys. Rev. Lett. 82 2868
[3] Peeters W H, Renema J J and van Exter M P 2009 Engineering of two-photon spatial quantum correlations behind a double slit Phys. Rev. A 79 043817
[4] D’Angelo M, Kim Y H, Kulik S P and Shih Y 2004 Identifying entanglement using quantum ghost interference and imaging Phys. Rev. Lett. 92 223601
[5] Howell J C, Bennink R S, Bentley S J and Boyd R W 2004 Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion Phys. Rev. Lett. 92 210403
[6] Fedorov M V, Efremov M A, Volkov P A, Moreva E V, Straupe S S and Kulik S P 2007 Anisotropically and high entanglement of biphoton states generated in spontaneous parametric down-conversion Phys. Rev. Lett. 99 063901
[7] Tasca D S, Walborn S P, Ribeiro P H S and Toscano F 2008 Detection of transverse entanglement in phase space Phys. Rev. A 78 010304
[8] Gomes R M, Salles A, Toscano F, Ribeiro P H S and Walborn S P 2009 Quantum entanglement beyond Gaussian criteria Proc. Natl. Acad. Sci. USA 106 21517–20
[9] Di Lorenzo Pires H, Monken C H and van Exter M P 2009 Direct measurement of transverse-mode entanglement in two-photon states Phys. Rev. A 80 022307
[10] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Observation of two-photon Ghost interference and diffraction Phys. Rev. Lett. 74 3600
[11] Monken C H, Ribeiro P H S and Pádua S 1998 Transfer of angular spectrum and image formation in spontaneous parametric down-conversion Phys. Rev. A 57 3123
[12] Abouraddy A F, Saleh B E A, Sergienko A V and Teich M C 2001 Phys. Rev. Lett. 87 123602
[13] Abouraddy A F, Stone P R, Sergienko A V, Saleh B E A and Teich M C 2004 Entangled-photon imaging of a pure phase object Phys. Rev. Lett. 93 213903
[14] Santos I F, Aguirre-Gómez J G and Pádua S 2008 Comparing quantum imaging with classical second-order incoherent imaging Phys. Rev. A 77 043832
[15] Almeida M P, Walborn S P and Ribeiro P H S 2005 Experimental investigation of quantum key distribution with position and momentum of photon pairs Phys. Rev. A 72 022313
[16] Zhang L, Silberhorn C and Walmsley I A 2008 Secure quantum key distribution using continuous variables of single photons Phys. Rev. Lett. 101 110504
[17] Tasca D S, Walborn S P, Souto Ribeiro P H, Toscano F and Pellat-Finet P 2009 Propagation of transverse intensity correlations of a two-photon state Phys. Rev. A 79 033801
[18] Walborn S P, Salles A, Gomes R M, Toscano F and Souto Ribeiro P H 2011 Revealing hidden Einstein–Podolsky–Rosen nonlocality Phys. Rev. Lett. 106 130402
[19] Tasca D S, Gomes R M, Toscano F, Souto Ribeiro P H and Walborn S P 2011 Continuous-variable quantum computation with spatial degrees of freedom of photons Phys. Rev. A 83 052325
[20] Neves L et al 2005 Generation of entangled states of qudits using twin photons Phys. Rev. Lett. 94 100501
[21] O’Sullivan-Hale M N, Khan I A, Boyd R W and Howell J C 2005 Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits Phys. Rev. Lett. 94 220501
[22] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Entanglement of the orbital angular momentum states of photons Nature 412 313
[23] Franke-Arnold S, Barnett S M and Padgett MJ and Allen L 2002 Two-photon entanglement of orbital angular momentum states Phys. Rev. A 65 033823
[24] Torres J P, Deyanova Y, Torner L and Molina-Terriza G 2003 Preparation of engineered two-photon entangled states for multidimensional quantum information Phys. Rev. A 67 052313
[25] Torres J P, Alexandrescu A and Torner L 2003 Quantum spiral bandwidth of entangled two-photon states Phys. Rev. A 68 050301
[26] Walborn S P, de Oliveira A N, Thebaldi R S and Monken C H 2004 Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion Phys. Rev. A 69 023811
[27] Leach J et al 2010 Quantum correlations in optical angle–orbital angular momentum variables Science 329 662
[28] Miao F M, Yao A M and Barnett S M 2011 Full characterization of the quantum spiral bandwidth of entangled biphotons Phys. Rev. A 83 033816
[29] Miao F M, Pires H D L, Barnett S M and van Exter M P 2012 Schmidt modes generated in parametric downconverssion arXiv:12013041
[30] Salakhutdinov V D, Elie R and Löffler W 2012 Full-field quantum correlations of spatially entangled photons Phys. Rev. Lett. 108 173604
[31] Walborn S P, Pádua S and Monken C H 2005 Conservation and entanglement of Hermite–Gaussian modes in parametric down-conversion Phys. Rev. A 71 053812
[32] Ren X F, Guo G P, Yu B, Li J and Guo G C 2004 J. Opt. B: Quantum Semiclass. Opt. 6 243–7
[33] van Exter M P, Aiello A, Oemrawsingh S S R, Nienhuys G and Woerdman J P 2006 Effect of spatial filtering on the Schmidt decomposition of entangled photons Phys. Rev. A 74 012309
[34] Walborn S P and Monken C H 2007 Transverse spatial entanglement in parametric down-conversion Phys. Rev. A 76 062305
[35] Straupe S S, Ivanov D P, Kalinkin A A, Bobrov I B and Kulik S P 2011 Angular Schmidt modes in spontaneous parametric down-conversion Phys. Rev. A 83 060302
[36] Miatto F M, Brougham T and Yao A M 2012 Cartesian and polar Schmidt bases for down-converted photons arXiv:11116449
[37] Straupe S S, Ivanov D P, Kalinkin A A, Bobrov I B and Kulik S P 2011 Angular Schmidt modes in spontaneous parametric down-conversion Phys. Rev. A 83 062305
[38] Di Lorenzo Pires H, Florijn H C B and van Exter M P 2010 Measurement of the spiral spectrum of entangled two-photon states Phys. Rev. Lett. 104 020505
[39] Yarnall T, Abouraddy A F, Saleh B E A and Teich M C 2007 Experimental violation of Bell’s inequality in spatial-parity space Phys. Rev. Lett. 99 170408
[40] Pors B J, Monken C H, Eliel E R and Woerdman J P 2011 Transport of orbital-angular-momentum entanglement through a turbulent atmosphere Opt. Express 19 6671–83
[41] Löffler W, Euser T G, Eliel E R, Scharrer M, Russell P S J and Woerdman J P 2011 Fiber transport of spatially entangled photons Phys. Rev. Lett. 106 240505
[42] Vaziri A, Weihs G and Zeilinger A 2002 Experimental two-photon, three-dimensional entanglement for quantum communication Phys. Rev. Lett. 89 240401
[43] Langford N K, Dalton R B, Harvey M D, O’Brien J L, Pryde G J, Gilchrist A, Bartlett S D and White A G 2004 Phys. Rev. Lett. 93 053601
[44] Barreiro J T, Wei T C and Kwiat P G 2008 Beating the channel capacity limit for linear photonic superdense coding Nature Phys. 4 282–6
[45] Ren X F, Guo G P, Li J and Guo G C 2005 Phys. Lett. A 341 81–6
[46] Law C K and Eberly J H 2004 Phys. Rev. Lett. 92 127903
[47] Chan K W, Torres J P and Eberly J H 2007 Transverse entanglement migration in Hilbert space Phys. Rev. A 75 050101
[48] Beijersbergen M W, Allen L, van der Veen HELO and Woerdman J P 1993 Opt. Commun. 96 123
[49] Gómez E S, Nogueira W A T, Monken C H and Lima G 2012 Quantifying the non-Gaussianity of the state of spatially correlated down-converted photons Opt. Express 20 3753–72
[50] Braunstein S L and van Loock P 2005 Quantum information with continuous variables Rev. Mod. Phys. 77 513
[51] Gomes R M, Salles A, Toscano F, Ribeiro P H S and Walborn S P 2009 Observation of a nonlocal optical vortex Phys. Rev. Lett. 103 033602
[52] Gomes R M, Salles A, Toscano F, Ribeiro P H S and Walborn S P 2011 Production of optical phase space vortices with non-locally distributed mode converters J. Opt. 13 064020
[53] Lebedev N N 1972 Special Functions and Their Applications (New York: Dover)