Water quality index assessment for drinking and irrigation purpose for Wardha district

Ashay Devidas Shende 1,a*, M.M.Sahoo 2,b and Shrikant Tekade 3,c

1Research Scholar, School of Civil Engineering, Lovely Professional University, Phagwara - 144411, India
2Assistant Professor, School of Civil Engineering, Lovely Professional University, Phagwara - 144411, India
3Assistant Professor, Department of Civil Engineering, Government Engineering College, Nagpur-441108, India

Email: a*ashayshende220@gmail.com; bmrunmayee.23405@lpu.co.in; cshrikant.tekade@yahoo.com

Abstract. It is always said that groundwater is safe for consumption i.e. free from microorganisms. But in many places, the groundwater is subjected to contamination due to human and industrial activities. The unsafe disposal of domestic and industrial wastes is found to be the main source for contamination of groundwater with micro-organisms, nitrates, etc. Therefore, it is inevitable to assess the quality of groundwater in terms of the Water Quality Index (WQI) before it is supplied to the end-user. Water Quality Index (WQI) is an index that converts complex data about water quality into the simplest form. This manuscript discusses the level of contamination of groundwater in the villages situated in the vicinity of Wardha River in Wardha District. Groundwater samples were collected during ninety days starting from 1st May 2021 to 30th July 2021. Analysis was carried out for the assessment of 12 parameters and their WQI. The results reveal that 40% of the 12 parameters assessed are higher values whereas, 60% of the 12 parameters assessed are reported safe values as per Indian Standards for Drinking Water. On the other hand, WQI for all the groundwater samples (barring very few) has shown bad quality.

Keywords: Ground Water Quality, Water Quality Index, physio-chemical

1. Introduction

Water is the only source for the survival of all living beings. All human activities (Domestic, Agricultural, and Industrial) requires water. The water quality appears to be of utmost importance for domestic, especially from a potability viewpoint. The usefulness of water is determined by its physicochemical, metallic and bacteriological analysis.[1][2].

Water, being the priceless natural resource, is available for the end-user as surface and groundwater. A large amount of groundwater is extracted for domestic as well as industrial use. Due to human activities and industrial effluent, the quality of groundwater getting contaminated day by day. On the other hand, access to clean drinking water in the world is a matter of grave concern. An interesting fact about water is that 97% of water is available in oceans 2% is available in glaciers and
the remaining 1% it is available for human purposes out of which only 0.2% is in form of freshwater, which is called pure water. Similarly, A large number of irrigation activities are usually dependent on groundwater more than 60% of the total area under irrigation depends upon groundwater sources. Ever since the rise of the industrial era, groundwater has gotten polluted besides human activities. It is indispensable to carry out the investigations of water quality to figure out this issue and hence, the concept of water quality index is chosen to mark the suitability of the source for its uses.

2. Study Area
Wardha district is part of Maharashtra state in western India having a population of 1,300,774 (Census 2011). Hinganghat, Seloo, Arvi, and Wardha are the major cities in the district. The district had a population of 1,300,774 as of 2011. The Wardha District lies between 20°44’ north latitudes and 78°36’ east longitudes covering an area of 6310 sq. km. The present study deals with the analysis of water for one hundred and six villages of Wardha District.

3. Background
Wardha is a district place that boasts habitable as well as industrial units. Industries such as sponge iron, khadi, dairy, sugar, fertilizers, polyester, etc. are responsible for the effluents, which find their way to the groundwater source. The increase in population and the industrial activities in Wardha have led to water contamination of groundwater in the last decade (presence of faecal coliforms and nitrates) [3][4][5][6].

Determination of Water Quality Index is a numeric expression used to transfer a large quantity of water characterization data into a single number, representing the level of water quality [7][8][9]. For WQI, a total of nine different parameters viz. temperature, pH, dissolved oxygen, turbidity, faecal coliforms, biochemical oxygen demand, total phosphate, nitrates, and total solids are taken into consideration [1][10][11][12][13].

The 100 point Water Quality Index has been divided into the following ranges.

Range	Quality
90 – 100	Excellent
70-90	Good
50-70	Medium
25-50	Bad
0-25	Very Bad

4. Material and Methodology
The villages situated in the vicinity of Wardha River in Wardha District were selected as the source for groundwater sample collection. Besides sampling bottles, testing kits, chemicals and other accessories were used to assess the groundwater quality parameters.

Groundwater samples from the designated villages for 90 days were collected in sampling bottles. The parameters like Temperature, pH, and dissolved oxygen, were noted at the place of sample collection using the respective testing kit following the process duly mentioned in the manual IS10500 - 2012. The samples were brought to the laboratory for testing their suitability for intended end-use. Other required parameters were tested in the laboratory following the standard equipment and methods for the examination of water and wastewater [14]. The results are tabulated in Tables 2 to 5.
5. Result and Discussion
The analysis result for 12 parameters for all the 106 samples of Wardha District are given in Tables 2 to 5. And the calculated WQI for all the 106 water samples is shown in figures 1 to 3. All the result values were cross-checked [16] and compared with Indian Standard for Drinking Water [15].

5.1 Temperature
The temperature of nearly all the samples was lying very close to 24°C.

5.2 pH
The pH value ranges between 7.0 and 8.4. The lowest pH is for water sample number 78, i.e., 7.0; whereas, a higher pH value is shown by samples 51 and 101; while other water samples showed good pH values.

5.3 Turbidity
All the water samples show turbidity less than 5 NTU, which is well within the prescribed limits.

5.4 Electrical Conductivity
Maximum electrical conductivity (EC) is recorded for sample number 51 (5440 µmhos/cm) and the minimum for sample number 97 (449 µmhos/cm). The EC for 16 samples is above the prescribed limit of 2000 µmhos/cm.

5.5 Total Solids
Total Solids (TS) ranged between 292 mg/L to 3536 mg/L. TS value of 292 mg/L is for sample number 97, whereas sample number 51 showed the highest value of 3536 mg/L. Whereas all the water samples are well within the limits.

5.6 Dissolved Oxygen
The dissolved oxygen (DO) level for the water sample varied between 0 to 1.5 mg/L.

5.7 Alkalinity
The alkalinity values ranged between 120 - 740 mg/L. Nearly 90% of the water samples show alkalinity above 200 mg/L and 10% of the water samples are very close to the permissible limit of 600 mg/L. The highest value of 740 mg/L is for water sample number 80.

5.8 Nitrate
The nitrate ions concentration lies in the range of 1 to 371 mg/L. 36 Water samples out of 106 show values above 100 mg/L while 50% of the water samples show values greater than the desirable limit of 45 mg/L.

5.9 Total Phosphorus
The total phosphorus values for all the 106 water samples varied between 0.001 to 0.396 mg/L. The highest value is shown by sample no 77.

5.10 Faecal Coliforms
According to the Indian Standards for Drinking Water, there should not be any coliforms in the 100mL sample. The Most Probable Number (MPN count) for nearly all the water samples is undesirable. It ranges from 0 to 15 MPN/100 mL.

5.11 Water Quality Index
From the figures, it is seen that 41 groundwater samples out of 106 show the WQI less than 50, which is considered as bad water quality. On the other hand, only 10 groundwater samples show the WQI greater than 60. None of the samples shows good water quality i.e. above 70. While 20 samples falling in the ‘Medium’ quality range of WQI are very close to the lower limit of the Medium range, i.e. 50.
Table 2: Groundwater analysis data for samples 1 – 30

S N	Village	Temp	PH	Turbidity NTU	DO mg/l	EC	TS mg/l	Alkalinity mg/l	TH mg/l	Nitrate mg/l	T.Phosp. mg/l	BOD mg/l	Fecal Coliforms	WQI
1	BHUGAON	24.2	7.9	0.6	0.8	2138	1390	280	600	102	0.019	< 2	3.6	53.55
2	DHOTRA RAILWAY	24.0	8.0	0.80	0.7	2323	1510	400	520	151	0.127	< 2	7.3	47.86
3	WADADHA	24.1	7.6	0.2	1.2	1449	942	360	480	92	0.11	< 2	3.6	50.29
4	SELSURA	24.2	8.3	3.2	0.0	3878	2521	520	104	362	0.312	< 2	15	42.84
5	SIRASGAON DHAHADE	24.1	7.8	0.2	1.2	1214	789	520	400	51	0.037	< 2	3	53.84
6	DHANOLI (MEGHE)	26.0	8.1	1.3	0.5	2554	1660	400	680	204	0.208	< 2	7.3	46.31
7	MOZARI	24.3	7.1	1.9	1.3	1114	724	280	320	42	0.028	< 2	3	53.87
8	SEKAPUR	24.2	8.0	1.6	1.0	1800	1170	440	600	182	0.2	< 2	7.2	46.68
9	KAPSI	24.1	7.9	0.8	1.3	889.2	578	320	320	44	0.041	< 2	3	47.14
10	KATRI	24.2	7.6	1.2	1.2	815.4	530	160	120	2	0.001	< 2	0	62.71
11	KANHOLI	24.5	7.9	0.4	0.9	1172	762	320	400	122	0.146	< 2	3.6	49.14
12	DAWLAPUR	24.2	7.9	0.8	0.6	2418	1572	400	240	50	0.076	< 2	3	51.74
13	POTI	24.2	7.9	2.2	0.9	1754	1140	480	560	122	0.122	< 2	3.6	49.14
14	BHAYYAPUR	24.7	7.6	0.4	1.4	910.8	592	360	280	42	0.04	< 2	3	54.01
15	KHANGAO N1	24.3	7.6	0.8	1.5	640	416	320	240	38	0.021	< 2	3	54.35
16	KHANGAO N2	24.4	7.6	0.6	0.8	1357	882	320	280	66	0.104	< 2	3.6	50.25
17	SATI	24.2	7.2	0.1	0.9	1062	690	240	280	32	0.068	< 2	3	52.87
18	WARUD	24.2	7.4	0.6	1.0	892.3	580	280	240	42	0.071	< 2	3	52.69
SN	Village	Temp	PH	Turbidity	DO	EC	TS	Alkalinity	TH	Nitrate	T.Phot.	BOD	Fecal Coliforms	WQI
----	----------------------	------	-----	-----------	-----	-----	-----	------------	-----	---------	---------	------	-----------------	------
31	SIRASGAON	24.6	7.7	0.8	1.0	1988	1292	480	400	104	0.082	<2	<2	3.6
32	FUKTA	24.8	7.5	1.0	1.1	1309	851	200	240	44	0.051	<2	<2	3
33	FUKTA	24.7	7.9	0.7	0.8	2465	1602	480	840	51	0.056	<2	<2	3
34	NAGAPUR	24.5	7.9	0.3	0.9	1665	1082	360	480	54	0.071	<2	<2	3.6
35	KARANJI (BHOGE)	24.6	7.4	0.5	0.8	2111	1372	320	760	244	0.311	<2	<2	15
36	SHIRPUR	24.6	7.8	0.2	1.0	1754	1140	400	520	58	0.074	<2	<2	3.6
37	SONDLAPUR	24.7	7.9	0.1	1.0	929.2	604	200	360	41	0.038	<2	<2	3
38	WADGAON	24.7	7.4	0.6	1.5	723	340	240	220	12	0.001	<2	<2	0

Table 3: Groundwater analysis data for samples 31 – 60
	GADEGAON													
39		24.5	7.6	1.6	1.1	1034	672	360	440	42	0.031	< 2	3	53.94
40	DIGRAS	24.6	8.0	0.8	0.9	1006	654	280	240	39	0.026	< 2	3	53.51
41	ZADGAON	24.6	7.9	1.2	0.9	1357	882	280	480	104	0.217	< 2	7.3	46.74
42	DHANORA	24.6	7.6	2.0	1.1	1205	783	520	440	102	0.181	< 2	11	46.79
43	RAGHUNATHPUR	24.5	7.8	3.1	0.7	1742	1132	440	560	182	0.304	< 2	14	44.55
44	BHAGWA	24.7	7.2	0.2	1.3	1014	659	240	280	14	0.001	< 2	0	58.57
45	CHANKI	24.8	7.3	1.2	1.2	1012	658	280	360	2	0.001	< 2	0	62.79
46	NALWADI	24.8	7.4	0.6	1.1	1108	720	240	360	68	0.101	< 2	3.6	50.45
47	TALEGAON	24.6	7.4	0.9	1.2	956.9	622	320	360	20	0.011	< 2	0	57.86
48	JAGULGAON	24.6	7.8	1.7	1.0	1615	1050	400	368	182	0.207	< 2	14	45.81
49	MANDAWA	24.7	7.9	1.5	1.0	1372	892	400	240	2	0.001	< 2	0	62.15
50	KUTKI	24.6	8.3	2.2	0.9	2203	1432	740	984	256	0.346	< 2	15	43.17
51	KHARANGANA	24.8	8.4	1.7	0.0	5440	3536	200	840	342	0.339	< 2	15	42.67
52	SONEGAON(Station)	24.8	7.6	0.5	1.3	473.8	308	200	120	1	0.001	< 2	0	64.97
53	SONDI	24.8	7.4	0.2	1.5	452.3	294	200	120	1	0.001	< 2	0	65.17
54	GAIMUKH	24.7	7.9	0.2	1.5	621.5	404	280	240	32	0.046	< 2	3	53.41
55	JUNGAD	24.6	7.9	2.7	1.4	963.1	626	280	320	78	0.118	< 2	3.6	49.17
56	GHIORAD	24.7	7.8	0.2	1.2	1511	982	440	416	152	0.214	< 2	11	46.51
57	SURGAON	24.7	7.8	1.7	1.2	1572	1022	480	496	104	0.119	< 2	9.1	47.89
58	SURGAON	24.7	7.6	2.4	1.4	863.1	561	280	240	16	0.001	< 2	0	57.48
59	NABABPUR	26.0	7.9	0.2	1.2	1445	939	240	404	1	0.001	< 2	0	64.56
60	REHAKI(KALA)	24.9	7.8	0.6	1.2	1360	884	160	280	1	0.001	< 2	0	64.66

Table 4: Groundwater analysis data for samples 61 – 90
Village	Temp	PH	Turbidity	S	N									
PALASGAON N (BAI)	26.8	7.6	0.2	2	11									
ASHTA A	24.9	7.9	2.1	1	11									
PANNAR	25.0	8.2	4.2	0	2									
ITALIA	25.0	7.6	2.2	0	2									
JANGAPUR	25.2	7.9	2.1	1	11									
MAHABAL	25.3	7.8	2.1	12	11									
SALAI (PEVATH)	26.0	7.6	1.2	1.5	1.5									
GOHDA (KALA)	25.4	7.5	1.4	1.5	1.5									
AKOTTI	25.4	7.9	0.8	1.4	1.4									
AMGAON	25.3	7.6	2.1	1.2	1.2									
MADNI	26.0	7.8	0.2	1.3	1.3									
MAHAR	25.4	7.1	0.2	1.5	1.5									
KANGAON	25.5	7.8	1.0	1.2	1.2									
MAHAR	25.3	7.4	0.2	1.3	1.3									
NANGAO N	25.0	7.8	0.5	1.5	1.5									
MADNI	25.4	7.9	1.7	1.3	1.3									
MUDHAPO	25.7	8.3	4.0	0.0	2									
TIGAO	25.8	7.0	0.2	1.5	1.5									
BARBADI	26.0	7.9	0.1	0.8	1.0									
SN	Village	Temp	PH	Turbidity	DO	EC	TS	Alkalinity	TH	Nitrate	T. Phosp.	BOD	Fecal Coliforms	WQI
----	------------------	------	----	-----------	-----	-----	-----	------------	-----	----------	----------	------	-----------------	-----
80	WADGAON KH.	25.6	7.4	0.5	1.4	1025	666	120	352	17	0.008	<2	0	58.18
81	SALAI (KALA)	25.7	7.8	1.2	1.5	686.2	446	360	216	12	0.001	<2	0	58.32
82	TAKALI (KITE)	26.0	7.6	0.1	1.0	1169	1769	2	480	432	0.143	<2	7.2	48.5
83	KOLPAI	25.6	7.4	2.8	1.0	1354	880	360	428	131	0.167	<2	9.1	47.25
84	KOLGAON	25.5	7.4	1.9	0.9	1335	868	380	352	44	0.082	<2	3	51.73
85	JUNONA	25.4	7.4	0.2	0.8	1726	1122	360	352	222	0.281	<2	14	45.73
86	WADGAON (KALA)	25.6	7.9	0.2	1.4	843.1	548	480	276	9	0.001	<2	0	59.13
87	WAIKAD	25.7	7.9	0.9	1.0	716.9	466	280	248	32	0.073	<2	3	52.47
88	PIPALGAON	25.6	7.9	2.3	0.8	2169	1410	560	400	162	0.196	<2	7.3	46.76
89	DIGRAJ	25.4	7.9	2.2	0.9	1954	1270	520	400	62	0.054	<2	3.6	52.27
90	PARSODI	25.7	7.9	4.8	0.7	2129	1384	400	320	102	0.181	<2	9.1	46.05

Table 5: Groundwater analysis data for samples 91 – 106
	Location	Lat.	Lon.	Temp.	Hum.	Wind.	Salinity	pH	DO	Secchi Depth
97	MHASALA	25.8	7.5	2.8	1.8	449.2	292	240	160	3
98	SAKHARA	26.0	7.2	1.3	1.3	698.5	454	280	240	34
99	SAWALI SAKHARA	25.6	7.9	4.0	1.4	646.2	420	320	400	21
100	BORKHED I	25.6	7.9	1.5	1.2	1148	746	360	360	105
101	BOTHALI	26.0	8.4	3.1	1.1	1218	792	320	400	161
102	ANTARGA ON	25.8	7.9	1.4	1.5	858.5	558	280	280	44
103	HIWARA	25.7	7.8	0.9	1.4	984.6	640	360	320	50
104	KAMTHI	25.8	7.8	1.4	1.2	1646	1070	440	640	188
105	ALAMDOH	25.6	7.6	0.2	0.9	2462	1600	520	320	182
106	EKURLI	25.6	7.6	3.0	1.1	1634	1062	440	440	174
6. Conclusion
The analyzed data for all one hundred and six places of collection in Wardha district show that a few parameters including nitrate, alkalinity and bacterial count are above the permissible limits. From the analysis, it is clear that the groundwater is contaminated and is not fit for drinking without treatment. The WQI calculated is below 50 for 41 water samples showing the deteriorated quality of water. While 20 samples falling in the ‘Medium’ quality range of WQI are very close to the lower limit of the range, i.e. 50.

References
[1] Malviya Niharika, Deo Sujata and Inam Farhin. 2011. Determination of Water Quality Index for drinking and agricultural purpose, International journal of Basic and Applied Chemical Sciences (JCS) 1(1) 79-88.
[2] Tatawat, R K, Chandel, C P Singh, 2007, Quality of Groundwater of Jaipur–City, Rajasthan,(India)and its suitability for Domestic and Irrigation Purpose. Applied Ecology and Environmental Research. 6(2) 79-88.
[3] Chavhan Sudarshan, Khan Arif. 2020. Analysis Of Total Dissolved Solid of Arvi (Wardha) Region. International Journal Of Scientific & Technology Research 9(3) 156 – 159.
[4] Budhiani G N, Musaddiq M, 2014, Water Quality and Pollution Status of Wardha River (Kaundyanapur) from Amravati District, (MS) India. International Journal of Researches in Biosciences, Agriculture and Technology 75-81.
[5] Rajankar P N, Wate S R, Tambekar D H, Gulhane S R, 2013, Assessment of Groundwater Quality using Water Quality Index (WQI) in Wardha District, Journal of Environmental Science and Sustainability 1(2) 49 – 54
[6] Nagarnaik P B, Patil Pankaj N 2012, Analysis of Ground Water of Rural Areas of Wardha-City Using Physico – Chemical and Biological parameters. International Journal of Engineering Research and Applications 2(3) 803-807
[7] Shrivhare Niharika, Gour Anita, Pandya Anubha V and Trivedi Nair Rati, 2020, Water Quality Index Assessment of Ground Water of Indore City (MP) India, Ecology, Environment and Conservation, 26 126-S130.
[8] Saanchez E, Colmenarejo M F, Vicente, J Rubio, Garci, M G Travieso, L Borja R. 2006, Use of water quality index and dissolved oxygen deficit as simple indicators of water shed pollution. Eco. Indic. 7 315–328
[9] Bordalo, A A, Teixerra, R and Wiebe, W J 2006, A water quality index applied to an international shared river basin: the case of Douro river, Environmental. Management 38 910-920
[10] Gaikwad Asha, Shrivhare Niharika and J Shinde Dhira, 2018, Water Quality Index for Assessment of Raw Water at Different Cities in MP, India. Global Journal of Engineering Science and Researches 430-435.
[11] Krishan Gopal, Singh Surjeet, Kumar, C P, Gurjar Suman and Ghosh, N C 2016, Assessment of Water Quality Index (WQI) of Ground water in Rajkot District, Gujarat, India Journal of Earth Science & Climatic Change. 7(3) 1-4.
[12] Bhardwaj Divya and Verma Neetu, 2017, Analysing impact of Various Parameters on Water Quality Index, International Journal of Advanced Research in Computer Science. 8(5) 2496-2498.
[13] Phadatare Sneha S and Gawande Sagar 2016, Review Paper on Development of Water Quality Index, International Journal of Engineering Research & Technology. 5(5) 765-767.
[14] APHA.2012. Standard Methods for the Examination of Water and Waste Waters, Washington, DC, American Public Health Association
[15] IS: 10500:2012, Specifications for Drinking Water, New Delhi, Bureau of Indian Standards
[16] Bassin, J K, 2007, An Automated Workbook for Checking Correctness of Water Analyses. Journal of Indian Water Works Association 39(4) 259-264.