Degradation of reactive red 198 from aqueous solutions by advanced oxidation process: \(\text{O}_3 \), \(\text{O}_3 / \text{H}_2\text{O}_2 \), and persulfate

Mohammad Amin Karami1,2, Mohammad Mehdi Amin2,3, Heshmatollah Nourmoradi4, Mohsen Sadani1,2, Fahime Teimouri1,2, Bijan Bina2,3

1Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran, 2Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran, 3Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran, 4Department of Environmental Health Engineering, Ilam University of Medical Sciences, Ilam, Iran

ABSTRACT

Aim: The aim of this study was to investigate the degradation of an azo dye, reactive red 198 (RR198), by ozone, \(\text{H}_2\text{O}_2 / \text{O}_3 \), and persulfate from aqueous solutions.

Materials and Methods: The application of several advanced oxidation processes including single ozonation, \(\text{O}_3 / \text{H}_2\text{O}_2 \), and persulfate for degradation of RR198 at concentration of 200 mg/L was investigated. The effect of various parameters including pH, \(\text{H}_2\text{O}_2 \), persulfate doses, and temperature was studied on the degradation of RR198 from aqueous solutions. In addition, the effects of these processes on biodegradability of RR198 were evaluated.

Results: The results showed that the degradation rate was increased by increasing \(\text{H}_2\text{O}_2 \) concentration. The optimum \(\text{H}_2\text{O}_2 \) concentration was obtained in the range of 0.03 mol/L at dye concentration of 200 mg/L. Alkaline pH, higher temperature, and persulfate dose (12 mM) were favored in dye and COD removal. Moreover, compared with ozone and peroxone, the persulfate oxidation could achieve a higher color and COD removal at the same reaction time. Persulfate has greater potential to improve the biodegradability of RR198 solution than ozone and ozone/\(\text{H}_2\text{O}_2 \) process. Biochemical oxygen demand/COD ratio of the dye solution treated by persulfate, ozone/\(\text{H}_2\text{O}_2 \), and ozone at reaction time 40 min was 0.73, 0.63, and 0.59, respectively.

Conclusion: These findings show that oxidation by persulfate is a promising alternative for the treatment of RR198 containing solution as a recalcitrant pollutant.

Key words: Degradation, dye, hydrogen peroxide, ozone, persulfate

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

This article may be cited as: Karami MA, Amin MM, Nourmoradi H, Sadani M, Teimouri F, Bina B. Degradation of reactive red 198 from aqueous solutions by advanced oxidation process: \(\text{O}_3 \), \(\text{O}_3 / \text{H}_2\text{O}_2 \), and persulfate. Int J Env Health Eng 2016;5:26.
INTRODUCTION

Wastewaters containing dyes are one of the most important problems that are produced by many industries including textile, dyeing, pulp, and paper.[1] Dyes have a great concern to the environment due to the toxicity on the aquatic organisms and soil and also disruption in conventional wastewater treatment system performance.[1‑3] Textile wastewaters, depending on the forms of dyes, are strongly colored and contain high amounts of organic matter.[4] Among the organic dyes, azo dyes due to their complex structures are resistant to biodegradation and are often toxic, carcinogenic, and mutagenic.[2,5,6] Thus, it is important to treat azo dyes containing wastewaters with appropriate methods before discharging into the environment.[1,7] Various treatment methods such as coagulation/flocculation,[8] biological treatment,[9] electrochemical oxidation,[10] and adsorption[8,11,12] have been proved to be technically feasible to remove dye from industrial wastewaters. Treatment of textile wastewaters by conventional methods such as biological,[13] physical, and chemical processes or a combination of each is inefficient for color removal.[14] The mentioned methods let to the production of sludge[7] and only changes pollutants phase from wastewater to biomass or sludge[9] which subsequently create other environmental problems. Advanced oxidation processes (AOPs) are another effective treatment method for treating persistent compounds from aqueous media.[15] High efficacy, low cost, and simplicity are the main characteristics of AOPs, which has caused to be accepted as a new technique for treating the dye-containing wastewater.[16] Furthermore, the AOPs can completely mineralize the dye compounds.[17] This methodology is based on the generation of highly reactive radicals such as ·OH that produces in situ. These molecules are nonselective oxidants and afterward that cause a sequence of reactions to destroy the organic compounds into inorganic, final products and/or in most of the cases to less harmful substances.[9,18,19] Ultrasonic irradiation, ultraviolet (UV)/H₂O₂, Fenton oxidation, O₃/H₂O₂, and ozonation can be also mentioned as the hydroxyl radical-based AOPs (HR-AOPs).[20] Ozone is a strong oxidant (E⁰ = 2.07 V) that has been used as a principal component in most of the AOPs.[9,21] In recent years, persulfate (S⁰₂₂−) has been considered as the newest oxidant in AOPs in degradation of persistent organic compounds.[20,22] Activation of persulfate anions with heat, UV light, or metal ions such as Fe²⁺ can generate SO₄²⁻ which is a powerful oxidizing agent (E⁰ = 2.6 V).[22,24] Some of the AOPs such as Fenton’s reagent and UV/H₂O₂ are H₂O₂ based that has nonselective reactivity for the most recalcitrant organic compound and high oxidation potential (E⁰ = 1.78 V).[22] Activation of H₂O₂ can be occurred using iron or UV to produce HRs (*OH).[25] Furthermore, sonication of hydrogen peroxide can form HRs in aqueous solutions.[26] Various researchers showed the feasibility of the ultrasonic-assisted hydrogen peroxide oxidation process for decolorization of malachite green[25] and rhodamine B from aqueous solutions.[26] Several studies on the application of AOP in degradation of RR 198 have been reported. For example, Moussavi and Mahmoudi evaluate degradation and biodegradability improvement of the reactive red 198 (RR198) azo dye using catalytic ozonation with MgO nanocrystals[16] or Tabrizi et al. studied the ozonation of textile RR198 dye in a CSTR.[28] Nonetheless, to the best of our knowledge, there was no literature on the application of O₃/H₂O₂ and persulfate for the degradation of RR 198 dye-containing wastewaters. Therefore, the application of several AOPs including single ozonation, O₃/H₂O₂, and persulfate for degradation of RR198 was investigated in the present work. The effect of various parameters including pH, H₂O₂, persulfate doses, and temperature was studied on the degradation of RR198 from aqueous solutions. In addition, the effects of these processes on biodegradability of RR198 were evaluated.

MATERIALS AND METHODS

Chemicals

RR198 was obtained from Alvan Sabet Co. (Iran). The chemical structure and characteristics of the dye are presented in Figure 1 and Table 1, respectively. NaOH and H₂SO₄ (analytical grade), hydrogen peroxide (H₂O₂, 30%), potassium iodide (KI, 99.0%), manganese dioxide (MnO₂), sodium thiosulfate (Na₂S₂O₃, 99.0%), sodium persulfate (Na₂S₂O₇, 99.0%), HgSO₄, and AgSO₄ were purchased from Merck Co (Germany). The stock dye solution (1000 mg/L) was prepared by dissolving 1 g of RR198 in 1 L of distilled water. The desired dye concentration was provided with dilution of stock solution by distilled water.

Analytical methods

The concentration of RR 198 was determined by UV/visible spectrophotometer (DR 5000 Hach) at the maximum absorbance wavelength, 518 nm. The measurement of chemical oxygen demand (COD) was carried out with

| Table 1: General characteristics of reactive red 198 |
|------------------------------|-----------------|
| **Characteristic** | **RR198** |
| Type | Reactive dye |
| Commercial name | Remazol red 133 |
| Chemical formula | C₁₅H₁₂CIN₃Na₂O₁₈S₈ |
| Molecular weight (g/mol) | 984.21 |
| λ_{max} (nm) | 518 |
| Appearance | Red powder |
| RR198: Reactive red 198 | |
a standard potassium dichromate oxidation method.[29] Because the hydrogen peroxide interferes with the accuracy of COD test, the excess of hydrogen peroxide was removed by adding MnO\textsubscript{2} into the solution.[30] The pH measurement was determined using electrode method (SensION 378, Hach).

Experiments

Ozonation experiment

Ozonation process was conducted with 200 mL of dye solution (200 mg/L) into a plexiglass cylindrical container with total volume of 500 mL. The solution pH was first regulated by 0.1 M NaOH and 0.1 M H\textsubscript{2}SO\textsubscript{4} to the desired values (6–10). The ozonation was then performed by ozone dose of 0.25 g/h (Ozone generator, OWA 1000 Japan) for 40 min at 25°C. The samples were finally taken during the process in time intervals of 10 min and were analyzed.

O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2} experiment

The O\textsubscript{3}/H\textsubscript{2}O\textsubscript{2} process, such as the above experiments, was carried out by 200 mL of dye solution (200 mg/L) at 25°C. First, after the adjustment of the solution pH to the above-mentioned values, various dosages of H\textsubscript{2}O\textsubscript{2} (0.01, 0.02, 0.03, and 0.04 mM) were then added to the solution. Afterward, the ozonation was performed with dose of 0.25 g/h for 40 min and the sampling was finally taken during the process in time intervals of 10 min.

Persulfate experiment

The decolorization experiments by persulfate radicals were done through addition of sodium persulfate to 200 mL of the dye solution (200 mg/L) into a cylindrical batch reactor with a magnetic stirrer. Various doses of persulfate (0, 4, 6, 8, 12, 14 mM) were poured into the reactor after solution pH adjustment (3–10). To activate the persulfate radicals of the solutions, the solutions were raised to the desired temperatures (25°C, 60°C, and 70°C) by an experimental hot plate stirrer. The samples were finally taken and analyzed such as the above.

RESULTS

Effect of solution pH in ozonation process

Solution pH is an important factor in the degradation of dyes from wastewaters. The effect of initial solution pH on the degradation and COD removal of RR198 was studied at pH values ranging from 6 to 10, under constant reaction time and ozone dosage in single ozonation process. The effect of solution pH on dye and COD removal in single ozonation is shown in Figure 2. As shown in Figure 2, the percentage of color removal in the ozonation process was decreased from 93% to 86%, with increasing solution pH from 6 to 7 and then it was gradually increased to 99% at solution pH of 10.
Effect of temperature on persulfate oxidation

Figure 6 illustrates the effect of temperature (25°C, 60°C, and 70°C) on the color and COD removal of RR198 by persulfate process. The experiments in this phase were carried out in reaction time 40 min, RR198 concentration 200 mg/L, the optimum persulfate dosage 12 mM, and pH of 9. As shown in Figure 6, the color removal by persulfate was significantly increased as the temperature was increased. Approximately 98% of the color removal was achieved by persulfate oxidation in 40 min at 70°C. The effect of temperature on the COD removal through persulfate oxidation such as color removal showed a similar trend but in slower rate. Lower COD removal than that of color removal may be due to short reaction time. The maximum COD removal of 64% was achieved in 40 min at 70°C.

Effect of persulfate dosage

The influence of persulfate dose on the color and COD removal at the temperature of 70°C is shown in Figure 7. As seen, by increasing the persulfate dosage from 4 mmol to 12 mmol, the color and COD removal were increased from 55%–97% to 30%–67%, respectively, within 40 min of reaction time. However, further increasing in persulfate dosage from 12 mmol to 14 mmol resulted in negligible improvement in the color and COD removal.

Biodegradability analysis for different advanced oxidation processes

Wastewaters that have a biochemical oxygen demand (BOD₅/COD ratio between 0.4 and 0.8 can be significantly considered as biodegradable.[32] To enhance the wastewater biodegradability, first, different AOPs (ozone, ozone/H₂O₂, and persulfate) under the optimum condition were conducted on the dye solution. Then, BOD₅/COD ratio was determined for each dye solution. Figure 8 shows the effect of these processes on the biodegradability of RR198 containing solutions. As seen, the BOD₅/COD ratio for the raw dye solution (before using AOPs) was 0.18. The lower BOD₅/COD ratio of dye solution shows that the solution is not readily biodegradable. As shown in Figure 8, the BOD₅/COD ratio (biodegradability rate) for the treated solutions was increased with the reaction time. As illustrated in the figure, persulfate has greater potential to improve the biodegradability of RR198 solution.
than ozone and ozone/H₂O₂ process. BOD₅/COD ratio of the dye solution treated by persulfate, ozone/H₂O₂, and ozone at reaction time 40 min was 0.73, 0.63, and 0.59, respectively.

DISCUSSION

The color degradation at acidic pH is related to the direct oxidation of ozone with the dye molecules, which is predominant reaction in acidic condition. Higher COD removal at basic (alkaline) solution pH can be associated with the formation of HRs (•OH). In alkaline conditions, production of the reactive radicals is increased due to accelerating the rate of ozone decomposition. The characteristics of the solution (e.g., pH, promoters, and scavengers in the reacting medium) determine the ozonation reaction pathway. The degradation of aromatic compounds may be occurred by the direct oxidation and indirect radical chain type reaction. Turhan and Turgut showed that decolorization of direct dye in textile wastewater were noticeable, due to the formation of HRs, at basic solution pH of 12. At pH values above 10, the decomposition of ozone leads to generation of high concentration of HRs in solution. The maximum COD removal efficiency at pH 8 can be related to the formation of radical species other than hydroxyls. Decrease in color removal in the ozonation process with increasing solution pH from 6 to 7 can be attributed to the radical scavengers including CO₂ and SO₃ that may exist in this condition. These compounds can lead to reduce •OH concentration which results in decrease in COD removal at pH 10. Increase in COD removal at alkaline pH in persulfate experiment can be attributed to the fact that at the alkaline pH, activation of S₂O₇²⁻ is occurred and more SO₄²⁻ is produced; therefore, the oxidation capacity was increased. Deng et al. reported that in alkaline pH, activation of persulfate can occur. Superoxide radicals, with small amount of hydroxyl and sulfate radicals, are the main radicals generated in the alkaline activated persulfate system. The base-catalyzed hydrolysis of persulfate to a hydroperoxide anion and sulfate is the main approach of base activated persulfate. Furthermore, the HRs can be produced through the reaction of sulfate radicals with hydroxyl ions. In addition, increasing COD removal at the alkaline pH can be related to the generation of HRs via the above-mentioned approach. Zhao et al. reported that elevated pH enhances the removal of PAHs in soil. They also showed that superoxide radicals were the main radicals reactive than hydroxyl may be the other reason for this observation. As reported by others, the presence of H₂O₂ into the effluent because of overuse of hydrogen peroxide causes an increase in COD of the effluent. It is essential to optimize the applied H₂O₂ concentration to maximize the treatment performance of the AOPs since the presence of excess H₂O₂ can reduce the treatment efficiency of AOPs. Furthermore, it has been known that in comparison with ozonation process, COD removal is slightly decreased in peroxone process (O₃/H₂O₂). This can be related to reaction of H₂O₂ with ozone to produce •OH that results in reduction the effective concentration of ozone. The same results were also reported by others. The abatement of color and COD removal efficiency with increasing the initial dye concentration can be resulted from the fact that higher dye concentration can increase the number of dye molecules and possibly inorganic anions which may compete for the reaction with •OH radicals. Moussavi and Mahmoudi and Siddique et al. reported that RR198 and reactive blue 19 (RB19) removal efficiency were decreased by increasing the dye concentration during various AOPs.

Results of the previous studies confirm our result. Generation of other radicals (e.g., hydroperoxyl) that less
generated in the alkaline activated persulfate system. In contrast, Xiang et al. (2010) showed that the degradation rate of orange G dye by persulfate/Fe₂₊ process was decreased with increases in solution pH. They also illustrated that the performance of persulfate/Fe₂₊ was more efficient at the acidic pH than of neutral and alkaline pHs. Increase of COD and color removal with increasing temperature confirm that the sulfate free radicals (SO₄[−]) have been generated by activation of persulfate through heat energy.

The higher removal efficiency of color and COD at higher persulfate dosage may be due to the more production of SO₄[−] in the reaction because persulfate acts as the main source of SO₄[−] radicals. Similar results have been reported in previous studies. Although the generation of SO₄[−] radicals is increased by increasing persulfate dosage in the process, at the same time, the reaction of SO₄[−] radicals with each other or with various scavengers instead of target pollutants reactions is enhanced. Therefore, insignificant increase in COD removal percentage can be occurred at higher persulfate dosage. Possible chemical scavenging reactions that compete with the SO₄[−]/RR198 interaction can be presented by the following reactions:

\[
SO₄^{−} + SO₄^{−} \rightarrow S₂O₅^{2−} \quad (1)
\]

\[
SO₄^{−} + S₈O₂^{−} \rightarrow SO₄^{2−} + S₂O₅^{−} \quad (2)
\]

The comparison of the present study with the other methods in the removal of color and COD is summarized in Table 2. As seen, persulfate oxidation is considered as an efficient process, especially in the removal of COD due to its higher efficiency.

Further, destruction of azo bands and aromatic rings of RR198 by the oxidants compounds have been led to enhancement of the dye biodegradability. The same results were reported by others.

CONCLUSION

In this study, degradation of RR198 using several AOPs including O₃, O₃/H₂O₂, and persulfate was studied. The effects of various parameters such as ozone, hydrogen peroxide, and persulfate doses, initial dye concentration, and solution pH at reaction time of 40 min were studied on the degradation of RR198. The degradation of dye was influenced by the initial solution pH, initial dye concentration, H₂O₂ concentration, and persulfate dosage. Increasing initial solution pH, H₂O₂ concentration, and persulfate dosage led to enhance the dye degradation while increasing initial dye concentration led to a decrease in the dye degradation. It was observed that, in comparison with other processes, persulfate as the newest oxidant agent caused higher COD removal (67%) of RR198 at reaction time of 40 min. The greatest biodegradability of the dye-containing wastewater was also achieved by oxidation with persulfate.

Acknowledgment

This study was funded by Isfahan University of Medical Sciences and was conducted in the Laboratory of School of Public Health, Isfahan University of Medical Sciences.

Financial support and sponsorship

Isfahan University of Medical Sciences, Isfahan, Iran.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Nourmoradi H, Ghiasvand A, Noorimotlagh Z. Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (ZnO) nanoparticles: Equilibrium, kinetic, and thermodynamic study. Desalination Water Treat 2015;55:252-62.
2. Ghanizadeh GH, Asgari GH. Removal of methylene blue dye from synthetic wastewater with bone char. Iranian Journal of Health and Environment. 2009;15:2:104-13.
3. Samarghandi MR, Noori Sepehr M, Zarrabi M, Norozui M, Amraie F. Mechanism and removal efficiency of CI acid blake 1 by pumice stone adsorbent. Iranian Journal of Health and Environment. 2011;3:1:399-410.
4. Lucas MS, Dias AA, Sampaio A, Amaral C, Peres JA. Degradation of a textile reactive Azo dye by a combined chemical-biological process: Fenton’s reagent-yeast. Water Res 2007;41:1103-9.
5. Noorimotlagh Z, Cheshmeh Soltani RD, Khataee AR, Shahriyar S, Nourmoradi H. Adsorption of a textile dye in aqueous phase using...
Karami, et al.: Degradation of RR198 by O3, O3/H2O2, and persulfate and UV/S2O2-8 for rapid dye destruction

2. Yuan R, Ramjaun SN, Wang Z, Liu J. Effects of chloride ion on the oxidation of Acid Orange 7 by the reaction of heat, UV and anions with common oxidants: Persulfate, peroxymonsulfate and hydrogen peroxide. J Hazard Mater 2010;179:552-8.

25. Yang S, Wang P, Yang X, Shan L, Zhang W, Shao X, et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonsulfate and hydrogen peroxide. J Hazard Mater 2010;179:552-8.

26. Mehrdad A, Hashemzadeh R. Ultrasonic degradation of rhodamine B in the presence of hydrogen peroxide and some metal oxide. Ultrason Sonochem 2010;17:168-72.

27. Zhou XJ, Guo WQ, Yang SS, Zheng HS, Ren NQ. Ultrasonic-assisted ozonation oxidation process of triphenylmethane dye degradation: Evidence for the promotion effects of ultrasonic on malachite green decolorization and degradation mechanism. Bioresour Technol 2013;128:827-30.

28. Tabrizi MT, Glasser D, Hildebrandt D. Ozonation of textile reactive red 198 dye in a CSTR. J Adv Oxidation Technol 2013;16:159-67.

29. Rice EW, Bridgewater L, American Public Health Association. Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association; 2012.

30. Choi YH, Son SU, Lee SS. A micropump operating with chemically produced oxygen gas. Sens Actuators A Phys 2004;111:8-13.

31. Weng CH, Lin YT, Chang CK, Liu N. Decolorization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst. Ultrason Sonochem 2013;20:970-7.

32. von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res 2003;37:1443-67.

33. Al-Momani F, Toureau D, Degorce-Dumas JR, Roussy J, Thomas O. Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis. Journal of photochemistry and Photobiology A: Chemistry. 2002;151:193-197.

34. Alaton IA, Balcgloia IA, Bahnemann DW. Advanced oxidation of a reactive dyebath effluent: Comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Res 2002;36:1143-54.

35. Turhan K, Turgut Z. Decolorization of direct dye in textile wastewater by ozonization in a semi-batch bubble column reactor. Desalination 2009;242:256-63.

36. He K, Dong YM, Li Z, Yin L, Zhang AM, Zheng YC. Catalytic ozonation of phenol in water with natural brucite and magnesia. J Hazard Mater 2008;159:587-92.

37. Wang XK, Wei YC, Wang C, Guo WL, Wang JG, Jiang XJ. Ultrasonic degradation of reactive brilliant red K-2BP in water with CCl4 enhancement: performance optimization and degradation mechanism. Separation and purification technology. 2011;81:69-76.

38. Zhou XJ, Guo WQ, Yang SS, Ren NQ. A rapid and low energy consumption method to decolorize the high concentration triphenylmethane dye wastewater: Operational parameters optimization for the ultrasonic-assisted ozone oxidation process. Bioresour Technol 2012;105:40-7.

39. Özdemir C, Öden KM, Şahinkaya S, Kaliçpi E. Color removal from synthetic wastewater by sono-fenton process. Clean–Soil, Air, Water. 2011;39:60-7.

40. Bakheet B, Yuan S, Li Z, Wang H, Zuo J, Komarneni S, et al. Electro-peroxone treatment of Orange II dye wastewater. Water Res 2011;45:6234-43.

41. Siddique M, Farooq R, Khan ZM, Khan Z, Shaukat SF. Enhanced decomposition of reactive red 19 dye in ultrasound assisted electrochemical reactor. Ultrason Sonochem 2011;18:190-6.

42. Zhao D, Liao X, Yan X, Huling SG, Chai T, Tao H. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 2013;254-255:228-35.

43. Xu XR, Li XZ. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Sep Purif Technol 2010;72:105-11.

44. Sharma S, Buddhdev J, Patel M, Ruparelia JP. Studies on degradation of reactive red 135 dye in wastewater using ozone. Procedia Engineering. 2013;51:451-5.

45. Raju GB, Karupppiah MT, Laith SA, Parvathy S, Prabhakar S. Treatment of wastewater from synthetic textile industry by electrocoagulation–electrooxidation. Chemical Engineering Journal. 2008;144:51-8.

46. Datta S, Parsons SA, Bhattacharjee C, Jarvis P, Datta S, Bandopadhayay S. Kinetic study of adsorption and photo-decolorization of Reactive Red 198 on TiO2 surface. Chemical Engineering Journal. 2009;155:674-89.

47. Fu L, You SJ, Zhang GQ, Yang FL, Fang XH. Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing microbial fuel cell. Chemical Engineering Journal. 2010;160:164-9.

48. Gomes AC, Fernandes LR, Simões RM. Oxidation rates of two textile dyes by ozone: Effect of pH and competitive kinetics. Chem Eng J 2012;189-190:175-81.

49. López-López A, Pic JS, Debellefontaine H. Ozonation of azo dye in a semi-batch reactor: A determination of the molecular and radical contributions. Chemosphere 2007;66:2120-6.

50. Lim CL, Morad N, Teng TT, Ismail N. Treatment of Terasil Red R dye wastewater using H2O2/pyridine/Cu (II) system. J Hazard Mater 2009;168:383-9.

51. Moussavi G, Mahmoudi M. Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals. Chem Eng J 2009;152:1-7.

52. Harrelkas F, Paula A, Alves MM, El Khadir L, Zahraa O, Pons MN, et al. Photocatalytic and combined anaerobic-photocatalytic treatment of textile dyes. Chemosphere 2008;72:1816-22.

53. Moussavi G, Yazdanbakhsh A, Heidarizad M. The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment. J Hazard Mater 2009;171:907-13.

54. Rauf MA, Meetani MA, Hisaindee S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination. 2011;276:13-27.

55. Deng Y, Ezykske CM. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res 2011;45:6189-94.

56. Santana MH, Da Silva LM, Freitas AC, Boodts JF, Fernandes KC, De Faria LA. Application of electrochemically generated ozone to the decolorization and degradation of solutions containing the dye Reactive Orange 122. J Hazard Mater 2009;164:10-7.

57. Oh SY, Kim HW, Park JM, Park HS, Yoon C. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. J Hazard Mater 2009;168:346-51.

58. Saen J, Solemyni A, Sun J. Parametric optimization of individual and hybridized AOPs of Fe3+/H2O2 and UV/S2O2-8 for rapid dye destruction in aqueous media. Desalination 2011;279:298-305.

59. Yuan R, Ramjaun SN, Wang Z, Liu J. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. Journal of hazardous materials. 2011;196:173-9.