Modern Vasopressor Therapy of Septic Shock (Review)
Alexander A. Kochkin1, Andrey G. Yavorovskiy2, Levan B. Berikashvili1, Valery V. Likhvantsev1,2
1 M. F. Vladimirsky Moscow Regional Research Clinical Institute, 61/2 Shchepkin Str., Moscow 129110, Russia
2 I. M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8 Trubetskaya Str., Bldg. 2, 119991 Moscow, Russia

Summary
Septic shock, as the most severe form of sepsis, is characterized by high mortality reaching 40% despite the use of the most modern standards of diagnosis and treatment. In the thanatogenesis of septic shock, vasoplegia plays a leading role, respectively, and therapy of the condition under discussion involves the use of vasoconstrictors, along with the standard prescription of infusion therapy, antibiotics and symptomatic treatment. The choice of a specific vasoactive drug is a difficult task for a practicing anesthetist, as along with undoubtedly
positive properties, vasoconstrictors each have their own spectrum of undesirable side effects, which, of course, must be taken into account when determining treatment tactics.

The aim of review: A comprehensive assessment of the multifactorial effect of various vasoconstrictors on the patient to determine the criteria for choosing the optimal drug (or a combination of drugs) in septic shock.

The search was carried out using PubMed and Scopus databases, the final selection of 89 articles was carried out in accordance with the following criteria: relevance to the topic of this review and the nature of the article — only randomized controlled trials, guidelines and analytical reviews were included in the final analysis.

External and internal mechanisms of vascular tone regulation are considered, including factors produced by endothelium (nitric oxide, prostacyclin, endothelin); vasoactive metabolites and autooids — signal molecules of local action (serotonin, proglaglandins, thromboxane A2). Accordingly, drugs were analyzed the mechanism of action of which is related to the effect on adrenergic (adrenaline, dopamine, norepinephrine, phenylephrine, dobutamine), vasopressin (vasopressin, terlipressin, selepressin) receptors, synthetic analogues of angiotensin (angiotensin II) and drugs the non-vasopressor effect of which is not linked with the receptor apparatus (methylene blue, levosimendan, hydrocortisone).

Conclusion. The high effectiveness of norepinephrine, its positive hemodynamic effects make the drug under discussion, in many ways, a universal remedy for the relief of septic shock. However, refractory shock may require the introduction of such high doses of norepinephrine that the occurrence of adverse reactions will become practically inevitable. The combined use of adrenergic and ligand V receptors, terlipressin, is intended to prevent these complications. However, to date, there are no clear recommendations on the use of terlipressin in septic shock, which limits its use in clinical practice.

Keywords: sepsis, septic shock; vasopressor support; vasoplegia

Introduction

Mortality from sepsis and septic shock currently reaches 40% and remains at a high level despite new methods of diagnosis and treatment [1]. The clinical picture of the early period of septic shock is largely due to vasoplegic syndrome [1], the decisive role in the treatment of which belongs to replenishment of the intravascular volume [2]. However, the violation of vascular wall permeability that occurs during sepsis leads to a decrease in the effectiveness of infusion therapy, and excessive infusion, in itself, can cause serious harm to the patient [3]. This circumstance, as well as severe vasoplegia, especially characteristic of septic shock, necessitates the use of vasopressors that are designed to maintain adequate organ perfusion in conditions of limited use of massive infusion therapy [4].

Septic shock is a variant of redistributive shock with pronounced vasoplegia, which largely determines the outcome of treatment [5]. Knowledge of the basic mechanisms of development of vasoplegia and methods of its correction using vasopressors is a necessary condition for successful therapy of the state under discussion.

The purpose of the review: A comprehensive assessment of the multifactorial effect of various vasoconstrictors on the patient to determine the criteria for choosing the optimal drug (or a combination of drugs) in septic shock.

Methods of search and analysis of literary sources. Search for relevant articles was done with the help of PubMed and Scopus databases using the following keywords: [Sepsis]; [Septic shock]; [Vasopressors + septic shock]; [norepinephrine + septic shock]; [norepinephrine + complications];
Методы поиска и анализа литературных источников. Поиск соответствующих статей был проведен по базам данных PubMed и Scopus с использованием следующих ключевых слов: [Sepsis]; [Septic shock]; [Vasopressors + septic shock]; [norepinephrine + septic shock]; [norepinephrine + complications]; [terlipressin + septic shock]; [Dopamine+ septic shock]; [Methylene blue + septic shock]; [catecholamine + septic shock]; [angiotensin II]; [selepressin]; [Glucocorticoid + septic shock]. Окончательный отбор 89 статей осуществляли в соответствии со следующими критериями: отношение к теме данного обзора и характер статьи — в окончательный анализ вошли только рандомизированные контролируемые исследования, рекомендации и аналитические обзоры.

Механизмы развития вазоплегии при септическом шоке

Тонус сосудов определяется расположенными в их стенках гладкомышечными клетками (ГМКС) [1], основным регулятором деятельности которых является изменение внутриклеточной концентрации ионов кальция (Ca²⁺) [6]. Внешняя регуляция осуществляется благодаря влиянию симпатической иннервации и вазоактивных гормонов [6]. А внутренние регуляторы сосудистого тонуса включают в себя [6]:

1. факторы вырабатываемые эндотелием (оксид азота, простациклин, эндотелин) [7];
2. вазоактивные метаболиты (образовавшиеся в результате ацидоза, гипоксии, или других повреждающих факторов) например — пероксид водорода;
3. аутооксиды — сигнальные молекулы локального действия (серотонин, простагландин, тромбоксан A2).

Оксид азота (NO). При септическом шоке происходит активация NO — синтаз [8], что увеличивает выработку NO в несколько раз и приводит к неконтролируемой вазодилатации, ингибированию пролиферации ГМКС [8–10]. Течение шока усугубляется тем, что чрезмерная выработка NO снижает реактивность адренергических рецепторов [11].

Простагландины. При септическом шоке увеличивается образование изоформы циклооксигеназы 2 типа и усиливается синтез простациклина [12], что способствует неконтролируемой вазодилатации [13, 14].

Эндотелин 1 (ET1). Возникающие при сепсисе гипоксия, ишемия, стресс стимулируют образование ET1. Данный пептид действует как вазоконстриктор [15, 16], но в условиях воспалительного процесса, ET1 может приводить к негативным эффектам путем активации сигнальных путей, усиливающих синтез интерлипрессин + septic shock]; [Dopamine + septic shock]; [Methylene blue + septic shock]; [catecholamine + septic shock]; [angiotensin II]; [selepressin]; [Glucocorticoid + septic shock]. The final selection of 89 articles was carried out in accordance with the following criteria: relevance to the topic of this review and the nature of the article — only randomized controlled trials, guidelines and analytical reviews were included in the final analysis. Selected publications were analyzed by the authors of this article and presented in «References».

Mechanisms for the Development of Vasoplegia in Case of Septic Shock

Vascular tone is determined by smooth muscle cells (VSMC) [1] located in their walls, the main regulator of their activity is a change in the intracellular concentration of calcium ions (Ca²⁺) [6]. External regulation is carried out due to the influence of sympathetic innervation and vasoactive hormones [6]. The internal regulators of vascular tone include [6]:

1. factors produced by endothelium (nitric oxide, prostacyclin, endothelin) [7];
2. vasoactive metabolites (formed as a result of acidosis, hypoxia, or other damaging factors, for example, hydrogen peroxide);
3. autokoids — signal molecules of local action (serotonin, prostaglandins, thromboxane A2).

Nitric oxide (NO). In case of septic shock, NO synthase is activated [7], which increases the production of NO by several times and leads to uncontrolled vasodilation, and inhibition of VSMC proliferation [8–10]. The condition is exacerbated by the fact that excessive production of NO reduces the reactivity of adrenergic receptors [11].

Prostaglandins. In case of septic shock, the formation of type 2 cyclooxygenase isoform increases and prostacyclin synthesis is enhanced [12], which contributes to uncontrolled vasodilation [13, 14].

Endothelin 1 (ET1). Hypoxia, ischemia, and stress that occur during sepsis stimulate the formation of ET1. This peptide acts as a vasoconstrictor [15, 16], but in the inflammatory process, ET1 can lead to negative effects by activating signaling pathways that enhance the synthesis of interleukin-1 [5], tumor necrosis factor α [17], and interleukin-6 [18].

Acidosis resulting from insufficiency of tissue perfusion, hypoxia and mitochondrial dysfunction leads to even greater progression of shock and the development of multiple organ failure [19]. A distinct acidosis can lead to a decrease in the sensitivity of blood vessels to catecholamine vasoconstrictors [20, 21].

Oxygen free radicals. Decoupling of the interaction of endothelial enzymes NO synthases can cause an increase of reactive oxygen species formation and enhance mitochondrial dysfunction [22]. The decomposition of superoxide anion, which is ex-
лектики-1 [5], фактора некроза опухолей α [17] и интерлейкина-6 [18].

Ацидоз возникающий вследствие недостаточности тканевой перфузии, гипоксии и митохондриальной дисфункции приводит к прогрессированию шока и развитию полиорганной недостаточности [19]. Выраженный ацидоз может приводить к снижению чувствительности сосудов к катехоламиновым вазопрессорам [20, 21].

Свободные радикалы кислорода. Нарушение взаимодействия эндотелиальных ферментов NO-ситаз может вызвать увеличение образования активных форм кислорода и усилие митохондриальную дисфункцию [22]. Супероксидный анион разлагает NO, избыточно образующийся при шоке, и вызывает гиперпродукцию пероксинитрита [23]. Пероксинитрит, действуя как мощный окислитель, провоцирует развитие клеточной дисфункции и вазоплегии [24].

Сероводород. При сепсисе значительно увеличивается образование сероводорода (H2S), он легко диффундирует в ГМКС и способствует развитию вазоплегического шока через ряд кислород-зависимых механизмов, активацию АТФ-чувствительных калиевых каналов [25, 26]. Но, в тоже время, H2S, взаимодействуя с NO, может ослаблять действие последнего [27].

Неэндотелиальный механизм.CREASEмерная активация калиевых каналов приводит к гиперполяризации мембраны ГМКС, что сопровождается закрытием потенциал-зависимых Ca2+ каналов и развитием вазодилатации. Кроме этого ионы K+ опосредовано сказываются на функции мембраны, что приводит к гиперполяризации VSMC [28].

Снижение чувствительности сосудов к вазопрессорам может формироваться за счет некоторых механизмов [29]. Так, неконтролируемая устойчивая гиперактивация симпатической нервной системы приводит к потере сердечно-сосудистой чувствительности (неадекватная тахикардия при относительно низком артериальном давлении (АД)), чрезмерной выработке катехоламинов и, как следствие, десенситизации катехоламиновых рецепторов. Данная триада увеличивает потребность в экзогенных катехоламинах для поддержания гемодинамических целей [30].

Вазопрессоры в случае септического шока используются для контроля гемодинамики [5]. Они активируют периферические α-адренергические рецепторы, устойчивые к вазопрессину 1 типа, ангиотензину типа 1, что происходит уже на начальной фазе шока [31]. Но, видимо, рецепторы вазопрессина менее чувствительны к гиперпродукции пероксинитрита [32]. Peroxynitrite acting as a powerful oxidizing agent provokes the development of cell dysfunction and vasoplegia [24].

Hydrogen sulfide. In sepsis, the formation of hydrogen sulfide (H2S) significantly increases; it easily diffuses into VSMC and promotes the development of vasoplastic syndrome through a number of oxygen-dependent mechanisms and the activation of ATP-sensitive potassium channels [25, 26]. But, at the same time, H2S, interacting with NO, can weaken the effect of the latter [27].

Non-endothelial mechanism. Excessive activation of potassium channels leads to hyperpolarization of the VSMC membrane, which is accompanied by the closure of voltage-gated Ca2+ channels and the development of vasodilation. In addition, K+ ions indirectly potentiate vascular dysfunction, hypoxia, a decrease in pH, and an increase in blood lactate level [28].

A decrease in the sensitivity of blood vessels to vasoconstrictors can be formed due to several mechanisms [29]. Thus, uncontrolled sustained hyperactivation of the sympathetic nervous system leads to a loss of cardiovascular variability (inadequate tachycardia with a relatively low blood pressure (BP)), excessive production of catecholamines and, as a consequence, desensitization of catecholamine receptors. This triad increases the need for exogenous catecholamines to maintain hemodynamic targets [30].

Hyposensitivity at the cellular level in case of septic shock appears due to desensitization of: adrenergic receptors, type 1 vasopressin receptors, type 1 angiotensin, which occurs already in the initial phase of shock [31]. But apparently, vasopressin receptors are less sensitive to agonistic stimulation due to low concentrations of vasopressin in the blood during shock conditions [30, 32, 33].

The intracellular mechanism of hypersensitivity is largely due to NO [34]. It activates calcium-sensitive and ATP-sensitive potassium channels, myosin light chain phosphatase and the formation of cyclic GMP, which contributes to the development of vasodilation [11]. Other mechanisms also involved in vasodilation include the prostacyclin and cyclooxygenase pathways of the second type [35].
нистической стимуляции из-за низких концентраций вазопрессина в крови при шоковых состояниях [30, 32, 33].

Внутриклеточный механизм гипооцистственно во многом обусловлен NO [34]. Он активирует кальций-чувствительные и АТФ-чувствительные калиевые каналы, fosфатазу легкой цепи миозина и образование циклического гуанозинмонофосфата, что способствует развитию вазодилатации [11]. Другие механизмы, также участвующие в вазодилатации, включают пути активации простациклина и циклооксигеназы второго типа [35].

Вазопрессорная терапия при септическом шоке

Вазопрессорная терапия применяется для коррекции гипотензии при незэффективности инфузионной терапии (ИТ) [5] — невозможности поддержания АДср > 65 мм рт. ст. после коррекции гиповолемии (стартовая ИТ в дозе 30 мл/кг, в течение первых трех часов [36] септического шока с достижением ЦВД > 120 мм рт. ст.) [2]. Оправдано и более раннее применение вазопрессоров — еще до окончания инфузионной терапии — с целью уменьшения объема инфузионной терапии в первые сутки септического шока [37], а также для уменьшения риска развития полиорганной недостаточности и увеличения выживаемости [38].

Вазопрессорные препараты можно разделить на четыре группы:
1. Адренергические (адреналин, дофамин, норадреналин, фенилэфрин, добутамин);
2. препараты, воздействующие на вазопрессиновые рецепторы (вазопрессин, терлипрессин, селепрессин);
3. препараты, воздействующие на рецепторы ангиотензина 1 типа (синтетический ангиотензин II);
4. препараты, вазопрессорный эффект которых не связан с рецепторным аппаратом (метиленовый синий, левосимедан, гидрокортизон).

Адренергические вазопрессоры

Адреналин — мощный неселективный α- и β-агонист. В низких дозах (до 0,1 мкг/кг/мин) преобладают β-эффекты, что приводит к повышению сократимости миокарда и, как следствие, к увеличению частоты сердечных сокращений. При использовании более высоких доз адреналина, преобладает α-1-опосредованный сосудосуживающий эффект [39]. Его эффективность сопоставима с другими вазопрессорами, сила инокоциктокации сравнима с комбинацией норадреналина и добутамина [39]. Не выявлено различий в летальности при justified in order to reduce the volume of fluid maintenance on the first day of septic shock [37], as well as to reduce the risk of multiple organ failure and increase survival [38].

Vasopressors can be divided into four groups:
1. Adrenergic (adrenaline, dopamine, norepinephrine, phenylephrine, dobutamine),
2. drugs acting on vasopressin receptors (vasopressin, terlipressin, selepressin),
3. drugs affecting angiotensin type 1 receptors (synthetic angiotensin II).
4. angiotonic drugs are not associated with the receptor apparatus (methylene blue, levosimendan, hydrocortisone).

Adrenergic Vasoconstrictors

Adrenaline is a potent non-selective α- and β-agonist. At low doses (up to 0.1 µg / kg / min), β-effects predominate, which leads to an increase in contractility and, as a result, to an increase in heart rate. When higher doses of adrenaline are used, the α-1-mediated vasoconstrictor effect predominates [39]. Efficiency is comparable with other vasoconstrictors, the strength of inoconstriction is comparable to the combination of noradrenaline and dobutamine [39]. There were also no differences in mortality in comparison with norepinephrine (NA) [40, 41], or a combination of NA with dobutamine [42].

Despite this, the use of adrenaline in septic shock is recommended only in the form of a second-line vasoconstrictor — for stopping hypotension when introduction of NA does not allow reaching the hemodynamic targets [2]. This is due to the fact that the drug has a number of negative effects on the circulatory system: it increases the heart rate — and, therefore, increases the myocardial oxygen demand, increases the risk of heart rhythm disturbances [40, 41], and is capable of causing hyperlactatemia [2].

Dopamine is a biochemical precursor to NA. Having a cardiotonic effect, it increases MAP due to an increase in the stroke volume and heart rate [2]; in small and medium doses it stimulates β-adrenergic receptors, in large doses α-adrenergic receptors. The widespread use of the drug in septic shock is not recommended [2, 40, 43]. This is due to the fact that the use of dopamine often causes rhythm disturbances, as it was shown in a study of De Backer D. et al in 2010 (24.1% and 12.4%, P<0.001) [44]. In addition, a significant increase of heart rate leads to an increase in myocardial oxygen demand, making the risk of ischemia higher.

In septic shock, the use of dopamine is allowed only as an alternative to NA in case of patients with a low risk of tachyarrhythmias and in the presence of absolute or relative bradycardia [2]. The use of the drug for «nephroprotection», as was recently recommended [45], is now recognized as unjustified [2], since there is no convincing evidence

УДК: 616.161.1.071.5:616.121.12:547.5.013.2

DOI:10.15360/1813-9779-2020-2-77-93

Обзоры
применении адреналина в сравнении с норадреналином (НА) [40, 41], либо комбинацией НА с дуботамином [42].

Несмотря на это, применение адреналина при септическом шоке рекомендовано лишь в виде вазопрессора второй линии — для купирования гипотензии в случае если введение НА не позволяет достичь целевых параметров гемодинамики [2]. Обусловлено это тем, что препарат обладает рядом негативных эффектов на систему кровообращения: увеличивает частоту сердечных сокращений — а, следовательно, увеличивает потребность миокарда в кислороде, увеличивает риск нарушений ритма сердца [40, 41], и способен вызывать гиперлатетемию [2].

Допамин является биохимическим предшественником НА. Обладая кардиотоническим действием, увеличивает АД ср за счет увеличения ударного объема и частоты сердечных сокращений [2], в малых и средних дозах стимулирует β-адренорецепторы, в больших дозах — α-адренорецепторы. Повсеместное применение препарата при септическом шоке не рекомендовано [2, 40, 43]. Обусловлено это тем, что, как было показано в исследовании De Backer D.et al. в 2010 г., применение допамина чаще, чем применение НА, вызывает нарушения ритма (24,1 и 12,4%, соответственно, P<0,001) [44]. Кроме того, значительное увеличение частоты сердечных сокращений приводит к увеличению потребности миокарда в кислороде и риску его ишемии.

При септическом шоке применение допамина, как альтернативы НА, допускается только у пациентов с низким риском тахиаритмий и при наличии абсолютной или относительной брадикардии [2]. Использование этого препарата для «нейфропротекции», как это рекомендовалось еще совсем недавно [45], сегодня признано неоправданным [2], так как нет убедительных доказательств его эффективности в отношении улучшения почечного кровотока, увеличивая темпа диуреза и снижения потребности в заместительной почечной терапии [44, 46].

Фенилэфрин — агонист α1-адренергических рецепторов. Применение фенилэфрина при сепсисе ограничено из-за его мощного вазоконстрикторного действия, увеличивает АД ср за счет увеличения ударного объема и частоты сердечных сокращений [2]. В малых дозах стимулирует α1-адренорецепторы, в больших дозах — α-адренорецепторы. Фенилэфрин эффективнее снижает частоту сердечных сокращений и повышает системное сосудистое сопротивление без изменения других гемодинамических параметров [47]. Однако его применимость в данных случаях объясняется тем, что фенилэфрин в сравнении с НА эффективнее снижает частоту сердечных сокращений и повышает системное сосудистое сопротивление без изменения других гемодинамических параметров [47]. Его применение в данных случаях объясняется тем, что фенилэфрин в сравнении с НА эффективнее снижает частоту сердечных сокращений и повышает системное сосудистое сопротивление без изменения других гемодинамических параметров.

Phenylephrine is an agonist of α1-adrenergic receptors. The use of phenylephrine in case of sepsis is limited to situations in which the use of NA can lead to an increased risk of life-threatening arrhythmias; with a sufficiently high cardiac output, but with persistent hypotension; or as an additional drug for refractory hypotension [47]. Its use in these cases is explained by the fact that phenylephrine, in comparison with NA, more effectively reduces the heart rate and increases systemic vascular resistance without changing other hemodynamic parameters, which was identified by Jain G. et al. in 2010 (P<0.001) [48]. However, it should be noted that in patients who have a cardiac pathology, the drug leads to a decrease of cardiac output [47], and vasoconstriction of the internal organs that it potentiates can aggravate their ischemia [42].

Noradrenaline (NA) is a derivative of dopamine, has a very powerful vasopressor effect and is a first-line drug for the correction of hypotension in case of septic shock [2, 5]. The administration of NA leads to mobilization of the vascular volume, the appearance of a moderate inotropic effect [49], which increases the final diastolic volume, and the cardiac index [50]. In this case, there is no increase in the heart rate, and, consequently, myocardial oxygen demand does not increase [2, 44]. In addition, the choice of NA as a first-line drug is associated with a lower risk of arrhythmias [42] and lower mortality compared to dopamine [40, 42], as confirmed by a study of Avni T. et al. (2015) which demonstrated a decrease in mortality by 11% (RR 0.89: 95% CI 0.81–0.98, high reliability) [40].

The high potency and positive hemodynamic effects make NA largely universal for stopping hypotension caused by septic shock [2]. However, when the dose is exceeded by 0.5 mg/kg/min, the effectiveness of the drug decreases and an exponential increase in the dose of NA is necessary for a further increase in MAP [51–53]. Refractory shock may require the administration of doses that exceed the recommended ones (up to 1 µg/kg/min), which increases the risk of norepinephrine-mediated unfavorable responses.

Auchet T. et al. (2017) determined that the emergence of finger necrosis due to the use of NA is possible when using a dose of 1 µg/kg/min for 1 hour, and serious changes develop in 6% of patients in this case [54]. When using doses of NA more than 2 µg/kg/min, irreversible microcirculation disorders can occur, leading to ischemia of the fingers and requiring amputation. There is also evidence that high doses of NA can lead to lip ischemia [55]. In their study, Cox J. et al. (2015) found that the use of high doses of NA is also a significant risk factor for the development of pressure bed sores by septic patients (r=0.119; P=0.04) [56]. Exceeding a
параметров, что было выявлено Jain G. et al. в 2010 г. (p<0.001) [48]. При этом следует помнить, что у пациентов с сердечной патологией фенилэфрин приводит к снижению сердечного выброса [47], а потенцируемая им вазоконстрикция внутренних органов может усугубить их ишемию [42].

Норадреналин является производным допамина, обладает очень мощным вазопрессорным эффектом и является препаратом первой линии для коррекции гипотензии при септическом шоке [2, 5]. Введение НА приводит к мобилизации сосудистого объема, возникновению умеренного инотропного эффекта [49], увеличивает конечный диастолический объем и сердечный индекс [50]. При этом не происходит увеличение частоты сердечных сокращений, а, следовательно, не возрастает потребность миокарда в кислороде [2, 44]. Кроме этого, выбор НА в качестве препарата первой линии связан с меньшим риском возникновения аритмий [42], и ассоциирован с более низкой летальностью, в сравнении с допамина [40, 42], что подтверждается исследованием Avni T. et al. (2015 г.) в котором продемонстрировано снижение летальности на 11% (RR 0,89:1). В своем исследовании Cox J. et al. (2015 г.) определили, что возникновение некроза пальцев, обусловленного применением НА, возможно при использовании дозы 1 мкг/кг/мин в течение 1 часа, а серьезные изменения микроциркуляции развиваются у 6% пациентов [54]. При использовании НА в дозе более 2 мкг/кг/мин могут возникать необратимые нарушения микроциркуляции, приводящие к ишемии пальцев рук и требующие их ампутации. Также имеются сведения о том, что высокие дозы НА могут приводить к ишемии губ [55].

В своем исследовании Cox J. et al. (2015 г.) выявили, что использование высоких доз НА, является значительным фактором риска развития пролежней у септических пациентов (r=0,119; p=0,04) [56]. Превышение дозы 0,6 мкг/кг/мин приводит к развитию пролежней у 50% пациентов [57, 58].

A high dose of NA in excess of 1 µg/kg/min is an independent predictor of high mortality among patients with septic shock [59, 60]. During the Auchet T. et al. study (2017) it was determined that with infusion of NA at a dose of more than 1 µg/kg/min, mortality reaches 65.1% [54], and according to Jenkins C. R. (2009), at a dose of more than 2 µg/kg/min, it is 96.4% [61].

Current recommendations state that a dose exceeding 1 µg/kg/min should be avoided, and the use of NA should be discontinued as soon as possible in order to reduce the risks of developing uncontrolled vasoconstriction, intestinal, skin and finger necrosis [55].

The data make us think about using a second vasopressor to reduce the dose of NA in order to level its side effects associated with the use in high concentrations. However, no modern guidelines provide clear recommendations as to what dose of NA should be used for the second vasoconstrictor and what should be the starting dose of the second drug, depending on the initial dose of NA infusion [62].

Dobutamine is a synthetic catecholamine, which is a strong agonist of β-1 adrenergic receptors and a weak agonist of β-2 adrenergic receptors, at the same time it has a mild α-1 effect, which is manifested at doses of more than 15 µg/kg/min [47]. Current recommendations indicate the use of dobutamine among the patients with persistent hypoperfusion [63] that persists after adequate infusion therapy and the use of angiotonic drugs [2].

With the administration of the drug in a dose not exceeding 2.5 µg/kg/min, there is an increase in the stroke volume and blood pressure without changing the heart rate. A further increase in dose provides an increase in indicators only by increasing the heart rate [39].

The role of dobutamine in septic shock is ambiguous. Administration of the drug even in low doses can increase the myocardial oxygen demand and provoke rhythm disturbances [47]. Efficiency has been proven only with systolic dysfunction [64], and with diastolic dysfunction, dynamic left ventricular obstruction, indicators of heart activity, on the contrary, may worsen [39]. The alleged cause of the heterogeneous dobutamine responses is the ever-changing picture of septic shock and the ongoing pathophysiological processes during each stage. Along with this, changes occur in adrenergic receptors, leading to a decrease in their sensitivity and, as a consequence, to a change in the response to catecholamines [39].

Drugs Acting on Vasopressin Receptors

Vasopressin (AVP) is an endogenous peptide hormone of the infundibular body, interacting with
Высокая доза NA, превышающая 1 мкг/кг/мин является независимым предиктором высокой летальности у пациентов с септическим шоком [59, 60]. В ходе исследования Auchet T. et al. (2017 г.) определили, что при инфузии NA в дозе более 1 мкг/кг/мин летальность достигает 65,1% [54], а по сведениям Jenkins C. R. (2009 г.) при дозе более 2 мкг/кг/мин она составляет 96,4% [61].

Современные рекомендации гласят, что дозы, превышающая 1 мкг/кг/мин следует избегать, а применение NA должно быть прекращено как можно раньше с целью снижения рисков развития неконтролируемой вазоконострикции, некрозов кишечника, кожи и пальцев [55].

Приведенные данные заставляют задуматься о применении второго вазопрессорного препарата для снижения дозы НА с целью нивелирования его побочных эффектов, связанных с применением в высоких концентрациях. Однако ни одно современное руководство не дает четких рекомендаций относительно того, при какой дозе НА должен быть применен второй вазопрессор и какой должна быть старта доза второго препарата в зависимости от начальной дозы инфузии NA [62].

Добутамин — синтетический катехоламин, являющийся сильным агонистом β-1 адренорецепторов и слабым агонистом β-2 адренорецепторов, в то же время имеет мягкий α-1 эффект, который проявляется при дозах более 15 мкг/кг/мин [47]. Современные рекомендации говорят о применении добутамина у пациентов со стойкой гипоперфузий [63], сохраняющейся после проведенной адекватной инфузионной терапии и при использовании вазопрессорных препаратов [2]. При введении препарата в дозе, не превышающей 2,5 мкг/кг/мин, происходит увеличение ударного объема и АД без изменения частоты сердечных сокращений. Дальнейшее увеличение дозы обеспечивает рост показателей только за счет увеличения частоты сердечных сокращений [39].

Роль добутамина при септическом шоке неоднозначна. Введение препарата даже в низких дозах может увеличить потребность миокарда в кислороде, и провоцировать нарушения ритма [47]. Его эффективность доказана только при систолической дисфункции миокарда [64], а при диастолической дисфункции, динамической левожелудочковой обструкции показатели деятельности сердца, напротив, могут ухудшиться [39]. Предполагаемой причиной гетерогенных ответов на введение добутамина являются изменения картины септического шока и происходящих патофизиологических процессов в каждый его период. Наряду с этим происходят изменения в адренергических типа I вазопрессин рецепторов в VSMC что вызывает вазоиндуктивный эффект [65]. Однако, когда взаимодействует с тиреобластными рецепторами, оно может приводить к снижению артериального давления [66].

The course of septic shock suggests a relative deficiency of endogenous AVP, its elimination due to exogenous intake increases vascular tone, which explains the expediency of its use in case of this disease [67]. Currently, the drug is recommended as a supplement to NA in order to reduce the dose of the latter while maintaining hemodynamic targets [2], or to increase blood pressure to the target value, provided that NA monotherapy was not effective [2]. Exceeding the recommended dose (0.03 units/min), in view of the pronounced side effects (myocardial ischemia, impaired microcirculation of internal organs and fingers), is an extreme measure and is used in the absence of the effect of using other vasoconstrictors [68].

AVP, even at a minimum dose, effectively increases blood pressure in patients with resistant hypotension in septic shock [69, 70], due to the preservation of vasoconstrictor activity in acidosis and, apparently, less sensitivity to V1 receptor stimulation.

The study of Bihari S. et al. (2014) evaluating the addition of AVP to NA as the second vasoactive drug to patients at the early stages of septic shock showed that it was possible to achieve the target MAP faster in comparison with NA monotherapy (5.7 hours and from 7.6 hours, P=0.058, respectively), and led to faster resolution of organ dysfunction [71]. These statements suggest that correction of AVP deficiency at an early stage reduces the tissue time spent by patients in septic shock [72].

A number of studies have not revealed a decrease in mortality when using AVP compared with NA [2, 73, 74]. However, a recently conducted and fairly large randomized study by Russell J. A. et al. (2008) discovered that patients receiving the drug have a tendency to decrease mortality compared to patients receiving NA (32.2% versus 40.5%, P=0.12). However, this difference was not recognized as significant enough. Meanwhile, the use of AVP has a number of positive effects: it reduces the incidence of acute kidney injury in septic shock by 18.8% compared with NA monotherapy (P=0.03). Accordingly, there was a decrease in the need for substitutive renal therapy compared with the control group [75].

Unfortunately, the drug is not registered in Russia and therefore is not used in clinical practice.

Terlipressin (TP) has similar effects to vasoressin, has a longer duration [76], and is more selective for type I vasopressin receptors [70]. This contributes to a more pronounced vasoconstriction with the least side effects [73, 77, 78]. Hemodynamic efficiency with continuous infusion of both drugs is equivalent [79].
рецепторах, приводящие к снижению их чувствительности и, как следствие, к изменению ответа на катехоламины [39].

Препараты действующие на вазопрессиновые рецепторы

Вазопрессин (AVP) — эндогенный пептидный гормон задней доли гипофиза, взаимодействуя с рецепторами к вазопрессину I типа в ГМКС вызывает вазоконстрикторный эффект [65]. Однако при взаимодействии с вазопрессиновыми рецепторами 2 типа он может приводить к задержке жидкости в организме, тромбозам микрокапилярной сети, вазодилатации [66].

Течение септического шока предполагает относительный дефицит эндогенного AVP его устранение за счет экзогенного поступления повышает тонус сосудов, что объясняет целесообразность применения вазопрессина [67]. В настоящее время препарат рекомендован в качестве дополнения к НА с целью уменьшения дозы последнего при поддержании целевых показателей гемодинамики [2], или для увеличения АД до целевого значения, при условии, что монотерапия НА оказалась не эффективной [2]. Превышение рекомендуемой дозы (0,03 ед/мин, ввиду выраженных побочных эффектов (ишемия миокарда, нарушение микроциркуляции внутренних органов, пальцев), является крайней мерой и используется при отсутствии эффекта от использования других вазопрессоров [68].

AVP, даже в минимальной дозе, эффективно повышает АД у пациентов с резистентной гипотензией при септическом шоке [69, 70], благодаря сохранению его вазоконстрикторной активности при ацидозе.

Исследование Bihari S. et al. (2014 г.), оценивающее добавление AVP к НА пациентам на ранних стадиях септического шока, показало, что применение второго вазоконстрикторного препарата позволило быстрее достичь целевого АДср в сравнении с монотерапией НА (5,7 часов и 7,6 ч соответственно, p=0,058, и привело к более быстрому разрешению органной дисфункции [71]. Эти данные позволяют предположить, что коррекция дефицита AVP на ранней стадии сокращает время нахождения пациентов в состоянии септического шока [72].

Ряд проведенных исследований не выявил различий летальности при использовании AVP либо НА [2, 73, 74]. Однако, не так давно проведенное достаточно крупное рандомизированное исследование Russell J. A. et al. (2008 г.) показало, что в группе пациентов, получавших вазопрессин, имелась тенденция к снижению летальности в сравнении с группой пациентов, получавших НА (32,2% против 40,5%, p=0,12). Между тем, применение AVP TP, стабилизируя и нормализуя гемодинамику, улучшая тканевое кровоснабжение, предотвращает гипотонию при септическом шоке [69, 70]. Сравнение длительного вазопрессина с НА Monotherapy did not reveal a large difference in the achievement of MAP sufficient for adequate tissue perfusion [70]. Side effects associated with the introduction of these drugs according to Choudhury A. et al. (2017), were also comparable in the studied groups (70.5% versus 44.4%, P=0.06) [80].

The long half-life allows the use of TP in the form of a bolus injection, but at the same time, the risk of excessive vasoconstriction increases, which reduces the delivery of oxygen to peripheral tissues. Continuous infusion with an equivalent effect is not accompanied by a pronounced decrease in cardiac output [73], which makes this type of administration preferable.

Small doses of TP (1.3 µg/kg/h) as an adjunct to NA reduce the time to reach the target hemodynamic parameters compared with NA monotherapy [73, 81]. With a high need for angiotonic support, the addition of NA infusion, continuous TP infusion at the above dose reduces the need for the main vasoconstrictor, thereby reducing the risk of developing NA-mediated complications [81]. In addition, there is evidence that the use of terlipressin improves renal hemodynamics; this may be useful for the restoration of renal function in case of its dysfunction [80].

However, a meta-analysis by Zhu Y. et al. (2019), which included 10 studies (928 patients), did not reveal the effect of TP on reducing mortality compared to catecholamines (RR=0.94; 95% CI from 0.85 to 1.05; I=0%; P=0.28). At the same time, it was shown that the target group had an ALV shorter than the control group [82].

A variety of combination options with other vasoconstrictors and TP dosing regimens make the study group not entirely correct and do not currently determine the optimal strategy for the use of this drug, as well as objectively evaluate side effects and possible complications. This limits the widespread use of terlipressin in the treatment of shock conditions [2].

Selepressin is a synthetic selective fast-release type 1 vasopressin receptor agonist. Similar to vasopressin it is an effective angiotonic drug in case of resistant septic shock [83]. However, unlike it, the side effects of AVP are deprived, so when it is applied, water retention does not occur and the procoagulant von Willebrand factor is not released [29]. Currently, there is only one RCT devoted to the use of selepressin by patients with septic shock [83]. Ac-
приводит к ряду положительных эффектов: снижению частоты острого почечного повреждения при септическом шоке на 18,8% по сравнению с монотерапией НА (р=0.03). Соответственно уменьшается потребность в заместительной почечной терапии [75].

К сожалению, препарат в России не зарегистрирован и поэтому в клинической практике не используется.

Терлипрессин (ТР) обладает сходными с вазопрессиновыми эффектами, более продолжительным действием [76] и более избирательным к рецепторам вазопрессина I типа [70]. Это способствует более выраженной вазоконstrictionи с наименьшими побочными эффектами при его применении [73, 77, 78]. Гемодинамическая эффективность при непрерывной инфузии обоих препаратов равнозначна [79].

ТР, стабилизируя и нормализуя гемодинамику, улучшает перфузию тканей, способствует оксигенации крови, повышает темп диуреза, уменьшает содержание лактата в крови, снижая тем самым частоту осложнений. Малая доза препарата может быть рекомендована в качестве вазопрессорной поддержки первой линии в случаях рефрактерной гипотензии при септическом шоке [70]. Сравнение непрерывной инфузии ТР с монотерапией НА не выявило различий в частоте достижения АДср, достаточного для адекватной перфузии тканей [70]. Побочные эффекты, связанные с введением этих препаратов, по сведениям Choudhury A. et al. (2017 г.), были сопоставимы в исследуемых группах (70,5 против 44,4%, соответственно, р=0,06) [80].

Длительный период полувыведения позволяет использовать ТР в виде болюсного введения, но при этом возрастают риск чрезмерной вазоконstrictionи и снижения доставки кислорода к периферическим тканям. Непрерывная инфузия ТР при равнозначном гипертензивном эффекте не сопровождается выраженным снижением сердечного выброса [73], что делает данный тип введения предпочтительным.

Небольшие дозы ТР (1,3 мкг/кг/ч) в качестве дополнения к НА сокращают время достижения целевых параметров гемодинамики по сравнению с монотерапией НА [73, 81]. При высокой потребности в вазопрессорной поддержке дополнение инфузии НА непрерывной инфузий ТР в вышеуказанной дозе уменьшает расход основного вазопрессора, тем самым снижает риск развития НА-опосредованных осложнений [81]. Кроме того, имеются данные, что использование терлипрессина улучшает почечное кровообращение, это может быть полезным для восстановления почечных функций в случае их нарушений [80].

Drugs Affecting Angiotensin Type 1 Receptors

Angiotensin II is a synthetic analogue of the endogenous angiotensin produced in the body when the reninangiotensin of the aldosterone system is activated as a result of renal hyperperfusion [84]. The drug causes direct vasoconstriction by binding to angiotensin type I receptors in VSMC, increases the intracellular calcium concentration in VSMC, potentiates an increase in the secretion of NA, vasopressin, which leads to a vasoconstrictor effect. However, excessive production of proinflammatory cytokines can lead to deactivation of AT II, which contributes to refractory hypotension.

Most of the studies have been devoted to the use of AT II in various doses as an additional vasoressor agent, as an addition to NA in refractory septic shock. The effects of monotherapy with AT have not been studied. A presumably effective initial dose of administration is 2–10 ng/kg/min [51].

The administration of AT II in refractory septic shock can effectively increase blood pressure and reduce the need for a dose of NA [51, 85]. But when using the drug, there is also a risk of a number of side effects such as the occurrence of hypertension, alkalosis, cyanosis, excessive vasoconstriction and arrhythmia, but their probability is quite comparable with the frequency of occurrence of these complications when using NA monotherapy.

The study by Khanna A. et al (2017) did not reveal a decrease in 28-day mortality when using AT II as compared with NA (46% and 54%, respectively,
Однако, мета-анализ проведенный Zhu Y. et al. (2019 г.), включающий 10 исследований (928 пациентов), не выявил различий летальности в группах пациентов, получавших ТР либо катехоламин (ОР=0,94; 95% ДИ от 0,85 до 1,05; I=0%; p=0,28). Вместе с тем, было показано, что в первой группе продолжительность ИВЛ была меньше [82].

Разнообразие вариантов комбинации с другими вазопрессорами и режимов дозирования ТР не позволяют в настоящий момент определить оптимальную стратегию применения данного препарата, а также объективно оценить его побочные эффекты и осложнения. Это ограничивает широкое применение терапии селепрессина при шоковых состояниях [2].

Селепрессин — синтетический селективный агонист вазопрессорных рецепторов 1а типа короткого действия. Аналогично вазопрессину является эффективным вазопрессорным препаратом при резистентном септическом шоке [83]. Однако в отличии от него лишен побочных эффектов АР, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVP, так при его применении не происходит задержка воды и не вызывает необратимые эффекты стресса, связанные с прямой вазоконстрикцией сосудов, что позволяет использовать этот вазопрессор в дозе 2,5 нг/кг/мин эффективно повышало АД ср, при этом не отмечалось развития водной отеки и лишен побочных эффектов AVП.
Препараты, воздействующие на рецепторы ангиотензина 1 типа

Ангиотензин II — синтетический аналог эндогенного ангиотензина, образующегося в организме при активации ренин-ангиотензин-альдостероновой системы вследствие гипоперфузии почек [84]. Препарат вызывает прямую вазоконстрикцию, связываясь с рецепторами ангиотензина I типа в ГМКС, увеличивает внутриклеточную концентрацию кальция в ГМКС, потенцирует увеличение секреции НА, вазопрессина, что приводит к вазоконстрикторному эффекту. Однако чрезмерная выработка провоспалительных цитокинов может приводить к дезактивации АТ II, что способствует рефрактерной гипотензии.

Большинство проведенных исследований было посвящено применению АТ II в различных дозах в роли дополнительного к НА вазопрессорного агента при рефрактерном септическом шоке. Эффекты монотерапии АТ II не изучены. Предположительно эффективной начальной дозой введения является 2–10 нг/кг/мин [51].

Введение АТ II при рефрактерном септическом шоке позволяет эффективно повысить АД, и снизить потребность в дозе вводимого НА [51, 85]. Но при использовании препарата существует риск возникновения таких побочных эффектов, как гипертензия, алкалоз, цианоз, чрезмерная вазоконстрикция и аритмии, но их вероятность вполне сопоставима с частотой возникновения подобных осложнений при применении монотерапии НА.

Исследование Khanna A. et al. (2017 г.) не выявило различий по 28-дневной летальности при использовании АТ II либо НА (46 и 54% соответственно, p=0,12) [51]. В рамках проведенного исследования не планировали сравнение частоты возникновения ОПП и потребности в ЗПТ, однако было установлено, что потребность в ЗПТ была ниже в группе применения АТ II, чем в группе с плацебо [51].

Малочисленность и отсутствие сравнительных исследований с другими не адренергическими вазопрессорами в совокупности с недоказанной экономической эффективностью ограничивает применение AT II в мировой практике. В России же препарат и вовсе не зарегистрирован.

Препараты, вазопрессорный эффект которых не связан с рецепторным аппаратом

Метиленовый синий — водорастворимый краситель, который ингибирует образование синтаз NO и гуанилатциклазы [86], что ограничивает гиперпродукцию NO тем самым способствует повышению тонуса сосудов при септическом шоке. Препарат имеет короткий период полувыведения, поэтому его введение осуществляется в виде непрерывной инфузии.

Применение метиленового синего при септическом шоке приводит к увеличению системного сосудистого сопротивления и повышению АДср [87]. Использование препарата как второго вазопрессорного агента позволяет снизить дозу вводимого НА, что снижает риск НА опосредованных неблагоприятных эффектов [88]. Введение метиленового синего сопряжено с опасностью чрезмерного подавления NO-синтаз, что может приводить к снижению сердечного выброса и увеличению летальности у пациентов с септическим шоком [29].

Эффективность метиленового синего в настоящий момент не доказана, а влияние на летальность малоизучено, что ограничивает широкое применение препарата при рефрактерном септическом шоке. Кроме того, несмотря на проводимые в мире исследования и потенциально полезные свойства препарата, его применение на территории России не разрешено.

Глюкокортикоидная терапия является методом лечения шока с недоказанной эффективностью, влияние препаратов этой группы на летальность неоднозначно.

Введение гидрокортизона не сопровождается прямыми вазопрессорными или инотропными эффектами, но приводит к более быстрому разрешению шока. Гидрокортизон увеличивает «отзывчивость» адренергических рецепторов [29], подавляет чрезмерную вазоспастическую реакцию [89], снижает продукцию NO, тем самым уменьшает степень вазодилатации и увеличивает продукцию АТ II [86]. Оптимальные сроки начала глюкокортикоидной терапии остаются неизвестными, но

Conclusion

The high effectiveness of norepinephrine, its positive hemodynamic effects make the drug under discussion, in many ways, a universal remedy for the relief of septic shock. However, refractory shock may require the introduction of high doses of norepinephrine, which will inevitably lead to an increased risk of norepinephrine — mediated adverse reactions. The combined use of adrenergic and nonadrenergic drugs for the relief of refractory septic shock, and especially V-receptor ligands, is designed to prevent these complications. In Russia, the only drug approved for clinical use of the non-catecholamine series is the V-positive drug, terlipressin. However, to date, there are no clear recommendations on the use of terlipressin in septic shock, which limits its use in clinical practice.
вопрос о необходимости данной терапии актуален для пациентов, получающих 2 и более вазопрессорных препарата [2]. Рекомендуемые дозы гидрокортизона при рефрактерном септическом шоке составляют 100 мг каждые 8 часов или 50 мг каждые 6 часов, возможно также введение препарата в виде непрерывной инфузии в дозе 200 мг/сутки [2].

Заключение

Высокая эффективность НА, его положительные гемодинамические эффекты делают этот препарат, во многом, универсальным средством для купирования септического шока.

Литература

1. Burgdorf A-M., Bucher M., Schumann J. Vasoplegia in patients with severe sepsis and septic shock: pathways and mechanisms. J Int Med Res. 2018; 46 (4): 1303–1310. PMID: 29323515, DOI: 10.1177/0301001817743836
2. Rhodes A., Evans L.E., Alhazzani W., Levy M.M., Antonelli M., Ferrer R., Kumar A., Severnsky J.E., Sprung C.L., Nunnally M.E., Roeckawa-Bub, R., Rubenfeld G.D., Angus D.C., Anbe D.C., Bollhagen G., C. Bernard G.R., Chiche J.D., Cooperstein C., De Backer D.P., French C.J., Fujishima S., Gerlach H., Hidalgo J.L., Hollenberg S.M., Jones A.E., Karasavanu R., Karwai R., Koh Y., Lichi F., Marinari J., Marshall J.C., Mazzuoli J.E., McIntyre L.A., McLean A.S., Mehan S., Moreno R.P., Myburgh J., Navalesi P., Nishiida O., Osborn T.M., Perner A., GLUT K.C., Ranieri M., Schorr C.A., Schekel S.M., Seymour C.W., Shiozaki K.A., Simpson S.Q., Singer M., TSchipman B.T., Townsend S.R., Van Der Poll T., Vincent J.L., Wiersinga W.J., Zimmerman J.L., Dellinger R.P. Surviving Sepsis Campaign. Intensive Care Med. 2017; 43: 304–377. PMID: 28101665, DOI: 10.1007/s00134-017-4683-6.
3. Malbrain M.L., Mark P.E., Witters I., Conrakens C., Kirkpatrick A.W., Roberts D.J., Van den Bergh N. Endotoxin load, de-recruitment, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensiv Ther. 2014; 46 (5): 361–388. PMID: 25432556, DOI: 10.5603/AIT.2014.0060
4. Colling K.P., Banton K.I., Bellman G.J. Vasopressors in Sepsis. Surg Infect (Larchmt). 2018; 19 (2): 202–207. PMID: 29336676, DOI: 10.1089/sur.2017.255
5. Сепсис: классификация, клинико-диагностическая концепция и терапия. Под редакцией академика РАМН Б.Р. Гельфанда — 4-e издание, дополненное и переработанное — Москва: ООО «Медицинское информационное агенство». 2017 [In Russ.]. ISBN 978-5-8948-1988-4
6. Lambden S., Creagh-Brown B.C., Hunt J., Summers C., Forini L.G. Definitions and pathophysiology of vasoplegic shock. Critical Care. 2018; 22: 174–181. PMID: 30161435, DOI: 10.1186/s13054-018-2102-1
7. Ilina Yu. Yu., Pot J.E., Iztovon N.Y., Kuznetsov D.A., Yako- venko E.A., Chernova T.V., Kozlov V.V., Kirov M.Y. The relationship of endothelial glycoalyx with hemodynamics and metabolism in patients with septic shock and cardiac surgery with cardiopulmonary bypass. Vestnik anestesiologii i intensivnoj terapii. 2018; 15 (6): 10–19. DOI: 10.11520/1813-9779-2018-2-77-93
8. Seddon M.D., Chouvetzcyj P., Brett S.E., Casadei B., Shag A.M. Neuronal nitric oxide synthase regulates basal microvascular tone in humans in vivo. Circulation. 2008; 117 (15): 1991–1996. PMID: 18391104, DOI: 10.1161/CIRCULATIONAHA.107.744540
9. Lange M., Enkhhbatar P., Nakano T., Trauer D.L. Role of nitric oxide in shock: the large animal perspective. Front Biosci. 2009; 14: 1979–1989. PMID: 19273179, DOI: 10.2741/S37
10. Palmaer R.M., Ferrige A.G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987; 327 (6122): 524–526. PMID: 3495737, DOI: 10.1038/327524a0
11. Landry D.W., Oliver J.A. The pathogenesis of vasodilatory shock. N Engl J Med. 2001; 345: 588–595. DOI: 10.1056/NEJMra002709
12. Riedo F.X., Munford B.S., Campbell W.B., Reisch J.S., Chien K.R., Gerard R.D. Deacetylated lipopolysaccharide inhibits plasminogen activator inhibitor-1, prostacyclin, and prostaglandin E2 induction by lipopolysaccharide but not by tumor necrosis factor-alpha. J Immunol. 1999; 164 (4): 3506–3512. PMID: 10219778 21097778 210978
13. Naryunyma S., Sugimoto Y., Ishihaki F. Prostanoid receptors: structures, properties, and functions. Physiol Res. 1996; 45: 79–126. PMID: 8893233, DOI: 10.1152/physrev.1996.79.0.1193
14. Naryunyma S., Sugimoto Y., Ishihaki F. Prostanoid receptors: structures, properties, and functions. Physiol Res. 1996; 45: 79–126. PMID: 8893233, DOI: 10.1152/physrev.1996.79.0.1193

Рефрактерный шок обусловливает использование высоких доз НА, что приводит к увеличению риска неблагоприятных реакций. Предотвратить подобные осложнения призвано сочетанное использование адренергических и неадренергических препаратов, в частности лигандов В-рецепторов. На территории России единственным разрешенным к клиническому применению вазопрессорным препаратом некатехоламинового ряда, является терпилесин. Однако, на сегодняшний день не существует четких рекомендаций по применению терпилесина при септическом шоке, что ограничивает его использование в клинической практике.
Reviews

15. Yanagisawa M, Kunirina H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yuzuki T, Goto K, Masaki T. A novel potent vasodilator-stimulating peptide produced by vascular endothelial cells. Nature. 1988; 332 (6163): 411–415. PMID: 2451132. DOI: 10.1038/332411a0

16. Lacourrière T.E. Barton M. Endothelins and endothelin receptor antagonists: therapeutic considerations for a novel class of cardiovascular drugs. Circulation. 2000; 102 (19): 2344–2440. PMID: 11067800. DOI: 10.1161/01.CIR.102.19.2344

17. Ilina Yu. Yu., Fot E.V. Kuckov K.V., Korov M.Yu. Sepsis-induced damage to endothelial glyocalyx (literature review). Vestnik intensivnoj terapii imeni A.I. Saltanova. 2019; 2: 32–39 [In Russ.]. DOI: 10.21320/1813-9779-2019-2-32-39

18. Yeager M.E., Belchenko D.D., Nguyen C.M., Colvin K.L., Ivey D.D., Stenmark K.R. Endothelin-1, the unfolded protein response, and persistant inflammation: role of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2012; 46 (1): 14–22. PMID: 21778413. DOI: 10.1165/rcmb.2011-0506OC

19. Kimmoun A. Noery E. Auchet T. Dacron C. Levy B. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care. 2015; 19: 175–187. PMID: 25887601. DOI: 10.1186/s13054-015-0896-7

20. Russell J.A. Bench-to-bedside review: vasopressin in the management of septic shock. Crit Care. 2011; 15 (4): 226–244. PMID: 21892977. DOI: 10.1186/cc8224

21. Velissaris D., Karamouzos V., Klenopoulos N., Pierrakos C., Karanikolas M. The use of sodium bicarbonate in the treatment of acidosis in sepsis: a literature update on a long term debate. Crit Care Res Pract. 2015; 2015: 605–603. PMID: 26294968. DOI: 10.1155/2015/605380

22. Forstmann U., Müntzel T. Endothelial nitric oxide synthase in vascular disease: from bench to model to man. Circulation. 2006; 113 (13): 1703–1714. PMID: 16585403. DOI: 10.1161/CIRCULATIONAHA.105.602532

23. Marik P.E., Khangoora V., Rivera R., Hooper M.H., Catravas J. Hydrocortisone, vitamin C and thiamine for the treatment of severe Sepsis and septic shock: a systematic review and meta-analysis. Crit Care. 2015; 19 (1): 29. PMID: 25306498. DOI: 10.1186/s13054-015-0691-x

24. Lianda L., Rosenblatt-Veln N., Pucher P. Role of peroxynitrite in the cardiovascular dysfunction of septic shock. J Vasc Pharmacol. 2013; 61 (1): 33–43. PMID: 23604980. DOI: 10.1007/s40257-012-0026-9

25. Saizo C. Hydrogen sulfide and its therapeutic potential. Nat Rev Drug Discov. 2007; 6 (11): 917–935. PMID: 17948022. DOI: 10.1038/nrd2425

26. Koeutter J.R., Isbel T.S., Patel R.P., Benavides G.A., Dickenson D.A., Patel R.P., Dudley-Usmar V.M., Lancaster J.R., Jr., Doeller J.E. Krass D.W. Hydrogen sulfide mediates vasoreactivity in an O2-dependent manner. Am J Physiol Heart Circ Physiol. 2007; 294 (2): 11953–60. PMID: 17257242. DOI: 10.1152/ajpheart.00193.2006

27. Ali M.Y., Ping C.Y., Mok Y.Y., Liu L., Whiteman M., Bhatia M., Moore P.K. Regulation of vascular nitric oxide in vitro and in vivo: a new role for endogenous hydrogen sulphide? Br J Pharmacol. 2006; 149 (6): 625–634. PMID: 17106507. DOI: 10.1038/sj.bjp.0706906

28. Keung E.C., Li Q. Lactate activates ATP-sensitive potassium channels in Guinea pig ventricular myocytes. J Clin Invest. 1991; 88 (5): 1772–1777. PMID: 1995999. DOI: 10.1172/JCI151497

29. Levy B., Fritz C., Tahan E., Jacquot A., Auchet T., Kimmoun A. Vasopres- legia treatments: the past, the present, and the future. Crit Care. 2016; 20 (1): 229. PMID: 19539194. DOI: 10.1186/s13054-016-1006-1

30. Kimmoun A., Ducrocq N., Levy B. Mechanisms of vascular hyporesponsiveness in septic shock. Curr Vasc Pharmacol. 2013; 11: 139–149. PMID: 23725736. DOI: 10.2174/156722413803582009

31. Ghosh S., Liu M.S. Changes in alpha-adrenergic receptors in dog li- vers during endotoxic shock. J Surg Res. 1983; 34 (3): 239–245. PMID: 6300552. DOI: 10.1016/0022-4804 (83)90066-5

32. Baretz L.K, Singer M., Clapp L.H. Vasopressin: mechanisms of action on the vasculature in health and in septic shock. Circulation. 2007; 105 (20): 2494–2499. PMID: 17507611. DOI: 10.1161/01.CIR.102.19.2434

33. Sapsicha Y.Y., Fot E.V., Kuzkov V.V., Ilina Ya.Yu., Kirov M.Yu. Sepsis-induced damage to endothelial glyocalyx (literature review). Vestnik intensivnoj terapii imeni A.I. Saltanova. 2019; 2: 32–39 [In Russ.]. DOI: 10.21320/1813-9779-2019-2-32-39

34. Spinks J.K., Cohen J., Evans T.J. The cytoplasmic responsive vascular smooth muscle cell inducer of nitric oxide synthase. Activation by nuclear factor-kappa B. J Biol Chem. 1995; 270 (49): 29541–7. PMID: 7493996. DOI: 10.1074/jbc.270.49.29541

35. Basset C., Maupol V., Greller B., Bernard B., Capellier G., Berthelot A., Barale F. Myocardial and vascular adrenergic alterations in a rat model of endotoxin shock: reversal by an antinociception factor-alpha mononuclear anti-inflammatory monoclonal antibody. Crit Care Med. 1997; 25: 504–511. PMID: 9116609. DOI: 10.1097/00003158-199705000-00021

36. Sapsicha Y.Y., Fot E.V., Kuzkov V.V. Revascularization of patients with sepsis and septic shock in a multi- specialty hospital. Moscow: Moscow; 2015. 35 p [In Russ.] ISBN 978-5-98511-299-3

37. Bachin J.-S. and Dellingier R. Timing of norepinephrine in septic pa- tients: NOT too little too late. Crit Care. 2014; 18 (6): 691–692. PMID: 25672524. DOI: 10.1186/1305-4147-18-691

38. Arslantas M.K., Gai E, Karamouzos V., Sarpal G., Ayaboglu H.O., Cinel I. Early administration of low dose norepinephrine for the prevention of organ dysfunctions in patients with sepsis. Intensive Care Med Exp. 2015; 3 (1): 417–421. PMID: 24798466. DOI: 10.1186/2095-4253-3-S1-A417-418

39. Dubin A., Lattanzio B., Gatti L. The spectrum of cardiovascular effects of dobutamine — from healthy subjects to septic shock patients. Rev
too long. Shock. 2015; 44 (4): 305–309. PMID: 26125087, DOI: 10.1097/SHK.0000000000000426.
61. Jensen CS, Dean C, Jorgensen P, Joyn G M. Outcome of pati- ents receiving high dose vasopressor therapy: a retrospective cohort study. Anaesth Intensive Care. 2009; 37 (2): 286–289. PMID: 1940944, DOI: 10.1177/031005720809700163.
62. Wu JY, Stollings JL, Wheeler A-P, Semler M-W, Rice TW. Efficacy and Outcomes After Vasopressin Guideline Implementation in Septic Shock. Ann Pharmacother. 2017; 51 (1)–30. PMID: 27630192, DOI: 10.1177/0003955016658613.
63. Kozoi I-A, Tyurin I-N, Raubhart S A. Early hemodynamic predictors of fatal outcome of abdominal sepsis. Vestnik anestesiologii i reani- matologii. 2018; 15 (2): 6–5 [In Russian]. DOI: 10.22192/2078-5658-2018-15-2-6-15.
64. Enrico C, Kanoore Edul V.S., Vasquez A-R, Pein M.C., Perez de la Hoz R.A., Ince C, Dubin A. Systemic and microcirculatory effects of dobuta- mine in patients with severe sepsis/Septic shock. BMJ. 2012; 27 (6): 630–638. PMID: 23084135, DOI: 10.1136/bmj.d2012.08.002.
65. Sato R, Natsu M A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015; 3: 48–54. PMID: 25666443, DOI: 10.4086/jic.2015.01.015-012-5. PMID: 23084135, DOI: 10.1136/bmj.d2012.08.002.
66. Marks J.A., Pascual J.L. Se lepressin in septic shock: sharpening the VASST status of vasopressin? Crit Care Med. 2014; 42 (7): 1747–1748. PMID: 24933060, DOI: 10.1097/CCM.0000000000000420.
67. Russell J A, Flejel C, Hsu L, Lee T, Boyd J, Thair S, Singer J, Patterson A J, Wi ley K R, Vasopressin comparison in sepsis via improving tissue blood flow. J Surg Res. 2016; 10 (1) 274–282. PMID: 26823545, DOI: 10.1016/j.jss.2016.07.016.
68. Bihari S, Prakash S, Bersten A Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42 (2): 671–674. PMID: 25233186.
69. Hammond D, Fick O A, Painter J T, McCuin K, Callen J, Brotherton A L, Kakkar K, Chopra D, Meena N. Prospective, open-label trial of early, concomitant vasopressin and nor epinephrine therapy versus initial nor epinephrine monotherapy in septic shock. Pharmacotherapy. 2018; 38 (5): 531–538. PMID: 29006924, DOI: 10.1002/phar.2105.
70. Morelli A, Erttner C, Behrberg S, Lange M, Orcioni A, Cecchini V, Bartoni D, O’Dell A, Esper D, Van Aken H, Pietropaoli P, Westphal M. Continuous terlipressin versus vasopressin infusion in septic shock: INCAP trial. Crit Care Med. 2018; 46 (4): 671–674. PMID: 2933186.
71. Zhou F H, Song Q Clinical trials comparing nor epinephrine with vasopressin in patients with septic shock: a meta-analysis. Mil Med Res. 2014; 1–6. PMid: 25222684, DOI: 10.204/9369-1-6.
72. O’Brien A, Clapp L, Singer J,戍iter D, Cooper D J, Holmes C L, Mehta S, Granston J T, Storms M M, Cook D J, Presnell J J, Ayers D. Vasopressin versus nor epinephrine infusion in pa- tients with septic shock. N Eng J Med. 2008; 358 (9) : 877–887. PMID: 18305265, DOI: 10.1056/NEJMoa0706737.
73. O’Brien A, Clapp L, Singer J,戍iter D, Cooper D J, Holmes C L, Mehta S, Granston J T, Storms M M, Cook D J, Presnell J J, Ayers D. Vasopressin versus nor epinephrine infusion in patients with septic shock. Crit Care Med. 2009; 13 (4): R130–143. PMID: 19664253, DOI: 10.1186/cc7990.
74. Zhou H E, Song Q Efficacy and safety of vasopressin therapy in patients with septic shock: a meta-analysis. Ann Pharmacother. 2017; 51 (1) 13–20. PMID: 27630192, DOI: 10.1177/0003955016658613.
75. Bihari S, Prakash S, Bersten A Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42 (2): 671–674. PMID: 25233186.
76. Bihari S, Prakash S, Bersten A Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42 (2): 671–674. PMID: 25233186.
77. Bihari S, Prakash S, Bersten A Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42 (2): 671–674. PMID: 25233186.
78. Bihari S, Prakash S, Bersten A Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42 (2): 671–674. PMID: 25233186.
79. Bihari S, Prakash S, Bersten A Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42 (2): 671–674. PMID: 25233186.
80. Bihari S, Prakash S, Bersten A Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42 (2): 671–674. PMID: 25233186.
81. Bihari S, Prakash S, Bersten A Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42 (2): 671–674. PMID: 25233186.
82. Bihari S, Prakash S, Bersten A Low-dose vasopressin in addition to noradrenaline may lead to faster resolution of organ failure in patients with severe sepsis/septic shock. Anaesth Intensive Care. 2014; 42 (2): 671–674. PMID: 25233186.
81. Morelli A., Ertmer C., Lange M., Dunser M., Rehberg S., Van Aken H., Pietropaoli P., Westphal M. Effects of short-term simultaneous infusion of dobutamine and terlipressin in patients with septic shock: the DOBUPRESS study. Br J Anaesth. 2008; 100 (4): 494–503. PMID: 18308741, DOI: 10.1093/bja/aen017
82. Zhu Y., Huang H., Xi X., Du R. Terlipressin for septic shock patients: a meta-analysis of randomized controlled study. Journal of Intensive Care. 2019; 7; 16–24. DOI: 10.1186/s40560-019-0369-1
83. Russell J.A., Vincent J.L., Kjøblye A.L., Olsson H., Blemings O., Spapen H., Carl P., Latteire P.-F., Grandemarl L. Selepressin, a novel selective vasopressin V1a agonist, is an effective substitute for norepinephrine in a phase Ila randomized, placebo-controlled trial in septic shock patients. Crit Care. 2017; 21 (1): 213–222. PMID: 28807037. DOI: 10.1186/s13054-017-1798-7.
84. Gutteling J., Armand R.J. Girbes. Vasoactive medication and RCTs: an impossible marriage. ICU Management & Practice. 2018; 18 (3): 164–170.
85. Chawla L.S., Busse L., Brasha-Mitchell E., Davison D., Honig J., Alothali Z., Seneff M.G. Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care. 2014; 18 (5): 534–542. PMID: 25286986, DOI: 10.1186/s13054-014-0534-9
86. Jentzer J.C., Vallabhajosyula S., Khanna A.K., Chawla L.S., Busse L.W., Kashani K.B. Management of Refractory Vasodilatory Shock. Chest. 2018; 154 (2): 416–426 PMID: 29329694, DOI: 10.1016/j.chest.2017.12.021.
87. Kwok E.S., Howes D. Use of methylene blue in sepsis: a systematic review. J Intensive Care Med. 2006; 21: 359–363. PMID: 17095500, DOI: 10.1177/0885066606290671
88. Kirov M.Y., Evgenov O.V., Evgenov N.V., Egorina E.M., Sovershaev M.A., Sveinbjörnsson B., Bjertnaes L.J. Infusion of methylene blue in human septic shock: a pilot, randomized, controlled study. Crit Care Med. 2001; 29: 1860–1867. PMID: 11588440, DOI: 10.1097/00003246-200110000-00002
89. Volkov V.E., Volkov S.V. The role of glucocorticoid hormones and vasopressors in the treatment of septic shock. Acta medica Eurasica. 2018; 4: 1–8

Поступила 23.11.19

82. Zhu Y., Huang H., Xi X., Du R. Terlipressin for septic shock patients: a meta-analysis of randomized controlled study. Journal of Intensive Care. 2019; 7; 16–24. DOI: 10.1186/s40560-019-0369-1