Convex Drawings of the Complete Graph:
Topology meets Geometry

Alan Arroyo∗++, Dan McQuillan±,
R. Bruce Richter†++, and Gelasio Salazar∗×

LaTeX-ed: March 2, 2022

Abstract

In this work, we introduce and develop a theory of convex drawings of the complete graph K_n in the sphere. A drawing D of K_n is convex if, for every 3-cycle T of K_n, there is a closed disc Δ_T bounded by $D[T]$ such that, for any two vertices u, v with $D[u]$ and $D[v]$ both in Δ_T, the entire edge $D[uv]$ is also contained in Δ_T.

As one application of this perspective, we consider drawings containing a non-convex K_5 that has restrictions on its extensions to drawings of K_7. For each such drawing, we use convexity to produce a new drawing with fewer crossings. This is the first example of local considerations providing sufficient conditions for suboptimality. In particular, we do not compare the number of crossings with the number of crossings in any known drawings. This result sheds light on Aichholzer’s computer proof (personal communication) showing that, for $n \leq 12$, every optimal drawing of K_n is convex.

Convex drawings are characterized by excluding two of the five drawings of K_5. Two refinements of convex drawings are h-convex and f-convex drawings. The latter have been shown by Aichholzer et al (Deciding monotonicity of good drawings of the complete graph, Proc. XVI Spanish Meeting on Computational Geometry (EGC 2015), 2015) and, independently, the authors of the current article (Levi’s Lemma, pseudolinear drawings of K_n, and empty triangles, J. Graph Theory DOI: 10.1002/jgt.22167), to be equivalent to pseudolinear drawings. Also, h-convex drawings are equivalent to pseudospherical drawings as demonstrated recently by Arroyo et al (Extending drawings of complete graphs into arrangements of pseudocircles, submitted).

These concepts give a hierarchy of drawings of complete graphs, from most restrictive to most general: rectilinear, f-convex, h-convex, convex, general topological. This hierarchy provides a framework to consider generalizations of various geometric questions for point sets in the plane. We briefly discuss two: numbers of empty triangles and existence of convex k-gons.

∗Supported by CONACYT.
†Supported by NSERC.
+University of Waterloo, ±Norwich University, and ×UASLP
For all of these levels of convexity, we are interested in forbidden structure characterizations. For example, topological drawings are required to be “good”, so they are determined by forbidding two closed edges that intersect twice (there are essentially three forbidden structures). Convex drawings are characterized by excluding, in addition, the two non-rectilinear K_5’s, while h-convex drawings are characterized by excluding, in addition, a particular drawing of K_6.

1 Introduction

We begin with the notion of a convex drawing of K_n. If D is a drawing of a graph G, and H is a subgraph of G (or even a set of vertices and edges of G), then we let $D[H]$ denote the drawing of H induced by D.

Definition 1.1 Let D be a drawing of K_n in the sphere.

1. If T is a 3-cycle in K_n, then a closed disc Δ bounded by $D[T]$ is a convex side of T if, for any distinct vertices x and y of K_n such that $D[x]$ and $D[y]$ are both contained in Δ, then $D[xy]$ is also contained in Δ.

2. The drawing D is convex if every 3-cycle of K_n has a convex side.

As is usual (though certainly not universal) in the context of drawings, we forbid any crossing between edges incident with a common vertex and more than one crossing between any two edges. The first of these implies that, in a drawing D of K_n, for a 3-cycle T, $D[T]$ is a simple closed curve.

We will see in Section 2 that the special case that one of x, y in Definition 1.1 is in T is especially interesting: it essentially characterizes convex drawings.

There is a long-standing conjecture due to the artist Anthony Hill; this attribution is provided by Beineke and Wilson in their attractive history [11] of crossing numbers. The conjecture asserts (see [17]) that the crossing number $\text{cr}(K_n)$ of K_n is equal to

$$H(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor.$$

We came upon convex drawings in attempting to extend the work of Ábrego et al [2] that “shellable drawings” of K_n have at least $H(n)$ crossings. We were trying to prove some technical fact (now lost in the mists of time) and could do so for what turned out to be convex drawings. In investigating these drawings further, we realized they have many nice properties. Moreover, there are a few natural levels of convexity, as we see in the next definition.
Definition 1.2 Let D be a convex drawing of K_n.

1. Then D is hereditarily convex (abbreviated to h-convex) if there is a choice Δ_T of convex sides of each 3-cycle T such that, if T and T' are 3-cycles such that $D[T'] \subseteq \Delta_T$, then the closed disc $\Delta_{T'}$ bounded by T' that is contained in Δ_T is a convex side of T'.

2. Then D is face convex (abbreviated to f-convex) if there is a face Γ of D such that, for every 3-cycle T of K_n, the side of $D[T]$ disjoint from Γ is convex.

It is an easy exercise to prove that an f-convex drawing is also h-convex. Moreover, every recti- or pseudolinear drawing of K_n is f-convex, with Γ being the infinite face. In fact, Aichholzer et al [3] and, independently, the current authors [5] have shown that f-convex is equivalent to pseudolinear. Generalizing great circle drawings in the sphere, Arroyo et al [7] have introduced a natural notion of “pseudospherical drawings” of K_n in the sphere; they are exactly the h-convex drawings.

Thus, there is a hierarchy of drawings from most to least restrictive:

1. rectilinear;
2. f-convex (= pseudolinear);
3. h-convex (= pseudospherical);
4. convex; and
5. topological.

Intriguingly, Aichholzer (personal communication) has computationally verified (using our characterization Lemma 2.8 below) that, for $n \leq 12$, every optimal topological drawing of K_n is convex.

In Figure 1.3 are two drawings of K_5, one of K_6, and one of K_8. These are: the two (up to spherical homeomorphisms) non-convex drawings \tilde{K}_5^3 and \tilde{K}_5^5 of K_5 with three and five crossings, respectively; the drawing K_6^{11} of K_6, which is convex but not h-convex; and the drawing TC_8 of K_8, which is the “tin can drawing” and is h-convex but not f-convex.

The two K_5’s in Figure 1.3 are precisely the non-rectilinear drawings of K_5. Lemma 2.8 shows that a drawing D of K_n is convex precisely when each of its K_5’s is homeomorphic to one of the rectilinear K_5’s. Therefore, convexity may understood as “local rectilinearity”. This is where the topological and geometric intersect.

Thinking about the convexity hierarchy, it is natural to wonder about generalizing problems about point sets in general position in the plane to drawings of complete graphs.
One question of long-standing interest is: given \(n \) points in general position in the plane, how many of the 3-tuples (that is, triangles) have none of the other points inside the triangle (empty triangle)? Currently, we know that there can be as few as about \(1.6n^2 + o(n^2) \) empty triangles [10] and every set of \(n \) points has at least \(n^2 + O(n) \) empty triangles \((n^2 + o(n^2)) \) first proved in [9]. In [5], we proved the \(n^2 + o(n^2) \) bound also holds for f-convex drawings. At the other extreme, Harborth [18] presented an example of a topological drawing of \(K_n \) having only \(2n - 4 \) empty triangles, while Aichholzer et al [4] show that every topological drawing of \(K_n \) has at least \(n \) empty triangles. We have shown in [5] that every convex drawing of \(K_n \) has at least \(\frac{1}{3}n^2 + O(n) \) empty triangles. For h-convex, it is shown in [7], using the f-convex result and other facts about h-convex drawings, that there are at least \(\frac{3}{4}n^2 + o(n^2) \) empty triangles. We would be interested in progress related to the coefficients \(\frac{1}{3} \) and \(\frac{3}{4} \).

Another question of interest is: given \(n \) points in general position in the plane, what is the largest \(k \) so that \(k \) of the \(n \) points are the corners of a convex \(k \)-gon? In Theorem 3.2 we will generalize to convex drawings the Erdős-Szekeres theorem [13] that, for every \(k \), there is an \(n \) such that every \(n \) points in general position has a set of \(k \) points that are the corners of a convex \(k \)-gon. Finding the least such \(n \) is of current interest. Suk [27] has shown that \(2^{k+o(k)} \) points suffices in the geometric case. For \(k = 5 \), 9 points is best possible in the rectilinear case (see Bonnice [12] for a short proof).

For a general drawing \(D \) of \(K_n \), we can ask whether there is a subdrawing \(D[K_k] \) such that one face is bounded by a \(k \)-cycle: this is a natural drawing of \(K_k \). Bonnice’s proof adapts easily to the pseudolinear case (that is, the f-convex case). Aichholzer (personal communication) has verified by computer that 11 points is best possible for \(k = 5 \) in the convex case. Our characterization Theorem 4.5 of h-convex implies 11 is also best possible for h-convex. For general drawings, there need not be a natural \(K_5 \); one example is \(\tilde{K}_5 \). Harborth’s example having only \(2n - 4 \) empty triangles has every \(K_5 \) homeomorphic to \(\tilde{K}_5 \).
These geometric connections open up new possibilities for studying the original geometric questions and also to seeing how the results differ for convex drawings.

Section 2 introduces many fundamental properties of a convex drawing D of K_n, including showing convexity of D is equivalent to not containing either of the two non-rectilinear drawings of K_5 (the first two drawings in Figure 1.3). Another equivalence is that every 3-cycle T has a side such that every vertex v on that side is such that $D[T + v]$ induces a non-crossing K_4.

Section 3 proves that a convex drawing D of K_n has a particularly nice structure: there is a natural K_r such that $D[K_r]$ has a face Γ bounded by an r-cycle C; if $D[v]$ is in Γ and $D[w]$ is in the closure of Γ, then $D[vw]$ is in $\Gamma \cup \{D[w]\}$; and if $D[v]$ and $D[w]$ are in the complement of Γ, then $D[vw]$ is in the complement of Γ. This structure theorem provides hope for showing that a convex drawing of K_n has at least $H(n)$ crossings.

Section 4 treats h-convex drawings. The main result here is that a convex drawing D is h-convex if and only if there is no K_6 such that $D[K_6]$ is K_11 in Figure 1.3. We do not know a comparable result distinguishing f-convex drawings from h-convex. The tin can drawing TC_8 of K_8 in Figure 1.3 is one such (as are the larger tin can drawings). However it is not clear to us whether TC_8 is the only minimal one or, indeed, if there are only finitely many minimal distinguishing examples. The final result of the section is that testing a set of convex sides for h-convexity is also a “Four Point Property”, which is to say that it can be verified by checking all sets of four points.

Finally, in Section 5, we suppose J is a non-convex K_5 in a drawing D of K_n such that every K_7 that contains J has no other non-convex K_5. The main result of this section is that there is a second drawing D' of K_n such that $cr(D') < cr(D)$. There is no reference to $H(n)$ in the argument. This is the first result of such a local nature. This theorem is related to Aichholzer’s empirical observation that, for $n \leq 12$, every optimal drawing of K_n is convex.

level	characterization	distinguish
general	edges share ≤ 1 point	
convex	general, no \tilde{K}_3, \tilde{K}_5	\tilde{K}_3
h-convex	convex, no K_6^{11}	K_6^{11}
f-convex	h-convex + ??	TC_8
rectilinear	f-convex + ??	Pappus
This work will provide characterizations of the different kinds of convexity and distinguishing between them by examples and theorems. Our efforts are summarized in the above table.

2 Convex drawings

In this section we introduce the basics of convexity. We already mentioned in the introduction that the two drawings \tilde{K}_3^5 and \tilde{K}_5^5 of K_5 in Figure 1.3 are not convex. In fact, their absence characterizes convexity. We first prove some intermediate results that make this completely clear. Our first observation is immediate from the definition of convex side and is surprisingly useful.

Observation 2.1 If J is such that $D[J]$ is a crossing K_4, and T is a 3-cycle in J, then the side of $D[T]$ containing the fourth vertex in J is not convex.

We had some difficulty deciding on the right definition of convexity. At the level of individual 3-cycles, the definition given in the introduction makes more sense. At the level of a drawing being convex, there is a simpler one, as shown in the next lemma and, more particularly, its Corollary 2.4: we only need to test single points in the closed disc Δ and how they connect to the three corners.

Definition 2.2 Let D be a drawing of K_n, let T be a 3-cycle in K_n, and let Δ be a closed disc bounded by $D[T]$. Then Δ has the Four Point Property if, for every vertex v of K_n not in T such that $D[v] \in \Delta$, $D[T + v]$ is a non-crossing K_4.

Lemma 2.3 Let D be a drawing of K_5 such that the side Δ of the 3-cycle T has the Four Point Property. Suppose u and v are vertices of K_5 such that $D[u], D[v] \in \Delta$. If $D[uv]$ is not contained in Δ, then there is a vertex b of T such that neither side of the 3-cycle induced by u, v, and b satisfies the Four Point Property; in particular, neither side is convex.

Proof. Since Δ_T has the Four Point Property, neither u nor v is in T. Because $D[u]$ and $D[v]$ are both on the same side of $D[T]$, $D[uv]$ crosses $D[T]$ an even number of times. However, $D[uv]$ crosses each of the three sides of $D[T]$ at most once, so $D[uv]$ crosses $D[T]$ at most three times. Thus, $D[uv]$ crosses $D[T]$ either 0 or 2 times.

As $D[uv]$ is not contained in Δ_T, $D[uv]$ crosses $D[T]$ a positive number of times. We conclude they cross exactly twice. Label the vertices of T as a, b, and c so that $D[uv]$ crosses both $D[ab]$ and $D[ac]$.

6
Since $D[T + u]$ is a non-crossing K_4, the three edges of $T + u$ incident with u partition Δ_T into three faces, each incident with a different two of a, b, and c. Because $D[uv]$ crosses $D[ab]$ and $D[ac]$, but not any of the three edges of $T + u$ incident with u, v must be in one of the faces of $D[T + u]$ incident with a. We choose the labelling so that v is in the face of $D[T + u]$ incident with both a and c.

The Four Point Property implies $D[vb]$ is contained in Δ_T. It must cross either $D[ua]$ or $D[uc]$. To show that it crosses $D[uc]$, we assume by way of contradiction that it crosses $D[ua]$. Let \times be the point where $D[ab]$ crosses $D[uv]$. Then $D[vb]$ must exit the region incident with a, u, and \times, but it cannot cross either $D[ab]$ or $D[uv]$, and it cannot cross $D[au]$ a second time. This contradiction shows $D[vb]$ crosses $D[uc]$.

Let T' be the 3-cycle with vertices u, v, and b. By the original labelling of T, $D[ac]$ crosses $D[uv]$. The Four Point Property applied separately to T with u and T with v shows that no other edge of $D[T']$ is crossed by $D[ac]$. Therefore, $D[c]$ is on the side of $D[T']$ not containing $D[a]$.

We know $D[ab]$ and $D[uv]$ cross, so the side of $D[T']$ containing a does not satisfy the Four Point Property. We now know that $D[uc]$ crosses $D[vb]$. This shows that the side of $D[T']$ containing c does not satisfy the Four Point Property, so neither side of $D[T']$ has the Four Point Property, as required.

Obviously, if Δ is a convex closed disc bounded by $D[T]$, then Δ has the Four Point Property. The following yields a kind of global converse.

Corollary 2.4 Let D be a drawing of K_n and, for each 3-cycle T in K_n, let Δ_T be a closed disc bounded by $D[T]$. Suppose, for each T, Δ_T has the Four Point Property. Then each Δ_T is convex; in particular, D is convex.

Proof. Suppose that there is a T such that Δ_T is not convex. Then there are vertices u, v of K_n such that both $D[u]$ and $D[v]$ are in Δ_T, but $D[uv]$ is not contained in Δ_T. Lemma 2.3 implies there is a vertex b of T such that the 3-cycle induced by u, v, and b does not satisfy the Four Point Property. This contradicts the hypothesis.

Let D be a drawing of K_n, let u be a vertex of K_n, and let J be a complete subgraph of $K_n - u$. If $D[J]$ is natural and $D[u]$ is in the face of $D[J]$ bounded by a $|V(J)|$-cycle, then u is planarly joined to J if no edge from $D[u]$ to $D[J]$ crosses any edge of J.

Corollary 2.5 Let D be a convex drawing of K_5 with vertices u, v such that $D - \{u, v\}$ is the 3-cycle T. If $D[u]$ and $D[v]$ are in the same face of $D[T]$ and u and v are both planarly joined to T, then $D[uv]$ is in the same face of $D[T]$ as $D[u]$ and $D[v]$.

7
Proof. Since D is convex, for each 3-cycle T' of K_5, $D[T']$ has a convex side $\Delta_{T'}$. Replace Δ_T with the side of $D[T]$ that contains $D[u]$ and $D[v]$. Then each of the chosen sides satisfies the Four Point Property. Lemma 2.3 implies the chosen sides are convex; in particular, Δ_T is a convex side of $D[T]$. By definition, $D[uv]$ is contained in Δ_T, as required.

The following is a useful variation of non-convexity.

Corollary 2.6 A drawing D of K_n is not convex if and only if there exists a 3-cycle T of K_n such that, for each side Δ of $D[T]$, there is a vertex v_Δ not in T such that $D[v_\Delta] \in \Delta$ and $D[T + v_\Delta]$ is a crossing K_4.

Proof. Observation 2.1 shows that if D is convex, then no such 3-cycle can exist. Conversely, Corollary 2.4 implies that some 3-cycle T of K_n does not have a side that satisfies the Four Point Property. This implies that, for each side Δ of $D[T]$, there is a vertex v_Δ such that $D[T + v_\Delta]$ is a crossing K_4, as required.

Our final corollary of Lemma 2.3 shows that, in a convex drawing, any non-convex side a of 3-cycle is determined by a crossing K_4 containing the 3-cycle.

Corollary 2.7 Let D be a convex drawing of K_n and let Δ be a closed disc bounded by a 3-cycle T in D. Then Δ is not convex if and only if there exists a vertex w such that $D[w] \in \Delta$ and $D[T + w]$ is a crossing K_4.

Proof. If there is such a vertex w, then evidently Δ is not convex. Conversely, suppose Δ is not convex. By definition, there exist vertices u, v such that $D[u], D[v] \in \Delta$ but $D[uv] \not\subseteq \Delta$. If either u or v is in T, then we are done, so we may assume neither u nor v is in T. Moreover, we may assume that Δ has the Four Point Property, as otherwise we are done. But now Lemma 2.3 implies there is a vertex b of T such that the 3-cycle T' induced by u, v, b has both sides not satisfying the Four Point Property. Thus, neither side of T' is convex, contradicting the hypothesis that D is convex.

We came to the concept of convexity by considering drawings of K_n without the two drawings \overline{K}_5^3 and \overline{K}_5^5 (see Figure 1.3) of K_5 for reasons that have been subsumed by some of the developments described in this article. Since the remaining drawings of K_5 are rectilinear, we think of such drawings of K_n as locally rectilinear. Our next result is the surprising equivalence with convexity and this led us to consider convexity and its strengthenings to h- and f-convex.
Lemma 2.8 A drawing D of K_n is convex if and only if, for every subgraph J of K_n isomorphic to K_5, $D[J]$ is not isomorphic to either $\widetilde{\overline{K}}_5^3$ or $\widetilde{\overline{K}}_5^5$.

Proof. In the drawing of $\widetilde{\overline{K}}_5^3$ in Figure 1.3, we see that a 3-cycle consisting of one of the edges that is not a straight segment together with the longer horizontal edge has no convex side. In the drawing of $\widetilde{\overline{K}}_5^5$, there are two 3-cycles that have the “interior vertex” in their interiors. Neither of these 3-cycles is convex. Thus, these two drawings of K_5 cannot occur in a convex drawing of K_n.

Conversely, in a rectilinear drawing of K_5, the bounded side of each 3-cycle has the Four Point Property. Thus, Corollary 2.4 shows a rectilinear drawing of K_5 is convex. On the other hand, Corollary 2.6 shows every non-convex drawing of K_n contains a non-convex drawing of K_5. Such a drawing is either $\widetilde{\overline{K}}_5^3$ or $\widetilde{\overline{K}}_5^5$.

A further perusal of the five drawings of K_5 shows that the following further refinement of forbidden substructures is possible. This configuration was mentioned at Crossing Number Workshop 2015 (Rio de Janeiro) in the context of being one forbidden configuration for a drawing of an arbitrary graph to be pseudolinear.

![Figure 2.9: The drawing \widetilde{P}_4.](image)

Lemma 2.10 Let D be a drawing of K_n. Then D is convex if and only if, for every path P of length 4, $D[P]$ is not isomorphic to \widetilde{P}_4.

Proof. It is routine to verify that each of \widetilde{K}_5^3 and \widetilde{K}_5^5 contains the configuration \widetilde{P}_4. Conversely, if \widetilde{P}_4 is present in D for the path P, then let u and v be the ends of P and u' and v' their neighbours in P. Each edge of P is incident with either u' or v', so $D[u'v']$ does not cross any edge of P. Therefore, $D[u'v']$ is in the face of $D[P]$ incident with both u' and v'.

Let T be the 3-cycle $(P - \{u, v\}) + u'v'$. Then $D[u]$ and $D[v]$ are on opposite sides of $D[T]$. Since $D[uu']$ and $D[vv']$ both cross $D[T]$, neither side of $D[T]$ is convex, showing D is not convex.

9
We will use the following observation in Section 5. Its proof, left to the reader, is a good exercise in using the fact that no two closed edges can have two points in common.

Observation 2.11 Let \(D \) be a drawing of \(K_5 \) in which some 3-cycle is crossed three times by a single edge. Then \(D \) is \(\tilde{K}_5 \) (as in Figure 1.3).

3 Convexity and natural drawings of \(K_n \)

We recall from Section 1 that a natural drawing of \(K_n \) is a drawing in which an \(n \)-cycle bounds a face \(\Gamma \). It is easy to see that, in any natural drawing of \(K_n \), every 3-cycle \(T \) has a side \(\Delta_T \) that is disjoint from \(\Gamma \) and there is no vertex of \(K_n \) in the interior of \(\Delta_T \). Thus, \(\Gamma \) and the \(\Delta_T \) show that a natural drawing of \(K_n \) is f-convex.

In this section, we show that if \(D \) is a convex drawing of \(K_n \) with the maximum number \(\binom{n}{4} \) of crossings, then \(D \) is a natural drawing of \(K_n \). This leads us to a structure theorem for convex drawings of \(K_n \) whose central piece is, for some \(r \geq 4 \), a natural drawing of \(K_r \). It also leads to the Erdős-Szekeres Theorem for convex drawings: for every \(r \geq 5 \), if \(n \) is sufficiently large, then every convex drawing of \(K_n \) contains a natural \(K_r \).

Lemma 3.1 Let \(D \) be a drawing of \(K_n \). Then \(D \) is a convex drawing of \(K_n \) with \(\binom{n}{4} \) crossings if and only if \(D \) is a natural drawing of \(K_n \).

Proof. From the remarks preceding the lemma, it suffices to assume \(D \) is a convex drawing of \(K_n \) with \(\binom{n}{4} \) crossings and show that \(D \) is a natural drawing of \(K_n \).

We proceed by induction, with the base case \(n = 4 \) being trivial. Suppose now that \(n > 4 \). Let \(v \) be any vertex of \(K_n \) and apply the inductive assumption to \(K_n - v \), so \(D[K_n - v] \) has a Hamilton cycle \(H \) bounding a face \(\Gamma \) of \(D[K_n - v] \). Every 3-cycle in \(K_n - v \) has a convex side disjoint from \(\Gamma \).

Suppose by way of contradiction that \(D[v] \) is on the side of \(D[H] \) disjoint from \(\Gamma \). Then \(D[v] \) is in the convex side of some 3-cycle \(T \) of \(K_n - v \) and convexity implies \(D[T + v] \) is non-crossing, a contradiction.

Therefore, \(D[v] \) is in \(\Gamma \). We start by noting the following.

Fact 1. Every edge incident with \(v \) crosses at most one edge of \(H \).

Suppose the first edge of \(H \) crossed by \(vx \) is \(cd \). Let \(J \) be the \(K_4 \) induced by \(c, d, x, \) and \(v \). Then \(vx \) crossing \(cd \) is the only crossing of \(D[J] \), so \(vx \) cannot cross \(J - x \) a second time. In particular, \(D[vx] \) does not cross \(H \) a second time.

The next fact is the main part of the proof.
Fact 2. All edges incident with v that cross an edge of H cross the same edge of H.

In the alternative, there are edges vw and vx crossing edges ab and cd of H such that $ab \neq cd$. We may use the symmetry between a and b to suppose that cd is in the \emph{aw}-subpath of $H - ab$. Because vx does not cross vw, Fact 1 implies x is also in the \emph{aw}-subpath of $H - ab$. Also, $vw \neq vx$ implies $x \neq w$.

Assume first that $x \neq a$. Let J be the K_4 induced by v, b, x, and w and let T be the 3-cycle $J - b$. Then, because a and b are on different sides of $D[T]$ and $D[ba]$ crosses $D[vw]$, $D[a]$ is on the convex side of $D[T]$, showing $D[T + a]$ is a non-crossing K_4. This contradiction shows $x = a$.

Because $x = a$ and vx crosses cd, $c \neq a$ and $d \neq a$. We may choose the labelling so that c is nearer to a in the \emph{aw}-subpath of $H - ab$ than d is. In this case, let T' be the 3-cycle induced by v, a, and w. Then ba shows that b is not in the convex side of $D[T']$. Therefore, the convex side is the side containing $D[c]$, showing that $D[T' + c]$ is a non-crossing K_4. This contradiction completes the proof of Fact 2.

Since some edge incident with v must cross an edge of H, there is a unique edge ab of H crossed by edges incident with v. In particular, va and vb do not cross H in D. If c were a third vertex such that vc does not cross H in D, then we would have the non-crossing K_4 induced by v, a, b, and c. It follows that every edge incident with v other than va and vb cross ab in D. Thus, $H' = (H - ab) + \{va, vb\}$ is the required Hamilton cycle in K_n that shows D is a natural drawing of K_n.

We can now easily prove the convex version of the Erdős-Szekeres Theorem. We suppose $r \geq 5$ is an integer and choose n large enough so that some subset of $V(K_n)$ of size r is such that, for each K_4 in the K_r, the K_4 has a crossing. (For $r \geq 5$, they cannot all be non-crossing.) If the drawing D of K_n is convex, Lemma 3.1 implies $D[K_r]$ is natural. We state the theorem here for reference.

Theorem 3.2 Let $r \geq 5$ be an integer. Then there is an integer $N = N(r)$ such that, if $n \geq N$ and D is a convex drawing of K_n, then there is a subgraph J of K_n isomorphic to K_r such that $D[J]$ is a natural K_r.

We remark that this statement also follows from [25, Theorem 1.2]; see the third remark in Section 6.

The remainder of this section is devoted to the following structure theorem for convex drawings. Indeed, we show that, for $n \geq 5$, every convex drawing of K_n consists of a natural K_r (for some $r \geq 4$), vertices S in the crossing side of the K_r, and every other point is in the face Γ of the K_r bounded by the r-cycle. These other points are joined to
each other and to the vertices of the K_r in Γ. This somewhat surprisingly straightforward fact has some interesting applications, especially to h-convex drawings.

Let D be a convex drawing of K_n and, for some $r \geq 4$, let J be a K_r in K_n such that $D[J]$ is natural. We set C_J to be the facial r-cycle in $D[J]$. We refer to the face of $D[J]$ bounded by C_J as the outside of J and the other side of C_J as the inside of J.

The proof uses the following elementary observations that are somewhat interesting and otherwise useful in their own right.

Lemma 3.3 Let D be a convex drawing of K_n and, for some $r \geq 4$, let J be a K_r such that $D[J]$ is natural, with facial r-cycle C_J.

1. If u is inside J, then, for each $v \in V(J)$, $D[uv]$ is inside J.
2. If u and v are both inside J, then $D[uv]$ is inside J.
3. If u and v are both outside J and planarly joined to J, then $D[uv]$ is contained in the outside of J.
4. Let u be outside of J and suppose there is a vertex v of J such that $D[uv]$ crosses C_J. Then $D[uv]$ crosses C_J exactly once.
5. Suppose u is outside of J but, for vertices v and w of J, $D[uv]$ and $D[uw]$ both cross C_J. Let e and f be the edges of C_J crossed by $D[uv]$ and $D[uw]$. Then v and w are in the same component of $C_J - \{e, f\}$.
6. Suppose u is outside of J, v is a vertex of J, and $D[uv]$ crosses C_J on the edge ab. Then $D[ua]$ and $D[ub]$ are contained in the outside of J.

Proof. We start with (1). If we consider the edges of J incident with v, they partition the inside of J into discs bounded by 3-cycles. As $|V(J)| \geq 4$, the disc containing u is the convex side of its bounding 3-cycle. Thus, $D[uv]$ is inside this disc and so is inside J.

For (2), we present an argument suggested by Kasper Szabo Lyngsie that simplifies our original. There is an edge xy in C_J such that v is in the side Δ of $D[uxy]$ that has no vertices of $J - \{x, y\}$. If there is an edge of J incident with either x or y that crosses the 3-cycle uxy, then v is in the crossing side of a natural K_4 containing u, x, and y. In this case, Δ is the convex side of uxy, so $D[uv]$ is inside Δ.

In the other case, let x' and y' be the neighbours of x and y, respectively, in $C_J - xy$. Then Δ is contained in the convex side Δ' of the 3-cycle $x'xy$, and again $D[uv]$ is contained in Δ' and consequently inside J. (We remark, in fact $D[uv]$ is contained inside Δ, but vx or vy might cross uxy, so Δ need not be the convex side of uxy.)
Moving on to (3), let x, y, z be any three vertices of J and let L be the K_5 induced by u, v, x, y, z. Then $D[L]$ is a convex drawing of K_5. Let T be the 3-cycle (x, y, z). The assumption that u and v are planarly drawn to T in D shows that the side Δ_T of T that contains u and v satisfies the Four Point Property in $D[L]$.

Corollary 2.5 implies that $D[uv]$ is contained in Δ_T. This is true for every three vertices of J, so $D[uv]$ is contained in the intersection of all the Δ_T’s; this is precisely the closure of the face of $D[J]$ containing $D[u]$ and $D[v]$, as required.

In the proof of (4), we suppose the first crossing of uv is with the edge xy of C_J. The 3-cycle xyv is inside J and, by the definition of drawing, uv cannot cross xyv a second time.

Turning to (5), we suppose that v and w are in different components of $C_J - \{e, f\}$ and that uv crosses e, while uw crosses f. Let x be the end of e in the component of $C_J - \{e, f\}$ containing v and let y be the end of f in the component of $C_J - \{e, f\}$ containing w. By the definition of drawing, $x \neq v$ and $y \neq w$.

The edge xw crosses uv and the edge yw crosses uw. Moreover, x and y are on different sides of the 3-cycle uvw, so uvw has no convex side, a contradiction.

For (6), it suffices by symmetry to show $D[ua]$ is outside J. In the alternative, ua crosses C_J. Since it cannot cross uv by goodness, it must cross the av-subpath of $C_J - ab$. But now ua and uv violate (5).

We now turn to the basic ingredient in the structure theorem. Let D be a convex drawing of K_n and, for some $r \geq 4$, let J be a K_r such that $D[J]$ is natural. The J-induced drawing \bar{J} consists of the subdrawing induced by $D[J]$ and all vertices inside of J. The following is the main point in the proof of the structure theorem.

Lemma 3.4 Let D be a convex drawing of K_n and, for some $r \geq 4$, let J be a K_r such that $D[J]$ is natural. If there is a vertex u outside J and a vertex v of J such that $D[uv]$ crosses C_J, then there is, for some $s \geq 4$, a K_s-subgraph J' including u such that $D[J']$ is natural and $\bar{J} \subset J'$.

Proof. Let ab be the edge of C_J crossed by uv. Lemma 3.3 (6) implies that $D[ua]$ and $D[ub]$ are contained in the outside of J. It follows that, in the av-subpath of $C_J - ab$, there is a vertex w_a nearest v such that $D[uvw_a]$ is contained in the outside of J. Likewise, there is a nearest such vertex w_b in the bv-subpath.

For any vertex x in the w_aw_b subpath P of $C_J - ab$ other than w_a and w_b, vx must cross C_J; Lemma 3.3 (4) and (6) imply vx must cross w_aw_b. It follows that vx does not cross P. Thus, the cycle consisting of u, together with P, makes the facial cycle for a natural K_s ($s = 1 + |V(P)| \geq 4$) and all the points of \bar{J} are in or inside this K_s. ■
Our structure theorem is an immediate consequence of Lemma 3.4.

Theorem 3.5 (Structure Theorem) Let \(n \geq 5 \) and let \(D \) be a convex drawing of \(K_n \). Then, for some \(r \geq 4 \), there is a \(K_r \)-subgraph \(J \) such that \(D[J] \) is natural, every vertex outside of \(J \) is planarly joined to \(J \), and any two vertices outside \(J \) are joined outside \(J \).

As a consequence of the Structure Theorem, we have the following observation.

Theorem 3.6 Let \(n \geq 5 \) and let \(D \) be a convex drawing of \(K_n \). Suppose that, for every subgraph \(J \) of \(K_n \) that is isomorphic to a \(K_4 \) and \(D[J] \) has a crossing, there are no vertices of \(K_n \) inside \(D[J] \). Then \(D[K_n] \) is either:

1. a natural \(K_n \); or

2. a natural \(K_{n-1} \) with one vertex outside that is planarly joined to the \(K_{n-1} \); or

3. the unique drawing of \(K_6 \) with three crossings.

Proof sketch. Apply the Structure Theorem 3.5 to \(D \) to get a subgraph \(J \) of \(K_n \) such that \(D[J] \) is a natural \(K_r \), with \(r \geq 4 \) and every other vertex of \(K_n \) is either inside \(D[J] \) or is outside \(J \) and planarly joined to \(J \).

Any vertex inside \(D[J] \) is in a face that is incident with a crossing of some crossing \(K_4 \) involving four vertices in \(J \). Since this is forbidden, there is no vertex inside \(D[J] \).

If there are three vertices of \(K_n \) outside \(D[J] \), then there is a crossing \(K_4 \) with a vertex inside.

If there are two vertices \(u, v \) of \(K_n \) outside \(D[J] \) and some edge from \(u \) to \(J \) crosses two edges from \(v \) to \(J \), then there is a crossing \(K_4 \) with a vertex inside. In particular, if \(r \geq 5 \), then there is at most one vertex outside \(J \).

The remaining case is \(r = 4 \) and no \(uJ \)-edge crosses two \(vJ \)-edges and no \(vJ \)-edge crosses two \(uJ \)-edges. This is the unique drawing of \(K_6 \) with three crossings.

In general, if we bound by a non-negative integer \(p \) the number of vertices allowed inside any natural \(K_4 \), there is a theorem in the spirit of Theorem 3.6. There are more special cases with \(n \) small, but if \(n \) is large enough (on the order of \(3p \)), the structure is: a natural \(K_r \), with \(r \) at least roughly \(p/3 \), and at most one of the remaining points is outside the natural \(K_r \).
4 h-convex drawings

In this section, we investigate h-convex drawings. Our main results include a characterization of h-convex drawings and a polynomial time algorithm for determining if a drawing is h-convex.

Consider the drawing K_{11}. It is convex, but not h-convex. To see that it is convex, it suffices to check the six K_5’s and observe that none of them is either \tilde{K}_3^3 or \tilde{K}_5^5. To see that it is not h-convex, consider the dashed K_4 (including the thick edge) highlighted in Figure 1.3. For this K_4, either of the 3-cycles T containing the thick edge has its bounded (in the figure) side convex. A similar statement holds for the unbounded side of a 3-cycle in the dotted K_4 that contains the red edge. These 3-cycles show that D is not h-convex.

Definition 4.1 Let D be a drawing of K_n and let J and J' be distinct K_4’s in D such that both $D[J]$ and $D[J']$ are crossing K_4’s. For 3-cycles T and T' in J and J', respectively, let Δ_T and $\Delta_{T'}$ be the sides of T and T', respectively, not containing the fourth vertex of J and J', respectively. Then J and J' are inverted K_4’s in D if there are 3-cycles T in J and T' in J' such that $D[T] \subseteq \Delta_{T'}$ but $\Delta_T \not\subseteq \Delta_{T'}$.

Observation 4.2 Let J and J' be inverted K_4’s in a drawing D of K_n and let T and T' be 3-cycles in J and J', respectively. Let Δ_T and $\Delta_{T'}$ be the side of T and T', respectively, not containing the fourth vertex of J and J', respectively. If $D[T] \subseteq \Delta_{T'}$ but $\Delta_T \not\subseteq \Delta_{T'}$, then $D[T'] \subseteq \Delta_T$ but $\Delta_{T'} \not\subseteq \Delta_T$.

Proof. Let F_T be the side of $D[T]$ contained in $\Delta_{T'}$. Evidently, $D[T]$ separates F_T from $D[T']$ and $F_T \neq \Delta_T$. It follows that $D[T'] \subseteq \Delta_T$ and, since $F_T \subseteq \Delta_{T'}$ and $F_T \cap \Delta_T = \emptyset$, $\Delta_{T'} \not\subseteq \Delta_T$.

We are ready for our first characterization of h-convex drawings.

Lemma 4.3 Let D be a convex drawing of K_n. Then D is h-convex if and only if there are no inverted K_4’s.

Proof. It is clear that if D is h-convex, then there are no inverted K_4’s.

For the converse, we shall inductively obtain a list \mathcal{C} of convex sides, one for each 3-cycle of K_n. Along the way, the list \mathcal{C} will have convex sides for some, but not all, of the 3-cycles of K_n. Such a partial list is *hereditary* if, for any 3-cycles T and T' having convex sides Δ_T and $\Delta_{T'}$, respectively, in \mathcal{C}, if $D[T] \subseteq \Delta_{T'}$, then $\Delta_T \subseteq \Delta_{T'}$.

Our initial list \mathcal{C}_0 consists of the convex sides for every 3-cycle that is in a crossing K_4. The assumption that there are no inverted K_4’s immediately implies \mathcal{C}_0 is hereditary.
Let T_1, \ldots, T_r be the 3-cycles in K_n such that, for $i = 1, 2, \ldots, r$, T_i is not in any crossing K_4. For $j \geq 1$, suppose that C_{j-1} is a hereditary list of convex sides that includes C_0 and a convex side for each of T_1, \ldots, T_{j-1}.

If there is a convex side $\Delta_T \in C_{j-1}$ such that $D[T_j] \subseteq \Delta_T$, then we choose Δ_{T_j} so that $\Delta_T \subseteq \Delta_T'$ and $\Delta_T' \subseteq \Delta_T$. Otherwise, we choose Δ_{T_j} arbitrarily from the two sides of $D[T_j]$. Set $C_j = C_{j-1} \cup \{\Delta_{T_j}\}$.

We show that C_j is hereditary. If not, then, since C_{j-1} is hereditary, there is a 3-cycle T with a convex side $\Delta_T \in C_{j-1}$ such that either $D[T] \subseteq \Delta_{T_j}$ and $\Delta_T \not\subseteq \Delta_{T_j}$ or $D[T_j] \subseteq \Delta_T$ and $\Delta_{T_j} \not\subseteq \Delta_T$. The second case implies that $D[T] \subseteq \Delta_{T_j}$ and $\Delta_T \not\subseteq \Delta_{T_j}$, which is the first case.

Thus, in both cases, we have that $D[T] \subseteq \Delta_{T_j}$ and $\Delta_T \not\subseteq \Delta_{T_j}$. By the choice of Δ_{T_j}, there is a second already considered triangle T' such that $D[T']$ is contained in the other side $\overline{\Delta_{T_j}}$ of $D[T_j]$ but $\Delta_{T_j} \not\subseteq \overline{\Delta_{T_j}}$.

It is clear that $D[T] \subseteq \Delta_{T'}$ and $\Delta_T \not\subseteq \Delta_{T'}$, yielding the contradiction that C_{j-1} is not hereditary.

We remark that a similar argument proves the following analogous fact for f-convexity. This is essentially the characterization of pseudolinearity due to Aichholzer et al. [3].

Theorem 4.4 Let D be a drawing of K_n. Then D is f-convex if and only if there is a face Γ such that, for every isomorph J of K_4 for which $D[J]$ is a crossing K_4, Γ is contained in the face of $D[J]$ bounded by the 4-cycle.

There is a colourful way to understand this theorem. For each isomorph J of K_4 for which $D[J]$ is a crossing K_4, let C_J be the 4-cycle in J that bounds a face of $D[J]$. Paint the side of $D[C_J]$ that contains the crossing of $D[J]$. If the whole sphere is painted, then D is not f-convex. Otherwise, with respect to any face F of $D[K_n]$ that is not painted, F witnesses that D is f-convex.

Our next result gives a surprising characterization of h-convex drawings of K_n by a single forbidden configuration.

Theorem 4.5 Let D be a convex drawing of K_n. Then D is h-convex if and only if, for each isomorph J of K_6 in K_n, $D[J]$ is not isomorphic to K_6^{11}.

Proof. Since h-convexity is evidently inherited by induced subgraphs, no h-convex drawing of K_n can contain K_6^{11}. Conversely, suppose D is not h-convex; we show D contains K_6^{11}.
By Lemma 4.3, there exist isomorphs J_1 and J_2 of K_4 that are inverted in D. For $i = 1, 2$, let T_i be a 3-cycle in J_i with convex side Δ_{T_i} such that $D[T_i] \subseteq \Delta_{T_2}$ and $\Delta_{T_1} \not\subseteq \Delta_{T_2}$.

Let w be the vertex of J_1 not in T_1; $D[w]$ is separated from $D[T_2]$ by $D[T_1]$. Let x be the vertex of T_1 such that $D[wx]$ crosses $D[T_1]$. Complete $D[wx]$ to a simple closed curve γ by adding a segment on the non-convex side of $D[T_1]$ joining $D[w]$ and $D[x]$. Clearly γ separates the two vertices of $T_1 - x$. Moreover, $D[T_1]$ and, therefore, $D[w]$ as well, are all contained in Δ_2. Convexity implies $D[J_1] \subseteq \Delta_2$. Thus, γ also separates one of the vertices of $T_1 - x$ from $D[T_2]$; let z be the one separated from T_2 by γ and let y be the other.

Since $D[T_1] \subseteq \Delta_{T_2}$, $D[T_2 + z]$ is a non-crossing K_4. If any of the edges from z to T_2 crosses T_1, then we have proof that the side Δ_{T_1} of $D[T_1]$ is not convex, a contradiction. Therefore, $D[T_1]$ is contained in a face Γ of $D[T_2 + z]$ that is incident with z. It follows that w is also in Γ.

Let a be the vertex of T_2 not incident with Γ. The edge wx has both its ends in Γ. Since γ separates z from T_2, γ must cross za and, therefore, is not contained in Γ. It follows that Γ is not the convex side of the 3-cycle T_3 that bounds Γ.

Evidently, $D[T_3] \subseteq \Delta_{T_2}$ and $\Delta_{T_3} \not\subseteq \Delta_{T_2}$. Corollary 2.7 implies that there is a vertex v_3 such that $v_3 \in \Gamma$ and $D[T_3 + v_3]$ is a crossing K_4. Because T_2 is in the isomorph J_2 of K_4, there is a vertex v_2 in J_2 that is not in T_2. Since $D[J_2]$ is a crossing K_4, $D[v_2] \notin \Delta_{T_2}$.

We now consider the isomorph of K_6 consisting of $(T_2 \cup T_3) + \{v_2, v_3\}$. Because $D[(T_2 \cup T_3) + v_2]$ is contained in Δ_{T_3}, no edge from v_3 to a vertex in $T_2 \cup T_3$ can cross $D[T_3]$. In particular, (recall that a is the vertex of T_2 not in T_3) $D[v_2a]$ does not cross $D[T_2 \cup T_3]$. Let b be the vertex of T_2 such that $D[v_2b]$ crosses $D[T_2]$ and let c be the third vertex of T_2.

Completely symmetrically, letting a' be the vertex of T_3 that is not in T_2, $D[v_3a']$ does not cross $D[T_2 \cup T_3]$. As both $D[a']$ and $D[v_2]$ are in Δ_{T_3}, the edge $a'v_2$ cannot cross T_3. Since $D[v_2b]$ crosses $D[ac]$ but not $D[T_3]$, it must also cross $D[aa']$. It follows that $D[v_2a']$ crosses only $D[ac]$.

Let b' be the one of b and c such that $D[v_3b']$ crosses $D[T_3]$ and let c' be the other. There are two cases to consider: $b = b'$ and $c = c'$; or $b = c'$ and $c = b'$. Note that, in each case, convexity and the definitions of b and b' determine the routings of all the edges except v_3v_2 and v_3a.

Let T_4 be the 3-cycle induced by b, v_2 and c. Since $D[ac]$ crosses $D[v_2b]$, the convex side of $D[T_4]$ is the side that contains v_3. Thus, $D[v_2v_3]$ must be contained in this side of $D[T_4]$. In the case $b = b'$, $D[v_3b]$ crosses $D[ca']$, $D[a'v_2]$, and $D[aa']$. Thus, the only routing
for $D[v_2v_3]$ is across $D[ac]$ and $D[a'c]$. In the case $b = c'$, the only routing for $D[v_2v_3]$ is across $D[ac], D[aa'],$ and $D[a'b]$. In both cases there is only one routing available for $D[v_3a]$.

To see in each case that these drawings are both \mathbb{K}^1_6, focus on the face-bounding 4-cycles induced by b, a', v_3, c and b, a, v_2, c.

Our last major result of this section is that heredity is determined by the K_4's.

Lemma 4.6 Let D be a drawing of K_n and, for each 3-cycle T of K_n, let Δ_T be one of the closed discs bounded by $D[T]$. Let C be the set of all these Δ_T. Then C is a set of h-convex sides if and only if both of the following hold:

1. each Δ_T has the Four Point Property; and

2. for each non-crossing K_4, at least three of the four (closed) faces of the non-crossing K_4 are in C.

Proof. Corollary 2.4 shows that every side in C is convex if every side in C satisfies the Four Point Property. The converse is trivial from the definition of convex. Thus, C is a set of convex sides if and only if every element of C satisfies the Four Point Property.

If C is hereditary, then suppose the face Γ of a non-crossing K_4 is not in C and let T be the 3-cycle bounding Γ. Then $\Delta_T \in C$ is the side of Γ containing the fourth vertex of the non-crossing K_4; heredity implies all of the other faces of the K_4 are in C, proving (2).

Conversely, suppose every Δ_T in C is convex and that (2) holds. Suppose by way of contradiction that T_1 and T_2 are 3-cycles in K_n such that: $\Delta_{T_1}, \Delta_{T_2} \in C$; $D[T_1] \subseteq \Delta_{T_2}$; and $\Delta_{T_1} \not\subseteq \Delta_{T_2}$.

Our immediate goal is to find 3-cycles T'_1 and T'_2 such that: $\Delta_{T'_1}, \Delta_{T'_2} \in C$; $D[T'_1] \subseteq \Delta_{T'_2}$; $\Delta_{T'_1} \not\subseteq \Delta_{T'_2}$; and, in addition, T'_1 and T'_2 have an edge in common.

Let a_1 be a vertex of T_1 not in T_2. Because $a_1 \in \Delta_{T_2}$, convexity implies $D[T_2 + a_1]$ is a non-crossing K_4. Because $D[T_2] \subseteq \Delta_{T_1}$, $D[T_1]$ is contained in one of the three faces of $D[T_2 + a_1]$ incident with a_1; let b_2 and c_2 be the vertices of T_2 incident with this face and let T_3 be the 3-cycle induced by a_1, b_2, and c_2. If $\Delta_{T_3} \not\subseteq \Delta_{T_2}$, then T_2 and T_3 may be used in the roles of T'_1 and T'_2.

Therefore, we may assume $\Delta_{T_3} \subseteq \Delta_{T_2}$. In this case, we note that $D[T_1] \subseteq \Delta_{T_3}$ but $\Delta_{T_1} \not\subseteq \Delta_{T_3}$. However, a_1 is common to T_1 and T_3. If one of b_2 and c_2 is also in T_1, then we have the desired T'_1 and T'_2.

Otherwise, let b_1 be a second vertex of T_1 not in T_2. Then $D[b_1] \in \Delta_{T_3}$, so convexity implies $D[T_3 + b_1]$ is a non-crossing K_4. Again, $D[T_1]$ is contained in one of the faces of...
$D[T_3 + b_1]$ incident with $D[a_1 b_1]$. Let T_4 be the 3-cycle bounding this face. If this face is not the interior of ΔT_4, then T_3 and T_4 play the roles of T'_1 and T'_2. If the interior of this face is ΔT_4, then T_1 and T_4 play the roles of T'_1 and T'_2.

So let T'_1 and T'_2 be two 3-cycles such that: $\Delta T'_1, \Delta T'_2 \in C; D[T'_1] \subseteq \Delta T'_2; \Delta T'_1 \not\subseteq \Delta T'_2$; and, in addition, T'_1 and T'_2 have an edge in common. Let a'_1 be the vertex of T'_1 not in T'_2. Then $a'_1 \in \Delta T'_2$ implies $D[T'_2 + a'_1]$ is a non-crossing K_4. We now have our contradiction: the faces of this K_4 bounded by T'_1 and T'_2 are both not in C.

Lemma 4.6 suggests that h-convexity is determined by considering all sets of four points. However, this is slightly misleading: we need to have made the choices along the way for those 3-cycles not in any crossing K_4. It is far from obvious how to make these choices without having checked all the other 3-cycles at each stage. On the other hand, Theorem 4.5 makes it clear that there is an $O(n^6)$ algorithm to determine if a drawing of K_n is h-convex. (It is $O(n^4)$ to check that the drawing is convex.)

We conclude this section with an observation related to the Structure Theorem 3.5.

Lemma 4.7 Let D be an h-convex drawing of K_n consisting of a natural K_r (with $r \geq 4$) and all other points inside the natural K_r. Then D is f-convex.

Proof. Let F be the face of D bounded by the r-cycle C_r in K_r. Suppose xyz is some 3-cycle such that the side of xyz containing F is convex. There is at least one of x, y, z that is not in the K_r. (Since $r \geq 4$, all 3-cycles in K_r are crossing with any fourth vertex of K_r).

Being incident with F, any vertex of K_r not in $\{x, y, z\}$ is on the same side of the 3-cycle xyz as F. Thus, for any two vertices u, v of K_r (whether in $\{x, y, z\}$ or not), convexity of the F-side of xyz shows that $D[uv]$ is contained in the closed disc bounded by xyz and containing F.

It follows that xyz is contained in a 3-cycle consisting only of vertices in the K_r. Now heredity implies that the other side of xyz is also convex. That is, F witnesses the convexity of every 3-cycle, as required.

5 **Suboptimal drawings of K_n having either \tilde{K}_3^3 or \tilde{K}_5^5**

In this section, we prove that a broad class of “locally determined” drawings of K_n are suboptimal. This is the first theorem of its type. The theorem requires the presence of either \tilde{K}_3^3 or \tilde{K}_5^5 in the drawing, but, for at least one such K_5, the occurrence is restricted. This might be a first step towards showing that all optimal drawings of K_n are convex.
This line of research was stimulated by Tilo Wiedera’s computation (personal communication) showing that any drawing of K_9 that contains a \tilde{K}_5^3 has at least 40 crossings. This is in line with Aichholzer’s later computations (see the remark following the statement of Theorem 5.1 below).

We also rethink the approach in [24] that $\text{cr}(K_9) = 36$. This was done before convexity became known to us. Using the fact that $\text{cr}(K_7) = 9$, it is easy to see that $\text{cr}(K_9) \geq 34$. At the end of this section, we show easily by hand that there is no non-convex drawing D of K_9 such that $\text{cr}(D) = 34$. Thus, to prove that $\text{cr}(K_9) = 36$, it suffices to consider convex drawings of K_9.

We start with a drawing D of K_n that has either a \tilde{K}_3^3 or a \tilde{K}_5^5 that has only at most two vertices in any other \tilde{K}_3^3 or \tilde{K}_5^5. We show that $\text{cr}(D) > \text{cr}(K_n)$.

Theorem 5.1 Let D be a drawing of K_n such that there is an isomorph J of K_5 with $D[J]$ either \tilde{K}_3^3 or \tilde{K}_5^5. Suppose, for every isomorph H of K_7 in K_n containing J, $D[J]$ is the only non-convex K_5 in $D[H]$.

1. If J is \tilde{K}_3^3, then there is a drawing D' of K_n such that $\text{cr}(D') \leq \text{cr}(D) - 2$.

2. If J is \tilde{K}_5^5, there is a drawing D' of K_n such that $\text{cr}(D') \leq \text{cr}(D) - 4$. If, in addition, n is even, then $\text{cr}(D') \leq \text{cr}(D) - 5$.

We remark that the lower bounds 2, 4, and 5 for $\text{cr}(D) - \text{cr}(D')$ exhibited in Theorem 5.1 are precisely the smallest differences found by Aichholzer (private communication) between any drawing, for $n \leq 12$, of K_n that has either a \tilde{K}_3^3 or a \tilde{K}_5^5 and an optimal drawing of K_n.

Before we prove Theorem 5.1 we have the following simple arithmetic fact. This will be used twice, once in the proof of Theorem 5.1 and in showing that a non-convex drawing of K_9 has at least 36 crossings.

Lemma 5.2 Let n be an integer, $n \geq 4$, and let D be a drawing of K_n. Then $(n - 4) \text{cr}(D) = \sum_{v \in V(K_n)} \text{cr}(D - v)$.

Proof. This follows from the fact that every crossing of D is in $n - 4$ of the drawings $D - v$. □

Proof of Theorem 5.1 We use the labelling of J as shown in Figure 5.3. We first deal with the case $J = \tilde{K}_3^3$.

(I) $J = \tilde{K}_3^3$.

20
Figure 5.3: Labelled \overline{K}_5^3 and \overline{K}_5^5 for the proof of Theorem 5.1.

Claim 1 There is no vertex of $D[K_n]$ in the side of any of the 3-cycles $D[stw]$, $D[svu]$, and $D[tw]$ that has no vertex of $D[J]$.

Proof. We start with $D[stw]$. Similar arguments apply to $D[svu]$. Finally, symmetry shows that $D[tuv]$ also does not have a vertex on the side empty in $D[J]$.

Suppose to the contrary that there is a vertex x of K_n such that $D[x]$ is in the side of $D[stw]$ that is empty in $D[J]$. By hypothesis, the K_5 consisting of $J - w$ plus x is convex in D. Since $D[x]$ is incident with a face of $D[J - w]$ that is incident with the crossing of $D[J - w]$, Observation 2.1 and convexity imply $D[xu]$ does not cross the 4-cycle $D[stuv]$.

Likewise, the K_5 consisting of $J - v$ together with x is convex in D. Again, $D[x]$ is in a face of $D[J - v]$ incident with a crossing, so $D[xu]$ does not cross the 4-cycle $D[wtus]$. However, $D[x]$ and $D[u]$ are in different faces of $D[stuv] \cup D[wtus]$, so $D[xu]$ must cross at least one of the two 4-cycles.

The same deletions show that any vertex in the empty side of $D[svu]$ cannot connect to t. \hfill \square

There are two remaining regions of interest. Let \times be the crossing of su with tv. Let R_1 be the region bounded by $D[wtuxsw]$ that does not contain $D[u]$ and $D[v]$; R_2 is the region bounded by $D[stuw]$ that does not contain $D[w]$.

Claim 2 If $D[x] \in R_1$ and $D[y] \in R_2$, then:

1. $D[xu]$ crosses $D[J]$ only on $D[tv]$ and $D[xv]$ crosses $D[J]$ only on $D[su]$;

2. $D[xs]$ and $D[xt]$ do not cross $D[J]$;

3. $D[xw]$ either does not cross $D[J]$, or crosses $D[st]$ and at least one of $D[su]$ and $D[tv]$;
4. \(D[ys], D[yt], D[yu], \text{and } D[yv]\) cross \(D[J]\) at most in either \(D[uw]\) or \(D[vw]\) (or both);

5. \(D[yw]\) crosses only \(D[st]\).

Moreover, if \(zz'\) is an edge of \(G\) with neither \(z\) nor \(z'\) in \(J\) and \(T\) is one of the 3-cycles \(stw, suv, \text{and } twu\), then either \(D[zz']\) does not cross \(D[T]\) or it crosses the one of \(D[st], D[su], \text{and } D[tv]\) that is in \(D[T]\).

Proof. We take each possibility for \(x\) in turn. Note that the \(K_5\) consisting of \(x\) and \(J - w\) is convex in \(D\) by hypothesis and that \(D[x]\) is in a face of \(D[J - w]\) incident with the crossing. Observation 2.1 shows that no edge from \(D[x]\) to \(D[J - w]\) crosses the 4-cycle \(D[stuv]\).

\((xu)\) By the note just above, \(D[xu]\) does not cross the 4-cycle \(D[stuv]\). In particular, if \(D[xu]\) crosses any edge incident with \(w\), then it crosses all of them. Because both \(xu\) and \(wu\) are incident with \(u\), \(D[xu]\) and \(D[ru]\) do not cross. Thus, \(D[xu]\) crosses \(D[J]\) only on \(D[vt]\).

\((xv)\) This case is symmetric to the preceding one: \(D[xv]\) crosses \(D[J]\) only on \(D[su]\).

\((xs)\) Again by the note above, \(D[xs]\) does not cross the 4-cycle \(D[stuv]\) in \(D[J - w]\). If \(D[xs]\) crosses any edge incident with \(w\), then it crosses all of \(D[wt], D[ru], \text{and } D[rv]\). But now the 3-cycle \(svx\) has no convex side in the drawing of the \(K_5\) consisting of \(J - t\) together with \(x\), a contradiction to the convexity of this \(K_5\) in \(D\).

\((xt)\) This case is symmetric to the preceding one.

\((xw)\) The following argument is due to Matthew Sullivan, simplifying our original. Consider the isomorph \(L\) of \(K_{2,4}\) with \(x\) and \(w\) on one side and \(s, t, u, v\) on the other side. Then \(D[xw]\) does not cross (the planar drawing) \(D[L]\) and so is contained in one of the four faces of \(D[L]\). The face of \(D[L]\) bounded by \(swtx\) is disjoint from \(D[J]\). In each of the other three faces, \(D[xw]\) must cross \(D[st]\). In two of these three faces, it also crosses exactly one of \(D[su]\) and \(D[tv]\). In the third, it crosses both \(D[su]\) and \(D[tv]\).

Now we take each case for \(y\) in turn.

\((ys)\) The convexity in \(D\) of each of the \(K_5\)'s obtained from \(J - u\) and \(J - v\) by adding \(y\) combines with Observation 2.1 to show that \(D[ys]\) crosses at most \(D[uw]\) and \(D[vw]\).
(yt) This case is symmetric to the preceding one.

(yu) The convexity in D of the K_5 obtained from $J - v$ by adding y shows that $D[yu]$ does not cross the 3-cycle $D[stu]$. Subject to this, there are two possible routings of $D[yu]$ relative to $D[v]$.

If $D[y]$ is in the subregion incident with $D[t], D[u], \text{and part of } D[uw]$, then convexity shows a unique drawing of $D[yu]$. For the remaining portion of R_2, if $D[tuy]$ separates $D[v]$ from $D[w]$, then the edges $D[uw]$ and $D[tv]$ show that $D[tuy]$ has no convex side in the K_5 on these five vertices. This is a contradiction to the hypothesis and therefore $D[yu]$ is also contained inside $D[stuw]$.

(yv) This case is symmetric to the preceding one.

(yw) This case uses the same deletions as for ys to show that $D[yw]$ crosses $D[J]$ only on $D[st]$.

Finally, we consider the remaining three types of edges z_1z_2: $D[z_1]$ and $D[z_2]$ can both be in R_1; both in R_2; or one in each. In all three cases for z_1, z_2 and all three cases for the three-cycle T, $D[z_1]$ and $D[z_2]$ are on the same side of $D[T]$. In the event that $D[z_1]$ and $D[z_2]$ are both planarily joined to $D[T]$, Corollary 2.5 applies to show $D[z_1z_2]$ does not cross the 3-cycle.

In the remaining cases, we assume that $D[z_1]$ is not planarily joined to $D[T]$. If $T = stw$, then the only possible crossing with $D[T]$ is $D[z_1w]$ crossing $D[st]$. As $D[z_1z_2]$ has either 0 or 2 crossings with $D[stw]$, but does not cross $D[z_1w]$, the two crossings of $D[z_1z_2]$ and $D[T]$ cannot be on $D[ws]$ and $D[wt]$. For $T = suv$ and $T = twv$, the edges z_1u and z_1v, respectively, produce analogous results.

We are now prepared for the final part of the proof. For $i = 1, 2$, let r_i be the number of vertices of $D[K_n]$ that are in (the interior of) R_i. We distinguish two cases.

Case 1: $r_1 \leq r_2$.

In this case, let D' be the drawing of K_n obtained from D by rerouting st alongside the path $D[swt]$, so as to not cross $D[wu]$ and $D[wv]$. There are at least $2 + r_2$ crossing pairs of edges in D that do not cross in D': two from $D[st]$ crossing $D[wv]$ and $D[wu]$, plus all the crossings of $D[st]$ from those edges incident with $D[w]$ that cross $D[st]$. For these latter crossings, there are at least r_2, as, for every vertex z such that $D[z]$ is in R_2 has $D[zw]$ crossing $D[st]$.

On the other hand, there is a set of at most r_1 crossing pairs in D' that do not cross in D. These arise from the edges joining a vertex drawn in R_1 to $D[w]$, these might
not intersect $D[J]$. Those that do intersect $D[J]$ cross $D[st]$ and, therefore, yield further savings.

We show that every other edge z_1z_2 has no more crossings in D' than it has in D.

Subcase 1.1: z_1, say, is in J.

In this case, we use Claim 2. Items 1, 2, 4, and 5 show that no such edge has more crossings in D' than in D, except possibly xw.

If $D[xw]$ does not cross $D[J]$, then $D'[xw]$ also does not cross $D'[J - st]$, as required. If $D[xw]$ crosses $D[J]$, then Claim 2 (3) implies that $D[xw]$ crosses $D[st]$. Thus, $D[xw]$ crosses both $D[su]$ and one of $D[sv]$ and $D[tu]$; in this case, the same is true of $D'[xw]$ in D', as required.

Subcase 1.2: neither z_1 nor z_2 is in J.

If $D[z_1z_2]$ crosses the 3-cycle $D[stw]$, then the moreover part of Claim 2 shows it crosses $D[st]$. Therefore, it crosses exactly one of $D[sw]$ and $D[wt]$, showing that $D'[z_1z_2]$ crosses $D'[st]$ and the same one of $D'[sw]$ and $D'[wt]$. That is, z_1z_2 crosses the same two edges in both drawings, and we are done.

The net result is that $cr(D') \leq cr(D) - (2 + (r_2 - r_1)) \leq cr(D) - 2$.

Case 2: $r_1 \geq r_2 + 1$.

This case is virtually identical to Case 1, except we aim to shift the edge su alongside the path $D[suv]$ so as to cross $D[vw]$. The crossing of $D[su]$ with $D[tv]$ is replaced by a crossing of $D'[su]$ with $D'[vw]$.

In addition, r_2 edges incident with u do not cross $D[su]$, but cross $D'[su]$, while r_1 edges incident with u cross $D[su]$, but do not cross $D'[su]$. Since $r_1 > r_2$, this adds at least one saving. If n is odd, then $r_1 \equiv r_2 \pmod{2}$, so $r_1 - r_2 \geq 2$, yielding at least two savings in crossings.

The only additional remark special to this case is the observation that, for z in R_1, Claim 2 implies that if $D[zw]$ crosses the 3-cycle $D[suv]$, then zw crosses su. This shows that $D'[zw]$ also crosses $D'[suv]$ twice, so there are no other “new” crossings.

If n is even, then this result for $n - 1$ (which is odd) shows that, for each vertex r of K_n that is not in $V(J)$, $cr(D' - r) \leq cr(D - r) - 2$. If $r \in \{s, u, v\}$, then $D' - r$ and $D - r$ are isomorphic, so $cr(D' - r) = cr(D - r)$.

For $r \in \{w, t\}$, the crossings of edges incident with r are the same in D' and D, except that wv crosses su in D' but not in D, while tv crosses su in D, but not in D'. Since $cr(D') \leq cr(D) - 1$, we conclude that $cr(D' - w) \leq cr(D - w)$. Similarly, $cr(D' - t) \leq cr(D - t) - 2$.

24
It follows from Lemma 5.2 that
\[(n - 4) \text{cr}(D') = \sum_{v \in K_n} \text{cr}(D' - v)\]
\[= \left(\sum_{v \notin \{s, u, v, w\}} \text{cr}(D' - v) \right) + \left(\sum_{v \in \{s, u, v, w\}} \text{cr}(D' - v) \right)\]
\[\leq \left(\sum_{v \notin \{s, u, v, w\}} (\text{cr}(D - v) - 2) \right) + \left(\sum_{v \in \{s, u, v, w\}} \text{cr}(D - v) \right)\]
\[= \left(\sum_{v \in K_n} \text{cr}(D - v) \right) - 2(n - 4)\]
\[= (n - 4) \text{cr}(D) - 2(n - 4).\]

Since \(n \geq 5\), this implies that \(\text{cr}(D') \leq \text{cr}(D) - 2\), as required.

(II) \(J = \tilde{K}_5^5\).

In this case there is a homeomorphism \(\Theta\) of the sphere to itself that is an involution that restricts to \(J\) as, using the labelling in Figure 5.3: \(s \leftrightarrow w; t \leftrightarrow v;\) and \(u\) is fixed. This will be helpful at several points in the following discussion. The outline of the argument is the same as for \(\tilde{K}_3^5\), but there are some interesting differences.

Let \(R_1\) be the face of \(D[J]\) incident with all three points in \(D[\{s, t, u\}]\) (the infinite face in the diagram) and let \(R_2\) be the face of \(D[J]\) incident with all three points in \(D[\{u, v, w\}]\) (note that \(R_2 = \Theta(R_1)\)).

Claim 3 If \(z\) is a vertex of \(K_n\) not in \(J\), then \(D[z] \in R_1 \cup R_2\).

Proof. Suppose \(x\) is a vertex of \(K_n - V(J)\) such that \(D[x]\) is not in \(R_1 \cup R_2\). Suppose first that \(D[x]\) is in the region bounded by the 4-cycle \(D[wtsv]\).

The convexity of \(D[(J - s) + x]\) and of \(D[(J - w) + x]\) imply that \(D[xu]\) does not cross the 4-cycles \(D[twvu]\) and \(D[stuv]\), respectively. However, \(D[x]\) is not in a face of \(D[twvu] \cup D[stuv]\) incident with \(D[u]\), a contradiction.

The remaining possibility is that \(D[x]\) is in the face \(F\) that is both distinct from \(R_1\) and incident with \(D[ut]\). The convexity of \(D[(J - t) + x]\) and \(D[(J - v) + x]\) show that \(D[xw]\) does not cross the 4-cycles \(D[swvu]\) and \(D[swut]\), respectively. However, \(D[x]\) is not in a face of \(D[swvu] \cup D[swut]\) incident with \(D[w]\), a contradiction. \(\square\)

We next move to the routings of the edges from a vertex \(D[x]\) in \(R_1 \cup R_2\) to \(D[J]\).

Claim 4 If \(D[x] \in R_1\), then:
1. $D[xu]$ and $D[xs]$ do not cross $D[J]$;
2. $D[xv]$ crosses $D[J]$ only on $D[uw]$, and $D[xw]$ crosses $D[J]$ only on $D[sv]$ and $D[tv]$; and
3. $D[xt]$ either does not cross $D[J]$ or it crosses $D[J]$ precisely on $D[sv], D[sw]$, and $D[sw]$.

Furthermore, if $D[x], D[x'] \in R_1$, then $D[xx'] \subseteq R_1$.

Proof. The convexity of $D[(J - t) + x]$ and $D[(J - u) + x]$ shows $D[xs]$ does not cross the 4-cycles $D[svuv]$ and $D[swvu]$, respectively. Likewise, the routing of $D[xu]$ is determined by the convexity of $D[(J - t) + x]$ and $D[(J - s) + x]$, together with the fact that $D[xu]$ does not cross $D[uw]$.

Similarly, the convexity of $D[(J - s) + x]$ and $D[(J - t) + x]$ determine the routings of $D[xv]$ and $D[xw]$.

The convexity of $D[(J - s) + x]$ determines the routing of $D[xt]$, except with respect to $D[s]$, leaving the two options described.

For the furthermore conclusion, $D[x]$ and $D[x']$ are planarly joined to the 3-cycle $D[svu]$. Corollary 2.5 shows that $D[xx']$ is disjoint from $D[svu]$. In the same way, $D[xx']$ is disjoint from $D[svu]$, and $D[tvu]$. Thus, $D[xx']$ can only cross $D[J]$ on $D[st]$. However, letting \times denote the crossing of $D[sw]$ with $D[tv]$, $D[xx']$ must cross the 3-cycle $D[st \times]$ an even number of times and it can only cross it on $D[st]$, which is impossible.

The homeomorphism Θ implies a completely symmetric statement when $x \in R_2$. We provide it here for ease of reference.

Claim 5 If $D[x] \in R_2$, then, in $D[J + x]$:
1. $D[xu]$ and $D[xw]$ do not cross $D[J]$;
2. $D[xt]$ crosses $D[J]$ only $D[us]$, and $D[xs]$ crosses $D[J]$ only on $D[tw]$ and $D[tv]$; and
3. $D[xv]$ either does not cross $D[J]$ or it crosses $D[J]$ precisely on $D[wt], D[ws]$, and $D[sw]$.

Furthermore, if $D[x], D[x'] \in R_2$, then $D[xx'] \subseteq R_2$.

Using the homeomorphism Θ, we may choose the labelling of J so that the number r_1 of vertices of $D[K_n]$ drawn in R_1 is at most the number r_2 drawn in R_2.

Our next claim was somewhat surprising to us in the strength of its conclusion.
Claim 6 If there is a vertex x of $K_n - V(J)$ such that $D[x] \in R_1$ and $D[xt]$ crosses $D[sv]$, $D[sw]$, and $D[su]$, then there is a drawing D' of K_n such that $cr(D') \leq cr(D) - 4$ and, if n is even, $cr(D') \leq cr(D) - 5$.

Symmetrically, if there is a vertex x of $K_n - V(J)$ such that $D[x] \in R_2$ and $D[xv]$ crosses $D[wt]$, $D[sw]$, and $D[wu]$, then there is a drawing D' of K_n such that $cr(D') \leq cr(D) - 4$ and, if n is even, $cr(D') \leq cr(D) - 5$.

Proof. Choose such an x so that $D[xt]$ crosses $D[sv]$, $D[sw]$, and $D[su]$ and such that, among all such x, the crossing of $D[xt]$ with $D[sv]$ is as close to $D[s]$ on $D[sv]$ as possible. Let Δ be the closed disc bounded by the 3-cycle $D[xt]$ that does not contain the vertices $D[\{v, u, w\}]$.

If there is a vertex y of K_n such that $D[y]$ is in the interior of Δ, then $D[y]$ is in the face of $D[J + x]$ contained in Δ and incident with $D[sx]$. However, the convexity in D of $(J - \{u, w\}) + \{x, y\}$ implies $D[yt]$ crosses $D[sv]$ closer to s in $D[sv]$ than $D[xt]$ does, contradicting the choice of x. Therefore, no vertex of $D[K_n]$ is in Δ.

The drawing D' is obtained from D by rerouting xt to go alongside the path $D[xt]$, on the side not in Δ. (That is, $D[xt]$ is pushed to the other side of $D[sv]$.)

The hardest part of the analysis of the crossings of D' compared to D is determining what happens to an edge of $D[K_n]$ that crosses $D[st]$. No edge of $D[J]$ crosses $D[st]$. Claims 4 and 5 imply that: no edge from a vertex in $R_1 \cup R_2$ to a vertex in $D[J]$ crosses $D[st]$; and no edge with both incident vertices in the same one of R_1 or R_2 crosses $D[st]$. Thus, the only possible crossing of $D[st]$ is by an edge $D[yz]$, with $D[y] \in R_1$ and $D[z] \in R_2$.

Because of the routing of $D[sz]$, $D[yz]$ cannot also cross $D[xs]$. Therefore, $D[yz]$ also crosses $D[xt]$. It follows that such an edge has the same number of crossings of xt in both D and D'. Therefore, any edge that crosses $D[xs]$ crosses $D[xt]$ and so has the same number of crossings with $D[xt]$ and $D'[xt]$.

The only changes then are in the number of crossings of $D[xt]$ with edges incident with $D[s]$ and the number of crossings with $D[J]$. There are 3 fewer of the latter. From R_1 to $D[s]$, there are at most $r_1 - 1$ crossings of $D'[xt]$. From R_2 to $D[s]$, we have lost r_2 crossings of $D[xt]$. Thus, D' has at least $(r_2 - (r_1 - 1)) + 3 = (r_2 - r_1) + 4$ fewer crossings than D. This proves the first conclusion.

Since $n = 5 + r_1 + r_2$, if n is even, then $r_1 \neq r_2$ and, therefore, $r_2 - r_1 \geq 1$. In this case D' has at least 5 fewer crossings, as claimed. □

It follows from Claim 6 that we may assume that, for $D[x] \in R_1$, $D[xt]$ is disjoint from $D[J]$. Symmetrically, for $D[x] \in R_2$, $D[xv]$ is disjoint from $D[J]$. Let D' be obtained
from D by rerouting $D[tv]$ on the other side of the path $D[tsv]$. Combining this with the other information from Claim 4, we have the following:

R1 Assumption: If $D[x] \in R_1$, then $D[x]$ is planarly joined to $D[J - w]$.

There are two claims that complete the proof of Theorem 5.1. The first, similar to Claim 6, shows that there are at least 2 fewer crossings in $D'[n]$ (3 if n is even). The second shows that D' satisfies the hypotheses of Theorem 5.1. Therefore, there is a third drawing D'' with at least two fewer crossings than D', as required.

Claim 7 $cr(D') \leq cr(D) - ((r_2 - r_1) - 2)$.

Proof. The proof is very similar to that of Claim 6. The main point is to see that no edge e can have $D[e]$ cross both $D[ts]$ and $D[sv]$. For $D[x] \in R_2$, the routing of $D[xs]$ is known; it would necessarily cross such a $D[e]$, whence e is not incident with x. Any edge with both ends in R_1 is contained in R_1, and so is not $D[e]$. The only possibility is an edge from a vertex in R_1 to a vertex of $D[J]$, and these routings are all determined by Claims 4 and 5. Therefore, there is no such e.

It is now easy to see that there are $(r_2 - r_1) + 2$ fewer crossings of $D'[tv]$ with edges incident with s than there are of $D[tsv]$. All other crossings of $D'[tv]$ pair off with crossings of $D[tsv]$.

Finally, we show that the drawing D' satisfies the hypotheses of Theorem 5.1. It is routine to verify that $D'[J]$ is \tilde{K}_5^3. Now let N be a K_5 in K_n such that $N \cap J$ has 3 or 4 vertices.

If any of s,t,v is not in N, then $D'[N]$ is homeomorphic to $D[N]$ and so is convex. Thus, we may assume s,t,v are all in N.

Case 1: $N \cap J$ has four vertices.

In this case, there is a vertex x not in J such that N is either $(J - w) + x$ or $(J - u) + x$. If $D[x]$ is in R_1, then the routings are determined and we can see by inspection that $D'[N]$ is, respectively, the K_5 with 1 crossing or the convex K_5 with 3 crossings.

If $D[x] \in R_2$, then again the routings are determined. In this case, $D'[(J - u) + x]$ and $D'[(J - w) + x]$ are both the K_5 with 1 crossing.

Case 2: $N \cap J$ has 3 vertices.

In this case $N = (J - \{u,w\}) + \{x,y\}$. Since $D[x], D[y] \in R_1 \cup R_2$, they are both on the same side of $D[stv]$. The routings from either to $D[J]$ are determined by Claims 4 and 5 and the assumption following the proof of Claim 6. Only when $D[x]$ and $D[y]$ are in different ones of R_1 and R_2 is it possible that $D[xy]$ crosses $D[stv]$.

28
We consider the three possibilities for $D[x]$ and $D[y]$.

Subcase 2.1: $D[x] \in R_1$ and $D[y] \in R_2$.

All routings in $D'[N]$ are determined except for $D[xy]$. The 4-cycle $D[xvyt]$ is uncrossed in $D[N-xy]$. As D is a drawing, $D[xy]$ does not cross $D[xvyt]$. Therefore, either $D[xvyt]$ or $D[xvy]$ is a face of $D'[N]$, showing $D'[N]$ is convex.

Subcase 2.2: $D[x]$ and $D[y]$ are both in R_2.

Since $D[x]$ and $D[y]$ are both planarly joined to $D'[stv]$ and $D[xy]$ does not cross $D'[stv]$, $D'[stv]$ bounds a face of $D'[N]$. Thus, $D'[N]$ is convex.

Subcase 2.3: $D[x], D[y]$ are both in R_1.

Suppose $D'[N]$ is not convex. Then Corollary 2.6 implies there is a 3-cycle T in N such that the two vertices z, z' of N not in T are in different faces of $D'[T]$ and both $D'[T + z]$ and $D'[T + z']$ are crossing K_4's.

Since both x and y are in the same face of $D'[stv]$, $T \neq stv$. If $a \in \{s, t, v\}$, then the routings the edges from x and y to stv show that the two vertices in $\{s, t, v\} \setminus \{a\}$ are on the same side of $D'[xya]$, so $xya \neq T$. The only remaining possibility is that T has x, say, and two of s, t, v.

Claim 8 The 3-cycle $D'[tvx]$ has no convex side.

Proof. In the alternative, T is either stx or svx. These two situations are very similar, so we treat only stx, leaving the completely analogous argument for svx to the reader. Our strategy is to show that assuming that stx has no convex side in D' implies that tvx has no convex side in D' either.

The vertices v and y are on different sides of $D'[stx]$ and $D[vt]$ crosses $D[sx]$, showing that the side of $D'[stx]$ containing $D[v]$ is not convex. The edge $D[sx]$ also shows that the side of $D'[tvx]$ containing $D[s]$ is not convex.

Likewise, there is an edge e incident with y to one of s, t, x such that $D[e]$ crosses $D'[stx]$. Notice that $D[xy]$ does not cross $D[xs]$ and $D[x]t$ by definition of drawing and $D[xy]$ does not cross $D[st]$ by the R_1 Assumption. Therefore, $D[xy]$ does not cross $D[st]$ and we conclude that $D[xy]$ does not cross $D[stx]$.

Next suppose that $D[yt]$ crosses $D[xs]$. The R_1 Assumption shows that $D[yt]$ does not cross $D[stv]$ and so $D[yt]$ crosses $D[vx]$. Therefore, this side of $D'[tvx]$ is also not convex. Combined with the second paragraph of this proof, $D'[tvx]$ is not convex.

In the final case, $D[ys]$ crosses $D[xt]$. As we traverse $D[ys]$ from $D[y]$, there is the crossing with $D[xt]$. A point of $D[ys]$ just beyond this crossing is on the other side of $D[xt]$ from both y and s.

29
The edge $D[vy]$ is contained on the same side of the 3-cycle $D[stv]$ as $D[v]$. Therefore, $D[vy]$ must also cross $D[xt]$, showing that the $D[y]$-side of $D[tvx]$ is also not convex, as required.

Notice that $D[y]$ is in one side of $D'[tvx]$ and $D[s]$ is on the other. Since $s \notin \{t, v, x, y\}$, $D[\{t, v, x, y\}]$ and $D'[\{t, v, x, y\}]$ are homeomorphic. Thus, the side of $D[tvx]$ that contains $D[y]$ is not convex in D.

On the other hand, we know that, in D, $D[w]$ is on the other side of $D[tvx]$ from $D[y]$. However, $D[wx]$ crosses $D[tv]$. This shows that the side of $D[tvx]$ containing $D[w]$ is not convex. Combined with the preceding paragraph, the K_5 induced by t, v, w, x, y is not convex in D, contradicting the hypothesis of the theorem. This completes the proof of Subcase 2.3 and the theorem.

The condition in Theorem 5.1 that any K_7 containing J has no other K_5 isomorphic to either \tilde{K}_3^5 or \tilde{K}_8^5 is a strong one. It would be significant progress to prove some analogue of Theorem 5.1 with a weaker hypothesis on extensions J.

Indeed, one might expect that no hypothesis beyond the existence of J is required, as is easily verified for $n = 7$ (and fully proved in [24, Lemma 7.5, p. 417]). For $n = 8$, one can prove easily that the weaker hypothesis of non-convexity suffices. To see why, note that each K_5 in a K_8 is in three K_7's in the K_8. With a non-convex K_5 in the K_8, its three extensions to K_7's in the K_8 would each have at least 11 crossings. Lemma 5.2 guarantees that the K_8 has at least 20 crossings. (Aichholzer’s computations extend the sufficiency of the weaker condition up to K_{12}).

A similar argument shows that a non-convex K_9 cannot have 34 crossings. Let J be any non-convex K_5 in a K_9 having 34 crossings. Then J is contained in four K_8's in the K_9. The previous paragraph shows each of these K_8's has at least 20 crossings. Lemma 5.2 and the assumption that the K_9 has only 34 crossings shows that the five remaining K_8's would have to be optimal and hence convex. Thus, J is the only non-convex K_5 in the K_9 and so the hypothesis of Theorem 5.1 trivially holds.

For this argument to work, it suffices to assume a stronger version of the hypothesis of Theorem 5.1, there is only one non-convex K_5 in the entire K_n. In fact, Theorem 5.1 evolved from this stronger hypothesis.

We close this section by providing an example of a drawing of K_8 that contains an isomorph J of \tilde{K}_3^5 satisfying the hypothesis of Theorem 5.1 and also contains another isomorph of \tilde{K}_3^5. The drawing D, illustrated in Figure 5.4, is obtained from TC_8 by rerouting two edges (13 around 2 and BG around P in Figure 5.4), one from each of the natural K_4’s on the top and bottom of the cylinder. 1, 2, 3, B, R and 0, 1, B, P, G are
resulting \tilde{K}_3^3's.

The K_5's induced by $\{1, 2, 3, B, R\}$ and $\{0, 1, B, P, G\}$ are both isomorphic to \tilde{K}_5^3. Evidently, any \tilde{K}_5^3 or \tilde{K}_5^5 in the K_8 after the reroutings must contain either all of $1, 2, 3$ or all of B, P, G. Thus, it suffices to show that no such K_5 (other than the two above) exists.

The involution determined by $0 \leftrightarrow R$, $1 \leftrightarrow B$, $2 \leftrightarrow P$, and $3 \leftrightarrow G$ is an automorphism of the drawing. Therefore, it suffices to consider the K_5's containing $1, 2, 3$. Any K_5 consisting of all of $0, 1, 2, 3$ and one of B, P, G, R has a face bounded by the 3-cycle 012. Since every face in both \tilde{K}_3^3 and \tilde{K}_5^5 is incident with a crossing, these four K_5's are neither \tilde{K}_3^3 nor \tilde{K}_5^5.

There are six K_5's left to check; these have 1, 2, 3 and two of B, R, G, P.

- BP/BG: $123B$ is a 4-cycle bounding a face.
- BR: This is the \tilde{K}_3^3 created by the rerouting of 13.
- PG: This is the natural K_5.
- PR/GR: $123R$ is a 4-cycle bounding a face.
6 Questions and Conjectures

We conclude with a few questions and conjectures.

1. In Section 1 we presented a table with the convexity hierarchy. One obvious omission is a forbidden drawing characterization of when an h-convex drawing is f-convex. We pointed out that TC_8 is one example of h-convex that is not f-convex. Rerouting some of the edges between the central and outer crossing K_4’s produces a few more examples.

Conjecture 6.1 Let D be an h-convex drawing of K_n. Then D is f-convex if and only if, for every isomorph J of K_8, $D[J]$ is f-convex.

2. The deficiency $\delta(D)$ of a drawing D of K_n is the number $cr(D) - H(n)$. The drawing D has the natural deficiency property if, for every vertex v of K_n, $\delta(D - v) \leq 2\delta(D)$. If the Hill Conjecture is true for $n = 2k - 1, 2k$, and $2k + 1$, then every drawing of K_{2k} has the natural deficiency property.

Conjecture 6.2 For every $k \geq 2$, every (convex) drawing of K_{2k} has the natural deficiency property.

This seems to be an interesting weakening of the Hill Conjecture; it came up tangentially in the proof that $cr(K_{13}) > 217$ [23].

3. Pach, Solymosi, and Tóth [25] proved that, for each positive integer r, there is an $N(r)$ such that, for every $n \geq N(r)$, every drawing D of K_n contains either the natural K_r or the Harborth K_r [18]. If D is convex, then it must be the natural K_r.

Question 6.3 Can this be done for convex drawings directly with bounds better than Pach, Solymosi, and Tóth?

Question 6.4 Does the answer change in the preceding question if we strengthen convex to h-convex or f-convex?

4. In view of Theorem 5.1 one might expect that neither \tilde{K}_3^3 nor \tilde{K}_5^3 can occur in an optimal drawing of K_n. On the other hand, Ramsey type considerations suggest that every drawing of K_p should, for large enough n, appear in an optimal drawing of K_n.

32
Conjecture 6.5 Exactly one of the following holds:

(a) for all \(n \geq 5 \), no optimal drawing of \(K_n \) contains \(\tilde{K}_5 \); and

(b) for any \(p \geq 1 \) and any drawing \(D \) of \(K_p \), there is some \(n \geq p \) and an optimal drawing of \(K_n \) (or at least one with at most \(H(n) \) crossings) that contains \(D[K_p] \).

5. All known drawings of \(K_n \) with \(H(n) \) crossings are convex (and possibly even h-convex).

Question 6.6 Is it true that every optimal drawing of \(K_n \) is convex?

References

[1] B.M. Ábrego and S. Fernández-Merchant, A lower bound for the rectilinear crossing number, Graphs Combin. 21 (2005), 293–300.

[2] B.M. Ábrego, O. Aichholzer, S. Fernández-Merchant, P. Ramos, and G. Salazar, Shellable drawings and the cylindrical crossing number of \(K_n \), Discrete Comput. Geom. 52 (2014), no. 4, 743–753.

[3] O. Aichholzer, T. Hackl, A. Pilz, G. Salazar, and B. Vogtenhuber, Deciding monotonicity of good drawings of the complete graph. In: Proc. XVI Spanish Meeting on Computational Geometry (EGC 2015), 33–36, 2015.

[4] O. Aichholzer, T. Hackl, A. Pilz, P.A. Ramos, V. Sacristán, and B. Vogtenhuber, Empty triangles in good drawings of the complete graph, Graphs Combin. 31 (2015), no. 2, 335–345.

[5] A. Arroyo, D. McQuillan, G. Salazar, and R.B. Richter, Levi’s Lemma, pseudolinear drawings of \(K_n \), and empty triangles, J. Graph Theory DOI: 10.1002/jgt.22167.

[6] A. Arroyo, D. McQuillan, G. Salazar, and R.B. Richter, Drawings of \(K_n \) with the same rotation scheme are the same up to triangle-flips (Gioan’s theorem), Australas. J. Combin. 67 (2017), no. 2, 131–144.

[7] A. Arroyo, R.B. Richter, and M. Sunohara, Extending drawings of complete graphs into arrangements of pseudocircles, submitted.
[8] J. Balogh, J. Leaños, S. Pan, R.B. Richter, and G. Salazar, The convex hull of every optimal pseudolinear drawing of K_n is a triangle, Australas. J. Combin. 38 (2007), 155–162.

[9] I. Bárány and Z. Füredi, Empty simplices in Euclidean space, Canad. Math. Bull. 30 (1987), no. 4, 436–445.

[10] I. Bárány and P. Valtr, Planar point sets with a small number of empty convex polygons, Stud. Sci. Math. Hung. 41 (2004), no. 2, 243–266.

[11] L. Beineke and R. Wilson, The early history of the brick factory problem, Math. Intelligencer 32 (2010), no. 2, 41–48.

[12] W. E. Bonnice, On Convex Polygons Determined by a Finite Planar Set, Amer. Math. Monthly 81 (1974), no. 7, 749–752.

[13] P. Erdős and G. Szekeres, On some extremum problems in elementary geometry, Annales Univ. Sci. Budapest 3 (1960), 53–62.

[14] E. Gioan, Complete graph drawings up to triangle mutations, submitted December 2016. (Extended abstract in D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 139–150, 2005, Springer-Verlag, Berlin-Heidelberg,).

[15] J.E. Goodman and R. Pollack, On the combinatorial classification of non-degenerate configurations in the plane, J. Combin. Theory Ser. A. 29 (1980), 220–235.

[16] B. Grünbaum, Arrangements and Spreads, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 10, Amer. Math. Soc., Providence, R.I., 1972.

[17] F. Harary and A. Hill, On the number of crossings in a complete graph, Proc. Edinburgh Math. Soc. 2 (1962/1963), no. 13, 333–338.

[18] H. Harborth, Empty triangles in drawings of the complete graph, Discrete Math. 191 (1998), no. 1-3, 109–111.

[19] D.J. Kleitman, A note on the parity of the number of crossings of a graph, J. Combinatorial Theory Ser. B 21 (1976), no. 1, 88–89.

[20] D. Knuth, Axioms and Hulls, Vol. 606, Lecture Notes Comput. Sci., Springer, Berlin, 1992.
[21] F. Levi, Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade, Ber. Math-Phys. Kl. Sächs. Akad. Wiss. 78 (1926), 256–267.

[22] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl, Convex quadrilaterals and \(k \)-sets, in Towards a theory of geometric graphs, 139–148, Contemp. Math. 342, Amer. Math. Soc., Providence, RI, 2004.

[23] D. McQuillan, S. Pan, and R.B. Richter, On the crossing number of \(K_{13} \), J. Combin. Theory Ser. B 115 (2015), 224–235.

[24] D. McQuillan and R.B. Richter, On the crossing number of \(K_n \) without computer assistance, J. Graph Theory 82 (2016), no. 4, 387–432.

[25] J. Pach, J. Solymosi, and G. Tóth, Unavoidable configurations in complete topological graphs, Discrete Comput. Geom. 30 (2003), no. 2, 311–320.

[26] B. Sturmfels and G.M. Ziegler, Extension spaces of oriented matroids, Discrete Comput. Geom. 10 (1993), no. 1, 23–45.

[27] A. Suk, On the Erdős-Szekeres convex polygon problem, J. Amer. Math. Soc. 30 (2017), no. 4, 1047–1053.