Roles of Tumor Microenvironment in Hepatocellular Carcinoma

Haeng R. Seo*

Cancer Biology Research Laboratory, Center of Discovery Biology, Institut Pasteur Korea, 16, Dae-wangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea

Abstract: Hepatocellular carcinoma (HCC) is one of the most malignant human cancers, with a high mortality rate worldwide despite its early diagnosis in patients and improvement in therapeutic technology. Most cases of liver cancer show a strong resistance to anticancer therapy. Moreover, liver cancer patients generally have poor tolerance to chemotherapy due to liver dysfunction. In these situations, liver-targeting drugs with fewer side effects and a high efficacy are urgently needed during drug discovery for liver cancer. Researchers have aimed to derive target genes and drug candidates for HCC; however, the development of targeted drugs has not yet improved the outcome significantly.

Recently, the role of the tumor microenvironment (TME) in HCC has been probed to combat this deadly disease. A deeper knowledge of the crosstalk between tumor cells and their TME is needed to fully understand tumor development, progression and chemo-resistance in HCC because this cancer develops from chronically damaged tissue that contains large amounts of inflammation and fibrosis.

In this review, we summarize how distinct stromal cells of TME are involved in tumorigenesis and chemoresistance in HCC and the significant challenge to recapitulate tumor complexity and heterogeneity enhancement.

Keywords: Co-culture, drug development, hepatocellular carcinoma (HCC), multicellular tumor spheroid model (MCTS), tumor microenvironment (TME), tumorigenesis.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common malignant tumor and the second leading cause of cancer-related deaths worldwide [1]. Chronic infection by hepatitis B and C, cirrhosis, and alcohol use are leading causes, as well as metastases from tumors elsewhere in the body [2]. Over the past decade, advances in treatment, surgical techniques, radiology, and liver transplantation have resulted in considerable improvements in the therapy for HCC. However, the prognosis for this disease is very poor because only 10-20% of liver tumors can be removed surgically [3]. Moreover, the cumulative 3-year recurrence rate after resection with a curative aim is approximately 80%. More importantly, recurrence after resection usually results in a high rate of mortality [4].

Presently, sorafenib, a multikinase inhibitor, is approved for the treatment of patients with advanced HCC. Generally, the medication costs of sorafenib are approximately US $5,400 per month; however, the drug only extends lifespan by an average of 2.8 months with various side effects [5]. Thus, novel therapeutic strategies are needed to improve the liver cancer patient’s quality of life.

For a long time, oncologists have studied the functions of oncogenes and tumor suppressor genes in tumorigenesis. In the recent years, the concept of cancer biology is changing from the genetics of tumor cells alone to studying the complicated interplay between cancer and the tumor microenvironment (TME).

The TME is the cellular environment in which the tumor exists, including the surrounding blood
vessels, immune cells, fibroblasts, other cells, signaling molecules, and the extracellular matrix (ECM) [6-8]. Recent studies have shown that the stromal cells in solid tumors have a dynamic and flexible function in tumor proliferation, invasion and metastasis, and the cells of the TME can regulate the response of cancer cells to chemotherapy [9].

To enhance our understanding of the communication between cancer cells and their microenvironment, we should solve some important questions such as what is the contribution of distinct components in the TME to tumor progression, what type of signals do cancer cells receive from the stromal cells in HCC and how do these signals promote malignant growth.

To solve these questions, many groups have challenged the modeling of tumor complexity and heterogeneity in various ways to mimic the in vivo TME. In this review, we describe the roles of distinct stromal cells of the TME in tumorigenesis and chemo-resistance in HCC and the significant challenge to model of tumor complexity and heterogeneity. A better understanding of interplay between tumor cells and the TME may be useful to devise new therapeutic strategies for HCC.

INFLUENCE OF THE TME COMPONENTS

Cancer-associated Fibroblasts

Fibroblasts are the most abundant cell type in connective tissues that maintain the structural framework of tissues through the secretion of ECM components. They also play a critical role in wound healing to support repair. Unlike normal fibroblasts, cancer-associated fibroblasts (CAFs), which are a specialized group of fibroblasts in cancer, can significantly promote the growth and invasion of tumor cells in various cancers, such as breast, prostate and pancreatic carcinoma [10-13]. CAFs directly affect tumor progression through enhancement of the expression of mitogens, cytokines, MMPs and ECM components that include hepatocyte growth factor (HGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor bFGF, stromal cell-derived factor (SDF-1) and Interleukin-6 (IL-6) [10, 14-17].

CAFs are extremely critical components of the HCC microenvironment because most HCC cases are derived from fibrosis and cirrhosis. However, the crosstalk effects between HCC and fibrosis have not been well studied in the liver cancer microenvironment.

To date, only a few studies have addressed that H-CAFs (hepatocellular carcinoma-associated fibroblast) are an important factor for promoting the growth of HCCs in vitro and in vivo. Chuang et al. demonstrated [18, 19] that co-culture of HCCs and CAFs in vitro can enhance proliferation, migration, and invasion of HCC by changing of gene expression in HCC cell lines. H-CAFs can specifically up-regulate CCL2, CCL26, IL6, and LOXL2 genes which are related to proliferation, migration, invasion and angiogenesis in HCC cells. H-CAFs also regulate the cytokine levels. Qi Zhang et al. showed [20] a similar tendency in H-CAFs to support tumorigenesis by HGF secretion. A positive relationship between the distribution of H-CAFs and tumor growth was detected on the clinical level using 43 cases of HCC patient-derived materials. Furthermore, activated H-CAFs exhibited deactivation of natural killer (NK) cells by the regulation of PGE2 and IDO, thereby fostering tumor growth and progression [21]. This study showed that complicated multiple inter-actions between different types of components in the TME induced tumor development, progression, and chemo-resistance.

In summary, H-CAFs play a critical role in tumorigenesis by various mechanisms in HCC. However, the association between HCCs and CAFs is incompletely understood to treat liver cancer patients by targeting H-CAFs.

Hepatic Stellate Cells

Hepatic stellate cells (HSCs) play critical roles in diverse aspects of liver physiology, including liver organogenesis, regeneration, and HCC. HSCs are found in the space of Disse between the sinusoidal endothelial cells and hepatic epithelial cells [22]. HSCs were first described by Karl von Kupffer as Sternzellen (star cells) because normal stellate cells have a typical star-like morphology [23, 24]. Since then, stellate cells were found in several other organs, including the kidney, pancreas, and lung [25-28].
HSCs are quiescent and accumulate numerous vitamin A lipid droplets in healthy liver [29, 30]. When the liver is wounded by viral infection or hepatic toxins, HSCs undergo phenotypic transformation from quiescent cells to activated myofibroblast-like cells and secrete diverse cytokines, growth factors, and EMC proteins to protect the liver. The hallmarks of HSC activation are a reduced level of intracellular lipid droplets, increased expression of αSMA and production of ECM, and morphological changes [31-33].

HSCs are involved in the process of liver regeneration to appropriately control liver growth by producing antigenic factors and growth factors, changing the expression profile of cytokines and chemokines, and modulating endothelial cell and hepatocyte proliferation. The modulation of the balance between HGF and TGF-β1 can control the initiation and cessation of liver generation [34]. The neurotrophin receptor p75NTR is expressed in HSCs after fibrotic and cirrhotic liver injury in humans. p75NTR may lead to the termination of liver regeneration via the induction of the apoptosis of activated HSCs [35].

In addition to liver development and regeneration, HSCs exhibit biological functions in liver carcinogenesis. HSCs can induce phenotypic changes in cancer cells through the production of growth factors and cytokines such as HGF and IL-6. Reciprocal crosstalk between HCC and HSCs exists. When HSCs are co-cultured with Huh7 or HepG2 cells, HSC activation and migration are detected [36]. Activated HSCs can regulate the migration and proliferation of HCC cells via the modulation of TGF-β and ECM-related proteins. Moreover, the interaction between HCC and activated HSCs formed pro-angiogenic microenvironment by the overexpression of VEGF-α and metalloproteinase-9 (MMP9) [32, 37, 38]. Because active HSCs are involved in tumor onset and progress, targeting HSCs may represent a promising therapeutic strategy.

Vasculature

The vascular endothelium can control the transport of nutrients into tissues and maintain the flow of blood. The structure of the vascular endothelium is composed of endothelial cells, smooth muscle cells and a basement membrane. The endothelial cells form a continuous and uniform mono-layer in normal tissues and express various receptors of angiogenic factors including VEGFRs, Tie-2, EGFR, PDGFR, and CXCRs. Activation of receptors in endothelial cells trigger several signal cascades to regulate survival, proliferation, and invasion.

Tumor blood vessels are abnormal morphologically. Chaotic networks of tortuous endothelium are defective in tumor blood vessels [39]. The endothelial cells in cancer tissues have an irregular shape and size and are called tumor endothelial cells (TECs). TECs may create leaky vessels or gaps in the vasculature. This process could allow tumor cells to enter the circulation and distribute to other sites. The abnormal function of TECs in cancer tissues is to induce high concentrations of VEGF, which is a main stimulator of angiogenesis and tumor progression [40].

HCC is one of the most vascular types of solid tumor. The growth of liver cancer requires the formation of new blood vessels, and VEGF is critical factor in angiogenesis. VEGF expression is up-regulated in most cases of human HCC [41]. Some studies have shown that VEGF expression is regulated by various factors such as hormones, cytokines, signal molecules, and hypoxia [42-45]. VEGF affects endothelial cells to promote neovascularization in HCC, and the VEGF/VEGFR network may stimulate the growth of liver tumor cells [46].

Presently, multiple agents targeting the VEGF/VEGFR signal cascade are in clinical trials for HCC therapy. Thus far, sorafenib, a typical anti-VEGF agent, is approved for the treatment of patients with advanced HCC. In fact, sorafenib improved the survival in liver cancer patients. Researchers have developed other anti-VEGF agents like sorafenib, but there was no improvement. The molecular pathway in liver angiogenesis remains incompletely elucidated. Therefore, innovative strategies are needed for anti-angiogenesis treatment development by combining research into blocking VEGF signaling with studies of the tumor micro vessel environments in liver cancer.

Cancer Stem Cells

Cancer stem cells (CSCs) have been identified by experiments in which tumor cells were fractionated, characterized by cell surface markers,
and injected at limiting dilutions in mice. Those populations that led to tumor growth in the animal, and that led to tumor growth when that tumor was transplanted into a second animal, are considered CSCs [47, 48]. CSCs are considered the ‘Achilles heel’ due to their strong resistance to chemotherapy and radiotherapy. Thus, the recent advancements in the use of HCC stem cells to develop efficient and organized means to an antitumor agent is quickly gaining recognition as a novel goal. However, chemical screening to identify agents that preferentially kill CSCs is limited by the difficulty of culturing CSCs from solid tumors in vitro—CSC enrichment is rapidly lost in culture [49]. Moreover, CSC existence and roles remain controversial. Commonly, CSCs have been characterized by various cell surface markers, including ABCG2, ALDH1, CD44, CD133, and CD90, although their usefulness in certain tumor types remains debatable [50-52].

Recently, HCC progression has been thought to be derived by CSCs. Many studies have shown that CSC-related surface markers and pathways could modulate tumor development and suppression in liver cancer. Thus far, CSCs in HCC were identified by several cell surface antigens such as CD133, EpCAM, and CD44. Among them, CD133 and EpCAM have attracted considerable attention as representative liver CSC markers. CD133/Prominin-1 is well known as stem cell markers in various types of cancers. Liver cancer patients with high expression of CD133 had a shorter overall survival and higher recurrence rates than patients with low expression of CD133 (Table 1). As it seems to support clinical significance, CD133+ liver CSCs can induce an aberrant signaling pathway rather than CD133- cells [47, 53].

To confer chemo-resistance, CD133+ liver CSCs can modulate the activity of the Akt/PKB pathway, JNK, mTOR, ERK, and β-catenin [54, 55]. Aldehyde dehydrogenase (ALDH) and ATP-binding cassette (ABC) superfamily transporters such as ABCG2 are also elevated in CD133+ liver CSCs [56]. CD133+ liver CSCs can promote angiogenesis via the regulation of the production of IL-8, VEGF, and MMP-2. Current studies have indicated that CD133 is expected as a novel target to overcome chemo-resistance in HCC.

EpCAM is expressed in many human cancers with an epithelium origin. Currently, several EpCAM-targeting antibodies and RNAi significantly reduced the tumorigenicity and invasive capacity [57] of various cancers. EpCAM+ HCC cells display liver CSC-like traits, including the abilities to self-renew and differentiate. EpCAM expression is regulated via the activation of Wnt/β-catenin signaling [58]. Because crosstalk between EpCAM and Wnt signaling is associated with a regeneration capacity in liver CSCs, it has important value as a novel target for drug discovery. CSC-related research is an enchanting area to overcome the strong chemo-resistance in HCC. Again, because the roles and existence of CSCs remain controversial, prudent approaches are needed to treat cancer patients by targeting CSCs.

Immune Cells

Generally, the functions of the immune system are recognized as the protection of tissues from infection and damage. However, immune systems have also been implicated in promoting and preventing tumor growth. Immune responses in the liver are regulated by a complex interplay of antigen-presenting cells, T cells, and myeloid cell populations. The role of the immune system is complex and can be both pro- and anti-tumorigenic [59] in the development and progression of HCC. The immunosuppressive cell populations in the liver, which include CD4 T cells (Treg), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and Th17 cells, affect tumor progression in HCC. Treg and MDSCs have clearly been shown to promote HCC progression. TAMs can also affect HCC tumor progression through NF-kB, STAT-3, and HIF-1 signaling [60]. NKT cell populations can either promote or impair liver cancer spontaneously [61]. The reduction of NK cells in cirrhotic livers is associated with HCC progression. Abnormalities in the B-cell phenotype and function occur in the progress of cirrhosis [63] and HCC; however, B cells can also induce de novo carcinogenesis by chronic inflammation [63]. Today, further studies are needed to elucidate the role of immune cell subsets in HCC for the enhancement of immunotherapeutic strategies and development of cancer vaccines.

Challenges with the Recapitulation of the TME

Various types of cancer cell lines have contributed to the improvement of cancer cell biology. However, the mono-culture system has limitations because it cannot estimate the crosstalk between
Table 1. Roles of CD133+ HCC cells in HCC tumorigenesis.

Cell Type (Cell Line/Patient)	Changed Expression by CD133	Note	Ref.
Huh7	AFP, GS, CYP3A4	CD133+ HCC cells possessed higher proliferative and tumorigenic potential and expressed a lower level of mature hepatocyte markers than CD133- HCC cells.	[77]
Huh7, PLC8024	β-catenin, OCT3/4, Bmi1, SMO, Notch	CD133+ HCC cells exhibited a strong colony-forming ability and proliferative property. They showed progenitor cell-like properties in terms of stemness-related genes, self-renewal ability, and differentiation ability.	[53]
SMMC-7221		CD133+ HCC cells showed higher survivability to chemotherapy (Doxorubicin, 5-FU) and expression of survival proteins related to the Akt/PKB and Bcl-2 pathways.	[78]
PLC/PRF/5, Huh7, Patient (5)	MMP2, ADAM9	CD133+ HCC cells displayed a strong invasion capacity and resistance to natural killer cells (NKs) and could produce high levels of VEGF.	[79]
PLC8024, Huh7, Patient (12)	IL-8, ABCC1, Nanog, Notch1, CXCL1	Neurotensin/IL-8/CXCL1 signaling through MAPK in CD133+ HCC cells played a functional role in the angiogenic, tumorigenic, and stem-like properties of these cells.	[80]
Huh7, PLC/PRF/5, Hep3B	Bmi1, Oct3/4, Nanog, Sox2, Klf4	Inhibition of mTOR with rapamycin increased CD133+ HCC cells via inhibiting its differentiation potential, retaining stemness properties.	[81]
SMMC-7221, Huh7, Hep3B, Patient (5)		miR-150 down-regulated c-Myb in CD133+ HCC cells, and it affected the self-renewal capacity in these cells. They demonstrated that the high percentage of the G1 phase and apoptosis cell population resulted from the overexpression of miR-150.	[82]
Hep3B, SNU475, PLC/PRF/5, SMMC-7221, MHCC-97L, HCC-Ly5 (patient)	GPR87	The overexpression of GPR87 could regulate CD133 expression positively, and played critical roles in tumorigenesis and stemness.	[83]
Patient-derived samples		Cytoplasmic CD133 was the main cause of the shorter overall survival of patients with HCC.	
	β-catenin, Nanog, Oct3/4, Sox2, Nestin, SMO, Bmi1, Notch, ABCG2, ABCB1	miR-130b could regulate stemness and tumorigenesis via silencing TP53INP1 in CD133+ HCC cells.	[84-87]
		For the carcinogenic process, hypomethylation of Line-1 was the most common disorder. Overexpression of CD133 was related to the demethylation of Line-1 in HCC.	
		CD133 expression and JNK activation in HCC showed a positive correlation. Resistance to sorafenib was related to the activation of JNK and overexpression level of CD133.	

carcinomas and their TMEs. It is true that heterologous cell types within tumors can actively influence the therapeutic response and shape resistance. To understand the functional role of stromal cells in the TME in tumorigenesis, modeling TME was challenged in various ways. To elucidate the crosstalk between tumor and stromal cells, researchers have challenged direct or indirect co-culture systems. In indirect co-culture systems, conditioned media that contain secreted proteins were utilized to determine the function of the TME because secreted proteins are key intercellular messengers in the tumorigenesis process. Direct co-culture systems, which comprise more than two types of cells in one culture dish or well, has the advantage of evaluating cell-cell interactions in the
TME. Actually, many studies have revealed that the co-culture of hepatocellular carcinoma and stromal cells enhanced the progression of cancers through the activation of specific signal pathways and changes in the cytokine expression profile (Table 2) [62-64].

Recently, a research trend is changing from two-dimensional (2D) to 3D cell culture systems. Actually, attempts to mimic cancer tissues via the creation of 3D culture systems in vitro are not new in cancer biology. Although 2D cell culture systems have taken the lead in cancer research and drug discovery, they are limited in their ability to predict in vivo situations. Because culturing cells in 2D are grown on flat dishes and form unnatural cell attachments, simplifying the assay system in 2D cannot provide the data that would be utilized in translational research.

Globally, the subsequent very well-recognized international laboratory published work clearly highlights the need for complicated 3D cell culture systems as a new methodology to screen for therapeutics on oncology. Because culturing cells in 3D attached to other cells form natural cell-to-cell attachments, cells in 3D culture systems have displayed a spectacular influence on cell polarity, differentiation, signaling cascades, and gene expression relative to cells in 2D culture systems [65, 66]. Therefore, 3D cell culture in vitro has been used in cancer research as an intermediate model between an in vitro cancer cell line culture system and an in vivo tumor. Particularly, liver cells performed more liver cell functions in 3D versus 2D [67-69]. Currently, the importance of the drug development of specific liver cancer through the construction of a 3D tumor microenvironment has been well-recognized. However, it has not been successful worldwide due to the complicated process of establishing a 3D microenvironment.

The tumor microenvironment plays important physiological roles in cell differentiation, tumorigenesis, metastasis, and therapeutic efficiency. Therefore, the multicellular tumor spheroid model (MCTS) has emerged as a powerful method to mirror tumor complexity and heterogeneity enhancement for anticancer research. Reciprocal action between different types of cells in a spheroid produces a critical effect on the sensitivity to chemotherapy and behavior of tumors. Various types of MCTSs have been applied to observe the crosstalk between tumor cells and their stromal cells.

MCTSs that comprise endothelial cells and tumor cells are routinely used to evaluate the antiangiogenic capacity. Under 3D conditions, co-culture of melanoma and vascular endothelial cells (HUVECs) enhance tumor metastasis compared with 2D co-culture [70]. Co-culture of HUVECs and hepatocytes on heterocellular 3D architecture was utilized to monitor cancer angiogenesis [71, 72]. Co-culture of prostate cancer epithelial and stromal cells under 3D conditions influences the secretion of E-cadherin [73]. Co-culture of CAFs

Table 2. Functional studies of stromal cells in HCC using the co-culture system.

Cell Type	Culture Type	Factors	Pathway Activated	Ref.
HUVEC	3D, Direct	-	C-Met/AKT, JAK2/STAT3	[71, 72]
Hepatic stellate cell	2D, Indirect	HGF	FAK-MM9	[89]
Cancer-associated fibroblast	2D, Direct and Indirect	-	CCL2, CCL26, IL6, LOXL2	[18]
Cancer-associated fibroblast	2D, Indirect	HGF	-	[20]
Human embryo fibroblast	2D, Direct	Hab18G/CD147	MMPs	[90]
HCC-associated mesenchymal stem cells	3D, Direct / 2D, Indirect	miR-155	MMP9	[91]
Tumor-associated macrophages	2D and 3D, Indirect	IL6	STAT3	[92]
Tumor-associated macrophages	2D, Indirect	TGF-β1	EMT	[93]

*2D: two-dimensional, 3D: three-dimensional, Indirect: indirect co-culture, Direct: direct co-culture
and salivary gland adenoid cystic carcinoma (ACC) cells under 3D conditions promoted tumor spheroid invasion [74]. The co-culture system of 3D clone cancer cells and stromal fibroblasts also showed a strong invasive phenotype than 3D clone cancer cells alone [75]. Dynamic analysis of hepatocellular carcinoma MCTS formation has shown the fundamental role of E-cadherin and β1-integrin in cell aggregation and multicellular tumor spheroid compaction [76].

These results suggested that the MCTS can remarkably recapitulate the 3D cellular environment and has pathophysiological relevance like in vivo tumors, unlike classical monolayer-based models. Currently, the importance of the drug development of specific liver cancer through the 3D tumor microenvironment has been recognized, but it remains unsuccessful worldwide due to the complicated process of establishing a 3D microenvironment. Institut Pasteur Korea (IPK) has developed MCTSs for high content screening to identify HCC-specific compounds. To configure multicellular tumor spheroids, human hepatocellular carcinoma cells (Huh7) were grown together with human fibroblasts (WI38), human HSCs (LX2), and human umbilical endothelial cells (HUVEC) (Fig. 1). Through the comparison study of the sensitivity to conventional anticancer drugs using our MCTSs and HCC spheroids, MCTSs displayed strong chemo-resistance relative to Huh7-alone spheroids (data not shown). Presently, we expect that the models of multicellular tumor spheroids will contribute to the elimination of false-positive drug candidates during the process of drug discovery and the elucidation of the functional roles of each stromal cell type on tumorigenesis and chemo-resistance.

Recently, tissue-derived tumor spheroids generated from tissues are of growing interest in personalized therapeutic strategies. The current treatment for HCC is surgical resection with limited chemotherapy because of the lack of response in many liver cancer patients. This method will be a clinically available model to monitor chemotherapy drug efficacies in a more natural, clinically relevant environment.

Although the 3D co-culture system is still too immature to mirror the in vivo TME, it is a highly applicable method to elucidate the roles of the TME on tumorigenesis. Furthermore, 3D tumor microenvironment systems will offer a new paradigm for high-throughput drug screening and will significantly improve the efficiency of identifying new drugs for liver cancer treatment.

CONCLUSION

Recently, Megan Scudellari mentioned that drug companies have been fighting a losing battle against advanced liver cancer, and this sentiment is presently true [5]. HCCs strongly enhance resistance to chemotherapy together with their TME, because the various components of the TME contribute to many aspects of carcinogenesis, cancer progression, and HCC behavior. Thus, targeting components of the HCC microenvironment might be a useful approach to overcome liver cancer.

To characterize the causes of drug resistance related to TME, the development of sophisticated...
methodologies is essentially needed to reflect the TME. However, these strategies are by no means easy. Because TMEs are different according to various stages of tumor development, drug treatment, and patient properties, it is unclear how to recapitulate the TME like that in vivo. To do this, continuous research on the dynamic changes of TME within patient tissues is essential through the collaboration of basic researchers and clinical pathologists to configure the TME in vitro with physiological relevance. Further studies of the interplay between HCC and the TME should ultimately offer biomarkers that have diagnostic and prognostic value, an opportunity for novel anticancer drug development, and the most appropriate treatment for each patient.

CONFLICT OF INTEREST

The author confirms that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundation of Korea (NRF-2014K1A4A7A01074647) and Gyeonggi-do.

REFERENCES

[1] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[2] Ribes J, Cleries R, Esteban L, Moreno V, Bosch FX. The influence of alcohol consumption and hepatitis B and C infections on the risk of liver cancer in Europe. J Hepatol 2008; 49(2): 233-42.
[3] Chiaramonte M, Stroffolini T, Vian A, et al. Rate of incidence of hepatocellular carcinoma in patients with compensated viral cirrhosis. Cancer 1999; 85(10): 2132-7.
[4] Poon RT-P, Fan ST, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg 2000; 232(1): 10-24.
[5] Scudellari M. Drug development: try and try again. Nature 2014; 516(7529): S4-6.
[6] Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013; 501(7467): 346-54.
[7] Wu SD, Ma YS, Fang Y, Liu LL, Fu D, Shen XZ. Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat Rev 2012; 38(3): 218-25.
[8] Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol 2011; 21(1): 35-43.
[9] Tredan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007; 99(19): 1441-54.
[10] Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121(3): 335-48.
[11] Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, Feng YM. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. Br J Cancer 2014; 110(3): 724-32.
[12] Sun Y, Campisi J, Higano C, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 2012; 18(9): 1359-68.
[13] Chen L, Qu C, Chen H, et al. Chinese herbal medicine suppresses invasion-promoting capacity of cancer-associated fibroblasts in pancreatic cancer. PLoS One. 2014; 9(4): e96177.
[14] Yu S, Xia S, Yang D, et al. Androgen receptor in human prostate cancer-associated fibroblasts promotes prostate cancer epithelial cell growth and invasion. Med Oncol 2013; 30(3): 674.
[15] Murata T, Mizushima H, Chinen I, et al. HB-EGF and PDGF mediate reciprocal interactions of carcinoma cells with cancer-associated fibroblasts to support progression of uterine cervical cancers. Cancer Res 2011; 71(21): 6633-42.
[16] De Francesco EM, Lappano R, Santolla MF, Marsico S, Caruso A, Maggiolini M. HIF-1alpha/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAF)s. Breast Cancer Res 2013; 15(4): R64.
[17] Li Q, Wang W, Yamada T, et al. Pleural mesothelioma instigates tumor-associated fibroblasts to promote progression via a malignant cytokine network. Am J Pathol. 2011; 179(3): 1483-93.
[18] Lin ZY, Chuang YH, Chuang WL. Cancer-associated fibroblasts up-regulate CCL2, CCL26, IL6 and LOXL2 genes related to promotion of cancer.
progression in hepatocellular carcinoma cells. Biomed Pharmacother 2012; 66(7): 525-9.

[19] Lin ZY, Chuang WL. Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts. Kaohsiung J Med Sci 2013; 29(6): 312-8.

[20] Jia CC, Wang TT, Liu W, et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One. 2013; 8(5): e63243.

[21] Li T, Yang Y, Hua X, et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett. 2012; 318(2): 154-61.

[22] Yin C, Evason KJ, Asahina K, Stainier DY. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 2013; 123(5): 1902-10.

[23] Kupffer K, der Leber US. Briefliche Mitteilung an Professor Waldeyer. Arch Mikr Anat 1876; 12: 353-8.

[24] Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 2001; 21(3): 311-35.

[25] Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 2006; 69(2): 213-7.

[26] Keane MP, Strieter RM, Belperio JA. Mechanisms and mediators of pulmonary fibrosis. Crit Rev Immunol. 2005; 25(6): 429-63.

[27] Apte MV, Haber PS, Applegate TL, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 1998; 43(1): 128-33.

[28] Bachem MG, Schneider E, Gross H, et al. Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 1998; 115(2): 421-32.

[29] Watari N, Hotta Y, Mabuchi Y. Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration. Okajimas Folia Anat Jpn 1982; 58(4-6): 837-58.

[30] Blaner WS, O'Byrne SM, Wongsiriroj N, et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 2009; 1791(6): 467-73.

[31] Carpino G, Morini S, Corradini SG, et al. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Dig Liver Dis 2005; 37(5): 349-56.

[32] Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008; 88(1): 125-72.

[33] Sokolovic A, Sokolovic M, Boers W, Elferink RP, Bosma PJ. Insulin-like growth factor binding protein 5 enhances survival of LX2 human hepatic stellate cells. Fibrogenesis Tissue Repair 2010; 3: 3.

[34] Chen L, Zhang W, Zhou QD, et al. HSCs play a distinct role in different phases of oval cell-mediated liver regeneration. Cell Biochem Funct 2012; 30(7): 588-96.

[35] Passino MA, Adams RA, Sikorski SL, Akassoglou K. Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR. Science 2007; 315(5820): 1853-6.

[36] Sancho-Bru P, Juez E, Moreno M, et al. Hepatocarcinoma cells stimulate the growth, migration and expression of pro-angiogenic genes in human hepatic stellate cells. Liver Int 2010; 30(1): 31-41.

[37] Santamato A, Fransvea E, Dituri F, et al. HSCs play a distinct role in different phases of oval cell-mediated liver regeneration. Cell Biochem Funct 2012; 30(7): 588-96.

[38] Amann T, Bataille F, Spruss T, et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 2009; 100(4): 546-53.

[39] Komerding MA, Malkusch W, Klapthor B, et al. Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 1999; 80(5-6): 724-32.

[40] Dudley AC. Tumor endothelial cells. Cold Spring Harb Perspect Med 2012; 2(3): a006536.

[41] Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M. Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 1998; 28(1): 68-77.

[42] Hyder SM. The role of steroid hormones on the regulation of vascular endothelial growth factor. Am J Pathol 2002; 161(1): 345-6.

[43] Eisermann K, Broderick CJ, Bazarov A, Moazam MM, Fraizer GC. Androgen up-regulates vascular endothelial growth factor expression in prostate cancer cells via an Sp1 binding site. Mol Cancer 2013; 12: 7.
Roles of Tumor Microenvironment in Hepatocellular Carcinoma

[44] Nagineni CN, Kommineni VK, William A, Detrick B, Hooks JJ. Regulation of VEGF expression in human retinal cells by cytokines: implications for the role of inflammation in age-related macular degeneration. J Cell Physiol 2012; 227(1): 116-26.

[45] Detmar M, Brown LF, Berse B, et al. Hypoxia regulates the expression of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) and its receptors in human skin. J Invest Dermatol 1997; 108(3): 263-8.

[46] Finn RS, Zhu AX. Targeting angiogenesis in hepatocellular carcinoma: focus on VEGF and bevacizumab. Expert Rev Anticancer Ther 2009; 9(4): 503-9.

[47] Zhao W, Wang L, Han H, et al. 1B50-1, a mAb raised against recurrent tumor cells, targets liver tumor-initiating cells by binding to the calcium channel alpha2delta1 subunit. Cancer Cell 2013; 23(4): 541-56.

[48] Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138(4): 645-59.

[49] Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008; 10(2): R25.

[50] Li C, Heidt DG, Dalbera P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67(3): 1030-7.

[51] Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445(7123): 111-5.

[52] Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63(18): 5821-8.

[53] Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132(7): 2542-56.

[54] Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 2008; 27(12): 1749-58.

[55] Mak AB, Nixon AM, Kittanakom S, et al. Regulation of CD133 by HDAC6 promotes beta-catenin signaling to suppress cancer cell differentiation. Cell Rep 2012; 2(4): 951-63.

[56] Hu Y, Fu L. Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res 2012; 2(3): 340-56.

[57] Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology 2009; 136(3): 1012-24.

[58] Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res 2007; 67(22): 10831-9.

[59] Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-99.

[60] Quatromoni JG, Eruslanov E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res 2012; 4(4): 376-89.

[61] Kenna T, Golden-Mason L, Porcelli SA, et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 2003; 171(4): 1775-9.

[62] Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth--bystanders turning into key players. Curr Opin Genet Dev 2009; 19(1): 67-73.

[63] Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59(19): 5002-11.

[64] Yang XY, Zhang D, Zou QF, Fan F, Shen F. Association of tumor-associated fibroblasts with progression of hepatocellular carcinoma. Med Oncol 2013; 30(3): 593.

[65] Quiros RM, Valianou M, Kwon Y, Brown KM, Godwin AK, Cukierman E. Ovarian normal and tumor-associated fibroblasts retain in vivo stromal characteristics in a 3-D matrix-dependent manner. Gynecol Oncol. 2008; 110(1): 99-109.

[66] Weaver VM, Petersen OW, Wang F, et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 1997; 137(1): 231-45.

[67] Meng Q. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2010; 6(6): 733-46.

[68] Tostoes RM, Leite SB, Serra M, et al. Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology 2012; 55(4): 1227-36.
[69] Fey SJ, Wrzesinski K. Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol Sci 2012; 127(2): 403-11.

[70] Yamamoto S, Hotta MM, Okochi M, Honda H. Effect of vascular formed endothelial cell network on the invasive capacity of melanoma using the in vitro 3D co-culture patterning model. PLoS One 2014; 9(7): e103502.

[71] Lee W, Park J. The design of a heterocellular 3D architecture and its application to monitoring the behavior of cancer cells in response to the spatial distribution of endothelial cells. Adv Mater 2012; 24(39): 5339-44.

[72] Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Ishige N. Co-culture of hepatocellular carcinoma cells and human umbilical endothelial cells damaged by SU11274. Biomed Rep 2012; 403-11.

[73] Fang X, Sittadjody S, Gyabaah K, Opara EC, Balaji KC. Novel 3D co-culture model for epithelial-stromal cells interaction in prostate cancer. PLoS One 2014; 2(6): 799-803.

[74] Liu T, Lin B, Qin J. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device. Lab Chip 2010; 10(13): 1671-7.

[75] Dolznig H, Rupp C, Puri C, et al. Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. Am J Pathol 2011; 179(1): 487-501.

[76] Lin RZ, Chou LF, Chien CC, Chang HY. Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and betal-integrin. Cell Tissue Res 2006; 324(3): 411-22.

[77] Suetugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006; 351(4): 820-4.

[78] Yin S, Li J, Hu C, Chen X, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007; 120(7): 1444-50.

[79] Kohga K, Tatsumi T, Takehara T, et al. Expression of CD133 confers malignant potential by regulating metalloproteinases in human hepatocellular carcinoma. J Hepatol 2010; 52(6): 872-9.

[80] Tang KH, Ma S, Lee TK, et al. CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/inter-leukin-8/CXCL1 signaling. Hepatology 2012; 55(3): 807-20.

[81] Yang Z, Zhang L, Ma A, et al. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations. PLoS One 2011; 6(12): e28405.

[82] Zhang J, Luo N, Luo Y, Peng Z, Zhang T, Li S. microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. Int J Oncol 2012; 40(3): 747-56.

[83] Yan M, Li H, Zhu M, et al. Protein-coupled receptor 87 (GPR87) promotes the growth and metastasis of CD133(+) cancer stem-like cells in hepatocellular carcinoma. PLoS One 2013; 8(4): e61056.

[84] Sasaki A, Kamiyama T, Yokoo H, et al. Cytoplasmic expression of CD133 is an important risk factor for overall survival in hepatocellular carcinoma. Oncol Rep 2010; 24(2): 537-46.

[85] Ma S, Tang KH, Chan YP, et al. miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 2011; 7(6): 694-707.

[86] Zhang C, Xu Y, Zhao J, et al. Elevated expression of the stem cell marker CD133 associated with Line-1 demethylation in hepatocellular carcinoma. Ann Surg Oncol 2011; 18(8): 2373-80.

[87] Hagiwara S, Kudo M, Nagai T, et al. Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br J Cancer 2012; 106(12): 1997-2003.

[88] Chen W, Wu J, Shi H, et al. Hepatic stellate cell coculture enables sorafenib resistance in Huh7 cells through HGF/c-Met/Akt and Jak2/Stat3 pathways. Biomed Res Int 2014; 2014: e64981.

[89] Han S, Han L, Yao Y, Sun H, Zan X, Liu Q. Activated hepatic stellate cells promote hepatocellular carcinoma cell migration and invasion via the activation of FAK-MMP9 signaling. Oncol Rep 2014; 31(2): 641-8.

[90] Xu J, Xu HY, Zhang Q, et al. HAb18G/CD147 functions in invasion and metastasis of hepatocellular carcinoma. Mol Cancer Res 2007; 5(6): 605-14.

[91] Yan XL, Jia YL, Chen L, et al. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology 2013; 57(6): 2274-86.
[92] Wan S, Zhao E, Kryczek I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 2014; 147(6): 1393-404.

[93] Fan QM, Jing YY, Yu GF, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett 2014; 352(2): 160-8.