FINITE BLASCHKE PRODUCTS AND THE GOLDEN RATIO

NİHAL YILMAZ ÖZGÜR AND SÜMEYRA UÇAR

ABSTRACT. It is known that the golden ratio $\alpha = \frac{1+\sqrt{5}}{2}$ has many applications in geometry. In this paper we consider some geometric properties of finite Blaschke products related to the golden ratio.

1. Introduction

The golden ratio $\alpha = \frac{1+\sqrt{5}}{2}$ is the positive root of the quadratic equation $x^2 - x - 1 = 0$. So we have

$$\alpha^2 = \alpha + 1.$$ (1.1)

The golden ratio appears in modern research in many fields. For example, in [13] the golden ratio is used in graphs, in [8] it is proved that in any dimension all solutions between unity and the golden ratio to the optimal spherical code problem for N spheres are also solutions to the corresponding DLP (the densest local packing problem) problem.

In this paper we give a connection between geometric properties of Blaschke products and the golden ratio.

The rational function

$$B(z) = \beta \prod_{i=1}^{n} \frac{z - a_i}{1 - \overline{a_i}z}$$

is called a finite Blaschke product of degree n for the unit disc where $|\beta| = 1$ and $|a_i| < 1$, $1 \leq i \leq n$. We call the finite Blaschke products of the following form as canonical:

$$B(z) = z \prod_{j=1}^{n-1} \frac{z - a_j}{1 - \overline{a_j}z}, |a_j| < 1 \text{ for } 1 \leq j \leq n - 1.$$ (1.2)
Note that the canonical Blaschke products correspond to finite Blaschke products vanishing at the origin.

It is well-known that every Blaschke product B of degree n with $B(0) = 0$, is associated with a unique Poncelet curve (for more details see [2], [3] and [5]). From [2] we know that the Poncelet curve associated with a Blaschke product of degree 3 is an ellipse.

Here we investigate the relationships between the zeros of these canonical finite Blaschke products and the golden ratio for $n = 2, 3, 4$. Also we give some examples for the cases $n = 5, 10$.

2. Blaschke Products of Degree Two

Let AB be a line segment and C be a point on the line segment AB such that AC is the greater part of AB. Recall that we say the point C divides the line segment AB in the golden ratio if $\frac{AC}{BC} = \alpha$ [9].

In this section we consider a finite Blaschke product B of degree two of the form

$$B_a(z) = z \frac{z - a}{1 - \overline{a}z},$$

with $a \neq 0$, $|a| < 1$. From [2], we know that there exist two distinct points z_1 and z_2 on $\partial \mathbb{D}$ that $B_a(z)$ maps to λ, for any point λ on the unit circle $\partial \mathbb{D}$, and that the line joining z_1 and z_2 passes through a, the nonzero zero of B_a. Conversely, let L be any line through the point a, then for the points z_1 and z_2 at which L intersects $\partial \mathbb{D}$ we have $B_a(z_1) = B_a(z_2)$.

Now we ask the following questions:

1) Does the point a divide the line segment $[z_1, z_2]$ joining z_1 and z_2 in the golden ratio?

2) If it does, what is the number of these line segments?

The answers of these questions are given in the following theorem.

Theorem 2.1. Let $B_a(z) = z \frac{z - a}{1 - \overline{a}z}$ be a Blaschke product with $a \neq 0$, $|a| < 1$. There are infinitely many values of a such that there is a line segment with endpoints on the unit circle divided by a in the golden ratio. Furthermore the number of such line segments is at most two for a fixed a.
Proof. Let a be a fixed point such that $a \neq 0$, $|a| < 1$ and consider the finite Blaschke product $B_a(z) = z \frac{z-a}{1-\bar{a}z}$. The ratio of the length of the longer part to length of the smaller part of the segment $[z_1, z_2]$ divided by the point a gives rise to a continuous function of the angle θ between the segments $[0, a]$ and $[z_1, z_2]$. For $\theta = 0$ the ratio is $\frac{1+|a|}{1-|a|}$ and for $\theta = \frac{\pi}{2}$ the ratio is 1. Applying the well known secant property of a circle to Figure 1, it should be

$$(1 - |a|)(1 + |a|) = l\alpha.l$$

where l is the length of the segment $[z_1, a]$ and $l\alpha$ is the length of the segment $[a, z_2]$. Then we get

$$l = \sqrt{\frac{1 - |a|^2}{\alpha}} \quad (2.2)$$

Since nonlinear three distinct points determine a triangle, if the points $0, z_1, z_2$ form a triangle it should be

$$0 < l + l\alpha < 2. \quad (2.3)$$
If we substitute the equation (2.2) in (2.3), we get
\[\sqrt{1 - \left| a \right|^2} \frac{\alpha}{\alpha + 1} < 2. \]

Then we get
\[\frac{1 + \left| a \right|}{1 - \left| a \right|} > \alpha. \]

If \(\alpha = \frac{1 + \left| a \right|}{1 - \left| a \right|} \), then the line passing through the points \(z_1, z_2 \) and \(a \) is the diameter of the unit circle.

For this reason, as long as \(\frac{1 + \left| a \right|}{1 - \left| a \right|} \geq \alpha \), there is a segment divided by \(a \) in the golden ratio. Now we find the number of the segments divided by \(a \) in the golden ratio for a such \(a \).

Let \(a \) be chosen such that \(\frac{1 + \left| a \right|}{1 - \left| a \right|} \geq \alpha \) and \(z_1 \) be chosen such that the point \(a \) divides the line segment \([z_1, z_2]\) in the golden ratio. Then by definition we have
\[\frac{|z_2 - a|}{|z_1 - a|} = \alpha. \quad (2.4) \]

Using the fact that \(|z| = 1 \) for \(z \in \partial \mathbb{D} \) we can write
\[B(z) = \frac{z - a}{z - \bar{a}}, \quad z \in \partial \mathbb{D}. \]

Also we know that \(B(z_1) = B(z_2) \) and so we obtain
\[\frac{(z_1 - a)}{(\bar{z}_1 - \bar{a})} = \frac{z_2 - a}{\bar{z}_2 - \bar{a}}. \quad (2.5) \]

From the equation (2.4) we have
\[\frac{(z_2 - a)(\bar{z}_2 - \bar{a})}{(z_1 - a)(\bar{z}_1 - \bar{a})} = \alpha^2 \quad (2.6) \]

and from the equation (2.5) we find
\[\bar{z}_2 - \bar{a} = \frac{(z_2 - a)(\bar{z}_1 - \bar{a})}{(z_1 - a)}. \quad (2.7) \]

After substitute (2.7) into (2.6) we get the equation
\[-z_2^2 + 2az_2 + a\alpha^2 - 2a\alpha^2z_1 + \alpha^2z_1^2 = 0. \quad (2.8) \]

Clearly the last equation (2.8) has at most two roots with respect to \(z_2 \). Hence there are at most two line segments \([z_1, z_2]\) passing through
the point a and divided by a in the golden ratio. This fact can be also
seen by some geometric arguments. □

Example 2.1. Let us consider the Blaschke product $B(z) = z \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z}$. Let z_1 and z_2 be two distinct points satisfying $B(z_1) = B(z_2)$. If the point $a = \frac{1}{2}$ divides the line segment $[z_1, z_2]$ in the golden ratio, from the common solutions of the equations (2.6) and (2.5) we obtain the Figure 2. There the dashed line segments show the line segments which are divided by the point $a = \frac{1}{2}$ in the golden ratio.

3. Blaschke Products of Degree Three

In this section, we consider a finite Blaschke product B of degree three of the form

$$B(z) = z \frac{(z - a_1)(z - a_2)}{(1 - \overline{a_1}z)(1 - \overline{a_2}z)},$$

with distinct zeros at the points 0, a_1 and a_2. It is well-known that for any specified point λ of the unit circle $\partial \mathbb{D}$, there exist 3 distinct points z_1, z_2 and z_3 of $\partial \mathbb{D}$ such that $B(z_1) = B(z_2) = B(z_3) = \lambda$.
We know the following theorem for a Blaschke product of degree three.

Theorem 3.1. *(See [2] Theorem 1)* Let B be a Blaschke product of degree three with distinct zeros at the points $0, a_1$ and a_2. For λ on the unit circle, let z_1, z_2 and z_3 denote the points mapped to λ under B. Then the lines joining z_j and z_k for $j \neq k$ are tangent to the ellipse E with equation

$$|z - a_1| + |z - a_2| = |1 - \bar{a_1}a_2|.$$

Conversely, every point on E is the point of tangency of a line segment joining two distinct points z_1 and z_2 on the unit circle for which $B(z_1) = B(z_2)$.

The ellipse E in (3.1) is called a Blaschke 3-ellipse associated with the Blaschke product $B(z)$ of degree 3. There are many studies on the ellipse E given in (3.1) (see [3], [4], [5], [7], [10] and [11] for more details). For any $\lambda \in \partial \mathbb{D}$, we know that E circumscribed in the triangle $\Delta(z_1, z_2, z_3)$, where z_1, z_2 and z_3 are the points mapped to λ under B.

A golden triangle is an isosceles triangle such that the ratio of one of its lateral sides to the base is the golden ratio $\alpha = \frac{1 + \sqrt{5}}{2}$. A golden ellipse is an ellipse such that the ratio of the major axis to the minor axis is the golden ratio $\frac{1 + \sqrt{5}}{2}$ (see [9] for more details).

We have the following questions:

1) Are there any Blaschke 3-ellipses which are circumscribed (at least) one golden triangle?

2) Can a Blaschke 3-ellipse be a golden ellipse? If so, what is the number of these ellipses?

We begin by the answering of the first question.

Theorem 3.2. There are infinitely many golden triangles whose three vertices lie on the unit circle.

Proof. Without loss of generality, let x and y be chosen so that $x, y > 0$ and such that the triangle with vertices at the points 1, $-x + iy$, $-x - iy$ is inscribed in the unit circle. We try to determine the values of x and y such that $x^2 + y^2 = 1$. By the definition of a golden triangle it is
sufficient to show that there are values of x and y on the unit circle such that

$$2\alpha y = \sqrt{y^2 + (x + 1)^2}. \tag{3.2}$$

Squaring both sides of (3.2) and using the fact that $x^2 + y^2 = 1$, we obtain $2y^2\alpha^2 = x + 1$. Then we have

$$2(1 - x^2)\alpha^2 - x - 1 = 0$$

and so

$$2x^2\alpha^2 + x + (1 - 2\alpha^2) = 0.$$

Solving this quadric equation for x and y, we obtain $x = 0$, $y = 0$ where $y = \sqrt{1 - x^2}$. So we have one golden triangle such that its vertices are on the unit circle. Then there are infinitely many golden triangles with vertices on the unit circle by rotation. □

Now we can construct some examples using some results from [3] and [7]. Recall that two sets $\{z_1, z_2, ..., z_n\}$ and $\{w_1, w_2, ..., w_n\}$ of points from ∂D are interspersed if $0 \leq \arg(z_1) < \arg(w_1) < ... < \arg(z_n) < \arg(w_n) < 2\pi$ (see [3] for more details).

From [4], we know that the ellipses inscribed in triangles with vertices on the unit circle are precisely Blaschke 3-ellipses.

Example 3.1. Let $\Delta(z_1, z_2, z_3)$ be a golden triangle on the unit circle. From Theorem 2.1 in [7], we know that the Steiner ellipse E inscribed in this golden triangle has foci a_1 and a_2 with the following equation:

$$a_1 = \frac{1}{3}(z_1 + z_2 + z_3) + \sqrt{\left(\frac{1}{3}(z_1 + z_2 + z_3)\right)^2 - \frac{1}{3}(z_1z_2 + z_1z_3 + z_2z_3)}$$

and

$$a_2 = \frac{1}{3}(z_1 + z_2 + z_3) - \sqrt{\left(\frac{1}{3}(z_1 + z_2 + z_3)\right)^2 - \frac{1}{3}(z_1z_2 + z_1z_3 + z_2z_3)}.$$

Then this Steiner ellipse E is the Poncelet curve of the Blaschke product $B(z) = z^{\frac{z-a_1}{1-\overline{a_1}}}z^{\frac{z-a_2}{1-\overline{a_2}}}$.

Example 3.2. Let z_1, z_2, z_3 and w_1, w_2, w_3 be triples of points which form the golden triangles $\Delta(z_1, z_2, z_3)$ and $\Delta(w_1, w_2, w_3)$ on the unit circle so that $\{z_1, z_2, z_3\}$ and $\{w_1, w_2, w_3\}$ are interspersed sets of the points. From Corollary 10 on page 97 in [3], we know that there exists
Figure 3. Blaschke product B of degree 3 whose Poncelet curve inscribed in (at least) one golden triangle. The dashed triangle is the golden triangle.

A Blaschke product B of degree 3 which maps 0 to 0 such that $B(z_j) = B(z_k)$ and $B(w_j) = B(w_k)$ for all j and k ($1 \leq j, k \leq 3$). Since we can choose the triples z_1, z_2, z_3 and w_1, w_2, w_3 by infinitely many different ways then clearly there are infinitely many Blaschke ellipses each of which has at least two golden triangle circumscribing them and having the vertices on the unit circle.

We have seen examples of Blaschke products of degree three of which Poncelet curves inscribed in at least one or two golden triangles.

Now we consider the answer of our second question.

Theorem 3.3. There are infinitely many golden ellipses which are Blaschke ellipses in the unit disc.

Proof. Let us take a golden ellipse with equation \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) in the unit disc. Then by definition \(\frac{a}{b} = \alpha \) and so \(a = b\alpha \). Recall that we have the equation $a^2 = b^2 + c^2$ where the point c is the positive focus of the ellipse. So this ellipse has foci $-c$ and c. By the last equation and $\alpha^2 = \alpha + 1$, we find $b^2\alpha = c^2$. Combining $a = b\alpha$ and
We find $a = \pm c\sqrt{\alpha}$. Now we consider the Blaschke product associated with this ellipse. If this ellipse is a Blaschke ellipse, it must be $2a = 1 + c^2$ by the definition of a Blaschke ellipse. Hence we find $c^2 \pm 2\sqrt{\alpha}c + 1 = 0$. As these equations have only one positive root $c = \frac{1}{2}(-\sqrt{2(-1 + \sqrt{5})} + \sqrt{2(1 + \sqrt{5})})$, there is one golden ellipse which is a Blaschke ellipse. Since every rotation of this golden ellipse is again golden, clearly we have infinitely many golden Blaschke ellipses in the unit disc. \hfill \Box

We give the following definition.

Definition 3.1. Let B be a finite Blaschke product of degree n of the canonical form. If the Poncelet curve associated with B is an ellipse and this ellipse is a golden ellipse, then B is called as a golden Blaschke product.

Example 3.3. Let us consider the Blaschke product

$$B_1(z) = z \frac{(z - a_1)(z - a_2)}{(1 - \overline{a}_1 z)(1 - \overline{a}_2 z)}.$$
where
\[a_1 = \frac{1}{2}(-\sqrt{2(-1 + \sqrt{5})} + \sqrt{2(1 + \sqrt{5})}) \]
and \(a_2 = -a_1 \). By the proof of Theorem 3.3 we know that the Blaschke 3-ellipse \(E \) associated with \(B_1 \) is a golden ellipse. So \(B_1(z) \) is a golden Blaschke product. The image of this golden Blaschke ellipse under the rotation transformation \(f(z) = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z \) is another golden Blaschke ellipse. Clearly we find the equation of \(f(E) \) as
\[
\left| z - \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)a_1 \right| + \left| z - \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)a_2 \right| = \left| 1 - \overline{a_1}a_2 \right|.
\]
More precisely, this image ellipse \(f(E) \) is the Poncelet curve of the following Blaschke product:
\[
B_2(z) = z \frac{(z - \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)a_1)(z - \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)a_2)}{(1 - \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a_1z)(1 - \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)a_2z)}.
\]

4. Blaschke Products of Degree Four

A golden rectangle is a rectangle such that the ratio of the length \(x \) of the longer side to the length \(y \) of the shorter side is the golden ratio \(\frac{1 + \sqrt{5}}{2} \) (see [9] for more details).

We give the following theorem.

Theorem 4.1. There are infinitely many golden rectangles whose four vertices lie on the unit circle.

Proof. Without loss of generality, let \(x \) and \(y \) be chosen so that \(x, y > 0 \) and such that the rectangle with vertices at the points \(x + iy, x - iy, -x - iy, -x + iy \) is inscribed in the unit circle. We try to determine the values of \(x \) and \(y \) such that \(x^2 + y^2 = 1 \). So it is sufficient to show that there are values of \(x \) and \(y \) on the unit circle such that
\[
2x = 2\alpha y.
\]
We get \(x = \alpha y \) and using the facts that \(x^2 + y^2 = 1 \) and \(\alpha^2 = \alpha + 1 \) we obtain \(y^2(\alpha^2 + 1) = 1 \) and hence
\[
y = \frac{1}{\sqrt{\alpha + 2}} = 0.525731 \quad \text{and} \quad x = \frac{\alpha}{\sqrt{\alpha + 2}} = 0.850651.
\]
So we have one golden rectangle such that its vertices are on the unit circle. Then there are infinitely many golden triangles with vertices on the unit circle by rotation.

Example 4.1. Let z_1, z_2, z_3, z_4 and w_1, w_2, w_3, w_4 be eight points which form the golden rectangles (z_1, z_2, z_3, z_4) and (w_1, w_2, w_3, w_4) on the unit circle so that $\{z_1, z_2, z_3, z_4\}$ and $\{w_1, w_2, w_3, w_4\}$ are interspersed sets of the points. From Corollary 10 on page 97 in [3], we know that there exists a Blaschke product B of degree 4 which maps 0 to 0 such that $B(z_j) = B(z_k)$ and $B(w_j) = B(w_k)$ for all j and k ($1 \leq j, k \leq 4$). Then clearly there are infinitely many Poncelet curves associated with a finite Blaschke product of degree 4 each of which has at least two golden rectangle circumscribing them and having the vertices on the unit circle.

Using the following lemmas, we construct examples of finite Blaschke products of degree 4 whose Poncelet curves are ellipses and each of them have at least one golden rectangle.
Lemma 4.1. (See [5] Lemma 5) For any quadrilateral that is inscribed in the unit circle, an ellipse is inscribed in it if and only if the ellipse is associated with the composition of two Blaschke products of degree 2.

Lemma 4.2. (See [5] Lemma 6) For four mutually distinct points $z_1, ..., z_4$ on the unit circle $(0 \leq \arg z_1 < \arg z_2 < \arg z_3 < \arg z_4 < 2\pi)$, there exists an ellipse that is inscribed in the quadrilateral with vertices $z_1, ..., z_4$. Moreover, for each quadrilateral, inscribed ellipses form a real-valued one-parameter family.

Now we give the following theorem.

Theorem 4.2. Let Q be any golden rectangle inscribed in the unit circle. Then there is at least one ellipse E inscribed in Q such that E is a Poncelet curve of a finite Blaschke product B of degree 4.

Proof. Let Q be any golden rectangle with the vertices z_1, z_2, z_3, z_4 on the unit circle. By Lemma 4.2 there exists an ellipse E inscribed in Q. We know that the two foci a and b of an ellipse inscribed in any rectangle whose vertices are z_1, z_2, z_3, z_4 satisfy the equations

\[
\begin{align*}
&\left[\left(\left(-z_2 + z_1\right) z_3 - z_1 z_2\right) z_4 + z_1 z_2 z_3\right] a^2 \\
&- [z_1 z_2 z_3 z_4 (z_4 - z_3 + z_2 - z_1) \bar{a}^2 - (z_3 + z_1) (z_4 + z_2) (z_2 z_4 - z_1 z_3) \bar{a} \\
&+ z_2 z_4 (z_4 + z_2) - z_1 (z_1 + z_3)] a + z_1 z_2 z_3 z_4 (z_2 z_4 - z_1 z_3) \bar{a}^2 \\
&- \left[\left(z_2 z_3 + z_1 z_2\right) z_4 - z_2 z_3 z_4 - z_1 z_2 z_3\right] a + \left(z_2 z_4 - z_1 z_3\right) (z_2 z_4 + z_1 z_3) = 0
\end{align*}
\]

and

\[
\begin{align*}
&(z_4 - z_3 + z_2 - z_1) ab - (z_2 z_4 - z_1 z_3) (a + b) \\
+ \left[(z_2 - z_1) z_3 + z_1 z_2\right] z_4 - z_1 z_2 z_3 = 0
\end{align*}
\]

given in [5]. Then by the proof of Lemma 4.1 E has the following equation

\[
E : |z - a| + |z - b| = |1 - \bar{ab}| \sqrt{\frac{|a|^2 + |b|^2 - 2}{|a|^2 |b|^2 - 1}}
\]

and E is the Poncelet curve of the finite Blaschke product B of the following form:

\[
B(z) = z - \frac{z - \beta}{1 - \beta z} \frac{z^2 + (\bar{\beta} \alpha - \beta) z - \alpha}{1 - (\alpha \beta + \bar{\beta}) z - \alpha \beta^2},
\]
where $\alpha = -ab$ and $\beta = \frac{a+b-ab(\bar{z}+\bar{b})}{1-|ab|^2}$.

\[\square\]

Figure 6. Blaschke product B of degree 5 whose Poncelet curve inscribed in (at least) one golden pentagon. The dashed pentagon is the golden pentagon.

5. **Blaschke Products of Higher Degree**

We know that regular pentagon and regular decagon have the same properties of the golden ratio among polygons (see [9] for more details). It is not known the equation of the Poncelet curves of Blaschke products of degree 5 or 10, so we cannot obtain similar theorems to the ones given in the previous sections. In these two cases, by the similar arguments used in the Example 3.2 and Example 4.1, we can obtain finite Blaschke products of degree 5 and 10 whose Poncelet curves circumscribed by at least two regular pentagon and regular decagon, respectively.

Acknowledgment. The authors would like to thank Professor Pamela Gorkin and Nathan Wagner for the discussion on the proof of Theorem 3.2.
Figure 7. Blaschke product B of degree 10 whose Poncelet curve inscribed in (at least) one golden decagon. The dashed decagon is the golden decagon.

References

[1] Coxeter H. S. M., *Introduction to geometry*. Second edition. John Wiley & Sons, Inc., New York-London-Sydney, 1969.

[2] U. Daepp, P. Gorkin and R. Mortini, *Ellipses and finite Blaschke products*, Amer. Math. Monthly 109 (2002), no. 9, 785-795.

[3] U. Daepp, P. Gorkin and K. Voss, *Poncelet’s theorem, Sendov’s conjecture, and Blaschke products*, J. Math. Anal. Appl. 365 (2010), no. 1, 93-102.

[4] M. Frantz, *How conics govern Möbius transformations*, Amer. Math. Monthly 111 (2004), no. 9, 779-790.

[5] M. Fujimura, *Inscribed Ellipses and Blaschke Products*, Comput. Methods Funct. Theory 13 (2013), no. 4, 557-573.

[6] H. W. Gau, P. Y. Wu, *Numerical Range and Poncelet Property*, Taiwanese J. Math. 7 (2003), no 2, 173-193.

[7] P. Gorkin and E. Skubak, *Polynomials, ellipses, and matrices: two questions, one answer*, Amer. Math. Monthly 118 (2011), no. 6, 522-533.

[8] A. B. Hopkins, H. F. Stillinger and S. Torquato, *Spherical codes, maximal local packing density, and the golden ratio*, J. Math. Phys. 51 (2010), no. 4, 043302, 6 pp.
[9] T. Koshy, *Fibonacci and Lucas numbers with applications*, Pure and Applied Mathematics (New York). Wiley-Interscience, New York, 2001.

[10] N. Yılmaz Özgür, *Finite Blaschke Products and Circles that Pass Through the Origin*, Bull. Math. Anal. Appl. 3 (2011), no. 3, 64-72.

[11] N. Yılmaz Özgür, *Some Geometric Properties of finite Blaschke Products*, Proceedings of the Conference RIGA 2011, (2011), 239-246.

[12] S. Uçar, *Finite Blaschke Products and Some Geometric Properties*, Ph.D. Thesis, Balıkesir University, 2015.

[13] W. T. Tutte, *On chromatic polynomials and the golden ratio*, J. Emphasized Theory 9 (1970), 289-296.

Balıkesir University, Department of Mathematics, 10145 Balıkesir, Turkey

E-mail address: nihal@balikesir.edu.tr

Balıkesir University, Department of Mathematics, 10145 Balıkesir, Turkey

E-mail address: sumeyraucar@balikesir.edu.tr