Role of MUC5B during Group B Streptococcal Vaginal Colonization

Lindsey R. Burcham, Jade R. Bath, Caroline A. Werlang, Laurie M. Lyon, Naoko Liu, Christopher Evans, Katharina Ribbeck, Kelly S. Doran

ABSTRACT The female reproductive tract (FRT) is a complex environment, rich in mucin glycoproteins that form a dense network on the surface of the underlying epithelium. Group B Streptococcus (GBS) asymptomatically colonizes 25–30% of healthy women, but during pregnancy can cause ascending infection in utero or be transmitted to the newborn during birth to cause invasive disease. Though the cervicovaginal mucosa is a natural site for GBS colonization, the specific interactions between GBS and mucins remain unknown. Here we demonstrate for the first time that MUC5B interacts directly with GBS and promotes barrier function by inhibiting both bacterial attachment to human epithelial cells and ascension from the vagina to the uterus in a murine model of GBS colonization. RNA sequencing analysis of GBS exposed to MUC5B identified 128 differentially expressed GBS genes, including upregulation of the pilus island-2b (PI-2b) locus. We subsequently show that PI-2b is important for GBS attachment to reproductive cells, binding to immobilized mucins, and vaginal colonization in vivo. Our results suggest that while MUC5B plays an important role in host defense, GBS upregulates pili in response to mucins to help promote persistence within the vaginal tract, illustrating the dynamic interplay between pathogen and host.

IMPORTANCE Mucin glycoproteins are a major component that contributes to the complexity of the female reproductive tract (FRT). Group B Streptococcus (GBS) is present in the FRT of 25–30% of healthy women, but during pregnancy can ascend to the uterus to cause preterm birth and fetal infection in utero. Here we show that a prominent mucin found in the FRT, MUC5B, promotes host defense by inhibiting GBS interaction with epithelial cells found in the FRT and ascension from the vagina to the uterus in vivo. In response to MUC5B, GBS induces the expression of surface expressed pili, which in turn contributes to GBS persistence within the vaginal lumen. These observations highlight the importance and complexity of GBS–mucin interactions that warrant further investigation.

KEYWORDS mucin, pili, vaginal colonization
premature rupture of membranes (PROM), and preterm birth (3, 4). GBS can also be transmitted to the fetus or newborn resulting in serious invasive infections such as pneumonia, sepsis, and meningitis (3). Though the cervicovaginal mucosa is a natural site for GBS colonization, the interactions between GBS and mucins have not been studied previously.

MUC5B-GBS interactions. To understand how mucins impact GBS colonization, we assessed GBS adherence to human vaginal epithelial cells in the presence of MUC5B and found that as low as 0.03% MUC5B inhibited bacterial attachment to vaginal cells (Fig. 1A, Fig. S1A in the supplemental material). To examine this interaction in vivo, we utilized a murine model of GBS vaginal colonization (5) and observed a significant decrease in recovered GBS from the vaginal lumen of Muc5B−/− mice (6) compared to wild-type (WT) mice (Fig. 1B). Despite this, there was increased GBS ascension from the vaginal lumen to the uterus in Muc5B−/− mice, with a positive ascension Spearman correlation in Muc5B−/− mice (P = 0.0167) that was absent in WT mice (P = 0.1361) (Fig. 1C, Fig. S1B). These results suggest that mucins localize GBS in the vaginal lumen and limit GBS ascension. Future studies on how the microbiome and immunologic differences in Muc5B−/− mice may contribute to GBS ascension will be of interest.

We next visualized GBS in the presence of MUC5B by confocal microscopy. GBS grew homogeneously through the column of control medium samples (Fig. 1D and F), while GBS grown in the presence of natively purified MUC5B mucins was heterogeneously distributed and formed aggregated structures with marked furrows throughout (Fig. 1E and F), suggesting that mucins agglutinate GBS, which could decrease interactions at the epithelial surface. Similar mechanisms of mucin-mediated agglutination have been characterized in oral Streptococci, where mucins aggregate bacteria to facilitate clearance by swallowing or enhancing phagocytosis (7). We further observed that

FIG 1 MUC5B impacts GBS spatial distribution, enhances GBS cell–cell interactions, and promotes vaginal colonization. (A) Adherence of GBS to VK2 cells with 0–0.1% MUC5B. Data represented as mean percent CFU recovered from inoculum. (B) Vaginal persistence of GBS in WT C57BL/6 and Muc5B−/− littermates (n = 6 WT, n = 5 Muc5B−−, pooled data from two independent experiments). (C) Ascension ratio of GBS from the vaginal lumen to the uterus in C57BL/6 and Muc5B−/− mice 7 days postcolonization. (D–F) Confocal microscopy of GBS cultures grown in (D) Todd Hewitt Broth (THB) or (E) THB with MUC5B. Black arrows denote the vertical plane, with representative images taken from the top, middle, and bottom of the culture. White arrows indicate furrows observed in the samples grown in MUC5B. (G) Binding of GBS to mucins or BSA. Statistical analyses were determined using (A) one-way ANOVA with Dunnett’s multiple comparison posttest, (B) two-way ANOVA with Sidak’s multiple comparison posttest, (C) Student’s unpaired, two-tailed t test, and (D) one-way ANOVA with Tukey’s multiple comparison posttest (G). Statistical significance was accepted when p < α, with α = 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not significant.
GBS binds directly to immobilized mucins compared to untreated or 1% BSA control coated wells (Fig. 1G). While others have shown mucins can inhibit biofilm formation by some opportunistic pathogens (8–10), we observed that GBS grown in the presence of MUC5B formed larger aggregates compared to those grown in control medium alone and the addition of mucins did not impact bacterial growth (Fig. S1C–F).

MUC5B modulates the GBS transcriptome. To determine the GBS response to mucins, we performed RNA sequencing analyses of GBS grown with MUC5B and identified 128 differentially expressed genes including 87 upregulated and 41 downregulated genes (Fig. 2A, Table S1). Clusters of orthologous proteins (COGs) were identified for 63 upregulated and 37 downregulated genes (Fig. 2B). The most abundant upregulated COGs were involved in carbohydrate transport/metabolism (24/63, 38%), suggesting signaling could occur via the carbohydrate moieties on the mucin polymers. Many bacterial species possess mucolytic enzymes that can release and metabolize sugars from the mucin backbone (11, 12), and examples have been primarily described in...
in organisms isolated from the human gastrointestinal tract (13, 14). While GBS is known to possess trans-sialidases that could contribute to this process, they have not been studied in this context (15). In studies with other opportunistic pathogens, mucin exposure suppressed virulence traits (8–10); however, our analyses revealed an upregulation of GBS virulence factors including the type VII secretion system (T7SS) and the pilus island-2b (PI-2b). The GBS T7SS was recently identified and shown to contribute to invasive disease (16), although its role in vaginal colonization remains to be determined.

PI-2b contributes to mucin interactions and vaginal colonization. All GBS strains express one or two pili encoded by three different pilus islands, PI-1, PI-2a, or PI-2b (17). The GBS COH1 strain used here is a serotype III, sequence type-17 and encodes pilus islands PI-1 and PI-2b, but only PI-2b was shown to be required for interaction with brain endothelium and lung epithelial cells, as well as the development of invasive disease (17, 18). To characterize the role of PI-2b in GBS mucosal interactions within the FRT, we confirmed differential expression of genes within the PI-2b locus (Fig. 2C) by qRT-PCR following incubation with MUC5B (Fig. 2D). We then determined that GBS lacking the main backbone pilin protein (Δbp-2b) was less adherent than WT GBS to both squamous vaginal epithelial cells and columnar endocervical epithelial cells, and this phenotype was complemented by expression of the bp-2b gene in the Δbp-2b mutant strain (Δbp-2b+bp-2b) (Fig. S1G, H). To examine the role of PI-2b in vivo, mice were inoculated intravaginally with GBS WT and Δbp-2b strains, and bacterial burden within the lumen was monitored over time. We observed a fitness defect in the Δbp-2b mutant in the vaginal tract compared to WT GBS (Fig. 2E). We also observed a significant reduction in mucin binding by the Δbp-2b mutant (Fig. 2F), which is consistent with other studies showing bacterial pili can promote interactions with colonic mucus and salivary glycoproteins (19, 20). These data suggest a key role for PI-2b in facilitating GBS attachment to host mucins and the reproductive epithelium, and persistence within the vaginal mucosa in vivo. Future studies examining the role of PI-2b in GBS tissue colonization and ascension are warranted.

Conclusions. Here we describe for the first time the dynamic interplay between GBS and host mucins in the FRT. MUC5B induced GBS agglutination, prevented bacterial attachment to epithelial cells, concentrated GBS in the vaginal lumen, and served as a barrier against ascending infection (Fig. 2G). MUC5B also induced GBS virulence factors such as PI-2b that contribute to host cell attachment and FRT colonization. As protein–carbohydrate interactions typically mediate the first step in pathogen colonization, we hypothesize that GBS pili normally bind carbohydrate moieties on the epithelium, which could be outcompeted by glycosylated mucins in this environment, though this warrants further investigation. These initial observations provide a platform for future studies to understand the mechanisms of GBS-reproductive mucosal interactions that could lead to novel interventions to improve maternal–fetal health, reduce adverse pregnancy outcomes, and limit transmission to the newborn.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

TEXT S1, DOCX file, 0.03 MB.

FIG S1, PDF file, 0.2 MB.

TABLE S1, XLSX file, 0.4 MB.

ACKNOWLEDGMENTS

We thank the BROAD Institute Microbial Omics Core for performing RNA sequencing, Zachary Burcham for help with RNA sequencing analysis, and Maddalena Lazzarin, Daniela Rinaudo, and Immaculada Margarit of GSK, Siena, Italy for providing GBS Δbp-2b mutant and complemented strains. This work was supported by NIH grants
REFERENCES

1. Carson DD, DeSouza MM, Kardon R, Zhou X, Lagow E, Julian J. 1998. Mucin expression and function in the female reproductive tract. Hum Reprod Update 4:459–464. https://doi.org/10.1093/humupd/4.5.459.

2. McGuckin MA, Thornton DJ, Whitsett JA. 2015. Mucins and mucus, p 231–250. In Mestecky J, Strober W, Russell MW, Kelsall BL, Cheroutre H, Lambrecht BN (ed), Mucosal immunology (4th ed). Academic Press, Boston, MA. https://doi.org/10.1016/B978-0-12-413847-4.00014-8.

3. Armistead B, Oler E, Waldorf KA, Rajagopal L. 2019. The double life of group B streptococcus: asymptomatic colonizer and potent pathogen. J Mol Biol 431:2914–2931. https://doi.org/10.1016/j.jmb.2019.01.035.

4. Allen U, Nimrod C, MacDonald N, Toye B, Stephens D, Marchessault V. 2016. A murine model of group B streptococcus: asymptomatic colonizer and potent pathogen. J Mol Biol 431:2914–2931. https://doi.org/10.1016/j.jmb.2019.01.035.

5. Patras KA, Doran KS. 2016. A murine model of group B Streptococcus vaginal colonization. JoVE:e54708. https://doi.org/10.3791/54708.

6. Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner K, Adachi R, Romo I, Bordt AS, Bowden MG, Sisson JH, Williams J, Kreth J. 2017. Effect of salivary agglutination on the virulence of Pseudomonas aeruginosa. J Infect Dis 212:1646–1655. https://doi.org/10.1093/infdis/jiv307.

7. Itzek A, Chen Z, Merritt J, Kreth J. 2017. Effect of salivary agglutination on oral streptococcal clearance by human polymorphonuclear neutralrophil granulocytes. Mol Oral Microbiol 32:197–210. https://doi.org/10.1007/s40720-016-0287-3.

8. Wheeler KM, Cárcamo-Oyarce G, Turner BS, Dellos-Nolan S, Co JY, Lehoux SC, Cummings RD, Wozniak DJ, Ribbeck K. 2019. Mucin glycans attenuate oral streptococcal clearance by human polymorphonuclear neutrophil granulocytes. Mol Oral Microbiol 32:197–210. https://doi.org/10.1007/s40720-016-0287-3.

9. Werlang CA, Chen WG, Aoki K, Wheeler KM, Tymm C, Mileti CJ, Burgos AC, Wheeler KM, Cárcamo-Oyarce G, Turner BS, Dellos-Nolan S, Co JY, Lehoux SC, Cummings RD, Wozniak DJ, Ribbeck K. 2019. Mucin glycans attenuate oral streptococcal clearance by human polymorphonuclear neutrophil granulocytes. Mol Oral Microbiol 32:197–210. https://doi.org/10.1007/s40720-016-0287-3.

10. Kavanaugh NL, Zhang AQ, Noble CJ, Johnson AD, Ribbeck K. 2014. Mucins suppress virulence traits of Candida albicans. mBio 5: e01911-14. https://doi.org/10.1128/mBio.01911-14.

11. Koropatkin NM, Cameron EA, Martens EC. 2012. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10:323–335. https://doi.org/10.1038/nrmicro2746.

12. Sicard J-F, Le Bihan G, Vogeleer P, Jacques M, Harel J. 2017. Interactions of Intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol 7:387–387. https://doi.org/10.3389/fcimb.2017.00387.

13. Denrien M, Vaughan EE, Pluggje CM, de Vos WM. 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476. https://doi.org/10.1099/ijs.0.02873-0.

14. Bell A, Brun T, Crost E, Vaux L, Nepravidha R, Owen CD, Latousakis D, Xiao A, Li W, Chen X, Walsh MA, Claesen J, Angulo J, Thomas GH, Juge N. 2019. Elucidation of a sialic acid metabolism pathway in mucus-foraging Rumino- coccus gnarus unravels mechanisms of bacterial adaptation to the gut. Nat Microbiol 4:2393–2404. https://doi.org/10.1038/s41564-019-0590-7.

15. Tailford LE, Owen CD, Walshaw J, Crost EH, Hardy-Goddard J, Le Gall G, de Vos WM, Taylor GL, Juge N. 2015. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat Commun 6:7624. https://doi.org/10.1038/ncomms8824.

16. Spencer BL, Tak U, Mendoça JC, Nagao PE, Niederweis M, Doran KS. 2018. A type VII secretion system in Group B Streptococcus mediates cytotoxicity and virulence. PLoS Pathog 14:e1007121. https://doi.org/10.1371/journal.ppat.1007121.

17. Lazzarin M, Mu R, Fabbri M, Ghezzo C, Rinaudo CD, Doran KS, Margarit I. 2017. Contribution of pilus type 2b to invasive disease caused by a Streptococcus agalactiae ST-17 strain. BMC Microbiol 17:148. https://doi.org/10.1186/s12866-017-1057-8.

18. Périchon B, Guignot J, Szili N, Gao C, Poyart C, Trieu-Cuot P, Dramsi S. 2017. Contribution of pilus type 2b to invasive disease caused by a Streptococcus agalactiae ST-17 strain. BMC Microbiol 17:148. https://doi.org/10.1186/s12866-017-1057-8.

19. Périchon B, Guignot J, Szili N, Gao C, Poyart C, Trieu-Cuot P, Dramsi S. 2019. Insights into Streptococcus agalactiae Pt-2b pilus biosynthesis and role in adherence to host cells. Microbes Infect 21:99–103. https://doi.org/10.1016/j.micinf.2018.10.004.

20. Martins M, Aymeric L, Du Merle L, Danne C, Robbe-Masselot C, Trieu-Cuot P, Sansonetti P, Dramsi S. 2015. Streptococcus galolyticus Pil3 pilus is required for adhesion to colonic mucus and for colonization of mouse distal colon. J Infect Dis 212:1646–1655. https://doi.org/10.1093/infdis/jiv307.

21. Brittan JL, Nobbs AH. 2015. Group B Streptococcus pilus mediated adherence to salivary glycoproteins. Microbes Infect 17:360–368. https://doi.org/10.1016/j.micinf.2014.12.013.

22. Périchon B, Szili N, Du Merle L, Rosinski-Chupin I, Gominet M, Bellais S, Poyart C, Trieu-Cuot P, Dramsi S. 2017. Regulation of PI-2b pilus biosynthesis and role in adherence to host cells. Microbes Infect 21:99–103. https://doi.org/10.1016/j.micinf.2018.10.004.

23. Martens M, Aymeric L, Du Merle L, Danne C, Robbe-Masselot C, Trieu-Cuot P, Sansonetti P, Dramsi S. 2015. Streptococcus galolyticus Pil3 pilus is required for adhesion to colonic mucus and for colonization of mouse distal colon. J Infect Dis 212:1646–1655. https://doi.org/10.1093/infdis/jiv307.

24. Brittan JL, Nobbs AH. 2015. Group B Streptococcus pilus mediated adherence to salivary glycoproteins. Microbes Infect 17:360–368. https://doi.org/10.1016/j.micinf.2014.12.013.