THE BORWEIN CONJECTURES OVER ARITHMETIC PROGRESSIONS

JIYOU LI AND XIANG YU

Abstract. We obtain asymptotic formulas for sums of coefficients over arithmetic progressions of polynomials related to the Borwein conjectures. Let \(a_i \) denote the coefficient of \(q^i \) in the polynomial \(\prod_{j=1}^{n} \prod_{k=1}^{p-1} (1 - q^{p^j - k})^i \), where \(p \) is an odd prime, and \(n, s \) are positive integers. In this note, we prove that

\[
\left| \sum_{i \equiv b \mod 2pn} a_i - \frac{(p-1)p^{sn-1}}{2n} \right| \leq p^{sn/2},
\]

if \(b \) is divisible by \(p \), and

\[
\left| \sum_{i \equiv b \mod 2pn} a_i + \frac{p^{sn-1}}{2n} \right| \leq p^{sn/2},
\]

if \(b \) is not divisible by \(p \). This improves a recent result of Goswami and Pantangi [6].

1. Introduction

Let \(p \) and \(s \) be two positive integers. For a positive integer \(n \), let the sequence \((a_i) \) be defined by

\[
\prod_{j=1}^{n} \prod_{k=1}^{p-1} (1 - q^{p^j - k})^i = \sum_{i=0}^{sn(p-1)p/2} a_i q^i.
\]

(1.1)

In 1990, Peter Borwein discovered some intriguing sign patterns of the coefficients \(a_i \) for three different cases \((p, s) = (3, 1), (3, 2), (5, 1)\). They have three repeating sign patterns + − −, + + − and + − − − respectively. Equivalently, the sign of \(a_i \) is determined by \(i \mod p \). These conjectures were formalized by Andrews in 1995 [1], which are stated as follows.

Conjecture 1.1 (First Borwein conjecture). For the polynomials \(A_n(q), B_n(q) \) and \(C_n(q) \) defined by

\[
\prod_{j=1}^{n} (1 - q^{3j-2})(1 - q^{3j-1}) = A_n(q^3) - qB_n(q^3) - q^2C_n(q^3),
\]
each has non-negative coefficients.

Conjecture 1.2 (Second Borwein conjecture). For the polynomials \(\alpha_n(q), \beta_n(q) \) and \(\gamma_n(q) \) defined by

\[
\prod_{j=1}^{n} (1 - q^{3j-2})^2(1 - q^{3j-1})^2 = \alpha_n(q^3) - q\beta_n(q^3) - q^2\gamma_n(q^3),
\]
each has non-negative coefficients

Conjecture 1.3 (Third Borwein conjecture). For the polynomials \(\nu_n(q), \phi_n(q), \chi_n(q), \psi_n(q) \) and \(\omega_n(q) \) defined by

\[
\prod_{j=1}^{n} (1 - q^{5j-4})(1 - q^{5j-3})(1 - q^{5j-2})(1 - q^{5j-1}) = \nu_n(q^5) - q\phi_n(q^5) - q^2\chi_n(q^5) - q^3\psi_n(q^5) - q^4\omega_n(q^5),
\]
each has non-negative coefficients.

All these conjectures had been open for many years. In a recent paper [2], Wang gave an analytic proof of the first Borwein conjecture using the saddle point method and a formula discovered by Andrews [1, Theorem 4.1] for the polynomials \(A_n(q), B_n(q) \) and \(C_n(q) \). It is not clear if his method can be applied to other conjectures. Even for the first Borwein conjecture, an algebraic proof would be very interesting.
Instead of evaluating a_i directly, it is natural to consider the Borwein conjectures on average over arithmetic progressions. Let d be an integer divisible by p and b be an integer with $0 \leq b \leq d - 1$. If we define

$$S_{d,b} := \sum_{i=b \text{ mod } d} a_i,$$

then the positivity (negativity) part of the Borwein conjectures follows from the positivity (negativity, respectively) of $S_{d,b}$ for sufficiently large d, say $d \geq s n^2 (p-1)p/2$. Please note that here $S_{d,b}$ should be $S_{p,s,n,d,b}$. For notational simplicity the subscripts p, s and n are omitted when there is no confusion.

Using estimates of exponential sums, Zaharescu \cite{Zaharescu} first studied $S_{d,b}$ for a large classes of d. He proved the following theorem.

Theorem 1.4 (Zaharescu). Let p, q be two distinct odd primes with $q \leq n$, and let b be an integer with $0 \leq b \leq pq - 1$. Then

$$\left| S_{pq,b} - \frac{(p-1)p^{n-1}}{q} \right| \leq \frac{(p-1)(q-1)p^{[n/q]-1}2^s q (p-1) (n-[n/q])}{q},$$

if b is divisible by p, and

$$\left| S_{pq,b} + \frac{p^{sn-1}}{q} \right| \leq \frac{(p-1)(q-1)p^{[n/q]-1}2^s q (p-1) (n-[n/q])}{q},$$

if b is not divisible by p, where $[x]$ denote the greatest integers bounded by x.

For instance, when $(p, s) = (3, 1)$, Zaharescu’s bound gives

$$\left| S_{3q,b} - \frac{2 \cdot 3^{n-1}}{q} \right| \leq \frac{2(q-1)3^{[n/q]-1}2^s q (n-[n/q])}{q},$$

for b divisible by 3. Note that to insure this bound is nontrivial, q must be a prime bounded by n. Thus a new question naturally arises.

Problem 1.5. For larger d, give a reasonable bound for $S_{d,b}$.

In the case $(p, s) = (3, 1)$, Li \cite{Li} removed the condition that q is a prime and in fact obtained an estimate with a very small error bound. He showed that

Theorem 1.6 (Li). Let $p = 3$, $s = 1$, and b be an integer with $0 \leq b \leq 3n - 1$. Then

$$\left| S_{3n,b} - \frac{2 \cdot 3^{n-1}}{n} \right| \leq 2^n,$$

if b is divisible by 3, and

$$\left| S_{3n,b} + \frac{3^{n-1}}{n} \right| \leq 2^n,$$

if b is not divisible by 3.

Goswami and Pantangi \cite{GoswamiPantangi} generalized this bound to general cases (p, s) and $d = pn$ following Li’s argument and Li-Wan’s sieving argument. They proved the following theorem.

Theorem 1.7 (Goswami and Pantangi). Let p be an odd prime and b be an integer with $0 \leq b \leq pn - 1$. Then

$$\left| S_{pn,b} - \frac{(p-1)p^{sn-1}}{n} \right| \leq p^{sn/2},$$

if b is divisible by p, and

$$\left| S_{pn,b} + \frac{p^{sn-1}}{n} \right| \leq p^{sn/2},$$

if b is divisible by p.

In this note, we improve the result of Goswami and Pantangi to arithmetic progressions with a larger common difference of $2pm$. We proved the following result:
Theorem 1.8. Let p be an odd prime and b be an integer with $0 \leq b \leq 2pn - 1$. Then

$$\left| S_{2pn,b} - \frac{(p-1)p^{n-1}}{2n} \right| \leq p^{n}/2,$$

if b is divisible by p, and

$$\left| S_{2pn,b} + \frac{p^{n-1}}{2n} \right| \leq p^{n}/2,$$

if b is not divisible by p.

Notation. The congruence notion $a \equiv b \mod n$ means $a - b$ is divisible by n. We use $\text{ord}(\chi)$ to denote the order of the character χ and $|E|$ to denote the cardinality of the set E. If S is a statement, we use 1_S to denote the indicator function of S, thus $1_S = 1$ when S is true and $1_S = 0$ when S is false.

2. Reduction to a subset-sum type problem

As in [4], we first reduce the problem to a subset-sum type problem over the (additive) group of integers modulo $2pn$. The starting point is the following equality

$$(1 - q^1) = -q^1(1 - q^{-1}),$$

which allows us to write the polynomial (2.1) as

$$\prod_{j=1}^{n} \prod_{k=1}^{p-1} (1 - q^{pj-k})^s = \prod_{j=1}^{n} \prod_{k=1=-(p+1)/2}^{p-1} ((-1)^s q^s(pj-k)(1 - q^{-(pj-k)})^s) \prod_{k=1}^{(p-1)/2} (1 - q^{pj-k})^s$$

$$= (-1)^{sn(p-1)/2} q^{sn(p-1)(2pn+1-p)/8} \prod_{j=-(n-1)}^{n} \prod_{k=1}^{(p-1)/2} (1 - q^{pj-k})^s.$$

Let b_i denote the coefficient q^i in the Laurent polynomial $\prod_{j=-(n-1)}^{n} \prod_{k=1}^{(p-1)/2} (1 - q^{pj-k})^s$. Then the above equation implies $a_i = (-1)^{sn(p-1)/2} b_{i-sn(p-1)(2pn+1-p)/8}$. In particular, we have

$$S_{2pn,b} = \sum_{i=b \mod 2pn} a_i = (-1)^{sn(p-1)/2} \sum_{i=b-sn(p-1)(2pn+1-p)/8 \mod 2pn} b_i. \quad (2.1)$$

Thus to prove Theorem 1.8 it suffices to consider the sum $\sum_{i=b \mod 2pn} b_i$.

Let D denote set $\{pj-k : -(n-1) \leq j \leq n, 1 \leq k \leq (p-1)/2\}$. Given integers $0 \leq m_i \leq |D|$, $1 \leq i \leq s$ and $0 \leq b \leq 2pn - 1$, we define $N(m_1, m_2, \ldots, m_s; b)$ to be cardinality of the set

$$N_D(m_1, m_2, \ldots, m_s, b) := \# \{(V_1, V_2, \ldots, V_s) : V_i \subset D \mid |V_i| = m_i, 1 \leq i \leq s, \sum_{i=1}^{s} \sum_{x \in V_i} x = b \mod 2pn\}.$$

That is, $N_D(m_1, m_2, \ldots, m_s, b)$ is the number of ordered s-tuples of subsets of D with prescribed cardinalities m_i which sum to b. In the subset-sum problem, we count the number of subsets (equivalently, 1-tuples of subsets) with prescribed cardinality which sum to a given element. Thus this problem can be viewed as a variant of the subset-sum problem. We also define $N_D(b)$ to be the alternating sum of $N_D(m_1, m_2, \ldots, m_s, b)$

$${\sum_{0 \leq m_i \leq |D|, 1 \leq i \leq s}} (-1)^{\sum_{i=1}^{s} m_i} N_D(m_1, m_2, \ldots, m_s, b). \quad (2.2)$$

From the definitions of b_i and $N_D(b)$, it is not hard to see that

$$N_D(b) = \sum_{i=b \mod 2pn} b_i. \quad (2.3)$$

The problem is now reduced to counting $N_D(b)$ and thus to counting $N_D(m_1, m_2, \ldots, m_s, b)$, which can be viewed as a subset-sum type problem over the group of integers modulo $2pn$.

3. Li-Wan sieve and some combinatorial formulas

For the purpose of the proof, we briefly introduce the Li-Wan sieve [5] and present some combinatorial formulas.

Let A be a finite set and let A^m be the m-th fold Cartesian product of A. Let X be a subset of A^m. Let \mathcal{X} denote the elements in X with distinct coordinates

$$\mathcal{X} = \{ (x_1, x_2, \ldots, x_m) \in X : x_i \neq x_j : \forall \ i \neq j \}.$$

Let S_m be the symmetric group on the set $\{1, 2, \ldots, m\}$. Given a permutation $\tau \in S_m$, we can write it as a disjoint cycle product $\tau = C_1C_2 \cdots C_{\ell(\tau)}$, where $\ell(\tau)$ denote the number of disjoint cycles of τ. We define the signature of τ to be $\text{sign}(\tau) = (-1)^{k-\ell(\tau)}$. We also define the set X_τ to be

$$X_\tau = \{ (x_1, x_2, \ldots, x_m) \in X : x_i \text{ are equal for } i \in C_j, 1 \leq j \leq \ell(\tau) \}.$$

In other words, X_τ is the set of elements in X fixed under the action of τ defined by $\tau \circ (x_i)_{x_i \leq m} := (x_{\tau(i)})_{1 \leq \tau \leq m}$. The Li-Wan sieve gives a formula for calculating sums over \mathcal{X} via sums over \mathcal{X}_τ.

Theorem 3.1 ([5], Theorem 2.6). Let $f : X \to \mathbb{C}$ be a complex-valued function defined over X. Then we have

$$\sum_{x \in \mathcal{X}} f(x) = \sum_{\tau \in S_m} \text{sign}(\tau) \sum_{x \in X_\tau} f(x).$$

A permutation $\tau \in S_m$ is said to be of type (c_1, c_2, \ldots, c_m) if it has c_i cycles of length i, $1 \leq i \leq m$. Let $N(c_1, c_2, \ldots, c_m)$ denote the number of permutations of type (c_1, \ldots, c_m). It is well-known [7] that

$$N(c_1, c_2, \ldots, c_m) = \frac{m!}{1^{c_1}c_1!2^{c_2}c_2! \cdots m^{c_m}c_m!}.$$

(3.1)

If we define an m-variate polynomial Z_m via

$$Z_m(t_1, t_2, \ldots, t_m) = \frac{1}{m!} \sum_{i_1, \ldots, i_m = m} N(c_1, c_2, \ldots, c_m) t_1^{i_1} t_2^{i_2} \cdots t_m^{i_m},$$

then it follows from (3.1) that Z_m satisfies the generating function

$$\sum_{m \geq 0} Z_m(t_1, t_2, \ldots, t_m) u^m = \exp(t_1u + t_2 \frac{u}{2} + t_3 \frac{u^3}{3} + \cdots).$$

(3.2)

We give some combinatorial lemmas that will be used later.

Lemma 3.2 ([4], Lemma 2.3). If $t_i = a$ for $d \mid i$ and $t_i = 0$ otherwise, then we have

$$Z_m(t_1, t_2, \ldots, t_m) = Z_m(0, \ldots, 0, a, 0, \ldots, 0, a, \ldots) = [u^m] (1 - u^d)^{-a/d}.$$

Lemma 3.3. Let B be a finite set of complex numbers. If $t_i = \sum_{b \in B} b \bar{z} a$ for $d \mid i$ and $t_i = 0$ otherwise. Then we have

$$Z_m(t_1, t_2, \ldots, t_m) = Z_m(0, \ldots, 0, \sum_{d_1 \mid d} b^{\bar{z} a} + \sum_{d_1 \mid d} b^{\bar{z} a} \ldots) = [u^m] \prod_{b \in B} (1 - bu^d)^{-a/d}.$$

Proof. Substituting the values of t_i into (3.2), we see that

$$Z_m(t_1, t_2, \ldots, t_m) = [u^m] \exp(\sum_{i=1}^{\infty} \frac{\sum_{b \in B} b^{\bar{z} a} d}{d^i}) = [u^m] \exp(-\frac{a}{d} \sum_{b \in B} \log(1 - bu^d)) = [u^m] \prod_{b \in B} (1 - bu^d)^{-a/d}.$$

\Box
4. Proof of the main result

Now we prove Theorem \[\text{1.8}\]. In view of \[\text{2.1}\] and \[\text{2.3}\], we have

\[
S_{2pn,b} = (-1)^{sn(p-1)/2} N_D(b - sn(p-1)(2pn + 1 - p)/8).
\] \hspace{1cm} (4.1)

Thus we need to estimate the quantity \(N_D(b)\) and thus to estimate the quantity \(N_D(m_1, \ldots, m_s, b)\). As in \[\text{4}\], we use character sums to estimate it. Let \(G = \mathbb{Z}/2pn\mathbb{Z}\) be the cyclic group of integers modulo \(2pn\). Let \(X = D^m\) denote the \(m\)-th fold Cartesian product of \(D = \{pj - k : -(n-1) \leq j \leq n, 1 \leq k \leq (p-1)/2\}\) and \(X_i\) denote the set of elements in \(X_i\) with distinct coordinates. For an ordered \(k\)-tuple \(x = (x_1, x_2, \ldots, x_m) \in D^m\), where \(m\) is a positive integer, let \(s(x) := \sum_{i=1}^m x_m\) denote the sum of its coordinates. Using the fact that \(\frac{1}{|G|} \sum_{\chi \in G} \chi(x) = 1\) if \(x = 0\) and is 0 otherwise, we can express \(N_D(m_1, m_2, \ldots, m_2, b)\) as

\[
N_D(m_1, m_2, \ldots, m_s, b) = \frac{1}{m_1! m_2! \cdots m_s!} \sum_{(x_1, x_2, \ldots, x_s) \in \chi_1 \times \chi_2 \times \cdots \chi_s} \frac{1}{G} \sum_{\chi \in G} \chi(s(x_1) + s(x_2) + \cdots + s(x_s) - b)
\]

\[
= \frac{1}{|G|} \sum_{\chi \in G} \chi(b) \sum_{(x_1, x_2, \ldots, x_s) \in \chi_1 \times \chi_2 \times \cdots \chi_s} \prod_{i=1}^s \left(\frac{1}{m_i!} \chi(s(x_i)) \right).
\]

Thus we need to evaluate the character sums of the form

\[
S_m(\chi) := \frac{1}{m!} \sum_{x \in X} \chi(s(x)) = \frac{1}{m!} \sum_{(x_1, x_2, \ldots, x_m) \in X} \chi(x_1) \chi(x_2) \cdots \chi(x_m),
\]

where \(X = D^m\) and \(X_{\tau}\) consists of elements in \(X\) fixed by \(\tau\).

Evaluating \(S_m(\chi)\) a distinct coordinate counting problem that can be handled by the Li-Wan sieve. Applying Theorem \[\text{3.1}\] we can write \(S_m(\chi)\) as

\[
S_m(\chi) = \frac{1}{m!} \sum_{\tau \in \mathfrak{S}_m} \text{sign}(\tau) \sum_{(x_1, x_2, \ldots, x_m) \in X_\tau} \chi(x_1) \chi(x_2) \cdots \chi(x_m).
\]

Let \(\tau = C_1 \cdots C_j\) be a disjoint cycle product of \(\tau\). Then from the definition of \(X_\tau\), we have

\[
\sum_{(x_1, x_2, \ldots, x_m) \in X_\tau} \chi(x_1) \chi(x_2) \cdots \chi(x_m) = \prod_{i=1}^j \left(\sum_{x \in D} \chi^{\ell(C_i)}(x) \right),
\]

(4.5)

where \(\ell(C_i)\) denotes the length of the cycle \(C_i\), \(1 \leq i \leq j\). Thus we have to determine character sums over the set \(D = \{pj - k : -(n-1) \leq j \leq n, 1 \leq k \leq (p-1)/2\}\).

Let \([D]\) denote the image of \(D\) under the quotient map \(q : \mathbb{Z} \to G\) that sends \(a\) to \(a + 2pn\mathbb{Z}\). We observe that \([D]\) is a disjoint union of translations of the subgroup \(pG\), where \(pG = \{pg : g \in G\}\). Precisely, we have \([D] = \bigcup_{k=1}^{(p-1)/2} (pG - k)\). Thus

\[
\sum_{x \in D} \chi(x) = \sum_{x \in [D]} \chi(x) = \sum_{k=1}^{(p-1)/2} \sum_{x \in pG} \chi(x - k) = \left(\sum_{k=1}^{(p-1)/2} \chi(k) \right) \sum_{x \in pG} \chi(x)
\]

The sum \(\sum_{x \in pG} \chi(x)\) vanishes, unless \(\chi\) is a trivial character on \(pG\) for which \(\text{ord}(\chi) = 1\) or \(p\). This implies that

- \(\sum_{x \in D} \chi(x) = 0\) if \(\text{ord}(\chi) \neq 1, p\);
- \(\sum_{x \in D} \chi(x) = (\sum_{k=1}^{(p-1)/2} \chi(k)) |pG| = (\sum_{k=1}^{(p-1)/2} \chi(k)) |G|/p\) if \(\text{ord}(\chi) = 1\) or \(p\). Note that in the case \(\text{ord}(\chi) = 1\), the formula can be further simplified as \(\sum_{x \in D} \chi(x) = |D|\).
Now suppose that the order of the character χ is e. From the above discussion, we see that for $p \nmid e$, \(\sum_{x \in D} \chi^i(x) = |D| \) if $e \mid i$ and $\sum_{x \in D} \chi^i(x) = 0$ otherwise; for $p \mid e$, $\sum_{x \in D} \chi^i(x) = (\sum_{k=1}^{(p-1)/2} S^k \chi^i(k))|G|/p$ if $p \mid i$ and $\sum_{x \in D} \chi^i(x) = 0$ otherwise. Thus we have two cases.

Case 1: $p \nmid e$. In this case, we have $\sum_{x \in D} \chi^i(x) = |D|1_{e|i}$. Then according to (2.4) and (4.5), we deduce that

\[
S_m(\chi) = \frac{1}{m!} \sum_{\tau \in S_m} \text{sign}(\tau) \prod_j \left(\sum_{x \in D} \chi^i(C_j)(x) \right)
\]

\[
= \frac{1}{m!} \sum_{\sum_{i \in \mathbb{Z}} (-1)^m \sum_{i=1}^m \chi(i) \prod_{k=1}^{(p-1)/2} \chi(k)^{G/p, 0 \leq j \leq \frac{p}{p-1}} \sum_{k=1}^{(p-1)/2} \chi(k)^{G/p}}
\]

\[
= (-1)^m [u^m] (1 - u^e)^{|D|/e}.
\]

The last step is due to Lemma 3.2.

Case 2: $p \mid e$. In this case, we have $\sum_{x \in D} \chi^i(x) = (\sum_{k=1}^{(p-1)/2} \chi^i(k))|G|/p 1_{e|i}$. A similar calculation as in Case 1 shows that the sum $S_m(\chi)$ equals

\[
S_m(\chi) = (-1)^m \sum_{k=1}^{(p-1)/2} \chi(k)^{G/p, 0 \leq j \leq \frac{p}{p-1}} \sum_{k=1}^{(p-1)/2} \chi(k)^{G/p}
\]

\[
= (-1)^m [u^m] \prod_{k=1}^{(p-1)/2} (1 - \chi(k)u^{e/p})^{G/p},
\]

where we used Lemma 3.3.

To sum up, we have

\[
S_m(\chi) = \begin{cases}
(-1)^m [u^m] (1 - u^{|\text{ord}(\chi)|})^{G/p}, & \text{if } p \nmid \text{ord}(\chi); \\
(-1)^m [u^m] \prod_{k=1}^{(p-1)/2} (1 - \chi(k)u^{\text{ord}(\chi)/p})^{G/p}, & \text{if } p \mid \text{ord}(\chi).
\end{cases}
\]

Now we are ready to estimate $N_D(b)$. In view of (2.2) and (4.2), we have

\[
N_D(b) = \sum_{0 \leq m_s \leq |D|, 1 \leq i \leq s} (-1)^{\sum_{i=1}^s m_s} N_D(m_1, m_2, \ldots, m_s, b)
\]

\[
= \frac{1}{|G|} \sum_{0 \leq m_s \leq |D|} \sum_{1 \leq i \leq s} (-1)^{\sum_{i=1}^s m_s} \sum_{\chi \in G} \chi(b) \prod_{i=1}^s (1 - \chi(k)u^{\text{ord}(\chi)})^{G/p}.
\]

Using (4.3) and the above results for $S_m(\chi)$, we conclude that

\[
N_D(b) = \frac{1}{|G|} \sum_{\chi \in G \cap p(\text{ord}(\chi))} \chi(b) \sum_{0 \leq m_s \leq |D|} \prod_{i=1}^s (u^{m_i}) \prod_{k=1}^{(p-1)/2} (1 - \chi(k)u^{\text{ord}(\chi)})^{G/p}
\]

\[
+ \frac{1}{|G|} \sum_{\chi \in G \cap p(\text{ord}(\chi))} \chi(b) \prod_{i=1}^s \left(\sum_{m_i = 0}^{[D]} (u^{m_i}) \prod_{k=1}^{(p-1)/2} (1 - \chi(k)u^{\text{ord}(\chi)})^{G/p} \right)
\]

\[
= \frac{1}{|G|} \sum_{\chi \in G \cap p(\text{ord}(\chi))} \chi(b) \prod_{i=1}^s \left(\sum_{m_i = 0}^{[D]} (u^{m_i}) \prod_{k=1}^{(p-1)/2} (1 - \chi(k)u^{\text{ord}(\chi)})^{G/p} \right)
\]

\[
+ \frac{1}{|G|} \sum_{\chi \in G \cap p(\text{ord}(\chi))} \chi(b) \prod_{i=1}^s \left(\sum_{m_i = 0}^{[D]} (u^{m_i}) \prod_{k=1}^{(p-1)/2} (1 - \chi(k)u^{\text{ord}(\chi)})^{G/p} \right)
\]
From the equality (1) the definition of
\[P = \sum_{\chi \in \hat{G}^{p}} (1 - \chi(\bar{a})) \frac{x^{\chi(\bar{a})}}{\eta^{\chi(\bar{a})}} \]
where we used the fact that
\[\{ \chi \in \hat{G}^{p} : \text{ord} \chi \} = 1 \]
Then we compute the argument of
\[P = \prod_{k=1}^{(p-1)/2} (1 - \chi(\bar{a})) \frac{\chi^{G_{\bar{a}}}}{\eta^{G_{\bar{a}}}} \]
Combining the results of the modulus of argument of \(P \)
\[N_{D}(b) = \frac{1}{2pn} \sum_{\chi \in \hat{G}^{p} : \text{ord} \chi = p} \chi(b) \prod_{k=1}^{(p-1)/2} (1 - \chi(\bar{a})) \frac{\chi^{G_{\bar{a}}}}{\eta^{G_{\bar{a}}}} + O\left(\prod_{k=1}^{(p-1)/2} (1 - \chi(\bar{a})) \frac{\chi^{G_{\bar{a}}}}{\eta^{G_{\bar{a}}}} \right). \]
Note that the implied constant in the big \(O \) can be 1.
Since \(G = \mathbb{Z}/2pn\mathbb{Z} \), we have \(|G| = 2pn\). A substitution into the above equation yields
\[N_{D}(b) = \frac{1}{2pn} \sum_{\chi \in \hat{G}^{p} : \text{ord} \chi = p} \chi(b) \prod_{k=1}^{(p-1)/2} (1 - \chi(\bar{a}))^{2\pi n} + O\left(\prod_{k=1}^{(p-1)/2} (1 - \chi(\bar{a}))^{\pi n} \right). \] (4.6)
For a character \(\chi \) of order \(p \), we consider the following product of \(\chi \):
\[P(\chi) := \prod_{k=1}^{(p-1)/2} (1 - \chi(\bar{a}))^{2}. \]
To determine the value of \(P(\chi) \), we evaluate its modulus and argument separately.
We first compute the modulus of \(P(\chi) \). By definition, we have
\[|P(\chi)|^{2} = \prod_{k=1}^{(p-1)/2} (1 - \chi(\bar{a}))^{2} \prod_{k=1}^{(p-1)/2} (1 - \chi(-\bar{a}))^{2} \]
\[= \prod_{k=1}^{(p-1)/2} (1 - \chi(\bar{a}))^{2} \prod_{k=1}^{(p-1)/2} (1 - \chi(p - \bar{a}))^{2} = \prod_{k=1}^{(p-1)/2} (1 - \chi(\bar{a}))^{2} = p^{2}. \]
where we used the fact that \(\{ \chi(\bar{a}), 1 \leq k \leq p-1 \} \) gives a complete list of primitive \(p \)-roots of unity.
This gives \(|P(\chi)| = p \). Consequently, we have \(|P(\chi)|^{2} = p^{2}\). Thus the error term in (4.6) is \(O(p^{n/2}) \).
Then we compute the argument of \(P(\chi) \). To this end, we need the explicit form of \(\chi \). Since \(\chi \) is a character of order \(p \), it must be of the form \(\chi(\bar{a}) = e^{2\pi i a/p} \) for some integer \(a \) with \(1 \leq a \leq p-1 \). From the definition of \(P(\chi) \), we have
\[\arg(P(\chi)) = \sum_{k=1}^{(p-1)/2} \arg((1 - \chi(\bar{a}))^{2}) \mod 2\pi. \]
From the equality \((1 - e^{i\theta})^{2} = 2(1 - \cos(\theta))e^{i(\theta + \pi)} \), we have \(\arg((1 - \chi(\bar{a}))^{2}) = \arg((1 - e^{2\pi i a/p})^{2}) = 2\pi a/p + \pi \mod 2\pi \). This implies that
\[\arg(P(\chi)) = \sum_{k=1}^{(p-1)/2} (2\pi a/p + \pi) \mod 2\pi = \pi \left(\frac{p^{2} - 1}{4p} - a + \frac{p - 1}{2} \right) \mod 2\pi, \]
Combining the results of the modulus of argument of \(P(\chi) \) together, we conclude that
\[P(\chi) = \prod_{k=1}^{(p-1)/2} (1 - \chi(\bar{a}))^{2} = pe^{\pi i \left(\frac{p^{2} - 1}{4p} - a + \frac{p - 1}{2} \right)}, \]
for \(\chi \) defined by \(\chi(\bar{a}) = e^{2\pi i a/p} \). Substituting this into (4.6), we see that
\[N_{D}(b) = \frac{p^{n}}{2pn} \sum_{a=1}^{p-1} e^{2\pi i a/p} e^{\pi i n \left(\frac{p^{2} - 1}{4p} - a + \frac{p - 1}{2} \right)} + O(p^{n/2}). \] (4.7)
The above sum is a geometric series with common ratio of $e^{\pi i (\frac{2b}{p} + sn \frac{p^2 - 1}{4p})}$. Thus when it is 1, that is, $\frac{2b}{p} + sn \frac{p^2 - 1}{4p} \equiv 0 \pmod{2}$, we have

$$N_D(b) = \frac{p^m}{2pn} e^{\pi i \frac{p^2 - 1}{2pn}} (p - 1) + O(p^{n/2}) = (-1)^{sn(p - 1)/2} \frac{(p - 1)p^m}{2pn} + O(p^{n/2}).$$

Otherwise we have

$$N_D(b) = \frac{p^m}{2pn} e^{\pi i (\frac{2b}{p} + sn \frac{p^2 - 1}{4p})} - e^{\pi i sn \frac{p^2 - 1}{4p}} + O(p^{n/2})$$

$$= \frac{p^m}{2pn} e^{\pi i \frac{2b}{p} + sn \frac{p^2 - 1}{4p}} - 1 + \frac{1}{2} e^{\pi i \frac{2b}{p} + sn \frac{p^2 - 1}{4p}} + O(p^{n/2})$$

$$= - (-1)^{sn(p - 1)/2} \frac{p^m}{2pn} + O(p^{n/2}).$$

where we used $p^2 - 1 \equiv 0 \pmod{8}$ for odd primes p.

In summary, we have

$$N_D(b) = \begin{cases} (-1)^{sn(p - 1)/2} \frac{(p - 1)p^m}{2pn} + O(p^{n/2}), & \text{if } \frac{2b}{p} + sn \frac{p^2 - 1}{4p} \equiv 0 \pmod{2}; \\ -(-1)^{sn(p - 1)/2} \frac{p^m}{2pn} + O(p^{n/2}), & \text{otherwise}. \end{cases} \quad (4.8)$$

It then follows from (4.11) and (4.8) that $S_{2pn, b} = \frac{(p - 1)p^m}{2pn} + O(p^{n/2})$ if

$$\frac{2b}{p} - \frac{sn(p - 1)(2pn + 1 - p)}{8} + sn \frac{p^2 - 1}{4p} \equiv 0 \pmod{2}, \quad (4.9)$$

and $S_{2pn, b} = - \frac{p^m}{2pn} + O(p^{n/2})$ otherwise. A direct simplification shows that the condition (4.9) is equivalent to

$$\frac{2b}{p} - sn \left\{ \frac{n - 1}{2} \right\} (p - 1) \equiv 0 \pmod{2},$$

which is equivalent to $p \mid b$, since $\frac{n - 1}{2}$ is always an integer and $p - 1$ is an even number. Therefore we conclude that

$$S_{2pn, b} = \begin{cases} \frac{(p - 1)p^{n - 1}}{2pn} + O(p^{n/2}), & \text{if } p \mid b; \\ - \frac{p^m}{2pn} + O(p^{n/2}), & \text{if } p \nmid b. \end{cases}$$

This completes the proof. \qed

REFERENCES

[1] George Andrews. *On a conjecture of Peter Borwein*. J. Symbolic Comput., 20 (1995), 487–501.

[2] Chen Wang. *An analytic proof of the Borwein conjecture*. [arXiv: 1901.10886] 2019.

[3] Alexandru Zaharescu. *Borweins conjecture on average over arithmetic progression*. Ramanujan J., 11 (2006), 95–102.

[4] Jiyou Li. *On the Borwein conjecture*. International Journal of Number Theory, 16 (2020), 1053–1066.

[5] Jiyou Li and DaQing Wan. *A new sieve for distinct coordinate counting*. Science China Mathematics (Springer), 53-9, 2351–2362.

[6] Ankush Goswami and Venkata Raghu Tej Pantangi. *On sums of coefficients of polynomials related to the Borwein conjectures*. [arXiv: 2004.08954] 2020.

[7] R.P. Stanley. *Enumerative Combinatorics*, vol. 1. Cambridge: Cambridge University Press, 1997.