General requirements to implement the personal dose equivalent Hp(10) in Brazil

Amanda Gomes Lopes and Francisco Cesar Augusto Da Silva
Institute of Radiation Protection and Dosimetry (IRD/CNEN), Rio de Janeiro, Brazil
E-mail: amandagl@bolsista.ird.gov.br; dasilva@ird.gov.br

Abstract. To update the dosimetry quantity with the international community, Brazil is changing the Individual Dose (Hx) to the Personal Dose Equivalent Hp(10). A bibliographical survey on the technical and administrative requirements of nine countries that use Hp(10) was carried out to obtain the most relevant ones. All of them follow IEC and ISO guidelines for technical requirements, but administrative requirements change from country to country. Based on countries experiences, this paper presents a list of important general requirements to implement Hp(10) and to prepare the Brazilian requirements according to the international scientific community.

1. Introduction
In Brazil occupationally exposed workers can only use personal dosimeters provided by services approved by the Regulatory Authority, the National Commission of Nuclear Energy (CNEN-Brazil). The responsibility to provide the formal approval of operation for External Individual Monitoring Services has been delegated to the Institute of Radiation Protection and Dosimetry (IRD/CNEN) since 1995 by CNEN. A formal Committee named “Committee for the Evaluation of Services of Essays and Calibration” (CASEC/IRD) has the responsibility of defining the requirements for approval, auditing the laboratories, organizing inter-comparison exercises, certifying the technical officers of the laboratories and recommending the approval or cessation of laboratories activities to the Director of the Institute.

The External Individual Monitoring Services (SMIE) must comply with a series of management and specific requirements to obtain the approval. Ten laboratories in Brazil are approved to provide dosimetry services using Film Badge, TLD and OSLD, with around 183,000 radiation workers.

The problem is that the dosimetric quantity used in Brazil is the Individual Dose (Hx), which is an operational quantity for photons obtained by multiplying the value obtained in the detector, calibrated in kerma in the air, by the factor f=1.14 Sv/Gy [1]. Internationally, the main operational quantity, defined by International Commission on Radiation Units and Measurements (ICRU) and adopted by International Commission on Radiological Protection (ICRP), is the Personal Dose Equivalent Hp(d). This is the dose equivalent in soft tissue below a specified point on the body, at an appropriate depth d (10 millimeters) [2].

In order to be updated with the international community, Brazil is changing the old quantity H(x) to the useful quantity Hp(10) for Effective Dose and making a review of general requirements to implement the Hp(10). As the technical requirements are generally based on and follow the International Electrotechnical Commission (IEC) and/or International Organization for Standardization (ISO) guidelines [3],[4], the main objective of this paper is to suggest a list of the most important general requirements to implement the personal dose equivalent Hp(10) in Brazil, based on the Countries experiences. A bibliographical survey was made on technical regulations of nine (9) Countries, that use Hp(10), highlighting the required technical and administrative criteria.
Administrative requirements are usually developed in accordance with the regulations and laws of each Country and have differences from one to the other.

2. Methodology

2.1. International Technical Requirements

There are two most important international technical standard that provides requirements applied to dosimetry system: IEC 62387:2012 “Radiation protection instrumentation – Passive integrating dosimetry systems for personal and environmental monitoring of photon and beta radiation” [3] and ISO 4037:1999 “X and gamma reference radiation for calibrating dosimeters and doserate meters and for determining their response as a function of photon energy” [4].

The IEC 62387 is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. Many Countries conduct testing for system evaluation following guidelines recommended in this standard. Two tests can be highlighted: the radiation energy and angle of incidence for Hp(10) and the non-linearity test.

The ISO 4037 - Part 3 describes procedures for calibrating and determining the response of dosimeters and doserate meters in terms of the ICRU operational quantities for radiation protection purposes. It also describes the reference angles and quality of energies used in the evaluation tests described in IEC.

2.2. International Management Requirements

Based on technical regulations of nine (9) Countries, that use Hp(10) in the dosimetry system, a selection of some management requirements was done to support a new Brazilian regulation.

In the Spanish technical regulation the highlight is about dosimeter reading that must have the following automatically operations: dosimetric identification, reading, recording and data storage for elaboration of thermoluminescent emission curves, application of correction factors, verification of system stability, estimation and allocation of doses [5].

According to Canadian Requirements, for routine performance tests, the dosimetry service shall comply with the following requirements: irradiate test dosimeters to known doses, usually under standard exposure conditions (e.g., at normal incidence with the calibration radiation); treat test dosimeters in the same way as routine dosimeters; if processing is required, provide test dosimeters without identifying them to the processing laboratory [6].

Metrological tests are carried out in Germany for investigate whether the response or the indication of the dosimeter varies by no more than the permitted maximum values if an influence quantity is changed from its reference value to any other value within its rated range of use [7].

The Portuguese accreditation body audits the services, outside the evaluation program, to verify compliance with the accreditation decision and inter-laboratory comparisons are mandatory to demonstrate the competence and performance for some accredited evaluations [8].

European Commission [9] and Ireland Environmental Protection Agency [10] have in their technical recommendations and guidelines for monitoring individuals occupationally exposed to external radiation that is necessary the payment of fees for Approval of Dosimetry Services.

Approval of Dosimetry Services (ADS) in United Kingdom will be granted for an indefinite period of time. Approved Body (HSE) will, however, carry out a reassessment of the dosimetry service, usually at intervals of 5 or 7 years depending on the nature of the dosimetry service. Fees are payable for all applications, whether or not they are successful [11],[12],[13].

In France, laboratories that provide dosimetry services, private or public sector, must be both accredited and approved. Performance tests are done “announced” with dosimeters irradiated under defined conditions. The laboratory carries out in “blind” analysis and the result is compared with international standards, either ISO or IEC (depending on the techniques) [11].

In the USA there are two dosimetry service assessment programmes: The National Voluntary Laboratory Accreditation Program (NVLAP) and the Department of Energy Laboratory Accreditation Program (DOELAP). They perform a proficiency test and an audit visit in the personal dosimetry
laboratory to grant accreditation. The validation period of accreditation is two years in both programmes [11].

At present, in European Commission (EU) there is increasing pressure for accreditation/certification of approved dosimetry services (ADS), and in particular, demonstration of conformity with ISO/IEC 17025:2005 [9],[14]. Dosimetry services in different EU Member States do not have to comply with the same legal or approval requirements, and these requirements are not always based to the same degree on standards. Nevertheless, many dosimetry services in the EU are accredited according to ISO/IEC 17025:2005 and this provides a certain uniformity of quality in individual monitoring services in Europe [9].

2.3. Brazilian Management Requirements

The External Individual Monitoring Services (SMIE), to be approved by the CASEC/IRD, must comply with one general requirement and three specific requirements. Some items of the “General Requirements to Approval Individual Monitoring Services” - RT N° 001/1995 [15] to be followed by the SMIE are: dosimetry procedures and QA program must be evaluated and approved by CASEC/IRD; a specialized staff with a technical officer, a quality manager and dosimetry technicians must be organized; technical officers must be submitted a qualify certification made by CASEC/IRD.

After approved process the SMIE receives a Three Years Certification and must participate in a monthly CASEC/IRD Follow-up Performance Program with 5 dosimeters to be irradiated by Secondary Standards Dosimetry Laboratory (SSDL/IAEA/IRD) for a blind test. In this Program the SMIE are evaluated in the Trumpet Curves and 90% of the dosimeters have to be within it. After three years new audit is done for renovation.

3. Results and Discussion

Based on the Countries experiences to approval dosimetry services, a list of ten relevant general requirements are presented, as result of this bibliographic survey. This list shows some requirements to be added in the new Brazilian requirement and others that are the same. The Brazilian requirements showed in item 4 are not in this list.

The top 10 general requirements to implement the personal dose equivalent Hp(10) in Brazil are:

1. Private or public laboratories, which provide dosimetry services, are accredited according to ISO/IEC 17025:2005 and approved by the National Requirement and these processes are generally paid.

2. Performance dosimetry tests are carried out for several irradiation condition to confirm the accuracy system.

3. Independent inter-comparison test can be done by the dosimetry service at least once every two years.

4. The results of performance tests and of inter-comparisons are evaluated using the Trumpet Curves.

5. The performance of the approved dosimetry services are evaluated by an “announced test” made by the approval body.

6. The accreditation and approval are granted for a period of two years maximum.

7. The reference calibration of the dosimetry system should be repeated at regular intervals of two years.

8. All reported doses are stored for an appropriate period, in conformity with ISO/IEC 17025.

9. Annual doses are sent to a National Dose Register by the dosimetry service.

10. Review, annually, the dosimetry process to optimize, to have under control and produce accurate results to be comply with the requirements.

4. Conclusion

The main objective of this paper is to suggest a list of the most important general requirements to implement the personal dose equivalent Hp(10) in Brazil, based on experiences of nine Countries. It was observed that some Countries requirements must be taking into account in the new Brazilian
requirement. These requirements must be analysed if they can be applied in Brazil. For other side, it was found some Countries requirements that are the same of the Brazilian requirements. It shows that the Brazilian processes are updated on international one. The main conclusion is that with the requirements from the Countries the new Brazilian general requirement will be in accord to the international scientific community.

References
[1] Comissão Nacional de Energia Nuclear 2011 Critérios para Cálculo de Dose Efetiva a partir da Monitoração Individual Posição Regulatória 3.01/005 (Brasil: CNEN)
[2] International Atomic Energy Agency 1999 Assessment of Occupational Exposure due to External Sources of Radiation Safety Standards Series RS-G-1.3 (Austria: IAEA)
[3] International Electrotechnical Commission 2012 Radiation Protection Instrumentation – Passive Integrating Dosimetry Systems for Personal and Environmental Monitoring of Photon and Beta Radiation International Standard IEC 62387 (Switzerland: IEC)
[4] International Organization for Standardization 1999 X and Gamma Reference Radiation for Calibrating Dosemeters and Doserate Meters and for determining their response as a function of Photon Energy – Part 3: Calibration of area and Personal Dosemeters and the Measurements of their response as a function of energy and angle of incidence International Standard ISO 4037-3 (Switzerland: ISO)
[5] Consejo de Seguridad Nuclear 2006 Requisitos Técnicos-Administrativos para los Servicios de Dosimetría Personal Guia de Seguridad 7.1 (Spain: CSN)
[6] Canadian Nuclear Safety Commission 2006 Technical and Quality Assurance Requirements for Dosimetry Services Regulatory Standard S-106 Revision 1 (Canada: CNSC)
[7] Physikalisch-Technische Bundesanstalt 2013 Personal Dosimeters for Measuring the Personal Dose Equivalent at 10 mm depth, Hp(10) and the Personal Dose Equivalent at 0.07 mm depth, Hp (0.07) Radiation Protection Instruments (Germany: PTB)
[8] Instituto Português de Acreditação 2016 Regulamento Geral de Acreditação DRC001 (Portugal: IPAC)
[9] European Commission 2009 Technical Recommendations for Monitoring IndividualsOccupationally Exposed to External Radiation Radiation Protection No 160 (Luxembourg: EC)
[10] Environmental Protection Agency 2015 Approval of Dosimetry Services in Ireland Guidelines for Applicants (Ireland: EPA)
[11] Health Protection Agency 2006 Review of the level of Accuracy required and means of demonstrating that accuracy for approval of Dosimetry Services by the Health and Safety Executive Research Report 477 (UK: HPA)
[12] Health and Safety Executive 2008 Requirements for the Approval of Dosimetry Services under the Ionising Radiations Regulations 1999 Part 1 – External Radiations (UK: HSE)
[13] Health and Safety Executive 2010 Statement on the Approval of Dosimetry Services Ionising Radiations IRR Regulation 1999 REPPIR (UK: HSE)
[14] International Organization for Standardization 2005 General requirements for the competence of testing and calibration laboratories International Standard ISO 17025 (Switzerland: ISO)
[15] Comitê de Avaliação de Serviços de Monitoração Individual Externa 1995 Critérios Gerais para Certificação de um Serviço de Monitoração Individual Externa Regulamento Técnico IRD-RT No 001.01/95 (Brasil: CASMIE/IRD)

Acknowledgments
The authors are grateful to Brazilian development agency (Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq) to grant a scholarship project (Projeto de Capacitação Individual - PCI) that made this work possible.