Electronic Supporting Information

Dissolution of metal oxides in task-specific ionic liquid

Janine Richter,a Michael Rucka,b

a Technische Universität Dresden
b Max-Planck-Institute for Chemical Physics of Solids, Dresden
PXRD of the reagents ThO$_2$ and [Hbet][NTf$_2$]

Fig. S1 Measured diffractogram of the reagent ThO$_2$ (black) compared to the ThO$_2$ pattern calculated from single-crystal data (green) in the range $5^\circ \leq 2\theta \leq 90^\circ$.

Fig. S2 Experimental diffractogram of the synthesised [Hbet][NTf$_2$] compared to the reflection patterns of [Hbet][NTf$_2$] (middle) and [(Hbet)$_3$(bet)][NTf$_2$]$_3$ (bottom) simulated from single crystal data1 in the range $5^\circ \leq 2\theta \leq 50^\circ$.

1 Reference for single crystal data:

[1] Reference Number for Single Crystal Data
Fig S3 Rietveld refinement plot of the reagent [Hbet][NTf$_2$]. Peak positions of [Hbet][NTf$_2$] are marked in orange and of [(Hbet)$_3$(bet)][NTf$_2$]$_3$ in brown vertical bars. Ca. 66% of [Hbet][NTf$_2$] and 34% of [(Hbet)$_3$(bet)][NTf$_2$]$_3$ are present in the sample. $R_p = 3.8102$, $R_{wp} = 5.3084$, $R_{exp} = 7.7653$, GOF = 0.68.

Reaction mixtures in pure [Hbet][NTf$_2$]

Table S1 Product appearance and phases identified by PXRD of the reaction mixtures of a metal oxide and [Hbet][NTf$_2$]. A molar ratio of $n_{ox} : n_{IL} = 1 : 4$ and heating to 175 °C for 24 h was applied. Pastelike products crystallised when brought on a PXRD sample holder.

Oxide	Product appearance	PXRD phases
Al$_2$O$_3$	White powder in colourless liquid	[Hbet][NTf$_2$]
BaO	White paste	Many unidentified reflections
Bi$_2$O$_3$	White powder in colourless liquid	Many unidentified reflections
CaO	Clear, colourless solution	
Co$_3$O$_4$	Black powder in slightly violet liquid	Co$_3$O$_4$
Cr$_2$O$_3$	Green powder in colourless liquid	Cr$_2$O$_3$
Cu$_3$O$_4$	Blue and white crystals	Cu$_3$O$_4$, [Hbet][NTf$_2$], [(Cu$_3$(bet)$_4$(NTf$_2$)$_2$)][NTf$_2$]$_2$
CuO	Blue and white irregular crystals	[Cu$_3$(bet)$_4$(NTf$_2$)$_2$][NTf$_2$]$_2$, unidentified reflections
Fe$_2$O$_3$	Red powder in colourless liquid	Fe$_2$O$_3$
Ga$_2$O$_3$	White powder in colourless liquid	Ga$_2$O$_3$, [Hbet][NTf$_2$]
GeO$_2$	White powder in colourless liquid	GeO$_2$, [Hbet][NTf$_2$]
In$_2$O$_3$	White powder in colourless liquid	In$_2$O$_3$, [Hbet][NTf$_2$]
MgO	Clear, colourless solution	
MnO	Pale orange, clear paste	Many unidentified reflections
MnO$_2$	Black powder in colourless liquid	MnO$_2$
MoO$_3$	White powder in colourless liquid	MoO$_3$, [Hbet][NTf$_2$]
Nb$_2$O$_5$	White powder in colourless liquid	Nb$_2$O$_3$, [Hbet][NTf$_2$]
NiO	Green powder in colourless liquid	NiO, [(Hbet)$_3$(bet)][NTf$_2$]$_3$
PbO	Clear, colourless solution	
PbO$_2$	Clear, colourless solution	
ReO$_3$	Red crystals in colourless liquid	ReO$_3$
Sb$_2$O$_3$	White powder in colourless liquid	Sb$_2$O$_3$, [(Hbet)$_3$(bet)][NTf$_2$]$_3$
SnO	White powder in brown liquid	SnO, [Hbet][NTf$_2$]
Compound	Description	Reflections
----------	----------------------	-----------------------------------
SrO	Pale orange, opaque paste	Many unidentified reflections
ThO₂	Black powder in colourless liquid	ThO₂, few unidentified reflections (present in reagent)
TiO₂	White powder in colourless liquid	TiO₂, [Hbet][NTf₂]
V₂O₃	Small blue-green crystals in colourless liquid	Several unidentified reflections
V₂O₅	Yellow powder in brown liquid	V₂O₅, many unidentified reflections
WO₃	Yellow powder in colourless liquid	WO₃
ZnO	First colourless solution gels to white paste	Many unidentified reflections
Fig. S4 Experimental diffractograms of the samples Al₂O₃, BaO, Bi₂O₃, Co₃O₄, Cr₂O₃, Cu₂O, CuO, Fe₂O₃, Ga₂O₃, GeO₂, In₂O₃, MnO and MnO₂ + [Hbet][NTf₂] (black) in the range 5° ≤ 2θ ≤ 90° compared to the reflection patterns of the respective metal oxide if present (green) and (BiO)₂CO₃ (violet) simulated from single crystal data as well as the experimental reagent pattern of [Hbet][NTf₂] (grey). Unidentified reflections in predominantly or completely unidentified patterns (BaO, Cu₂O, CuO, MnO) are not marked as such.
Fig. S5 Experimental diffractograms of the samples MoO$_3$, Nb$_2$O$_5$, NiO, ReO$_3$, Sb$_2$O$_5$, SnO, SrO, ThO$_2$, TiO$_2$, V$_2$O$_3$, V$_3$O$_8$, WO$_3$ and ZnO + [Hbet][NTf$_2$] (black) in the range $5^\circ \leq 2\theta \leq 90^\circ$ compared to the reflection patterns of the respective metal oxide if present simulated from single crystal data (green) as well as the experimental reagent pattern of [Hbet][NTf$_2$] (dark grey) and the pattern of [(Hbet)$_3$(bet)][NTf$_2$]$_3$ (light gray) simulated from single crystal data. Unidentified reflections in completely unidentified patterns (SrO, V$_2$O$_3$, ZnO) are not marked as such.
Fig. S6 Experimental diffractograms of the samples Bi$_2$O$_3$ + [Hbet][NTf$_2$] reacted in argon flow (top) and on air before washing with acetone (bottom) compared to the experimental pattern of the reagent Bi$_2$O$_3$ (green) and the (BiO)$_2$CO$_3$ pattern calculated from single crystal data (violet) in the range 5° ≤ 2θ ≤ 90°.
Lattice energies and U/x values

Table S2 Data for the calculation of the lattice energy U by the Born-Haber cycle and of the U/x value. Furthermore, the binding energy of $O_2 B = 498.34$ kJ/mol and the electron affinities of O $EA_1 = 141$ kJ/mol and $EA_2 = -844$ kJ/mol were used. ΔH_f values were obtained from *Thermochemical Data of Pure Substances*, $^2 \Delta H_m$, ΔH_r and B from *Lange’s Handbook of Chemistry*, 3 and I_e and EA_i values from the NIST online database. 4

Oxide	x	ΔH_f [kJ/mol]	ΔH_m [kJ/mol]	ΔH_r [kJ/mol]	$\sum I_i$ [kJ/mol]	U [kJ/mol]	U/x [kJ/mol]	
Al$_2$O$_3$	2	−1676	326	−	−	2394	15464	7732
BaO	1	−554	7.12	140.3	1468	3121	3121	
Bi$_2$O$_3$	2	−574	11.30	151	4781	13318	6659	
CaO	1	−635	8.45	154.7	1735	3486	3486	
Co$_2$O$_4$	3	−910	424	−	−	4025	18067	6022
Cr$_2$O$_3$	2	−1140	397	−	−	5231	15252	7626
Cu$_2$O	2	−171	337.7	−	−	745	3290	1645
CuO	1	−156	337.7	−	−	2703	4150	4150
Fe$_2$O$_3$	2	−824	415.5	−	−	5283	15078	7539
Ga$_2$O$_3$	2	−1089	5.59	254	5523	15511	7756	
GeO$_2$	1	−580	36.94	334	9997	12852	12852	
In$_2$O$_3$	2	−926	243.1	−	−	5085	14439	7220
MgO	1	−601	147	−	−	2188	3889	3889
MnO	1	−385	12.9	221	2226	3798	3798	
MnO$_2$	1	−520	12.9	221	10416	13075	13075	
MoO$_3$	1	−745	664	−	−	20643	24909	24909
Nb$_2$O$_5$	2	−1900	726	−	−	12958	34030	17015
NiO	1	−240	17.48	377.5	2490	4077	4077	
PbO	1	−218	195.2	−	−	2166	3532	3532
PbO$_2$	1	−274	195.2	−	−	9332	11706	11706
ReO$_3$	1	−589	779	−	−	20207	24433	24433
Sb$_2$O$_3$	2	−720	19.87	193.43	4878	13760	6880	
SnO	1	−286	7.03	296.1	2120	3662	3662	
SrO	1	−592	164.0	−	−	1614	3322	3322
ThO$_2$	1	−1226	13.81	514	6308	9967	9967	
TiO$_2$	1	−945	469	−	−	8796	12114	12114
V$_2$O$_3$	2	−1219	516	−	−	4891	14890	7445
V$_2$O$_5$	2	−1551	516	−	−	15696	38738	19369
WO$_3$	1	−843	851	−	−	19761	24312	24312
ZnO	1	−350	7.32	123.6	2640	4074	4074	
The compound \([\text{Cu}_2(\text{bet})_4(\text{NTf}_2)_2][\text{NTf}_2]_2\]

Fig. S7 Crystal structure of \([\text{Cu}_2(\text{bet})_4(\text{NTf}_2)_2][\text{NTf}_2]_2\). Coordinative interactions are marked as dotted lines. The ellipsoids enclose 70% of the probability density of the atoms at 100 K. H atoms are omitted for clarity.

Fig. S8 Experimental diffractogram of \([\text{Cu}_2(\text{bet})_4(\text{NTf}_2)_2][\text{NTf}_2]_2\) after washing with acetone (black) compared to the pattern simulated from single crystal data of \([\text{Cu}_2(\text{bet})_4(\text{NTf}_2)_2][\text{NTf}_2]_2\) (blue) in the range \(5° \leq 2\theta \leq 90°\).
Assignment of IR bands of [Hbet][NTf₂]

Table S3 Positions and proposed assignment of the bands observed in the FTIR spectrum of [Hbet][NTf₂] in the range 500 cm⁻¹ ≤ \(\tilde{\nu} \) ≤ 4000 cm⁻¹. The symbols have their usual meaning: \(\nu \) stretching, \(\delta \) bending, \(\gamma \) out of plane bending or wagging, \(s \) symmetric, \(as \) asymmetric. Assignment with the aid of references 5–8.

IR vibration of [Hbet][NTf₂] [cm⁻¹]	Proposed assignment
3301 \(\nu_{as} \) OH	
3053 \(\nu_s \) CH (CH₃)	
2999 \(\nu_{as} \) CH (CH₃)	
2966 \(\nu \) CH (CH₃)	
1770 \(\nu_{as} \) COO	
1496 \(\nu_{as} \) HCH (CH₃)	
1479 \(\delta_{as} \) CH₃	
1424 \(\delta_s \) HCH (CH₃-N)	
1350 \(\nu_{as} \) SO₂	
1331 \(\delta \) NCH	
1180 \(\nu \) CF₃	
1142 \(\nu_s \) SO₂	
1050 \(\nu_{as} \) SN	
994 \(\nu_{as} \) C₃N	
955 \(\delta \) CCN	
931 \(\delta \) CNC	
883 \(\nu \) CC	
795 \(\nu_s \) SN	
766 \(\nu \) CS	
743 \(\delta_s \) CF₃	
676 \(\nu \) CN	
610 \(\delta \) CSN	
572 \(\gamma \) CH	
518 \(\gamma \) CH	
Fig S9 1H NMR spectra of [Hbet][NTf₂], the heated mixture of [Hbet][NTf₂] and [Hbet]Cl as well as several samples of metal oxide mixtures in the range 1 ppm ≤ δ ≤ 6 ppm, where all signals occur. Highlighted in green are the signals of CH₃ (3.1 ppm) and CH₂ (4.1 ppm), orange shading indicates the...
signal originating from the solvent DMSO-d$_6$. No signal is observed for the carboxyl proton of betainium, which is attributed to its low intensity and broadness due to fast exchange processes.\(^9\)

Reaction mixtures in \([\text{Hbet}]\text{[NTf}_2\text{]}\)-\([\text{Hbet}]\text{Cl}\)

Table S4 Product appearance and phases identified by pXRD of the reaction mixtures of a metal oxide, \([\text{Hbet}]\text{[NTf}_2\text{]}\) and \([\text{Hbet}]\text{Cl}\). If not stated otherwise, a molar ratio of \(n_M : n_{[\text{Hbet}]\text{[NTf}_2\text{]}} : n_{[\text{Hbet}]\text{Cl}} = 1 : 2 : 2\) and heating to 175 °C for 24 h was applied.

Oxide	Product appearance	PXRD phases	Varied reaction conditions	Product appearance
Al$_2$O$_3$	White powder in brown liquid	No reflections		
BaO	White powder in brown paste	BaCl$_2$, unidentified reflections	\(n_{\text{Ba}} : n_{[\text{Hbet}]\text{[NTf}_2\text{]} } : n_{[\text{Hbet}]\text{Cl}} = 3 : 18 : 1\)	Colourless liquid and white solid, identified as BaCl$_2$ by pXRD after washing
Bi$_2$O$_3$	White powder in brown liquid	BiOCl, unidentified reflections		
CaO	Paste of brown, orange and colourless crystals	Unidentified reflections	\(n_{\text{Ca}} : n_{[\text{Hbet}]\text{[NTf}_2\text{]} } : n_{[\text{Hbet}]\text{Cl}} = 3 : 18 : 1\)	Clear, colourless solution
Co$_3$O$_4$	Blue crystals in colourless liquid	Unidentified reflections		
Cu$_2$O	White powder in yellow liquid	CuCl		
CuO	Brown solid in brown liquid	Many unidentified reflections	4 h	Green liquid, precipitation of blue, needle-shaped crystals overnight
Fe$_2$O$_3$	Red powder in brown liquid	Fe$_2$O$_3$, unidentified reflections	\(n_{\text{Fe}} : n_{[\text{Hbet}]\text{[NTf}_2\text{]} } : n_{[\text{Hbet}]\text{Cl}} = 1 : 4 : 1\)	Red powder in slightly yellow liquid
Ga$_2$O$_3$	White powder in brown paste	Ga$_2$O$_3$, unidentified reflections	\(n_{\text{Ga}} : n_{[\text{Hbet}]\text{[NTf}_2\text{]} } : n_{[\text{Hbet}]\text{Cl}} = 1 : 6 : 1\)	White powder in colourless liquid, only Ga$_2$O$_3$ identified by pXRD
GeO$_2$	White powder in brown liquid	GeO$_2$		
In$_2$O$_3$	Pale orange paste	In$_2$O$_3$, \([\text{Hbet}]_3\text{(bet)}\text{[NTf}_2\text{]}\), unidentified reflections	\(n_{\text{In}} : n_{[\text{Hbet}]\text{[NTf}_2\text{]} } : n_{[\text{Hbet}]\text{Cl}} = 1 : 6 : 1\)	Fine, yellow powder in colourless liquid, only In$_2$O$_3$ identified by pXRD
MgO	Slightly brown solid	Many unidentified reflections		Clear, colourless solution
MnO	Light brown paste	Many unidentified reflections		Clear, light orange solution
MnO$_2$	Colourless crystals in brown liquid	Unidentified reflections		
MoO$_3$	Brown, hard resin-like substance	MoO$_3$, unidentified reflections		
Nb$_2$O$_5$	White powder in brown liquid	Nb$_2$O$_5$, unidentified reflections	\(n_{\text{Nb}} : n_{[\text{Hbet}]\text{[NTf}_2\text{]} } : n_{[\text{Hbet}]\text{Cl}} = 1 : 6 : 1\)	White powder in colourless liquid, Nb$_2$O$_5$ identified by
Compound	Appearance	pXRD		
----------	------------	------		
NiO	Green solid (washing with acetone yields green liquid and hygroscopic yellow powder transforming to green liquid on air)	NiO, unidentified reflections		
PbO	White powder in light brown liquid	Unidentified pattern \(n_{\text{Pb}} : n_{[\text{Hbet}][\text{NTf}_2]} : n_{[\text{Hbet}]\text{Cl}} = 1 : 4 : 1 \)	White powder in orange solution	
PbO₂	White powder in brown liquid	Unidentified pattern		
ReO₃	Red crystals in brown liquid	ReO₃		
Sb₂O₃	White powder in brown liquid	\([\text{Hbet}]_3(\text{bet})[[\text{NTf}_2]]_3\), unidentified reflections		
SnO	Brown paste	No reflections		
SrO	Clear, brown liquid	-		
ThO₂	White powder in brown solution	ThO₂ \(n_{\text{Th}} : n_{[\text{Hbet}][\text{NTf}_2]} : n_{[\text{Hbet}]\text{Cl}} = 1 : 12 : 2 \)	White powder and a few black particles in yellow liquid	
TiO₂	White powder in brown liquid	TiO₂, \([\text{Hbet}]_3(\text{bet})[[\text{NTf}_2]]_3\)		
V₂O₃	Fine, black powder in brown paste	V₂O₃ \(n_{\text{V}} : n_{[\text{Hbet}][\text{NTf}_2]} : n_{[\text{Hbet}]\text{Cl}} = 1 : 6 : 1 \)	Few black particles in grey liquid, no pXRD signals	
V₂O₅	Black powder in dark green paste	No reflections		
WO₃	Yellow powder in brown liquid	WO₃		
ZnO	Clear, brown liquid	-		
Fig. S10 Experimental diffractograms of the samples Al₂O₃, BaO, Bi₂O₃, CaO, Co₃O₄, Cr₂O₃, CuO, Cu₂O, Fe₂O₃, Ga₂O₃, GeO₂ and In₂O₃ + [Hbet][NTf₂] + [Hbet]Cl (black) in the range 5° ≤ 2θ ≤ 90° compared to the reflection patterns of the respective metal oxide (green) or metal chloride/oxide chloride (blue) if present simulated from single crystal data as well as the experimental reagent pattern of [Hbet][NTf₂] (dark grey) and the pattern of [(Hbet)(bet)][NTf₂]₃ simulated from single crystal data.¹ Unidentified reflections in completely unidentified patterns (CaO, Co₃O₄, CuO, MgO) are not marked as such.
Fig. S11 Experimental diffractograms of the samples MnO, MnO₂, MoO₃, Nb₂O₅, NiO, PbO, PbO₂, ReO₃, Sb₂O₅, SnO, ThO₂, TiO₂, V₂O₅, V₂O₃ and WO₃ + [Hbet][NTf₂] + [Hbet]Cl (black) in the range 5° ≤ 2θ ≤ 90° compared to the reflection patterns of the respective metal oxide if present simulated from single crystal data (green) as well as the pattern of [(Hbet)(bet)][NTf₂], simulated from single crystal data.¹ Unidentified reflections in predominantly or completely unidentified patterns (MnO, MnO₂, NiO, PbO, PbO₂) are not marked as such.
EDX of the sample ThO$_2$ + [Hbet][NTf$_2$] + [Hbet]Cl

Fig S12 SEM image of the white powder of the sample ThO$_2$ + [Hbet][NTf$_2$] + [Hbet]Cl ($n_{\text{Th}} : n_{[\text{Hbet}][\text{NTf}_2]} : n_{[\text{Hbet}]\text{Cl}} = 1 : 12 : 2$) with EDX measuring points indicated.

Table S5 Overview of the results of the EDX measurement. Besides C, O and Th, also La and Ta were detected. However, as their amounts were below the detection level, no assumption of the presence of small quantities of these elements can be made.

Element	Pos. 1	Pos. 2	Pos. 3	Pos. 4	Average
C	52 %	50 %	56 %	50 %	52 %
O	35 %	39 %	36 %	36 %	36 %
Th	13 %	11 %	9 %	13 %	11 %

References

1 P. Nockemann, B. Thijs, S. Pittois, J. Thoen, C. Glorieux, K. Van Hecke, L. Van Meervelt, B. Kirchner and K. Binnemans, J. Phys. Chem. B, 2006, 110, 20978–20992.
2 I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim, 3rd edn., 1995.
3 J. G. Speight, Lange’s handbook of chemistry, McGraw-Hill, New York, 16th edn., 2005.
4 A. Kramida, Y. Ralchenko and J. Reader, NIST Atomic Spectra Database 5.6.1, National Institute of Standards and Technology, Gaithersburg, 2018.
5 M. Viertorinne, J. Valkonen, I. Pitkänen, M. Mathlouthi and J. Nurmi, J. Mol. Struct., 1999, 477, 23–29.
6 K. Hanke, M. Kaufmann, G. Schwaab, M. Havenith, C. T. Wolke, O. Gorlova, M. A. Johnson, B. P. Kar, W. Sander and E. Sanchez-Garcia, Phys. Chem. Chem. Phys., 2015, 17, 8518–8529.
7 M. M. Iłczyszyn and M. Ilczyszyn, J. Raman Spectrosc., 2003, 34, 693–704.
8 M. Szafran, A. Katrusiak, Z. Dega-Szafran and I. Kowalczyk, J. Mol. Struct., 2013, 1031, 49–55.
9 J. Dimitrić-Markovic, U. Mioč, J. Baranac and Z. Nedie, *Journal of the Serbian Chemical Society*, 2001, **66**, 451–462.