Fitting of interatomic potentials without forces: a parallel particle swarm optimization algorithm

Diego González∗ and Sergio Davis†

Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

(Dated: January 31, 2014)

Abstract

We present a methodology for fitting interatomic potentials to ab initio data, using the particle swarm optimization (PSO) algorithm, needing only a set of positions and energies as input. The prediction error of energies associated with the fitted parameters can be close to 1 meV/atom or lower, for reference energies having a standard deviation of about 0.5 eV/atom. We tested our method by fitting a Sutton-Chen potential for copper from ab initio data, which is able to recover structural and dynamical properties, and obtain a better agreement of the predicted melting point versus the experimental value, as compared to the prediction of the standard Sutton-Chen parameters.

PACS numbers: 02.70.Ns, 02.60.Pn, 64.70.dj, 66.10.C-

Keywords: particle swarm optimization, interatomic potential, fitting

∗Electronic address: dgonzalez@gnm.cl
†Electronic address: sdavis@gnm.cl
I. INTRODUCTION

In Condensed Matter Physics, the task of obtaining different mechanical properties of materials, simulated atomistically with a large number of atoms under \textit{ab initio} methods, is an almost prohibitive one, in terms of computational effort with the current computer architectures. It might even at times be impossible. Because of this, producing a “classical” interatomic potential as a substitute for the genuine quantum-mechanical interaction of the particles is highly desirable. The usual procedure is to fit some empirical interatomic potential function, depending on $N$ parameters, requiring either agreement with certain macroscopic properties (structural, thermodynamical, etc.) or simply agreement between the predicted and observed energies and atomic forces. A standard algorithm based on force information is the force matching method \cite{1,2}.

In this work we present a methodology for fitting interatomic potentials to \textit{ab initio} data, using the particle swarm optimization (PSO) algorithm \cite{3}. The objective function to be minimized is the total prediction error in the energies for the configurations provided, thus the algorithm does not require any information besides the atomic positions for each configuration and their corresponding \textit{ab initio} energies. In particular it does not require the atomic forces, as in other fitting procedures such as force matching methods.

II. INTERATOMIC POTENTIAL MODELS

We implemented two families of interatomic potentials, pair potentials and embedded atom potentials. Among the former, we tested the well-known Lennard-Jones potential \cite{4}, given by

\begin{equation}
V(r) = 4\epsilon \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^{6} \right],
\end{equation}

and the 6-parameters “generic” potential as implemented in Moldy \cite{5},

\begin{equation}
V(r) = A \exp(-Br) + \frac{C^{12}}{r} - \frac{D^{4}}{r} - \frac{E^{6}}{r} - \frac{F^{8}}{r}.
\end{equation}

From the family of embedded atom potentials \cite{6}, having the general form
\[ E_i = \frac{1}{2} \sum_{j \neq i} \phi(|r_i - r_j|) + F\left( \sum_{j \neq i} \psi(|r_i - r_j|) \right). \tag{3} \]

we implemented the Sutton-Chen potential, where the pair functions and the embedding function are given by

\[ F(\rho) = \epsilon C \sqrt{\rho} \tag{4} \]
\[ \phi(r) = \epsilon (a/r)^n \tag{5} \]
\[ \psi(r) = (a/r)^m. \tag{6} \]

III. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization (PSO) algorithm is based on the idea of distributing the search procedure among a large number of “agents”, which act independently of each other. Each agent moves through the search space with a simple dynamics, reacting to fictitious forces drawing it towards its own current best solution and the global best solution for the whole swarm. In this way, when an agent finds a better solution than the current global best, it becomes the new global best and all the other agents react instantly, the swarm is directed towards the new solution.

For a set of \( n \) particles represented by their positions \( x_1, x_2, ..., x_n \), the velocity for the \( i \)-th particle and the \( k \)-th step is

\[ v_i^k = \omega v_i^{k-1} + c_1 r_1^k (x_B - x_i^{k-1}) + c_2 r_2^k (x_G - x_i^{k-1}) \tag{7} \]

and the position is given by

\[ x_i^k = x_i^{k-1} + v_i^k. \tag{8} \]

We employed the following choice of PSO parameters: \( \omega=0.7, c_1=1.4 \) and \( c_2=1.4 \), after a few trial convergence runs.
IV. IMPLEMENTATION OF THE FITTING ALGORITHM

For a potential function where we wish to find the parameters \( a_0, a_1, ..., a_m \) from a set of positions \( r_i^j \) and energies \( E_j \) satisfying the relation

\[
V(r_1^j, r_2^j, \ldots, r_n^j; \mathbf{a}) = E_j
\]

with

\[
\mathbf{a} = (a_0, a_1, ..., a_m),
\]

we can define an objective function which is just the total prediction squared error, of the form

\[
f(\mathbf{a}) = \sum_j \left( V(r_1^j, r_2^j, \ldots, r_n^j; \mathbf{a}) - E_j \right)^2,
\]

and then for the set of parameters \( \mathbf{a}^* \) that correctly fit the potential \( V \) we have \( f(\mathbf{a}^*) = 0 \).

Then the problem may be solved numerically with the PSO algorithm minimising the function \( f(\mathbf{a}) \).

A. Optimization of the algorithm

We have included some improvements on the PSO implementation, particular to our problem. For instance, we perturbed the swarm every time the procedure gets stuck in a minimum for \( N_S \) steps (\( N_S \) proportional to the number of parameters \( d \) in the potential, usually \( N_S = 50d \)), completely randomizing their positions.

On the other hand, we exploit the fact that for several families of potentials there is a scale parameter for the interatomic distance, let us call it \( \sigma \), such that the potential depends on \( r \) only through \( r/\sigma \). This is the case for the \( \sigma \) parameter in the Lennard-Jones potentials, for the \( C, D, E, F \) and \( 1/B \) parameters in the generic potential from Moldy, and also for the \( a \) parameter in the Sutton-Chen variant of the embedded atom potentials. This distance scale parameter can be constrained to be between the minimum observed distance and a multiple of this value (typically 10 times), which considerably reduces the search space.

Parallelization was achieved simply by distributing the PSO particles evenly among the different processors using the message passing interface (MPI) framework, at each step sharing the global best between all processors.
V. RESULTS

A. Lennard-Jones potential

In order to test the consistency of our procedure, we randomly generate a set of 20 configurations and we compute their energy according to the standard Lennard-Jones parameters for argon, $\epsilon = 0.0103048 \text{ eV}$ and $\sigma = 3.41 \text{ Å}$.

The resulting set has a standard deviation of energy of 0.41063 eV. Then, with the information of positions and energies (in a parallel run using 64 cores and 500 PSO particles), the time needed to find the minimum prediction error was 212.6 s. We can see that the algorithm converge quickly for each parameter, recovering their exact values at 1300 steps (the prediction error reached is below $10^{-27} \text{ meV/atom}$).

B. 6-parameter generic potential

For the 6-parameters pair potential using the same set of positions and energies obtained for the previous Lennard-Jones test, the time needed to find the minimum prediction error was 3159.9 s, again using 64 cores and 500 PSO particles. In this case the error for the converged set of parameters falls below $8 \times 10^{-2} \text{ meV/atom}$ at 9000 steps.

C. Embedded atom potential

We repeated the same approach for the embedded atom potential, this time using the standard Sutton-Chen parameters for copper, $\epsilon=0.0123820 \text{ eV}$, $a=3.61 \text{ Å}$, $n=9$, $m=6$ and $C=39.432$. We used 4 configurations as input, and we stopped the minimization procedure after 193015 steps (execution time was 23 hours with 64 cores and 800 PSO particles), when we reached a prediction error of about 0.8 meV/atom and the following fitted parameters: $\epsilon=0.0145749 \text{ eV}$, $a=3.5834 \text{ Å}$, $n=8.82683$, $m=5.67465$, and $C=37.028$. 
VI. APPLICATION: AN EMBEDDED ATOM POTENTIAL FOR COPPER FROM AB INITIO DATA

In order to test our procedure on a more realist scenario and assess the quality of the fitted potentials we performed \textit{ab initio} microcanonical molecular dynamics simulations of copper at different temperatures (covering its solid, liquid and superheated phases). All molecular dynamics calculations were performed using Density Functional Theory (DFT) as implemented in VASP \cite{8}. We used Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) pseudopotentials \cite{9} with an energy cutoff of 204.9 eV and \textit{k}-point expansion around the Γ point only.

From these simulations, we generated 13229 different atomic configurations with their respective energies, mixed from solid, liquid and superheated state simulations. Among them we chose a subset of 30 with maximum standard deviation of the energy (namely 0.24 eV/atom), in order to increase the transferability of the fitted potential. These configurations were used as input to the fitting procedure. We found the Sutton-Chen potential parameters presented in Table I, with a prediction error of 5.19 meV/atom.

We tested these parameters by performing classical molecular dynamics simulations using the LPMD \cite{10} code, with a 4x4x4 FCC simulation cell (256 atoms). Fig. 5 shows the radial distribution function \(g(r)\) produced by our fitted Cu potential for liquid at \(T=1500\) K. It reproduces exactly all features (positions of minima and maxima, heights of the maxima) found in a previous \textit{ab initio} fitting study \cite{11}.

Fig. 6 shows the mean square displacement for liquid at \(T=1500\) K. From this we obtained a diffusion coefficient \(D=0.276924\) Å\(^2\)/ps, lower than the experimental value reported by Meyer \cite{12}, 0.45 Å\(^2\)/ps at \(T=1520\) K.

The quality of the potential in reproducing thermal properties was assessed by computing the melting point, using the microcanonical Z-method \cite{13-15}. In this method, for constant volume the \(T(E)\) curve is drawn by performing different molecular dynamics simulations at different initial kinetic energies (in every simulation the system starts with the ideal crystalline configuration). The discontinuity in the isochore signals the melting point.

Fig. 7 shows the isochoric curve for different energies around the melting point, where the lowest point of the rightmost branch correspond to an upper estimate of the melting temperature \(T_m\), in our case approx. 1700 K (the experimental value is \(T_m=1356.6\) K).
The highest point is the critical superheating temperature $T_{LS}$, around $T = 2020$ K. For comparison we also included the isochoric curve calculated with the potential parameters by Sutton and Chen, which gives $T_m$ around 2000 K for the same system size and number of simulation steps.

VII. CONCLUDING REMARKS

We have shown that it is possible to use a parallel algorithm based on particle swarm optimization to fit interatomic potentials to ab initio energies only.

Our procedure has been tested by fitting both pair potentials and embedded atom potentials, up to a prediction error of the order of 1 meV/atom, using between 5 and 30 different configurations. The implementation code is parallelized using message passing interface (MPI) libraries.

We demonstrated the capabilities of our method by fitting a set of Sutton-Chen parameters for copper using ab initio data from three thermodynamic phases. This fitted potential is able to reproduce the radial distribution function, although it underestimates the diffusion coefficient for liquid copper at $T=1500$ K (with respect to experimental data). It also yields a better prediction of the melting point than the standard Sutton-Chen parameters.

Acknowledgments

SD gratefully acknowledges funding from VID Universidad de Chile.

[1] F. Ercolessi, Europhys. Lett. 26, 583 (1994).
[2] S. Izvekov, M. Parrinello, C. J. Burnham, and G. A. Voth, J. Chem. Phys. 120, 10896 (2004).
[3] J. Kennedy and R. Eberhart, Proceedings of IEEE International Conference on Neural Networks IV, 1942 (1995).
[4] M. Allen and D. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
[5] K. Refson, Comp. Phys. Comm. 126, 310 (2000).
[6] M. S. Daw, S. M. Foiles, and M. I. Baskes, Materials Science Reports 9, 251 (1993).
We generated random configurations by displacing the atoms of the ideal crystalline structure a small fraction of the lattice parameter.

G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

S. Davis, C. Loyola, F. González, and J. Peralta, Comp. Phys. Comm. 181, 2126 (2010).

A. B. Belonoshko, R. Ahuja, O. Eriksson, and B. Johansson, Phys. Rev. B 61, 3838 (2000).

A. Meyer, Phys. Rev. B 81, 012102 (2010).

A. B. Belonoshko, N. V. Skorodumova, A. Rosengren, and B. Johansson, Phys. Rev. B 73, 012201 (2006).

S. Davis, A. B. Belonoshko, A. Rosengren, A. C. T. van Duin, and B. Johansson, Cent. Eur. J. Phys. 8, 789 (2010).

S. Davis and G. Gutiérrez, Modelling Simul. Mater. Sci. Eng. 21, 075001 (2013).

**Figures**

![Figure 1](image-url)

**FIG. 1:** (Color online) Evolution of the $\epsilon$ coordinate for the case of a Lennard-Jones potential as a function of optimization step.
FIG. 2: (Color online) Evolution of the $\sigma$ coordinate for the case of a Lennard-Jones potential as a function of optimization step.

FIG. 3: Prediction error (meV) as a function of optimization steps for the case of a 6-parameter pair potential.
FIG. 4: Prediction error (meV) as a function of optimization steps for the case of an embedded-atom potential.

FIG. 5: Radial distribution function $g(r)$ for liquid copper at $T=1500$ K.

FIG. 6: Mean square displacement (MSD) for liquid copper at $T=1500$ K.
FIG. 7: (Color online) Isochoric curve (Z-curve) for copper according to our fitted potential parameters. The Z-method predicts a melting temperature $T_m = 1700$ K.

### Tables

| Source            | $a$ (Å) | $n$ | $m$  | $C$     | $\epsilon$ (eV) |
|-------------------|---------|-----|------|---------|-----------------|
| Sutton and Chen   | 3.61    | 9.0 | 6.0  | 39.432  | 0.012382        |
| Belonoshko et al  | 3.270   | 9.05| 5.005| 33.17   | 0.0225          |
| This work         | 3.34385 | 5.93853| 2.13419| 32.2332 | 0.0846903       |

TABLE I: Sutton-Chen potential parameters for Cu, fitted from ab initio data.