EXPONENTS OF CLASS GROUPS OF CERTAIN IMAGINARY QUADRATIC FIELDS

AZIZUL HOQUE AND KALYAN CHAKRABORTY

ABSTRACT. Let \(n > 1 \) be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form \(\mathbb{Q}(\sqrt{x^2 - 2y^n}) \) whose ideal class group has an element of order \(n \). This family gives a counter example to a conjecture by H. Wada [17] on the structure of ideal class groups.

1. Introduction

Let \(x, y \) and \(n \) be positive integers. We consider the family of imaginary quadratic fields

\[K_{x,y,n,\mu} = \mathbb{Q}(\sqrt{x^2 - \mu y^n}) \]

with the conditions: \(\gcd(x, y) = 1 \), \(y > 1 \), \(\mu \in \{1, 2, 4\} \) and \(x^2 \leq \mu y^n \).

Let \(\mathcal{H}(K_{x,y,n,\mu}) \) and \(\mathcal{C}(K_{x,y,n,\mu}) \) be respectively denote the class number and (ideal) class group of \(K_{x,y,n,\mu} \). For \(\mu \in \{1, 4\} \), there are many results concerning the divisibility of \(\mathcal{H}(K_{x,y,n,\mu}) \).

In 1922, T. Nagell [13] proved that \(\mathcal{H}(K_{x,y,n,1}) \) is divisible by \(n \) if both \(n \) and \(y \) are odd, and \(\ell \mid x \), but \(\ell^2 \nmid x \) for all prime divisors \(\ell \) of \(n \). Let \(s \) be the square factor of \(x^2 - y^n \), that is

\[x^2 - y^n = -s^2 D, \]

where \(D > 0 \) is the square-free part of \(x^2 - y^n \). For \(s = 1 \), N. C. Ankeny and S. Chowla [1] proved that \(\mathcal{H}(K_{x,3,n,1}) \) is divisible by \(n \) if both \(n \) and \(x \) are even, and \(x < (2 \times 3^{n-1})^{1/2} \). In 1998, M. R. Murty [11] considered the divisibility of \(\mathcal{H}(K_{1,y,n,1}) \) by \(n \), when \(s = 1 \) and \(n \geq 5 \) is odd. In the same paper, he further discussed this result when \(s < \frac{y^{n/2}}{2^{n/2}} \). He also discussed a more general case, that is the divisibility of \(\mathcal{H}(K_{x,y,n,1}) \) in [12]. K. Soundararajan [15] (resp. A. Ito [6]) studied the divisibility of \(\mathcal{H}(K_{x,y,n,1}) \) by \(n \) under the condition \(s < \sqrt{(y^n - x^2) / (y^{n/2} - 1)} \) (resp. each prime divisor of \(s \) divides \(D \) also). Furthermore, Y. Kishi [9] (resp.
A. Ito [6], and M. Zhu and T. Wang [18] studied the divisibility by \(n \) of \(H(K_{2^k,3,n,1}) \) (resp. \(H(K_{2^k,p,n,1}) \) with \(p \) odd prime and \(H(K_{2^k,y,n,1}) \) with \(y \) odd integer). Recently, K. Chakraborty et al. [2] discussed the divisibility by \(n \) of \(H(K_{p,q,n,1}) \) when both \(p \) and \(q \) are odd primes, and \(n \) is an odd integer.

On the other hand, B. H. Gross and D. E. Rohrlich [14] (res. J. H. E. Cohn [3], and K. Ishii [8]) proved the divisibility by \(n \) of \(H(K_{1,2,n,2}) \) except for \(n = 4 \), and \(H(K_{1,y,n,4}) \) for even \(n \). Further, S. R. Louboutin [10] proved that \(C(K_{1,y,n,4}) \) has an element of order \(n \) if at least one odd prime divisor of \(y \) is equal to 3 \((\text{mod} \ 4)\). Recently, A. Ito [7] discussed the divisibility of \(H(K_{3^e,y,n,4}) \) by \(n \) under certain conditions.

More recently A. Hoque and K. Chakraborty [4] proved that \(H(K_{1,y,3,2}) \) is divisible by 3 for any odd integer \(y \). In this paper, we show that \(C(K_{p,q,n,2}) \) has an element of order \(n \) when both \(p \) and \(q \) are odd primes, and \(n \) is an odd integer. Namely, we prove:

Theorem 1. Let \(p \) and \(q \) be distinct odd primes, and let \(n \geq 3 \) be an odd integer with \(p^2 < 2q^n \) and \(2q^n - p^2 \neq \Box \). Assume that \(3q^{n/3} \neq p + 2 \) whenever \(3 \mid n \). Then \(C(K_{p,q,n,2}) \) has an element of order \(n \).

An immediate consequence of the above result is:

Corollary 1. Let \(p, q \) and \(n \) as in Theorem 1. Then there are infinitely many imaginary quadratic fields with discriminants of the form \(p^2 - 2q^n \) whose class number is divisible by \(n \).

The present family of imaginary quadratic fields provides a counter example of a conjecture (namely, Conjecture 2) given by H. Wada [17] in 1970.

2. Proof of Theorem 1

We begin the proof with the following crucial proposition.

Proposition 1. Let \(p, q \) and \(n \) as in Theorem 1, and let \(s \) be the positive integer such that

\[
p^2 - 2q^n = -s^2D,
\]

where \(D \) is a square-free positive integer. Then for \(\alpha = p + s\sqrt{-D} \), and for any prime divisor \(\ell \) of \(n \), \(2\alpha \) is not an \(\ell \)-th power of an element in the ring of integers of \(K_{p,q,n,\mu} \).

Proof. Let \(\ell \) be a prime such that \(\ell \mid n \). Then \(\ell \) is odd since \(n \) is odd. From (2.1), we see that \(-D \equiv 3 \) \((\text{mod} \ 4)\), and thus if \(2\alpha \) is an \(\ell \)-th
EXPONENTS OF CLASS GROUPS OF CERTAIN IMAGINARY QUADRATIC FIELDS

power of an element in the ring of integers \(\mathcal{O}_{K_{p,q,n,2}} \) in \(K_{p,q,n,2} \), then we can write

\[
2\alpha = (u + v\sqrt{-D})^\ell
\]

(2.2)

for some \(u, v \in \mathcal{O}_{K_{p,q,n,2}} \). Taking norm, we obtain

\[
8q^n = (u^2 + Dv^2)^\ell.
\]

(2.3)

This shows that \(\ell = 3 \) with \(3 \mid n \). Thus (2.3) reduces to

\[
2q^m = u^2 + Dv^2,
\]

(2.4)

where \(n = 3m \) for some integer \(m > 0 \). Now (2.4) implies that \(u \) and \(v \) either both odd or both even since \(D \) is odd. If both \(u \) and \(v \) are even, then \(2 \mid q \) which is a contradiction. It remains to treat the case when both \(u \) and \(v \) are odd. We compare the real and imaginary parts on both sides of (2.2), and get

\[
2p = u^3 - 3uv^2D
\]

(2.5)

and

\[
2s = 3u^2v - v^3D.
\]

(2.6)

We see that (2.5) implies \(u \mid 2p \). As \(u \) is an odd integer and \(p \) is odd prime, we must have \(u = \pm 1 \) or \(u = \pm p \).

If \(u = 1 \), then (2.5) would imply \(2p = 1 - 3v^2D \), which is a contradiction. Similarly, if \(u = p \) then (2.5) gives

\[
2 = p^2 - 3v^2D.
\]

(2.7)

Reading (2.7) modulo 3, we see that \(p^2 \equiv 2 \pmod{3} \) which again leads to a contradiction.

Again when \(u = -1 \), the relations (2.5) and (2.4) give,

\[
3Dv^2 - 1 = 2p
\]

(2.8)

and

\[
Dv^2 + 1 = 2q^m.
\]

(2.9)

We now add (2.8) and (2.9), and that gives

\[
2Dv^2 = p + q^m.
\]

(2.10)

Now subtracting (2.9) from (2.8) which leads us to

\[
Dv^2 = 1 + p - q^m.
\]

(2.11)

In this case finally (2.10) and (2.11) together give \(3q^m = p + 2 \). This contradicts the assumption.

We are now left with the case when \(u = -p \). In this case (2.4) and (2.5) become,

\[
Dv^2 + p^2 = 2q^m
\]

(2.12)
and

\[3Dv^2 - p^2 = 2. \] \hspace{1cm} (2.13)

Reading (2.13) modulo \(D \), we have

\[p^2 \equiv -2 \pmod{D}. \] \hspace{1cm} (2.14)

Multiplying (2.12) by \(q^3 \) and then using (2.1), we see that

\[Dv^2q^3 + p^2q^3 = Ds^2 + p^2. \]

Reading this modulo \(D \), we have (since \(p \nmid D \))

\[q^3 \equiv 1 \pmod{D}. \] \hspace{1cm} (2.15)

Applying (2.14) in (2.12), we see that

\[q^m \equiv -1 \pmod{D}. \] \hspace{1cm} (2.16)

(2.15) and (2.16) together imply \(D \mid 2 \) if \(m \) is a multiple of 3. This is a contradiction. Again if \(m = 1 \pmod{3} \) then applying (2.15) in (2.16), we arrive at

\[q \equiv -1 \pmod{D}. \]

This contradicts to (2.15). Finally in case of \(m = 2 \pmod{3} \), (2.15) and (2.16) together imply

\[q^2 \equiv -1 \pmod{D}, \]

which further implies (by (2.15))

\[q \equiv -1 \pmod{D}. \]

Thus once again we arrive at a contradiction. This completes the proof. \(\Box \)

Proof of Theorem 1

Let \(s \) be the positive integer such that

\[p^2 - 2q^n = -s^2D, \]

where \(D \) is a square-free positive integer. Let \(\alpha := p + s\sqrt{-D} \). Then

\[N(\alpha) = \alpha\bar{\alpha} = 2q^n, \]

where \(\bar{\alpha} \) is the conjugate of \(\alpha \), and they are coprime.

We see that \(q \) splits completely in \(K_{p,q,n,2} = \mathbb{Q} (\sqrt{-D}) \), and thus we have,

\[(q) = qq', \]

where \(q \) and its conjugate \(q' \) are prime ideals in \(O_{K_{p,q,n,2}} \) different from each other. Moreover, \((2) = p^2 \) with \(p = (2, 1 + \sqrt{-D}) \).
We see that \((\alpha)\) is not divisible by any rational integer other than ±1, and thus we can consider the following decomposition of \((\alpha)\):

\[(\alpha) = pq^m.\]

Then \(N(\alpha) = 2q^m\) and hence \(n = m\).

We now put \(\mathfrak{A} = pq\). Then (since \(n\) is odd)

\[\mathfrak{A}^n = p^{n-1}(pq^n) = (2\alpha),\]

which is principal in \(\mathcal{O}_{K_{p,q,n,2}}\). Thus if \([\mathfrak{A}]\) denotes the ideal class containing \(\mathfrak{A}\), then by Proposition 1 we see that the order of \([\mathfrak{A}]\) is \(n\). This completes the proof.

3. Numerical Examples

Here, we provide some numerical values to corroborate Theorem 1. All the computations in this paper were done using PARI/GP (version 2.7.6) [16]. Table 1 gives the list of imaginary quadratic fields \(K_{p,q,n,2}\) corresponding to the distinct primes \(p\) and \(q\) not larger than 17, and odd integer \(3 \leq n \leq 19\). We see that absolute discriminants are not exceeding \(5 \times 10^{23}\), and the corresponding class numbers are very large which can go up to (about) \(5 \times 10^{11}\). It is noted that this list does not exhaust all the imaginary quadratic fields \(K_{p,q,n,2}\) of discriminants not exceeding \(5 \times 10^{23}\). In the Table 1 we use * mark in the column for class number to indicate the failure of the assumption “3q^n/3 \(\neq p + 2\)” of Theorem 1.

Table 1: Numerical examples of Theorem 1.

\(n\)	\(p\)	\(q\)	\(p^2 - 2q^n\)	\(h(-D)\)	\(n\)	\(p\)	\(q\)	\(p^2 - 2q^n\)	\(h(-D)\)
3	3	5	-241	12	3	3	7	-677	30
3	3	11	-2653	24	3	3	13	-4385	96
3	3	17	-9817	48	3	5	3	-29	6
3	5	7	-661	18	3	5	11	-2637	36
3	5	13	-4369	48	3	5	17	-9801	72
3	7	3	-5	2*	3	7	5	-201	12
3	7	11	-2613	24	3	7	13	-4345	48
3	7	17	-9777	60	3	11	5	-129	12
3	11	7	-565	12	3	11	13	-4273	24
3	11	17	-9705	72	3	13	5	-81	1*
3	13	7	-517	12	3	13	11	-2493	24
3	13	17	-9657	48	3	17	7	-397	6
3	17	11	-2373	24	3	17	13	-4105	48
5	3	5	-6241	40	5	3	7	-3905	240
5	3	11	-322093	150	5	3	13	-742577	800
5	3	17	-2839705	800	5	5	3	-461	30
5	5	7	-33589	150	5	5	11	-322077	280
5	5	13	-742561	500	5	5	17	-2839069	1760
5	7	3	-437	20	5	7	5	-6201	80

Continued on next page
\(n \)	\(p \)	\(q \)	\(p^2 - 2q^2 \)	\(h(-D) \)	\(n \)	\(p \)	\(q \)	\(p^2 - 2q^2 \)	\(h(-D) \)
5	7	11	-322053	320	5	7	13	-742537	380
5	7	17	-2839065	1120	5	11	3	-365	20
5	11	5	-6129	60	5	11	7	-33493	70
5	11	13	-742465	480	5	11	17	-283993	800
5	13	7	-34445	80	5	13	11	-321933	440
5	13	17	-28394545	960	5	17	3	-197	10
5	17	5	-5961	60	5	17	7	-3325	120
5	17	11	-321913	240	5	17	13	-742297	480
7	3	5	-156241	168	7	3	7	-1647677	1260
7	3	11	-3897433	2926	7	3	13	-125497025	11648
7	3	17	-820677237	10724	7	5	3	-365	20
7	5	7	-6129	896	7	5	11	-38974317	3268
7	5	13	-125497009	5824	7	5	17	-820677321	26432
7	7	3	-38971293	3696	7	7	5	-156201	308
7	7	11	-321913	3606	7	7	13	-742297	5768
7	13	3	-156241	168	7	13	5	-1647677	18144
7	13	7	-6129	728	7	13	11	-38974317	3360
7	13	17	-820677177	1680	7	17	3	-4085	56
7	17	5	-155961	224	7	17	7	-1646797	658
7	17	11	-38974053	3780	7	17	13	-125496745	7392
7	17	13	-389740533	3780	7	17	17	-1646797	7392
9	3	5	-3906241	3606	9	3	7	-80707205	11448
9	3	11	-4715895373	29556	9	3	13	-21208998737	162432
9	3	17	-237175752985	337176	9	5	3	-39341	198
9	5	7	-80707189	7272	9	5	11	-4715895357	67716
9	5	13	-21208998721	62136	9	5	17	-237175752969	349164
9	7	3	-39317	162	9	7	5	-3906201	2448
9	7	11	-4715895333	28512	9	7	13	-21208998607	57744
9	7	13	-237175752945	463824	9	11	3	-39245	288
9	11	5	-3906129	1692	9	11	7	-80707093	3852
9	11	13	-21208998625	79200	9	11	17	-237175752873	284256
9	13	3	-39197	108	9	13	5	-3906081	1512
9	13	7	-39197	408	9	13	11	-47158953213	33300
9	13	11	-237175752825	228096	9	17	3	-39077	140
9	17	5	-3905961	1308	9	17	7	-80707093	5184
9	17	11	-4715895093	35712	9	17	13	-21208998457	74376
11	3	5	-97656241	3608	11	3	7	-3954653477	46332
11	3	11	-57062341213	286770	11	3	13	-3584320788065	2956800
11	3	17	-68543792615257	2056120	11	5	3	-35429	704
11	5	7	-3954653461	36432	11	5	11	-57062341197	519200
11	5	13	-3584320788049	875072	11	5	17	-68543792615241	6392760
11	7	3	-35425	528	11	7	5	-97656201	6864
11	7	11	-57062341173	340032	11	7	13	-3584320788025	1146464
11	7	17	-68543792615217	5876112	11	11	3	-354173	528
11	11	5	-97656129	8712	11	11	7	-3954653365	39776
11	13	5	-3584320787953	797720	11	11	17	-68543792615145	3800544
11	13	11	-35425	660	11	13	5	-97656081	9944
11	13	17	-3954653317	37268	11	13	11	-57062341053	570240
11	13	17	-68543792615097	4511232	11	17	3	-354005	352
11	17	5	-97655961	7216	11	17	7	-3954653197	25872
n	p	q	\(p^* - 2q^*\)	\(h(-D)\)	n	p	q	\(p^* - 2q^*\)	\(h(-D)\)
----	----	----	----------------	-----------	----	----	----	----------------	-----------
11	17	11	-570623409933	353760	11	17	13	-3584320787885	1076416
13	3	5	-2441406241	29432	13	3	7	-1937780208055	435908
13	5	7	-193778020789	35742	13	5	11	-6004542428737	4188392
13	5	13	-60575021318481	14981136	13	5	17	-198991560658118497	89333920
7	3	5	-3188477	1012	7	3	7	-2441406201	35864
13	11	11	-60045424287813	4855608	13	11	13	-605750213184457	10482888
13	11	17	-19899156065811825	104113152	13	11	17	-198991560658116753	70607680
13	3	11	-605750213184385	14582404	13	3	17	-3188477	1716
13	5	13	-605750213184481	353760	13	5	17	-1937780208055	435908
13	7	3	-9495123019381293	44413440	13	7	11	-6904542287693	6
13	7	13	-605750213184457	4435704	13	7	13	-3188477	1716
13	7	17	-19899156065811825	104113152	13	7	17	-198991560658116753	70607680
13	11	3	-9495123019381293	44413440	13	11	3	-3188477	1716
13	11	5	-605750213184481	353760	13	11	5	-3188477	1716
13	11	7	-6904542287693	670400	13	11	7	-3188477	1716
13	13	3	-9495123019381293	44413440	13	13	3	-3188477	1716
17	3	5	-1525878906241	133620	17	3	7	-46526102797405	212000
17	3	7	-2279779037042621	17489568	17	3	11	-12231818086829902573	5849478624
17	5	3	-23245252885	50388	17	5	7	-46526102797405	212000
17	7	3	-23245252885	50388	17	7	7	-46526102797405	212000
17	11	3	-23245252885	50388	17	11	3	-23245252885	50388
17	11	5	-1525878906096129	890792	17	11	5	-1525878906096129	890792
17	13	3	-23245252885	50388	17	13	3	-23245252885	50388
17	13	5	-1525878906096129	890792	17	13	5	-1525878906096129	890792
17	17	3	-23245252885	50388	17	17	3	-23245252885	50388
17	17	5	-1525878906096129	890792	17	17	5	-1525878906096129	890792
17	17	7	-23245252885	50388	17	17	7	-23245252885	50388
17	17	11	-12231818086829902573	4729953024	17	17	11	-12231818086829902573	4729953024

Table 1 – continued from previous page
4. Concluding Remarks

We begin by observing that in Table 1 there are some values of p and q (see * mark) for which the class number of the corresponding imaginary quadratic fields are not divisible by a given odd integer $n \geq 3$. These are because of the failure of the assumption “$3q^{n/3} \neq p + 2$ when $3 \mid n$”. However the class number of $K_{19,7,3,2}$ is 12 that satisfies the divisibility property even though this assumption does not hold. Thus this assumption is neither necessary not sufficient. We have found only two pairs of values of p and q for which this assumption does not hold. Thus it may be possible to drop this assumption by adding some exceptions for the values of the pair (p, q).

In the light of the numerical evidence we are tempted to state the following conjecture:

Conjecture 1. Let p and q be two distinct odd primes. For each odd integer n and each positive integer m such that m is not a n-root of any rational integer, there are infinitely many imaginary quadratic fields of the form $\mathbb{Q}(\sqrt{p^2 - mq^n})$ whose class number is divisible by n.

For $m = 1, 4$, this conjecture is true (see [2] and references therein). Further more Corollary 1 concludes that the conjecture is true for any odd integer n when $m = 2$.

Finally, we demonstrate the prime parts of the class groups of $K_{p,q,n,2}$ in Table 2. The class group of a number field can be expressed, by the structure theorem of abelian groups, as the direct product of cyclic groups of orders h_1, h_2, \ldots, h_t. We denote the direct product $C_{h_1} \times C_{h_2} \times \cdots \times C_{h_t}$ of cyclic groups by $[h_1, h_2, \ldots, h_t]$. By Gauss’s genus theory, if there are r number of distinct rational primes that ramifies in $\mathbb{Q}(\sqrt{-D})$, for some square-free integer $D > 1$, then the 2-rank of its class group is $r - 1$. In other words, the 2-Sylow subgroup of its class group has rank $r - 1$. It is noted that the 2-Sylow subgroup of class group tends to $r - 2$ elementary 2-groups and one large cyclic factor.
collecting the other powers of 2 in the class number so that the 2-Sylow subgroup of the subgroup of squares is cyclic. On the other hand, \(r - 1 \) number of even integers are there among \(h_1, h_2, \ldots, h_t \). Sometimes, the structure of the class group of \(\mathbb{Q}(\sqrt{-D}) \) can be trivially determined by \(r \) and the class number, \(h = h_1 h_2 \cdots h_t \). In this case, the group is cyclic when \(r = 1 \) or \(r = 2 \) or it is of the type \((h_1, h_2, 2^{r_1}, \ldots, 2^{r_k})\) when \(r \geq 3 \). In this aspect, H. Wada [17] stated the following conjecture in 1970.

Conjecture 2 (Wada [17]). *All the class groups of imaginary quadratic fields are either cyclic or of the type \((h_1, h_2, 2^{r_1}, \ldots, 2^{r_k})\).*

In Table 2, we find a class group of the type \((h_1, h_2, 2^{r_1}, 2^{r_2}, \ldots, 2^{r_k})\) (see ** mark) which is not cyclic. This a counter example to Conjecture 2. We demonstrate the structures of class groups of \(K_{p,q,n,2} \) for some values of \(p, q \) and \(n \). In Table 2 by \((h_1, h_2, \cdots, h_t)\) we mean the group \(\mathbb{Z}_{h_1} \times \mathbb{Z}_{h_2} \times \cdots \times \mathbb{Z}_{h_t} \).

\(p^2 - 2q^n \)	Structure of \(\mathcal{O}(K_{p,q,n,2}) \)	2-parts	3-parts	5-parts	Remaining parts
\(11^2 - 2 \times 17^5 \)	20, 10, 2, 2 \(\star \)	(2,2,4)	–	(5,5)	–
\(7^2 - 2 \times 17^1 \)	1084512, 6, 2, 2, 2, 2 \(\star \)	(2,2,2,2,32)	(3)	–	(11,13,79)
\(13^2 - 2 \times 11^3 \)	779550, 30, 3 \(\star \)	(2)	(3,3,3)	(5,25)	(23,139)
\(13^2 - 2 \times 17^5 \)	10105440, 12, 2, 2, 2 \(\star \)	(2,2,4,32)	(3,3)	(5)	(37,569)
\(3^2 - 2 \times 5^4 \)	565992, 6, 2, 2, 2 \(\star \)	(2,2,2,2)	(3,9)	–	(7,1123)
\(3^2 - 2 \times 13^4 \)	7991268142, 6, 2, 2, 2 \(\star \)	(2,2,2,2,16)	(3,3)	–	(7,2378357)
\(17^2 - 2 \times 11^{21} \)	286454952, 12, 2, 2, 2 \(\star \)	(2,2,2,2,4)	(3,9)	–	(7,568363)
\(11^2 - 2 \times 7^{29} \)	292374800, 10, 2, 2, 2 \(\star \)	(2,2,2,16)	–	(5,25)	(101,7237)
\(13^2 - 2 \times 17^{25} \)	606345093225000, 6, 2, 2, 2 \(\star \)	(2,2,2,2,8)	(3,3)	(3125)	(41,59,332617)
\(5^2 - 2 \times 11^{27} \)	381006021618, 6, 6, 2, 2, 2 \(\star \)	(2,2,2,2,2)	(3,3,81)	–	(11,211,92119)
\(5^2 - 2 \times 13^{27} \)	939278579820, 6, 2, 2, 2, 2 \(\star \)	(2,2,2,2,4)	(3,27)	(5)	(59,9011,32717)
\(5^2 - 2 \times 17^{27} \)	6275528336021332, 6, 2, 2, 2, 2 \(\star \)	(2,2,2,2,4)	(3,81)	–	(183167,10571179)
\(17^2 - 2 \times 13^{24} \)	875145176912, 6, 2, 2, 2, 2 \(\star \)	(2,2,2,2,8)	(3,27)	–	(12251,67493)
\(17^2 - 2 \times 11^{29} \)	12592335622520, 2, 2, 2, 2, 2 \(\star \)	(2,2,2,2,2,8)	(27)	(5)	(29,7411,54251)

Acknowledgements

A. Hoque is supported by SERB N-PDF (PDF/2017/001758), Govt. of India.

References

[1] N. C. Ankeny and S. Chowla, *On the divisibility of the class number of quadratic fields*, Pacific J. Math. 5 (1955), 321–324.

[2] K. Chakraborty, A. Hoque, Y. Kishi and P. P. Pandey, Divisibility of the class numbers of imaginary quadratic fields, J. Number Theory, bf 185 (2018) 339–348.
[3] J. H. E. Cohn, On the class number of certain imaginary quadratic fields, Proc. Amer. Math. Soc. 130 (2002), 1275–1277.
[4] A. Hoque and K. Chakraborty, Divisibility of class numbers of certain families of quadratic fields, J. Ramanujan Math. Soc. (To appear).
[5] A. Ito, A note on the divisibility of class numbers of imaginary quadratic fields $\mathbb{Q}(\sqrt{a^2 - kn})$, Proc. Japan Acad. 87, Ser. A (2011), 151–155.
[6] A. Ito, Remarks on the divisibility of the class numbers of imaginary quadratic fields $\mathbb{Q}(\sqrt{2k - q^n})$, Glasgow Math. J. 53 (2011), 379–389.
[7] A. Ito, Notes on the divisibility of the class numbers of imaginary quadratic fields $\mathbb{Q}(\sqrt{3e - 4kn})$, Abh. Math. Semin. Univ. Hambg. 85 (2015), 1–21.
[8] K. Ishii, On the divisibility of the class number of imaginary quadratic fields, Proc. Japan Acad. 87, Ser. A (2011), 142–143.
[9] Y. Kishi, Note on the divisibility of the class number of certain imaginary quadratic fields, Glasgow Math. J. 51 (2009), 187–191; corrigendum, ibid. 52 (2010), 207–208.
[10] S. R. Louboutin, On the divisibility of the class number of imaginary quadratic number fields, Proc. Amer. Math. Soc. 137 (2009), 4025–4028.
[11] M. R. Murty, The ABC conjecture and exponents of class groups of quadratic fields, Contemporary Math. 210 (1998), 85–95.
[12] M. R. Murty, Exponents of class groups of quadratic fields, Topics in number theory (University Park, PA, 1997), Math. Appl. 467, Kluwer Acad. Publ., Dordrecht (1999), 229–239.
[13] T. Nagell, Über die Klassenzahl imaginär quadratischer, Zählkörper, Abh. Math. Sem. Univ. Hambg. 1 (1922), 140–150.
[14] B. H. Gross and D. E. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), 201–224.
[15] K. Soundararajan, Divisibility of class numbers of imaginary quadratic fields, J. London Math. Soc. 61 (2000), 681–690.
[16] The PARI Group, PARI/GP version 2.9.0, Univ. Bordeaux, 2016, http://pari.math.u-bordeaux.fr/.
[17] H. Wada, A table of ideal class groups of imaginary, quadratic fields, Proc. Japan Acad. 46 (1970), 401–403.
[18] M. Zhu and T. Wang, The divisibility of the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{2m - kn})$, Glasgow Math. J. 54 (2012), 149–154.

Azizul Hoque @Azizul Hoque Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad 211 019, India.
E-mail address: azizulhoque@hri.res.in

Kalyan Chakraborty @Kalyan Chakraborty, Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad 211 019, India.
E-mail address: kalyan@hri.res.in