Fungi constitute a hyperdiverse kingdom representing an array of ecological lifestyles, including human pathogens, ectomycorrhizae, lichens, and many more (Burgess et al., 2006; Blackwell, 2011; Li et al., 2016; Medeiros et al., 2017; Crossay et al., 2018; Chang et al., 2019; Mujic et al., 2019). Due to their fundamentally microscopic nature and their usually ephemeral reproductive structures (e.g., mushrooms, apothecia, etc.), the identification of fungi has historically been exceptionally difficult, relying on often artificial groupings based on limited morphological features. The advent and maturation of molecular approaches has revolutionized mycology; in the past two decades, a significant number of new orders, classes, and even phyla have been described (Schübler et al., 2001; Zalar et al., 2005; Hosaka et al., 2006; Schoch et al., 2009; Rosling et al., 2011; Hodkinson et al., 2014). Correspondingly, a massive number of fungal families, genera, and species have been described during this period (Smith et al., 2006; Halling et al., 2012; Wu et al., 2016; Torres-Cruz et al., 2017; Willis, 2018). Although sequence-based approaches are not without pitfalls and controversy (Hofstetter et al., 2019), they remain major catalysts for the description and identification of fungal diversity.

Although the study of fungal diversity has been biased toward Northern Hemisphere temperate ecosystems, there have been major efforts to reconcile the gap in knowledge regarding tropical and Southern Hemisphere fungi, with major foci of activity in the eastern paleotropics (Luo et al., 2016; Vadthanarat et al., 2018, 2019; Sukarno et al., 2019), Central and South America (Kuhar et al., 2017;...
Accioly et al., 2018; Kaishian and Weir, 2018; Ovrebo et al., 2019), Africa (Castellano et al., 2016; Buyck et al., 2018, 2019; Jamil et al., 2018), and Australia (Midgley et al., 2018; Davoodian et al., 2019; Ji et al., 2019; Khmelitsky et al., 2019).

In line with many of the works cited above, systematic mycology studies generally rely on herbaria as sources of samples and repositories for new specimens, allowing the tethering of names and concepts to physical vouchers. Herbaria serve a critical role in the preservation and curation of biological resources and heritage, and ongoing efforts to digitize these resources will continue to positively impact biodiversity sciences (Willis et al., 2017; Thiers and Halling, 2018). Indeed, the acceleration of mycology via molecular approaches has reciprocally enhanced herbarium-based approaches, with herbaria providing curated collections and molecular techniques providing new insights into these resources.

The Australian Microbiome Initiative (AusMic; https://www.australianmicrobiome.com/) is a broadscale collaboration elucidating the microbial diversity of Australia, a nation-continent that is geographically large, highly biodiverse, and ecologically heterogeneous. The AusMic project is a merger of two previous Australian microbiome characterization efforts: the Marine Microbes project (https://data.bioplatforms.com/organization/pages/bpa-marin) and the Biomes of Australian Soil Environments (BASE) project (https://bioplatforms.com/projects/soil-biodiversity/). Data from these projects are publicly available, and have been utilized in a wide range of studies (Delgado-Baquerizo et al., 2017; Midgley et al., 2017; Bissett and Brown, 2018; Raes et al., 2018).

To explore the mycota of Australia, we downloaded an AusMic data set of internal transcribed spacer (ITS1) DNA sequences from fungi found in Australian soils (Bissett et al., 2016). We examined the taxonomic results reported by AusMic, which are derived from the UNITE database taxonomy (Nilsson et al., 2019), then applied filtration steps to the AusMic sequences to allow for the sensible biological interpretation of these data. Next, we compared the filtered sequences against available sequences on GenBank using BLAST (Johnson et al., 2008; Benson et al., 2018). The AusMic data were then compared with a data set of 591 partial ITS sequences from specimens housed at MEL, with the ITS sequences acquired by PCR amplification using the ITS1 (or ITS1-F) and ITS4 primers (White et al., 1990; Gardes and Bruns, 1993) under the following thermocycling protocol: 95°C for 5 min, 38 cycles of 94°C for 35 s, 50°C for 30 s, and 72°C for 1 min, with a final extension at 72°C for 5 min. After manually inspecting all of the MEL chromatograms to ensure quality and retaining only sequences assembled from multiple reads (i.e., forward and reverse primers and/or multiple sequencing attempts) with unambiguous base calls (a small number of ambiguous base calls were marked as N), a total of 591 ITS sequences were found to be of sufficiently high quality to include in this study. Because AusMic retained only data corresponding to ITS1 (derived from forward reads) for public release (Bissett et al., 2016), we manually trimmed our sequences to correspond to ITS1 as well (some portions of adjacent regions, such as 5.8S, were also retained during the trimming process).

Agaricomycete OTUs present in the filtered AusMic data (192,325 sequences) were visualized with ggplot2 (Wickham, 2016), using R version 3.6.1 (R Core Team, 2019) within RStudio version 1.2.1335 (RStudio Team, 2019). Briefly, the .csv file (Appendix S1) was used as input, and OTUs for which the AusMic classification included ‘phylum = k__fungi_unclassified’ (that is, the sequence could be assigned to the kingdom Fungi, but not to a specific phylum) were removed. This data set was further filtered to include only sequences where the AusMic classification included ‘class = c__Agaricomycetes’, leaving 35,905 sequences. For visualization purposes, OTUs with the classification ‘c__Agaricomycetes_unclassified’, ‘f__Agaricomycetes_family_Incertae_sedis’, or ‘f__unclassified_Agaricomycetes’ were removed. Moreover, in several cases where classification to family level was uncertain, counts of OTUs were merged under the corresponding order name (see Appendix S2). The resultant 27,730 Agaricomycete OTUs were visualized (Fig. 1, Appendix S3).

The following steps were carried out to create a plot of species determinations (based on the AusMic taxonomy) against latitude. Sequences from Antarctica were removed from the AusMic data set as described above. AusMic OTUs with an AusMic classification of ‘phylum = k__fungi_unclassified’ were removed, and the data set was filtered to include only sequences where the AusMic

METHODS

ITS amplicon data and associated metadata generated by AusMic were downloaded from the Bioplatforms Australia data portal (https://data.bioplatforms.com/bpa/otu/ [accessed 14 March 2019]) using the ITS1FITS4_fungi amplicon filter. Consequently, 1,170,628 sequences were recovered. Due to sequencing issues during the construction of the AusMic fungal ITS data set (Bissett et al., 2016), these sequences correspond to forward Illumina reads only (maximum sequence length 301 bp, N50 182 bp). Sequences from some Antarctic samples included in the AusMic project were identified using the sample/latitude values in the metadata file, and were subsequently removed along with the duplicated sequences, leaving 195,177 amplicons. These data were clustered using usearch version 11.0.667_i86linuxSx32 (Edgar, 2010) and the results were filtered to remove the nested sequences, resulting in 192,325 remaining sequences (OTUs) with a maximum length of 301 bp and an N50 of 189 bp. Thus, our OTUs represent a subset of the initial AusMic OTUs. By clustering the nested sequences from the initial data set, our OTUs reduce the potential overestimation of diversity that might occur if using the unfiltered AusMic data (which contains nested but otherwise identical sequences).

The sequences were searched against both the National Center for Biotechnology Information (NCBI) Nucleotide (nt) database and an in-house (MEL) database of fungal ITS sequences using BLASTn version 2.9.0+ with the settings max_target_seqs = 1 and e-value = 1e-5. In each case, the top BLAST hit was retained if the BLAST alignment covered more than 95% of the query length and the BLAST high-scoring segment pair identity was greater than 97%. These results were output to a .csv file (Appendix S1). The in-house database is derived from gDNA extracts of macrofungus collections housed at MEL, with the ITS sequences acquired by PCR amplification using the ITS1 (or ITS1-F) and ITS4 primers (White et al., 1990; Gardes and Bruns, 1993) under the following thermocycling protocol: 95°C for 5 min, 38 cycles of 94°C for 35 s, 50°C for 30 s, and 72°C for 1 min, with a final extension at 72°C for 5 min. After manually inspecting all of the MEL chromatograms to ensure quality and retaining only sequences assembled from multiple reads (i.e., forward and reverse primers and/or multiple sequencing attempts) with unambiguous base calls (a small number of ambiguous base calls were marked as N), a total of 591 ITS sequences were found to be of sufficiently high quality to include in this study. Because AusMic retained only data corresponding to ITS1 (derived from forward reads) for public release (Bissett et al., 2016), we manually trimmed our sequences to correspond to ITS1 as well (some portions of adjacent regions, such as 5.8S, were also retained during the trimming process).

Agaricomycete OTUs present in the filtered AusMic data (192,325 sequences) were visualized with ggplot2 (Wickham, 2016), using R version 3.6.1 (R Core Team, 2019) within RStudio version 1.2.1335 (RStudio Team, 2019). Briefly, the .csv file (Appendix S1) was used as input, and OTUs for which the AusMic classification included ‘phylum = k__fungi_unclassified’ (that is, the sequence could be assigned to the kingdom Fungi, but not to a specific phylum) were removed. This data set was further filtered to include only sequences where the AusMic classification included ‘class = c__Agaricomycetes’, leaving 35,905 sequences. For visualization purposes, OTUs with the classification ‘c__Agaricomycetes_unclassified’, ‘f__Agaricomycetes_family_Incertae_sedis’, or ‘f__unclassified_Agaricomycetes’ were removed. Moreover, in several cases where classification to family level was uncertain, counts of OTUs were merged under the corresponding order name (see Appendix S2). The resultant 27,730 Agaricomycete OTUs were visualized (Fig. 1, Appendix S3).

The following steps were carried out to create a plot of species determinations (based on the AusMic taxonomy) against latitude. Sequences from Antarctica were removed from the AusMic data set as described above. AusMic OTUs with an AusMic classification of ‘phylum = k__fungi_unclassified’ were removed, and the data set was filtered to include only sequences where the AusMic
classification included 'class = c__Agaricomycetes', leaving 216,295 sequences. Latitude information for each sequence was extracted from the metadata file downloaded from BioPlatforms Australia, and for each latitude 'bin' of five decimal degrees a list of unique AusMic classifications was created based on the Species column of the table presented in Appendix S4. Counts of unique classifications per bin were visualized using ggplot2 and R version 3.6.1, as described above (Fig. 2).

![Histogram of Australian Microbiome Initiative (AusMic) Agaricomycete operational taxonomic units (OTUs) compiled to family and organized by order (background color-coded based on legend) (total sequences: 27,730).](image)

FIGURE 1. Histogram of Australian Microbiome Initiative (AusMic) Agaricomycete operational taxonomic units (OTUs) compiled to family and organized by order (background color-coded based on legend) (total sequences: 27,730).
Using the AusMic taxonomic determinations, we observed a general decrease in Australian Agaricomycetes species diversity toward the \(-20.0\) to \(-25.0\) latitudes (decimal degrees), which harbor the lowest diversity of all the latitude bins (Fig. 2). This is likely due to these areas comprising substantial portions of Australia’s arid interior. Using the AusMic taxonomy alone underestimates diversity, as each taxonomic determination can correspond to many OTUs.

The BLAST comparisons of the AusMic data to GenBank and the MEL data set yielded ecological, morphological, and taxonomic insights. One example of an ecological insight arose from the 43 AusMic OTUs that matched a Mycena sequence from GenBank (AY627835.1) that was generated from fungal material associated with roots of Epacris pulchella Cav. (Ericaceae). Although the genus Mycena is generally known to be non-mycorrhizal, this result aligns with other instances of Mycena species reported to be in mycorrhizal or mycorrhizal-like relationships with Ericaceae and other groups (Zhang et al., 2012; Grelet et al., 2017). We are confident in the generic determination of Mycena in this case because (a) the AusMic classification placed the 43 OTUs in Mycena (except for two OTUs that fell into “unclassified Agaricales”), (b) a post-hoc BLAST search of GenBank using AY627835.1 retrieved additional Mycena sequences, and (c) four of the 43 AusMic OTUs hit a Mycena specimen in the MEL data.

For morphological insights, the MEL data set was especially useful. MEL houses many specimens of sequestrate fungi (enclosed or truffle-like, and often buried in soil), which are diverse and abundant throughout Australia. Our BLAST analysis of the AusMic OTUs against the MEL data retrieved numerous hits for the sequestrate genus Zelleromyces Singer & A. H. Sm. (Russulaceae). While corresponding GenBank hits and AusMic determinations occasionally reported sequestrate genera, the majority of GenBank and AusMic determinations corresponding to MEL specimens of sequestrate Russulaceae were for the epigean mushroom genera Russula Pers. and Lactarius Pers. As such, the MEL data set elucidates the morphological form of some of our study organisms. Although the majority of sequestrate Russulaceae genera are polyphyletic within the family (Vidal et al., 2019), indicating the need for systematic revision, the retention of “field identification” names on herbarium specimens adds another layer of information to this study.

Our analysis provides insights into the differences in taxonomic classification between the AusMic, GenBank, and MEL taxon determinations. Many MEL specimens have been identified by taxonomic specialists, therefore, in some cases MEL hits provided informative names where AusMic and GenBank did not. For example, the AusMic sequence 459338 (Appendix S1) is determined as “Agaricales unclassified” and retrieved no GenBank hits; however, a MEL sequence for a sequestrate genus of the Entolomataceae was retrieved. For morphological insights, the MEL data set was especially useful. MEL houses many specimens of sequestrate fungi (enclosed or truffle-like, and often buried in soil), which are diverse and abundant throughout Australia. Our BLAST analysis of the AusMic OTUs against the MEL data retrieved numerous hits for the sequestrate genus Zelleromyces Singer & A. H. Sm. (Russulaceae). While corresponding GenBank hits and AusMic determinations occasionally reported sequestrate genera, the majority of GenBank and AusMic determinations corresponding to MEL specimens of sequestrate Russulaceae were for the epigean mushroom genera Russula Pers. and Lactarius Pers. As such, the MEL data set elucidates the morphological form of some of our study organisms. Although the majority of sequestrate Russulaceae genera are polyphyletic within the family (Vidal et al., 2019), indicating the need for systematic revision, the retention of “field identification” names on herbarium specimens adds another layer of information to this study.

Our analysis provides insights into the differences in taxonomic classification between the AusMic, GenBank, and MEL taxon determinations. Many MEL specimens have been identified by taxonomic specialists, therefore, in some cases MEL hits provided informative names where AusMic and GenBank did not. For example, the AusMic sequence 459338 (Appendix S1) is determined as “Agaricales unclassified” and retrieved no GenBank hits; however, a MEL sequence for a sequestrate genus of the Entolomataceae was retrieved. For morphological insights, the MEL data set was especially useful. MEL houses many specimens of sequestrate fungi (enclosed or truffle-like, and often buried in soil), which are diverse and abundant throughout Australia. Our BLAST analysis of the AusMic OTUs against the MEL data retrieved numerous hits for the sequestrate genus Zelleromyces Singer & A. H. Sm. (Russulaceae). While corresponding GenBank hits and AusMic determinations occasionally reported sequestrate genera, the majority of GenBank and AusMic determinations corresponding to MEL specimens of sequestrate Russulaceae were for the epigean mushroom genera Russula Pers. and Lactarius Pers. As such, the MEL data set elucidates the morphological form of some of our study organisms. Although the majority of sequestrate Russulaceae genera are polyphyletic within the family (Vidal et al., 2019), indicating the need for systematic revision, the retention of “field identification” names on herbarium specimens adds another layer of information to this study.

Our analysis provides insights into the differences in taxonomic classification between the AusMic, GenBank, and MEL taxon determinations. Many MEL specimens have been identified by taxonomic specialists, therefore, in some cases MEL hits provided informative names where AusMic and GenBank did not. For example, the AusMic sequence 459338 (Appendix S1) is determined as “Agaricales unclassified” and retrieved no GenBank hits; however, a MEL sequence for a sequestrate genus of the Entolomataceae was retrieved. For morphological insights, the MEL data set was especially useful. MEL houses many specimens of sequestrate fungi (enclosed or truffle-like, and often buried in soil), which are diverse and abundant throughout Australia. Our BLAST analysis of the AusMic OTUs against the MEL data retrieved numerous hits for the sequestrate genus Zelleromyces Singer & A. H. Sm. (Russulaceae). While corresponding GenBank hits and AusMic determinations occasionally reported sequestrate genera, the majority of GenBank and AusMic determinations corresponding to MEL specimens of sequestrate Russulaceae were for the epigean mushroom genera Russula Pers. and Lactarius Pers. As such, the MEL data set elucidates the morphological form of some of our study organisms. Although the majority of sequestrate Russulaceae genera are polyphyletic within the family (Vidal et al., 2019), indicating the need for systematic revision, the retention of “field identification” names on herbarium specimens adds another layer of information to this study.

Using the AusMic taxonomic determinations, we observed a general decrease in Australian Agaricomycetes species diversity toward the \(-20.0\) to \(-25.0\) latitudes (decimal degrees), which harbor the lowest diversity of all the latitude bins (Fig. 2). This is likely due to these areas comprising substantial portions of Australia’s arid interior. Using the AusMic taxonomy alone underestimates diversity, as each taxonomic determination can correspond to many OTUs.

The BLAST comparisons of the AusMic data to GenBank and the MEL data set yielded ecological, morphological, and taxonomic insights. One example of an ecological insight arose from the 43 AusMic OTUs that matched a Mycena sequence from GenBank (AY627835.1) that was generated from fungal material associated with roots of Epacris pulchella Cav. (Ericaceae). Although the genus Mycena is generally known to be non-mycorrhizal, this result aligns with other instances of Mycena species reported to be in mycorrhizal or mycorrhizal-like relationships with Ericaceae and other groups (Zhang et al., 2012; Grelet et al., 2017). We are confident in the generic determination of Mycena in this case because (a) the AusMic classification placed the 43 OTUs in Mycena (except for two OTUs that fell into “unclassified Agaricales”), (b) a post-hoc BLAST search of GenBank using AY627835.1 retrieved additional Mycena sequences, and (c) four of the 43 AusMic OTUs hit a Mycena specimen in the MEL data.

For morphological insights, the MEL data set was especially useful. MEL houses many specimens of sequestrate fungi (enclosed or truffle-like, and often buried in soil), which are diverse and abundant throughout Australia. Our BLAST analysis of the AusMic OTUs against the MEL data retrieved numerous hits for the sequestrate genus Zelleromyces Singer & A. H. Sm. (Russulaceae). While corresponding GenBank hits and AusMic determinations occasionally reported sequestrate genera, the majority of GenBank and AusMic determinations corresponding to MEL specimens of sequestrate Russulaceae were for the epigean mushroom genera Russula Pers. and Lactarius Pers. As such, the MEL data set elucidates the morphological form of some of our study organisms. Although the majority of sequestrate Russulaceae genera are polyphyletic within the family (Vidal et al., 2019), indicating the need for systematic revision, the retention of “field identification” names on herbarium specimens adds another layer of information to this study.

Our analysis provides insights into the differences in taxonomic classification between the AusMic, GenBank, and MEL taxon determinations. Many MEL specimens have been identified by taxonomic specialists, therefore, in some cases MEL hits provided informative names where AusMic and GenBank did not. For example, the AusMic sequence 459338 (Appendix S1) is determined as “Agaricales unclassified” and retrieved no GenBank hits; however, a MEL sequence for a sequestrate genus of the Entolomataceae was retrieved. For morphological insights, the MEL data set was especially useful. MEL houses many specimens of sequestrate fungi (enclosed or truffle-like, and often buried in soil), which are diverse and abundant throughout Australia. Our BLAST analysis of the AusMic OTUs against the MEL data retrieved numerous hits for the sequestrate genus Zelleromyces Singer & A. H. Sm. (Russulaceae). While corresponding GenBank hits and AusMic determinations occasionally reported sequestrate genera, the majority of GenBank and AusMic determinations corresponding to MEL specimens of sequestrate Russulaceae were for the epigean mushroom genera Russula Pers. and Lactarius Pers. As such, the MEL data set elucidates the morphological form of some of our study organisms. Although the majority of sequestrate Russulaceae genera are polyphyletic within the family (Vidal et al., 2019), indicating the need for systematic revision, the retention of “field identification” names on herbarium specimens adds another layer of information to this study.
The use of ITS sequences for fungal metagenomics is powerful, but not without problems. The existence of extensive intragenomic variation in fungal ITS sequences due to multiple polymorphic copies within a species has been reported for various orders of Ascomycota and Basidiomycota (e.g., Vydrova et al., 2012; Stadler et al., 2020). The causes of this are likely heterogeneous, and may include the release of concerted evolution and/or the multimictal (dikaryotic) condition of the Ascomycota and Basidiomycota (Roper et al., 2011; Roberts and Gladfelter, 2015). This variability in fungal ITS sequences can lead to the overestimation of species diversity (Lindner and Banik, 2011), which may be a caveat for the interpretation of the AusMic data. The utilization of alternative loci for fungal metagenomics, such as rpb2 (Vetrovsky et al., 2016) or 28S (Kvlin et al., 2011), may provide a fruitful basis of comparison and calibration for ITS-based studies in the future.

In summary, our work outlines protocols to (a) establish OTUs from large metagenomic data sets while avoiding a potential overestimation of diversity, (b) cross-reference these OTUs against existing taxonomies and sequence data, (c) use geographic metadata and taxonomic determinations from metagenomic studies to analyze diversity against geographic variables, and (d) provide useful outputs and visualizations of these findings. We draw insights into the Australian fungi, especially Agaricomycetes. Our methods can be applied and expanded with the data used in this study or similar data.

ACKNOWLEDGMENTS

The authors acknowledge support from Bioplatforms Australia through funding from the Australian Government National Collaborative Research Infrastructure Strategy, through use of the Biomes of Australian Soil Environments (BASE) data, and through contributions toward sequencing efforts for the National Herbarium of Victoria (MEL) database. This study was also supported in part by an Australian Biological Resources Study grant (RF217–63).

AUTHOR CONTRIBUTIONS

N.D. contributed to the conception, planning, and writing of this article and generated a portion of the MEL data. C.J.J. contributed to the planning of this article and conducted the bioinformatic analyses, including the data visualization. G.D.H. generated most of the MEL data, and contributed to conversations reflected in the paper. T.L. contributed to the planning of this study, generated a portion of the MEL data, and contributed to the information in the paper.

DATA AVAILABILITY

The AusMic data utilized in this study were downloaded from the BioPlatforms Australia data portal (https://data.bioplatforms.com/bpa/otu/ [accessed 14 March 2019]), using the ITS1F-ITS4_fungi amplicon filter (see the Methods for details on processing). Our subsequent analyses using the AusMic data are available as Appendices S1–S4. The FASTA file containing the MEL data utilized in our study is included here as Appendix S5; the sequences were also deposited in GenBank (MT703045–MT703635).

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

APPENDIX S1. Output file (.csv) for the BLAST analyses of the filtered Australian Microbiome Initiative (AusMic) sequences versus the National Center for Biotechnology Information (NCBI) and the National Herbarium of Victoria (MEL) data sets, showing the filtered operational taxonomic units (OTUs) (the AusMic identifiers in the first column and the sequences in the second column), the AusMic classification for each OTU (third column), the NCBI hits (fourth column) with percent identity (fifth column), and the MEL hits (sixth column) with percent identity (seventh column).

APPENDIX S2. Merged and omitted operational taxonomic unit (OTU) categories.

APPENDIX S3. Counts of Agaricomycete operational taxonomic units (OTUs) at familial and ordinal levels. The “freq” column shows the numbers of OTUs for the corresponding taxonomic classification in the “family” column, which also shows the same OTU count in parentheses. The “group_sum” column shows the total OTU counts for the corresponding orders.

APPENDIX S4. Latitudes (last column) with corresponding occurrences of Agaricomycetes indicated by Australian Microbiome Initiative (AusMic) taxonomic classifications, along with associated environmental sample IDs and operational taxonomic unit (OTU) counts. The “species” column contains 1263 unique classifications (this includes 219 unique determinations at ranks above species).

APPENDIX S5. FASTA file of the National Herbarium of Victoria (MEL) data.

LITERATURE CITED

Accioly, T., R. H. Cruz, N. M. Assis, N. K. Ishikawa, K. Hosaka, M. P. Martin, and J. G. Baseia. 2018. Amazonian bird’s nest fungi (Basidiomycota): Current knowledge and novelties on Cyathus species. Mycoscience 59: 331–342.
Benson, D. A., M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, J. Ostell, K. D. Pruitt, and E. W. Sayers. 2018. GenBank. Nucleic Acids Research 46(D1): D41–D47.
Bissett, A., A. Fitzgerald, L. Court, T. Meintjes, P. M. Mele, F. Reith, P. G. Dennis, et al. 2016. Introducing BASE: The Biomes of Australian Soil Environments soil microbial diversity database. GigaScience 5: 21.
Bissett, A., and M. V. Brown. 2018. Alpha-diversity is strongly influenced by the composition of other samples when using multiplexed sequencing approaches. Soil Biology and Biochemistry 127: 79–81.
Blackwell, M. 2011. The Fungi: 1, 2, 3… 5.1 million species? Medical Mycology 44: 741–748.
Burgess, J. W., W. R. Schwan, and T. J. Volk. 2006. PCR-based detection of DNA from the human pathogen Blastomyces dermatitidis from natural soil samples. Medical Mycology 44: 741–748.
Buyck, B., T. W. Henkel, and V. Hofstetter. 2018. The Cantharellus isabellinus species complex (Cantharellales, Hydnaceae) in tropical Africa. Mycosphere 9: 1209–1221.
Buyck, B., T. W. Henkel, and V. Hofstetter. 2019. Epitypification of the Central African Cantharellus densifolius and C. lacteopunctatus allows for the recognition of two additional species. MycoKeys 49: 49–72.
Vadthanarat, S., M. Amalfi, R. E. Halling, V. Bandala, S. Lumyong, and O. Raspé. 2019. Two new Erythrophylloporus species (Boletaceae) from Thailand, with two new combinations of American species. *Mycologia* 111(5): 922–926.

Větrovský, T., M. Kolařík, L. Žifčáková, T. Zelenka, and P. Baldrian. 2016. The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. *Molecular Ecology Resources* 16: 388–401.

Vidal, J. M., P. Alvarado, M. Loizides, G. Konstantinidis, P. Chachuła, P. Mleczko, G. Moreno, et al. 2019. A phylogenetic and taxonomic revision of sequestrate Russulaceae in Mediterranean and temperate Europe. *Persoonia* 42: 127–185.

Vydryakova, G. A., D. T. Van, P. Shoukouhi, N. V. Purtseva, and J. Bissett. 2012. Intergenomic and intragenomic ITS sequence heterogeneity in Neonothopanus nambi (Agaricales) from Vietnam. *Mycology* 3: 89–99.

White, T. J., T. D. Bruns, S. B. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White [eds.], PCR protocols: A guide to methods and applications, 315–322. Academic Press, Cambridge, Massachusetts, USA.

Wickham, H. 2016. *ggplot2: Elegant graphics for data analysis*. Springer-Verlag, New York, New York, USA.

Willis, C. G., E. R. Ellwood, R. B. Primack, C. C. Davis, K. D. Pearson, A. S. Gallinat, J. M. Yost, et al. 2017. Old plants, new tricks: Phenological research using herbarium specimens. *Trends in Ecology and Evolution* 32: 531–546.

Willis, K. J. [ed.]. 2018. *State of the world’s fungi 2018 report*. Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom.

Wu, G., Y. C. Li, X. T. Zhu, K. Zhao, L. H. Han, Y. Y. Cui, F. Li, et al. 2016. One hundred noteworthy boletes from China. *Fungal Diversity* 81: 25–188.

Zalar, P., G. S. Sybren de Hoog, H. J. Schroers, J. M. Frank, and N. Gunde-Cimerman. 2005. Taxonomy and phylogeny of the xerophilic genus *Wallemia* (Wallemiomyctes and Wallemiales, cl. et ord. nov.). *Antonie van Leeuwenhoek* 87: 311–328.

Zhang, L., J. Chen, Y. Lv, C. Gao, and S. Guo. 2012. *Mycena* sp., a mycorrhizal fungus of the orchid *Dendrobium officinale*. *Mycological Progress* 11: 395–401.