Learning from Non-IID Data in Hilbert Spaces:
An Optimal Recovery Perspective

Simon Foucart∗
Department of Mathematics
Texas A&M University
College Station, TX 77843

Chunyang Liao
Department of Mathematics
Texas A&M University
College Station, TX 77843

Shahin Shahrampour†
Department of Industrial & Systems Engineering
Texas A&M University
College Station, TX 77843

Yinsong Wang
Department of Industrial & Systems Engineering
Texas A&M University
College Station, TX 77843

Abstract

The notion of generalization in classical Statistical Learning is often attached to
the postulate that data points are independent and identically distributed (IID) random variables. While relevant in many applications, this postulate may not hold in general, encouraging the development of learning frameworks that are robust to non-IID data. In this work, we consider the regression problem from an Optimal Recovery perspective. Relying on a model assumption comparable to choosing a hypothesis class, a learner aims at minimizing the worst-case (prediction) error, without recourse to IID assumption on data. We first develop a semidefinite program for calculating the worst-case error of any recovery map in finite-dimensional Hilbert spaces. Then, for any Hilbert space, we show that Optimal Recovery provides a formula which is user-friendly from an algorithmic point-of-view, as long as the hypothesis class is linear. Interestingly, this formula coincides with kernel ridgeless regression in some cases, proving that minimizing the average error and worst-case error can yield the same solution. We provide numerical experiments in support of our theoretical findings.

1 Introduction

Let us place ourselves in a classical scenario where data about an unknown function f_0 take the form

$$y_i = f_0(x_i), \quad i \in [1 : m].$$

(1)

The values $y_i \in \mathbb{R}$ and the evaluations points $x_i \in \Omega \subseteq \mathbb{R}^d$ are available to the learner. The goal is to ‘learn’ the function f_0 from the data (1) by producing a surrogate function \hat{f} for f_0. Supervised Machine Learning methods compute such an \hat{f} from a hypothesis class selected in advance. The

www.math.tamu.edu/~foucart
https://sysml.engr.tamu.edu

Preprint. Under review.
performance of a method then depends on the choice of this hypothesis class: a good class should obviously approximate functions of interest well. This translates into a small \textit{approximation error}, which is one of the constituents towards the total error of a method. Another constituent is the \textit{estimation error}. In classical Statistical Learning [22], the latter is often analyzed by adopting a postulate that the x_i's are independent realizations of a random variable with an unknown distribution on Ω. While relevant in many applications, this postulate may not hold in general, encouraging the development of learning frameworks that are robust to non-IID data.

In this work, we consider the regression problem from an Optimal Recovery perspective, without recourse to IID assumption on data. Indeed, in the absence of randomness, an average-case analysis is not possible anymore. Instead, the learner aims at minimizing the worst-case (prediction) error by relying on a model assumption comparable to choosing a hypothesis class. We restrict our attention here to Hilbert spaces and provide the following contributions:

- We develop a numerical framework for calculating the worst-case error in the case of finite-dimensional Hilbert spaces. In particular, we show that this error can be computed via a semidefinite program (Theorem 1).
- We show that Optimal Recovery provides a formula which is user-friendly from an algorithmic point-of-view when the hypothesis class is a linear subspace (Theorem 2). Interestingly, this formula coincides with kernel ridgeless regression in some cases (Theorem 3), proving that minimizing the average error and worst-case error can yield the same solution.

The theoretical findings, whose proofs are included in the supplementary material, are verified through some numerical experiments presented in Section 5.

Why Optimal Recovery? The theory of Optimal Recovery was developed in the 70’s-80’s as a subfield of Approximation Theory (see the surveys [14, 15]). Its development was shaped by concurrent developments in the theory of spline functions (see e.g. [4, 7]). Splines provided a rare example where the theory integrated computations [5]. But, at that time, algorithmic issues were not the high priority that they have become today and theoretical questions such as the existence of linear optimal algorithms prevailed (see e.g. the survey [17]). Arguably, this neglect hindered the development of the topic and this work can be seen as an attempt to promote an algorithmic framework that sheds light on similarities and differences between Optimal Recovery (in Hilbert spaces) and Statistical Learning. Incidentally, what is sometimes called the \textit{spline algorithm} in Optimal Recovery has recently made a reappearance in Machine Learning circles as minimum-norm interpolation [1, 20, 13], of course with a different motivation. We also remark that Optimal Recovery is not the only framework dealing with non-IID data. There are indeed other strands of Machine Learning literature (e.g. Online Learning [11] and Federated Learning [24]) that investigate learning from non-IID data.

Noisy observations. A careful reader may wonder about the possibility of incorporating an error $e_i \in \mathbb{R}$ in the data $y_i = f_0(x_i) + e_i$, which is a common consideration in Machine Learning. We do not investigate such a scenario in this work, as our main focus is on drawing interesting connections between Optimal Recovery and some of the common Supervised Learning techniques in the simplest of settings first. Future works will concentrate on this inaccurate scenario, which is already well-defined and for which some results exists, see [18, 8].

2 The Optimal Recovery Perspective

In this section, we present the general framework of optimal recovery and provide some results, including the computation of worst-case error and the explicit formula of optimal recovery map.

The function space. Echoing the theory of Optimal Recovery, we consider the function f_0 more abstractly as an element from a normed space F. The output data y_i, which are evaluations of f_0 at the points x_i's, can be generalized to linear functionals ℓ_i's applied to f_0, so that the data take the form

$$y_i = \ell_i(f_0), \quad i \in [1 : m].$$

(2)

For convenience, we summarize these data as

$$y = L(f_0) = [\ell_1(f_0); \ldots ; \ell_m(f_0)] \in \mathbb{R}^m,$$

(3)
where the linear map \(L : \mathcal{F} \to \mathbb{R}^m \) is called the observation operator. Relevant situations include the case where \(\mathcal{F} \) is the space \(C(\Omega) \) of continuous functions on \(\Omega \), which is equipped with the uniform norm, and the case where \(\mathcal{F} \) is a Hilbert space \(\mathcal{H} \), which is equipped with the norm derived from its inner product. It is the latter case that is the focus of this work. More precisely, after recalling some known results, we concentrate on a reproducing kernel Hilbert space \(\mathcal{H} \) of functions defined on \(\Omega \), so that the point evaluations at the \(x_i \)'s are indeed well-defined and continuous linear functionals on \(\mathcal{H} \).

The model set. Without further information, data by themselves are not sufficient to say anything meaningful about \(f_0 \). For example, one could think of all ways to fit a univariate function through points \((x_1,y_1),\ldots,(x_m,y_m) \in \mathbb{R}^2\) if no restriction is imposed. Thus, a model assumption for the functions of interest is needed. This assumption takes the form

\[
f_0 \in K,
\]

where the model set \(K \) translates an educated belief about the behavior of realistic functions \(f_0 \). In Optimal Recovery, the set \(K \) is often chosen to be a convex and symmetric subset of \(\mathcal{F} \). Here, our relevant modeling assumption is the one that occurs implicitly in Machine Learning, namely that the functions of interest are well-approximated by suitable hypothesis classes. In this work, we only consider hypothesis classes that are linear subspaces \(V \) of \(\mathcal{F} \). Thus, given an approximation parameter \(\epsilon > 0 \) (the targeted approximation error), our model set has the form

\[
K := \{ f \in \mathcal{F} : \text{dist}(f, V) \leq \epsilon \},
\]

where \(\text{dist}(f, V) := \inf\{\|f - v\|_X : v \in V\} \). In the case \(\mathcal{F} = \mathcal{H} \) of a Hilbert space, this model set reads

\[
K = \{ f \in \mathcal{H} : \|f - P_V f\|_\mathcal{H} \leq \epsilon \},
\]

where \(P_V f \) is the orthogonal projection of \(f \) onto the subspace \(V \). Such an approximability set was put forward by Binev et al. [2], who were motivated by parametric PDEs. When working with this model, it is implicitly assumed that

\[
V \cap \ker(L) = \{0\},
\]

otherwise the existence of a nonzero \(v \in V \cap \ker(L) \) would imply that each \(f_t := f_0 + tv, t \in \mathbb{R} \), is both data-consistent (\(L(f_t) = y \)) and model-consistent (\(f_t \in K \)), leading to infinite worst-case error by letting \(t \to \infty \). By a dimension argument, the assumption (7) forces

\[
n := \dim(V) \leq m,
\]

i.e., we must place ourselves in an underparametrized regime where there are less model parameters than datapoints. To make sense of the overparametrized regime, the model set (5) would need to be refined by adding some boundedness conditions, see [9] for results in this direction.

Worst-case errors. We now need to assess the performance of a learning/recovery map, which is just a map taking data \(y \in \mathbb{R}^m \) as input and returning an element \(\hat{f} \in \mathcal{F} \) as output. Given a model set \(K \), the local worst-case error of such a map \(R : \mathbb{R}^m \to \mathcal{F} \) at \(y \in \mathbb{R}^m \) is

\[
\text{err}^{lo}_{K}(L,R(y)) := \sup_{f \in K, L(f)=y} \|f - R(y)\|_F.
\]

The global worst-case error is the worst local worst-case error over all \(y \in \mathbb{R}^m \) that can be obtained by observing some \(f \in K \), i.e.,

\[
\text{err}^{lo}_K(L,R) := \sup_{f \in K} \|f - R(L(f))\|_F.
\]

A learning/recovery map \(R : \mathbb{R}^m \to \mathcal{F} \) is called locally, respectively globally, optimal if it minimizes the local, respectively global, worst-case error. These definitions can be extended to handle not only the full recovery of \(f_0 \) but also the recovery of a quantity of interest \(Q(f_0) \). That is, for a map \(Q : \mathcal{F} \to Z \) from \(\mathcal{F} \) into another normed space \(Z \), one would define e.g. the global worst-case error of the learning/recovery map \(R : \mathbb{R}^m \to \mathcal{F} \) as

\[
\text{err}^{lo}_{K,Q}(L,R) := \sup_{f \in K} \|Q(f) - R(L(f))\|_Z.
\]
Their argument, based on the original expression (9) of the worst-case error, exploits the fact that this is a nonconvex optimization program, and as such does appear hard to solve at first sight. Although Gurobi \cite{10} now features direct capabilities to solve quadratically constrained quadratic programs, \textit{we take the route of recasting (12) as a semidefinite program using the S-lemma \cite{19}.}\n
\textbf{Computation of local worst-case errors.} When $F = H$ is a Hilbert space and the approximability model (6) is selected, determining the local worst-case error of a given map $R : \mathbb{R}^m \to H$ at some y involves solving

\begin{equation}
\begin{aligned}
\max_{f \in \mathcal{H}} \|f - R(y)\|_H & \text{ subject to } \|f - P_V f\|_H \leq \epsilon \text{ and } L(f) = y. (12)
\end{aligned}
\end{equation}

This is a nonconvex optimization program, and as such does appear hard to solve at first sight. However, it is a quadratically constrained quadratic program, hence it is possible to solve it exactly. Although Gurobi \cite{10} now features direct capabilities to solve quadratically constrained quadratic programs, we take the route of recasting (12) as a semidefinite program using the S-lemma \cite{19}. The solution of the recast program can then be obtained using an off-the-shelf semidefinite solver, at least when H is a Hilbert space of finite dimension, say $N = \dim(H)$. Precisely, with (h_1, \ldots, h_N) denoting an orthonormal basis for H, and $L = \ker(L)$ with H denoting the unitary map $x \in \mathbb{R}^{N - m} \mapsto \sum_{k=1}^{N - m} x_k h_k \in \ker(L)$, local worst-case errors can be computed based on the following observation.

\textbf{Theorem 1.} The local worst-case error of a learning/recovery map $R : \mathbb{R}^m \to H$ at $y \in \mathbb{R}^m$ under the model set \mathcal{K} can be expressed, with $g := R(y)$, as

\begin{equation}
\begin{aligned}
e_{\mathcal{K}}^w(L, g) &= \left[\|h - P_{\ker(L)^\perp}(g)\|_H^2 + \|P_{\ker(L)}(g)\|_H^2 + \epsilon^2 \right]^{1/2}, (13)
\end{aligned}
\end{equation}

where h is the unique element from $\ker(L)^\perp$ satisfying $L(h) = y$ and c^* is the minimal value of the following program, in which $w := P_V(h)$:

\begin{equation}
\begin{aligned}
\min_{c, d \in \mathbb{R}} c & \text{ subject to } d \geq 0, \left[\begin{array}{c}
H^*(dP_V - I_H)H \\
(dw + P_{\ker(L)}(g))H^*H \\
\end{array} \right] \geq 0. (14)
\end{aligned}
\end{equation}

\textbf{Optimal learning/recovery map.} Even though it is possible to compute the minimal worst-case error via (13)-(14), optimizing over $g \in H$ to produce the locally optimal recovery map would still require some work and would in fact be a major overkill. Indeed, for our situation of interest, some crucial work in this direction has been carried out in \cite{2}, and we rely on it to derive the announced user-friendly formula for the optimal recovery map R^{opt}. Precisely, when $F = H$ is a finite- or infinite-dimensional Hilbert space and the model set \mathcal{K} is given by (6), Binet al. \cite{2} showed that, for any input $y \in \mathbb{R}^m$, the output $R^{\text{opt}}(y) \in H$ is the solution \hat{f} to the convex minimization program

\begin{equation}
\begin{aligned}
\min_{f \in \mathcal{H}} \|f - P_V f\|_H & \text{ subject to } L(f) = y. (15)
\end{aligned}
\end{equation}

Their argument, based on the original expression (9) of the worst-case error, exploits the fact that $\hat{f} - P_V \hat{f}$ is orthogonal not only to V but also to $\ker(L)$. Let us point out that $R^{\text{opt}}(y) = \hat{f}$ is both data-consistent and model-consistent when $y = L(f_0)$ for some $f_0 \in \mathcal{K}$. It is also interesting to note that the optimal recovery map R^{opt} does not depend on the approximation parameter ϵ. This peculiarity disappears as soon as observation errors are taken into consideration, see \cite{8}.

A computable expression for the minimal local error (9), and in turn for the minimal global error (10), has also been given in \cite{2}. Without going into details, we only want to mention that latter decouples as the product $\mu \times \epsilon$ of an indicator μ of compatibility between model and data points, which increases as the space V is enlarged, and of the parameter ϵ of approximability, which decreases as the space V is enlarged. Thus, the choice of a space V yielding small minimal worst-case errors involves a trade-off on $n = \dim(V)$. This trade-off is illustrated numerically in Subsection 5.2.

Although the description (15) of the optimal learning/recovery map is quite informative, it fails to make apparent the fact the map R^{opt} is actually a linear map. This fact can be seen from the theorem below, which states that solving a minimization program for each $y \in \mathbb{R}^m$ is not needed to
produce \(R^{opt}(y) \). Indeed, one can obtain \(R^{opt}(y) \) by some linear algebra computations involving two matrices which are more or less directly available to the learner. To define these matrices, we need the Riesz representers \(u_i \in \mathcal{H} \) of the linear functionals \(\ell_i \in \mathcal{H}^* \), which are characterized by

\[
\ell_i(f) = \langle u_i, f \rangle \quad \text{for all } f \in \mathcal{H}.
\]

We also need a (not necessarily orthonormal) basis \((v_1, \ldots, v_n)\) for \(V \). The two matrices in question are the Gramian \(G \in \mathbb{R}^{m \times m} \) of \((u_1, \ldots, u_m)\) and the cross-Gramian \(C \in \mathbb{R}^{m \times n} \) of \((u_1, \ldots, u_m)\) and \((v_1, \ldots, v_n)\). Their entries are given, for \(i, i' \in [1 : m] \) and \(j \in [1 : n] \), by

\[
(G)_{i,i'} = \langle u_i, u_{i'} \rangle = \ell_i(u_{i'}),
\]

\[
(C)_{i,j} = \langle u_i, v_j \rangle = \ell_i(v_j).
\]

The matrix \(G \) is positive definite and in particular invertible (linear independence of the \(\ell_i \)'s is assumed). The matrix \(C \) has full rank thanks to the assumption \(V \cap \ker(L) = \{0\} \). The result below (proved in the supplementary material) shows that the output of the optimal learning/recovery map does not have to lie in the space \(V \) (the hypothesis class), as opposed to the output of algorithms such as empirical risk minimizations.

Theorem 2. The locally optimal recovery map \(R^{opt} : \mathbb{R}^m \to \mathcal{H} \) is given in closed form for each \(y \in \mathbb{R}^m \) by

\[
R^{opt}(y) = \sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j,
\]

where the coefficient vectors \(a \in \mathbb{R}^m \) and \(b \in \mathbb{R}^n \) are computed as

\[
b = (C^\top G^{-1} C)^{-1} C^\top G^{-1} y,
\]

\[
a = G^{-1}(y - Cb).
\]

Recalling from [8] that \(n \leq m \), the time cost of calculating the coefficient vectors \(a \) and \(b \) is \(O(m^3) \).

Remark. When the goal is to learn/recover \(Q(f_0) \) for some linear quantity of interest \(Q : \mathcal{H} \to \mathcal{Z} \), the above recipe still produces the locally optimal map, which turns out to be \(Q \circ R^{opt} : \mathbb{R}^m \to \mathcal{Z} \). One advantage of this situation is that the full knowledge of (a basis for) the space \(V \) is not needed, since only the values of the \(v_j(x_i) \)'s and \(Q(v_j) \)'s are required to form \((Q \circ R^{opt})(y) \).

3 Relation to Supervised Learning

Supervised learning algorithms take data \(y \in \mathbb{R}^m \) as input (while also being aware of the \(x_i \)'s) and return functions \(\hat{f} \in \mathcal{H} \) as outputs, so they can be viewed as learning/recovery maps \(R : \mathbb{R}^m \to \mathcal{H} \). We examine below how some of them compare to the map \(R^{opt} \) from Theorem 2.

Empirical risk minimizations. The outputs \(\hat{f} \) returned by these algorithms belong to a hypothesis space chosen in advance from the belief that it provides good approximants for real-life functions. Since this implicit belief corresponds to the explicit assumption expressed by the model set [5], our Optimal Recovery algorithm and empirical risk minimization algorithms are directly comparable, in that they both depend on a common approximation space/hypothesis class \(V \). With a loss function chosen as a \(p \)th power of an \(\ell_p \)-norm for \(p \in [1, \infty] \), empirical risk minimization algorithms consist in solving the convex optimization program

\[
\min_{f \in \mathcal{H}} \| y - L(f) \|_p = \sum_{i=1}^{m} | y_i - \ell_i(f) |^p \quad \text{subject to } f \in V.
\]

In the case \(p = 2 \) of the square loss, the solution actually reads

\[
R^{erm^2}(y) = \sum_{j=1}^{n} (\langle C^\top C \rangle^{-1} C^\top y)_{j} v_j,
\]

where the matrix \(C \in \mathbb{R}^{m \times n} \) still represents the cross-Gramian introduced in (17).
Kernel regressions. Kernel regression algorithms usually operate in the setting of Reproducing Kernel Hilbert Spaces (see next section), but they can be phrased for arbitrary Hilbert spaces, too. For instance, the traditional kernel ridge regression consists in solving the following convex optimization problem

$$\min_{f \in \mathcal{H}} \sum_{i=1}^{m} (y_i - \ell_i(f))^2 + \gamma \| f \|^2_{\mathcal{H}}$$

for some parameter $\gamma > 0$. In the limit $\gamma \to 0$, one obtains kernel ridgeless regression, which consists in solving the convex optimization problem

$$\min_{f \in \mathcal{H}} \| f \|_{\mathcal{H}} \quad \text{subject to} \quad \ell_i(f) = y_i, \quad i \in [1 : m].$$

This algorithm fits the training data perfectly and also generalizes well [13].

The crucial observation we wish to bring forward here is that kernel ridgeless regression, although not designed with this intention, is also an Optimal Recovery method. Indeed, (24) appears as the special case of the convex optimization program (15) with the choice $V = \{0\}$. Using Theorem 2, we can retrieve in particular that kernel ridgeless regression is explicitly given by

$$R^{\text{ridgeless}}(y) = \sum_{i=1}^{m} (G^{-1}y) \cdot u_i.$$

Incidentally, the latter can also be interpreted as the special case $V = \text{span}\{u_1, \ldots, u_m\}$, since $\hat{f} = R^{\text{ridgeless}}(y)$ is a linear combination of the Riesz representatives u_1, \ldots, u_m that satisfy the observation constraint $L(f) = y$. In fact, there are more choices for V that leads to kernel ridgeless regression, as revealed below.

Theorem 3. If the approximation space is $V = \text{span}\{u_i, i \in I\}$ for some subset I of $[1 : m]$, then the locally optimal recovery map (15) reduces to kernel ridgeless regression independently of I.

Spline models. From an Optimal Recovery point-of-view, the success of (24) can be surprising because it seems to use only data and no model assumption. In fact, the model assumption occurs in the objective function being minimized. Procedure (24) favors data-consistent functions which are themselves small. If one preferred to favor data-consistent functions which have small derivatives, one would instead consider, say, the program

$$\min_{f \in W^2_2[0,1]} \| f^{(k)} \|_{L_2} \quad \text{subject to} \quad f(x_i) = y_i, \quad i \in [1 : m],$$

with optimization variable f in the Sobolev space $W^2_2[0,1]$. As it turns out, this procedure coincides with the Optimal Recovery method that minimizes the worst-case error over the model set given by $K = \{ f \in W^2_2[0,1] : \| f^{(k)} \|_{L_2} \leq 1 \}$ and its solution is known explicitly [4]. With $k = 2$ (where one tries to minimize the strain energy of a curve constrained to pass through a prescribed set of points), the solution is a cubic spline, see [23] for details. For multivariate functions, the solutions to problems akin to (26) are also known explicitly: they are thin plate splines [7]. More generally, minimum-(semi)norm interpolation problems are what define the concept of abstract splines [6].

Remark. When observation error is present, exact interpolation conditions should not be enforced, so it is natural to substitute (15) by a regularized problem similar to (23) but with $\| f - P_V f \|^2_{\mathcal{H}}$ acting as a regularizer instead of $\| f \|^2_{\mathcal{H}}$. This has already been proposed in [12] under the name Generalized Regularized Least-Squares, of course with a different motivation than Optimal Recovery.

4 Optimal Recovery in Reproducing Kernel Hilbert Spaces (RKHS)

We consider in this section the case where $\mathcal{F} = \mathcal{H}$ is a Hilbert space of functions defined on a domain $\Omega \subseteq \mathbb{R}^d$ for which point evaluations are continuous linear functionals. In other words, we consider a reproducing kernel Hilbert space \mathcal{H}_K, where $K : \Omega \times \Omega \to \mathbb{R}$ denotes the kernel characterized, for any $x \in \Omega$, by

$$f(x) = \langle K(x, \cdot), f \rangle \quad \text{for all } f \in \mathcal{H}_K.$$

In this way, the Riesz representatives of points evaluations at x_i’s take the form $u_i = K(x_i, \cdot)$. Thus, the Gramian of (16) has entries

$$G_{i,i'} = \langle K(x_i, \cdot), K(x_{i'}, \cdot) \rangle = \langle K(x_{i'}, x_i) \rangle, \quad i, i' \in [1 : m].$$

As for the cross-Gramian of \(K \), it has entries

\[C_{i,j} = v_j(x_i), \quad i \in [1 : m], j \in [1 : n], \]

where \((v_1, \ldots, v_n) \) represents a basis for the space \(V \). Some possible choices of \(K \) and \(V \) are discussed below.

Choosing the kernel. A kernel that is widely used in many learning problems is the Gaussian kernel given, for some parameter \(\sigma > 0 \), by

\[K(x, x') = \exp \left(-\frac{\|x - x'\|^2}{2\sigma^2} \right), \quad x, x' \in \mathbb{R}^d. \] (30)

The associated infinite-dimensional Hilbert space, which is explicitly characterized in [16], has orthonormal basis \(\{ \phi_\alpha, \alpha \in \mathbb{N}_0^d \} \), where

\[\phi_\alpha(x) := \sqrt{\frac{(1/\sigma^2)^{\alpha_1 + \cdots + \alpha_d}}{\alpha_1! \cdots \alpha_d!}} \exp \left(-\frac{\|x\|^2}{2\sigma^2} \right) x_1^{\alpha_1} \cdots x_d^{\alpha_d}. \] (31)

Choosing the approximation space. Since a learning/recovery procedure uses both data and model (maybe implicitly), its performance depends on the interaction between the two. In Optimal Recovery, and subsequently in Information-Based Complexity [21], it is often assumed that the model is fixed and that the user has the ability to choose evaluation points in a favorable way. From another angle, one can view the evaluation points as being fixed but the model could be chosen accordingly. For the applicability of Theorem 2 it is perfectly fine to select an approximation space \(V \) depending on \(x_1, \ldots, x_m \), so long as it does not depend on \(y_1, \ldots, y_m \). Thus, one possible choice for the approximation space is \(V = \text{span}\{K(x_i, \cdot), i \in I\} \) for some subset \(I \subseteq [1 : m] \). However, we have seen in Theorem 3 that such a choice invariably leads to kernel ridgeless regression.

Another choice for the approximation space is inspired by linear regression, which uses the space \(\text{span}\{1, x_1, \ldots, x_d\} \). We do not consider this space verbatim, because its elements (or any polynomial function, for that matter, see [16]) do not belong to the Reproducing kernel Hilbert space with Gaussian kernel. Instead, we modify it slightly by multiplying with a decreasing exponential and by allowing for degrees \(k \) higher than one, so as to consider the space

\[V = \text{span}\{\phi_\alpha, \alpha_1 + \cdots + \alpha_d \leq k\}, \]

which has dimension \(n = \binom{d+k}{d} \). We ignore the coefficients of \(\phi_\alpha \) in numerical experiments, which has no effects on the test error. These \(\phi_\alpha \)'s are the so-called ‘Taylor features’ used in approximation of the Gaussian kernel [3].

5 Experimental Validation

5.1 Comparison of worst-case errors

We first compare worst-case errors for the optimal recovery map (OR) described in Theorem 2 and for empirical risk minimizations defined in (27). They are only considered with \(p = 1 \) (ERM1) and \(p = 2 \) (ERM2). The algorithms OR, ERM1, and ERM2 all operate with a specific space \(V \) (as a hypothesis class), so direct comparisons can be made by selecting the same for all these algorithms. According to Theorem 1 when \(H \) is a finite-dimensional Hilbert space, the computation of their worst-case errors is performed by semidefinite programming. Here, we restrict ourselves to the case where \(V \) is a \(n \)-dimensional subspace of \(H = \ell^2_N \), with \(n = 20 \) and \(N = 200 \). The \(m = 50 \) linear observations are randomly generated. Figure 1 confirms that OR yields the smallest worst-case errors and suggests that often, but not always, ERM2 yields smaller worst-case errors than ERM1. It also hints at a quasi-linear dependence of the worst-case errors on the approximability parameter \(\epsilon \).

5.2 Test errors for non-IID data

In this subsection, we implement optimal recovery map on two real-world regression datasets, namely Years Prediction and Energy Use, both available on UCI Machine Learning Repository.
We focus on the RKHS associated with Gaussian kernel throughout this experiment. The space V is spanned by a subset of Taylor features of order $k = 1$, see (32), so that $\dim(V)$ goes up to $d + 1$, where d is the number of features in the datasets. To choose the optimal kernel width, we conduct a grid search. Furthermore, to make the data non-IID, we sort both datasets according to their 5-th feature in a descending order and then select the top 70% as the training set and the bottom 30% as the test set. Recall by Theorem 2 that the optimal recovery map depends on the Hilbert space \mathcal{H} and a subspace V. Therefore, it is natural to compare it to kernel ridgeless regression (25) (in \mathcal{H}) and Taylor features regression (22) (in V).

The test error comparison is presented in Figure 2. Due to the size of Years Prediction dataset, we do not perform kernel ridgeless regression on the full dataset, so we randomly subsample a 5000 subset of the data and repeat the experiment for 40 Monte Carlo simulations to average out the randomness. Therefore, error bars are presented in Figure 2(a) to show the statistical significance. We observe that Optimal Recovery shows promising performance on both datasets. On Years Prediction dataset, Optimal Recovery outperforms kernel ridgeless regression for all $\dim(V)$. On Energy Use dataset, it outperforms kernel ridgeless regression after $\dim(V) = 2$. Also, Taylor features regression in the space V is consistently inferior to the optimal recovery map. The U-shape Optimal Recovery curve in Figure 2(a) demonstrates the trade-off between the compatibility indicator μ and the approximability parameter ϵ.

6 Conclusion

Generalization guarantees in Statistical Learning are based on the postulate of IID data, the pertinence of which is not guaranteed in all learning environments. In this work, we considered the regression problem (with non-IID data) in Hilbert spaces from an Optimal Recovery point-of-view, where the learner aims at minimizing with the worst-case error. We first formulated a semidefi-
nite program for calculating the worst-case error of any recovery map in finite-dimensional Hilbert spaces. Then, we provided a closed-form expression for optimal recovery map in the case where the hypothesis class \(V \) is a linear subspace of any Hilbert space. The formula coincides with kernel ridgeless regression when \(V = \{0\} \) in a RKHS. Our numerical experiments showed that, when \(\dim(V) > 0 \), Optimal Recovery has the potential to outperform kernel ridgeless regression in the test mean squared error.

Our main focus was to provide an algorithmic perspective to Optimal Recovery, whose theory was initiated in the 70's-80's. Our findings revealed interesting connections with current Machine Learning methods. There are many directions to consider in the future, including:

(i) learning the hypothesis space \(V \) from the data (instead of incorporating domain knowledge);

(ii) developing Optimal Recovery with noise/error in the observations;

(iii) studying the overparametrized regime where \(\dim(V) > m \);

(iv) investigating the case where the hypothesis class \(V \) is not a linear space.

References

[1] Belkin, M., Ma, S., and Mandal, S. (2018). To understand deep learning we need to understand kernel learning. In *International Conference on Machine Learning*, pages 541–549.

[2] Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., and Wojtaszczyk, P. (2017). Data assimilation in reduced modeling. *SIAM/ASA Journal on Uncertainty Quantification*, 5(1):1–29.

[3] Cotter, A., Keshet, J., and Srebro, N. (2011). Explicit approximations of the Gaussian kernel. *arXiv preprint arXiv:1109.4603*.

[4] De Boor, C. (1963). Best approximation properties of spline functions of odd degree. *Journal of Mathematics and Mechanics*, pages 747–749.

[5] De Boor, C. (1977). Computational aspects of optimal recovery. In *Optimal Estimation in Approximation Theory*, pages 69–91. Springer.

[6] De Boor, C. (1981). Convergence of abstract splines. *Journal of Approximation Theory*, 31(1):80–89.

[7] Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In *Constructive Theory of Functions of Several Variables*, pages 85–100. Springer.

[8] Ettehad, M. and Foucart, S. (2020). Instances of computational optimal recovery: dealing with observation errors. *arXiv preprint arXiv:2004.00192*.

[9] Foucart, S. (2020). Instances of computational optimal recovery: refined approximability models. *arXiv preprint arXiv:2004.00195*.

[10] Gurobi Optimization, LLC (2020). Gurobi optimizer reference manual.

[11] Hazan, E. (2016). Introduction to online convex optimization. *Foundations and Trends in Optimization*, 2(3-4):157–325.

[12] Li, W., Lee, K.-H., and Leung, K.-S. (2007). Generalized regularized least-squares learning with predefined features in a Hilbert space. In *Advances in Neural Information Processing Systems*, pages 881–888.

[13] Liang, T. and Rakhlin, A. (2019). Just interpolate: Kernel "ridgeless" regression can generalize. *Annals of Statistics*.

[14] Micchelli, C. A. and Rivlin, T. J. (1977). A survey of optimal recovery. In *Optimal Estimation in Approximation Theory*, pages 1–54. Springer.

[15] Micchelli, C. A. and Rivlin, T. J. (1985). Lectures on optimal recovery. In *Numerical Analysis Lancaster 1984*, pages 21–93. Springer.
[16] Minh, H. (2010). Some properties of Gaussian reproducing kernel Hilbert spaces and their implications for function approximation and learning theory. *Constructive Approximation*, 32:307–338.

[17] Packel, E. W. (1988). Do linear problems have linear optimal algorithms? *SIAM Review*, 30(3):388–403.

[18] Plaskota, L. (1996). *Noisy information and computational complexity*, volume 95. Cambridge University Press.

[19] Pólik, I. and Terlaky, T. (2007). A survey of the S-lemma. *SIAM Review*, 49(3):371–418.

[20] Rakhlin, A. and Zhai, X. (2019). Consistency of interpolation with Laplace kernels is a high-dimensional phenomenon. In *Conference on Learning Theory*, pages 2595–2623.

[21] Traub, J. F. (2003). *Information-Based Complexity*. John Wiley and Sons Ltd.

[22] Vapnik, V. N. (1999). An overview of statistical learning theory. *IEEE Transactions on Neural Networks*, 10(5):988–999.

[23] Wahba, G. (1990). *Spline Models for Observational Data*. Society for Industrial and Applied Mathematics.

[24] Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. (2018). Federated learning with non-iid data. *arXiv preprint arXiv:1806.00582*.
Supplementary Material

Proof of Theorem 1

We first justify the claim that there exists a unique $h \in \ker(L)^\perp$ such that $L(h) = y \in \mathbb{R}^m$. To see this, define the linear map $\tilde{L} : h \in \ker(L)^\perp \mapsto L(h) \in \text{range}(L)$. Since $\ker(L) = \ker(L) \cap \ker(L)^\perp = \{0\}$, the map \tilde{L} is injective. Then, by the by rank-nullity theorem, $\dim(\text{range}(\tilde{L})) = \dim(\ker(L)^\perp) = N - \dim(\ker(L)) = \dim(\text{range}(L))$, so the map \tilde{L} is also surjective. Thus, the claim is justified.

Next, the squared local worst-case error (2) at $g = R(y)$ is

$$|\text{err}_{\text{loc}}^k(L, g)|^2 = \sup_{f \in \mathcal{H}} \{ \| f - g \|^2_{\mathcal{H}} : \| P_{V^\perp} f \|^2_{\mathcal{H}} \leq \epsilon^2, L(f) = y \}. \quad (33)$$

Decomposing f and g as $f = f' + f''$ and $g = g' + g''$ with $f', g' \in \ker(L)$ and $f'', g'' \in \ker(L)^\perp$, the condition $L(f) = y$ reduces to $L(f'') = y$, i.e., $f'' = h$ is uniquely determined. The condition $\| P_{V^\perp} f' \|^2 \leq \epsilon^2$ then becomes $\| P_{V^\perp} f' + w \|^2 \leq \epsilon^2$, where $w := P_{V^\perp} h$. As for the expression to maximize, it separates into

$$\| f - g \|^2_{\mathcal{H}} = \| f'' - g'' \|^2_{\mathcal{H}} + \| f' - g' \|^2_{\mathcal{H}} = \| h - g''\|^2_{\mathcal{H}} + \| g'\|^2_{\mathcal{H}} + \| f'' \|^2_{\mathcal{H}} - 2\langle f', g' \rangle. \quad (34)$$

Up to the additive constant $\| h - g''\|^2_{\mathcal{H}} + \| g'\|^2_{\mathcal{H}}$, the maximum in (33) is now

$$\sup_{f' \in \ker(L)} \| f'' \|^2_{\mathcal{H}} - 2\langle f', g' \rangle \quad \text{subject to } \| P_{V^\perp} f' + w \|^2_{\mathcal{H}} \leq \epsilon^2 \quad (35)$$

Writing $f' = Hx$ with $x \in \mathbb{R}^{N-m}$, this latter constraint reads

$$c - \langle Hx, Hx \rangle - 2\langle Hx, g' \rangle \geq 0 \quad (36)$$

whenever $\epsilon^2 - \langle Hx, Hx \rangle - 2\langle Hx, g' \rangle \geq 0$.

By the S-lemma, see e.g. [19], (36) is equivalent to the existence of $d \geq 0$ such that

$$c - \langle Hx, Hx \rangle - 2\langle Hx, g' \rangle \geq d \left[\epsilon^2 - \langle Hx, Hx \rangle - 2\langle Hx, w \rangle + \| w \|^2_{\mathcal{H}} \right] \quad (37)$$

for all $x \in \mathbb{R}^{N-m}$, or in other words, to the existence of $d \geq 0$ such that

$$d \langle x, (H^* P_{V^\perp} H) x \rangle + 2d \langle x, H^* w \rangle + (c + d\| w \|^2_{\mathcal{H}} - \epsilon^2) \geq 0 \quad (38)$$

for all $x \in \mathbb{R}^{N-m}$. This constraint can be reformulated as a semidefinite constraint

$$\begin{bmatrix} \langle H^* P_{V^\perp} H - H^* H \rangle & dH^* w + H^* g' \\ dH^* w + H^* g' & c + d\| w \|^2_{\mathcal{H}} - \epsilon^2 \end{bmatrix} \succeq 0. \quad (39)$$

Keeping in mind that $g' = P_{\ker(L)} g$, this is the semidefinite constraint appearing in (14). Putting everything together, we arrive at the expression for the local worst-case error announced in (13).

Proof of Theorem 2

Let $\hat{f} = R^{\text{opt}}(y)$ be the solution to (15). We shall first recall the argument explaining that $\hat{f} - P_V \hat{f}$ is orthogonal to $\ker(L)$ before showing that this orthogonality condition, together with the condition $L(f) = y$, characterizes \hat{f} uniquely as the element given in (18). For the orthogonality condition, consider any $u \in \ker(L)$ and any $t \in \mathbb{R}$, and notice that the expression

$$\| \hat{f} + tu - P_V(\hat{f} + tu) \|^2_{\mathcal{H}} = \| \hat{f} - P_V \hat{f} \|^2_{\mathcal{H}} + 2t\langle \hat{f} - P_V \hat{f}, u - P_V u \rangle + O(t^2), \quad (40)$$

is minimized when $t = 0$. This forces $\langle \hat{f} - P_V \hat{f}, u - P_V u \rangle = 0$, and since $\hat{f} - P_V \hat{f}$ is orthogonal to V, we have $\langle \hat{f} - P_V \hat{f}, u \rangle = 0$ for all $u \in \ker(L)$, as required.

In view of $\ker(L)^\perp = \text{span}\{ u_1, \ldots, u_m \}$, it follows that

$$\hat{f} = P_V \hat{f} = \sum_{i=1}^m a_i u_i \quad \text{for some } a \in \mathbb{R}^m. \quad (41)$$

Taking inner product with v_1, \ldots, v_n leads to $0 = C^\top a$. Then, expanding $P_V \hat{f}$ on (v_1, \ldots, v_n), we obtain

$$\hat{f} = \sum_{i=1}^m a_i u_i + \sum_{j=1}^n b_j v_j \quad \text{for some } b \in \mathbb{R}^n. \quad (42)$$

11
Taking inner product with u_1, \ldots, u_m leads to $y = Ga +Cb$ and in turn to $C^T G^{-1} y = C^T G^{-1} Cb$ after multiplying by $C^T G^{-1}$. The latter yields the expression for b given in (19), while the former yields the expression for a given in (20).

Proof of Theorem 3. Let $V = \text{span}\{u_i, i \in I\}$ for some $I \subseteq [1 : m]$ and let \hat{f} be the output of kernel ridgeless regression. According to the previous proof, to prove that \hat{f} is the solution to (15), we have to verify that $\hat{f} - P_V \hat{f} \in \ker(L)^\bot$. Since we already know that $\hat{f} = \hat{f} - P_{\{0\}} \hat{f} \in \ker(L)^\bot$ (recall that kernel ridgeless regression is (15) with $\{0\}$ in place of V), it remains to check that $P_V \hat{f} \in \ker(L)^\bot$. This simply follows from $P_V \hat{f} \in \text{span}\{u_i, i \in I\} \subseteq \text{span}\{u_1, \ldots, u_m\} = \ker(L)^\bot$.\hfill\qed