CONVERGENCE OF FORMAL INVERTIBLE CR MAPPINGS BETWEEN MINIMAL HOLOMORPHICALLY NONDEGENERATE REAL ANALYTIC HYPERSURFACES

Joël Merker

§1. Introduction and statement of the results

1.1. Main theorem. We establish here the following assertion (here and in what follows, the symbol \mathcal{F} relates to objects and maps of the formal category):

Theorem 1.2. Any invertible (i.e. with nonzero Jacobian determinant at p) formal CR mapping $h: (M, p) \to \mathcal{F}(M', p')$ between two germs of minimal real analytic hypersurfaces in \mathbb{C}^n, $n \geq 2$, is convergent if and only if (M', p') is holomorphically nondegenerate.

(The reader is referred to the monograph [3] and to the articles [2,4,10,12] for background material). This theorem provides a necessary and sufficient condition for the convergence of an invertible formal CR map of hypersurfaces. The necessity appears in a natural way (see Proposition 1.5 below). Geometrically, holomorphic nondegeneracy has clear geometric significance: it means that there exist no holomorphic tangent vector field to (M', p') and it is equivalent to the nonexistence of a local complex analytic foliation of (\mathbb{C}^n, p') tangent to (M', p'). As matters stand, such a kind of characterization for the regularity of CR maps happens to be known already, but only in case where at least one of the two hypersurfaces is algebraic, see e.g. [5,6,13] (in fact, in the algebraic case, one can study the problem by means of classical “polynomial identities” in the spirit of Baouendi-Jacobowitz-Treves). But it was known that the truly real analytic case involves deeper investigations.

1.3. Brief history. Formal invertible CR mappings $h: (M, p) \to \mathcal{F}(M', p')$ between two germs of real analytic hypersurfaces in \mathbb{C}^n have been proved to be convergent in many circumstances. Firstly, in 1974 by Chern-Moser, assuming that (M', p') is Levi-nondegenerate. Secondly, in 1997 by Baouendi-Ebenfelt-Rothschild in the important article [2], assuming that h is invertible (i.e. with nonzero Jacobian at p) and that (M', p') is finitely nondegenerate at p'. And more recently in 1999, by Baouendi-Ebenfelt-Rothschild [4], assuming for instance (but this work also contains other results) that (M', p') is essentially finite, that (M, p) is minimal and that h is not totally degenerate, a result which is valid in arbitrary codimension. (Again, the reader may consult [3] for essential background on the subject, 1991 Mathematics Subject Classification. 32V25, 32V35, 32V40.

Key words and phrases. Formal invertible mappings, Holomorphic nondegeneracy, Minimality in the sense of Tumanov.
for definitions, concepts and tools and also [10] for related topics.) In summary, the above-mentioned results have all exhibited various sufficient conditions.

Remark. After a first version of this preprint was finished and distributed, the author received a preprint (now published) [12] where a statement similar to Theorem 1.2 was proved. Further, after dropping the assumption of holomorphic nondegeneracy on \((M', p')\), the convergence of the reflection function is established in it.

1.4. Necessity. On the other hand, it is known (essentially since 1995, cf. [5]) that holomorphic nondegeneracy of the hypersurface \((M', p')\) constitutes a natural necessary condition for \(h\) to be convergent, according to an important observation due to Baouendi-Rothschild [2,3,5] (this observation followed naturally from the characterization by Stanton of the finite-dimensionality of the space of infinitesimal CR automorphisms of \((M, p)\) [16] : Stanton’s discovery is fundamental in the subject). We may restate this observation as follows (see its proof in the end of §4).

Proposition 1.5. If \((M', p')\) is holomorphically degenerate, then there exists a nonconvergent formal invertible CR self map of \((M', p')\), which is simply of the form \(\mathbb{C}^n \ni t' \mapsto \exp(\omega(t')L')(t') \in \mathbb{C}^n\), where \(L'\) is a nonzero holomorphic tangent vector to \((M', p')\) and where \(\omega(t') \in \mathbb{C}[t']\), \(\omega'(0) = 0\), is nonconvergent.

Remark. A geometric way to interpret this nonconvergent map would be to say that it flows in nonconvergent complex time along the complex analytic foliation induced by \(L'\), which is tangent to \(M'\). Similar obstructions for the algebraic mapping problem stem from the existence of complex analytic (or algebraic) foliations tangent to \((M', p')\), see e.g. [5,6]. Again, this shows that the geometric notion of holomorphic nondegeneracy discovered by Stanton is crucial in the field.

1.6. Jets of Segre varieties. The holomorphically nondegenerate hypersurfaces are considerably more general and more complicated to handle than Levi-nondegenerate ones [14,15,17], finitely nondegenerate ones [2], essentially finite ones [3,4] or even Segre nondegenerate ones [10]. The explanation becomes simple after a reinterpretation of these conditions in the spirit of the important geometric definition of jets of Segre varieties due to Diederich-Webster [7]. In fact, these five distinct nondegeneracy conditions manifest themselves directly as nondegeneracy conditions of the morphism of \(k\)-th jets of Segre varieties attached to \(M'\), which is an invariant holomorphic map defined on its extrinsic complexification \(\mathcal{M}' = (M')^c\) (we follow the notations of §2). In local holomorphic normal coordinates \(t' = (w', z') \in \mathbb{C}^{n-1} \times \mathbb{C}\), vanishing at \(p'\) with \(t' : = (\zeta', \xi') \in \mathbb{C}^{n-1} \times \mathbb{C}\) denoting the complexified coordinates \((w', z')^c\), such that the holomorphic equation of the extrinsic complexification \(\mathcal{M}'\) is written \(\xi' = z' - i\Theta'(\zeta', t') = z' - i \sum_{r \in \mathbb{N}^{n-1}} \zeta' \Theta^r_j(t')(\zeta', \alpha)\) (cf. (2.4)), the conjugate complexified Segre variety is defined by \(\mathcal{S}'_j := \{\tau' : \zeta' = z' - i\Theta'(\zeta', t')\}\) (here, \(t'\) is fixed; see [9] for a complete exposition of the geometry of complexified Segre varieties) and the jet of order \(k\) of the complex \((n - 1)\)-dimensional manifold \(\mathcal{S}'_j\) at the point \(\tau' \in \mathcal{S}'_j\) defines a holomorphic map

\[
\varphi_k : \mathcal{M}' \ni (t', \tau') \mapsto j^k_{\tau'} \mathcal{S}'_j \in \mathbb{C}^n + N_{n-1,k}, \quad N_{n-1,k} = \frac{(n - 1 + k)!}{(n - 1)! k!},
\]

given explicitly in terms of such a defining equation by a collection of power series:

\[
\varphi_k(t', \tau') := j^k_{\tau'} \mathcal{S}'_j = (\tau', \{\partial_{\zeta'}^k [\zeta' - z' + i\Theta'(\zeta', t')]\}_{\beta \in \mathbb{N}^{n-1}, |\beta| \leq k}).
\]
For k large enough, the various possible properties of this holomorphic map govern some different “nondegeneracy conditions” on M' which are appropriate for some generalizations of the Lewy-Pinchuk reflection principle. Let $p'^c := (p', \bar{p}') \in M'$.

We give here an account of five conditions, which can be understood as definitions:

1. ($M', p')$ is Levi-nondegenerate at p'
 \[\iff \varphi_1' \text{ is an immersion at } p'^c. \]

2. ($M', p')$ is finitely nondegenerate at p'
 \[\iff \exists k_0 \in \mathbb{N}_*, \varphi_k' \text{ is an immersion at } p'^c, \forall k \geq k_0. \]

3. ($M', p')$ is essentially finite at p'
 \[\iff \exists k_0 \in \mathbb{N}_*, \varphi_k' \text{ is a finite holomorphic map at } p'^c, \forall k \geq k_0. \]

4. ($M', p')$ is S-nondegenerate at p'
 \[\iff \exists k_0 \in \mathbb{N}_*, \varphi_k'|_{S_{p'}} \text{ is of generic rank } \dim_C S_{p'} = n - 1, \forall k \geq k_0. \]

5. ($M', p')$ is holomorphically nondegenerate at p'
 \[\iff \exists k_0 \in \mathbb{N}_*, \varphi_k' \text{ is of generic rank } \dim_C M' = 2n - 1, \forall k \geq k_0. \]

Remarks. 1. It follows from the biholomorphic invariance of Segre varieties that two Segre morphisms of k-jets associated to two different local coordinates for (M', p') are intertwined by a local biholomorphic map of $C^{n+N_{n-1,k}}$. Consequently, the properties of φ_k' are invariant.

2. The condition (I) is classical. The condition (II) is studied by Baouendi-Ebenfelt-Rothschild [2,3] and appeared already in Pinchuk’s thesis, in Diederich-Webster [7] and in some of Han’s works. The condition (III) appears in Diederich-Webster [7] and was studied by Baouendi-Jacobowitz-Treves and by Diederich-Fornaess. The condition (IV) seems to be new and appears in [10]. The condition (V) was discovered by Stanton in her concrete study of infinitesimal CR automorphisms of real analytic hypersurfaces (see [16] and the references therein) and is equivalent to the nonexistence of a holomorphic vector field with holomorphic coefficients tangent to (M', p'). We claim that it is easy to show that (I) \Rightarrow (II) \Rightarrow (III) \Rightarrow (IV) \Rightarrow (V) (only the implication (IV) \Rightarrow (V) is not straightforward, see Lemma 5.15 below for a proof). Finally, this stratification is the same, word by word, in higher codimension.

1.9. A general commentary. To confirm evidence of the strong differences between these five levels of nondegeneracy, let us point out a very clear fact: the immersive or finite local holomorphic maps $\varphi: (X, p) \to (Y, q)$ between complex manifolds with $\dim_C X \leq \dim_C Y$ are very rare in the set of maps of generic rank equal to $\dim_C X$, or even in the set of maps having maximal generic rank m over a submanifold $(Z, p) \subset (X, p)$ of positive dimension $m \geq 1$. Thus condition (V) is by far the most general. Furthermore, an important difference between (V) and the other conditions is that (V) is the only condition which is nonlocal, in the sense that it happens to be satisfied at every point if it is satisfied at a single point only, provided, of course, that (M', p') is connected. On the contrary, it is obvious that
the other four conditions are really local: even though they happen to be satisfied at one point, there exist in general many other points where they fail to be satisfied. In this concern, let us recall that any \((M', p')\) satisfying (V) must satisfy (II) locally – hence also (III) and (IV) – over a Zariski dense open subset of points of \((M', p')\) (this important fact is proved in [3]). Therefore, the points satisfying (III) but not (II), or (IV) but not (III), or (V) but not (IV), can appear to be more and more exceptional and rare from the point of view of a point moving at random in \((M', p')\), but however, from the point of view of local analytic geometry, which is the adequate viewpoint in this matter, they are more and more generic and general, in truth.

Remark. An important feature of the theory of CR manifolds is to propagate the properties of CR functions and CR maps along Segre chains, when \((M, p)\) is minimal, like iteration of jets [3], support of CR functions, etc. Based on this heuristic idea, and believing that the generic rank of the Segre morphism over a Segre variety is a propagating property, I have claimed in February 1999 that any real analytic \((M', p')\) which is minimal at \(p'\) happens to be holomorphically nondegenerate if and only if it is Segre nondegenerate at \(p'\). This is not true for a general \((M', p')\) as is shown for instance by an example from [4]: we take in \(\mathbb{C}^3\) equipped with affine coordinates \((z_1', z_2', z_3')\) (see Lemmas 3.3 and 5.15 for a checking):

\[
(1.10) \ M' : y_3' = |z_1'|^2[1 + z_1'\bar{z}_2'](1 + \text{Re}(z_1'\bar{z}_2'))^{-1} - z_3' \text{Im}(z_1'\bar{z}_2')(1 + \text{Re}(z_1'\bar{z}_2'))^{-1}.
\]

1.11. Summary of the proof. To the mapping \(h\), we will associate the so-called invariant reflection function \(R_h'(t, \bar{\nu}')\) as a \(\mathbb{C}\)-valued map of \((t, \bar{\nu}') \in (\mathbb{C}^n, p) \times (\mathbb{C}^n, \bar{p})\) which is a series a priori only formal in \(t\) and holomorphic in \(\bar{\nu}'\) (the interest of studying the reflection function without any nondegeneracy condition on \((M', p')\) has been pointed out for the first time by the author and Meylan in [11]). We prove in a first step that \(R_h'\) and all its jets with respect to \(t\) converge on the first Segre chain. Then using Artin’s approximation theorem [1] (the interest of this theorem of Artin for the subject has been pointed out by Derridj in 1985) and holomorphic nondegeneracy of \((M', p')\), we establish that the formal CR map \(h\) converges on the second Segre chain. Finally, the minimality of \((M, p)\) together with a theorem of Gabrielov reproved elementarily by Eakin and Harris [8] will both imply that \(h\) is convergent in a neighborhood of \(p\).

1.12. Closing remark. The first version of this preprint was achieved in December 1999 and then distributed to some specialists in the field in January 2000. The author decided not to submit the present work, essentially because he was seeking the same result in arbitrary codimension (afterwards, in the beginning of March 2000 he received the prepublication of the article [12], written meanwhile). Per chance, it appeared soon to the author that the main ideas of proof in §8 below were helpful to get a much stronger result. Thus, in a preprint achieved in late May 2000 and entitled Étude de la convergence de l’application de symétrie formelle (in French; arXiv.org/abs/math/0005290), the author actually proves that the formal reflection mapping associated with a formal CR equivalence between two arbitrary minimal CR-generic manifolds in \(\mathbb{C}^n\) of arbitrary codimension is convergent (it remains thus now to study the nonminimal case). In fact, it appears that a very slight modification of the techniques of the present paper yields this stronger result naturally: it suffices to make a direct application of the Artin approximation
Theorem 4.2 below to eqs (8.5) with formal solutions \(h(w, i\bar{\Theta}(w, \zeta, 0)) \) and then to proceed by induction, which we do not do here but do in the paper of May 2000. Thus, at the present time, the author believes that his present partial result of December 1999 has enough interest in itself to be made public. Further, the preprint of May borrows directly some background material to the present paper. To end up these comments, the author would like to mention that the inductive study of the jets of the formal CR map (or of the reflection mapping) that he strongly uses in his works was discovered by Baouendi-Ebenfelt-Rothschild in their study of the algebraicity of holomorphic mappings [3] and then transferred by them to formal CR maps in the fundamental article [2]. The known nontrivial open problem in the subject was to treat the holomorphically nondegenerate hypersurfaces to get an optimal sufficient condition of convergence.

\[\text{§2. Preliminaries and notations} \]

2.1. Defining equations. We shall identify any germ of a real analytic hypersurface, with a small representative of it. Thus, we shall assume constantly that we are given two small local real analytic manifold-pieces \((M, p)\) and \((M', p')\) of hypersurfaces in \(\mathbb{C}^n\) with centered points \(p \in M\) and \(p' \in M'\). We first choose local holomorphic coordinates \(t = (w, z) \in \mathbb{C}^{n-1} \times \mathbb{C}\), \(z = x + iy\) and \(t' = (w', z') \in \mathbb{C}^{n-1} \times \mathbb{C}\), \(z' = x' + iy'\), vanishing at \(p\) and at \(p'\) such that the tangent spaces to \(M\) and to \(M'\) at 0 are given by \(\{y = 0\}\) and by \(\{y' = 0\}\) in these coordinates. By this choice, we carry out (cf. [3]) the equations of \(M\) and of \(M'\) under the form

\[(2.2) \quad M: \quad z = \bar{z} + i\bar{\Theta}(w, \bar{w}, \bar{z}) \quad \text{and} \quad M': \quad z' = \bar{z}' + i\bar{\Theta}'(w', \bar{w}', \bar{z}'), \]

where the power series \(\Theta\) and \(\Theta'\) converge normally in \((2r\Delta)^{2n-1}\) for some small \(r > 0\). We denote by \(|t| := \sup_{1 \leq i \leq n} |t_i|\) the polydisc norm, so that \((2r\Delta)^{2n-1} = \{|w|, |\bar{w}|, |z| < 2r\}\). Here, if we denote by \(\tau := (\bar{t}') := (\zeta, \xi)\) the extrinsic complexification of the variable \(\bar{t}\), the equations of the complexified hypersurfaces \(M := M^c\) and \(M' := (M')^c\) are simply obtained by complexifying the eqs. (2.2):

\[(2.3) \quad M: \quad z = \xi + i\bar{\Theta}(w, \zeta, \xi) \quad \text{and} \quad M': \quad z' = \xi' + i\bar{\Theta}'(w', \zeta', \xi'). \]

As in [3], we shall assume for convenience that the coordinates \((w, z)\) and \((w', z')\) are normal, i.e. that they are already straightened in order that \(\Theta(\zeta, 0, z) \equiv 0\), \(\Theta(0, w, z) \equiv 0\) and \(\Theta(\zeta', 0, z') \equiv 0\), \(\Theta'(0, w', z') \equiv 0\). This implies in particular that the Segre varieties \(S_0 = \{(w, 0): |w| < 2r\}\) and \(S'_0 = \{(w', 0): |w'| < 2r\}\) are straightened to the complex tangent plane to \(M\) at 0 and that, if we develop \(\Theta\) and \(\Theta'\) with respect to powers of \(w\) and \(w'\), then we can write

\[(2.4) \quad z = \xi + i \sum_{\beta \in \mathbb{N}^{n-1}} w^\beta \bar{\Theta}_\beta(\zeta, \xi), \quad z' = \xi' + i \sum_{\beta \in \mathbb{N}^{n-1}} w'^\beta \bar{\Theta}'_\beta(\zeta', \xi'). \]

Here \(\mathbb{N}^{n-1} := \mathbb{N}^{n-1} \setminus \{0\}\), i.e. we mean that the two above sums begin with a \(w\) and \(w'\) exponent of positive length. It is now natural to set for notational convenience \(\Theta_0(\zeta, \xi) := \xi\) and \(\Theta'_0(\zeta', \xi') := \xi'\). Although normal coordinates are in principle unnecessary, the reduction to such normal coordinates will simplify a little the presentation of all our formal calculations below.
2.5. Complexification of the map. Now, the map h is by definition a n-vectorial formal power series $h(t) = (h_1(t), \ldots, h_n(t))$ where $h_j(t) \in \mathbb{C}[t]$, $h_j(0) = 0$ and
\[
det (\partial h_j/\partial t_k(0))_{1 \leq j,k \leq n} \neq 0,
\]
which means that h is formally invertible. This map yields by extrinsic complexification a map $h^\epsilon = h^\epsilon(t, \tau) = (h(t), h(\tau))$ between the two complexification $(\mathcal{M}, 0)$ and $(\mathcal{M}', 0)$. In other words, if we denote $h = (g, f) \in \mathbb{C}^{n-1} \times \mathbb{C}$ in accordance with the splitting of coordinates in the target space, the assumption that $h^\epsilon(\mathcal{M}) \subset \mathcal{F} \mathcal{M}'$ reads as two equivalent fundamental equations:
\[
\begin{aligned}
& f(w, z) = \bar{f}(\zeta, \xi) + i\Theta'(g(w, z), \bar{g}(\zeta, \xi), \bar{f}(\zeta, \xi)) \\
& f(w, z) = [f(w, z) - i\Theta'(g(w, z), g(w, z), f(w, z))]_{z = \zeta + i\Theta(w, \zeta, \xi)},
\end{aligned}
\]
after replacing ξ by $z - i\Theta(\zeta, w, z)$ in the first row and z by $\xi + i\Theta(w, z)$ in the second row. In fact, these (equivalent) identities must be interpreted as formal identities in the rings of formal power series $\mathbb{C}[\zeta, w, z]$ and $\mathbb{C}[w, \zeta, \xi]$ respectively.

2.7. Conjugate equations, vector fields and the reflection function. Let us also denote $r(t, \tau) := z - \zeta - i\Theta(w, \zeta, \xi)$, $\bar{r}(t, \tau) := \zeta - z + i\Theta(w, \zeta, \xi)$ and similarly $r'(t', \tau') := z' - \zeta' - i\Theta'(w', \zeta', \xi')$, $\bar{r}'(t', \tau') := \zeta' - z' + i\Theta'(\zeta', w', \zeta')$, so that $\mathcal{M} = \{(t, \tau): r(t, \tau) = 0\}$, $\mathcal{M}' = \{(t', \tau'): r'(t', \tau') = 0\}$ and the complexified Segre varieties are given by $\mathcal{S}_n = \{(t, \tau_p): r(t, \tau_p) = 0\} \subset \mathcal{M}$ for fixed τ_p, and $\mathcal{S}_{n}'_p = \{(t_p, \tau): r(t_p, \tau) = 0\} \subset \mathcal{M}$ for fixed t_p and similarly for $\mathcal{S}_{n}'_p$, $\mathcal{S}_{n}'_p$ (again, the reader is referred to [9] for a complete exposition of the geometry of complexified Segre varieties). Finally, let us introduce the $(n - 1)$ complexified $(1, 0)$ and $(0, 1)$ CR vector fields tangent to \mathcal{M}, that we will denote by $\mathcal{L} = (\mathcal{L}_1, \ldots, \mathcal{L}_{n-1})$ and $\mathcal{L}' = (\mathcal{L}_1, \ldots, \mathcal{L}_{n-1})$, and which can be given in symbolic vectorial notation by
\[
\mathcal{L} = \frac{\partial}{\partial w} + i\Theta_w(w, \zeta, \xi) \frac{\partial}{\partial z} \quad \text{and} \quad \mathcal{L}' = \frac{\partial}{\partial \zeta} - i\Theta_\zeta(w, \zeta, z) \frac{\partial}{\partial \xi}.
\]
The reflection function $\mathcal{R}'_t(t, \nu')$, $t \in \mathbb{C}^n$, $\nu' = (\bar{\lambda}', \bar{\mu}') \in \mathbb{C}^{n-1} \times \mathbb{C}$, will be by definition the formal power series
\[
\mathcal{R}'_t(t, \nu') = \mathcal{R}'_t(w, z, \bar{\lambda}', \bar{\mu}') = \bar{\mu}' - f(w, z) + i \sum_{\beta \in \mathbb{N}_0^{n-1}} \bar{\lambda}^\beta \Theta'_\beta(g(w, z), f(w, z)).
\]

We notice that this power series in fact belongs to the local “hybrid” ring $\mathbb{C}\{\nu'}[[t]]$.

§3. Minimality and holomorphic nondegeneracy

3.1. Two characterizations. At first, we need to remind the two explicit characterizations of each one of the main two assumptions of Theorem 1.2. Let M be a real analytic CR hypersurface given in normal coordinates (w, z) as above in eq. (2.2).

Lemma 3.2. ([3]) The following properties are equivalent:

(1) $\Theta(w, \zeta, 0) \neq 0$.
(2) $\frac{\partial^2}{\partial w^2}(w, \zeta, 0) \neq 0$.
(3) M is minimal at 0.
(4) The Segre variety S_0 is not contained in M.
(5) The holomorphic map $\mathbb{C}^{2n-2} \ni (w, \zeta) \mapsto (w, i\Theta(w, \zeta, 0)) \in \mathbb{C}^n$ has generic rank n.

Lemma 3.3. ([2,3,16]) If the coordinates \((w', z')\) are normal as above, then the real analytic hypersurface \(M'\) is holomorphically nondegenerate at 0 if and only if there exist \(\beta^1, \ldots, \beta^{n-1} \in \mathbb{N}^{n-1}_*, \beta^n := 0\), such that

\[
\det \left(\frac{\partial \Theta_j^{\mu}}{\partial \Theta_i^{\nu}} (w', z') \right)_{1 \leq i,j \leq n} \neq 0 \quad \text{in } \mathbb{C}\{w', z'\}.
\]

Remark. Since for \(\beta = 0\), we have \(\Theta'_0(t') = z'\), we see that (3.4) holds if and only if

\[
\det \left(\frac{\partial \Theta'_j^{\mu}}{\partial \Theta_i^{\nu}} (w', z') \right)_{1 \leq i,j \leq n-1} \neq 0. \quad \text{Further, we can precise the other classical nondegeneracy conditions (I), (II) and (III) of §1 (for condition (IV), see Lemma 5.15):}
\]

Lemma 3.5. The following concrete characterizations hold in normal coordinates:

1. \(M'\) is Levi nondegenerate at 0 if and only if the map \(w' \mapsto (\Theta_{\beta}(w',0))_{|\beta|=1}\) is immersive at 0.
2. \(M'\) is finitely nondegenerate at 0 if and only if there exists \(k_0 \in \mathbb{N}_*\) such that the map \(w' \mapsto (\Theta_{\beta}(w',0))_{|\beta| \leq k_0}\) is immersive at 0 for all \(k \geq k_0\).
3. \(M'\) is essentially finite at 0 if and only if there exists \(k_0 \in \mathbb{N}_*\) such that the map \(w' \mapsto (\Theta_{\beta}(w',0))_{|\beta| \leq k_0}\) is finite at 0 for all \(k \geq k_0\).

3.6. Switch of the assumptions. It is now easy to observe that the nondegeneracy conditions upon \(M\) transfer to \(M'\) through \(h\) and vice versa.

Lemma 3.7. Let \(h: (M, 0) \to (M', 0)\) be a formal invertible CR map between two real analytic hypersurfaces. Then

1. \((M, 0)\) is minimal if and only if \((M', 0)\) is minimal.
2. \((M, 0)\) is holomorphically nondegenerate if and only if \((M', 0)\) is holomorphically nondegenerate.

Proof. We omit in the proof that minimality and holomorphic nondegeneracy are biholomorphically invariant properties. Let \(N \in \mathbb{N}_*\) be arbitrary. Since \(h\) is invertible, after composing \(h\) with a biholomorphic and polynomial mapping \(\Phi: (M', 0) \to (M'', 0)\) which cancels low order terms in the Taylor series \(\Phi(h(t)) = \sum_{\gamma \in \mathbb{N}^{n-1}_*} h_{\gamma} t^\gamma\), we can achieve that \(h(t) = t + O(|t|^N)\). Since the coordinates for \((M'', 0)\) may be nonnormal, we must compose \(\Phi \circ h\) with a biholomorphism \(\Psi: (M'', 0) \to (M''', 0)\) which straightens the real analytic Levi-flat union of Segre varieties \(\bigcup_{|x| \leq r} S^\gamma_{\gamma(0,x)}\) into the real hyperplane \(\{y'' = 0\}\) (this is how one constructs normal coordinates). One can verify that \(\Psi(t) = t + O(|t|^N)\) also. Then all terms of degree \(\leq N\) in the power series of \(\Theta'''\) coincide with those of \(\Theta\). Each one of the two characterizing properties (1) of Lemma 3.2 and (3.4) of Lemma 3.3 is therefore satisfied by \(\Theta\) if and only if it is satisfied by \(\Theta'''\). \(\square\)

§4. Formal versus analytic

4.1. Approximation theorem. We collect here some useful statements from local analytic geometry that we will repeatedly apply in the article. One of the essential arguments in the proof of the main Theorem 2.1 rests on the existence of analytic solutions arbitrarily close in the Krull topology to formal solutions of some analytic equations, a fact which is known as Artin’s approximation theorem.

Let \(m(w)\) denote the maximal ideal of the local ring \(\mathbb{C}[w]\) of formal power series.
in \(w \in \mathbb{C}^n, n \in \mathbb{N}_* \). Here is the first of our three fundamental tools, which will be used to get the Cauchy estimates proving that the reflection function converges on the first Segre chain (see Lemma 6.6).

Theorem 4.2. (Artin [1]) Let \(R(w, y) = 0, R = (R_1, \ldots, R_J), \) where \(w \in \mathbb{C}^n, y \in \mathbb{C}^m, R_j \in \mathbb{C}\{w, y\}, R_j(0) = 0, \) be a converging system of holomorphic equations. Suppose \(\hat{g}(w) = (\hat{g}_1(w), \ldots, \hat{g}_m(w)) \), \(\hat{g}_k(w) \in \mathbb{C}[w], \hat{g}_k(0) = 0, \) are formal power series which solve \(R(w, \hat{g}(w)) \equiv 0 \) in \(\mathbb{C}[w] \). Then for every integer \(N \in \mathbb{N}_* \), there exists a convergent series solution \(g(w) = (g_1(w), \ldots, g_m(w)) \), i.e. satisfying \(R(w, g(w)) \equiv 0 \), such that \(g(w) \equiv \hat{g}(w) \pmod{m(w)^N} \).

4.3. Formal implies convergent: first recipe. The second tool will be used to prove that \(h \) is convergent on the second Segre chain, i.e. that \(h(w, i\Theta(\zeta, w, 0)) \in \mathbb{C}\{w, \zeta\} \) (see §8).

Theorem 4.4. Let \(R(w, y) = 0, \) where \(R = (R_1, \ldots, R_J), w \in \mathbb{C}^n, y \in \mathbb{C}^m, R_j \in \mathbb{C}\{w, y\}, R_j(0) = 0, \) be a system of holomorphic equations. Suppose that \(\hat{g}(w) = (\hat{g}_1(w), \ldots, \hat{g}_m(w)) \in \mathbb{C}[w]^m, \hat{g}_k(0) = 0 \) are formal power series solving \(R(w, \hat{g}(w)) \equiv 0 \) in \(\mathbb{C}[w] \). If \(J \geq m \) and if there exist \(j_1, \ldots, j_m \) with \(1 \leq j_1 < j_2 < \cdots < j_m \leq J \) such that

\[
\det \left(\frac{\partial R_{jk}}{\partial y_l}(w, \hat{g}(w)) \right)_{1 \leq k, l \leq m} \neq 0 \quad \text{in} \quad \mathbb{C}[w],
\]

then the formal power series \(\hat{g}(w) \in \mathbb{C}\{w\} \) is in fact already convergent.

Remark. This theorem is a direct corollary of Artin’s Theorem 4.2. The reader can find an elementary proof of it for instance in §12 of [10].

4.6. Formal implies convergent: second recipe. The third statement will be applied to the canonical map of the second Segre chain, namely to the map \((w, \zeta) \mapsto (w, i\Theta(\zeta, w, 0)) \), which is of generic rank \(n \) by Lemma 3.2 (5).

Theorem 4.7. (§8) Let \(a(y) \in \mathbb{C}[y], y \in \mathbb{C}^\nu, a(0) = 0, \) be a formal power series and assume that there exists a local holomorphic map \(\varphi: (\mathbb{C}_x^\nu, 0) \rightarrow (\mathbb{C}_y^\nu, 0), \) of maximal generic rank \(\mu, \) i.e. satisfying

\[
\exists j_1, \ldots, j_\mu, 1 \leq j_1 < \cdots < j_\mu \leq \nu, \text{ s.t. } \det \left(\frac{\partial^2 \varphi_k}{\partial x_{j_l}}(x) \right)_{1 \leq k, l \leq \mu} \neq 0,
\]

and such that \(a(\varphi(x)) \in \mathbb{C}\{x\} \) is convergent. Then \(a(y) \in \mathbb{C}\{y\} \) is convergent.

4.9. Application. We can now give an important application of Theorem 4.2: the Cauchy estimates for the convergence of the reflection function come for free after one knows that all the formal power series \(\Theta'_\beta(h(w, z)) \in \mathbb{C}[w, z] \) are convergent.

Lemma 4.10. Assume that \(h: (M, 0) \rightarrow (M', 0) \) is a formal invertible CR mapping and that \(M' \) is holomorphically nondegenerate. Then the following properties are equivalent:

1. \(h(w, z) \in \mathbb{C}\{w, z\}^n. \)
2. \(R^2_{\beta}(w, z, \bar{z}, \bar{\mu}) \in \mathbb{C}\{w, z, \bar{z}, \bar{\mu}\}. \)
3. \(\Theta'_\beta(h(w, z)) \in \mathbb{C}\{w, z\}, \forall \beta \in \mathbb{N}^{n-1} \text{ and } \exists \varepsilon > 0 \exists C > 0 \text{ such that } \left| \Theta'_\beta(h(w, z)) \right| \leq C^{|\beta|+1}, \forall |(w, z)| < \varepsilon \) and all \(\beta \in \mathbb{N}^{n-1}. \)
4. \(\Theta'_\beta(h(w, z)) \in \mathbb{C}\{w, z\}, \forall \beta \in \mathbb{N}^{n-1}. \)
\textbf{Proof.} The implications (1) \(\Rightarrow\) (2) \(\Rightarrow\) (3) \(\Rightarrow\) (4) are straightforward. On the other hand, consider the implication (4) \(\Rightarrow\) (1). By assumption, there exist convergent power series \(\varphi_{\beta}(w, z) \in \mathbb{C}[w, z]\) such that \(\Theta_{\beta}(h(w, z)) \equiv \varphi_{\beta}(w, z)\) in \(\mathbb{C}[w, z]\). It then follows that \(h(t)\) is convergent by an application of Theorem 4.4 with \(R_{n}(t, t) := z' - \varphi_{\beta}(t)\) and \(R_{i}(t, t') := \Theta_{\beta}'(t') - \varphi_{\beta}'(t), 1 \leq i \leq n - 1\) and where the multiindices \(\beta^{1}, \ldots, \beta^{n-1}\) are chosen as in Lemma 3.3 (use the property \(\det(\partial_{h}(0))_{1 \leq j, k \leq n} \neq 0\) and the composition formula for Jacobian matrices to check (4.5)).

\textit{Proof of Proposition 1.5.} Let \(\varphi' : (t', u') \mapsto \exp(u'L')(t') = \varphi'(t', u')\) be the local flow of the holomorphic vector field \(L' = \sum_{k=1}^{n} \alpha_{k}(t') \partial/\partial t_{k}\) tangent to \(M'\). Of course, this flow is holomorphic with respect to \(t' \in \mathbb{C}^{n}\) and \(u' \in \mathbb{C}\), for \(|t'|, |u'| \leq \varepsilon, \varepsilon > 0\). This flow satisfies \(\varphi'(t', 0) = t'\) and \(\partial_{u'} \varphi_{k}'(t', u') = \alpha_{k}'(\varphi'(t', u'))\). As \(L' \neq 0\), we have \(\partial_{u'} \varphi_{k}'(t', u') \neq 0\). We can assume that \(\partial_{u'} \varphi_{k}'(t', u') \neq 0\). Let \(w'(t') \in \mathbb{C}[t']\) such that \(w(0) = 0\), be a nonconvergent formal power series which satisfies further \(\partial_{u'} \varphi_{k}'(t', w'(t')) \neq 0\) in \(\mathbb{C}[t']\) (there exist many of such). If the formal power series \(h^{2} : t' \mapsto x_{\varphi'}(t', w'(t'))\) would be convergent, then \(t' \mapsto x_{w'}(t')\) would also be convergent, because of Theorem 4.4, contrarily to the choice of \(w'\). Finally, \(L'\) being tangent to \((M', 0)\), it is clear that \(h^{2}(M', 0) \subset\subset (M', 0)\).

\section{5. Classical reflection identities}

\textbf{5.1. The fundamental identities.} In this paragraph, we start up the proof of our main Theorem 1.2 by deriving the classical reflection identities. Thus let \(\beta \in \mathbb{N}_{n-1}^{n}\). By \(\gamma \leq \beta\), we shall mean \(\gamma_{1} \leq \beta_{1}, \ldots, \gamma_{n-1} \leq \beta_{n-1}\). Denote \(|\beta| := \beta_{1} + \cdots + \beta_{n-1}\) and \(\mathcal{L}_{\beta} := \mathcal{L}_{\beta_{1}} \cdots \mathcal{L}_{\beta_{n-1}}\). Then applying all these derivations of any order (i.e. for each \(\beta \in \mathbb{N}^{n-1}\)) to the identity \(t(\bar{h}(\tau), h(t))\), i.e. to

\(\begin{align*}
\tilde{f}(\zeta, \xi) & \equiv f(w, z) - i \sum_{\gamma \in \mathbb{N}_{n-1}^{n}} \tilde{g}(\zeta, \xi)^{\gamma} \Theta'_{\gamma}(g(w, z), f(w, z)),
\end{align*}\)

as \((w, z, \zeta, \xi) \in \mathcal{M}\), it is well-known that we obtain an infinite family of formal identities that we recollect here in an independent technical statement (for the proof, see [3,10]).

\textbf{Lemma 5.3.} Let \(h : (M, 0) \rightarrow (M', 0)\) be a formal invertible CR mapping between \(\mathcal{C}^{\infty}\) hypersurfaces in \(\mathbb{C}^{n}\). Then for every \(\beta \in \mathbb{N}_{n-1}^{n}\), there exists a collection of universal polynomial \(u_{\beta, \gamma}, |\gamma| \leq |\beta|\) in \((n-1)N_{n-1, |\beta|}\) variables, where \(N_{k, j} := \frac{k^{j}}{j!}\) and there exist holomorphic \(\mathbb{C}\)-valued functions \(\Omega_{\beta}\) in \((2n - 1 + nN_{n, |\beta|})\) variables near 0 \(\times 0 \times 0 \times (\partial_{\zeta}^{1} \partial_{\xi}^{1} \tilde{h}(0))_{|\alpha_{1} + |\gamma_{1}| \leq |\beta|}\) in \(\mathbb{C}^{n-1} \times \mathbb{C}^{n-1} \times \mathbb{C} \times \mathbb{C}^{nN_{n, |\beta|}}\) such that the following identities

\(\begin{align*}
&\left\{ \begin{array}{l}
\frac{1}{|\beta|} \partial_{\zeta}^{\beta} \Theta'(\tilde{g}(\zeta, \xi), g(w, z), f(w, z)) = \\
\Theta'_{\beta}(g(w, z), f(w, z)) + \sum_{\gamma \in \mathbb{N}_{n-1}^{n}} \frac{\beta + \gamma}{\beta! \gamma!} \tilde{g}(\zeta, \xi)^{\gamma} \Theta'_{\beta+\gamma}(g(w, z), f(w, z))
\end{array} \right.
\end{align*}\)

\(\begin{align*}
= \sum_{|\gamma| \leq |\beta|} \mathcal{L}_{\gamma} \tilde{f}(\zeta, \xi) u_{\beta, \gamma}(\mathcal{L}_{\rho}^{1} \tilde{g}(\zeta, \xi), |\beta| \leq |\beta|) \\
\quad \frac{\Delta(w, \zeta, \xi)^{2|\beta|--1}}{2|\beta|}
\end{align*}\)

\(\begin{align*}
= \Omega_{\beta}(w, \zeta, \xi, (\partial_{\zeta}^{1} \partial_{\xi}^{1} \tilde{h}(\zeta, \xi))_{|\alpha_{1} + |\gamma_{1}| \leq |\beta|})
\end{align*}\)

as \((w, z, \zeta, \xi) \in \mathcal{M}\), it is well-known that we obtain an infinite family of formal identities that we recollect here in an independent technical statement (for the proof, see [3,10]).
hold as formal power series in \(\mathbb{C}[w, z, \zeta, \xi] \), where

\[
\Delta(w, z, \zeta, \xi) = \Delta(w, z, \zeta, \xi)|_{z=\xi+i\theta(w, z, \zeta, \xi)} := \det(\mathcal{L}g) = \det \left(\frac{\partial \tilde{g}}{\partial \zeta}(\zeta, \xi) - i\Theta(\zeta, w, z) \frac{\partial \tilde{g}}{\partial \xi}(\zeta, \xi) \right) |_{z=\xi+i\theta(w, z, \zeta, \xi)}.
\]

(5.5)

Remark. The terms \(\Omega_{\beta} \), holomorphic in their variables, arise after writing \(\mathcal{L}^\beta \tilde{h}(\zeta, \xi) \) as \(\chi(\{ w = 0 \}) \subset \{ w' = 0 \} \) as \(h \) is invertible, then it holds \(\det(\mathcal{L}g(0)) = \det(\partial g_j/\partial w_k(0))_{1 \leq j, k \leq n-1} \neq 0 \) also, whence the rational term \(1/\Delta^{2|\beta|-1} \in \mathbb{C}[w, z, \zeta, \xi] \) defines a true formal power series at the origin. Putting now \((\zeta, \xi) = (0, 0) \) in eqs. (5.5) and shrinking \(r \) if necessary, we then readily observe that \(\Delta^{1-2|\beta|}(w, 0, 0) \in \mathcal{O}((r\Delta)^{n-1}, \mathbb{C}) \), since \(\Theta(0, w, 0) \in \mathcal{O}(r\Delta)^{n-1}, \mathbb{C} \) and since the terms \(\partial^2 \tilde{g}(0, 0) \) for \(|\gamma| = 1 \) and \(\partial^2 \tilde{g}(0, 0) \) are constants. Clearly, the numerator in the middle identity (5.4) is also convergent in \((r\Delta)^{n-1} \) after putting \((\zeta, \xi) = (0, 0) \), and we deduce finally the following important property:

\[
(5.7) \quad \Omega_{\beta}(w, 0, 0, (\partial^2 \tilde{g}(0, 0)) |_{\alpha^* + |\gamma| \leq |\beta|}) \in \mathcal{O}((r\Delta)^{n-1}, \mathbb{C}),
\]

for all \(\beta \in \mathbb{N}^{n-1} \). In other words, the domains of convergence of the \(\omega_{\beta}(w, 0, 0) \) are independent of \(\beta \).

5.6. Convergence over a uniform domain. From this lemma which we have written down in the most explicit way, we deduce the following useful observations. First, as we have by the formal stabilization of Segre varieties \(h(\{ w = 0 \}) \subset \{ w' = 0 \} \) and as \(h \) is invertible, then it holds \(\det(\mathcal{L}g(0)) = \det(\partial g_j/\partial w_k(0))_{1 \leq j, k \leq n-1} \neq 0 \) also, whence the rational term \(1/\Delta^{2|\beta|-1} \in \mathbb{C}[w, z, \zeta, \xi] \) defines a true formal power series at the origin. Putting now \((\zeta, \xi) = (0, 0) \) in eqs. (5.5) and shrinking \(r \) if necessary, we then readily observe that \(\Delta^{1-2|\beta|}(w, 0, 0) \in \mathcal{O}((r\Delta)^{n-1}, \mathbb{C}) \), since \(\Theta(0, w, 0) \in \mathcal{O}(r\Delta)^{n-1}, \mathbb{C} \) and since the terms \(\partial^2 \tilde{g}(0, 0) \) for \(|\gamma| = 1 \) and \(\partial^2 \tilde{g}(0, 0) \) are constants. Clearly, the numerator in the middle identity (5.4) is also convergent in \((r\Delta)^{n-1} \) after putting \((\zeta, \xi) = (0, 0) \), and we deduce finally the following important property:

\[
(5.7) \quad \Omega_{\beta}(w, 0, 0, (\partial^2 \tilde{g}(0, 0)) |_{\alpha^* + |\gamma| \leq |\beta|}) \in \mathcal{O}((r\Delta)^{n-1}, \mathbb{C}),
\]

for all \(\beta \in \mathbb{N}^{n-1} \). In other words, the domains of convergence of the \(\omega_{\beta}(w, 0, 0) \) are independent of \(\beta \).

5.8. Conjugate reflection identities. On the other hand, applying the same derivations \(\mathcal{L}^\beta \)'s to the conjugate identity \(r'(\tilde{h}(t), \tilde{h}(\tau)) = 0 \), we would get another family of what we shall call *conjugate reflection identities*:

\[
(5.9) \quad 0 = \mathcal{L}^\beta f(\zeta, \xi) + i \sum_{\gamma \in \mathbb{N}^{n-1}} g(w, z)^\gamma \mathcal{L}^\beta (\Theta' g(\zeta, \xi), f(\zeta, \xi)).
\]

But these equations furnish essentially no more information for the reflection principle, because:

Lemma 5.10. If \((t, \tau) \in \mathcal{M} \), then

\[
(5.11) \quad \left\langle \mathcal{L}^\beta(r'(\tilde{h}(t), \tilde{h}(\tau))) = 0, \forall \beta \in \mathbb{N}^{n-1} \right\rangle \iff \left\langle \mathcal{L}^\beta(r' g(\zeta, \xi), h(t)) = 0, \forall \beta \in \mathbb{N}^{n-1} \right\rangle.
\]

Proof. As the two equations for \(\mathcal{M}' \) are equivalent, there exists an invertible formal series \(\alpha(t, \tau) \) such that \(r'(\tilde{h}(t), \tilde{h}(\tau)) \equiv \alpha(t, \tau) r'(\tilde{h}(\tau), \tilde{h}(t)) \). Thus

\[
(5.12) \quad \left\langle \mathcal{L}^\beta(r'(\tilde{h}(t), \tilde{h}(\tau))) \right\rangle \equiv \alpha(t, \tau) \mathcal{L}^\beta(r'(\tilde{h}(\tau), \tilde{h}(t)) \right\rangle + \sum_{\gamma \leq \beta, \gamma \neq \beta} \alpha^\gamma(t, \tau) \mathcal{L}^\gamma(r'(\tilde{h}(\tau), \tilde{h}(t))),
\]

for some formal series \(\alpha^\gamma(t, \tau) \) depending on the derivatives of \(\alpha(t, \tau) \). The implication \(\Leftarrow \) follows at once and the reverse implication is totally similar. \(\square \)
5.13. Heuristics. Nevertheless, in the last step of the proof of our main
Theorem 1.2, the equations (5.9) above will be of crucial use, in place of the equations (5.4) which will happen to be unusable. The explanation is the following.
Whereas the jets \((\partial_x \partial_{\bar{\xi}} h(\xi, \bar{\xi}))_{|\alpha|+|\gamma| \leq |\beta|}\) of the mapping \(h\) cannot be seen directly to be convergent on the first Segre chain \(S_0^1 := \{(w,0)\}\), a convergence which would be a necessary fact to be able to use formula (5.4) again in order to pass from the first to the second Segre chain \(S_0^2 := \{(w,i\Theta(w,\zeta,0))\}\) it will be possible – fortunately! – to show in §7 below that the jets of the reflection function \(R'_h\) itself converge on the first Segre chain, namely that all the derivatives \(\xi'^{\beta}(\tilde{\Theta}_r^0(\tilde{g}(\xi,\bar{\xi}),\tilde{f}(\xi,\bar{\xi})))\), restricted to the conjugate first Segre chain \(S_0^1 = \{(\zeta,0)\}\), converge. In summary, we will only be able a priori to show that the jets of \(R'_h\) converge on the first Segre chain, and thus only the equations (5.9) will be usable in the next step, but not the classical reflection identities (5.4). This shows immediately why the conjugate reflection identities (5.9) should be undertaken naturally in this context.

5.14. The Segre-nondegenerate case. Nonetheless, in the Segre-nondegenerate case, which is less general than the holomorphically nondegenerate case, we have been able to show directly that the jets of \(h\) converge on the first Segre chain (see [10]), and so on by induction, without using conjugate reflection identities. The explanation is simple: in the Segre nondegenerate case, we have first the following characterization, which shows that we can separate the \(w'\) variables from the \(z'\) variable:

Lemma 5.15. The \(C^\infty\) hypersurface \(M'\), given in normal coordinates \((w',z')\), is Segre-nondegenerate at 0 if and only if there exist \(\beta^1,\ldots,\beta^{n-1} \in \mathbb{N}^{n-1}\) such that

\[
(5.16) \quad \text{det} \left(\frac{\partial \Theta^i_{|\beta|}}{\partial w^j}(w',0) \right)_{1 \leq i,j \leq n-1} \neq 0 \quad \text{in } \mathbb{C}\{w'\}.
\]

Also, \(M'\) is holomorphically nondegenerate at 0 if it is Segre nondegenerate at 0.

Proof. In our normal coordinates, it follows that \(S_{p'} = S_0^1 = \{(w',0,0,0)\}\) and \(\varphi_k|_{S_0^1} \equiv w' \mapsto (\{\Theta^i_{\beta}(w',0)\})_{|\beta| \leq k}\), whence the rephrasing (5.16) of definition (IV).

As we can take \(\beta^0 = 0\) in (3.4) above, we see that the determinant of (3.4) does not vanish if (5.16) holds. This proves the promised implication \((IV) \Rightarrow (V)\). □

Thanks to this characterization, we can delineate an analog to Lemma 4.10, whose proof goes exactly the same way:

Lemma 5.17. Assume that \(h\) is invertible, that \(M\) is given in normal coordinates 2.1 and that \(M'\) is Segre nondegenerate. Then the following properties are equivalent

1. \(h(w,0) \in \mathbb{C}\{w\}\).
2. \(R'_h(w,0) \in \mathbb{C}\{w,\tilde{\lambda},\tilde{\mu}\}\).
3. \(\Theta^i_{|\beta|}(h(w,0)) \in \mathbb{C}\{w\}\), \(\forall \beta \in \mathbb{N}^{n-1}\) and \(\exists \varepsilon > 0 \exists C > 0 \text{ such that } |\Theta^i_{|\beta|}(h(w,0))| \leq C|\beta|^{+1}, \forall |w| < \varepsilon\) \(\forall \beta \in \mathbb{N}^{n-1}\).
4. \(\Theta^i_{|\beta|}(h(w,0)) \in \mathbb{C}\{w\}, \forall \beta \in \mathbb{N}^{n-1}\).

5.18. Comment. In conclusion, in the Segre nondegenerate case (only) the convergence of all the components \(\Theta^i_{|\beta|}(h)\) of the reflection mapping after restriction to the Segre variety \(S_0 = \{(w,0)\}\) is equivalent to the convergence of all the components
of \(h \). The same property holds for jets. Thus, in the Segre nondegenerate case, one can use the classical reflection identities (5.4) (in which appear the jets of \(\tilde{h} \), see \(\Omega_2 \)) by induction on the Segre chains [10]. This is not so in the general holomorphically nondegenerate case, because it can happen that (3.4) holds whereas (5.16) does not hold, as shows the example (1.10). In substance, one has therefore to use the conjugate reflection identities. Now, the proof of our main Theorem 1.2 will be subdivided in three steps, which will be achieved in §6, §7 and §8 below.

§6. Convergence of the reflection function on \(S_0^1 \)

6.1. Examination of the reflection identities. The purpose of this paragraph is to prove as a first step that the reflection function \(R_h^\beta \) converges on the first Segre chain \(S_0 = \{(w,0)\} \) or more precisely:

Lemma 6.2. After perhaps shrinking the radius \(r > 0 \) of (5.7), the formal power series \(R_h^\beta(w,0,\bar{\lambda}',\mu') \) is holomorphic in \((r\Delta)^{n-1} \times \{0\} \times (r\Delta)^n\).

Proof. We specify the infinite family of identities (5.2) (for \(\beta = 0 \)) and (5.4) (for \(\beta \in \mathbb{N}_0^{n-1} \)) on \(S_0 \), to obtain first that \(f(w,0) \equiv 0 \in \mathbb{C}\{w\} \) and that for all \(\beta \in \mathbb{N}_0^{n-1} \)

\[
(6.3) \quad \Theta_{\beta}(g(w,0),f(w,0)) \equiv \Omega_{\beta}(w,0,0, (\partial^0_{\xi} \partial^1_{\zeta} \tilde{h}(0,0)))_{|\alpha|+|\gamma|+1 \leq |\beta|} \in \mathbb{C}\{w\}.
\]

Furthermore, since by (5.7) the \(\Omega_{\beta} \)'s converge for \(|w| < r \) and \(\zeta = \xi = 0 \), we have got \(\Theta_{\beta}(g(w,0),f(w,0)) \in \mathcal{O}((r\Delta)^{n-1},\mathbb{C}), \forall \beta \in \mathbb{N}^{n-1} \). It remains to establish a Cauchy estimate like in (3) of Lemma 5.17. To this aim, we introduce some notation. We set \(\varphi_{\beta}(w,z) := f(w,z) \) and \(\varphi_{\beta}'(w,z) := \Theta_{\beta}(g(w,z),f(w,z)) \) for all \(\beta \in \mathbb{N}_0^{n-1} \). By (6.3), we already know that all the series \(\varphi_{\beta}'(w,0) \) is holomorphic in \(\{|w| < r\} \). Thus, in order to prove that the reflection function restricted to the first Segre chain, namely that the series \(R_h^\beta|_{S_0} = \mu' + i \sum_{\beta \in \mathbb{N}_0^{n-1}} \bar{\lambda}'^\beta \varphi_{\beta}'(w,0) \) is convergent with respect to all its variables, we must establish a crucial assertion.

Lemma 6.4. After perhaps shrinking \(r > 0 \), there exists a constant \(C > 0 \) with

\[
(6.5) \quad |\varphi_{\beta}'(w,0)| \leq C^{|eta|+1}, \quad \forall \ |w| < r, \forall \beta \in \mathbb{N}^{n-1}.
\]

Proof. Actually, this Cauchy estimate will follow, by construction, from eq. (6.3) and from the property \(|\Theta_{\beta}(w',z')| \leq C^{|eta|+1} \) when \((w',z')\) satisfy \(|(w',z')| < r'\) (the natural Cauchy estimate for \(\Theta' \)), once we have proved the following independent and important proposition, which is a rather direct application Artin's approximation Theorem 4.2: \(\square \)

Lemma 6.6. Let \(w \in \mathbb{C}^n, \mu, \lambda(w) \in \mathbb{C}[w]^\nu, \lambda(0) = 0, \nu \in \mathbb{N}_*, \) and let \(\Xi_{\beta}(w,\lambda) \in \mathbb{C}\{w,\lambda\}, \Xi_{\beta}(0,0) = 0, \beta \in \mathbb{N}^{m}, m \in \mathbb{N}_*, \) be a collection of holomorphic functions satisfying

\[
(6.7) \quad \exists \ r > 0 \ \exists \ C > 0 \ \ s.t. \ |\Xi_{\beta}(w,\lambda)| \leq C^{|eta|+1}, \ \forall \beta \in \mathbb{N}^{m}, \forall \ |(w,\lambda)| < r.
\]

Assume that \(\Xi_{\beta}(w,\lambda(w)) \in \mathcal{O}((r\Delta)^{m},\mathbb{C}), \forall \beta \in \mathbb{N}^{m} \) and put \(\Phi_{\beta}(w) := \Xi_{\beta}(w,\lambda(w)) \). Then the following Cauchy inequalities are satisfied by the \(\Phi_{\beta} \)'s:

\[
(6.8) \quad \exists \ r_1 \leq r, \exists \ C_1 > 0 \ s.t. \ |\Phi_{\beta}(w)| \leq C_1^{|eta|+1}, \forall \beta \in \mathbb{N}^{m}, \forall \ |w| < r_1.
\]
ON THE CONVERGENCE OF FORMAL CR MAPS BETWEEN HYPERSURFACES 13

Proof. We set \(R_\beta(w, \lambda) := \Xi_\beta(w, \lambda) - \Phi_\beta(w) \). Then \(R_\beta \in \mathcal{O}(\{(w, \lambda) | < r\}, \mathbb{C}) \). By noetherianity, we can assume that a finite subfamily \((R_\beta)_{\beta \in \mathbb{N}^m}\), for some \(\kappa_0 \in \mathbb{N} \), large enough. Applying now Theorem 4.2 to the collection of equations \(R_\beta(w, \lambda) = 0, |\beta| \leq \kappa_0 \), of which a formal solution \(\lambda(w) \) exists by assumption, we get that there exists a convergent solution \(\lambda_1(w) \in \mathbb{C}\{w\}\) vanishing at the origin, i.e. some \(\lambda_1(w) \in \mathcal{O}((r_1 \Delta)^\mu, \mathbb{C}^\nu) \), for some \(0 < r_1 \leq r \), with \(\lambda_1(0) = 0 \), which satisfies \(R_\beta(w, \lambda_1(w)) = 0, \forall |\beta| \leq \kappa_0 \). This implies that \(R_\beta(w, \lambda_1(w)) \equiv 0, \forall \beta \in \mathbb{N}^m \). Now, we have obtained

\[
\Xi_\beta(w, \lambda(w)) \equiv \Phi_\beta(w) \equiv \Xi_\beta(w, \lambda_1(w)), \quad \forall \beta \in \mathbb{N}^m.
\]

The composition formula for analytic function then yields at once \(|\Xi_\beta(w, \lambda_1(w))| \leq C_1^{1|\beta|+1} |w| < r_1 \), after perharps shrinking once more this positive number \(r_1 \) in order that \(|\lambda_1(w)| < r/2 \) if \(|w| < r_1 \). Thanks to eq. (6.9), this gives the desired inequality for \(\Phi_\beta(w) \). The Proof of Lemmas 6.7 and 6.2 are thus complete now. \(\square \)

§7. CONVERGENCE OF THE JETS OF THE REFLECTION FUNCTION ON \(S^1_0 \)

7.1. Transversal differentiation of the reflection identities. The next step in our proof consists in showing that all the jets of the reflection function converge on the first Segre chain \(S^1_0 \), or more precisely:

Lemma 7.2. For all \(\alpha \in \mathbb{N} \) and all \(\gamma \in \mathbb{N}^{n-1} \), we have

\[
[\partial_\xi^\alpha \partial_\eta^\gamma \mathcal{R}_h(w, z, \lambda, \mu)]|_{z=0} \in \mathbb{C}\{w, \lambda, \mu\}.
\]

Equivalently, \(\forall \alpha \in \mathbb{N}, \forall \gamma \in \mathbb{N}^{n-1}, \exists r(\alpha, \gamma) > 0, \exists C(\alpha, \gamma) > 0 \) such that

\[
[\partial_\xi^\alpha \partial_\eta^\gamma \mathcal{R}_\beta(w, z)]|_{z=0} \leq C(\alpha, \gamma)|\beta|+1 \quad \text{if} \quad |w| < r(\alpha, \gamma), \quad \forall \beta \in \mathbb{N}^n.
\]

Remark. Fortunately, the fact that \(r(\alpha, \gamma) \) depends on \(\alpha \) and \(\gamma \) will cause no particular obstruction for the achievement of the last third step in §8 below. We believe however that this dependence should be avoided, but we get no immediate control of \(r(\alpha, \gamma) \) as \(\alpha + |\gamma| \to \infty \), in our proof - although it can be seen by induction that \([\partial_\xi^\alpha \partial_\eta^\gamma \mathcal{R}_\beta(w, z)]|_{z=0} \in \mathcal{O}((\Delta)^{n-1}, \mathbb{C}) \) (cf. the proof of Lemma 7.2 below).

Proof. If we denote by \(\mathcal{E}_{\alpha, \gamma} \) the statement of the lemma, then it is clear that

\[
\mathcal{E}_{\alpha, 0} \Rightarrow (\mathcal{E}_{\alpha, \gamma} \quad \forall \gamma \in \mathbb{N}^{n-1}).
\]

It suffices therefore to establish the truth of \(\mathcal{E}_{\alpha, 0} \) for all \(\alpha \in \mathbb{N} \). Let us first establish that \(\partial_\xi^\alpha|_{z=0}[\varphi_\beta(w, z)] \in \mathcal{O}((\Delta)^{n-1}, \mathbb{C}) \), \(\forall \alpha \in \mathbb{N}, \forall \beta \in \mathbb{N}^n \). To this aim, we specify the variables \((w, z, \zeta, \xi) := (w, z, 0, z) \in \mathcal{M} \) (because \(\Theta(0, w, z) \equiv 0 \) in the equations (5.2) and (5.4) to obtain firstly

\[
\tilde{f}(0, z) \equiv f(w, z) - i \sum_{\gamma \in \mathbb{N}^{n-1}} \tilde{g}(0, z)^\gamma \Theta'_\gamma(g(w, z), f(w, z))
\]

and secondly the following infinite number of relations:

\[
\left\{ \begin{array}{l}
\Omega_\xi(w, 0, z, (\partial_\xi^\alpha \partial_\eta^\gamma \tilde{h}(0, z))|_{\alpha+|\gamma| \leq |\beta|}) \equiv \\
\equiv \Theta'_\beta(g(w, z), f(w, z)) + \sum_{\gamma \in \mathbb{N}^{n-1}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \bar{g}(0, z)^\gamma \Theta_{\beta+\gamma}(g(w, z), f(w, z)).
\end{array} \right.
\]
Essentially, the game will consist in differentiating the equalities (7.6) and (7.7) with respect to \(\alpha \) at 0 up to arbitrary order \(\alpha \), in the aim to obtain new identities which will yield \(\partial_z^\alpha |_{z=0} \varphi_\beta (g(w, z), f(w, z)) \) \(\in \mathcal{O}((r \Delta)^{n-1}, \mathbb{C}) \), \(\forall \beta \in \mathbb{N}^{n-1}, \forall \alpha \in \mathbb{N} \), by an induction process of “trigonial type”. Let us complete this informal description. To begin with, for \(\alpha = 1 \), after applying the derivation operator \(\partial_1^1 |_{z=0} \) to eqs. (7.6) and (7.7), we get immediately

\[
(7.8) \quad \partial_1 f(w, 0) \equiv \partial_1 f(0, 0) + i \sum_{j=1}^{n-1} [\partial \tilde{g}_j / \partial z](0, 0) \varphi'_\chi (g(w, 0), f(w, 0)) \in \mathbb{C}\{w\},
\]

since \(\tilde{g}(0, 0) = 0 \) (so \(\partial_1^1 \tilde{g}(0, z)^\gamma |_{z=0} = 0 \) for \(|\gamma| \geq 2 \), and

\[
(7.9) \quad \partial_1^1 \varphi_\beta (g(w, 0), f(w, 0)) = \left[\partial_1^1 \Theta_\beta^{(1)} (w, 0, z, (\partial_1 \partial_1^1 \tilde{h}(0, z)))_{[0, 1, 0]} \right]_{z=0} - \sum_{|\gamma|=1} \frac{(\beta + \gamma)!}{\beta! \gamma!} \partial_1 \tilde{g}(0, 0)^\gamma \varphi_{\beta+\gamma} (g(w, 0), f(w, 0)),
\]

making the slight abuse of notation \(\partial_1^1 \chi (w, 0) \) instead of writing \(\partial_1^1 |_{z=0} [\chi (w, z)] \) for any formal power series \(\chi (w, z) \in \mathbb{C}[w, z] \). For instance, \(\partial_1^1 \tilde{g}(0, 0)^\gamma \) signifies \(\left[\partial_1^1 \tilde{g}(0, z)^\gamma \right] |_{z=0} = \sum_{k=0}^{\gamma} \gamma_k \partial_1 \tilde{g}_k(0, 0) \tilde{g}(0, 0)^{\gamma - k} \). All these expressions are convergent, because we know already (thanks to the first step) that \(\varphi_\beta (g(w, 0), f(w, 0)) \) \(\in \mathbb{C}\{w\} \forall \beta \in \mathbb{N}^{n-1} \) (and even \(\varphi_\beta (g(w, 0), f(w, 0)) \) \(\in \mathcal{O}((r \Delta)^{n-1}, \mathbb{C}) \)) and because the derivative \(\partial_1^1 |_{z=0} (\Theta_\beta^{(1)}) \) can be expressed (thanks to the chain rule) in terms of the derivatives \(\partial \Theta_\beta^{(1)} / \partial z \), in terms of the derivatives \(\partial \Theta_\beta^{(1)} / (\partial \varphi^{(1)} \partial \gamma^{(1)}) \) (considering \(\partial \varphi^{(1)} \partial \gamma^{(1)} \) as independent variables), and in terms of the derivatives \(\partial_1 \partial_1^1 h(0, z) \), all taken at \(z = 0 \), which are terms obviously converging and which belong to the space \(\mathcal{O}((r \Delta)^{n-1}, \mathbb{C}) \). Thus, we have got that \(\partial_1^1 \varphi_\beta (w, 0) \) \(\in \mathcal{O}((r \Delta)^{n-1}, \mathbb{C}) \forall \beta \in \mathbb{N}^{n-1} \) (including \(\beta = 0 \)). More generally, for arbitrary \(\alpha \in \mathbb{N} \) and \(\beta \in \mathbb{N}^{n-1} \), we observe readily that \(\partial_1^1 |_{z=0} [f(0, z)^\gamma] \) is constant and, for the same reasons as explained above, that

\[
(7.10) \quad \partial_1^1 |_{z=0} \left[\Theta_\beta^{(1)} (w, 0, z, (\partial_1 \partial_1^1 \tilde{h}(0, z)))_{[0, 1, 1]} \right] \in \mathcal{O}((r \Delta)^{n-1}, \mathbb{C}).
\]

We can use this observation to perform a “trigonial” induction as follows. Let \(\alpha_0 \in \mathbb{N} \), and suppose by induction that \(\partial_1^{\alpha_0+1} \varphi_\beta^{(1)} (w, 0) \) \(\in \mathcal{O}((r \Delta)^{n-1}, \mathbb{C}) \forall \alpha \leq \alpha_0, \forall \beta \in \mathbb{N}^{n-1} \). Then applying the derivation \(\partial_1^{\alpha_0+1} |_{z=0} \) to (7.6), developing the expression according to Leibniz’ formula and using the fact that \(\partial_1^{\alpha_0+1} |_{z=0} [\tilde{g}(0, z)^\gamma] = 0 \) for all \(|\gamma| \geq \alpha_0 + 2 \), we get the expression:

\[
(7.11) \quad \left\{ \begin{array}{l}
\partial_1^{\alpha_0+1} f(w, 0) \equiv \partial_1^{\alpha_0+1} f(0, 0) + i \sum_{0<|\gamma|\leq\alpha_0+1} \frac{(\beta + \gamma)!}{\beta! \gamma!} \partial_1 \tilde{g}(0, 0)^\gamma \varphi_{\beta+\gamma} (w, 0), \\
\sum_{\kappa=1}^{\alpha_0+1} \frac{(\alpha_0 + 1)!}{\kappa! (\alpha_0 + 1 - \kappa)!} \partial_1^\kappa \tilde{g}(0, 0)^\gamma \partial_1^{\alpha_0+1-\kappa} \varphi_\beta (w, 0).
\end{array} \right.
\]

Now, thanks to the induction assumption and because the order of derivation in the expression \(\partial_1^{\alpha_0+1-\kappa} \varphi_\beta (w, 0) \) for \(1 \leq \kappa \leq \alpha_0 + 1 \) is less or equal to \(\alpha_0 \), we obtain
that this expression (7.11) belongs to $O((r\Delta)^{n-1}, \mathbb{C})$. Concerning the differentiation of (7.9) with respect to z, we also get that the term

\[
\partial_z^{\alpha+1} \varphi_\beta(w, 0) = \partial_z^{\alpha+1} \varphi_\beta(w, 0, 0) - \sum_{0<|\gamma|\leq \alpha+1} \frac{(\beta + \gamma)!}{\beta! \gamma!} (\sum_{\kappa=1}^{\alpha+1} \frac{(\alpha_0 + 1)!}{\kappa!(\alpha_0 + 1 - \kappa)!} \partial_z^{\alpha+1-\kappa} \varphi_\beta^{\gamma}(w, 0))
\]

(7.12)

belongs to $O((r\Delta)^{n-1}, \mathbb{C})$. Again, the important fact is that in the sum $\sum_{\kappa=1}^{\alpha+1}$, only the derivations $\partial_z^{\alpha+1} \varphi_\beta(w, 0)$ for $0 \leq \alpha \leq \alpha_0$ occur. In summary, we have shown that $\partial_z \varphi_\beta(w, 0)$ is convergent for all $\alpha \in \mathbb{N}$.

7.13. Intermezzo. The induction process can be said to be of “trigonal type” because we are dealing with the infinite collection of identities (5.4) which can be interpreted as a linear system $Y = AX$, where X denotes the unknown $(\Theta^t_\beta)_{\beta \in \mathbb{N}^{n-1}}$ and A is an infinite trigonal matrix, as shows an examination of (5.4). Further, when we consider the jets, we still get a trigonal system. The main point is that after restriction to the first Segre chain $\{\xi = \zeta = 0\}$, this trigonal system becomes diagonal (or with only finitely many nonzero elements after applying ∂^2_z), but this crucial simplifying property fails to be satisfied after passing to the next Segre chains. To be honest, we should recognize that the proof we are conducting here unfortunately fails (for this reason) to be generalizable to higher codimension... However, an important natural idea will appear during the course of the proof, namely the appearance of the natural (and new) conjugate reflection identities (5.9) which we will heavily use in §8 below. For reasons of symmetry, we have naturally wondered whether they can be exploited more deeply. A complete investigation is contained in our subsequent work on the subject (quoted in §1.12).

7.14. End of proof of Lemma 7.2. It remains to show that there exist constants $r(\alpha) > 0$, $C(\alpha) > 0$ such that the estimate (7.4) holds for $(\alpha, \gamma) = (\alpha, 0)$: $|\partial_z^\alpha \varphi_\beta(w, 0)| \leq C(\alpha)|\partial_\gamma\varphi_\beta|^{\beta + 1}$ if $|w| < r(\alpha)$, $\forall \beta \in \mathbb{N}^{n-1}$. To this aim, we shall apply Lemma 6.6 with the suitable functions and variables. First, it is clear that there exist universal polynomials\(^1\) such that the following composite derivatives can be written

\[
\partial_z^\alpha \Theta_\beta(h(w, z)) = P_\alpha(\nabla^{\alpha \alpha} h(w, z)), (\nabla^{\alpha \alpha}_h \Theta_\beta)(h(w, z)),
\]

(7.15)

where the $n\alpha$-tuple $\nabla^{\alpha \alpha} h(w, z) := (((\partial_z^k h_1(w, z), \ldots, \partial_z^k h_n(w, z))_{1 \leq k \leq \alpha})$ and the $((n + \alpha) - 1)$-tuple $\nabla^{\alpha \alpha}_h \Theta_\beta(t') := ((\partial_z^k \Theta_\beta^\alpha(t')))_{1 \leq |t'| \leq \alpha}$. We now consider these polynomials as holomorphic functions $G^\alpha_\beta = G^\alpha_\beta(h)$ of the $n(\alpha + 1)$ variables $\nabla^\alpha h = ((\partial_z^k h_1, \ldots, \partial_z^k h_n)_{0 \leq k \leq \alpha})$ which satisfy, by eq. (7.15):

\[
\partial_z^\alpha \Theta_\beta(h(w, z)) = G^\alpha_\beta(\nabla^\alpha h(w, z)) = G^\alpha_\beta(\nabla^\alpha h)|\nabla^\alpha h := \nabla^\gamma h(w, z),
\]

(7.16)

\(^1\)The explicit formula in dimension one for the derivative of a composition $\frac{d}{dx} (\psi \circ \phi)(x) = (\psi \circ \phi)^{(n)}(x)$ is known as Faa di Bruno’s formula, (one of the favorite students of Cauchy):

$\frac{1}{n!} (\psi \circ \phi)^{(n)}(x) = \sum_{\alpha_1 + \alpha_2 + \ldots + \alpha_n = n} \frac{1}{\alpha_1! \alpha_2! \ldots \alpha_n!} (2\pi i)^{\alpha_1} \alpha_1! (2\pi i)^{\alpha_2} \alpha_2! \ldots (2\pi i)^{\alpha_n} \alpha_n! \psi(\phi(x)) \phi^{(\alpha_1)}(\phi(x)) \alpha_1 \phi^{(\alpha_2)}(\phi(x)) \alpha_2 \ldots \phi^{(\alpha_n)}(\phi(x)) \alpha_n.$

(We ignore wether similar formulas in several variable are known or attributed.)
where the \(n \)-tuple \(\nabla^n h(w, z) = (\partial^k h_j(w, z))_{0 \leq k \leq n} \) and \(\nabla^n h := (\partial^k h_j)_{0 \leq k \leq n} \) are \(n(\alpha + 1) \) independent variables as we have just said above. Obviously, these functions \(G^\beta_\alpha(\nabla^n h) \) satisfy an estimate of the form \(|G^\beta_\alpha(\nabla^n h)| \leq C(\alpha)^{|\beta|+1}\) if \(|\nabla^n h| < r\), because the functions \(\nabla^{\alpha} \Theta^\gamma_\beta(t') \) satisfy an estimate of the form \(|\nabla^{\alpha} \Theta^\gamma_\beta(t')| \leq C'(\alpha)^{|\beta|+1}\) if \(|t'| < r'\), for some constants \(C'(\alpha) > 0 \), \(r' > 0 \), and because we have \(P_\alpha(\nabla^n h, 0) = 0 \). We already know that there exist holomorphic functions \(\chi^\beta_\alpha(w) = \partial^\alpha \varphi^\prime_\beta(w, 0) \) in \(|w| < r\) indexed by \(\beta \in \mathbb{N}_-^{n-1} \) such that the following formal identity holds:

\[
(7.17) \quad G^\beta_\alpha(\nabla^n h(w, 0)) = \partial^\alpha \varphi^\prime_\beta(w, 0) = \chi^\beta_\alpha(w) \quad \text{in } \mathbb{C}[w].
\]

Now, a direct application of Lemma 6.6 yields the desired estimate:

\[
(7.15) \quad |\partial^\alpha \varphi^\prime_\beta(w, 0)| \leq C(\alpha)^{|\beta|+1} \quad \text{if } |w| < r(\alpha).
\]

Thus, we have completed the proof of Lemma 7.2. \(\square \)

Important remark. When \(\alpha \to \infty \), the number \((n + 1)\alpha\) of variables in \(\nabla^n h \) also becomes infinite. Thus, at each step we apply Artin’s Theorem in Lemma 6.6, the \(r(\alpha) \) may shrink and go to zero as \(\alpha \to \infty \).

§8. Convergence of the mapping

8.1. Jump to the second Segre chain. We now complete the final third step by establishing that the power series \(h(t) \) is convergent in a neighborhood of 0. Let \(S^2_n = \{ \exp w \mathcal{L}(\exp \zeta \mathcal{L}(0)) : |w| < r, |\zeta| < r \} \) be the second conjugate Segre chain \([9]\), or equivalently in our normal coordinates \(S^2_n = \{ (w, i\Theta(w, \zeta, 0), \zeta, 0) : |w| < r, |\zeta| < r \} \). We shall prove that the map \(h^r \) is convergent on \(S^2_n \). More precisely:

Lemma 8.2. The formal power series \(h(w, i\Theta(\zeta, w, 0)) \in \mathbb{C}[w, \zeta]^n \) is convergent.

From this lemma, we see now how to achieve the proof of our Theorem 1.2:

Corollary 8.3. Then the formal power series \(h(w, z) \in \mathbb{C}[w, z]^n \) is convergent.

Proof. We just apply Theorem 4.7, taking into account (5) of Lemma 3.2. \(\square \)

Proof of Lemma 8.2. Thus, we have to show that \(h(w, i\Theta(\zeta, w, 0)) \in \mathbb{C}[w, \zeta] \). To this aim, we consider the conjugate reflection identities (5.2) and (5.9) for various \(\beta \in \mathbb{N}_-^{n-1} \) after specifying them over \(S^2_n \), i.e. after setting \((w, z, \zeta, \xi) := (w, i\Theta(\zeta, w, 0), \zeta, 0) \in \mathcal{M} \), which we may write explicitly as follows

\[
\left\{
\begin{array}{l}
\bar{f}(\xi, 0) \equiv f(w, i\Theta(w, \zeta, 0)) - i \sum_{\gamma \in \mathbb{N}_-^{n-1}} \bar{g}(\zeta, 0) \cdot \Theta^\gamma_\beta(h(w, i\Theta(w, \zeta, 0))), \\
0 \equiv \langle \mathcal{L}^\beta \bar{f}(\xi, \zeta) \rangle_{\xi=0} + i \sum_{\gamma \in \mathbb{N}_-^{n-1}} \langle g(w, i\Theta(w, \zeta, 0)) \rangle \cdot \langle \mathcal{L}^\beta \Theta^\gamma_\beta(h(\zeta, \xi)) \rangle_{\xi=0},
\end{array}
\right.
\]

(8.4)

for all \(\beta \in \mathbb{N}_-^{n-1} \). Let now \(\kappa_0 \in \mathbb{N}_- \) be an integer larger than the supremum of the lengths of some multiindices \(\beta^i \)'s, \(1 \leq i \leq n - 1 \), satisfying the determinant property stated in eq. (3.4) of Lemma 3.3, i.e. \(\kappa_0 \geq \sup_{1 \leq i \leq n-1} |\beta^i| \). According to Lemma 7.2, if we consider the equations (8.4) only for a finite number of \(\beta^i \)'s, say for \(|\beta| \leq \kappa_0 \), there will exist a positive number \(r_1 > 0 \) with \(r_1 \leq r \) and a constant
$C_1 > 0$ such that each power series $|\mathcal{C}_\beta'(\bar{h}(\zeta, \xi))|_{\zeta=0} =: \chi_{\gamma}^\beta(w, \zeta)$ is holomorphic in the polydisc $\{|w|, |\zeta| < r_1\}$ and satisfies the Cauchy estimate $|\chi_{\gamma}^\beta(w, \zeta)| \leq C_1^{\gamma+1}$ when $|(w, \zeta)| < r_1$. We can now represent the eqs. (8.4) under the brief form

\begin{equation}
(8.5)
\quad s_\beta(w, \zeta, h(w, i\bar{\Theta}(w, \zeta, 0))) = 0, \quad |\beta| \leq \kappa_0,
\end{equation}

where the holomorphic functions $s_\beta = s_\beta(w, \zeta, t')$ are simply defined by replacing the terms $|\mathcal{C}_\beta'|(\bar{h}(\zeta, \xi))|_{\zeta=0}$ by $\chi_{\gamma}^\beta(w, \zeta)$ in eqs. (8.4), so that the power series s_β converge in the set $\{|w|, |\zeta| < r_1\}$. The goal is now to apply Theorem 4.4 to the collection of equations (8.5) in order to deduce that $h(w, i\bar{\Theta}(w, \zeta, 0)) \in \mathbb{C}[w, \zeta]$.

Remark. As noted in the introduction, another (more powerful) idea would be to apply the Artin Approximation Theorem 4.2 to the equations (8.5) to deduce the existence of a converging solution $H(w, \zeta)$ and then to deduce that the reflection function itself converges on the second Segre chain (which is in fact quite easy using Lemma 5.10). It’s a pity that in September-October 1999, while writing this §8, and being highly conscious that the conjugate reflection identities (5.9) should be capital, I missed the simplest idea.

First, we make a precise choice of the $\beta^i \in \mathbb{N}^{n-1}$ arising in Lemma 3.3. We set $\beta^n = 0$ and, for $1 \leq i \leq n - 1$, let β^i be the infimum of all the multiindices $\beta \in \mathbb{N}^{n-1}$ satisfying $\beta > \beta^i + 1 > \cdots > \beta^n$ for the natural lexicographical order on \mathbb{N}^n, and such that an $(n-i+1) \times (n-i+1)$ minor of the $n \times (n-i+1)$ matrix

\begin{equation}
(8.6)
\quad \mathcal{M}\mathcal{A}\mathcal{T}_{\beta, \beta^i+1, \ldots, \beta^n}(t') := \left(\frac{\partial \Theta_{\beta^i}'}{\partial t_j'}(t') \quad \frac{\partial \Theta_{\beta^i+1}'}{\partial t_j'}(t') \quad \cdots \quad \frac{\partial \Theta_{\beta^n}'}{\partial t_j'}(t') \right)_{1 \leq j \leq n}
\end{equation}

does not vanish identically as a holomorphic function of $t' \in \mathbb{C}^n$. We thus have $\det \left(\frac{\partial \Theta_{\beta^i}'}{\partial t_j'}(t') \right)_{1 \leq i, j \leq n} \neq 0$ in $\mathbb{C}\{t'\}$. Concerning the choice of κ_0, we also require that

\begin{equation}
(8.7)
\quad \kappa_0 \geq \inf\{k \in \mathbb{N} : \det \left(\frac{\partial \Theta_{\beta^i}'}{\partial t_j'}(h(w, i\bar{\Theta}(w, \zeta, 0))) \right)_{1 \leq i, j \leq n} \not\in \mathfrak{m}(\zeta)^k \mathbb{C}[w, \zeta],
\end{equation}

where $\mathfrak{m}(\zeta)$ is the maximal ideal of $\mathbb{C}[\zeta]$. We can choose such a finite κ_0, because we know already that the determinant in (8.7) does not vanish identically (this fact can be easily checked, after factoring at the composition formula for Jacobians, because, in view of Lemma 3.3, the determinant (8.6) for $(\beta^1, \ldots, \beta^n)$ does not vanish identically and because the determinant $\det \left(\frac{\partial h}{\partial t_k}(w, i\bar{\Theta}(w, \zeta, 0)) \right)_{1 \leq j, k \leq n}$ does not vanish identically in view of the invertibility assumption on h and in view of the minimality criterion Lemma 3.2 (5)). Thus, after these choices are made, in order to finish the proof by an application of Theorem 4.4, it will suffice to show that:

Lemma 8.8. There exist $\beta^1, \ldots, \beta^n, \beta^n(= 0) \in \mathbb{N}^{n-1}$ with $|\beta^i| \leq 2\kappa_0$ such that

\begin{equation}
(8.9)
\quad \det \left(\frac{\partial s_{\beta^i}}{\partial t_j'}(w, \zeta, h(w, i\bar{\Theta}(w, \zeta, 0))) \right)_{1 \leq i, j \leq n} \neq 0 \text{ in } \mathbb{C}[w, \zeta].
\end{equation}
Proof. To this aim, we introduce some new power series. We set:

\[(8.10) \quad R_\beta(w, z, \zeta, t') := \mathcal{L}^\beta \bar{f}(\zeta, \xi) + i \sum_{\gamma \in \mathbb{N}_0^{n-1}} \mathcal{L}^\beta (\bar{g}(\zeta, \xi)^\gamma) \Theta_\gamma'(t'),\]

for all $\beta \in \mathbb{N}^{n-1}$, after expanding with respect to (w, z, ζ, ξ) the power series appearing in $\mathcal{L}^\beta (\bar{g}(\zeta, \xi)^\gamma)$, $\mathcal{L}^\beta \bar{f}(\zeta, \xi)$ and after replacing ξ by $z - i\Theta(\zeta, w, z)$, and similarly, we set:

\[(8.11) \quad S_\beta(w, z, \zeta, t') := \mathcal{L}^\beta \bar{f}(\zeta, \xi) + i \sum_{\gamma \in \mathbb{N}_0^{n-1}} w'^\gamma \mathcal{L}^\beta (\bar{\Theta}_\gamma'(\bar{h}(\zeta, \xi))),\]

in coherence with the notation in eq. (8.5) and finally also, we set:

\[(8.12) \quad T_\beta(w, z, \zeta, t') := -w_\beta(w, \zeta, \xi) + \Theta_\beta'(t') + \sum_{\gamma \in \mathbb{N}_0^{n-1}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \bar{g}(\zeta, \xi)^\gamma \Theta_{\beta+\gamma}'(t').\]

We first remark that, by the very definition of s_β and of S_β, we have

\[(8.13) \quad \frac{\partial s_\beta}{\partial t_j}(w, \zeta, h(w, i\Theta(w, \zeta, 0))) = \frac{\partial S_\beta}{\partial t_j}(w, i\Theta(w, \zeta, 0), \zeta, h(w, i\Theta(w, \zeta, 0))),\]

as formal power series, for all $\beta \in \mathbb{N}^{n-1}$, $1 \leq j \leq n$. Next, let us establish a useful correspondence between the vanishing of the generic ranks of $(R_\beta)_{|\beta| \leq 2\kappa_0}$, $(S_\beta)_{|\beta| \leq 2\kappa_0}$ and $(T_\beta)_{|\beta| \leq 2\kappa_0}$.

Lemma 8.14. The following properties are equivalent:

1. $\det \left(\frac{\partial R_{\beta_1}}{\partial t_j}(w, z, \zeta, h(w, z)) \right)_{1 \leq i, j \leq n} \equiv 0$, $\forall \beta^1, \ldots, \beta^n, |\beta^1|, \ldots, |\beta^n| \leq 2\kappa_0$.
2. $\det \left(\frac{\partial S_{\beta_1}}{\partial t_j}(w, z, \zeta, h(w, z)) \right)_{1 \leq i, j \leq n} \equiv 0$, $\forall \beta^1, \ldots, \beta^n, |\beta^1|, \ldots, |\beta^n| \leq 2\kappa_0$.
3. $\det \left(\frac{\partial T_{\beta_1}}{\partial t_j}(w, z, \zeta, h(w, z)) \right)_{1 \leq i, j \leq n} \equiv 0$, $\forall \beta^1, \ldots, \beta^n, |\beta^1|, \ldots, |\beta^n| \leq 2\kappa_0$.

End of proof of Lemma 8.8. The proof of Lemma 8.14 will be given just below. To finish the proof of Lemma 8.8, we assume by contradiction that (8.9) is untrue, i.e. that (2) of Lemma 8.14 holds with $z = i\Theta(w, \zeta, 0)$. According to (3) of this lemma, we also have that the generic rank of the $n \times \frac{(2\kappa_0 + n - 1)!}{(2\kappa_0)! (n-1)!}$ matrix

\[(8.15) \quad \mathcal{N}_{2\kappa_0}(w, \zeta) := \left(\frac{\partial \Theta_\gamma'}{\partial t_j}(h(w, i\Theta(w, \zeta, 0))) + \sum_{\gamma_0 \in \mathbb{N}_0^{n-1}} \frac{(\beta + \gamma)!}{\beta! \gamma!} \bar{g}(\zeta, 0)^\gamma \frac{\partial \Theta_{\beta+\gamma}'}{\partial t_j}(h(w, i\Theta(w, \zeta, 0))) \right)_{1 \leq j \leq n} \quad |\beta| \leq 2\kappa_0\]

is strictly less than n. After making some obvious linear combinations between the columns of $\mathcal{N}_{2\kappa_0}$ with coefficients being formal power series in ζ which are
polynomial with respect to the $\tilde{g}_j(\zeta,0) \in m(\zeta)$, $1 \leq j \leq n-1$, we can reduce $N_{2\kappa_0}$ to the matrix of same formal generic rank

\begin{equation}
\mathcal{N}_{2\kappa_0}(w, \zeta) := \left(\frac{\partial \Theta_j}{\partial t_j}(h(w, i\Theta(w, \zeta, 0))) + \sum_{|\gamma| \geq 2\kappa_0 + 1-|\beta|} \frac{(\beta + \gamma)!}{\beta! \gamma!} \frac{\partial \Theta_{j+\gamma}}{\partial t_j}(h(w, i\Theta(w, \zeta, 0))) \right)_{1 \leq j \leq n}
\end{equation}

(8.16)

Now, taking the submatrix N_{κ_0} of $N_{2\kappa_0}$ for which $|\beta| \leq \kappa_0$, we see that we have reduced N_{κ_0} to the simpler form

\begin{equation}
\mathcal{N}_{\kappa_0}(w, \zeta) := \mathcal{N}_{\kappa_0}^1(w, \zeta) \mod (m(\zeta)^{\kappa_0+1} \mathbb{M} \mathbb{A} \mathbb{t}_n \times \mathbb{M} (\kappa_0+1)^{n-1}) (\mathbb{C}[w, \zeta]),
\end{equation}

where

\begin{equation}
\mathcal{N}_{\kappa_0}^1(w, \zeta) := \left(\frac{\partial \Theta_j}{\partial t_j}(h(w, i\Theta(w, \zeta, 0))) \right)_{1 \leq j \leq n}
\end{equation}

But

\begin{equation}
\det \left(\frac{\partial \Theta_j}{\partial t_j}(h(w, i\Theta(w, \zeta, 0))) \right)_{1 \leq j \leq n} \neq 0 \text{ in } \mathbb{C}[w, \zeta] \mod (m(\zeta)^{\kappa_0+1}),
\end{equation}

by the choice of the β's and of κ_0, which is the desired contradiction. \qed

Proof of Lemma 8.14. The equivalence (1) \iff (3) follows by an inspection of the proof of Lemma 5.3: to pass from the system $R_\beta = 0$, $|\beta| \leq 2\kappa_0$, to the system $T_\beta = 0$, $|\beta| \leq 2\kappa_0$, we have only use in the proof some linear combinations with coefficients in $\mathbb{C}[\zeta, \xi]$. The equivalence (1) \iff (2) is related with the substance of Lemma 5.10. Indeed, in the relation $r'(t', \tau') \equiv a'(t', \tau') r'(\tau, t')$, with $a'(0,0) = -1$, insert first $\tau' := \tilde{h}(\tau)$ to get $r'(t', \tilde{h}(\tau)) \equiv a'(t', \tilde{h}(\tau)) r'(\tau, t')$ and then differentiate by the operator \mathcal{L}^β to obtain

\begin{equation}
\mathcal{L}^\beta r'(t', \tilde{h}(\tau)) \equiv a'(t', \tilde{h}(\tau)) \mathcal{L}^\beta r'(\tilde{h}(\tau), t') + \sum_{\gamma \leq \beta, \gamma \neq \beta} \alpha_{t}^\gamma(t', \tau, \tau') \mathcal{L}^{\gamma} r'(\tilde{h}(\tau), t').
\end{equation}

(8.20)

In our notations, $R_\beta(w, z, \zeta, \tau') = \mathcal{L}^\beta r'(t', \tilde{h}(\tau))$ and $S_\beta(w, z, \zeta, t') = \mathcal{L}^\beta r'(\tilde{h}(\tau), t')$, after replacing ξ by $z - i\Theta(\zeta, w)$. We deduce

\begin{equation}
\left\{ \begin{array}{l}
\frac{\partial R_\beta}{\partial t_j}(w, z, \zeta, h(w, z)) = a'(h(w, z), \tilde{h}(\tau)) \frac{\partial S_\beta}{\partial t_j}(w, z, \zeta, h(w, z)) + \\
+ \sum_{\gamma \leq \beta, \gamma \neq \beta} \alpha_{t}^\gamma(t, \tau, h(w, z)) \frac{\partial S_\beta}{\partial t_j}(w, z, \zeta, h(w, z)).
\end{array} \right.
\end{equation}

(8.21)

Equation (8.21) shows that the terms $\frac{\partial R_\beta}{\partial t_j}(w, z, \zeta, h(w, z))$ are trigonal linear combinations of the terms $\frac{\partial S_\beta}{\partial t_j}(w, z, \zeta, h(w, z))$, $\gamma \leq \beta$, with nonzero diagonal coefficients.

This completes the proofs of Lemmas 8.14 and 8.2 and completes finally our proof of Theorem 1.2. \qed

Remark. Once we know that $h(w, z) \in \mathbb{C}[w, z]$, we deduce that the reflection function associated with the formal equivalence of Theorem 1.2 is convergent, i.e. that $\mathcal{R}_h(w, z, \lambda, \tilde{\mu}) \in \mathbb{C}[w, z, \lambda, \tilde{\mu}]$.

ON THE CONVERGENCE OF FORMAL CR MAPS BETWEEN HYPERSURFACES

19
REFERENCES

[1] M. Artin, *On the solutions of analytic equations*, Invent. Math. 5 (1969), 277–291.

[2] M. S. Baouendi, P. Ebenfelt and L. P. Rothschild, *Parametrization of local biholomorphisms of real analytic hypersurfaces*, Asian J. Math. 1 (1997), 1–16.

[3] , *Real Submanifolds in complex space and their mappings*, Princeton Math. Ser. 47, Princeton Univ. Press, Princeton, NJ, 1999.

[4] , *Convergence and finite determinacy of formal CR mappings*, J. Amer. Math. Soc. (to appear); e-print: arXiv.org/abs/math/9904085 (1999).

[5] M. S. Baouendi and L. P. Rothschild, *Mappings of real algebraic hypersurfaces*, J. Amer. Math. Soc. 8 (1995), 997–1015.

[6] B. Coupet, S. Pinchuk and A. Sukhov, *On the partial analyticity of CR mappings*, Math. Z. (to appear).

[7] K. Diederich and S. M. Webster, *A reflection principle for degenerate hypersurfaces*, Duke Math. J. 47 (1980), 835–843.

[8] P. Eakin and G. A. Harris, *When \(F(f) \) convergent implies \(f \) is convergent*, Math. Ann. 229 (1977), 201–210.

[9] J. Merker, *Vector field construction of Segre sets*, arXiv.org/abs/math/9901010 (to appear).

[10] , *On the convergence of \(S \)-nondegenerate formal CR maps between real analytic CR manifolds*, Preprint, Université de Provence, submitted, arXiv.org/abs/math/9901027.

[11] J. Merker and F. Meylan, *On the Schwarz symmetry principle in a model case*, Proc. Amer. Math. Soc. 127 (1999), 1097-1102.

[12] N. M. Mir, *Formal biholomorphic maps of real analytic hypersurfaces*, Math. Research Lett. 7 (2000), 343–359.

[13] , *On the convergence of formal mappings*, Comm. Anal. Geom. (to appear).

[14] S. Pinchuk, *On the analytic continuation of holomorphic mappings*, Math. of the USSR Sbornik 27 (1975), 375–392.

[15] , *Holomorphic mappings of real-analytic hypersurfaces* (Russian), Mat. Sb. (N.S.) no. 4 105(147) (1978), 574–593.

[16] N. Stanton, *Infinitesimal CR automorphisms of real hypersurfaces*, Amer. J. Math. 118 (1996), 209–233.

[17] S. M. Webster, *Holomorphic symplectic normalization of a real function*, Ann. Scuola Norm. Pisa 19 (1992), 69–86.

Laboratoire d’Analyse, Topologie et Probabilités, Centre de Mathématiques et d’Informatique, UMR 6632, 39 rue Joliot Curie, F-13453 Marseille Cedex 13, France.

Fax: 00 33 (0)4 91 11 35 52
E-mail address: merker@cmi.univ-mrs.fr