Invariant curves for exact symplectic twist maps of the cylinder with Bryuno rotation numbers

Guido Gentile
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, I-00146, Italy
E-mail: gentile@mat.uniroma3.it

Received 29 April 2014, revised 24 March 2015
Accepted for publication 25 May 2015
Published 26 June 2015

Abstract
Since Moser’s seminal work it is well known that the invariant curves of smooth nearly integrable twist maps of the cylinder with Diophantine rotation number are preserved under perturbation. In this paper we show that, in the analytic class, the result extends to Bryuno rotation numbers. First, we will show that the series expansion for the invariant curves in powers of the perturbation parameter can be formally defined, then we shall prove that the series converges absolutely in a neighbourhood of the origin. This will be achieved using multiscale analysis and renormalisation group techniques to express the coefficients of the series as sums of values which are represented graphically as tree diagrams and then exploit cancellations between terms contributing to the same perturbation order. As a byproduct we shall see that, when perturbing linear maps, the series expansion for an analytic invariant curve converges for all perturbations if and only if the corresponding rotation number satisfies the Bryuno condition.

Keywords: exact symplectic maps, twist maps, invariant curves, Bryuno condition, renormalization group, trees
Mathematics Subject Classification: 37J40, 37E40, 37J10, 58F27, 58F30, 37E20, 70H08, 11Z05

1. Introduction
Consider an exact symplectic twist map \(\Phi \) on the cylinder \(\mathbb{T} \times \mathbb{R} \)
\[
\begin{align*}
x' &= x + a(y) + \varepsilon f(x, y), \\
y' &= y + \varepsilon g(x, y),
\end{align*}
\] (1.1)
Theorem 1.1. Consider an exact symplectic map on the cylinder of the form (1.1), with the following result.

In that case, if we take \(\sigma_\varepsilon(x, x') \) such that (1.1) can be written in the form

\[
\begin{align*}
 x' &= x + y + \varepsilon f(x, y), \\
 y' &= y + \varepsilon g(x, y)
\end{align*}
\]

and eventually discuss how the analysis has to be changed to deal with the general case (1.1).

For \(\varepsilon = 0 \) the map is integrable: \(y \) is kept constant, \(y = y_0 \), and the dynamics is a rotation of the variable \(x \) by an angle \(2\pi \omega = a(y_0) \). Below, following Moser’s example [36], we will consider initially the system

\[
\begin{align*}
 x' &= x + y + \varepsilon f(x, y), \\
 y' &= y + \varepsilon g(x, y)
\end{align*}
\]

and eventually discuss how the analysis has to be changed to deal with the general case (1.1).

Since we are assuming that \(\Phi \) is exact symplectic, there exists a generating function \(S_\varepsilon(x, x') = S_0(x, x') + \varepsilon \sigma_\varepsilon(x, x') \) such that (1.1) can be written in the form

\[
\begin{align*}
 y &= -\frac{\partial S_\varepsilon(x, x')}{\partial x}, \\
 y' &= \frac{\partial S_\varepsilon(x, x')}{\partial x'}.
\end{align*}
\]

For the system (1.2) one has

\[
S_0(x, x') = \frac{1}{2}(x' - x)^2
\]

In that case, if we take \(\sigma_\varepsilon(x, x') = 1 - \cos x \), so that \(f(x, y) = g(x, y) = \sin x \) in (1.2), we recover the Taylor–Chirikov standard map, a map widely studied in the literature since the original papers by Chirikov and Greene [7, 26, 31].

Requiring that the map \(\Phi \) is exact symplectic is equivalent to require that it is area-preserving and has zero flux. In particular the latter condition is automatically satisfied if \(\Phi \) is area preserving and preserves the boundaries of an annulus [25]. In the following it will be more convenient to study the system (1.1) in the form (1.3) to better exploit the symplectic nature of the map.

We say that the map (1.1) admits an invariant curve if there exist two functions \(h, H \) of period \(2\pi \) such that \(x = \psi + h(\psi), y = y_0 + H(\psi) \) and the dynamics induced on the curve is given by \(\psi' = \psi + 2\pi \omega \), with \(2\pi \omega = a(y_0) \). The number \(\omega \) will be called the rotation number of the curve. If the functions \(h \) and \(H \) are analytic, we say that the invariant curve is analytic. The existence of invariant curves for exact symplectic twist maps on the cylinder was first proved by Moser in the differentiable class by assuming a standard Diophantine condition on \(\omega \) [36]. Moreover the result extends to more general maps, satisfying the intersection property [45]: the latter means that every smooth curve wrapping around the cylinder intersects itself under the action of the map. However, in the analytic class the Diophantine condition is not expected to be optimal. In the present paper we show that one can take a weaker Diophantine condition on the rotation number \(\omega \): the Bryuno condition [5], defined as \(\mathcal{B}(\omega) < \infty \), where

\[
\mathcal{B}(\omega) := \sum_{k=0}^{\infty} \frac{1}{q_k} \log q_{k+1}
\]

and \(\{q_k\} \) are the denominators of the continued fraction expansion of \(\omega \) [44]. In fact, we prove the following result.

Theorem 1.1. Consider an exact symplectic map on the cylinder of the form (1.1), with \(f \) and \(g \) analytic. If \(\omega \) satisfies the Bryuno condition then there exists \(\varepsilon_0 > 0 \) such that the map admits an analytic invariant curve with rotation number \(\omega \) analytic in \(\varepsilon \) for \(|\varepsilon| < \varepsilon_0 \).
This will be proved in sections 2–5 for maps of the form (1.2) and then extended to any maps of the form (1.1) in section 6. As a byproduct of the proof we show directly that the perturbation series for the invariant curve converges absolutely. This requires some work, since the standard Lindstedt algorithm produces the coefficients as sums of many terms which can grow proportionally to factorials, so one has to show that there are compensations between such terms. We shall explicitly exhibit the cancellations which make the sum of all terms contributing to the same perturbation order \(k \) bounded by some constant to the power \(k \). The cancellation mechanisms is similar to that found in the case of Hamiltonian flows [14,16,23], even though the implementation is slightly different. Unlike the case of flows we shall be able to obtain a closed equation involving only the conjugation function of the angle variable (which is not the standard approach for flows, even though there are remarkable exceptions [38,46]). On the other hand this will make the cancellation analysis a bit more delicate. Moreover, in the general case (1.1), the cancellations will be showed to involve identities that can be of interest in their own; see in particular appendix B.

Recently the Bryuno condition received a lot of attention in the literature on small divisor problems arising in the context of analytic dynamical systems, including circle diffeomorphisms [48], holomorphic maps on the plane [6,24,47], maximal and lower-dimensional tori in quasi-integrable systems [21,27,28], skew-product systems [10,20]. The Bryuno condition for twist maps of the cylinder has been explicitly considered in the literature only in special cases, such as [2]. Indeed, most of the results on the existence of invariant tori under the Bryuno condition are for vector fields [5,8,9,13,21,27,28,40,42,43]. In general a quasi-integrable discrete map can be interpolated by a continuous flow with the same number of degrees of freedom only approximately, even though the error of the approximation can be made exponentially small in the perturbation parameter [1,12,39]. However, the existence of invariant curves can be deduced directly from the results for continuous systems by considering non-autonomous Hamiltonian systems whose flows interpolate the maps at discrete times [29,30] (see also [37,46] in the case of smooth, not necessarily nearly integrable maps). Of course, this is a way to derive the results. Actually, the construction of the interpolating flow can be intricate: for instance, a simple-looking system such as the standard map naturally leads to a singular Hamiltonian and already a non-analytic smoothing yields a much less handy system [37]. Therefore we think that it could be interesting to have a self-contained proof in the case of twist maps.

The Bryuno condition is known to be optimal in the case of the Siegel problem [48] and the circle diffeomorphisms [47]. It has been conjectured to be optimal also in the case of twist maps by MacKay [32]. However, despite being supported by numerical investigations [35], the conjecture remains still unproved. The main result in this direction has been obtained by Forni [15] (see also [3] for extensions to higher-dimensional flows), who proved that if \(\Phi_0 \) is an integrable twist map and \(\omega \) satisfies a condition somewhat stronger than the converse Bryuno condition \(\mathfrak{B}(\omega) = \infty \), more precisely

\[
\limsup_{n \to +\infty} \frac{1}{q_n} \log q_{n+1} > 0,
\]

then there are perturbations arbitrarily close to \(\Phi_0 \) (in the analytic topology) which do not admit any invariant curve with rotation number \(\omega \). As noticed in [15], the result does not immediately applies to one-parameter families of maps of the form (1.1) with the functions \(f \) and \(g \) either fixed or analytic in a fixed domain. Here we show that, in the case of exact symplectic twist maps of the cylinder of the form (1.2), i.e. perturbations of the linear map, the Bryuno condition is optimal in order to have an invariant curve depending analytically on \(\epsilon \) for any \(f \) and \(g \) analytic in a domain \(\mathcal{D} \) as after (1.1). As a byproduct analyticity in
\(\varepsilon \) automatically implies analyticity of the functions \(h, H \) in \(\psi \) and hence analyticity of the invariant curve. More precisely we obtain the following result.

Theorem 1.2. Given the integrable map \(\Phi_0 \) on \(T \times \mathbb{R} \)

\[
\begin{align*}
x' &= x + y, \\
y' &= y,
\end{align*}
\]

let \(\Phi \) be an analytic exact symplectic map of the form \(\Phi = \Phi_0 + \varepsilon \Phi_1 \), with \(\Phi_1 = (f, g) \) analytic in a domain \(D \) and such that \(|\Phi_1| := \max\{||f||, ||g||\} = 1 \) in \(D \). Then \(\omega \in \mathbb{R} \) satisfies the Bryuno condition if and only if there exists \(\varepsilon_0 > 0 \) such that any \(\Phi \) admits an analytic invariant curve with rotation number \(\omega \) analytic in \(\varepsilon \) for \(|\varepsilon| < \varepsilon_0 \).

The proof, to be given in section 5, which we refer to for more details, follows immediately from theorem 1.1 and some results available in the literature [2, 11].

2. Formal power series and tree expansion

We start by considering exact symplectic maps of the form (1.2) and defer to section 6 how to extend the analysis to (1.1). So, we prove first the following result, which is a special case of theorem 1.1.

Theorem 2.1. Consider an exact symplectic map on the cylinder of the form (1.2), with \(f \) and \(g \) analytic. If \(\omega \) satisfies the Bryuno condition then there exists \(\varepsilon_0 > 0 \) such that the map admits an analytic invariant curve with rotation number \(\omega \) analytic in \(\varepsilon \) for \(|\varepsilon| < \varepsilon_0 \).

As said in section 1 we rewrite (1.2) in the form

\[
\begin{align*}
y' &= x' - x - \varepsilon \frac{\partial \sigma_\varepsilon(x, x')}{\partial x} \\
y &= x' - x - \varepsilon \frac{\partial \sigma_\varepsilon(x, x')}{\partial x},
\end{align*}
\]

(2.1)

where \(\sigma_\varepsilon(x, x') \) is a function analytic in \(x, x' \) and \(\varepsilon \), such that \(\sigma_\varepsilon(x + 2\pi, x' + 2\pi) = \sigma_\varepsilon(x, x') \). It is more convenient to write \(\sigma_\varepsilon(x, x') = \sigma_\varepsilon(x, x' - x') \), with \(\sigma_\varepsilon(x, z) = \sigma_\varepsilon(x + 2\pi\omega, z) \). For simplicity, we first consider the case in which \(\sigma_\varepsilon(x, z) = \sigma(x, z) \) does not depend on \(\varepsilon \) and show at the end that the analysis easily extends so as to take into account also the dependence on \(\varepsilon \).

By the assumption of analyticity one has

\[
\sigma(x, z) = \sum_{\nu \in \mathbb{Z}} e^{i\nu x} \sigma_\nu(z), \quad \frac{1}{q!} \left| \frac{\partial^q \sigma_\nu(2\pi \omega)}{\partial v^q} \right| \leq C e^{-\xi|v|} \rho^{-q} \quad \forall (v, q) \in \mathbb{Z} \times \mathbb{Z}_+, \tag{2.2}
\]

for suitable positive constants \(C, \xi \) and \(\rho \), depending on the domain \(D \) introduced after (1.1). Here and henceforth \(\frac{\partial^q \sigma_\nu(2\pi \omega)}{\partial v^q} \) stands for \(\frac{\partial^q \sigma_\nu(z)}{\partial v^q} \mid_{z = 2\pi \omega} \).

We look for two analytic functions \(h \) and \(H \) (conjugation) such that

\[
x = \psi + h(\psi), \quad y = 2\pi \omega + H(\psi) \tag{2.3}
\]

and the dynamics in terms of \(\psi \) becomes \(\psi' = \psi + 2\pi \omega \). By introducing (2.3) into (2.1) and imposing \(\psi' = \psi + 2\pi \omega \) one finds the functional equation for \(h \)

\[
h(\psi + 2\pi \omega) + h(\psi - 2\pi \omega) - 2h(\psi) = \varepsilon \left[\frac{\partial \sigma(\psi + h(\psi), 2\pi \omega + h(\psi + 2\pi \omega) - h(\psi))}{\partial x} \\
- \varepsilon \frac{\partial \sigma(\psi + h(\psi), 2\pi \omega + h(\psi + 2\pi \omega) - h(\psi))}{\partial x} \\
+ \varepsilon \frac{\partial \sigma(\psi - 2\pi \omega + h(\psi - 2\pi \omega), 2\pi \omega + h(\psi) - h(\psi - 2\pi \omega))}{\partial x} \right]. \tag{2.4}
\]
where \(\partial_j \) denotes derivative with respect to the \(j \)-th argument. If the equation (2.4) can be solved then the function \(H \) can be obtained from

\[
H(\psi) = h(\psi) - h(\psi - 2\pi \omega) + \varepsilon \partial_{2\pi}(\psi - 2\pi \omega)
\]

Moreover

\[
H(\psi) = h(\psi) - 2\pi \omega + h(\psi) = h(\psi - 2\pi \omega)).
\]

(2.5)

Moreover \(H \) inherits the same regularity properties of \(h \), so that we can confine ourselves to the functional equation (2.4).

If there exists a solution to (2.4) we say that the system admits an invariant curve with rotation number \(\omega \); if the functions are analytic in \(\psi \) and \(\varepsilon \) we say that the invariant curve is analytic in \(\psi \) and \(\varepsilon \). In the following we will be interested in invariant curves of this kind.

By analogy with the case of flows, we shall call Lindstedt series

\[
C(k, \xi, \xi_n) = \int_{\pi(\psi - 2\pi \omega)}^{2\pi \omega} h(\psi) d\psi
\]

(2.6)

one can rewrite (2.4) as infinitely many equations

\[
\delta(\omega) = \int_{\pi(\psi - 2\pi \omega)}^{2\pi \omega} h(\psi) d\psi
\]

Moreover for any \(\psi \), \(\xi \)

\[
\delta(\omega) \delta(u) h(k)
\]

(2.7)

where we have set

\[
\delta(u) := 2(\cos 2\pi u - 1), \quad \delta_{\pm}(u) := \pm (e^{\pm 2\pi i u} - 1).
\]

By analogy with the case of flows, we shall call Lindstedt series the series (2.6).

Definition 2.2. We say that the formal series (2.6) is a formal solution to equation (2.4) if there exist well-defined coefficients \(h^{(k)} \) that solve (2.7) to any order \(k \in \mathbb{N} \).

As (2.7) shows, to compute the coefficients \(h^{(k)} \) one has to deal with infinitely many sums (over the Fourier labels). Therefore (2.7) can be formally solved only if the sums can be performed and the right hand side vanishes whenever \(\delta(\omega \nu) = 0 \). In this section we want to show that this occurs if we impose a mild Diophantine condition on \(\omega \).

We require for \(\omega \) to satisfy the Bryuno condition \(\mathcal{B}(\omega) < \infty \), with \(\mathcal{B}(\omega) \) defined in (1.4).

Proposition 2.3. Assume that \(\omega \) satisfies the Bryuno condition. Then there exists a formal solution to (2.4) of the form (2.6). The coefficients \(h^{(k)} \) of the formal solution are uniquely defined by requiring for the formal solution to have zero average, i.e. \(h_0^{(k)} = 0 \) for all \(k \geq 1 \).

Moreover for any \(\xi_1, \xi_2 \geq 0 \), with \(\xi_1 + \xi_2 < \xi \), and all \(k \in \mathbb{N} \) there exists a positive constant \(C(k, \xi_1, \xi_2, \xi) \) such that one has \(|h^{(k)}| \leq k \xi^{-2} C(k, \xi_1, \xi_2) e^{-\xi|v|} \) for all \(v \in \mathbb{Z} \).
We note since now that, in order to prove that a formal solution of the form (2.6) exists, a condition even weaker than the Bryuno condition can be taken; see remark 2.9 below. Of course proposition 2.3 is not enough to prove the existence of the conjugation, because one still has to control that the constants \(C(k, \xi, \xi_1) \) do not grow too fast in \(k \). To check this a more detailed analysis is needed, as will be performed in section 3.

To prove proposition 2.3 we shall use a tree expansion for the conjugation; see also [17, 19, 22] for an introduction to the subject. A graph is a set of points and lines connecting them. A tree \(\theta \) is a graph with no cycle, such that all the lines are oriented toward a single point (root) which has only one incident line \(\ell_0 \) (root line). All the points in a tree except the root are called nodes or vertices. The orientation of the lines in a tree induces a partial ordering relation (\(\preceq \)) between the nodes and the lines: we can imagine that each line carries an arrow pointing toward the root. Given two nodes \(v \) and \(w \), we shall write \(w \prec v \) every time \(v \) is along the oriented path of lines which connects \(w \) to the root. We denote by \(V(\theta) \) and \(L(\theta) \) the sets of nodes and lines in \(\theta \), respectively. Since a line \(\ell \in L(\theta) \) is uniquely identified by the node \(v \) which it leaves, we may write \(\ell = \ell_v \) and say that \(\ell \) exits \(v \). We write \(\ell_w \prec \ell_v \) if \(w \prec v \), and \(w \prec \ell \) if \(\ell = \ell_v \), with \(w \prec v \). For any line \(\ell \in L(\theta) \) the set of nodes \(v' \prec \ell \) and the set of lines \(\ell' \preceq \ell \) form a tree \(\theta' \): we shall say that \(\theta' \) is a subtree of \(\theta \) with root line \(\ell \); if \(\ell \) enters the node \(v \) we say that \(\theta' \) enters \(v \).

If \(\ell \) and \(\ell' \) are two comparable lines with \(\ell' \prec \ell \), we denote by \(P(\ell, \ell') \) the oriented path of lines and nodes connecting \(\ell' \) to \(\ell \), with \(\ell \) and \(\ell' \) not included (in particular \(P(\ell, \ell') = \emptyset \) if \(\ell' \) enters the node \(\ell \) exits). If \(w \prec v \) we denote by \(P(v, w) \) the oriented path connecting \(w \) to \(v \), with \(w \) and \(v \) being included.

With each node \(v \in V(\theta) \) we associate a mode label \(v_v \in \mathbb{Z} \) and with each line \(\ell \in L(\theta) \) we associate a momentum label \(v_\ell \in \mathbb{Z} \), with the constraint
\[
v_{\ell_v} = \sum_{w \prec v} v_w. \tag{2.9}
\]

With each line \(\ell \prec \ell_0 \) we associate also a further label \(\beta_\ell = \pm \), and we call \(L^\pm(\theta) \) the set of lines \(\ell \) entering the node \(v \in V(\theta) \) such that \(\beta_\ell = \beta \); set \(p_v = \lvert L^+_v(\theta) \rvert \) and \(q_v = \lvert L^-_v(\theta) \rvert \).

We say that two trees are equivalent if they can be transformed into each other by continuously deforming the lines in such a way that these do not cross each other and all the labels match. This provides an equivalence relation on the set of the trees. From now on we shall call trees tout court such equivalence classes.

We define the propagator associated with the line \(\ell \) as
\[
G_\ell := \begin{cases} \frac{1}{\delta(\omega_{v_\ell})}, & v_\ell \neq 0, \\ 1, & v_\ell = 0, \end{cases} \tag{2.10}
\]
with \(\delta(\omega) \) defined in (2.8), and the node factor associated with the node \(v \) as
\[
A_v := \frac{1}{p_v q_v} \left((iv_v)^{p_v+1} \partial_{\xi_v} + (e^{-2\pi iv_v} - 1) (iv_v)^{p_v} \partial_{\xi_v} + 1 \right) (iv_v)^{p_v} \partial_{\xi_v} + 1 \right) \sigma_v (2\pi \omega) \prod_{\ell \in L^+_v(\theta)} \delta_v (\omega_{v_\ell}), \tag{2.11}
\]
where we have used that
\[
v_{\ell_v} = v_v + \sum_{\ell \in L^+_v(\theta)} v_\ell + \sum_{\ell \in L^-_v(\theta)} v_\ell. \tag{2.12}
\]

Then we define the value of the tree \(\theta \) as
\[
\mathcal{T}(\theta) = \left(\prod_{v \in V(\theta)} A_v \right) \left(\prod_{\ell \in L(\theta)} G_\ell \right) \tag{2.13}
\]
and call \(T_k \) the set of all trees of order \(k \) (that is with \(k \) nodes) and with momentum \(v \) associated with the root line. Note that (2.13) is well-defined for \(\omega \) satisfying \(\mathfrak{B}(\omega) < \infty \).
Lemma 2.4. Set $h_{0}^{(k)} = 0$ for all $k \geq 1$. Assume that $\sum_{\theta \in T_{0}} \mathcal{F}^{(\theta)} = 0 \forall k \leq k_{0}$ for some $k_{0} \in \mathbb{N}$. Then, by setting

$$h_{v}^{(k)} = \sum_{\theta \in T_{v,k}} \mathcal{F}^{(\theta)}, \quad v \neq 0,$$

for all $k \leq k_{0}$ and all $v \in \mathbb{Z}$, one obtains a solution up to order k_{0} to (2.7).

Proof. Equation (2.7) allows us to express the coefficients $h_{0}^{(k)}$, for $v \neq 0$, in terms of coefficients $h_{\nu}^{(k)}$, with $k < k$ and $v' \neq 0$ (since we are assuming $h_{0}^{(k)} = 0$ for all $k \geq 1$). By iterating, all the coefficients are eventually given by expressions involving only coefficients $h_{\nu}^{(1)}$, with $v' \neq 0$. It is straightforward to see that such coefficients can be expressed as

$$h_{v'}^{(k)} = \sum_{\theta \in T_{v'},k} \mathcal{F}^{(\theta)}, \quad v' \neq 0,$$

with $k = 1$, provided $\mathcal{F}^{(\theta)}$ is defined as in (2.13). Then one easily checks by induction that $h_{\nu}^{(1)}$ is given by (2.14) for all $k \geq 1$ and all $v' \neq 0$. To see that the definition of the coefficients through (2.14) makes sense, one uses that sum over the mode labels can be performed thanks to (2.2) and the Bryuno condition $\mathfrak{B}(\omega) < \infty$; one reasons as in appendix H in [8], which we refer to for a complete argument.

As a consequence, the equation (2.7) are satisfied for all $k \in \mathbb{N}$ and all $v \neq 0$. The assumption ensures that, for all $k \leq k_{0}$, the right hand side of (2.7) vanishes for $v = 0$. Therefore the equation (2.7) are satisfied for all $k \leq k_{0}$ and all $v \in \mathbb{Z}$. \hfill \□

Remark 2.5. The proof of lemma 2.4 shows that, since any line ℓ of any tree θ can be considered as the root line of a subtree θ_{1}, then, by construction, $\mathcal{F}^{(\theta_{1})}$ is a contribution to $h_{\nu}^{(k)}$, where k_{1} is the order of θ_{1}. In particular, the assumption $h_{0}^{(k)} = 0$ implies that, for any tree θ and any line $\ell \in L(\theta)$, one has $v_{\ell} \neq 0$.

Lemma 2.6. One has $\sum_{\theta \in T_{0}} \mathcal{F}^{(\theta)} = 0$ for all $k \geq 1$.

The proof of lemma 2.6 is given in appendix A.

Remark 2.7. Lemma 2.6, together with lemma 2.4, implies that one can define the coefficients $h_{\nu}^{(k)}$ as in lemma 2.4 for all $k \in \mathbb{N}$. Moreover, by remark 2.5, if $\theta \in T_{v,k}$ and v_{0} is the root line of θ, then $v_{\ell} \neq 0$ for all $\ell \in L(\theta) \setminus \{v_{0}\}$.

The following result yields immediately proposition 2.3.

Lemma 2.8. For any $\xi_{1}, \xi_{2} > 0$, with $\xi_{1} + \xi_{2} < \xi$, and any $k \geq 1$ there exists a constant $C_{0}(k, \xi, \xi_{1}, \xi_{2})$ such that one has

$$\sum_{\theta \in T_{\nu}} |\mathcal{F}^{(\theta)}| \leq \xi_{2}^{-2k}C_{0}(k, \xi, \xi_{1}, \xi_{2}) e^{-\xi_{1}|\nu|}$$

for any $v \in \mathbb{Z} \setminus \{0\}$.

Proof. With the notations in (2.2), for any $\xi_{2} \in (0, \xi)$ each node factor A_{v} can be bounded by $3 \sum (2 \xi_{2}^{-1})^{p_{v}+q_{v}} \rho^{-q_{v}+1} e^{-\xi_{1}(\xi - \xi_{1} - \xi_{2})|\nu|}$. By writing $\xi - \xi_{2} = \xi_{1} + (\xi - \xi_{1} - \xi_{2})$ in $e^{-\xi_{1}(\xi - \xi_{1} - \xi_{2})|\nu|}$, one can extract a factor $e^{-\xi_{1}|\nu|}$ per each node. Moreover one has

$$\sum_{v \in V(\theta)} (p_{v} + q_{v}) = k - 1.$$
Then one uses the Bryuno condition in order to bound the sum over all the mode labels of the product of factors $e^{-(\xi - \xi_1 - \xi_2)\nu v}$ times the product of propagators by a constant $C_1(k, \xi, \xi_1, \xi_2)$: again we refer to [8, appendix H] for more details. Finally one has to sum over all the other labels and this produces a further factor $C_2(k, \xi, \xi_1, \xi_2)$; Then the assertion follows with $C_0(k, \xi, \xi_1, \xi_2) = (24 \cdot C_2 \rho^{-2})^t C_1(k, \xi, \xi_1, \xi_2)$. □

Remark 2.9. As a matter of fact, as observed in [8], the existence of the formal solution (2.6) follows by only assuming that $q^{-1}n \log q^n + 1 \to 0$ as $n \to \infty$. Essentially, what we need to prove the existence of a *formal solution* to (2.4) is that the denominators of the continued fraction expansion of ω grow less than exponentially, more precisely that $q_n \leq e^{\varepsilon_n q_n}$, with $\varepsilon_n \to 0$, and such a property is ensured by the Bryuno condition. We shall see in the forthcoming analysis that, instead, proving the existence of a *solution* requires a stronger condition, that is the sequence $\{\varepsilon_n\}$ to be summable—and this is exactly the Bryuno condition.

Remark 2.10. The formal solution to (2.4) found through the construction above has been obtained by arbitrarily imposing that $h(k) = 0$ for all $k \in \mathbb{N}$. Therefore we have no uniqueness of the solution: the solution is unique if we require for its average to vanish. In principle one could fix arbitrarily the constants $h(k)$ and the existence of the solution could still be proved by reasoning as above: this would simply shift the origin of the parametrisation of the invariant curve. However the choice we made is a natural one and simplifies the analysis.

3. Analyticity of the conjugation: multiscale analysis

To prove convergence of the power series in ε for the conjugation we need a more careful analysis, which requires multiscale techniques. We introduce a C^∞ partition of unity as follows. For $b > a > 0$ let $\chi_{a, b}$ be a C^∞ non-increasing function defined on $(0, +\infty)$ such that

$$
\chi_{a, b}(u) = \begin{cases}
1, & u \leq a, \\
0, & u \geq b.
\end{cases}
$$

For $n \geq 1$ define

$$
\delta^-_n := \frac{1}{4} \min \left\{ \frac{q_n - q_{n+1}}{32 q_n q_{n+1}}, \frac{1}{32 q_n} \right\}, \quad \delta^+_n := \frac{1}{4} \min \left\{ \frac{q_n - q_{n+1}}{32 q_n q_{n+1}}, \frac{1}{32 q_n} \right\},
$$

$$
a_n := \frac{1}{32 q_n} - \delta^-, \quad b_n := \frac{1}{32 q_n} + \delta^+.$$

and set $\chi_n = \chi_{a_n, b_n}$. Then we define

$$
\Psi_0(u) = 1 - \chi_1(u), \quad \Psi_n(u) = \chi_n(u) - \chi_{n+1}(u), \quad n \geq 1.
$$

Remark 3.1. Consider the partition of unity of $(0, +\infty)$ consisting of the characteristic functions of the intervals $(1/32 q_{n+1}, 1/32 q_n)$, $n \geq 0$, and of the half-line $(1/32 q_1, +\infty)$. Then $\{\Psi_n\}_{n \geq 0}$ is a smoothed version of such a partition.

We associate with each line $\ell \in L(\theta)$ a further label $n_\ell \in \mathbb{Z}_+$, called the *scale label*, and redefine the propagator of the line ℓ as

$$
G_\ell \equiv \Psi_{n_\ell}(\|\omega \nu_\ell\|) G_\ell = \Psi_{n_\ell}(\|\omega \nu_\ell\|) / \delta(\omega \nu_\ell),
$$

where

$$
\|u\| := \inf_{v \in \mathbb{Z}} |u - v|.
$$
Lemma 3.2. If $G_t \neq 0$, then $1/64q_{n+1} \leq \|\omega_{v_t}\| \leq 1/16q_n$ if $n_t \geq 1$ and $1/64q_1 \leq \|\omega_{v_t}\|$ if $n_t = 0$.

Proof. By definition of the functions Ψ_n. □

Definition 3.3. For any $\ell \in L(\theta)$ we call
$$
\zeta_\ell = \min\{n \in \mathbb{Z}_+: \Psi_n(\|\omega_{\nu_\ell}\|) \neq 0\}
$$
the minimum scale of ℓ.

Remark 3.4. For any line $\ell \in L(\theta)$ such that $G_\ell \neq 0$ one has either $n_\ell = \zeta_\ell$ or $n_\ell = \zeta_\ell + 1$.

We denote by $\Theta_{k,\nu}$ the set of all labelled trees with such extra labels n_ℓ, ζ_ℓ for all $\ell \in L(\theta)$, with k nodes and momentum ν associated with the root line. Given a tree $\theta \in \Theta_{k,\nu}$ redefine the value of θ as
$$
\mathcal{F}(\theta) = \left(\prod_{v \in V(\theta)} A_v \right) \left(\prod_{\ell \in L(\theta)} G_\ell \right).
$$
(3.6)

Definition 3.5. We say that a line ℓ with scale $n_\ell = n$ satisfies the support property if $1/128q_{n+1} \leq \|\omega_{\nu_\ell}\| \leq 1/8q_n$.

Remark 3.6. Lemma 3.2 implies that if $\mathcal{F}(\theta) \neq 0$ then all lines $\ell \in L(\theta)$ satisfy the support property. However, as it will be shown later, it is convenient to consider also trees with zero value, but still satisfying the support property. This will be due to the fact that in the renormalisation procedure described in section 4 the momenta ν_ℓ will be replaced by new momenta, to be denoted $\nu_\ell(t)$, so that the scales n_ℓ will be determined by these new momenta through the conditions $\Psi_n(\|\omega_{\nu_\ell(t)}\|) \neq 0$. Nevertheless the old momenta ν_ℓ will be still found to satisfy the support property in terms of the scales n_ℓ.

The following result is proved as lemmas 2.4 and 2.6.

Lemma 3.7. The coefficients
$$
h^{(k)}_0 = 0 \quad \text{and} \quad h^{(k)}_v = \sum_{\theta \in \Theta_{k,\nu}} \mathcal{F}(\theta), \quad \nu \neq 0,
$$
for all $k \geq 1$ and all $\nu \in \mathbb{Z}$, formally solve (2.7) to all orders $k \in \mathbb{N}$.

Definition 3.8. We define a cluster T on scale n as a maximal connected set of nodes and lines connecting them such that all lines have scale $\leq n$ and at least one of them has scale n.

Given any subgraph T of a tree θ, denote by $L(T)$ and $V(T)$ the set of lines and the set of nodes, respectively, in T. If T is a cluster, $L(T)$ will be called the set of internal lines of T, while the lines which connect one node $v \in V(T)$ to a node $w \notin V(T)$ will be called the external lines of T: they will be said to enter T if the line is oriented toward to the node belonging to $V(T)$ and to exit T otherwise. A cluster can have only either one or no exiting line.

If T has one exiting line ℓ_T and only one entering line ℓ'_T call \mathcal{P}_T the oriented path of lines and nodes connecting ℓ'_T to ℓ_T and define $n_T := \min\{n_{\ell_T}, n_{\ell'_T}\}$. If T is a subgraph of θ, consisting of all nodes and lines preceding the line ℓ_1 but not the line ℓ_2, then we shall still denote by \mathcal{P}_T the oriented path connecting ℓ_2 to ℓ_1. Finally, for $\ell \in \mathcal{P}_T$, call $\nu(\ell)$ and $\nu'(\ell)$ the nodes along \mathcal{P}_T which ℓ enters and exits, respectively.

Remark 3.9. If T is a cluster on scale n with one entering line and one exiting line, one has $n_T \geq n + 1$. 2563
Set also
\[M(\theta) = \sum_{v \in V(\theta)} |v_v|, \quad M(T) = \sum_{v \in V(T)} |v_v|, \] (3.7)
where \(T \) can be any subgraph of \(\theta \).

Definition 3.10. A cluster \(T \) on scale \(n \) will be called a *self-energy cluster* if

1. it has one exiting line \(\ell_T \) and only one entering line \(\ell^{'}_T \),
2. \(\nu_{\ell^{'_T}} = \nu_{\ell_T} \),
3. \(\nu_{\ell} \neq \nu_{\ell^{'_T}} \) for all \(\ell \in \mathcal{P}_T \),
4. \(M(T) < q_n \).

Remark 3.11. The condition (2) in definition 3.10 implies that the sum of the mode labels of the nodes of a self-energy cluster \(T \) is zero, that is
\[\sum_{v \in V(T)} \nu_v = 0. \]

We say that \(\ell \in L(\theta) \) is a *resonant line* if \(\ell \) exits a self-energy cluster. Let us denote by \(N_n^\star(\theta) \) the number of non-resonant lines \(\ell \in L(\theta) \) with \(\zeta_\ell = n \) and by \(P_n(\theta) \) the number of self-energy clusters on scale \(n \) in \(\theta \).

Lemma 3.12. Given \(\nu \in \mathbb{Z} \), if \(\|\omega\nu\| \leq 1/4q_n \) then either \(\nu = 0 \) or \(|\nu| \geq q_n \).

The proof of lemma 3.12 can be found in [11].

Lemma 3.13. Assume that all lines \(\ell \in L(\theta) \) satisfy the support property. Then one has
\[K_n(\theta) := N_n^\star(\theta) + P_n(\theta) \leq \frac{2M(\theta)}{q_n}. \]

Proof. We prove by induction that for any tree \(\theta \) one has
\[K_n(\theta) = 0, \quad M(\theta) < q_n, \] (3.8a)
\[K_n(\theta) \leq \frac{2M(\theta)}{q_n} - 1, \quad M(\theta) \geq q_n, \] (3.8b)
First of all note that if \(M(\theta) < q_n \) one has \(|v_v| < q_n \) and hence, by lemma 3.12, \(n_v < n \) for all \(\ell \in L(\theta) \): therefore \(K_n(\theta) \geq 1 \) requires \(M(\theta) \geq q_n \). In particular this proves (3.8a). To prove (3.8b) we proceed by induction on the order \(k \) of the tree. For \(k = 1 \) the bound holds by the previous argument. Let assume that (3.8b) holds for any tree of order \(k < k_0 \) and consider a tree of order \(k_0 \). Let us denote by \(\ell_0 \) the root line of \(\theta \) and call \(\ell_1, \ldots, \ell_p \) the lines with minimum scale \(\geq n \) (if any) which are closest to \(\ell_0 \) and \(\theta_1, \ldots, \theta_p \) the subtrees with root lines \(\ell_1, \ldots, \ell_p \), respectively. Note that \(n_{\ell_0} \geq n \), so \(\ell_0 \) can exit a self-energy cluster on scale \(n \) only if \(\zeta_\ell_0 \geq n \) and \(n_{\ell_0} \geq n + 1 \).

1. If \(\zeta_\ell_0 \neq n \) and \(\ell_0 \) does not exit a self-energy cluster on scale \(n \), then one has \(K_n(\theta) = 0 \) if \(p = 0 \) and \(K_n(\theta) = K_n(\theta_1) + \ldots + K_n(\theta_p) \) if \(p \geq 1 \). In the first case the bound (3.8b) trivially holds, while in the second case it follows from the inductive hypothesis.
2. If \(\zeta_\ell_0 = n \) and \(\ell_0 \) is non-resonant, then one has \(K_n(\theta) = 1 + K_n(\theta_1) + \ldots + K_n(\theta_p) \).
If \(p = 0 \) the bound is trivially satisfied and if \(p \geq 2 \) it follows immediately from the inductive hypothesis. If \(p = 1 \) let \(T \) be the subgraph formed by all lines and nodes of \(\theta \) which precede \(\ell_0 \) but not \(\ell_1 \). If \(T \) is not a cluster then it must contain at least one line \(\ell \) with \(n_\ell = n \) and \(\zeta_\ell = n - 1 \). Then \(\|\omega\nu_{\ell}\| \leq 1/8q_n \). If \(\ell \) is not along the path \(\mathcal{P}_T \)
connecting \(\ell_1 \) to \(\ell_0 \) then \(M(T) \geq |v_\ell| \geq q_0 \); if \(\ell \) is along the path \(P_T \) then \(v_\ell \neq v_{\ell_1} \)
(because \(\zeta_\ell = n - 1 \), while \(\zeta_{\ell_1} \geq n \), so that \(\|\omega(v_\ell - v_{\ell_1})\| \leq \|\omega v_\ell\| + \|\omega v_{\ell_1}\| \leq 1/4q_0 \)
implies \(|v_\ell - v_{\ell_1}| \geq q_0 \) and hence \(M(T) \geq q_0 \). If \(T \) is a cluster then either \(M(T) \geq q_0 \) or \(v_{\ell_0} \neq v_{\ell_1} \) (as \(\ell_0 \) is non-resonant, \(T \) cannot be a self-energy cluster and hence \(M(T) < q_0 \)
would require \(v_{\ell_0} \neq v_{\ell_1} \), because otherwise there should be at least one line \(\ell \in P_T \) such
that \(v_\ell = v_{\ell_1} \), which is not possible since \(\zeta_\ell \leq n - 1 \) and \(\zeta_{\ell_1} = \zeta_{\ell_0} = n \). On the other
hand \(v_{\ell_0} \neq v_{\ell_1} \) would imply \(\|\omega (v_{\ell_0} - v_{\ell_1})\| \leq \|\omega v_{\ell_0}\| + \|\omega v_{\ell_1}\| \leq 1/4q_0 \)
and hence \(M(T) \geq q_0 \) once more. Therefore, in all cases one has \(M(\theta) - M(\theta_1) = M(T) \geq q_0 \), so
that \(K_n(\theta) = 1 + K(\theta_1) \leq 2M(\theta_1)/q_n \leq 2M(\theta)/q_n - 1 \) and the bound \((3.8b) \) follows.

(3.) If \(\zeta_{\ell_0} = n \) and \(\ell_0 \) exits a self-energy cluster \(T \) on scale \(\neq n \), then one has \(K_n(\theta) = K_n(\theta_1) + \ldots + K_n(\theta_p) \) and once more \((3.8b) \) is trivial if \(p = 0 \) and follows from the
inductive hypothesis if \(p \geq 1 \).

(4.) If \(\ell_0 \) exits a self-energy cluster \(T \) on scale \(n \), then \(p \geq 1 \) and \(K_n(\theta) = 1 + K(\theta_1) + \ldots + K(\theta_p) \). If \(p \geq 2 \) the bound follows by the inductive hypothesis. If \(p = 1 \) then either \(\ell_1 = \ell' \) or \(\ell_1 \in P_T \) (because \(\ell' \) has \(n_{\ell'} \geq n + 1 \) and hence \(\zeta_{\ell'} \geq n \)). If \(\ell_1 = \ell' \) then \(T \)
must contain at least one line \(\ell \) such that \(n_{\ell} = n \) and \(\zeta_{\ell} = n - 1 \): if \(\ell \notin P_T \) then
\(M(T) \geq |v_\ell| \geq q_0 \), while if \(\ell \in P_T \) then either \(M(T) \geq q_0 \) or \(v_\ell \neq v_{\ell_1} \), and hence
again \(M(T) \geq |v_\ell - v_{\ell_1}| \geq q_0 \). If \(\ell_1 \in P_T \) then \(n_{\ell_1} = n \) and either \(M(T) \geq q_0 \) or
\(v_{\ell_1} \neq v_{\ell_2} \); the latter case yields again \(M(T) \geq |v_{\ell_1} - v_{\ell_2}| \geq q_0 \). In all cases one finds
\(K_n(\theta) = 1 + 2M_n(\theta_1)/q_n \leq 2M_n(\theta)/q_n - 1 \), so that \((3.8b) \) follows.

As we shall see in section 4, when bounding a tree value \((3.6) \), the product of node factors is
easily controlled, while lemma 3.13 guarantees that the product of propagators would also
be bounded proportionally to a constant to the power \(k \), if only the resonant lines could be
neglected. In other words, the small divisors can accumulate only in the presence of self-energy
clusters. Thus, we have to make sure that when this happens one has compensations between
the tree values.

We end this section by providing the basic algebraic cancellations which underlie such
compensations; the proof is an extension of the very argument used in the proof of lemma 2.6
and is easily described in terms of operations on trees. Then, in section 4 we will show how
to implement iteratively the cancellations in order to control the product of all propagators,
including those of the resonant lines, and hence complete the proof of convergence of the series
\((2.6) \). The cancellations are related to remarkable identities between classes of trees. In
the case of flows, such identities have been interpreted, in the light of the analogy of our method
with the techniques of quantum field theory \[18\], as suitable Ward identities corresponding to the
translation invariance of the invariant tori \[4\]; an analogous interpretation could be expected
in the case of maps.

We denote by \(\mathcal{E}_{k,n} \) the set of all self-energy clusters \(T \) on scale \(n \) of order \(k \), that is with
\(k \) nodes. Given a self-energy cluster \(T \) define the value of \(T \) as
\[V_T(\omega v_T) = \left(\prod_{v \in V(T)} A_v \right) \left(\prod_{\ell \in L(T)} G_{\ell} \right). \tag{3.9} \]

Remark 3.14. Given a self-energy cluster \(T \), if we set \(v = v_T \) and define
\[v^0_\ell = \sum_{v \in V(T)} v_v, \tag{3.10} \]
we have \(v_\ell = v^0_\ell + v \) if \(\ell \in P_T \) and \(v_\ell = v^0_\ell \) if \(\ell \notin P_T \). Therefore \(V_T(\omega v) \) depends on \(\omega v \)
only through the propagators and the node factors of the lines and of the nodes, respectively, along
the path \(P_T \).
A self-energy cluster T can contain other self-energy clusters: call \hat{T} the set of lines and nodes in T which are outside any self-energy clusters contained inside T, and denote by $L(\hat{T})$ and $V(\hat{T})$ the set of lines and of nodes, respectively, in \hat{T}.

Remark 3.15. By definition of self-energy cluster one has

$$\sum_{v \in V(\hat{T})} \nu_v = 0$$

for any self-energy cluster T.

Given a self-energy cluster T, call $\mathfrak{T}(T)$ the set of all self-energy clusters $T' \in \mathcal{S}_{k,n}$, where k and n are the order and scale, respectively, of T, with $\nu^\ell_{T'} = \nu^\ell_T$.

Lemma 3.16. For any self-energy cluster T one has

$$\sum_{T' \in \mathfrak{T}(T)} V_{T'}(0) = 0, \quad \sum_{T' \in \mathfrak{T}(T)} \partial_u V_{T'}(0) = 0.$$

The proof is in appendix A.

4. Analyticity of the conjugation: renormalisation procedure

The modified tree expansion envisaged in section 3 will allow us to refine the bounds on the coefficients of proposition 2.3 into the following result.

Proposition 4.1. Assume that ω satisfies the Bryuno condition. Then there exists a solution $h(\psi)$ to (2.4) of the form (2.6). For any $\xi_1, \xi_2, \xi_3 \geq 0$, with $\xi_1 + \xi_2 + \xi_3 < \xi$, there exists a positive constant $C_0(\xi_3)$ such that for all $k \geq 1$ and $\nu \in \mathbb{Z}$ the coefficients $h^{(k)}_{\nu}$ of the solution $h(\psi)$ satisfy the bounds $|h^{(k)}_{\nu}| \leq (\xi - \xi_1 - \xi_2 - \xi_3)^{-1} (\xi_2 - 2k) C_0(\xi_3) e^{-\xi_1}$ and hence the series (2.6) converges absolutely for ϵ small enough.

The rest of this section is devoted to proving proposition 4.1, which in turn yields immediately theorem 2.1.

We define $\mathcal{T}(\theta)$ as the set of self-energy clusters in θ and $\mathcal{T}_1(\theta)$ as the set of maximal self-energy clusters T contained in θ, i.e. such that there is no self-energy cluster in θ containing T. Generally, for any self-energy cluster T' in θ, we denote by $\mathcal{T}_1(T')$ the set of maximal self-energy clusters (strictly) contained in T'. Given a line $\ell \in L(\theta)$, either there is no self-energy cluster containing ℓ or there exist $p = p(\ell) \geq 1$ self-energy clusters T_1, \ldots, T_p such that T_p is the minimal self-energy cluster containing ℓ and $T_1 \supset T_2 \supset \ldots \supset T_p$, with $T_j \in \mathcal{T}_1(T_{j-1})$ for $j = 2, \ldots, p$ and $T_1 \in \mathcal{T}_1(\theta)$. We call $\mathcal{C}_\ell(\theta) := \{T_1, \ldots, T_p\}$ the *cloud* of ℓ in θ.

Define $\hat{\theta}$ as the set of nodes and lines in θ which are outside any self-energy cluster $T \in \mathcal{T}_1(\theta)$ and set

$$\mathcal{V}(\hat{\theta}) = \left(\prod_{v \in V(\hat{\theta})} A_v \right) \left(\prod_{\ell \in L(\theta)} G_{\ell} \right).$$

We can write $\mathcal{V}(\theta)$ in (3.6) as

$$\mathcal{V}(\theta) = \mathcal{V}(\hat{\theta}) \prod_{T \in \mathcal{T}_1(\theta)} \mathcal{V}_{T}(\omega \nu_{T}).$$

Define the *localised value* of a self-energy cluster $T \in \mathcal{T}_1(\theta)$ as

$$L \mathcal{V}_T(u) = \mathcal{V}_T(0) + u \partial_u \mathcal{V}_T(0)$$

for any u. The modified tree expansion envisaged in section 3 will allow us to refine the bounds on the coefficients of proposition 2.3 into the following result.
and the regularised value of T as $\mathcal{R} \mathcal{Y}_T(u) = \mathcal{Y}_T(u) - \mathcal{L} \mathcal{Y}_T(u)$. One can write

$$
\mathcal{R} \mathcal{Y}_T(u) = u^2 \int_0^1 dt_T (1 - t_T) \delta^2_{\nu_T} \mathcal{Y}_T(t_T u),
$$

(4.4)

where $t_T \in [0, 1]$ will be called the interpolation parameter associated with the self-energy cluster T. Then we associate with any $T \in \Sigma(\theta)$ a label $\delta_T \in \{L, R\}$ and rewrite (4.2) as a sum of contributions

$$
\mathcal{Y}(\phi) \left(\prod_{T \in \Sigma(\theta)} \mathcal{R} \mathcal{Y}_T(\phi \nu_T) \right) \left(\prod_{T \in \Sigma(\theta)} \mathcal{L} \mathcal{Y}_T(\phi \nu_T) \right).
$$

(4.5)

Recall the definition of the nodes $w(\ell)$ and $w'(\ell)$ before remark 3.9. Call $A_w^{1}(\ell)$ the node factor obtained from $A_w(\ell)$ by replacing the factor $\delta_s(\phi \nu_T)$ with $2\pi i e^{2\pi i \nu_T}$ if $\beta_\ell = -$ and with 0 if $\beta_\ell = +$, and call $A_w^{2}(\ell)$ the node factor obtained from $A_w(\ell)$ by replacing the factor $(e^{-2\pi i \nu_T} - 1)$ with $-2\pi i e^{-2\pi i \nu_T}$. The derivative of $\mathcal{Y}_T(u)$ with respect to $u = \phi \nu_T$ produces several contributions: for any line $\ell \in \mathcal{P}_T$ there are three terms which are obtained from $\mathcal{Y}_T(u)$, respectively, (1) by replacing G_ℓ with $\partial_u G_\ell$, (2) by replacing $A_w(\ell)$ with $A_w^{1}(\ell)$, (3) by replacing $A_w(\ell)$ with $A_w^{2}(\ell)$. To distinguish the three contributions we can introduce a label $\gamma \in \{1, 2, 3\}$, so that all the contributions produced by differentiation will be indexed by two labels (ℓ, γ), with $\ell \in \mathcal{P}_T$ and $\gamma \in \{1, 2, 3\}$ and denoted by $\mathcal{U}_T(\phi \nu_T; \ell, \gamma)$.

When considering $\partial_u^2 \mathcal{Y}_T(u)$ in (4.4), one has a sum of contributions which can be identified by four labels $(\ell_1, \ell_2, \gamma_1, \gamma_2)$, with $\ell_1, \ell_2 \in \mathcal{P}_T$ and $\gamma_1, \gamma_2 \in \{1, 2, 3\}$, and denoted by $\mathcal{U}_T(u; \ell_1, \gamma_1, \ell_2, \gamma_2)$; for $\ell_1 = \ell_2$ we shall impose the constraint $\gamma_1 \leq \gamma_2$ to avoid overcountings. More precisely $\mathcal{U}_T(u; \ell_1, \gamma_1, \ell_2, \gamma_2)$ is obtained from $\mathcal{Y}_T(u)$ by the following replacements

$$
\begin{align*}
\ell_1 = \ell_2, & \quad \gamma_1 = \gamma_2 = 1, & G_\ell \rightarrow \partial_u^2 G_\ell \\
\ell_1 = \ell_2, & \quad \gamma_1 = 1, \gamma_2 = 2, & G_\ell A_w(\ell_1) \rightarrow \partial_u G_\ell A_w^{1}(\ell_1) \\
\ell_1 = \ell_2, & \quad \gamma_1 = 1, \gamma_2 = 3, & G_\ell A_w(\ell_1) \rightarrow \partial_u G_\ell A_w^{2}(\ell_1) \\
\ell_1 = \ell_2, & \quad \gamma_1 = 2, \gamma_2 = 1, & A_w(\ell_1) \rightarrow A_w^{3}(\ell_1) \\
\ell_1 = \ell_2, & \quad \gamma_1 = 2, \gamma_2 = 3, & A_w(\ell_1) A_w^{1}(\ell_1) \rightarrow A_w^{1}(\ell_1) A_w^{2}(\ell_1) \\
\ell_1 = \ell_2, & \quad \gamma_1 = 3, \gamma_2 = 1, & A_w(\ell_1) A_w^{1}(\ell_1) \rightarrow A_w^{2}(\ell_1) A_w^{1}(\ell_1) \\
\ell_1 \neq \ell_2, & \quad \gamma_1 = \gamma_2 = 1, & G_\ell A_w \rightarrow \partial_u G_\ell A_w \\
\ell_1 \neq \ell_2, & \quad \gamma_1 = 1, \gamma_2 = 2, & G_\ell A_w \rightarrow \partial_u G_\ell A_w^{1}(\ell_1) \\
\ell_1 \neq \ell_2, & \quad \gamma_1 = 1, \gamma_2 = 3, & G_\ell A_w \rightarrow \partial_u G_\ell A_w^{2}(\ell_1) \\
\ell_1 \neq \ell_2, & \quad \gamma_1 = 2, \gamma_2 = 1, & G_\ell A_w \rightarrow \partial_u G_\ell A_w^{1}(\ell_1) \\
\ell_1 \neq \ell_2, & \quad \gamma_1 = 2, \gamma_2 = 3, & G_\ell A_w \rightarrow \partial_u G_\ell A_w^{2}(\ell_1) \\
\ell_1 \neq \ell_2, & \quad \gamma_1 = 3, \gamma_2 = 1, & G_\ell A_w \rightarrow \partial_u G_\ell A_w^{1}(\ell_1) \\
\ell_1 \neq \ell_2, & \quad \gamma_1 = 3, \gamma_2 = 2, & A_w(\ell_1) A_w \rightarrow A_w^{1}(\ell_1) A_w^{2}(\ell_1) \\
\ell_1 \neq \ell_2, & \quad \gamma_1 = 3, \gamma_2 = 3, & A_w(\ell_1) A_w \rightarrow A_w^{2}(\ell_1) A_w^{1}(\ell_1)
\end{align*}
$$

where the node factor $A_w^{3}(\ell)$ is obtained from $A_w(\ell)$ by replacing the factor $\delta_s(\phi \nu_T)$ with $(2\pi i)^2 e^{2\pi i \nu_T}$ if $\beta_\ell = -$ and with 0 if $\beta_\ell = +$, and the node factor $A_w^{4}(\ell)$ is obtained from $A_w(\ell)$ by replacing the factor $(e^{-2\pi i \nu_T} - 1)$ with $(-2\pi i)^2 e^{-2\pi i \nu_T}$. The list of values above may look a bit tricky: however, the labels $\ell_1, \ell_2, \gamma_1, \gamma_2$ simply identify the quantities that have
to be differentiated in $\mathcal{Y}_T(u)$. Therefore we have
\[
\partial_u \mathcal{Y}_T(u) = \sum_{\ell_1 \in \mathcal{P}_T} \sum_{\gamma_1 = 1,2,3} \mathcal{U}_T(u; \ell_1, \gamma_1),
\]
(4.6a)
\[
\partial^2_u \mathcal{Y}_T(u) = \sum_{\ell_1, \ell_2 \in \mathcal{P}_T} \sum'_{\gamma_1, \gamma_2 = 1,2,3} \mathcal{U}_T(u; \ell_1, \gamma_1, \ell_2, \gamma_2).
\]
(4.6b)
where, here and henceforth, the prime in the last sum recalls the constraint $\gamma_1 \leq \gamma_2$ when $\ell_1 = \ell_2$. In (4.6a) we write
\[
\mathcal{U}_T(u; \ell_1, \gamma_1) = \left(\prod_{v \in V(T)} \overline{A}_v \right) \left(\prod_{\ell \in L(T)} \overline{G}_\ell \right).
\]
(4.7)
where
\[
\overline{G}_\ell := \begin{cases} \partial_u G_\ell, & \ell = \ell_1, \gamma_1 = 1, \\ G_\ell, & \text{otherwise,} \end{cases} \quad \overline{A}_v := \begin{cases} A^1_{v,\gamma}, & v = w(\ell_1), \gamma = 2, \\ A^2_{v,\gamma}, & v = w'(\ell_1), \gamma = 3, \\ A_v, & \text{otherwise.} \end{cases}
\]
\[
\text{Analogously we can write in (4.6b)}
\]
\[
\mathcal{U}_T(t_T u; \ell_1, \gamma_1, \ell_2, \gamma_2) = \left(\prod_{v \in V(T)} \overline{A}_v \right) \left(\prod_{\ell \in L(T)} \overline{G}_\ell \right),
\]
(4.8)
where
\[
\overline{G}_\ell := \begin{cases} \partial^2_u G_\ell, & \ell = \ell_1 = \ell_2, \gamma_1 = \gamma_2 = 1, \\ \partial_u G_\ell, & \ell = \ell_1, \gamma_1 = 1 \text{or } \ell_2, \gamma_2 = 1, \text{with } \ell_1 \neq \ell_2, \\ G_\ell, & \text{otherwise.} \end{cases}
\]
and
\[
\overline{A}_v := \begin{cases} A^3_v, & v = w(\ell_1) = w(\ell_2), \gamma_1 = \gamma_2 = 2, \\ A^4_v, & v = w'(\ell_1) = w'(\ell_2), \gamma_1 = \gamma_2 = 3, \\ A^1_v, & v = w(\ell_1), \gamma_1 = 2 \text{or } v = w(\ell_2), \gamma_1 = 2, \text{with } \ell_1 \neq \ell_2, \\ A^2_v, & v = w'(\ell_1), \gamma_1 = 3 \text{or } v = w'(\ell_2), \gamma_1 = 3, \text{with } \ell_1 \neq \ell_2, \\ A_v, & \text{otherwise.} \end{cases}
\]

Remark 4.2. The value of both \overline{G}_ℓ and \overline{A}_v is well-defined as it depends only on the number of derivatives acting on G_ℓ and A_v, and not to the fact that it appears in a contribution to the first or second derivative of $\mathcal{Y}_T(u)$.

Given a self-energy cluster $T \in \mathcal{S}_1(\theta)$ with $\delta_T = \mathcal{L}$, as in section 3 we call $\mathcal{S}(T)$ the set of all self-energy clusters $T' \in \mathcal{S}_k,n$, where k and n are the order and scale, respectively, of T, with $v_{T'}, v_{T''}$. The following result allows us to get rid of all contributions (4.5) in which at least one self-energy cluster $T \in \mathcal{S}_1(\theta)$ has $\delta_T = \mathcal{L}$.

Lemma 4.3. Let T be a maximal self-energy cluster of θ of order k and scale π. The sum of $\mathcal{Y}(\theta')$ over all $\theta' \in \mathcal{S}_{k,n}$ obtained from θ by inserting any $T' \in \mathcal{S}(T)$ instead of T and replacing $\mathcal{Y}_T(\omega v_{T'})$ with $\mathcal{L} \mathcal{Y}_T(\omega v_{T'})$ gives zero.

Proof. The result follows from lemma 3.16. \(\square\)

So we are left only with the contribution (4.5) with all self-energy clusters $T \in \mathcal{S}_1(\theta)$ having $\delta_T = \mathcal{R}$. We can write each factor $\mathcal{R} \mathcal{Y}_T(\omega v_{T'})$ in (4.5) according to (4.4), (4.6b) and (4.8), that is
\[
\mathcal{R} \mathcal{Y}_T(\omega v_{T'}) = \sum_{\ell_1, \ell_2 \in \mathcal{P}_T} \sum'_{\gamma_1, \gamma_2 = 1,2,3} (\omega v_{T'})^2 \int_0^1 dt_T (1 - t_T) \left(\prod_{v \in V(T)} \overline{A}_v \right) \left(\prod_{\ell \in L(T)} \overline{G}_\ell \right).
\]
(4.11)
Given a line $\ell \in T$, define the cloud of ℓ in T as the set $\mathcal{C}_\ell(T) = \{T_1, \ldots, T_p\}$ such that T_p is the minimal self-energy cluster containing ℓ and $T_1 \supseteq T_2 \supseteq \cdots \supseteq T_p$, with $T_j \in T_i(T_{j-1})$ for $j = 2, \ldots, p$ and $T_1 \in \mathcal{T}(T)$. For fixed $\ell_1, \ell_2 \in \mathcal{P}_T$ let $\mathcal{C}_{\ell_1}(T)$ and $\mathcal{C}_{\ell_2}(T)$ the clouds of the two lines in T (if the two lines coincide there is only one cloud). We associate a label $\zeta_{\ell'} = 0$ with each self-energy cluster $T' \in \mathcal{C}_{\ell_1}(T) \cap \mathcal{C}_{\ell_2}(T)$. We denote by $\Sigma_0(T)$ the set of such self-energy clusters and set $\Sigma'(T) = \mathcal{T}(T) \setminus \Sigma_0(T)$. Call $\Sigma_1(T)$ the set of maximal self-energy clusters in $\Sigma'(T)$. We associate with each $T' \in \Sigma_1(T)$ a label $\zeta_{\ell'} = 1$ if T' contains one of the two lines ℓ_1 and ℓ_2 (by construction it cannot contain both of them) and a label $\zeta_{\ell'} = 2$ if it does not contain any of them. Finally denote by T^* the set of nodes and lines in T which are outside the self-energy clusters $T' \in \Sigma_1(T)$.

Remark 4.4. Note that both $\Sigma_1(T)$ and T^* depend on ℓ_1 and ℓ_2. One can think of $\Sigma_1(T)$ as the set of self-energy clusters which when ignoring the self-energy clusters itself belong to both the clouds of ℓ_1 and ℓ_2.

Remark 4.5. If $T' \in \Sigma_1(T)$ and $\zeta_{\ell'} = 2$, one has $\mathcal{G}_{\ell'} = \mathcal{G}_\ell$ for all lines $\ell \in L(T')$. If $T' \in \Sigma_1(T)$ and $\zeta_{\ell'} = 1$, there is one line $\ell_1 \in L(T')$ such that $\mathcal{G}_{\ell_1} = \partial_\ell \mathcal{G}_{\ell_1}$, while $\mathcal{G}_{\ell} = \mathcal{G}_{\ell}$ for $\ell \in L(T') \setminus \{\ell_1\}$.

By defining

$$\mathcal{F}_{T'-(\omega v_{\ell'})(t_T)} = \left(\prod_{v \in V(T')} \mathcal{A}_v \right) \left(\prod_{\ell \in L(T')} \mathcal{G}_\ell \right),$$

(4.12a)

$$\mathcal{F}_{T'-(\omega v_{\ell'})(t_T)} = \left(\prod_{v \in V(T')} \mathcal{A}_v \right) \left(\prod_{\ell \in L(T')} \mathcal{G}_\ell \right), \quad T' \in \Sigma_1(T),$$

(4.12b)

where $v_\ell(t_T) = v_\ell$ if $\ell \notin \mathcal{P}_T$ and $v_\ell(t_T) = v_\ell + t_T v_{\ell'}$ if $\ell \in \mathcal{P}_T$, we can rewrite (4.11) as

$$\mathcal{R}_{T'}(\omega v_{\ell'}) = \sum_{\ell_1, \ell_2 \in \mathcal{P}, \gamma_1, \gamma_2 = 1, 2, 3} \sum_{i=1}^{3} (\omega v_{\ell'})^2$$

$$\times \int_0^1 dt_T (1 - t_T) \mathcal{F}_{T'-(\omega v_{\ell'})(t_T)} \prod_{T'' \in \Sigma_1(T)} \mathcal{F}_{T''-(\omega v_{\ell'})(t_T)}.$$

(4.13)

For $T' \in \Sigma_1(T)$ we define

$$\mathcal{L}_{\mathcal{F}_{T'-(u)}} = \begin{cases} \mathcal{F}_{T'-(0)} + u \partial_u \mathcal{F}_{T'-(0)}, & \zeta_{\ell'} = 2, \\ \mathcal{F}_{T'-(0)}, & \zeta_{\ell'} = 1, \end{cases}$$

(4.14)

and set $\mathcal{R}_{T'-(u)} = \mathcal{L}_{\mathcal{F}_{T'-(u)}} - \mathcal{L}_{\mathcal{F}_{T'-(0)}}$, so that

$$\begin{cases} \mathcal{L}_{\mathcal{F}_{T'-(u)}} = u^2 \int_0^1 dt_T (1 - t_T) \partial_u^2 \mathcal{F}_{T'-(t_T u)}, & \zeta_{\ell'} = 2, \\ \mathcal{R}_{\mathcal{F}_{T'-(u)}} = u \int_0^1 dt_T \partial_u \mathcal{F}_{T'-(t_T u)}, & \zeta_{\ell'} = 1. \end{cases}$$

(4.15)

Then we repeat the construction by associating a label $\delta_{\ell'} \in \{Q, R\}$ with each $T' \in \Sigma_1(T)$ and write $\mathcal{R}_{\mathcal{F}_{T'-(u)}}(\omega v_{\ell'})$ in (4.13) as sum of contributions

$$\sum_{\ell_1, \ell_2 \in \mathcal{P}, \gamma_1, \gamma_2 = 1, 2, 3} \sum_{i=1}^{3} (\omega v_{\ell'})^2 \int_0^1 dt_T (1 - t_T)$$

$$\times \mathcal{F}_{T'-(\omega v_{\ell'})(t_T)} \left(\prod_{T'' \in \Sigma_1(T)} \mathcal{R}_{T''-(\omega v_{\ell'})(t_T)} \right) \left(\prod_{T'' \in \Sigma_1(T)} \mathcal{L}_{T''-(\omega v_{\ell'})(t_T)} \right).$$

(4.16)
where each $\mathcal{R}_T'(\omega v_{\xi_T}(t_T))$ is expressed as in (4.15), with $\bar{\partial}_{\nu}^2 \mathcal{F}_T(t_T - u)$ and $\partial_{\nu} \mathcal{F}_T(t_T - u)$ written as in (4.6)–(4.8). In particular the momentum of any line $\ell \in L(T)$ becomes

$$v_{\ell}(t_T, t_T) := \begin{cases} v_{\ell}^0, & \ell \not\in \mathcal{P}_T, \\ v_{\ell}^0 + t_T v_{\ell}^0, & \ell \in \mathcal{P}_T \land \ell' \not\in \mathcal{P}_T, \\ v_{\ell}^0 + t_T v_{\ell}^0 + t_T v_{\ell}, & \ell \in \mathcal{P}_T \land \ell' \not\in \mathcal{P}_T. \end{cases}$$

(4.17)

The contributions (4.16) in which at least one self-energy cluster $T' \in \mathcal{S}_T(T)$ has $\delta_{T'} = L$ vanish when summed together. This follows from the following result.

Lemma 4.6. Let \bar{k} and \bar{n} be the order and the scale, respectively, of $T' \in \mathcal{S}_T(T)$. The sum of $\mathcal{Y}(\theta')$ over all $\theta' \in \Theta_{k,n}$ obtained from θ by inserting any self-energy cluster $T'' \in \mathcal{S}(T')$ instead of T' and replacing $\mathcal{Y}_{T'}(\omega v_{\xi_T})$ with $\mathcal{L} \mathcal{Y}_{T'}(\omega v_{\xi_T})$ gives zero.

Proof. One reasons as for lemma 4.3. □

Therefore we have

$$\mathcal{Y}(\theta) = \sum_{\theta \in \Theta_{k,n}} \mathcal{Y}(\tilde{\theta}) \prod_{\ell \in \mathcal{S}_T(\theta)} \sum_{t_T \in \mathcal{S}_T(\ell)} \sum_{\gamma T} (\omega v_{\xi_T})^2$$

$$\times \int_0^1 dt_T (1 - t_T) \mathcal{Y}_{\gamma T}(\omega v_{\xi_T}(t_T)) \prod_{T' \in \mathcal{S}'(T)} \mathcal{R}_{T'}(\omega v_{\xi_{T'}}(t_{T'})).$$

(4.18)

The construction can be iterated further. At each step the order of the self-energy clusters has decreased, so that eventually the procedure stops. Moreover, every time we split the value of the a self-energy cluster into the sum of the localised value plus the regularised value, we can neglect the localised value. Indeed the following extension of lemma 4.6 holds.

Lemma 4.7. Given any $T \in \mathcal{S}(T)$ denote by \bar{k} and \bar{n} the order and the scale, respectively, of T. The sum of $\mathcal{Y}(\theta')$ over all $\theta' \in \Theta_{k,n}$ obtained from θ by inserting any $T'' \in \mathcal{S}(T)$ instead of T and replacing $\mathcal{Y}_{T}(\omega v_{\xi_T})$ with $\mathcal{L} \mathcal{Y}_{T}(\omega v_{\xi_T})$ gives zero.

Proof. Simply note that, when computing the localised value of a self-energy cluster T, one puts $v_{\ell} = v_{\ell}^0$ for all lines $\ell \in L(T)$. Therefore the cancellation mechanisms underlying lemma 3.16 apply to any self-energy cluster, independently of the fact that it is maximal or inside other self-energy clusters. □

With any self-energy cluster T we associate a label $\xi_T \in \{0, 1, 2\}$, an interpolation parameter $t_T \in [0, 1]$ and a measure $\pi_{\xi_T(t_T)} \, dt_T$. where

$$\pi_{\xi_T} = \begin{cases} \delta(t - \xi_T), & \xi_T = 0, \\ \delta(t - 1), & \xi_T = 1, \\ \delta(t), & \xi_T = 2. \end{cases}$$

(4.19)

where δ is the Dirac delta.

Denote by $t = \{t_T\}$ the set of all interpolation parameters and define recursively

$$v_{\ell}(t) := \begin{cases} v_{\ell}^0, & \ell \not\in \mathcal{P}_T, \\ v_{\ell}^0 + t_T v_{\ell}, & \ell \in \mathcal{P}_T. \end{cases}$$

(4.20)

where T is the minimal self-energy cluster containing ℓ (if any).

Remark 4.8. For any $\ell \in L(\theta)$ the momentum $v_{\ell}(t)$ depends only on the interpolation parameters of the self-energy clusters T' such that $\ell \in \mathcal{P}_T$.

2570
Eventually one obtains that
\[
\sum_{\theta \in \Theta} \mathcal{F}(\theta) = \sum_{\theta \in \Theta} \left(\prod_{v \in V(\theta)} \overline{A}_v \right) \left(\prod_{\ell \in L(\theta)} \overline{G}_\ell \right) \times \prod_{T \in \Sigma(\theta)} \sum_{\ell_T} \left(\omega \nu(t) \right)^{\xi_T} \int_0^1 \pi_{\ell_T}(t) \, dt \left(\prod_{v \in V(T^*)} \overline{A}_v \right) \left(\prod_{\ell \in L(T^*)} \overline{G}_\ell \right)
\]
for suitable constants \(C\) and \(\overline{G}_\ell\) are defined in (4.9) and (4.10), respectively, and we have introduced the shorthand notation
\[
\sum_{\ell_T}^{\xi_T} = \left\{ \sum_{\ell_T, \ell_T \in P, \gamma_T \in \gamma_T,} \sum_{\ell_T,} \right. \left. \xi_T = 2, \right. \left. \xi_T = 1. \right. \]

Remark 4.9. The propagator of each line is differentiated at most twice.

In (4.21) we can bound, for any \(\xi_2 \in (0, \xi)\),
\[
\left(\prod_{v \in V(\theta)} |\overline{A}_v| \right) \prod_{T \in \Sigma(\theta)} \left(\prod_{v \in V(T^*)} |\overline{A}_v| \right) \leq (C_0 \xi_2^{-2})^k \prod_{v \in V(\theta)} \left(\prod_{v \in V(T^*)} \right) ,
\]
and, if we denote by \(L^*(\theta)\) the set of non-resonant lines in \(\theta\),
\[
\left(\prod_{\ell \in L(\theta)} |\overline{G}_\ell| \right) \prod_{T \in \Sigma(\theta)} \left(\prod_{\ell \in L(T^*)} |\overline{G}_\ell| \right)
\leq C_1 \left(\prod_{\ell \in L^*(\theta)} \|\omega \nu(t)\|^{-2} \right) \left(\prod_{T \in \Sigma(\theta)} \|\omega \nu(t)\|^{-2} \right)
\times \left(\prod_{T \in \Sigma(\theta)} \|\omega \nu(t)\|^2 \|\omega \nu_{\ell_T,1}(t)\|^{-1} \|\omega \nu_{\ell_T,2}(t)\|^{-1} \right) \left(\prod_{\ell \in L^*(\theta)} \|\omega \nu(t)\| \|\omega \nu_{\ell_T,1}(t)\|^2 \right)
\]
for suitable constants \(C_0\) and \(C_1\). For each line \(\ell_{T,i}\) in (4.23) we can write
\[
\|\omega \nu_{\ell_{T,i}}(t)\|^{-1} = \|\omega \nu_{\ell_{T,i}}(t)\|^{-1} \prod_{T \in \Sigma(T)} \|\omega \nu_{\ell_T,1}(t)\|^{-1} \|\omega \nu_{\ell_T,2}(t)\|^{-1},
\]
where \(T_i\) the minimal self-energy cluster \(T^*\) containing \(\ell_{T,i}\) with \(\zeta_T = 0\).

Remark 4.10. Consider any summand in the right hand side of (4.21). For each line \(\ell\) with \(n_{\ell} \geq 1\) the propagator \(\overline{G}_\ell\) can be bounded proportionally to \(\|\omega \nu(t)\|^{-2}\), if \(\overline{G}_\ell = \partial_{\|\omega \nu(t)\|^2} G_{\ell_T}\) for \(p \in \{0, 1, 2\}\), where \(1/16 q_{n_{\ell}+1} \leq \|\omega \nu(t)\| \leq 1/64 q_{n_{\ell}}\), by lemma 3.2.

In the light of remark 4.10, if we use (4.24) and the fact that \(n_{\ell} \leq n_T\) for all \(\ell \in L(T)\), we can bound in (4.23)
\[
\left(\prod_{T \in \Sigma(T)} \|\omega \nu_{\ell_T,1}(t)\|^2 \|\omega \nu_{\ell_T,2}(t)\|^{-1} \|\omega \nu_{\ell_T,1}(t)\|^{-1} \right) \left(\prod_{T \in \Sigma(T)} \|\omega \nu_{\ell_T,1}(t)\|^2 \|\omega \nu_{\ell_T,2}(t)\|^{-1} \right)
\leq C_2 \left(\prod_{T \in \Sigma(T)} \|\omega \nu_{\ell_T,1}(t)\|^2 \right) \left(\prod_{T \in \Sigma(T)} q_{n_{\ell}+1}^2 \right),
\]
for a suitable constant \(C_2\), so as to obtain
\[
\left(\prod_{\ell \in L(\theta)} |\overline{G}_\ell| \right) \prod_{T \in \Sigma(\theta)} \left(\prod_{\ell \in L(T^*)} |\overline{G}_\ell| \right) \leq C_1^2 C_2^2 \left(\prod_{T \in \Sigma(T)} \|\omega \nu(t)\|^{-2} \right) \left(\prod_{T \in \Sigma(T)} q_{n_{\ell}+1}^2 \right).
\]
Therefore one has
\[
\left(\prod_{\ell \in L(\theta)} \left| G_{\ell} \right| \right) \prod_{T \in \Sigma(\theta)} \left(\prod_{\ell \in L(T^*)} \left| G_{\ell} \right| \right) \leq C_4^2 \prod_{n \geq 0} q_{n+1}^{2(N^*(\theta) + P_\ell(\theta))}.
\]
(4.27)

To bound \(N^*(\theta) + P_\ell(\theta) \) in (4.27) we shall use lemma 3.13. However, we have first to check that the lines satisfy the support properties. If the momentum of each line \(\ell \) were \(v_\ell \), this would follow immediately from lemma 3.2 (see remark 3.6). Though, the momenta are \(v_\ell(t) \), and the compact support functions \(\Psi_{n_\ell} \), only assure that \(\Psi_{n_\ell}(\|\omega_{\nu_\ell}(t)\|) \neq 0 \), that is \(1/64q_{n_\ell+1} \leq \|\omega_{\nu_\ell}(t)\| \leq 1/16q_n \). We want to show that the latter property implies the following result.

Lemma 4.11. In each summand on the right hand side of (4.21), for all lines \(\ell \in L(\theta) \) one has
\[
1/128q_{n_\ell+1} \leq \|\omega_{\nu_\ell}(t)\| \leq 1/8q_n.
\]

Proof. We say that a line \(\ell \) has depth 0 if it is outside any self-energy cluster and depth \(p \geq 1 \) if there are \(p \) self-energy clusters \(T_1 \supset T_2 \supset \ldots \supset T_p \), such that \(T_i \in \Sigma(T_{i-1}) \) for \(i = 2, \ldots , p \), \(T_1 \in \Sigma(\theta) \) and \(\ell \in T_p^* \). In such a case one has \(v_\ell(t) = v_i^0 \) if \(\ell \not\in T_T \), and \(v_\ell(t) = v_i^0 + t_T v_{\nu_\ell}(t) \) if \(\ell \in T_T \).

We want to prove the bound by induction on the depth of the lines.

For any line \(\ell \) of depth 0 one has \(v_\ell(t) = v_i^0 \), so that the bound trivially holds.

Let \(\ell \) be a line with depth 1 and let \(T \) be the self-energy cluster containing \(\ell \). Again if \(v_i^0 = v_i \) there is nothing to prove, so we have to consider explicitly only the case \(v_i(t) = v_i^0 + t_T v_{\nu_\ell}(t) \). Let \(n \) be the scale of \(t_T \). By definition of self-energy cluster one has \(|v_i^0| \leq M(T) < q_n \), and hence \(\|\omega_{\nu_\ell}(t)\| > 1/4q_n \). On the other hand one has \(\|\omega_{\nu_\ell}(t)\| \leq 1/16q_n \), so that
\[
1/2 \|\omega_{\nu_\ell}(t)\| \leq \|\omega_{\nu_\ell}(t)\| - \|\omega_{\nu_\ell}(t)\| \leq \|\omega_{\nu_\ell}(t)\| \leq \|\omega_{\nu_\ell}(t)\| + \|\omega_{\nu_\ell}(t)\| \leq 3/2 \|\omega_{\nu_\ell}(t)\|.
\]
(4.28)

Let \(n_\ell \) be the scale of the line \(\ell \): then \(1/64q_{n_\ell+1} \leq \|\omega_{\nu_\ell}(t)\| \leq 1/16q_n \), because \(\Psi_{n_\ell}(\|\omega_{\nu_\ell}(t)\|) \neq 0 \) (see also lemma 3.2). The quantity \(\|\omega_{\nu_\ell}(t)\| \) is between \(\|\omega_{\nu_\ell}(t)\| \) and \(\|\omega_{\nu_\ell}(t)\| \). If \(\|\omega_{\nu_\ell}(t)\| < \|\omega_{\nu_\ell}(t)\| \) one has \(\|\omega_{\nu_\ell}(t)\| \geq 1/16q_{n_\ell+1} \geq 1/128q_n \) and \(\|\omega_{\nu_\ell}(t)\| \leq 2\|\omega_{\nu_\ell}(t)\| \leq 2\|\omega_{\nu_\ell}(t)\| \leq 1/8q_n \); if \(\|\omega_{\nu_\ell}(t)\| > \|\omega_{\nu_\ell}(t)\| \) one has \(\|\omega_{\nu_\ell}(t)\| \leq \|\omega_{\nu_\ell}(t)\| \leq 1/16q_{n_\ell} \), \(1/8q_n \), and \(\|\omega_{\nu_\ell}(t)\| \geq \|\omega_{\nu_\ell}(t)\| \geq \|\omega_{\nu_\ell}(t)\| \geq \|\omega_{\nu_\ell}(t)\| \). Therefore in both cases one has \(\|\omega_{\nu_\ell}(t)\| \geq 1/128q_{n_\ell+1} \).

Now let us assume that the bound holds for all lines of depth \(\leq k \) and show that then it holds also for lines of depth \(k+1 \). Let \(\ell \) be one of such lines and let \(T \) be the minimal self-energy cluster with \(\ell_T \neq 0 \) containing \(\ell \). Once more if \(v_\ell(t) = v_i^0 \) the bound holds trivially. If instead one has \(v_\ell(t) = v_i^0 + t_T v_{\nu_\ell}(t) \) one can reason as in the previous case. One has \(v_\ell(t) = v_i^0 + t_T v_{\nu_\ell}(t) \) and \(t_T \) has depth \(k \), so that, by the inductive hypothesis, the bound \(1/8q_n \geq \|\omega_{\nu_\ell}(t)\| \geq 1/128q_{n_\ell+1} \) holds, if \(n \) is the scale of \(t_T \). On the other hand \(|v_i^0| \leq M(T) < q_n \) and hence \(\|\omega_{\nu_\ell}(t)\| \geq 1/4q_n \), so that (4.28) holds also for the line \(\ell \). Moreover \(\|\omega_{\nu_\ell}(t)\| \), for all values of the interpolation parameters \(t \), is between \(\|\omega_{\nu_\ell}(t)\| \) and \(\|\omega_{\nu_\ell}(t)\| \). Therefore one can apply the previous argument and bound \(\|\omega_{\nu_\ell}(t)\| \) in terms of the scale \(n_\ell \) of the line \(\ell \) so as to obtain the desired bound. \(\square\)
The results of sections 4 can be summarised in the statement of theorem 2.1. The result can be strengthened into theorem 1.2, as the following argument shows.

First note that theorem 2.1 ensures that if \(\omega \) satisfies the Bryuno condition then for \(\varepsilon \) small enough there exists an invariant curve with rotation number \(\omega \). So, to complete the proof we have to show that if \(\omega \) does not satisfy the Bryuno condition, then there exists a
symplectic map \(\Phi \) arbitrarily close to \(\Phi_0 \) such that no analytic invariant curve with rotation number \(\omega \) and analytic in \(\varepsilon \) exists. One can take as \(\Phi \) the standard map.

\[
\begin{cases}
x' = x + y + \varepsilon K \sin x, \\
y' = y + \varepsilon K \sin x,
\end{cases}
\] (5.1)

where a suitable constant \(K \) has been introduced in order to make \(|\Phi_1| = 1 \) in \(\mathcal{D} \). Indeed, for such a map, if one denotes by \(\rho_0(\omega) \) the radius of analyticity of the conjugation, one has \([2,11]\)

\[
|\log \rho_0(\omega) + 2\mathcal{B}(\omega)| \leq C,
\] (5.2)

for some universal constant \(C \). This means that the radius of convergence vanishes when \(\omega \) does not satisfy the Bryuno condition: hence no analytic invariant curve analytic in \(\varepsilon \) exists in such a case.

Remark 5.1. Of course, for the existence of an analytic invariant curve analytic in \(\varepsilon \), the Bryuno condition cannot be optimal for every perturbation. A trivial counterexample is the null perturbation for which every invariant curve exists independently of its rotation number. More generally one can consider a perturbation which vanishes on a fixed unperturbed curve. Simply take \(\Phi \) given by (2.1) with \(\sigma(x, x') = (x' - x - y_0)^2 F_\varepsilon(x, x' - x) \), with \(F_\varepsilon \) an arbitrary analytic function \(2\pi \)-periodic in the first argument: the invariant curve \(x' = x + y_0, y' = y = y_0 \) persists for any \(F_\varepsilon \), without any further assumption on the rotation number \(\omega = y_0/2\pi \).

Remark 5.2. An interesting problem is whether the Bryuno condition is optimal for the existence of an analytic invariant curve analytic in \(\varepsilon \) for generic perturbations of \(\Phi_0 \).

Remark 5.3. Another interesting problem is whether a result like theorem 1.2 extends to the more general systems of the form (1.1), which will be considered in section 6.

Remark 5.4. Theorem 1.2 does not exclude the existence of analytic invariant curves which are not analytic in the perturbation parameter \(\varepsilon_\theta \). It is an open problem whether analytic invariant curves may exist under weaker conditions than Bryuno’s, i.e. whether the Bryuno condition is optimal for the system to be analytically conjugated to a rotation. As observed in section 1, Forni’s results imply that no such curve may exist if \(\omega \) satisfies the condition (1.5). However this leaves a gap of rotation number for which no conclusion can be drawn.

A final comment concerns the Bryuno condition as formulated in section 1. Usually the condition is stated, in any dimension \(d \), by requiring for \(\omega \in \mathbb{R}^d \) to satisfy

\[
\mathcal{B}_1(\omega) = \sum_{n=0}^{\infty} \frac{1}{2^n} \log \frac{1}{\alpha_n(\omega)} < \infty, \quad \alpha(\omega) = \inf_{\nu \in \mathbb{Z}^d, 0 < |\nu| < 2^n} [\omega \cdot \nu],
\] (5.3)

It is straightforward to check that for \(d = 1 \) and \(\omega = (1, \omega) \) the condition (6.3) is equivalent to requiring the Bryuno condition, that is \(\mathcal{B}_1(1, \omega) < \infty \) if and only if \(\mathcal{B}(\omega) < \infty \) \([10,21,48] \).

The *Bryuno function* is the solution of the functional equation \([33,34,47,48]\)

\[
B(\alpha) = -\log \alpha + \alpha B(1/\alpha), \quad \alpha \in (0,1).
\] (5.4)

Again it is not difficult to show that, if \([\cdot]\) denotes the integer part, one has \(\mathcal{B}(\omega) < \infty \) if and only if \(B(\omega - [\omega]) < \infty \); see for instance \([48]\).

A somewhat similar Diophantine condition has been proposed by Rüssmann \([41]\) in the context of skew-product systems and later on applied to the study of KAM tori \([40,42,43]\). Such a condition, known as the *Rüssmann condition*, can be shown to imply the Bryuno condition \([43]\). However, in dimension \(d = 2 \), is equivalent to the Bryuno condition, in the sense that, if \(\omega = (1, \omega) \), then \(\omega \) satisfies the Rüssmann condition if and only if \(\mathcal{B}(\omega) < \infty \).
6. Generalisations

In the general case (1.1) the generating function has the form $S_\epsilon(x, x') = S_0(x' - x) + \epsilon \sigma_\epsilon(x, x')$, with S_0 a primitive of the inverse function of a, which exists under the hypothesis that a satisfies the twist condition. We discuss explicitly the case in which σ_ϵ does not depend on ϵ (the general case can be easily recovered as shown at the end of section 4). Denoting $b = a^{-1}$ and writing the map as

$$
\begin{align*}
 y' &= b(x' - x) + \epsilon \frac{\partial \sigma_\epsilon(x, x')}{\partial x'} , \\
 y &= b(x' - x) - \epsilon \frac{\partial \sigma_\epsilon(x, x')}{\partial x'},
\end{align*}
$$

(6.1)

with $\sigma_\epsilon(x, x') = \sigma(x, z) - \sigma(x, z)$, if we look for a conjugation of the form

$$
x = \psi + h(\psi), \quad y = b(2\pi \omega) + H(\psi),
$$

we arrive at the functional equation

$$
b(2\pi \omega + h(\psi + 2\pi \omega) - h(\psi)) - b(2\pi \omega + h(\psi) - h(\psi - 2\pi \omega))
\]

$$
= \epsilon \partial_1 \sigma(\psi + h(\psi)), 2\pi \omega + h(\psi + 2\pi \omega) - h(\psi))
\]

$$
- \epsilon \partial_1 \sigma(\psi + h(\psi), 2\pi \omega + h(\psi + 2\pi \omega) - h(\psi))
\]

$$
+ \epsilon \partial_1 \sigma(\psi - 2\pi \omega + h(\psi - 2\pi \omega), 2\pi \omega + h(\psi) - h(\psi - 2\pi \omega)).
$$

(6.2)

which replaces (2.4). If we expand

$$
b(2\pi \omega + h) = \sum_{k=0}^\infty B_k h^k,
$$

(6.3)

and use that $B_1 \neq 0$, we obtain

$$
h(\psi + 2\pi \omega) + h(\psi - 2\pi \omega) - 2h(\psi)
\]

$$
= \sum_{k=2}^\infty \sum_{i=1}^k \frac{B_k}{B_i} \left[(h(\psi) - h(\psi - 2\pi \omega))^k - (h(\psi + 2\pi \omega) - h(\psi))^k \right]
\]

$$
+ \frac{\epsilon}{B_1} \partial_1 \sigma(\psi + h(\psi), \psi + 2\pi \omega + h(\psi + 2\pi \omega))
\]

$$
+ \frac{\epsilon}{B_1} \partial_1 \sigma(\psi - 2\pi \omega + h(\psi - 2\pi \omega), \psi + h(\psi)).
$$

(6.4)

Then by writing h as in (2.6), we have, instead of (2.7),

$$
\delta(\omega \nu) h^{(k)}_\nu = \sum_{s=2}^\infty \hat{B}_s \sum_{v_1 + \ldots + v_s = 0} \sum_{v_1 + \ldots + v_s = k} \prod_{i=1}^s \delta(\omega \nu_i) h^{(k)}_\nu
$$

$$
- \sum_{s=2}^\infty \hat{B}_s \sum_{v_1 + \ldots + v_s = 0} \sum_{v_1 + \ldots + v_s = k} \prod_{i=1}^s \delta(\omega \nu_i) h^{(k)}_\nu
$$

$$
+ \sum_{p,q \geq 0} \sum_{v_1 + \ldots + v_p} \sum_{v_1 + \ldots + v_q = k} \prod_{i=1}^p \prod_{j=1}^q \frac{1}{p! q!} \left(iv_0 \right)^{p+1} \sigma_\nu \left(2\pi \omega \right)
$$

$$
\times \left(\prod_{i=1}^p \delta(\omega \mu_i) \right) \sum_{v_1 + \ldots + v_q = k} \prod_{i=1}^p \prod_{j=1}^q \frac{1}{p! q!} \left(iv_0 \right)^{p+1} \sigma_\nu \left(2\pi \omega \right)
$$

(6.5)
\[
\times \left(e^{-2\pi i \omega (v_1+\ldots+v_p)} \left(\prod_{i=1}^{q} \delta_+(\omega \mu_i) \right) - \left(\prod_{i=1}^{q} \delta_-(\omega \mu_i) \right) \right) \\
\times h^{(k)}_{\nu_1^{(p)}} \ldots h^{(k')}_{\mu_1^{(q)}} \ldots h^{(k')}_{\nu_1^{(q)}} ,
\]
where we have set \(\bar{B}_k = B_k/B_1 \) and \(\bar{\sigma}_\nu(z) = \sigma_\nu(z)/B_1 \).

By comparing (6.5) with (2.7), one easily realises that a diagrammatic expansion as derived in section 2 is still possible. The main difference is that now, to take into account the extra contributions in the first two lines of (6.5), we have to associate with each node an extra label \(\alpha_v = 0, 1 \) with the following properties. For \(\alpha_v = 0 \) the mode label is \(v \in \mathbb{Z} \) and the corresponding node factor is given by (2.11), with \(\sigma_\nu(2\pi \omega) \) replaced by \(\bar{\sigma}_\nu(2\pi \omega) = \sigma_\nu(2\pi \omega)/B_1 \). For \(\alpha_v = 1 \) the mode label is \(v = 0 \) and either \(p_v = 0 \) or \(q_v = 0 \), while the corresponding node factor is given by

\[
A_v = \begin{cases}
\bar{B}_{q_v} \prod_{\ell \in L_v(\theta)} \delta_-(\omega v_\ell), & p_v = 0, \\
-\bar{B}_{p_v} \prod_{\ell \in L_v(\theta)} \delta_+(\omega v_\ell), & q_v = 0.
\end{cases}
\tag{6.6}
\]

Then, if we set \(V_\theta(\theta) = \{ v \in V(\theta) : \alpha_v = \alpha \} \) and define the order of \(\theta \) as \(|V_0(\theta)| \), we can define the set \(T_{k,v} \) as the set of trees of order \(k \) and momentum \(v \) associated with the root line. The following result is easily proven.

Lemma 6.1. Let \(\theta \) be a tree of order \(k \). Then the number of nodes of \(\theta \) is less than \(2^k - 1 \).

Apart from these changes the discussion proceeds like in section 2. In particular the analogous of lemma 2.6 still holds, so that we have the following result.

Lemma 6.2. One has \(\sum_{\theta \in T_{k,v}} \mathcal{V}(\theta) = 0 \) for all \(k \geq 1 \).

Of course, the proof requires some extra work, because we have to take into account the new nodes: we defer it to appendix B. Then, by reasoning as in section 2 one proves that the perturbation series (2.6) is well defined to all orders.

Also the analysis in sections 3 and 4 can be performed in the same way, the only difference being that now the derivatives act also on the factors \(\delta_\pm(\omega v_\ell) \) appearing in (6.6). In particular, by defining the set \(\mathcal{F}(T) \) as in section 3, one has that the following analogue of lemma 3.16 holds true.

Lemma 6.3. For any self-energy cluster \(T \) one has

\[
\sum_{T' \in \mathcal{F}(T)} \partial_\alpha \mathcal{V}_{T'}(0) = 0, \quad \sum_{T' \in \mathcal{F}(T)} \partial_\alpha \mathcal{V}_{T'}(0) = 0.
\]

Again, the proof requires some adaptations with respect to that of lemma 3.16, because one has to check that the new node factors do not destroy the cancellation mechanisms acting on the tree values. We refer once more to appendix B for the details.

Therefore theorem 1.1 follows. Indeed, once lemma 6.3 has been proven, the analysis is essentially a repetition of the analysis performed in section 5, up to minor adaptations, that are required to take into account the presence of the new factors. The only relevant novelty with respect to the case (1.2) is the discussion, presented in appendix B, of the cancellations leading to lemmas 6.2 and 6.3.

Acknowledgments

I’m indebted to U Bessi and A Sorrentino for useful discussions and to Livia Corsi for comments and a careful reading of the manuscript.
Appendix A. Cancellations

Let \(v \) be the node of a tree \(\theta \): define \(\mathfrak{G}_v \) as the group of permutations of the subtrees entering \(v \), i.e. of the trees that have as the root line one of the lines entering the node \(v \). Given any line \(\ell \in L(\theta) \), define \(\mathfrak{B}_\ell \) as the group of transformations which either leave \(\beta_\ell \) unchanged or swap it with its opposite;

Proof of lemma 2.6. When performing the sum over the trees we reason as follows. Given a tree \(\theta \) define \(\mathcal{F}(\theta) \) as the family of trees obtained through the following operations:

1. detach the root line of \(\theta \) and re-attach to any other node of \(\theta \);
2. apply a transformation in the Cartesian product over all \(v \in V(\theta) \) of the groups \(\mathfrak{B}_v \);
3. apply a transformation in the Cartesian product over all \(v \in V(\theta) \) of the groups \(\mathfrak{G}_v \).

We can rewrite the sum over the trees in \(\mathcal{T}_{k,0} \) as

\[
\sum_{\theta \in \mathcal{T}_{k,0}} \mathcal{Y}'(\theta) = \sum_{\theta \in \mathcal{T}_{k,0}} \frac{1}{|\mathcal{F}(\theta)|} \sum_{\theta' \in \mathcal{F}(\theta)} \mathcal{Y}'(\theta').
\]

We want to show that for any \(\theta \in \mathcal{T}_{k,0} \) one has

\[
\sum_{\theta' \in \mathcal{F}(\theta)} \mathcal{Y}'(\theta') = 0. \tag{A.1}
\]

For \(\nu' \neq \nu \) consider the tree \(\nu' \) obtained from \(\nu \) by detaching the root line \(\ell_0 \) from the node \(\nu \) and re-attaching it to the node \(\nu' \). Call \(\mathcal{P} = \mathcal{P}(\nu, \nu') \) the path of lines and nodes connecting \(\nu \) to \(\nu' \): denote by \(w_1, \ldots, w_r \), \(r \geq 2 \), the ordered nodes in \(\mathcal{P} \), with \(w_1 = \nu \) and \(w_r = \nu' \), and by \(\ell_1, \ldots, \ell_{r-1} \) the lines connecting them. The node factors and propagators associated with the nodes and lines, respectively, which do not belong to \(\mathcal{P} \) do not change. In particular the propagators do not change (by parity). On the contrary, the node factors of the nodes along \(\mathcal{P} \) change because of the change both of the momenta of the lines and of the combinatorial factors, as the number of lines entering the nodes may change.

Consider the trees obtained from \(\theta \) by applying the transformations in the groups \(\mathfrak{B}_\ell \) for all \(\ell \in \mathcal{P} \), and sum together all the corresponding values. We obtain a quantity \(A(\theta) \) of the form

\[
A(\theta) = iv_\ell A_0(\theta) B(\ell), \tag{A.2}
\]

where

\[
A_0(\theta) = \prod_{j=1}^{r-1} \left[\frac{(iv_{w_j})^{P_j + 1}}{(P_j + 1)!} Q_j! \left(e^{2\pi i \omega_{v_j}} - 1 \right) \frac{(iv_{w_j})^{P_j}}{P_j!} \left(Q_j + 1 \right)! \right] \times \left[\frac{(iv_{w_j})^{P_j}}{P_j!} Q_j! \right] \prod_{j=2}^{r} \left(iv_{w_j} + e^{2\pi i \omega_{v_j} - 1} \right) \sigma_{v_j}(2\pi \omega), \tag{A.3}
\]

and \(B(\ell) \) takes into account all the other factors. By writing \(\frac{\partial}{\partial w_j} \) we mean that the derivative \(\frac{\partial}{\partial z} \) acts on \(\sigma_{v_j}(z) \) and is computed at \(z = 2\pi \omega \). In (A.3) we have called \(P_j \) and \(Q_j \) the number of lines entering the node \(w_j \) and not lying on the path \(\mathcal{P} \) which carry a label + and −, respectively. This means that, if we set \(p_j = p_{w_j} \) and \(q_j = q_{w_j} \), one has \((p_j, q_j) = (P_j + 1, Q_j) \) if \(\beta_\ell = + \) and \((p_j, q_j) = (P_j, Q_j + 1) \) if \(\beta_\ell = - \). The factor \(iv_\ell \) in (A.2) is due to the fact that \(\ell_0 \) is the root line of \(\theta \) and hence \(v_{\ell_0} = 0 \) as \(\theta \in \mathcal{T}_{k,0} \).
When considering the analogous quantity \(A(\theta') \) for \(\theta' \) one finds \(A(\theta') = i v_\ell \theta_0(\theta') B(\theta') \), where we have used that \(v_\ell = 0 \) in \(\theta' \), with \(\theta_0(\theta') \) and \(B(\theta') \) defined in a similar way, by taking into account the different orientation of the lines along \(\mathcal{P} \). However, one has \(B(\theta') = B(\theta) \) by construction.

The quantity \(\theta_0(\theta') \) differs from \(\theta_0(\theta) \) because the sets \(L_{w_j}^\pm(\theta') \) may have changed with respect to \(L_{w_j}^\pm(\theta) \) as a consequence of the shifting of the root line from \(v \) to \(v' \). Consider the group \(\mathcal{G} \), and identifies the trees which are obtained from each other by the action of a transformation of the group. Suppose that \(\beta_\ell_1 = + \). If \(\theta_1 \) is the subtree with root line \(\ell_1 \) and \(s_1 \geq 1 \) is the number of subtrees equivalent to \(\theta_1 \) entering \(w_1 \), the corresponding combinatorial factor is modified into

\[
\frac{1}{p_1!} \frac{p_1}{s_1! (p_1 - s_1)!}, \tag{A.4}
\]

while the corresponding factor in \(\theta' \) is

\[
\frac{1}{(p_1 - 1)!} \frac{(p_1 - 1)}{s_1 - 1}! \frac{1}{(s_1 - 1)! (p_1 - s_1)!},
\]

which we have to divide by \(s_1 \) to avoid overcounting when considering all trees in \(\mathcal{F}(\theta) \): indeed, there are in \(\theta \) other \(s_1 \) nodes in the \(s_1 \) trees equivalent to \(\theta_1 \) which produce trees to be identified with \(\theta' \). So that a combinatorial factor (A.4) is obtained for the node \(w_1 \) in both cases. Similarly one deal with the case in which \(\beta_\ell_1 = - \) and \(r_j \geq 1 \) is the number of subtrees entering \(w_1 \) equivalent to \(\theta_1 \) (of course either \(r_1 \) or \(s_1 \) must be 0), so that we conclude that the overall combinatorial factor associated to the node \(w_1 \) is

\[
\frac{1}{s_1! (p_1 - s_1)!} \frac{r_1! (q_1 - r_1)!}{(r_1 - 1)! (q_1 - r_1)!}, \tag{A.5}
\]

for both sets of trees obtained from \(\theta \) and \(\theta' \).

Analogous considerations hold for the node \(w_r \), with the roles of \(\theta \) and \(\theta' \) exchanged. Also the combinatorial factors of the other nodes along \(\mathcal{P} \) can be dealt with in a similar way: it may happen that the number of subtrees equivalent to \(\theta_j \) entering the node \(w_j \), with \(1 < j < r \), changes either from \(s_j \) to \(s_j + 1 \) or from \(r_j \) to \(r_j + 1 \), but then one has to divide the corresponding combinatorial factor by \(s_j + 1 \) or \(r_j + 1 \), in the respective cases, to avoid overcounting. On the other hand if the combinatorial factor changes either from \(s_j \) to \(s_j - 1 \) or from \(r_j \) to \(r_j - 1 \), then it is the combinatorial factor in \(\theta \) which must be divided by \(s_j \) or \(r_j \), respectively.

By summing together the values of all the inequivalent trees obtained by following the prescription above, we find that (A.3) is replaced by

\[
A_1(\theta) := \left[\prod_{j=1}^{r} \left(\frac{(i v_{w_j})^{P_j}}{s_j! (P_j - s_j)!} \frac{\partial Q_j}{\partial v_{w_j}} \right) \right] \times \left[\prod_{j=1}^{r-1} \left(i v_{w_j} + (e^{2\pi i v_{w_j}} - 1) \right) \partial_{z_{v_j}} \right] \times \left[\prod_{j=2}^{r} \left(i v_{w_j} + (e^{-2\pi i v_{w_j}} - 1) \right) \partial_{z_{v_j}} \right] \times \prod_{j=1}^{r} \sigma_{v_j} (2\pi \omega). \tag{A.6}
\]

As noted before, the ordering of the nodes along \(\mathcal{P} \) changes and each momentum \(v_\ell_1 \) is replaced with \(v_\ell_1' = - v_\ell_1 \); thus, one finds \(A_1(\theta') = A_1(\theta) \) too. In conclusion, if one defines \(\mathcal{V}_0(\theta) = A_1(\theta) B(\theta) \), one has

\[
\sum_{\theta' \in \mathcal{F}(\theta)} \mathcal{V}(\theta') = \mathcal{V}_0(\theta) \sum_{v \in \mathcal{V}(\theta)} i v_v,
\]

which yields (A.1). \qed
Proof of lemma 3.16. The argument is very close to that used in the proof of lemma 2.6. Given a self-energy cluster T call $\mathcal{F}(T)$ the set of all self-energy clusters T' obtained from T by the following operations:

(1.) detach the exiting line of T and re-attach it to any $v \in V(\hat{T})$.
(2.) apply a transformation in the Cartesian product over all $\ell \in L(\hat{T})$ of the groups \mathfrak{B}_ℓ;
(3.) apply a transformation in the Cartesian product over all $v \in V(\hat{T})$ of the groups \mathfrak{G}_v.

Any line $\ell \in \mathcal{P}_T$ divides T into two disjoint sets $T_1(\ell)$ and $T_2(\ell)$ such that $T_2(\ell)$ contains all the nodes and lines which precede ℓ and $T_1(\ell) = T \setminus ([\ell] \cup T_2(\ell))$. Define $L(T_j(\ell))$ and $V(T_j(\ell))$, $j = 1, 2$, in the obvious way. Call $\mathcal{F}_1(T; \ell)$ the family of self-energy clusters T' obtained from T by the following operations:

(1.) attach the exiting line to any node $v \in V(\hat{T}_1(\ell))$ and the entering line to any node $w \in V(\hat{T}_2(\ell))$;
(2.) apply a transformation in the Cartesian product over all $\ell \in L(\hat{T})$ of the groups \mathfrak{B}_ℓ;
(3.) apply a transformation in the Cartesian product over all $v \in V(\hat{T})$ of the groups \mathfrak{G}_v.

Analogously, call $\mathcal{F}_2(T; \ell)$ the family of self-energy clusters T' obtained from T by the same operations as $\mathcal{F}_1(T; \ell)$, but by attaching the exiting line to any node $v \in V(\hat{T}_2(\ell))$ and the entering line to any node $w \in V(\hat{T}_1(\ell))$, instead of applying the operations 4.

We start by proving the first identity of lemma 3.16. Consider the self-energy cluster $T' \in \mathcal{F}(T)$ obtained from T by detaching the root line from the node $v \in V(T)$ and re-attaching to the node $v' \in V(\hat{T})$. Call $\mathcal{P} = \mathcal{P}(v, v')$ the path connecting v' to v. \mathcal{P} contains r nodes $w_1 = v \rightarrow w_2 \rightarrow \ldots \rightarrow w_r = v'$, connected by lines $\ell_1, \ldots, \ell_{r-1}$.

The propagators and the node factors associated with the lines and nodes, respectively, not belonging to \mathcal{P} do not change. If we apply the transformations in the groups \mathfrak{B}_ℓ to all lines $\ell \in \mathcal{P}$ and we sum together the values of all the self-energy clusters we get, we realise that the sum of the products of the node factors associated with the nodes in \mathcal{P}, is of the form $A(T) = (iv_{w_1} + (e^{2\pi i v_1} - 1)\partial_{\nu_1}) A_0(T) B(T)$, where

$$A_0(T) = \prod_{j=1}^{r-1} \left(\frac{(iv_{w_j})_{P_j}}{(P_j + 1)!} \frac{\partial^{Q_j} \sigma_{\nu_j}}{Q_j!} \right) + \left(e^{2\pi i v_{w_{j}}} - 1 \right) \frac{(iv_{w_j})_{P_j}}{P_j!} \frac{\partial^{Q_j+1} \sigma_{\nu_j}}{(Q_j + 1)!} \prod_{j=2}^r \left(iv_{w_j} + \left(e^{-2\pi i v_{w_{j-1}}} - 1 \right) \partial_{\nu_j} \right) \prod_{j=1}^r \sigma_{v_j}(2\pi \omega),$$

with $v_{\ell_j} = v_{\ell_j}^0$ if $\ell_j \notin \mathcal{P}_T$ and $v_{\ell_j} = v_{\ell_j}^0 + v_{\ell_j}^\delta$ otherwise, and $B(T)$ takes into account all the other factors. Here we are using the same notations as described after (2.3). Then we apply the transformations in the groups \mathfrak{G}_{v_j} for $j = 1, \ldots, r$, and reason as in the proof of lemma 2.6: summing together all the inequivalent self-energy clusters produces a quantity of the form $(iv_{w_1} + (e^{2\pi i v_{w_1} - 1})\partial_{\nu_1}) A_1(T) B(T)$, with

$$A_1(T) := \prod_{j=1}^{r-1} \left[\frac{(iv_{w_j})_{P_j}}{s_j!(P_j - s_j)!} \frac{\partial^{Q_j} \sigma_{\nu_j}}{r_j!(Q_j - r_j)!} \right] \times \prod_{j=1}^r \left(iv_{w_j} + \left(e^{2\pi i v_{w_j}} - 1 \right) \partial_{\nu_j} \right) \prod_{j=2}^r \left(iv_{w_j} + \left(e^{-2\pi i v_{w_{j-1}}} - 1 \right) \partial_{\nu_j} \right) \times \prod_{j=1}^r \sigma_{v_j}(2\pi \omega),$$

2579
The same procedure as above, when applied to the self-energy cluster T', produces a factor $(iv_{w_1} + (e^{-2\pi i \omega v_1} - 1)\partial_{z_{w_1}})A_1(T')B(T')$, where $B(T') = B(T)$ and

$$A_1(T') := \sum_{j=1}^{r} \left[\frac{(iv_{w_j})^{P_j}}{s_j!(P_j - s_j)!} \partial_{c_{w_j}} \prod_{j=1}^{r}(iv_{w_j} + (e^{2\pi i \omega v_j} - 1) \partial_{z_{w_j}}) \prod_{j=1}^{r}(iv_{w_j} + (e^{-2\pi i \omega v_j} - 1) \partial_{z_{w_j}}) \right]$$

where $v_{w_j}' = -v_{w_j}$ if $j \in P_T$ and $v_{w_j}' = -v_{w_j}' + v_{w_j}$ otherwise. Therefore for $\omega v_0T = 0$ (so that $\omega v = 0$ as well) one has $A_1(T) = A_2(T')$ and hence

$$\sum_{T' \in \mathcal{F}(T)} \mathcal{T}_T(0) = A_1(T) B(T) \sum_{v \in V(T)} iv_v = 0,$$

and since all the self-energy clusters in $\mathcal{F}(T)$ belong to the set $\mathcal{H}(T)$ the first identity follows.

Now we pass to the second identity of lemma 3.16. First of all, we note that the derivative ∂_{c_v} acts on the propagators $\delta(\omega v_1)$ and on the factors $e^{\pm 2\pi i \omega v_1}$ of the node factors corresponding to lines $\ell \in P_T$.

Given a self-energy cluster T let ℓ be a line along the path P_T. Call $A_T(u; \ell)$ the contribution to $\partial_{c_v} \mathcal{T}_T(u)$ obtained by differentiating the propagator of the line ℓ. The differentiated propagator is

$$\partial_{c_v} G_{\ell}|_{u=0} = \partial_{c_v} (1/\delta(\omega v_1 + u))|_{u=0} = \frac{2\pi \sin 2\pi \omega v_1}{\delta^2(\omega v_1)} = \frac{\pi \sin 2\pi \omega v_1}{2(\cos 2\pi \omega v_1 - 1)^2}.$$

Consider all the self-energy clusters $T' \in \mathcal{F}_1(T; \ell)$: by reasoning as in the proof of the first identity one finds that

$$\sum_{T' \in \mathcal{F}_1(T; \ell)} A_T(0; \ell) = \partial_{c_v} G_{\ell}|_{u=0} C_0(T) \sum_{v \in V(T)} iv_v \sum_{w \in V(T)} iv_w,$$

(A.7)

for some common factor $C_0(T)$. Analogously one finds

$$\sum_{T' \in \mathcal{F}_2(T; \ell)} A_T(0; \ell) = \partial_{c_v} G_{\ell}|_{u=0} C_0(T) \sum_{v \in V(T)} iv_v \sum_{w \in V(T)} iv_w,$$

(A.8)

with the same factor $C_0(T)$ as in (A.7); we have used that if $v = v_{w_j}$ and $v_{w_j} + \sigma v$, with $\sigma \in \{0, 1\}$, is the momentum associated with the line $\ell' \in P_{T'}$ in $T' \in \mathcal{F}_1(T; \ell)$, then the momentum associated with the same line $\ell'' \in T'' \in \mathcal{F}_2(T; \ell)$ is either $v_{w_j} + \sigma' v$ or $-v_{w_j} + \sigma' v$, with $\sigma' \in \{0, 1\}$; moreover all propagators and node factors have to computed at $u = \omega v = 0$. In particular the differentiated propagators $\partial_{c_v} G_{\ell}|_{u=0}$ in (A.7) and (A.8) are opposite to each other. Therefore if we sum together the two contributions (A.7) and (A.8) they cancel out.

Call $B_T(u; \ell)$ and $C_T(u; \ell)$ the contributions obtained by differentiating the factor $(e^{2\pi i \omega v_1} - 1)\partial_{z_{w_1}}$ and the factor $(e^{-2\pi i \omega v_1} - 1)\partial_{z_{w_1}}$, respectively. The derivative, computed at $\omega v = 0$, gives a factor $2\pi i e^{2\pi i \omega v_1} \partial_{z_{w_1}}$ and $-2\pi i e^{-2\pi i \omega v_1} \partial_{z_{w_1}}$, respectively. Therefore, with respect to $\mathcal{T}_T(0)$, $B_T(0; \ell)$ and $C_T(0; \ell)$ contain a factor

$$-2\pi e^{2\pi i \omega v_1} \partial_{z_{w_1}} v_{w_1} + 2\pi i \left(e^{2\pi i \omega v_1}\right) \partial_{z_{w_1}} \partial_{z_{w_1}}$$

and

$$-2\pi e^{-2\pi i \omega v_1} \partial_{z_{w_1}} v_{w_1} = -2\pi i \left(1 - e^{-2\pi i \omega v_1}\right) \partial_{z_{w_1}} \partial_{z_{w_1}},$$

respectively.
respectively, instead of \((iv') + (e^{2\pi i \nu T} - 1)\partial_w' (iv'I) + (e^{-2\pi i \nu T} - 1)\partial_w'' I\). Therefore the contributions containing the terms \(\pm 2\pi i \{ (1 - e^{2\pi i \nu T}) \partial_w' + (1 - e^{-2\pi i \nu T}) \partial_w'' \}\) cancel out by the same mechanism as in the previous case. When summing the remaining contributions arising from \(B_T(0; \ell)\) and \(C_T(0; \ell)\), for \(T' \in F_1(T, \ell)\) we obtain a quantity which is, up to the sign, the same as the quantity obtained by summing all contributions \(B_T(0; \ell)\) and \(C_T(0; \ell)\) for \(T'' \in F_2(T, \ell)\). The argument is the same as before: again one uses the parity of the propagator and the fact that \(v_i\) becomes \(-v_i\) when passing from \(T'\) to \(T''\).

Finally one has to consider the contributions obtained by differentiating the factors \((iv_I + (e^{-2\pi i \nu T} - 1)\partial_w)\) and \((iv_{II} + (e^{-2\pi i \nu T} - 1)\partial_w)\). Once more, by parity, the contributions corresponding to \(F_1(T, \ell)\) and \(F_2(T, \ell)\) are opposite to each other and hence cancel out. \(\square\)

Appendix B. Cancellations in the general case

We use the same notations as in appendix A. Moreover we need the following identities.

Lemma B.1. Let \(x_1, \ldots, x_n \in \mathbb{R}\) such that \(x_1 + \ldots + x_n = 0\). Then

\[
\prod_{i=1}^{n} (1 - e^{-x_i}) = \prod_{i=1}^{n} (e^{x_i} - 1).
\]

Proof. Write \(e^{x_i} - 1 = e^{x_i}(1 - e^{-x_i})\) in each factor of the second product. \(\square\)

Lemma B.2. Let \(x_1, \ldots, x_n \in \mathbb{R}\) such that \(x_1 + \ldots + x_n = 0\). Then

\[
\sum_{i=1}^{n} x_i \prod_{j=1, j \neq i}^{n} (1 - e^{-x_j}) = \sum_{i=1}^{n} x_i \prod_{j=1, j \neq i}^{n} (e^{x_j} - 1).
\]

Proof. We can rewrite

\[
\sum_{i=1}^{n} x_i \prod_{j=1, j \neq i}^{n} (1 - e^{-x_j}) = \sum_{i=1}^{n} x_i (1 - e^{-x_i})^{-1} \prod_{j=1}^{n} (1 - e^{-x_j})
\]

and, analogously, using that \(x_1 + \ldots + x_n = 0\),

\[
\sum_{i=1}^{n} x_i \prod_{j=1, j \neq i}^{n} (e^{x_j} - 1) = \sum_{i=1}^{n} x_i (e^{x_i} - 1)^{-1} \prod_{j=1}^{n} (e^{x_j} - 1) = \sum_{i=1}^{n} x_i (e^{x_i} - 1)^{-1} \prod_{j=1}^{n} (1 - e^{-x_j}),
\]

so that the identity follows if we prove that

\[
\sum_{i=1}^{n} x_i (1 - e^{-x_i})^{-1} = \sum_{i=1}^{n} x_i (e^{x_i} - 1)^{-1}
\]

for all \(x_1, \ldots, x_n\) such that \(x_1 + \ldots + x_n = 0\). By writing \(1 - e^{-x_i})^{-1} = e^{x_i}(e^{x_i} - 1)^{-1}\), we arrive at

\[
\sum_{i=1}^{n} x_i e^{x_i}(e^{x_i} - 1)^{-1} = \sum_{i=1}^{n} x_i (e^{x_i} - 1)^{-1} \sum_{i=1}^{n} x_i (e^{x_i} - 1)(e^{x_i} - 1)^{-1} = 0
\]

which is trivially satisfied if \(x_1 + \ldots + x_n = 0\). \(\square\)

Proof of lemma 6.2. Let \(\theta\) be a tree in \(T_{\alpha_v}^{0,0}\). If the root line exits a node \(v\) with \(\alpha_v = 1\) the corresponding value vanishes by lemma B.1. For any node \(v \in V(\theta)\) with \(\alpha_v = 1\) call \(\Lambda_v\) the
set of lines incident with the nodes \(v \) (i.e. either exiting or entering \(v \)) and, for \(\ell \in \Lambda_v \), set
\[
\Lambda_v(\ell) = \Lambda_v \setminus \{ \ell \}
\]
and
\[
\Delta(v, \ell) := \prod_{\ell' \in \Lambda_v(\ell)} \delta_-(\omega v_{\ell'}) - \prod_{\ell'' \in \Lambda_v(\ell)} \delta_+(\omega v_{\ell''}).
\]

For \(\theta \in \mathcal{T}_0 \), any \(\ell \in L(\theta) \) divides \(\theta \) into two distinct sets \(\theta_1 \) and \(\theta_2 \), where \(\theta_1 \) is the set of lines and nodes in \(\theta \) which precede \(\ell \) and \(\theta_2 \) is the set of lines and nodes which do not precede \(\ell \). If \(V(\theta_1) \) and \(L(\theta_1) \) denote, respectively, the set of nodes and the set of lines in \(\theta_1 \), one has
\[
V(\theta) = V(\theta_1) \cup V(\theta_2) \quad \text{and} \quad L(\theta) = L(\theta_1) \cup [\ell] \cup L(\theta_2).
\]
For \(i = 1, 2 \), if \(\{ v \in V(\theta_i) : \alpha_v = 1 \} = \emptyset \) set \(S_i(\theta_i) = 1 \), otherwise set
\[
S_i(\theta_i) := \prod_{v \in V(\theta_i)} \Delta(v, \ell(v)), \tag{B.1}
\]
where \(\ell(v) \in \Lambda_v \) is the line incident with \(v \) along the path connecting \(v \) with \(\ell \). If \(\theta' \) is a subset of \(\theta_1 \), we define \(S_i(\theta') \) as in \(\text{(B.1)} \), with the product restricted to the nodes \(v \in V(\theta') \).

Define the family \(\mathcal{F}(\theta) \) as in the proof of lemma 2.6 in appendix A, with the further operations of replacing \(p_v \) with \(q_v \) for each node \(v \in V(\theta) \). Define also the family \(\mathcal{F}_1(\theta) \), \(i = 1, 2 \), as the family obtained through the same operations considered for \(\mathcal{F}(\theta) \), but with the operation 1 applied only to the nodes \(v \in V(\theta_i) \). We want to prove that
\[
\sum_{\theta' \in \mathcal{F}_1(i)} \nu(\theta') = \nu(\theta_1) S_i(\theta_1) S_i(\theta_2) B(\theta), \quad i = 1, 2, \tag{B.2}
\]
where we have defined
\[
\nu(\theta_i) := \sum_{v \in V(\theta_i)} v_v,
\]
and \(B(\theta) \) is a suitable common factor independent of \(\theta' \). Note that \(\nu(\theta_1) = -\nu(\theta_2) = \nu(\theta) \).

The identity \(\text{(B.2)} \) immediately implies lemma 6.2. Indeed, assuming \(\text{(B.2)} \), one can write, for any line \(\ell \in L(\theta) \),
\[
\sum_{\theta' \in \mathcal{F}(\theta)} \nu(\theta') = \sum_{\theta' \in \mathcal{F}_1(\theta)} \nu(\theta') + \sum_{\theta' \in \mathcal{F}_2(\theta)} \nu(\theta') = (\nu(\theta_1) + \nu(\theta_2)) B(\theta) S_i(\theta_1) S_i(\theta_2),
\]
which yields the assertion since \(\nu(\theta_1) + \nu(\theta_2) = 0 \).

Hence, we are left with the proof of \(\text{(B.1)} \). This is done is by induction on the number of nodes \(v \) with \(\alpha_v = 1 \) contained in \(\theta_1 \). If \(\theta_1 \) does not contain any node \(v \) with \(\alpha_v = 1 \), then the assertion follows immediately from the same argument used in proving lemma 2.6. Otherwise let \(N \geq 1 \) be the number of such nodes contained, say, in \(\theta_2 \). Let \(v \) be the node in \(V(\theta_2) \) such that \(\alpha_v = 1 \) and \(\alpha_w = 0 \) for all nodes \(w \) in \(V(\theta_0) \), where \(\theta_0 \) is the set of nodes and lines which precede \(\ell \) and do not precede \(\ell_v \). If \(\ell_1, \ldots, \ell_s \), with \(s \geq 2 \), is the number of lines entering \(v \), call \(\ell_1, \ldots, \ell_s \), the subtrees with root lines \(\ell_1, \ldots, \ell_s \), respectively. If we sum the values of all trees in \(\mathcal{F}(\theta) \) obtained by attaching the root line to a node \(v \in V(\theta_0) \) we obtain a contribution containing a common factor \(B_1(\theta) \) times
\[
\nu(\theta_0) \Delta(v, \ell_v) \prod_{j=1}^s S_i(\theta_j)
\]
by lemma \(\text{B.2} \). Analogously, if we sum the values of all trees in \(\mathcal{F}(\theta) \) obtained by attaching the root line to a node \(v \in V(\theta_1) \), we obtain a contribution containing the same common factor \(B_1(\theta) \) times
\[
\nu(\theta_1) \Delta(v, \ell_v) \prod_{j=1}^s S_i(\theta_j).
\]
This follows from the inductive hypothesis, noting that $S_\ell(\theta_i) = S_\ell_i(\theta_i)$. Therefore, by summing together all such contributions, we arrive at a common factor times
\[
\left(v(\theta_0) \Delta(v, \ell_v) + \sum_{i=1}^s v(\theta_i) \Delta(v, \ell_i) \right) \prod_{j=1}^s S_\ell(\theta_j).
\]
Since $\theta \in T_{k,0}$, when the root line is attached to a node $v \in \theta_i$, the momentum associated with the line ℓ_v is $-v_\ell$. Then, using that $v(\theta_0) = v_\ell - v_\ell$, and that
\[-v_\ell \Delta(v, \ell_v) + \sum_{i=1}^s v(\theta_i) \Delta(v, \ell_i) = 0\]
by lemma 6.2, we obtain
\[
\sum_{\theta' \in F_2(\theta)} \mathcal{V}'(\theta') = v_\ell B_1(\theta) \Delta(v, \ell(v)) \prod_{i=1}^s S_\ell(\theta_i),
\]
where we have used that $\ell_v = \ell(v)$. The inductive hypothesis also implies that $B_1(\theta)$ contains a factor $\Delta(\ell(v), \ell(w))$ for each node w with $\alpha_w = 1$ in both $V(\ell_v)$ and $\cup_{i=1}^s V(\ell_i)$, so that the identity (B.2) is proven for $i = 2$. The case $i = 1$ can be discussed in the same way. □

Proof of lemma 6.3. One combines the proof of lemma 3.16 with the proof of lemma 6.2. The proof of the first identity is similar to the proof of lemma 6.2, as well as the first identity of lemma 3.16 was obtained by following closely the proof of lemma 2.6. To prove the second identity one reasons again as done for lemma 3.16, by using the identity (B.2), with ℓ being the line which is differentiated when the derivative acts on the propagator G_ℓ. □

References

[1] Benettin G and Giorgilli A 1994 On the Hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms J. Stat. Phys. 74 1117–43
[2] Berretti A and Gentile G 2001 Bryuno function and the standard map Commun. Math. Phys. 220 623–56
[3] Bessi U 2000 An analytic counterexample to the KAM theorem Ergod. Theor. Dyn. Syst. 20 317–333
[4] Brézis J, Gaweńki K and Kupiainen A 1999 KAM theorem and quantum field theory Commun. Math. Phys. 201 699–727
[5] Bryuno A D 1971 Analytic form of differential equations. I Tr. Mosk. Mat. Obs. 25 119–262
[6] Bryuno A D 1972 Analytic form of differential equations. II Tr. Mosk. Mat. Obs. 26 199–239
[7] Buff X and Cheritat A 2006 The Brjuno function continuously estimates the size of quadratic Siegel disks Ann. Math. 164 265–312
[8] Chirikov B V 1979 A universal instability of many-dimensional oscillator systems Phys. Rep. 52 264–379
[9] Corsi L and Gentile G 2012 Oscillator synchronisation under arbitrary quasi-periodic forcing Commun. Math. Phys. 316 489–529
[10] Chavaudret C and Marmi S 2012 Reducibility of quasiperiodic cocycles under a Brjuno–Rüssmann arithmetical condition J. Mod. Dyn. 6 59–78
[11] Davie A M 1994 The critical function for the semistandard map Nonlinearity 7 219–29
[12] Deprit A 1969 Canonical transformations depending on a small parameter Celest. Mech. 1 12–30
[13] Ecalle J and Vallet B 1998 Bruno Correction and linearization of resonant vector fields and diffeomorphisms Math. Z. 229 249–318
[14] Eliasson L H 1996 Absolutely convergent series expansions for quasi periodic motions Math. Phys. Electron. J. 2 33
[15] Forni G 1994 Analytic destruction of invariant circles Ergod. Theor. Dyn. Syst. 14 267–98
[16] Gallavotti G 1994 Twistless KAM tori Commun. Math. Phys. 164 14–156

2583
[17] Gallavotti G, Bonetto F and Gentile G 2004 Aspects of Ergodic, Qualitative and Statistical Theory of Motion (Berlin: Springer)
[18] Gallavotti G, Gentile G and Mastropietro V 1995 Field theory and KAM tori Math. Phys. Electron. J. 1 13
[19] Gentile G 2006 Brjuno numbers and dynamical systems Frontiers in Number Theory, Physics, and Geometry vol 1 (Berlin: Springer) pp 585–99
[20] Gentile G 2006 Resummation of perturbation series and reducibility for Brjuno skew-product flows J. Stat. Phys. 125 521–61
[21] Gentile G 2007 Degenerate lower-dimensional tori under the Brjuno condition Ergod. Theor. Dyn. Syst. 27 427–57
[22] Gentile G 2010 Quasiperiodic motions in dynamical systems: review of a renormalization group approach J. Math. Phys. 51 015207.34
[23] Gentile G and Mastropietro V 1996 Methods for the analysis of the Lindstedt series for KAM tori and renormalizability in classical mechanics. A review with some applications Rev. Math. Phys. 8 393–444
[24] Giorgilli A and Marmi S 2010 Convergence radius in the Poincaré-Siegel problem Discrete Contin. Dyn. Syst. Ser. B 1 13
[25] Golé Ch 2001 Symplectic Twist Maps. Global Variational Techniques (Advanced Series in Nonlinear Dynamics vol 18) (Singapore: World Scientific)
[26] Greene J M 1979 A method for determining a stochastic transition J. Math. Phys. 20 1183–201
[27] Koch H and Kocić S 2010 A renormalization group approach to quasiperiodic motion with Brjuno frequencies Ergod. Theor. Dyn. Syst. 30 1131–46
[28] Koch H and Kocić S 2010 A renormalization approach to lower-dimensional tori with Brjuno frequency vectors J. Diff. Equ. 249 1986–2004
[29] Kuksin S B 1993 On the inclusion of an almost integrable analytic symplectomorphism into a Hamiltonian flow Russ. J. Math. Phys. 1 191–207
[30] Kuksin S and Pöschel J 1994 On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications Seminar on Dynamical Systems (St. Petersburg, 1991) (Progress in Nonlinear Differential Equations and Their Applications vol 12) (Basel: Birkhäuser) pp 96–116
[31] Lichtenberg A J and Lieberman M A 1992 Regular and Chaotic Dynamics (Applied Mathematical Sciences vol 38) (New York: Springer)
[32] MacKay R S 1988 Exact results for an approximate renormalisation scheme and some predictions for the breakup of invariant tori Physica D 33 240–65
[33] Marmi S, Moussa P and Yoccoz J-C 1997 The Brjuno functions and their regularity properties Commun. Math. Phys. 186 265–93
[34] Marmi S, Moussa P and Yoccoz J-C 2006 Some properties of real and complex Brjuno functions Frontiers in Number Theory, Physics, and Geometry vol 1 (Berlin: Springer) pp 601–23
[35] Marmi S and Stark J 1992 On the standard map critical function Nonlinearity 5 743–61
[36] Moser J 1962 On invariant curves of area-preserving mappings of an annulus Nachr. Akad. Wiss. Goett. 1962 1–20
[37] Moser J 1986 Monotone twist mappings and the calculus of variations Ergod. Theor. Dyn. Syst. 6 401–13
[38] Moser J 1986 Minimal solutions of variational problems on a torus Ann. Inst. Henri Poincaré 3 229–72
[39] Neishtadt A I 1984 The separation of motions in systems with rapidly rotating phase Prikl. Mat. Mekh. 48 197–204
[40] Pöschel J 1989 On elliptic lower-dimensional tori in Hamiltonian systems Math. Z. 202 559–608
[41] Rüssmann H 1980 On the one-dimensional Schrödinger equation with a quasiperiodic potential Nonlinear Dynamics (Annals of the New York Academy of Sciences vol 357) (New York: New York Academy of Sciences) pp 90–107
[42] Rüssmann H 1994 On the frequencies of quasi-periodic solutions of analytic nearly integrable Hamiltonian systems Seminar on Dynamical Systems (St. Petersburg, 1991) (Progress in Nonlinear Differential Equations and Their Applications vol 12) (Basel: Birkhäuser) pp 160–83
[43] Rüssmann H 2001 Invariant tori in non-degenerate nearly integrable Hamiltonian systems Regul. Chaotic Dyn. 6 119–204
[44] Schmidt W M 1980 Diophantine Approximations (Lectures Notes in Mathematics vol 785) (Berlin: Springer)
[45] Siegel C L and Moser J 1971 Lectures on Celestial Mechanics (Berlin: Springer)
[46] Salamon D and Zehnder E 1989 KAM theory in configuration space Comment. Math. Helv. 64 84–132
[47] Yoccoz J-Ch 1995 Théorème de Siegel, nombres de Bruno et polynômes quadratiques Astérisque 231 pp 3–88
[48] Yoccoz J-Ch 2002 Analytic linearization of circle diffeomorphisms Dynamical Systems and Small Divisors (Lecture Notes in Mathematics vol 1784) (Berlin: Springer) pp 125–73