Fig. 1. The direction and magnitude of the initial velocity of the yellow bunny is optimized to push, after contact, the blue bunny into the white circle marker. The top row is the initial configuration, and the bottom row is our optimized result. This scene involves an elastodynamic simulation with a non-linear material model with contact and friction forces.

We introduce a general differentiable solver for time-dependent deformation problems with contact and friction. Our approach uses a finite element discretization with a high-order time integrator coupled with the recently proposed incremental potential contact method for handling contact and friction forces to solve ODE- and PDE-constrained optimization problems on scenes with complex geometry. It supports static and dynamic problems and differentiation with respect to all physical parameters involved in the physical problem description, which include shape, material parameters, friction parameters, and initial conditions. Our analytically derived adjoint formulation is efficient, with a small overhead (typically less than 10% for nonlinear problems) over the forward simulation, and shares many similarities with the forward problem, allowing the reuse of large parts of existing forward simulator code.

We implement our approach on top of the open-source PolyFEM library and demonstrate the applicability of our solver to shape design, initial condition optimization, and material estimation on both simulated results and physical validations.
1 INTRODUCTION

ODE- and PDE-constrained optimization problems, i.e., the minimization of a functional depending on the state of a physical system modeled using a set of (partial) differential equations, appear in many application areas: optimized design in engineering and architecture, metamaterial design in material science, inverse problems in biomedical applications, controllable physically-based modeling in computer graphics, control policy optimization, and physical parameter estimation in robotics.

A common family of PDE-constrained optimization problems in graphics, robotics, and engineering involves static or time-dependent elastic deforming objects interacting with each other via contact and friction forces. A significant number of approaches have been proposed to tackle PDE-constrained optimization problems of this type (Section 2).

However, these approaches often make application-specific assumptions aimed at simplifying the differentiable simulator, often sacrificing generality (e.g., handling contact only with simple rigid obstacles or differentiating with respect to material parameters only), robustness (e.g., using a contact model that requires per-scene parameter tuning to prevent failure), accuracy (e.g., using approximate spatial discretizations, or non-physical material and friction models), or scalability (e.g., restricting the number of system parameters with respect to which it can be optimized).

Building on and integrating a broad range of previous work on PDE-constrained optimization, including shape optimization, material property estimation, and trajectory control, we develop a differentiable solver that eliminates or reduces these shortcomings. Our solver has the following characteristics:

(1) Maximally general differentiability: we support differentiation with respect to all physical parameters (Section 8) involved in the physical problem description: shape, material parameters, friction parameters, and initial conditions. The user can pick an arbitrary subset of these parameters to use in objective functions (Section 9.1), differently from previous works which limit this selection (Table 1).

(2) Our contact/friction formulation builds upon the recently proposed Incremental Potential Contact (Section 8.2) approach [Li et al. 2020]. Our differentiable simulator supports complex geometry, is automatic and robust (with only two main parameters controlling the accuracy of the spatial and temporal discretizations), and guarantees physically valid configurations at all timesteps, without intersections nor inverted elements. Many previous works instead use a restricted set of contact scenarios (Table 1).

(3) We use discretizations of arbitrary order (Section 10), both in space and time with general non-linear elasticity material models, ensuring accuracy. Many competing works instead rely on linear time and spatial discretization and often use simplified material models, leading to lower accuracy solutions (Section 2).

(4) Our formulation supports both static and dynamic problems in a unified framework (Section 4).

(5) Our differentiation approach is low cost. The computation of the derivatives for one PDE-constrained optimization step is at most as expensive as a forward evaluation of the underlying forward simulation of the physical systems (Section 4.3, Table 4), and, for nonlinear problems, we observe that the differentiability adds at most 10% to the cost.

While individually most of these features appeared in previous works in some form, they have never been combined in a unified formulation and algorithm for accurately solving inverse problems in elastodynamics with contact. The foundation of our approach is the adjoint method, which we systematically apply to obtain derivatives with respect to all parameters in a unified and general way, while achieving high efficiency. We discuss our design choices and compare to alternatives in Section 2.1.

We demonstrate the effectiveness of our approach on a set of examples involving multiple objectives and optimizing for the shape, material parameters, friction parameters, and initial conditions.

2 RELATED WORK

We summarize the most relevant simulation frameworks, primarily focusing on those supporting differentiable simulations of elastic deformable objects.

For the works closer to our targeted applications, we provide an explicit breakdown of which subset of the characteristics of our solver they support (Table 1). We also highlight the generality of our solver by explicitly identifying which solvers cannot reproduce the examples in our paper (Table 2). While implementing additional derivatives with respect to parameters already present in one of these codes is easy in some cases, other features are harder to add, e.g., contact between soft bodies or self-collisions. The reasons why specific solvers cannot handle certain problems are included in the caption of Table 2. We note that prior works in Tables 1 and 2 can solve problems that our method cannot handle, e.g., the application in visuomotor control tasks in Jatavallabhula et al. [2021] is not included in this work.

Differentiable deformable object simulators. Numerous differentiable elastic body simulators have been developed for applications in optimal design of shapes [Ly et al. 2018; Panetta et al. 2017, 2015; Tozoni et al. 2020], actuators [Chen et al. 2020; Maloisel et al. 2021; Skouras et al. 2013], sensors [Tapia et al. 2020], material characterization [Hahn et al. 2019; Schumacher et al. 2020], and robotic control [Bern et al. 2019; Hoshyari et al. 2019]. Differentiable simulators are also developed for fluid simulations in Li et al. [2023b], McNamara et al. [2004], and Schenck and Fox [2018]. These simulators broadly fit into three categories: (i) those employing analytic derivatives computed using sensitivity analysis; (ii) those using automatic differentiation libraries [Heiden et al. 2020; Hu et al. 2019a,] based on overloading, or algorithmic differentiation, and (iii) neural surrogate models replacing the
Table 1. The Table Columns Correspond to Five Comparison Characteristics

Method	(1) HO	(2) Parameters	(3) Collisions	(4) Static and Dynamic	(5) Differentiation
Elastic Texture [Panetta et al. 2015]	Yes	Shape	No support	Static-Only	Adjoint
CB-Assemblies [Tosoni et al. 2021]	Yes	Shape	Static and Prescribed	Static-Only	Adjoint
ADD [Geilinger et al. 2020]	No	Material, Initial	Only planes or SDF, no self-collisions	Dynamic-Only	Adjoint
GradSim [Jatavallabhula et al. 2021]	No	Material, Initial	Only planes, no self-collisions	Dynamic-Only	Code transformation
DiSECT [Heiden et al. 2021]	No	Material	Only planes or SDF, no friction	Dynamic-Only	Code transformation/autodiff
NeuralSim [Heiden et al. 2020]	No	Material, Initial	Only rigid-bodies	Dynamic-Only	Code transformation/autodiff
DiffPD [Du et al. 2021]	No	Material, Initial	Only planes or SDF	Dynamic-Only	Adjoint
Ours	Yes	Shape, Material, Initial	No restrictions	Static and Dynamic	Adjoint

(1) High-order Space and Time Discretization, (2) Supported Optimization Parameters, (3) Support for Complex Contacts between Arbitrary Surfaces, including Self-collision, (4) Support for Static and Dynamic Simulations, and (5) Method for the Derivatives Computation. No Existing Differentiable Solver Supports all Features of Our Solver Simultaneously; in Particular, Most do not Support Differentiating with Respect to the Shape of the Domain.

Table 2. To Clarify the Differences between Our Approach and Other Differentiable Simulators, we show which Simulators Support the Features Needed for Each Experiment in Our Paper. The Figure Captions Provide More Details for Each Experiment. Most Significantly, Almost no other Simulators Support Shape Optimization (Figures 5–13), and the Ones that do Lack Support for Dynamic. From Left to Right: Figures 1 and 22 Require Contact Handling between Soft Bodies; Figures 5–13 Require Shape Optimization; Figure 15–17 Require Material Distribution Optimization; and Figures 19 and 21 Require Self-collision Handling

Method	Figure 1	Figures 2–10	Figures 11–13	Figure 14	Figures 15–17	Figure 18	Figure 19	Figure 20	Figure 21	Figure 22	Figure 23
Elastic Texture [Panetta et al. 2015]	Y										
CB-Assemblies [Tosoni et al. 2021]	Y										
ADD [Geilinger et al. 2020]	Y										
GradSim [Jatavallabhula et al. 2021]	Y										
DiSECT [Heiden et al. 2021]	Y										
NeuralSim [Heiden et al. 2020]	Y										
DiffPD [Du et al. 2021]	Y										
Ours	Y	Y	Y		Y		Y	Y			

We provide direct comparisons of our solver, Du et al. [2021] and Jatavallabhula et al. [2021] in Section 10.5.

Differentiable Simulations with Contact. Differentiable simulators incorporating various contact models have recently been developed for rigid [Heiden et al. 2020] and soft bodies [Geilinger et al. 2020; Heiden et al. 2021; Jatavallabhula et al. 2021; Liang et al. 2019; Qiao et al. 2020]. These contact models often require per-scene parameter tuning if complex contact scenarios are present, which makes these methods hard to use in optimization, especially shape optimization.

Our approach uses the recently proposed Incremental Potential Contact (IPC) formulation [Li et al. 2020], replacing the traditional zero-gap assumption [Belytschko et al. 2000; Bridson et al. 2002; Brogliato 1999; Daviet et al. 2011; Harmon et al. 2009, 2008; Kikuchi and Oden 1988; Otaduy et al. 2009; Stewart 2001; Verschoor and Jalba 2019; Wriggers 1995] with a smooth version ensuring a (small) non-zero separation between objects at every frame of the simulation. This approach was designed with the explicit goal of guaranteeing robustness and its smooth formulations of contact and friction avoids the need for handling non-smooth constraints.

Stupkiewicz et al. [2010] is one of the few papers that demonstrate sensitivity analysis of elastic problems with contact with respect to a range of parameters, including shape and material properties. This method, tested on a limited set of regular-grid problems, uses direct differentiation requiring a solve per parameter, and does not use a robust contact model.

We compare our solver, Du et al. [2021] and Jatavallabhula et al. [2021] in Section 10.5 in scenes involving both contact and self-contact.
Shape and topology optimization with contact. Historically, shape optimization was primarily considered separately, e.g., for physical parameter or initial condition estimation, primarily in static settings, often with additional assumptions on bodies involved in contact.

Some previous works in this area have considered the specific case of optimization in the presence of contact between a soft body with fixed rigid surfaces [Bereml’jiski et al. 2014; Haslinger et al. 1986; Herskovits et al. 2000]. Other works, like ours, have studied the interaction of two or more deformable bodies in contact [Desmorat 2007; Maury et al. 2017; Stupkiewicz et al. 2010; Tozoni et al. 2021]. Most papers do not consider friction or use a simplified model (compared to the standard Coulomb formulation) as discussed by Maury et al. [2017].

Most closely related to our approach, Maury et al. [2017] presented a level set discretization technique where contact and friction were modeled with penalty terms, using smooth approximations to the problem. Using a similar contact and friction model, Tozoni et al. [2021] designed a shape optimization technique that focused on reducing stress of static assemblies that are held together by contact and friction. Both these works followed the mathematical model of contact presented by Eck et al. [2005], which allows for interpenetration and assumed that contact zones are fixed.

For the specific use case of avoiding sag due to gravity forces, Hsu et al. [2022] proposes a global/local approach to optimize the rest shape and initial displacement of input geometries to avoid the deformation introduced by gravity forces. This work uses the IPC contact model in some simulation examples, but does not use IPC in their optimization procedure.

Our approach supports dynamic simulation, allows contact zones to change with both optimization parameter changes and in the course of the simulation, and supports contact and self-contact between arbitrary deformable objects.

Meshfree methods. A number of differentiable simulation methods use meshfree discretizations. Especially for shape optimization, methods like XFEM [Hafner et al. 2019; Schumacher et al. 2018] and MPM [Huang et al. 2019b] that do not maintain conforming meshes are often considered to circumvent remeshing-induced discontinuities [Bächer et al. 2021]. However, these methods sacrifice accuracy [de Vaucorbeil et al. 2019], particularly for stress minimization problems [Sharma and Maute 2018]. Our approach computes accurate displacement and stressed by using a finite element method framework using high-order elements, coupled with dynamic remeshing to compensate for the distortion introduced by large deformations.

2.1 Choice of Approach to Computing Gradients

A broad variety of approaches to differentiable simulation exist in the literature on optimal control, shape optimization, and inverse problems (see, e.g., van Keulen et al. [2005] for a systematic overview); in this section, we briefly discuss the motivation for the design choices in our algorithm. Our choice is significantly influenced by the features of our problem setting:

- High dimension: e.g., shape and variable material property optimization may require thousands of parameters.
- Complex linear solvers: we aim to accurately solve highly nonlinear, time-dependent or static, stiff problems, requiring complex linear solvers for large sparse linear systems in the inner loop of nonlinear solvers.
- Contact: resolving contacts requires additional complex algorithms for continuous collision detection, in the nonlinear solver line searches.
- Large shape changes and deformations: shape differentiation often leads to large shape changes, which may require remeshing.

Choice of the overall approach. The two most general approaches are, in a sense, opposite extremes, but neither is a good fit for our setting.

Finite difference methods can be used with any black-box solver, but require an extra solve for each parameter, so it is not suitable for high-dimensional problems or even problems of moderate dimension (Table 6 compares the efficiency of our method and finite differences).

Code differentiation [Bischof and Bucker 2000; Griewank and Walther 2008; Margossian 2019; Naumann 2012] through overloaded operators, or using a specialized language, has two fundamental problems, making it unsuitable for complex nonlinear codes with contact: it requires rewriting all of the simulation code, including supporting numerical libraries, e.g., sparse linear solvers and contact handling, and even more significantly is likely to produce unnecessarily inefficient code (fully differentiable sparse linear matrix inversion is going to be slow, and differentiating through a nonlinear solve is unnecessary, as we see below). While automatic code transformation in principle may eliminate the need to rewrite the code, and there is promising work [Jakob 2010; Moses et al. 2022] in this direction, we are unaware of fully automated tools capable of handling large software systems, and the concerns about the efficiency of the resulting code remain.

Existing differentiable solvers following this route use explicit time integration and/or a few iterations of an iterative linear solver. Both these options are unsuitable for applications requiring robustness and accuracy, limiting their applicability. For more details, we refer to Appendix E.3 of Hu et al. [2019a], where the authors discuss that it is not realistic to differentiate stably a complex linear solver (the paper refers to a multigrid solver, but it is even more true for a sparse direct solver), so they use 10 Jacobi iterations to approximate the linear solve in the smoke simulation.

We opt for the approach based on adjoint equations, well established in scientific computing and optimal control, as described in Section 3. It is widely considered the most efficient approach to computing sensitivities, with the cost of a single additional linear solve per time step, and reusing important parts of the forward solver, at the expense of requiring derivations specific to a particular time-stepping algorithm. It allows us to implement efficient differentiability for solvers with all the features listed above.

Fixed vs. changing discretization. The adjoint method is particularly simple to apply to a purely algebraic problem, in which both the objective and PDE are discretized once, and then the problem is treated as a purely algebraic finite-dimensional optimization problem with PDE acting as a constraint. However,
in our context, as shape optimization may change the domain, we cannot view the optimization problem as purely algebraic, as the discretization may change at every optimization step: both the forward and adjoint systems are rebuilt starting from a new discretization.

Discretize-then-optimize vs. optimize-then-discretize.

In the context of adjoint methods, we need to choose between the “discretize-then-optimize” approach and “optimize-then-discretize” [van Keulen et al. 2005]. In the first approach, the original PDE and objectives are converted to a discrete form which is then differentiated with respect to discrete optimization parameters. In the second approach, a PDE for the sensitivities is derived, and this PDE is discretized. The difference between these approaches is relatively small for differentiation with respect to material parameters, but more significant for shape derivatives. In this context, “optimize-then-discretize” is the most common approach: its convergence theory is better established, and directly follows from the discretization convergence. On a more practical side, it leads to a simpler form of adjoint equations for the shape derivatives formulated in the physical domain, enabling better reuse of the forward solver code. We refer to Section 2.3 in Allaire et al. [2021] for additional discussion and to Appendix G for an example illustrating the differences for the Poisson problem. We emphasize that both approaches, for a suitable choice of discretization, lead to the same discrete solution; however, discretize-then-optimize in the context of shape optimization obscures the essential fact that the system matrix need not be recomputed. We use a specific discretization that ensures that the computed gradients are consistent with differentiating the discretized objective, as this simplifies the implementation of optimization algorithms.

Dokken et al. [2020] uses the “discretize-then-optimize” approach to support shape derivatives in FEniCS, which has its own DSL. This approach allows one to support a broad range of PDEs but at the expense of higher complexity and significant additional performance overhead.

Constructing adjoint equation components: AD vs. analytic approach.

The adjoint method requires partial derivatives of the objective for the right-hand side of the adjoint system, and the stiffness and mass matrices for the adjoint PDE itself, which are similar to or coincide with those for the forward PDE. These can be computed using an AD method (note that the code to be differentiated is a straightforward algebraic computation, not a complex algorithm like a linear solver) or in closed form.

This can be done by transforming the code of assembling force vectors and computing objectives to an AD framework or applying code transformation to these parts of the code. However, AD leads to less reuse compared with the analytic case and higher computational complexity. We briefly compare these options in Section 10. We opt for doing extra analytical work to derive all derivatives explicitly, but the approaches can be combined - one can add additional forces or objectives using AD.

3 OVERVIEW

In Sections 4–9, we provide a self-contained description of our method. While this contains a mix of known and new material, we aim to present all components of the method in a unified and systematic notation to ensure reproducibility.

Typographical conventions. We use lower-case italics for functions \(a(z) \) and variables \(z \), with both \(z \) and \(a \) in \(\mathbb{R}^D \), where \(D = 2, 3 \). Boldface lower-case letters (a) are used for vectors of coefficients of a FEM (or any other) discretization of a function. For a vector or matrix quantity, superscripts are used to index whole vectors or matrices: e.g., \(p^i \) may denote \(p \) at time step \(i \). Subscripts are used for the indices of components of a vector, e.g., \(a(z) = \sum_{\ell=1}^{n} a_{\ell}(z) \) means that the function \(a(z) : \mathbb{R} \rightarrow \mathbb{R}^D \) is a linear combination of basis functions \(\phi^\ell \), with coefficients \(a_{\ell} \) which are components of \(a \). If \(a(z) \) has values in \(\mathbb{R}^D \), its coefficients in a scalar basis \(\phi^\ell \) are \(D \)-dimensional. Then \(a \) is a vector of length \(D \cdot n \), with \(D \) coordinates of each component of \(a_{\ell} \) in sequential entries.

General problem form. We solve static and dynamic optimization problems of the form

\[
\min_{q} J(u, x, q), \text{ such that } \mathcal{H}(u, x, q) = 0
\]

and

\[
\min_{q} J(u, q) = \min_{q} \int_{t=0}^{T} J(u, t, q) \overline{\rho} = \mathcal{H}(u(x, t, q)) \text{ on } \Omega_{Q}, \ u(0) = g^u(q), \dot{u}(0) = g^\dot{u}(q),
\]

where \(J \) is an objective, possibly including constraints in penalty form, \(u(x, t) \) is the displacement of a material point \(x \) satisfying a static or dynamic physics equation, and \(g^u \) and \(g^\dot{u} \) are the initial conditions for the displacements and velocities. In this work, we consider nonlinear elastic deformation, contact, friction, and damping forces. We assume the density \(\rho \) to be constant in time. The optimization parameter functions \(q = (q_1, q_2, \ldots, q^m) \) include all parameters of the system: material properties (elastic, friction, and damping), object shape, and initial and boundary conditions. The first of these, \(\dot{q} \), plays a special role: it determines the shape of the domain \(\Omega_{Q} \) on which the PDE is defined; it is a function on a reference domain \(\Omega_{ref} \) defining its deformation. Parameters \(q^j \) may be global constants, or depend on the points of the reference domain, or pairs of points (as it is the case for the friction coefficient).

This problem statement is similar to Gellinger et al. [2020] and other works on differentiable simulators; however, our goal is to support full differentiability, including shape, in a systematic way (see Table 1 for details) which affects the adjoint formulation and requires deriving expressions for a number of gradients of forces and functionals.

Discrete problem. We postpone the exact description of the discrete problem to Section 6. The discretized static problem obtained using FEM discretization has the general form:

\[
\min_{q} J(u, q), \text{ s.t., } h(u, q) = 0,
\]

where \(u \) is the vector of FE basis coefficients of \(u \) and \(q \) is the concatenation of the vectors of coefficients of \(q, q_1, \ldots, q^m \).
The dynamic discretized problem with BDF of order \(m\) discretization in time has the general form:

\[
\min_{\mathbf{u}} J(\mathbf{u}, \mathbf{q}) = \min_{\mathbf{u}} \sum_{i=0}^{N} w_j f_j(\mathbf{u}_i, \mathbf{q})
\]

\[
\mathbf{u}' + \sum_{j=1}^{\text{min}(i,m)} a_{ij} \mathbf{u}^{i-j} = \beta_i \Delta t \mathbf{v}^i
\]

\[
M \left(\mathbf{v}' + \sum_{j=1}^{\text{min}(i,m)} a_{ij} \mathbf{v}^{i-j} \right) = \beta_i \Delta t \mathbf{h}'(\mathbf{u}_i, \mathbf{u}_i^{-1}, \mathbf{q}) = \mathbf{h}^i,
\]

where \(M\) is the mass matrix. The higher-order BDF schemes need to be initialized with lower-order steps; more specifically, \(a_{ij}\) is the \(j\)-th coefficient of BDF\(i\), for \(1 \leq i < m\), and \(j\)-th coefficient of BDF\(m\) otherwise. In the formulation above, \(h(u, q)\) does not depend on velocities \(v\). If the dependence on velocities is needed, as for damping forces, we discretize in time, and handle it as dependence on \(u\) at different time steps.

Overview of the method. We aim to present a complete, largely self-contained formulation, to ensure reproducibility as well as support easy addition of new types of forces. This requires restating briefly some of the known facts and formulas using our notation; we identify parts that are not present in previous work.

We first assume the discretized form of the problem (3) and (4), and derive consistent adjoint equations for the static and dynamic cases.

Each force and objective can be added to this general framework by deriving a set of matrices and vectors needed to compute partial force and objective derivatives.
We then proceed by computing these quantities analytically for the set of forces involved in our formulation, and a broad selection of functionals, including most used in the previous work both on differentiable dynamic simulation and shape optimization. We compute these in a form that allows for easy remeshing of \(\Omega_{\text{ef}} \) and \(\Omega_q \), which is necessary for the large changes in physical domain introduced by shape optimization.

4 ADJOINT-BASED OBJECTIVE DERIVATIVES

The derivatives of the objective \(J \) with respect to optimization parameters can be computed efficiently using the classic adjoint method. While the basic principles of derivation are well-known, we show how these are applied in the context of our problem. The general form of our equations is similar to Geilinger et al. [2020], which in turn is based on Hahn et al. [2019] for the specific case of BDF2 time-stepping and material parameter differentiation. We derive the abstract form of the adjoint system for a general form of BDF time-stepping, and importantly we ensure that the dynamic adjoint solution is consistent, i.e., yields identical, rather than approximately identical, results to direct differentiation, as well as considers variable mass matrix needed for shape derivatives.

4.1 Static Case

With the adjoint method, the gradient with respect to any number of parameters can be obtained by solving a single additional linear PDE (the adjoint PDE), and then evaluating an expression depending on this unknown. The adjoint PDE is obtained by considering the Lagrangian

\[
\mathcal{L} = J(u, q) \quad \text{[objective term]} \\
+ p^T h(u, q) \quad \text{[physical constraint term]}
\]

and differentiating it with respect to the parameters \(q \):

\[
d_q \mathcal{L} = \partial_q J + \partial_q u \cdot d_q u + p^T \partial_q h + p^T \partial_q h \cdot d_q u. \tag{7}
\]

This adjoint PDE is expensive to compute if the dimension of \(q \) is large; a direct computation involves computing \(d_q u \) (how solution changes according to parameter \(q_m \)) for every optimized parameter \(q_m \) in \(q \), which means solving \(|q| \) different linear PDEs. Isolating all terms multiplying \(d_q u \):

\[
d_q \mathcal{L} = \partial_q J + p^T \partial_q h + (\partial_q u + p^T \partial_q h) \cdot d_q u. \tag{8}
\]

We can then eliminate the last term by choosing the adjoint variable \(p \) such that it solves the adjoint problem:

\[
p^T \partial u h = -\partial_u J. \tag{9}
\]

Then, by plugging the solution \(p \) of the adjoint PDE into the Lagrangian, we obtain the final shape derivative:

\[
d_q J = d_q \mathcal{L}(p) = \partial_q J + p^T \partial_q h. \tag{10}
\]

Combining contributions from different forces and objectives together. Our discretized equation has the form

\[
h(u, q) = \sum_k h^k(u, q) = 0,
\]

where \(h^k \) is a contribution from each type of force (elasticity forces, contact forces, etc.). Similarly, the objective \(J \) is a sum of contributions from several objective components or constraints in penalty form:

\[
J(u, q) = \sum_\ell J^\ell(u, q).
\]

Thus, the adjoint system and the full parametric derivative have the following form, respectively:

\[
p^T \sum_k \partial_q h^k = -\sum_\ell \partial_q J^\ell, \quad \text{and} \quad d_q J = \sum_\ell \partial_q J^\ell + \sum_k p^T \partial_q h^k. \tag{11}
\]

Thus, for each force, we need \(\partial_q h^k \) and \(\partial_q h^k \) and each objective component, \(\partial_q J^k \) and \(\partial_q J^k \).

4.2 Dynamic Case

Discrete time-dependent Lagrangian. We write the time-dependent Lagrangian \(\mathcal{L} \) for the functional \(J \) viewing the equations for \(v \) and \(u \) as constraints with Lagrange multipliers \(p \) and \(\mu \).

Similar to the static case, we expand the derivative \(d_q \mathcal{L} \), and isolate the terms containing \(d_q u \) and \(d_q v \). By setting the sum of each of these two sets of terms to zero, we obtain two adjoint equations.

Our Lagrangian consists of three parts, corresponding to the objective \(J \), physics constraints \(\mathcal{L}_c \), and initial condition constraints \(\mathcal{L}_\text{in} \):

\[
\mathcal{L}(u, v, p, \mu, q) = J(u, q) + \mathcal{L}_c(u, v, p, \mu, q) + \mathcal{L}_\text{in}(u^0, v^0, p^0, \mu^0, q),
\]

where

\[
\mathcal{L}_\text{in} = p^T \mathbf{v}^0 - g^v + \mu^T \mathbf{u}^0 - g^u,
\]

and

\[
\mathcal{L}_c = \sum_{i=1}^N p_i^T \left(v^i + \sum_{j=1}^{\min(i, m)} a_{i,j} v^{i-j} - h^i \right) + p_i^T \left(u^i + \sum_{j=1}^{\min(i, m)} a_{i,j} u^{i-j} - \beta_i \Delta t v^i \right). \tag{12}
\]

Adjoint equations. As shown in the Appendix, this leads to the following adjoint equations:

\[
\begin{aligned}
&\left(p_i + \sum_{j=1}^{\min(m, N-i)} a_{i,j} v_{i+j} \right) = \beta_i \Delta t v_i \\
&\mathcal{M}^T \left(v_i + \sum_{j=1}^{\min(m, N-i)} a_{i,j} v_{i+j} \right) = (\partial_u h^i)^T p_i + (\partial_v h^{i+1})^T p_{i+1} - (\partial_u h^{i+1})^T,
\end{aligned}
\]

where we introduce a new variable \(v \) satisfying \(\mu = \mathcal{M}^T v \).

Note that this system is very similar to the forward time-stepping, with the following differences: it proceeds backward, from \(v_{i+1} \) to \(v_i \); there is a single linear solve per time step, rather than a nonlinear solve as for the forward system; for higher-order
time stepping the first few steps in the forward system are lower-order BDF steps; however, this is not the case for the adjoint system: to maintain consistency, we derive the initial low-order steps from the forward system. If BDF2 is used for the forward time-stepping, the resulting scheme is different from the standard BDF2 scheme used in Hahn et al. [2019] for the adjoint system. If the system were discretized inconsistently as in Hahn et al. [2019], a sufficiently small time step is needed to maintain accuracy of the gradient that would ensure that the discrete energy decreases along the gradient direction.

By introducing \(p_{N+1} \), \(v_{N+1} \), the initial condition can be simplified as

\[
p_{N+1} = 0, \quad v_{N+1} = 0.
\]

The first (last in the adjoint solve) values need to be treated separately, as shown in Appendix A.2:

\[
\mu_0 = - (q_0^T) - \sum_{i=1}^{m} \alpha^i \mu_j + p_1^T \hat{q}_i \hat{M}^j, \quad p_0 = - \sum_{j=1}^{m} \alpha^j M^T p_j.
\]

Computing the derivative of \(J \) from the forward and adjoint solutions. From the adjoint variables, we can compute \(\partial_q J = \partial_q L \):

\[
d_q l = - p_0^T \alpha^u g^u - p_0^T \alpha^q g^q + \sum_{i=1}^{N} \partial_q \hat{L}_i
\]

\[
+ \sum_{i=1}^{N} - p_1^T \partial_q \hat{h}_i + \beta_1 \Delta t v_i^T d_q M v_i
\]

\[
+ \sum_{j=1}^{m} \alpha^j p_j^T d_q M v^j.
\]

Partial derivatives \(\partial_q \hat{h}_i, \partial_q \hat{h}_i \) and \(\partial_q \hat{L}_i, \partial_q \hat{L}_i \) are exactly the same as used in the construction of the system for static adjoint and computation of the functional. The differences, specific to time discretization, are:

- Mass matrix derivative \(\partial_q M \). See Appendix (Section A.3).
- Partial derivatives of the initial conditions with respect to parameters \(\partial_q g^u \) and \(\partial_q g^q \), for positions and velocities. See Section A.4 in the Appendix. Typically, a 3D position and velocity for the whole object (or angular velocity for the object rotating as a rigid body) are used as parameters, so these are trivial to compute.

4.3 Summary of the Parametric Gradient Computation

Computing the derivative \(\partial_q J \) requires the following components:

- Derivatives \(\partial_q \hat{h}_i, \partial_q \hat{h}_i, \partial_q \hat{L}_i \) and \(\partial_q \hat{L}_i \) for each time step \(i \). See Sections 8 to 9.2 for corresponding formulas.
- For the dynamic problems, \(\partial_q g^u \) and \(\partial_q g^q \), derivatives of the initial conditions. See Section A.4 in the Appendix.

To compute the parametric derivative of \(J \), the steps are as follows:

1. Solve the forward system (3) or (4), and store the resulting solutions \(u \) for the static problem; for the dynamic problem, we store \(u^i, v^i, i = 0 \ldots N \) at every step.

2. Initialize adjoint variables \(p_{N+1}, v_{N+1} \) as shown in (13).
3. For the static problem, solve the adjoint system (9). For the dynamic problem, perform backward time stepping using (12).
4. At every step of the dynamic solve, evaluate derivative of the mass matrix \(d_q M \), if applicable, and use formulas (15) to update \(d_q l \).

5 OPTIMIZATION ALGORITHM

We provide a high-level summary of our method in Algorithm 1, its major components are:

- \(\text{ForwardSolve} \) solves the nonlinear elasticity system, retaining all solution steps for time-dependent problems;
- \(\text{Objective} \) computes the objective function given the solution and parameters;
- \(\text{AdjointSolve} \) solves the adjoint system (12) stepping backward in time and using the solutions of the forward problem;
- \(\text{DiscreteDerivative} \) computes gradients given displacements and adjoint variables;
- \(\text{LineSearch} \) is the standard Wolfe-Armijo line search, with additional prevention of element inversion and contact [Li et al. 2020];
- \(\text{Remesh} \) performs remeshing of \(\Omega_{ref} \) and \(\Omega_q \) to improve the mesh quality before restarting optimization;
- \(\text{Converged} \) is the outer iteration stopping criterion.

We omit the pseudo-code for the forward solve as it closely follows that of Li et al. [2020] with only a few notable changes: (1) we use an area weighting inside the barrier potential for convergence (see Section 8.2), (2) we use a fixed barrier stiffness \(k \) as changing it adaptively throughout the simulation would require computing its gradient through the update, and (3) to speed up convergence, we only project the Hessian to positive semi-definite in the Newton update if the unprojected direction is not a descent direction.

The inner loop works on a fixed mesh for \(\Omega_{ref} \), and is close to the standard L-BFGS algorithm with two additional features, essential for handling shape derivatives and large deformations: (1) we check for any inversions of tetrahedra and contacts resulting from changes to the shape of the domain \(\Omega_q \) as a result of changing shape parameters and (2) after each update of the boundary vertices, we call the SLIM smoothing algorithm [Rabinovich et al. 2017], with boundary vertices \(p \) fixed, to move the interior vertices to improve mesh quality.

Unlike previous work we support remeshing. If the mesh quality \(Q \) is smaller than a tolerance \(\delta_{\text{remesh}} \), the domain is remeshed. If the gradient w.r.t. \(q \) is smaller than a tolerance \(\delta_{\text{grad}} \) or the step size is smaller than a tolerance \(\delta_{\text{step}} \), the optimization is stopped.

6 PHYSICAL MODEL AND DISCRETIZATION

In this section, we summarize the physical model we use. The model is similar to the one used in Li et al. [2020], with some minor modifications to the friction and contact formulation (Section 8.2), most significantly, the addition of damping.

To discretize the model we use arbitrary-order Lagrangian elements and arbitrary-order BDF time stepping (our experiments are with schemes of order 1 and 2).
The forces, which contribute to the PDE and need to be included in the adjoint equations and corresponding parametric gradient terms are:
- geometrically non-linear elasticity (with linear and Neo-Hookean constitutive laws as options);
- contact forces in smoothed IPC formulation;
- friction forces also in smoothed IPC formulation;
- strain-rate proportional viscous damping for elastic objects;
- external forces such as gravity or surface loads.

The right-hand side of the system of equations we solve on \(i\)-th time step of (12) can be written as
\[
\begin{align*}
\hat{h}^s(u^i; \ell(x), \mu(x)) + \hat{h}^f(u^i; u^{i-1}; \mu(x, y)) \\
+ \hat{h}^d(u^i, u^{i-1}; \alpha(x), \beta(x)),
\end{align*}
\]
where \(\hat{h}^s\) is the discrete elastic PDE term, \(\hat{h}^s\) and \(\hat{h}^f\) define contact and friction forces, and \(\hat{h}^d\) defines damping. In greater detail, all these forces are defined in the next section, along with \(\alpha h\) and \(\partial_x h\) for each one of them.

The physical parameters \(q\) of the model with respect to which it can be differentiated include:
- (possibly spatially variant) Lamé coefficients for elasticity \(\lambda(x), \mu(x)\);
- friction coefficient between pairs of points \(\gamma(x, y)\) (we consider it fixed for each pair of objects, to reduce the number of variables involved);
- damping coefficients \(\alpha(x), \beta(x)\).

Domains. A critical aspect of the formulation at the foundation of our solver is the distinction between **reference domain** \(\Omega_{ref}\), and (undeformed) **physical domain** \(\Omega_q\), where \(\Omega_q\) denotes parameters defining the shape (Figure 2). The physics equations \(\mathcal{H}(u, x, t, q)\) and the solution \(u(x, t)\) is defined on \(\Omega_q\) most naturally, but this domain may be changed by optimization. The optimization parameters \(q\) are defined on \(\Omega_{ref}\). This distinction is present in previous work on shape optimization (e.g., Tozoni et al. [2021]) but not in the more general setting of dynamic differentiable simulation.

7 EXAMPLE: POISSON EQUATION

To explain the principles of how individual derivatives for forces and target functionals are computed, we use a simple example. For more complex forces in our problem formulation, we state the final result in this paper, and we refer to the Appendix for the derivation.

Consider a variable-coefficient Poisson equation \(\nabla \cdot (c(x)\nabla u) = f\) and zero Neumann boundary conditions on a domain \(\Omega_q\) that can be changed by the optimization. We take as the optimization objective the squared gradient of the solution on the domain. Then

- the optimization parameters are \(q = [\bar{q}, c]\);
- The PDE in weak form is
 \[
 \mathcal{H}(u, q, w) = \int_{\Omega_q} c\nabla u \cdot \nabla w - f w \ dx.
 \]
- The objective is
 \[
 J(u, \bar{q}) = \int_{\Omega_q} \|\nabla u\|^2 \ dx.
 \]

Discretizing in FE basis, with basis functions \(\phi^j\) (e.g., quadratic) used for \(u = \sum \phi^j u^j\) and \(c = \sum c^j \phi^j\), and basis \(\xi^j\) used for the geometric map \(\bar{q} = \sum c^j \xi^j\), we obtain the following. (Note that both our basis \(\xi\) and \(\phi\) are defined on the fixed triangulated domain \(\Omega_{ref}\).)

\[
q = [\bar{q}, c] = [x_1, \ldots, x_n, c_1, \ldots, c_N],
\]
where \(x_i \in \mathbb{R}^2\) are vertices of the physical domain \(\Omega_q\) we optimize, and \(c_i\) are the coefficients of \(c\) in FE basis.

- The PDE discretization is performed on the physical domain \(\Omega_q\), and has the form \(h(u, q) = S(q)u = M(q)u\). The entry \((m, f)\) of the matrix \(S(q)\) are obtained by substituting \(u = \phi^m \circ g^{-1}\) and \(w = \phi^r \circ g^{-1}\), and the discrete expression for \(c\) into the expression below; entries of \(M(q)\) are obtained in a similar way

\[
S(u, w) = \int_{\Omega_q} c(q^{-1}(x))\nabla u \cdot \nabla w \ dx;
\]

\[
M(v, w) = \int_{\Omega_q} v \nabla w \ dx.
\]

- The discrete objective is \(J(u, q) = u^T T(q) u\), with entries of \(T(q)\) also obtained by substituting pairs of basis functions into the bilinear form

\[
T(u, w) = \int_{\Omega_q} \nabla u \cdot \nabla w \ dx.
\]

Computing derivatives of \(S, \partial_c S(u, w)\), with respect to \(c\) is straightforward, as the dependence on the coefficients of \(c\) is linear. Computation of shape derivatives is more complex, as the integration domain and the gradient operator \(\nabla\) with respect to physical domain variables are affected by the change of shape parameters.

Direct approach. The direct approach is to perform a change of variables in (16) and (17) and to the domain \(\Omega_{ref}\), and differentiate with respect to \(x^j\); e.g., (16) becomes

\[
S(u, w) = \int_{\Omega_{ref}} c(q) \nabla_y \tilde{u}^T (\nabla_y q)^{-1} (\nabla_y q)^{-T} \nabla_y \tilde{w} \ det \nabla \tilde{q} \ dy,
\]

ALGORITHM 1: Optimization algorithm overview

```plaintext
function Gradient(q)
    u ← ForwardSolve(q)
    p ← AdjointSolve(Objective, u, q)
    g ← DiscreteDerivative(Objective, u, p, q)
    return g
end function

function ParameterOptimization
    q ← initial parameter values
    oi ← 0  // Optimization iteration count
    repeat
        g ← Gradient(q)
        d ← LBFGSDirection(g, q)
        s ← LineSearch(d)
        q ← q + sd
        if ||g|| < 0.1 then
            q ← REMESH(\Omega_q)
        end if
        oi ← oi + 1
    until oi = \text{max} or ||g|| < \delta_{\text{grad}} or ||sd|| < \delta_x
end function
```

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024.
where \(\dot{u} \) and \(\dot{\omega} \) denote compositions \(u \circ \dot{q}^{-1} \). These expressions are highly nonlinear in \(x \) and the final expressions for \(\partial_{\bar{q}} S(u, w) \) needed for \(\partial_{\bar{q}} h \) are unwieldy, especially for more complex forces like nonlinear elasticity and friction.

Shape derivative approach. Instead, we use shape derivative calculus commonly used in shape optimization to obtain the derivatives with respect to the shape parameters directly on the physical domain \(\Omega_q \) (for the parameters not affecting domain shape the approaches using \(\Omega_{\text{ref}} \) and \(\Omega_q \) are identical).

To compute \(\partial_{\bar{q}} h \), or \(\partial_{\bar{q}} f \), we consider the perturbed domain \(\Omega_{q + \theta} \), where \(\theta \) is a vector field, and compute the full derivative as limit of

\[
\frac{1}{\epsilon} \left(h(u_{q + \theta}, \dot{\bar{q}} + \epsilon) - h(u_q, \dot{\bar{q}}) \right),
\]

as \(\epsilon \to 0 \). In the resulting expression, the terms not containing the change \(\delta u(x) \) correspond to \(\partial_{\bar{q}} \theta \), and the terms containing derivatives of \(u(x) \) are transformed to \(\partial_u \phi \) by substituting \(\dot{\psi} \) instead of \(\delta u(x) \).

8 Parametric Derivatives of Forces

In this section, we derive expressions for \(\partial_{\bar{q}} h \) and \(\partial_{\bar{q}} f \) for specific forces needed for the adjoint equations and the final derivative formula respectively.

For each force, we obtain expressions of the forms \(B \) and \(A \) below, from which the matrices for corresponding derivatives can be obtained using:

\[
B^k(p, \theta) = p^T \partial_q h^k \theta, \quad A^k(p, \psi) = p^T \partial_q h^k \psi,
\]

with \(\theta \) going over basis vectors for this parameter type, \(p \) going over adjoint variable components, and \(\psi \) over the test function basis vectors for the adjoint; i.e., two matrices of size \(D_q \times D_q \times D_q \times D_q \).

While nonlinear elasticity derivatives with respect to material parameters and initial conditions were used in Geilinger et al. [2020] and Hahn et al. [2019], and static-problem shape derivatives for a different (static, allowing interpenetration) contact and friction model were obtained in Tozoni et al. [2021], we present expressions for all force-related derivatives with respect to all parameters (material, shape, initial conditions) in a unified way, simplifying adding additional forces, building whenever possible on a general form described in Section 8.1.

8.1 Volume Forces

Many forces in continuum mechanics have the general weak form

\[
\mathcal{H}^V(u, w, q) = \int_{\Omega_q} f^V(\nabla u, q) : \nabla w \, dx,
\]

where \(u \) is the displacement vector, with the components of the vector \(h^V(u) \) obtained as \(\mathcal{H}^V(u, \phi^V, q) \), for all basis functions \(\phi^V \), and the column denotes tensor contraction. In our case, elastic forces, irrespective of the constitutive law used, belong to this category.

In these expressions \(f^V(\nabla u, q) \) is a tensor of dimension \(D_q \times D_q \); e.g., for elasticity, \(D_q = D_s \), and this expression is the stress tensor, as a function of \(\nabla u \).

If the force is associated with a volume energy density \(W^V(\nabla u, q) \), associated forces have the form above, specifically, \(f^V(\nabla u, q) = \nabla_v W^V \). (Here, \(\nabla_v \) means the gradient with respect to the first parameter, in which this case is \(v \)). For a surface energy density \(W^S(u, q) \), the formulas are similar, but the integrals are over the surface.

We also formulate damping forces in a similar way, as explained in more detail below, except at each timestep \(W^N(\nabla u, q) \) depends on displacements \(u^i \) and \(u^{i-1} \), \(i = 1 \ldots m \) at the current and \(m \) previous steps, where \(m \) is the order of approximation of velocity used in damping (we use \(m = 1 \)). The formulas for \(A^V \) and \(B^V \) in this case are obtained in exactly the same way as for the dependence on \(u^i \) only, separately for \(u^i \) and \(u^{i-1} \), corresponding to \(\partial_u h^i \) and \(\partial_u h^{i-1} \) respectively.

To obtain matrices \(A^V \) and \(B^V \) corresponding to \(\partial_q h^V \) and \(\partial_q f^V \), we split \(\partial_q h^V \) into \(\partial_q h^V_{\theta} \) and \(\partial_q h^V_{\psi} \), the shape and non-shape parameter derivatives, assuming \(f \) depends on a single volume vector of parameters \(q = q^1 \) (e.g., Lame constants). We treat these two types of parameters separately, as \(\dot{q} \) affects the domain of integration but not the integrand, and conversely, \(q \) affects the integrand but not the domain.

Shape derivatives. For the shape derivative contribution, we obtain the following forms (the derivation and explicit form of matrix entries can be found in supplementary material).

\[
B^V(\theta, p) = \int_{\Omega_q} -f(\nabla u) \nabla v^T : \nabla p \\
- (\nabla_v f(\nabla u) : (\nabla u \nabla v) \nabla v + f(\nabla u) : \nabla v \nabla v) \, dx.
\]

\[
B^V(\theta, p) \text{ is linear in } \theta \text{ and } p \text{, and we convert it to a matrix form by substituting basis functions for } \theta \text{ and } p.
\]

The contribution to the left-hand side of the adjoint equation is

\[
A^V(\psi, p) = \int_{\Omega_q} (\nabla_v f(\nabla u) : \nabla v) \psi : \nabla v \, dx.
\]

Observe that the matrix is identical to the matrix used in the forward solve.

Non-shape volumetric parameter derivatives. We assume that the force depends on \(q = q(x) \), a function of the point in \(\Omega_q \).
defined by its values \(q \) at the same nodes as the solution, and interpolated using the same basis \(\phi \).

In this case, the form \(B \) is:

\[
B^e(\theta, p) = \int_{\Omega} \left(\partial_q f \cdot \theta \right) \cdot \nabla p \, dx.
\]

The contribution to the left-hand side of the adjoint equation is identical to the shape derivative case.

In our implementation we consider two versions of elastic forces, both defined by Lame parameters specified as functions on \(\Omega_{\text{ref}} \):

\[
q(x) = [\lambda(x), \mu(x)].
\]

The only quantities we need are derivatives of \(f(\nabla u) \) with respect to \(\nabla u \), and material parameters.

Linear elasticity. For linear elasticity, we replace \(\nabla f \) with

\[
f^e(\nabla u, q) = \sigma(\nabla u, q) = C(\nabla u) : \epsilon(\nabla u) + \frac{1}{2} \lambda(\nabla u) \nabla \phi \nabla \phi\).
\]

with \(C_{ijkl}(\lambda, \mu) = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \).

For computing \(A^e \) and \(B^e \) we use partial derivatives of \(f^e \) with respect to material parameters:

\[
\begin{align*}
\nabla_1 f^e(\nabla u, q, \lambda, \mu) & = \nabla_1 \sigma(\nabla u, q) = C(\mu) : \epsilon(\nabla u) + \frac{1}{2} \lambda(\nabla u) \nabla \phi \nabla \phi, \\
\nabla_2 f^e(\nabla u, q, \lambda, \mu) & = \nabla_2 \sigma(\nabla u, q) = \frac{1}{2} \lambda(\nabla u) \nabla \phi \nabla \phi \nabla \phi.
\end{align*}
\]

Neo-Hookean elasticity. For Neo-Hookean elasticity, the deformation gradient:

\[
f^e(\nabla u, q) = \mu(\nabla(\nabla u) - Q(\nabla u)) + \lambda \log(\det(F(\nabla u))) Q(\nabla u),
\]

where \(F(\nabla u) = \nabla u + I \) and \(Q(\nabla u) = F(\nabla u)^{-T} \).

We can then compute derivatives of \(f(\nabla u) \):

\[
\nabla_1 f^e(\nabla u, q)_{ijkl} = \mu(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) + \lambda Q_{ij} Q_{kl} - log(\det(F)) Q_{ij} Q_{kl},
\]

\[
\nabla_2 f^e(\nabla u, q) = \log(\det(F(\nabla u))) Q(\nabla u).
\]

Damping. For damping, we have material parameters controlling shear and bulk damping \(\alpha, \beta \). We use the strain-rate proportional damping described in Brown et al. [2018]. Given deformation gradient \(F = \nabla u + I \), the Green strain tensor \(E = \frac{1}{2}(F^T F - I) \) is rotation-invariant. The viscous Fiala-Kirchhoff stress is of the form

\[
P(\nabla u, \nabla \dot{u}) = F(2\alpha\dot{E} + \beta \nabla \dot{E}(\dot{E})),
\]

where \(\dot{E} \) denotes the time derivative, and the weak form of the corresponding force

\[
\mathcal{H}^d(u, \dot{u}, w) = \int_{\Omega} P(\nabla u, \nabla \dot{u}) \nabla w \, dx.
\]

In our case, to fit this force into our differentiable formulation, we discretize \(\dot{E} \) using \(\dot{E}^i = \frac{1}{\Delta t} (F^i - F^{i-1}) \); this yields a force expression of the form

\[
\mathcal{H}^d(u^i, u^{i-1}, w) = \int_{\Omega} P(\nabla u^i, \nabla u^{i-1}) \nabla w \, dx,
\]

which is identical to (19), except it depends on both \(\nabla u^i \) and \(\nabla u^{i-1} \).

As a consequence, expressions for \(A^d(\dot{\psi}, p) \) and \(B^d(\theta, p) \) are obtained in the same way as in (21) and (20), except two pairs of matrices are obtained, one for \(\nabla u^i \) the other for \(\nabla u^{i-1} \), using \(\nabla_1 P \) and \(\nabla_2 P \) as \(\nabla_1 f \) respectively.

8.2 Contact and Friction

For the contact forces, we use a slightly modified version of the formulation of Li et al. [2020]. While the original formulation is introduced in a discrete form, it can be derived with minimal changes as a linear finite-element discretization of a continuum formulation [Li et al. 2023a]. The contact incremental potential uses log barrier function \(b(y) \), where \(b \) is a truncated log barrier function, approaching infinity, if \(y \rightarrow 0 \), and vanishing for \(y \geq \hat{d} \) for some small distance \(\hat{d} \).

For any pair \(k \) of primitives (vertices, edges, and faces) of the surface mesh \(\partial \Omega_{\text{w.t.}} \), defined by the vertex positions \(x^d = M^e \hat{q} + u, d_k(x^d) \) denotes the distance between them; \(C \) is the set of primitive pairs in contact, i.e., pairs of primitives with \(d_k < \hat{d} \).

Recall that the geometric map \(\hat{q} \) always uses piecewise-linear elements \(\xi_k \), while the basis for the deformations \(u \) can be of any order. The matrix \(M^e \) is an upsampling matrix to bring dimension of \(\hat{q} \) to the same as discrete solution \(u \). The upsampling is performed by linear interpolation from \(\xi_k \) to nodes \(\hat{\mathbf{x}}_k \).

The contact forces are derived from the following potential:

\[
E(u, \hat{q}) = k \sum_{k \in C} b(d_k(x^d)) A_k = \sum_{k \in C} W_k(u, \hat{q}) A_k,
\]

where \(k > 0 \) is a parameter controlling the barrier stiffness and \(A_k \) corresponds to the sum of surface areas associated with each primitive in \(k \) (i.e., \(\frac{1}{2} \) of the sum of areas of incident triangles for vertices and edges, and the area for triangles). See Section D in the Appendix.

We define \(F_k^c(u, \hat{q}) = \partial_q W_k(u, \hat{q}) = k b'(d_k(x^d)) \partial_{x} d_k \).

The contact force is given by

\[
h^c = \sum_{k \in C} F_k^c(u, \hat{q}) A_k.
\]

The terms \(B^c \) and \(A^c \) have the form

\[
B^c(p, \theta) = \sum_k \left(\partial_q A_k \partial_{x} d_k \cdot p + F^c_k \cdot p \partial_q A_k \right) A_k,
\]

\[
A^c(p, \psi) = \sum_k \partial_q F^e_k \partial_{x} \psi \cdot p A_k,
\]

where

\[
\partial_q F^e_k = \kappa b''(d_k(x^d)) (\partial_{x} d_k)^T + b'(d_k(x^d)) \partial_{x} \psi (\partial_{x} d_k) \partial_{x} d_k
\]

and \(\partial_q A_k \) corresponds to the gradient of the area term, which varies depending on the type of primitive pairs corresponding to \(k \). See Section D in the Appendix.

Friction. In general, the friction coefficient \(\gamma(x_1, x_2) \) is a function of pairs of surface material points in \(\partial \Omega_{\text{w.t.}} \). As a simplification, in our implementation, we assume that each pair of objects \((m, n) \), in the simulation has a single coefficient \(\gamma_{m,n} \), which can vary through the optimization. To simplify notation, we use \(\gamma_{i,j,k} \) for a pair of primitives \(k_1 \) and \(k_2 \) to indicate the friction coefficient between objects these primitives belong to.
We follow the IPC definition of friction [Li et al. 2020]. Its key feature is that it is a differentiable function of displacements, which determine the contact forces, and relative velocities, which, for dynamic problems, we discretize using first-order approximation \(u^i = u^{i-1} \), where \(i \) is the time step.

The friction force for each active pair of primitives \(k \) is
\[
F^f_k(u^{i-1}, u^i) = -\gamma_{k_i}^i \cdot N_k T_k f_q(\|\tau_k\|) \frac{\tau_k}{\|\tau_k\|},
\]
where \(N_k \) is the contact force magnitude, \(T_k \) is a tangential frame matrix, constructed as described in Li et al. [2020], and \(\tau_k \) and \(f_q \) are defined as
\[
\tau_k = T_k(x^{i-1}) \cdot (u^i - u^{i-1}),
\]
\[
f_q(y) = \begin{cases} \frac{y^2}{\eta^2} + \frac{2y}{\eta} & y \in [0, \eta) \\ 1 & y \geq \eta \end{cases}.
\]

The total friction force has the form
\[
h^f = \sum_{k \in C} F^f_k(u^i, u^{i-1}, \bar{q}) A_k,
\]
with the form \(B^f \) for shape derivatives given by
\[
B^f(p, \theta) = \sum_k \partial_A f^f_k \cdot p A_k + \partial_{\theta} F^f_k \cdot p A_k.
\]

Additional details on the computation of \(\partial_A f^f_k \) are in the Appendix (Section E). The derivative with respect to friction coefficient values is easily obtained as the force is linear in friction coefficients. If \(q \) is a vector of friction coefficients,
\[
\partial_{q^f_k} F^f_k = \begin{cases} -N_k T_k f_q(\|\tau_k\|) \frac{\tau_k}{\|\tau_k\|} & \text{if } q^f_k \text{ corresponds to } y_{k_i}, \gamma_{k_i} \\ 0 & \text{otherwise} \end{cases}
\]

Two forms \(A^f \), for \(\partial_{\theta^f_k} \) and \(\partial_{u^f_k} \), are needed for the adjoint equation. Both have the general form
\[
A^f(p, \psi) = \sum_k \partial_{u^f_k} F^f_k \cdot \psi \cdot p A_k,
\]
which reduces to computing the derivative of each \(F^f_k \) term with respect to \(u^i \) and \(u^{i-1} \), which can be be found in Appendix E.

9 OBJECTIVE DERIVATIVES

In this section, we define the \(\partial_{\theta^f_k} J \) and \(\partial_{u^f_k} J \) terms needed for the gradient computation (10): For each objective-optimization parameter pair, \(\partial_{\theta^f_k} J^f \) and \(\partial_{u^f_k} J^f \), i.e., two vectors of size \(D, n^f_N \).

Similar to Section 8, we present all objective derivatives with respect to all types of optimization parameters, including shape in a unified way. We consider a comprehensive set of objectives used in many previous works, that can be easily extended with additional ones. In Section 9.1 we present general forms that all objectives can be reduced to.

9.1 General Forms of Objectives

Typically, objectives do not depend directly on the optimization parameters other than shape, so we focus primarily on derivatives of objectives with respect to shape parameters \(\bar{q} \) and solution \(u \).

We consider objectives of the form
\[
J(u, \bar{q}) = J_1(u, \bar{q}, \ldots, J_n(u, \bar{q}),
\]
where \(J_i \) is a differentiable function, and \(J_i, i = 1 \ldots n \) are objective terms each of which typically has one of the integral forms described below. \(J_i \) can be as simple \(J_i = J_i \), or can depend on several terms, as e.g., the center of mass optimization. The derivatives of objective are reduced to the the derivatives of the objective terms by a direct application of a chain rule, so we focus on these.

We first consider two general forms of objective terms which will be used for a number of specific objectives in Section 9.2. This includes inequality constraints in penalty form.

For each objective term \(J^p \), we obtain vectors \(R^p(\psi) \) and \(S^p(\theta) \) corresponding to the partial derivatives \(\partial_{\theta^f_k} J^p \) and \(\partial_{u^f_k} J^p \), which are necessary to compute the adjoint solution and the full shape derivative. As for the derivatives of the objective vectors \(\partial_{\theta^f_k} J^p \) and \(\partial_{u^f_k} J^p \) are obtained by plugging in the basis functions \(\phi_i \) int \(R^p \) and \(S^p \).

Objectives depending on gradient of solution and shape. Consider an objective term that depends on both the solution of the PDE and the domain:
\[
J^p(\nabla u, \bar{q}) = \int_{\Omega_x} j(\nabla u, x) dx.
\]

In this case, as derived in the supplementary document,
\[
S^p(\theta) = \int_{\Omega_x} -\nabla x : \nabla \theta + \nabla \bar{J} : \theta + j \bar{J} : \theta dx
\]
and
\[
R^p(\psi) = \int_{\Omega_x} \nabla \bar{J} : \nabla \psi dx.
\]

Objective terms depending on solution and shape. We also use objective terms depending on both the solution of the PDE and the domain:
\[
J^p(u, \bar{q}) = \int_{\Omega_x} j(u, x) dx.
\]

In this case,
\[
S^p(\theta) = \int_{\Omega_x} \nabla \bar{J} : \theta + j \bar{J} : \theta dx
\]
and
\[
R^p(\psi) = \int_{\Omega_x} \nabla \bar{J} : \psi dx.
\]

9.2 Specific Objectives

\(L_p \) norm of stress. For \(p = 2 \) this objective measures the overall average stress, and for high \(p \), \(L_p \)-norm of stress approximates maximal stress:
\[
J^p = \left(\int_{\Omega_x} ||\sigma(\nabla u)||^p dx \right)^{1/p}.
\]

where \(\sigma(\nabla u) = f(\nabla u) \) represents stress, which depends on \(\nabla u \). Following the chain rule, this objective is a function of a single
objective term $J^\sigma = (f_p^\sigma)^p$ which is of the form (24). with $j = \|\sigma(\nabla u)\|_p^p$, for which $\nabla j = 0$, and
$$\nabla J = p \|\sigma\|^{p-2} \sigma : \nabla f(\nabla u).$$

Weighted difference from target deformations.

$$J^\text{tr} = \int_{\Omega_q} w(q^{-1}(x)) \|x^d - x^\text{tr}(q^{-1}(x))\|^2 dx$$

(31)

where $x^d = x + u$, the deformed state of the object, weight w determines relative importance of points, and x^tr is the target configuration, defined as function on Ω_{ref}.

The formulas for the general objective (27), apply, with
$$\nabla_j = \nabla_{\text{tr}} = 2w(q^{-1}(x))(x^d - x^\text{tr}(q^{-1}(x))).$$

If we define only the shape on the boundary as the target, then we have:
$$J^\text{btr} = \int_{\partial\Omega_q} w(q^{-1}(x)) \|x^d - x^\text{btr}(q^{-1}(x))\|^2 dx.$$

Formulas for the derivatives are similar:
$$S^\text{btr} = \int_{\partial\Omega_q} \nabla J \cdot \theta + j(u, x) \nabla_s \cdot \theta dx,$$

$$R^\text{btr} = \int_{\partial\Omega_q} \nabla_j \cdot \psi dx,$$

where ∇_s denotes the surface derivative.

Target center of mass trajectory. A related objective is the deviation of the center of mass of the object from a target trajectory.

$$J^\text{ctr}(J^p, J^D) = \left(\frac{\int_{\Omega_q} \rho(x)^d dx}{\int_{\Omega_q} \rho(x) dx} - x^\text{ctr} \right)^2$$

(32)

Using the chain rule, we can reach a formulation where S^ctr and R^ctr depend on respective derivatives from each J^p and J^D:

$$S^\text{ctr} = \sum_i (\partial_i J^\text{ctr})(x^d) + \partial_j J^\text{ctr} S^D,$$

$$R^\text{ctr} = \sum_i (\partial_i J^\text{ctr})(x^d) + \partial_j J^\text{ctr} R^D.$$

We then need to compute shape derivative and adjoint terms for both of our scalar integrals J^p and J^D, following general formulas for 27. For each J^p_i, we have:
$$\nabla J_i = \nabla_{\text{tr}} = \rho(x) e_i,$$

where $e_i \in R^{D_d}$ is a vector with 0s everywhere except at index i, where the value is 1.

Finally, assuming that densities are constant per point, for J^D,
$$\nabla J_i = \nabla_{\text{tr}} = 0.$$

Height. This functional aims to maximize the height of the center of mass:
$$J^\text{max} = -\int_{\Omega_q} \rho(x)^d dx$$

(33)

where u_z is the z (vertical) component of the solution (displacement) u, x_z is the z component of the original position x.

We can rewrite this formula using J^p_z and J^D from previous subsection:

$$J^\text{max}(J^p_z, J^D) = -\frac{J^p_z}{J^D}.$$

(34)

This way, similar to J^ctr, we have:

$$S^\text{max} = \partial_1 J^\text{max} S^D + \partial_2 J^\text{max} R^D,$$

$$R^\text{max} = \partial_1 J^\text{max} R^D + \partial_2 J^\text{max} R^D.$$

Then, as for previous case, we can compute S^D, R^D, S^{D}, and R^D through general formula 27, using $\nabla J_i = \nabla_{\text{tr}} = \rho(x) e_i$ for J^p and $\nabla J_i = \nabla_{\text{tr}} = 0$ for J^D.

Upper bound for volume. A constraint on the volume of the optimized object in penalty form is

$$J^V = \phi(V(\Omega_q) - V_i),$$

(35)

where V corresponds to ($\int_{\Omega_q} dx$), the volume of shape Ω_q. V_i to the target volume, and $\phi(z)$ is a quadratic penalty function equal to z^2 for positive z and zero for negative z. This functional reduces to the general objective (27), with $\nabla J_i = \nabla_{\text{tr}} = 0$, since $j(u, x) = 1$.

Upper bound for stress. Similarly, we can impose an approximate upper bound on stress via a penalty:

$$J^\sigma = \int_{\Omega_q} \phi(\|\sigma\| - s_i) dx,$$

(36)

where s_i is the stress magnitude target. As for L_p stress energy, our integrand $\phi(\|\sigma\| - s_i)$ depends only on ∇u and (24) applies with
$$\nabla J_i = \phi(\|\sigma\|) : \nabla f(\nabla u),$$

$$\nabla J_i = 0.$$

9.3 Regularization Terms

In addition to the physical objectives described in the previous sections, we use two discrete regularization terms essential for numerical stability for a number of problems.

Scale-invariant smoothing.

$$J^\text{smooth} = \sum_{i:B} \|s_i\|^p = \sum_{i:B} \frac{\sum_{j \in N(i) \cap B} (\nu_j - \nu_i)}{\sum_{j \in N(i) \cap B} \|\nu_i - \nu_j\|^q},$$

(37)

where B contains the indices of all boundary vertices, $N(i)$ contains the indices of all neighbor vertices of vertex i, and ν_j is the position of vertex i. The value of ρ can be adjusted to obtain smoother surfaces at the cost of less optimal shapes, normally we use $p = 2$. This term is scale-invariant and pushes the triangles/tetrahedra of the mesh toward equilateral. The derivative of this smoothing term with respect to optimization parameters ν_j can be seen in the first paragraph of Appendix F.

Material parameter spatial smoothing.

$$J^{\lambda, \mu, \rho} = \sum_{i:T} \sum_{t \in Adj(t)} \left(1 - \frac{\lambda t}{\lambda T}
ight)^2 + \left(1 - \frac{\rho t}{\rho T}
ight)^2,$$

(38)

where T is the set of all triangles/tetrahedra, $Adj(t)$ is the set of triangles/tetrahedra adjacent to t, λ, μ, ρ are the material parameters.
defined per triangle. The derivative of this term can be seen in the last part of Section F (Appendix).

10 RESULTS

We partition our results into three groups depending on the type of the dofs used in the objective function: shape (Section 10.2), initial conditions (Section 10.3), or material (Section 10.4). For each group, we provide a set of examples of static and dynamic scenes of increasing complexity. In Section 10.5, we compare our solver, Du et al. [2021] and Jatavallabula et al. [2021] to evaluate the effect of different material and contact models. We also compare against a baseline implementation using finite differences. We run our experiments on a workstation with a Threadripper Pro 3995WX with 64 cores and 512 Gb of memory. For a selection of problems, we validate our results with physical experiments using items fabricated in silicon rubber (we use 1:1 SMOOTH-ON OOMOO 30 poured into a 3D printed PVA mold) or 3D printed PLA plastic.

We additionally provide a video showing the intermediate optimization step for all the results in the paper as part of our additional material.

Statistics. We provide statistics for our experiments in Table 4, including the size of the meshes, material model, running time, and memory used.

We observe that the time to compute the gradients of the objective function is negligible compared to the forward solve time (usually less than 10%). This implies that as long as a physical system can be simulated in PolyFEM, our approach enables optimizing functionals depending on it with a comparable running time per optimization iteration.

We recall that the gradient computation requires solving one linear system for each time step of the forward simulation. For linear problems, the system to solve has the same stiffness matrix and we can thus reuse the factorization. For non-linear problems requiring Newton iterations, the forward step requires multiple Newton steps, while the solve for the gradient is always a single linear system solve.

An additional acceleration strategy that we employ is noting that the optimization algorithm needs to solve many, often similar, forward simulations. We thus initialize, for non-linear problems, the forward solver with the solution at the previous step, which is often a good initialization.

Color Legend. We use green arrows to indicate Neumann boundary conditions, and black squares to indicate nodes that have a Dirichlet boundary condition. To reduce clutter, we use a uniform gray to indicate objects with a uniform Dirichlet boundary condition on all nodes.

To avoid singularities in the optimization we add, to the objective function, a boundary smoothing term (37) in all our shape optimization experiments, and a material regularization term (38) to all our material optimization experiments.

10.1 Implementation

FE Solver. We implemented our solver in C++ using the PolyFEM library [Schneider et al. 2019] for the forward solve, the IPC Toolkit [Ferguson et al. 2020] for computing contact and friction potentials, and Pardiso [Alappat et al. 2020; Bollhöfer et al. 2019, 2020] for solving linear systems.

Optimization. Our optimization algorithm (Algorithm 1) uses the L-BFGS implementation in Wieschollek [2016], with backtracking line search.

Remeshing. Shape optimization might negatively affect the element shape, and for large deformation introduce close to singular elements that force the optimization to take tiny steps. After every optimization iteration, we evaluate the element quality using the scaled Jacobian quality measure [Knupp 2001], and optimize the mesh if it is below a threshold experimentally set to 10^{-7}.

For 2D examples, we keep the mesh boundary fixed and we regenerate the interior using GMSH [Geuzaine and Remacle 2009] (Figure 4). For 3D examples, we similarly fix the boundary and then use the mesh optimization procedure of fTetWild [Hu et al. 2020] to improve the quality of the interior until its quality is above the threshold.

The reason why we can remesh without damaging the optimization convergence is that our optimization objectives have little dependence on interior node positions. The objectives are in the form of an integral over the domain or boundary, so remeshing only leads to small errors due to projections between the meshes.

The reason for fixing the boundary in the remeshing is that our optimization objectives (Section 9.1) often depend on quantities on the boundary vertices: if the boundary is remeshed, we will need a bijective map between the two boundaries. Meshing methods providing this map exist [Jiang et al. 2020], but their integration in our framework, while trivial from a formulation point of view, is an engineering challenge that we leave as future work.

Reproducibility. The reference implementation of our solver and applications will be released as an open-source project.

10.2 Shape Optimization

We start our analysis with shape optimization problems both without and with contact or friction forces.

Static: Bridge with Fabricated Solution. We fabricate a 2D solution to verify the correctness of our formulation and implementation. Starting from the shape of a bridge (Figure 5) we run a forward linear elasticity simulation with the two sides fixed and gravity forces. We now perturb the geometry of the rest pose and solve a shape optimization problem to recover the original rest pose, i.e., we remove the perturbation we introduced by minimizing the objective in (31).

Static: Bridge. We use the same model for a more challenging problem (Figure 6): we use the same Dirichlet conditions and material model, replace the gravity forces by three Neumann conditions on the lower beams, and minimize the L^8 norm of stress (30). To avoid trivial solutions we add a constant volume constraint (Section 9.2). The maximum stress is reduced from 68.789 to 22.232.

Static: 3D Beam. Moving to 3D (Figure 7), we perform static optimization of the L^8 norm of stress using Neo-Hookean materials on a beam standing on a fixed support at the center (nodes on the bottom surface of the beam have zero Dirichlet boundary conditions), and with two side loads applied as Neumann boundary conditions. We use (33) to bound the volume of the beam during optimization in order to avoid trivial solutions. The maximum stress
Our framework supports contact and transient friction forces between objects without requiring explicit definition of contact pairs. We borrow the experimental setup used in Tozoni et al. [2021]: we optimize the shape of two interlocking 2D parts (Figure 8) to minimize the L^8 norm of the stress (30). The bottom part is fixed and a force pointing down-right is applied to the top. Figure 8 shows how the shape changes to reduce the maximum stress from 3.2 Pa to 0.29 Pa. Note that unlike [Tozoni et al. 2021], our contact model does not support overlapping boundary nodes, which are used in Tozoni et al. [2021] to keep the contact over the optimization. To mimic this behaviour in our setting, we create small displacements on the overlapped boundary nodes along the normal directions as the initial guess for the forward simulation, so that each object is shrinked by a tiny amount and there is no overlap in the initial guess.

We observe in both cases a reduction in maximal stress of similar magnitude (around 10 times reduction).

Static: Interlocking. Our framework supports contact and transient friction forces between objects without requiring explicit definition of contact pairs. We borrow the experimental setup used in Tozoni et al. [2021]: we optimize the shape of two interlocking 2D parts (Figure 8) to minimize the L^8 norm of the stress (30). The bottom part is fixed and a force pointing down-right is applied to the top. Figure 8 shows how the shape changes to reduce the maximum stress from 3.2 Pa to 0.29 Pa. Note that unlike [Tozoni et al. 2021], our contact model does not support overlapping boundary nodes, which are used in Tozoni et al. [2021] to keep the contact over the optimization. To mimic this behaviour in our setting, we create small displacements on the overlapped boundary nodes along the normal directions as the initial guess for the forward simulation, so that each object is shrinked by a tiny amount and there is no overlap in the initial guess.

We observe in both cases a reduction in maximal stress of similar magnitude (around 10 times reduction).

Static: 2D Hook. To physically validate our shape optimization results we reproduce the experiment in Tozoni et al. [2021], Figure 21), where a hook is optimized to minimize the maximum stress (30) when a load is applied to one of its ends (Figure 9). The grey block is fixed with zero Dirichlet conditions on all nodes. We physically validate that the optimized shape is able to withstand a load of over 3x the unoptimized shape before breaking (Figure 9). The hook has been fabricated using an Ultimaker 3 3D printer, using black PLA plastic. Despite the different contact model, the result is quite similar to the one presented in Tozoni et al. [2021]: our approach has the advantage of not requiring manual specification of the contact surfaces.

Static: 3D Hanger. We also reproduce the experiment [Tozoni et al. 2021, Figure 29]: a coat hanger is composed of two cylinders and a hanger keeping them together. The shape of the hanger is optimized to minimize the maximum internal stress (30) when two loads are applied on its arms (Figure 10). The maximal stress is reduced from 89.93 Pa to 25.74 Pa. When comparing with Tozoni et al. [2021], we observe a similar optimized shape and an equivalent stress reduction rate (around three times).

Transient: Bouncing Ball. As a demonstration of shape optimization in a transient setting, we run a forward non-linear simulation of a ball bouncing on a plane and use its trajectory as the optimization goal (32). We then deform the initial shape into an ellipse and try to recover the original shape (Figure 11).

Transient: Shock Protection. We optimize the shape of a shock-protecting microstructure from Shan et al. [2015] so that the stress (30) of the load being dropped onto the microstructure is minimized. To accelerate convergence, we adopt a low-parametric shape representation from Panetta et al. [2015]. In Figure 13, the maximal stress is reduced from 32 kPa to 12 kPa. This example involves complex self-contact inside the microstructure.

Unlike penalty-based contact, our method is intersection-free regardless of the contact parameters, so it is able to produce plausible results with the same configuration even though the thickness of beams inside the microstructure changes drastically in the optimization.

Transient: Sliding Ball. We optimize the shape of a ball sliding down a ramp to minimize the internal stress (30). To avoid trivial solutions, we add a volume constraint to not allow its volume to decrease. Perhaps unsurprisingly, the ball gets flattened on the side it contacts with the ramp as this leads to a major reduction of max stress, from 38 kPa to 14 kPa.

10.3 Initial Conditions

Our formulation supports the optimization of objectives depending on the initial conditions. We show three examples: the first involves an object sliding on a ramp with a complex geometry, the second simulates a game of pool, using bunnies instead of spheres, and the third demonstrates complex contact between tentacles.

Transient: Puzzle Piece. We synthesise a trajectory using a forward simulation, and we then perturb the initial conditions and try to reconstruct them minimizing (31), with an additional integration over time (Figure 14). The puzzle piece uses a Neo-Hookean material.

Transient: Throw Bunny. We use our solver to optimize the throw (initial velocity) of a bunny to hit and displace a second bunny into the prescribed circle (Figure 1), minimizing (32). This example involves complex contact between the bunnies and the
We optimize the initial velocity of the green object in the scene of two colliding half spheres (Figure 8) to find the material parameters which produce the observed displacements. We assign material parameters \(E = 6 \mathrm{Pa} \) and \(\nu = 0.3 \) to a bridge shape and run a linear forward simulation to obtain the target displacement \(u^* \) (Figure 17 in gray), using the same set of boundary conditions as Figure 5. We initialize the optimization using uniform material \(\lambda = 100, \mu = 50 \) and minimize (31) successfully recovering \(\lambda, \mu \) from \(u^* \).

Static: Bridge. We assign material parameters \(\lambda = 160, \mu = 80 \) to a bridge shape and run a linear forward simulation to obtain the target displacement \(u^* \) (Figure 17 in gray), using the same set of boundary conditions as Figure 5. We initialize the optimization using uniform material \(\lambda = 100, \mu = 50 \) and minimize (31) successfully recovering \(\lambda, \mu \) from \(u^* \).

Static: Cube. We set up a physical experiment with a silicon rubber cube compressed by a vise. The deformation is acquired using an HP 3D scanner, and a set of marker points is manually extracted from the scan. We minimize (31) to find the material parameters which produce the observed displacements. We found that the material parameter that leads to the smallest error is \(\nu = 0.4817 \) (Young’s modulus does not affect its deformation in this setting) and the L2 error in markers position is 3.85E-3 m.

Static: Micro-Structure. We repeat the same experiments with the complex geometry of a micro-structure tile from Panetta et al. [2017]. This is a challenging example, as the micro-structure beams come in contact after compression, and physical models without self-contact handling may lead to penetration. The optimization is initialized with \(E = 6 \mathrm{Pa} \) and \(\nu = 0.3 \) and converges to \(E = 2.27 \mathrm{e} 5 \mathrm{Pa} \) and \(\nu = 0.348 \). Our solver can find material properties \(E = 2.27 \mathrm{e} 5 \mathrm{Pa} \) and \(\nu = 0.348 \) with an L2 error on the markers of 8.8e-3 m.

Table 4. Columns from Left to Right are: Example Names, Number of Vertices, Degree of Freedom of the Simulation, Objective Functional of the Optimization, Total Running Time (Sec), Peak Memory (Mb), Number of Iterations of the Optimization, Average Running Time of the Simulation (Sec), Average Running Time of Computing Gradients (Sec), Total Number of Newton Iterations (Linear Solves) in the Simulation, Number of Newton Solves in the Simulation

Example	Vertices	Dofs	Model	Objective	Total time	Memory	Iter	Solve time	Grad time	Newton Iter.	Newton Solve
Bridge (Figure 5)	6,461	9,282	Linear	Target	16.1	162.3	55	0.0343	0.0296	0	0
Bridge (Figure 6)	18,598	14,378	Linear	Stress	1665.8	1690.8	402	1.3859	0.1861	0	0
3D Beam (Figure 7)	9,939	20,940	NeoHookean	Stress	95738.6	101786.3	171	192.1587	37.2651	1083	361
Interlocking (Figure 8)	1,290	9,946	IPC	Stress	303.3	188.5	101	0.8394	0.0590	4900	335
2D Hook (Figure 9)	1,760	13,348	IPC	Stress	220.5	726.5	60	1.7224	0.0092	2548	126
3D Hanger (Figure 10)	4,190	80,412	IPC	Stress	14129.4	65540.0	29	204.2374	3.2117	4708	64
Bouncing Ball (Figure 11)	73	146	IPC	Target	961.7	29.2	202	1.1061	0.0089	211611	41200
Sliding Ball (Figure 12)	526	6,849	IPC	Stress	1610.1	2184.6	29	24.3086	1.2580	0	0
Shock Protection (Figure 13)	53,879	107,758	IPC	Stress	33301	10100	9	1264.395	129.96	35553	4800
Puzzle Piece (Figure 14)	370	740	IPC	Trajectory	47.4	107.6	19	1.5877	0.1219	2917	630
Throw Bunny (Figure 1)	2,174	6,522	IPC	Target	602.0	3344.1	9	209.2998	4.3731	15324	1000
Colliding Tentacles (Figure 15)	6,896	20,688	IPC	Trajectory	13070	8325	5	2043	41.25	14447	720
Sine (Figure 16)	651	1,382	Linear	Target	0.3	34.4	12	0.0042	0.0002	2	0
Bridge (Figure 17)	18,598	37,196	Linear	Target	32.7	655.2	39	0.1416	0.0398	0	0
Cube (Figure 18)	4,631	10,338	NeoHookean	Target	455.8	6316.6	8	37.9947	2.6101	33	11
Micro-Structure (Figure 19)	3,268	9804	IPC	Target	602.3	33502.3	11	42.0954	0.0746	249	14
Kangaroo (Figure 20)	231	462	IPC	Trajectory	21.6	224.6	6	1.6704	0.1624	2987	660
Sliding Bunny (Figure 21)	5,682	17,046	IPC	Target	11734.0	2304.3	8	547.3644	1.6478	61517	880
Bouncing Ball (Figure 22)	720	1440	IPC	Height	612.3	86.4	79	3.3482	0.2003	33609	5160
Bouncing Ball (Figure 23)	646	1938	NeoHookean	Trajectory	286.3	152.8	24	3.0548	0.7396	3264	1632
Bouncing Ball (Figure 23)	1,251	3753	IPC	Trajectory	10546.6	1547.0	49	113.4214	8.8056	105401	20160

Fig. 6. **Static: Bridge.** Result of shape optimization to minimize the average stress.

pool table, and also friction forces slowing down the sliding after contact.

Transient: Colliding Tentacles. We optimize the initial velocity of the green object in the scene of two colliding half spheres with tentacles (Figure 15), minimizing the difference of the mass trajectory with respect to a trajectory obtained from a reference simulation (32). Our method manages to resolve the complex contact between the soft tentacles.

10.4 Material Optimization

Next, we look at material optimization problems, where our differentiable simulator is used to estimate the material properties of an object from observations of its displacement.
Fig. 7. **Static: 3D beam.** Result of stress minimization on a beam standing on a platform, with two loads on its sides.

Fig. 8. **Static: Interlocking.** Result of shape optimization to minimize the L^8 norm of stress.

Transient: Kangaroo. As an example of reconstruction of material parameters from a transient simulation, we run a forward simulation to obtain a transient non-linear target displacement. Then we minimize (31) to reconstruct the material parameters (Figure 20). The initial material parameters are $E = 3\times10^6$ Pa and $\nu = 0.5$, and the target material parameters are $E = e^7$ Pa and $\nu = 0.3$.

Transient: Sliding Bunny. We use our solver to optimize the friction coefficient to ensure that the bunny is on the white line at time $t = 2$. The initial friction coefficient is $\gamma = 0.5$, and the optimized friction coefficient is $\gamma = 0.0974$ (Figure 21). This example involves complex self-contact and friction of the bunny with the floor.

Transient: Bouncing Ball. We show that the height of the bounce of a ball can be optimized by changing the material parameters (Figure 22). Initial material parameters for the ball and plank were $E = 5\times10^5$ Pa, $v = 0.48$ and $E = 9\times10^5$ Pa, $v = 0.48$, respectively and the elasticity model used was NeoHookean. Note that we added a smoothing term to the optimization to increase smoothness in the material parameters.

Transient: Physical Experiment Bouncing Ball. We show that we can optimize for the initial velocity, material parameters, friction coefficient, and damping parameters of a silicone rubber ball bouncing on an incline, using trajectory data from a physical experiment. The real-world dynamics of the ball are captured using a high-speed camera and used to formulate a functional based on (32), which penalizes differences between the observed and simulated barycenter of the ball. The material model used is NeoHookean and we match initial conditions by optimizing for them using the observed barycenters of the ball before it hits the ground.

10.5 Comparisons

Finally, we compare our method with existing methods in terms of solution quality, contact handling, and efficiency. Due to stability issues, different time step sizes are chosen for different methods so that no visible artifacts appear in the forward simulations. See Table 5 for statistics. We also compare our method with finite difference and automatic differentiation on PolyFEM [Schneider et al. 2019] in terms of efficiency.

Transient: Armadillo. We simulate dropping the Armadillo (using the same material parameters) onto a fixed plane (Figure 24) and compute the material derivatives with our method, DiffPD [Du et al. 2021] and GradSim [Jatavallabhula et al. 2021]. The results of GradSim and our method are similar, which is expected as both
methods are based on a finite element formulation with a similar material model. However, the backward solve of GradSim encounters NaN and fails to compute the gradient, likely due to the instability from its semi-implicit time integration or the non-differentiable contact model (its contact force is only C^0). DiffPD creates a result that is different from the two, likely due to the use of a different elastic model.

Transient: Hilbert Cube. In this example, we simulate the drop of a Hilbert cube (Figure 25), compute the material derivatives, and compare our method with GradSim and DiffPD. Although GradSim and DiffPD can resolve the planar contact, they do not support self-collision, resulting in visible and physically implausible self-intersections. In contrast, the solution computed by our method has no self-intersections or inverted elements.

Static: Tensile Test. We perform the tensile testing on a bar of size 0.16m \times 0.08m \times 0.08m, with Poisson’s ratio $\nu = 0.3$ and Young’s modulus $E = 10^3$Pa, using both our method and DiffPD. We refine the meshes used in both methods until the results become stable and show the converged results. Since there is no contact, our method is equivalent to the standard FEM with Neo-Hookean material. Since the material model used in DiffPD is an approximation of the hyper-elastic model designed for high efficiency, there is a noticeable difference between DiffPD and the standard model when the deformation is large (Figure 27). We favor using the Neo-Hookean material model, as we are interested in accurately capturing large physical deformations.

Finite Difference. To evaluate the correctness and efficiency of our method, we compute the gradient using finite differences and compare it with our method. We use the central difference scheme, which requires solving the forward problem for $2n$ times if the parameter dimension is n. As a result, the finite difference is approximately twice as expensive as the forward solve, while the time of our method is negligible (Table 6).

Automatic Differentiation (AD). While it is impossible to transform the linear solver to AD form for large problems (see Section 2.1), we could use AD to compute the terms needed in the
Differentiable solver for time-dependent deformation problems with contact

Fig. 14. **Transient: Puzzle Piece.** Optimizing the initial velocity of a bouncing puzzle. Target is shown as a black outline while the trajectory being optimized is blue.

Fig. 15. **Transient: Colliding tentacles.** We optimize the initial velocity so that the mass trajectory matches the reference simulation. The faded view represents the initial configuration. The optimized simulation matches exactly with the reference simulation.

adjoint method. To evaluate the difference in performance between AD and analytic derivation, we focus our investigation on the local assembly of the elastic force vector into AD form Jakob [2010] to compute the $p^T \partial_q h_k$ in Equation (11). We solve the static Neo-Hookean PDE on a tetrahedral mesh with 4670 vertices and using linear FE bases. Our method of computing $p^T \partial_q h_k$ takes 0.0174 seconds, while AD takes 0.247 seconds. The forward nonlinear solve takes 2.85 seconds, and the backward adjoint solve takes 0.0212 seconds. Given this experiment, we opted to spend the additional effort in analytically deriving the adjoint terms to avoid this unnecessary additional computational cost. In our setting with expensive implicit solves, the cost of computing the adjoint terms is a small overhead on the whole optimization, and computing the derivatives with AD makes the implementation simpler and makes it easier to switch the material models. However, we found that for more complex contact models, not included in this paper, the cost of AD can still be significant, and in settings in which forward solves can be done explicitly or semi-implicitly, the computational costs are distributed differently.

11 CONCLUDING REMARKS

We introduced a generic, robust, and accurate framework for PDE-constrained optimization problems involving elastic deformations of multiple objects with contact and friction forces. Our framework supports customizable objective functions and allows for the optimization of functionals involving the geometry of the objects involved, material parameters, contact/friction parameters, and boundary/initial conditions.

There are several limitations in our work. First, our derivation is limited to hyper-elastic and visco-elastic materials. We don’t
support simulating shells (cloth), plastic materials, fluid, and the like. Second, rigid and articulated objects, which are widely used in robotics, are not supported. Although it can be approximated by very large stiffness in our framework, the simulation is much slower than rigid body simulations. Third, our forward simulation, though robust, is less efficient than previous works like [Du et al. 2021; Jatavallabhula et al. 2021] in simple scenes (Section 10.5).

We believe the benefits of our analytic derivation of the adjoint system (efficiency, generality, guarantee of convergence under refinement) outweigh its downsides (complexity of derivation, difficulty in implementation, and requirement of an explicit FE mesh). We plan to extend our approach to a wider set of PDE-constrained problems and to further optimize it for common use cases in material design and robotics. In particular, we would like to explore the following directions:

1. Add support for periodic boundary conditions, which are required for the design of micro-structure families [Tozoni et al. 2020].
2. Add support for rigid and articulated objects (i.e., allow the material stiffness to be infinite). We plan to incorporate the IPC formulation introduced in Ferguson et al. [2021] to improve performance in design problems involving rigid objects.
3. Many robotics problems involve the manipulation of plastic objects or interaction with fluids: adding support for additional physical models will widen the applicability of our simulator.
4. We designed our system to provide accurate modeling of elastic, contact, and friction forces, as the majority of PDE-constrained applications require accurate simulations.
Table 5. **Comparisons** Columns from Left to Right are Examples, Methods, Degree of Freedom of the Simulation, Time Step Size, Peak Memory (MB), Running Time of the Simulation (s), and Running Time of Computing Gradients (s)

Example	Method	Dofs	dt	Memory	Solve time	Grad time
Armadillo	DiffPD	36699	3×10^{-3}	1246	37.9	131.2
	GradSim	36699	1.5×10^{-3}	17164	167.2	N/A
	Ours	36699	6×10^{-3}	2068	220.6	14.1
Hilbert Cube	DiffPD	4050	5×10^{-2}	240	1.555	2.12
	GradSim	4050	5×10^{-4}	1323	11.1	27.7
	Ours	4050	5×10^{-2}	1599	73.2	1.73
Billiards	DiffPD	978	2.5×10^{-3}	226	11.3	10.5
	Ours	978	2.5×10^{-3}	190	66.2	3.1

Fig. 24. **Transient: Armadillo.** Simulation of dropping an Armadillo onto the floor.

Fig. 25. **Transient: Hilbert cube.** Simulation of dropping a Hilbert cube onto the floor.

Fig. 26. **Transient: Billiards.** The ball on the left with initial velocity $(\cos(15\pi/180), \sin(15\pi/180))$ hits the ball on the right, simulated with our method (orange) and DiffPD (blue).

faithfully reproducing the behavior observable in the real works. However, there are applications where this is not necessary, and in these cases, it would be possible to either use simpler elastic models or reduce the accuracy of the collision/friction forces by using proxy geometry. This is commonly done in graphics settings, and it would be interesting to add this option to our system to accelerate its performance.

APPENDICES

A TIME-DEPENDENT PROBLEMS

In this section, we show how to compute the derivative and adjoint equation for the time-dependent case. We do this in general form, only assuming that the force terms depend on solution and optimization parameters but not explicitly on time.

Problem setup. We assume all quantities involved in the adjoint equations and shape derivatives for the static case are known from the main text. In this appendix, we derive how to update these to obtain the adjoint equation for the time-dependent PDE.

We consider the following time-dependent system, discretized in space.

\[
\dot{\mathbf{u}} = \mathbf{v}; \quad M(q)\mathbf{v} = h(u, q); \quad u(0) = g^u(q); \quad \mathbf{v}(0) = g^v(q)
\]

where $M(q)$ is the mass matrix, which may also depend on parameters p.

We assume that the discretization in time uses a BDF scheme of order m:

\[
\dot{\mathbf{u}} \approx \frac{1}{\beta \Delta t} \left(\mathbf{u}^t + \sum_{j=1}^{\min(i, m)} \alpha_j^t \mathbf{u}^{t-j} \right)
\]

In general, α_j^t does not depend on i, except at the first $m - 1$ steps, when a higher-order scheme needs to be initialized with lower-order steps; more specifically, α_j^t is j-th coefficient of BDFi, for $1 \leq i < m$, and j-th coefficient of BDFm otherwise.
We assume that \(h(u, q) \) does not directly depend on the velocities \(v \); if a dependence on velocities is needed, as we see below, it can be expressed directly in terms of \(u \).

The discrete system has the form

\[
\begin{align*}
\mathbf{u}^i + \sum_{j=1}^{\min(i,m)} \alpha_j^i \mathbf{u}^{i-j} &= \beta_i \Delta t \mathbf{v}^i, \\
M \left(\mathbf{v}^i + \sum_{j=1}^{\min(i,m)} \alpha_j^i \mathbf{v}^{i-j} \right) &= \beta_i \Delta t \mathbf{h}^i(\mathbf{u}^i, \mathbf{u}^{i-1}, q) = \hat{h}^i.
\end{align*}
\]

where \(M \) is the mass matrix. This is the form in which the system is solved in Li et al. [2020].

For time-dependent problems, we consider functionals of the form

\[
J(u, q) = \int_{t_0}^{T} J(u(t), q(t)) dt,
\]

where \(J(u, t, q) \) is a spatial functional, e.g., integral over the solid \(\Omega(t) \) or its surface, of some pointwise quantity depending on the solution and/or its derivatives pointwise. In discretized form, this functional is

\[
J(u, q) = \sum_{i=0}^{N} \omega_i J_i(u^i, q) = \sum_{i=0}^{N} \hat{J}_i,
\]

where \(\omega_i \) are quadrature weights (e.g., all \(\Delta t \) in the simplest case), and \(N \) is the number of time steps.

Remark on notation. We omit most of the explicit arguments in functions \(h \) and \(J \) used in the expressions, to make the formulas more readable. The following is implied: \(h(u^i, u^{i-1}, q, t_i) = h_i(u^i, u^{i-1}, q) = \hat{h}_i \) and similarly for \(J_i \).

Summary. Computing the derivative \(d_q J \) requires the following components:

- Derivatives \(\partial h_i, \partial q_i, \partial J_i \) and \(\partial q_i \). See Sections 7 to 9 in the main text for corresponding formulas.
- Derivatives \(\partial q_i \mathbf{u}^i \) and \(\partial q_i \mathbf{g}^i \), derivatives of the initial conditions. See Section 5.4 in the main text.

To compute the parametric derivative of \(J \), the steps are as follows:

- Solve the forward system (39), and store the resulting solutions \(u^i, v^i, i = 0 \ldots N \) at every step.
- Initialize adjoint variables \(p_N, v_N \) from (43) (general BDF: (13)).
- Perform backward time stepping using (41) (general BDF: (12)).
- At every step, evaluate derivative of the mass matrix \(d_q M \), if applicable, and use formula (44) (general BDF: (15)) to update \(d_q J \).

A.1 Implicit Euler

Discrete Lagrangian. We use the Lagrangian-based approach (Cea’s method) to derive the adjoint equation. The overall idea is to write the Lagrangian \(L \) for the functional \(J \) viewing the equations for \(v \) and \(u \) as constraints with Lagrange multipliers \(p \) and \(\mu \). For the solution \((u, v)\) for any optimization parameter values, the constraints are satisfied, \(d_q J = d_q L \), as the constraint terms identically vanish. The goal of introducing the adjoint variables is to eliminate the direct dependence of \(d_q J \) on the displacement and velocity derivatives: \(d_q \mathbf{u}^i \) or \(d_q \mathbf{v}^i \).

To achieve our objective, we expand the derivative \(d_q L \), and isolate the terms multiplying \(d_q u \) and \(d_q v \). By setting the sum of each of these two sets of terms to zero (which corresponds to our adjoint equations), we can find \(p \) and \(\mu \) so that the derivative of the functional \(d_q J \) does not directly depend on \(d_q \mathbf{u}^i \) or \(d_q \mathbf{v}^i \).

The time-stepping for implicit Euler/BDF1 has the following simple form:

\[
\begin{align*}
\mathbf{u}^i - \mathbf{u}^{i-1} &= \Delta t \mathbf{v}^i, \\
M(\mathbf{v}^i - \mathbf{v}^{i-1}) &= \Delta t \mathbf{h}^i = \hat{h}^i.
\end{align*}
\]

We introduce adjoint variables \(p_i \) and \(\mu_i \) (we use subscripts for the adjoint variables to indicate the time step, as these are often transposed in the formulas to make the formulas more readable).

In the derivation below, we drop most dependencies on variables, assuming \(\hat{J}_i = \hat{J}(u^i, q) \), \(g^u = g^u(q) \), \(g^v = g^v(q) \), \(\hat{h} = \hat{h}(u^i, u^{i-1}, q) \), and \(M = M(q) \).

The Lagrangian \(L \) has the form

\[
L = \sum_{i=0}^{N} \hat{J}_i + \hat{p}_i \left(v^i - g^v \right) + \mu_i \left(u^i - g^u \right) + \hat{p}_i \left(\mathbf{v}^i - \mathbf{v}^{i-1} - \Delta t \mathbf{v}^i \right) + \mu_i \left(\mathbf{u}^i - \mathbf{u}^{i-1} - \Delta t \mathbf{u}^i \right)
\]

Rearranging terms, and shifting summation index for \(u^{i-1} \),

\[
L = \sum_{i=0}^{N} \hat{J}_i + \hat{p}_i \left(v^i - g^v \right) + \mu_i \left(u^i - g^u \right) + \hat{p}_i \left(\mathbf{v}^i - \mathbf{v}^{i-1} - \Delta t \mathbf{v}^i \right) + \mu_i \left(\mathbf{u}^i - \mathbf{u}^{i-1} - \Delta t \mathbf{u}^i \right) - \sum_{i=1}^{N-1} \mathbb{p}_{i+1}^T \mathbf{M} v^i + \mu_i^T \mathbf{u}^i.
\]

Combining two sums back together and separating \(N \)-th term from the first, we get

\[
L = \sum_{i=0}^{N} \hat{J}_i + \hat{p}_i \left(v^i - g^v \right) + \mu_i \left(u^i - g^u \right) + \hat{p}_i \left(\mathbf{v}^i - \mathbf{v}^{i-1} - \Delta t \mathbf{v}^i \right) + \mu_i \left(\mathbf{u}^i - \mathbf{u}^{i-1} - \Delta t \mathbf{u}^i \right) - \mathbb{p}_{N}^T \mathbf{M} v^N + \mu_N^T \mathbf{u}^N
\]

Collecting \(u^i \) and \(v^i \) terms:

\[
L = \sum_{i=0}^{N-1} \hat{J}_i + \hat{p}_i \left(v^i - g^v \right) + \mu_i \left(u^i - g^u \right) + \hat{p}_i \left(\mathbf{v}^i - \mathbf{v}^{i-1} - \Delta t \mathbf{v}^i \right) + \mu_i \left(\mathbf{u}^i - \mathbf{u}^{i-1} - \Delta t \mathbf{u}^i \right) + \mu_N \left(\mathbf{u}^N - \Delta t \mathbf{u}^N \right).
\]
For the general case, we split the La-
\(N \) and \(\hat{\mu} \) and \(M \) to only:
\[= (45) \]
\[= c - \left(v_d u \right) \partial \hat{M} \partial \] we have
\[= - \hat{\mu} \]
is obtained by dropping all terms
\[= - \hat{\mu} \]
...from the terms multiplying \(d_q u^i \) and \(d_q v^i \) in the summa-
\[\begin{align*}
 p_i - p_{i+1} &= \Delta t v_i, \\
 M^T v_i - v_{i-1} &= (\partial_{u_i} \hat{h}^i)^T p_i + (\partial_{u_i} \hat{h}^{i+1})^T p_{i+1} - (\partial_{u_i} j^i)^T.
\end{align*} \]

For the initial conditions we get from the terms multiplying \(d_q v^N \) and \(d_q u^N \):
\[\begin{align*}
 p_N &= \Delta t v_N, \\
 M^T v_N &= (\partial_{u_i} \hat{h}^N)^T p_N - (\partial_{u_i} j^N)^T. \\
\end{align*} \]

By introducing \(p_{N+1} \) and \(v_{N+1} \), the initial conditions can be simplified as
\[\begin{align*}
 p_{N+1} &= 0, \\
 v_{N+1} &= 0. \\
\end{align*} \]

For \(p_0, v_0 \) we have \(M^T v_0 = - (\partial_{u_i} j^0)^T + M^T v_1 + p_0^T \partial_{u_i} \hat{h}^1 \) and \(p_0 = M^T p_1 \).

Finally, the expression for \(d_q J \) is obtained by dropping all terms with \(d_q v^i \) and \(d_q u^i \), as these are set to zero by our choice of equations for the adjoint, and retaining the rest:
\[\begin{align*}
 d_q J &= \partial_{q_i} j^0 - \partial_{q_i} \hat{h}^1 + \Delta t v^i \partial_{q_i} M v_i, \\
\end{align*} \]

A.2 General BDF Time Integration

Discrete Lagrangian. For the general case, we split the Lagrangian \(L(u, v, p, \mu, q) \) into three parts: \(j(u, q) \) itself, the part \(L_c \) containing the Lagrange multipliers for the time steps \(i = 1 \ldots N \), and the part for initial conditions \(L_i \)
\[L(u, v, p, \mu, q) = j(u, q) + L_c(u, v, p, \mu, q) + L_i(u^0, v^0, p^0, \mu^0, q), \]
where
\[L_i = p_0^T (v^0 - g^v) + \hat{\mu}^T (u^0 - g^u). \]

We start with \(L_c \). Remember that \(L_c \) depends on \(h^i \), which has inputs \(x, u^i \) and \(u^{i-1} \) (due to friction):
\[L_c = \sum_{i=1}^{N} p_i^T \left(v^i + \sum_{j=1}^{\min(i,m)} a_j v^{i-j} - h^i \right) + p_i^T \left(u^i + \sum_{j=1}^{\min(i,m)} a_j u^{i-j} - \beta_i \Delta t v^i \right). \]

We rearrange the double summations in this expression, so that each term depends only on \(u^i \) and \(v^i \), as the adjoint equations will be obtained by setting coefficients of \(d_q u^i \) and \(d_q v^i \) to zero after differentiation.

If we have a sum of the form
\[\sum_{i=1}^{N} \sum_{j=1}^{\min(i,m)} a_j^i c_j^i z_{i-j}, \]
we can change the summation order: let \(r = i - j \),
\[\sum_{i=1}^{N} \sum_{r=\max(0, i-m)}^{i-1} a_{i-r} c_{i-r}^r z_r = \sum_{r=0}^{N-1} \sum_{j=1}^{\min(m,N-r)} a_j^i c_{j+r}^i z_{j+r}, \]
where we introduced back \(j = i - r \) in the last equation. Finally, renaming \(r \) to \(i \), we obtain the form for which each term contains \(z_i \) only:
\[\sum_{i=0}^{N-1} \left(\sum_{j=1}^{\min(m,N-i)} a_j^{i+j} c_{i+j}^i \right) z_i. \]

Returning to the Lagrangian, we regroup the terms in \(L \) as:
\[L_c = \sum_{i=1}^{N} p_i^T \left(M v^i - \hat{h}^i \right) + \mu_i^T \left(u^i - \beta_i \Delta t v^i \right) + \sum_{i=1}^{N} \sum_{j=1}^{\min(i,m)} \left(p_i^T M a_j^{i-j} v^{i-j} + \mu_i^T a_j^{i-j} u^{i-j} \right). \]

Using (45), we get
\[L_c = \sum_{i=1}^{N} \left(p_i^T M v^i - \hat{h}^i \right) + \mu_i^T \left(u^i - \beta_i \Delta t v^i \right) + \sum_{i=0}^{N-1} \sum_{j=1}^{\min(m,N-i)} \left(p_{i+j} \partial_{q_j} a_j^{i+j} v^{i+j} + \mu_{i+j}^T a_{i+j}^{i+j} u^{i+j} \right). \]
Collecting the terms for u^i and v^i:

$$L_c = \sum_{i=1}^{N-1} -p_i^T \hat{h}^i + \left(p_i^T + \sum_{j=1}^{\text{min}(m,N-i)} a_{j}^{i+j} p_{i+j}^T \right) M - \beta_i \Delta t \mu^T_i \right) v^i + \left(\mu^T_i + \sum_{j=1}^{\text{min}(m,N-i)} a_{j}^{i+j} \mu_{i+j}^T \right) u^i + \left(\sum_{j=1}^m p_j^T M a_j^2 v^0 + M \mu^T_j v^0 + -p_N^T \hat{h}^N \right) + \right(p_N^T M - \beta_N \Delta t \mu_N^T \right) v^N + \mu_N^T u^N.
$$

We split this expression again, into $L_c^{mid} + L_c^0 + L_c^N$, corresponding to three lines of the equation; these terms contribute to the time-dependent adjoint equations and boundary conditions. In this form, it is straightforward to differentiate with respect to q:

$$d_q L_c^{mid} = \sum_{i=1}^{N-1} -p_i^T \hat{h}^i + \left(p_i^T + \sum_{j=1}^{\text{min}(m,N-i)} a_{j}^{i+j} p_{i+j}^T \right) d_q M v^i + \left(\mu^T_i + \sum_{j=1}^{\text{min}(m,N-i)} a_{j}^{i+j} \mu_{i+j}^T \right) d_q v^i + \left(\sum_{j=1}^m p_j^T M a_j^2 v^0 + M \mu^T_j v^0 + -p_N^T \hat{h}^N \right) + \right(p_N^T M - \beta_N \Delta t \mu_N^T \right) d_q v^N + \mu_N^T d_q u^N.
$$

Similarly, we split

$$d_q L_c^0 = \sum_{j=1}^m \sum_{i=1}^{N-1} a_j^i d_q h^i + \left(\sum_{j=1}^{\text{min}(m,N-i)} a_j^{i+j} d_q u^i \right) + \left(\sum_{j=1}^{\text{min}(m,N-i)} a_j^{i+j} d_q v^i \right) + \left(\sum_{j=1}^{\text{min}(m,N-i)} a_j^{i+j} d_q w^i \right) + \left(\sum_{j=1}^{\text{min}(m,N-i)} a_j^{i+j} d_q \mu^i \right).
$$

Adjoint equations. Equating the coefficients of $d_q u^i$ and $d_q v^i$, $i = 1 \ldots N-1$ to zero in $d_q L_c^{mid} + d_q L_c^{mid}$, we obtain the adjoint equations:

$$M^T \left(p_i + \sum_{j=1}^{\text{min}(m,N-i)} a_{j}^{i+j} p_{i+j}^T \right) = \beta_i \Delta t \mu_i,$n

$$\mu_i + \sum_{j=1}^{\text{min}(m,N-i)} a_{j}^{i+j} \mu_{i+j}^T = (\partial h^i)^T p_i + (\partial h^{i+1})^T p_{i+1} - (\partial h^i)^T p_i - (\partial h^{i+1})^T p_{i+1},$$

(46)

for $i = 1 \ldots N-1$.

Making a substitution $\mu = M^T \hat{v}$, we obtain (12).

We obtain the adjoint equation in time in the form very similar to the forward equation (39). The most important difference is the integration is “back in time”, i.e., the finite difference formula for time derivative is applied to $i, \ldots i + m$. This means that the system is integrated backwards, starting with (p_N, μ_N). Second, there is a slight difference in the coefficients of the scheme used. Specifically, the starting iterations do not use the lower-order BDF formulas, rather they use truncations of the same order BDF formula. At the same time, the end iterations, for small i, will use lower order coefficients, even though this is not needed. The reason for preferring this (although this seemingly damages the accuracy of the integration of the adjoint) is consistency with the functional discretization: as this fact is a consequence of deriving the adjoint from the time discretization, if we compute the functional using the same discretization, finite differences for the functional will be closer to the adjoint.

Initial conditions for adjoint. The initial conditions follow for setting coefficients of $d_q u^N$ and $d_q v^i$ to zero in $d_q L_c^0 + d_q L_c^N$, i.e.,

$$\left(\partial h^i \right)^T - \partial h^N p_N + \mu_N = 0; M^T p_N - \beta_N \Delta t \mu_N = 0.
$$

Substituting $\mu = M^T \hat{v}$, we get

$$\left(\partial h^i \right)^T - \partial h^N p_N + M^T \hat{v} = 0; p_N - \beta_N \Delta t \hat{v} = 0,
$$

and a linear system for for v_N:

$$\left(\partial h^i \right)^T + (M^T - \beta_N \Delta t \partial h^N) v_N = 0.
$$

Solving these

$$\left(M^T - \beta_N \Delta t \partial h^N \right) v_N = \left(\partial a_h \right)^N T.$$p_N = \beta_N \Delta t \hat{v} - N.

(47)

By introducing p_{N+1}, v_{N+1}, the initial condition can be simplified as (13).

Finally, the adjoint Equation (12) only allows to solve down to to $i = 1$; the equations for p_0, μ_0 are derived from $d_q L_c^0 + d_q L_c^N$; adding terms containing $d_q u^0$ and $d_q v^0$, we get:

$$\left(\partial h^0 + \sum_{j=1}^m a_j^0 \mu_j^T - p_0^T \partial h^0 \right) d_q u^0 + \left(p_0^T + \sum_{j=1}^m a_j^0 \mu_j^T \right) d_q v^0,$n

which yields direct expressions (14) for p_0 and μ_0, based on p_1, μ_1 for $i = 1 \ldots m$.

Computing the derivative of J from the forward and adjoint solutions. Finally, once the adjoint variables are obtained, we can compute (15), by collecting all terms not containing $d_q u^i$ and $d_q v^i$.

Partial derivatives $\partial h^i, \partial h^N$ and ∂h^0 are exactly the same as used in the construction of the system for static adjoint and computation of the functional. The differences, specific to time discretization, are:

- Mass matrix derivative $d_q M$. See Section A.3.
- Partial derivatives of the initial conditions with respect to parameters ∂q^{loc} and ∂h^{loc}, for positions and velocities (See Appendix A.4). Typically, a 3D position and velocity for the whole object (or angular velocity for the object rotating as a rigid body) are used as parameters, so these are trivial to compute.

A.3 Mass Matrix Derivative

Consider our Mass Matrix as follows:

$$M_{D^i s^i, Dt^i + t} = \sum_{e \in E(s)^{i}} \int_{\bar{q}_{e}(x)} \rho(q) \phi_{loc}(x) \phi_{loc}(\bar{q}_{e}(x)) \ dx,$n

ACM Trans. Graph., Vol. 43, No. 3, Article 31. Publication date: May 2024
Differentiable solver for time-dependent deformation problems with contact • 31:25

where \(i \in \{1, \ldots, D \} \) and \(D \) equals 2 or 3 (representing dimension). This means mass matrix \(M \) has \(D \cdot n \) rows and columns. Here, we use notation to define the local index of a node \(loc_e(f) \) with respect to elements \(e \) containing it.

Then, we can obtain the shape derivative with respect to perturbation \(\theta \) (\(x^e = x + \epsilon \theta(x) \)) by computing the Gateaux Derivative below for each element:

\[
\frac{d}{de} |_{e=0} \mathcal{H} = \int_{\Omega_e} f'(\nabla u(x), q(x)) : \nabla w \, dx
\]

B.4 Initial Condition Derivatives

We need to compute partial derivatives of the initial conditions with respect to optimization parameters \(q \) and \(g \). For positions and velocities. Notice that both \(\partial_\theta g^\bullet \) and \(\partial_\theta g^\bullet \) are discrete vector fields on domain \(\Omega_q \). Consider we have one vector value \(f^m \) per node of the domain.

If \((g^\bullet)^s \) is initial condition at node \(s \), the derivative with respect to \(q_m \) is simply the identity matrix \(\partial_\theta (g^\bullet)^s = I \). At the same time, it is the zero matrix w.r.t. any other \(q^m \), with \(m \neq m \). The same thing goes for \(g^\bullet \).

B. PARAMETRIC DERIVATIVES OF FORCES

In this section, we derive general expressions for gradient-dependent volume forces.

B.1 Gradient-dependent Volume Forces

Shape derivatives. We omit the dependence on \(q \), and use \(\nabla f \) to denote \(\partial_\theta \nabla f \).

Define \(\Omega_e = \Omega_q \theta_e \subset \Omega_q \) and \(x^e = x + \epsilon \theta \). Let \(u^e \) be the solution on domain \(\Omega_e \). Then computing the Gateaux derivative of \(\mathcal{H}^v \) we get:

\[
\frac{d}{de} |_{e=0} \mathcal{H}^v = \int_{\Omega_e} f'(\nabla u(x), q(x)) : \nabla w
\]

Thus, we have for the shape derivative contribution:

\[
B^v(\theta, p) = \int_{\Omega} -f(\nabla u^v) \cdot \nabla p - f(\nabla

\]
Discretizing:
\[
[B_f]_{D_a+i,D_b+j} = \sum_{e \in E(a) \cap E(b)} \sum_{k \in C_1D_d} \int_{q^*(K_e)} \nabla_1 f_i |_{k} \xi^{loc}(b) \nabla^{loc}(a) \, dx.
\]

The contribution to the left-hand side of the adjoint equation is
\[
A' (\psi, p) = \int_\Omega (\nabla_1 f : \nabla\psi) : \nabla p \, dx.
\]
which is the boxed term from (49), depending on \(\delta u \) with replacements \(w := p \) and \(\delta u := \psi \).

Discretizing according to our FE basis
\[
[A']_{D_a+i,D_b+j} = \sum_{e \in E(a) \cap E(b)} \sum_{k \in C_1D_d} \int_{q^*(K_e)} (\nabla_1 f_i |_{k} \xi^{loc}(b) \nabla^{loc}(a)) \, dx.
\]

C. GENERAL FORM OF OBJECTIVE DERIVATIVES

For each objective \(J \), the derivations below include vectors \(R^0 \) and \(S^0 \), corresponding to \(\partial_q J \) and \(\partial_q J \), which are necessary to compute the adjoint solution and the final shape derivative.

C.1 Objectives Depending on Gradient of Solution and Shape

Consider an objective that depends on both the solution of the PDE and the domain:
\[
J(\nabla u, \Omega) = \int_\Omega j(\nabla u, x) \, dx.
\]
Computing the Gateaux derivative, while considering perturbation of the domain \(x^e := x + \epsilon \theta \):
\[
\frac{d}{d\epsilon} \bigg|_{\epsilon=0} J = \int_\Omega j(\nabla u^e, x^e) \, dx^e
\]
\[
= \int_\Omega \frac{d}{d\epsilon} \bigg|_{\epsilon=0} j(\nabla u, x^e) \, dx
\]
\[
= \int_\Omega \nabla_1 j : \nabla u \theta + \nabla_2 j \cdot \theta + j(\nabla u, x) \nabla \cdot \theta \, dx.
\]

We can select the parts not depending on \(\delta u \) to be part of \(S \): \(S^0(\theta) = \int_\Omega -\nabla j : \nabla u \theta + \nabla_2 j \cdot \theta + j(\nabla u, x) \nabla \cdot \theta \, dx \).

Discretizing according to our FE basis:
\[
[S^0]_{Da+i} = \sum_{e \in E(a)} \int_{q^*(K_e)} \frac{\partial j}{\partial x_i} \psi^{loc}(a) \, dx.
\]
And,
\[
[R^0(\psi)]_{Da+i} = \int_\Omega \nabla_1 j : \nabla\psi \, dx,
\]
which can be discretized as follows:
\[
[R^0]_{Da+i} = \sum_{e \in E(a)} \int_{q^*(K_e)} (\nabla j) |_{i} \psi^{loc}(a) \, dx.
\]

C.2 Objectives Depending on Solution and Shape

Consider an objective that depends on both the solution of the PDE and the domain:
\[
J(u, \Omega) = \int_\Omega j(u, x) \, dx.
\]
Computing the Gateaux derivative, while considering perturbation of the domain \(x^e := x + \epsilon \theta \):
\[
\frac{d}{d\epsilon} \bigg|_{\epsilon=0} J = \int_\Omega j(u^e, x^e) \, dx^e
\]
\[
= \int_\Omega \nabla_1 j : \delta u + \nabla_2 j \cdot \epsilon + j(\nabla u, x) \nabla \cdot \epsilon \, dx.
\]

We can select the parts depending on \(\delta u \), which will be the RHS of our adjoint PDE (represented by vector \(R \)), while the remaining part is a term that should be added directly to the shape derivative (vector \(S \)).

So,
\[
S^0(\theta) = \int_\Omega \nabla_2 j : \theta + j(\nabla u, x) \nabla \cdot \theta \, dx.
\]

Discretizing according to our FE basis:
\[
[S]_{Da+i} = \sum_{e \in E(a)} \int_{q^*(K_e)} \frac{\partial j}{\partial x_i} \psi^{loc}(a) \, dx.
\]
And,
\[
[R]_{Da+i} = \sum_{e \in E(a)} \int_{q^*(K_e)} \psi^{loc}(a) \, dx.
\]

D. CONTACT AND FRICTION AREA TERM

In our contact and friction formulas, we use \(A_k \) as a weight for our forces, which measures the area of our contact pair \(k \). In the formulation, it corresponds to the sum of surface areas associated with each primitive. In 3D, it is 1/3 of the sum of areas of incident triangles for vertices and edges, and the area of triangles. For a triangle \(T = (t_0, t_1, t_2) \), where \(t_i \) corresponds to the position of each triangle’s vertex, the corresponding triangle area will be:
\[
A_T = \frac{1}{2} ||(t_1 - t_0) \times (t_2 - t_0)||.
\]

If \(k \) corresponds to a point-triangle contact pair between point \(p \) and triangle \(T \), and \(\text{Incid}(p) \) has the incident triangles of \(p \), we have:
\[
A_k = \sum_{T \in \text{Incid}(p)} \frac{1}{3} A_T.
\]

In this context, \(\partial_q A_k \) corresponds to the gradient of the area term, which can be computed as a sum of the \(\partial_q A_k \) terms:
\[
\partial_q A_k = \frac{1}{2} \frac{1}{|| (t_1 - t_0) \times (t_2 - t_0) ||} || (t_1 - t_0) \times (t_2 - t_0) || \partial_q (t_1 - t_0) \times (t_2 - t_0).
\]
E FRICTION DERIVATIVE TERMS
For friction, we have:
\[B^f(p, \theta) = \sum_k \partial_q P_k^f \cdot \theta \cdot p A_k + P_k^f \cdot \partial_q A_k A_k, \]
and
\[A^f(\psi, p) = \sum_k \partial_u F_k \psi \cdot p A_k, \]
which reduces to computing the derivative of each \(P_k^f \) term with respect to \(u \), \(u^t \) and \(u^{t-1} \).

\[\partial_{u^t} F_k^f = -y_{k1,k2} T_k f_k(\| \tau_k \|) \frac{\tau_k}{\| \tau_k \|} \]
\[\times \left(k \frac{N_k}{\| N_k \|} \cdot (b''(\partial d_k d_k) [\partial d d_k]) T + b''(\partial d d_k)) M^t \right) \]
\[\times -y_{k1,k2} N_k \partial_q T_k M^t \sigma^t f_q(\| \tau_k \|) \frac{\tau_k}{\| \tau_k \|} \]
\[-y_{k1,k2} N_k T_k \frac{\tau_k}{\| \tau_k \|} f_q(\| \tau_k \|) (\partial_q T_k M^t) T (u^t - u^{t-1}) \right) + \]
\[-y_{k1,k2} N_k T_k f_q(\| \tau_k \|) \left(\frac{I_2}{\| \tau_k \|} - \frac{\tau_k T_k}{\| \tau_k \|^3} \right) \frac{\tau_k T_k}{\| \tau_k \|^3} T^T \frac{\tau_k T_k}{\| \tau_k \|^3} T^T (u^t - u^{t-1}) \right). \]
\[(56) \]
\[\partial_{u^t-1} F_k^f = -y_{k1,k2} T_k f_k(\| \tau_k \|) \frac{\tau_k}{\| \tau_k \|} \]
\[\times \left(k \frac{N_k}{\| N_k \|} \cdot (b''(\partial d_k d_k) [\partial d d_k]) T + b''(\partial d d_k)) M^t \right) \]
\[\times -y_{k1,k2} N_k \partial_q T_k M^t \sigma^t f_q(\| \tau_k \|) \frac{\tau_k}{\| \tau_k \|} \]
\[-y_{k1,k2} N_k T_k \frac{\tau_k}{\| \tau_k \|} f_q(\| \tau_k \|) (\partial_q T_k M^t) T (u^t - u^{t-1}) \right) + \]
\[-y_{k1,k2} N_k T_k f_q(\| \tau_k \|) \left(\frac{I_2}{\| \tau_k \|} - \frac{\tau_k T_k}{\| \tau_k \|^3} \right) \frac{\tau_k T_k}{\| \tau_k \|^3} T^T \frac{\tau_k T_k}{\| \tau_k \|^3} T^T (u^t - u^{t-1}) \right). \]
\[(58) \]

G DIFFERENCE BETWEEN “OPTIMIZE-THEN-DISCRETIZE” AND “DISCRETIZE-THEN-OPTIMIZE”
There is a well-established theory showing that the equations derived through the Optimize-then-Discretize are the correct equations for optimality. This is, in general, not guaranteed for the "Discretize-then-Optimize" approach; the easiest approach is to ensure that for a choice of discretization methods, the results of both approaches are identical (which is what we do, although further analysis is needed to make any rigorous claims).

Specifically for shape optimization, "Optimize-then-Discretize" makes it possible to derive the gradients in the physical domain: "shape derivative calculus" [Allaire et al. 2021] allows one to compute shape derivatives with respect to changes in the shape of the domain on which PDE is solved using physical domain variables in which the PDEs have the standard form, e.g., for Poisson or elasticity, they are expressed in terms of constant differentiation operators, e.g., the 2D Poisson equation in the weak form:

\[\int_{\Omega(q)} a(x,y) \nabla z \cdot \nabla w dx dy = \int_{\Omega(q)} f(x,y) w dx dy \]

with \((x, y)\) coordinates on the physical domain \(\Omega(q)\), where \(z(x,y)\) is the unknown function, \(a(x,y)\) is a material parameter, \(f(x,y)\) is the source term, \(q\) is the optimization shape parameters.

In a typical FEM discretization, the "Discrete-then-Optimize" approach requires converting the equations to a fixed reference domain and then they need to substitute into the equation, leading to a variable coefficient equation with an explicit dependence on shape parameters. In this case, the unknown is defined on the reference domain \(\Omega_{ref}\) with coordinates \((u,v)\), mapped to the physical domain \(\Omega(q)\) via the geometry map \(x = x(u,v), y = y(u,v)\). If we
denote the inverse of this map \(u = u(x, y) \), \(v = v(x, y) \), then the left-hand side of Equation (59) on the reference domain becomes
\[
\int_{\Omega_{ref}} a(x, y)(|\nabla u|^2 \nabla x + \nabla u \cdot \nabla v y) \omega x + (|\nabla v|^2 \nabla x + \nabla v \cdot \nabla u y) \omega y = \det J(x, y) d\omega v
\]
with \(\nabla \) denoting derivatives w.r.t. \(x, y \), and \(f(x, y) \) denoting the geometric map Jacobian matrix \(\frac{\partial (x, y)}{\partial (u, v)} \). Here we spell out the expressions more explicitly instead of more concise matrix notation, to elucidate the increase in complexity. Please refer to Equation (48) for the complete derivation of shape derivatives following this way.

As typically the geometry map \(x(u, v), y(u, v) \), rather than its inverse, is given explicitly in terms of shape parameters \(q \) (as a linear function of \(q \), if it is e.g., represented in a FEM basis), derivatives of \(u, v \) w.r.t. \(x, y \) need to be expressed in terms of derivatives of \(x, y \) w.r.t. \(u, v \), i.e., \(\nabla u, \nabla v \) are the rows of the inverse of \(f(x, y) \). In other words, a simple constant coefficient equation on a variable domain becomes a complex variable coefficient equation on a fixed domain, with coefficients depending on the geometric map in a complex nonlinear way. As a next step, these equations need to be discretized by substituting FEM expressions for \(x(u, v), y(u, v), q(u, v, q), z(u, v), f(u, v) \) in FEM basis, with the standard Galerkin procedure yielding stiffness matrix and right-hand side coefficients. Finally, the derivatives of the resulting coefficients with respect to \(q \) need to be computed.

Note that the derivatives with respect to material parameters (e.g., coefficients of \(a(x, y) \) in a FEM basis) unlike shape derivatives have similar complexity in either form. This is also true for elasticity equations: shape derivatives in the Discretize-then-Optimize setting are even more elaborate, but material parameter derivatives are relatively simple.

While, in the end, most equations required for shape derivative adjoints are very close to the forward equations (as shown in Equation (12) in the paper, the coefficient matrices are the same as in the forward solvers), and can be computed relatively concisely, it is nontrivial to see this from differentiating the coefficients obtained from the equations above with respect to \(q \). We are not aware of any tool that can automatically do this conversion, nor of any manual attempt ever done to compute shape derivatives in this way.

REFERENCES
Christie Alapatt, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf Schenk, Jonas Thies, and Gerhard Wellein. 2020. A recursive algebraic coloring technique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM Trans. Parallel Comput. 7, 3, Article 19 (June 2020), 37 pages. https://doi.org/10.1145/3399732
Grégoire Allaire, Charles Dapogny, and François Jouve. 2021. Chapter 1 - Shape and topology optimization. In Geometric Partial Differential Equations - Part II, Andrea Bonito and Ricardo H. Nochetto (Eds.). Handbook of Numerical Analysis, Vol. 22. Elsevier, 1–132. https://doi.org/10.1016/b.hna.2020.10.004
M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells. 2015. The FEniCS project version 1.5. Archive of Numerical Software 3 (2015). https://doi.org/10.11588/asns.2015.10020553
Moritz Bächer, Espen Knoop, and Christian Schumacher. 2021. Design and control of soft robots using differentiable simulation. Current Robotics Reports (2021), 1–11.
Pierre Baque, Edoardo Remelli, François Fleuret, and Pascal Fua. 2018. Geodesic con- volutional shape optimization. In International Conference on Machine Learning, PMLR, 472–481.

Ted Belytschko, Wing Kam Liu, and Brian Moran. 2000. Nonlinear Finite Elements for Continuum and Structures. John Wiley & Sons, Ltd.

P. Beremlješki, J. Haslinger, J. Outrata, and R. Pathi. 2014. Shape optimization in contact problems with Coulomb friction and a solution-dependent friction coefficient. SIAM Journal on Scientific Computing 52, 1 (Jan. 2014), 3731–3740. https://doi.org/10.1137/130948070
James Bern, Pol Banzet, Roi Poranne, and Stelian Coros. 2019. Trajectory optimization for cable-driven soft robot locomotion. In Robotics: Science and Systems XV, Vol. 1. Robotics: Science and Systems Foundation. https://doi.org/10.1145/3399732.2019.xcv-052
James M. Bern, Yannick Schneider, Pol Banzet, Nithsh Kumar, and Stelian Coros. 2020. Soft robot control with a learned differentiable model. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) 2020. IEEE, 417–423. https://doi.org/10.1109/robotsoft48309.2020.916011
C. H. Bischof and H. M. Bückler. 2000. Computing derivatives of computer programs. In Modern Methods and Algorithms of Quantum Chemistry: Proceedings, Second Edition, J. Grotendorst (Ed.). NIC Series, Vol. 3. NIC-Directors, Jülich, 315–327. http://hdl.handle.net/2128/6505
Matthias Bollhöfer, Aryan Eftekhari, Simon Schiedereg, and Olaf Schenk. 2019. Large-scale sparse inverse covariance matrix estimation. SIAM Journal on Scientific Computing 41, 1 (2019), A380–A401. https://doi.org/10.1137/17M1147515
Moritz Bächer, Olaf Schenk, Radim Janalík, Steve Hamm, and Kiran Gullapalli. 2020. State-of-the-art sparse direct solvers. (2020), 3–33. https://doi.org/10.1007/978-3-030-43736-7_1
Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. on Graph. 21 (05 2002).
Bernaod Brogliato. 1999. Nonlinear Mechanics. Springer-Verlag.
George E. Brown, Matthew Overby, Zahra Forootaninia, and Rahul Narain. 2018. Accurate dissipative forces in optimization integrators. ACM Trans. Graph. 37, 6, Article 282 (Dec. 2018), 14 pages. https://doi.org/10.1145/3272127.3275011
Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. 2016. A compositional object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341 (2016).
Bicheng Chen, Nianfeng Wang, Xianmin Zhang, and Wei Chen. 2020. Design of dielectric elastomer actuators using topology optimization on electrodes. Smart Mater. Struct. 29, 7 (June 2020), 075029. https://doi.org/10.1088/1361-665x/abb82d
Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A hybrid iterative solver for robustly capturing Coulomb friction in hair dynamics. ACM Trans. on Graph. 30 (12 2011).
Alban de Vaucorbeil, Vinh Phu Nguyen, Sina Sinaie, and Jian Ying Wu. 2019. Material point method after 25 years: Theory, implementation and applications. Submitted to Advances in Applied Mechanics (2019).
B. Desmaray. 2007. Structural rigidity optimization with frictionless unilateral contact. International Journal of Solids and Structures 44, 3 (Feb. 2007), 1132–1144. https://doi.org/10.1016/j.ijsolstr.2006.06.010
Jørgen S. Dokken, Sebastian K. Mitsuhashi, and Simon W. Funke. 2020. Automatic Shape Derivatives for Transient FDEs in FEniCS and Firedrake. (2020). arXiv:math.OA/2001.10058
Tao Du, Kui Wu, Pingchun Ma, and Weihua Mei. 2020. State-of-the-art sparse direct solvers. (2020), 3–33. https://doi.org/10.1007/978-3-030-43736-7_1
Zachary Ferguson, Bryano Ullman, Antonio Torralba, and Joshua B. Tenenbaum. 2020. Intersection-free rigid body dynamics. arXiv preprint arXiv:2012.00273 (2020).
Zhang Ferguson and others. 2020. IPC Toolkit. Retrieved from https://github.com/ ipc-sim-ipc-toolkit
Zachary Ferguson, Minchun Li, Teseo Schneider, Francisa Gil-Ureta, Timothy Langlois, Chenfandjian Liu, Deniz Zorin, Deni I. Kaufman, and Daniele Panazzolo. 2021. Intersection-free rigid body dynamics. ACM Transactions on Graphics (SIGGRAPH) 40, 4, Article 183 (2021).
Konstantinos Gavriil, Ruslan Guseinov, Jesús Pérez, Davide Pellis, Paul Henderson, Florian Rist, Helmut Pottmann, and Bernd Bickel. 2020. Computational design of cold bent glass façades. ACM Trans. Graph. 39, 6, Article 208 (Nov. 2020), 16 pages. https://doi.org/10.1145/3413401.3413406
Christof Eck, Jiri Jarusek, Miroslav Krbeč, Jiri Jarusek, and Miroslav Krbeč. 2005. Unilateral Contact Problems: Variational Methods and Existence Theorems. CRC Press. https://doi.org/10.1201/9781420025736
Zachary Ferguson and others. 2020. IPC Toolkit. Retrieved from https://github.com/
F. van Keulen, R. T. Hafka, and N. H. Kim. 2005. Review of options for structural design sensitivity analysis. Part 1: Linear systems. *Computer Methods in Applied Mechanics and Engineering* 194, 30 (2005), 3213–3243. https://doi.org/10.1016/j.cma.2005.02.002

Mickael Verschoor and Andrei C. Jalba. 2019. Efficient and accurate collision response for elastically deformable models. *ACM Trans. on Graph.* (TOG) 38, 2 (2019).

Patrick Wieschollek, 2016. CppOptimizationLibrary. https://github.com/PatWie/CppNumericalSolvers

Peter Wriggers. 1995. Finite element algorithms for contact problems. *Archives of Comp. Meth. in Eng.* 2 (12 1995).

Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and Miles Macklin. 2022. Accelerated Policy Learning with Parallel Differentiable Simulation. (2022). https://doi.org/10.48550/ARXIV.2204.07137

Xiaoting Zhang, Xinyi Le, Zhaowu Wu, Emily Whiting, and Charlie C. L. Wang. 2016. Data-driven bending elasticity design by shell thickness. *Computer Graphics Forum (Proceedings of Symposium on Geometry Processing)* 35, 5 (2016), 157–166.

Received 7 November 2022; revised 8 February 2024; accepted 27 February 2024