Addendum to: Values of zeta functions of varieties over
finite fields, Amer. J. Math. 108, (1986), 297-360.

J. S. Milne

October 1, 2013

The original article expressed the special values of the zeta function of a variety over
a finite field in terms of the $\hat{\mathbb{Z}}$-cohomology of the variety. As the article was being com-
pleted, Lichtenbaum conjectured the existence of complexes of sheaves $\mathbb{Z}(r)$ extending the
sequence $\mathbb{Z}, \mathbb{G}_m[-1], \ldots$. The complexes given by Bloch’s higher Chow groups are known
to satisfy most of the axioms for $\mathbb{Z}(r)$. Using Lichtenbaum’s Weil-étale topology, we can
now give a beautiful restatement of the main theorem of the original article in terms of
\mathbb{Z}-cohomology groups.

Notations

We use the notations of Milne (1986). For example,

$$M^{(n)} = M/nM, \quad TM = \lim_{n} \ker(n: M \to M), \quad z(f) = \frac{[\ker(f)]}{[\text{coker}(f)]},$$

and $\nu_{s}(r)$ denotes the sheaf of logarithmic de Rham-Witt differentials on X_{et} (ibid., p. 307).
The symbol l denotes a prime number, possibly p.

Review of abelian groups

In this subsection, we review some elementary results on abelian groups. An abelian group
N is said to be **bounded** if $nN = 0$ for some $n \geq 1$, and a subgroup M of N is **pure** if
$M \cap mN = mM$ for all $n \geq 1$.

Lemma 1. (a) Every bounded abelian group is a direct sum of cyclic groups.
(b) Every bounded pure subgroup M of an abelian group N is a direct summand of N.

Proof. (a) Fuchs (1970), 17.2.
(b) Kaplansky (1954), Theorem 7, p. 18, or Fuchs (1970), 27.5.

Lemma 2. Let M be a subgroup of N, and let l^n be a prime power. If $M \cap l^nN = 0$ and M
is maximal among the subgroups with this property, then M is a direct summand of N.

Proof. The subgroup M is bounded because $l^nM \subset M \cap l^nN = 0$. To prove that it is pure,
one shows by induction on $r \geq 0$ that $M \cap l^rN \subset l^rM$. See Fuchs (1970), 27.7.

1It was submitted in September 1983. This addendum was originally posted on the author’s website in 2009.
NOTES. [Fuchs (1970), 9.8.] Let B and C be subgroups of an abelian group A. Assume that $C \cap B = 0$ and that C is maximal among the subgroups of A with this property. Let $a \in A$. If $pa \in C$ (p prime), then $a \in B + C$.

Proof: We may suppose that $a \notin C$. Then $\langle C, a \rangle$ contains a nonzero element b of B, say, $b = c + ma$ with $c \in C$ and $m \in \mathbb{Z}$. Here $(m, p) = 1$ because otherwise $b = c + m_0(pa) \in B \cap C = 0$. Thus $rm + sp = 1$ for some $r, s \in \mathbb{Z}$, and

$$a = r(ma) + s(pa) = rb - rc + s(pa) \in B + C.$$

[Fuchs (1970), 27.7.] We prove that $M \cap l^nM \subseteq l^nM$ for all $r \geq 0$. This being trivially true for $r = 0$, we may apply induction on r. Let $m = l^{r+1}a \neq 0$, $m \in M$, $a \in N$. Then $r \leq n - 1$, because otherwise $l^{r+1}a = M \cap l^nM = 0$. By (9.8), $l^r a \in l^nM + M$, say, $l^r a = l^n c + d$ with $c \in N$, $d \in M$. Then $d = l^r(a - l^n c) \in M \cap l^nN$, which equals l^nM by the induction hypothesis. From $m = l^{r+1}a = l^{n+1}c + ld$, we find that $(m - ld) \in M \cap l^{r+1}N = 0$, and so $m = ld \in l^{r+1}M$.

Every abelian group M contains a largest divisible subgroup M_{div}, which is obviously contained the first Ulm subgroup of M, $U(M) \equiv \bigcap_{n \geq 1} nM$. Note that $U(M/U(M)) = 0$.

NOTES. A sum of divisible subgroups is obviously divisible. For the last statement, let $x \in M$ map to the first Ulm subgroup of $M/U(M)$. Then, for each $n \geq 1$, there exists a $y \in M$ such that $ny - x \in U(M)$, and so $ny - x = ny'$ for some $y' \in M$. Now $x = n(y - y')$, and so x is divisible by n in M, i.e., $x \in U(M)$.

PROPOSITION 3. If M/nM is finite for all $n \geq 1$, then $U(M) = M_{div}$.

PROOF. (Cf. Milne (1988), 3.3.) If $U(M)$ is not divisible, then there exists a prime l such that $U(M) \neq IU(M)$. Fix such an l, and let $x \in U(M) \setminus IU(M)$. For each $n \geq 1$, there exists an element x_n of M such that $l^n x_n = x$. In fact x_n has order exactly l^n in $M/U(M)$, and so $M/U(M)$ contains elements of arbitrary high l-power order.

Let S be a finite l-subgroup of $M/U(M)$. As $U(M/U(M)) = 0$ and S is finite, there exists an n such that $S \cap l^n(M/U(M)) = 0$. By Zorn’s lemma, there exists a subgroup N of $M/U(M)$ that is maximal among those satisfying (a) $N \supset S$ and (b) $N \cap l^n(M/U(M)) = 0$. Moreover, N is maximal with respect to (b) alone. Therefore N is a direct summand of $M/U(M)$ (Lemma2). As N is bounded (in fact, $l^nN = 0$), it is a direct sum of cyclic groups (Lemma1). We conclude that S is contained in a finite l-subgroup S' of $M/U(M)$ that is a direct summand of $M/U(M)$. Note that

$$S'^{(l)} \hookrightarrow (M/U(M))^{(l)} \cong M^{(l)},$$

and so $\dim_{\mathbb{F}_l} S'^{(l)} \geq \dim_{\mathbb{F}_l} S^{(l)}$. But is clear (from the first paragraph) that $\dim_{\mathbb{F}_l} S^{(l)}$ is unbounded, and so this contradicts the hypothesis on M.\]

NOTES. Cf. Fuchs, Vol II, 65.1.

COROLLARY 4. If $TM = 0$ and all quotients M/nM are finite, then $U(M)$ is uniquely divisible (= divisible and torsion-free = a \mathbb{Q}-vector space).

PROOF. The first condition implies that M_{div} is torsion-free, and the second that $U(M) = M_{div}$.\]

For an abelian group M, we let M_l denote the completion of M with respect to the l-adic topology. Every continuous homomorphism from M into a complete separated group factors uniquely through M_l. In particular, the quotient maps $M \rightarrow M/l^nM$ extend to homomorphisms $M_l \rightarrow M/l^nM$, and these induce an isomorphism $M_l \rightarrow \varprojlim_n M/l^nM$. The kernel of $M \rightarrow M_l$ is $\bigcap_n l^nM$. See Fuchs (1970), §13.
Lemma 5. Let N be a torsion-free abelian group. If N/IN is finite, then the l-adic completion of N is a free finitely generated \mathbb{Z}_l-module.

Proof. Let y_1, \ldots, y_r be elements of N that form a basis for N/IN. Then
\[N = \sum \mathbb{Z} y_i + IN = \sum \mathbb{Z} y_i + l(\sum \mathbb{Z} y_i + IN) = \cdots = \sum \mathbb{Z} y_i + l^nN, \]
and so y_1, \ldots, y_r generate N/l^nN. As N/l^nN has order l^m, it is in fact a free $\mathbb{Z}/l^n\mathbb{Z}$-module with basis $\{y_1, \ldots, y_r\}$. Let $a \in N_l$, and let a_n be the image of a in $N/l^{n+1}N$. Then
\[a_n = c_{n,1}y_1 + \cdots + c_{n,r}y_r \]
for some $c_{n,i} \in \mathbb{Z}/l^{n+1}\mathbb{Z}$. As a_n maps to a_{n-1} in N/l^nN and the $c_{n,i}$ are unique, $c_{n,i}$ maps to $c_{n-1,i}$ in $\mathbb{Z}/l^n\mathbb{Z}$. Hence $(c_{n,i})_{n \in \mathbb{N}} \in \mathbb{Z}_l$, and it follows that $\{y_1, \ldots, y_r\}$ is a basis for N_l as a \mathbb{Z}_l-module.

Proposition 6. Let $\phi : M \times N \to \mathbb{Z}$ be a bi-additive pairing of abelian groups whose extension $\phi_l : M_l \times N_l \to \mathbb{Z}_l$ to the l-adic completions has trivial left kernel. If N/IN is finite and $\bigcap_l l^nM = 0$, then M is free and finitely generated.

Proof. We may suppose that N is torsion-free. As $\bigcap_l l^nM = 0$, the map $M \to M_l$ is injective. Choose elements y_1, \ldots, y_r of N that form a basis for N/IN. According to the proof of Lemma 5, they form a basis for N_l as a \mathbb{Z}_l-module. Consider the map
\[x \mapsto (\phi(x, y_1), \ldots, \phi(x, y_r)) : M \to \mathbb{Z}^r. \]
If x is in the kernel of this map, then $\phi_l(x, y) = 0$ for all $y \in N_l$, and so $x = 0$. Therefore the map M injects into \mathbb{Z}^r, which completes the proof.

Review of Bloch’s complex

Let X be a smooth variety over a field k. We take $\mathbb{Z}(r)$ to be the complex of sheaves on X defined by Bloch’s higher Chow groups. For the definition of Bloch’s complex, and a review of its basic properties, we refer the reader to the survey article Geisser (2005).

The properties of $\mathbb{Z}(r)$ that we shall need are the following.

(A)$_{n_0}$ For all integers n_0 prime to the characteristic of k, the cycle class map
\[\left(\mathbb{Z}(r) \xrightarrow{\cdot n_0} \mathbb{Z}(r) \right) \to \mu_{n_0}^{\otimes r}[0] \]
is a quasi-isomorphism (Geisser and Levine (2001), 1.5).

(A)$_p$ For all integers $s \geq 1$, the cycle class map
\[\left(\mathbb{Z}(r) \xrightarrow{\nu_s} \mathbb{Z}(r) \right) \to \mathbb{Z}(r)[{-r-1}] \]
is a quasi-isomorphism (Geisser and Levine (2000), Theorem 8.5).

(B) There exists a cycle class map $\text{CH}^r(X) \to H^{2r}(X_{\text{ét}}, \mathbb{Z}(r))$ compatible (via (A)) with the cycle class map into $H^{2r}(X_{\text{ét}}, \widehat{\mathbb{Z}}(r))$. Here $\text{CH}^r(X)$ is the Chow group.

(C) There exist pairings
\[\mathbb{Z}(r) \otimes^L \mathbb{Z}(s) \to \mathbb{Z}(r+s) \]
compatible (via (A)$_n$) with the natural pairings
\[\mu_n^{\otimes r} \times \mu_n^{\otimes s} \to \mu_n^{\otimes r+s}, \quad \text{gcd}(n, p) = 1. \]

When k is algebraically closed, there exists a trace map $H^{2d}(X_{\text{ét}}, \mathbb{Z}(d)) \to \mathbb{Z}$ compatible (via (A)$_n$) with the usual trace map in étale cohomology.
Values of zeta functions

Throughout this section, X is a smooth projective variety over a finite field k with q elements, r is an integer, and p_r is the rank of the group of numerical equivalence classes of algebraic cycles of codimension r on X.

We list the following conjectures for reference.

$T^r(X)$ (Tate conjecture): The order of the pole of the zeta function $Z(X,t)$ at $t = q^{-r}$ is equal to p_r.

$T^r(X,l)$ (l-Tate conjecture): The map $\text{CH}^r(X) \otimes \mathbb{Q}_l \to H^{2r}(\bar{X}_{\text{et}}, \mathbb{Q}_l(r))^T$ is surjective.

$S^r(X)$ (semisimplicity at 1): The map $H^{2r}(\bar{X}_{\text{et}}, \mathbb{Q}_l(r))^T \to H^{2r}(\bar{X}_{\text{et}}, \mathbb{Q}_l(r))_r$ induced by the identity map is bijective.

The statement $T^r(X)$ is implied by the conjunction of $T^r(X,l)$, $T^{d-r}(X,l)$, and $S^r(X,l)$ for a single l, and implies $T^r(X)$, $T^{d-r}(X,l)$, $S^r(X,l)$, $S^{d-r}(X,l)$ for all l (see Tate (1994), 2.9; Milne (2007), 1.11).

Let V be a variety over a finite field k. To give a sheaf on \mathbb{V}_{et} is the same as giving a sheaf on \mathbb{V}_{et} together with a continuous action of $\Gamma \overset{\text{def}}{=} \text{Gal}(k/\mathbb{k})$. Let Γ_0 be the subgroup of Γ generated by the Frobenius element (so $\Gamma_0 \simeq \mathbb{Z}$). The Weil-étale topology is defined so that to give a sheaf on $\mathbb{V}_{\text{Wét}}$ is the same as giving a sheaf on \mathbb{V}_{et} together with an action of Γ_0 (Lichtenbaum (2005)). For example, for $V = \text{Spec } k$, the sheaves on \mathbb{V}_{et} are the discrete Γ-modules, and the sheaves on $\mathbb{V}_{\text{Wét}}$ are the Γ_0-modules. In the Weil-étale topology, the Hochschild-Serre spectral sequence becomes

$$H^i(\Gamma_0, H^j(\mathbb{V}_{\text{et}}, F)) \implies H^{i+j}(\mathbb{V}_{\text{Wét}}, F).$$

Since

$$H^i(\Gamma_0, M) = M^\Gamma_0, M_{\Gamma_0}, 0, 0, \ldots \text{ for } i = 0, 1, 2, 3, \ldots,$$

this gives exact sequences

$$0 \to H^{i-1}(\mathbb{V}_{\text{et}}, F)_{\Gamma_0} \to H^i(\mathbb{V}_{\text{Wét}}, F) \to H^i(\mathbb{V}_{\text{et}}, F)^\Gamma_0 \to 0, \quad \text{all } i \geq 0.$$

If F is a sheaf on \mathbb{V}_{et} such that the groups $H^j(\mathbb{V}_{\text{et}}, F)$ are torsion, then the Hochschild-Serre spectral sequence for the étale topology gives exact sequences

$$0 \to H^{i-1}(\mathbb{V}_{\text{et}}, F)_\Gamma \to H^i(\mathbb{V}_{\text{et}}, F) \to H^i(\mathbb{V}_{\text{et}}, F)^\Gamma \to 0, \quad \text{all } i \geq 0.$$

The two spectral sequences are compatible, and so, for such a sheaf F, the canonical maps $H^i(\mathbb{V}_{\text{et}}, F) \to H^i(\mathbb{V}_{\text{Wét}}, F)$ are isomorphisms.

Let X be a smooth projective variety over a finite field, and let

$$e^{2r} : H^{2r}(\mathbb{V}_{\text{Wét}}, \mathbb{Z}(r)) \to H^{2r+1}(\mathbb{V}_{\text{Wét}}, \mathbb{Z}(r))$$

denote cup-product with the canonical element of $H^1(\Gamma_0, \mathbb{Z}) = H^1(k_{\text{Wét}}, \mathbb{Z})$, and let

$$\chi(\mathbb{V}_{\text{Wét}}, \mathbb{Z}(r)) = \prod_{i \neq 2, 2r+1} [H^i(\mathbb{V}_{\text{Wét}}, \mathbb{Z}(r))]^{-1} \mathbb{Z}(e^{2r})$$

to which all terms are defined and finite. Let

$$\chi(X, O_X, r) = \sum_{i \leq r} \sum_{j \leq r} (-1)^{i+j} (r - i) \dim H^j(X, O_X^i/j).$$

We define $\chi'(\mathbb{V}_{\text{Wét}}, \mathbb{Z}(r))$ as for $\chi(\mathbb{V}_{\text{Wét}}, \mathbb{Z}(r))$, but with each group $H^i(\mathbb{V}_{\text{Wét}}, \mathbb{Z}(r))$ replaced by its quotient

$$H^i(\mathbb{V}_{\text{Wét}}, \mathbb{Z}(r))' \overset{\text{def}}{=} \frac{H^i(\mathbb{V}_{\text{Wét}}, \mathbb{Z}(r))}{U(H^i(\mathbb{Z}(\mathbb{Z}(r))}.$$
Theorem 7. Let X be a smooth projective variety over a finite field such that the Tate conjecture $T'(X)$ is true for some integer $r \geq 0$. Then $\chi'(X_{\text{ét}}, \mathbb{Z}(r))$ is defined, and

$$
\lim_{t \to q^{-r}} Z(X, t) \cdot (1 - q^t)^{p^r} = \pm \chi'(X_{\text{ét}}, \mathbb{Z}(r)) \cdot q^{\chi'(X, \mathcal{O}_X, x)}.
$$

(3)

In particular, the groups $H^i(X_{\text{ét}}, \mathbb{Z}(r))'$ are finite for $i \neq 2r, 2r + 1$. For $i = 2r, 2r + 1$, they are finitely generated. For all i, $U(H^i(X_{\text{ét}}, \mathbb{Z}(r)))$ is uniquely divisible.

Proof. We begin with a brief review of Milne (1986). For an integer $n = n_0 p^r$ with $\gcd(p, n_0) = 1$,

$$
H^i(X_{\text{ét}}, (\mathbb{Z}/n\mathbb{Z})(r)) \overset{\text{def}}{=} H^i(X_{\text{ét}}, \mu_n^{\otimes r}) \times H^{i-r}(X_{\text{ét}}, V_s(r)),
$$

and

$$
H^i(X_{\text{ét}}, \hat{\mathbb{Z}}(r)) \overset{\text{def}}{=} \lim_{\longleftarrow n} H^i(X_{\text{ét}}, (\mathbb{Z}/n\mathbb{Z})(r))
$$

(ibid. p. 309). Let

$$
e^{2r} : H^{2r}(X_{\text{ét}}, \hat{\mathbb{Z}}(r)) \to H^{2r+1}(X_{\text{ét}}, \hat{\mathbb{Z}}(r))
$$

denote cup-product with the canonical element of $H^1(\Gamma, \hat{\mathbb{Z}}) \simeq H^1(k_{\text{ét}}, \hat{\mathbb{Z}})$, and let

$$
\chi(X, \hat{\mathbb{Z}}(r)) \overset{\text{def}}{=} \prod_{i \neq 2r, 2r+1} [H^i(X_{\text{ét}}, \hat{\mathbb{Z}}(r))]^{-1} z(e^{2r})
$$

denote the number of roots of $\chi(X, \hat{\mathbb{Z}}(r))$. Theorem 0.1 (ibid. p. 298) states that $\chi(X, \hat{\mathbb{Z}}(r))$ is defined if and only if $S'(X, l)$ holds for all l, in which case

$$
\lim_{t \to q^{-r}} Z(X, t) \cdot (1 - q^t)^{p^r} = \pm \chi(X, \hat{\mathbb{Z}}(r)) \cdot q^{\chi(X, \mathcal{O}_X, x)}.
$$

(4)

In particular, if $S'(X, l)$ holds for all l, then the groups $H^i(X_{\text{ét}}, \hat{\mathbb{Z}}(r))$ are finite for all $i \neq 2r, 2r + 1$.

For each $n \geq 1$ and $i \geq 0$, property (A) of $\mathbb{Z}(r)$ gives us an exact sequence

$$
0 \to H^i(X_{\text{ét}}, \mathbb{Z}(r))^{(n)} \to H^i(X_{\text{ét}}, (\mathbb{Z}/n\mathbb{Z})(r)) \to H^{i+1}(X_{\text{ét}}, \mathbb{Z}(r)) \to 0.
$$

The middle term is finite, and so $H^i(X_{\text{ét}}, \mathbb{Z}(r))^{(n)}$ is finite for all i and n. On passing to the inverse limit, we obtain an exact sequence

$$
0 \to H^i(X_{\text{ét}}, \mathbb{Z}(r)) \to H^i(X_{\text{ét}}, \hat{\mathbb{Z}}(r)) \to TH^{i+1}(X_{\text{ét}}, \mathbb{Z}(r)) \to 0
$$

(5)

in which the middle term is finite for $i \neq 2r, 2r + 1$. As $TH^{i+1}(X_{\text{ét}}, \mathbb{Z}(r))$ is torsion-free, it must be zero for $i \neq 2r, 2r + 1$. In other words, $TH^i(X_{\text{ét}}, \mathbb{Z}(r)) = 0$ for $i \neq 2r + 1, 2r + 2$.

So far we have used only conjecture $S'(X, l)$ (all l) and property (A) of $\mathbb{Z}(r)$. To continue, we need to use $T'(X, l)$ (all l) and the property (B) of $\mathbb{Z}(r)$. The l-Tate conjecture $T'(X, l)$ for all l implies that the cokernel of the map $CH^i(X) \otimes \mathbb{Z} \to H^{2r}(X_{\text{ét}}, \hat{\mathbb{Z}}(r))$ is torsion. As this map factors through $H^{2r}(X_{\text{ét}}, \mathbb{Z}(r))^\vee$, it follows that $TH^{2r+1}(X_{\text{ét}}, \mathbb{Z}(r)) = 0$ and $H^{2r}(X_{\text{ét}}, \mathbb{Z}(r))^\vee \simeq H^{2r}(X_{\text{ét}}, \hat{\mathbb{Z}}(r))$. Consider the commutative diagram

$$
\begin{array}{ccc}
H^{2r}(X_{\text{ét}}, \mathbb{Z}(r))^\vee & \overset{\sim}{\longrightarrow} & H^{2r}(X_{\text{ét}}, \hat{\mathbb{Z}}(r)) \\
\downarrow & & \downarrow \hat{\mathbb{Z}} \\
H^{2r+1}(X_{\text{ét}}, \mathbb{Z}(r))^\vee & \longrightarrow & H^{2r+1}(X_{\text{ét}}, \hat{\mathbb{Z}}(r)).
\end{array}
$$
As \(e^{2r} \) has finite cokernel, so does the bottom arrow, and so \(TH^{2r+2}(X_{\text{Wét}}, \mathbb{Z}(r)) = 0 \). We have now shown that
\[
TH^i(X_{\text{Wét}}, \mathbb{Z}(r)) = 0 \quad \text{for all } i
\]
and so (5) and Corollary 4
\[
\begin{cases}
H^i(X_{\text{Wét}}, \mathbb{Z}(r)) \cong H^i(X_{\text{ét}}, \widehat{\mathbb{Z}}(r)) \\
U(H^i(X_{\text{Wét}}, \mathbb{Z}(r))) \text{ is uniquely divisible for all } i.
\end{cases}
\]

In particular, we have proved the first statement of the theorem except that each group \(H^i(X_{\text{Wét}}, \mathbb{Z}(r))' \) has been replaced by its completion. It remains to prove that \(H^i(X_{\text{Wét}}, \mathbb{Z}(r))' \) is finite for \(i \neq 2r, 2r+1 \) and is finitely generated for \(i = 2r, 2r+1 \) (for then \(H^i(X_{\text{Wét}}, \mathbb{Z}(r))' \cong H^i(X_{\text{Wét}}, \mathbb{Z}(r))' \otimes \widehat{\mathbb{Z}}) \).

The kernel of \(H^i(X_{\text{Wét}}, \mathbb{Z}(r))' \to (H^i(X_{\text{Wét}}, \mathbb{Z}(r))' \cong U(H^i(X_{\text{Wét}}, \mathbb{Z}(r))') = 0 \), and so \(H^i(X_{\text{Wét}}, \mathbb{Z}(r))' \) is finite for \(i \neq 2r, 2r+1 \).

It remains to show that the groups \(H^{2r}(X_{\text{Wét}}, \mathbb{Z}(r))' \) and \(H^{2r+1}(X_{\text{Wét}}, \mathbb{Z}(r))' \) are finitely generated. For this we shall need property (C) of \(\mathbb{Z}(r) \). For a fixed prime \(l \neq p \), the pairings in (C) give rise to a commutative diagram
\[
\begin{array}{ccc}
H^{2r}(X_{\text{Wét}}, \mathbb{Z}(r))'/\text{tors} & \times & H^{2d-2r+1}(X_{\text{Wét}}, \mathbb{Z}(d-r))'/\text{tors} \\
\downarrow & & \downarrow \\
H^{2r}(X_{\text{ét}}, \mathbb{Z}/l(r))'/\text{tors} & \times & H^{2d-2r+1}(X_{\text{ét}}, \mathbb{Z}/l(d-r))'/\text{tors} \\
\end{array}
\]
\(\to \mathbb{Z}/l \)
to which we wish to apply Proposition 6. The bottom pairing is nondegenerate, the group \(U(H^{2r}(X_{\text{Wét}}, \mathbb{Z}(r))') \) is zero, and the group \(H^{2d-2r+1}(X_{\text{Wét}}, \mathbb{Z}(d-r))(l) \) is finite, and so the proposition shows that \(H^{2r}(X_{\text{Wét}}, \mathbb{Z}(r))'/\text{tors} \) is finitely generated. Because \(U(H^{2r}(X_{\text{Wét}}, \mathbb{Z}(r))') = 0 \), the torsion subgroup of \(H^{2r}(X_{\text{Wét}}, \mathbb{Z}(r))' \) injects into the torsion subgroup of \(H^{2r}(X_{\text{ét}}, \widehat{\mathbb{Z}}(r)) \), which is finite (Gabber [1983]). Hence \(H^{2r}(X_{\text{Wét}}, \mathbb{Z}(r))' \) is finitely generated. The group \(H^{2r+1}(X_{\text{Wét}}, \mathbb{Z}(r))' \) can be treated similarly.

\[\square \]

Remark 8. In the proof, we didn’t use the full force of \(T^r(X) \).

We shall need the following standard result.

Lemma 9. Let \(A \) be a (noncommutative) ring and let \(\bar{A} \) be the quotient of \(A \) by a nil ideal \(I \) (i.e., a two-sided ideal in which every element is nilpotent). Then:

(a) an element of \(A \) is invertible if it maps to an invertible element of \(\bar{A} \);
(b) every idempotent in \(\bar{A} \) lifts to an idempotent in \(A \), and any two liftings are conjugate by an element of \(A \) lying over \(1_A \);
(c) let \(a \in A \); every decomposition of \(a \) into a sum of orthogonal idempotents in \(\bar{A} \) lifts to a similar decomposition of \(a \) in \(A \).

Notes. We denote \(a + I \) by \(\bar{a} \).

(a) It suffices to consider an element \(a \) such that \(\bar{a} = 1_A \). Then \((1-a)^N = 0 \) for some \(N > 0 \), and so
\[
\frac{a}{(1-(1-a))(1+(1-a)+(1-a)^2+\cdots+(1-a)^{N-1})} = 1.
\]
(b) Let \(a \) be an element of \(A \) such that \(\bar{a} \) is idempotent. Then \((a-a^2)^N = 0 \) for some \(N > 0 \), and we let \(a' = (1-(1-a)^N)^N \). A direct calculation shows that \(\bar{a'} = a' \) and that \(\bar{a} = \bar{a} \).

Let \(e \) and \(e' \) be idempotents in \(A \) such that \(\bar{e} = \bar{e}' \). Then \(\bar{a} = e'e + (1-e')(1-e) \) lies above \(1_A \) and satisfies \(e'a = e'e = ae \).

(c) Follows easily from (b).
Proposition 10. Let X be a smooth projective variety over a finite field k, and let r be an integer. Assume that for some prime l the ideal of l-homologically trivial correspondences in $\text{CH}^{\dim X}(X \times X)_Q$ is nil. Then $H^i(X_{\text{et}}, \mathbb{Z}(r))$ is torsion for all $i \neq 2r$, and the Tate conjecture $T'(X)$ implies that $H^{2r}(X_{\text{et}}, \mathbb{Z}(r))$ is finitely generated modulo torsion.

Proof. This is essentially proved in Jannsen (2007), pp. 131–132, and so we only sketch the argument. Set $d = \dim X$ and let $k = \mathbb{F}_q$.

According to Lemma 9 there exist orthogonal idempotents π_0, \ldots, π_{2d} in $\text{CH}^{\dim X}(X \times X)_Q$ lifting the Künneth components of the diagonal in the l-adic topology. Let $h^j X = (hX, \pi_j)$ in the category of Chow motives over k. Let $P_i(T)$ denote the characteristic polynomial $\det(T - \sigma_X|H^i(X_{\text{et}}, \mathbb{Q}_l))$ of the Frobenius endomorphism σ_X of X acting on $H^i(X_{\text{et}}, \mathbb{Q}_l)$. Then $P_i(\sigma_X)$ acts as zero on the homological motive $h^i_m X$, and so $P_i(\sigma_X)^N$ acts as zero on $h^i X$ for some $N \geq 1$ (from the nil hypothesis). We shall need one last property of Bloch’s complex, namely, that $H^i(X_{\text{et}}, \mathbb{Z}(r))_Q \simeq K_{2r-i}(X)^{(r)}$ where $K_{2r-i}(X)^{(r)}$ is the subspace of $K_{2r-i}(X)_Q$ on which the rth Adams operator acts as r^N for all r.

The qth Adams operator acts as the Frobenius endomorphism, and so σ_X acts as multiplication by q^r on $K_{2r-i}(X)^{(r)}$. Therefore $H^i(X_{\text{et}}, \mathbb{Z}(r))_Q$ is killed by $P_i(q^r)$, which is nonzero for $i \neq 2r$ (by the Weil conjectures), and so $H^i(X_{\text{et}}, \mathbb{Z}(r))$ is torsion for $i \neq 2r$.

The Tate conjecture implies that $P_2(T) = Q(T) \cdot (T - q^r)^{N_2}$ where $Q(q^r) \neq 0$, and so

$$1 = q(T)Q(T)^N + p(T)(T - q^r)^{N_2}, \quad \text{some } q(T), \ p(T) \in \mathbb{Q}[T].$$

As before, $P_2(\sigma_X)^N$ acts as zero on $h^{2r} X$ for some $N \geq 1$. Therefore $q(\sigma_X)Q(\sigma_X)^N$ and $p(\sigma_X)(\sigma_X - q^r)^{N_2}$ are orthogonal idempotents in $\text{End}(h^{2r} X)$ with sum 1, and correspondingly $h^{2r} X = M_1 \oplus M_2$. Now $H^{2r}(M_1, \mathbb{Z}(r))_Q = 0$ because $Q(\sigma_X)^N$ is zero on M_1 and $Q(q^r) \neq 0$. On the other hand, M_2 is isogenous to $(\mathbb{L}^{\otimes r})^{N_2}$ where \mathbb{L} is the Lefschetz motive (Jannsen (2007), p. 132), and so $H^{2r}(M_2, \mathbb{Z}(r))$ differs from $H^{2r}(\mathbb{L}^{\otimes r}, \mathbb{Z}(r))^{N_2} \simeq H^{2r}(\mathbb{P}^d, \mathbb{Z}(r))^{N_2} \simeq \mathbb{Z}^{N_2}$ by a torsion group.

Notes. When $k = \mathbb{F}_q$, the qth Adams operator acts as σ (Hiller 1981, §5; Soulé 1985, 8.1), and so $K_i(X)^{(j)}$ is the subspace on which σ acts as q^j (because the m^j-eigenspace of the mth Adams operators is independent of m, Seiler 1988, Theorem 1).

Theorem 11. Let X be a smooth projective variety over a finite field such that the Tate conjecture $T'(X)$ is true for some integer $r \geq 0$. Assume that, for some prime l, the ideal of l-homologically trivial correspondences in $\text{CH}^{\dim X}(X \times X)_Q$ is nil. Then $\chi(X_{\text{et}}, \mathbb{Z}(r))$ is defined, and

$$\lim_{t \to q^r} Z(X, t) \cdot (1 - q^r t)^{N_2} = \pm \chi(X_{\text{et}}, \mathbb{Z}(r)) \cdot q^r \chi(X, \ell^{r, r}).$$

In particular, the groups $H^i(X_{\text{et}}, \mathbb{Z}(r))$ are finite for $i \neq 2r, 2r + 1$. For $i = 2r, 2r + 1$, they are finitely generated.

Proof. This will follow from Theorem 7 once we show that the groups $U^i \equiv U(H^i(X_{\text{et}}, \mathbb{Z}(r)))$ are zero. Because $H^i(X_{\text{et}}, \mathbb{Z}(r))$ is finitely generated modulo torsion (Proposition 10), it does not contain a nonzero \mathbb{Q}-vector space, and so $U^i = 0$ (Corollary 5).
Remark 12. For a smooth projective algebraic variety X whose Chow motive is finite-dimensional, the ideal of l-homologically trivial correspondences in $\text{CH}^{\dim X}(X \times X) \otimes \mathbb{Q}$ is nil for all prime l (Kimura). It is conjectured (Kimura and O'Sullivan) that the Chow motives of algebraic varieties are always finite-dimensional, and this is known for those in the category generated by the motives of abelian varieties. On the other hand, Beilinson has conjectured that, over finite fields, rational equivalence with \mathbb{Q}-coefficients coincides with with numerical equivalence, which implies that the ideal in question is always null (not merely nil).

References

Fuchs, L. 1970. Infinite abelian groups. Vol. I. Pure and Applied Mathematics, Vol. 36. Academic Press, New York.

Gabber, O. 1983. Sur la torsion dans la cohomologie l-adique d’une variété. *C. R. Acad. Sci. Paris Sér. I Math.* 297:179–182.

Geisser, T. 2005. Motivic cohomology, K-theory and topological cyclic homology, pp. 193–234. In Handbook of K-theory. Vol. 1, 2. Springer, Berlin.

Geisser, T. and Levine, M. 2000. The K-theory of fields in characteristic p. *Invent. Math.* 139:459–493.

Geisser, T. and Levine, M. 2001. The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky. *J. Reine Angew. Math.* 530:55–103.

Jannsen, U. 2007. On finite-dimensional motives and Murre’s conjecture, pp. 112–142. In Algebraic cycles and motives. Vol. 2, volume 344 of *London Math. Soc. Lecture Note Ser.* Cambridge Univ. Press, Cambridge.

Kaplansky, I. 1954. Infinite abelian groups. University of Michigan Press, Ann Arbor.

Lichtenbaum, S. 2005. The Weil-étale topology on schemes over finite fields. *Compos. Math.* 141:689–702.

Milne, J. S. 1986. Values of zeta functions of varieties over finite fields. *Amer. J. Math.* 108:297–360.

Milne, J. S. 1988. Motivic cohomology and values of zeta functions. *Compositio Math.* 68:59–100, 101–102.

Milne, J. S. 2007. The Tate conjecture over finite fields (AIM talk). arXive:0709.3040v2.

Tate, J. T. 1994. Conjectures on algebraic cycles in l-adic cohomology, pp. 71–83. In Motives (Seattle, WA, 1991), volume 55 of *Proc. Sympos. Pure Math.* Amer. Math. Soc., Providence, RI.