Enabling Electronic Structure-Based Ab-Initio Molecular Dynamics Simulations with Hundreds of Millions of Atoms

Robert Schade*, Tobias Kenter†, Hossam Elgabarty‡, Michael Lass††, Ole Schüt‡‡, Alfio Lazzaro§§, Hans Pabst**, Stephan Mohr†††, Jürg Hutter∥∥, Thomas D. Kühne‡‡‡, Christian Plessl∥∥∥
Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
*Paderborn University Center for Parallel Computing ‡Department of Computer Science
†Department of Chemistry ‡‡Corresponding author, Email: thomas.kuehne@uni-paderborn.de
‡Department of Materials, ETH Zürich, CH-8092 Zürich, Switzerland
∥∥HPE Switzerland GmbH, Basel, Switzerland
**Intel Extreme Computing, Software and Systems, Zürich, Switzerland
††Nextmol (Bytelab Solutions SL), Barcelona, Spain ‡‡‡Barcelona Supercomputing Center (BSC)
§§Department of Chemistry, University of Zurich

Abstract—We push the boundaries of electronic structure-based ab-initio molecular dynamics (AIMD) beyond 100 million atoms. This scale is otherwise barely reachable with classical force-field methods or novel neural network and machine learning potentials. We achieve this breakthrough by combining innovations in linear-scaling AIMD, efficient and approximate sparse linear algebra, low and mixed-precision floating-point computation on GPUs, and a compensation scheme for the errors introduced by numerical approximations.

The core of our work is the non-orthogonalized local submatrix (NOLSM) method, which scales very favorably to massively parallel computing systems and translates large sparse matrix operations into highly parallel, dense matrix operations that are ideally suited to hardware accelerators. We demonstrate that the NOLSM method, which is at the center point of each AIMD step, is able to achieve a sustained performance of 324 PFLOP/s in mixed FP16 FP32 precision corresponding to an efficiency of 67.7% when running on 1536 NVIDIA A100 GPUs.

I. OVERVIEW OF THE PROBLEM
A. Atomistic Computer Simulations

The exponential increase in the performance of high-performance computers over the past decades, together with advances in computer science and applied mathematics, has led to the birth of a new way of doing science at the intersection of theory and experiment. This field is generally referred to as computational science and allows for experiments in silico that otherwise would be too difficult, expensive, or simply impossible to perform. As a result, computer simulations have been very successful in predicting and rationalizing a large variety of novel physical phenomena.

For systems made of atoms, the two most common computational techniques to conduct such simulations are the Monte Carlo and the molecular dynamics (MD) algorithms [1], [2]. The latter is simply the numerical solution of Hamilton’s equation of motion, which allows both equilibrium thermodynamic and dynamic properties of a system at finite temperature to be computed. Since it also provides a window into the real-time evolution of the atoms, another role of MD is that of a computational microscope.

One of the most challenging and very important aspects of MD simulations is calculating the interatomic forces. In classical simulations they are computed by conventional force fields, or novel neural network and machine learning potentials, which have been parameterized to reproduce experimental or accurate ab-initio data of small model systems [3], [4]. Even though great strides in improving such empirical potentials have been made and often render them surprisingly accurate [5], [6], the transferability to systems or regions of the phase diagram different from the ones to which they have been trained in the first place may be restricted. Ultimately, when assuming a classical model, as ingenious it may be, the access to the quantum mechanical electronic structure is irrevocably lost. However, some of the most relevant and interesting phenomena of modern chemistry and physics are inherently non-classical.

B. Electronic Structure-based Ab-initio Molecular Dynamics

Therefore, an electronic structure-based ab-initio MD (AIMD) approach [7], [8], where the forces are computed on-the-fly from accurate quantum mechanical calculations, is very attractive since many of these limitations can, in principle, be removed. Nevertheless, the accuracy and increased predictive power of AIMD simulations come at a significant computational cost, which has to be carefully balanced against system size and sampling requirements, thus limiting the attainable length and time scales despite substantial progress [9]. Hence, effective single-particle theories such as Hartree-Fock, density functional theory (DFT), and semi-empirical tight-binding (TB) approaches are to date the most commonly used electronic structure methods within AIMD [10]. However, for very large systems, like those occurring in biology, nanotech-
Corresponding Schrödinger-like equations is computationally not feasible even on today’s largest supercomputers. This practical limitation stems from the fact that these equations are very high-dimensional eigenvalue problems with up to trillions of unknowns. The computation of all eigenvalues and corresponding eigenvectors requires the diagonalization of the quantum mechanical Hamilton operator that uniquely defines the specific system and typically scales cubically with its size.

C. Linear-scaling Electronic Structure Theory

Therefore, novel computational methods that scale linearly with the size of the system to directly calculate the all-important density matrix instead of all eigenvectors would be very desirable, thus making a new class of systems accessible to AIMD that were previously thought not feasible. Several so-called linear-scaling methods have been proposed to circumvent the cubic scaling diagonalization that is the main bottleneck of DFT and TB [11]–[14]. Underlying all of these methods is the concept of “nearsightedness” [15], an intrinsic system-dependent property, which states that at fixed chemical potential the electronic density depends just locally on the external potential so that all matrices required to compute the Fermi operator will become sparse. When using sparse matrix algebra techniques the property can be exploited to devise computational methods whose memory requirements and computational effort increase only linearly with problem size. However, the crossover point after which linear-scaling electronic structure methods become advantageous has remained rather large, in particular if high accuracy is needed.

D. Approximate Computing-Based Submatrix Method

Beyond algorithmic improvements, it is also possible to relax the requirement for the accuracy of computations and profit from the substantially improved performance of modern computer architectures for low-precision arithmetic. We demonstrate that by leveraging the approximate computing (AC) paradigm [16], [17], the usage of mixed- and low-precision numerics can be rigorously compensated by an appropriately modified Langevin-type equation. The noise within the nuclear forces can be assumed as white, thus facilitating the exact computation of ensemble-averaged expectation values [14], [18], [19]. One possible route is the linear-scaling sign-method [20], which only relies on large sparse matrix-matrix multiplies. However, due to the distributed nature of the required matrix multiplications, large-scale applications are usually limited by a communication bottleneck. To avoid this bottleneck, we have extended the recently developed submatrix method [21], [22], which transforms calculations on large distributed sparse matrices into computations on small local dense matrices and combined it with the second-generation Car-Parrinello method of Kühne et al. [9], [10] to bypass the previously mentioned self-consistent solution. This transformation opens the door to employ hardware-accelerated low-precision linear algebra without compromising the accuracy of the eventual results.

II. Current State of the Art

Previous attempts to push the boundaries of electronic structure-based structure relaxation and AIMD simulations are summarized in Table I. They include DFT calculations using delocalized plane wave (PW) basis sets, as implemented in the CPMD [36], Qbox [37], LS3DF [25] and OpenAtom [33] codes, as well as localized orbital DFT simulations based on real-space finite difference (RS-DFT) and finite element methods (FEM) using the RSDFT [30] and DFT-FE [38] codes, respectively. The largest simulations, however, are conducted employing low-scaling electronic structure methods such as linear-scaling DFT (LS-DFT). With the exception of the LDC-DFT code [32], which relies on an extended real-space multigrid PW (RMG-PW) basis within a less correlated subsystem DFT (SS-DFT) approach, localized basis functions with finite spatial extent are used. Examples of the latter are non-orthogonal generalized Wannier functions (NGWF), finite difference (FD), polarized atomic orbitals (PAO) and Gaussian and plane waves (GPW) basis sets that are implemented in the ONETEP [39], MGmol [34], CONQUEST [40] and CP2K [41] codes, respectively.

To put our achievement in context to previous work, we find it important to point out that the hitherto largest electronic structure calculation conducted so far with 6.3 million atoms has been achieved using the SS-DFT approach, which subdivides the total system in a divide-and-conquer fashion into overlapping fragments that can be computed independently from each other. Even though this offers an intriguing additional level of parallelism, which is reflected by a peak performance of more than 5 PFLOP/s, it also entails a further approximation. Among similar lines, simulations involving multiple independent k-points can also be trivially parallelized over each of these points. Interestingly, the simulation with the so-far largest peak performance of 46 PFLOP/s and an efficiency of 27.8% has been conducted for just 10.5 thousand atoms, even though with electronically rather complicated alkaline earth metals atoms.

In the present work, we have conducted individual AIMD-based dynamical simulated-annealing steps to mimic the relaxation of the structure of a whole human immunodeficiency virus-1 (HIV-1) capsid in aqueous solution containing more than 62.5 million atoms, as well as for water with about 102 million atoms. For that purpose, we have extended the Geometry, Frequency, Noncovalent, eXtended Tight-Binding (GFN-xtB) scheme towards periodic systems and implemented it within the CP2K code [41], [42].

III. Innovations Realized

A. Summary of Contributions

The central innovation of this work is the approximate mapping of a matrix function of a very large sparse matrix to a series of matrix functions of much smaller but dense matrices. Since in this way inter-node communication is avoided, a very favorable parallel scaling is obtained. The evaluations of the matrix functions for the small dense matrices, with
Table I

Code	Year	Method	Basis	System	# Atoms	# Cores	Machine	Peak Performance	Efficiency
CPMD	2005	DFT	PW	bulk SiC	1k	1.2k	IBM p900	1.087 TFLOP/s	≈ 20%
Qbox	2006	DFT	PW	bulk Mo	8^tik	128k	IBM BlueGene/L	207.3 TFLOP/s	36.3%
LS-DFT	2009	DFT	PW	bulk ZnTeO	36k	147k	Cray Jaguar	442 TFLOP/s	≈ 33%
CONQUEST	2010	NSC-DFT	PAO	bulk Si	2.1M	4k	Cray XT5		≈ 60%
CP2K	2012	LS-DFT	GPW	bulk H2	1M	47k	Cray XT5		
ONETEP	2014	LS-DFT	NGWF	amyloid fibril trimer	42k	115k	IBM BlueGene/Q		
CONQUEST	2014	LS-DFT	PAO	bulk Si	786k	200k	K-Computer		
RSDFT	2014	DFT	RS-FD	Si nanowire	107k	664k	K-Computer	5.48 PFLOP/s	51.67%
CP2K	2016	SS-DFT	PW	satellite tobacco mosaic virus	1M	20k	Cray XC30		
LDC-DFT	2014	SS-DFT	RMG-PW	bulk SiC	6.3M	786k	IBM BlueGene/Q	5.08 PFLOP/s	50.5%
OpenAtom	2016	DFT	PW	periodic MOF	327424	262k	IBM BlueGene/Q	≈ 52%	
MGmol	2016	DFT	FD	bulk H2O	1.2M	1.6m	IBM BlueGene/Q	≈ 39%	
DFT-Fe	2019	DFT	FEM	Mg cluster	10.5k	159k	IBM Summit	46 PFLOP/s	27.8%
This work	2021	LS-DFT	GTO	bulk water	102M	18.4k	JUWELS Booster	206 PFLOP/s	43%
This work	2021	LS-DFT	GTO	HIV-1 capsid in solution	62.5M	18.4k	JUWELS Booster	324 PFLOP/s	67.7%

The dimension of ~ 500 to ~ 10000 for the applications in this work, are computed with iterative schemes and mixed-precision arithmetic on tensor cores of GPUs. The resulting noise from these approximations is rigorously compensated by making use of the fluctuation-dissipation theorem so that the desired thermodynamic expectation values can nevertheless be obtained accurately.

B. Algorithmic Innovations

1) Approximate Computing: The ideas of AC can be applied to the field of electronic structure-based AIMD simulations by recognizing that algorithmic or numerical approximations cause noise in the computed total energy E^N of the system and in consequence noise Ξ_i in the forces F_i on the atoms. Thus, the computed noisy forces F^N_i can be written as

$$F^N_i = -\frac{\partial E^N}{\partial R_i} = F_i + \Xi_i,$$

where F_i denote the exact forces. All quantities depend on the position of the atoms R_1, \ldots, R_n. In previous works we have demonstrated that in the present context Ξ_i can be assumed to be nearly unbiased [14], [18], [19], thus fulfilling the so-called fluctuation-dissipation theorem

$$\langle \Xi_i(0) \cdot \Xi_i(t) \rangle_T \approx 2\gamma_N M_i k_B T \delta(t),$$

where $\langle \ldots \rangle_T$ denotes the Boltzmann-weighted ensemble average at the temperature T, k_B the Boltzmann constant, M_i the atomic masses, and γ_N a friction coefficient, whose exact value needs to be determined. However, if we would know γ_N such that Eq. 2 is satisfied, a modified Langevin-type equation

$$M_i \ddot{R}_i = F_i + \Xi_i - \gamma_N M_i \dot{R}_i$$

is recovered, which guarantees for an accurate canonical sampling of the Boltzmann distribution and to compute precise thermodynamic expectation values [9]. Fortunately, the exact value of γ_N does not need to be known a priori, but can be bootstrapped so as to generate the correct average temperature [43], as measured by the equipartition theorem $\langle \frac{1}{2} M_i \dot{R}_i^2 \rangle = \frac{3}{2} k_B T$. Although the fluctuation-dissipation theorem has been used in the context of MD simulations for some time, we apply it here to facilitate to usage of noisy forces F^N_i from approximate electronic structure calculations in lower arithmetic precision and still obtain accurate thermodynamic quantities [19].

2) Linear-Scaling Eigenvalue Solver via the Non-Orthogonalized Local Submatrix Method (NOLSM): In electronic structure-based AIMD simulations, forces F_i on the atoms are derived in every time step on-the-fly from the solution of the quantum mechanical problem of electrons in the electrostatic field generated by the nuclei. The total energy of a system can be written as

$$E = E_{elec} + E_{dc} + E_{ion} = \sum_i \langle \psi_i | \hat{H}_0 | \psi_i \rangle + E_{dc} + E_{ion},$$

where the summation runs over all occupied electronic states $|\psi_i\rangle$ in the ground state, the Hamiltonian operator \hat{H}_0, addi-
tional double counting terms E_{dc} and the nuclear Coulomb repulsion energy E_{ion}. The form of the Hamiltonian matrix H_0 and the double counting terms depend on the level of the theory. In any case, however, H_0 is dependent on the one-particle density matrix D, or on the electron density, which necessitates a self-consistency cycle (SCF). A linear-scaling algorithm to solve the quantum mechanical problem, $H_0|\psi_i\rangle = \epsilon_i|\psi_i\rangle$, is required to find the ground-state energy of the system that determines the forces via Eq. 1. Linear-scaling density-matrix-based electronic structure algorithms directly purify the Hamiltonian into the density matrix D [44], i.e.,

$$D = \frac{1}{2}(I - \text{sign}(S^{-1}H_0 - \mu I))S^{-1}, \quad (5)$$

where S denotes the overlap matrix and μ the chemical potential. The electronic energy and the forces can now be obtained via

$$E_{elec} = \text{Tr}(DH_0). \quad (6)$$

To evaluate the contribution to the forces from the localized atom-centered basis functions (Pulay forces) [45], the energy-weighted density matrix

$$W = DH_0D \quad (7)$$

is required. The matrix-sign function in Eq. 5 can be evaluated iteratively, for example with the Newton-Schulz iteration [46]

$$X_0 = A, \quad X_{k+1} = \frac{1}{2}X_k(3I - X_k^2) \quad (8)$$

$$\text{sign}(A) = \lim_{k \to \infty} X_k. \quad (9)$$

higher-order Padé-approximants [47], or arbitrary-order iteration schemes [48], where the underlying multiplications of large sparse matrices are performed with global matrix operations in conventional schemes [20], [41]. In contrast, we view the purification as a matrix function and approximate it with our submatrix method so that no global matrix multiplications are required that would otherwise lead to a communication-bound algorithm.

The submatrix method [21], [22], recently developed by some of the authors, approximates a matrix function of a large sparse matrix by evaluating it on a series of much smaller and denser matrices. The underlying idea of the submatrix method is described by Fig. 1. T_j constructs the submatrix for column j. Thus, $T_j(A)$ represents the dense submatrix that is constructed for column j of the large sparse matrix A.

The dimensions of the submatrices are independent of the system size for a sufficiently large system (linear-scaling regime) if localized basis functions are used to describe the electronic wave functions. For the purposes of the purification in Eq. 5 we view $D(H_0,S)$ as a matrix function, i.e., the submatrix idea is in this work for the first time applied simultaneously to two non-orthogonalized matrices. Thus, a pair of submatrices $T_j(H_0)$ and $T_j(S)$ for each column j (or a set of columns) of the original matrix is generated with the same selection of rows. We denote this as the non-orthogonalized local submatrix method (NOLSM). Additionally, the sparse input matrices H_0 and S are generated such that each column is completely owned by one MPI rank (Fig. 2 a1, a2). Thus, the row indices required for the submatrices of H_0 and S for a column j (Fig. 2 b1, b2) can be determined and merged without communicating between the nodes (Fig. 2 c). The row information and additional data for the construction of the matrix elements are transferred from the host to the GPU (Fig. 2 d). The matrix elements of the submatrices $T_j(H_0)$ and $T_j(S)$ are not transferred from the host or from other ranks, but are computed locally (Fig. 2 e) on the GPU. The submatrix of the overlap matrix can then be inverted (Fig. 2 f) and the resulting $T_j(S)^{-1}$ can be used in the purification (Fig. 2 g), i.e.,

$$T_j(D) = \frac{1}{2}(I - \text{sign}(T_j(S)^{-1}T_j(H_0) - \mu I))T_j(S)^{-1}. \quad (10)$$

The columns of $T_j(D)$ and $T_j(W)$ that correspond to the columns of the original matrices hold the approximate matrix elements of the matrices D and W (Fig. 2 i1, i2).

Because the submatrices are much denser and much smaller than the original matrices, algorithms for dense linear algebra can be used in all operations efficiently. Finally, since also writeback of the result columns of $T_j(D)$ and $T_j(W)$ is a local operation, the NOLSM method avoids any inter-node communication during the evaluation of the matrix function.

3) Submatrix Combination Heuristics: The NOLSM method as described in section III-B2 can be optimized by generating common submatrices for multiple similar columns instead of individual submatrices for each column. However, it is worthwhile to combine more columns: Let n_i and n_j be the dimensions of submatrices T_i and T_j, whereas $n_{i\land j}$ denote the common rows contained both in T_i and T_j. Then a combined or merged submatrix $T_{i\land j}$ will contain $n_i + n_j - n_{i\land j}$ rows. Considering that the required FLOPs for the evaluation of each submatrix scales cubically, combining T_i and T_j into $T_{i\land j}$ yields a speedup if and only if

$$(n_i + n_j - n_{i\land j})^3 < n_i^3 + n_j^3. \quad (11)$$

In this work, we use this relation as a strict acceptance criterion for an iterative combination heuristic. This choice is
different from our earlier work that used the spatial location of atoms as guiding properties for the combination of submatrices [22]. Also, the presented approach requires no target parameter for the number or size of clusters, but automatically stops when no more improvement of the target metric is found.

For the identification of candidate submatrices \(\mathcal{T}_j \) to be merged into \(\mathcal{T}_i \), the row entries of \(\mathcal{T}_i \) itself are used as a first filter because only submatrices connected in the global sparse matrix tend to have many common row entries (i.e., large \(n_{i \land j} \)). Given this neighborhood information, valid candidates conforming to the criterion from Eq. 11 are considered iteratively in a sequence that depends on the number of unique elements that \(\mathcal{T}_j \) would add to \(\mathcal{T}_i \), i.e., \(n_{j \land i} = n_j - n_{i \land j} \). For each iteration \(n_{j \land i} \in \{0, ..., n\} \), the valid merge candidates are first identified and prioritized in parallel and then merged into a common representative \(\mathcal{T}_{i,j} \). This is a similar process to the position update in the k-means clustering employed by Lass et al. [22]. However, by using the exact row representation of \(\mathcal{T}_{i,j} \) instead of a spatial position, it allows for the more exact proximity metric (Eq. 11), while, at the same time, avoiding separate data structures and updates for nearest-neighbor information, thus also facilitating the required scaling to many millions of atoms and submatrices. As the combination approach is not performed on individual columns, but on groups of all columns corresponding to each atom, the initial set of submatrices corresponds directly to the number of atoms. Applying the heuristic from scratch for a system of about 62.5 million atoms takes about two hours on a single compute node and the result can be used for many AIMD steps.

C. Implementation Innovations

1) Distributed Block Compressed Sparse Row Library: DBCSR: The Hamiltonian and the overlap matrix have an underlying block-structure originating from the fact that multiple spatial basis functions describe the electronic wave function in the vicinity of an atom and each basis function corresponds to a column of the matrices. The DBCSR sparse matrix library [49], which handles the sparse matrix operations in CP2K [41], stores such small blocks in a dense format, while referencing these blocks as non-zero elements in CSR format. The library is used in this work for the storage and operations on sparse matrices outside of the submatrix method.

2) Minimization of Communication: Due to the favorable parallel properties of the NOLSM method it avoids inter-node communication by construction. The transfers between CPU-memory and GPUs are minimized by constructing the matrix elements of the submatrices directly on the GPUs. Thus, only metadata, i.e., the row indices required for a submatrix, as well as atom species information, atomic positions for the atoms involved in this submatrix and additional data for the underlying electronic structure method have to be transferred. To reduce the overhead of the matrix-element generation routines on the GPUs, an automatic code generation approach was employed that directly yields expressions for the matrix elements of the overlap matrix between two atomic species that only depend on the distance vector between two atoms. The matrix elements are computed in FP32 to make efficient use of the special function units in NVIDIA GPUs for single-precision floating-point transcendental functions [50]. In addition, we employ a load-balancing between the GPUs in a compute node so that submatrices are assigned to GPUs dynamically.

3) Efficient Iterative Matrix Function Solvers on GPU Tensor Cores: The matrix function for the submatrices, which in the present case is the purification in Eq. 10, can be solved with libraries for dense linear algebra. However, we solve this problem with lower precision linear algebra, specifically making use of the low-precision matrix-multiplications available with tensor cores in GPUs such as the NVIDIA A100 that support FP16 (with FP32 accumulation), bfloat16 (with FP32 accumulation), and energy-weighted density matrix is calculated; \(h \), the result columns are transferred back to the host and inserted at the corresponding places into the sparse matrices of the density matrix \(D \) and energy-weighted density matrix \(W \).
also be directly integrated into the submatrix method as shown satisfy the charge neutrality constraint. Such a procedure can the determination of the chemical potential is implemented to To that extent, a bisection-like mechanism as an outer loop for value that ensures the overall charge neutrality of the system. Moreover, the chemical potential has been fixed to a corresponding nuclei, are coalesced in a single submatrix by mesh Ewald summation with a spline interpolation of fifth that purpose, the long-range electrostatic is computed using GFN-xTB method towards periodic boundary conditions. For respectively. As described in Ref. [41], we have extended the all other elements used in this work by four basis functions, every hydrogen atom is represented by two, sulfur by nine, and represented by localized Gaussian-type orbitals. Specifically, damping function [52]. Therein, the electronic states are dispersion correction based on the rational Becke–Johnson xTB approach is employed in conjunction with a London solvated in water as an inhomogeneous system.

IV. HOW PERFORMANCE WAS MEASURED

A. Computational Details

To investigate the performance of the NOLSM method, we have chosen two kinds of systems: liquid water at ambient condition as a homogeneous system and the HIV-1 capsid solvated in water as an inhomogeneous system.

1) Simulation Details: In all of our simulations the GFN-xTB approach is employed in conjunction with a London dispersion correction based on the rational Becke–Johnson damping function [52]. Therein, the electronic states are represented by localized Gaussian-type orbitals. Specifically, every hydrogen atom is represented by two, sulfur by nine, and all other elements used in this work by four basis functions, respectively. As described in Ref. [41], we have extended the GFN-xTB method towards periodic boundary conditions. For that purpose, the long-range electrostatic is computed using the fast Fourier transformation (FFT)-based smooth particle mesh Ewald summation with a spline interpolation of fifth order [53].

Within our NOLSM method, all submatrices of individual atoms, i.e. all columns corresponding to basis functions of the corresponding nuclei, are coalesced in a single submatrix by default. Moreover, the chemical potential has been fixed to a value that ensures the overall charge neutrality of the system. To that extent, a bisection-like mechanism as an outer loop for the determination of the chemical potential is implemented to satisfy the charge neutrality constraint. Such a procedure can also be directly integrated into the submatrix method as shown in [22]. In the spirit of the second-generation Car-Parrinello AIMD method, the electronic state is propagated in time by means of fictitious dynamics, thereby completely avoiding the computationally expensive SCF cycle [9], [10]. Therewith individual AIMD-based dynamical simulated annealing steps with a discretized time-step of 0.5 fs were performed. The modified Langevin-type equation of Eq. 3 is integrated using the algorithm of Ricci and Cicotti [54].

2) Water: The water benchmark is derived from the linear-scaling DFT benchmark included with CP2K [55]. The basic cell contains 32 water molecules and was equilibrated at a temperature of 300 K and a pressure of 1 bar. This cell is cubic with a length of 9.8 Å. The cell is then repeated in all spatial directions to create a scalable benchmark case. The submatrix combination heuristics is not used for water so that there is one atom per submatrix.

3) HIV-1 Capsid: The three-dimensional atomic structure of the entire HIV-1 viral capsid (PDB 3J3Q) was used as a starting point [56]. The structure is composed of 313,236 amino acid residues with a total of 2,440,800 atoms. Missing hydrogen atoms were added such that all the terminal amino acids, the side chains of lysine, arginine, aspartate, glutamate, and glutamine residues, were all in the charged state. The protonation states of the histidine residues were assigned based on the local hydrogen bonding patterns. The capsid was then placed in an orthorhombic unit cell of dimensions 1183.9×800.5×667.8 Å and the entire structure was solvated in water. Thereafter, the total charge of the system was neutralized by randomly replacing water molecules with sodium ions. The final system, which is shown in Fig. 3 and deposited at [57], has a total of 62,589,576 atoms, i.e. 40,910,985 hydrogen, 1,537,704 carbon, 429,852 nitrogen, 19,689,348 oxygen, 4,059 sodium and 17,628 sulfur atoms, respectively.

B. Measurements

The main measurements presented here are:
1) **Wall clock time of the NOLSM method** T_{NOLSM}: The wall clock time T_{NOLSM} of the core computational routine NOLSM method, i.e., steps $d.h.$ in Fig. 2 are measured. This includes all transfers between host and GPU.

2) **FLOPs in the NOLSM method** $\text{FLOPs}_{\text{NOLSM}}$: The floating-point operations $\text{FLOPs}_{\text{NOLSM}}$ in the FP16/FP32-mixed-precision matrix iterations in the NOLSM method are estimated as $2n^3$ for a gemm-operation $C = \alpha A \cdot B + \beta C$ with $A, B, C \in \mathbb{R}^{n \times n}$. The construction of the matrix elements of the submatrices, which is performed in FP32, is neglected here because they constitute a small fraction of the total workload and due to the ambiguity of counting the exponential functions as floating-point operations. Other operations that scale as $O(n^2)$ in the size of the submatrices such as norms and scalings are also neglected in the FLOP count.

3) **Sustained performance of NOLSM method** P_{NOLSM}: To judge the sustained performance obtained from the GPU-acceleration we define the sustained performance P_{NOLSM} of NOLSM method as $P_{\text{NOLSM}} = \frac{\text{FLOPs}_{\text{NOLSM}}}{T_{\text{NOLSM}}}$.

4) **Wall time clock for one AIMD step** $T_{\text{AIMD-step}}$: The wall clock time $T_{\text{AIMD-step}}$ for a single AIMD step is measured as the average over at least three AIMD steps. This includes all operations required for one AIMD step, i.e., also IO. This time does not include operations that are only performed once per full MD simulation such as MPI and GPU initialization/finalization or setup of the physical system as well as the heuristic for combining submatrices.

5) **Time-to-solution** T_{sol}: With the quantities introduced above we define the time-to-solution T_{sol} as the wall-clock time $T_{\text{AIMD-step}}$ for a single AIMD step. This definition is reasonable because the number of AIMD steps per MD calculation can vary greatly depending on the physical or chemical objective of the calculation. Often many thousands or more steps are performed so that operations performed only once per MD calculation can be neglected.

C. HPC System and Environment

The benchmark calculations have been performed on the JUWELS Booster [58]. The system is ranked as number 7 on the TOP500 list as of winter 2020 with a peak double-precision performance of nearly 71 PFLOP/s [59]. Each of the 936 compute nodes of the JUWELS Booster is a dual/socket system with AMD EPYC 7402 24-core CPUs in NPS4-configuration with 512 GB of DDR4 main memory. Each socket is connected to an individual PCIe-switch that in turn is connected to two NVIDIA A100 GPUs and two Mellanox HDR200 InfiniBand ConnectX6 HCAs. Thus, the theoretical inter-node-communication bandwidth is 800 GBit/s. The four GPUs per node are fully interconnected with NVLink3. The cluster interconnected is configured in a DragonFLy+ topology with groups of 48 nodes forming a non-blocking cell. The cells are interconnected with 10 links between each cell.

The NVIDIA A100s in the JUWELS BOOSTER have 40 GB of HBM2 memory with a peak memory bandwidth of 1555 GB/s. The theoretical peak performance of the non-tensor-core execution units is 9.7 TFLOP/s in FP64, 19.5 TFLOP/s in FP32 and 78 TFLOP/s in FP16. The peak performances when using the tensor cores are listed as 19.5 TFLOP/s in FP64, 156 TFLOP/s in TF32 and 312 TFLOP/s in FP16 with FP32-based accumulate [51].

The relevant components of the software environment used in this work are GCC 9.3.0, OpenMPI 4.1.0, CUDA NVCC 11.0.221, and CUBLAS 11.0. All benchmarks have been performed with one MPI-rank per node to minimize data replication and 48 CPU-threads per rank. Four CUDA streams are used per GPU and each stream is controlled by a single CPU-thread.

V. PERFORMANCE RESULTS

A. Performance of the NOLSM method

The performance and scaling of the core steps of the NOLSM method P_{NOLSM}, i.e., steps $d.h.$ shown in Fig. 2 including transfers to/from GPUs are evaluated in this section.

1) **Scaling**: The physical system used for weak scaling investigations is water, as described in Section IV-A2. To allow for scaling from a single node, we have used $22 \times 22 \times 22$ basic cells as a basic unit. This basic unit holds $1,022,208$ atoms (1M) and is repeated in z-direction. For n compute nodes used, we have n such basic units. For the strong scaling starting from one node, this single basic unit is used. Additionally, strong scaling is also shown for the large-system case with $102 \times 102 \times 102$ basic cells corresponding to 101,875,968 atoms (102M). Fig. 4 shows the wall time and parallel efficiency results. Due to the favorable parallel nature of the non-orthogonalized local matrix method, a parallel efficiency very close to one is achieved. In addition, Fig. 5 shows the achieved floating-point performance P_{NOLSM} and fraction of peak performance corresponding to the results shown in Fig. 4. As defined in Section IV-B, the floating-point operations counted here only include matrix multiplications on the tensor cores in mixed precision. Hence, the theoretical peak performance of 312 TFLOP/s per GPU in FP16-based matrix multiplies with FP32 accumulation was used for comparison. A fraction of about 43 % of the theoretical peak performance is achieved in this example or, in other words, about 206 PFLOP/s for 384 compute nodes.

2) **Performance of Matrix Iterations on NVIDIA A100**: Fig. 6 shows the increase of performance of cuBLAS-based square matrix multiplications on the tensor cores of the NVIDIA A100 from additional techniques like multiple CUDA streams and CUDA graphs. As a comparison also the performance of the matrix-sign iteration of Eq. 8-9 while using these techniques is shown. Due to the cache-friendly nature of the matrix iteration, the overall performance is higher than for individual matrix multiplications of the same size. The well-known deficiency of the performance for matrix multiplications of small matrices persists but is mitigated by these additional techniques.

3) **Effect of Submatrix Combination Heuristics and Transition to HIV-1 System**: As discussed in Section III-B3, the main benefit of applying the submatrix combination technique is a reduction of the total workload. We investigate the effect with
the example of the HIV-1 capsid with about 62.5 million atoms introduced in Section IV-A3. The heuristic for the combination of submatrices described in Sec. III-B3 reduces the cubic work metric that is used as combination criterion in Eq. 11 by a factor of ≈ 1.65. The second benefit of submatrix combination is to increase the average submatrix dimensions into regions where the matrix iterations on GPU reach higher performance as demonstrated in Fig. 6. Fig. 7 shows the effect of submatrix combination on the numbers and sizes of submatrices for the HIV-1 capsid system. We see that the mean and median submatrix sizes increase, most notably by moving the peak of most common sizes from between 400 and 800 elements to between 800 and 1600 elements with an order of magnitude fewer submatrices. Furthermore, we see two disjoint large groups of sizes. The group of smaller submatrices contains up to around 1200 elements before combination and up to 3200 elements afterward, whereas a group of large submatrices exists between 4000 and 10200 elements that changes little by the combination of submatrices. While the combination process itself is completely driven by neighborhood properties encoded in global matrix entries and thus is agnostic of atom types, the large submatrices are formed around sodium atoms. After combination, most of the other submatrices are formed around hydrogen atoms.

The transition from water to the HIV-1 capsid also impacts the calculation of the matrix elements of the submatrices on the GPU. It becomes more elaborate because matrix elements involving species like sulfur require more effort than, for example for hydrogen or oxygen. For example, a matrix element from our automatic code generation approach between two sulfur atoms requires roughly ten times more exponential functions than a matrix element between two oxygen atoms. However, the impact of this is countered by a third effect of the submatrix combination heuristics: not only the cubic target metric of FLOPs during the matrix multiplications is reduced,
but at the same time also a quadratic metric of submatrix elements used i.e., $\sum_i n_i^2$ improves by a factor of ≈ 3.3, which benefits the construction of the submatrices on the GPUs (see step e. in Fig. 2).

Fig. 8 shows the resulting strong scaling of the NOLSM method for the sustained performance and fraction of theoretical peak performance after combining submatrices for the HIV-1 capsid. Please note that the timing for submatrix combination is not included in the measurements because the combination can be precomputed and has to be refreshed only occasionally during an MD calculation. Thus, the NOLSM method has been shown to reach a sustained performance of about 324.7 PFLOP/s for 384 compute nodes and a fraction of the theoretical peak performance of 67.7% for the HIV-1 capsid with about 62.5 million atoms. In addition, Fig. 9 shows the strong-scaling wall time and parallel efficiency for the NOLSM method for the HIV-1 capsid.

B. Electronic Structure-based Molecular Dynamics

As shown above, the NOLSM method drastically accelerates the computation of the electronic ground state, which is the core computational routine of an electronic structure-based AIMD calculation. In all previous approaches, this part by far dominated the overall runtime and has thus been a focus of this work.

Fig. 10 shows the resulting strong and weak scaling results for water for a complete electronic structure-based AIMD step. The overall scaling of a complete time step suggests that additional effort should be invested in the force evaluation. In total, the use of the NOLSM method has enabled the calculation of an electronic structure-based AIMD step for a system containing more than 100 million atoms in under one hour for the first time. Fig. 11 shows the corresponding results for a full AIMD step on the HIV-1 capsid. The total wall time for a complete time step is well below one hour.
VI. IMPLICATIONS

The methods developed in this work have far-reaching implications for both scientific applications and extreme-scale simulation methods on modern computer architectures with accelerators.

From the application point of view, our technique allows for performing electronic structure-based simulations for systems with more than 100 million atoms at quantum mechanical accuracy. This contribution allows the application of ab-initio simulation methods in life-sciences, where simulation of very large molecules or long time scales are required that are typically only accessible to classical methods. Since our new developments and code improvements will be contributed to the official CP2K code, the broad atomistic-simulation community will be able to directly profit from this work.

On the methodological level, our work can be applied and generalized to a large variety of atomistic simulation and computational science problems. A natural extension is to apply the presented methods to DFT because in CP2K the required construction of the Kohn-Sham Hamiltonian also scales nearly linearly [41]. Further, our method to compute exact ensemble averages for observables despite truncation errors in the force computation is neither restricted to AIMD, nor errors introduced by low-precision arithmetic. On the contrary, our approach of using a modified Langevin-type equation is directly applicable to the complete field of MD simulations, in particular for classical methods, and can be used to compensate other forms of approximations that can be modeled as noise, for example, time-step errors, mixed-precision arithmetic or FFT-based Ewald summation for periodic structures [53].

Finally, the submatrix method we have used to compute the matrix sign function in this work is also applicable to other matrix functions, for example, arbitrary polynomials, roots, etc. The precondition is that the sparsity pattern of the initial matrix is approximately preserved under the matrix function. The submatrix method has two main advantages for extreme-scale computing applications: First, it decomposes the problem of computing matrix functions to make it highly parallel while only requiring very little communication. Second, the conversion of the problem from large sparse distributed matrices to much smaller dense local matrices is favorable for GPUs and other accelerators that are optimized for dense matrix algebra. Hence, it is possible to apply the submatrix method in many cases where the core computational problem is a linear eigenproblem that can be reformulated as a matrix function. Examples include the solution of Maxwell’s equations in the frequency domain for electrodynamics simulations by casting the problem as a linear eigenproblem [60].

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time provided by the Paderborn Center for Parallel Computing (PCC). T.D.K. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 716142). T.D.K. and C.P. kindly acknowledge funding from Paderborn University’s research award for “GreenIT”. Finally, we thank Thomas Müller (JSC), Paul F. Baumeister (JSC), and Markus Hrywniak (NVIDIA) for valuable discussions.

REFERENCES

[1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., vol. 21, no. 6, p. 1087, 1953.
[2] A. Rahman, “Correlations in the Motion of Atoms in Liquid Argon”, Phys. Rev., vol. 136, no. 2A, A405–A411, 1964.
[3] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations”, J. Am. Chem. Soc., vol. 114, no. 25, pp. 10024–10035, 1992.
[4] A. D. MacKerell Jr. et al., “All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins”, J. Phys. Chem. B, vol. 102, no. 18, pp. 3586–3616, 1998.
[5] A. P. Bartok et al., “Machine learning unifies the modeling of materials and molecules”, Science Advances, vol. 5, no. 12, e1701816, 2017.
[6] J. A. Keith et al., “Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems”, arXiv: 2102.06321 [physics.chem-ph].
[7] R. Car and M. Parrinello, “Unified Approach for Molecular Dynamics and Density-Functional Theory”, Phys. Rev. Lett., vol. 55, no. 22, p. 2471–2474, 1985.
[8] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Rev. Mod. Phys., vol. 64, no. 4, pp. 1045–1097, 1992.
[9] T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, “Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics”, Phys. Rev. Lett., vol. 98, no. 6, p. 066401, 2007.
[10] T. D. Kühne, “Second generation Car–Parrinello molecular dynamics”, WIREs Comput. Mol. Sci., vol. 4, pp. 391–406, 2014.
[11] S. Goedecker, “Linear scaling electronic structure methods”, Rev. Mod. Phys., vol. 71, no. 4, pp. 1085–1123, 1999.
[12] W. Yang, “Direct calculation of electron density in density-functional theory”, Phys. Rev. Lett., vol. 66, no. 11, pp. 1438–1441, 1991.
[13] G. Galli and M. Parrinello, “Large scale electronic structure calculations”, Phys. Rev. Lett., vol. 69, no. 24, pp. 3547–3550, 1992.
[14] D. Richters and T. D. Kühne, “Self-consistent field theory based molecular dynamics with linear system-size scaling”, J. Chem. Phys., vol. 140, no. 13, pp. 134109, 2014.
[15] E. Prodan and W. Kohn, “Nearsightedness of electronic matter”, Proc. Nat. Acad. Sci. USA, vol. 102, no. 33, pp. 11635–11638, 2005.
[16] P. Klavik, A. Malossi, C. Bekas, and A. Curioni, “Changing Computing Paradigms Towards Power Efficiency”, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 39, no. 2018, p. 372, 2014.
[17] C. Plessl, M. Platzer, and P. J. Schreier, “Approximate Computing”, Inform. Spektrum, vol. 39, pp. 396–399, 2015.
[18] K. Karhan, R. Z. Khaliullin, and T. D. Kühne, “On the role of interfacial hydrogen bonds in “on-water” catalysis”, The Journal of chemical physics, vol. 141, no. 22, 12B632_1, 2014.
[19] V. Rengaraj, M. Lass, C. Plessl, and T. D. Kühne, “Accurate Sampling with Noisy Forces from Approximate Computing”, Comput. Physics, vol. 8, no. 39, pp. 1–11, 2020.
[20] J. VandeVondele, U. Borstnik, and J. Hutter, “Linear Scaling Self-Consistent Field Calculations with Millions of Atoms in the Condensed Phase”, J. Chem. Theory Comput., vol. 8, no. 10, pp. 3565–3573, 2012.
[21] M. Lass, S. Mohr, H. Wiebeier, T. Kühne, and C. Plessl, “A Massively Parallel Algorithm for the Approximate Calculation of Inverse p-th Roots of Large Sparse Matrices”, in Proc. Platform for Advanced Scientific Computing (PASC) Conference, ACM, 2018.
