Alpha Weakly Semi Closed Sets in Topological Spaces

R. S. Suriya1* and T. Shyla Issac Mary2

1 Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India
2 Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India (Affiliated to Manonmaniam Sundaranar University, Abishekpati, Tirunelveli, India)

* Corresponding Author: Research Scholar, Reg. No – 18113112092021, suriyaram4212@gmail.com

Available online at: www.isroset.org
Accepted 12/Aug/2018. Online 30/Aug/2018

Abstract – N. Levine introduced the concept of generalized closed (briefly g-closed) sets in topology. Researches in topology studied several versions of generalized closed sets and they characterized that sets. In this paper, we introduce a new class of closed sets which is called Alpha weakly semi closed sets in topological spaces and we study the relationships of this set with some other generalized closed sets. Also we study some of its basic properties.

AMS Classification 2010: 54A05, 54D10
Key words: αws-closed, ws-open, α-closure.

I. INTRODUCTION

In 1970, Levine [1] introduced generalized closed (briefly g-closed) sets in topology. Researches in topology studied several versions of generalized closed sets. In 2000, M. Sheik John [2] introduced and investigated w-closed sets in topology. In 2017, Veeresha A Sajjanar [3] introduced weakly semi closed sets and investigated some of their properties. In this paper, Section I contains the concept of Alpha Weakly semi-closed (briefly αws-closed) set is introduced and their properties are investigated. Section II contains the Certain preliminary concepts, Section III contains the concept of αws-closed set is studied and a diagram also included which states the relationships among the generalized closed sets in topological spaces and Section IV contains the conclusions and Section V contains the references.

II. PRELIMINARIES

Throughout this paper X and Y represents the topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space X, clA and intA denote the closure of A and the interior of A respectively. X – A denotes the complement of A in X. We recall the following definitions.

Definition 2.1: A subset A of a space X is called

(i) pre-open [4] if A ⊆ int clA and pre-closed if cl intA ⊆ A.
(ii) semi-open [5] if A ⊆ cl intA and semi-closed if int clA ⊆ A.
(iii) semi-pre-open [6] if A ⊆ cl int clA and semi-pre-closed if int cl intA ⊆ A.
(iv) a-open [7] if A ⊆ int cl intA and a-closed if cl int clA ⊆ A.
(v) regular open [8] if A = int clA and regular closed if cl intA = A.
(vi) b-open [9] if A ⊆ cl intA ∪ int clA and b-closed if cl intA ∩ int clA.
(vii) π-open [10] if A is the union of regular open sets and π-closed if A is the intersection of regular closed sets.

The α-closure (resp. semi-closure, resp. semi-pre-closure, resp. pre-closure, resp. b-closure) of a subset A of X is the intersection of all α-closed (resp. semi-closed, resp. semi-pre-closed, resp. pre-closed, resp. b-closed) sets containing A and is denoted by aclA (resp. sclA, resp. spclA, resp. pclA, resp. bclA).

Definition 2.2: A subset A of a space X is called
Lemma 2.4: [34] In an extremally disconnected space X,

(i) \(pclA = spclA \).
(ii) \(aclA = sclA \).

Lemma 2.5: [34] In an extremally disconnected sub maximal space X,
\(clA = aclA = sclA = pclA = spclA \).
Lemma 2.6: [6] For any subset A of X, the following results hold:

(i) $scl A = A \cup int cl A$.
(ii) $pcl A = A \cup cl int A$.
(iii) $spel A = A \cup int cl int A$.
(iv) $acl A = A \cup cl int cl A$.

III. ALPHA WEAKLY SEMI CLOSED SETS

In this section, we introduce a new type of closed sets namely αWS-closed sets in topological spaces and study some of their properties.

Definition 3.1: A subset A of a space X is called Alpha Weakly Semi closed (briefly αWS-closed) if $acl A \subseteq U$ whenever $A \subseteq U$ and U is ws-open.

Proposition 3.2:

(i) Every closed set is αWS-closed.
(ii) Every α-closed set is αWS-closed.
(iii) Every π-closed set is αWS-closed.
(iv) Every regular closed set is αWS-closed.
(v) Every $(gsp)^*$-closed set is αWS-closed.

Proof:

(i) Let A be a closed set in X. Let $A \subseteq U$ and U is ws-open. Since A is closed, $cl A = A$.
 But $acl A \subseteq cl A$. Therefore $acl A \subseteq U$. Hence A is αWS-closed in X.
(ii) Let A be a α-closed set in X. Let $A \subseteq U$ and U is ws-open. Since A is α-closed, $acl A = A$.
 Therefore $acl A \subseteq U$. Hence A is αWS-closed in X.
(iii) Let A be a π-closed subset of X. Since every π-closed set is closed [19] and by (i), we have A is αWS-closed.
(iv) Let A be a regular-closed subset of X. Since every regular-closed set is closed [8] and
 By (i), we have A is αWS-closed.
(v) Let A be a $(gsp)^*$-closed set in X. Let $A \subseteq U$ and U is ws-open. Since every ws-open set is
 gsp-open and A is $(gsp)^*$-closed, $cl A \subseteq A$. But $acl A \subseteq cl A$. Therefore $acl A \subseteq U$. Hence A
 is αWS-closed in X.

The reverse implications are not true as shown in Examples 3.3, 3.4, 3.5 and 3.6

Example 3.3: Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then
 $\{b\}$ is αWS-closed but not regular closed.

Example 3.4: Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. Then
 $\{b\}$ is αWS-closed but not α-closed.
 $\{b\}$ is αWS-closed but not $(gsp)^*$-closed.

Example 5: Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$. Then $\{c\}$ is αWS-closed but not π-closed.

Example 3.6: Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{a, b\}, \{a, b, c\}, X\}$. Then
 $\{a, c, d\}$ is αWS-closed but not α-closed.

Proposition 3.7:

(i) Every αWS-closed set is ag-closed.
(ii) Every αWS-closed set is gpr-closed.
(iii) Every αWS-closed set is gb-closed.
(iv) Every αWS-closed set is rgb-closed.
(v) Every αws-closed set is gp-closed.
(vi) Every αws-closed set is gs-closed.
(vii) Every αws-closed set is agr-closed.
(viii) Every αws-closed set is gab-closed.
(ix) Every αws-closed set is sg-closed.
(x) Every αws-closed set is sgb-closed.

Proof:
(i) Let A be a αws-closed subset of a space X. Let A ⊆ U and U is open. Since every open set is
ws-open in X and A is αws-closed, aclA ⊆ U. Hence A is ag-closed.
(ii) Let A be a αws-closed set in X. Let A ⊆ U and U is regular open. Since every regular open
set is ws-open in X and since A is αws-closed, aclA ⊆ U. But pclA ⊆ aclA. Therefore
pclA ⊆ U. Hence A is gpr-closed.
(iii) Let A be a αws-closed set in X. Let A ⊆ U and U is open. Since every open set is ws-open
in X & Since A is αws-closed, aclA ⊆ U. But bclA ⊆ aclA. Therefore bclA ⊆ U. Hence A
is gb-closed in X.
(iv) Let A be a αws-closed set in X. Let A ⊆ U and U is regular open. Since every regular open
set is ws-open in X and since A is αws-closed, aclA ⊆ U. But bclA ⊆ aclA. Therefore bclA ⊆ U. Hence A
is rgb -closed.
(v) Let A be a αws-closed set in X. Let A ⊆ U and U is open. Since every open set is ws-open
and since A is αws-closed, aclA ⊆ U. But pclA ⊆ aclA. Therefore pclA ⊆ U. Hence A is
gp-closed.
(vi) Let A be a αws-closed set. Let A ⊆ U and U is open. Since every open set is ws-open and
since A is αws-closed, aclA ⊆ U. But aclA ⊆ aclA. Therefore pclA ⊆ aclA. Hence A is
gs-closed.
(vii) Let A be a αws-closed set. Let A ⊆ U and U is regular open. Since every regular open set
is ws-open and since A is αws-closed, aclA ⊆ U. Hence A is agr-closed.
(viii) Let A be a αws-closed set. Let A ⊆ U and U is α-open. Since every α-open set
ws-open and since A is αws-closed, aclA ⊆ U. But bclA ⊆ aclA. Therefore bclA ⊆ U.
Hence A is gab-closed.
(ix) Let A be a αws-closed set. Let A ⊆ U and U is semi-open. Since every semi-open set is
ws-open and since A is αws-closed, aclA ⊆ U. But aclA ⊆ aclA. Therefore aclA ⊆ U.
Hence A is sg-closed.
(x) Let A be a αws-closed set. Let A ⊆ U and U is semi-open. Since every semi-open set
ws-open and since A is αws-closed, aclA ⊆ U. But bclA ⊆ aclA. Therefore bclA ⊆ U.
Hence A is sgb-closed.

The reverse implications are not true as shown in Example 3.8, 3.9 And 3.10

Example 3.8: Let X = \{a, b, c, \} with topology \(\tau = \{\phi, \{a\}, \{a, b\}, X\} \). Then
\(\{a\} \) is ag-closed but not αws-closed.
\(\{a\} \) is gpr-closed but not αws-closed.
\(\{a, c\} \) is gb-closed but not αws-closed.
\(\{a\} \) is rgb-closed but not αws-closed.
\(\{a, c\} \) is gp-closed but not αws-closed.
\(\{a, c\} \) is gs-closed but not αws-closed.
\(\{a\} \) is agr-closed but not αws-closed.

Example 3.9: Let X = \{a, b, c, d\} with topology \(\tau = \{\phi, \{a, b\}, \{a, b, c\}, X\} \). Then
\(\{a\} \) is gab-closed but not αws-closed.

Example 3.10: Let X = \{a, b, c, d\} with topology \(\tau = \{\phi, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\} \). Then
\(\{a\} \) is sg-closed but not αws-closed.
\{a\} is sgb-closed but not αws-closed.

The concept “αws-closed” is independent from the concepts “g-closed”, “gr-closed”, “g*-closed”, “rg-closed”, “g\#p\#-closed”, “*g-closed”, “πg-closed” as seen in the following Examples 3.11 & 3.12

Example 3.11: Let $X = \{a, b, c\}$ with topology $τ = \{ϕ, \{a\}, \{a, b\}, X\}$.
- \{b\} is αws-closed but not g-closed and \{a, c\} is g-closed but not αws-closed.
- \{b\} is αws-closed but not gr-closed and \{a, c\} is gr-closed but not αws-closed.
- \{b\} is αws-closed but not g\#p\#-closed and \{a, c\} is g\#p\#-closed but not αws-closed.

Example 3.12: Let $X = \{a, b, c, d\}$ with topology $τ = \{ϕ, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$.
- \{c\} is αws-closed but not rg-closed and \{a, b\} is rg-closed but not αws-closed.
- \{c\} is αws-closed but not *g-closed and \{a, b, d\} is *g-closed but not αws-closed.
- \{c\} is αws-closed but not πg-closed and \{b, d\} is πg-closed but not αws-closed.

Thus the above discussions lead to the following diagram. In this diagram, “A → B” means A implies B but not conversely and “A ↔ B” means A and B are independent of each other.

Figure 1

Theorem: 3.13

The union of two αws-closed subsets of X is αws-closed set.

Proof:

Let A and B be any two αws-closed sets in X. Let $A \subseteq U$ & U is ws-open, $B \subseteq U$ & U is ws-open. Then $acl(A) \subseteq U$ and $acl(B) \subseteq U$. Since $A \subseteq U$ and $B \subseteq U$, then $A \cup B \subseteq U$

$⇒ acl(A) \cup acl(B) \subseteq U$. We know that $acl(A \cup B) = acl(A) \cup acl(B)$ [35].
Hence \(acl (A \cup B) = acl(A) \cup acl (B) \subseteq U \). Hence \(acl (A \cup B) \subseteq U \). Therefore \(A \cup B \) is \(\text{aws-closed} \) in \(X \).

Theorem: 3.14

If a subset \(A \) of \(X \) is \(\text{aws-closed} \) in \(X \), then \(acl A - A \) does not contain any non-empty \(\text{ws-closed} \) set in \(X \).

Proof:

Let \(A \) be a \(\text{aws-closed} \) set in \(X \) and \(F \) be a \(\text{ws-closed} \) subset of \(acl A - A \).

Then \(F \subseteq acl A \cap (X - A) \implies F \subseteq acl A \& F \subseteq X - A \implies A \subseteq X - F \)

Since \(A \) is \(\text{aws-closed} \) set and \(X - F \) is \(\text{ws-open} \), then \(acl A \subseteq X - F \) (ie) then \(F \subseteq X - acl A \)

We have \(F \subseteq acl A \). Therefore, \(F \subseteq (X - acl A) \cap acl A = \phi \). Thus \(F \subseteq \phi \).

Hence \(acl A - A \) does not contain any non-empty \(\text{ws-closed} \) set in \(X \).

Theorem: 3.15

If a subset \(A \) is \(\text{aws-closed} \) set in \(X \) and, \(A \subseteq B \subseteq acl A \), then \(B \) is also \(\text{aws-closed} \) set.

Proof:

Let \(A \) be a \(\text{aws-closed} \) set in \(X \) such that \(A \subseteq B \subseteq acl (A) \). To prove \(B \) is also \(\text{aws-closed} \) set in \(X \). It is enough to prove \(acl (B) \subseteq U \). Let \(U \) be a \(\text{ws-open} \) set in \(X \) such that \(B \subseteq U \).

Since \(A \subseteq B, A \subseteq U \). Also since \(A \) is \(\text{aws-closed} \), \(acl (A) \subseteq U \). Now, \(B \subseteq acl (A) \)

\(\implies acl (B) \subseteq acl [acl (A)] = acl A \subseteq U [36] \). (ie) \(acl (B) \subseteq U \). Therefore, \(B \) is \(\text{aws-closed} \) set in \(X \).

Theorem: 3.16

For every point \(x \) in a space \(X \), \(X - \{ x \} \) is \(\text{aws-closed} \) or \(\text{ws-open} \).

Proof: Case (i)

suppose \(X - \{ x \} \) is not \(\text{ws-open} \). Then \(X \) is the only \(\text{ws-open} \) set containing \(X - \{ x \} \)

Then using Definition 3.1 \(acl (X - \{ x \}) \subseteq X \). Hence \(X - \{ x \} \) is \(\text{aws-closed} \).

Case (ii)

Suppose \(X - \{ x \} \) is not \(\text{aws-closed} \). Then there exists a \(\text{ws-open} \) set \(U \) containing \(X - \{ x \} \) such that \(acl (X - \{ x \}) \not\subseteq U \).

Therefore \(acl (X - \{ x \}) \) is either \(X - \{ x \} \) or \(X \). Therefore Take

\(acl (X - \{ x \}) = X - \{ x \} \), then \(X - \{ x \} \) is \(\alpha \)-closed. By Proposition 3.2 (i) every \(\alpha \)-closed set is \(\text{aws-closed} \), \(X - \{ x \} \) is \(\text{aws-closed} \). This is contradiction to our assumption. Therefore

\(acl (X - \{ x \}) = X \). To prove \(X - \{ x \} \) is \(\text{ws-open} \). Suppose \(X - \{ x \} \) is not \(\text{ws-open} \). By case (i)

\(X - \{ x \} \) is \(\text{ws-open} \). Which is contradiction to our assumption. Therefore \(X - \{ x \} \) is \(\text{ws-open} \).

Theorem: 3.17

Let \(X \) and \(Y \) are topological spaces and \(A \subseteq Y \subseteq X \). Suppose that \(A \) is \(\text{aws-closed} \) set in \(X \) then \(A \) is \(\text{aws-closed} \) relative to \(Y \).

Proof:

Given \(A \subseteq Y \subseteq X \) and \(A \) is \(\text{aws-closed} \) in \(X \). To prove that \(A \) is \(\text{aws-closed} \) relative to \(Y \).
Let $A \subseteq Y \cap U$, where U is ws-open in X. Since A is αws-closed, then $\alpha cl A \subseteq U$. This implies $Y \cap \alpha cl A \subseteq Y \cap U$, where $Y \cap \alpha cl A$ is the α-closure of A in Y and $Y \cap U$ is ws-open in Y. Therefore $\alpha cl A \subseteq Y \cap U$ in Y. Hence, A is αws-closed set relative to Y.

Theorem: 3.18

Let A be αws-closed in X. Then A is α-closed iff $\alpha cl A - A$ is ws-closed.

Proof:

Suppose A is a α-closed set. Then $\alpha cl A = A \Rightarrow \alpha cl A - A = \emptyset$ which is ws-closed.

Conversely, suppose $\alpha cl A - A$ is ws-closed. Since A is αws-closed, then by Theorem 3.14, $\alpha cl A - A = \emptyset$, (ie) $\alpha cl A = A$. Hence A is α-closed.

Theorem: 3.19

Suppose A is ws-open and A is αws-closed. Then A is α-closed.

Proof:

Given that A is ws-open and A is αws-closed. Then $A \subseteq A \Rightarrow \alpha cl A \subseteq A\subseteq A$

Hence A is α-closed.

Theorem: 3.20

In a topological space if $X \alpha O(X) = \{X, \emptyset\}$ then every subset of X is a αws-closed set.

Proof:

Given that X is a topological space and $X \alpha O(X) = \{X, \emptyset\}$. Let A be a subset of X. Suppose $A = \emptyset$, then by Theorem 3.4, \emptyset is αws-closed set. Suppose $A \neq \emptyset$, then X is only α-open set containing A. Therefore $\alpha cl A \subseteq X$. Hence A is αws-closed set in X.

Theorem: 3.21

If A is regular open and αgr-closed set then A is αws-closed set in X.

Proof:

Suppose A is a regular open set and αgr-closed. Let U be any ws-open set in X $\exists: A \subseteq U$.

Since A is regular open and αgr-closed set in X, by Definition $\alpha cl A \subseteq A$, then $\alpha cl A \subseteq A \subseteq U$. Hence A is αws-closed.

Definition: 3.22

The intersection of all ws-open subsets of X containing A is called the ws-kernel of A and is denoted by ws-ker (A).

Theorem: 3.23

If A is a subset of X is αws-closed iff $\alpha cl A \subseteq ws$-ker (A).

Proof:

Suppose A is αws closed. Then $\alpha cl A \subseteq U$ whenever $A \subseteq U \& U$ is ws-open.

To prove $\alpha cl(A) \subseteq ws$-Ker (A), Take $x \in \alpha cl(A)$. To prove $x \in ws$-ker (A)

Suppose $x \notin ws$-ker(A) then there exist a ws-open set U containing A such that $x \notin U$. Since A is αws-closed, then $\alpha cl A \subseteq U \Rightarrow x \notin \alpha cl(A)$, Which is a contradiction to our assumption. Therefore $\alpha cl A \subseteq ws$-ker (A). Conversely, Suppose $\alpha cl A \subseteq ws$-ker (A). To prove A is
aws-closed. If U is any ws-open set containing A, then $ws-ker A \subseteq U \Rightarrow acl A \subseteq U$. Hence A is aws-closed in X.

Note: 3.24 [37]

Let x be a point of X. Then $\{x\}$ is either nowhere dense or pre-open.

Remark: 3.25 [37]

By the above note we take the following decomposition of a given topology X, namely

$$X = X_1 \cup X_2$$

Where $X_1 = \{x \in X; \{x\} \text{ is nowhere dense}\}$

$$X_2 = \{x \in X; \{x\} \text{ is pre-open}\}$$

This is called Jankovic-Reilly Decomposition.

Theorem: 3.26

For any subset A of X, $X_2 \cap acl A \subseteq ws-ker (A)$

Proof:

To prove $X_2 \cap acl (A) \subseteq ws-ker(A)$. Consider $x \in X_2 \cap acl (A)$. To prove $x \in ws-ker(A)$

Suppose $x \not\in ws-ker (A)$, then there is a ws-open set U containing A such that $x \not\in U$.

If $F = X - U$, then F is ws-closed. Now, $x \in acl (A) \Rightarrow acl (\{x\}) \subseteq acl (acl (A)) \subseteq acl (A)$

Since $a cl (\{x\}) \subseteq acl (A)$, we get $int (acl (\{x\})) \subseteq int (acl (A)) \subseteq A \cap int (acl (A))$

Therefore $int (acl (\{x\})) \subseteq A \cap int (cl (A))$. Now, take $x \in X_2$. We have $x \not\in X_1$ and so $int (cl (\{x\})) \neq \emptyset$. Let $y \in int (cl (\{x\}))$. Consider a point $y \in A \cap int (cl (\{x\}))$

$\Rightarrow y \in A \cap cl (\{x\}) \Rightarrow y \in A \cap F$ which is a contradiction to $x \not\in ws-ker (A)$ [38]. Therefore $x \in ws-ker (A)$. Hence $X_2 \cap acl (A) \subseteq ws-ker (A)$.

Theorem 3.27:

A subset A of X is aws-closed iff $X_1 \cap acl (A) \subseteq A$

Proof:

Consider A is aws-closed. To prove $X_1 \cap acl (A) \subseteq A$. Let $x \in X_1 \cap acl (A)$, Then $x \in X_1$ and $x \in acl (A)$. Since $x \in X_1$, $int (cl (\{x\})) = \emptyset$. Hence $\{x\}$ is semi-closed. Every semi closed set is ws-closed in X [15]. $\{x\}$ is ws-closed. If $x \not\in A$, then $U = X - \{x\}$ is ws-open set containing A and so $acl A \subseteq U$. Since $x \in acl (A)$, $x \not\in U$ which is a contradiction to $x \not\in U$.

Hence $X_1 \cap acl (A) \subseteq A$. Conversely, let $X_1 \cap acl (A) \subseteq A$. To prove A is aws-closed

Since $X_1 \cap acl (A) \subseteq A$, $X_1 \cap acl (A) \subseteq ws-ker (A)$.

Now, $acl (A) = X \cap acl (A) = (X_1 \cup X_2) \cap acl (A) = (X_1 \cap acl (A)) \cup (X_2 \cap acl (A))$

$acl (A) \subseteq ws-ker (A)$. Then by Theorem 3.23 A is aws-closed.

Theorem: 3.28

Arbitrary intersection of aws-closed set is aws-closed.

Proof:

Let $\{A_i\}$ be the collection aws-closed sets of X. Let $A = \cap A_i$. Since $A \subseteq A_i$ for each i,

then $acl (A) \subseteq acl (A_i) \Rightarrow X_i \cap acl (A) \subseteq X_i \cap acl (A_i)$ for each i.

© 2018, IJSRMSS All Rights Reserved 240
Since each A_i is αws-closed, then by theorem 3.28, $X_1 \cap acl(A_i) \subseteq A_i$ for each i.
Thus $X_1 \cap acl(A) \subseteq X_1 \cap acl(A_i) \subseteq A_i \subseteq A$ for each i. By Theorem 3.27, A is αws-closed.

Theorem: 3.29

In a door space X, every αws-closed set is α-closed.

Proof:

Let A be a αws-closed set in X. Since X is a door space, by Definition 2.3(iii), A is either open or closed. If A is closed, then A is α-closed. If A is open, then A is ws-open.
Since A is αws-closed & A is ws-open, by Theorem 3.19, A is α-closed.

Theorem: 3.30

In an extremally disconnected space X, every αws-closed set is gs-closed.

Proof:

Let X be an extremally disconnected space and A be a αws-closed subset of X.
Let $A \subseteq U$ & U be open. Since every open set is ws-open in X and since A is αws-closed, $aclA \subseteq U$. Since X is extremally disconnected space, by Lemma2.4(ii), $sclA = aclA \subseteq U$
$\Rightarrow sclA \subseteq U$. Hence A is gs-closed.

Theorem: 3.31

In an extremally disconnected sub maximal space X, every αws-closed set is w-closed.

Proof:

Let X be an extremally disconnected space and A be a αws-closed subset of X.
Let $A \subseteq U$ & U is semi-open. Since every semi open set is ws-open & since A is αws-closed, $aclA \subseteq U$. Since X is extremally disconnected submaximal space, by Lemma 2.5, $clA \subseteq U$.
Hence A is w-closed.

Theorem: 3.32

In a T_b space X, Every gs-closed set is αws-closed.

Proof:

Let A be a gs-closed set. Since X is T_b space, by Definition 2.3 (i), A is closed. By Preposition 3.2(i) A is αws-closed.

Theorem: 3.33

In an α-space X, every α-closed set is ws-closed.

Proof: Let A be a α-closed set in X. Since X is an α-space, by Definition 2.3(ii), A is closed. By Preposition 3.2(ii), A is αws-closed.

IV. CONCLUSION

In this paper, we have focused on Alpha Weakly Semi closed sets in topological spaces and found some important properties. In future this concept can be extended to bitopological and ideal topological spaces.

REFERENCES

[1] N. Levine, “Generalized closed sets in topology”, Rend. Circ. Mat. Palermo, 19 (2), 89 - 96, 1970.
[2] M. Sheik John, “On w-closed sets in topology”, Acta Ciencia Indica, 4, 389 - 392, 2000.
[3] Basavaraj M. Ittanagi and Veeresha A Sajjanar, “On weakly semi closed sets in topological Spaces”, Int. J. of Mathematical Archive- 8(9), 126 - 134, 2017.
[4] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, “On pre-continuous and weak pre- continuous mappings”, Proc. Math. and Phys. Soc. Egypt 53, 47–53, 1982.
[5] N. Levine, “Semi-open sets and semi-continuity in topological spaces”, Amer. Math. monthly, 70, 36 - 41, 1963.
[6] D. Andrijevic, “Semi-preopen sets”, Mat. Vesnik 38, 24 - 32, 1986.
[7] O. Njastad, “On some classes of nearly open sets”, Pacific J. Math., 15, 961 - 970, 1965.
[8] M. Stone, “Application of the theory of Boolean rings to general topology,” Trans. Amer. Math. Soc., 41, 374 - 481, 1937.
[9] D. Andrijevic, “On b-open sets”, Mat. Vesnik 48, 59 - 64, 1996.
[10] V. Zaitsav, “On certain classes of topological spaces and their bicompletifications”, Dokl. Akad. Nauk SSSR, 178, 778 -779, 1968.
[11] N. Palaniappan and Rao.K.C, “Regular generalized closed sets”, Kyungpook Math. J., 33 (2), 211 - 219, 1993.
[12] H. Maki, R. Devi and K. Balachandran, “Associated topologies of generalized α-closed sets and α-generalized closed sets”, Mem. Fac. sci. Kochi. Univ. Ser. A. Math., 15, 51 - 63, 1994.
[13] H. Maki, R. Devi and K. Balachandran, “Generalized α -closed sets in topology”, Bull. Fukuoku Univ. Ed. Part III, 42, 13 - 21, 1993.

Authors Profile

Mrs. Suriya R. S. pursued MSc and Mphil from Manonmaniam Sundaranar University, Thirunelveli, TamilNadu in 2013 & 2015. She has worked as assistant professor in Department of Mathematics from VTM College of arts and science, Arumanai, Tamilnadu. Her main research work focuses on Topological spaces.

T.Shylla Issac Mary pursued MSc, Mphil and Ph.D from M. S. University, M. K. University and M.S. University in 1999, 2001 & 2012. She is currently working as assistant professor in Department of Mathematics from Nesamony Memorial Christian College, Marthandam since 2003. She has published 25 papers in reputed national and international journals. Her area of research is Topology. Under her guidance 2 scholars awarded Ph.D and at present 5 scholars doing Ph.D. She has 15 years of teaching experience and 6 years of research experience.