Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk

William W. Greenwald1,11, Joshua Chiou2,11, Jian Yan3,4,11, Yunjiang Qiu1,3,11, Ning Dai5,11, Allen Wang6,7, Naoki Nariai6, Anthony Aylward1, Jee Yun Han7, Nikita Kadakia6, Laura Regue5, Mei-Lin Okino6, Frauke Drees6, Dana Kramer8, Nicholas Vinckier6, Liliana Minichiello8,9, David Gorkin7, Joseph Avruch5, Kelly A. Frazer6,12, Maike Sander6,10,12, Bing Ren3,7,10,12 & Kyle J. Gaulton6,12

Genetic variants affecting pancreatic islet enhancers are central to T2D risk, but the gene targets of islet enhancer activity are largely unknown. We generate a high-resolution map of islet chromatin loops using Hi-C assays in three islet samples and use loops to annotate target genes of islet enhancers defined using ATAC-seq and published ChIP-seq data. We identify candidate target genes for thousands of islet enhancers, and find that enhancer looping is correlated with islet-specific gene expression. We fine-map T2D risk variants affecting islet enhancers, and find that candidate target genes of these variants defined using chromatin looping and eQTL mapping are enriched in protein transport and secretion pathways. At IGF2BP2, a fine-mapped T2D variant reduces islet enhancer activity and IGF2BP2 expression, and conditional inactivation of IGF2BP2 in mouse islets impairs glucose-stimulated insulin secretion. Our findings provide a resource for studying islet enhancer function and identifying genes involved in T2D risk.
Genetic risk of type 2 diabetes (T2D) is largely mediated through variants affecting enhancer activity in pancreatic islets. The genes regulated by islet enhancers are largely unknown, however, impeding discovery of disease-relevant gene networks and pathways perturbed by risk variants and the development of novel therapeutic avenues. The spatial organization of chromatin plays a critical role in tissue-specific gene regulation, and recently developed high-throughput techniques, such as Hi-C, enable the characterization of physical relationships between genomic regions in human tissues genome-wide. Such analysis enables the characterization of physical relationships between genomic regions in human tissues genome-wide. The spatial organization of chromatin plays a critical role in tissue-specific gene regulation, and recently developed high-throughput techniques, such as Hi-C, enable the characterization of physical relationships between genomic regions in human tissues genome-wide. We performed genome-wide chromatin conformation capture using in situ Hi-C in three islet samples, two of which were sequenced to a depth of >1 billion reads (Supplementary Table 1). Contact matrices from islet Hi-C assays were strongly correlated across samples (Spearman ρ > 0.80) (Supplementary Fig. 2a). We called chromatin loops at 5, 10, and 25 kb resolution with HICCCUPS using reads from each sample individually, as well as with reads pooled from all three samples (Fig. 1b). We merged the resulting four sets of loop calls where both anchors overlapped at 20 kb resolution (see Methods) to create a combined set of 11,924 islet Hi-C loops (Supplementary Table 3). The median distance between loop anchor midpoints was 255 kb, and nearly 10% were over 1 Mb in size (Supplementary Fig. 2b). This established a map of chromatin loops in human pancreatic islets.

We next determined the relationship between islet accessible chromatin and chromatin looping. Islet accessible chromatin signal was largely localized to islet loop anchors, with the strongest signal at anchor midpoints (Fig. 1c). Nearly half (48.7%) of all islet accessible chromatin sites were within 25 kb of an anchor, and 16.8% directly overlapped an anchor. Sites most enriched (empirical \(P < 1.5 \times 10^{-4}\)) for direct overlap with chromatin loop anchors were those in a CTCF-binding state (7.5-fold), followed by active enhancer (TssA: 3.9-fold; TssFlnk: 3.3-fold), and active enhancer (EnhA1: 2.4-fold) states (Fig. 1d). We further mapped the relationship between pairs of islet accessible chromatin sites directly connected by loop anchors (Supplementary Fig. 2c). The most significantly enriched anchor interactions were between active enhancer and promoter states (EnhA1-TssA OR = 1.28, Fisher’s exact \(P = 1.53 \times 10^{-37}\); EnhA1-EnhA1 OR = 1.37, \(P = 1.87 \times 10^{-38}\); TssA-TssA OR = 1.42, \(P = 6.15 \times 10^{-36}\)). We also observed strong enrichment for interactions between sites within the CTCF-binding state (CTCF-CTCF OR = 1.16; Fisher’s exact \(P = 1.1 \times 10^{-17}\)) (Fig. 1e). These results demonstrate that islet chromatin loops are prominently enriched for CTCF binding, as well as active promoter and enhancer regions.

Results
Islet chromatin accessibility and 3D chromatin architecture. We first defined islet accessible chromatin using ATAC-seq generated from four pancreatic islet samples (Supplementary Table 1). We called sites for each sample separately using MACS13, and merged sites to create a combined set of 105,734 islet accessible chromatin sites. We observed strong correlation in both accessible chromatin signal and peak calls across samples (Supplementary Fig. 1a), as well as concordance with peak calls from the majority of published ATAC-seq data from 19 islet samples and FACS-sorted beta and alpha cells7,14,15 (Supplementary Fig. 1b, c). We collected previously published ChIP-seq data of histone modification and transcription factor binding in primary islets from two studies4,5 and utilized these data to call chromatin states with ChromHMM16 (Supplementary Fig. 1d). Accessible chromatin predominantly mapped within active enhancer (EnhA1) and promoter (TssA) states (Fig. 1a). We functionally annotated islet accessible chromatin peaks using chromatin states to define active enhancers and promoters, as well as other classes of islet accessible chromatin (Supplementary Data 1). We identified 44,860 active enhancers which, in line with previous reports14,17, were distal to promoters (Supplementary Fig. 1e), more tissue-specific (Supplementary Fig. 1f), overlapped islet transcription factor ChIP-seq sites (Supplementary Fig. 1g), and preferentially harbored sequence motifs for FOXA, RXF, NEUROD, and other islet transcription factors (Supplementary Data 2). These results define active enhancers and other classes of accessible chromatin in pancreatic islets.

Defining the target genes of enhancers has been challenging as they frequently control non-adjacent genes over large genomic distances through chromatin looping. We performed genome-wide chromatin conformation capture using in situ Hi-C in three islet samples, two of which were sequenced to a depth of >1 billion reads (Supplementary Table 1). Contact matrices from islet Hi-C assays were strongly correlated across samples (Spearman ρ > 0.80) (Supplementary Fig. 2a). We called chromatin loops at 5, 10, and 25 kb resolution with HICCCUPS using reads from each sample individually, as well as with reads pooled from all three samples (Fig. 1b). We merged the resulting four sets of loop calls where both anchors overlapped at 20 kb resolution (see Methods) to create a combined set of 11,924 islet Hi-C loops (Supplementary Table 3). The median distance between loop anchor midpoints was 255 kb, and nearly 10% were over 1 Mb in size (Supplementary Fig. 2b). This established a map of chromatin loops in human pancreatic islets.

We next determined the relationship between islet accessible chromatin and chromatin looping. Islet accessible chromatin signal was largely localized to islet loop anchors, with the strongest signal at anchor midpoints (Fig. 1c). Nearly half (48.7%) of all islet accessible chromatin sites were within 25 kb of an anchor, and 16.8% directly overlapped an anchor. Sites most enriched (empirical \(P < 1.5 \times 10^{-4}\)) for direct overlap with chromatin loop anchors were those in a CTCF-binding state (7.5-fold), followed by active enhancer (TssA: 3.9-fold; TssFlnk: 3.3-fold), and active enhancer (EnhA1: 2.4-fold) states (Fig. 1d). We further mapped the relationship between pairs of islet accessible chromatin sites directly connected by loop anchors (Supplementary Fig. 2c). The most significantly enriched anchor interactions were between active enhancer and promoter states (EnhA1-TssA OR = 1.28, Fisher’s exact \(P = 1.53 \times 10^{-37}\); EnhA1-EnhA1 OR = 1.37, \(P = 1.87 \times 10^{-38}\); TssA-TssA OR = 1.42, \(P = 6.15 \times 10^{-36}\)). We also observed strong enrichment for interactions between sites within the CTCF-binding state (CTCF-CTCF OR = 1.16; Fisher’s exact \(P = 1.1 \times 10^{-17}\)) (Fig. 1e). These results demonstrate that islet chromatin loops are prominently enriched for CTCF binding, as well as active promoter and enhancer regions.

Enhancer loops and islet-specific gene expression. We next used chromatin loops to annotate candidate relationships between distal islet enhancers and their potential target genes genome-wide (see Methods). We identified 6278 islet active enhancers that mapped directly in a chromatin loop anchor and, of these, 3022 enhancers were in a loop to a gene promoter (Supplementary Fig. 2d and Supplementary Data 4). Conversely, the promoter regions of 2028 genes had at least one direct loop to an active enhancer element (Supplementary Fig. 2e and Supplementary Data 5). Of these 2028 genes, 952 (47%) had chromatin loops to multiple active enhancers (Supplementary Fig. 2e). Genes directly looped to multiple enhancers were enriched for processes related to transcription factor activity and gene regulation, signaling and stimulus response, protein transport and insulin signaling (Supplementary Table 2), and also included genes critical for islet function such as ISLI, FOXA2, NKF6, and MAFB (Supplementary Data 5). At many loci enhancers looped to gene promoters over long distances; the average distance between interacting enhancer and gene promoter pairs was 165 kb, with 13.9% (532) over 500 kb and 3.6% (138) over 1 Mb (Fig. 2a). For example, there were four chromatin loops at the MAFB locus.
including two direct loops between enhancers and the MAFB promoter region over 1 Mb distal (Fig. 2b). These results define candidate target genes for thousands of distal enhancer elements in islets.

We examined the relationship between active enhancer looping and target gene expression. We compared our map of islet enhancer candidate target genes defined from islet chromatin loops to gene expression levels in independent RNA-seq data from pancreatic islet samples and 53 tissues in GTEx release v7 data. A significantly higher proportion of genes expressed in islets had at least one enhancer loop compared to non-islet expressed genes (\(\text{ln} \) \(\frac{\text{TPM}}{\text{expr}} > 2 \times 10^{-16} \)). Genes with increasing numbers of enhancer loops had, on average, higher expression levels in islets compared to non-loop genes (EnhA loop median \(\rho = 0.32 \), Wilcox \(P = 2.2 \times 10^{-16} \)) and the highest expression among genes with six or more loops (median = 19.1 TPM) (Fig. 2c). We measured the relative expression level of genes in islets and 53 GTEx tissues normalized across tissues (see Methods), and again observed a significant relationship between enhancer loops and relative islet expression level (Spearman \(\rho = 0.084 \), \(P = 2.2 \times 10^{-16} \)) (Fig. 2d). In addition, the number of islet enhancer interactions was a significant predictor of higher relative gene expression level in islets (linear regression \(\beta = 0.14 \), \(P = 2.2 \times 10^{-16} \)) but not of relative expression level in the 53 other tissues (Fig. 2d). We observed similar correlations between distal enhancers and islet gene expression when considering sites within a 25 kb region around each loop anchor, suggesting that these relationships extend beyond anchor boundaries (Supplementary Fig. 2f, g). These results suggest that distal islet enhancer chromatin loops are correlated with islet-specific gene expression patterns.

We next determined the effects of genetic variants in islet enhancers on target gene regulation. We generated expression quantitative trait locus (eQTL) data from 230 islet RNA-seq samples by combining summary statistics from two published studies through meta-analysis (see Methods). We identified variants overlapping classes of islet regulatory elements genome-wide. We then quantified the eQTL association of these variants to target genes determined by their proximity to nearby genes and from chromatin loops (see Methods). As expected, we observed the strongest eQTL evidence for active promoter and enhancer variants proximal to genes (TssA: median \(\text{log10}(P) = 0.64 \); EnhA proximal: median \(\text{log10}(P) = 0.50 \)) (Fig. 2e). For variants in distal enhancers, we observed significantly stronger evidence for islet eQTL association with genes in direct loops to the enhancer relative to non-loop genes (EnhA loop median = 0.35, EnhA non-loop median = 0.32, Wilcox \(P = 4.4 \times 10^{-5} \)), even when matching based on gene distance to the enhancer (EnhA non-loop matched, Wilcox \(P = 0.022 \)) (Fig. 2e). We observed similar eQTL enrichment among enhancer variants looped to gene promoters when considering sites within 25 kb of a loop anchor (Supplementary Fig. 2h). These results suggest that genetic variants in distal islet enhancer elements are preferentially correlated with the expression level of genes in chromatin loops.

Fine-mapped T2D risk signals affect islet enhancer activity. Genetic variants in islet regulatory elements are enriched for T2D risk\(^1\),\(^2\),\(^4\),\(^5\). The effects of variants in regulatory elements on T2D risk in the context of chromatin looping, however, are unknown. We determined the effects of variants in islet regulatory elements and chromatin loops on T2D risk using association data of 6.1 M common (MAF > 0.05) variants from the DIAGRAM consortium with igwas and LD-score regression\(^22\),\(^23\). We observed strongest enrichment of variants in active regulatory elements, most...
The number of chromatin loops with islet enhancers was a significant predictor of relative islet gene expression compared to relative gene expression in 53 other tissues in GTEx. Values represent effect size and SE from the linear model. **P < 0.0001.

Gene expression QTL P-values for genetic variants in gene promoters (TssA; red), enhancers proximal to gene promoters (Enh. proximal; pink), enhancers in chromatin loops to the gene promoter (Enh. loop; dark blue), and enhancers not in chromatin loops to the gene promoter for both all enhancers (Enh. no-loop; light blue) and enhancers distance-matched with looped genes (Enh. no-loop matched; gray). Variants in enhancer elements had stronger evidence for islet expression QTLs with genes in loops than genes with no loop, even when matched based on distance. Wilcoxon test *P < 0.05. **P < 0.0001. Boxplots show the median, and first and third quartiles. Source data are provided as a source data file.

notably in active enhancers (EnhA1 fgwas ln(enrich) = 3.9, LD-score Z = 3.1) (Fig. 3a and Supplementary Fig. 3a). The effects of variants in active enhancer and promoter elements on T2D risk were more pronounced among those in chromatin loops (EnhA1 fgwas ln(enrich) = 4.38, LD-score Z = 3.1; TssA fgwas ln (enrich) = 3.03, LD-score Z = 0.86) (Fig. 3b and Supplementary Fig. 3a). Conversely, variants in other islet elements such as flanking promoters and weak enhancers were more enriched outside of loops (Fig. 3b and Supplementary Fig. 3a). To determine the inter-dependence of these effects, we jointly modeled variants in islet regulatory elements on T2D risk, while also including variants in GENCODE coding exons and UTRs. In a joint model, we observed enrichment of variants in islet active enhancer elements (EnhA1 ln(enrich) = 4.04), in addition to flanking promoters (TssFlnk ln(enrich) = 3.77) and coding exons (CDS ln(enrich) = 2.34) (Supplementary Fig. 3b). These results demonstrate genome-wide enrichment of variants in islet active regulatory elements within chromatin loops for T2D risk.

To identify T2D risk signals mapping in islet enhancers, we used the effects from the joint enrichment model as priors on the causal evidence (posterior probability of association; PPA) for variants at both known T2D loci and genome-wide Supplementary Data 6, see Methods). Among 107 known risk signals, variants in islet enhancers accounted for almost a third (29%) of the total probability mass (Fig. 3c). We clustered known risk signals based on annotations at candidate causal variants (see Methods) and identified 30 signals where the causal variant was likely in an islet enhancer (Fig. 3d). The 30 T2D islet enhancer signals were associated with IGTT-based insulin secretion phenotypes significantly more than un-annotated signals (Enh. = 42%, un-annot. = 17%, Chi-square P = 1×10−7), supporting a role in islet function (see Methods, Fig. 3e). Fine-mapping including functional priors improved causal variant resolution at these 30 signals, which on average had 3.5 candidate variants overlapping an islet enhancer and an ATAC-seq site from >1 sample (Fig. 3f, Supplementary Data 1, and Supplementary Data 7). The majority of these enhancers were highly reproducible (>50% of samples), active in beta and alpha cells, in low-methylated regions (LMRs), and bound by islet TFs (Supplementary Data 7). At six signals we resolved a single causal enhancer variant, for example rs7732130 (PPA = 98%) at the 5q13 locus near ZBED3/PDE8B (Fig. 3g). Outside of known
we identified an additional 127 loci genome-wide where fine-mapping identified a putative T2D risk variant that overlapped an islet enhancer and ATAC-seq site from >1 sample (Supplementary Fig. 3c, Supplementary Data 1, and Supplementary Data 8; see Methods). These results identify known and putative T2D risk signals with causal variants in islet enhancers.

We next determined allelic effects of variants at these T2D loci, we identified an additional 127 loci genome-wide where fine-mapping identified a putative T2D risk variant that overlapped an islet enhancer and ATAC-seq site from >1 sample (Supplementary Fig. 3c, Supplementary Data 1, and Supplementary Data 8; see Methods). These results identify known and putative T2D risk signals with causal variants in islet enhancers.

We next determined allelic effects of variants at these T2D loci, we identified an additional 127 loci genome-wide where fine-mapping identified a putative T2D risk variant that overlapped an islet enhancer and ATAC-seq site from >1 sample (Supplementary Fig. 3c, Supplementary Data 1, and Supplementary Data 8; see Methods). These results identify known and putative T2D risk signals with causal variants in islet enhancers.

We next determined allelic effects of variants at these T2D loci, we identified an additional 127 loci genome-wide where fine-mapping identified a putative T2D risk variant that overlapped an islet enhancer and ATAC-seq site from >1 sample (Supplementary Fig. 3c, Supplementary Data 1, and Supplementary Data 8; see Methods). These results identify known and putative T2D risk signals with causal variants in islet enhancers.
Candidate targets of T2D variants affecting islet enhancers.

While a large percentage of T2D risk signals affect islet enhancer activity, the gene targets of these enhancers are unknown. In order to identify genes affected by T2D risk variants in enhancers, we used a tiered strategy whereby we first identified candidate target genes of these enhancers using chromatin looping and promoter-proximity, and then further prioritized candidate genes cis-regulated by T2D enhancer variants using eQTL mapping. For each T2D enhancer signal (from Fig. 3d), we identified candidate genes based on whether an enhancer variant was within 25 kb of either a chromatin loop to the gene promoter or the gene promoter itself (see Methods). Based on this definition T2D enhancer signals had on average 2 candidate target genes (Fig. 4a) and a large reduction in candidates compared to using a 1 MB window (median = 18 genes) or topologically associating domain (TAD) boundaries (median = 7 genes) around candidate variants (Fig. 4a). At several loci, loops implicated candidate target genes highly distal (>500 kb) to T2D enhancer variants. For example, at the 3q27 locus T2D variants directly looped to the TPRG1 promoter 900 kb distal (Supplementary Fig. 4a), and at the 10p13 locus T2D variants looped to the OPTN and CCDC3 promoters 840 kb distal (Supplementary Fig. 4b). In additional examples, T2D enhancer variants at the 11p15 locus near KCNQ1 looped to the CDK10 promoter and an islet eQTL for CAMK1D expression. Probabilities (PPA) that variants are causal for T2D risk (top) and variant association (-log10 \(P \)) with islet expression level of CAMK1D (middle). Candidate target genes of T2D enhancer signals were strongly enriched for biological processes related to protein secretion, vesicle transport, vesicles and vesicle membranes, and endoplasmic reticulum (FDR \(q < 0.2 \)) (top), and candidate genes with islet eQTL evidence were specifically enriched for vesicle-mediated transport (FDR \(q < 0.2 \)) (bottom). Boxplots show the median, and third and first quartiles. Source data are provided as a source data file.
tested the most likely casual enhancer variant for eQTL association to each candidate gene correcting for the total number of candidate genes for that signal (see Methods). For the resulting genes with eQTL evidence (corrected \(P < 0.05 \)), we further confirmed the eQTL and T2D signals did not have distinct causal variants using Bayesian co-localization (see Methods). Target genes showed evidence for islet eQTLs with eight known T2D islet enhancer signals (corrected \(P < 0.05 \)), including CAMKID, ABCB9, C2CD4B, and IGF2BP2 (Table 1 and Supplementary Table 4). For example, the known T2D variant rs11257655 mapped in an islet active enhancer element that looped directly to the CAMKID promoter and was an islet eQTL for CAMKID expression25 (Fig. 4c). At the 127 putative T2D enhancer signals, we identified 12 additional target genes with evidence for eQTLs to T2D variants (corrected \(P < 0.05 \)) such as FAD51, VEGFA, SNX32, and SCRN2 (Supplementary Table 4). Among these 21 cis-regulated genes, nearly a third have not been identified as significant islet eQTLs in previous studies2,17,27. These results identify candidate target genes, which are cis-regulated by T2D islet enhancer signals.

We next characterized the biological functions of candidate genes identified at these T2D enhancer signals. Candidate target genes were strongly enriched in gene sets related to protein transport and secretion, potassium ion transport, vesicles and vesicle membranes, and endoplasmic reticulum (FDR \(q < 0.2 \)) (Fig. 4d and Supplementary Table 5). Candidate target genes also included six genes involved in MODY and other monogenic and syndromic forms of diabetes (ABCC8, KCNJ11, GCK, INS, GLIS3, WFS1) (Supplementary Table 3). Conversely, non-target genes within 1 Mb of these same 30 signals were enriched for gene sets related to stress–response and other processes (FDR \(q < 0.2 \), which may represent regulatory programs activated in other cellular states (Supplementary Table 5, see Methods). Candidate genes with islet eQTLs to known and putative T2D enhancer signals were specifically enriched for genes involved in vesicle-mediated transport (FDR \(q < 0.2 \)) (Fig. 4d and Supplementary Table 5). These results demonstrate that candidate target genes of T2D enhancer signals are involved in protein transport and secretion pathways.

Table 1 Candidate genes with eQTLs to T2D enhancer variants

Locus	# Candidate genes	Enhancer variant\(^a\)	eQTL genes	eQTL P-value\(^b\)	Shared eQTL\(^c\)
10p13	3	rs11257655 CAMKID	1.72E-14 Y		
8p11	2	rs508419 NKX6-3	5.59E-10 Y		
12q24	13	rs1260294 ABCB9	2.63E-07 Y		
3q27	1	rs764651B IGF2BP2	7.49E-07 Y		
2q21	3	rs4954179 ACMSD	5.43E-06 Y		
2q21	3	rs4954179 TMEM163	9.69E-05 Y		
15q22	6	rs17205526 C2CD4B	0.00088 Y		
4q35	1	rs17604167 ACSL1	0.04 Y		
5q13	1	rs7732130 PDEB8	0.048 Y		

\(^a\)Enhancer variant with highest PPA per signal listed
\(^b\)Adjusted eQTL \(P < 0.05 \); P-values reported are uncorrected
\(^c\)Bayesian co-localization probability of shared signals is greater than probability of distinct signals

Imp2 conditional inactivation affects insulin secretion. At the 3q27 locus, IGF2BP2 is the only candidate target gene based on T2D variant proximity to the gene promoter and eQTL evidence (Table 1, Supplementary Fig. 5a and Supplementary Table 4), and is furthermore the only gene in the entire TAD (Supplementary Fig. 5a and Supplementary Data 9). We sought to determine the mechanism of risk variant activity in islets at this locus. Fine-mapped T2D enhancer variants at 3q27 all mapped within a 6 kb intronic region proximal to the IGF2BP2 promoter (Supplementary Fig. 5a and Supplementary Data 7). We tested these candidate enhancer variants for allelic imbalance in islet accessible chromatin (see Methods). We observed significant evidence (FDR \(q < 0.1 \) for allelic imbalance at rs10428126 (binomial \(P = .001 \)) where the T2D risk (and alternate) allele C had reduced accessibility, and no evidence for imbalance among the other candidate variants at this locus (Supplementary Data 7). This variant has also been reported as a chromatin accessibility QTL in islets28. We further validated that the T2D risk allele at rs10428126 reduced islet enhancer activity using gene reporter assays in MIN6 cells (\(t\)-test \(P = 1.0 \times 10^{-3} \)) (Supplementary Fig. 5b). In addition, rs10428126 mapped in a site consistently active across ATAC-seq samples and in ChIP-seq sites for NKKX2.2 and PDX1, and the risk allele disrupted PDX1 and NKK motifs (Supplementary Fig. 5c). These results reveal a likely causal risk variant at IGF2BP2 that reduces chromatin accessibility and enhancer activity in islets.

As T2D risk alleles at the IGF2BP2 locus are correlated with reduced islet chromatin accessibility, enhancer activity and IGF2BP2 expression as well as reduced insulin secretion phenotypes24, we hypothesized that reduced activity of IGF2BP2 would contribute to a diabetic phenotype in islets. We thus determined the effects of reduced IGF2BP2 (Imp2 in mice) on islet function using a mouse model. Imp2 is widely expressed in adult mouse tissues, including fat, muscle, liver, and pancreas29, and in the pancreas Imp2 expression localized to islets and overlapped insulin (Fig. 5a). We inactivated Imp2 in mouse beta cells by recombining the Imp2loxfllox allele with Cre recombinase driven by the rat insulin 2 promoter (RIP2-Cre) (Supplementary Fig. 6a). Immunoblot analysis of extracts from isolated Imp2fl/fl/RIP2-Cre islets confirmed reduced Imp2 abundance compared to Imp2+/+ islets (Fig. 5b). Imp2fl/fl/RIP2-Cre mice exhibited no overt phenotype and gained weight similar to Imp2+/+ controls on both a normal chow (NCD) and high-fat diet (HFD) (Supplementary Fig. 6b).

We assessed the effect of Imp2 deficiency in mouse beta cells on glucose homeostasis. At 10 weeks of age, Imp2+/+ and Imp2fl/fl/RIP2-Cre mice on NCD exhibited no difference in blood glucose and insulin levels. By contrast, blood insulin and C-peptide levels were reduced in HFD-fed Imp2+/+RIP2-Cre compared to HFD-fed control mice, whereas blood glucose and glucagon levels were similar (Fig. 5c). When challenged with an intraperitoneal glucose injection, HFD-fed, but not NCD-fed, Imp2+/+RIP2-Cre mice exhibited significantly higher glucose and lower insulin levels than Imp2+/+ mice (Fig. 5d, e). Importantly, this was not due to a difference in insulin sensitivity, as blood glucose levels after an intraperitoneal insulin injection were similar in Imp2+/+ and Imp2+/+RIP2-Cre mice (Supplementary Fig. 6c). These results indicate that Imp2 deficiency limits the capacity of beta cells to augment insulin secretion in response to increased insulin demand.

Discussion

In summary, we defined the genomic location and spatial orientation of accessible chromatin in pancreatic islets. We identified putative target genes for thousands of islet distal enhancers, including those that interacted in chromatin loops over 1 Mb distances. We fine-mapped candidate causal variants in islet enhancers at 30 known T2D signals, and identified an average of one enhancer variant per signal with allelic effects on islet chromatin accessibility. Prioritizing target genes of T2D islet enhancer signals using islet chromatin loops and promoter-proximity greatly reduced the number of potential candidates, and through eQTL mapping we then identified target genes cis-
regulated by T2D enhancer variants. Future studies of chromatin looping generated across larger numbers of samples will enable a greater understanding of risk variants effects on looping directly, as well as correlative relationships with gene expression and other molecular phenotypes. Furthermore, studies modifying islet enhancer activity, for example through genome editing, may provide additional validation of affected target genes in particular those with more subtle effects.

Target genes of T2D islet enhancer signals were specifically enriched in protein transport and secretion pathways, and we validated that reduced activity of IGF2BP2 homolog Imp2 in mouse islets leads to defects in glucose-stimulated insulin secretion. The mechanism of how IGF2BP2 functions in the islet cellular context to produce a diabetic phenotype will be of interest for continued studies. While our results describe gene networks, cellular context to produce a diabetic phenotype will be of interest.

Methods

Islet samples. Five human islet donors were obtained from the Integrated Islet Distribution Program (IIDP) (Supplementary Table 1). Islet studies had exempt status from the Institutional Review Board (IRB) of the University of California San Diego. Islet preparations were enriched and selected using zinc-dithizone staining.

Islet ATAC-seq data generation. We generated ATAC-seq data from four of the human islet samples based on a previously described protocol. For Islet samples ISL_3 and ISL_4, permeabilized nuclei were obtained by resuspending cells in 250 μL Nuclear permeabilization buffer [0.2% IGEPAL-CA630 (I8896, Sigma), 1 mM DTT (D9779, Sigma), Protease inhibitor (05056489001, Roche), 5% BSA (A7906, Sigma)] in PBS (10010-23, Thermo Fisher Scientific), and incubating for 10 min on a rotator at 4 °C. Nuclei were then pelleted by centrifugation for 5 min at 500 x g at 4 °C. The pellet was resuspended in 25 µL ice-cold Tagmentation Buffer [33 mM Tris-acetate (pH = 7.8) (BP-152, Thermo Fisher Scientific), 66 mM K-acetate (P5708, Sigma), 11 mM Mg-acetate (M2545, Sigma), 16% DMF (DX1730, EMD Millipore) in Molecular biology water (46000-CM, Coring)]. An aliquot was then taken and counted by hemocytometer to determine nuclei concentration. Approximately 50,000 nuclei were re-suspended in 20 µL ice-cold Tagmentation Buffer, and incubated with 1 μL Tagmentation enzyme (FC-121-1030; Illumina) at 37 °C for 30 min with shaking 500 rpm. The tagged DNA was purified using MinElute PCR purification kit (28004, Qagen). The libraries were amplified using NEBNext High-Fidelity 2x PCR Master Mix (M0541B, NEB) with primer extension at 72 °C for 5 min, denaturation at 98 °C for 30 s, followed by eight cycles of denaturation at 98 °C for 10 s, annealing at 63 °C for 30 s and extension at 72 °C for 60 s. Amplified libraries were then purified using MinElute PCR purification kit (28004, Qagen), and two size selection steps were performed using SPRIselect bead (B23317, Beckman Coulter) at 0.5X and 1X bead-to-sample volume ratios, respectively. For ISL_1 and ISL_2, 50,000 frozen nuclei pellets of 50,000 cells were thawed on ice, re-suspended in 50 μL of transposition reaction mix (2.5 μL of TN5 transposase in 1x TD buffer (Illumina)) for 30 min at 37 °C in a thermomixer with gentle shaking. Immediately following transposition, tagged DNA was purified using a MinElute Kit (Qagen) or a DNA Clean and Concentrator-5 kit (Zymo) and eluted in 10 μL of nuclease-free H₂O. Five microliters of the purified sample was PCR amplified for 12 cycles using KAPA Real-Time Library amplification kit (KAPA Biosystems) and custom-designed Nextera PCR primers (as in Buenrostro et al.). Amplified libraries were purified using AMPure XP (Beckman Coulter) beads and eluted in 12–15 μL of nuclease-free H₂O. Libraries were sequenced on either an Illumina NextSeq 550 or Illumina HiSeq2500.
For each sample, we trimmed adapter sequences using TrimGalore (https://github.com/FelixKrueger/TrimGalore). The resulting sequences were aligned to sex-specific promoters using the ENCODE consortium to obtain logistic regression data using GSEA38, considering only gene sets with >25 genes at an FDR of 0.2.

Isetl Hi-C data generation. We generated Hi-C data from three of the pancreatic islet samples, two of which also had ATAC-seq data (Supplementary Table 1). In situ Hi-C was performed using a previously published protocol with modifications adapted to frozen human tissue19. Briefly, the tissue was cut to fine pieces and washed with cold PBS. Cross-linking was carried out with 1% formaldehyde (sigma) at 37 °C overnight (o/n). Nuclei were digested using a loose-fitting Dounce homogenizer in hypotonic buffer (20 mM Hepes pH 7.9, 10 mM KCl, 1 mM EDTA, 10% Glycerol and 1 mM DTT with additional protease inhibitor (Roche) for 30 strokes and centrifuge at 3500 x g at 4 °C for 4 h. The cross-linking was reversed at 68 °C o/n while protein was degraded with proteinase K treatment (NEB). DNA was purified with phenol-chloroform extraction and ethanol precipitation, followed by fragmentation to 300–500 bp with the Covaris S220 ultrasonicator. Ligation products were enriched with Dynabeads My One T1 Streptavidin beads (Life Technologies). PCR was used to amplify the enriched DNA for sequencing. Hiseq 4000 sequencer (Illumina) was used to sequence the library with 100 bp paired-end reads.

For each sample, reads from paired-end reads were aligned with bwa mem22 as single-end reads, and then filtered through following steps. First, only two prime ends were kept for chimeric reads. Second, reads with low mapping quality (<10) were removed. Third, read ends were then manually paired, and PCR duplicates were removed using Picard tools (https://github.com/broadinstitute/picard). Finally, filtered contacts were used to create chromatin contact maps with Juicebox33.

To determine the consistency in the three Hi-C samples, the contact map from each sample was first binned to 100 kb. Next, each contact matrix was linearized into a single contact map, and loops were called with the Spearman statistic, and then the Spearman correlation between the read counts for each sample.

We collected published ATAC-seq data from primary islets and from FACS-sorted alpha, beta and acinar cells11,14,15. We re-processed raw data and called peaks for each sample using the same procedure described above. We determined the overlap in peak calls from the four islet ATAC-seq samples and these published data using Jaccard index.

Islet ChIP-seq data processing. We obtained previously published data from ChIP-seq assays of H3K4me1, H3K27ac, H3K4me3, H3K36me3, and CTCF generated in primary islets and for which there was matching input sequence from the same sample13–16. For each assay and input, we aligned reads to the human genome hg19 using bwa20 with a flag to trim reads at a quality threshold of <15. We converted the alignments to bam format and sorted the bam files. We then removed duplicate reads, and further filtered reads that had a mapping quality score below 30. Multiple sequence datasets obtained from the same assay in the same sample were then pooled.

We defined chromatin states from ChIP-seq data using ChromHMM16 with a no-model shift –100, extsize 200. We identified merged genomic regions blacklisted by the ENCODE consortium and merged the peaks14. In total, we obtained 105,734 merged peaks. To assess concordance overlapped genomic regions blacklisted by the ENCODE consortium and merged sequence the library with 2 × 100 bp paired-end reads.

To determine the overlap of each class of islet regulatory elements near loops, and the types of elements co-localized by loops, we utilized pgltools and HOMER to integrate the ATAC-seq and Hi-C data. We first created a size matched null distribution comprised of 7000 permuted regions. Next, for each islet accessible chromatin state, we identified the proportion of states within 25 kb of a loop. We determined the fold enrichment of each class over the average calculated from the null distribution, and determined significance as the number of permuted counts greater than the observed. To determine which pairs of islet regulatory elements were in chromatin loops at a statistically significant level, we compared the distribution of islet regulatory elements around loop anchors using HOMER. We utilized the "annotateInteractions" function to obtain logistic regression P-values and odds ratio enrichment estimates for all pairs of islet regulatory elements.

We defined candidate target genes of islet enhancer elements using Hi-C loops in the following way. First, we identified all islet active enhancer elements mapping directly within a Hi-C loop anchor. We then filtered these loops based on whether the other anchor mapped within a promoter region (~5 kb ± 2 kb of transcription start site) for protein-coding or long non-coding genes in GENCODE v27. For each islet active enhancer, we then calculated the number of gene promoter regions interacting with that enhancer. For each gene promoter region, we calculated the number of independent interactions containing at least one active enhancer element. We also defined a broader set of candidate enhancer and gene promoter interactions by using a 25 kb flanking window around each loop and re-calculating overlap.

We identified genes in direct loops with multiple (>1) active enhancers and tested these genes for gene set enrichment using GSEA38, considering only gene sets with >25 genes at an FDR of 0.2.

Genomic enrichment analyses. We tested for enrichment of variants in each accessible chromatin class using T2D association data of 1000 Genomes project variants from the DIAGRAM consortium11. From this meta-analysis, we identified common regulatory elements that further increased the cross-validation likelihood. We then calculated the number of independent interactions containing at least one active enhancer element. We also defined a broader set of candidate enhancer and gene promoter interactions by using a 25 kb flanking window around each loop and re-calculating overlap.

We then modeled the effect of variants in each class of islet regulatory elements on risk using gwas22. For these analyses, we used a window size (±4) that resulted in a 1 Mbp window on average. We first tested for enrichment of variants in each state individually. We then built a joint model iteratively in the following way. We first identified the annotation with the highest likelihood. We then added annotations to the model until the likelihood did not increase further. Using this model, we introduced a series of penalties from 0 to 0.5 in increments of 0.01 and fit the model using each penalty, and identified the penalty that gave the highest cross-validation likelihood. We then finally removed annotations from the model that further increased the cross-validation likelihood. We considered the resulting set of annotations and effects to be the optimal joint model.

We then modeled the effect of variants in each class of islet regulatory elements on risk using gwas22. For these analyses, we used a window size (±4) that resulted in a 1 Mbp window on average. We first tested for enrichment of variants in each state individually. We then built a joint model iteratively in the following way. We first identified the annotation with the highest likelihood. We then added annotations to the model until the likelihood did not increase further. Using this model, we introduced a series of penalties from 0 to 0.5 in increments of 0.01 and fit the model using each penalty, and identified the penalty that gave the highest cross-validation likelihood. We then finally removed annotations from the model that further increased the cross-validation likelihood. We considered the resulting set of annotations and effects to be the optimal joint model.

For each dataset, we then applied the WASP pipeline to correct for reference mapping bias27. To filter out imbalance that could potentially arise from sequencing errors, we set a filter for each sample to limit allelic imbalance testing to heterozygous SNPs with at least two reads covering each allele. At the
IGF2BP2 locus, we first genotyped a curated set of variants at the locus in each sample using QuASAR with a probability threshold of 0.9941, and then used the UM Imputation Server to impute genotypes in the HRC reference panel. We then retained variant genotypes with high imputation quality ($r^2 > 0.7$).

For each sample, we then used a binomial test to assess imbalance at each heterozygote assuming a null hypothesis where the two alleles were equally likely to be observed. For each variant, we calculated signed Z-scores from P-values and combined signed Z-scores across samples with conservative Z-score using sequencing depth to weight statistics from each sample. From the resulting combined Z-scores, we calculated combined P-values and q-values using the Benjamini-Hochberg procedure. The q-values were calculated separately for known T2D signals (variants in Supplementary Data 7) and the putative T2D signals (using variants in Supplementary Data 8).

For the set of variants at known and putative T2D signals tested for allelic imbalance in islet ATAC-seq signal, we further tested these variants for allelic imbalance in islet Hi-C. We used samtools mpileup to obtain allele counts for each variant in each sample, retained variants with at least three reads covering each allele, and then performed a Fisher’s exact test for each experiment with a uniform processing pipeline. We used bwa aln and bwa samse to align the reads to hg19 with a quality threshold of 15. We then removed duplicate reads with the picard MarkDuplicates tool. We called peaks with MACS213 using matched input controls for each experiment after extending reads to a uniform 200 bp length.

Genomic annotation analyses for TF ChIP-seq. We obtained 13 published islet transcription factor ChIP-seq datasets44,45 for FOXA2 (2), MAFB (2), NKX2-2 (2), NKX6.1 (2), and PDX1 (2) and re-processed each experiment with a uniform processing. We then used blastn to scan the genome-wide enrichment model as priors on the evidence for variants at 107 known T2D signals using bedtools47, and masked repetitive sequences. We then identified de novo motifs in a sliding window of 45 to scan the overlapping that variant. We calculated a prior probability for each variant as described above also including an additional prior on the evidence that the 1 MB window is a T2D locus. We multipled both prior probabilities by the Bayes Factor for each variant. From the resulting odds, we calculated the PPA that each variant is causal for T2D risk. We then considered the 131 windows with at least one islet enhancer variant with PPA > 0.01 in downstream analyses.

Genomic features analyses. For each class of islet open chromatin, we determined the overlap with the genomic region. We identified motifs enriched in sequence underlying each islet accessible chromatin class. We first extracted genomic sequence for each site using bedtools47, and masked repetitive sequences. We then identified de novo motifs in this enriched sequence using DREME48. For each de novo motif, we determined whether this motif matched a known sequence motif in a custom database of >2500 motifs from ENCODE, JASPAR, and SELEX with tomtom31,49.

We determined the overlap of islet accessible chromatin classes with transcription factor (TF) ChIP-seq data in islets for five proteins34,35. For each islet chromatin class, we calculated the Jaccard index of overlap with sites for each TF47. We then determined the overlap of islet accessible chromatin classes with DHS sites from 384 cell types in the ENCODE project31. We first filtered out DHS sites from islets, and then for each accessible chromatin site, we calculated the percentage of ENCODE cell types the site was active in. We then determined the median percent overlap across all sites within each accessible chromatin class.

Gene expression analysis. We obtained transcript-per-million (TPM) counts from RNA-seq data in 53 tissues from the GTEx project release v7.21. We further obtained RPKM read counts from RNA-seq data of 118 pancreatic islet samples20, and converted RPKM to TPM values using the formula $TPM = \frac{RPKM \times \text{gene length}}{10^6}$ for gene i and sample j23. We then retained only protein-coding and long non-coding genes cataloged in GENCODEv27. We calculated the number of genes expressed in islets (defined as ln(TPM) > 1) and not expressed in islets with and without at least one reference active enhancer chromatin loop to the promoter region. We then tested for a significant difference using a Chi-square test on a 2 × 2 contingency table of genes (1) expressed, or not expressed in islets and (2) at least one enhancer loop, or no enhancer loop.

Across all 54 tissues, we filtered out genes not expressed (ln(TPM) > 1) in at least one tissue. We determined correlation between gene expression level in islets and enhancer loop number using Spearman’s rho. We annotated each gene with the number of loops to enhancers in our reference set, and then determined the correlation between the expression level of the filtered genes and the number of reference enhancer loops annotated to the gene. We further grouped genes by the number of chromatin loops to enhancer elements and calculated the median islet TPM value for each group.

We then determined the relative expression level for each gene in 54 tissues. We quantile-normalized expression values within each tissue using quantile normalization to combine the summary results and then calculated a Z-score for each gene using the mean and standard deviation across tissues. We then repeated the above analyses using tissue Z-scores instead of tissue TPM values. We further created a linear model of gene Z-scores with chromatin loop number as the predictor using the glm package in R. Values are reported as the effect size (beta) and standard error from the resulting model.

Iset expression QTL analysis. We obtained summary statistic eQTL data from two published studies of 116 and 112 primary pancreatic islet samples20. We then performed an inverse variance weighted meta-analysis to combine the summary results for each variant and gene pair using METAL. We retained only protein-coding and long non-coding RNA genes as defined by GENCODEv27.

Fine-mapping of T2D risk variants. We used the effects from the joint enrichment model as priors on the evidence for variants at 107 known T2D signals using fine-mapping data from the Metabochip, GoT2D1 and DIAGRAM 1000 Genomes24,25 studies. We used data of 49 T2D signals at 41 additional T2D signals from GoT2D data for T2D loci not on the Metabochip, and 17 additional T2D signals in DIAGRAM 1000G not in Metabochip or GoT2D.

For each sample, we obtained the enrichment effect of the islet regulatory or coding annotation overlapping that variant. We calculated a prior probability for the variant by dividing the effect by the sum across all variants at a signal. We then multiplied this prior probability by the Bayes Factor for each variant. From the resulting odds, we calculated a posterior probability that the variant is causal for T2D risk (PPA) by dividing the odds by the sum of odds across all variants at the locus.

For each signal, we calculated a cumulative PPA (cPPA) value for islet enhancer (EnhA1, EnhA2, EnhWk), promoter (TissA, TissFlk), CTCF-binding site, UTR, and coding exon (CDS) annotations by summing the PPA values of all variants overlapping each annotation. We then clustered T2D signals into groups based on cPPA values using k-means clustering.

We determined the effect of T2D signals in each cluster on glycemic association data24. We identified 73 T2D signals represented in these data and cataloged 23 associated at adjusted $P < 0.05$ with first-phase insulin response, peak insulin response, AIR, or insulin secretion rate. We calculated the percentage of signals in each cluster associated with these measures and tested for differences between clusters using a binomial test using a group of T2D signals per cluster defined by (1) enhancer signal, or un-annotated signal and (2) associated with insulin secretion measures, or not associated with insulin secretion measures.

We also performed a binomial test of the number of enhancer signals associated with insulin secretion measures using the fraction of un-annotated signals associated with insulin secretion measures as the expected value and found a similar enrichment ($P = 2.4 \times 10^{-3}$).

For the 30 T2D islet enhancer signals, we calculated 99% credible sets as the set of candidate variants that explain 99% of the total PPA using genetic fine-mapping data alone (genetic), and fine-mapping, including priors from the joint genome-environment enrichment model (joint).
only variant and gene pairs tested in both studies, and only variants with minor allele frequency (MAF) > 0.01. We extracted eQTL associations for variants in classes of islet accessible chromatin. To remove potential biases due to linkage disequilibrium, we sorted variant associations based on P-value and iteratively pruned out variants in LD (r² > 0.5) with a more significant variant using LD information in European samples from 1000 Genomes project data. We then extracted pruned eQTL associations for variants in active promoter elements for genes within 20 kb (TSS±a), variants in active enhancer elements for genes within 20 kb (Enh. proximal), variants in active enhancer elements for genes in chromatin loops (Enh. loop), and variants in active enhancer elements for genes without a loop (Enh. no-loop). For each set of eQTL associations, we computed the P-value distributions using a two-sided Wilcoxon rank-sum test. To remove biases in variant distances to loop and no-loop genes, we randomly selected variant-gene pairs matched on distance to the distal target set (Enh. no-loop matched) and re-Performed analyses. We also performed these analyses using enhancer and gene promoter pairs within 25 kb of the loop boundaries.

Target genes of T2D islet enhancer signals. We defined candidate target genes of 30 known T2D enhancer signals and 127 putative T2D enhancer windows in the following way. We identified candidate causal variants at each signal overlapping islet enhancer elements and considered target genes as those where (a) the enhancer and promoter region were within 25 kb of a chromatin loop or (b) the enhancer was within 25 kb proximal to the promoter region.

We next defined alternate sets of target genes of the 30 T2D enhancer signals based on 1 MB windows or TAD boundaries. For 1 MB window definitions, we identified the highest probability variant for each signal and extracted a ‒/+ 1 MB window around the variant position. We then considered gene promoter regions for protein-coding or long non-coding genes in GENCODEv27 that overlapped this ‒/+ 1 MB window as target genes. For TAD boundary definitions, we intersected the merged set of TADs with gene promoter regions to obtain a set of genes within each TAD. We then intersected the highest probability variant at each T2D signal with TADs to obtain gene sets in the TAD.

Luciferase reporter assays. To test for allelic differences in enhancer activity we cloned sequences containing alternative or reference alleles of tested variants upstream of the minimal promoter of firefly luciferase vector pGL4.23 (Promega) using Kpn1 and SacI restriction sites. The primer sequences were:

rs77232130
Forward/forward: GATAACGGTACCGCGAAGTGGTCATGGGTAAA
Forward/reverse: AAGTAAAGGCTCT/AGCTCATTCTGC/AGGTTGGA
Reverse/reverse: AGGTCATGGGTAAGGGG/TTGGTCTGATC
rs10428126
Reverse/forward: GATCC/TTCTGGTCCAG/ACCTGCTGGAGCAGA
Forward/reverse: GG/CTCCAGGTCGGTGCATTGGTTTGAAT
MDN6 cells were seeded into 6 (or 12)-well trays at one million cells per well. At 80% confluency, cells were co-transfected with 400 ng of the experimental firefly luciferase vector pGL4.23 containing the alt or ref allele in either orientation or an empty vector and 50 ng of the vector PRL-540 (Promega) using the Lipofectamine 3000 reagent. All transfections were done in triplicate. Cells were lysed 48 h after transfection and assayed for Firefly and Renilla luciferase activities using the Dual-Luciferase Reporter system (Promega). Firefly activity was normalized to Renilla activity and compared to the empty vector and normalized results were expressed as fold change compared to empty vector control per allele. Error bars are reported as standard deviation. A two-sided t-test was used to compare luciferase activity between the two alleles for a given orientation. MDN6 cells were obtained from the Jhala lab, University of California San Diego.

Mouse Imp2 targeting construct and physiological studies. We generated the Imp2 construct by using a genomic fragment of 12 kb containing Imp2 exons 1 and 2, as well as flanking intron sequences of the murine gene extracted from the RP23-163F16 BAC clone. The replacement-type targeting construct consisted of 4.9 kb of Imp2 genomic sequences (4.4 kb in the left homology arm and 5.4 kb in the right homology arm) (Supplementary Fig. 6a).

We bred mice for experiments by crossing Imp2−/− mice with the NIH principles of laboratory animal care.

Data availability

The data in this study are available under accession numbers PRIN527099, TSTRSR043623, and TSTRSR811148. The source data underlying Figs. 2a, c–f, 3b, 4a, 5b–c, Supplementary Fig. 1a, Supplementary Figs. 1c, 2f–h, 3c, 5b, 6b, c are in the Source Data File; other data for figures are in supplementary tables and data. All other data are contained within the article and its supplementary information or upon reasonable request from the corresponding author.

Received: 23 August 2018 Accepted: 3 April 2019
Published online: 07 May 2019

References

1. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).
2. Gaulton, K. J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415–1425 (2015).
3. Gaulton, K. J. Mechanisms of type 2 diabetes risk loci. Curr. Diab Rep. 17, 72 (2017).
4. Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46, 136–143 (2014).
5. Parker, S. C. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl Acad. Sci. USA 110, 17921–17926 (2013).
6. Stitziel, M. L. et al. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab. 12, 443–455 (2010).
7. Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl Acad. Sci. USA 114, 2301–2306 (2017).
8. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
9. Won, H. et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523–527 (2016).
10. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 487, 376–382 (2012).
11. Greenwald, W. W. et al. Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression. Nat. Commun. 10, 1054 (2019).
12. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).
13. Zhang, Y. et al. Model-based analysis of ChiP-Seq (MACS). Genome Biol. 9, R137 (2008).
14. Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. Elife 7, https://doi.org/10.7554/elife.31977 (2018).
15. Ackermann, A. M., Wang, Z., Schug, J., Naji, A. & Kaestner, K. H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol. Metab. 5, 233–244 (2016).
16. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. Nat. Methods 9, 215–216 (2012).
17. Gaulton, K. J. et al. A map of the open chromatin in human pancreatic islets. Nat. Genet. 42, 255–259 (2010).
18. Yu, M. & Ren, B. The three-dimensional organization of mammalian genomes. *Annu. Rev. Cell Dev. Biol.*, **33**, 265–289 (2017).

19. Yan, J. et al. Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. *Cell Res.*, https://doi.org/10.1038/cr.2018.1 (2018).

20. van de Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycosic traits to their downstream effectors. *PloS Genet.*, **11**, e1005694 (2015).

21. Consortium, G. T. et al. Genetic effects on gene expression across human tissues. *Nature*, **550**, 204–213 (2017).

22. Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. *Am. J. Hum. Genet.*, **94**, 559–573 (2014).

23. Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. *Diabetes*, **66**, 2888–2902 (2017).

24. Wood, A. R. et al. A genome-wide association study of IVGTG-based measures of first-phase insulin secretion refines the underlying physiology of type 2 diabetes variants. *Diabetes*, **62**, 2256–2307 (2013).

25. Fogarty, M. P., Cannon, M. E., Vadlamudi, S., Gaulton, K. J. & Moblie, K. L. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC213/CAMKID type 2 diabetes GWAS locus. *PloS Genet.*, **10**, e1004633 (2014).

26. Volkov, P. et al. Whole-genome bisulite sequencing of human pancreatic islets reveals reveals differentially methylated regions in type 2 diabetes pathogenesis. *Diabetes*, **66**, 1074–1085 (2017).

27. van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. *Nat. Methods*, **12**, 1061–1063 (2015).

28. Khetan, S. et al. Type 2 diabetes-associated genetic variants regulate chromatin accessibility in human islets. *Diabetes*, **67**, 2466–2477 (2018).

29. Dai, N. et al. mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. *Genes Dev.*, **25**, 1159–1172 (2011).

30. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinforma.*, **25**, 1746–1760 (2009).

31. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. *Nature*, **489**, 57–74 (2012).

32. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *ArXiv e-prints* 1303. Preprint at http://adsabs.harvard.edu/abs/2013arXiv1303.3997L (2013).

33. Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. *Cell Syst.*, 99–101 (2016).

34. Greenwald, W. W. et al. Pigtolo: a genomic arithmetic tool suite for manipulation of Hi-C peak and other chromatin interaction data. *BMC Bioinforma.*, **18**, 207 (2017).

35. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinforma.*, **26**, 588–595 (2010).

36. Heinze, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol. Cell.*, **38**, 576–589 (2010).

37. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. *Genome Res.*, **22**, 1760–1774 (2012).

38. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl Acad. Sci. USA*, **102**, 15545–15550 (2005).

39. Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. *Am. J. Hum. Genet.*, **81**, 208–227 (2007).

40. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. *Nat. Genet.*, **47**, 1228–1235 (2015).

41. Harvey, C. T. et al. QuASAR: quantitative allele-specific analysis of reads. *Bioinforma.*, **31**, 1235–1242 (2015).

42. Li, H. et al. The Sequence Alignment/Map format and SAMtools. *Bioinforma.*, **25**, 2078–2079 (2009).

43. Khos, C. et al. Research resource: the pdx1 cistrome of pancreatic islets. *Mol. Endocrinol.*, **26**, 521–533 (2012).

44. Rozowsky, J. et al. AlleleSeq: analysis of allele-specific expression and binding in a network framework. *Mol. Syst. Biol.*, **7**, 522 (2011).

45. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. *Bioinforma.*, **27**, 1017–1018 (2011).

46. Pique-Regi, R. et al. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. *Genome Res.*, **21**, 447–455 (2011).

47. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinforma.*, **26**, 841–842 (2010).

48. Bailey, T. L. DREM: motif discovery in transcription factor ChIP-seq data. *Bioinforma.*, **27**, 1653–1659 (2011).

49. Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. *Nucl. Acids Res.*, **43**, W29–W49 (2015).

50. Bryne, J. C. et al. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. *Nucl. Acids Res.*, **36**, D102–D106 (2008).

51. Jolma, A. et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. *Genome Res.*, **20**, 861–873 (2010).

52. Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-Seq gene expression estimation with read mapping uncertainty. *Bioinforma.*, **26**, 493–500 (2010).

53. Fadista, J. et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. *Proc. Natl Acad. Sci. USA*, **111**, 13924–13929 (2014).

54. Willer, C. J., Li, L. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinforma.*, **26**, 2190–2191 (2010).

55. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. *PloS Genet.*, **10**, e1004383 (2014).

Acknowledgements

Support for this work was provided by NIH funding U19DK105541 to M.S., K.A.F. and B.R., R01DK114650 to K.G. and K.A.F. and R01DK117776 and P30DK055811 to J.A., the Ludwig Institute for Cancer Research to B.R., postdoc fellowship 537-2014-6796 from the Swedish Vetenskapsrådet to J.Y., fellowship F31HL142151 to W.W.G and JDRF-3-2012-177 postdoc fellowship to A.W., D.K. and L.M. thank the EMBL-Monterotondo gene expression and transgenic services for the production of the Imp2 floxed line. L.M. was supported in part by the Lundbeck foundation (U7765) and EMBL-Mouse Biology Unit. D.K. was supported by an EMBL-postdoctoral fellowship. Funding for mouse experiments was provided by the Slim Initiative for Genomic Medicine, a project funded by the Carlos Slim Foundation in Mexico.

Author contributions

K.J.G., B.R., M.S., K.F. conceived of and supervised the research in the study; K.J.G. wrote the manuscript and performed analyses; W.W.G, J.C., Y.Q. performed analyses and contributed to writing; J.Y. performed Hi-C assays and contributed to writing; N.D., J.A. performed mouse experiments and contributed to writing; A.W., A.A. contributed to analyses and data interpretation; J.Y.H., N.V., F.D., D.G. performed ATAC-seq assays and contributed to data interpretation; N.K. and M.O. performed variant reporter experiments; L.R., D.K. and L.M. contributed to mouse experiments.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-09975-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: *Nature Communications* thanks Stefan Schoenfelder and other anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2019