Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method

Takumi Iritani for HAL QCD Coll.

Stony Brook University

July 28, 2016 @ LATTICE 2016

Ref. TI for HAL Coll., “Mirage in Temporal Correlation functions for Baryon-Baryon Interactions in Lattice QCD”, [arXiv:1607.06371], PoS(Lattice2015) 089, [arXiv:1511.05246].

- S. Aoki, K. Sasaki, D. Kawai, T. Miyamoto (YITP)
- T. Doi, T. Hatsuda (RIKEN) • T. Inoue (Nihon Univ.) • N. Ishii, Y. Ikeda, K. Murano (RCNP) • H. Nemura (Univ. of Tsukuba) • S. Gongyo (Univ. of Tours) • F. Etminan (Univ. of Birjand)
1. Baryon interactions from lattice QCD

2. Direct measurement vs HAL QCD method
 - Formalisms
 - Direct Measurement
 - HAL QCD Measurement

3. Origin of Fake Signal in Direct Method

4. Summary
1. Baryon interactions from lattice QCD

2. Direct measurement vs HAL QCD method
 - Formalisms
 - Direct Measurement
 - HAL QCD Measurement

3. Origin of Fake Signal in Direct Method

4. Summary
2 Methods for Hadron Interaction from Lattice QCD

QCD ▶ Hadron Interaction ▶ Nuclear Physics

1 Lüscher’s finite volume method — Lüscher ’86, ’91
 energy shift of two-particle in “box” ▶ phase shift

\[\Delta E_L = 2\sqrt{k^2 + m^2} - 2m \quad \Rightarrow \quad k \cot \delta(k) = \frac{1}{\pi L} \sum_{n \in \mathbb{Z}^3} \frac{1}{|n|^2 - (kL/2\pi)^2} \]

2 HAL QCD method — Ishii-Aoki-Hatsuda ’07
 NBS wave function ▶ potential ▶ phase shift
NN Interactions from Lattice QCD

	Lüscher	HAL QCD	phys. point
dineutron (1S_0)	bound	unbound	unbound
deuteron (3S_1)	bound	unbound	bound

⇒ inconsistencies between two methods, which is correct?

▶ Today we will clarify the origin of this puzzle
Baryon interactions from lattice QCD

Direct measurement vs HAL QCD method
- Formalisms
- Direct Measurement
- HAL QCD Measurement

Origin of Fake Signal in Direct Method

Summary
Lüscher’s Finite Volume Method

- **“energy shift” in finite box** L^3

\[
\Delta E_L = E_{BB} - 2m_B = 2\sqrt{k^2 + m_B^2} - 2m_B
\]

⇒ **phase shift** $\delta(k)$

\[
k \cot \delta(k) = \frac{1}{\pi L} \sum_{n \in \mathbb{Z}^3} \frac{1}{|n|^2 - (kL/2\pi)^2}
\]

↑ **THEORY**

↓ **PRACTICE — “Direct Method”**

- **measure**: plateau in **effective mass**

\[
\Delta E_{\text{eff}}(t) = \log \frac{R(t)}{R(t+1)} \rightarrow \Delta E_L
\]

\[
R(t) = \frac{G_{BB}(t)}{\{G_B(t)\}^2} \rightarrow \exp \left[-(E_{BB} - 2m_B) t\right]
\]

with $G_{BB}(t)(G_B(t))$: BB(B) correlators

- **NN(1S_0)** (Yamazaki et al. '12)
Time-dependent HAL QCD Method

Nambu-Bethe-Salpeter wave function

\[
R(\vec{r}, t) \equiv \frac{\langle 0|T\{B(\vec{x} + \vec{r}, t)B(\vec{x}, t)\}\bar{J}(0)|0\rangle}{\{G_B(t)\}^2}
= \sum_n A_n \psi_n(\vec{r}) e^{-(E_n - 2m_B)t} + O(e^{-(E_{\text{th}} - 2m_B)t})
\]

with elastic saturation \(R(r, t) \) satisfies

\[
\left[\frac{1}{4m_B} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0 \right] R(\vec{r}, t) = \int d\vec{r}' U(\vec{r}, \vec{r}') R(\vec{r}', t)
\]

“potential” using velocity expansion \(U(r, r') \approx V(r)\delta(r - r') \)

\[
V(\vec{r}) = \frac{1}{4m_B} \frac{(\partial/\partial t)^2 R(\vec{r}, t)}{R(\vec{r}, t)} - \frac{(\partial/\partial t) R(\vec{r}, t)}{R(\vec{r}, t)} - \frac{H_0 R(\vec{r}, t)}{R(\vec{r}, t)}
\]

This method does not require the ground state saturation.
Difficulties in Multi-Baryons

- Lüscher’s method requires **ground state saturation**

\[G_{NN}(t) = c_0 \exp(-E_0^{(NN)}t) + c_1 \exp(-E_1^{(NN)}t) + \cdots \simeq c_0 \exp(-E_0^{(NN)}t) \]

- **S/N problem:** [mass number \(A \)] \(\times \) [light quark] \(\times \) [\(t \to \infty \)]

\[S/N \sim \exp[-A \times (m_N - (3/2)m_\pi) \times t] \]

- **smaller gap of scattering state:** \(\Delta E \sim \vec{p}^2/m \sim \mathcal{O}(1/L^2) \)

\[L = L_0 \quad \quad L = 2 \times L_0 \quad \quad L = \infty \]

Elastic

Inelastic

\(NN + \pi \)

\(NN \)
Contamination of Scattering State and Fake Plateau

Example

\[R(t) = b_0 e^{-\Delta E_{BB} t} + b_1 e^{-\delta E_{el} t} + c_0 e^{-\delta E_{inel} t} \]

with \(\delta E_{el} - \Delta E_{BB} = 50 \text{ MeV} \sim \mathcal{O}(1/L^2) \), \(\delta E_{inel} - \Delta E_{BB} = 500 \text{ MeV} \sim \mathcal{O}(\Lambda_{QCD}) \)

- g.s. saturation
 \(\Delta E_{BB}^{\text{eff}}(t) - \Delta E_{BB} \rightarrow 0 \)

- elastic saturation \(t \sim 1 \text{ fm} \)

- few % of contamination
 \(\Rightarrow \) “mirage” of plateau
 around \(t \sim 1 - 1.5 \text{ fm} \)
 much larger \(t \) for true g.s.

\(\Rightarrow \) a true ground state can be checked by quark source dependence

\[\text{HAL QCD} - \] scattering state are not noises, but signals
Lattice Setup: Wall Source and Smeared Source

- **interaction** from both direct and HAL QCD methods

- **CHECK 2 quark sources** — mixture of excited states are different

- **wall source**
 - standard of HAL QCD

- **smeared source**
 - standard of direct method†

- setup — 2 + 1 improved Wilson + Iwasaki gauge†
 - lattice spacing: \(a = 0.08995(40) \) fm, \(a^{-1} = 2.194(10) \) GeV
 - lattice volume: \(32^3 \times 48, 40^3 \times 48, 48^3 \times 48, \) and \(64^3 \times 64 \)
 - \(m_\pi = 0.51 \) GeV, \(m_N = 1.32 \) GeV, \(m_K = 0.62 \) GeV, \(m_\Xi = 1.46 \) GeV

† Yamazaki-Ishikawa-Kuramashi-Ukawa, arXiv:1207.4277.
Energy Shift of $\Xi\Xi$: Smeared Src. vs. Wall Src.

$\Delta E_{L}^{\text{eff}}(t) \longrightarrow \Delta E_{L}$ — depends on quark source (smeared or wall)

$\Xi\Xi(^1S_0)$ at $48^3 \times 48$

$\Xi\Xi(^3S_1)$ at $48^3 \times 48$

- source dependence suggests these plateaux are "fake" signal

$L \rightarrow \infty$	Smeared src. $\Delta E_{\Xi\Xi}(^1S_0)$	Wall source $\Delta E_{\Xi\Xi}(^3S_1)$
	< 0 bound	$\simeq 0$ unbound
	> 0 unphysical	$\simeq 0$ unbound

cf. $\Delta E < 0 \Rightarrow$ binding or $\Delta E = 0 \Rightarrow$ scattering
Generalized Sink Operator

\[
C^{(g)}_{\Xi\Xi}(t) = \sum_{\vec{r}} g(|\vec{r}|) \sum_{\vec{R}} \langle \Xi(\vec{R} + \vec{r}, t) \Xi(\vec{R}, t) J_{\Xi\Xi}(t = 0) \rangle \rightarrow \exp(-E_{\Xi\Xi}t)
\]

\[\Rightarrow \text{g.s. energy does not depend on } g(r)\]

- \(g(r) = 1\): standard sink operator
- \(g(r) = 1 + A \exp(-B r)\): exp-type projection

Smeared Src.

one can make any "fake plateau"

Wall Src.

"stable"

\[
\Delta E_{\Xi\Xi}^{\text{eff}}(t) [\text{MeV}]
\]

\[
\Delta E_{\Xi\Xi}^{\text{eff}}(t) [\text{MeV}]
\]
HAL: Potential of $\Xi\Xi(^1S_0)$ Smeared Src. vs Wall Src.

NBS wavefunction: $R^{\text{smear}}(r, t)$ or $R^{\text{wall}}(r, t)$

\[V_c(r) = \frac{1}{4m} \left(\frac{\partial^2}{\partial t^2} R(r, t) \right) - \frac{\partial}{\partial t} \frac{R(r, t)}{R(r, t)} - \frac{H_0 R(r, t)}{R(r, t)} \]

smeared src. t-depend

wall src. t-stable
HAL: Potential of $\Xi\Xi(1S_0)$ Smeared Src. vs Wall Src.

- **wall src.** — good convergence
- **smeared src.** — t-dep.
- **smeared src.** \rightarrow **wall src.** for large t
Residual Diff. of Pot.: Next Leading Order Correction

Derivative expansion: \(U(r, r') = \{ V_0(r) + V_1(r) \nabla^2 \} \delta(r - r') \) (for \(^1S_0\))

\[
\left[\frac{1}{4m} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0 \right] R(r, t) = \int d^3r' U(r, r') R(r', t) \\
\simeq V_0(r) R(r, t) + V_1(r) \nabla^2 R(r, t) + \cdots
\]

\(R^{\text{smear}} \) and \(R^{\text{wall}} \Rightarrow V_0(r) \) and \(V_1(r) \)

▶ HAL method works — quark src. independent w/o g.s. saturation

□ Leading order approximation

□ Next leading order correction
HAL meets Lüscher: Energy Shift from Potential

- HAL QCD works well \textit{w/o g.s. saturation problem}
 use potential \implies true “energy shift” in finite volume

\uparrow Eigenequation in finite box L^3 with HAL QCD potential $V(\vec{r})$

\[[H_0 + V] \psi = \Delta E \psi \]

\square eigenvalue $\Delta E_0 \propto 1/L^3 \longrightarrow 0 \implies$ scattering by Lüscher’s formula

- potential $V(r)$

\begin{itemize}
 \item $\xi(1S_0)$ potential [MeV]
 \item α/L^3-fit
 \item eigenvalue
\end{itemize}
1 Baryon interactions from lattice QCD

2 Direct measurement vs HAL QCD method
 - Formalisms
 - Direct Measurement
 - HAL QCD Measurement

3 Origin of Fake Signal in Direct Method

4 Summary
Wavefunction, Potential, Eigenvalues and Eigenfunctions

NBS wave function

- **smear**
- **HAL method**
- **wall**
- **feed back**
- decomposition
- projection

Potential

- **Solve** $[H_0 + V] \psi = E \psi$
- ground state & excited states (elastic scattering)

Eigenvalues & Eigenfunctions

- $\psi_n(r,t=12)$
- $4th \ A1$, $3rd \ A1$, $2nd \ A1$, $1st \ g.s.$
Excited States in Wavefunction

- R-corr. decomposition by energy eigenmodes

$$R^{\text{wall/smear}}(\vec{r}, t) = \sum_n a_n^{\text{wall/smear}} \Psi_n(\vec{r}, t) \exp(-\Delta E_n t)$$

$$\therefore R(p = 0, t) = \sum_r R(\vec{r}, t) = \sum_n b_n^{\text{wall/smear}} e^{-\Delta E_n t}$$

\[\Box \text{ex. 1st excited state} \]

- **wall source**
 - $b_1/b_0 \ll 0.01$

- **smeared source**
 - $b_1/b_0 \simeq -0.1$

- with energy gap
 - $E_1 - E_0 \simeq 50 \text{ MeV}$
 - for $L^3 = 48^3$

\[|b_n/b_0| \Xi \Xi(1S_0) \text{ at } t = 14 \]

\[\Delta E_n [\text{MeV}] \]

“contamination” of excited states b_n/b_0
Origin of Fake Plateau — Contamination of Excited States

\[\Delta E_{\text{eff}}(t) \equiv \log \frac{R(p = 0, t)}{R(p = 0, t + 1)} = \log \frac{\sum_n b_n \exp(-\Delta E_n t)}{\sum_n b_n \exp(-\Delta E_n (t + 1))} \]

“direct measurement” — reproduced by low-lying modes

\[b_{\text{wall}}^{n=0,\ldots,2} \text{ at } t = 14 \]
\[b_{\text{smeared}}^{n=0,\ldots,2} \text{ at } t = 14 \]

wall src. \(\Xi \Xi (1S_0) \)

smeared src. \(\Xi \Xi (1S_0) \)

† eigenvalues \(\Delta E_n \), coefficients \(b_{\text{smeared/wall}}^n \) for \(n = 0, 1, 2 \), at \(t = 14 \).
\[\Delta E_{\text{eff}}(t) \equiv \log \frac{R(p = 0, t)}{R(p = 0, t + 1)} = \log \frac{\sum_{n} b_{n} \exp (-\Delta E_{n} t)}{\sum_{n} b_{n} \exp (-\Delta E_{n} (t + 1))} \]

“direct measurement” — reproduced by low-lying modes\(^{\dagger}\)

\[\square \text{g.s. saturation} \text{ of smeared source} \text{ — 100 lattice units } \sim \text{ 10 fm} !!! \]

\(^{\dagger}\) eigenvalues \(\Delta E_{n}\), coefficients \(b_{n}^{\text{smear/wall}}\) for \(n = 0, 1, 2,\) at \(t = 14\).
1 Baryon interactions from lattice QCD

2 Direct measurement vs HAL QCD method
 - Formalisms
 - Direct Measurement
 - HAL QCD Measurement

3 Origin of Fake Signal in Direct Method

4 Summary
Summary: Lüscher Direct vs HAL QCD

- “Direct method” — **ground state saturation** is extremely difficult
 - scattering states \Rightarrow “fake plateau” \implies **Wrong Conclusion!**
 - much smaller gap & larger noise @ phys. pt. \Rightarrow almost impossible

- HAL QCD works well **without g.s. saturation**
 - HAL QCD \Rightarrow “correct” ΔE_L and input of Lüscher’s formula
- **NBS corr. + “potential”** \Rightarrow excited states contamination and origin of fake plateau.

- *(even if you do not trust HAL QCD method)*
 - fake plateau can be checked by Lüscher’s formula \implies Aoki’s Talk

Pot. with wall src. $\uparrow\downarrow$ **NLO pot. corr.**

Pot. with smear src. $\downarrow\uparrow$

Direct with wall src.

\implies explain $\Delta E_{eff}(t)$

Direct with smear src.

Fake plateaux

Conflict
Demo: Contamination of Scattering State

Mock up data

\[R(t) = b_0 e^{-\Delta E_{BB} t} + b_1 e^{-\delta E_{el} t} + c_0 e^{-\delta E_{inel} t} \]

with \(\delta E_{el} - \Delta E_{BB} = 50 \text{ MeV} \sim \mathcal{O}(1/L^2) \), \(\delta E_{inel} - \Delta E_{BB} = 500 \text{ MeV} \sim \mathcal{O}(\Lambda_{QCD}) \).

- g.s. saturation around \(t \rightarrow 10 \text{ fm} \)
- fake plateau around \(t \sim 1 \text{ fm} \)
\(\Xi \Xi (^{1}S_{0}) \)

Graphs showing the change in energy \(\Delta E \) vs. time \(t \) and \(1/L^3 \) for relativistic and non-relativistic operations. The graphs indicate the behavior of smeared and wall source scenarios.
\[\Xi \Xi \left(^3S_1 \right) \]

![Graphs showing\(\Delta E_{\Xi \Xi}(t) \) and \(\Delta E_{\Xi \Xi}(\frac{1}{L^3}) \) for different \(L \) values.]
NN(1S_0)

![Graphs showing $\Delta E_{\text{eff}}(t)$ and ΔE_{NN} vs. $1/L^3$ for different L values and sources.](image)

relativistic op. and non-rela. op. (NR)
$NN^{(3S_1)}$
Triton

\[\Delta E_{3\text{He}}(t) \text{ [MeV]} \]

\[L = 32 \]

\[L = 40 \]

\[L = 48 \]

\[L = 64 \]

\[\Delta E_{3\text{He}} \text{ [MeV]} \]

relativistic op. and non-rela. op. (NR)

\[1/L^3 [a^{-3} \times 10^{-5}] \]
Helium

\[\Delta E_{\text{eff}}(t) [\text{MeV}] \]

\[L = 32 \text{ sm. are d src. } 4\text{He} \]

\[L = 40 \text{ wall src. 4He} \]

\[L = 48 \text{ wall src. 4He} \]

\[L = 64 \text{ wall src. 4He} \]

\[\Delta E_{\text{eff}} (t) [\text{MeV}] \]

\[\frac{1}{L^3} [a^{-3} \times 10^{-5}] \]

relativistic op. and non-rela. op. (NR)
$\Delta E_{\text{eff}}(t) = E_{\Xi \Xi}^{\text{eff}}(t) - 2m_{\Xi}^{\text{eff}}(t)$: Smeared Src. vs. Wall Src.
$\Xi \Xi (^1S_0)$ is Unbound at $m_\pi = 510$ MeV

\[k \cot \delta(k) = \frac{1}{\pi L} \sum_{n \in \mathbb{Z}^3} \frac{1}{|n|^2 - (kL/2\pi)^2}, \]

\[\Delta E = 2\sqrt{m^2 + k^2 - 2m} \]

- **Volume dep. of ΔE_0**
 - ΔE_0 [MeV] vs. $1/L^3$ [$a^{-3} \times 10^{-5}$]
 - α/L^3-fit
 - Eigenvalue

- **Phase shift δ**
 - E_{CM} [MeV] vs. δ [deg.]
 - $40^3 \times 48$ at $t = 12$
 - $48^3 \times 48$ at $t = 12$
 - $64^3 \times 64$ at $t = 12$
 - Luscher formula
t-depenence of Potential

t-dependence of Wall Src. potential is stable

$64^3 \ t = 12 - 17$

$\Xi(1S_0)$ potential [MeV]

$2 \times m_{\Xi}^{\text{eff}}$ or $E_{\Xi \Xi}^{\text{eff}}$ [MeV] $L = 64$

wall src. Ξ

wall src. $\Xi \Xi(1S_0)$
Time-dependent HAL QCD Method

- space-time correlation function

\[R(\vec{r}, t) \equiv \langle 0 | T \{ B(\vec{x} + \vec{r}, t) B(\vec{x}, t) \} \bar{J}(0) | 0 \rangle / \{ G_B(t) \}^2 \]

\[= \sum_n A_n \psi_n(\vec{r}) e^{-(E_n - 2m_B)t} + O(e^{-(E_{th} - 2m_B)t}) \]

\[\square \text{ each } \psi_n(\vec{r}) e^{-E_n t} \equiv \langle 0 | T \{ B(\vec{x} + \vec{r}, t) B(\vec{x}, t) \} | 2B, n \rangle \text{ satisfies } \]

\[\left[\frac{k_n^2}{m_B} - H_0 \right] \psi_n(\vec{r}) = \int d\vec{r}' U(\vec{r}, \vec{r}') \psi_n(\vec{r}') \]

with non-local interaction kernel \(U(\vec{r}, \vec{r}') \)

- \(R \)-corr. satisfies \(t \)-dep. Schrödinger-like eq. with \textbf{elastic} saturation

\[\left[\frac{1}{4m_B} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0 \right] R(\vec{r}, t) = \int d\vec{r}' U(\vec{r}, \vec{r}') R(\vec{r}', t) \]

\[\text{“potential” using velocity expansion } U(r, r') \simeq V(r) \delta(r - r') \]

\[V(\vec{r}) = \frac{1}{4m_B} \frac{(\partial/\partial t)^2 R(\vec{r}, t)}{R(\vec{r}, t)} - \frac{(\partial/\partial t) R(\vec{r}, t)}{R(\vec{r}, t)} - \frac{H_0 R(\vec{r}, t)}{R(\vec{r}, t)} \]

\[\text{This method does not require the ground state saturation.} \]
HAL: Wave Function and $\Xi\bar{\Xi}(^{1}S_{0})$ Potential $V_{c}(\vec{r})$

- **wall src.** — weak t-dep.
- **smeared src.** — strong t-dep.
- Contribution of excited states
- Time-dep. HAL method works well
- $\mathcal{O}(100)$ MeV of cancellation

$$V_{c}(\vec{r}) = -\frac{H_{0}R}{R} - \frac{(\partial/\partial t)R}{R} + \frac{(\partial/\partial t)^2 R}{4mR}$$
Next Leading Order of Derivative Expansion

Derivative expansion: \(U(r, r') = \{V_0(r) + V_1(r)\nabla^2\} \delta(r - r') \) (for \(^1S_0\))

\[
\left[\frac{1}{4m} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0 \right] R(r, t) = \int d^3r' U(r, r') R(r', t)
\]

\[
\begin{align*}
\frac{1}{4m} \frac{\partial^2}{\partial t^2} R & - \frac{\partial}{\partial t} R - \frac{H_0 R}{R} = V_0(r) + V_1(r) \frac{\nabla^2 R(r, t)}{R(r, t)} \equiv \tilde{V}_{\text{eff}}(r, t) \\
\end{align*}
\]

\(R^{\text{smeear}} \) and \(R^{\text{wall}} \)

\[
\begin{align*}
V_0(r) + V_1(r) \nabla^2 R^{\text{smeear}} / R^{\text{smeear}} &= \tilde{V}^{\text{smeear}}_{\text{eff}} (r, t^{\text{smeear}}) \\
V_0(r) + V_1(r) \nabla^2 R^{\text{wall}} / R^{\text{wall}} &= \tilde{V}^{\text{wall}}_{\text{eff}} (r, t^{\text{wall}}),
\end{align*}
\]

\(\tilde{V}_{\text{eff}}^{\text{smeear}} (r, t^{\text{smeear}}) \) and \(\tilde{V}_{\text{eff}}^{\text{wall}} (r, t^{\text{wall}}) \) potentials are given by

\[
V_1(r) = \frac{\tilde{V}^{\text{smeear}}_{\text{eff}} (r, t^{\text{smeear}}) - \tilde{V}^{\text{wall}}_{\text{eff}} (r, t^{\text{wall}})}{\nabla^2 R^{\text{smeear}} / R^{\text{smeear}} - \nabla^2 R^{\text{wall}} / R^{\text{wall}}}
\]

\[
V_0(r) = \tilde{V}^{\text{smeear}}_{\text{eff}} (r, t^{\text{smeear}}) - V_1(r) \frac{\nabla^2 R^{\text{smeear}}}{R^{\text{smeear}}}.
\]