Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Development of nonhuman adenoviruses as vaccine vectors

Dinesh S. Bangari, Suresh K. Mittal *

Laboratory of Gene Therapy, Department of Veterinary Pathobiology, Purdue University, West Lafayette, IN 47907, USA

Received 19 May 2005; received in revised form 29 July 2005; accepted 25 August 2005
Available online 23 September 2005

Abstract

Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine-delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination.

Keywords: Adenoviral vectors; Nonhuman adenoviral vectors; Adenoviral vector-based vaccine; Adenoviral vector immunity

Contents

1. Introduction .. 850
 1.1. Advantages of adenoviral (Ad) vectors .. 850
 1.2. Current status of Ad vector vaccines .. 850
 1.3. Importance of vector immunity in immunization 850
2. Nonhuman adenoviruses .. 851
 2.1. Bovine Ad vectors .. 853
 2.2. Canine Ad vectors .. 855
 2.3. Chimpanzee Ad vectors ... 855
 2.4. Ovine Ad vectors .. 856
 2.5. Porcine Ad vectors .. 857
 2.6. Fowl Ad vectors .. 858
3. Conclusions and future directions 858
Acknowledgements ... 859
References .. 859

* Corresponding author. Tel.: +1 765 496 2894; fax: +1 765 494 9830.
E-mail address: mittal@purdue.edu (S.K. Mittal).

© 2005 Elsevier Ltd. All rights reserved.

KEYWORDS: Adenoviral vectors; Nonhuman adenoviral vectors; Adenoviral vector-based vaccine; Adenoviral vector immunity

0264-410X/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.vaccine.2005.08.101
1. Introduction

Advancements in recombinant DNA technology, genomics and immunology have greatly impacted the process of vaccine development. Genetic manipulation of microbes to adapt them as vectors for gene delivery offers a unique opportunity for vaccine design. As more effective, novel and safe vaccines are sought for existing, emerging and reemerging diseases, viral and bacterial vectors are becoming an important immuno prophylactic tool in the arsenal of modern medicine. The advantages of vectored vaccines include efficient antigen presentation and induction of both humoral and cell-mediated immunity. Among various vaccine vectors, adenoviral (Ad) vectors are being extensively investigated. Since the first use of Ad expression vectors in the early 1980s, Ad vectors have shown great promise as vaccine vectors [1–4]. In addition, Ad vectors are being extensively explored for their applications in gene therapy [5]. Ad vectors are also becoming a therapeutic tool for cancer therapy, by virtue of their own oncolytic nature. Several preclinical and clinical trials have demonstrated therapeutic potential of Ad vectors in the treatment of a variety of cancers [6–9]. Ad vectors are also being explored for genetic immunotherapy of tumors, as a clinical modality in conjunction with conventional chemo- and radiation-therapy [10].

1.1. Advantages of adenoviral (Ad) vectors

Ad vectors offer several advantages as vaccine vectors and meet the most important criteria of an ideal vaccine vector in terms of efficacy, safety and stability [4]. Ad can infect a broad range of both actively dividing as well as post-mitotic quiescent mammalian cells. Transgene expression with Ad vectors is usually robust and can be further enhanced by driving gene expression with strong heterologous promoters. Generation of various Ad vectors is fairly straightforward and the vectors can be easily grown to large scale in tissue culture. Since Ad vectors are replication-defective, there is no serious threat of horizontal transmission. The vector genome does not integrate into the host chromosome and mostly remains epichromosomal, thus making their use safe without a potential risk of insertional mutagenesis. Ad vectors induce strong immunity when administered via parenteral (subcutaneous, intravenous, intramuscular or intraperitoneal) or mucosal (oral or intranasal) routes. The latter is often desired as most infections occur at mucosal surfaces. Furthermore, Ad vectors appear to be safe for use in humans as human Ad (HAd) serotypes 4 and 7 have been used as live oral vaccines in military recruits in the USA for several decades without any known adverse effects [11].

Although the mechanism of immune response against foreign antigens expressed by Ad vectors is not fully understood, it is thought to involve both humoral and cellular arms of the immune system [4]. Following Ad vector administration, foreign gene product-specific antibodies are elicited in various experimental animal models [3,12]. These antibodies are primarily of the IgG2a isotype, indicating the predominance of Th1-type help. In addition, specific CD8+ T cells also develop [13,14]. Ad vectors also induce a strong innate immune response [15] that presumably potentiates the subsequent humoral and cellular immune responses. Furthermore, transduction of antigen presenting cells [16] by Ad vectors facilitates antigen presentation and prolongs the duration of immune response.

1.2. Current status of Ad vector vaccines

Most vaccine studies using Ad vectors have been carried out with HAd serotype 5 (HAd5) as this expression system has been extensively used as a delivery vehicle in the majority of Ad vector-based gene therapy trials [17]. HAd5 is the best characterized of all adenoviruses. Several recent reviews have focused on the prospects of HAd5 vectors for vaccination [4,18,19]. A number of preclinical and clinical trials using HAd5 vectors as a vaccine are currently in progress [20–27]. The notable among them are: (i) an HAd5 vector vaccine expressing human immunodeficiency virus (HIV)-1 env gene that induced protective immunity against challenge with EV in primates; (ii) an HAd5 vector vaccine expressing human immunodeficiency virus (HIV)-1 env gene that induced protective immunity against anthrax and showed effective protection against anthrax challenge; and (iv) HAd5 vectors expressing severe acute respiratory syndrome (SARS) coronavirus protein that elicited a specific immune response in rhesus macaques. Ad vectors can also be used for passive immunotherapy as exemplified by a recent study [25], demonstrating the production of a single-chain antibody directed against a protective antigen of Bacillus anthracis.

1.3. Importance of vector immunity in immunization

Despite the above-mentioned advantages, clinical use of Ad vectors is severely hampered by the widely prevalent pre-existing immunity against HAd5 in the majority of the human population [28,29]. The efficacy of HAd5 vectors is expected to be highly variable depending on the levels of preexisting vector immunity. Since Ad vectors are highly immunogenic, their first use also leads to development of strong humoral and cellular immunity [30], which blocks subsequent use of the vector. This is a potential problem in vaccination strategies that require repeated administration. Suppressive effects of anti-HAd5 immunity are attributed to strongly neutralizing antibodies directed against viral capsid components [31,32] and HAd5-specific CD8+ T cells [33]. Neutralizing antibodies drastically reduce uptake of the Ad vector by cells, leading to poor transgene expression resulting in blunting of the transgene-specific immune response.
Fig. 1. Consequences of Ad vector immunity. Preexisting HAd immunity inhibits initial transduction with HAd vectors, and thus impedes the first use of many HAd vectors. In individuals with no preexisting HAd immunity, the first use of HAd vector would induce strong innate, cellular and humoral immune responses. The cellular immunity eliminates the majority of the transduced cells while the humoral immunity blocks subsequent infection with the same HAd vector. Indeed, several studies have shown a drastic reduction in gene-transfer potential of HAd5 vectors in preimmune animal models [30,34–36]. Specific CD8+ T-lymphocytes will eliminate the vector transduced cells and thus shorten the duration of antigen expression. In case of the individuals that are not pre-exposed to HAd5, the first use of HAd5 vectors will lead to development of strong anti-HAd5 immunity that will make their subsequent use less effective (Fig. 1). This is a limitation of most of the live virus vector vaccines as many vaccine applications warrant more than one dose/booster of the vaccine in order to elicit protective immunity.

Preexisting HAd5 immunity drastically reduces the immunogenicity of HAd5 vector vaccines in animals [24,30,37] as well as in human beings [18]. Furthermore, since the level of anti-HAd5 neutralizing antibodies varies widely in the human population, immune responses following vaccination with HAd5 vectors will be highly variable and largely unpredictable [19]. Therefore, a preliminary screening of target individuals would be necessary prior to using HAd5 vectors.

In order to circumvent the preexisting HAd5 immunity, several approaches are under investigation. These include priming with recombinant DNA prior to boosting with a HAd5 vector [37,38], mucosal delivery of HAd5 vectors [39], microencapsulation of HAd5 vectors in inert polymers [40,41], engineering fiber- or hexon-chimeric HAd5 vectors [42–44], use of Ad vectors based on rare HAd serotypes [28,45], or use of vectors derived from nonhuman Ad types [46–49]. The focus of this review is on nonhuman Ad vectors and this will be discussed in the following sections.

2. Nonhuman adenoviruses

Adenoviruses have been isolated from a variety of animal species and birds [50]. Based on their genome organization, serological properties and growth in cell culture, these viruses have been grouped into four distinct genera under the family Adenoviridae [51]. Most mammalian adenoviruses, including all known HAd serotypes belong to the genus Mastadenovirus. Adenoviruses isolated from birds are classified under the genus Aviadenovirus. The genus Atadenovirus consists of unique viruses isolated from ovine, bovine, deer, possum as well as some bird isolates. These viruses are distinct from the genus Mastadenovirus as they lack a distinct early region 1 (El) transcriptional unit and have very high AT (adenine and thymidine)-rich genomes. Most recently, a fourth genus Stadenovirus was proposed that includes viruses isolated from frog, other invertebrates and the virus causing turkey hemorrhagic enteritis [50]. Like most HAd, the majority of nonhuman Ad, chosen for vector design do not cause significant clinical or pathological signs in their natural host species. Since Ad infections are widespread, the majority of the adult population of the host species is seropositive to the most prevalent Ad serotypes.

The precedent for using nonhuman Ad as expression vectors primarily came from their no or low pathogenicity
Nonhuman adenovirus	Year of isolation	Genome size (bp)	Site/s for transgene insertion	Currently used cell line/s for vector generation	Examples of vectored vaccine [references]		
Bovine adenovirus serotype 3 (BAd3)	1965	34,446 (AF103554)	E1A region	HAd5 E1-transformed retinal cells (VIDOR2 and FBRT HE1) BAd3 E1-complementing FBK 34 cells Bovine-human hybrid cells (BHH3 and BHH6)	Bovine herpesvirus gD [67]		
Bovine herpesvirus							
Canine adenovirus serotype 2 (CAd2)	1962	31,323 (U77082)	E1A/B region	E3 region	CAd2 E1A/B-transformed HeLa cells	Bovine virus diarrhea virus E2 glycoprotein [69]	
Bovine virus diarrhea virus							
Chimpanzee adenovirus (SAd25; C68 isolate)	1971	36,521 (AF394306)	E1A/B region	E3 region	CA-D2 E1A/B-transformed HeLa cells	Canine distemper virus HA of F antigen [79]	
Canine distemper virus							
Ovine adenovirus serotype 7 (OAd7)	1994	29,576 (U40839)	Site I-pVIII and fiber intergenic region Site II- unique SalI site within ORF RH2 Site III- region between the right end and the putative E4 transcription units	E1 A region	E3 region	293 cells Other HAd5 E1-transformed cell lines	Transmissible gastroenteritis virus S protein [104]
Transmissible gastroenteritis virus							
Porcine adenovirus serotype 3 (PAd3)	1967	34,094 (AF831332)	E1A region	E3 region	Region between E4 promoter and the right ITR	Transmissible gastroenteritis virus S protein [104]	
Classical swine fever virus							
Fowl adenovirus serotype 1, CELO (FAd1)	1971	43,804 (U46933)	Three ORFs adjacent to the right end of the genome Region between 938 and 2900 (with trans-complementation)	Leiblma male hepatoma (LMBH) cells	Infectious bursal disease virus (IBDV) VP2 [128]		
for their natural hosts and similarity of their structural and genomic organization with that of HAd5 in the case of the Mastadenovirus species. Various nonhuman Ad that are currently under investigation as gene expression vectors include bovine Ad serotype 3 (BAd3), canine Ad serotype 2 (CAd2), chimpanzee Ad serotype 1 (for example: simian adenovirus serotype 25, SAd25), ovine Ad serotype 7 (OAd7), porcine Ad serotypes 3 and 5 (PAd3, PAd5) and fowl Ad serotype 1, 8, 9 and 10 (FAd1, 8, 9, 10) (Table 1).

With greater understanding of the biology of these nonhuman Ad and availability of suitable systems for vector rescue and propagation, replication-competent as well as replication-defective vectors have been constructed. Multiple sites for foreign gene insertion have been identified in the genomes of various nonhuman Ad (Fig. 2). In general, a two-plasmid strategy for homologous recombination in bacteria to generate the full-length recombinant Ad genome followed by transfection of a suitable E1-complementing cell line (Fig. 3) has been the mainstay of nonhuman Ad vector construction [52,53]. Chimpanzee Ad vectors can be rescued in E1-complementing cell lines of human origin following co-transfection of a shuttle plasmid and the wild-type genomic DNA [46]. For OAd7, a recombination strategy using a cosmid has also been used, in addition to the homologous recombination in bacteria. FAd vectors were developed by co-transfection of a shuttle plasmid and genomic DNA in a permissive cell line (Fig. 3).

Nonhuman Ad vectors have been characterized in vivo. Absence of virus neutralizing antibodies in human sera suggests that these viruses are not prevalent in the human population. Further, preexisting HAd5 antibodies in the sera of human or experimental animals did not cross-neutralize most nonhuman Ad [36,48,49]. In addition, these vectors efficiently transduce several human and nonhuman cells [46,48,54–56], indicating their usefulness as alternative vectors for human as well as veterinary use. Below, we present a review of recent advances with each of these nonhuman Ad vectors.

2.1. Bovine Ad vectors

Ten Ad serotypes (1–10) have been isolated from cattle. These are classified either under the genus Mastadenovirus or Astadenovirus based on their genome organization and ability to grow in cell culture. Bovine Ad serotype 3 (BAd3) is a Mastadenovirus isolated from the conjunctiva of a healthy cow [57]. Complete nucleotide sequence and genomic map of BAd3 revealed a high level of similarity with HAd5 [58]. The E3 region of BAd3 is smaller and less complex than the E3 of HAd5 [58], and is not essential for virus replication in tissue culture [59]. A recent study compared the influence of various promoters for transgene expression in the E3 region of BAd3 [60]. The murine cytomegalovirus (MCMV) immediate early promoter was more efficient for foreign gene expression in the E3-parallel orientation than other exogenous promoters such as phosphoglycerate kinase (PGK) or human cytomegalovirus (HCMV) promoters. Development of E1-complementing cell lines of bovine origin was an important requirement in order to generate replication-defective BAd3 vectors since the HAd5 E1-expressing human 293 cell line [61] did not support BAd3 replication [59]. The E1 gene products of BAd3 were shown to complement E1A.

Fig. 2. Sites of foreign gene insertion in the genome of various nonhuman Ad vectors. Genome maps are drawn with respect to the genome map of type C HAd (shown at the top). ITR, inverted terminal repeat; Φ, Ad packaging signal; E (early region gene); IVa2, IVa2 gene; ORF, open reading frame; m.u., map unit.
function of HAd5 as demonstrated by replication of an E1-deleted HAd5 vector in BAd3 infected MDBK cells [62]. This trans-complementation, based on structural and functional homologies in the E1 genes of HAd5 and BAd3, led to the generation of complementing cell lines by transforming cells of bovine origin with HAd5 E1 [63,64].

Subsequently, replication-defective BAd3 with deletion in E1A and/or E3 were constructed by homologous recombination in E. coli BJ5183 [53] and rescued by transfecting E1-complementing bovine retina cells (VIDO R2, [63]; FBRT HE1 [56,64]) (Fig. 3). In addition, bovine cell lines expressing E1 proteins of BAd3 have also been developed [64]. More recently, BAd3 genome sequences involved in the virus packaging have been identified. This may be helpful in designing novel vectors with increased carrying capacity on the precedence of helper-dependent ‘gutless’ HAd5 vectors [65]. The ability to incorporate a heterologous protein in the C-terminus of minor capsid protein pIX protein of BAd3 [66] offers a unique opportunity to insert specific ligands in the viral capsid to improve or alter transduction by BAd3 vectors.

A number of studies have demonstrated the feasibility of generating a strong immune response against foreign gene products expressed by BAd3 vectors. Mucosal immunization of calves with a replication-competent BAd3 vector carrying bovine herpesvirus type 1 (BHV-1) glycoprotein gD in the E3 region induced neutralizing antibodies that conferred protection against BHV-1 challenge [67]. Comparison of replication-defective and replication-competent BAd3 vectors expressing BHV-1 gD showed a lower immune response was elicited with the replication-defective vector.
It is important to note that these vectors carried the foreign gene under the adenoviral major late promoter. Potentially, the problem of a lower immune response with a replication-defective vector could be overcome by driving the transgene expression with strong promoters, such as the HCMV or the simian virus 40 (SV40) early promoter. Another study investigated the feasibility of generating an immune response against bovine viral diarrhea virus (BVDV) glycoprotein E2 in cotton rats using an E3-deleted BAd3 vector [69]. BVDV E2-specific IgA and IgG responses were elicited following intranasal immunization with the vector.

Several studies examined preexisting immunity against BAd3 and its role in the subsequent use of BAd3 vectors in the cattle population [67,70]. Replication-competent BAd3 vectors could induce protective immune responses in calves that had pre-existing BAd3-specific antibodies. BAd3 vectors could also circumvent pre-existing HAd5 immunity in a mouse model [36]. We recently reported that BAd3 is not prevalent in the human population, and that pre-existing HAd immunity does not cross-neutralize BAd3 [56]. These studies demonstrated the potential of BAd3 vectors for gene transfer in humans even in the presence of HAd neutralizing antibodies. To further explore this possibility, it was important that BAd3 vectors efficiently transduce human cells. The wild-type BAd3 could infect but did not grow in human cell lines [54,59]. Replication-defective BAd3 vectors efficiently express foreign genes in a variety of human as well nonhuman cells in culture [54,56,63]. BAd3 entry into various cell types appears to be CAR- as well as integrin-independent [71]. In addition, tropism of BAd3 could be altered by switching the viral fiber knob with the HAd5 fiber knob [72], thus indicating the involvement of receptor/s distinct from primary receptors of HAd5 in BAd3 internalization [71].

2.2. Canine Ad vectors

Two serotypes of canine Ad (CAd) have been isolated. Both CAd1 and CAd2 have been associated with mild upper respiratory tract infections in dogs. Effective live-modified vaccines are available for routine vaccination of dogs against both CAd1 and CAd2, with an excellent safety record. The complete genomic sequence of CAd1 is known [73]. An E3-deleted CAd vector expressing the capsid protein of canine parvovirus was generated by homologous recombination in bacteria [74]. CAd2 is well characterized, and has been utilized for vector development. The CAd2 genome carries an E1-transcription region similar to HAd5. Since E1-deleted CAd2 vectors did not replicate in human E1-complementing cell lines, an E1-complementing canine kidney cell line (DK/E1-2B) was developed that expressed CAd2 E1 proteins [52,75]. Homologous recombination following co-transformation of a shuttle plasmid and CAd genomic DNA in E. coli BJ5183 was adapted for generating recombinant infectious clones (Fig. 3). A conditionally replicating CAd2 vector, the first oncolytic vector based on a nonhuman Ad, was successfully tested for its therapeutic application in canine osteosarcoma [76]. With the availability of the information regarding the packaging sequence of CAd2 [77], a system for generating helper-dependent vectors (with majority of the viral genome deleted) has been developed [78].

Based on the experience with commonly used live CAd vaccines, it was observed that these CAd vaccines were efficacious for the vaccination of dogs not only by the parenteral route but also by the mucosal route. Replication-competent CAd vectors were expected to be useful in providing protective immunity in dogs and wild animals against a variety of pathogens including viruses. A replication-competent CAd2 vector expressing canine distemper virus (CDV) hemagglutinin or fusion protein in the E3 region under the control of a truncated HCMV promoter, resulted in significant seroconversion and protective immunity [79]. Intranasal vaccination with this vector induced significant levels of CDV-specific immunity in seronegative puppies but a poor immune response was elicited in the puppies preexposed to CAd2. The inability of the CAd2 vector vaccine to elicit a CDV-specific serological response following intranasal inoculation was attributed to anti-CAd2 mucosal immunity in preexposed animals.

Like most other Ad, CAd are also prevalent in their natural hosts. Importantly, however, neutralizing antibodies against CAd2 are not prevalent in humans [52]. CAd2 vectors can efficiently transduce a variety of human cell types [54,78] but do not grow in these cells. Although CAd2 was found to interact with CAR [80], its tropism is distinct from HAd5 as indicated by preferential transduction of nervous tissue [78,81], and novel tropism of a chimeric HAd5 vector carrying the CAd2 fiber [47]. This feature of CAd2 should be helpful in designing alternate vectors for the targeted gene delivery.

2.3. Chimpanzee Ad vectors

Nine serotypes of chimpanzee Ad are currently known, which are classified as simian Ad (SAd) under Mastadenovirus genus [50]. The complete nucleotide sequences of SAd25 (also referred as AdC68 or Pan 6), as well as SAd22, SAd23 and SAd24 are now available [46,82,83]. SAd25 is grouped under HAd subgroup E based on its sequence homology and genome organization. These viruses do not cause any apparent clinical symptoms in chimpanzees. Unlike other nonhuman Ad, which were initially developed as vaccine vectors for their natural hosts, interest towards developing gene delivery vectors based on SAd has gained impetus primarily because of their ability to circumvent preexisting immunity to HAd vectors [13,46,84]. Because of their close homology with HAd, trans-complementation of E1 function of SAd viruses by HAd5 E1 was anticipated. The first E1-deleted replication-defective SAd25 recombinant carrying the enhanced green fluorescent
2.4. Ovine Ad vectors

There are seven distinct serotypes of Ad isolated from sheep. These are referred to as ovine Ad serotypes 1–7 (OAd1-7). Serotypes 1–6 are assigned to the genus Mastadenovirus. Serotype 7 (OAd7, isolate 287 or AdC68) is a non-pathogenic Ad of sheep. It has a unique genome organization distinct from that of genus Mastadenovirus or Aviadenovirus. The complete nucleotide sequence of OAd7 is now available. The OAd7 genome is characterized by a high AT content and the lack of a clearly distinguishable El region [89]. Owing to these differences, OAd7 along with Ad isolates from deer, possum, duck, snake, etc. is now classified under a new genus Aviadenovirus [90]. Recombinant OAd7 vectors can be constructed and rescued by homologous recombination in E. coli followed by transfection of a permissive ovine fetal lung cell line (CSL503) [91] (Fig. 3). Another, more efficient cosmid-based strategy for vector generation following vector rescue in an ovine fetal skin fibroblastic cell line has also been developed [92]. Three dispensable, nonessential regions of the viral genome, where foreign genes can be inserted, have been delineated [93]. These are referred as the sites I, II and III (Fig. 2). The site I is located between the pVIII and fiber region. The biology and potential gene delivery applications of OAd7 have recently been reviewed [93]. A number of recombinant OAd7 vectors expressing foreign genes encoding immunogenic proteins have been developed. An OAd7 recombinant expressing hepatitis C virus NS3 protein elicited a strong and sustained antigen specific T-cell response in mice [96]. High levels of transgene were expressed following vector administration by intravenous route [49]. Vector biodistribution was similar in the spleen, heart, kidney and the liver while the lung was infected to a lower degree. Similarly, high serum levels of the transgene product were produced following intramuscular administration of an OAd7 vectors expressing human alpha 1-antitrypsin gene in mice [97]. An OAd7 vector expressing Taenia ovis antigen 45 W antigen inserted at site I under the control of the viral major late promoter elicited effective immunity against parasite challenge when used in combination with a DNA vaccine in a prime/boost approach [98]. Recombinant OAd7 vectors have also been used for gene therapy [99]. A recombinant vector expressing human a1-antitrypsin (hAAT) gene under the control of the Rous sarcoma virus promoter was used for investigating gene transfer potential and in vivo distribution of the vector in immunocompetent as well as immunodeficient mouse models. The level and duration of hAAT gene expression were similar to those achieved with a HAd5 counterpart. However, the tissue-tropism of the OAd7 vector differed from that of HAd as the liver was not the dominant target. Transgene expres-
Importantly, efficient gene transfer with the OAd7 vector role of vector immunity in clearance of transduced cells. Thus, underscore the potential of OAd7 vectors for circumvention of HA5 immunity. Other studies have investigated the usefulness of OAd7 vectors in gene-directed enzyme

prod therapy approach [99, 100]. Systemic administration of a single dose of a recombinant OAd7 vector carrying the E. coli purine nucleoside phosphorylase (PNP) gene followed by the prodrug fludarabine phosphate yielded significant suppression of prostate cancer progression in an immunocompetent mouse model [100].

A serological survey of human serum samples indicated that OAd7 neutralizing antibodies are not prevalent in humans [49]. Furthermore, HA5 neutralizing antibodies do not cross neutralize OAd7 [49]. Anti-HA5 antibodies present in experimental animals impeded gene transfer with HA5 vectors but did not prevent gene transfer with OAd7 vectors, indicating the potential of these vectors for evading HA5 immunity [49]. OAd7 vectors efficiently transduced a variety of human cells in culture. Importantly, OAd7 infection of several nonviral cells tested was abortive as progeny virus could not be detected despite some replication of viral DNA [101]. These observations have significant impact with respect to suitability and safety of the OAd7 vector system for future use in humans. Although receptors involved in OAd7 internalization are not known, OAd7 appears to use receptors distinct from those of HA5. This is supported by distinct in vivo tropism and differential transduction profile of OAd7 and HA5 [49, 93], as well as altered tropism of a chimeric OAd7 vector carrying the fiber knob domain of HA5 [102].

2.5. Porcine Ad vectors

Five serotypes of porcine Ad (PAd1-5) are currently known to infect pigs [51]. PAd3 is the most prevalent serotype, and was isolated from a healthy piglet. It is not associated with any clinical disease in pigs. PAd3 is not known to naturally infect species other than porcine. Being a Mastadenvirus, PAd3 shares structural and genomic organization with HA5 [103]. The PAd3 genome consists of distinct E1A, E1B, E2, E3 and E4 transcription regions. Replication-competent as well as replication-defective PAd3 vectors have been developed as gene delivery vehicles [48, 55, 104]. The E3 region is dispensable for virus growth and has been used for inserting foreign genes [104].

The potential utility of PAd3 for vaccine purpose was demonstrated before the vector construction was attempted. Oral vaccination of pigs with PAd3 stimulated both systemic and mucosal virus neutralizing antibodies [105]. First use of a recombinant PAd3 in pigs was carried out with a vector having no deletions and carrying the classical swine fever virus (CSFV) gsp55 (E2) gene cassette in the right hand end of the viral genome [106]. This vector induced high levels of anti-gsp55 antibodies following a single subcutaneous inoculation in outbred pigs leading to complete protection from CSFV challenge. Subsequently, a prime-boost vaccination strategy involving vaccination of weaned and neonatal pigs first with a DNA plasmid carrying the CSFV gsp55 and then with a recombinant PAd3 expressing CSFV gsp55 [107], conferred complete protection against experimental CSFV challenge in weaned pigs. A PAd3 vector carrying the pseudorabies (Aujeszky’s disease) virus (PRV) gD gene [104] in the E3 region yielded high levels of PRV-specific antibodies in vaccinated pigs [107]. Animals that received two doses of the vector showed improved antibody titers and increased protection in comparison to those given a single dose.

Although replication-competent PAd vectors may be very useful for vaccine purposes in swine, their use in heterologous species including humans may not be favorable due to safety concerns. Therefore, an important requirement for potential application of PAd3 vectors in species other than swine was to render them replication-defective. The E1 region of PAd3 is homologous to the E1 region of HA5. Like HA5 E1, PAd3 E1 can also complement the E1 functions of HA5. Reciprocally, HA5 E1 can complement E1A functions of PAd3 [48, 108]. A number of E1-complementing cell lines were made by transforming porcine retinal cells with HA5 E1 [48, 55, 104]. This trans-complementation facilitated generation of E1-deleted PAd3 vectors in porcine cell lines that express HA5 E1 (Fig. 3).

As mentioned earlier, Ad are widely prevalent in their natural hosts. PAd3 is the most prevalent serotype in pigs [109]. In a survey to determine the extent of preexisting PAd3 immunity in Australia, 90% of pigs tested had significant titers of virus neutralizing antibodies. Consequently, concerns were expressed regarding the suitability of PAd3 vectors for use in swine herds [110]. However, a study where pigs were preexposed to wild-type PAd3 prior to vaccination with a recombinant PAd3 vector expressing CSFV gsp55, revealed that efficacy of the vector vaccine was not inhibited by the presence of PAd3 specific neutralizing antibodies [111]. Thus, the PAd3 vector still holds great potential for use in swine.

Importantly, we recently reported that PAd3 is not prevalent in the human population as indicated by the lack of neutralizing antibodies in human serum samples [48]. HA5 neutralizing antibodies in human serum did not cross neutralize PAd3. It has been demonstrated that PAd3 can efficiently overcome anti-HA5 immunity in a mouse model [36]. PAd3 efficiently transduced cells of human, murine, porcine or bovine origin, indicating its usefulness as a gene delivery vector [56]. Being highly species-specific, PAd3 infects but does not replicate in the cells of canine, ovine, bovine and human origin [104]. Unlike HA5, transduction by PAd3 appears to be CAR- and integrin-independent [112], indicating its distinct tropism and potential application in designing novel targeted vectors. PAd3 is also being investigated as a potential gene expression vector. PAd5 was originally isolated in Japan [113] and it does not cause any serious disease in pigs. Its complete
Recently, an FAd1 vector has also been examined for cancer vector, thus establishing utility of FAd1 as a vaccine vector. Marek’s disease virus vector, or turkey herpesvirus this vector was similar to that induced by the fowlpox virus (IBDV) VP2 protein provided complete protection against nont FAd1 vector expressing infectious bursal disease virus (IBDV) 1–12, and are mostly nonpathogenic or cause only mild infections. FAd1 (Chicken embryo lethal orphan, CELD) was isolated from chickens [118], and is not associated with any disease. Inoculation of 1-day-old specific pathogen-free (SPF) chickens with FAd1 via various routes induced anti-FAd1 antibodies 3–4 weeks post inoculation, and did not cause any adverse clinical or pathological effects. FAd1 is distinct from mammalian Ad as it possesses a larger genome (43804 bp) and two fibers rather than a single fiber at each vertex of the viral capsid. The complete nucleotide sequence of FAd1 is known and contains no recognizable regions corresponding to HAd5 E1A, E1B, E3 or E4 [119]. FAd1 E1 functions cannot be complemented by HAd5 E1A [120]. However, FAd1 can transform mammalian cells [121], and induce tumors in hamsters [122]. The transforming genes of FAd1 are partially characterized. The unique FAd1 open reading frame 8 encodes an anti-apoptotic protein, GAM-1 (Gallus anti morte protein 1), which is an E1B 19K protein homologue [123], and interacts with the retinoblastoma protein leading to E2F pathway of transcription activation [124]. Deletion of the GAM-1 gene renders the virus replication-defective, and the defect could be partially recovered by inducing a heat shock in the producer cell line [125].

Initially, FAd1-based vectors were constructed by using the classical approach of homologous recombination in bacteria to generate the recombinant Ad genome, followed by transfection of the permissive Leghorn male hepatoma (LMH) cells to rescue replication-competent vectors [126] (Fig. 3). A cosmid-based strategy has also been adopted for generating FAd1 recombinants [127]. Deletions up to 3.6 kb could be introduced between map units 91 and 99 in FAd1 genome that allow for foreign gene insertion up to 4 kb (Fig. 2). Immunization of chickens with a recombinant FAd1 vector expressing infectious bursal disease virus (IBDV) VP2 protein provided complete protection against virulent IBDV challenge [128]. The immunity induced by this vector was similar to that induced by the fowlpox virus vector, Marek’s disease virus vector, or turkey herpesvirus vector, thus establishing utility of FAd1 as a vaccine vector. Recently, an FAd1 vector has also been examined for cancer therapy in a mouse model of subcutaneous melanoma [129]. FAd1 efficiently transduced primary human dermal fibroblast, HepG2 and A549 cells with efficiency comparable to HAd5 vectors. Since FAd1 infects but does not replicate in a variety of human, porcine, equine and simian cell lines [126,127], FAd1-derived vectors may also be of potential application for vaccination of these non-avian species.

In addition to FAd1, FAd8, FAd9 and FAd10 have also been explored for developing expression vectors. Oral vaccination of 1-day-old broiler chickens with recombinant FAd8 expressing the S1 gene of infectious bronchitis virus (IBV) inserted at a 2.4 kb or 50 bp deletion site of the FAd8 genome elicited an IBV S1-specific antibody response [130]. A single vaccination was found to impart protective immunity against challenge with a homologous IBV. Another recombinant FAd8 vector expressing chicken interferon gamma was used for in vivo delivery of cytokine and tested for its ability to boost immunity to a coccidial parasite in chickens [131]. For FAd9, deletions in the long tandem repeat region 2 (TR-2) towards the right end of the viral genome were not lethal, and the insertion of a reporter gene was well tolerated [132]. These manipulations did not significantly alter the distribution, replication, and immune responses compared to the parent virus [133]. A recombinant FAd10 vector expressing IBDV VP2 was constructed by inserting the expression cassette in the right end of the genome between map units 90.8 and 100, upstream of the inverted terminal repeat [134]. Intravenous inoculation of this recombinant vector in 3-week-old birds resulted in protective immunity against IBDV. However, the vector instillation into the conjunctival sac (mucosal route) failed to elicit significant immunity against IBDV VP2, highlighting the importance of the route of administration in successful vaccination using FAd vectors.

3. Conclusions and future directions

Clinical use of HAd vectors is hampered by vector immunity that is prevalent in the majority of the human population, and also develops rapidly after first use of the vector. Nonhuman Ad are not prevalent in humans, and are not cross-neutralized by HAd neutralizing antibodies. Significant progress has been made in the understanding of the biology of these vectors. These vectors efficiently transduce human cells in culture and circumvent preexisting HAd immunity. An ever increasing number of preclinical and clinical studies demonstrating the utility of HAd vectors for therapeutic or prophylactic gene delivery have provided further momentum to the research efforts in the area of developing nonhuman Ad vectors. In addition, these nonhuman Ad vectors also present a platform for designing improved vaccines for veterinary use.

While, all nonhuman Ad vectors presented in this review have shown initial promise for gene transfer to human cells and evasion of HAd5 immunity, further investigation is needed before their use in humans could become a reality.
An important concern with nonhuman Ad vectors would be their safety for humans. Despite the fact that most nonhu-
man Ad vectors are replication-defective in human cells, and de-
letion of essential genes leads to blunting of viral repli-
cation, thorough examination of viral gene expression and
viral genome persistence in a variety of human cells and
in a nonhuman primate model will be necessary to ascer-
tain safety of these vectors. Similarly, information regarding
packaging sequences, receptor utilization and other determi-
nants of tissue tropism, and in vivo persistence and state of
the vector genome will determine the relative usefulness of
these vectors. Although preliminary studies have shown the
feasibility of sequential administration of various nonhuman
Ad vectors, this aspect needs to be investigated further in
suitable animal models. It will be important to investigate
whether the humoral immune response against nonhuman
Ad vectors cross-neutralizes other nonhuman Ad vectors.
Such information will be useful for devising strategies for
booster vaccination. Feasibility of construction of a ‘minimal
genome’ Ad vector (such as gutless or gutted) by deleting
the majority of viral genes in order to increase both the duration
and expression of the target genes and the packaging capac-
ity of all these nonhuman Ad vectors needs to be explored.
Such vectors will be useful in developing vectors carrying
multiple genes encoding antigens and/or immunomodulatory
proteins. Careful assessment of optimal dose of these vectors,
and any associated vector toxicity would also be required.
For this purpose, development of appropriate laboratory animal
models will be a logical next-step.

Acknowledgements

We thank Harm HogenEsch for critically reading the manu-
script, and Jane Kovach for secretarial assistance. This work
was supported by NIH, Purdue Research Foundation and
Hatch grants.

References

[1] Graham FL. Adenoviruses as expression vectors and recombinant
vaccines. Trends Biotechnol 1990;6(6):85–7.
[2] Imler JL. Adenovirus vectors as recombinant viral vaccines. Vac-
cine 1995;13(13):1143–51.
[3] Yarosh OK, Wandeler AI, Graham FL, Campbell JB, Prevec L.
Human adenovirus type 5 vectors expressing rabies glycoprotein.
Vaccine 1996;14(13):1257–64.
[4] Tatsis N, Enrl HC. Adenoviruses as vaccine vectors. Mol Ther
2004;10(4):616–29.
[5] Russell WC. Update on adenovirus and its vectors. J Gen Virol
2000;81(Part 1):2571–604.
[6] Kasuya H, Okuno SH, Nascimento AG, Lewis BD, Lee RA,
Olivera AM, et al. Phase I-II trial of ONYX-015 in combina-
tion with 5-FlUoracil chemotherapy in patients with advanced sarcoma.
Gene Ther 2005;12(5):437–45.
[7] Howe JA, Raisun R, Ramachandra M. Development of oncolytic
adenoviruses: from the lab bench to the bedside. In: Curiel DT,
Douglas JT, editors. Cancer gene therapy. Totowa: Humana Press;
2005. p. 211–34.
[8] Galanis E, Okuno SH, Nascimento AG, Lewis BD, Lee RA,
Olivera AM, et al. Phase I-II trial of ONYX-015 in combina-
tion with MAP chemotherapy in patients with advanced sarcoma.
Gene Ther 2005;12(5):437–45.
[9] Howe JA, Raisun R, Ramachandra M. Development of oncolytic
adenoviruses: from the lab bench to the bedside. In: Curiel DT,
Douglas JT, editors. Cancer gene therapy. Totowa: Humana Press;
2005. p. 211–34.
[10] Shaw DR, LoBuglio AF. Genetic immunotherapy approaches. In:
Curiel DT, Douglas JT, editors. Cancer gene therapy. Totowa:
Humana Press; 2005. p. 129–42.
[11] Top JH, Grossman RA, Bantellion PJ, Segal HE, Dudding BA,
Russell PK, et al. Immunization with live types 7 and 4 aden-
ovirus vaccines. 1. Safety, infectivity, antigenicity, and potency of
adenoviruses type 7 vaccine in humans. J Infect Dis 1971;124(2):
148–54.
[12] Xiang QZ, Yang Y, Wilson JM, Enrl HC. A replication-defective
human adenovirus recombinant serves as a highly efficacious vac-
cine carrier. Virology 1996;219(1):220–7.
[13] Fitzgerald JC, Guo GP, Reyes-Sandoval A, Perkalos GN, Xiang QZ,
Wizalo AP, et al. A tianian replication-defective adenoviral recom-
binant vaccine to HIV-1: a third way to Vax. J Immunol 2003;170(3):
1416–22.
[14] Pinto AR, Fitzgerald JC, Giles-Davis W, Guo GP, Wilson JM, Enrl HC.
Induction of CD8+ T cells to an HIV-1 antigen through a prime
boost regimen with heterogeneous E1-deleted adenoviral vaccine car-
rriers. J Immunol 2003;171(2):674–9.
[15] Zhang Y, Chirnside N, Guo GP, Qian R, Coycic M, Joshi R, et al.
Acute cytokine response to systemic adenoviral vectors in mice
is mediated by dendritic cells and macrophages. Mol Ther
2001;3(3):697–707.
[16] Phipps NJ, Nocera M, Ilkon KB, Falk-Pederson E. Adenovirus-
induced maturation of dendritic cells through a PI3 kinase-
mobilized TNF-alpha induction pathway. Proc Natl Acad Sci USA
2004;101(16):6200–5.
[17] Eidelestein LM, Abet MR, Winston J, Eidelestein RM. Gene therapy
clinical trials worldwide 1989–2004—an overview. J Gene Med
2004;6(6):597–602.
[18] Shiver JW, Ennui EA. Recent advances in the development of HIV-
1 vaccines using replication-incompetent adenovirus vectors. Annu
Res Med 2004;35:355–72.
[19] Barouch DH, Nabel GJ. Adenovirus vector-based vaccines
for human immunodeficiency virus type 1. Hum Gene Ther
2005;16(2):149–56.
[20] Sullivan NJ, Griebert TW, Geissert JB, Xu L, Yang ZY, Rashmer M,
et al. Accelerated vaccination for Ebola virus haemorrhagic
fever in non-human primates. Nature 2003;424(6949):681–4.
[21] Mascola JR, Sabour A, Beaudry K, Santos S, Welcher B, Loudier
MK, et al. Neutralizing antibodies elicited by immunization of
monkeys with DNA plasmids and recombinant adenoviral vectors
expressing human immunodeficiency virus type 1 proteins. J Virol
2005;79(2):771–9.
[22] Seaman MS, Xu L, Beaudry K, Martin KL, Beldholm MB, Muna A,
et al. Multiclade human immunodeficiency virus type 1 envelope
immunogens elicit broad cellular and humoral immunity in rhesus
monkeys. J Virol 2005;79(2):2956–63.
[23] Francis WR, Wang X, Neill A, Jessen J, et al. Acute cytokine
response to systemic adenoviral vectors in baboons in the
humane adenovirus recombinant serves as a highly efficacious vac-
cine carrier. Virology 1996;219(1):220–7.
ovirus expressing an anti-protective antigen single-chain antibody. Nature 2003;421:237–44.

[26] Tan Y, Racke NB, Boyer JL, Crystal RG. Protective immunity evoked against anthrax lethal toxin after a single intramuscular administration of an adenovirus-based vaccine encoding humanized protective antigen. Hum Gene Ther 2003;14(7):1673–82.

[27] Gaz W, Tanfin A, Baldwin A, D’Azzo L, Nawaz A, Robins PD, et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 2003;362(9399):1495–6.

[28] Vogels R, Zajaczkowski D, van RR, Hartkemoe E, Damen I, de Bethune MP, et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination of human cells and tissues in vivo. J Virol 2003;77(15):8263–71.

[29] Nawaz A, Yurash E, Gaz W, Whitley H, Sun R, Hower D, et al. Prevalence of neutralizing antibodies to adenoviral serotypes 3 and 35 in the adult populations of The Gambia, South Africa, and the United States. Clin Diagn Lab Immunol 2004;11(2):351–7.

[30] Yang Y, Li Q, Ertl HC, Wilson JM. Cellular and humoral immune responses to viral antigens create barriers to long-term gene therapy with recombinant adenoviruses. J Virol 1995;69(4):2004–15.

[31] Molinier-Frenkel V, Gahery-Segard H, Mehtali M, Le BC, Ribas E, Boulanger P, et al. Immune response to recombinant adenoviruses in human capsid: components from viral input are targets for vector-specific cytotoxic T lymphocytes. J Virol 2000;74(16):7678–82.

[32] Toogood CI, Crompton J, Hay RT. Antipeptide antisera define the United States. Clin Diagn Lab Immunol 2004;11(2):351–7.

[33] Mittal SK, McDermott MR, Johnson DC, Prevec L, Graham FL. Genetic content and evolution of adenoviruses. J Gen Virol 1995;76:93–102.

[34] Davison AJ, Benko M, Hanisch B. Genetic content and evolution of adenoviruses. J Gen Virol 2003;84:2895–908.

[35] Bangari DS, Mittal SK. Porcine adenoviral vectors evade preexisting humoral immunity to adenoviruses and efficiently infect both human and murine cells in culture. Virus Res 2004;105(1):127–36.

[36] Hofmann C, Loser P, Cichon G, Arnold W, Both GW, Strauss M. Ovine adenovirus vectors overcome preexisting humoral immunity against human adenoviruses in vivo. J Virol 1999;73(8):6930–6.

[37] Devison AJ, Benko M, Hanisch B. Genetic content and evolution of adenoviruses. J Gen Virol 2003;84:2895–908.

[38] Bachen-Osmund C, editor. Adenoviridae. In: ICTVdB—The Universal Virus Database, version 3. ICTVdB Management, The Earth Institute and Department of Epidemiology, Mailman School of Public Health, New York, NY, USA: Columbia University, 2003.

[39] Kneier EJ, Bouton S, Chillon M, Danos O. Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 2000;74(1):505–12.

[40] van Ophoven AL, Mittal SK. Generation of infectious genome of bovine adenovirus type 3 by homologous recombination in bacteria. J Virol Meth 1999;77(2):125–9.

[41] Raumasson UB, Brenuch M, Meyer Y, Schlegier Y, Schachtart K. Novel human gene transfer vectors: evaluation of wild-type and recombinant animal adenoviruses in human-derived cells. Hum Gene Ther 1999;10(6):2587–99.

[42] Zakhartchouk A, Zuo Y, Tikos-S. A recombinant E1-deleted porcine adenovirus-3 as an expression vector. Virology 2003;313(2):377–86.

[43] Bangari DS, Mittal SK. Comparative transduction efficiencies of human and nonhuman adenoviral vectors in human, marine, bovine, and porcine cells in culture. Biochim Biophys Acta 2000;1527(3):960–6.

[44] Dufourmelle D, Davison AJ, Benko M, Sauter PH, Ouellet DC, Perreault HG. A new adenovirus serotype of bovine origin. J Comp Pathol 1993;108(1):1–12.

[45] Reddy PS, Isakamani N, Zakhartchouk AN, Banzi MK, Lee JB, Pyne C, et al. Nucleotide sequence, genome organization, and transcription map of bovine adenovirus type 3. J Virol 2004;78(2):13207–15.

[46] Mittal SK, Prevec L, Graham FL, Babiker LA. Development of a bovine adenovirus type 3-based expression vector. J Gen Virol 1997;78(2):194–42.

[47] Holmberg S, Knives R, Leblanc E, Maloney L. Novel human gene transfer vectors: evaluation of wild-type and recombinant animal adenoviruses in human-derived cells. Hum Gene Ther 1999;10(6):2587–99.

[48] Zakhartchouk A, Zuo Y, Tikos-SK. A recombinant E1-deleted porcine adenovirus-3 as an expression vector. Virology 2003;313(2):377–86.
[62] Zheng B, Mittal SK, Graham FL, Prevec L. The E1 sequence of E1-deleted adenovirus type 5 E1 A function in bovine cells. Virus Res 1994;31(1):163-86.

[63] Kralj PS, Islamka N, Chen Y, Whale T, Babik LA, Menthis M, et al. Replication-defective bovine adenovirus type 3 as an expression vector. J Virol 1999;73(11):9717-44.

[64] van der Veer AL, Tiko SK, Mittal SK. Characterization of bovine adenovirus type 3 E1 proteins and isolation of E1-expressing cell lines. Virus Res 2002;89(1):108-16.

[65] Xing L, Zhang L, Van KJ, Tiko SK. Identification of cis-acting sequences required for selective packaging of bovine adenovirus type 3 DNA. J Gen Virol 2002;83(11):2901-03.

[66] Zakharov S, Conners W, van KA, Tiko SK. Bovine adenovirus type 3 containing heterologous protein in the C-terminus of tumor capsid protein X. Virology 2004;328(2):293-300.

[67] Zakharov S, Conners W, van KJ, Tiko SK. Characterization of cis-acting sequences required for selective packaging of bovine adenovirus type 3 expressing bovine herpesvirus-1 glycoprotein gD in cattle. Vet Immunol Immunopathol 2003;76(3-4):257-68.

[68] Basik MK, Derge D, Robertson J, Babik LA, Schlapp T, Tiko SK. Recombinant bovine adenovirus type 3 expressing bovine viral diarrhea virus glycoprotein E2 induces an immune response in cotton rats. Virology 2000;278(1):234-43.

[69] Mittal SK, Tiko SK, Van Doernenberg J, Beskowayne T, Gudegran DL, Babik LA. Experimental inoculation of heifers with bovine adenovirus type 3. Can J Vet Res 1999;63(2):153-6.

[70] Bangari DS, Sharma A, Mittal SK. Bovine adenovirus type 3 inter- nalization is independent of primary receptors of human adenoviruses type 5 and porcine adenovirus type 3. Biochem Biophys Res Commun 2003;311(1):1478-84.

[71] Wu Q, Tiko SK. Altered tropism of recombinant bovine aden- ovirus type 3 expressing chimeric fiber. Virus Res 2004;99(3):9-15.

[72] Morrison MD, Osimo DE, Nicolson L. Complete DNA sequence of canine adenovirus type 1. J Gen Virol 1997;78(1):875-8.

[73] Morrison MD, Real D, Osimo D, Spivy E, Nicolson L. Generation of V5-deleted canine adenoviruses expressing canine par- voirus capsid by homologous recombination in bacteria. Virology 2002;293(1):26-30.

[74] Klimokwski B, Girardi-Hebert P, Hadchouel J, Randramanita- son V, Boutin S, Yeh P, et al. A recombinant El-deleted canine adenovirus vector capable of transduction and expression of a transgene in human-derived cells and in vivo. Hum Gene Ther 1997;8(1):2105-13.

[75] Hennemann A, Kunzera A, Kroener E, Brunscheich GJ, Smith BF, Liu B, et al. A canine conditionally replicating adenovirus for evaluating oncology gene therapy in a syngeneic animal model. Mol Ther 2003;7(2):163-73.

[76] Soudais C, Boutin S, Kroener EJ. Characterization of cis-acting sequences involved in canine adenovirus packaging. Mol Ther 2001;3(4):631-40.

[77] Soudais C, Skander N, Kroener EJ. Long-term in vivo transduction of neurons throughout the rat CNS using novel helper-dependent CAV-2 vectors. JViropathy 2004;18(2):191-3.

[78] Fischer L, Tavolga E, Wolters R, Colonet G, Mintke J, et al. Vaccination of puppies born to immune dams with a canine distemper virus vaccine. Vaccine 2002;20(29-30):3485-97.

[79] Soudais C, Boutin S, Hong SS, Chillon M, Danos O, Bergelson JM, et al. Canine adenovirus type 2 attachment and internalization complex forms a virus-receptor, helper-receptor, and an RGD-independent pathway. J Virol 2000;74(22):10639-49.

[80] Soudais C, Laplace-Builhe C, Kiss K, Kroener EJ. Preferential transduction of neurons by canine adenoviruses vectors and sci- ent retrograde transport in vivo. VASEB J 2001;15(12):2283-5.

[81] Roy S, Gao G, Clawson DS, Vandenberge LH, Farna SF, Wilson JM. Complete nucleotide sequences and genome organization of four chimpanzee adenoviruses. Virology 2004;324(2):361-72.

[82] Roy S, Gao G, Li Y, Zhou X, Lock F, Cadek E, et al. Character- ization of a family of chimpanzee adenoviruses and development of molecular clones for gene transfer vectors. Hum Gene Ther 2004;15(5):519-30.

[83] Xiang Z, Gao G, Reyes-Sandoval A, Cohen CJ, Li Y, Bergelson JM, et al. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J Virol 2002;76(6):2677-75.

[84] Stover DJ, Fu TM, Chen L, Caesarin DR, Davies ME, Evans RK, et al. Replication-incompetent adenoviral vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002;415(6869):311-5.

[85] Reyes-Sandoval A, Fitzgerald JC, Grant R, Roy S, Xiang ZQ, Li Y, et al. Human immunodeficiency virus type 1-specific immune responses in primates upon sequential immunization with adeno- viral vaccine carriers of human and simian serotypes. J Virol 2004;78(14):7392-9.

[86] Ertl HC. Immunological insights from genetic viruses. Virol Res 2005;111(1):89-92.

[87] Cohen CJ, Xiang ZQ, Gao GP, Ertl HC, Wilson JM, Bergelson JM. Chimpanzee adenovirus CV-68 adapted as a gene delivery vector interacts with the coxsackievirus and adenovirus receptor. J Virol 2002;76(1):51-5.

[88] Vrati S, MacAvery ES, Xu ZZ, Smale C, Boyle DB, Both GW. Construction and transfection of ovine adenovirus genomic clones to rescue modified viruses. Virology 1996;228(1):200-3.

[89] Benko M, Hatziu B. A proposal for a new (third) genus within the family Adenoviridae. Arch Virol 1998;143(4):829-37.

[90] Vrati S, Brooks DE, Strike P, Khati A, Boyle DB, Both GW. Unique genome arrangement of an adenovirus, identification of new proteins and proteasome cleavage sites. Virology 1996;228(1):186-99.

[91] Loser P, Hofmann O, Both GW, Uckert W, Hillenbrand M. Con- struction, rescue, and characterization of vectors derived from ovine adenoviruses. J Virol 2001;75(7):12194-41.

[92] Both GW. Ovine adenoviruses: a review of its biology, biosafety profile and application as a gene delivery vector. Immun Cell Biol 2004;82(2):189-95.

[93] Venktesh A, Watt F, Xu ZZ, Both GW. Ovine adenovirus (OAV)287 lacks a virus-associated RNA gene. J Gen Virol 1999;79:Part 1:505-16.

[94] Khati A, Xu ZZ, Both GW. Gene expression by atypical recombi- nant ovine adenoviruses during abortive infection of human and animal cells in vitro. Virology 1997;230(2):228-37.

[95] Hatsu T, Both GW, Prince AM, Hofmann C, Loser P. Recom- binant ovine adenoviruses induces a strong and sustained T-cell response against the hepatitis C virus NS3 antigens in mice. Vac- cine 2004;22(21–22):2717-21.

[96] Loser P, Hillenbrand M, Arnold W, Both GW, Hofmann C. Ovine adenoviruses vectors mediate efficient gene transfer to skeletal mus- cle. Gene Ther 2000;7(17):1491-4.

[97] Roden JS, Boyle DB, Both GW, Pye AD, Waterkeyn JG, Wood PR, et al. Sequential nuclear acid and recombinant adenovirus vac- cination induces host-protective immune responses against feline eosinophil in sheep. Parasite Immunol 1997;19(5):221-7.

[98] Yocks D, Martinezillo-Rus B, Madden V, Smith K, Bemett E, Both GW, et al. Gene therapy for prostate cancer delivered by ovine adenovirus and mediated by purine nucleoside phosphorylase and fludarabine in nude mice models. Gene Ther 2002;9(12):769-88.

[99] Martinezillo-Rus B, Dene A, Veiks D, Jeyakumar G, Mortensen E, Shaw JM, et al. Gene-directed enzyme prodrug therapy for
prostate cancer in a mouse model that imitates the development of human disease. J Gen Virol 2004;85:43-54.

[101] Kamim D, Hofmann C, Rudolph M, Beth GW, Loser P. Biology of ovine adenovirus infection of nonpermissive cells. J Virol 2002;76(2):1082-93.

[102] Xu ZZ, Beth GW. Altered tropism of an ovine adenovirus carrying the fiber protein cell binding domain of human adenovirus type 5. Virology 1998;240(1):156-63.

[103] Reddy PS, Idaikhan M, Song JY, Lee JB, Hyan BH, Park JH, et al. Nucleotide sequence and transcription map of porcine adenovirus type 3. Virology 1998;251(2):414-26.

[104] Reddy PS, Idaikhan M, Hyan BH, Tikoo SK, Babik LA. Development of porcine adenovirus-3 as an expression vector. J Gen Virol 1999;80:563-70.

[105] Tabory T, Nage E, Derbyshire JB. Potential viral vectors for the stimulation of mucosal antibody responses against enteric viral antigens in pigs. Res Vet Sci 1993;54(3):345-50.

[106] Hammond JM, McCoy RJ, Jansen ES, Montrey CJ, Hodgson AL, Johnson MA. Vaccination with a single dose of a recombinant porcine adenoviruses expressing the classical swine fever virus gp75 (E2) gene protects pigs against classical swine fever. Vaccine 2000;18(11-12):1040-50.

[107] Hammond JM, Jansen ES, Montrey CJ, van der HB, Goff WY, Williams MM, et al. Vaccination of pigs with a recombinant porcine adenovirus expressing the g3 gene from pseudorabies virus. Vaccine 2001;19(27):3752-8.

[108] Reddy PS, Idaikhan M, Babik LA, Mehtali M, Tikoo SK. Porcine adenovirus-3 as a helper-dependent expression vector. J Gen Virol 1999;80(10):2580-91.

[109] Derbyshire JB. The interferon sensitivity of selected porcine adenoviruses. Can J Vet Res 1989;53(1):52-5.

[110] Hammond JM, McCoy RJ, Jansen ES, Morrissy CJ, van der HB, Goff WY, et al. Vaccine-induced protection in swine against pseudorabies virus. Vaccine 2001;19(27):3752-8.

[111] Sheppard M, Werner W, Tsatas E, McCoy R, Prowse S, Johnson M. Generation of a novel avian adenovirus recombinant expressing the transmissible gastroenteritis virus spike gene. J Gen Virol 2001;82:183-90.

[112] Taghavifard P, Ehsan M, Shahbazi S. Identification of a novel antipapovavirus drug, G1, by CELO adenovirus. J Virol 1997;71(6):4164-77.

[113] Debnath B, Babik A, Cotten M. Identification of a novel antipseudorabies virus. Vaccine 2003;8(22):42-8.

[114] Chiocca S, Baker A, Cotten M. Identification of a novel antipapova virus. Vaccine 2003;8(22):42-8.

[115] Chiocca S, Baker A, Cotten M. Identification of a novel antipapova virus. Vaccine 2003;8(22):42-8.

[116] Hammond JM, Jansen ES, Morrissy CJ, van der HB, Goff WY, Williams MM, et al. Vaccination of pigs with a recombinant porcine adenovirus expressing the g3 gene from pseudorabies virus. Vaccine 2001;19(27):3752-8.