Convolutional Codes with Optimum Bidirectional Distance Profile
Ivan Stanojević, Member, IEEE, and Vojin Šenk, Member, IEEE

Abstract—In this paper we present tables of convolutional codes with the optimum bidirectional distance profile (OBDP), defined as the minimum of the distance profiles of the code and its corresponding "reverse" code. Such codes minimize the average complexity of bidirectional sequential decoding algorithms. The computer search is accelerated by the facts that optimum distance profile (ODP) codes of larger memory must have ODP codes of smaller memory as their "prefixes", and that OBDP codes can be obtained by "concatenating" ODP and reverse ODP codes of smaller memory.

Index Terms—Convolutional codes, distance profile, bidirectional decoding.

I. INTRODUCTION

Let

\[
G(D) = \begin{bmatrix}
g_{11}(D) & \cdots & g_{1n}(D) \\
\vdots & \ddots & \vdots \\
g_{k1}(D) & \cdots & g_{kn}(D)
\end{bmatrix}
\]

(1)

be the generator matrix of a rate \(k/n\) convolutional encoder, where \(g_{ij}(D) \in \mathbb{F}_2[D]\) are binary generator polynomials and let \(m = \max_{i,j} \deg(g_{ij}(D))\) be its memory.

The \(l\)th value of the column distance function (CDF) of the code \([1]\) is

\[
d_l = \min_{u\cdot v = 0} w_H(v_{[0,l]}),
\]

(2)

where \(w_H(\cdot)\) is the Hamming weight of a sequence, \(u = (u_0, u_1, \ldots)\) and \(v = (v_0, v_1, \ldots)\) are the sequences of \(k\)-dimensional information and \(n\)-dimensional code binary vectors, respectively, and for a sequence \(x, x_{[a,b]} = (x_a, x_{a+1}, \ldots, x_b)\). If \(d = (d_0, d_1, \ldots)\) and \(d' = (d_0', d_1', \ldots)\) are two CDFs and \(d_0 = d_0', d_1 = d_1', \ldots, d_l = d_l'\) for some \(l\), then we say that \(d\) is better than \(d'\), i.e., \(d > d'\). A code with an optimum CDF, \(d^*\), for given parameters \(k, n\) and \(m\), is one for which there is no other code with the same parameters whose CDF \(d > d^*\). The distance profile (DP) of a code \([1]\) is its truncated CDF, \(d_{[0,m]}\), with comparison and optimality defined in the same way.

For most often used sequential decoding algorithms, such as the stack algorithm \([2, 3]\), and the Fano algorithm \([4]\), optimum distance profile (ODP) codes are used in order to minimize the average number of code tree node extensions.

The influence of the CDF and DP on the decoding complexity has been studied when binary symmetric channel \([5]\) and additive white Gaussian noise channel \([6]\) are used. In both cases, it is desirable that values \(d_l\) grow as quickly as possible at the beginning of the CDF, hence the definition of its optimality, with its earlier values having a more profound influence. ODP codes and codes optimized with respect to other criteria have been investigated extensively, e.g., \([7]-[13]\).

Although the complexity of standard unidirectional decoding algorithms is minimized when ODP codes are used, that is not the case with bidirectional decoding algorithms, e.g., \([14]-[17]\). The number of visited nodes in the forward code tree depends on the DP of the original code, but in the backward code tree it depends on the DP of the “reverse” code.

II. BIDIRECTIONAL DISTANCE PROFILE

Let \(\bar{G}(D) = D^mG(D^{-1})\) be the generator matrix of the reverse code of the code defined by \(G(D)\), and let \(\bar{d} = (\bar{d}_0, \bar{d}_1, \ldots)\) be its CDF. In order to take into account both decoding directions, we define the bidirectional CDF (BCDF), \(d\), as the sequence of values \(d_l = \min(d_l, \bar{d}_l)\), and the bidirectional DP (BDP) as \(d_{[0,m]}\), as well as the corresponding optimum BCDF and BDP (OBCDF and OBDP) codes.

Let \(g_{ij}(D)\) denote the \(i\)th coefficient of the generator polynomial \(g_{ij}(D)\), and let

\[
G^{(l)} = \begin{bmatrix}
g_{11}^{(l)} & \cdots & g_{1n}^{(l)} \\
\vdots & \ddots & \vdots \\
g_{k1}^{(l)} & \cdots & g_{kn}^{(l)}
\end{bmatrix},
\]

(3)

and

\[
G^{[a,b]}(D) = \sum_{l=a}^{b} G^{(l)} D^l,
\]

(4)

\[
G^{[a,b]}(D) = \sum_{l=a}^{b} G^{(m-l)} D^l,
\]

(5)

so \(G(D) = G^{[0,m]}(D)\) and \(\bar{G}(D) = G^{[0,m]}(D)\). Also for \(G(D) = G^{[0,p]}(D) + G^{[p+1,m]}(D)\), we say that \(G^{[0,p]}(D)\) is a prefix of \(G(D)\), and that \(G(D)\) is obtained by concatenation of \(G^{[0,p]}(D)\) and \(G^{[p+1,m]}(D)\). It is easy to see that if the code defined by \(G(D)\) is ODP, then the code defined by \(G^{[0,p]}(D)\) must also be ODP.

If the code memory, \(m\), is odd, we can similarly decompose the generator matrix as \(G(D) = G^F(D) + D^{m} G^R(D^{-1})\), with \(G^F(D) = G^{[0,(m-1)/2]}(D)\) and \(G^B(D) = G^{[0,(m-1)/2]}(D)\). Here we call \(G^F(D)\) the forward half and \(G^B(D)\) the backward half of \(G(D)\), and we can express the reverse code generator...
matrix as $\tilde{G}(D) = G^B(D) + D^mG^F(D^{-1})$. From the definitions of the corresponding CDFs, we see that $d_{(0,m-1)/2}$ depends only on $G^F(D)$, and $d_{(0,m-1)/2}$ depends only on $G^B(D)$. Since $G^F(D)$ and $G^B(D)$ can be chosen independently, the first half of the BDP, $d_{(0,m-1)/2}$, can be made equal to that of an ODP code, if and only if both $G^F(D)$ and $G^B(D)$ define ODP codes of memory $(m-1)/2$.

If the code memory, m, is even, we can decompose the generator matrix as $G(D) = G^F(D) + G^B(\tilde{G}(D))$, where now $G^F(D) = G^{[0,m/2-1]}(D)$ and $G^B(D) = G^{[m/2,1]}(D)$. In this case $d_{(0,m-1)/2}$ can be optimized in the same way.

In order to describe the procedure for finding OBCDF and OBDP codes, a few definitions are necessary. In \mathbb{F}_2, let $0 < 1$. Binary polynomials are compared lexicographically, i.e., for $g(D), h(D) \in \mathbb{F}_2[D]$, let $g(D) < h(D)$ if $g^{(j)}(h^{(j)})$ for some l. Vectors of binary polynomials are compared lexicographically, i.e., for $x, y \in (\mathbb{F}_2[D])^n$, let $x < y$ if $x_1 = y_1, \ldots, x_{l-1} = y_{l-1}, x_l < y_l$ for some l. If $g_{(i)}(g_{(2)}), \ldots, g_{(n)}(g_{(2)})$ is the ith row $(j$th column) of a polynomial $k \times n$ matrix $G(D)$, we say that it has sorted rows (columns) if $g_{(i)} \leq \cdots \leq g_{(i)}(g_{(2)}), \ldots, g_{(n)}(g_{(2)})$. Let π denote the set of all permutations of elements $\{1, \ldots, l\}$.

For given k and n, let U_m denote the set of ODP codes of memory m, and let B_m denote the set of OBCDF (OBDP) codes of memory m. The OBCDF (OBDP) codes can be

m	$G^{OBCDF}(D)$	d_{∞}
1	1 6 3	3
2	5 7 5	5
3	54 64 6	6
4	46 62 6	6
5	57 75 8	8
6	564 774 8	8
7	452 756 10	10
8	477 635 10	10
9	5414 6006 10	10
10	4522 6006 9	9
11	4417 6171 12	12
12	5446 60014 11	11
13	57276 76572 12	12
14	40375 71637 12	12

m	$G^{OBDP}(D)$	d_{∞}
1	2 4 6	4
2	5 7 7	7
3	44 54 74	9
4	52 66 76	12
5	45 51 77	12
6	434 564 704	13
7	446 616 722	14
8	533 575 665	15
9	4674 6754 7544	15
10	5772 6056 7296	18
11	4135 5057 7263	23
12	51624 66234 71154	22
13	59256 65126 72552	20
14	40701 53765 67273	22
15	403402 517712 703156	22
16	421765 531607 706321	29
17	4303404 5060254 6501424	23
18	4763236 6143606 7454762	26
19	5704623 6231075 7432617	31
20	65342714 55412944 62027664	32
21	40666602 53634752 67375666	34
22	51275623 66500617 71740675	37
23	551571614 616366264 770378264	34
24	527061652 641577756 737773026	36

TABLE II

m	$G^{OBCDF}(D)$	d_{∞}
1	2 4 6	4
2	5 7 7	7
3	44 54 74	9
4	52 66 76	12
5	45 51 77	12
6	434 564 704	13
7	446 616 722	14
8	533 575 665	15
9	4674 6754 7544	15
10	5772 6056 7296	18
11	4135 5057 7263	23
12	51624 66234 71154	22
13	59256 65126 72552	20
14	40701 53765 67273	22
15	403402 517712 703156	22
16	421765 531607 706321	29
17	4303404 5060254 6501424	23
18	4763236 6143606 7454762	26
19	5704623 6231075 7432617	31
20	65342714 55412944 62027664	32
21	40666602 53634752 67375666	34
22	51275623 66500617 71740675	37
23	551571614 616366264 770378264	34
24	527061652 641577756 737773026	36
TABLE III

OBCDF and OBDP codes, $R = 1/4$

m	$G_{OBCDF}(D)$	d_∞
1	2 4 6 6 6	1
2	5 5 6 6 10	2
3	44 54 64 74 12	3
4	46 50 62 72 14	4
5	45 51 67 73 16	5
6	434 564 614 704 17	6
7	406 536 602 752 18	7
8	471 525 603 727 21	8
9	4314 5704 6174 7024 22	9
10	4102 5756 6106 7372 24	10
11	4633 5647 6631 7135 30	11
12	41204 52524 62074 74114 35	12
13	47516 57666 66772 71362 32	13
14	41057 52225 60503 75041 27	14
15	435314 503024 632704 760174 34	15
16	467516 545322 661066 713662 38	16
17	442753 564627 657211 723135 40	17
18	4665544 5440434 6604154 7121234 38	18
19	4733366 5746156 6755652 7306372 38	19
20	4502051 5535655 6465507 7055313 45	20
21	41256354 52575164 62006044 74145334 44	21
22	40153002 51135112 63027276 76564146 46	22
23	47015547 57277275 66030633 71554071 44	23
24	43316304 52546524 61675614 74616147 48	24
25	422044512 512204242 605716076 7607178206 48	25
26	404671717 510005045 621451423 747473101 50	26

TABLE IV

OBCDF and OBDP codes, $R = 2/3$

m	$G_{OBCDF}(D)$	d_∞
1	2 6 6 3	1
2	5 7 2 5	2
3	04 60 74 6 5 6	3
4	00 46 62 6 6	4
5	05 40 73 6 6	5
6	024 664 770 7	6
7	130 482 642 7	7
8	020 673 757 7	8

TABLE V

OBCDF and OBDP codes, $R = 2/4$

m	$G_{OBCDF}(D)$	d_∞
1	0 2 6 6	5
2	1 3 4 6	6
3	14 34 54 74	8
4	00 44 26 46	9
5	04 35 52 77	12
6	064 540 654 210	13
7	024 226 540 632	14

Obtained using the following two-stage procedure:

1) Find all ODP codes for the desired values of m.
 1. Set $U_{-1} = \{0_{k \times n}\}$.
 Set $m = 0$.
 2. For all prefixes $G(D) \in U_{m-1}$:
 For all binary $k \times n$ matrices $G(m)$,
 Form $G(D) = G'(D) + G(m)D^m$.
 If $G(D)$ has sorted rows and columns, calculate its DP.
 Retain in U_m only the matrices whose DPs are
 the best of all the calculated ones.
 3. If more sets are needed, set $m = m + 1$ and go to
 step 2.

II) Find all OBCDF (OBDP) codes for the desired values
 of m.
 1. Set $m = 1$.
 2. Set $B_m = \{\}$.
 Set $p = \lfloor (m - 1)/2 \rfloor$.
In general, for given k, n, and m, OBCDF and OBDP codes are not unique. In order to optimize their bit error rate performance, additional selection is performed with respect to their information distance spectra, $c = (c_1, c_2, \ldots)$, where c_d is the sum of Hamming weights of information sequences of code trellis paths which start in the zero state, depart from it at the beginning, return to the zero state only at their termination, and whose codewords have Hamming weight d. As before, we define $c' < c$ if $c_1 < c_1'$, \ldots, $c_{l-1} = c_{l-1}'$, $c_l < c_l'$ for some l, and we search for the lowest c.

In tables [VI] generator matrices of OBCDF and OBDP codes for rates $1/2$, $1/3$, $1/4$, $2/3$, $2/4$, and $3/4$ are given in octal notation (using the convention in [7], i.e., left-aligned), along with their free distances (d_∞) and the indications when OBCDF and OBDP codes differ. All the codes have optimized information distance spectra. The matrices are unique up to their reversal and permutations of their rows or columns, except for the cases $R = 2/4$, $m = 4$, OBDP, and $R = 2/4$, $m = 6$, OBCDF, where the codes found have identical information distance spectra, but their generators are nontrivially different.

References

[1] R. Johannesson, K. Sh. Zigangirov, Fundamentals of Convolutional Coding, John Wiley & Sons, 2015.

[2] K. Sh. Zigangirov, “Some Sequential Decoding Procedures,” Problemy Peredachi Informatsii, vol. 2, no. 4, pp. 13-25, 1966.

[3] F. Jelinek, “Fast Sequential Decoding Algorithm Using a Stack,” IBM Jour. of Res. and Dev., vol. 13, pp. 675-685, November 1969.

[4] R. M. Fano, “A Heuristic Discussion of Probabilistic Decoding,” IEEE Trans. Inf. Theory, vol. 9, no. 2, pp. 64-74, April 1963.

[5] P. Chevillat, D. Costello, “An Analysis of Sequential Decoding for Specific Time-Invariant Convolutional Codes,” IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 443-451, July 1978.

[6] B. Narayanaswamy, R. Negi, P. Khosla, “An Analysis of the Computational Complexity of Sequential Decoding of Specific Tree Codes over Gaussian Channels,” IEEE ISIT ’08, pp. 2508-2512, Toronto, ON, Canada, July 2008.

[7] R. Johannesson, “Robustly Optimal Rate One-Half Binary Convolutional Codes,” IEEE Trans. Inf. Theory, vol. 21, no. 4, pp. 464-468, July 1975.

[8] R. Johannesson, “Some Long Rate One-Half Binary Convolutional Codes with an Optimum Distance Profile,” IEEE Trans. Inf. Theory, vol. 22, no. 5, pp. 629-631, September 1976.

[9] R. Johannesson, “Some Rate 1/3 and 1/4 Binary Convolutional Codes with an Optimum Distance Profile,” IEEE Trans. Inf. Theory, vol. 23, no. 2, pp. 281-283, March 1977.

[10] J. Hagenauer, “High Rate Convolutional Codes with Good Distance Profiles,” IEEE Trans. Inf. Theory, vol. 23, no. 5, pp. 615-618, September 1977.

[11] R. Johannesson, E. Paaske, “Further Results on Binary Convolutional Codes with an Optimum Distance Profile,” IEEE Trans. Inf. Theory, vol. 24, no. 2, pp. 264-268, March 1978.

[12] R. Johannesson, P. Stålhammar, “New Rate 1/2, 1/3, and 1/4 Binary Convolutional Encoders with an Optimum Distance Profile,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1653-1658, July 1999.

[13] P. Frenger, P. Orten, T. Ottosson, “Convolutional Codes with Optimum Distance Spectrum,” IEEE Commun. Letters, vol. 3, no. 11, pp. 317-319, November 1999.

[14] V. Šenk, P. Radišovjacić, “The Bidirectional Stack Algorithm,” IEEE ISIT ’97, p. 500, Ulm, Germany, July 1997.

[15] S. Kallel, K. Li, “Bidirectional Sequential Decoding,” IEEE Trans. Inf. Theory, vol. 43, no. 4, pp. 1319-1326, July 1997.

[16] I. E. Bocharova, M. Handlery, R. Johannesson, B. D. Kudryashov, “BEAST Decoding of Block Codes Obtained Via Convolutional Codes,” IEEE Trans. Inf. Theory, vol. 51, no. 5, pp. 1880-1891, May 2005.

[17] R. Xu, T. Kocak, G. Woodward, K. Morris, C. Dolwin, “High Throughput Parallel Fano Decoding,” IEEE Trans. Commun., vol. 59, no. 9, pp. 2394-2405, September 2011.