Quantum Expectation Transformers for Cost Analysis
Martin Avanzini, Georg Moser, Romain Péchoux, Simon Perdrix, Vladimir Zamdzhiev

To cite this version:
Martin Avanzini, Georg Moser, Romain Péchoux, Simon Perdrix, Vladimir Zamdzhiev. Quantum Expectation Transformers for Cost Analysis. Symposium on Logic In Computer Science LICS ’22, Aug 2022, Haifa, Israel. hal-03540366

HAL Id: hal-03540366
https://inria.hal.science/hal-03540366v1
Submitted on 23 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Quantum Expectation Transformers for Cost Analysis

Martin Avanzini
Inria Sophia Antipolis - Méditerranée
France

Georg Moser
Department of Computer Science
Universität Innsbruck
Innsbruck, Austria

Romain Péchoux
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy
France

Simon Perdrix
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy
France

Vladimir Zamdzhiev
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy
France

Abstract

We introduce a new kind of expectation transformer for a mixed classical-quantum programming language. Our semantic approach relies on a new notion of a cost structure, which we introduce and which can be seen as a specialisation of the Kegelspitzen of Keimel and Plotkin. We show that our weakest precondition analysis is both sound and adequate with respect to the operational semantics of the language. Using the induced expectation transformer, we provide formal analysis methods for the expected cost analysis and expected value analysis of classical-quantum programs. We illustrate the usefulness of our techniques by computing the expected cost of several well-known quantum algorithms and protocols, such as coin tossing, repeat until success, entangled state preparation, and quantum walks.

Keywords: complexity analysis, quantum programming, expectation transformer, formal semantics

1 Introduction

Quantum computation is a promising and emerging computational paradigm which can efficiently solve problems considered to be intractable on classical computers [9, 28]. However, the unintuitive nature of quantum mechanics poses interesting and challenging questions for the design and analysis of quantum programming languages. Indeed, the quantum program dynamics are considerably more complicated compared to the behaviour of classical probabilistic programs. Therefore, formal reasoning about quantum programs requires the development of novel methods and tools.

An important open problem is to compute the expected resource usage of quantum programs. For example, this may be used to determine: (1) the expected runtime; (2) the expected number of quantum gates; or (3) the amount of quantum resources (in an application-specific sense) required by quantum programs, etc. The difficulty of this problem, which is undecidable, requires using elaborate methods to solve it whenever possible. These methods for estimating resource usage must be compositional, systematic, and, preferably, tractable; this excludes de facto any direct use of the operational semantics.

We address this open problem by establishing a weakest precondition reasoning in the form of a quantum expectation transformer, named qet-calculus, that is rich enough to recover earlier wp-calculi in the context of classical programs as well as denotational semantics for quantum programs. Further, the calculus appears to be the right foundation for subsequent automation of the method, which however, is left for future work. The exact solution of the expected cost problem can be recovered via this calculus, and furthermore, our method may also be used to find approximate solutions by identifying suitable upper bounds. Therefore, our method provides a basis for attacking and ameliorating this undecidable problem in a systematic and compositional way.

1.1 Our Contributions

As a first step towards achieving our main objective, we introduce a new domain-theoretic notion, called a cost structure (Section 2). It is based on Kegelspitzen [15], which are dcpo’s (directed-complete partial orders) equipped with a suitable convex structure that may be used to reason about the semantics of probabilistic [12, 26] and quantum programming languages [11]. A cost structure is then a pair (S, \oplus) of a Kegelspitze S together with a cost addition operation \oplus that allows us to model resource consumption in a coherent way.

We introduce a mixed classical-quantum programming language on which we formally define the expected cost and the expected value of programs. Our programming language (Section 3) supports conditional branching, while loops, the usual quantum primitives (including quantum measurements), classical data, and a special statement for resource consumption. To seamlessly model the combination of cost primitives and probabilistic choice — induced by quantum measurements — we define the operational semantics of our language as a probabilistic abstract reduction system [4], whose reduction rules are annotated by costs [3].

In Section 4, we introduce the aforementioned qet-calculus, which can be seen as a generalisation of previous work on
predicate transformers and probabilistic expectation transformers. For a given cost structure \((S, \hat{+})\), our quantum expectation transformer is a semantic function

\[\text{qet}[\cdot] : \text{Program} \to S^{\text{State}} \to S^{\text{State}} \]

which maps programs and expectations (functions from quantum program states to a cost structure) to expectations, in a continuation passing style. We prove that our semantics enjoys nice algebraic and domain-theoretic properties (§4.2) and that it is sound and adequate with respect to the operational semantics (§4.3). As a consequence, we prove that the expected cost of a program in our mixed classical-quantum language (as defined via the operational semantics) is precisely recovered by using our quantum expectation transformer (Corollary 4.8). Furthermore, because our semantics is defined in a suitable level of generality, by choosing an appropriate cost structure \((S, \hat{+})\), we show how a strongly adequate quantum denotational semantics may be defined as a special case (§4.4), which highlights important connections between our approach and denotational semantics of probabilistic and quantum programming languages.

The usefulness of our methods are illustrated through a running example that performs (unbounded) coin tossing using quantum resources. More useful and complicated quantum programs are analysed in Section 5, where we show how we can determine the expected cost of these programs using our quantum expectation transformer method.

1.2 Related Work

Classical and probabilistic programs. Predicate transformer semantics were introduced in the seminal works of [6] and [16] as a method for reasoning about the semantics of imperative programs. Predicate transformers map each program statement to a function between two predicates on the state space of the program. Consequently, their semantics can be viewed as a reformulation of Floyd–Hoare logic [10], since they transform postconditions (the output predicate) to preconditions (the input predicate). This methodology has been extended to probabilistic programs by replacing predicates with expectations, leading to the notion of expectation transformers (see [19]) and the development of weakest pre-expectation semantics [8]. Expectation transformers have been used to reason about expected values [14], but also runtimes [13], and costs [1, 3, 21].

Quantum programs. The articles [23] and [18] present two first attempts to adapt expectation transformers to the runtime analysis of quantum programs. [23] discusses the interest of adapting the method to the quantum case through a running example. However, no correctness results (soundness or adequacy) are proved. [18] defines a notion of expected runtime transformer that is neither compositional, nor denotational, because its definition depends on the asymptotic (i.e., limiting) behaviour of the operational semantics, which is problematic and undesirable, as we discussed above. Our paper overcomes all these drawbacks by defining a compositional and denotational notion of quantum expectation transformers, that is completely independent of the operational semantics. Moreover, quantum expectation transformers are not restricted only to runtimes, and we also establish the necessary correctness results (soundness and adequacy) with respect to the operational semantics. Furthermore, since our language includes classical data (the other papers do not) and we can easily represent discrete probabilistic choice, our quantum expectation transformers can be seen as a proper generalisation of the predicate and expectation transformers discussed above, which is another advantage of our approach.

2 Kegelspitzen and Cost Structures

We begin by defining a notion of cost structure based on the domain-theoretic and convex structure of Kegelspitzen. This is used in later sections by our quantum expectation transformers in order to formalise the semantics.

Kegelspitzen [15] are dcpo’s (directed complete partial orders) that enjoy a convex structure. We define our quantum expectation transformer by making use of Kegelspitzen, but for simplicity, we define Kegelspitzen using \(\omega\)-cpo’s (\(\omega\)-complete partial orders), instead of dcpo’s, because the former notion is more familiar to most readers.

Definition 2.1. An \(\omega\)-chain in a partial order \((X, \leq)\) is a countable increasing sequence of elements of \(X\), i.e., a sequence \((x_i)_{i \in \mathbb{N}}\), such that \(x_i \leq x_j\) for any \(i \leq j\). An \(\omega\)-cpo (\(\omega\)-complete partial order) is a partial order \((X, \leq)\), such that every \(\omega\)-chain in \(X\) has a supremum (least upper bound) within \(X\). A monotone function \(f : X \to Y\) between two \(\omega\)-cpos is \(\omega\)-continuous if it preserves suprema of \(\omega\)-chains.

Next, we recall barycentric algebras, which allows us to take convex combinations of elements in a coherent way.

Definition 2.2 ([15]). A barycentric algebra is a set \(A\) equipped with binary operations \(a \cdot_r b,\) one for every real number \(r \in [0, 1]\), such that for all \(a, b, c \in A\) and \(r, p \in [0, 1]\), the following equalities hold:

\[
\begin{align*}
 a \cdot_1 b &= a; \\
 a \cdot_r b &= b \cdot_{1-r} a; \\
 a \cdot_r a &= a; \\
 (a \cdot_p b) \cdot_r c &= a \cdot_{p+1} (b \cdot_{\frac{p}{p+1}} c).
\end{align*}
\]

Next we introduce pointed barycentric algebras, which allow us to also define scalar multiplication in a natural way.

Definition 2.3 ([15]). A pointed barycentric algebra is a barycentric algebra \(A\) equipped with a distinguished element \(\bot\). For \(a \in A\) and \(r \in [0, 1]\), we define scalar multiplication as \(r \cdot a \doteq a \cdot_r \bot\).

We can now define an \(\omega\)-Kegelspitzene as a pointed barycentric algebra that respects the order of an \(\omega\)-cpo.
Definition 2.4. An \(\omega \)-Kegelspitze is a pointed barycentric algebra \(K \) equipped with an \(\omega \)-complete partial order such that, (1) scalar multiplication \((r, a) \mapsto r \cdot a : [0, 1] \times K \to K \) is \(\omega \)-continuous in both arguments, and (2) for every \(r \in [0, 1] \) the functions \((a, b) \mapsto a +_r b : K \times K \to K \) are \(\omega \)-continuous in both arguments.

For brevity, we will refer to \(\omega \)-Kegelspitzen simply as Kegelspitzen. In fact, all \(\omega \)-Kegelspitzen we consider in this paper are also Kegelspitzen in the sense of [15] (i.e., as dcpo’s), so this should not lead to confusion. We note that, in every Kegelspitze \(K \), scalar multiplication \((r, a) \mapsto r \cdot a \) is \(\omega \)-continuous and therefore monotone in the \(r \)-component, which implies \(\perp = \perp +_1 a = a +_0 \perp = 0 \cdot a \leq 1 \cdot a = a \) for each \(a \in K \). Therefore, the distinguished element \(\perp \) is the least element of \(K \).

Example 2.5. The real unit interval \([0, 1]\) is a Kegelspitze in the usual order when we define \(\perp +_1 b = r \cdot a + (1 - r) b \) and \(\perp +_0 \perp = 0 \). The same assignment can also be used to equip the extended non-negative reals \(\mathbb{R}_+^\infty = \mathbb{R}_+ \cup \{\infty\} \) with the structure of a Kegelspitze. Note that the non-negative reals \(\mathbb{R}_+ \) is not a Kegelspitze, because it lacks an \(\omega \)-cpo structure.

Next, we consider some Kegelspitzen which are important for the semantics of quantum programming languages.

Example 2.6. A density matrix is a positive semi-definite hermitian matrix \(A \) such that \(\text{tr}(A) = 1 \). A subdensity matrix is a positive semi-definite hermitian matrix \(A \) such that \(\text{tr}(A) \leq 1 \). Let \(D_n \subseteq \mathbb{C}^{n \times n} \) be the set of subdensity matrices of dimension \(n \). Then \(D_n \) is an \(\omega \)-cpo when equipped with the Löwner order: \(A \leq B \) iff \(B - A \) is positive semi-definite [27]. Moreover, \(D_n \) has the structure of a Kegelspitze under the assignment \(\perp = 0 \) and \(\perp +_1 b = r A + (1 - r) B \).

Recall that density matrices are used in quantum physics to represent probabilistic mixtures of pure quantum states. In quantum programming semantics, we use subdensity matrices in order to account for the probability of non-termination. Kegelspitzen may also be used to define convex sums.

Definition 2.7. In a Kegelspitze \(K \), for \(a_i \in K, r_i \in [0, 1] \) with \(\sum_{i=1}^{n} r_i a_i \leq 1 \), we define the convex sum inductively by:

\[
\sum_{i=1}^{n} r_i a_i = \begin{cases}
\perp & \text{if } n = 0, \\
\frac{1}{a_n} \left(\sum_{i=1}^{n-1} r_i a_i \right) & \text{if } n > 0 \text{ and } r_n = 1, \\
\frac{1}{a_n + r_n} \left(\sum_{i=1}^{n-1} r_i a_i \right) & \text{otherwise}.
\end{cases}
\]

In fact, the expression \(\sum_{i=1}^{n} r_i a_i \) is \(\omega \)-continuous in each \(r_i \) and \(a_i \) and the sum is also invariant under index permutation (see [12] for more details). Countable convex sums may be defined as follows: given \(a_i \in K \) and \(r_i \in [0, 1] \), for \(i \in \mathbb{N} \), with \(\sum_{i \in \mathbb{N}} r_i \leq 1 \), let \(\sum_{i \in \mathbb{N}} r_i a_i = \sup_{n \in \mathbb{N}} \sum_{j=1}^{n} r_j a_j \).

We now formalize a notion of cost structure for expectation transformers in the context of quantum programs. This can be seen as a Kegelspitze equipped with an operation for injecting a cost — modeled as a positive real number — into the Kegelspitze, which satisfies some coherence conditions with respect to the structure of the Kegelspitze.

Definition 2.8. A cost structure \(S = (S, \dagger) \) is a Kegelspitze \(S \) equipped with an operation \(\dagger : \mathbb{R}_+^\infty \times S \to S \) that is \(\omega \)-continuous in both arguments and satisfies the identities

\begin{align}
0 \dagger s &= s \quad (1) \\
c \dagger (d \dagger s) &= (c + d) \dagger s \quad (2) \\
(c_1 \dagger s_1) \dagger (c_2 \dagger s_2) &= (c_1 \dagger c_2) \dagger (s_1 \dagger s_2) \quad (3)
\end{align}

Example 2.9. For any Kegelspitze \(S \), we get a cost structure \((S, +_f) \) with forgetful cost addition defined by \(c +_f r \equiv r \). A more representative example is given by the cost structure \((\mathbb{R}_+^\infty, +) \), where \(+ \) is the standard addition in \(\mathbb{R}_+^\infty \).

3 Quantum Programming Language

In this section we introduce the syntax and operational semantics of our imperative programming language supporting both quantum and classical programming primitives.

3.1 Syntax

Let \(B, V \) and \(Q \) be three distinct types for Boolean, numerical, and qubit data. We will use variables \(x, y, z \) to range over classical variables of type \(K \in \{ B, V \} \) and we will use \(q_1, q_2, q_3, \ldots \), etc., to range over quantum variables of type \(Q \). The syntax of quantum programs is described in Figure 3, where \(n \) is a constant in \(\mathbb{Z}_+ \), \(U \) is an operator symbol of arity \(a_U \in \mathbb{N}_+ - \{0\} \), \(s \) stands for a sequence of qubit variables \(q_1, q_2, q_3, \ldots, q_{a_U} \), and meas(q) represents the standard measurement on qubit \(q \) in the computational basis. When needed, variables and expressions can be annotated by their type as superscript. If a evaluates to a positive integer \(c \), the statement consumes(a) consumes \(c \) resource units but acts as a no-op otherwise. That is, we permit only non-negative costs. This restriction is in place to ensure that the notion of expected cost — to be defined in a moment — is well-defined.

Program variables are global. For a given expression or statement \(t \), let \(B(t) \) (respectively \(V(t) \), \(Q(t) \)) be the set of Boolean (resp. numerical, qubit) variables in \(t \).

Example 3.1. Let \(H \) be the operator symbol representing the Hadamard unitary operation. The program \(CT(q) \) in Listing 1 performs coin tossing by repeatedly measuring an initial qubit \(q \) (which may be mapped into a superposition state via \(H \)) until the measurement outcome false occurs. This program will be our simple running example throughout the paper. Its probability to terminate within \(n \) steps depends on the initial state of the qubit \(q \) and the loop consumes \(1 \) resource for each iteration. The overall probability of termination (in any number of steps) is \(1 \).
3.2 Operational Semantics

In what follows, we model the dynamics of our language as a probabilistic abstract reduction system [4] — a transition system where reducts are chosen from a probability distribution. Reductions can then be defined as stochastic processes [4], or equivalently, as reduction relations over distributions [2]. We follow the latter approach, unlike the former it permits us to define a notion of expected cost concisely, without much technical overhead [5].

Probabilistic Abstract Reduction Systems (PARS). Let A be a set of objects. A discrete subdistribution δ over A is a function δ : A → [0, 1] with countable support that maps an element a of A to a probability δ(a) such that \(\sum_{a \in \text{supp}(\delta)} \delta(a) \leq 1 \). If \(\sum_{a \in \text{supp}(\delta)} \delta(a) = 1 \) then δ is a discrete distribution. We only consider discrete (sub)distributions and we shall simply refer to them as (sub)distributions from now on. Any (sub)distribution δ can be written as \{ (a : δ(a) \}, a \in \text{supp}(\delta) \}. The set of subdistributions over A is denoted by \(\mathcal{D}(A) \). Note that \(\mathcal{D}(A) \) is closed under convex combinations \(\sum_i p_i \cdot \delta_i = \lambda a. \sum_i p_i \delta_i(a) \) for countably many probabilities \(p_i \in [0, 1] \) such that \(\sum_i p_i \leq 1 \). The notion of expectation of a function \(f : A \rightarrow S \), where S is a Kegelspitz, is defined for a given subdistribution \(\delta \) over A by \(E(a \cdot f) = \sum_{a \in \text{supp}(\delta)} a \cdot f(a) \cdot \delta(a) \).

A (weighted) probabilistic abstract reduction system (PARS) on A is a ternary relation \(\cdot \rightarrow \cdot \subseteq A \times \mathbb{R}^+ \times \mathcal{D}(A) \). For a in A, a rule \(a \xrightarrow{c} \{ \delta(b) \} : \{ \text{b} \in A \} \) indicates that a reduces to b with probability \(\delta(b) \) and cost \(c \in \mathbb{R}^+ \). Given two objects a and b, \(a \xrightarrow{c_1} \{ b \} \) will be written \(a \xrightarrow{c_1} b \) for brevity. For simplicity, we consider only deterministic PARs →, i.e., \(a \xrightarrow{c_1} \delta_1 \) and \(a \xrightarrow{c_2} \delta_2 \) implies \(c_1 = c_2 \) and \(\delta_1 = \delta_2 \). An object a in A is called terminal if there is no rule \(a \rightarrow \delta \), which we write as \(a \nrightarrow \).

Every deterministic \(\text{PARS} \rightarrow \) over A can be lifted to a ternary weighted reduction relation \(\cdot \rightarrow \cdot \subseteq \mathcal{D}(A) \times \mathbb{R}^+ \times \mathcal{D}(A) \) in a natural way, see Figure 2. A reduction step \(\delta \xrightarrow{c} \epsilon \)

\[
\begin{align*}
&\frac{a \xrightarrow{c} \delta}{\{ 1 : a \} \xrightarrow{c} \delta} \quad \text{(Term)} \\
&\frac{a \xrightarrow{c} \delta}{\{ 1 : a \} \xrightarrow{d} 0} \quad \text{(Mono)} \\
&\frac{\delta_1 \xrightarrow{c_1} \delta_2 \cdot \sum_i p_i \leq 1}{\delta \cdot \sum_i p_i \cdot \delta_i \xrightarrow{c_1} \delta_2} \quad \text{(Mut)}
\end{align*}
\]

indicates that the subdistribution of objects \(\delta \) evolves to a subdistribution of reducts \(\epsilon \) in one step, with an expected cost of \(d \). Note that since \(\rightarrow \) is deterministic, so is the reduction relation \(\rightarrow \). We denote by \(\delta \xrightarrow{n} \epsilon \) the \(n \)-fold \(\rightarrow \) with expected cost \(d \), defined by \(\delta \xrightarrow{0} \epsilon \) if \(\delta \xrightarrow{c_1} \cdots \xrightarrow{c_n} \epsilon \) and \(c = \sum_i c_i \). In particular, \(\delta \xrightarrow{0} 0 \).

Let us illustrate these notions on a small example.

Example 3.2. We fix objects \(A = \mathbb{Z} \cup \{ \text{geo}(n) \mid n \in \mathbb{Z} \} \). Consider the \(\text{PARS} \rightarrow_{\text{geo}} \) over A defined through the rules

\[
\text{geo}(n) \xrightarrow{1} \text{geo}(n + 1), \quad \text{geo}(n + 1) \xrightarrow{1} \text{geo}(n) + 1
\]

stating that \(\text{geo}(n) \) increments its argument and then either returns or recurs, in each case with probability \(\frac{1}{2} \) and cost one. Starting from \(\text{geo}(0) \), this PARS admits precisely one infinite reduction sequence

\[
\{ 1 : \text{geo}(0) \} \xrightarrow{1/2} \{ 1/2 : 1, 1/2 : \text{geo}(1) \}
\]

\[
\xrightarrow{1/2} \{ 1/2 : 1, 1/4 : \text{geo}(2) \}
\]

\[
\xrightarrow{1/2} \{ 1/2 : 1, 1/4 : 3, 1/4 : \text{geo}(3) \}
\]

\[
\xrightarrow{1/4} \cdots
\]

This sequence approaches the distribution \(\{ 1/2 : n \}_{n>0} \) of terminal objects in \(\mathbb{Z} \), with an expected cost of \(\sum_{n=0}^{\infty} \frac{1}{n} = 2 \).

As indicated in this example, for every \(\delta \in \mathcal{D}(A) \) there is precisely one infinite sequence \(\delta = \delta_0 \xrightarrow{c_1} \delta_1 \xrightarrow{c_2} \delta_2 \xrightarrow{c_3} \cdots \) gradually approaching a normal form distribution of terminal objects with an expected cost of \(\sum_{i=0}^{\infty} c_i \).

\[\text{This infinite sum is always defined, since costs } c_i \text{ are non-negative.}\]
normal form distribution can be a proper subdistribution — in which case the PARS is not almost-surely terminating — and that the cost can be infinite.

Based on these intuitions, for an object \(a \in A \), we define the expected cost function \(\text{ecost}_a : A \to \mathbb{R}^{\star +} \) by

\[
\text{ecost}_a(a) \doteq \sup_{n \in \mathbb{N}} \langle c \mid \{1 : a\} \to \delta_n \rangle,
\]

and the normal form function \(\text{nf}_a : A \to \mathcal{D}(A) \) by

\[
\text{nf}_a(a) \doteq \sup_{n \in \mathbb{N}} \langle \delta \mid \text{term} \mid \{1 : a\} \to \delta_n \rangle,
\]

where \(\delta \mid \text{term} \) is the restriction of \(\delta \) to terminal objects, i.e.,

\[
\delta \mid \text{term} \doteq \{ \delta(a) : a \mid a \not\rightarrow \rangle \text{asupp}(\delta) \},
\]

and the supremum is taken w.r.t. the pointwise order of subdistributions. Note that \(\text{nf}_a(a) \) is well-defined, which essentially follows from the fact that \((\delta_n \mid \text{term})_{n \in \mathbb{N}} \), for \(\delta_n \) such that for \(\{1 : a\} \to \delta_n \), is a monotonically increasing sequence, by definition of \(\to \).

Quantum Programs as PARSs. We now endow quantum programs with an operational semantics defined through a PARS, operating on pairs of classical and quantum states.

Let \(\mathbb{C} \) denote the set of complex numbers. Given a set \(Q \) of \(n \) qubit variables, let \(\mathcal{H}_Q \) be the Hilbert space \(\mathbb{C}^2^n \) of \(n \) qubits\(^2\).

We use Dirac notation, \(|\psi\rangle \), to denote a quantum state of \(\mathcal{H}_Q \). Any state \(|\psi\rangle \) can be written as \(\sum_{b \in \{0,1\}} \alpha_b |b\rangle \), with \(\alpha_b \in \mathbb{C} \), and \(\sum_{b \in \{0,1\}} |\alpha_b|^2 = 1 \). \(|\psi\rangle \) denotes the state \(\{|\psi\rangle\} \). \(|\psi\rangle \) and \(|\psi\rangle \) denote the inner product and outer product of \(|\psi\rangle \) and \(|\psi\rangle \), respectively. The norm of a vector is defined by \(\langle |\psi\rangle | |\psi\rangle \rangle = \sqrt{\langle |\psi\rangle | \langle |\psi\rangle \rangle} \).

We define (linear) operators over \(\mathcal{H}_Q \) as linear maps. Hence an operator \(\mathcal{L} \) is well-defined, which essentially follows from the fact that \((\mathcal{L}_n \mid \text{term})_{n \in \mathbb{N}} \), for \(\mathcal{L}_n \) such that for \(\{1 : a\} \to \mathcal{L}_n \), is a monotonically increasing sequence, by definition of \(\to \).

The classical state is modelled as a (well-typed) \(Q \rightarrow \mathcal{D}(A) \) function \(\mathcal{L} \colon \mathbb{C}^2 \rightarrow \mathbb{C}^2 \). Hence an operator \(\mathcal{L} \) is well-defined, which essentially follows from the fact that \((\mathcal{L}_n \mid \text{term})_{n \in \mathbb{N}} \), for \(\mathcal{L}_n \) such that for \(\{1 : a\} \to \mathcal{L}_n \), is a monotonically increasing sequence, by definition of \(\to \).

The quantum expectation transformer defines a map \(\mathcal{L} \) that takes a state \(|\psi\rangle \) and returns a probability distribution \(\mathcal{L}(|\psi\rangle) \) over \(\mathbb{C}^2 \). The quantum expectation transformer is defined as

\[
\mathcal{L}(|\psi\rangle) \doteq \sum_{b \in \{0,1\}} \langle |b\rangle | \langle |b\rangle \rangle \langle |\psi\rangle | |\psi\rangle \rangle,
\]

where \(\langle |b\rangle | \langle |b\rangle \rangle \) is the outer product of \(|b\rangle \) and \(|b\rangle \).

The quantum expectation transformer is used to update the classical store and the quantum state according to the rule (Exp).

The state of a configuration can be updated by the three rules (Exp), (Meas), and (Instr). Rule (Exp) updates the classical store and the quantum state accordingly.

The operational semantics is described in Figure 3 as a PARS \(\rightarrow \) over objects in \(\text{Con} \cup \text{Stat} \), where precisely the objects in \(\text{Stat} \) are terminal. Rule (Cons) evaluates the arithmetic expression provided as argument to a cost, an integer, and annotates the reduction with this cost, whenever it is a positive integer (otherwise the cost is 0). The state of a configuration can only be updated by the three rules (Exp), (Op), and (Meas). Rule (Exp) updates the classical store in a standard way. Rule (Op) updates the quantum state to a new quantum state \(\mathcal{U}_Q |\psi\rangle \), where \(\mathcal{U}_Q \) is the map that applies the unitary operator \(\mathcal{U} \) to qubits in \(\mathbb{Q} = q_1, \ldots, q_n \) and tensoring the map with the identity on all other qubits to match the dimension of \(|\psi\rangle \). Rule (Meas) performs a measurement on qubit \(q \). This rule returns a distribution of configurations corresponding to the two possible outcomes, \(k = 0 \) and \(k = 1 \), with their respective probabilities \(p^{\alpha}_k |\psi\rangle \) and, in each case, updates the classical store and the quantum state accordingly.

For a state \(\text{stm} \), we overload the notion of expected cost function and define \(\text{ecost}_{\text{stm}} : \mathbb{R}^{\star +} \rightarrow \mathbb{R}^{\star +} \) by

\[
\text{ecost}_{\text{stm}}(\sigma) \doteq \text{ecost}_{\text{stm} \cdot \sigma}.
\]

Moreover, the function \(\text{eval}_{\text{stm}} : \mathbb{R}^{\star +} \rightarrow \mathbb{R}^{\star +} \) is defined by

\[
\text{eval}_{\text{stm}}(f)(\sigma) \doteq \text{eval}_{\text{stm} \cdot \sigma}(f)(\sigma).
\]

gives the expected value of \(f \) on the subdistribution of terminal states obtained by executing \(\text{stm} \) on state \(\sigma \). Note that this function is well-defined, as \(\text{nf}_a(\text{stm}, \sigma) \) is a sub-distribution over \(\text{Stat} \).

Example 3.3. Consider the program from Example 3.1. Let \(\text{stm} \) refer to the while loop. On a state \((s, |\psi\rangle) \) such that

\[
|\psi\rangle = |\alpha\rangle |0\rangle + |\beta\rangle |1\rangle
\]

with \(|\alpha|^2 + |\beta|^2 = 1 \) and \(s(x) = 1 \), it holds that:

\footnote{We assume \(Q \) to be a totally ordered set so that the smallest element of \(Q \) corresponds to the first qubit of \(\mathcal{H}_Q \) and so on.}
The expected cost and the normal form are obtained as follows, by reasoning about the asymptotic behaviour.

\[
\text{ecost}_{CT}(q)(s, \langle \alpha \rangle) = \sup_{n \in \mathbb{N}} \left\{ 1 + p_1 \sum_{i=0}^{n} \frac{1}{i} \right\} = 1 + |\alpha - \beta|^2
\]

\[
\text{nf}_{CT}(q)(s, \langle \varphi \rangle) = \sup_{n \in \mathbb{N}} \left\{ \{p_0 + p_1 \sum_{i=1}^{n} \frac{1}{i} : (s[x := 0], |0\rangle) \right\}
= \{1 : (s[x := 0], |0\rangle) \}
\]

Hence, \(\text{eval}_{CT}(f)(s, \langle \varphi \rangle)\), the expected value of \(f\) after executing \(CT(q)\) on \((s, \langle \varphi \rangle)\), is equal to \(f(s[x := 0], |0\rangle)\).

4 Quantum Expectation Transformers

We now revisit the expectation transformer approach for the quantum programming language introduced in Section 3. Expectations will be functions from the set of (classical and quantum) memory states to cost structures, i.e., functions in \(S^{\text{state}}\), for a given cost structure \(S\). The quantum expectation transformer \(\text{qet}[_]\{\cdot\}\) is then defined in terms of a program semantics mapping expectations to expectations in a continuation passing style. Specializing the cost structure yields several quantum expectation transformers such as the quantum expected value transformer \(\text{qevs}[_]\{\cdot\}\) and the quantum expected cost transformer \(\text{qect}[_]\{\cdot\}\). After exhibiting several laws and properties of these transformers, we show their soundness and their adequacy.

4.1 Definition

Before defining expectation transformers, we introduce some preliminary notations in order to lighten the presentation.

Notations. For any expression \(e\), \([e]\) is a shorthand notation for the function \(\lambda(s, \langle \varphi \rangle). [e]^3 \in (R^{\text{state}})^{\text{state}}\) and, for any \(c \in \mathbb{R}^{\text{state}}\), \(\lambda\) is the function in \((R^{\text{state}})^{\text{state}}\) defined by

\[
\lambda \triangleq \lambda \cdot c.
\]
To avoid notational overhead, we frequently use point-wise extensions of operations on \(\hat{+} \) and \(\mathbb{R}^{\infty} \) to functions. E.g., for \(p \in [0, 1]^{\text{State}} \), \(f, g \in \mathbb{S}^{\text{State}}, f +_p g \) denotes the function \(\lambda \sigma. f(\sigma) +_p(\sigma) \cdot g(\sigma) \).

We will also use \(f[x := e] \) for the expectation mapping \((s, \varphi) \mapsto f(s[x := \{e\}^s], \varphi))\), and similarly, for a given function \(M : \mathcal{H}_q \to \mathcal{H}_q \), \(f[M] \) maps \((s, \varphi)) \mapsto f(s[M\varphi]) \). Finally, \(f[x := e; M] \) stands for \((f(x := e))[M] \).

Definition 4.1. Let \((S, \hat{+})\) be a cost structure. The quantum expectation transformer
\[\text{qect}[\cdot] : \text{Program} \to \mathbb{S}^{\text{State}} \to \mathbb{S}^{\text{State}} \]
is defined inductively in Figure 4.

Definition 4.2 (Quantum expectation transformers instances).

1. Taking the cost structure \((\{0, 1\}, \hat{+}_r)\) yields a weakest precondition transformer
\[\text{qwp}[\cdot] : \text{Program} \to \{0, 1\}^{\text{State}} \to \{0, 1\}^{\text{State}}, \]
for probabilistic pre-condition reasoning.
2. Taking the cost structure \((S, \hat{+}_r)\), for any Kegelspitze \(S \), yields an expected value transformer
\[\text{qev}_S[\cdot] : \text{Program} \to \mathbb{S}^{\text{State}} \to \mathbb{S}^{\text{State}}. \]
3. Taking the cost structure \((\mathbb{R}^{\infty}, \hat{+})\) yields an expected cost transformer
\[\text{qect}[\cdot] : \text{Program} \to (\mathbb{R}^{\infty})^{\text{State}} \to (\mathbb{R}^{\infty})^{\text{State}}. \]

4.2 Properties

The quantum expectation transformer satisfies several useful laws (Figure 5) and these laws are comparable to those found in [13].

Theorem 4.3. All universal laws listed in Figure 5 hold.

The (monotonicity) Law permits us to reason modulo upper-bounds: actual costs can be always substituted by upper-bounds. It is in fact an immediate consequence from the continuity law, itself essential for the well-definedness of the transformer on while loops. The (distributivity) Law is a direct consequence of the laws on cost structures. The (upper invariant) Law generalises the corresponding law by [13], itself a generalisation of the notion of invariant stemming from Hoare calculus from predicates to cost functions. It constitutes a complete proof rule for finding closed form upper-bounds for loops, and based on the observation that any prefix-point — as given with \(g \) in the pre-condition — is an upper bound to the least- prefixed point of a functional — in our case the expected cost of the loop (w.r.t. \(f \)).

Example 4.4. Let us search for a cost expectation of the program of Example 3.1. Recall that \(\text{stm} \) is the body of the while loop statement and that the considered cost structure is \((\mathbb{R}^{\infty}, \hat{+})\). By (upper invariant) Law (see Figure 5), it suffices to find an expectation \(g \) satisfying the following inequalities
\[[\neg x] \cdot 0 \leq g \]
\[[x] \cdot \text{qect}[\text{stm} \cdot] \cdot g \leq g \]
in order to compute an upper bound on the expectation \(\text{qect}[\text{stm} \cdot] \cdot g \) of the while loop statement \(\text{stm} \).

Using rules of Figure 4, the following equalities hold, as can be verified directly:
\[g_1 \triangleq \text{qect}[\text{consume}(1)] \cdot g = 1 + g \]
\[g_2 \triangleq \text{qect}[x = \text{meas}(q)] \cdot g_1 = g_1[x := 0; M_0^q] + g_2[x := 1; M_1^q] = \lambda(s, \varphi) \cdot \sum_{k \in [0, 1]} P_k^q(\varphi)g_1(s[x := k], [k]) \]
\[g_3 \triangleq \text{qect}[q \triangleright \text{H}] \cdot g_2 = g_2[H] = \lambda(s, \varphi) \cdot \sum_{k \in [0, 1]} P_k^q(H \varphi)(1 + g)(s[x := k], [k]). \]

Now, we set
\[g(s, \alpha) = [x] \cdot (1 + |\alpha - \beta|^2). \]
It holds that \(H \cdot (\alpha \beta) = \frac{\alpha + \beta}{\sqrt{2}} |0 \rangle + \frac{-\alpha - \beta}{\sqrt{2}} |1 \rangle \) and that:
\[\text{qect}[\text{stm} \cdot] \cdot g \cdot (s, \alpha \beta) = g_3(s, \alpha \beta) = \frac{|\alpha + \beta|^2}{2} (1 + 0) + \frac{|\alpha - \beta|^2}{2} (1 + 1 + 0 - 1 - 1) = 1 + |\alpha - \beta|^2 = g(s, \alpha \beta). \]
Therefore, (in)equalities \((8) \) and \((9) \) are satisfied by \(g \). It follows that
\[\text{qect}[\text{CT}(q)] \cdot \{0\} \leq \text{qect}[x^R = \text{true}] \cdot g = g[x := 1] = \lambda(s, \alpha \beta) \cdot 1 + |\alpha - \beta|^2 \]
is the cost expectation of the program. Note that, in this case, this bound is exact.

4.3 Soundness and Adequacy

We first give a semantic counterpart to the quantum expectation transformer. To this end, for \(f \in \mathbb{S}^{\text{State}} \) let \(\text{QET} \{f\} \in \mathbb{S}^{\text{Conf} \cup \text{State}} \) be the least function (in the pointwise order inherited from \(S \), such that:
\[\text{QET} \{f\}(\mu) = \begin{cases} f(\mu) & \text{if } \mu \in \text{State} \\ c + \mathbb{E}_d(\text{QET} \{f\}) & \text{if } \mu \in \text{Conf} \text{ and } \mu \xrightarrow{c} \delta \end{cases} \]
(see Appendix B). Finally, we overload notation and set
\[\text{QET} \{\text{stm} \cdot\} \cdot f(\sigma) \triangleq \text{QET} \{f\}(\text{stm} \cdot \sigma). \]
The following correspondence is not difficult to establish.
Theorem 4.7 (Soundness)

Let \(q \in \text{stm} \). Using Lemma 4.6, we can prove the theorem by induction on \(\text{two identities.} \)

Example 4.9. We illustrate the soundness theorem on our simple leading example (Example 3.3). As calculated in Example 3.3 and Example 4.4, we have

\[
\text{ecost}_{\text{CT}(q)} = \lambda(s, \alpha, \beta) \cdot 1 + |\alpha - \beta|^2 = \text{qet}[\text{CT}(q)] \{ \emptyset \}.
\]

4.4 Relationship to Denotational Semantics

As a special case of our quantum expectation transformer, we can define a quantum denotational semantics for our language. Recall that the formation conditions for configurations are defined with respect to three sets \(B, V, Q \) of Boolean, numerical and quantum variables, respectively. Let \(B = \{ b_1, \ldots, b_n \}, V = \{ v_1, \ldots, v_m \} \) and \(Q = \{ q_1, \ldots, q_k \} \). We can define a Kegelspitze \(K \) which serves as the semantic domain for our programs by setting \(K = \{ 0, 1 \}^n \times \mathbb{Z}^m \to D_{2^k} \), where the order and convex structure of \(K \) is inherited pointwise from \(D_{2^k} \). (See Example 2.6). A cost structure \(\mathcal{K} \) is now obtained by equipping \(K \) with the forgetful cost addition \(\mathcal{K} = (K, +) \). With this choice of cost structure, our quantum expectation transformer \(\text{qet} \) from Definition 4.1 yields a quantum denotational semantics transformer

\[
\text{qet}_{\mathcal{K}}[\cdot] \{ \cdot \} : \text{Program} \to K^{\text{State}} \to K^{\text{State}}.
\]

Recall that a quantum denotational semantics consists in giving a mathematical interpretation of program configurations which is invariant under the operational semantics (in a probabilistic sense). This can be obtained from \(\text{qet}_{\mathcal{K}} \) by making a suitable choice for the continuation. In particular, if we choose

\[
h : \text{State} \to K
\]

\[
h(s^B, s^V, |\phi|) = \lambda((t_1, \ldots, t_n), (u_1, \ldots, u_m)).
\]

\[
\begin{cases}
|\phi \rangle |\phi| & \text{if } t_i = s^B(b_i) \text{ for } 1 \leq i \leq n \text{ and } u_j = s^V(u_j) \text{ for } 1 \leq j \leq m \\
0 & \text{otherwise}
\end{cases}
\]
then, a quantum denotational semantics
\[
\llangle \cdot \rrangle : \text{Conf} \cup \text{State} \to K
\]
can be defined by \(\llangle (\text{stm}, \sigma) \rrangle \triangleq \text{qe}\text{ve}_K[\text{stm}] \{ h \} (\sigma)\) for configurations and \(\llangle \sigma \rrangle \triangleq h(\sigma)\) for program states (which are our notion of terminal objects). Then, by Corollary 4.8, for any well-formed configuration \(\mu = (\text{stm}, \sigma)\) we have that
\[
\llangle \mu \rrangle = \text{qe}\text{ve}_K[\text{stm}] \{ h \} \llangle (\sigma) \rrangle = \text{eval}_{\text{stm}}(h)(\sigma) = \mathbb{E}_{\text{stm}(\mu)}(\llangle \cdot \rrangle).
\]
This shows that the denotational interpretation \(\llangle \cdot \rrangle\) is equal to the (countable) convex sum of the interpretations of final states (i.e., terminal objects) that \(\mu\) can reduce to. In this equation, each probability weight associated to a final state \(\tau\) is given by the reduction probability of \(\mu\) to \(\tau\) as determined by the operational semantics. This precisely is the statement of strong adequacy in the denotational semantics of probabilistic [12, 17] and quantum programming languages [11, 25].

5 Illustrating Examples

In this section we present more intricate examples illustrating how cost analysis can be performed for quantum algorithms. The analysis has a focus on expected costs. Hence, the cost structure is fixed to be \((\mathbb{R}^{\geq 0}, +)\). Consequently, cost expectations will be functions in the set \((\mathbb{R}^{\geq 0})^{\text{State}}\).

Notations. Throughout the following, we denote by \(\kappa\) a classical expectation, i.e., an expectation which satisfies \(\kappa(s, |\varphi\rangle) = \kappa(s, |\varphi\rangle)\) for all \(s, |\varphi\rangle\), and \(|\varphi\rangle\). A classical expectation \(\kappa\) thus only depends on the classical state.

We also define the following syntactic sugar:

- \(q = |0\rangle\) for \(x^{\varphi} = \text{meas}(q)\); \(\text{if}(x)\{q := X\} \text{else} \{\text{skip}\}\), where \(X\) is the unitary operator for negation (Pauli-X gate), defined by \(X|0\rangle = |1\rangle\) and \(X|1\rangle = |0\rangle\).
- \(q = |+\rangle\) for \(q = |0\rangle\); \(q := H\).

5.1 Repeat until success

In this example, we consider a program that implements a Repeat-until-success algorithm and we show that our analysis can be used to infer upper bounds on the expected \(T\)-count, i.e., the expected number of times the so-called \(T\) gate is used.

Repeat-until-success [24] can be used to implement quantum unitary operators by using repeated measurements. An advantage of this approach is that this often allows us to implement quantum unitary operators by using fewer \(T\) gates, which are costly to implement fault-tolerantly [5, 7].

Consider the example in Listing 2. This quantum algorithm will repeatedly execute the quantum operations described by the quantum circuit in Figure 6, as specified in [24, Figure 8], where the operators \(T\) and CNOT correspond to the following quantum gates:

\[
T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{2}} \end{pmatrix}, \quad \text{CNOT} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.
\]

\[
RUS(q') \triangleq x^{\varphi} = \text{true};
\]
\[
\text{while}(x)\{
q = |+\rangle;
q \ast \ast = T;
\text{consume}(1);
q, q' \ast \ast = \text{CNOT};
q \ast \ast = H;
q, q' \ast \ast = \text{CNOT};
q \ast \ast = T;
\text{consume}(1);
q \ast \ast = H;
x = \text{meas}(q)
\}
\]

Listing 2. Repeat until success.

\[
|0\rangle \quad H \quad T \quad H \quad T \quad H \quad \text{meas} \quad b
\]

\[
|\varphi\rangle \quad \text{meas} \quad \left(\frac{1+\sqrt{2}}{\sqrt{3}}\right)^{-b} |\varphi\rangle
\]

Figure 6. A quantum circuit illustrating a repeat-until-success pattern.

After measuring the first (ancilla) qubit \(q\), there are two possibilities. With probability \(1/4\), we measure 1 and then the state of the second qubit \(q'\) is again \(|\varphi\rangle\) and we repeat the algorithm. With probability \(3/4\), we measure 0 and then the algorithm terminates and the second qubit is now in state \(\left(\frac{1+\sqrt{2}}{\sqrt{3}}\right)^{-b} |\varphi\rangle\).

Analysis. Let \(\text{stm} \triangleq \text{stm}_0\); \(x = \text{meas}(q)\) be the body of the while loop statement in the above program. For any classical (cost) expectation \(\kappa \in (\mathbb{R}^{\geq 0})^{\text{State}}\), by rules of Figure 4, it holds that

\[
\text{qect}[\text{stm}_0]\{k\} = \kappa + 2.
\]

Indeed, one can check easily that each qubit operation in \(\text{stm}_0\) leaves the expectation \(\kappa\) unchanged. For example, we have that \(\text{qect}\{q := H\}\{k\} = \kappa[H] = \kappa\). Therefore, we just have to take into account the two consume(1) statements.

As the probability of measuring 0 is constant for each iteration (\(\frac{3}{4}\), see [24]), for any cost expectation \(\kappa\), it holds that:

\[
\text{qect}[x = \text{meas}(q)]\{k\} = \kappa[x := 0; \kappa^2] + \frac{3}{4} \kappa[x := 1; \kappa^2]
\]

Putting this all together, the expectation of \(\text{stm}\) is:

\[
\text{qect}[\text{stm}]\{k\} = \text{qect}[\text{stm}_0]\{\text{qect}[x = \text{meas}(q)]\{k\}\}
\]

\[
= \text{qect}[x = \text{meas}(q)]\{k\} + 2
\]

\[
= \frac{3}{4} \kappa[x := 0] + \frac{1}{4} \kappa[x := 1] + 2.
\]
By Law (upper invariant) of Figure 5, it suffices to find an expectation \(\kappa \) satisfying the following inequalities

\[
\begin{align}
[\neg x] \cdot \mathbf{0} & \leq \kappa \\
[x] \cdot \text{qct}[\text{stm}] \{\kappa\} & \leq \kappa
\end{align}
\]

in order to compute (an upper bound on) the cost expectation \(\text{qct}[\text{while}(x)\{\text{stm}\} \{0\}] \). Inequalities (10) and (11) are satisfied by setting \(\kappa \equiv \frac{1}{2} \cdot [x] \).

We conclude by computing the expectation of the whole program

\[
\text{qct}[\text{RUS}(q')\{0\}] \leq \text{qct}[x^B = \text{true}] \{\kappa\} = \kappa[x := 1] = \frac{1}{4}.
\]

The expected cost (the expected number of \(T \) gates used) of this algorithm is bounded by \(\frac{1}{4} \). Note that this bound is tight.

5.2 Chain of \(k \) entangled qubits

The following example illustrates that the presented cost analysis can also deal with nested while loops on a non-trivial example using classical data. We consider a simple algorithm attempting to prepare a large entangled state, namely a graph state represented by a path on \(k \) qubits, i.e., \(|\phi_k\rangle = \prod_{i=0}^{k-2} CZ_{i,i+1} \otimes \phi_{i+2}^\perp \otimes |+\rangle \) where \(CZ \) is the following 2-qubit unitary transformation:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
\]

One can prepare the desired state by initializing \(k \) qubits in a row in the state \(|+\rangle \) and then applying the \(CZ \) gate \(k - 1 \) times, one for each pair of consecutive qubits. Notice that the order in which the \(CZ \) are applied is irrelevant (as they are commuting). However, in some settings, like linear optical quantum computing, \(CZ \) cannot be implemented deterministically. Nielsen [22] showed that \(CZ \) can be implemented in linear optics with probability of success \(1/4 \). The case of a failure corresponds to a measurement of the corresponding two qubits.

Notations. In this example, we use \(F(\overline{a}, \overline{x}) \) as a shorthand notation for a (non-recursive) call to program \(F \) with parameters \(\overline{a}, \overline{x} \). A call to \(F(\overline{a}, \overline{x}) \) consists in unfolding the statement of \(F \) after a careful variable renaming, avoiding name clashes. We also assume that, for a given sequence of qubits \(a_0, \ldots, a_n \), we can access the \(i \)-th qubit through a call \(a_i \), provided that variable \(x \) holds the value \(i \) in the store.

The program \(\text{FUSE}(q, q', x) \) in Listing 3 models the entanglement of two input qubits \(q \) and \(q' \) in state \(|+\rangle \) with probability \(1/4 \). The Boolean variable \(x \) records whether this operation succeeded. The \(\text{CHAIN}(q_1, q_2, q_3, q_4) \) from Listing 4 entangles four given qubits, by iterating \(\text{FUSE} \) until eventually all links have been established successfully. The general algorithm in Listing 5 then makes use of this procedure by iteratively appending 4-entangled-qubits chains to the main chain, resulting eventually in a chain of \(k \leq t \leq k + 3 \) entangled qubits.

Listing 3. Applying a \(CZ \) gate to \(q, q' \) with probability \(1/4 \).

Listing 4. Chaining four qubits.

Listing 5. Create a chain of \(k \) entangled qubits.
Analysis. Let us first consider the sub-program FUSE from Listing 3. Using laws of Figure 4, it is not difficult to see, that for any classical expectation κ,

$$\text{qect}\left[\text{FUSE}(q, q', x)\right] \{\kappa\} = 1 + \frac{s}{4} \cdot \kappa[x := true] + \frac{s}{4} \cdot \kappa[x := false].$$

This can be formally verified by unfolding definitions, exploiting that κ does not depend on the quantum state. Let us turn our attention to CHAIN4 from Listing 4, and observe

$$\text{qect}\left[\text{stml}_2\right] \{\kappa\} \leq 4 + \kappa,$

when κ is independent of x_2, assigned in stml_2, i.e., $\kappa[x_2 := b] = \kappa$. To see this, take $g \equiv [\neg x_2] + \kappa$, and hence

$$\text{qect}\left[\text{FUSE}(q_3, q_4, x_1)\right] \{g\} = \text{qect}\left[q_3 = |+\rangle; q_4 = |+\rangle\right] \left\{1 + \frac{s}{4} \cdot g[x_2 := true] + \frac{s}{4} \cdot g[x_2 := false]\right\} = 4 + \kappa.$$

Now it is clear that, since $[\neg x_2] + \kappa \leq [\neg x_2] + \kappa$ holds trivially, g constitutes an upper-invariant of the while loop in stml_2, see Law (upper invariant). Substituting false for x_2 gives the bound for stml_2. The same argument shows that

$$\text{qect}\left[\text{stml}_1\right] \{\kappa\} \leq 4 + \kappa,$

for any κ independent of x_1.

Concerning the outer loop, let κ now refer to a classical cost function independent of the Boolean variables x_1 and x_2. Putting things together,

$$\text{qect}\left[\text{stml}_1; \text{stml}_2; \text{FUSE}(q_2, q_3, x)\right] \{[\neg x] \cdot 36 + \kappa\} \leq 4 + 4 + 28 + \kappa = 36 + \kappa,$

and finally

$$\text{qect}\left[\text{CHAIN4}(q_1, q_2, q_3, q_4)\right] \{\kappa\} \leq 36 + \kappa,$

via Law (upper invariant). Concerning the overall code from Listing 5, let us now define the classical expectation

$$f \equiv [0 \leq t \land t < k + 4] \cdot \frac{1}{148} \cdot (k - [t] + 4).$$

We obtain

$$\text{qect}\left[\text{stml}\right] \{f\} = 36 + 1 + \frac{s}{4} \cdot [t \neq -1] \cdot f[t := t + 4] + \frac{s}{4} \cdot ([t = -1] \cdot f[t := 0] + [t \neq -1] \cdot f[t := t - 1]) = 37 + \frac{1}{4} \cdot [0 \leq t < t < k + 4] \cdot (\frac{s}{4} \cdot (148 \cdot (k - [t] + 5)).$$

Exploiting the loop-guard $0 \leq t < k$, we finally establish that f is an upper-bound to the expected runtime of the loop, where the required inequality is in particular encompassed by the inequality

$$[0 \leq t \land t < k] \cdot 37 + 37 \cdot (k - [t]) + 111 \cdot (k - [t] + 5) \leq 148 \cdot (k - [t] + 4).$$

$$x^8 = true;
while(x) {
 x = meas(p);
 q := H;
 q,p := S;
 consume(1)
}$$

Listing 6. Quantum walk.

which can be easily seen to hold. Substituting 0 for $[t]$ in this expectation, we conclude that the overall expected cost is bounded by $148 \times (k + 4)$.

5.3 Quantum walk

In this last example, we consider the Hadamard quantum walk on an n-circle as defined in [18, Section 6.2]. Our goal is to illustrate on a non-trivial example that the cost analysis may depend directly on the program quantum state, as in Example 3.1.

Let q be a quantum bit of the 2-dimensional state space \mathcal{H}_q, whose basis states $|L\rangle$ and $|R\rangle$ indicate directions Left and Right, respectively. Let \mathcal{H}_b be an n-dimensional Hilbert space with orthonormal basis $|0\rangle, |1\rangle, \ldots, |n - 1\rangle$ for the positions. The state space \mathcal{H} for the quantum walk is defined by $\mathcal{H} = \mathcal{H}_q \otimes \mathcal{H}_b$. The program itself is given in Listing 6. The operator S shifts the position depending of the direction state and is defined by the following standard unitary operator:

$$S = \Sigma_{i=0}^{n-1} |L\rangle \langle L| \otimes |i \oplus 1\rangle \langle i| + \Sigma_{i=0}^{n-1} |R\rangle \langle R| \otimes |i \oplus 1\rangle \langle i|,$

where \oplus denote addition and subtraction modulo n.

Adaptation. We need to adapt slightly the operational semantics and expected cost transformer to this particular setting. Any quantum state $|\phi\rangle$ can be written as

$$|\phi\rangle = \sum_{i=0}^{n-1} a_i |L\rangle |i\rangle + \sum_{i=0}^{2n-1} a_i |R\rangle |i - n\rangle = \begin{pmatrix} a_0 & \vdots \\ a_{2n-1} \end{pmatrix},$$

for $n \geq 1$ and for $a_i \in \mathbb{C}$ such that $\Sigma_i |a_i|^2 = 1$. The probability that the quantum state $|\phi\rangle$ is at position 0 is given by $p_{00}^p |\phi\rangle = |\langle L_2 \otimes 0| \langle 0\rangle |\phi\rangle$. The probability that the quantum state $|\phi\rangle$ is at a position distinct from 0 is given by $p_{\neq 0}^p |\phi\rangle = |\langle L_2 - L_2 \otimes 0| \langle 0\rangle |\phi\rangle$. These two probabilities trivially satisfy $p_{00}^p + p_{\neq 0}^p = 1$ and it holds that $p_{x0} |\phi\rangle = 1 - (|a_0|^2 + |a_n|^2) = \sum_{i=0, i \neq n} |a_i|^2$.

We adapt in a direct and obvious way the result of the calculation of a measurement to the n-dimensional case: the result of measuring the outcome 0 (false), M_{00}^p, and the result of measuring an outcome distinct from 0 (true), $M_{\neq 0}^p$, are defined by $M_{00}^p \equiv \frac{1}{\sqrt{p_{00}^p}} (I_2 \otimes 0) \langle 0| |\phi\rangle$ and $M_{\neq 0}^p \equiv \frac{1}{\sqrt{p_{\neq 0}^p}} (I_{2n} - I_2 \otimes |0\rangle \langle 0|) |\phi\rangle$, respectively.

The operational semantics of Figure 3 and the expected cost transformer of Figure 4 can be adapted straightforwardly.
to this new setting. E.g., the rule of Figure 4 for measurement on qubit p is rewritten as follows:

\[\text{qet}[x = \text{meas}(p)] \{ f \} = f[x := 0; M^p_0] + p^{\text{g}}_0 f[x := 1; M^p_1]. \]

All the other rules remain unchanged. Our soundness results still hold in this context. In particular, Theorem 4.3 and Corollary 4.8 are still valid.

Analysis. In order to analyse the expected cost of the above program, we search for an expectation \(g \) satisfying the prerequisite for applying Law (upper invariant):

\[
[x] \cdot \text{qect} \begin{cases}
0 \quad \text{q} = S; \\
1 \quad \text{consume}(1)
\end{cases} \{ g \} \leq g.
\tag{12}
\]

Using the (adapted) laws of Figure 4, the following equalities can be derived:

\[
\begin{align*}
\text{qect}[\text{consume}(1)] \{ g \} & = 1 + g \triangleq g_1 \\
\text{qect} [q, p \rightarrow S_{a_{q_{p}}} \{ g_1 \}] & = (1 + g) [S_{a_{q_{p}}}] \triangleq g_2 \\
\text{qect} [q \rightarrow H_{q}] \{ g_2 \} & = g_2 [H_{q}] = (1 + g) [S_{a_{q_{p}}} H_{q}] \triangleq g_3 \\
\text{qect} [x = \text{meas}(p)] \{ g_3 \} & = g_3 [x := 0; M^p_0] + p^{\text{g}}_0 g_3 [x := 1; M^p_1]
\end{align*}
\]

where the matrices corresponding to the operators \(S_{a_{q_{p}}} \) and \(H_{q} \) are equal to \(H \otimes I_n \) and \(S \), respectively.

In a nutshell, \(\text{qect}[x = \text{meas}(p)] \{ g_3 \} \) can be written as:

\[
\begin{align*}
\text{qect}[x = \text{meas}(p)] \{ g_3 \} & = p^{\text{g}}_0 (1 + g) [S_{a_{q_{p}}} H_{q}] [x := 0; M^p_0] \\
& \quad + p^{\text{g}}_0 (1 + g) [S_{a_{q_{p}}} H_{q}] [x := 1; M^p_1]
\end{align*}
\]

and Equation (12) can be simplified as follows:

\[
p^{\text{g}}_0 (1 + g) [x := 1; S_{a_{q_{p}}} H_{q} M^p_{1,0}] \leq g.
\tag{13}
\]

Equation (13) holds if for any store \(s \) and any quantum state \(|\psi\rangle \), we have:

\[
p^{\text{g}}_0 |\psi\rangle (1 + g (s [x := 1; S_{a_{q_{p}}} H_{q} M^p_{1,0} |\psi\rangle])) \leq g(s, |\psi\rangle).
\]

Notice that \(|\psi\rangle \triangleq S_{a_{q_{p}}} H_{q} M^p_{1,0} |\psi\rangle \) will be the quantum state entering the loop in the next iteration.

For any complex number \(z \in \mathbb{C} \), \(z^* \) will denote the complex conjugate of \(z \) and the real part of \(z \) will be denoted by \(\Re(z) \).

Consider the expectation \(g_n \) defined below.

\[
g_n \begin{pmatrix}
a_0 \\
\vdots \\
a_{2n-1}
\end{pmatrix} \triangleq \sum_{i=0}^{2n-1} f_n(i) |a_i|^2 + 2 \sum_{j=0}^{2n-1} \sum_{k=0}^{2n-1} h_n(j, k) \Re(a_j a_k^*)
\]

with \(f_n(i) \triangleq \begin{cases}
i(n - i) + 1 & \text{if } 0 \leq i \leq n - 1 \\
(i - n)(2n - i) + 1 & \text{if } n \leq i \leq 2n - 1
\end{cases} \)

and with \(h_n(j, k) = \begin{cases}
(-1)^{j-k} k(n - 1 - j) & \text{if } k, j \in [0, n - 1], \\
k, j \in [n, 2n - 1],
\end{cases}
\]

\[
(-1)^{j-k} (2n - j)(k - n - 1) & \text{if } k, j \in [0, n - 1],
\]

\[
(-1)^{k-j-n} (j + k - 2n) & \text{if } j + n, k \in [n + 1, 2n - 1],
\]

\[
0 & \text{otherwise.}
\]

\(g_n \) is a solution of the inequality in Equation (13). This can be shown by symbolically computing the subtraction of the left-hand side and the right-hand side of the inequality.

Now we consider the simple case where \(n = 2 \). For \(s \) such that \([\bar{x}]^{s} = 1 \), Equation (13) can be rewritten as:

\[
(|a_1|^2 + |a_3|^2) (1 + g(s, \frac{1}{2(|a_1|^2 + |a_3|^2)} (a_1 + a_3, a_2 - a_3)) \leq g(s, (a_0, a_1, a_2)).
\]

The above inequality is satisfied for \(g_2(s, |\psi\rangle) = 1 + |a_1|^2 + |a_3|^2 \). Hence, starting in position \(|1\rangle \) (i.e., \(a_1 L |1\rangle + a_3 R |1\rangle \), with \(|a_1|^2 + |a_3|^2 = 1 \), the expected cost is 2, whereas starting in position \(|0\rangle \), the expected cost is 1 (as \(a_1 = a_3 = 0 \)).

In the case, where \(n = 3 \), the expectation \(g_3(s, |\psi\rangle) = 2 - |a_0|^2 - |a_1|^2 - |a_2|^2 - |a_3|^2 \) is a solution to Equation (13).

Note that our expectations \(g_n \) can be recovered from the matrices \(Q_n \) in the work of [18, Section 6.2] as follows: \(g_n(s, |\psi\rangle) \triangleq \langle \psi | Q_n | \psi \rangle \).

6 Conclusion and Future Work

We presented an adequate notion of quantum expectation transformer and showed through practical examples that it can be used to infer upper bounds on the expected cost of quantum programs.

As already indicated, our qet-calculus provides a principled foundation for automation. While this problem is clearly undecidable in general, a restriction to a well-defined function space for expectations may allow for an effective solution, at the price of incompleteness. Existing work in the literature on automation of expected cost transformers or related work for classical programs cf. [3, 20, 21, 29] should provide ample guidance in this respect.
Quantum Expectation Transformers for Cost Analysis

References

[1] Martin Avanzini, Gilles Barthe, and Ugo Dal Lago. 2021. On continuation-passing transformations and expected cost analysis. Proc. ACM Program. Lang. 5, ICFP (2021), 1–30. https://doi.org/10.1145/3473592

[2] Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. 2020. On probabilistic term rewriting. Sci. Comput. Program. 185 (2020). https://doi.org/10.1016/j.scico.2019.102338

[3] Martin Avanzini, Georg Moser, and Michael Schaper. 2020. A modular cost analysis for probabilistic programs. Proc. ACM Program. Lang. 4, OOPSLA (2020), 172:1–172:30. https://doi.org/10.1145/3428240

[4] Olivier Bournez and Florent Garnier. 2005. Proving Positive Almost-Sure Termination. In Proc. of 16th RTA (LNCS). Vol. 3467. Springer, 323–337. https://doi.org/10.1007/11420400_58

[5] Sergey Bravyi and Alexei Kitaev. 2005. Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A 71, 2 (2005), 022316.

[6] Edsger W. Dijkstra. 1976. A discipline of programming. Vol. 61924118. prentice-hall Englewood Cliffs.

[7] David Gosset, Vadym Kluchnikov, Michele Mosca, and Vincent Russo. 2014. An algorithm for the T-count. Quantum Inf. Comput. 14, 15-16 (2014), 1261–1276. https://doi.org/10.26421/QIC14.15-16-1

[8] Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. 2014. Operational versus weakest pre-expectation semantics for the probabilistic guarded command language. Performance Evaluation 73 (2014), 110–132.

[9] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum Algorithm for Linear Systems of Equations. Phys. Rev. Lett. 103 (Oct 2009), 150502. Issue 15. https://doi.org/10.1103/PhysRevLett.103.150502

[10] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (1969), 576–580.

[11] Xiaodong Jia, Andre Kornell, Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev. 2022. Semantics for Variational Quantum Programming. Proc. ACM Program. Lang. 6, POPL, Article 26 (jan 2022), 31 pages. https://doi.org/10.1145/3498687

[12] Xiaodong Jia, Bert Lindenhovius, Michael W. Mislove, and Vladimir Zamdzhiev. 2021. Commutative Monads for Probabilistic Programming Languages. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 1–14. https://doi.org/10.1109/LICS52264.2021.9470611

[13] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest Precondition Reasoning for Expected Run-Times of Probabilistic Programs. In Programming Languages and Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Computer Science), Peter Thiemann (Ed.), Vol. 9632. Springer, 365–381. https://doi.org/10.1007/978-3-662-49498-1_15

[14] Benjamin Lucien Kaminski and Joost-Pieter Katoen. 2017. A weakest pre-expectation semantics for mixed-sign expectations. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, 1–12.

[15] Klaus Keimel and Gordon D. Plotkin. 2017. Mixed powerdomains for probability and nondeterminism. Log. Methods Comput. Sci. 13, 1 (2017). https://doi.org/10.23638/LMCS-13(1)2017

[16] Dexter Kozen. 1985. A probabilistic pde. J. Comput. System Sci. 30, 2 (1985), 162–178.

[17] Thomas Leventis and Michele Pagani. 2019. Strong Adequacy and Untyped Full-Abstraction for Probabilistic Coherence Spaces. In Foundations of Software Science and Computation Structures - 22nd International Conference, FOSSACS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings (Lecture Notes in Computer Science), Nikolaj Bojanczyk and Alex Simpson (Eds.), Vol. 11425. Springer, 365–381. https://doi.org/10.1007/978-3-030-17127-8_21

[18] Junyi Liu, Li Zhou, and Mingsheng Ying. 2019. Expected Runtime of Quantum Programs. arXiv e-prints. https://doi.org/10.1123/S0120541124000588

[19] Beniamino Acciai and Carroll Morgan. 2005. Abstraction, refinement and proof for probabilistic systems. Springer Science & Business Media.

[20] Fabian Meyer, Marcel Hark, and Jürgen Giesl. 2021. Inferring Expected Runtimes of Probabilistic Integer Programs Using Expected Sizes. In Proc. 27th TACAS (LNCs), Vol. 12651, 250–269.

[21] Van Chan Ngo, Quentin Carbonneaux, and Jan Hofmann. 2018. Bounded expectations: resource analysis for probabilistic programs. ACM SIGPLAN Notices 53, 4 (2018), 496–512.

[22] Michael A. Nielsen. 2004. Optical Quantum Computation Using Cluster States. Phys. Rev. Lett. 93 (Jul 2004), 040503. Issue 4. https://doi.org/10.1103/PhysRevLett.93.040503

[23] Federico Olmedo and Alejandro Díaz-Caro. 2020. Runtime Analysis of Quantum Programs: A Formal Approach. In 1st International Workshop on Programming Languages for Quantum Computing (PlanQC 2020), New Orleans, Louisiana, United States, 19th of January 2020, Proceedings. arXiv:1911.11247

[24] Adam Paetznick and Krysta M. Svore. 2013. Repeat-Until-Success: Non-deterministic decomposition of single-qubit unitaries. arXiv preprint arXiv:1311.1074 (2013).

[25] Romain Péchoux, Simon Perdrix, Mathys Rennela, and Vladimir Zamdzhiev. 2020. Quantum Programming with Inductive Datatypes: Causality and Affine Type Theory. In Foundations of Software Science and Computation Structures - 23rd International Conference, FOSSACS 2020, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science), Jean Goubault-Larrequ and Barbara König (Eds.), Vol. 12077. Springer, 562–581. https://doi.org/10.1007/978-3-030-45231-3_29

[26] Mathys Rennela. 2020. Convexity and Order in Probabilistic Call-by-Name FPC. Log. Methods Comput. Sci. 16, 4 (2020). https://lmcs.episciences.org/6901

[27] Peter Selinger. 2004. Towards a quantum programming language. Math. Struct. Comput. Sci. 14, 4 (2004), 527–586. https://doi.org/10.1017/S0960129504004256

[28] Peter W. Shor. 1999. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Rev. 41, 2 (1999), 303–332. https://doi.org/10.1137/S0036144598734701

[29] P. Wang, H. Fu, A. K. Goharshady, K. Chatterjee, X. Qin, and W. Shi. 2019. Cost Analysis of Nondeterministic Probabilistic Programs. In Proc. 40th PLDI. ACM, 204–220. https://doi.org/10.1145/3314221.3314581
A Background Material

We state some intermediate properties that follow from the Kegelspitze structure [15].

Proposition A.1. In any Kegelspitze K, any continuous map \(\chi : K \to K \) has a least fixed-point given by

\[
\text{lfp}_K \chi = \sup_{n \in \mathbb{N}} \chi^n(\bot).
\]

This operator \(\text{lfp} : (K \to K) \to (K \to K) \) is itself continuous.

Lemma A.2. Let \(f, g : A \to K \) for Kegelspitze K and \(p \in [0, 1] \). Then

\[
\mathbb{E}_\delta(f +_p g) = \mathbb{E}_\delta(f) +_p \mathbb{E}_\delta(g).
\]

Lemma A.3. Let \(f : A \to K \) for Kegelspitze K. Then

\[
\mathbb{E}_{\sum_i p_i \cdot \delta_i}(f) = \sum_i p_i \cdot \mathbb{E}_{\delta_i}(f).
\]

Lemma A.4. Let \(f : A \to K \) for Kegelspitze K. For every \(\omega \)-chain \((d_i)_i\) of sub-distributions, \(\sup_i \mathbb{E}_{\delta_i}(f) = \mathbb{E}_{\sup_i \delta_i}(f) \).

Lemma A.5. For any \(\text{PARS} \to \to \) over A and \(\delta, \epsilon \in D(A) \), if \(\delta \xrightarrow{\epsilon} n \epsilon \)

then (i) \(\delta = \{p_i : a_i\}_{i \in I}, (ii) \epsilon = \sum_{i \in I} p_i \cdot \epsilon_i, (iii) \{1 : a_i\} \xrightarrow{\epsilon_i} n \epsilon_i \), and (iv) \(n \epsilon = \sum_{i \in I} c_i \).

Proof. One first shows the lemma for the one-step reduction relation \(\to \), by induction on the derivation of \(\delta \xrightarrow{\epsilon} \epsilon \). This then generalises to \(\to_n \) by induction on \(n \).

B Proof of Lemma 4.5

Recall that, for \(\text{stm} \in \text{Statement} \), \(f \in \text{S}_{\text{State}} \) and \(\sigma \in \text{State} \),

\[
\text{QET}[\text{stm} \{ f \}](\sigma) = \text{QET}\{ f \}(\text{stm}, \sigma),
\]

where \(\text{QET}\{ f \} = \text{lfp}(\xi_f) \) for

\[
\xi_f(F) \triangleq \lambda \tau. \left\{ \begin{array}{ll}
\{ \tau \} & \text{if } \tau \in \text{State}, \\
c + \mathbb{E}_\delta(F) & \text{if } \tau \in \text{Conf} \text{ and } \tau \xrightarrow{\epsilon} \delta.
\end{array} \right.
\]

We first prove continuity, thus in particular well-definedness of the QET:\([-] \{-\} \) function.

Lemma B.1 (Continuity and Monotonicity). For any \(\omega \)-chain \((f_n)_{n \in \mathbb{N}} \) and any functions \(f, g \) s.t. \(f \leq g \) the following hold:

1. \(\sup_n \text{QET}[\text{stm} \{ f_n \}] = \text{QET}[\text{stm}] \{ \sup_n f_n \} \); and
2. \(\text{QET}[\text{stm} \{ f \}] \leq \text{QET}[\text{stm} \{ g \}] \).

Proof. Note that \(\xi_f \) as defined just above is continuous, since in particular \(\xi_f \) is continuous in both its arguments, and \(\mathbb{E}_\delta(\cdot) \) is continuous. Concerning the latter, it is actually sufficient to restrict to cases of distributions \(\delta \) with \(\mu \xrightarrow{\epsilon} \delta \) for configuration \(\mu \). Then, by definition, either \(\delta = \{1 : v\} \) or \(\mathbb{E}_\delta(f) = f(v) \) or \(\delta = \{p : v_1, 1 - p : v_2\} \) and \(\mathbb{E}_\delta(f) = f(v_1) +_p f(v_2) \). In either case, continuity of \(\mathbb{E}_\delta(f) \) follows from continuity of \(+_p \). Thus (1) is a consequence of Proposition A.1, from which then also (1) follows.

To prove Lemma 4.5, we will reason via approximations of the involved functions. To this end, for \(n \in \mathbb{N} \) and \(f \in \text{S}_{\text{State}} \) let us define \(\text{QET}^n\{ f \} : \text{State} \to \text{S} \) as the \(n \)-th approximant \(\xi_f^n(\bot) \), thus, by Proposition A.1,

\[
\text{QET}[\text{stm} \{ f \}](\sigma) = \left(\sup_{n \in \mathbb{N}} \text{QET}^n\{ f \} \right)(\text{stm}, \sigma) = \sup_{n \in \mathbb{N}} \text{QET}^n\{ f \}(\text{stm}, \sigma).
\]

For cost structure \((\Sigma, \cdot)\), we define, for \(n \in \mathbb{N} \), \(\text{ecost}^n(\cdot) : \text{Conf} \to \mathbb{R}^{\geq 0} \) and \(\text{nf}^n(\cdot) : \text{Conf} \to \mathcal{D} \) (State) inductively by setting

\[
\text{ecost}^0_\epsilon(\mu) = 0 \quad \text{if } \mu \in \text{State}, \quad \text{ecost}^{n+1}_\epsilon(\mu) = c + \sum_{i \in I} p_i \cdot \text{ecost}_\epsilon^{n}(v_i) \quad \text{if } \mu \xrightarrow{\epsilon} \{p_i : v_i\}_{i \in I};
\]

\[
\text{nf}^0_\epsilon(\mu) = \emptyset \quad \text{if } \mu \in \text{State}, \quad \text{nf}^{n+1}_\epsilon(\mu) = \left\{ \sum_{i \in I} p_i \cdot \text{nf}_\epsilon^n(v_i) \right\} \quad \text{if } \mu \xrightarrow{\epsilon} \{p_i : v_i\}_{i \in I}.
\]

These approximate \(\text{ecost}_\epsilon \) and \(\text{nf}_\epsilon \), defined in Section 3.2, respectively, in the following sense:

Lemma B.2. Let \(\mu \in \text{Conf} \cup \text{State} \). Then

1. \(\text{ecost}_\epsilon(\mu) = \sup_{n \in \mathbb{N}} \text{ecost}_\epsilon^n(\mu) \), and
2. \(\text{nf}_\epsilon(\mu) = \sup_{n \in \mathbb{N}} \text{nf}_\epsilon^n(\mu) \).

Proof. Concerning Property (1), we show that

\[
\{1 : \mu\} \xrightarrow{\epsilon} n \epsilon \in \epsilon,
\]

iff \(\text{ecost}_\epsilon^n(\mu) = c \), from which the property follows then by definition of \(\text{ecost}_\epsilon \). The proof is by induction on \(n \). The base case is trivial, let us consider the inductive step where

\[
\{1 : \mu\} \xrightarrow{\epsilon} n \epsilon \in \epsilon,
\]

where we have to show \(\text{ecost}_\epsilon^{n+1}(\mu) = c + d \). Applying Lemma A.5, for \(\delta = \{p_i : v_i\}_{i \in I} \) we see that \(d = \sum_{i \in I} d_i \) where for all \(i \in I, \{1 : v_i\} \xrightarrow{\epsilon_i} n \epsilon_i \) for some \(\epsilon_i \). Summing up

\[
\text{ecost}_\epsilon^{n+1}(\mu) = c + \sum_{i \in I} p_i \cdot \text{ecost}_\epsilon^n(v_i) \quad \text{(induction hypothesis)}
\]

\[
= c + \sum_{i \in I} p_i \cdot d_i = c + d.
\]

Concerning Property (2), we show first that

\[
\{1 : \mu\} \xrightarrow{\epsilon} n \epsilon \in \epsilon,
\]

iff \(\text{nf}_\epsilon^{n+1}(\mu) = \epsilon \). Again the proof is by induction on \(n \). In the base case \(n = 0 \), we consider \(\{1 : \mu\} \xrightarrow{\epsilon_0} 1 \{1 : \mu\} \). If \(\mu \in \text{State} \) then \(\text{nf}_\epsilon^0(\mu) = \{1 : \mu\} \xrightarrow{\epsilon_0} 1 \{1 : \mu\} \). As desired, in the case \(\mu \in \text{Conf} \) with \(\mu \xrightarrow{\epsilon} \{p_i : v_i\}_{i \in I} \) we have \(\text{nf}_\epsilon^n(\mu) = \sum_{i \in I} p_i \cdot \text{nf}_\epsilon^n(v_i) = \sum_{i \in I} p_i \cdot \emptyset = \emptyset = 1 \{1 : \mu\} \).
This concludes the base case, we move to the inductive case, where
\[
\{1 : \mu\} \xrightarrow{c} d \xrightarrow{n} \varepsilon.
\]
Applying Lemma A.5, for \(\delta = \{p_i : v_i\}_{i \in I}\) we see that \(\varepsilon = \sum_{i \in I} p_i \cdot \varepsilon_i\) with \(\{1 : v_i\} \xrightarrow{d_i} \varepsilon_i\) for all \(i \in I\). Then
\[
nf^{\omega+2}(\mu) = \sum_i p_i \cdot nf^\omega(v_i)
\]
(induction hypothesis)
\[
= \sum_i p_i \cdot (\varepsilon_i \upharpoonright \text{term})
\]
\[
= (\sum_i p_i \cdot \varepsilon_i) \upharpoonright \text{term} = \varepsilon \upharpoonright \text{term}.
\]
From this, we finally conclude as Property (2)
\[
nf_{\omega}(\mu) = \sup_{n \in \mathbb{N}} \{\delta \upharpoonright \text{term} | \{1 : a\} \xrightarrow{\varepsilon_n} \delta\}
\]
\[
= \sup_{n \in \mathbb{N}} nf^{\omega+1}(\mu) = \sup_{n \in \mathbb{N}} nf^\omega(\mu).
\]
\(\Box\)

Lemma 4.5. For all \(\text{stm} \in \text{Statement and } f \in S^{\text{State}}, QET[\text{stm}]\{f\} = \text{ecost}_{\text{stm}} + \text{eval}_{\text{stm}}(f).\)

Proof. We show
\[
QET^\omega(f)(\mu) = \text{ecost}_{\omega}(\mu) + \mathbb{E}_{nf^\omega}(\mu)(f),
\]
for any \(\mu \in \text{Conf} \cup \text{State}, \) since then we have
\[
\begin{align*}
\text{QET}[\text{stm}]\{f\}(\sigma) &= \sup_{n \in \mathbb{N}} QET^\omega(f)(\text{stm} \upharpoonright \sigma) \\
&= \sup_{n \in \mathbb{N}} (\text{ecost}_{\omega}(\text{stm} \upharpoonright \sigma) + \mathbb{E}_{nf^\omega}(\text{stm} \upharpoonright \sigma)(f)) \\
&= \sup_{n \in \mathbb{N}} \text{ecost}_{\omega}(\text{stm} \upharpoonright \sigma) + \sup_{n \in \mathbb{N}} \mathbb{E}_{nf^\omega}(\text{stm} \upharpoonright \sigma)(f) \\
&= \text{ecost}_{\omega}(\text{stm} \upharpoonright \sigma) + \mathbb{E}_{nf^\omega}(\text{stm} \upharpoonright \sigma)(f) \\
&= \text{ecost}_{\text{stm}}(\sigma) + \mathbb{E}_{nf^\omega}(\text{stm} \upharpoonright \sigma)(f).
\end{align*}
\]
Let us now prove the above inequality on approximants. The proof is by induction on \(n\). Let \(\mu \in \text{Conf} \cup \text{State}.
\)
- **Case** \(n = 0\). Trivially,
\[
\text{QET}^0(f)(\mu) = 0 + 0 = 0 + 0 = \text{ecost}_0(\mu) + \mathbb{E}_0(f) = \text{ecost}_0(\mu) + \mathbb{E}_{nf^0}(\mu)(f)\]
- **Case** \(n + 1\). Consider the step case. If \(\mu \in \text{State}, \) then
\[
\text{QET}^{n+1}(f)(\mu) = 0 + f(\mu) = \text{ecost}^{n+1}(\mu) + \mathbb{E}(1; \mu)(f) = \text{ecost}^{n+1}(\mu) + \mathbb{E}_{nf^{n+1}}(\mu)(f).
\]
Otherwise, if \(\mu \in \text{Conf} \) then \(\mu \xrightarrow{c} \{p_i : v_i\}_{i \in I}\) and we have
\[
\text{QET}^{n+1}(f)(\mu) = c + \sum_{i \in I} p_i \cdot \text{QET}^n(f)(v_i)
\]
(induction hypothesis)
\[
= c + \sum_{i \in I} p_i \cdot (\text{cost}^\omega(v_i) + \mathbb{E}_{nf^\omega}(v_i)(f))
\]
(Definition 2.8(3))
\[
= c + \sum_{i \in I} p_i \cdot \text{ecost}^\omega(v_i) + \sum_{i \in I} p_i \cdot \mathbb{E}_{nf^\omega}(v_i)(f)
\]
(Definition 2.8(2))
\[
= \left(c + \sum_{i \in I} p_i \cdot \text{ecost}^\omega(v_i) \right) + \sum_{i \in I} p_i \cdot \mathbb{E}_{nf^\omega}(v_i)(f)
\]
(Lemma A.3)
\[
= \left(c + \sum_{i \in I} p_i \cdot \text{ecost}^\omega(v_i) \right) + \mathbb{E}_{\sum_{i \in I} p_i \cdot nf^\omega(v_i)}(f)
\]
(by definitions)
\[
= \text{ecost}^{n+1}(\mu) + \mathbb{E}_{nf^{n+1}}(\mu)(f).
\]
\(\Box\)

C Proof of Lemma 4.6

Lemma 4.6. The following identities hold.

1. \(\text{QET}[\text{stm}_1; \text{stm}_2]\{f\} = \text{QET}[\text{stm}_1]\{\text{QET}[\text{stm}_2]\{f\}\}; \) and
2. \(\text{QET}[\text{while}(b)\{f\}] = \text{lfp}(\lambda F.\text{QET}[\text{stm}](F) + [b] F).\)

Proof. We start with the proof of the first identity. For \(\mu \in \text{Conf} \cup \text{State} \) and \(\text{stm} \in \text{Statement}, \) let us define \(\mu \upharpoonright \text{stm} \in \text{Conf} \) by case analysis on \(\mu \) as follows:
\[
\mu \upharpoonright \text{stm} = \begin{cases}
\mu & \text{if } \mu \in \text{Conf} \\
\mu \upharpoonright \text{stm} & \text{if } \mu \in \text{State}
\end{cases}
\]
By this notation, Rule (Seq) from Figure 3 instantiated to \(\text{stm}_1; \text{stm}_2, \) can be written as
\[
\begin{align*}
\text{stm}_1, s, |\psi\rangle &\xrightarrow{\psi} \{p_i : \mu_i\}_{i \in I} \\
\text{stm}_1; \text{stm}_2, s, |\psi\rangle &\xrightarrow{\psi} \{p_i : \mu_i \upharpoonright \text{stm}_2\}_{i \in I}
\end{align*}
\]
(Seq)
Let \(lhs\) and \(rhs\) be the left- and right-hand side of the Identity (1). We show \(lhs \leq rhs\) and \(rhs \leq lhs\) separately.

- **Case** \(lhs \leq rhs.\) We prove
\[
\text{QET}^\omega(f)(\text{stm}_1; \text{stm}_2, \sigma) \leq \text{QET}^\omega(\lambda \text{stm}_1.\text{QET}^\omega(f)(\text{stm}_2, \sigma))(\text{stm}_1, \sigma).
\]
for all \(n \in \mathbb{N}\) and \(\sigma \in \text{State}. \) From this, the case follows as \(\text{QET}[\text{stm}]\{h\} = \sup_n QET^\omega(h)(\text{stm}, \sigma),\) using continuity and monotonicity of the transformer (Lemma B.1). The proof is by induction on \(n. \) The case \(n = 0\) is trivial, as then \(lhs = 0 = rhs\.)
Concerning the inductive step, fix $\sigma \in \text{State}$. Note $QET^n(f)(\mu ;; \text{stm}) \leq QET^n(\lambda r.QET^n(f)(\text{stm}, r))(\mu)$, (15) holds for any $\mu \in \text{Conf} \cup \text{State}$ and $\text{stm} \in \text{Statement}$. This follows by case analysis on μ, using induction hypothesis in the case $\mu \in \text{Conf}$. Now suppose

$$(\text{stm}_1; \text{stm}_2, s, |\varphi\rangle) \xrightarrow{c} \{p_i : \mu_i ;; \text{stm}_2\}_{i \in I},$$

since

$$(\text{stm}_1, s, |\varphi\rangle) \xrightarrow{c} \{p_i : \mu_i\}_{i \in I}.$$ We can thus conclude as

$$QET^{n+1}(f)(\text{stm}_1; \text{stm}_2, \sigma)$$

(unfolding definition)

$$= c + \sum_i p_i \cdot QET^n(f)(\mu_i ;; \text{stm}_2)$$

(Eq. (15) & monotonicity of barycentric operations)

$$\leq c + \sum_i p_i \cdot QET^n(\lambda r.QET^n(f)(\text{stm}_2, r))(\mu_i)$$

(folding definition)

$$= QET^{n+1}(\lambda r.QET^n(f)(\text{stm}_2, r))(\text{stm}_1, \sigma)$$

(QET^n(f) is monotone in f and n)

$$= QET^{n+1}(\lambda r.QET^{n+1}(f)(\text{stm}_2, r))(\text{stm}_1, \sigma).$$

- **Case rhs \leq lhs.** It is sufficient to show

$$QET^n(\lambda r.QET\{f\}(\text{stm}_2, r))(\text{stm}_1, \sigma) \leq QET\{f\}(\text{stm}_1; \text{stm}_2, \sigma),$$

(16)

for all $n \in \mathbb{N}$. Suppose

$$(\text{stm}_1, s, |\varphi\rangle) \xrightarrow{c} \{p_i : \mu_i\}_{i \in I},$$

and thus

$$(\text{stm}_1; \text{stm}_2, s, |\varphi\rangle) \xrightarrow{c} \{p_i : \mu_i ;; \text{stm}_2\}_{i \in I}.$$ The proof is by induction on n, as before, it is sufficient to consider the inductive step. Using induction hypothesis, we obtain

$$QET^n(\lambda r.QET\{f\}(\text{stm}, r))(\mu) \leq QET\{f\}(\mu ;; \text{stm}),$$

(17)

for any $\mu \in \text{Conf} \cup \text{State}$ and $\text{stm} \in \text{Statement}$. We conclude then (16) as

$$QET^{n+1}(\lambda r.QET\{f\}(\text{stm}_2, r))(\text{stm}_1, \sigma)$$

(unfolding definition)

$$= c + \sum_i p_i \cdot QET^n(\lambda r.QET\{f\}(\text{stm}_2, r))(\mu_i)$$

(Eq. (17) & monotonicity of barycentric operations)

$$= c + \sum_i p_i \cdot QET\{f\}(\mu_i ;; \text{stm}_2)$$

(folding definition)

$$= QET\{f\}(\text{stm}_1; \text{stm}_2, \sigma).$$

This concludes the proof of the first identity.

We now come to the second identity. Let

$$\chi_{fb}(F) \triangleq \text{QET}\{\text{stm}\}|\{F\} + \text{[b]} \ f$$

Again, we perform case analysis.

- **Case lhs \leq rhs.** We prove the stronger statement

$$QET^n(f)(\text{while}(b)\{\text{stm}\}, \sigma) \leq \chi_{fb}(\bot)(\sigma),$$

for all $n \in \mathbb{N}$ and $\sigma \in \text{State}$. It is sufficient to consider the inductive step. Fix $\sigma = (s, |\varphi\rangle) \in \text{State}$. Then

$$QET^{n+1}(f)(\text{while}(b)\{\text{stm}\}, \sigma)$$

$$= \left\{ \begin{array}{ll}
QET^n(f)(\text{stm}; \text{while}(b)\{\text{stm}\}, \sigma) & \text{if } [b]^* \\
(\sigma) & \text{if } [-b]^*;
\end{array} \right.$$

$$\leq QET^n(\lambda r.QET^n(f)(\text{while}(b)\{\text{stm}\}, \sigma) + [b]^* \ f(\sigma)$$

(Equation (14))

$$\leq QET^n(\lambda r.QET^n(f)(\text{while}(b)\{\text{stm}\}, \sigma) + [b]^* \ f(\sigma)$$

(induction hypothesis, monotonicity of QET^n(\{\}))

$$\leq QET^n(\chi_{fb}(\bot))(\sigma) + [b]^* \ f(\sigma)$$

$$\leq \chi_{fb}^{n+1}(\bot)(\sigma).$$

- **Case rhs \leq lhs.** We prove the stronger statement

$$\chi_{fb}^n(\bot)(\sigma) \leq QET\{f\}(\text{while}(b)\{\text{stm}\}, \sigma),$$

for all $n \in \mathbb{N}$ and $\sigma \in \text{State}$. The proof is by induction on n, where it is sufficient to consider the inductive step. Let $\sigma = (s, |\varphi\rangle) \in \text{State}$. Then

$$\chi_{fb}^{n+1}(\bot)(\sigma)$$

$$= (QET\{\chi_{fb}^n(\bot)(\text{stm}, \sigma) + [b]^* \ f(\sigma)\})$$

(induction hypothesis, monotonicity of QET(\{-\}))

$$\leq QET(\lambda r.QET\{f\}(\text{while}(b)\{\text{stm}\}, \sigma) + [b]^* \ f(\sigma)$$

(equation (16), monotonicity of QET(\{-\}))

$$\leq QET\{f\}(\text{stm}; \text{while}(b)\{\text{stm}\}, \sigma) + [b]^* \ f(\sigma)$$

(reasoning as in the previous case)

$$= QET\{f\}(\text{while}(b)\{\text{stm}\}, \sigma).$$

\[\square\]

D Proofs of Theorem 4.3

Lemma D.1. For every ω-chain $(f_n)_{n \in \mathbb{N}}$,

$$\text{qet}\{\text{stm}\} \{\sup_{n \in \mathbb{N}} f_n\} = \sup_{n \in \mathbb{N}} \text{qet}\{\text{stm}\} \{f_n\}.$$ Proofs. The proof is by induction on the command stm.

- **Case **skip. Trivially,

$$\text{qet}\{\text{skip}\} \{\sup_{n \in \mathbb{N}} f_n\} = \sup_{n \in \mathbb{N}} f_n = \sup_{n \in \mathbb{N}} \text{qet}\{\text{skip}\} \{f_n\}.$$
Case $x = e$. Then

\[
\text{get}[x = e]\{\sup_{n \in N} f_n\} = \lambda(s, \varphi).\left(\sup_{n \in N} f_n\right)(s[x := [e]^s], \varphi)
\]

Case $x = \text{meas}(\varphi)$. Then, similar as above, then

\[
\text{get}[x = \text{meas}(\varphi)]\{\sup_{n \in N} f_n\} = \lambda(s, \varphi).\left(\sup_{n \in N} f_n\right)(s[x := 0], M_0^s | \varphi)
\]

- Case $x = \text{consume}(a)$. Then

\[
\text{get}[\text{consume}(a)]\{\sup_{n \in N} f_n\} = \lambda(s, \varphi).\max([a]^s, 0) + \sup_{n \in N} f_n
\]

Case $\text{stm}_1; \text{stm}_2$.

\[
\text{get}[\text{stm}_1; \text{stm}_2]\{\sup_{n \in N} f_n\} = \text{get}[\text{stm}_1]\{\sup_{n \in N} f_n\} + \text{get}[\text{stm}_2]\{\sup_{n \in N} f_n\}
\]

- Case $\text{stm}_1; \text{stm}_2$.

Concerning (\ast) we use that \text{lp} itself is continuous (Proposition A.1) on continuous functionals, the latter being a consequence of the induction hypothesis.

\[\square\]

Lemma D.2 (Monotonicity Law).

\[f \leq g \implies \text{get}[\text{stm}\{f\}] \leq \text{get}[\text{stm}\{g\}].\]

Proof. This is an immediate consequence of Lemma D.1. \[\square\]

Lemma D.3 (Distributivity Law). For all $p \in [0, 1],$

\[\text{get}[\text{stm}\{f + p \cdot g\}] = \text{get}[\text{stm}\{f\} + p \cdot \text{get}[\text{stm}\{g\}].\]

17
Proof. We reason semantically. Let \(p \in [0, 1] \) be a constant. Fix \(\sigma \in \text{State} \). We have

\[
\text{get}[[\text{stm}]]\{f + p \cdot g\}(\sigma) \\
(\text{Theorem 4.7 and Lemma 4.5}) \\
= \text{ecost}_{\text{stm}}(s,|\varphi\rangle) + \text{eval}_{\text{stm}}(f + p \cdot g)(\sigma) \\
(\text{Lemma A.2, unfolding evaluate}_{\text{stm}}) \\
= (p \cdot \text{ecost}_{\text{stm}}(\sigma) + (1 - p) \cdot \text{ecost}_{\text{stm}}(\sigma)) \\
+ (\text{eval}_{\text{stm}}(f)(\sigma) + p \cdot \text{eval}_{\text{stm}}(g)(\sigma)) \\
(\text{Definition 2.8}(3)) \\
= (\text{ecost}_{\text{stm}}(\sigma) + (\text{eval}_{\text{stm}}(f)(\sigma)) \\
+ p \cdot (\text{ecost}_{\text{stm}}(\sigma) + \text{eval}_{\text{stm}}(g)(\sigma)) \\
(\text{Theorem 4.7 and Lemma 4.5}) \\
= \text{qet}[\text{stm}][f](\sigma) + p \cdot \text{qet}[\text{stm}][g](\sigma).
\]

\(\Box \)

Lemma D.4 (Upper Invariants). If \([\lnot b] \cdot f \leq g \land [b] \cdot \text{get}[\text{stm}][g] \leq g \) then

\[\text{get}[\text{while}(b)(\text{stm})][f] \leq g. \]

Proof. Let \(\chi_f = \lambda F. \text{get}[\text{stm}][F] + [b] \cdot f \), hence

\[\text{qet}[\text{while}(b)(\text{stm})][f] = \text{lfp}(\chi_f). \]

The hypothesis yields \(\chi_f(g) \leq g \). As the least-fixed point of any functional is bounded by any such prefix-point, in particular \(g \), the lemma follows. \(\Box \)

E Cost transformer laws

In Figure 7, we exhibit cost transformer laws that make reasoning about quantum cost expectations easier.

The (separation) law allows one to reason independently about the cost, \(\text{qet}[\text{stm}][\{q\}] \), and expectation of \(f, \text{qev}_{\text{R意志}}[\text{stm}][\{f\}] \). It enables a form of modular reasoning, e.g., when reasoning about the expected cost

\[\text{qet}[\text{stm}_1;\text{stm}_2][\{q\}] = \text{qet}[\text{stm}_1][\{\text{qet}[\text{stm}_2][\{q\}]\}]. \]

of sequentially executed commands, the law states that it is sufficient bind the cost of \(\text{stm}_1 \) and \(\text{stm}_2 \) separately, and then investigate how \(\text{stm}_1 \) changes the latter in expectation. This can then be also combined with upper-invariants to reason about the cost of loops inductively (see [3]). The (linearity) Law is derived from "linearity of expectations". Concerning the cost transformer, it is in general an inequality because the cost is accounted twice in the right-hand side.

The (constancy) Law is inspired by the simple but useful, equally named rule in Hoare logic (for classical programs), stating that additional assumptions \(P \) on initial states can be pushed to final states, as long as \(P \) is independent on the memory modified by the program fragment \(\text{stm} \) under consideration, in notation \(P \perp \text{stm} \). In the case of weakest precondition calculi, this reads as \(\wp[\text{stm}][P \land Q] = P \land \wp[\text{stm}][Q] \), provided \(P \perp \text{stm} \). Moving from predicates \(P \) to cost functions \(f \), where conjunction is naturally interpreted as multiplication, gives then rise to our law of constancy. The notation \(f \perp \text{stm} \) means that the value of \(f \) remains unchanged during evaluation of \(\text{stm} \). Syntactically, this property can be ensured by requiring that the expectation \(f \) is constant in the variables in \(\mathcal{B}(\text{stm}) \cup \mathcal{Y}(\text{stm}) \) assigned by \(\text{stm} \), and in the qubits in \(Q(\text{stm}) \) measured within \(\text{stm} \). E.g., for \(f = \lambda(s, \ldots), f \perp y = x + 3 \) but \(f \perp x = x + 3 \). More precisely, \(f \perp \text{stm} \) holds if for all \((s,|\varphi\rangle) \in \text{State} \), (i) \(f(s[x := a],|\varphi\rangle) = f \) for all \(x \in \text{Var} \) and \(a \in [\mathbb{K}] \), and (ii) \(f(s[x := 0],t_0^x|\varphi\rangle) = f = f(s[x := 1],t_0^x|\varphi\rangle) \) for all \(q \in \text{Qubit} \). Note that \(f \perp \text{stm} \) holds in particular when \(f \) is constant.

(constant propagation) Law falls in the same line of reasoning, and generalises an equally named law from [13]. Here, the factor \(\text{qev}_{\text{R意志}}[\text{stm}][\{1\}] \) to \(f \) gives the termination probability of \(\text{stm} \) — Hence, \(\text{qet}[\text{stm}][\{f + g\}] = f + \text{qet}[\text{stm}][g] \) holds for \(f \perp \text{stm} \), when \(\text{stm} \) is almost-surely terminating.

We can show a result similar to Theorem 4.3.

Theorem E.1. All cost transformer laws listed in Figure 5 hold.

We prove this result in the remainder of this appendix.

Lemma E.2 (Separation).

\[\text{qet}[\text{stm}][\{f\}] = \text{qet}[\text{stm}][\{0\}] + \text{qev}_{\text{R意志}}[\text{stm}][\{f\}] \]

Proof. By Theorem 4.7 and Lemma 4.5,

\[\text{qet}[\text{stm}][\{f\}] = \text{ecost}_{\text{stm}} + \text{eval}_{\text{stm}}(f), \]

the lemma then follows from Corollary 4.8. \(\Box \)

Lemma E.3 (Linearity).

\[\{f\} \cdot \text{qet}[\text{stm}][\{f + g\}] = \text{qet}[\text{stm}][\{f\}] + \text{qev}_{\text{R意志}}[\text{stm}][\{g\}] \leq \text{qet}[\text{stm}][\{f\}] + \text{qet}[\text{stm}][\{g\}] . \]

Proof. An immediate consequence of Theorem 4.7 and Lemma 4.5 is that \(\text{qev}_{\text{R意志}}[\text{stm}][\{g\}] \leq \text{qev}_{\text{R意志}}[\text{stm}][\{f\}] \). It is thus sufficient to verify only the equality. We again proceed semantically:

\[\text{qet}[\text{stm}][\{f + g\}](\sigma) \\
(\text{Theorem 4.7 and Lemma 4.5}) \\
= \text{ecost}_{\text{stm}}(\sigma) + \text{eval}_{\text{stm}}(f + g)(\sigma) \\
(\text{linearity of expectations}) \\
= \text{ecost}_{\text{stm}}(\sigma) + \text{eval}_{\text{stm}}(f)(\sigma) + \text{eval}_{\text{stm}}(g)(\sigma) \\
(\text{Theorem 4.7 and Lemma 4.5}) \\
= \text{qet}[\text{stm}][\{f\}](\sigma) + \text{eval}_{\text{stm}}(g)(\sigma) \\
(\text{Corollary 4.8}) \\
= \text{qet}[\text{stm}][\{f\}](\sigma) + \text{qev}_{\text{R意志}}[\text{stm}][\{g\}] . \]

\(\Box \)

Lemma E.4 (Constancy). Suppose \(f \perp \text{stm} \). Then
Quantum Expectation Transformers for Cost Analysis

$q_{\text{ev}}_{\mathbb{R}^\infty}(\cdot) : \text{Program} \rightarrow (\mathbb{R}^\infty)^{\text{State}} \rightarrow (\mathbb{R}^\infty)^{\text{State}}$

$q_{\text{ect}}(\cdot) : \text{Program} \rightarrow (\mathbb{R}^\infty)^{\text{State}} \rightarrow (\mathbb{R}^\infty)^{\text{State}}$

separation

$q_{\text{ect}}[\text{stm}](f) = q_{\text{ect}}[\text{stm}](f) + q_{\text{ev}}_{\mathbb{R}^\infty}[\text{stm}](f)$

linearity

$q_{\text{ect}}[\text{stm}](f + g) = q_{\text{ect}}[\text{stm}](f) + q_{\text{ev}}_{\mathbb{R}^\infty}[\text{stm}](g) \leq q_{\text{ect}}[\text{stm}](f) + q_{\text{ect}}[\text{stm}](g)$

constancy

$f \perp \text{stm} \implies q_{\text{ect}}[\text{stm}](f \cdot g) = q_{\text{ect}}[\text{stm}](0) + f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[\text{stm}](g) \leq \min(1, f) \cdot q_{\text{ect}}[\text{stm}](g)$

constant propagation

$f \perp \text{stm} \implies q_{\text{ect}}[\text{stm}](f + g) = q_{\text{ev}}_{\mathbb{R}^\infty}[\text{stm}](1) \cdot f + q_{\text{ect}}[\text{stm}](g) \leq f + q_{\text{ect}}[\text{stm}](g)$

Figure 7. Cost transformer laws.

1. $q_{\text{ev}}_{\mathbb{R}^\infty}[\text{stm}](f \cdot g) = f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[\text{stm}](f \cdot g)$;
2. $q_{\text{ect}}[\text{stm}](f \cdot g) = q_{\text{ect}}[\text{stm}](0) + f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[\text{stm}](g)$

Proof: Suppose $f \perp \text{stm}$. Note that (2) is a consequence of (1):

$q_{\text{ect}}[\text{stm}](f \cdot g) = q_{\text{ect}}[\text{stm}](0) + f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[\text{stm}](g)$

(Lemma E.2)

$= \min(1, f) \cdot q_{\text{ect}}[\text{stm}](g)$

(Lemma E.2)

It is thus sufficient to prove (1), which we do by induction on stm. For $f, g, h : (\mathbb{R}^\infty)^{\text{State}}$ and $p : [0, 1]^{\text{State}}$, we will employ the identity

$f \cdot g + p f \cdot h = p \cdot f \cdot g + (1 - p) \cdot f \cdot h$

$= f \cdot (p \cdot g + (1 - p) \cdot h)$

$= f \cdot (g + p \cdot h)$,

in several cases.

- **Case skip.** The case is trivial.
- **Case $x = e$.** As $f \perp (x = e)$ we have $f(x := e) = f$. Thus

 $q_{\text{ev}}_{\mathbb{R}^\infty}[x = e](f \cdot g) = (f \cdot g)[x := e]$

 $= f \cdot g[x := e]$

 $= f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[x = e](g)$.

- **Case $x = \text{meas}(a)$.** In this case we have $f(x := 0; N^a_0) = f = f(x := 1; N^a_1)$. We conclude then as

 $q_{\text{ev}}_{\mathbb{R}^\infty}[x = \text{meas}(a)](f \cdot g)$

 $= (f \cdot g)[x := 0; N^a_0] + p_s(f \cdot g)[x := 1; N^a_1]$

 $= f \cdot g[x := 0; N^a_0] + p_s \cdot f \cdot g[x := 1; N^a_1]$

 $= f \cdot (g[x := 0; N^a_0] + p_s \cdot g[x := 1; N^a_1])$

 $= f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[x = \text{meas}(a)](g)$.

- **Case consume(a).** Then

 $q_{\text{ev}}_{\mathbb{R}^\infty}[\text{consume}(a)](f \cdot g)$

 $= \max([a], 0) + f \cdot g$

 $= f \cdot g$

 $= f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[\text{consume}(a)](g)$.

- **Case $\text{stm}_1; \text{stm}_2$.** Note that also $f \perp \text{stm}_1$ and $f \perp \text{stm}_2$, by assumption. Thus we can conclude via induction hypothesis:

 $q_{\text{ev}}_{\mathbb{R}^\infty}[\text{stm}_1; \text{stm}_2](f \cdot g)$

 $= q_{\text{ev}}_{\mathbb{R}^\infty}[ext{stm}_1](q_{\text{ev}}_{\mathbb{R}^\infty}[ext{stm}_2](f \cdot g))$

 $= q_{\text{ev}}_{\mathbb{R}^\infty}[ext{stm}_1](f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[ext{stm}_2](g))$

 $= f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[ext{stm}_1](q_{\text{ev}}_{\mathbb{R}^\infty}[ext{stm}_2](g))$.

- **Case if(b){stm}_1 else {stm}_2.** Again, $f \perp \text{stm}_1$ and $f \perp \text{stm}_2$, by assumption, and hence via induction hypothesis:

 $q_{\text{ev}}_{\mathbb{R}^\infty}[ext{if}(b)\text{stm}_1 \text{ else } \text{stm}_2](f \cdot g)$

 $= q_{\text{ev}}_{\mathbb{R}^\infty}[ext{stm}_1](f \cdot g) + [b] q_{\text{ev}}_{\mathbb{R}^\infty}[ext{stm}_2](f \cdot g)$

 $= f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[ext{stm}_1](g) + [b] f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[ext{stm}_2](g)$

 $= f \cdot q_{\text{ev}}_{\mathbb{R}^\infty}[ext{if}(b)\text{stm}_1 \text{ else } \text{stm}_2](g)$.

- **Case while(b){stm}.** Let $\chi_h = \lambda F. \text{get}[\text{stm}](F) + [b] h$, hence for any h,

 $\text{get}[\text{while}(b)\text{stm}](h) = \text{lfp}(\chi_h) = \sup_n \chi^*_h(\bot)$.

It is thus sufficient to prove

$$\forall n \in \mathbb{N}, \chi^*_n(\bot) = f \cdot \chi^*_0(\bot).$$

The proof is by induction on n. In the base case $n = 0$, notice $\bot = 0$ and trivially $0 = f \cdot 0$. Hence consider the
inductive step. By assumption also $f \perp \text{stm}$ holds. Thus

\[
\chi^{n+1}_f(\bot) = \text{qet} \left[\text{stm} \right] \left(\chi^n_f(\bot) \right) + [b] f \cdot g
\]

\text{(side induction hypothesis)}

\[
= \text{qet} \left[\text{stm} \right] \left(f \cdot \chi^n_g(\bot) \right) + [b] f \cdot g
\]

\text{(induction hypothesis on \text{stm})}

\[
= f \cdot \text{qet} \left[\text{stm} \right] \left(\chi^n_g(\bot) \right) + [b] f \cdot g
\]

\[
= f \cdot (\text{qet} \left[\text{stm} \right] \left(\chi^n_g(\bot) \right)) + [b] g
\]

\[
= f \cdot \chi^{n+1}_g(\bot).
\]

Lemma E.5 (Constant Propagation). Suppose $f \perp \text{stm}$. Then

\[
\text{qect} \left[\text{stm} \right] \{ f + g \} = \text{qev}_{\text{stm}} \{ 1 \} \cdot f + \text{qect} \left[\text{stm} \right] \{ g \}
\]

\[
\leq f + \text{qect} \left[\text{stm} \right] \{ g \}.
\]

Proof. Note $\text{qev}_{\text{stm}} \{ 1 \} \leq 1$ for the termination probability $\text{qev}_{\text{stm}} \{ 1 \}$. It is thus sufficient to prove the equality:

\[
\text{qect} \left[\text{stm} \right] \{ f + g \}
\]

\text{(Lemma E.2)}

\[
= \text{qev}_{\text{stm}} \{ f \} + \text{qect} \left[\text{stm} \right] \{ g \}
\]

\text{(Lemma E.4)}

\[
= f \cdot \text{qev}_{\text{stm}} \{ 1 \} + \text{qect} \left[\text{stm} \right] \{ g \}.
\]