DEGENERATION OF HODGE STRUCTURES OVER PICARD MODULAR SURFACES

GIUSEPPE ANCONA

ABSTRACT. We study variations of Hodge structures over a Picard modular surface, and compute the weights and types of their degenerations through the cusps of the Baily-Borel compactification. The main tool is a theorem of Burgos and Wildeshaus.

CONTENTS

1. Introduction 1
2. Picard datum 3
3. Compactifications and boundary 5
4. Degeneration of Hodge structures 11
References 17

1. INTRODUCTION

The aim of the present work is to compute the weight of degeneration of a variation of Hodge structures through the cusps of a Picard modular surface. Such surfaces are PEL Shimura varieties; they are moduli spaces of abelian varieties of dimension 3 endowed with an action of an order of a quadratic imaginary field, and with some other additional structures.

Fix a Picard modular surface S, let S^* be its Baily-Borel compactification,

$$j : S \hookrightarrow S^*$$

the canonical open immersion and

$$i : \text{pt} \hookrightarrow S^*$$

the inclusion of one fixed point of the boundary. Consider the "canonical construction" functor

$$\mu_S : \text{Rep}_{G,\mathbb{Q}} \longrightarrow \text{VHS}(S)_{\mathbb{Q}},$$

from the \mathbb{Q}-representations of the group G of the Shimura datum underlying S to (admissible) variations of \mathbb{Q}-Hodge structures over S ([Pi90 1.18], see also [BW04 §2]).

The aim of the paper is to compute the weight of the \mathbb{Q}-Hodge structure

$$i^* R^k j_* \mu_S(F),$$

where
for all integers k and all G-representations F. As an example, consider the universal abelian scheme A over S (which is of relative dimension 3), and take the r-fold fiber product:

$$f: A^r \to S.$$

Then the relative cohomology $R^p f_* \mathbb{Q}_A^r$ is a variation of Hodge structures over S which belongs to the image of the functor μ_S (for all non-negative integers p and r).

Theorem 1.1. If $p > 6r$ then the sheaf $R^p f_* \mathbb{Q}_A^r$ vanishes. For $p \leq 6r$ the following holds:

1. the \mathbb{Q}-Hodge structure $i^* R^0 j_* R^p f_* \mathbb{Q}_A^r$ has weight $\{p - j\}_{r \leq j \leq c_r}$,
2. the \mathbb{Q}-Hodge structure $i^* R^1 j_* R^p f_* \mathbb{Q}_A^r$ has weight $\{p + 1 - j\}_{0 \leq j \leq M_p}$,
3. the \mathbb{Q}-Hodge structure $i^* R^2 j_* R^p f_* \mathbb{Q}_A^r$ has weight $\{p + 3 + j\}_{0 \leq j \leq M_p}$,
4. the \mathbb{Q}-Hodge structure $i^* R^3 j_* R^p f_* \mathbb{Q}_A^r$ has weight $\{p + 4 + j\}_{c_p \leq j \leq C_r}$,
5. the \mathbb{Q}-Hodge structure $i^* R^k j_* R^p f_* \mathbb{Q}_A^r$ vanishes for $k \geq 4$.

where $c_p = 1$ if $p = 1, 6p - 1$ and 0 otherwise, $C_p = \min\{p, 2r, 6r - p\}$ and $M_p = p$ if $p \leq r$, $M_p = r + \left\lfloor \frac{p - 1}{2} \right\rfloor$ if $r < p \leq 3r$, $M_p = r + \left\lfloor \frac{5r - 2}{2} \right\rfloor$ if $3r < p \leq 5r$, and $M_p = 6r - p$ if $p > 5r$.

To compute the weight of a general $i^* R^k j_* \mu_S(F)$, one can extend the scalars from \mathbb{Q} to \mathbb{C}. Then, as the functors $i^* R^k j_* \mu_S, C$ are linear, it is enough to consider irreducible representations of G_C.

In our case one has an isomorphism of \mathbb{C}-algebraic group

$$G_C \cong \text{GL}_3 \times \mathbb{G}_m,$$

so that (after having chosen a Borel and a maximal torus), the maximal weight of any irreducible representation corresponds to a list of four integers (a, b, c, d) such that $a \geq b \geq c$. The following is our main result (see Theorem 4.11 in the text).

Theorem 1.2. Let F_λ be the irreducible representation of G_C of maximal weight $\lambda = (a, b, c, d)$. Then the following holds:

1. $i^* R^0 j_* \mu_{S,C}(F_\lambda)$ is of weight $-2a - b - 2d$,
2. $i^* R^1 j_* \mu_{S,C}(F_\lambda)$ is of weight $-a - 2b - 2d + 1$ and $-2a - c - 2d + 1$,
3. $i^* R^2 j_* \mu_{S,C}(F_\lambda)$ is of weight $-a - 2c - 2d + 3$ and $-2b - c - 2d + 3$,
4. $i^* R^3 j_* \mu_{S,C}(F_\lambda)$ is of weight $-b - 2c - 2d + 4$,
5. $i^* R^k j_* \mu_{S,C}(F_\lambda)$ vanishes for $k \geq 4$.

These computations of weights of degenerations are part of Wildeshaus’ program [Wil09], whose aim is the construction of motives associated to modular forms (generalizing the case of classical modular forms, which is due to Scholl [Sch94]). However, we do not explore this connection here; for explanations and references see Remark 1.13.

The main tool for our work is a theorem of Burgos and Wildeshaus [BW04], which works for a general Shimura variety and reduces the computation of weights of degenerations to a computation of cohomology of groups. In our case the groups are enough concrete to allow us to do all the computations explicitly.
1.3. **Organization of the paper.** In Section 2 we recall generalities about Picard surfaces and their Shimura datum. The standard reference is [Gor92].

In Section 3 we describe the boundary of Baily-Borel and toroidal compactifications, as well as the Shimura datum underlying the strata of these compactifications.

Section 4 contains the main results concerning the degeneration of Hodge structures.

1.4. **Notations and convention.** We will write \(\mathbb{R} \) for the field of real numbers, \(\mathbb{C} \) for the field of complex numbers and \(\mathbb{A}_f \) for the ring of finite adeles.

The morphism of complex conjugation will be written
\[z \mapsto \overline{z}. \]

We will write
\[\mathcal{S} = \text{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m, \mathbb{C} \]
for the \(\mathbb{R} \)-algebraic group called Deligne’s torus. Here \(\text{Res}_{\mathbb{C}/\mathbb{R}} \) is the Weil restriction of scalars.

When \(L \supset K \) are fields and \(X \) is an object defined over \(K \) (for instance a variety or a group), we will write \(X_L \) for its base change to \(L \).

1.5. **Acknowledgments.** I would like to thank Marco Maculan, Siddarth Sankaran and Jörg Wildeshaus for helpful comments on a previous version of this paper. I am grateful for the hospitality of the Hausdorff Research Institute for Mathematics, Bonn.

2. **Picard datum**

In this section we recall the definition of a Picard datum \((G, X)\); the standard reference is [Gor92]. This is a Shimura datum of PEL type. We first construct the \(\mathbb{Q} \)-algebraic group \(G \), which after extending scalars becomes the direct product of a linear group by the multiplicative group (Remark 2.3).

2.1. **Notation.** Let \(E \) a quadratic imaginary field embedded in \(\mathbb{C} \), and \(n \) the only positive square-free integer such that
\[E = \mathbb{Q}(i\sqrt{n}). \]

Let \(V = V_E \) be an \(E \)-vector space of dimension 3, and \(J \) be a hermitian form of signature \((2,1)\). In particular, one can find three orthogonal vectors \(v_1, v_2, v_3 \in V \) such that \(J(v_1, v_1) \) and \(J(v_2, v_2) \) are positive and \(J(v_3, v_3) \) is negative.

Definition 2.2. In the context of Notation 2.1 we define
\[G = GU(V, J) \]
to be the \(\mathbb{Q} \)-algebraic group of the \(E \)-linear automorphisms of \(V \) which respect the hermitian form \(J \) up to scalar.

Remark 2.3. Let \(V_\mathbb{Q} \) be \(V \) viewed as a \(\mathbb{Q} \)-vector space. Then the algebra \(E \otimes E \) acts on the \(E \)-vector space \(V_\mathbb{Q} \otimes_{\mathbb{Q}} E \), and hence induces a decomposition
\[V_\mathbb{Q} \otimes_{\mathbb{Q}} E = V_i \oplus V_{-i}, \]
where
\[V_i = \{ w \in V \otimes Q E, \quad (a \otimes 1)w = (1 \otimes a)w \quad \forall a \in E \}, \]
and
\[V_i = \{ w \in V \otimes Q E, \quad (a \otimes 1)w = (1 \otimes \pi)w \quad \forall a \in E \}. \]
Write
\[\pi_i : V \otimes Q E \to V_i \]
for the projector whose kernel is \(V_{i-} \).
Let \(B = \{ v_1, v_2, v_3 \} \) be an \(E \)-basis of \(V \); then
\[B_i = \{ \pi_i(v_1), \pi_i(v_2), \pi_i(v_3) \} \]
is a basis of \(V_i \). One has an isomorphism
\[\phi_B : G_E \xrightarrow{\sim} GL_3, E \times \mathbb{G}_m, E \]
given by
\[g \mapsto (g(v_1), \chi_g), \]
where the restriction \(g|_{V_i} \) of \(g \) to \(V_i \) is written in the basis \(B_i \) and \(\chi_g \) is the scalar such that \(J(g \cdot g) = \chi_g J(\cdot, \cdot) \).

2.4. Convention. Let \(B = \{ v_1, v_2, v_3 \} \) be an \(E \)-basis of \(V \). Then
\[\tilde{B} = \{ v_1, i\sqrt{n}v_1, v_2, i\sqrt{n}v_2, v_3, i\sqrt{n}v_3 \} \]
is a \(\mathbb{Q} \)-basis of \(V \). For any \(\mathbb{Q} \)-algebra \(R \), and any \(R \)-point \(g \in G(R) \), we have will write
\[g = \begin{pmatrix} (a_{11}, b_{11}) & (a_{12}, b_{12}) & (a_{13}, b_{13}) \\ (a_{21}, b_{21}) & (a_{22}, b_{22}) & (a_{23}, b_{23}) \\ (a_{31}, b_{31}) & (a_{32}, b_{32}) & (a_{33}, b_{33}) \end{pmatrix}, \]
where \(a_{jk} \in R \) is the coordinate of \(g(v_k) \) with respect to \(v_j \) and \(b_{jk} \in R \) is the coordinate of \(g(v_k) \) with respect to \(i\sqrt{n}v_j \). Note that, by definition of \(G \), we have
\[g(i\sqrt{n}v_k) = i\sqrt{n}g(v_k), \]
in particular the \(a_{jk} \in R \) and \(b_{jk} \in R \) determine \(g \).

Definition 2.5. Let \(B = \{ v_1, v_2, v_3 \} \) be an \(E \)-basis of \(V \) such that \(J(v_1, v_1) \) and \(J(v_2, v_2) \) are positive and \(J(v_3, v_3) \) is negative (see Notation 2.1). Consider the morphism of algebraic groups
\[h_{v_1, v_2, v_3} : S \to G_R \]
given by
\[(z_1, z_2) \mapsto \begin{pmatrix} \frac{z_1 + z_2}{2} & z_1 - z_2 \& \frac{z_1 - z_2}{2i\sqrt{n}} \\ 0 & 0 & \frac{z_1 + z_2}{2i\sqrt{n}} \\ 0 & 0 & \frac{z_1 - z_2}{2i\sqrt{n}} \end{pmatrix}, \]
where \(G \) is the group of Definition 2.2 and the morphism is written in the basis \(B \) using Convention 2.4.
We will write \(X \) for the topological space of the \(G(\mathbb{R}) \)-conjugacy class of the morphism \(h_{v_1, v_2, v_3} \).
Note that X does not depend on the choice of v_1, v_2, v_3 and that the morphism h_{v_1, v_2, v_3} only depends on the E-line passing through v_3. One can check that h_{v_1, v_2, v_3} is a morphism of algebraic groups using the following computation.

Lemma 2.6. The formal identity
\[
\begin{pmatrix}
\frac{a+b}{2i} & -\frac{a-b}{2i} \\
\frac{a-b}{2i} & \frac{a+b}{2i}
\end{pmatrix}
\begin{pmatrix}
\frac{c+d}{2i} & -\frac{c-d}{2i} \\
\frac{c-d}{2i} & \frac{c+d}{2i}
\end{pmatrix}
= \begin{pmatrix}
\frac{ac+bd}{2i} & -\frac{ac-bd}{2i} \\
\frac{ac-bd}{2i} & \frac{ac+bd}{2i}
\end{pmatrix}
\]
holds.

Definition 2.7. The pair (G, X) will be called a Picard datum. It is a pure Shimura datum in the sense of [Pin90, Definition 2.1].

When $K \subset G(\mathbb{A}_f)$ is a neat subgroup [Pin90, §0.5] we will write $S = Sh^K(G, X)$ for the induced Shimura variety. It is a complex¹ smooth and quasi-projective surface which we call a 'Picard modular surface'; see [Gor92] for details and proofs.

Remark 2.8. The Picard modular surface S is the fine moduli space of polarised abelian varieties of dimension 3 endowed with an action of an order of E and some additional structures (depending also on K). In particular, there is a universal abelian scheme $f: A \to S$; see [Gor92] for details and proofs.

3. Compactifications and boundary

The aim of this section is to describe the Shimura data underlying the strata of the boundary of the Baily-Borel and toroidal compactifications of a Picard modular surface S (Definition 2.7).

These strata are associated to parabolic subgroups of the group G introduced in Definition 2.2 (for generalities on strata of compactifications of Shimura varieties see [Pin90, Chapter 4]).

We start by describing these parabolics (3.1-3.3), then the Shimura datum associated to each stratum (3.4-3.10) and deduce the geometry of the boundary (3.12-3.14).

Lemma 3.1. Let (V, J) be as in Notation 2.1. Then there exist infinitely many isotropic vectors in V.

Moreover if \mathfrak{v} be any non-zero isotropic vector, then there exists a positive rational number b and an isomorphism
\[
(V, J) \xrightarrow{\sim} (E^3, J_b)
\]
sending \mathfrak{v} to the first vector of the canonical base of E^3, where J_b is the hermitian form
\[
J_b = \begin{pmatrix}
0 & 0 & 1 \\
0 & b & 0 \\
1 & 0 & 0
\end{pmatrix}.
\]

¹In fact, it has a (canonical) model over the quadratic imaginary field E [Gor92].
Proof. For the first part, let us diagonalize the hermitian form J. Then we have to look for rational solutions of an equation of the form
\[\sum_{i=1}^{6} c_i t_i^2 = 0 \]
with c_i integers, four positive and two negative. This indeed has a solution (and thus infinitely many) by [Ser77, corollaire 2, p. 77, chap. 4].

The rest is basic linear algebra. \hfill \Box

Definition 3.2. Let D be an isotropic E-line of V. An E-basis w_1, w_2, w_3 of V is called a parabolic basis adapted to D if w_1 generates D, and the matrix representing J in this basis is of the form J_b for some b (following notations of Lemma 3.1).

Proposition 3.3. Let D be an isotropic E-line of V (see Lemma 3.1), and define Q_D to be the subgroup of G stabilizing D. Then
\[Q_D = G \cap \left\{ \begin{pmatrix} (a_{11}, b_{11}) & (a_{12}, b_{12}) & (a_{13}, b_{13}) \\ (0, 0) & (a_{22}, b_{22}) & (a_{23}, b_{23}) \\ (0, 0) & (0, 0) & (a_{33}, b_{33}) \end{pmatrix} \right\}, \]
where the coordinates are written using Convention 2.4 and we are using a parabolic basis adapted to D (Definition 3.2).

The unipotent radical of Q_D is
\[R_u(Q_D) = \left\{ \begin{pmatrix} (1, 0) & (-ba_{23}, bb_{23}) & (-\frac{1}{2}(a_{23}^2 + nbb_{23}), b_{13}) \\ (0, 0) & (1, 0) & (a_{23}, b_{23}) \\ (0, 0) & (0, 0) & (1, 0) \end{pmatrix} \right\}, \]
with Lie algebra
\[\text{Lie } R_u(Q_D) = \left\{ \begin{pmatrix} (0, 0) & (-ba_{23}, bb_{23}) & (0, b_{13}) \\ (0, 0) & (0, 0) & (a_{23}, b_{23}) \\ (0, 0) & (0, 0) & (0, 0) \end{pmatrix} \right\}. \]

The torus
\[T_{m,D} = \left\{ \begin{pmatrix} \frac{\lambda_1 + \lambda_2}{2}, \frac{\lambda_1 - \lambda_2}{2 \sqrt{n}} \\ 0, 0 \\ 0, 0 \end{pmatrix}, \begin{pmatrix} \frac{\lambda_3 + \lambda_4}{2}, \frac{\lambda_3 - \lambda_4}{2 \sqrt{n}} \\ 0, 0 \\ 0, 0 \end{pmatrix}, \begin{pmatrix} \lambda_5, \lambda_6, \lambda_7 \\ 0, 0 \\ 0, 0 \end{pmatrix} \right\} \]
is a maximal torus of G defined over \mathbb{C}, and the torus
\[T_D = \left\{ \mu \cdot \begin{pmatrix} (\lambda, 0) & (0, 0) & (0, 0) \\ (0, 1) & (0, 0) & (0, 0) \\ (0, 0) & (0, 0) & (\lambda^{-1}, 0) \end{pmatrix} \right\} \]
is a maximal split torus defined over \mathbb{Q}. There is only one Borel B_D of G such that $Q_D \supseteq B_D \supseteq T_D$ (and it is Q_D itself).

Moreover Q_D is a admissible parabolic of G in the sense of [Pin90] Definition 4.5] and the admissible parabolics are exactly those subgroups of the form Q_D' for some isotropic E-line D' of V.
Proof. Let \(w_1, w_2, w_3 \) be a parabolic basis adapted to \(D \). The group \(Q_D \) stabilizes the line \(D \) and so it has to stabilize also \(D^\perp \) the plan orthogonal to \(D \). As \(D \) is generated by \(w_1 \) and \(D^\perp \) is generated by \(w_1 \) and \(w_2 \) we deduce the description of \(Q_D \) in the statement.

The unipotent radical of \(Q_D \) is

\[
R_uQ_D = G \cap \left\{ \begin{pmatrix} 1, 0 & (a_{12}, b_{12}) & (a_{13}, b_{13}) \\ 0, 0 & (1, 0) & (a_{23}, b_{23}) \\ (0, 0) & (0, 0) & (1, 0) \end{pmatrix} \right\}.
\]

By imposing the condition of being elements of the group \(G \), we find the equations in the statement.

A computation shows that the elements of \(T_{m,D} \) belong to \(G \) and hence to \(Q_D \). This torus is of dimension 4 and so, by Remark 2.3, it is maximal.

All maximal torus over \(\mathbb{C} \) are conjugated, in particular on the diagonal of any such torus \(T \) we will have the same coordinates appearing in \(T_{m,D} \). In particular, a subtorus of \(T \) that is defined and splits over \(\mathbb{Q} \) must verify \(\lambda_1 = \lambda_2 \) and \(\lambda_3 = \lambda_4 \), hence it is of dimension at most 2. As \(T_D \) has dimension 2, it is a maximal split torus defined over \(\mathbb{Q} \).

Note that by the description of \(Q_D, R_uQ_D \) and \(T_{m,D} \) we gave above, we have \(Q_D/R_uQ_D \cong T_{m,D} \). In particular \(Q_D \) has dimension 7 (and it is connected). By Remark 2.3 \(B_D \) must have dimension 7, hence \(B_D = Q_D \).

By Remark 2.3 the adjoint group of \(G \) is simple up to isogeny (namely it is a \(\mathbb{Q} \)-form of \(\text{SL}_3 \)), in particular the admissible parabolics of \(G \) are the maximal \(\mathbb{Q} \)-parabolics of \(G \). It is clear that a subgroup of the form \(Q_{D'} \) is a parabolic. Let us show now that any \(\mathbb{Q} \)-parabolic of \(G \) is contained in one subgroup of the form \(Q_{D'} \). Following notations from Remark 2.3 a parabolic \(P \) defined over \(E \) has to stabilize a line of \(V \); moreover it is of dimension at least 7. If \(P \) is moreover defined over \(\mathbb{Q} \), then it has to stabilize a line \(l \) of \(V \), and hence also the orthogonal plan \(l^\perp \). This line has to be isotropic, otherwise these two conditions force \(P \) to be of dimension at most 6.

\[\square \]

Lemma 3.4. Let \((Q_D, B_D, T_D) \) be as in Proposition 5.3. Consider the cocharacter

\[
\lambda_D : \mathbb{G}_{m, \mathbb{Q}} \rightarrow T_D
\]

that in a parabolic basis adapted to \(D \) (Definition 3.2) is given by

\[
t \mapsto \begin{pmatrix} (t, 0) & (0, 0) & (0, 0) \\ (0, 0) & (1, 0) & (0, 0) \\ (0, 0) & (0, 0) & (t^{-1}, 0) \end{pmatrix}
\]

(we write coordinates using Convention 2.4). Then \(\lambda_D \) is the cocharacter associated to the data \((Q_D, B_D, T_D) \) in the general formalism of [Pin90, §4.1].

Proof. Any cocharacter \(\lambda : \mathbb{G}_{m, \mathbb{Q}} \rightarrow T_D \) is of the form

\[
t \mapsto \begin{pmatrix} t^a & (0, 0) & (0, 0) \\ (0, 0) & (1, 0) & (0, 0) \\ (0, 0) & (0, 0) & (t^{-a}, 0) \end{pmatrix}
\]

By [Pin90, §4.1], the image of \(\lambda_D \) has to be contained in the derived group of \(G \), so \(b = 0 \).
Consider the action of $G_{m,R}$ over Lie G induced by λ_D. By [Pin90, §4.1], the sub-Lie algebra $\text{Lie} Q_D \subset \text{Lie} G$ coincide with the sum of the eigenspaces associated to eigenvalues of non-negative weights, hence $a \geq 0$. Note that in the decomposition $\text{Lie} Q_D = (\text{Lie} G)_0 + (\text{Lie} G)_a + (\text{Lie} G)_{2a}$ each of the three eigenspaces is non-trivial. Also note that we have $\text{Lie} R_a(Q_D) = (\text{Lie} G)_a + (\text{Lie} G)_{2a}$.

On the other hand, as G is reductive, $R_a(Q_D)$ is the unipotent radical of a group belonging to a Shimura datum (it will be the group P_D of Lemma 3.3) and the decomposition $\text{Lie} R_a(Q_D) = (\text{Lie} G)_a + (\text{Lie} G)_{2a}$ is the one induced by the Shimura datum (see [Pin90, §4.8, 4.9, 4.10]). In particular, as the weights allowed in a mixed Shimura datum are 0, −1 et −2 (see [Pin90, Definition 2.1]), we must have $a = 1$.

\section*{3.5. Notation.}
Following [Pin90, §4.2, 4.3], we write the following morphisms of algebraic groups

$$h_0 : S_C \to S_C \times GL_{2,C},$$

$$(z_1, z_2) \mapsto \left(\frac{z_1 + z_2}{z_1 - z_2}, \frac{z_2 - z_1}{z_1 - z_2}\right),$$

and

$$h_\infty : S_C \to S_C \times GL_{2,C},$$

$$(z_1, z_2) \mapsto \left(1, i(z_1 z_2 - 1)\right).$$

We will consider also the "weight morphism"

$$p : G_{m,R} \to S$$

given by

$$z \mapsto (z, z).$$

\begin{lemma}
Let D be an isotropic E-line of V, and $B = \{w_1, w_2, w_3\}$ a parabolic basis adapted to D (see Definition 3.2). Consider the map

$$\omega_{w_1,w_2,w_3} : S_C \times GL_{2,C} \to G_C$$

given (in the basis B and using Convention 2.4) by

$$\left(\begin{array}{c} z_1, z_2 \end{array} \right), \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mapsto \left(\begin{array}{ccc} (d, 0) & (0, 0) & (0, \frac{-b}{\sqrt{\gamma}}) \\ (0, 0) & (\frac{z_1 + z_2}{2}, \frac{z_2 - z_1}{2\sqrt{\gamma}}) & (0, 0) \\ (0, \frac{-b}{\sqrt{\gamma}}) & (0, 0) & (a, 0) \end{array} \right).$$

Then ω_{w_1,w_2,w_3} is the only map verifying the following properties:

- it is a morphism of algebraic groups defined over R;
- the equality $\omega_{w_1,w_2,w_3} \circ h_0 = h_{w_2,w_1+w_3,w_1-w_3}$ holds;
- the cocharacters $\lambda_D : (h_{w_2,w_1+w_3,w_1-w_3} \circ p)$ and $\omega_{w_1,w_2,w_3} \circ h_\infty \circ p$ are conjugated on to each other by an element of $Q_D(C)$.

Here the morphism h_{w_2,w_1+w_3,w_1-w_3} is defined in Definition 2.5, the group Q_D is defined in Proposition 3.3, the cocharacter λ_D is defined in Lemma 3.4, and the morphisms h_0, h_∞, p are defined in Notation 3.5.

Proof. Existence and uniqueness of such a morphism come from [Pin90, Proposition 4.6]. The properties are easy to check. Note that the cocharacters
\[t \mapsto \begin{pmatrix} (t^2, 0) & (0, 0) & (0, 0) \\ (0, 0) & (t, 0) & (0, 0) \\ (0, 0) & (0, 0) & (1, 0) \end{pmatrix} \text{ and } t \mapsto \begin{pmatrix} (t^2, 0) & (0, 0) & (0, \frac{i(1-t^2)}{\sqrt{n}}) \\ (0, 0) & (t, 0) & (0, 0) \\ (0, 0) & (0, 0) & (1, 0) \end{pmatrix}. \]
are conjugated one to the other by
\[\begin{pmatrix} (1, 0) & (0, 0) & (0, -\frac{i}{\sqrt{n}}) \\ (0, 0) & (1, 0) & (0, 0) \\ (0, 0) & (0, 0) & (1, 0) \end{pmatrix}. \]
which belongs to \(Q_D(\mathbb{C}) \).

Definition 3.7. Let us keep the notation from Lemma 3.6, we will write \(h_{B, \infty} : \mathcal{S}_C \rightarrow Q_{D, C} \) for the morphism \(\omega_{w_1, w_2, w_3} \circ h_{\infty} \); explicitly
\[(z_1, z_2) \mapsto \begin{pmatrix} (z_1 z_2, 0) & (0, 0) & \frac{i(1-z_1 z_2)}{\sqrt{n}} \\ \frac{z_1 + z_2}{2} & \frac{z_1 - z_2}{2i \sqrt{n}} & (0, 0) \\ (1, 0) \end{pmatrix}. \]

Lemma 3.8. The smallest normal \(\mathbb{Q} \)-subgroup of the group \(Q_D \) (Proposition 3.3) containing the image of the morphism \(h_{B, \infty} \) (Definition 3.7) is
\[P_D = G \cap \left\{ \begin{pmatrix} (z_1 z_2, 0) & (0, 0) & \frac{i(1-z_1 z_2)}{\sqrt{n}} \\ \frac{z_1 + z_2}{2} & \frac{z_1 - z_2}{2i \sqrt{n}} & (0, 0) \\ (1, 0) \end{pmatrix} \right\} = G \cap \left\{ \begin{pmatrix} (a^2 + b^2, 0) & (a, \frac{b}{\sqrt{n}}) & (1, 0) \end{pmatrix} \right\}. \]
Moreover, \(P_D(\mathbb{R}) \) is path connected and \(W_D \), the unipotent radical of \(P_D \), coincides with \(R_u Q_D \), the unipotent radical of \(Q_D \).

Proof. First of all, note that the equality \(W_D = R_u Q_D \) holds a priori by [Pin90 proof of Lemma 4.8]. Now, the image of the morphism \(h_{B, \infty} \) is the group
\[\text{Im} = \left\{ \begin{pmatrix} (a^2 + b^2, 0) & (0, 0) & \frac{i(1-a^2-b^2)}{\sqrt{n}} \\ (a, \frac{b}{\sqrt{n}}) & (0, 0) & (1, 0) \end{pmatrix} \right\}. \]
Note that \(P_D \) described in the statement is a normal subgroup \(Q_D \) and it contains \(\text{Im} \). On the other hand, the group \(P_D \) has to contain \(W_D \). We deduce that \(P_D \) cannot be smaller.

Let us now show that the group \(P_D(\mathbb{R}) \) is path connected. First note that, as subgroup of \(\text{GL}_3, \mathbb{C} \), it coincides to the set of elements of the form
\[\left\{ \begin{pmatrix} z_1^2 & w_1 & w_2 \\ z & w_3 \end{pmatrix} \right\}, \]
respecting the hermitian form J_b up to a scalar (see Definition 3.2). In particular it is generated by the two subgroups
\[
\begin{pmatrix}
|z|^2 & z \\
-1 & 1
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
1 & -bt + i bu \\
bt^2 + bu^2 & t + i u
\end{pmatrix}
\]
which are both path-connected.

Definition 3.9. Let $p : \mathbb{G}_m, R \to \mathbb{S}$ be as in Definition 3.5, $h_{B,\infty}$ as in Definition 3.7 and P_D as in Lemma 3.8. Following [Pin90, Lemma 4.8], we define the unipotent algebraic group U_D and the topological space X_D as follows. Define
\[U_D = \exp(W_{-2} \text{Lie } P_D), \]
where $W_{-2} \text{Lie } P_D$ is the subspace of $\text{Lie } P_D$ where, for $t \in \mathbb{G}_m$, the action of $h_{B,\infty} \circ p(t)$ is given by the multiplication by t^2. Define X_D as the orbit of $h_{B,\infty}$ under the action by conjugation of $P_D(\mathbb{R}) U_D(\mathbb{C})$.

Proposition 3.10. The topological space X_D (see Definition 3.9) is connected and the pair (P_D, X_D) is a (mixed) Shimura datum (see [Pin90, Definition 2.1]). Moreover (P_D, X_D) is a proper rational boundary component of (G, X), and any proper rational boundary component of (G, X) is of the form $(P_{D'}, X_{D'})$ for some isotropic E-line D' of V (see [Pin90, §4.11] for generalities on proper rational boundary components).

Proof. The space X_D is connected as $P_D(\mathbb{R})$ is (Lemma 3.8). The general theory [Pin90, §4.1-4.11] and our previous results in this section imply that (P_D, X_D) is a proper rational boundary component of (G, X). As any admissible parabolic is of the form $Q_{D'}$ (Proposition 3.3) then any proper rational boundary component of (G, X) is of the form $(P_{D'}, X_{D'})$.

Lemma 3.11. The unipotent groups W_D (Lemma 3.8) and U_D (Definition 3.10) are of dimension respectively 3 and 1.

Proof. By Lemma 3.8 W_D coincides with the unipotent group $R_u Q_D$. Using the description of $R_u Q_D$ in Proposition 3.3 we have that W_D has dimension 3.

Following the proof of Lemma 3.4 we have $\text{Lie } R_u (Q_D) = (\text{Lie } G)_a + (\text{Lie } G)_{2a}$ and $\text{Lie } U_D = (\text{Lie } G)_{2a}$. Then we can conclude combining this with the description of $\text{Lie } R_u Q_D$ in Proposition 3.3.

Proposition 3.12. Let (P_D, X_D) be the Shimura datum of Proposition 3.10. W_D the unipotent radical of P_D and U_D the unipotent group as in Definition 3.9. Consider the quotients of Shimura data (in the sense of [Pin90, Proposition 2.9])
\[(P_D, X_D)/W_D = (P_D/W_D, X_D')\]
and
\[(P_D, X_D)/U_D = (P_D/U_D, X_D^2).\]
Then, as complex analytic variety, X_D' is a point, X_D^2 is an affine space of dimension 1 and X_D is an affine space of dimension 2.
Proof. Consider the unipotent quotients $P_D \to P_D / U_D \to P_D / W_D$. As X_D is connected (Proposition 3.10), by [Pin90] Remark 2.9 the topological spaces X_D and X_D^2 are also connected. On the other hand P_D / W_D is commutative, so X_D^2 is a finite number of points, hence a point.

Then, by the general results on unipotent extensions [Pin90 §2.18, 2.19], X_D is a \mathbb{C}-vector space whose real dimension coincides with the one of (W_D / U_D). We conclude using the Lemma 3.11.

Again by [Pin90 §2.18, 2.19], X_D is a vector bundle over X_D^2 whose fiber have complex dimension coinciding with the one of U_D. By Lemma 3.11 this is a line bundle, and as X_D^2 is contractible, the line bundle is trivial. □

Corollary 3.13. Let S be a Picard modular surface as defined in Definition 2.7, ∂S be the boundary of the Baily-Borel compactification of S and ∂S^T be the boundary of the toroidal compactification of S. Then the Shimura data underlying the strata of ∂S are of the form $(P_D / W_D, X_D^1)$ and the Shimura data underlying the strata ∂S^T are of the form $(P_D / U_D, X_D^2)$. In particular, as complex varieties, ∂S is a finite number N of points and ∂S^T is a disjoint union of N smooth and proper curves of genus 1.

Remark 3.14. The number N in the previous proposition is computed in several cases in [Sto12]. Note also that the union of the N points (or the union of the N curves) is actually defined over the imaginary quadratic field E, but a priori each point is not.

The geometry of ∂S^T appears already in [Lar92] and [Bel02 Chapter 1].

Proof. The general theory ([Pin90 Chapter 6] and [Wil00 Lemma 1.7]), Proposition 3.10 and Proposition 3.12 imply the Baily-Borel case, as well as the fact that the Shimura data underlying the strata of ∂S^T are of the form $(P_D, X_D) / U_D^\sigma$, with U_D^σ a subgroup of the unipotent group U_D (Definition 3.9).

If U_D^σ were trivial, then the boundary would be of dimension 2 by Proposition 3.12 which is impossible as S is a surface. On the other hand U_D has dimension 1 by Lemma 3.11 hence $U_D^\sigma = U_D$. □

4. Degeneration of Hodge structures

This section contains the main result, Theorem 4.11. We study how variations of Hodge structures over a Picard modular surface degenerate through the cusps of its Baily-Borel compactification. More precisely, we describe the types of the Hodge structures $R^{k+i} j_* \mu_S(F)$ for all G-representations F (see Notation 4.1). Remark 4.2 shows that these structures have a geometric interest.

We start by reducing the problem to a combinatorial question (4.3-4.9). The main ingredient is a theorem of Burgos and Wildeshaus, which in this case has a simplified version via Lemma 4.3. We then deal with this combinatorial question (4.7-4.9) and finally describe the Hodge structures we are interested in (4.10-4.12). The last part (4.13-4.15) explains how to deduce Theorem 1.1 from Theorem 4.11.

The following notation will be used throughout the section.
4.1. Notation. Let S be a Picard modular surface (Definition 2.7), S^* be its Baily Borel compactification and

\[j : S \hookrightarrow S^* \]

be the canonical open immersion. By Corollary 4.13 the boundary of S^* is a finite set of points. Let us fix one of these points, and let

\[i : \text{pt} \hookrightarrow S^* \]

be the inclusion.

Let (G, X) be the Shimura datum underlying S (Definition 2.7),

\[(G_{\text{pt}}, X_{\text{pt}}) = (P_D/W_D, X^1_D) \]

be the Shimura datum underlying (the stratum containing) \(\text{pt} \) (Corollary 3.13) and $Q_D \supset P_D$ be the corresponding parabolic subgroup (see Proposition 3.8 and Lemma 4.3). Recall that P_D and Q_D have the same unipotent radical W_D (Lemma 3.8).

By [Pin90, 1.18] (see also [BW04, §2]), there are linear tensor functors

\[\mu_S : \text{Rep}_{G, Q} \longrightarrow \text{VHS}(S)_Q \]

and

\[\mu_{\text{pt}} : \text{Rep}_{G_{\text{pt}}, Q} \longrightarrow \text{HS}(\text{pt})_Q, \]

(called canonical construction functors) from the \mathbb{Q}-representations of G (resp. G_{pt}) to (admissible) variations of \mathbb{Q}-Hodge structures over S (resp. over pt).

The functor $i^*j_* : \text{VHS}(S)_Q \longrightarrow \text{HS}(\text{pt})_Q$ from (admissible) variations of \mathbb{Q}-Hodge structures over S to \mathbb{Q}-Hodge structures over pt is left exact and, for any integer $k \geq 0$, we write

\[R^k i^*j_* : \text{VHS}(S)_Q \longrightarrow \text{HS}(\text{pt})_Q \]

for the derived functor. Note that $R^k i^*j_* = i^* R^k j_*$.

Remark 4.2. Let V be as in Notation 2.1 and let $f : A \longrightarrow S$ be the universal abelian scheme (Remark 2.8). Then one has a canonical identification

\[\mu_S(V^\vee) = R^1 f_* \mathbb{Q}_A. \]

In particular, as μ_S is a tensor functor, all the relative cohomology sheaves of any r-fold fiber product of A over S are in the image of the functor μ_S (as well as several interesting direct factors of these sheaves, e.g. primitive parts with respect to a Lefschetz decomposition).

Lemma 4.3. The \mathbb{Q}-algebraic group Q_D/W_D is isogenous to the direct product of a compact torus and a \mathbb{Q}-split torus. In particular, any neat arithmetic subgroup of $Q_D/W_D(\mathbb{Q})$ is trivial.

Proof. Consider the compact torus defined over \mathbb{Q}

\[T_n = \{ (a, b) : a^2 + nb^2 = 1 \}, \]

where n is the integer as in Notation 2.1. The map

\[\mathbb{G}_{m, \mathbb{Q}}^2 \times T_n^2 \longrightarrow Q/W_1 \]
given (using Convention [23]) by

\[
(\lambda, \lambda', (a, b), (a', b')) \mapsto \begin{pmatrix}
\lambda\lambda' (a, b) & \lambda' (a', b') \\
\lambda' (a, b) & \lambda^{-1} \lambda' (a, b)^{-1}
\end{pmatrix}
\]

is an isogeny. \(\square \)

Theorem 4.4. For any \(F \in \text{Rep}_G \), there is a canonical isomorphism of \(\mathbb{Q} \)-Hodge structures over \(\text{pt} \)

\[
R^{k, j}_* j_* (\mu_S(F)) = \mu_{\text{pt}}((H^k(W_D, F|_{Q_D}))|_{G_{\text{pt}}}),
\]

where \(F|_{Q_D} \) is \(F \) seen as representation of \(Q_D \) and \(H^k(W_D, \cdot) \) is the \(k \)-th derived of the functor that associates to a \(Q_D \)-representation its \(W_D \)-invariant part, and \(\cdot|_{G_{\text{pt}}} \) is again a restriction functor (a \(Q_D/W_D \)-representation is seen as a \(G_{\text{pt}} \)-representation).

Proof. This is [BW04, Theorem 2.9] in a simplified version, that holds because the arithmetic group appearing in loc. cit. has to be trivial by Lemma 4.3. \(\square \)

4.5. Notation

For any reductive group \(H \), we will write \(F_{\lambda, H} \) for the \(H \)-irreducible representation whose maximal weight is \(\lambda \). We will simply write \(F_{\lambda} \) if the group \(H \) can be deduced from the context.

Theorem 4.6 (Kostant Theorem, see [War72] thm 2.5.2.1). Let \(H \) be a reductive group over \(\mathbb{C} \), \(B \) a Borel with unipotent radical \(W \), \(\Phi \) the associated root system, \(\Phi^+ \) the subset of the positive ones, \(\rho \) the half of the sum of positives roots, and \(\mathcal{R} \) be the Weyl group.

For any \(\sigma \in \mathcal{R} \), define the length of \(\sigma \) as

\[
l(\sigma) = \# \{ \alpha \in \Phi^+, \sigma^{-1} \alpha \notin \Phi^+ \}.
\]

Then one has an equality of \(B/W \)-representations

\[
H^k(W, F_{\lambda, H}|_B) = \bigoplus_{l(\sigma)=k} F_{\sigma(\lambda+\rho)-\rho, B/R}
\]

(following Notation [4.3]).

4.7. Lengths of roots

Let \(B \) be a parabolic basis adapted to \(D \) (Definition [3.2]). We have an isomorphism

\[
\phi_B : G_{\mathbb{C}} \cong GL_{3,\mathbb{C}} \times G_{m,\mathbb{C}}
\]

from Remark [26]. Write \(T_s \subset GL_{3,\mathbb{C}} \) for the subgroup of upper-triangular matrices and \(\Delta \subset GL_{3,\mathbb{C}} \) for the diagonal ones. To describe the root system let us choose \(\Delta \times G_{m,\mathbb{C}} \cong G_{m,\mathbb{C}}^4 \) as maximal torus, and \(T_s \times G_{m,\mathbb{C}} \) as Borel containing the torus. Note that \(\phi_B \) restricts to an isomorphism:

\[
\phi_B : G_{D,\mathbb{C}} \cong T_s \times G_{m,\mathbb{C}}.
\]

We write \(\lambda_1, \ldots, \lambda_4 \) for the four standard characters, which together form a basis for the lattice of characters. We also write \(e_{ij} = \lambda_i \lambda_j^{-1} \). The simple roots are \(e_{12} \) and \(e_{23} \), the other positive root is \(e_{13} \), and so

\[
\rho = e_{13}.
\]
The Weyl group \mathcal{R} is the group of permutations of the first three coordinates of the characters. We will write elements of \mathcal{R} with the standard notations for permutations; their lengths are given by

$$l(e) = 0, \ l(12) = l(23) = 1, \ l(123) = l(132) = 2, \ l(13) = 3.$$

4.8. Computation. We keep notations from 4.7. Let $\lambda = (a, b, c, d)$ be any character written in the basis fixed in 4.7. Note that we have

$$\rho = (1, 0, -1, 0).$$

Let us compute $\sigma(\lambda + \rho) - \rho$ for all permutations $\sigma \in \mathcal{R}$.

$$\sigma(a + 1, b, c - 1, d) - (1, 0, -1, 0) = (a, b, c, d),$$

$$\sigma(12)(a + 1, b, c - 1, d) - (1, 0, -1, 0) = (b - 1, a + 1, c, d),$$

$$\sigma(23)(a + 1, b, c - 1, d) - (1, 0, -1, 0) = (a, c - 1, b + 1, d),$$

$$\sigma(13)(a + 1, b, c - 1, d) - (1, 0, -1, 0) = (c - 2, a + 1, b + 1, d),$$

$$\sigma(123)(a + 1, b, c - 1, d) - (1, 0, -1, 0) = (b - 1, c - 1, a + 2, d).$$

By Theorem 4.6 we deduce the following equalities of $Q_{D,\mathbb{C}}/W_{D,\mathbb{C}}$-representations:

$$H^0(W_{D,\mathbb{C}}, F_{\lambda,\mathbb{C}|Q_{D,\mathbb{C}}}) = F_{a,b,c,d},$$

$$H^1(W_{D,\mathbb{C}}, F_{\lambda,\mathbb{C}|Q_{D,\mathbb{C}}}) = F_{12}(a+1,c,d \oplus F_{a,c-1,b+1,d},$$

$$H^2(W_{D,\mathbb{C}}, F_{\lambda,\mathbb{C}|Q_{D,\mathbb{C}}}) = F_{23}(c-a,b+1,d \oplus F_{b-1,c-1,a+2,d},$$

$$H^3(W_{D,\mathbb{C}}, F_{\lambda,\mathbb{C}|Q_{D,\mathbb{C}}}) = F_{13}(c,b,a+2,d),$$

and $H^k(W_{D,\mathbb{C}}, F_{\lambda,\mathbb{C}|Q_{D,\mathbb{C}}}) = 0$, for $k \geq 4$ (we are following Notation 4.5).

Remark 4.9. As $Q_{D,\mathbb{C}}/W_{D,\mathbb{C}}$ is isomorphic to the torus $G^4_{m,\mathbb{C}}$ (see 1.7), the irreducible representations of $Q_{D,\mathbb{C}}/W_{D,\mathbb{C}}$ are just characters. In particular the six representations on the right hand side above are 1-dimensional and explicit.

4.10. Restriction to S, the types. Consider $h_{B,\infty} : S_{\mathbb{C}} \to Q_{D,\mathbb{C}}$ of Definition 3.7 and the induced map

$$h_{B,\infty} : S_{\mathbb{C}} \to Q_{D,\mathbb{C}}/W_{D,\mathbb{C}}.$$

Consider also $\phi_{B} : Q_{D,\mathbb{C}}/W_{D,\mathbb{C}} \xrightarrow{\sim} G^4_{m,\mathbb{C}}$ defined in 1.7. The composition

$$\phi_{B} \circ h_{B,\infty} : S_{\mathbb{C}} \to G^4_{m,\mathbb{C}},$$

is then given by

$$(z_1, z_2) \mapsto (z_1 z_2, z_1, 1, z_1 z_2).$$

Hence, for any character $\lambda = (a, b, c, d)$ (written in the basis fixed in 4.7), one deduces from 4.8 the following equalities of $S_{\mathbb{C}}$-representations

$$H^0(W_{D,\mathbb{C}}, F_{\lambda,\mathbb{C}|Q_{D,\mathbb{C}}})_{S_{\mathbb{C}}} = F_{a+b+c+d,a+d},$$

$$H^1(W_{D,\mathbb{C}}, F_{\lambda,\mathbb{C}|Q_{D,\mathbb{C}}})_{S_{\mathbb{C}}} = F_{a+b+d,b+d-1} \oplus F_{a+c+d-1,a+d},$$

$$H^2(W_{D,\mathbb{C}}, F_{\lambda,\mathbb{C}|Q_{D,\mathbb{C}}})_{S_{\mathbb{C}}} = F_{a+c+d-1,c+d-2} \oplus F_{b+c+d-2,b+d-1},$$

$$H^3(W_{D,\mathbb{C}}, F_{\lambda,\mathbb{C}|Q_{D,\mathbb{C}}})_{S_{\mathbb{C}}} = F_{b+c+d-2,c+d-2}$$

and $H^k(W_{D,\mathbb{C}}, F_{\lambda,\mathbb{C}|Q_{D,\mathbb{C}}})_{S_{\mathbb{C}}} = 0$, for $k \geq 4$ (we are following Notation 4.5).
Remark 4.12. This is Theorem 4.4 with the computations done in 4.10.

4.7 from λ see Remark 2.3), but not over μ

V 0 if it is negative) and

Lemma 4.13. Let λ be the irreducible representation of G_C of maximal weight $\lambda = (a, b, c, d)$ (written in the basis fixed in 4.7). Then the following holds:

1. $R^k \iota^* j_\ast \mu_{S,C}(F_\lambda)$ has type $(-a - b - d, -a - d)$,
2. $R^k \iota^* j_\ast \mu_{S,C}(F_\lambda)$ has types $(-a - b - d, -b - d + 1)$ and $(-a - c - d + 1, -a - d)$,
3. $R^k \iota^* j_\ast \mu_{S,C}(F_\lambda)$ has types $(-a - c - d + 1, -c - d + 2)$ and $(-b - c - d + 2, -b - d + 1)$,
4. $R^k \iota^* j_\ast \mu_{S,C}(F_\lambda)$ has type $(-b - c - d + 2, -c - d + 2)$,
5. $R^k \iota^* j_\ast \mu_{S,C}(F_\lambda)$ vanishes for $k \geq 4$.

Proof. This is Theorem 4.4 with the computations done in 4.10.

Remark 4.12. Note that the functor $R^k \iota^* j_\ast \mu_{S,C}$ is linear, hence the types of $R^k \iota^* j_\ast \mu_{S,C}(F)$ can be computed for any representation F once we know its decomposition into irreducible factors.

Note also that all C-representations F_λ are defined over E (as G splits over E, see Remark 2.3), but not over \mathbb{Q}. If we start with a \mathbb{Q}-irreducible representation F, then $F_\mathbb{E}$ will decompose in general in two factors, say $F_\mathbb{E} = F^1 \oplus F^2$ (e.g. $V_\mathbb{E} = F_1, 0, 0, 0 \oplus F_0, 0, -1, 1$), and the types of $R^k \iota^* j_\ast \mu_{S,C}(F^1 \oplus F^2_\mathbb{E})$ will respect the Hodge symmetry.

Lemma 4.13. Let p and r be two non-negative integers, and let us keep notations from 4.7. The G_C-irreducible representations contained in $\Lambda^p(F_{0,0,,-1,0}^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}} \oplus F^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}}_{1,0,0,,-1})$ are exactly the $F_{a,b,c,d}$ verifying

1. $r \geq a \geq b \geq c \geq -r$,
2. $3r + a_+ + b_- + c_- \geq -d \geq a_+ + b_+ + c_+$, and
3. $a + b + c + 2d = -p$.

where, for any integer x, we define x_+ (resp. x_-) as x itself if it is positive (resp. if it is negative) and 0 otherwise.

Proof. In the representation $F_{0,0,,-1,0}^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}} \oplus F^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}}_{1,0,0,,-1}$ we have an explicit basis of 6r elements that are eigenvectors for the action of the maximal torus. We deduce from them a basis B_p of $\Lambda^p(F_{0,0,,-1,0}^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}} \oplus F^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}}_{1,0,0,,-1})$: each vector of B_p corresponds to the choice of p between the 6r previous elements. Then each vector of B_p is also an eigenvector for the action of the torus, whose weight the sum of the weights of the p elements chosen. From this we deduce that a, b, c, d is a weight for the action of the maximal torus on $\Lambda^p(F_{0,0,,-1,0}^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}} \oplus F^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}}_{1,0,0,,-1})$ if and only if the integers verify

1. $r \geq a, b, c \geq -r$,
2. $3r + a_- + b_+ + c_- \geq -d \geq a_+ + b_+ + c_+$, and
3. $a + b + c + 2d = -p$.

The condition $a \geq b \geq c$ corresponds to the choice of the Borel containing the maximal torus (as we did in 4.7).

We need to show now that any a, b, c, d verifying the condition in the statement is the maximal weight of a subrepresentation of $\Lambda^p(F_{0,0,,-1,0}^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}} \oplus F^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}}_{1,0,0,,-1})$. Suppose $-d \leq p/2$ and a, b, c negative (the other cases are analogous) and consider

$$W_{a,b,c,d} = (\bigwedge F_{0,0,,-1,0}) \otimes a \otimes (\bigwedge F_{0,0,,-1,0}) \otimes b \otimes (\bigwedge F_{0,0,,-1,0}) \otimes c \otimes (\bigwedge F_{0,0,,-1,0}) \otimes d.$$
The maximal weight of $W_{a,b,c,d}$ is a, b, c, d. To show that $W_{a,b,c,d}$ is a subrepresentation of $\bigwedge^p (F_{0,0,-1,0}^{\mathbb{Q}r} \oplus F_{1,0,0,-1}^{\mathbb{Q}r})$ it is enough to show that $F_{0,0,-1,0}$ is a subrepresentation of $F_{0,0,-1,0} \oplus F_{1,0,0,-1}$. This is indeed the case: the action canonical paring of the standard representation of GL_3 with its dual induces a non-zero morphism $F_{0,0,-1,0} \oplus F_{1,0,0,-1} \rightarrow F_{0,0,0,-1}$. \hfill \square

4.14. Proof of Theorem 1.1 First if all, we have the following identification

$$R^p f_* \mathbb{Q}_{A'} = \bigwedge^p (F_{0,0,-1,0}^{\mathbb{Q}r} \oplus F_{1,0,0,-1}^{\mathbb{Q}r})$$

see also Remark 4.12 and Remark 4.13

We deduce from Theorem 4.11 and Lemma 4.13 that

1. the \mathbb{Q}-Hodge structure $i^* R^0 j_* R^p f_* \mathbb{Q}_{A'}$ has weight $p - (a - c)$,
2. the \mathbb{Q}-Hodge structure $i^* R^1 j_* R^p f_* \mathbb{Q}_{A'}$ has weight $p + 1 + (b - c)$ and $p + 1 + (b - c)$,
3. the \mathbb{Q}-Hodge structure $i^* R^2 j_* R^p f_* \mathbb{Q}_{A'}$ has weight $p + 3 + (b - c)$ and $p + 3 + (b - c)$,
4. the \mathbb{Q}-Hodge structure $i^* R^3 j_* R^p f_* \mathbb{Q}_{A'}$ has weight $p + 4 + (a - c)$,
5. the \mathbb{Q}-Hodge structure $i^* R^k j_* R^p f_* \mathbb{Q}_{A'}$ vanishes for $k \geq 4$.

with a, b, c varying between the numbers satisfying conditions in Lemma 4.13

First of all, note that the map

$$(a, b, c, d) \mapsto (-c, -b, -a, -3r - d)$$

gives a bijection between the values of (a, b, c, d) appearing in the list of irreducible subrepresentations of $\bigwedge^p (F_{0,0,-1,0}^{\mathbb{Q}r} \oplus F_{1,0,0,-1}^{\mathbb{Q}r})$ and the values appearing in $\bigwedge^{6r-p} (F_{0,0,-1,0}^{\mathbb{Q}r} \oplus F_{1,0,0,-1}^{\mathbb{Q}r})$, so that we can suppose $p \leq 3r$.

Note now that $a - b, b - c$ and $a - c$ are non-negative integers bounded by $2r$ and p.

Let us start by studying the possible values $j \leq p$ of $a - b$ (the case $b - c$ is similar).

If $j \leq r$, then the triple $(a, b, c) = (j, 0, 0)$ (or $(a, b, c) = (j, 0, -1)$, depending on the parity of j) verifies the conditions in Lemma 4.13 and gives $a - b = j$.

If $r < j \leq M_p$, then $(a, b, c) = (r, r - j, r - j)$ (or $(a, b, c) = (r, r - j, r - j - 1)$, depending on the parity of j) verifies the conditions in Lemma 4.13 and gives $a - b = j$; it is also clear from this description that $a - b$ cannot take values bigger than M_p.

Let us now consider the possible values $j < p$ of $a - c$. If $0 < j \leq r$, then the triple $(a, b, c) = (j, 0, 0)$ (or $(a, b, c) = (j, 1, 0)$, depending on the parity of j) verifies the conditions in Lemma 4.13 and gives $a - c = j$.

If $j = 0$, then the triple $(a, b, c) = (0, 0, 0)$ if p is even, or $(a, b, c) = (1, 1, 1)$ if p is odd and at least 3 verifies the conditions in Lemma 4.13 and gives $a - c = 0$: this description shows also that if $p = 1$ then $a - c$ cannot be 0.

If $r < j \leq C_p$, then $(a, b, c) = (r, 0, r - j)$ (or $(a, b, c) = (r, 1, r - j)$, depending on the parity of j) verifies the conditions in Lemma 4.13 and gives $a - c = j$.

Remark 4.15. For any G-representation $F_{a,b,c,d}$, the sheaf $\mu_S(F_{a,b,c,d})$ is the realization of a relative Chow motive over S of the form $M_S(A', p, n)$ for some integer r
and s [Anc12, Theorem 4.7]. Here A^r is the r-fold product of the universal abelian scheme A over S (Remark 2.8), and p is a projector.

By [Wil12a, Corollary 2.13], the projector p induces a direct factor $\partial M(A^r)^p$ of the boundary motive $\partial M(A^r)$ of the variety A^r (seen over its field of definition). By [Wil09, Theorem 4.3] if $\partial M(A^r)^p$ avoids weights -1 and 0 then one has a canonical direct factor of the interior motive of A^r. This is a Chow motive realizing to (a canonical direct factor of) the interior cohomology of A^r.

A necessary (and conjecturally sufficient) condition to have that weights -1 and 0 are avoided is to check this on realization. More precisely, let \overline{w} be the weight of $\mu_{S,C}(F_{a,b,c,d})$ and $w_{k,i}$ be a weight of $R^k i^* j_* \mu_{S,C}(F_{a,b,c,d})$, then one has to check that the list of integers

$$\{k - w_{k,i} + \overline{w}\}_{k,i}$$

does not contain -1 and 0 (see [Wil12b, Theorem 1.2, Proposition 3.5]).

Using Theorem 4.11 one can compute this list and obtain

$$\{a - b, a - c, b - c, -1 - (a - b), -1 - (a - c), -1 - (b - c)\}.$$

This means that the representations of G that satisfy the condition after realization are exactly those which do not belong to a wall of the Weyl chamber. Hence, one should be able to construct canonical interior motives associated to a 'generic' representation. Such a result would be the Picard analogue of Scholl Theorem [Sch94] for modular curves and Wildeshaus Theorem [Wil12b] for Hilbert modular varieties.

References

[Anc12] Giuseppe Ancona. Découlement du motif d’un schéma abélien universel. Thèse de doctorat Université Paris XIII, pages 1–60, 2012. Disponible sur http://www.math.univ-paris13.fr/~ancona/doc/these.pdf.

[Bel02] Joël Bellaïche. Congruences endoscopiques et représentations galoisiennes. PhD Thesis Univ. Orsay, 2002.

[BW04] José I. Burgos and Jörg Wildeshaus. Hodge modules on Shimura varieties and their higher direct images in the Baily-Borel compactification. Ann. Sci. École Norm. Sup. (4), 37(3):363–413, 2004.

[Gor92] B. Brent Gordon. Canonical models of Picard modular surfaces. In The zeta functions of Picard modular surfaces, pages 1–29. Univ. Montréal, Montreal, QC, 1992.

[Lar92] Michael J. Larsen. Arithmetic compactification of some Shimura surfaces. In The zeta functions of Picard modular surfaces, pages 31–45. Univ. Montréal, Montreal, QC, 1992.

[Pin90] Richard Pink. Arithmetical compactification of mixed Shimura varieties. Bonner Mathematische Schriften [Bonn Mathematical Publications], 209. Universität Bonn Mathematisches Institut, Bonn, 1990. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1989.

[Sch94] A. J. Scholl. Classical motives. In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 163–187. Amer. Math. Soc., Providence, RI, 1994.

[Ser77] Jean-Pierre Serre. Cours d’arithmétique. Presses Universitaires de France, Paris, 1977. Deuxième édition revue et corrigée, Le Mathématicien, No. 2.

[Sto12] Matthew Stover. Cusps of Picard modular surfaces. Geom. Dedicata, 157:239–257, 2012.

[Wa72] Garth Warner. Harmonic analysis on semi-simple Lie groups. II. Springer-Verlag, New York, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 189.

[Wil00] Jörg Wildeshaus. Mixed sheaves on Shimura varieties and their higher direct images in toroidal compactifications. J. Algebraic Geom., 9(2):323–353, 2000.

[Wil09] J. Wildeshaus. Chow motives without projectivity. Compos. Math., 145(5):1196–1226, 2009.
[Wil12a] J. Wildeshaus. Boundary motive, relative motives and extensions of motives. XXX, 2012(10):2321–2355, 2012.

[Wil12b] J. Wildeshaus. On the interior motive of certain Shimura varieties: the case of Hilbert-Blumenthal varieties. International Mathematics Research Notices, 2012(10):2321–2355, 2012.

Duisburg-Essen University, Fakultät Mathematik Universität Duisburg-Essen, Campus Essen, 9, Thea-Leymann-Straße, 45127 Essen (Allemagne)

E-mail address: monsieur.beppe@gmail.com
URL: https://www.uni-due.de/~hm0168/