Determinants of Modern Contraceptive Utilization Among Married Women in Sub-Saharan Africa: Multilevel Analysis Using Recent Demographic and Health Survey

Zemenu Tadesse Tesema
University of Gondar College of Medicine and Health Sciences

Getayeneh Antehunegn Tesema
University of Gondar College of Medicine and Health Sciences

Moges Muluneh Boke (✉ moges4145@gmail.com)
University of Gondar College of Medicine and Health Sciences

Temesgen Yihunie Akalu
University of Gondar College of Medicine and Health Sciences

Research

Keywords: modern contraception, family planning, sub-Saharan, multilevel analysis

Posted Date: July 12th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-699121/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Family planning is a low-cost, high-impact public health and development strategy to improve child and maternal health. However, there is a lack of evidence on modern contraceptive use and determinants in sub-Saharan Africa. Hence, this study was aimed at determining the pooled prevalence and determinants of modern contraceptive utilization in Sub-Saharan Africa.

Methods: Thirty-six sub-Saharan African countries' demographic and health survey (DHS) data were used for pooled analysis. A total weighted sample of 322,525 married women were included. Cross tabulations and summary statistics were done using STATA version 14 software. The pooled prevalence of modern contraceptive utilization with a 95% Confidence Interval (CI) was reported. Four models were fitted to select the best-fitted model using Likelihood Ratio (LLR) and Deviance test. Finally, the model with the highest LLR and the smallest deviance was selected as a best fitted model.

Results: The pooled estimate of modern contraception use in sub–Saharan African countries was 18.36% [95% CI: 18.24, 18.48], with highest in Lesotho (59.79%) and the lowest in Chad (5.04%). The odds of modern contraception utilization among women living in East Africa was (AOR=1.47 (1.40, 1.54)), urban (AOR=1.18 (1.14, 1.24)), women primary and secondary and above educational level (AOR=1.49 (1.44, 1.55)), and (AOR=1.66 (1.58, 1.74)), respectively. Moreover, husband primary (AOR=1.38 (1.33, 1.42)), middle (AOR=1.17, (1.14, 1.21)), rich wealth status (AOR=1.29 (1.25, 1.34)), media exposure (AOR=1.25 (1.22, 1.29)), and postnatal care (PNC) utilization (AOR=1.25 (1.22, 1.29)) had higher odds of modern contraceptive utilization compared with their counter parts. Furthermore, deliver at health facility (AOR=1.74 (1.69, 1.79)) and birth order 2-4 (AOR=1.36 (1.31, 1.41)) had higher odds of modern contraceptive utilization. On the otherhand, women living in Central (AOR=0.23 (0.22, 0.24)), Western regions (AOR=0.46 (0.40, 0.54)), women decided with husband (AOR=0.90 (0.87, 0.93)), and husband alone (AOR=0.73 (0.71, 0.75)) were decreased the odds of modern contraceptive utilization.

Conclusion: The uptake of modern contraception in sub-Saharan Africa is low. Modern contraceptive utilization is affected by different factors. More attention need to be given to rural residents, illiterate women, and communities with low wealth status.

Plain English Summary

Accessing contraceptive methods advances human rights, bringing significant change on maternal and child health and offers different non-health benefits such as empowering women, helps for expansion eduction and country economic development. Therefore, this study was aimed at determining the pooled prevalence and determinants of modern contraceptive utilization across Sub-Saharan Africa countries. Thirty-six sub-Saharan African countries' demographic and health survey (DHS) data were used and a total weighted sample of 322,525 married women were included. In Sub-Saharan Africa, 18.36% of women in the reproductive age women were used modern contraception, with highest rate (59.79%) in Lesotho and the lowest rate (5.04%) in Chad. Modern contraception utilization was increased among
women living in East Africa, urban residents, educated couples, households with wealth status middle and rich, media exposed women, women having postnatal care utilization, women deliver at health facility, and birth order two and more. In contrast, modern contraception utilization was reduced among women living in Central, Western regions and women decided with husband or husband alone. In overall, the uptake of modern contraception in sub-Saharan Africa was low compared to other developing region. More attention need to be given to rural residents, illiterate women, and communities with low wealth status.

Background

Contraception is the way to prevent pregnancy and assists couples and individuals to achieve their reproductive goals that enable them to exercise their reproductive right, limit the number of children, and reduces maternal and child morbidity and mortality related to complications of unwanted pregnancy (1).

In low and middle-income countries, the burden of maternal mortality ratio (MMR) is projected upto 415 maternal deaths per 100,000 live births, which is sixty times higher than the high-income countries. Sub-Saharan Africa is the leading in MMR and alone it shares 66% of the global burden with an estimated 542 maternal deaths per 100,000 live births occur. In sub-Saharan Africa, one woman will die in every 37 women compared to developed countries 1 in 7,800 will die (2).

In most sub-Saharan countries the total fertility rate (TFR) declined over time; in some countries it remained stagnant. Zimbabwe, Namibia, Liberia, Kenya, Togo, Senegal, Madagascar and Ghana showed the steepest drops in total fertility. However, in a few countries, such as Niger, Nigeria, and Mozambique, the TFR increased or remained steady (3). To accelerate the fertility decrement rate in sub-Saharan countries improving contraception coverage is essential (4).

Today, 1.9 billion women are in the reproductive age group, from which 1.1 billion women were recognized to have a need for family planning, which means they want to limit or delay birth, 851 million of these women use a modern method of contraception, while 85 million use a traditional method, 172 million women have an unmet need for family planning (5).

World reproductive age women (15–49) using contraception has been increased in the last decades but the progress was uneven from place to place. Contraceptive use in Latin and North America, Asia, and Australia range from 60 % to 50%, in contrast in Northern Africa and Western Asia (35.1%), sub-Saharan Africa (34.1%) and Oceania (30.7%) few number of women use contraception(6).

The fulfillment of the susastenable development goals 2030 agenda, such as lowering maternal and under-5 mortality, reducing the frequency of pregnancy and childbearing at young ages, increasing educational attainment and reducing the percentage of women and children living in poverty will be aided by an increase in the proportion of women of reproductive age who have their family planning needs to be fulfilled using modern contraception (2).
To improve the access and uptake of contraception, strengthen health-care systems with commodity supply, integrating family planning service in primary health care facilities, community-based distribution (CBD) of contraceptives, strengthening commercial outlet and other activities has been implemented for last several decades (7). Despite access and availability of modern contraception strength, there is no sub-Saharan Africa representative primary data source that provides prevalence and determinants to contraception use. Therefore, determine the pooled prevalence and determinants of modern contraceptive utilization across the Sub-Saharan Africa countries.

Method

Data Source

The most recent (from 2006 to 2018) Demographic and Health Surveys (DHS) data were used in the following 36 Sub-Saharan African countries (Table 1). These datasets were used to determine the pooled prevalence and determinants of modern contraception use across countries in Sub-Saharan Africa. The DHS is a national survey that collects information on basic demographic and health indicators such as family planning service use, mortality, morbidity, and mother and child health and fertility. The information came from the DHS measure program. Men, women, children, birth, and household datasets are included in each country's survey; for this study, the IR file was employed. Women data set was used to extract both dependent and independent variables. A two-stage stratified selection procedure was done to select study participants. The study contained a total weighted sample of 322,525 married women from 36 DHS surveys conducted in Sub-Saharan African nations in the five years before the survey.

Measurements of variables

Outcome variable

The outcome variable for this study was whether a mother uses modern contraceptives or not. The outcome of this study was binary (modern contraceptive use versus non-modern contraceptive). We coded “1” if women utilize modern contraceptives and “0” otherwise.

Explanatory variables

Based on known facts and literatures the explanatory variables included in this study were Region, residence, age group, literacy level, maternal education, husband education, maternal occupational status, women autonomy on health care, wealth index, media exposure, accessing health care, PNC utilization, place of delivery and birth order.

Data management and analysis

We integrated data from 36 nations in Sub-Saharan Africa after extracting variables based on literature. Before conducting the statistical analysis, the data was weighted to keep the representativeness of the survey and to get more reliable estimates. STATA version 14 was used to perform cross-tabulations and
summary statistics. Moreover, the pooled prevalence of modern contraceptive utilization with a corresponding 95% confidence interval (CI) was reported.

Statistical modeling

The demographic and health survey data has a hierarchical structure for the factors, which violates the usual logistic regression model's assumption; independence of observations and equal variance. Besides, women within a single cluster are expected to be more similar than other clusters in the country. Hence, using multilevel analysis is recommended to take into account the between cluster variability. To address this objective four separate models were fitted. These include the null model, model I (community-level variables, model II (individual-level variable) and Model III (models that include both individual and community level variables) were fitted. The most parsimonious model was selected using LLR and Deviance test. The highest LLR and the lowest deviance was the best-fitted model. Finally, the model includes both individual and community level variables was selected (Table 3).
Table 1
Pooled Demographic and Health Surveys (DHS) data from 36 sub-Saharan countries, 2006–2018.

Country	DHS year	Sample size (322,525)
Southern Region of Africa		
Lesotho	2014	3612
Namibia	2013	3120
Swaziland	2006/07	6289
South Africa	2016	3049
Central Region of Africa		
Angola	2015/16	7956
DR Congo	2013/14	12095
Congo	2011/12	6289
Cameroon	2011	9791
Gabon	2012	4474
Sao Tome & Principe	2008/09	1718
Chad	2014/15	13262
Eastern region of Africa		
Burundi	2010	9781
Ethiopia	2016	10223
Kenya	2014	18549
Comoros	2012	3261
Madagascar	2008/09	12038
Malawi	2015/16	16130
Mozambique	2011	9331
Rwanda	2014/15	6981
Tanzania	2015/16	8210
Uganda	2011	11223
Zambia	2018	7648
Zimbabwe	2013/14	6151
Country	DHS year	Sample size (322,525)
---------------------------------	----------	-----------------------
Western Region of Africa	131334	
Burkina-Faso	2010	13563
Benin	2017	11168
Cote d’Ivoire	2011	6308
Ghana	2014	5321
Gambia	2013	6791
Guinea	2018	7727
Liberia	2013	5385
Mali	2018	8567
Nigeria	2018	29089
Niger	2012	9880
Sierra Leone	2010/11	10902
Senegal	2010/11	10346
Togo	2013/14	6281

Results

A total of 322,525 married women five years preceding the survey in 36 sub-Saharan Africa countries were included in this study. Of these, the largest study participants 131,334 (40.72%) were from Western Africa Region and the smallest study participants 16071 (4.98%) were from the Southern Regions of Africa. The majority of study participants 212360 (65.84%) were rural residents. The median age of women included in this study was 28.8 (IQR = 7.2) years of which 129,302 (40.09%) of them under the age category 25–34. Thirty-seven percent of women and thirty-nine percent of men had no formal education. More than one-third of women 127562 (39.55%) were under poor wealth status (Table 2).
Table 2
Distribution of modern contraceptive utilization in sub-Saharan Africa region

Variable	Modern contraceptive	Total (%)	X-square value	p-value	
	Yes	No			
Africa Region					
Southern	6789	9282	16,071 (4.98)	163.79	< 0.001
Central	6728	48860	55,588 (17.24)		
Eastern	47646	71883	119,530 (37.66)		
Western	17936	113397	131,334 (40.72)		
Residence					
Rural	47359	165001	212,360 (65.84)	46.19	< 0.001
Urban	31742	78422	110,165 (34.16)		
Age group					
15–24	16472	62396	78,868 (24.45)	20.08	< 0.001
25–34	35393	93908	129,302 (40.09)		
35–46	27235	87119	114,355 (35.46)		
Literacy					
Cannot read and write	23822	140763	164,585 (51.03)	103.73	< 0.001
Can read and write	55279	102660	157,940 (48.97)		
Maternal education					
No education	15384	111585	126,969 (39.37)	103.73	< 0.001
Primary education	33176	72974	106,151 (32.91)		
Secondary and above	30541	58861	89,405 (27.72)		
Husband education					
Variable	Modern contraceptive Utilization	Total (%)	X-square value	p-value	
---------------------------------------	----------------------------------	-----------	----------------	---------	
	Yes	No			
No education	13905	98391	112,296 (35.95)	70.97	< 0.001
Primary education	26193	60678	86,871 (27.81)		
Secondary and above	33694	79478	113,173 (36.24)		
Maternal Occupation					
Had occupation	60594	182407	243,001 (75.34)	152.34	< 0.001
Had no occupation	18507	61017	79,524 (24.66)		
Women's health care decision making autonomy					
Women alone	17865	38350	56,216 (17.43)	118.50	
Women and her husband	33837	84186	118,024 (36.59)	< 0.001	
Husbands alone	27398	120886	148,284 (45.98)		
Wealth Index					
Poor	23500	104061	127,562 (39.55)	124.50	< 0.001
Middle	15318	48697	64,015 (19.85)		
Rich	40282	90665	130,947 (40.60)		
Media Exposed					
Yes	61967	158840	220,807 (68.46)	112.47	< 0.001
No	17134	84583	101,718 (31.54)		
Accessing health care					
Big problem	40513	143803	184,316 (57.15)	38.16	< 0.001
Not big problem	38588	99620	138,209 (42.85)		
Variable	Modern contraceptive Utilization	Total (%)	X-square value	p-value	
---------------------------	----------------------------------	-------------	----------------	---------	
	Yes	No			
PNC utilization					
Yes	26673	57748	113,799 (57.41)	62.26	< 0.001
No	23777	90021	8,441 (42.59)		
Place of delivery					
Home	11266	69960	75,227 (31.26)	136.58	< 0.001
Institution	49199	116214	165,413 (68.74)		
Birth Order					
1	11661	35991	47,652 (14.81)	68.29	< 0.001
2–4	41817	101145	142,963 (44.43)		
5+	25440	105698	131,138 (40.76)		
Children ever born					
0	1544	21044	22,588 (7.00)	92.39	< 0.001
1–3	41890	107871	149,761 (46.43)		
4+	35667	114508	150,175 (46.56)		

The pooled prevalence of modern contraception utilization

The pooled prevalence of modern contraceptive utilization in sub-Saharan Africa countries was 18.36% [95% CI: 18.24, 18.48], with the highest modern contraceptive utilization in the Southern Region of Africa (38.43%) and the low modern contraceptive utilization in Central Regions of Africa (9.46%). The subgroup analysis result evidenced that in the Southern regions of Africa highest modern contraceptive utilization 59.79% were recorded in Lesotho and the low modern contraceptive utilization 19.99% were recorded in Swaziland. In the Central Regions of Africa highest modern contraceptive utilization 33.68% were recorded in Sao Tome and Principe and the low modern contraceptive utilization 5.04% were from
Chad. In Eastern regions of Africa highest modern contraceptive utilization 65.77% were recorded in Zimbabwe and the low modern contraceptive utilization 11.34% were from Mozambique. In the Western Regions of Africa the highest modern contraceptive utilization 22.19% were from Ghana and the low contraceptive utilization 8% were from Gambia (Fig. 1).

Determinants of modern contraceptive utilization

Random effect analysis

The results of the random-effects model indicated that there was significant clustering of modern contraceptive utilization across the communities (OR of community-level variance = 0.03, 95 % CI = 0.024–0.038). The intra-class correlation (ICC) in the null model indicated that 5.13 % of the overall variability of modern contraceptive utilization was attributed to cluster variability.

The median odds ratio (MOR) for modern contraceptive utilization was 1.49 in the null model, which indicates that there was a variation in modern contraceptive utilization between clusters. This means if we randomly select women from different clusters, women at the cluster with higher modern contraceptive utilization had 1.49 times higher odds of modern contraceptive utilization as compared with those women at clusters with lower modern contraceptive use.

The Proportional Change in Variance (PCV) also increases from 80% from model II to 83% in model III (a model with individual and community level variables), which indicates the last model (model III) best explains the variability of modern contraceptive utilization (Table 3).
Variable	Null Model	Model I	Model II	Model III
	AOR (95%CI)	AOR (95%CI)	AOR (95%CI)	AOR (95%CI)
Africa Region				
Southern	1	1	1	
Central	0.17 (0.16, 0.17)	0.23 (0.22, 0.24)*		
Eastern	1.00 (0.96, 1.03)	1.47 (1.40, 1.54)*		
Western	0.23 (0.22, 0.24)	0.46 (0.43, 0.48)*		
Residence				
Rural	1	1	1	
Urban	1.77 (1.73, 1.83)	1.18 (1.14, 1.24)*		
Age group				
15-24	1	1	1	
25-34	1.06 (1.02, 1.08)	0.99 (0.96, 1.02)		
35-46	0.99 (0.95, 1.04)	0.92 (0.88, 1.01)		
Maternal education				
No education	1	1	1	
Primary education	1.62 (1.57, 1.68)	1.49 (1.44, 1.55)*		
Secondary and above	1.43 (1.36, 1.49)	1.66 (1.58, 1.74)*		
Husband education				
No education	1	1	1	
Primary education	1.84 (1.78, 1.90)	1.38 (1.33, 1.42)*		
Secondary and above	1.36 (1.31, 1.41)	1.38 (1.33, 1.43)*		
Maternal Occupation				
Had no occupation	1	1	1	
Had occupation	0.86 (0.84, 0.88)	0.94 (0.91, 1.01)		
Women's health care decision making autonomy				
--	---	---		
Women alone	1	1		
Women and her husband	0.81 (0.78, 0.83)	0.90 (0.87, 0.93)*		
Husbands alone	0.50 (0.48, 0.51)	0.73 (0.71, 0.75)*		

Wealth Index		
Poor	1	1
Middle	1.14 (1.10, 1.17)	1.17 (1.14, 1.21)*
Rich	1.35 (1.31, 1.38)	1.29 (1.25, 1.34)*

Media Exposed		
No	1	1
Yes	1.21 (1.18, 1.24)	1.25 (1.22, 1.29)*

Accessing health care		
Big problem	1	1
Not big problem	1.07 (1.04, 1.09)	1.03 (0.98, 1.05)

PNC utilization		
No	1	1
Yes	1.59 (1.56, 1.63)	1.62 (1.58, 1.66)*

Place of delivery		
Home	1	1
Institution	1.90 (1.83, 1.95)	1.74 (1.69, 1.79)*

Birth Order		
1	1	1
2-4	1.26 (1.22, 1.31)	1.36 (1.31, 1.41)*
5+	1.20 (1.14, 1.27)	1.35 (1.28, 1.43)*
Community	0.17 (0.15, 0.20)	0.068 (0.05, 0.08)
Variance (SE)	0.035 (0.028, 0.044)	0.030 (0.024, 0.038)

| ICC% | 5.13 | 2 | 1.5 | 1.4 |
In the multilevel multivariable logistic regression model; Sub-Sahara Africa region, residence, maternal education, husband education, women health care decision autonomy, wealth index, media exposure, PNC utilization, place of delivery and birth order were identified as determinants to modern contraceptive utilization.

Women living in Central, and Western Regions of Africa decreased the odds of modern contraceptive utilization by 77%, and 54% as compared to women living in South Regions of Africa (AOR = 0.23, 95% CI: 0.22, 0.24), and (AOR = 0.46, 95% CI: 0.40, 0.54), respectively. The odds of modern contraceptives were increased by 47% among women living in East Africa as compared to women living in South Africa (AOR = 1.47, 95% CI: 1.40, 1.54). The odds of modern contraceptive utilization among urban women were increased by 18% as compared to rural women (AOR = 1.18, 95% CI: 1.14, 1.24).

The odds of modern contraceptive utilization among women who had primary and secondary and above educational level were 1.49 (AOR = 1.49, 95% CI: 1.44, 1.55) and 1.66 (AOR = 1.66, 95% CI: 1.58, 1.74) times higher as compared to women who had no formal education. The odds of modern contraceptive utilization among women whose husband had primary and secondary and above educational level were 1.38 (AOR = 1.38, 95% CI: 1.33, 1.42) and 1.38 (AOR = 1.38, 95% CI: 1.36, 1.47) times higher as compared to women whose husband had no formal education. The odds of modern contraceptive utilization among women who can decide health care service with their husband and husband alone were decreased 10% (AOR = 0.90, 95% CI: 0.87, 0.93) and 27% (AOR = 0.73, 95% CI: 0.71, 0.75) as compared to women whose health care utilization decided by herself alone.

Women whose wealth status middle and rich were 1.17 (AOR = 1.17, 95% CI: 1.14, 1.21) and 1.29 (AOR = 1.29, 95% CI: 1.25, 1.34) times more likely to utilize contraceptive than poor women. The odds of contraceptive utilization among media-exposed women were 1.25 times higher than women who did not expose to media (AOR = 1.25, 95% CI: 1.22, 1.29). The odds of modern contraceptive utilization among women who had PNC utilization were 1.62 times more likely than women who had no PNC utilization (AOR = 1.25, 95% CI: 1.22, 1.29). The odds of modern contraceptive utilization among women who deliver at the health facility were 1.62 times more likely than women who deliver at home (AOR = 1.74, 95% CI: 1.69, 1.79). The odds of contraceptive utilization among women whose birth order 2–4 and 5+ were

PCV%	1	88.23	80.22	83.05
MOR	1.49(1.42,1.53)	1.28(1.23,1.30)	1.19(1.17,1.22)	1.17(1.15,1.19)
LL	-175175	-158668	-97036	-91641
Deviance	350350	317336	194072	183282
AIC	350354	317349	194114	183332
BIC	350376	317413	194329	183587
increased by 36% (AOR = 1.36, 95% CI: 1.31, 1.41) and 35% (AOR = 1.35, 95% CI: 1.28, 1.43) as compared to women who had first birth order (Table 3).

Discussion

In this study, the pooled prevalence of modern contraceptives was 18.36% (18.23% – 18.48%). The highest modern contraceptive utilization was found in the southern Africa region (38.43%) and the lowest in the central Africa region (9.46%). This study showed that in the southern Africa region the highest prevalence was noticed in Lesotho (59.79%) and the lowest in Swaziland (19.99%). In the Eastern Africa region the overall modern contraceptive prevalence was 35.99% with the highest and lowest prevalence was found in Zimbabwe (65.77%) and Mozambique (11.34%), respectively. The overall modern contraceptive in the western Africa region was 13.14%. Of these, the highest prevalence found in Ghana (22.19%) and the lowest prevalence of modern contraceptives was found in Gambia (8.08%). The highest prevalence in central Africa (19.99% in Congo) was lower than the lowest prevalence in many other countries.

This finding is in line with a recent review performed in the SSA (8). Besides, the current study is in line with a study from the 2018 world health organization (WHO) report that showed that 5.4 children were born from a mother (9). This indicates the uptake of modern contraceptives in the SSA region is still low. The finding indicated that modern contraceptive uptake in the SSA region was low. This could be because of repeated conflicts and security issue, the need for a large family, fear of side effects like infertility, religious and cultural restrictions (10), sex preference, spouse consent and support, high level of illiteracy, poverty, and health system barriers in the sub-Saharan Africa region (8). Even though the possible barriers are perfectly preventable, measures applied to ensure adequate uptake of modern contraceptive in the SSA was very limited. Thus, it is of the essence to all SSA countries to ensure the implementation of adequate sustainable measures to increase the uptake of modern contraception. As a result, they will guarantee sustainable global development, poverty alleviation, increased life expectancy, empowering of women, promoting of health through the reduction of maternal mortality, morbidity, unsafe abortion, and improve child survival through birth spacing (11, 12).

The African region, residency, maternal education, husband education, the person who provides health care decision making, wealth index, media exposure, PNC utilization, place of delivery, and birth order were significantly associated with modern contraceptive utilization in Sub-Saharan Africa.

The odds of having modern contraceptive was low in the central, eastern, and western Africa region compared with southern Africa region. This study is in agreement with a trend analysis carried out in SSA countries between 1990 and 2014. According to the findings of the former study Southern African region had a faster increase in contraceptive prevalence rate with some countries achieved almost 60% and trends in completed family size is the lowest compared with other Africa regions. In contrast, the Central Africa region has a steady contraceptive rate and the lowest across the period and had the highest total fertility rate, completed family size, and family size preference. As a result, the progression of modern
contraceptive utilization in the central Africa region had a very slow progression increment with many below 20% as of 2014 (13). The possible reason could be a poor health care system in the central Africa region. For instance a study from Nigeria, Ghana, and Kenya showed that health care indicators including user-fees, type of health facility, visit by a health care worker, adolescent reproductive health, regular availability of health care workers, and the number of professionals working on maternal health would highly valuable in the utilization of modern contraceptive use (14).

Living in urban was associated with a better modern contraceptive utilization compared with the rural counterparts. The possible reason could be women in rural areas had poor service availability and accessibility and they are far from the health facility (15). Besides, women in the rural area were more likely uneducated and they are unable to get the method of their choice.

In this study, maternal and husband education increases the uptake of modern contraceptives. This finding is in line with a systematic review and meta-analysis carried out in SSA countries between 2005 and 2015 (16). Similarly, trend analysis in contraceptive prevalence in SSA showed that women's education was strongly correlated with the high level of contraceptive uptake (17). This could be due to the fact that education is the power and a precursor to developing women's empowerment through improving their knowledge and attitude (18). Also, education creates a good job opportunity or employment that could cause child spacing (19) which further improves child survival (20). However, the former study revealed that the mere presence of female education was not adequate and it is highly recommending emphasizing the presence of voluntarily family planning services was strongly associated with an increase in the prevalence of contraceptive use.

Women's health care decision-making autonomy was significantly affecting the odds of modern contraceptive uptake. Women who decide with their husbands had higher odds of modern contraceptive uptake than women who decide alone. This could be when women are unable to decide by themselves their rights and the ability to choose and use the method was worse. Empowering women would enhance women's decision-making ability and increasing their knowledge level that can further improve modern contraceptive uptake (21). As a result, the maternal health outcome and child health would be improved in Sub-Saharan Africa.

The odds of having modern contraceptive uptake were higher among women with a higher wealth index. This finding was supported by a cross-sectional study conducted in sub-Saharan Africa countries using Kenya and Zimbabwe demographic and health survey data (22). The possible explanation could be women from middle and high wealth index have better financial resources which are very helpful to get better access to reproductive health services including modern contraceptive uptake (23).

Mass media exposure was associated with higher odds of modern contraceptive uptake. This finding was supported by a systematic review and meta-analysis conducted among 31 sub-Saharan African countries using 47 demographic and health surveys conducted between 2005 and 2015 (24). The possible reason could be mass media exposure can expose people to information (25, 26) and overcoming barriers of illiteracy and improve the knowledge and attitude of women (27).
The current study showed that mothers who had PNS services had higher odds of utilizing modern contraceptives. The possible reason could be during PNC follow-up mothers’ have the opportunity to communicate with providers and to receive counseling regarding on initiation of postpartum contraceptive services (28, 29). Similarly, mothers’ who delivered at health institution has higher odds of uptake of modern contraceptive. This is because at the health institution mothers’ have the opportunity to get information on when and why they initiate postpartum contraception (30). Birth orders of two or more had higher odds of modern contraceptive intake than birth order one. This because women’s having more children had the intention to have birth spacing than women’s having a single child or fewer children.

The strength of the current study was incorporating 36 sub-Saharan Africa countries and the findings can be easily generalized to the SSA at large. However, it is difficult to establish a temporal relationship because of the cross-sectional nature of the study. Moreover, data related to the availability and accessibility of the service was not collected. Lastly, the study will be prone to recall and social desirability bias as most of the health measures in DHS are based on self-report.

The uptake of modern contraceptive utilization has a valuable contribution to the general public and the country at large. As a result, the public will be benefitted through maintaining health promotion including reduction of poor maternal outcomes (maternal morbidity, mortality, and abortion) and in poverty mitigation, women empowerment, increased life expectancy, keeping gender equality, and realizing sustainable global development goals. Besides, child survival will be improved through birth spacing and has a great contribution in creating a better future for the coming generations.

Conclusion

This study indicated that low modern contraception utilization in sub-Saharan Africa was low. Women living in the east, central, western region, urban, educational level, wealth status, media exposure, having PNC utilization, deliver at the health facility, and having more birth order, women decision making ability were significantly associated with modern contraception utilization. More attention need to be given to rural residents, illiterate women, and communities with low wealth status. Moreover, postnatal care and health facility delivery activities need to be strengthen.

Abbreviations

AIDS: Acquired Immune Deficiency Syndrome; AOR: Adjusted Odd Ratio; CBD: Community-Based Distribution; CI: Confidence Interval; COR: Crude Odd Ratio; DHS: Demographic and Health Survey; ICC: Intra-Class Correlation; HIV: Human Immune Virus; IQR: Inter Quartile Range; LLR: Likelihood Ratio; MMR: Maternal Mortality Ratio; MOR: Median Odds Ratio; PCV: Proportional Change in Variance; PNC: Postnatal care; SSA: Sub-Saharan Africa; TFR: Total Fertility Rate

Declarations
Consent for Publication

Not Applicable

Availability of data and material

Data is available online on www.measuredhs.com

Competing interests

Authors declare that there is no conflict of interest

Funding

This study was not funded

Authors' contributions

ZTT conceived of the study, analyze the data, and drafted the manuscript. GAT MMB and TYA performed the statistical analysis and drafted the manuscript. All authors read and approved the final manuscript.

Ethics consideration

Permission to get access to the data was obtained from the measure DHS program online request from http://www.dhsprogram.com.website and the data used were publicly available with no personal identifier.

Acknowledgments

We would like to thank the Measure DHS International program for providing the data set.

References

1. Bongaarts J, Cleland JC, Townsend J, Bertrand JT, Gupta MD. Family planning programs for the 21st century: rationale and design. 2012.
2. Organization WH. Trends in maternal mortality 2000 to 2017: estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division. 2019.
3. Cleland JG, Ndugwa RP, Zulu EM. Family planning in sub-Saharan Africa: progress or stagnation? Bulletin of the World Health Organization. 2011;89:137-43.
4. Bongaarts J. Trends in fertility and fertility preferences in sub-Saharan Africa: the roles of education and family planning programs. Genus. 2020;76(1):1-15.
5. Bongaarts J. United Nations Department of Economic and Social Affairs, Population Division World Family Planning 2020: Highlights United Nations Publications, 2020. 46 p. Wiley Online Library; 2020.
6. United Nations Department of Economic and Social Affairs, Population Division (2020). World Family Planning 2020 Highlights: Accelerating action to ensure universal access to family planning (ST/ESA/SER.A/450).

7. Aliyu AA. Family planning services in Africa: The successes and challenges. Family Planning. 2018;69.

8. Adedze M, Osei-Yeboah R. Underuse of modern contraception in sub-Saharan Africa: are there implications for sustainable development and climate change? A review of the literature. The European journal of contraception & reproductive health care: the official journal of the European Society of Contraception. 2019;24(4):314-8.

9. WHO. Family planning/contraception. 2018 (published Oct 30, 2018). http://www.who.int/news-room/fact-sheets/detail/family-planning-contraception (accessed August 20, 2020).

10. Muanda M, Gahungu Ndongo P, Taub LD, Bertrand JT. Barriers to Modern Contraceptive Use in Kinshasa, DRC. PloS one. 2016;11(12):e0167560.

11. Cleland J, Bernstein S, Ezeh A, Faundes A, Glasier A, Innis J. Family planning: the unfinished agenda. Lancet 2006; 368: 1810–27.

12. Osotimehin B. Family planning as a critical component of sustainable global development. Glob Health Action 2015; 8: 29978.v.

13. Odimegwu CO, Akinyemi JO, Banjo OO, Olamijuwon E, Amoo EO. Fertility, Family Size Preference and Contraceptive Use in Sub-Saharan Africa: 1990-2014. African journal of reproductive health. 2018;22(4):44-53.

14. Asaolu I, Nuño VL, Ernst K, Taren D, Ehiri J. Healthcare system indicators associated with modern contraceptive use in Ghana, Kenya, and Nigeria: evidence from the Performance Monitoring and Accountability 2020 data. Reproductive health. 2019;16(1):152.

15. Shiferaw S, Spigt M, Seme A, Amogne A, Skrøvseth S, Desta S, et al. Does proximity of women to facilities with better choice of contraceptives affect their contraceptive utilization in rural Ethiopia? PloS one. 2017;12(11):e0187311.

16. Blackstone SR, Nwaozuru U, Iwelunmor J. Factors Influencing Contraceptive Use in Sub-Saharan Africa: A Systematic Review. International quarterly of community health education. 2017;37(2):79-91.

17. Bongaarts J, Hardee K. Trends in Contraceptive Prevalence in Sub-Saharan Africa: The Roles of Family Planning Programs and Education. African journal of reproductive health. 2019;23(3):96-105.

18. Arinze-Onyia SU, Aguwa EN, Nwobodo E. Health education alone and health education plus advance provision of emergency contraceptive pills on knowledge and attitudes among university female students in Enugu, Nigeria. Nigerian journal of clinical practice. 2014;17(1):100-5.

19. al-Nahedh NN. The effect of sociodemographic variables on child-spacing in rural Saudi Arabia. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit. 1999;5(1):136-40.
20. Akter S, Rahman JA, Rahman MM, Abedin S, al-Nahedh NN. The influence of birth spacing on child survival in Bangladesh: a life table approach The effect of sociodemographic variables on child-spacing in rural Saudi Arabia. World health & population. 2010;12(1):42-56.

21. Estrada F, Hernández-Girón C, Walker D, Campero L, Hernández-Prado B, Maternowska C. [Use of family planning services and its relationship with women's decision-making and support from their partner]. Salud publica de Mexico. 2008;50(6):472-81.

22. Chikandiwa A, Burgess E, Otwormbe K, Chimoyi L. Use of contraceptives, high risk births and under-five mortality in Sub Saharan Africa: evidence from Kenyan (2014) and Zimbabwean (2011) demographic health surveys. BMC women's health. 2018;18(1):173.

23. Sharma V, Mohan U, Das V, Awasthi S. Socio demographic determinants and knowledge, attitude, practice: survey of family planning. J Fam Med Prim Care. 2012;1(1):43–7.

24. Babalola S, Figueroa ME, Krenn S. Association of Mass Media Communication with Contraceptive Use in Sub-Saharan Africa: A Meta-Analysis of Demographic and Health Surveys. Journal of health communication. 2017;22(11):885-95.

25. Islam MM, Hasan AH. Mass media exposure and its impact on family planning in Bangladesh. Journal of biosocial science. 2000;32(4):513-26.

26. Adamchak DJ, Mbizvo MT. Family planning information sources and media exposure among Zimbabwean men. Studies in family planning. 1991;22(5):326-31.

27. Gupta N, Katende C, Bessinger R. Associations of mass media exposure with family planning attitudes and practices in Uganda. Studies in family planning. 2003;34(1):19-31.

28. Engin-Ustun Y, Ustun Y, Cetin F, Meydanli MM, Kafkasli A, Sezgin B. Efect of postpartum counseling on postpartum contraceptive use. Arch Gynecol Obstet. 2007;275(6):429–32.

29. Do M, Hotchkiss D. Relationships between antenatal and postnatal care and post-partum modern contraceptive use: evidence from population surveys in Kenya and Zambia. BMC Health Serv Res. 2013;13:6.

30. Darney BG, Sosa-Rubi SG, Servan-Mori E, Rodriguez MI, Walker D, Lozano R. The relationship of age and place of delivery with postpartum contraception prior to discharge in Mexico: A retrospective cohort study. Contraception. 2016;93(6):478-84.

Figures
Prevalence of modern contraceptive in Sub-Saharan Africa

Country	Number of modern contraceptive user	Total	ES (95% CI)	% Weight
Southern Region of Africa				
Lesotho	2160	3612	59.76 (58.20, 61.39)	0.60
Namibia	1125	5121	55.26 (53.52, 57.01)	0.50
Swaziland	1257	6369	19.99 (19.00, 20.96)	1.57
South Africa	1648	3050	54.03 (52.26, 55.80)	0.49
Subtotal (I-squared = 99.3%, p = 0.000)			38.43 (37.73, 39.12)	3.17
Central Region of Africa				
Angola	968	7957	12.54 (11.81, 13.27)	2.90
DR Congo	949	12398	7.82 (7.45, 8.19)	0.70
Congo	1257	6289	19.99 (18.90, 20.98)	1.57
Cameroon	1412	9792	14.42 (13.72, 15.11)	3.17
Gabon	926	4475	16.40 (16.06, 16.73)	1.14
Sao Tome & Principe	578	1718	33.66 (31.45, 35.83)	0.31
Chad	668	13283	5.04 (4.66, 5.41)	11.08
Subtotal (I-squared = 99.7%, p = 0.000)			9.46 (9.22, 9.70)	28.87
Eastern Regions of Africa				
Burundi	2244	9782	23.84 (22.11, 23.78)	2.21
Ethiopia	3804	10223	35.22 (34.33, 36.12)	1.79
Kenya	5672	16549	53.22 (52.50, 53.94)	2.98
Comoros	462	3261	14.18 (12.96, 15.35)	1.07
Madagascar	2511	12339	29.17 (28.03, 29.35)	2.33
Malawi	6974	16103	56.12 (55.35, 56.88)	2.65
Mozambique	1058	9332	11.34 (10.69, 11.98)	3.71
Rwanda	2316	6882	47.45 (46.32, 48.66)	1.17
Tanzania	2627	8210	32.00 (30.96, 33.04)	1.51
Uganda	3991	11233	34.76 (33.63, 35.88)	1.68
Zambia	2832	7048	47.48 (46.38, 48.60)	1.23
Zimbabwe	4048	6151	65.77 (64.58, 66.96)	1.09
Subtotal (I-squared = 99.9%, p = 0.000)			35.99 (35.73, 36.24)	23.65
Western Regions of Africa				
Burkina Faso	2037	13523	15.02 (14.42, 15.62)	4.25
Benin	1398	11186	12.41 (11.80, 13.02)	4.11
Cote d'Ivoire	787	6299	12.47 (11.86, 13.23)	2.31
Ghana	1181	5251	22.19 (21.07, 23.31)	1.23
Gambia	542	5791	8.08 (7.43, 8.73)	3.85
Guinea	616	5247	10.67 (9.80, 11.56)	3.27
Liberia	1029	5386	19.11 (18.06, 20.16)	1.39
Mali	1406	2857	16.41 (15.62, 17.19)	2.50
Nigeria	3503	28990	12.04 (11.67, 12.41)	10.97
Niger	1207	9881	12.21 (11.57, 12.86)	3.08
Sierra Leone	1701	10933	15.60 (14.92, 16.28)	3.31
Senegal	1252	10347	12.10 (11.47, 12.72)	3.89
Togo	1085	6382	17.27 (16.33, 18.20)	1.78
Subtotal (I-squared = 96.9%, p = 0.000)			13.49 (12.60, 14.32)	46.31

Heterogeneity between groups: p = 0.000
Overall (I-squared = 99.9%, p = 0.000)

Figure 1

Forest plot of modern contraceptive utilization in Sub-Saharan Africa from 2006 to 2018.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- STROBEcrosssectionalchecklist2.docx