Cem Anil

Last updated: January 2023

https://www.cs.toronto.edu/~anilcem/

EDUCATION

PhD in Computer Science, University of Toronto
Advisors: Roger Grosse, Geoffrey Hinton
2019 - Present

Bachelor of Applied Science, University of Toronto
Division of Engineering Science – Robotics (+ professional experience year at NVIDIA)
Academic Standing: First in 2019 Class in Engineering Science, CGPA: 3.98 (high honours)

RESEARCH EXPERIENCE

Exploring Length Generalization in Large Language Models
Toronto, Google Research, Blueshift Team
Advisors: Behnam Neyshabur, Roger Grosse, Zico Kolter
2021 - 2022

- Demonstrated that while finetuning large language models show significant length generalization deficiencies, combining chain-of-thought and few-shot-learning capabilities yield significant improvements.

Minerva: A Language Model that Solves Quantitative Reasoning Problems
Toronto, Google Research, Blueshift Team
Advisors: Behnam Neyshabur, Guy Gur-Ari, Vedant Misra
2021-2022

- Contributed to a project that demonstrated that large language models trained on large amounts of technical content are capable of solving highly complex quantitative reasoning problems.

Upwards Generalization with Path-Independent Equilibrium Models
Toronto, University of Toronto, Vector Institute
Advisors: Roger Grosse, Zico Kolter
2021-2022

- Identified a condition – named path independence – that allows equilibrium models to generalize to problem instances that are more difficult than those observed during training.

Learning to Elect
Toronto, University of Toronto, Vector Institute
Advisors: Behnam Neyshabur, Guy Gur-Ari, Vedant Misra
2020-2021

- Proposed a steerable learning framework that can discover novel voting rules based on custom loss functions.
- Demonstrated that the learned rules remain effective on out-of-distribution elections.

Prover-Verifier Networks
Toronto, University of Toronto, Vector Institute
Advisors: Roger Grosse, Nisarg Shah
2019 - Present

- Developed a training framework that encourages neural networks to find solutions that are easily verifiable. This is done by framing learning as a game between a powerful prover network, and a constrained verifier network.

Object-Centric Source Separation
Toronto, University of Toronto, Vector Institute
Advisors: Geoffrey Hinton, Roger Grosse, Sageev Oore
2019 - 2020

- Investigating the effectiveness of object-centric inductive biases in blind source separation.
- Demonstrated that dynamical routing capsule networks can successfully separate highly overlapping spectrograms of multiple notes and instruments. Currently scaling up to larger scale tasks and novel architectures.

Sorting Out Lipschitz Function Approximation
Toronto, University of Toronto, Vector Institute
Advisors: Roger Grosse
2018 – 2019

- Developed a novel neural network architecture with a controllable Lipschitz constant using a novel GroupSort nonlinearity.
- Proved GroupSort networks are universal Lipschitz function approximators. Empirically demonstrated that GroupSort networks improve performance on tasks including Wasserstein distance estimation and adversarial robustness.

Preventing Gradient Attenuation in Lipschitz Convolutional Networks
Toronto, University of Toronto, Vector Institute
Advisors: Roger Grosse, Jörn Jacobsen
2019

- Extended our earlier analysis of Lipschitz networks on convolutional networks.
- Proposed an expressive parameterization of orthogonal convolutions, analyzed related optimization challenges. The resulting model exhibits state-of-the-art provable robustness for image classification tasks.

TimbreTron: A WaveNet(CycleGAN(CQT)) Pipeline for Musical Timbre Transfer
Toronto, University of Toronto, Vector Institute
Advisors: Roger Grosse, Sageev Oore
2018, 2019

- Worked on building a GAN and WaveNet-based deep learning-based pipeline that can perform musical timbre transfer.

Metastatic Brain Tumor Segmentation
Toronto, University of Toronto, Biophysics Department
Advisor: Anne Martel
2016

- Built a 3D brain tumor segmentation pipeline using convolutional neural networks.

Effect of Motor Preparation on Auditory Evoked Potentials
Toronto, University of Toronto, Biophysics Department
Advisor: Bernhard Ross
2015

- Researched the effect of preparation in sound making on brain responses with magneto-encephalogram (MEG) imaging.
INDUSTRY RESEARCH EXPERIENCE

Student Researcher at Google Blueshift Team
Toronto, Google Research, Blueshift Team (large language models, reasoning, generalization) 2021 – 2022
Manager: Behnam Neyshabur
- Lead a project that demonstrated severe deficiencies in the length generalization capabilities of large language models and showed that making use of few-shot learning and scratchpad techniques significantly improve performance.
- Contributed to the effort that lead to Minerva, a language model trained on technical material that can solve highly nontrivial quantitative reasoning problems.

Professional Experience Year at NVIDIA
Toronto, NVIDIA Corporation (generative modelling, RL, semi-supervised learning) 2017 – 2018
Manager: Gavriel State
- Applied novel learning techniques on a diverse set of areas, including robot simulation, game design and animation.
- Proposed a semi-supervised method to error-correct time series predictions, which lead to a patent application.
- Contributed to a project that focused on using randomized synthetic data to train object detection and segmentation systems that operate on complex real world data.

PUBLICATIONS AND PATENTS

Exploring Length Generalization in Large Language Models
C Anil, Y Wu, A Andreasen, A Lewkowycz, V Misra, V Ramasesh, A Stone, G Gur-Ari, E Dyer, B Neyshabur NeurIPS 2022

Solving Quantitative Reasoning Problems with Language Models
A Lewkowycz, A Andreasen, D Dohan, E Dyer, H Michalewski, V Ramasesh, A Stone, C Anil, J Schlag, T Gutman-Solo, Y Wu, B Neyshabur, G Gur-Ari, V Misra NeurIPS 2022

Path Independent Equilibrium Models Can Better Exploit Test-Time Computation
C Anil, A Pokle, K Liang, J Trenklein, Y Wu, S Bail, Z Kalter, R Grosse NeurIPS 2022

Learning to Elect
C Anil, Xuchan Bao NeurIPS 2021

Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks
Q Li, S Haque, C Anil, J Lucas, RB Grosse, JH Jacobsen NeurIPS 2019

Sorting out Lipschitz Function Approximation
C Anil, J Lucas, RB Grosse ICML 2019

Timbretron: A Wavenet (cycleGAN (CQT (Audio))) Pipeline for Musical Timbre Transfer
S Huang, Q Li, C Anil, X Bao, S Oore, RB Grosse ICLR 2018

Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization
J Tremblay, A Prakash, D Acuna, M Brophy, V Jampani, C Anil, T Hong To, E Cameracci, S Boochoon, S Birchfield CVPR 2018 (workshop)

Refining Labeling of Time-Associated Data
C Anil (US Patent App. 16/153,430) Patent 2019

Generation of Synthetic Images for Training a Neural Network Model
J Tremblay, A Prakash, M A Brophy, V Jampani, C Anil, S Thomas Birchfield, T Hong To, D Jesus Acuna Marrero (US Patent App. 16/256,820) Patent 2019

SELECT HONOURS AND AWARDS

Award – NSERC Alexander Graham Bell Canada Graduate Scholarship-Doctoral (CGS D) 2020-2023
Award- W.S. Wilson Medal (first in graduating class in Engineering Science) 2019
Award- NSERC Undergraduate Summer Research Award (USRA) 2016
Award- NSERC ACN Create Undergraduate Research Award 2015
Award- High School Valedictorian - 100% Academic Merit Scholarship 2014
Physics Olympiads – Top 25 in Turkey (2013). 2014
Philosophy Olympiads - Invited to join High School International Philosophy Olympiads 2013

COMMUNITY SERVICE

Conference Reviews: Consistently review for ICML, ICLR and NeurIPS (top 10% reviewer at NeurIPS2021 and ICLR2022) 2019 – Present

EXTRACURRICULAR SKILLS

Music: Proficient piano player and composer.
 - Composed original scores for two motion pictures (Siyah-Beyaz and The Smell of Money)
 - Composed the original scores for the short film The Teacup (2016), which won the Best Music and Sound Design Award in the 2016 Dingle International Film Festival in the student category.

Tennis and Scuba Diving: Former licensed tennis player and scuba diver.