INTRODUCTION

The number of anterior cervical discectomy and fusion (ACDF) conducted to treat degenerative cervical disc disease has increased; consequently, there is a rising interest in the quality of management after ACDF. Complications related to ACDF affect the quality of management and occurrence of unplanned readmission. Furthermore, unplanned readmission after ACDF eventually increases healthcare costs and decreases the quality of management. In hospitals, a fixed amount is allocated for medical expenses related to surgical care; therefore, unplanned readmission after ACDF that increases healthcare costs is considered a financial burden. For instance, a study has shown that the median costs of 30- and 90-day readmis-
sion episodes were $6727 and $8507, respectively. Several studies have been conducted to determine the risk factors related to unplanned readmission after ACDF. Goyal, et al. studied the risk factors of 30- and 90-day readmissions after ACDF and determined that age, sex, primary diagnosis, length of stay at index admission, Elixhauser comorbidity index, and payer type are significant risk factors of readmission. Sheha, et al. found that the incidence of readmission within 90 days after discharge following ACDF was 5.3%, and the associated risk factors were age >60 years, sex, insurance status, disposition at discharge, and length of hospital stay. The purpose of this study was to determine the risk factors of unplanned readmission after ACDF for degenerative cervical disc disease through a meta-analysis to improve the quality of management of spine surgery and prevent the rising healthcare cost related to unplanned readmissions.

MATERIALS AND METHODS

Data source and search strategy
This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. We searched PubMed, EMBASE, Web of Science, and Cochrane Library databases for eligible studies to identify the risk factors of unplanned readmission after ACDF published by December 2021. Studies in which comparisons were made between the characteristics of patients who were readmitted and those who were not after cervical spine surgery were identified by using the search terms, “readmission” and “anterior cervical discectomy and fusion.” Only articles published in English were considered. The selected studies were independently screened by three authors (YJL, SHN, SHK) based on the inclusion and exclusion criteria. Data regarding the risk factors were then collected. Furthermore, we reviewed the reference lists of these studies to identify other relevant literature.

Inclusion and exclusion criteria
The adequacy of the studies was decided based on the PRISMA guidelines. Unplanned readmission was defined as hospitalization for complications related to surgery within 90 days after surgery. The inclusion criteria were as follows: 1) the patients underwent ACDF for degenerative cervical disc disease, 2) the study demonstrated the total patient population and that of patients who underwent unplanned readmission after ACDF, and 3) the studies compared the risk factors or causes of unplanned readmission. The exclusion criteria were as follows: 1) the patients underwent spine surgery other than that related to the degenerative cervical disc disease, 2) details related to the population were not reported, 3) the available data were not presented, and 4) duplication of reports and review articles.

Data extraction
Data such as patient populations, their demographic and clinical profiles, and causes of readmission were extracted and reviewed from the included studies by three authors (YJL, SHN, SHK). The common factors among the studies that were considered as differences between patients who were readmitted and those who were not were identified and analyzed, based on which the risk factors of unplanned readmission after ACDF were investigated.

Quality assessment
We used the Newcastle-Ottawa Quality Assessment Scale (NOQAS) to evaluate the quality of studies that were included, which were assessed based on three major categories: selection, comparability, and exposure. Studies that acquired at least six stars were included to guarantee the reliability of the present analysis.

Statistical analysis
We utilized the Review Manager software, version 5.3 (Cochrane Collaboration, Oxford, UK) for this meta-analysis.

Meta Essentials (ERASMUS Research Institute, Rotterdam, Netherlands) were used to make funnel plots. The factors were compared and measured using the weighted mean differences (WMDs) and corresponding 95% confidence intervals (CIs) for continuous data. Their effects were evaluated using 95% CI and odds ratios (ORs). Heterogeneity of the studies was assessed using the I² index and chi-squared test. If there was high heterogeneity between the studies, a random-effects model (p<0.1 or I² >50%) was applied; otherwise, a fixed-effects model was applied. To test for publication bias, the Egger test was performed. P-values<0.05 were considered statistically significant.

RESULTS

Included studies
A total of 66 studies from the PubMed (57) and EMBASE (9) databases were assessed for inclusion in this study. After excluding duplicate studies, 63 remained, of which 43 were excluded after reviewing the abstracts and titles as they were not focused on unplanned readmissions after ACDF and the associated risk factors. Ten studies were eliminated due to insufficient data related to ACDF. Finally, 10 studies were selected for our meta-analysis. Fig. 1 shows the process by which we selected the studies. The characteristics of the included studies are presented in Table 1.

Quality assessment of studies
Based on the NOQAS, five studies scored seven points, and the others scored eight. Thus, the quality of each study was sufficiently high (Table 2).
Incidence of readmission after cervical spine surgery
As reported in the studies included in this meta-analysis, 17755 patients were readmitted after ACDF. The incidence of unplanned readmission after ACDF was 6.2%.

Risk factors of unplanned readmission after cervical spine surgery
Among the demographic risk factors, advanced age (WMD, 3.93; 95% CI, 2.30–5.56; p<0.001), male sex (OR, 1.23; 95% CI, 1.10–1.36; p<0.001), and private insurance (OR, 0.34; 95% CI, 0.17–0.69; p<0.001) were significantly associated with unplanned readmission after ACDF (Figs. 2–4). Among patient characteristics, hypertension (HTN) (OR, 2.14; 95% CI, 1.41–3.25; p<0.001), diabetes mellitus (DM) (OR, 1.59; 95% CI, 1.20–2.11; p<0.001), coronary artery disease (CAD) (OR, 2.87; 95% CI, 2.13–3.86; p<0.001), American Society of Anesthesiologists (ASA) physical status grade >2 (OR, 2.13; 95% CI, 1.68–2.72; p<0.001), and anxiety and depression (OR, 1.39; 95% CI, 1.29–1.51; p<0.001) were significantly associated with unplanned readmission (Figs. 5–9). However, current smoking (OR, 1.07; 95% CI, 0.94–1.23; p=0.300) were not significantly associated with unplanned readmission after ACDF (Table 3). Among the perioperative risk factors, pulmonary complications (OR, 22.52; 95% CI, 7.21–70.41; p<0.001) were significantly associated with unplanned readmission after ACDF (Fig. 10).

Publication bias
All the funnel plots were symmetric, and there was no significant publication bias among the studies. The Egger test results for each risk factor were as follows: age (p=0.505), male sex (p=0.864), private insurance (p=0.568), HTN (p=0.724), DM (p=0.762), CAD (p=0.642), ASA grade >2 (p=0.287), anxiety and depression (p=0.561), and pulmonary complications (p=0.378). Thus, there was no evidence of publication bias in the dataset.

Table 1. Characteristics of Studies Included in the Meta-Analysis

Study	Year	Country	Study period	Total	Unplanned readmission	Unplanned readmission rate	Mean age (yr)	Study type	Center
Bhashyam, et al.	2017	USA	2013–2014	5590	145	2.6	52.±12	Retrospective	Multicenter
Zaki, et al.	2019	USA	2013–2014	389	30	7.70	52.0±10.9	Retrospective	Unicenter
Sheh, et al.	2019	USA	2005–2012	41813	2223	5.32	50.7±11.8	Retrospective	Multicenter
Goyal, et al.	2020	USA	2012–2015	113418	6677	6	55.1	Retrospective	Multicenter
Dial, et al.	2020	USA	2013.07–2017.03	1896	144	7.60	ND	Retrospective	Unicenter
Elsamadicy, et al.	2020	USA	2013–2015	13093	856	6.5	ND	Retrospective	Multicenter
Schafer, et al.	2020	USA	2014.02–2018.07	3762	202	5.40	56.3±10.7	Retrospective	Multicenter
Taylor, et al.	2021	USA	2014.01–2014.09	50126	4152	8.3	55.18–90	Retrospective	Multicenter
Kamalapathy, et al.	2021	USA	2011–2017	18339	959	6	ND	Retrospective	Multicenter
Shah, et al.	2021	USA	2016–2018	36794	2387	6.43	ND	Retrospective	Multicenter

NOQAS, Newcastle-Ottawa Quality Assessment Scale.

Table 2. Quality Assessment of Included Studies in the Meta-Analysis according to NOQAS

Study	Selection	Comparability	Outcome	Total score
Bhashyam, et al.	4	1	2	7
Zaki, et al.	4	1	2	8
Sheh, et al.	4	1	3	8
Goyal, et al.	4	1	3	8
Dial, et al.	4	0	3	7
Elsamadicy, et al.	4	1	3	8
Schafer, et al.	4	0	3	7
Taylor, et al.	4	1	2	7
Kamalapathy, et al.	4	1	3	8
Shah, et al.	4	1	3	8

DISCUSSION

With the increasing incidence of degenerative cervical spine disease, the significance of ACDF, which was introduced by...
Cloward in 1958 to treat this condition, has also increased. Complications related to ACDF affect the quality of management and increase the associated healthcare costs. Moreover, complications that lead to unplanned readmissions can further elevate medical expenses. Several articles regarding unplanned readmission after ACDF have been published, particularly since ACDF is related to specific perioperative complications owing to the relative complexity of its anatomy. Therefore, the purpose of this meta-analysis was to evaluate the risk factors related to unplanned readmission after ACDF.

Study or Subgroup	Readmission Events	Total	No admission Events	Total	Mean Difference (V, Random, 95% CI)	Mean Difference (V, Random, 95% CI)
Dial et al., 2020	56	121	803	1776	0.04 [0.72, 1.51]	
Schafer et al., 2020	114	202	1599	3560	0.16 [0.92, 1.21]	
Elsamadicy et al., 2020	450	856	5265	12237	0.19 [1.13, 1.35]	
Sheha et al., 2019	1251	2223	19345	39590	0.14 [0.12, 0.16]	
Total (95% CI)	6879		110301		3.93 [2.30, 5.56]	
Heterogeneity: Tau^2 = 1.12; Chi^2 = 4.43; df = 1 (P = 0.04); I^2 = 77%						
Test for overall effect: Z = 4.79 (P < 0.00001)						

Fig. 2. Forest plot showing the relationship between age and occurrence of readmission. CI, confidence interval.

Study or Subgroup	Readmission Events	Total	No admission Events	Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Dial et al., 2020	51	121	1012	1776	0.55 [0.38, 0.80]	
Schafer et al., 2020	84	202	2019	3550	0.54 [0.41, 0.72]	
Elsamadicy et al., 2020	298	856	6375	12237	0.49 [0.42, 0.57]	
Goyal et al., 2020	2227	8577	80601	106741	0.56 [0.53, 0.59]	
Sheha et al., 2019	439	2223	16125	36590	0.29 [0.26, 0.33]	
Taylor et al., 2021	237	4156	24145	45974	0.07 [0.06, 0.09]	
Total (95% CI)	14231		208878		0.34 [0.17, 0.69]	
Heterogeneity: Tau^2 = 0.76; Chi^2 = 94.49; df = 5 (P < 0.00001); I^2 = 96%						
Test for overall effect: Z = 3.00 (P = 0.005)						

Fig. 3. Forest plot showing the relationship between male sex and occurrence of readmission. CI, confidence interval.

Study or Subgroup	Readmission Events	Total	No admission Events	Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Dial et al., 2020	78	121	704	1775	2.76 [1.48, 4.06]	
Elsamadicy et al., 2020	441	856	4552	12237	1.79 [1.55, 2.09]	
Total (95% CI)	977		14013		2.14 [1.41, 3.25]	
Heterogeneity: Tau^2 = 0.07; Chi^2 = 4.29; df = 1 (P = 0.04); I^2 = 77%						
Test for overall effect: Z = 3.59 (P = 0.0003)						

Fig. 4. Forest plot showing the relationship between owning private insurance and occurrence of readmission. CI, confidence interval.

Study or Subgroup	Readmission Events	Total	No admission Events	Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Dial et al., 2020	18	121	272	1776	0.97 [0.58, 1.62]	
Schafer et al., 2020	61	202	674	3560	1.85 [1.36, 2.50]	
Elsamadicy et al., 2020	169	856	1505	12237	1.75 [1.47, 2.06]	
Total (95% CI)	1179		17573		1.59 [1.20, 2.11]	
Heterogeneity: Tau^2 = 0.04; Chi^2 = 5.01; df = 2 (P = 0.08); I^2 = 60%						
Test for overall effect: Z = 3.19 (P = 0.001)						

Fig. 5. Forest plot showing the relationship between HTN and occurrence of readmission. CI, confidence interval; HTN, hypertension.

Study or Subgroup	Readmission Events	Total	No admission Events	Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Dial et al., 2020	246		2451			
Schafer et al., 2020	246					
Elsamadicy et al., 2020	246					
Total (95% CI)	246		2451			
Heterogeneity: Tau^2 = 0.04; Chi^2 = 5.01; df = 2 (P = 0.08); I^2 = 60%						
Test for overall effect: Z = 3.19 (P = 0.001)						

Fig. 6. Forest plot showing the relationship between DM and occurrence of readmission. CI, confidence interval; DM, diabetes mellitus.
Unplanned Readmission after ACDF

Previous studies have shown that older age and male sex are statistically significant risk factors related to unplanned readmission after ACDF, which concur with the findings of our meta-analysis. We also found that patients who were older in age were more likely to be readmitted. Smoking history is known to be associated with postoperative complications, such as surgical site infection, which can affect the incidence of readmission secondarily. Patients are also recommended to stop smoking as it can have adverse effects on wound healing and surgical site infections. In our study, current smoking was not significantly associated with the incidence of unplanned readmission after ACDF (OR, 1.07; 95% CI, 0.94–1.23; p=0.3).

Table 3. Summary of Risk Factors of Unplanned Readmission after Anterior Cervical Discectomy and Fusion

Risk factors	Number of studies	WMD/OR (95% CI)	p value	Test of heterogeneity	Model	
		WM/DR (95% CI)	p value	I² (%)	p value	
Age	2	3.93* (2.30 to 5.56)	<0.001	77	0.040	R
Male	5	1.23 (1.10 to 1.36)	<0.001	72	0.007	R
Private insurance	6	0.34* (0.17 to 0.59)	<0.001	99	<0.001	R
Current smoker	3	1.07 (0.94 to 1.23)	0.300	13	0.320	F
HTN	2	2.14 (1.41 to 3.25)	<0.001	77	0.040	R
DM	3	1.55 (1.20 to 2.11)	0.001	60	0.080	R
CAD	3	2.87 (2.13 to 3.86)	<0.001	0	0.590	F
ASA class>2	2	2.13 (1.68 to 2.72)	<0.001	0	0.950	F
DVT	2	7.51 (0.23 to 242.24)	0.260	81	0.020	R
Anxiety/depression	4	1.39 (1.29 to 1.51)	<0.001	0	0.420	F
Pulmonary complication	3	22.52 (7.21 to 70.41)	<0.001	89	<0.001	R

WMD, weighted mean difference; OR, odds ratio; CI, confidence interval; HTN, hypertension; DM, diabetes mellitus; CAD, coronary artery disease; DVT, deep vein thrombosis; ASA, American Society of Anesthesiologists.

*Values are WMD; †Values are OR.
In terms of socioeconomic factors, we found that the patients who owned private insurance were less likely to be readmitted after ACDF. Many studies have shown that the payer status of patients is significantly associated with readmission. \(^7,8,17-20,22\) Furthermore, insurance status is associated with adverse medical events. While Dial, et al.\(^{20}\) reported that possessing Medicare insurance and no insurance are associated with extended length of hospital stay, Tanenbaum, et al.\(^{23}\) found that having Medicaid insurance is related to increased adverse events after ACDF. Therefore, the association between insurance status and incidence of unplanned readmission after ACDF may be related to the complications after ACDF that lead to readmission (OR, 0.34; 95% CI, 0.17–0.69; \(p<0.001\)).

The patient characteristics that were found to be significantly associated with unplanned readmission after ACDF in the present meta-analysis were HTN, DM, ASA grade >2, CAD, and anxiety and depression (OR, 2.14; 95% CI, 1.41–3.25; \(p<0.001\)) (OR, 1.59; 95% CI, 1.20–2.11; \(p=0.001\)) (OR, 2.13; 95% CI, 1.68–2.72; \(p<0.001\)) (OR, 2.67; 95% CI, 2.13–3.86; \(p<0.001\)) (OR, 1.39; 95% CI, 1.29–1.51; \(p<0.001\)). Diabetes has been previously associated with perioperative complications and readmission after spine surgery, and there is a significant difference in occurrence between the patients who were readmitted and those who were not.\(^{24,25}\) This factor also exhibited a statistically significant association with unplanned readmission after ACDF in this meta-analysis. The ASA classification is commonly used to assess the overall comorbidities in patients.\(^{26,27}\) Schafer, et al.\(^{17}\) reported that ASA grade >2 is associated with increased likelihood of readmission, while Dial, et al.\(^{20}\) demonstrated that the ASA score is related to 90-day readmission. Patients with ASA grade 4 tend to be readmitted more frequently than those with lower ASA grade.\(^{26}\) Furthermore, patients who are readmitted after ACDF are more likely to have CAD.\(^{20,28}\) Kamalapathy, et al.\(^{29}\) and Shah, et al.\(^{30}\) reported that patients with anxiety and depression have a higher risk of readmission after ACDF.

Among the perioperative factors, pulmonary complication was revealed to be significantly associated with unplanned readmission after ACDF. While we considered dyspnea, pulmonary edema, and pneumonia as pulmonary complications, deep vein thrombosis was examined as an independent complication. Pulmonary complications are commonly known to cause unplanned readmission after ACDF.\(^{20,31}\) They have been reported to result in unplanned readmission in 14% of the total number of patients.\(^{20}\) Similarly, another study has shown that 13.1% of the patients who were readmitted after ACDF had pulmonary complications.\(^5\) Furthermore, pulmonary complications are the second most common cause of unplanned re-admission after ACDF, while the most common cause is systemic infection and sepsis.\(^{32}\) For another perioperative factor, wound complication was also reported to be a significant risk factor of readmission after ACDF; Zaki, et al.\(^{32}\) and Dial, et al.\(^{20}\) reported that the proportions of patients readmitted after ACDF due to wound complications were 5.7% and 5%, respectively. Another study showed that 16.7% of the patients who required readmission had wound infection, and postoperative superficial surgical site infection was revealed to be significantly associated with readmission within 30 days.\(^{33}\) However, in this meta-analysis, wound complication was considered a risk factor of readmission could not be analyzed due to the lack of data.

Finally, while postoperative dysphagia is one of the most serious complications associated with ACDF,\(^{13,16}\) this factor was not included in the present meta-analysis. In the absence of a uniform definition of dysphagia, its reported incidence after ACDF in the literature varies between 1% and 79%.\(^{21}\) In our study, we did not analyze the incidence of dysphagia after ACDF due to the lack of uniform data.

Limitations

This meta-analysis had some limitations. First, retrospective studies were analyzed, which might have affected the results. Second, some risk factors were not included in the analysis due to the lack of data. For example, although esophageal rupture is a critical but rare complication associated with ACDF,\(^{13,30,31,34,15}\) it was not analyzed in this study due to the limited information available. Further studies are required to analyze the risk factors that are considered clinically significant.

Conclusion

The incidence of unplanned readmission after ACDF was 6.2%. Advanced age, male sex, ASA grade >2, HTN, DM, CAD, anxiety and depression, and pulmonary complications were significantly associated with unplanned readmission after ACDF. Furthermore, having private insurance was identified as a factor that could prevent unplanned readmission after ACDF. Understanding the risk factors of readmission would help surgeons ensure the quality of management and prevent financial burden.
AUTHOR CONTRIBUTIONS

Conceptualization: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Data curation: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Formal analysis: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Funding acquisition: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Investigation: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Methodology: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Project administration: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Resources: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Software: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Supervision: all authors. Validation: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Visualization: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Writing—original draft: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Writing—review & editing: Young Ju Lee, Sang Hyun Kim, and Sung Hyun Noh. Approval of final manuscript: all authors.

ORCID iDs

Young Ju Lee https://orcid.org/0000-0001-5411-6779
Pyung Goo Cho https://orcid.org/0000-0001-7087-8597
Keung Nyun Kim https://orcid.org/0000-0003-2248-9188
Sang Hyun Kim https://orcid.org/0000-0003-2643-7035
Sung Hyun Noh https://orcid.org/0000-0003-2732-0031

REFERENCES

1. Maravar S, Girardi FP, Sama AA, Ma Y, Gaber-Baylis LK, Besculides MC, et al. National trends in anterior cervical fusion procedures. Spine (Phila Pa 1976) 2010;35:1454-9.
2. Marquez-Lara A, Nandyala SV, Fineberg SJ, Singh K. Current trends in demographics, practice, and in-hospital outcomes in cervical spine surgery: a national database analysis between 2002 and 2011. Spine (Phila Pa 1976) 2014;39:476-81.
3. Lee JY, Park MS, Moon SH, Shin JH, Kim SW, Kim YC, et al. Loss of lordosis and clinical outcomes after anterior cervical fusion with dynamic rotational plates. Yonsei Med J 2013;54:726-31.
4. Kim JH, Park PJ, Yi S, Kim KH, Kuh SJ, Chin DK, et al. Anterior cervical discectomy and fusion alters whole-spine sagittal alignment. Yonsei Med J 2015;56:1060-70.
5. McIlvennan CK, Eapen ZJ, Allen LA. Hospital readmissions reduction program. Circulation 2015;131:1796-803.
6. Jain N, Phillips FM, Khan SN. Distribution and determinants of 90-day payments for multilevel posterior lumbar fusion: a medicare analysis. Clin Spine Surg 2018;31:E197-203.
7. Goyal A, Bhandarkar AR, Alvi MA, Kereezoudis P, Yolcu YU, Hamburmann EB, et al. Cost of readmissions following anterior cervical discectomy and fusion: insights from the nationwide readmissions database. Neurosurgery 2020;87:679-88.
8. Sheha ED, Salzmann SN, Khormae S, Yang J, Girardi FP, Cammissa FP, et al. Patient factors affecting emergency department utilization and hospital readmission rates after primary anterior cervical discectomy and fusion: a review of 41813 cases. Spine (Phila Pa 1976) 2017;42:1078-86.
9. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71.
10. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. Newcastle-Ottawa quality assessment scale cohort studies. Ottawa: University of Ottawa; 2014.
11. Machino M, Yukawa Y, Inagama S, Ito K, Katayama Y, Matsumoto T, et al. Age-related and degenerative changes in the osseous anatomy, alignment, and range of motion of the cervical spine: a comparative study of radiographic data from 1016 patients with cervical spondylotic myelopathy and 1230 asymptomatic subjects. Spine (Phila Pa 1976) 2016;41:476-82.
12. Cloward RB. The anterior approach for removal of ruptured cervical disks. J Neurosurg 1958;15:602-17.
13. Joseph JR, Smith BW, Mummaneni PV, La Marca E, Park P. Postoperative dysphagia correlates with increased morbidity, mortality, and costs in anterior cervical fusion. J Clin Neurosci 2016;31:172-5.
14. Puvanesarajah V, Hassanzadeh H, Shin M, Shen FH, Singla A. Readmission rates, reasons, and risk factors following anterior cervical fusion for cervical spondylitis in patients above 65 years of age. Spine (Phila Pa 1976) 2017;42:78-84.
15. Bozic KJ, Ward L, Vail TP, Maze M. Bundled payments in total joint arthroplasty: targeting opportunities for quality improvement and cost reduction. Clin Orthop Relat Res 2014;472:188-93.
16. Bazar R, Lee MJ, Yoo JU. Incidence of dysphagia after anterior cervical spine surgery: a prospective study. Spine (Phila Pa 1976) 2002;27:2453-8.
17. Schafer E, Bazydlo M, Schultz L, Park P, Chang V, Easton RW, et al. Rates and risk factors associated with 90-day readmission following cervical spine fusion surgery: analysis of the Michigan Spine Surgery Improvement Collaborative (MSSIC) registry. Spine J 2020;20:708-16.
18. Echt M, de la Garza Ramos N, Nakha J, Gelfand Y, Cezayirli P, Hollander R, et al. The effect of cigarette smoking on wound complications after single-level posterolateral and interbody fusion for spondylolisthesis. World Neurosurg 2018;116:e824-9.
19. Connor M, Briggs RG, Bonney PA, Lamerio-Foote K, Shikirkova K, Min E, et al. Tobacco use is associated with increased 90-day readmission among patients undergoing surgery for degenerative spine disease. Global Spine J 2022;12:787-94.
20. Dial BL, Esposito VR, Danilkovic B, O’Donnell J, Sugarman B, Blizzard DJ, et al. Factors associated with extended length of stay and 90-day readmission rates following ACDF. Global Spine J 2020;10:252-60.
21. Elsamady C, Koo AB, Lee M, Friedman IG, David WB, Kundishora AJ, et al. Patient risk factors associated with 30- and 90-day readmission after cervical discectomy: a nationwide readmission database study. Clin Spine Surg 2020;33:E434-41.
22. Taylor BES, Hilden P, Hansen RTB, Nanda A, Gillick JL. National rates, reasons, and risk factors for 30- and 90-day readmission and reoperation among patients undergoing anterior cervical discectomy and fusion: an analysis using the nationwide readmissions database. Spine (Phila Pa 1976) 2021;46:1302-14.
23. Tanenbaum JE, Miller JA, Alentado VJ, Lubelski D, Rosenbaum BP, Benzec EL, et al. Insurance status and reportable quality metrics in the cervical spine fusion population. Spine J 2017;17:862-9.
24. Zeidan M, Goz V, Lakomkin N, Spina N, Brodke DS, Spiker WR. Predictors of readmission and prolonged length of stay after cervical disc arthroplasty. Spine (Phila Pa 1976) 2021;46:487-91.
25. Zreik J, Alvi MA, Yolcu YU, Sebastian AS, Friedman BA, Bydon M. Utility of the 5-item modified frailty index for predicting adverse outcomes following elective anterior cervical discectomy and fusion. World Neurosurg 2021;146:e670-7.
26. Phan K, Kim JS, Lee NJ, Kohari P, Cho SK. Relationship between ASA scores and 30-day readmissions in patients undergoing anterior cervical discectomy and fusion. Spine (Phila Pa 1976) 2017;42:86-91.
27. Wolters U, Wolf T, Stützer H, Schröder T. ASA classification and perioperative variables as predictors of postoperative outcome. Br
J Anaesth 1996;77:217-22.
28. Bhashyam N, De la Garza Ramos R, Nakhla J, Nasser R, Jada A, Purvis TE, et al. Thirty-day readmission and reoperation rates after single-level anterior cervical discectomy and fusion versus those after cervical disc replacement. Neurosurg Focus 2017;42:E6.
29. Kamalapathy PN, Wang KY, Puvanesarajah V, Raad M, Hassanzadeh H. Presence and severity of mental illness is associated with increased risk of postoperative emergency visits, readmission, and reoperation following outpatient ACDF: a national database analysis. Global Spine J 2021 Jul 2. [Epub]. Available at: https://doi.org/10.1177/219256822110236913.
30. Shah KC, Dominy C, Tang J, Geng E, Arvind V, Pasik S, et al. Significance of hospital size in outcomes of single-level elective anterior cervical discectomy and fusion: a nationwide readmissions database analysis. World Neurosurg 2021;155:e687-94.
31. Samuel AM, Fu MC, Toy JO, Łukasiewicz AM, Webb ML, Bohl DD, et al. Most 30-day readmissions after anterior cervical discectomy and fusion are not due to surgical site-related issues: an analysis of 17,088 patients. Spine (Phila Pa 1976) 2016;41:1801-7.
32. Zaki O, Jain N, Yu EM, Khan SN. 30-and 90-day unplanned readmission rates, causes, and risk factors after cervical fusion: a single-institution analysis. Spine (Phila Pa 1976) 2019;44:762-9.
33. Riley LH 3rd, Vaccaro AR, Dettori JR, Hashimoto R. Postoperative dysphagia in anterior cervical spine surgery. Spine (Phila Pa 1976) 2010;35(9 Suppl):S76-85.
34. Zhong ZM, Jiang JM, Qu DB, Wang J, Li XP, Lu KW, et al. Esophageal perforation related to anterior cervical spinal surgery. J Clin Neurosci 2013;20:1402-5.
35. Patel NP, Wolcott WP, Johnson JP, Cambron H, Levin M, McBride D, et al. Esophageal injury associated with anterior cervical spine surgery. Surg Neurol 2008;69:20-4.