Posttraumatic stress disorder (PTSD) is a complex psychiatric disorder that can develop following exposure to traumatic events. The Psychiatric Genomics Consortium PTSD group (PGC-PTSD) has collected over 20,000 multi-ethnic PTSD cases and controls and has identified both genetic and epigenetic factors associated with PTSD risk. To further investigate biological correlates of PTSD risk, we examined three PGC-PTSD cohorts comprising 977 subjects to identify differentially expressed genes among PTSD cases and controls. Whole blood gene expression was quantified with the HumanHT-12 v4 Expression BeadChip for 726 OEF/OIF veterans from the Veterans Affairs (VA) Mental Illness Research Education and Clinical Center (MIRECC), 155 samples from the Injury and Traumatic Stress (INTRuST) Clinical Consortium, and 96 Australian Vietnam War veterans. Differential gene expression analysis was performed in each cohort separately followed by meta-analysis. In the largest cohort, we performed co-expression analysis to identify modules of genes that are associated with PTSD and MDD. We then conducted expression quantitative trait loci (eQTL) analysis and assessed the presence of eQTL interactions involving PTSD and major depressive disorder (MDD). Finally, we utilized PTSD and MDD GWAS summary statistics to identify regions that colocalize with eQTLs. Although not surpassing correction for multiple testing, the most differentially expressed genes in meta-analysis were interleukin-1 beta (IL1B), a pro-inflammatory cytokine previously associated with PTSD, and integrin-linked kinase (ILK), which is
INTRODUCTION

Posttraumatic stress disorder (PTSD) is a common psychiatric disorder that can occur following exposure to traumatic events. It is characterized by re-experiencing symptoms, avoidance, and persistent hyperarousal. While 7–8% of adults in the United States will experience PTSD over the course of their lifetime (Kessler et al., 2005; Roberts et al., 2011; Kilpatrick et al., 2013), rates are much higher among military veterans. The prevalence of PTSD in veterans returning from Iraq/Afghanistan is estimated to be 23% (Fulton et al., 2015), whereas an estimated 30% of Vietnam veterans have experienced lifetime PTSD (Kulka et al., 1990). Individuals with PTSD are at increased risk for many other comorbid conditions including major depressive disorder (MDD) (Cougle et al., 2010; Rytwinski et al., 2013; Flory and Yehuda, 2015; Ben Barnes et al., 2018), substance abuse disorder (SUD) (Petakis et al., 2011; Seal et al., 2011; Blanco et al., 2013; Stein et al., 2017; Teeters et al., 2017), sleep disorders (Pigeon et al., 2013; Lind et al., 2020), and cardiovascular disease (Pollard et al., 2016; Koenen et al., 2017). Individuals with PTSD are also at increased risk for suicidal behaviors, particularly if they experience comorbid MDD (Oquendo et al., 2005; Panagioti et al., 2012; Kimbrel et al., 2016; Livingston et al., 2020; Ursano et al., 2020). For example, Kimbrel et al. (2016) found that among Iraq/Afghanistan-era war veterans, comorbid PTSD-depression was a robust prospective predictor of future suicide attempts over a 12-month period, even after controlling for the effects of sex, age, race, sexual orientation, and lifetime history of suicide attempts. Given the rate of death by suicide among veterans is approximately 1.5 times the rate among non-veteran adults (Department of Veterans Affairs, Office of Mental Health & Suicide Prevention, 2020), it is clear that an improved understanding of the etiology of PTSD and depression is of utmost importance.

While most people experience at least one traumatic event in their life, only some will subsequently develop PTSD (Benjet et al., 2016; Liu et al., 2017), suggesting that a heritable component to risk for PTSD exists. Based on family and twin studies, genetic susceptibility accounts for an estimated 30–70% of the variance in PTSD risk (True et al., 1993; Yehuda et al., 2001; Stein et al., 2002; Wolf et al., 2014). There is also evidence for a shared heritable influence on PTSD and MDD (Sartor et al., 2012). Utilizing over 20,000 individuals from 11 studies, the Psychiatric Genomics Consortium-Posttraumatic Stress Disorder group (PGC-PTSD) recently reported a single nucleotide polymorphism (SNP) heritability estimate of 29% for European-American females and found evidence for overlapping genetic risk between PTSD and schizophrenia, bipolar disorder, and MDD (Duncan et al., 2018). Even with large sample sizes, it has been difficult to identify robust regions of association with PTSD, illustrating the complex and multi-genic nature of the disorder. Recent GWAS reports from the PGC-PTSD and Million Veteran Program (MVP) have had greater success in identifying PTSD-associated loci when utilizing quantitative symptom severity and symptom subdomains instead of PTSD diagnosis (Maihofer et al., submitted; Stein et al., 2021). Nonetheless, the biological mechanisms underlying these largely non-coding regions of association have not yet been elucidated.

Gene expression profiling has been widely used to identify genes and pathways that are associated with specific biological processes and to study related molecular mechanisms. A recent transcriptome-wide study in prefrontal cortex (PFC) of post-mortem human brains identified co-regulated gene networks that are altered in PTSD, including differences between men and women which could help explain the increased prevalence of PTSD among women (Girgenti et al., 2021). However, due to the extremely limited availability of human brain tissue from PTSD-affected donors, the majority of studies have focused on gene expression in human peripheral blood samples. Although this is a limitation, evidence from both human and animal studies indicate it is likely that changes in the blood transcriptome reflect at least some changes occurring in the brain. For example, inflammation in the periphery has been associated with global brain transcriptome changes in mouse (Thomson et al., 2014). In highly expressed in brain and can rescue dysregulated hippocampal neurogenesis and memory deficits. Pathway analysis revealed enrichment of toll-like receptor (TLR) and interleukin-1 receptor genes, which are integral to cellular innate immune response. Co-expression analysis identified four modules of genes associated with PTSD, two of which are also associated with MDD, demonstrating common biological pathways underlying the two conditions. Lastly, we identified four genes (UBA7, HLA-F, HSPA1B, and RERE) with high probability of a shared causal eQTL variant with PTSD and/or MDD GWAS variants, thereby providing a potential mechanism by which the GWAS variant contributes to disease risk. In summary, we provide additional evidence for genes and pathways previously reported and identified plausible novel candidates for PTSD. These data provide further insight into genetic factors and pathways involved in PTSD, as well as potential regions of pleiotropy between PTSD and MDD.

Keywords: posttraumatic stress disorder, gene expression, major depressive disorder, quantitative trait loci, multi-ethnic, meta-analysis
humans, Huckins et al. (2020) showed that genetically regulated transcriptomic changes in the brain correlate with measured gene expression changes in peripheral blood.

Many previous gene expression studies of peripheral blood in PTSD patients and controls have reported that alterations in immune and inflammatory response pathways are important in PTSD pathogenesis, specifically the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid (GC) function (Segman et al., 2005). For example, FK506 binding protein 5 (FKBP5), a GC receptor inhibitor, is downregulated in PTSD cases (Yehuda et al., 2009). This finding, along with other genes in the GC receptor signaling pathway, has been widely replicated across various trauma types (Mehta et al., 2011, 2018; Sarapas et al., 2011; van Zuiden et al., 2012; Logue et al., 2015; Kuan et al., 2017). Others have reported differentially expressed genes in pathways enriched for innate immunity and inflammatory response (Zieker et al., 2007; Neylan et al., 2011; Breen et al., 2015, 2018; Guardado et al., 2016; Rusch et al., 2019). Additionally, decreased interleukin 1A (IL1A) expression was observed in the dorsolateral prefrontal cortex (dPFC) of post-mortem PTSD brains (Morrison et al., 2019), a finding that is concordant with reports of altered cytokine expression in peripheral blood of PTSD patients (Zieker et al., 2007; Mehta et al., 2011; Breen et al., 2018).

Taken together, the findings described above suggest that altered transcripts in peripheral blood can still provide meaningful insights into the pathophysiology of PTSD. However, most of the studies to date have relied upon small sample sizes and did not include subjects from diverse ancestry groups. Accordingly, the objective of the current study was to conduct the largest meta-analysis of differential PTSD gene expression to date (n = 977), including 383 PTSD cases and 594 trauma-exposed controls from three multi-ethnic cohorts. Additional analyses aimed at uncovering genetic regulators of expression and modules of co-expression were performed in the largest cohort (n = 726). Finally, we sought to explain previously reported PTSD and MDD GWAS regions by alterations in gene expression.

MATERIALS AND METHODS

Study Participants

Nine hundred seventy-seven subjects with available gene expression, genotype, and clinical phenotype data were selected from three independent PGC-PTSD cohorts: veterans returning from Iraq/Afghanistan from the Veterans Affairs (VA) VISN-6 Mid-Atlantic Mental Illness Research Education and Clinical Center (MIRECC) as well as community civilians and all-era veterans enrolled in other trauma research studies at the Durham VA Health Care System and Duke University Medical Center (MIRECC/Duke; n = 726), the Injury and Traumatic Stress (INTRuST) Clinical Consortium (n = 155), and Australian Vietnam War veterans (GMFR-QUT; n = 96), which have been described previously (Ashley-Koch et al., 2015; McLeay et al., 2017; Akosile et al., 2018; Bomyea et al., 2019, 2020).

Posttraumatic stress disorder diagnosis for the MIRECC/Duke cohort was determined using either the Structured Clinical Interview for DSM-IV Disorders (SCID; First et al., 1994) or the Clinician-Administered PTSD Scale (CAPS; Blake et al., 1995), whereas PTSD severity was measured using the Davidson Trauma Scale (DTS; Davidson et al., 1997). For the INTRuST consortium, PTSD diagnosis was determined using either the PTSD Checklist-Civilian Version (PCL-C; Weathers et al., 1993), the CAPS (Blake et al., 1995), or the MINI International Neuropsychiatric Interview 6.0.0 (MINI; Sheehan et al., 1998), and for the GMRF-QUT cohort, PTSD diagnosis was determined with the CAPS-5 (Weathers et al., 2001). While the CAPS and SCID are considered gold standard interviews for PTSD, the MINI (compared to the SCID) has demonstrated a sensitivity of 0.85 and specificity of 0.96 for PTSD (Sheehan et al., 1998). Diagnosis based on a PCL cutoff of 50 (as used in the INTRuST cohort) has a sensitivity of 0.52 and a specificity of 0.94 for PTSD compared to the CAPS (Yeager et al., 2007). MDD was assessed in the MIRECC/Duke cohort using the SCID (First et al., 1994), whereas in the INTRuST consortium, depression was assessed using the Patient Health Questionnaire-9 (PHQ-9; Kroenke et al., 2001) and scores ≥ 15 indicated the subject had MDD. For the GMRF-QUT cohort, MDD was assessed with the MINI (Sheehan et al., 1998). While the SCID is a gold standard interview for MDD, the PHQ-9 has established reliability and validity to detect a high probability of MDD. Using the Mental Health Professional Validation Interview as the criterion standard, a PHQ-9 score ≥ 15 (as used in the INTRuST consortium) had a sensitivity of 0.68 and a specificity of 0.95 for MDD (Kroenke et al., 2001). The MINI, which was used in the GMRF-QUT cohort, demonstrated a sensitivity of 0.96 and a specificity of 0.88 compared to the SCID (Sheehan et al., 1998). Smoking status for participants in each cohort was determined using study-specific questionnaires. Each study received approval from their respective ethics committee or institutional review board (IRB), and informed consent was obtained from each study participant prior to data collection.

Gene Expression Microarrays

Gene expression data was generated in the three cohorts separately using HumanHT-12 v4 Expression BeadChips (Illumina Inc., San Diego, CA, United States), which capture 47,231 expression probes. For the MIRECC/Duke and INTRuST samples, whole blood was collected in PAXgene blood RNA tubes and incubated at room temperature overnight before being transferred to −20°C for 24 h and finally stored at −80°C. Total RNA was extracted using the PAXgene Blood RNA System Kit following manufacturer’s guidelines (Qiagen, Germantown, MD, United States). Purified RNA was analyzed for integrity (RIN) using the Agilent Bioanalyzer 2100 with Agilent RNA 6000 LabChip kits (Agilent, Santa Clara, CA, United States) and only samples with RIN ≥ 6 were included in downstream analyses. All RNA samples were processed using the Ambion GLOBINclear-Human Globin mRNA Removal Kit to deplete alpha and beta globin mRNA and to increase sensitivity of gene detection (Life Technologies, Foster City, CA, United States). The enriched RNA was amplified and biotin-labeled using the Illumina TotalPrep Amplification Kit before hybridization to the microarrays. Details regarding the generation of gene expression
data for the GMRF-QUT cohort have been described previously (Mehta et al., 2017, 2018).

Single Nucleotide Polymorphism Genotyping and Imputation

Information on SNP genotyping and imputation for all three cohorts have been previously described (Ashley-Koch et al., 2015; Mehta et al., 2017; Nievergelt et al., 2019). Briefly, DNA was hybridized to three different bead chips in three different batches for the MIRECC/Duke samples: HumanHap650 BeadChip, Human1M-Duo BeadChip, and HumanOmni2.5 BeadChip (Illumina, San Diego, CA, United States). Resulting genotypes were then merged and imputed using a global reference panel from 1000Genomes (1000 Genomes Project Consortium et al., 2015). For GMRF-QUT, genotypes were obtained from the Infinium PsychArray (Illumina Inc., San Diego, CA, United States) and were imputed with the 1000Genomes phase 3 reference panel on the Michigan Imputation Server (imputationserver.sph.umich.edu). INTRuST samples were genotyped using the Infinium PsychArray (Illumina Inc., San Diego, CA, United States) and were imputed with IMPUTE2 (Howie et al., 2009) using the 1000Genomes phase 3 reference panel. Principal component analysis (PCA) of SNPs from each cohort merged with hapmap3 data (International HapMap 3 Consortium et al., 2010) was performed and resulting PCs were plotted to visualize the population substructure present within each cohort using R.

Statistical Analysis

Sample characteristics were assessed for differences by cohort using SAS v9.4 (SAS Institute, Cary, NC, United States). Raw gene expression data was processed and quality control measures were taken for each cohort separately in R. For the MIRECC/Duke and INTRuST cohorts, probes below the detection threshold (detection \(p > 0.05 \)) for more than half of the samples were removed. Background adjustment, log2 transformation, and quantile normalization were performed using limma (Ritchie et al., 2015). PCA was performed to check for batch effects, which were subsequently corrected using ComBat (Johnson et al., 2007). For GMRF-QUT, data were transformed and normalized using the variance stabilizing normalization (Huber et al., 2002), and probes detected in \(\geq 5\% \) of samples (detection \(p\)-value \(< 0.05 \)) were retained for analysis (Mehta et al., 2017). For all cohorts, the proportion of monocytes and lymphocytes for each sample was estimated using an approach described in Logue et al. (2015). The following number of probes were available for analysis in each cohort: 17,776 for MIRECC/Duke, 13,586 for INTRuST, and 12,613 for GMRF-QUT. Differential gene expression analysis for PTSD was performed with a common pipeline in each cohort separately controlling for age, principal components (PCs), sex (if applicable), smoking status, and cell proportions using limma, followed by meta-analysis of the 11,502 overlapping probes using the inverse normal method (Marot et al., 2009; Ratanatharthorn et al., 2017). Inflation and bias were controlled using the empirical null distribution (van Iterson et al., 2017) and multiple testing was corrected using false discovery rate (FDR; Storey and Tibshirani, 2003). Pathway analysis was performed using DAVID (Huang da et al., 2009a,b). Unique genes corresponding to gene expression probes with meta-analysis \(p < 0.05 \) were used as the gene list of interest and all unique genes corresponding to the 11,502 gene expression probes common to all three cohorts were included as the background gene list. Finally, a volcano plot depicting the differential expression meta-analysis \(p\)-values and log fold changes obtained from the MIRECC/Duke cohort, which is the largest of the three cohorts included, was generated using R.

We next performed an expression quantitative trait loci (eQTL) analysis in the MIRECC/Duke subjects, stratified by ethnicity, using fastQTL (Ongen et al., 2016). Specifically, each gene expression probe was regressed on SNP genotypes within a 1MB window, using an additive genetic model and controlling for 10 PCs from PCA of normalized gene expression values and 10 PCs from PCA of SNP data. Only the most significant SNP for each probe was retained. Using the most significant SNP for each probe, we then tested for interactions with current PTSD status, controlling for the same 20 PCs listed above, in PLINK. Likewise, we interrogated SNP by current MDD interactions using the same approach.

Utilizing summary statistics from the most recent PGC-PTSD GWAS (Maihofer et al., submitted) and MDD GWAS (Wray et al., 2018), we tested for colocalization with eQTLs identified in 309 non-Hispanic white (NHW) MIRECC/Duke subjects. There were 20 GWAS-associated regions for PTSD and 44 regions for MDD. All eQTLs involving a gene which resides in these 64 regions were interrogated for evidence of a shared causal variant with SNPs from the PTSD and MDD GWAS studies using coloc (Giambartolomei et al., 2014), a Bayesian method that investigates five possible hypotheses: no association (H0), association with PTSD (MDD) but not gene expression (H1), association with gene expression but not PTSD (MDD) (H2), two distinct causal variants, each associated with one trait (H3), or a shared causal variant that is associated with both PTSD (MDD) and gene expression (H4). Regions with posterior probability for H4 (\(PP_H4 \) > 0.90) were deemed to co-localize.

To identify modules of co-regulated gene expression, weighted correlation network analysis was performed with WGCNA (Zhang and Horvath, 2005; Langfelder and Horvath, 2008) in all MIRECC/Duke subjects (\(n = 726 \)) and subsequently in 309 NHW MIRECC/Duke subjects and 417 non-Hispanic black (NHB) MIRECC/Duke subjects separately. Probes missing for > 15% of samples were removed. For genes with > 1 expression probe, only the most variable probe was retained. Finally, the distribution of probe variability was inspected and the 50% most variable probes were included in WGCNA (\(n = 5,070 \) probes for all subjects, \(n = 5,187 \) probes for NHW subjects, and \(n = 4,993 \) probes for NHB subjects). A soft-threshold parameter was chosen to approximate scale-free topology, modules were detected with a minimum size = 30, and resulting modules were merged when the correlation coefficient was \(\geq 0.75 \). Logistic regression was used to test for association between each module eigengene and current PTSD, current MDD, and current smoking status, controlling for age, sex, PCs,
and cell type estimates. Current smoking status was included as a covariate in the models for current PTSD and current MDD. Total DTS score was also tested for association with each module eigengene controlling for the same covariates and assuming a zero-inflated negative binomial distribution. Pathway analysis using DAVID was performed on resulting co-expression modules with module members as the gene list of interest and all genes input into WGCNA (described above) as the background gene list.

RESULTS

A description of sample characteristics by cohort is shown in Table 1. Subjects from GMRF-QUT were significantly older, exclusively male, more likely to be non-smokers, and had a higher percentage of PTSD compared to those from MIRECC/Duke or INTRuST. The percentage of MDD in the MIRECC/Duke cohort was higher compared to INTRuST and GMRF-QUT. PTSD and MDD were significantly correlated in all three cohorts ($p \leq 0.0001$) and Cramer's χ between PTSD and MDD was highest among INTRuST subjects ($V_{MIRECC/Duke} = 0.38$, $V_{GMRF/QUT} = 0.43$, $V_{INTRuST} = 0.53$). The MIRECC/Duke subset utilized in this analysis was comprised of 309 NHW and 417 NHB subjects. PCA plots of each cohort overlaid with HapMap3 samples show that the GMRF-QUT samples were primarily of European descent, whereas the INTRuST samples were multi-ethnic (Supplementary Figures 1–3).

Despite these differences in cohort characteristics, meta-analysis revealed 558 genes that were differentially expressed between PTSD cases and controls ($p < 0.05$, Supplementary Table 1). Inflation and bias were sufficiently controlled ($k_{GC} = 1.1$). Meta-analysis p-values and effect sizes from the largest cohort (MIRECC/Duke) are depicted in Figure 1. For nominally significant probes ($p < 0.05$), the direction of effect is concordant 91% of the time for MIRECC/Duke and INTRuST, and is concordant 72% of the time for MIRECC/Duke and GMRF-QUT. Although not surpassing correction for multiple testing, the most significant genes were interleukin-1 beta ($IL1B$; $p = 2.15 \times 10^{-5}$), and integrin-linked kinase (ILK; $p = 1.10 \times 10^{-4}$). PTSD cases displayed higher expression of $IL1B$ compared to controls, whereas ILK expression was lower in PTSD cases compared to controls. Pathway analysis of all nominally associated genes ($p < 0.05$) revealed an enrichment of genes involved in Toll-interleukin 1 resistance (SM00255:TIR; $p = 7.01 \times 10^{-4}$), including $TLR5$, $TLR6$, $TLR8$, $TLR10$, $IL1RAP$, and $IL18RAP$, which represent seven unique expression probes that were all upregulated in PTSD cases.

Quantitative trait loci analysis identified many SNPs associated with expression levels: 2,216 in the NHW MIRECC/Duke subset and 1018 in the NHB subset (FDR $q < 0.05$). Subsequently, we performed an interaction analysis and identified several SNPs that were associated with gene expression at levels surpassing correction for multiple testing, but only in those with either PTSD or MDD. In the NHB subset, rs28842268 was associated with ILMN_1764090 in AK3L1 (AK4), but only among those with PTSD ($p = 7.9 \times 10^{-6}$, $q = 0.0473$, Supplementary Figure 4A). Likewise, in the NHB subset, rs11823726 was associated with ILMN_1759789 in KAT5, but only among those with PTSD ($p = 8.24 \times 10^{-6}$, $q = 0.0473$, Supplementary Figure 4B). In the NHW subset, we observed two eQTLs that were significant only in those with MDD. rs28536123 was associated with ILMN_2134888 in TUBE1 ($p = 3.43 \times 10^{-9}$, $q = 4.25 \times 10^{-5}$, Supplementary Figure 4C) and rs687562 was associated with ILMN_1872122 in LCOR ($p = 1.63 \times 10^{-6}$, $q = 0.0101$, Supplementary Figure 4D), but only among those with MDD. These results should be viewed as preliminary due to small sample size and require replication in independent cohorts.

Next, Bayesian colocalization analysis was used to detect regions with high probability of a shared causal variant for PTSD or MDD and gene expression (Table 2). One eQTL in Ubiquitin Like Modifier Activating Enzyme 7 ($UBA7$; $PP_{H4} = 0.9604$) colocalized with PTSD associated variants, whereas two eQTLs were found to colocalize with MDD associated variants: one in HLA-F ($PP_{H4} = 0.9844$) and one in HSPA1B ($PP_{H4} = 0.9509$). Several other regions displayed suggestive evidence for colocalization, including two separate eQTLs in RERE ($PP_{H4} = 0.8757$ and 0.8488) with MDD associated variants. Interestingly, the eQTL in UBA7 deemed to colocalize with PTSD associated variants also showed suggestive evidence for colocalization with MDD associated variants ($PP_{H4} = 0.8178$).

Weighted gene co-expression analysis in all MIRECC/Duke subjects identified 17 modules, none of which were associated with PTSD. When stratifying by ancestry, 16 independent co-expression modules were identified in the NHB subset and 18 were identified in the NHW subset. While none of the module eigengenes were associated with PTSD in the NHB subset, four modules significantly associated with PTSD status in the NHB subset ($p \leq 0.05$, Figure 2). Two modules (MEnd and MRed) were upregulated in PTSD cases and two modules (MExpink and MExpurple) were downregulated in PTSD cases. MExpurple was also associated with PTSD severity as measured by total DTS score ($p = 0.0356$), and with current MDD status ($p = 0.0007$), an association that surpassed adjustment for multiple testing (Bonferroni adjustment; 18 tests; $p = 0.0028$). Additionally, MRed was also associated with MDD status ($p = 0.0118$) and MEnd was also associated with current smoking status ($p = 0.041$). These associations were in the same direction as were those for PTSD: MExpurple genes were downregulated in MDD and associated with decreasing total DTS score, MExpurple genes were

Table 1	Sample characteristics by cohort.			
	MIRECC/Duke ($n = 726$)	INTRuST ($n = 155$)	GMRF-QUT ($n = 96$)	p-value
Mean age (SD)	37.7 (10.1)	32.5 (11.0)	68.7 (4.4)	<0.0001
% Female	22.9%	40.0%	0.0%	<0.0001
% PTSD	39.4%	31.6%	50.0%	0.0146
% MDD	26.1%	11.2%	12.5%	<0.0001
% Smoking	28.4%	19.1%	6.3%	<0.0001
FIGURE 1 Volcano plot depicting differential gene expression p-values from meta-analysis and log fold change from the MIRECC/Duke cohort. In each cohort, differences in gene expression between PTSD cases and controls were interrogated controlling for age, PCs, sex (except in GMRF-QUT, which was exclusively male), smoking status, and cell proportions. The most significant genes (IL1B and ILK) and those from the enriched Toll-interleukin 1 resistance pathway (SM00255:TIR; TLR5, TLR6, TLR8, TLR10, IL1RAP, and IL18RAP) are labeled.

upregulated in MDD, and MEtan genes were upregulated in smokers. Pathways significantly enriched in the PTSD-associated co-expression modules are listed in Table 3. The genes in MEtan showed significant enrichment for gene ontology (GO) terms involving plasma membrane/transmembrane, glycoprotein, and signal peptide (FDR $q < 0.05$), whereas genes in MRed were enriched for protein transport, alternative splicing, and phosphoprotein GO terms (FDR $q < 0.05$). MEpink genes were enriched for KEGG pathway term “metabolic pathways” (FDR $q < 0.05$) and MEPurple showed enrichment for actin binding, alternative splicing, and adaptive immunity GO terms (FDR $q < 0.05$).

DISCUSSION

This is the largest meta-analysis of differential PTSD gene expression to date. Results not only identified genes in pathways relevant to PTSD pathogenesis, but also showed PTSD and MDD GWAS signals may be driven by differences in gene
expression. The most significant differentially expressed gene was interleukin-1β (IL1B), a pro-inflammatory cytokine that is associated with innate immunity and has been extensively studied for its role in autoinflammatory diseases (Dinarello, 2011). Indeed, those with PTSD are at increased risk for autoimmune disorders including rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel diseases, and multiple sclerosis (Ali et al., 2014; O’Donovan et al., 2015; Song et al., 2018; Bookwalter et al., 2020), and display elevated levels of pro-inflammatory cytokines, including interleukin-1β.

TABLE 2 | Colocalization of eQTLs in NHW MIRECC/Duke subset and either PTSD or MDD associated GWAS regions (PP^4 > 0.8).

Gene expression probe	Gene	PTSD GWAS region (Maihofer et al., submitted)	MDD GWAS regions (Wray et al., 2018)	Summary statistics used for analysis	N SNPs tested	Posterior probability of shared causal variant (PP^4)
ILMN_1794612	UBA7	chr3:49734229-50209053	PTSD	1,254	0.9604	
ILMN_1762861	HLA-F	chr6:27738000-32848000	MDD	628	0.9844	
ILMN_1660436	HSPA1B	chr6:27738000-32848000	MDD	1,574	0.9509	
ILMN_1802380	RERE	chr1:8390000-8896000	MDD	1,341	0.8757	
ILMN_2327795	RERE	chr1:8390000-8896000	MDD	1,341	0.8488	
ILMN_1726288	TMEM106B	chr7:12154000-12381000	MDD	4,382	0.8426	
ILMN_3238859	FAM120AOS	chr9:96181075-96381916	MDD	2,907	0.8276	
ILMN_1738239	RBM6	chr3:49734229-50209053	MDD	1,538	0.8253	
ILMN_1794612	UBA7	chr3:49734229-50209053	MDD	1,363	0.8178	

FIGURE 2 | Co-expression modules detected in NHW MIRECC/Duke subjects and subsequent associations with PTSD, PTSD severity, MDD, and smoking status. The heatmap color scale represents effect sizes of each association (betas are listed in each cell, followed by corresponding p-value in parenthesis).
TABLE 3 | Pathways enriched in co-expression modules that are also associated with PTSD (MEpurple, MEtan, MEPink, and MERed).

Module	Category	Term	N	%	p-value	Fold Enrichment	FDR q-value
MEpurple	GOSTERM_CC_DIRECT	GO:0016020 membranes	84	24.21	3.29E-05	1.51	0.0124
MEpurple	UP_KEYWORDS	Actin-binding	18	5.19	4.08E-05	3.08	0.0126
MEpurple	GO:0003779	ATP-binding	50	14.41	4.43E-05	1.78	0.0069
MEpurple	GOSTERM_MF_DIRECT	GO:0003779 actin binding	19	5.48	8.22E-05	2.80	0.0415
MEpurple	UP_KEYWORDS	Alternative splicing	236	68.01	6.20E-04	1.13	0.0472
MEpurple	UP_KEYWORDS	Disease mutation	66	19.02	6.91E-04	1.48	0.0422
MEpurple	UP_KEYWORDS	Adaptive immunity	13	3.75	8.78E-04	3.01	0.0447
MEtan	GOSTERM_CC_DIRECT	GO:0005886 membrane	56	36.13	4.22E-06	1.77	0.0008
MEtan	UP_KEYWORDS	Membrane	84	54.19	5.78E-06	1.48	0.0013
MEtan	UP_SEQ_FEATURE	Glycoprotein	47	30.32	4.32E-05	1.78	0.0049
MEtan	UP_SEQ_FEATURE	Transmembrane	61	39.35	5.50E-05	1.58	0.0041
MEtan	UP_SEQ_FEATURE	glycoylation site: N-linked (GlcNAc...)	44	28.39	6.92E-05	1.80	0.0388
MEtan	UP_SEQ_FEATURE	signal peptide	37	23.87	8.02E-05	1.93	0.0227
MEtan	UP_SEQ_FEATURE	Transmembrane helix	60	38.71	9.65E-05	1.56	0.0054
MEtan	UP_SEQ_FEATURE	Transmembrane region	55	35.48	1.31E-04	1.60	0.0397
MEtan	GOSTERM_CC_DIRECT	GO:0005887 integral component of membrane	24	15.48	3.69E-04	2.20	0.0399
MEtan	GOSTERM_CC_DIRECT	GO:0016021 integral component of membrane	56	36.13	5.86E-04	1.50	0.0359
MEPink	KEGG_PATHWAY	hsa01100 Metabolic pathways	18	11.61	6.28E-04	2.51	0.0280
MERed	UP_KEYWORDS	Protein transport	70	7.35	9.68E-06	1.62	0.0307
MERed	UP_KEYWORDS	Alternative splicing	619	65.71	1.43E-04	1.08	0.0271
MERed	UP_KEYWORDS	Phosphoprotein	556	59.02	1.94E-04	1.09	0.0245
MERed	UP_KEYWORDS	Ubl conjugation pathway	67	7.11	4.55E-04	1.47	0.0426

Functional annotation source (Category), the enriched term associated with the module gene list (Term), number of genes involved in the functional annotation term (N), percentage of involved genes to total genes (%), p-value (p-value), fold enrichment (Fold enrichment), and Benjamini-Hochberg false discovery rate (FDR q-value) are listed above.

We also detected reduced expression of ILK, the gene encoding ILK, a key scaffold protein that localizes to focal adhesions and is involved in the regulation of many cellular processes including cell growth, survival, adhesion, invasion, and migration. ILK is highly expressed in several brain regions including hippocampus, cerebellum, and frontal cortex (Mills et al., 2003; Xu et al., 2015) and is essential for neurite outgrowth (Mills et al., 2003), dendritogenesis (Naska et al., 2006), and survival signaling in hippocampal neurons (Gary et al., 2003). Although this gene has not previously been implicated in PTSD, indirect evidence points to ILK as a plausible candidate for further interrogation. In mouse, knockdown of brain-derived neurotrophic factor (BDNF), a gene associated not only with PTSD, but also MDD, bipolar disorder, and schizophrenia, results in dysregulation of hippocampal neurogenesis and memory deficits (BDNF+/-; Ernfors et al., 1994). Overexpression of ILK in the hippocampus of these mice rescues the hippocampal neurogenesis and memory deficits (Xu et al., 2015). Additionally, in a rat model of fetal alcohol spectrum disorder, alcohol-exposed
pups displayed impaired contextual fear conditioning and memory performance, along with reduced hippocampal ILK activity (Bhattacharyya et al., 2015). This pattern has also been observed in a mouse model for Alzheimer’s disease (AD), where ILK protein levels are significantly decreased in the hippocampus of APP/PS1 mice, which display perturbed neurogenesis and memory deficits, and can be rescued by overexpressing ILK (Xu et al., 2018). The direction of the effects in these animal studies is consistent with our observation that ILK expression is reduced in PTSD cases. Relatedly, several studies have reported a bi-directional association between PTSD and dementia (reviewed in Desmarais et al., 2020); those with PTSD are at increased risk for dementia and vice versa. More research is necessary to investigate the potential therapeutic value of ILK signaling pathway targets in PTSD, as have been suggested for AD (Li et al., 2012; Xu et al., 2018).

In addition to IL1B and ILK, pathway analysis of all gene expression probes nominally associated with PTSD revealed an enrichment of toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) genes that share the conserved toll/IL-1R homologous region (TIR) and are involved in innate antibacterial and antifungal immunity, consistent with previous reports from gene expression (Breen et al., 2015) and methylation studies (Uddin et al., 2010; Smith et al., 2011) in PTSD. TLRs play an important role in pathogen recognition and activate a signaling cascade which leads to upregulation of pro-inflammatory cytokines, including interleukin-1β. Identification of not only IL1B, but also several TLR genes, demonstrates an increased burden of dysregulated innate immunity and inflammatory response genes among PTSD cases.

Correlation network analysis identified many modules of co-expression in the MIRECC/Duke cohort. Four modules identified in the NHW samples were associated with PTSD, two of which were also associated with MDD. Identification of coordinated expression associated with both PTSD and MDD confirms not only a strong correlation between the two phenotypes, but also shared biological pathways underlying the two conditions. We also identified eQTLs that were only significant in those with either PTSD or MDD, demonstrating genotype × environment interactions affecting gene expression. For instance, rs28842268 was associated with adenylate kinase 4 (AK4) expression, but only among PTSD cases; there was no effect among the control samples. AK4 localizes to the mitochondrial matrix and is involved in the cell survival response to oxidative stress (Liu et al., 2009; Kong et al., 2013), a molecular state that is activated by the persistent hyperarousal and fear experienced by those with PTSD (reviewed in Miller et al., 2018). Using a convergent functional genomics approach, Le-Niculescu et al. (2009) implicated AK4 in bipolar disorder, another neuropsychiatric condition which frequently co-occurs with PTSD (Cerimele et al., 2017). These data suggest there are genetic regulators of expression that are specific to the elevated stress and inflammatory state induced by PTSD.

Utilizing summary statistics from PTSD and MDD GWASs (Wray et al., 2018; Maihofer et al., submitted), we identified four genes (UBA7, HLA-F, HSPA1B, and RERE) with high probability of a shared causal eQTL variant with PTSD and/or MDD GWAS variants, thereby providing a potential mechanism by which the GWAS variant contributes to disease risk. UBA7 encodes an E1 ubiquitin-activating enzyme shown to be involved in STAT1-mediated interferon-α (INF-α) regulation of hippocampal neurogenesis and apoptosis (Borsini et al., 2018), processes triggered by a pro-inflammatory state. The UBA7 eQTL shares genetic effects with both PTSD and MDD GWAS variants, suggesting a potential pleiotropic mechanism at this locus. Recently, UBA7 was implicated in a transcriptome-wide association study (TWAS) of PTSD using brain tissue (Girgenti et al., 2021), confirming the association we observe in whole blood. The summary statistics utilized in Girgenti et al. were obtained from MVP (Stein et al., 2021) as opposed to the current study, which used summary statistics from PGC-PTSD (Maihofer et al., submitted), demonstrating an independent replication of the UBA7 finding. We also identified two eQTLs involving major histocompatibility complex (MHC) genes, HLA-F and HSPA1B, that displayed evidence for a shared genetic effect with MDD GWAS variants. The MHC group of genes encode proteins integral to immune response and variants in MHC genes have been associated with increased risk for many autoimmune diseases (reviewed in Matzaraki et al., 2017). As mentioned above, those with PTSD are at increased risk for autoimmune disorders and display increased levels of pro-inflammatory cytokines, including interleukin-1β. The identification of multiple shared genetic effects of MHC gene expression and MDD risk increases the body of evidence implicating inflammatory and immune response pathways in both PTSD and MDD. Finally, two separate eQTLs for Arginine-Glutamic Acid Dipeptide Repeats (RERE) colocalize with MDD GWAS variants. Of note, a chromatin accessibility QTL (cQTL) in RERE identified in dlPFC of post-mortem human brains was shown to colocalize with schizophrenia GWAS variants (Bryois et al., 2018), another psychiatric disorder that co-occurs with PTSD.

The majority of these findings represent eQTLs from a PTSD-enriched dataset that colocalize with MDD GWAS variants. This further demonstrates not only the phenotypic comorbidity between PTSD and MDD, but identifies genomic regions of possible pleiotropy. Functional studies are necessary to further investigate these associations. Still, these results suggest biological mechanisms by which non-coding and common genetic variants may influence risk for PTSD and/or MDD.

While we have identified plausible novel candidates for PTSD, and confirmed many previously reported genes and pathways, this study is not without limitations. We acknowledge that the associations we observed in the differential expression analysis failed to achieve correction for multiple testing. While we have assembled the largest study of gene expression in PTSD to date, still larger sample sizes are required to reach an adequate power threshold to detect more modest differences. Despite this, IL1B has been repeatedly implicated in PTSD, therefore our replication of increased IL1B expression in PTSD cases is important. Because ILK has not previously been associated with PTSD, replication in independent datasets.
is necessary. Secondly, gene expression was measured in peripheral blood as opposed to brain tissue. We did attempt to impute genetically-regulated dPFC expression in the NHW MIRECC/Duke subjects using a large eQTL reference panel (Huckins et al., 2019), but were only able to impute 6,928 genes with high confidence. Among the genes that were differentially expressed in both blood and imputed brain, nearly 70% showed a concordant direction of association with PTSD. The high percentage of concordance, as well as replication of pathways from the few brain-based studies available, lends credence to the hypothesis of at least partial overlap between blood and brain transcriptomes. Third, despite having compiled a large veteran cohort with respect to gene expression, it is difficult to identify robust interactions, particularly when SNPs involved have low minor allele frequency (MAF). As such, the eQTL interactions we have identified, particularly those involving SNPs with lower MAF, should be viewed as preliminary and need to be replicated in larger studies. Also, we did not investigate sex-specific associations due to the relatively small number of female samples available in the current study. Ascertainment of female veterans should be prioritized in future studies that interrogate gene expression using sequencing approaches. Future studies that interrogate gene expression using sequencing approaches would be beneficial to obtain a truly global depiction of the transcriptome.

CONCLUSION

This is the largest study of differential gene expression between PTSD cases and controls to date, and these analyses have identified many logical candidate genes and pathways for further research. Notably, while we did not replicate the FKBP5 finding (p > 0.05), the present findings provide additional support for the role of IL1B and other inflammatory response and innate immunity pathway genes in PTSD, and have identified ILK as a novel candidate. Further, we identified modules of co-expressed genes that were associated with both PTSD and MDD, suggesting common biological pathways underlie the two comorbid disorders. Finally, we identified changes in gene expression that may help explain several PTSD and MDD GWAS signals. These data provide further insight into genetic factors and pathways associated with PTSD, as well as potential regions of pleiotropy between PTSD and MDD.

MEMBERS OF THE PTSD INITIATIVE

Sarah McLeay, BSc(Hons), Ph.D., Wendy Harvey, BSc(Hons), MBBS, MPH, Madeline Romaniuk, BA, GradDipPsych, BBehSc(Hons), DPsyCh(Clinical), Darrell Crawford, MBBS, FRACP, M.D., David Colquhoun, MBBS, FRACP, Ross McD Young, Ph.D., Miriam Dwyer, BSc, HDipEd, John Gibson, MBBS, FRANZCP, Robyn O’Sullivan, MBBS, FRACP, Graham Cooksley, MBBS, M.D., FRACP, Christopher Strakosch, M.D., FRACP, Rachel Thomson, MBBS, GradDipClinEpi, Ph.D., FRACP, Joanne Voisey, BSc(Hons), Ph.D., Bruce Lawford, MBBS, FRANZCP, FACHAM (RACP).

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available because the institutional review board (IRB) protocols governing these datasets do not allow sharing of individual level data. Requests to access the datasets should be directed to the senior author, AA-K at allison.ashleykoch@duke.edu.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Durham (NC) VA Medical Center IRB, McGuire (Richmond, VA) VA Medical Center IRB, Hampton (VA) VA Medical Center IRB, W.G. (Bill) Hefner (Salisbury, NC) VA Medical Center IRB, Greenslopes Research and Ethics Committee, Queensland University of Technology Human Research Committee, San Diego (CA) VA Medical Center IRB, Togus (ME) VA Medical Center IRB, Cincinnati (OH) VA Medical Center IRB, Puget Sound (WA) VA Medical Center IRB, Dartmouth College (NH) IRB, University of California San Diego (CA) IRB, and Human Research Protections Office of the Department of Defense. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

AA-K, MH, and MG contributed to the design of the study. DM, MD, CM, GG, MS, NK, JB, MH, and AA-K assisted in the data collection, generation, and preparation. MG, XQ, and DM performed the analyses. MG prepared the first draft of the manuscript. AA-K, MH, NK, and JB contributed to the comments and edits during manuscript drafting. All authors

Members of the VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) Workgroup

Mira Brancu, Ph.D., Patrick S. Calhoun, Ph.D., Eric Dedert, Ph.D., Eric B. Elbogen, Ph.D., John A. Fairbank, Ph.D., Robin A. Hurley, M.D., Jason D. Kilts, Ph.D., Angela Kirby, M.S., Sara Martindale, Ph.D., Scott D. McDonald, Ph.D., Scott D. Moore, M.D., Ph.D., Rajendra A. Morey, M.D., M.S., Jennifer C. Naylor, Ph.D., Jared Rowland, Ph.D., Robert Shura, Ph.D., Cindy Swinkels, Ph.D., Steven T. Szabo, M.D., Ph.D., Katherine H. Taber, Ph.D., Larry A. Tupler, Ph.D., and Ruth E. Yoash-Gantz, Psy.D.
reviewed the manuscript, provided feedback, and approved the manuscript for submission.

FUNDING

Work utilizing the MIRECC/Duke cohort was supported by grant #101BX002577 from the Biomedical and Laboratory Research and Development (BLR&D) Service of the Department of Veterans Affairs (VA) Office of Research and Development (ORD). In addition, JB was supported by a Research Career Scientist Award (#11S-RCS-009) from CSR&D. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the VA or the US government. The PTSD Initiative was funded by the Queensland Branch of the Returned and Services League of Australia (RSL QLD), Australia. The Gallipoli Medical Research Foundation wishes to thank the RSL QLD for their generous donation, and Sullivan Nicolaides Pathology and Queensland X-Ray for their in-kind support. The authors thank the Faculty of Health QUT, and IHBI for financial and administrative support. DM was funded via the QUT Vice Chancellors Research Fellowship. Research using the INTRuST cohort was supported by the CDMRP award W81XWH-08-2-0159 (MS), the VA Office of Academic Affairs (J. Bomyea) and a Career Development Award from the US Department of Veteran Affairs (CSR&D CX001600-01A1-J. Bomyea).

ACKNOWLEDGMENTS

The authors thank the Gallipoli Medical Research Foundation for their support, especially Miriam Dwyer and Sarah McLeay for their project management support. The authors would also like to acknowledge Madeline Romanuik for psychological expertise and John Gibson and the team at the Keith Payne Unit, and the staff and investigators at Greenslopes Private Hospital for their valuable contribution to the study. All authors extend their gratitude to the study participants for their generous provision of data and time. The authors thank the INTRuST consortium contributors for contributions to the study design and execution.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnins.2021.678548/full#supplementary-material

REFERENCES

Akosile, W., Young, R., Lawford, B., Voisey, J., and Colquhoun, D. (2018). PTSD symptoms associated with myocardial infarction: practical clinical implications. *Australas. Psychiatry* 26, 60–64. doi: 10.1177/1039856217734738

Ali, T., Prammanasudh, C. S., Samuels, J. M., and Madhoun, M. F. (2014). Stress as a risk factor for inflammatory bowel disease: more evidence from our OEF/OIF veterans? *Am. J. Gastroenterol.* 109, 604–605. doi: 10.1038/ajg.2013.416

Ashley-Koch, A. E., Garrett, M. E., Gibson, J., Liu, Y., Dennis, M. F., Kimbrel, N. A., et al. (2015). Genome-wide association study of posttraumatic stress disorder in a cohort of Iraq-Afghanistan era veterans. *J. Affect. Disord.* 184, 225–234. doi: 10.1016/j.jad.2015.03.049

Ben Barnes, J., Hayes, A. M., Contractor, A. A., Nash, W. P., and Litz, B. T. (2018). The structure of co-occurring PTSD and depression symptoms in a cohort of Marines pre- and post-deployment. *Psychiatry Res.* 259, 442–449. doi: 10.1016/j.psychres.2017.10.045

Benjet, C., Bromet, E., Karam, E. G., Kessler, R. C., Mclaughlin, K. A., Ruscio, A. M., et al. (2016). The epidemiology of traumatic event exposure worldwide: results from the world mental health survey consortium. *Psychol. Med.* 46, 327–343.

Bhattacharya, D., Dunaway, E. P., Bhattacharya, S., Bloemer, J., Buabeid, M., Escobar, M., et al. (2015). Impaired ILK function is associated with deficits in hippocampal based memory and synaptic plasticity in a FASD rat model. *PLoS One* 10:e0135700. doi: 10.1371/journal.pone.0135700

Blake, D. D., Weathers, F. W., Nagy, L. M., Kaloupek, D. G., Gusman, F. D., Charney, D. S., et al. (1995). The development of a clinician-administered PTSD scale. *J. Trauma. Stress* 8, 75–90.

Blanco, C., Xu, Y., Brady, K., Perez-Fuentes, G., Okuda, M., and Wang, S. (2013). Comorbidity of posttraumatic stress disorder with alcohol dependence among US adults: results from national epidemiological survey on alcohol and related conditions. *Drug Alcohol. Depend.* 132, 630–638. doi: 10.1016/j.drugalcdep.2013.04.016

Bomyea, J., Flashman, L. A., Zafonte, R., Andaluz, N., Coimbra, R., George, M. S., et al. (2019). Flashman associations between neuropsychiatric and health status outcomes in individuals with probable mTBI. *Psychiatry Res.* 272, 531–539. doi: 10.1016/j.psychres.2018.12.021

Bomyea, J., Simmons, A. N., Shenton, M. E., Coleman, M. J., Bouix, S., Rathi, Y., et al. (2020). Neurocognitive markers of childhood abuse in individuals with PTSD: findings from the INTRuST Clinical Consortium. *J. Psychiatr. Res.* 121, 108–117. doi: 10.1016/j.jpsychires.2019.11.012

Bookwalter, D. B., Roenfeldt, K. A., Leardmann, C. A., Kong, S. Y., Riddle, M. S., and Rull, R. P. (2020). Posttraumatic stress disorder and risk of selected autoimmune diseases among US military personnel. *BMC Psychiatry* 20:23.

Borsini, A., Cattaneo, A., Malpighi, C., Thuret, S., Harrison, N. A., Consortium, M. R. C. I., et al. (2018). Interferon-alpha reduces human hippocampal neurogenesis and increases apoptosis via activation of distinct STAT1-dependent mechanisms. *Int. J. Neuropsychopharmacol.* 21, 187–200. doi: 10.1093/ijnppy/pxy083

Breen, M. S., Maihofer, A. X., Glatt, S. J., Tylee, D. S., Chandler, S. D., Tsuang, M. T., et al. (2015). Gene networks specific for innate immunity define post-traumatic stress disorder. *Mol. Psychiatry* 20, 1538–1545. doi: 10.1038/mp.2015.9

Breen, M. S., Tylee, D. S., Maihofer, A. X., Neylan, T. C., Mehta, D., Binder, E. B., et al. (2018). PTSD blood transcriptome mega-analysis: shared inflammatory pathways across biological sex and modes of trauma. *Neuropsycharmacology* 43, 469–481. doi: 10.1038/npp.2017.220

Bremner, J. D., Randall, P., Vermetten, E., Staub, L., Bronen, R. A., Mazure, C., et al. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. *Biol. Psychiatry* 41, 23–32. doi: 10.1016/s0006-3223(96)00162-x

Bryois, J., Garrett, M. E., Song, L., Safi, A., Giusti-Rodriguez, P., Johnson, G. D., et al. (2018). Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. *Nat. Commun.* 9:3121.

Cerimele, J. M., Bauer, A. M., Fortney, J. C., and Bauer, M. S. (2017). Patients with co-occurring bipolar disorder and posttraumatic stress disorder: a rapid review of the literature. *J. Clin. Psychiatry* 78, e506–e514.

Cougle, J. R., Feldner, M. T., Keough, M. E., Hawkins, K. A., and Fitch, K. E. (2010). Comorbid panic attacks among individuals with posttraumatic stress disorder: associations with traumatic event exposure history, symptoms, and impairment. *J. Anxiety Disord.* 24, 183–188. doi: 10.1016/j.janxdis.2009.10.006

Crowe, P. T., Lawrimore, C. J., Walter, T. J., and Coleman, L. G. Jr. (2017). The role of neuroimmune signaling in alcoholism. *Neuropsychopharmacology* 122, 56–73. doi: 10.1016/j.neuropsychopharmacology2017.01.031
Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13. doi: 10.1093/nar/gkn923
Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. doi: 10.1038/nprot.2008.211
Huber, W., Von Heydebreck, A., Sultmann, H., Poustka, A., and Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl. 1), S96–S104.
Huckins, L. M., Chatzinikos, C., Breen, M. S., Hartmann, J., Klengel, T., Da Silva Almeida, A. C., et al. (2020). Analysis of genetically regulated gene expression identifies a prefrontal PTSD Gene. SNRN3P5, specific to military cohorts. Cell Rep. 31:107716. doi: 10.1016/j.celrep.2020.107716
Huckins, L. M., Dobblyn, A., Ruderfer, D. M., Hoffman, G., Wang, W., Pardinas, A. F., et al. (2019). Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nat. Genet. 51, 659–674. doi: 10.1038/s41588-019-0364-4
International HapMap 3 Consortium, Altshuler, D. M., Gibbs, R. A., Peltonen, L., Altshuler, D. M., Gibbs, R. A., et al. (2010). Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58. doi: 10.1038/nature09298
Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127. doi: 10.1093/biostatistics/kxj037
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., and Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602. doi: 10.1001/archpsyc.62.6.593
Kilpatrick, D. G., Resnick, H. S., Milanak, M. E., Miller, M. W., Keyes, K. M., and Friedman, M. J. (2013). National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria. J. Trauma. Stress, 537–547. doi: 10.1002/jts.21848
Kimbrel, N. A., Meyer, E. C., Debeer, B. B., Gulliver, S. B., and Morisette, S. B. (2016). A 12-Month prospective study of the effects of PTSD-depression comorbidity on suicidal behavior in Iraq/Afghanistan-era veterans. Psychiatry Res. 243, 97–99. doi: 10.1016/j.psychres.2016.06.011
Koenen, K. C., Sumner, J. A., Gilsanz, P., Glymour, M. M., Ratnathathorn, A., Rimm, E. B., et al. (2017). Post-traumatic stress disorder and cardiometabolic disease: improving causal inference to inform practice. Psychol. Med. 47, 209–225. doi: 10.1017/s0033291716002294
Kong, F., Binas, B. M., Hong, J. H., Kang, S. S., and Kim, H. J. (2013). Differential expression of adenylate kinase 4 in the context of disparate stress response strategies of HEK293 and HepG2 cells. Arch. Biochem. Biophys. 533, 11–17. doi: 10.1016/j.abb.2013.02.014
Kroenke, K., Spitzer, R. L., and Williams, J. B. (2001). The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613. doi: 10.1046/j.1525-1497.2001.01600906.x
Kuan, P. F., Wasczuk, M. A., Kotov, R., Clouston, S., Yang, X., Singh, P. K., et al. (2017). Gene expression associated with PTSD in World Trade Center responders: an RNA sequencing study. Transl. Psychiatry 7:1297.
Kulk, R. A., Schleger, W. E., Fairbank, J. A., Hough, R. L., Jordan, B. K., Marmar, C. R., et al. (1996). Trauma and the Vietnam war generation: Report of Findings From the National Vietnam Veterans Readjustment Study. New York: Brunner/Mazel.
Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559.
LeNiculescu, H., Patel, S. D., Bhat, M., Kuczinski, R., Faraone, S. V., Tsuang, M. T., et al. (2009). Congenital functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 155–181. doi: 10.1002/ajmg.b.30887
Li, M., Dai, F. R., Du, X. P., Yang, Q. D., Zhang, X., and Chen, Y. (2012). Infusion of BDNF into the nucleus accumbens of aged rats improves cognition and structural synaptic plasticity through PI3K-ILK-Akt signaling. Behav. Brain Res. 231, 146–153. doi: 10.1016/j.bbr.2012.03.010
Lind, M. J., Brick, L. A., Gehrmann, P. R., Duncan, L. E., Gelaye, B., Maihofer, A. X., et al. (2020). Molecular genetic overlap between posttraumatic stress disorder and sleep phenotypes. Sleep 43:zs257.
Liu, H., Petukhova, M. V., Sampson, N. A., Aguilar-Gaxiola, S., Alonso, J., Andrade, L. H., et al. (2017). Association of DSM-IV Posttraumatic Stress Disorder With Traumatic Experience Type and History in the World Health Organization World Mental Health Surveys. JAMA Psychiatry 74, 270–281.

Liu, R., Strom, A. L., Zhai, J., Gal, J., Bao, S., Gong, W., et al. (2009). Enzymatically inactive adenylate kinase 4 interacts with mitochondrial ADP/ATP translocase. Int. J. Biochem. Cell Biol. 41, 1371–1380. doi: 10.1016/j.biocel.2008.12.002

Livingston, W. S., Fargo, J. D., Gundlapalli, A. V., Brignone, E., and Blais, R. K. (2020). Comorbid PTSD and depression diagnoses mediate the association of military sexual trauma and suicide and intentional self-inflicted injury in VHA-enrolled Iraq/afghanistan veterans, 2004-2014. J. Affect. Disord. 274, 1184–1190. doi: 10.1016/j.jad.2020.05.024

Logue, M. W., Smith, A. K., Baldwin, C., Wolf, E. J., Guffanti, G., Ratanaatharathorn, A., et al. (2015). An analysis of gene expression in PTSD implicates genes involved in the glaucceroid receptor pathway and neural responses to stress. Psychoneuroendocrinology 57, 1–13. doi: 10.1016/j.psyneuen.2015.03.016

Maren, S., Phan, K. L., and Liberzon, I. (2013). The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14, 417–428. doi: 10.1038/nrn3492

Marot, G., Foulley, J. L., Mayer, C. D., and Jaffrezic, F. (2009). Moderated effect size and P-value combinations for microarray meta-analyses. Bioinformatics 25, 2692–2699. doi: 10.1093/bioinformatics/btp444

Matzaraki, V., Kumar, V., Wijmenga, C., and Zhernakova, A. (2017). The MHC locus and genetic susceptibility to autoimmuno and infectious diseases. Genome Biol. 18:76.

McLeay, S. C., Harvey, W. M., Romanuk, M. N., Crawford, D. H., Colquhoun, D. M., Young, R. M., et al. (2017). Physical comorbidities of post-traumatic stress disorder in Australian Vietnam War veterans. Med. J. Aust. 206, 251–257.

Mehta, D., Bruening, D., Carrillo-Roa, T., Lawford, B., Harvey, W., Morris, C. P., et al. (2017). Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD. Acta. Psychiat. Scand. 136, 493–505. doi: 10.1111/acps.12778

Mehta, D., Gonik, M., Kengel, T., Rex-Haffner, M., Menke, A., Rubel, J., et al. (2011). Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: evidence from endocrine and gene expression studies. Arch. Gen. Psychiatry 68, 901–910. doi: 10.1001/archgenpsychiatry.2011.50

Mehta, D., Vosey, J., Bruening, D., Harvey, W., Morris, C. P., Lawford, B., et al. (2018). Transcriptome analysis reveals novel genes and immune networks dysregulated in veterans with PTSD. Brain Behav. Immun. 74, 133–142. doi: 10.1016/j.bbi.2018.08.014

Miller, B. J., Buckley, P., Seabolt, W., Mellor, A., and Kirkpatrick, B. (2011). Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol. Psychiatry 70, 663–671. doi: 10.1016/j.biopsych.2011.04.013

Miller, M. W., Lin, A. P., Wolf, E. J., and Miller, D. R. (2018). Oxidative stress, inflammation, and neuroprogression in chronic PTSD. Harv. Rev. Psychiatry 26, 57–69. doi: 10.1097/HRP.0000000000000167

Mills, J., Digicaiyilouj, M., Legg, A. T., Young, C. E., Young, S. S., Barr, A. M., et al. (2003). Role of integrin-linked kinase in nerve growth factor-stimulated neurite outgrowth. J. Neurosci. 23, 1638–1648. doi: 10.1523/jneurosci.23-05-01638.2003

Morrison, F. G., Miller, M. W., Wolf, E. J., Logue, M. W., Maniates, H., Kwasnik, D., et al. (2019). Reduced interleukin 1A gene expression in the dorsolateral prefrontal cortex of individuals with PTSD and depression. Neurosci. Lett. 692, 204–209. doi: 10.1016/j.neulet.2018.10.027

Naska, S., Park, K. J., Hannigan, G. E., Dedhar, S., Miller, F. D., and Kaplan, D. R. (2006). An essential role for the integrin-linked kinase-glycogen synthase kinase-3 beta pathway during dendrite initiation and growth. J. Neurosci. 26, 13344–13356. doi: 10.1523/jneurosci.0462-06.2006

Neylan, T. C., Sun, B., Rempel, H., Ross, J., Lenoci, M., O’donovan, A., et al. (2011). Suppressed monocone gene expression profile in men versus women with PTSD. Brain Behav. Immun. 25, 524–531. doi: 10.1016/j.bbi.2010.12.001

Nievergelt, C., Matijofo, A. X., Kengel, T., Atkinson, E. G., Chen, C. Y., Choo, K. W., et al. (2019). International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun 10:4558.
identify emerging post-traumatic stress disorder among trauma survivors. *Mol. Psychiatry* 10:425. doi: 10.1038/sj.mp.4001676

Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., et al. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. *J. Clin. Psychiatry* 59 Suppl 20quiz34–57.

Smith, A. K., Conneely, K. N., Kilaru, V., Mercer, K. B., Weiss, T. E., Bradley, B., et al. (2011). Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. *Am. J. Med. Genet. B Neuropsychiatr. Genet.* 156B, 700–708. doi: 10.1002/ajmg.b.31212

Song, H., Fang, F., Tomasson, G., Arnegger, F. K., Mataix-Cols, D., Fernandez De La Cruz, L., et al. (2018). Association of stress-related disorders with subsequent autoimmune disease. *JAMA* 319, 2388–2400. doi: 10.1001/jama.2018.7028

Spivak, B., Shohat, B., Mester, R., Avraham, S., Gil-Ad, I., Bleich, A., et al. (1997). Elevated levels of serum interleukin-1 beta in combat-related posttraumatic stress disorder. *Biol. Psychiatry* 42, 345–348. doi: 10.1016/s0026-3223(96)00375-7

Stein, M. B., Campbell-Sills, L., Gelernter, J., He, F., Heeringa, S. G., Nock, M. K., et al. (2017). Alcohol misuse and co-occurring mental disorders among new soldiers in the U.S. *Army. Alcohol. Clin. Exp. Res.* 41, 139–148. doi: 10.1111/acer.13269

Stein, M. B., Jang, K. L., Taylor, S., Vernon, P. A., and Livesley, W. J. (2002). Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. *Am. J. Psychiatry* 159, 1675–1681. doi: 10.1176/appi.ajp.159.10.1675

Stein, M. B., Levey, D. F., Cheng, Z., Wendi, F. R., Harrington, K., Pathak, G. A., et al. (2021). Genome-wide association studies of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. *Nat. Genet.* 53, 174–184. doi: 10.1038/s41588-020-00767-x

Storey, J. D., and Tibshirani, R. (2003). Statistical significance for genome-wide studies. *Proc. Natl. Acad. Sci. U.S.A.* 100, 9440–9445. doi: 10.1073/pnas.1530591100

Teeters, J. B., Lancaster, C. L., Brown, D. G., and Back, S. E. (2017). Substance use disorders in military veterans: prevalence and treatment challenges. *Subst. Abuse Rehabil.* 8, 69–77. doi: 10.2147/sar.s116720

Thomson, C. A., McColl, A., Cavanagh, J., and Graham, G. J. (2014). Peripheral inflammation is associated with remote global gene expression changes in the brain. *J. Neuroinflamm.* 11:73. doi: 10.1186/1742-2094-11-73

True, W. R., Rice, J., Eisen, S. A., Heath, A. C., Goldberg, J., Lyons, M. J., et al. (1993). A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. *Arch. Gen. Psychiatry* 50, 257–264. doi: 10.1001/archpsyc.1993.01820160019002

Tursich, M., Neufeld, R. W., Frewen, P. A., Harricharan, S., Kibler, J. L., Rhind, S. G., et al. (2014). Association of trauma exposure with proinflammatory activity: a transdiagnostic meta-analysis. *Transl. Psychiatry* 4:e1413. doi: 10.1038/tp.2014.56

Uddin, M., Aiello, A. E., Wildman, D. E., Koenen, K. C., Pawelec, G., De Los Santos, R., et al. (2010). Epigenetic and immune function profiles associated with posttraumatic stress disorder. *Proc. Natl. Acad. Sci. U.S.A.* 107, 9470–9475. doi: 10.1073/pnas.0910794107

Ursano, R. J., Herberman Mash, H. B., Kessler, R. C., Naifeh, J. A., Fullerton, C. S., Aliaga, P. A., et al. (2020). Factors associated with suicide ideation in US Army Soldiers During Deployment in Afghanistan. *JAMA Netw. Open* 3:e191935. doi: 10.1001/jamanetworkopen.2019.19935

van Ijzendoorn, M., Van Zetw, E. W., Consortium, B., and Heimans, B. T. (2017). Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution. *Genome Biol.* 18:19.

van Zuiden, M., Geuze, E., Willemen, H. L., Vermetten, E., Maas, M., Amarouchi, K., et al. (2012). Glucocorticoid receptor pathway components predict posttraumatic stress disorder symptom development: a prospective study. *Biol. Psychiatry* 71, 309–316. doi: 10.1016/j.biopsych.2011.10.026

Weathers, F. W., Keane, T. M., and Davidson, J. R. (2001). Clinician-administered PTSD scale: a review of the first ten years of research. *Depress Anxiety* 13, 132–156. doi: 10.1002/da.1029

Weathers, F. W., Litz, B. T., Herman, D. S., Huska, J. A., and Keane, T. M. (1993). “The PTSD checklist (PCL): reliability, validity, and diagnostic utility,” in *Proceedings of the Annual Conference for the International Society for Traumatic Stress Studies*. (San Antonio, TX).

Wolf, E. J., Mitchell, K. S., Koenen, K. C., and Miller, M. W. (2014). Combat exposure severity as a moderator of genetic and environmental liability to post-traumatic stress disorder. *Psychol. Med.* 44, 1499–1509. doi: 10.1017/s0033291713002286

Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., et al. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. *Nat. Genet.* 50, 668–681.

Xu, X. F., Li, T., Wang, D. D., Chen, B., Wang, Y., and Chen, Z. Y. (2015). Integrin-linked kinase is essential for environmental enrichment enhanced hippocampal neurogenesis and memory. *Sci. Rep.* 5:14456.

Xu, X. F., Wang, Y. C., Zong, L., Chen, Z. Y., and Li, Y. (2018). Elevating integrin-linked Kinase expression has rescued hippocampal neurogenesis and memory deficits in an AD animal model. *Brain Res.* 1695, 65–77. doi: 10.1016/j.brainres.2018.05.024

Yeager, D. E., Magruder, K. M., Knapp, R. G., Nicholas, J. S., and Frueh, B. C. (2007). Performance characteristics of the posttraumatic stress disorder checklist and SPAN in Veterans Affairs primary care settings. *Gen. Hosp. Psychiatry* 29, 294–301. doi: 10.1016/j.genhosppsych.2007.03.004

Yehuda, R., Cai, G., Golier, J. A., Sarapas, C., Galea, S., Ising, M., et al. (2009). Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks. *Biol. Psychiatry* 66, 708–711. doi: 10.1016/j.biopsych.2009.02.034

Yehuda, R., Halligan, S. L., and Bierer, L. M. (2001). Relationship of parental trauma exposure and PTSD to PTSD, depressive and anxiety disorders in offspring. *J. Psychiar. Res.* 35, 261–270. doi: 10.1016/s0022-3956(01)00322-9

Zhang, B., and Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. *Stat. Appl. Genet. Mol. Biol.* 4:17.

Zieker, J., Zieker, D., Jatzko, A., Dietzsch, J., Nieselt, K., Schmitt, A., et al. (2007). Glucocorticoid receptor pathway components predict PTSD in military veterans: prevalence and treatment challenges. *Stress Studies* 66, 708–711. doi: 10.1016/j.biopsych.2009.02.034

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Garrett, Qin, Mehta, Dennis, Marx, Grant, VA Mid-Atlantic MIRECC Workgroup, PTSD Initiative, Injury and Traumatic Stress (INTRuST) Clinical Consortium, Psychiatric Genomics Consortium PTSD Group, Stein, Kimbrel, Beckham, Hauer and Ashley-Koch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.