Retinal arterial macroaneurysm rupture caused by dissection-like change in the vessel wall

Masaharu Ishikura, Yuki Muraoka *, Shin Kadomoto, Naomi Nishigori, Tomoaki Murakami, Sotaro Ooto, Akitaka Tsujikawa

Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, 54 Shougoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan

ARTICLE INFO
Keywords:
Adaptive optics scanning light ophthalmoscope
Anti-vascular endothelial growth factor
Optical coherence tomography
Optical coherence tomography angiography
Retinal arterial macroaneurysm

ABSTRACT
Purpose: To highlight a potential pathogenetic mechanism of retinal arterial macroaneurysm.

Observations: A 79-year-old woman presented with a ruptured retinal arterial macroaneurysm in the right eye. One year after treatment, high-resolution multimodal imaging with optical coherence tomography (OCT), OCT angiography, and adaptive optics scanning light ophthalmoscope showed that a narrow passage developed in the vessel wall of the pre-existing retinal arterial macroaneurysm and another macroaneurysm had developed adjacent to the pre-existing one.

Conclusions and Importance: These images suggest the pathogenesis of retinal arterial macroaneurysm (RAM) associated with crack-like changes in the retinal arterial wall, similar to pathologies seen in systemic arteries.

1. Introduction

1.1. Case report
The patient was a 79-year-old woman who was referred to our department with the diagnosis of a ruptured retinal arterial macroaneurysm (RAM) in the right eye. She had no other diseases except for systemic hypertension. The Snellen visual acuity was 20/20 at the initial visit. Images obtained at the initial visit showed a ruptured RAM (Fig. 1).

After the initial visit, the patient received two intravitreal injections of anti-vascular endothelial growth factor (VEGF) as the treatment for the retinal cystoid spaces involving the fovea.

One year after the initial examination, the adaptive optics scanning light ophthalmoscope (AOSLO) showed another RAM newly developed adjacent to the pre-existing aneurysm (Fig. 2, right). Optical coherence tomography (OCT) showed a narrow passage in the vessel wall shared by the two aneurysms (Fig. 3, left), and OCT angiography (OCTA) showed blood-flow signal corresponding to the passage (Fig. 3, right).

2. Discussion
Retinal arterial macroaneurysm is an acquired, focal dilation of a retinal artery, typically occurring within the first three bifurcations of the central retinal artery. Rupture of a RAM can cause retinal exudative changes and a sudden decrease in visual acuity. Older age, female sex, arteriosclerosis, and collagen diseases are known risk factors for RAM. However, the precise pathology of RAM is not well-understood.

High-resolution non-invasive imaging techniques including OCT, OCTA, and AOSLO have been applied to evaluate the morphologic and functional changes in retinal circulatory diseases such as diabetic retinopathy, retinal vein occlusion, and RAM. Using AOSLO, Kadomoto et al. most recently elucidated the processes of loss of pulsation and thrombus formation in RAM. We treated this case with anti-VEGF therapy based on a previous report, which was thought to be less likely to modify the morphology of the RAM vessel wall.

Previous studies with trypsin digestion showed that blowout aneurysm in the retinal artery involves linear splits along the vessel wall. In our case, OCT and OCTA showed a narrow passage with blood flow in the vessel wall of the pre-existing RAM, with another RAM developed adjacent to this. These suggest that a crack in the retinal arterial wall could initiate the pathological condition associated with RAM, which might mimic pathologies in aneurysms or dissections in systemic arteries caused by cracks from the intima to the tunica media of the arterial wall.

3. Conclusions
High-resolution multimodal imaging with OCT, OCTA, and AOSLO

* Corresponding author.
E-mail address: muraoka@kuhp.kyoto-u.ac.jp (Y. Muraoka).

https://doi.org/10.1016/j.ajoc.2022.101346
Received 13 August 2021; Received in revised form 17 December 2021; Accepted 24 January 2022
Available online 26 January 2022
2451-9936/© 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
enabled us to visualize the mechanism of RAM formation in vivo. This case suggests that RAM might be caused by crack-like changes in the retinal artery wall, similar to pathologies of systemic arterial disease.

Patient consent

Consent to publish this case report has been obtained from the patient in writing.
Fig. 3. Passage through the two retinal arterial macroaneuerysms (RAMs). Optical coherence tomography (OCT) shows a narrow passage (left, black arrow) in the vessel wall shared by the old and new RAMs (arrowheads and white arrows, respectively), and the OCT angiogram shows the blood-flow signal corresponding to the passage (right, black arrow).

Acknowledgements

This work was partially supported by the Japan Society for the Promotion of Science (JSPS), Tokyo, Japan (Grant-in-Aid for Scientific Research(C) JP21K09771) and Canon Inc. (Tokyo, Japan).