Abstract

Till now COVID-19 has affected 196 countries and resulted over 446,946 cases in which 19,811 are deaths, 112,058 got recovered and still many are left to be recovered. This is a viral pneumonia and thus no antiviral drug will work to reduce these cases. During the recovery, only immune system has played a major role. Analyzing and then diagnosing is currently a major challenge. This paper focuses on the classification which can help in analysis of COVID-19 with normal chest X-ray using deep learning technique. An optimal solution has been provided using transfer learning approach keeping in mind the limitation of the dataset. The performance has been determined by train and test loss and accuracy, sensitivity, specificity and p-score. The dataset used for the classification are the x-ray images of the chest as it can help to detect novel coronavirus in patients before RT-PCR lab testing.

References

1. https://www.hindustantimes.com/world-news/covid-19-virus-accidently-leaked-by-intern-at
Optimal Classification of COVID-19: A Transfer Learning Approach

2. https://who.int/health-topics/coronavirus#tab=tab_1
3. https://www.theguardian.com/world/2020/apr/17/what-is-coronavirus-what-are-its-symptoms-and-when-should-i-call-a-doctor
4. https://www.who.int/news-room/campaigns/connecting-the-world-to-combat-coronavirus/pass-the-message-to-kick-out-coronavirus
5. https://www.worldometers.info/coronavirus/coronavirus-cases/
6. https://www.worldometers.info/coronavirus/coronavirus-death-toll/
7. https://www.worldometers.info/coronavirus/
8. Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, Neural Information Processing Systems, v1, 2012, pp. 1097-1105.
9. Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai and Tszihan Chen, “Recent advances in convolutional neural networks”, Pattern Recognition, v77, 2018, pp. 354-377.
10. Sergey Ioffe and Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, Proceedings of 32nd International Conference on International Conference on Machine Learning, v37, 2015, pp. 448-456.
11. Djork Arne Clevert, Thomas Unterthiner and Sepp Hochreiter, “Fast and Accurate Deep Network Learning by Exponential Linear Unit (ELUs)”, Proceedings of the International Conference on Learning Representations (ICLR), v5, 2016.
12. Aditya Kakde, Nitin Arora and Durgansh Sharma, “Novel Approach towards Optimal Classification of Multilayer Perceptron”, International Journal of Research and Engineering, IT and Social Sciences, v8, 2018, pp. 29-38.
13. Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V.Le, “Learning Transferable Architecture for Scalable Image Recognition”, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018, pp. 8697-8710.
14. Francois Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions”, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 1800-1807.
15. Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, 2015, arXiv:1409.1556 [cs.CV]
16. Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian SUN, “Deep Residual Learning for Image Recognition”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778.
17. Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens and Zbigniew Wojna, “Rethinking the Inception Architecture for Computer Vision”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 2818-2826.
18. Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto and Hartwig Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, 2017, arXiv:1704.04861 [cs.CV]
19. Gao Huang, Zhuang Liu, Laurens van de Maaten and Kilian Q. Weinberger, “Densely Connected Convolutional Networks”, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 2261-2269.
20. Joseph Paul Cohen, “COVID-19 image data collection”, https://github.com/ieee8023/covid-chestxray-dataset, 2020.
21. Kermany, Daniel; Zhang, Kang’s Goldbaum, Michael (2018), “Labeled Optical Cogerence Tomography (OCT) and chest X-Ray Images for Classification”, Mendeley Data, v2.

Index Terms

Computer Science
Information Sciences

Keywords

COVID-19, deep learning, transfer learning