In situ structure and assembly of the multidrug efflux pump AcrAB-TolC

Xiaodong Shi1,2,8, Muyuan Chen1,8, Zhili Yu1, James M. Bell1,3, Hans Wang1, Isaac Forrester4, Heather Villarreal4, Joanita Jakana4, Dijun Du5,7, Ben F. Luisi5, Steven J. Ludtke1 & Zhao Wang1,6

Multidrug efflux pumps actively expel a wide range of toxic substrates from the cell and play a major role in intrinsic and acquired drug resistance. In Gram-negative bacteria, these pumps form tripartite assemblies that span the cell envelope. However, the in situ structure and assembly mechanism of multidrug efflux pumps remain unknown. Here we report the in situ structure of the Escherichia coli AcrAB-TolC multidrug efflux pump obtained by electron cryotomography and subtomogram averaging. The fully assembled efflux pump is observed in a closed state under conditions of antibiotic challenge and in an open state in the presence of AcrB inhibitor. We also observe intermediate AcrAB complexes without TolC and discover that AcrA contacts the peptidoglycan layer of the periplasm. Our data point to a sequential assembly process in living bacteria, beginning with formation of the AcrAB subcomplex and suggest domains to target with efflux pump inhibitors.
With the increasing use of antibiotics, multidrug resistance in pathogenic bacteria has become a public health crisis. The capability of numerous bacterial species to survive in the presence of antibiotics and toxic compounds is partially conferred by the activity of energy-dependent efflux pumps. In Gram-negative bacteria, these pumps are multicomponent assemblies that span the cell envelope and are driven by a primary or a secondary transport component located in the inner membrane. AcrAB–TolC is one of the tripartite pumps that are constitutively expressed in Escherichia coli (E. coli). As the main multidrug efflux machinery, AcrAB–TolC is comprised of the outer membrane protein TolC, the periplasmic adaptor protein AcrA, and the inner membrane transporter AcrB from the resistance-nodulation-cell division (RND) superfamily. The AcrAB–TolC efflux pump transports diverse compounds, conferring resistance to a broad spectrum of antibiotics. Structural studies of this pump have been limited to individual components by X-ray crystallography or fully assembled pumps by cryo-electron microscopy (cryo-EM) single-particle analysis. These approaches revealed structures in vitro, but the in situ structure of this pump remains unknown.

Due to the dynamic nature of the three components and their low binding affinities, it is particularly challenging to capture the intermediate states of the AcrAB–TolC pump in vitro, and there is only limited information about the assembly mechanism of the pump in living cells. Here, we visualize the in situ structure of E. coli AcrAB–TolC efflux pump by employing cellular electron cryo-tomography (cryo-ET) and subtomogram averaging. Our results reveal in situ structures of the fully assembled pump and its intermediate assembly state and suggest an assembly mechanism for tripartite efflux pumps in Gram-negative bacteria.

Results

Visualization of AcrAB–TolC pump in E. coli cell envelope. To enrich AcrAB–TolC pumps in situ, we overexpressed AcrA, AcrB, and TolC in BL21 (DE3) cells at a level at which the cells can still replicate and grow (Supplementary Fig. 1). Then we imaged cells with Cryo-ET under antibiotic treatment that promotes pump assembly. Three-dimensional tomographic reconstructions revealed detailed structures of the Gram-negative bacterial envelope, with abundant channel-like densities spanning the cell envelope (Fig. 1 and Supplementary Movie 1). These densities are rarely observed in wild-type E. coli cells (Supplementary Fig. 2), implying that they correspond to AcrAB–TolC pumps. In addition, the distance between the outer membrane and the inner membrane remains constant at the sites where the AcrAB–TolC pumps occur, suggesting that the periplasm may be pinched by these assemblies.

In situ structures of the fully assembled AcrAB–TolC complex. In order to determine the in situ structure of AcrAB–TolC pump, we extracted particles of the cell envelope spanning densities and performed subtomogram averaging. From 1321 subtomograms of the AcrAB–TolC pump with C3 symmetry, we achieved a reconstruction at ~15 Å resolution (gold standard FSC, see “Methods” section) (Supplementary Figs. 3, 4). The averaged map resembles the EM structure of the AcrAB–TolC pump, with a length of ~33 nm (Fig. 2a–c). The in situ arrangement of each component of the pump matches the previous cryo-EM studies. The overall architecture of the fully assembled pump clearly indicates a 3:6:3 ratio for TolC: AcrA: AcrB in situ (Fig. 2b, c), which agrees with our previous cryo-EM structures. Notably, the density occupancy in the TolC region is considerably lower than the rest of the structure, suggesting that TolC may be absent in a subset of the particles (Supplementary Fig. 5a).

In situ structure of the AcrAB subcomplex. As mentioned above, the three-dimension classification of subtomograms revealed ~38% of the particles within the dataset do not have TolC located in the outer membrane (see “Methods” section). The averaged density map of these particles represents a bipartite AcrAB subcomplex (Fig. 3a–c), in which the quaternary organization of AcrA and AcrB is similar to a proposed assembly model based on the crystal structure of the recombinant heavy-metal efflux pump CusBA. In the structure of AcrAB subcomplex, six protruding densities of AcrA in the averaged map indicate a 6:3 ratio between AcrA and AcrB, the same as the fully assembled pump (Supplementary Fig. 5c). The interior of AcrA viewed in a cross-section through the averaged map of the subcomplex differs from the wild-type structure.
from that of the fully assembled pump, with the chamber inside AcrA being smaller (Fig. 3c) and the AcrA hairpin domains not forming a complete ring structure (Supplementary Fig. 5c). The helical hairpin region of AcrA repacks to form an alpha-helical barrel in the transition from the apo to the ligand-bound states of the AcrAB–TolC assembly, and the reorganization of the AcrA hexamer is likely to be a critical step for the opening of the TolC channel to form the active tripartite pump complex19.

In the unmasked average, the tip of AcrA density merges into the density of PG layer, while the space between the PG and the outer membrane is empty (Fig. 3d). The PG layer possibly serves as an anchor to hold the AcrA hexamer in the periplasm to maintain the stability of the AcrAB complex in the cell envelope, and may permit the subcomplex to walk along the layer until it encounters TolC (Fig. 4). In the presence of antibiotics, the AcrAB subcomplex changes its conformation to recruit TolC, which remains closed in the outer membrane to keep the periplasm isolated from the extracellular environment. Notably, the in situ fully assembled closed state pump showed a constriction in between TolC and AcrA. Next, the pump briefly adopts an open conformation accompanied with a contraction to promote the expulsion of the substrate through the chamber and closes immediately after the drug molecule is expelled.

Discussion
In conclusion, we suggest that the pump assembly process follows a sequential order. Based on the tomography results and data from in vivo interactions, it is likely that AcrB and AcrA can associate to form a bipartite complex. The contact between the alpha-hairpin domain of AcrA and PG helps to position and maintain the stability of the AcrAB complex in the cell envelope, and may permit the subcomplex to walk along the layer until it encounters TolC (Fig. 4). In the presence of antibiotics, the AcrAB subcomplex changes its conformation to recruit TolC, which remains closed in the outer membrane to keep the periplasm isolated from the extracellular environment. Notably, the in situ fully assembled closed state pump showed a constriction in between TolC and AcrA. Next, the pump briefly adopts an open conformation accompanied with a contraction to promote the expulsion of the substrate through the chamber and closes immediately after the drug molecule is expelled.

In this study, we captured the fully assembled pumps on E. coli membranes exhibiting a closed state in the presence of antibiotics and an open state in the presence of the AcrB inhibitor. In
contrast, the structures determined from purified samples are always in an open state in the presence of antibiotic or inhibitor\(^\text{18}\). The significant difference between in situ and in vitro structures suggests that the OM-PG-IM envelope structure in Gram-negative bacteria and the potential between the two sides of the inner membrane may be essential for the regulation of drug efflux by keeping the conformational changes of TolC and AcrA coupled with the substrate binding of AcrB. In the cellular environment, AcrA has its N-terminal anchored in the inner membrane and its α-hairpin contacting PG, communicating between AcrB and TolC to regulate the closing and opening of the pump. Such association is disrupted during the purification, resulting in the constantly open AcrAB–TolC pump. In addition, the observation of AcrAB subcomplex suggests a critical role of PG in the assembly of the pump, which is not preserved in the purified system. With this insight, we propose that interfering with the interactions of AcrA with the PG or AcrB may interrupt the assembly process and block the function of the tripartite efflux pumps, suggesting an approach to therapeutics targetting assembly.

Our results provide the structure of the AcrAB–TolC pump and its intermediate assembly state in the native cell membrane environment. This shows the potential of in situ membrane protein structure determination with Cryo-ET. While single-particle analysis has shown great success in solving detailed protein structures, significant efforts are still needed for membrane protein purification, and the resulting structures may not truly represent their native state. The recent developments in cryo-ET make it possible to determine 10–20 Å resolution structures of membrane-embedded molecular machines\(^\text{25,26}\) and resolve their compositional and conformational variability in the native environment.

Methods

Plasmid construction and protein expression. Plasmid pAcBH which carries the *acrAB* locus and coexpresses AcrA and His-tagged AcrB was a gift from Dr. Akihito Yamaguchi (Osaka University, Suita, Japan)\(^\text{27}\). The *tolC* gene was first amplified using primers TolCinf_F: 5′-AAGGAGATATACATATGGAATTGACCGTTACCTGGT-3′ and TolCFLAGXhol_R: 5′-GAGCTCGAGTCACTTATCGCTGATCATCCTGTGAATCGTTAAGGTTATAGGCCTGTTACCTGGT-3′, and then was amplified again using TolCinf_F and TolCFLAG_inf_R: 5′-TGTAGATCCTGCAATGTGACCTATGCTGTCATGCTGTTAATGCATTACG-5′. The resulting DNA fragment of tolC-FLAG was cloned into the pRFSDuet-1 plasmid using the In-Fusion cloning method, yielding pRSFDuet-tolC. *E. coli* BL21 (DE3) cells (Invitrogen) were co-transformed with plasmids pAcBH and pRSFDuet-tolC to overexpress AcrAB–TolC pump. Cells were cultured in 2xYT medium with 100 μg/ml ampicillin and 50 μg/ml kanamycin at 37 °C until an OD\(\text{600}\) of 0.8 was reached and then induced by addition of 0.1 mM isopropyl 1-thio-B-galactopyranoside (IPTG) at 20 °C overnight. Protein expression was examined by Coomassie blue staining and western blotting analysis.

Minimum inhibitory concentration. Minimum inhibitory concentration (MIC) of puromycin was measured by the twofold dilution method as described previously with minor modifications\(^\text{28}\). Briefly, exponentially growing cultures (OD\(\text{600}\) of 0.8) were inoculated at a density of 104 cells per ml into LB medium containing appropriate antibiotics in the presence of twofold increasing concentrations of puromycin. Cell growth was determined visually after incubation at 37 °C for 20 h.

In vivo crosslinking and LC/MS-MS analysis. *E. coli* strain C43 (DE3) delta *acrAB* was co-transformed with plasmids pET20b co-expressing AcrA S273C and AcrB S258C\(^\text{19}\) and pRSF-duet co-expressing AcrZ and TolC. The S→C point mutations form a stabilizing disulfide bridge between AcrA and AcrB. Cells were grown in 2xYT medium with 50 μg/ml carbenicillin and 50 μg/ml kanamycin at 37 °C to OD\(\text{600}\) of 0.5 and then induced with 1 mM IPTG. After 2 h, cells were harvested by spinning at 4000g for 5 min, then resuspended in phosphate buffered saline (PBS) supplemented with 0.2% wt/vol glucose. In vivo crosslinking of proteins to the peptidoglycan with the bifunctional 3,3′-dithiobis (sulfosuccinimidyl propionate) (DTSSP) and isolation of the peptidoglycan with sodium dodecylsulfate followed the protocol of Li and Howard\(^\text{29}\), with modifications. A control sample was also prepared without crosslinking. The isolated peptidoglycan from the samples were washed three times with PBS to remove traces of sodium dodecylsulfate, then incubated in PBS with 2 mg/ml lysozyme for 30 min at 37 °C to digest the peptidoglycan. The samples were centrifuged at 12,000g for 10 min and the supernatants loaded onto a 4–12% gradient denaturing PAGE gel without reducing agent and stained with Coomassie brilliant blue G. A band at roughly 80 kDa that was not present in the control was excised from the gel, treated with DTT to reduce the DTSSP and then digested with chymotrypsin and analyzed by LC/MS-MS by the University of Cambridge Proteomics Facility. TolC was identified with an emPAI score of 11.1 and AcrA with a score of 10.2. Controls with bovine serum albumin (BSA) were also analyzed from the same gel, selecting a band that migrated as a dimer. The crosslinked BSA sample identified 126 peptides that had reacted with the DTSSP, while the control showed 4 false positives. The location of...
Isosurface rendering of encounters a drug molecule, the pump adopts an open conformation assembled tripartite pump remains in the resting state. When AcrB TolC. Once TolC binds with the AcrAB bipartite complex, the fully bipartite complex AcrAB. Next, AcrA changes its conformation to recruit membrane proximal domain of AcrA (see Supplementary Figs. 9, 10). domain and helical hairpin of TolC and the helical hairpin, lipoyl domain and onto the crystal structures of TolC and AcrA and correspond to the equatorial the peptide fragments with mass corresponding to reduced DTSSP were mapped into the crystal structures of TolC and AcrA and correspond to the equatorial domain and helical hairpin of TolC and the helical hairpin, lipoyl domain and membrane proximal domain of AcrA (see Supplementary Figs. 9, 10).

Cryo-ET sample preparation. E. coli cells were harvested and washed by PBS buffer, then resuspended to an OD$_{600}$ of 1.0. Cultures were mixed with puromycin (600µg/ml) or MRX312 (1.4 µg/ml) and incubated at 37°C for half an hour. Subsequently, cells were mixed with a solution of 10 nm BSA fiducial gold (Aurion) immediately before freezing in a 1×3 cell solution to RSA gold fiducial. A single 3 µl droplet of the sample was applied to the freshly glow-discharged, continuous floating carbon film covered grids (Quantifoil R3.5/1, 200 mesh) and plunge frozen using a Vitrobot Mark IV (FEI). Grids were stored in liquid nitrogen until required for data collection.

Cryo-ET data collection and 3D reconstructions. The frozen-hydrated samples were imaged on a JEOL 3200FSC (JEOL) operated at 300 kV using a K2 Summit direct electron detector camera (GATAN), with a magnification of ×10,000 for antibiotic treated cells and ×2,000 for MRX312 treated cells. The pixel size is calibrated to be 3.366 Å and 2.75 Å, respectively. SerialEM30 was used to collect low-dose, single-axis tilt series at −3 to −6 µm defocus range with an average cumulative dose of −76 e−/Å2 distributed over 33 images and covering an angular range of −50° to +50°, with an angular increment of 3°. Tilted images were automatically aligned and reconstructed using EMMAN2 software31,32. In total, more than 70 tomograms were generated to provide a sufficient selection for further processing. Supplementary Table 2 summarizes the Cryo-ET data analysis and validation statistics.

Subtomogram averaging and correspondence analysis. Twenty-five high SNR particles were used for initial model generation. A two-step approach was used to build the initial model. First 5 iterations of the EMAN2 initial model generation routine were performed imposing C1 symmetry. After aligning the result to the symmetry axis, we performed 5 more iterations with C3 symmetry, and used the resulting map as the initial model for subtomogram refinement. Subtomogram averaging was then performed using 1321 particles from 9 tomograms while applying C3 symmetry. This map was then used as the initial model for the following subtomogram refinement. To focus on the protein while preserving information from the membrane for improved alignment, a mask with values ranging from 0.5 to 1 around the pump and 0 to 0.5 covering the peptide fragments with mass corresponding to reduced DTSSP were mapped into the crystal structures of TolC and AcrA and correspond to the equatorial domain and helical hairpin of TolC and the helical hairpin, lipoyl domain and membrane proximal domain of AcrA (see Supplementary Figs. 9, 10).

Fig. 3 In situ Cryo-ET structure of the AcrAB subcomplex. a The side-view projection of the subtomogram average of the AcrAB subcomplex in presence of antibiotics. b Isosurface rendering of a fitted with the cryo-EM single-particle model (PDB: 5V5S). c A slice through the density map of b. d Isosurface rendering of b overlaid with density map of the cell envelope.

Fig. 4 Proposed in vivo assembly and functioning mechanism for multidrug efflux pump AcrB–TolC. First, AcrB associates with AcrA to form the bipartite complex AcrAB. Next, AcrA changes its conformation to recruit TolC. Once TolC binds with the AcrAB bipartite complex, the fully assembled tripartite pump remains in the resting state. When AcrB encounters a drug molecule, the pump adopts an open conformation accompanied with a contraction along the long axis and the substrate is expelled through the channel and out of the cell.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability Data supporting the findings of this manuscript are available from the corresponding authors upon reasonable request. A reporting summary for this article is available as a Supplementary Information file. The source data underlying Supplementary Figs 1a is provided as a Source Data file. Raw data for the chemical cross-links (source data for Supplementary Fig. 9 and Supplementary Fig. 10) is available via Zenodo data repository with a DOI (https://doi.org/10.5281/zenodo.2656660). The cryo-ET structure of the AcrAB subcomplex, AcrB–TolC open state and AcrAB–TolC open state were deposited in the EMDR under ID codes EMD-0531, EMD-0532 and EMD-0533, respectively. Raw cryo-ET data are available from the corresponding author upon reasonable request.

Received: 1 March 2019 Accepted: 8 May 2019 Published online: 14 June 2019
1. Poole, K. Efflux-mediated antimicrobial resistance. *J. Antimicrob. Chemother.* **56**, 20–51 (2005).

2. Li, X.-Z., Plesiat, P. & Nakaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. *Clin. Microbiol. Rev.* **28**, 337–418 (2015).

3. Du, D., van Veen, H. W., Murakami, S., Pos, K. M. & Luisi, B. F. Structure, mechanism and cooperation of bacterial multidrug transporters. *Curr. Opin. Chem. Biol.* **22**, 99–106 (2015).

4. Ma, D. et al. Genes acrA and acrB encode a stress-induced efflux system of *Escherichia coli*. *Mol. Microbiol.* **16**, 45–55 (1995).

5. Nakaido, H. Multidrug resistance in bacteria. *Annu. Rev. Biochem.* **78**, 119–146 (2009).

6. Okusu, H., Ma, D. & Nakaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of *Escherichia coli* multiple-antibiotic-resistance (Mar) mutants. *J. Bacteriol.* **178**, 306–308 (1996).

7. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B. & Hughes, C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. *Nature* **405**, 914–919 (2000).

8. Mikolosko, J., Bodky, K., Zgurskaya, H. I. & Ghosh, P. Conformational flexibility in the multidrug efflux system protein AcrA. *Structure* **14**, 577–587 (2006).

9. Eicher, T. et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. *Proc. Natl. Acad. Sci. USA* **109**, 5687–5692 (2012).

10. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. Crystal structure of bacterial multidrug efflux transporter AcrB. *Nature* **419**, 587–593 (2002).

11. Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. *Nature* **443**, 173–179 (2006).

12. Seeger, M. A. et al. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. *Science* **313**, 1295–1298 (2006).

13. Sjuts, H. et al. Drug export pathway of multidrug efflux transporter AcrB revealed by DARPin inhibitors. *PLoS Biol.* **5**, e7 (2007).

14. Sjuts, H. et al. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. *Proc. Natl. Acad. Sci. USA* **113**, 3509–3514 (2016).

15. Dautry, L. et al. Tripartite assembly of RND multidrug efflux pumps. *Nat. Commun.* **7**, 10731 (2016).

16. Du, D. et al. Structure of the AcrAB-ToIC multidrug efflux pump. *Nature* **509**, 512–515 (2014).

17. Jeong, H. et al. Pseudounifrom structure of the tripartite multidrug efflux pump AcrAB-ToIC reveals the intermeshing cogwheel-like interaction between AcrA and ToIC. *Structure* **24**, 272–276 (2016).

18. Kim, J.-S. et al. Structure of the tripartite multidrug efflux pump AcrAB-ToIC suggests an alternative assembly mode. *Mol. Cells* **38**, 180–186 (2015).

19. Wang, Z. et al. An allosteric transport mechanism for the AcrAB-ToIC multidrug efflux pump. *elife* **6**, pii: e24905 (2017).

20. Tkhoukova, E. B. & Zgurskaya, H. I. AcrA, AcrB, and ToIC of *Escherichia coli* Form a Stable Intermembrane Multidrug Efflux Complex. *J. Biol. Chem.* **279**, 32116–32124 (2004).

21. Meroueh, S. O. et al. Three-dimensional structure of the bacterial cell wall peptidoglycan. *Proc. Natl. Acad. Sci. USA* **103**, 4404–4409 (2006).

22. Sa, C.-C. et al. Crystal structure of the CsaA heavy-metal efflux complex of *Escherichia coli*. *Nature* **470**, 558–562 (2011).

23. Zgurskaya, H. I. & Nakaido, H. Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner-membrane-associated multidrug efflux pump AcrB from *Escherichia coli*. *J. Bacteriol.* **182**, 4264–4267 (2000).

24. Touzé, T. et al. Interactions underlying assembly of the *Escherichia coli* AcrAB-ToIC multidrug efflux system. *Mol. Microbiol.* **53**, 697–706 (2004).

25. Hu, B., Lara-Tejero, M., Kong, Q., Galán, J. E. & Liu, J. In situ molecular architecture of the Salmonella type III secretion machine. *Cell* **168**, 1065–1074. e10 (2017).

26. Rapisarda, C. et al. In situ and high-resolution cryo-EM structure of a bacterial type VI secretion system membrane complex. *EMBO J.* doi:10.15252/embj.2018100886 (2019).

27. Fujihira, E., Tamura, N. & Yamaguchi, A. Membrane topology of a multidrug efflux transporter, AcrB, in *Escherichia coli*. *J. Bacteriol.* **131**, 145–151 (2002).

28. Tikhonova, E. B., Wang, Q. & Zgurskaya, H. I. Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria. *J. Bacteriol.* **184**, 6499–6507 (2002).

29. Li, G. & Peter Howard, S. In vivo and in vitro protein-peptidoglycan interactions. *Methods Mol. Biol.* **143–149**, 2017 (1615).

30. Mastronarde, D. N. SerialEM: A program for automated tilt series acquisition in Tecnai microscopes using prediction of specimen position. *Microsc. Microanal.* **9**, 1182–1183 (2003).

31. Bell, J. M., Chen, M., Baldwin, P. R. & Ludtke, S. J. High resolution single-particle refinement in EMAN2. *Methods* **100**, 25–34 (2016).

32. Chen, M. et al. A complete data processing workflow for CryoET and subtomogram averaging. Preprint at http://arXiv.org/abs/1902.03978 (2019).

Acknowledgements

This work was supported by the Welch Foundation (Q-1967–20180324), BCM BMB department seed funds, NIH R01GM080139 and P01GM121203. B.F.L. and D.D. are supported by an ERC Advanced Award. We thank X. Yu, T. Huo and H. Wu for helpful suggestions on sample preparation, MIC assay and initial model drawing. S. Raveendran for data backup. We thank Tim Opperman and colleagues for the kind gift of the AcrB inhibitor.

Author contributions

Z.W. designed the experiments; S.L. developed computational methods; X.S. and Z.Y. performed the experiments; B.F.L. performed the in vivo crosslinking experiments. M.C. performed computational analyses; X.S., I.F., J.J., and H.V. screened samples and collected data; X.S., M.C., H.W., J.B., and Z.W. analyzed data; X.S., M.C., and Z.W. wrote the manuscript; D.D., B.F.L., and S.L. reviewed and edited the manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-10512-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information: *Nature Communications* thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2019