ARITHMETIC AND GEOMETRY OF THE HECKE GROUPS

CHENG LIEN LANG AND MONG LUNG LANG

ABSTRACT. We study the arithmetic and geometry properties of the Hecke group G_q. In particular, we prove that G_q has a subgroup X of index d, genus g with v_∞ cusps, and τ_q (resp. v_r) conjugacy classes of elements that are conjugates of S (resp. $R^{q/r}$) if and only if (i) $2g - 2 + \frac{\tau_2}{2} + \sum_{r=1}^{b} v_r (1 - 1/r) + v_\infty = d(1/2 - 1/q)$, and (ii) $v_m = 4g - 4 + \tau_2 + 2v_\infty + \sum_{r=1}^{b} v_r (2 - q/r) \geq 0$ is a multiple of $q - 2$, (iii) $m \geq 0$. In the case q is odd, (ii) is a consequence of (i).

1. Introduction

1.1. The (inhomogeneous) Hecke group G_q is defined to be the maximal discrete subgroup of $PSL(2,\mathbb{R})$ generated by S and T, where $\lambda_q = 2\cos(\pi/q)$,

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & \lambda_q \\ 0 & 1 \end{pmatrix}. \quad (1.1)$$

Let $R = ST^{-1}$. Then R has order q and $\langle S, R \rangle$ is a set of independent generators of G_q. Equivalently, G_q is a free product of $\langle S \rangle$ and $\langle R \rangle$. The main purpose of this article is to study the geometric and arithmetic properties of subgroups of finite index of G_q.

1.2. The set of cusps of G_q is $\mathbb{Q}[\lambda_q] \cup \{\infty\}$ if and only if $q = 3, 5$. We will give an inductive procedure (induction on the depth of q-gons) that enables us to generate the set of cusps of G_q (Lemma 3.2). As the index of G_q in $PSL(2,\mathbb{Z}[\lambda_q])$ is infinite, it is important to characterise members of G_q. A simple algorithm that determines whether a matrix of $PSL(2,\mathbb{Z}[\lambda_q])$ belongs to G_q can be found in Proposition 3.7. The algorithm can be implemented in a computer.

1.3. A set of generators $\{x_i\}$ of X is called a set of independent generators if X is a free product of the cyclic groups $\langle x_i \rangle$. G_q is a free product of $\langle S \rangle$ and $\langle R \rangle$. By Kurosh’s Theorem, every subgroup X of finite index of G_q has a set of independent generators. Proposition 4.4 and Theorem 5.2 demonstrate how arithmetic and geometric properties can be combined to give an inductive procedure for finding a special polygon (fundamental domain) M_X and a set of independent generators I_X for X (the case q is a prime has been done in [LLT1]). In particular, this is applied to the principal congruence subgroup of level 2, the commutator subgroup G_q' and subgroups of index 2 (subsection 5.4).

1.4. As a special case of the Hurwitz-Nielsen realisation problem, Millington [Mi] showed that as long as $d = 3\tau_2 + 4v_3 + 12q + 6q - 12$, then the modular group G_3 possesses a subgroup X of index d, such that $X \setminus \mathbb{H}$ has τ_2 (resp. v_3) elliptic points of order 2 (resp. 3), t cusps, and genus g. We are able to generalise this result to G_q by studying the Hecke-Farey symbols (see Section 6). As mentioned in [K1], the problem of recognising X as a normal subgroup of certain geometric invariants has been left aside in the literature. Our study of this topic starts with some elementary observation of the permutation representations of S and R on the set of cosets G_q/X which we will elaborate more in subsection 1.5.

2010 Mathematics Subject Classification. 11F06, 20H10.

Key words and phrases. Hecke groups, congruence subgroups, Kurosh’s Theorem, Hurwitz-Nielsen realisation problem, maps and map subgroups.
1.5. We prove that the action of S and R on G_q/X is isomorphic to their action on M_X (see Lemma 7.1) and that the permutation representations of S and R on M_X can be obtained by a simple reading of the special polygon M_X ((7.4) and (7.9)). These two representations $f(S)$ and $f(R)$ carry some important information about X. In particular,

(i) $f(S)$ and $f(R)$ can be used to determine whether X is normal in G_q and its normaliser in $PSL(2, \mathbb{R})$ (Proposition 8.1 and Discussion 8.2),

(ii) in the case $q = 3$, $f(S)$ and $f(R)$ can be used to determine whether X is congruence (see Section 11 and [H]),

(iii) $f(S)$ and $f(R)$ can be used to study the geometric invariants of X (Section 9) and Dessins d’enfants (see pp.12 of [HR]). Propositions 9.2-9.4 study the possible realisation of a group Y as a normal subgroup of G_q.

1.6. It is well known that there is a correspondence between the set of maps and the set of subgroups of finite index of G_q and that the maps are uniquely determined by their map subgroups (see [JS], [CS], [IS]). Let X be a subgroup of G_q of finite index. We give a detailed construction of the map $M(X)$ whose map subgroups are conjugates of X. Both $M(X)$ and X are explicitly given. Aut $M(X)$ can be determined as well (see Section 10).

2. Tessellation of the upper half plane

Let D^* denote the $(2, q, \infty)$ triangle with vertices i, $e^{\pi i/q}$ and ∞. D^* is a fundamental domain of the Coxeter group G_q^* generated by reflections along the sides of D^*. Hecke group G_q is the subgroup of index 2 consists of all the orientation preserving isometries.

Let \mathbb{H} be the union of the upper half plane and the set $\{g(\infty) : g \in G_q^*\}$. The G_q^* translates of D^* form a tessellation \mathcal{T}^* of \mathbb{H} (endowed with the hyperbolic metric) by $(2, q, \infty)$ triangles. The G_q^* translates of i, $e^{\pi i/q}$ and ∞ are called even vertices, odd vertices and cusps (free vertices) of \mathcal{T}^* respectively. The G_q^* translates of the hyperbolic line joining i to ∞ (resp. $e^{\pi i/q}$ to ∞) are called even edges (resp. odd edges) of \mathcal{T}^*. The G_q^* translates of the hyperbolic line joining i to $e^{\pi i/q}$ are called f-edges of \mathcal{T}^*. The hyperbolic line $(0, \infty)$ consists of two even edges. The G_q^* translates of $(0, \infty)$ are called the even lines of \mathcal{T}^*. The hyperbolic line joining x and y is denoted by (x, y).

The set of even lines give a tessellation of \mathbb{H} into ideal q-gons, that is, hyperbolic q-gons with q cusps. Note that their vertex angle is 0. Each q-gon contains a unique odd vertex.

The f-edges form a q-regular tree, where the odd vertices are considered as the set of vertices of this tree. We introduce a vertex of valence two to this q-regular tree at i, denoted by v_0. Each q-gon P contains a unique vertex v_P of this tree. The depth of P denoted by $d(P)$ is defined to the the distance between v_0 and v_P (the distance between adjacent vertices is 1).

3. Cusps and reduced forms

The main purpose of this section is to determine whether a matrix of $PSL(2, \mathbb{Z}[\lambda_q])$ belongs to G_q (Proposition 3.7). Lemma 3.2 gives the set of cusps of G_q.

3.1. Reduced forms of cusps of G_q. The set of cusps of G_q is a subset of $\mathbb{Q}(\lambda_q) \cup \{\infty\}$. Let x be a cusp. We say $x = a/b$ is in reduced form if

(i) there exists c/d such that $\left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \in G_q$, and (ii) $b \geq 0$.

Let g be given as in (i) of the above. Since $w = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$ normalises G_q, $-wgw^{-1} \in G_q$. Hence a/b is in reduced form if and only if $-a/b$ is in reduced form. In the case $a, b \geq 0$, it is also easy to see that a/b is in reduced form if and only if $-b/a$ is in reduced form (study $S^{-1}g$) if and only if b/a is in reduced form (study $w(Sg)w^{-1}$).
3.2. Construction of reduced forms. We give some basics about reduced forms.

Lemma 3.1. Suppose that \(w \neq \infty \). The reduced form of \(w \) is unique. The reduced form of \(\infty \) is either \(-1/0\) or \(1/0\).

Proof. Let \(a/b \) and \(a'/b' \) be the reduced forms of \(w \). It is clear that \(ab' = a'b \). Following our definition of reduced form, \(\Gamma_q \) contains the following two elements, \(\left(\begin{array}{cc} a & x \\ b & y \end{array} \right) \) and \(\left(\begin{array}{cc} a' & u \\ b' & v \end{array} \right) \).

An easy calculation gives \(\left(\begin{array}{cc} a & x \\ b & y \end{array} \right)^{-1} \left(\begin{array}{cc} a' & u \\ b' & v \end{array} \right) = \left(\begin{array}{cc} a'y - b'u \\ b'y - av \end{array} \right) \) \(\in \Gamma_q \). This element fixes \(\infty \). Since the stabilizer of \(\infty \) in \(\Gamma_q \) is generated by \(T \) (see (1.1)), we have the following.

\[
\left(\begin{array}{cc} a & x \\ b & y \end{array} \right)^{-1} \left(\begin{array}{cc} a' & u \\ b' & v \end{array} \right) = \left(\begin{array}{cc} 1 & m\lambda_q \\ 0 & 1 \end{array} \right).
\] (3.1)

It follows from (3.1) that \(a = a' \) and that \(b = b' \). This completes the proof of the lemma. \(\square \)

Lemma 3.2. Let \(P \) be an ideal \(q \)-gon with cusps \(\{c_1, c_2, \cdots, c_q\} \) arranged in increasing order (if \(\infty \) is a cusp, then \(c_1 = -\infty = -1/0 \) if \(P \) lies in the left half plane and \(c_q = \infty = 1/0 \) if \(P \) lies in the right half plane). Let \(a_i/b_i \) be the reduced form of \(c_i \) and \(\frac{a_0}{b_0} = -\frac{\pi}{q} \). Then

\[
a_i = \lambda_q a_{i-1} - a_{i-2} \quad \text{and} \quad b_i = \lambda_q b_{i-1} - b_{i-2} \quad \text{for} \quad 2 \leq i \leq q - 1.
\] (3.2)

Proof. Without loss of generality, we assume that \(P \) lies in the right half plane. Let \(A = T^{-1}S = \left(\begin{array}{cc} \lambda_q & 1 \\ 0 & 1 \end{array} \right) \in \Gamma_q \) and \(w_1 = \left(\begin{array}{cc} a_{i-1} & a_{i-2} \\ b_{i-1} & b_{i-2} \end{array} \right) \), \(2 \leq i \leq q \). Note that \(\lambda e^{(q-1)\pi i/q} = e^{(q-1)\pi i/q} \) and that \(A \) is a counter-clockwise rotation about \(e^{(q-1)\pi i/q} \) of angle \(2\pi/q \).

(A) Suppose that the depth of \(P \) is 1. Then \((c_1, c_q) \) is \((0, \infty)\) and \(e^{\pi i/q} \) is the odd vertex of \(P \). We apply mathematical induction as follows.

(i) It is clear that \(w_2 = S^{-1} \in \Gamma_q \), \(w_2Aw_2^{-1} \) fixes \(e^{\pi i/q} \) and that \(w_2 = w_2A \in \Gamma_q \).

(ii) Suppose that \(w_{i-1} \in \Gamma_q \), \(w_{i-1}Aw_{i-1}^{-1} \) fixes \(e^{\pi i/q} \), and that \(w_i = w_{i-1}A \in \Gamma_q \).

By (ii), \(w_iAw_i^{-1} = w_{i-1}Aw_{i-1}^{-1} \) fixes \(e^{\pi i/q} \) and \(w_iAw_i^{-1} \) is a counter-clockwise rotation about \(e^{\pi i/q} \) of angle \(2\pi/q \). Hence \(w_iAw_i^{-1} \) sends \((c_{i-1}, c_{i+1}) = (a_{i-1}/b_{i-1}, a_{i-2}/b_{i-2}) \) to \(\left(\begin{array}{cc} a_{i-1} & a_{i-2} \\ b_{i-1} & b_{i-2} \end{array} \right) \). By the first column of the following matrix

\[
w_iAw_i^{-1} = \left(\begin{array}{cc} a_{i-1} & a_{i-2} \\ b_{i-1} & b_{i-2} \end{array} \right) A = \left(\begin{array}{cc} \lambda_q a_{i-1} - a_{i-2} \\ \lambda_q b_{i-1} - b_{i-2} \end{array} \right) \in \Gamma_q.
\] (3.3)

To be more precise, \((\lambda_q a_{i-1} - a_{i-2})/(\lambda_q b_{i-1} - b_{i-2}) = a_i/b_i = c_i \). Since \(c_i > c_{i-1} \), det \(w_iA > 0 \), and \(a_k, b_k \geq 0 \) for all \(k \), one has \(\lambda_q b_{i-1} - b_{i-2} > 0 \). Hence \((\lambda_q a_{i-1} - a_{i-2})/(\lambda_q b_{i-1} - b_{i-2})\) in reduced form (subsection 3.1). Since the reduced form of \(c_i \) is unique, one has \(a_{i+1} = \lambda_q a_{i-1} - a_{i-2} \), \(b_{i+1} = \lambda_q b_{i-1} - b_{i-2} \) and \(w_{i+1} = w_iA \in \Gamma_q \). By induction, we conclude that if the depth of \(P \) is one, then \(a_i = \lambda_q a_{i-1} - a_{i-2} \) and \(b_i = \lambda_q b_{i-1} - b_{i-2} \). This completes the proof of the lemma. \(\square \)

Lemma 3.2 tells us how to generate the reduced forms of all positive cusps starting with \((0/1, 1/0)\) and all negative cusps starting with \((-1/0, 0/1)\). Namely,

\[
a_i/b_i = \frac{\lambda_q a_{i-1} - a_{i-2}}{\lambda_q b_{i-1} - b_{i-2}}, \quad i = 2, 3, \cdots, q - 1.
\] (3.4)

Equation (3.4) allows us to write the \(c_i \)’s \((1 \leq i \leq q)\) in terms of \(c_1 \) and \(c_q \) which generalises the construction of the Farey sequence. In the case \(q = 6 \), \(\lambda_6 = \sqrt{3} \), the reduced forms of
the c_i's ($1 \leq i \leq 6$) in terms of $c_1 = a_1/b_1$ and $c_6 = a_6/b_6$ are given by
\[
\frac{a_1}{b_1}, \frac{\sqrt{3}a_1 + a_6}{\sqrt{3}b_1 + b_6}, \frac{2a_1 + \sqrt{3}a_6}{2b_1 + \sqrt{3}b_6}, \frac{\sqrt{3}a_1 + 2a_6}{\sqrt{3}b_1 + 2b_6}, \frac{a_1 + \sqrt{3}a_6}{b_1 + \sqrt{3}b_6}, \frac{a_6}{b_6}. \tag{3.5}
\]

The continuous solution of the equation $b_i = \lambda_q b_{i-1} + b_{i-2}$ ($b_i \geq 0$, $2 \leq i \leq q - 1$) is
\[
f(x) = \frac{b_1 + b_q \cos(\pi/q)}{\sin(\pi/q)} \sin(\pi x/q) - b_q \cos(\pi x/q) = A \sin(\pi x/q + w), \quad f(i) = b_i, \tag{3.6}
\]
for some A and w. Note that $f(x)$ is a periodic function of period $2q$, $f(0) = -b_q < 0$, and $f(1) = b_1 > 0$. Further, $f(x)$ is concave down in the interval $[0, q]$. As a consequence,
\[
b_i \geq b_1 \text{ and } b_i \geq b_q \text{ for all } i. \tag{3.7}
\]

Lemma 3.3. Let a/b be in reduced form. Suppose that $ab \neq 0$. Then $|a| \geq 1$ and $b \geq 1$.

Proof. Since a/b is in reduced form, $a/b = x_i$ is a cusp of some q-gon P. Let $\{x_1, x_2, \cdots, x_q\}$ be the set of cusps of P. We prove that $b \geq 1$ by induction on the depth of P. In the case the depth of P is 1, the set of cusps of P is either $\{0/1, 1/\lambda_q, \cdots, 0/1\}$ if P lies in the right half plane or $\{-1/0, \cdots, -1/\lambda_q, 0/1\}$ if P lies in the left half plane. By (3.7), $b \geq 1$. Suppose that our assertion holds when the depth of P is n. We now consider the case $d(P) = n + 1$ and that a/b is a cusp of P. In the case that a/b is either x_1 or x_q, a/b is also a cusp of a q-gon of depth n. By inductive hypothesis, $b \geq 1$. Hence we shall assume that $a/b = x_i$, where $2 \leq i \leq q - 1$. By (3.7), b is larger than the denominators of the reduced forms of x_1 and x_q. As x_1 and x_q are cusps of a q-gon of depth n, their denominators are at least 1 by inductive hypothesis. Hence $b \geq 1$. Since a/b is in reduced form, $b/|a|$ is also in reduced form (see subsection 3.1). Repeat the above argument, one has $|a| \geq 1$. \(\square\)

3.3. Pseudo Euclidean algorithm.
Let $x, y \in \mathbb{Z}[\lambda_q]$. Suppose that $y \neq 0$. There exists a unique integer $m \in \mathbb{Z}$ such that $x = y(m\lambda_q) + r$, $-|y\lambda_q|/2 < r \leq |y\lambda_q|/2$. We call such an algorithm **pseudo Euclidean (PEA)**. Let $a, b \in \mathbb{Z}[\lambda_q]$, where $ab \neq 0$. Apply the pseudo Euclidean algorithm repeatedly,
\[
a = b(m_0\lambda_q) + r_1, \quad b = r_1(m_1\lambda_q) + r_2, \quad \vdots \quad r_{k-1} = r_k(m_k\lambda_q) + r_{k+1}.
\]

Let $r_0 = b$. If the (PEA) terminates, that is $r_n \neq 0$, $r_{n+1} = 0$ for some n, we define
\[
(a, b)_q = |r_n|. \tag{3.9}
\]

If the (PEA) does not terminate, we define $(a, b)_q = 0$. Define further that $(a, 0)_q = (0, a)_q = |a|$. One sees easily that (i) $(a, b)_q = (b, a)_q$, (ii) $(a, b)_q = (-a, -b)_q = (-a, b)_q = (a, -b)_q$.

Lemma 3.4. Let a/b be in reduced form. If $b = 1$, then $a = m\lambda_q$ for some $m \in \mathbb{Z}$.

Proof. Suppose that $a \neq 0$. Since a/b is in reduced form, the (PEA) (see (3.8)) implies that r_1/b is in reduced form and that $|r_1| < b\lambda_q/2 < b$. Since $b = 1$, one has $|r_1| < 1$. By Lemma 3.3, $r_1 = 0$. Hence $a = m\lambda_q$ for some $m \in \mathbb{Z}$. This completes the proof of the lemma. \(\square\)

Remark. The converse of Lemma 3.4 is not true as G_4 and G_6 possess infinitely many reduced forms $m\lambda_q/b$, where $m, b \in \mathbb{N}$, $b > 1$.

Lemma 3.5. Let c/d and a/b be the reduced forms of x and y respectively, where $x < y$. Then $g = \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \in G_q$ if and only if (x, y) is an even line if and only if $ad - bc = 1$.

Proof. (i) Suppose that $g \in G_q$. Then $g(0, \infty)$ is an even line. Equivalently, (x, y) is an even line. (ii) Suppose that (x, y) is an even line. Then $A(0, \infty) = (x, y)$ for some $A \in G_q$. An easy study of Lemma 3.1 and the matrix form of $A(0, \infty) = (x, y)$ shows that $ad - bc = 1$. (iii) Suppose that $ad - bc = 1$. Since a/b and c/d are in reduced forms, G_q contains elements
of the following forms, \((a \ b \ c \ d)\) and \((c \ d \ a \ b)\). An easy calculation shows that \((a \ b \ c \ d)^{-1}\) is the mirror image of \(\Phi\). By Lemma 3.4, one has \(cy - dx = m\lambda_q\) for some \(m \in \mathbb{Z}\). It follows that \((a \ b \ c \ d)^{-1} = (\begin{smallmatrix}a & c \\ b & d \end{smallmatrix})^{-1} (\begin{smallmatrix}1 & -m\lambda_q \\ 0 & 1 \end{smallmatrix}) \in G_q\). Hence \(g \in G_q\). □

Lemma 3.6. Suppose that \((a, b)_q = r \neq 0\). Then there exists some \(g \in G_q\) such that \(g(a/b) = \left(\begin{smallmatrix}a' \\ b' \end{smallmatrix}\right)\). In particular, \((a/r, b/r)_q = 1\) and \(g(a/r, b/r) = 1\) is in reduced form.

Proof. The lemma follows from (3.8), (3.9) and the observation that the matrix form of the equation \(x = y(m\lambda_q) + z\) is \(\begin{pmatrix}1 & -m\lambda_q \\ 0 & 1 \end{pmatrix}\). By Lemma 3.3, \(|a| \geq 1\) and \(|b| \geq 1\) whenever \(r_n|r_{n+1} \neq 0\). Since \(a\) and \(b\) are finite and \(\lambda_q/2 < 1\), an easy observation of (3.8) implies that there exists some \(m\) such that \(|k| < 1\) whenever \(k \geq m\). Hence there exists a \(d\) such that \(r_{d+1} = 0\) and that \(r_d \neq 0\). By Lemma 3.1, \(r_d = \pm 1\). Equivalently, \((a, b)_q = 1\). Since \(A \in G_q\), \(A^{-1}S \in G_q\). Since the transpose of \(S\) and \(T\) are members of \(G_q\), the transpose of \(A^{-1}S\) is also an element of \(G_q\), the first column of the transpose of \(A^{-1}S\) is \(\left(\begin{smallmatrix}a \\ b \end{smallmatrix}\right)\). This implies that \(c/|d|\) is in reduced form. Similar to the above, one can show that \((c, d)_q = 1\).

Conversely, suppose that \((a, b)_q = (c, d)_q = 1\). Replace \(A\) by \(-A\) if necessary, we may assume that \(d \geq 0\). Replace \(A\) by \(wAu^{-1}\) if necessary (see subsection 3.1 for \(w\)), we may assume that \(b \geq 0\) and that \(d = 0\). By Lemma 3.6, both \(a/b\) and \(c/d\) are in reduced forms. By Lemma 3.5, we have \(A \in G_q\). This completes the proof of the lemma. □

Example 3.8. Let \(q = 5\) and \(\lambda = \lambda_5\). Note that \(\lambda^2 = \lambda + 1\). \(\left(\begin{smallmatrix}4\lambda^2 - 1 \\ \lambda + 1 \end{smallmatrix}\right)\) is not an element of \(G_q\) as \((4\lambda - 1, 3)_5 = \lambda - 1 < 1\).

4. Hecke-Farey Symbols and Special Polygons

4.1. \(r\)-clusters. Let \(\Phi\) be the hyperbolic triangle with vertices 0, \(e^{\pi i/q}\) and \(\infty\). \(\Phi\) is a fundamental domain of \(G_q\). The \(G_q\) translates of \(\Phi\) are called special triangles. For each divisor \(r\) of \(q\) (1 \(\leq r < q\)), set \(\Phi_r = \Phi \cup R\Phi \cup R^2\Phi \cup \cdots \cup R^{r-1}\Phi\). \(\Phi_r\) is a union of \(r\) copies of special triangles. These \(r\) special triangles meet at the odd vertex \(e^{\pi i/q}\). The \(G_q\) translates of \(\Phi_r\) are called the \(r\)-clusters (a 1-cluster is a special triangle). Let \(\Delta_r\) be an \(r\)-cluster. It is clear that (i) \(\Delta_r\) has \((r + 1)\) cusps and one odd vertex \(v\), (ii) the boundary of \(\Delta_r\) has \(r\) even lines and two odd edges, (iii) the two odd edges of \(\Delta_r\) meet each other at \(y\) with vertex angle \(2\pi r/q\). The cusps are called the free vertices of \(\Delta_r\).

Let \(\{v_1 = 0/v_2, \cdots, v_{q-1}, v_q = 1/0\}\) be the set of cusps of the depth 1 \(q\)-gon in the right half plane where the \(v_i\)s are arranged in increasing order. Following the definition of \(\Phi_r\), the set of free vertices (cusps) of \(\Phi_r\) is

\[
\Phi_r = \{0 = v_1, v_2, \cdots, v_r, v_q = \infty\}.
\]

The odd vertex of \(\Phi_r\) is \(e^{\pi i/q}\). The odd edges are \((e^{\pi i/q}, v_r)\) and \((e^{\pi i/q}, v_q)\), where \(\Phi_r\) is the mirror image of \(\Phi_r\) (with respect to the \(y\)-axis). The set of free vertices of \(\Psi_r\) is

\[
\Psi_r = \{-\infty = -v_q, -v_r, \cdots, -v_2, -v_1 = 0\}.
\]

The odd vertex of \(\Psi_r\) is \(y = e^{(q-1)\pi i/q}\) and the odd edges of \(\Psi_r\) are \((y, -v_r)\) and \((y, -v_q)\). Let \(A\) be given as in Lemma 3.2. It is clear that \(\Psi_r = A^{4-r}S\Phi_r\).

Example 4.1. Let \(q = 6, \lambda = \lambda_6 = \sqrt{3}\) See Figure 1a for \(\Phi_2\) and Figure 1b for \(\Psi_2\).
4.2. Special polygons. A convex hyperbolic polygon P of \mathbb{H} is a union of some q-gons and a finite number of r_i-clusters ($r_i|q$, $1 \leq r_i < q$). The q-gons and the r_i-clusters of P are called the tiles. The tiles intersect each other (if any) at either free vertices (cusps) or even lines. A special polygon $M_X = (P, I_X)$ of \mathbb{H} is a convex hyperbolic polygon P together with a set of side pairings I_X satisfying the rules below.

(S1) An odd edge e is always paired with an odd edge f (in the same r-cluster) and makes an internal angle $2\pi r/q$ with f. The vertex where e and f meet is an odd vertex of P. Both e and f are considered as sides of P, and are called its odd sides.

(S2) Let e and f be two even edges in the boundary of P forming an even line. Then either (i) e is paired with f, both e and f are considered as sides of P, and are called its even sides, the point where e and f meet is an even vertex of P, or (ii) e and f form a free side of P, and this free side is paired with another free side of P.

(S3) 0 and ∞ are vertices of P.

Let $M_X = (P, I_X)$ be a special polygon. The cusps in P are called the free vertices of M_X.

4.3. Hecke-Farey sequences and symbols. A Hecke-Farey sequence is a finite sequence of cyclically arranged numbers in increasing order $\{-\infty, x_0, x_1, \ldots, x_n, \infty\}$ such that

(a) $x_i \in \mathbb{Q}[\lambda_q] = \mathbb{Q}(\lambda_q)$, $x_i = 0$ for some i, $0 \leq i \leq n$,

(b) $x_i = a_i/b_i$ is in reduced form for every i $(x_{-1} = -\infty = -1/0$ and $x_{n+1} = \infty = 1/0$),

(c) if $a_{i+1}b_i - a_i b_{i+1} \neq 1$, then there exists an element $g \in G_q$ and an r-cluster Φ_r $(r|q$, $1 < r < q)$ such that $g(v_\nu) = x_i$, $g(v_\nu') = x_{i+1}$ (see (4.1a) for v_ν and v_ν'),

(d) $\{x_i, x_{i+1}\}$ is called an interval. Intervals described as in (c) are called r-intervals.

$\{x_i, x_{i+1}\}$ is called an ordinary interval if $a_{i+1}b_i - a_i b_{i+1} = 1$. By Lemma 3.5, if $\{x_i, x_{i+1}\}$ is an ordinary interval, then the hyperbolic line (x_i, x_{i+1}) is an even line.

One can show easily that that the g's and r's in (c) of the above are unique (the only element of G_q that fixes two or more points of \mathbb{H} is the identity). A Hecke-Farey symbol is a Hecke-Farey sequence together with an additional side pairing on each consecutive pair of x_i's. To avoid triviality, we insist that a Hecke-Farey symbol must have at least two distinct side pairings (see Discussion 4.5). In the case $a_{i+1}b_i - a_i b_{i+1} \neq 1$, the additional side pairing of the r-interval $\{x_i, x_{i+1}\}$ is denoted by

$$x_{i \cdots (g)} \quad x_{i+1},$$

where g and r are given as in (c) of the above. In the case $a_{i+1}b_i - a_i b_{i+1} = 1$, the additional side pairing of the interval $\{x_i, x_{i+1}\}$ can be either one of the following three types:

$$x_i \quad x_{i+1}, \quad x_{i+1}, \quad x_{i} \quad x_{i+1},$$

where a is a natural number. Each natural number a occurs exactly twice or not at all. The actual values of the a's are unimportant, it is the pairing induced on the consecutive pairs that matters. We shall now give a detailed description of these side pairings.
(i) Let \(\{x_i, x_{i+1}\} \) be an \(r \)-interval and let \(g, \Phi \) be given as in (c) of the above. By (c), one has \(g(v_r) = x_i \) and \(g(v_q) = x_{i+1} \). Set \(g(e^{\pi i/2}) = y \).

\[
x_i \quad x_{i+1} \\
\uparrow_{v_r(g)}
\]

is the side pairing that fixes \(y \) and sends the odd edge \((y, x_i)\) to \((y, x_i)\). Since \(R \) is a counterclockwise rotation about \(e^{\pi i/2} \) of angle \(2\pi/q \) and \((y, x_i)\) and \((y, x_{i+1})\) form an internal angle \(2\pi/q \), this side pairing must be \(gR^q g^{-1} \in \mathbb{G}_q \) (the only element of \(\mathbb{G}_q \) that fixes two or more points of \(\mathbb{H} \) is the identity).

(ii) Let \(\{x_i, x_{i+1}\} \) be an ordinary interval. By (d) of the above, \((x_i, x_{i+1})\) is an even line. Hence there exists a unique \(A \in \mathbb{G}_q \) such that \(A(0) = x_i \) and \(A(\infty) = x_{i+1} \). Set \(A(e^{\pi i/2}) = y \). \((y, x_{i+1})\) and \((y, x_i)\) are odd edges.

\[
x_i \quad x_{i+1} \quad x_i
\]

is the side pairing that fixes \(y \) and sends the odd edge \((y, x_{i+1})\) to \((y, x_i)\). It is clear that this side pairing must be

\[
h = ARA^{-1} = \left(\begin{array}{cc} a_{i+1} & a_i \\ b_{i+1} & b_i \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ -1 & \lambda_q \end{array} \right) \left(\begin{array}{cc} a_{i+1} & a_i \\ b_{i+1} & b_i \end{array} \right)^{-1} \in \mathbb{G}_q. \tag{4.5a}
\]

(iii) Let \(\{x_i, x_{i+1}\} \) be an ordinary interval. By (d) of the above, \((x_i, x_{i+1})\) is an even line. Hence there exists a unique \(A \in \mathbb{G}_q \) such that \(A(0) = x_i \) and \(A(\infty) = x_{i+1} \). Set \(A(\sqrt{-1}) = y \). \((y, x_{i+1})\) and \((y, x_i)\) are even edges.

\[
x_i \quad x_{i+1} \quad x_i
\]

is the side pairing that fixes \(y \) and sends the even edge \((y, x_{i+1})\) to \((y, x_i)\). It is clear that this side pairing must be

\[
w = ASA^{-1} = \left(\begin{array}{cc} a_{i+1} & a_i \\ b_{i+1} & b_i \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \left(\begin{array}{cc} a_{i+1} & a_i \\ b_{i+1} & b_i \end{array} \right)^{-1} \in \mathbb{G}_q. \tag{4.6a}
\]

(iv) Let \(\{x_i, x_{i+1}\} \) and \(\{x_j, x_{j+1}\} \) be two ordinary intervals. By (d) of the above, \((x_j, x_{j+1})\) and \((x_i, x_{i+1})\) are even lines.

\[
x_i \quad x_{i+1} \quad x_j \quad x_{j+1}
\]

is the side pairing that sends \(x_{j+1} \) to \(x_i \) and \(x_j \) to \(x_{i+1} \) (equivalently, pairs the even lines \((x_j, x_{j+1})\) and \((x_i, x_{i+1})\)). It is clear that this side pairing must be

\[
k = \left(\begin{array}{cc} a_j & -a_{j+1} \\ b_j & -b_{j+1} \end{array} \right) \left(\begin{array}{cc} a_{i+1} & a_i \\ b_{i+1} & b_i \end{array} \right)^{-1} \in \mathbb{G}_q. \tag{4.7a}
\]

Definition 4.2. The intervals in (ii) are called **odd intervals**, the intervals in (iii) are called **even intervals**, and the intervals in (iv) are called **free intervals**.

Example 4.3. Let \(q = 6, \lambda = \lambda_6 = \sqrt{3}, g = \left(\begin{array}{cc} 1 & 0 \\ \lambda & 1 \end{array} \right) \). The following is a Hecke-Farey symbol (see Figure 2).

\[
M_X = \{-\infty, 0/1, 1/2\lambda, 1/\lambda, 1/2, \lambda, 2/\lambda, \lambda/2, \infty\}.
\tag{4.8}
\]

Proof. The set of cusps of \(\Phi_2 \) is \(\{0/1, 1/\lambda, \infty\} \). One must verify that the interval \(\{1/2\lambda, 1/\lambda\} \) satisfies (c) of the above. This can be checked easily as \(g(1/\lambda) = 1/2\lambda \) and \(g(\infty) = 1/\lambda \). Note that \(g\Phi_2 \) is the 2-cluster with odd vertex \(y \).

\(\square \)
4.4. Special polygons and Hecke-Farey symbols. We now relate Hecke-Farey symbols to special polygons. It is a generalisation of a theorem of [K3] and is proved in an analogous way (see Example 4.3 and Figure 2 for an example).

Proposition 4.4. There is a one to one correspondence between the set of special polygons and the set of Hecke-Farey symbols.

Proof. Let \(M_X = (P, I_X) \) be a special polygon. The free vertices (cusps) of \(P \) form a sequence \(-\infty = x_{-1}, x_0, x_1, \ldots, x_n, \infty = x_{n+1}\). Let \(a_k/b_k \) be the reduced form of \(x_k \) and let \(x_i, x_{i+1} \) be two consecutive terms. Suppose that \(a_{i+1}b_i - a_ib_{i+1} \neq 1 \). By Lemma 3.5, \((x_i, x_{i+1}) \) is not an even line of \(P \). Following the definition of convex hyperbolic polygons (see (S1)-(S3) of subsection 4.2), one has (i) \(x_i \) and \(x_{i+1} \) are the end points of two odd edges \(e = (y, x_i) \) and \(f = (y, x_{i+1}) \) of \(P \) that meet at an odd vertex \(y \), (ii) \(e \) and \(f \) are the odd edges of an \(r \)-cluster \(g\Phi_r \) for some \(g \) and \(r \). As a consequence, \(x_i \) and \(x_{i+1} \) satisfy (c) of subsection 4.3 and gives an \(r \)-interval \(\{x_i, x_{i+1}\} \). Hence the sequence

\[
F = \{-\infty = x_{-1}, x_0, x_1, \ldots, x_n, \infty = x_{n+1}\} \quad (4.9)
\]

is a Hecke-Farey sequence. In the case \(\{x_i, x_{i+1}\} \) is an \(r \)-interval, following our notation above and (S1) of subsection 4.2, \(e = (y, x_i) \) and \(f = (y, x_{i+1}) \) are paired by an element of \(I_X \). As this side pairing must be unique, it has to be \(gR^tg^{-1} \) (see (4.4)). Hence the \(r \)-interval must carry the side pairing given by (4.4). In the case \(\{x_i, x_{i+1}\} \) is an ordinary interval of \(F \), similar study of (S1)-(S3) of subsection 4.2 implies that the side pairing in \(I_X \) that does the pairing for \(\{x_i, x_{i+1}\} \) is just the side pairing given by (4.3). This makes \(F \) into a Hecke-Farey symbol.

Conversely, given a Hecke-Farey symbol, one can construct a special polygon with free vertices corresponding to the points of the Hecke-Farey sequence, odd vertices where the symbols \(e, f(g) \) and \(\bullet \) occur and even vertices where the symbol \(o \) occurs and side pairings as determined by (i)-(iv) of subsection 4.3. \(\square \)

Discussion 4.5. Note that \(F_1 = \{-\infty, 0/1, \infty\} \) and \(F_2 = \{-\infty, 0/1, \infty\} \) are not Hecke-Farey symbols since a Hecke-Farey symbol must have at least two side pairings (see subsection 4.3) whereas \(F_1 \) has only one side pairing \(S \) and \(F_2 \) has only one side pairing \(I_2 \). It is clear that \(F_1 \) and \(F_2 \) do not correspond to any special polygon. As a consequence, Proposition 4.4 is no longer true if one does not insist that a Hecke-Farey symbol must carry at least two side pairings.

5. Poincaré’s Polygonal Theorem and Independent Generators

Theorem 5.1. If \(M_X = (P, I_X) \) is a special polygon, then the set of side pairings \(I_X \) generates independently a group \(G \subseteq G_q \) such that \(P \) is a fundamental domain of \(G \).

Proof. The stabilisers of the cusps of \(P \) in \(G \) are generated by conjugates of \(T^n \) for some \(n \in \mathbb{N} \). Let \(v \in P \) be an elliptic point of \(P \). The stabiliser \(G_v = \langle \tau \rangle \) of \(v \) in \(G \) is generated by either a conjugate of \(S \) or a conjugate of \(R^r \) for some \(r \), where \(r|q \). It is clear from our construction of \(P \) that (i) \(v \) is the intersection of two edges \(e_1 \) and \(e_2 \) of \(P \) (see (S1) and
(S2) of subsection 4.2), (ii) the sides \(e_1 \) and \(e_2 \) make an internal angle \(\pi \) or \(2\pi/q \) at \(v \), and (iii) we may assume that \(\tau \) fixes \(v \) and sends \(e_1 \) to \(e_2 \). In summary,

(i) the stabiliser of a cusp of \(P \) in \(G \) is generated by a parabolic element,
(ii) \(e_1 \) and \(e_2 \) make an internal angle \(\pi \) or \(2\pi/q \) at \(v \), where \(r|q \) and \(r < q \),
(iii) \(\tau \) is the side pairing that fixes \(v \) and sends \(e_1 \) to \(e_2 \).

Hence \(P \) is a Poincaré polygon. By Poincaré's polygonal theorem, \(P \) is a fundamental domain of \(G \) and \(I_X \) is a set of independent generators of \(G \) (see pp 223 of [Ma]).

Let \(X \) be a subgroup of finite index of \(G_q \). An admissible fundamental domain is a special polygon \(M_X = (P, I_X) \) such that \(P \) is a fundamental domain of \(X \) and \(I_X \) is a set of independent generators of \(X \).

Theorem 5.2. Let \(X \) be a subgroup of finite index of \(G_q \). Then \(X \) has an admissible fundamental domain \(M_X \).

Proof. The tessellation \(T^* \) (see subsection 2.1) induces a tessellation of the surface \(X \setminus \mathbb{H} \). Let \(v \) be an odd vertex of a tile \(T_0 \) of \(X \setminus \mathbb{H} \). The stabiliser \(X_v \subseteq X \) is cyclic of order \(d \), where \(d \) is a divisor of \(q \). In the case \(d > 1 \), \(v \) is the odd vertex of a \(q/d \)-cluster \(T_0 \). Note that the two odd sides of \(T_0 \) must be paired by some members of \(X_v \). In the case \(d = 1 \), \(v \) is the odd vertex of a \(q \)-gon \(T_0 \). In summary, the tiles of \(X \setminus \mathbb{H} \) are \(q \)-gons and \(q/d \)-clusters, where \(d|q \). If \(X \setminus \mathbb{H} \) has an elliptic point of order 2 on the boundary of \(T_0 \), then the two even edges incident to the elliptic point are paired by an element of \(X \) and forming an edge of \(X \setminus \mathbb{H} \). It is clear that these tiles intersect each other (if any) at either cusps or even lines as the two odd sides of a \(q/d \)-cluster must be paired by some elements in \(X_v \).

Finding a fundamental domain for \(X \) which is a special polygon amounts to cutting the surface \(X \setminus \mathbb{H} \) into its tiles (\(q \)-gons and \(q/d \)-clusters) and develop these tiles on \(\mathbb{H} \) so that \(0 \) and \(\infty \) are vertices of the polygon (see (S3) of subsection 4.2).

(A) Let \(p : \mathbb{H} \rightarrow X \setminus \mathbb{H} \) be the projection map and let \((0, \infty)\) be the even line joining 0 and \(\infty \). \(p((0, \infty)) \) lies on the boundary of some tile \(T \) of \(X \setminus \mathbb{H} \). We develop \(T \) to \(\mathbb{H} \) so that \(p((0, \infty)) \) is developed to \((0, \infty)\). The other tiles of \(X \setminus \mathbb{H} \) are then developed onto \(\mathbb{H} \) in an inductive manner, piece by piece, where each new piece is adjacent to a tile that is already been developed.

(B) The determination of the first tile \(P_0 \).

(i) Let \(D_1 = \{ \Phi_d : \text{the two odd edges of } \Phi_d \text{ are paired by some elements of } X \} \) and \(D_2 = \{ \Psi_d : \text{the two odd edges of } \Psi_d \text{ are paired by some elements of } X \} \) (see subsection 4.1 for \(\Phi_d \) and \(\Psi_d \)). If \(D_1 \neq \emptyset \), let \(P_0 \) be the smallest \(\Phi_q \) (in area) of \(D_1 \). If \(D_1 = \emptyset \) and \(D_2 \neq \emptyset \), let \(P_0 \) be the smallest \(\Psi_q \) (in area) of \(D_2 \). If \(D_1 \cup D_2 = \emptyset \), let \(P_0 \) be the depth one \(q \)-gon that lies in the right half plane. Note that \(0 \) and \(\infty \) are vertices of \(P_0 \) (see (S3) of subsection 4.2).

(ii) The reduced forms of the vertices of \(P_0 \) can be determined by Lemma 3.2. Note that the two odd edges of \(P_0 \) (if any) are paired by some elements of \(X \).

(C) Let \(e \) be a side (even line) of \(P_0 \).

(i) If there exists another side \(f \) of \(P_0 \) such that the element \(g \in G_q \) which pairs \(e \) and \(f \) is in \(X \), then we call \(e \) and \(f \) paired sides and add \(g \) to the generating set \(I_X \) of \(X \). The side pairing \(g \) can be determined by (4.7).

(ii) If the element \(g \) in \(G_q \) that pairs the two even edges of \(e \) is in \(X \), then we call \(e \) a paired side and \(g \) is put into the generating set \(I_X \) of \(X \). Note that \(g \) has order 2. Such \(g \) can be determined by (4.6).

(iii) Let \(D \) be the collection of all \(d \)-clusters \((d < q)\) attached to \(e \) and let \(D_e = \{ T \in D : \text{the two odd edges of } T \text{ are paired by some elements of } X \} \). If \(D_e \) is not empty, then we attach \(T_0 \) to \(P_0 \) (along \(e \)) to form a new polygon \(P_0 = P_0 \cup T_0 \), where \(T_0 \) is the smallest \(d \)-cluster (in area) of \(D_e \). The two odd edges of \(T_0 \) paired by \(g \in X \)
Two subgroups of the Hecke group G_6 of index 3.

(i) Let $\lambda = \lambda_6 = \sqrt{3}$ and let M_X be a special polygon of X given as follows (see Figure 3a).

$$M_X = \{-\infty \circ 0/1 \circ \lambda/2 \circ \lambda/\cdot \circ \ell_3(1) \circ \infty\}. \quad (5.1)$$

To determine the side pairing $\ell_3(1)$, we follow the notation of subsection 4.3. One has $r = 3$, $g = 1$, $x_i = \lambda/2$ and that $x_{i+1} = 1/0$. By (4.4), one has $\ell_3(1) = R^3$. X is a normal subgroup of index 3 (see Discussion 8.2 for normality). The remaining side pairings can be determined easily by (4.6). In summary, a set of independent generators is given by

$$X = \left\langle S, \left(\begin{array}{cc} 1 & 0 \\ \lambda & 1 \end{array}\right), S \left(\begin{array}{cc} 1 & 0 \\ \lambda & 1 \end{array}\right)^{-1}, \left(\begin{array}{cc} \lambda & 1 \\ 2 & \lambda \end{array}\right), S \left(\begin{array}{cc} \lambda & 1 \\ 2 & \lambda \end{array}\right)^{-1}, \left(\begin{array}{cc} 0 & 1 \\ -1 & \lambda \end{array}\right)^{-3}\right\rangle. \quad (5.2)$$

(ii) Let $M_Y = \{-\infty \circ \infty \circ 1/\ell_3(1) \circ \lambda/2 \circ \lambda/2 \circ \infty\}$ (see Figure 3b). Y is a subgroup of index 3 in G_6. An easy calculation of the side pairings shows that $Y = G_0(2) = \{(x_{ij}) \in G_6 : x_{12} \equiv 0 \pmod{2}\}$. Note that both M_X and M_Y are 3-clusters (with different side pairings).

5.2. Subgroups of index 2 of G_q. A special polygon of a subgroup of index 2 is either a 2-cluster or a union of two special triangles (1-clusters). In the case q is odd, it has to be a union of two special triangles. As a consequence, its Hecke-Farey Symbol is given as follows.

$$M_1 = \{-\infty \circ \cdot \circ \infty\}. \quad (5.3)$$
A set of independent generators is \{ST^{-1}, T^{-1}S\}. In the case \(q\) is even, \(G_q\) has three subgroups of index 2, (5.3) and two more given as follows.

\[
M_2 = \{ -\infty \over \infty, 0 \over 1, 1/\lambda_q \over \infty \}, \quad M_3 = \{ -\infty \over \infty, 0 \over 1, \lambda_q \over \infty \}.
\]

(5.4)

To determine \(e_2(1)\), we once again follow the notation of (i) of subsection 4.3. One has \(r = 2\), \(g = 1\), \(x_i = 1/\lambda_q\), and \(x_{i+1} = 1/0\). It follows from (4.4) that \(e_2(1) = R^2\). In particular,

\[
M_3 = \left\{ \frac{R^2 = \left(\begin{array}{cc} 0 & 1 \\ -1 & \lambda_q \end{array} \right)^2, \left(\begin{array}{cc} 1 & 0 \\ \lambda_q & 1 \end{array} \right) \right\}.
\]

(5.5)

\(M_3\) is known as the even subgroup of \(G_q\) (\(q\) even). Note that subgroups of index 2 of \(G_q\) (\(q\) even) can be realised as Veech groups.

5.3. Commutator subgroups and principal congruence subgroups of level 2. Let \(P_0 = \{ x_1, x_2, \ldots, x_q-1, x_q \}\) be the cusps of the depth 1 \(q\)-gon in the right half plane. The reduced forms of the cusps of \(P_0\) can be determined by Lemma 3.2. Take note that \(x_i = 0\) and that \(x_q = \infty\). Throughout the subsection, the \(x_i\)'s are given as above and that \(x_i < x_{i+1}\).

Proposition 5.3. A special polygon for \(G_q\), the commutator subgroup of \(G_q\), is the union of two depth one \(q\)-gons forming a polygon with \(2(q-1)\) free sides as follows. \(G_q \setminus \mathbb{H}\) is a genus \([(q-1)/2]\) surface with one cusp (resp. two cusps) if \(q\) is odd (resp. even).

\[
\{ -\infty \over 1, x_{q-1} \over 2, \ldots, x_2 \over q-2, x_0 \over q-1, x_2 \over q-2, \ldots, x_{q-1} \over \infty \}.
\]

(5.6)

Proof. The special polygon in (5.6) contains 2\(q\) special triangles. Hence the side pairings given by (5.6) generates a subgroup of index \(2q\). As \([G_q : G_q'] = 2q\), it thus suffices to prove that the side pairings given in (5.6) are members in \(G_q\). This can be checked easily as the side pairing that pairs \((x_i, x_{i+1})\) and \((-x_{q-1}, -x_{q-1})\) is given by \(T^{-1}RTR^{-1}\).

Proposition 5.4. Let \(q \geq 3\) be a prime. A special polygon for \(G(2)\), the principal congruence subgroup of level 2, is the union of two depth one \(q\)-gons forming a polygon with \(2(q-1)\) free sides as follows. \(G(2) \setminus \mathbb{H}\) is a genus zero surface with \(q\) cusps.

\[
\{ -\infty \over 1, x_{q-1} \over 2, \ldots, x_2 \over q-2, x_0 \over q-1, x_2 \over q-2, \ldots, x_{q-1} \over \infty \}.
\]

(5.7)

Proof. Since \(q\) is a prime, \([G_q : G(2)] = 2q\). By (4.7), the side pairing that pairs \((x_i, x_{i+1})\) and \((-x_{q-1}, -x_{q-1})\) is in \(G(2)\) for every \(i\). This completes the proof of our assertion.

In the case \(q \geq 3\) is a prime, similar to Proposition 5.4, one can show that \(G_0(2) = G(2)\) has index \(q\) and admits the following special polygon \((P, Ix)\), where \(P\) is a \(q\)-gon.

\[
\{ -\infty \over 1, x_1 \over 2, x_2 \over q-2, \ldots, x_{(q-1)/2} \over q-1, x_{(q+1)/2} \over q-2, \ldots, x_{q-1} \over \infty \}.
\]

(5.8)

\(G_0(2) \setminus \mathbb{H}\) is a genus zero surface with one elliptic element of order 2 and \((q+1)/2\) cusps. Note that the above is not true if \(q\) is not a prime. For instance, the group in (ii) of subsection 5.1 gives \(G_0(2)\) of \(G_q\). Its special polygon is a 3-cluster, not a 6-gon.

5.4. Power subgroups. For each \(n \in \mathbb{N}\), the power subgroup \(G_q^n\) is the characteristic subgroup of \(G_q\) generated by \(\{x^n : x \in G_q\}\). Study of power subgroups has a long history back to Newman \[N\].

Proposition 5.5. Let \(q \geq 3\) be an odd integer. Then \(G_q^2\) is a normal subgroup of index 2. A special polygon of \(G_q^2\) is a union of two special triangles given as in (5.3). In the case \(q\) is even, a Hecke-Farey symbol of \(G_q^2\) is given as in \(M_3\) of (5.4).

Proof. We shall first assume that \(q\) is odd. It is clear that \(A = T^{-1}S\) (given as in Lemma 3.2) and \(R = ST^{-1}\), each has order \(q\), are elements of \(G_q^2\). Hence the special polygon of (5.3) is also a special polygon of \(G_q^2\).
In the case \(q \) is even, we consider the homomorphism \(\phi : G_q \to \mathbb{Z}_2 = \langle a \rangle \) defined by \(\phi(S) = \phi(R) = a \). It is clear that \(G_q^2 \) is the kernel of \(\phi \). Since \(G_q \) has exactly three subgroups of index 2 and the conjugates of \(S \) and \(R \) cannot be members of a set of independent generators of \(G_q^2 \), we conclude that \(M_1 \) and \(M_2 \) (see (5.3) and (5.4)) are not special polygons of \(G_q^2 \). As a consequence, a special polygon of \(G_q^2 \) is given as in \(M_3 \) of (5.4).

Proposition 5.6. Let \(\{x_1, x_2, \ldots, x_{q-1}, \infty\} \) be given as in subsection 5.3 and let \(r > 1 \) be an odd divisor of \(q \). Then \([G_q : G_q^r] = r \) and a Hecke-Farey symbol of \(G_q^r \) is given by

\[
\{-\infty \ x_1 \ldots x_r \ x_{r+1} \ldots \infty\}.
\]

Proof. Define \(\phi : G_q \to \mathbb{Z}_r = \langle a \rangle \) by \(\phi(S) = 1, \phi(R) = a \). It is clear that \(\phi \) is a homomorphism and that \(G_q^r \subseteq \ker \phi \). Hence \([G_q : G_q^r] \geq r \). Let \(G \) be the group generated by the side pairings of (5.8). The side pairings of (5.8) are conjugates of \(S = S' \) and \(e_r(1) = R' \). Hence \(G \subseteq G_q^r \). Since \([G_q : G] = r \), one has \([G_q : G_q^r] \leq r \). Hence \(G_q^r = G \). \(\square \)

5.5. Non-free normal subgroups

Let \(X \) be a proper normal subgroup of \(G_q \) that is not a free group. It follows that either \(R \notin X \) or \(S \notin X \). Suppose that \(R \notin X \). Since \(X \) contains all the conjugates of \(R \), both \(R = ST^{-1} \) and \(T^{-1}S \) are members of \(X \). Hence \(X \) has index 2 and a special polygon of \(X \) is given as in (5.3). Note that \(X \) is a free product of two copies of \(\mathbb{Z}_q \). In the case \(S \notin X \), \(G_q/X \) can be generated by \(RX \). Since \(R \) has order \(q \), \(G_q/X \) is a cyclic group of order \(q \), where \((r|q) \).

6. Hurwitz-Nielsen realisation problem

6.1. Geometric invariants

An immediate application of the study of the special polygons is that the geometric invariants of \(X \setminus \mathbb{H} \) can be determined easily. Let \(M_X = (P, I_X) \) be a special polygon associated with \(X \subseteq G_q \).

(i) \([G_q : X] = \) the number of special triangles in \(M_X = (P, I_X) \).

(ii) The subgroup \(X \) has \(r_2 \) (the number of the circles \(o \) in \(M_X \)) inequivalent classes of elliptic elements of order 2 that are conjugates of \(S \).

(iii) The subgroup \(X \) has \(r_4 \) (the number of the bullets \(\bullet \) in \(M_X \)) inequivalent classes of elliptic elements of order \(q \) that are conjugates of \(R = ST^{-1} \).

(iv) Let \(r (1 < r < q) \) be a divisor of \(q \). \(X \) has \(v_r \) (the number \(e_{q/r}(g)'s \) in \(M_X \)) inequivalent classes of elliptic elements of order \(r \) that are conjugates of \(R^{q/r} \).

(v) Suppose that the cusps of \(P \) is partitioned into \(v_\infty \) classes under the action of \(I_X \).

Then \(v_\infty = \) the number of cusps of \(X \setminus \mathbb{H} = \) the number of cycles of \(f(T) \), where \(f(T) \) is the permutation representation of \(T \) on the set of cosets \(G_q/X \).

(vi) Let \(\Delta = \{r : r \) is a divisor of \(q, 2 \leq r \leq q\} = \{r_1, r_2, \cdots, r_k = q\} \). The genus \(g \) of \(X \setminus \mathbb{H} \) is given by the following Riemann Hurwitz formula.

\[
2g - 2 + \frac{r_2}{2} + \sum_{r = 1}^{k} v_r (1 - 1/r_1) + v_\infty = [G_q : X](1/2 - 1/q).
\]

The terms in \(\{g, r_2, v_{r_1}, v_{r_2}, \cdots, v_{r_k}, v_\infty, [G_q : X]\} \) are called the geometric invariants of \(X \), where the \(v_r's \) are given as in (ii)-(iv).

Proof. (i) is clear. (ii)-(iv) follows from the observation that each conjugacy class of elliptic elements of \(X \) must have exactly one representative in \(I_X \) as \(I_X \) is a set of independent generators. (v) follows from the fact that the number of cusps is just the number of double cosets \((T) \setminus G_q / X \).

Lemma 6.1. Suppose that a special polygon \(M_X = (P, I_X) \) of \(X \) consists of \(n_0 \) \(q \)-gons and \(v_{r_i} \) \(q/r_i \)-clusters, \(1 \leq i \leq k \). Then the number of generators of infinite order in \(I_X \) is

\[
f = \frac{n_0(q - 2) + \sum_{i=1}^{k} v_{r_i}(q/r_i - 2) + 2 - r_2}{2}.
\]
Proof. Since the boundary of a \(q/r\)-cluster has \(q/r\) even lines, it follows that the boundary of \(P\) has \(n_0(q-2) + \sum_{i=1}^{k} v_{r_i}(q/r_i - 2) + 2\) even lines. Among these even lines, \(\tau_2\) of them are self paired by elements of \(I_X\). As a consequence, the remaining even lines are free sides and they are paired by side pairings of infinite order. In particular, the number of such side pairings is \(f = (n_0(q-2) + \sum_{i=1}^{k} v_{r_i}(q/r_i - 2) + 2 - \tau_2)/2\).

6.2. Construction of convex hyperbolic polygons. Let \(P_0\) be either the depth one \(q\)-gon in the right half plane or the \(r\)-cluster \(\Phi_r\) where \(r \geq 2\) is a divisor of \(q\) (see (4.1a) for \(\Phi_r\)). The Hecke-Farey sequence associated with \(P_0\) is given by

\[
F_0 = \{-\infty, 0, a_1, a_2, \ldots, a_k, a_k = \infty\}.
\]

Since \(r \geq 2\), \(\{0, a_1\}\) is an ordinary interval of \(F_0\). In the case \(P_0 = \Phi_r/\{a_{k-1}, a_k\}\) is an \(r\)-interval of \(F_0\) (see (d) of subsection 4.3 for the terms ordinary and \(r\)-intervals). Note that \(P_0\) is convex. Since \(\{0, a_1\}\) is an even line of \(P_0\) (see (d) of subsection 4.3), one may attach \(R_0\) to \(P_0\) along the even line \(\{0, a_1\}\) to get a new polygon \(P_0\), where \(R_0\) is either a \(q\)-gon or an \(s\)-cluster \((s \geq 2\) and \(s/q)\). The Hecke-Farey sequence associated with \(P_0\) takes the form

\[
F_1 = \{-\infty, 0, b_1, b_2, \ldots, b_{t-1}, a_1, a_2, \ldots, a_k\}.
\]

Since \(s \geq 2\), \(\{0, b_1\}\) is an ordinary interval of \(P_1\) and \(\{b_{t-1}, a_1\}\) is an \(s\)-interval if \(R_0\) is an \(s\)-cluster. Note that \(P_1\) is convex. Since \(\{0, b_1\}\) is an even line of \(P_1\), one may attach \(R_1\) to \(P_1\) along the even line \(\{0, b_1\}\) to get a new polygon \(P_2\), where \(R_1\) is either a \(q\)-gon or an \(u\)-cluster \((u \geq 2\) and \(u/q)\). Apply this procedure repeatedly, one admits a convex hyperbolic polygon \(P_n\) consists of \(n_0\) \(q\)-gons and \(v_{r_i}\), \(q/r_i\)-clusters for some \(n_0\) and \(v_{r_i}\), where \(r_i|q\) and \(q/r_i \geq 2\) (the key of our construction is that \(P_k\) always has an even line \(\{0, x_i\}\) and that \(R_i\) is always attached to \(P_i\) along \(\{0, x_i\}\)). Let \(\mathcal{F}\) be the Hecke-Farey sequence associated with \(P_n\). \(\mathcal{F}\) has \(v_{r_i}\), \(q/r_i\)-intervals, where \(q/r_i \geq 2\). The intervals of \(\mathcal{F}\) are divided into two classes (i) \(q/r_i\)-intervals, where \(q/r_i \geq 2\), and (ii) ordinary intervals. To count the number of ordinary intervals, we note that

(i) the boundary of a \(q\)-gon has \(q\) even line,

(ii) the boundary of a \(q/r_i\)-cluster has \(q/r_i\) even lines.

It follows that the boundary of \(P_n\) has \(n_0(q-2) + \sum v_{r_i}(q/r_i - 2) + 2\) even lines. As the even lines of \(P_n\) are associated with the ordinary intervals of \(\mathcal{F}\) (see (d) of subsection 4.3), the number of ordinary intervals of \(\mathcal{F}\) is given by

\[
n_0(q-2) + \sum v_{r_i}(q/r_i - 2) + 2, q/r_i \geq 2.
\]

6.3. Millington’s Theroem. Kulkarni [K2, K3] gives two proofs of Millington’s Theorem [Mi], one by Diagrams (see Section 4 of [K2]) and one by Farey symbols (see Section 7.6 of [K3]). We extend Millington’s result to \(G_q\) by studying Hecke-Farey symbols. Our proof is a simple generalisation of Kulkarni’s proof of Millington’s Theorem.

Theorem 6.2. Let \(g \geq 0\), \(\tau_2 \geq 0\), \(v_{r_i} \geq 0\), \(d \geq 1\), \(v_\infty \geq 1\) be integers and let \(r_i \in \Delta = \{r : r is a divisor of q, 2 \leq r \leq q\} = \{r_1, r_2, \ldots, r_k = q\}\). Then \(G_q\) has a subgroup \(X\) of index \(d\), genus \(g\) with \(v_\infty\) cusps, and \(\tau_2\) (resp. \(v_{r_i}\)) conjugacy classes of elements that are conjugates of \(S\) (resp. \(R_i/r_i\)) if and only if \(m_0 = 4g - 4 + \tau_2 + 2v_\infty + \sum_{i=1}^{k} v_{r_i}(2 - q/r_i) \geq 0\) is a multiple of \((q-2)\) and

\[
2g - 2 + \tau_2/2 + \sum_{i=1}^{k} v_{r_i}(1 - 1/r_i) + v_\infty = d(1/2 - 1/q).
\]

Note that if \(q\) is odd, then \(m_0/(q - 2) \in \mathbb{Z}\) is a consequence of (6.6).

Proof. Suppose that \(m_0 \geq 0\) is a multiple of \((q-2)\) and that \(g \geq 0\), \(\tau_2 \geq 0\), \(v_{r_i} \geq 0\), \(d \geq 1\), \(v_\infty \geq 1\) satisfy the Riemann-Hurwitz formula (6.6). Let \(r_i \in \Delta\). It follows that \(q/r_i \geq 2\) for \(1 \leq i \leq k - 1\). Let \(n_0 = m_0/(q - 2)\).
Case 1. \(n_0 = 0 \) and \(v_{r_i} = 0 \) for all \(i \leq k - 1 \). A simple calculation shows that either (i) \(d = 1, \tau_2 = v_q = 1, v_\infty = 1, g = 0, v_r = 0 \) for all \(i \leq k - 1 \) or (ii) \(d = 2, v_q = 2, v_\infty = 1, g = 0, v_r = 0 \) for all \(i \leq k - 1 \). In case (i), \(X = G_q \). In case (ii), \(X \) is given as in (5.3).

Case 2. \(n_0 > 0 \) or \(v_{r_i} > 0 \) for some \(i \leq k - 1 \). By (6.5), we have a polygon \(P_n \) and a Hecke-Farey sequence \(F \) with \(v_{r_i}, q/r_i \)-intervals \((i = 1, 2, \cdots, k - 1) \) and \(n_0(q - 2) + \sum_{i=1}^{k-1} v_{r_i}(q/r_i - 2) + 2 = 4g - 2 + \tau_2 + v_q + 2v_\infty \geq 2 \) (6.7)

ordinary intervals. Since \(n_0 > 0 \) or \(v_{r_i} > 0 \) for some \(i \leq k - 1 \), \(F \) has at least three intervals. We make \(F \) into a Hecke-Farey symbol by declaring the first \(\tau_2 \) ordinary intervals even intervals (see Definition 4.2 for the terms even and odd intervals) and the next \(v_q \) ordinary intervals odd intervals (this is equivalent to adjoin \(v_q \) special triangles to \(P_n \)). The next \(2(v_\infty - 1) \) ordinary intervals are declared to be free intervals and are divided into \((v_\infty - 1)\) consecutive pairs which are paired. The remaining \(4g \) ordinary intervals are free intervals and are paired in the usual \(xyz^{-1}y^{-1} \) fashion (see Discussion 6.3). Let \(X \) be the group generated by the above side pairings and let \(I_X \) be the set of the side pairings.

(i) \(I_X \) possesses \(\tau_2 \) elements that are conjugates of \(S \) and \(v_{r_i} \) elements that are conjugates of \(R^{q/r_i} \) for \(1 \leq i \leq k \).

(ii) An easy study of the side pairings shows that \(X \) has \(v_\infty \) cusps. The index of \(X \) is given by the number of special triangles of the special polygon \(M_X = (P, I_X) \), where \(P \) is the union of \(P_n \) and \(v_q \) special triangles. There are \(n_0 = (q - 2) \) \(q \)-gons, \(v_{r_i}, q/r_i \)-clusters \((1 \leq i \leq k - 1) \) and \(v_q \) special triangles. Hence the index is \(n_0 + \sum_{i=1}^{k-1} v_{r_i}(q/r_i) + v_q = d \) (6.8).

The genus of \(X \) is \(g \) (see (6.1)). It follows that \(X \) is the required subgroup (Theorem 5.1).

Conversely, let \(X \) be given as in our theorem, the geometric invariants of \(X \) satisfy (6.6). Let \(M_X = (P, I_X) \) be a special polygon of \(X \). Then \(P \) has \(v_{r_i}, q/r_i \)-clusters \((1 \leq i \leq k) \). Suppose that \(P \) has \(n_0 \) \(q \)-gons. By (i) of subsection 6.1, \(d = n_0q + \sum_{r_i=1}^{k} v_{r_i}q/r_i \). By (6.6), one has \(n_0 = (4g - 4 + \tau_2 + 2v_\infty + \sum_{r_i=1}^{k} v_{r_i}(2 - q/r_i))/q - 2) \). In particular, \(4g - 4 + \tau_2 + 2v_\infty + \sum_{r_i=1}^{k} v_{r_i}(2 - q/r_i) \geq 0 \) is a multiple of \(q - 2 \).

Discussion. (i) A Hecke-Farey symbol must have at least two side pairings (subsection 4.3). (ii) If \(F \) has at least three intervals, our declaration gives at least two side pairings.

6.4. Kurosh’s Theorem. Let \(Y \) be a free product of \(F_f \) (a free group of rank \(f \)), \(\pi_2 \) copies of \(Z_2 \), and \(v_{r_i} \) copies of \(\mathbb{Z}_{r_i} \), where \(r_i \in \Delta_0 = \{ r : r \) is a divisor of \(q, 3 \leq r \leq q \} \). We say \(Y \) is realisable in \(G_q \) if \(Y \) is isomorphic to a subgroup \(X \) of finite index of \(G_q \). It is clear that \(\mathbb{Z}_2 * \mathbb{Z}_q \) and \(\mathbb{Z}_q * \mathbb{Z}_q \) are realisable (see (5.3) for \(\mathbb{Z}_q * \mathbb{Z}_q \)).

Proposition 6.4. Let \(q \geq 3 \) be an odd integer and let \(Y \) be given as above. Suppose that \(Y \) is not \(\mathbb{Z}_2 * \mathbb{Z}_q \) or \(\mathbb{Z}_q * \mathbb{Z}_q \). Then \(Y \) is isomorphic to a subgroup \(X \) of \(G_q \) if and only if \(2f + \pi_2 + v_q - 2 \geq 0 \) and \(n_0 = 2f + \pi_2 + \sum_{r_i=1}^{k} v_{r_i}(2 - q/r_i) - 2 \geq 0 \) is a multiple of \(q - 2 \). The index of \(X \) is \(d = n_0q/(q - 2) + \sum_{r_i=1}^{k} v_{r_i}q/r_i \).

Proof. Suppose that \(Y \) is isomorphic to a subgroup \(X \) of \(G_q \). Let \(M_X = (P, I_X) \) be a special polygon of \(X \). Then \(I_X \) has \(f \) elements of infinite order, \(\pi_2 \) elements that are conjugates of \(S \), and \(v_{r_i} \) elements that are conjugates of \(R^{q/r_i} \). By Lemma 6.1, \(f, v_{r_i}, n_0 \geq 0 \), and \(\pi_2 \) satisfy the identity given in (6.2). This implies that \(n_0 = 2f + \sum_{r_i=1}^{k} v_{r_i}(2 - q/r_i) - 2 = n_0q/(q - 2) \geq 0 \). In particular, \(n_0 \geq 0 \) is a multiple of \(q - 2 \).

Note that \(n_0 = n_0q/(q - 2) \) is the number of \(q \)-gons of \(P \). Since \(P \) has \(n_0 q \)-gons and \(v_{r_i}, q/r_i \)-clusters, the index of \(X \) is \(d = n_0q/(q - 2) + \sum_{r_i=1}^{k} v_{r_i}q/r_i \) (see (i) of subsection 6.1). Finally, since \(m_0 = 2f + \pi_2 + v_q - 2 + \sum_{r_i=1}^{k} v_{r_i}(2 - q/r_i) = n_0(q - 2) \geq 0 \) and \((2 - q/r_i) < 0 \)
for \(i \leq s - 1 \), one has \(2f + \pi_2 + v_q - 2 \geq 0 \). Suppose that \(2f + \pi_2 + v_q - 2 = 0 \). It follows easily that \(v_{r_i} = 0 \) for \(i \leq s - 1 \). A simple study shows that \(Y \) is isomorphic to a subgroup \(X \) of \(G_q \) only if \(Y \cong \mathbb{Z}_2 \ast \mathbb{Z}_q \) or \(\mathbb{Z}_4 \ast \mathbb{Z}_2 \). A contradiction. Hence \(2f + \pi_2 + v_q - 2 > 0 \).

Conversely, suppose that \(2f + \pi_2 + v_q - 2 > 0 \) and that \(n_0 = m_0/(q - 2) \in \mathbb{N} \cup \{0\} \). If \(n_0 = 0 \) and \(v_{r_i} = 0 \) for \(i \leq s - 1 \), then \(m_0 = 2f + \pi_2 + v_q - 2 = 0 \). A contradiction. Hence either \(n_0 > 0 \) or \(v_{r_i} > 0 \) for some \(i \leq s - 1 \). By (6.5), we have a polygon \(P_n \) and a Hecke-Farey sequence \(\mathbb{F} \) with \(v_{r_i}, q/r_i \) -intervals \((q/r_i \geq 2 \) for \(i \leq s - 1 \) and \(n_0(q - 2) + \sum_{i=1}^{s-1} v_{r_i}(q/r_i - 2) + 2 = 2f + \pi_2 + v_q \geq 2 \) \((6.9) \)

ordinary intervals. We make \(\mathbb{F} \) into a Hecke-Farey symbol by declaring the first \(\pi_2 \) ordinary intervals even intervals and the next \(v_q \) ordinary intervals odd intervals (this is equivalent to adjoin \(v_q \) special triangles to \(P_n \)). The last \(2f \) ordinary intervals are declared to be free intervals and are divided into \(f \) consecutive pairs which are paired. Let \(X \) be the subgroup of \(G_q \) generated by the above side pairings and let \(I_X \) be the set of the side pairings. Then

(A) \(I_X \) possesses \(\pi_2 \) elements that are conjugates of \(S \) (of order \(2 \)) and \(v_{r_i} \) elements that are conjugates of \(R^{r_i/2} \) (of order \(r_i \)) for \(1 \leq i \leq s \).

(B) \(I_X \) has \(f \) elements of infinite order.

By Theorem 5.1, \(X \) is isomorphic to \(Y \). This completes the proof of the proposition. \(\square \)

In the case \(q \) is even, subgroups of \(G_q \) may possess two types of elliptic elements of order 2, namely, conjugates of \(S \) and \(R^{r_i/2} \). Note that \(2 \notin \Delta_0 \). For our convenience, we set \(v_2 = 0 \).

Proposition 6.5. Let \(q \geq 4 \) be an even integer and let \(Y \) be given as above. Suppose that \(Y \) is not \(\mathbb{Z}_2 \ast \mathbb{Z}_q \) or \(\mathbb{Z}_4 \ast \mathbb{Z}_2 \). Then \(Y \) is isomorphic to a subgroup \(X \) of \(G_q \) if and only if

(i) \(m_0 = 2f + (\pi_2 - t) + t(2 - q/2) + \sum_{i=1}^{s} v_{r_i}(2 - q/r_i) - 2 \geq 0 \) is a multiple of \(q - 2 \) for some \(t \geq 0 \), where \((\pi_2 - t) \) is nonnegative, and

(ii) \(2f + (\pi_2 - t) + v_q - 2 \geq 0 \) and \((2f + (\pi_2 - t) + v_q - 2, t, v_q/2) \neq (0, 0, 0) \).

Note that \(v_2 = 0 \). The index of \(X \) is \(d = m_0q/(q - 2) + tq/2 + \sum_{i=1}^{s} v_{r_i}q/r_i \).

Proof. Suppose that \(Y \cong X \subseteq G_q \). Let \(M_X = (P, I_X) \) be a special polygon of \(X \). Then \(I_X \) has \(f \) elements of infinite order, \((\pi_2 - t) \) elements that are conjugates of \(S \), \(t \) elements that are conjugates of \(R^{r_i/2} \), and \(v_{r_i} \) elements that are conjugates of \(R^{r_i/2} \). Note that \(r_i \neq 2 \) \((r_i \in \Delta_0) \). The assertion now follows by applying the proof of Proposition 6.4. \(\square \)

7.

Permutation representation of \(G_q \) on \(G_q/X \)

The main purpose of this section is to give an easy and systematic method that determines the permutation representation of \(G_q \) on \(G_q/X \).

7.1.

A commutative diagram. Let \(\Phi \) be given as in subsection 4.1. \(\Phi \) is a fundamental domain of \(G_q \). For each coset \(Xg \in G_q/X \), there exists a unique \(x_g \in X \) such that \(x_g \Phi \in M_X = (P, I_X) \). Denoted by \(\Omega_X \) the set of all such special triangles \(x_g \Phi \). It follows that \(\bigcup_{x_g \Phi \in \Omega_X} x_g \Phi = M_X \). As a consequence, there is a one to one correspondence between \(G_q/X \) and \(\Omega_X \) defined by

\[
\tau(Xg) = x_g \Phi \in \Omega_X. \tag{7.1}
\]

An element \(g \) of \(G_q \) acts on \(G_q/X \) by \((Xh, g) \rightarrow Xhg \). We shall now study the action of \(X \) on \(\Omega_X \) as follows. Let \(g \in G_q \). For each \(g \Phi \in \Omega_X \), there exists a unique pair \((g_i \Phi, x_{ij}) \in \Omega_X \times X \) such that \(x_{ij}g_i \Phi = g_i \Phi \in \Omega_X \). The action of \(g \) on \(\Omega_X \) is defined by

\[
(g_i \Phi, g) \rightarrow x_{ij}g_i \Phi. \tag{7.2}
\]

Lemma 7.1. The action of \(G_q \) on \(G_q/X \) is isomorphic to the action of \(G_q \) on \(\Omega_X \).
Proof. We consider the following diagram, where the horizontal arrows represent the actions of X on G_q/X and Ω_X.

\[
\begin{array}{ccc}
G_q/X \times G_q & \longrightarrow & G_q/X \\
(\tau, id) \downarrow & & \downarrow \tau \\
\Omega_X \times G_q & \longrightarrow & \Omega_X
\end{array}
\]

(7.3)

Let $G_q/X = \cup_X g_i$ be chosen such that $\cup g_i \Phi = M_X$. This implies that $\tau(Xg_i) = g_i \Phi$. As a consequence, (7.3) is a commutative diagram and the action of G_q on G_q/X is isomorphic to the action of G_q on Ω_X. \hfill \square

7.2. The permutation representation of G_q on Ω_X. The main purpose of this subsection is to give the permutation representations of S and R on Ω_X.

Lemma 7.2. Let $\Omega_X = \{g_i \Phi : \cup g_i \Phi = M_X\}$. The permutation representation of S on Ω_X is given by

\[
f(S) = \prod (g_i \Phi, g_j \Phi),
\]

where $g_i \Phi \in \Omega_X$ and $g_j \Phi \in \Omega_X$ share the same even line of P. $(g_i \Phi, g_j \Phi)$ is a one cycle if and only if $g_i S g_i^{-1} \in X$ if and only if $g_i (0, \infty)$ is paired with itself by $g_j S g_j^{-1} \in X$.

Proof. Let $g_i \Phi \in \Omega_X$. There exists a unique pair $(g_i \Phi, x_{ij}) \in \Omega_X \times X$ such that $x_{ij} g_i S \Phi = g_j \Phi \in \Omega_X$ (see (7.2)). By Lemma 7.1, the permutation representation of S is given by

\[
\prod_{(\tau(Xg_i), \tau(Xg_jS))} = \prod (g_i \Phi, x_{ij} g_i S \Phi) = \prod (g_i \Phi, g_j \Phi).
\]

The even line of $g_j \Phi \in M_X$ is $g_j (0, \infty) = x_{ij} g_i S (0, \infty) = x_{ij} g_i (0, \infty) \in M_X$. Since $g_i (0, \infty) \in M_X$, $x_{ij} \in X$ and every even line has a unique X-image in M_X, we conclude that $g_i (0, \infty) = x_{ij} g_i (0, \infty) = g_i (0, \infty)$. Hence $g_j \Phi$ and $g_i \Phi$ share the same even line, $(g_i \Phi, g_j \Phi)$ is a one cycle if and only if $(Xg_i, Xg_j S)$ is a one cycle (see Lemma 7.1 and (7.1)) if and only if $g_i S g_i^{-1} \in X$ if and only if $g_i (0, \infty)$ is paired with itself by $g_j S g_j^{-1} \in X$. \hfill \square

Discussion 7.3. Let $E = E_1 \cup E_2$ be the set of even lines of $M_X = (P, I_X)$, where $E_1 = \{L_1, L_2, \cdots, L_m\}$ is the set of even lines that are not paired with itself by elements of I_X of order 2, and $E_2 = \{L_{m+1}, \cdots, L_n\}$ is the set of even lines that are paired with itself by elements of I_X of order 2. Consequently, an element L_s of E_1 belongs to exactly one special triangle of Ω_X. Lemma 7.2 suggests a simple way to list the special triangles in Ω_X. Namely, the special triangles share the even line $L_r \in E_1$ are labeled as r and there is no special triangle contains $L_s \in E_2$ is labeled as s.

Example 7.4. Let

\[
M_X = \{-\infty \quad \cdots \quad 0 \quad \begin{array}{c}1 \quad 2 \quad 3 \quad \infty \end{array}
\]

be the Hecke-Farey symbol of a subgroup X of index 11 of $G_3 = \text{PSL}(2, \mathbb{Z})$ (see Figure 4). M_X has 6 even lines, five of them are shared by two special triangles of Ω_X, they are

\[
L_1 = (0, \infty), \quad L_2 = (1, \infty), \quad L_3 = (2, \infty), \quad L_4 = (3, \infty), \quad L_5 = (1, 2).
\]

(7.6)

Note that (1, 2) and (2, 3) give the same line as they are paired by the side pairing labeled by the natural number 1 (see (7.5)). The even line $L_6 = (0, 1)$ is paired to itself by an element of order 2 (see (7.5)). As a consequence, the special triangles of Ω_X are labeled as in Figure 4. By Lemma 7.2, $f(S)$ is given by

\[
f(S) = (1, 1)(2, 2)(3, 3)(4, 4)(5, 5)(6).
\]

(7.7)

The permutation representation of R on G_q/X that contains $Xg_i \in \Omega_X$ is given by the cycle $(Xg_i, Xg_i R, \cdots, Xg_i R^{r-1})$, where r is the smallest positive integer such that $Xg_i = Xg_i R^r$. By Lemma 7.1, the permutation representation of R on Ω_X that contains $g_i \Phi$ is given by the following r cycle.

\[
(g_i \Phi = \tau(Xg_i), \tau(Xg_i R), \tau(Xg_i R^2), \cdots, \tau(Xg_i R^{r-1})).
\]

(7.8)
Proof. \(\Delta\) is a normal subgroup of \(G\). By Lemma 7.1, the action of \(G\) has only one member in (7.8). Let \(\tau(Xg, R^*) = x_{ij}g_i R^*\). The odd vertex of \(x_{ij}g_i R^*\) is ordered in the counter-clockwise manner. The permutation \(\tau(Xg, R^*) = x_{ij}g_i R^*\Phi\) is the same as the odd vertex of \(g_i R^*\Phi\) for every \(j\). Hence the special triangles in (7.8) are special triangles of a tile \(\Delta\) whose odd vertex is \(g_i(e^{\pi i/q})\). \(\Delta\) is either a \(q\)-gon or an \(r\)-cluster. Since \(R\) acts as a counter-clockwise rotation about \(e^{\pi i/q}\), the members in (7.8) are ordered following the orientation of \(M_X\). The following is clear.

Lemma 7.5. Let \(\Delta\) be a tile of \(M_X\) (\(\Delta\) is either a \(q\)-gon or an \(r\)-cluster). Denoted by \(c_\Delta\) the cycle of special triangles of \(\Delta\) ordered in the counter-clockwise manner. The permutation representation of \(R\) on \(\Omega_X\) is

\[
f(R) = \prod c_\Delta.
\]

Example 7.6. Let \(M_X\) be given as in (7.5). Then \(f(R) = (1, 6, \overline{2})(2, 5, \overline{3})(3, \overline{5}, 4)(\overline{1})(4)\).

8. NORMALISER OF \(X\) IN \(PSL(2, \mathbb{R})\)

Let \(G_X = \langle f(S), f(R) \rangle\). Then \(G_X\) is a subgroup of \(S_n\), where \([G_q : X] = n\). The main purpose of this section is to determine the normaliser \(N(X)\) of \(X\) in \(PSL(2, \mathbb{R})\). In particular, we are able to determine whether \(X\) is a normal subgroup of \(G_q\).

Proposition 8.1. Let \(X\) be a subgroup of \(G_q\) of index \(n\). Then \(N_{G_q}(X)/X \cong C_{S_n}(G_X)\). \(X\) is a normal subgroup of \(G_q\) if and only if the order of \(G_X\) is \([G_q : X] = n\).\(\square\)

Proof. Consider the action of \(G_X\) on \(\Omega_X\). It is clear that the action is transitive. Let \(G_0\) be a one point stabiliser. By Lemma A1 of Appendix A, \(C_{S_n}(G_X) \cong N_{G_X}(G_0)/G_0\). By Lemma 7.1, the action of \(G_q\) on \(G_q/X\) is isomorphic to the action of \(G_X\) on \(\Omega_X\). Hence \(N_{G_q}(X)/X \cong N_{G_X}(G_0)/G_0 \cong C_{S_n}(G_X)\).

Consider the action of \(G_q\) on \(G_q/X\), one has \(X \triangleleft G_q\) if and only if \(Y = \cap gXg^{-1} = X\) if and only if \(X \subseteq G_q\). By \(G_q\) has order \(n\).

Discussion 8.2. (i) Since \(f(S)\) and \(f(R)\) can be obtained easily by studying the special polygon \(M_X\) and the order of \(G_X\) can be determined by \textbf{GAP}, whether \(X\) is normal becomes an easy issue. In the case \(q \neq 3, 4, 6\), Margulis’ characterisation of arithmeticity in terms of the commensurator implies that \(N(X) = N_{G_q}(X)\). Hence \(C_{S_n}(G_X) \cong N(X)/X\). (ii) By Proposition 8.1, the group in (i) of subsection 5.1 is normal.

Example 8.3. Let

\[
M_X = \{-\infty, 0, 1, 3/2, 2, 3, \ldots, \infty\}
\]
Note that $(3, \infty)$ is paired with L_1, $(1, 3/2)$ is paired with L_2, and that $(2, 3)$ is paired with L_3 (see (8.1) for the side pairings). One sees easily that all the even lines are shared by 2 special triangles. Following Discussion 7.3, the special triangles are labeled as in Figure 5.

By Lemmas 7.2 and 7.5, we have

$$f(R) = (1, 2, 4)(4, 6, 5)(5, 3, 1)(6, 2, 3), \quad f(S) = (1, 1)(2, 2)(3, 3)(4, 4)(5, 5)(6, 6).$$

(8.3)

One has $|G_X| = |\langle f(S), f(R) \rangle| = [G_3 : X] = 12$. By Proposition 8.1, X is normal.

Example 8.4. Let $\lambda = \lambda_4 = \sqrt{2}$ and let

$$MX = \{-\infty, 0, 1/2, \lambda, 3/2, 2\lambda, \infty\}$$

be the Hecke-Farey symbol of $X \subseteq G_4$ of index 8 (see Figure 6). M_X has four even lines, $L_1 = (0, \infty), L_2 = (0, 1/\lambda), L_3 = (\lambda, 3/\lambda),$ and $L_4 = (\lambda, \infty).$ One sees from Figure 6 that

$$f(R) = (1, 2, 1, 4)(4, 3, 2, 3), \quad f(S) = (1, 1)(2, 2)(3, 3)(4, 4).$$

(8.5)

One has $|G_X| = 16 > 8 = [G_4 : X].$ By Proposition 8.1, X is normal.

Example 8.5. Let $P = \{x_1 = 0, x_2, \ldots, x_q = \infty\}$ be the depth 1 q-gon in the right half plane and let r ($1 \leq r < q$) be a divisor of q. Let

$$M_A = \{-\infty, x_1, x_2, \ldots, x_{q-1}, x_q\} \quad \text{and} \quad M_B = \{-\infty, x_1, x_2, \ldots, x_r, \cdots, x_q, x_1, \cdots, x_{q-1}\}.$$

$f(S)$ is the identity permutation for both A and B. $f(R)$ is a q-cycle (resp. r-cycle) for A (resp. B). By Proposition 8.1, both A and B are normal subgroups of G_q.

9. Hurwitz-Nielsen Realisation Problem for Normal Subgroups

A transitive subgroup G of S_d is called regular if every non-identity element of G is fixed point free. The result in this section reveals the connection between normal subgroups of index d of G_q and regular subgroups of S_d.

9.1. Geometric Invariants Revisited. Let $M_X = (P, I_X)$ be a special polygon of X. The geometric invariants of X in terms of $f(S)$ and $f(R)$ are given as follows.

(i) I_X has r_2 elliptic elements of order 2 that are conjugates of S, where r_2 is the number of one cycles of $f(S)$.

(ii) P has r_v, q/r_v-clusters. The number n_0 of q-gons of $M_X = (P, I_X)$ is the number of q-cycles of $f(R)$. The index $[G_q : X]$ is given by $n_0q + \sum v, q/r$.
(iv) The number of cusps is the number of cycles of \(f(T) \), where \(f(T) \) is the permutation representation of \(T \) on \(\Omega _X \) (see (v) of subsection 6.1).

(v) \(I_X \) has \(f = (n_0(q - 2) + \sum _{r \mid q} v_r(q/r - 2) + 2 - \tau _2)/2 \) side pairings of infinite order.

Proof. By Lemma 7.5, it is clear that (a) an \(s \)-cycle \((s < q) \) of \(f(R) \) corresponds to an \(s \)-cluster of \(P \) as well as a side pairing which is a conjugate of \(R^s \), (b) a \(q \)-cycle of \(f(R) \) corresponds to a \(q \)-gon of \(P \). Similarly, each one cycle of \(f(S) \) corresponds to a side pairing which is a conjugate of \(S \). (i)-(iv) of the above is clear. See Lemma 6.1 for (v). \(\square \)

9.2. Geometric invariants for normal subgroups. Suppose that \(X \) is normal of index \(d \).

By Proposition 8.1, \(G_X = \langle f(R), f(S) \rangle \) is a transitive subgroup of order \(d \) of the symmetric group \(S_d \). Since every nonidentity element acts freely, \(f(R) \) is a product of \(d/u \) \(u \)-cycles for some \(u \mid q \). Similarly, \(f(S) \) is either 1 or a product of \(d/2 \) 2-cycles. The geometric invariants can be determined by subsection 9.1. In particular,

(vi) \(I_X \) has \(f = d(u - 2)/u + 2 - \tau _2)/2 \) side pairings of infinite order \((\tau _2 = 0 \text{ if } S \notin X) \).

The following fact is well known. Unlike most of the results in the literature, our study gives the sets of generators of such \(X \)'s in matrix forms (see Example 8.5).

Lemma 9.1. Let \(A \) and \(B \) be given as in Example 8.5 and let \(X \) be a normal subgroup of index \(d \) of \(G_q \) that contains \(S \). Then \(X \) is isomorphic to either \(A \) or \(B \).

Proof. Let \(M_X = (P, I_X) \) and let \(G_X = \langle f(S), f(R) \rangle \). Since \(X \) is normal, \(G_X \) is regular of order \(d \). Since \(S \in X \) and \(X \) is normal, \(f(S) = 1 \) (see (i) of subsection 9.1). Hence \(G_X = \langle f(R) \rangle \). Since \(G_X \) is transitive, \(f(R) \) must be a \(d \)-cycle. It follows that \(P \) is either a \(q \)-gon (if \(d = q \)) or a \(d \)-cluster \(\Phi _d \) (if \(d < q \)). As \(S \in X \) and \(X \) is normal, the even lines of \(P \) are self paired by conjugates of \(S \). This completes the proof of the proposition. \(\square \)

9.3. Realisation of groups as normal subgroups. Throughout the subsection, \(Y \) is a free product of a free group \(F_f \) of rank \(f \), \(\pi _2 \) copies of \(\mathbb{Z} _2 \), and \(v_r \) copies of \(\mathbb{Z} _{r'} \), where \(r_i \in \Delta _0 = \{ r : r \mid q, 3 \leq r \leq q \} \). Proposition 9.2 is an immediate consequence of Lemma 9.1.

Proposition 9.2. Let \(q \geq 3 \). Suppose that \(\pi _2 \neq 0 \). Then \(Y \) can be realised as a normal subgroup of \(G_q \) that contains \(S \) if and only if \(Y \) is a free product of \(q \) copies of \(\mathbb{Z} _2 \) or a free product of \(\mathbb{Z} _{q/r} \) and \(r \) copies of \(\mathbb{Z} _2 \), where \(r \mid q \) and \(r < q \).

Proposition 9.3. Let \(q \geq 3 \). Suppose that \(\pi _2 \neq 0 \). Then \(Y \) can be realised as a normal subgroup of index \(d \) of \(G_q \) that does not contain \(S \) if and only if (i) \(Y \) is a free product of \(2d/q \) copies of \(\mathbb{Z} _2 \) and a free group of rank \(f \), where \(2f = 2d(q/2 - 2)/q + 2 \), (ii) \(S_d \) has a regular subgroup \(G = \langle \alpha , \beta \rangle \) of order \(d \), where \(\alpha \) is a product of 2-cycles and \(\beta \) is a product of \(q/2 \)-cycles. In particular, \(q \) is even. Note that \(d \) is determined by \(f \) and \(q \).

Proof. Let \(Y \) and \(G \) be given as in (i) and (ii). Since \(G_q \) is a free product of \(S \) and \(R \), the map \(\chi : G_q \to G \) defined by \(\chi (S) = \alpha , \chi (R) = \beta \) is a homomorphism. Let \(X \) be the kernel of \(\chi \) and let \(M_X = (P, I_X) \) be a special polygon of \(X \). One sees that \(f(S) \) (resp. \(f(R) \)) and \(\alpha \) (resp. \(\beta \)) have the same cycle decomposition. Hence \(f(S) \) is a product of 2-cycles, \(f(R) \) is
a product of $q/2$-cycles, and P is a union of $q/2$-gons ($2d/q$ of them). By (vi) of subsection 9.2, $2f = 2d(q/2 - 2)/q + 2$. Hence I_X has $2d/q$ elements that are conjugates of $R^{d/2}$ and f elements of infinite order. In particular, $Y \cong X \leq G_q$.

Conversely, suppose that $Y \cong X \leq G_q$, where $[G_q : X] = d$, $S \notin X$. Let $G_X = (f(S), f(R))$. By (i)-(vi) of subsections 9.1 and 9.2, G_X is regular, $f(S)$ (resp $f(R)$) is a product of 2-cycles (resp. $q/2$-cycles). Further, X is a free product of $2d/q$ copies of Z_2 and a free group F_f, where $2f = 2d(q/2 - 2)/q + 2$. Hence (i) and (ii) holds.

The following proposition can be proved by applying the proof of Proposition 9.3.

Proposition 9.4. Let $q \geq 3$. Suppose that $\pi_2 = 0$. Then Y can be realised as a normal subgroup of index d of G_q if and only if

(i) Y is a free group of rank f, where $2f = d(q - 2)/q + 2$, S_d has regular subgroup $\langle \alpha, \beta \rangle$ of order d, where α is a product of 2-cycles and β is a product of q-cycles, or

(ii) Y is a free product of d/r copies of $Z_{q/r}$, and a free group of rank f, where $2f = d(r - 2)/r + 2$, S_d has regular subgroup $\langle \alpha, \beta \rangle$ of order d, where α is a product of 2-cycles and β is a product of r-cycles. Note that d is determined by f, q and r.

10. CONSTRUCTION OF ALL MAPS ON COMPACT ORIENTABLE SURFACES

10.1. Known results. A map \mathcal{M} on a compact orientable surface X is an embedding of a finite connected graph \mathcal{G} in X such that the connected components (faces of \mathcal{M}) of $X \setminus \mathcal{G}$ are simply connected. An edge e of \mathcal{M} is called a segment if e has two vertices. An edge homeomorphic to the circle one vertex is called a free edge. Segments and loops are also called non-free edges. The darts of \mathcal{M} are directed edges. Each non-free edge gives two darts whereas a free edge gives only one dart (see pp. 276 of [JS]). The two darts associated with a non-free edge e travel along e in opposite directions and the only dart associated with a free edge e (with vertex v) is the directed edge that points towards v. Denoted by Ω the set of darts of \mathcal{M}. \mathcal{M} can be characterised completely by two permutations r_1 and r_2 on Ω. r_1 is the permutation that (i) fixes the darts associated with the free edges, and (ii) transposes the two darts associated with the non-free edges. r_2 is the permutation whose cycles correspond to the faces of \mathcal{M} (following the orientation of X). Consequently, the map \mathcal{M} can be represented by

$$(G, \Omega, r_1, r_2),$$

where $G = \langle r_1, r_2 \rangle$. Suppose that the order of r_2 is q. Then $\theta : G_q \to G = \langle r_1, r_2 \rangle \subseteq S_\Omega$ defined by $\theta(S) = r_1$ and $\theta(R) = r_2$ is a homomorphism. Since the graph \mathcal{G} is connected, θ induces a transitive action of G_q on Ω via $A(w) = \theta(A)(w)$, for all $A \in G_q$, $w \in \Omega$. Let X be a one point stabiliser of the action. It is clear that the action of G_q on G_q/X is isomorphic to the action of G on Ω and that (G, Ω, r_1, r_2) is isomorphic to $(G_q/X_0, G_q/X, S, R)$, where $X_0 = \cap_{g \in G_q} \varrho g X g^{-1}$ (see pp. 283 of [JS]). Equivalently,

$$\mathcal{M} \cong (G, \Omega, r_1, r_2) \cong (G_q/X_0, G_q/X, S, R).$$

(10.2)

X is known as a map subgroup of \mathcal{M}. Since the action is transitive, the map subgroups are conjugate to each other. See pp.63 of [CS] for more detail.

10.2. Maps associated with subgroups of G_q. Let $M_X = (P, I_X) = X \setminus \mathbb{H}$ be a special polygon of $X \subseteq G_q$ given as in Section 4. Define $M(X)$ as follows.

(i) V set of vertices of $M(X)$ = the set of equivalence classes of cusps of M_X.

(ii) E = set of edges of $M(X)$ = the set of equivalence classes of even lines of M_X.

(iii) F = set of faces of $M(X)$ = the set of clusters and q-gons of M_X.

As the faces of $M(X)$ are simply connected, $M(X) = (V, E, F)$ is a map.

Lemma 10.1. Suppose that $[G_q : X] < \infty$. Then $M(X) \cong (G_X, \Omega_X, f(S), f(R))$.

Proof. Let E_1 and E_2 be given as in Discussion 7.3. Let $e \in E_1$. Then e is not paired with itself by elements of order 2. Hence e is either a loop or a segment. Consequently, e is a non-free edge. In the case $e \in E_2$, e is paired with itself by an element of order 2. Hence e is homeomorphic to $[0, 1]$ with only one vertex. It follows that e is a free edge. Note that every non-free edge e is shared by two special triangles and every free edge e belongs to exactly one special triangle. This allows us to construct a one to one correspondence ν between the set of special triangles Ω_X and the set of darts Ω such that $\nu(f(S)) = r_1(\nu(g_1))$ and that $\nu(f(R)) = r_2(\nu(g_2))$. Hence the following is a commutative diagram.

\[
\begin{array}{ccc}
\Omega_X \times G_X & \longrightarrow & \Omega_X \\
\downarrow \nu & & \downarrow \nu \\
\Omega \times G & \longrightarrow & \Omega
\end{array}
\] (10.3)

where the horizontal arrows represent the group actions and $\chi(f(S)) = r_1$, $\chi(f(R)) = r_2$.

As a consequence, $M(X) \cong (G, \Omega, r_1, r_2) \cong (G_X, \Omega_X, f(S), f(R))$. \hfill \square

Discussion 10.2. Let \mathcal{M} be a map. One knows very little about the map subgroups of \mathcal{M} except that they are the one point stabilisers. Conversely, for each subgroup X of G_q, one cannot really visualise $(G_q/X_0, G_q/X, S, R)$ as a map as it is not very easy to describe the incidence relations of this map. The following proposition implies that every map (with $o(r_2) = q$) takes the form $M(X)$, where X is a subgroup of finite index of G_q. Both the map $M(X)$ and its map subgroups can be described explicitly as $M(X)$ can be described by its special polygon and the map subgroups of $M(X)$, which are conjugates of X, can be described by the set of independent generators I_X.

Proposition 10.3. Let \mathcal{M} be a map, where $o(r_2) = q$. Then $\mathcal{M} \cong M(X)$ for some $X \subseteq G_q$.

Further, the map subgroups of $M(X)$ are conjugates of X.

Proof. By the results in subsection 10.1, \mathcal{M} is isomorphic to $(G_q/X_0, G_q/X, S, R)$. By Lemmas 7.1, 7.2, and 7.5, $(G_q/X_0, G_q/X, S, R)$ is isomorphic to $(G_X, \Omega_X, f(S), f(R))$. By Lemma 10.1, one has $\mathcal{M} \cong (G_X, \Omega_X, f(S), f(R)) \cong M(X)$. $g \in G_q$ fixes $g_1\Phi \in \Omega_X$ if and only if there exists some $x \in X$ such that $xg_1g_2 = g_1\Phi$ (see (7.2)). Since the action of G_q on Ω_X is fixed point free, g fixes $g_1\Phi$ if and only if $g_1^{-1}xg = 1$. This completes the proof of the proposition. \hfill \square

Proposition 10.4. The automorphism group of $M(X)$ is $C_{S_n}(G_X)$, where $\mathcal{M} = [G_q : X]$.

Proof. Let $\sigma \in S_n$. The incidence relations of $M(X)$ is determined by $G_X = \langle f(S), f(R) \rangle$. Hence $\sigma \in Aut(M(X)$ if and only if $[\sigma, G_X] = 1$. This completes the proof of the lemma. \hfill \square

11. Congruence Subgroup Problem for $\Gamma = PSL(2, \mathbb{Z})$

Let $\Gamma = G_3 = PSL(2, \mathbb{Z})$. The principal congruence subgroup of Γ of level $r \in \mathbb{N}$ is

$$\Gamma(r) = \{ x \in \Gamma : x \equiv \pm 1 \pmod{r} \}. \quad (11.1)$$

Let $X \subseteq \Gamma$ is a congruence subgroup if $\Gamma(r) \subseteq X$ for some r. Consider the action of T on Γ/X, the order of T on Γ/X is called the level of X. By a result of Wohlfahrt [W], $X \subseteq \Gamma$ is a congruence subgroup if and only if $\Gamma(n) \subseteq X$. To the best of our knowledge, the congruence test developed by Tim Hsu [H] is the most effective one in the literature (see [LLT2] for another test). His test can be implemented as long as the permutation representations of T and U on Γ/X can be determined (Theorem 3.1 of [H]), where

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}. \quad (11.2)$$

Incidently, an algorithm that determines the permutation representations of T and U on Γ/X is not included in [H]. By Lemma 7.1, such action is isomorphic to the action of T and U on Ω_X. Following Lemmas 7.2 and 7.5, $f(T) = f(R^{-1}S)$ and $f(U) = f(RS)$
can be determined easily as long as \(X \) is given in terms of a special polygon and a set of independent generators. As a consequence, Hsu’s algorithm can be implemented with ease.

Example 11.1. Let

\[
M_X = \{ -\infty, 0, 1, 2, 3, \infty \}
\]

be the Hecke-Farey symbol of a subgroup \(X \) of index 11 of \(PSL(2, \mathbb{Z}) \) (see Figure 7). Then \(f(S) = (1, 1)(2, 2)(3, 3)(4, 4) \) and \(f(R) = (1, 5, 2)(2, 6, 3)(3, 7, 4)(4) \). Hence

\[
f(T) = (1, 2, 3, 4, 7, 3, 6, 2, 5, 1), \quad f(U) = (1, 5, 2, 6, 3, 7, 4, 3, 2, 1).
\]

By the algorithm given in Section 3 of [H], \(X \) is non-congruence. Note that \(\cap gXg^{-1} \cong (f(T), f(U)) \cong A_{11} \) is the alternating group on 11 letters. The group \(\cap gXg^{-1} \) was first studied by Magnus [M] as part of his study of non-congruence subgroups of \(\Gamma \).

Appendix A

In this appendix, \(\Omega \) is a finite set, \(S_\Omega \) is the symmetric group on \(\Omega \), and \(G \subseteq S_\Omega \).

Lemma A1. Suppose that \(G \) acts transitively on \(\Omega \). Then \(C_{S_\Omega}(G) \cong N_G(G_d)/G_d \), where \(G_d \) is the one point stabiliser of \(d \in \Omega \).

Proof. Since \(G \) is transitive, the action of \(G \) on \(\Omega \) is isomorphic to the action of \(G \) on the set of cosets \(G/G_d \). Without loss of generality, we may assume that \(\Omega = G/G_d \) and that \(x(G_d) = xG_d \) for \(x \in G \). Let \(x \in C_{S_\Omega}(G) \). Then \(x(G_d) = e_xG_d \in G/G_d \) for some \(e_x \in G \). For each \(g \in G_d \), one has \(gx(G_d) = xg(G_d) = x(G_d) \). Hence \(g \cdot e_xG_d = e_xG_d \). This implies that \(e_xG_d \in N_G(G_d)/G_d \). As a consequence, one can show that \(C_{S_\Omega}(G) \cong N_G(G_d)/G_d \) by studying the homomorphism \(\Phi : C_{S_\Omega}(G) \to N_G(G_d)/G_d \) defined by \(\Phi(x) = e_x^{-1}G_d \). Note that for each \(r \in N_G(G_d) \), the permutation defined by \(rG_d = gr^{-1}G_d \) commutes with \(G \) which implies that \(\Phi \) is surjective \((e_x = r^{-1} \) and \(\Phi(x) = rG_d) \). \(\square \)

References

[CS] I. N. Cangül, D. Singerman, Normal subgroups of Hecke groups and regular maps, Math. Proc. Camb. Phil. Soc. 123, (1998), 59-74.

[G] GAP, Groups, Algorithms, Programming, A system for Computational Discrete Algebra, http://www.gap-system.org

[HR] Y. H. He, J. Read, Hecke groups, Dessins d’Enfants and the Archimedean solids, arXiv:math/1309.2326v1, [math.NT], 2013.

[H] T. Hsu, Identifying congruence subgroups of the modular group, Proc. Amer. Mat. Soc. 124, no 5 (1996), 1351-1359.

[IS] I. Ivrissimtzis, D. Singerman, Regular maps and principal congruence subgroups of Hecke groups, European J. of Comb. 26 (2005), 437-456.

[JS] G. A. Jones, D. Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc. (3) 37 (1978), 273-307.

[K1] R.S. Kulkarni, An extension of a theorem of Kurosh and applications to Fuchsian groups, Michigan Math. J. 30 (1983), 259-272.
[K2] R.S. Kulkarni, A new proof and extension of a theorem of Millington on the modular group, Bull. London Math. Soc. 17 (1985), 458-462.

[K3] R.S. Kulkarni, An arithmetic-Geometric method in the study of subgroups of the modular group, Amer. J Math. 113 (1991), 1053-1134.

[LLT1] M. L. Lang, C. H. Lim, S. P. Tan, Independent generators for congruence subgroups of Hecke groups, Math. Z. 220 (1995), 569 – 594.

[LLT2] M. L. Lang, C. H. Lim, S. P. Tan, An algorithm for determining if a subgroup of the modular group is congruence, J. of London Math. Soc. (2) 51 (1995) 491-502.

[M] W. Magnus, Non-Euclidean tessellations and their groups, Academic Press 1974.

[Ma] B. Maskit, On Poincaré’s theorem for fundamental polygons, Advances in Math. 7. (1971), 219-230.

[Mi] M. H. Millington, Subgroups of the classical modular group, J. Lon. Math. Soc. 1 (1969), 351-357.

[N] M. Newman, The structure of some subgroups of the Modular Group, Illinois J. Math. (1962), 480-487.

[W] K. Wohlfahrt, An extension of F. Klein’s level concept, Illinois J. of Math. 8 (1964), 529 – 535.

Cheng Lien Lang
Department of Mathematics, I-Shou University, Kaohsiung, Taiwan.
cilang@isu.edu.tw

Mong Lung Lang
Singapore 669608, Singapore.
lang2to46@gmail.com