Review

Novel roles for hERG K⁺ channels in cell proliferation and apoptosis

J Jehle¹, PA Schweizer¹, HA Katus¹ and D Thomas*¹

The human ether-a-go-go-related gene potassium channel (hERG, Kv11.1, KCNH2) has an essential role in cardiac action potential repolarization. Electrical dysfunction of the voltage-sensitive ion channel is associated with potentially lethal ventricular arrhythmias in humans. hERG K⁺ channels are also expressed in a variety of cancer cells where they control cell proliferation and apoptosis. In this review, we discuss molecular mechanisms of hERG-associated cell cycle regulation and cell death. In addition, the significance of hERG K⁺ channels as future drug target in anticancer therapy is highlighted.

Cell Death and Disease (2011) 2, e193; doi:10.1038/cddis.2011.77; published online 18 August 2011

Subject Category: Cancer

Ion Channels Involved in Cell Proliferation and Death

Ion channels have been implicated in signaling pathways leading to cell proliferation or apoptosis (programmed cell death). Their identification and functional characterization in tumor cells suggest potential significance in anticancer therapy. Transient receptor potential channels form a superfamily of ubiquitously expressed channels influencing the balance between cell survival and death. In addition, hyperpolarization-activated cyclic nucleotide-gated channels were detected in embryonic stem cells where they exert pro-proliferative effects. Potassium channels represent the largest group of channels involved in cell death and proliferation. Furthermore, voltage-gated K⁺ channels (e.g. Kv1.3) or two-pore-domain channels (e.g. Kᵢ,P5.1) determine growth of adenocarcinomas. Voltage-sensitive human ether-a-go-go-related gene (hERG) potassium channels have recently emerged as novel regulators of growth and death in cancer cells. This review focuses on hERG channels in proliferation and apoptosis. Current knowledge on expression, function and regulation is reviewed, and clinical implications are discussed.

Differential Expression of hERG Potassium Channels

Cardiac expression and function of hERG K⁺ channels. Repolarization of cardiac ventricular myocytes is mainly regulated by outward potassium currents. One of the most important currents is the delayed rectifier potassium current, Iₚ, which has rapidly and slowly activating components (Iₚᵣ and Iₚₛ). Activation of the rapid component of the delayed rectifier potassium current, Iₚᵣ, terminates the plateau phase and initiates repolarization of the cardiac action potential. The hERG encodes the voltage-gated potassium channel α-subunit underlying Iₚᵣ. hERG potassium channels form homo-tetramers of identical six transmembrane spanning domains, with a cluster of positive charges localized in the S4 domain serving as voltage sensor. hERG channels are a primary target for the pharmacological management of arrhythmias with class III antiarrhythmic agents. Blockade of hERG currents causes lengthening of the cardiac action potential, which may produce a beneficial class III antiarrhythmic effect. Excessive reduction of hERG currents due to mutations in hERG or via blockade produces chromosome-7-linked congenital long QT syndrome (LQTS-2) and acquired long QT syndrome, respectively. Both forms of LQTS are associated with delayed cardiac repolarization, prolonged electrocardiographic QT intervals, and a risk for the development of ventricular ‘torsade de points’ arrhythmias and sudden cardiac death. hERG channels are inhibited by a variety of non-antiarrhythmic compounds. This undesirable side effect is now considered a significant hurdle in the development of new and safer drugs, and has forced removal of several drugs from the market. In addition to LQTS, cardiomyocyte apoptosis has been reported following pharmacological hERG K⁺ channel blockade.

hERG K⁺ channels in cancer. Various cancer cell lines of epithelial, neuronal, leukemic, and connective tissue origin express hERG K⁺ channels (Table 1), whereas corresponding non-cancerous cells and cell lines do not

¹Department of Cardiology, Medical University Hospital, Heidelberg, Germany
*Corresponding author: D Thomas, Department of Cardiology, Medical University Hospital, Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany.
Tel: +49 6221 568855; Fax: +49 6221 565514; E-mail: dierk.thomas@med.uni-heidelberg.de

Keywords: hERG; K⁺ channel; cell proliferation; apoptosis; anticancer therapy

Abbreviations: ALLHAT, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial; AML, acute myeloid leukemia; BPH, benign prostatic hyperplasia; CHOP, c/EBP homologous protein; DOC-1, downstream of CHOP-1; FAK, focal adhesion kinase|hERG, human ether-a-go-go-related gene; Kv, voltage-gated potassium channel; LQTS, long QT syndrome; TNF, tumor necrosis factor, α

Received 20.5.11; revised 14.7.11; accepted 18.7.11; Edited by V De Laurenzi
Derivation	Cell type/cell line	Comment	
Cancer cells	**Epithelial**	Colorectal cancer^{18–20} Gastric cancer¹ Esophageal squamous cell carcinoma ESCC²² Human endometrial cancer²³ Leukemic blast cells from AML patients²⁴ B-CLL primary lymphocytes from B-cell CLL patients²⁵ Leukemia stem cells CD34+/CD38[−]/CD123[−]	No expression of herg1b
	Leukemic	Glioblastoma multiforme²⁷ Glioma²⁸	
	Connective and soft tissue		
Cancer cell lines	**Epithelial**	Colo 205¹⁸ C26¹⁹ HCT8²⁰ HCT116^{18,20} HT-29²⁰ T84²⁰ DL1²⁰ H630²⁰	No expression of herg1b
	Stomach	SGC7901²¹ AG5²¹ MGC803²¹ MKN45²¹	
	Lung	PG highly metastatic human lung giant-cell carcinoma²⁹ A549 human lung adenocarcinoma³⁰ NCI-N592 lung microcytoma³¹ Small cell lung cancer GLC8 and H69³¹	
	Breast	MCF-7³² SKBr3^{30,33}	Cancer cell line expressing hERG3
	Skin	MDA-MB-435S melanoma cells³⁴	
	Eye	Human retinoblastoma cell line Y-79³⁵	
	Prostate	LNCaP human prostatic adenocarcinoma³⁰	
Neuronal	**Brain**	SH-SY5Y human neuroblastoma^{30,33,35–38} SK-NBE human neuroblastoma³¹ N18T42 murine neuroblastoma³¹ 41A3 murine neuroblastoma³¹ F11 rat DRG–mouse N18TG2 neuroblastoma hybrid³¹ NG108-15 mouse–rat hybrid neuroblastoma–glioma^{39,40} GH, GH4 MMQ pituitary tumors³¹	Expression of hERG1 and hERG1b
	Blood/bone marrow	FLG 29.1 human preosteoclast cell line^{24,35,41} BL2 Burkitt’s lymphoma²⁵ Raji Burkitt’s lymphoma²⁵ K562 chronic myelogenous leukemia cell line²⁵ U937 pro-myelocytic leukemia²⁵ CEM (pro-B cell ALL)²⁵ UT-7 megakaryoblastic leukemia cell line⁴²	Expression of hERG1 and hERG1b
	Connective and soft tissue	U138 GBM cell line²⁷ TE671 rhabdomyosarcoma³¹	
Non-cancerous tissue	**Epithelial**	Pancreatic islet⁴³	hERG1 and hERG1b
	Connective and soft tissue	Human heart⁴⁴ Rat heart⁴⁴ Mouse heart⁴⁴	hERG1 and hERG1b
potentials. The predominance of hERG in cycling cells may account for the depolarized resting membrane potential below a threshold of \(-40\) mV whereas classical inwardly rectifying channels remain open at more negative membrane potentials. The membrane potential of cycling cells is particularly depolarized during the G1 phase. However, K\(^+\) channel-dependent hyperpolarization appears to be critical for progression to the S phase. Hyperpolarization evokes Ca\(^{2+}\) influx, which is further augmented by calcium-dependent K\(^+\) (K\(_{Ca}\)) channels and permits synthesis of mitogenic factors. In addition, hyperpolarization provides the electrical gradient necessary for Na\(^+\)-dependent transport of metabolic substrates and ions across the plasma membrane, which is required for DNA synthesis. Considering that K\(^+\) channels are involved in cell cycle progression, abundant expression of K\(^+\) channels is expected to cause loss of proliferative control if endogenous pathways fail to block excessively expressed K\(^+\) channels. Interestingly, the promoter region of the hERG gene harbors multiple binding sites for oncoproteins, such as specificity protein 1 and nuclear factor kappa light chain enhancer of activated B-cells, and for the tumor suppressor protein Nkx3.1 (Nk3 homeobox 1). We may hypothesize that mutations in oncoproteins constitutively activate hERG gene expression, shifting resting membrane potentials of cancerous cells toward more depolarized values and repolarizing them at the end of G1 phase, thereby facilitating cell cycle progression and thus leading to cell proliferation. Here, pharmacological intervention using hERG antagonists will serve to arrest the cell cycle in the G1 phase. Furthermore, human gastric cancer cells exhibit reduced levels of the regulatory \(\beta\)-subunit KCNE2, leading to hERG current increase. In addition, genetic deletion of KCNE2 is associated with gastric neoplasia and increased nuclear cyclin D1 levels in mice, revealing genetic manipulation of cell proliferation mediated by a hERG \(\beta\)-subunit.

Various cancer cell lines and cardiomyocytes have been reported to express an N terminally truncated splice variant of hERG, hERG1b, that confers specific electrophysiological properties. Pharmacological approaches targeting the hERG1/hERG1b ratio may modulate the resting membrane potential of cycling cells. Increased hERG1b levels are expected to depolarize cells, while high hERG1 levels will shift membrane potential toward more hyperpolarized values and suppress cell proliferation. hERG potassium channel blockers modulate proliferation. Leukemic cell lines express hERG K\(^+\) channels whereas non-cancerous lymphocytes do not exhibit hERG protein. Selective hERG channel blockade by E-4031 reduced proliferation in cancerous cell lines. Unspecific deceleration of the cell cycle and reduction of cell proliferation were ruled out in non-cancerous cell lines.

Table 1 (Continued)

Derivation	Cell type/cell line	Comment
Blood	PBCD34 peripheral blood, hemopoietic progenitor cells \(^{24}\)	Rapid induction of hERG expression by cytokines/growth factors
Neuronal	Uterus, Myometrium \(^{23}\), Brain rat brain \(^{44}\), Mouse brain \(^{44}\), Human prolactin-secreting adenoma cells \(^{45}\), Native rat lactotroph cells \(^{46}\)	
Connective and soft tissue	Heart, HL-1 (murine atrial tumor cell line) \(^{46}\)	

Differential hERG expression patterns during ontogenesis. While hERG expression in normal adult human tissue is limited to heart, brain, myometrium, pancreas, and hematopoietic progenitors, other species have been described to undergo changes in their ERG expression profile during ontogenesis: quail embryos express ERG K\(^+\) channels in peripheral ganglia and skeletal muscle in addition to heart and central nervous system. This observation illustrates that hERG expression in tumor cells might either represent ectopic re-expression of a gene that remains silent in differentiated cells, or reflect re-activation of embryonic genes, which is well recognized in cancers.

Cell Proliferation

Functional role of hERG K\(^+\) channels in cell proliferation.

In differentiated adult cells, resting membrane potential varies from \(-40\) mV to about \(-90\) mV. These distinct differences are closely correlated to the proliferative potential of respective cell types, ranging from slowly proliferating or non-proliferative neurons or muscle cells \((\sim -70\) mV to \(-90\) mV) to highly proliferative glandular epithelia of liver, thyroid, pancreas, or salivary glands \((\sim -40\) mV to \(-55\) mV). hERG K\(^+\) channels are closed at membrane potentials below a threshold of \(-60\) mV whereas classical inwardly rectifying channels remain open at more negative membrane potentials. The predominance of hERG in cycling cells may thus account for the depolarized resting membrane potential in these cells. The membrane potential of cycling cells is particularly depolarized during the G1 phase. However, K\(^+\) channel-dependent hyperpolarization appears to be critical for progression to the S phase. Hyperpolarization evokes Ca\(^{2+}\) influx, which is further augmented by calcium-dependent K\(^+\) (K\(_{Ca}\)) channels and permits synthesis of mitogenic factors. In addition, hyperpolarization provides the electrical gradient necessary for Na\(^+\)-dependent transport of metabolic substrates and ions across the plasma membrane, which is required for DNA synthesis. Considering that K\(^+\) channels are involved in cell cycle progression, abundant expression of K\(^+\) channels is expected to cause loss of proliferative control if endogenous pathways fail to block excessively expressed K\(^+\) channels. Interestingly, the promoter region of the hERG gene harbors multiple binding sites for oncoproteins, such as specificity protein 1 and nuclear factor kappa light chain enhancer of activated B-cells, and for the tumor suppressor protein Nkx3.1 (Nk3 homeobox 1). We may hypothesize that mutations in oncoproteins constitutively activate hERG gene expression, shifting resting membrane potentials of cancerous cells toward more depolarized values and repolarizing them at the end of G1 phase, thereby facilitating cell cycle progression and thus leading to cell proliferation. Here, pharmacological intervention using hERG antagonists will serve to arrest the cell cycle in the G1 phase. Furthermore, human gastric cancer cells exhibit reduced levels of the regulatory \(\beta\)-subunit KCNE2, leading to hERG current increase. In addition, genetic deletion of KCNE2 is associated with gastric neoplasia and increased nuclear cyclin D1 levels in mice, revealing genetic manipulation of cell proliferation mediated by a hERG \(\beta\)-subunit.

Various cancer cell lines and cardiomyocytes have been reported to express an N terminally truncated splice variant of hERG, hERG1b, that confers specific electrophysiological properties. Pharmacological approaches targeting the hERG1/hERG1b ratio may modulate the resting membrane potential of cycling cells. Increased hERG1b levels are expected to depolarize cells, while high hERG1 levels will shift membrane potential toward more hyperpolarized values and suppress cell proliferation. hERG potassium channel blockers modulate proliferation. Leukemic cell lines express hERG K\(^+\) channels whereas non-cancerous lymphocytes do not exhibit hERG protein. Selective hERG channel blockade by E-4031 reduced proliferation in cancerous cell lines. Unspecific deceleration of the cell cycle and reduction of cell proliferation were ruled out in non-cancerous cell lines.
Table 2 Cell cycle arrest induced by hERG K⁺ channel inhibitors

Cell type	hERG blocker	Comment
Human osteoclast/preosteoclast cells FLG 29.1	E-4031; WAY 123398; CsCl	Arrest in G1 phase
Human leukemia cell lines K562 and HL60	E-4031	Arrest in G1 phase
Human neuroblastoma SH-SY5Y	HERG1/1b shRNA	Arrest in G1 phase
Human gastric cancer cell line SGC790	HERG-specific siRNA	Arrest in G1 phase
Murine corticotroph AIT20 cells	Doxazosin	Arrest in G1 phase
Rat somatolactotroph GH3 cells	Doxazosin	Arrest in G1 phase
MCF-7 breast cancer cell line	Astemizole	Arrest in G1 phase
Human colon carcinoma cell line HT-29	Erythromycin (+vincristine)	Potentiation of the effect of vincristine (arrest in G2/M phase)
Prostate cancer cell line LNCaP	Doxazosin (25 μM); terazosin (25 μM)	No antiproliferative effect, no change in cell cycle distribution

Significance of hERG Ion Channels in Apoptosis

Proapoptotic effects of hERG K⁺ channel inhibitors. hERG channel blockers have been shown to induce apoptosis in different cell types. This mechanism is independent of their capacity to inhibit cell proliferation via cell cycle arrest. The significance of hERG K⁺ channels in apoptotic pathways has been demonstrated in hERG-transfected HEK293 cells, which underwent apoptosis upon administration of doxazosin, compared with control HEK293 cells lacking endogenous hERG.58 Doxazosin is an α₁-adrenoreceptor antagonist with hERG-blocking properties that is clinically used as an antihypertensive drug.59 In the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT), which compared novel antihypertensive drugs to diuretic treatment in 33,000 patients, the doxazosin arm had to be discontinued due to an increase in congestive heart failure that may be attributed to cardiomyocyte apoptosis.60,61 The proapoptotic effect of doxazosin has been confirmed in vitro in the murine atrial tumor cell line HL-1, and in isolated adult human cardiomyocytes,17 providing a possible explanation for the increased incidence of congestive heart failure in the doxazosin arm of the ALLHAT trial. In addition to hypertension, doxazosin is used for treatment of lower urinary tract symptoms caused by benign prostatic hyperplasia (BPH). Smooth muscle relaxation due to α₁-adrenergic blockade was initially thought to underlie the relief of symptoms in BPH patients. However, subsequent studies revealed an apoptotic effect of doxazosin in hyperplastic prostatic tissue that may contribute to its clinical efficacy.62 Furthermore, doxazosin induced apoptosis in prostatic cancer cells.63 Limitations arise from the lack of studies directly comparing hERG expression in normal, hyperplastic, and cancerous prostatic tissue, respectively. Finally, hERG channel expression is well documented in pituitary adenoma cells.55 When treated with doxazosin in vitro, antiproliferative and proapoptotic effects were observed in pituitary adenoma cells independent of antiadrenergic properties of the drug.55

Molecular mechanisms of hERG-associated apoptosis. hERG K⁺ channel blockers such as doxazosin activate multiple apoptotic pathways. However, evidence for a direct mechanistic link between hERG K⁺ channels and apoptotic proteins remains sparse to date. In HL-1 cardiomyocytes, doxazosin induces apoptosis via the endoplasmic reticulum pathway, involving enhanced phosphorylation of p38 mitogen-activated protein kinase, which activates GADD153/CHOP (growth arrest and DNA damage-induced gene 153/c/EBP homologous protein). GADD153/CHOP subsequently forms heterodimers with DNA-binding protein c/EBPβ (CCAAT enhancer-binding protein beta) and translocates into the nucleus, where it augments transcription of the carbonic anhydrase DOC-1 (downstream of CHOP-1). DOC-1 then acidifies intracellular pH and facilitates apoptosis.64 Finally, the CHOP pathway results in activation of a key apoptotic enzyme, caspase 3.65 Caspase activation by doxazosin induces cleavage of the protein-tyrosine kinase FAK (focal adhesion kinase) in HL-1 cells, which compromises cell adhesion and leads to apoptosis.64 FAK is an essential component of integrin signaling and is phosphorylated when cells are adhered to the extracellular matrix. Thus, it provides a survival signal and prevents apoptosis.66 In prostate cancer cells, FAK is cleaved by caspase 3 upon treatment with doxazosin, which leads to apoptosis or anoikis (i.e. apoptosis due to loss of cell adhesion).67 Furthermore, hERG1, integrin β1, and FAK form a macromolecular complex in hERG1-transfected HEK293 cells and SH-SY5Y neuroblastoma cells. Cell adhesion via integrin β1 causes activation of hERG1, which is essential for direct FAK phosphorylation (Figure 1).37
The abundant expression of hERG and FAK might provide crucial survival signals in the absence of cell adhesion, and thus account for increased invasiveness and dissemination of hERG-positive tumors. In addition, colocalization with hERG potassium channels activates the GTPase Rac1 and may contribute to adhesion-dependent modulation of tumor cell motility.37

Cell type- and environment-specific effects on apoptosis are suggested by reports of hERG activity promoting apoptosis. In hERG-positive SKBr3, SH-SY5Y, and HL-1 cells, apoptosis occurs via a caspase 3-dependent pathway in response to extracellular administration of H2O2 or TNFα (tumor necrosis factor α), whereas selective inhibition of hERG conductance by dofetilide attenuates the proapoptotic effect of H2O2 and TNFα.33 The methodology in the latter study is different from investigations mentioned above. Cells were first incubated with H2O2 or TNFα to induce apoptosis, followed by application of hERG blockers. In the same study, hERG is revealed to recruit TNFα receptor 1 to the plasma membrane, which might explain increased responsiveness to TNFα in these cells.33 The authors describe a proliferative effect in hERG-expressing cells at low doses of TNFα and an antiapoptotic effect of the hERG inhibitor dofetilide upon pretreatment with H2O2 and TNFα. These observations appear to be at odds with proapoptotic effects of hERG K⁺ channel blockers. The hERG blocker doxazosin has been proven as a proapoptotic agent in a wide range of in vitro and in vivo studies. Doxazosin increases the intracellular H2O2 content in BPH stromal cells. This is considered to facilitate TNFα-related pathways.68 Administration of H2O2 before hERG inhibition appears to interfere with hERG-induced signaling pathways, which augment intracellular H2O2 levels. The antiapoptotic effect of hERG channel blockade may be due to this interference. However, pro- and antiapoptotic effects of hERG blockers might coexist, and proapoptotic effects, including the increase in intracellular H2O2, could outweigh a possible antiapoptotic effect through suppression of the apoptotic H2O2 – TNFα pathway. However, an unambiguous differentiation between effects of hERG conductance and hERG expression is lacking, and the mechanism by which hERG conductance facilitates H2O2- and TNFα-mediated apoptosis remains unclear at the molecular level.

Clinical and Therapeutic Implications

Diagnostic value of hERG K⁺ channel expression in tumors. hERG may be utilized as a potential tumor marker, given their expression in a variety of tumor cells and their absence from most non-cancerous human tissues. Specifically, hERG was detected in endometrial cancer at mRNA (sensitivity = 67%; n = 18) and protein levels (sensitivity = 82%; n = 18), whereas only 18% (n = 11) of non-cancerous endometrial samples exhibited hERG mRNA or protein.23 In colon carcinomas, hERG mRNA was a more sensitive and more specific indicator for malignancy (100% sensitivity and specificity; n = 23) than mRNA of the established tumor markers CEA (sensitivity = 94.4%; n = 18), CK19 (sensitivity = 77.8%; n = 18), or CK20 (sensitivity = 94.4%; n = 18).18 Immunohistochemical staining for hERG protein
reached similar sensitivity and specificity as hERG mRNA.18 Further validation is required in larger patient populations.

Prognostic significance of hERG K+ channel expression in tumors. The prognostic value of hERG expression in tumors has been evaluated in several tissues. In acute myeloid leukemia (AML) blasts, hERG K+ channel expression is associated with a 50% reduction of relapse-free and overall survival time compared with patients with hERG-negative AML (12 versus 23 months).69 Patients with esophageal squamous cell carcinomas similarly exhibit reduced survival (30 versus 56 months) when hERG is detected.22 However, hERG K+ channel expression was not significantly associated with invasiveness, dissemination, or tumor grade in this study. In gastric cancer cells, levels of hERG expression are positively correlated to tumor de-differentiation and TNM stage.21 Moreover, tumor growth was observed in BALB/c nu/nu mice following injection of gastric cancer cells. Injection of cancer cells that were pretreated with hERG siRNA significantly attenuated tumorigenesis,21 confirming the pathological significance of hERG in tumor growth and suggesting a potential novel target in anticancer therapy (see below). In colonic adenocarcinomas, there is a significant correlation between hERG K+ channel expression and invasiveness or dissemination. hERG is not detected in normal colonic mucosa (0%; n = 60) and rarely observed in adenoma (9%; n = 11). In contrast, substantial hERG was found in patients with non-metastatic adenocarcinoma (75%; n = 52) and metastatic adenocarcinoma (100%; n = 8), with the most pronounced staining found in hepatic and peritoneal metastasis.20

Anticancer therapy. The antihypertensive \(\alpha_1\)-adrenoceptor blocker doxazosin is an established treatment option in BPH. Its therapeutic efficacy has been attributed to induction of \(\alpha_1\)-adrenoceptors may offset the limiting proarrhythmic effects of hERG channel inhibitors.71–73 Cardiomyocyte apoptosis may be circumvented through targeted delivery techniques such as direct injection or trans-arterial drug application. Gene therapy represents an additional therapeutic approach to targeted suppression of hERG channel expression in cancers. Different proliferative states of cardiac and tumor cells may render cancerous tissue more susceptible to pro-apoptotic and antiproliferative stimuli, reducing the overall risk of heart failure during systemic application of hERG antagonists. Feasibility of tumor-selective hERG-based anticancer therapy will further depend on differential drug effects on cancerous and non-cancerous tissue expressing hERG K+ channels.

Conclusion

hERG potassium channels, previously recognized to promote cardiac action potential repolarization, are now revealed to serve as regulators of proliferation and apoptosis in cancer cells. Their significance in anticancer therapy is supported by mechanistic data and preliminary in vivo studies. Limitations arise from potential cardiac side effects that require attention. Further studies are warranted to provide a more complete understanding of hERG effects on apoptotic pathways. Downstream signaling proteins may serve as more specific therapeutic drug targets in future anticancer therapy.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgements. This study was supported in part by research grants from the ADUMED foundation (to DT), the German Heart Foundation/German Foundation of Heart Research (to DT), and the Max-Planck-Society (TANDEM project to PAS).

1. Shapovalov G, Lehen’kyi V, Skyma R, Pevarskaya N. TRP channels in cell survival and cell death in normal and transformed cells. Cell Calcium 2011; e-pub ahead of print 29 May 2011; doi:10.1016/j.ceca.2011.05.006.
2. Lau YT, Wong CK, Luo J, Leung LH, Tsang PF, Bian ZX et al. Effects of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers on the proliferation and cell cycle progression of embryonic stem cells. Pflugers Arch 2011; 461: 191–202.
3. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000; 52: 557–594.
4. Lang F, Fölter M, Lang KS, Lang PA, Ritter M, Gubins E et al. Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 2005; 205: 147–157.
5. Chou CC, Lunn CA, Murgolo NJ. KCa3.1: target and marker for cancer, autoimmune disorder and vascular inflammation? Expert Rev Mol Diagn 2008; 8: 179–187.
6. Srivastava S, Zhdanova O, Di L, Li Z, Albaumi M, Wulf H et al. Protein histidine phosphatase 1 negatively regulates CD4 T cells by inhibiting the Ki+ channel KCa1.1. Proc Natl Acad Sci USA 2008; 105: 14442–14446.

7. Toyama K, Wulf H, Chandry KG, Azam P, Ramam G, Saito T et al. The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to arrhythmogenesis in mice and humans. J Clin Invest 2008; 118: 3025–3037.

8. Grigc I, Kisa E, Kastha BP, Busch C, Kloss M, Sautter J et al. Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc Natl Acad Sci USA 2009; 106: 14158–14153.

9. Jiang SH, Chei SY, Ryu PO, Lee SY. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. J Biol Chem 2011; 286: 31–32.

10. Alvarez-Baron CP, Jonsson P, Thomas C, Dryer SE, Williams C. The two-pore domain potassium channel KCNQ1 induces membrane receptor alpha and role in proliferation of breast cancer cells. Mol Endocrinol 2011; 25: 1267–1306.

11. Sanguinetti MC, Jurkiewicz K. Two components of delayed rectifier K+ channel. J Gen Physiol 1990; 96: 195–215.

12. Wamckie JW, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 1994; 91: 3438–3442.

13. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited cardiac hERG/IKr potassium channel and human long QT syndrome. Circ Res 2005; 96: 287–295.

14. Thomas D, Karle CA, Kiehn J. The cardiac hERG/IKr potassium channel as a target for drug development. J Biol Chem 2004; 279: 23927–23935.

15. Patlak S, Preussat K, Beetz C, Kraft R, Schrey M, Kalff R et al. The cardiac hERG1 potassium channel sustains a cardiac-type action potential in neuroblastoma S cells. Biochem Biophys Res Commun 2003; 302: 101–108.

16. Meves H. Slowing of ERG current degradation in NG108-15 cells by the histidine-specific reagent detyrosycarboxylate. Neuropharmacology 2001; 41: 220–228.

17. Panzarizzo J, Ma W, Grant GM, Shaffer KM, Kao WY, Liu QY et al. A role in inward rectifying K+ channels in differentiation of NG108-15 neuroblastoma x glioma cells. J Neurosci 1999; 19: 466–474.

18. Fargion G, Bemaka PA, Picciani O, Cherubini A, Guasti L, Pilillozzi S et al. HERG K+ channels activation during beta(1)-integrin-mediated adhesion to fibronectin induces an up-regulation of alpha(v)beta(3) integrin in the preosteoclastic osteoclast cell line FLG 29. J Biol Chem 2001; 276: 4923–4931.

19. Agarwal JR, Greisinger F, Stuhmer W, Pardo LA. The potassium channel Ether-a-go-go is a novel phosphatase factor with functional relevance in acute myeloid leukemia. Mol Cancer 2010; 9: 18.

20. Rosati B, Marchetti P, Crociani O, Lecchi M, Lupi R, Arcangeli A et al. Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K(+) channels in firing and release. FASEB J 2000; 14: 2601–2610.

21. Pond AL, Schwe BK, Benedikt AD, Petraca K, Wagoner RD, Shirer A et al. Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional (K) channels. J Biol Chem 2000; 275: 5997–6006.

22. Baurier CK, Wulfsen I, Schäfer R, Glassmeier G, Wimmers S, Flitsch J et al. HERG K+ channel currents in human prostatic-secretory adenoma cells. Pflügers Arch 2003; 445: 380–393.

23. Staudacher I, Schweiz PA, Katus HA, Thomas D. hERG protein trafficking and potential for therapy and drug side effects. Curr Opin Drug Discov Devel 2010; 13: 23–30.

24. Gonzalez-Juanatey JR, Iglésias MJ, Alcacid C, Finoera R, Lago F. Doxorubicin induces apoptosis in cardiomyocytes cultured in vitro by a mechanism that is independent of alpha(1)-adrenergic blockade. Circulation 2003; 107: 127–131.

25. Dolderer JH, Schultes H, Bockhorn H, Altmannsberger M, Lambers C, von Zabern D et al. HERG1 gene expression as a specific tumor marker in colorectal tissues. J Surg Oncol 2006; 96: 287–295.

26. Gong JH, Tu XJ, Shang BY, Chen SZ, Zhen YS. HERG K+ channel related chemosensitivity to sparfloxacin in colon cancer cells. Oncol Rep 2010; 23: 1747–1756.

27. Lastracli E, Guasti L, Crociani O, Polvani S, Hofmann G, Wittholz H et al. herg1 gene and HERG protein overexpression in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 2004; 64: 606–611.

28. Xiao KD, Wu KC, Guo XZ, Xie MJ, Zhang J, Fan DM. Expression and significance of HERG protein in gastric cancer. Cancer Biol Ther 2008; 7: 45–50.

29. Ding XW, Luo HS, Luo B, Xu DQ, Gao S. Overexpression of hERG1 in resected esophageal squamous cell carcinomas: a marker for poor prognosis. J Surg Oncol 2008; 97: 57–62.

30. Cherubini A, Bemaka PA, Guasti L, Crociani O, Guasti A, Pilillozzi S et al. HERG K+ channel function in the human mammary carcinoma cell line MCF-7. Oncol Rep 2003; 10: 909–913.

31. Jang SH, Choi SY, Ryu PO, Lee SY. Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. J Biol Chem 2011; 286: 1511–1516.

32. Wang H, Zhang Y, Cao L, Han H, Wang J, Yang B et al. HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res 2002; 62: 4843–4848.

33. Afrasiabi E, Hetamani M, Vilitaan T, Sukumaran T, Bergelin N, Torquist K. Expression and significance of HERG (KCNH2) potassium channels in the regulation of MDA-MB-435S melanoma cell proliferation and migration. Cell Signal 2010; 22: 57–64.

34. Crociani O, Guasti L, Balzi M, Bechetto A, Warkie E, Olivoto M et al. Cell cycle-dependent expression of HERG and HERG1B isoforms in tumor cells. J Biol Chem 2003; 278: 2487–2495.

35. Zhao J, Wei XL, Jia YS, Zheng JQ. Silencing of hERG gene by shRNA inhibits SH-SY5Y cell growth in vitro and in vivo. Eur J Pharmacol 2008; 579: 50–57.

36. Cherubini A, Hofmann G, Pilillozzi S, Guasti L, Crociani O, Cilia E et al. Human ether-a-go-go-related gene 1 channels are physically linked to beta1 integrins and modulate adhesion-dependent signaling. Mol Cell Bio 2005; 20: 2972–2983.

37. D’Amico M, Biagiotti T, Fontana L, Restano-Cassulini R, Lasagna N, Arcangeli A et al. HERG K+ channels activation during beta(1)-integrin-mediated adhesion to fibronectin induces an up-regulation of alpha(v)beta(3) integrin in the preosteoclastic osteoclast cell line FLG 29. J Biol Chem 2001; 276: 4923–4931.

38. Awad S, Shafi P, Ali SI, Patel J, Patel DD et al. HERG K+ channels in heart failure: a critical review of the literature. J Card Fail 2008; 14: 295–306.

39. D’Amico M, Biagiotti T, Arcangeli A, Guasti L, Pilillozzi S et al. HERG K+ channel function in the human mammary carcinoma cell line MCF-7. J Biol Chem 2001; 276: 4923–4931.

40. Pancrazio JJ, Ma W, Grant GM, Shaffer KM, Kao WY, Liu QY et al. A role in inward rectifying K+ channels in differentiation of NG108-15 neuroblastoma x glioma cells. J Neurosci 1999; 19: 466–474.

41. Fargion G, Bemaka PA, Picciani O, Cherubini A, Guasti L, Pilillozzi S et al. HERG K+ channels activation during beta(1)-integrin-mediated adhesion to fibronectin induces an up-regulation of alpha(v)beta(3) integrin in the preosteoclastic osteoclast cell line FLG 29. J Biol Chem 2001; 276: 4923–4931.
62. Kyprianou N, Vaughan TB, Michel MC. Apoptosis induction by doxazosin and other quinazoline alpha1-adrenoceptor antagonists: a new mechanism for cancer treatment? Naunyn Schmiedebergs Arch Pharmacol 2009; 380: 473–477.
63. Partin JV, Anglin IE, Kyprianou N. Quinazoline-based alpha 1-adrenoceptor antagonists induce prostate cancer cell apoptosis via TGF-beta signalling and I kappa B alpha induction. Br J Cancer 2003; 88: 1615–1621.
64. Eiras S, Fernandez P, Pineiro R, Iglesias MJ, Gonzalez-Juanatey JR, Lago F. Doxazosin induces activation of GADD153 and cleavage of focal adhesion kinase in cardiomyocytes en route to apoptosis. Cardiovasc Res 2006; 71: 118–128.
65. Oyasu R, Moni M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11: 381–389.
66. Kornberg LJ. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck 1998; 20: 745–752.
67. Shao XD, Wu KC, Hao ZM, Hong L, Zhang J, Fan DM. The potent inhibitory effects of cisapride, a specific blocker for human ether-a-go-go-related gene (HERG) channel, on gastric cancer cells. Cancer Biol Ther 2005; 4: 295–301.
68. Thomas D, Wendt-Nordahl G, Ro¨ckl K, Ficker E, Brown AM, Kiehn J. High-affinity blockade of HERG human cardiac potassium channels by the novel antiarrhythmic drug BRL-32872. J Pharmacol Exp Ther 2001; 297: 753–761.
69. Zhang S, Zhou Z, Gong Q, Makiel JS, January CT. Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 1999; 84: 989–998.

Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/