Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short report

Preventing SARS-CoV-2 transmission in rehabilitation pools and therapeutic water environments

S. Romano-Bertrand a,b,*, L-S. Aho Glele c, B. Grandbastien d, D. Lepelletier e,f, on behalf of the French Society for Hospital Hygiene

a HydroSciences Montpellier, IRD, CNRS, Montpellier University, Montpellier, France
b Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, Montpellier, France
c Department of Epidemiology and Infection Control, Dijon University Hospital, Dijon, France
d Department of Preventive Medicine, Infection Prevention and Control Team, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
e MiHAR Lab, EE 1701 S, Nantes University, Nantes, France
f Department of Bacteriology and Infection Control, Nantes University Hospital, Nantes, France

ARTICLE INFO

Article history:
Received 18 May 2020
Accepted 3 June 2020
Available online 6 June 2020

Keywords:
Coronavirus
COVID-19
Waterborne infection
Oral–faecal transmission
Viral pandemic

SUMMARY

SARS-CoV-2 is mainly transmitted by respiratory droplets and contact with contaminated surfaces. It can be retrieved in faeces but there is no evidence of faecal–oral transmission, which is the main route of contamination in recreational waters. Standard cleaning and disinfecting procedures, microbiological control and health rules aim to prevent infectious risk regardless of the micro-organisms. In the context of progressive lockdown exit and hospital activities recovery, we assessed the risk of SARS-CoV-2 transmission in rehabilitation pools and therapeutic water environments in order to provide specific recommendations to control the spread of SARS-CoV-2 while ensuring essential rehabilitation care for patients.

© 2020 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
on SARS-CoV-2 sustainability in water environments. We also made an overview on risk and likely causes of viral cross-transmission in swimming pools. The different methods for swimming pool water disinfection in order to maintain its microbiological quality were described. According to this risk assessment strategy, we proposed pragmatic recommendations to control the risk of SARS-CoV-2 cross-transmission while preserving essential rehabilitation care for patients.

SARS-CoV-2 sustainability in water environments

SARS-CoV-2 environmental sustainability is conditioned by the initial viral load, the type of support, the residual humidity, the temperature and the presence of biological fluids. SARS-CoV-2 survival conditions in biological fluids are not transposable to recreational water and there are no current data on SARS-CoV-2 stability in water environments such as swimming pools. However, coronaviruses seem unstable in water environments and are very sensitive to chlorine [4]. Enveloped viruses including influenza viruses and coronaviruses, are too sensitive to environment and too rapidly inactivated in water to be transmitted within swimming pools; this is converse to naked viruses such as adenoviruses, noroviruses, enteroviruses or hepatitis A virus, which are usually more resistant and able to survive several days in water, even when treated with biocides such as chlorine, ozone or bromide [4,5]. Accordingly, water from swimming pools does not appear favourable for the survival of SARS-CoV-2.

Swimming pools and risk assessment of viral cross-transmission

Most outbreaks related to contaminated recreational waters are caused by oral—faecal transmission of enteric viruses [6,7]. Investigating waterborne viral outbreaks is hampered by the requirement to sample very large volumes of water (1000–2000 L), which helps explain why the causative virus is identified in water in less than 28% of cases.

Viruses can contaminate swimming pools for various reasons including inadequate compliance with disinfection procedures due to technical failures or human factors (lack of, or incompetent, maintenance); lack of a warning system; or faecal soiling by infected users. Although few specific data are available, the same risks apply to rehabilitation pools and therapeutic water environments.

Viruses are not able to replicate on inanimate supports out of host tissues and cells. Consequently, the presence of viruses in the water of swimming pools is directly linked with contamination by bathers that excrete biological fluids such as saliva, mucus, vomit or faeces (http://www.who.int/iris/handle/10665/43336). Ingestion by the oral route remains the most frequent route of viral transmission in water, but the ocular mucosa may also be an important portal of entry for SARS-CoV-2 [8,9], possibly contributed to by irritation caused by chemical products used for disinfecting water. Skin lesions (injury, barrier disruption) may also allow viral entry, possibly contributed to by the skin softening that occurs with prolonged immersion in water; however, this mode of transmission has not been demonstrated for SARS-CoV-2.

Standards of cleaning and disinfection procedure in swimming pools

Strict standards apply for treating water and maintaining its quality in swimming pools. In both public and hospital swimming pools, the water must be filtered and disinfected, and must meet physical, chemical and microbiological qualities defined by the French Public Health Code [10]. The Code also defines the required frequencies of monitoring of physicochemical and microbiological indicators, and the processes for pool closure and maintenance operations in case of non-conformity.

Disinfectant added to water must kill or inactivate microorganisms while preserving skin, eyes and mucous integrity. Chlorine is usually used because of its cost-effectiveness, easy use and safety (https://www.cdc.gov/coronavirus/2019-ncov/php/water.html). Measures of cleaning and disinfecting must be accompanied by strict hygiene and behavioural rules for bathers, along with the respect of capacity limit of bathers, which can not be higher than three per m² of water in open-air recreational waters, and 3 per m³ in covered swimming pools [10].

Specific preventive measures regarding SARS-CoV-2 transmission

The first line of prevention of SARS-CoV-2 transmission is based on barrier measures including hand hygiene, physical distancing, and respiratory hygiene (wearing of a mask, covering the mouth and nose appropriately when coughing or sneezing). However, these precautions are difficult or impossible to apply in patients when bathing. We propose here a range of specific measures for pools used for rehabilitation care to protect bathers and healthcare workers from SARS-CoV-2 (Table I). Ensuring safety begins with reviewing clinical records to ensure that patients have no symptoms of COVID-19, followed by use of barrier precautions and social distancing, especially in dressing rooms. Indeed, the main risk of SARS-CoV-2 cross-transmission is through respiratory droplets and contact with contaminated surfaces, and strict application of barrier measures is the best way to prevent transmission. Hand hygiene measures include appropriate provision of hydro-alcoholic solution for use on dry hands, but also soap and water for washing wet hands.

All these recommendations are based on the guidelines issued by the French Society for Hospital Hygiene (https://www.sf2h.net/wp-content/uploads/2020/03/Avis-SARS-CoV-2-et-eau-de-piscine-SF2H-09.03.2020.pdf) and are applicable to therapeutic pools and other therapeutic water environments. Meeting usual pool disinfection standards, together with appropriate individual behaviours in the pool should be sufficient to prevent a risk of waterborne transmission of SARS-CoV-2 (https://www.wef.org/news/hub/wef-news/the-water-professionals-guide-to-the-2019-novel-coronavirus/). These precautions must be accompanied by strict respect of barrier measures by both patients and healthcare workers outside of the pool. All these measures may also be applicable to public
and private swimming pools in order to control the transmission of SARS-CoV-2 in the community.

Conflict of interest statement
None to declare.

Funding sources
None.

References
[1] Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323:1843–4.
[2] Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol 2020;5:335–7.
[3] Luo C, Yao L, Zhang L, Yao M, Chen X, Wang Q, et al. Possible transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a public bath center in Huai’an, Jiangsu Province, China. JAMA Network Open 2020;3(3):e204583.
[4] La Rosa G, Bonadonna L, Lucentini L, Kenmoe S, Suffredini E. Coronavirus in water environments: Occurrence, persistence and concentration methods — a scoping review. Water Res 2020;179:115899.
[5] Bonadonna L, La Rosa G. A review and update on waterborne viral diseases associated with swimming pools. Int J Environ Res Public Health 2019;16(2):166.
[6] Sinclair RG, Jones EL, Gerba CP. Viruses in recreational waterborne disease outbreaks: A review. J Appl Microbiol 2009;107:1769–80.
[7] Barna Z, Kadar M. The risk of contracting infectious diseases in public swimming pools. A review. Ann Ist Super Sanità 2012;48:374–86.
[8] Li JO, Lam DSC, Chen Y, Ting DSW. Novel Coronavirus disease 2019 (COVID-19): The importance of recognising possible early ocular manifestation and using protective eyewear. Br J Ophthalmol 2020;104(3):297–8.
[9] Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? A review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm 2020;16:1–5.
[10] French Public Health Code. Règles sanitaires applicables aux piscines. https://www.codes-et-lois.fr/code-de-la-sante-publique/toc-protection-generale-sante-protection-sante-environnement-pr-5f59abd-texte-integral.