Microstructure and Fatigue Properties of 6061 Aluminum Alloy Laser-MIG Hybrid Welding Joint

Cong Fan,1 Shanglei Yang,1,2 Minqi Zhu,1 and Yishan Bai1

1School of Materials Engineering, Shanghai University of Engineering Science, No. 333 Long Teng Road, Shanghai 201620, China
2Shanghai Collaborative Innovation Center of Laser Advanced Manufacturing Technology, No. 333 Long Teng Road, Shanghai 201620, China

Correspondence should be addressed to Shanglei Yang; yslyangshanglei@163.com

Received 6 May 2021; Accepted 4 June 2021; Published 14 June 2021

Academic Editor: Samson Jerold Samuel Chelladurai

Copyright © 2021 Cong Fan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Laser-MIG hybrid welding of 6061-T6 aluminum alloy was carried out with ER4043 welding wire, and the microstructure and fatigue properties of the joint were studied. The grain size of HAZ is larger than that of base metal (BM) due to the influence of welding heat cycle. Snowflake-like equiaxed grains were found in the upper, middle, and lower parts of the welded joint (WJ). Based on the fatigue test with 1×10^6 cycles, the ultimate fatigue strength of BM and WJ is 101.9 MPa and 54.4 MPa, respectively. There are many pores with different sizes in WJ. The number of pores in the upper and middle parts of WJ is obviously larger than that in the lower part due to the influence of the cooling rate of the weld pool and the escape rate of pores. The porosity type is mainly metallurgical pores with regular morphology, which is mainly due to the bubbles formed by the evaporation of Mg elements and H2O in the oxide film on the BM surface. The fatigue fracture analysis shows that the main cause of fatigue crack is the near-surface pores with 460 μm and 190 μm, respectively. The existence of pores near the surface is equivalent to the formation of a large-scale prefabricated crack, resulting in serious stress concentration. The morphology of the grains around the pores has a great influence on the initiation and propagation of the fatigue microcracks.

1. Introduction

6061-T6 aluminum alloy is a medium strength heat treatable aluminum alloy with Mg and Si as the main alloying elements. Due to the aging strengthening effect of GP region, β^\prime phase (Q’ phase) and $\beta^\prime\prime$ phase (Q’’ phase), 6061-T6 aluminum alloy has excellent mechanical properties [1, 2]. 6061-T6 aluminum alloy has good corrosion resistance, good weldability, and high strength, which is widely used in aircraft, high-speed train, and automobile structures [3]. In the manufacturing process of these structures, the fusion welding process becomes the first choice because of its high efficiency and low cost. However, due to the welding heat cycle, the grain orientation, the second phase particle behavior, and the surrounding internal stress of the traditional fusion welding processes, namely, tungsten inert gas welding (TIG) and metal inert gas welding (MIG), will change significantly. In addition, problems such as coarse structure, defects (welding hot cracks and pores), and burning loss of strengthening alloy elements (Mg and Zn) will occur in the welded zone [4–6].

Compared with these disadvantages of MIG welding, laser welding has the advantages of high welding efficiency, small heat input, and small deformation [7-8]. In addition, it can simplify the design of welded structural parts and reduce the requirement of clamping accuracy of welded joint s [9]. However, compared with iron-based materials, the characteristics of aluminum alloy materials determine that there are many low melting points of alloy components, resulting in the formation of pores and the evaporation of alloy elements in the welded joints during the laser welding of aluminum alloy, which makes the mechanical properties of laser welded joints difficult to meet the needs of industrial production [10]. In response to these problems, Steen W. M. developed laser arc hybrid welding (LAHW) [11]. LAHW is a new type of high efficient welding technology, which
perfectly combines both laser and arc thermal sources [6]. Compared with the traditional fusion welding process, LAHW has the advantages of deeper penetration, more stable welding arc, and faster welding speed [12, 13]. LAHW is a process in which laser and arc heat sources act together on the base metal. Laser can be used to guide the arc during welding to increase the utilization rate of welding heat source. As the main heat source, laser generates a keyhole in the welding pool to ensure deep fusion welding, while the molten filler material generated in the process of arc welding helps in filling the root gap, thus meeting the welding requirements of parts with large gaps [9, 14]. In addition, the use of welding wire enriches the alloying elements in the welding pool, refines the weld grain, and improves the mechanical properties of the welded joints [15].

The field has met with great success in many problems about the microstructure evolution and mechanical properties of different regions of laser arc hybrid welding joint [16–18]. These studies show that, compared with traditional welding methods (such as MIG), laser arc welding joint of aluminum alloy has smaller residual stress and greater tensile strength.

However, the application of LAHW of aluminum alloy is usually limited by porosity. It has been found that the number, size, shape, and location of metallurgical pores will be formed due to the precipitation of supersaturated hydrogen atoms during the rapid cooling process of aluminum alloy welding pool [19]. The existence of metallurgical pores near the surface reduces the effective bearing area of the joint. At the same time, serious stress concentration occurs under the action of fatigue cyclic load, which leads to the initiation of microcracks and the failure of the welded structure and greatly reduces the safety and reliability of the welded structure [20, 21]. It is worth noting that many studies successfully showed that the porosity in WJ can cause serious stress concentration through the establishment of theoretical models [22–24]. However, there is a common drawback in these models. The defect they analyzed is all single pore, which is not suitable for LAHW joint with large number of pores. In addition, the relationship between porosity and fatigue properties of LAHW joints of 6-series aluminum alloys is not fully clear. Therefore, it is necessary to study the fatigue failure of 6-series aluminum alloy LAHW joint, which has far-reaching significance for the promotion of LAHW in industrial production.

In this paper, 6061-T6 aluminum alloy with thickness of 3 mm, which is widely used in high-speed train body, is selected as BM, and laser-MIG hybrid welding process is used for connection. The microstructure and fatigue properties of WJ and BM were analyzed. The purpose of this paper is to evaluate the fatigue properties of 6061 aluminum alloy laser-MIG hybrid welded joint and discuss the fatigue failure of 6061 aluminum alloy laser-MIG hybrid welded joint from the perspective of pores forming, fatigue microcrack initiation, and propagation mechanism near the pores.

2. Materials and Methods

2.1. Materials and Welding Process. The base metal (BM) used in this test is 6061-T6 aluminum alloy, and the welding wire is ER4043. The chemical composition of BM and welding wire is shown in Table 1. Figure 1 shows the schematic diagram of laser-MIG hybrid welding process of 6061-T6 aluminum alloy, and the welding parameters are shown in Table 2. After welding, it was cooled at room temperature, and the samples for hardness test and fatigue test were cut from the plate. The diagram of hardness test and fatigue test samples is shown in Figure 2.

2.2. Test Methods. The sample was ground to a slight scratch on the surface with sandpaper of different particle sizes from small to large. After that, the sample was polished until there was no scratch on the surface. Finally, Keller reagent (HF: HCl: HNO₃ = 1 : 1.5 : 2.5) was used to etch for about 15 s to make the final metallographic sample. The metallographic samples were observed by VHK-600 optical microscope (OM).

According to ASTM E92-2016 standard, the HV-1000 Vickers microhardness tester was used to carry out the hardness test on the cross section of the laser-MIG hybrid welded joint with the holding load of 100N and the holding time of 15 s.

According to the ASTM E466-2015 standard, the fatigue test was carried out at room temperature (25 ± 3°C) and relative humidity (40–60%) by symmetrical tension-tension cycle with sinusoidal loading waveform until the specimen reached 1 × 10⁶ cycles or fracture. The stress ratio (R = σₘᵦ/σₘᵦ) and load frequency were 0.1 and 15 Hz, respectively. All fatigue specimens were cyclic loaded under different stress amplitudes (Δσ = σₘᵦ – σₘᵦ). The ultimate fatigue strength (Nₕ ≥ 10⁶) of BM and welded joint (WJ) was analyzed by S-N fitting curve. All fatigue tests were carried out by Zwick/Roell Amsler HB250 hydraulic servo material testing machine, and the fatigue fracture was observed and analyzed by S-3400N scanning electron microscope (SEM).

3. Experimental Results and Analysis

3.1. Microstructure of 6061 Aluminum Alloy Laser-MIG Hybrid Welded Joint. Figures 3(a) and 3(b) show the microstructure of the base metal (BM) and heat affected zone (HAZ) in the welded joint. It can be seen from Figure 3(a) that the structure of BM is long strip, which is a typical rolled structure. The size of the grains marked by the red line in the figure was measured. The results show that the average length, average width, and aspect ratio of BM are 73.3 μm, 22.9 μm, and 4.07, respectively. The average length, width, and aspect ratio of HAZ grains are 82.4 μm, 22.9 μm, and 3.60, respectively. This indicates that the grain size in HAZ was coarsened obviously, and the grain length increased obviously, but the overall morphology of the grains did not change greatly. The coarse grains in HAZ were caused by the heart cycle during the welding process [25].

Figure 4(a) shows the macromorphology of the weld zone (WZ), and four positions B, C, D, and E are selected in the figure to better analyze the microstructure of WZ. Figure 4(b) shows the microscopic image near fusion zone (FZ). It can be seen from the figure that the grains grow on the surface of the BM in the semimelted state and grow along the direction of temperature gradient to the weld center in
the form of columnar crystals, which is a typical cocry-
stallization feature [26]. The elongated columnar grains in the
darker ellipse of Figure 4(b) are about 110 μm in length, but
only about 30 μm in width.

Figures 4(c)–4(e) are the microstructures of the upper,
middle, and lower parts of WZ. It can be found that the equiaxed
grains with different sizes and morphologies are distributed in
WZ. During the welding process, the undercooling in the
molten pool is large, and the free crystals suspended in the
molten pool can nucleate directly in the liquid metal. After
nucleation, the crystal is less constrained by the surrounding and
grows divergently to form snowflake-like equiaxied grains [27].
The size of equiaxed grains in the upper part of WZ is large,
about 120 μm. This is because, during the process of hybrid
welding, the upper part of WZ was affected by both laser and arc
heat sources, and the high temperature residence time was much
longer than that in other parts. The molten pool had been cooled
for a long time, which leads to the coarsening of grain. In
addition, some equiaxed grains in the upper part of WZ appear
broken and incomplete, which may be caused by the liquid

Parameters	Laser power (kW)	Current (A)	Voltage (V)	Wire feeding rate (m/min)	Welding speed (mm/s)	Defocusing amount (mm)
Values	3.0	131	18.1	8	25	−1

Table 2: Welding parameters.
metal being stirred by the arc during the welding process. Some of the broken equiaxed grains will grow into dendrites along the temperature gradient to the center of WZ, with the size of about 100 μm. In the lower part of WZ (Figure 4(e)), the molten pool was only affected by the laser heat source, the crystallization speed was faster, and the grains had been completely cooled without growing up, so the grain size is smaller than the middle and upper parts of WZ. Pores with diameter of 70 μm were found in the middle and upper part of WZ. Porosity defect is the main cause of joint fatigue failure in this study, which will be analyzed in the following chapters.

3.2. Analysis of Hardness Test. Figure 5 shows the microhardness of the laser-MIG hybrid welded joint, and the hardness test direction is shown in the lower right section of the figure. Due to the uneven influence of welding heat source, the hardness values of the sample show obvious regional distribution, and the lowest hardness is located in WZ, with the lowest value being 76.5°HV. The reason for this phenomenon is that the main strengthening phase of 6061 aluminum alloy is β phase (Mg2Si), in which the boiling point of Mg is low (1107°C), which is easy to evaporate during welding. The welding wire used in this test is er4043 of Al and Si, which is difficult to supplement the evaporated Mg element, which leads to the low hardness of WZ [16]. A 3 mm softening zone (SZ) can be clearly seen in HAZ from the figure, and the minimum hardness of SZ is close to that of WZ, about 81HV. The loss of hardness in SZ is due to the fact that the highest temperature of welding heart cycle in SZ cannot reach the solution temperature of β phase. At that position, only a small part of β phase was dissolved, and the remaining β phase coarsened continuously during the high temperature residence time [28]. According to Hall–Petch formula, the strengthening effect of precipitates after coarsening is poor [29]. As the measuring position gradually approached BM, the hardness value gradually increased and tended to be stable.

3.3. Analysis of Fatigue Test. Six groups of test data of WJ and BM in different stress range were obtained from fatigue test, as shown in Table 3. According to the fatigue strength
Figure 5: Microhardness of laser-MIG hybrid welded joint of 6061 aluminum alloy.

Table: Microhardness (HV)

Distance from the weld center (mm)	WZ	HAZ	BM
0	70	100	110
5	80	115	120
10	95	120	115
15	100	110	105

The assessment code [30] for welded joints recommended by the International Institute of Welding (IIW), the test data are processed to establish the relationship between fatigue life (N) and stress amplitude (S) in fatigue test, as shown in Figure 6. The relationship between fatigue life (N) and stress amplitude (\(\Delta S\)) can be expressed by

\[
C_1 = N \times (\Delta S)^k,
\]

where \(C_1\) is the fatigue strength coefficient at the first cycle and \(k\) is the fatigue strength coefficient. \(k\) can be obtained by fitting the experimental data with the least square method, and the fitting formula is as follows:

\[
\lg N = \lg C_1 - k \times \lg \Delta S.
\]

By substituting the fatigue test data of WJ and BM into formula (2), the linear formula between fatigue life and stress amplitude of WJ and BM is obtained as follows:

\[
\lg N = -0.1086 \lg \Delta S + 2.38753.
\]

(3)

\[
\lg N = -0.1302 \lg \Delta S + 2.78956.
\]

(4)

According to formulas (3) and (4), the \(k\) value of BM fitting curve is slightly smaller than that of WJ, which indicates that the fatigue life of BM decreases faster with the increase of stress level. At the same time, under the condition of \(1 \times 10^6\) cycles, the fatigue limits of BM and WJ are 101.9 MPa and 54.4 MPa, respectively, and the fatigue life of WJ is only 53.4% of that of BM. The welding defects in WJ and the softening phenomenon in HAZ are the main factors to reduce the fatigue life of the joint [31].

3.4. Analysis of Fatigue Fracture. Figure 7 shows the fracture morphology of BM fatigue sample with a stress amplitude of 90 MPa, and the fatigue life of the sample is \(7.3 \times 10^5\). The overall morphology of fatigue fracture (Figure 7(a)) can be divided into three typical regions, namely, fatigue source region (region I), fatigue crack propagation region (region II), and transient fracture region (region III). The SEM image of the fatigue source area is shown in Figure 7(b), where the stress intensity factor \(\Delta K\) is lower than the critical stress intensity factor \(\Delta K_{th}\) [32]. The enlarged diagram of crack initiation in Figure 7(b) shows that the crack originated from the irregular impurity near the surface of BM. According to the analysis results of energy dispersive spectrometer (EDS), it can be judged that the impurity leading to crack initiation is an oxide impurity (Figure 7(c)).

During the forming process of BM, the gas in the liquid phase is not discharged smoothly due to the uneven filling of the liquid metal, and the oxide impurity is formed near the surface of the material [33]. Under the action of fatigue load, these oxides are easily to cause stress concentration and promote the initiation of fatigue cracks. After the crack initiation, it propagates into the grain along the direction perpendicular to the maximum normal stress direction, forming the fatigue crack propagation region (region II), as shown in Figure 7(d). In region II, approximate river patterns can be clearly observed on the fracture, which is one of the characteristics of cleavage faults. The fatigue striations and the Z-shaped secondary cracks between the fatigue strips are shown in Figure 7(e). The crack propagation direction is perpendicular to the fatigue striations. When the maximum stress intensity factor \((K_{max})\) exceeds the plane strain fracture toughness \((K_{IC})\), the fatigue specimen will fracture rapidly and form transient fracture region (region III) [32]. Figure 7(f) is the microscopic morphology of region III, and there are many dimples with different sizes in this area, which depicts the better toughness of BM. However, secondary cracks are found between the dimples, which indicates that the fatigue fracture of BM presents a certain brittleness. In conclusion, the fatigue failure mode of BM is ductile brittle mixed fracture.

The SEM images of fatigue fracture of laser-MIG hybrid welded joint with the stress amplitude of 85.5 MPa and fatigue life of \(8.3 \times 10^5\) cycles are shown in Figure 8 and there are many porosity distributions in the fracture of the joint from Figures 8(a) and 8(b), and the fatigue crack originates from two large-scale pores near the weld surface. The two pores are closely adjacent with diameters of 460 \(\mu m\) and 190 \(\mu m\), respectively. The two pores are penetrated by a large secondary crack, and the initiation of secondary cracks is related to the stress concentration near the pores [27]. Secondary cracks can also be found between the WJ fatigue strips, which is similar to BM, as shown in Figure 8(c). The difference is that a granular white secondary phase with particle size of about 2 \(\mu m\) was found along the strike distribution of WJ secondary cracks. EDS analysis shows that the secondary phase is a Fe containing phase particle, as shown in Figure 8(d). The pinning effect of secondary phase particles on dislocation is the main cause of secondary cracks between fatigue striations [34]. The formation of secondary cracks will accelerate the growth of fatigue cracks, resulting in a significant reduction in fatigue life. Figures 8(e) and 8(f) are SEM images of WJ transient fracture region, from which the existence of pores can still be found. In addition, a large number of dimples with none distribution of secondary cracks can be observed, which indicates that the fatigue...
Table 3: Date of fatigue tests of 6061 BM and welded joints.

Type	Samples	Maximum stress (MPa)	Stress amplitude (MPa)	Cycles	Fracture location
WJ	WJ-1	230	103.5	87186	Welded zone
WJ	WJ-2	220	99	198378	Welded zone
WJ	WJ-3	210	94.5	485937	Welded zone
WJ	WJ-4	200	90	621441	Welded zone
WJ	WJ-5	190	85.5	834052	Welded zone
WJ	WJ-6	180	81	1000000	No broken
BM	BM-1	280	126	388767	Parallel section
BM	BM-2	260	117	90957	Parallel section
BM	BM-3	240	108	101975	Parallel section
BM	BM-4	220	99	232716	Parallel section
BM	BM-5	200	90	730736	Parallel section
BM	BM-6	180	81	1000000	No broken

Figure 6: S-N fitting curve of (a) BM and (b) WJ.

Figure 7: Fracture morphology of BM fatigue sample with stress amplitude of 121 MPa. (a) Overall fracture morphology. (b) Crack source. (c) Energy spectrum analysis result of yellow point in (b). (d) Fatigue crack propagation region. (e) Fatigue striation morphology. (f) Transient fracture region.
failure mode of WJ is ductile fracture mode. Based on the information in Figure 8, there are many pores in the three areas of the WJ fatigue fracture. GU_he large number of pores would reduce the actual bearing area of the joint and cause WJ to fail in a lower fatigue life [22]. Therefore, it is extremely important to analyze the formation of pores in WJ and the initiation and propagation of cracks near the pores.

4. Discussion

Figure 9 shows the cross section of the hybrid welded joint. It can be found that there are many different sizes of pores scattered on WZ, among which the number of pores in the upper and middle of WZ is obviously larger than that of the lower part, while the large size pores are mostly distributed in the middle part. Welding pores can be divided into metallurgical pores and process pores [35]. Metallurgical pores are generally round with smooth inner wall, which are mainly distributed in the upper and middle of WZ. The process pores are irregular in shape, and the inner wall is rough, which are generally caused by the instantaneous collapse of the keyhole of the welding heat source. In this article, the main type of pores is metallurgical pores with regular morphology, as shown in the figure.

No matter metallurgical pores and process pores, the pores in the joint would seriously break the uniformity of WZ microstructure. Liu proved that, even under low fatigue load, the peak stress near the edge of the pore is 3 times that of the defect-free state in WJ, which means that it is easy to initiate fatigue microcracks [22, 36]. In this chapter, the porosity defects of 6061 aluminum alloy laser-MIG WJ will be discussed from three aspects: porosity forming, initiation, and propagation of fatigue microcracks at the porosity.

4.1. Forming Mechanism of Metallurgical Porosity. The formation of metallurgical pores is closely related to the dissolved atomic hydrogen in the welding pool [37]. The main source of atomic hydrogen in WJ is H₂O from BM, welding wire, and the surrounding atmosphere. The base material and the welding wire ER4043 are easily oxidized, and the formed oxide film can adsorb a large amount of H₂O. H₂O will react formation formulas as follows under the compound heat source to generate atomic hydrogen:

\[
\text{H}_2\text{O} \rightarrow \text{H} + \text{HO}
\]

(5)

\[
2\text{Al} + 3\text{H}_2\text{O} \rightarrow \text{Al}_2\text{O}_3 + 6\text{H}
\]

(6)

The evaporation of alloying elements is also one of the main reasons for the formation of atomic hydrogen [35]. Si and Mg are two main alloying elements in 6061 aluminum alloy. The boiling point of Mg is only 1107°C. Mg would evaporate rapidly and form metal vapor under the action of the composite heat source with high energy density. The formation formula is listed as follows:

\[
\text{Mg} + \text{H}_2\text{O} \rightarrow \text{MgO} + 2\text{H}
\]

(7)

H atom is easily dissolved in the molten pool at high temperature, and the solubility of atomic hydrogen decreases gradually with the decrease of temperature during welding. The solubility of atomic hydrogen in liquid phase and solid phase Al is 0.69 ml/g and 0.036 ml/g, respectively [23]. During the cooling process of the molten pool, the supersaturated hydrogen in the molten pool is gradually released with the decrease of solubility. The released atomic hydrogen is attached to the existing surface of the solute particles in the molten pool to form the bubble nucleation.
Bubbles will continue to grow after nucleation, and the growth needs to meet the formula:

$$P_h > P_0 = P_a + P_m + P_c + \frac{2\alpha r}{r}$$

(8)

P_h denotes the pressure in bubbles and such as hydrogen and nitrogen. The pressure in bubbles is mainly the partial pressure of hydrogen in aluminum alloy welding [38]; P_0 represents the external pressure that hinders the growth of bubbles, which is composed of atmospheric pressure P_a, and partial pressure P_m of molten metal above the bubble and partial pressure P_c of surface tension; α represents the surface tension, and the surface tension of liquid aluminum is 45 N/m; r represents the bubble radius.

It can be seen from the above formula that when the bubble is small, the additional pressure formed by the surface tension is large. However, during the welding process, there are many ready-made surfaces in the welding pool, which promotes the growth of bubbles in an oval shape and makes the bubble have a large curvature radius r, which reduces the additional pressure P_c and promotes the bubble growth. During the process of bubbles floating, the pressure from the molten pool gradually decreases, and the bubble continues to grow with the bubble radius increased. The buoyancy of bubbles increases with the increase of radius and tends to escape from the surface of molten pool. When bubbles do not escape in time before the solidification of molten pool, they will remain in WZ and become the welding pores. The formation mechanism of metallurgical pores during laser-MIG hybrid welding is shown in Figure 10.

In summary, whether pores are generated in WZ is related to the bubble escape velocity V_e and the size of the molten pool solidification rate V_s. When $V_e < V_s$, pores would appear in the weld. The bubble escape velocity can be expressed as

$$V_e = \frac{C(\rho_l - \rho_G)gr^2}{\eta}$$

(9)

where C is a constant, g is the gravity acceleration, r is the bubble radius, η is the liquid metal viscosity, ρ_l is the liquid metal density, and ρ_G is the bubble density. According to the above formula, (1) the fast welding speed of hybrid welding and the strong thermal conductivity of 6061 aluminum alloy lead to a larger V_e in the molten pool and a shorter time for bubbles to float out, which makes the joint have large porosity sensitivity. (2) The high viscosity of aluminum alloy leads to poor fluidity of molten pool, which is not conducive to the floating of bubbles and higher porosity. (3) The larger the bubble radius r is, the faster the V_e is. The larger the buoyancy of the bubble with larger radius in the molten pool is, the easier it is to escape.

Moreover, the generation of atomic hydrogen is accompanied by the formation of oxides like Al_2O_3, MgO, as shown in formulas (6) and (7). During the solidification process of the molten pool, the oxide will be attached to the bubble, forming metallurgical pores with second phase and flocs in WZ, as shown in Figure 11. The EDS result shows that the oxygen content of the second phase is as high as 32.53%. According to the composition, the second phase is a metal oxide containing Al, Mg, and Mn. The oxides easily adhere to the inside of bubbles, resulting in a decrease of the buoyancy, making it difficult for bubbles to rise and escape from the molten pool [39].

4.2. Mechanism of Crack Initiation and Propagation near Pores. Fatigue crack initiation is related to the stress distribution at the initiation site, which can be reflected by the stress intensity factor K during crack initiation. The larger the K value is, the easier the crack initiation is [40]. As shown in Figure 8(a), two large pores at the crack source induce fatigue cracks, and their arrangement direction is perpendicular to the direction of fatigue stress loading. The study
shows that when the arrangement direction of two close pores is perpendicular to the external stress loading direction, their stress field has obvious coupling effect and increases the stress concentration [41]. Since the pores are far smaller than WJ, a theoretical model with semicircular pores on the surface of an infinite subject can be established according to Griffith’s theory and the distribution of pores in Figure 8(a) to calculate the stress concentration at the pores, as shown in Figure 12 and the object is subjected to uniform external stress in the upper and lower directions. There is a semicircular pore \(P_1 \) near the surface of the object to simulate the pore on the surface of the sample, and the pore \(P_2 \) is close to \(P_1 \) in the model. The existence of \(P_1 \) and \(P_2 \) is equivalent to prefabricating microcracks near the surface of the specimen. According to the formula of stress intensity factor, when there is a semielliptical crack on the surface of the specimen, the distance between the tip of the pore and the surface is equal to \(r \), that is, \(r = L \). In addition, the long radius and short radius of the semicircle are equal, so \(a = b = r \), that is, \(\Phi = 1.57 \). Thus, formula (11) can be simplified as follows:

\[
K = \frac{1.1 \sigma \sqrt{\pi L}}{\Phi}.
\]

(10)

\[
\Phi = \int_0^{\pi/2} \left(\cos^2 \beta + \frac{a^2}{b^2} \sin^2 \beta \right)^{1/2} d\beta,
\]

(11)

where \(\sigma \) is the uniform tensile stress, \(L \) is the distance from the pore tip to the surface, \(\Phi \) is the second kind of elliptic integral, and \(a \) and \(b \) are the long radius and short radius of the ellipse. Because the analysis object of this model is semicircular pore, the distance between the tip of the pore and the surface is equal to \(r \), that is, \(r = L \). In addition, the long radius and short radius of the semicircle are equal, so \(a = b = r \), that is, \(\Phi = 1.57 \). Thus, formula (11) can be simplified as follows:

\[
K = \frac{1.1 \sigma \sqrt{\pi L}}{1.57} = 0.7 \sigma \sqrt{\pi L}.
\]

(12)

It can be seen from the above formula that the stress intensity factor \(K \) at \(P_1 \) increases with the increase of the distance \(L \) from the pore tip to the surface. The existence of hole \(P_2 \) increases the length of the precrack, increases the stress concentration near the surface of the object, and makes the crack easily formed.

The above analysis shows that the stress concentration at the tip of the pores is large, and cracks are easy to occur, but the actual situation is different from the above analysis. Referring to the crack initiation position shown in Figure 8(b), the crack is not exactly initiated at the tip, but slightly deviated. It can be seen from the local amplification in Figure 8(b) (Figure 13) that there are many convex grains on the inner surface of the pore and obvious grooves at the grain boundary. On the circumference of the interface between the pores and the material matrix, the grain boundary groove will inevitably exist. These grooves also produce stress concentration, and the degree of stress concentration is determined by the shape and size of the groove. Assuming that fine equiaxed grains are evenly distributed around the pores, the grooves must exist near the circumference, and the grain boundary depression on the circumference will further increase the distance \(L \) from the pores to the sample surface and increase the degree of stress concentration. Under the action of fatigue load, a microcrack occurs at the deviation from the tip of the pore and expands to both sides, as shown in Figure 14(a). According to the principle of energy optimization, the crack propagates along the grain boundary after initiation. However, in addition to equiaxed grains with uniform distribution, there are also columnar and dendritic grains with long strips. When the crack propagation meets a strip grain, the energy required for the crack propagation along the grain is greater than that through the grain, and the crack propagates in a transgranular manner, as shown in Figure 14(b).

The crack propagates in a Z-shaped way after initiation, as shown in Figure 15. Based on the fatigue crack propagation model proposed by Laird [43], the Z-shaped propagation mechanism of fatigue crack is analyzed, as shown in Figure 15. The propagation process can be divided into five steps: (1) the crack tip presents a closed state when the cyclic load is 0. (2) The crack turns to an open state under the application of tensile stress. At the same time, a certain slip system at the crack tip is activated, and the crack slip creates new microcracks along 45°. (3) When the tensile stress reaches the peak value, the slip zone expands to the maximum extent, the crack tip becomes semicircular, and the phenomenon of passivation occurs. The crack after passivation is difficult to propagate in the original direction. (4) Another slip system at the crack tip is activated in a new direction and is inducing microcracks under the action of compressive stress. (5) The crack is passivated again during its propagation. The above process is repeated continuously to form the Z-shaped propagation.
Figure 13: Partial enlargement of Figure 8(b).

Figure 14: Mechanism of initiation and propagation of cracks at pores.

Figure 15: Z-shaped propagation of fatigue crack.
5. Conclusion

(1) Snowflake equiaxed grains are found in WZ of 6061 aluminum alloy laser-MIG hybrid welded joint, and the grains in the upper part of WZ are coarser than those in other parts. The grain morphology of HAZ is close to that of BM, but the size is coarse. The lowest hardness position is WZ, which is 76.5 HV. There is a softening zone of about 3 mm in HAZ, and the lowest hardness of softening zone is 81 HV.

(2) Under the condition of 1×10^6 cycles, the fatigue life of BM decreases faster with the increase of stress level. The fatigue limits of BM and WJ are 101.9 MPa and 54.4 MPa, respectively. The fatigue strength of WJ is only 53.4% of BM. Oxide impurity and surface pores are the main initiation for fatigue cracks in BM and WJ, respectively.

(3) The type of pores in the joint is mainly metallurgical pores. The atomic hydrogen produced by H$_2$O in the oxide film of BM surface and the evaporation of Mg element are supersaturated in the molten pool and attached to the existing surface of the solute to form bubbles. When the escape velocity of bubbles is less than the cooling rate of molten pool, the bubbles that cannot escape form pores in WZ. Oxides produced during the formation of atomic hydrogen result in pores containing second phases and flocs.

(4) The existence of pores is equivalent to prefabricating cracks in WJ. The existence of multiple near-surface pores will increase the size of prefabricated cracks, which expands the stress intensity factor and increases the stress concentration. The grain boundary grooves inside the pores will further expand the stress concentration and make the cracks initiate away from the tip of the pores. After the crack initiation, it will propagate along the grain boundary in Z shape.When elongated grains are encountered during propagation, the crack would propagate in a transgranular manner to save energy.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This project was sponsored by the National Natural Science Foundation of China (51971129) and the Shanghai Natural Science Foundation of China (19ZR1421200). This support is gratefully acknowledged.

References

[1] C. D. Marioara, S. J. Andersen, J. Jansen, and H. W. Zandbergen, "Atomic model for GP-zones in a 6082 Al-Mg-Si system," Acta Materialia, vol. 49, no. 2, pp. 321–328, 2001.
[2] J. S. de Jesus, A. Loureiro, J. M. Costa, and J. M. Ferreira, “Effect of tool geometry on friction stir processing and fatigue strength of MIG T welds on Al alloys,” Journal of Materials Processing Technology, vol. 214, no. 11, pp. 2450–2460, 2014.
[3] S. D. Ji, X. C. Meng, J. G. Liu, L. G. Zhang, and S. S. Gao, “Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy,” Materials & Design (1980–2015), vol. 62, pp. 113–117, 2014.
[4] I. Bunaziv, O. M. Akselsen, Á. Salminen, and A. Unt, “Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy,” Journal of Materials Processing Technology, vol. 233, pp. 107–114, 2016.
[5] L. Huang, D. Wu, and X. Hua, “Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy,” Journal of Manufacturing Processes, vol. 31, pp. 514–522, 2018.
[6] H. Huang, P. Zhang, and H. Yan, “Research on weld formation mechanism of laser-MIG arc hybrid welding with butt gap,” Optics & Laser Technology, vol. 133, Article ID 106530, 2021.
[7] Q. Chu, R. Bai, H. Jian, Z. Lei, N. Hu, and C. Yan, “Microstructure, texture and mechanical properties of 6061 aluminum laser beam welded joints,” Materials Characterization, vol. 137, pp. 269–276, 2018.
[8] B. Fu, G. Qiu, X. Meng, Y. Ji, Y. Zou, and Z. Lei, “Micro-structure and mechanical properties of newly developed aluminum-lithium alloy 2A97 welded by fiber laser,” Materials Science and Engineering A, vol. 617, pp. 1–11, 2014.
[9] B. Acherjee, “Hybrid laser arc welding: state-of-art review,” Optics & Laser Technology, vol. 99, pp. 60–71, 2018.
[10] J. Liu, H. Zhu, Z. Li, W. Cui, and Y. Shi, “Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding,” Optics & Laser Technology, vol. 119, Article ID 105619, 2019.
[11] W. M. Steen, “Arc augmented laser processing of materials. (USA),” Vacuum, vol. 31, no. 6, p. 277, 1981.
[12] S. Yan, Y. Nie, and Z. Zhu, “Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al-Mg alloy joints,” Applied Surface Science, vol. 298, pp. 12–18, 2014.
[13] I. Bunaziv, O. M. Akselsen, J. Frostevarg, and A. F. H. Kaplan, “Laser-arc hybrid welding of thick HSLA steel,” Journal of Materials Processing Technology, vol. 259, pp. 75–87, 2018.
[14] W. Suder, S. Ganguly, S. Williams, and B. Y. B. Yudodibroto, “Penetration and mixing of filler wire in hybrid laser welding,” Journal of Materials Processing Technology, vol. 291, Article ID 117040, 2021.
[15] R. Li, Z. Li, and Y. Zhu, “A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al-Zr–Fe titanium alloy,” Materials Science and Engineering A, vol. 528, no. 3, pp. 1138–1142, 2011.
[16] S. H. Yan, B. B. Xing, H. Y. Zhou et al., “Effect of filling materials on the microstructure and properties of hybrid laser welded Al-Mg-Si alloys joints,” Materials Characterization, vol. 144, pp. 205–218, 2018.
[17] A. H. Faraji, M. Moradi, M. Goodarzi et al., “An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy,” Optics and Lasers in Engineering, vol. 96, pp. 1–6, 2017.
[18] S. H. Yan, H. Y. Zhou, B. B. Xing et al., “Crystal plasticity in fusion zone of a hybrid laser welded Al alloys joint: from nanoscale to macroscale,” Materials & Design, vol. 160, pp. 313–324, 2018.
Advances in Materials Science and Engineering

[19] S. C. Wu, Z. T. Zhu, and X. W. Li, *Laser Welding of Aluminum Alloys and the Performance Evaluation*, National Defense Industry Press, Beijing, China, 2014.

[20] S. C. Wu, Z. Song, G. Z. Kang et al., “The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron X-ray tomography,” *International Journal of Fatigue*, vol. 125, pp. 210–221, 2019.

[21] S. C. Wu, Y. N. Hu, Z. Song et al., “Fatigue behaviors of laser hybrid welded AA7020 due to defects via synchrotron X-ray microtomography,” *Fatigue & Fracture of Engineering Materials & Structures*, vol. 42, no. 10, pp. 2232–2246, 2019.

[22] H. B. Liu, S. L. Yang, C. J. Xie et al., “Microstructure characterization and mechanism of fatigue crack initiation near pores for 6005A CMT welded joint,” *Materials Science and Engineering: A*, vol. 707, pp. 22–29, 2017.

[23] C. F. Duan, S. L. Yang, J. X. Gu et al., “Study on microstructure and fatigue damage mechanism of 6082 aluminum alloy T-type metal inert gas (MIG) welded joint,” *Applied Sciences - Basel*, vol. 8, p. 1741, 2018.

[24] J. X. Gu, S. L. Yang, Q. Xiong et al., “Microstructure and mechanical study on laser-arc-welded Al–Zn–Mg alloy,” *Materials Transactions, Materials Transactions*, vol. 61, no. 1, pp. 119–126, 2020.

[25] Y. N. Hu, S. C. Wu, and L. Chen, “Review on failure behaviors of fusion welded high-strength Al alloys due to fine equiaxed zone,” *Engineering Fracture Mechanics*, vol. 208, pp. 45–71, 2019.

[26] C. F. Duan, S. L. Yang, J. X. Gu et al., “Microstructure and ratcheting behavior of 6061 aluminum alloy laser-MIG hybrid welding joint,” *Materials Research Express*, vol. 6, no. 8, Article ID 086534, 2019.

[27] H. B. Liu, S. L. Yang, C. J. Xie et al., “Mechanisms of fatigue crack initiation and propagation in 6005A CMT welded joint,” *Journal of Alloys and Compounds*, vol. 741, pp. 188–196, 2018.

[28] C. J. Xie, S. L. Yang, H. B. Liu et al., “Microstructure and mechanical properties of robot cold metal transfer Al5.5Zn2.5Mg2.2Cu aluminum alloy joints,” *Journal of Materials Processing Technology*, vol. 255, pp. 507–515, 2018.

[29] A. Heidarzadeh and T. Saeid, “Correlation between process parameters, grain size and hardness of friction-stir-welded Cu-Zn alloys,” *Rare Metals*, vol. 37, no. 5, pp. 388–398, 2018.

[30] A. Hobbacher, *Recommendations for Fatigue Design of Welded Joints and Components*, International Institute of Welding-XIII, Paris, France, 2003.

[31] S. Lin, Y. L. Deng, J. G. Tang et al., “Microstructures and fatigue behavior of metal-inert-gas-welded joints for extruded Al-Mg-Si alloy,” *Materials Science and Engineering: A*, vol. 745, pp. 63–73, 2019.

[32] U. Zerbst, M. Vormwald, R. Pippan et al., “About the fatigue crack propagation threshold of metals as a design criterion – a review,” *Engineering Fracture Mechanics*, vol. 153, pp. 190–243, 2016.

[33] S. P. Huang, K. Z. He, H. H. Hu et al., “Defect analysis of 2A12 aluminum alloy flat ingot and process optimization,” *Light Alloy Fabrication Technology*, vol. 57, no. 2, pp. 20–23, 2019.

[34] X. Meng, S. L. Yang, Y. B. Huang et al., “Microstructure characterization and mechanism of fatigue crack propagation of 6082 aluminum alloy joints,” *Materials Chemistry and Physics*, vol. 257, Article ID 123734, 2021.

[35] X. Zhan, Y. Zhao, Z. Liu et al., “Microstructure and porosity characteristics of 5A06 aluminum alloy joints using laser-MIG hybrid welding,” *Journal of Manufacturing Processes*, vol. 35, pp. 437–445, 2018.

[36] N. E. Frost and C. E. Phillips, “Studies in the formation and propagation of cracks in fatigue specimens,” in *Proceedings of the International Conference on Fatigue of Metals*, pp. 520–526, The Institution of Mechanical Engineers, London, UK, September 1956.

[37] Z. Song, S. C. Wu, Y. N. Hu et al., “The influence of metallurgical pores on fatigue behaviors of fusion welded AA7020 joints,” *Acta Metallurgica Sinica*, vol. 54, no. 8, pp. 1131–1140, 2018.

[38] J. K. Huang, X. Y. He, Y. N. Guo et al., “Joining of aluminum alloys to galvanized mild steel by the pulsed DE-GMAW with the alternation of droplet transfer,” *Journal of Manufacturing Processes*, vol. 25, pp. 16–25, 2017.

[39] Y. Q. Zhao, X. D. Zhou, T. Liu et al., “Investigate on the porosity morphology and formation mechanism in laser-MIG hybrid welded joint for 5A06 aluminum alloy with Y-shaped groove,” *Journal of Manufacturing Processes*, vol. 57, pp. 847–856, 2020.

[40] J. Peng, L. Q. Li, S. G. Lin et al., “Welding characteristics of aluminum alloy with pre-melting liquid filler,” *Transactions of the China Welding Institute*, vol. 35, no. 10, pp. 45–48, 2014.

[41] L. Feng and F. Z. Xuan, “Effect of non-metallic inclusions on the local stress concentration within materials,” *Journal of Mechanical Engineering*, vol. 49, no. 8, pp. 41–48, 2013.

[42] D. L. Shu, *Mechanical Properties of Engineering Materials*, China Machine Press, Beijing, China, 2016.

[43] C. Laird, *The Influence of Metallurgical Structure on the Mechanisms of Fatigue Crack Propagation*, ASTM International, West Conshohocken, PA USA, 1967.