In Silico Identification of a Candidate Synthetic Peptide (Tsgf118–43) to Monitor Human Exposure to Tsetse Flies in West Africa

Emilie Dama, Sylvie Cornélie, Mamadou Camara, Martin Bienvenu Somda, Anne Poinsignon, Hamidou Ilboudo, Emmanuel Elanga Ndille, Vincent Jamonneau, Philippe Solano, Franck Remoue, et al.

To cite this version:
Emilie Dama, Sylvie Cornélie, Mamadou Camara, Martin Bienvenu Somda, Anne Poinsignon, et al.. In Silico Identification of a Candidate Synthetic Peptide (Tsgf118–43) to Monitor Human Exposure to Tsetse Flies in West Africa. PLoS Neglected Tropical Diseases, Public Library of Science, 2013, 7 (9), pp.e2455. 10.1371/journal.pntd.0002455 . hal-02991243

HAL Id: hal-02991243
https://hal.umontpellier.fr/hal-02991243
Submitted on 31 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
In Silico Identification of a Candidate Synthetic Peptide (Tsgf1\textsubscript{18–43}) to Monitor Human Exposure to Tsetse Flies in West Africa

Emilie Dama1, Sylvie Cornelie2,3, Mamadou Camara4, Martin Bienvenu Somda1, Anne Poinssignon2, Hamidou Ilboudo1, Emmanuel Elanga Ndille2,3, Vincent Jamonneau1,5, Philippe Solano1,5, Franck Remoue2,3, Zakaria Bengaly1, Adrien Marie Gaston Belem6, Bruno Bucheton1,5,6*

1Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso, 2Institut de Recherche pour le Développement (IRD), UMR MIVEGEC IRD 224-CNRS 5290-Université de Montpellier 1 et Montpellier 2, Montpellier, France, 3Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin, 4Programme National de Lutte contre la Trypanosomose Humaine Africaine en Guinée, Conakry, Guinée, 5Institut de Recherche pour le Développement, Unité Mixte de Recherche IRD-CIRAD 177, Campus International de Baillarguet, Montpellier, France, 6Université Polytechnique de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso

Abstract

Background: The analysis of humoral responses directed against the saliva of blood-sucking arthropods was shown to provide epidemiological biomarkers of human exposure to vector-borne diseases. However, the use of whole saliva as antigen presents several limitations such as problems of mass production, reproducibility and specificity. The aim of this study was to design a specific biomarker of exposure to tsetse flies based on the in silico analysis of three *Glossina* salivary proteins (Ada, Ag5 and Tsgf1) previously shown to be specifically recognized by plasma from exposed individuals.

Methodology/Principal Findings: Synthetic peptides were designed by combining several linear epitope prediction methods and Blast analysis. The most specific peptides were then tested by indirect ELISA on a bank of 160 plasma samples from tsetse infested areas and tsetse free areas. Anti-Tsgf1\textsubscript{18–43} specific IgG levels were low in all three control populations (from rural Africa, urban Africa and Europe) and were significantly higher (p<0.0001) in the two populations exposed to tsetse flies (Guinean HAT foci, and South West Burkina Faso). A positive correlation was also found between Anti-Tsgf1\textsubscript{18–43} IgG levels and the risk of being infected by *Trypanosoma brucei gambiens* in the sleeping sickness foci of Guinea.

Conclusion/Significance: The Tsgf1\textsubscript{18–43} peptide is a suitable and promising candidate to develop a standardize immunoblot assay allowing large scale monitoring of human exposure to tsetse flies in West Africa. This could provide a new surveillance indicator for tsetse control interventions by HAT control programs.

Citation: Dama E, Cornelie S, Camara M, Somda MB, Poinssignon A, et al. (2013) In Silico Identification of a Candidate Synthetic Peptide (Tsgf1\textsubscript{18–43}) to Monitor Human Exposure to Tsetse Flies in West Africa. PLoS Negl Trop Dis 7(9): e2455. doi:10.1371/journal.pntd.0002455

Introduction

With less than 10 000 reported cases in 2009 across Africa [1], the goal of elimination of human African trypanosomiasis (HAT), caused by *Trypanosoma brucei gambiens* (*T. b. gambiens*) and *T. b. rhodesiens* and transmitted by tsetse flies, seems again to be in sight [2]. Active surveillance by medical surveys, during which mass screening of the population is made to identify and treat infected persons in order to reduce the human reservoir, were shown to be effective and resulted in a 69% reduction in the number of new case during the period 1997–2006 in *T. b. gambiens* endemic areas. Out of the 36 endemic countries, 20 are now close to achieving the target of reporting no new cases and eight reported <100 new cases per year [3]. Nevertheless it is also known that this strategy becomes less effective when disease prevalence is becoming low, both because of the weariness from endemic populations leading to dramatic decrease in medical survey attendance [4], and because of cost related issues as the cost to diagnose a patient becomes prohibitive. In the absence of a vaccine or prophylactic molecules for mass treatment, vector control thus appears as an important complementary strategy to reach the goal of elimination or at least a sustainable control of HAT [5]. With the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC), large scale tsetse eradication campaigns are now underway in several African countries such as in Uganda and Ethiopia in East Africa and Ghana, Burkina Faso and Senegal in West Africa in order to improve the breeding and agricultural potential of these animal African trypanosomiasis (AAT) endemic areas [6]. Vector
Increasing interest is paid to blood-sucking arthropod’s salivary antigens to develop host direct biomarkers of exposure. Nevertheless use of whole saliva is problematic both because of mass production and specificity issues. Here, we describe an in silico approach we used to identify potential epitopes on the amino acid sequence of three tsetse salivary proteins (Ada, Ag5 and Tsgf1) that were previously shown to be specifically recognized by antibodies from exposed individuals. Three candidate peptides were synthesized and evaluated on a set of plasma collected in different tsetse-infested and tsetse-free areas. The Tsgf1_{18–43} synthetic peptide appeared as a promising candidate to assess human exposure to tsetse flies as antibody responses were low in all three control groups and were significantly higher in our two exposed groups. Significantly higher anti- Tsgf1_{18–43} responses were also observed in sleeping sickness patients as compared to uninfected controls suggesting that Tsgf1_{18–43} may be used both to assess human tsetse contacts and the risk of infection by trypanosomes. This new sero-epidemiological tool could thus help National Control Programs to quickly map human exposure levels in order to better target vector control efforts and monitor vector control efficiency.

Materials and Methods

Ethics statement

Human plasma samples were collected from tsetse infested areas from Guinea and Burkina Faso and tsetse-free areas from Burkina Faso (Bobo-Dioulasso), Southern Benin and France. All samples, used in previously published studies [23,32,35], were collected according to the ethical principles of the Helsinki Declaration and were anonymized. All samples collected in Guinea and Burkina Faso were collected during medical surveys led by the National Control Programs of these two countries according to the respective national HAT diagnostic procedures. All participants were informed of the objectives of the study in their own language and signed a written informed consent form. These samples are part of a larger project aiming to improve HAT diagnosis for which approval was obtained from the WHO Research Ethics Review Committee (RPC222) and from the IRD ethical committee (December 2007). Samples from Benin were part of a study on Aedes aegypti exposure [32] which was approved by the National Ethical Committee of Benin (IRB 0006860) and the IRD ethical committee (April 2008).

Human plasma

A total of 160 samples were included for the purpose of this study as follows:

Guinean HAT foci. 80 plasma samples, collected during medical surveys performed by the National Control Program of Guinea (mean age = 35.4 years old [5–80]) in the Forecariah and Dubreka mangrove HAT foci [23,35] that are currently the most active foci in West Africa. The Guinean mangrove ecosystem harbors high densities of *G. palpalis gambiensis* [7] and humans living in these areas are in close contact with tsetse flies during their daily activities [36]. Thirty six samples were from individuals diagnosed as HAT patients, and 44 were from uninfected individuals sampled in the same villages.

Batié (Burkina Faso). 10 samples collected from villagers (mean age = 32 years old [7–78]) during a medical survey led by the National Control Program of Burkina Faso in 2008. Batié is located in South-West (SW) Burkina Faso in a HAT historical focus where tsetse flies and animal trypanosomiasis are still present.
Bobo-Dioulasso (Burkina Faso). 17 samples collected from citizen volunteers (mean age = 24.8 years old [18–33]) that did not report travelling outside of the city for at least three months [23]. Bobo-Dioulasso is the second city in Burkina Faso and is considered free of tsetse flies. Inhabitants are nevertheless exposed to a number of other biting arthropods such as Calex mosquito species, *Anopheles gambiae* s.l., *Anopheles arabiensis* [40] or sandflies. Tsetse flies are nevertheless present in sites that are in the neighborhood of the city and we cannot exclude that some study subjects may have experienced occasional exposure while visiting these sites. Samples were included as our “urban African unexposed group”.

Southern Benin. 31 samples collected during a longitudinal survey of a cohort of children aged between 1 and 5 years old conducted between February 2008 and October 2009 in 7 villages of the Kpomasse-Tori Bosso health district in southern Benin as detailed elsewhere [32]. In this area of southern Benin where riparian forests are highly degraded and only few sacred wood persist due to the intense agricultural activities led in the area, the presence of tsetse flies is very unlikely. Nevertheless, although study samples were chosen in villages located away from river sites and all were from young children, as in Bobo-Dioulasso we cannot however exclude that some study subjects may have been occasionally bitten by tsetse flies. Samples were included as our “rural African unexposed group”.

Bordeaux (France). As a “non African unexposed group” we also included 22 samples collected from adult blood donors of the French blood bank (Établissement Français du Sang) in Bordeaux.

Peptide identification

Bioinformatics analyses were carried on the mature protein sequences (signal peptide removed) of the *Glossina Ada* (D3TR66), *Tsgf1* (Q9UT6C), and *Ag5* (D3TMF1) salivary proteins that were previously shown to react specifically with plasma from tsetse infested areas [23]. Protein sequences were from *G. morsitans morsitans* as they are currently the only available tsetse sequences in the data banks. In a first step, each of the protein sequences was sequentially submitted to an array of four different epitope prediction algorithms. The identification of putative linear B-cell epitopes was performed on the NETSurfP [41], ABCpred [42] and Bepred [43] servers using the B cell epitope database BCIPEP [44], which contains 3 031 entries that include 763 immunodominant, 1 797 immunogenic, and 471 null-immunogenic epitopes [45]. MHC class2 binding regions were also searched with the Proped-2 online service [46]. All epitopes (5–6 amino-acid length) that were identified by at least three out of four algorithms were considered for further analyses. In a second step, 10 amino acid sequences were added on each side of the selected epitopes and corresponding sequences were blasted on all non-redundant Genbank CDS databases [47]. After this step the best candidate peptide (with highest specificity to *Glossina*) was selected for each of the study salivary antigens (*Ada*, *Ag5* and *Tsgf1*). Accessibility of candidate peptides at the surface of the protein was then checked by performing 3D structure models of the proteins with Phyre [48] and verified with the molProbity server [49]. Peptides were synthesized by the Genepep Company (Saint-Jean de Vedas, France) with a purity control by HPLC>94%. All peptides were shipped lyophilized and were resuspended in ultra-pure water and then frozen in aliquots.

Peptide immunoassays

ELISA (Enzyme Linked ImmunoSorbent Assay) was used to measure the peptides specific IgG responses in human plasma. Maxisorp plates (Nunc, Roskilde, Denmark) were coated for 2 h at 37°C with peptides (20 µg/ml) diluted in carbonate/bicarbonate buffer. After washing with PBS between 0.1%, plates were saturated 1 h with the TBS-protein free Blocking Buffer (Pierce, Rockford, IL, USA). Plasma diluted in PBS-Tween 1% (1:10 for Ada188–213 and Ag5105–130; 1:40 for Tsgf118–43) were incubated overnight at 4°C. Anti-human IgG biotinylated antibodies (BD Pharmingen, San Diego, CA, USA) diluted 1/1000 in PBS Tween 1% or in Blocking Buffer (for Ada188–213) were incubated for 1 h at 37°C. This step was followed by 1 h incubation with streptavidine coupled with peroxidase (1:1000) (GE healthcare biosciences, Upplasa, Sweden). The colorimetric development was done with ABTS (2,29-azino-bis-(3-ethylbenzthiazoline 6-sulfonic acid), Sigma, St Louis, MO, USA) diluted in 50 mM citrate buffer (pH 4) containing 0.003% of H2O2. The optical density was measured at 405 nm. Each plasma sample was tested in duplicate and once in a well without antigen. The individual results were expressed in ΔOD measured according to the following formula: ΔOD = ODx–ODn where ODx is the average of the duplicate wells and ODn the optical density of the well without Ag. When ΔOD values were negative ΔOD were considered to be 0.

Statistical analysis

Statistical analyses were carried out with the GraphPad Prism software (San Diego, CA, USA). After verifying that the values did not assume a Gaussian distribution, the Mann Whitney U nonparametric test was used to compare IgG levels between two independent groups and the Kruskal-Wallis nonparametric test for comparison between more than two groups. Differences were considered significant for p<0.05.

Results

Peptide design

In a previous immune-proteomic approach combining 2-D electrophoresis and mass spectrometry, we were able to identify three proteins (*Ada*, *Ag5* and *Tsgf1*), from *G. palliatis gambiensis* saliva extracts, that reacted specifically with IgG from individuals exposed to tsetse bites [23]. After the first screening step, where the sequence of each protein was submitted to four different epitope prediction algorithms, four to seven candidate epitopes (5 to 6 aa) were identified by at least three of the prediction algorithms for each of the study protein (Table 1). In a second step, candidate epitope sequences (the 5–6 aa sequence added of 10 aa on each side) were submitted to Blast analysis with Genbank CDS non redundant databases. For each candidate sequence we calculated the difference between the Blast E-values for *G. morsitans morsitans* and the closest match in order to assess the specificity of candidate peptides to the *Glossina* genus (Table 1). For each protein, the peptide displaying the greatest difference were: *Ada188–213* (G. morsitans morsitans, e = 3.10^-16; *Drosophila melanogaster*, e = 5.6); Tsgf118–43 (G. morsitans morsitans, e = 4.10^-13; *Marinobacter algicola*, e = 1.3) and Ag5105–130 (G. morsitans morsitans, e = 2.10^-16; *Vibrio mimicus*, e = 7.8). No relevant similarity was found with known
human pathogens. After checking for peptide accessibility at the surface of the protein on 3-D models (Figure 1), Ada 188–213, Tsgf118–43 and Ag5105–130 were synthesized and tested on human plasma samples.

Peptide validation on human plasma samples

In order to assess antigenicity, each of the candidate peptide was evaluated in an ELISA immunoassay on a set of 13 plasma samples collected in tsetse-infested areas (Guinea and South West Burkina Faso) and displaying high IgG levels against *G. palpalis gambiensis* whole saliva extracts [23]. The highest IgG responses were observed for Tsgf118–43 (8/13 samples with \(\Delta DO = 0.79 \)) whereas IgG responses appeared much weaker for Ada188–213 (8/13 samples with \(\Delta DO = 0.03 \)) or absent for Ag5105–130 (Figure 1). This last peptide was thus abandoned in further analysis.

The result of the ELISA immunoassay performed with Tsgf118–43 and Ada188–213 on our sample of plasma collected from population exposed (Guinea, Batie´) or not (Bobo-Dioulasso, South Benin and Bordeaux) to tsetse flies are shown in Figure 2. For Ada188–213 IgG responses were again low but were significantly higher in plasma from Guinea as compared to those from Bobo-Dioulasso and Bordeaux (p = 0.03). The same trend, although not significant, was observed for the sample from Batic (p = 0.15). Nevertheless strong immune responses to

Table 1. Predicted antigenic peptides within the Glossina morsitans morsitans Ada, Tsgf1 and Ag5 salivary proteins.

Consensus peptides	E-value	G. m. morsitans	Best match specie (E-value)
ADA			
Seq1 71–90	2.10^{-16}		*Burkholderia pseudomallei* (0.96)
HLSTGGEVQLNSKEIEVDRIFMKYQ			
Seq2 110–135	6.10^{-17}		*Drosophila mojavensis* (5.10^{-13})
AAGMHHFKKAKPLIERSKVRRFLQOMMP			
Seq3 168–193	6.10^{-17}		*Leptospirillum ferrodiazotrophum* (1.7)
DQRGINLTFRENPERHKCTEQVYAV			
Seq4 174–199	4.10^{-17}		*Drosophila mojavensis* (0.0088)
ILTFRENPERHKCTTQYVAIVNERQK			
Seq5 188–213	3.10^{-16}		*Drosophila melanogaster* (5.6)
TQYVNNERQKRSQADYNRSFENL			
Seq6 262–277	1.10^{-15}		*Drosophila pseudoobscura pseudoobscura* (4.2)
DVLTLIEVGSGRSQYPDFGLKLV			
Seq7 175–240	1.10^{-16}		*Arthrosipa platensis str. Paraca* (2.3)
KLYAINRILTEVRINRIEVILKKFQ			
TSGF1			
Seq1 1–20	1.10–10		*Methylobacter tundripaludum* (0.17)
EVNKAYQDERNKILQEEKL			
Seq2 18–43	4.10–15		*Marinobacter alginica* (1,3)
EKLRGDEVILQDEEKADQIFRLK			
Seq3 130–156	3.10–16		*Paramecium tetraurelia* (0.4)
DGQKSEVLYSGKEAKEDWFNLYTPT			
Seq4 207–232	3.10–16		*Candida tropicalis* (0.71)
EVVVKFSQPFYDTSSKYSYLDDVKKEI			
Seq5 436–461	9.10–15		*Lactobacillus delbrueckii subsp. Bulgaricus* (0.4)
VENTYIAQLNSOQETATELLKAKWN			
AG5			
Seq1 14–39	2.10^{-14}		*Daphnia pulex* (3)
VACQSONYFGSCSSDAKMDILKYYQ			
Seq2 105–130	2.10^{-16}		*Vibrio mimicus* (7.8)
NLAEGLRSGGAGTPDYGQQIKAIVDS			
Seq3 233–236	2.10^{-13}		*Drosophila melanogaster* (1.7)
KSCASAQDQCKTGKNSYQNLCSA			
Seq4 227–243	1.10^{-14}		*Stomoxys calcitrans* (0.008)
QNLCSANEYEVNRWFKDGVEYQ			

All peptides that were identified by at least three out of four epitope prediction servers (NETSurfP, ABCpred, Bcepred and Proped-2) are listed for each protein. Within peptide sequences, amino acids forming the linear epitope are bolded. Each peptide was then blasted on all non-redundant Genbank CDS databases. Blast E-value for *G. morsitans morsitans* and the best match species are indicated. For each protein, the candidate peptide selected for biological validation is underlined.

doi:10.1371/journal.pntd.0002455.t001
the Ada188–213 peptide were observed in almost all plasma samples from South Benin (the rural African control group) and two from Bobo-Dioulasso (the urban African control group) indicating potential cross-reactions for this candidate peptide. For Tsgf118–43 a low level of IgG reactivity was observed in all tsetse-free areas (median \(D\text{OD} = 0.02\) in Bobo-Dioulasso, and 0.00 in South Benin and Bordeaux). In contrast Tsgf118–43 specific IgG levels were highly significantly increased in both tsetse-infested sites (Guinea, median \(D\text{OD} = 0.1\), p \(< 0.0001\); Batie, median \(D\text{OD} = 0.08\), p \(< 0.0001\)).

Finally Tsgf118–43 was evaluated as a marker/indicator of the HAT risk in the Guinean disease foci (Figure 3) by comparing Tsgf118–43 specific antibodies levels between HAT patients (n = 36) and \(T. b. gambiense\) uninfected controls (n = 44). HAT patients displayed significantly higher anti-Tsgf118–43 specific antibody responses as compared to uninfected individuals (median \(D\text{OD} = 0.15\) and 0.05 respectively, p \(< 0.001\)).

Discussion

In a previous work, we identified three \(G. palpalis gambiensis\) salivary antigens (Ada, Ag5 and Tsgf1) that were specifically recognized by IgG antibodies from individuals exposed to tsetse flies in West Africa [23]. Here we report on the performance, as marker of exposure, of three synthetic peptides that were designed from these protein sequences by a bioinformatics approach and then tested on plasma from individuals naturally exposed or not to tsetse flies. We show that one of them (Tsgf118–43) is a promising candidate peptide to assess tsetse human contact in HAT foci.

Out of the three candidate peptides selected by the in silico approach, Ag5105–130 did not induce any response when tested with plasma samples that were shown to strongly react with \(G. palpalis gambiensis\) whole salivary antigens, and two appeared to be antigenic although responses observed with Ada188–213 were much weaker as compared to Tsgf118–43. This was somehow an expected result, as the predictive value of the epitope prediction algorithms that were used in this study are known to be in the range of only 50 to 65% [42,43]. Furthermore, for bioinformatics analyses we had to rely on protein sequences from \(G. morsitans morsitans\) as no \(G. palpalis gambiensis\) sequences are yet available. The low or absent antigenicity observed for Ada and Ag5 respectively may thus therefore result from sequence differences between \(G. morsitans\) and \(G. palpalis gambiensis\) to which our study population are exposed. Nevertheless, as the use of \(G. morsitans morsitans\) sequences may be regarded as a limitation to our study design, an advantage is also that the potential candidate peptide identified by our approach may be used not only to monitor \(G. palpalis gambiensis\) exposure in West Africa, but also exposure to \(G. morsitans morsitans\) and possibly other tsetse species in East and Central Africa.

In the next step of the analysis, we evaluated the specificity of the Tsgf118–43 and Ada188–213 candidate peptides to detect exposure to tsetse flies by comparing specific IgG responses in plasma samples collected from a variety of populations from tsetse infested areas and tsetse free areas. Unexpectedly, all plasma samples from South Benin and 2 samples from Bobo-Dioulasso reacted strongly in the Ada188–213 ELISA immunoassay, evidencing that antibodies unrelated to tsetse exposure have the potential to induce cross reactions with this synthetic peptide. This is in contrast with the results of our Blast analysis that did not evidence any close matches to this peptide sequence. It is however clear that all sources of human antigens have not yet been sequenced and are thus not present in the data bases that were used for our “in silico” approach. Nonetheless, Tsgf118–43 appeared to be a good
Figure 2. Tsgf118–43 and Ada188–213 IgG responses in plasma samples from tsetse infested and tsetse free areas. IgG levels to Tsgf118–43 (A) and Ada188–213 (B) were assessed by indirect ELISA in different study population from tsetse infested areas (Guinea; n = 80 and Batie; n = 10) and tsetse free areas (Bobo-Dioulasso; n = 17; South Benin; n = 31, and Bordeaux; n = 22). Asterisks “*” above the dot plots indicate that some values were higher than 0.65 for A (1.14, 1.21, 1.86, 3.10, 4.06 and 4.11) and higher than 1 for B (2.45). The horizontal bars in the graph represent the median of ΔDO values for each group.
doi:10.1371/journal.pntd.0002455.g002

Figure 3. Anti-Tsgf118–43 IgG levels in HAT patients and uninfected controls. This analysis only includes the plasma samples collected in the Guinean HAT foci. Thirty six samples were from parasitologically confirmed HAT patients and 44 were from uninfected controls from the same villages. The Mann Whitney test was used to compare Tsgf118–43 specific IgG levels between the two groups. The horizontal bars in the graph represent the median of ΔDO values for each group. Asterisks “*” above the dot plots indicate that some values were higher than 0.8 in the patient group (4.11, 3.10, 1.85, 1.21, 1.14) and control group (4.06). The p-value of Mann Whitney U nonparametric test for the comparison between the two groups is given above the plot.
doi:10.1371/journal.pntd.0002455.g003
To this end, anti-Tsgf118–43 IgG antibodies will be evaluated in between IgG responses and the individual tsetse exposure levels. Noteworthy an intermediate response was observed in one of the study control from Bobo-Dioulasso suggesting that anti-Tsgf118–43 antibodies may not be entirely specific of tsetse exposure; we can however also completely rule out that this subject was truly exposed to tsetse bites in the near neighborhood of the city. These results are similar to those previously reported when using G. pallidae gambiensis whole saliva extracts [23]. Importantly however, a higher proportion of intermediate responses was observed in individuals from tsetse-free areas when whole saliva extracts were used, thus suggesting a better specificity of Tsgf118–43 to assess human exposure to tsetse flies. Furthermore, whereas no association had been observed between specific IgG levels directed against whole saliva extracts and the risk of HAT [23], anti-Tsgf118–43 antibodies were more elevated in HAT patients as compared to uninfected individuals in the Guinean HAT foci. Here a possible explanation to this result could be again that examining plasma reactivity to a single epitope provides a better specificity to assess tsetse exposure as compared to whole saliva extracts. The saliva of blood sucking arthropod is composed of a complex mixture of proteins, some of which are common and conserved across species [50]. Use of whole salivary antigens may thus lead to potential spurious reactions impairing immunoassays. All together, these results suggest that anti-Tsgf118–43 IgG antibodies could serve both as a direct biomarker of exposure to tsetse bites in West Africa and also as a marker to assess the T. b. gambiensis infection risk in endemic areas. We were not able in the framework of this study to assess the dynamics of apparition and disappearance of Glossina saliva specific antibodies and the relation between IgG responses and the individual tsetse exposure levels. To this end, anti-Tsgf118–43 IgG antibodies will be evaluated in sentinel villages from the Boffa focus in Guinea, before and after tsetse control intervention have been taken [7]. Noteworthy, we were able to show, that in cattle experimentally bitten by tsetse flies, Glossina saliva specific antibodies returned to pre-exposure levels within only few weeks after the stop of exposure (Somda et al., personal communication).

Defining immunoassays that enable to overpass issues associated with the use of whole saliva extracts has been a major challenge to develop specific and sensitive tools to detect/measure host exposure to blood sucking arthropods. Resort to recombinant proteins has proved to be an efficient way to develop standardized immunoassays to a variety of disease vectors such as ticks, sandflies, triatomines or to Afrotropical malaria vectors [27,28,30,31,51]. Nevertheless, the production and the storage/shipment of saliva specific antibodies returned to pre-exposure levels within only few weeks after the stop of exposure (Somda et al., personal communication).

In this paper, we have shown that the analysis of plasma reactivity to the Tsgf118–43 synthetic peptide provides an easy and cheap way to monitor human exposure to tsetse flies in West Africa and in contrast to whole saliva extracts to assess HAT risk in endemic populations. Combining such a serological test with the mass screening Card Agglutination Test for Trypanosomiasis [54], performed on thousands of individuals during medical surveys, could provide National Control Programs with important indicators to quickly map human exposure levels in order to better target vector control efforts and to monitor the efficiency of vector control campaigns to lower human tsetse contacts. Finally, we have confirmed that in silico approaches represent interesting and useful tools to design synthetic peptide to assess human exposure to arthropod bites. Inclusion of other Glossina salivary antigens and biological validation of other predicted antigenic peptides identified in the framework of this study should thus enable to improve further the sensitivity of anti-Glossina saliva specific IgG detection by allowing the design of peptide cocktail based immunoassay.

Acknowledgments

We would like to thank all study subjects for their kindness with the field teams. We are also very grateful to the staff (drivers, nurses, technicians) of the national control programs of Guinea and Burkina Faso who participated actively in the field activities linked with this study.

Author Contributions

Conceived and designed the experiments: ED SC MC AP FR ZB AMGB BB. Performed the experiments: ED SC MBS FR EEN. Analyzed the data: ED SC MBS AP EEN BB. Contributed reagents/materials/analysis tools: FR PS HI ZB. Wrote the paper: ED SC AP VJ PS AMGB BB. Participated in field work and sample collection: ED MC VJ BB HI EEN AP.

References

1. Simarro PP, Diarra A, Ruiz Postigao JA, Franco JR, Jaminin JG (2011) The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: the way forward. PLoS Negl Trop Dis 5: e1007.

2. Maurice J (2013) New WHO plan targets the demise of sleeping sickness. 13–14 p.

3. Simarro PP, Cecchi G, Paone M, Franco JR, Diarra A, et al. (2010) The Atlas of human African trypanosomiasis: a contribution to global mapping of neglected tropical diseases. Int J Health Geogr 9: 57.
4. Robaey J, Bilenge MM, Van der Stuyf P, Boelaert M (2004) The effectiveness of active population screening and treatment for sleeping sickness control in the Democratic Republic of Congo. Trop Med Int Health 9: 542–550.
5. Bucheton B, MacLeod A, Jannonneau V (2011) Human host determinants influencing the outcome of Trypanosoma brucei gambiense infections. Parasite Immunol 33: 430–447.
6. Schofield CJ, Kabayo JP (2000) Trypanosomiasis vector control in Africa and Latin America. Parasit Vectors 1: 24.
7. Kagbadouno MS, Camara M, Rosambha J, Rayaisse JB, Traore IS, et al. (2012) Epidemiology of sleeping sickness in Bofla (Guinea): were they the trypanosomes? PLoS Negl Trop Dis 6: 1949.
8. Vreyesen MJ, Seck MT, Sall B, Bouyer J (2013) Tsetse flies: their biology and control using area-wide integrated pest management approaches. J Invertebr Pathol 115: 12–23.
9. Lavisserie C, Courret C (1980) Lutte contre les glossines riverainees a l’aide de pieges bicomposes imprigu, en zone de savane humide, 1-description du lieu, du materiel et de la methode. Cahiers ORSTOM, serie Entomologie medicale et Parasitologie XVIII(3): 201–207.
10. Kagbadouno MS, Camara M, Bouyer J, Courtin F, Onikoyamou MF, et al. (2011) Progress towards the eradication of Tsetse from the Loos islands, Guinea. Parasit Vectors 4: 18.
11. Rayaisse JB, Krober T, McMullin A, Solano P, Mihok S, et al. (2012) Identification of diagnostic peptide in saliva of Trypanosoma brucei gambiense and T. b. rhodesiense as potential serological markers. J Med Entomol 49: 1262–1265.
12. Robertson KA, Amouzou A, Mbra MB, Fofana A, Winterberg H, et al. (2012) A cross-sectional case-control study of Anopheles gambiae saliva as a diagnostic biomarker for human infection with Plasmodium falciparum in the Ivory Coast. PLoS Negl Trop Dis 6: e1491.
13. Costantini FX, Aruozumi M, Jarry M (2001) A density-dependent model with reinforcement for estimating tsetse fly populations (Diptera: Glossinidae) through trapping. Bull Entomol Res 91: 177–184.
14. Barclay HJ, Vreysen MJB (2013) The interaction of dispersal and control reinvasion for estimating tsetse fly populations (Diptera: Glossinidae) through trapping. Bull Entomol Res 93: 271–279.
15. Solano P, Ravel S, de Meeus T (2010) How can tsetse population genetics contribute to African trypanosomiasis control? Trends Parasitol 26: 255–263.
16. Andrade BB, Rocha BC, Reis-Filho A, Camargo LM, Tadei WP, et al. (2009) Anti-<i>Anopheles darlingi</i> saliva antibodies as markers of Plasmodium vivax infection and clinical symptoms of malaria in the Brazilian Amazon. Malar J 8: 121.
17. Orlando-Pradines E, Alimeras L, Denis de Senneville L, Barbe S, Remoue F, et al. (2007) Antibody response against saliva antigens of <i>Anopheles gambiae</i> and <i>Aedes aegypti</i> in travellers in tropical Africa. Microbes Infect 9: 1454–1462.
18. Remoue F, Casse B, Ba F, Sokina C, Herve JF, et al. (2006) Evaluation of the antibody response to <i>Anopheles</i> saliva antigens as a potential marker of risk of malaria. Am J Trop Med Hyg 75: 750–753.
19. Schwartz BS, Ford DP, Childs JE, Rothman N, Thomas RJ (1991) Anti-tick saliva antibody: a biologic marker of tick exposure that is a risk factor for Lyme disease seropositivity. Am J Epidemiol 134: 86–95.
20. Schwartz BS, Ribiero JM, Goldstein MD (1990) Anti-tick antibodies: an epidemiologic tool in Lyme disease research. Am J Epidemiol 132: 58–66.
21. Chen VB, Arendall WB, . (2010) MolProbity: all-atom structure validation for macromolecular structures. Nat Methods 7: 902–907.
22. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search algorithms. Nucleic Acids Res 25: 3389–3402.
23. Chen VB, Arendall WB, . (2010) MoProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: 12–21.
24. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
25. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: 363–371.
26. Chen VB, Arendall WB, . (2010) MoProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: 12–21.
27. Fontaine A, Desouf I, Bakkali N, Misse D, Pages F, et al. (2011) A synthetic peptide to assess tsetse exposure. PLoS Negl Trop Dis 6: e1911.
28. Marzouki S, Abdeladhim M, Abdessalem CB, Oliveira F, Ferjani B, et al. (2012) Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to <i>Anopheles</i> bites. PLoS One 7: 15596.
29. Laveissiere C, Solano P, Mihok S, et al. (2011) Diversity of responses to Trypanosoma brucei gambiense infections in the Forecariah mangrove focus (Guinea): perspectives for a better control of sleeping sickness. Microbes Infect 13: 943–952.
30. Rayaisse JB, Courset C, Roux P, Solano P, Mihok S, et al. (2012) Identification of diagnostic peptide in saliva of Trypanosoma brucei gambiense as potential serological markers. J Med Entomol 49: 1233–1239.
31. Rizzo C, Ronca R, Fiorentino G, Verra F, Mangano V, et al. (2012) Humoral response to the <i>Anopheles</i> salivary protein gSG6: a serological marker of human exposure to <i>Anopheles</i> bites in low and seasonal malaria areas. Parasit Vectors 6: 228.
32. Magina E, Vervoort T, Vandevoorde N (1978) A card-agglutination test with stained trypanosomes (C.A.T.T.) for the serological diagnosis of <i>T. b. gambiense</i> trypanosomiasis. Ann Soc Belg Med Trop 58: 169–176.