Homozygous Familial Hypercholesterolemia among French Canadians in Québec Province

Sital Moorjani, Madeleine Roy, Claude Gagné, Jean Davignon, Daniel Brun, Marielle Toussaint, Marie Lambert, Lucien Campeau, Shirley Blaichman, and Paul Lupien

Nineteen patients with homozygous familial hypercholesterolemia (FH) living at the time of the 1981 Canada census are the subject of this report. Their mean age at that time was 15, with a range of 1 to 26 years. All patients had extensive xanthomatosis but showed variable clinical manifestations of coronary heart disease (CHD); five (mean age, 21; range, 11 to 27 years) died from sudden death due to CHD. Plasma cholesterol levels varied more than twofold (557 to 1532 mg/dl). Variation in the concentrations of both plasma and low density lipoprotein cholesterol, as well as apolipoprotein B, were unrelated to age at death from CHD or to the clinical course of CHD. The mean high density lipoprotein cholesterol concentration (27 mg/dl) was lower than the mean value (49 mg/dl) in the control population (p<0.001). Both the clinical and biochemical features of this cohort are typical of homozygous FH. The prevalence of homozygotes among French Canadians in Québec was ~1:275 000, and the minimum estimated frequency of heterozygotes was 1:270. In northeastern Québec, the frequency of homozygotes was ~1:100 000, and the minimum estimated frequency of heterozygotes was 1:154. Only Afrikaaners in South Africa have correspondingly higher frequencies. (Atherosclerosis 9:211–216, March/April 1989)

Familial hypercholesterolemia (FH) is an inherited disorder characterized by hypercholesterolemia due to high plasma levels of low density lipoproteins (LDL), xanthomatosis, and premature coronary heart disease (CHD). It is one of the most common single-gene disorders resulting from mutations in the gene coding for the LDL receptor. The disorder is transmitted in both homozygotes and heterozygotes, and the frequencies have been estimated at 1 in 500 and one in a million, respectively. These population frequencies are remarkably similar in most countries: United States, England and Wales, Norway, Denmark, and Japan; and white Afrikaaners from South Africa are exceptions and have a remarkably higher prevalence of FH. In the French-Canadian population of the province of Québec, although no prevalence figures are available, it has been our collective experience that heterozygote FH patients constitute an unusually large proportion of Lipid Clinic patients. Because of the difficulties involved in conducting a large-scale epidemiological survey, a census of homozygous patients throughout the province of Québec was undertaken. In this report, we present data on the high prevalence of FH among French Canadians, based on the frequency of contemporary homozygotes and assuming that the study population is in Hardy-Weinberg equilibrium.

Methods

Patients

Twenty-six patients with homozygous FH from 21 families were documented by the Lipid Clinics in 1988: 20 patients were seen at Laval University Medical Center in Québec City and 14, at four clinics in metropolitan Montréal; eight patients were documented by more than one clinic. Of the 26 homozygotes, 22 were born in the province of Québec, three in New Brunswick, and one outside Canada, in Lebanon. We used 1981 Canada census figures to estimate gene frequencies; accordingly, the two patients not alive in 1981 and one patient born after 1981 were not included. Thus, in the present study, data are derived from 19 patients born in the province of Québec to 16 families of French-Canadian origin. Fourteen families produced one homozygote each. In one family, there were two homozygous siblings and in another, three. When the prevalence of homozygous FH was estimated, the population of French Canadians in the province of Québec at the time of the 1981 census was approximately 5.3 million. This number was used to estimate the prevalence of heterozygotes with FH.

 Plasma lipoprotein fractions were prepared by the combined use of ultracentrifugation and heparin-manganese precipitation. Plasma was centrifuged at 40 000 rpm in a Beckman 50.3 rotor at a density of 1.006 g/ml for 18 hours. Tubes were sliced, and the very low density lipoprotein fraction was removed. The infranatant
Table 1. Clinical Features of 19 Homozygotes with Familial Hypercholesterolemia Living at Time of 1981 Census

Case	Age (yrs)*/Sex	AC	XTLA	Tendon	Tuberos	Planar	SM	Angina	MI	Age at death
1	1/F	-	-	+	+	-	-	-	-	F
2	3/M	-	+	+	-	-	-	-	-	F
3	3/F	-	-	+	-	-	-	-	-	F
4	6/M	-	+	+	+	-	-	-	-	F
5	9/F	-	-	+	+	+	-	-	-	11
6	10/M	+	-	+	-	-	-	-	-	L
7	11/F	-	+	+	+	+	-	-	-	L
8	12/M	-	+	+	-	-	-	-	-	L
9	13/F	+	-	+	+	-	-	-	-	L
10	13/F	+	-	+	+	-	-	-	-	L
11	21/F	-	+	+	+	-	-	-	-	L
12	22/F	-	+	+	-	-	-	-	-	L
13	18/M	+	-	+	-	-	-	-	-	L
14	19/M	-	+	+	+	+	-	-	-	29
15	21/F	+	-	+	+	+	-	-	-	24
16	23/M	-	+	+	+	+	-	-	-	F
17	25/F	-	-	+	+	+	+	+	+	25
18	26/F	-	-	+	+	+	+	+	+	27
19	26/M	-	+	+	+	+	+	+	+	L

*Age at time of the 1981 Canada census.
AC=Arous corneae, XTLA=xanthelasma, SM=systolic aortic ejection murmur, MI=myocardial infarction, L=living.
Cases linked by brackets are siblings.

(d>1.006 g/ml) was used for LDL and high density lipoprotein (HDL) determinations after LDL precipitation by addition of heparin and manganese chloride. The cholesterol and triglyceride concentrations in plasma and lipoprotein fractions were quantified on an AutoAnalyzer AA-II (Technicon Instruments Corp., Tarrytown, NY) as previously described.13 Plasma apoprotein (apo) B levels were determined by rocket immunoeassay as reported previously.14

Results

Clinical and Biochemical Features of Homozygotes

Diagnostic criteria for the homozygous phenotype were: 1) plasma cholesterol levels above 550 mg/dl. 2) appearance of xanthomas at an early age, 3) detection of hypercholesterolemia in both parents. All subjects met the first two criteria; 14 cases also met the third. In cases 13 and 16, the father had died of early CHD. In cases 5 and 14, neither parent had cholesterol values available, but the probands had died of CHD at ages 11 and 20, and hypercholesterolemia was documented in several first-degree relatives. In case 3, the data on the father had documented hypercholesterolemia, but the value was not available.

The cohort consisted of 11 female subjects and eight male subjects with an average age of 15 years (range of 1 to 26 years). Only five subjects were younger than 10 years old. The clinical features of this cohort (Table 1) were typical of the homozygous state. Tendon and tuberos xanthomas were present in all patients; interdigital and other planar xanthomas were present in all but two patients. Arous corneae were observed in six persons and xanthelasma, in three persons. Another prominent feature was an audible aortic ejection murmur in 13 patients. Angina pectoris was diagnosed in nine patients and myocardial infarction, in seven patients. Five patients died from sudden death due to CHD; their ages ranged from 11 to 27 years.

The concentration of plasma cholesterol (Table 2) showed a more than twofold variation among the homozygotes (mean, 1854 mg/dl; range, 1532 to 1532 mg/dl). There was no correlation between presence of CHD, age at death, and plasma cholesterol concentrations. Plasma levels of apo B and LDL cholesterol were increased; HDL cholesterol levels were lower than normal. Plasma triglyceride levels (72 to 355 mg/dl) were normal or moderately elevated.

The concentrations of plasma lipids and lipoproteins are given as maximum and minimum levels (Table 2) observed in each homozygote since first consultation. The minimum values are those obtained under various pharmacological or nonpharmacological treatments. All patients received lipid-lowering drugs alone or in combination. The lipid-lowering drugs used were cholestryamine, cholestyramine, clofibrate, gemfibrozil, mevinolin, niacin, and probucol. The nonpharmacological approaches used were portacaval shunt15 in cases 4, 5, 7, 8, and 18, partial ileal bypass in case 13,16 and LDL-pheresis17 in cases 4 and 16. Of all the treatments, LDL-pheresis was the most effective in lowering plasma cholesterol levels. The lowest HDL cholesterol levels were observed during probucol administration.
Table 2. Plasma Lipoprotein Levels of 19 Homozygotes with Familial Hypercholesterolemia Living at Time of 1981 Census

Case	Plasma C	TG Max/Min	Apo B Max/Min	LDL-C Max/Min	HDL-C Max/Min	Father	Mother
1	1215/615	72/48	582	18	437	250	
2	695/618	150/92	—	—	300	450	
3	1532/1026	355/183	1235/923	55/36	—	366	
4	1118/293*	292/72	935/622	32/10	369	248	
5	1050/371*	40	—	—	—	—	
6	840/690	208/88	743	29/15	434	282	
7	747/579*	120/52	589/553	52/34	364	394	
8	763/296*	132/40	682/368	38/22	334	312	
9	705/507	217/85	624/515	35/15	363	423	
10	722/468	285/83	588/459	41/24	341	327	
11	822/462	271/102	676/440	34/10	341	327	
12	848/472	200/109	248	54/29	341	327	
13	669/678*	154/100	664	29/28	D	360	
14	675/648	184/182	591	32/28	—	—	
15	858/525	192/42	676/576	32/14	450	436	
16	666/309†	278/77	599/313	35/19	D	282	
17	816/414	170/36	694/474	29/8	338	444	
18	902/499*	204/49	577/554	25/13	338	444	
19	557/384	128/20	505/333	36/24	327	354	
Mean	854/524	201/83	690/520	37/21	363	355	

*Portacaval shunt, †LDL-apheresis, ‡partial ileal bypass.
C = cholesterol, TG = triglycerides, Apo B = apoprotein B, LDL = low density lipoprotein, HDL = high density lipoprotein, Max = maximum, Min = minimum, D = deceased.

Prevalence of Familial Hypercholesterolemia

The present population of the province of Québec is 6.4 million, 83% of whom (5.3 million) are descendants from approximately 8000 immigrants from northern and western France who settled in Canada between 1608 and 1763.18 The 19 homoyzgotes from 16 families in this study were all of French-Canadian origin. Thus, the minimum prevalence of homoyzgotes among French Canadians in the province of Québec was 3.6 per million. Using this figure, we estimated the frequency of the allele (q) for FH as 0.0018708. The frequency of the normal allele p, is 1—q=0.9981292. Thus, the frequency of FH heterozygotes (2 pq) is about 4 per 1000.

The geographical location of homoyzgotes in the province of Québec is shown in Figure 1, and the data on the population frequency estimates of the FH gene are presented in Table 3. Of the 19 homoyzgotes, 17 were located in northeastern Québec, which has a population of about 1.6 million, mostly of French descent and with very little crossbreeding from people of other origins. Thus, in northeastern Québec (regions 01, 02, 03, and 09), the prevalence of homoyzgotes is 1 in 100,000, and the frequency of FH heterozygotes is 1 in 154, with a regional range varying from 1 in 81 to 1 in 208.

Discussion

The frequency of homoyzgotes with FH in the French-Canadian population of Québec is much higher than that reported in populations elsewhere.1 Two other regions of the world have high frequencies: Lebanon9 and South Africa.8 The frequency of heterozygotes in most studies1 is generally estimated at 1 in 500 except in Lebanon and South Africa, where, based on the number of homoyzgotes and using the Hardy-Weinberg equation, the estimated frequencies of heterozygotes are 1 in 171 and 1 in 100, respectively. Based on similar calculations, we estimated the heterozygote frequency of FH as ~1 in 270 in the province of Québec. Due to the high concentration of homoyzgotes, mainly in northeastern Québec, the minimal estimated frequency of FH in this region was 1 in 154, and even as high as 1 in 81 in one region. The exceptionally high gene frequencies in Lebanese and Afrikaners were attributed to founder effects in comparatively isolated communities and were maintained by a high incidence of consanguineous marriages. The geographic, historical, and demographic characteristics of the population of northeastern Québec also suggest random genetic drift in the form of a founder effect as the likely explanation for the higher gene frequency of FH.

The settlement of the present Québec territory was begun in the early 17th century (1608 to 1763) around Québec City.18 During that period, 8527 immigrants arrived from northern and western France and settled in the Saint Lawrence Valley (Figure 1). The population growth after that was the result of an unusually high birth rate, at times as high as 50 to 60 per 1000 per year with...
very little immigration. Today, there are approximately 5.3 million French Canadians, of which 1.6 million inhabit northeastern Québec. The first migrations to eastern Québec were along the Saint Lawrence Valley and later extended inland. The lack of further immigration and high fertility rates contributed to the high incidence of genetic disorders - cystic fibrosis, Sipple’s syndrome, tyrosinemia, vitamin D-dependency rickets, spastic ataxia, and myotonic muscular dystrophy. Some of these disorders are more specific to Saguenay-Lac Saint-Jean. From the geographical distribution of FH homozygotes, it is reasonable to assume that more than one gene mutation may be responsible for the clinical manifestation of FH. Recently, a large deletion of more than 10 kilobases from the 5′ end of the gene for the LDL receptor was shown to occur in 63% of the French-Canadian homozygotes and was also detected in 4 of 7 homozygotes. One homozygote, who had 3% to 5% of the LDL receptor activity in cultured fibroblasts, had inherited one copy of the 5′ deletion and one copy of another LDL receptor mutation, which has not yet been characterized (JL Goldstein, personal communication). The characterization of other mutation(s) in the LDL receptor gene will be helpful to establish the precise gene frequencies of these mutations, their geographical distribution, and their relation to migratory pathways in northeastern Québec.

The mean plasma cholesterol level of 654 mg/dl was similar to reported values of 728 mg/dl from Lebanon, 678 mg/dl from the United States, 713 mg/dl from Japan, and 786 mg/dl from South Africa. The mean plasma cholesterol concentration of 359 mg/dl in the parents was approximately half that of the homozygotes and similar to our previously reported findings in French Canadians.4 Nevertheless, marked heterogeneity in both plasma and LDL cholesterol was observed in this cohort, as has also been reported extensively in previous studies. In the pres-
ent study, 5 of the 17 homozygotes died of sudden death due to acute CHD, which is the prime cause of early death in these patients. Although the mean age at death of 21 years is comparable to that in Japanese (20 years) and Afrikaners (19 years), it is important to point out that only one subject in this study died before age 20 as compared to four of seven and four of six, respectively, in the studies cited above. In our cohort, the age at death was not related to plasma cholesterol levels, nor were there differences in plasma cholesterol levels between subjects with clinical CHD (824 mg/dl, n=10) and those without symptoms (890 mg/dl, n=9). However, differences in LDL cholesterol levels have been reported between subjects with and without myocardial ischemia. These authors also reported that the heterogeneity in CHD was associated with the LDL receptor activity status (negative/defective) of the patients. Perhaps studies in homozygotes of the same ethnic origin will address this question more thoroughly.

The concentration of HDL cholesterol reported in several studies in homozygotes has consistently lower than in controls. The mean HDL cholesterol concentration of 37 mg/dl was relatively lower than the previously reported values of 34 mg/dl, 28 mg/dl, and 20 mg/dl. A much smaller relative decrease in HDL cholesterol in heterozygotes was also documented in several studies. In the present cohort of homozygotes, the concentration of HDL cholesterol was significantly lower in subjects with myocardial infarction than in those without clinical manifestations of CHD (X±SD, 30.7±4.5, n=6 vs. 44.3±9.1, n=7, p<0.01). Whether HDL particles play any role in the clinical course of CHD in FH homozygotes merits further investigation. Since HDL cholesterol concentrations are consistently lower in homozygotes of various ethnic origins, it is likely that HDL metabolism is modulated by tissue cholesterol overload due to the primary accumulation of LDL particles.

Acknowledgments
This study was made possible by the efforts of the Collaborative Research Group on Familial Hypercholesterolemia (CRGFM), which convened for the first time in Chicoituni on October 24, 1987. This consortium involves four universities (Leval, McGill, Montéal, and Québec-Chicoutum). The founding members are: Gérard Bouchard, Jean Davignon, Marc De Brakeluwer, Margaret Gradie, Claude Laberge, Stéphane Moisan, Kenneth Morgan, Madeleine Roy, and Charles Scharf. The secretarial assistance of Dora Morneau is gratefully acknowledged.

References
1. Goldstein JL, Brown MS. Familial hypercholesterolemia. In: Stanbury JB, Wynder JE, Fredrickson DS, Goldstein JL, Brown MS, eds. The metabolic basis of inherited diseases, 5th ed. New York: McGraw-Hill, 1983:672–712
2. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986:232:34–47
3. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in coronary heart disease. I: Genetic analysis of total levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 1973:52:1544–1558
4. Slack J. Inheritance of familial hypercholesterolemia. In: Goto AM, Paciotti R, eds. Atherosclerosis, reviews, vol 5. New York: Raven Press, 1979:35–68
5. Heiberg A, Berg K. The inheritance of hypercholesterolemia with xanthomatosis. Clin Genet 1976:9:203–208
6. Anderson GE, Louis P, Frits Hansen. Screening for hyperlipoproteinemia in 10,000 Danish newborns. Follow-up studies in 522 children with elevated cord serum VLDL-LDL cholesterol. Acta Pediatr Scand 1979:68:541–545
7. Nishii H, Tatemari H, Hase T, et al. Hypercholesterolemia in Japan. Am J Med 1978:65:290–297
8. Kacharbelian AK, Uthman SM. Experiences with the homozygous cases of familial hypercholesterolemia. Nutr Metab 1973:15:132–144
9. Seftel HC, Baker SG, Sandler MP, et al. A host of hypercholesterolemic homozygotes in South Africa. Br Med J 1980:281:633–636
10. Vogel F, Motulsky AG. Human genetics: problems and approaches, 2nd ed. Berlin: Springer-Verlag, 1986:111–227
11. Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 1955:34:1345–1353
12. Buehring M, Samaille J. Sur un dosage rapide du cholestérol libre aux α et aux β-lipoprotéines du serum. Clin Chim Acta 1960:5:609–610
13. Moisan S, Gagné C, Lupien PJ, Brun D. Plasma triglycerides related decrease in high density lipoprotein cholesterol and its association with myocardial infarction in heterozygous familial hypercholesterolemia. Metabolism 1986:35:311–318
14. Moisan S, Dupont A, Labbe F, et al. Changes in plasma lipoproteins during androgen suppression therapies in men with prostatic carcinoma: effects of orchitectomy, estrogens and combination treatment with levotimizing hormone-releasing hormone agonist and futamide. J Clin Endocrinol Metab 1989:68:831–838
15. Sturdev TE, Chase HP, Austin CW, Porter KA. Portacaval shunt in hyperlipoproteinemia. Lancet 1973:2:940–944
16. Buchwald H, Moore RB, Varco RL. Surgical treatment of hyperlipoproteinemia. Circulation 1974:49(suppl I):1–117
17. Lupien PJ, Moisan S, Awad J. A new approach to the management of familial hypercholesterolemia: removal of plasma cholesterol based on the principle of affinity chromatography. Lancet 1976;1:1261–1265
18. Laberge C. Population genetics and health care delivery: the Québec experience. In: Hants H, Hirshkorn K, eds. Advances in human genetics, vol 6. New York: Plenum Press, 1976:323–374
19. Bolids M. Les migrations au Canada sous le régime français (1608–1870). Cahier Québécois de démographie, vol 13 (No. 1). 1984:34–46
20. Bouchard G. Les maladies génétiques au Ségouay, In: Bouchard G, ed. De la dynamique de la population à l'épidémiologie génétique. Chicoituni, Québec: Centre Inter-universitaire de recherches sur les populations, 1988:275–288
21. Hobbs HH, Brown MS, Russell DW, Davignon J, Goldstein JL. Deletion in the gene for the low density lipoprotein receptor in a majority of French Canadians with familial hypercholesterolemia. N Engl J Med 1987:317:734–737
22. Krivorovich PO, Frederickson DS, Levy RI. Familial hypercholesterolemia (one form of familial type II hyperlipoproteinemia). A study of its biochemical genetic and clinical presentation in childhood. J Clin Invest 1974:53:1237–1249
23. Gagné C, Moisan S, Brun D, Toussaint M, Lupien PJ. Heterozygous familial hypercholesterolemia: relationship between plasma lipids, lipoproteins, clinical manifestations and ischaemic heart disease in men and women. Atherosclerosis 1979:34:13–24
24. Sprecher DL, Schafer EJ, Kent KM, et al. Cardiovascular features of homozygous familial hypercholesterolemia: analysis of 18 patients. Am J Cardiol 1984:54:20–30
25. Sprecher DL, Hoeg JM, Schafer EJ, et al. The association of LDL receptor activity, LDL cholesterol level, and clinical course in homozygous familial hypercholesterolemia. Metabolism 1985:34:294–299
26. Mabuchi H, Tetami R, Ueda R, et al. Serum lipid and lipoprotein levels in Japanese patients with familial hyper-
cholesterolemia. Atherosclerosis 1979;32:435–444

27. Goldberg RB, Fless GM, Baker SG, et al. Abnormalities of high density lipoproteins in homozygous familial hypercho-
lesterolemia. Arteriosclerosis 1984;4:472–478

Index Terms: coronary heart disease • familial hypercholesterolemia • lipoproteins • population frequency • xanthomata • French Canadians