Effect of Heat Stress on Photosystem II, Antioxidant Activity and Micronutrient Concentration in Contrasting Cultivars of Greengram (Vigna radiata (L.) Wilczek)

M. Alagupalamuthirsolai¹*, C. Vijayalakshmi², K. S. Krishna Surendar² and T. N. Sritharan²

¹Indian Institute of Spices Research, Calicut-673012, Kerala, India. ²Tamil Nadu Agricultural University, Coimbatore-641003, Tamil Nadu, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Author MA designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author CV managed the analyses of the study. Authors KSKS and TNS managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJPSS/2020/v32i1130345

Original Research Article

ABSTRACT

Heat stress around flowering has negative effect on greengram (Vigna radiata (L.) Wilczek) grain yield. The pot culture experiments were conducted to study the response of antioxidant system, photosystem II and micronutrient concentration to above-optimum temperature at flowering stage in two cultivars of greengram (Vigna radiata (L.) Wilczek) cv. SAMRAT (heat tolerant) and VBN-2 (heat susceptible). The plants were grown under natural light and atmospheric conditions (33/22°C day/night) up to the first appearance of flower. Then, cohort of plants were: (a) exposed to natural environment (33/22°C day/night) for 13 days and were (b) exposed to controlled environment 33/22°C to 45/30°C (day/night) for 13 days by gradually increasing 1°C per day in day/night temperature and then pots were shifted to natural environment for 5 days for recovery. The activity of antioxidant enzyme (SOD, CAT and APX) were increased significantly as the temperatures increased upto

*Corresponding author: E-mail: alaguphysiology@gmail.com;
38/26°C in both cultivars and showed less reduction appropriately at 45/30°C in SAMRAT compared to VBN-2. It is possible that better tolerant to heat stress of SAMRAT was related to its ability to maintain higher levels of activity of antioxidant enzymes in all the temperature regimes. Quantum yield (F_r/F_m) showed significant reduction at 41/28°C in VBN-2 while at 45/30°C in SAMRAT indicating relative tolerance to heat stress. Micronutrient composition was not affected at 45/30°C except Cu content in leaves and Mn and Fe content in shoots. Upon heat stress treatment SAMRAT showed relatively less reduction of micronutrients like Cu, Mn and Fe content in leaves compared to VBN-2. The tolerant cultivar SAMRAT can serve as parents for breeding for heat stress tolerant variety.

Keywords: Vigna radiata; heat stress; antioxidants; photosystem-II; micronutrients.

1. INTRODUCTION

Heat stress is one of the primary stresses limiting the performance of plants over the globe [1]. The rise in temperatures is drastically affecting the growth and production potential of crops, especially for those being grown in the tropical conditions. The above-optimum temperatures can induce chlorosis, sunburns on vegetative tissues, senescence and abscission of leaves, inhibition in the growth of roots and shoots, and finally substantial reduction in seed yield in various plant species [2,3]. Heat stress induces the rapid production and accumulation of reactive oxygen species (ROS) and cause loss in crop productivity worldwide [4].

Greengram (*Vigna radiata* (L.) Wilczek) is an important vegetable crop of India and rich in proteins, vitamins, and minerals [5]. In northern parts of India, it is sown during spring/summer seasons and experiences heat stress (35-45°C) as it grows during its various developmental stages leading to reduction in potential yield. Our preliminary observations on greengram plants experiencing temperatures exceeding 40°C indicate damage as chlorosis, reduced vegetative and reproductive growth, abscission of buds, flowers and pods suggesting its sensitivity to heat stress [6].

One of the ways to overcome the negative effects of heat stress may involve use of some antioxidant enzymes having proven protective functions against the stresses. The major enzymatic antioxidants are Superoxide dismutase (SOD), Catalase (CAT) and Ascorbate peroxidase (APX) are reported to increase under various environmental stress [7]. In enzymatic antioxidant system, SOD converts free O$_2^-$ radicals to H$_2$O$_2$ and O$_2$ [8]. The CAT and APX scavenge the accumulated H$_2$O$_2$ to nontoxic levels or form water and oxygen [9].

Chlorophyll fluorescence, an indication of the fate of excitation energy in the photosynthetic apparatus, has been used as an early, in vivo, indication of many types of plant stress [10] including temperature stress [11]. One of the first responses of a plant to environmental stress is an increase in nonradioactive energy dissipation, which is reflected by the amount of chlorophyll fluorescence [12].

Rising temperature may enhance organic matter mineralization and mineral weathering rates thus alleviating, at least temporarily, some nutrient limitation. Micronutrient content decreased in shoots of chickpea crops under elevated temperature [13]. The increasing in plant growth in elevated CO$_2$ with increasing temperature can only be achieved if some combination of increased nutrient absorption and improved nutrient use efficiency is attained pulses. Understanding the response of greengram to heat stress at photosystem II (chlorophyll fluorescence), antioxidant enzyme and micronutrients level will accumulate, making the genetic manipulation easier which could lead to more research on mechanism of heat stress tolerance to plants in future. The objective of this study was to assess the heat stress tolerance by comparing efficiency of photosystem II, activity of antioxidant enzymes and micronutrient concentration associated with heat tolerance in two contrasting cultivars of greengram in heat tolerance.

2. MATERIALS AND METHODS

2.1 Experimental Materials

The two greengram cultivars SAMRAT (heat tolerant) and VBN-2 (heat susceptible) were grown in a controlled environment with seven replications. Seeds of each cultivar were sown in pots (5 L volume) containing a mixture of sandy loam soil and vermi-compost (3:1) and two plants
were maintained in each pot. The plants were grown under natural light and atmospheric conditions (33/22°C day/night) up to the first appearance of flower. Then, cohort of plants were: (a) exposed to natural environment (33/22°C day/night) for 13 days maintained as control and were (b) exposed to controlled environment 33/22 to 45/30°C (day/night) for 13 days by gradually increasing 1°C per day in day/night temperature and then pots were shifted to natural environment for 5 days for recovery.

2.2 Antioxidant Enzymes

Leaf samples were taken at various temperature regimes (33/22°C, 38/26°C and 45/30°C) for observations of antioxidant enzyme viz., Superoxide dismutase (SOD), Ascorbate peroxidase (APX) and Catalase (CAT) activity. The SOD activity was estimated by using nitroblue tetrazolium dye, as described by [14]. The APX enzyme activity was estimated using the method as described by [15]. The CAT enzyme activity was calculated by computing the amount of H2O2 decomposed using the method as developed by [16].

2.3 Efficiency of Photosystem II

The chlorophyll fluorescence readings were taken during different temperature regimes (33/22°C, 35/24°C, 38/26°C, 41/28°C and 45/30°C) by using an OS-30p portable chlorophyll fluorometer (Opti-Sciences Hudson, NH, USA). The maximum quantum efficiency of photosystem II (Fv/Fm) was calculated by adopting the procedure of [17].

2.4 Micronutrient Analysis

Micronutrients were estimated using the method described by [18].

2.5 Statistical Analysis

The data obtained in this study were analyzed in CRD design by using AGRIS statistical software.

3. RESULTS

3.1 Antioxidant Enzymes

The effect of heat stress on activities of catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD) were highly significant. The activity of SOD was increased significantly as the temperatures increased to 38/26°C, but decreased at 45/30°C in both cultivars. The activity of SOD was increased by 17.4 and 31.7% at 38/26°C and it was decreased by 14.3 and 34.6% at 45/30°C over control (33/22°C) in SAMRAT and VBN-2 respectively. But the cultivar SAMRAT showed less reduction in SOD activity than VBN-2 at 45/30°C. The SOD activity was significantly higher in SAMRAT than VBN-2 in all the temperature regimes.

The significant increase in CAT activity was observed by 48.6 and 46.1% in SAMRAT and VBN-2 respectively at 45/30°C, compared with the control. The CAT activity was significantly higher in SAMRAT than VBN-2 in all the temperature regimes. On the other hand, APX activity followed the same increasing trend at 38/26°C and decreased at 45/30°C in both cultivars. The activity of APX was increased by 83.1 and 40.1% in SAMRAT and VBN-2 at 45/30°C respectively over control.

3.2 Chlorophyll Fluorescence (Fv/Fm)

The effect of heat stress on efficiency of photosystem II (Fv/Fm) showed that, cultivar VBN-2 was not affected significantly when the temperature increased from 33/22 to 38/26°C. However, Fv/Fm decreased significantly when the temperature increased at 41/28°C in VBN-2. The changes in Fv/Fm increased by 6.1 and 12.5% when temperature increased from 33/22°C to 41/28°C, whereas decreased by 13.9 and 24.5% at 45/30°C in SAMRAT and VBN-2 respectively. In addition, the temperature increased from 38/26°C to 41/28°C did not affect Fv/Fm significantly in SAMRAT. Though the cultivar SAMRAT showed significant decrease in Fv/Fm at 45/30°C, indicating relative tolerance compared to VBN-2.

3.3 Micronutrients

The effect of temperature and the interaction between cultivar and temperature were not significantly differed on Zn concentration in both leaves and shoots under heat stress. Copper (Cu) concentration was significantly affected by heat stress in leaves but not in shoots. Copper content decreased in the leaves of SAMRAT and VBN-2 by 5.7 and 18.4% while, in the shoots by 19.7 and 4.8%, respectively at 45/30°C. Copper content in leaves and shoot decreased when plants exposed to 38/26°C in both cultivars except in the shoots of VBN-2. Manganese (Mn) content increased by 16.8 and 54.6% in shoots, while decreased in leaves by 26.6 and 26.9% in
Table 1. Details of temperature regime and parameters observation under controlled environments

Days	0	1	2	3	4	5&6	7	8	9	10	11	12&13
Temp regime (day & night °C)	33/22	34/23	35/24	36/25	37/25	38/26	39/27	40/27	41/28	42/29	43/29	45/30
Chlorophyll fluorescence observation	*	-	*	-	-	*	-	-	*	-	-	*
Antioxidant enzyme analysis	*	-	-	-	-	-	*	-	-	-	-	-
Micronutrient analysis	*	-	-	-	-	-	-	-	-	-	-	*

Note: The symbol * indicates the temperature regime for observation.
SAMRAT and VBN-2, respectively at 45/30°C but no significant changes observed at 38/26°C in both cultivars except in the stem of VBN-2. Iron content (Fe) content decreased by 34.9 and 45.8% in shoots of SAMRAT and VBN-2, respectively at 45/30°C, but no significant differences observed in leaves. Also no significant changes in Fe content was observed at 38/26°C in both cultivars except in the stem of SAMRAT.

Table 2. Effect of heat stress on the superoxide dismutase activity in greengram cultivars at flowering stage

Cultivars	Superoxide dismutase (unit g⁻¹ fresh weight min⁻¹)	33/22°C	38/26°C	45/30°C	Mean
SAMRAT		13.2±0.36	15.5±0.40	11.3±0.31	13.3
VBN(Gg) 2		10.4±0.50	13.7±0.40	6.8±0.56	10.3
Mean		11.8	14.6	9.1	

CD (p≤0.05)
- Cultivar (C): 0.702
- Temperature (T): 0.860
- C × T: 1.21

* *, ** and n.s. denote significance level at p≤0.05, p≤ 0.01, and non-significant, respectively. Values in parentheses indicate percent change over 33/22°C (control).

Table 3. Effect of heat stress on the catalase activity in greengram cultivars at flowering stage

Cultivars	Catalase (µmol g⁻¹ fresh weight min⁻¹)	33/22°C	38/26°C	45/30°C	Mean
SAMRAT		0.286±0.01	0.396±0.01	0.425±0.02	0.369
VBN(Gg) 2		0.247±0.15	0.382±0.12	0.361±0.01	0.330
Mean		0.267	0.389	0.393	

CD (p≤0.05)
- Cultivar (C): 0.020
- Temperature (T): 0.024
- C × T: 0.035

* *, ** and n.s. denote significance level at p≤0.05 and non-significant, respectively. Values in parentheses indicate percent change over 33/22°C (control).

Table 4. Effect of heat stress on the ascorbate peroxidase activity in greengram cultivars at flowering stage

Cultivars	Ascorbate peroxidase (µmol g⁻¹ fresh weight min⁻¹)	33/22°C	38/26°C	45/30°C	Mean
SAMRAT		2.31±0.13	4.72±0.15	4.23±0.07	3.75
VBN(Gg) 2		1.87±0.15	3.85±0.13	2.62±0.09	2.78
Mean		2.09	4.29	3.43	

CD (p≤0.05)
- Cultivar (C): 0.210
- Temperature (T): 0.258
- C × T: 0.365

* *, ** and n.s. denote significance level at p≤0.05, p≤ 0.01, and non-significant, respectively. Values in parentheses indicate percent change over 33/22°C (control).
Table 5. Effect of heat stress on quantum yield of PSII of the greengram cultivars at flowering stage

Cultivars	Quantum yield PSII (Fv/Fm)	33/22°C	35/24°C	38/26°C	41/28°C	45/30°C	Mean
SAMRAT	0.783±0.012	0.772±0.007	0.748±0.003	0.735±0.011	0.683±0.014	0.773	0.744
VBN(Gg) 2	0.764±0.007	0.753±0.022	0.713±0.006	0.688±0.011	0.576±0.007	0.763	0.699
Mean	0.773	0.763	0.731	0.711	0.630	0.744	

CD (p≤0.05)

Cultivars (C)	0.030 ns
Temperature (T)	0.048 ns
C × T	0.068 ns

** and n.s. denote significance level at p≤0.01 and non-significant, respectively.

Table 6. Effect of heat stress on mineral elements concentration in leaves of greengram cultivars at flowering stage

Cultivars	Micronutrients (ppm)	Temperature	Zn	Cu	Mn	Fe
SAMRAT		33/22°C	62.5±1.96	29.6±1.06	232.9±7.35	737.1±4.54
		38/26°C	58.9±2.11	24.7±0.82	213.2±5.44	742.7±4.68
		45/30°C	48.6±2.05	31.3±1.26	170.9±4.22	709.3±9.57
VBN(Gg) 2		33/22°C	53.4±2.04	22.2±1.23	181.6±3.32	734.5±8.52
		38/26°C	49.4±1.81	22.5±0.64	166.7±2.88	726.3±9.75
		45/30°C	41.2±2.16	26.3±0.81	132.7±3.18	657.2±6.97
Mean			52.33	26.16	183.1	717.8

CD (p≤0.05)

Cultivar (C)	3.36 ns
Temperature (T)	2.02 ns
C × T	2.86 ns

*, ** and n.s. denote significance level at p≤0.05, p≤0.01, and non-significant, respectively.

Table 7. Effect of heat stress on mineral elements concentration in shoots of greengram cultivars at flowering stage

Cultivars	Micronutrients (ppm)	Temperature	Zn	Cu	Mn	Fe
SAMRAT		33/22°C	30.7±1.18	29.8±1.24	49.2±1.48	309.1±10.67
		38/26°C	31.3±1.60	31.4±1.18	51.7±2.24	371.3±10.36
		45/30°C	36.2±1.65	35.7±2.11	57.5±2.24	201.3±8.30
VBN(Gg) 2		33/22°C	45.4±1.91	26.8±0.99	32.6±2.33	328.2±8.73
		38/26°C	38.9±1.81	23.3±0.86	23.8±1.70	339.2±5.35
		45/30°C	39.2±1.97	28.1±0.84	50.4±1.45	177.6±7.70
Mean			36.95	29.23	44.2	278.7

CD (p≤0.05)

Cultivar (C)	2.83 ns
Temperature (T)	2.22 ns
C × T	3.2 ns

*, ** and n.s. denote significance level at p≤0.05, p≤0.01, and non-significant, respectively.

4. DISCUSSION

Cells produce enzymatic antioxidants to defend against oxidative stress in plants. SOD removes peroxides while converting them to H₂O₂, which is quickly acted upon by catalase to convert into water and oxygen. The enzymes APX is a component of the ascorbate–glutathione cycle and are implicated in the removal of H₂O₂. CAT and APX play a role in the protection of the plants from the damages of upward accumulation of H₂O₂. In the present study, plants exposed to
38/26°C showed an appreciable increase in these antioxidant enzymes (SOD, CAT and APX) in both heat tolerant and susceptible cultivars. It could be due to, increase in SOD activity as a result of heat stress as reported by [19]; such increase could be due to the accumulation of Cu/Zn-SOD mRNA [20]. The increase in SOD activity at heat stress could be mainly due to the isoform pattern of SOD. However, transcript level of APX gene is increased in heat, drought and combined stress treated tobacco plants [21].

On the other hand, in the present study, it was found that these antioxidant enzymes were significantly decreased at 45/30°C. It appears that at extreme temperatures, the expression of antioxidants are inactivated or inhibited and it was in concordance with previous reports about the decline in the transcript level of SOD, CAT and APX related genes in the heat stress treated chick pea [22], cotton [23] and tomato [24]. Though these enzymes were significantly decreased in both cultivars at 45/30°C, comparatively the tolerant cultivar SAMRAT differed from the sensitive cultivar VBN-2 with respect to a less reduction in the activity of SO, CAT and APX appropriately at 45/30°C. Maintenance of antioxidant enzyme activity in the tolerant cultivar SAMRAT reflects the efficient detoxification of H$_2$O$_2$ compared with the sensitive cultivar VBN-2 which possibly reduced heat-stress induced damage in the former. Tolerant genotypes are able to maintain SOD, CAT and APX at higher levels, which might be significant in the differential heat sensitivity of the contrasting cultivars. These findings are similar to that of heat-stressed wheat in which the tolerant genotypes possessed greater activity levels of all the antioxidants such as SOD, APX, CAT [25] and [26].

Under heat stress conditions, particularly at reproductive stage, the level gene expression and the upstream regulatory regions of the genes that regulate the antioxidant enzymes such as SOD, CAT and APX needs to be studied in detail to better understand the mechanism of heat tolerance in greengram. Molecular markers associated with the genes encoding antioxidant enzymes and the genes playing role in heat tolerance would be another step towards developing better performing greengram plants under elevated temperatures.

In the present study, increased day temperature above 38/26°C caused significant decrease in quantum yield of PSII in susceptible cultivar VBN-2, while it was significantly not affected by this temperature in tolerant cultivar SAMRAT, indicating relative tolerance to this level of heat stress. But in tolerant cultivar the quantum yield starting to declined above the temperature 41/28°C and showed significant reduction at 45/30°C. The investigated contrasting cultivars SAMRAT and VBN-2 were starting to differ significantly by F$_v$/F$_m$ at 41/28°C treatment. Heat stress affected the chlorophyll fluorescence only at 41/28°C. So, it could be used as a screening temperature in breeding for heat-tolerance of greengram. This is in line with the findings of [27] obtained from garden bean and [28] obtained from maize and sunflower plant.

Heat stress alter the concentration for various macro and micro nutrients. In present study heat stress significantly affected nutrient content in both the cultivars in particular temperature regimes. In this study, at 45/30°C temperature Copper (Cu) content significantly decreased in the leaves of both the cultivars SAMRAT and VBN-2. At the same temperature Manganese (Mn) content significantly increased in the shoot dry matter. Zinc (Zn) content was not affected by this heat stress in either cultivar of leaves and shoot. However, iron (Fe) content was significantly decreased in shoot of both cultivars at 45/30°C. Reduction in mineral like Fe in chick pea under low temperature but higher levels of iron and other minerals have been reported under elevated temperature which is similar to the present finding [29]. Heat stress may affect the accumulation of elements in above ground biomass differently depending on sensitivity of their uptake process to temperature and the changes may be species and element specific [30]. Micronutrients like Zn, Mn, Cu play a major role on the growth, development and activity of SOD isoforms in seedlings of narrow leaved Lupinus angustifolius [31]. Zn, Mn, Cu deficiencies are recognized as the most common and widespread micronutrient deficiency in Rice-wheat cropping system belt of peninsular India where greengram cultivation more practiced. Micronutrient deficiency changes the activities of SOD and APX in tobacco seedlings [32]. Upon heat stress treatment SAMRAT showed relatively less reduction of micronutrients like Cu, Mn and Fe content in leaves as against VBN-2. So, this nutrient variations which could have made changes in the activities of SOD, APX which could also be considered an important step in understanding mechanism of heat stress tolerance as SAMRAT showed positive response under heat stress environment.
5. CONCLUSION
Activities of antioxidant enzymes (SOD, CAT and APX) were affected under heat stress in both tolerant and susceptible cultivars. The activity and levels of antioxidant enzyme were increased significantly as the temperatures increased to 38/26°C, but decreased at 45/30°C in both contrasting cultivars. It is possible that better to heat stress of SAMRAT was related to its ability to maintain higher levels of activity of antioxidant enzymes in all the temperature regimes. Quantum yield showed significant reduction at 41/28°C in VBN-2 while at 45/30°C in SAMRAT indicating relative tolerance to this level of this heat stress. Micronutrient composition in contrasting greengram cultivars were not affected at 45/30°C temperature except Cu content in leaves and also Mn and Fe content in shoots. Upon heat stress treatment SAMRAT showed relatively less reduction of micronutrients like Cu, Mn and Fe content in leaves than VBN-2. The level of gene expression that regulate the antioxidant enzymes such as SOD, CAT and APX needs to be studied in more detail to better understand the mechanism of heat tolerance in greengram and also investigate the role of micronutrients in antioxidant enzyme activity under heat stress.

ACKNOWLEDGEMENT
This work was supported and funded by ICAR-Indian Institute of Pulses Research, Kanpur and Tamil Nadu Agricultural University, Coimbatore.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
1. Wahid A, Gelani S, Ashraf M, Foolad MR. Heat tolerance in plants: An overview. Environ Exp Bot. 2007;61:199-223.
2. Giaveno C, Ferrero J. Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, Argentina. Crop Breed Appl Biotechnol. 2003;3:89-94.
3. Vollenweider P, Gunhardt-Goerg MS. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut. 2005;137:455-465.
4. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 2010;48:909-930.
5. Singh DP, Ahlawat IPS. Greengram and blackgram improvement in India: Past, present and future prospects. Indian J Agric Sci. 2005;75:243-250.
6. Rainey KM, Griffiths PD. Differential response of common bean genotypes to high temperatures. Journal of the American Society for Horticultural Science. 2005;130:18-23.
7. Munne-Bosch S, Alegre L. The significance of β-carotene, α-tocopherol and the xanthophylls cycle in droughted Melissa officinalis plants. Aus. J. Pl. Phy. 2000;27:139-146.
8. Breusegem FV, Vranova E, Dat JF, Inze D. The role of active oxygen species in plan signal transduction. Plant Sci. 2001;161:05-14.
9. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trend Pl. Sci. 2002;7:405-410.
10. Mohammed GH, Binder WD, Gillies SL. Chlorophyll fluorescence: A review of its practical forestry applications and instrumentation. Scand. J. For. Resources. 1995;10:383-410.
11. Yamada M, Hidaka T, Fukamachi H. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Hort. 1996;67:39-48.
12. Schreiber U, Bilger W. Progress in chlorophyll fluorescence research during the past years in retrospect. Prog. Bot. 1993;54:151-173.
13. Arunkumar R. Studies on mechanism of high temperature stress tolerance in chickpea (Cicer arietinum L.) genotypes. Ph.D. Thesis, IARI, New Delhi, India; 2005.
14. Dhindsa RA, Plumb-Dhindsa P, Thorpe TA. Leaves senescence: Correlated with increased permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981;126:93-101.
15. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867-880.
16. Osowski WF, Kraus R, Hippeli S, Benz B, Volpert R, Elstner EF. Comparison of the enzymatic activities of dehydroascorbic acid reductase, glutathione reductase, catalase, peroxidase and superoxide dismutase of healthy and damaged spruce
High temperature effects on photosynthetic components in cotton (Gossypium hirsutum L.)). African Journal of Biotechnology.

Dell, Amico JM, Torrecillas A, Alarcon JJ. Photochem. Photobiol. 1995;61:32-42.

18. Bhargava BS, Raghupathi HB. Analysis of plant material for macro- and micro-nutrients. In: Methods of Analysis of Soils, Plants, Waters and Fertilizers, Ed. H.L.S. Tandon, pp. 48-82. New Delhi: Fertilizer Development and Consultation Organization.

19. Jiang Y, Huang B. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool season grasses. J. Exp. Bot. 2001;52:341-349.

20. Tsang EWT, Bowler C, Herouart D, Camp WV, Villarroel R, Genetello C, Montagu MC. Differential regulation of superoxide dismutase in plants exposed to environmental stress. The Plant Cell. 1991;3:783-789.

21. Rizhsky L, Hongjian Liang, Ron Mittler. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 2002;130(3):1143–1151.

22. Sanjeev Kumar, Prince Thakur, Neeru Kaushal, Jahid A. Malik, Gaur P, Harsh Nayyar. Effect of varying high temperatures during reproductive growth on reproductive function, oxidative stress and seed yield in chickpea genotypes differing in heat sensitivity. Archives of Agronomy and Soil Science. 2013;59(6):823-843.

23. Gur A, Demirel U, Ozden, Kahraman A, Copur O. Diurnal gradual heat stress affects antioxidant enzymes, proline accumulation and some physiological components in cotton (Gossypium hirsutum L.). African Journal of Biotechnology. 2010;9(7):1008-1015.

24. Camejo D, Rodriguez P, Angeles MM, Dell, Amico JM, Torrecillas A, Alarcon JJ. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 2005;162:281-289.

25. Sairam RK, Srivastava GC. Induction of oxidative stress and antioxidant activity by hydrogen peroxide treatment in tolerant and susceptible wheat genotypes. Biol. Plant. 2000;43:381-386.

26. Almeselmani M, Deshmukh PS, Sairam RK. High temperature stress tolerance in wheat genotypes: Role of antioxidant defense enzyme. Acta Agron Hung. 2009;57:1-14.

27. Petkova V, Denev I, Poryazov L, Cholakov D. Selection for heat-tolerance of common bean (Phaseolus vulgaris L.) cultivars by chlorophyll fluorescence parameters. Fourth Internat. Fruit/Vegetable Symposium. Yantai, China. 2002;81-82.

28. Yordanov L, Tsonev T, Gohsev V, Kruleva L, Velikova V. Interactive effect of water deficit and high temperature on photosynthesis of sunflower and maize plants: 1. Changes in parameters of chlorophyll fluorescence induction kinetics and fluorescence quenching. Photosynthetica. 1997;33:391-402.

29. Nayyar H, Kaur G, Kumar S, Upadhyaya HD. Low temperature effects during seed filling chickpea genotypes (Cicer arietinum L.): Probing mechanism affecting seed reserves and yield. Journal of Agronomy and Crop Science. 2007;193:336-344.

30. Sardans J, Penuelas J, Prieto P, Estiarte M. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean Shrubland. Plant Soil. 2008;306:261-271.

31. Yu Z, Rengel Q. Drought and salinity differently influence activities of superoxide dismutase in narrow lupines. Pl. Physiol. Commun. 1999;30:207-210.

32. Qin Yu, Lorraine Osborne, Zdenko Rengel. Micronutrient deficiency changes activities of superoxide dismutase and ascorbate peroxidase in tobacco plants. J. Plant Nutrition. 1998;21(7):1427-1437.