INTRODUCTION

High levels of homocysteine, in fasting or non-fasting state, have been reported to be more prevalent in patients with stroke as opposed to control subjects [1,2]. However, it can reflect an instead the cause, homocysteine concentrations can increase after the onset of acute stroke [3]. That’s why, to decrease the bias, we have collected the desirable data for this prospective study. However, our findings from prospective studies were found to be incompatible. Various prospective studies of numerous subjects depicted a significant relationship among homocysteine and the probability of total homocysteine and higher proportions of homocysteine −25.0 μmol/L. Homocysteine was estimated after adjustment for body mass index, smoking, alcohol intake, hypertension, and other cardiovascular risk factors. The excess risk of total and ischemic strokes did not vary significantly according to sex, age, smoking status, or hypertensive status.

Conclusions: High total homocysteine concentrations were associated with the increased risk of total stroke, more specifically ischemic stroke) Capsuloganglionic and frontoparietal infarct (8 each), among Indian men and women.

Keywords: Homocysteine, Stroke, Hemorrhage, Atherosclerosis.

METHODS

Source of data

Patients seeking treatment in the department of neurology and/or Medicine in Geetanjali Medical College and Hospital, Udaipur. From December 2017 to November 2019. This study was conducted on 102 consecutive patients of age >18 years with a history of acute ischemic stroke. Data were collected with a thorough history and clinical examination with detailed neurological evaluation along with appropriate investigations.

Inclusion criteria

Patients with a history of acute ischemic stroke with age >18 years of age either male or female, patients who presented within 48 h since the onset of symptoms according to the American association of Neurology criteria and confirmed by neuroimaging (magnetic resonance imaging and computed tomography scan) were included in this study.

Exclusion criteria

Patients with a history of diabetes mellitus, structural or valvular heart disease, cerebral infarction associated with trauma or tumor. Patients with transient ischemic attack, HIV-AIDS, Vitamin B12 deficiency, venous infarct, coagulation disorders and patients who did not given consent were excluded from this study.

Analysis of sample was run on Cobas e-311 by Enzymatic Photometry. It is a technique which is estimates the depth of thickness of a solution through which light passes. Statistical analysis of result was done by pad prism graph.
RESULTS

One hundred and two ischemic stroke incidents were identified during follow-up. Table 1 shows the characteristics of risk of total stroke incidents and of particular stroke subtypes were compared with control subjects. The average age was 52 years for total stroke, varying from 53 years to 79 years for subtypes. The systolic and diastolic blood pressure in patients who suffered a stroke was found to be higher in comparison to control group subjects. Intake of alcohol was higher in cases in comparison to control subjects for all stroke patients.

In the age group of 61 years–70 years, maximum number of patients were found. 6, 9, and 20 cases, respectively, of mild, moderate, and severe morbidity were observed.

DISCUSSION

The key highlight of our study was that the elevated concentrations of fasting blood serum total homocysteine were strongly associated with the increased prevalence of ischemic stroke attacks, especially Capsulolaganglionic and Frontoparietal infarct in patients belonging to the southern part of Rajasthan, India. Patients in the highest quartile of homocysteine were two times higher with respect to the probability of occurrence of stroke as opposed to persons having low Homocysteine levels in blood serum. These associations did not alter substantially after adjustments were made due to the known cardiovascular risk factors, such as smoking and hypertension. No significant association was found between homocysteine levels and risk of hemorrhagic stroke. However, implications of elevated homocysteine on risk of intraparenchymal and subarachnoid hemorrhages separately were found to be uncertain due to the limited number of subjects.

As per our knowledge, this is the first study with the aim of spotlighting a significant relation between total homocysteine levels and consequential risk of ischemic strokes among the population of Southern Rajasthan. The extent of the correlation among homocysteine and risk of stroke was found to be congruous with the previous studies.

Age or status of smoking did not show any significant impact on the risk of ischemic stroke. Numerous previous studies have pointed out a stronger relationship between homocysteine and atheromotorclerosis and that of occurrence of stroke against hypertensive and non-hypertensive subjects. The link between ischemic stroke, hyperhomocysteinemia with hypertension is well grounded. Due to the fact that hypertension is the dominant risk factor for stroke. Exact underlying mechanisms and effect of hyperhomocysteinemia on risk of ischemic stroke are not yet clear.

Hyperhomocysteinemia causes a rise in arterial blood pressure, thus increasing the risk of ischemic stroke. In the current study, a higher homocysteine level of 3-μmol/L was associated with 2.8-mm Hg higher systolic and 1.2–mm Hg higher diastolic blood pressure levels taking in consideration the adjustment for age (year), sex, alcohol intake, and BMI with use of antihypertensive medication. We have concluded positive associations between serum homocysteine levels and risk of ischemic strokes, however, the relation of blood pressure with the same is yet to be made clear.

Elevated total homocysteine inflicts oxidative injury upon vascular endothelial cells and impairs the production of nitric oxide, a strong vascular relaxing factor, from the endothelium. Hyperhomocysteinemia also enhances adhesion of platelets to endothelial cells, promotes growth of vascular smooth muscle cells, and is associated with higher levels of prothrombotic factors such as α-thromboglobulin, tissue plasminogen activator, and factor VIIc [11,12].

The strong association between homocysteine levels and risk of lacunar infarction observed in our study should be noted (Tables 3 and 4). This finding is concordant with previous findings from clinical studies that show homocysteine levels were higher in inpatients with subcortical vascular encephalopathy, a type of dementia with subcortical diffuse white-matter lesions or Hyperhomocysteinemia can be affected by food intake, and thereby, it can be referred to as a flexible risk factor of a stroke. Folic acid and B-vitamins, required for the remethylation of homocysteine and formation of methionine, are the essential dietary contributing factor, and plasma homocysteine levels had been shown to decrease by daily supplementation [13-15].

Several trials and clinical interventions have been conducted to assess the role of supplementation on cardiovascular risk and increase the survival ratio of patients as well as healthy subjects [13,15].

In our study serum homocysteine value was altered in 65 patients i.e. below 15 μmol/L. The mean homocysteine value was 19.21 which

Subject/Control	n	Age years	BMI kg/m²	Systolic B.P. (mmHg)	Diastolic B.P. (mmHg)	Smoking %	Alcohol intake g/d	HbA1C %	CRP mg/L	
Ischemic stroke	Case	102	52±8.3	23.7	138	82	27	15	5.2	0.86
	Control subjects	102	51±7.6	22.18	134	78	22	12	4.3	0.44
	Left capsulolaganglionic infarct	6	45±3.2	22.15	136	76	14	13	5.4	0.65
	Left cerebellar infarct	7	53±5.6	23.14	132	78	13	17	3.7	0.32
	Left frontal infarct	5	51±4.2	22.17	134	78	12	15	5.6	0.25
	Left frontoparietal infarct	6	45±6.2	21.45	134	76	22	12	4.7	0.84
	Left medullary infarct	3	62±8	22.45	132	76	12	13.7	3.8	0.45
	Left occipito-temporal infarct	3	46±6.4	21.35	136	78	26	12	3.6	0.65
	Left parietal infarct	5	51±4.3	22.04	132	76	25	14	4.5	0.65
	Left parietooccipital infarct	4	46±3.9	21.04	134	74	22	18	5.0	0.54
	Left pontine infarct	4	72±5.3	22.35	136	78	25	13	4.6	0.56
	Left thalamic infarct	4	69±2.3	21.34	138	80	12	15	5.0	0.67
	Occipital infarct	4	68±7.3	22.58	132	78	27	12	4.8	0.68
	Right capsulolaganglionic infarct	8	63±5.3	21.07	132	76	26	13.7	4.7	0.84
	Right cerebellar infarct	5	54±4.3	23.06	134	78	22	14	4.7	0.68
	Right frontal infarct	6	59±3.4	22.37	138	76	24	12	4.5	0.56
	Right fronto-parietal infarct	8	61±5.2	21.45	134	80	22	11	5	0.74
	Right medullary infarct	2	61±7.3	22.08	132	78	24	15	4.3	0.58
	Right occipito-temporal infarct	2	62±4	21.08	136	80	28	13	3.7	0.67
	Right parietal infarct	6	58±4	20.45	134	78	24	11	4.5	0.98
	Right parietooccipital infarct	4	55±8	23.12	134	80	22	18	5	0.54
	Right pontine infarct	5	52±4	22.14	132	78	28	13	4.1	0.68
	Right thalamic infarct	6	48±6	21.34	136	76	27	16	3.8	0.56

BMI: Body mass index
was higher as compared to the study of Kwon et al. who reported 11.4. There was no statistical difference found between the homocysteine level and severity of stroke, p = 0.142, and so Homocysteine value is not correlated (R = 0.169, p = 0.489) with NIHSS score and it does not vary with NIHSS score (Table 5).

Though in our study we have observed that there were no correlation in between serum homocysteine level and severity of stroke. While we have found higher level of serum homocysteine in patients of stroke with mild and moderate cases. We have found 21–30 μmol/L serum homocysteine levels in 8, 14, 17 mild, moderate, and severe cases, respectively. Similarly, there were more than 30 μmol/L serum homocysteine levels in 3, 3 moderate and severe cases of stroke. Higher values of serum homocysteine were there but differences were not statically significant (p > 0.05) in severe cases of stroke (Tables 1, 2, 5).

The result concluded in our study was in accordance with the study conducted by Wang et al. who also reported that the homocysteine values are not a predictive factor of the outcome at 3 months and 1 year after acute cerebral infarction among elderly patients [16,17].

Table 2: Case control differences in serum total homocysteine levels (μmol/L)
Subject/Control

Ischemic stroke
Case
Control subjects
Left capsuloganglionic infarct
Control
Left cerebellar infarct
Control
Left frontal infarct
Control
Left frontoparietal infarct
Control
Left medullary infarct
Control
Left occipito-temporal infarct
Control
Left parietal infarct
Control
Left parietooccipital infarct
Control
Left pontine infarct
Control
Left thalamic infarct
Control
Occipital infarct
Control
Right capsuloganglionic infarct
Control
Right cerebellar infarct
Control
Right frontal infarct
Control
Right fronto-parietal infarct
Control
Right medullary infarct
Control
Right occipito-temporal infarct
Control
Right parietal infarct
Control
Right parietooccipital infarct
Control
Right pontine infarct
Control
Right thalamic infarct
Control

Table 3: Age-wise distribution and severity of stroke
Age group

11–20
21–30
31–40
41–50
51–60
61–70
71–80
81–90

Table 4: Homocysteine level and severity of stroke
Homocysteine level

4–15
16–20
21–30
More than 30

p<0.412, not significant. Homocysteine value is not correlated with NIHSS score and it does not vary with NIHSS score.
CONCLUSION
Serum homocysteine levels were not correlated with the severity of stroke in a younger age group. Serum homocysteine level did not depict any relation with age and sex in the early age group. It is predictive risk factors for the severity of stroke only after 55 years of age.

AUTHORS CONTRIBUTIONS
All authors contributed equally for preparation of manuscript.

CONFLICT OF INTEREST
None.

FUNDING
None.

REFERENCES
1. Gorelick PB, Sacco RL, Smith DB, Alberts M, Mustone-Alexander L, Rader D, et al. Prevention of a first stroke: A review of guidelines and a multidisciplinary consensus statement from the national stroke association. JAMA 1999;281:1112-20.
2. Wolfe CD. The impact of stroke. Br Med Bull 2000;56:275-86.
3. Reeves MJ, Bushnell CD, Howard G, Gargano JW, Duncan PW, Lynch G, et al. Sex differences in stroke, epidemiology, clinical presentation, medical care and outcomes. Lancet Neurol 2008;7:915-26.
4. Appelros P, Stegmayr B, Terent A. Sex differences in stroke epidemiology: A systematic review. Stroke 2009;40:1082-90.
5. Wassertheil-Smoller S, Hendrix SL, Limacher M, Heiss G, Kooperberg C, Baird A, et al. Effect of estrogen plus progestin on stroke in postmenopausal women: The women’s health initiative: A randomized trial. JAMA 2003;289:2673-84.
6. Cox AM, McKeivitt C, Rudd AG, Wolfe CD. Socioeconomic status and stroke. Lancet Neurol 2006;5:181-8.
7. Di Napoli M, Papa F. Inflammation, hemostatic markers, and antithrombotic agents in relation to long-term risk of new cardiovascular events in first-ever ischemic stroke patients. Stroke 2002;33:1763-71.
8. Lipton SJ. Fibrinogen and cardiovascular disorders. QJM 1995;88:155-65.
9. Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Lancet 1999;354:407-13.
10. Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med 1999;338:1642-50.
11. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinants: An expert opinion. Clin Chem 2004;50:3-32.
12. Malinov MR, Bostom AG, Krauss RM. Homocysteine, diet, and cardiovascular diseases: A statement for health care professionals from the nutrition committee, American heart association. Circulation 1999;99:178-82.
13. Homocysteine Lowering Trialists’ Collaboration. Lowering blood homocysteine with folic acid based supplements: Meta-analysis of randomised trials. Homocysteine lowering trialists’ collaboration. BMJ 1998;316:894-8.
14. Ho GY, Eikelboom JW, Hankey GJ, Wong CR, Tan SL, Chan JB, et al. Methylene tetrahydrofolate reductase polymorphisms and homocysteine-lowering effect of vitamin therapy in Singaporean stroke patients. Stroke 2006;37:456-60.
15. Hankey GJ, Algra A, Chen C, Wong MC, Cheung R, Wong L, et al. Vitatops, the vitamins to prevent stroke trial: Rationale and design of a randomised trial of B-vitamin therapy in patients with recent transient ischaemic attack or stroke (ctf00097669) (isrctn74743444). Int J Stroke 2007;2:144-50.
16. Kwon HM, Lee YS, Bae HJ, Kang DW. Homocysteine as a predictor of early neurological deterioration in acute ischemic stroke. Stroke 2014;45:871-3.
17. Wang W, Guo C, Yu C, Liu S, Hou D, Wang Y, et al. No association between elevated total homocysteine levels and functional outcome in elderly patients with acute cerebral infarction. Front AgingNeurosci 2017;9:70.