Number of foetus in pregnant *Mus musculus* which was injected by anti Qa2 and given mild regular exercise: endothelial dysfunction animal model to induce preeclampsia

MS. Noor, B. Santoso, Triawanti, Widjiati

1 Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
2 Faculty of Medicine, Airlangga University, Surabaya, East Java, Indonesia
3 Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
4 Faculty of Veterinary, Airlangga University, Surabaya, East Java, Indonesia

Abstract. Preeclampsia community guideline (PRECOG) defined preeclampsia as a condition which was identified by the diastol blood pressure ≥ 90 mmHg and proteinuria in ≥ 20 weeks of pregnant. Basic mechanism of preeclampsia was endothelial dysfunction. One of preeclampsia’s impacts was intra uterine fetal death. It could be signed by less number of foetus. One of ways to prevent preeclampsia’s process was mild regular exercise. This research’s goal was analyzing the effect of mild regular exercise to number of foetus in pregnant *Mus musculus* which was injected by anti QA2 as endothelial dysfunction animal model to induce preeclampsia. The design was experimental. It used 6 Mus musculus/group. The groups were control (normal pregnant/K1), pregnant Mus musculus which was injected by anti QA2 (endithelial dysfunction model/K2), pregnant Mus musculus which was injected by anti QA2 and given mild regular exercise since early pregnant (K3), and pregnant Mus musculus which was injected by anti QA2 and given mild regular exercise since 1 week before pregnant (K4). Statistical analyze used Kruskal Wallis Test (α=0,05). It showed there was no significant different of foetus’ number among all groups. The conclusion was there was no effect of mild regular exercise to number of foetus in pregnant *Mus musculus* which was injected by anti QA2 as endothelial dysfunction animal model to induce preeclampsia.

1. Introduction

Preeclampsia community guideline (PRECOG) defined preeclampsia as a condition which was identified by diastol blood pressure ≥ 90 mmHg and proteinuria in ≥ 20 weeks of pregnant [1]. Basic mechanism of preeclampsia was endothelial dysfunction, that could give global impact [2]. Preeclampsia could give impacts to mother and foetus. One of its impact in foetus was intra uterine fetal death and neonatal death [3]. One of signs that could show impact of preeclampsia was number of foetus.

One of ways to prevent preeclampsia’s process was mild regular exercise. Mild regular exercise could increase cardiorespiration function that was suitable for hypertension like preeclampsia [4]. Mild regular exercise would increase interleukin 6 (IL6) which would induce interleukin 10 (IL10) production as anti inflammation agent [5]. Mild regular exercise also increased endogen antioxidant such as superoxide dismutase (SOD), katalase, and glutathione peroxide [6]. Inflammation and oxidative stress were preeclampsia’s mechanisms, so mild regular exercise was assumed to prevent endothelial dysfunction as preeclampsia’s process.
One of ways to make endothelial dysfunction in animal model was injecting anti QA2 to block placental QA2 expression. Placental QA2 expression was similar with placental human leukocyte antigen-G (HLAG) expression in human. Blocking of HLAG was predictor of endothelial dysfunction [7].

This research’s goal was analyzing the effect of mild regular exercise to number of foetus in pregnant Mus musculus which was injected by anti QA2 as endothelial dysfunction animal model to induce preeclampsia.

2. Methods
This research was true experimental using post test only with control group design. This research used female Mus musculus that was mated by male Mus musculus 1:1. Female Mus musculus with positive vaginal plug were used in the research. The vaginal plug was the sign those female and male Mus musculus were mated and the pregnant was called 0 day.

Mus musculus that were used must be 3 months, healthy, bodyweight 15-25 grams, well moving, no wound found in the body, and clear eye. This research used 6 pregnant Mus musculus/groups. The duration of research was 5 weeks, consisted of acclimatization, mating female and male Mus musculus, intervention, and termination.

All of female Mus musculus were injected by pregnant mare serum gonadothropine (PMSG) and human chorionic gonadotropine (HCG) to equate oestrus cycle. Female Mus musculus was injected by 5 IU PMSG intra peritoneal, after 48 hours they were injected again by HCG 5 IU intra peritoneal. After that, female Mus musculus were mated by male Mus musculus 1:1.

Tomorrow morning after mating, female and male Mus musculus were seperated. Female Mus musculus were examined if they had positive vaginal plug or not. Pregnant Mus musculus were who had positive vaginal plug, and randomize into 4 groups (6 pregnant Mus musculus/group).

The location was in Laboratory of Embriology, Faculty of Veterinery, Airlangga University. This research consisted of 4 groups: K1 (control, normal pregnant), K2 (pregnant Mus musculus which was injected by anti QA2 as endothelial dysfunction model), K3 (pregnant Mus musculus which was injected by anti QA2 and given mild regular exercise since early pregnant), and K4 (pregnant Mus musculus which was injected by anti QA2 and given mild regular exercise since 1 week before pregnant).

Mild regular exercise used treadmill with no angle. Treadmill used speed on 7 cm/second for 1 minute, 11 cm/second for 2 minutes, and 14 cm/second for 15 minutes. This exercise was done since early pregnant for K3, and 1 week before pregnant for K4. The exercise was done once in 2 days.

The termination was done in the 19th day of pregnant. The abdomen was dissected to open the uterus, and the number of foetus was calculated.

3. Results and Discussion
Data of this research was taken by calculating the number of foetus in the uterus of Mus musculus after termination. Mean of the number showed in table 1. Data was in normal distribution but not homogen, so it was analyzed by Kruskal Wallis Test.

GROUP	MEAN	SD	p VALUE	α VALUE
K1	10	1,095	p=0,111	0,05
K2	8,5	1,76		
K3	7,8	8,18	Wallis Test	
K4	10,7	2,33		

p value > 0,05 means there was no significant differences (K1: control/normal pregnant; K2: pregnant Mus musculus which was injected by anti QA2 as endothelial dysfunction model; K3: pregnant Mus musculus which was injected by anti QA2 and given mild regular exercise since early pregnant; and K4: pregnant Mus musculus which was injected by anti QA2 and given mild regular exercise since 1 week before pregnant).

Table 1 showed that number of foetus in normal pregnant (K1) was more than in endothelial dysfunction model (K2). That fact could be caused by placental abnormality. Preeclampsia’s placenta
had infarct and sclerosis of blood vessels. So, it caused the failure of endovascular invasion and inadequate of spiralis artery’s remodelling (Figure 1). This condition made oxygen and nutrition to foetus decreased [8]. Decreasing of oxygen and nutrition could make intrauterine fetal death or resorption of foetus in Mus musculus, so the number of foetus became less.

![Figure 1. Comparison of placentation in preeclampsia and normal pregnant](image)

Table 1 also showed that number of foetus in K3 was less than K2. K3 was given mild regular exercise since early pregnant, and K2 was endothelial dysfunction animal model. It showed that mild regular exercise since early pregnant was not suitable enough for reducing the impact of preeclampsia to foetus. It could be caused by exercise in this case could not produce enough IL10 and endogenous antioxidant as the protection of body to preeclampsia process. But if the exercise was done since 1 week before pregnant, it could increase the number of foetus. Exercise 1 week before pregnant could as early initiation of body process. If it was continued until pregnant, it was a chronic effect that made positive effect to the body. So, the regular exercise 1 week before pregnant could produce enough IL10 and endogenous antioxidant to prevent the impact of preeclampsia’s process especially to foetus. Process of anti-inflammation and antioxidant from exercise like Figure 2.
Figure 2. Mechanism of exercise to prevent preeclampsia [9].

Enough IL10 and endogen antioxidant could activate endothelial cell to make its function became better [10]. So, the endothelial dysfunction did not happen, and endovascular invasion became adequate to distribute oxygen and nutrition to foetus. It prevented intra uterine fetal death.

Table 1 showed that Kruskal Wallis test had no significant differences, so there was no different number of foetus in all groups. It showed that the production of IL10 and endogen antioxidant was not enough significantly to stabilize the pregnant Mus musculus with endothelial dysfuntion model. It was similar to Tomic et al. (2013) that showed there was no significant difference in intra uterine growth restriction and ather perinatal outcomes. In this research, the causes were decreasing of glucose level, frequency, duration and intensity of the exercise [11].

Another reason of no significant difference in this research was the type of exercise that was given to the groups. The exercise in this research was treadmill with no angle. Research of Kurniawati (2015) showed positive effect of exercise in pregnant women significantly, using aquarobic. Aquarobic was mild exercise, it could increase oxygen consumption and make the muscle strong. The result of her research was pregnant women in the third trimester had steady blood pressure and heart rate after given aquarobic for 1 month, twice in a week, and the duration of aquarobic in each exercise was 1 hour [12].

But we could see the different in descriptive data. So, the mild regular exercise actually had given positive effect but it was need to analyze more about the type of exercise to optimalize the effect.

4. Conclusion
The conclusion was there was no significannt effect of mild regular exercise to number of foetus in pregnant Mus musculus which was injected by anti QA2 as endothelial dysfunction animal model to induce preeclampsia.

5. References
[1] Milne F., Redman C., Walker J., Baker P., Bradley J., Cooper C., de Swiet M., Fletcher G., Jokinen M., Murphy D., Nelson-Piercy C., Osgood V., Robson S., Shennan A., Tuffnell A., Twaddle S., dan Waugh J. 2005 The pre-eclampsia community guidline (PRECOG): how to screen for and detect onset of preeclampsia in the community BMJ 330 576-580.
[2] Rajendran P., Rengarajan T., Thangavel J., Nishigaki Y., Sakthiseekaran D., Sethi G., dan Nishigaki I. 2013 The vascular endothellium and human diseases International Journal of Biological Sciences 9 (10) 1057-1069.
[3] Matthiesen L., Berg G., Ernerudh J., Ekerfelt C., Jonsson Y., dan Sharma S. 2005 Immunology of Preeclampsia Chem Immunol Allergy 89 49-61.
[4] Moura, SBMH., Lopes LM., Murthi P., dan Costa FDS. 2012 Review article: prevention of preeclampsia Journal of Pregnancy 1-9.
[5] Gleeson M. 2007 Immune function in sport and exercise Journal of Applied Physiology 103 693-699.
[6] Berzosa C., Cebrian I., Fuentes-Broto L., Gomez-Trullen E., Piedrafita E., Martinez-Ballarin E., Lopez-Pingarron I., Reiter RJ., dan Garcia JJ. 2011 Acute exercise increases plasma total antioxidant status and antioxidant enzyme activities in untrained men Journal of Biomedicine and Biotechnology 2011 1-7.

[7] Sulistyowati S., Abadi, A., dan Widjiati 2010 Low class Ib (HLAG/QA2) MHC protein expression against HSP70 and VCAM1 profile on preeclampsia; An observation on experimental animal Mus musculus with endothelial dysfunction model Indones JObstet Gynecol 34 (3) 103-107.

[8] Hladunewich M., Karumanchi S.A., dan Lafayette R. 2007 Pathophysiology of the clinical manifestations of preeclampsia Clin J Am Soc Nephrol 2 543-549.

[9] Genest, D.S., Falcao S., Gutkowska J., dan Lavoie JL. 2012 Impact of exercise training on preeclampsia, potential preventive mechanism Hypertension 60 1104-1109.

[10] Raijmakers MTM., Dechend R., dan Poston L. 2004 Oxidative stress and preeclampsia: rationale for antioxidant clinical trials Hypertension 44 374-380.

[11] Tomic V., Sporis G., Tomic J., Milanovic Z., Zigmundovac-Klaid, D., and Pantelic S. 2013 The effect of maternal exercise during pregnancy on abnormal fetal growth Croat Med J. 54 362-368.

[12] Kurniawati R. 2015 Pengaruh latihan aquarobik terhadap kesehatan ibu hamil di Segan Kecamatan Gringsing Kabupaten Batang Tahun 2014 Skripsi Jurusan Ilmu Keolahragaan Fakultas Ilmu Keolahragaan Universitas Negeri Semarang.

Acknowledgments
Authors wishing to acknowledge Laboratory of Embriology, Faculty of Veterinary, Airlangga University, as the location of this research.