Non-central Limit Theorem Statistical Analysis for the “Long-tailed” Internet Society

KAZUTAKA KURIHARA and YOHEI TUTIYA

This article presents a statistical analysis method, which is believed to be widely applicable to today’s internet society. The proposed method facilitates statistical analyses with small sample sets from given populations, which renders the central limit theorem inapplicable. We define “visitor/compensation” type web service model and “rarity” as a metric of value or abnormity for each content of the web services. A large-scale case study on livedoor clip, a social bookmark service, demonstrates the effectiveness and versatility of the proposed method.

1. はじめに

近年インターネットの普及により，大企業や大組織が市民に対し画一的，一方通行的に情報や物資を供給してきた旧来の社会構造に変化が生じている。オンライン書店であるamazon.comの売り上げは，その約3分の1が，これまで一般の書店で販売されてきたように，「あまり売れない本」で構成されていることが報告され，世間を驚かせた15）。これとは通常「よく売れる本を店頭に並べることで売り上げを増大させる」という常識を覆った事例である。また，YouTube19）やYahoo!オーキッション18）などに，一般市民が主導権を持って提供した情報や物資の総体としてサービスが成立している事例も枚挙のいとまがない。これらを従来そのような事業を担ってきた流通・マスメディア業界とはまったく異なる仕組みにより運営されており，コストなどの既成概念に象一化されず多様性豊かなコンテンツを育む土壌となっている。これらの潮流は，一般市民による情報発信への参画や小規模で多様なコンテンツの総体が価値を持てきた様子をとらえて「Web2.0」や「ロングテール」といった言葉で表現され，時代を象徴する言葉となっている15）。

このような時代背景にあって，我々が社会分析，経営分析などに用いている統計手法，特に母集団から得られる標本を分析する手法は依然として限定されている。従来の一般的な統計手法は，（1）一部の特権的な分析者が（2）膨大なデータに対して（3）平均的・全体的な振舞いを推測するために多く用いられてきた。マスメディアが行う世論調査がその代表例である。これは独立の情報源をもって相関を生かし（つとえば千人規模の市民に無作為に電話をかけ），アンケート結果から平均的な日本人の思考を推測するものである。また，経営学における「景気監」との推定もこの範囲であり，たくさんの来客数とそれに対する総売り上げから，平均的な顧客の振る舞いを推測するものである。これらは冒頭に述べたような大规模画一かつ一方通行的な社会構造において重要な役割を果たしてきた。

しかしロングテールの時代において，これら（1），（2），（3）の仮定が適用できない事例が多く見られる。たとえば，オンライン書店の「あまり売れない本」がいま3冊売れたとき，それはどのくらいの珍事件であり，市場価値を持つのか，という問題を考えてみる。このような分析興味は，一般市民による情報発信への参画が強い意味を持つ現代において重要なものであるが，従来は（1）の観点からそもそも「売れない本」として切り捨てられがちであった。また，このような分析においては（2）および（3）に反して，サンプル数が少ないため平均的な振舞いを想定できない。なぜならば，従来の統計手法は基本的にサンプル数が多いという条件を仮定する中心極限定理とそれにともない正規分布標本論に支えられて
成立しているからである。

一方で、インターネットの普及は統計分析に変革をもたらした面もある。従来はそもそも分析対象としている事象の母集団分布を従来が得ることが難しかったが、十分な数のサンプルを得て推測統計学を用いた分析をすることが一般的であった。しかし近年においては、情報技術の恩恵により母集団分布が比較的容易に得られ、またそれを公開していく機運が高まっていている。たとえば、ニコニコ動画においては動画の閲覧数、動画に関連する商品の購入者数などが公開されており、また liveboard は自社のソーシャルブックマークサービスのほぼすべてのデータセットを公開している[11]。これについては、あるサービスという経済圏における活動のすべてが含まれているため、母集団分布と呼んで差し支えないだろう。

我々は、このような時代背景にふさわしい統計分析手法を研究している。本論文ではその第 1 段階として、ロングテール的（Web 2.0 的）なウェブサービスに広く見られるコンテンツやユーザの挙動をモデル化し、これまであまり注目されてこなかった統計手法による分析を適用する。分析事例を示すことで、手法の汎用性、有効性を示す。

我々が用いる統計分析手法は、母集団が既知である場合の標本化および標本平均の分布を取り扱うものである。従来、母集団分布が未知である場合、標本和および標本平均の分布が漸近の正規分布であることを保証する中心極限定理が強力なツールとして用いられてきた。一方で母集団分布が既知である場合は、小標本・大標本を問わず母集団分布のたたみ合わせを計算することにより標本分布をより直接的に、厳密に計算可能である。たたみ合わせは計算量の多い演算であるが、近年発展の著しい計算機の計算能力を活用することで実用的な性能を達成可能である。

本論文で示すウェブサービス分析手法を転用することにより、類似のウェブサービスにおいて集めたコンテンツ発信者およびサービス提供者双方に利益がもたらされる可能性がある。個々のコンテンツ発信者は自分の発信するコンテンツの価値を定量化的に見積もることができるようになり、よりコンテンツの価値を高める投資をすべきかどうかの判断を行うことが可能となる。一方サービス提供者は「今それほど有名ではないが、今後注目するコンテンツ」という新しい観点でのデータマイニングや情報推薦、もしくは異常事態の自動検知などが可能となり、サービス全体の価値の向上に貢献できる。

本論文では、まず間連研究をあげ、次に我々が分析対象とするウェブサービスのモデルの定義と分析手法の定式化を行い、実際の分析事例を示すことでその一般性と有効性を議論する。

2. 関連研究

一般に統計分析の理論において、既知の母集団およびそこから得られた標本の特性を調べる分野を記述統計学と呼び、未知の母集団を標本から推測する分野を推測統計学と呼ぶ。本研究は Web 上で公開されているデータセットなど、既知の母集団から得られた標本が作る統計量の変動、特に標本平均の変動を利用した分析手法を提案するため記述統計学に分類される。

記述統計学では個々の標本が従う母集団分布が所与である。そして各種統計量は標本の変数変換であるから、その確率分布は原理的には初等的な確率論で計算できる。しかし標本数が大きくなるとこの計算量の観点から実用上実行不能となる。そのような場合には標本数が無限大のときに従う漸近分布を求めておいて、それで近似するということが行われる。特に重要な例は標本平均および標本標準の分布に対する、中心極限定理による正規近似である。

1 章の (1), (2), (3) の性質を持つような対象においては大標本から求めた統計量によるマクロな分析が中心となるため、このような近似は非常に有効に機能した。そのため 20 世紀以降多くの統計量の漸近分布が求められてきた。数学的な興味がそれを後押ししたこともあろうだろう。

しかしながら、本研究で扱うような小規模標本に対しては、統計量の確率分布を用いた分析手法は統計的にはあまり探求されてこなかった。既知の母集団から得られた小標本、各現場ごとにノンパラメトリックテストなどの推計統計の理論を、アドホックに応用しながら分析されてきた。1 章でも述べたことであるがロングテールに代表されるような小規模標本の記述統計学が広く横断的な普遍性を持って重要であると認識されるようになったのはごく最近のことであるから、これは当然のことといえる。

なおジェンタムのロングテールに代表されるパレット型の母集団分布が形成される原因を数理モデルを用いて説明する研究は 1980 年代から始まっている。本研究の問題意識はこのような数理統計学とはまた違ったところにあるということには注意をしていただきたい。

次に、現代の情報化社会における統計データおよび統計手法の一般市民への開放について、関連する試みをあげる。Web サイトの訪問者数や訪問履歴がそのサイトの価値を測るうえで重要な指標と見なされるようになり、自分の運営するサイトにおけるサイト閲覧者の行動を分析する手法が発達してきている。Google Analytics は代表的なものであり、これは任意のサイトについて、どのような統計の取得と分析を無料で代行するサービスで
ロングテール時代のための中心極度定理によらない統計分析手法

ある。また，総務省統計局のウェブサイトを通じて集約される情報は，資料表のグラフ作成や分析のためのビズアル化ツールであるvizio 19)や，Public Data Sets on Amazon Web Services 13)のようないくるウェブ2.0的なサービスにおける知識が提供されている。このような動きから，統計を行う主体が少数の管理的立場の人間から一般市民人と広がってきているともとに，そのような分析を行ううえで必要なデータも豊富になっているといえる。

次に，本論文で提案する統計手法が対象としているように，いわゆるweb2.0的なサービスについて，一般ユーザのサービスにおいて問題を研究分類として代表的なものをあげる。まずは，いわゆるネットショップでのサービスである。次いで21)のように個別に管理された小さなネット商店を束ねる構造のものも見受けられるが，書籍のamazon.com 14)のようにサイドコンサートが一括して商売を管理している場合もある。これらにおいては基本的には利用者がセールを訪問し，金銭を支払い商品を購入しているが，購入者による商品の使用感などが商品ごとに投稿・掲載されていることもあり（「口コミ」と呼ばれることがある），新規訪問者の購入活動に影響を与えていると考えられる。

一方，商品・コンテンツを企業だけでなく，一般市民から募集し公開することで作成されているサービスも多い。私の本論文の例の一つであるYahoo!検索エンジン 18)などのネットオーガン化が見られると，サイト訪問者が無料でコンテンツを視聴できる例も多く，動画共有サービスであるYouTube 19)やニコニコ動画 20)など，写真共有サイト flickr 21)のようないくるサービスが増加している。これらにおいてもネットショップ化の例のように，コンテンツに関する閲覧者の感想・コメント・レーティングなどが許されている場合が多く，総戦略回数とてもそのような閲覧者の反応の程度がコンテンツの価値を決める重要な要素となっている。

また，このようなサービスにおいてはタグが呼ばれる文字列をコンテンツに付与することも可能である。タグにより内容を同じように要約されたウェブ情報の検索に役立つことが見られ，コンテンツがタグ検索により見つけられる機会を増加させる作用がある。またタグを用いてのコンテンツの作成において，タグはユーザーが必要なタグを掲示することで検索に使用するサービスとして，livestream クリップ 22)などのソーシャルブックマークが現出される。

タグのように，一般ユーザが有り財力も効用を用いて計算機システムの計画において実現が困難な問題を解決するアプローチは「集合知」などといわれることがあるが，集合知をうまく活用するためには，一般ユーザが有り財力も効用を有する環境を構築する必要がある。たとえば，一般的にすることが可能なタグの実装では，コンテンツ提供者もしくは閲覧者の感覚的に

タグをつける作業を想定することが通常である。しかし一般にタグをつけるという作業は労力としてもたんなるタグを集めるために特別な工夫を行った事例もある。Google Image Labeler 23)は，画像データにタグを付与する作業にコンテンツの要素を含むものである。ユーザーはタグをしているにすぎないが，実は背後でそれがGoogleの画像検索の性能向上に寄与している。一方，音声・映像などの配信手段であるPodcastのコンテンツを収集，音声認識，テキストによる検索を可能にしたPodcastle 24)では，音声認識の読み替えを正訳する作業を一般ユーザに解放し，音声認識システムの精度の向上を図っている。了正訳においてユーザーは，限定的な検索を可能とすることの感覚で臨んでおり，Google Image Labelerと同様エンタテイメント性が作業への関与を促進していると考えられる。また，自分の好きな有名人の音声が関連して認識されていることを放置することができないという心理も作業への関与を促進していると考えられる。

エンタテイメント性以外の要素を持ち込んだ事例としては，人気検索はてな25)のように，金銭もしくは金銭とほぼ同等の価値を持つサービス内価格により，情報提供が売買されることで一般ユーザの貢献が促進される例もある。

我々はこのような一般ユーザが様々な形で参画することで作成している近年のインターネット上におけるサービスについて，個々のコンテンツやユーザの動静，あるいはその全体であるコミュニティや集知の性質などの分析に適用可能な統計手法を提案する。ソーシャルリソースを対象としてコミュニティの構成やタグ付け行動を分析したり，モデル化した先行研究事例として文献 2), 4), 5), 9), 14)などがあげられるが，そのような研究に対し我々は記述統計学的な新しい分析手法を追究提唱することが可能である。また，本論文で扱った分析事例では従来とは別の切り口からコンテンツを価値づける指標を定義するが，そのような先行研究として，入江ら26)によるもの，大石ら27)によるものなどがあげられる。

入江ら26)の研究は，動画共有サイトの動画のランキング方法として「編集者された程度」という観点を加えたものである。また大石ら28)の研究は，ソーシャルブックマークのタグを「新規性」という観点で価値づけ，サイトの重要度を算出するものである。我々の提案手法は動画内容やタグの文字列内容といった個々のサービス持続の情報に依存せず，幅広いこれらのサービスに共通するデータ構造のみから結果を出す汎用性を備えている。そのため，そのような既存手法と競合せず，むしろ併用することによる相乗效果が期待される。

3. 「来往・対価支払い」型ウェブサービスとコンテンツの希少度

本章では，我々が分析対象とするウェブサービスについてモデル化を行い，コンテンツの
価値（希少さもしくは異常度）を表す希少度という尺度を定義する。

3.1 「来訪・対価支払い」モデル

今日のインターネット上には、商品や観賞用コンテンツなどが膨大に集積され公開されているサービスが多数存在する。その1例として、ソーシャルブックマークサービスがあげられる。これは、通常各人がブラウザのブックマークとして記録しているサイトを公開することにより価値あるサイトをみんなで発掘、共有しようという発想のサービスである。ここでは重要なのがタグの概念である。先述のようにユーザがサイトをブックマークとして登録する際、そのサイトを象徴する任意の文字列をキーワードとして任意登録したものである。タグがあることにより、タグによる検索や、あるサイトに付与されているタグから連想される関連サイトの推薦などが行われるようになる。タグが付与されるのはサービス運営者側にとってみとられると共にサービス全体の質の向上につながり、また各サイトの管理者にとってみてもサイトの注目度が高まるため双方に利益がある。

ここで、この構想はインターネット上の様々なサービスで類似点が多いため注目する。タグ機能はソーシャルブックマークサービスだけでなく、写真共有サイト Flickrやニュースサイトなども存在する。また、料理レシピ共有サイトであるクックパッドの「レシピ」のように、あるコンテンツに対する返信コメントの数でそのコンテンツの質が評価される場合、コメント数やタイムスタンプ数はタグ数と類似の価値を持つ。より直接的には、無数のあるインターネットショッピングサイトにおける各来客者（ページ閲覧者）に対する商品購入額が、そのコンテンツの価値を決める有効な指標であることは明らかである。

これらを一般化すると、これらのサービスにおいては、ユーザが観賛するコンテンツを訪問・閲覧し、そのコンテンツに反応し、何らかの対価を支払うという行為が基本単位として抽出できる。対価は商品の購入金額にあたったり、そのコンテンツの価値（質・価格・ブランド等）を示すためのテキスト（コメントやタグ）であり、そのコンテンツの価値（情報、話題性等）を、訪問者により支払われた対価の総額で判断することは自然な行為であるといえよう。

不確定多数のユーザがこの基本単位を繰り返すことで成立するウェブサービスを、「来訪・対価支払い」型ウェブサービスと定義する。このモデルが適用できるサービスにおいては、インターネット上にサーバを配置しえての一元的に運用しているのであれば、サーバ上に蓄積されている履歴から（コンテンツID, 対価量）を一組とするデータを、不確定多数のユーザの来訪の数だけ取得可能である。よって、このようなデータ構造を持つサービスは「来訪・対価支払い」型と定義しても同等である。なお、対価量にはゼロも許される。

このデータ構造から、以下の代表的な2つの分布が得られる。1つは、「来訪」の分布である。これは、それぞれのコンテンツがどれほどどのユーザの来訪を受けるかを表した分布である。「ロングテール」なウェブサービスについては、ごく一部の有名なコンテンツが多くのユーザの来訪を受け、それ以外の大部分を占める無名なコンテンツはわずかな来訪数しか得られないため、この分布はジプの列に従う右端の狭い分布（long-tailed）分布となる。

もう1つは、「対価支払い」の分布である。これはあるコンテンツを訪れたユーザが支払う対価の量を表した確率分布である。対価の数値や単位は対象となるサービスによって異なる。ショッピングサイトであれば円が単位となり、タグやコメントなどのテキストが対価となる場合にはその単位、文字数などが単位となることが多い。分布の形状も多様であり、特にユーザが「まず対価を支払うかどうかを判断し、その後に支払額を決定する」というような場合は、「対価を支払う支払いの2値をとる確率変数」と、「対価を支払う場合の支払額」を表す確率変数をかけ合わせた値を従う分布となる。

3.2 希 少 度

3.2.1 定義

「来訪・対価支払い」型のサービスにおいて、自明な分析の1つは経営学におけるごく初歩的な理論により、各コンテンツについて（客単価 = （来訪者数）×（来訪者の平均消費益））を算出し比較することである。来訪者数が一定の時、客単価が高い店舗や商品は優良であると判断され、それに基づき販売戦略が立てられるであろう。しかし、このような戦略が有用なのはそもそも来訪者数が十分も多い場合、すなわち中心極限定理や大数の法則を成立する場合である点に注意が必要である。分布の形状に見られるように、ロングテールなインターネット上に商品（コンテンツ）は基本的に大部分の商品が関係しているのであり、新たに訪れた客が客単価にかかる金額を支払うことが決めることが多い。

そこで我々は、すべてのコンテンツを計算可能かつ無限に比較可能な新たな価値尺度として「希少度」（H）を導入する。これにより、各ユーザの行動が独立試行であり、それぞれの来訪時の対価支払い量が確率分布gに従う確率変数であるとしたとき、「あるコンテンツが得た対価支払い量以上の対価支払いを得る確率」を定義される。

そこであるコンテンツがn人の来訪を受け、総対価支払い量を得た場合の希少度pn=は、以下の式で計算する。

(1) 確率分布g"n"を求める。ここで、記法h"n"は確率分布hをi－1回たたたかんだものと定義する。g"n"はn回の訪問があった場合に、支払われる対価量の合計Fの確率
分布」を表す。
(2) この分布において統対価支払い量がt以上となる確率$p_t = P_0(T \geq t)$を求める。
これがこのコンテンツの希少度となる。
p_tは小さければ小さいほど、そのような数の対価が得られるのは稀である、ということができる。
なお、nが大きい値の場合、希少度は中心極限定理を用いても近似計算可能である。分布gの期待値をμ、分散をσ^2とするとき、Tは正規分布$N(\mu, n\sigma^2)$に近似的に従う。この分布における統合価支払い量がt以上となる確率$p_t = P_0(T \geq t)$は、希少度の近似値として活用できる。
このように希少度は単品種栄分における平均確率であり、その概念自体は新しくない。付録A.1において、たとえときと正規近似による希少度の計算を行う分析補助ツールtailsatについて具体的なアルゴリズムとともに示す。本論文で我々が主張するのは、母集団既知という仮定が成立しやすい今日の「来訪・対価支払い」型ウェブサービスにおいて、希少度がコンテンツ分析に有効な指標である可能性があるという点である。

3.2.2 解釈
希少度の解釈は分析対象のサービスによって異なる。ショッピングサイトの購入金額などを対価として考えている場合は希少度はいわゆる「希少価値」として肯定的に取扱うことができるが、観察コンテンツに対するコメントテキストの量を対価として考えている場合などには、悪意や故意により有害なテキストを大量に登録する行為も想定される。その際は希少度は「通常起こりえない異常事態」と指標となる。これらの区別を行うにはコンテンツや対価の実際の内容や呼称が必要であり、本論文のスコープ外であるが、自動化には自然言語処理、およびコンテンツ自動理解技術との併用が効果的であると考えられる。
具体的には、テキストを対価とする場合は個々のテキストが特定の「プラットクリスマス」に含まれないかどうか、もしくはより高度にはパズルメにルートと同様の処理で悪意や故意判断する手法が有望である。さらに、文献(22、23)のようにコンテンツそのものを分析として何らかの「価値」あるいは「悪意・故意の度合い」を計算する指標と希少度を合一、あるいは適切な重み付けにより運用することで、より確実な価値判断の自動化が可能となるだろう。

3.2.3 ノンパラメトリック手法との関係
離散値をとる小標本の希少さを確率を用いて評価する場合、ノンパラメトリックな分析法の1つであるExact Test（多検定）を応用することも考えられる。Exact Testを応用する場合、本質的には同時確率関数$L = \prod_{j=1}^{m} p_j$を用いてP値（「上側」確率）を計算し、希少さを判定することになる。ただしp_jはユーザが1つコンテツに対してj単位の対価を支払う確率であり、k_jはj単位の対価を支払ったユーザ数である。また、mは対価の最大値である。ここで問題となるのは、標本(k_1, k_2, \ldots, k_m)はm次元の空間に値をとっているので、どの領域を標本の「上側」と見なすのかは分析者がアドホックに設定しなければならないことである。この関値の設定に恣意性があるという問題は、Exact Testの運用においては特につきものである。今回、「来訪・対価支払い」型ウェブサービスにおいて希少さを判定したいのは統合価値$\sum_{j=1}^{m} k_j$である。したがって、m次元空間の中で、統合価値が標本のものよりも大きい領域でのLの和をP値と定義するのが自然である。このような場合、P値は本論文で定義した希少度と完全に一致する。換言すれば、自然な用法を守る限り希少度はExact Testの考え方を含んでいる。
またP値を用いない場合でも、同時確率Lや、その変数である$L' = \prod_{j=1}^{m} (p_j + \cdots + p_j)^{k_j}$など尤度に相当するものを直接希少度を表す指標として利用することも考えられるだろう。しかしこのような指標には実用上の問題点が2つある。1つはその値自体に自然な実用上的解釈がないことである。尤度が0.05に達することのような意味があるのかは当然には解釈できない。また3つ目の問題は実際者数についての標準化ができないこともある。3人の来訪者のうちコンテツに対する対価が27単位支払われているという事実と4人の来訪者を持つコンテツに対する対価が27単位支払われているという事実の希少さの違いが通常の尤度の比較からは明らかにならない。しかし、我々の希少度の定義では両者は比較可能である。

4. 分析例
本章では「来訪・対価支払い」型ウェブサービスとしてソーシャルブックマークサービスであるlivedoor クリップに注目し、希少度に基づいた分析を行い、その有効性を議論する。具体的には以下の項目を検証する。
(1) livedoor クリップが確かにログテーブルから分布fを持っている。
(2) 希少度は中心極限定理を用いずに、たとえときとによる計算すべきである。
(3) 離散値と離散値を受ける希少度を過剰な効用可能である。
4.1 livedoor クリップ
livedoor クリップは、ソーシャルブックマークサービスである。livedoor クリップ2008年12月版データセット11は、1,572,742件のブックマークについて（ユーザID、対象url、
クリップした時刻、タグ）を網羅したものである。ブックマーク登録を行う際、タグは10個以下の任意の数で登録できる。タグを登録することは必須ではないので、ゼロであることもある。このデータセットにおいて、データセット収録3か月前から存在し、3人以上のユーザに登録されているブックマークのみが収録されている。本分析ではブックマーク登録者を「来訪者」、登録タグ数を「対価」と考えて分析を行う。具体的には、希少度として「ブックマーク登録者数のわりに登録タグ数が多い（少ない）サイトはどれか」を探す分析である。なお、より発展的にはサイト閲覧者のうちどのくらいの割合でブックマーク登録がされたのか（これも一種の対価支払いを見なせる）が分かればさらなる詳細な議論ができるが、これは閲覧者数がデータセットに収録されていないため割愛する。

4.2 来訪者と対価の分布

図1を参照されたい。これは個々のサイトにブックマークを付ける登録者数の頻度分布のうち、主たるものは（登録者数23人以下）を示したものであり、「来訪者数の頻度分布」に相当する。2人以下のデータについてはそもそもデータセットに収録されていないためここでは扱わない。分布の期待値は7.218、標準偏差は10.59である。ここから、確率分布はlong-tailed（福の長い）分布であることが分かる。多くのサイトに対してブックマーク登録をしてくるユーザ数は通常それほど多くなく、大数の法則や中心極限定理を適用するにはほど遠いことが明らかである。

次に図2を、ブックマークごとにどのくらいの数のタグが登録されているのかを表す頻度分布を示す。これは、それぞれのブックマーク登録が独立試行であると仮定したとき、「来訪者1人あたりの対価支払い額の確率分布」に相当する。左右非対称であり、タグ数1を超えるブックマークを2.764個存在したが、この理由は不明である。10以上のタグを受付れたサイトがあったが、そのような非公開手法が存在したのではないかと推測される。

ピークに滅衰していく形状をしている。また、タグ数10のカテゴリーが特に多いが、これはlivedoorクリップが提供するタグの最大表示数が10であり、ユーザの間でタグを10個つける文化が発達しているからであると考えられる。

4.3 希少度の計算

tailstat（付録A.1参照）を用いて、図1の分布に現れた3人から960人までのブックマーク登録者数n（n=3,4,...,960）に対応して、図2の分布でgをn−1回たたみこんだ確率分布g**を求める。これはn回ブックマークが登録された場合に、付与されるタグの数Tの確率分布を表す。図3および図4にそれぞれg**0およびg**200のヒストグラムを示す。
4.4 中心極限定理に基づく検証

ただし、ある分布が右に裾が広く、一方 g^*_{200} ではほぼ正規分布となっていることが確認できる。次にデータセット中のあるサイトに着目し、ブックマーク登録者数 n と付与された価タグ数 t を観察する。ブックマーク登録者数 n に対応する確率分布 g^*_{200} を呼び出し、価タグ数 t 以上となる確率 $p_t = P_{g^*_{200}}(T \geq t)$ を求める。これがこのサイトの希少度である。また、比較のために同じ条件で図 2 の分布を用いて中心極限定理が成立すると仮定した場合の正規分布 $N(n\mu, n\sigma^2)$ の確率 $p_t = P_{\text{norm}}(T \geq t)$ も求めしておく。これは希少度の近似値となる。以上、p_t および p_{t} を求める作業を、データセット中のすべてのサイトに対して行う。p_t はきわめて小さいほど、そのような数のタグが得られるのは稀である、すなわち「希少価値がある」あるいは「故意や悪意による異常事態である」ということができる。

4.5 希少度と客単価の比較

希少度 p_t と客単価（総タグ数 T でブックマーク登録者数 n ）の関係を分析する。これらは両方とも「ブックマーク登録者数の多ければ多い（少ない）サイト」の指標として適用可能であると考えられる。図 6 は横軸に希少度 p_t をとり、縦軸に客単価をとったものである。客単価の相関が読み取れるが、希少度 p_t がゼロに近い場合、および1に近い場合には、客単価には大きなばらつきが現れることが読み取れる。これは、もしも客単価が上位（もしくは下位）のサイトを検索した場合、より希少度の高い（もしくは低い）サイトを見落としてしまう可能性があることを示している。

4.6 それを定量的に示したものである。図 6 から $p_t < 0.1$ のものだけを抽出し、これを「希少度の高いサイトの全体」と定義する。いま、正数パラメータ θ を 0 から少しそつ
大きくしていった際に、客単価 > a を条件としてどの程度希少度の高いサイトを検索できるかを、横軸に a、縦軸に再現率 (Recall) および精度 (Precision) をとって示したもののが図 7 である。たとえば a = 3 の場合に再現率と精度はいずれも 8 割程度となり、希少度の高いサイト全体の 8 割程度を網羅することができる。同時に希少度の高いサイトも 2 割強程度含んでもよい。これは、客単価という価値基準によるサイトの希少度を判断する基準となることを示している。

また、希少度 p_i は確率として得られているため、客単価よりも豊富な情報が得られ、客単価、70％、上位何％、といったランク付けルールでの選別が行われることが多い。これは、何点以上が合格ラインのような具体的な意味を持つ閾値を決定することができることに由来すると考えられる。一方で希少度 p_i はであるような事象が起こりうる確率というような意味を持つため、標準正規体の選別に加えて「1%以下の確率で得られない希少なサイト」というような具体的な観点での選別が可能である。

以上の結果から、希少度 p_i により、客単価は抽出できないような観点からサイトの発掘を行うことが示された。

4.6 考察

本論文では livedoor クリップを例に考察を行った。しかし希少度による分析は、他の「来訪・対価払い」型ウェブサービスにも広く適用できる一般性を備えている。本節では同様の希少度計算によるコンテンツ分析を別の「来訪・対価払い」型ウェブサービスに適用する場合の注意事項について考察する。

今回我々は「来訪・対価払い」モデルの適用できる例として livedoor クリップのタグを例に考察を行ったが、これで新規タグの発見を目的とした考察を行った。

登録に着目したが、この事例には以下の特徴がある。

1. ある来訪者の対価支払い額は他の来訪者の影響をあまり受けない。
2. ある来訪者の支払い対価は、他の来訪者が支払う対価と重複することが多く、それが許される。
3. 来訪者あたりの対価支払い額分布は、正規分布もしくは再生成在のある既知の分布になっている。

これらは、希少度を用いたコンテンツの分析を行う際の前提条件に深く関わってくる項目である。それぞれについて、詳しく述べる。

4.6.1 独立性の検定

まず第 1 の特徴は、具体的にはタグを登録する画面において、他のユーザがそのサイトに登録したタグは見えないということである。これにより、各ブックマーク登録におけるタグ登録が独立する等と見なすことができる。一方で PodCastle においてある音声コンテンツの音声認識誤り訂正作業の例では、訂正作業が進むほど、新たな認識誤りの発見・訂正は難しくなり、対価払い行為が独立する等である。同様にニックニコ動画のタグのように、「いま付与されているタグをどのように追加・削除していくか」というインタフェースであれば、独立する等は難しい。

独立する等と見なせることは、希少度の計算および主要な推測統計学を適用するうえでの重要な仮定である。よって運用にあたっては、扱う事象をよく以後することが必要である。

4.6.2 対価の重複

第 2 の特徴は、具体的にはあるユーザの登録したタグ文脈が他のユーザが登録したタグ文脈と重複する場合が多く、それが許されているということである。これは第 1 の特徴と関連している。ソーシャルブックマークサービスとしては、これは歓迎すべきである。なぜならば、同じサイトに対する同じタグ文字列を付与するユーザ間には関連性を見出すことができ、新たな情報推奨などのサービスを展開できる可能性を秘めているからである。また、重複して登録された頻度の高いタグに重要度を認めような計算手法・可視化手法（タグクラウドなど）も可能になる。

同様な特徴は一般的なネットショッピングの事例にも現れる。すなわち、それぞれの来訪者がいくる金額を支払うのではなく、お互いに干渉することのない。

一方で PodCastle においては、新たな来訪者が目にするのはこれまでの来訪者が訂正を
行った結果であり、重複する訂正は対価支払いと見なされない。異なるユーザに同じ出声認識誤りを訂正させることはインタフェースデザインとしては可能であるが、そうでない方がサービスの質と向上につながるという判断を行っている事例である。これは、「多数のユーザの多様な意見の抽出度合い」ではなく、「多数のユーザによる1つのコンテンツの精度度合い」を対価として求めたものであると考えられる。

このようにサービスが対価として来訪者に何を求めているかにより、先に述べた試行の独立性、および分析したい対価の統計量の定義が異なる。希少度によるコンテンツ分析が対象とすることは、互いに独立であり重複が許される対価支払い量のみである。

4.6.3 母集団の分布

第3の特徴は、具体的にはタグの登録数分布（図2）は正規分布ではなく、そしてたまたまこじめにより元の分布が再び現れる（再生性のある）ようなく知られ分布であるということである。これにより、希少度の計算に必要な分布 g^m を定義しそのときこじめにより計算する必要が生じる。一方、webコンテンツに来訪者が点数をつけることで付加価値をつけるレーティングの仕組みを対価として考えることは、母集団は正規分布と仮定できる場合があるため、その際には g^m は既知の正規分布となり、たまたまこじめ計算は不要である。ただし、よくみられる5段階評価のようなレーティングでは、天井効果や床効果の問題が発生する可能性もあるため、運用には慎重に期すべきである。

5. まとめと今後の展望

本論文では、「ロングテール」と「Web 2.0」などの言葉で表現されるような、多様な利用者の参画が可能になったことで現れてきた新たなサービスとそこにしばしばみられるデータ構造について、母集団分布が既知であり、また中心極限定理が適用できないような自乗の統計分析が重要性を持っていることを示した。そして「来訪・対価支払い」モデルウェブサービスのモデルを定義し、そのようなモデルにおける個々のコンテンツの価値もしくは異常性の尺度として、既知の母集団分布のたまたまこじめにより求められる希少度という指標を定義した。また、livedoorクリップの事例を用いて希少度によるコンテンツ分析が有効であることを示し、「来訪・対価支払い」のモデルで表現される他の事例に応用するための留意事項について考察を行った。

希少度を用いた分析で今後の研究課題として有望なのは、分析結果のサービスへのフィードバックである。たとえばlivedoorクリップにおいては、多くの対価が支払われたコンテンツほど新たな来訪者を誘発する仕組みがある。具体的には多くのタグが付与されたサイトほど他のユーザに発見され、新たにブックマーク登録されやすい仕組みがあるということである。事実、タグが多くつけられるほどタグ検索にヒットする可能性が高まるので、他のユーザに発見されやすくなっている。これは商業一般にいえることで、よく売れる商品ほどよく見える場に配置され、さらに売れていくものである。従来は売上ランキング、訪問者数ランキングや客単価ランキングといった指標で商品（コンテンツ）が評価される戦略がとられていたが、希少度という指標による商品陳列が、その後の売れ行きや希少価値指標の変化にどのような影響を与えているかを時系列で追うことは技術的には容易であり、十分に興味深い。

謝辞 この研究の遂行にあたって支援をいただいた日本私立学校振興・共済事業団、およびデータ提供を受けたlivedoorに感謝します。いくつかの有益なアドバイスをいただいたことについて、東京大学数理科学研究科のRalph Wilcox氏にも感謝します。

参考文献

1) amazon. http://www.amazon.co.jp
2) Backstrom, L., Huttenlocher, D., Kleinberg, J. and Lan, X.: Group formation in large social networks: membership, growth, and evolution, KDD ’06: Proc. 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, ACM, pp.44–54 (2006).
3) flickr. http://www.flickr.com/
4) Fu, W.: The microstructures of social tagging: A rational model, CSCW ’08: Proc. ACM 2008 Conference on Computer Supported Cooperative Work, New York, NY, USA, ACM, pp.229–238 (2008).
5) Golder, S. and Huberman, B.A.: Usage Patterns of Collaborative Tagging Systems, Journal of Information Science, Vol.32, No.2, pp.198–208 (2006).
6) Google Analytics. http://www.google.com/analytics
7) Google Image Labeler. http://images.google.com/imagelabeler/
8) Goto, M., Ogata, J. and Eto, K.: PodCastle: A Web 2.0 Approach to Speech Recognition Research, Proc. Interspeech 2007, pp.2397–2400 (2007).
9) Leskovec, J., Kleinberg, J. and Faloutsos, C.: Graphs over time: Densification laws, shrinking diameters and possible explanations, KDD ’05: Proc. 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, New York, NY, USA, ACM, pp.177–187 (2005).
10) livedoor Clip. http://clip.livedoor.com/
11) livedoor labs EDGE Datasets. http://labs.edge.jp/datasets/
12) 松原望他：統計学入門、東京大学出版会 (1991).
ここで category は確率変数の番目の値、probability はそれに対応する確率を表す。これらのベアは category を key とした、probability を value とするハッシュテーブルに登録される。

\[
\text{value for key(category)} = \text{probability}
\]

(2)

読み込んだ確率分布のたたみこみは、新しいハッシュテーブルを用意し、すべての value をゼロに初期化したのち、すべての \(i,j \) \((1 \leq i \leq k, 1 \leq j \leq k) \) の組について

\[
\text{value for key(category)} + \text{probability} = \text{probability} \times \text{probability}
\]

(3)

を求めることで実現される。

本手法により \(n \) 回たたみこむ場合は、四則演算の回数および必要なメモリは最大で \(k^{n+1} \) のオーダーで増大するため、\(k \) および \(n \) が大きい場合は計算が困難となる。しかし、よく分布が左右に偏っていない限り、\(n \) がそれほど大きくなる前に中心極限定理が成立し、以降は正規分布による近似が有効になる。また、\(category \) の各値が \(a \) を定数として \(0, a, 2a, 3a, 4a, \ldots, (k-1)a \) のように等間隔である場合は現実問題として多くみられるが、その場合たたみこみ後に得られる key の総数は \((k-1)(n+1) + 1 \) 程度であり、メモリが大幅に消費されることはない。さらに、そのような場合には FFT（高速フーリエ変換）を用いたたたみこみ計算の高速化が可能である。

以下に二項分布を例として実用性を示す。二項分布 Bi\((n, p) \) において、実用上十分な精度を正規分布近似で得るための通例であるべき確率条件は \(np \geq 5 \) かつ \(n(1-p) \geq 5 \) である\(^{(1)}\)。\(p = 0.001 \) という紹介に偏った場合であっても、必要なサンプル数（たたみこみ回数 - 1）\(n \) は 5,000 であり、これは手元にある普通の性能のノート PC で tailstat によるたたみこみを行っても 10 秒程度で計算が完了した。さらに、その際に必要な key 数はわずか 5,002 である。このような事態から、式 (3) によるナイーブなたたみこみ計算手法は十分実用的であると判断される。

たたみこみ後必要な機能として、tailstat には以下のような機能を有する。

- 任意の階級幅による度数分布表の作成
- 歪度、尖度に基づく正規分布ラッシャの判定（中心極限定理の成立度合いの確認）
- 分布における右側確率、左側確率の導出、および中心極限定理が成立すると見なしたときの正規分布による同様確率の導出（本論文における「希少度」の計算に用いる）
- 確率変数の線形変換

などが実装されているが、個別の機能の説明については当分の間で割愛する。
栗原 一貴（正会員）
1978年栃木県生まれ。2007年東京大学大学院情報理工学系研究科コンピュータ科学専攻博士課程修了。Ph.D. 日本学術振興会特別研究員（DC2）を経て、同年産業技術総合研究所に入所し、現在メディアインタラクション研究グループ研究員。2007年より千葉県総合教育センター講師を兼任。2007年から2008年にかけて、東京大学大学院総合教育研究センター助教および特任助教を兼任。2009年より東京大学情報学環客員研究員を兼任。ユーザインタフェイス、特にプレゼンテーションツール、ICT技術の教育応用、およびパンコンピューティングに関する研究に興味を持つ。日本ソフトウェア科学会論文賞受賞。電子情報通信学会MVE賞受賞。

土谷 洋平
1976年京都府生まれ。2007年東京大学大学院数理科学研究科数理科学専攻博士課程修了。Ph.D. 同年大阪大学大学会計研究科会計監査専攻助教。2010年神奈川工科大学基礎・教養教育センター准教授。専攻は数理物理の関数系、JPSJ Papers of Editors' Choice（日本物理学会欧文論文誌注目論文賞）を2007年8月に受賞。