Meta-Analysis: Shouldn’t Prophylactic Corticosteroids be Administered During Cardiac Surgery with Cardiopulmonary Bypass?

Tianci Chai¹,²,³,⁴†, Xinghui Zhuang¹,²,³†, Mengyue Tian², Xiaojie Yang²,³, Zhihuang Qiu¹,³, Shurong Xu⁶, Melling Cai⁶, Yanjuan Lin⁶ and Liangwan Chen¹,³*

¹Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China, ²Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China, ³Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China, 4Department of anesthesiology, Xinyi People’s Hospital, Xuzhou, China, 5Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China, ⁶Nursing Department, Fujian Medical University Union Hospital, Fuzhou, China

Background: Corticosteroids can effectively inhibit systemic inflammation induced by cardiopulmonary bypass. Recently clinical trials and meta-analyses and current guidelines for cardiac surgery do not support corticosteroids prophylaxis during cardiac surgery because of an increase in myocardial infarction and no benefit for patients. The aim of this study is to determine whether specific corticosteroids dose ranges might provide clinical benefits without increasing myocardial infarction.

Methods: The PubMed, Web of Science, Embase, Clinical Trials, and Cochrane databases were searched for randomized controlled trials (RCTs) published before August 1, 2021.

Results: 88 RCTs with 18,416 patients (17,067 adults and 1,349 children) were identified. Relative to placebo and high-dose corticosteroids, low-dose corticosteroids (≤20 mg/kg hydrocortisone) during adult cardiac surgery did not increase the risks of myocardial infarction (odds ratio [OR]: 0.96, 95% confidence interval [CI]: 0.43–2.17; \(p = 0.93 \)). However, low-dose corticosteroids were associated with lower risks of atrial fibrillation (OR: 0.58, 95% CI: 0.44–0.76; \(p < 0.0001 \)) and kidney injury (OR: 0.29, 95% CI: 0.09–0.96; \(p = 0.04 \)). Furthermore, low-dose corticosteroids significantly shortened the mechanical ventilation times (mean difference [MD]: −2.74 h, 95% CI: −4.14, −1.33; \(p = 0.0001 \)), intensive care unit (ICU) stay (MD: −1.48 days, 95% CI: −2.73, −0.22; \(p = 0.02 \)), and hospital stay (MD: −2.29 days, 95% CI: −4.51, −0.07; \(p = 0.04 \)).

Abbreviations: CPB, cardiopulmonary bypass; RCT, randomized controlled trial; OR, odds ratio; CI, confidence interval; MD, mean difference; ICU, intensive care unit; SIRS, systemic inflammatory response syndrome; ECMO, extracorporeal membrane oxygenation; LOS, length of stay; CRP, C-reactive protein.
INTRODUCTION

Cardiopulmonary bypass (CPB) is used during most cardiac surgeries, although CPB often induces systemic inflammatory response syndrome (SIRS) (1). The development of SIRS involves activation of complement, platelets, neutrophils, monocytes, macrophages, and cascade reactions, which leads to increased endothelial permeability, blood vessel damage, and parenchymal cell damage (2–4). These events are associated with single and multiple organ dysfunction, myocardial injury and infarction, respiratory failure, and ultimately death (5–7).

Corticosteroids are inexpensive drugs that can effectively inhibit inflammation, limit systemic capillary leak syndrome, and reduce organ damage, which provides a theoretical basis for their use during CPB (8–10). However, corticosteroids can cause side effects, including hyperglycemia, which is associated with immunosuppression and poor wound healing (11, 12). In addition, high-dose corticosteroids are associated with an increased risk of gastrointestinal bleeding and myocardial infarction (11, 12). Thus, the benefits of corticosteroids treatment are controversial for patients undergoing cardiac surgery with CPB (13–15).

Three meta-analyses of small RCTs revealed that prophylactic corticosteroids could reduce the risk of atrial fibrillation after adult cardiac surgery, also caused some side effects (5–7). Two large multi-center RCTs subsequently revealed that corticosteroids therapy provided no benefits and increased the risk of myocardial infarction in adult patients (13, 14). Thus, the adult cardiac surgery guidelines do not recommend routine prophylactic use of corticosteroids during cardiac surgery (16), although there are no specific guidelines regarding corticosteroids use during pediatric cardiac surgery. We hypothesized that the specific corticosteroids dose range might influence the risks and benefits during cardiac surgery with CPB. Therefore, this systematic review and meta-analysis aimed to evaluate the dose-dependent benefits and risks of prophylactic corticosteroids for adults and children undergoing cardiac surgery with CPB.

METHODS

Ethical Statement

This study was a meta-analysis of the results of published randomized controlled trials, and ethical approval and informed consent of patients were not required.

Search Strategy and Selection Criteria

Two authors (XJY and MYT) searched the PubMed, Web of Science, Embase, ClinicalTrials, and Cochrane Central Register of Controlled Trials databases for relevant RCTs that were published in any language before August 1, 2021. The reference lists of relevant articles were also manually checked. The study protocol followed the PRISMA-P guidelines (https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42020193658). The search terms were: ("corticosteroids" OR "dexamethasone" OR "prednisolone" OR "prednisone" OR "methylprednisolone" OR "hydrocortisone") AND ("cardiopulmonary bypass" OR "cardiac surgery") AND ("randomized controlled trials") (Supplementary Table S1).

The meta-analysis only included RCTs that compared corticosteroids with a placebo used before or at the beginning of CPB. Patients undergoing surgery with CPB for heart and/or valvar diseases were included. And the studies were excluded if they used different concomitant medications or evaluated corticosteroids during off-pump heart surgery.

Two authors (TCC and XHZ) independently determined whether the identified articles fulfilled the inclusion criteria. The two authors also independently used pre-designed data extraction forms to record information regarding trial characteristics, clinical outcomes, randomization methods, application of blinding, allocation concealment, inclusion criteria, and exclusion criteria. There were no instances of disagreement regarding the extracted data.

Data Analysis

Study characteristics included first author, publication date, country, study size, study design, randomization, blinding, follow-up duration, patient withdrawals, and study duration. Patient characteristics included age, sex, surgery type, blood pressure, history of diabetes, history of smoking, renal status, and fulfillment of the inclusion criteria. The interventions included the corticosteroids type, dose, timing, and route of administration during CPB.

The primary outcomes included myocardial infarction, insulin use, mortality, new atrial fibrillation, lengths of ICU and hospital stays, acute kidney injury, mechanical ventilation time. The secondary outcomes included postoperative bleeding, re-intubation, duration of CPB and procedure, pulmonary complications (pulmonary edema), postoperative infection, neurological complications (stroke), delirium, gastrointestinal bleeding, extracorporeal membrane oxygenation (ECMO) use, vasoactive medication use, re-thoracotomy, inotropic score, blood transfusion, and and blood concentrations of glucose, lactate, C-reactive protein (CRP), tumor necrosis factor-α(TNF-α), interleukin (IL)-6, IL-8, and IL-10 at 24 h after CPB.

The Cochrane Handbook for Systematic Reviews of Interventions and Jadad score were used to assess the risk of bias

Conclusion: Low-dose corticosteroids prophylaxis during cardiac surgery provided significant benefits for adult patients, without increasing the risks of myocardial infarction and other complications.

Keywords: corticosteroids prophylaxis, cardiac surgery, cardiopulmonary bypass, myocardial infarction, randomized controlled trial
RESULTS

This study identified 88 RCTs from 27 countries that included 18,416 patients (Figure 1). The trials considered adult patients (73 trials and 17,067 patients) or pediatric patients (15 trials and 1,349 patients). The corticosteroids treatments included dexamethasone, betamethasone, methylprednisolone, hydrocortisone, and prednisolone, with a broad range of total doses (1–900 mg/kg hydrocortisone equivalent). Table 1 shows the characteristics of the included studies, Table 2 shows the GRADE summary of the findings and Table 3 summarizes the impact of corticosteroids on adults and pediatric.

During adult cardiac surgery with CPB, corticosteroids prophylaxis was associated with increased risks of myocardial infarction (OR: 1.19, 95% CI: 1.05–1.35; p = 0.008, I² = 0%) (Figure 2) and insulin infusion (OR: 1.91, 95% CI: 1.18–3.11; p = 0.009, I² = 46%) (Supplementary Figure S1), with no obvious improvement in mortality (OR: 0.86, 95% CI: 0.71–1.03; p = 0.10, I² = 0%) (Figure 3). However, corticosteroids prophylaxis reduced the risk of postoperative atrial fibrillation (OR: 0.68, 95% CI: 0.57–0.82; p < 0.0001, I² = 48%) (Figure 4), shortened the ICU stay (MD: −0.27 days. 95% CI: −0.34, −0.19 days; p < 0.001, I² = 93%), and shortened the hospital stay (MD: −0.66 days, 95% CI: −1.03, −0.30 days; p = 0.0003, I² = 95%) (Supplementary Figures S2, S3). In addition, corticosteroids prophylaxis was associated with reduced postoperative bleeding and a reduced risk of re-intubation (Table 3 and Supplementary Figures S4, S5).

Corticosteroids prophylaxis also reduced the blood concentrations of some inflammatory markers in adult patients, which included IL-6, TNF-α, and IL-8 (Table 3 and Supplementary Figures S6–S8). Among children, corticosteroids prophylaxis was associated with a significantly lower peak CRP concentration, a significantly lower IL-6 concentration, and a significantly higher IL-10 concentration (Table 3 and Supplementary Figures S9–S11).

Relative to the placebo group, corticosteroids prophylaxis was not associated with significant improvements in terms of kidney injury, pulmonary complications, stroke, gastrointestinal bleeding, postoperative infection or mechanical ventilation time (Table 3 and Figure 5, Supplementary Figures S12–S17).

Subgroup analysis that the benefits were largely attributable to the prophylactic use of low-dose corticosteroids (≤20 mg/kg hydrocortisone), and these benefits were not observed at higher corticosteroids doses (Table 2). Low-dose corticosteroids prophylaxis was associated with a significantly reduced mechanical ventilation time (MD: −2.74 h, 95% CI: −4.14, −1.33 h; p = 0.0001, I² = 92%) (Figure 5), without increased risks of myocardial infarction (OR: 0.96, 95% CI: 0.43–2.17; p = 0.93, I² = 0%) (Figure 2) or insulin infusion (OR: 1.72, 95% CI: 0.83–3.55; p = 0.15, I² = 36%) (Supplementary Figure S7). Pooled analysis with meta-regression revealed that corticosteroids dose was significantly related to the variation in the mechanical ventilation time (exp: 1.004, 95% CI: 1.002–1.006; p < 0.0001), but not the variation in the other clinical outcomes (Supplementary Figures S18–S26). Funnel plots failed to reveal evidence of publication bias regarding mortality, myocardial infarction, pulmonary complications, kidney injury, postoperative infection, and neurological complications (stroke) (Supplementary Figures S27–S32). However, the funnel plots suggested that there might be some publication bias regarding new atrial fibrillation, mechanical ventilation time, and hyperglycemia requiring insulin infusion (Supplementary Figures S33–S35). Thus, we used the trim and fill method to adjust the analysis, which did not significantly alter the findings.

During pediatric cardiac surgery with CPB, corticosteroids prophylaxis was associated with a decreased CPB time (MD: −11.54 min, 95% CI: −14.32, −8.75 min; p < 0.001, I² = 5%) and an increased insulin infusion (OR: 3.68, 95% CI: 1.53–8.84; p = 0.004, I² = 48%), but did not significantly influence mortality, kidney injury, ECMO use, postoperative infection, mechanical ventilation time, and ICU length of stay [LOS] (Tables 2, 3 and Supplementary Figures S36–S43). Relative to placebo and higher dose corticosteroids (>50 mg/kg hydrocortisone), corticosteroids prophylaxis (≤50 mg/kg hydrocortisone) significantly reduced the risk of kidney injury (OR: 0.29, 95% CI: 0.09–0.96; p = 0.04, I² = 49%) (Table 2 and Supplementary Figure S39). Meta-regression revealed that corticosteroids dose was not related to the variations in mortality (exp: 0.998, 95% CI: 0.981–1.015; p = 0.734) or the duration of CPB (exp: 1.000, 95% CI: 0.993–1.008; p = 0.89) (Supplementary Figures S44, S45). The funnel plots failed to reveal evidence of publication bias regarding mechanical ventilation time and CPB duration (Supplementary Figures S50–S51). Thus, we used the trim and fill method to adjust the analysis, which did not significantly alter the findings.

DISCUSSION

This meta-analysis revealed that corticosteroids prophylaxis during cardiac surgery with CPB was associated with significantly decreased blood inflammatory factor concentrations of CRP, TNF-α, IL-6, and IL-8. During adult cardiac surgery, corticosteroids prophylaxis reduced the risks of postoperative atrial fibrillation and re-intubation, shortened
the ICU and hospital LOSs, and reduced postoperative bleeding, although it was associated with increased risks of myocardial infarction and hyperglycemia requiring insulin infusion. Interestingly, the benefits among adult patients were largely attributable to low-dose corticosteroids use (≤20 mg/kg hydrocortisone), as the benefits were not observed among patients who received higher corticosteroids doses. In addition, low-dose corticosteroids significantly reduced the mechanical ventilation time without increasing the risks of myocardial infarction and insulin infusion, while high-dose corticosteroids were associated with increased risks of myocardial infarction and prolonged mechanical ventilation. During pediatric cardiac surgery, corticosteroids prophylaxis was associated with a shortened CPB time, an increased risk of insulin infusion, and no substantial changes in terms of mortality, ECMO use, postoperative infection, mechanical ventilation time, and ICU LOS. Moreover, corticosteroids prophylaxis (≤50 mg/kg hydrocortisone) significantly reduced the risk of kidney injury in pediatric patients.

The SIRS plays a vital role in the development of complications after cardiac surgery with CPB (1). Corticosteroids can effectively inhibit SIRS and reduce inflammatory factor concentrations, which provides a theoretical basis for prophylactic administration during cardiac surgery with CPB (2-10). However, several RCTs have indicated that corticosteroids prophylaxis did not provide significant benefits to patients undergoing cardiac surgery with CPB, and was instead associated with an increased risk of myocardial infarction and prolonged mechanical ventilation (10, 13, 14, 19). Thus, the adult cardiac surgery guidelines, as well as routine practice for adult and pediatric cardiac surgery with CPB, involve limited or no prophylactic corticosteroids.
Country	Population 0000 size (n)	Patient population	Age group	Study design	Blinding	Follow-up	Steroid	Hydrocortisone equivalent dose (mg/kg)	Time of administration	Quality*
Abbaszadeh et al. (2012) (24) Iran 185 CABG Adults RCT Y 3 days Dexamethasone 4.6 Post induction and surgery High (7)										
Abd El-Hakeem et al. (2003a) (25) Egypt 20 Valve Adults RCT Y ICU stay Dexamethasone 38 Pre CPB High (7)										
Abd El-Hakeem et al. (2003b) (25) Egypt 20 Valve Adults RCT Y ICU stay Dexamethasone 38 Pre CPB High (7)										
Al-Shawabkeh et al. (2016) (26) Jordan 340 CABG or valve Adults RCT Y 96 h Methylprednisolone and hydrocortisone 84 Pre CPB and last for 3 days High (7)										
Amanullah et al. (2016) (27) Pakistan 129 Cardiac surgery Children RCT Y Hospital stay Dexamethasone 80 Pre CPB and post surgery High (7)										
Andersen et al. (1989) (28) Denmark 16 CABG Adults RCT N 7 days Methylprednisolone 150 Pre CPB Low (1)										
Ando et al. (2005) (29) Japan 20 Cardiac surgery Children RCT Y Hospital stay Hydrocortisone 17.71 Post CPB High (6)										
Bingol et al. (2005) (30) Turkey 40 CABG Adults RCT Y 3 months Prednisolone 11 Pre induction and post surgery High (6)										
Boscoe et al. (1983) (31) UK 34 CABG or valve Adults or complex RCT Unclear 24 h Methylprednisolone 300 Pre CPB Low (3)										
Bourbon et al. (2004) (32) France 36 CABG Adults RCT N 24 h Methylprednisolone 25/50 Pre CPB Low (2)										
Brettner et al. (2019) (33) Germany 30 Cardiac surgery Adults RCT Y 28 days Hydrocortisone 1 Pre surgery High (4)										
Bronicki et al. (2000) (34) US 29 Cardiac surgery Children RCT Y Hospital stay Dexamethasone 26.67 Pre CPB High (6)										
Butler et al. (1996) (35) UK 18 Cardiac surgery Children RCT Y Hospital stay Methylprednisolone 50 During initiation of CPB High (6)										
Cavarocchi et al. (1986) (36) US 61 CABG or valve Adults or complex RCT N 24 h Methylprednisolone 150 Pre CPB Low (2)										
Celik et al. (2004) (37) Turkey 60 CABG Adults RCT Y Hospital stay Methylprednisolone 900 Pre surgery High (4)										
Chaney et al. (1998/1999) (38, 39) US 60 CABG Adults RCT Y Hospital stay Methylprednisolone 300 During sternotomy and pre CPB High (4)										
Chaney et al. (2001) (40) US 90 CABG Adults RCT Y Hospital stay Methylprednisolone 300/150 During sternotomy and initiation of CPB High (4)										
Cecchia et al. (2003) (41) US 28 Cardiac surgery Children RCT Y Hospital stay Dexamethasone 26.67 Pre CPB High (6)										
Coedt et al. (1977) (42) US 150 CABG Adults RCT Unclear 5 days Methylprednisolone 143 Pre CPB Low (3)										
Coetzee et al. (1996) (43) South Africa 295 Cardiac surgery Adults RCT Unclear 30 days Methylprednisolone 150 Pre CPB High (5)										
Danielson et al. (2018) (44) Sweden 30 CABG or valve Adults RCT Y Hospital stay Methylprednisolone 75 Post induction High (5)										
Demir et al. (2009) (45) Turkey 30 CABG Adults RCT Unclear Hospital stay Methylprednisolone 143 Pre CPB Low (3)										
Demir et al. (2015) (46) Turkey 40 CABG Adults RCT Y Unclear Methylprednisolone 71 Pre CPB Low (3)										

(continued)
Country	Population size (n)	Patient population	Age group	Study design	Blinding	Follow-up	Steroid	Hydrocortisone equivalent dose (mg/kg)	Time of administration	Quality
Dieleman et al. (2012) (13)	Netherlands 4494	CABG or valve or complex	Adults	RCT	Y	12 months	Dexamethasone	27	Pre CPB	High (7)
El Azab et al. (2002) (47)	Netherlands 18	CABG	Adults	RCT	Y	Hospital stay	Dexamethasone	38	Pre surgery	High (5)
Enc et al. (2006) (48)	Turkey 40	CABG	Adults	RCT	Y	Hospital stay	Methylprednisolone	125	Pre CPB	High (6)
Engelman et al. (1995) (49)	US 19	CABG	Adults	RCT	Y	Hospital stay	Dexamethasone and Methylprednisolone	78	Pre CPB and post surgery	High (4)
Fecht et al. (1978) (50)	US 50	CABG	Adults	RCT	Y	Hospital stay	Methylprednisolone	286	Pre CPB	High (4)
Ferries et al. (1984/1987) (51)	US 80	CABG or valve or complex	Adults	RCT	Y	Hospital stay	Methylprednisolone	150	Pre CPB	High (5)
Fillinger et al. (2002) (52)	US 50	CABG	Adults	RCT	Y	Hospital stay	Methylprednisolone	81	Pre incision and post surgery	High (7)
Giomarelli et al. (2003) (53)	Italy 20	CABG	Adults	RCT	Y	Hospital stay	Methylprednisolone	116	Pre surgery and post CPB	High (7)
Gomez et al. (2018) (54)	Spain 104	CABG or valve or complex	Adults	RCT	Y	Unclear	Methylprednisolone and Dexamethasone	40	Post induction and surgery	High (4)
Graham et al. (2019) (55)	US 176	Cardiac surgery	Children	RCT	Y	90 days	Methylprednisolone	150	Post induction	High (7)
Halonen et al. (2007) (56)	Finland 241	CABG or valve or complex	Adults	RCT	Y	ICU stay	Hydrocortisone	14	Pre surgery	High (7)
Halvorsen et al. (2003) (57)	US 300	CABG	Adults	RCT	Y	ICU stay	Dexamethasone	3	Post induction	High (6)
Hao et al. (2019) (58)	China 36	Valve	Adults	RCT	Y	Hospital stay	Methylprednisolone	36	During initiation of CPB	Low (3)
Harig et al. (1999/2001) (59, 60)	Germany 40	CABG	Adults	RCT	N	30 days	Prednisolone	29	Pre induction and post surgery	Low (2)
Heying et al. (2012) (61)	Germany 20	Cardiac surgery	Children	RCT	Y	Hospital stay	Dexamethasone	26.67	Pre CPB	High (6)
Jansen et al. (1991) (62)	Netherlands 25	CABG	Adults	RCT	Y	Hospital stay	Dexamethasone	27	Pre CPB	High (4)
Keski-Nisula et al. (2013) (15)	Finland 40	Cardiac surgery	Children	RCT	Y	Hospital stay	Methylprednisolone	150	Post induction	High (6)
Keski-Nisula et al. (2015) (63)	Finland 45	Cardiac surgery	Children	RCT	Y	Hospital stay	Methylprednisolone	150	During induction and initiation of CPB	High (6)
Keski-Nisula et al. (2020) (64)	Finland 29	Cardiac surgery	Children	RCT	Y	Hospital stay	Methylprednisolone	150	During induction	High (6)
Kilger Schelling et al. (2003/2004) (65, 66)	Germany 91	CABG or valve or complex	Adults	RCT	N	6 months	Hydrocortisone	8	Pre induction and last for 3 days	Low (3)
Killickan et al. (2008) (67)	Turkey 60	CABG	Adults	RCT	N	Hospital stay	Methylprednisolone	75	Pre induction	Low (3)
Liakopoulos et al. (2007) (68)	Germany 78	CABG	Adults	RCT	Y	Hospital stay	Methylprednisolone	75	Pre CPB	High (4)
Lindberg et al. (2003) (69)	Sweden 40	Cardiac surgery	Children	RCT	Y	Hospital stay	Dexamethasone	26.67	During surgery	High (6)
Loej et al. (2004) (4)	Netherlands 20	CABG	Adults	RCT	Y	Hospital stay	Dexamethasone	40	Pre induction and post surgery	High (4)

(continued)
Country	Population size (n)	Patient population	Age group	Study design	Blinding	Follow-up	Steroid	Hydrocortisone equivalent dose (mg/kg)	Time of administration	Quality a
Russia	50	CABG	Adults	RCT	Y	24 h	Methylprednisolone	100	Post induction	High (4)
Russia	394	Cardiac surgery	Children	RCT	Y	30 days	Dexamethasone	26.67	Post induction	High (7)
Iran	110	CABG or valve	Adults	RCT	Unclear	Unclear	Dexamethasone	30	Pre and post surgery	Low (3)
Japan	24	Valve	Adults	RCT	Y	7 days	Methylprednisolone	200	Pre and post CPB	High (4)
Ireland	35	CABG	Adults	RCT	N	72 h	Methylprednisolone	150	Pre induction	Low (1)
Netherlands	20	CABG	Adults	RCT	Y	Hospital stay	Dexamethasone	40	Pre induction and post surgery	High (5)
US	95	CABG	Adults	RCT	Y	30 days	Methylprednisolone	150	Pre induction	High (6)
US	246	Cardiac surgery	Children	RCT	Y	30 days	Methylprednisolone	25	Pre incision and post surgery	High (7)
US	109	CABG or valve	Adults	RCT	Y	Hospital stay	Dexamethasone	6	During induction and initiation of CPB	High (7)
US	90	CABG	Adults	RCT	Y	9 days	Methylprednisolone or dexamethasone	150/160	During sternotomy	High (7)
US	125	CABG or valve	Adults	RCT	Y	ICU stay	Methylprednisolone	78	Pre induction and post surgery	High (4)
Canada	86	CABG	Adults	RCT	Y	Hospital stay	Methylprednisolone and dexamethasone	78	Pre induction and post surgery	High (7)
US	150	CABG	Adults	RCT	Unclear	Hospital stay	Methylprednisolone	71	Pre CPB	Low (3)
Canada	68	CABG	Adults	RCT	Y	Hospital stay	Methylprednisolone	71	Pre CPB	High (7)
US	13	CABG	Adults	RCT	N	6 months	Methylprednisolone	71	During induction	Low (1)
Japan	28	CABG or valve	Adults	RCT	N	7 days	Hydrocortisone	100	Pre and post CPB	Low (3)
Japan	60	CABG or valve	Adults	RCT	N	Hospital stay	Hydrocortisone	100	Pre and post CPB	Low (3)
Switzerland	50	CABG	Adults	RCT	N	Hospital stay	Methylprednisolone	50	Pre surgery	Low (3)
US	28	CABG	Adults	RCT	Y	72 h	Dexamethasone	38	Pre CPB	High (4)
Israel	60	CABG	Adults	RCT	N	2 weeks	Betamethasone	3	Pre surgery	Low (2)
Finland	40	Cardiac surgery	Children	RCT	Y	Hospital stay	Methylprednisolone and hydrocortisone	25.6	Post induction and last for 5 High (7) days	
Slovenia	76	CABG or valve	Adults or complex	RCT	Y	30 days	Methylprednisolone	71	During CPB	High (7)
Germany	52	CABG	Adults	RCT	Y	Hospital stay	Methylprednisolone	71	Pre CPB	High (7)
Canada	25	CABG	Adults	RCT	N	Hospital stay	Methylprednisolone	18	Pre induction	Low (3)
Denmark	16	Cardiac surgery	Adults	RCT	N	Hospital stay	Methylprednisolone	150	During induction	Low (3)

(continued)
Country	Population 0000 size	Patient population	Age group	Study design	Blinding	Follow-up	Steroid	Hydrocortisone equivalent dose (mg/kg)	Time of administration	Qualitya
Toledo-Pereyra et al. (1980) (94)	US 95	Cardiac surgery	Children	RCT	Y	Hospital stay	Methylprednisolone	150	Pre CPB	Low (3)
Turkoz et al. (2001) (95)	Turkey 30	CABG Adults	RCT	N	24 h	Methylprednisolone	150	Pre CPB	Low (3)	
Vallejo et al. (1977) (96)	Spain 100	CABG Adults	RCT	N	Hospital stay	Methylprednisolone	150	Pre CPB	Low (2)	
Volk et al. (2001) (97)	Germany 39	CABG Adults	RCT	Y	Hospital stay	Methylprednisolone	75	Pre CPB	High (4)	
Volk et al. (2003) (98)	Germany 36	CABG Adults	RCT	Y	Hospital stay	Methylprednisolone	75	Pre CPB	High (4)	
Von Spiegel et al. (2001/2002) (99, 100)	Germany 20	CABG Adults	RCT	Y	24 h	Dexamethasone	27	Post induction	High (5)	
Vukovic et al. (2011) (101)	Serbia 57	CABG Adults	RCT	Y	Hospital stay	Methylprednisolone	50	Post induction	High (4)	
Wan et al. (1999) (102)	Belgium 20	CABG or valve Adults	RCT	Y	Hospital stay	Methylprednisolone	150	During induction	High (4)	
Weis et al. (2006) (103)	Switzerland 36	High risk CPB Adults	RCT	Y	Hospital stay	Hydrocortisone	8	Pre induction and last for 3 days	High (5)	
Weis et al. (2009) (104)	Germany 36	High risk CPB Adults	RCT	Y	28 days	Hydrocortisone	8	Pre induction and last for 2 days	High (6)	
Whitlock et al. (2008) (14)	Canada 60	CABG or valve Adults or complex	RCT	Y	Hospital stay	Methylprednisolone	21	During induction and initiation of CPB	High (4)	
Whitlock et al. (2015) (105)	Canada 7507	CABG or valve Adults or complex	RCT	Y	6 months	Methylprednisolone	36	During induction and initiation of CPB	High (7)	
Yared et al. (1998/2000) (106, 107)	US 236	CABG or valve Adults or complex	RCT	Y	Hospital stay	Dexamethasone	16	Post induction	Low (3)	
Yared et al. (2007) (108)	US 71	CABG or valve Adults	RCT	Y	Hospital stay	Dexamethasone	16	Post induction	High (4)	
Yasser et al. (2009) (109)	Egypt 100	CABG Adults	RCT	Unclear	Hospital stay	Dexamethasone	40	During induction and surgery	Low (3)	
Yilmaz et al. (1999) (110)	Turkey 20	CABG Adults	RCT	Y	Hospital stay	Methylprednisolone	5	During CPB	High (5)	

CABG, coronary artery bypass grafting. RCT, randomized controlled trial. CPB, cardiopulmonary bypass.

aJadad score (18).
TABLE 2 | GRADE summary of findings.

Corticosteroids compared to placebo or saline for cardiopulmonary bypass

Outcomes	No. of participants (studies)	Anticipated absolute effectsa (95% CI)	Relative effect (95% CI)	Test for overall effect (p)	Certainty of the evidence (GRADE)
	Risk with placebo or saline	Risk with corticosteroids			
Adult					
Mortality	15780 (47 RCTs)	32 per 1,000 (23 to 33)	28 per 1,000	OR 0.86 (0.71 to 1.03)	1.66 (0.10) ⊕⊕⊕⊕ HIGH
≤20 mg/kg hydrocortisone	1312 (10 RCTs)	20 per 1,000 (5 to 26)	12 per 1,000	OR 0.57 (0.25 to 1.31)	1.32 (0.19) ⊕⊕⊕⊕ HIGH
20–40 mg/kg hydrocortisone	12317 (11 RCTs)	34 per 1,000 (25 to 37)	30 per 1,000	OR 0.87 (0.71 to 1.07)	1.32 (0.19) ⊕⊕⊕⊕ HIGH
40–100 mg/kg hydrocortisone	1025 (11 RCTs)	14 per 1,000 (5 to 36)	14 per 1,000	OR 0.99 (0.37 to 2.69)	0.01 (0.99) ⊕⊕⊕⊕ HIGH
>100 mg/kg hydrocortisone	1126 (15 RCTs)	40 per 1,000 (19 to 61)	35 per 1,000	OR 0.85 (0.47 to 1.55)	0.53 (0.60) ⊕⊕⊕⊕ HIGH
New atrial fibrillation	14745 (33 RCTs)	284 per 1,000 (185 to 246)	213 per 1,000	OR 0.68 (0.57 to 0.82)	4.15 (<0.0001) ⊕⊕⊕⊕ HIGH
≤20 mg/kg hydrocortisone	1279 (10 RCTs)	371 per 1,000 (206 to 309)	255 per 1,000	OR 0.58 (0.44 to 0.76)	3.90 (<0.0001) ⊕⊕⊕⊕ HIGH
20–40 mg/kg hydrocortisone	12394 (8 RCTs)	272 per 1,000 (243 to 274)	258 per 1,000	OR 0.93 (0.86 to 1.01)	1.83 (0.07) ⊕⊕⊕⊕ HIGH
40–100 mg/kg hydrocortisone	775 (9 RCTs)	351 per 1,000 (167 to 443)	286 per 1,000	OR 0.74 (0.37 to 1.47)	0.87 (0.39) ⊕⊕⊕⊕ HIGH
>100 mg/kg hydrocortisone	297 (6 RCTs)	264 per 1,000 (144 to 331)	225 per 1,000	OR 0.81 (0.47 to 1.38)	0.78 (0.43) ⊕⊕⊕⊕ HIGH
Myocardial infarction	14669 (25 RCTs)	65 per 1,000 (68 to 86)	77 per 1,000	OR 1.19 (1.05 to 1.35)	2.66 (0.008) ⊕⊕⊕⊕ HIGH
≤20 mg/kg hydrocortisone	1115 (6 RCTs)	20 per 1,000 (9 to 42)	19 per 1,000	OR 0.96 (0.43 to 2.17)	0.09 (0.93) ⊕⊕⊕⊕ HIGH
20–40 mg/kg hydrocortisone	12242 (5 RCTs)	72 per 1,000 (76 to 97)	86 per 1,000	OR 1.21 (1.06 to 1.38)	2.79 (0.005) ⊕⊕⊕⊕ HIGH
40–100 mg/kg hydrocortisone	780 (6 RCTs)	33 per 1,000 (13 to 61)	28 per 1,000	OR 0.85 (0.38 to 1.88)	0.41 (0.68) ⊕⊕⊕⊕ HIGH
>100 mg/kg hydrocortisone	532 (8 RCTs)	49 per 1,000 (28 to 111)	56 per 1,000	OR 1.15 (0.55 to 2.43)	0.37 (0.71) ⊕⊕⊕⊕ HIGH

(continued)
Outcomes	No. of participants (studies)	Anticipated absolute effects (95% CI)	Risk with placebo or saline	Risk with corticosteroids	Relative effect (95% CI)	Test for overall effect (p)	Certainty of the evidence (GRADE)
Pulmonary complications	8932 (17 RCTs)	92 per 1,000	85 per 1,000	OR 0.91	(0.78 to 1.05)	1.30 (0.20)	⬤⬤⬤⬤ HIGH
≤20 mg/kg hydrocortisone	822 (8 RCTs)	42 per 1,000	41 per 1,000	OR 0.97	(0.48 to 1.93)	0.10 (0.92)	⬤⬤⬤⬤ HIGH
20–40 mg/kg hydrocortisone	7567 (2 RCTs)	99 per 1,000	91 per 1,000	OR 0.91	(0.78 to 1.06)	1.22 (0.22)	⬤⬤⬤⬤ HIGH
40–100 mg/kg hydrocortisone	433 (5 RCTs)	65 per 1,000	56 per 1,000	OR 0.86	(0.40 to 1.88)	0.37 (0.71)	⬤⬤⬤⬤ HIGH
>100 mg/kg hydrocortisone	110 (2 RCTs)	73 per 1,000	56 per 1,000	OR 0.76	(0.18 to 3.24)	0.37 (0.71)	⬤⬤⬤⬤ HIGH
Kidney injury	12826 (13 RCTs)	34 per 1,000	28 per 1,000	OR 0.83	(0.68 to 1.01)	1.68 (0.06)	⬤⬤⬤⬤ HIGH
≤20 mg/kg hydrocortisone	520 (6 RCTs)	43 per 1,000	17 per 1,000	OR 0.38	(0.13 to 1.11)	1.77 (0.08)	⬤⬤⬤⬤ HIGH
20–40 mg/kg hydrocortisone	12142 (4 RCTs)	33 per 1,000	28 per 1,000	OR 0.84	(0.68 to 1.03)	1.66 (0.10)	⬤⬤⬤⬤ HIGH
40–100 mg/kg hydrocortisone	164 (2 RCTs)	49 per 1,000	72 per 1,000	OR 1.49	(0.40 to 5.58)	0.59 (0.55)	⬤⬤⬤⬤ HIGH
>100 mg/kg hydrocortisone	1 (RCT)	0 per 1,000	0 per 1,000	not estimable		-	⬤⬤⬤⬤ HIGH
Postoperative infection	14880 (37 RCTs)	81 per 1,000	77 per 1,000	OR 0.95	(0.84 to 1.07)	0.84 (0.40)	⬤⬤⬤⬤ HIGH
≤20 mg/kg hydrocortisone	1299 (11 RCTs)	67 per 1,000	57 per 1,000	OR 0.84	(0.52 to 1.33)	0.75 (0.45)	⬤⬤⬤⬤ HIGH
20–40 mg/kg hydrocortisone	12295 (7 RCTs)	86 per 1,000	82 per 1,000	OR 0.95	(0.84 to 1.08)	0.76 (0.45)	⬤⬤⬤⬤ HIGH
40–100 mg/kg hydrocortisone	612 (10 RCTs)	56 per 1,000	59 per 1,000	OR 1.06	(0.54 to 2.09)	0.17 (0.87)	⬤⬤⬤⬤ HIGH
>100 mg/kg hydrocortisone	674 (9 RCTs)	39 per 1,000	41 per 1,000	OR 1.07	(0.51 to 2.26)	0.18 (0.86)	⬤⬤⬤⬤ HIGH
Neurological complications (strok)	13439 (18 RCTs)	21 per 1,000	18 per 1,000	OR 0.85	(0.66 to 1.08)	1.33 (0.18)	⬤⬤⬤⬤ HIGH
≤20 mg/kg hydrocortisone	626 (4 RCTs)	19 per 1,000	16 per 1,000	OR 0.85	(0.25 to 2.82)	0.27 (0.79)	⬤⬤⬤⬤ HIGH

(continued)
Table 2: Corticosteroids compared to placebo or saline for cardiopulmonary bypass

Outcomes	No. of participants (studies)	Anticipated absolute effects* (95% CI)	Relative effect (95% CI)	Test for overall effect (p)	Certainty of the evidence (GRADE)
Patient or population: cardiopulmonary bypass					
Intervention: corticosteroids					
Comparison: placebo or saline					
Anticipated absolute effects (95% CI)	Risk with placebo or saline	Risk with corticosteroids			
Test for overall effect (p)					
Certainty of the evidence (GRADE)					
Risk with placebo or saline	19 per 1,000	17 per 1,000	OR 0.89	0.86 (0.39)	@@@@ HIGH
(4 RCTs)		(13 to 22)	(0.68 to 1.16)		
Risk with corticosteroids	20–40 mg/kg hydrocortisone	52 per 1,000	OR 0.48	1.52 (0.13)	@@@@ HIGH
(6 RCTs)	26 per 1,000	(10 to 64)	(0.18 to 1.24)		
Risk with corticosteroids	>100 mg/kg hydrocortisone	56 per 1,000	OR 0.83	0.31 (0.76)	@@@@ HIGH
(4 RCTs)	47 per 1,000	(15 to 135)	(0.26 to 2.66)		
Risk with corticosteroids	Gastro-intestinal bleeding	10 per 1,000	OR 1.22	1.17 (0.24)	@@@@ HIGH
(6 RCTs)	12 per 1,000	(9 to 17)	(0.88 to 1.69)		
Risk with placebo or saline	20–40 mg/kg hydrocortisone	19 per 1,000	OR 0.89	0.86 (0.39)	@@@@ HIGH
(6 RCTs)	17 per 1,000	(13 to 22)	(0.68 to 1.16)		
Risk with corticosteroids	>100 mg/kg hydrocortisone	52 per 1,000	OR 0.48	1.52 (0.13)	@@@@ HIGH
(6 RCTs)	26 per 1,000	(10 to 64)	(0.18 to 1.24)		
Risk with corticosteroids	Mechanical ventilation time (hours)	The mean mechanical ventilation time (hours) was 8.39	MD 0.48 lower	1.66 (0.10)	@@@@ HIGH
(7 RCTs)	(1.04 lower to 0.09 higher)				
Risk with placebo or saline	≤20 mg/kg hydrocortisone	20–40 mg/kg hydrocortisone	MD 0.53 lower	1.23 (0.22)	@@@@ HIGH
(11 RCTs)	The mean mechanical ventilation time (hours) was 9.82	(4.14 lower to 1.33 lower)	1.20 (0.23)	1.23 (0.22)	@@@@ HIGH
Risk with corticosteroids	>100 mg/kg hydrocortisone	639 per 1,000	OR 0.94 lower	1.23 (0.22)	@@@@ HIGH
(12 RCTs)	The mean mechanical ventilation time (hours) was 12.15	(1.39 lower to 0.34 higher)	1.20 (0.23)	1.23 (0.22)	@@@@ HIGH
Risk with corticosteroids	≥100 mg/kg hydrocortisone	301 per 1,000	OR 3.82 higher	2.45 (0.01)	@@@@ HIGH
(7 RCTs)	The mean mechanical ventilation time (hours) was 10.91	(0.76 higher to 6.87 higher)	1.23 (0.22)	2.45 (0.01)	@@@@ HIGH
Risk with placebo or saline	Hyperglycemia requiring insulin infusion	8316 per 1,000	OR 1.91	2.61 (0.009)	@@@@ HIGH
(14 RCTs)	196 per 1,000	(131 to 284)	(1.18 to 3.11)		
Risk with corticosteroids	≤20 mg/kg hydrocortisone	421 per 1,000	OR 1.72	1.46 (0.15)	@@@@ HIGH
(4 RCTs)	233 per 1,000	(201 to 518)	(0.83 to 3.55)		
Risk with corticosteroids	>100 mg/kg hydrocortisone	7547 per 1,000	OR 4.41	1.46 (0.14)	@@@@ HIGH
(3 RCTs)	335 per 1,000	(64 to 786)	(0.60 to 32.10)		
Risk with corticosteroids	Mechanical ventilation time (hours)	The mean mechanical ventilation time (hours) was 7.44	MD 0.53 lower	1.20 (0.23)	@@@@ HIGH
(12 RCTs)	(1.39 lower to 0.34 higher)				
Risk with placebo or saline	≥100 mg/kg hydrocortisone	120 per 1,000	OR 11.88	2.28 (0.02)	@@@@ HIGH
(2 RCTs)	417 per 1,000	(502 to 986)	(1.41 to 100.00)		
Risk with corticosteroids	Delirium	228 per 1,000	OR 1.53	0.98 (0.33)	@@@@ HIGH
(5 RCTs)	88 per 1,000	(59 to 258)	(0.65 to 3.59)		
Risk with placebo or saline	LOS in ICU (days)	12181 per 1,000	OR 0.89	1.78 (0.08)	@@@@ HIGH
(6 RCTs)	The mean LOS ICU (days) was 1.69	(74 to 93)	(0.79 to 1.01)		
Risk with corticosteroids	≤20 mg/kg hydrocortisone	641 per 1,000	OR 1.48 lower	2.31 (0.02)	@@@@ HIGH
(9 RCTs)	The mean LOS ICU (days) was 2.55	(2.73 lower to 0.22 lower)	2.31 (0.02)	2.31 (0.02)	@@@@ HIGH

(continued)
Outcomes	No. of participants (studies)	Anticipated absolute effects 95% CI	Relative effect 95% CI	Test for overall effect (p)	Certainty of the evidence (GRADE)
	Risk with placebo or saline	Risk with corticosteroids			
LOS in hospital (days)					
≤20 mg/kg hydrocortisone	1445 (7 RCTs)	The mean LOS hospital (days) was 9.07	MD 0.66 lower (1.03 lower to 0.3 lower)	-	⚫⚫⚫⚫ HIGH
>20–40 mg/kg hydrocortisone	12432 (13 RCTs)	The mean LOS hospital (days) was 11.02	MD 0.94 higher (0.69 lower to 2.56 higher)	-	⚫⚫⚫⚫ HIGH
>40–100 mg/kg hydrocortisone	4519 (3 RCTs)	The mean LOS hospital (days) was 199.30	MD 3.73 higher (1.72 lower to 9.19 higher)	-	⚫⚫⚫⚫ HIGH
>100 mg/kg hydrocortisone	219 (4 RCTs)	The mean LOS hospital (days) was 214.37	MD 11.78 higher (1.08 lower to 33.74 higher)	-	⚫⚫⚫⚫ HIGH
Duration of CPB (minutes)					
≤20 mg/kg hydrocortisone	1445 (7 RCTs)	The mean duration of CPB (minutes) was 111.02	MD 0.94 higher (0.69 lower to 2.56 higher)	-	⚫⚫⚫⚫ HIGH
>20–40 mg/kg hydrocortisone	12432 (13 RCTs)	The mean duration of CPB (minutes) was 114.87	MD 0.89 higher (3.36 lower to 5.15 higher)	-	⚫⚫⚫⚫ HIGH
>40–100 mg/kg hydrocortisone	4519 (3 RCTs)	The mean duration of CPB (minutes) was 241.88	MD 9.64 higher (8.92 lower to 28.2 higher)	-	⚫⚫⚫⚫ HIGH
>100 mg/kg hydrocortisone	219 (4 RCTs)	The mean duration of CPB (minutes) was 214.37	MD 11.78 higher (1.08 lower to 33.74 higher)	-	⚫⚫⚫⚫ HIGH

TABLE 2 | Continued
TABLE 2 | Continued
Corticosteroids compared to placebo or saline for cardiopulmonary bypass

Outcomes	No. of participants (studies)	Anticipated absolute effects (95% CI)	Relative effect (95% CI)	Test for overall effect (p)	Certainty of the evidence (GRADE)		
>100 mg/kg hydrocortisone	200 (6 RCTs)	The mean duration of procedure (minutes) was 289.88 MD 14.03 higher (10.19 lower to 38.25 higher)	–	1.14 (0.26)	@@@@@		
Postoperative bleeding (mL)	1084 (13 RCTs)	The mean postoperative bleeding (mL) was 763.32 MD 99.73 lower (169.45 lower to 30 lower)	–	2.80 (0.005)	@@@@@		
≤20 mg/kg hydrocortisone	569 (3 RCTs)	The mean postoperative bleeding (mL) was 666.99 MD 20.83 lower (56.43 lower to 14.78 higher)	–	1.15 (0.25)	@@@@@		
20–40 mg/kg hydrocortisone	100 (3 RCTs)	The mean postoperative bleeding (mL) was 847.00 MD 66.96 lower (192.33 lower to 58.41 higher)	–	1.05 (0.30)	@@@@@		
40–100 mg/kg hydrocortisone	295 (4 RCTs)	The mean postoperative bleeding (mL) was 919.53 MD 194.85 lower (302.08 lower to 87.61 lower)	–	3.56 (0.0004)	@@@@@		
>100 mg/kg hydrocortisone	120 (3 RCTs)	The mean postoperative bleeding (mL) was 758.50 MD 83.82 lower (130.62 lower to 37.03 lower)	–	3.51 (0.0004)	@@@@@		
Vaso-active medication use	1405 (20 RCTs)	272 per 1,000 OR 1.01 (0.69 to 1.47)	–	0.03 (0.98)	@@@@@		
≤20 mg/kg hydrocortisone	639 (4 RCTs)	177 per 1,000 OR 0.91 (0.58 to 1.45)	–	0.38 (0.70)	@@@@@		
20–40 mg/kg hydrocortisone	183 (6 RCTs)	462 per 1,000 OR 0.43 (0.12 to 1.51)	–	1.32 (0.19)	@@@@@		
40–100 mg/kg hydrocortisone	80 (2 RCTs)	293 per 1,000 OR 1.05 (0.23 to 4.81)	–	0.06 (0.95)	@@@@@		
>100 mg/kg hydrocortisone	503 (8 RCTs)	320 per 1,000 OR 1.50 (0.96 to 2.35)	–	1.78 (0.08)	@@@@@		
IL-6 concentrations at 24 h (pg/mL)	506 (14 RCTs)	The mean IL-6 concentrations at 24 h (pg/mL) was 310.89 MD 139.77 lower (161.56 lower to 117.97 lower)	–	12.57 (<0.00001)	@@@@@		
CRP concentrations at 24 h (µg/mL)	631 (4 RCTs)	The mean CRP concentrations at 24 h (µg/mL) was 139.04 MD 8.98 lower (20.41 lower to 2.45 higher)	–	1.54 (0.12)	@@@@@		
TNF-α concentrations at 24 h (pg/mL)	199 (6 RCTs)	The mean TNF-α concentrations at 24 h (pg/mL) was 16.73 MD 4.23 lower (6.85 lower to 1.6 lower)	–	3.16 (0.002)	@@@@@		
IL-8 concentrations at 24 h (pg/mL)	199 (6 RCTs)	The mean IL-8 concentrations at 24 h (pg/mL) was 15.01 MD 5.81 lower (10.96 lower to 0.66 lower)	–	2.21 (0.03)	@@@@@		
Outcomes	No. of participants (studies)	Risk with placebo or saline	Risk with corticosteroids	Anticipated absolute effects (95% CI)	Relative effect (95% CI)	Test for overall effect (p)	Certainty of the evidence (GRADE)
----------------------------------	------------------------------	----------------------------	---------------------------	---------------------------------------	--------------------------	---------------------------	---------------------------------
IL-10 concentrations at 24 h (pg/mL)	109 (3 RCTs)	The mean IL-10 concentrations at 24 h (pg/mL) was 14.34 (2.93 lower to 15.19 higher)	MD 6.13 higher – 1.33 (0.19)				
Re-intubation	258 (5 RCTs)	102 per 1,000	38 per 1,000	OR 0.35 (0.13 to 0.95)	2.06 (0.04)	⊕⊕⊕⊕	
Re-thoracotomy	935 (9 RCTs)	27 per 1,000	32 per 1,000	OR 1.17 (0.57 to 2.40)	0.44 (0.66)	⊕⊕⊕⊕	
Pediatric							
Mortality	931 (12 RCTs)	48 per 1,000	28 per 1,000	OR 0.57 (0.30 to 1.11)	1.64 (0.10)	⊕⊕⊕⊕	
≤50 mg/kg hydrocortisone	531 (6 RCTs)	22 per 1,000	16 per 1,000	OR 0.71 (0.23 to 2.19)	0.59 (0.55)	⊕⊕⊕⊕	
>50 mg/kg hydrocortisone	400 (6 RCTs)	82 per 1,000	44 per 1,000	OR 0.51 (0.23 to 1.17)	1.59 (0.11)	⊕⊕⊕⊕	
Kidney injury	659 (5 RCTs)	236 per 1,000	127 per 1,000	OR 0.47 (0.22 to 1.01)	1.94 (0.05)	⊕⊕⊕⊕	
≤50 mg/kg hydrocortisone	483 (4 RCTs)	127 per 1,000	40 per 1,000	OR 0.29 (0.09 to 0.96)	2.02 (0.04)	⊕⊕⊕⊕	
>50 mg/kg hydrocortisone	176 (1 RCT)	516 per 1,000	457 per 1,000	OR 0.79 (0.44 to 1.43)	0.78 (0.44)	⊕⊕⊕⊕	
ECMO	570 (2 RCTs)	47 per 1,000	19 per 1,000	OR 0.38 (0.13 to 1.10)	1.79 (0.07)	⊕⊕⊕⊕	
Postoperative infection	304 (5 RCTs)	70 per 1,000	48 per 1,000	OR 0.68 (0.25 to 1.85)	0.75 (0.45)	⊕⊕⊕⊕	
Hyperglycemia requiring insulin	256 (3 RCTs)	67 per 1,000	208 per 1,000	OR 3.68 (1.53 to 8.84)	2.91 (0.004)	⊕⊕⊕⊕	
Mechanical ventilation time (hours)	505 (8 RCTs)	The mean mechanical ventilation time (hours) was 80.35 (15.53 lower to 0.79 higher)	MD 7.37 lower – 1.77 (0.08)				
≤50 mg/kg hydrocortisone	100 (3 RCTs)	The mean mechanical ventilation time (hours) was 103.04 (73.47 lower to 17.01 higher)	MD 28.23 lower – 1.22 (0.22)				
>50 mg/kg hydrocortisone	405 (5 RCTs)	The mean mechanical ventilation time (hours) was 74.94 (19.89 lower to 4.95 higher)	MD 7.47 lower – 1.18 (0.24)				
Duration of CPB (minutes)	875 (14 RCTs)	The mean duration of CPB (minutes) was 132.73 (14.32 lower to 8.75 lower)	MD 11.54 lower – 8.12 (<0.00001)				

(continued)
TABLE 2 | Continued

Corticosteroids compared to placebo or saline for cardiopulmonary bypass

Outcomes and Context	No. of participants (studies)	Anticipated absolute effects* (95% CI)	Relative effect (95% CI)	Test for overall effect (p)	Certainty of the evidence (GRADE)
≤50 mg/kg hydrocortisone	441 (8 RCTs)	The mean duration of CPB (minutes) was 129.29 MD 12.06 lower (15.19 lower to 8.94 lower)	–	7.56 (<0.00001)	⊕⊕⊕⊕ HIGH
>50 mg/kg hydrocortisone	434 (6 RCTs)	The mean duration of CPB (minutes) was 136.04 MD 9.52 lower (15.63 lower to 3.41 lower)	–	3.05 (0.02)	⊕⊕⊕⊕ HIGH
LOS ICU (days)	405 (8 RCTs)	The mean LOS ICU (days) was 8.08 MD 7.56 lower (0.12 lower to 0.11 higher)	–	0.05 (0.96)	⊕⊕⊕⊕ HIGH
≤50 mg/kg hydrocortisone	100 (3 RCTs)	The mean LOS ICU (days) was 7.52 MD 1.06 lower (3.08 lower to 0.96 higher)	–	1.03 (0.30)	⊕⊕⊕⊕ HIGH
>50 mg/kg hydrocortisone	305 (5 RCTs)	The mean LOS ICU (days) was 8.25 MD 0.03 lower (0.34 lower to 0.39 higher)	–	0.14 (0.89)	⊕⊕⊕⊕ HIGH
Inotropic score	454 (7 RCTs)	The mean inotropic score was 12.88 MD 0.99 lower (0.39 lower to 0.22 higher)	–	0.56 (0.58)	⊕⊕⊕⊕ HIGH
Highest/24 h temperature (°C)	216 (7 RCTs)	The mean highest/24 h temperature (°C) was 37.63 MD 0.07 lower (0.43 lower to 0.29 higher)	–	0.40 (0.69)	⊕⊕⊕⊕ HIGH
≤50 mg/kg hydrocortisone	87 (3 RCTs)	The mean highest/24 h temperature (°C) was 37.38 MD 0.28 lower (0.08 lower to 0.63 higher)	–	1.54 (0.12)	⊕⊕⊕⊕ HIGH
>50 mg/kg hydrocortisone	129 (4 RCTs)	The mean highest/24 h temperature (°C) was 37.80 MD 0.26 lower (0.61 lower to 0.1 higher)	–	1.42 (0.16)	⊕⊕⊕⊕ HIGH
Highest/24 h glucose concentrations (mg/dl)	236 (3 RCTs)	The mean highest/24 h glucose concentrations (mg/dl) was 138.50 MD 17.94 higher (0.17 lower to 36.06 higher)	–	1.94 (0.05)	⊕⊕⊕⊕ HIGH
Highest/24 h lactate concentrations (mmol/l)	305 (5 RCTs)	The mean highest/24 h lactate concentrations (mmol/l) was 3.04 MD 0.66 lower (0.17 lower to 0.05 higher)	–	1.07 (0.28)	⊕⊕⊕⊕ HIGH
Highest/24 h CRP concentrations (µg/mL)	98 (3 RCTs)	The mean highest/24 h CRP concentrations (µg/mL) was 50.58 MD 20.12 lower (28.68 lower to 11.55 lower)	–	4.60 (<0.00001)	⊕⊕⊕⊕ HIGH
(≤50 mg/kg hydrocortisone)	316 (8 RCTs)	The mean highest/24 h IL-6 concentrations (pg/mL) was 211.77 MD 108.6 lower (206.02 lower to 11.18 lower)	–	2.18 (0.03)	⊕⊕⊕⊕ HIGH
≤50 mg/kg hydrocortisone	98 (4 RCTs)	The mean highest/24 h IL-6 concentrations (pg/mL) was 386.84 MD 102.67 lower (185.42 lower to 19.93 lower)	–	2.43 (0.02)	⊕⊕⊕⊕ HIGH
>50 mg/kg hydrocortisone	218 (4 RCTs)	The mean highest/24 h IL-6 concentrations (pg/mL) was 133.07 MD 85.72 lower (308.08 lower to 136.64 higher)	–	0.76 (0.45)	⊕⊕⊕⊕ HIGH
Outcomes	No. of participants (studies)	Anticipated absolute effectsa (95% CI)	Relative effect (95% CI)	Test for overall effect (p)	Certainty of the evidence (GRADE)
--------------------------	------------------------------	--------------------------------------	-------------------------	----------------------------	----------------------------------
Highest/24 h IL-10 concentrations (pg/mL)	258 (5 RCTs)	The mean highest/24 h IL-10 concentrations (pg/mL) was 298.04 (169.67 higher to 285.03 higher)	MD 227.35 higher (169.67 higher to 285.03 higher)	7.73 (<0.00001)	⊕⊕⊕⊕ HIGH
≤50 mg/kg hydrocortisone	40 (1 RCT)	The mean highest/24 h IL-10 concentrations (pg/mL) was 48.1 (99.29 higher to 542.91 higher)	MD 321.1 higher (99.29 higher to 542.91 higher)	2.84 (0.005)	⊕⊕⊕⊕ HIGH
>50 mg/kg hydrocortisone	218 (4 RCTs)	The mean highest/24 h IL-10 concentrations (pg/mL) was 343.91 (160.82 higher to 280.28 higher)	MD 220.55 higher (160.82 higher to 280.28 higher)	7.24 (<0.00001)	⊕⊕⊕⊕ HIGH

CI, Confidence interval; OR, odds ratio; MD, mean difference.

GRADE Working Group grades of evidence
- **High certainty:** We are very confident that the true effect lies close to that of the estimate of the effect.
- **Moderate certainty:** We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
- **Low certainty:** Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect.
- **Very low certainty:** We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect.

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).
TABLE 3 | Summary of corticosteroids impact on adults and pediatric.

Group	Outcome	OR	CI	p	I²	Impact
Adult	Myocardial infarction	1.19	1.05–1.35	0.008	0%	Increased
	Insulin infusion	1.91	1.18–3.11	0.009	46%	Increased
	Mortality	0.86	0.71–1.03	0.1	0%	Unaffected
	Postoperative atrial fibrillation	0.68	0.57–0.82	<0.0001	48%	Reduced
	ICU stay	−0.27	−0.34–−0.19	<0.0001	93%	Reduced
	Hospital stay	−0.66	−1.03–−0.30	0.0003	95%	Reduced
	Postoperative bleeding	−0.73	−169.45–−30.00	0.005	84%	Reduced
	Re-intubation	0.35	0.13–0.95	0.004	6%	Reduced
	IL-6	−139.77	−161.56–−117.97	<0.001	99%	Reduced
	TNF-α	−4.23	−6.85–−1.60	0.002	88%	Reduced
	IL-8	−5.81	−10.96–−0.66	0.003	97%	Reduced
	Kidney injury	0.83	0.68–1.01	0.06	0%	Unaffected
	Pulmonary complications	0.91	0.78–1.05	0.2	0%	Unaffected
	Stroke	0.85	0.66–1.08	0.18	0%	Unaffected
	Gastrointestinal bleeding	1.22	0.88–1.69	0.24	0%	Unaffected
	Postoperative infection	0.95	0.84–1.07	0.4	0%	Unaffected
	Delirium	0.89	0.79–1.01	0.08	45%	Unaffected
	Mechanical ventilation time	−0.48	−1.04–0.09	0.1	94%	Unaffected
Pediatric	Myocardial infarction	0.96	0.43–2.17	0.93	0%	Unaffected
≤20 mg/kg hydrocortisone	Insulin infusion	1.72	0.83–3.55	0.15	36%	Unaffected
	Mortality	0.57	0.25–1.31	0.19	0%	Unaffected
	Postoperative atrial fibrillation	0.58	0.44–0.76	<0.0001	13%	Reduced
	ICU stay	−1.48	−2.73–−0.22	<0.0001	96%	Reduced
	Hospital stay	−2.29	−4.51–−0.07	<0.0001	96%	Reduced
	Mechanical ventilation time	−2.74	−4.14–1.33	0.0001	92%	Reduced
	Postoperative bleeding	−20.83	−56.43–14.78	0.25	0%	Unaffected
	Kidney injury	0.38	0.13–1.11	0.08	0%	Unaffected
	Pulmonary complications	0.97	0.48–1.93	0.92	0%	Unaffected
	Stroke	0.85	0.25–2.82	0.79	0%	Unaffected
	Postoperative infection	0.84	0.52–1.33	0.45	0%	Unaffected
Pediatric	Reduced CRP	−20.12	−28.68–−11.55	<0.001	42%	Reduced
≤50 mg/kg hydrocortisone	Reduced IL-6	−108.60	−206.02–−11.18	0.03	95%	Reduced
	Increased IL-10	227.35	169.67–285.03	<0.001	40%	Increased
	Decreased CPB time	−11.54	−14.32–−8.75	<0.001	5%	Reduced
	Increased insulin infusion	3.68	1.53–8.84	0.004	48%	Increased
	mortality	0.57	0.30–1.11	0.1	0%	Unaffected
	kidney injury	0.47	0.22–1.01	0.05	46%	Unaffected
	ECMO use	0.38	0.13–1.10	0.07	0%	Unaffected
	postoperative infection	0.68	0.25–1.85	0.45	0%	Unaffected
	mechanical ventilation time	−7.37	−15.53–0.79	0.08	83%	Unaffected
	ICU length of stay	−0.00	−0.12–0.11	0.96	0%	Unaffected
Pediatric	Reduced IL-6	−102.67	−185.42–−19.93	0.02	78%	Reduced
≤50 mg/kg hydrocortisone	Decreased CPB time	−12.06	−15.19–−8.94	<0.001	3%	Reduced
	kidney injury	0.29	0.09–0.96	0.04	49%	Reduced
	mortality	0.71	0.23–2.19	0.55	0%	Unaffected
	mechanical ventilation time	−28.23	−73.47–17.01	0.22	65%	Unaffected
	ICU length of stay	−1.06	−3.08–0.96	0.3	51%	Unaffected

(16). However, corticosteroids exert dose-dependent anti-inflammatory effects and clinical side effects (3, 4, 7). Thus, we hypothesized that an appropriate dosage range might effectively inhibit SIRS and provide clinical benefits without major side effects, as the optimal corticosteroids dose would protect cardiomyocytes rather than damage them.

Our results revealed that corticosteroids prophylaxis reduced the blood concentrations of various inflammatory markers after cardiac surgery, including CRP, TNF-α, IL-6, and IL-8. These findings support the prophylactic administration of corticosteroids to prevent SIRS after cardiac surgery with CPB (8–10). However, we did not detect any significant change in mortality, which is consistent with the results of previous studies (5–7, 13, 14, 19). This may be related to advanced cardiac surgery management and active treatment of complications in the current era.

The SIRS trial and Ho et al.’s meta-analysis of 50 small RCTs revealed that corticosteroids prophylaxis in adults significantly increased the risks of myocardial infarction and hyperglycemia requiring insulin infusion (6, 14). In this context, high doses of corticosteroids can rapidly and significantly induce insulin resistance, reduce cellular utilization of glucose, and cause hyperglycemia (20). Hyperglycemia downregulates glyoxalase 1 and glyoxalase 2, which inhibits the post-injury repair of
cardiomyocytes (21). This may be the main mechanism through which high-dose corticosteroids induce myocardial infarction. We found that corticosteroids (>20 mg/kg hydrocortisone), but not low-dose corticosteroids, increased the risk of myocardial infarction and hyperglycemia requiring insulin infusion in adults. This may be because low-dose corticosteroids inhibit SIRS and protect cardiomyocytes, without substantially impairing glucose utilization. We did not observe a substantial change in this relationship when we re-analyzed data from 18 high-quality RCTs (Jadad score of ≥4, 18/25 trials), which all adopted the general definition of myocardial infarction and used cardiac biomarkers to predict its occurrence. In children, corticosteroids increased the use of insulin but did not significantly influence the risk of myocardial infarction, which may be related to neonatal cardiomyocytes having increased glucose uptake and utilization (22).

The DECS trial (13) and the SIRS trial (14) revealed that corticosteroids prophylaxis did not reduce the risk of atrial fibrillation in adult patients after cardiac surgery. However, meta-analyses by Ho et al. (6) and Ng et al. (7) revealed that corticosteroids prophylaxis could significantly reduce the incidence of atrial fibrillation. Ho et al. (6) reported that both low-dose and high-dose corticosteroids could significantly reduce the risk of atrial fibrillation. Ng et al.’s meta-analysis included the DECS and SIRS trials, but did not include a stratified dose analysis (7). Interestingly, we found that only

TABLE 1

Corticosteroids	Control	Odds Ratio	Odds Ratio
Abbassazadeh 2012	4 92	6 92 1.3%	0.65 [0.18, 2.39]
Halonen 2007	1 120	1 121 0.2%	1.01 [0.06, 16.31]
Hlawatsch 2003	3 147	1 147 0.2%	3.04 [0.31, 29.58]
Murphy 2011	2 60	2 49 0.5%	0.81 [0.11, 5.97]
Yared 1998/2000	0 106	1 110 0.3%	0.34 [0.01, 8.51]
Yared 2007	1 37	0 34 0.1%	2.84 [0.11, 71.99]
Subtotal (95% CI)	562	553 2.8%	0.96 [0.43, 2.17]

FIGURE 2 Impact of corticosteroids on myocardial infarction (adult).
FIGURE 3 | Impact of corticosteroids on mortality (adult).

Corticosteroids

Study or Subgroup	Events	Total	Odds Ratio	Odds Ratio	
			M-H. Fixed 95% CI		
				M-H. Fixed 95% CI	
1.1.1 ≤ 20mg/kg hydrocortisone					
Abbaszadeh 2012	0	92	0.6%	0.33 [0.01, 8.20]	
Bingol 2005	0	20	20%	0.18 [0.01, 4.01]	
Brethner 2019	0	15	15%	Not estimable	
Halonen 2007	1	120	0.2%	3.05 [0.12, 75.62]	
Halvorsen 2003	1	147	0.4%	1.00 [0.06, 16.14]	
Kilger Schelling 2003/2004	2	48	43%	0.27 [0.05, 1.41]	
Murphy 2011	0	60	0%	Not estimable	
Weis 2009	0	19	17%	Not estimable	
Yared 1998/2000	2	106	110%	0.69 [0.11, 4.19]	
Yared 2007	0	37	0%	2.64 [0.11, 71.99]	
Subtotal (95% CI)	664	648	9.9%	0.57 [0.23, 1.31]	
Total events	7	13			

Heterogeneity: Chi² = 3.63, df = 6 (P = 0.73); I² = 0%
Test for overall effect: Z = 1.32 (P = 0.19)

1.1.2 20–40mg/kg hydrocortisone

Study or Subgroup	Events	Total	Odds Ratio	Odds Ratio	
Abd El-Hakeem 2003a	0	23	23%	Not estimable	
Bourbon 2004a	0	12	12%	Not estimable	
Deiterman 2012	31	2235	13.3%	0.92 [0.59, 1.44]	
El Azab 2002	0	9	8%	Not estimable	
Hang 1999/2001	0	10	10%	0.30 [0.01, 8.33]	
Mardani 2012	0	43	50%	Not estimable	
Moraru 2005	0	10	10%	Not estimable	
Sobieski 2008	0	13	15%	Not estimable	
VonSpiegel 2001/2002	0	10	10%	Not estimable	
Whitleck 2006	154	3755	67.7%	0.98 [0.69, 1.08]	
Whitleck 2015	1	30	0%	3.10 [0.12, 79.23]	
Subtotal (95% CI)	6150	6167	81.7%	0.87 [0.71, 1.07]	
Total events	186	212			

Heterogeneity: Chi² = 1.03, df = 3 (P = 0.79); I² = 0%
Test for overall effect: Z = 1.32 (P = 0.19)

1.1.3 40–100mg/kg hydrocortisone

Study or Subgroup	Events	Total	Odds Ratio	Odds Ratio	
Al-Shawabih 2016	2	170	0.8%	1.00 [0.14, 7.18]	
Bourbon 2004b	0	12	12%	Not estimable	
Liakopoulos 2007	1	40	0%	2.92 [0.12, 74.01]	
Lommrothov 2013	2	22	22%	2.10 [0.18, 20.01]	
Oliver 2004	0	62	63%	Not estimable	
Prasongsukarn 2005	0	43	43%	Not estimable	
Rao 1977	2	75	3%	0.69 [0.11, 4.05]	
Rubens 2005	0	34	34%	0.32 [0.01, 8.23]	
Rumalla 2001	0	6	7%	Not estimable	
Taleska 2020	0	20	20%	Not estimable	
Vukovic 2011	0	29	28%	Not estimable	
Subtotal (95% CI)	913	912	3.1%	0.99 [0.37, 2.69]	
Total events	7	7			

Heterogeneity: Chi² = 1.44, df = 4 (P = 0.84); I² = 0%
Test for overall effect: Z = 0.01 (P = 0.99)

1.1.4 > 100mg/kg hydrocortisone

Study or Subgroup	Events	Total	Odds Ratio	Odds Ratio		
Andersen 1989	1	8	8%	3.40 [0.12, 96.70]		
Boscoe 1983	3	17	17%	0.2%	8.45 [0.40, 177.29]	
Celik 2004	1	30	30%	0.8%	0.48 [0.04, 5.63]	
Chaney 1998/1999	1	30	30%	0.8%	0.48 [0.04, 5.63]	
Chaney 2001a	0	29	29%	0.6%	0.32 [0.01, 8.24]	
Chaney 2001b	0	30	30%	0.6%	0.31 [0.01, 7.90]	
Codd 1977	1	75	75%	0.2%	3.04 [0.12, 75.83]	
Cweitzer 1996	7	165	130%	2.1%	1.11 [0.34, 3.57]	
Fich 1978	0	25	25%	Not estimable		
Fierres 1964/1987	0	40	40%	Not estimable		
Mayumi 1997	0	12	12%	Not estimable		
Niazi 1979a	0	30	30%	Not estimable		
Niazi 1979b	0	30	30%	Not estimable		
Villepe 1977	6	50	50%	3.9%	0.48 [0.16, 1.43]	
Wain 1959	0	10	10%	Not estimable		
Subtotal (95% CI)	581	545	9.2%	0.85 [0.47, 1.53]		
Total events	20	22				

Heterogeneity: Chi² = 5.81, df = 8 (P = 0.67); I² = 0%
Test for overall effect: Z = 0.53 (P = 0.60)

Total (95% CI) 7908 7872 100.0% 0.86 [0.71, 1.03]
Total events 220 254

Heterogeneity: Chi² = 12.78, df = 24 (P = 0.97); I² = 0%
Test for overall effect: Z = 1.86 (P = 0.06)
Test for subgroups differences: Chi² = 1.04, df = 3 (P = 0.76); I² = 0%
low-dose corticosteroids (≤20 mg/kg hydrocortisone) were effective for reducing the risk of atrial fibrillation, with no positive effects observed at a slightly higher dose (20–40 mg/kg hydrocortisone), a high dose (40–100 mg/kg hydrocortisone), or an ultra-high dose (>100 mg/kg hydrocortisone). These findings were not noticeably different when we re-analyzed 27 high-quality RCTs (27/33 RCTs), with low heterogeneity and no detectable publication bias. Unfortunately, the relevant molecular mechanisms are not clear, although the SIRS can induce atrial fibrillation (23). Thus, we speculate that low-dose corticosteroids might inhibition SIRS without increasing cardiomyocyte damage, which would reduce the incidence of atrial fibrillation. In contrast, high-dose corticosteroids might reduce SIRS but increase cardiomyocyte damage, which would not reduce the risk of atrial fibrillation.

The SIRS can cause systemic multi-organ damage, which often involves kidney damage (5–7). Prophylactic administration of corticosteroids protects the tissues and prevents the further development of organ damage. This can be confirmed in Fig. 4, where corticosteroids significantly reduce the incidence of atrial fibrillation in high-risk patients.

![Figure 4](https://example.com/figure4.png)

FIGURE 4 Impact of corticosteroids on postoperative new atrial fibrillation (adult).
organisms by inhibiting SIRS and thus reduces complications (8–10). We failed to identify significant effects of corticosteroids prophylaxis on the risks of pulmonary complications, neurological complications (stroke), gastrointestinal bleeding, and delirium, which might be related to the low incidences of those outcomes. However, prophylactic corticosteroids (≤50 mg/kg hydrocortisone) significantly reduced the risk of kidney injury in pediatric patients, and low-dose corticosteroids (≤20 mg/kg hydrocortisone) might reduce the risk of kidney injury in adult patients. While corticosteroids suppress the normal immune response and may increase the risk of postoperative infection (7), our results and those from previous studies suggest that corticosteroids prophylaxis did not influence the risk of postoperative infection (6, 13, 14). Ho et al. (6) reported that corticosteroids prophylaxis was closely associated with prolonged mechanical ventilation, and we found that low-dose corticosteroids (≤20 mg/kg hydrocortisone) significantly shortened the mechanical

![FIGURE 5](image-url)
ventilation duration for adult patients, while high doses (>100 mg/kg hydrocortisone) significantly prolonged the mechanical ventilation duration. We also found that low-dose corticosteroids significantly reduced the ICU and hospital LOSs for adult patients, which might be related to accelerated recovery that was caused by suppression of the SIRS and reduced tissue and organ damage. Therefore, corticosteroids may be a cost-effective prophylactic treatment (generally <$5/patient) that can help reduce the burden on patients and hospitals by decreasing the risks of complications and shortening the ICU and hospital LOSs. Furthermore, the lower risk of complications may improve patients’ perioperative quality of life.

Our meta-analysis considered the dose-dependent benefits and risks of prophylactic corticosteroids during adult and pediatric cardiac surgery based on 29 clinical outcomes. Our findings conflict with the lack of support for corticosteroids prophylaxis during cardiac surgery in previous studies (5–7, 13, 14) and the guidelines for adult cardiac surgery (16). Our results suggest that low-dose corticosteroids (≤20 mg/kg hydrocortisone) were not associated with a significant reduction in mortality, but might substantially benefit adult patients by inhibiting SIRS and reducing complications. Therefore, we recommend prophylactic administration of low-dose corticosteroids (≤20 mg/kg hydrocortisone) during adult cardiac surgery. However, the optimal dose range for corticosteroids prophylaxis during pediatric cardiac surgery is unclear, as we only identified a small number of related RCTs. Nevertheless, our results indicate that high-dose glucocorticoids did not provide any benefits and significantly increased insulin use, which may increase the risk of hyperglycemia and related complications.

The evidence from our study was judged to be high based on the GRADE system. The low-dose subgroup for adult cardiac surgery (≤20 mg/kg hydrocortisone) only included 14 small RCTs, although 10 of these RCTs were considered high-quality based on the Jadad scores. Thus, large multi-center RCTs are needed as an additional source of evidence to clarify efficacy and optimal dose range for low-dose prophylactic corticosteroids during adult and pediatric cardiac surgery with CPB.

DATA AVAILABILITY STATEMENT
The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS
LWC, TCC, XHZ, and ZHQ designed the study. XJY, ZHQ, and MYT completed the literature search. All authors screened the results, extracted the data, and assessed the risk of bias. LWC, TCC, and XJY performed the statistical analyses. TCC and XHZ wrote the report. All authors participated in evaluating
This work was supported by the National Natural Science Foundation of China [U2005202], the Fujian Province Major Science and Technology Program [2018YZ001-1], the Natural Science Foundation of Fujian Province [2020J01998, 2020J02056], and the Fujian provincial health technology project [2019-ZQN-50].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/article/10.3389/fsurg.2022.832205/full#supplementary-material.

REFERENCES

1. D’Agostino RS, Jacobs JP, Badhwar V, Paone G, Rankin JS, Han JM, et al. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2019 Update on Outcomes and Quality. Ann Thorac Surg. (2018) 107(1):24–32. doi: 10.1016/j.athoracsur.2018.10.004
2. Westaby. Complement and the damaging effects of cardiopulmonary bypass. Thorax. (1983) 38(5):321–5. doi: 10.1136/thx.38.5.321
3. McGuinness J, Bouchier-Hayes D, Redmond J. Understanding the inflammatory response to cardiac surgery. Surgeon. (2008) 6(3):162–71. doi: 10.1016/S1479-666X(08)80113-8
4. Loef BG, Henning RH, Epema AH, Rietman GW, van Oeveren W, Navis GJ, et al. Effect of dexamethasone on perioperative renal function impairment during cardiac surgery with cardiopulmonary bypass. Br J Anaesth. (2004) 93(6):793–8. doi: 10.1093/bja/aeh266
5. Whitlock RP, Chan S, Devereaux PJ, Sun J, Rubens FD, Thorlund K, et al. Clinical benefit of steroid use in patients undergoing cardiopulmonary bypass: a meta-analysis of randomized trials. Eur Heart J. (2008) 29(21):2392–600. doi: 10.1093/eu heart/ejn333
6. Ho K, Tan J. Benefits and risks of corticosteroids prophylaxis in adult cardiac surgery: a dose-response meta-analysis. Circulation. (2009) 119(14):1853–66. doi: 10.1161/CIRCULATIONAHA.108.848218
7. Ng KT, Van Paassen J, Langan C, Sarode DP, Arbous MS, Alston RP, et al. The efficacy and safety of prophylactic corticosteroids for the prevention of adverse outcomes in patients undergoing heart surgery using cardiopulmonary bypass: a systematic review and meta-analysis of randomized controlled trials. Eur J Cardiothorac Surg. (2020) 57:620–7. doi: 10.1093/ejcts/ezz325
8. Pesonen E, Keski-Nisula J, Andersson S, Palo R, Salminen J, Suominen P. High-dose methylprednisolone and endothelial glycoalyx in paediatric heart surgery. Acta Anaesthesiol Scand. (2016) 60(10):1386–94. doi: 10.1111/aas.12785
9. Heying R, Wehage E, Schumacher K, Tassani P, Haas F, Lange R, et al. Dexamethasone pretreatment provides anti-inflammatory and myocardial protection in neonatal arterial switch operation. Ann Thorac Surg. (2012) 93(3):689–7. doi: 10.1016/j.athoracsur.2011.11.059
10. Bronicki RA, Backer CL, Badhwar V, Navia J, Crawford SE, Green TP. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. (2000) 69(5):1490–5. doi: 10.1016/S0003-4975(00)01082-1
11. Chaney M. Corticosteroids and cardiopulmonary bypass: a review of clinical investigations. Chest. (2012) 133(5):921–31. doi: 10.1378/chest.12.3.921
12. Mayumi H, Zhang QW, Nakashima A, Masuda M, Kohn H, Kawachi Y, et al. Synergistic immunosuppression caused by high-dose methylprednisolone and cardiopulmonary bypass. Ann Thorac Surg. (1997) 63(1):129–37. doi: 10.1016/S0003-4975(96)00682-0
13. Dieleman JM, Nierich AP, van der Maaten JM, Ho PN, van den Goor J, et al. Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial. JAMA. (2012) 308(17):1761–7. doi: 10.1001/jama.2012.14144
14. Whitlock RP, Devereaux PJ, Teoh KH, Lamy A, Vincent J, Pogue J, et al. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet. (2003) 362(9386):513–7. doi: 10.1016/S0140-6736(03)14073-1
15. Keski-Nisula J, Pesonen E, Ollikola K, Peltola K, Neuvonen PJ, Tuominen N, et al. Methylprednisolone in neonatal cardiac surgery: reduced inflammation without improved clinical outcome. Ann Thorac Surg. (2013) 95(6):2126–32. doi: 10.1016/j.athoracsur.2013.02.013
16. Kunst G, Milojevic M, Boer C, De Somer F, Gudbjartsson T, van den Goor J, et al. 2019 EACTS/EACTA/ERCPC guidelines on cardiopulmonary bypass in adult cardiac surgery. Br J Anaesth. (2019) 123(6):713–57. doi: 10.1093/bja/a bija.2019.09.012
17. Cumpston M, Li T, Page M, Chandler J, Welch VA, Higgins JP, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev. (2019) 10:ED000142.
18. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. (1996) 17: doi: 10.1016/0197-2456(95)00134-4
19. Losimovorotov V, Kornilov I, Boboshko V, Shmyrev Y, Bondarenko I, Soynov I, et al. Effect of Intraoperative Dexamethasone on Major Complications and Mortality Among Infants Undergoing Cardiac Surgery: The DECISION Randomized Clinical Trial. JAMA. (2020) 323(24):2485–92. doi: 10.1001/jama.2020.8137
20. Hartmann K, Koenen M, Schauer S, Wittig-Blach S, Ahmad M, Baschant U, et al. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev. (2016) 96(2):409–47. doi: 10.1152/physrev.00011.2015
21. Molgot ASD, Tilokee EL, Rasafianti G, Urosevic B, Ruel M, Milne R, et al. Hyperglycemia inhibits cardiac stem cell-mediated cardiac repair and angiogenic capacity. Circulation. (2014) 130:570–6. doi: 10.1161/CIRCULATIONAHA.113.07908
22. Calmettes G, John S, Weiss J, Ribalet B. Hexokinase-mitochondrial interactions regulate glucose metabolism differentially in adult and neonatal cardiac myocytes. J Gen Physiol. (2013) 142(4):425–36. doi: 10.1085/jgp.201310968
23. Hu Y-F, Chen Y-J, Lin Y-F, Chen S-A. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardio. (2015) 12(4):230–43. doi: 10.1038/nr cardio.2015.2
24. Abbaszadeh M, Khan ZH, Mehrani F, Jahnnehm H. Perioperative intravenous corticosteroids reduce incidence of atrial fibrillation following cardiac surgery: a randomized study. Rev Bras Cir Cardiovasc. (2012) 27:18–23. doi: 10.5935/1678-9741.20120005
25. Abd El-Hakeem EE, Ashry MA, El-Minshawy A, Maghraby EA. Influence of dexamethasone on cytokine balance in patients undergoing valve replacement surgery. Egyptian J Anaesth. (2003) 19(3):205–14. doi: 10.13140/RG.2.2.33395.96800
26. Al-Shawabkeh Z, Al-Nawaesah K, Anzeh RA, Al-Odwan H, Al-Rawashdeh WA, Altaeni H. Use of short-term steroids in the prophylaxis of atrial fibrillation after cardiac surgery. J Saudi Heart Assoc. (2017) 29:23–9. doi: 10.1016/j.jsha.2016.03.005
27. Amanullah MM, Hamid M, Hanif HM, Muzaffar M, Siddiqui MT, Adhi F, et al. Effect of steroids on inflammatory markers and clinical parameters in
congenital open heart surgery: a randomised controlled trial. *Cardiol Young* (2016) 26:506–15. doi: 10.1017/S1047951115000566

28. Andersen LW, Back L, Thomsen BS, Rasmussen JP. Effect of methylprednisolone on endotoxemia and complement activation during cardiopulmonary bypass. *J Cardiothorac Anesth*. (1989) 3:544–9. doi: 10.1088/0889-6296(89)90150-6

29. Ando M, Park IS, Wada N, Takahashi Y. Steroid supplementation: a legitimate pharmacotherapy after neonatal open heart surgery. *Ann Thorac Surg*. (2005) 80:1672–8. doi: 10.1016/j.athoracsur.2005.04.035

30. Bingol H, Cingoz F, Balkan A, Kilic S, Belocad C, Demirkilic U, et al. The effect of oral prednisolone with chronic obstructive pulmonary disease undergoing coronary artery bypass surgery. *J Card Surg*. (2005) 20:252–6. doi: 10.1111/j.1540-8191.2005.200392.x

31. Boscoe MJ, Tweedall VM, Thompson MA, Cameron JS. Complement activation during cardiopulmonary bypass: a quantitative study of effects of methylprednisolone and pulsatile flow. *Br Med J (Clin Res Ed)*. (1983) 287:1747–50. doi: 10.1136/bmj.287.6407.1747

32. Bourbon A, Vionnet M, Leprince P, Vaissier E, Copeland J, McDonagh P, et al. The effect of methylprednisolone treatment on the cardiopulmonary bypass-induced systemic inflammatory response. *Eur J Cardiothorac Surg*. (2004) 26:932–8. doi: 10.1016/j.ejcts.2004.07.044

33. Brettner F, Chappell D, Nebelsiek T, Hauer D, Schelling G, Becker BF, et al. Preinterventional hydrocortisone sustains the endothelial glycocalyx in cardiac surgery. *Clin Hemorheol Microcirc*. (2019) 71:59–70. doi: 10.3233/CH-181834

34. Bronicki RA, Backer CL, Baden HP, Mavroudis C, Crawford SE, Green TP. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. *Ann Thorac Surg*. (2000) 69:1490–5. doi: 10.1016/s0003-4975(00)01082-1

35. Butler J, Pathi VL, Paton RD, Logan RW, MacArthur KJ, Jamieson MP, et al. Effects of methylprednisolone on blood-brain barrier and cerebral inflammation in cardiac surgery-a randomized trial. *J Neuroinflammation*. (2018) 15:283. doi: 10.1186/s12974-018-1318-y

36. Butler J, Pathi VL, Paton RD, Logan RW, MacArthur KJ, Jamieson MP, et al. Inhibition by dexamethasone of the inflammatory response to cardiopulmonary bypass grafting and early tracheal extubation. *JAMA*. (2001) 287:1747–50. doi: 10.1136/bmj.287.6407.1747

37. Buchheit M, Nikolov MP, Blakeman B, Kalko Y, Tireli E, Dayioglu E, et al. Influence of methylprednisolone on levels of neuron-specific enolase in cardiac surgery: a corticosteroid derivative to decrease possible neuronal damage. *J Card Surg*. (2009) 24:397–403. doi: 10.1111/j.1540-8191.2009.00842.x

38. Chaney MA, Nikolov MP, Blakeman B, Kalko Y, Tireli E, Dayioglu E, et al. Influence of methylprednisolone on levels of neuron-specific enolase in cardiac surgery: a corticosteroid derivative to decrease possible neuronal damage. *J Card Surg*. (2009) 24:397–403. doi: 10.1111/j.1540-8191.2009.00842.x

39. Demir T, Ergenoglu MU, Demir HB, Tanrikulu N, Sahin M, Gok E, et al. Pretreatment with methylprednisolone improves myocardial protection during on-pump coronary artery bypass surgery. *Heart Surg Forum*. (2015) 18:E171–7. doi: 10.1353/hsf.1367

40. El Azab SR, Rosseel PM, de Lange JG, Groeneveld AB, van Strik R, van Wijk EM, et al. Dexamethasone decreases the pro- to anti-inflammatory cytokine ratio during cardiac surgery. *Br J Anaesth*. (2002) 88:496–501. doi: 10.1093/bja/88.4.496

41. Enc Y, Karaca P, Ayoglu U, Camur G, Kurc E, Cicek S. The acute cardioprotective effect of glucocorticoid in myocardial ischemia-reperfusion injury occurring during cardiopulmonary bypass. *Heart Surg Forum*. (2006) 9:152–6. doi: 10.1007/s00380-005-0887-5

42. Engelmann R, Roussou JA, Flack 3rd JE, Deaton DW, Kalin R, Das DK. Influence of steroids on complement and cytokine generation after cardiopulmonary bypass. *Ann Thorac Surg*. (1995) 60:801–4. doi: 10.1016/s0003-4975(95)00211-3

43. Fecht DC, Magovern GJ, Park SB, Merkow LP, Dixon CM, Dosios T, et al. Beneficial effects of methylprednisolone in patients on cardiopulmonary bypass. *Circ Shock*. (1978) 5:415–22. https://www.ncbi.nlm.nih.gov/pubmed/378432

44. Fillinger MP, Rassias AJ, Guyre PM, Sanders JH, Beach M, Pahl J, et al. Glucocorticoid effects on the inflammatory and clinical responses to cardiac surgery. *J Cardiothorac Vasc Anesth*. (2002) 16:163–9. doi: 10.1053/jcva.2002.31057

45. Giomarelli P, Scloletta S, Borrelli E, Biagioli B. Myocardial and lung injury after cardiopulmonary bypass: role of interleukin (IL)-10. *Ann Thorac Surg*. (2003) 76:117–23. doi: 10.1016/s0003-4975(03)00194-2

46. Gomez Polo JC, Vilacosta I, Gomez-Alvarez Z, Vivas D, Martin-Garcia AG, Fortuny-Frau E, et al. Short-term use of corticosteroids in the prophylaxis of atrial fibrillation after cardiac surgery and impact on the levels of acute phase proteins in this context. *Eur Heart J*. (2018) 39 (suppl.1). doi: 10.1093/eurheartj/ehy563.3275

47. Graham EM, Martin RH, Buckley JR, Zyliewski SC, Kavarana MN, Bradley SM, et al. Corticosteroid therapy in neonates undergoing cardiopulmonary bypass: randomized controlled trial. *J Am Coll Cardiol*. (2019) 74:659–68. doi: 10.1016/j.jacc.2019.05.060

48. Halonen J, Halonen P, Jarvinen O, Tarkka M, Taskinen P, Auvinen T, et al. Corticosteroids for the prevention of atrial fibrillation after cardiac surgery: a randomized controlled trial. *JAMA*. (2009) 293:1562–7. doi: 10.1001/jama.297.14.1562

49. Harig F, Feyrer R, Mahmoud FO, Blum U, von der Emde J. Reducing the postoperative inflammatory response. *Thorac Surg Clin*. (1999) 9(2):227–36. doi: 10.1053/tsc.1999.0899

50. Hao X, Han J, Zeng H, Wang H, Li G, Jiang C, et al. The effect of methylprednisolone on levels of neuron-specific enolase in cardiac surgery: a corticosteroid derivative to decrease possible neuronal damage. *J Card Surg*. (2009) 24:397–403. doi: 10.1111/j.1540-8191.2009.00842.x

51. Harig F, Hohenstein B, von der Emde J, Weyand M. Modulating IL-6 and IL-10 levels by pharmacologic strategies and the impact of different extracorporeal circulation parameters during cardiac surgery. *Shock*. (2001) 16(Suppl 1):33–8. doi: 10.1097/00023432-20011601-o0007

52. Heising AE, Wohage E, Schumacher T, Tassani P, Haas F, Lange R, et al. Dexamethasone pretreatment provides antiinflammatory and myocardial protection in neonatal arterial switch operation. *Ann Thorac Surg*. (2012) 93:609–67. doi: 10.1016/j.athoracsur.2011.11.039

53. Jansen NJ, van Oeveren W, van den Broek L, Oudemans-van Straaten HM, Stoutenbeek CP, Joen MC, et al. Inhibition by dexamethasone of the...
reperfusion phenomena in cardiopulmonary bypass. J Thorac Cardiovasc Surg. (1991) 102:315–25. https://www.ncbi.nlm.nih.gov/pubmed/1656149
63. Keski-Nisula J, Suominen PK, Ollikola KT, Peltola K, Neuvonen PJ, Tynkkynen P, et al. Effect of timing and route of methylprednisolone administration during pediatric cardiac surgical procedures. Ann Thorac Surg. (2015) 99:180–5. doi: 10.1016/j.athoracsur.2014.08.042
64. Keski-Nisula J, Arvola O, Jahnukainen T, Andersson S, Pesonen E. Reduction of inflammatory by high-dose methylprednisolone does not attenuate oxidative stress in children undergoing bidirectional Glenn procedure with or without aortic arch or pulmonary arterial repair. J Cardiothorac Vasc Anesth. (2020) 34:1542–7. doi: 10.1053/j.jvca.2019.10.015
65. Kilger E, Weis F, Brigelj J, Frey L, Goetz AE, Reuter D, et al. Stress doses of hydrocortisone reduce severe systemic inflammatory response syndrome and improve early outcome in a risk group of patients after cardiac surgery. Crit Care Med. (2003) 31:1068–74. doi: 10.1097/01.CCM.000005646.89545.98
66. Keski-Nisula J, Morariu AM, Loef BG, Aarts LP, Rietman GW, Rakhorst G, van Oeveren W, et al. Dexamethasone: beneficial effects in children undergoing bidirectional glenn procedure with or without aortic arch or pulmonary arterial repair. J Cardiothorac Vasc Anesth. (2020) 34:1542–7. doi: 10.1053/j.jvca.2019.10.015
67. Kilickan L, Yumuk Z, Bayindir O. The effect of combined preinduction or without aortic arch or pulmonary arterial repair. J Cardiothorac Vasc Anesth. (2020) 34:1542–7. doi: 10.1053/j.jvca.2019.10.015
68. Schelling G, Kilger E, Roozendaal B, de Quervain DJ, Brigelj J, Dagge A, et al. Stress doses of hydrocortisone, traumatic memories, and symptoms of posttraumatic stress disorder in patients after cardiac surgery: a randomized study. Biol Psychiatry. (2004) 55:627–33. doi: 10.1016/j.biopsych.2003.09.014
69. Lindberg L, Forsell C, Jogi P, Olsson AK. Effects of dexamethasone on oxidative stress in children undergoing bidirectional glenn procedure with or without aortic arch or pulmonary arterial repair. J Cardiothorac Vasc Anesth. (2020) 34:1542–7. doi: 10.1053/j.jvca.2019.10.015
70. Nakao A, Morariu AM, Loef BG, Aarts LP, Rietman GW, Rakhorst G, van Oeveren W, et al. Dexamethasone: beneficial effects in children undergoing bidirectional glenn procedure with or without aortic arch or pulmonary arterial repair. J Cardiothorac Vasc Anesth. (2020) 34:1542–7. doi: 10.1053/j.jvca.2019.10.015
71. Mardani D, Bigdelian H. The effect of dexamethasone prophylaxis on oxidative stress during pediatric cardiac surgical procedures. J Cardiothorac Vasc Anesth. (2020) 34:1542–7. doi: 10.1053/j.jvca.2019.10.015
72. Morariu AM, Loef BG, Aarts LP, Rietman GW, Rakhorst G, van Oeveren W, et al. Dexamethasone: beneficial effects in children undergoing bidirectional glenn procedure with or without aortic arch or pulmonary arterial repair. J Cardiothorac Vasc Anesth. (2020) 34:1542–7. doi: 10.1053/j.jvca.2019.10.015
73. Murphy GS, Sherwani SS, Avram MJ, Greenberg SB, Patel KM, et al. Small-dose dexamethasone improves quality of recovery scores after elective cardiac surgery: a randomized, double-blind, placebo-controlled study. J Cardiothorac Vasc Anesth. (2011) 25:950–60. doi: 10.1053/j.jvca.2011.03.002
74. Niazi Z, Ploedin P, Joyce L, Smith J, Mauer H, Lillevie RC. Effects of glucocorticosteroids in patients undergoing coronary artery bypass surgery. Chest. (1979) 76:262–8. doi: 10.1378/chest.76.3.262
75. Oliver WC Jr, Nuttall GA, Orszulak TA, Bamiot WR, Abel MD, Ereth MH, et al. Hemofiltration but not steroids results in earlier tracheal extubation following cardiopulmonary bypass: a prospective, randomized double-blind trial. Anesthesiology. (2004) 101:327–39. doi: 10.1097/01.CCM.0000045220040800-00013
76. Prasongsukam K, Abel JG, Jamieson WR, Cheung A, Russell JA, Walley KR, et al. The effects of steroids on the occurrence of postoperative atrial fibrillation following coronary artery bypass grafting surgery: a prospective randomized trial. J Thorac Cardiovasc Surg. (2005) 130:93–8. doi: 10.1016/j.jtcvs.2004.09.014
77. Rao G, King J, Ford W, King G. The effects of methylprednisolone on the complications of coronary artery surgery. Vasc Surg. (1977) 11:1–7. doi: 10.1177/15385474770100101
78. Rubens FD, Nathan H, Labow R, Williams KS, Wozny D, Karsh J, et al. Effect of methylprednisolone and a biocompatible copolymer circuit on blood activation during cardiopulmonary bypass. Ann Thorac Surg. (2005) 79:655–65. doi: 10.1016/j.athoracsur.2004.07.044
79. Rumalla V, Calvano SE, Spotnitz AJ, Krause TJ, Lin E, Lowry SF. The effects of glucocorticoid therapy on inflammatory responses to coronary artery bypass graft surgery. Arch Surg. (2001) 136:1039–44. doi: 10.1001/archsurg.136.9.1039
80. Sano T, Morita S, Masuda M, Tomita Y, Nishida T, Tatewaki H, et al. Cardiopulmonary bypass, steroid administration, and surgical injury synergistically impair memory T cell function and antigen presentation. Interact Cardiovasc Thorac Surg. (2003) 2:598–602. doi: 10.1515/0156-9224.2003010618-3
81. Sano T, Morita S, Masuda M, Yasui H. Minor infection encouraged by steroid administration during cardiac surgery. Asian Cardiovasc Thorac Ann. (2006) 14:505–10. doi: 10.1017/s02184923060040613
82. Schurr UP, Zund G, Hoerstrup SP, Grunenfelder J, Maly FE, Vogt PR, et al. Preoperative administration of steroids: influence on macrophages and cytokines after cardiopulmonary bypass. Ann Thorac Surg. (2001) 72:1316–20. doi: 10.1016/s0003-4975(01)03062-4
83. Sobieski 2nd MA, Graham JD, Pappas PS, Tatooles AJ, Slaughter MS. Reducing the effects of the systemic inflammatory response to cardiopulmonary bypass: can single dose steroids blunt systemic inflammatory response syndrome? ASAIO J. (2008) 54:203–6. doi: 10.1177/0882797808013002
84. Starobin D, Kramer MR, Garty M, Shirit D. Mortality associated with systemic corticosteroid preparation for coronary artery bypass grafting in patients with chronic obstructive pulmonary disease: a case control study. J Cardiothorac Surg. (2007) 2:25. doi: 10.1186/1749-8090-2-25
85. Suominen PK, Keski-Nisula J, Ojala T, Rautiainen P, Jahnukainen T, Hasibacka J, et al. Stress-dose corticosteroids versus placebo in neonatal cardiac operations: a randomized controlled trial. Ann Thorac Surg. (2017) 104:1378–85. doi: 10.1016/j.athoracsur.2017.01.111
86. Tainio J, Keski-Nisula J, Valkonen H, Patila T, Jalanko H, et al. Efficacy of corticosteroids in prevention of acute kidney injury in neonates undergoing cardiac surgery-A randomized controlled trial. Acta Anaesthesiol Scand. (2018). doi: 10.1111/aas.13134
87. Teoh KH, Bradley CA, Gauldie J, Burrows H. Steroid inhibition of cytokine-mediated vasodilation after warm heart surgery. Cardiovasc Ther. (2020) 2020:7834173. doi: 10.1155/2020/7834173
88. Tassani P, Richter JA, Baranak Y, Braun SL, Haelncl C, Spaeth P, et al. Does high-dose methylprednisolone in aprotinin-treated patients attenuate the systemic inflammatory response during coronary artery bypass grafting procedures? J Cardiovasc Thorac Anesth. (1999) 13:165–72. doi: 10.1053/jjta.1999.00018-2
89. Teoh KH, Bradley CA, Gauldie J, Burrows H. Steroid inhibition of cytokine-mediated vasodilation after warm heart surgery. Circulation. (1995) 92:1134–53. doi: 10.1161/01.cir.99.29.347
90. Tolft P, Christiansen K, Tornesen E, Nielsen CH, Lillevang S. Effect of methylprednisolone on the oxidative burst activity, adhesion molecules and clinical outcome following open heart surgery. Scand Cardiovasc J. (1997) 31:283–8. doi: 10.3109/14017439709069549
94. Toledo-Pereyra LH, Lin CY, Kundler H, Repploge RL. Steroids in heart surgery: a clinical double-blind and randomized study. Am Surg. (1980) 46:155–60. https://www.ncbi.nlm.nih.gov/pubmed/7377659
95. Turkoz A, Cigil A, But K, Seagin N, Turkoz R, Gulcan O, et al. The effects of aprotinin and steroid on generation of cytokines during coronary artery surgery. J Cardiothorac Vasc Anesth. (2001) 15:603–10. doi: 10.1053/jcva.2001.6539
96. Vallejo JL, Gimenez-Fernandez R, Mainel JL, Rivera R. Clinical analysis of the protective effect of methylprednisolone on the heart in anoxic arrest (random study). Rev Esp Cardiol. (1977) 30:705–9. https://www.ncbi.nlm.nih.gov/pubmed/609839
97. Volk T, Schmutzler M, Engelhardt L, Pantke U, Laule M, Stangl K, et al. Effects of different steroid treatment on reperfusion-associated production of reactive oxygen species and arrhythmias during coronary surgery. Acta Anaesthesiol Scand. (2003) 47:667–74. doi: 10.1034/j.1399-6576.2003.00145.x
98. von Spiegel T, Schmutzler M, Engelhardt L, Docke WD, Volk HD, Konertz W, et al. Influence of aminosteroid and glucocorticoid treatment on inflammation and immune function during cardiac bypass. Crit Care Med. (2001) 29:2137–42. doi: 10.1097/00003246-200111000-00015
99. Volk T, Schmutzler M, Engelhardt L, Pastik U, Laule M, Stangl K, et al. Effects of different steroid treatment on reperfusion-associated production of reactive oxygen species and arrhythmias during coronary surgery. Acta Anaesthesiol Scand. (2003) 47:667–74. doi: 10.1034/j.1399-6576.2003.00145.x
100. van Spiegel T, Giannaris S, Wrigge H, Schorn B, Heef A. Effects of dexamethasone on extravascular lung water and pulmonary haemodynamics in patients undergoing coronary artery bypass surgery. Anaesthesist Intensivmed Notfallmed Schmerzther. (2001) 36:545–51. doi: 10.1055/s-2001-17260
101. von Spiegel T, Giannaris S, Wietasch GJ, Schroeder S, Buhr E, Schorn B, et al. Effects of dexamethasone on intravascular and extravascular fluid balance in patients undergoing coronary bypass surgery with cardiopulmonary bypass. Anesthesiology. (2002) 96:827–34. doi: 10.1097/00000542-200204000-00008
102. Vukovic PM, Maravic-Stojkovic VR, Peric MS, Jovic M, Cirkovic MV, Gradinac S, et al. Steroids and statins: an old and a new anti-inflammatory strategy compared. Perfusion. (2011) 26:31–7. doi: 10.1177/0267659101058067
103. Wan S, LeClerc JL, Huynh CH, Schmartz D, DeSmet JM, Yim AP, et al. Does steroid pretreatment increase endotoxin release during clinical cardiopulmonary bypass? J Thorac Cardiovasc Surg. (1999) 117:1004–8. doi: 10.1016/S0022-5229(99)70382-X
104. Weis F, Kilger E, Rozendaal D, de Quervain DJ, Lamm P, Schmidt M, et al. Stress doses of hydrocortisone reduce chronic stress symptoms and improve health-related quality of life in high-risk patients after cardiac surgery: a randomized study. J Thorac Cardiovasc Surg. (2006) 131:277–82. doi: 10.1016/j.jtcvs.2005.07.063
105. Whitlock RP, Young E, Noora J, Farrokhyar F, Blackall M, Teoh KH. Pulse low dose steroids attenuate post-cardiopulmonary bypass SIRS; SIRS I. J Surg Res. (2006) 132:188–94. doi: 10.1016/j.jss.2006.02.013
106. Yared JP, Starr NJ, Hoffmann-Hogg I, Bashour CA, Insler SR, O’Connor 3rd M, et al. Dexamethasone decreases the incidence of shivering after cardiac surgery: a randomized, double-blind, placebo-controlled study. Anesth Analg. (1998) 87:795–9. doi: 10.1097/00000539-199810000-00010
107. Yared JP, Starr NJ, Torres FK, Bashour CA, Bourdakos G, Piedmonte M, et al. Effects of single dose, postinduction dexamethasone on recovery after cardiac surgery. Ann Thorac Surg. (2000) 69:1420–4. doi: 10.1016/ s0003-4975(00)01180-2
108. Yared JP, Bakri MH, Erzurum SC, Moravec CS, Laskowski DM, Van Wagoner DR, et al. Effect of dexamethasone on atrial fibrillation after cardiac surgery: prospective, randomized, double-blind, placebo-controlled trial. J Cardiothorac Vasc Anesth. (2007) 21:68–75. doi: 10.1053/j.jvca.2005.10.014
109. Yasser Mohamed A, Elmistekawy E, El-Serogy H. Effects of dexamethasone on pulmonary and renal functions in patients undergoing CABG with 38 cardiopulmonary bypass. Semin Cardiothorac Vasc Anesth. (2009) 13: 231–7. doi: 10.1177/1089253209351598
110. Yilmaz M, Ener S, Akalin H, Sagdic K, Serdar OA, Cengiz M. Effect of low-dose methyl prednisolone on serum cytokine levels following extracorporeal circulation. Perfusion. (2009) 14:201–6. doi: 10.1177/0267659109340308

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Chai, Zhuang, Tian, Yang, Qiu, Xu, Cai, Chen and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.