The Cellular and Molecular Mechanism of Radiation-Induced Lung Injury

The lung is one of several moderately radiosensitive organs. Radiation-induced lung injury (RILI), including acute radiation pneumonitis and chronic radiation-induced pulmonary fibrosis, occurs most often in radiotherapy of lung cancer, esophageal cancer, and other thoracic cancers. Clinical symptoms of RILI include dry cough, shortness of breath, chest pain, fever, and even severe respiratory failure and death. The occurrence of RILI is a complex process that includes a variety of cellular and molecular interactions which ultimately leads to large fibroblast accumulation, proliferation, and differentiation, resulting in excessive extracellular matrix deposits, causing pulmonary fibrosis. The progress that has been made in recent years in the understanding of cellular and molecular mechanisms of RILI is summarized in this review.

MeSH Keywords: Abnormalities, Radiation-Induced • Fibroblasts • Macrophage Activation • Transforming Growth Factor beta1

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/902353
Background

There are a series of cellular and molecular changes that occur when the lung tissue suffers ionizing radiation that does not cause immediate clinical symptoms. Pulmonary irradiation can produce a large number of reactive oxygen species and reactive nitrogen which causes oxidative damage of DNA, lipid, and protein. The resulting injury or apoptosis of alveolar epithelial cells and vascular endothelial cells then induce a series of inflammatory reactions and chemotaxis of monocytes, lymphocytes, and granulocytes, which gather at the site of tissue injury. The result is secretion of large amounts of inflammatory cytokines, chemokines, and growth factors, such as TGF-β, IFN-γ, ET-1, IL-4, IL-13, which aggregate more inflammatory cells. When this damage becomes chronic, it ultimately leads to pulmonary fibrosis. In summary, a variety of cells and molecules are involved in the complex process of radiation-induced lung injury (RILI) (Figure 1).

Related Cells

Alveolar epithelial cells and vascular endothelial cells

Ionizing radiation-induced injuries in alveolar epithelial cells and vascular endothelial cells are important contributors to RILI and the resulting chronic progression condition. When alveolar epithelial cells and vascular endothelial cells are injured, the connections between cells is damaged, accompanied by impairment in the regulation of myofibroblasts, so that excessive extracellular matrix deposits result in radiation-induced pulmonary fibrosis [1]. Once the barrier of lung tissue is damaged, a large number of blood exudate and inflammatory cells accumulate in the alveolar cavity, which then aggregates numerous fibroblasts and induces their differentiation into myofibroblasts. Activated myofibroblasts then secret angiogenin and hydrogen peroxide, which in turn induces apoptosis of alveolar epithelial cells [2]. The damage to alveolar epithelial cells and vascular endothelial cells results in secretion of a large number of pro-inflammatory and pro-fibrotic cytokines, including TGF-β1, IL-13, ET-1, PGE2 [3].

Th1 and Th2 cells

Th1/Th2 imbalance plays an important role in the development of RILI. When lung tissue is exposed to ionizing radiation, Th1 cells play a role in RILI mainly through the secretion of IFN-γ, whereas Th2 cells play a role mainly through the secretion of IL-4 and IL-13. IFN-γ increases early after irradiation, while Th2-derived IL-4 and IL-13 do not significantly increase in the early stage, but gradually increases over time and are maintained at a high level [4]. IL-4 and IL-13 can co-stimulate with TGF-β1 in collagen synthesis, playing significant roles in tissue remodeling and fibrosis [5,6], while Th1-derived IFN-γ have significant anti-fibrosis and immunomodulatory effects [7]. Excessive Th1 immune response mostly contributes to acute radiation pneumonitis, whereas excessive Th2 immune response mostly contributes to chronic radiation-induced pulmonary fibrosis.

Macrophages and fibroblasts

Interleukins, tumor necrosis factor, transforming growth factor, and platelet-derived growth factor induce activation of macrophages and fibroblasts, which are the major effector cells for synthesis of extracellular matrix [7]. Macrophages can be divided into two types, depending on the induction of cytokines from activated Th1 cells or Th2 cells. Th1-derived cytokine IFN-γ can promote the expression of nitric oxide synthase of macrophages, which is known as classic activated macrophages (M1). And Th2-derived cytokines IL-4 and IL-13 can promote the activity of arginine in macrophages, which is called bypass activated macrophages (M2) [8,9]. In addition, dendritic cells [10] and fibroblasts [11] will have a similar effect when
subjected to Th1/Th2-derived cytokines. The synthesis of prol
line could be eventually promoted by the arginase pathway, and prol
line is the necessary substance for synthesis of collagen, which is the main component of the extracellular matrix, mainly synthesized and secreted by myofibroblasts. Fibroblasts and myofibroblasts accumulate in three ways: in situ proliferation, epithelial-mesenchymal transformation, and deriva
from bone marrow. Accumulation of fibroblasts and myofibro
blasts is induced by TGF-β1, PDGF, CXCL12, and other factors, of which the most important is TGF-β1 [12]. A variety of pro-
fibrotic cytokines (such as IL-4, IL-13, and TNF-α) and growth factors (such as PDGF and CTGF) connect directly or indirectly with TGF-β1. In the normal repair process, the myofibroblasts shrink the damaged area, and then epithelial cells and endo
thelial cells divide and migrate to repair the epithelium and endo
thelium. However, when the tissue suffers sustained in
jury, chronic inflammation and abnormal repair processes can lead to excessive secretion and deposition of extracellular matrix, and ultimately lead to fibrosis and structural changes.

Related Molecules

TGF-β

TGF-β is a potent pro-fibrotic growth factor [13], and its roles are mainly as follows: first it induces proliferation and differen
tiation of fibroblasts; second it promotes synthesis of collagen by fibroblasts and inhibits synthesis of collagenase and plasminogen activator; and third it aggregates a variety of inflamma
tory cells and promotes release of PDGF, TNF-α, IL-4, IL-6, IL-13, etc. There are many subtypes of TGF-β, among which TGF-β1, mainly generated by macrophages [14], is mainly asso
ciated with fibrosis. In the model of bleomycin-induced pulmo
nary fibrosis, almost all active TGF-β1 is generated by alveolar macrophages [15]. TGF-β1 is often combined with latency-as
sociated peptide (LAP) in an inactive form [16]. Therefore, the release and activation of TGF-β1 is indispensable for its com
bination with the receptors TGFBR2 and ALK5, and for the fol
lowing signal transduction process. Smad2/3, a cytoplasmic ef
ector molecule of TGF-β1, phosphorylates and combines with Smad4, and then translocate into the nucleus to regulate tran
scription of target genes, including those encoding type I and type III collagen [17]. However, macrophage-derived TGF-β1 of
ten promotes fibrosis [18], while T cell-derived TGF-β1 may in
hibit fibrosis [19]. Moreover, a small amount of active TGF-β1 may have an anti-inflammatory effect, and only a relatively large amount of active TGF-β1 has a pro-fibrotic effect [20].

ET-1

Endothelin-1 (ET-1), mainly regulated by TGF-β1 in synthesis and secretion [21], is a potent endothelial-derived 21-amino-acid vasoconstrictor peptide [22]. The expression of ET-1 is induced by TGF-β through the ALK5/Smad3 pathway [23]. The activa
tion of ALK5/Smad3/ET-1 pathway inhibits the migration and proliferation of endothelial cells, and increases the expression of fibrosis-associated genes, such as type I collagen and plasmino
gen activator inhibitor (PAI-1). It has been confirmed that ET-1 is not only a vasoconstrictor, but it is also involved in a number of other physiological processes, such as extracellular matrix de
position [24]. When ET-1 is blocked, the differentiation of fibro
blasts into myofibroblasts induced by TGF-β1 will be blocked [25]. In addition, the use of ET-1 antagonist can prolong the survival time of patients with idiopathic pulmonary fibrosis [25].

IL-4

IL-4 is one of the symbolic cytokines of Th2 cells, and it can also be generated by macrophages, fibroblasts and epithelial cells. IL-4 can promote the differentiation of T cells into Th2 cells and the expression of Th2-derived cytokines, and can in
hibit the activities of Th1 cells. IL-4 is closely related to radia
tion-induced pulmonary fibrosis. In serum of patients with idio
pathic pulmonary fibrosis [26] and patients with RLL [27], IL-4 is significantly increased. In vitro, when fibroblasts are treat
ed by IL-4, the expression of type I collagen, type III collagen, and fibronectin increases significantly [28–30].

IL-13

IL-13 is secreted mainly by Th2 cells as well as IL-4, and it can also be generated by mast cells, basophils, and macrophages. IL-13 has many similar functions as IL-4 because they the share α chain of IL-4 receptors, which has an effect through the activation of STAT6 [31]. IL-13 is an important pro-fibrotic cytokines and it is closely related with fibrosis of liver [32], lung [33], and skin [34]. Expression of IL-13 is regulated by endogenous transcription factor GATA-3, which can promote the expression of IL-3 through combining with a promoter se
quence of IL-3 [35]. Han et al. [36] studied the role of Th2 cells in radiation-induced pulmonary fibrosis, and found that GATA-3, IL-13, and Arg-1 were significantly increased.

IFN-γ

IFN-γ, secreted mainly by Th1 cells, has significant anti-fibrosis and immunomodulatory effects [7], which are associated with inhibition of IL-4, IL-13, and TGF-β1-related pathways [37]. As a major effector cytokine of Th1 cells, IFN-γ auto-amplifies Th1 responses and cross-inhibits the differentiation and function of Th2 cells and the expression of Th2-derived cytokines. In ad
dition, IFN-γ induces the expression of Smad7, which plays an inhibitory effect, such as blocking the activation of Smad3 [38] which can also be directly inhibited when bound with IFN-γ-activated STAT1 [39].
PGE2

Prostaglandin E2 (PGE2), derived from arachidonic acid by the catalytic action of cyclooxygenase (COX), plays the role of pro-inflammatory mediator in a variety of diseases. However, in lung tissue, PGE2 plays a unique role in limiting the inflammatory response and the process of tissue repair [40]. PGE2 can inhibit the secretion of TGF-β, the migration of T cells and their differentiation into Th2 cells, and the differentiation of fibroblast into myofibroblast. There are a variety of cytokines produced in the early stage of pulmonary irradiation resulting in large amounts of PGE2 produced by stimulated fibroblasts. In turn, PGE2 triggers a negative feedback on the production of cytokines, and downregulates the function of fibroblasts, including proliferation, collagen synthesis, and capacity of differentiation into myofibroblast [40]. In the late stage of pulmonary irradiation, with the increased differentiation of fibroblast into myofibroblast and continued damage of epithelial cells, the generation of PGE2 decreases [41,42]; this leads to sustained activation of the immune response.

In summary, when the lung tissue suffers RILI, an abnormal repair process can ultimately lead to pulmonary fibrosis, in which a variety of pro-fibrotic cytokines, such as TGF-β, ET-1, IL-4, and IL-13, are involved. Otherwise, IFN-γ and PGE-2 T play a role in the inhibition of pulmonary fibrosis.

Conclusions

When lung tissue suffers ionizing radiation, alveolar epithelial cells and vascular endothelial cells are damaged, and inflammatory mediators are released. Blood vessel dilation and increased permeability allows for efficient accumulation of blood exudate and inflammatory cells at the site of tissue injury. In the early stage of pulmonary irradiation, Th-1 derived IFN-γ induces activation of M1 macrophages. As a major effector cytokine of Th1 cells, IFN-γ auto-amplifies Th1 responses and cross-inhibits the differentiation and function of Th2 cells and the expression of Th2-derived cytokines. If the tissue-damaging irritant persists, the exacerbated inflammatory response leads to substantial lung tissue damage, after which the Th2-derived cytokines IL-4 and IL-13 drive the conversion of the immune response into an abnormal wound healing response, which is characterized by the accumulation of M2 macrophages that promote fibrosis through the production of TGF-β1. Meanwhile, cytokines stimulate the release of great amounts of PGE2 through activated fibroblasts. PGE2, in turn, triggers a negative feedback on the production of cytokines, and inhibits the transendothelial migration of T cells and the transition to Th2 cells, and downregulates the functions of fibroblasts, including proliferation, collagen synthesis, and myofibroblast transformation.

A few achievements have been made on the cellular and molecular mechanisms of RILI, while there is remarkably little progress in the development of safe and effective therapeutic strategies. Therefore, in-depth studies on the prevention and treatment of RILI should be continued.

Competing interests

The authors have no competing interests to disclose.
19. Kitani A, Fuss I, Nakamura K et al: Transforming growth factor (TGF)-beta1-producing regulatory T cells induce Smad-mediated interleukin 10 secretion that facilitates coordinated immunoregulatory activity and amelioration of TGF-beta1-mediated fibrosis. J Exp Med, 2003; 198(8): 1179–88

20. Puthawala K, Hadjiaigelis N, Jacoby SC et al: Inhibition of integrin alpha(v) beta3, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med, 2008; 177(5): 82–90

21. Lee SD, Lee DS, Chun YG et al: Transforming growth factor-beta1 induces endothelin-1 in a bovine pulmonary artery endothelial cell line and rat lungs via cAMP. Pulm Pharmacol Ther, 2000; 13(6): 257–65

22. Minauchi T, Masaki T: Pathophysiology of endothelin in the cardiovascular system. Annu Rev Physiol, 1999; 61: 391–415

23. Castañares C, Redondo-Horcajo M, Magán-Marchal N et al: Signaling by ALK5 mediates TGF-beta-induced ET-1 expression in endothelial cells: A role for migration and proliferation. J Cell Sci, 2007; 120(Pt 7): 1256–66

24. Xu SW, Howat SL, Renzoni EA et al: Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through MEK/ERK. J Biol Chem, 2004; 279(22): 23098–103

25. Shi-wen X, Kennedy L, Renzoni EA et al: Endothelin is a downstream mediator of profibrotic responses to transforming growth factor beta in human lung fibroblasts. Arthritis Rheum, 2007; 56(12): 4189–94

26. Emura M, Nagai S, Takeuchi M et al: Local production of interleukin-4 and interleukin-13 act on human lung fibroblasts. Implication in asthma. J Clin Invest, 1991; 87(1): 3450

27. Büttner C, Skupin A, Reimann T et al: Local production of interleukin-4 and interleukin-13 are complex and share a novel component that functions in signal transduction. EMBO J, 1993; 12(7): 2663–70

28. Reiman RM, Thompson RW, Feng C et al: Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect Immun, 2006; 74(3): 1471–79

29. Park SW, Ahn MH, Jang HK et al: Interleukin-13 and its receptors in idiopathic interstitial pneumonia: Clinical implications for lung function. J Korean Med Sci, 2009; 24(4): 614–20

30. Tiggelman AM, Boers W, Linthorst C et al: Collagen synthesis by human liver (myo)fibroblasts in culture: evidence for a regulatory role of IL-1 beta, IL-4, TGF beta and IFN gamma. J Hepatol, 1995; 23(3): 307–17

31. Zuwakis SM, Vega F Jr, Huyghe B, Zuwakis G: Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. J Appl Physiol, 1999; 86(3): 965–71

32. Reiman RM, Thompson RW, Feng C et al: Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity. Infect Immun, 2006; 74(3): 1471–79

33. Park SW, Ahn MH, Jang HK et al: Interleukin-13 and its receptors in idiopathic interstitial pneumonia: Clinical implications for lung function. J Korean Med Sci, 2009; 24(4): 614–20

34. Lee JW, Zoumalan RA, Valenzuela CD et al: Regulators and mediators of radiation-induced fibrosis. Gene expression profiles and a rationale for Sma3 inhibition. Otolaryngol Head Neck Surg, 2010; 143(4): 414–20

35. Kishikawa H, Sun J, Choi A et al: The cell type-specific expression of the murine IL-13 gene is regulated by GATA-3. J Immunol, 2001; 167(8): 4414–20

36. Han G, Zhang H, Xie CH, Zhou YF: Th2-like immune response in radiation-induced lung fibrosis. Oncol Rep, 2011; 26(2): 383–88

37. Hu X, Ilyashiv LB: Cross-regulation of signaling pathways by interferon-gamma: Implications for immune responses and autoimmune diseases. Immunity, 2009; 31(4): 539–50

38. Ulloa L, Doody J, Massague J: Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature, 1999; 397(6721): 710–13

39. Ghosh AK, Yuan W, Mori Y et al: Antagonistic regulation of type I collagen gene expression by interferon-gamma and transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature, 1999; 397(6721): 710–13

40. Vancheri C, Mastruzzo C, Sortino MA, Crimi N: The lung as a privileged site for the beneficial actions of PGE2. Trends Immunol, 2004; 25(1): 40–46

41. Gauldie J, Kolb M, Sime PJ: A new direction in the pathogenesis of idiopathic pulmonary fibrosis? Respir Res, 2002. 3: 1

42. Massue D, Vaillancourt D, Leclerc R, Grenier J: Role of transforming growth factor-beta in the progression of liver fibrosis by regulating IL-13 activity. Infect Immun, 2006; 74(3): 1471–79

43. Lee SD, Lee DS, Chun YG et al: Transforming growth factor-beta1 induces endothelin-1 in a bovine pulmonary artery endothelial cell line and rat lungs via cAMP. Pulm Pharmacol Ther, 2000; 13(6): 257–65

44. Minauchi T, Masaki T: Pathophysiology of endothelin in the cardiovascular system. Annu Rev Physiol, 1999; 61: 391–415

45. Castañares C, Redondo-Horcajo M, Magán-Marchal N et al: Signaling by ALK5 mediates TGF-beta-induced ET-1 expression in endothelial cells: A role for migration and proliferation. J Cell Sci, 2007; 120(Pt 7): 1256–66

46. Xu SW, Howat SL, Renzoni EA et al: Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through MEK/ERK. J Biol Chem, 2004; 279(22): 23098–103

47. Shi-wen X, Kennedy L, Renzoni EA et al: Endothelin is a downstream mediator of profibrotic responses to transforming growth factor beta in human lung fibroblasts. Arthritis Rheum, 2007; 56(12): 4189–94

48. Emura M, Nagai S, Takeuchi M et al: In vitro production of B cell growth factor and B cell differentiation factor by peripheral blood mononuclear cells and bronchoalveolar lavage T lymphocytes from patients with idiopathic pulmonary fibrosis. Clin Exp Immunol, 1990; 82(1): 133–39

49. Büttner C, Skupin A, Reimann T et al: Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: Macrophages as a prominent source of interleukin-4. Am J Respir Cell Mol Biol, 1997; 17(3): 315–25

50. Ferlin C, Nicolai JP, Gillery P et al: Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents. Cell Mol Biol, 1991; 37(8): 823–29

51. Doucet C, Brouty-Boyé D, Pottin-Clémenceau C et al: Interleukin (IL) 4 and IL-13 act on human lung fibroblasts. Implication in asthma. J Clin Invest, 1998; 101(10): 2129–39