Error correction schemes for fully correlated quantum channels protecting both quantum and classical information

Chi-Kwong Li, Seth Lyles, Yiu-Tung Poon

Abstract

We study efficient quantum error correction schemes for the fully correlated channel on an \(n\)-qubit system with error operators that assume the form \(\sigma_x^\otimes n\), \(\sigma_y^\otimes n\), \(\sigma_z^\otimes n\). In particular, when \(n = 2k + 1\) is odd, we describe a quantum error correction scheme using one arbitrary qubit \(\sigma\) to protect the data state \(\rho\) in the \(2k\)-qubit system such that only \(3k\) CNOT gates (each with one control bit and one target bit) are needed to encode the \(n\)-qubits. The inverse operation of the CNOT gates will produce \(\tilde{\sigma} \otimes \rho\), so a partial trace operation can recover \(\rho\). When \(n = 2k + 2\) is even, we describe a hybrid quantum error correction scheme that protects a \(2k\)-qubit state \(\rho\) and 2 classical bits encoded as \(\sigma \in \{|ij\rangle\langle ij| : i, j \in \{0, 1\}\}\); the encoding can be done by \(3k + 2\) CNOT gates and a Hadamard gate on one qubit, and the inverse operation will be the decoding operation producing \(\sigma \otimes \rho\). The scheme was implemented using Matlab, Mathematica, Python, and the IBM’s quantum computing framework qiskit.

1 Introduction

In quantum information processing, information is stored and processed with a quantum system. In the mathematical setting, quantum states are represented as density matrices, i.e., complex positive semi-definite matrices with trace one. Denote by \(D_N\) the set of density matrices in the set \(M_N\) of \(N \times N\) complex matrices. A qubit will be represented as a matrix in \(D_2\), and a quantum state of an \(n\)-qubit system will be a matrix in \(D_N\) with \(N = 2^n\). A quantum channel on an \(n\)-qubit system is a trace preserving completely positive linear map \(\mathcal{E} : M_N \rightarrow M_N\) that admits the operator sum representation [1]

\[
\mathcal{E}(\rho) = \sum_{j=1}^{r} F_j \rho F_j^\dagger \quad \text{for all } \rho \in M_N,
\]

where \(\sum_{j=1}^{r} F_j^\dagger F_j = I_N\). The matrices \(F_1, \ldots, F_r\) are sometimes called the error operators of the quantum channel \(\mathcal{E}\), which is the source of the corruption of the quantum states corresponding to decoherence and other quantum effect on the quantum state \(\rho\). To protect the information stored in the quantum state \(\rho\), one can use quantum error correction schemes to encode the quantum state \(\rho\) with some auxiliary qubits \(\rho\) so that one can recover the quantum state \(\rho\) after the encoded quantum state goes through the quantum channel.
In [8], the authors considered the fully correlated channel \(\mathcal{E} \) on an \(n \)-qubit system with error operators that assume the form

\[
X_n = \sigma_x \otimes \sigma_x, \quad Y_n = \sigma_y \otimes \sigma_y, \quad Z_n = \sigma_z \otimes \sigma_z,
\]

where \(\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \)

are the Pauli matrices. So, the quantum channel \(\mathcal{E} : M_N \rightarrow M_N \) with \(N = 2^n \) has the form

\[
\mathcal{E}(\rho) = p_0 \rho + p_1 X_n \rho X_n^\dagger + p_2 Y_n \rho Y_n^\dagger + p_3 Z_n \rho Z_n^\dagger \quad \text{for all } \rho \in M_N, \tag{1}
\]

where \(p_0, p_1, p_2, p_3 \) are nonnegative numbers summing up to one. It was shown that if \(n \) is odd, one can use a single qubit \(\sigma \in D_2 \) to protect an \((n - 1) \)-qubit data state; if \(n \) is even, one can use a two-qubit \(\sigma \) to protect \((n - 2) \)-qubit data state. Encoding and decoding can be performed without measurement. So, for such a fully correlated channel, if one would like to protect \(2k \)-qubit data states, only one additional qubit is needed, and using two additional qubits to protect the \(2k \)-qubit data state seems to be a waste of resources. In [7], it was shown that one can use 2 arbitrary qubits to protect 1 data qubit in a fully correlated channel on 3-qubits.

In this paper, we will present efficient error correction schemes for the fully correlated channel. When \(n = 2k + 1 \) is odd, we describe a quantum error correction scheme using one arbitrary qubit \(\sigma \) to protect the data state \(\rho \) in the \(2k \)-qubit system such that only \(3k \) CNOT gates (each has one control bit and one target bit) are needed to encode the \(n \)-qubits. The inverse operation of the CNOT gates will produce \(\tilde{\sigma} \otimes \rho \), so a partial trace operation can recover \(\rho \). When \(n = 2k + 2 \) is even, we describe a hybrid quantum error correction scheme that protects a state \(\rho \) in the \(2k \)-qubit system, and two classical bit encoded as \(\sigma \in \{ |ij \rangle \langle ij | : i, j \in \{0, 1\} \} \); the encoding can be done by \(3k + 2 \) CNOT gates and a Hadamard gate on a qubit, and the inverse operation will be the decoding operation producing \(\sigma \otimes \rho \). The study of simultaneous transmission of both quantum and classical information over a quantum channel was initiated in [2] and followed up by other researchers, [3, 4, 5]. Our scheme was implemented using the IBM’s quantum computing framework qiskit [13].

We state the results and prove them in the next section. Then we illustrate our schemes and depict the circuit diagrams. In Section 3, we implement and demonstrate our schemes using Matlab, Mathematica, and IBM’s online quantum computers IBM Q 5 Yorktown and IBM Q Tenerife. The last section is devoted to summary and discussions.

2 The quantum error and hybrid error correction schemes

In this section, we show that one can recursively construct the encoding matrix \(P_n \in M_{2^n} \) for the \(n \)-qubit fully correlated channel \(\mathcal{E} \) defined in [1]. Moreover, we will show that \(P_n \) can be decomposed as simple CNOT gates (with one control qubit and one target qubit) and Hadamard gates (on one qubit). Once \(P_n \) is constructed, we can encode \(A \mapsto P_n A P_n^\dagger \) and decode \(B \mapsto P_n^\dagger B P_n \). We will give a full description of the construction, number of CNOT gates required, and the encoding /
decoding procedures in Section 2.5. The circuit diagrams for encoding and decoding will be shown in Section 2.6.

Denote an n-qubit vector state as $|q_{n-1} \ldots q_0\rangle$. Let C_{ij} be the CNOT gate where the ith qubit controls the target jth qubit. For example, for $(q_2, q_1, q_0) \in \{(0, 0, 0), (0, 0, 1), \ldots, (1, 1, 1)\}$,

$$C_{02} |q_2 q_1 q_0\rangle = \begin{cases} |q_2 \oplus 1, q_1, q_0\rangle & \text{if } q_0 = 1, \\ |q_2 q_1 q_0\rangle & \text{otherwise}. \end{cases}$$

Denote $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ as the Hadamard gate. Also, we use e_1, \ldots, e_n to denote the columns of I_n.

2.1 Two-qubit encoding/decoding operator

Let $P_2 = C_{01} (I_2 \otimes H) C_{01}^t \in M_4$, where C_{01} is the controlled not gate using the q_0-bit to control the q_1-bit for the two qubit state $|q_1 q_0\rangle$. In the matrix form, $C_{01} = Q = [e_1 \ e_4 \ e_3 \ e_2]$. We readily verify the following.

Proposition 2.1 Let $P_2 = C_{01} (I_2 \otimes H) C_{01}^t \in M_4$. Then

$$(P_2^\dagger X_2 P_2, P_2^\dagger Y_2 P_2, P_2^\dagger Z_2 P_2) = (D_X, D_Y, D_Z)$$

with $D_X = \text{diag}(1, -1, 1, -1)$, $D_Y = (-1, -1, 1, 1)$, $D_Z = (1, 1, -1, -1)$. Consequently,

$$P_2^\dagger (E(P_2(\sigma) P_2^\dagger)) P_2 = \sigma$$

whenever $\sigma = |q_1 q_0\rangle \langle q_1 q_0|$ with $|q_1 q_0\rangle \in \{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$.

2.2 Three-qubit encoding/decoding operator

Proposition 2.2 Let $P_3 = C_{10} C_{02} C_{21} \in M_8$, where C_{ij} use the $|q_i\rangle$ to control the $|q_j\rangle$ in $|q_2 q_1 q_0\rangle$. Then

$$(P_3^\dagger X_3 P_3, P_3^\dagger Y_3 P_3, P_3^\dagger Z_3 P_3) = (X_1 \otimes I_4, -Y_1 \otimes I_4, Z_1 \otimes I_4).$$

Consequently, for any $\sigma \in D_2$ and $\rho \in D_4$, we have

$$P_3^\dagger (E(P_3(\sigma \otimes \rho) P_3^\dagger)) P_3 = \tilde{\sigma} \otimes \rho,$$

where

$$\tilde{\sigma} = p_0 \sigma + p_1 X_1 \sigma X_1^\dagger + p_2 Y_1 \sigma Y_1^\dagger + p_3 Z_1 \sigma Z_1^\dagger.$$

Moreover, if P_3 is a product of m CNOT gates (each with one control bit and one target bit) on a 3-qubit system, then $m \geq 3$.

3
Proof. One readily verify the first two statements. For the last assertion, if we list the columns of I_8 and P_3 in binary form, we have

\[
I_8 = [e_1 e_2 e_3 e_4 e_5 e_6 e_7 e_8] = [[000] [001] [010] [011] [100] [101] [110] [111]],
\]

\[
P_3 = [e_1 e_6 e_4 e_7 e_8 e_5 e_2] = [[000] [010] [011] [110] [111] [010] [100] [001]].
\]

Since there are collectively 12 mismatched positions out of the 24 positions in the binary form of the 8 columns of the matrices I_8 to P_3, and every CNOT gate will change 4 out of the 24 positions, we see that expressing P_3 as the product of 3 CNOT gates is optimal.

2.3 n-qubit encoding / decoding operator for odd $n \geq 5$

Proposition 2.3 Let $n = 2k + 1$ be an odd integer with $k \geq 2$, Let $P_n = (I_4 \otimes P_{n-2})(P_3 \otimes I_{2n-3})$, which can be written as a product of $3k$ CNOT gates (each has 1 control bit and 1 target bit). Then

\[
(P_n^1 X_n P_n, P_n^1 Y_n P_n, P_n^1 Z_n P_n) = (X_1 \otimes I_{2n-1}, (-1)^k Y_1 \otimes I_{2n-1}, Z_1 \otimes I_{2n-1}).
\]

Consequently, for any $\sigma \in D_2$ and $\rho \in D_{2n-1}$, we have

\[
P_3^1(\mathcal{E}(P_3(\sigma \otimes \rho))P_3^1)P_3 = \tilde{\sigma} \otimes \rho,
\]

where

\[
\tilde{\sigma} = p_0 \sigma + p_1 X_1 \sigma X_1^\dagger + p_2 Y_1 \sigma Y_1^\dagger + p_3 Z_1 \sigma Z_1^\dagger.
\]

Proof. By Proposition 2.2, P_3 is a product of 3 CNOT gates. By the recursive construction, when k increases 1 we need 3 more CNOT gates. So, P_n can be written as a product of $3k$ CNOT gates.

The other assertions can be verified readily.

2.4 n-qubit encoding / operator for even $n \geq 4$

Proposition 2.4 Suppose $n = 2k + 2$ for $k \geq 1$, and P_{n-1} is defined as in Proposition 2.3. Let $P_n = (I_2 \otimes P_{n-1})(P_2 \otimes I_{2n-2})$, which is a product of $3k+2$ CNOT gates (each has 1 control bit and 1 target bit), and 1 Hadamard gate (on one qubit). Then

\[
(P_n^1 X_n P_n, P_n^1 Y_n P_n, P_n^1 Z_n P_n) = (D_X \otimes I_{2n-2}, (-1)^k D_Y \otimes I_{2n-2}, D_Z \otimes I_{2n-2})
\]

$D_X = \text{diag}(1, -1, 1, -1)$, $D_Y = (-1, -1, 1, 1)$, $D_Z = (1, -1, -1, 1)$. Consequently,

\[
P_n^1(\mathcal{E}(P_n(\sigma \otimes \rho))P_n^1)P_n = \sigma \otimes \rho
\]

whenever $\rho \in D_{n-2}$ and $\sigma = \langle q_1 q_0 | q_1 q_0 \rangle$ with $|q_1 q_0 \rangle \in \{ |00 \rangle, |01 \rangle, |10 \rangle, |11 \rangle \}$.

Proof. By Proposition 2.1, P_2 is a product of 2 CNOT gates and 1 Hadamard gate. By Proposition 2.3, P_{n-1} is a product of $3k$ CNOT gates. So, $P_n = (I_2 \otimes P_{n-1})(P_2 \otimes I_{2n-2})$ is the product of $3k+2$ CNOT gates and a Hadamard gate.

The rest of the proposition can be verified readily.
2.5 The encoding and decoding schemes

We summarize the results in Propositions 2.1—2.4 in the following.

Theorem 2.5 Let P_2, P_3 and P_n be defined as in Sections 2.1 - 2.4.

(a) Suppose $n = 2k + 1 \geq 3$ is odd. Then P_n is a product of $3k$ CNOT gates (each has 1 control and 1 target bit). One can encode an $(n-1)$-qubit data state ρ using an arbitrary qubit σ by the encoding operator P_n so that

$$\rho \mapsto P_n(\sigma \otimes \rho)P_n^\dagger.$$

After the encoded state goes through the fully correlated channel E, one can apply the operation $B \mapsto P_n^\dagger BP_n$. Then the encoded state $P_n(\sigma \otimes \rho)P_n^\dagger$ becomes

$$p_0(\sigma \otimes \rho) + p_1 P_n^\dagger X_n P_n(\sigma \otimes \rho)P_n^\dagger X_n^\dagger P_n + p_2 P_n^\dagger Y_n P_n(\sigma \otimes \rho)P_n^\dagger Y_n^\dagger P_n + p_3 P_n^\dagger Z_n P_n(\sigma \otimes \rho)P_n^\dagger Z_n^\dagger P_n = \tilde{\sigma} \otimes \rho,$$

where

$$\tilde{\sigma} = p_0 \sigma + p_1 X_1 \sigma X_1^\dagger + p_2 Y_1 \sigma Y_1^\dagger + p_3 Z_1 \sigma Z_1^\dagger.$$

Then, one can apply a partial trace $\text{tr}_1(\tilde{\sigma} \otimes \rho)$ to recover the data state ρ.

(b) Suppose $n = 2k + 2 \geq 4$ is even. Then P_n is a product of $3k + 2$ CNOT gates (each has 1 control and 1 target bit) and a Hadamard gate (on 1 qubit). One can encode an $(n-2)$-qubit data state ρ and two classical bits by $\sigma \in \{|ij\rangle : 1 \leq i, j \leq 2\}$ using the encoding operator P_n so that

$$\rho \mapsto P_n(\sigma \otimes \rho)P_n^\dagger.$$

After the encoded state goes through the fully correlated channel E, one can apply the operation $B \mapsto P_n^\dagger BP_n$. Then the encoded state becomes

$$p_0(\sigma \otimes \rho) + p_1 P_n^\dagger X_n P_n(\sigma \otimes \rho)P_n^\dagger X_n^\dagger P_n + p_2 P_n^\dagger Y_n P_n(\sigma \otimes \rho)P_n^\dagger Y_n^\dagger P_n + p_3 P_n^\dagger Z_n P_n(\sigma \otimes \rho)P_n^\dagger Z_n^\dagger P_n = \sigma \otimes \rho.$$

One can apply a measurement to the first two qubits to obtain the two classical bits σ.

2.6 Circuit diagrams

We can set the n quantum state as $|q_{n-1} \cdots q_0\rangle$. Using our scheme, the circuit diagram are depicted in the following.

For $n = 2$, if $|q_1q_0\rangle \in \{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$, then circuit diagram will be:
For $n = 3$,

\[
|q_0\rangle \quad |q_0\rangle \\
|q_1\rangle \quad |q_1\rangle \\
|q_2\rangle \quad |q_2\rangle
\]

For odd n, the circuit diagram will be:

\[
|q_0\rangle \
\vdots \\
|q_{n-3}\rangle \\
|q_{n-2}\rangle \\
|q_{n-1}\rangle
\]

\[
P_{n-2} \\
E \\
P_{n-2}^\dagger
\]

\[
|q_0\rangle \
\vdots \\
|q_{n-3}\rangle \\
|q_{n-2}\rangle \\
|q_{n-1}\rangle
\]

For even n, if $|q_{n-1}q_{n-2}\rangle \in \{|00\rangle, |10\rangle, |01\rangle, |11\rangle\}$, then the circuit diagram will be:

\[
|q_0\rangle \
\vdots \\
|q_{n-3}\rangle \\
|q_{n-2}\rangle \\
|q_{n-1}\rangle
\]

\[
P_{n-1} \\
E \\
P_{n-1}^\dagger
\]

\[
|q_0\rangle \
\vdots \\
|q_{n-3}\rangle \\
|q_{n-2}\rangle \\
|q_{n-1}\rangle
\]

\[
H \\
H
\]

3 Implementation

3.1 Matlab

A Matlab program is written to generate the matrices X_n, Y_n, Z_n, P_n, etc., and implement the error correction scheme described in Section 2.

For an integer $n > 1$, the following commands will generate the encoding matrix P_n:

```matlab
if mod(n,2) == 1
    P = eye(8); P3 = P(:,:,1,6,4,7,8,3,5,2); Pn = P3;
    k = (n-1)/2;
    for j = 2:k
        Pn = kron(eye(4),Pn)*kron(P3,eye(2^(2*j-2)));
    end
else
    H = [1 1; 1 -1]/sqrt(2); C01 = [1 0 0 0; 0 0 1 0; 0 1 0 0; 0 1 0 0];
    P2 = C01*kron(eye(2),H)*C01;
    if n == 2
        Pn = P2;
    else
```

6
\[
P = \text{eye}(8); \quad \text{P3} = P(:,[1,6,4,7,8,3,5,2]); \quad \text{Pn} = \text{P3}; \quad k = (n-2)/2;
\]
\[
\text{for } j = 2:k
\quad \text{Pn} = \text{kron}(\text{eye}(4),\text{Pn})*\text{kron}(\text{P3},\text{eye}(2^(2j-2)));
\]
\[
\text{end}
\]
\[
\text{Pn} = \text{kron}(\text{eye}(2),\text{Pn})*\text{kron}(\text{P2},\text{eye}(2^n/4));
\]
\[
\text{end}
\end{verbatim}

Then one can test the encoding and decoding schemes. First, set up the error operators \(X_n, Y_n, Z_n\).

\[
\begin{verbatim}
%% Set up the error operators for the channel
X = [0 1; 1 0]; \quad Y = [0 -i; i 0]; \quad Z = [1 0; 0 -1];
Xn=X; \quad Yn = Y; \quad Zn = Z;
\text{for } j = 2:n
\quad Xn = \text{kron}(X,Xn); \quad Yn = \text{kron}(Y,Yn); \quad Zn = \text{kron}(Z,Zn);
\text{end}
\end{verbatim}
\]

Suppose \(n = 2k + 1\) is odd. The following commands check
\[
(P_n^\dagger X_n P_n, P_n^\dagger Y_n P_n, P_n^\dagger Z_n P_n) = (X \otimes I, (-1)^k Y \otimes I, Z \otimes I).
\tag{3}
\]
The output 0,0,0 will confirm the equality.

\[
\begin{verbatim}
%% Check \((P_n^\dagger X_n P_n, P_n^\dagger Y_n P_n, P_n^\dagger Z_n P_n)\)
II = \text{eye}(2^(n-1)); \quad \text{norm}(Pn'*Xn*Pn - \text{kron}(X,II)), \quad \text{norm}(Pn'*Yn*Pn - (-1)^k*\text{kron}(Y,II)), \quad \text{norm}(Pn'*Zn*Pn - \text{kron}(Z,II))
\end{verbatim}
\]

Next, we verify the error correction scheme for random input \(\sigma \otimes \rho\) with \(\sigma \in D_2\) and \(\rho \in D_4\). The output 0,0,0 will confirm the scheme works.

\[
\begin{verbatim}
%% Generate random \(S\) in \(D_2\), \(S\) in \(D_{2k}\)
S = \text{rand}(2,2) + i*\text{rand}(2,2) - \text{rand}(1,1)*(1+i)*\text{eye}(2); \quad S = S*S'; \quad S = S/\text{trace}(S);
K = 2^(n-1);
R = \text{rand}(K,K) + i*\text{rand}(K,K) - \text{rand}(1,1)*(1+i)*\text{eye}(K); \quad R = R*R'; \quad R = R/\text{trace}(R);
% Encode \text{kron}(S,R) and compared with the decoded state for each error operator.
A = \text{kron}(S,R); \quad AA = Pn*A*Pn';
\text{norm(Pn'*Xn*AA*Xn*Pn - \text{kron}(X*S*X',R))}, \quad \text{norm(Pn'*Yn*AA*Yn*Pn - \text{kron}(Y*S*Y',R))}
\text{norm(Pn'*Zn*AA*Zn*Pn - \text{kron}(Z*S*Z',R))}
\end{verbatim}
\]

Suppose \(n\) is even. The following commands check
\[
(P_n^\dagger X_n P_n, P_n^\dagger Y_n P_n, P_n^\dagger Z_n P_n) = (D_Z \otimes I_{2^{n-2}}, D_Y \otimes I_{2^{n-2}}, D_Z \otimes I_{2^{n-2}}).
\tag{4}
\]
The output 0,0,0 will confirm the equality.
Then we verify our error correction scheme that for any $\sigma \in \{|00\rangle\langle 00|,|01\rangle\langle 01|,|10\rangle\langle 10|,|11\rangle\langle 11|\}$ and $\rho \in D_{2^{n-2}}$, the encoding and decoding yield $\sigma \otimes \rho$. Again, the output 0,0,0 will confirm the scheme works.

3.2 Mathematica

We write a Mathematica program to generate the matrices X_n, Y_n, Z_n, P_n, etc., and demonstrate our quantum error correction scheme described in Section 2.

We briefly describe our program in the following. We begin by setting up the CNOT gates, the Hadamard matrix, the Pauli matrices, D_X, D_Y, D_Z and P_2 by the following commands:

```mathematica
CNOT[n0_,h0_,k0_]:=Module[{n=n0,h=h0,k=k0},U=IdentityMatrix[2^n];
Do[cindex=IntegerDigits[i-1,2,n];
  If[cindex[[n-h]]==1,cindex[[n-k]]=Mod[cindex[[n-k]]+1,2]];
  s=Sum[cindex[[r]]*2^(n-r),{r,1,n}]+1;
  U[[i]]=Table[KroneckerDelta[s,j],{j,1,2^n}];{i,1,2^n}];U]

H={1,1}/Sqrt[2];
x={0,1},{1,0};
y={0,-1},{1,0};
```
z={\{1,0\},\{0,-1\}};
DX = DiagonalMatrix[\{1, -1, 1, -1\}];
DY = DiagonalMatrix[\{-1, -1, 1, 1\}];
DZ = DiagonalMatrix[\{1, -1, -1, 1\}];
P2=\text{CNOT}[2,0,1].\text{KroneckerProduct}[\text{IdentityMatrix}[2],\text{H}].\text{Transpose}[\text{CNOT}[2,0,1]];

Then we define X_n, Y_n and Z_n recursively:

$X[n_] := X[n] = \text{KroneckerProduct}[X[n-1], x]$; $X[1] = x$;
$Y[n_] := Y[n] = \text{KroneckerProduct}[Y[n-1], y]$; $Y[1] = y$;
$Z[n_] := Z[n] = \text{KroneckerProduct}[Z[n-1], z]$; $Z[1] = z$;

Then we define P_n recursively by setting $P_{2k+1} = Q[k]$ and $P_{2k} = R[k]$.

$Q[k_] := Q[k] = \text{KroneckerProduct}[\text{IdentityMatrix}[4], Q[k-1]]$.

$\text{KroneckerProduct}[Q[1], \text{IdentityMatrix}[2^{-(2k-2)}]]$;

$Q[1] = \text{CNOT}[3,1,0].\text{CNOT}[3,0,2].\text{CNOT}[3,2,1]$;

$R[k_] := R[k] = \text{KroneckerProduct}[\text{IdentityMatrix}[2], Q[k-1]]$.

$\text{KroneckerProduct}[P2, \text{IdentityMatrix}[2^{-(2k-2)}]]$;

Then the validity of the formula

$\langle P_{2k+1} X_{2k+1} P_{2k+1}, P_{2k+1} Y_{2k+1} P_{2k+1}, P_{2k+1} Z_{2k+1} P_{2k+1} \rangle = (X_1 \otimes I_{2^{2k}}, (-1)^k Y_1 \otimes I_{2^{2k}}, Z_1 \otimes I_{2^{2k}})$.

can be checked by calculating $\|P_n X_n P_n - X_1 \otimes I_{2^{2k}}\|$, $\|P_n Y_n P_n - (-1)^k Y_1 \otimes I_{2^{2k}}\|$, $\|P_n Z_n P_n - Z_1 \otimes I_{2^{2k}}\|$ with the corresponding functions:

$\text{Norm}[\text{Transpose}[Q[3]].X[7].Q[3] - \text{KroneckerProduct}[x, \text{IdentityMatrix}[2^6]]]$;

$\text{Norm}[\text{Transpose}[Q[3]].Y[7].Q[3] - (-1)^3 \text{KroneckerProduct}[y, \text{IdentityMatrix}[2^6]]]$;

$\text{Norm}[\text{Transpose}[Q[3]].Z[7].Q[3] - \text{KroneckerProduct}[z, \text{IdentityMatrix}[2^6]]]$;

Similarly, we can check the formula

$\langle P_{2k} X_{2k} P_{2k}, P_{2k} Y_{2k} P_{2k}, P_{2k} Z_{2k} P_{2k} \rangle = (D_X \otimes I_{2^{2k-2}}, (-1)^{k-1} D_Y \otimes I_{2^{2k-2}}, D_Z \otimes I_{2^{2k-2}})$

by calculating (for $k = 3$) respectively as follows:

$\text{Norm}[\text{Transpose}[R[3]].X[6].R[3] - \text{KroneckerProduct}[D_X, \text{IdentityMatrix}[2^4]]]$;

$\text{Norm}[\text{Transpose}[R[3]].Y[6].R[3] - (-1)^2 \text{KroneckerProduct}[D_Y, \text{IdentityMatrix}[2^4]]]$;

$\text{Norm}[\text{Transpose}[R[3]].Z[6].R[3] - \text{KroneckerProduct}[D_Z, \text{IdentityMatrix}[2^4]]]$;

We can also check that for all $n \geq 3$, $\|P_n^\dagger \mathcal{E}(P_n (\sigma \otimes \rho) P_n^\dagger) P_n - \tilde{\sigma} \otimes \rho\| = 0$.
3.3 Python

Similar to the other methods, we can verify the results in Python. This is convenient because IBM has provided the qiskit framework, and the encoding matrices can be extracted from a built-in circuit using the unitary backend [13].

In contrast to the matrix operations of sections 3.1 and 3.2, the recursive scheme operates on the quantum circuit itself. For convenience, the imports have been omitted, but can be found in the full code.

To initialize a quantum circuit, we first create qubits using \(qr = \text{QuantumRegister}(n)\) and classical bits for measurement with \(cr = \text{ClassicalRegister}(n)\). The quantum circuit is constructed by the \(qc = \text{QuantumCircuit}(qr, qc)\). To verify functionality, we can apply arbitrary unitary operations to initialize the state to a given vector. Then, the encoding scheme is defined recursively:

```python
def build_circ(qc, q, E):
    n = q[-1][1] + 1  # number of qubits

    def err(e, base=False):
        d = {'X':qc.x, 'Y':qc.y, 'Z':qc.z, 'I':lambda x: None}  # apply errors
        d[e](q[n-1])
        if base:  # if we're at q3
            d[e](q[0])
            d[e](q[1])
        if n % 2 == 0:  # qn is even
            qc.cx(q[n-2], q[n-1])  # encode with \(P_2\)
            qc.h(q[n-2])
            qc.cx(q[n-2], q[n-1])
            build_circ(qc, q[:-1], E)  # recurse
            err(E)
            qc.cx(q[n-2], q[n-1])  # decode with \(P_2^T\)
            qc.h(q[n-2])
            qc.cx(q[n-2], q[n-1])
        else:  # it's odd
            qc.cx(q[n-1], q[n-2])  # encode with \(P_3\)
            qc.cx(q[n-3], q[n-1])
            qc.cx(q[n-2], q[n-3])
            if n == 3:  # base case
                err(E, True)
            else:
                build_circ(qc, q[:-1], E)  # recurse
```

10
We can use the IBM’s qasm quantum computer simulator to validate our scheme. The results are identical to the above two sections, so we omit them here. The qasm computer is deterministic, so an input $|q_2\rangle = U|0\rangle$ and $|q_1q_0\rangle = V|00\rangle$ for unitary $U \in M_2, V \in M_4$ returns a perfect decoding. Similar statistics may be obtained for $n = 4, 5, 6$, etc.

3.4 IBM Quantum Computer

We use IBM’s online quantum computers to implement our scheme. We compare two different machines: Tenerife (ibmqx4, pink in graphs) and Yorktown (ibmqx2, blue) to show the discrepancy of prediction quality between the two. Yorktown has more than 9 times the gate error of Tenerife, and 2.4 times the readout error according to the documentation at [14]. Table 1 mostly supports these facts; however, there are some interesting results when input is 10 (on Z and I error) where Yorktown outperforms.

We have three experimental results: $\sigma = 0$ in Table 1, $\sigma = 1$ in Table 2, and σ is a randomly generated state in Table 3.

For $\sigma = 0$, it is interesting to observe that for inputs 00, 01 Tenerife is significantly better at preserving states than Yorktown. For both of the computers, most of the error seems to take the form of q_1 flipping. In the case of 01 on Yorktown, the output is evenly split between the correct state and the bit flipped state 11.

Also of interest is the fact that, empirically, the accuracy is dependent on σ. In the case of random σ, Yorktown is essentially ineffective at maintaining the state with the given encoding.

We can test the encoding scheme on $|0000\rangle$ and $|00000\rangle$, as shown in Figure 1. In the case of 4 qubits, Tenerife finds the correct output, but neither computer could produce useful results in the 5 qubit case.

4 Concluding remarks and future work

We obtain an efficient error correction scheme for fully correlated quantum channels protecting both quantum and classical information. The scheme was implemented using Matlab, Mathematica, Pythons, and the IBM’s quantum computing framework qiskit. The codes are available at:

https://github.com/slyles1001/QECC

Some computational results were described in Section 3.4 and summarized in Tables 1-3 and Figure 1.

Several remarks are in order concerning the implementation.
In Matlab, we generate the encoding operation P_n for $n \geq 2$, and check the properties described in Propositions 2.1 – 2.4. Note that when the dimension is high, the matrices $P_n, X_n, \text{etc.}$ are too big to display, and there are too many entries to check (though most of them are zeros). The command $\text{norm}(P_n'*Z_n*AA*Z_n*P_n - \text{kron}(S,R))$ computes the norm of the matrix $P_n^\dagger Z_n P_n (\sigma \otimes \rho) P_n^\dagger Z_n P_n - \sigma \otimes \rho$ to confirm that it gives zero (up to machine error). In fact, in the odd case, when we do not use the Hadamard gate to do encoding and decoding, the norm values of the relevant matrices are exactly 0; in the even case, when the Hadamard gate is used (once in encoding and once in decoding), the norm value of matrices will yield a number at the order of the machine error.

In Mathematica, the norm of the matrix $P_n^\dagger \mathcal{E}(P_n(\sigma \otimes \rho) P_n^\dagger) P_n - \tilde{\sigma} \otimes \rho$ is always exactly 0 even if the Hadamard gate is used in the even case. Here $\tilde{\sigma} = p_0 \sigma + p_1 X \sigma X^\dagger + p_2 Y \sigma Y^\dagger + p_3 Z \sigma Z^\dagger \in D_2$ if n is odd and $\sigma = \tilde{\sigma} \in D_4$ is one of the 4 classical binary bits if n is even. This is due to Mathematica being an algebraic solver versus Matlab and Python.

In the IBM quantum computer setting, it is interesting to note that for $U \in \{I_2, X, Y, Z\}$, when we apply the encoding scheme to 3-qubit $P_3|q_2q_1q_0\rangle$, then the error operator $U^{\otimes 3} P_3|q_2q_1q_0\rangle$, and then the operator $P_3^\dagger U^{\otimes 3} P_3|q_2q_1q_0\rangle$, the second qubit always attracts more error compared with the expected output $|q_2q_1Uq_0\rangle$, even for the case when $U = I_2$. (See Tables 1 and 2.) We are curious to know why such a noise pattern is observed when implemented, but cannot speculate at this time.

For future research, we plan to extend the techniques to more general quantum channels such as the fully correlated quantum channels on n-qubits with general noise of the form $U^{\otimes n}$, where $U \in M_2$ is unitary, or a non-classical bit. We also plan to further investigate the cause of the systemic errors in flipping the most significant bit of our systems.

Miguel A. Martin-Delgado pointed out that there were study and experiments on quantum error correction code in a NISQ quantum computer; see [9, 10]. We would like to implement our scheme to quantum channels on more qubits using other quantum computers which are not as noisy as the IBM quantum computers.

Acknowledgments

Li is an affiliate member of the Institute for Quantum Computing, University of Waterloo. He is an honorary professor of Shanghai University. His research was supported by USA NSF grant DMS 1331021, Simons Foundation Grant 351047, and NNSF of China Grant 11571220.

References

[1] M.D. Choi, Completely positive linear maps on complex matrices, Linear Algebra and Appl. 10 (1975), 285-290.

[2] I. Devetak and P. W. Shor, The capacity of a quantum channel for simultaneous transmission of classical and quantum information, Communications in Mathematical Physics, 256, no. 2, pp. 287303, 2005.
[3] M.H. Hsieh and M.M. Wilde, Entanglement-assisted communication of classical and quantum information, IEEE Transactions on Information Theory, 56, no. 9, 4682–4704, 2010.

[4] M.H. Hsieh and M.M. Wilde, Trading classical communication, quantum communication, and entanglement in quantum Shannon theory, IEEE Transactions on Information Theory, vol. 56, no. 9, 4705–4730, 2010.

[5] M. Grassl, S. Lu, and B. Zeng, Codes for simultaneous transmission of quantum and classical information, 2017 IEEE International Symposium on Information Theory (ISIT), 1718–1722, 2017.

[6] E. Knill, R. Laflamme, and L. Viola, Theory of Quantum Error Correction for General Noise, Physical Review Letters 84, 2525, 2000.

[7] Y. Kondo, C. Bagnasco, and M. Nakahara, Implementation of a simple operator-quantum-error-correction scheme, Phys. Rev. A 88, 022314, 2013.

[8] C.K. Li, M. Nakahara, Y.T. Poon, N.S. Sze and H. Tomita, Efficient Quantum Error Correction for Fully Correlated Noise, Phys. Lett. A, 375:3255-3258, 2011.

[9] M. Müller, A. Rivas, E.A. Martinez, D. Nigg, P. Schindler, T. Mnz, R. Blatt, and M.A. Martin-Delgado, Iterative Phase Optimization of Elementary Quantum Error Correcting Codes, Phys. Rev. X 6, 031030, 2016.

[10] D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Henrich, T. Monz, M. A. Martin-Delgado, R. Blatt, Quantum computations on a topologically encoded qubit, SCIENCE Vol. 345 no. 6194 pp. 302-305, 2014. DOI: 10.1126/science.1253742

[11] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.

[12] J. Yard, Simultaneous classical-quantum capacities of quantum multiple access channels, Ph.D. dissertation, Electr. Eng. Dept., Stanford Univ., Stanford, CA, 2005.

[13] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. BenHaim, D. Bucher, F. J. Cabrera-Hernandez, J. Carballo-Franquis, A. Chen, C.-F. Chen, J. M. Chow, A. D. Corcoles-Gonzales, A. J. Cross, A. Cross, J. Cruz-Benito, C. Culver, S. D. L. P. Gonzalez, E. D. L. Torre, D. Ding, E. Dumitrescu, I. Duran, P. Eendebak, M. Everitt, I. F. Sertage, A. Frisch, A. Fuhrer, J. Gambetta, B. G. Gago, J. Gomez-Mosquera, D. Greenberg, I. Hamamura, V. Havlicek, J. Hellmers, H. Horok, H. Horii, S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa, A. Karazeev, K. Krsulich, P. Liu, Y. Luh, Y. Maeng, M. Marques, F. J. Martin-Fernandez, D. T. McClure, D. McKay, S. Meesala, A. Mezzacapo, N. Moll, D. M. Rodriguez, G. Nannicini, P. Nation, P. Ollitrault, L. J. ORiordan, H. Paik, J. Perez, A. Phan, M. Pistoia, V. Prutyanov, M. Reuter, J. Rice, A. R. Davila, R. H. P. Rudy, M. Ryu, N. Sathaye, C. Schnabel, E. Schoute, K. Setia, Y. Shi, A. Silva, Y.
Siraichi, S. Sivarajah, J. A. Smolin, M. Soeken, H. Takahashi, I. Tavernelli, C. Taylor, P. Taylour, K. Trabing, M. Treinish, W. Turner, D. Vogt-Lee, C. Vuillot, J. A. Wildstrom, J. Wilson, E. Winston, C. Wood, S. Wood, S. Worner, I. Y. Akhalwaya, and C. Zoufal, Qiskit: An open-source framework for quantum computing, 2019.

[14] https://www.research.ibm.com/ibm-q/technology/devices/

(C.K. Li) Department of Mathematics, College of William & Mary, Williamsburg, VA 23185, USA. Email: ckli@math.wm.edu

(S. Lyles) Department of Mathematics, College of William & Mary, Williamsburg, VA 23185, USA. Email: smlyles@email.wm.edu

(Y.T. Poon) Department of Mathematics, Iowa State University, Ames, IA 50011, U.S.A. Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen, 518055, China Email: ytpoon@iastate.edu
Table 1: Inputs and Errors on sigma = 0, Legend: Tenerife (pink) and Yorktown (blue)

Table 2: Inputs and Errors on sigma = 1, Legend: Tenerife (pink) and Yorktown (blue)
	X error	Y error	Z error	No error
00	![Graph](image1)	![Graph](image2)	![Graph](image3)	![Graph](image4)
01	![Graph](image5)	![Graph](image6)	![Graph](image7)	![Graph](image8)
10	![Graph](image9)	![Graph](image10)	![Graph](image11)	![Graph](image12)
11	![Graph](image13)	![Graph](image14)	![Graph](image15)	![Graph](image16)

Table 3: Inputs and Errors on random sigma, Legend: Tenerife (pink) and Yorktown (blue)

Figure 1: QECC on 4 and 5 qubits