Motion of 3He Quasiparticles in Aerogel Driven by Fourth Sound

C. Kato, Y. Nago, T. Matsukura, R. Kado, K. Obara, H. Yano, O. Ishikawa, and T. Hata
Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
E-mail: c.kato@sci.osaka-cu.ac.jp

Abstract. While the shear viscous motion of the normal fluid component causes the energy loss of the fourth sound resonance in superfluid 3He confined in narrow pores, it is not yet clear what causes the energy loss of the fourth sound in the aerogel system. We prepared two aerogel samples of 99.0% and 97.5% porosities, which were directly grown in sintered silver sponges and performed the fourth sound resonance experiments. We found that the energy loss of the fourth sound resonance in aerogel is much smaller than that in pure liquid 3He, showing that the mean free path of 3He quasiparticles is strongly suppressed by aerogel strands. Such behavior is explained with the frictional flow. The temperature dependence of the frictional relaxation time will be discussed.

1. Introduction
Aerogel has been attractive because it is well-controllable impurity in the superclean system. Aerogel is made up of thin silica strands. The average distance between silica strands is comparable to the superfluid coherence length ξ_0, and the diameter of strands is much smaller than ξ_0. Thus the aerogel acts as an impurity for superfluid 3He. As a result, it has been measured by using various experimental methods[1, 2, 3] that the transition temperature T_C and the superfluid fraction ρ_s/ρ are strongly suppressed. We used the fourth sound resonance technique to investigate the transport properties of superfluid 3He in aerogel. In this work, we focus on the energy loss of the fourth sound resonance. The fourth sound is a compression wave of the superfluid component propagating through the narrow pore whose effective radius is so small that the motion of the normal fluid component is clamped by its viscosity. So the freely propagating fourth sound is non-dissipative. But the resonating fourth sound is able to drive the normal component slightly so as to maintain the total fluid density. This minute oscillation of the normal component causes the energy dissipation. We can drive the motion of the normal component and detect the energy loss simultaneously by using the fourth sound resonance. In pure liquid 3He (without aerogel), the motion of the normal component is well understood by the hydrodynamic theory including the slip effect[4, 5]; the energy loss of the fourth sound...
propagating in pure 3He confined in the narrow pore is represented as,

$$Q^{-1} = \frac{1}{4} \frac{\rho_n}{\rho_s} \left(\frac{R}{\delta_\nu} \right)^2 \left(1 + \frac{4\zeta}{R} \right) \quad \text{(when } R \ll \delta_\nu \text{)}, \quad (1)$$

$$\delta_\nu = \sqrt{\frac{2\eta_n}{\rho_n\omega_m}} \quad (2)$$

where ρ_n, R, δ_ν, η_n, ω_m and ζ are the normal fluid density, the effective pore radius, the viscous penetration depth, the shear viscosity, the m-th resonance angular frequency $2\pi f_m$ and the slip length, respectively. Our previous results for pure 3He[6] agrees quantitatively with Eq.(1), and we obtained $R \sim 10 \mu$m. In this paper, we would like to verify whether or not this hydrodynamic theory is applicable to the aerogel system, and reveal the motion of the normal component in aerogel.

2. Experimental Details

We prepared sound resonators with the aerogel of 97.5% and 99.0% porosities, and without aerogel. We have grown the aerogel directly between the particles of sintered silver powders whose packing factor is 65%. The silver particles are almost spherical, with a diameter of about 70 μm. To confine the aerogel into sintered silver powder prevents the aerogel strands from oscillating together with liquid[7]. The resonator is cylindrical in shape, whose diameter is 8 mm, and the length L is 15 mm. At each end of the resonator, a piezo electrode as a pressure transducer is attached so as to generate and detect a sound resonance. Measurements have been done by the conventional frequency spectroscopy technique. The m-th resonance frequency f_m and the full width of half maximum Δf_m for m-th resonance can be obtained by a Lorentzian fitting for frequency spectrum. The fourth sound velocity C_4, the superfluid fraction ρ_s/ρ, and the energy loss of fourth sound are calculated by well known formulae $C_4 = 2nL f_m/m$, $\rho_s/\rho = (C_4/C_1)^2$ and $Q^{-1} = \Delta f_m/f_m$ respectively. Here, $n \sim 1.4$ is the acoustic refraction index determined by the sound measurement using liquid 4He, and C_1 is the first sound velocity[8]. The measurement was performed in B-like phase at ambient pressure 28.9 bar and under zero magnetic field. The temperature was measured by a Pt-NMR thermometer located in bulk liquid.

3. Results and Discussions

The temperature dependence of superfluid fraction ρ_s/ρ for the pure cell and two aerogel cells is shown in FIG. 1. In the lower porosity, ρ_s/ρ and the transition temperature T_C, which is determined by extrapolating ρ_s/ρ to zero, get lower; T_C of each cell without aerogel (pure 3He) and with aerogel of 99.0% and 97.5% porosities are 2.43 mK, 2.27 mK and 1.76 mK, respectively. These results are qualitatively understood by IISM model[9], in which the suppression is determined by the number of impurities within the coherence length ξ_0. FIG. 2 shows the temperature dependence of the energy loss Q^{-1} for 2nd mode. The energy loss of two aerogel cells are much smaller than that of the pure cell, and the energy loss does not depend on porosity except near T_C[10]. It means that Eq.(1) fails by introducing aerogel. The reasons are as follows; Eq.(1) shows that the energy loss Q^{-1} is proportional to ρ_n/ρ_s and δ_ν^2. First, (ρ_n/ρ_s)$_{aero}$ is larger than (ρ_n/ρ_s)$_{pure}$ due to the suppression of the superfluidity. And second, the shear viscosity η_n is represented as $\eta_n = (1/5)np_k\lambda$, where λ is the mean free path of the quasiparticle. λ_{aero} becomes much smaller than λ_{pure} due to the impurity scattering, so that δ_ν^{aero} also becomes much smaller than δ_ν^{pure}. Therefore the energy loss in aerogel must be larger than that in pure liquid. However, we obtained the opposite results. The most possible interpretation for the suppression of the energy loss in the aerogel system is the collision drag.
effect[11]. Higashitani and Miura treated the propagation of the sound in superfluid 3He confined in the aerogel with the frictional drag force and evolved the dispersion relation of the sound. In the decoupling limit, in which the eigenfrequency of the elastic motion of the aerogel strands is much higher than the fluid oscillation, the energy loss of the fourth sound in the aerogel is derived to be

$$Q^{-1} = \frac{\rho_n}{\rho_s} \omega \tau_f,$$

where τ_f is the frictional relaxation time[12]. Using this formula, we obtained τ_f for each cell with aerogel, as shown in FIG.3. Although the energy loss does not depend on the porosity, τ_f turns out to be dependent on the porosity. Below $T/T_C \sim 0.6$, τ_f gets smaller with decreasing the temperature. The temperature and the porosity dependence of τ_f are qualitatively consistent with the numerical calculation[13]. Thus, in the aerogel system, the motion of normal fluid component is described by the frictional model, like Drude’s electron in the metal[14], rather than the viscous motion. However, further theoretical discussions are needed to interpret following complicated results: according to the Landau’s transport equation[15, 16], the frictional relaxation time $\tau_f(T_C) = (m/m^*) \tau$, where m^*/m is the effective mass ratio that depends only on the ambient pressure[8], and τ is the impurity scattering time. If we extrapolate our τ_f to the transition temperature, we have obviously, $\tau_{99.0\%} < \tau_{97.5\%}$. Moreover, the transport mean free path $\lambda = v_F \tau$ becomes approximately a hundred times larger than the average distance between each strands, in aerogel.

4. Conclusion
We performed the fourth sound resonance experiments in two aerogel samples with different porosities at 28.9 bar. The energy loss of the fourth sound resonance in aerogel is much smaller than that of the pure liquid 3He, revealing the failure of the theoretical model which describes the pure system well. It causes the reduction of the viscosity that the strongly suppressed mean
The free path of 3He quasiparticle due to the scattering by the aerogel strands, and, as alternated, the contribution of the frictional force between them to the energy loss becomes dominant. The frictional relaxation time gets smaller with decreasing temperature. The temperature and porosity dependence of the frictional relaxation time τ_f qualitatively agree with the numerical calculation which take the frictional drag effect into account.

Acknowledgments

We would like to thank K. Nagai and S. Higashitani for fruitful discussions. We would also like to thank H. Yokoyama and M. Yokoyama of Advance Technology Research Laboratory in Matsushita Electric Works. Ltd. for preparing aerogels. This research is supported by Grant-in-Aid for Science Research on Priority Areas (Grant No. 17071009) from The Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] Porto J V and Parpia J M 1995 *Phys.Rev.Lett.* **74** 4667
[2] Brussaard P, Fisher S N, Guénault A M, Hale A J, Mulders N and Picket G R 2001 *Phys. Rev. Lett.* **86** 4580
[3] Nazaretski E, Lee D M and Parpia J M 2005 *Phys. Rev. B* **71** 144506
[4] Jensen H H, Smith H and Wölle P 1983 *J. Low Temp. Phys.* **51** 81
[5] Einzel D and Parpia J M 1997 *J. Low Temp. Phys.* **109** 1
[6] Nago Y, Kato C, Obara K, Yano H, Ishikawa O and Hata T 2008 *J. Low Temp. Phys.* **150** 476
[7] Golov A, Geller D A, Parpia J M and Mulders N 1999 *Phys. Rev. Lett.* **82** 3492
[8] Wheatley J C 1975 *Rev. Mod. Phys.* **47** 415
[9] Hämminen R and Thuneberg E V 2003 *Phys. Rev. B* **67** 214507
[10] The divergence of Q^{-1} toward T_C is caused by ρ_s/ρ, dependence and the disappearance of ρ_s at T_C.
[11] Miura M, Higashitani S, Yamamoto M and Nagai K 2004 *J. Low Temp. Phys.* **134** 843
[12] Higashitani S, Miura M, Yamamoto M and Nagai K 2005 *J. Low Temp. Phys.* **138** 147
[13] Higashitani S, Miura M, Yamamoto M and Nagai K 2005 *Phys. Rev. B* **71** 134508
[14] Einzel D and Parpia J M 1998 *Phys. Rev. Lett.* **81** 3896
[15] Higashitani S, Ichikawa T, Yamamoto M, Miura M and Nagai K 2003 *Physica B* **329-333** 299-300
[16] private communication with S. Higashitani.