LOSSES IN $M/GI/m/n$ QUEUES

VYACHESLAV M. ABRAMOV

Abstract. The $M/GI/m/n$ queueing system with m homogeneous servers and the finite number n of waiting spaces is studied. Let λ be the customers arrival rate, and let μ be the reciprocal of the expected service time of a customer. Under the assumption $\lambda = m\mu$ it is proved that the expected number of losses during a busy period is the same value for all $n \geq 1$, while in the particular case of the Markovian system $M/M/m/n$ the expected number of losses during a busy period is $\frac{m^m}{m!}$ for all $n \geq 0$. Under the additional assumption that the probability distribution function of a service time belongs to the class NBU or NWU, the paper establishes simple inequalities for those expected numbers of losses in $M/GI/m/n$ queueing systems.

1. Introduction

Analysis of loss queueing systems is very important from both the theoretical and practical points of view. While the multiserver loss queueing system $M/GI/m/0$ and its network extensions have been intensively studied (see the review paper of Kelly [20], the book of Ross [27] and references in these sources), the information about $M/GI/m/n$ queueing systems ($n \geq 1$) is very scanty, because explicit results for characteristics of these queueing systems are unknown. (In the present paper, for multiserver queueing systems the notation $M/GI/m/n$ is used, where m denotes the number of servers and n denotes the number of waiting places. Another notation which is also acceptable in the literature is $M/GI/m/m + n$.)

From the practical point of view, $M/GI/m/n$ queueing systems serve as a model for telephone systems, where n is the maximally possible number of calls that can wait in the line before their service start. The loss probability is one of the most significant performance characteristics. In the present paper, we study the expected number of losses during a busy period (the characteristic closely related to the stationary loss probability) under the assumption that the arrival rate (λ) is equal to the maximum service capacity ($m\mu$), which seems to be the most interesting from the theoretical point of view.

There are two main reasons for studying this case.

The first reason is that the case $\lambda = m\mu$ is a critical case for queueing systems with m identical servers, i.e. the case associated with critically loaded systems. The theoretical and practical interest in studying heavily loaded loss systems is very high, and there are many results in the literature related to the analysis of the loss probability in heavily loaded systems. The asymptotic results for losses in heavily loaded single server systems ($n \to \infty$) such as $M/GI/1/n$ and $GI/M/1/n$
and for associated models of telecommunication systems and dams have been studied in [4], [8], [9], [11], [14] and [33]. Heavy-traffic analysis of losses in heavily loaded multiserver systems have been provided in [12], [33], [34] and [35]. The mathematical foundation of heavy traffic theory can be found in the textbook of Whitt [32]. Although the case $\lambda = m\mu$ is idealistic, it enables us to understand the possible behaviour of the system in certain cases when the values λ and $m\mu$ are close and approach one another as n increases to infinity. (Obtaining nontrivial results in the cases $\lambda < m\mu$ and $\lambda > m\mu$ is a hard problem, so the analytic investigation of the aforementioned asymptotic behaviour as n increases to infinity is difficult.)

The second reason is that $\lambda = m\mu$ is an interesting theoretical case associated with an extension of the following non-trivial property of the symmetric random walk. Let $X_1, X_2, \ldots, X_i, \ldots$, be a sequence of independent and identically distributed random variables taking the values ± 1 with the equal probability $\frac{1}{2}$. Let $S_0 = 0$, and $S_{i+1} = S_i + X_{i+1}$, $i \geq 0$, be a symmetric random walk, and let $t = \tau$ be the first time instant after $t = 0$ when this random walk returns to zero, i.e. $S_{\tau} = 0$. It is known that the expected number of level-crossings through any level $n \geq 1$ (or $n \leq -1$) is equal to $\frac{1}{2}$ independently of that level. The mentioning of this fact (but in a slightly different formulation) can be found in Szekely [30], and its proof is given in Wolff [37], p.411. The reformulation of this fact in terms of queueing theory is as follows. Consider $M/M/1/n$ queueing system with equal arrival and service rates. For this system, the expected number of losses during a busy period is equal to 1 for all $n \geq 0$. It has been recently noticed that this property holds true for $M/GI/1/n$ queueing systems. Namely, it was shown in several recent papers (see Abramov [1], [2], [4], Righter [26], Wolff [38]), that under mutually equal expectations of interarrival and service time, the expected number of losses during a busy period is equal to 1 for all $n \geq 0$. Further extension of this property to queueing systems with batch arrivals have been given in Abramov [5], Wolff [38] and Peköz, Righter and Xia [25]. Applications of the aforementioned property of losses can be found in [9] for analysis of lost messages in telecommunication systems and in [11] for optimal control of large dams. Further relevant results associated with the properties of losses have been obtained in the paper by Peköz, Righter and Xia [25]. They solved a characterization problem associated with the properties of losses in $GI/M/1/n$ queues and established similar properties for $M/M/m/n$ and $M^{N}/M/m/n$ queueing systems. Recently, a similar property related to consecutive losses in busy periods of $M/GI/1/n$ queueing systems has been discussed in [15].

It follows from the results obtained in this paper that for $M/GI/1/n$ queueing systems with mutually equal expectations of interarrival and service time, the expected number of consecutive losses during a busy period generally depends on n. However, for $M/M/1/n$ queueing systems with equal arrival and service rates that expected number of consecutive losses during a busy period is the same constant (depending on the value k) for all $n \geq 0$.

The aim of the present paper is further theoretical contribution to this theory of losses, now to the theory of multiserver loss queueing systems. On the basis of the aforementioned results on losses in $M/GI/1/n$ and $M/M/m/n$ queueing systems we address the following open question. Does the result on losses in $M/M/m/n$ queueing systems remain true for those $M/GI/m/n$ too?
The answer on this question is not elementary. On one hand, under the assumption \(\lambda = m\mu \) the expected numbers of losses in \(M/GI/m/0 \) and \(M/GI/m/n \) queueing systems (\(m \geq 2 \) and \(n \geq 1 \)) during their busy periods are different. A simple example for this confirmation can be built for \(M/GI/2/1 \) queueing systems having the service time distribution

\[
G(x) = 1 - pe^{-\mu_1 x} - qe^{-\mu_2 x}, \quad p + q = 1.
\]

The analysis of the stationary characteristics for these systems, resulting in an analysis of losses during a busy period, can be provided explicitly. Specifically, the structure of the \(9 \times 9 \) Markov chain intensity matrix for the states of the Markov chain associated with an \(M/GI/2/1 \) queueing system shows a clear difference between the structure of the stationary probabilities in \(M/GI/2/1 \) queues and that in \(M/GI/2/0 \) queues given by the Erlang-Sevastyanov formulae. So, the parameters \(p, q, \mu_1 \) and \(\mu_2 \) can be chosen such that the expected number of losses during busy periods in these two queueing systems will be different.

On the other hand, the property of losses, which is similar to the aforementioned one, indeed holds. The correctness of this similar property for multiserver \(M/GI/m/n \) queueing systems is proved in the present paper. Namely, we establish the following results.

Let \(L_{m,n} \) denote the number of losses during a busy period of the \(M/GI/m/n \) queueing system, let \(\lambda, \mu \) be the arrival rate and, respectively, the reciprocal of the expected service time, and let \(m, n \) denote the number of servers and, respectively, the number of waiting places. We will prove that, under the assumption \(\lambda = m\mu \), the expected number of losses during a busy period of the \(M/GI/m/n \) queueing system, \(EL_{m,n} \), is the same for all \(n \geq 1 \), which is not generally the same as that for the \(M/GI/m/0 \) loss queueing system (when \(n = 0 \)). In addition, if the probability distribution function of the service time belongs to the class NBU (New Better than Used), then \(EL_{m,n} = \frac{cm^n}{m!} \), where a constant \(c \geq 1 \) is independent of \(n \geq 1 \). In the opposite case of the NWU (New Worse than Used) service time distribution we correspondingly have \(EL_{m,n} = \frac{cm^n}{m!} \) with a constant \(c \leq 1 \) independent of \(n \geq 1 \) as well. (The constant \(c \) becomes equal to 1 in the case of exponentially distributed service times.)

Recall that a probability distribution function \(\Xi(x) \) of a nonnegative random variable is said to belong to the class NBU if for all \(x \geq 0 \) and \(y \geq 0 \) we have

\[
\Xi(x + y) \leq \Xi(x)\Xi(y),
\]

where \(\Xi(0) = 1 - \Xi(x) \). If the opposite inequality holds, i.e. \(\Xi(x + y) \geq \Xi(x)\Xi(y) \), then \(\Xi(x) \) is said to belong to the class NWU.

The proof of the main results of this paper is based on an application of the level-crossing approach to the special type stationary processes. The construction of the level-crossings approach used in this paper is a substantially extended version of that used in the earlier papers by the author (e.g. [1], [3], [6], [10] and [13]) and by Pechinkin [24]. It uses modern geometric methods of analysis and involves an algebraically close system of processes and a nontrivial construction of deleting intervals and merging the ends together with nontrivial applications of the PASTA property.

Throughout the paper, it is assumed that \(m \geq 2 \). (This is not the loss of generality since the case \(m = 1 \) is known, see [3], [26] and [38].)

The paper is organized as follows. In Section 2, which is the first part of the paper, \(M/M/m/n \) queueing systems are studied. The results for \(M/M/m/n \) queueing systems are then used in Section 3, which is the second part of the paper, in order to study \(M/GI/m/n \) queueing systems. The study in both of Sections 2 and 3 is based on the level-crossing approach. The construction of level-crossings
for $M/M/m/n$ queueing systems is then developed for $M/GI/m/n$ queueing systems as follows. The stationary processes associated with these queueing systems is considered, and the stochastic relations between the times spent in state $m - 1$ associated with $m - 1$ busy servers during a busy period of $M/GI/m/n$ ($n \geq 1$) and $M/GI/m − 1/0$ queueing systems are established. To prove these stochastic relations, some ideas from the paper of Pechinkin [24] are involved to adapt and develop the level-crossing method for the problems of the present paper. The obtained stochastic relations are crucial, and they are then used to prove the main results of the paper in Section 4. In Section 5, possible development of the results for $M^X/GI/m/n$ queueing systems with batch arrivals is discussed.

2. The $M/M/m/n$ Queueing System

In this section, the Markovian $M/M/m/n$ loss queueing system is studied with the aid of the level-crossings approach, in order to establish some relevant properties of this queueing system. Those properties are then developed for $M/GI/m/n$ queueing systems in the following sections.

Let $f(j), 1 \leq j \leq n + m + 1,$ denote the number of customers arriving during a busy period who, upon their arrival, meet $j - 1$ customers in the system. It is clear that $f(1) = 1$ with probability 1. Let $t_{j,1}, t_{j,2}, \ldots, t_{j,f(j)}$ be the instants of arrival of these $f(j)$ customers, and let $s_{j,1}, s_{j,2}, \ldots, s_{j,f(j)}$ be the instants of the service completions when there remain only $j - 1$ customers in the system. Notice, that $t_{n+m+1,k} = s_{n+m+1,k}$ for all $k = 1, 2, \ldots, f(n + m + 1).

For $1 \leq j \leq n + m$ let us consider the intervals

(2.1) $$(t_{j,1}, s_{j,1}], (t_{j,2}, s_{j,2}], \ldots, (t_{j,f(j)}, s_{j,f(j)}].$$

Then, by incrementing index j we have the following intervals

(2.2) $$(t_{j+1,1}, s_{j+1,1}], (t_{j+1,2}, s_{j+1,2}], \ldots, (t_{j+1,f(j+1)}, s_{j+1,f(j+1)}].$$

Delete the intervals of (2.2) from those of (2.1) and merge the ends, that is each point $t_{j+1,k}$ with the corresponding point $s_{j+1,k}, k = 1, 2, \ldots, f(j + 1)$ (see Figure 1).

Then $f(j + 1)$ has the following properties. According to the property of the lack of memory of the exponential distribution, the residual service time for a service completion, after the procedure of deleting the interval and merging the ends as it is indicated above, remains exponentially distributed with parameter $\mu \min(j, m)$. Therefore, the number of points generated by merging the ends within the given interval $(t_{j,1}, s_{j,1})$ coincides in distribution with the number of arrivals of the Poisson process with rate λ during an exponentially distributed service time with parameter $\mu \min(j, m)$. Namely, for $1 \leq j \leq m - 1$ we obtain

$$E\{f(j + 1)|f(j) = 1\} = \sum_{u=1}^{\infty} u \int_{0}^{\infty} e^{-\lambda x} \frac{(\lambda x)^u}{u!} j \mu e^{-j \mu x} dx = \frac{\lambda}{j \mu}.$$

Considering now a random number $f(j)$ of intervals (2.1) we have

(2.3) $$E\{f(j + 1)|f(j)\} = \frac{\lambda}{j \mu} f(j).$$
Figure 1. Level crossings during a busy period in a Markovian system
Analogously, denoting the load of the system by \(\rho = \frac{\lambda}{m \mu} \), for \(m \leq j \leq m + n \) we have

\[
E\{f(j + 1)|f(j)\} = \frac{\lambda}{m \mu} f(j) = \rho f(j).
\]

The properties (2.3) and (2.4) mean that the stochastic sequence

\[
\{ f(j + 1) \left(\frac{\mu}{\lambda} \right)^j \prod_{i=1}^{j} \min(i, m), F_{j+1} \}, \quad F_j = \sigma\{f(1), f(2), \ldots, f(j)\},
\]

forms a martingale.

It follows from (2.5) that for \(0 \leq j \leq m - 1 \)

\[
E f(j + 1) = \frac{\lambda^j}{j! \mu^j},
\]

and for \(m \leq j \leq m + n \)

\[
E f(j + 1) = \frac{\lambda^m}{m! \mu^m} \rho^{j-m}.
\]

For example, when \(\rho = 1 \) from (2.7) we obtain the particular case of the result of Peköz, Righter and Xia [25]: \(E L_{m,n} = E f(n + m + 1) = \frac{\mu^m}{m!} \), for all \(n \geq 0 \), where \(L_{m,n} \) denotes the number of losses during a busy period of the \(M/M/m/n \) queueing system.

Next, let \(B(j) \) be the period of time during a busy cycle of the \(M/M/m/n \) queueing system when there are exactly \(j \) customers in the system. For \(0 \leq j \leq m + n \) we have:

\[
\lambda E B(j) = E f(j + 1) = \begin{cases}
\frac{\lambda^j}{j! \mu^j}, & \text{for } 0 \leq j \leq m - 1, \\
\frac{\lambda^m}{m! \mu^m} \rho^{j-m}, & \text{for } m \leq j \leq m + n.
\end{cases}
\]

Now, introduce the following notation. Let \(T_{m,n} \) denote the length of a busy period of the \(M/M/m/n \) queueing system, let \(T_{m,0} \) denote the length of a busy period of the \(M/M/m/0 \) queueing system with the same arrival and service rates as in the initial \(M/M/m/n \) queueing system, and let \(\zeta_n \) denote the length of a busy period of \(M/M/1/n \) queueing system with arrival rate \(\lambda \) and service rate \(\mu m \). From (2.6)-(2.8) for the expectation of a busy period of the \(M/M/m/n \) queueing system we have

\[
E T_{m,n} = \sum_{j=1}^{n+m} E B(j) = \sum_{j=1}^{m-1} \frac{\lambda^{j-1}}{j! \mu^j} + \frac{\lambda^{m-1}}{m! \mu^m} \sum_{j=0}^{n} \rho^j.
\]

In turn, for the expectation of a busy period of the \(M/M/m/0 \) queueing system we have

\[
E T_{m,0} = \sum_{j=1}^{m} E B(j) = \sum_{j=1}^{m} \frac{\lambda^{j-1}}{j! \mu^j},
\]

where (2.10) is the particular case of (2.9) where \(n = 0 \).

It is clear that \(T_{m,n} \) contains one busy period \(T_{m-1,0} \), where the subscript \(m - 1 \) underlines that there are \(m - 1 \) servers, and a random number of independent busy periods, which will be called orbital busy periods. Denote an orbital busy period by \(\zeta_n \). (It is assumed that an orbital busy period \(\zeta_n \) starts at instant when an arriving customer finds \(m - 1 \) servers busy and occupies the \(m \)th server, and it finishes...
at the instant when after a service completion there at the first time remain only
\(m - 1 \) busy servers.) Therefore, denoting the independent sequence of identically
distributed orbital busy periods by \(\zeta_n^{(1)}, \zeta_n^{(2)}, \ldots \), we have

\[
T_{m,n} \overset{d}{=} T_{m-1,0} + \sum_{i=1}^{\kappa} \zeta_n^{(i)},
\]

where \(\kappa \) is the random number of the aforementioned orbital busy periods and \(\overset{d}{=} \) means an equality in distribution. It follows from (2.9), (2.10) and (2.11)

\[
E \sum_{i=1}^{\kappa} \zeta_n^{(i)} = \frac{\lambda^{m-1}}{m! \mu^m} \sum_{j=0}^{n} \rho^j.
\]

On the other hand, the expectation of an orbital busy period \(\zeta_n \) is

\[
E\zeta_n = \frac{1}{m\mu} \sum_{j=0}^{n} \rho^j
\]

(this can be easily checked, for example, by the level-crossings method [1], [6] and
an application of Wald’s identity [16], p. 384), and we obtain

\[
E\kappa = \frac{\lambda^{m-1}}{(m-1)! \mu^{m-1}}.
\]

Thus, \(E\kappa \) coincides with the expectation of the number of losses during a busy
period in the \(M/M/m/0 \) queueing system. In the case \(\rho = 1 \) we have \(E\kappa = \frac{m^n}{m!} \).

3. \(M/GI/m/n \) queueing systems

In this section, the inequalities between the times spent in the state \(m - 1 \) in the
\(M/GI/m/n \) \((n \geq 1) \) and \(M/GI/m/0 \) queueing systems during their busy periods
are derived.

Consider two queueing systems: \(M/GI/m/n \) \((n \geq 1) \) and \(M/GI/m/0 \) both
having the same arrival rate \(\lambda \) and probability distribution function of a service
time \(G(x) \), \(\frac{1}{\mu} = \int_0^\infty x dG(x) < \infty \). Let \(T_{m,n}(m-1) \) denote the time spent in the
state \(m - 1 \) during its busy period (i.e. the total time during a busy period when
\(m - 1 \) servers are occupied) of the \(M/GI/m/n \) queueing system, and let \(T_{m,0}(m-1) \) have the same meaning for the \(M/GI/m/0 \) queueing system.

We prove the following lemma.

Lemma 3.1. Under the assumption that the service time distribution \(G(x) \) belongs
to the class NBU (NWU),

\[
T_{m,n}(m-1) \geq_{st} \text{ (resp.} \leq_{st} \text{) } T_{m,0}(m-1),
\]

Proof. The proof of the lemma is relatively long. In order to make it transparent
and easily readable we strongly indicate the steps of this proof given by several
propositions (properties). There are also six figures (Figures 2-7) illustrating the
constructions in the proof. Each of these figures contain two graphs. The first
(upper) of them indicates the initial (or intermediate) possible path of the process
sometimes two-dimensional), while the second (lower) one indicates the part of the
path of one or two-dimensional process after a time scaling or specific transformation
et. e.g. in Figure 5). Arc braces in the graphs indicate the intervals that should
be deleted and their ends merged.
Two-dimensional processes are shown as parallel graphs. For example, there are two parallel processes in Figure 3 which are shown in the upper graph, and there are two parallel processes which are shown in the lower graph. The same is in Figures 4, 6 and 7.

For the purpose of the present paper we use strictly stationary processes of order 1 or strictly 1-stationary processes. Recall the definition of a strictly stationary process of order \(n \) (see [23], p.206).

Definition 3.2. The process \(\xi(t) \) is said to be strictly stationary of order \(n \) or strictly \(n \)-stationary, if for a given positive \(n < \infty \), any \(h \) and \(t_1, t_2, \ldots, t_n \) the random vectors

\[
\left(\xi(t_1), \xi(t_2), \ldots, \xi(t_n) \right) \quad \text{and} \quad \left(\xi(t_1 + h), \xi(t_2 + h), \ldots, \xi(t_n + h) \right)
\]

have identical joint distributions.

If \(n = 1 \) then we have strictly 1-stationary processes satisfying the property:

\[
P\{\xi(t) \leq x\} = P\{\xi(t + h) \leq x\}.
\]

The probability distribution function \(P\{\xi(t) \leq x\} \) in this case will be called *limiting stationary distribution*.

The class of strictly 1-stationary processes is wider than the class of strictly stationary processes, where it is required that for all finite dimensional distributions

\[
P\{\left(\xi(t_1), \xi(t_2), \ldots, \xi(t_k) \right) \in B_k \} = P\{\left(\xi(t_1 + h), \xi(t_2 + h), \ldots, \xi(t_k + h) \right) \in B_k \},
\]

for any \(h \) and any Borel set \(B_k \subset \mathbb{R}^k \). The reason of using strictly 1-stationary processes rather than strictly stationary processes themselves is that, the operation of deleting intervals and merging the ends is algebraically close with respect to strictly 1-stationary processes, and it is not closed with respect to strictly stationary processes. The last means that if \(\xi(t) \) is a strictly 1-stationary process, then for any \(h > 0 \) and arbitrary \(t_0 \) the new process

\[
\xi_1(t) = \begin{cases}
\xi(t), & \text{if } t \leq t_0, \\
\xi(t + h), & \text{if } t > t_0
\end{cases}
\]

is also strictly 1-stationary and has the same one-dimensional distribution as the original process \(\xi(t) \). The similar property is not longer valid for strictly stationary processes. If \(\xi(t) \) is a strictly stationary process, then generally \(\xi_1(t) \) is not strictly stationary.

In the following the prefix ‘strictly’ will be omitted, so strictly stationary and strictly 1-stationary processes will be correspondingly called stationary and 1-stationary processes.

Let us introduce \(m \) independent and identically distributed stationary renewal processes (denoted below \(x_m(t) \)) with a renewal period having the probability distribution function \(G(x) \).

On the basis of these renewal processes we build the stationary \(m \)-dimensional Markov process \(x_m(t) = \{\xi_1(t), \xi_2(t), \ldots, \xi_m(t)\} \), the coordinates \(\xi_k(t) \), \(k = 1, 2, \ldots, m \) of which are the residual times to the next renewal times in time moment \(t \), following in an ascending order.

Let us now consider the two \((m + 1)\)-dimensional Markov processes corresponding to the \(M/GI/m/n \) \((n \geq 1)\) and \(M/GI/m/0 \) queueing systems, which are denoted by \(y_{m,n}(t) \) and \(y_{m,0}(t) \). Let \(Q_{m,n}(t) \) denote the stationary queue-length
that of the processes \(y \) and merge the ends. Remove the last component of the obtained process (in the following the prefix ‘Markov’ will be omitted and only used in the queueing system (e.g. Takács [31])

are the ordered residual service times corresponding to \(\nu_{m,n}(t) = \min\{m, Q_{m,n}(t)\} \) customers in service in time \(t \), and

all are zeros. Analogously,

only replacing the index \(n \) with 0.

Let us delete all time intervals of the process \(y_{m,n}(t) \) related to the \(M/GI/m/n \) queueing system \((n \geq 1)\) where there are more than \(m - 1 \) or less than \(m - 1 \) customers and merge the ends. Remove the last component of the obtained process which is trivially equal to \(m - 1 \). Then we get the new \((m - 1)\)-dimensional Markov process (in the following the prefix ‘Markov’ will be omitted and only used in the places where it is meaningful):

the components of which are now denoted by hat. All of the components of this vector are 1-stationary, which is a consequence of the existence of the limiting stationary probabilities of the processes \(\eta_j^{(m,n)}(t), j = 1, 2, \ldots, m \) (e.g. Takács [31]) and consequently those of the processes \(\hat{\eta}_j^{(m,n)}(t), j = 1, 2, \ldots, m \). The joint limiting stationary distribution of the process \(\hat{y}_{m-1,n}(t) \) can be obtained by conditioning of that of the processes \(y_{m,n}(t) \) given \(Q_{m,n}(t) = m - 1 \).

The similar operation of deleting intervals and merging the ends, where there are less than \(m - 1 \) customers in the system, for the process \(y_{m-1,0}(t) \) is used. We correspondingly have

We establish the following elementary property related to the \(M/GI/1/n \) queueing systems, \(n=0,1,\ldots \)

Property 3.3.

(3.2) \(P \left\{ \eta_1^{(1,n)}(t) \in B_1 \mid Q_{1,n}(t) \geq 1 \right\} = P\{x_1(t) \in B_1\} \),

for any Borel set \(B_1 \subset \mathbb{R}^1 \).

Proof. Delete all of the intervals where the server is free and merge the corresponding ends (see Figure 2). Then in the new time scale, the processes all are structured as a stationary renewal process with the length of a period having the probability distribution function \(G(x) \). Therefore (3.2) follows. \(\square \)
Residual service times in the original M/G1/1/n queueing system

Residual service times of the scaled process in the M/G1/1/n queueing system

Figure 2. Residual service times for the original and scaled processes of the $M/G1/1/n$ queueing system.
In order to establish similar properties in the case \(m = 2 \) let us first study the properties of 1-stationary processes and explain the construction of tagged server station which is substantially used in our construction throughout the paper.

Properties of 1-stationary processes. Recall (see Definition 3.2) that if \(\xi(t) \) is a 1-stationary process, then for any \(h \) and \(t_0 \) the probability distributions of \(\xi(t_0) \) and \(\xi(t_0 + h) \) are the same. The result remains correct (due to the total probability formula) if \(h \) is replaced by random variable \(\vartheta \) with some given probability distribution, which is assumed to be independent of the process \(\xi \). Namely, we have:

\[
P\{\xi(t_0 + \vartheta) \leq x\} = \int_{-\infty}^{\infty} P\{\xi(t_0 + h) \leq x\} \, dP\{\vartheta \leq h\}
\]

(3.3)

\[
= P\{\xi(t_0) \leq x\} \int_{-\infty}^{\infty} dP\{\vartheta \leq h\}
\]

\[
= P\{\xi(t_0) \leq x\}.
\]

That is, \(\xi(t_0) \) and \(\xi(t_0 + \vartheta) \) have the same distribution.

The above property will be used for the following construction of the sequence of 1-stationary processes \(\xi^{(1)}(t), \xi^{(2)}(t), \ldots \), having identical one-dimensional distributions.

Let \(\xi^{(0)}(t) = \xi(t) \) be a 1-stationary process, let \(t_1 \) be an arbitrary point, and let \(\vartheta_1 \) be a random variable with some given probability distribution, which is independent of the process \(\xi^{(0)}(t) \). Let us build a new process \(\xi^{(1)}(t) \) as follows.

Put

\[
\xi^{(1)}(t) = \begin{cases}
\xi^{(0)}(t), & \text{for all } t < t_1, \\
\xi^{(0)}(t + \vartheta_1), & \text{for all } t \geq t_1.
\end{cases}
\]

(3.4)

Since the probability distributions of \(\xi(t) \) and \(\xi(t + \vartheta_1) \) are the same for all \(t \geq t_1 \), then the processes \(\xi(t) \) and \(\xi^{(1)}(t) \) have the same one-dimensional distributions, and \(\xi^{(1)}(t) \) is a 1-stationary process as well.

With a new point \(t_2 \) and a random variable \(\vartheta_2 \), which is assumed to be independent of the process \(\xi^{(0)}(t) \) and random variable \(\vartheta_1 \) (therefore, it is also independent of the process \(\xi^{(1)}(t) \)) by the same manner one can build the new 1-stationary process \(\xi^{(2)}(t) \). Specifically,

\[
\xi^{(2)}(t) = \begin{cases}
\xi^{(1)}(t), & \text{for all } t < t_2, \\
\xi^{(1)}(t + \vartheta_2), & \text{for all } t \geq t_2.
\end{cases}
\]

(3.5)

The new process \(\xi^{(2)}(t) \) has the same one-dimensional distribution as the processes \(\xi^{(0)}(t) \) and \(\xi^{(1)}(t) \). The procedure can be infinitely continued, and one can obtain the infinite family of 1-stationary processes, having the same one-dimensional distribution.

The points \(t_1, t_2, \ldots \) in the above construction are assumed to be some fixed (non-random) points. However, the construction also remains correct in the case of random points \(t_0, t_1, \ldots \) of Poisson process, since according to the PASTA property [36] the limiting stationary distribution of a 1-stationary process in a point of a Poisson arrival coincides with the limiting stationary distribution of the same 1-stationary process in an arbitrary non-random point. Furthermore, the aforementioned property of process remains correct when the random points \(t_0, t_1, \ldots \) are the
points of the process which is not necessarily Poisson but belongs to the special class of processes that contains Poisson. In this case the property is called ASTA (e.g. [22]).

1-stationary Poisson process. Consider an important particular case when the process \(\xi(t) \) is Poisson. Let \(\xi^{(0)}(t) = \xi(t) \). Then the process \(\xi^{(1)}(t) \) that obtained by (3.4) is no longer Poisson. Its limiting stationary distribution is the same as that of the original process \(\xi(t) \), but the joint distributions of this process given in different points \(s \) and \(t \) distinguish from those of the original process \(\xi(t) \).

The process \(\xi^{(1)}(t) \) will be called 1-stationary Poisson process or simply 1-Poisson. Clearly, that the further processes such as \(\xi^{(2)}(t), \xi^{(3)}(t), \ldots \) that obtained similarly to the procedure in (3.4), (3.5) all are 1-Poisson with the same limiting stationary distribution. According to the above construction, a 1-Poisson process is obtained by deleting intervals and merging the ends of an original Poisson process. Therefore, a sequence of 1-Poisson arrival time instants is a scaled subsequence of those instants of the ordinary Poisson arrivals. Hence, for 1-Poisson process the ASTA property is satisfied, i.e. 1-Poisson arrivals see time averages exactly as those Poisson arrivals.

Tagged server station. Consider a stationary queueing system \(M/GI/m/n \), which is referred to as main server station, and in addition to this queueing system introduce another one containing a server station in order to register specific arrivals, for example losses or, say, customers waiting their service in the main system. This server station is called tagged server station. The main idea of introducing tagged server stations is to decompose the main system as follows. Assume that along with a Poisson stream of arrivals of customers occupying servers in the main system, there is another stream of arrivals of customers in the tagged server system. For instance, the losses in the main system can be supposed to occupy the tagged server station. Although the stream of these losses is not Poisson (see e.g. [21], p. 83 or [20], p. 320), it is shown later that it is 1-Poisson. Therefore, the original system is decomposed into smaller systems with the same (1-Poisson) type of input stream. It is worth noting that only one dimensional distributions of 1-Poisson process are the same for all of them that generated similarly to the procedure in (3.4), (3.5). However, the two-dimensional distributions are distinct in general.

In fact, applications of a tagged server station is wider than that, and its aim is a proper decomposition of the original system into the main and tagged systems for further study of the properties of losses.

Another idea of using tagged server stations is a proper application of the ASTA property as follows. At the moment of arrival of a customer in the tagged server station, the stationary characteristics in the main server station remain the same. Specifically, the distributions of residual service times in servers of the main station at the moment of arrival of a customer in the tagged station coincides with the usual stationary distributions of these residual service times.

Let us now formulate and prove a property similar to Property 3.3 for \(m = 2 \). We have the following.

Property 3.4. For the \(M/GI/2/0 \) queueing system we have:

\[
(3.6) \quad \Pr(\tilde{y}_{1,0}(t) \in B_{1}) = \Pr(x_{1}(t) \in B_{1}),
\]
Proof. In order to simplify the explanation in this case, let us consider two auxiliary stationary one-dimensional processes \(\xi_{1,0}(t) \) and \(\xi_{2,0}(t) \). The first process describes a residual service time in the first server, and the second one describes a residual service time in the second server. If the \(i \)th server \((i = 1,2)\) is free in time \(t \), then we set \(\xi_{i,0}(t) := 0 \).

Our further convention is that the first server is a tagged server. We assume that if at the moment of arrival of a customer both of the servers are free, he/she occupies the first server. Clearly that this assumption is not a loss of generality. For instance, if we assume that both of the servers are equivalent and can be occupied with the equal probability \(\frac{1}{2} \), then an occupied server (let it be the first) can be called tagged. In another busy period start an arriving customer can occupy the second server. It this case, nothing is changed if the servers will be renumbered, and the occupied server will be numbered as first and called tagged.

Our main idea is a decomposition of the stationary \(M/GI/2/0 \) queueing system into two systems and study the properties of stationary (1-stationary) processes \(\xi_{1,0}(t) \) and \(\xi_{2,0}(t) \). The arrival stream to the tagged system is Poisson, so the first system is \(M/GI/1/0 \), while the second one is denoted \(•/GI/1/0 \), where \(• \) in the first place of the notation stands for the input process in the second system, which is the output (loss) stream in the first one. Clearly, that an arriving customer is arranged to the second queueing system if and only if at the moment of his/her arrival the tagged system is occupied. Therefore, let us delete all the intervals when the tagged system is empty and merge the ends. In this case, the tagged system becomes an ordinary renewal process, and the stream of arrivals to the second queuing system becomes 1-Poisson rather then Poisson (because after deleting intervals and merging the ends in the new time scale the original Poisson process is transformed into 1-Poisson). Therefore the second system now can be re-denoted by \(\tilde{M}/GI/1/0 \), where \(\tilde{M} \) in the first place of the notation stands for 1-Poisson input and replaces the initially written symbol \(• \).

Thus, the \(M/GI/2/0 \) queueing system is decomposed into the \(M/GI/1/0 \) and \(\tilde{M}/GI/1/0 \) queueing systems. Clearly, that without loss of generality one can assume that the original arrival stream is 1-Poisson rather than Poisson, i.e. the original queueing system is \(\tilde{M}/GI/2/0 \), and it is decomposed into two \(\tilde{M}/GI/1/0 \) queueing systems. The last note is important for the further extension of the result for the systems \(M/GI/m/0 \) (or generally \(\tilde{M}/GI/m/0 \)) having \(m > 2 \) servers.

Let \(\tau \) be the time moment when an arriving customer occupies the tagged server station. According to the ASTA property,

\[
(3.7) \quad P\{\xi_{2,0}(\tau) \leq x\} = P\{\xi_{2,0}(t) \leq x\},
\]

where \(t \) is an arbitrary fixed point, and the probability distribution function of \(\xi_{2,0}(t) \) in this point coincides with the distribution of residual service time in specific \(\tilde{M}/GI/1/0 \) system with some specific value of parameter of 1-Poisson process, which is not important here. On the other hand, the process \(\xi_{2,0}(t) \) is stationary and Markov. Therefore from (3.7) for any \(h > 0 \) we have

\[
(3.8) \quad P\{\xi_{2,0}(\tau + h) \leq x\} = P\{\xi_{2,0}(t + h) \leq x\} = P\{\xi_{2,0}(t) \leq x\}.
\]

Let \(\chi \) denotes the service time of the customer, who arrives at the time moment \(\tau \) occupying the tagged server station. Our challenge is to prove that

\[
(3.9) \quad P\{\xi_{2,0}(\tau + \chi) \leq x\} = P\{\xi_{2,0}(t) \leq x|\xi_{1,0}(t) > 0\}.
\]
Instead of the original processes $\zeta_{i,0}(t)$, $i = 1, 2$, consider another processes $\tilde{\zeta}_{i,0}(t)$, which are obtained by deleting the intervals where the tagged server is free, and merging the ends. Then, $\zeta_{1,0}(t)$ is a renewal process, and the 1-stationary process $\tilde{\zeta}_{2,0}(t)$ and the random variable χ (the length of a service time in the tagged server that starts at moment τ) are independent. Hence, for any event $\{\chi = h\}$ according to the properties of 1-stationary processes we have

\begin{equation}
P\{\tilde{\zeta}_{2,0}(\tau + \chi) \leq x | \chi = h\} = P\{\tilde{\zeta}_{2,0}(\tau) \leq x\}, \tag{3.10}
\end{equation}

and, due to the total probability formula from (3.10) we have

\begin{equation}
P\{\tilde{\zeta}_{2,0}(\tau + \chi) \leq x\} = P\{\tilde{\zeta}_{2,0}(\tau) \leq x\}. \tag{3.11}
\end{equation}

The only difference between (3.11) and the basic property (3.3) is that the time moment τ is random, while t_0 is not. However keeping in mind (3.5), this modified equation (3.11) follows by the same derivation as in (3.3).

Hence, from (3.11),

\begin{equation}
P\{\tilde{\zeta}_{2,0}(\tau + \chi) \leq x\} = P\{\tilde{\zeta}_{2,0}(\tau) \leq x\} = P\{\zeta_{2,0}(t) \leq x | \zeta_{1,0}(t) > 0\}, \tag{3.12}
\end{equation}

and since $P\{\tilde{\zeta}_{2,0}(\tau + \chi) \leq x\} = P\{\zeta_{2,0}(\tau + \chi) \leq x\}$ we finally arrive at (3.9).

As well, noticing that

\begin{equation}
P\{\tilde{\zeta}_{2,0}(\tau) \leq x\} = P\{\zeta_{2,0}(\tau) \leq x\}, \tag{3.13}
\end{equation}

from (3.11) and (3.7) we also have

\begin{equation}
P\{\zeta_{2,0}(\tau + \chi) \leq x\} = P\{\zeta_{2,0}(\tau) \leq x\} = P\{\zeta_{2,0}(t) \leq x\}. \tag{3.14}
\end{equation}

Similarly to (3.13) one can prove

\begin{equation}
P\{\zeta_{1,0}(\tau + \chi) \leq x\} = P\{\zeta_{1,0}(\tau) \leq x\} = P\{\zeta_{1,0}(t) \leq x\}, \tag{3.15}
\end{equation}

where τ is the moment of arrival of a customer, who at this moment τ occupies the second server, and χ denotes his/her service time. Relations (3.14) can be proved with the aid of the same construction of deleting intervals and merging the ends, but now in the second server. So, combining (3.13) and (3.14) we arrive at the following fact. In any arrival or service completion time instant in one server, the residual service time in another server has the same stationary distribution.

This fact is used in the constructions below.

Now consider the stationary $M/GI/2/0$ queueing system, in which both servers are equivalent in the sense that if at the moment of arrival of a customer both servers are free, then a customer can occupy each of servers with the equal probability $\frac{1}{2}$. In this case the both of the processes $\zeta_{1,0}(t)$ and $\tilde{\zeta}_{2,0}(t)$ have the same distribution.

Let us delete the time intervals where the both servers are simultaneously free, and merge the corresponding ends (see Figure 3). The new processes are denoted by $\tilde{\zeta}_{1,0}(t)$ and $\tilde{\zeta}_{2,0}(t)$, and both of them have the same equivalent distribution. (We use the same notation as in the construction above believing that it is not confusing for readers.) This two-dimensional 1-stationary process characterizes the system where in any time t at least one of two servers is busy. Consider the event of arrival of a customer in a stationary system at the moment when only one of two servers is busy. Let τ^* be the moment of this arrival, and let τ^{**} denote the moment of the first service completion in one of two servers following after the moment τ^*. Then, at the endpoint τ^{**} of the interval $[\tau^*, \tau^{**})$ the distribution of the residual service time will be the same as that at the moment τ^* (due to the established fact that at
the end of a service completion in one server, the distribution of a residual service time in another server must coincide with the stationary distribution of a residual service time and due to the fact that both servers are equivalent.)

The additional details here are as follows. There can be different events associated with the points τ^* and τ^{**}. For example, at the moment τ^* an arriving customer can be accepted by one of the servers, while the service completion at the moment τ^{**} can be either in the same server of in another server. If time moments τ^* and τ^{**} are associated with the same server (for example, the moment of service start and service completion in the first server) then we speak about residual service times in another server (in this example - the second server). If time moments τ^* and τ^{**} are associated with different servers (say, τ^* is the service start in the first server, but τ^{**} is the service completion in the second one), then we speak about residual service times in different servers (in this specific case we speak about residual service time in the second server at the time moment τ^* and residual service time in the first server at the time moment τ^{**}). However, according to the earlier result, it does not matter which specific event of these mentioned occurs. The only fact, that the stationary distribution of a residual service time in a given server must be the same for all time moments of arrival and service completion occurring in another server and vice versa, is used.

Deleting the interval $[\tau^*, \tau^{**})$ and merging the ends τ^* and τ^{**} (see Figure 4) we obtain the following structure of the 1-stationary process $\tilde{y}_{1,0}(t)$.

In the points where idle intervals are deleted and the ends are merged we have renewal points: one of periods is finished and another is started. In the other points where the intervals of type $[\tau^*, \tau^{**})$ are deleted and their ends are merged we have the points of ‘interrupted’ renewal processes. In this ‘interrupted’ renewal process the point τ^* is a point of 1-Poisson arrival, and, according to ASTA, the distribution in this point in the server that continue to serve a customer coincides with the stationary distribution of the residual service time. In the other point τ^{**}, which is the point of a service completion, the distribution in this point in the server that continue to serve a customer coincides with the stationary distribution of a residual service time as well. Therefore, in the point of the interruption (which is a point of discontinuity) the residual service time distribution coincides with the stationary distribution of a residual service time, i.e. with the distribution of $x_1(t)$. (Notice, that the intervals of type $[\tau^*, \tau^{**})$ are an analogue of the intervals $[s_{1,k}, t_{1,k})$ considered in the Markovian case in Section 2.)

By amalgamating the residual service times of the first and second servers given in the lower graph in Figure 4, one can build a typical one-dimensional 1-stationary process $\tilde{y}_{1,0}(t)$, the limiting stationary distribution of which coincides with that of $x_1(t)$. (see Figure 5).

Therefore the processes $\tilde{y}_{1,0}(t)$ and $x_1(t)$ have the identical one-dimensional distribution, and relation (3.6) follows.

Let us develop Property 3.4 to the case $m = 3$ and then to the case of an arbitrary $m > 1$ for the $M/GI/m/0$ queueing systems. Namely, we have the following.

Property 3.5. For the $M/GI/m/0$ queueing system we have:

\[P\{\tilde{y}_{m-1,0}(t) \in B_{m-1}\} = P\{x_{m-1}(t) \in B_{m-1}\}, \]

where B_{m-1} is an arbitrary Borel set of \mathbb{R}^{m-1}. □
Residual service times in the original M/GI/2/0 queueing system

Residual service times of the scaled process in the M/GI/2/0 queueing system after deleting the intervals when both of the servers are idle, and merging the ends.

Figure 3. Residual service times for the original and scaled processes of the M/GI/2/0 queueing system after deleting intervals where both of the servers are free, and merging the ends.
Residual service times of the scaled process in the M/GI/2/0 queueing system after deleting the intervals when both of the servers are idle, and merging the ends.

Residual service times of the scaled process in the M/GI/2/0 queueing system after deleting the intervals when both of the servers are idle and both are busy, and merging the ends.

Figure 4. Residual service times for the original and scaled processes of the M/GI/2/0 queueing system after deleting intervals where both of the servers are free and both are busy, and merging the ends.
Figure 5. A typical 1-stationary process of residual service times is obtained by amalgamating residual service times of the first and second servers. τ_1^* and τ_2^* are the points where the intervals of type $[\tau^*, \tau^{**})$ are deleted, and the ends are merged.
Proof. The proof will be concentrated in the case \(m = 3 \) for the 1-stationary process \(\tilde{y}_{2,0}(t) \), which is associated with the paths of the \(M/GI/3/0 \) queueing system where only two servers are busy. Then the result will be concluded for an arbitrary \(m \geq 2 \) by induction.

Prior studying this case, we first study the specific case of the \(M/GI/2/0 \) queueing system by considering the paths when the both servers are busy. Then using the arguments of the proof of Property 3.4 enables us to extend that specific result related to the \(M/GI/2/0 \) queueing systems to the 1-stationary process \(\tilde{y}_{2,0}(t) \) of the \(M/GI/3/0 \) queueing system.

As in the proof of Property 3.4 in the specific case of the \(M/GI/2/0 \) queueing system considered here, we will study the stationary one-dimensional processes \(\zeta_{1,0}(t) \) and \(\zeta_{2,0}(t) \). However the idea of the present proof generally differs from that of the proof of Property 3.4. Here we do not call the first (or second) server a tagged server station to use decomposition. We simply use the fact established in the proof of Property 3.4 that at the moment of arrival or service completion of a customer in one server, the distribution of a residual service time in another server will coincide with the stationary distribution of a residual service time in this server. (The same idea has been used in the proof of Property 3.4.)

The present proof explicitly uses the fact that the class of 1-stationary processes is algebraically closed with respect to the operations of deleting intervals and merging the ends, which was mentioned before.

Let us delete the idle intervals of the process \(\zeta_{1,0}(t) \) and merge the ends. Then we get a stationary renewal process as in the above case \(m = 1 \) (Property 3.3).

After deleting the same time intervals in the second stationary process \(\zeta_{2,0}(t) \) and merging the ends, the process will be transformed as follows. Let \(t^* \) be a moment of 1-Poisson arrival when a customer occupies the first server. (Recall that owing to the known properties of 1-Poisson process, the stream of arrival to each of \(i \) servers \((i = 1, 2) \) is 1-Poisson.) Then, according to the ASTA property, \(\zeta_{2,0}(t^*) = \zeta_{2,0}(t) \) in distribution. Therefore after deleting all of the idle intervals of the second server and merging the ends, after the first time scaling (i.e. removing corresponding time intervals, see Figure 6) instead of the initial 1-stationary process \(\zeta_{2,0}(t) \) we obtain the new 1-stationary process with the equivalent one-dimensional distribution. This process is denoted by \(\tilde{\zeta}_{2,0}(t) \).

Notice, that the process \(\tilde{\zeta}_{2,0}(t) \) is obtained from the process \(\zeta_{2,0}(t) \) by constructing a sequence of 1-stationary processes described above.

Then we have the two-dimensional process the first component of which is \(x_{1}(t) \) and the second one is \(\tilde{\zeta}_{2,0}(t) \). For our convenience this first component is provided with upper index, and the two-dimensional vector looks now as \(\{x^{(1)}_{1}(t), \tilde{\zeta}_{2,0}(t)\} \).

Let us repeat the above procedure, deleting the remaining idle intervals of the second server and merging the ends. We get the 1-stationary process being equivalent in the distribution to the stationary renewal process \(x_{1}(t) \), which is denoted now \(x^{(2)}_{1}(t) \).

Upon this (final) time scaling the first process \(x^{(1)}_{1}(t) \) is transformed as follows. Let \(t^{**} \) be a random point of 1-Poisson arrival when the second server is occupied. Applying the ASTA property once again, for the first component of the process we obtain that \(x^{(1)}_{1}(t^{**}) \) coincides in one-dimensional distribution with \(x^{(1)}_{1}(t) \). Thus, after deleting the entire idle intervals and merging the ends, we finally obtain the
The processes $\zeta_{1,0}(t)$ and $\zeta_{2,0}(t)$

The transformed processes $\zeta_{1,0}^*(t)$ and $\zeta_{2,0}^*(t)$ after deleting the intervals and merging the ends

Figure 6. The dynamic of time scaling for a queueing system with two servers after deleting the idle intervals in the first server and merging the ends
two-dimensional process \(\{x_1(t), x_2(t)\} \) each component of which has the same one-dimensional distribution as this of the process \(x(t) \). The dynamic of this time scaling is shown in Figure 7.

For our further purpose, the independence of the processes \(x_1(t) \) and \(x_2(t) \) is needed. The constructions in this paper enables us to prove this independence. However, the independence of \(x_1(t) \) and \(x_2(t) \) follows automatically from the known results by Takács [31] and the easiest way is to follow a result of that paper. Namely, it follows from formulae (6) and (7) on page 72, that the joint conditional stationary distribution of residual service times given that \(k \) servers are busy coincides with the stationary distribution of \(x_k(t) \), which in turn is the product of the stationary distributions of \(x_1(t) \). In particular,

\[
P\left\{ x_1(t) \leq x_1, x_2(t) \leq x_2 \right\} = P\{x_1(t) \leq x_1\} P\{x_1(t) \leq x_2\}.
\]

Now, using the arguments of the proof of Property 3.4 one can easily extend the result obtained now for \(M/GI/2/0 \) queueing system to the \(M/GI/3/0 \) queueing system, and thus prove (3.15) for the \(M/GI/3/0 \) queueing system.

Similarly to the proof of Property 3.4 let us introduce the processes \(\zeta_0,0(t) \), \(\zeta_2,0(t) \) and \(\zeta_3,0(t) \) of the residual service times in the first, second and third servers correspondingly. These processes all are assumed to have the same stationary distribution of residual times, which respects to the scheme where an arriving customer occupies one of available free servers with equal probability. Let us call a server of the \(M/GI/3/0 \) queueing system that occupied at the moment of busy period start a tagged server station. So, we decompose the original system into the \(\bar{M}/GI/2/0 \) and tagged queueing system \(\bar{M}/GI/1/0 \). However, it is shown above that \(\bar{M}/GI/2/0 \) can be decomposed into two \(\bar{M}/GI/1/0 \) queueing systems, where after the procedure of deleting idle intervals and merging the ends we obtain the process having the same stationary distribution as that of the process \(\bar{x}_2(t) \). This stationary distribution remains the same in all random points of arrivals and service completions in the tagged service station. So, after deleting intervals and merging the ends in the tagged service station, in a new time scaling we arrive at the same stationary distribution as that of the process \(x_3(t) \). So, the result for \(m = 3 \) follows.

This induction becomes clear for an arbitrary \(m \geq 2 \) as well, where the original \(\bar{M}/GI/m/0 \) system can be decomposed into the \(\bar{M}/GI/m-1/0 \) queueing system and a tagged server station \(\bar{M}/GI/1/0 \). \(\square \)

Now we will establish a connection between the processes \(\tilde{y}_{m-1,n}(t) \), \(\tilde{y}_{m-1,0}(t) \) and \(x_{m-1}(t) \). We start from the case \(m = 2 \).

Property 3.6. Under the assumption that the probability distribution function \(G(x) \) belongs to the class NBU (NWU) we have

\[
P\{\tilde{y}_{1,n}(t) \leq x\} \leq (\text{resp.} \geq) P\{x(t) \leq x\}.
\]

Proof. Along with the 1-stationary processes \(\tilde{y}_{1,n}(t) \), let us introduce another 1-stationary processes \(\tilde{y}_{2,n}(t) \). This last process is related to the same \(\bar{M}/GI/2/n \) queueing system as the process \(\tilde{y}_{1,n}(t) \), and is obtained by deleting time intervals when there are more than two or less than two customers in the system, and merging the ends.
The processes $x_1(t)$ and $\xi_{2,0}(t)$

Figure 7. The dynamic of time scaling for a queueing system with two servers after deleting the idle intervals in the second server and merging the ends.
Using the same arguments as in the proof of Property 3.5, one can prove that the components of this process are generated by independent 1-stationary processes and having the same distribution. Indeed, involving as earlier in the proof of Property 3.4, the processes $\zeta_1(t)$ and $\zeta_2(t)$ having the same distribution, one can delete intervals where the system is empty and merge the ends. Apparently, the new processes $\tilde{\zeta}_1(t)$ and $\tilde{\zeta}_2(t)$ obtained after this procedure have the same stationary distribution. (However, it is shown later that the limiting stationary distribution of these one-dimensional processes differs from such the distribution obtained after the similar procedure for the $\widetilde{M}/GI/2/0$ system, and, therefore, its one-dimensional distribution distinguishes from that of the process $x_1(t)$.)

Let us go back to the initial process $y_{2,n}(t)$, $n \geq 1$, to delete the time intervals where the both servers are free and merge the corresponding ends. We also remove the last component corresponding to the queue-length $Q_{2,n}(t)$. (The exact value of the queue-length $Q_{2,n}(t)$ is irrelevant here and is not used in our analysis.) In the new time scale we obtain the two-dimensional process $\tilde{y}_{2,n}(t)$.

Similarly to the proof of relation (3.6), we have time moments τ^* and τ^{**}. The first of them is a moment of arrival of a customer at the system with one busy and one free server, and the second one is the following after τ^* moment of service completion of a customer when there remain one busy server only. The time interval $[\tau^*, \tau^{**})$ is an orbital busy period. (The concept of orbital busy period is defined in Section 2 for Markovian systems. For $M/\text{GI}/m/n$ queueing systems this concept is the same.) It can contain queueing customers waiting for their service. Let t_{begin} be a moment of arrival of a customer during the orbital busy period $[\tau^*, \tau^{**})$ who occupies a waiting place, and let t_{end} be the following after t_{begin} moment of time when after the service completion the queue space becomes empty again. A period of time $[t_{\text{begin}}, t_{\text{end}})$ is called queueing period. (Note that for the $M/\text{GI}/m/n$ queueing system, the intervals of type $[\tau^*, \tau^{**})$ are an analogue of the intervals of type $[s_{m-1,k}, t_{m-1,k})$ in the Markovian queueing system $M/M/m/n$, and the intervals of type $[t_{\text{begin}}, t_{\text{end}})$ are an analogue of the intervals of type $[s_{m,k}, t_{m,k})$ in the Markovian queueing system $M/M/m/n$.)

All customers of queueing periods, i.e., those arrived during orbital busy period can be considered as customers arriving in a tagged server station. At the moment of t_{begin}, which is an instant of a Poisson arrival, the two-dimensional distribution of the random vector $\tilde{y}_{2,n}(t_{\text{begin}})$ coincides with the stationary distribution of the random vector $\tilde{y}_{2,n}(t)$. However, in the point t_{end}, the probability distribution of $\tilde{y}_{2,n}(t_{\text{end}})$ is different from the stationary distribution of $\tilde{y}_{2,n}(t)$, because this specific time instant t_{end} coincides with a service beginning in one of servers of the main system. Therefore, deleting the interval $[t_{\text{begin}}, t_{\text{end}})$ and merging the end leads to the change of the distribution.

More specifically, at the time instant t_{end} one of the components of the vector $\tilde{y}_{2,n}(t)$, say the first one, is a random variable having the probability distribution $G(x)$. Then, another component, i.e., the second one, because of the aforementioned properties of 1-stationary processes, coincides in distribution with $\zeta_{1,n}$ (or $\zeta_{2,n}$), which is a component of the stationary process $\tilde{y}_{2,n}(t)$. Indeed, let customers arriving in a busy system and waiting in the queue be assigned to the tagged server station. At the moment of 1-Poisson arrival t_{begin} of a customer in the tagged server station, the two-dimensional Markov process associated with the main queueing
system has the same distribution as the vector \(\hat{Y}_{2,n}(t) \), i.e. two-dimensional distribution coinciding with the joint distribution of \(\hat{\zeta}_{1,n} \) and \(\hat{\zeta}_{2,n} \). Then, at the moment of the service completion \(t^{\text{end}} \), which coincides with the moment of service completion in one of two servers, the probability distribution function of the residual service time in another server, where the service is being continued, coincides with the distribution of a component of the vector \(\hat{Y}_{2,n}(t) \), i.e. with the distribution of \(\hat{\zeta}_{1,n} \).

If the probability distribution function \(G(x) \) belongs to the class NBU, then the 1-stationary process \(\bar{Y}_{2,n}(t) \) satisfies the property \(\bar{Y}_{2,n}(t^{\text{begin}}) \leq_{st} \bar{Y}_{2,n}(t^{\text{end}}) \). If \(G(x) \) belongs to the class NWU, then the opposite inequality holds: \(\bar{Y}_{2,n}(t^{\text{end}}) \leq_{st} \bar{Y}_{2,n}(t^{\text{begin}}) \). (The stochastic inequality between vectors means the stochastic inequality between their corresponding components.)

The above stochastic inequalities are between random values of the process \(\bar{Y}_{2,n}(t) \) in the different time instants \(t^{\text{begin}} \) and \(t^{\text{end}} \). Our further task is to compare two different processes \(\bar{Y}_{2,n}(t) \) and \(\bar{Y}_{2,0}(t) \). The first of these processes is associated with the \(M/GI/m/n \) queueing system, while the second one is associated with the \(M/GI/m/0 \) queueing system. The idea of comparison is very simple. Suppose that both queueing system are started at zero, i.e. consider the paths of these system when the both of them are not in steady state, and compare the Markov processes associated with these system. For the non-stationary processes we will use the same notation \(\bar{Y}_{2,n}(t) \) and \(\bar{Y}_{2,0}(t) \) understanding that it is spoken about usual (not stationary) Markov processes. The notation for time moments such as \(t^{\text{begin}} \) and \(t^{\text{end}} \) is now associated with these usual (i.e. non-stationary) processes as well. We will consider the Markov processes associated with \(M/GI/2/n \) and \(M/GI/2/0 \) queueing systems on the same probability space. In the time interval \([0,t^{\text{begin}}]\) the paths of the Markov processes \(\bar{Y}_{2,n}(t) \) and \(\bar{Y}_{2,0}(t) \) coincide \((n \neq 0)\). However, after deleting the interval \([t^{\text{begin}}, t^{\text{end}}]\) and merging the ends, then in the end point \(t^{\text{begin}} \) the values of the processes \(\bar{Y}_{2,n}(t) \) and \(\bar{Y}_{2,0}(t) \) will be different. Indeed, in the case of the process \(\bar{Y}_{2,0}(t) \), which is associated with the \(M/GI/m/0 \) queueing system, \(t^{\text{begin}} \) and \(t^{\text{end}} \) is the same point, and the value of Markov processes will be the same after replacing the points \(t^{\text{begin}} \) with \(t^{\text{end}} \). However, in the case of the process \(\bar{Y}_{2,n}(t) \) associated with \(M/GI/m/n \) queueing system, the values in these points will be different with probability 1, and consequently, because of the inequality \(\bar{Y}_{2,n}(t^{\text{begin}}) \leq_{st} \bar{Y}_{2,n}(t^{\text{end}}) \) we have \(\bar{Y}_{2,0}(t^{\text{begin}}) \leq_{st} \bar{Y}_{2,0}(t^{\text{end}}) \) in the case when \(G(x) \) belongs to the class NBU. If \(G(x) \) belongs to the class NWU, we have the opposite inequality: \(\bar{Y}_{2,n}(t^{\text{begin}}) \leq_{st} \bar{Y}_{2,0}(t^{\text{begin}}) \).

Therefore, after deleting all the intervals of the type \([t^{\text{begin}}, t^{\text{end}}]\) from the original Markov process we obtain new Markov process, and in the case when \(G(x) \) belongs either to the class NBU or to the class NWU one can apply the theorem of Kalmykov \cite{17} (see also \cite{19}) to compare these two Markov processes. In the case where \(G(x) \) belongs to the class NBU, all the path of the Markov process, associated with \(M/GI/2/n \) is not smaller (in stochastic sense) than that path of the Markov process, associated with \(M/GI/2/0 \). If \(G(x) \) belongs to the class NWU, then the opposite stochastic inequality holds between two different Markov processes. Apparently, the same stochastic inequalities remain correct if we speak about stationary Markov processes. Nothing is changed if we let \(t \) to increase to infinity and arrive at stationary distributions. So, under the assumption that \(G(x) \) belongs to the class NBU, for the stationary processes we obtain \(\hat{Y}_{1,0}(t) \leq_{st} \hat{Y}_{1,n}(t) \). In other
words, due to the fact that \(\hat{y}_{1,0}(t) =_st x_1(t) \), we obtain that \(x_1(t) \leq _st \hat{y}_{1,n}(t) \). In the case where \(G(x) \) belongs to the class NWU, the opposite inequality holds.

The arguments of the proof given for \(m = 2 \) remain correct for an arbitrary \(m \geq 2 \). The proof given by induction uses decomposition of the original system into the main system and a tagged server station as above. The further arguments for stochastic comparison of Markov processes are also easily extended for the case of an arbitrary \(m \geq 2 \).

\[\square \]

From the above results for the Markov processes the statement of the lemma follows. The stochastic inequalities between \(T_{m,n}(m - 1) \) and \(T_{m,0}(m - 1) \) follow by the coupling arguments. The lemma is completely proved.

\[\square \]

4. Theorems on losses in \(M/GI/m/n \) queueing systems

The results obtained in the previous section enable us to establish theorems for the number of losses in \(M/GI/m/n \) queueing systems during their busy periods.

Theorem 4.1. Under the assumption \(\lambda = m\mu \), the expected number of losses during a busy period of the \(M/GI/m/n \) queueing system is the same for all \(n \geq 1 \).

Proof. Consider the system \(M/GI/m/n \) under the assumption \(\lambda = m\mu \), and similarly to the construction in the proof of Lemma 3.1 let us delete all the intervals where the number of customers in the system is less than \(m \), and merge the corresponding ends. The process obtained is denoted \(\hat{y}_{m,n}(t) \). This is the 1-stationary process of orbital busy periods.

The stationary departure process, together with the arrival 1-Poisson process of rate \(\lambda \) and the number of waiting places \(n \) describes the stationary \(M/G/1/n \) queue-length process (with generally dependent service times). As soon as a busy period is finished (in our case it is an orbital busy period, see Section 2 for the definition), the system immediately starts a new busy period by attaching a new customer into the system. This unusual situation arises because of the construction of the process. There are no idle periods, and servers all are continuously busy. Thus, the busy period, which is considered here, is one of the busy periods attached one after another.

Let \(T \) be a large period of time, and during that time there are \(K(T) \) busy periods of the \(M/G/1/n \) queueing system (which does not contain idle times as mentioned). Let \(L(T) \) and \(\nu(T) \) denote the number of lost and served customers during time \(T \). We have the formula:

\[
(4.1) \quad \lim_{T \to \infty} \frac{1}{EK(T)} (EL(T) + E\nu(T)) = \lim_{T \to \infty} \frac{1}{EK(T)} (\lambda T + EK(T)),
\]

the proof of which is given below.

Relationship (4.1) has the following explanation. The left-hand side term \(EL(T) + E\nu(T) \) is the expectation of the number of lost customers plus the expectation of the number of served customers during time \(T \), and the right-hand side term \(\lambda T + EK(T) \) is the expectation of the number of arrivals during time \(T \) plus the expected number of attached customers.

Relationship (4.1) can be proved by renewal arguments as follows.

There are \(m \) independent copies \(x_1^{(1)}(t), x_1^{(2)}(t), \ldots, x_1^{(m)}(t) \) of the stationary renewal process, which model the process \(\hat{y}_{m,n}(t) \). (In fact, we have \(m \)-stationary processes, which have the same distributions as \(m \) independent renewal
processes $x_1^{(1)}(t), x_1^{(2)}(t), \ldots, x_1^{(m)}(t)$. Let $1 \leq i \leq m$, and let $C_1, C_2, \ldots C_{K_i(T)}$ be such points of busy period starts associated with the renewal process $x_1^{(i)}(t)$ (one of those m independent and identically distributed renewal processes), where $K_i(T)$ denotes the total number of these regeneration point indexed by i. Denote also by $z_1, z_2, \ldots, z_{K_i(T)}$ the corresponding lengths of busy periods, by $\ell_1, \ell_2, \ldots, \ell_{K_i(T)}$ the corresponding number of losses during these K_i busy periods, and by $n_1, n_2, \ldots, n_{K_i(T)}$ the corresponding number of served customers during these busy periods. Let $T_i = z_1 + z_2 + \ldots + z_{K_i(T)}$, let $L_i(T) = \ell_1 + \ell_2 + \ldots + \ell_{K_i(T)}$ and let $\nu_i(T) = n_1 + n_2 + \ldots + n_{K_i(T)}$.

Since at the moments $C_1, C_2, \ldots C_{K_i(T)}$ of the busy period starts the distribution of the above stationary Markov process of residual times is the same, then the numbers of losses $\ell_1, \ell_2, \ldots, \ell_{K_i(T)}$ and, respectively, the numbers of served customers $n_1, n_2, \ldots, n_{K_i(T)}$ during each of these busy periods have the same distributions, and one can apply the renewal reward theorem.

By the renewal reward theorem we have:

\[
\lim_{T \to \infty} \frac{1}{m E K_i(T)} (E L_i(T) + E \nu_i(T)) = \lim_{T \to \infty} \frac{1}{m E K_i(T)} \left(\lambda E \ell_i + m E K_i(T) \right).
\]

Taking into account that

\[
\lim_{T \to \infty} \frac{E K(T)}{E K_i(T)} = m,
\]
\[
\lim_{T \to \infty} \frac{E L(T)}{E L_i(T)} = 1,
\]
\[
\lim_{T \to \infty} \frac{E \nu(T)}{E \nu_i(T)} = 1,
\]

and

\[
\lim_{T \to \infty} \frac{E \ell_i}{T} = 1,
\]

because of the correspondence between the left- and right-hand sides, from (4.2) we arrive at (4.1). Thus, we bypass the fact that the times between departures are dependent, and thus (4.1) is actually obtained by application of the renewal reward theorem by a usual manner, like in the case of independent times between departures (see e.g. Ross [28], Karlin and Taylor [18]).

Together with (4.1) we have

\[
\lim_{T \to \infty} \frac{1}{E K(T)} E \nu(T) = \lim_{T \to \infty} \frac{1}{E K(T)} m \mu T.
\]

Let us now introduce the following notation. Let ζ_n denote the length of an orbital busy period, and let L_n and ν_n correspondingly denote the number of lost and served customers during that orbital busy period. Using the arguments of [5], we prove that $E L_n = 1$ for all $n \geq 1$.

Indeed, from (4.1) and (4.3) we have the equations:

\[
E L_n + E \nu_n = \lambda E \zeta_n + 1,
\]
\[
E \nu_n = m \mu E \zeta_n.
\]

The substitution $\lambda = m \mu$ into the system of equations (4.4) and (4.5) yields $E L_n = 1$.
Hence, during an orbital busy period there is exactly one lost customer in average for any $n \geq 0$. To finish the proof we need in a deeper analysis. First, we should find the expected number of queueing periods during one orbital busy period. For this purpose, one can use the similar construction by deleting all the intervals when the number of customers in the system is not greater than m, and merge the corresponding ends. The obtained process is denoted $\hat{y}_{m+1,n}(t)$, and this is one stationary process of queueing periods following one after another.

The structure of the process $\hat{y}_{m+1,n}(t)$ is similar to that of the process $\hat{y}_{m,n}(t)$. The process $\hat{y}_{m+1,n}(t)$ describes the stationary $M/G/1/n-1$ queueing system, the service times of which are generally dependent. As soon as one busy period in this system is finished, a new customer starting a new busy period is immediately attached into the system. Thus, the only difference between the processes $\hat{y}_{m,n}(t)$ and $\hat{y}_{m+1,n}(t)$ is that the numbers of waiting places differ by value of parameter n. Therefore, using the similar notation and arguments, one arrive at the conclusion that the expected number of losses per queueing period is equal to 1 as well. Therefore, in long-run period of time, the number of queueing periods and orbital busy periods is the same in average. So, there is exactly one queueing period per orbital busy period in average.

Therefore, during a long-run period the number of events that the different Markov processes $\hat{y}_{m−1,n}(t)$ change their values after deleting queueing periods and merging the ends (as exactly explained in the proof of Lemma 3.1) is the same in average for all $n \geq 1$, and the stationary characteristics of all of these Markov processes $\hat{y}_{m−1,n}(t)$, given for different values of n, are the same. Hence, the expectation $E T_{m,n}(m-1)$ is the same for all $n=1,2,\ldots$ as well. (Recall that $T_{m,n}(m−1)$ denote the total time during a busy period when $m−1$ servers are occupied.)

Hence, using Wald’s identity connecting $E T_{m,n}(m−1)$ with $E L_{m,n}$ (the expected number of losses during a busy period) we arrive at the desired result, since $E T_{m,n}(m−1)$ and the expectation of the number of orbital busy periods during a busy period of $M/GI/m/n$ both are the same for all $n \geq 1$. \[\square\]

Application of Lemma 3.1 and the arguments of Theorem 4.1 enables us to prove the following result.

Theorem 4.2. Let $\lambda = m\mu$. Then, under the assumption that $G(x)$ belongs to the class NBU, for the number of losses in $M/GI/m/n$ queueing systems, $n \geq 1$, we have

\[
E L_{m,n} = cm^m/m!,
\]

where the constant $c \geq 1$ depends on m and the probability distribution $G(x)$ but is independent of n.

Under the assumption that $G(x)$ belongs to the class NWU we have

\[
E L_{m,0} = m^m/m!
\]

but with constant $c \leq 1$.

Proof. Notice first, that for the expected number of losses in $M/GI/m/0$ queueing systems we have

\[
E L_{m,0} = m^m/m!
\]

This result follows immediately from the Erlang-Sevastyanov formula [29], so that the expected number of losses during a busy period of the $M/GI/m/0$ queueing
system is the same that this of the $M/M/m/0$ queueing system. The expected number of losses during a busy period of the $M/M/m/0$ queueing system, $E L_{m,0} = \frac{m}{m!}$, is also derived in Section 2.

In the case where $G(x)$ belongs to the class NBU according to Lemma 3.1 we have $E T_{m,n}(m-1) \geq E T_{m,0}(m-1)$, and therefore, the expected number of orbital busy periods in the $M/GI/m/n$ queueing system ($n \geq 1$) is not smaller than this in the $M/GI/m/0$ queueing system. Therefore, repeating the proof of Theorem 4.1 leads to the inequality $E L_{m,n} \geq E L_{m,0}$ and consequently to the desired result. If $G(x)$ belongs to the class NWU, then we have the opposite inequalities, and finally the corresponding result stated in the formulation of the theorem. □

5. Batch arrivals

The case of batch arrivals is completely analogous to the case of ordinary (non-batch) arrivals. In the case of a Markovian $M^X/M/m/n$ queueing system one can also apply the level-crossing method to obtain equations analogous to (2.6)-(2.13). The same arguments as in Sections 3 and 4 in an extended form can be used for $M^X/GI/m/0$ queueing systems.

References

[1] Abramov, V.M. (1991). Investigation of a Queueing System with Service Depending on Queue Length, Donish, Dushanbe, Tajikistan (in Russian).
[2] Abramov, V.M. (1991). Asymptotic properties of lost customers for one queueing system with losses. Kibernetika (Ukrainian Academy of Sciences), No. 2, 123-124 (in Russian).
[3] Abramov, V.M. (1994). On the asymptotic distribution of the maximum number of infectives in epidemic models with immigration. J. Appl. Probab., 31, 606-613.
[4] Abramov, V.M. (1997). On a property of a refusals stream. J. Appl. Prob., 34, 800-805.
[5] Abramov, V.M. (2001). On losses in $M^X/GI/1/n$ queues. J. Appl. Prob., 38, 1079-1080.
[6] Abramov, V.M. (2001). Some results for large closed queueing networks with and without bottleneck: Up- and down-crossings approach. Queueing Syst., 38, 149-184.
[7] Abramov, V.M. (2001). Inequalities for the $GI/M/1/n$ loss system. J. Appl. Prob., 38, 232-234.
[8] Abramov, V.M. (2002). Asymptotic analysis of the $GI/M/1/n$ loss system as n increases to infinity. Ann. Operat. Res., 112, 35-41.
[9] Abramov, V.M. (2004). Asymptotic behavior of the number of lost messages. SIAM J. Appl. Math., 64, 746-761.
[10] Abramov, V.M. (2006). Stochastic inequalities for single-server loss queueing systems. Stoch. Anal. Appl., 24, 1205-1222.
[11] Abramov, V.M. (2007). Optimal control of a large dam. J. Appl. Prob., 44, 249-258.
[12] Abramov, V.M. (2007). Asymptotic analysis of loss probabilities in $GI/M/m/n$ queueing systems as n increases to infinity. Qual. Technol. Quantit. Manag., 4, 379-393.
[13] Abramov, V.M. (2008). Continuity theorems for $M/M/1/n$ queueing systems. Queueing Syst., 59, 63-86.
[14] Abramov, V.M. (2008). The effective bandwidth problem revisited. Stochastic Models, 24, 527-557.
[15] Abramov, V.M. (2010). Takacs’ asymptotic theorem and its applications: A survey. Acta Appl. Math., 109, 609-651.
[16] Feller, W. (1966). An Introduction to Probability Theory and its Applications, vol. 2. John Wiley, New York.
[17] Kalmykov, G.I. (1962). On the partial ordering of one-dimensional Markov processes. Theor. Probab. Appl., 7, 456-459.
[18] Karlin, S. and Taylor, H.G. (1975). A First Course in Stochastic Processes. Second edn. Academic Press, New York.
[19] Keilson, J. (1979). Markov Chain Models – Rarity and Exponentiality. Springer, Berlin.
[20] Kelly, F.P. (1991). Loss networks. Ann. Appl. Probab., 1, 319-378.
[21] Khintchine, A.Y. (1960). Mathematical Methods in the Theory of Queueing. Hafner Publ. Co., New York.
[22] Melamed, B. and Yao, D.D. (1995). The ASTA property. In: Frontiers in Queueing: Models, Methods and Problems (J. Dshalalow, ed.) CRC Press, 1995, pp. 195-224.
[23] Melsa, J. L. and Sage, A. P. (1973). An Introduction to Probability and Stochastic Processes. Prentice-Hall Inc., Englewood Cliffs.
[24] Pechinkin, A.V. (1987). A new proof of Erlang’s formula for a lossy multichannel queueing system. Soviet J. Comput. System Sci. 25, No.4, 165-168. Translated from: Izv. Akad. Nauk SSSR. Techn. Kibernet. (1986), No.6, 172-175 (in Russian).
[25] Peköz, E., Righter, R. and Xia, C.H. (2003). Characterizing losses during busy periods in finite buffer systems. J. Appl. Prob., 40, 242-249.
[26] Righter, R. (1999). A note on losses in $M/GI/1/n$ queues. J. Appl. Prob., 36, 1240-1243.
[27] Ross, K.W (1995). Multiservice Loss Models in Broadbound Telecommunication Networks. Springer, Berlin.
[28] Ross, S.M. Introduction to Probability Models, Seventh edn, Academic Press, Burlington.
[29] Sevastyanov, B.A. (1957). An ergodic theorem for Markov processes and its application to telephone systems with refusals. Theor. Probab. Appl., 2, 104-112.
[30] Szekely, G.J. (1986). Paradoxes in Probability Theory and Mathematical Statistics, Reidel.
[31] Takács, L. (1969). On Erlang’s formula. Ann. Mathem. Statist., 40, 71–78.
[32] Whitt, W. (2001). Stochastic Process Limits: An Introduction to Stochastic Process Limits and Their Applications to Queues. Springer, New York.
[33] Whitt, W. (2004). Heavy-traffic limits for loss proportions in single-server queues. Queueing Syst., 46, 507-736.
[34] Whitt, W. (2004). A diffusion approximation for the $G/GI/m/n$ queues. Operat. Res., 52, 922-941.
[35] Whitt, W. (2005). Heavy-traffic limits for the $G/H^*_m/n$ queue. Math. Operat. Res., 30, 1-27.
[36] Wolff, R.W. (1982). Poisson arrivals see time averages. Operat. Res., 30, 223–231.
[37] Wolff, R.W. (1989). Stochastic Modeling and the Theory of Queues. Prentice-Hall Inc., Englewood Cliffs.
[38] Wolff, R.W. (2002). Losses per cycle in a single-server queue. J. Appl. Prob., 39, 905-909.

School of Mathematical Sciences, Monash University, Building 28M, Clayton Campus, Wellington road, VIC-3800, Australia
E-mail address: vyacheslav.abramov@sci.monash.edu.au