Rajendran, A; Dhoble, P; Sundaresan, P; Saravanan, V; Vashist, P; Nitsch, D; Smeeth, L; Chakravarthy, U; Ravindran, RD; Fletcher, AE; (2017) Genetic risk factors for late age-related macular degeneration in India. The British journal of ophthalmology. ISSN 0007-1161 DOI: https://doi.org/10.1136/bjophthalmol-2017-311384

Downloaded from: http://researchonline.lshtm.ac.uk/4646072/

DOI: https://doi.org/10.1136/bjophthalmol-2017-311384

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Genetic risk factors for late age-related macular degeneration in India

Anand Rajendran DNB FICO¹, Pankaja Dhoble MS², Periasamy Sundaresan PhD³ Vijayan Saravanan MSc³, Praveen Vashist MBBS D⁴, Dorothea Nitsch MD MSc⁵ Liam Smeeth FRCGP PhD⁵, Usha Chakravarthy MD PhD⁶, Ravilla D. Ravindran MS DO¹, Astrid E Fletcher PhD⁵

¹Aravind Eye Hospital, Madurai, Tamil Nadu, India
²Aravind Eye Hospital, Pondicherry, Tamil Nadu, India
³Department of Genetics, Dr. G. Venkataswamy Eye Research Institute, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
⁴Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
⁵Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, UK
⁶Centre for Public Health, Queen's University Belfast, UK

Corresponding Author: Professor Astrid Fletcher, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT UK. Email: astrid.fletcher@lshtm.ac.uk Tel: +44 7950019805
Synopsis

Genetic variants in complement pathways, lipid metabolism and angiogenesis increase neovascular age-related macular degeneration risk in the Indian setting. Certain key risk variants are more common in Indian ancestry compared with European.
Abstract

Background/Aims: There are limited data from India on genetic variants influencing late age-related macular degeneration (AMD). We have previously reported associations from a population-based study in India (INDEYE) of early AMD and Single Nucleotide Polymorphisms (SNPs) in ARMS2/HTRA1 and no association with CFH, C2 or CFB. Late AMD cases were too few for meaningful analyses. We aimed to investigate SNPs for late AMD through case enrichment and extend loci for early AMD.

Methods: Fundus images of late AMD hospital cases were independently graded by the modified Wisconsin AMD grading scheme. In total 510 cases with late AMD (14 Geographic Atrophy and 496 neovascular (nvAMD), 1876 with early AMD and 1176 with no signs of AMD underwent genotyping for selected SNPs. We investigated genotype and per-allele additive associations (Odds Ratios (OR) and 95% Confidence Interval (CI) with nvAMD or early AMD. Bonferroni adjusted p-values are presented.

Results: We found associations with nvAMD for CFH Y402H variant (rs1061170), OR=1.99, 95% CI 1.67- 2.37, p=10^{-6}, ARMS2 (rs10490924), OR=2.94, 2.45 - 3.52, p=10^{-9}, C2 (rs547154), OR=0.67, 0.53-0.85 p=0.01, ABCA1 (rs1883025), OR=0.77, 0.65-0.92, p=0.04 and a SNP near VEGFA (rs4711751) OR=0.64, 0.54-0.77, p=10^{-3}. We found no associations of TLR3 (rs3775291), CFD (rs3826945), FRK (rs1999930) or LIPC (rs10468017) or APOE ε4 alleles with nvAMD or early AMD nor between early AMD and rs1883025 or rs4711751.

Conclusions: The major genetic determinants of nvAMD risk in India are similar to those in other ancestries whilst findings for early AMD suggest potential differences in the pathophysiology of AMD development.
Introduction

Genetic risk variants for late age related macular degeneration (AMD) have been identified, and further confirmed in Genome Wide Association studies (GWAS), the majority in studies of European ancestry.1 There is less information on late AMD genetic risk in India, with most data coming from one patient/control cohort.2-4 We have previously reported genetic results from a large population-based study of people aged 60 and over in India (INDEYE) for early AMD with variants in complement factor H (\textit{CFH}), factor B (\textit{CFB}), component 2 (\textit{C2}), \textit{ARMS2/HTRA1}.5 Late AMD cases were too few for meaningful analyses. In the present paper we present results for late AMD based on an enriched sample, and for other genetic loci with early AMD.

Materials and Methods

INDEYE was conducted between 2005 and 2007 in two locations in south (Tamil Nadu) and north (Haryana) India. The study methods including sampling and recruitment, blood collection, ophthalmological examination and AMD grading along with results on the prevalence of early and late AMD have been published.6 In the present study, we recruited additional cases of late AMD between 2009 and 2011 from the hospitals that participated in the INDEYE study (All India Institute of Medical Sciences (AIIMS) Delhi, Aravind Eye Hospital Pondicherry, Tamil Nadu) and additionally from Aravind Eye Hospital Madurai, Tamil Nadu. We aimed to achieve 600 late AMD cases plus two population controls per case to detect the two-fold per allele association of Y402H CFH (rs1061170) reported in a meta-analysis of primarily European ancestry7 at 90\% power and alpha <0.001. Initial eligibility criteria were age 60 years and over,
Indian descent and a diagnosis of late AMD by the retinal ophthalmologists. Controls were participants in the INDEYE study with no signs of early or late AMD in either eye.

In both INDEYE and clinic participants, informed written consent was obtained prior to enrolment. If the participant was illiterate the information sheet was read out aloud in the presence of a local witness, and a thumb impression of the participant signified assent. The study complied with the Declaration of Helsinki and ethics approval was received from the Indian Council for Medical Research, the Research Ethics Committees of AIIMS, Aravind Eye Hospital, London School of Hygiene and Tropical Medicine and Queens University Belfast.

Full details of the method of ascertainment of AMD in the population study have previously been published. In brief two 35 degree stereo fundus photographs of each eye were taken and graded at Queens University Belfast (QUB) using the modified Wisconsin Age-Related Maculopathy Grading System. Each eye was classified into 5 mutually exclusive grades, Grade 1 - soft distinct drusen (≥ 63 µm) only or pigmentary irregularities only; Grade 2 - soft indistinct (≥125µm) or reticular drusen only or soft distinct drusen (≥ 63µm) with pigmentary irregularities; Grade 3 -(soft indistinct (≥ 125µm) or reticular drusen) with pigmentary irregularities; Grade 4 - either Neovascular AMD (nvAMD) (presence of any of the following: serous or haemorrhagic retinal or retinal pigment epithelial detachment, subretinal neovascular membrane, periretinal fibrous scar) or Geographic Atrophy, GA (well-demarcated area of retinal pigment atrophy with visible choroidal vessels). Fundus images of cases recruited from hospital clinics were sent to QUB (color photographs, optical coherence tomograms (OCT)) and graded as above. In all graded images, GA and nvAMD present in the same eye were categorized as nvAMD. Images that showed no signs of any features of early or late AMD were categorized as having no AMD.
DNA extraction and genotyping

Genomic DNA was extracted from peripheral blood leukocytes using Quiagen kits. SNPs were genotyped using TaqMan assays in an ABI 7900 real-time PCR. We limited our study to genes in biological pathways relevant to AMD pathogenesis including complement activation (CFH, CFB, CFD) and deposition (toll like receptors (TLR 3, 4,7), lipid metabolism (ABCA1, APOE, CETP, LIPC) or the degradation of the extracellular matrix (TIMP3). We investigated two SNPs on chromosome 6, previously reported to be associated with late AMD (LOC107986598 rs4711751 located near VEGFA and FRK rs1999930 near COL10A1). We included SNPs in ARMS2/HTRA1 due to their demonstrated importance in many studies and recent evidence for an ARMS2 role in surface complement regulation. We tested for departures from Hardy Weinberg equilibrium (HWE) in controls and excluded any SNPs with a p value ≤ 0.05. We used logistic regression in Stata14 (StataCorp LP) to examine associations of (i) genotype and (ii) per-allele additive models adjusted for age, sex, and centre. We present additionally Bonferroni adjusted p-values for the number of independent SNPs tested. We created APOE alleles from the SNPs rs429358 (T/C) and rs7412(C/T) resulting in three alleles: ε2 (TT), ε3 (TC) and ε4 (CC). Analyses of APOE alleles used ε3 as the reference group.

Results

The prevalence of early and late AMD in the INDEYE population study has been published. There were 1986 cases of early AMD (1686 Grade 1, 289 Grade 2, 11 Grade 3), 53 of late AMD (44 nvAMD 9 GA) and 1228 population controls with no signs of AMD in either eye. Hospital retinal clinics recruited 533 cases based on ophthalmologists’ diagnoses. After exclusion of participants without confirmed late AMD or missing blood samples (Figure), 496 nvAMD cases,
1876 early AMD and 1176 controls were available for analysis. We did not investigate GA because of small numbers (n=14). The mean age in years (SD) was 65.3 (5.4) in population controls, early AMD, 67.0 (6.1) and nvAMD, 70.7 (6.9). The number and proportion of women was 600 (51%), 915 (49%) and 179 (36%) respectively. Two SNPs (rs4986790 TLR4/TLR7, rs9621532 TIMP3) failed HWE. HWE and MAFs for remaining SNPs are shown in Table 1. We also present MAFs for European and Indian ancestry from the 1000 genome study https://www.ncbi.nlm.nih.gov/snp accessed December 5 2016. Control frequencies of APOE alleles were ε3 (0.73), ε2 (0.09) and ε4 (0.18).

We found additive associations with nvAMD for Y402H, (rs1061170), HTRA1 (rs2672598), ARMS2 (rs10490924, rs10490923) CFB (rs438999, rs547154), ABCA1 (rs1883025) and SNP rs4711751 close to VEGFA (Table 2). We found no associations with TLR3 (rs3775291), CFD (rs3826945), FRK (rs1999930) or LIPC (rs10468017). There was no association between APOE ε4 and nvAMD, OR= 0.72, 95% CI (0.52,1.01).

We combined Grades 2 and 3 of early AMD due to the small numbers of Grade 3. Subsequently we combined all grades of early AMD (1 to 3) because our preliminary analyses revealed no differences in genetic associations for these early stages. There were no associations with early AMD and any of the SNPs (Table 3) or with APOE ε4, OR= 0.88, 95% CI (0.73,1.01).

Discussion

CFH and *ARMS2/HTRA1* have been identified in numerous studies in European and East Asian ancestry as the most important genes for late AMD risk with effect sizes around 2.5 and 3 per-allele respectively and the top two variants at GWAS significance. Our effect sizes of 2 for the C allele of Y402H variant of *CFH* (rs1061170) and 3 for *ARMS2* T allele
(rs10490924) are consistent with these findings and add to the limited evidence for India.2,3 The MAF of rs1061170 is lower in East Asian (\(< 0.10\)) compared to European ancestry (0.3)7 and higher for rs10490924 (0.4), almost twice that in European ancestry.9 Our MAFs for rs1061170 (0.32) and rs10490924 (0.32) concur with those for South Asians in the 1000 Genome Study (Table 1) and other sources in India.2,3,14 It appears that rs1061170 allele frequencies in Indian ancestry are closer to European than East Asian and intermediate between European and East Asian for rs10490924.

We found associations with SNPs in other genes established predominantly in European ancestry including $C2$, $SKIV2L$, $ABCA1$ and in a SNP (rs4711751) in an uncharacterized gene $LOC107986598$ close to $VEGFA$.1 We found a reduced risk with the T allele of $ABCA1$ (rs1883025) but not with $CETP$ or $LIPC$. A meta-analysis of European ancestry studies found $APOE\,\varepsilon4$ haplotype was associated with a 30\% lower risk of nvAMD15; we observed a similar effect but with wide confidence intervals.

We found no association with early AMD and any of the variants reported in Table 3. We have previously reported results for early AMD and found no association with $Y402H$ (rs1061170), $C2$ (rs547154), $SKIVL$ (rs43899).5 $ARMS2/HTRA1$ variants (rs10490924 and rs2672598) were associated with early AMD, the OR per allele was 1.22, 95\% CI (1.13-1.33), $p<0.0001$ and 1.12 (1.02-1.23), $p=0.02$ respectively.5 A GWAS meta-analysis of 4089 early AMD cases, the majority of European ancestry, found associations between SNPs in CFH and $ARMS2/HTRA1$ but with smaller effect sizes than those reported for late AMD.16 Analyses by Asian ancestry found no association with any CFH SNP whereas $ARMS2$ (rs10490924) was associated with an OR of 1.18 (1.07, 1.13), similar to our study, compared to 1.43 (1.34, 1.54) for European ancestry. The lower prevalence of early AMD in Asia17 and India6 may, in part, be explained
by the apparently lesser role of genetic variants compared to studies in European ancestry but caution is warranted due to the paucity of genetic studies of early AMD in Indian and East Asian ancestry.

Limitations

Although we did not attain the 600 planned cases, we confirmed the per-allele two fold risk of rs1061170 and nvAMD hypothesized for the sample size estimates. We had low power to investigate variants with low MAFs (compared to European ancestry) such as FRK, LIPC or to identify smaller effects. The majority of late AMD cases were of nvAMD phenotype similar to studies in East Asia18 and we could not investigate genetic associations with Geographic Atrophy. It is possible we misclassified population cases of late AMD. We had confirmatory OCTs in 89% of clinic late AMD cases but the population-based study used color images only.

Conclusions

Our findings suggest the major genetic determinants of neovascular AMD risk in India are similar to those in other populations whilst findings for early AMD suggest potential differences in the pathophysiology of AMD development.
Author Contributions

Dr Fletcher had full access to all the data in the study and take full responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Fletcher, Ravindran, Chakravarthy, Smeeth, Nitsch.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Fletcher, Rajendran

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Fletcher.

Obtained funding: Fletcher, Chakravarthy Ravindran, Nitsch, Smeeth.

Administrative, technical, or material support: Ravindran, Chakravarthy, Sundaresan, Fletcher

Study supervision: Ravindran, Fletcher

Conflict of Interest Disclosures: None reported.

Funding/Support: Wellcome Trust UK. Grants G073300, G082571.

Role of the Funder/Sponsor: The funding source had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
References

1. Fritsche LG, Igl W, Bailey JN, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 2016;48(2):134-43.

2. Kaur I, Hussain A, Hussain N, et al. Analysis of CFH, TLR4, and APOE polymorphism in India suggests the Tyr402His variant of CFH to be a global marker for age-related macular degeneration. Invest Ophthalmol Vis Sci 2006;47(9):3729-35.

3. Kaur I, Katta S, Hussain A, et al. Variants in the 10q26 gene cluster (LOC387715 and HTRA1) exhibit enhanced risk of age-related macular degeneration along with CFH in Indian patients. Invest Ophthalmol Vis Sci 2008;49(5):1771-6.

4. Kaur I, Katta S, Reddy RK, et al. The involvement of complement factor B and complement component C2 in an Indian cohort with age-related macular degeneration. Invest Ophthalmol Vis Sci 2010;51(1):59-63.

5. Sundaresan P, Vashist P, Ravindran RD, et al. Polymorphisms in ARMS2/HTRA1 and Complement Genes and Age-Related Macular Degeneration in India: Findings from the INDEYE Study. Invest Ophthalmol Vis Sci 2012;53(12):7492-7.

6. Krishnan T, Ravindran RD, Murthy GV, et al. Prevalence of early and late age-related macular degeneration in India: the INDEYE study. Invest Ophthalmol Vis Sci 2010;51(2):701-7.

7. Sofat R, Casas JP, Webster AR, et al. Complement factor H genetic variant and age-related macular degeneration: effect size, modifiers and relationship to disease subtype. Int J Epidemiol 2012;41(1):250-62.

8. Bird AC, Bressler NM, Bressler SB, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 1995;39(5):367-74.

9. Fritsche LG, Fariss RN, Stambolian D, et al. Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet 2014;15:151-71.

10. Yu Y, Bhangale TR, Fagerness J, et al. Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Hum Mol Genet 2011;20(18):3699-709.

11. Fritsche LG, Chen W, Schu M, et al. Seven new loci associated with age-related macular degeneration. Nat Genet 2013;45(4):433-9, 39e1-2.

12. Micklisch S, Lin Y, Jacob S, et al. Age-related macular degeneration associated polymorphism rs10490924 in ARMS2 results in deficiency of a complement activator. J Neuroinflammation 2017;14(1):4.

13. Cheng CY, Yamashiro K, Chen LJ, et al. New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nat Commun 2015;6:6063.

14. Pemberton TJ, Mehta NU, Witonsky D, et al. Prevalence of common disease-associated variants in Asian Indians. BMC Genetics 2008;9(1):1-20.

15. McKay GJ, Patterson CC, Chakravarthy U, et al. Evidence of association of APOE with age-related macular degeneration: a pooled analysis of 15 studies. Hum Mutat 2011;32(12):1407-16.

16. Holliday EG, Smith AV, Cornes BK, et al. Insights into the genetic architecture of early stage age-related macular degeneration: a genome-wide association study meta-analysis. PLoS One 2013;8(1):e53830.
17. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014;2(2):e106-16.
18. Kawasaki R, Yasuda M, Song SJ, et al. The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology 2010;117(5):921-7.
Table 1. Single Nucleotide Polymorphisms, Minor Allele Frequency (MAF) and test for Hardy Weinberg Equilibrium and corresponding reported MAF in the 1000 genomes project in South Asian and European populations

Chromosome	Gene	SNP	Major/Minor Alleles	HWE	MAF³	MAF EUR⁴	MAF SAS⁵
1	Y402H	rs1061170	T/C	0.6854	0.323	0.362	0.287
4	TLR3	rs3775291	C/T	0.9347	0.235	0.324	0.263
6	C2	rs547154	C/A	0.3813	0.187	0.089	0.156
6	SKIV2L	rs438999	A/G	0.6932	0.183	0.089	0.148
6	LOC107986598⁶	rs4711751	T/C	1	0.423	0.487	0.330
6	FRK	rs1999930	C/T	0.3957	0.075	0.281	0.052
9	ABCA1	rs1883025	C/T	0.0797	0.432	0.240	0.413
10	ARMS2	rs10490923	G/A	0.7299	0.149	0.130	0.148
10	ARMS2	rs10490924	G/T	0.1953	0.319	0.195	0.343
10	HTRA1	rs2672598	T/C	0.2969	0.524	0.499	0.464
15	LIPASE	rs10468017	C/T	0.9195	0.176	0.283	0.184
16	CETP	rs3764261	C/A	0.0737	0.295	0.292	0.321
19	APOE	rs429358	T/C	1	0.097	0.155	0.087
19	APOE	rs7412	C/T	0.5232	0.050	0.063	0.044
19	CFD	rs3826945	T/C	0.8424	0.344	0.313	0.334

¹ Single Nucleotide Polymorphisms (SNP)
² p value for tests for departure from Hardy Weinberg Equilibrium (HWE) in controls
³ Minor Allele Frequency (MAF) in controls
⁴ Minor Allele Frequency (MAF) from 1000 genome study for European ancestry available in https://www.ncbi.nlm.nih.gov/snp
⁵ Minor Allele Frequency (MAF) from 1000 genome study for South Asian ancestry available in https://www.ncbi.nlm.nih.gov/snp
⁶ SNP located near VEGFA
⁷ Minor allele considered as C for comparison with other studies
Table 2. Association of neovascular age-related macular degeneration with Single Nucleotide Polymorphisms

Gene	SNP1	Major/Minor Alleles	1 versus 0 copies of minor allele	Odds Ratio2	95% CI3	2 versus 0 copies of minor allele	Odds Ratio2	95% CI3	Additive per minor allele
Y402H	rs1061170	T/C	1.72	1.31 - 2.28	4.13	2.91 - 5.87	1.99	1.67 - 2.37	10^-7
TLR3	rs3775291	C/T	1.18	0.92 - 1.51	0.88	0.51 - 1.53	1.06	0.87 - 1.30	0.545
C2	rs547154	C/A	0.62	0.47 - 0.82	0.64	0.29 - 1.43	0.67	0.53 - 0.85	0.001
SKIV2L	rs438999	A/G	0.63	0.47 - 0.83	0.50	0.21 - 1.22	0.65	0.50 - 0.83	0.001
LOC107986598	rs4711751	T/C	0.35	0.27 - 0.46	0.65	0.45 - 0.94	0.64	0.54 - 0.77	10^-4
FRK	rs1999930	C/T	0.93	0.64 - 1.34	5.94	1.17 - 30.10	1.05	0.74 - 1.49	0.777
ABCA1	rs1883025	C/T	0.81	0.61 - 1.07	0.58	0.41 - 0.83	0.77	0.65 - 0.92	0.003
ARMS2	rs10490923	G/A	0.49	0.35 - 0.67	0.85	0.33 - 2.17	0.57	0.43 - 0.75	10^-3
ARMS2	rs10490924	G/T	1.86	1.37 - 2.51	8.73	6.11 - 12.48	2.94	2.45 - 3.52	10^-9
HTRA1	rs2672598	T/C	1.53	1.01 - 2.32	5.42	3.58 - 8.21	2.67	2.19 - 3.25	10^-8
LIPC	rs10468017	C/T	1.13	0.87 - 1.47	1.12	0.56 - 2.23	1.11	0.89 - 1.37	0.370
CETP	rs3764261	C/A	1.27	0.98 - 1.64	1.26	0.82 - 1.91	1.17	0.98 - 1.41	0.087
APOE	rs429358	T/C	0.82	0.60 - 1.14	NC5	NC5	NC5	NC5	
APOE	rs7412	C/T	0.87	0.58 - 1.32	NC5	NC5	NC5	NC5	
CFD	rs3826945	T/C	1.02	0.79 - 1.31	1.05	0.70 - 1.58	1.02	0.85 - 1.23	0.820

1 Single Nucleotide Polymorphisms (SNP)
2 adjusted for age, sex, centre
3 95% Confidence interval
4 Bonferroni adjusted p-value for 13 per -allele tests
5 Not calculated, no cases with 2 copies of minor allele
Table 3 Association of early age-related macular degeneration with Single Nucleotide Polymorphisms

Gene	SNP1	1 versus 0 copies of minor allele	2 versus 0 copies of minor allele	Additive per allele						
	Odds Ratio1	95% CI2	Odds Ratio1	95% CI2						
	p		p	p						
TLR3	rs3775291	1.01	0.86-1.20	0.868	1.13	0.83-1.54	0.425	1.04	0.92-1.16	0.520
LOC107986598	rs4711751	0.95	0.78-1.14	0.558	0.91	0.69-1.20	0.502	0.95	0.84-1.08	0.452
FRK	rs1999930	0.83	0.66-1.05	0.117	1.63	0.39-6.77	0.498	0.88	0.69-1.12	0.285
ABCA1	rs1883025	0.96	0.79-1.17	0.698	0.96	0.77-1.19	0.726	0.98	0.88-1.09	0.699
LIPASE	rs10468017	0.97	0.82-1.14	0.677	1.08	0.67-1.75	0.744	0.99	0.85-1.15	0.913
CETP	rs3764261	1.08	0.91-1.28	0.365	1.10	0.90-1.33	0.339	1.06	0.96-1.17	0.228
APOE	rs429358	0.93	0.77-1.12	0.454	0.80	0.35-1.84	0.594	0.93	0.77-1.10	0.380
APOE	rs7412	0.97	0.74-1.27	0.826	1.38	0.42-4.55	0.594	1.00	0.79-1.27	0.994
CFD	rs3826945	1.02	0.88-1.20	0.758	1.10	0.87-1.39	0.399	1.04	0.94-1.15	0.416

1 Single Nucleotide Polymorphisms (SNP)
2 adjusted for age, sex, centre
3 95% Confidence interval
Figure Legend

Flowchart of hospital case recruitment and population cases and controls