Nutriční výhody a nevýhody zvýšeného příjmu bílkovin u obézních pacientů

Václava Kunová
4.10.2017
Pardubice
Co jsou bílkoviny a liší se nějak od proteinů?

Bílkoviny a proteiny jsou jedno a totéž. Přesto se často setkáváme s označením „bílkoviny” u potravin typu jogurt, sýr, tvaroh, maso, atd.

Slovo „proteiny” nám evokuje nejčastěji proteinové nápoje určené primárně sportovcům.
Bílkoviny - definice

Bílkoviny (proteiny) jsou základní stavební jednotky všech živých organismů. Jsou to makromolekuly složené z jednoho nebo více řetězců aminokyselin. Pro výživu člověka jsou naprosto nutné a nenahraditelné, protože jsou zdrojem esenciálních (nenahraditelných) aminokyselin. U dospělých je důležité - zastoupení 9 esenciálních aminokyselin: histidin, isoleucin, leucin, lysin, methionin, fenylalanin, threonin, tryptofan a valin. Skladba a množství esenciálních aminokyselin jsou kritériem, podle něhož se posuzuje kvalita bílkovinných zdrojů.
Funkce v organismu

1. Strukturní (stavební)
Bílkoviny jsou hlavní komponentou tělesných struktur a tuto jejich strukturu také zesilují. Jedná se například o kolagen, keratin, elastin (tvořící pojivové tkáně jakými jsou chrupavky, vlasy a nehty) Bílkoviny také zajišťují obnovu porušených tkání.

2. Transportní
Proteiny tvoří součást hemoglobinu, který v organismu přenáší kyslík nebo transferinu, který se účastní v metabolismu železa a přenáší ho tam, kde je zapotřebí.

3. Zajišťující pohyb
Bílkoviny, které tvoří myozin jsou takzvané molekulární motory. Za pomoci hydrolýzy ATP vytvářejí aktivní pohyb v buňce. Vazbou na aktin umožňují svalové kontrakce.
Funkce v organismu

4. Katalytické, řídící a regulační
Mezi ně patří bílkoviny tvořící enzymy, hormone a receptory. Hormony regulují růst a vývoj, tvorbu svalové hmoty, metabolismus a dokonce ovlivňují také náladu.

5. Obranné funkce (imunitní)
Bez bílkovin by nemohla fungovat naše imunita. Bílkoviny tvoří protilátky (imunoglobuliny), z nichž každý typ má trochu jinou strukturu, což umožňuje rozpoznat viry, bakterie a další cizorodé látky.

V případě, kdy organismus nemá jinou možnost, využije bílkoviny i na pokrytí potřeb energie. Bílkoviny se musí rozštěpit v několika fázích až na nejmenší stavební prvky, kterými jsou aminokyseliny. Teprve potom jsou využitelné.
Proč zrovna bílkoviny pomáhají zhubnout?

Strava bohatá na bílkoviny pomáhá organismu produkovat více hormonů navozujících pocit sytosti:
- GLP-1
- Peptid YY
- Cholecystokininin

Ale! produkci hormonu hladu ghrelinu tlumí.
The role of higher protein diets in weight control and obesity-related comorbidities
A Astrup,1, A Raben, and N Geiker
Int J Obes (Lond). 2015 May; 39(5): 721–726

A high-protein diet for reducing body fat: mechanisms and possible caveats
Pesta DH, Samuel VT2
Nutr Metab (Lond). 2014 Nov 19;11(1):53
GLP – 1 – glukagon-like-peptid

Je produkovaný ve spodním úseku tenkého střeva a působí na specifické podněty ve slinivce bříšní. Snižuje hladinu krvního cukru po jídle, zvyšuje citlivost tkání na inzulín. Snižuje přirozeným způsobem chuť k jídlu. Jídlo s vyšším obsahem bílkovin způsobí, že člověk sní méně v následujícím jídle.
Peptid YY – pankreatický peptid

Je uvolňovaný neuroendokrinními buňkami ve spodním úseku tenkého střeva a v tlustém střevě, malé možství také v dalších částech zažívacího traktu. Snižuje chuť k jídlu zpomalením vyprazdňování žaludku. U obézních bývají hladiny PYY po jídle nižší, obézní také můžou mít nižší citlivost na PYY.
Cholecystokininin – CCK

Střevní hormon uvolňovaný v hodní části tenkého střeva.
Působením na CCK receptory je rychle dopravován do centrálního nervového systému, kde stejně jako předchozí dva hormony tlumí pocity hladu.
Ghrelin – hormon hladu

Hormon hladu – jedná se také o neuropeptid produkovaný v gastrointestinálním traktu s funkcí v centrálním nervovém systému.
Při prázdném žaludku je uvolněn ghrelin, v hypotalamu zvýší vnímání pocitu hladu a připraví tak organismus na příjem potravy. Jeho hladina stoupá tehdy, když si nedopřáváme adekvátní dobu spánku, vyšší příjem bílkovin jeho hladinu naopak snižuje.
Trávení a metabolizace bílkovin

Bílkoviny, pokud mají být organismem využity, musí být nejdříve naštěpeny na aminokyseliny. Tento proces je energeticky náročný. Termický efekt stravy je u bílkovin mnohem vyšší než u sacharidů a tuků.

Termický efekt stravy:
Tuky  - 0-3%
Sacharidy  5-10%
Bílkoviny 20-30%
Bílkoviny pomáhají zachovávat svalovou hmotu

Větší zastoupení bílkovin ve stravě pomůže zachovat při hubnutí svalovou hmotu, metabolismus zůstane na vyšší úrovni - výsledkem je snižování zásob tuku

1. Increased protein intake reduces lean body mass loss during weight loss in athletes. Med Sci Sports Exerc. 2010 Feb;42(2):326-37.
2. Effects of high-protein weight loss diets on fat-free mass changes in older adults: a systematic review (371.5) JE Kim, L Sands, M Slebodnik, L O'Connor… - The FASEB Journal, 2014 - FASEB
Kolik bílkovin je doporučováno při hubnutí?

Současná doporučení pro příjem bílkovin mají široké rozmezí od minima 15 % až do 35 procent z celkové energetické hodnoty stravy.
Doporučené množství bílkovin

Zásadní nedostatek bílkovin v našich podmínkách člověku nehrozí. Výjimkou můžou být lidé, kteří se stravují alternativně (například fruitariáni nebo raw vegani) a ti, kteří drží neodborně sestavené redukční diety (diety s nízkým energetickým příjmem, někdy levné krabičkové diety, očistné půdy a podobně).

Minimální hranice denního příjmu bílkovin je (0.6) 0,8 g/ 1kilogram ideální tělesné hmotnosti.
Zvýšený příjem bílkovin na 2.4g/1 kg

Zvýšení příjmu bílkovin až na trojnásobek doporučené denní dávky (2.4 g/kg/den) se jeví jako možnost, jak problém ztráty svalové hmoty při hubnutí vyřešit. Výsledky 4 týdenní studie, při níž měli účastníci snížený příjem energie o 40 % a zároveň intenzivní pohybový režim: https://examine.com/nutrition/dieting-with-a-side-of-extra-protein/
Zvýšený příjem bílkovin na 1.8 g/1 kg

Zvýšení příjmu bílkovin na dvojnásobek denní dávky (tedy 1.8g/kg/den) je efektivní také, nedojde však ke zvýšení aktivní tělesné hmoty, jen se zabrání jejím ztrátám při hubnutí:

A systematic review of dietary protein during caloric restriction in resistance trained lean athletes: a case for higher intakes. Int J Sport Nutr Exerc Metab. 2014 Apr;24(2):127-38. doi: 10.1123/ijsnem.2013-0054. Epub 2013 Oct 2.
Rizika vyššího příjmu bílkovin

Přestože mnoho lidí stále věří, že vyšší příjem bílkovin poškozuje funce ledvin, žádné důkazy o tomto mechanismu neexistují. Hranicí, nad kterou bychom neměli jít, je 2.8 g/kg/den: Se stoupajícím množstvím bílkovin se zvyšuje množství vylučovaných bílkovinných metabolitů, ledviny jsou schopné se tomuto stavu přizpůsobit.

Dietary protein intake and renal function
William F Martin, Lawrence E Armstrong and Nancy R Rodriguez
Nutrition & Metabolism 2005 2:25
Ale!

Avšak pacienti s již existujícím ledvinným selháním musí v určitých případech příjem bílkovin omezit. Jedná se o těžší renální selhávání v momentě, kdy pacient ještě nedochází na dialýzační léčbu. Naopak při dialyzaci je nutno zpětně bílkoviny v jídelníčku navýšit.
Rizika zvýšeného příjmu bílkovin

- V reálné situaci je to spíše souběžný vyšší příjem
- Tuků
Rizika zvýšeného příjmu bílkovin

- Nebo souběžný vyšší příjem
- Cukru
Děkuji za pozornost