KINETICS OF FREE - RADICAL POLYMERIZATION OF 8 - QUINOLINYL ACRYLATE

Y.M. Mehta*, Pravin M. Patel1 and Bhasker V. Patel2

1Director, Research Department of Chemical Science, J & J. Science College, Nadiad- 387 001 (India)
11Industrial Chemistry Department, VP. & R.P.T.P. Science College Vallabh Vidyanagar, Anand- 388 120 (India)
2Chemistry Department, M.B. Patel Science College, Anand- 388 120 (India)

(Received, May 04, 2003)

ABSTRACT

The synthesis of water insoluble poly 8-quinolinylacrylate was investigated for free radical polymerization. The kinetics of polymerization of 8-quinolinylacrylate initiated by AIBN in DMF at 60-100°C were studied. The rate of polymerization was determined at various concentration of monomer and initiator. The overall activation energy was found to be 15.0 K.J. mol⁻¹.

Key words: 8-quinolinylacrylate, kinetics and free radical polymerisation.

INTRODUCTION

It is known that 8-hydroxyquinoline and its derivative possess antibacterial, antimycotic and ameobicidal properties, several authors have suggested that their antimicrobial properties are due to their complex forming ability. The chelating ion-exchange properties of 8-HQ and its derivatives have been widely exploited for many application such as in metallurgical operations, separation and estimation of metals, effluent treatment, purification of water and as a catalyst in many organic synthesis. The polymeric 8- HQ derivatives have been synthesized by its condensation with aldehydes and by modification of poly (ethylene glycol) and poly (caprolactone)s. There are few examples of synthesis and polymerization of vinyl monomers containing quinolinyln groups. Data are also lacking for kinetics of polymerization of 8-QA. A number of kinetic studies of the aqueous polymerization of acryl amide have been reported1-5 but there are few reports on polyacrylamides with N-substituted carboxyphenyl residues and little information is available6-9.

The present article deals with the study of kinetic of solution polymerization of 8-QA in different experimental conditions. The synthesis of 8-quinolinylicrylate and some studies on the polymerization and characterization of their polymers have been published10-1.

EXPERIMENTAL

Materials

All the chemical used during the study were of analytical grade. The solvents and monomers were purified by the conventional method12. 2,2'-azobisobutyronitrile was
recrystallized from methanol and dried in a
dessicator.

Monomer synthesis

The monomer 8-quinolinyl acrylate was
synthesized from 8-hydroxy quinoline-and acryloyl
chloride as described in previous article10.

Polymerization procedure

A typical polymerization method is
described below.

Purified 8-QA(0.1047 mol/L) in DMF (20 ml)
and AIBN (1.2195 x 103 mol/L) were placed in
degassed glass tube and constricted under flame.
The polymerization was carried out in a sealed
tube by placing in a thermostated oil bath at the
required temperature, after polymerization for a
given time, the contents of the tube were poured
into 100 ml of methanol to precipitate the polymers.
The resulting polymer was washed well with
methanol and with boiling water and dried in
vacuum at room temperature to a constant weight.
The values of the weight of polymer
was used to compute the rate of polymerization
(Rp).

RESULTS AND DISCUSSION

Effect of monomer concentration

The kinetics of radial polymerization of
monomer (8-QA), the monomer concentration was
varied from 0.1047 to 1.3141 mol/ L at fixed
concentration of initiato in DMF. The rate of
polymerization was found to increase linearly with
increase of monomer concentration. The plot of Rp
versus [M] and [M]2 at different initiator,
concentration at 60 and 80°C are found to be
linear. The plot of log Rp versus 10g [M] is liner
(Figure-1). From the slope of this plot, the order of
reaction with respect to monomer for the
polymerization of 8-QA in DMF is found to be
around 1.3213

Effect of initiator concentration

The effect of initiator concentration AIBN
from 1.2195 x 103 mol/L to 3.6585 x 103 mol/L at
fixed concentration of monomer

![Figure-1: Double Logarithmic plot of rate of Polymerization (Rp) versus
Monomer concentration](image)
in DMF. The rate of polymerization was found to increase linearly with the increase of initiator concentration. The plot of \(R_p \) versus \([I] \) is linear\(^{14} \) and its slope constant is around 0.21. Thus the order of reaction with respect to initiator is found to be 0.21 (Figure 2).

Effect of temperature

The polymerization of 8-QA initiated by AIBN was investigated in the temperature range 60-100°C in DMF as reaction medium, keeping the concentration of all other reagents constant. The rate of polymerization was found to increase progressively with rise in temperature. From the Arrhenius plot \(R_p \) versus \(1/T \) (Figure 3), the overall activation energy \(E_a \) was computed to be 15.0 KJ/mol.

Relation between conversion and reaction time.

8-quinolinyl acrylate was polymerized in DMF in the temperature range 60,80 and 100°C using AIBN as initiator. Time conversion curves at three different concentration of monomer and initiator respectively are shown in Figure 4 to 6, from which it is concluded that the percentage conversion increases as the monomer and initiators concentration increases. The order of the reaction with respect to initiator concentration for the polymerization of 8-QH has been determined graphically from the double logarithmic plot of rate of polymerization \((R_p) \) versus initiator concentration\(^{13} \). The plot is linear and from the slope of the plot, the order of reaction was found to be around 0.19 (Figure 7).

CONCLUSION

On the basis of the standard free radical polymerization scheme and the derivation of the kinetic equation suggested in the literature\(^{15} \), the rate expression is derived. This rate expression satisfactorily explains all the kinetic results obtained, these results of the present study are in agreement with those reported by Suthar et al.\(^{15,16} \).

Figure 2: Effect of initiator concentration on the rate of polymerization

Medium	DMF
Time	100 minutes
Monomer concentration	0.1024 mol/L

Plots:
(\(\circ \)): \([T_1]\) = 100°C
(\(\circ \)): \([T_2]\) = 80°C
(\(\circ \)): \([T_3]\) = 60°C
Medium: DMSO
Time: 730 minutes

\[[I] = 1.2195 \times 10^{-3} \text{ mol/L} \]

Plots:

- \(\text{(*)}: [M_1] = 0.0124 \text{ mol/L} \)
- \(\text{(v): } [M_2] = 0.0208 \text{ mol/L} \)
- \(\text{(o): } [M_3] = 0.3012 \text{ mol/L} \)

Figure 3

Figure 4

Figure 5

Figure 3-5: Arrhenious plot of log \(R_p \) versus \(1/T \)

- Temp: 50°C
 - \([M] = 0.1024 \text{ mol L}^{-1}\)
 - \(k_1 [*] = 0.00122 \text{ mol L}^{-1}\)
 - \(k_2 [e] = 0.00244 \text{ mol L}^{-1}\)
 - \(k_3 [e] = 0.00364 \text{ mol L}^{-1}\)

- Temp: 80°C
 - \([M] = 0.1024 \text{ mol L}^{-1}\)
 - \(k_1 [*] = 0.00122 \text{ mol L}^{-1}\)
 - \(k_2 [e] = 0.00244 \text{ mol L}^{-1}\)
 - \(k_3 [e] = 0.00364 \text{ mol L}^{-1}\)
Figure 6: Double Logarithmic plot of rate of Polymerization (R_p) versus Initiator concentration.

- $\text{Temp: } 100^\circ\text{C}$
- $[M] = 0.1024 \text{ mol L}^{-1}$
- $I_1 = [\phi] = 0.00122 \text{ mol L}^{-1}$
- $I_2 = [\Lambda] = 0.00244 \text{ mol L}^{-1}$
- $I_3 = [\omega] = 0.00384 \text{ mol L}^{-1}$

Medium: DMF
Time: 100 minutes

Plots:
- $(\phi) ~ 100^\circ\text{C}$
- $(\Lambda) ~ 80^\circ\text{C}$
- $(\omega) ~ 60^\circ\text{C}$

Figure 7: Double Logarithmic plot of rate of Polymerization (R_p) versus Initiator concentration.
REFERENCES

1. Gopalan A., Paulraj S. and Venkatro K., *Eur. polym. J.*, **20**, 971 (1984)
2. Sukla J.S. and Tiwari R.K., *J. Macromol Sci. Chem.*, **A-18**, 759 (1982)
3. Ng S.G., *Eur Polym. J.*, **18**, 917 (1982)
4. Okieimen E.E., *Ibid.*, **17**, 641 (1981)
5. Deb R.C., *Ibid.*, **15**, 961 (1979)
6. Framtisek H. and Jiri W., *Czechoslovakian Patent.*, **158**, 428 (1975) cf. C.A., **84**, 5860 (1976)
7. Framtisek H. and Jiri W., *Czechoslovakian Patent.*, **84**, 16966 (1976)
8. Yoshikazu K. and Nichiko J., *Japaness kokei*, **151**, 526 (1975)
9. Erogozhin E.E. and Sariyeya R.B., *Macromol. chem. rapid communii.*, **8**, 171 (1987)
10. Patel P.M. and Patel R.M., *Orient. J. Chem.*, **17(2)**, 233 (2001)
11. Patel P.M., Sinha T.J.M. and Patel R.M., *Intern. J. polymerc mater.*, **47**, 139 (2000)
12. Vogel A.I., *Text Book of practical organic chemistry*, London (1978)
13. Mishra G.S. and Bhattacharya S.N., *J. Poly Sci. Polyc. Chem. Ed.*, **20**, 131 (1982)
14. Mishra S. and Sahu G., *J Macromol Sci. Chem.*, **A-19**(1), 57 (1983)
15. Suthar B., Desai T. and Patel K., *J. Macromol. Sci. Chem.*, **23**, 319 (1986)
16. Patel B.V., *Ph. D. Thesis*, Sardar Patel University, India (1990)