Prevalence of SARS-CoV-2 antibodies among nurses: A systematic review and meta-analysis

Steven He RN, BappSc, MintPH, Research Assistant1,2 | Anthony Hecimovic RN, MN, MBA, Nurse Practitioner1,3 | Vesna Matijasevic BHlthScN, BH, MTeach, Clinical Nurse Specialist1,3 | Ha Thi Mai MPH, Research Assistant1,2 | Linda Heslop BA, DipLib, Senior Librarian4 | Jann Foster RN, PhD, MHIthScEd, Grad.Dip.Adv.Clin.Nurs., Senior Lecturer1,2,5 | Kate E. Alexander BHB, MBChB, MPH, Public Health Physician6 | Naru Pal MD, Director & Senior Staff Specialist6 | Evan Alexandrou RN, MPH, PhD, Clinical Nurse Consultant1,2,7,8 | Patricia M. Davidson RN, MEd, PhD, Vice Chancellor9 © | Steven A. Frost RN, MPH, PhD, Deputy Director1,2,7

Abstract

Aims and Objectives: This systematic review and meta-analysis reports the seroprevalence of SARS-CoV-2 antibodies among nurses.

Background: With a growing body of literature reporting the positive serology for SARS-CoV-2 antibodies among healthcare workers, it remains unclear whether staff at the point of direct patient care are more prone to developing and transmitting the virus. Given nurses make up the majority of the global health workforce, outbreaks among these workers could severely undermine a health system's capability to manage the pandemic. We aimed to summarise and report the seroprevalence of SARS-CoV-2 antibodies among nurses globally.

Design: Systematic review and meta-analyses.

Methods: This systematic review was developed, undertaken and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. We searched the electronic medical literature databases: MEDLINE; CINAHL; and EMBASE for studies reporting the seroprevalence of SARS-CoV-2 antibodies among nursing staff. Studies that reported nursing specific data were included in this review. Study quality was evaluated using the Joanna Briggs Institute checklist for studies reporting prevalence data. Studies were stratified according to the World Health Organisation region classifications, and results were presented using forest plots and summary prevalence and variance was estimated using a random effects model.

Results: Our electronic search identified 1687 potential studies, of which 1148 were screened for eligibility after duplicates were removed, and 51 of the studies were included in our meta-analysis. The overall seroprevalence of SARS-CoV-2 antibodies among nurses was estimated to be 8.1% (95% CI 6.9%–9.4%) among the 60,571
The coronavirus disease 2019 (COVID-19) is a respiratory illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that was first encountered in December 2019 and continues to challenge governments and healthcare systems across the globe. As of 19 April 2021, the World Health Organization (WHO) (2021) has reported over 141 million cases and over three million attributable deaths since the beginning of the pandemic, with hundreds of thousands of cases detected each day. Serological surveys have also been conducted to help determine the underlying prevalence of SARS-CoV-2 and provide some insight on transmission between asymptomatic individuals. A 2021 systematic review found a seroprevalence rate of 8.0% among the global population (Chen et al., 2021).

Infection rates among healthcare workers are of particular concern, given they seem to be at high risk of both developing and transmitting the illness (Nguyen et al., 2020; Pan et al., 2020; Quigley et al., 2021; Schneider et al., 2020; Wu & McGoogan, 2020). It remains unclear whether staff at the point of direct patient care are more prone to developing and transmitting the virus, due to limited available data around community transmission (Hunter, Price, et al., 2020; Misra-Hebert et al., 2020). A recent systematic review, however, reported nurses accounted for half of all SARS-CoV-2 positive serology among healthcare workers, suggesting prolonged exposure to direct patient care may be a contributing factor (Gomez-Ochoa et al., 2020). Given nurses make up the majority of the global health workforce, outbreaks among these workers could severely undermine a health system's capabilities to manage the pandemic, particularly in low resource settings (WHO, 2020). Specific rates among nursing staff have not been summarised and reported, and further research is needed to determine whether nurses are at higher risk of infection than other members of the healthcare team. Therefore, this systematic review and meta-analysis were planned to summarise and report the seroprevalence of SARS-CoV-2 antibodies among nurses globally.

What does this paper contribute to the wider global community?
- A comparison of seroprevalence estimates between nurses, healthcare workers and the general population.
- A comparison of nursing seroprevalence estimates among WHO geographical regions.

## 2 | METHODS

### 2.1 | Data sources and search strategy

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guideline (File S1) was used to plan, undertake and report this systematic review and meta-analysis (Page et al., 2021). A senior health librarian (LH) planned and developed our search strategy. Electronic medical databases included MEDLINE; CINAHL; and EMBASE, which were searched on the 15th of February 2021 using the following keywords: COVID-19, COVID, coronavirus, Wuhan, 2019, SARS, SARS-CoV-2, coronavirus 2, 2019-ncov, SARS-2, health
2.2 | Inclusion and exclusion criteria

All observational studies were considered, and longitudinal studies were only included if a point prevalence was reported (baseline figures were extracted). Studies must have assessed the prevalence of SARS-CoV-2 using a serological test that detected the presence of SARS-CoV-2 antibodies (IgG, IgM, IgA or a combination of the three) among a sample of healthcare workers. Studies that did not report any raw nursing data were excluded.

We merged all the retrieved studies from individual databases into Endnote version X9.3.3 and all duplicate references were filtered and removed. Authors SH and HM independently reviewed selected titles and abstracts for potential inclusion. If any discrepancies were observed between the review authors and could not be resolved, review authors SF and EA would be consulted to arbitrate (this was not required). We also scanned the reference lists and citations of included studies for further references to additional studies. Study authors were contacted for additional information when nursing and/or serological specific data was not made clear due to grouping with other measures of outcomes.

2.3 | Data extraction and quality assessment

Extraction of data was conducted by one investigator (SH) and was validated by another (SF). Information acquired included: first author; year of publication; study design; dates of data collection; region/country of study; sample size; therapeutic areas assessed; number of sites where the study was conducted; antibodies assessed; and type of immunoassay. With regard to studies that utilised multiple immunoassays, the final immunoassay used to determine seropositivity was recorded.

Quality assessment of the studies was undertaken by the two authors (SH and HM) using the Joanna Briggs Institute (JBI) critical appraisal checklist for studies reporting prevalence data (Munn et al., 2015). Despite there being a lack of consensus around how to appraise prevalence studies, the JBI checklist has been found to be the most comprehensive and widely used amongst researchers (Borges Migliavaca et al., 2020). A scaling measurement was created to differentiate studies according to a level of quality. One point was assigned to each ‘yes’ response to the nine checklist items (Low = 0–4 checklist items; Moderate = 5–7 checklist items; High = 8–9 checklist items). No studies were excluded on the basis of quality.

2.4 | Data analysis

The seroprevalence rates of SARS-CoV-2 antibodies among nurses were expressed as proportions with 95% confidence intervals and presented as Forest plots (Barendregt et al., 2013). We considered the degree of heterogeneity of results by calculating the $I^2$ statistic. In order to minimise heterogeneity between seroprevalence estimates, the studies were stratified and data pooled according to WHO region classifications: African region, Eastern Mediterranean region, European region, Region of the Americas, South-East Asia region and Western Pacific Region. A random effects (RE) model was used to present pooled seroprevalence estimates due to high heterogeneity post-stratification. Publication bias was assessed upon visual inspection of forest plot and test of plot asymmetry (Egger et al., 1997). All analysis was undertaken using the meta-package as part of the R statistical program (R Core Team, 2017).

3 | RESULTS

3.1 | Electronic search results

Our initial search generated 1687 results, from which 539 duplicates were removed. The remaining 1148 studies had their titles and abstracts screened for compliance with our eligibility criteria (see Figure 1 PRISMA search flowchart). Fifty-one studies were included in the final review (see Table 1 for study characteristics), with the majority of the studies conducted in the Region of the Americas region ($n = 19$), followed by the European region ($n = 18$), Western Pacific region ($n = 8$), South-East Asia region ($n = 3$), African region ($n = 2$) and Eastern Mediterranean ($n = 1$).

3.2 | Quality assessment

Utilising the JBI critical appraisal checklist, we determined 16 studies to be of high quality, 33 studies to be of moderate quality and two studies were considered low quality. The majority of investigations recruited participants appropriately, either by inviting the entire target population or randomly selecting their sample ($n = 38$, 75%). Twenty-two studies did not report a response rate, and forty-four studies did not provide evidence of sufficient coverage of the identified sample.

3.3 | Seroprevalence of SARS-CoV-2 antibodies among nurses

The overall seroprevalence of SARS-CoV-2 antibodies among nurses was estimated (using random effects modelling) to be 8.1% (95% CI 6.9%–9.4%) among the 60,571 participants included in all the studies (see Figure 2 for forest plot). Pooled seroprevalence estimates varied across WHO regions, with the highest rates observed in the African region (48.2%, 95% CI 39.2%–57.3%), followed by the European region (10.3%, 95% CI 8.0%–12.5%), the Region of the
Americas (8.4%, 95% CI 6.0%–10.7%), the South-East Asia region (3.0%, 95% CI 0.0%–6.5%) and the lowest rates in the Western Pacific region (0.5%, 95% CI 0.0%–1.0%). Overall statistical heterogeneity was obvious from the forest plots and supported by the high $I^2$ statistic (99%). Pooled estimates were unable to be calculated in the Eastern Mediterranean region due to insufficient studies ($n$ = 1). Only two regions (European region and the Region of the Americas) met the minimum number of studies ($n$ > 10) required for testing of funnel plot asymmetry. Funnel plots and associated p values from Egger’s test are presented in the Appendices 1 and 2.

4 | DISCUSSION

Our study found that the pooled seroprevalence of SARS-CoV-2 antibodies among nurses was 8.1%, ranging from 0% to 51% between studies. Within the growing body of literature investigating the prevalence of SARS-COV-2 among healthcare workers, it is important to determine whether certain occupations experience higher rates of infection. A recent systematic review reported that nurses accounted for almost half of their positive cases, suggesting it could be attributed to their prolonged exposure to patients when delivering care (Gómez-Ochoa et al., 2020).

Our results are congruent with rates reported in healthcare workers as a whole, with 7% and 8.7% in reviews conducted by Gómez-Ochoa et al. (2020) and Galanis et al. (2021), respectively. These findings seem to suggest that despite differences in roles, the likelihood of infection for nurses is similar to other healthcare workers. Given nurses make up around 50% of the health workforce, the high proportion of SARS-CoV-2 positive nurses seen in previous studies may simply be due to overrepresentation (Bandyopadhyay et al., 2020; Gómez-Ochoa et al., 2020). Any similarities in seroprevalence...
| First author (year)          | City/region, country                  | Type                  | Setting                                           | Number of participants | Antibodies assessed | Quality assessment |
|-----------------------------|--------------------------------------|-----------------------|--------------------------------------------------|------------------------|---------------------|--------------------|
| Akinbami et al. (2020)      | Detroit, USA                         | Cross-sectional       | First responders, multi-centre                   | 6426                   | IgG                 | Moderate           |
| Akinbami et al. (2021)      | Rhode Island, USA                    | Cross-sectional       | Hospital, multi-centre                          | 2733                   | IgG                 | Moderate           |
| Amendola et al. (2020)      | Lombardy, Italy                      | Cross-sectional       | Hospital, paediatrics, single-centre            | 216                    | IgG                 | High               |
| Baralat et al. (2020)       | Barcelona, Spain                     | Cross-sectional       | Region-wide screen                              | 2243                   | IgG                 | High               |
| Barrett et al. (2020)       | New Jersey, USA                      | Cross-sectional       | Hospital, all services, single-centre           | 1361                   | IgG                 | High               |
| Brehm et al. (2021)         | Hamburg, Germany                     | Longitudinal          | Hospital, all services, single-centre           | 444                    | IgG                 | Moderate           |
| Calcagno et al. (2020)      | Piedmont, Italy                      | Cross-sectional       | Hospital, all services, multi-centre            | 1983                   | IgG                 | Moderate           |
| Chau et al. (2021)          | Ho Chi Minh, Vietnam                 | Cross-sectional       | Hospital, infectious diseases, single-centre    | 144                    | IgG                 | Moderate           |
| Chen et al. (2020)          | Jiangsu Province, China              | Cross-sectional       | Hospital, direct contacts of COVID-19 patients, single-centre | 25 | IgG, IgM | High |
| Costa et al. (2020)         | Sao Paulo, Brazil                    | Cross-sectional       | Hospital, all services, single-centre           | 370                    | IgG, IgM             | High               |
| Dimcheff et al. (2021)      | Ohio and Michigan                    | Cross-sectional       | Hospital, veteran affairs, Multi-centre         | 412                    | IgG                 | Moderate           |
| El Bouzidi et al. (2021)    | Lambeth, England                     | Cross-sectional       | Hospital, critical care services, single-centre | 280                    | IgG, IgM             | Moderate           |
| Finkenzeller et al. (2020)  | Weiden in der Oberpfalz and Tirschenreuth, Germany | Cross-sectional       | Hospital, all services, multi-centre,           | 887                    | IgG, IgM             | High               |
| Fujita et al. (2020)        | Kyoto, Japan                         | Cross-sectional       | Hospital, Infectious disease, respiratory medicine, otolaryngology, emergency medicine, Single-centre | 48 | IgG | Moderate |
| Galán et al. (2020)         | Madrid, Spain                        | Cross-sectional       | Hospital, all services, single-centre           | 676                    | IgG                 | High               |
| Gandhi et al. (2021)        | New Jersey, USA                      | Cross-sectional       | Hospital, direct contacts of COVID-19 patients, single-centre | 68 | IgG | Low |
| Garcia-Basteiro et al. (2020) | Barcelona, Spain                  | Cross-sectional       | Hospital, all services, single-centre           | 288                    | IgG, IgM, IgA       | High               |
| Garralda Fernandez et al. (2021) | Madrid, Spain                      | Cross-sectional       | Hospital, all services, single-centre           | 983                    | IgG, IgM             | High               |
| Godbout et al. (2020)       | Virginia, USA                        | Cross-sectional       | Hospital, all services, single-centre           | 937                    | IgG                 | Moderate           |
| Hibino et al. (2021)        | Kanagawa, Japan                      | Cross-sectional       | Hospital, all services, single-centre           | 363                    | IgG                 | Moderate           |
| Howard-Anderson et al. (2021) | Fulton County, USA                  | Cross-sectional       | Hospital, all services, multi-centre            | 144                    | IgG                 | Moderate           |
| Hunter, Dbelo, et al. (2020) | Indiana, USA                        | Cross-sectional       | Hospital, all services multi-centre             | 317                    | IgG                 | Moderate           |
| Isherwood et al. (2020)     | Leicester, England                   | Cross-sectional       | Hospital, all services, single-centre           | 84                     | IgG                 | Low                |
| Iversen et al. (2020)       | Capital Region of Denmark, Denmark   | Cross-sectional       | Region-wide screen                              | 9963                   | IgG or IgM           | High               |
| Jeremias et al. (2020)      | New York, USA                        | Cross-sectional       | Hospital, all services, single-centre           | 1043                   | IgG                 | Moderate           |
| Kassem et al. (2020)        | Cairo, Egypt                         | Cross-sectional       | Hospital, gastroenterology, single-centre       | 28                     | IgG or IgM           | Moderate           |

(Continues)
| First author(s) (year)                  | City/region, country                  | Type            | Setting                                    | Number of participants | Antibodies assessed | Quality assessment |
|----------------------------------------|---------------------------------------|-----------------|--------------------------------------------|------------------------|---------------------|--------------------|
| Khan et al. (2021)                     | Kashmir, India                        | Cross-sectional | Region-wide screen                        | 321                    | IgG                 | Moderate           |
| Ko et al. (2020)                       | Multiple sites, South Korea           | Cross-sectional | Hospital, all services, multi-centre,      | 335                    | IgG                 | Moderate           |
| Kohler et al. (2020)                   | St. Gallen, Switzerland               | Cross-sectional | Hospital, paediatrics, multi-centre,       | 398                    | IgG                 | Moderate           |
| Kumar et al. (2020)                    | Kerala, India                         | Cross-sectional | Hospital, all services, single-centre      | 132                    | IgG                 | Moderate           |
| Khan et al. (2021)                     | Mumbai, India                         | Cross-sectional | Hospital, all services, single-centre      | 308                    | IgG, IgM            | Moderate           |
| Matsuba et al. (2020)                  | Kanagawa, Japan                       | Cross-sectional | Hospital, all services, multi-centre       | 287                    | IgG                 | Moderate           |
| Moscola et al. (2020)                  | New York City, New York               | Cross-sectional | Hospital, all services, multi-centre       | 11,468                 | IgG                 | Moderate           |
| Mukwege et al. (2021)                  | Bukavu, Congo                         | Cross-sectional | Hospital, all services, single-centre      | 83                     | IgG, IgM            | High               |
| Murakami et al. (2021)                 | Washington DC, USA                    | Cross-sectional | Hospital, emergency, single-centre         | 51                     | IgG                 | High               |
| Nicholson et al. (2020)                | San Diego County, USA                 | Cross-sectional | Hospital, all services, multi-centre       | 734                    | IgG                 | Moderate           |
| Olayanju et al. (2021)                 | Malaga, Spain                         | Cross-sectional | Hospital, direct contacts of COVID-19      | 195                    | IgM, IgG            | Moderate           |
| Olayanju et al. (2021)                 | Ibadan, Nigeria                       | Cross-sectional | Hospital, all services, single-centre      | 33                     | IgG                 | Moderate           |
| Perez-Garcia et al. (2020)             | Madrid, Spain                         | Cross-sectional | Hospital, all services, single-centre      | 508                    | IgG, IgM            | High               |
| Plebani et al. (2020)                  | Veneto Region, Italy                  | Cross-sectional | Hospital, all services, multi-centre       | 3230                   | IgG, IgM            | Moderate           |
| Purswani et al. (2021)                 | Bronx, USA                            | Cross-sectional | Hospital, all services, multi-centre       | 611                    | IgG                 | Moderate           |
| Rosser et al. (2020)                   | San Francisco, USA                    | Cross-sectional | Hospital, all services, multi-centre       | 3774                   | IgG                 | Moderate           |
| Rudberg et al. (2020)                  | Danderyd, Sweden                      | Cross-sectional | Hospital, all services, single-centre      | 636                    | IgG                 | Moderate           |
| Schmidt et al. (2020)                  | Hameln-Pyrmont, Germany               | Cross-sectional | Hospital, all services, single-centre      | 154                    | IgG                 | Moderate           |
| Self et al. (2020)                     | Multiple sites, USA                   | Cross-sectional | Hospital, all services, multi-centre       | 1445                   | IgG, IgM, IgA       | Moderate           |
| Steensels et al. (2020)                | Limburg, Belgium                      | Cross-sectional | Hospital, all services, single-centre      | 1266                   | IgG, IgM            | High               |
| Stubblefield et al. (2020)             | Davidson, USA                         | Cross-sectional | Hospital, direct contacts of COVID-19      | 105                    | IgG                 | Moderate           |
| Tanaka et al. (2021)                   | Tokyo, Japan                          | Cross-sectional | Hospital, all services, single-centre      | 601                    | IgG                 | High               |
| Tong et al. (2020)                     | Jiangsu Province, China               | Cross-sectional | Hospital, direct contacts of COVID-19      | 159                    | IgG, IgM            | High               |
| Venugopal et al. (2021)                | Bronx, USA                            | Cross-sectional | Hospital, trauma, single-centre            | 142                    | IgG                 | Moderate           |
| Yogo et al. (2020)                     | San Diego County, USA                 | Cross-sectional | Hospital, all services, multi-centre       | 1129                   | IgG                 | Moderate           |
FIGURE 2  Seroprevalence of SARS-CoV-2 antibodies among nurses stratified into WHO regions

| Study or Subgroup | Events | Total Weight | IV, Random, 95% CI | IV, Random, 95% CI |
|-------------------|--------|--------------|---------------------|---------------------|
| **Region = African** |
| Mukwege (2021)    | 42     | 83           | 0.9% (0.39; 0.62)   |                      |
| Olayanju (2021)   | 14     | 33           | 0.5% (0.25; 0.61)   |                      |
| **Total (95% CI)** | 116    |              | 1.3% (0.39; 0.57)   |                      |
| Heterogeneity: Tau² = 0; Chi² = 64.6, df = 1 (P = 0.42); I² = 0% |

| **Region = Eastern Mediterranean** |
| Kassem (2020)     | 3      | 28           | 0.8% (0.02; 0.28)   |                      |
| **Total (95% CI)** | 28     |              | 0.8% (0.00; 0.22)   |                      |
| Heterogeneity: not applicable |

| **Region = European** |
| Amendola (2020)    | 13     | 216          | 2.0% (0.03; 0.10)   |                      |
| Barallat (2020)    | 216    | 2243         | 2.2% (0.08; 0.11)   |                      |
| Finkzeller (2020)  | 177    | 887          | 2.1% (0.17; 0.23)   |                      |
| Galan (2020)       | 211    | 678          | 1.9% (0.28; 0.35)   |                      |
| Garcia-Basteiro (2020) | 26 | 288             | 2.0% (0.09; 0.13)   |                      |
| Isherwood (2020)   | 10     | 84           | 1.4% (0.06; 0.21)   |                      |
| Iversen (2020)     | 402    | 9963         | 2.3% (0.04; 0.04)   |                      |
| Kohler (2020)      | 3      | 398          | 2.3% (0.01; 0.02)   |                      |
| Ollita (2020)      | 2      | 195          | 2.2% (0.01; 0.04)   |                      |
| Perez Garcia (2020) | 108   | 508          | 1.9% (0.18; 0.25)   |                      |
| Pleibani (2020)    | 152    | 3230         | 2.3% (0.04; 0.05)   |                      |
| Rudberg (2020)     | 139    | 636          | 2.0% (0.19; 0.25)   |                      |
| Schmidt (2020)     | 0      | 154          | 2.3% (0.00; 0.02)   |                      |
| Steensels (2020)   | 70     | 1266         | 2.2% (0.04; 0.07)   |                      |
| Brehm (2021)       | 10     | 444          | 2.2% (0.01; 0.04)   |                      |
| Calcagno (2021)    | 150    | 1983         | 2.2% (0.08; 0.09)   |                      |
| El Bouzidi (2021)  | 54     | 280          | 1.8% (0.15; 0.24)   |                      |
| Garralda Fernandez | 158    | 983          | 2.1% (0.14; 0.19)   |                      |
| **Total (95% CI)** | 24434  |              | 37.3% (0.68; 0.13)  |                      |
| Heterogeneity: Tau² = 0.0022; Chi² = 1012.45, df = 17 (P < 0.01); I² = 88% |

| **Region = Region of the Americas** |
| Akinbami (2020)    | 495    | 6426         | 2.3% (0.07; 0.08)   |                      |
| Barrett (2020)     | 131    | 1361         | 2.2% (0.10; 0.11)   |                      |
| Costa (2020)       | 42     | 370          | 2.0% (0.11; 0.15)   |                      |
| Dimcheff (2020)    | 29     | 412          | 2.1% (0.07; 0.10)   |                      |
| Godbout (2020)     | 13     | 937          | 2.3% (0.01; 0.02)   |                      |
| Hunter (2020)      | 7      | 317          | 2.2% (0.01; 0.04)   |                      |
| Jeremias (2020)    | 99     | 1043         | 2.1% (0.11; 0.12)   |                      |
| Moscola (2020)     | 1503   | 11468        | 2.3% (0.12; 0.14)   |                      |
| Nicholson (2020)   | 7      | 734          | 2.3% (0.01; 0.02)   |                      |
| Rosser (2020)      | 52     | 3774         | 2.3% (0.01; 0.02)   |                      |
| Self (2020)        | 73     | 1445         | 2.2% (0.04; 0.06)   |                      |
| Stubbsfield (2020) | 5      | 105          | 2.3% (0.11; 0.12)   |                      |
| Yogo (2020)        | 28     | 1129         | 2.3% (0.02; 0.04)   |                      |
| Akinbami (2021)    | 114    | 2733         | 2.3% (0.03; 0.05)   |                      |
| Gandhi (2021)      | 5      | 68           | 1.5% (0.02; 0.16)   |                      |
| Howard-Anderson (2021) | 10 | 144             | 1.8% (0.03; 0.12)   |                      |
| Murakami (2021)    | 4      | 51           | 1.3% (0.02; 0.19)   |                      |
| Purswani (2021)    | 229    | 611          | 1.9% (0.34; 0.41)   |                      |
| Venugopal (2021)   | 40     | 142          | 1.3% (0.21; 0.36)   |                      |
| **Total (95% CI)** | 33270  |              | 38.4% (0.08; 0.11)  |                      |
| Heterogeneity: Tau² = 0.0025; Chi² = 1720.13, df = 18 (P = 0); I² = 99% |

| **Region = South-East Asia** |
| Kumar (2020a)      | 0      | 132          | 2.2% (0.00; 0.03)   |                      |
| Kumar (2020b)      | 21     | 398          | 2.1% (0.07; 0.10)   |                      |
| Khan (2021)        | 9      | 321          | 2.2% (0.03; 0.05)   |                      |
| **Total (95% CI)** | 761    |              | 6.5% (0.03; 0.07)   |                      |
| Heterogeneity: Tau² = 0.0009; Chi² = 23.42, df = 2 (P < 0.01); I² = 91% |

| **Region = Western Pacific** |
| Chau (2020)        | 0      | 144          | 2.2% (0.00; 0.03)   |                      |
| Chen (2020)        | 2      | 25           | 0.9% (0.01; 0.26)   |                      |
| Fujita (2020)      | 3      | 48           | 1.4% (0.01; 0.17)   |                      |
| Hibono (2020)      | 5      | 363          | 2.2% (0.01; 0.03)   |                      |
| Ko (2020)          | 1      | 335          | 2.3% (0.00; 0.02)   |                      |
| Matsuba (2020)     | 8      | 287          | 2.2% (0.01; 0.05)   |                      |
| Tong (2020)        | 0      | 159          | 2.3% (0.00; 0.02)   |                      |
| Tanaka (2021)      | 0      | 601          | 2.3% (0.00; 0.01)   |                      |
| **Total (95% CI)** | 1962   |              | 15.7% (0.00; 0.01)  |                      |
| Heterogeneity: Tau² = 0.0001; Chi² = 18.48, df = 7 (P < 0.01); I² = 62% |

| **Total (95% CI)** | 60571  | 100.0% (0.07; 0.09) |
| Heterogeneity: Tau² = 0.0019; Chi² = 3988.71, df = 50 (P = 0); I² = 99% |
between professions could also be a result of mandated personal protective equipment (PPE) use and compliance with social distancing measures, both of which have been shown to reduce the risk of COVID-19 infection in healthcare workers (Feng et al., 2020; Lewnard & Lo, 2020; Nguyen et al., 2020). Instead, any variance in this population may be due to the clinical specialty the workers operate in, that may influence the level of occupational exposure to COVID-19 patients. Our study lacked the data to compare seroprevalence among different specialty areas. However, a recent systematic review by Chen et al. (2021) found that high-risk healthcare workers experienced significantly higher seroprevalence than low-risk healthcare workers. It is important to note there are potential confounding variables influencing these results, as the authors categorised high-risk healthcare workers as personnel in contact with COVID-19 patients and those with inadequate access to PPE.

We found seropositivity varied among countries, with those in the Western Pacific Region registering the lowest estimates. None of the studies included in the review could guarantee whether infections were a result of nosocomial or community transmission. Our results bared resemblance to seroprevalence estimates among the general population by Chen et al. (2021): Overall (8.1% compared to 8%); Western Pacific region (0.5% compared to 1.6%); and the Region of the Americas (8.4% compared to 6.8%), although the European estimates differed greatly (10.3% compared to 4.7%). Indeed, working in high-risk areas of the hospital would compound the risk of infection, but it would seem community transmission still has an important influence in determining seroprevalence among nurses.

Though there were only two studies from the African region, the pooled seroprevalence of 48.2% among nursing staff was still considerably higher than other WHO regions. It has previously been reported that rates of hospital-acquired infections (HAIs) are higher in developing countries compared to those observed in Europe and the United States of America (Allegrenzi et al., 2011; Harrison et al., 2015). Potential contributing factors could include poor health infrastructure, inadequate access to resources and limited application of infection control measures (Allegrenzi et al., 2011; Ogunsola & Mehtar, 2020). Be that as it may, a recent publication suggested the preparedness of African countries to manage COVID-19 was underestimated, when one considers recent work undertaken with the Ebola outbreak of the mid-2010s (Kapata et al., 2020). Kapata et al. (2020) also highlighted that early recognition of the risk of COVID-19, and assistance from WHO had may somewhat mitigate African nations to widespread and potentially uncontrollable disease. It is difficult to assess whether such preparations have had an effect on seroprevalence among African countries, given the lack of studies and reported data within this region.

4.1 | Strengths and limitations

To the authors’ knowledge, this is the first systematic review that specifically investigates the seroprevalence of SARS-CoV-2 among nurses. A potential limitation to this meta-analysis, as with any systematic review of literature, is that studies reporting results in contrast to the included studies may have been missed. To mitigate this potential problem, we have undertaken an extensive electronic search. A further limitation may be selection bias due to the majority of studies failing to provide the characteristics of non-responders to compare against. Some studies were able to limit the impact of bias by having a high response rate. It is also worth noting that the majority of studies were conducted in the Americas or Europe, settings where there was adequate access to PPE. Secondly, there was high heterogeneity among the studies. This was mitigated to the best of our ability by utilising a random effects model and sub-group analysis when reporting results. However, even within WHO region, infection rates of COVID-19 can differ by country, state or city. It was not feasible to stratify by regions other than WHO regions or continent, as there would have been a lack of studies to compare against certain areas. The region-specific seroprevalence estimates should be interpreted with caution, as they may not be representative of all countries or states involved. There was also a lack of data in certain WHO regions, namely the Eastern Mediterranean Region, South-East Asia region and the African region where resources are lower. More prevalence studies need to be conducted in these areas in order to properly estimate the overall seroprevalence of SARS-CoV-2 antibodies in the population. Lastly, we were limited in our ability to analyse potential factors influencing seroprevalence variability. Given the majority of studies looked at healthcare workers as a whole, we were unable to isolate certain demographic identifiers within the nursing sample. There were also various immunoassays used. Though the majority of tests proclaimed sensitivity and specificity >90%, variance may still have affected rates of infection. Moreover, there was not specific information available concerning local infection control practices.

5 | CONCLUSION

To conclude, the overall seroprevalence of SARS-CoV-2 antibodies in nurses is comparable to other healthcare workers, and possibly the general population depending on the setting. Early adoption and adherence to PPE and social distancing measures could explain these similarities, meaning the majority of staff could be contracting the virus through community transmission and not in a healthcare setting. More research is needed to investigate whether this observation is valid, given the mixed evidence currently available.

6 | RELEVANCE TO CLINICAL PRACTICE

The COVID-19 pandemic has identified a range of vulnerabilities across society and also in healthcare settings. The availability and access to PPE and training in infection control practices have been major factors in protecting healthcare workers (Jackson et al., 2020). Workforce shortages and limited PPE have demonstrated the
vulnerability of the aged care sector and reflected in high mortality (Davidson & Szanton, 2020). Fear and uncertainty have also been features of the pandemic including among nurses (Davidson et al., 2020). This meta-analysis should provide some comfort to nurses that risks are similar to community exposure when adequate PPE is available and there is adherence to infection control measures.

The global pandemic has challenged traditional models of occupational health and safety as well as challenging standards of reporting and monitoring. Standardising methods of monitoring occupational exposure are important in ensuring protection for health workers (Jackson et al., 2020). Given the evolution of SARS-CoV-2 virus and vaccination strategies, ongoing monitoring and assessment of seroprevalence are necessary.

CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

AUTHOR CONTRIBUTION
Data curation, formal analysis, investigation, methodology, project administration, software, writing—original draft and writing—review and editing: Steven He; Conceptualisation and writing—review and editing: Anthony Hemicovic and Vesna Matijasevic; Formal analysis, investigation, project administration, and writing—review and editing: Ha Thi Mai; Investigation, methodology, resources, software, and writing—review and editing: Linda Heslop; Methodology, supervision and writing—review and editing: Kate Alexander, Naru Pal, and Patricia M. Davidson; Supervision and writing—review and editing: Evan Alexandrou; Conceptualisation, formal analysis, methodology, software, supervision, validation, visualisation, writing—original draft and writing—review and editing: Steven A. Frost.

ORCID
Steven He  https://orcid.org/0000-0002-0571-5318
Patricia M. Davidson  https://orcid.org/0000-0003-2050-1534

REFERENCES
Akinbami, L. J., Chan, P. A., Vuong, N., Sami, S., Lewis, D., Sheridan, P. E., Lukacs, S. L., Mackey, L., Grohskopf, L. A., Patel, A., & Petersen, L. R. (2021). Severe acute respiratory syndrome coronavirus 2 seropositivity among healthcare personnel in hospitals and nursing homes, Rhode Island, USA, July–August 2020. Emerging Infectious Diseases, 27(3), 823–834. https://doi.org/10.3201/eid2703.2004508
Akinbami, L. J., Vuong, N., Petersen, L. R., Sami, S., Patel, A., Lukacs, S. L., Mackey, L., Grohskopf, A. S., & Atlas, J. (2020). SARS-CoV-2 seroprevalence among healthcare, first response, and public safety personnel, Detroit Metropolitan Area, Michigan, USA, May–June 2020. Emerging Infectious Diseases, 26(12), 2863–2871. https://doi.org/10.3201/eid2612.20376
Allegranzi, B. M. D., Nejad, S. B. M. D., Combscure, C. P., Graafmans, W. P., Attar, H. P., Donaldson, L. M. D., & Pittet, D. P. (2011). Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. The Lancet, 377(9761), 228–241. https://doi.org/10.1016/S0140-6736(10)61458-4
Amendola, A., Tanz, E., Folgori, L., Barcellini, L., Bianchi, S., Gori, M., Cammi, G., Albani, E., & Zuccotti, G. V. (2020). Low seroprevalence of SARS-CoV-2 infection among healthcare workers of the largest children hospital in Milan during the pandemic wave. Infection Control & Hospital Epidemiology, 41(12), 1468–1469. https://doi.org/10.1017/ice.2020.401
Bandypadhyay, S., Baticulon, R. E., Kadhum, M., Alser, M., Ojuka, D. K., Badereddin, Y., Kamath, A., Parepalli, S. A., Brown, G., Iharchane, S., Gando, S., Markovic-Olgiati, Z., Scott, S., Manirambona, E., Machhada, A., Aggarwal, A., Benzaïle, L., Ibrahim, M., Kim, D., ... Khundkar, R. (2020). Infection and mortality of healthcare workers worldwide from COVID-19: A systematic review. BMJ Global Health, 5(12), e003097. https://doi.org/10.1136/bmjgh-2020-003097
Barallat, J., Fernandez-Rivas, G., Quirant-Sanchez, B., Gonzalez, V., Dolda-Dez, M., Martinez-Caceres, E., Piña, M., Matillo, J., Estrada, O., & Blanco, I. (2020). Seroprevalence of SARS-CoV-2 IgG specific antibodies among healthcare workers in the Northern Metropolitan Area of Barcelona, Spain, after the first pandemic wave. PLoS One, 15(12), e0244346. https://doi.org/10.1371/journal.pone.0244346
Barendregt, J. J., Dao, S. I., Lee, Y. Y., Norman, R. E., & Vos, T. (2013). Meta-analysis of prevalence. Journal of Epidemiology and Community Health, 67(11), 974–978. https://doi.org/10.1136/jech-2013-203104
Barrett, E. S., Horton, D. B., Roy, J., Xia, W., Greenberg, P., Andrews, T., Gennaro, M. L., Parmar, V., Russell, W. D., Reilly, N., Upreti, P., Gantner, J. J., Stockman, L., Trooskin, S. Z., Blaser, M. J., Carson, J. L., & Panettieri, R. A. (2020). Risk factors for severe acute respiratory syndrome coronavirus 2 infection in hospital workers: Results from a screening study in New Jersey, United States in spring 2020. Open Forum Infectious Diseases, 7(12), 1–9. https://doi.org/10.1093/ofid/ofaa534
Borges Migliavaca, C., Stein, C., Colpani, V., Barker, T. H., Munn, Z., Falavigna, M., & on behalf of the Prevalence Estimates Reviews – Systematic Review Methodology, G. (2020). How are systematic reviews of prevalence conducted? A methodological study. BMC Medical Research Methodology, 20(1), 96. https://doi.org/10.1186/s12874-020-00975-3
Brehm, T. T., Schwinge, D., Lampalzer, S., Schlicker, V., Küchen, J., Thompson, M., Ullrich, F., Huber, S., Schmiedel, S., Addo, M. M., Lütgheuetmann, M., Knobloch, J. K., Schulze zur Wiesch, J., & Lohse, A. W. (2021). Seroprevalence of SARS-CoV-2 antibodies among hospital workers in a German tertiary care center: A sequential follow-up study. International Journal of Hygiene and Environmental Health, 232, 113671. https://doi.org/10.1016/j.ijheh.2020.113671
Calcagno, A., Ghisetti, V., Emanuele, T., Trunfio, M., Faraoni, S., Boglione, L., Burdino, E., Audagnotto, S., Lipani, F., Nigra, M., D’Avolio, A., Bonora, S., & Di Perri, G. (2021). Risk for SARS-CoV-2 infection in healthcare workers, Turin, Italy. Emerging Infections Diseases, 27(1), 303–305. https://doi.org/10.3201/eid2701.2003027
Chau, N. V. V., Toan, L. M., Man, D. N. H., Thao, H. P., Lan, N. P. H., Ty, D. T. B., Hieu, D. K., Tien, N. T. M., Ngoc, N. M., Hung, L. M., Dung, N. T., Thanh, T. T., Truong, N. T., Thwaites, G., & Tan, L. V. (2021). Absence of SARS-CoV-2 antibodies in health care workers of a tertiary referral hospital for COVID-19 in southern Vietnam. The Journal of Infection, 82(1), e36–e37. https://doi.org/10.1016/j.jinf.2020.11.018
Chen, X., Chen, Z., Azman, A. S., Deng, X., Sun, R., Zhao, Z., Zheng, N., Chen, X., Lu, W., Zhuang, T., Yang, J., Viboud, C., Ajelli, M., Leung, D. T., & Yu, H. (2021). Serological evidence of human infection with SARS-CoV-2: A systematic review and meta-analysis. The Lancet Global Health, 9(5), e598–e609. https://doi.org/10.1016/S2214-109X(21)00026-7
Chen, Y., Tong, X., Wang, J., Huang, W., Yin, S., Huang, R., Yang, H., Chen, Y., Huang, A., Liu, Y., Chen, Y., Yuan, L., Yan, X., Shen, H., & Wu, C. (2020). High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. Journal of Infection, 81(3), 420–426. https://doi.org/10.1016/j.jinf.2020.05.067
Costa, S. F., Giavina-Bianchi, P., Buss, L., Mesquita Peres, C. H., Rafael, M. M., dos Santos, L. G. N., Bedin, A. A., Francisco, M. C. P., Batakic,
F. M., Jesus Menezes, M. A., Dal Secco, L. M., Rodrigues Caron, D. M., de Oliveira, A. B., de Faria, M. F. L., de Aurélio Penteado, A. S., de Souza, I. O. M., de Fatima Pereira, G., Pereira, R., Matos Porto, A. P., ... Levin, A. S. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) seroprevalence and risk factors among oligo/asymptomatic healthcare workers: Estimating the impact of community transmission. *Clinical Infectious Diseases*. 1–5. https://doi.org/10.1093/cid/ciaa1845

Davidson, P. M., Padula, W. V., Daly, J., & Jackson, D. (2020). Moral outrage in COVID19—Understandable but not a strategy. *Journal of Clinical Nursing*, 29(19–20), 3600–3602. https://doi.org/10.1111/jocn.15318

Davidson, P. M., & Szanton, S. L. (2020). Nursing homes and COVID-19: We can and should do better. *Journal of Clinical Nursing*, 29(15–16), 2758–2759. https://doi.org/10.1111/jocn.15297

Dimech, D. E., Schildhouse, R. J., Hausman, M. S., Vincent, B. M., Markovitz, E., Chensue, S. W., Deng, J., McLeod, M., Hagan, D., Russell, J., & Bradley, S. F. (2021). Seroprevalence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection among VA healthcare system employees suggests higher risk of infection when exposed to SARS-CoV-2 outside of the work environment. *Infection Control & Hospital Epidemiology*, 42(4), 392–398. https://doi.org/10.1017/ice.2020.1220

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *BMJ*, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629

El Bouzidi, K., Pirani, T., Rosadas, C., Ijaz, S., Pearn, M., Chaudhry, S., Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *BMJ*, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629

Gandhi, S., Winn, C. C., Ianosi-Irimie, M., Edmonston, T. B., Nahra, R., & Roberts, B. W. (2021). COVID-19 serologic testing among the highest risk healthcare workers. *Journal of General Internal Medicine*, 36(4), 1164–1165. https://doi.org/10.1007/s11606-020-06462-1

García-Basteiro, A. L., Moncunill, G., Tortajada, M., Vidal, M., Guinovart, C., Jimenez, A., Santano, R., Sanz, S., Mendez, S., Llopia, A., Aguilar, R., Alonso, S., Barrios, D., Carolis, C., Cistero, P., Choliz, E., Cruz, A., Fochs, S., Jaireco, C., ... Dobano, C. (2020). Seroprevalence of antibodies against SARS-CoV-2 among health care workers in a large Spanish reference hospital. *Nature Communications*, 11(1), 3500. https://doi.org/10.1038/s41467-020-17318-x

Garraud, Fernandez, J., Molero Vilches, I., Bemejho Rodriguez, A., Cano Torres, I., Colino Romay, E. I., Araya Arata, I., Jaqueti Arcoa, J., Lillo Rodriguez, R., Lopez Lacomba, D., Mazon Cuadrado, L., Molina Esteban, L., Morales Garcia, L. J., Moratilla Monzo, L., Nieto-Borrojo, E., Pacheco Delgado, M., Prieto Mencherio, S., Sanchez Hernandez, C., Sanchez Testillano, E., & Garcia-Martinez, J. (2021). Impact of SARS-CoV-2 pandemic among health care workers in a secondary teaching hospital in Spain. *PLoS One*, 16(11), e0245001. https://doi.org/10.1371/journal.pone.0245001

Godbout, E. J., Pryor, R., Harmon, M., Montpetit, A., Greer, J., Bachmann, L. M., Doll, M., Stevens, M. P., & Bearman, G. (2020). Severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seroprevalence among healthcare workers in a low prevalence region. *Infection Control and Hospital Epidemiology*, 1–3. https://doi.org/10.1017/ice.2020.1374

Gómez-Ochoa, S. A., Franco, O. H., Rojas, L. Z., Ragunidin, P. F., Roa-Diaz, Z. M., Wyssmann, B. M., Guevara, S. R. L., Chevernick, L. E., Glicis, M., & Muka, T. (2020). COVID-19 in health-care workers: A living systematic review and meta-analysis of prevalence, risk factors, clinical characteristics, and outcomes. *American Journal of Epidemiology*, 190(1), 161–175. https://doi.org/10.1093/aje/kvaaw191

Harrison, R., Cohen, A. W. S., & Walton, M. (2015). Patient safety and quality of care in developing countries in Southeast Asia: A systematic literature review. *International Journal for Quality in Health Care*, 27(4), 240–254. https://doi.org/10.1093/intqhc/mzv041

Hibino, M., Iwabuchi, S., & Munakata, H. (2021). SARS-CoV-2 IgG seroprevalence among medical staff in a general hospital that treated patients with COVID-19 in Japan: Retrospective evaluation of nosocomial infection control. *The Journal of Hospital Infection*, 107, 103–104. https://doi.org/10.1016/j.jhin.2020.10.001

Howard-Anderson, J., Adams, C., Sherman, A. C., Dube, W. C., Smith, T. C., Edupuganti, S., Neumann, N., Magill, S. S., Espinoza, D. O., Zhu, Y., Phadke, V. K., Edupuganti, S., Steinberg, J. P., Lopezman, B. A., Jacob, J. T., Collins, M. H., & Fridkin, S. K. (2021). Occupational risk factors for SARS-CoV-2 infection among healthcare personnel: A cross-sectional analysis of subjects enrolled in the COPE study. *Infection Control and Hospital Epidemiology*, 1–6. https://doi.org/10.1017/ice.2021.54

Hunter, B. R., Dbeibo, L., Weaver, C. S., Beeler, C., Saysana, M., Zimmerman, M. K., & Weaver, L. (2020). Seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies among healthcare workers with differing levels of coronavirus disease 2019 (COVID-19) patient exposure. *Infection Control & Hospital Epidemiology*, 41(12), 1441–1442. https://doi.org/10.1017/ice.2020.390

Hunter, E., Price, D. A., Murphy, E., van der Loeff, I. S., Baker, K. F., Lendrem, D., Lendrem, C., Schmid, M. L., Pareja-Cebrian, L., Welch, A., Payne, B. A. I., & Duncan, C. J. A. (2020). First experience of COVID-19 screening of health-care workers in England. *The Lancet*, 395(10234), e77–e78. https://doi.org/10.1016/S0140-6736(20)30970-3

Isherwood, J., Winyard, J., Karki, B., Chung, W. Y., Layton, G., Issa, E., Garcea, G., & Dennison, A. R. (2020). Prevalence of SARS-CoV-2 infection among healthcare personnel: A cross-sectional analysis of subjects enrolled in the COPE study. *Infection Control and Hospital Epidemiology*, 1–6. https://doi.org/10.1017/ice.2021.54
APPENDIX 1
Funnel plot inspecting publication bias of seroprevalence estimates from studies in the Region of the Americas

APPENDIX 2
Funnel plot inspecting publication bias of seroprevalence estimates from studies in the European region