FGF-GAN: A LIGHTWEIGHT GENERATIVE ADVERSARIAL NETWORK FOR PANSHARPENING VIA FAST GUIDED FILTER

Zixiang Zhao, Jiangshe Zhang, Shuang Xu, Kai Sun, Lu Huang, Junmin Liu, Chunxia Zhang

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China

ABSTRACT

Pansharpening is a widely used image enhancement technique for remote sensing. Its principle is to fuse the input high-resolution single-channel panchromatic (PAN) image and low-resolution multi-spectral image and to obtain a high-resolution multi-spectral (HRMS) image. The existing deep learning pansharpening method has two shortcomings. First, features of two input images need to be concatenated along the channel dimension to reconstruct the HRMS image, which makes the importance of PAN images not prominent, and also leads to high computational cost. Second, the implicit information of features is difficult to extract through the manually designed loss function. To this end, we propose a generative adversarial network via the fast guided filter (FGF) for pansharpening. In generator, traditional channel concatenation is replaced by FGF to better retain the spatial information while reducing the number of parameters. Meanwhile, the fusion objects can be highlighted by the spatial attention module. In addition, the latent information of features can be preserved effectively through adversarial training. Numerous experiments illustrate that our network generates high-quality HRMS images that can surpass existing methods, and with fewer parameters.

Index Terms—Pansharpening, Fast guided filter, Generative adversarial network, Image fusion

1. INTRODUCTION

Pansharpening (also known as remote sensing image fusion) is a hot issue in environmental monitoring and multi-modal image fusion. The purpose of this task is to fuse the spatial/spectral information from source images including high-resolution single-channel panchromatic (PAN) images and low-resolution multi-spectral (LRMS) images. In the end, high-resolution multi-spectral (HRMS) images with the same size as PAN images and the same channel as LRMS images are obtained.

The traditional pansharpening method can be divided into three categories: component substitute [1][2][3], multi-resolution analysis [4][5] and optimization-based methods [6], where HRMS images are obtained by decomposing spectral/spatial information, injecting detail information or solving optimization models, respectively. In the era of deep learning (DL), DNN is often used as an extractor of spatial/spectral information and a fusion operator among multi-modal features. As a pioneering work, PNN [7] borrows a super-resolution convolutional neural network (CNN) to solve this task, but the network is relatively shallow and it is difficult to extract features effectively. DRPNN [8], MSDCNN [9] and RSIFNN [10] exploit deep residual learning, multi-scale and multi-depth CNN, and two-branch CNN to enlarge the layer number of deep network architecture and improve the ability of feature extraction. MIPS [11] combines shallow-deep CNN and spectral discrimination-based detail injection module to acquire HRMS images retaining more spectral information.

For DL-based methods, there are two shortcomings worth mentioning. First, before reconstructing the HRMS image, the multi-channel PAN and LRMS features often need to be concatenated in the channel dimension to pass through the reconstructor. This not only makes the spatial information in the PAN image indistinctive, but also causes the high training cost due to a huge number of parameters. Second, manually designed reconstruction loss, such as ℓ_2-loss, is difficult to accurately extract implicit feature information.

Therefore, we propose a lightweight generative adversarial network for pansharpening based on the fast guided filter (FGF-GAN). In this paper, we formulate the pansharpening task as an adversarial training game, where the generator reconstructs a HRMS image containing spectral/spatial information from the LRMS/PAN image, and the discriminator distinguishes whether the generated image is a real sample. Our contribution can be divided into three-fold:

1) For the generator, to the best of our knowledge, this is the first time that fast guided filter (FGF) is exploited to fuse the extracted feature maps in the pansharpening task. Compared with channel concatenation operation, the FGF method can better highlight the role of PAN image by setting the PAN image as the guidance image, while significantly reducing the number of parameters. In addition, cooperating with the spatial attention mechanism, object features useful for fusion are further concerned and the spectral/detailed texture information of the source image can be well preserved.
(2) Inspired by LSGAN [12], adversarial training makes the generated images contain more latent details which are not easy to be learned by supervision of reconstruction loss.

(3) Extensive qualitative and quantitative experiments illustrate that our method can generate high-quality pansharpening images with fewer parameters.

2. RELATED WORK

The guided filter [13], as an anisotropic diffusion-based edge-aware image filter, is one of the fastest edge-preserving filters and is widely used in image enhancement/dehazing, HDR compression, saliency detection, etc. For relatively “flat” patches in the guidance image where the variance is small, it can be regarded as a mean filter for input images in the corresponding area. For patches existing edges, it is equivalent to an edge-preserving filter. Subsequently, FGF [14] is proposed with an extra input, i.e., downsampling guidance image. So the smoothed maps are calculated on the low-resolution feature maps, which further improved the speed of the filter algorithm without losing accuracy.

Recently, Goodfellow et al. [15] propose a generative adversarial network (GAN) to complete the latent distribution learning of target data without any approximation through the adversarial training between generator and discriminator. LSGAN [12], as a variant of GAN, replaces the cross-entropy loss of discriminator with least square loss function to solve the two shortcomings of traditional GAN, i.e., low quality for generated images and unstable training process. The idea of adversarial training is also applied in some information fusion tasks [16, 17].

3. METHOD

In this section, we will introduce the network architecture and detailed information for our proposed FGF-GAN model.

3.1. Motivation and Overview of FGF-GAN

In order to better preserve the spectral and resolution information of the PAN/MS image, and meanwhile reduce the expensive calculation cost in the pansharpening task, we embed FGF [14] in the information fusion framework. Different from the traditional applications for FGF which implement edge-aware in the image domain, we combine deep learning and FGF together, i.e., FGF is employed to transfer the information from PAN images into multi-spectral (MS) images in the feature domain. By using the low-resolution feature maps instead of the full-resolution maps, FGF can significantly reduce the number of parameters while retaining the information fusion performance of our model. In addition, some features that are difficult to be learned explicitly will be complemented by adversarial training.

3.2. Generator Details

There are four main components in the generator of FGF-GAN, i.e., feature extraction layer, FGF layer, spatial attention layer and image reconstruction layer. The goal of each module is to capture features useful for information fusion from the source images, fuse and retain the extracted features, highlight the salient objects and obtain the HRMS images, respectively.

In detail, the paired \(\{F^n_{\text{PAN}}, F^n_{\text{LR}}\}_{n=1}^N\) are input into feature extractor \(\{F^k_{\text{PAN}}, F^k_{\text{LR}}\}_{k=1}^K\), where \(F^k_{\text{PAN}}\) and \(F^k_{\text{LR}}\) denote the \(k\)th feature extraction layer for PAN/MS images in the generator. Note that there is no shared parameter between \(F^k_{\text{PAN}}\) and \(F^k_{\text{LR}}\), and the number of feature extraction layers \(K\) is determined in the validation set. After obtaining the corresponding feature maps \(\{F^k_{\text{PAN}}, F^k_{\text{LR}}\}_{k=1}^K\), the information fusion performance of our model. In addition, some features that are difficult to be learned explicitly will be complemented by adversarial training.

Table 1: The architecture of the FGF-GAN. Feature maps in Landsat8 is employed as samples to show the activation size.

Name	Layer*	Activation size†
Generator Architecture		
\(F^{\text{PAN}}\)	\(32 \times 1 \times 3\) conv, ReLU	\(64 \times 64 \times 32\)
\(F^1_{\text{LR}}\)	\(32 \times C \times 3\) conv, ReLU	\(32 \times 32 \times 32\)
\(F^{\text{PAN}†}\)	\(32 \times 32 \times 3\) conv, ReLU	\(64 \times 64 \times 32\)
\(F^k_{\text{LR}}\)	\(32 \times 32 \times 3\) conv, ReLU	\(32 \times 32 \times 32\)
\(G_k\)	-	\(64 \times 64 \times 32\)
\(\Phi\) & SAM in CBAM [18]	\(64 \times 64 \times 32\)	
\(R\)	\(32 \times (32 \times K) \times 3\) conv, \(\text{ReLU}, C \times 32 \times 3\) conv	\(64 \times 64 \times C\)

Discriminator Architecture
\(32 \times (2 \times C + 1) \times 3\) conv, \(BN, \text{LRelu}\)
\(64 \times 32 \times 3\) conv, \(BN, \text{LRelu}\)
\(128 \times 64 \times 3\) conv, \(BN, \text{LRelu}\)
\(256 \times 128 \times 3\) conv, \(BN, \text{LRelu}\)
\(1 \times 256 \times 3\) conv, \(BN, \text{Sigmoid}\)

* Convolution kernels: output channels \(\times\) input channels \(\times\) kernel size.
† The representation paradigm: width \(\times\) height \(\times\) channels.
‡ \(k = 2, 3, \cdots, K\) in \(F^{\text{PAN}}_k\) and \(F^{\text{LR}}_k\) here.
Fig. 1: Neural network framework of FGF-GAN.

fusion is accomplished by
\[\Phi_{HR}^k = G_k (\Phi_{k}^{PAN} \downarrow, \Phi_{k}^{LR}, \Phi_{k}^{PAN}), \]
where \(G_k (\cdot, \cdot, \cdot) \) represented the FGF operator [14] corresponding to the \(k \)th group of feature maps and \(\downarrow \) is the bicubic downsampling operator. Then we exploit the spatial attention layer \(S_k \) to highlight the salient objects for fusion by:
\[\tilde{\Phi}_{HR}^k = S_k (\Phi_{HR}^k), \]
where \(S_k \) is the spatial attention module (SAM) in CBAM [18]. At last, it sets a skip connection between the upsampled LRMS image and the output of the reconstruction layer to output the final HRMS image, that is,
\[\hat{I}_{HR} = \mathcal{R}(\Phi_{HR}) \oplus (I_{LR} \uparrow), \]
where \(\uparrow \) is the bicubic upsampling operator and \(\oplus \) is the element-wise addition.

3.3. Discriminator Details

After obtaining the \(\hat{I}_{HR} \), in order to further enhance the texture information and implicit detail information of fusion images, we establish an adversarial game between the generator and the discriminator. We input \(\{ I_{HR}, \hat{I}_{HR} \} \) into the discriminator, and define \(I_{HR} \) as real data while \(\hat{I}_{HR} \) as fake data. Through the adversarial training, the quality of fusion images is effectively improved, and the rationality of adversarial training is proved in the ablation experiment in Sec. 4.3.

3.4. Loss Function

The loss function of our FGF-GAN consists of two components, the loss of generator \(L_G \) and the loss of discriminator \(L_D \). In the following, we will introduce the two components respectively.

Loss function of generator. There are two terms in \(L_G \), i.e., the reconstruct loss \(L_{G_{con}} \) and the adversarial loss \(L_{G_{adv}} \). For \(L_{G_{con}} \), the \(\ell_1 \)-loss is selected to make our model robust to the outlier in regression. For \(L_{G_{adv}} \), inspired by LSGAN [12], the \(\ell_2 \)-loss between the predicted probability and the real data label is used to make the discriminator \(D_{\theta_D} \) believe for the generated fake data. So \(L_G \) is formulated as:
\[L_G = L_{G_{con}} + \alpha L_{G_{adv}}, \]
where
\[L_{G_{con}} = \sum_{n=1}^{N} \left\| I_{HR} - \hat{I}_{HR} \right\|_1, \]
and
\[L_{G_{adv}} = \alpha \sum_{n=1}^{N} \left(D_{\theta_D}(\hat{I}_{HR}) - a \right)^2, \]
with \(\alpha \) being the hyperparameter.
where a is the real data label and α is the turning parameter.

Loss function of discriminator. The discriminator is established to distinguish the ground truth and the generated HRMS image, and \mathcal{L}_D is expressed as:

$$
\mathcal{L}_{D_{adv}} = \frac{1}{N} \sum_{n=1}^{N} \left[D_{\theta_D} \left(I_n^{HR} \right) - b \right]^2 + \left[D_{\theta_D} \left(I_n^{LR} \right) - c \right]^2,
$$

where b and c are labels of fake data and real data, respectively.

4. EXPERIMENTS

In this section, we will use a variety of experiments to verify the effectiveness of our model and the rationality of the module settings. All experiments are conducted with Pytorch on a computer with Intel Core i9-10900K CPU@3.70GHz and NVIDIA GeForce RTX2080Ti GPU.

4.1. Experimental Settings

Datasets and evaluation metrics. We choose three satellite datasets, i.e., Landsat8, QuickBird and GaoFen2, as our experimental datasets, whose details are displayed in Tab. 2.

Dataset	Division*	Bands	SUS ratio†
Landsat8	350/50/100	10	2
QuickBird	474/103/100	4	4
GaoFen2	350/50/100	4	4

* The paradigm of dataset division: number of training/validation/test sets.
† SUS ratio represents the spatial up-scaling ratio.

Wald protocol [20] is employed to prepare for the training where b is defined as soft labels [12], as the turning parameter.

Dataset	Division*	Bands	SUS ratio†
Landsat8	350/50/100	10	2
QuickBird	474/103/100	4	4
GaoFen2	350/50/100	4	4

In this section, we compare our FGF-GAN with some SOTA methods in pansharpening, including BDSD [6], Brovey [1], GS [2], HPF [19], IHS [3], Indusion [4], SFIM [5], MIPSM [11], DRPNN [3], MSDCNN [9] and RSIFNN [10].

Visual inspection. Visual inspection results of RGB pansharpening images are displayed in Fig. 2. Compared with other methods, FGF-GAN can better preserve the detailed texture information of the PAN images and the spectral information of the MS images, and the generated images are the closest to the ground truth. The amplified area can also show that our method successfully avoids spatial and spectral distortion, and can generate high-quality fusion results with lower noise.

Quantitative comparison. The values of metrics in three test datasets are exhibited in Tab. 3. It is obvious that our model achieves almost all the best results with regard to all metrics while the other methods can only perform well in a part of metrics. It proves that our method can generate excellent fusion images and preserve more texture details and spectral information from source images.

Parameters comparison. In addition, we compare the parameters contained in the DL-based models and exhibit them in Fig. 3. The result shows that our method can generate satisfactory pansharpening images with fewer parameters and demonstrates the superiority of our lightweight networks.

4.3. Ablation Experiments

Layer number determination. The number of feature extraction layers K of F_k^{PAN} and F_k^{LR} is a very important parameter in our model. We train models with different K and show fusion results of validation set in Tab. 4. When $K > 4$, the fusion results are not significantly improved. Balancing model accuracy and computational cost, we finally determine $K = 4$.

Module rationality analysis. We show the rationality of adversarial training and spatial attention layer by ablation experiments. In experiment w/o GAN, the adversarial training is eliminated, i.e., only the generator is trained to complete pansharpening. In the experiment w/o SAM, we deleted the spatial attention layer in the generator and display the results of Landsat8 test set in Tab. 4. Compared with FGF-GAN, the fusion effects of the two ablation experiment groups are reduced, which proves the rationality of our model.

5. CONCLUSION

In this paper, we propose a lightweight pansharpening network based on generative adversarial training. In the generator, the fast guided filter is used to fuse the extracted feature maps. Compared with the existing methods that use channel concatenation before reconstruction, the fast guided filter can better emphasize the role of PAN images in pansharpening while reducing the number of parameters. In addition, the spatial attention mechanism highlights the targets that need
to be fused, and the adversarial training makes the generated images contain more latent information from source images. Qualitative and quantitative results show that our method can generate satisfactory pansharpening images with fewer model parameters.

6. REFERENCES

[1] A. B. Kahle A. R. Gillespie and R. E. Walker, “Color enhancement of highly correlated images. i. decorrelation and hsi contrast stretches,” Remote Sens. of Environ., vol. 20, no. 3, pp. 209 – 235, 1986.
[2] C. A. Laben, V. Bernard, and W. Brower, “Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening,” Jan. 2000, US Patent 6,011,875.
[3] R. Haydn, G. W. Dalke, J. Henkel, and J. E. Bare, “Application of the ihs color transform to the processing of multisensor data and image enhancement,” in Int. Symp. on Remote Sens. of Environ., 1982.
[4] M. M. Khan, J. Chanussot, L. Condat, and A. Montanvert, “Indusion: Fusion of multispectral and panchromatic images using the induction scaling technique,” IEEE GRSL, vol. 5, no. 1, pp. 98–102, 2008.
[5] J. G. Liu, “Smoothing filter-based intensity modulation:
A spectral preserve image fusion technique for improving spatial details,” *Int. J. Remote Sens.*, vol. 21, no. 18, pp. 3461–3472, 2000.

[6] A. Garzelli, F. Nencini, and L. Capobianco, “Optimal MMSE pan sharpening of very high resolution multispectral images,” *IEEE TGRS*, vol. 46, no. 1, pp. 228–236, 2008.

[7] G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, “Pansharpening by convolutional neural networks,” *Remote. Sens.*, vol. 8, no. 7, pp. 594, 2016.

[8] Y. Wei, Q. Yuan, H. Shen, and L. Zhang, “Boosting the accuracy of multispectral image pansharpening by learning a deep residual network,” *IEEE GRSL*, vol. 14, no. 10, pp. 1795–1799, 2017.

[9] Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening,” *IEEE JSTARS*, vol. 11, no. 3, pp. 978–989, 2018.

[10] Z. Shao and J. Cai, “Remote sensing image fusion with deep convolutional neural network,” *IEEE JSTARS*, vol. 11, no. 5, pp. 1656–1669, 2018.

[11] L. Liu, J. Wang, E. Zhang, B. Li, X. Zhu, Y. Zhang, and J. Peng, “Shallow-deep convolutional network and spectral-discrimination-based detail injection for multispectral imagery pan-sharpening,” *IEEE JSTARS*, vol. 13, pp. 1772–1783, 2020.

[12] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, “Least squares generative adversarial networks,” in *ICCV*, 2017, pp. 2813–2821.