Superior cluneal nerve entrapment neuropathy due to lower crossed syndrome: A case with low back pain

Hatice Rana ERDEM, Fatmanur AYBALA KOÇAK, Emine Eda KURT, Figen TUNCAY

Abstract
The superior cluneal nerve (SCN) is a sensory nerve known to be originated from the dorsal rami of the lower thoracic and lumbar nerve roots. One of the overlooked causes of low back pain (LBP) is the SCN Entrapment Neuropathy (SCNEN). SCNEN may also be associated with SCN stretching due to lumbar movement and the poor body posture via an increase in the paravertebral muscle tonus. A 59-year-old female patient presented with chronic LBP localized on the right iliac crest and radiating to the right buttock, groin, and leg. She had increased lumbar lordosis and anterior pelvic tilt. She had a tender point over the right iliac crest, and the pain was radiating to the buttock and posterolateral thigh (Tinel sign +). She was diagnosed with Lower Crossed Syndrome and SCNEN, and a therapeutic nerve block was performed. Clinicians should consider SCNEN as a possible diagnosis of LBP.

Keywords: Low back pain; lower crossed syndrome; superior cluneal nerve block; superior cluneal nerve entrapment neuropathy.

Introduction
Low back pain (LBP) is a significant health problem that can affect an individual's level of functional activity. In most LBP patients, the definite cause of LBP is not clear. Extensive epidemiological studies have shown that up to 37% of patients with chronic back pain had a neuropathic component. Superior cluneal nerve entrapment neuropathy (SCNEN) should be kept in mind as a cause of neuropathic LBP.

SCNEN around the iliac crest was first reported by Strong and Davila in 1957. Several anatomical and clinical studies are describing the LBP and leg symptoms that are caused by SCNEN. The superior cluneal nerve (SCN) is a sensory nerve known to be originated from the dorsal rami of the lower thoracic and lumbar nerve roots. It is comprised of 4 to 6 nerves, strolls around the paraspinal muscle, penetrates the thoracolumbar fascia near the iliac crest, and the termination of the nerve is at the buttock. A portion of the SCN -typically medial branch- follows a path through the osteofibrous tunnel formed by the thoracolumbar fascia and the iliac crest. The SCN can be trapped in this osteofibrous tunnel or at the site where it penetrates the thoracolumbar fascia.
SCNEN may also be associated with SCN stretching due to lumbar movement and the body posture via an increase in the paravertebral muscle tonus.⁹

Despite severe symptoms, the diagnosis is challenging. Diagnostic criteria for SCNEN were defined.⁹ The identification of the trigger point at the entrapment site (Fig. 1) and the regression of symptoms after nerve block are diagnostically important.

Since spinal surgeons and physiatrists are not sufficiently aware of the role of SCNEN in LBP, we present this case report with a review of the diagnosis and treatment of this clinical entity.

Case Report

Z.D., a 59-year-old female patient, also known to be a housewife; has had chronic LBP for about ten years. For about one year, right hip, buttock, groin and right leg pain have been added to the LBP. Prolonged standing, sitting, walking, turning in bed, and squatting were increasing the symptoms. Nonsteroid anti-inflammatory drugs did not cause adequate relief in symptoms. In another hospital, the patient had undergone ultrasound-guided piriformis muscle injection with the diagnosis of piriformis syndrome, and the injection was repeated six months later. The patient also did not benefit from the injection treatments and applied to our outpatient clinic with increased complaints. A physical examination was performed. During the inspection, it was seen that the patient had increased lumbar lordosis and increased anterior pelvic tilt (Fig. 2). The range of motion of the low back and hip joints was in the normal limits, but flexion, extension, and right rotation of low back were painful. Bilateral hip flexor muscles were shortened.

The segmental examination of the spine was regular. The straight leg raise test was negative bilaterally. The patellar tendon reflexes and the Achilles tendon reflexes were normal during the neurological examination. There was no motor, or sensory disturbance was apparent, and bowel and bladder functions were normal. She had point tenderness over the right iliac crest, which was located 7 cm laterally from the midline, and the pain was radiating to the buttock and posterolateral thigh starting from this tender point.

The patient’s X-ray examination revealed no significant pathology except the increase in the sacrohorizontal angle (Fig. 3). MRI of the lumbar spine was normal. According to the examination and imaging studies, the patient was diagnosed with Lower Crossed Syndrome (LCS) and SCNEN. A blind SCN block was performed with two ml of prilocaine at the painful trigger point area. Fifteen minutes after the block, the patient’s pain score decreased from 85 mm to 10 mm (0=no pain, 100=the most severe pain ever). Thus, the preliminary diagnosis was confirmed. Adhesion release maneuver was applied to the patient’s painful trigger point, and cluneal nerve flossing exercises were described to the patient. The

Figure 1. Trigger point over the posterior iliac crest 7 cm from the midline.

Figure 2. Lateral inspection of the patient (increased lumbar lordosis and increased anterior pelvic tilt).
Superior cluneal nerve entrapment neuropathy

The therapeutic block of SCN was applied with 40 mg methylprednisolone and 5ml prilocaine (Fig. 4).

The patient was also taught about core stabilization exercises and stretching exercises for hip flexors and lumbar extensors for LCS. In the first and third months of the patient’s control examination, the pain was almost completely relieved.

Discussion

SCNEN is a poorly understood clinical entity. The incidence of SCNEN in patients with LBP is unexpectedly high (1.6–14%).[6, 7] Females comprise 55%–63% of all patients with SCNEN.[9] Although the average age at onset ranges between 55 to 68 years, young individuals with SCNEN have also been reported.[6, 7, 9, 10–14]

The most common symptom of SCNEN is LBP around the iliac crest. It is exacerbated by lumbar movements involving flexion, extension, bending, rotation, prolonged standing, and walking. It produces leg symptoms in 47%–84% of patients and mimics radiculopathy (pseudo-sciatica) due to lumbar disorder.[3, 6, 9, 10, 15] SCNEN also elicits intermittent claudication during walking.[9, 16] The studies often report that not only flexion but also the extension of the lumbar spine aggravate the symptoms. These characteristic signs are useful as a provocative examination maneuver to scan and differentiate SCN disorders from lumbar disorders.[6] In our patient, both lumbar flexion and lumbar extension maneuver were aggravating the pain.

The proposed criteria for the diagnosis of SCNEN include unilateral or bilateral LBP involving the iliac crest and buttock, a trigger point over the posterior iliac crest located 7 cm laterally from the midline (corresponding to the nerve compression zone) and numbness and radiating pain in the SCN region (Tinel-like signs) with the compression of the trigger point.[5–7, 14, 15] Symptoms of relief by SCN block is essential for diagnosis.[6, 9, 11, 17] There should also not be any pathological signs on lumbosacral radiography, computerized tomography, and magnetic resonance imaging in SCNEN. It should be considered as a cause of LBP when all other causes are ruled out.[18] Our patient fulfilled all the diagnostic criteria mentioned above. Only the sacro-horizontal angle was increased on the lumbosacral radiography, and MRI was normal.

SCNEN is often confused with facet syndrome, lumbar disc problems, or an iliolumbar syndrome since the clinical features are similar.[9, 12, 18, 19] Episacral lipoma, which can lead to similar clinical findings and detected in similar localizations, should be kept in mind in the differential diagnosis. Episacral lipoma has a specific nodule instead of a trigger point.[20, 21]
The pathogenesis of SCNEN remains unknown. The SCN can be entrapped not only in the osteofibrous tunnel in the iliac crest but also at the site where it penetrates the thoracolumbar fascia. SCNEN has been found in the presence of diseases that are prone to increase the paravertebral muscle tonus such as Parkinson’s disease and also can be seen in young athletes and soldiers who have increased muscle tonus. It may be associated with an increase in the paravertebral muscle tonus with body posture and SCN stretching due to the lumbar movement.

The SCN may also be susceptible to compression related to contraction of the back musculature, in particular, the thoracolumbar erector spinae (TLES) and latissimus dorsi muscles contribute to the increased pressure in the osteofibrous tunnel through where the medial branch of the SCN runs. Several studies have linked chronic LBP with increased TLES activation and increased lumbar compressive forces.

In our case, the possible cause of SCNEN may be the LCS. Our patient had chronic LBP and posture disorder, which lasted for ten years before leg pain started. The previous history of back problems of the patient would be consistent with possible increased TLES muscle activity, which may contribute to the compression of the SCN.

Conclusion

Entrapment of the SCN is thought to be an overlooked cause of LBP. The incidence of LBP due to SCNEN is unexpectedly high, and despite severe symptoms, the diagnosis can be challenging. Clinicians should be aware of this clinical entity and avoid unnecessary treatment modalities and spinal surgeries.

Informed Consent: Written informed consent was obtained from the patient for the publication of the case report and the accompanying images.

Conflict-of-interest issues regarding the authorship or article: None declared.

Peer-review: Externally peer-reviewed.

Financial Disclosure: The authors declared that this study has received no financial support.

References

1. Hoy D, March L, Brooks P, Blyth F, Woolf A, Bain C, et al. The global burden of low back pain: estimates from the
Superior cluneal nerve entrapment neuropathy

Global Burden of Disease 2010 study. Ann Rheum Dis 2014;73:968-74.

2. Freynhagen R, Baron R, Gockel U, Tolle TR. painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin. 2006;22:1911–20.

3. Konno T, Aota Y, Kuniya H, Saito T, Qu N, Hayashi S, et al. Anatomical etiology of "pseudo-sciatica" from superior cluneal nerve entrapment: a laboratory investigation. J Pain Res 2017;10:2539-45.

4. Strong EK, Davila JC. The cluneal nerve syndrome: a distinct type of low back pain. Ind Med Surg 1957;26:417-29.

5. Kuniya H, Aota Y, Saito T, Kaniya Y, Funakoshi K, Terayama H, et al. Anatomical study of superior cluneal nerve entrapment. J Neurosurg Spine. 2013;19:76-80.

6. Talu GK, Ozyalcin S, Talu U. Superior cluneal nerve entrapment eight years after decubitus surgery. Pain Pract 2000;5:139.

7. Talu GK, Ozyalcin S, Talu U. Superior cluneal nerve entrapment. Reg Anesth Pain Med. 2000;25:648–50.

8. Isu T, Kim K, Morimoto D, Iwamoto N. Superior and middle cluneal nerve entrapment as a cause of low back pain. Neurospine 2018;15:25-32.

9. Kim K, Isu T, Morimoto D, Iwamoto N, Kokubo R, Matsumoto J, et al. Common diseases mimicking lumbar disc herniation and their treatment. Mini-invasive Surg 2017;1:43-51.

10. Morimoto D, Isu T, Kim K, Imai T, Yamazaki K, Matsumoto R, et al. Surgical treatment of superior cluneal nerve entrapment neuropathy. J Neurosurg Spine 2013;19:71-5.

11. Ermis MN, Yildirim D, Durakbasa MO, Tamam C, Ermis OE. Anatomical etiology of "pseudo-sciatica" from superior cluneal nerve entrapment eight years after decubitus surgery. Pain Pract 2000;5:139.

12. Ermis MN, Yildirim D, Durakbasa MO, Tamam C, Ermis OE. Surgical treatment of superior cluneal nerve entrapment neuropathy. J Neurosurg Spine 2013;19:71-5.

13. Ermis MN, Yildirim D, Durakbasa MO, Tamam C, Ermis OE. Medical supe–rior cluneal nerve entrapment neuropathy in military per–sonnel; diagnosis and etiologic factors. J Back Musculoskelet Rehabil 2011;24:137-44.

14. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle and motor control in low back pain. New York: Churchill Livingstone; 1987. p. 83-91.

15. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

16. Bodner G, Platzgummer H, Meng S, Brugger PC, Gruber GM, Lieba-Samal D. Successful identification and assessment of the superior cluneal nerves with high-resolution sonography. Pain Physician. 2016;19:197-202.

17. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

18. Bodner G, Platzgummer H, Meng S, Brugger PC, Gruber GM, Lieba-Samal D. Successful identification and assessment of the superior cluneal nerves with high-resolution sonography. Pain Physician. 2016;19:197-202.

19. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

20. Bodner G, Platzgummer H, Meng S, Brugger PC, Gruber GM, Lieba-Samal D. Successful identification and assessment of the superior cluneal nerves with high-resolution sonography. Pain Physician. 2016;19:197-202.

21. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

22. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

23. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

24. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

25. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

26. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

27. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

28. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

29. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

30. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

31. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

32. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

33. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

34. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

35. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

36. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

37. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

38. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.

39. Janda V. Muscle strength in relation to muscle length, pain, and muscle imbalance. In: K. Harms-Ringdahl editor. Muscle strength. International perspectives in physical therapy. Vol. 8, Edinburgh: Churchill Livingstone; 1993. p. 83-91.