Role of the Syk Autophosphorylation Site and SH2 Domains in B Cell Antigen Receptor Signaling

By Tomohiro Kurosaki,* Sara A. Johnson,† Lily Pao,‡ Kiyonao Sada,‖ Hirohei Yamamura,§ and John C. Cambier§§

From the *Department of Cardiovascular Molecular Biology, Lederle Laboratories, Pearl River, New York 10965, and Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510-8023; †Department of Pediatrics, Division of Basic Science, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206; ‡Department of Immunology, University of Colorado Health Science Center, Denver, Colorado 80220; and §Department of Biochemistry, Kobe University School of Medicine, Chuo-Ku Kobe 650, Japan

Summary

To explore the mechanism(s) by which the Syk protein tyrosine kinase participates in B cell antigen receptor (BCR) signaling, we have studied the function of various Syk mutants in B cells made Syk deficient by homologous recombination knockout. Both Syk SH2 domains were required for BCR-mediated Syk and phospholipase C (PLC)-γ2 phosphorylation, inositol 1,4,5-triphosphate release, and Ca²⁺ mobilization. A possible explanation for this requirement was provided by findings that recruitment of Syk to tyrosine-phosphorylated immunoglobulin (Ig) α and Igβ requires both Syk SH2 domains. A Syk mutant in which the putative autophosphorylation site (Y518/Y519) of Syk was changed to phenylalanine was also defective in signal transduction; however, this mutation did not affect recruitment to the phosphorylated immunoreceptor family tyrosine-based activation motifs (ITAMs). These findings not only confirm that both SH2 domains are necessary for Syk binding to tyrosine-phosphorylated Igα and Igβ but indicate that this binding is necessary for Syk (Y518/Y519) phosphorylation after BCR ligation. This sequence of events is apparently required for coupling the BCR to most cellular protein tyrosine phosphorylation, to the phosphorylation and activation of PLC-γ2, and to Ca²⁺ mobilization.

Bon J. Exp. Med. © The Rockefeller University Press 0022-1007/95/12/1815/09 $2.00
Volume 182 December 1995 1815-1823
Published Online: 1 December, 1995 | Supp Info: http://doi.org/10.1084/jem.182.6.1815
Downloaded from jem.rupress.org on May 1, 2019

1Abbreviations used in this paper: BCR, B cell antigen receptor; ECL, enhanced chemiluminescence; IP₃, inositol 1,4,5-triphosphate; ITAM, immunoreceptor family tyrosine-based activation motif; NP, nitrophenyl; PLC, phospholipase C; PtdIns, phosphatidylinositol; PTK, protein tyrosine kinase; PVDF, polyvinylidene difluoride.
Igβ ITAM tyrosine phosphorylation serves to propagate signaling by enabling the motif to bind with high affinity to effectors such as Src-family tyrosine kinases (19) and Src (D’Ambrosio, D., K. Hinnen, and J. C. Cambier, manuscript in preparation) via their SH2 domains. In the case of Src-family kinase, this binding causes enzyme activation (19, 20). The tyrosine phosphorylation of PLC-γ2 appears to be responsible for its increased catalytic activity, leading to the generation of inositol lipid-derived second messengers (21).

To dissect the functional roles of these two types of kinase in BCR signaling, we recently established Lyn- and Syk-deficient DT40 B cells (22). Using these mutant cells, it was shown that both Lyn and Syk are required for coupling BCR to increase cellular protein tyrosine phosphorylation, and that, when expressed individually, these enzymes mediate the phosphorylation of at least partially distinct sets of molecules. One substrate whose phosphorylation is Syk dependent is PLC-γ2. Thus, in B cell signaling, Syk couples the BCR to phosphatidylinositol (PtdIns) pathway.

Here, we focus on mechanisms by which Syk couples the BCR to downstream signaling components. Transfection of mutated Syk into Syk-deficient DT40 cells allowed us to test the structural requirements for Syk function on BCR stimulation. Both NH2- and COOH-terminal SH2 mutants of Syk were defective in mediating Syk function in BCR stimulation. Wild-type Syk bound avidly to the phosphorylated Igα ITAM and somewhat less avidly to phosphorylated Igβ, and this binding was severely compromised in both NH2- and COOH-terminal SH2 mutants. Taken together, data indicate that recruitment of Syk to phosphorylated Igα and Igβ ITAMs or some other function that requires both SH2 domains is obligatory for receptor-mediated Syk (Y518/519) phosphorylation and coupling the BCR to inositol 1,4,5-trisphosphate (IP3) generation and Ca2+ mobilization. Furthermore, a mutant Syk in which the putative auto-mobility was changed to the exhibited normal receptor-binding activity but was not able to mediate the phosphorylation of PLC-γ2 upon BCR stimulation, demonstrating that auto-phosphorylation of Syk (Y518/519) or Syk phosphorylation by another PTK is also critical for the function of Syk in BCR signaling.

Materials and Methods

Cell Culture, DNA Transfection, and Antibodies. DT40 cells were cultured in RPMI 1640 with 10% FCS, penicillin, streptomycin, and glutamine. Mutant Syk cDNAs (SH2 mutants and auto-phosphorylation mutant) were created by PCR, and cloned into an EcoRI site of the pAPuro expression vector (22). The resulting cDNAs were verified by DNA sequencing. These cDNAs were then transfected into Syk-negative cells by electroporation using gene pulser apparatus (Bio-Rad Laboratories, Richmond, CA) at 550 V, 25 μF, and selected in the presence of 0.5 μg/ml puromycin. Expression of mutated Syk was assessed by immunoblotting.

J558Lμμ3 cells expressing nitrophenyl (NP)-specific IgM were described previously (23). These cells were cultured in IMDM supplemented with 5% FCS, 1 μg/ml mycophenolic acid, penicillin, streptomycin, and glutamine.

The mAb M4, an anti-chicken IgM, was used for stimulation of BCR on DT40 cells (24). Abs against porcine Syk and PLC-γ2 were already described (12, 25). Abs against phosphotyrosine, 4G10 and Ab2, were purchased from Upstate Biotechnology Inc. (Lake Placid, NY) and Oncogene Sciences Inc. (Manhasset, NY), respectively. Polyclonal anti-Igα and anti-Syk Abs used to analyze IgM coprecipitates from J558Lμμ3 were generously provided by J. Jongstra (Toronto Western Hospital; Toronto, Canada) and E. Clark (University of Washington Medical Center, Seattle, WA), respectively. Immunoprecipitation of mouse mIgM BCR was accomplished using the monoclonal anti-μ Ab, b-7–6.

Immunoprecipitation, Immunoblot Analysis, and In Vitro Kinase Assay. In experiments shown in Figs. 1, 3, and 6, cells were solubilized in NP-40 lysis buffer (1% NP-40, 150 mM NaCl, 20 mM Tris, pH 7.5, 1 mM EDTA) containing 50 mM NaF, 10 μM molybdate, and 0.2 mM Na3VO4 supplemented with protease inhibitors (1 mM PMSF, 0.5 mM benzamidine hydrochloride, 10 μg/ml chymostatin, 10 μg/ml leupeptin, 10 μg/ml antipain, 10 μg/ml calpastatin 1, 10 μg/ml pepstatin, 0.1 mM N-α-tosyl-L-lysine-chloromethyl ketone, and 0.1 mM N-α-tosylamide-2-phenylethylchloromethyl ketone). Insoluble material was removed by centrifugation at 12,000 g for 10 min. These clarified cell lysates were incubated sequentially (1 h, 4°C for each incubation) with antibodies and protein A-Sepharose. The immunoprecipitates were washed four times with lysis buffer. Whole-cell lysates were prepared from nonstimulated or M4-stimulated DT40 cells using SDS sample buffer. Whole-cell lysates or immunoprecipitates were fractionated on 6% or 8% SDS-PAGE and transferred to nitrocellulose. The blots were blocked with 5% milk in 25 mM Tris, pH 7.9, and 150 mM NaCl with 0.05% Tween-20, and incubated with primary Ab for 1 h at room temperature. Filters were developed with a goat anti-mouse or donkey anti-rabbit secondary Ab conjugated to horseradish peroxidase using the enhanced chemiluminescence (ECL) detection system (Amersham Corp., Arlington Heights, IL).

In the experiment shown in Fig. 4, in which association of Syk with BCR was studied, J558Lμμ3 cells were either unstimulated or stimulated with NP-BSA at 37°C for 1 min and lysed in 1% digitonin lysis buffer (1% digitonin, 150 mM NaCl, 10 mM Tris, pH 8) supplemented with 1 mM NaVO4, 1 mM PMSF, 10 mM NaF, 0.4 mM EDTA, and 1 μg/ml each of leupeptin, aprotinin, and α-1 antitrypsin. Lysates were cleared by centrifugation at 12,000 g for 10 min at 4°C, and these clarified immunoprecipitates from lysates at 4°C for 1 h with anti-μ Ab, b-7–6, that was conjugated to Sepharose (Pharmacia Biotech, Inc., Piscataway, NJ). The immunoprecipitates were washed three times with lysis buffer, fractionated with 10% SDS-PAGE, and transferred to polycylinylene difluoride (PVDF) membrane. Antiphosphotyrosine immunoblotting was carried out by incubating the membrane with mAb Ab2 in 5% BSA in TBS (10 mM Tris-HCl, pH 8.0, 150 mM NaCl) for 2 h at 25°C, followed by goat anti-mouse IgG conjugated to horseradish peroxidase (Bio-Rad Laboratories) in 5% milk in TBS for 1 h at 25°C. The blot was then developed using ECL (Amersham Corp.). The same blot was stripped in buffer containing 100 mM 2-ME, 2% SDS, 62.5 mM Tris-HCl, pH 6.7, per Amersham Corp. protocol, and reprobed with anti-Syk Ab. The identical blot was further stripped and reprobed with anti-Igα Ab. When anti-Syk or anti-Igα were used as primary Ab, horseradish peroxidase–protein A was used as secondary reagent, and the blot was developed with ECL.

For in vitro kinase assay (Fig. 1), the immunoprecipitates were washed with 20 mM Hepes, pH 8, and 150 mM NaCl after washing with lysis buffer. Added to each sample was 50 μl kinase.
buffer (20 mM Hepes, pH 8, 150 mM magnesium acetate, 10 mM MnCl₂) in the absence or presence of ATP (1 μM). The reactions were allowed to incubate at 30°C for 10 min and terminated by the addition of sample buffer.

Analysis of Calcium Mobilization and Phosphoinositide Hydrolysis. Measurements of intracellular free calcium were performed using fura-2/AM. Cells (5 × 10⁶/mL) were washed once and loaded with 3 μM fura-2/AM in PBS containing 20 mM Hepes, pH 7.2, 5 mM glucose, 0.025% BSA, and 1 mM CaCl₂. After incubation for 10 min at 37°C, cells were washed twice and diluted to 10⁶ cells/mL. Fluorescence of cell suspension was continuously monitored with a fluorescence spectrophotometer (model F-2000; Hitachi Limited, Tokyo, Japan) at an excitation wavelength of 340 nm and an emission wavelength of 510 nm. Intracellular free calcium, [Ca²⁺], was calibrated and computed as described (26).

For measurements of IP₃, cells were labeled with myo-[³H]inositol (10 μCi/ml) for 6 h in inositol-free RPMI 1640 supplemented with dialyzed FCS. The labeled cells were pre-equilibrated at 37°C and stimulated with mAb M4 in the presence of 10 mM LiCl. The soluble inositol phosphates were extracted with TCA and applied to 1 ml of AG 1-X8 (formate form) ion exchange columns (Bio-Rad Laboratories) pre-equilibrated with 0.1 M formic acid. After loading the samples, columns were washed with 10 ml H₂O and 10 ml 60 mM ammonium formate–5 mM sodium tetraborate, and elution was performed with increasing concentrations of formic acid (0.1–0.7 M).

ITAM-Binding Protein Analysis. Synthetic peptides corresponding to murine Igα ITAM (ENLY'82EGLNIDCSMY193'EDI), Igα ITAM phosphorylated at residues Y182 and Y193, Igβ ITAM (DHTY'95EGLNIDQATAY'206'EDI), or Igβ ITAM phosphorylated at residues Y195 and Y206 were produced using an Fmoc chemistry (27). Peptides were deprotected by incubation for 90 min in 90% TFA, 2.5% anisole, and 2.5% ethane dithiol, purified by HPLC on C18, and analyzed by mass spectrometry to ensure predicted mass. Each peptide was then coupled to CNBr-activated Sepharose 4B (Pharmacia Biotech, Inc.) per manufacturer’s instructions at 2 mg peptide per milliliter of packed beads. In all cases, coupling efficiency, based on HPLC analysis of effluent from the coupled gel, was >90%.

Lysates (2 × 10⁶ cells/ml) were prepared as described above and incubated with 10 μl of peptide-coated beads overnight at 4°C with constant mixing by inversion. After adsorption, the beads were washed three times in 1 ml NP-40 lysis buffer and eluted by resuspension in 50 μl of reducing SDS-PAGE sample buffer and boiling for 5 min. Eluates were resolved by electrophoresis on 8% SDS-polyacrylamide gels and transferred to PVDF membranes. Syk was detected by immunoblotting as described above.

Results

To study the functional importance of the two SH2 domains of Syk in BCR signaling, we introduced mutations within the highly conserved residues of NH₂- or COOH-terminal SH2 domains of Syk (Fig. 1 A). DNA was transfected into Syk-deficient DT40 B cells, and puromycin-resistant clones were selected. The expression of mutated Syk was monitored by immunoblotting and in vitro kinase assay (Fig. 1 B). Cell surface expression of BCR by these transfected cells was assayed by FACS® and demonstrated essentially the same level as wild-type DT40 and Syk-deficient DT40 cells (data not shown).

In previous studies, we have shown that Syk is essential for coupling the BCR to PtdIns pathway (22). Thus, as a functional complementation assay, we first analyzed whether Syk mutants mSH2(N) or mSH2(C) were able to restore BCR-induced tyrosine phosphorylation of PLC-γ2, anti-PLC-γ2 immunoprecipitates were prepared from the BCR-stimulated cells and immunoblotted with anti-phosphotyrosine and anti-PLC-γ2 Abs. In DT40 cells expressing wild-type Syk, tyrosine phosphorylation of PLC-γ2 was induced. However, in cells expressing mSH2(N) or mSH2(C) mutants, this BCR-induced tyrosine phosphorylation of PLC-γ2 was abolished (Fig. 3 B).
To examine whether these SH2 mutations affect only phosphorylation of PLC-γ2 upon BCR stimulation, DT40 cells expressing these mutants were stimulated by anti-BCR mAb M4, and whole lysates were analyzed by antiphosphorytosine mAb. Although wild-type Syk rescued the phosphorylation pattern as seen in wild-type DT40 cells (22), neither the mSH2(N) nor mSH2(C) mutant rescued the BCR response (Fig. 3 A). These results suggest that both SH2 domains of Syk are necessary for coupling BCR to Syk-dependent manifestations of signal transduction.

A possible explanation for the phenotype of these SH2 mutants is that, like ZAP70 and TCR components (27, 28), Syk is recruited to phosphorylated Igα and Igβ during receptor signaling, and that both SH2 domains are crucial for this recruitment. Since BCR-induced tyrosine phosphorylation of Igα is weak in DT40 cells (data not shown), we examined the recruitment of Syk to BCR upon antigen (NP,BSA) stimulation in J558L.μm3 myeloma cells (23). These cells express NP-specific IgM BCR by virtue of transfection. After stimulation for 1 min and detergent lysis, a tyrosine-phosphorylated protein of ~70 kD was noticeably coprecipitated with IgM (Fig. 4, left). Sequential immunoblotting identified this phosphoprotein as Syk (Fig. 4, upper right). Since anti-Igα immunoblotting of the same membrane showed a similar amount of Igα in each immunoprecipitate (Fig. 4, lower right), the increase in Syk coprecipitation.

Figure 2. Calcium mobilization (A) and IP3 generation (B) upon BCR stimulation of DT40 cells. Cells were loaded with fura-2/AM, and the samples (10⁶ cells/ml) were stimulated with anti-chicken IgM (M4, 1 μg/ml), with analysis of [Ca²⁺] in all clones (data not shown). For measurements of phosphoinositol hydrolysis, cells (2 × 10⁶ cells/ml) were loaded with [3 H]inositol and stimulated with anti-IgM (M4, 1 μg/ml). After 3 or 10 min of incubation, soluble inositol phosphates were extracted and separated by AG 1-X8 ion exchange columns.

Figure 3. Tyrosine phosphorylation of whole-cell proteins (A) and anti-PLC-γ2 (B) after DT40 cell activation. At the indicated times after the stimulation of cells with anti-IgM (M4, 2 μg/ml), whole-cell lysates were prepared from 2.5 × 10⁶ cells in 100 μl and loaded on an 8% SDS-PAGE. After transfer to nitrocellulose, the photophosphorytosine-containing proteins were detected by immunoblotting with mAb 4G10. For detection of PLC-γ2 tyrosine phosphorylation, cells (2 × 10⁶ cells/ml) were stimulated for 3 min with anti-BCR mAb (M4, 2 μg/ml), lysed, and immunoprecipitated with anti-PLC-γ2. Samples were divided, subjected to 6% SDS-PAGE, transferred to nitrocellulose, and immunoblotted with antiphosphotyrosine Ab 4G10 (B, top) or with anti-PLC-γ2 (B, bottom).

Figure 4. Receptor ligation-induced association of Syk with BCR in J558L.μm3 cells. J558L.μm3 cells (4 × 10⁶ in 400 μl) were either unstimulated (−) or stimulated (+) with NP,BSA (40 μg/sample) for 1 min and lysed with 1% digitonin buffer. BCR was immunoprecipitated using anti-μ mAb (nt-7-6, 15 μg/15 μl beads/sample)-conjugated Sepharose beads, fractionated by 10% SDS-PAGE, and transferred to PVDF membrane. The membrane was immunoblotted using antiphosphotyrosine mAb Ab2 (left) and subsequently reprobed with polyclonal anti-Syk (upper right) Ab, and then with anti-Igα Ab (lower right).
itated with stimulated receptors reflects Syk recruitment to BCR upon antigen stimulation. This Syk recruitment also correlated with inductive tyrosine phosphorylation of Iga (Fig. 4, left). The apparently inducibly tyrosine-phosphorylated bands above Iga and below the 44-kD marker probably reflect the more heterogeneous Igβ (29).

To further elucidate the mechanism by which Syk is recruited to BCR, we used beads derivitized with synthetic peptides corresponding to nonphosphorylated and doubly phosphorylated ITAMs of Iga and Igβ as affinity matrices to assess the binding of Syk from DT40 cell lysates by immunoblotting. Although binding of wild-type Syk to nonphosphorylated ITAMs was not detectable (data not shown), binding to phosphorylated Iga and Igβ ITAMs was easily seen. Interestingly, the enzyme bound more strongly to Iga than Igβ. As shown in Fig. 5, Syk binding to Igβ pITAM is approximately one third (by densitometry) the binding seen to Iga pITAM. Syk mutant mSH2(N) or mSH2(C) binding to Iga pITAM and Igβ pITAM was greatly diminished compared with wild-type Syk. Thus, both SH2 domains are required for efficient binding of Syk to doubly phosphorylated ITAMs.

We previously showed that BCR-induced tyrosine phosphorylation of Syk is dependent on and possibly mediated directly by Lyn (30). To examine whether this Lyn-dependent tyrosine phosphorylation of Syk is affected by SH2 mutations, we stimulated DT40 cells expressing Syk SH2 mutants with anti-BCR mAb (M4) and measured tyrosine phosphorylation of Syk. Cell lysates were immunoprecipitated with anti-Syk Ab and analyzed by antiphosphotyrosine mAb. Detectable tyrosine phosphorylation of mSH2(N) Syk was induced by BCR stimulation, although the kinetics were slower and the extent of phosphorylation much reduced compared with wild-type Syk. In contrast to mSH2(N) Syk, BCR-induced tyrosine phosphorylation of mSH2(C) Syk was completely abolished (Fig. 6). Thus, these results suggest that the recruitment of Syk to phosphorylated Iga and Igβ may be a prerequisite for tyrosine phosphorylation of Syk induced by receptor ligation. Significant phosphorylation of the NH2-terminal SH2 mutant despite the failure to detect binding (Fig. 5) may reflect relative insensitivity of the binding assay; that is, although it is not detectable, the NH2-terminal SH2 mutant may bind receptor in vivo.

Previous data suggest that the major autophosphorylation site of Src-PTK, such as Lck 394, is required for full activation in TCR signaling (31). Tyrosine 518 or 519 of Syk is presumed to be the major autophosphorylation site based on sequence homology between Syk and Src-PTKs (32). Thus, we wished to test the possibility that these tyrosines are sites of phosphorylation and are pivotal for BCR-induced signaling. Syk carrying tyrosine to phenylalanine substitutions at positions 518 and 519 (autoP-Syk) was expressed in Syk-deficient DT40 cells (Fig. 1 A). Cell lines expressing similar amounts of autoP-Syk to that of wild-type Syk were selected and further characterized. To determine whether autoP-Syk is phosphorylated in vitro, anti-Syk immunoprecipitates were incubated in the presence or absence of ATP, subjected to electrophoresis, and blotted with antiphosphotyrosine mAb. In the absence of ATP, tyrosine phosphorylation of neither wild-type Syk nor Syk mutants could be observed (data not shown). Even though the amount of immunoprecipitated autoP-Syk was equivalent to that of wild-type Syk (data not shown), the tyrosine phosphorylation of autoP-Syk was only ~30% of that of

Figure 5. Binding of wild-type and mutant Syk to phosphorylated Iga and Igβ ITAMs and to underivatized beads. Bead-bound peptides corresponding to phosphorylated Iga or Igβ ITAM (20 μg peptide on 10 μl beads) were used to adsorb Syk from DT40 cell lysates (2 x 10^7 cell equivalents in 1 ml) expressing various forms of porcine Syk. Adsorbates were washed, eluted, resolved on SDS-PAGE, transferred to PVDF membrane, and immunoblotted with monoclonal anti-Syk Ab. Whole-cell lysates were analyzed to control for expression. Detection was by protein A-horseradish peroxidase and ECL; exposure time was equivalent in all panels.

Figure 6. BCR-induced tyrosine phosphorylation of Syk mutants. DT40 cells (2 x 10^6 cells/ml) expressing various mutants were stimulated with anti-BCR mAb (M4, 4 μg/ml) and immunoprecipitated with anti-Syk Ab (4 μg/sample). Samples were divided, subjected to 8% SDS-PAGE, transferred to nitrocellulose, and immunoblotted with the antiphosphotyrosine Ab 4G10 (top) or anti-Syk (bottom).
wild-type Syk (Fig. 1 B). In other experiments, immuno-
precipitates from cells expressing kinase-negative Syk did
not exhibit tyrosine phosphorylation even in the presence
of ATP (data not shown), indicating that a nonspecifically
associated kinase activity is probably not involved in phos-
phorylation of autoP-Syk in vitro. Thus, these results sug-
gest that autoP-Syk may still be competent to autophos-
phorylate a site other than tyrosines 518 and 519 under the
in vitro conditions used.

DT40 cells expressing autoP-Syk were stimulated with
anti-BCR mAb M4, and the induction of protein tyrosine
phosphorylation was analyzed by immunoblotting with an-
tiprophosphotyrosine mAb. BCR-induced tyrosine phosphor-
ylation in cells expressing autoP-Syk was significant but re-
duced, compared with DT40 cells expressing wild-type Syk
(Fig. 3 A). Thus, autoP-Syk not only appears to have some
kinase activity detectable in vitro, but it supports a partial
inductive tyrosine phosphorylation response in vivo. Ty-
rosines 518 and/or 519 are apparently not absolutely essen-
tial for partial participation of Syk in BCR signaling. As
shown in Fig. 5, autoP-Syk bound phosphorylated ITAMs
equivalently to wild-type Syk. Since BCR-induced ty-
rosine phosphorylation of PLC-γ2 is dependent on Syk,
we examined next whether autoP-Syk could support the
tyrosine phosphorylation of PLC-γ2 after BCR cross-link-
ing. As shown in Fig. 3 B, BCR-induced phosphorylation
of PLC-γ2 was not observed in DT40 cells expressing
autoP-Syk. Consistent with these data, BCR stimulation in
these cells resulted in no increase in IP3 generation and no
calcium mobilization (Fig. 2, A and B). These results dem-
onstrate that tyrosine phosphorylation at 518 and/or 519 is
required for coupling Syk to the PtdIns pathway, but not for
pITAM binding.

Amino acid homology suggests that Syk tyrosines 518/
519 are likely sites of autophosphorylation and perhaps
transphosphorylation of Syk, yet some tyrosine phos-
phorylation of this autoP-Syk mutant is seen in vitro. To de-
terminewhether non-Y518/519 tyrosine phosphorylation of
Syk occurs in BCR signaling, we compared receptor-medi-
ated Syk tyrosine phosphorylation in wild-type and auto-
P-Syk transfectants. As shown in Fig. 6, BCR-induced ty-
rosine phosphorylation of autoP-Syk was significant, but
approximately fivefold lower than in wild-type Syk-trans-
fected cells. Binding of autoP-Syk to phosphorylated Igo/β
ITAMs was the same as that of wild-type Syk (Fig. 5), con-
sistent with the possibility that autoP-Syk may be phos-
phorylated by other receptor-associated kinases such as Lyn.
Thus, this observation demonstrates that 518 and/or 519 tyrosines
are important sites of Syk phosphorylation upon BCR
stimulation, but some inductive phosphorylation clearly
occurs at other sites. However, this limited phosphoryla-
tion of autoP-Syk does not support BCR-mediated phos-
phorylation and activation of PLC-γ2. Finally, since SH2 domain
mutants do not associate with phosphorylated ITAMs or
become phosphorylated themselves, yet the autoP-Syk mu-
tant associates with pITAMs but does not become phos-
phorylated, pITAM binding may be an essential prerequi-
site for Y518/519 phosphorylation and signal propagation.

Discussion

The important role of SH2 domains in signal transmis-
sion is widely appreciated. SH2 domains mediate intermolecular
interactions by binding to phosphotyrosine-containing se-
quences with high affinity (33, 34). Although previous stud-
ies have demonstrated that both SH2 domains of ZAP70
are necessary for binding to phospho-ε (28) and Syk bind-
ing to FeγR1γ (35), studies reported here are the first to
show that both NH2- and COOH-terminal SH2 domains
of Syk are indispensable for BCR signal transduction. This
demonstrates the functional importance of these domains.

The BCR-mediated protein tyrosine phosphorylation re-
sponse of DT40 cells expressing Syk SH2 mutants appeared
only modestly increased over that of Syk-deficient cells,
and far less than wild-type Syk-expressing cells (Fig. 3 A),
indicating that both SH2 domains are essential for most
Syk-dependent protein tyrosine phosphorylation. In vitro
kinase assay of these SH2 mutants (Fig. 1 B), together with
findings in COS cells that the overall tyrosine phosphopro-
tein patterns of cells overexpressing these SH2 mutants and
Fyn was similar to that with wild-type Syk and Fyn (data
not shown), indicates that Syk SH2 mutants have enzym-
ic activity both in vitro and in COS cells. Thus, our
functional results suggest that Syk SH2 domains provide a
localization function that is necessary for coupling the
BCR to PLCγ.

It has been shown that an essential intermediary event in
BCR coupling to downstream events is phosphorylation of
Igα and Igβ ITAMs (17, 18). As shown here, BCR ligation
leads to recruitment of Syk to the receptor (Fig. 4). Thus,
it seemed possible that the signaling deficit of Syk SH2 mu-
tants might relate to failed interaction with phosphorylated
ITAMs. To explore this possibility, we conducted an anal-
ysis of binding of Syk to phosphorylated or nonphosphory-
lated Igα and Igβ. Unstimulated receptors and nonphos-
phorylated ITAM peptides of Igα and Igβ did not bind
significantly to wild-type Syk. Phosphorylation of Igα and
Igβ ITAMs increased their binding of wild-type Syk. Phos-
phorylated Igα binding to Syk was much more readily de-
tected than binding to phosphorylated Igβ. Thus, Syk
prefers to bind to Igα. The difference in the binding activity
of phosphorylated Igα and Igβ ITAMs may explain the obser-
vations that Igα cytoplasmic tails are more competent than
Igβ cytoplasmic tails in chimeric receptor coupling to pro-
tein tyrosine phosphorylation (18, 36). Binding of Syk to
phosphorylated ITAMs was dependent on both SH2 do-
mains, but in some experiments the COOH-terminal SH2
domain of Syk appeared somewhat more critical for bind-
ing to phosphorylated ITAMs than the NH2-terminal SH2
domain (data not shown). These findings are consistent with the recent report of Shiue et al. (35), which demon-
strated that both SH2 domains are necessary for optimal
Syk association with the tyrosine-phosphorylated FeγR1γ
ITAM in vitro, and that the COOH-terminal SH2 exhibits
higher affinity for this ITAM than the NH2-terminal SH2.
These findings suggest that recruitment of Syk to phos-
phorylated ITAMs via its SH2 domains is required for BCR
coupling to Syk function.
The question of how interaction of the Syk SH2 domains with phosphorylated Igα and Igβ ITAMs could affect Syk function arises. Phosphorylation of the ITAMs could result in Syk binding induced allosteric activation. Recent studies indicate that this is in fact the case (37, 38). FceRIγ, Igα, and Igβ ITAM phosphopeptides were shown to stimulate phosphorylation and activation of Syk in vitro. It is noteworthy, however, that in studies in our laboratory, pITAMs activate Lyn (19) but were ineffective activators of Syk both in vitro and in permeabilized cells (Johnson, S., and J. Cambier, manuscript submitted for publication). The reason for this inconsistency is not known but may reflect different assay conditions.

In studies reported here, binding of autoP-Syk to phosphorylated ITAMs was the same as that of wild-type Syk; however, autoP-Syk did not support PLC-γ2 phosphorylation and activation, indicating that in addition to Syk interaction with ITAMs, Y518/S19 phosphorylation is required for coupling Syk to PLC-γ2 phosphorylation and activation. This could reflect a necessity for Syk phosphorylation to achieve full activity. However, it may not reflect a deficit in Syk activation but rather a deficit in its ability to recruit substrates via interaction between phospho Y518/S19 sites and SH2-containing proteins such as PLC-γ2.

In earlier studies, we demonstrated that Lyn coexpression with Syk was necessary to achieve Syk activation (30). Further, Iwashima et al. (28) have shown using CD8-ζ chimeric receptors and kinase-inactive ZAP70 that ligand-activated ZAP70 phosphorylation does not depend on ZAP70 kinase activity. Taken together, these data indicated that Syk/ZAP70 kinases can be activated by (p)2ITAM-induced autophosphorylation or by phosphorylation mediated by an Src-family kinase. The latter may normally only occur when (p)2ITAMs trigger activation of the Src-family kinase and bring the two kinases together.

The question of how phosphorylated ITAMs activate Syk arises. It is possible that recruitment of Syk to phosphorylated Igα/Igβ may lead to activation by dimerization-driven Syk transphosphorylation. This possibility may be supported by the observation that aggregation of CD16/Syk chimeric receptor bearing a CD16 extracellular domain and an Syk kinase intracellular domain induces tyrosine phosphorylation upon receptor aggregation (39). However, the ability of monomeric (p)2ITAMs to activate Syk in immunoprecipitates (38) is inconsistent with a dimerization-driven mechanism. Further, since both Syk SH2 domains are required for (p)2ITAM binding, it is unlikely that (p)2ITAMs could dimerize Syk. Resolution of Syk regulation after BCR ligation awaits further study.

The requirement for two functional SH2 domains for Syk phosphorylation and later events may reflect in part a need for the molecule to interact via these domains with phosphotyrosine on molecules other than Igα and Igβ. It seems likely that such tyrosine residues would be constitutively phosphorylated and therefore constitutively associated with Syk, or they may be inducibly phosphorylated even in the absence Syk by, for example, Src-family kinases. To date, no constitutive association of Syk with tyrosine phosphoproteins has been reported. Candidate inducibly phosphorylated proteins include those seen in Fig. 3 A in stimulated Syk-deficient cells. The ability of Syk SH2 domains to bind to proteins inducibly tyrosine phosphorylated in the absence of Syk is currently under study.

Studies to date have only begun to dissect biochemical steps for BCR signal transmission. Our working hypothesis is as follows: (a) Although the identity of the first kinase activated upon BCR cross-linking is unknown, it appears almost certain that activation of Igα-associated Lyn is among the earliest steps (40-42); (b) available evidence is most consistent with Lyn-mediated phosphorylation of several molecules including Igα and Igβ (17); (c) Syk and additional Lyn are recruited to the phosphorylated Igα and Igβ via their SH2 domains (Figs. 4 and 5; 19, 20, 43); (d) recruited Lyn and Syk are activated by this binding (19, 37, 38); (e) subsequently, Syk is phosphorylated by autophosphorylation or Lyn-mediated transphosphorylation at the S18 and/or S19 tyrosine sites; (f) activated Syk phosphorylates its own substrates apparently including PLC-γ2; and (g) tyrosine-phosphorylated PLC-γ2 mediates phosphoinositide hydrolysis leading to Ca2+ mobilization. Thus, both recruitment of Syk and its phosphorylation appear essential for BCR signaling.

We thank J. Franconi for secretarial assistance, M. Kurosaki for expert technical assistance, and M. Takata for various suggestions.

This work was supported in part by grant-in-aid for International Scientific Programs from the Ministry of Education, Science, and Culture, Japan (to H. Yamamura) and U.S. Public Health Service research grants. J. C. Cambier is Ida and Cecil Green Professor of Cell Biology.

Address correspondence to John C. Cambier, Department of Pediatrics, Division of Basic Science, National Jewish Center for Immunology and Respiratory Medicine, 1400 Jackson Street, Denver, CO 80206.

Received for publication 1 May 1995 and in revised form 17 July 1995.
References

1. Reth, M. 1992. Antigen receptors on B lymphocytes. Annu. Rev. Immunol. 10:97–121.

2. Pleiman, C.M., D. D'Ambrosio, and J.C. Cambier. 1994. The B-cell antigen receptor complex: structure and signal transduction. Immunol. Today. 15:393–398.

3. Cambier, J.C. 1995. New nomenclature for the Reth motif (or ARH1/TAM/ARAM/XXL). Immunol. Today. 16:110.

4. Reth, M. 1989. Antigen receptor tail cue. Nature (Lond.). 338:383–384.

5. Samelson, L.E., and R.D. Klausner. 1992. Tyrosine kinases and tyrosine-based activation motifs: current research on activation via the T cell antigen receptor. J. Biol. Chem. 267:24913–24916.

6. Weiss, A., and D.R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell. 76:263–274.

7. Burkhardt, A.L., M. Brunswick, J.B. Bolen, and J.J. Mond. 1991. Anti-immunoglobulin stimulation of B lymphocytes activates src-related protein–tyrosine kinases. Proc. Natl. Acad. Sci. USA. 88:7410–7414.

8. Campbell, M.-A., and B.M. Sefton. 1992. Association between B-lymphocyte membrane immunoglobulin and multiple members of the src family of protein tyrosine kinases. Mol. Cell. Biol. 12:2315–2321.

9. Yamanashi, Y., T. Kakuchi, J. Mizuguchi, T. Yamamoto, and K. Toyoshima. 1991. Association of B cell antigen receptor with protein tyrosine kinase Lyn. Science (Wash. DC). 251:192–194.

10. Hutchcroft, J.E., M.L. Harrison, and R.L. Geahlen. 1992. Association of the 72-kDa protein-tyrosine kinase PTK72 with the B cell antigen receptor. J. Biol. Chem. 267:8613–8619.

11. Yamada, T., T. Taniguchi, C. Yang, S. Yasue, H. Saito, and H. Yamamura. 1993. Association with B-cell antigen receptor with protein-tyrosine kinase p72K and activation by engagement of membrane IgM. Eur. J. Biochem. 213:455–459.

12. Taniguchi, T., T. Kobayashi, J. Kondo, K. Takahashi, H. Nakamura, J. Suzuki, K. Nagai, T. Yamada, S. Nakamura, and H. Yamamura. 1991. Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J. Biol. Chem. 266:15790–15796.

13. Gold, M.R., D.A. Law, and A.L. DeFranco. 1990. Stimulation of protein tyrosine phosphorylation by the B-lymphocyte antigen receptor. Nature (Lond.). 345:810–813.

14. Campbell, M.-A., and B.M. Sefton. 1990. Protein tyrosine phosphorylation is induced in murine B lymphocytes in response to stimulation with anti-immunoglobulin. EMBO (Eur. Mol. Biol. Organ.) J. 9:2125–2131.

15. Gold, M.R., L. Matsuchii, R.B. Kelly, and A.L. DeFranco. 1991. Tyrosine phosphorylation of components of the B-cell antigen receptor following receptor crosslinking. Proc. Natl. Acad. Sci. USA. 88:3436–3440.

16. Coggleshall, K.M., J.C. McHugh, and A. Altman. 1992. Predominant expression and activation-induced tyrosine phosphorylation of phospholipase C-γ2 in B lymphocytes. Proc. Natl. Acad. Sci. USA. 89:5660–5664.

17. Flaswinkel, H., and M. Reth. 1994. Dual role of the tyrosine activation motif of the Ig-α protein during signal transduction via the B cell antigen receptor. EMBO (Eur. Mol. Biol. Organ.) J. 13:83–89.

18. Sanchez, M., Z. Misulovin, A.L. Burkhardt, S. Mahajan, T. Costa, R. Franke, J.B. Bolen, and M. Nussenzweig. 1993. Signal transduction by immunoglobulin is mediated through Ig-α and Ig-β. J. Exp. Med. 178:1049–1057.

19. Clark, M.R., S.A. Johnson, and J.C. Cambier. 1994. Signal propagation by ARH1-I motif containing receptors: tyrosine phosphorylation of Ig-α enhances binding and activation of fyn. EMBO (Eur. Mol. Biol. Organ.) J. 13:1911–1919.

20. Pleimar, C.M., F. Abrams, L. Timson-Gauen, W. Bedzyk, J. Jongetra, A.S. Shaw, and J.C. Cambier. 1994. Distinct p53/p65 domains associate with nonphosphorylated and phosphorylated Ig-α. Proc. Natl. Acad. Sci. USA. 91:4268–4272.

21. Nishiibe, S., M.I. Wahl, S.M. Hernandez-Sotomayor, N.K. Tonks, S.G. Rhee, and G. Carpenter. 1990. Increase of the catalytic activity of phospholipase C-γ1 by tyrosine phosphorylation. Science (Wash. DC). 250:1253–1256.

22. Takata, M., H. Sabe, A. Hata, T. Inazu, Y. Homma, T. Nukada, H. Yamamura, and T. Kurokasi. 1994. Tyrosine kinases Lyn and Syk regulate B cell receptor–coupled Ca2+ mobilization through distinct pathways. EMBO (Eur. Mol. Biol. Organ.) J. 13:1341–1349.

23. Reth, M., E. Petrac, P. Wiese, L. Lobel, and F.W. Alt. 1987. Activation of V gene rearrangements in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains. EMBO (Eur. Mol. Biol. Organ.) J. 6:3399–3405.

24. Chen, C.-L.H., J.E. Lehmeyer, and M.D. Cooper. 1982. Evidence for an IgD homologue on chicken lymphocytes. J. Immunol. 129:2580–2585.

25. Homma, Y., Y. Emori, F. Shibasaki, K. Suzuki, and T. Takahara. 1990. Isolation and characterization of a γ-type phosphoinositide-specific phospholipase C (PLC-γ1). Biochem. J. 269:13–18.

26. Grynkiewicz, G., P. Poenie, and R.Y. Tsien. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450.

27. Chan, A., M. Iwashima, C. Turck, and A. Weiss. 1992. ZAP-70: a 70 kD protein-tyrosine kinase that associates with the TCRζ chain. Cell. 71:649–662.

28. Iwashima, M., B. Irving, N. van Oers, A. Chan, and A. Weiss. 1994. Sequential interaction of the TCR with two distinct cytoplasmic tyrosine kinases. Science (Wash. DC). 263:1136–1139.

29. Friedrich, R.J., K.S. Campbell, and J.C. Cambier. 1993. The gamma subunit of the B cell antigen receptor complex is a C-terminally truncated product of the B29 gene. J. Immunol. 150:2814–2822.

30. Kurosaki, T., M. Takata, Y. Yamanashi, T. Inazu, T. Taniguchi, T. Yamamoto, and H. Yamamura. 1994. Syk activation by the Src-family tyrosine kinase in the B cell receptor signaling. J. Exp. Med. 179:1725–1729.

31. Caron, L., N. Abraham, T. Pawson, and A. Veillette. 1992. Structural requirements for enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56Lck. Mol. Cell. Biol. 12:2720–2729.

32. Hanks, S.K., and A.M. Quinn. 1991. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. In Methods in Enzymology. T. Hunter and B.M. Sefton, editors. Academic Press, Inc., San Diego, CA. 36–62.

33. Koch, C.A., D. Anderson, M.F. Moran, C. Ellis, and T. Pawson. 1991. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science (Wash. DC). 252:668–674.

34. Pawson, T., and G.D. Gish. 1992. SH2 and SH3 domains:
from structure to function. *Cell.* 71:359–362.

35. Shiue, L., J. Green, O.M. Green, J.L. Karas, J.P. Morgenstern, M.K. Ran, M.K. Taylor, M.J. Zoller, L.D. Zydowsky, J.B. Bolen, and J.S. Brugge. 1995. Interaction of p72* switch with the γ and β subunits of the high-affinity receptor immunoglobulin E, FcεRI. *Mol. Cell. Biol.* 15:272–281.

36. Kim, K.M., G. Alber, P. Weiser, and M. Reth. 1993. Differential signaling through the Ig-α and Ig-β components of the B cell antigen receptor. *Eur. J. Immunol.* 23:911–916.

37. Shiue, L., M.J. Zoller, and J.S. Brugge. 1995. Syk is activated by phosphorytrosine-containing peptides representing the tyrosine-based activation motifs of the high affinity receptor for IgE. *J. Biol. Chem.* 270:10498–10592.

38. Rowley, R.B., A.L. Burkhardt, H.-G. Chao, G.R. Matsueda, and J.B. Bolen. 1995. Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Igα/Igβ immunoreceptor tyrosine activation motif binding and autophosphorylation. *J. Biol. Chem.* 270:11590–11594.

39. Kolanus, W., C. Romeo, and B. Seed. 1993. T cell activation by clustered tyrosine kinases. *Cell.* 74:171–183.

40. Clark, M.R., K.S. Campbell, A. Kazlauskas, S.A. Johnson, M. Hertz, T.A. Potter, C. Pleiman, and J.C. Cambier. 1992. The B cell antigen receptor complex: association of Ig-α and Ig-β with distinct cytoplasmic effectors. *Science (Wash. DC.)* 258:123–126.

41. Pleiman, C.M., M.R. Clark, L.K. Timson-Gauen, S. Winitz, K.M. Coggleshall, G.L. Johnson, A.S. Shaw, and J.C. Cambier. 1993. Mapping of sites on the Src family protein tyrosine kinases p55^*^, p59^*^, and p56^*^ which interact with the effector molecules phospholipase C-γ2, microtubule-associated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase. *Mol. Cell. Biol.* 13:5877–5887.

42. Saouaf, S.J., S. Mahajan, R.B. Rowley, S.A. Kut, J. Fargnoli, A.L. Burkhardt, S. Tsukada, O.N. Witte, and J.B. Bolen. 1994. Temporal differences in the activation of three classes of non-transmembrane protein tyrosine kinases following B-cell antigen receptor surface engagement. *Proc. Natl. Acad. Sci. USA.* 91:9524–9528.

43. Law, D.A., V.W.F. Chan, S.K. Datta, and A.L. DeFranco. 1993. B-cell antigen receptor motifs have redundant signalling capabilities and bind the tyrosine kinases PTK72, Lyn and Fyn. *Current Biology.* 3:654–657.