Induction of somatic embryogenesis in *Brassica juncea* L. and analysis of regenerants using ISSR-PCR and flow cytometer

Mohammad Faisal *, Eslam M. Abdel-Salam, Abdulrahman A. Alatar, Ahmed A. Qahtan

Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Article Info

Received 6 October 2020

Revised 11 November 2020

Accepted 11 November 2020

Available online 21 November 2020

Keywords:

In vitro

Immature seeds

ISSR marker

Flow cytometry

Regeneration

Somatic embryogenesis

Abstract

A new and simple protocol has been developed and standardized for direct somatic embryogenesis and plant regeneration from aseptic seedlings derived from immature *Brassica juncea* seeds. Depending on the age of immature seeds and nutrient media, in vitro occurrence of embryogenesis and the number of embryos from each seedling have varied greatly. The largest number of somatic embryos, producing 12.7 embryos per seedling, have been developed by seedlings obtained from immature seeds collected after 21 days of pollination (DAP). Effect of different nutrient media [Gamborg (B5), Murashige and Skoog (MS) and Linsmaier and Skoog (SH)] and carbon sources (fructose, glucose, maltose and sucrose) were assessed to induce somatic embryos and the maximum response were achieved on Nitsch culture medium fortified with sucrose (3% w/v) followed by fructose and maltose. The somatic embryo converted into complete plantlets within 04-weeks of culture on Nitsch medium containing half-strength of micro and macro salts. The regenerated plantlets were successfully established in soil with 90% survival rate. The acclimated plants were subsequently transferred to field condition where they grew normally without any phenotypic differences. Genetic stability of *B. juncea* plants regenerated from somatic embryos were confirmed by inter-simple sequence repeat (ISSR)-PCR analysis and flow cytometry. No significant difference in ploidy level and ISSR banding pattern were documented between somatic embryo’s plants and control plants grown ex vitro.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Brassica juncea L. (Brassicaceae) is known as Indian or brown mustard, owing to its spicy taste, high content of various bioactive chemical compounds and abundance, it is one of the mustard species commonly used in human food and animal feed. (Okunade et al., 2015). The plants, however, of *B. juncea* is usually used in the processing of biodiesel and pesticides (Kashyap et al., 2019). It is considered as one of the most valuable oil-seed crops of the *Brassica* genus. *B. juncea* has numerous desired agronomic characteristics, with resistance to disease, tolerance to drought, early maturity, shattering resistance. (Downey, 1990; Woods et al., 1991; Zhang et al., 2018). Successful micropropagation, regeneration and genetic transformation based on different tissue culture techniques has been reported in various *Brassica* species (Mathews et al., 1990; Eapen and George, 1997; Cao and Earle, 2003; Wahlroos et al., 2003; Kashyap et al., 2019).

Somatic embryogenesis (SE) is the utmost significant processes in in vitro reproduction, involving multiple stages from the development in pro-embryogenic growth mass to embryo and plant maturation and proliferation (von Arnold et al., 2002). SE is typically favoured to other methods of production as it can be used in various plant micropropagation, genetic alteration and accelerated proliferation systems. (Arhya et al., 1993; Shinjiro et al., 2002; Al Shamari et al., 2018). In principle, where suitable explants are used, all plant species have the competence to produce somatic embryos in vitro by providing suitable nutrient media, growth regulators and culture conditions. (George et al., 2008).

One of the important factors to be evaluated in micropropagated plantlets when a process is going to be used for commercialization is genetic uniformity of regenerants. Inter Simple Sequence Repeat (ISSR) is a technique utilizes microsatellite sequences as polymerase chain reaction (PCR) primers to generate multilocus markers. This technique is very useful in genetic diversity
examination and evolutionary biology studies (Pradeep Reddy et al., 2002). In B. juncea, ISSR-PCR technique was utilized to examine the genetic diversity among the native species in China (Huangfu et al., 2009) and to identify molecular markers related to production of 2-propenyl glucosinolate (Ripley and Roslinsky, 2005). Furthermore, the same technique was applied to examine the genetic diversity among 11 accessions of B. rapa var. chinensis (Linnaeus) Kitamura (Shen et al., 2016). In addition, flow cytometric analysis (FCA) of plants cells and tissues have been recognized as one the most steadfast method during recent days for estimation of ploidy level, and genome size by calculating the nuclear DNA content. FCA provides unsurpassed ease, speed and accuracy in comparison the traditional method of chromosomal counting (Doležel et al., 2007) and being significantly employed for validation of tissue culture plants including Oak (Endemann et al., 2001), Larix decidua (von Aderkas et al., 2003), Eucalyptus globulus (Pinto et al., 2004), Quercus suber (Loureiro et al., 2005), Juniperus phoenicea (Loureiro et al., 2007), and Solanum hycopersicum (Alatari et al. 2017) and Brahmi (Faisal et al., 2018). The main objective of this study was to develop an efficient and robust system of direct somatic embryogenesis and plant regeneration from immature seeds of B. juncea. Additionally, this work also addressed the genomic stability of plants derived from somatic embryos, compared with control plants grown ex vitro, using flow cytometry and inter-simple sequence repeat PCR analysis (ISSR).

2. Material and methods

2.1. Starting materials and preparation of explants

Fresh and healthy seeds of Brassica juncea L. cv. Kala moti were grown in a glass house at 24 ± 2 °C under LED (A light-emitting diode) light with a photoperiod of 16/8 h. After flowering the pollination were performed and age of the seeds were calculated according to the days after pollination (DAP). Green immature seed-pods of various stages (7, 14, 21 and 28 days) were used as explants for further in vitro experiments.

2.2. Induction of somatic embryos

Healthy green pods were surface disinfected with chorine based commercial bleach solution (2.5% (v/v), Clorex Co, Saudi Arabia) containing 0.05% (v/v) Tween 20. With sterile purified water, the pods were washed 4–5 times after 10 min to eliminate all the traces of bleach. Green immature seeds were aseptically isolated from the sterilized pods and planted on different strengths of growth hormones free Nitsch medium (Nitsch and Nitsch, 1969; Duchefa BV, Haarlem, The Netherlands) and being significantly employed for validation of tissue culture plants including Oak (Endemann et al., 2001), Larix decidua (von Aderkas et al., 2003), Eucalyptus globulus (Pinto et al., 2004), Quercus suber (Loureiro et al., 2005), Juniperus phoenicea (Loureiro et al., 2007), and Solanum hycopersicum (Alatari et al. 2017) and Brahmi (Faisal et al., 2018). The main objective of this study was to develop an efficient and robust system of direct somatic embryogenesis and plant regeneration from immature seeds of B. juncea. Additionally, this work also addressed the genomic stability of plants derived from somatic embryos, compared with control plants grown ex vitro, using flow cytometry and inter-simple sequence repeat PCR analysis (ISSR).

2.6. ISSR analysis of plantlets

Genetic stability of embryos derived plantlets was assessed using ISSR markers and compared to plantlets grown ex vitro. Genomic DNAs were isolated from the leaf tissues of randomly selected plantlets using DNeasy® Plant Mini Kit (Qiagen Cat No.# 69104). NanoDrop™ 2000c Spectrophotometers (ThermoFisher Scientific™, USA) used to perform the purity and quantification of isolated leaf DNA’s. 10 sets of ISSR primer synthesized from Gene Link™ (Gene Link, NY, USA) were screened and used to determine the uniformity of the plantlets by performing the polymerase chain reaction (PCR) in a thermal cycler gradient (BIORAD T100™, Bio-Rad Laboratories, USA). 20 µl of PCR reaction mixture were used containing 2.0 µl of Taq buffer (10X) with KCL (Thermo Scientific™), 1.2 µl of 25 mM MgCl2 (Thermo Scientific™), 0.4 µl of 10 mM dNTPs (Thermo Scientific™), 0.2 µl Taq polymerase recombiant (Thermo Scientific™) 1.0 µl of ISSR primers (Gene Link™, USA) and 25 ng template DNA. For amplification a program in the PCR machine were set for 45 cycles with DNA denaturation at 94 °C of 5 min, an annealing at 35 °C for 1 min and 1 min at 72 °C for extension followed by a final extension for 10 min at 72 °C. The amplified PCR products were separated in horizontal electrophoresis (Horizon 14.11 Biometra Analytik Jena AG, Germany) using 1.2% (w/v) agarose-gel made in TAE buffer (1X, Tris-acetate-EDTA, pH 8.0) comprising 5.0 µl ethidium bromide. The electrophoresis unit were run for 2 h at 50 V and the image of the gel were captured using UV gel imaging system (G:Box F3, Syngene, UK). For analysis well depicted and reproducible DNA bands were scored.
3. Results

In the first set of experiments we investigate the morphogenic ability of aseptic seedlings to develop somatic embryos in vitro. Immature seeds (7, 14, 21 and 28 days old) of *B. juncea* cultured on Nitsch medium start germinating after 3–4 days of planting. The hypocotyls of the germinating seedlings swollen, and somatic embryos were directly initiated from the region after 3 weeks of culture. Frequency of somatic embryogenesis and number of embryos per seeding were varied considerably according to the green pods collected from the plants (Fig. 1A). Highest number of embryos were recorded from immature seeds collected after 21 days of pollination and produced 12.7 embryos per seeding. While the immature seeds collected after 07 days of pollination produced the lowest number of embryos with 4.1 embryos per seeding.

In addition, different nutrient media, B5, SH and MS, were analyzed in order to generate a sufficient number of *B. juncea* somatic embryos from immature seeds. (Fig. 1B). Among some of the different culture media used in this investigation, the highest number of embryos were obtained from seedlings derived from 21 days old immature green seeds on Nitsch medium. While the SH media produced the lowest frequency and number of somatic embryos.

In this investigation effects of various carbon sources, including fructose, glucose, maltose, and sucrose, on somatic embryogenesis in *B. juncea* was also evaluated in this study (Fig. 1C). Nitsch media enriched with sucrose was found to repeatedly produce highly embryogenic colonies, with a higher proportion of somatic embryos compared to media supplemented with glucose, fructose, or maltose. There were substantial variations between all carbon sources in the percentage of somatic embryogenesis and mean number embryos (*p* = 0.5), with the exception of maltose and glucose (Fig. 1C). Data obtained in this investigation showed that sucrose was the best for induction of somatic embryos from the seedlings derived from immature zygotic embryos.

Repetitive somatic embryogenesis (secondary embryos) were perceived on the same induction medium from the primary embryos of *B. juncea*. The induced embryos were moved to growth-regulators free half-strength Nitsch medium containing 3% sucrose after two weeks, where they transformed within 4 weeks into complete plantlets with an average germination rate of 90–95%. *B. juncea* somatic embryos of different developmental stages are depicted in Fig. 2. In this investigation the phases of embryogenesis were asynchronous, therefore the in vitro-plantlets obtained from the same culture medium were at various stages of development. With a 90% survival rate, plantlets with a well-developed root and shoot system were successfully transferred to the soil. All habituated *B. juncea* plants were eventually transported to the field and grew gradually without any phenotype difference in the natural state of the climate.

One of the most important prerequisites for the effectiveness of any in vitro protocol is the genetic integrity of plants for mass propagation and commercialization. We used the directed minisatellite region amplification (ISSR) and flow cytometry to check out the genetic uniformity of somatic embryo-derived plants of *B. juncea* and compared with the normal field grown plants. Patterns of ISSR molecular markers were used to evaluate and compare the in vitro derived plants with the field grown plants. 10 ISSR DNA-oligos were used for PCR amplification, and an average of 11.1 bands per primer were formed (Table 1). Only the clear and reproducible band were counted and compared among the replicates and found that all the ISSR bands were monomorphic in nature (Fig. 3). In the present investigation, the ploidy level of nuclei isolated from embryo-derived plants, as well as control plants grown to ex vitro conditions ascertain by using flow cytometry. Comparison of fluorescence peaks in the histograms generated from PI-stained nuclei showing unimodal peak of the nDNA (nuclear-DNA) content corresponding to 2x from the nuclei of ex vitro grown plants thereby substantiating that there was no variation in ploidy levels as well as nDNA content (Fig. 4). In this study there were no substantial variations in their usual fluorescence peak positions in contrast to the fluorescence peaks in histograms obtained from the flow cytometry study validating that there was no difference between in vitro somatic embryo-derived plants of *B. juncea* and control plants grown to ex vitro conditions.
4. Discussion

Embryogenesis is the mechanism by which, either from a zygote or from somatic cells, embryo development is started. Embryogenesis, in planta, is divided into two different phases: early morphogenesis that give birth to embryonic form of cells such as tissues, and organ systems, and advanced developmental stages that cause the embryo to reach the physiological state of desiccation and quiescence (West and Harada, 1993). The most important in vitro reproduction system is somatic embryogenesis (SE), involving many stages from proembryogenic growth mass formation to embryo and plant development and propagation.
SE is usually preferred over the methods of reproduction, as it can be used in diverse schemes of plant propagation in vitro with increased proliferation and genetic modification. In general, all plant species have the ability to develop somatic embryos if sufficient explants are used, by having adequate nutritional material, growth regulators and culture conditions, and the mature (or dormant) embryos germinates upon receiving correct signal and produce seedlings. In this study morphogenetic potential of seedlings explants derived from immature seeds were evaluated for producing somatic embryos. Immature zygotic embryos have been documented to have a substantially greater embryogenic ability in rapeseed than mature embryos. In certain crops, embryonic zygotic embryos possess the capacity to induce somatic embryos while mature zygotic embryos lack the ability.

The effect of different growth regulator free media recipes observed in this study contrasts with the effect documented in immature zygotic embryo cultures of various species for somatic embryogenesis, including Ginkgo biloba and Rosa hybrida where exogenous cytokinin is necessary in the medium to induced somatic embryos. In plant life, carbohydrates are the building blocks of macromolecules that play an indispensable role in developmental processes and gene expression in higher plants. In this study different carbohydrate such as fructose, glucose, maltose, and sucrose were tested for somatic embryogenesis and found that Nitsch media supplemented with sucrose has been shown to consistently develop highly embryogenic culture. The results are in agreement with an earlier investigation by Šlesák and Przywara in Brassica napus where sucrose was also most effective carbon sources followed by maltose and glucose. Similarly, sucrose was found superior among the tested carbohydrates for optimum embryo induction with uniform developmental stages. Glucose, on the other hand, was found most important for in vitro embryogenesis of four different Cocoa genotypes. Whereas, for successful in vitro morphogenic replay and somatic embryogenesis in seedless grapes, glucose and fructose together are required in the medium.

5. Conclusion

In conclusion, an effective method of inducing somatic embryos from seedlings derived from immature B. juncea seeds has been developed. Genetic integrity of embryos derived in vitro plants was determined by ISSR markers and flow cytometer to ensure the supply of homogeneous population of B. juncea. The developed protocol might be useful for future morphogenetic studies and in vitro manipulation and gene transformation of this crop for higher biomass, oil yield and other agronomic traits.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University, Saudi Arabia for funding this work through the research group number RGP-175.

References

Alatar, A.A., Faisal, M., Abdel-Salam, E.M., Canto, T., Saquib, Q., Javed, S.B., El-Sheikh, M.A., Al-Khedhairy, A.A., 2017. Efficient and reproducible in vitro regeneration of Solanum lycopersicum and assessment genetic uniformity using flow cytometry and SPAR methods. Saudi J. Biol. Sci. 24, 1430–1436. https://doi.org/10.1016/j.sjbs.2017.03.008.

Al Shamari, M., Rihan, H.Z., Fuller, M.P., 2018. An Effective Protocol for the Production of Primary and Secondary Somatic Embryos in Cauliflower (Brassica oleracea Var. Botrytis). Agri Res & Tech: Open Access J. 14. https://doi.org/10.5377/1948-0637.140117.00008.

Arya, S., Arya, I.D., Eriksson, T., 1993. Rapid multiplication of adventitious somatic embryos of Panax ginseng. Plant Cell Tissue Organ Cult. 34, 157–162. https://doi.org/10.1007/BF00030696.

Burbulis, N., Kupritiene, R., Lisak, V., 2007. Somatic embryogenesis and plant regeneration in immature zygotic embryos of Brassica napus. Acta Universitatis Latviensis 723, 27–35.

Cao, J., Earle, E.D., 2003. Transgene expression in broccoli (Brassica oleracea var. italica) clones propagated in vitro via leaf explants. Plant Cell Rep. 21, 789–796. https://doi.org/10.1007/s00299-003-0589-6.

Choudhury, R.R., Basak, S., Ramesh, A.M., Rangan, L., 2014. Nuclear DNA content of Solanum lycopersicum of wild populations: implication for herbicide resistance evolution. Heredity 112, 941–950. https://doi.org/10.1038/hdy.2013.150.

Doležel, J., Greilhuber, J., Suda, J., 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244. https://doi.org/10.1038/nprot.2007.310.

Downey, R., 1990 Brassica oilseed breeding-achievements and opportunities. Plant Breeding Abstracts 60, 1165–1170.

Eapen, S., George, L., 1997. Plant regeneration from peduncle segments of oil seed Brassica species: Influence of silver nitrate and silver thiosulfate. Plant Cell Tissue Organ Cult. 46, 239–242. https://doi.org/10.1007/s12010-008-0300-8.

Endemann, M., Hristoforoglu, K., Stauber, T., Wieland, E., 2001. Assessment of Age-Related Polyploidy in Quercus robur L. Somatic Embryos and Regenerated Plants Using DNA Flow Cytometry. Biol. Plant. 44, 339–345. https://doi.org/10.1007/s10035-001-0054-5.

Faisal, M., Alatar, A.A., El-Sheikh, M.A., Abdel-Salam, E.M., Quhan, A.A., 2018. Thidiazuron induced in vitro morphogenesis for sustainable supply of genetically true quality plantlets of Brassica. Ind. Crops Prod. 118, 173–175. https://doi.org/10.1016/j.indcrop.2018.04.002.

Faisal, M., Alatar, A.A., Hegazy, A.K., Alharbi, S.A., El-Sheikh, M., Okla, M.K., 2014. Thidiazuron induced in vitro multiplication of Mentha arvensis and evaluation of genetic stability by flow cytometry and molecular markers. Ind. Crops Prod. 62, 103–106.

Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P., Firoozabady, W.D., 1983. Rapid Flow Cytometric Analysis of the Cell Cycle in Intact Plant Tissues. Biotechnol. Genet. Resour. Crop Evol. 56, 913–924. https://doi.org/10.1007/s10722-009-0589-6.

George, E.F., Hall, M.A., Klerk, G.-J.D., 2008. Somatic Embryogenesis. In: George, E.F., Gantait, S., Sinniah, U.R., 2011. Morphology, flow cytometry and molecular assessment of ex-vitro grown micropropagated anthurium in comparison with Tobacco Tissue Cultures. Physiol. Plant. 15, 473–497. https://doi.org/10.1111/j.1199-3054.1966.tb00805.x.

Niazian, M., Noori, S.A.S., Galuszka, P., Tohidfar, M., Mortazavian, S.M.M., 2017. Genetic stability of regenerated plants via indirect somatic embryogenesis and indirect shoot regeneration of Coriandrum sativum L. Ind. Crops Prod. 97, 330–337. https://doi.org/10.1016/j.indcrop.2016.12.044.

Rajee, M.R., Lofti, M., Tohidfar, M., Zahedi, B., Carra, A., Abbate, L., Carimi, F., 2018. Somatic embryogenesis of mukamehon (Curcumin melo L.) and genetic stability assessment of regenerated plant flow cytometry and ISSR markers. Protoplasma 255, 873–883. https://doi.org/10.1007/s00709-017-1194-9.

Rathore, M.S., Chikara, J., Mastan, S.G., Rahman, H., Anand, K.G.V., Shekhawat, N.S., 2011. Assessment of Genetic Stability and Instability of Tissue Culture-Propagated Plantlets of Aloe vera L. by RAPD and ISSR Markers. Appl. Biochem. Biotechnol. 165, 1356–1365. https://doi.org/10.1007/s10529-010-1152-6.

Riley, W.M., Roslinsky, V., 2005. Identification of an ISSR Marker for 2-propenyl glucosinolate Content in Brassica juncea L. and Conversion to a SCAR Marker. Mol. Breed. 16, 57–66. https://doi.org/10.1007/s10535-003-0372-9.

Sadat-Hosseni, M., Vahidati, K., Leslie, C.A., 2019. Germination of Persian Walnut (Juglans regia L.) Seeds by Cold Stratification and Genetic Stability by ISSR Fingerprinting and Flow Cytometry. HortScience 54, 1576–1580.

Schekin, R.U., Hildebrandt, A.C., 1972. Medium and techniques for induction and development of SCAR marker specific for Fragrant Bok Choy, a product of Brassica rapa var. chinensis. J. Geographical Indications. Genet. Mol. Res. 15, https://doi.org/10.4238/gmr.15027557.

Shen, X.L., Zhang, Y.M., Xue, J.Y., Li, M.M., Lin, Y.B., Sun, X.Q., Hang, Y.Y., 2016. Analysis of genetic diversity of Brassica rapa var. chinensis using ISSR markers and development of SCAR marker specific for Fragrant Bok Choy, a product of geographic indication. Genet. Mol. Res. 15, https://doi.org/10.4238/gmr.15027557.

Wada, M., Ishihara, U., Park, Y.-E., Tomoko, H., Mikihiro, O., Yube, Y., Nozomu, K., Hiroshi, S., 2002. Genetic modification of coffee plants. J. Plant Biotechnol. 4, 91–94.

Shesak, H., Przywara, L., 2003. The effect of carbohydrate source on the development of Brassica napus L. immature embryos in vitro. Acta Biologica Cracoviensia. Ser. Botanica 45, 183–189.

Sneath, P.H.A., 1952. The new method of constructing the matrix of numerical taxonomic analysis. J. Gen. Microbiol. 12, 281–288. https://doi.org/10.1099/00221287-12-2-281.

Sneath, P.H.A., 1955. Systematics and the study of genes in populations. J. Genet. 50, 253–275. https://doi.org/10.1007/s10529-010-1152-6.

Sneath, P.H.A., 1956. Numerical taxonomy. London: W.H. Freeman and company.

Sneath, P.H.A., 1959. Numerical taxonomy, 2nd edn. San Francisco: Freeman.
Wahlroos, T., Susi, P., Tylkina, L., Malyshenko, S., Zvereva, S., Korpela, T., 2003. Agrobacterium–mediated transformation and stable expression of the green fluorescent protein in Brassica rapa. Plant Physiol. Biochem. 41, 773–778.

West, M.A.L., Harada, J.J., 1993. Embryogenesis in Higher Plants: An Overview. Plant Cell 5, 1361–1369. https://doi.org/10.1105/tpc.5.10.1361.

Woods, D.L., Capcara, J.J., Downey, R.K., 1991. The potential of mustard (Brassica juncea (L.) Coss) as an edible oil crop on the Canadian Prairies. Can. J. Plant Sci. 71, 195–198. https://doi.org/10.4141/cjps91-025.

Yancheva, S.D., Roichev, V., 2005. Carbohydrate Source can Influence the Efficiency of Somatic Embryogenesis in Seedless Grapes (Vitis vinifera L.). Biotechnol. Biotechnol. Equip. 19, 62–66. https://doi.org/10.1080/13102818.2005.10817192.

Zhang, X., Li, R., Chen, L., Niu, S., Chen, L., Gao, J., Wen, J., Yi, B., Ma, C., Tu, J., Fu, T., Shen, J., 2018. Fine-mapping and candidate gene analysis of the Brassica juncea white-flowered mutant Bjpc2 using the whole-genome resequencing. Mol. Genet. Genomics 293, 359–370. https://doi.org/10.1007/s00438-017-1390-5.