Chapter 40

Analysis Protocol for the Quantification of Renal pH Using Chemical Exchange Saturation Transfer (CEST) MRI

Hahnsung Kim, Yin Wu, Daisy Villano, Dario Livio Longo, Michael T. McMahon, and Phillip Zhe Sun

Abstract

The kidney plays a major role in maintaining body pH homeostasis. Renal pH, in particular, changes immediately following injuries such as intoxication and ischemia, making pH an early biomarker for kidney injury before the symptom onset and complementary to well-established laboratory tests. Because of this, it is imperative to develop minimally invasive renal pH imaging exams and test pH as a new diagnostic biomarker in animal models of kidney injury before clinical translation. Briefly, iodinated contrast agents approved by the US Food and Drug Administration (FDA) for computed tomography (CT) have demonstrated promise as novel chemical exchange saturation transfer (CEST) MRI agents for pH-sensitive imaging. The generalized ratiometric iopamidol CEST MRI analysis enables concentration-independent pH measurement, which simplifies in vivo renal pH mapping. This chapter describes quantitative CEST MRI analysis for preclinical renal pH mapping, and their application in rodents, including normal conditions and acute kidney injury.

This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concepts and experimental procedure.

Key words Chemical exchange saturation transfer (CEST), Magnetic resonance imaging (MRI), pH, Rats, Mice, Iopamidol, Kidney, Contrast agents, pH imaging

1 Introduction

Chemical exchange saturation transfer (CEST) MRI provides a sensitive means to image microenvironment properties such as tissue pH, temperature, metabolites, and enzyme activities via dilute labile protons [1–12]. Endogenous CEST MRI has been increasingly adopted for imaging a host of disorders including acute ischemic stroke [13–22], tumor [23–27], and epilepsy [28, 29]. In addition, CEST MRI contrast agents have been developed for exogenous CEST imaging that may provide more sensitive
CEST detection which is specific to the administered agents [30–34]. This is because the labile proton exchange rate and chemical shifts can be designed/preselected to optimize these for exogenous CEST MRI contrast [35–38]. There has been an emerging library of iodinated-based CEST agents such as iopamidol, iobitridol, iopromide, and iodixanol, which have been approved by the U.S. Food and Drug Administration (FDA) for computed tomography (CT) head and body imaging applications [39–47]. Such FDA-approved iodinated contrast agents are promising for translational CEST imaging to characterize renal dysfunction, diagnose regional kidney injury before symptom onset, and help guide treatment before irreversible damage [48–50].

Because the CEST MRI effect depends on not only pH-dependent exchange rates but also on the labile proton ratio, relaxation rates and experimental conditions such as magnetic field strength, saturation power, and duration, CEST-weighted MRI contrast is often complex [51–55]. As such, it remains challenging to quantify CEST MRI toward tissue indices such as absolute pH and/or total protein concentration. Persistent progress has been achieved toward simplified and quantitative in vivo pH mapping [56–61]. In particular, ratiometric CEST MRI refers to a specific type of CEST MRI analysis that takes multiple CEST measurements, the ratio of which normalizes common confounding factors such as tissue labile proton concentration and relaxation effects, therefore enabling quantitative in vivo CEST mapping [42, 56, 62–67]. Although pH imaging is more straightforward at high magnetic fields ($B_0 \geq 7$ T) due to the large frequency shift difference between labile and bulk tissue water protons, it is important to extend pH MRI to magnetic fields such as 3 and 4.7 T [68, 69]. Due to the complexity of the source of the MRI CEST signal, multiple approaches have been established for a better quantification of the CEST contrast [54, 60]. In this chapter, we describe variant ratiometric pH CEST MRI analysis techniques, image down-sampling expedited adaptive least-squares (IDEAL) fitting algorithm, smoothing splines interpolation algorithm and use of iodinated CEST agents for mapping renal pH in vivo [50, 70].

This analysis protocol chapter is complemented by two separate describing the basic concepts and experimental procedure, which are part of this book.

This chapter is part of the book Pohlmann A, Niendorf T (eds) (2020) Preclinical MRI of the Kidney—Methods and Protocols. Springer, New York.
2 Materials

2.1 Software Requirements

2.1.1 Essential Tools

1. Matlab/Python: The method described in this chapter requires MATLAB (MathWorks, Natick, MA, https://www.mathworks.com/products/matlab.html) for data analysis of applying fitting models and measuring ratiometric. Because Matlab functions used in the data processing can also be implemented in python (https://www.python.org/), python can be used instead.

2. An image processing software (e.g., Image J, we recommend using Fiji, which is ImageJ with a wide range of plugins already included, https://fiji.sc/, open-source), as a practical tool for the image quality check or to measure SNR.

2.1.2 Optional Tools

A statistical analysis software (e.g., SPSS, SPSS Inc., Chicago, IL or Prism, GraphPad, USA) as a practical tool for the statistical significance calculation.

2.2 Source Data: Format Requirements and Data Preprocessing

2.2.1 Input Requirements

The CEST images can be retrieved directly from the MRI scanner as raw binary images or in DICOM format (see Note 1). To be able to perform CEST analysis different scans are needed:

- Anatomical image (optional).
- Unsaturated image (optional).
- CEST images or Z-spectra.
- CEST images (Z-spectra) before and after contrast agent (CA) injection for in vivo acquisitions.

Information about some scan acquisition parameters is also necessary as is the frequency offsets vector.

2.2.2 Background Removal

In order to avoid the analysis outside the object of interest and to shorten the analysis duration a first segmentation between the background and the imaged object is suggested. Manual thresholding or automatic thresholding (as by the Otsu method) can be easily applied within the Matlab environment.

3 Methods

3.1 Motion Correction

If needed, postprocessing motion correction can be applied to coregister images to correct for motion artifacts.

3.2 Z-Spectra Analysis

Z-spectra can be analyzed as mean contribution inside one or more regions of interest, that can be drawn on an anatomical image reference, or preferentially, by a voxel-by-voxel analysis. Different approaches for Z-spectra analysis will be described in detail.
3.2.1 Multi Pool Lorentzian Fitting

The Z-spectra are numerically described using a multipool Lorentzian model [24, 71–74]:

\[Z(\omega) = 1 - \frac{M_z}{M_0} = \sum_{i=1}^{N} L_i(\omega) \] (1)

where \(\omega \) is the frequency offset from the water resonance, \(N \) is the total number of proton pools, and \(L_i \) is the Lorentzian spectrum of the \(i \)th pool. The Lorentzian lineshape is represented by the following equation:

\[L(\omega) = \frac{A}{1 + 4\left(\frac{\omega - \omega_0}{\sigma}\right)^2} \] (2)

where \(A, \omega_0, \) and \(\sigma \) are the amplitude, center frequency, and linewidth of the \(i \)th saturation transfer effects, respectively.

1. Map \(B_0 \) inhomogeneity with water saturation shift referencing (WASSR) using external acquired \(B_0 \) maps, by field maps or by interpolation procedures looking to the minimum of the Z-spectrum (internal \(B_0 \) mapping) [75–79].

2. Shift CEST MRI Z-spectrum based on the field inhomogeneity, per voxel, for correction.

3. Normalize the Z-spectra (\(i_z \)) by the signal without RF irradiation (\(M_0 \)).

4. Fit the Z-spectrum using a five pool Lorentzian model (two pools for iopamidol amide groups at 4.3 and 5.5 ppm, one for bulk tissue water (0 ppm), and two pools for the hydroxyl groups at 0.8 and 1.8 ppm) [80, 41]. Representative multipool Lorentzian fitting is described in Fig. 1.

3.2.2 Image Down-Sampling Expedited Adaptive Least-Squares (IDEAL) Fitting Algorithm

1. Initially down-sample the \(B_0 \) field inhomogeneity-corrected CEST images to one or a few pixels and calculate the global Z-spectrum by averaging the Z-spectra of all voxel within an ROI to substantially improve the signal-to-noise ratio (SNR) for the numerical fitting.

2. Set the boundaries to be between 1% and 100 times of the initial values for the amplitude and linewidth of each chemical pool, with their peak frequency shift within ±0.2 ppm of the initial chemical shift. The relaxed boundary constraints ensure that the initial fitting provides a reasonable estimation of the multiple Lorentzian pools under the condition of sufficiently high SNR.

3. Fit the down-sampled image exploiting.

4. Resample the CEST images to \(2 \times 2 \) matrix size.
5. Take the initial values for the fitting of each voxel of the resampled image from the results of the previous image with lower spatial resolution.

6. Set the boundary constraints relatively loose albeit narrower than the initial fitting, to be 10% and ten times of the initial values.

7. Use a nonlinearly constrained fitting algorithm with twofold overwriting applied for Z-spectra between 4.0 and 5.8 ppm to increase the fitting accuracy of Iopamidol CEST effects at 4.3 and 5.5 ppm.

8. Resample the CEST images, 4×4, 8×8, 12×12, 24×24 until the original resolution of 48×48 or voxel-wise multipool Lorentzian fitting and repeat from step 5 until you get the desired final resolution.

9. Figure 2 shows the flowchart of the IDEAL fitting algorithm.

3.2.3 Smoothing Splines

Interpolation

The cubic smoothing splines estimate the interpolating function f, minimizing the following expression, linearly composed by two parts:

$$
\begin{align*}
 p \sum_{j=1}^{N} \left| y_j - f(x_j) \right|^2 + (1 - p) \int |D^2 f(t)|^2 dt
\end{align*}
$$

The first addend represents the mean square error between data y_j and the interpolating cubic spline $f(x_j)$ calculated in x_j measure.
points. The second term consists of the integral of the squared second-order derivative of f and is a measure of function flexibility.

p is a smoothing parameter and determines the relative weight you would like to place on the contradictory demands of having
If be smooth vs having f be close to the data. Its value ranges between 0 and 1. For $p = 1$, the curvature constraint is nullified, f passes for all data points and converges to the interpolating spline, while, at the other extreme, for $p = 0$, f curvature is minimized and f results in a linear least square fit.

1. Normalize pre- and postinjection Z-spectra to the maximum intensity value of the free water signal, generally corresponding to the most distant offset or to the unsaturated image (M_0) [79].

2. Interpolate each voxel Z-spectra data with a cubic spline function paying action to regularization factor selection (see Note 2) and ignoring the background pixels/voxels (in Matlab use csasp function).

3. Find in the fitted spectra the absolute minimum corresponding to bulk water frequency offset (in Matlab use fnmin function).

4. Use the minimum position (corresponding to water peak shift from zero) to correct B_0 inhomogeneity shifting the frequency offsets vector.

5. Save minimum position in a matrix to construct the B_0 shift map.

To exclude noisy data points from the analysis a filtration step is suggested:

6. Construct R^2 matrix evaluating the distance of the interpolating function to data in each pixel.

7. Define a R^2 threshold (in our application R^2 ranges between 0.97 and 0.99).

8. Ignore pixel for which the R^2 value is lower than the threshold.

Smoothing spline algorithm workflow is described in Fig. 3.

3.3 CEST Quantification

3.3.1 CEST Ratio Calculation by Asymmetry Analysis

After having fitted the Z-spectra by smoothing splines or Lorenzian fitting, CEST contrast quantification can be evaluated and ratio-metric values (ratio between two CEST contrast quantifications to remove the concentration effect) can be calculated.

The CEST ratio (CESTR) is calculated by asymmetry analysis:

\[
\text{CESTR}(\omega) = \frac{M_z(-\omega) - M_z(\omega)}{M_0}
\]

where ω is the labile proton chemical shift from the bulk water resonance (for Iopamidol $\omega = 4.2$ ppm and 5.5 ppm). For the in vivo images, contrast was calculated by subtracting contrast after CA injection from the contrast before the injection at the different frequency offsets.
1. Calculate CEST contrast according to Eq. 4 for the two pools of Iopamidol (4.2 and 5.5 ppm).

3.3.2 CEST Ratio Calculation from Lorentzian Fitting

1. Calculate CEST contrast from the amplitude obtained from the Lorentzian fitting according to Eq. 4 for the two pools of Iopamidol (4.2 and 5.5 ppm).

3.3.3 Chemical Shift-Based Ratiometric CEST Analysis

Because the direct saturation is relatively small at the magnetic field at or above 7 T, the coupling between multiple CEST effects is relatively small, and a ratiometric analysis of two CEST effects obtained under the same RF irradiation power level can be calculated for pH calibration, as

$$ R_{ST}(\text{pH}) = \frac{\text{CESTR} \delta 1}{\text{CESTR} \delta 2} \quad (5) $$

3.3.4 RF Power-based Ratiometric CEST Analysis

For CEST agent of a single labile proton group, the conventional ratiometric analysis does not apply. It has been shown that the ratiometric analysis can be generalized by taking the ratio of CEST effects obtained under two RF power levels as [42].

$$ R_{ST}(\text{pH}) = \frac{\text{CESTR}(B_{1b})}{\text{CESTR}(B_{1a})} \quad (6) $$

If the direct water saturation is not negligible, the saturation effect can be calculated/removed to improve the precision of RF power-based ratiometric analysis [56, 64].

Fig. 3 Representative z-spectra from in vitro (bottom) and in vivo (top) images showing the analysis steps for data normalization, smoothing splines interpolation and B_0 shift correction (from left to right)
3.3.5 The Generalized RF Power- and Chemical Shift-Hybrid Ratiometric CEST Analysis

When CEST MRI is performed at lower magnetic field strengths ($B_0 < 7.0$ T) or the RF saturation power induces nonnegligible direct saturation effect, the coupling between multiple CEST effects (i.e., CEST and direction water saturation) become nonnegligible. Under such conditions, the routine ratiometric analysis (chemical shift- and RF power-based methods) may be susceptible to the coupling. In addition, the coupling depends on the transverse relaxation rate, which may be the difference between phantom calibration and in vivo experiments. To minimize such confounding coupling effect, the CEST effect can be decoupled with the multipool Lorentzian model, and their ratio is more reproducible and specific to pH. As such, the ratiometric analysis is generalized to a ratio of CEST effects of different chemical shift obtained under different saturation power levels.

$$R_{ST}(\text{pH}) = \frac{\text{CESTR}^{\delta_1, B_{1b}}}{\text{CESTR}^{\delta_2, B_{1a}}} \quad (7)$$

1. Calculate the ratiometric values following one of the previously described Eqs. 5–7.

3.4 Set-Up of pH Calibration Curve

To investigate the relation between the R_{ST} value and the pH a calibration is needed. In the following steps the calibration done for Iopamidol on a pH varying phantom is described. Two examples of pH calibration curves obtained at 7 T and at 4.7 T are shown in Fig. 4.

1. Acquire CEST spectra images of the pH varying phantom;
2. Draw the ROI including only the pH compartment;
3. Evaluate mean CEST at 4.2 and 5.5 ppm inside each compartment;
4. Calculate R_{ST};
5. Fit the R_{ST} as function of the titrated pH (usually a polynomial fit of the third order is selected).

It is worth to observe that by decoupling the CEST effects at 4.2 and 5.5 ppm, the generalized ratiometric CEST MRI index provides an extended range of pH measurement at 4.7 T (Fig. 4b). Note that such a calibration experiment is important to ensure that the pH dynamic range is sufficient to cover tissue pH of interest. The polynomial regression enables the derivation of the absolute pH map of renal images.

6. From the calculated ratiometric value derives the pH value according to the used calibration curve.
3.5 In Vivo Application for pH Mapping

3.5.1 pH Mapping by Lorentzian Fitting or IDEAL Approach

1. Obtain two representative in vivo CEST Z-spectra from a normal rat (or mouse) kidney during Isovue infusion under two RF saturation power levels of 1 and 2 μT at 4.7 T as shown in Fig. 5.

2. Apply the IDEAL algorithm and perform Lorentzian decoupling to resolve Iopamidol CEST effects at 4.3 and 5.5 ppm.

3. Outline the renal cortex, medulla, and calyx based on T2-weighted MRI.

4. Z-spectra are broadened at a higher RF power level due to more prominent direct RF saturation effect. Notably, the CEST effect increases from the cortex, medulla to calyx. This is because pH gradually reduces from the cortex, medulla to the calyx, which causes a persistent reduction in the Iopamidol CEST exchange rate. As such, the saturation efficiency increases when the exchange rate becomes comparable to the saturation field. In addition, the kidney concentrates and excretes Isovue, resulting in a concentration gradient across the kidney.

5. Describe the CEST effect by a six-pool Lorentzian model (i.e., five-pool model plus semisolid macromolecule magnetization transfer (MT) effect in tissue). Corresponding parametric images for CEST contrast and pH mapping in rat kidneys are shown in Fig. 6.

Fig. 4 Comparison of ratiometric analysis of Iopamidol at high magnetic field of 7 T (a) and at sub-high magnetic field of 4.7 T (b). Note that the routine R_{ST} of 5.5 and 4.3 ppm provides a limited pH MRI range below pH = 7 due to the CEST MRI effect coupling at high pH. In comparison, the modified approach extends the pH imaging range to 7.5 [Adapted with permission from Magnetic Resonance in Medicine 2018 (A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using Iopamidol, Volume: 79, Issue: 3, Pages: 1553–1558, DOI: https://doi.org/10.1002/mrm.26817)]]
Fig. 5 Demonstration of regional CEST Z-spectra of calyx (a, b), medulla (c, d), and cortex (e, f) at 1 and 2 μT, respectively [Adapted with permission from Magnetic Resonance in Medicine 2018 (A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using Iopamidol, Volume: 79, Issue: 3, Pages: 1553–1558, DOI: https://doi.org/10.1002/mrm.26817)]
3.5.2 pH Mapping by Using the Smoothing Splines Approach

1. Import your scans (anatomical image, pre- and postinjection CEST images) and save them in a matrix.

2. Use cubic spline algorithm to interpolate both pre- and post-injection Z-spectra as described in Subheading 3.2.3.

3. Use cubic spline interpolated Z-spectra to calculate CESTR at specific ω (+4.2 and +5.5 ppm for Iopamidol) or/and B_1 levels before and after the CA injection and save CEST contrast values in a matrix to construct CESTR maps (in Matlab use fnval function to evaluate interpolating cubic spline values at ω corrected for calculated B_0 shift).

Fig. 6 Demonstration of a renal pH map from a representative rat following Iopamidol injection at 4.7 T. The resolved maps of ST effects at 5.5 ppm (a) and 4.3 ppm (b) were obtained with the IDEAL fitting algorithm, from which the ratiometric map was obtained (c). (d) pH map overlaid on the corresponding T_2-weighted image show the renal pH gradually decreasing from the cortex, medulla to calyx.
4. To remove endogenous effects and to isolate contrast agent contribution, subtract postinjection CEST contrast map to preinjection CEST contrast map (Fig. 7a, b).

5. Calculate the ratio map ratioing difference CEST contrast maps obtained at different ω values (Fig. 7c) or/and B_1 levels.

6. Derive pH map from the ratio map using the experimental calibration curve calculated in Subheading 3.4, step 6 (Fig. 7d).

3.6 **Representation**

The obtained Z-spectra and pH maps can be represented as averaged values in a region of interest (ROI) or as parametric pixel-by-pixel maps. Before the representation, in order to remove residual noise, contrast and pH maps can be filtered, by applying a threshold.
corresponding to the measured signal intensities variability of the exploited MRI scanner to discriminate between enhanced and nonenhanced voxels, following CA injection (see Note 3).

1. Select a noise threshold.
2. Set to 0 or to NaN all pixels inside the map for which the contrast increment is lower than the threshold.
3. Use the anatomical image (or alternatively the first CEST image) to identify and draw one or more ROIs (in Matlab use the roipoly function).
4. Create a mask from the ROI(s), a matrix that contains 1 value inside the region of interest and 0 or NaN values outside.

For representing mean Z-spectra:
5. Calculate mean Z-spectra (pre- and postinjection), ignoring values outside the ROI.

For representing parametric maps:
6. Represent contrast and pH maps overimposed to the anatomical image for having a morphological reference.

Representative mean spectra are shown in Fig. 8, whereas parametric images for CEST contrast quantification and pH values calculated in rat kidneys at 4.7 T and in murine kidneys at 7 T are shown in Fig. 6 and Fig. 7, respectively.

3.7 Quantitative Analysis

Statistics values as mean, median, and standard deviation can be obtained evaluating maps inside different ROI (cortex, medulla, and calyx) to have a quantitative description of the analysis results.

3.8 Results Validation

3.8.1 Evaluation of Analysis Errors

The quality of CEST fitting can be evaluated by the following three methods: (1) coefficient of variation (standard deviation/mean) within ROI, (2) contrast-to-noise ratio (CNR) between the two vials in the phantom study calculated by $\text{CNR} = \frac{|S_1 - S_2|}{\sqrt{(\sigma_1^2 + \sigma_2^2)}}$, where $S_1, 2$ are the mean values for the two ROIs and $\sigma_1, 2$ are their standard deviations, and (3) goodness of fit (R^2) maps.

3.8.2 Comparison with Reference Values from the Literature

It has been documented that kidney pH values are heterogeneous, with a gradient from the cortex, medulla to calyx due to filtration and blood volume difference. MRI-based pH imaging reveals significant different pH values among the three layers, with more neutral pH values (7–7.4) for the cortex region, mild acidic pH values (6.6–7.0) for the medulla, and acidic pH values for the calyx (6.3–6.7). Please consider Table 1 for average pH values measured in specific kidney regions.
Fig. 8 Demonstration of regional CEST Z-spectra and contrast of calyx (a, b), medulla (c, d), and cortex (e, f) at 3 μT. Described CEST contrast became higher from calyx, through medulla, to cortex, due to pH variation.

Table 1
Typical pH values for each specific renal tissue for healthy mice and rats (literature values)

pH	Inner medulla	Outer medulla	Cortex	Field strength, T	Reference
6.3 ± 0.45	7.0 ± 0.29	7.3 ± 0.13	4.7	[81]	
6.6 ± 0.2	6.85 ± 0.15	7.0 ± 0.11	7	[69]	
6.5 ± 0.2	6.8 ± 0.1	7.0 ± 0.1	4.7	[80]	
6.6 ± 0.1	6.7 ± 0.08	6.8 ± 0.1	7	[49, 50]	
4 Notes

1. Data are stored in the 2dseq file for Bruker scanners or in .img file for ASPECT MRI instrumentations. In both cases metadata files (method, acqp and reco for Bruker scanner or dat file for Aspect systems) need to be read for retrieving all the information needed to correctly read the raw binary file. Bruker import file plugins are available in ImageJ for directly opening raw Bruker files (for PV5). Matlab-based scripts for importing Bruker images and for the CEST analysis described in this chapter can be made available upon sending a request to the authors (dario.longo@unito.it; mtmcmaho@gmail.com; pzhesun@emory.edu). More information on the software can be found at the following links: http://www.cim.unito.it/website/research/research_processing.php http://godzilla.kennedykrieger.org/CEST/.

2. The choice of the regularization factor plays a key role in calculating CEST spectra and contrast; in particular, a trade-off between the “zero” estimation, noise suppression and peak identification is needed for an optimal choice [78]. Z-spectra and resulting CEST contrast obtained with different p values are shown in Fig. 9: when the regularization factor increases, the flexibility of the interpolating curve increases, yielding more evident peaks, but at the same time the smoothing of the raw data decreases. In our application p ranged between 0.90 and 0.99.

3. Signal variations (or fluctuations), as a measure of scanner instability, can be evaluated by repeating the same CEST acquisition (without saturation) several times (10–100 repetitions) and then evaluating the oscillation (or standard deviation) of

![Fig. 9 Z-Spectra (a) and CEST contrast (b) obtained with different smoothing factors. The contrast decreases with a decrease of the smoothing factor value](image-url)
the average signal along the repetition. Such value can be exploited to set a threshold for evaluating CEST contrast increase following contrast agent injection due to the contrast agent itself and not due to signal oscillation (i.e., it acts as a detection threshold). Signal fluctuation can be expected to be less than 0.2–1% with slight constant increase with the age of the scanner.

Acknowledgments

The Italian Ministry for Education and Research (MIUR) is gratefully acknowledged for yearly FOE funding to the Euro-BioImaging Multi-Modal Molecular Imaging Italian Node (MMMI). This chapter is based upon work from COST Action PARENCHIMA, supported by European Cooperation in Science and Technology (COST). COST (www.cost.eu) is a funding agency for research and innovation networks. COST Actions help connect research initiatives across Europe and enable scientists to enrich their ideas by sharing them with their peers. This boosts their research, career, and innovation.

PARENCHIMA (renalmri.org) is a community-driven Action in the COST program of the European Union, which unites more than 200 experts in renal MRI from 30 countries with the aim to improve the reproducibility and standardization of renal MRI biomarkers.

References

1. Forsen S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39(11):2892. https://doi.org/10.1063/1.1734121
2. Wolff SD, Balaban RS (1990) Nmr imaging of labile proton-exchange. J Magn Reson 86(1):164–169. https://doi.org/10.1016/0022-2364(90)90220-4
3. Dagher AP, Aletras A, Choyke P, Balaban RS (2000) Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T. J Magn Reson Imaging 12:745–748
4. Sun PZ, Zhou J, Huang J, van Zijl P (2007) Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia. Magn Reson Med 57(2):405–410. https://doi.org/10.1002/mrm.21151
5. Aime S, Delli Castelli D, Fedeli F, Terreno E (2002) A paramagnetic MRI-CEST agent responsive to lactate concentration. J Am Chem Soc 124(32):9364–9365
6. Jokivarsi KT, Grohn HI, Grohn OH, Kauppinen RA (2007) Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia. Magn Reson Med 57(4):647–653. https://doi.org/10.1002/mrm.21181
7. Zhang L, Martins AF, Mai Y, Zhao P, Funk AM, Clavijo Jordan MV, Zhang S, Chen W, Wu Y, Sherry AD (2017) Imaging extracellular lactate in vitro and in vivo using CEST MRI and a paramagnetic shift reagent. Chemistry 23(8):1752–1756. https://doi.org/10.1002/chem.201604558
8. Liu G, Li Y, Pagel MD (2007) Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide. Magn Reson Med 58(6):1249–1256. https://doi.org/10.1002/mrm.21428
9. Li Y, Sheth VR, Liu G, Pagel MD (2011) A self-calibrating PARACEST MRI contrast agent that detects esterase enzyme activity. Contrast Media Mol Imaging 6(4):219–228. https://doi.org/10.1002/cmmi.421
10. McVicar N, Li AX, Suchy M, Hudson RH, Menon RS, Bartha R (2013) Simultaneous in vivo pH and temperature mapping using a PARACEST-MRI contrast agent. Magn Reson Med 70(4):1016–1025. https://doi.org/10.1002/mrm.24539
11. Zhang S, Malloy CR, Sherry AD (2005) MRI thermometry based on PARACEST agents. J Am Chem Soc 127(50):17572–17573. https://doi.org/10.1021/ja053799t
12. Liu G, Li Y, Sheth VR, Pagel MD (2012) Imaging in vivo extracellular pH with a single paramagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. Mol Imaging 11(1):47–57
13. Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9(8):1085–1090. https://doi.org/10.1038/nm907
14. Harston GW, Tee YK, Blockley N, Okell TW, Thandeswaran S, Shaya G, Sheerin F, Cellnerini M, Payne S, Jefford P, Chappell M, Kennedy J (2015) Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging. Brain 138(Pt 1):36–42. https://doi.org/10.1093/brain/awu374
15. Wang E, Wu Y, Cheung JS, Igarashi T, Wu L, Zhang X, Sun PZ (2019) Mapping tissue pH in an experimental model of acute stroke – determination of graded regional tissue pH changes with non-invasive quantitative amide proton transfer MRI. NeuroImage. https://doi.org/10.1016/j.neuroimage.2019.02.022
16. Sun PZ, Wang E, Cheung JS (2012) Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI—correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH. NeuroImage 60(1):1–6. https://doi.org/10.1016/j.neuroimage.2011.11.091
17. Sun PZ, Cheung JS, Wang E, Lo EH (2011) Association between pH-weighted endogenous amide proton chemical exchange saturation transfer MRI and tissue lactic acidosis during acute ischemic stroke. J Cereb Blood Flow Metab 31(8):1743–1750. https://doi.org/10.1038/jcbfm.2011.23
18. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC (2007) Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 27(6):1129–1136. https://doi.org/10.1038/sj.jcbfm.9600424
19. McVicar N, Li AX, Goncalves DF, Bellyou M, Meakin SO, Prado MA, Bartha R (2014) Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J Cereb Blood Flow Metab 34(4):690–698. https://doi.org/10.1038/jcbfm.2014.12
20. Heo HY, Zhang Y, Burton TM, Jiang S, Zhao Y, van Zijl PCM, Leigh R, Zhou J (2017) Improving the detection sensitivity of pH-weighted amide proton transfer MRI in acute stroke patients using extrapolated semisolid magnetization transfer reference signals. Magn Reson Med 78(3):871–880. https://doi.org/10.1002/mrm.26799
21. Jin T, Wang P, Hitchins TK, Kim SG (2017) Enhancing sensitivity of pH-weighted MRI with combination of amide and guanidyl CEST. NeuroImage 157:341–350. https://doi.org/10.1016/j.neuroimage.2017.06.007
22. Zhou J, van Zijl PC (2011) Defining an acidosis-based ischemic penumbra from pH-weighted MRI. Transl Stroke Res 3(1):76–83. https://doi.org/10.1007/s12975-011-0110-4
23. Heo HY, Zhang Y, Jin S, Lee DH, Zhou J (2016) Quantitative assessment of amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging with extrapolated semisolid magnetization transfer reference (EMR) signals: II. Comparison of three EMR models and application to human brain glioma at 3 Tesla. Magn Reson Med 75(4):1630–1639. https://doi.org/10.1002/mrm.25795
24. Cai K, Singh A, Poptani H, Li W, Yang S, Lu Y, Hariharhan H, Zhou XJ, Reddy R (2015) CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor. NMR Biomed 28(1):1–8. https://doi.org/10.1002/nbm.3216
25. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, Wang S, Yan K, Fu DX, Ford E, Tyler B, Blakey J, Laterra J, van Zijl PC (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17(1):130–134. https://doi.org/10.1038/nm.2268
26. Zhao X, Wen Z, Huang F, Lu S, Wang X, Hu S, Zu D, Zhou J (2011) Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66(4):1033–1041. https://doi.org/10.1002/mrm.22891
27. Zhao X, Wen Z, Zhang G, Huang F, Lu S, Wang X, Hu S, Chen M, Zhou J (2013) Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol 15(1):114–122. https://doi.org/10.1007/s11307-012-0563-1

28. Davis KA, Nanga RP, Das S, Chen SH, Hadar PN, Pollard JR, Lucas TH, Shinohara RT, Litt B, Harirahan H, Elliott MA, Detre JA, Reddy R (2015) Glutamate imaging (Glu-CEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci Transl Med 7(309):309ra161. https://doi.org/10.1126/scitranslmed.aaa7095

29. Lee D-H, Lee D-W, Kwon J-I, Woo C-W, Kim S-T, Lee JS, Choi CG, Kim KW, Kim JK, Woo D-C (2018) In vivo mapping and quantification of creatine using chemical exchange saturation transfer imaging in rat models of epileptic seizure. Mol Imaging Biol. https://doi.org/10.1007/s11307-018-1243-6

30. Zhang S, Merritt ME, Woessner DE, Lenkinski RE, Sherry AD (2003) PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 36(10):783–790. https://doi.org/10.1021/ar020228m

31. Aime S, Carrera C, Delli Castelli D, Geninatti Crich S, Terreno E (2005) Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl 44(12):1813–1815. https://doi.org/10.1002/anie.200462566

32. Vinogradov E, Zhang S, Lubag A, Balschi JA, Sherry AD, Lenkinski RE (2005) On-resonance low B1 pulses for imaging of the effects of PARACEST agents. J Magn Reson 176(1):54–63. https://doi.org/10.1016/j.jmr.2005.04.016

33. Winter PM, Cai K, Chen J, Adair CR, Kiefer GE, Athey PS, Gaffeney PJ, Buff CE, Robertson JD, Carduthers SD, Wickline SA, Lanza GM (2006) Targeted PARACEST nanoparticle contrast agent for the detection of fibrin. Magn Reson Med 56(6):1384–1388. https://doi.org/10.1002/mrm.21093

34. Yoo B, Raam MS, Rosenblum RM, Pagel MD (2007) Enzyme-responsive PARACEST MRI contrast agents: a new biomedical imaging approach for studies of the proteasome. Contrast Media Mol Imaging 2(4):189–198. https://doi.org/10.1002/cmni.145

35. Sun PZ, van Zijl PC, Zhou J (2005) Optimization of the irradiation power in chemical exchange dependent saturation transfer experiments. J Magn Reson 175(2):193–200. https://doi.org/10.1016/j.jmr.2005.04.005

36. Woessner DE, Zhang S, Merritt ME, Sherry AD (2005) Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med 53(4):790–799. https://doi.org/10.1002/mrm.20408

37. Zaiss M, Bachert P (2013) Exchange-dependent relaxation in the rotating frame for slow and intermediate exchange – modeling off-resonant spin-lock and chemical exchange saturation transfer. NMR Biomed 26(5):507–518

38. Zhou J, van Zijl PCM (2006) Chemical exchange saturation transfer imaging. Prog Nucl Magn Reson Spectrosc 48:109–136

39. Aime S, Calabi L, Biondi L, De Miranda M, Ghelli S, Paleari L, Rebaudengo C, Terreno E (2005) Iopamidol: exploring the potential use of a well-established x-ray contrast agent for MRI. Magn Reson Med 53(4):830–834. https://doi.org/10.1002/mrm.10441

40. Muller-Lutz A, Khalil N, Schmitt B, Jellus V, Pentang G, Oeltzchner G, Antoch G, Lanzman RS, Wittsack HJ (2014) Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner. MAGMA 27(6):477–485. https://doi.org/10.1007/s10334-014-0433-8

41. Sun PZ, Longo DL, Hu W, Xiao G, Wu R (2014) Quantification of iopamidol multi-site chemical exchange properties for ratiometric chemical exchange saturation transfer (CEST) imaging of pH. Phys Med Biol 59(16):4493

42. Longo DL, Sun PZ, Consolino L, Michelotti FC, Uggeri F, Aime S (2014) A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH mapping with iobitridol. J Am Chem Soc 136(41):14333–14336. https://doi.org/10.1021/ja5059313

43. Chen LQ, Howison CM, Jeffery JJ, Robey IF, Kuo PH, Pagel MD (2014) Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn Reson Med 72(5):1408–1417. https://doi.org/10.1002/mrm.25053

44. Randtke EA, Chen LQ, Corrales LR, Pagel MD (2014) The Hanes-Woolf linear QUESP method improves the measurements of fast chemical exchange rates with CEST MRI. Magn Reson Med 71(4):1603–1612. https://doi.org/10.1002/mrm.24792

45. Anemone A, Consolino L, Longo DL (2017) MRI-CEST assessment of tumour perfusion using X-ray iodinated agents: comparison with a conventional Gd-based agent. Eur Radiol 27(5):2170–2179. https://doi.org/10.1007/s00330-016-4552-7
46. Longo DL, Michelotti F, Consolino L, Bardini P, Digilio G, Xiao G, Sun PZ, Aime S (2016) In vitro and in vivo assessment of non-ionic iodinated radiographic molecules as chemical exchange saturation transfer magnetic resonance imaging tumor perfusion agents. Investig Radiol 51(3):155–162. https://doi.org/10.1097/RLI.0000000000000217

47. Longo DL, Bartoli A, Consolino L, Bardini P, Arena F, Schweiger M, Aime S (2016) In vivo imaging of tumor metabolism and acidosis by combining PET and MRI-CEST pH imaging. Cancer Res 76(22):6463–6470. https://doi.org/10.1158/0008-5472.CAN-16-0825

48. Longo D, Aime S (2017) Iodinated contrast media as pH-responsive CEST agents. In: McMahon MT, Gilad AA, JBM B, PCM VZ (eds) Chemical exchange saturation transfer imaging. vol advances and applications. Pan Stanford Publishing, Singapore, pp 447–466. https://doi.org/10.1201/9781315364421-20

49. Longo DL, Busato A, Lanzardo S, Antico F, Aime S (2013) Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med 70(3):859–864. https://doi.org/10.1002/mrm.24513

50. Longo DL, Cutrin JC, Michelotti F, Irrera P, Aime S (2017) Noninvasive evaluation of renal pH homeostasis after ischemia reperfusion injury by CEST-MRI. NMR Biomed 30(7). https://doi.org/10.1002/nbm.3720

51. Jin T, Autio J, Obata T, Kim SG (2011) Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons. Magn Reson Med 65 (5):1448–1460. https://doi.org/10.1002/mrm.22721

52. Jiang W, Zhou IY, Wen L, Zhou X, Sun PZ (2016) A theoretical analysis of chemical exchange saturation transfer echo planar imaging (CEST-EPI) steady state solution and the CEST sensitivity efficiency-based optimization approach. Contrast Media Mol Imaging 11 (5):415–423. https://doi.org/10.1002/cmmi.1699

53. Ji Y, Zhou IY, Qiu BS, Sun PZ (2017) Progress toward quantitative in vivo chemical exchange saturation transfer (CEST) MRI. Israel J Chem 57(9):809–824. https://doi.org/10.1002/ijch.201700025

54. Kim J, Wu Y, Guo Y, Zheng H, Sun PZ (2015) A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging. Contrast Media Mol Imaging 10(3):163–178. https://doi.org/10.1002/cmmi.1628

55. Liu G, Song X, Chan KW, McMahon MT (2013) Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed 26 (7):810–828. https://doi.org/10.1002/nbm.2899

56. Sun PZ, Xiao G, Zhou IY, Guo Y, Wu R (2016) A method for accurate pH mapping with chemical exchange saturation transfer (CEST) MRI. Contrast Media Mol Imaging 11(3):195–202. https://doi.org/10.1002/cmmi.1680

57. Sun PZ, Sorensen AG (2008) Imaging pH using the chemical exchange saturation transfer (CEST) MRI. Correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH. Magn Reson Med 60(2):390–397. https://doi.org/10.1002/mrm.21653

58. Dixon WT, Ren J, Lubag AJ, Ratnakar J, Vinogradov E, Hancu I, Lenkinski RE, Sherry AD (2010) A concentration-independent method to measure exchange rates in PARA-CEST agents. Magn Reson Med 63 (3):625–632. https://doi.org/10.1002/mrm.22242

59. Yang X, Song X, Ray Banerjee S, Li Y, Byun Y, Liu G, Bhujwalla ZM, Pomper MG, McMahon MT (2016) Developing imidazoles as CEST MRI pH sensors. Contrast Media Mol Imaging 11(4):304–312. https://doi.org/10.1002/cmmi.1693

60. Kujawa A, Kim M, Demetriou E, Anemone A, Livio Longo D, Zaiss M, Golay X (2019) Assessment of a clinically feasible Bayesian fitting algorithm using a simplified description of Chemical Exchange Saturation Transfer (CEST) imaging. J Magn Reson 300:120–134. https://doi.org/10.1016/j.jmr.2019.01.006

61. Pavuluri K, Manoli I, Pass A, Li Y, Vernon HJ, Venditti CP, McMahon MT (2019) Noninvasive monitoring of chronic kidney disease using pH and perfusion imaging. Sci Adv. https://doi.org/10.1126/sciadv.aaw8357

62. Sun PZ (2012) Simplified quantification of labile proton concentration-weighted chemical exchange rate (ksw) with RF saturation time dependent ratiometric analysis (QUESTRA): normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI. Magn Reson Med 67(4):936–942
63. Ward KM, Balaban RS (2000) Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 44(5):799–802

64. Wu R, Longo DL, Aime S, Sun PZ (2015) Quantitative description of radiofrequency (RF) power-based ratiometric chemical exchange saturation transfer (CEST) pH imaging. NMR Biomed 28(5):555–565. https://doi.org/10.1002/nbm.3284

65. Arena F, Irrera P, Consolino L, Colombo Serra S, Zaiss M, Longo DL (2018) Flip-angle based ratiometric approach for pulsed CEST-MRI pH imaging. J Magn Reson 287:1–9. https://doi.org/10.1016/j.jmr.2017.12.007

66. Anemone A, Consolino L, Arena F, Capozza M, Longo DL (2019) Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev. https://doi.org/10.1007/s10555-019-09782-9

67. Xu J, Zaiss M, Xu Z, Li H, Xie J, Gochberg DF, Bachert P, Gore JC (2014) On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T. NMR Biomed 27(4):406–416

68. Sheth VR, Li Y, Chen LQ, Howison CM, Flak CA, Pagel MD (2012) Measuring in vivo tumor pH with CEST-FISP MRI. Magn Reson Med 67(3):760–768. https://doi.org/10.1002/mrm.23038

69. Longo DL, Dastru W, Digilio G, Keupp J, Langereis S, Lanzardo S, Prestigio S, Steinbach O, Terreno E, Uggeri F, Aime S (2011) Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: in vivo studies in mice at 7 T. Magn Reson Med 66(3):760–768. https://doi.org/10.1002/mrm.23038

70. Zhou Y, Wang F, Cheung JS, Zhang X, Fulci G, Sun PZ (2017) Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting. Sci Rep 7(1):84. https://doi.org/10.1038/s41598-017-00167-y

71. Li AX, Hudson RH, Barrett JW, Jones CK, Pasternak SH, Bartha R (2008) Four-pool modeling of proton exchange processes in biological systems in the presence of MRI-paramagnetic chemical exchange saturation transfer (PARACEST) agents. Magn Reson Med 60(5):1197–1206. https://doi.org/10.1002/mrm.21752

72. Zhou Y, Fuss TL, Igarashi T, Jiang W, Zhou X, Cheng LL, Sun PZ (2016) Tissue characterization with quantitative high-resolution magic angle spinning chemical exchange saturation transfer Z-spectroscopy. Anal Chem 88(21):10379–10383. https://doi.org/10.1021/acs.analchem.6b03137

73. Xu J, Zaiss M, Xu Z, Li H, Xie J, Gochberg DF, Bachert P, Gore JC (2014) On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T. NMR Biomed 27(4):406–416

74. Zaiss M, Xu J, Goerke S, Khan IS, Singer RJ, Gore JC, Gochberg DF, Bachert P (2014) Inverse Z-spectrum analysis for spillover-, MT-, and T1-corrected steady-state pulsed CEST-MRI—application to pH-weighted MRI of acute stroke. NMR Biomed 27(3):240–252. https://doi.org/10.1002/nbm.3054

75. Kim M, Gillen J, Landman BA, Zhou J, van Zijl PC (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 61(6):1441–1450. https://doi.org/10.1002/mrm.21873

76. Wei W, Jia G, Flanigan D, Zhou J, Knopp MV (2014) Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3 T: accuracy of B0 field inhomogeneity corrections with gradient echo method. Magn Reson Imaging 32(1):41–47. https://doi.org/10.1016/j.mri.2013.07.009

77. Sun PZ, Farrar CT, Sorensen AG (2007) Correction for artifacts induced by B(0) and B(1) field inhomogeneities in pH-sensitive chemical exchange saturation transfer (CEST) imaging. Magn Reson Imaging 35(1):41–47. https://doi.org/10.1016/j.mri.2006.07.009

78. Stancanello J, Terreno E, Castelli DD, Cabella C, Uggeri F, Aime S (2008) Development and validation of a smoothing-splines-based correction method for improving the analysis of CEST-MR images. Contrast Media Mol Imaging 3(4):136–149. https://doi.org/10.1002/cmmi.240

79. Terreno E, Stancanello J, Longo D, Castelli DD, Milone L, Sanders HM, Kok MB, Uggeri F, Aime S (2009) Methods for an improved detection of the MRI-CEST effect.
80. Wu Y, Zhou IY, Igarashi T, Longo DL, Aime S, Sun PZ (2018) A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using iopamidol. Magn Reson Med 79(3):1553–1558. https://doi.org/10.1002/mrm.26817

81. Raghunand N, Howison C, Sherry AD, Zhang S, Gillies RJ (2003) Renal and systemic pH imaging by contrast-enhanced MRI. Magn Reson Med 49(2):249–257. https://doi.org/10.1002/mrm.10347