IDENTITIES OF THE JONES MONOID J_5

M. H. SHAHZAMANIAN

Abstract. Jones monoids J_n, for $1 < n$, is a family of monoids relevant in knot theory. The purpose of this paper is to characterize the identities satisfied by the Jones monoid J_5.

1. Introduction

Let $1 < n$. The Kauffman monoid K_n is the monoid generated by h_1, \ldots, h_{n-1}, c, subject to the following relations:

$$h_i h_j = h_j h_i, \quad \forall 1 \leq i, j \leq n-1, \text{ if } |i - j| \geq 2,$$

$$h_i h_j h_i = h_i, \quad \forall 1 \leq i, j \leq n-1, \text{ if } |i - j| = 1,$$

$$h_i^2 = ch_i = h_i c, \quad \forall 1 \leq i \leq n-1.\tag{1}$$

L. H. Kauffman in [8] invented these monoids, K_n, as geometric objects. (The name was suggested in [3].) Kauffman monoids play an important role in several parts of mathematics such as knot theory, low-dimensional topology, topological quantum field theory, quantum groups, etc. Jones monoid J_n is the monoid generated by h_1, \ldots, h_{n-1}, subject to the first and second relations in (1) and the relation $h_i^2 = h_i$, for all $1 \leq i \leq n-1$. Jones monoid is a class of diagram monoids like Kauffman monoids. (The name was suggested in [10] to honor the contribution of V. F. R. Jones to the theory).

Chen et al. in [5], provide an algorithm for checking identities in K_3. Kitov and Volkov in [9], extend this algorithm to the Kauffman monoid K_4 and also find a polynomial time algorithm for checking identities in the Jones monoid J_4. They prove that the Kauffman monoids K_3 and K_4 satisfy exactly the same identities. By delivering an identity, they show that K_4 and K_5 do not satisfy the same identities. In the present paper, we follow this line of research and characterize the identities of the monoid J_5. This characterization helps us to explain that for an identity when J_4 satisfies it and J_5 does not satisfy it.

The paper is organized as follows. We begin by recalling background on monoids, identities and Jones monoids, so as to make the paper accessible to as broad an audience as possible. Also, in a separated section we investigate the Jones monoid J_5 and give some lemmas which we need in the

2010 Mathematics Subject Classification. Primary 20M05, 20M07, 20M35.

Keywords and phrases: Monoid, Semigroup, Semigroup identity, Jones Monoid.
proof of the characterization. We then present in the following section our characterization of identities in J_5.

2. Preliminaries

2.1. Monoids. For standard notation and terminology relating to semigroups and monoids, we refer the reader to [1] Chapter 5, [3] Chapters 1-3 and [11] Appendix A]. Let M a finite monoid. Let $a, b \in M$. We say that $a \mathcal{R} b$ if $aM = bM$, $a \mathcal{L} b$ if $Ma = Mb$ and $a \mathcal{H} b$ if $a \mathcal{R} b$ and $a \mathcal{L} b$. Also, we say that $a \mathcal{J} b$, if $MaM = MbM$. The relations $\mathcal{R}, \mathcal{L}, \mathcal{H}$ and \mathcal{J} are Green relations and all of them are equivalence relations first introduced by Green [7]. An important property of finite monoids is the stability property that $J_m \cap Mm = L_m$ and $J_m \cap mM = R_m$, for every $m \in M$. A finite monoid is aperiodic if and only if its \mathcal{H}-relation is trivial.

An element e of M is called idempotent if $e^2 = e$. The set of all idempotents of M is denoted by $E(M)$. An idempotent e of M is the identity of the monoid eMe. The group of units G_e of eMe is called the maximal subgroup of M at e.

An element m of M is called (von Neumann) regular if there exists an element $n \in M$ such that $mmn = m$. Note that an element m is regular if and only if $m \mathcal{L} e$, for some $e \in E(M)$, if and only if $m \mathcal{R} f$, for some $f \in E(M)$. A \mathcal{J}-class J is regular if all its elements are regular, if and only if J has an idempotent, if and only if $J^2 \cap J \neq \emptyset$.

2.2. Identities. Let X be a countably infinite set. We call X an alphabet and each element $x \in X$ an letter. Let X^+ be the set of all finite, non-empty words $x_1 \cdots x_n$ with $x_1, \ldots, x_n \in X$. The set X^+ forms a semigroup under concatenation which is called the free semigroup over X. The monoid $X^* = (X^+)^1$ is called the free monoid over X.

Let $t = x_1 \cdots x_n$ be a word of X^+ with $x_1, \ldots, x_n \in X$. The set $\{x_1, \ldots, x_n\}$ is called the content of t and is denoted $c(t)$ while the number n is referred to as the length of t and is denoted $|t|$. If $x \in c(t)$, we say that a letter x occurs in a word t. We say that a word $s \in X^+$ occurs in t if $t = t_1st_2$ for some $t_1, t_2 \in X^*$. Let $u = u_1 \cdots u_m$ be a word in X^* with $u_1, \ldots, u_m \in X$. We say that u is a subword of the word t, if t can be written $t = u'_0u_1u'_1 \cdots u_mu'_m$ for some words $u'_0, u'_1, \ldots, u'_m \in X^*$. For a subset Y of the set X, let t_Y be the longest subword of t with $c(t_Y) \subseteq Y$.

An identity is an expression $t_1 = t_2$ with $t_1, t_2 \in X^*$. Let M be a monoid. We say that the identity $t_1 = t_2$ holds in M or M satisfies the identity $t_1 = t_2$ if $\phi(t_1) = \phi(t_2)$ for every homomorphism $\phi: X^* \rightarrow M$ and we denote it by $\frac{t_1}{t_2} = \frac{t}{M}$.
2.3. Jones monoids. Let $1 < n$. Jones monoid J_n is the monoid generated by h_1, \ldots, h_{n-1}, subject to the following relations:

$$
\begin{align*}
\text{if } |i - j| \geq 2, & \quad h_i h_j = h_j h_i, \forall i, j \in \{1, \ldots, n - 1\}, \\
\text{if } |i - j| = 1, & \quad h_i h_j h_i = h_i, \forall i, j \in \{1, \ldots, n - 1\}, \\
& \quad h_i^2 = h_i, \forall i \in \{1, \ldots, n - 1\}.
\end{align*}
$$

(2)

Note that J_n is not a submonoid of K_n.

The Kauffman monoids K_n and Jones monoids J_n may be presented by geometric definitions with a series of diagram monoids (see [2]). In the current paper, we only deal with the Jones monoid J_n. Hence, we only mention a version of these geometric definitions which led to defining the Jones monoids.

Let $[n] := \{1, \ldots, n\}$ and $[n]' := \{1', \ldots, n'\}$ be two disjoint copies of the set of the first n positive integers. Let B_n be the set of all partitions π of the $2n$-element set $[n] \cup [n]'$ into 2-element blocks. Such a pair can be represented by a wire diagram as shown in Figure 1. We draw a rectangular chip with $2n$ pins and represent the elements of $[n]$ by pins on the left hand side of the chip (left pins) while the elements of $[n]'$ are represented by pins on the right hand side of the chip (right pins). Usually we omit the numbers $1, 2, \ldots, n$. Now, for $\pi \in B_n$, we represent each block of the partition π is represented by a line referred to as a wire. Thus, each wire connects two points; it is called an l-wire if it connects two left points, an r-wire if it connects two right points, and a t-wire if it connects a left point with a right point. Thus, each wire connects two pins. The wire diagram in Figure 1 corresponds to the pair \{\{1, 2\}, \{3, 5\}, \{4, 1'\}, \{2', 5'\}, \{3', 4'\}\}.

![Figure 1. Wire diagram for an element of B_5](image)

The multiply of two wire diagrams in B_n, we shortcut the right pins of the first chip with the corresponding left pins of the second chip. Thus, we obtain a new chip whose left pins are the left pins of the first chip, right pins are the right pins of the second chip whose wires are sequences of consecutive wires of the factors, see Figure 2 (for more detail refer to [2]).

It is easy to see that the above defined multiplication in B_n is associative and that the chip corresponds to the pair \{\{1, 1'\}, \{2, 2'\}, \ldots, \{n, n'\}\} is the identity element with respect to the multiplication. The monoid B_n is known as the Brauer monoid [4]. The Jones monoid J_n is the submonoid of B_n consisting of all elements of B_n that have a representation as a chip whose
wires do not cross. The element h_i in J_n, for $1 \leq i \leq n-1$, is the chip

\[
\{\{i, i + 1\}, \{i', (i + 1)\}', \{j, j\}' \mid \text{for all } j \neq i, i + 1\},
\]

see Figure 3. These chips satisfy the relations (2). Note that the cardinality of J_n is equal to \(\frac{1}{n+1}\binom{2n}{n}\).

3. The Jones monoid J_5

The Jones monoid J_5 is aperiodic and regular and has three J-classes named $A_1 = \{1\}, A_2$ and A_3. The elements of the J-class A_2 have one l-wire and one r-wire, and the elements of the J-class A_3 have two l-wire and two r-wire. The elements h_1, h_2, h_3 and h_4 are in A_2, and the elements h_1h_3, h_1h_4 and h_2h_4 are in A_3. Since $h_ih_jh_i = h_i$ for all $1 \leq i, j \leq 4$ with $|i - j| = 1$ and $h_i^2 = h_i$ for all $1 \leq i \leq 4$, for every $a \in A_2 \setminus \{h_1, h_2, h_3, h_4\}$, there exist integers $1 \leq i, j \leq 4$ such that

\[
a = \begin{cases}
h_ih_{i+1}\cdots h_{j-1}h_j & \text{if } i < j; \\
h_ih_{i-1}\cdots h_{j+1}h_j & \text{if } i > j.
\end{cases}
\]

The J-class A_2 has four R-classes and four L-classes (see Figure 4). In Figure 4, the rows corresponding to the R-classes and the columns to the L-classes contained in A_2.

If $a \in A_3$, then there exist elements $a_1, a_2 \in J_5$ and $b \in \{h_1h_3, h_1h_4, h_2h_4\}$ such that $a = a_1ba_2$. The J-class A_3 has five R-classes and five L-classes (see Figure 5). In Figure 5, the rows corresponding to the R-classes and the columns to the L-classes contained in A_3.
Lemma 3.1. Let $2 < n_1, n_2$ and let $a = a_1 \cdots a_{n_1}$ and $b = b_1 \cdots b_{n_2}$, for some elements $a_1, \ldots, a_{n_1}, b_1, \ldots, b_{n_2} \in \{h_1, h_2, h_3, h_4\}$, such that $a_1 \cdots a_{n_1-1} \in A_2$, $b_1 \cdots b_{n_2-1} \in A_2$ and $a_1 = b_1$. If one of the following conditions hold:

\begin{align*}
\text{(∗1)} & \quad \{a_{n_1-1}, a_{n_1}\} = \{h_1, h_3\} \quad \text{and} \quad \{b_{n_2-1}, b_{n_2}\} = \{h_2, h_4\}; \\
\text{(∗2)} & \quad a_{n_1-1} = b_{n_2-1} = h_4 \quad \text{and} \quad \{a_{n_1}, b_{n_2}\} = \{h_1, h_2\}; \\
\text{(∗3)} & \quad a_{n_1-1} = b_{n_2-1} = h_1 \quad \text{and} \quad \{a_{n_1}, b_{n_2}\} = \{h_3, h_4\}; \\
\text{(∗4)} & \quad a_{n_1-1} = b_{n_2} = h_4, \quad a_{n_1} = h_1 \quad \text{and} \quad b_{n_2-1} = h_2; \\
\text{(∗5)} & \quad a_{n_1-1} = b_{n_2} = h_1, \quad a_{n_1} = h_4 \quad \text{and} \quad b_{n_2-1} = h_3,
\end{align*}

then the elements a and b are not in the same R-class.

Also, if one of the following conditions hold:

\begin{align*}
\text{(#1)} & \quad \{a_{n_1-1}, b_{n_2-1}\} = \{h_1, h_2\} \quad \text{and} \quad a_{n_1} = b_{n_2} = h_4; \\
\text{(#2)} & \quad \{a_{n_1-1}, b_{n_2-1}\} = \{h_3, h_4\} \quad \text{and} \quad a_{n_1} = b_{n_2} = h_1; \\
\text{(#3)} & \quad a_{n_1-1} = b_{n_2} = h_4, \quad a_{n_1} = h_2 \quad \text{and} \quad b_{n_2-1} = h_1; \\
\text{(#4)} & \quad a_{n_1-1} = b_{n_2} = h_1, \quad a_{n_1} = h_3 \quad \text{and} \quad b_{n_2-1} = h_4,
\end{align*}

then the elements a and b are in the same R-class.
Proof. (∗1): We have the following cases subject to the element a_1:

(1) ($a_1 = h_1$): since $h_1h_2h_3h_1 = h_1h_2h_1h_3 = h_1h_3$, we have $a = h_1h_3$. Also, as $h_1h_2h_3h_4h_2 = h_1h_2h_3h_2h_4 = h_1h_2h_4$, we have $b = h_1h_2h_4$. Now, as h_1h_3 and $h_1h_2h_4$ are not in the same R-class, the elements a and b are not in the same R-class.

(2) ($a_1 = h_3$): we have $a = h_2h_3h_1$. Also, as $h_2h_3h_4h_2 = h_2h_3h_2h_4 = h_2h_4$, we have $b = h_2h_4$. Now, as $h_2h_3h_1$ and h_2h_4 are not in the same R-class, the result follows.

Figure 5. The elements of the J-class A_3
(3) \((a_4 = h_3)\): since \(h_3 h_2 h_1 h_3 = h_3 h_2 h_3 h_1 = h_1 h_3\), we have \(a = h_1 h_3\). Also, we have \(b = h_3 h_3 h_4\). Now, as \(h_1 h_3\) and \(h_3 h_2 h_4\) are not in the same \(\mathcal{R}\)-class, the result follows.

(4) \((a_4 = h_4)\): since \(h_4 h_3 h_2 h_1 h_3 = h_4 h_3 h_2 h_3 h_1 = h_4 h_3 h_1 = h_4 h_3 h_1\), we have \(a = h_4 h_3 h_1\). Also, as \(h_4 h_3 h_2 h_4 = h_4 h_3 h_4 h_2 = h_4 h_2\), we have \(b = h_4 h_2\). Now, as \(h_4 h_3 h_1\) and \(h_4 h_2\) are not in the same \(\mathcal{R}\)-class, the elements \(a\) and \(b\) are not in the same \(\mathcal{R}\)-class.

\((\ast 2)\): If \(a_1 = h_4\), then we have \(a_1 \cdots a_{n_1-1} = b_1 \cdots b_{n_2-1} = h_4\). As, \(h_1 h_4\) and \(h_2 h_4\) are not in the same \(\mathcal{R}\)-class, the elements \(a\) and \(b\) are not in the same \(\mathcal{R}\)-class. If \(a_1 \neq h_4\), then there exist integers \(1 \leq i_1 < n_1 - 1\) and \(1 \leq i_2 < n_2 - 1\) such that \(a_{i_1} = h_3, b_{i_2} = h_3\) and \(a_{i_1+1} \cdots a_{n_1-1} = b_{i_2+1} \cdots b_{n_2-1} = h_4\). Then, we have \(\{a_{i_1} \cdots a_{n_1}, b_{i_2} \cdots b_{n_2}\} = \{h_3 h_4 h_1, h_3 h_4 h_2\} = \{h_3 h_1 h_4, h_3 h_4 h_2\}\). Now, by the previous part, the result follows.

\((\ast 3)\): Similarly the previous part, the elements \(a\) and \(b\) are not in the same \(\mathcal{R}\)-class.

\((\ast 4)\): we have the following cases subject to the element \(a_1\):

1. \((a_1 = h_1)\): we have \(a = h_1 h_2 h_3 h_4 h_1 = h_1 h_2 h_3 h_1 h_4 = h_1 h_2 h_1 h_3 h_4 = h_1 h_3 h_4\) and \(b = h_1 h_2 h_4\). Now, as \(h_1 h_3 h_4\) and \(h_1 h_2 h_4\) are not in the same \(\mathcal{R}\)-class, the elements \(a\) and \(b\) are not in the same \(\mathcal{R}\)-class.

2. \((a_1 = h_2)\): we have \(a = h_2 h_3 h_4 h_1\) and \(b = h_2 h_4\). Now, as \(h_2 h_3 h_4 h_1\) and \(h_2 h_4\) are not in the same \(\mathcal{R}\)-class, the elements \(a\) and \(b\) are not in the same \(\mathcal{R}\)-class.

3. \((a_1 = h_3)\): we have \(a = h_3 h_4 h_1\) and \(b = h_3 h_2 h_4\). Now, as \(h_3 h_4 h_1\) and \(h_3 h_2 h_4\) are not in the same \(\mathcal{R}\)-class, the elements \(a\) and \(b\) are not in the same \(\mathcal{R}\)-class.

4. \((a_1 = h_4)\): we have \(a = h_4 h_1\) and \(b = h_4 h_3 h_2 h_4 = h_4 h_3 h_4 h_2 = h_4 h_2\). Now, as \(h_4 h_1\) and \(h_4 h_2\) are not in the same \(\mathcal{R}\)-class, the elements \(a\) and \(b\) are not in the same \(\mathcal{R}\)-class.

\((\ast 5)\): Similarly Part \((\ast 4)\), the elements \(a\) and \(b\) are not in the same \(\mathcal{R}\)-class.

\((\#1)\): By symmetry, we may assume that \(a_{n_1-1} = h_1\) and \(b_{n_2-1} = h_2\). We have the following cases subject to the element \(a_1\):

1. \((a_1 = h_1)\): we have \(a = h_1 h_4\) and \(b = h_1 h_2 h_4\). Now, as \(h_1 h_4\) and \(h_1 h_2 h_4\) are in the same \(\mathcal{R}\)-class, the elements \(a\) and \(b\) are in the same \(\mathcal{R}\)-class.

2. \((a_1 = h_2)\): we have \(a = h_2 h_1 h_4\) and \(b = h_3 h_4\). Now, as \(h_2 h_1 h_4\) and \(h_2 h_4\) are in the same \(\mathcal{R}\)-class, the result follows.

3. \((a_1 = h_3)\): we have \(a = h_3 h_2 h_1 h_4\) and \(b = h_3 h_2 h_4\). Now, as \(h_3 h_2 h_1 h_4\) and \(h_3 h_2 h_4\) are in the same \(\mathcal{R}\)-class, the result follows.

4. \((a_1 = h_4)\): since \(h_4 h_3 h_2 h_1 h_4 = h_4 h_3 h_2 h_3 h_1 = h_4 h_3 h_4 h_2 h_1 = h_4 h_2 h_1\), we have \(a = h_4 h_2 h_1\). Also, as \(h_4 h_3 h_2 h_4 = h_4 h_3 h_4 h_2 = h_4 h_2\), we have \(b = h_4 h_2\). Now, as \(h_4 h_2 h_1\) and \(h_4 h_2\) are in the same \(\mathcal{R}\)-class, the elements \(a\) and \(b\) are in the same \(\mathcal{R}\)-class.

Similarly Part \((\#1)\), other Parts \((\#2), (\#3)\) and \((\#4)\) hold.
Similarly Lemma 3.1 we have the following lemma.

Lemma 3.2. Let $2 < n_1, n_2$ and let $a = a_1 \cdots a_{n_1}$ and $b = b_1 \cdots b_{n_2}$, for some elements $a_1, \ldots , a_{n_1}, b_1, \ldots , b_{n_2} \in \{ h_1, h_2, h_3, h_4 \}$, such that $a_2 \cdots a_{n_1} \in A_2, b_2 \cdots b_{n_2} \in A_2$ and $a_{n_1} = b_{n_2}$. If one of the following conditions hold:

- $(*)$ $\{ a_1, a_2 \} = \{ h_1, h_3 \}$ and $\{ b_1, b_2 \} = \{ h_2, h_4 \}$;
- $(*)$ $\{ a_1, b_1 \} = \{ h_1, h_2 \}$ and $a_2 = b_2 = h_4$;
- $(*)$ $\{ a_1, b_1 \} = \{ h_3, h_4 \}$ and $a_2 = b_2 = h_1$;
- $(*)$ $a_1 = b_2 = h_4$, $a_2 = h_2$ and $b_1 = h_1$;
- $(*)$ $a_1 = b_2 = h_1$, $a_2 = h_3$ and $b_1 = h_4$,

then the elements a and b are not in the same \mathcal{L}-class.

Also, if one of the following conditions hold:

- $(#1)$ $a_1 = b_1 = h_4$ and $\{ a_2, b_2 \} = \{ h_1, h_2 \}$;
- $(#2)$ $a_1 = b_1 = h_1$ and $\{ a_2, b_2 \} = \{ h_3, h_4 \}$;
- $(#3)$ $a_1 = b_2 = h_4$, $a_2 = h_1$ and $b_1 = h_2$;
- $(#4)$ $a_1 = b_2 = h_1$, $a_2 = h_4$ and $b_1 = h_3$,

then the elements a and b are in the same \mathcal{L}-class.

4. Characterization of the identities of the monoid \mathcal{J}_5

Let w and v be words of X^*.

Lemma 4.1. If $w \overset{\mathcal{T}_5}{=} v$, then we have $c(w) = c(v)$.

Proof. Suppose the contrary, that there exists an letter $x \in c(w) \setminus c(v)$. Substituting for all letters in $c(v)$ the value h_1, we obtain $v = h_1$. Substituting for all letters in $c(w) \setminus \{ x \}$ the value h_1 and the letter x the value h_3 we obtain $w = h_3$ or $w \in A_3$. Hence, \mathcal{J}_5 does not satisfy the identity $w = v$. Also, if there exists an letter $x \in c(v) \setminus c(w)$, we have a similar contradiction. Thus, we have $c(w) = c(v)$. \hfill \Box

By Lemma 4.1 if \mathcal{J}_5 satisfies the identity $w = v$, then $w = 1$ if and only if $v = 1$. Then, we assume that $w, v \neq 1$ and $c(w) = c(v)$.

Let Y be a non empty subset of $c(w)$. By Lemma 4.1 we have $c(w_Y) = c(v_Y)$. There exist letters $y_1, \ldots , y_r, z_1, \ldots , z_s$ in Y such that $w_Y = y_1 \cdots y_r$ and $v_Y = z_1 \cdots z_s$.

Lemma 4.2. If $w_Y \overset{\mathcal{R}}{=} v_Y$, then we have $y_1 = z_1$ and $y_r = z_s$.

Proof. Let $a_1, a_2 \in A_3$ such that a_1 and a_2 are not in the same \mathcal{R}-class. Substituting the letter y_1 the value a_1, the letter z_1 the value a_2, we obtain that w and v are not in the same \mathcal{R}-class. Then, \mathcal{J}_5 does not satisfy the identity $w_Y = v_Y$, a contradiction.

Similarly, we have $y_r = z_s$. \hfill \Box

Throughout the remainder of this section before the main theorem, we assume that the following conditions hold for the subset Y as follows:

1. $y_1 = z_1$;
Lemma 4.3. If $w_Y \not\preceq v_Y$, then each word of length 2 occurs in w_Y if and only if it occurs in v_Y.

Proof. We prove the result by contradiction.

Let xy be a word of length 2 occurs in w_Y and does not occur in v_Y. Since xy occurs in w_Y, there exist letters $y_i, y_{i+1} \in Y$, for some integer $1 \leq i \leq r - 1$ such that $y_i = x$ and $y_{i+1} = y$. We have two cases as follows:

$(x \neq y)$: If $|c(w_Y)| = 2$, then there exists an integer $1 \leq j < s$ such that $z_1 = \cdots = z_j = y$ and $z_{j+1} = \cdots = z_s = x$. Substituting the letter y_i the value h_3 and the letter y_{i+1} the value h_1h_2, we obtain that $w_Y \in A_3$, because $h_3h_1h_2 \in A_3$. Now, as $v_Y = h_1h_2h_3 \in A_2$, there is a contradiction. Hence, we suppose that $|c(w_Y)| > 2$. Again, by substituting the letter y_i the value h_3, the letter y_{i+1} the value h_1h_2 and for all letters in $c(w_Y) \setminus \{y_i, y_{i+1}\}$ the value h_2, we again obtain that $w_Y \in A_3$. Also, since $h_2h_3h_2 = h_2$, $h_3h_2h_3 = h_3$, $zy = h_2h_1h_2 = h_2$ for all $z \in c(w_Y) \setminus \{y_i, y_{i+1}\}$ and xy does not occur in v_Y, one of the following conditions hold:

$(z_1 = x)$: $v_Y = h_3h_2$ or $v_Y = h_3$;
$(z_1 = y)$: $v_Y = h_1h_2$ or $v_Y = h_1h_2h_3$;
$(z_1 \not\in \{x, y\})$: $v_Y = h_2h_3$ or $v_Y = h_2$.

Thus, we have $v_Y \in A_2$, a contradiction.

$(x = y)$: First suppose that $|c(w_Y)| = 1$. Substitute the letter y_i the value $h_1h_2h_3$. We have $w_Y \in A_3$ and $v_Y \in A_2$, because x^2 does not occur in v_Y. A contradiction. Hence, we suppose that $|c(w_Y)| > 1$. Substituting the letter y_i the value $h_3h_2h_1$ and for all letters in $c(w_Y) \setminus \{y_i\}$ the value h_2, we obtain that $w_Y \in A_3$, because $(h_3h_2h_1)^2 \in A_3$. Also, since $h_3h_2h_1h_2 = h_3h_2$ and x^2 does not occur in v_Y, one of the following conditions hold:

$(z_1 \neq y_i)$: $v_Y = h_2h_1$ or $v_Y = h_2$;
$(z_1 = y_i)$: $v_Y = h_3h_2h_1$ or $v_Y = h_3h_2$.

Thus, we have $v_Y \in A_2$, a contradiction.

Lemma 4.4. Let $x, y, z, t \in Y$ with $xy \neq zt$. Suppose that there exist words w_1, w_2, v_1 and v_2 in Y^* such that $w_Y = w_1xyw_2$ and $v_Y = v_1ztv_2$. If one of the following conditions hold:

1. if xy and zt do not occur in w_1x and v_1z, and $x = z$;
2. if y does not occur in w_1x and v_1z, and $y = t$;
3. if xy and zt do not occur in yw_2 and tv_2, and $y = t$;
4. if x does not occur in yw_2 and tv_2, and $x = z$,

then J_5 does not satisfy the identity $w_Y = v_Y$.

Proof. (1) Since $x = z$ and $xy \neq zt$, by symmetry we may assume that one of the following conditions holds:
(I) $xy = xx$, $zt = xt$ and $x \neq t$;
(II) $zt = xt$ and $|[x,y,t]| = 3$.

For every case, we substitute as follows:

(I) substitute the letter x the value $h_2h_3h_4$ and the letter t the value h_1h_2. If there is another letter in $c(w_Y) \setminus \{x,t\}$, substitute it the value h_3h_2. By Lemma 3.1 (2), we obtain that w_Y and v_Y are in different \mathcal{R}-classes.

(II) substitute the letter x the value h_3h_4, the letter y the value h_1h_2 and the letter t the value h_2. If there is a letter in $c(w_Y) \setminus \{x,y,t\}$, substitute it the value h_3h_2. Again, by Lemma 3.1 (2), we obtain that w_Y and v_Y are in different \mathcal{R}-classes.

(2) Substitute the letter x the value h_3h_4, the letter z the value h_4h_3, the letter y the value $h_2h_3h_1$ and the other letters the value h_3. Since $y_1 = z_1$, one of the following conditions holds:

(I) $w_1xy = h_3h_4h_2h_3h_1$ and $v_1zy = h_3h_4h_3h_2h_3h_1 = h_3h_1$;

(II) $w_1xy = h_1h_3h_4h_2h_3h_1 = h_1h_2h_3h_1$ and $v_1zy = h_4h_3h_2h_3h_1 = h_4h_3h_1$.

In both cases, by Lemma 3.1 (1), we obtain that w_Y and v_Y are in different \mathcal{R}-classes.

(3) As $y = t$ and $xy \neq zt$, by symmetry we may assume that one of the following conditions holds:

(I) $xy = xx$, $zt = xx$ and $x \neq z$;

(II) $zt = yz$ and $|[x,y,z]| = 3$.

Like as above, for every case, we substitute as follows:

(I) substitute the letter x the value $h_4h_3h_2$ and the letter z the value h_2h_3. If there is another letter in $c(w_Y) \setminus \{x,z\}$, substitute it the value h_2h_3. By Lemma 3.2 (2), we obtain that w_Y and v_Y are in different \mathcal{L}-classes.

(II) substitute the letter x the value h_2h_1, the letter y the value h_4h_3 and the letter z the value h_2. If there is a letter in $c(w_Y) \setminus \{x,y,z\}$, substitute it the value h_2h_3. Again, by Lemma 3.2 (2), we obtain that w_Y and v_Y are in different \mathcal{L}-classes.

(4) Substitute the letter y the value h_3h_4, the letter t the value h_4h_3, the letter x the value $h_1h_3h_2$ and the other letters the value h_3. Since $y_r = z_s$, one of the following conditions holds:

(I) $xyw_3 = h_1h_3h_2h_3h_4h_3 = h_1h_3$ and $xtv_2 = h_1h_3h_2h_4h_3$;

(II) $xyw_2 = h_1h_3h_2h_4h_3 = h_1h_3h_4$ and $xtv_2 = h_1h_3h_2h_4h_3 = h_1h_3h_2h_4$.

In both cases, by Lemma 3.2 (1), we obtain that w_Y and v_Y are in different \mathcal{L}-classes.

\begin{lemma}
Let $x,y,z,t \in Y$ such that $x \neq z$ and $y \neq t$. Suppose that there exist words w_1, w_2, v_1 and v_2 in Y^* such that $w_Y = w_1xyw_2$ and $v_Y = v_1ztv_2$. Let $C_1 = \{w_1x, v_1z\}$, $C_2 = \{yw_2, tv_2\}$ and let $C \in \{C_1, C_2\}$. If xy and zt do not occur in the elements of C, and one of the following states holds:

(\textbf{xt}): xt does not occur in the elements of C;

(\textbf{zy}): zy does not occur in the elements of C;

\end{lemma}
(\(xu, zu'\)): there exists a subset \(\{x, y, z, t\} \subseteq Y' \subseteq Y\) such that \(Y' = Y_1 \cup Y_2\), for some subsets \(Y_1\) and \(Y_2\), with the following conditions:

1. \(Y_1 \cap Y_2 = \emptyset\);
2. if \(u \in Y_1\), then \(xu\) does not occur in \(o_{Y'}\), for \(o \in C\);
3. if \(u' \in Y_2\), then \(zu'\) does not occur in \(o_{Y'}\), for \(o \in C\);
4. \(xy\) and \(zt\) does not occur in \(o_{Y'}\), for \(o \in C\),

(\(uy, u't\)): there exists a subset \(\{x, y, z, t\} \subseteq Y' \subseteq Y\) such that \(Y' = Y_1 \cup Y_2\), for some subsets \(Y_1\) and \(Y_2\), with the following conditions:

1. \(Y_1 \cap Y_2 = \emptyset\);
2. if \(u \in Y_1\), then \(uy\) does not occur in \(o_{Y'}\), for \(o \in C\);
3. if \(u' \in Y_2\), then \(u't\) does not occur in \(o_{Y'}\), for \(o \in C\);
4. \(xy\) and \(zt\) does not occur in \(o_{Y'}\), for \(o \in C\),

then \(J_5\) does not satisfy the identity \(w_y = v_y\).

Proof. Since \(x \neq z\) and \(y \neq t\), by symmetry, we may assume that one of the following states holds:

(\(xx, zz\)): \(x = y, z = t\) and \(x \neq z\);

(\(xx, zt\)): \(x = y\) and \(\{x, z, t\}\) = 3;

(\(xy, zx\)): \(x = y\) and \(\{x, y, z\}\) = 3;

(\(xy, yx\)): \(x = t\) and \(\{x, y, z\}\) = 3;

(\(xy, zt\)): \(\{x, y, z, t\}\) = 4.

For every state (\(xx, zz\), (\(xx, zt\), (\(xy, zx\), (\(xy, yx\)), (\(xy, zt\) and every states of the lemma, we define a homomorphism \(\phi: c(\omega_{Y'})^* \rightarrow J_5\) as follows:

(\(xx, zz\), (\(xt\)): \(\phi(x) = h_1h_2h_1, \phi(z) = h_2h_3h_2\) and for every \(u \in c(\omega_{Y'}) \setminus \{x, z\}\), \(\phi(u) = h_2h_3\).

(\(xx, zz\), (\(zy\)): \(\phi(x) = h_1h_2h_3, \phi(z) = h_2h_3h_4\) and for every \(u \in c(\omega_{Y'}) \setminus \{x, z\}\), \(\phi(u) = h_3h_2\).

(\(xx, zz\), (\(xu, zu'\)): \(\phi(x) = h_3h_2h_1, \phi(z) = h_2h_3h_4\), for every \(u \in Y_1 \setminus \{x\}\), \(\phi(u) = h_3\), for every \(u' \in Y_2 \setminus \{z\}\), \(\phi(u') = h_2\) and for every \(u'' \in Y \setminus Y'\), \(\phi(u'') = 1\).

(\(xx, zz\), (\(uy, u't\)): \(\phi(x) = h_1h_2h_3, \phi(z) = h_4h_2h_2\), for every \(u \in Y_1 \setminus \{x\}\), \(\phi(u) = h_3\), for every \(u' \in Y_2 \setminus \{z\}\), \(\phi(u') = h_2\) and for every \(u'' \in Y \setminus Y'\), \(\phi(u'') = 1\).

(\(xx, zt\), (\(xt\)): \(\phi(x) = h_3h_2h_1, \phi(z) = h_2, \phi(t) = h_4h_3\) and for every \(u \in c(\omega_{Y'}) \setminus \{x, z, t\}\), \(\phi(u) = h_2h_3\).

(\(xx, zt\), (\(zy\)): \(\phi(x) = h_1h_2h_3, \phi(z) = h_3h_4, \phi(t) = h_2\) and for every \(u \in c(\omega_{Y'}) \setminus \{x, z, t\}\), \(\phi(u) = h_3h_2\).

(\(xx, zt\), (\(xu, zu'\)): \(\phi(x) = h_3h_2h_1, \phi(t) = h_2h_3\), for every \(u \in Y_1 \setminus \{x, z\}\), \(\phi(u) = h_3, \phi(u') = h_2\) and for every \(u'' \in Y \setminus Y'\), \(\phi(u'') = 1\). If \(z \in Y_1\) then \(\phi(z) = h_3h_4\), otherwise, \(\phi(z) = h_2h_3h_4\).

(\(xx, zt\), (\(uy, u't\)): \(\phi(x) = h_1h_2h_3, \phi(z) = h_3h_2\), for every \(u \in Y_1 \setminus \{x, t\}\), \(\phi(u) = h_3\), for every \(u' \in Y_2 \setminus \{z, t\}\), \(\phi(u') = h_2\) and for every \(u'' \in Y \setminus Y'\), \(\phi(u'') = 1\). If \(t \in Y_1\) then \(\phi(t) = h_4h_3\), otherwise, \(\phi(t) = h_4h_3h_2\).

(\(xy, zx\), (\(xt\)): \(\phi(x) = h_3h_2h_1, \phi(y) = h_3, \phi(z) = h_2\) and for every \(u \in c(\omega_{Y'}) \setminus \{x, y, z\}\), \(\phi(u) = h_2h_3\).
((xy, zx), (zy)): $\phi(x) = h_2h_3$, $\phi(y) = h_1h_2$, $\phi(z) = h_3h_4$ and for every $u \in c(w'Y) \setminus \{x, y, z\}$, $\phi(u) = h_3h_2$.

((xy, zx), (xu, zu')): $\phi(x) = h_2h_1$, $\phi(y) = h_3$, for every $u \in Y_1 \setminus \{z\}$, $\phi(u) = h_3$, for every $u' \in Y_2 \setminus \{z, x\}$, $\phi(u') = h_2$ and for every $u'' \in Y \setminus Y'$, $\phi(u'') = 1$. If $z \in Y_1$ then $\phi(z) = h_3h_4$, otherwise, $\phi(z) = h_2h_3h_4$.

((xy, zx), (uy, u't)): $\phi(x) = h_4h_3$, $\phi(y) = h_1h_2$, for every $u \in Y_1 \setminus \{y, x\}$, $\phi(u) = h_3$, for every $u' \in Y_2 \setminus \{y, z\}$, $\phi(u') = h_2$ and for every $u'' \in Y \setminus Y'$, $\phi(u'') = 1$. If $y \in Y_1$ then $\phi(y) = h_1h_2h_3$, otherwise, $\phi(y) = h_1h_2$.

((xy, yx), (xt)): $\phi(x) = h_3h_2h_3h_1$, $\phi(y) = h_3h_2$ and for every $u \in c(w'Y) \setminus \{x, y\}$, $\phi(u) = h_3h_2$.

((xy, yx), (xu, zu')): $\phi(x) = h_2h_1$, $\phi(y) = h_1h_2$, for every $u \in Y_1 \setminus \{y\}$, $\phi(u) = h_3$, for every $u' \in Y_2 \setminus \{y, z\}$, $\phi(u') = h_2$ and for every $u'' \in Y \setminus Y'$, $\phi(u'') = 1$.

((xy, yx), (uy, u't)): $\phi(x) = h_4h_3$, $\phi(y) = h_1h_2$, for every $u \in Y_1 \setminus \{x\}$, $\phi(u) = h_3$, for every $u' \in Y_2 \setminus \{y, z\}$, $\phi(u') = h_2$ and for every $u'' \in Y \setminus Y'$, $\phi(u'') = 1$.

((xy, zt), (xt)): $\phi(x) = h_2h_1$, $\phi(y) = h_3$, $\phi(z) = h_2$, $\phi(t) = h_4h_3$ and for every $u \in c(w'Y) \setminus \{x, y, z, t\}$, $\phi(u) = h_2h_3$.

((xy, zt), (zy)): $\phi(x) = h_3$, $\phi(y) = h_1h_2$, $\phi(z) = h_3h_4$, $\phi(t) = h_2$ and for every $u \in c(w'Y) \setminus \{x, y, t\}$, $\phi(u) = h_3h_2$.

((xy, zt), (xu, zu')): $\phi(y) = h_3h_2$, $\phi(t) = h_2$, for every $u \in Y_1 \setminus \{y, z\}$, $\phi(u) = h_3h_2$, for every $u' \in Y_2 \setminus \{y, z\}$, $\phi(u') = h_2$ and for every $u'' \in Y \setminus Y'$, $\phi(u'') = 1$. If $x \in Y_1$ then $\phi(x) = h_3h_2h_1$, otherwise, $\phi(x) = h_2h_1$. Also, if $z \in Y_1$ then $\phi(z) = h_3h_4$, otherwise, $\phi(z) = h_2h_3h_4$.

((xy, zt), (uy, u't)): $\phi(x) = h_2h_3$, $\phi(y) = h_3h_2$, for every $u \in Y_1 \setminus \{x, y, t\}$, $\phi(u) = h_3h_2$, for every $u' \in Y_2 \setminus \{y, z, t\}$, $\phi(u') = h_2$ and for every $u'' \in Y \setminus Y'$, $\phi(u'') = 1$. If $y \in Y_1$ then $\phi(y) = h_1h_2h_3$, otherwise, $\phi(y) = h_1h_2$. Also, if $t \in Y_1$ then $\phi(t) = h_3h_2$, otherwise, $\phi(t) = h_2h_3h_2$.

By the substitutions for the state (xx, zz) subject to the conditions of the states (xt), (zy), (xu, zu') and (uy, u't), the elements $\phi(xx)$ and $\phi(zz)$ are in A_3, and the elements $\phi(w_1x)$ and $\phi(v_1z)$ are in A_2, for $C = C_1$. Also, for $C = C_2$, the elements $\phi(yw_2)$ and $\phi(tv_2)$ are in A_2. These substitutions satisfy the conditions of Lemma 3.19*(1) or Lemma 3.20*(1). Therefore, \mathcal{J}_5 does not satisfy the identity $w_Y = v_Y$, for the state (xx, zz) and $C \in \{C_1, C_2\}$. We have same result for other states (xx, zt), (xy, zx), (xy, yx) and (xy, zt) by others substitutions as above. Hence, we conclude that \mathcal{J}_5 does not satisfy the identity $w_Y = v_Y$.

Theorem 4.6. Let w and v be words of X^*. The monoid \mathcal{J}_5 satisfies the identity $w = v$ if and only if $c(w) = c(v)$ and for every non empty subset Y of $c(w)$, the following conditions hold:

1. the first letter of w_Y and v_Y are equal;
2. the last letter of w_Y and v_Y are equal;
(3) each word of length 2 occurs in \(w_Y \) if and only if it occurs in \(v_Y \);
(4) let \(x, y, z, t \in Y \) with \(xy \neq zt \). Suppose that there exist words \(w_1, w_2, v_1 \) and \(v_2 \) in \(Y^* \) such that \(w_Y = w_1xyw_2 \) and \(v_Y = v_1ztv_2 \). Let \(C_1 = \{ w_1x, v_1z \} \), \(C_2 = \{ yw_2, tv_2 \} \) and let \(C \in \{ C_1, C_2 \} \). The following conditions hold:

(a) if \(xy \) and \(zt \) do not occur in the elements of \(C_1 \), then \(x \neq z \);
(b) if \(y \) does not occur in the elements of \(C_1 \), then \(y \neq t \);
(c) if \(xy \) and \(zt \) do not occur in the elements of \(C_2 \), then \(y \neq t \);
(d) if \(x \) does not occur in the elements of \(C_2 \), then \(x \neq z \);
(e) if \(x \neq z \), \(y \neq t \) and, \(xy \) and \(zt \) do not occur in the elements of \(C \) then the following conditions hold:

(i) \(zt \) occurs in the elements of \(C \);
(ii) \(zy \) occurs in the elements of \(C \);
(iii) there does not exist a subset \(\{ x, y, z, t \} \subseteq Y' \subseteq Y \) such that \(Y' = Y_1 \cup Y_2 \), for some subsets \(Y_1 \) and \(Y_2 \), with the following conditions:

(A) \(Y_1 \cap Y_2 = \emptyset \);
(B) if \(u \in Y_1 \), then \(xu \) does not occur in \(oY' \), for \(o \in C \);
(C) if \(u' \in Y_2 \), then \(zu' \) does not occur in \(oY' \), for \(o \in C \);
(D) \(xy \) and \(zt \) does not occur in \(oY' \), for \(o \in C \);

(iv) there does not exist a subset \(\{ x, y, z, t \} \subseteq Y' \subseteq Y \) such that \(Y' = Y_1 \cup Y_2 \), for some subsets \(Y_1 \) and \(Y_2 \), with the following conditions:

(A) \(Y_1 \cap Y_2 = \emptyset \);
(B) if \(u \in Y_1 \), then \(uv \) does not occur in \(oY' \), for \(o \in C \);
(C) if \(u' \in Y_2 \), then \(u't \) does not occur in \(oY' \), for \(o \in C \);
(D) \(xy \) and \(zt \) does not occur in \(oY' \), for \(o \in C \).

Proof. If \(J_5 \) satisfies the identity \(w = v \), then by Lemmas 4.1, we have \(c(w) = c(v) \) and \(J_5 \) satisfies \(w_Y = v_Y \), for every subset \(Y \subseteq c(w) \). It is followed easily by substituting every letter in \(X \times Y \) value 1. Then, by 4.2, 4.3, 4.4 and 4.5, all Conditions (1), (2), (3) and (4) hold.

Now, suppose the contrary that \(J_5 \) does not satisfy the identity \(w = v \), \(c(w) = c(v) \) and the conditions of the theorem hold. Hence, there exists a homomorphism \(\phi: c(w)^* \to J_5 \) such that \(\phi(w) \neq \phi(v) \). Let \(Y = \{ y \in c(w) | \phi(y) \neq 1 \} \). It easily follows that \(\phi(w_Y) \neq \phi(v_Y) \). There exist letters \(y_1, \ldots, y_r, z_1, \ldots, z_s \) in \(Y \) such that \(w_Y = y_1 \ldots y_r \) and \(v_Y = z_1 \ldots z_s \). By Condition (3), we have \(\phi(w_Y), \phi(v_Y) \in A_2 \) or \(\phi(w_Y), \phi(v_Y) \in A_3 \). By Conditions (1) and (2), we have \(y_1 = z_1 \) and \(y_r = z_s \). Now, as \(J_5 \) is aperiodic, if \(\phi(w_Y), \phi(v_Y) \in A_2 \), then we have \(\phi(w_Y) = \phi(v_Y) \), a contradiction. Hence, we have \(\phi(w_Y), \phi(v_Y) \in A_3 \). Since \(\phi(w_Y) \neq \phi(v_Y) \) and \(J_5 \) is aperiodic, one or both of the following conditions holds:

(1) \(\phi(w_Y) \) and \(\phi(v_Y) \) are not in the same \(R \)-class;
(2) \(\phi(w_Y) \) and \(\phi(v_Y) \) are not in the same \(L \)-class.
First, we suppose that \(\phi(w_Y) \) and \(\phi(v_Y) \) are not in the same \(R \)-class. Since \(y_1 = z_1 \), we have \(\phi(y_1) = \phi(z_1) \). If \(\phi(y_1) \in A_3 \), then \(\phi(w_Y) \) and \(\phi(v_Y) \) are in the same \(R \)-class. Hence, we have \(\phi(y_1) \in A_2 \). As \(\phi(w_Y), \phi(v_Y) \in A_3 \), there exist integers \(1 \leq i_1 < r \) and \(1 \leq i_2 < s \) such that \(\phi(y_i \cdots y_{i_1}) \in A_2 \), \(\phi(z_i \cdots z_{i_2}) \in A_2 \) and \(\phi(z_1 \cdots z_{i_2+1}) \in A_3 \). If \(y_i y_{i_1} = z_i \cdots z_{i_2+1} \), then we have \(y_i = z_{i_2} \). It follows that \(\phi(y_i y_{i_1}) = \phi(z_1 \cdots z_{i_2}) \), because \(F \) is aperiodic, \(\phi(y_i y_{i_1}), \phi(z_1 \cdots z_{i_2}) \in A_2 \) and \(y_1 = z_1 \). Now, as \(y_{i_1+1} = z_{i_2+1}, \phi(w_Y) \) and \(\phi(v_Y) \) are in the same \(R \)-class, a contradiction. Then, we have \(y_i y_{i_1+1} \neq z_{i_2} z_{i_2+1} \).

If \(\phi(y_{i_1+1}) \in A_3 \), then \(y_{i_1+1} \) does not occur in \(y_1 \cdots y_{i_1} \) and \(z_1 \cdots z_{i_2} \) and by Condition (4).(b), we have \(y_{i_1+1} \neq z_{i_2+1} \). If \(z_{i_2+1} \) does not occur in \(y_1 \cdots y_{i_3} \) and \(z_1 \cdots z_{i_2} \), then the words \(w_{\{y_{i_1+1}, z_{i_2+1}\}} \) and \(v_{\{y_{i_1+1}, z_{i_2+1}\}} \) do not satisfy Condition (1). Hence, \(z_{i_2+1} \) occurs in one or both words \(y_1 \cdots y_{i_1} \) and \(z_1 \cdots z_{i_2} \) that causes \(\phi(z_{i_2+1}) \in A_2 \). Since \(\phi(z_1 \cdots z_{i_2+1}) \in A_3 \) and \(\phi(z_{i_2+1}) \in A_2 \), we have \(\phi(z_{i_2} z_{i_2+1}) \in A_3 \) and, thus, the word \(z_{i_2} z_{i_2+1} \) does not occur in \(y_1 \cdots y_{i_3} \) and \(z_1 \cdots z_{i_2} \). Now, as \(y_{i_1+1} \) does not occur in \(y_1 \cdots y_{i_1} \) and \(z_1 \cdots z_{i_2} \), by Condition (4).(a), we have \(y_i \neq z_{i_2} \). Now, as \(y_{i_1+1} \neq z_{i_2+1} \), Condition (4).(e).(i) or (4).(e).(ii) does not hold, a contradiction. Then, we have \(\phi(y_{i_1+1}) \in A_2 \). Similarly, we have \(\phi(z_{i_2+1}) \in A_2 \).

Now, as \(\phi(y_1 \cdots y_{i+1}), \phi(z_1 \cdots z_{i+1}) \in A_3 \) and \(\phi(y_1 \cdots y_{i_1}), \phi(z_1 \cdots z_{i_2}), \phi(z_{i_2} \cdots z_{i_2+1}) \in A_2 \), we have \(\phi(y_{i_1} y_{i_1+1}), \phi(z_{i_2} z_{i_2+1}) \in A_3 \). Hence, we have

\[
\phi(y_{i_1} y_{i_1+1}), \phi(z_{i_2} z_{i_2+1}) \in \{ \alpha_1 h_1 h_3 \alpha_2, \beta_1 h_1 h_4 \beta_2, \gamma_1 h_2 h_4 \gamma_2, \alpha_1' h_3 h_1 \alpha_2', \\
\beta_1' h_4 h_1 \beta_2', \gamma_1' h_4 h_2 \gamma_2' \} \text{ for some elements } \alpha_1, \alpha_2, \\
\beta_1, \beta_2, \gamma_1, \gamma_2, \alpha_1', \alpha_2', \beta_1', \beta_2', \gamma_1', \gamma_2' \in A_2 \cup A_1
\]

for which

\[
\begin{align*}
\alpha_1 h_1, & h_3 \alpha_2, \beta_1 h_1, h_4 \beta_2, \\
& \gamma_1 h_2, h_4 \gamma_2, \alpha_1' h_3, h_1 \alpha_2', \beta_1' h_4, h_1 \beta_2', \gamma_1' h_4, h_2 \gamma_2' \in A_2.
\end{align*}
\]

By Lemma 3.3 and by symmetry, we may assume that, there exist some elements \(\alpha, \beta, \gamma, \lambda \in A_2 \cup A_1 \) such that one of the following conditions holds:

(A1) \(\phi(y_{i_1}) = \alpha \alpha, \phi(y_{i_1+1}) = \beta \beta, \phi(z_{i_2}) = \gamma \gamma \) and \(\phi(z_{i_2+1}) = \delta \delta \), for some elements \(\{a, b\} = \{h_1, h_3\} \) and \(\{c, d\} = \{h_2, h_4\} \);

(A2) \(\phi(y_{i_1}) = \alpha h_1, \phi(y_{i_1+1}) = h_4 \beta, \phi(z_{i_2}) = \gamma h_1 \) and \(\phi(z_{i_2+1}) = h_3 \lambda \);

(A3) \(\phi(y_{i_1}) = \alpha h_1, \phi(y_{i_1+1}) = h_4 \beta, \phi(z_{i_2}) = \gamma h_3 \) and \(\phi(z_{i_2+1}) = h_1 \lambda \);

(A4) \(\phi(y_{i_1}) = \alpha h_1, \phi(y_{i_1+1}) = h_1 \beta, \phi(z_{i_2}) = \gamma h_2 \) and \(\phi(z_{i_2+1}) = h_4 \lambda \);

(A5) \(\phi(y_{i_1}) = \alpha h_4, \phi(y_{i_1+1}) = h_1 \beta, \phi(z_{i_2}) = \gamma h_4 \) and \(\phi(z_{i_2+1}) = h_2 \lambda \).

We obtain that \(y_1 y_{i_1+1} \neq z_{i_2} z_{i_2+1} \) and \(\phi(y_1 y_{i_1+1}), \phi(z_{i_2} z_{i_2+1}) \in A_3 \), the words \(y_1 y_{i_1+1} \) and \(z_{i_2} z_{i_2+1} \) do not occur in the words \(y_1 \cdots y_{i_1+1} \) and \(z_1 \cdots z_{i_2+1} \). By Condition (4).(a), we have \(y_i \neq z_{i_2} \). Also, by considering Conditions (A1), (A2), (A3), (A4) and (A5), we have \(y_{i_1+1} \neq z_{i_2+1} \).

First, suppose that Condition (A1) holds. If \(a = h_1 \), then by Condition (4).(e).(i), we have \(d = h_2 \). Then, we have \(b = h_3 \) and \(c = h_4 \). Also, if \(a = h_3 \), then we have \(b = h_1 \) and by Condition (4).(e).(ii), we have \(c = h_2 \). Then, we have \(d = h_4 \). Then, we have \((a, c) = (h_1, h_4) \) or \((b, d) = (h_1, h_4) \).
By Condition (4).(e).(iii), there exists a letter $u_1 \in Y$ such that $y_i u_1$ occurs in $y_1 \cdots y_i$ or $z_1 \cdots z_i$ and also $z_{i_2} u_1$ occurs in $y_1 \cdots y_{i_1}$ or $z_1 \cdots z_{i_2}$. Hence, we have $\phi(y_i u_1), \phi(z_{i_2} u_1) \in A_2$. If $a = h_1$ and $c = h_4$, then we have $y_i u_1 \in A_3$ or $z_{i_2} u_1 \in A_3$, a contradiction. Because, there does not exist an element $h \in A_2$ such that $h_1 h, h_4 h \in A_2$. Also, by Condition (4).(e).(iv), there exists a letter $u_2 \in Y$ such that $u_2 y_i u_1$ occurs in $y_1 \cdots y_i$ or $z_1 \cdots z_{i_2}$ and also $u_2 z_{i_2} u_1$ occurs in $y_1 \cdots y_{i_1}$ or $z_1 \cdots z_{i_2}$. Then, we have $\phi(u_2 y_i u_1), \phi(u_2 z_{i_2} u_1) \in A_2$. If $b = h_1$ and $d = h_4$, then we have $u_2 y_i u_1 + A_3$ or $u_2 z_{i_2} u_1 \in A_3$, a contradiction. Therefore, Condition (A1) does not hold. Also, if Conditions (A2) or (A5) holds, then Condition (4).(e).(i) fails. Similarly, if Condition (A3) or (A4) holds, then Condition (4).(e).(iv) fails. Therefore, $\phi(w_Y)$ and $\phi(v_Y)$ are in the same \mathcal{R}-class.

Similarly, by Lemma 3.2, $\phi(w_Y)$ and $\phi(v_Y)$ are in the same \mathcal{L}-class and, thus, J_5 satisfies the identity $w = v$. □

By Theorem 4.6, the following corollary easily follows.

Corollary 4.7. The monoid J_5 satisfies the identities $x^3 = x^2$ and does not satisfy the identity $x^2 = x$. Also, if J_5 satisfies the identity $w = v$, then we have $|w_x| \geq 2$ if and only if $|v_x| \geq 2$, for every $x \in X$.

Note that, in Theorem 4.6, if xy and zt do not occur in $w_1 x$ and $v_1 z$, and $y = t$, for a subset $Y \in c(w)$, J_5 may satisfy the identity $w = v$. Also, if xy and zt do not occur in yw_2 and tv_2, and $x = z$, J_5 may satisfy the identity $w = v$. For example, by Theorem 4.6, J_5 satisfies the following identities:

$$xu^2 xu^2 xu^2 xu^2 x^2 = xu^2 xu^2 xu^2 xu^2 x^2,$$

$$y^2 z^2 x^2 x^2 y^2 x^2 y^2 = y^2 z^2 x^2 x^2 y^2 x^2 y^2,$$

$$x^2 t^2 \cdot u^2 x^2 u^2 x^2 = x^2 t^2 \cdot u^2 x^2 u^2 x^2,$$

$$x^2 y^2 \cdot t^2 x^2 y^2 t^2 x^2 = x^2 y^2 \cdot t^2 x^2 y^2 t^2 x^2.$$

Also, note that, there exists an identity such that $xy \neq zt$, $x \neq z$, $y \neq t$ and, xy and zt do not occur in the elements of C_1 or C_2. For example, for C_1, we have the following identity that satisfies all conditions of Theorem 4.6

$$y x y x z x y z x z y z y^2 x^2 = y x y x z x y z x z y z y^2 x^2.$$

In [9], the authors characterize the identities of J_4. They show that for words w and v of X^*, the monoid J_4 satisfies the identity $w = v$ if $c(w) = c(v)$ and for every non empty subset Y of $c(w)$, Conditions (1), (2) and (3) of Theorem 4.6 hold. Hence, Condition (4) of Theorem 4.6 has a key role to recognize the identities of J_4 which J_5 does not satisfy them.

Acknowledgments

The author was partially supported by CMUP, which is financed by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project UIDB/00144/2020. The author also acknowledges FCT.
support through a contract based on the “Lei do Emprego Científico” (DL 57/2016).

References

[1] J. Almeida. *Finite semigroups and universal algebra*, volume 3 of *Series in Algebra*. World Scientific Publishing Co., Inc., River Edge, NJ, 1994. Translated from the 1992 Portuguese original and revised by the author.

[2] K. Auinger, Yuzhu Chen, Xun Hu, Yanfeng Luo, and M. V. Volkov. The finite basis problem for Kauffman monoids. *Algebra Universalis*, 74(3-4):333–350, 2015.

[3] M. Borisavljević, K. Došen, and Z. Petrič. Kauffman monoids. *J. Knot Theory Ramifications*, 11(2):127–143, 2002.

[4] R. Brauer. On algebras which are connected with the semisimple continuous groups. *Ann. of Math. (2)*, 38(4):857–872, 1937.

[5] Yuzhu Chen, Xun Hu, N. V. Kitov, Yanfeng Luo, and M. V. Volkov. Identities of the Kauffman monoid K_4. *Comm. Algebra*, 34(7):2617–2629, 2006.

[6] A. H. Clifford and G. B. Preston. *The algebraic theory of semigroups. Vol. I*. Mathematical Surveys, No. 7. American Mathematical Society, Providence, R.I., 1961.

[7] J. A. Green. On the structure of semigroups. *Ann. of Math. (2)*, 54:163–172, 1951.

[8] L. H. Kauffman. An invariant of regular isotopy. *Trans. Amer. Math. Soc.*, 318(2):417–471, 1990.

[9] N. V. Kitov and M. V. Volkov. Identities of the Kauffman Monoid K_4 and of the Jones Monoid J_4. In *Fields of logic and computation. III*, volume 12180 of *Lecture Notes in Comput. Sci.*., pages 156–178. Springer, Cham, [2020] ©2020.

[10] Kwok Wai Lau and D. G. FitzGerald. Ideal structure of the Kauffman and related monoids. *Comm. Algebra*, 34(7):2617–2629, 2006.

[11] J. Rhodes and B. Steinberg. *The q-theory of finite semigroups*. Springer Monographs in Mathematics. Springer, New York, 2009.