Guaranteed in-control performance of the EWMA chart for monitoring the mean

Mandla D. Diko1 | Subha Chakraborti2 | Ronald J.M.M. Does3

Abstract
Research on the performance evaluation and the design of the Phase II EWMA control chart for monitoring the mean, when parameters are estimated, have mainly focused on the marginal in-control average run-length (ARL_{IN}). Recent research has highlighted the high variability in the in-control performance of these charts. This has led to the recommendation of studying of the conditional in-control average run-length ($CARL_{IN}$) distribution. We study the performance and the design of the Phase II EWMA chart for the mean, using the $CARL_{IN}$ distribution and the exceedance probability criterion (EPC). The $CARL_{IN}$ distribution is approximated by the Markov Chain method and Monte Carlo simulations. Our results show that in-order to design charts that guarantee a specified EPC, more Phase I data are needed than previously recommended in the literature. A method for adjusting the Phase II EWMA control chart limits, to achieve a specified EPC, for the available amount of data at hand, is presented. This method does not involve bootstrapping and produces results that are about the same as some existing results. Tables and graphs of the adjusted constants are provided. An in-control and out-of-control performance evaluation of the adjusted limits EWMA chart is presented. Results show that, for moderate to large shifts, the performance of the adjusted limits EWMA chart is quite satisfactory. For small shifts, an in-control and out-of-control performance tradeoff can be made to improve performance.

KEYWORDS
bootstrap, conditional average run-length, exceedance probability criterion, exponentially weighted moving average chart, Markov chain, unconditional and conditional perspectives

1 | INTRODUCTION

Jones et al1 studied the conditional and the unconditional run-length distribution of EWMA chart with estimated parameters in both the in-control (IC) and the out-of-control (OOC) cases. Based on the percentage increase in the false alarm rate (FAR), they concluded that when parameters are estimated and the smoothing constant (λ) is small, larger Phase I sample sizes are needed, to design charts with acceptable FAR performance. However, their study did not take
into account the random variability of the FAR, the so-called “practitioner to practitioner” variability, which is inherent to parameter estimation. Motivated by this, Saleh et al.2 examined the CARL-IN distribution of the EWMA chart as a function of the number of Phase I subgroups (m), subgroup size (n), and λ. Based on the standard deviation (SDCARN) of CARL-IN, they concluded, contrary to Jones et al.4 that, much larger Phase I sample sizes are required to design Phase II EWMA charts with larger λ than with smaller λ.

In his seminal work on prospective application of the Phase II X chart, Chakraborti3 was among the first group of authors to highlight the variation present in the conditional run-length distribution and hence the importance of examining the practitioner to practitioner variability via the conditional run-length distribution. He emphasized how the conditional false alarm rate (CFAR) behaves as a random variable when parameters are estimated and used to construct Phase II charts. Inspired by this, for the Phase II S and S^2 charts, Epprecht et al.4 examined the CFAR distribution as a function of the Phase I sample size mn. They then made recommendations about the minimum size of the Phase I sample, which is required, to guarantee, with a high probability 1 − p, that the CFAR will not exceed some specified nominal CFAR value (denoted CFAR_0). This is the exceedance probability criterion (EPC) introduced by Albers et al.5 and Gandy and Kvaloy6 which sets an upper prediction bound to CFAR. In the same spirit, we examine the CARL-IN distribution of the EWMA chart as a function of λ, m, and n = 5 and set a lower prediction bound to CARL-IN. We then make recommendations about the value of m, which is required, to guarantee, with a specified high probability 1-p, that the CARL-IN will exceed a nominally specified value, denoted ARL_0. This approach has been recommended in the recent literature as the CARL-IN (also the CFAR) is a random variables which is the cause of practitioner to practitioner variation. Our results reveal that in order for the EWMA chart to meet the EPC specification, even more Phase I data are needed than was previously recommended by Saleh et al.2 and Jones et al.1 Moreover, consistently with Jones et al.1 but contrary to Saleh et al.2 it will be seen that small values of λ require larger Phase I sample sizes than large values of λ.

However, in practice, it may be difficult and expensive to get such huge amounts of Phase I data. Hence, control limits are adjusted as a function of the amount of data available at hand. Jones7 adjusted the control limits of the Phase II EWMA chart to achieve a certain nominally specified marginal or unconditional in-control ARL (ARL_0). This is the unconditional approach. Values of the charting constant (L) were given graphically for different values of ARL_0, m, n, and choice of λ ranging from 0.02 to 1. However, the unconditional approach ignores the practitioner to practitioner variability (the variation in the CARL-IN distribution). To this end, Saleh et al.2 used the EPC and bootstrapping to design the EWMA chart when parameters are estimated. The EPC does not ignore the variation in the CARL-IN distribution but controls it with a high probability in the form of a prediction interval. The EPC was popularized by Jones and Steiner8 and Gandy and Kvaloy6; since then, the EPC and the associated bootstrap approach have been used by many authors. We mention, among others, Saleh et al.9 Aly et al.10 Faraz et al.11,12 and Hu and Castagliola.13 However, bootstrapping is computer intensive and may be somewhat difficult to apply in practice. This is also exacerbated by the fact that, even though the underlying problem and the chart performance specifications may be the same, repeated applications of the bootstrap approach would almost surely result in different adjusted limits and can lead to comparability issues. Hence, it is not surprising that, with the exception of Faraz et al.14 and Hu and Castagliola,13 the authors who have used the bootstrap approach did not provide or show tables of their new charting constants. Each of the Hu and Castagliola13 charting constants was found by running the bootstrap approach 100 times and averaging the results. On an average computer, this takes a lot of time. Hence, without these tables, coming up with the charting constant can be frustrating for a practitioner.

Under the assumption that the process output is normally distributed, bootstrapping is not necessary to apply the EPC. For example, Goedhart et al.14-16 provided analytical results in the form of numerical solutions and approximations, for the Shewhart charts for the mean, and provided tables for the charting constants. But, for the EWMA chart, such analytical approximations are difficult to obtain because the charting statistics are dependent. Consequently, this paper presents a different method of adjusting the Phase II control limits according to the EPC, which guarantees, with a specified high confidence, that the CARL-IN of the EWMA chart exceeds a nominal ARL_0. Our approach is based on the simple idea of approximating the CARL-IN distribution by an empirical distribution, which is obtained by generating many Phase I subgroups, and using the Markov Chain to calculate the corresponding CARL-IN values. It will be seen that this approach requires less computational effort than the bootstrap approach, yet it produces results that are as accurate as some known analytical results. Thus, tables and graphs of the required charting constants are provided to help practitioners implement the EWMA chart with estimated parameters easily in practice. A program to implement our method, written in R, is available from the authors on request.

The paper is organized as follows. Section 2 introduces some notation and terminology used, gives an overview of the EWMA chart and the Markov Chain technique, and presents the estimators that are used to estimate the unknown process parameters. Section 3 evaluates the traditional EWMA chart in terms of the EPC and provides rough guidelines
on the number of Phase I subgroups required to achieve a certain high proportion of high CARL\text{IN} values relative to a reasonable nominal value. Section 4 presents the new charting constants (adjusted control limits) so that the Phase II EWMA chart has a guaranteed nominal IC performance according to the EPC. Section 5 gives a detailed evaluation of the IC and OOC performance of the new constants (the EPC adjusted limits based Phase II EWMA chart) and compares it with the performance of the traditional Phase II EWMA chart with unadjusted limits (limits calculated for Case K) according to the EPC. Finally, a summary and some conclusions are given.

2 | EWMA CHART WITH ESTIMATED PARAMETERS

Let $X_{ij}, i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$ denote the IC Phase I data from a normal distribution with an unknown mean μ_0 and an unknown standard deviation σ_0. For a smoothing constant $0 < \lambda \leq 1$, starting at sampling stage $i = m + 1, m + 2, \ldots,$ the standardized plotting statistic for the Phase II EWMA chart with the estimated parameters is given by

$$Y_i = \lambda W_i + (1 - \lambda)Y_{i-1}$$

where $W_i = \frac{\bar{X}_i - \hat{\mu}_0}{\hat{\sigma}_0 / \sqrt{n}}$, \bar{X}_i is the i^{th} Phase II sample mean, and $\hat{\mu}_0$ and $\hat{\sigma}_0$ are the Phase I estimators of the unknown parameters μ_0 and σ_0, respectively. It is also assumed that the Phase II data are normally distributed, and for generality, let μ and σ denote the mean and the standard deviation, respectively, of this distribution. In this paper, we use the estimators $\hat{\mu}_0 = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}$, the grand mean (see Schoonhoven et al17), and $\hat{\sigma}_0 = \sqrt{\frac{1}{m} \sum_{i=1}^{m} S_i^2} = S_p$, the pooled standard deviation estimator, where S_i^2 denotes the variance of the i^{th} Phase I sample. Among the commonly used estimators for σ_0, the pooled standard deviation estimator provides the lowest values of the mean squared error (Mahmoud et al18). In addition, as noted in Diko et al19, the corresponding unbiased version $\hat{\sigma}_0 = S_p / c_4(m(n - 1) + 1)$ (see Montgomery20) is equivalent, because, $m(n - 1)$ is typically quite large in our applications and hence the constant $c_4(m(n - 1) + 1)$ is indistinguishable from 1.

We write the statistic W_i in its canonical form

$$W_i = \frac{1}{Q}(\gamma T_i + \delta - \frac{Z}{\sqrt{m}})$$

where $T_i = \frac{\bar{X}_i - \mu}{\sigma / \sqrt{n}}$, $Q = \frac{S_p}{\sigma_0}$, $Z = \frac{\hat{\mu}_0 - \mu_0}{\sigma_0 / \sqrt{mn}}$, $\gamma = \frac{\sigma}{\sigma_0}$, and $\delta = \frac{\mu - \mu_0}{\sigma_0 / \sqrt{n}}$. Note that the random variables T_i and Z are independent standard normal variables that are mutually independent and are also independent of Q. Because $m(n - 1)S_p^2 / \sigma_0^2 \chi^2_{m(n - 1), \gamma}$, Q is distributed as $\chi^2_{m(n - 1), \gamma}$. For simplicity, we use the asymptotic (steady state) control limits

$$h = h(n, \lambda, L) = \pm L \sqrt{\frac{\lambda}{2 - \lambda}}$$

where L is the charting constant to be found for a given λ value and some chart design/performance metric. The performance metric is usually some property of the IC run-length distribution, eg, ARL\text{IN}. For example, for a given value of λ and a nominal ARL\text{IN} = ARL\text{IN}_0, when parameters are known, the L values can be found in Crowder23 or in the R package “spc.” Often, these L values for Case K are used to construct the Phase II EWMA when estimated parameters are used in the control limits. It is recognized in the literature that this is a problem in the sense of getting many more false alarms than nominally expected, particularly when the amount of Phase I data is small to moderately large. We provide some solutions for correcting this problem.

Performance of a control chart is often evaluated by the run length distribution and its associated characteristics, eg, the mean (the expected value), the standard deviation, and percentiles. The conditional run-length distribution is the run-length distribution that is calculated for given values of Q and Z for a given set of data obtained from a Phase I analysis. The expected value of this distribution, denoted CARL, is also a random variable with its own distribution. The expected value of the distribution of CARL is the unconditional ARL, denoted ARL. The conditional run-length
distribution and the \textit{CARL} of an EWMA chart may be calculated (approximated) using the Markov Chain method, see Brook and Evans24 and Lucas and Saccucci,25 among others. Thus, applying the Markov Chain method, conditionally on \(Q\) and \(Z\), the \textit{CARL} of the Phase II EWMA chart can be conveniently written as

\[
\text{CARL} = \sum_{t=0}^{n} (I-P)^{-1} u = \text{CARL}(\delta, Q, Z, m, n, \lambda, L, t),
\]

where \(t\) (which is generally taken as an odd integer) represents the number of transient states in the state space of a Markov Chain, \(\sum\) is the 1 \(\times\) \(t\) row vector with one in the middle position (for an odd integer \(t\), the middle position is unique) and 0 elsewhere, \(u\) is a \(t \times 1\) column vector of ones, \(I\) is the \(t \times t\) identity matrix, \(P = [p_{lk}]\) is the \(t \times t\) “essential” (conditional) transition probability matrix and \(l, k = -\frac{t-1}{2}, \ldots, 0, \ldots, \frac{t-1}{2}\).

The transition probabilities of the essential conditional transition probability matrix, \(p_{lk}\), are calculated, under normality and conditional on \(Q\) and \(Z\), as follows.

\[
p_{lk} = \Phi\left(Q\left(\frac{S_k + w/2 - (1-\lambda)S_l}{\lambda}\right) - \delta + \frac{Z}{\sqrt{m}}\right) - \Phi\left(Q\left(\frac{S_l - w/2 - (1-\lambda)S_k}{\lambda}\right) - \delta + \frac{Z}{\sqrt{m}}\right)
\]

where \(\Phi\) denotes the cumulative distribution function of a standard normal variable, \(w = \frac{2h}{t} = w(n, \lambda, L, t)\), \(S_f = \frac{-w}{2} + \left(2\left(\frac{t-1}{2} + f\right) + 1\right)\frac{w}{2} = S_f(n, \lambda, L, t)\) and \(f = l, k\). More information on the derivation of result (5) can be found in Saleh et al.9

From Equation 4, for fixed \(m, n, \delta, \lambda,\) and \(L\), it is clearly seen that the \textit{CARL} depends on the random variables \(Q\) and \(Z\), and hence the \textit{CARL} is a random variable. Saleh et al2 studied the effect of \(m\) and Phase I estimates on the distribution of \(\text{CARL}_{IN}\) (the \textit{CARL} when \(\sigma = 0\)). They found that unless the Phase I parameter estimates are “close” to the true but unknown parameter values, the \(\text{CARL}_{IN}\) values can vary widely and from the nominal \(\text{ARL}_0\). However, a practitioner will almost never know where his/her estimates are in relation to the unknown process parameters. Thus, when parameters are estimated, using the charting constants for Case K to design Phase II EWMA charts is a risky proposition, because it can result in very low \(\text{CARL}_{IN}\) values which will almost surely call into question the process monitoring regime. This risk can be somewhat reduced by increasing \(m\). However, as will be seen in the next section, the value of \(m\) that is required to reduce the probability of low \(\text{CARL}_{IN}\) values can be very large. Hence, many control charts in the recent literature with estimated parameters are now designed such that

\[
P(\text{CARL}_{IN} > \text{ARL}_0) = 1 - p.
\]

It follows that the \(\text{ARL}_0\) is the \(100p\)th percentile value of the distribution of \(\text{CARL}_{IN}\). This is the EPC approach that we use to evaluate and design the EWMA chart in the following sections.

3 | PERFORMANCE ASSESSMENT OF A STANDARD PHASE II EWMA CHART USING THE EPC

Recall that a standard Phase II EWMA chart uses the charting constants obtained in the known parameter case when parameter estimates are plugged in to form the Phase II EWMA chart. Jones et al1 and Saleh et al2 studied the performance of the standard Phase II EWMA chart. However, their performance evaluations and sample size recommendations were based on the \(\text{ARL}_{IN}\) and \(\text{SDCARL}_{IN}\), respectively. Moreover, even though the \(\text{SDCARL}_{IN}\) accounts for some of the practitioner to practitioner variability, it does so in a different way compared with the EPC. Unlike the \(\text{SDCARL}_{IN}\), the \textit{EPC} approach does not only take into account the variability of the \(\text{CARL}_{IN}\) distribution, it also considers the shape and the skewness. Hence, in this paper, we use the \textit{EPC} approach to study the same traditional Phase II EWMA charts that were considered by Jones et al1 and Saleh et al.2 This allows us to compare and contrast our results
with their results. Note also that Epprecht et al\(^4\) used the EPC and its associated CFAR distribution to assess the performance of the Shewhart S and \(S^2\) charts. Here, we use the more natural CARLIN distribution.

Consider again the EPC given in Equation 6, which can be re-written as

\[
P(CARLIN(Q, Z, m, n, \lambda, L, t) \leq ARL_0) = p.
\]

Thus, for a given \(p \in (0, 1)\) and \(m, n, \lambda, L, t\), we want to find the 100\(p\)\(^{th}\) percentile, \(CARLIN_p\), of the distribution of \(CARLIN(Q, Z, m, n, \lambda, L, t)\). Once found, \(CARLIN_p\) is compared with \(ARL_0\), which is the theoretical value that must be exceeded, in an application, with a high probability \(1 - p\). The comparison between the \(CARLIN_p\) and \(ARL_0\) will be based on the percentage difference (PD), which we define as

\[
PD = \frac{CARLIN_p - ARL_0}{ARL_0} \times 100.
\]

The algorithm for the evaluation of the traditional Phase II EWMA using the EPC is given in Appendix B.

Table 1 shows the \(CARLIN_p\) values of the standard Phase II EWMA charts for \(ARL_0 = 100, 200, 370, 500; n = 5\) and different combinations of \(\lambda, m,\) and \(p\). From Table 1, it can be seen that when \(m\) is small, the PD values (shown in the brackets in each cell) are very high in absolute values. This means, for example, with \(ARL_0 = 500\), we have \(CARLIN_p = 50\), which is 90\% below \((PD = -90\%)\) the nominal \(ARL_0 = 500\). Thus, in this case, we expect the \(CARLIN\) of the chart to be at least 50 with 95\% probability (and conversely, the \(CARLIN\) of the chart to be at most 50 with 5\% probability). Ideally, we would like the chart to deliver at least a large \(CARLIN\) value (say \(ARL_0 = 500\)) with 95\% certainty. The value \(CARLIN_p = 50\) is too low, and the risk of getting a number that low is very high. It can also be seen that when \(m\) increases, the \(CARLIN_p\) values increase to within 6\% less than the nominal \(ARL_0\) values. The convergence is faster for \(\lambda = 0.5\) than for \(\lambda = 0.1\). Furthermore, it can be seen that larger values of \(p\) or/and \(\lambda\) are associated with larger \(CARLIN_p\) values, improving the results slightly. Thus, when parameters are estimated, small \(CARLIN\) values (i.e., the \(CARLIN\) values that are less than the \(ARL_0\)) occur more often than desired, while high \(CARLIN\) values (the \(CARLIN\) values above \(ARL_0\)). This is not acceptable. Table 1 also allows us to make rough recommendations about the number of Phase I subgroups \(m\) required to achieve adequate Phase II EPC performance. These recommendations are summarized in Table 2, and they are compared with the Jones et al\(^1\) recommendation (that were based on the \(ARL\) criteria) and Saleh et al\(^2\) recommendations (that were based on SD\(CARLIN\) criteria) in Table 3.

Table 2 shows the number of subgroups \(m\) required to guarantee that the \(CARLIN\) exceeds \(CARLIN_p\) by a certain specified high probability \((1 - p)\). Mathematically, this is written as

\[
P(CARLIN > CARLIN_p) \geq 1 - p
\]

\[
P(CARLIN > ARL_0(1 - \varepsilon)) \geq 1 - p
\]

where \(\varepsilon \geq 0\%\) is a nominally specified PD value. Note that \(\varepsilon \geq 0\%\) because in general \(CARLIN_p < ARL_0\) (see Table 1). Note also that if \(\varepsilon = 0\%,\) then \(CARLIN_p = ARL_0\), and therefore Equation 7 reduces to Equation 6.

Looking at Table 2, for fixed \(ARL_0, \lambda,\) and \(p\), it can be seen that decreasing \(\varepsilon\) from 20\% to 0\% increases the number of Phase I subgroups \(m\) required to achieve adequate IC EPC performance. It can also be seen that for fixed \(ARL_0, \lambda,\) and \(\varepsilon\), decreasing \(p\) from 0.10 to 0.05 increases the value of \(m\). Thus, decreasing \(\varepsilon\) or \(p\) or both improves the IC chart performance, while increasing \(\varepsilon\) or \(p\) or both degrades the IC chart performance. This also shows the flexibility of the EPC formulation (Equation 7), which can be used to improve the IC chart performance or to balance it with the OOC chart performance by manipulating \(\varepsilon\) or \(p\) or both. Later, we will provide an example of how this balance can be achieved. Table 3 compares our recommendations with the Jones et al\(^1\) and Saleh et al\(^2\) recommendations.

From Table 3, it can be seen that for \(p = 0.05, 0.10; \varepsilon = 0\%, n = 5\), and all \(\lambda\), it will take more than 10 000 Phase I subgroups to guarantee (with a high probability) that the nominal \(ARL_0\) value will be exceeded. Thus, based on the EPC, it is seen that significantly more Phase I data are required than previously recommended by both Jones et al\(^1\) and Saleh et al\(^2\). Furthermore, for the EPC approach, it can be seen that when \(CARLIN_p\) is \(\varepsilon = 10\%\) or \(\varepsilon = 20\%\) below the \(ARL_0\); a large number of subgroups is still required to guarantee with high certainty that \(CARLIN > CARLIN_p\).

Moreover, small \(\lambda\) values require more data than larger \(\lambda\) values. This agrees with the findings of Jones et al\(^1\), but it is in contrast with the findings of Saleh et al\(^2\).
TABLE 1

The 5th and the 10th (P = 0.05, 0.10) percentiles of the CARL$_{IN}$ distribution as a function of m for $\lambda = 0.1, 0.5, n = 5$ and $ARL_0 = 100,200,370,500$

| λ | m | $ARL_0 = 100$ ($L = 2.148$) | | $ARL_0 = 200$ ($L = 2.454$) | | $ARL_0 = 370$ ($L = 2.702$) | | $ARL_0 = 500$ ($L = 2.815$) | |
|---|---|---|---|---|---|---|---|
| | | $P = 0.05$ | $P = 0.10$ |
| 0.1 | 30 | 24 (−76%) | 30 (−70%) | 34 (−83%) | 45 (−78%) | 44 (−88%) | 61 (−84%) | 50 (−90%) | 71 (−86%) |
| & 50 | 32 (−68%) | 39 (−61%) | 48 (−76%) | 63 (−69%) | 69 (−81%) | 92 (−75%) | 84 (−83%) | 112 (−78%) |
| & 100 | 47 (−53%) | 55 (−45%) | 76 (−62%) | 92 (−54%) | 115 (−69%) | 141 (−62%) | 141 (−72%) | 179 (−64%) |
| & 400 | 72 (−28%) | 77 (−23%) | 135 (−33) | 146 (−27%) | 232 (−37%) | 257 (−31%) | 298 (−40%) | 336 (−33%) |
| & 500 | 75 (−25%) | 79 (−21%) | 143 (−29%) | 152 (−24%) | 247 (−33%) | 269 (−27%) | 324 (−35%) | 354 (−29%) |
| & 600 | 78 (−22%) | 81 (−19%) | 147 (−27%) | 156 (−22%) | 257 (−31%) | 278 (−25%) | 341 (−32%) | 370 (−26%) |
| & 900 | 81 (−19%) | 83 (−17%) | 157 (−22%) | 164 (−18%) | 283 (−24%) | 298 (−20%) | 376 (−25%) | 396 (−21%) |
| & 1000 | 81 (−19%) | 84 (−16%) | 160 (−20%) | 166 (−17%) | 288 (−22%) | 299 (−19%) | 381 (−24%) | 404 (−19%) |
| & 1500 | 84 (−16%) | 86 (−14%) | 168 (−16%) | 172 (−14%) | 303 (−18%) | 314 (−15%) | 406 (−19%) | 422 (−16%) |
| & 2000 | 86 (−14%) | 87 (−13%) | 171 (−15%) | 175 (−13%) | 313 (−15%) | 322 (−13%) | 421 (−16%) | 434 (−13%) |
| & 4000 | 88 (−12%) | 89 (−11%) | 178 (−11%) | 181 (−10%) | 329 (−11%) | 335 (−9%) | 444 (−11%) | 452 (−10%) |
| & 6000 | 89 (−11%) | 90 (−10%) | 181 (−10%) | 183 (−9%) | 336 (9) | 341 (−8%) | 454 (−9%) | 460 (−8%) |
| & 10000 | 90 (−10%) | 91 (−9%) | 183 (−9%) | 185 (−8%) | 342 (8) | 345 (−7%) | 462 (−8%) | 467 (−7%) |

TABLE 2

Minimum m required for CARL$_{IN_p}$ to be $\varepsilon = 0$, 10%, 20% below the nominally $ARL_0 = 100,200,370,500$ for $n = 5; \lambda = 0.1, 0.5$ and $p = 0.05, 0.10$

| ε | $ARL_0 = 100$ | | $ARL_0 = 200$ | | $ARL_0 = 370$ | | $ARL_0 = 500$ | |
|---|---|---|---|---|---|---|---|
| | $P = 0.05$ | $P = 0.10$ |
| $\lambda = 0.1$ | | | | | | | | |
| 0% | >10 000 | >10 000 | >10 000 | >10 000 | >10 000 | >10 000 | >10 000 | >10 000 |
| 10% | 10 000 | 6000 | 4000 | 4000 | 6000 | 4000 | 6000 | 4000 |
| 20% | 900 | 600 | 1000 | 900 | 1500 | 900 | 1500 | 1000 |
| $\lambda = 0.5$ | | | | | | | | |
| 0% | >10 000 | >10 000 | >10 000 | >10 000 | >10 000 | >10 000 | >10 000 | >10 000 |
| 10% | 2000 | 1500 | 4000 | 2000 | 4000 | 2000 | 4000 | 2000 |
| 20% | 500 | 400 | 600 | 400 | 900 | 500 | 900 | 600 |
We have seen that, to achieve adequate EPC performance, a very high number of Phase I subgroups is required when using the standard Phase II EWMA chart limits. In practice, it may be difficult and expensive to come up with these high Phase I subgroup numbers. Thus, for a given amount of Phase I data (number of Phase I subgroups, with a fixed sample size), the control limits need to be adjusted.

Consider again the EPC: $P(\text{CARLIN}(Q, Z, m, n, \lambda, L, t) > ARL_0(1 - \varepsilon)) \geq 1 - p$, which is equivalent to stating that the cdf of CARLIN$(Q, Z, m, n, \lambda, L, t)$ at ARL_0 must be less than or equal to p. Then, given ε, p, ARL_0, m, λ, and t, we want to solve this equation for L. Because a closed-form analytical expression for the cdf of CARLIN is not available, a formula to

TABLE 3
Recommended minimum number of phase I subgroups when $n=5$ and $ARL_0 = 200$

λ	0.1	0.2	0.5	1
Jones et al1 (marginal ARL criteria)	400	300	200	100
Saleh et al2 SDCARLIN criteria	600	700	900	1000
This paper EPC criteria with $p = 0.10$ and $\varepsilon = 20\%$	900	600	400	370
This paper EPC criteria with $p = 0.05$ and $\varepsilon = 20\%$	1000	700	600	560
This paper EPC criteria with $p = 0.10$ and $\varepsilon = 10\%$	4000	3000	2000	1500
This paper EPC criteria with $p = 0.05$ and $\varepsilon = 10\%$	6000	5000	4000	2500
This paper EPC criteria with $p = 0.05,0.10$ and $\varepsilon = 0\%$	$>10\,000$	$>10\,000$	$>10\,000$	$>10\,000$

TABLE 4
L values that guarantee that $P(\text{CARLIN} > ARL_0) = 0.90$ for the EWMA X chart for $n = 5$; $m = 30,50,100,300,1000; \lambda = 0.1, 0.2, 0.5, 1; \varepsilon = 0\%$ and $ARL_0 = 100,200,370,500$

ARL_0	m	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.5$	$\lambda = 1$
100	30	3.09	3.01	2.92	2.88
	50	2.79	2.79	2.79	2.79
	100	2.50	2.62	2.71	2.72
	300	2.32	2.48	2.62	2.66
	1000	2.23	2.42	2.58	2.62
	Known parameter	2.148	2.360	2.534	2.576
200	30	3.49	3.34	3.20	3.13
	50	3.16	3.12	3.08	3.03
	100	2.86	2.92	2.96	2.96
	300	2.63	2.77	2.87	2.89
	1000	2.53	2.70	2.83	2.85
	Known parameter	2.454	2.636	2.777	2.807
370	30	3.78	3.59	3.43	3.34
	50	3.46	3.38	3.30	3.24
	100	3.16	3.16	3.16	3.16
	300	2.89	2.99	3.09	3.09
	1000	2.78	2.92	3.04	3.05
	Known parameter	2.702	2.859	2.978	3.000
500	30	3.92	3.70	3.54	3.44
	50	3.59	3.49	3.40	3.34
	100	3.29	3.28	3.26	3.26
	300	3.02	3.10	3.18	3.18
	1000	2.90	3.03	3.13	3.14
	Known parameter	2.815	2.962	3.071	3.090
calculate the $CARL_{IN}$ is. Our approach is to generate the empirical distribution of $CARL_{IN}$ using different values of L in the interval $[L, \infty)$, starting from the Case K L value towards infinity. For each empirical distribution, the $CARL_{IN,p}$ value is calculated. The first value of L for which $CARL_{IN,p} > ARL_0(1 - \varepsilon)$ is chosen to be the solution. A step-by-step algorithm for finding L is given in Appendix C. Like the other algorithms we presented, this algorithm requires an approximation of the $CARL_{IN}$ distribution, via the empirical distribution. In our view, this is what gives it an edge over the bootstrap algorithm used in Saleh et al2 and others, which requires more computational effort.

Table 4 gives the L values that guarantee, with $(1 - p)\%$ probability, that the $CARL_{IN}$ will exceed a specified lower bound ARL_0. Looking at Table 4 for $ARL_0 = 370$, $\lambda = 1$ and $m = 50, 100, 300, 1000$, it can be seen that our constants $L = 3.24, 3.16, 3.09, 3.05$ are exactly equal to those in Goedhart et al14,16. The constants in Goedhart et al14,16 were obtained analytically and are regarded as an improvement to the computationally intensive bootstrap approach. This
validates our method. In addition to Table 4 for $ARL_0 = 100,200,370,500$, we have generated four figures in which the practitioner may find his/her constant L given its own m and λ by means of interpolation. These are shown below.

Looking at Figures 1–4, for any given ARL_0, m and λ values, it can be seen that the adjusted L values are all greater than the corresponding Case K L values. It can also be seen that, for a given ARL_0 and λ, the adjusted L values decrease as m increases and converge to the known parameter (unadjusted/standard) L value. Consequently, Phase II EWMA chart that are designed using the new L values will have wider control limits, and this will lead to an improved IC performance than the charts whose design uses the Case K L values. This improved IC performance, that is widening the limits, can lead to some deterioration of the OOC chart performance. This has been noted in the literature (see, eg, Goedhart et al15) as the price to pay for satisfactory nominal IC chart performance with a high probability. However, it is possible with our approach to relax the IC behavior of the EWMA chart. This can be done by increasing ε or p or

FIGURE 3 Graphs of the unadjusted (case K) and adjusted L values for $0.02 \leq \lambda \leq 1$; $ARL_0 = 370$ and $n = 5$. The adjusted L values were generated to guarantee $P(CARL_{IN} > ARL_0) = 0.90$ for $m = 30,50,100,300,1000$

FIGURE 4 Graphs of the unadjusted (case K) and adjusted L values for $0.02 \leq \lambda \leq 1$; $ARL_0 = 500$ and $n = 5$. The adjusted L values were generated to guarantee $P(CARL_{IN} > ARL_0) = 0.90$ for $m = 30,50,100,300,1000$
| m = 50 |
|---|---|---|---|---|---|---|---|---|
| m = 50 | Perc | \(\lambda = 0.1 \) | \(\lambda = 0.2 \) | \(\lambda = 0.5 \) | \(\lambda = 1 \) |
| | Unadjusted | Adjusted | Unadjusted | Adjusted | Unadjusted | Adjusted | Unadjusted | Adjusted |
| \(\delta = 0 \) | | | | | | | | |
| 0.05 | 48 | 139 | 60 | 147 | 79 | 166 | 89 | 169 |
| 0.10 | 62 | 202 | 75 | 198 | 92 | 205 | 104 | 205 |
| 0.25 | 92 | 374 | 105 | 322 | 121 | 283 | 134 | 269 |
| 0.50 | 133 | 696 | 146 | 518 | 166 | 411 | 178 | 369 |
| 0.75 | 177 | 1138 | 197 | 786 | 221 | 581 | 246 | 520 |
| 0.90 | 220 | 1694 | 252 | 1140 | 295 | 801 | 327 | 726 |
| 0.95 | 251 | 2142 | 293 | 1453 | 346 | 981 | 392 | 889 |
| \(\delta = 0.25 \) | | | | | | | | |
| 0.05 | 27 | 50 | 29 | 57 | 43 | 82 | 70 | 122 |
| 0.10 | 31 | 63 | 35 | 73 | 54 | 103 | 82 | 144 |
| 0.25 | 43 | 102 | 50 | 115 | 77 | 161 | 108 | 199 |
| 0.50 | 66 | 198 | 81 | 212 | 112 | 254 | 149 | 285 |
| 0.75 | 108 | 452 | 127 | 401 | 164 | 399 | 207 | 415 |
| 0.90 | 163 | 916 | 184 | 704 | 226 | 596 | 278 | 586 |
| 0.95 | 196 | 1295 | 222 | 928 | 267 | 776 | 333 | 717 |
| \(\delta = 0.5 \) | | | | | | | | |
| 0.05 | 16 | 23 | 15 | 24 | 21 | 35 | 42 | 69 |
| 0.10 | 17 | 27 | 17 | 27 | 24 | 42 | 48 | 82 |
| 0.25 | 21 | 34 | 22 | 37 | 33 | 58 | 64 | 115 |
| 0.50 | 26 | 48 | 29 | 55 | 47 | 90 | 89 | 167 |
| 0.75 | 36 | 76 | 41 | 89 | 69 | 143 | 126 | 245 |
| 0.90 | 51 | 125 | 61 | 148 | 102 | 228 | 174 | 341 |
| 0.95 | 65 | 182 | 79 | 214 | 125 | 302 | 209 | 425 |
| \(\delta = 1 \) | | | | | | | | |
| 0.05 | 8 | 11 | 7 | 9 | 8 | 10 | 15 | 22 |
| 0.10 | 9 | 12 | 8 | 10 | 8 | 12 | 17 | 26 |
| 0.25 | 10 | 13 | 9 | 11 | 10 | 14 | 21 | 34 |
| 0.50 | 11 | 15 | 10 | 14 | 12 | 19 | 28 | 46 |
| 0.75 | 12 | 18 | 12 | 17 | 16 | 25 | 38 | 66 |
| 0.90 | 14 | 21 | 14 | 20 | 20 | 33 | 51 | 90 |
| 0.95 | 15 | 23 | 15 | 23 | 23 | 40 | 62 | 109 |
| \(\delta = 1.5 \) | | | | | | | | |
| 0.05 | 6 | 7 | 5 | 6 | 4 | 5 | 6 | 9 |
| 0.10 | 6 | 8 | 5 | 6 | 4 | 6 | 7 | 10 |
| 0.25 | 6 | 8 | 5 | 7 | 5 | 6 | 8 | 12 |
| 0.50 | 7 | 9 | 6 | 7 | 6 | 7 | 10 | 16 |
| 0.75 | 7 | 10 | 6 | 8 | 7 | 9 | 13 | 21 |

(Continues)
m = 50	\(\lambda = 0.1 \)	\(\lambda = 0.2 \)	\(\lambda = 0.5 \)	\(\lambda = 1 \)				
Perc	Unadjusted	Adjusted						
0.90	8	11	7	9	8	10	17	28
0.95	8	11	7	10	8	12	19	33
m = 100	\(\lambda = 0.1 \)	\(\lambda = 0.2 \)	\(\lambda = 0.5 \)	\(\lambda = 1 \)				
Perc	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted
\(\delta = 0 \)								
0.05	75	152	90	173	107	171	117	177
0.10	92	200	106	208	121	196	131	199
0.25	123	290	131	267	145	242	157	243
0.50	155	399	163	344	178	307	192	306
0.75	187	523	202	443	219	390	237	385
0.90	221	650	239	547	268	486	287	472
0.95	240	734	264	619	303	548	326	547
\(\delta = 0.25 \)								
0.05	33	50	38	57	58	86	86	133
0.10	38	58	43	68	66	100	98	152
0.25	49	79	56	94	86	133	122	189
0.50	67	119	79	138	113	182	151	242
0.75	95	188	111	213	148	248	193	315
0.90	134	302	149	304	189	328	239	398
0.95	162	387	174	374	217	388	267	453
\(\delta = 0.5 \)								
0.05	18	23	18	24	26	36	51	74
0.10	19	25	20	26	30	41	57	85
0.25	22	30	24	32	37	53	71	106
0.50	26	37	30	42	47	70	90	137
0.75	32	48	38	56	61	96	115	178
0.90	40	63	49	74	78	127	144	225
0.95	46	76	58	90	93	151	165	262
\(\delta = 1 \)								
0.05	9	11	8	9	7	11	17	23
0.10	9	11	8	10	9	11	19	26
0.25	10	12	9	11	11	13	23	32
0.50	11	13	10	12	12	16	28	40
0.75	12	15	11	13	15	19	35	50
0.90	13	16	12	15	17	23	43	62
0.95	14	17	13	176	19	25	47	70
\(\delta = 1.5 \)								
0.05	6	7	5	6	5	7	9	
both in Equation 7. As will be seen, in the next section, the result will be less wider adjusted limits, which will improve the OOC performance.

5 | IC AND OOC PERFORMANCE ANALYSIS AND A COMPARISON OF THE ADJUSTED AND THE UNADJUSTED LIMITS

Using the bootstrap approach, Saleh et al.2 came up with an EWMA chart such that \(P(CARL_{IN} > 200) = 0.90 \) for \(\lambda = 0.1 \), \(m = 50 \) and \(n = 5 \). Following this, they evaluated the IC and OOC conditional performance of this chart. However, their performance evaluations were done only for this chart and were limited only to \(\delta = 0 \) and \(\delta = 1 \). In this section, we make a much more detailed evaluation and comparison between the performance of the EWMA charts with the proposed adjusted limits and that of the standard (unadjusted) limits chart, for various shifts \(\delta \). We also compare our results with the performance results of the bootstrap based (adjusted limits) EWMA chart in Saleh et al.2 Furthermore, we use the flexibility of the EPC formulation in Equation 7 to adjust the trade-off between the IC and OOC performance of the EWMA chart. By trade-off, we mean, for example, sacrificing a little IC performance for a better OOC performance.

Table 5 shows the \(CARL_{IN,p} \) values for various combinations of \(p \), \(\lambda \), \(\delta \), and \(m \) for both adjusted and unadjusted limits. Again, for given \(\lambda \) and \(\delta = 0 \), the adjusted limits were obtained such that \(P(CARL_{IN} > 200) = 1 - p = 0.90 \) (so that the 10th percentiles of the \(CARL_{IN} \) distribution should be close to 200) while the unadjusted limits were obtained from the R package “spc,” such that \(ARL_0 = 200 \), in the known parameters case. Looking at Table 5, for \(\delta = 0 \) and all \(\lambda \), it can be seen that the IC performance of the chart with the adjusted limits is as specified. For example, for \(m = 50 \), \(p = 10\% \) and \(\lambda = 0.1, 0.2, 0.5 \), it can be seen (see the bolded row at perc = 10\%) that \(CARL_{IN,p} = 202,198,205,205 \); respectively, and for \(m = 100 \), we have \(CARL_{IN,p} = 202,208,196,199 \). All of these \(CARL_{IN,p} \) are very close to the nominal \(ARL_0 = 200 \). Besides, for \(\delta = 0 \) and all \(\lambda, m \) values, the values for the adjusted limits are always higher than the corresponding unadjusted limit. So, for all percentiles (perc), the adjusted limits charts always guarantee, with high probability (close to the nominal), larger \(CARL_{IN} \) values compared with the unadjusted limits charts. Thus, the good IC performance of the adjusted limits charts is not only limited to \(p = 10\% \), but extends over the entire range of perc’s.

However, as mentioned before, because the adjusted limits are wider, they can be insensitive to true process shifts compared with the unadjusted limits. We explore this for the cases when \(\delta = 0.25, 0.5, 1 \). Looking at Table 5 for \(m = 50 \), small shifts \(\delta = 0.25, 0.5 \) and all \(\lambda \) values, it can be seen that the medians (see the bolded rows at perc = 10\%) of the \(CARL \) distributions for the unadjusted and the adjusted limits charts are radically different. The largest difference occurs at \(\lambda = 0.1 \), while the smallest difference occurs at \(\lambda = 1 \). Decreasing perc and/or increasing \(m \) reduces the differences slightly, but the pattern remains the same. Thus, for a small shift \(\delta \leq 0.5 \), the OOC chart performance of the adjusted limits EWMA chart is not as good as that of the unadjusted limits charts, particularly when \(\lambda = 0.1 \). But of course the point is that the IC performance of the unadjusted limits based chart is a much bigger problem. However, for larger shifts, such as \(\delta = 1 \) or \(\delta = 2 \) and for all perc and \(\lambda \) values, the \(CARL_{IN,p} \) values for the unadjusted and the adjusted limit charts are quite close. This is even more so when \(m = 100 \). Thus, for moderate to large values of \(\delta \), the OOC chart performance of the adjusted limits EWMA chart is comparable to that of the EWMA chart with the unadjusted limits or the limits for the known parameter case.

Note that, in the literature (eg, Saleh et al.2), authors who use the bootstrap approach often compare the OOC behavior of the unadjusted and the adjusted limits charts solely on the basis of a shift of size \(\delta = 1 \). Figure 5 shows the
boxplots for the OOC CARL distributions of the EWMA chart with the adjusted and the unadjusted limits for $\lambda = 0.1$, $\delta = 1$, $m = 50$ and $n = 5$. Based on Figure 5, it has always been concluded that the OOC performance of the bootstrap adjusted limits is not radically different from that of the unadjusted limits. However, we have shown through the CAR-LINp values, in Table 5, that this only occurs when δ is moderate to large. Therefore, widening the control limits by the EPC criterion makes them a little insensitive to small process shifts but guarantees a nominal performance with high probability. This may be the trade-off one has to accept. However, it is possible to adjust this trade-off to get a better OOC performance. This can be done by sacrificing a bit of IC performance. For fixed p, the IC performance can be sacrificed by increasing ε in Equation 7, while for fixed ε, it can be reduced by increasing p in Equation 7. To illustrate the former, Figures 6 and 7 show the boxplots for the IC and OOC CARL distributions of the EWMA chart, respectively, for $\lambda = 0.1; ARL_0 = 200; \varepsilon = 0 \%, 35 \%, 69 \%; p = 0.10; m = 50$ and $n = 5$.

FIGURE 5 Boxplots of the CARL distribution when $\delta = 1, \lambda = 0.1, p = 10\%, ARL_0 = 200, m = 50$ and $n = 5$

FIGURE 6 Boxplots of the CARL distribution when $\delta = 0, \lambda = 0.1, p = 10\%, ARL_0 = 200, m = 50$ and $n = 5$
From Figure 6, it can be seen that increasing ε from 0% to 35% leads to a slight loss of the IC performance. For example, when $\varepsilon = 35\%$, the proportion of CARLIN values that are less than 200 is 20%. But, this is still way better than the 85% that occurs when the unadjusted limits ($\varepsilon = 69\%$) are used. From Figure 7, it can also be seen that increasing ε from 0% to 35% leads to an improved OOC performance in the sense that the median for the OOC CARLIN distribution of $\varepsilon = 35\%$ is closer to the median (the dotted vertical line) for the OOC CARLIN distribution of $\varepsilon = 69\%$. Thus, by sacrificing a bit of the IC performance, it is possible to improve the EWMA charts ability to detect small shifts.

6 | SUMMARY AND CONCLUSIONS

We study the impact of practitioner to practitioner variability on the performance of the Phase II EWMA chart. As in Epprecht et al., we use the EPC criterion to evaluate the performance of a Phase II EWMA chart with limits for the known parameter case and give recommendations about the required number of Phase I subgroups to achieve nominal performance. Our results show that in order to attain or exceed a specified lower bound of CARLIN (given by ARL_0) with a specified high probability, more Phase I data are required than previously recommended by Saleh et al. and Jones et al. Moreover, consistently with Jones et al. but contrary to Saleh et al., our results also show that smaller values of λ may require a larger number of Phase I subgroups, that is, more Phase I data.

Because it is expensive and sometimes impractical to get such large amount of Phase I data to estimate the process parameters and construct Phase II charts that guarantee a high probability of high CARLIN’s under the EPC, the control limits are adjusted as a function of the available Phase I data. In this regard, where analytical methods could not be conveniently used, eg, for the EWMA chart or where normality cannot be assumed, the bootstrap approach has been an attractive choice. However, many SPC practitioners and researchers have felt that the bootstrap approach may be somewhat complex and have looked for an alternative. In this paper, we presented an alternative method that can be used instead of the bootstrap approach. Our method produces the same results as the bootstrap approach, but it is faster. Based on the new method, tables and the graphs of the adjusted charting constants are provided to help practitioners implement the Phase II EWMA chart with estimated parameters more easily in practice. The new charting constants are larger than the traditional ones commonly used for Case K. Thus, the EWMA charts constructed using these new constants have wider limits, particularly for small λ and/or m.

Adjusting the limits of the EWMA chart, using our new constants, guarantees with high probability that the CARLIN performance will be as nominally specified. However, there is some concern about the deterioration in the OOC CARL performance relative to using the unadjusted limits which are wider. This is of course true for all types of control charts with estimated parameters and has been observed, for example, for the Shewhart charts (see Goedhart et al.). The
extent of the deterioration depends on the size of the shift δ and m. For moderate to large shifts (say $\delta = 1$ and more), the difference in the OOC CARL performance between the adjusted and unadjusted limits is negligible. However, for small shifts (say $\delta = 0.25, 0.50$) and small m, the difference is not negligible. Thus, adjusting the control limits can make the chart somewhat insensitive to detecting small shifts. The insensitivity to small shifts may be improved by sacrificing some IC chart performance as illustrated in Figures 6 and 7. Nonetheless, it is important to keep in mind that the IC chart performance is perhaps the most important to have higher confidence in, so sacrificing some OOC performance may be the price one has to pay when a given amount of Phase I data are used to estimate the parameters to construct a control chart.

ACKNOWLEDGEMENT

The authors would like to thank an anonymous reviewer for detailed comments that have led to various improvements.

REFERENCES

1. Jones LA, Champ CW, Rigdon SE. The performance of exponentially weighted moving average charts with estimated parameters. Technometrics. 2001;43(2):156-167. https://doi.org/10.1198/004017001750386279
2. Saleh NA, Mahmoud MA, Jones-Farmer LA, Zwetsloot I, Woodall WH. Another look at the EWMA control chart with estimated parameters. J Qual Technol. 2015;47(4):363-382. https://doi.org/10.1080/00224065.2015.11918140
3. Chakraborti S. Parameter estimation and design considerations in prospective applications of the X^* chart. J Appl Stat. 2006;33(4):439-459.
4. Epprecht EK, Loureiro LD, Chakraborti S. Effect of the amount of phase I data on the phase II performance of S^2 and S control charts. J Qual Technol. 2015;47(2):139-155.
5. Albers W, Kallenberg WCM, Nardiati S. Exceedance probabilities for parametric control charts. Stat. 2005;39(5):429-443.
6. Gandy A, Kvaloy JT. Guaranteed conditional performance of control charts via bootstrap methods. Scand J Stat. 2013;40(4):647-668.
7. Jones LA. The statistical design of EWMA control charts with estimated parameters. J Qual Technol. 2002;34(3):277-288.
8. Jones MA, Steiner SH. Assessing the effect of estimation error on the risk-adjusted CUSUM chart performance. Int J Qual Health Care. 2012;24(2):176-181.
9. Saleh NA, Mahmoud AM, Abdel-Salem A-SG. The performance of the adaptive exponentially weighted moving average control chart with estimated parameters. Qual Reliab Eng Int. 2013;29(4):95-106.
10. Aly AA, Saleh NA, Mahmoud MA, Woodall WH. A reevaluation of the adaptive exponentially weighted moving average control chart when parameters are estimated. Qual Reliab Eng Int. 2015;31(8):1611-1622.
11. Faraz A, Heuchenne C, Saniga E. The np chart with guaranteed in-control average run-lengths. Qual Reliab Eng Int. 2016;33(5):1057-1066.
12. Faraz A, Woodall WH, Heuchenne C. Guaranteed conditional performance of the S_2 control chart with estimated parameters. Int J Prod Res. 2015;53(14):4405-4413.
13. Hu X, Castagliola P. Guaranteed conditional Design of the Median Chart with estimated parameters. Quality and Reliability Engineering International. 2017;33(8):1873-1884.
14. Goedhart R, Schoonhoven M, Does RJMM. Guaranteed in-control performance for the Shewhart X and $X\overline{\text{ }}$ control charts. J Qual Technol. 2017;49(2):155-171.
15. Goedhart R, da Silva MM, Schoonhoven M, et al. Shewhart control charts for dispersion adjusted for parameter estimation. IIE Trans. 2017;49(8):838-848.
16. Goedhart R, Schoonhoven M, Does RJMM. On guaranteed in-control performance for the Shewhart X and $X\overline{\text{ }}$ control charts. J Qual Technol. 2018;50(1):130-132.
17. Schoonhoven M, Nazir HZ, Riaz M, Does RJMM. Robust location estimators for the X^* control chart. J Qual Technol. 2011;43(4):363-379.
18. Mahmoud AM, Henderson GR, Epprecht EK, Woodall WH. Estimating the standard deviation in quality-control applications. J Qual Technol. 2010;42(4):348-357.
19. Diko MD, Goedhart R, Chakraborti S, Does RJMM, Epprecht EK. Phase II control charts for monitoring process dispersion when parameters are estimated. Qual Reliab Eng Int. 2017;29(4):605-622.
20. Montgomery DC. Introduction to Statistical Quality Control. 7th ed. Hoboken, New Jersey: John Wiley & Sons; 2013.
21. Schoonhoven M, Riaz M, Does RJMM. Design schemes for the X^* control chart. Quality and Reliability Engineering International. 2009;25(5):581-594.
22. Schoonhoven M, Riaz M, Does RJMM. Design and analysis of control charts for standard deviation with estimated parameters. *J Qual Technol*. 2011;43(4):307-333.

23. Crowder SV. Design of exponentially weighted moving average schemes. *J Qual Technol*. 1989;21(3):155-162.

24. Brook D, Evans DA. An approach to the probability distribution of cusum run-length. *Biometrika*. 1972;59(3):539-549.

25. Lucas JM, Saccucci MS. Exponentially weighted moving average control schemes: properties and enhancements. *Technometrics*. 1990;32(1):1-12.

AUTHOR BIOGRAPHIES

Mandla D. Diko obtained his MSc in Statistics from the University of Pretoria. He is currently working as a PhD student in the Department of Operations Management of the University of Amsterdam, the Netherlands. His research interests are in Statistical Process Quality Control.

Subha Chakraborti is a professor of Statistics in the Department of Information Systems, Statistics and Management Science, University of Alabama, USA. He is a Fellow of the ASA and an elected member of the ISI. His research interests are in Nonparametric and Robust Statistical Inference, including applications in Statistical Process Quality Control.

Ronald J. M. M. Does is Professor of Industrial Statistics at the University of Amsterdam, Director of the Institute for Business and Industrial Statistics, Head of the Department of Operations Management, and Director of the Institute of Executive Programmes at the Amsterdam Business School. He is a Fellow of the ASQ and ASA, an elected member of the ISI, and an Academician of the International Academy for Quality. His current research activities include the design of control charts for nonstandard situations, health care engineering, and operational management methods.

How to cite this article: Diko MD, Chakraborti S, Does RJMM. Guaranteed in-control performance of the EWMA chart for monitoring the mean. *Qual Reliab Engng Int*. 2019;35:1144–1160. https://doi.org/10.1002/qre.2450

APPENDIX A

SIMULATION OF THE EMPIRICAL DISTRIBUTION OF CARLIN

Step 1: Specify \(\lambda, L, m, \) and \(n \)
Step 2: Simulate an observation \(Z \) from the standard normal distribution
Step 3: Simulate an observation \(Y \) from the chi-square distribution with \(m(n-1) \) degrees of freedom and calculate \(Q = \sqrt[201]{Y/m(n-1)} \)
Step 4: Calculate \(p_{lk} \) for \(l, k = -100, ..., 0, ..., 100 \), using Equation 4 and construct the matrix \(P \)
Step 5: Calculate \(CARLIN^{\text{IN}} \) using Equation 5
Step 6: Repeat steps (1) to (5) many times (eg, 5000 times).

Order the 5000 \(CARLIN^{\text{IN}} \) values in ascending order. This ordered set of values and their associated cumulative frequency (cumulative probability) constitute an empirical distribution.

Note that, for reasons of calculation speed and accuracy, we used \(t = 201 \) states, as recommended in Saleh et al.\(^2\)

APPENDIX B

THE ALGORITHM FOR EVALUATING THE EPC PERFORMANCE OF A STANDARD PHASE II EWMA \(\bar{X} \) CHART

Step 1: Fix \(m, n, \lambda, L, p, t, \) and \(ARL_0 \)
Step 2: Generate the empirical distribution of \(CARLIN^{\text{IN}} \) (See Appendix A)
Step 3: Calculate the $100p$th percentile $\text{CARL}_{IN, p}$ of the empirical CARL_{IN} distribution.

Step 4: Calculate $\frac{\text{CARL}_{IN, p} - ARL_0}{ARL_0} \times 100$, the percentage difference between the $\text{CARL}_{IN, p}$ and the ARL_0.

Interpretation of PD: A negative PD value means that $\text{CARL}_{IN, p} < ARL_0$ by PD percentage points. A positive PD value means that $\text{CARL}_{IN, p} > ARL_0$ by PD percentage points.

APPENDIX C

A STEP-BY-STEP ALGORITHM FOR FINDING L USING THE EPC APPROACH

Step 1: Fix $\varepsilon, p, ARL_0, m, n, \lambda, t$, and a value of L in the search interval $L \in [\text{Case } K, \infty)$
Step 2: Generate the empirical distribution of CARL_{IN} (See Appendix A)
Step 3: Calculate the pth percentile $\text{CARL}_{IN, p}$ from the empirical distribution
Step 4: If $\text{CARL}_{IN, p} > ARL_0(1 - \varepsilon)$ stop and use the current value of L otherwise increment L and return to step 2.

To find L very quickly, for a given set of m value, start with the largest m.