INTRODUCTION

Genital lymphedema (GL) is an uncommon and disabling disease that manifests as enlargement of the genital region resulting from the disturbance of lymphatic drainage. It causes limitations in mobility, voiding, sexual performance, self-hygiene, and social functions. In the United States, GL most commonly occurs as a complication of a malignancy. In contrast, the majority of GL cases in developing nations occur due to infection with *Wuchereria bancrofti* (filariasis) [1].

Based on its etiology, GL can be considered either primary or secondary [2]. In primary lymphedema, the disturbance of lymphatic drainage may be caused by the obstruction, malformation, or underdevelopment (hypoplasia) of various lymphatic
vessels, whereas in secondary lymphedema, acquired diseases may contribute to the disruption or obstruction. Primary lymphedema has various subtypes, which remain poorly understood. The condition can manifest at any age. It is also known as Milroy disease if it occurs in infancy, as lymphedema praecox if it arises during adolescence, and lymphedema tarda when it appears in patients 30 years of age and older.

A diagnosis can be made from the patient’s history and physical examination, supported by common imaging techniques such as computed tomography, magnetic resonance imaging, and duplex ultrasonography. Currently, the standard tool to evaluate lymphatic function is radionuclide lymphoscintigraphy. It is relatively noninvasive and enables clinicians to make both qualitative and quantitative analyses [3].

Currently, there is no cure for GL, but it can be managed with early recognition and therapy. The standard of care for GL is complex (also known as combined or complete) physical therapy. Conservative therapy may produce good results, but the effects are temporary without maintenance and continued compression. Although conservative treatments such as decompression are the first-line approach, surgical intervention has been shown to be effective in certain cases [4].

Surgical treatments for GL divided into two categories: physiologic and ablative. Physiologic treatments aim to enhance the anterograde flow of lymph by increasing the drainage capacity, while ablative procedures minimize the severity by conducting excision of the affected areas. It is suggested that physiologic treatments should be performed in the early stages as an effort to conserve lymph drainage prior to the progression of fibrosis and adipose deposition. In contrast, ablative treatments are applicable for any stages of lymphedema [5,6].

Currently, the most frequently performed physiologic surgical treatments are lymphaticovenular anastomosis and vascularized lymph node transfer [6]. It is important to underscore the fundamental difference between the older (lymphovenous) and more recent (lymphaticovenular) procedures. In lymphaticovenular techniques, the surgeon identifies patent residual lymphatic channels and performs an anastomosis to a recipient venule. In contrast, in the lymphovenous technique, a recipient vein is used for the anastomosis.

Ablative procedures aim to remove the edematous tissue in order to promote improved function and hygiene. These operations are indicated when lymphedema has progressed to significant fibrosis and fatty infiltration, resulting in the disturbance of the remaining lymphatic channels [6,7]. Debunking or excision techniques for the management of GL can involve partial or total resection of the skin and the subcutaneous tissue associated with lymphatic drainage. The Charles procedure was proposed as a modification of the debunking procedure in which surgeons excise circumferentially and resurface the defects with split-thickness grafts taken from the excised tissue. The Charles procedure is considered to be the earliest and most radical ablative technique [8]. However, the principles remain pertinent to patients with end-stage lymphedema. For select patients, these techniques can offer significant satisfaction and excellent end results. This study aimed to systematically review studies evaluating available surgical alternatives for the treatment of male GL.

METHODS

Search strategy and screening procedure
A comprehensive electronic bibliographic search was performed in May 2019. A gray literature search was not conducted. The electronic databases of PubMed, Scopus, EMBASE, and Cochrane Library were searched using the following medical subject headings (MeSH): “genital lymphedema AND surgical procedure,” “scrotal lymphedema AND surgical procedure,” and “penile lymphedema AND surgical procedure.” Limits applied to the literature search included: “humans,” “English,” “full-text,” and “articles published between 1990 and 2019.”

The titles and abstracts of potentially relevant articles were screened and examined. Lists of references from the articles were also examined to find other relevant studies that were not detected through the electronic search.

Data extraction
The authors reviewed each title and abstract, along with each potentially relevant article. When provided, the following data were extracted: sample population, patient age, etiology, surgical technique(s), early complications, late complications, quality of life, and duration of follow-up. Evaluable studies were analyzed per endpoint.

Quality assessment
Selected studies were then appraised using the methodological index for non-randomized studies (MINORS), which is a validated instrument used to evaluate the methodological quality of non-randomized surgical studies. Considering the frequent publication of observational studies in surgery, the MINORS score is key in assessing the validity and quality of published data. The MINORS system utilizes an eight-item index (with a global maximum score of 16) for noncomparative studies and a 12-item index (with a global maximum of 24) for comparative studies [9].
RESULTS AND DISCUSSION

Search and screening results
The initial search of PubMed, Scopus, EMBASE, and Cochrane Library using the keywords mentioned above identified 273 relevant studies. After application of the aforementioned limits, only 164 publications remained. Furthermore, 148 studies were excluded after removal of duplicates and screening of the titles and abstracts. Overall, the full texts of 16 articles were examined based on the inclusion and exclusion criteria. Of these, three further articles were excluded: two because the full-text studies were not found and one because it was a conference abstract. A total of 13 studies met the inclusion criteria and were considered eligible for review as described in Fig. 1.

Demographics
The study populations varied in the characteristics of participants and the sample sizes. The number of participants varied from one to 51 patients who underwent surgical intervention. The patients’ mean age ranged from 21 to 74.2 years.

The studies reviewed were conducted across the globe, with populations of different ethnic backgrounds. The disease underlying GL also varied among the studies. Most cases of GL were due either to filariasis infection or progression of malignancy. However, four studies described idiopathic GL, as shown in Table 1.

Quality of studies
A total of 13 studies met the inclusion criteria. Nine studies were determined to be high-quality, as illustrated in Table 2. The average MINORS score was 12.45 for studies involving excision and 14 for studies involving lymphovenous anastomosis (LVA).

Lymphedema recurrence during follow-up was reported in four studies of excision and in no studies of LVA.

Ablative surgery: Excision and Charles procedure
Excision was the most common surgical intervention found among the included studies. Nine of the reviewed studies illustrated excision procedures to treat GL [10-18]. In contrast, only two studies described the use of modified Charles procedures [19,20].

In a study by Scaglioni and Uyulmaz [10], a debulking procedure was followed by a split-thickness skin graft from the unaf-

Table 1. Characteristics of the reviewed studies

Study	Year	Country	No. of subjects	Mean age (yr)	Etiology
Scaglioni et al. [10]	2018	Switzerland	1	51	Malignancy
Vives et al. [11]	2016	Colombia	1	33	Filariasis
Pastor et al. [12]	2011	USA	1	39	Epididymitis
Garaffa et al. [13]	2008	UK	34	46.6	Idiopathic, infection, malignancy
Halperin et al. [14]	2007	USA	2	42.5	Idiopathic
Machió et al. [15]	2014	USA	4	35	Infection
Thejeswi et al. [16]	2012	India	1	54	Filariasis
Elkiran et al. [17]	2019	Egypt	1	21	Inflammation
Torio-Padron et al. [18]	2015	Germany	51	41	Filariasis, malignancy
Modolin et al. [19]	2006	Brazil	17	50.5	Filariasis, malignancy, congenital
Salako et al. [20]	2018	Nigeria	11	48.5	Filariasis
Mukenge et al. [21]	2007	Italy	1	75	Malignancy
Mukenge et al. [22]	2011	Italy	5	74.2	Malignancy
All of the selected studies reported a better quality of life for patients after surgical intervention. Most of the studies evaluated sexual function, and scrotal weight, as depicted in Table 3. However, the measurement of quality of life was not standardized among those studies and seemed to be based on patient subjective reports. Most of the studies applied a qualitative approach to follow-up on patients' functional status. One study also described the importance of using the proper method to assess the anatomostomy patency during follow-up. In this case, the authors performed this assessment using an indocyanine green-photodynamic eye infrared system.

Physiological surgery: LVA

Despite the fact that lymphaticovenular anastomosis has been widely used for treating GL, several conditions may render cases unsuitable for this technique. Mukenge et al. [21,22] was consistent in treating GL with LVA. Most of the patients included in their studies had been treated for a malignancy prior to complaining of GL. In such severe cases of GL, LVA is considered to be a more effective treatment than lymphaticovenular anastomosis, due to the relatively large diameter of the remaining lymphatic vessels. Malignancy may cause extensive lymphatic damage, which makes a successful lymphaticovenular anastomosis difficult to achieve. In contrast, LVA is less affected by these changes and can still provide effective drainage by creating a lymphaticovenular connection. In some cases, the authors performed this procedure as a salvage treatment after previous failed LVA or lymphaticovenular anastomosis.

The results of the follow-up were positive in all cases. No patients experienced recurrence of GL or developed any new complications. The patients reported a significant improvement in their quality of life, with a marked reduction in swelling and improvement in mobility and sexual function. These findings were consistent with the results reported by other studies, such as those by Scaglioni et al. [10] and Vives et al. [11].

Table 2. Quality assessment of the reviewed studies

Study	Aim	Inclusion of consecutive patients	Prospective collection of data	Endpoints appropriate to the aim of the study	Unbiased assessment of the study endpoint	Follow-up period appropriate to the aim of the study	Loss to follow-up < 5%	Prospective calculation of the study size	Adequate control group	Baseline equivalence of groups	Adequate statistical analyses	Total score
Scaglioni et al. [10]	2	0	2	2	1	2	2	0	0	0	0	11
Vives et al. [11]	2	1	1	2	1	1	1	0	0	0	0	10
Pastor et al. [12]	2	0	1	1	0	0	0	0	0	0	0	5
Garafit et al. [13]	2	2	2	2	2	2	2	0	0	0	0	16
Halpin et al. [14]	2	0	2	2	2	2	2	0	0	0	0	13
Macho et al. [15]	2	2	2	2	2	2	2	0	0	0	0	16
Thejaswi et al. [16]	2	0	2	2	2	2	2	0	0	0	0	8
Eklran et al. [17]	2	2	2	2	2	2	2	0	0	0	0	12
Torio-Padron et al. [18]	2	2	2	2	2	2	2	0	0	0	0	16
Modolin et al. [19]	2	2	2	2	2	2	2	0	0	0	0	16
Salako et al. [20]	2	2	2	2	2	2	2	0	0	0	0	14
Mukenge et al. [21]	2	0	2	2	2	2	2	0	0	0	0	12
Mukenge et al. [22]	2	2	2	2	2	2	2	0	0	0	0	16
system, such as the International Classification of Functioning Disability and Health (developed by the World Health Organization), or if they had used quantitative tools that might allow for easier comparison.

LIMITATIONS

Several limitations were encountered in this systematic review, such as a lack of research investigating surgical interventions for the treatment of GL. This may result from the low prevalence of GL cases. In addition, most of the studies did not mention the stage of GL; therefore, we were unable to make a more objective comparison among the results of the selected studies. Moreover, the lack of quality of life measurement tools for lymphedema also allowed us to draw only a subjective conclusion regarding the selected studies.

CONCLUSION

In general, the quality of the included literature is considered to be fair. Even though surgical intervention might not always prevent the recurrence of lymphedema, all of the patients in these studies were found to have a better subjective quality of life after the procedure. Due to the subjective nature of these results, we recommend that future studies utilize more quantitative methods to assess patients’ quality of life. This study could be used as the basis for evidence-based guidelines to be applied in clinical practice for managing male GL.

NOTES

Conflict of interest

No potential conflict of interest relevant to this article was reported.
Author contribution
Conceptualization: Aulia I. Data curation: all authors. Formal analysis: Yessica EC. Methodology: all authors. Project administration: Yessica EC. Visualization: all authors. Writing - original draft: all authors. Writing - review & editing: all authors. Approval of final manuscript: all authors.

ORCID
Indri Aulia https://orcid.org/0000-0002-6306-3581
Eva Chintia Yessica https://orcid.org/0000-0002-0219-641X

REFERENCES
1. Warren AG, Brorson H, Borud LJ, et al. Lymphedema: a comprehensive review. Ann Plast Surg 2007;59:464-72.
2. Namir SA, Trattner A. Transient idiopathic primary peno-scrotal edema. Indian J Dermatol 2013;58:408.
3. Chiu TW. Management of secondary lymphoedema. Hong Kong Med J 2014;20:519-28.
4. Huang GK, Hu RQ, Liu ZZ, et al. Microlymphaticovenous anastomosis for treating scrotal elephantiasis. Microsurgery 1985;6:36-9.
5. Campisi C, Bellini C, Campisi C, et al. Microsurgery for lymphedema: clinical research and long-term results. Microsurgery 2010;30:256-60.
6. Kung TA, Champaneria MC, Maki JH, et al. Current concepts in the surgical management of lymphedema. Plast Reconstr Surg 2017;139:1003e-1013e.
7. Kobayashi MR, Miller TA. Lymphedema. Clin Plast Surg 1987;14:303-13.
8. Mavili ME, Naldoken S, Safak T. Modified Charles operation for primary fibrosclerotic lymphedema. Lymphology 1994;27:14-20.
9. Slim K, Nini E, Forestier D, et al. Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 2003;73:712-6.
10. Scaglioni MF, Uyulmaz S. Lymphovenous anastomosis and debulking procedure for treatment of combined severe lower extremity and genital lymphedema: a case report. Microsurgery 2018;38:907-11.
11. Vives F, Garcia-Perdomo HA, Ocampo-Florez GM. Giant lymphedema of the penis and scrotum: a case report. Autops Case Rep 2016;6:57-61.
12. Pastor C, Granick MS. Scrotal lymphedema. Eplasty 2011;11:ic15.
13. Garaffa G, Christopher N, Ralph DJ. The management of genital lymphoedema. BJU Int 2008;102:480-4.
14. Halperin TJ, Slavin SA, Olumi AF, et al. Surgical management of scrotal lymphedema using local flaps. Ann Plast Surg 2007;59:67-72.
15. Machol JA 4th, Langenstroer P, Sanger JR. Surgical reduction of scrotal massive localized lymphedema (MLL) in obesity. J Plast Reconstr Aesthet Surg 2014;67:1719-25.
16. Thejeswi P, Prabhu S, Augustine AJ, et al. Giant scrotal lymphoedema: a case report. Int J Surg Case Rep 2012;3:269-71.
17. Elkiran YM, Elshafei AM, Abdelgawwad MS, et al. Surgical management of giant scrotal lymphedema in morbidly obese patient with trisomy 21. J Vasc Surg Cases Innov Tech 2019;5:71-4.
18. Torio-Padron N, Stark GB, Foldi E, et al. Treatment of male genital lymphedema: an integrated concept. J Plast Reconstr Aesthet Surg 2015;6:262-8.
19. Modolin M, Mitre AI, da Silva JC, et al. Surgical treatment of lymphedema of the penis and scrotum. Clinics (Sao Paulo) 2006;61:289-94.
20. Salako AA, Olabanji JK, Oladele AO, et al. Surgical reconstruction of giant penoscrotal lymphedema in sub-Saharan Africa. Urology 2018;112:181-5.
21. Mukenge S, Pulitano C, Colombo R, et al. Secondary scrotal lymphedema: a novel microsurgical approach. Microsurgery 2007;27:655-6.
22. Mukenge SM, Catena M, Negroni D, et al. Assessment and follow-up of patency after lymphovenous microsurgery for treatment of secondary lymphedema in external male genital organs. Eur Urol 2011;60:1114-9.