Effect of addition waste bottle and fly ash variation to compressive strength environmentally friendly paving block

A I N Diana1 and D Deshariyanto1

1Civil Engineering Department of Engineering Faculty of Wiraraja University, Sumenep, Indonesia

Email: anita@wiraraja.ac.id, dwi@wiraraja.ac.id

Abstract. The problem of waste has not been resolved, so alternative building materials are needed as a substitute or filler in making mixtures. Paving block is one of the alternative road pavement which is widely use in Sumenep district. Information from civil engineering Wiraraja laboratory in 2018, showed the number of paving block tests reached 211 from 45 companies. Alternative substitute material is fly ash and alternative filler material is the utilization of plastic waste. This research use comparison 1Pc : 4 Ps, fly ash variation 10\%, 20\%, 30\%, 40\%, 50\% from cement weight and 0.5\% of waste plastic from total mixture. Data analysis using SPSS software. This research presents, there is a simultaneous influence on the compressive strength that is influenced by variations of fly ash. The sequentially compressive strength of fly ash variation is 15.90 Mpa, 17.49 Mpa, 15.64 Mpa, 12.24 Mpa, 11.54 Mpa, 9.43 Mpa. The regression equation model obtained \(Y = 17.538 + (-0.154) X \). Therefore, The quality of paving blocks based on SNI namely experiments I and III are included in the C quality category, experiments II is included in the B quality category, experiments IV, V, VI are included in the D quality category.

1. Introduction

Population growth in 2017, according to the Central Statistics Agency reached 261 million. Based on National Development Planning Agency in 2013, the National Development Planning Agency estimates, Indonesia's population in 2018 will reach 265 million. Based on the inter-census population survey in 2015, Indonesia's population in 2019 is projected to reach 266.91 million. The high rate of population growth is directly proportional to the increase in infrastructure growth. Meeting the needs of infrastructure is inversely proportional to the availability of building materials, therefore we need a way to utilize certain natural resources in large quantities to minimize the use of building materials that are diminishing. Paving blocks are one element of building materials that are often used in the construction world. The use of paving blocks as road cover or hardener is widely used for housing projects or residential areas, beautifying parks, yards or yard, surface covering of parking areas (offices, factories, schools, restaurants, apartments, hotels and so on). Paving block mixture material consists of Portland cement, fine aggregate, water, and other added ingredients without reducing the quality of the paving block. Information from civil engineering Wiraraja laboratory in 2018, showed the number of paving block tests reached 211 from 45 companies.

Plastic bottles are non-decomposable materials and fall into the category of inorganic materials. The existence of plastic bottle waste can cause obstruction of water infiltration into the soil, problems that are more complex than the presence of plastic waste arising among others can reduce, air pollution, soil
fertility, flooding, and cause toxicity to food chain patterns to the marine ecosystem due to the process of photodegradation (exposure to light the sun against plastic at sea, thus breaking up plastic waste into small beads). According to World Atlas (2018), Indonesia is the country with the No. 4 largest use of plastic bottles in the World, around 4.28 billion. Some mass media have discussed a lot about plastic bottle waste. Sumenep Regency was taken as a research object, with several considerations based on available data, namely: 1) The Sumenep Regency Environmental Office (DLH) noted that there were as many as 20 tons of rubbish daily produced by Sumenep residents. The majority of waste comes from household waste consisting of plastic waste, farmer waste, and non-organic waste; 2) DLH Sumenep Regency has a limited fleet for the process of transportation from the Temporary Disposal Site to the Final Waste Disposal Site. There are only 17 tracks that serve and the conditions are not feasible; 3) Very low level of community awareness in Sumenep Regency regarding Waste management. This is evidenced by the custom of the Kalianget community to throw trash on the beach; 4) The lack of handling and management of plastic waste in Sumenep Regency. Based on the problems above, a solution is needed as a form of reducing plastic bottle waste. Several studies on paving blocks have utilized plastic bottle waste as material composition including [1,2,4,6,8,9,10]. Avinash G B et al. [1] developed research about the production of plastic waste-based paving blocks. This research utilizes the composition of plastic waste with a variation of 40%, 50%, 60%, 70% of the required sand weight. The results of this study show the lowest compressive strength at 70% variation, which is 14.7 MPa. The best variation of plastic waste is 60% of the required sand weight. Jouontso T Y C et al. [5] made engineered paving blocks with coarse aggregates, sand, and Low Density Polyethylene (LDPE) plastic waste. LDPE plastic waste before it is mixed with other compositions must be melted as a substitute for cement. There are several variations of coarse aggregate used in this study. The results of this study show that with the addition of coarse aggregate and LDPE plastic waste, the mechanical properties of paving blocks are better, flexibility, and more resistant to water absorption. Utilization of waste in the construction world as a composition of paving blocks not only comes from plastic. Coal waste (fly ash) is also often used in the construction world. The reason for using coal waste as a substitute for cement is that it is relatively affordable (cheaper) and more environmentally friendly. Several studies have used coal waste as a material composition there in, namely [3,7,12,13,14]. Nurzal et al. [7] presented the purpose of this study was to determine the effect of adding color and compaction to paving blocks. This study uses paving blocks in gray and red coloring, with 0% and 5% fly ash (FA) variation. Compaction variations used were 55 kg/cm², 65 kg/cm², 75 kg/cm², 85 kg/cm² and 95 kg/cm². The results of his research that: 1) the addition of fly ash with a variation of 5% has a compressive strength higher than 0%, 2) the addition of coloring to the paving block can affect the compressive strength. Red paving blocks have lower compressive strength compared to gray paving blocks, 3) higher the rate of compaction the particle bond gets stronger so that the porosity value is lower. Based on the background above, it is deemed necessary to conduct this research.

2. Method

This research is an experimental research that is research in solving problems using trials in the laboratory. The variables used are variable x (independent variable) and variable y (dependent variable). The independent variable used is the variation of fly ash and the dependent variable is the compressive strength of paving blocks. The picture below is the composition of the paving block used:

![Figure 1. Material used: (a) sand, (b) waste plastic, (c) fly ash and cement, (d) mineral water](image-url)
Figure 2. The process of making paving blocks: (a) mix all composition, (b) manual compactor used, (c) one paving block mold consists of three layers, (d) paving block results

The samples used were 3 pieces for each variation of fly ash. Fly ash variation 10%, 20%, 30%, 40%, 50% from cement weight and 0.5% of waste plastic from total mixture. This research will measure the effect of adding plastic bottle waste with the addition of fly ash to the compressive strength of environmentally friendly paving blocks. The compressive strength testing procedure to be carried out is guided by the Indonesian National Standard (SNI) 03-0691-1996 [11] concerning concrete bricks (paving blocks). The testing steps are:

A. Measure the specimen of paving blocks using a ruler of 0.1 mm accuracy. Thickness measurements were made in three different places and the average value was taken.

B. Test specimens that are ready to be pressed to shatter with a pressure machine after 28 days old. The speed of pressure from the start of loading until the test object is destroyed takes about 1 to 2 minutes. The direction of the pressure of the test specimen, adjusted for the direction of the load pressure in its use.

C. Calculate the compressive strength using the following formula:

\[\sigma = \frac{P}{L} \tag{1} \]

Information:
\(\sigma \) = Compressive strength (N/mm\(^2\))
\(P \) = Press load (N)
\(L \) = Area of Press (mm\(^2\))

D. Calculate the average compressive strength of paving block by adding up the results of all the compressive tests by the number of specimens

E. Check normality and heteroscedasticity test of paving block. In this study, heteroscedasticity test using glejser method and normality test using kolmogorov-smirnov. Data is considered normally distributed if the sig value of SPSS 20 shows \(> 0.05 \) and then there is no symptom of heteroscedasticity if the value of the probability is greater than the alpha value \((0.05) \).

F. The results of experiments conducted at the Laboratory are presented in tabular form which is then analyzed with simple linear regression. The regression equation that will be obtained from the results of the analysis are [8] :

\[Y = a + bx \tag{2} \]

Where:
\(Y \) is the dependent variable / dependent variable
\(X \) is an independent variable / independent variable
\(a \) is a constant
\(b \) is the regression coefficient (increase or decrease value)

G. The results of the regression obtained next hypothesis testing, whether there is a significant effect of the addition of waste plastic bottles with variations in the addition of fly ash to the compressive strength of environmentally friendly paving blocks. Hypothesis testing is used using a linearity
test and a significant test. The linearity test rule is if \(F_{\text{arithmetic}} \leq F_{\text{table}} \) then \(H_0 \) is accepted, otherwise if \(F_{\text{arithmetic}} \geq F_{\text{table}} \) then \(H_0 \) is rejected. The test rule is significant if \(-t_{\text{table}} \leq t_{\text{arithmetic}} \leq +t_{\text{table}} \) then \(H_0 \) is accepted, otherwise if \(t_{\text{arithmetic}} > t_{\text{table}} \) then \(H_0 \) is rejected [8].

H. Testing simple linear regression analysis using SPSS software. Paving block data from the laboratory test results are also analyzed on the classification of paving blocks which refers to SNI 03-0691-1996 about concrete bricks (paving blocks).

I. SPSS data output used to draw conclusions whether there is an effect of additional waste bottle and fly ash variation to compressive strength environmentally friendly paving blocks is \(F \) change data in the model summary table or ANOVA table, whereas to find out the regression equation can use the Coefficients table by looking at the dependent variable and independent variable.

3. Main Results

3.1 Composition of Paving Block Mixture

The comparison of cement and aggregate in paving blocks is a weight ratio. The weight of paving blocks with dimensions of 20 cm x 10 cm x 6 cm, it is assumed that the weight of 1 test piece is around 2.5 kg. Comparison of the weight of cement and aggregate, with an aggregate cement ratio of 1Pc: 4Ps with a ratio of 1Pc: 4Ps mixed volume with the addition of fly ash with variations of 10%, 20%, 30%, 40%, 50% of the weight of the cement and additional material in the form of 0.5% plastic bottle waste to the paving block mixture in the test specimen.

3.2 Paving Block Compressive Strength Test

Paving blocks are tested for absorption at 28 days. Tests are carried out based on SNI 03-0691-1996 [11]. The samples used for testing the absorption of water are 3 test pieces. The following are the results of absorption testing of paving blocks presented in the form of graphic images,

![Figure 3. Paving block compressive strength chart](image1)

Based on Figure 3 above it can be informed that the average compressive strength in sequence for each treatment variation of fly ash 0%, 10%, 20%, 30%, 40%, and 50% is 15.9 Mpa, 17.49 Mpa, 15.64 Mpa, 12.24 Mpa, 11.45 Mpa, 9.43 MPa

3.3 Normality and Heteroscedasticity Test of Compressive Strength Paving Block with Fly Ash Variation

A normality test is used to determine whether the research data that has been obtained has a normal distribution or not. Normality testing uses SPSS 20 for windows. Standardized residual values are stated to spread normally, because a significant value of 0.790 > 0.05. The following outputs are SPSS heteroscedasticity testing,
Table 1. Normality test using one-sample kolmogorov-smirnov test data of paving block compressive strength with fly ash mixture variation

Unstandardized Residual	N	Mean	Std. Deviation	Absolute	Positive	Negative	Kolmogorov-Smirnov Z	Asymp. Sig. (2-tailed)
	30	0E-7	1.78901060	.119	.119	-.103	.651	.790

a. Test distribution is Normal.
b. Calculated from data.

Heteroscedasticity testing uses SPSS 20 for windows. The regression model occurs heteroscedasticity because of the value of sig. variable fly ash to absolute residuals is 0.000 < 0.05. The following outputs are SPSS heteroscedasticity testing.

Table 2. Heteroscedasticity test data of paving block compressive strength with fly ash mixture variations

Model	Unstandardized Coefficients	Standardized Coefficients	T	Sig.	
	B	Std. Error	Beta		
1	(Constant) -1.251E-015 .589	.019 .000 .000 .000		1.000 1.000	
	fly ash .000 .000 .000	.019 .000 .000		1.000 1.000	

a. Dependent Variable: ABS_RES

3.4 Regression Analysis and Hypothesis Testing of Paving Block Compressive Strength

The compressive strength data obtained were analyzed using simple linear regression, which had previously been tested using the normality test and heteroscedasticity test. Based on the test that has been done shows that the regression model has met the requirements. The next step is a regression analysis to determine the effect of variations of the fly ash mixture on the compressive strength of the paving block. The results of data analysis can be seen in the following table.

Table 3. Summary of compressive strength analysis results

Model Summary
Model

1

a. Predictors: (Constant), fly ash
b. Dependent Variable: Compressive Strength

Based on table 3 it can be analyzed that the relationship between variations in the mixture of fly ash with compressive strength is 0.831. Contributions contributed by variations of fly ash on compressive strength of 0.691 or 69.1% this means that the variable variation of fly ash affects the compressive strength of 69.1%. Value of std. Error of the estimate is 1.82. This shows the deviation between the regression equation and the dependent real value of 1.82. The smaller the value of std. Error of the estimate, the better the equation is as a prediction.
Table 4. Results of compressive regression ANOVA analysis

Model	Sum of Squares	Df	Mean Square	F	Sig.
Regression	207.115	1	207.115	62.496	.000b
Residual	92.793	28	3.314		
Total	299.908	29			

a. Dependent Variable: Compressive Strength
b. Predictors: (Constant), fly ash

The probability value (sig) is 0.000 and the significant value is 0.05. Then the next step is to compare F arithmetic and F tables as well as sig and α. From table 4 it is known that the calculated F value is 62.496 while the F table value is 4.20. Then F value = 62.496 > F table 4.20 (Ho is rejected) and sig = 0.000 < 0.05 (Ho is rejected). Thus the decision can be taken that there is a simultaneous influence on compressive strength with the addition of variations of fly ash.

Table 5. Coefficients of compressive strength analysis results

Model	Unstandardized Coefficients	Standardized Coefficients	T	Sig.	95.0% Confidence Interval for B			
	B	Std. Error	Beta		Lower Bound	Upper Bound		
(Constant)	17.538	.589	-.831	29.765	.000	16.331	18.745	
fly ash	-.154	.019		-7.905	.000			

a. Dependent Variable: Compressive strength

Testing the research hypothesis can be done based on the coefficients table. Table 5 shows the regression equation model to estimate the absorption value that is influenced by variations of fly ash is

\[Y = 17.538 - (0.154 X) \]

Drawing conclusions based on linearity test, the t-test test rules are, if \(-t\) table \(\leq t\) arithmetic \(\leq t\) table (Ho is accepted) but if \(t\) arithmetic \(> t\) table (Ho is rejected). From table 5 it is known that the calculated t value is \(-7.905\) while the t value of table is 1.701. Then \(t\) arithmetic = 7.905 > t table = 1.701 (Ho rejected). Thus the decision can be taken that there is a significant effect between the addition of variations of fly ash on the absorption of paving blocks.

Conclusions are drawn based on the significance test, the rules of testing if Sig \(\leq \alpha\) (Ho is rejected) and if the value of Sig > \(\alpha\) (Ho is accepted). Based on the table the value of Sig is 0.000 and the value of \(\alpha\) is \((\alpha / 2) = 0.025\) so Sig = 0.000 < \(\alpha = 0.025\) (Ho is rejected). Thus the decision can be taken that there is a significant effect between variations of fly ash on the absorption of paving block water.

3.5 Paving Block Classification Based on Indonesian National Standardization

1. Treatment I with a mixture of fly ash from cement volume is 0% and plastic bottle waste from paving block volume is 0%, has an average compressive strength value 15.90 MPa, so it is categorized as quality C concrete brick with an average compressive strength the required average is 15 MPa and a minimum compressive strength of 12.5 MPa.

2. Treatment II with a mixture of fly ash from cement volume is 10% and plastic bottle waste from paving block volume is 0.50%, has an average compressive strength value 17.49 MPa, so it is categorized as high quality concrete brick B with compressive strength an average requirement of 20 MPa and a minimum compressive strength of 17 MPa.

3. Treatment III with a mixture of fly ash from cement volume is 20% and plastic bottle waste from paving block volume is 0.50%, has an average compressive strength 15.64 MPa, so it is
categorized as high quality C concrete brick with compressive strength an average requirement of 15 MPa and a minimum compressive strength of 12.5 MPa.

4. Treatment IV with a mixture of fly ash from cement volume is 30% and plastic bottle waste from paving block volume is 0.50%, has an average compressive strength 12.24 MPa, so it is categorized as D quality concrete brick with compressive strength an average requirement of 15 MPa and a minimum compressive strength of 12.5 MPa.

5. Treatment V with a mixture of fly ash from cement volume is 40% and plastic bottle waste from paving block volume is 0.50%, has an average compressive strength 11.45 MPa, so it is categorized as D quality concrete brick with compressive strength the required average is 10 MPa and the maximum compressive strength is 8.5 MPa.

6. Treatment VI with a mixture of fly ash from cement volume is 50% and plastic bottle waste from paving block volume is 0.50%, has an average compressive strength 9.43 MPa, so it is categorized as D quality concrete brick with compressive strength the required average is 10 MPa and the maximum compressive strength is 8.5 MPa.

4. Conclusions
Based on the results of the analysis and discussion carried out on the subject of the previous discussion, the following conclusions are obtained:

1. The linear regression equation for the variation of fly ash on the compressive strength of paving blocks is Y = 17.538 – 0.154 X, the analysis shows that there is a significant influence between the variation of fly ash on the compressive strength of paving blocks.

2. The quality of paving blocks based on SNI namely experiments I and III are included in the C quality category, experiments II is included in the B quality category, experiments IV, V, VI are included in the D quality category

Acknowledgment
We would like say thanks to 1) LPPM Wiraraja University for funding this research in accordance with the research contract Number : 024/SPK/LPPM/UNIJA/IV/2019, 2) ICCGANT committee for providing the best facilities, 3) and the last, i would like to thank several parties, especially the best encouraging husband. Recomendation to further research is 1) find the most optimal percentage of the application of fly ash and waste plastic bottles, 2) using fly ash and plastic bottles in other construction products.

References
[1] Avinash G B, Roja A P, Santosh M R, and Puneetha Kumari H M 2019 Utilisation of waste plastic in manufacturing of paver blocks International J.of Innovative Research in Science, Eng.and Tech.8(6) pp 6674-6680
[2] Burhanuddin, Basuki, and Darmanijati 2018 Utilization of used plastic waste for main material in making paving block J.Environmental Eng. 18(1) pp 1-7
[3] Ifan A G 2015 Optimization of the use of fly ash and bottom ash suralaya power plant in the making of high quality paving blocks Primary Dimension J.Civil Eng. 7(1) pp 8-15
[4] Indrawijaya B D 2019 Utilization of LDPE plastic waste as an aggregate substitute for the making of concrete block paving J.Pamulang University Chemical Eng. Scientific 3(1) pp 1-7
[5] Jouontso T Y C, Zachary C A G, Stanley M S, and Erick R 2019 Influence of coarse aggregate on the physical and mechanical performance of paving blocks made using waste plastic International J. Eng. Research and Tech.12(6) pp 912-916
[6] Murdiyanto A 2011 Utilization of Pet Type (Poly Ethylene Terephthalate) Plastic Bottle Waste for Rough Aggregate for Paving Block Manufacturing (Depok, Indonesia : University of Indonesia) pp 1-59
[7] Nurzal and Aries Nursyuhada 2017 The Effect of Coloring and Compacting Pressure Paving Block by Adding 5 Wt.% Fly Ash in The Compressive Strength (IOP Conf Series : Earth and Environmental Science) vol 97 pp 1-5

[8] Rismayasari Y, Utari and Santosa U 2012 Making with plastic waste mixtures and their characteristics Indonesian J. Appl. Phys. 2(2) pp 24-30

[9] Riadi E 2016 Research Statistics Manual Analysis and IBM SPSS (Indonesia : Andi Offset)

[10] Sibuea A F and Tarigan J 2018 Utilization of plastic bottle waste as eco-friendly material (economic plastic fiber) paving block with an environmental friendly concept with pressure test, shock test, and water absorption J.Usu Civil Eng. 2(2) pp 1-8

[11] Indonesian National Standardization 1996 SNI 03-0691-1996 About Concrete Bricks (Paving blocks) (Jakarta, Indonesia : National Standardization Agency)

[12] Susilowati A 2016 National Conf. of Applied Sciences, Engineering, Business and Information Technology (Padang, Indonesia : Padang State Polytechnic) pp 34-41

[13] Wibisono R, Rahmawati A and Saputro I N 2016 The Influence of the Use of Slag and Fly Ash as an Add Material to The Compressive Strength of Paving Blocks as a Teaching Material Supplement Material Concrete Technology Course Ptb Fkip Uns (Surakarta, Indonesia: Building Engineering Education Study Program Sebelas Maret University) pp 30-35

[14] Witarso and Lasino 2015 Effect of addition of flying ash on paving block J.Road and Bridge 32(1) pp 54-60