Problems and Supplementary Material:
Unified Characterization and Precoding for Non-Stationary Channels

Zhibin Zou, Maqsood Careem, Aveek Dutta
Department of Electrical and Computer Engineering
University at Albany SUNY, Albany, NY 12222 USA
{zzou2, mabdulcareem, adutta}@albany.edu

Instructions: This document provides the supplementary material including a comprehensive related work, the complete proofs and extended evaluation results that support the manuscript, “Unified Characterization and Precoding for Non-Stationary Channels”, that was accepted for publication at IEEE International Conference on Communications (ICC) 2022. Equations (1)–(34) refer to the equations from the main manuscript, and the Theorem, Lemma and Corollaries correspond to those from the manuscript.

Appendix A
Related Work

We categorize the related work into three categories:

Characterization of Non-Stationary Channels: Wireless channel characterization in the literature typically require several local and global (in space-time dimensions) higher order statistics to characterize or model non-stationary channels, due to their time-varying statistics. These statistics cannot completely characterize the non-stationary channel, however are useful in reporting certain properties that are required for the application of interest such as channel modeling, assessing the degree of stationarity etc. Contrarily, we leverage the 2-dimensional eigenfunctions that are decomposed from the most generic representation of any wireless channel as a spatio-temporal channel kernel. These spatio-temporal eigenfunctions can be used to extract any higher order statistics of the channel as demonstrated in Section III, and hence serves as a complete characterization of the channel. Furthermore, since this characterization can also generalize to stationary channels, it is a unified characterization for any wireless channel. Beyond characterizing the channel, these eigenfunctions are the core of the precoding algorithm.

Precoding Non-Stationary Channels: Although precoding non-stationary channels is unprecedented in the literature [11], we list the most related literature for completeness. The challenge in precoding non-stationary channels is the lack of accurate models of the channel and the (occasional) CSI feedback does not fully characterize the non-stationarities in its statistics. This leads to suboptimal performance using state-of-the-art precoding techniques like Dirty Paper Coding which assume that complete and accurate knowledge of the channel is available, while the CSI is often outdated in non-stationary channels. While recent literature present attempt to deal with imperfect CSI by modeling the error in the CSI [2], [3], [4], [5], [6], [7], [8], [9], they are limited by the assumption the channel or error statistics are stationary or WSSUS at best. Another class of literature, attempt to deal with the impact of outdated CSI [10], [11] in time-varying channels by quantifying this loss or relying statistical CSI. These methods are not directly suitable for non-stationary channels, as the time dependence of the statistics may render the CSI (or its statistics) stale, consequently resulting in precoding error.

Space-Temporal Precoding: While, precoding has garnered significant research, spatio-temporal interference is typically treated as two separate problems, where spatial precoding at the transmitter aims to cancel inter-user and inter-antenna interference, while equalization at the receiver mitigates inter-carrier and inter-symbol interference. Alternately, [12] proposes to modulate the symbols such that it reduces the cross-symbol interference in the delay-Doppler domain, but requires equalization at the receiver to completely cancel such interference in practical systems. Moreover, this approach cannot completely minimize the joint spatio-temporal interference that occurs in non-stationary channels since their statistics depend on the time-frequency domain in addition to the delay-Doppler domain (explained in Section II). While spatio-temporal block coding techniques are studied in the literature [13] they add redundancy and hence incur a communication overhead to mitigate interference, which we avoid by precoding. These techniques are capable of independently canceling the interference in each domain, however are incapable of mitigating interference that occurs in the joint spatio-temporal domain in non-stationary channels. We design a joint spatio-temporal precoding that leverages the extracted 2-D eigenfunctions from non-stationary channels to mitigate interference that occurs on the joint space-time dimensions, which to the best of our knowledge is unprecedented in the literature.
APPENDIX B
PROOFS ON UNIFIED CHARACTERIZATION

A. Proof of Lemma 1: Generalized Mercer’s Theorem

Proof. Consider a 2-D process $K(t, t') \in L^2(Y \times X)$, where $Y(t)$ and $X(t')$ are square-integrable zero-mean random processes with covariance function K_Y and K_X, respectively. The projection of $K(t, t')$ onto $X(t')$ is obtained as in (35).

$$C(t) = \int K(t, t') X(t') \, dt'$$

Using Karhunen–Loève Transform (KLT), $X(t')$ and $C(t)$ are both decomposed as in (36) and (37),

$$X(t') = \sum_{i=1}^{\infty} x_i \phi_i(t')$$

$$C(t) = \sum_{j=1}^{\infty} c_j \psi_j(t)$$

where x_i and c_j are both random variables with $E\{x_i x_i\} = \lambda_i \delta_{ij}$ and $E\{c_j c_j\} = \lambda_{ij} \delta_{jj}$. Let us denote $\phi_i(t')$ and $\psi_j(t)$ are 2-D eigenfunctions, respectively. Let us denote $n=j$ and $\sigma_n = \frac{\lambda_n}{\sqrt{\delta_{nn'}}}$, and assume that $K(t, t')$ can be expressed as in (38).

$$K(t, t') = \sum_{n} \sigma_n \psi_n(t) \phi_n(t')$$

We show that (38) is a correct representation of $K(t, t')$ by proving (35) holds under this definition. We observe that by substituting (36) and (38) into the right hand side of (35) we have that,

$$\int K(t, t') X(t') \, dt' = \sum_{n} \sigma_n \psi_n(t) \phi_n(t') \sum_{n} x_n \phi_n(t') \, dt'$$

$$\int \sum_{n} \sigma_n x_n \psi_n(t) |\phi_n(t')|^2 \, dt' + \sum_{n' \neq n} \sigma_{n'} x_{n'} \psi_{n'}(t) \phi_n(t') \phi_{n'}(t') \, dt'$$

$$= \sum_{n} c_n \psi_n(t) = C(t)$$

which is equal to the left hand side of (35). Therefore, (38) is a correct representation of $K(t, t')$. \qed

B. Proof of Theorem 1: High Order Generalized Mercer’s Theorem (HOGMT)

Proof. Given a 2-D process $X(\gamma_1, \gamma_2)$, the eigen-decomposition using Lemma 1 is given by,

$$X(\gamma_1, \gamma_2) = \sum_{n} x_n e_n(\gamma_1) s_n(\gamma_2)$$

Letting $\psi_n(\gamma_1, \gamma_2)=e_n(\gamma_1) s_n(\gamma_2)$, and substituting in (40) we have that,

$$X(\gamma_1, \gamma_2) = \sum_{n} x_n \phi_n(\gamma_1, \gamma_2)$$

where $\phi_n(\gamma_1, \gamma_2)$ are 2-D eigenfunctions with the property (42).

$$\int \phi_n(\gamma_1, \gamma_2) \phi_{n'}(\gamma_1, \gamma_2) \, d\gamma_1 \, d\gamma_2 = \delta_{nn'}$$

We observe that (41) is the 2-D form of KLT. With iterations of the above steps, we obtain Higher-Order KLT for $X(\gamma_1, \cdots, \gamma_Q)$ and $C(\zeta_1, \cdots, \zeta_P)$ as given by,

$$X(\gamma_1, \cdots, \gamma_Q) = \sum_{n} x_n \phi_n(\gamma_1, \cdots, \gamma_Q)$$

$$C(\zeta_1, \cdots, \zeta_P) = \sum_{n} c_n \psi_n(\zeta_1, \cdots, \zeta_P)$$

where $C(\zeta_1, \cdots, \zeta_P)$ is the projection of $X(\gamma_1, \cdots, \gamma_Q)$ onto $K(\gamma_1, \cdots, \gamma_P; \gamma_1, \cdots, \gamma_Q)$.

Then following similar steps as in Appendix B-A we get (45).

$$K(\zeta_1, \cdots, \zeta_P; \gamma_1, \cdots, \gamma_Q) = \sum_{n} \sigma_n \psi_n(\zeta_1, \cdots, \zeta_P) \phi_n(\gamma_1, \cdots, \gamma_Q)$$

\[\square\]

APPENDIX C
PROOFS ON EIGENFUNCTION BASED PRECODING

A. Proof of Lemma 2

Proof. Using 2-D KLT as in (13), $x(u, t)$ is expressed as,

$$x(u, t) = \sum_{n} x_n \phi_n(u, t)$$

where x_n is a random variable with $E\{x_n x_n'\} = \lambda_n \delta_{nn'}$ and $\phi_n(u, t)$ is a 2-D eigenfunction.

Then the projection of $k_H(u, t; u', t')$ onto $\phi_n(u', t')$ is denoted by $c_n(u, t)$ and is given by,

$$c_n(u, t) = \int k_H(u, t; u', t') \phi_n(u', t') \, du' \, dt'$$

Using the above, (28) is expressed as,

$$||s(u, t) - H x(u, t)||^2 = ||s(u, t) - \sum_{n} x_n c_n(u, t)||^2$$

Let $\epsilon(x)=||s(u, t) - \sum_{n} x_n \phi_n(u, t)||^2$. Then its expansion is given by,

$$\epsilon(x) = \langle s(u, t), s(u, t) \rangle - 2 \sum_{n} x_n \langle c_n(u, t), s(u, t) \rangle$$
+ \sum_{n} x_{n}^{2} \langle c_{n}(u, t), c_{n}(u, t) \rangle + \sum_{n \neq m} \sum_{n} x_{n} x_{n'} \langle c_{n}(u, t), c_{n'}(u, t) \rangle

Then the solution to achieve minimal \(\epsilon(x) \) is obtained by solving for \(\frac{\partial \epsilon(x)}{\partial x} = 0 \) as in (50).

\[
x_{n}^{\text{opt}} = \frac{\langle s(u, t), c_{n}(u, t) \rangle + \sum_{n' \neq n} x_{n'} \langle c_{n'}(u, t), c_{n}(u, t) \rangle}{\langle c_{n}(u, t), c_{n}(u, t) \rangle}
\]

(50)

where \(\langle a(u, t), b(u, t) \rangle = \int \int a(u, t) b^*(u, t) \ du \ dt \) denotes the inner product. Let \(\langle c_{n'}(u, t), c_{n}(u, t) \rangle = 0 \), i.e., the projections \(\{ c_{n}(u, t) \} \) are orthogonal basis. Then we have a closed form expression for \(x_{n}^{\text{opt}} \) as in (51).

\[
x_{n}^{\text{opt}} = \frac{\langle s(u, t), c_{n}(u, t) \rangle}{\langle c_{n}(u, t), c_{n}(u, t) \rangle}
\]

(51)

Substitute (51) in (49), it is straightforward to show that \(\epsilon(x) = 0 \).

B. Proof of Theorem 2: Eigenfunction Precoding

Proof. The 4-D kernel \(k_{H}(u, t; u', t') \) is decomposed into two separate sets of eigenfunction \(\{ \phi_{n}(u', t') \} \) and \(\{ \psi_{n}(u, t) \} \) using Theorem 1 as in (30). By transmitting the conjugate of the eigenfunctions, \(\phi_{n}(u', t') \) through the channel \(H \), we have that,

\[
H \phi_{n}^*(u', t') = \int \int k_{H}(u, t; u', t') \phi_{n}^*(u', t') \ du' \ dt'
= \int \int \sum_{n} \sigma_{n} \psi_{n}(u, t) \phi_{n}(u', t') \phi_{n}^*(u', t') \ du' \ dt'
+ \int \int \sum_{n \neq m} \sigma_{n} \psi_{n}(u, t) \phi_{n}(u', t') \phi_{n}^*(u', t') \ du' \ dt'
= \sigma_{n} \psi_{n}(u, t)
\]

(52)

where \(\psi_{n}(u, t) \) is also a 2-D eigenfunction with the orthogonal property as in (31).

From Lemma 2, if the set of projections, \(\{ c_{n}(u, t) \} \) is the set of eigenfunctions, \(\{ \psi_{n}(u, t) \} \), which has the above orthogonal property, we achieve the optimal solution as in (51). Therefore, let \(x(u, t) \) be the linear combination of \(\{ \phi_{n}^*(u, t) \} \) with coefficients \(\{ x_{n} \} \) as in (53),

\[
x(u, t) = \sum_{n} x_{n} \phi_{n}^*(u, t)
\]

(53)

Then (48) is rewritten as in (54).

\[
||s(u, t) - Hx(u, t)||^{2} = ||s(u, t) - \sum_{n} x_{n} \sigma_{n} \psi(u, t)||^{2}
\]

(54)

Therefore, optimal \(x_{n} \) in (51) is obtained as in (55).

\[
x_{n}^{\text{opt}} = \frac{\langle s(u, t), \psi_{n}(u, t) \rangle}{\sigma_{n}}
\]

(55)

Substituting (55) in (53), the transmit signal is given by (56).

\[
x(u, t) = \sum_{n} \frac{\langle s(u, t), \psi_{n}(u, t) \rangle}{\sigma_{n}} \phi_{n}^*(u, t).
\]

(56)

C. Proof of Corollary 1

Proof. First we substitute the 4-D kernel \(k_{H}(u, t; u', t') \) with the 2-D kernel \(k_{H}(u, u') \) in Theorem 2 which is then decomposed by the 2-D HOGMT. Then following similar steps as in Appendix C-B it is straightforward to show (34).

APPENDIX D

RESULTS ON INTERFERENCE

Figure 1: Kernel \(k_{H}(u, t; u', t') \) for \(u=1 \) at a) \(t=1 \), b) \(t=10 \), c) \(t=50 \) and d) \(t=100 \).

Figure I shows the channel response for user \(u=1 \) at \(t=1, t=10, t=50 \) and \(t=100 \), where at each instance, the response for user \(u=1 \) is not only affected by its own delay and other users’ spatial interference, but also affected by other users’ delayed symbols. This is the cause of joint space-time interference which necessitates joint precoding in the 2-dimensional space using eigenfunctions that are jointly orthogonal.

REFERENCES

[1] A. Ali, E. D. Carvalho, and R. W. Heath, “Linear receivers in non-stationary massive mimo channels with visibility regions,” IEEE Wireless Communications Letters, vol. 8, no. 3, pp. 885–888, 2019.
[2] Y. Hatakawa, T. Matsumoto, and S. Konishi, “Development and experiment of linear and non-linear precoding on a real-time multiuser-mimo testbed with limited csf feedback,” in 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), 2012, pp. 1606–1611.
[3] F. Hasegawa, H. Nishimoto, N. Song, M. Enescu, A. Taira, A. Okazaki, and A. Okamura, “Non-linear precoding for 5g mm,” in 2018 IEEE Conference on Standards for Communications and Networking (CSCN), 2018, pp. 1–7.
[4] X. Guo, D. Yang, Z. Luo, H. Wang, and J. Kuang, “Robust thp design for energy efficiency of multibeam satellite systems with imperfect csi,” *IEEE Communications Letters*, vol. 24, no. 2, pp. 428–432, 2020.

[5] F. A. Dietrich, P. Breun, and W. Utschick, “Robust tomlinson–harashima precoding for the wireless broadcast channel,” *IEEE Transactions on Signal Processing*, vol. 55, no. 2, pp. 631–644, 2007.

[6] D. Castanheira, A. a. Silva, and A. Gameiro, “Linear and nonlinear precoding schemes for centralized multicell mimo-ofdm systems,” *Wirel. Pers. Commun.*, vol. 72, no. 1, p. 759–777, Sep. 2013. [Online]. Available: https://doi.org/10.1007/s11277-013-1041-z

[7] R. Wang, M. Tao, and Z. Xiang, “Nonlinear precoding design for mimo amplify-and-forward two-way relay systems,” *IEEE Transactions on Vehicular Technology*, vol. 61, no. 9, pp. 3984–3995, 2012.

[8] M. Mazrouei-Sebdani, W. A. Krzymien, and J. Melzer, “Massive mimo with nonlinear precoding: Large-system analysis,” *IEEE Transactions on Vehicular Technology*, vol. 65, no. 4, pp. 2815–2820, 2016.

[9] S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “Quantized precoding for massive mu-mimo,” *IEEE Transactions on Communications*, vol. 65, no. 11, pp. 4670–4684, 2017.

[10] A. L. Anderson, J. R. Zeidler, and M. A. Jensen, “Reduced-feedback linear precoding with stable performance for the time-varying mimo broadcast channel,” *IEEE Journal on Selected Areas in Communications*, vol. 26, no. 8, pp. 1483–1493, 2008.

[11] W. Zeng, C. Xiao, M. Wang, and J. Lu, “Linear precoding for finite-alphabet inputs over mimo fading channels with statistical csi,” *IEEE Transactions on Signal Processing*, vol. 60, no. 6, pp. 3134–3148, 2012.

[12] R. Hadani, S. Rakib, S. Kons, M. Tsatsanis, A. Monk, C. Ibars, J. Delfeld, Y. Hebron, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, “Orthogonal time frequency space modulation,” 2018.

[13] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, *MIMO-OFDM Wireless Communications with MATLAB*. Wiley Publishing, 2010.