Community Question Answering Entity Linking via Leveraging Auxiliary Data

Yuhan Li, Wei Shen*, Jianbo Gao and Yadong Wang

TMCC, TKLNDST, College of Computer Science, Nankai University, Tianjin, China
{yuhanli, jianbo.gao, yadongwang}@mail.nankai.edu.cn, shenwei@nankai.edu.cn

Abstract

Community Question Answering (CQA) platforms contain plenty of CQA texts (i.e., questions and answers corresponding to the question) where named entities appear ubiquitously. In this paper, we define a new task of CQA entity linking (CQAEL) as linking the textual entity mentions detected from CQA texts with their corresponding entities in a knowledge base. This task can facilitate many downstream applications including expert finding and knowledge base enrichment. Traditional entity linking methods mainly focus on linking entities in news documents, and are suboptimal over this new task of CQAEL since they cannot effectively leverage various informative auxiliary data involved in the CQA platform to aid entity linking, such as parallel answers and two types of meta-data (i.e., topic tags and users). To remedy this crucial issue, we propose a novel transformer-based framework to effectively harness the knowledge delivered by different kinds of auxiliary data to promote the linking performance. We validate the superiority of our framework through extensive experiments over a newly released CQAEL data set against state-of-the-art entity linking methods.

1 Introduction

Community Question Answering (CQA) platforms, such as Quora1, Yahoo! Answers2, and Stack Overflow3, are Internet-based crowdsourcing services which enable users to post questions and seek answers from other users. The rapid growth of CQA platforms has attracted much research attention in recent years, such as answer ranking [Lyu et al., 2019], expert finding [Li et al., 2021], and question retrieval [Rücklé et al., 2019]. The content in these platforms is usually organized as a question and a list of answers, associated with meta-data like topic categories of the question and users’ information. In this paper, we define a question and all answers corresponding to this question as a CQA text. CQA texts are often ambiguous, especially with respect to the frequent occurrences of named entities. Specifically, a textual name in CQA texts may refer to many different entities in the real world, and a named entity may be expressed as various surface forms in CQA texts. Nevertheless, entity linking (EL), a popular text disambiguation task that aims to map entity mentions in text to their corresponding entities in a knowledge base, is rarely investigated in the CQA environment.

To derive a better understanding of CQA texts, we define a new task of Community Question Answering entity linking (CQAEL), as linking textual entity mentions detected from CQA texts with their corresponding named entities in a knowledge base (KB). For the example shown in Figure 1, in the CQA text Z_2, the entity mention “Roosevelt” in question q may refer to the 32-th president of the United States “Franklin Delano Roosevelt”, the 26-th president of the United States “Theodore Roosevelt”, or many other named entities which could be referred to as “Roosevelt”. The goal of the CQAEL task is to link this ambiguous entity mention with its corresponding named entity “Franklin Delano Roosevelt”.

CQAEL bridges CQA with KB, and also contributes to both. On one hand, CQAEL plays a fundamental role in a wide range of CQA tasks, such as expert finding [Li et al., 2021], answer ranking [Lyu et al., 2019], and answer summarization [Song et al., 2017]. For example, finding users with expertise to answer some question is a central issue in the CQA platform. Linking ambiguous mentions in the question to their corresponding entities in KBs can further enhance the understanding of the question by leveraging the background knowledge of mapping entities provided by KBs. In such case, we can recommend the question to the best matching expert user. On the other hand, KB enrichment [Cao et al., 2020] also benefits from CQAEL. To be specific, CQA texts embody invaluable knowledge about named entities. Developing an EL model capable of bridging CQA texts with KBs can help to enrich and update existing KBs significantly.

Nevertheless, CQA texts pose several challenges to entity linking. First, CQA texts (especially questions) are often concise and short, which makes them difficult to provide ample contextual information for context similarity computing in EL. Second, CQA texts are usually informal. Fortunately, however, CQA platforms involve various informative auxiliary data including parallel answers and two types of meta-

*Corresponding author

1https://www.quora.com
2https://answers.yahoo.com
3https://www.stackoverflow.com
data (i.e., topic tags and users), which have been proven effective for many CQA tasks [Tomasoni and Huang, 2010; Zhou et al., 2015]. We believe these different kinds of auxiliary data could supplement valuable knowledge beneficial for entity linking.

Specifically, sometimes an answer may be too short to offer sufficient context for disambiguating the entity mention in it. In such cases, other answers under the same question (i.e., parallel answers) can be employed to enrich the context for the entity mention, as answers under the same question are usually relevant. We take the CQA text \(Z_1 \) in Figure 1 as an example. Answer \(a_3 \) in \(Z_1 \) is too short to supply enough context for linking mention “AGI” correctly. Meanwhile, its parallel answer \(a_1 \) in \(Z_1 \) is much longer and contains the phrase “Artificial General Intelligence”, i.e., the full name of the entity mention “AGI”, which prompts the linking system to map “AGI” with its correct entity via taking this parallel answer into account. What’s more, in the CQA platform, topic tags could be added to summarize basic topics in some keywords for each CQA text [Zhou et al., 2015]. In Figure 1, the CQA text \(Z_2 \) is associated with topic tag \(t_1 \) “World War II”. As we know the fact that Franklin Delano Roosevelt is the president of the United States during the Second World War, the entity mention “Roosevelt” in question \(q \) of \(Z_2 \) probably refers to the entity “Franklin Delano Roosevelt” rather than “Theodore Roosevelt” with the indication of this topic tag. Additionally, users usually ask or answer questions according to their individual interests or experience [Lyu et al., 2019]. According to the questions that user \(u_1 \) named “Allen Marian” in the CQA text \(Z_3 \) has asked or answered in the past, we could know that user \(u_1 \) in \(Z_3 \) is interested in “Sports”. The entity mention “Michael Jordan” in answer \(a_1 \) of \(Z_3 \) that user \(u_1 \) has answered is likely to refer to the basketball player rather than the scientist “Michael I. Jordan” and the actor “Michael B. Jordan” with the indication of the user interest.

However, it is impractical and unreasonable to directly take the auxiliary data as an expansion of the context for the entity mention since the auxiliary data are numerous and noisy. For instance, there are usually more than thousands of questions under one topic tag. Moreover, a user is often interested in multiple domains, so questions they answered or asked are not all relevant to the entity mention that needs to be linked. Accordingly, the biggest challenge of the CQAEL task is how to effectively exploit the auxiliary data to aid entity linking.

To deal with the above issue, we propose a novel transformer-based framework to harness the abundant knowledge embedded in different kinds of auxiliary data to improve entity linking. Specifically, a base module is derived to cross-encode the context of the entity mention and the candidate entity description to perform deep cross-attention between each other. To effectively exploit the auxiliary data, we propose an auxiliary data module, which is able to capture semantic relationships between the candidate entity description and different kinds of auxiliary data (i.e., parallel answers, topic tags, and users) in a unified manner. This auxiliary data module can provide effective and complementary linking evidence mined from auxiliary data and is flexible to be integrated with other EL models, which has been verified by our experiments. The main contributions of this paper are as follows.

- We are among the first to explore the task of Community Question Answering entity linking (CQAEL), a new and important problem due to its broad applications.
- We propose a novel transformer-based framework which can leverage different kinds of auxiliary data in the CQA platform effectively to enhance the linking performance.
- We construct a finely-labeled data set named QuoraEL...
2 Task and Dataset

2.1 Task Definition

A CQA text denoted by Z includes a question q and a set of its corresponding answers $A = \{a_1, a_2, ..., a_n\}$, where a_i is the i-th answer of q ($1 \leq i \leq n$), i.e., $Z = \{q, A\}$. For each answer a_i, the other answers under the same question are considered as its parallel answers $A = A - \{a_i\}$. Each CQA text is associated with a set of topic tags $T = \{t_1, t_2, ..., t_k\}$, where t_j denotes the j-th topic tag ($1 \leq j \leq k$). We define topic meta-data as $MetaT = \{(t_j, Q_{t_j}) | \forall t_j \in T\}$, where Q_{t_j} is a set of questions involving topic tag t_j. Additionally, we denote the set of users as $U = \{u_1, u_2, ..., u_n\}$, where u_i is the user who gives answer a_i. We define user meta-data as $MetaU = \{(u_i, Q_{u_i}) | \forall u_i \in U\}$, where Q_{u_i} represents a set of questions asked or answered by user u_i. We regard A, $MetaT$, and $MetaU$ as three kinds of auxiliary data involved in the CQA platform used in this paper.

Formally, given a CQA text Z in which a set of entity mentions $M = \{m_1, m_2, ..., m_M\}$ are identified in advance and a KB containing a set of named entities $E = \{e_1, e_2, ..., e_E\}$, the task of CQAEL is to find a mapping $M \rightarrow E$ that links each entity mention to its corresponding entity in the KB, via leveraging different kinds of auxiliary data in the CQA platform.

Before linking, for each entity mention, a small set of potential mapping entities are first chosen by candidate generation methods to prune the search space. Following the previous works [Phan et al., 2017; Fang et al., 2019], we adopt the dictionary-based method to generate a set of candidate mapping entities E_m for each entity mention m.

2.2 Dataset Construction

We create a new data set named QuoraEL to support the study of the CQAEL task. We choose Quora as the data source, which is one of the largest CQA platforms. We use a two-step data set collection process. For the first step, we extract CQA texts as well as their associated topic tags and users via crawling question pages of Quora. To collect two types of meta-data for CQA texts, in the second step we crawl topic meta-data (i.e., a set of questions involving each topic tag) and user meta-data (i.e., a set of questions asked or answered by each user) from topic tags and user homepages of Quora, respectively.

We use the July 2019 version of the Wikipedia dump as the reference KB. To annotate entity mentions appearing in the CQA text with their corresponding entities, we perform a two-stage labeling process with automatic labeling first and human labeling later. To be specific, we use the Stanford CoreNLP package\(^3\) to automatically recognize and link entity mentions to their corresponding Wikipedia entities. Human annotators are introduced next to correct any false labels. The final QuoraEL data set consists of 504 CQA texts in total, in which there are 2192 answers, 8030 labeled entity mentions, and 1165 topic tags. In average, each CQA text contains 4.35 answers, 15.93 labeled entity mentions, and 2.31 topic tags. For the meta-data, we keep at most 10 questions for each topic tag and 20 questions for each user (10 questions asked and 10 questions answered by the user).

3 The Proposed Framework

Our proposed framework is composed of two modules: a base module that mainly utilizes the context of the entity mention for disambiguation, and an auxiliary data module which employs different kinds of auxiliary data to facilitate linking in a unified manner. The overall architecture of our framework is shown in Figure 2.

3.1 Base Module

In the base module, two widely used entity linking features are considered, i.e., context similarity and prior probability.

Context Similarity. Measuring the similarity between the context of an entity mention (i.e., mention context) and the description text in an entity’s Wikipedia page (i.e., entity description) is a crucial feature for entity linking. We propose to employ an XLNet-based cross-encoder to jointly encode the mention context and the candidate entity description to perform deep cross-attention between each other. XLNet [Yang et al., 2019], a common transformer-based model which integrates the segment recurrence mechanism and relative encoding scheme of Transformer-XL [Dai et al., 2019] into pretraining, has shown remarkable effect in many NLP tasks.

Formally, given an entity mention m, for each candidate entity $e \in E_m$, we first concatenate the mention context C_m, the candidate entity description D_e, and two special tokens from the vocabulary of XLNet as an input sequence. $[CLS]$ indicates the start of the sequence, and $[SEP]$ is added here to separate inputs from different segments. This concatenated string is encoded using XLNet to obtain $h_{C,D}$, a representation for this context-description pair (from the $[CLS]$ token). The context similarity feature $s_{ctxt}(m, e)$ is generated using a dot-product with a learned parameter vector w_1 as follows.

\[
 h_{C,D} = \text{XLNet}([CLS]C[SEP]D[SEP]), \\
 s_{ctxt}(m, e) = w_1^T h_{C,D}
\] (1)

Combination with Prior Probability. Prior probability $p(e|m)$ is the probability of the appearance of a candidate entity e given an entity mention m without considering the context where the mention appears. It is estimated as the proportion of links with the mention form m as anchor text pointing to the candidate entity e in Wikipedia. We combine the context similarity feature with the prior probability feature as follows:

\[
 s(m, e) = f(s_{ctxt}(m, e), p(e|m))
\] (2)

where $f(\cdot)$ is a single layer feed-forward network and $s(m, e)$ is the ranking score for each candidate entity.

It is worth mentioning that the functionality of this base module is the same as most previous EL methods, all of which output a ranking score for each candidate entity based on the

\(^4\)https://github.com/yhLeeC/CQA_EntityLinking
\(^3\)https://stanfordnlp.github.io/CoreNLP/
mention context. There are already massive effective EL solutions proposed in the past years [Shen et al., 2021]. Therefore, this base module is not the main focus of our paper and its design principle is simple and replaceable. Our experiments have validated that it is replaceable with other deep learning based EL models.

3.2 Auxiliary Data Module

Besides the mention context utilized by the aforementioned base module, there are various informative auxiliary data in the CQA platform, such as parallel answers and two types of meta-data (i.e., topic tags and users), which contain valuable knowledge beneficial for entity linking. Accordingly, we propose an auxiliary data module to effectively capture the knowledge delivered by different kinds of auxiliary data in a unified manner. This module can provide effective and complementary linking evidence mined from auxiliary data and be flexibly integrated with other EL models, which has been verified by our experiments.

In our task setting, each kind of auxiliary data is composed of multiple texts. For instance, parallel answers are a set of answer texts and both types of meta-data are sets of question texts. A naïve strategy is to take multiple texts as input directly and apply XLNet-based cross-encoder used in the base module once per text. However, auxiliary data are numerous. Directly applying this cross-encoder on multiple texts needs to encode each text-description pair separately which brings high time complexity. What’s more, auxiliary data are noisy. Not all the texts in the auxiliary data are relevant to the given entity mention and helpful for its linking. Roughly treating them equally may incur noises.

To effectively exploit different kinds of auxiliary data, we start by selecting several useful texts from each auxiliary data to eliminate uninformative texts, and then another cross-encoder is introduced to jointly encode the candidate entity description and these selected useful texts in a single pass to derive the auxiliary data similarity.

Useful Text Selection. The basic idea is to select a subset of texts which are similar to the mention context from each kind of auxiliary data. The selected ones are regarded as useful texts which may expand the mention context and contribute to the linking process. Three common string similarity measures are adopted here, i.e., DiffLib function, Jaro-Winkler similarity, and Levenshtein ratio. Given an entity mention with its associated mention context and a kind of auxiliary data, each text involved in the auxiliary data is scored via averaging these three string similarity measures between the mention context and the text. Ultimately, we regard the top-\(k\) texts with the highest string similarity scores as useful texts for each kind of auxiliary data, where \(k\) is a hyperparameter.

Auxiliary Data Similarity. Given the selected useful texts for each kind of auxiliary data, we regard them as a valid expansion of the mention context and calculate an auxiliary data similarity feature to indicate the proximity between this kind of auxiliary data and the candidate entity. Intuitively, the more the auxiliary data are semantically similar to the description text of a candidate entity, the more likely this candidate entity is the correct corresponding one. Unfortunately, the concatenation of the candidate entity description and these selected useful texts may usually exceed the token length limit of many transformer-based models such as XLNet. To tackle this issue, we propose to exploit a Longformer-based cross-encoder to jointly encode the candidate entity description and the selected useful texts to perform deep cross-attention between each other. Longformer [Beltagy et al., 2020] is a modified transformer-based model that replaces the quadratic self-attention mechanism with a memory-efficient version, which combines local attention with sparse global attention. We choose Longformer due to the fact that it performs well in capturing semantic relationships between texts in one-many setting [DeYoung et al., 2021] which is similar to ours, and it also allows us to encode thousands of tokens or more without high memory and time complexity.

In our setting, an entity mention \(m\) is associated with three kinds of auxiliary data, each corresponding to a list of selected useful texts \(q_1, q_2, \ldots, q_k\). Here, these useful texts are in descending order by their string similarity scores. As different kinds of auxiliary data have the same format (i.e., a list of texts), we process them in the same way. In the following, we take topic meta-data \(MetaT\) as an example for illustration. For each candidate entity \(e\), we concatenate the candidate entity description \(D\), selected useful texts of \(MetaT\), and some special tokens as an input sequence. In Longformer, [CLS] and [SEP] are replaced by \(<s>\) and \(</s>\). Additionally, \(<d>\), \(/d>\) and \(<q>\), \(/q>\) are special tokens representing description start and end, text start and end, respectively. The new special tokens are added to the model’s vocabulary and randomly initialized before task fine-tuning. As suggested by [Beltagy et al., 2020], we assign global attention to the \(<s>\) token, and a sliding attention window of 64 tokens allows each token to attend to its neighbors. We encode this sequence using Longformer to get \(h_{D,MetaT}\), which is the output of the last hidden layer corresponding to \(<s>\). The auxiliary data similarity feature \(s_{aux,J}(m, e)\) for topic meta-data is yielded via a dot-product with a learned parameter vector \(w_2\) as follows,

\[
h_{D,MetaT} = \text{Longformer}(<s><d>D</d>/</s> <q>/q>q_1/q>/q>q_k/q>/q>),
\]

\[
s_{aux,J}(m, e) = w_2^T h_{D,MetaT}
\]

Following the unified manner, we could derive the other two auxiliary data similarity features \(s_{aux,D}(m, e)\), \(s_{aux,U}(m, e)\).
for parallel answers and user meta-data, respectively.

3.3 Learning

At present, we have obtained three kinds of auxiliary data similarity features. Thereafter, we extend Equation 2 to Equation 4 via concatenating features involved in the base module with those three auxiliary data similarity features as follows:

\[
s(m, e) = f(s_{ctx}(m, e), p(e|m), s_{aux_1}(m, e), s_{aux_2}(m, e), s_{aux_3}(m, e))
\]

(4)

Subsequently, we normalize \(s(m, e) \) using a softmax function and choose the candidate entity \(e^* \) with the highest ranking score as the corresponding entity for the entity mention \(m \) based on the following formulas:

\[
\hat{s}(m, e) = \frac{\exp(s(m, e))}{\sum_{e' \in E_m} \exp(s(m, e'))}
\]

(5)

\[
e^* = \arg\max_{e' \in E_m} \hat{s}(m, e')
\]

(6)

where \(E_m \) is a set of candidate entities for the entity mention \(m \). We utilize a cross-entropy loss for training, which is defined as follows:

\[
L = \sum_{Z \in Z} \sum_{m \in M} \sum_{e \in E_m} -(y \log \hat{s}(m, e))
\]

(7)

where \(Z \) denotes a training set of CQA texts and \(y \in \{0, 1\} \) denotes the actual label of the candidate entity. If the candidate entity \(e \) is the correct corresponding entity for the entity mention \(m \), the value of \(y \) is 1; otherwise 0. The goal of learning is to minimize the loss \(L \).

4 Experiments

4.1 Experimental Setup

We perform experiments on the newly created QuoraEL data set. We use 5-fold cross-validation and split the CQA texts into training (70%), validation (10%), and testing (20%). For training, we adopt AdamW [Loshchilov and Hutter, 2018] optimizer with a warmup rate 0.1, an initial learning rate 1e-5, and a mini-batch size 2. Dropout with a probability of 0.1 is used to alleviate over-fitting. For XLNet and Longformer, their parameters are initialized by the xlnet-base-cased and longformer-base-4096 models, respectively. For the base module, the maximum sequence length is set to 128. We also experimented with 256, which results in negligible improvement. For the auxiliary data module, maximum lengths of the candidate entity description and each text are set to 128 and 64, respectively. The hyperparameter \(k \) is set to 3, whose impact to the performance will be studied later. Based on our task definition, entity mentions have been recognized in advance and given as the input of the task. Therefore, we adopt accuracy as the evaluation metric, calculated as the number of correctly linked entity mentions divided by the total number of all the input entity mentions, the same as many state-of-the-art EL methods [Shen et al., 2021]. After training 10 epochs, we select the model with the best performance on the validation set and evaluate its performance on the test set. All experiments are implemented by MindSpore Framework\(^a\) with two NVIDIA GeForce GTX 3090 (24GB) GPUs.

\(^a\)https://www.mindspore.cn/en

4.2 Effectiveness Study

We compared our proposed framework with the following state-of-the-art EL models:

- **Deep-ED** [Ganea and Hofmann, 2017] utilizes CRF for joint entity linking and solves the global training problem via truncated fitting LBP.
- **Ment-Norm** [Le and Titov, 2018] improves Deep-ED by encoding relations between mentions via latent variables.
- **Zeshel** [Logeswaran et al., 2019] leverages BERT cross-encoder to address EL in the zero-shot setting.
- **REL** [van Hulst et al., 2020] is one of the most prominent open source toolkits for EL.
- **FGS2EE** [Hou et al., 2020] injects fine-grained semantic information into entity embeddings to facilitate EL.
- **BLINK** [Wu et al., 2020] utilizes both BERT bi-encoder and cross-encoder for entity linking.
- **GENRE** [De Cao et al., 2021] introduces a sequence-to-sequence EL model based on BART [Lewis et al., 2020].

Table 1 shows the linking accuracy of all models, in which full module denotes the combination of our base module and our auxiliary data module. The linking performance of all baselines is obtained via running their open-source solutions except REL, which provides a publicly available API. To give a thorough evaluation, we conduct comparison in two settings. One is called Base setting where only mention context is accessible and the other is called Aux setting where auxiliary data is accessible as well. Base setting is the same as traditional EL setting, and Aux setting is a special setting in the CQA environment. For all baselines in the Aux setting, to ensure fair comparison, we expand the mention context using the three kinds of auxiliary data and keep their model input consistent with our framework.

In summary, our transformer-based framework consistently surpasses all the state-of-the-art EL baselines in both settings, demonstrating the superiority of our framework in tackling the CQAEL task. To be specific, our base module achieves better performance than several competitive baselines such as Zeshel and BLINK, which are elaborately designed for modeling context similarity, since these two baselines do not leverage prior probability. In addition, we could observe that all the baselines yield slightly better or even

Models	Base Setting	Aux Setting
Deep-ED (2017)	82.56	82.97
Ment-Norm (2018)	82.99	83.19
Zeshel (2019)	88.72	88.91
REL (2020)	80.49	81.05
FGS2EE (2020)	82.59	83.07
BLINK (2020)	87.97	87.92
GENRE (2021)	86.26	87.06
Base Module (ours)	**89.37**	-
Full Module (ours)	-	**92.02**

Table 1: Effectiveness performance.
To study the effectiveness and flexibility of our auxiliary data module, we replace our base module with two popular traditional EL models (i.e., Deep-ED and Zeshel) and make them work with our auxiliary data module, whose results are shown at the bottom of Table 2. Specifically, the ranking score output by the EL model is concatenated with the three auxiliary data similarity features of our auxiliary data module, and then passed through a single layer feed-forward network, similar to Equation 4. It can be seen from Table 2 that we can obtain significant performance gain when our auxiliary data module is combined with each of the two traditional EL models, which clearly demonstrates the effectiveness and flexibility of our auxiliary data module. This confirms that our auxiliary data module indeed provides effective and complementary linking evidence delivered by different kinds of auxiliary data to help not only our base module, but also other EL models to promote their linking performance.

4.3 Ablation Study

At the top of Table 2, we report the performance of our framework leveraging different kinds of auxiliary data. From the experimental results, we can see that each kind of auxiliary data has a positive contribution to the linking performance, and when all the three kinds of auxiliary data are consolidated together in our full module, it yields the best performance.

To investigate the effect of the hyperparameter k, i.e., the number of selected useful texts in our auxiliary data module, we conduct experiments with k varied from 0 to 5, and plot the results in Figure 3. We can see that our framework generally performs better with a larger k, and achieves high and stable accuracy (about 0.92) when $k \geq 3$. This is due to the fact that more selected useful texts bring more helpful linking evidence, which may lead to better performance.

5 Related Work

Entity linking has gained increasing attention as a fundamental task to bridge unstructured text with knowledge bases, such as Wikipedia and Freebase. It acts as an important pre-processing step for many downstream knowledge-driven applications. A typical EL system often consists of two stages: candidate generation and entity ranking [Shen et al., 2014]. During the entity ranking stage, the key is to measure the similarity between the mention context and the entity description. Early EL works [Ratinov et al., 2011] employ hand-crafted features to model this textual coherence. With the extensive application of deep learning, EL studies resort to neural network based methods. Bi-encoders based on CNN [Xue et al., 2019], RNN [Fang et al., 2019], and pre-trained language models [Fang et al., 2020] are leveraged to encode those two text parts (i.e., mention context and entity description) individually. In this case, the semantic relationships between these two text parts are not fully exploited. Recent EL works [Wu et al., 2020; Tang et al., 2021] employ BERT to cross-encode these two text parts to perform deep cross-attention between each other and achieve advanced performance.

Besides common news documents, entity mentions also appear in multi-source heterogeneous data. Recently, entity linking for web tables [Bhagavatula et al., 2015], tweets [Ran et al., 2018], open knowledge bases [Liu et al., 2021], and multimodal data [Gan et al., 2021] have been successively explored. [Wang et al., 2017] only links entity mentions in the question of CQA and does not consider two types of metadata (i.e., topic tags and users) specially existing in the CQA platform, which is different from ours.

6 Conclusion

In this paper, we present a new task of CQAEL and create a data set QuoraEL to foster further study. We propose a novel transformer-based framework which can leverage different kinds of auxiliary data involved in the CQA platform effectively. An auxiliary data module is proposed to provide effective and complementary linking evidence mined from auxiliary data and is flexibly integrated with other EL models. Extensive experiments demonstrate the effectiveness of our framework against state-of-the-art EL methods.

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (No. U1936206), YESS by CAST (No. 2019QNRC001), and CAAI-Huawei MindSpore Open Fund.
References

[Beltagy et al., 2020] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150, 2020.

[Bhagavatula et al., 2015] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. Tabel: Entity linking in web tables. In ISWC, pages 425–441, 2015.

[Cao et al., 2020] Ermei Cao, Difeng Wang, Jiacheng Huang, and Wei Hu. Open knowledge enrichment for long-tail entities. In WWW, pages 384–394, 2020.

[Dai et al., 2019] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. In ACL, pages 2978–2988, 2019.

[De Cao et al., 2021] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity retrieval. In ICLR, 2021.

[DeYoung et al., 2021] Jay DeYoung, Iz Beltagy, Madeleine van Zuylen, Bailey Kuehli, and Lucy Wang. MS’2: Multi-document summarization of medical studies. In EMNLP, pages 7494–7513, 2021.

[Fang et al., 2019] Zheng Fang, Yanan Cao, Qian Li, Dongjie Zhang, Zhenyu Zhang, and Yanbing Liu. Joint entity linking with deep reinforcement learning. In WWW, pages 438–447, 2019.

[Fang et al., 2020] Zheng Fang, Yanan Cao, Ren Li, Zhenyu Zhang, Yanbing Liu, and Shi Wang. High quality candidate generation and sequential graph attention network for entity linking. In WWW, pages 640–650, 2020.

[Gan et al., 2021] Jingru Gan, Jinchang Luo, Haiwei Wang, Shuhui Wang, Wei He, and Qingming Huang. Multimodal entity linking: A new dataset and a baseline. In MM, pages 993–1001, 2021.

[Ganea and Hofmann, 2017] Octavian-Eugen Ganea and Thomas Hofmann. Deep joint entity disambiguation with local neural attention. In EMNLP, pages 2619–2629, 2017.

[Hou et al., 2020] Feng Hou, Ruili Wang, Jun He, and Yi Zhou. Improving entity linking through semantic reinforced entity embeddings. In ACL, pages 6843–6848, 2020.

[Le and Titov, 2018] Phong Le and Ivan Titov. Improving entity linking by modeling latent relations between mentions. In ACL, pages 1595–1604, 2018.

[Lewis et al., 2020] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In ACL, pages 7871–7880, 2020.

[Li et al., 2021] Nuo Li, Bin Guo, Yan Liu, Lina Yao, Jiaqi Liu, and Zhiwen Yu. Askme: joint individual-level and community-level behavior interaction for question recommendation. WWW, pages 1–24, 2021.

[Liu et al., 2021] Yinan Liu, Wei Shen, Yuanfei Wang, Jianyong Wang, Zhenglu Yang, and Xiaojie Yuan. Joint open knowledge base canonicalization and linking. In SIGMOD, pages 2253–2261, 2021.

[Logeswaran et al., 2019] Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, Jacob Devlin, and Honglak Lee. Zero-shot entity linking by reading entity descriptions. In ACL, pages 3449–3460, 2019.

[Loshchilov and Hutter, 2018] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2018.

[Lyu et al., 2019] Shanshan Lyu, Wentao Ouyang, Yongqing Wang, Huawei Shen, and Xueqi Cheng. What we vote for? answer selection from user expertise view in community question answering. In WWW, pages 1198–1209, 2019.

[Phan et al., 2017] Minh C Phan, Aixin Sun, Yi Tai, Jialong Han, and Chenliang Li. Neulp: Attention-based semantic matching and pair-linking for entity disambiguation. In CIKM, pages 1667–1676, 2017.

[Ran et al., 2018] Chenwei Ran, Wei Shen, and Jianyong Wang. An attention factor graph model for tweet entity linking. In WWW, pages 1135–1144, 2018.

[Ratinov et al., 2011] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. Local and global algorithms for disambiguation to wikipedia. In ACL, pages 1375–1384, 2011.

[Rücklé et al., 2019] Andreas Rücklé, Krishnkant Swarnkar, and Iryna Gurevych. Improved cross-lingual question retrieval for community question answering. In WWW, pages 3179–3186, 2019.

[Shen et al., 2014] Wei Shen, Jianyong Wang, and Jiawei Han. Entity linking with a knowledge base: Issues, techniques, and solutions. TKDE, 27(2):443–460, 2014.

[Shen et al., 2021] Wei Shen, Yuhai Li, Yinan Liu, Jiawei Han, Jianyong Wang, and Xiaojie Yuan. Entity linking meets deep learning: Techniques and solutions. TKDE, 2021.

[Song et al., 2017] Hongya Song, Zhaochun Ren, Shangsong Liang, Piji Li, Jun Ma, and Maarten de Rijke. Summarizing answers in non-factoid community question-answering. In WSDM, pages 405–414, 2017.

[Tang et al., 2021] Hongyin Tang, Xingwu Sun, BeiHong Jin, and Fuzheng Zhang. A bidirectional multi-paragraph reading model for zero-shot entity linking. In AAAI, pages 13889–13897, 2021.

[Tomasoni and Huang, 2010] Mattia Tomasoni and Minlie Huang. Metadata-aware measures for answer summarization in community question answering. In ACL, pages 760–769, 2010.

[Ivan Hulst et al., 2020] Johannes M van Hulst, Faegheh Hasibi, Koen Dercksen, Krisztian Balog, and Arjen P de Vries. Rel: An entity linker standing on the shoulders of giants. In IJCAI, pages 2197–2200, 2020.

[Wang et al., 2017] Fang Wang, Wei Wu, Zhoujun Li, and Ming Zhou. Named entity disambiguation for questions in community question answering. KBs, 126:68–77, 2017.

[Wu et al., 2020] Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. Scalable zero-shot entity linking with dense entity retrieval. In EMNLP, pages 6397–6407, 2020.

[Xue et al., 2019] Mengge Xue, Weiming Cai, Jinsong Su, Linfeng Song, Yubin Ge, Yubao Liu, and Bin Wang. Neural collective entity linking based on recurrent random walk network learning. In IJCAI, pages 5327–5333, 2019.

[Yang et al., 2019] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding. NeurIPS, 32:5753–5763, 2019.

[Zhou et al., 2015] Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu. Learning continuous word embedding with metadata for question retrieval in community question answering. In ACL, pages 250–259, 2015.