A fungal symbiont converts provisioned cellulose into edible yield for its leafcutter ant farmers

Conlon, Benjamin H.; O'Tuama, David; Michelsen, Anders; Crumière, Antonin J. J.; Shik, Jonathan Z.

Published in: Biology Letters

DOI: 10.1098/rsbl.2022.0022

Publication date: 2022

Document version Publisher's PDF, also known as Version of record

Document license: CC BY

Citation for published version (APA): Conlon, B. H., O'Tuama, D., Michelsen, A., Crumière, A. J. J., & Shik, J. Z. (2022). A fungal symbiont converts provisioned cellulose into edible yield for its leafcutter ant farmers. Biology Letters, 18(4), [20220022]. https://doi.org/10.1098/rsbl.2022.0022
Physiology

A fungal symbiont converts provisioned cellulose into edible yield for its leafcutter ant farmers

Benjamin H. Conlon1, David O'Tuama1, Anders Michelsen2, Antonin J. J. Crumière1 and Jonathan Z. Shik1,3

1Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark
2Section for Terrestrial Ecology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
3Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Panama

BHC, 0000-0003-1663-4908; AM, 0000-0002-9541-8658; AJJC, 0000-0003-2214-2993; JZS, 0000-0003-3309-7737

While ants are dominant consumers in terrestrial habitats, only the leafcutters practice herbivory. Leafcutters do this by provisioning a fungal cultivar (Leucoagaricus gongylophorus) with freshly cut plant fragments and harnessing its metabolic machinery to convert plant mulch into edible fungal tissue (hyphae and swollen hyphal cells called gongylidia). The cultivar is known to degrade cellulose, but whether it assimilates this ubiquitous but recalcitrant molecule into its nutritional reward structures is unknown. We use in vitro experiments with isotopically labelled cellulose to show that fungal cultures from an Atta colombica leafcutter colony convert cellulose-derived carbon into gongylidia, even when potential bacterial symbionts are excluded. A laboratory feeding experiment showed that cellulose assimilation also occurs in vivo in A. colombica colonies. Analyses of publicly available transcriptomic data further identified a complete, constitutively expressed, cellulose-degradation pathway in the fungal cultivar. Confirming leafcutters use cellulose as a food source sheds light on the eco-evolutionary success of these important herbivores.

1. Introduction

Cellulose is a major constituent of plant cell walls and the most abundant organic compound on earth, with enormous potential as an energy source in terrestrial ecosystems [1,2]. However, cellulose is also a recalcitrant molecule that is metabolically inaccessible to most animals without help from bacterial or fungal symbionts [2,3]. While leafcutter ants are the only ants to forage fresh vegetation, they cannot directly consume this cellulose-rich material. Instead, the ants use it to provision an obligate fungal symbiont, Leucoagaricus gongylophorus (Basidiomycota, Agaricaceae). The fungus converts plant material into structural hyphae and swollen hyphal cells called gongylidia (growing in bundles called staphylae) that are the main food source for the ants [4–6]. Leafcutter farming systems can be massive. Colonies in the genus Atta (Hymenoptera, Formicidae) can contain millions of ant workers and are dominant herbivores in neotropical ecosystems [7]. Despite their large-scale herbivory, it remains uncertain whether these farming systems can use recalcitrant plant polymers, like cellulose, as a source of nutrition [8,9] (electronic supplementary material, table S1).

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
Recent studies have shown the presence of cellulose degradation and cellulose-degrading enzymes in leafcutter fungus gardens [10–17]. However, it remains unclear if these enzymes serve primarily to degrade the cell wall and thus provide access to more readily metabolized nutrients inside, or if the fungus is also capable of assimilating cellulose-derived carbon (C) into edible nutritional rewards (i.e. gongylidia). Cellulose digestion may also be context specific, with the cultivar prioritizing more accessible carbon sources whenever possible [13], as is also reported from other fungal lineages [18]. Alternatively, cellulose degradation has been attributed to bacterial symbionts within the fungus garden rather than the fungus itself [11,16,17], but see [19]. We review the literature on cellulose degradation in the leafcutter symbiosis in electronic supplementary material, table S1.

We tested the links between cellulose provisioning, cellulose metabolism and the cultivar’s production of nutritional rewards in three steps. First, an in vitro experiment with 13C-labelled cellulose measured the uptake of cellulose-derived carbon into hyphae and staphyliae. The inclusion of dextrose as a more accessible carbon source in the media provided a secondary test of whether the fungus uses cellulose as an energy source even when simpler sugars are available. Second, an in vivo laboratory feeding experiment tested if the in vitro results could be replicated in a colony of the Panamanian leafcutter ant *Atta colombica*. Foragers collected agar-based substrate containing 13C-labelled cellulose which gardeners used to provision their fungus garden, containing a natural assemblage of ants and microbes. Third, we tested if the fungal cultivar can directly metabolize cellulose in two steps. *In silico* analysis of previously published transcriptomic data assessed if the cultivar constitutively expresses a complete metabolic pathway for cellulose degradation, even when this compound is not expected to be present in the provisioned substrate. An in vitro experiment with media containing 13C-labelled cellulose and antibiotics assessed cellulose metabolism following targeted bacterial exclusion.

2. Methods

(a) In vitro assays

Fresh fungal cultures of *L. gongylphorus* were isolated from a Panamanian *A. colombica* colony (Ac-2012-1) onto potato-dextrose agar (PDA) [20]. Isotopically enriched media were prepared by adding 0.1 g l−1 of 13C-enriched glucose (α-glucose-1,3-13C, Sigma-Aldrich, USA) or 0.1 g l−1 of 13C-enriched cellulose (U-13C Cellulose, U-10508, IsoLIFE, The Netherlands) to PDA. Media were autoclaved and 10 ml aliquots were transferred into 60 mm Petri dishes (n = 30 per treatment). The 13C-enriched glucose treatment represented a positive control as its metabolism and assimilation have previously been confirmed [21]. PDA without enriched compounds was the negative control. Inoculation of the fungus followed established protocols with incubation at 23.5°C [20]. Polycarbonate track-etched (PCTE) membrane discs (diameter 47 mm, PCTE 0.1 µm; GVS, USA) were placed in Petri dishes to facilitate collection of fungal tissues for subsequent analyses after 79 days.

A second experiment repeated this approach but added antibiotics (ampicillin, chloramphenicol and streptomycin) (for concentrations, see [22]) to each treatment (n = 15 per treatment) and was performed over 52 days. We confirmed that bacteria were excluded from antibiotic-treated plates by collecting fungal mycelia from the antibiotic-treated and control plates and extracting DNA using a Chelex® (Sigma-Aldrich, USA) protocol [23,24]. DNA for positive controls was extracted, using the same method, from pure colonies of bacteria: *Streptomycetes* sp. (Gram-positive) and *Stenotrophomonas* sp. (Gram-negative). DNA extracts were diluted to 10% of the original concentration using ddH2O before analyses. Bacterial load was quantified using ddPCR with eubacterial primers (63F and 355R) following established protocols (Bio-Rad, USA) [25,26]. Based on values for the negative controls, a detection threshold of 10 000 was used (electronic supplementary material, figure S2 and table S2).

(b) In vivo assay

Baseline samples of hyphae and staphyliae (n = 4 per tissue type) were collected from the middle layer of the fungus garden of Ac-2012-1, maintained in the laboratory at 23.5°C [27]. The colony was provided with a 13C-cellulose-enriched diet (see in vitro assays), which was completely consumed by the ants within 24 h. Hyphae and staphyliae were sampled from the middle layer of the garden after 2 days (n = 4 per tissue type), the time when peak 13C enrichment levels were previously detected [21].

(c) Testing for 13C assimilation

We collected 0.05–0.1 mg (dry mass) of hyphae and staphyliae from each in vitro plate and each in vivo fungal sample. In addition, remaining media from the initial in vitro experiment were collected (electronic supplementary material, figure S1). Samples were prepared following established protocols [21] and then analysed by isotope ratio mass spectrometry (IRMS) for 13C/12C concentrations (13C enrichment). The system used a Eurovector CN analyser (Pavia, Italy) coupled with an Isoprime mass spectrometer (Cheadle Hulme, UK). We used the results to calculate 13C enrichment (13Cµg g−1) in the excess of natural abundance. Each cellulose molecule (1(13C6H10O5)n) had a sixfold higher 13C enrichment than each glucose molecule (1(12C6H12O6)n), so we corrected for this by dividing 13Cµg g−1 values in the cellulose treatment by 6 before further analyses. We used Z-scores to normalize enrichment values relative to baseline abundances for each tissue type, allowing for direct statistical comparisons between tissues and carbon sources (electronic supplementary material, table S3).

(d) Data analysis

All data were analysed in R (v. 4.0.2 [28]). The homogeneity of variance was tested using Levene’s test (car v. 3.1–10 [29]) and normality was tested using a Shapiro–Wilk test. Based on these results, in vitro IRMS data were analysed non-parametrically using permutation analysis of variance (Adonis with Euclidean distances and 9999 permutations; vegan version: 2.5–7 [30]). In vivo IRMS and ddPCR data were analysed using linear models with emmeans (v. 1.7.2 [31]) used to test for between-tissue differences on Day 2 of the in vitro experiment. We performed three separate analyses (two in vitro, one in vivo experiment), using Z-scores, calculated relative to the control for that tissue type, as the dependent variable unless otherwise specified. The independent variables were as follows: EnrichedCarbonSource (enriched cellulose, enriched glucose, none control), Tissue (hyphae, staphyliae) and AntiobioticTreatment (±antibiotics). For the first in vitro experiment, we tested EnrichedCarbonSource + Tissue, and for the second in vitro experiment we tested AntiobioticTreatment*Enriched CarbonSource + Tissue. 13C enrichment in the media after the experimental period was tested using 13Cµg g−1 EnrichedCarbonSource (electronic supplementary material, figure S1). For the in vivo experiment, we tested Tissue*EnrichedCarbonSource to compare enrichment in staphyliae and hyphae to the baseline natural...
abundance. To test for bacterial DNA in the second in vitro experiment, we tested log10(165_165) against AntibioticTreatment + CarbonSource. When main effects were significant, we used pairwiseseAdonis (v. 0.0.1 [32]) to perform pairwise post hoc tests with adjusted p-values calculated using false-discovery rate with a significance threshold of p_adj = 0.05.

(e) In silico analysis of capacity for cellulose metabolism
Transcriptome assemblies [33] were downloaded from the NCBI TSA database, translated using transseq (EMBOSS v. 6.6.0 [34]) and carbohydrate-active enzymes (CAZymes) annotated using peptide pattern recognition (PPR) (HotPep v. 1.0 [35]). While previous studies have identified CAZY families expressed in the fungus garden and in vitro cultures [13,14,33], PPR predicted enzyme commission (EC) numbers, enabling us to identify the specific reactions catalysed [35]. Predicted EC numbers were compared to the BRENDA [36] cellulose-degradation pathway. We identified all enzymes in the BRENDA pathway.

3. Results
(a) In vitro cellulose assimilation by the cultivar
Fungal tissue was significantly enriched for 13C in both the 13C-cellulose and 13C-glucose treatments relative to the control (F2,132 = 18.487, p < 0.001, figure 1a). The cultivar responded similarly for both treatments with overall enrichment levels that did not differ statistically, and with staphylae being more enriched than hyphae (F1,152 = 24.168, p < 0.001; figure 1a; electronic supplementary material, figure S1).

(b) In vivo cellulose assimilation by an intact fungus garden
The fungus garden assimilated 13C-cellulose from the substrate collected by foragers and provisioned by gardeners inside the nest, as both hyphae and staphylae sampled from the middle layer of the fungus garden had significantly elevated 13C-content (F2,12 = 14.405, p = 0.003) relative to baseline natural abundances (figure 1b). Enrichment in staphylae and hyphae did not differ significantly from each other (overall: F1,12 = 0.162, p = 0.694; Day 2: F1,12 = −0.569, p = 0.580).

(c) Cultivar mediated cellulose metabolism
High-resolution in silico analysis of transcriptomic data [33] confirmed that L. gongylophorus expresses all enzymes required for cellulose degradation and that these genes are expressed in a PDA medium lacking cellulose (figure 2a), potentially indicating constitutive expression of these biodegradative pathways. In total, we identified three cellulase genes (EC:3.2.1.4), four lytic cellulase monoxygenases (C1-hydroxylating) (EC:1.14.99.54), one lytic cellulase monoxygenase (C4-dehydrogenating) (EC:1.14.99.56), two cellulose 1,4-β-cellobiosidases (reducing end) (EC:3.2.1.176) and two β-glucosidases (EC:3.2.1.21) (figure 2a).

The antibiotic assay excluded the possibility that bacterial symbionts were necessary for cellulose metabolism, as the cultivar was significantly enriched for 13C in both the 13C-cellulose and 13C-glucose treatments, relative to samples from control PDA plates (F1,171 = 130.114, p < 0.001, figure 2b).

Pairwise tests showed higher 13C enrichment in the glucose treatment relative to the cellulose treatment, even as both were still significantly enriched relative to the control (figure 2b). Despite evidence for 13C enrichment when bacteria were excluded, overall 13C enrichment was lower on plates with antibiotics relative to the respective control plates with only 13C-cellulose or 13C-glucose (F1,171 = 48.295, p < 0.001, figure 2b). However, a significant interaction between carbon source and antibiotic treatment (F2,171 = 47.314, p < 0.001), and subsequent pairwise tests, indicated the main effect was driven by reductions in 13C enrichment in the glucose treatment and with no significant effect of the antibiotic treatment on the cellulose medium (figure 2b). Staphylae were significantly enriched relative to hyphae (F1,171 = 58.084, p < 0.001, figure 2b).

4. Discussion
While L. gongylophorus is known to degrade cellulose [10,12–14,19] (electronic supplementary material, table S1), our isotopic enrichment experiments provide the first empirical confirmation of the prediction that it also metabolizes and assimilates cellulose-derived carbon into nutritional reward structures for ant farmers. The fungal cultivar further expresses its own complete enzymatic pathway for the degradation of cellulose to glucose and can metabolically transform cellulose following the targeted in vitro removal of bacteria (and ant farmers). The cultivar’s metabolic conversion of cellulose to glucose and packaging in edible nutritional rewards may have contributed to the dietary niche expansion that has made leafcutter ants dominant herbivores across neotropical ecosystems.

Like free-living fungi [18], L. gongylophorus has been predicted to preferentially metabolize simple sugars over recalcitrant plant compounds like cellulose [9,10,12,13], with some further predicting that cellulase expression serves to degrade the plant cell wall rather than releasing usable carbon for the fungus [9,10,12,13]. However, the cultivar in this study metabolized cellulose despite having access to the simple sugar dextrose, at a concentration approximately 200 times higher than cellulose in the PDA medium. Transcriptomic analysis further identified expressed cellulase genes despite being collected from cultivars grown on cellulose-free PDA [33]. The ubiquity of cellulose in plant tissues may have favoured the evolution of a constitutive cellulose metabolism even when the individual fragments foraged contain this molecule at low concentrations, with cellulase production having been shown to increase in the presence of fresh plant material [13]. It will be interesting to perform differential-expression analyses testing whether cellulase gradients in provisioned substrates directly mediate cellulase gene expression levels and ultimately govern behavioural decisions in the colony about sending foraged leaf material directly to waste piles.

These results shed light on cellulose processing within L. gongylophorus fungus gardens. Fungal cellulase expression appears highest in the top and bottom layers of the garden [9,10,12], and the cultivar is assumed to only prioritize cellulose digestion once highly degraded plant material reaches the bottom layer [10,12,13]. Our in vivo results indicate that freshly foraged cellulose can be rapidly (within 2 days) converted into edible gongylidia in the middle layer, perhaps
assisted by the constitutive expression of cellulase. Although we do not observe differential enrichment between staphylae and the surrounding mycelium in the *in vivo* experiment, our sampling point was based on rapidly assimilated glucose, with more complex substrates like cellulose potentially taking longer. Our results are based on a single attine cultivar, but we predict that this process of cellulose assimilation will hold across cultivars of other leafcutter colonies, species and genera, as their cultivars exhibit high degrees of relatedness [37]. Moreover, results of the present study add to an expanding catalogue of adaptions [6,27,33] enabling the domesticated fungal cultivar to extract nutrition from taxonomically and biochemically diverse plant fragments [20].
References

1. Coughlan MP. 1985 The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnol. Genet. Eng. Rev. 3, 39–110. (doi:10.1080/02648725.1985.10647869)
2. Weiner PJ. 1992 Cellulose degradation by ruminal microorganisms. Crit. Rev. Biotechnol. 12, 189–223. (doi:10.3109/07388559209609192)
3. Li H, Young SE, Poulsen M, Currie CR. 2021 Symbiont-mediated digestion of plant biomass in fungus-farming insects. Annu. Rev. Entomol. 66, 297–316. (doi:10.1146/annurev-ento-040920-061400)
4. Mueller UG, Schultz TR, Currie CR, Adams RM, Malloch D. 2001 The origin of the attine ant–fungus mutualism. Q. Rev. Biol. 76, 169–197. (doi:10.1086/393867)
5. Quinlan RJ, Cerrett JM. 1979 The role of fungus in the diet of the leaf-cutting ant Atta cephalotes (L). Ecol. Entomol. 4, 151–160. (doi:10.1111/j.1365-2311.1979.tb00570.x)
6. De Fine Licht HH, Boomsma JJ, Tunlid A. 2014 Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nat. Commun. 5, 5675. (doi:10.1038/ncomms6675)
7. Costa AN, Vasconcelos HL, Vieira-Neto EH, Bruna EM. 2008 Do herbivores exert top-down effects in Neotropical savannas? Estimates of biomass consumption by leaf-cutting ants. J. Veg. Sci. 19, 849–854. (doi:10.1370/ves.2008-8-18461)
8. Abril AB, Bucher EH. 2002 Evidence that the fungus cultured by leaf-cutting ants does not metabolize cellulose. Ecol. Lett. 5, 325–328. (doi:10.1046/j.1461-0266.2002.00327.x)
9. Moller IE, De Fine Licht HH, Harbolt J, Willars WGT, Boomsma JJ. 2011 The dynamics of plant cell-wall polysaccharide decomposition in leaf-cutting ant fungus gardens. PLoS ONE 6, e17506. (doi:10.1371/journal.pone.0017506)
10. Schiøtt M, De Fine Licht HH, Lange L, Boomsma JJ. 2008 Towards a molecular understanding of symbiont function: identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants. BMC Microbiol. 8, 40. (doi:10.1186/1471-2180-8-40)
11. Suen G et al. 2010 An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet. 6, e1001129. (doi:10.1371/journal.pgen.1001129)
12. Grill MN, Linde T, Nygaard S, Nielsen KL, Boomsma JJ, Lange L. 2013 The fungal symbiont of Acromyrmex leaf-cutting ants expresses the full spectrum of genes to degrade cellulose and other plant cell wall polysaccharides. BMC Genomics 14, 928. (doi:10.1186/1471-2164-14-928)
13. Khadempour L et al. 2016 The fungal cultivar of leaf-cutting ant produces specific enzymes in response to different plant substrates. Mol. Ecol. 25, 5795–5805. (doi:10.1111/mec.13872)
14. Aylward FO et al. 2013 Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens. Appl. Environ. Microbiol. 79, 3770. (doi:10.1128/AEM.03833-12)
15. Kooij PW et al. 2018 Foraging of leaf-cutting ants in Atta cephalotes. Proc. Natl Acad. Sci. USA 115, 506–513. (doi:10.1073/pnas.1709405115)
16. Lewin GR, Johnson AL, Soto RDM, Perry K, Book AJ, Malloch D. 2001 The origin of the attine ant–fungus mutualism. Q. Rev. Biol. 76, 169–197. (doi:10.1086/393867)
17. Moreira-Soto RD, Sanchez E, Currie CR, Pinto-Tomás AA. 2018 Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME J. 12, 513–523. (doi:10.1038/s41396-018-0083-z)
18. Illem M, Salzheim A, Onnela ML, Penttilä ME. 1997 Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63, 1298–1306. (doi:10.1128/aem.63.4.1298-1306.1997)
19. Aylward FO et al. 2012 Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME J. 6, 1688–1701. (doi:10.1038/ismej.2012.10)
20. Cruimille AJ, James A, Lannes P, Mallett S, Michelsen A, Rinnan R, Shik JJ. 2021 The multidimensional nutritional niche of fungus-cultivar provisioning in free-ranging colonies of a neotropical leafcutter ant. Ecol. Lett. 24, 2439–2451. (doi:10.1111/ele.13865)
21. Shik JJ, Rytter W, Arnan X, Michelsen A. 2018 Disentangling nutritional pathways linking leafcutter ants and their co-evolved fungal symbionts using stable isotopes. Ecology 99, 1999–2009. (doi:10.1002/ecy.2431)
22. Conlon BH et al. 2021 Genome reduction and relaxed selection is associated with the transition to symbiosis in the basidiomycete genus Podaxis. iScience 24, 102680. (doi:10.1016/j.isci.2021.102680)
23. Walsh PS, Metzger DA, Higuchi R. 1991 Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10, 506–513.
24. Conlon BH, Schmidt S, Poulsen M, Shik JJ. 2022 Orthogonal protocols for DNA extraction from filamentous fungi. STAR Protoc. 3, 101126. (doi:10.1016/j.xpro.2022.101126)
25. Sze MA, Abbasi M, Hogg JC, Sin DD. 2014 A comparison between droplet digital and quantitative PCR in the analysis of bacterial 16S rDNA from lung tissue samples from control and COPD patients. J. Thorac. Dis. 6, e100131. (doi:10.7759/jtd.2014131)
26. Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. 2017 Diversity and transmission of gut bacteria in Atta and Acromyrmex leaf-cutting ants during development. Front. Microbiol. 8, 1942. (doi:10.3389/fmicb.2017.01942)
27. De Fine Licht HH, Schiøtt M, Rogowska-Wrzesinska A, Nygaard S, Røe Hestø, Poulsen M. 2013 Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proc. Natl Acad. Sci. USA 110, 12300–12305. (doi:10.1073/pnas.1212709110)
28. R Core Team. 2020 R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See http://www.R-project.org/.
29. Foxe J, Weisberg S. 2011 An R companion to applied regression, 2nd edn. Thousand Oaks, CA: Sage.
30. Oksanen J et al. 2020 vegan: Community ecology package. R package version 2.6-5. 2019.
31. Lenth RV. 2021 emmeans: Estimated marginal means, aka least-squares means. R package version 2.5-4. 2019.
32. Arbizu PM. 2017 pairwiseAdonis: pairwise multilevel comparison using Adonis. (0.0.1 ed).
33. Nygaard S et al. 2016 Reciprocal genomic evolution in the ant–fungus agricultural symbiosis. Nat. Commun. 7, 12233. (doi:10.1038/ncomms12233)
34. Rice P, Longden I, Bleasby A. 2000 EMBOSS: the European molecular biology open software suite. Trends Genet. 16, 276–277. (doi:10.1016/S0168-9525(00)02024-2)
35. Busk PK, PILgaard B, LEzyk MJ, Meyer AS, Lange L. 2017 Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function. BMC Bioinf. 18, 214. (doi:10.1186/s12859-017-1625-9)
36. Chang A, JESke L, Ulbrich S, Hofmann J, Kobitz J, Schomburg I, Neumann-Schaal M, Jahn D, Schomburg D. 2021 BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 49, D498–D508. (doi:10.1093/nar/gkaa1025)
37. Mueller UG, Kardish MR, Ishak HD, Wright AM, Solomon SE, Bruschi SM, Carlson AL, Bacci Jr M. 2018 Phylogenetic patterns of ant–fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. Mol. Ecol. 27, 2414–2434. (doi:10.1111/mec.14588)
38. Conlon BH, O’Tuama D, Michelsen A, Crumière AJJ, Shik JZ. 2022 A fungal symbiont converts provisioned cellulose into edible yield for its leafcutter ant farmers. Figshare. (https://doi.org/10.6084/m9.figshare.c.5923794)