On the support t-designs of extremal Type III and IV codes

Tsuyoshi Miezaki* and Hiroyuki Nakasora†

Abstract

Let C be an extremal Type III or IV code and D_w be the support design of C for weight w. We introduce the numbers, $\delta(C)$ and $s(C)$, as follows: $\delta(C)$ is the largest integer t such that, for all weights, D_w is a t-design; $s(C)$ denotes the largest integer t such that w exists and D_w is a t-design. Herein, we consider the possible values of $\delta(C)$ and $s(C)$.

Keywords: self-dual codes, t-designs, Assmus–Mattson theorem, harmonic weight enumerators.

2010 MSC: Primary 94B05; Secondary 05B05.

1 Introduction

Let D_w be the support design of code C for weight w. From the Assmus–Mattson theorem, if C is an extremal Type III (resp. Type IV) code, then for all w, D_w is a 5-, 3-, and 1-design for $n = 12m$ (resp. $n = 6m$), $12m + 4$ (resp. $n = 6m + 2$), and $12m + 8$ (resp. $n = 6m + 4$), respectively.

Let

$$\delta(C) := \max\{t \in \mathbb{N} \mid \forall w, D_w \text{ is a } t\text{-design}\},$$

$$s(C) := \max\{t \in \mathbb{N} \mid \exists w \text{ s.t. } D_w \text{ is a } t\text{-design}\}.$$
It is noteworthy that $\delta(C) \leq s(C)$. In our previous papers [15, 23, 24, 22], we considered the following problems.

Problem 1.1. Find the upper bound of $s(C)$.

Problem 1.2. Does the case where $\delta(C) < s(C)$ occur?

Next, we explain our motivation for this study. The first motivation is as follows. For Problem 1.1, many examples of 5-designs can be obtained from the Assmus–Mattson theorem; however, an example of a 6-design is not known. Therefore, we aim to obtain a t-design for $t \geq 6$ using the Assmus–Mattson theorem. For Problem 1.2, if C is an extremal Type II code, an example of $\delta(C) < s(C)$ [23] does not exist. In [24], we discovered the first nontrivial examples of $\delta(C) < s(C)$ in triply even binary codes of length 48, an example of which is the moonshine code [27]. Using this result, we provide a new characterization of the moonshine code [27].

The second motivation for this study is that the Assmus–Mattson theorem is one of the most important theorems in design and coding theory. Assmus–Mattson-type theorems in lattice and vertex operator algebra theories are known as the Venkov and Höhn theorems, respectively [28, 14]. For example, the E_8-lattice and moonshine vertex operator algebra V^\natural provide spherical 7-designs for all $(E_8)_{2m}$ and conformal 11-designs for all $(V^\natural)_m$, $m > 0$. It is noteworthy that the $(E_8)_{2m}$ and $(V^\natural)_{m+1}$ are a spherical 8-design and a conformal 12-design, respectively, if and only if $\tau(m) = 0$, where

$$q \prod_{m=1}^\infty (1 - q^m)^{24} = \sum_{m=0}^\infty \tau(m)q^m$$

Furthermore, D.H. Lehmer conjectured in [16] that

$$\tau(m) \neq 0$$

for all m [20, 28, 29]. Therefore, it is interesting to determine the lattice L (resp. vertex operator algebra V) such that L_m (resp. V_m) are spherical (resp. conformal) t-designs for all m by the Venkov theorem (resp. Höhn theorem) and L'_m (resp. V'_m) are spherical (resp. conformal) t'-designs for some m' with some $t' > t$. This study is inspired by these possibilities. For related results, see [4, 5, 6, 7, 8, 15, 21, 22, 23, 25].
Next, we explain our main results. Herein, we present Problems 1.1 and 1.2 for extremal Type III and IV codes. Let C be an extremal Type III or IV code of length n. In 1999, Zhang [30] showed that C does not exist if

$$n = \begin{cases}
12m \ (m \geq 70), \\
12m + 4 \ (m \geq 75), \\
12m + 8 \ (m \geq 78),
\end{cases}$$

for Type III, and

$$n = \begin{cases}
6m \ (m \geq 17), \\
6m + 2 \ (m \geq 20), \\
6m + 4 \ (m \geq 22),
\end{cases}$$

for Type IV. The proof of this fact is to show that the coefficient of $x^{n-d}y^d$ ($d = \min(C)$) of the extremal weight enumerators is negative. In [30], Zhang remarked that the bounds for Type III may be improved if one considers the coefficients of the highest and next-to-highest powers of y of the extremal weight enumerators. We remark that using all the coefficients of the extremal weight enumerators, we obtain more strict bounds for Type III codes:

Theorem 1.3. Let C be an extremal Type III code of length n. Then C does not exist if

$$n = \begin{cases}
12m \ (m \in \{6, 8, 10, 12, 14, 16, 18, 20\} \cup \{m \in \mathbb{Z} \mid m \geq 22\}), \\
12m + 4 \ (m \in \{14, 16, 18, 20, 22, 24, 26, 28\} \cup \{m \in \mathbb{Z} \mid m \geq 30\}), \\
12m + 8 \ (m \in \{22, 24, 26, 28, 30, 32, 34, 36\} \cup \{m \in \mathbb{Z} \mid m \geq 38\}).
\end{cases}$$

This means that if there exists an extremal ternary code of length $n = 12m + r \ (r \in \{0, 4, 8\})$, then m must be in the following set:

$$m \in \begin{cases}
\{i \in \mathbb{Z} \mid 1 \leq i \leq 5\} \cup \{7, 9, 11, 13, 15, 17, 19, 21\} \text{ if } r = 0, \\
\{i \in \mathbb{Z} \mid 1 \leq i \leq 13\} \cup \{15, 17, 19, 21, 23, 25, 27, 29\} \text{ if } r = 4, \\
\{i \in \mathbb{Z} \mid 1 \leq i \leq 21\} \cup \{23, 25, 27, 29, 31, 33, 35, 37\} \text{ if } r = 8.
\end{cases}$$

The extremal weight enumerators for Type III codes of length $n \leq 12 \times 78 + 8 = 944$) are listed in one of the author’s homepage [19].

The main results of the present study are the following theorems.

Theorem 1.4. Let C be an extremal Type III code of length n.

(1) Assume that $n = 12m$.

3
(a) If \(m \neq 15 \), \(\delta(C) = s(C) = 5 \).
(b) If \(m = 15 \), \(\delta(C) = s(C) = 5 \) or 7.

(2) Assume that \(n = 12m + 4 \).

(a) If \(m \notin \{11, 21, 25\} \), \(\delta(C) = s(C) = 3 \).
(b) If \(m \in \{11, 21, 25\} \), \(\delta(C) = s(C) = 3 \) or 5.

(3) Assume that \(n = 12m + 8 \).

(a) If \(m \neq 14 \), \(\delta(C) = s(C) = 1 \).
(b) If \(m = 14 \), \(\delta(C) = s(C) = 1 \) or 3.

Theorem 1.5. Let \(C \) be an extremal Type IV code of length \(n \).

(1) Assume that \(n = 6m \) (\(m \neq 1, 2 \)).

(a) If \(m \notin \{10, 15\} \), \(\delta(C) = s(C) = 5 \).
(b) If \(m \in \{10, 15\} \), \(\delta(C) = s(C) = 5 \) or 7.

(2) Assume that \(n = 6m + 2 \).

(a) If \(m \neq 11 \), \(\delta(C) = s(C) = 3 \).
(b) If \(m = 11 \), \(\delta(C) = s(C) = 3, 5, 6 \) or 7.

(3) Assume that \(n = 6m + 4 \).

(a) If \(m \in \{1, 2, 4, 13\} \), \(\delta(C) = s(C) = 1 \).
(b) If \(m \in \{3, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 20, 21\} \), \(\delta(C) = s(C) = 1 \) or 3.
(c) If \(m = 9 \), \(\delta(C) = s(C) = 1, 3 \) or 4.
(d) If \(m \in \{14, 19\} \), \(\delta(C) = s(C) = 1, 3, 4 \) or 5.

Summarizing the above, we have the following theorem.

Theorem 1.6. Let \(C \) be an extremal Type III or IV code.

1. [An answer to the Problem \[1.1\]]

 We have \(s(C) \leq 7 \).
2. [An answer to the Problem 1.2]

The case $\delta(C) < s(C)$ does not occur.

This paper is organized as follows. In Section 2, we provide the definitions and some basic properties of self-dual codes and t-designs as well as review the concept of harmonic weight enumerators and some lemmas that are used in the proof of the main results. In Sections 3 and 4 we provide the proofs of Theorems 1.4 and 1.5, respectively.

All computer calculations were performed using Mathematica [26].

2 Preliminaries

2.1 Codes and support t-designs

Let \mathbb{F}_q be a finite field of q elements. A linear code C of length n is a linear subspace of \mathbb{F}_q^n. For $q = 3$, an inner product (x, y) on \mathbb{F}_q^n is expressed as

$$(x, y) = \sum_{i=1}^{n} x_i y_i,$$

where $x, y \in \mathbb{F}_q^n$ with $x = (x_1, x_2, \ldots, x_n)$, and $y = (y_1, y_2, \ldots, y_n)$. The Hermitian inner product $(x, y)_H$ on \mathbb{F}_q^n is expressed as

$$(x, y)_H = \sum_{i=1}^{n} x_i y_i^2,$$

where $x, y \in \mathbb{F}_q^n$ with $x = (x_1, x_2, \ldots, x_n)$, and $y = (y_1, y_2, \ldots, y_n)$. The dual of a linear code C is defined as follows: for $q = 3$,

$$C^\perp = \{ y \in \mathbb{F}_q^n \mid (x, y) = 0 \text{ for all } x \in C \},$$

for $q = 4$,

$$C_{q=4}^\perp,H = \{ y \in \mathbb{F}_q^n \mid (x, y)_H = 0 \text{ for all } x \in C \}.$$

A linear code C is called self-dual if $C = C^\perp$ for $q = 3$, and if $C = C_{q=4}^\perp,H$ for $q = 4$. For $x \in \mathbb{F}_q^n$, the weight $\text{wt}(x)$ is the number of its nonzero components. The minimum distance of a code C is $\min\{ \text{wt}(x) \mid x \in C, x \neq 0 \}$. A linear code of length n, dimension k, and minimum distance d is called an $[n, k, d]$ code.

Herein, we consider the following self-dual codes [12]:
Type III: A code is defined over \mathbb{F}_3^n with all weights divisible by 3.
Type IV: A code is defined over \mathbb{F}_4^n with all weights divisible by 2.

Let C be a Type III or Type IV code of length n. Then we have the following bound on the minimum weight of C [17, 18]:

$$\min(C) \leq \begin{cases} 3 \left\lfloor \frac{n}{12} \right\rfloor + 3 & \text{if } C \text{ is ternary,} \\ 2 \left\lfloor \frac{n}{6} \right\rfloor + 2 & \text{if } C \text{ is quaternary.} \end{cases}$$

We say that C meeting the bound (2.1) with equality is extremal.

A t-(v, k, λ) design (or t-design for short) is a pair $D = (X, B)$, where X is a set of points of cardinality v, and B a collection of k-element subsets of X called blocks, with the property that any t points are contained in precisely λ blocks.

The support of a nonzero vector $x := (x_1, \ldots, x_n), x_i \in \mathbb{F}_q = \{0, 1, \ldots, q-1\}$ is the set of indices of its nonzero coordinates: $\text{supp}(x) = \{i \mid x_i \neq 0\}$. The support design of a code of length n for a nonzero weight w is a design with n points of coordinate indices; it blocks the supports of all codewords of weight w. The following lemma can be observed easily.

Lemma 2.1 ([11, Page 3, Proposition 1.4]). Let $\lambda(S)$ be the number of blocks containing a set S of s points in a t-(v, k, λ) design, where $0 \leq s \leq t$. Therefore,

$$\lambda(S) \binom{k-s}{t-s} = \lambda \binom{v-s}{t-s}.$$

In particular, the number of blocks is

$$\frac{v(v-1) \cdots (v-t+1)}{k(k-1) \cdots (k-t+1)} \lambda.$$

2.2 Harmonic weight enumerators

In this section, we extend the harmonic weight enumerator method used by Bachoc [2] and Bannai et al. [4]. For convenience, we quote (from [2, 13]) the definitions and properties of discrete harmonic functions (for more information, the reader is referred to [2, 13]).

Let $\Omega = \{1, 2, \ldots, n\}$ be a finite set (which will be the set of coordinates of the code), and let X be the set of its subsets; for all $k = 0, 1, \ldots, n$, X_k is the set of its k-subsets. We denote the free real vector spaces spanned by
the elements of X and X_k by $\mathbb{R}X$, $\mathbb{R}X_k$, respectively. The element of $\mathbb{R}X_k$ is denoted by

$$f = \sum_{z \in X_k} f(z)z$$

and is identified with the real-valued function on X_k expressed as $z \mapsto f(z)$.

Such an element $f \in \mathbb{R}X_k$ can be extended to an element $\tilde{f} \in \mathbb{R}X$ by setting, for all $u \in X$,

$$\tilde{f}(u) = \sum_{z \in X_k, z \subset u} f(z).$$

If an element $g \in \mathbb{R}X$ is equal to some \tilde{f}, for $f \in \mathbb{R}X_k$, we say that g has a degree of k. The differentiation γ is the operator defined by linearity from

$$\gamma(z) = \sum_{y \in X_{k-1}, y \subset z} y$$

for all $z \in X_k$ and for all $k = 0, 1, \ldots, n$, and Harm_k is the kernel of γ, i.e.,

$$\text{Harm}_k = \ker(\gamma|_{\mathbb{R}X_k}).$$

Theorem 2.2 ([13, Theorem 7]). A set $B \subset X_m$ (where $m \leq n$) of blocks is a t-design if and only if $\sum_{b \in B} \tilde{f}(b) = 0$ for all $f \in \text{Harm}_k$, $1 \leq k \leq t$.

In [2], the harmonic weight enumerator associated with a linear code C is defined as follows:

Definition 2.3 ([2, Definition 2.1],[3, Definition 4.1]). Let C be a linear code of length n, and let $f \in \text{Harm}_k$. The harmonic weight enumerator associated with C and f is

$$W_{C,f}(x, y) = \sum_{c \in C} \tilde{f}(c)x^{n-\text{wt}(c)}y^{\text{wt}(c)}.$$

Subsequently, the structure of these invariant rings is described as follows:

Theorem 2.4 ([3, Lemma 6.1 and 6.2]). (1) Let C be a Type III code of length n, and let $f \in \text{Harm}_k$. Let $u \in \{0, 1\}$ be such that $u \equiv k \pmod{2}$ and $v \in \{0, 1, 2\}$ be such that $v \equiv -k \pmod{3}$. Therefore, we
have $W_{C,f}(x,y) = (xy)^k Z_{C,f}(x,y)$. Moreover, the polynomial $Z_{C,f}(x,y)$ is of degree $n - 2k$ and is in $I_{G_{3,\chi_u,v}}$, where

$$I_{G_{3,\chi_u,v}} = \begin{cases}
\langle g_4, g_{12} \rangle & \text{if } (u,v) = (0,0), \\
p_4 \langle g_4, g_{12} \rangle & \text{if } (u,v) = (0,1), \\
p_2^2 \langle g_4, g_{12} \rangle & \text{if } (u,v) = (0,2), \\
p_6 \langle g_4, g_{12} \rangle & \text{if } (u,v) = (1,0), \\
p_4p_6 \langle g_4, g_{12} \rangle & \text{if } (u,v) = (1,1), \\
p_2^2p_6 \langle g_4, g_{12} \rangle & \text{if } (u,v) = (1,2),
\end{cases}$$

and

$$\begin{cases}
p_4 = y(x^3 - y^3), \\
p_6 = x^6 - 20x^3y^3 - 8y^6, \\
g_4 = x^4 + 8xy^3, \\
g_{12} = y^3(x^3 - y^3)^3.
\end{cases}$$

(2) Let C be a Type IV code of length n, and let $f \in \text{Harm}_k$. Let $u \in \{0,1\}$ be such that $u \equiv k \pmod{2}$ and $v \in \{0,1\}$ be such that $v \equiv k \pmod{2}$. Therefore, we have $W_{C,f}(x,y) = (xy)^k Z_{C,f}(x,y)$. Moreover, the polynomial $Z_{C,f}(x,y)$ is of degree $n - 2k$ and is in $I_{G_{4,\chi_u,v}}$, where

$$I_{G_{4,\chi_u,v}} = \begin{cases}
\langle h_2, h_6 \rangle & \text{if } (u,v) = (0,0), \\
q_3r_3 \langle h_2, h_6 \rangle & \text{if } (u,v) = (1,1),
\end{cases}$$

and

$$\begin{cases}
h_2 = x^2 + 3y^2, \\
h_6 = y^2(x^2 - y^2)^2, \\
q_3 = y(x^2 - y^2), \\
r_3 = x^3 - 9xy^2.
\end{cases}$$

We recall the slightly more general definition of the notion of a T-design for a subset T of $\{1,2,\ldots,n\}$, as follows: a set B of blocks is called a T-design if and only if $\sum_{b \in B} \hat{f}(b) = 0$ for all $f \in \text{Harm}_k$ and for all $k \in T$. By Theorem 2.2, a t-design is a $T = \{1,\ldots,t\}$-design. Let $W_{C,f} = \sum_{i=0}^{n} c_f(i) x^{n-i}y^i$. Subsequently, D_w is a T-design if and only if $c_f(w) = 0$ for all $f \in \text{Harm}_j$ with $j \in T$.

Theorem 2.5 ([10]). (1) Let D_w be the support design of weight w of an extremal Type III code of length n ($n \geq 12$).
If \(n \equiv 0 \pmod{12} \), then \(D_w \) is a \(\{1, 2, 3, 4, 5, 7\} \)-design.

If \(n \equiv 4 \pmod{12} \), then \(D_w \) is a \(\{1, 2, 3, 5\} \)-design.

If \(n \equiv 8 \pmod{12} \), then \(D_w \) is a \(\{1, 3\} \)-design.

Let \(D_w \) be the support design of weight \(w \) of an extremal Type IV code of length \(n \).

If \(n \equiv 0 \pmod{6} \) (\(n \geq 18 \)), then \(D_w \) is a \(\{1, 2, 3, 4, 5, 7\} \)-design.

If \(n \equiv 2 \pmod{6} \), then \(D_w \) is a \(\{1, 2, 3, 5\} \)-design.

If \(n \equiv 4 \pmod{6} \), then \(D_w \) is a \(\{1, 3\} \)-design.

2.3 Coefficients of harmonic weight enumerators of extremal Type III and IV codes

As mentioned in Section 2.2, the support designs of a code \(C \) are affected by whether the coefficients of \(W_{C,f}(x, y) \) are zero. Therefore, we performed an investigation and show the following lemmas, where the binomial coefficient is defined by

\[
\binom{n}{k} = 0
\]

if \(n < k \).

Lemma 2.6. Let \(Q_1 = (x^4 + 8xy^3)(x^3 - y^3)^\alpha \). If the coefficients of \(x^{3\alpha + 4 - 3i}y^{3i} \) in \(Q_1 \) are equal to 0 for \(0 \leq i \leq \alpha + 1 \), then \(\alpha = 9i - 1 \).

Proof. We have

\[
Q_1 = (x^4 + 8xy^3)(x^3 - y^3)^\alpha
\]

\[
= \sum_{i=0}^{\alpha+1} (-1)^i \left(\binom{\alpha}{i} - 8 \binom{\alpha}{i-1} \right) x^{3\alpha+4-3i}y^{3i}.
\]

If the coefficients of \(x^{3\alpha+4-3i}y^{3i} \) in \(Q_1 \) are equal to 0, i.e.,

\[
\binom{\alpha}{i} - 8 \binom{\alpha}{i-1} = 0,
\]
we then have
\[
\frac{\alpha!}{i!(\alpha - i)!} - \frac{\alpha!}{(i - 1)!(\alpha - i + 1)!} = 0
\]
⇔ \(\alpha - i + 1 - 8i = 0\)
⇔ \(\alpha = 9i - 1\).

Lemma 2.7. (1) Let \(R_1 = (x^2 + 3y^2)(x^2 - y^2)^\alpha\). If the coefficients of \(x^{2\alpha+2-2i}y^{2i}\) in \(R_1\) are equal to 0 for \(0 \leq i \leq \alpha + 1\), then \(\alpha = 4i - 1\).

(2) Let \(R_2 = (x^3 - 9xy^2)(x^2 - y^2)^\alpha\). If the coefficients of \(x^{2\alpha+3-2i}y^{2i}\) in \(R_2\) are not equal to 0.

(3) Let \(R_3 = (x^2 + 3y^2)^2(x^2 - y^2)^\alpha\). If the coefficients of \(x^{2\alpha+4-2i}y^{2i}\) in \(R_3\) are equal to 0 for \(0 \leq i \leq \alpha + 2\), then \(48\alpha + 112\) is a square number.

Proof. (1) We have
\[
R_1 = (x^2 + 3y^2)(x^2 - y^2)^\alpha
= \sum_{i=0}^{\alpha+1} (-1)^i \left(\binom{\alpha}{i} - 3 \binom{\alpha}{i-1} \right) x^{2\alpha+2-2i} y^{2i}.
\]
If the coefficients of \(x^{2\alpha+2-2i}y^{2i}\) in \(R_1\) are equal to 0, i.e.,
\[
\binom{\alpha}{i} - 3 \binom{\alpha}{i-1} = 0,
\]
we then have
\[
\frac{\alpha!}{i!(\alpha - i)!} - \frac{3\alpha!}{(i - 1)!(\alpha - i + 1)!} = 0
\]
⇔ \(\alpha - i + 1 - 3i = 0\)
⇔ \(\alpha = 4i - 1\).

(2) We have
\[
R_2 = (x^3 - 9xy^2)(x^2 - y^2)^\alpha
= \sum_{i=0}^{\alpha+1} (-1)^i \left(\binom{\alpha}{i} + 9 \binom{\alpha}{i-1} \right) x^{2\alpha+3-2i} y^{2i}.
\]
If the coefficients of \(x^{2\alpha+3-2i}y^{2i}\) in \(R_2\) are equal to 0, i.e.,

\[
\binom{\alpha}{i} + 9\binom{\alpha}{i-1} = 0,
\]

we then have

\[
\frac{\alpha!}{i!(\alpha - i)!} + \frac{\alpha!}{(i - 1)!(\alpha - i + 1)!} = 0
\]

\[\Leftrightarrow \alpha - i + 1 + 9i = 0\]

\[\Leftrightarrow \alpha = -8i - 1 < 0.\]

Hence, the coefficients of \(x^{2\alpha+3-2i}y^{2i}\) in \(R_2\) are not equal to 0.

(3) We have

\[
R_3 = (x^2 + 3y^2)^2(x^2 - y^2)^\alpha
\]

\[
= \sum_{i=0}^{\alpha+1} (-1)^i \binom{\alpha}{i} - 6\binom{\alpha}{i - 1} + 9\binom{\alpha}{i - 2}\right) x^{2\alpha+4-2i}y^{2i}.
\]

If the coefficients of \(x^{2\alpha+4-2i}y^{2i}\) in \(R_3\) are equal to 0, i.e.,

\[
\binom{\alpha}{i} - 6\binom{\alpha}{i - 1} + 9\binom{\alpha}{i - 2} = 0,
\]

we then have

\[
\frac{\alpha!}{i!(\alpha - i)!} - 6\frac{\alpha!}{(i - 1)!(\alpha - i + 1)!} + 9\frac{\alpha!}{(i - 2)!(\alpha - i + 2)!} = 0
\]

\[\Leftrightarrow (\alpha - i + 2)(\alpha - i + 1) - 6i(\alpha - i + 2) + 9i(i - 1) = 0\]

\[\Leftrightarrow 16i^2 - (8\alpha + 24)i + \alpha^2 + 3\alpha + 2 = 0.\]

We have

\[
i = \frac{4\alpha + 12 \pm \sqrt{48\alpha + 112}}{16}.
\]

Because \(i\) is an integer, \(48\alpha + 112\) is a square number.
3 Proof of Theorem 1.4

3.1 Case for $n = 12m$

In this section, we consider the case of extremal Type III $[12m, 6m, 3m + 3]$ codes satisfying (1.1). Let C be an extremal Type III $[12m, 6m, 3m + 3]$ code and D_{3m+3}^{12m} be the support (with duplicates omitted) design of the minimum weight of C. By [13, Theorem 2], the number of codewords of minimum nonzero weight of C is equal to

$$2 \binom{12m}{5} \binom{4m-2}{m-1} / \binom{3m+3}{5}. $$

Therefore, by the Assmus–Mattson theorem, D_{3m+3}^{12m} is a 5-design with parameters

$$\left(12m, 3m + 3, \frac{4m-2}{m-1}\right).$$

Proposition 3.1. (1) If $t \geq 6$, then D_{3m+3}^{12m} is a 7-design and $m = 15$.

(2) D_{3m+3}^{12m} is never an 8-design.

Proof. (1) By Theorem 2.5 (1), D_{3m+3}^{12m} is a 7-design if $t \geq 6$. If D_{3m+3}^{12m} is a 7-design, then by Lemma 2.1

$$\lambda_6 = \frac{3m-2}{12m-5} \binom{4m-2}{m-1} \text{ and } \lambda_7 = \frac{(3m-2)(3m-3)}{(12m-5)(12m-6)} \binom{4m-2}{m-1}$$

are positive integers. By computing m satisfying (1.1), if λ_6 and λ_7 are positive integers, then we have $m = 15$.

(2) We have verified that

$$\lambda_8 = \frac{(3m-2)(3m-3)(3m-4)}{(12m-5)(12m-6)(12m-7)} \binom{4m-2}{m-1}$$

is not a positive integer for $m = 15$. Therefore, by Lemma 2.1 D_{3m+3}^{12m} is never an 8-design. □

For $t = 8$, we present the following proposition.

Proposition 3.2. Let D_w^{12m} be the support t-design of weight w of an extremal Type III code of length $n = 12m$. Therefore, all D_w^{12m} are 8-designs simultaneously, or none of the D_w^{12m} is an 8-design.
Proof. Let us assume that \(t = 8 \), and \(C \) is an extremal Type III \([12m, 6m, 3m + 3]\) code. Therefore, by Theorem 2.4 (1), we have \(W_{C,f}(x, y) = c(f)(xy)^8Z_{C,f}(x, y) \), where \(c(f) \) is a linear function from \(\text{Harm}_t \) to \(\mathbb{R} \), and \(Z_{C,f}(x, y) \in I_{G_{3},x_{0},1} \).

By Theorem 2.4 (1), \(Z_{C,f}(x, y) \) can be written in the following form:

\[
Z_{C,f}(x, y) = p_4 \sum_{i=0}^{m} a_i g_4^{3(m-i)-5} g_{12}^i.
\]

Because the minimum weight of \(C \) is \(3m + 3 \), we have \(a_i = 0 \) for \(i \neq m - 2 \). Therefore, \(W_{C,f}(x, y) \) can be written in the following form:

\[
W_{C,f}(x, y) = c(f)(xy)^8p_4g_4g_{12}^{m-2}
= c(f)(xy)^8y^{3m-5}(x^4 + 8xy^3)(x^3 - y^3)^{3m-5}.
\]

By Lemma 2.6, the coefficients of \(x^{9m-11-3i}y^{3i} \) in \((x^4 + 8xy^3)(x^3 - y^3)^{3m-5} \) are not equal to 0 for \(0 \leq i \leq 3m - 4 \) because \(3m - 5 \neq 9i - 1 \). Therefore, all \(D_{12m}^w \) are 8-designs simultaneously, or none of the \(D_{12m}^w \) is an 8-design.

By Propositions 3.1 and 3.2 we obtained the following theorem.

Theorem 3.3.

(1) If \(D_{12m}^w \) becomes a 7-design for any \(w \), then \(m = 15 \).

(2) \(D_{12m}^w \) is never an 8-design for any \(w \).

Hence, the proof of Theorem 1.4 (1) is completed.

3.2 Case for 12m + 4

In this section, we consider the case of extremal Type III \([12m + 4, 6m + 2, 3m + 3]\) codes satisfying (1.1). Let \(C \) be an extremal Type III \([12m + 4, 6m + 2, 3m + 3]\) code and \(D_{12m+4}^w \) be the support (with duplicates omitted) design of the minimum weight of \(C \). By [18 Theorem 2], the number of codewords of the minimum nonzero weight of \(C \) is equal to

\[
2(12m + 4)(12m + 3)(12m + 2)\frac{(4m)!}{m!(3m + 3)!}.
\]

Therefore, by the Assmus–Mattson theorem, \(D_{3m+3}^{12m+4} \) is a 3-design with parameters

\[
\left(12m + 4, 3m + 3, \binom{4m}{m} \right).
\]

13
Proposition 3.4. Let D_{3m+3}^{12m+4} be the support t-design of the minimum weight of an extremal Type III code of length $n = 12m + 4$.

(1) If $t \geq 4$, then D_{3m+3}^{12m+4} is a 5-design and m must be in the set $\{11, 21, 25\}$.

(2) D_{3m+3}^{12m+4} is never a 6-design.

Proof. (1) By Theorem 2.5 (1), D_{3m+3}^{12m+4} is a 5-design if $t \geq 4$. If D_{3m+3}^{12m+4} is a 5-design, then by Lemma 2.1,

$$\lambda_4 = \frac{3m}{12m+1} \left(\frac{4m}{m} \right) \text{ and } \lambda_5 = \frac{3m(3m-1)}{(12m+1)12m} \left(\frac{4m}{m} \right)$$

are positive integers. By computing m satisfying (1.1), if λ_4 and λ_5 are positive integers, then we have

$$m \in \{11, 21, 25\}.$$

(2) If D_{3m+3}^{12m+4} is a 6-design, then by Lemma 2.1,

$$\lambda_6 = \frac{3m(3m-1)(3m-2)}{(12m+1)12m(12m-1)} \left(\frac{4m}{m} \right)$$

is a positive integer. Then we do not obtain m satisfying (1.1).

For $t \geq 6$, we present the following proposition.

Proposition 3.5. Let D_w^{12m+4} be the support t-design of weight w of an extremal Type III code of length $n = 12m + 4$.

(1) All D_w^{12m+4} are 6-designs simultaneously, or none of the D_w^{12m+4} is a 6-design.

Proof. Let C be an extremal Type III $[12m + 4, 6m + 2, 3m + 3]$ code.

(1) Let us assume that $t = 6$. Therefore, by Theorem 2.4 (1), we have $W_{C,f}(x, y) = c(f)(xy)^6 Z_{C,f}(x, y)$, where $c(f)$ is a linear function from Harm to \mathbb{R}, and $Z_{C,f}(x, y) \in I_{G_5, \chi_0, 0}$. By Theorem 2.4 (1), $Z_{C,f}(x, y)$ can be written in the following form:

$$Z_{C,f}(x, y) = \sum_{i=0}^{m} a_i g_4^{3(3m-i)-2} g_{12}^{i}.$$
Because the minimum weight of C is $3m + 3$, we have $a_i = 0$ for $i \neq m - 1$. Therefore, $W_{C,f}(x,y)$ can be written in the following form:

\[
W_{C,f}(x,y) = c(f)(xy)^6 g_{12}^{m-1} \\
= c(f)(xy)^6 y^{3m-3}(x^4 + 8xy^3)(x^3 - y^3)^{3m-3}.
\]

By Lemma 2.6 the coefficients of $x^{9m-5-3i}y^{3i}$ in $(x^4 + 8xy^3)(x^3 - y^3)^{3m-3}$ are not equal to 0 for $0 \leq i \leq 3m - 2$ since $3m - 3 \neq 9i - 1$. Therefore, all D_{12m+4}^w are 6-designs simultaneously, or none of the D_{12m+4}^w is a 6-design.

By Proposition 3.4 and 3.5 we obtained the following theorem.

Theorem 3.6. Let D_{12m+4}^w be the support t-design of weight w of an extremal Type III code of length $n = 12m + 4$ satisfying (1.1).

1. If D_{12m+4}^w becomes a 5-design for any w, then m must be in the set \{11, 21, 25\}.

2. D_{12m+4}^w is never a 6-design for any w.

Hence, the proof of Theorem 1.4 (2) is completed.

3.3 Case for $12m + 8$

In this section, we consider the case of extremal Type III $[12m + 8, 6m + 4, 3m + 3]$ codes satisfying (1.1). Let C be an extremal Type III $[12m + 8, 6m + 4, 3m + 3]$ code and D_{12m+8}^w be the support (with duplicates omitted) design of the minimum weight of C. By [18, Theorem 2], the number of codewords of the minimum nonzero weight of C is equal to

\[
6(12m + 8)\frac{(4m + 2)!}{m!(3m + 3)!}.
\]

Therefore, by the Assmus–Mattson theorem, D_{3m+3}^{12m+8} is a 1-design with parameters

\[
\left(12m + 8, 3m + 3, 3 \binom{4m + 2}{m}\right).
\]

Proposition 3.7. Let D_{3m+3}^{12m+8} be the support t-design of the minimum weight of an extremal Type III code of length $n = 12m + 8$.

15
(1) If \(t \geq 2 \), then \(D_{3m+3}^{12m+8} \) is a 3-design and \(m \) must be 14.

(2) \(D_{3m+3}^{12m+8} \) is never a 4-design.

Proof. (1) By Theorem 2.5 (1), \(D_{3m+3}^{12m+8} \) is a 3-design if \(t \geq 2 \). If \(D_{3m+3}^{12m+8} \) is a 3-design, then by Lemma 2.1

\[
\lambda_2 = \frac{3m + 2}{12m + 7} \binom{4m + 2}{m} \quad \text{and} \quad \lambda_3 = \frac{(3m + 2)(3m + 1)}{(12m + 7)(12m + 6)} \binom{4m + 2}{m}
\]

are positive integers. By computing \(m \) satisfying (1.1), if \(\lambda_2 \) and \(\lambda_3 \) are positive integers, then we have \(m = 14 \).

(2) We have verified that \(\lambda_4 \) is not a positive integer for \(m = 14 \). Therefore, by Lemma 2.1 \(D_{3m+3}^{12m+8} \) is never a 4-design.

Next, we present the following proposition.

Proposition 3.8. Let \(D_w^{12m+8} \) be the support \(t \)-design of weight \(w \) of an extremal Type III code of length \(n = 12m + 8 \). If \(m \not\equiv 0 \pmod{3} \), all \(D_w^{12m+8} \) are 4-designs simultaneously, or none of the \(D_w^{12m+8} \) is a 4-design.

Proof. Let \(C \) be an extremal Type III \([12m + 8, 6m + 4, 3m + 3]\) code. Let us assume that \(t = 4 \). Therefore, by Theorem 2.4 (1), we have \(W_{C,f}(x, y) = c(f)(xy)^4Z_{C,f}(x, y) \), where \(c(f) \) is a linear function from \(\text{Harm}_t \) to \(\mathbb{R} \), and \(Z_{C,f}(x, y) \in I_{G_3,x_0,2}^* \). By Theorem 2.4 (1), \(Z_{C,f}(x, y) \) can be written in the following form:

\[
Z_{C,f}(x, y) = p_{12}^2 \sum_{i=0}^{m} a_i g_4^{3(m-i)-2} g_{12}^i.
\]

Because the minimum weight of \(C \) is \(3m + 3 \), we have \(a_i = 0 \) for \(i \neq m - 1 \).

Therefore, \(W_{C,f}(x, y) \) can be written in the following form:

\[
W_{C,f}(x, y) = c(f)(xy)^4p_{12}^2 g_4 g_{12}^{m-1}
= c(f)(xy)^4y^{3m-1}(x^4 + 8xy^3)(x^3 - y^3)^{3m-1}.
\]

By Lemma 2.6 if \(m \not\equiv 0 \pmod{3} \), then the coefficients of \(x^{9m+1-3i}y^{3i} \) in \((x^4 + 8xy^3)(x^3 - y^3)^{3m-1}\) are not equal to 0 for \(0 \leq i \leq 3m \) because
3m − 3 ≠ 9i − 1. Therefore, all D_{w}^{12m+8} are 4-designs simultaneously, or none of the D_{w}^{12m+8} is a 4-design for $m \not\equiv 0 \pmod{3}$.

By Propositions 3.7 and 3.8 we obtained the following theorem.

Theorem 3.9. Let D_{w}^{12m+8} be the support t-design of weight w of an extremal Type III code of length $n = 12m + 8$ satisfying (1.1).

1. If D_{w}^{12m+8} becomes a 3-design for any w, then $m = 14$.
2. In the case where $m = 14$, D_{w}^{12m+8} is a 1 or 3-design for any w.
3. D_{w}^{12m+8} is never a 4-design for any w.

Hence, the proof of Theorem 1.4 (3) is completed.

4 Proof of Theorem 1.5

4.1 Case for $n = 6m$

In this section, we consider the case of extremal Type IV $[6m, 3m, 2m + 2]$ codes ($3 \leq m \leq 16$). Let C be an extremal Type IV $[6m, 3m, 2m + 2]$ code and D_{2m+2}^{6m} be the support (with duplicates omitted) design of the minimum weight of C. By [17, Theorem 18], D_{2m+2}^{6m} is a

$$
\text{5-}\left(6m, 2m + 2, \binom{3m - 3}{m - 2}\right)
$$

design.

Proposition 4.1. Let D_{2m+2}^{6m} be the support t-design of the minimum weight of an extremal Type IV code of length $n = 6m$.

1. If $t \geq 6$, then D_{2m+2}^{6m} is a 7-design and m must be in the set $\{10, 15\}$.
2. D_{2m+2}^{6m} is never an 8-design.

Proof. (1) If D_{2m+2}^{6m} is a 7-design, then by Lemma 2.1

$$
\lambda_6 = \frac{2m - 3}{6m - 5} \binom{3m - 3}{m - 2} \quad \text{and} \quad \lambda_7 = \frac{(2m - 3)(2m - 4)}{(6m - 5)(6m - 6)} \binom{3m - 3}{m - 2}
$$

17
are positive integers. By computing \(m \leq 16 \), if \(\lambda_6 \) and \(\lambda_7 \) are positive integers, then we have \(m \in \{10, 15\} \).

(2) We have verified that

\[
\lambda_8 = \frac{(2m - 3)(2m - 4)(2m - 5)}{(6m - 5)(6m - 6)(6m - 7)} \left(\frac{3m - 3}{m - 2} \right)
\]

is not a positive integer for \(m \in \{10, 15\} \). Therefore, by Lemma 2.1, \(D_{2m+2}^{6m} \) is never an 8-design.

For \(t \geq 8 \), we present the following proposition.

Proposition 4.2. Let \(D_{w}^{6m} \) be the support \(t \)-design of weight \(w \) of an extremal Type IV code of length \(n = 6m \). Therefore, all \(D_{w}^{6m} \) are 8-designs simultaneously, or none of the \(D_{w}^{6m} \) is an 8-design.

Proof. Let \(C \) be an extremal Type IV \([6m, 3m, 2m + 2]\) code. Let us assume that \(t = 8 \). Therefore, by Theorem 2.4 (2), we have

\[
W_{C,f}(x, y) = c(f)(xy)^8 Z_{C,f}(x, y),
\]

where \(c(f) \) is a linear function from \(\text{Harm}_t \) to \(\mathbb{R} \), and \(Z_{C,f}(x, y) \in I_{G_{4,0,0}} \). By Theorem 2.4 (2), \(Z_{C,f}(x, y) \) can be written in the following form:

\[
Z_{C,f}(x, y) = \sum_{i=0}^{m} a_i h_2^{3(m-i)-8} h_6^i.
\]

Because the minimum weight of \(C \) is \(2m + 2 \), we have \(a_i = 0 \) for \(i \neq m - 3 \). Therefore, \(W_{C,f}(x, y) \) can be written in the following form:

\[
W_{C,f}(x, y) = c(f)(xy)^8 h_2^{m-3} h_6^{2m-6} (x^2 + 3y^2)(x^2 - y^2)^{2m-6}.
\]

By Lemma 2.1 (1), the coefficients of \(x^{4m-10-2i} y^{2i} \) in \((x^2 + 3y^2)(x^2 - y^2)^{2m-6} \) are not equal to 0 for \(0 \leq i \leq 2m - 5 \) because \(2m - 6 \neq 4i - 1 \). Therefore, all \(D_{w}^{6m} \) are 8-designs simultaneously, or none of the \(D_{w}^{6m} \) is an 8-design.

By Propositions 4.1 and 4.2, we obtained the following theorem.

Theorem 4.3.

(1) If \(D_{w}^{6m} \) becomes a 7-design for any \(w \), then \(m \) must be in the set \(\{10, 15\} \).

(2) \(D_{w}^{6m} \) is never an 8-design for any \(w \).

Hence, the proof of Theorem 1.5 (1) is completed.
4.2 Case for \(n = 6m + 2 \)

In this section, we consider the case of extremal Type IV \([6m+2, 3m+1, 2m+2]\) codes (\(m \leq 19 \)). Let \(C \) be an extremal Type IV \([6m+2, 3m+1, 2m+2]\) code and \(D_{2m+2}^{6m+2} \) be the support (with duplicates omitted) design of the minimum weight of \(C \). By [17, Theorem 14], the number of codewords of the minimum nonzero weight of \(C \) is equal to

\[
\frac{3(6m+1)}{m+1} \binom{3m+1}{m}.
\]

Therefore, by the Assmus–Mattson theorem, \(D_{2m+2}^{6m+2} \) is a 3-design with parameters

\[
\left(6m+2, 2m+2, \frac{1}{3} \binom{3m}{m} \right).
\]

Proposition 4.4. Let \(D_{2m+2}^{6m+2} \) be the support \(t\)-design of the minimum weight of an extremal Type IV code of length \(n = 6m+2 \).

1. If \(t \geq 4 \), then \(D_{2m+2}^{6m+2} \) is a 5-design and \(m \) must be 11.

2. \(D_{2m+2}^{6m+2} \) is never an 8-design.

Proof. (1) By Theorem 2.5 (2), \(D_{2m+2}^{6m+2} \) is a 5-design if \(t \geq 4 \). If \(D_{2m+2}^{6m+2} \) is a 5-design, then by Lemma 2.1,

\[
\lambda_4 = \frac{2m-1}{6m-1} \cdot \frac{11}{3} \binom{3m}{m} \quad \text{and} \quad \lambda_5 = \frac{(2m-1)(2m-2)}{(6m-1)(6m-2)} \cdot \frac{1}{3} \binom{3m}{m},
\]

are positive integers. By computing \(m \leq 19 \), if \(\lambda_4 \) and \(\lambda_5 \) are positive integers, then we have \(m = 11 \).

(2) For \(m = 11 \), we have verified that

\[
\lambda_6 = \frac{(2m-1)(2m-2)(2m-3)}{(6m-1)(6m-2)(6m-3)} \cdot \frac{1}{3} \binom{3m}{m}, \quad \text{and} \quad \lambda_7 = \frac{(2m-1)(2m-2)(2m-3)(2m-4)}{(6m-1)(6m-2)(6m-3)(6m-4)} \cdot \frac{1}{3} \binom{3m}{m}
\]

are positive integers, and

\[
\lambda_8 = \frac{(2m-1)(2m-2)(2m-3)(2m-4)(2m-5)}{(6m-1)(6m-2)(6m-3)(6m-4)(6m-5)} \cdot \frac{1}{3} \binom{3m}{m}
\]

is not a positive integer. Therefore, by Lemma 2.1, \(D_{2m+2}^{6m+2} \) is never an 8-design.

\[\square\]
For $t \geq 6$, we present the following proposition.

Proposition 4.5. Let D_{w}^{6m+2} be the support t-design of weight w of an extremal Type IV code of length $n = 6m + 2$.

1. All D_{w}^{6m+2} are 6-designs simultaneously, or none of the D_{w}^{6m+2} is a 6-design.

2. All D_{w}^{6m+2} are 7-designs simultaneously, or none of the D_{w}^{6m+2} is a 7-design.

3. For the case $m = 11$. All D_{w}^{68} are 8-designs simultaneously, or none of the D_{w}^{68} is an 8-design.

Proof. Let C be an extremal Type IV $[6m + 2, 3m + 1, 2m + 2]$ code.

(1) Let us assume that $t = 6$. Therefore, by Theorem 2.4 (2), we have $W_{C,f}(x, y) = c(f)(xy)^{6}Z_{C,f}(x, y)$, where $c(f)$ is a linear function from Harm$_{t}$ to \mathbb{R}, and $Z_{C,f}(x, y) \in I_{G_{4},x_{0},0}$. By Theorem 2.4 (2), $Z_{C,f}(x, y)$ can be written in the following form:

$$Z_{C,f}(x, y) = \sum_{i=0}^{m} a_{i}h_{2}^{3(m-i)-5}h_{6}^{i}.$$

Because the minimum weight of C is $2m + 2$, we have $a_{i} = 0$ for $i \neq m - 2$. Therefore, $W_{C,f}(x, y)$ can be written in the following form:

$$W_{C,f}(x, y) = c(f)(xy)^{6}h_{2}^{5}h_{6}^{m-2} = c(f)(xy)^{6}y^{2m-4}(x^{2} + 3y^{2})(x^{2} - y^{2})^{2m-4}.$$

By Lemma 2.7 (1), the coefficients of $x^{4m-6-2i}y^{2i}$ in $(x^{2} + 3y^{2})(x^{2} - y^{2})^{2m-4}$ are not equal to 0 for $0 \leq i \leq 2m - 3$ because $2m - 4 \neq 4i - 1$. Therefore, all D_{w}^{6m+2} are 6-designs simultaneously, or none of the D_{w}^{6m+2} is a 6-design.

(2) Let us assume that $t = 7$. Therefore, by Theorem 2.4 (2), we have $W_{C,f}(x, y) = c(f)(xy)^{7}Z_{C,f}(x, y)$, where $c(f)$ is a linear function from Harm$_{t}$ to \mathbb{R}, and $Z_{C,f}(x, y) \in I_{G_{4},x_{1},1}$. By Theorem 2.4 (2), $Z_{C,f}(x, y)$ can be written in the following form:

$$Z_{C,f}(x, y) = q_{3}r_{3} \sum_{i=0}^{m} a_{i}h_{2}^{3(m-i)-9}h_{6}^{i}.$$

20
Because the minimum weight of C is $2m + 2$, we have $a_i = 0$ for $i \neq m - 3$. Therefore, $W_{C,f}(x,y)$ can be written in the following form:

$$W_{C,f}(x,y) = c(f)(xy)^{7}q_{3}r_{3}h_{6}^{m-3}$$

$$= c(f)(xy)^{7}y^{2m-5}(x^{3} - 9xy^{2})(x^{2} - y^{2})^{2m-5}.$$

By Lemma 2.7 (2), the coefficients of $x^{4m-7-2i}y^{2i}$ in $(x^{3} - 9xy^{2})(x^{2} - y^{2})^{2m-5}$ are not equal to 0 for $0 \leq i \leq 2m - 4$. Therefore, all D_{w}^{6m+2} are 7-designs simultaneously, or none of the D_{w}^{6m+2} is a 7-design.

(3) Let us assume that $t = 8$. Therefore, by Theorem 2.4 (2), we have $W_{C,f}(x,y) = c(f)(xy)^{8}Z_{C,f}(x,y)$, where $c(f)$ is a linear function from Harm$_{t}$ to \mathbb{R}, and $Z_{C,f}(x,y) \in I_{G_{4},\chi_{0},0}$. By Theorem 2.4 (2), $Z_{C,f}(x,y)$ can be written in the following form:

$$Z_{C,f}(x,y) = \sum_{i=0}^{m} a_{i}h_{2}^{3(m-i)-7}h_{6}^{i}.$$

Because the minimum weight of C is $2m + 2$, we have $a_i = 0$ for $i \neq m - 3$. Therefore, $W_{C,f}(x,y)$ can be written in the following form:

$$W_{C,f}(x,y) = c(f)(xy)^{8}h_{2}^{2}h_{6}^{m-3}$$

$$= c(f)(xy)^{8}y^{2m-6}(x^{2} + 3y^{2})^{2}(x^{2} - y^{2})^{2m-6}.$$

By Lemma 2.7 (3), if the coefficients of $x^{4m-8-2i}y^{2i}$ in $(x^{2} + 3y^{2})^{2}(x^{2} - y^{2})^{2m-6}$ are equal to 0, then $48(2m - 6) + 112$ is a square number. In the case where $m = 11$, $48(2m - 6) + 112 = 880$ is not a square number. Therefore, all D_{w}^{68} are 8-designs simultaneously, or none of the D_{w}^{68} is an 8-design.

\[\square\]

By Propositions 4.4 and 1.5, we obtained the following theorem.

Theorem 4.6. Let D_{w}^{6m+2} be the support t-design of weight w of an extremal Type IV code of length $n = 6m + 2$ ($m \leq 19$).

(1) If D_{w}^{6m+2} becomes a 5-design for any w, then $m = 11$.

(2) In the case where $m = 11$, D_{w}^{68} is a 3-, 5-, 6-, or 7-design for any w.

(3) D_{w}^{6m+2} is never an 8-design for any w.

Hence, the proof of Theorem 1.5 (2) is completed.
4.3 Case for $n = 6m + 4$

In this section, we consider the case of extremal Type IV $[6m+4, 3m+2, 2m+2]$ codes ($m \leq 21$). Let C be an extremal Type IV $[6m+4, 3m+2, 2m+2]$ code and D_{2m+2}^{6m+4} be the support (with duplicates omitted) design of the minimum weight of C. By [17, Theorem 14], the number of codewords of the minimum nonzero weight of C is equal to

$$3\binom{3m+2}{m+1}.$$

Therefore, by the Assmus–Mattson theorem, D_{2m+2}^{6m+4} is a 1-design with parameters

$$\left(6m+4, 2m+2, \binom{3m+1}{m}\right).$$

Proposition 4.7. Let D_{2m+2}^{6m+4} be the support t-design of the minimum weight of an extremal Type IV code of length $n = 6m + 4$.

1. If D_{2m+2}^{6m+4} is a 3-design, then m must be in the set
 \{3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21\}.

2. If D_{2m+2}^{6m+4} is a 4-design, then m must be in the set \{9, 14, 19\}.

3. If D_{2m+2}^{6m+4} is a 5-design, then m must be in the set \{14, 19\}.

4. D_{2m+2}^{6m+4} is never a 6-design.

Proof. (1) By Theorem 2.5, if D_{2m+2}^{6m+4} is a 3-design if $t \geq 2$. If $m \in \{1, 2, 4, 13\}$, then D_{2m+2}^{6m+4} is not a 3-design.

 For $m \in \{1, 4, 13\}$, we have verified that both

 $$\lambda_2 = \frac{2m+1}{6m+3}\binom{3m+1}{m} \quad \text{or} \quad \lambda_3 = \frac{(2m+1)2m}{(6m+3)(6m+2)}\binom{3m+1}{m}$$

 are not positive integers.

 For $m = 2$, it is known that no 3-(16, 6, 2) design exists [9].

 (2) If D_{2m+2}^{6m+4} is a 4-design, then

 $$\lambda_4 = \frac{(2m+1)2m(2m-1)}{(6m+3)(6m+2)(6m+1)}\binom{3m+1}{m}$$
is a positive integer. By computing \(m \leq 21 \), if \(\lambda_4 \) is a positive integer, then we have \(m \in \{9, 14, 19\} \).

(3) For \(m \in \{9, 14, 19\} \), if

\[
\lambda_5 = \frac{(2m + 1)2m(2m - 1)(2m - 2) (3m + 1)}{(6m + 3)(6m + 2)(6m + 1)6m} \binom{m}{m}
\]

is a positive integer, then \(m \in \{14, 19\} \).

(4) We have verified that

\[
\lambda_6 = \frac{(2m + 1)2m(2m - 1)(2m - 2)(2m - 3) (3m + 1)}{(6m + 3)(6m + 2)(6m + 1)6m(6m - 1)} \binom{m}{m}
\]

is not a positive integer for \(m \in \{14, 19\} \).

For \(t \geq 4 \), we present the following proposition.

Proposition 4.8. Let \(D_{6m+4}^w \) be the support \(t \)-design of weight \(w \) of an extremal Type IV code of length \(n = 6m + 4 \).

1. All \(D_{6m+4}^w \) are 4-designs simultaneously, or none of the \(D_{6m+4}^w \) is a 4-design.

2. All \(D_{6m+4}^w \) are 5-designs simultaneously, or none of the \(D_{6m+4}^w \) is a 5-design.

3. If \(m \in \{14, 19\} \), all \(D_{6m+4}^w \) are 6-designs simultaneously, or none of the \(D_{6m+4}^w \) is a 6-design.

Proof. Let \(C \) be an extremal Type IV \([6m+4, 3m+2, 2m+2]\) code.

(1) We assume that \(t = 4 \). Therefore, by Theorem 2.4 (2), we have

\[
W_{C,f}(x, y) = c(f)(xy)^4 Z_{C,f}(x, y),
\]

where \(c(f) \) is a linear function from \(\text{Harm}_t \) to \(\mathbb{R} \), and \(Z_{C,f}(x, y) \in I_{G_4,\chi_0,0} \). By Theorem 2.4 (2), \(Z_{C,f}(x, y) \) can be written in the following form:

\[
Z_{C,f}(x, y) = \sum_{i=0}^{m} a_i h_2^{3(m-i)-2} h_6^i.
\]

Because the minimum weight of \(C \) is \(2m + 2 \), we have \(a_i = 0 \) for \(i \neq m - 1 \). Therefore, \(W_{C,f}(x, y) \) can be written in the following form:

\[
W_{C,f}(x, y) = c(f)(xy)^4 h_2 h_6^{m-1} = c(f)(xy)^4 y^{2m-2}(x^2 + 3y^2)(x^2 - y^2)^{2m-2}.
\]
By Lemma 2.7 (1), the coefficients of $x^{4m-2-2i}y^{2i}$ in $(x^2+3y^2)(x^2-y^2)^{2m-2}$ are not equal to 0 for $0 \leq i \leq 2m-1$ because $2m-2 \neq 4i-1$. Therefore, all D_{w}^{6m+4} are 4-designs simultaneously, or none of the D_{w}^{6m+4} is a 4-design.

(2) Let us assume that $t = 5$. Therefore, by Theorem 2.3 (2), we have $W_{C,f}(x,y) = c(f)(xy)^5 Z_{C,f}(x,y)$, where $c(f)$ is a linear function from Harm_t to \mathbb{R}, and $Z_{C,f}(x,y) \in I_{G_4,\chi_{1,1}}$. By Theorem 2.4 (2), $Z_{C,f}(x,y)$ can be written in the following form:

$$Z_{C,f}(x,y) = q_3 r_3 \sum_{i=0}^{m} a_i h_2^{3(m-i)-6} h_6^i.$$

Because the minimum weight of C is $2m+2$, we have $a_i = 0$ for $i \neq m-2$. Therefore, $W_{C,f}(x,y)$ can be written in the following form:

$$W_{C,f}(x,y) = c(f)(xy)^5 q_3 r_3 h_6^{m-2} = c(f)(xy)^5 y^{2m-3} (x^3 - 9xy^2) (x^2 - y^2)^{2m-3}.$$

By Lemma 2.7 (2), the coefficients of $x^{4m-3-2i}y^{2i}$ in $(x^3 - 9xy^2)(x^2 - y^2)^{2m-3}$ are not equal to 0 for $0 \leq i \leq 2m-2$. Therefore, all D_{w}^{6m+4} are 5-designs simultaneously, or none of the D_{w}^{6m+4} is a 5-design.

(3) Let us assume that $t = 6$. Therefore, by Theorem 2.3 (2), we have $W_{C,f}(x,y) = c(f)(xy)^6 Z_{C,f}(x,y)$, where $c(f)$ is a linear function from Harm_t to \mathbb{R}, and $Z_{C,f}(x,y) \in I_{G_4,\chi_{0,0}}$. By Theorem 2.4 (2), $Z_{C,f}(x,y)$ can be written in the following form:

$$Z_{C,f}(x,y) = \sum_{i=0}^{m} a_i h_2^{3(m-i)-4} h_6^i.$$

Because the minimum weight of C is $2m+2$, we have $a_i = 0$ for $i \neq m-2$. Therefore, $W_{C,f}(x,y)$ can be written in the following form:

$$W_{C,f}(x,y) = c(f)(xy)^6 h_2^2 h_6^{m-2} = c(f)(xy)^6 y^{2m-4} (x^2 + 3y^2)^2 (x^2 - y^2)^{2m-4}.$$

By Lemma 2.7 (3), if the coefficients of $x^{4m-4-2i}y^{2i}$ in $(x^2 + 3y^2)^2(x^2 - y^2)^{2m-4}$ are equal to 0, then $48(2m-4) + 112$ is a square number. If $m = 14$ or 19, then $48(2m-4) + 112 = 1264$ or $48(2m-4) + 112 = 1744$ is not a square number. Therefore, if $m \in \{14, 19\}$, all D_{w}^{6m+4} are 6-designs simultaneously, or none of the D_{w}^{6m+4} is a 6-design.

\square
By Propositions 4.7 and 4.8 we obtained the following theorem.

Theorem 4.9. Let D_w^{6m+4} be the support t-design of weight w of an extremal Type IV code of length $n = 6m + 4$ $(m \leq 21)$.

1. If D_w^{6m+4} becomes a 3-design for any w, then m must be in the set
 \{3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21\}.

2. If D_w^{6m+4} becomes a 4-design for any w, then m must be in the set
 \{9, 14, 19\}.

3. In the case where $m = 9$, D_w^{58} is a 1, 3 or 4-design for any w. If
 $m \in \{14, 19\}$, D_w^{6m+4} is a 1-, 3-, 4- or 5-design for any w.

4. D_w^{6m+4} is never a 6-design for any w.

Hence, the proof of Theorem 1.5 (3) is completed.

Acknowledgments

The authors would also like to thank the anonymous reviewers for their beneficial comments on an earlier version of the manuscript. The first named author is supported by JSPS KAKENHI (22K03277).

References

[1] E.F. Assmus, Jr. and H.F. Mattson, Jr., New 5-designs, *J. Combin. Theory* 6 (1969), 122–151.

[2] C. Bachoc, On harmonic weight enumerators of binary codes, *Des. Codes Cryptogr.* 18 (1999), no. 1-3, 11–28.

[3] C. Bachoc, Harmonic weight enumerators of nonbinary codes and MacWilliams identities, *Codes and association schemes* (Piscataway, NJ, 1999), 1–23, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001.

[4] E. Bannai, M. Koike, M. Shinohara and M. Tagami, Spherical designs attached to extremal lattices and the modulo p property of Fourier coefficients of extremal modular forms, *Mosc. Math. J.* 6 (2006), 225–264.
[5] E. Bannai and T. Miezaki, Toy models for D. H. Lehmer’s conjecture. *J. Math. Soc. Japan* **62** (2010), no. 3, 687–705.

[6] E. Bannai and T. Miezaki, Toy models for D. H. Lehmer’s conjecture II. *Quadratic and higher degree forms*, 1–27, Dev. Math., **31**, Springer, New York, 2013.

[7] E. Bannai, T. Miezaki, and H. Nakasora, A note on the Assmus–Mattson theorem for some binary codes II, in preparation.

[8] E. Bannai, T. Miezaki and V.A. Yudin, An elementary approach to toy models for Lehmer’s conjecture. (Russian) *Izv. Ross. Akad. Nauk Ser. Mat.* **75** (2011), no. 6, 3–16; translation in *Izv. Math.* **75** (2011), no. 6, 1093–1106.

[9] A.E. Brouwer, The t-designs with $v < 18$, Math. Centr. report ZN76, Amsterdam (Aug. 1977).

[10] A.R. Calderbank and P. Delsarte, On error-correcting codes and invariant linear forms, *SIAM J. Disc. Math.* **6** (1993), No.1, 1–23.

[11] P.J. Cameron and J.H. van Lint, *Designs, graphs, codes and their links*, London Mathematical Society Student Texts, 22. Cambridge University Press, Cambridge, 1991.

[12] J.H. Conway and N.J.A. Sloane, *Sphere Packings Lattices and Groups*, third edition, Springer, New York, 1999.

[13] P. Delsarte, Hahn polynomials, discrete harmonics, and t-designs, *SIAM J. Appl. Math.* **34** (1978), no. 1, 157–166.

[14] G. Höhn, Conformal designs based on vertex operator algebras, *Adv. Math.*, **217-5** (2008), 2301–2335.

[15] N. Horiguchi, T. Miezaki and H. Nakasora, On the support designs of extremal binary doubly even self-dual codes, *Des. Codes Cryptogr.*, **72** (2014), 529–537.

[16] D.H. Lehmer, The vanishing of Ramanujan’s $\tau(n)$, *Duke Math. J.* **14** (1947), 429–433.
[17] F.J. MacWilliams, A.M. Odlyzko, N.J.A. Sloane and H.N. Ward, Self-dual codes over $GF(4)$, *J. Combin. Theory Ser. A* 25 (1978), 288–318.

[18] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, *Inform. Control* 22 (1973), 188–200.

[19] T. Miezaki, Tsuyoshi Miezaki’s homepage, http://www.f.waseda.jp/miezaki/1-944.pdf.

[20] T. Miezaki, Conformal designs and D.H. Lehmer’s conjecture, *J. Algebra* 374 (2013), 59–65.

[21] T. Miezaki, Design-theoretic analogies between codes, lattices, and vertex operator algebras., *Des. Codes Cryptogr.* 89 (2021), no. 5, 763–780.

[22] T. Miezaki, A. Munemasa and H. Nakasora, A note on Assmus–Mattson type theorems, *Des. Codes Cryptogr.*, 89 (2021), no. 5, 843–858.

[23] T. Miezaki and H. Nakasora, An upper bound of the value of t of the support t-designs of extremal binary doubly even self-dual codes, *Des. Codes Cryptogr.*, 79 (2016), 37–46.

[24] T. Miezaki and H. Nakasora, The support designs of the triply even binary codes of length 48, *J. Combin. Designs*, 27 (2019), 673–681.

[25] T. Miezaki and H. Nakasora, A note on the Assmus–Mattson theorem for some binary codes, *Des. Codes Cryptogr.*, 90 (2022), no. 6, 1485–1502.

[26] Wolfram Research, Inc., Mathematica, Version 11.2, Champaign, IL (2017).

[27] M. Miyamoto, A new construction of the Moonshine vertex operator algebras over the real number field, *Ann. of Math.*, 159 (2004), 535–596.

[28] B.B. Venkov, Even unimodular extremal lattices (Russian), *Algebraic geometry and its applications. Trudy Mat. Inst. Steklov.* 165 (1984), 43–48; translation in *Proc. Steklov Inst. Math.* 165 (1985) 47–52.
[29] B.B. Venkov, Réseaux et designs sphériques, (French) [Lattices and spherical designs] Réseaux euclidiens, designs sphériques et formes modulaires, 10–86, Monogr. Enseign. Math., 37, Enseignement Math., Geneva, 2001.

[30] S. Zhang, On the nonexistence of extremal self-dual codes, Discrete Appl. Math. 91 (1999), 277–286.