Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
age groups. TL was similar in young groups while in older groups TL was statistically significantly different (134.6 ± 15.95 a.u vs 113.6 ± 12.99 a.u, NZ and OAZ respectively, p = 0.035). Moreover, an accumulation of critically short telomeres was found in older OAZ (3.28 % vs 11.68 %, NZ and OAZ respectively; p = 0.043). To analyse telomere protection, TRFL levels were studied. In blood, younger OAZ showed lower levels of TRFL (317.3 ± 49.93 a.u vs 267.7 ± 40.02 a.u, NZ and OAZ respectively; p = 0.010) and accumulated a higher percent of low TRFL levels at telomeres (16.9% vs 25.22 %, p = 0.001). Regarding ART outcomes, a lower rate of fertilization per Metaphase II oocytes (0.358 ± 0.072 vs 0.811 ± 0.019, p < 0.0001) and a higher rate of abortion (0.277 ± 0.188 vs 0.014 ± 0.014, p = 0.032) was found in older OAZ after intracytoplasmic sperm injection using donor oocytes and transfer.

CONCLUSIONS: OAZ patients have a shorter systemic TL already detectable at young age and also patent in sperm at older ages, possibly due to telomere unprotection with low levels of TRFL. Therefore, in OAZ patients, alteration of telomere biology could cause the premature aging of the reproductive system. Additionally, older OAZ had worse ART outcomes in contrast with NZ, suggesting that correct TL maintenance is a potential molecular marker of sperm quality to consider at older ages, before performing ART.

References: 1. Jungwirth A, Giwercman A, Tournaye H et al., European Association of Urology Working Group on Male Infertility, 2012, European association of urology guidelines on male infertility: the 2012 update, Eur Urol, 62, pp. 324-332.
2. Brake A, Peeters K, Punjabi U and Dewilde S, 2018, A search for molecular mechanisms underlying male idiopathic infertility, Reproductive BioMedicine Online, 36, pp. 327-339.
3. Martinez P and Blasco MA, 2011, Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins, Nature reviews; 11, pp. 161-176.
4. Jørgensen PB, Fedder J, Koelvraa S and Graakjaer J, 2013, Age-dependence of relative telomere length profiles during spermatogenesis in man, Maturitas, 75, pp. 380-385.

TABLE 1. Predictive value, likelihood ratio, sensitivity, and specificity for diagnosis of embryo aneuploidy

Pretest prevalence	PPV	NPV	LR+	LR-	Sensitivity (%)	Specificity (%)	
Two factors							
Maternal age > 38 years + ICM type C	52.6	81.8	49.6	4.0	0.9	12.0	97.0
Maternal age > 38 years + TE type C	52.6	88.6	51.2	7.0	0.8	17.4	97.5
Three factors							
Maternal age > 38 years + TE type C	52.6	85.0	48.8	5.1	0.9	7.6	98.6

PPV: Positive predictive value; NPV: Negative predictive value; LR: Likelihood ratio; ICM: Inner cell mass; TE: Trophoectoderm.