The influence of H$_2$ and NH$_3$ on catalyst nanoparticle formation and carbon nanotube growth

R. Pezone a, b, *, S. Vollebregt a, P.M. Sarro a, S. Unnikrishnan b

a Department of Microelectronics, Delft University of Technology, Mekelew 4, 2628 CD, Delft, the Netherlands
b Dutch National Institute for Applied Scientific Research (TNO), Holst Centre, High Tech Campus 31, 5656 AE, Eindhoven, the Netherlands

Abstract

Control of the morphology of carbon nanotubes (CNT) is fundamental for many applications. It is known that the catalyst distributions influence the vertical alignment and the height of the CNT. In this work we investigate the influence of the pre-anneal time and reductant gases, specifically NH$_3$ and H$_2$ as well as combinations thereof, on the nanoparticle (NP) formation and CNT growth. The gases H$_2$, NH$_3$ show opposite roles during the dewetting of 1 nm Fe catalyst layer. The H$_2$ favours uniform NP distributions (mean diameter of 15 nm) and the NH$_3$ forms large clusters. Playing with double annealing steps H$_2$–NH$_3$ we obtained NP with larger mean diameters $\mu = 20$ nm. We observed a mismatch between the diameters of the NP directly after annealing and the CNT after growth, due to a reshaping of the catalyst NP before the CNT nucleation. Furthermore, we found that longer annealing times decrease the CNT forest height and the H_2 exposure during the annealing improves the height and the alignment of the CNT.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Application of Carbon Nanotubes (CNT) have been investigated in several fields, harvesting their benefits with respect to mechanical strength, thermal as well as electrical conductivity, high surface area etc. Lately, CNT has gained much attention from electrical energy storage or conversion applications like supercapacitors (EC), fuel cells, as well as Li-ion batteries (LIB). Traditional energy resources such as fossil fuels are disappearing over time, and because of this electric storage of energy is receiving crucial attention. The development of the batteries may seem poor over time, and because of this electric storage of energy is receiving crucial attention. The development of the batteries may seem poor over time, and because of this electric storage of energy is receiving crucial attention. The development of the batteries may seem poor over time, and because of this electric storage of energy is receiving crucial attention. The development of the batteries may seem poor over time, and because of this electric storage of energy is receiving crucial attention. The development of the batteries may seem poor over time, and because of this electric storage of energy is receiving crucial attention. The development of the batteries may seem poor over time, and because of this electric storage of energy is receiving crucial attention. The development of the batteries may seem poor over time. However, the use of the CNT as electrodes introduces challenges.

Three-dimensionally structured electrodes have been considered as suitable candidates for next-generation anode materials in order to improve these properties. Among the possible candidates, carbon nanotubes (CNT), graphene and other nanomaterials have emerged as materials of interest for the electrodes in EES. A key advantage of such materials is that the power density of the EES increases, because of a higher high electrode/electrolyte interface [1].

Of these materials, CNT are specifically of interest as they can easily be used to realize 3D carbon anodes [2]. Their theoretical electrical and thermal conductivity is about ten times that of copper, a metal generally known for its good conductivity [2]. The CNT exhibit high surface area due to their diameter range between 0.4 and 100 nm and height range of 10–1000 μm. The CNT are chemical inert, which is important for long battery lifetimes. Vertical Aligned Carbon Nanotube (VACNT) offer a higher and shorter diffusion path for Li$^+$ ions, thereby resulting in high capacity with higher charge transport within the structure compared to their 2D counterpart [3]. Considering the process of the lithiation and de-lithiation during the charge and discharge of the batteries, the ions could move in two-ways between the electrodes (from the bottom to the top of the CNT and vice versa), vertical and aligned structures promote these movements maximising the efficiency of the electrical energy storage device [4].
related to their structures. The trend that emerges from the literature is that the best performance is associated mostly to a high density and good uniformity in terms of height and straightness of the VACNT [5]. During the chemical vapor deposition (CVD) of CNT they nucleate from the metal catalyst nanoparticles (NP) and hence the distribution of these metal NP influences the CNT morphology [5–7]. The CNT grow vertically, if during the growth they are close enough together such that the Van der Waals forces cause interaction between the tubes and forces them to self-align. However, in order to achieve well controlled VACNT growth, the catalyst NP distribution play an important role.

In this paper, the control of the formation of uniform catalyst NP as function of the anneal time and the gas environment in the CVD reactor has been investigated. The goal is to develop a method to achieve straight and vertical aligned CNT only by the NP distribution. The catalyst NP formation is influenced by two different processes that occur during the dewetting: the Ostwald ripening and the subsurface diffusion of the catalyst atoms into the support layer [8,9]. Further studies have proposed that the interplay between the Ostwald ripening and the subsurface diffusion during the annealing, prior to CNT synthesis stage, in a reducing ambient is crucial to control the catalyst particle size [9]. As the Ostwald ripening proceeds, the number of particles decreases while the average catalyst diameter and the spread in the particle size distribution increases.

The formation of catalyst NP during the dewetting is also helped by reduction gases like H2 and NH3 as reported in literature [10]. A thermal process of catalyst thin layer like Fe, without hydrogen (or another reduction gas) does not allow the reduction of the iron oxide to iron [11], or the subsequent formation of catalyst clusters or particles [12]. Sakurai et al. annealed the NP with different flows of H2 and they found that for low amounts of hydrogen it was insufficient to reduce the oxidized Fe thin film, and therefore no catalyst NP appear [13]. The use of H2 is thus indispensable to invoke subsurface diffusion and the formation of nanoparticles [11].

This paper provides a systematic investigation on the influence on both annealing time and different gas (H2 and/or NH3) on NP formation and the subsequent CNT growth. Distinct differences in NP formation between both gases were observed, which reflect to the dimension of the NP. We found a higher diameter uniformity for the H2 annealed NP, compared to a catalyst film annealed in NH3 or NH3+H2. Lastly the use of H2 as annealing gas leads to the formation of the smaller NP than H2+NH3 and NH3.

2. Experimental

The sample used consists of two e-beam deposited thin-films on a 6° Si (100) wafer. The intermediate layer which supports the catalyst is Al2O3 (20 nm) and the catalyst layer is Fe (1 nm). The e-beam depositions have been performed by Philips Innovation Services (PhIns) with a Balzers BAK 550. Squared samples of 1 cm x 1 cm cut from the same 6° wafer were used for all CVD runs to minimize possible variations of the deposition process on the observed results. The annealing and growth steps have been done in a commercially available AIXTRON Black Magic Pro CVD reactor. Each square sample is placed at the centre of the circle chuck in the reactor. Our CNT growth process consists of an annealing phase, followed by growth using C2H2 (50 sccm) as the carbon source for 100 s, together with 700 sccm of H2. The gas flows in the recipe are based on previous work that demonstrated the ability to grow tall and aligned CNT using Fe on Al2O3 under these conditions [14]. The substrate holder temperature during the growth-phase is 600 °C. Here, we focused only on varying the annealing process by using two different reduction gases H2 and NH3 with the same amount of flow (700 sccm) for different times (10, 60, 300 s). For the three gas combinations H2 (700 sccm), NH3 (700 sccm), H2 + NH3 (350 sccm + 350 sccm), we set the annealing temperature at 500 °C for three different times 10, 60, 300 s to investigate also the effect of the time on the NP formation. The pressure is fixed at 80 mbar for all experimental runs. All experimental runs are summarised in Table 1.

The annealing gas is already inserted during the ramp up phase of the heater (~200 s) and remains till the end of the annealing process. The annealing time specified in the table starts when the temperature has reached 500 °C. To further study the effect of both gases on the morphology of the NP during the annealing, we furthermore performed five two-steps annealing runs (runs 10–14, Table 1). For ex. in runs 12–14, we expose the catalyst thin layer for 10, 25, or 50 s to NH3 (700 sccm) followed by a second step of 300 s H2 (700 sccm).

To analyse the morphology of the NP a NT-MDT NTEGRA Atomic Force Microscopy (AFM) was used. All inspections have been done in a semi-contact mode. The cantilever used was the “NSG10” Golden Series by Techno-nI (tip curvature between 6 and 10 nm). The AFM data of the catalyst NP are characterised by Gwyddion 2.50 and Matlab tools. Finally, the CNT were inspected using a FEI Nova Nanosem 600.

3. Results and discussion

3.1. Single-step annealing results

Fig. 1 summarises the effects of the annealing gas and time on the dewetting of the NP. It shows the AFM inspections obtained after the annealing steps by the three different gases: H2, H2 + NH3, NH3 (runs 1–9 – Table 1).

From the AFM inspections, the mean diameters (assuming a normal distribution) of the NP are shown in Fig. 2. It also includes the measurements related to the double step annealing (Table 1) runs: 10, 11, 12, 13, 14) described below. We confirm that the hydrogen is crucial to break down the Fe thin film into small NP as reported in literature [13,15–18]. This trend occurs regardless of the annealing time (10, 60, 300 s). From Figs. 1 and 2 it is apparent that large NP and clusters appear for the NH3 + H2 or NH3 exposure, and consequently H2 is more suitable to realize smaller and more uniform distributions of the catalyst NP [13]. The ability of H2 to form separated and well-defined NP is also confirmed by the anneal with both H2 (350 sccm) and NH3 (350 sccm). If we compare these NP with the clusters made by only NH3 (700 sccm), the addition of H2 improves the formation of smaller and well-defined NP. The H2 during the annealing increases the subsurface diffusion of the Fe atoms in the Al2O3 support layer reducing the dimensions of the
The Ostwald ripening effect appears when the annealing time is increased and the NP are exposed to H2. The catalyst NP become bigger reducing their number from 917 NP (10 s) to 623 NP (300 s) as reported in Fig. 2. Continued annealing in the presence of H2 allows the clusters to coarsen. This process, driven by surface energy minimization, occurs through transport of Fe among the clusters.

The external atoms of the smallest NP have an excess energy w. r. t. the bulk and they are facilitated to move to the big NP in order to reduce the excess energy. This trend does not occur equally for the other inspections (H2 + NH3, NH3 in Fig. 1d – i). For the H2 + NH3 annealed NP, the number of particles does not significantly change according to the small variation of the dimensions of catalyst NP. We observe 397 NP (10 s), 471 NP (60 s) and 442 NP (300 s) (Fig. 2). A direct proportional connection between the time of annealing with H2 + NH3 exposure and the number of NP was not found. It must be noted that the number and the dimensions of NP for the NH3 anneal processes cannot be as precisely determined as for the H2 and H2 + NH3 processes because they are not well-defined NP but instead form clusters. For the H2 and H2 + NH3 processes, the NP appear as a distinct feature in the AFM height profile (Fig. 3a).

However, for the NH3 runs, clusters of NP are formed instead of single NP (Fig. 3b), which makes the determination of individual NP less reliable. We have summarised these differences in Fig. 4. The dewetting of our thin catalyst layer of Fe (1 nm) with NH3 (700 sccm) forms big clusters and we have found different height peaks in the profile of one big cluster (Fig. 3b).

These results are different from the H2 and H2 + NH3 annealed NP where there are single height peaks for each NP (Fig. 3a). When the NP are bigger (μ = 20 nm), with the increasing of time from 10 to 300 s the subsurface diffusion dominates the Ostwald ripening. Furthermore, the use of H2 + NH3 could provide a balance between...
the subsurface diffusion and the Ostwald ripening, because the diameter changes less than the other cases (Fig. 2). In this case the atoms of the big NP \((\text{H}_2 + \text{NH}_3) \) are already more stable, so the Ostwald ripening does not occur as rapidly. Another theory would suggest that \(\text{H}_2 \) and \(\text{NH}_3 \) have the opposite effect on the morphology of the NP, so that they would counteract each other. In Fig. 5 the normal distributions of the diameter of the catalyst NP are plotted. The use of \(\text{H}_2 \) determines the highest uniformity for our NP and consequently we expect straighter and more aligned CNT than the other samples \((\text{H}_2 + \text{NH}_3, \text{NH}_3) \). When the mean value of the diameter of the NP increases, the uniformity of the catalyst NP decreases.

3.2. Two-step annealing results

In order to demonstrate the opposite effects of \(\text{H}_2 \) and \(\text{NH}_3 \) gases during the dewetting we have performed a two-step annealing (Fig. 6). We want to investigate if the \(\text{H}_2 \) exposure could also form small well-defined NP starting from big clusters formed by \(\text{NH}_3 \) annealing, and vice versa.

In this way we could potentially open up a new way to control the dimension of the catalyst NP by using different annealing steps with different gases. In Fig. 6a – d, the effects of the two annealing steps are summarised. The results confirm our prediction about the effects of the \(\text{H}_2 \) and \(\text{NH}_3 \) on the morphology of the catalyst NP. The \(\text{H}_2 \) \((700 \text{ sccm})\) annealed NP for \(60 \text{ s at } 500 \text{ °C} \) have as mean value of the diameter \(11 \text{ nm} \) (Fig. 6e). With the double step of annealing, starting with \(\text{H}_2 \)annealed NP we run a second step with \(\text{NH}_3 \), and the NP increase their mean value of the diameter from \(11 \text{ nm} \) to \(34 \text{ nm} \) forming large clusters (Fig. 6f). The amount of NP changes from \(802 \text{ NP} \) \((60 \text{ s } \text{H}_2) \) to \(206 \text{ NP} \) \((60 \text{ s } \text{H}_2 + 60 \text{ s } \text{NH}_3) \). In the opposite case we form well defined big NP of \(27 \text{ nm} \) of the mean diameter (Fig. 6d), so the clusters illustrated in Fig. 6c disappear. We have confirmed that the diffusion is favoured by the \(\text{H}_2 \) exposure. The \(\text{H}_2 \) forms well defined and smaller NP. To further study this effect we decreased the \(\text{NH}_3 \) (first step) exposure and we increase the time of \(\text{H}_2 \) to a fixed \(300 \text{ s} \) (Table 1, run nr. 12, 13, 14). First the \(\text{NH}_3 \) step is set for \(10, 25, 50 \text{ s} \) because we first want to form big clusters and see if they decrease forming well defined NP at a later stage when exposed to \(\text{H}_2 \). We expect the number of NP would increase for the long \(\text{H}_2 \) exposure. The AFM inspections confirm this trend because the number of NP increases dramatically for a two-step process with longer \(\text{H}_2 \) exposure (Table 2). Interestingly, the time of the \(\text{NH}_3 \) exposure has no influence on the number of NP, indicating that the \(\text{H}_2 \) step is sufficiently long to counteract the clustering due to the \(\text{NH}_3 \) exposure.

3.3. CNT growth results

The growth recipe uses \(\text{C}_2\text{H}_2 \) \((50 \text{ sccm})\) and \(\text{H}_2 \) \((700 \text{ sccm})\) for \(100 \text{ s at } 600 \text{ °C} \). We anneal the samples and grow the CNT in one single run. The role of the catalyst NP during CNT growth is not completely understood, but the nanoparticles could act as dynamic templates dictating the nanotube size distributions [21,22]. The appropriate density and uniformity of nanoparticles on the substrate is crucial in growing vertically aligned CNT [18]. From our results, the heights of the CNT decrease with the increasing of the
annealing time (10–300 s) independently of the type of the annealing gas used (H₂, NH₃, H₂ + NH₃) as described in Fig. 7, except for the last three double annealing steps (Table 1, run 12, 13, 14). In this case the H₂ exposure during the annealing prevails over the first NH₃ exposure leading to higher CNT.

The height of the CNT related to the H₂ annealed samples changes from 80 μm to 63 μm when the annealing time increases from 10 s to 300 s (Fig. 8a and b). Considering the same annealing time with H₂ + NH₃ exposure, the heights of the CNT are 36 μm and 28 μm, respectively. The CNT growth on the annealed NH₃ clusters shows the heights of 19 μm and 14 μm for 10 s and 300 s of annealing (Fig. 8c, d).

By inspecting close-ups of the bundles we can determine the diameter and vertical alignment of the CNT (Fig. 9a–d). We observe that the alignment appears to be improved when the annealing time increases from 10 s to 300 s for the H₂ only exposure. The diameters of the CNT related to the annealing with H₂ for 300 s are larger than those obtained for the annealing of 10 s. The diameter range of the CNT which is 8.8 – 14.6 nm for 300 s anneal, compared to 7.3 – 11.6 nm for the CNT related to the 10 s H₂ anneal. These differences are consistent with the larger dimensions of the 300 s H₂ catalyst NP as observed by AFM compared to the 10 s H₂ annealed NP (Fig. 2). From Fig. 9a – d, the CNT related to the 300 s H₂ look straighter than the 10 s H₂ NP. Interestingly, the straightness of the CNT doesn’t improve their height (Fig. 7).

The observed different in height could originate from a difference in growth speed. It is known that larger CNT grow slower than the thinner CNT [23]. The diffusion time for carbon atoms to arrive at the growth site would become shorter for the smaller NP, resulting in accelerated growth rate of the CNT [23]. Besides, less carbon will be required to form the CNT. Comparing the previous two CNT distributions in Fig. 9c, d, we note more bundles of the CNT for the 300 s annealed NP than the 10s H₂ NP. It seems these bundles could improve the alignment of CNT (Fig. 10 – red circles) thanks to the high crowding effect of the densely packed CNT [24].

For the H₂ + NH₃ and NH₃ annealed NP the previous mentioned correlation between NP size and diameter does not appear to hold, as we do not observe CNT with larger diameters (Fig. 11d – f). The heights decrease when we use H₂ + NH₃ or NH₃, and from Fig. 11a – c we see that the NH₃ only annealed CNT appear to have the least alignment. Several mechanisms can account for this. For instance, the big clusters don’t form CNT because the size of big NP is much

Table 2

Annealing Conditions (60 s)	(60 s) NH₃ + (60 s)H₂	(10 s) NH₃ + (300 s) H₂	(25 s) NH₃ + (300 s) H₂	(50 s) NH₃ + (300 s) H₂
Number of the NP	228	405	407	403

Fig. 6. Two annealing steps. First step: H₂ (700 sccm), 60 s, 500 °C (a, e). Second step: NH₃ (700 sccm), 60 s, 500 °C (b, f). First step: NH₃ (700 sccm), 60 s, 500 °C (c, g). Second step: H₂ (700 sccm), 60 s, 500 °C (d, h). (A colour version of this figure can be viewed online.)

Fig. 7. CNT heights for a constant growth recipe (700/50 sccm H₂/C₄H₂, 600 °C, 100 s) and different NP annealing conditions. The annealing conditions can be found in Table 1 (runs 1, 3, 4, 6, 7, 9, 10, 12, 13, 14). (A colour version of this figure can be viewed online.)
Fig. 8. SEM Cross-Section images. CNT heights. Annealing conditions: Table 1 (1, 3, 7, 9). A (run 1), b (run 3), c (run 7), d (run 9). (A colour version of this figure can be viewed online.)

Fig. 9. SEM Cross-Section images. Diameter and alignment measurements of CNT. Annealing conditions: Table 1 (1, 3). A (run 1), b (run 3), c (run 1), d (run 3). (A colour version of this figure can be viewed online.)
larger than the diffusion length of C atoms [23]. Alternatively, the larger NP are inactive due to “underfeeding” phenomenon [25]. It also could be possible that the NH3 exposure favours the doping of Fe NP resulting in the formation of FeN, which according to literature is possible at the annealing temperature of 500 °C [26]. It has been shown that the incorporation of nitrogen into the catalyst can influence the phase of the Fe nanoparticles and the structure of the resulting CNT [27].

We formulate another suitable explanation for the shorter CNT, and the incongruity between the CNT and the NP diameters. It can be related to the reshaping of the catalyst NP before or during the exposure of C2H2. The big clusters larger than 15 nm (annealed H2 + NH3 and NH3) need a period of the time to reshape in small NP (5 nm – 15 nm). Later, they start to grow and consequently the height is shorter as the affective growth time has been reduced. The CNT growth by the H2 + NH3 annealed NP is higher than the NH3 annealed NP, because they are related to clear/single NP and they are smaller than the NH3 NP clusters. Following this assumption, for our experiments, the CNT grow only on the catalyst NP smaller than 15 nm because we didn’t observe CNT with larger diameters. For the CNT growth related to the double step of annealing with NH3 and H2 exposure (60 s + 60 s and 10, 25, 50 s + 300 s) we expect to see that the CNT are shorter than the single H2 annealing step and their diameters are smaller than the ones of the original catalyst NP confirming the reshaping. Looking at the images in Fig. 12 a, b, c we can confirm the benefit of H2 during the annealing on the next growth of CNT (straighter and higher). By this way the last step with H2 can dominate and cancel the effect of the NH3 exposure avoiding less well-aligned CNT.

As can be seen in Fig. 7 the CNT forest heights are comparable as those of the recipes using a combination of NH3 and H2. Once again, we didn’t find a relation between the NP and the CNT because we haven’t had CNT with diameters larger than 12–13 nm. These CNT are shorter than the 300 s H2 even if they show the same kind of alignment and straightness. They are shorter because the bigger NP reshape before the growth and when they have the suitable dimensions, the CNT start to grow. In Fig. 13 we show our model of what occurs during the growth process. We start with big NH3 annealed clusters (first step) and they organise themselves in big NP with the exposure of H2 for 300 s. During the growth the particles reshape into smaller NP which correspond to the CNT diameters. Due to the proximity of the CNT they form well aligned
Fig. 12. SEM Cross-Section images. Annealing conditions: Table 1 (12, 13, 14). Two annealing steps: (A) run 12. (B) run 13. (C) run 14.

Fig. 13. The reshaping of catalyst NP after the annealing steps. (A) Catalyst NP after the annealing step. (B) The reshaping of catalyst NP during the exposure of C\textsubscript{2}H\textsubscript{2}. (C) The growth of CNT. (A colour version of this figure can be viewed online.)

Fig. 14. AFM inspections of catalyst NP. 1st row: before the growth. 2nd row: after the growth. Area analysed 500 nm x 500. (A, d) Run 1. (B, e) Run 12. (C, f) Run 9. (A colour version of this figure can be viewed online.)
bundled. During growth the reduction gas was continuously set to H2. This choice appears advantageous for the alignment and the height of CNT. Looking at Fig. 7, exposing the 60 s NH3 cluster to H2 at 500 °C for 60 s, the second exposure wasn’t enough to shrink the NP compared to 300 s of H2 as shown in Fig. 2. Therefore, the CNT show shorter heights than the 10, 25, 50 s + 300 s H2 annealed NP, confirming again the reshaping and the shrinking of the NP during the first part of the C2H2 exposure. Having found the way to control the dimension of catalyst NP, we haven’t seen the consequent modulation of CNT diameter, i.e. the correlation between the diameter of the CNT and NP. We have explained this mismatch by the reshaping of catalyst NP before the growth of the CNT. In order to confirm this, we carefully removed the CNT with a tape from some samples after growth and performed AFM on these particles. The AFM inspection of Fig. 14a–f confirms clearly the reshaping of the catalyst NP during or before the growth. The NP after growth for both the NH3 and NH3+H2 experiments appear smaller than those before.

4. Conclusions

The H2 exposure during the annealing leads to formation of higher uniformity in diameter of catalyst NP than the other annealing gases NH3 and H2+NH3. The H2 determines the smallest catalyst NP with mean diameters between 11 and 12 nm. For NH3 annealed NP they are 18–20 nm, and 17–18 nm for NH3+H2, NH3 is not proper to form spherical NP suitable for the CNT growth because the NP appear like big clusters. NP with mean diameters of 20 nm were obtained with two annealing steps (NH3 and H2). They have the same diameter range of NH3, but they are well-defined spherical NP (not clusters). Longer annealing times (10–300 s) don’t change significantly the dimensions of the annealed NH3 + H2 and NH3 catalyst NP. From all our CNT inspections, their diameters don’t seem to exceed 15 nm and thus the CNT diameter doesn’t increase when the catalyst NP become larger. This could be due to a reshaping of the catalyst NP becoming smaller during the first exposure of C2H2 before the CNT growth. The time taken to reshape the NP (time frame of the fixed growth time of 100 s) could be the reason for the height reduction. Longer annealing times with H2 exposure improves the alignment of the CNT. In this case the alignment doesn’t increase the height. H2 during the annealing promotes the growth of more aligned CNT than the other annealed with NH3 or NH3+H2 and the alignment of the CNT is supported by the growth of the CNT in bundles.

References

[1] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of electric energy in capacitors, Carbon 39 (6) (2001) 987–990, https://doi.org/10.1006/coba.2000.0822.
[2] Z. Xiong, Y.S. Yun, H.J. Jin, Applications of carbon nanotubes for lithium ion battery anodes, Materials 6 (2013) 1138–1158, https://doi.org/10.3390/ma6111138.
[3] P. Fabian, A. Holger, S. Benjamin, K. Stefan, Nanostructured networks for energy storage: vertically aligned carbon nanotubes (VACNT) as current collectors for high-power Li4Ti5O12/LiMn2O4 (LMO) lithium-ion batteries, Nano Lett. 3 (7) (2013) 1–14, https://doi.org/10.1021/nl4017588.
[4] M. Notaristefani, L. Liu, K. Vernon, N. Motta, Synthesis and applications of carbon nanomaterials for energy generation and storage, Beilstein J. Nanotechnol. 7 (2016) 149–196, https://doi.org/10.3390/bjnano711.
[5] S. Esfouugrejii, B.C. Bayer, M. Fouquet, C.T. Wirth, F. Yan, K. X., et al., Use of plasma treatment to grow carbon nanotube forests on TiN substrate, J. Appl. Phys. 109 (2011) 114312, https://doi.org/10.1063/1.3587234.
[6] J. Daewoong, K. Jae-Hak, L. Kyung, L.J. Overzet, G. Lee, Effects of pre-annealing of Fe catalysts on growth of spin-capable carbon nanotubes, Diám. Relat. Mater. 38 (2013) 87–92, https://doi.org/10.1016/j.diamond.2013.06.021.
[7] M. Bedewy, B. Viswanath, E.R. Meshot, D.N. Zakhvoray, E.A. Stach, A.J. Hart, Measurement of the dewetting, nucleation, and deactivation kinetics of carbon nanotube population growth by environmental transmission electron microscopy, Chem. Mater. 28 (11) (2016) 3804–3813, https://doi.org/10.1021/acs.chemmater.6b00798.

CRediT authorship contribution statement

R. Pezone: Conceptualization. Methodology. Investigation, Writing - original draft, Writing - review & editing, Visualization. S. Vollebregt: Conceptualization, Supervision. P.M. Sarro: Project administration, Funding acquisition. S. Unnikrishnan: Project administration, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank the Delft University of Technology Else Kooli Lab and the Holst Centre staff.
[24] G. Chen, R.C. Davis, D.N. Futaba, S. Sakurai, K. Kobashi, et al., A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties, Nanoscale 8 (2016) 162–171, https://doi.org/10.1039/c5nr05537g.

[25] C. Lu, J. Liu, Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding, J. Phys. Chem. B 110 (41) (2006) 20254–20257, https://doi.org/10.1021/jp0632283.

[26] D. Moszyński, I. Moszyńska, W. Arabczyk, Iron nitriding and reduction of iron nitrides in nanocrystalline Fe–N system, Mater. Lett. 78 (2012) 32–34, https://doi.org/10.1016/j.matlet.2012.03.047.

[27] C.T. Wirth, B.C. Bayer, A.D. Gamalski, S. Esconjauregui, R.S. Weatherup, C. Ducati, C. Baehzt, et al., The phase of iron catalyst nanoparticles during carbon nanotube growth, Chem. Mater. 24 (2012) 4633–4640, https://doi.org/10.1021/cm301402g.