Empowering alcohols as carbonyl surrogates for Grignard-type reactions

Chen-Chen Li¹, Haining Wang¹, Malcolm M. Sim¹, Zihang Qiu¹, Zhang-Pei Chen¹, Rustam Z. Khaliullin¹ & Chao-Jun Li¹✉

The Grignard reaction is a fundamental tool for constructing C-C bonds. Although it is widely used in synthetic chemistry, it is normally applied in early stage functionalizations owing to poor functional group tolerance and less availability of carbonyls at late stages of molecular modifications. Herein, we report a Grignard-type reaction with alcohols as carbonyl surrogates by using a ruthenium(II) PNP-pincer complex as catalyst. This transformation proceeds via a carbonyl intermediate generated in situ from the dehydrogenation of alcohols, which is followed by a Grignard-type reaction with a hydrazone carbanion to form a C-C bond. The reaction conditions are mild and can tolerate a broad range of substrates. Moreover, no oxidant is involved during the entire transformation, with only H₂ and N₂ being generated as byproducts. This reaction opens up a new avenue for Grignard-type reactions by enabling the use of naturally abundant alcohols as starting materials without the need for pre-synthesizing carbonyls.
In tandem with the significant advancements of biological and pharmaceutical technologies, the role of organic chemists has evolved beyond the discovery of new chemical transformations. Developments such as rapid and direct late-stage functionalizations of large molecules have shown great potentials, with increased significance of organic reactions. The Grignard reaction is a fundamental transformation in chemical synthesis and has been continuously developed over the past century. Its importance is attributed to the reaction’s versatility and capacity to form C–C bonds, leading to the formation of secondary and tertiary alcohols. A key limitation of this reaction, however, is its instability and broad reactivity. In addition, classical synthetic methods used to transform carbonyl compounds often requires the participation of oxidants, many of which are hazardous and have poor functional group tolerance.

In contrast, alcohols are among the most naturally abundant functional groups, which are commonly found in biomass and natural products. The direct transformation of alcohols into C–C bonds has been a long pursuit of synthetic chemists. This type of transformation would be an especially vital tool for the late-stage functionalization of alcohol-containing natural products. Furthermore, this type of transformation will contribute greatly to the future sustainability of chemical syntheses by minimizing the number of steps required (Fig. 1).

Motivated by these potential benefits, we contemplated the possibility of using alcohols as surrogates of aldehydes and ketones for the Grignard-type reaction via the in situ formal carbanion equivalents. Their use as reductive amination of alcohols could be efficiently catalyzed by transition metal complexes with or without a stoichiometric amount of oxidants (hydride acceptors). The former has often been conducted under milder conditions, while the latter usually requires high temperatures with the use of special catalysts. Thus, our investigation started by seeking a proper hydride acceptor. On the basis of our previous work, a ruthenium(II)-bidentate phosphine system was first explored by varying the type of oxidants used (Table 1). We observed a 9% yield of the desired product in the absence of a hydride acceptor (Table 1, entry 1). Under such conditions, however, most of the alcohols remained unchanged while the hydrazine substrate had mostly undergone the competing Wolff–Kishner reduction (Table 1, entries 2 and 3). In the cases of NCS, isoprene and silver oxide as oxidants, no generation of the desired product was observed (Table 1, entries 4–6). These results indicated that either the ruthenium(II) catalyst or the hydrazine substrate was incompatible with strong oxidants. For this reason, weaker oxidants such as copper oxide and DCB (2,3-dichlorobutane) were then tested. As expected, the product yield showed a notable increase. The conversion efficiencies of the reactants, however, were still relatively low (Table 1, entries 7 and 8). Nevertheless, these results suggested that weak oxidants can be tolerated in this Ru(II)-bisphosphine system, albeit not significantly promoting the oxidation.

Results

Exploration of the hydride acceptor-system. A key step of this surrogate strategy was the in situ catalytic generation of carbonyls from alcohols through their “dehydrogenation”. Based on previous studies from our group and others, β-hydride elimination of alcohols could be efficiently catalyzed by Ru(II)-complexes with or without a stoichiometric amount of oxidants (hydride acceptors). The former has often been conducted under milder conditions, while the latter usually requires high temperatures with the use of special catalysts. Thus, our investigation started by seeking a proper hydride acceptor. On the basis of our previous work, a ruthenium(II)-bidentate phosphine system was first explored by varying the type of oxidants used (Table 1).

Exploration of oxidant-free and acceptorless system. The results above led us to consider an oxidant-free strategy in order to increase the efficiency of alcohol dehydrogenation, which will in turn allow the subsequent 1,2-addition of hydrazone by modifying the catalytic system. Upon carefully analyzing the results with the Ru(II)-dcpyf system, we attributed the main reason for the low efficiency to the inefficient kinetics of the dehydrogenation process. The extensive studies on Noyori-type reactions have even be successfully applied in synergistic relay reactions.

More importantly, unlike the classical Grignard reagents, hydrazones show unique tolerance towards acidic protons such as hydroxyl and amino groups. Herein, we report a unique Grignard-type reaction with alcohol as a carbonyl surrogate and hydrazones as carbanion equivalents using a ruthenium(II) catalyst (Fig. 2).

![Fig. 1 Classical Grignard reaction and Grignard reaction with alcohol as carbonyl surrogate.](https://doi.org/10.1038/s41467-020-19857-9)

This figure shows the comparison between classical Grignard reaction and the Grignard reaction with alcohol as carbonyl surrogate. It clearly shows that the latter is both step and atom economical. More importantly, using alcohol as carbonyl surrogate has a broad potential for late-stage functionalizations in synthetic chemistry.
showed that a mixture of phosphine and amine ligands could accelerate the hydrogenation and dehydrogenation processes due to the favored six-membered pericyclic transition state. Furthermore, most reported reactions concerning acceptorless dehydrogenation of alcohols require P-N type ligands. These studies inspired us to investigate alternative catalytic systems other than Ru(II)-bisphosphine.

We started by using a well-defined Noyori-type ruthenium complex, Ru(dppf)(en)Cl₂ (dppf = diphenylphosphinoethane; en = ethylenediamine). In addition, we increased the hydrazone substrate equivalence to 3.5 in order to minimize the Wolff–Kishner reduction of the hydrazone. This initial attempt, however, only increased the yield slightly (Table 2, entry 1). We reasoned that since Ru(dppf)(en)Cl₂ is a stable complex with a limited number of empty coordination sites, it cannot drive the whole cascade process to proceed efficiently. To solve this problem, PNP-pincer type ligands were then considered because: (1) with a tridentate structure, they can form more stable complexes with the metal center in order to stabilize the intermediates in the catalytic cycle, and (2) by occupying only three coordination sites, more space could be provided for the substrates and intermediates in order to facilitate the catalytic process. To our delight, the use of PNP-pincer type ligands indeed significantly increased the reactivity, among which bis[(2-diisopropylphosphino)ethyl]amine (L3) provided the best result (Table 2, entry 4). Although the yield was increased, there were still some notable side products being generated when using L3 as a ligand. One of the side products was the olefination product (3aa-s1) and the other was the hydrogen-borrowing hydrazinization product (3aa-s2). Additionally, the Wolff–Kishner reduction also consumed all the remaining hydrazone before the complete conversion of the alcohol. We therefore carried out further optimizations in order to reduce the generation of these side products (Table 2, entries 5–9). The results showed that, by diluting the solution to 0.5 mL, the side reactions (i.e., the WK reduction and hydrogen-borrowing hydrazinization) were significantly reduced without impeding the reactivity of the desired reaction. Furthermore, the dilution also enabled the alcohol to be fully consumed in the presence of a smaller amount of hydrazone. Under the optimized conditions, different pincer ligands such as PNN-type and PNPpyridineP-type ligands were investigated; however, none of them gave better results compared to L3 (Table 2, entries 10–12). Furthermore, pre-synthesizing the ruthenium complex with L3 gave almost the same results as the one generated in situ (Table 1, entry 13). In addition, we also tested a less bulky PNP ligand, bis[(2-dimethylphosphino)ethyl]amine (L-Et), and produced a well-defined complex (Ru-PNP-2) to run the reaction (Table 2, entry 14). The result with this complex was similar to the Ru-L3 system. Later substrate scope studies also showed that both catalytic systems worked efficiently for primary alcohols. Thus, due to the fact that L-Et was less available, L3 was used as the optimized ligand in most of our later studies. The use of a less bulky pincer ligand, however, did increase the yield for bulkier secondary alcohols, which will be discussed later.

Investigation of the substrate scope. With the optimized reaction conditions in hand, the substrate scope investigation (Fig. 3) was started for the alcohol partners in which simple alcohols were tested first. The results showed that the linear aliphatic alcohols examined all underwent the reaction smoothly. Notably, longer aliphatic chains led to lower yields (3aa-3ac); however, the overall yields were generally high. Aliphatic alcohols substituted with methylthio (3ae) and -NBOC (3ah) were also compatible with this process and provided moderate to high yields of the desired products. Similar results were obtained for heterocyclic substituted alcohols (3ad-3ai). In order to investigate the potential application of this reaction for pharmaceutical or agricultural industries, we demonstrated that the fluorine-containing alcohol also underwent the Grignard-type reaction and provided a moderate yield (3hj). A noteworthy finding was that small molecular alcohols such as ethanol could also participate in this C–C bond formation process at an elevated temperature (3hk).
Entry	Oxidant	Result
1a	K3PO4, 2-Me-THF, 70 °C	15%
2b	Air	Trace
3c	O2	0
4	NCS	0

- The CF3 substituted hydrazone demonstrated the lowest yield due to the competing and rapid WK reduction in the presence of the strong electron-withdrawing effects of CF3 (3ba-3ea). Similarly, most ortho- and meta-substituted benzaldehyde hydrazones proceeded smoothly and produced the desired products in moderate yields. Notably, certain hydrazones with low solubility in the reaction solvent, such as naphthaldehyde hydrazone (3ha), p-phenylbenzaldehyde hydrazone (3ba) and p-benzoylbenzaldehyde hydrazone (3da), were still able to undergo this transformation smoothly. Aliphatic aldehyde hydrazones proved to be much less reactive (3ks-3ls).

To further evaluate the application potential of this transformation, some naturally occurring complex alcohols, such as β-Citronellol and (-)-Nopol (5aa-5ab), were examined (Fig. 4). Both of them provided the desired Grignard-type reaction products in good yields. More importantly, the π-bonds in these natural products were unaffected during the reaction process. The olefin isomerization product as reported in our earlier studies was not observed. A possible reason for the complimentary reactivity could be that in the PNP-Ru(II) system, the H2 gas release proceeded much faster than the hydride insertion process. These results demonstrated a great synthetic value for C-C bond construction using olefinic natural alcohols, in which the chemo-selective Grignard-type reaction of alcohols over olefin transformations could be realized.

Mechanistic studies. A tentative mechanism for this alcohol-surfaced Grignard-type reaction is proposed in Fig. 5 based on previous literature as well as experimental results. The ruthenium(II) catalyst first coordinates with the PNP-pincer ligand L3 to form complex a with the assistance of a base in order to form a highly reactive square planar complex. The alcohol then interacts with complex a to undergo a β-hydride elimination via a Noyori-type six-membered-ring transition state b and produces the intermediate c. This process is also supported by the Density Functional Theory (DFT) calculations (see SI for details). Next, the hydrazone substrate coordinates with the
Table 2 Investigation of reaction conditions under oxidant-free systema.

Entry	Catalyst	Ligand	K_3PO_4 (equiv)	Solvent (mL)	Yield
1	Ru(dppf)(en)Cl$_2$	—	2	0.2	22
2	Ru(PPh$_3$)$_3$Cl$_2$	L1	2	0.2	40
3	Ru(PPh$_3$)$_3$Cl$_2$	L2	2	0.2	66
4	Ru(PPh$_3$)$_3$Cl$_2$	L3	2	0.2	71
5	Ru(PPh$_3$)$_3$Cl$_2$	L3	1.5	0.2	66
6	Ru(PPh$_3$)$_3$Cl$_2$	L3	2	0.3	71
7	Ru(PPh$_3$)$_3$Cl$_2$	L3	2.5	0.3	64
8	Ru(PPh$_3$)$_3$Cl$_2$	L3	2	0.5	70
9	Ru(PPh$_3$)$_3$Cl$_2$	L3	2	0.5	74
10	Ru(PNN-1)(PPh$_3$)Cl$_2$	—	2	0.5	36
11	Ru(PNN-2)(PPh$_3$)Cl$_2$	L4	2	0.5	32
12	Ru(PNN-2)(HCO)Cl$_2$	—	2	0.5	17
13	Ru-PNP-1	—	2	0.5	73
14	Ru-PNP-2	—	2	0.5	74

aReaction conditions: 1a (0.7 mmol), 2a (0.2 mmol), Ru(PPh$_3$)$_3$Cl$_2$ (5 mol %), ligand (5 mol %), K_3PO_4, 2-Me-THF at 70 °C under N$_2$ atmosphere. See Supplementary Information (SI) for details. 1H NMR yield was determined using 1,3,5-trimethoxybenzene as an internal standard. A 'trace' amount of product was noted when the desired product was not clearly detected.

b1a (0.6 mmol) was used.
Fig. 3 Substrate scope of the alcohol-surrogated Grignard-type reaction. Reaction conditions: 1a (0.6 mmol), 2a (0.2 mmol), Ru(PPh3)3Cl2 (5 mol %), ligand (5 mol %) and K3PO4 (2 equiv) in 2-MeTHF at 70 °C under N2 atmosphere for 24 h. See Supplementary Information (SI) for details. Yield of isolated product was reported otherwise noted. a Ru-PNP-1 was used as catalyst. b 1H NMR yield was determined using mesitylene as an internal standard. c The reaction was conducted at 100 °C, with 1a (0.8 mmol) and Ru-PNP-2 being the catalyst.
Fig. 4 Reactivity of olefinic natural alcohols. Standard reaction conditions: 1a (0.6 mmol), 2a (0.2 mmol), Ru(PPh3)3Cl2 (5 mol%), ligand (5 mol%), and K3PO4 (0.4 mmol) were added into a V-shaped reaction tube equipped with a stir bar in the glovebox. Then, the reaction tube was sealed and moved out of the glovebox. After that, 0.5 mL 2-Me-THF was added first, followed by the addition of liquid substrates. The mixture was stirred under 70 °C for 24 h. The reaction mixture was filtered through a celite plug and washed with 2–3 mL CH2Cl2. The solvent was removed by a rotary evaporator and the residue was purified by column chromatography on silica gel (using hexane and ethyl acetate as eluents) to give the pure product.

Methods

General procedure for reaction in Table 1. Ru(PPh3)3Cl2 (0.01 mmol), dcyfp (0.01 mmol), K3PO4 (0.22 mmol) and oxidant (0.4 mmol, 2 equiv)* were added into a V-shaped reaction tube equipped with a stir bar in the glovebox. Then, the reaction tube was sealed and moved out of the glovebox. After that, 1a solution (prepared by the method described in SI, Procedure A, 0.22 mL, 0.25 mmol) was added first, followed by the addition of 2a (25.0 µL, 0.2 mmol). The mixture was stirred for 24 h. Then, 1,3,5-trimethoxybenzene (11.2 mg, 0.067 mmol) was added in the mixture as standard. The crude mixture was diluted by CDCl3 and the 1H NMR test was run to determine the 1H NMR yield.

General procedure for reaction in Table 2. Ru(PPh3)3Cl2 (0.01 mmol), ligand (0.01 mmol) and K3PO4 (0.4 mmol) were added into a V-shaped reaction tube equipped with a stir bar in the glovebox. Then, the reaction tube was sealed and moved out of the glovebox. After that, 0.5 mL 2-Me-THF was added first, followed by the addition of corresponding amount of 1a (prepared by the method described in SI, Procedure B) and 2a (25.0 µL, 0.2 mmol). The mixture was stirred for 24 h under N2 at 70 °C. After completion, the solution was filtered by celite and concentrated to dryness. Then, 1,3,5-trimethoxybenzene (11.2 mg, 0.067 mmol) was added in the mixture as standard. The crude mixture was diluted by CDCl3 and the 1H NMR test was run to determine the 1H NMR yield.

Discussion

In conclusion, an oxidant-free Ru(II)-PNP catalyzed Grignard-type reaction with alcohol as a carbonyl surrogate was successfully demonstrated. This reaction takes advantage of both the kinetically favored dehydrogenation process provided by a phosphine-amine ligand and the thermodynamic driving force of the 1,2-addition to carbonyls by hydrazoane with Ru(II) catalysis. The development of this transformation marks an evolution in the Grignard-type reaction, wherein direct construction of C–C bonds are possible from various naturally abundant alcohols, with a tolerance for sensitive functional groups and further expanding Grignard-type reactions from an early-stage construction to late-stage modifications. Future work includes a more in-depth investigation of the application potentials as well as mechanistic studies for this alcohol-sorrogated Grignard-type reaction.
Fig. 5 Proposed mechanism for the alcohol-surrogated Grignard-type reaction. The proposed mechanism starts from the tetracoordinated ruthenium complex. Both the dehydrogenation step and a C–C bond formation step experience six-membered-ring transition states. Specifically, a active species to start the catalytic cycle; b six-membered-ring transition state for dehydrogenation; c ruthenium-hydride species after the dehydrogenation step; d transition state for 1,2-addition of hydrazone to carbonyl; e intermediate right after C–C bond formation; f intermediate after denitrogen which then followed by the formation of desired product.

Data availability
The authors declare that the data supporting the findings of this study are available within the article and Supplementary Information file, or from the corresponding author upon reasonable request.

Received: 16 April 2020; Accepted: 27 October 2020; Published online: 26 November 2020

References
1. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Kraska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).
2. Grignard, V. Sur quelques nouvelles combinaisons organometalliques du magnésium et leur application à des synthèses d’alcools et d’hydrocarbures. Compt. Rend. 130, 1322 (1900).
3. Shirley, D. A. The synthesis of ketones from acid halides and organometallic compounds of magnesium, zinc, and cadmium. Org. React. 8, 28 (1954).
4. Larock, R. C. Organomercurials in organic synthesis. Tetrahedron 38, 1713–1754 (1982).
5. Knochel, P. & Jones, P. Organozinc Reagents: a Practical Approach (Oxford University Press, Oxford, 1999).
6. Rappoport, Z. & Marek, I. The Chemistry of Organolithium Compounds, Volume 1, 2 Volume Set (John Wiley & Sons, New York, 2004).
7. Smith, M. B. & March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (John Wiley & Sons, New York, 2007).
8. Shi, L. et al. A reaction for sp3−sp3 C–C bond formation via cooperation of Lewis acid-promoted/Rh-catalyzed C–H bond activation. J. Am. Chem. Soc. 127, 10836–10837 (2005).
9. Skucas, E., Zbieg, J. R. & Krische, M. J. Anti-αamination of aldehydes via ruthenium-catalyzed transfer hydrogenative coupling of sulfonylamine allenes: 1,2-aminoalcohols. *J. Am. Chem. Soc.* 133, 20528–20533 (2011).

10. McInturf, E. L., Yamaguchi, E. & Krische, M. J. Chiral-anion-dependent inversion of diastereos and enantioselectivity in carbonyl cationylation. *J. Am. Chem. Soc.* 134, 20628–20631 (2012).

11. Spielmann, K., Xiang, M., Schwartz, L. A. & Krische, M. J. Direct conversion of primary alcohols to 1,2-amino alcohols: enantioselective iridium-catalyzed carbonyl reductive coupling of phthalimido-amine via hydrogen auto-transfer. *J. Am. Chem. Soc.* 141, 14136–14141 (2019).

12. Backvall, J. E., Chowdhury, R. L. & Karlsson, U. Ruthenium-catalysed aerobic oxidation of alcohols via multistep electron transfer. *J. Chem. Soc. Chem. Commun.* 27, 473–475 (1991).

13. Chowdhury, R. L. & Backvall, J. E. Efficient ruthenium-catalysed transfer hydrogenation of ketones by propan-2-ol. *J. Chem. Soc. Chem. Commun.* 27, 1063–1064 (1991).

14. Wang, G. Z. & Backvall, J. E. Ruthenium-catalysed oxidation of alcohols by acetone. *J. Chem. Soc. Chem. Commun.* 28, 337–339 (1992).

15. Wang, G. Z., Andreasson, U. & Backvall, J. E. Aerobic oxidation of secondary alcohols via ruthenium-catalysed hydrogen transfer involving a new triple catalytic system. *J. Chem. Soc. Chem. Commun.* 30, 1037–1038 (1994).

16. Dijksman, A., C. E. Arends, I. & Sheldon, R. Efficient ruthenium–TEMPO-catalysed aerobic oxidation of aliphatic alcohols into aldehydes and ketones. *Chem. Commun.* 35, 1591–1592 (1999).

17. Edwards, M. G. et al. Borrowing hydrogen: a catalytic route to C–C bond formation from alcohols. *Chem. Commun.* 40, 90–91 (2004).

18. Nixon, T. D., Whittlesey, M. K. & Williams, J. M. J. Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. *Dalton Trans.* 38, 733–762 (2009).

19. Bertoli, M. et al. Osmium and ruthenium catalysts for dehydrogenation of alcohols. *Organometallics* 30, 3479–3482 (2011).

20. Obora, Y. Recent advances in α-alkylation reactions using alcohols with hydrogen borrowing methodology. *ACS Catal.* 4, 3972–3981 (2014).

21. Kulinkov, N. V., Brennessel, W. W. & Jones, W. D. Catalytic upgrading of ethanol to n-butanol via manganese-mediated Guerbet reaction. *ACS Catal.* 8, 997–1002 (2017).

22. Chakraborty, S., Dau, P., Ben David, Y. & Milstein, D. Ruthenium-catalysed C–O bond formation from ketones via ruthenium(II) complexes. *Science* 59, 1202–1204 (2017).

23. Yang, F.-L. et al. An efficient homogeneous ruthenium(II) imino-catalyst for N-monooallylation of amines with alcohols. *Eur. J. Org. Chem.* 2017, 3481–3486 (2017).

24. Cai, J. J. et al. Reaction of a polyphosphino ruthenium(II) acetate complex with amines and alcohols. *Organometallics* 31, 5054–5055 (2012).

25. Dai, X.-J. & Li, C.-J. En route to a practical primary alcohol deoxygenation. *Synlett* 30, 1508–1524 (2019).

26. Li, C.-C. et al. Synergistic relay reactions to achieve redox-neutral α-alkylations of olefinic alcohols with ruthenium(II) catalysis. *Angew. Chem. Int. Ed.* 59, 4544–4549 (2020).

27. Dai, X.-J. & Li, C.-J. En route to a practical primary alcohol deoxygenation. *J. Am. Chem. Soc.* 138, 5433–5440 (2016).

28. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. *Chem. Rev.* 110, 681–703 (2010).

29. Muthia, S., Shaposhnikov, I., Cohen, S. & Gelman, D. Ligand–metal cooperation in PNNP-pincer complexes: rational design and catalytic activity in acceptorless dehydrogenation of alcohols. *Angew. Chem. Int. Ed.* 50, 3533–3537 (2011).

30. Musa, S., Shaposhnikov, I., Cohen, S. & Gelman, D. Ligand–metal cooperation in PNNP-pincer complexes: rational design and catalytic activity in acceptorless dehydrogenation of alcohols. *Angew. Chem. Int. Ed.* 50, 3533–3537 (2011).

31. Muthia, S. & Hong, S. H. Acceptorless and base-free dehydrogenation of alcohols and amines using ruthenium-hydride complexes. *Adv. Synth. Catal.* 354, 3045–3053 (2012).

32. Gunathanan, C. & Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. *Science* 341, 1229712 (2013).

33. Muthia, S., Shaposhnikov, I., Cohen, S. & Gelman, D. Ligand–metal cooperation in PNNP-pincer complexes: rational design and catalytic activity in acceptorless dehydrogenation of alcohols. *Angew. Chem. Int. Ed.* 50, 3533–3537 (2011).

34. Gunathanan, C. & Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. *Science* 341, 1229712 (2013).

35. Chang, W., Gong, X., Wang, S., Xiao, L.-P. & Song, G. Acceptorless dehydrogenation and dehydrogenative coupling of alcohols catalysed by protic NHC ruthenium complexes. *Org. Biomol. Chem.* 15, 3466–3471 (2017).

36. Sandoval, C. A., Okhuma, T., Miúñiz, K. & Noyori, R. Mechanism of asymmetric dehydrogenation of ketones catalyzed by BINAP/Ru-diamine ruthenium(II) complexes. *J. Am. Chem. Soc.* 125, 13490–13503 (2003).

37. Das, U. K., Chakraborty, S., Dukin-Ponser, Y. & Milstein, D. Direct conversion of alcohols into alkenes by dehydrogenative coupling with hydrazine/hydrazone catalyzed by manganese. *Angew. Chem.* 130, 13632–13636 (2018).

38. Nielsen, M. et al. Efficient hydrogen production from alcohols under mild reaction conditions. *Angew. Chem. Int. Ed.* 50, 9593–9597 (2011).

39. Friedrich, A., Drees, M., Käss, M., Herdtweck, E. & Schneider, S. Ruthenium complexes with cooperative PNP-pincer amine, amido, imine, and enamide ligands: facile ligand backbone functionalization processes. *Angew. Chem.* 49, 5482–5494 (2010).

40. Askevold, B., Khnusyanov, M. M., Herdtweck, E., Meyer, K. & Schneider, S. A square-planar ruthenium(II) complex with a low-spin configuration. *Angew. Chem. Int. Ed.* 49, 7566–7569 (2010).

41. Garbe, M. et al. Manganese(II)-catalyzed enantioselective hydrogenation of ketones using a defined chiral PNP pincer ligand. *Angew. Chem. Int. Ed.* 56, 11237–11241 (2017).