Neuronal migration genes and a familial translocation t(3;17): which genes are implicated in the phenotype?

CURRENT STATUS: ACCEPTED

Meriam HADJ AMOR
Centre Hospitalier Universitaire Farhat Hached de Sousse

Sarra Dimassi
Centre Hospitalier Universitaire Farhat Hached de Sousse

Hanen Hannachi
Centre Hospitalier Universitaire Farhat Hached de Sousse

Amel Taj
Centre Hospitalier Universitaire Farhat Hached de Sousse

Adnene Mlika
Centre Hospitalier Universitaire Farhat Hached de Sousse

Khaled Ben Helal
Centre Hospitalier Universitaire Farhat Hached de Sousse

Ali Saad
Centre Hospitalier Universitaire Farhat Hached de Sousse

Soumaya Mougou-Zerelli
mougousoumaya@yahoo.fr Corresponding Author
ORCID: https://orcid.org/0000-0003-3172-1313

DOI: 10.21203/rs.2.13208/v1

SUBJECT AREAS
Medical Genetics

KEYWORDS
CHL1, Miller-Dieker syndrome critical region, PAFAH1B1, partial monosomy 3p26.2, partial trisomy 17p13.3
Abstract
Background: While Miller-Dieker syndrome critical region deletions are well known delineated anomalies, submicroscopic duplications in this region have recently emerged as a new distinctive syndrome. So far, only few cases have been described overlapping 17p13.3 duplications. Methods: In this study, we report on clinical and cytogenetic characterization of two new cases involving 17p13.3 and 3p26 chromosomal regions in two sisters with familial history of lissencephaly. Fluorescent In Situ Hybridization and array Comparative Genomic Hybridization were performed. Results: A deletion including the critical region of the Miller-Dieker syndrome of at least 2.9 Mb and a duplication of at least 3.6 Mb on the short arm of chromosome 3 were highlighted in one case. The opposite rearrangements, duplication 17p13.3 and deletion 3p were seen in the second case. This double chromosome aberration is the result of an adjacent 1:1 meiotic segregation of a maternal reciprocal translocation t(3;17)(p26.2;p13.3). Conclusions: 17p13.3 and 3p26 deletions have a clear range of phenotypic features while duplications still have uncertain clinical significance. However, we could suggest that regardless of the type of the rearrangement, the gene dosage and interactions of CNTN4, CNTN6 and CHL1 in the 3p26 and PAFAH1B1, YWHAE in 17p13.3 could result in different clinical spectrums.

Background
The presence of clinical practice in the diagnosis of human chromosome abnormalities including gain or loss of genomic copy numbers has extremely benefited from the development of advanced molecular cytogenetic methods such as array-CGH. This allows high-resolution pangenomic analysis, in particular in detecting genetic imbalances, defining their size, delimiting translocation breakpoints and analyzing the involved segments [1]. Array-CGH has identified novel co-locating micro-deletions and micro-duplication in the same locus. This allowed describing new genomic disorders leading to distinct different clinical phenotypes. Recently, the duplication of the entire Miller-Dieker syndrome critical region (MDS) involving PAFAH1B1 and YWHAE genes, and new co-locating micro-duplications in chromosome 17p13.3 have been defined within, duplication syndromes in the MDS locus [2–3]. Likewise, deletions and duplications of 3p26 region were described as new emerging syndromes [4–5–
In this study, we report a familial translocation (3;17) leading to two different cytogenetic rearrangement resulting in a duplication/deletion of the 17p13.3 critical region for MDS including *PAFAH1B1* and *YWHAE* genes and 3p26 region including *CNTN4, CNTN6, CRBN* and a part of *CHL1*. Duplication and deletion of the same chromosomal region resulted in a distinct phenotypic feature in the offspring.

Methods

CLINICAL REPORT

Patient 1 (the proband)

A 2-year-old girl referred for the cytogenetic exploration of a family history of lissencephaly (FIG. 1), is the second child of a healthy consanguineous Tunisian couple. The patient’s weight at birth was 3,500 g (+0.6SD). She measured 52 cm (+1.05DS) and had a head circumference of 35 cm (+0.4SD). At 2 years of age, her height and head circumference were 88 cm (+0.9SD) and 45 cm (-2.5SD), respectively. At physical examination, she had psychomotor development delay and abnormal behavior including aggressiveness, anger and agitation. Furthermore, she had craniofacial dysmorphic features (FIG. 2) including a long face, high forehead, down-slanting palpebral fissures, epicanthus, wide nose, long philtrum, thin upper lip, large and high implanted ears and pointed chin with micrognathia. In addition, she showed arachnodactyly. Her cerebral magnetic resonance imaging (MRI) was performed at two years and five months of age, and corpus callosum hypoplasia was detected.

Patient 2

The patient presented at 4 months for exploration of growth retardation, axial hypotonia, seizure and dysmorphic features (FIG. 2) including high forehead, wide nose, low implanted ears and lissencephaly at MRI. She died 10 months later. Her brother (II1) (FIG. 1) suffering from type 1 lissencephaly, died also at an early age of life.

Karyotype

Metaphase chromosome preparations were obtained by phytohemagglutinin (PHA) stimulated
lymphocyte culture according to standard procedures. Chromosome analysis was carried out applying R-bandig at a 500-band level according to ISCN 2016 [7] in the patient, parents and sister.

Fluorescent in situ Hybridization (FISH)

FISH was performed on blood lymphocytes blocked on metaphases of the patient, those of her sister and those of her mother, according to the standard protocol. Two probes screening the chromosome 17 short arm and the chromosome 3 short arm were used: commercial probes; Miller-Dieker/Lissencephaly region probe set: LSI (Red) and RARA (Green) (Vysis) (Abbott Laboratories, IL, USA) and Totel Vysion Multicolor DNA Probe Mixture 3 (Vysis®, Downers Grove, Illinois, USA) containing 3ptel (Green), 3qtel (Red), 22q (Orange and Green) and LSI BCR (22q11) (Aqua).

The hybridized chromosomal spreads were analyzed using a fluorescent microscope equipped with appropriate filters and Cytovision FISH system image capture software (Zeiss Axioskop 2 plus). Slides were scored on the basis of the number of probe signals for each metaphase. For each target area ten hybridized metaphases were analyzed.

Array CGH

Oligonucleotide array CGH was performed using the Agilent Human Genome CGH Microarray Kit 44K®. This microarray consisted of more than 44,000 oligonucleotide probes that spanned both coding and non-coding regions. The coverage of the human genome was made with an average spatial resolution of 75,000 pair bases.

The patient’s DNA as well as a reference DNA was fragmented by heat at 95°C for 20 minutes. Each fragmented DNA product was labeled by random priming using either ULS5 or ULS3. After column-purification, probes were denaturized and pre-annealed with 5 μg of human Cot-1 DNA, 10 μl of CGH Blocking agent and 55 μl of hybridization buffer. Hybridization was performed at 65°C during 24 h. The microarray was washed, scanned and analyzed with Agilent Feature Extraction® 9.1 software. Results were interpreted with DNA analytics® 4.5 software. Only imbalances involving three or more adjacent probes were held. The identification of probes with a significant gain or loss was based on the log² ratio plot deviation from 0 with cutoff values of 0.5 to 1, and −0.5 to −1, respectively.

Results
The conventional cytogenetic analysis did not reveal any chromosomal anomalies in the two sisters and parents’ karyotypes.

FISH was first performed on the sister (FIG. 1.117) using subtelomeric probes (Vysis) of chromosome 17p showed the absence of a subtelomeric signal on one of the chromosomes 17p (FIG. 3.A). This was suggestive of a family subtelomeric translocation (FIG. 4).

Consequently, using the same probe of chromosome 17p, FISH analysis showed hybridization on the derivative chromosome 3 and on normal chromosome 17 (FIG. 3.B/C), 46,XX.ish t(3;17)(p26.2;p13.3) (LIS1+,subtel3ptel+,subtel3qter+) in the mother.

FISH was then performed in the proband using 17p probe and showed three signals on the two normal chromosomes 17 and the derivative chromosome 3. This confirmed the duplication of the terminal region of chromosome 17. Mixture 3 (Totel Vysion) was used to characterize this rearrangement. In fact, FISH performed on the metaphasic lymphocytes of patient’s and mother’s blood demonstrated the translocation between 17pter and 3pter (FIG. 3.C/E).

Ideograms of maternal chromosomes 17 and 3 illustrate the exchange of chromosome material of 17ptel and 3ptel regions due to the reciprocal translocation t(3;17). The patient 1 inherited the der(3) mat and the normal paternal chromosomes 17 and 3. The patient 2 inherited the der(17) mat and the normal paternal chromosomes 17 and 3.

Aiming to delimit the involved segments, array-CGH analysis was performed on the proband and showed a large deletion of 3,6 Mb on the short arm of chromosome 3, involving 12 OMIM genes and a large duplication of 2,9 Mb on the short arm of chromosome 17, encompassing 61 OMIM genes: 46,XX.arr[GRCh18]3p26.2(224727_3864822)X1,17p13.3(48539_2976723)X3 mat (FIG. 5).

Discussion
Adjacent 1 segregation of the translocation t(3;17) in the mother led to two different chromosome imbalances in the children. The first type adjacent 1 gave rise to a derivative 3 chromosome (der3) in patient 1 that resulted in partial monosomy 3p and a partial trisomy 17p. While the second adjacent 1 type led to a derivative 17 (der17) in patient 2 that resulted in partial monosomy 17p and a partial trisomy 3p. 17p13.3 deletion encompassed PAFAH1B and YWHAE genes.
While deletions of 17p13.3 are associated with well-known phenotype ranging from Miller Dieker syndrome [8] to partial callosal and milder phenotype [9], duplications of the same chromosomal region still need further clinical and molecular characterization.

So far, to the best of our knowledge, only 13 patients having large 17p13.3 duplications, including the entire MDS comprising both PAFAH1B1 and YWHAE genes have been reported [10–11–2–12–13–14–15–16] (FIG. 6). Interestingly, all submicroscopic 17p13.3 duplications reported to date, including the present case did not share any recurrent breakpoints and have varying sizes. It has also been reported that these duplications might be the result of parental translocations involving chromosome 19 [13], chromosome 10 [14] and chromosome 5 [17] but it has never involved the 3p26 region. The proximal short arm of chromosome 17 is distinctly prone to cryptic rearrangements due to the presence of extensive repetitive sequences [2]. Furthermore, this MDS telomeric critical region is estimated to at least 400kb including eight genes in addition to PAFAH1B1gene [18].

FIG. 6 Schematic illustration of the molecular findings in individuals reported with duplication in the Miller Dieker Syndrome (MDS) Critical Region encompassing both YWHAE and PAFAH1B1 genes. The genomic distances (in base pairs from the 17p telomere) shown at the top of the figure were according to ensemble genome browser 59 (hg18). For each patient, a normal copy number is illustrated as a blue line and the duplicated segment as a pink line.

Due to the variability of the involved genes, 17p13.3 duplications have been divided into two classes with distinct phenotypic features [2]. While, Class I duplications involve only YWHAE gene including autistic manifestations, speech, motor delay and dysmorphic facial features, Class II duplications include necessary PAFAH1B1gene and may contain also YWHAE and CRK genes [2]. The phenotypic features in these cases show moderate to mild developmental and psychomotor delay [2]. Nevertheless, when all the three genes, YWHAE, CRK and PAFAH1B1 are duplicated, the phenotype seems to be more severe [10].

Here, our proband shared clinical and dysmorphic features described in patients with duplication of the complete MDS region such as abnormal behavior (Table 1).

We reviewed an exhaustive list for the selection of thirteen cases of 17p13.3 trisomic (Table 1) who
showed common dysmorphic features including a high forehead, a small mouth, and a triangular chin. Some of these features were absent in our patient. In addition, our patient presented arachnodactyly, which is rarely described in patients with partial trisomy of 17p13.3 [10-2-12-17]. By means of complementary cytogenetic techniques, the chromosomal rearrangements were estimated to at least 3.6 Kb on chromosome 3p26.2 and 2.9 Mb on chromosome 17p13.3. The most frequent phenotypic features associated with partial trisomy 17p13.3 were correlated with duplication of the PAFAH1B1 and YWAHE genes that were located in the MDS region. It was hypothesized that the duplication of YWAHE might have an effect on neuronal network development and maturation, and was related to mild development delay and facial dysmorphisms while the duplication of PAFAH1B1 that lead to its overexpression, was associated with moderate to severe development delay and structural brain abnormalities [10-2]. Brain-imaging analysis was performed in seven of the eleven reported patients and only four showed structural brain abnormalities (Table 1). Corpus Callosum hypoplasia or agenesis represented the main brain abnormality being frequently described [10-14-11-15].

Likewise, our patient presented corpus callosum hypoplasia. Curiously, patients having the smallest and the largest duplications of the entire MDS region reported so far have presented normal Magnetic Resonance Imaging (MRI) (P1/[11]; P1/[16]). This suggests that this heterogeneity depends on the size of the duplication and the involved genes as well as on the involvement of other gene interactions and modifier genes. Indeed, it has been proven that transgenic mice with increased lis1 expression in the developing brain revealed abnormalities in the neuroepithelium such as the thinning of the ventricular zone, and the ectopic positioning of mitotic cells [10]. Furthermore, lis1 overexpression affected both radial and tangential migration. In fact, in this condition, migration delay in both trajectories was observed: radial migration at E13.5 and tangential migration at E12.5 rather than E14.5 [10]. However, subtelomeric neuronal migration defects are not expected to be detected by MRI scans [10]. Consequently, we can postulate that the overexpression of LIS1 gene could explain the phenotype of our patient particularly corpus callosum hypoplasia.

The clinical findings in this case are certainly due to the cumulative effect of two imbalances as the result of adjacent-1 malsegregation in the maternal balanced translocation. Numerous features might
be attributed to genes that are lost in chromosome 3p in addition to 17p13.3 duplication. In fact, it has been shown that terminal 3p deletions cause a wide range of phenotypes and are responsible for a rare contiguous gene disorder (OMIM# 613792). This syndrome is characterized by a recognizable phenotype including postaxial polydactyly, renal abnormalities, moderate bilateral sensorineural hearing loss, bilateral macular hypoplasia, respiratory difficulties, hypoplastic corpus callosum, congenital heart defect and gastrointestinal abnormalities [19–20]. The severity of the phenotype depends on the size of the deletion as well as on the gene content and disrupted genes involved in the breakpoints [19].

The proposed pathogenic mechanism for this syndrome is the haploinsufficiency of three important genes (CNTN4, CNTN6 and CRBN) (FIG. 7) leading to developmental delay or mental retardation [21–22–23]. It has been demonstrated that both CNTN4 and CNTN6 genes encode a neural adhesion molecule that is part of the immunoglobulin superfamily [24–25]. In fact, the CNTN6 gene plays a crucial role in the development, maintenance, and plasticity of functional neuronal networks in the central nervous system. It has been shown that Cntn6 deficiency in mice causes profound motor coordination abnormalities and learning difficulties [26]. Owing to its function, we suggest that CNTN6 gene could be responsible for the observed psychomotor development retardation in the current case. On the other hand, CNTN4, an important gene for brain development, is known to be involved in axon growth, guidance, and fasciculation [27–28–29–30]. In addition, it probably contributes to the behavioral abnormalities in our patient showing aggressiveness, anger and agitation. In fact, knockout mice of homologous neuronal adhesion molecules showed morphological, neurological and behavioral abnormalities [31].

The deletion included also CRBN gene encoding a protein of the ubiquitin proteasome pathway, which seemed to play a crucial role in brain development [32] (FIG. 7). In fact, CRBN protein is part of DCX protein ligase complex involved in the regulation of the surface expression of certain types of ion channels in neuronal memory synapses. Furthermore, the 3p26 deletion disrupted a more distal gene: CHL1 (FIG. 7). The latter encodes a protein member of the L1 family of neural cell adhesion molecules [33] and plays a crucial role in development of cortex by regulation of neuronal differentiation and
axon guidance [34–35] and is involved in the maturation of nervous system by regulation of synaptic activity and plasticity [36–37]. Previous studies suggested CHL1 as a dosage-sensitive gene with a main role in intellectual disabilities [21–38–39–40]. Interestingly, Frints hypothesized that reduction equal to 50% of chl1 in the developing brain marks cognitive deficit [21].

FIG. 7 Schematic representation of the 3p26.3->pter chromosomal subtelomeric region, with the locations of genes

Haploinsufficiency of CNTN4, CNTN6 and CRBN and disruption of CHL1 within the breakpoints could then be responsible for the observed neurodevelopmental phenotype in the proband.

We reviewed six previously reported cases having 3p deletion, compared them to the present case report, and noted that the most frequent features are microcephaly, corpus callosum hypoplasia and facial dysmorphia (Table 2). Conversely, some studies reported cases with 3p deletion and normal phenotypes [45–46–20]. In other studies, the authors have even hypothesized that the distal 3p deletion is probably associated with normal intelligence and normal physical features [47-41]. Interestingly, both 3p deletion and 17p duplication could share the same network in neuronal migration since both anomalies lead to corpus callosum hypoplasia and pachygyria. So far, both genes duplicated in 17p especially PAFAH1B1 and genes deleted in 3p especially CNTN6 and CRBN affected the process of cortical development by alteration of the stabilization of microtubules, the axon growth and the axon guidance [48–26–49].

Neuronal migration is a complex process that involves several actors and factors [50–51]. The most critical step responsible for a normal brain development is the cell migration from the ventricular zone into the cortical plate [52].

Mutations and chromosomal aberrations can alter the chromosome 3D organization. This alteration could play a more important role than we believe it does in chromosomal interactions and transcriptional regulation of genes. In fact, it has been shown that the chromatin 3D modification could disturb the topologically associating domains (TADs) and consequently the regulation of gene expression [53–54–55]. Such alteration could explain the phenotypic variability in human disease ranging from milder phenotype to microdeletion/microduplication syndrome.
Conclusions
The variability of genes, which are mapped in the involved regions (3p and 17p), and the description of the clinical characteristics of our patient contribute to the confirmation and further delineation of the associated characteristics to the partial trisomy of 17p13.3 encompassing the entire MDS critical region as well as the partial monosomy of chromosome 3p26.2. Various genes and structural chromosomal anomalies have been discovered involved in this process. However, the exact molecular basis of brain malformations still needs further studies.

Abbreviations

CNTN4: contactin 4; CNTN6: contactin 6; CHL1: close homolog of L1; PAFAH1B1: platelet activating factor acetylhydrolase 1b regulatory subunit 1; YWHAE: tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein epsilon; Array CGH: Array comparative genomic hybridization; SD: standard deviation; ISCN: International System for Human Cytogenetic Nomenclature; OMIM: Online Mendelian Inheritance in Man; CRK: v-crk avian sarcoma virus CT10 oncogene homolog; CRBN: cereblon;

Declarations

Ethics approval and consent to participate
This study was approved by the local Ethics Board of the University Teaching Hospital Farhat Hached.

Written informed consent to participate in this study was obtained from the parents.

Consent to publish
Written informed consent was obtained from the parents for photo and clinical data publication.

Availability of data and materials
All data generated or studied during this study are included in the published article which is available upon request from the corresponding author.

Competing interests
All the authors have no competing interests.

Funding
No financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Authors’ contributions
SMZ contributed to conception and design. MHA, SD and HH contributed to all experimental work,
analysis and interpretation of data. KBH and AM referred patients to our department. SMZ and SD were responsible for the consultation. SMZ and AS were responsible for overall supervision. MHA drafted the manuscript, which was revised by SMZ. All authors read and approved the final manuscript.

Acknowledgements
We are very grateful to the family members for their kind participation and for their continuous interest in this study. We also thank the scientific and technical team of the cytogenetics Department at Farhat Hached University Teaching Hospital (Sousse, Tunisia) and Ms. N. Kerkni for English editing.

References
1. Sanlaville D, Lapierre JM, Coquin A, Turleau C, Vermeesch J, Colleaux L, Borck G, Vekemans M, Aurias A, Romana SP. La CGH microarray: Principe et applications en pathologie constitutionnelle. Archives de Pediatrie. 2005;12(10):1515–20.

2. Bruno DL, Anderlid BM, Lindstrand A, van Ravenswaaij-Arts C, Ganesamoorthy D, Lundin J, Martin CL, Douglas J, Nowak C, Adam MP, Kooy RF, Van der Aa N, Reyniers E, Vandeweyer G, Stolte-Dijkstra I, Dijkhuizen T, Yeung A, Delatycki M, Borgström B, Thelin L, Cardoso C, van Bon B, Pfundt R, de Vries BB, Wallin A, Amor DJ, James PA, Slater HR, Schoumans J. Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes. Journal of Medical Genetics. 2010;47(5):299–311.

3. Blazejewski SM, Bennison SA, Smith TH, Toyo-Oka K. Neurodevelopmental Genetic Diseases Associated With Microdeletions and Microduplication. Frontiers in Genetics. 2018;9:80.

4. Cargile CB, Goh DLM, Goodman BK, Chen XN, Korenberg JR, Semenza G, Thomas GH. Molecular Cytogenetic Characterization of a Subtle Interstitial del(3)(p25.3p26.2) in a Patient With Deletion 3p Syndrome. American Journal of Medical Genetics. 2002;109(2):133–8.
5. Chen CP, Huang MC, Chern SR, Kuo YL, Chen YN, Wu PS, Chen LF, Pan CW, Wang W. Distal 3p duplication and terminal 7q deletion associated with nuchal edema and cyclopia in a fetus and a review of the literature. Taiwan J Obstet Gynecol. 2015;54(3):297–302.

6. Kaur A, Khetarpal S. 3p deletion syndrome. Indian Pediatr. 2013;50(8):795–6.

7. McGowan-Jordan J, Simons A, Schmid M. An international system for human cytogenomic nomenclature. Cytogenet Genome Res. 2016;149:1–2.

8. Chabchoub E, de Ravel T, Thoelen R, Vermeesch JR, Fryns JP, Van Esch H. Detection of an unusual 17p13.3 microdeletion by array comparative genomic hybridisation in a patient with lissencephaly. Clin Genet. 2006;70(6):535–7.

9. Hannachi H, Mougou-Zerelli S, BenAbdallah I, Mama N, Hamdi I, Labalme A, Elghezal H, Sanlaville D, Saad A. Clinical and Molecular Characterization of a Combined 17p13.3 Microdeletion with Partial Monosomy 21q21.3 in a 26-Year-Old Man. Cytogenetic and Genome Research. 2011;135(2):102–10.

10. Bi W, Sapir T, Shchelochkov OA, Zhang F, Withers MA, Hunter JV, Levy T, Shinder V, Peiffer DA, Gunderson KL, Nezarati MM, Shotts VA, Amato SS, Savage SK, Harris DJ, Day-Salvatore DL, Horner M, Lu XY, Sahoo T, Yanagawa Y, Beaudet AL, Cheung SW, Martinez S, Lupski JR, Reiner O. Increased LIS1 expression affects human and mouse brain development. Nature Genetics. 2009;41(2):168–77.

11. Roos L, Jønch AE, Kjaergaard S, Taudorf K, Simonsen H, Hamborg-Petersen B, Brøndum-Nielsen K, Kirchhoff M. A new microduplication syndrome encompassing the region of the Miller-Dieker (17p13 deletion) syndrome. Journal of Medical Genetics. 2009;46(10):703–10.

12. Hyon C, Marlin S, Chantot-Bastaraud S, Mabboux P, Beaujard MP, Al Ageeli E, Vazquez MP, Picard A, Siffroi JP, Portnoï MF. A new 17p13.3 microduplication including the
PAFAH1B1 and YWHAE genes resulting from an unbalanced X;17 translocation.

European Journal of Medical Genetics. 2011;54(3):287-91.

13. Kiiski K, Roovere T, Zordania R, Von Koskull H, Horelli-Kuitunen N. Prenatal diagnosis of 17p13.1p13.3 duplication. Case Reports in Medicine. 2012;2012:1-5.

14. Ruiz Esparza-Garrido R, Velquez-Wong AC, Araujo-Sols MA, Huicochea-Montiel JC, Velquez-Flores MA, Salamanca-Gmez F, Arenas-Aranda DJ. Duplication of the Miller-Dieker critical region in a patient with a subtelomeric unbalanced translocation t(10;17)(p15.3;p13.3). Molecular Syndromology. 2012;3(2):82-8.

15. Curry CJ, Rosenfeld JA, Grant E, Gripp KW, Anderson C, Aylsworth AS, Saad TB, Chizhikov VV, Dybose G, Fagerberg C, Falco M, Fels C, Fichera M, Graakjaer J, Greco D, Hair J, Hopkins E, Huggins M, Ladda R, Li C, Moeschler J, Nowaczyk MJ, Ozmore JR, Reitano S, Romano C, Roos L, Schnur RE, Sell S, Suwannarat P, Svaneby D, Szybowska M, Tarnopolsky M, Tervo R, Tsai AC, Tucker M, Vallee S, Wheeler FC, Zand DJ, Barkovich AJ, Aradhya S, Shaffer LG, Dobyns WB. The duplication 17p13.3 phenotype: Analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes. American Journal of Medical Genetics, Part A. 2013;161(8):1833-52.

16. Kucharczyk M, Jezela-Stanek A, Gieruszczak-Bialek D, Kugaudo M, Cieslikowska A, Pelc M, Krajewska-Walasek M. Oculocutaneous albinism in a patient with 17p13.2-pter duplication- a review on the molecular syndromology of 17p13 duplication. Biomedical Papers. 2015;159(2):333-37.

17. Primerano A, Colao E, Villella C, Nocera MD, Ciambrone A, Luciano E, D’Antona L, Vismara MFM, Loddo S, Novelli A, Perrotti N, Malatesta P. A cryptic balanced translocation (5;17), a puzzle revealed through a critical evaluation of the pedigree and a FISH focused on candidate loci suggested by the phenotype. Molecular
18. Cardoso C, Leventer RJ, Ward HL, Toyo-oka K, Chung J, Gross A, Martin CL, Allanson J, Pilz DT, Olney AH, Mutchinick OM, Hirotsune S, Wynshaw-Boris A, Dobyns WB, Ledbetter DH. Refinement of a 400-kb Critical Region Allows Genotypic Differentiation between Isolated Lissencephaly, Miller-Dieker Syndrome, and Other Phenotypes Secondary to Deletions of 17p13.3. The American Journal of Human Genetics. 2003;72(4):918–30.

19. Fernandez T, Morgan T, Davis N, Klin A, Morris A, Farhi A, Lifton RP, State MW. Disruption of Contactin 4 (CNTN4) Results in Developmental Delay and Other Features of 3p Deletion Syndrome. American Journal of Human Genetics. 2004;74(6):1286–93.

20. Moghadasi S, van Haeringen A, Langendonck L, Gijsbers ACJ, Ruivenkamp CA. A terminal 3p26.3 deletion is not associated with dysmorphic features and intellectual disability in a four-generation family. American Journal of Medical Genetics Part A 9999. 2014(11);1–6.

21. Frints SGM, Marynen P, Hartmann D, Fryns JP, Steyaert J, Schachner M, Rolf B, Craessaerts K, Snellinx A, Hollanders K, D’Hooge R, De Deyn PP, Froyen G. CALL interrupted in a patient with non-specific mental retardation: Gene dosage-dependent alteration of murine brain development and behavior. Human Molecular Genetics. 2003;12(13):1463–74.

22. Fernandez T, Morgan T, Davis N, Klin A, Morris A, Farhi A, Lifton RP, State MW. Disruption of Contactin 4 (CNTN4) Results in Developmental Delay and Other Features of 3p Deletion Syndrome. The American Journal of Human Genetics. 2008;82(6):1385.

23. Dijkhuizen T, Essen TV, van der Vlies P, Verheij JBGM, Sikkema-Raddatz B, van der
Veen AY, Gerssen-Schoorl KB, Buys CH, Kok K. FISH and Array-CGH Analysis of a Complex Chromosome 3 Aberration Suggests That Loss of CNTN4 and CRBN Contributes to Mental Retardation in 3pter Deletions. American Journal of Medical Genetics. Part A. 2006;140(18):2482–7.

24. Takeda Y, Akasaka K, Lee S, Kobayashi S, Kawano H, Murayama S, Takahashi N, Hashimoto K, Kano M, Asano M, Sudo K, Iwakura Y, Watanabe K. Impaired motor coordination in mice lacking neural recognition molecule NB–3 of the contactin/F3 subgroup. Journal of Neurobiology. 2003;56(3):252–65.

25. Zuko A, Kleijer KTE, Oguro-Ando A, Kas MJH, Van Daalen E, Van Der Zwaag B, Burbach JP. Contactins in the neurobiology of autism. European Journal of Pharmacology. 2013;719(1-3):63–74.

26. Sakurai K, Toyoshima M, Ueda H, Matsubara K, Takeda Y, Karagogeos D, Shimoda Y, Watanabe K. Contribution of the neural cell recognition molecule NB–3 to synapse formation between parallel fibers and Purkinje cells in mouse. Developmental Neurobiology. 2009;69(12):811–24.

27. Yoshihara Y, Kawasaki M, Tamada A, Nagata S, Kagamiyama H, Mori K. Overlapping and Differential Expression of BIG–2, BIG-I TAG-I and F3: Four Members of an Axon-Associated Cell Adhesion Molecule Subgroup of the Immunoglobulin Superfamily. Journal of Neurobiology. 1995;28(1):51–69.

28. Ogawa J, Kaneko H, Masuda T, Nagata S, Hosoya H, Watanabe K. Novel neural adhesion molecules in the Contactin/F3 subgroup of the immunoglobulin superfamily: Isolation and characterization of cDNAs from rat brain. Neuroscience Letters. 1996;218(3):173–6.

29. Saito H, Mimmack M, Kishimoto J, Keverne EB, Emson PC. Expression of olfactory receptors, G-proteins and AxCAMs during the development and maturation of
olfactory sensory neurons in the mouse. Developmental Brain Research. 1998;110(1):69-81.

30. Kamei Y, Takeda Y, Teramoto K, Tsutsumi O, Taketani Y, Watanabe K. Human NB-2 of the contactin subgroup molecules: Chromosomal localization of the gene (CNTN5) and distinct expression pattern from other subgroup members. Genomics. 2000;69(1):113-9.

31. Berglund EO, Murai KK, Fredette B, Sekerková G, Marturano B, Weber L, Mugnaini E, Ranscht B. Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression. Neuron. 1999;24(3):739-50.

32. Higgins JJ, Tal AL, Sun X, Hauck SCR, Hao J, Kosofosky BE, Rajadhyaksha AM. Temporal and Spatial Mouse Brain Expression of Cereblon, An Ionic Channel Regulator Involved in Human Intelligence. Journal of Neurogenetics. 2010;24(1):18-26.

33. Wei MH, Karavanova I, Ivanov SV, Popescu NC, Keck CL, Pack S, Eisen JA, Lerman MI. In silico-initiated cloning and molecular characterization of a novel human member of the L1 gene family of neural cell adhesion molecules. Human Genetics. 1998;103(3):355-64.

34. Montag-Sallaz M, Schachner M, Montag D. Misguided axonal projections, neural cell adhesion molecule 180 mRNA upregulation and altered behavior in mice deficient for the close homolog of L1. Mol Cell Biol. 2002;22(22):7967-81.

35. Katic J, Loers G, Kleene R, Karl N, Schmidt C, Buck F, Zmijewski JW, Jakovcevski I, Preissner KT, Schachner M. Interaction of the cell adhesion molecule CHL1 with vitronectin, integrins and the plasminogen activator inhibitor-2 promotes CHL1-induced neurite outgrowth and neuronal migration. J Neurosci. 2014;34(44):14606-623.
36. Leshchyns’ka I, Sytnyk V, Richter M, Andreyeva A, Puchkov D, Schachner M. The adhesion molecule CHL1 regulates uncoating of clathrin-coated synaptic vesicles. Neuron. 2006;52(6):1011-125.

37. Guseva D, Jakovcevski I, Irintchev A, Leshchyns’ka I, Sytnyk V, Ponimaskin E, Schachner M. Cell Adhesion Molecule Close Homolog of L1 (CHL1) Guides the Regrowth of Regenerating Motor Axons and Regulates Synaptic Coverage of Motor Neurons. Front Mol Neurosci. 2018;11:174.

38. Te Weehi L, Maikoo R, Mc Cormack A, Mazzaschi R, Ashton F, Zhang L, George AM, Love DR. Microduplication of 3p26.3 Implicated in Cognitive Development. Genetics. 2014.

39. Schmalbach B, Lepsveridze E, Djogo N, Papashvili G, Kuang F, Leshchyns’ka I, et al. Age-dependent loss of parvalbumin-expressing hippocampal interneurons in mice deficient in CHL1, a mental retardation and schizophrenia susceptibility gene. J Neurochem. 2015;135(4):830-44.

40. Li C, Liu C, Zhou B, Hu C, Xu X. Novel microduplication of CHL1 gene in a patient with autism spectrum disorder: a case report and a brief literature review. Mol Cytogenet. 2016;9:51.

41. Cuoco C, Ronchetto P, Gimelli S, Béna F, Divizia MT, Lerone M, Mirabelli-Badenier M, Mascaretti M, Gimelli G. Microarray based analysis of an inherited terminal 3p26.3 deletion, containing only the CHL1 gene, from a normal father to his two affected children. Orphanet Journal of Rare Diseases. 2011;6:12.

42. Ben-Abdallah-Bouhjar I, Hannachi H, Labalme A, Gmidène A, Mougou S, Soyah N, Gribaa M, Sanlaville D, Elghezal H, Saad A. Chromosomal microarray analysis of functional xq27-qterdisomy and deletion 3p26.3 in a boy with Prader-Willi like features and hypotonia. European Journal of Medical Genetics. 2012;55(8-9):461-5.
43. Kashevarova AA, Nazarenko LP, Schultz-Pedersen S, Skryabin NA, Salyukova OA., Chechetkina NN, Tolmacheva EN, Rudko AA, Magini P, Graziano C, Romeo G, Joss S, Tümer Z, Lebedev IN. Single gene microdeletions and microduplication of 3p26.3 in three unrelated families: CNTN6 as a new candidate gene for intellectual disability. Molecular Cytogenetics. 2014;7(1):1–10.

44. Chen CP, ChenYY, Chern SR, Wu PS, Su JW., Chen WL, WangW. Prenatal diagnosis of a distal 3p deletion associated with fetoplacental chromosomal discrepancy and confined placental mosaicism detected by array comparative genomic hybridization. Taiwanese Journal of Obstetrics and Gynecology. 2013;52(2):278–84.

45. Shrimpton AE, Jensen KA, Hoo JJ. Karyotype–Phenotype Analysis and Molecular Delineation of a 3p26 Deletion/8q24.3 Duplication Case With a Virtually Normal Phenotype and Mild Cognitive Deficit. American Journal of Medical Genetics, 140A. 2006;388–91.

46. Gijsbers CJ, van Haeringen A, Bosch CAJ, Hansson K, Verschuren M, Bakker E, Breuning MH, Ruivenkamp CA. A Subtle Familial Translocation t(3;21) (p26.3;q22.3): An Apparently Healthy Boy with a 3p Deletion and 21q Duplication. Cytogenet Genome Res. 2010;128(4):245–9.

47. Pohjola P, Nicole de Leeuw, Penttinen M, Kääriäinen, H. Terminal 3p Deletions in Two Families-Correlation Between Molecular Karyotype and Phenotype. American Journal of Medical Genetics Part A. 2010;152A(2):441–6.

48. Smith, DS, Niethammer M, Ayala R, Zhou Y, Gambello MJ, Wynshaw-Boris A, Tsai LH. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biol. 2000;2(11):767–775.

49. Papuc SM, Hackmann K, Andrieux J, Vincent-Delorme C, Budisteanu M, Arghir A, Schrock E, Țuțulan-Cuniță AC, Di Donato N. Microduplications of 3p26.3p26.2
containing CRBN gene in patients with intellectual disability and behavior abnormalities. European Journal of Medical Genetics. 2015;58(5):319–23.

50. Barkovish AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development. Brain. 2012;135(Pt5):1348–69.

51. Guerrini R, Dobyns W. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014;13(7):710–26.

52. Scott F Gilbert. Developmental Biology, 6th edition. 2000. https://www.ncbi.nlm.nih.gov/books/NBK9983/. Acessed 2000.

53. Lupiáñez DG, Spielmann M, Mundlos S. Breaking TADs: How Alterations of Chromatin Domains Result in Disease. Trends Genet. 2016;32(4):225–37.

54. Lupiáñez DG, Kraft K, Verena Heinrich2, Krawitz P, Brancati F, Klopacki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Vise A, Mundlos S. Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions. Cell. 2015;161(5):1012–125.

55. Kaiser VB, Semple CA. When TADs go bad: chromatin structure and nuclear organisation in human disease. F1000Research. 2017;24:6.

Tables

Table 1 Comparison of the phenotypic features with duplication of Miller-Dieker completed region

Patient reference	Paper	[13]	[16]	[12]	[11]	[10]	[15]	[Pat]
Size of duplication, Mb	Patient 1	10.7	5.77	4.2	4	3.6	3.4	3
Inheritance	maternal	De novo	?	De novo	De novo	De novo	De novo	pat
Age at diagnosis, years	prenatal	4	13	1	10	28	0	
Gender	F	F	F	M	F	F		
Birth height, cm	NA	55	Normal	50	53	NA		
-----------------	----	----	--------	----	----	----		
Birth weight, g	NA	2680	Normal	3380	3060	NA	3	
Current height	NA	+1SD	+1SD	+1SD	+1SD	NA	50-perc	
Current weight	NA	+1SD	+1SD	+1SD	+2SD	NA	2 perc	
Cranio-facial dismorphism Hypotonic face	NA	+	+	+	-	+		
Broad midface	NA	NA	+	+	-	-		
High forehead	+	+	-	+	-	NA		
Upward palpebral fissures	NA	+	-	-	+	NA		
Hypertelorism m	NA	+	+	+	-	-		
Epicanthus	NA	NA	NA	+	NA	NA		
Strabismus	NA	NA	-	-	+	NA		
Broad nasal bridge	NA	+	+	+	-	NA		
Small mouth	NA	+	+	+	Normal	+		
Low-set-ears	+	NA	-	-	-	NA		
Triangular chin	NA	NA	+	+	NA	+		
Neck appearance	NA	NA	Normal	Short	Normal	NA	Short	
Limb abnormalities	NA	NA	+	-	-	-	Long	
Hip luxation	NA	NA	-	+	-	NA		
Equinovalgus	NA	NA	-	Right	-	NA		
Neurological features Hypotonia	NA	+	+	+	-	NA		
Delayed mental development	NA	+	+	+	+	LD		
Delayed motor development	NA	+	+	+	+	+		
Abnormal behavior	NA	NA	+	+	+	NA		
Brain imaging results	NA	Normal	Normal	Dilated lateral ventricles/ Corpus Callosum Agenesis	Reduced brain size, Corpus Callosum Hypoplasia,	NA	Cc Atrio Hypo Cc Cal	
Paper	[4]	[41]	[42]					
-------	-------	-------	-------					
Patient reference	Patient 1	Patient 1	Patient 2					
Size of deletion, Mb	4.5	1.5	1.05					
Inheritance	De novo	paternal	maternal					
Age at diagnosis, years	16	9	24					
Gender	M	M	M					
Birth height, cm	71	123	58					
Birth weight, g	2695	2600	5350					
Current height	NA	NA	-2SD					
Current weight	NA	NA	-2SD					
Cranio-facial dismorphism	+	NA	+					
Upward palpebral fissures	NA	NA	NA					
Hypertelorism	+	NA	NA					
Blepharophimosis	+	NA	NA					
Eyelid	+	+	NA					
Broad nasal bridge	+	NA	+					
Micrognathia	+	NA	NA					
Low-set-ears	+	NA	+					
Short philtrum	-	NA	+					
Limb abnormalities	-	-	-					
Ptosis	+	+	NA					
Microcephaly	+	+	+					
Neurological features	+	+	+					
Hypotonia								
Delayed mental development	+	+	+					
Delayed motor development	NA	NA	+					
Abnormal behavior	NA	NA	NA					
Brain imaging results	NA	Centrotemporal spikes in the left hemisphere	Corpus callosum					

Table 2 Comparison of the phenotypic features with deletion 3p26

Figures
Figure 1
Pedigree of the family

Figure 2
Photographs of the patients
FISH analyses A. FISH on sister’s lymphocytes shows no hybridization to chromosome 17 using commercial Miller Dieker/Lissencephaly region probe set: (Lsi LIS1: Red and Lsi RARA: Green) demonstrating the retention of LIS1 gene (green arrow). B. FISH on mother’s lymphocytes using the same commercial probe: (Lsi LIS1: Red and Lsi RARA: Green), shows 2 red spots corresponding to LIS1 gene on one short arms of chromosome 17 and one on chromosome 3 showing the translocation between the short arm of chromosome 17 and the short arm of chromosome 3 (green arrow). C. FISH on mother’s lymphocytes using the commercial probe Totel Vysion (mix 3): (3ptel: Green, 3qtel: Red, 22q Orange and Green, LSI BCR (22q11): Aqua) shows the translocation between the short arm of chromosome 3 (orange arrow) and the short arm of chromosome 17 (green arrow). The 3p probe signal was observed on the short arm of one chromosome 3 (red arrow) and on the short arm of one chromosome 17 (green arrow). D. FISH on proband’s lymphocytes using the commercial Miller Dieker/Lissencephaly region probe set: (Lsi LIS1: Red and Lsi RARA: Green), shows the presence of three red spots confirming the duplication of LIS1 gene (orange arrow). E. FISH on proband’s lymphocytes using the commercial probe Totel Vysion (mix 3): (3ptel: Green, 3qtel: Red, 22q Orange and Green, LSI BCR (22q11): Aqua), demonstrates the deletion of
terminal material from the short arm of chromosome 3 (one green spot).

Figure 4

Ideograms of maternal chromosomes 17 and 3 and their derivatives der(17) and der(3)
Results of 44 K Agilent oligo array-CGH analysis in patient 1. A. chromosome 17, showing 17p13.3 duplication of at least 2.9 Mb in size. B. chromosome 3, showing 3p26.2 deletion of at least 3.6 Mb in size.
Figure 6
Schematic illustration of the molecular findings in individuals reported with duplication in the Miller Dieker Syndrome (MDS) Critical Region encompassing both YWHAE and PAFAH1B1 genes.

Figure 7
Schematic representation of the 3p26.3->pter chromosomal subtelomeric region, with the locations of genes