Caustic Ingestion in Children: a Systematic Review and Meta-Analysis

Mandana Rafeey1, Morteza Ghojazadeh2, Saeede Sheikhi3, Leila Vahedi4*

1Department of Pediatrics Gastroenterology, Medicine Faculty, Liver & Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2Department of Physiology, Medicine Faculty, Liver & Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
3Clinical Librarian, Liver & Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
4Liver & Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

ABSTRACT

Introduction: Caustic ingestion that occurs accidently is one of the most common problems in children.

Methods: This systematic review has been performed by searching the databases including Science Direct, ProQuest, Google Scholar, and PubMed. A strategic search was performed with keywords including caustic, corrosive, ingestion, and children, and was limited to articles in English and Persian. Data were analyzed using Comprehensive Meta-Analysis2 and PASW Statistics 18.

Results: We selected 64 articles regarding caustic ingestion with a total sample of 11,345 cases. The data analysis indicated a higher consumption in young boys (age range 2.78 (2.02) years (OR=0.53 with a 95% confidence interval of 0.49-0.57 (P=0.08)). The most common caustic substances were household cleaning agents, particularly bleaches and cleaners. Esophageal cancer and death were reported as well as digestive and respiratory complications. Invasive and expensive techniques are frequently used for diagnosis, treatment and follow up.

Conclusion: The results demonstrated that although caustic ingestion is a serious problem among children, it is a preventable and manageable issue. Therefore, appropriate efforts by families, government, factories, health team and media should be made to handle adequately this matter.

Introduction

Caustic ingestion by children is still a serious medical and social issue.1 Ingestion of caustic agents leads to injuries in the esophagus, pharynx, larynx, and mouth, which often lead to death or other adverse effects on the gastrointestinal and respiratory tracts.2 Ingestion of caustic agents are frequently reported in children,3,4 especially when children start to walk or crawl. Therefore these accidents were considered as one of the main causes of death in children less than 5 years with the peak incidence at 2 years of age.

However, these incidents also were observed in lower than one years old children.3 Annually, more than 40,000 cases of caustic ingestion in children are reported in England and Wales.8 In Galsya, with a population of half a million children under the age of 14 years, 4.8% of the annual medical service admissions were associated with caustic ingestion in children.7 It is still common in children of the United States, despite the declining of caustic ingestion in (5,000 to 15,000 reductions per year), with incidence of 15.8 cases in every 100,000 persons.8-10 From 2005 to 2006, 10% of the 51 children admitted...
to the department of pediatrics, Children’s hospital of Tabriz, Iran, had stenosis and gastric outlet obstruction following ingestion of caustic agents.11 However, prevalence of these accidents in our area is unknown. In a retrospective study conducted between 2002 and 2004, 74.7\% of the 72 children admitted at the department of pediatrics, Loghman Hakim hospital of Iran, were reported to be due to accidental ingestions.12 There are more than 500 toxic substances at home that most of them were kept at the kitchen without considering appropriate storing points.5 Additionally, most of ingestions are due to consumption of household chemicals, such as detergents and bleaches.6,7 On the other hand, the swallowing of these agents could led harmful health consequences and impose an economic burden for measurement, treatment, follow up and caring.5,11,13 Esophageal stricture is considered a short-term effect, but esophageal perforation, esophageal obstruction and cancer could be some of the long-term effects of ingestion of caustic agents.15-17

Although the ingestion of caustic materials is a simple preventable problem, but it has continued in most developing countries.2,9 Families, manufacturing, government and health staff have a major role in the control and management of these accidents.5,9,18,19 Persist and ongoing communication among these teams could reduce the rate of accidents or modify the course of the disease.18,20 The aim of study was to evaluate age distribution, sex ratio type of caustic agents, signs and symptoms, complications, and management of caustic ingestion in children by a systematic review and meta-analysis research method. Also, we are going to determine the prevalence of age, sex ratio, and complications in children. We conducted a systematic review of papers published since 1980, in four phases. These involved planning the search strategy and performing the search, collection of articles and systematic review, evaluation of inclusion and exclusion criteria, and data analysis. These phases are described in the following sections.

In the first step, Springer, Science Direct, ProQuest, Google Scholar, and PubMed search randomly following the PRISMA guidelines was made for articles on caustic ingestion in children. Studies published in English or Persian from 1980 to July 14, 2013 were reviewed. The keywords used were caustic, corrosive, ingestion, and children, and by Medical Subject Headings (Mesh) for medical science databases with the cooperation of a gastroenterology pediatric subspecialist, physiologist, PhD by Research, and clinical librarian. The following search strategy was employed for PubMed:

- Focus question:
 The focus question was established according to the PICO (population, intervention, comparison, and outcome)

Format: In patients with caustic ingestion in children
- P (population): patients with caustic ingestion in children.
- I (intervention): -
- C (comparison): Age, sex, and complications in children
- O (outcome): Patients who referred to hospital

- Inclusion criteria:
 In the second phase, all eligible studies were separately surveyed by two expert appraisers to evaluate article equality, minimize bias, and
Caustic ingestion in children

Journal of Caring Sciences, September 2016; 5 (3), 251-265

Exclusion criteria:

In the third phase, irrelevant studies, systematic articles, case control articles, cohort articles, clinical trial articles, animal studies, kappa agreement rate less than 84%, duplicated articles, and letters were excluded from the sample. In addition, the articles which obtained manually from the references of the previously selected articles were added to the set. Figure 1 shows the process of manuscripts’ selection.

In the fourth phase, all papers were divided in two categories (quantitative and qualitative). The summery of the four phases are shown in table 1.

The data was summarized in an extraction table using the Microsoft Office Excel software, and were then analyzed using Comprehensive Meta-Analysis (CMA) and PASW Statistics 18 and a meta-analysis was performed to obtain the measure of an overall effect (odds ratio, OR). A forest plot was used to report the results. A forest plot is made up of squares in which each square represents the sample size and the lines beside each square represent the 95% confidence interval for each study. A funnel plot was used for assessment of publication bias. The methods of handling data and statistical methods as fixed or random effects models were used for combining results of studies. The study of heterogeneity was made by I2 statistical calculation. I2 values of 25%, 50%, and 75% correspond to cut-off points for low, moderate, and high degrees of heterogeneity. If condition was homogeneity, fixed model was used and a heterogeneity condition was used random effects models. The level of significance used in the analysis was 5% (α=0.05).

Figure 1. Summary of studies contributing to the Systematic Review
Table 1. Summary of performed process for searching strategy

Phases
Phase 1
Planning of search strategy
Electronic search from databases (Science Direct, ProQuest, Springer, Google Scholar, PubMed)
Selection of related articles based on titles
Phase 2
Collection of articles with full text
Evaluation of quality articles by two appraisers
Exclusion of unrelated studies (related to adults, battery swallowing, drug abuse, published articles before 1980)
Assessment of articles and referring disputes to the third appraiser
Phase 3
Exclusion of unrelated studies based on the subject, Cohort studies, Case control studies, Clinical trial, Animal studies, Systematic review
Performance of manual research and inclusion of review articles references
Phase 4
Extraction of article information and statistical analysis

Results

A total of 187 studies were identified based on the exclusion and inclusion criteria. Out of them, 76 papers were excluded in Phase 2, and 56 articles in Phase 3. Further, nine manually selected articles were added in Phase 3, leading to the final sample of 64 articles from which data were extracted (Table 2).

From 64 (11,345 participants) articles that were included in our study, 52 articles were cross-sectional studies (81.5%), eight articles were case reports (12.5%), and four articles were case series (6%). Most of the studies were conducted in Turkey with 14 articles (21.8%).

The sample of children comprised 4,632 boy (55.33%) and 3,756 girl (44.77%). With reference to distribution of gender, based on the results of different studies and the random effect model, we found that the frequency of caustic agent ingestion was more common in boys (42%, 95% CI: 0.29–0.57); however, this difference was not statistically significant. The mean age of the children with reported cases of ingestion was 2.78 (2.02) years (age range: 12 days–10 years).

The mean time of endoscopy after ingestion was 30 hours (range: 1–108 hours).

The most common caustic substance was alkaline, reported in 41.5% patients, followed by acid (30.7%), while most of the cases were exposed to household cleaning agents, particularly bleaches and cleaners. With reference to industrial agents, the most abused agents were industrial detergents and soda.

Various factors were found to have an impact on the severity of the injuries presented. Most common were those related to the physical characteristics of agents, such as concentration, amount of ingested agent, type of agent, and interval between swallowing and referral to emergency department.

A majority of the patients were symptomatic at admission, and the most common symptoms included gastric, respiratory, and ENT-related symptoms. Vomiting, abdominal pain, dysphagia, respiratory distress, drooling, and burns of the oral cavity were the most frequently observed symptoms (Table 2).

The majority of the lesions observed in digestive, respiratory, and ENT tracts. The injuries of digestive included esophageal damage, nutritional problems, gastro-esophageal reflux, and gastric ulceration, respectively. The injuries of respiratory were aspiration pneumonia, laryngeal sore and mediastinitis. Skin sore, mouth sore, and sore throat were reported as lesions of ENT. Esophageal cancer and even death was also reported in ingested children. The summery of articles based on injuries and complications are shown in table 3.
Table 2. Classification of characteristics of agents, clinical findings, methods of diagnostic and therapeutic, and complications

Subgroup
Type of ingested agents
Household chemicals
Industrial chemicals
Effective factors in presentation of clinical symptoms and complications
The demographic characteristics of the individual
The physical properties of agents
The physical properties of the individual
The manners of consume of agents
Clinical symptoms
Gastrointestinal problems
Respiratory problems
ENT problems
Cardiovascular problems
Neurological problems
Psychological problems
Techniques of diagnosis
Invasive
Non-invasive
Methods of therapies
Supportive therapies
Medical therapies
Surgical therapies
Complications
Gastrointestinal complications
Respiratory complications
Renal complications
Hepatic complications
Cardiovascular complications

Table 3. The summery of articles based on injuries and complications

Authors	Location	Injuries	Complications
Mamede R. et al1	Brazil	-	Gastrointestinal-death
Turner A. et al2	England	Gastrointestinal- psychological	-
Lee HJ. et al3	Korea	Gastrointestinal- respiratory- psychological	-
Bicakci U. et al4	Turkey	Psychological	Gastrointestinal
Stiff G. et al6	Wales	Gastrointestinal- psychological	Respiratory-renal-cardiovascular
Manenti F. et al7	England	-	Gastrointestinal- respiratory
Sawalha AF. et al8	Palestine	Gastrointestinal- psychological – cardiovascular	-
Ekpe EE. et al9	Nigeria	-	Gastrointestinal-death
Arévalo-Silva C. et al10	-	Gastrointestinal- respiratory	Gastrointestinal
Temiz A. et al15	Turkey	Gastrointestinal- respiratory- psychological	Gastrointestinal- cardiovascular
Mamede RCM. et al16	Brazil	-	Gastrointestinal-death
Previtera C. et al17	Italy	Gastrointestinal- respiratory- psychological -ENT	Gastrointestinal
Casasnovas AB. et al18	Spain	Gastrointestinal- respiratory- psychological	-
Otçu S. et al21	Turkey	-	-
Doğan Y. et al22	Turkey	-	Gastrointestinal
Cifçi AO. et al23	Turkey	Psychological	-
Pearn J. et al24	Australia	ENT- psychological	-
Broto J. et al25	Spain	-	Gastrointestinal
Table 3. The summery of articles based on injuries and complications (continued)

Authors	Location	Injuries	Complications
Ein S. H. et al	Canada	Gastrointestinal- psychological	Respiratory-death
Ryan F. et al	England	Gastrointestinal	-
Ferguson MK. et al	America	Gastrointestinal- respiratory- psychological	Gastrointestinal
Riffat F. et al	Australia	Gastrointestinal- psychological	Gastrointestinal
Contini S. et al	Italy	Gastrointestinal- respiratory- psychological	Gastrointestinal
Youn BJ. et al	Korea	Gastrointestinal- psychological	Gastrointestinal- respiratory
Arci M. et al	Turkey	Gastrointestinal- psychological	-
Melek M. et al	Turkey	Gastrointestinal- respiratory- psychological	Gastrointestinal
Bychkoiva OV. et al	Belarus	Psychological	Gastrointestinal-respiratory
Reith DM. et al	Australia	-	Cardiovascular
Kane TD. et al	America	Gastrointestinal	Gastrointestinal- respiratory
Pintus C. et al	Taiwan	Gastrointestinal	-
Babi FE. et al	America	Gastrointestinal- respiratory- psychological	-
Bentalii P. et al	Italy	Gastrointestinal- respiratory- psychological	Gastrointestinal- ENT
Thirlwall A. et al	England	Gastrointestinal- psychological	Gastrointestinal
Thomas MO. et al	Nigeria	Gastrointestinal	Gastrointestinal
Karnak I. et al	Turkey	-	Gastrointestinal
Turna C. et al	Turkey	Gastrointestinal- respiratory- psychological	Gastrointestinal-respiratory
Janousek P. et al	Czech	Gastrointestinal	Gastrointestinal
Saetti R. et al	Italy	-	Gastrointestinal
Stone MM. et al	America	-	Gastrointestinal- respiratory
Gerzic ZB. et al	Yugoslavia	Psychological	-
Ceylan H. et al	Turkey	Gastrointestinal- respiratory- psychological	Gastrointestinal
Kukkady A. et al	New Zealand	Gastrointestinal	Gastrointestinal
Chen TY. et al	Taiwan	Gastrointestinal- respiratory- psychological	Gastrointestinal-death
Shukla RM. et al	India	Psychological	-
Turner A. et al	Australia	-	-
Ozcan C. et al	Turkey	-	Gastrointestinal
Rigo GP. et al	Italy	-	Gastrointestinal-death
Brown RA. et al	South Africa	Psychological	Gastrointestinal
Baskan D. et al	Turkey	Gastrointestinal- psychological	Gastrointestinal
Brun JG. et al	-	-	-
Tiryaki T. et al	Turkey	-	Gastrointestinal
Gupta SK. et al	India	Gastrointestinal- respiratory- psychological	-
Uhlen S. et al	America	Psychological	Gastrointestinal
Heran MK. et al	Canada	Gastrointestinal	Gastrointestinal
Rosseenu S. et al	England	-	Gastrointestinal
Lin YC. et al	Taiwan	Gastrointestinal	Gastrointestinal
Atabek C. et al	Turkey	-	Gastrointestinal
Wiseman HM. et al	England	Gastrointestinal- respiratory- psychological	Hepatic – renal
Mehregan F. et al	Iran	Respiratory- psychological- neurological	Gastrointestinal-respiratory-death
Azadeghan M. et al	Iran	Gastrointestinal- respiratory- psychological	-
Rafeey M. et al	Iran	Gastrointestinal- psychological	Gastrointestinal-death
Talebyan A. et al	Iran	Respiratory- psychological- neurological	-
Osar SH. et al	Iran	Respiratory- psychological- neurological-	Gastrointestinal-ENT- cardiovascular
Caustic ingestion in children

Our review revealed that physical examination and invasive techniques were carried out for detection and evaluation of digestive tract lesions. Endoscopy was frequently performed in addition to other diagnostic methods, such as esophagoscopy and barium swallows.

Therapeutic protocols included medical, surgical, and conservative treatments, respectively. Serum therapy, antibiotics, systemic steroids, Anti-acid, H₂ blockers, protein pump inhibitors, and topical injection of Mitomycin and steroid were used. The most common surgical methods included esophageal dilatation and esophageal replacement. Implantation of a stent and catheter in the esophagus were also mentioned in some of the articles. On selecting for the meta-analysis the 64 articles that showed the caustic ingestion in children, the Forest plot stated OR=0.53 (Figure 2) with a 95% confidence interval (95% CI) of 0.49-0.57 (P=0.08) for boys and OR=0.38 (Figure. 2) with a 95% confidence interval (95% CI) of 0.35-0.42 (P<0.001) for girls. Therefore, the caustic ingestion was more common in boys compared to girls. The studies were non-homogeneous (I²=83.68% and P<0.001 for boys &I²=82.44% and P<0.001 for girls), so for estimate risk was used from random results.

Study name	Event rate	Statistics for each study	Event rate and 95% CI
Masmide R. et al	0.002	0.000 - 0.036 -4.264 0.000	
Turner AA. et al	0.781	0.607 - 0.992 2.677 0.003	
Lee HJ. et al	0.667	0.333 - 0.989 0.980 0.327	
Bicakci U. et al	0.589	0.536 - 0.639 3.296 0.001	
Stoff G. et al	0.625	0.265 - 0.975 0.699 0.494	
Maseende F. et al	0.002	0.000 - 0.277 -4.487 0.003	
Sawathau AF. et al	0.000	0.000 - 0.007 -5.473 0.000	
Elke EE. et al	0.813	0.553 - 0.938 2.209 0.022	
Arevalo Silva C. et al	0.019	0.001 - 0.244 -2.753 0.006	
Meritz A. et al	0.626	0.558 - 0.690 3.583 0.000	
Masmide RCM. et al	0.167	0.010 - 0.065 -1.039 0.299	
Previtera C. et al	0.277	0.148 - 0.522 1.914 0.056	
Casasnovas AB. et al	0.001	0.000 - 0.011 -5.163 0.000	
Ociu S. et al	0.577	0.445 - 0.681 1.303 0.170	
Digan J. et al	0.905	0.606 - 0.648 4.518 0.000	
Cifio A.O. et al	0.741	0.679 - 0.795 6.828 0.000	
Pienar J. et al	0.509	0.479 - 0.531 0.000 1.000	
Birno J. et al	0.570	0.543 - 0.597 0.039 0.000	
Ein S. H. et al	0.636	0.339 - 0.857 0.893 0.372	
Ryan F. et al	0.795	0.266 - 0.963 1.287 0.198	
Ferguson MK. et al	0.559	0.392 - 0.714 0.664 0.494	
Piffat F. et al	0.560	0.421 - 0.690 0.046 0.847	
Contani S. et al	0.775	0.621 - 0.939 3.266 0.001	
Youm B. J. et al	0.571	0.316 - 0.794 0.533 0.594	
Arthi M. et al	0.445	0.374 - 0.518 -1.479 0.139	
Mehnk M. et al	0.533	0.421 - 0.643 0.577 0.564	
Reili DM. et al	0.624	0.500 - 0.699 2.669 0.008	
Pinsus C. et al	0.031	0.002 - 0.350 -2.390 0.017	
Huaun YC. et al	0.333	0.176 - 0.539 -1.601 0.109	
Ebaolli PE. et al	0.439	0.364 - 0.516 -1.567 0.117	
Thomas MO. et al	0.795	0.691 - 0.870 4.831 0.000	
Hairaka Y. et al	0.599	0.541 - 0.655 3.212 0.001	
Tunia C. et al	0.629	0.285 - 0.675 0.699 0.484	
Jalakousek P. et al	0.615	0.344 - 0.930 0.824 0.410	
Saehd R. et al	0.393	0.307 - 0.486 -2.250 0.024	
Sterre MM. et al	0.541	0.361 - 0.692 0.490 0.622	
Gerizic JB. et al	0.005	0.000 - 0.074 -3.741 0.000	
Ceyhan H. et al	0.006	0.000 - 0.095 -3.545 0.000	
Hakkadn A. et al	0.600	0.297 - 0.742 0.628 0.530	
Chen TV. et al	0.500	0.333 - 0.667 0.000 1.000	
ShihabKM. et al	0.750	0.238 - 0.968 0.551 0.341	
Turner A. et al	0.015	0.001 - 0.201 -2.929 0.003	
Oszcan C. et al	0.421	0.210 - 0.648 -0.724 0.469	
Pigo GP. et al	0.412	0.261 - 0.581 -1.012 0.306	
Baskhou D. et al	0.543	0.434 - 0.640 0.777 0.437	
Brun JOS. et al	0.026	0.002 - 0.322 -2.479 0.013	
Troyava T. et al	0.544	0.456 - 0.629 0.983 0.326	
Gupta SK. et al	0.464	0.292 - 0.646 -0.378 0.706	
Ullian S. et al	0.833	0.194 - 0.990 1.033 0.290	
Heran MK. et al	0.590	0.059 - 0.940 0.000 1.000	
Roosene S. et al	0.778	0.421 - 0.944 1.562 0.118	

Figure 2. Meta-analysis for boys and girls
Figure 3. Funnel plot of standard error by logit event rate for boys and girls

The extracted data are shown in the funnel plot to evaluate the publication bias for sample size and effect size (Figure 3). Regarding the funnel plot view, it may be noted that the publication bias in the process of search and selection in the present study was at an acceptable level (Table 1).

Discussion

The goal of this systematic review was to evaluate previous literature and examine the age distribution, sex ratio, and the types of ingested agents, symptoms and signs, management, and the impact of chemical factors on the complications caused by the ingestion of caustic agents in children because of highlighting on primary preventive programs. The widespread use, easy availability, low costs of cleaners and detergents especially in Asia as well as other products have led to an increase in the occurrence of swallowing of agents among children.

In term of demographic characteristics, we found that the group at the highest risk for accidental caustic ingestion comprised children of preschool ages (mean age = 1.74 (3.38) years), and mostly boys were involved in such incidents. In a study by Seluck Otcu in Turkey, 58% of the children who ingested caustic substances were boys, and 42% were girls, with a mean age of 3.6 (2.8) years. Other related studies had similar results. Children, especially boys, have well-developed skills and are curious to examine substances and drink them. However, they lack the knowledge of the portability of substances. This implies that boys in preschool stage (3–4 years) need more attention and caring by parents to avoid such ingestion incidents. Moreover, parents’ behaviors are affected further by culture. It is
recommended to consider these points by families:
- The large amounts of detergent must not be kept at the home, especially at kitchen.
- Chemical substances should be placed on the locked cabinet and the upper shelves and were immediately put in its place after utilization.
- Chemical materials should be kept in the labeled containers with tight door.
- Chemical substances should not be stored in food containers.
- When a drug is given as a medicine, it not be mentioned as candy.
- The phone number of emergency department and poisoning control center should be recorded in notebook at home.

In this present review, we found that most accidents were due to alkaline agents, such as bleach products, oven cleaners, and soda. These products are often used to clean the house; however, they can cause various types of poisoning. In a study conducted in Australia, 76% of the accidents were reported to have occurred at home, where 74% were caused by alkaline, 6% by acidic agents, and 20% were caused by contamination with other agents.

Parents should avoid storing such substances in everyday, unmarked drinking bottles, especially in containers that are known to hold edible substances. It was reported in Iran and Turkey that in most cases such caustic agents had been stored in accessible places in the house and in containers without labels. Most of the studies emphasized the impact of educating parents by multimedia for raising their awareness and self-efficacy in their care of children.

The present study revealed that the most common signs and symptoms of caustic ingestion were related to digestive, respiratory, and ENT tracts. In a study conducted in Turkey, it was found that gastrointestinal symptoms were predominant during admission. In addition, respiratory symptoms were observed in 13% of the cases.

In order to detect lesions and evaluate the severity of the damage, physical examination, non-invasive techniques, and invasive technique especially endoscopy was used for nearly all patients. Ferguson et al., believed that the first step in the treatment of these patients is physical examination. In this present review, the mean of initiating time of the endoscopic examination was 30 hours. In different studies, endoscopy was offered within 24-48 hours. Managing and following of patients result in the early diagnosis of complications and the application of continues therapeutic recommendations and health care. The increasing of parent awareness toward preliminary canings after agent swallowing and the handling of health and caring centers on proper admission, management and care could be helpful about this episode.

Esophageal damage, gastro-esophageal reflux, and gastric ulceration, respectively were common injuries of corrosive substance ingestion in children. The injuries of respiratory system were aspiration pneumonia and laryngeal sore. Malignant transformation was reported during long-term follow-ups. In the study conducted in Turkey, Esophageal stricture observed in 24.2% (16 patients) by endoscopy. In another study in South Korea, esophageal stricture was identified as the most common long-term complication. Similarly, mortality and esophageal cancer were observed in a study conducted in Brazil. Thus, it is clear that although ingestion of caustic substances is relatively rare, its effects are debilitating.

In the present study, we found those medical therapies such as oral antibiotics, systemic steroids, and H2 blockers; surgical therapy, such as esophageal dilatation; and conservative treatments were used. These findings were similar to other studies.

Assessment of involvement of other organs and recovery through massage could help to prevent secondary problems. In our study, medical therapies such as oral antibiotics, systemic steroids and H2 blockers, surgical
therapies such as esophageal dilatation and conservative treatments were utilized to limit the severity of inflammation and infection.9

Rajinder et al., reported similar results in New York.36 Although the benefit of each treatment have not been determined by investigators, therapeutic methods should be able to develop as the child growth.9

The major advantage of the present study was the use of an appropriate number of authentic studies. This advantage, along with the large sample size across all the selected studies, enabled us to use the funnel plot to assess publication bias. However, a limitation in this study was the poor accessibility of European and American papers because of problem sanctions on Iran. Finally, we recommend that more case control or clinical trial studies should be performed to provide guidelines and protocols.

Conclusion

This study implies the role of families, manufacturers, media, health care systems, and government in these accidents. Appropriate storage and usage of these hazardous substances is strongly recommended for parents. Producing materials with formulation and packaging agents in factories are essential factors. Moreover, the media and educational programs can raise public awareness. Thus, the primary prevention and reduction of undesirable health effects of accidental ingestion of caustic substances is practical and simple.

Also, we recommend that continues management and caring health programs should be applied because of the effects range from an asymptomatic state to intractable complications. With reference to treatment strategies, thus, comprehensive and continues treatment should be carried out in all cases of caustic ingestion; consist of medical therapies such as oral antibiotics, systemic steroids and H2 blockers, surgical therapies such as esophageal dilatation and conservative treatments were utilized to limit the severity of inflammation and infection.

Acknowledgments

We would like to thank liver & gastrointestinal disease research center.

Ethical issues

None to be declared.

Conflict of interest

The authors declare no conflict of interest in this study.

References

1. Mamede R, De Mello Filho F. Treatment of caustic ingestion: an analysis of 239 cases. Diseases of the Esophagus 2002;15 (3):210-3. doi: 10.1046/j.1442-2050.2002.00263.x
2. A Turner, Robinson P. Respiratory and gastrointestinal complications of caustic ingestion in children. Emergency Medicine Journal 2005; 22 (5): 359-61. doi:10.1136/emj.2004.015610
3. Lee HJ, Lee JH, Seo JM, Lee SK, Choe YH. A single center experience of self-bougienage on stricture recurrence after surgery for corrosive esophageal strictures in children. Yonsei Med J 2010; 51 (2): 202-5.doi:10.3349/vmj.2010.51.2.202
4. Bicakci U, Tander B, Deveci G, Rizalar R, Ariturk E, Bernay F. Minimally invasive management of children with caustic ingestion: less pain for patients. Pediatric Surgery International 2010; 26 (3): 251-5.doi:10.1007/s00383-009-2525-5
5. Hockenberry MJ, Wilson D. Wong's Nursing Care of Infants and Children Multimedia Enhanced Version. 9th ed. United States: Mosby. 2013.
6. Stiff G, Alwafi A, Rees B, Lari J. Corrosive injuries of the oesophagus and stomach: experience in management at a regional paediatric centre. Ann R Coll Surg Engl1996;78 (2): 119-23.
Caustic ingestion in children

7. Manenti F. What is the utility of selected clinical and endoscopic parameters in predicting the risk of death after caustic ingestion? Endoscopy 2002; 34 (4): 304-10. doi:10.1055/s-2002-23633

8. Sawalha AF. Storage and utilization patterns of cleaning products in the home: toxicity implications. Accident Analysis & Prevention 2007; 39 (6):1186-91. doi:10.1016/j.aap.2007.03.007

9. Ekpe E, Ette V. Morbidity and mortality of caustic ingestion in rural children: experience in a new cardiothoracic surgery unit in Nigeria. ISRN Pediatr 2012; 2012 (2012): 4. doi:10.5402/2012/210632

10. Arévalo-Silva C, Eliashar R, Wohlgelernter J, Elidan J, Gross M. Ingestion of caustic substances: a 15-year experience. The Laryngoscope 2006; 116 (8): 1422-6. doi:10.1097/01.mlg.0000225376.83670.4d

11. Amini Ranjbar H, Azadegan M. Clinical signs and endoscopic findings of the upper gastro intestinal tract in patients admitted at toxication department of Loghman Hakim hospital in Tehran with the history of caustic substances ingestion (acid or alkaline) in 2007. Pajoohandeh 2009; 14 (3): 123-8. (Persian)

12. Mehregan F, Yavari P, Nourbakhsh M, Kheyri M. The study of clinical trend and effects of caustic ingestion based on endoscopy of children referring to Loghman Hakim hospital. Iranian Journal of Pediatrics 2004; 14 (2): 125-31.

13. Adib-Hajbaghery M, Maghaminejad F, Abbasi A. The role of continuous care in reducing readmission for patients with heart failure. J Car Sci 2013; 2 (4): 255-67. doi:10.5681/jcs.2013.031

14. Salimi S, Azimpour A. Determinants of Nurses’ Caring Behaviors (DNCB): Preliminary Validation of a Scale. J car Sci 2013; 2 (4): 269.

15. Temiz A, Oguzkurt P, Ezer SS, Ince E, Hicsonmez A. Predictability of outcome of caustic ingestion by esophagogastroduodenoscopy in children. World J Gastroenterol 2012; 18 (10): 1098-1103. doi: 10.3748/wjg. v18.i10. 1098

16. Mamede RCM, Mello Filho Fvd. Ingestion of caustic substances and its complications. Sao Paulo Med J 2001;119 (1): 10-5. doi:10.1590/ S1516-3180200004

17. Previtera C, Giusti F, Guglielmi M. Predictive value of visible lesions (cheeks, lips, oropharynx) in suspected caustic ingestion: may endoscopy reasonably be omitted in completely negative pediatric patients? Pediatric Emergency Care 1990; 6 (3): 176-8.

18. Casasnovas AB, Martinez EE, Cives RV, Jeremias AV, Sierra RT, Cadranel S. A retrospective analysis of ingestion of caustic substances by children. Ten-year statistics in Galicia. Eur J Pediatr 1997; 156 (5): 410-4. doi:10.1007 /s004310050627

19. Rafeey M, Ghojazadeh M, Mehdizadeh A, Hazratí H, Vahedi L. Intercontinental comparison of caustic ingestion in children. Korean J Pediatr 2015; 58 (12): 491-500. doi:10.3345/ kjp.2015.58.12.491

20. Atabek C, Surer I, Demirbag S, Caliskan B, Ozturk H, Cetinkursun S. Increasing tendency in caustic esophageal burns and long-term polytetrafluorethylene stenting in severe cases: 10 years’ experience. Journal of Pediatric Surgery 2007; 42 (4): 636-40. doi:10.1016/j.jpedsurg. 2006. 12.012

21. Öçü S, Karnak I, Tanyel FC, Senocak ME, Buyukpamukcu N. Biochemical indicators of caustic ingestion and/or accompanying esophageal injury in children. Turk J Pediatr 2003; 45 (1): 21-5.

22. Doğan Y, Erkan T,Çokuğraş FÇ, Kutlu T. Caustic gastrosophageal lesions in childhood: an analysis of 473 cases. Clinical pediatrics. 2006; 45 (5): 435-8. doi:10.1177/0009922806289618
23. Ciftci A, Şenocak M, Büyükpamukçu N, Hiçsönmez A. Gastric outlet obstruction due to corrosive ingestion: incidence and outcome. Pediatric Surgery International 1999; 15 (2): 88-91. doi:10.1007/s00383-004-1153-3

24. Pearn J, Nixon J, Ansford A, Corcoran A. Accidental poisoning in childhood: five year urban population study with 15 year analysis of fatality. Br Med J (Clin Res Ed) 1984; 288 (6410): 44-6. doi: 10.1136/bmj.288.6410.44

25. Broto J, Asensio M, Jorro CS, Marhuenda C, Vernet JG, Acosta D, et al. Conservative treatment of caustic esophageal injuries in children: 20 years of experience. Pediatric Surgery International 1999; 15 (5-6): 323-5. doi:10.1007/s003830050591

26. Ein SH. Gastric tubes in children with caustic esophageal injury: a 32-year review. Journal of Pediatric Surgery 1998; 33 (9): 1363-5. doi: 10.1016/S0022-3468(98)90008-2

27. Ryan F, Witherow H, Mirza J, Ayliffe P. The oral implications of caustic soda ingestion in children. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 101 (1): 29-34. doi:10.1016/j.tripleo.2005.04.025

28. Ferguson MK, Migliore M, Staszak VM, Little AG. Early evaluation and therapy for caustic esophageal injury. The American Journal of Surgery 1989; 157 (1): 116-20. doi: 10.1016/0002-9610(89)90430-3

29. Riffat F, Cheng A. Pediatric caustic ingestion: 50 consecutive cases and a review of the literature. Diseases of the Esophagus 2009; 22 (1): 89-94. doi:10.1111/j.1442-2050.2008.00867.x

30. Contini S, Tesfaye M, Picone P, Pacchione D, Kuppers B, Zambianchi C, et al. Corrosive esophageal injuries in children: a short lived experience in Sierra Leone. Int J Pediatri Otorhinolaryngol 2007; 71 (10): 1597-604. doi: 10.1016/j.ijpitol.2007.07.007

31. Youn BJ, Kim WS, Cheon J-E, Kim W-Y, Shin S-M, Kim I-O, et al. Balloon dilatation for corrosive esophageal strictures in children: radiologic and clinical outcomes. Korean J Pediatr 2010; 11 (2): 203-10. doi:10.3348/kjpr.2010.11.2.203

32. Arıcı M, Ozdemir D, Oray N, Buyukdeligoz M, Tuncok Y, Kalkan S. Evaluation of caustics and household detergents exposures in an emergency service. Human & experimental toxicology. 2012; 31 (6): 533-8. doi:10.1177/0960327111412803

33. Melek M, Edine Y, Çobanoğlu U, Ceylan A, Can M. An analysis of corrosive substance ingestion of children in eastern Turkey. East J Med 2008; 13 (1-2): 1-6.

34. Bychkova O.V, Lazuyk II, Averin V. Biodegradable stents—new approach to the treatment of caustic stenoses in children. Folia Gastroenterol Hepatol 2009; 7 (1): 30-4.

35. Reith D, Pitt W, Hockey R. Childhood poisoning in Queensland: an analysis of presentation and admission rates. Journal of Paediatrics and Child Health 2001; 37 (5): 446-50. doi:10.1046/j.1440-1754.2001.00666.x

36. Kane TD, Nwomeh BC, Nadler EP. Thoracoscopic-assisted esophagogastrectomy and laparoscopic gastric pull-up for lye injury. J SLS 2007; 11 (4): 474-80.

37. Pintus C, Manzoni C, Nappo S, Perrelli L. Caustic ingestion in childhood: current treatment possibilities and their complications. Pediatric Surgery International 1993; 8 (2): 109-12. doi:10.1007/BF00184211

38. Huang YC, Ni Y, Chang M-H. Corrosive esophagitis in children. Pediatric Surgery International 2004; 20 (3): 207-10.

39. Babl FE, Kharsch S, Woolf A. Airway edema following household bleachingestion. Am J Emerg Med 1998; 16 (5): 514–16. doi: 10.1016/S0735-6757(98)90006-7
Caustic ingestion in children

40. Betalli P, Falchett D, Giuliani S, Pane A, Dall'Oglio L, Luigi de' Angela G, et al. Caustic ingestion in children: is endoscopy always indicated? The results of an Italian multicenter observational study. Gastrointestinal Endoscopy 2008; 68 (3): 434–39. doi: 10.1016/j.gie.2008.02.016

41. Thirlwall A, Friedman N, Leighton S, Saunders M, Jacob A, Kangesu L. Caustic soda ingestion—a case presentation and review of the literature. J Pediatr Otorhinolaryngol 2001; 59 (2):1 29-35. doi: 10.1016/s0165-5876(01)00461-x

42. Thomas MO, Ogunleye E O, Somefun O. Chemical injuries of the esophagus: aetiopathological issues in Nigeria. J Cardiothorac Surg 2009; 4: 56. doi: 10.1186/1749-8090-4-56

43. Karnak I, Tanyel F C, Buyukpamukcu N, Hicsonmez A. Combined use of steroid, antibiotics and early bougienage against stricture formation following caustic esophageal burns. J Cardiovasc Surg 1999; 40 (2): 307-10.

44. Turna C, Ozkan U, Ozokutan BH, Ozdemir M, Kucukaydin M. Corrosive injuries of the esophagus innewborns. Pediatr Surg Int 2000;16 (7): 483-4.

45. Janoušek P, Jurovčík M, Grabec P, Kabelka Z. Corrosive oesophagitis in children following ingestion of sodium hydroxide granules—A case report. Int J Pediatr Otorhinolaryngol 2005; 69 (10): 1429–32. doi: 10.1016/j.ijporl.2005.03.032

46. Saetti R, Silvestrini M, Cutrone C, Barion U, Mirri L, Narne S. Endoscopic treatment of upper airway and digestive tract lesions caused by caustic agents. ANN Otol Rhinol Laryngol 2003; 112 (1): 29-36. doi: 10.1177/000348940311200107

47. Stone MM, E W Fonkalsrud, G H Mahour, J J Weitzman, H Takiff. Esophageal replacement with colon interposition in children. Ann Surg 1986; 203 (4): 346–51.

48. Gerzic ZB, Knezevic J B, Milicevic M N, Jovanovic B K. Esophagoplasty in the management of post corrosive strictures of the oesophagus. Ann Surg 1990; 211 (3): 329-36.

49. Ceylan H, Ozokutan B H, Gunduz F, Gozen A. Gastric perforation after corrosive ingestion. Pediatr Surg Int 2011; 27: 649–53. doi:10.1007/s00383-010-2739-6

50. Kukkady A, Pease PWB. Long-term dilatation of caustic strictures of the oesophagus. Pediatr Surg Int 2002;18 (5): 486–90. doi:10.1007/s00383-002-0798-z

51. Chen TY, Ko SF, Chuang JH, Kuo HW, Tiao MM. Predictors of esophageal stricture in children with unintentional ingestion of caustic agents. Chang Gung Med J 2003; 26 (4): 233-9.

52. Shukla RM, Mukhopadhyay M, Tripathy BB, Mandal KC, Mukhopadhyay B. Pyloric and antral strictures following corrosive acid ingestion: A report of four cases. J Indian Assoc Pediad Surg. 2010; 15 (3): 108–09. doi:10.4103/0971-9261.71749

53. Turner A, De Jong AL, Macdonald R, Ein S, Forte V. Corrosive oesophagitis in children: a 30-year review. Int J Pediatr Otorhinolaryngol 2001; 57 (3): 203–11. doi: 10.1016/S0165-5876(00)00440-7

54. Özcan C, Erinç R, Dirlik A, Mutaf O. Scintigraphy in the detection of gastro-oesophageal reflux in children with caustic oesophageal burns: a comparative study with radiography and 24-h PH monitoring. Pediatric Radiology 2001; 31 (10):737-41.

55. Rigo GP, Camellini L, Azzolini F, Guazzetti S, Bedogni G, Merighi A, Bellis L, Scarcelli A, Manenti F. What is the utility of selected clinical and endoscopic parameters in predicting the risk of death after caustic ingestion?. Endoscopy 2002; 34 (4): 304-10. doi: 10.1055/s-2002-23633

56. Brown RA, Millar AJW, Numanoglu A, Y-V advancement antropyloroplasty for
corrosive antral strictures. Pediatric Surgery International 2002; 18 (4): 252-54. doi: 10.1007/s003830100664

57. Baskin D, Urganci N, Abbasoğlu L, Alkim C, Yalçın M, Karadağ C, Sever N. A standardised protocol for the acute management of corrosive ingestion in children. Pediatric Surgical International 2004; 20 (11): 824-8. doi: 10.1007/s 00383-004-1294-4

58. Burn JG, Celerier M, Koska F, Dubost C. Blunt thoracic oesophageal stripping: an emergency procedure for caustic ingestion. British Journal of Surgery 1984; 71 (9): 698-700. doi: 10.1002/bjs.1800710918

59. Tiryaki T, Livanelioğlu Z, Atayurt H. Early bougienage for relief of stricture formation following caustic esophageal burns. Pediatr Surg Int 2005; 21 (2): 78–80. doi:10.1007/s00383-004-1331-3

60. Gupta SK, Croffie JM, Fitzgerald JF. Is Esophagogastroduodenoscopy Necessary in all Caustic Ingestions? Journal of Pediatric Gastroenterology and Nutrition 2001; 32 (1): 50-3.

61. Uhlen S, Fayoux P, Vachin F, Guimberteau D, Tureck D, Michaud L, Mitomycin C. An alternative conservative treatment for refractory esophageal stricture in children? Endoscopy 2006; 38 (4): 404-7.

62. Heran MKS, Baird R, Blair GK, Skarsgard ED. Topical mitomycin c for calcareous esophageal strictures: a noval endoscopic /fluoroscopic technique for safe endoluminal delivery. Journal of Pediatric Surgery 2008; 43 (5): 815-18. doi: 10.1016/j.jpedsurg.2007.12.017

63. Rosseneu S, Afzal N, Yerushalmi B, Ilbarquen-Secchia E, Lewindon P, Cameron D, et al. Topical application of mitomycin c in esophageal strictures. J Pediatr Gastroenterol Nutr 2007; 44 (3): 336-41. doi: 10.1097/MPG. 0b013e3 1802c6e45

64. Lin YC, Ma JY. Severe esophageal burn following chloral hydrate overdose in an infant. J Formos Med Assoc 2006; 105 (3): 235-7. doi: 10.1016/S0929-6646 (09)60311-9

65. Atabek C, Surer I, Demirbag S, Caliskan B, Ozturk H, Cetinkursun S. Increasing tendency in caustic esophageal burns and long-term polytetraflourethylene stenting in severe cases: 10 years’ experience. Journal of Pediatric Surgery 2007; 42 (4): 636-40.

66. Wiseman HM, Turner W ML, Volans GN. Acute poisoning due to Wrights Vaporizing fluid. Postgraduate Medical Journal 1980; 56: 166-168.

67. Mehregan F, Yavari P, Nourbakhsh K, Kheyri M. The study of clinical trend and effects of caustic ingestion based on endoscopy of children referring to Loghman Hakim hospital. Iranian Journal of Pediatrics 2004; 14 (2): 125-31. (Persian)

68. Azadeghan M, Amini Ranjbar H. The study of clinical manifestation and laboratory findings and endoscopy Upper gastrointestinal tract in patients with a history of ingestion of chemicals Toxicology section Loghman hospital in 2007. Pajoohande 2009; 14 (3): 123-28. (Persian)

69. Rafeey M, Shoaran M. Clinical characteristics and complications in oral caustic ingestion in children. Pak J Biol Sci 2008; 11 (19): 2351-5. doi: 10.3923/ pjb s. 2008.2351.2355

70. Vazirianzadeh B, Farhadpour F, Hosseinzadeh M, Zarean M, Moravvej SA. An epidemiological and clinical study on scorpionism in hospitalized children in khouzestan, Iran. Journal of Arthropod-Borne Diseases 2012; 6 (1): 62-9.

71. Assar S, Hatemi S, Lak E. Acute poisoning in children admitted to Ahwaz Abuzar and Golestan hospitals 2001-2004. Jundishapur Scientific Medical Journal 2008; 7 (1): 121-27. (Persian)

72. Huang Y-C, Ni Y-H, Lai H-S, Chang M-H. Corrosive esphagitis in children.
Caustic ingestion in children

Pediatric Surgery International 2004; 20 (3): 207-10. doi:10.1007/s00383-004-1153-3

73. Zarei AR, Jahanpour F, Alhani F, Razazan N, Ostovar A. The impact of multimedia education on knowledge and self-efficacy among parents of children with asthma: a randomized clinical trial. J Car Sci 2014; 3 (3): 185-92. doi: 10.5681/jcs.2014.020.

74. Özcan Z, Özcan C, Erin R, Dirlik A, Mutaf O. Scintigraphy in the detection of gastro-oesophageal reflux in children with caustic oesophageal burns: a comparative study with radiography and 24-h PH monitoring. Pediatric radiology 2001; 31(10): 737-41. doi:10.1007/s 002470100518

75. Anderson KD, Rouse TM, Randolph JG. A controlled trial of corticosteroids in children with corrosive injury of the esophagus. The New England Journal of Medicine 1990; 323 (10): 637-40. doi: 10.1056/NEJM199009063231004

76. Gandhi RP, Cooper A, Barlow BA. Successful management of esophageal strictures without resection or replacement. Journal of Pediatric Surgery 1989; 24 (8): 745-50. doi: 10.1016/s0022-3468(89)80529-9