Molecular diversity and relationships of fig associated nematodes from South Africa

Meike S. Kruger1,2,3*, Natsumi Kanzaki1,2,3*, Robin M. Giblin-Davis3, Jaco M. Greeff1

1 Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa, 2 Kansai Research Centre, Forestry and Forest Products Research Institute, Kyoto, Japan, 3 Department of Entomology and Nematology, Fort Lauderdale Research and Education Centre, University of Florida/IFAS, Davie, FL, United States of America

* These authors contributed equally to this work.

Abstract

Nematodes of figs and fig wasps have received limited attention in Africa since their discovery in 1973. Sixteen of the 25 species of native South African figs were sampled for nematode associates using molecular barcoding with three loci (SSU, LSU D2-D3 and mtCOI) and fourteen (93%) were positive for at least one nematode species. Thirty-three putative nematode species were classified as Aphelenchoididae, of which nine were identified as Ficophagus from four species of Ficus from the section Galoglychia (i.e., five ex F. burkei including one shared with F. natalensis, one ex F. glumosa, one ex F. lutea, and one ex F. stuhlmannii) and one species ex F. sur from the section Sycomorus. In addition, there were four nematode species classified as Schistonchus s.s. from section Galoglychia figs (i.e., one ex F. burkei, two ex F. trichopoda, and one ex F. glumosa). There was also one species of Bursaphelenchus nematode recovered from F. sur from the section Sycomorus. Sixteen putative nematode species were classified as Diplogastridae, of which eight occurred in two clades of what is currently called Parasitodiplogaster with one (P. salicifoliae) being recovered from two Ficus species in the section Urostigma (F. salicifolia and F. ingens) and seven diplogastrids being associated with six species of Ficus from the section Galoglychia (i.e., two ex F. burkei including P. sycophilon, one ex F. stuhlmannii, one ex F. burtt-davyi, one ex F. trichopoda, one ex F. abutilifolia and one ex F. sansibarica). Three Acrostitchus spp., a Teratodiplogaster and a Pristionchus species were recovered from F. sur and two Teratodiplogaster spp. and Pristionchus sycomor were recovered from F. sycomorus with both Ficus species belonging to the subgenus and section Sycomorus. The identities of the previously described T. martini and Parasitodiplogaster doliotoma (= P. trichopoda sp. 35) are discussed. Lastly, there was a panagrolaimid identified from F. petersii.

Introduction

Martin et al. [1] first reported about the amazing morphological diversity of nematodes inside figs from six native species of Ficus from Zimbabwe in 1973 and invited participation from the
global nematological community to help elucidate their identities and biology. Because non-native (introduced) figs were reported to be without fig wasp pollinators and did not have any nematode associates, a tight ecological and evolutionary relationship between nematodes, fig wasps, and figs was hypothesized [1]. Even though a few nematodes have been described from Africa, work elsewhere has shown that nematodes from two families, the Aphelenchoïdidae and Diplogastridae, are frequently associated with figs [2]. In general, members of the Diplogastridae can have useful typological characters for species/generic separations whereas members of the Aphelenchoïdidae often do not [3, 4], but cryptic species are possible within both groups [5–7]. Furthermore, diverse phenotypes can be produced by a single genotype in some members of both families [8–11]. For instance, Susoy et al. [8] reported how a diverse array of up to 5 phenotypes can be manifested by a single new species of *Pristionchus* (i.e., *P. sycomori* Susoy, Kanzaki, Kruger, Ragsdale & Sommer in Susoy et al. and *Pristionchus* sp. 35) in sycones of *F. sycomorus* L. and *F. sur* Forsskål in South Africa, respectively.

While both nematode families have been described from a *Ficus* in the African section/subsection *Galoglychia* [12, 13], it is not clear if this pattern is common in Africa. *Galoglychia* and three of the other five sections of *Ficus* that occur in Africa, *Sycomorus*, *Sycomorus* and *Urostigma* reach right down to South Africa [14]. Subsections of these three sections also occur in Asia, Southeast Asia and Australia where both nematode lineages have been found [14].

Poinar [12] described the first new species/genus of fig/fig wasp nematode from Africa in 1979, i.e., *Parasitodiplogaster syecophilon* Poinar (Diplogastridae) from the fig wasp, Elizabethella stuckenbergi Grandi (Agonidae) in figs (sycones) of *Ficus burkei* (Miq.) from Zimbabwe. Vovlas et al. [13] described *Schistonchus africanaus* Vovlas, Troccoli, van Noort & van den Berg (Aphelenchoïdidae) from figs of *F. burkei* and the fig wasp *E. stuckenbergi* from South Africa. Kanzaki et al. [15] described *Teratodiplogaster martini* Kanzaki, Giblin Davis, Davies & Center (Diplogastridae) from *Ficus* sp. and *Parasitodiplogaster dolistoma* Kanzaki, Giblin-Davis, Davies & Center (Diplogastridae) from *Ficus* sp. and *Parasitodiplogaster dolistoma* Kanzaki, Giblin-Davis, Davies & Center from *F. sur* from fixed materials provided from Martin et al.’s [1] original collections, and Jauharlina et al. [16] outlined the association dynamics between *Parasitodiplogaster* sp. and its fig wasp host *E. baijnathi* Wiebes and sycones of *F. burtt-davyi* Hutchinson from South Africa. More recently, Wöhr et al. [17, 18] re-described *Parasitodiplogaster syecophilon* from *F. burkei* and described *Parasitodiplogaster salicifoliae* Wöhr, Greff, Kanzaki & Giblin-Davis from figs of *F. salicifolia* Vahl / *F. ingens* (Miq.) from South Africa, respectively. Except for the most recent work [8, 17, 18], all African fig/fig wasp nematode taxonomy was done solely with traditional morphology, which can be misleading with certain nematode groups and requires molecular sequence data for placement of these taxa into a modern phylogenetic framework.

Since adult or juvenile nematodes are phoretic/necromenic/or parasitic on the species-specific fig wasps and fossil evidence suggests that *Parasitodiplogaster*’s relationship is at least 19 million years old and they may well have co-diversified with the pollination mutualism [19] we can expect these two families to frequent figs from southern Africa. The paucity of information from African *Ficus* sections/subsections that occur on other continents and the phenotypic conservatism and occasional extreme trophic plasticity suggest a broad survey in Africa would be insightful. In the present study, we surveyed as many native figs as possible over a four-year period in South Africa to examine the identity and patterns of nematode associates of figs.

Materials and methods

Ethics statement

Specific permissions were not required for the nematodes collected for the present study. The trees sampled for nematode collection were either inside the University of Pretoria campus or
places open to the public. Endangered or protected species were not involved with the present study.

Nematode collection

Fig syconia in various phases (phases B-E) were collected from 25 *Ficus* species from many locations across South Africa (Fig 1, Table 1, S1 Table in S2 File). In general, fig syconia manifest phenologically in five phases based upon the pollination mutualism and corresponding development of the fig and its fig wasp pollinators as described by Janzen [20]. Because nematodes are vectored into the developing fig only after the syconia becomes receptive at phase B (female), phase A (pre-receptive or pre-female) figs were not used. In most cases, the ideal phases for nematode collection were early to late interfloral (phase C) or male (phase D) figs which were always used, if available. However, because fruit availability can be unpredictable, we collected phase B and E if it was the only fruit available. An average of 50 syconia were collected per crop and never less than 30. Collected figs were cut into ca 1–2 mm thick pieces and soaked in water for 10–15 min. Nematodes recovered from the sliced figs were hand-picked, identified to their taxonomic group at genus or family level at low magnification under a dissecting microscope according to body and stomatal/stylet shapes, and 3–5 individuals for each morphotypes were placed into either 100% ethanol or nematode digestion buffer (NDB) [21, 22], but less than that if there were insufficient specimens recovered. The rest of the individuals were killed by heat and fixed in formalin and processed into glycerin [23] as morphological vouchers. In addition, some individuals isolated from *F. sur* and *F. sycomorus* were transferred to DESS [24] to eventually compare their typological characters and molecular phylogenetic status for single nematodes.

![Fig 1. Map of southern Africa, country names in large font, city names in small font. Each color dot represents a fig species sampled in the area, mostly associated with cities. The color legend defines the fig species that each color represents.](https://doi.org/10.1371/journal.pone.0255451.g001)
Molecular profiles and phylogeny

The nematodes transferred to 100% ethanol or NDB were used for molecular samples to survey the diversity of nematode genotypes associated with different fig species from different locations, i.e., DNA was extracted from ethanol-fixed material using a QIAamp DNA Micro Kit (Qiagen, Germany) and NDB-treated samples were digested under 55°C for 20 min. Whereas the DESS-fixed materials were re-hydrated in a drop of sterile water, photo-documented (see below for methods), transferred to NDB and digested for use as template DNA.

We attempted to amplify and sequence three genetic loci, i.e., nearly full-length small subunit (SSU) and D2-D3 expansion segments of the large subunit (LSU) of ribosomal RNA genes and a partial region of the mitochondrial cytochrome oxidase subunit I (mtCOI) for all DNA template samples. Methodologies of Ye et al. [25] and Kanzaki and Futai [26] were employed for sequencing ribosomal RNAs and mtCOI. Briefly, amplification of SSU, LSU and mtCOI were attempted with primer sets, SSUF07 (5’—AAA GAT TAA GCC ATG CAT G—3’) and SSUnR (5’—TTA CGACTT TTG CCC GGT TC—3’), D2a (5’—ACA AGT ACC GTG AGG GAA AGT TG—3’) and D3b (5’—TCG GAA GGA ACC AGC TAC TA—3’),

Table 1. Host, locality and recovered nematode species from dissected fig syconia.

Fig section: subsection	Ficus species	Collection localities	Nematode species *	Previously reported pollinator wasp species b
Galoglychia: Chlamydodora	F. burkei	Abel Erasmus pass, Phophiidi, Nhlele Valley, Louis Trichardt, Hartbeespoort Dam	Parasitodiplogaster sycopilon, Parasitodiplogaster n. sp. 6, Ficophagus n. sp. 1, 2, 5, 6, 7, Schistonchus n. sp. 4	Elisabethiella stuckenbergi
F. natalensis	Ballito	Ficophagus n. sp. 7	Elisabethiella socotrensis	
F. burtt-davyi	Eastern Cape	Parasitodiplogaster n. sp. 2	Elisabethiella baijnathi	
F. petersii	Nelspruit	Unidentified panagrolaimid	Alfonsiella binghami	
F. craterostoma	Pretoria	Morphological vouchers only, not genotyped	Alfonsiella pipithensis	
Galoglychia: Platphyllae	F. stuhlmannii	Nelspruit	Parasitodiplogaster n. sp. 5, Ficophagus n. sp. 8	Alfonsiella binghami
F. abutilifolia	Pretoria	Parasitodiplogaster n. sp. 3	Elisabethiella comptoni	
F. trichopoda	Ballito	Parasitodiplogaster n. sp. 1, Schistonchus n. sp. 1, 2	Elisabethiella bergi breviceps	
F. glumosa	Nelspruit, Pretoria	Schistonchus n. sp. 3	Elisabethiella glumosae	
Galoglychia: Galoglychia	F. lutea	Ballito	Ficophagus n. sp. 9	Allotriozoon heterandromorphum
Galoglychia: Caulocarpae	F. sansibarica	Nelspruit	Parasitodiplogaster n. sp. 4	Courtella armata
Urostigma: Urostigma	F. ingens	Pretoria	Parasitodiplogaster salicifoliae	Platyscapa soraria
F. salicifolia	Pretoria, Nelspruit	Parasitodiplogaster salicifoliae	Platyscapa awekei	
F. cordata	Augrabies Falls	Morphological vouchers only, not genotyped	Platyscapa desertorum	
Sycomorus: Sycomorus	F. sur	Ballito, Pretoria	Teratodiplogaster cf. martini, Acerostichus n. sp. 1, 2, 3 (and 4), Pristionchus sp. 35 ex Susoy et al. [8] (= cf. “Parasitodiplogaster” doliosoma ex Kanzaki et al. [15]), Ficophagus n. sp. 4	Ceratosolen capensis
F. sycomorus	Pretoria, Nelspruit	Teratodiplogaster n. sp. 1, 2, Pristionchus sycomori	Ceratosolen arabicus	

* The numbers suggest the genotype code considered as different undescribed species based on the differences of molecular sequences.

b Information from van Noort & Rasplus [14].

* Not analyzed phylogenetically because only relatively short (ca 400 bps) fragment of D2-D3 LSU was obtained, and no close relative was found in GenBank, i.e., the closest sequences were Macrolaimus spp. with 80% of identity (see text).

d Although multiple species of nematodes were found, molecular materials were not available, and only collection records are presented here.

https://doi.org/10.1371/journal.pone.0255451.t001

Molecular profiles and phylogeny

The nematodes transferred to 100% ethanol or NDB were used for molecular samples to survey the diversity of nematode genotypes associated with different fig species from different locations, i.e., DNA was extracted from ethanol-fixed material using a QIAamp DNA Micro Kit (Qiagen, Germany) and NDB-treated samples were digested under 55°C for 20 min. Whereas the DESS-fixed materials were re-hydrated in a drop of sterile water, photo-documented (see below for methods), transferred to NDB and digested for use as template DNA.

We attempted to amplify and sequence three genetic loci, i.e., nearly full-length small subunit (SSU) and D2-D3 expansion segments of the large subunit (LSU) of ribosomal RNA genes and a partial region of the mitochondrial cytochrome oxidase subunit I (mtCOI) for all DNA template samples. Methodologies of Ye et al. [25] and Kanzaki and Futai [26] were employed for sequencing ribosomal RNAs and mtCOI. Briefly, amplification of SSU, LSU and mtCOI were attempted with primer sets, SSUF07 (5’—AAA GAT TAA GCC ATG CAT G—3’) and SSUnR (5’—TTA CGACTT TTG CCC GGT TC—3’), D2a (5’—ACA AGT ACC GTG AGG GAA AGT TG—3’) and D3b (5’—TCG GAA GGA ACC AGC TAC TA—3’),
and COIF1 (5’—CCT ACT ATG ATT GGT GGT TTT GGT AAT—3’) and COIR2 (5’—GTA GCA GTA AAA TAA GCA CG—3’), respectively. Upon successful amplification, sequences were determined with Sanger sequencing using the purified amplicons. Sequences with ambiguous or poor quality electropherogram/chromatograms were omitted. The sequences were compared with those deposited in the GenBank database using BLASTN program (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) for initial identification, and the generic status of all compared sequences were confirmed by their phylogenetic status. High quality sequences are summarized in Table 1 and S1 Table in S2 File.

Because two groups (= families), Aphelenchoididae and Diplogastridae were recognized, these families were phylogenetically analyzed separately for each locus using Bayesian Inference (BI) to determine their phylogenetic status within family (SSU and D2-D3) or other fig-associates (mtCOI). Compared sequences and their GenBank accession numbers are shown in Figs 2–7. The compared sequences were selected according to previous family-wide analyses, i.e., Kanzaki et al. [27] and Davies et al. [3] for Aphelenchoididae and Wohr et al. [17], Zeng et al. [28] and Gonzalez et al. [29] for Diplogastridae.

Compared sequences were aligned using the MAFFT program [30, 31] (https://mafft.cbrc.jp/alignment/server/index.html) with the default settings. The base-substitution models for each gene were determined using the MEGA 7 software [32] and the Akaike information criterion. Combined Bayesian analysis was performed using the MrBayes 3.2 software [33, 34]; four chains were run for 4×10^6 generations, and Markov chains were sampled at intervals of 100 generations [35]. Two independent runs were performed, and after confirming convergence and discarding the first 2×10^6 generations as ‘burn in’, the remaining topologies were used to generate a 50% majority-rule consensus tree.

Morphological observation

Several DESS-fixed materials were rehydrated and observed for their typological characters, particularly stomatal/stylet and pharyngeal morphologies and male and female tail characters which are usually used for diagnostic characters, prior to digestion. The materials were temporarily mounted on an agar pad, observed under a light microscope (Eclipse 80i, Nikon) with differential interference contrast (DIC) optics and photomicrographed using a microscope digital camera system (MC170 HD, Leica) connected to the microscope. The micrographs were edited using Photoshop Elements 3.0 (Adobe) for constructing micrographic figures (S1–S7 Figs in S1 File). Some formalin-fixed materials were also observed for identification of nematodes to the genus or family-level, and some typological characters were noted and illustrated using a camera-lucida drawing system (S8 Fig in S1 File).

Results

Sample collection

Fig fruits (syconia) were successfully collected from 16 out of 25 South African native Ficus species. Nematode DNA sequences were obtained from 14 fig species. However, because of shortages in the number of collected nematodes or material condition, only morphological vouchers were obtained from two of the fig species. Collection information and molecular identification (genotyping) are summarized in Table 1 and S1 and S2 Tables in S2 File.

Nematode identification

Nematodes were identified based on their typological characters and phylogenetic status.
Phylogenetically, three aphelenchoidid genera (*Schistonchus*, *Ficophagus* and *Bursaphelenchus*), four diplogastrid genera (*Parasitodiplogaster*, *Teratodiplogaster*, *Pristionchus* and *Acrostichus*), and an unidentified panagrolaimid species were recognized (Table 1, S1 Table in S2 File).

Three fig-associated aphelenchoidid genera previously considered *Schistonchus* s. l. (*Schistonchus*, *Martininema* and *Ficophagus*) are typologically similar to each other [3]. Therefore, the identification of these genera was confirmed using molecular phylogenetic analyses. The phylogenetic analyses of three loci suggested that the sequences belonging to subfamily Aphelenchoidinae are separated into four *Schistonchus* spp. and nine (or ten) *Ficophagus* spp. (Figs 2–4, Table 2).

These are all considered to be new nematode species and were isolated from various sections/subsections of figs in South Africa, namely subgenus *Urostigma* and section *Galoglychia*.

https://doi.org/10.1371/journal.pone.0255451.g002

Fig 2. Phylogenetic status of fig-associated species within the family Aphelenchoideae inferred from SSU under GTR + G model. The parameters are: AIC = 56880.841, lnL = -28210.097, freqA = 0.26, freqC = 0.20, freqG = 0.27, freqT = 0.27, R(a) = 0.85, R(b) = 2.47, R(c) = 1.02, R(d) = 0.88, R(e) = 3.48, R(f) = 1.00, Pinv = n/a, Shape = 0.39. Posterior probability values exceeding 50% are given on appropriate clades. Fig-associated nematode species obtained in the present study and previous studies are written in red and blue, respectively. Section or subsection of host fig species are coded with color dots.
Diplogastrid nematodes were molecularly separated (clustered) into eight *Parasitodiplogaster* spp. (*P*. *sycophilon*, *P*. *salicifoliae*, and six new species), three *Teratodiplogaster* spp. (*T*. cf. *martini* and two new species), two *Pristionchus* spp. (*P*. *sycomori* and *Pristionchus* sp. 35), and three new *Acrostichus* spp. (Figs 5–7).

Parasitodiplogaster spp. were recovered from various figs in the subgenus *Urostigma* and phylogenetic groupings were in accordance with specific sections and subsections of host figs in South Africa, i.e., *P. salicifoliae* was isolated only from section *Urostigma* and subsection
Urostigma figs whereas P. sycophilon and the other six new Parasitodiplogaster species were associated with section Galoglychia figs from three subsections (Caulocarpae, Chlamydodorae and Platyphyllae) (Figs 2–4). This contrasts with Pristionchus, Teratodiplogaster and Acrostichus which were found exclusively from figs in the subgenus and section Sycomorus and each was inferred as being monophyletic within each genus (Figs 2–4). Because we observed only one species of Parasitodiplogaster (n. sp. 2) associated with sycones of F. burtt-davyi from South Africa it is quite possible that it is conspecific with the species studied for its fig and fig wasp host dynamics by Jauharia et al. [16].

The typological characters observed in DESS- and formalin-fixed materials are mostly in accordance with the phylogenetic status, i.e., the examined characters were basically identical to the generic characters or specific characters of nominal species, although some parts, e.g., male genital papillae, were sometimes not clear (S1–S8 Figs in S1 File).

In addition, a short fragment of LSU with ca 400 bp of an unidentified panagrolaimid species was recognized from F. petersii Warburg. However, further identification or phylogenetic analysis were not conducted for the nematode because the sequences closest to it were Macro-laimus spp. (Panagrolaimomorpha) with only 80% identity match.
Discussion

Taxonomic issues of fig-associated nematodes

Martin et al. [1] highlighted the potential for amazing diversity in the fig and fig wasp associated nematode fauna of Africa and the world with a survey of figs from Zimbabwe in southern Africa. The traditional typological/morphological approaches available at that time would have led to misinterpretations about this diversity and their life histories, especially in the subgenus Sycomorus clade figs where it appears that they observed the most diversity.

First, there was the issue of extremes in polyphenism of up to five morphotypes per genotype for a clade of, at that point, unknown subgenus Sycomorus fig associated Pristionchus species [8]. Within two Pristionchus spp. found in the present study, Pristionchus sp. 35 is considered conspecific to "Parasitodiplogaster" doliostoma, because although Pristionchus...
sp. 35 has not been formally described, it is phylogenetically close to *P. borbonicus* and *P. sycomori*, and the stomatal morphology of “*P. doliostoma*” is clearly similar to that of the type IV morph of these two *Pristionchus* spp. [8, 15], i.e., “*P. doliostoma*” is hypothesized as one morphotype of *Pristionchus* sp. 35. The species will need to be transferred to *Pristionchus*, but a formal taxonomic revision will be presented elsewhere. This polymorphism helps explain the misclassification of “*Parasitodiplogaster* doliostoma” by Kanzaki et al. [15] from original preserved specimens from Martin et. al [1]. Data presented herein and in Susoy et al. [8] for *Pristionchus* sp. 35 (= *Parasitodiplogaster* cf. *doliostoma*) and *P. sycomori* demonstrates that about half of the nematode species diversity Martin et al. [1] observed in each *Sycomorus* fig (i.e., *F. sur* and *F. sycomorus*) was probably due to a single species of *Pristionchus* that can manifest in morphotypes as divergent as five different diplogastrid genera, presumably to fill niches during the phenology of the developing syconium [8]. There is also the newly documented situation

https://doi.org/10.1371/journal.pone.0255451.g006

Fig 6. Phylogenetic status of fig-associated species within the family Diplogastridae inferred from D2-D3 LSU under GTR + G + I model. The parameters are: AIC = 55649.066, lnL = -27559.395, freqA = 0.20, freqC = 0.22, freqG = 0.33, freqT = 0.25, R(a) = 0.53, R(b) = 1.92, R(c) = 0.89, R(d) = 0.50, R(e) = 3.51, R(f) = 1.00, Pinva = 0.21, Shape = 0.94. Posterior probability values exceeding 50% are given on appropriate clades. Fig-associated nematode species obtained in the present study and previous studies are written in red and blue, respectively. Section or subsection of host fig species are coded with color dots.

https://doi.org/10.1371/journal.pone.0255451.g006
of extreme morphological divergence in *Acrostichus ziaelasi* Kanzaki, Liang, Chiu & Li from a tenebrionid beetle termitiphile [36] which converges in trophic morphology on another genus (*Rhabditolaimus*) which might help explain Martin et al.’s [1] observation of nematodes that looked like members of *Cylindrocorpidae* (= *Rhabditolaimus*) from *Sycomorus* figs. Given that *A. ziaelasi* is close to *Acrostichus* n. spp. 1 and 2 as well as three Asian *Sycomorus* fig clade associates (Figs 5 and 6) it is possible that some odd manifestation of trophic morphology in this genus of *Sycomorus* associated nematodes is yet to be observed. *Parasitodiplogaster* was reported from *F. sycomorus* in Susoy et al. [8] but was not recovered from *Sycomorus* figs in this study. *Teratodiplogaster* (i.e., *T. cf. martini* and *Teratodiplogaster* n. spp. 1 and 2) was delimited to *Sycomorus* figs and interestingly this clade was sister to the *P. salicifoliae* clade of nematodes from *Urostigma/Urostigma* figs (Fig 6).

Second, and in contrast to the intraspecific morphological diversity in *Pristionchus* spp., fig and fig wasp associated aphenlenchoidids show highly conserved (convergent) morphology which resulted for many years in the lumping of three disparate genera into *Schistonchus sensu latu* which have now been separated into *Schistonchus s.s.*, *Martininema* and *Ficophagus* [3].

https://doi.org/10.1371/journal.pone.0255451.g007

Fig 7. Phylogenetic relationship of fig-associated Diplogastridae species inferred from mtCOI under GTR + G model. The parameters are: AIC = 9938.549, lnL = -4858.882, freqA = 0.26, freqC = 0.12, freqG = 0.19, freqT = 0.43, R (a) = 0.44, R(b) = 3.03, R(c) = 1.72, R(d) = 0.68, R(e) = 3.24, R(f) = 1.00, Pinva = n/a, Shape = 0.32. Posterior probability values exceeding 50% are given on appropriate clades. Fig-associated nematode species obtained in the present study and previous studies are written in red and blue, respectively. Section or subsection of host fig species are coded with color dots.

https://doi.org/10.1371/journal.pone.0255451.g007
Ficus section	Ficus subsection	Schistonchus s.s.	Bursaphelenchus	Ficophagus	Parasitodiplogaster	Teratodiplogaster	Pristionchus	Acrostichus
Galoglychia	Chlamydocarae	1	-	5	3	-	-	1
	Platystylae	3	-	2	3	-	-	-
	Galoglychia	-	-	1	-	-	-	-
	Calocarpe	-	-	1	-	-	-	-
Urostigma	Urostigma	-	-	-	1	-	-	-
Sycomorus	Sycomorus	-	1	1	3	2	3	-

https://doi.org/10.1371/journal.pone.0255451.t002
addition, there is another aphelench lineage (Parasitaphelenchinae), i.e., a clade of Sycomorus fig associated Bursaphelenchus (e.g., Bursaphelenchus n. sp. 1 and B. sycophilus) (Figs 2 and 3, S2 Fig in S1 File) that morphologically converged on the mouth form (stylet) motif of Schistonchus s.l. This makes aphelenchoid nematodes difficult to separate from typical Schistonchus s.l. especially in mixed populations of fig-associated nematodes [3, 27, 29]. For example, only one aphelenchoid, S. africanus has been described from the studied region from F. burkei [13], and thus, one of the six aphelenchoids (five Ficophagus and one Schistonchus spp.) recovered from F. burkei in this study could be conspecific to S. africanus. However, because of the typological similarity among fig-associated aphelenchoids and the lack of detailed morphological and genetic information in the original description [9, 13], we could not resolve or further characterize S. africanus using current taxonomic standards. In addition, the number and quality of materials collected in the present study were not sufficient to characterize each genotype typologically. Therefore, the conspecificity and the phylogenetic status of S. africanus with any of the F. burkei isolates in this study remains unclear and will require a reverse taxonomy approach. In addition, a species of Bursaphelenchus which is closely related to B. sycophilus isolated from F. variegata in Japan (Figs 2 and 3) [27] was isolated from F. sur from Pretoria corroborating a subgeneric Sycomorus fig co-association for this fig-derived Bursaphelenchus clade. Susoy et al. [8] reported discovery of a Bursaphelenchus from F. sycomorus from Pretoria that will require further work for phylogenetic placement.

Lastly, there is the issue of mixed lineages and incomplete lineage sorting from movement of species of nematodes among the different pollinators or inquilines that might visit different Ficus species [37, 38]. Clearly, Martin et al. [1] made an extraordinary discovery about fig-associated nematodes in Africa, especially when it comes to Sycomorus clade figs, which is corroborated and further elucidated here with the aid of molecular inferences (Figs 2–7).

In addition to the two typical fig-associated families (Aphelenchoididae and Diplogastriidae), an unidentified panagrolaimid was recognized in the present study. The precise phylogenetic status of the panagrolaimid is still unknown. This finding suggests that nematode colonization in fig syconia has occurred many times, more than we expected, and further diversity of fig associated nematodes will be discovered by more extensive collecting.

Host fig association

The phylogenetic relationships inferred for the fig-associated aphelenchoid genera (Schistonchus and Ficophagus) recovered in this study were not clearly associated with geography or host fig subsections (Figs 2–4). The only true affiliation between Ficophagus and fig lineages appears to be between Central American delimited Pharmacosycea figs and their associated nematodes (both Ficophagus and Parasitodiplogaster), but in the South African figs, Ficophagus n. sp. 4 ex F. sur appeared consistently monophyletic with other Ficophagus spp. from Sycomorus clade figs from other continents in SSU and LSU inferences (Figs 2 and 3). Similarly, the discovery of Bursaphelenchus sp. 1 from F. sur from Pretoria and its monophyly with B. sycophilus from F. variegata from Japan [27] establishes a subgeneric Sycomorus fig co-association for a fig-adapted Bursaphelenchus clade. It also portends that the Bursaphelenchus reported from F. sycomorus by Susoy et al. [8] will be monophyletic with other Sycomorus clade fig associated Bursaphelenchus from Africa and Australasia when re-examined.

Poinar [12] described P. sycophilon as the first member of this genus from F. burkei (subsections Chlamydomorae) from Zimbabwe without molecular data. We can now place P. sycophilon with six new Parasitodiplogaster species that are all associated with Urostigma subgenus, section Galoglychia figs from three subsections (Caulocarpaceae, Chlamydomorae and Platyphyllae) which form an African delimited Parasitodiplogaster clade that is associated with an African
delimited *Ficus* clade (Figs 5–7). In contrast, *P. salicifoliae* was isolated only from section *Urostigma* and subsection *Urostigma* figs from South Africa (*F. salicifolia* and *F. ingen*se) but formed a monophyletic clade with other *Parasitodiplogaster* species from this clade of figs from Australia (i.e., *P. australis* Bartholomaeus, Davies, Ye, Kanzaki & Giblin-Davis) and China (i.e., *P. religiosa* Zeng, Zeng, Zhang, Ye, Cheng, Kanzaki & Giblin-Davis) (Figs 5 and 6).

Multiple lineages of a nematode genus were found in the same fig species, and these lineages included close relatives (a pair of sister species), in the present study. For example, *F. burkei* harbored two *Parasitodiplogaster* spp. (*P. sycophilon* and its close relative, *Parasitodiplogaster* n. sp. 6), and five *Ficophagus* spp. (*Ficophagus* n. spp. 1, 2, 5–7, where sp. 1 and sp. 2 are close to each other, and spp. 5–7 form a subclade), and *F. sur* had three or four closely related *Acrostichus* spp. (n. sp. 1–3 or 4), *T. cf. martini*, *Pristionchus* sp. 35 (= *Parasitodiplogaster* cf. *doliostoma*) and *Ficophagus* sp. 4 (Figs 2–7, Table 1, S1 Table in S2 File). Similar multiple colonization events and duplications of the lineages were found in previous studies, e.g., *F. hispida* L. harbors two *Ficophagus* spp. (*F. centerae* (Zeng, Giblin-Davis & Ye) and an undescribed *Ficophagus* species), three *Martininema* spp. (*M. guanghoensis* (Zeng, Giblin-Davis & Ye), *M. baculum* (Davies, Bartholomaeus, Kanzaki, Ye & Giblin-Davis) and an undescribed *Martininema* species), and an undescribed *Schistonchus* sp. [39–41], and *F. maxima* Mill. has three *Parasitodiplogaster* spp. (*P. maxinena* Poinar & Herre, *P. pharmaconema* Kanzaki, Giblin-Davis, Ye, Herre & Center and an undescribed species which are all close to each other) and *Ficophagus maxima* Davies, Ye, Center, Kanzaki, Bartholomaeus, Herre, Esquivel & Giblin-Davis [42–44].

Multiple colonization events and the duplication of lineages are also well documented in wood and bark beetles and their associated nematodes. A species of bark beetle often harbors different lineages of aphaelenchoidids and diplogastrids [45, 46], and two closely related *Bursaphelechnus* spp. (*B. luxuriosae* Kanzaki & Futai and *B. acalolepta* Kanzaki, Ekino, Maehara, Aikawa & Giblin-Davis) share the same host (Araliaceae trees) and carrier beetle (*Acalolepta luxuriosa* (Bates)) [47].

The wasp associations of the nematodes, e.g., host range, were not examined in the present study. These nematodes are carried by fig wasps, and thus, their fig host range is determined by the wasps. Several previous authors reported that host specificity of the fig wasps which is determined by chemical signals from the fig host can become less stringent. One species of wasp can drive the diversification of figs and their pollinating wasps [49, 50]. Because the nematodes are tightly associated with figs and fig wasp as the habitat/host and carrier/host, their diversification and host switching are likely to be affected by those of the carrier host. Further collections of figs, wasps and nematodes and specifying their host/carrier ranges, i.e., carrier wasp range of nematodes and host range of wasps, are necessary to understand their tripartite associations.

In the present study, we focused on the diversity of nematodes in relation to their host/habitat fig lineages but did not conduct extensive research involving the diversity and host range of the fig wasps. Further studies on biological and phylogenetic relationships among nematodes, fig wasps and fig trees will help reveal the mechanism(s) and give further insights into the evolutionary context of these tripartite relationships.

Our study has expanded and improved the clarity and resolution of Martin et al. [1] with a more extensive spatial/temporal snapshot of the fig-associated nematode fauna from South Africa with the aid of molecular technology. However, it still relied upon the luck of finding asynchronously fruiting fig trees in the proper phases with nematodes in good condition with different association rates with their fig wasp and/or fig hosts from a large area during a finite
survey. Thus, there are potentially many more nematode species and interesting life history discoveries to be made to add upon what is reported here. There is also much reverse taxonomy needed to finish tying the genotypes reported in this study with well-defined morphotypes and biological/life history traits for South African species of fig associated nematodes as recently initiated by Wöhr et al. [17, 18] and Susoy et al. [8].

Supporting information

S1 File. Typological characters of several nematode species recovered from the fig materials. Light micrographs or drawn are provided as supplementary figures.

(SPDF)

S2 File. Detailed collection information and taxonomic status of Ficus species appeared in the present study.

(XLSX)

Acknowledgments

The authors sincerely thank Dr. Kerrie A. Davies, University of Adelaide, for her mentorship of M. K. concerning nematode taxonomy, morphology, and scientific illustration and for her friendship and collaboration on many nematode adventures with N.K. and R.G-D, and Dr. Steve Compton for assistance and advice with sampling. The authors are grateful to the University of Pretoria, for a Postgraduate Study Abroad Bursary and international student registration fee award that allowed MSK to learn from her co-authors in person.

Author Contributions

Conceptualization: Meike S. Kruger, Jaco M. Greeff.

Data curation: Meike S. Kruger, Natsumi Kanzaki.

Formal analysis: Meike S. Kruger, Natsumi Kanzaki.

Funding acquisition: Natsumi Kanzaki, Jaco M. Greeff.

Investigation: Meike S. Kruger, Natsumi Kanzaki, Robin M. Giblin-Davis, Jaco M. Greeff.

Methodology: Meike S. Kruger, Natsumi Kanzaki, Robin M. Giblin-Davis, Jaco M. Greeff.

Project administration: Robin M. Giblin-Davis, Jaco M. Greeff.

Resources: Meike S. Kruger, Natsumi Kanzaki, Robin M. Giblin-Davis, Jaco M. Greeff.

Supervision: Natsumi Kanzaki, Robin M. Giblin-Davis, Jaco M. Greeff.

Validation: Meike S. Kruger, Natsumi Kanzaki, Robin M. Giblin-Davis, Jaco M. Greeff.

Visualization: Meike S. Kruger, Natsumi Kanzaki.

Writing – original draft: Meike S. Kruger, Natsumi Kanzaki, Robin M. Giblin-Davis, Jaco M. Greeff.

Writing – review & editing: Meike S. Kruger, Natsumi Kanzaki, Robin M. Giblin-Davis, Jaco M. Greeff.

References

1. Martin GC, Owen AM, Way JI. Nematodes, figs and wasps. J Nematol. 1973; 5:77.

2. Giblin-Davis RM, Davies KA, Taylor GS, Thomas WK. Entomophilic nematode models for studying biodiversity and cospeciation. In: Chen ZX, Chen SY, Dickson DW, Editors, Nematology, Advances and
Fig associated nematodes from South Africa

PAMPERS. Vol. 1. Beijing: Tsinghua University Press / Wallingford: CABI Publishing; 2004, pp. 493–540.
3. Davies KA, Bartholomaeus F, Kanzaki N, Ye W, Giblin-Davis RM. A review of the taxonomy, phylogeny, distribution and co-evolution of Schistochus (Nematoda: Aphelenchoidea) and proposal of Ficophagus n. gen. and Martininema n. gen. Nematology 2015; 17:761–829. https://doi.org/10.1163/15685411-00002907
4. Sudhaus W, Först von Lieven A. A phylogenetic classification and catalogue of the Diplodastriidae (Secernentea, Nematoda) J Nematode Morph Syst. 2003; 6:43–90.
5. Kanzaki N, Herrmann M, Weiler C, Rößeler W, Theska T, Berger J, et al. Nine new Pristionchus (Nematoda: Diplodastriidae) species from China. Zootaxa 2021; 4943:1–66. https://doi.org/10.11646/zootaxa.4943.1
6. Ragsdale EJ, Kanzaki N, Herrmann M. Taxonomy and natural history; the genus Pristionchus. In: Sommer RJ, editor, Pristionchus pacificus—a nematode model for comparative and evolutionary biology. Nematology Monographs and Perspectives 11 (Series Editors: Hunt DJ, Perry RN). Leiden: Brill 2015. pp. 77–120. https://doi.org/10.1163/9789004260306_005
7. Kanzaki N, Giblin-Davis RM. Acrostichus palmarum n. sp., a cryptic species separated from A. rhyncophori by molecular sequences and hybridization tests. Nematology 2018; 20:751–768. https://doi.org/10.1163/15685411-00003173
8. Susoy V, Herrmann M, Kanzaki N, Kruger M, Nguyen CN, Röddlerger C, et al. Large-scale diversification without genetic isolation in nematode symbionts of figs. Sci Adv. 2016; 2:e1501031. https://doi.org/10.1126/sciadv.1501031
9. Sommer RJ. The future of evo-devo: model systems and evolutionary theory. Nat Rev Genet. 2009; 10:416–422. https://doi.org/10.1038/nrg2567
10. Kanzaki N, Ekino T, Giblin-Davis RM. Feeding dimorphism in a mycophasous nematode, Bursaphelenchus sinensis. Sci Rep. 2019; 9:13956. https://doi.org/10.1038/s41598-019-50462-z
11. Kanzaki N, Giblin-Davis RM. The genus Bermsenus Massey, 1974 is a junior synonym of Bursaphelenchus Fuchs, 1937. Nematology 2020; 22:677–695. https://doi.org/10.1163/15685411-00003332
12. Poinar GO. Parasitodiplogaster sycophilon gen. n., sp. n. (Diplodastriidae: Nematoda), a parasite of Elisabethiella stickenbergi Grandi (Agaonidae: Hymenoptera) in Rhodesia. Proc K Ned Akad Wet C. 1979; 82:375–381.
13. Vovlas N, Troccoli A, Van Noort S, Van den Berg E. Schistochus africans n. sp (Aphelenchidea: Aphelenchoideidae) associated with Ficus thonninii (Moraceae) and its pollinator wasp Elisabethiella stickenbergi (Chalcidoidea: Agaonidae). J Nematol. 1998; 30:404–410.
14. von Noort S, Rasplius J-Y. Figweb: figs and fig wasps of the world. 2021 [cited 20 May 2021]. Available from: https://www.figweb.org/Figs_and_fig_wasps/index.htm.
15. Kanzaki N, Giblin-Davis RM, Davies KA, Center BJ. Teratodiplogaster martini n. sp. and Parasitodiplogaster dolistoma n. sp. (Nematoda: Diplodastriidae) from the syconia of Ficus species from Africa. Nematology 2012; 14:529–546. https://doi.org/10.1163/156854111X612216
16. Jauharlina J, Lindquist EE, Quinnell RJ, Robertson HG, Compton SG. Fig wasps as vectors of mites and nematodes. Afr Entomol. 2012; 20:101–110. https://doi.org/10.4001/003.020.0113
17. Wörh M, Greff JM, Kanzaki N, Ye W, Giblin-Davis RM. Molecular and morphological observations of Parasitodiplogaster sycophilon Poinar 1979 (Nematoda: Diplodastriidae) associated with Ficus burkei in Africa. Nematology 2014; 16:453–462. https://doi.org/10.1163/15685411-00002777
18. Wörh M, Greff JM, Kanzaki N, Giblin-Davis RM. Parasitodiplogaster salicifoliae n. sp. (Nematoda: Diplodastriidae) from Ficus ingens and F. salicifolia in South Africa. Nematology 2015; 17:301–311. https://doi.org/10.1163/15685411-00002868
19. Poinar GO Jr. The Evolutionary history of nematodes. Leiden: Brill Academic Publishers, 2011.
20. Janzen DH. How to be a fig. Ann Rev Ecol Syst. 1979; 10:13–51. https://doi.org/10.1146/annurev.es.10.110179.090935
21. Kikuchi T, Aikawa T, Oeda Y, Karim N, Kanzaki N. A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification (LAMP). Phytopathology 2009; 99:1365–1369. https://doi.org/10.1094/PHYTO-99-12-1365
22. Tanaka R, Kikuchi T, Aikawa T, Kanzaki N. Simple and quick methods for nematode DNA preparation. Appl Entomol Zool. 2012; 47:291–294. https://doi.org/10.1007/s13355-012-0115-9
23. Hooper DJ. Handling, fixing, staining and mounting nematodes. In: Southey JF. Editor, Laboratory methods for work with plant and soil nematodes. London: Her Majesty’s Stationery Office; 1986. pp. 59–80.
24. Yoder M, De Ley IT, King IW, Mundo-Ocampo M, Mann J, Blaxter M, et al. DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 2006; 8:367–376. https://doi.org/10.1163/156854106778493448

25. Ye W, Giblin-Davis RM, Braasch H, Morris K, Thomas WK. Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Mol Phylogenet Evol. 2007; 43:1185–1197. https://doi.org/10.1016/j.ympev.2007.02.006

26. Kanzaki N, Futai K. A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within xylophilus group. Nematology 2002; 4:35–41. https://doi.org/10.1163/156854102760082186

27. Kanzaki N, Tanaka R, Giblin-Davis RM, Davies K. New plant-parasitic nematode from the mostly mycophagous genus Bursaphelenchus discovered inside figs in Japan. PLoS ONE 2014; 9:e99241. https://doi.org/10.1371/journal.pone.0099241

28. Zeng Y, Giblin-Davis RM, Ye W. Two new species of Schistonchus (Nematoda: Aphelenchoiidae) associated with Ficus hispida in China. Nematology 2007; 9:169–187. https://doi.org/10.1163/156854107780739135

29. Gonzalez R, Kanzaki N, Beck C, Kern WH, Giblin-Davis RM. Nematode epibionts on skin of the Florida manatee, Trichechus manatus latirostris. Sci Rep. 2021; 11:1211. https://doi.org/10.1038/s41598-020-79879-7

30. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30:3059–3066. https://doi.org/10.1093/nar/gkf436

31. Kuraku S, Zmasek CM, Nishimura O, Katoh K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 2013; 41:e22–e28. https://doi.org/10.1093/nar/gkt389

32. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016; 33:1870–1874. https://doi.org/10.1093/molbev/msw054

33. Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17:1754–1755. https://doi.org/10.1093/bioinformatics/17.8.754

34. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61:539–542. https://doi.org/10.1093/sysbio/sys029

35. Larget B, Simon DL. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol. 1999; 16:750–759. https://doi.org/10.1093/oxfordjournals.molbev.a026160

36. Kanzaki N, Liang W-R, Chiu C-I, Li H-F. Acrostichus ziaelas n. sp. (Nematoda: Diplogastridae) isolated from the beetle Ziaelas formosanus, a tenebrionid symbiont of the termite Odontotermes formosanus with remarks on the genus Acrostichus Rahm, 1928. Zool Anz. 2020; 286:20–30. https://doi.org/10.1016/j.jcz.2020.03.002

37. Cornille A, Underhill JG, Cruaud A, Hosssaert-McKey M, Johnson SD, Tolley KA, et al. Floral volatiles, pollinator sharing and diversification in the fig–wasp mutualism: insights from Ficus natalensis, and its two wasp pollinators (South Africa). Proc R Soc. 2012; 279:1731–1739. https://doi.org/10.1098/rspb.2011.1972

38. Rasplus JY. The one-to-one species specificity of the Ficus–Agaoninae mutualism: how casual? In: van der Maesen LJG, van der Burgt XM, van Medenbach de Rooy JM, editors. The biodiversity of African plants. Dordrecht: Kluwer Academic; 1996. 639–649. https://doi.org/10.1007/978-94-009-2085-5_78

39. Davies KA, Bartholomaeus F, Kanzaki N, Giblin-Davis RM. Schistonchus molochi sp. n. and S. athertonensis sp. n. (Aphelenchoiidae) from Ficus watkinsiana (Moraceae) in Australia. Nematology 2013; 15:389–400. https://doi.org/10.1163/15685411-00002685

40. Davies KA, Ye W, Center BJ, Kanzaki N, Bartholomaeus F, Herre EA, et al. Two new species and three morphospieces of Ficophagus Davies & Bartholomaeus, 2015 (Nematoda: Aphelenchoiidae) from Ficus subgenus Pharmacosycea (Moraceae) in Central America. Nematology 2017; 19:351–374. https://doi.org/10.1163/15685411-00003055

41. Sriwati R, Takeuchi-Kaneko Y, Jauharlina J, Kanzaki N. Aphelenchoid nematodes associated with two dominant Ficus species in Aceh, Indonesia. Nematology 2017; 19:323–331. https://doi.org/10.1163/15685411-00003051

42. Poinar GO Jr, Herre EA. Speciation and adaptive radiation in the fig wasp nematode Parasitodiplogaster (Diplogasteridae: Rhabditida) in Panama. Rev Nematol. 1991; 14:361–374.
43. Kanzaki N, Giblin-Davis RM, Ye W, Herre EA, Center BJ. Description of *Parasitodiplogaster pharmaco-nema* n. sp. and redescription of *P. maxinema* from *Ficus maxima* Mill. (Moraceae). Nematology 2013; 15:957–974. https://doi.org/10.1163/15685411-00002735

44. Kanzaki N, Giblin-Davis RM, Ye W, Herre EA, Center BJ. *Parasitodiplogaster* species associated with *Pharmacosycea* figs in Panama. Nematology 2014; 16:607–619. https://doi.org/10.1163/15685411-00002791

45. Rühm W. Die Nematoden der Ipiden. Parasitologische Schriftenreihe 1956; 6:1–435.

46. Massey CL. Biology and taxonomy of nematode parasites and associates of bark beetles in the United States. Agriculture Handbook No. 446. Washington DC: USDA, Forest Service; 1974.

47. Kanzaki N, Ekino T, Maehara N, Aikawa T, Giblin-Davis RM. *Bursaphelenchus acaloleptae* n. sp. sharing tree and beetle carrier hosts with *B. luxuriosae* Kanzaki & Futai, 2003 in Japan. Nematology 2020; 22:515–527. https://doi.org/10.1163/15685411-00003320

48. Wang G, Cannon CH, Chen J. The mechanism of pollinator specificity between two sympatric fig varieties: a combination of olfactory signals and contact cues. Ann Bot. 2013; 111:173–181. https://doi.org/10.1093/aob/mcs250

49. Wang G, Cannon CH, Chen J. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc R Soc B. 2016; 283:20152963. https://doi.org/10.1098/rspb.2015.2963

50. Machado CA, Robbins N, Gilbert MTP, Herre EA. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc Nat Acad Sci USA. 2005; 102:6558–6565. https://doi.org/10.1073/pnas.0501840102