The geological potential of antimony, bauxite, fluorite, and magnesite of the Central Dinarides (Bosnia and Herzegovina): an exploration and exploitation perspective

Sibila Borjević Šoštarić, Anže Markelj, Eldar Jašarević and Angelika Haindl

1 Faculty of Mining, Geology and Petroleum Engineering, Department of Mineralogy, Petrology and Mineral Resources, Plerottjeva 6, HR-10000 Zagreb, Croatia; (sibila.borjevic-sostaric@rgn.unizg.hr)
2 Geology Survey of Slovenia, Department for Regional geology, Dimičeva ulica 14, 1000 Ljubljana, Slovenia; (anje.markelj@geo-zs.si)
3 Mining Institute Tuzla, Scientific Research Center for Geology, Geotechnics and Civil Engineering, Rudarska 72, 75000 Tuzla, Bosnia & Herzegovina; (eldar.jasarevic@rudarskinstituttuzla.ba)
4 Chair of Mining Engineering and Mineral Economics, Department Mineral Resources Engineering, Montanuniversitat Leoben, Franz-Josef-Straße 18, 8700 Leoben, Austria; (angelika.haindl@unileoben.ac.at)

do: 10.4154/gc.2022.16

Abstract
This paper presents the critical raw materials (CRM) potential of antimony, bauxite, fluorite, and magnesite deposits in Bosnia and Herzegovina, discusses their metallogeny and joint geological features, and explains the methodology of the InvestRM application and evaluation criteria for the selected commodities in the following steps: (1) preparation of the geological data templates, (2) evaluation and verification of the geological data, (3) ranking of deposits according to the geological data relating to quality and quantity, and (4) identification of the 10+ perspective deposits. Existing geological datasets show the existence of significant potential in primary CRM such as bauxite (56 Mt), magnesite (4 Mt), and antimony (0.2 Mt) in Bosnia and Herzegovina (BiH). The geological settings of BiH provide favourable metallogenetic conditions primarily for bauxite and magnesite deposits but also for antimony within poly metallic deposits, while fluor spar is rather rare. Our methodology described herein led to the selection of the following fourteen deposits for further geological prospection and investment: the poly metallic antimony deposits Ceremnica and Podhrusanj, antimony fields Srebrenica and Rupice; magnesite fields Kladanj, Banja Luka, Teslić and Novi Šeher and bauxite regions Vlasenica-Srebrenica, Grmeč Mountain deposits in Una-Sana region and South Bosnia regions from Posušje to Trebinje. A basic economic calculation based on the world producer ranking and a self-sustainability and economic contribution assessment shows that further investments in geological exploration and mining of antimony, magnesite, and bauxite CRM could place BiH on the list of important producers of these commodities in Europe.

1. INTRODUCTION
Since 2011, one of the major concerns of the European Commission has been a sustainable supply of the critical materials to maintain and develop the European industries (European Commission, 2011). The European Commission Communication listed 27 critical raw materials in 2017 (European Commission, 2017). The ADRIA region hosts significant primary geological potential for six of these critical materials, namely antimony, barite, bauxite, borate, lithium and Mg (magnesite). With the exception of borates and lithium, these primary commodities were exploited prior to the conflicts in the region during the 1990s when the ADRIA region generated 11% of the world’s magnesite, 5% of the bauxite, 5% of the antimony, and 3% of world’s barite production (Reichl & Schatz, 2021). Due to a complex geopolitical situation, geological data from the ADRIA region are outdated, segmented, and limited, and largely not included in the pan-European mineral deposits databases: Minerals4EU and ProMine. The EU commission review of the list of critical raw materials (European Commission, 2017) has not taken into consideration the CRM potential of the ADRIA region, even though non-EU ADRIA countries, including Bosnia and Herzegovina, are following the European path of Slovenia and Croatia, and initiating access negotiations with significant funding through the mechanism of pre-structural aid, and will join the European family in the future. Currently, China is the leading supplier of several important raw materials, including antimony (87%), magnesium (87%), and Rare Earth Elements commonly present in some bauxites (95%) (European Commission 2017). The dependence on China increases the risk of supply shortages and supply vulnerability along the value chain.

Bosnia and Herzegovina still have significant potential in primary critical raw materials (antimony, bauxite, magnesite), while the current production is negligible even though operating quarries, open pits, and mines represent important and strategic assets. Many large deposits, such as the Vareš, Srebrenica area, West Herzegovina, and the Jajce bauxite deposits, are known to European investors from past exploitation. A long mining tradition, existing geological potential, and the strategic position of the country close to the production centers of the major European industries still hasn’t resulted in a significant rate of investment in the mining of the critical raw materials in Bosnia and Herzegovina. Some of the main issues preventing investments are the complexity of the internal organizational structure covering exploitation and exploration licensing in Bosnia and Herzegovina and the fragmentation, quality, and quantity of existing geological datasets.
2. GEOLOGICAL SETTING
The Dinarides are a folded, thrusted, and imbricated belt located between the Southern Alps in the northwest and the Hellenides in the south and southeast (PAMIĆ et al., 1998). The territory of BiH encompasses part of the Dinarides, consisting of several detachments of tectonostratigraphic and lithostratigraphic units of different origin and stratigraphic sequences related to the Alpine-Carpathian orogenic process of the Palaeozoic to Neogene age (PAMIĆ et al., 1998; SCHMID et al., 2008). The predominant structures are several thrusts with SW vergence, which, at a regional scale, resulted in knapps and local klippe thrust on top of one another in today’s position. The Dinarides are divided into several tectonic units, which include external and internal sectors from the Adriatic Sea units towards the NE up to the adjoining Tisia mega-tectonic unit (zonation follows those reviews by PAMIĆ et al. (1998) and DIMITRIJEVIĆ (1982, 1997); Fig. 1):

1. The Adriatic Carbonate Platform hosting bauxite occurrences and deposits,
2. Palaeozoic basement units with surrounding Bosnian Flysch, hosting antimony, fluor spar, and bauxite deposits,
3. Dinaric Ophiolitic Zone hosting magnesite deposits, and
4. Sava-Vardar Zone hosting antimony deposits.

The Adriatic Carbonate Platform and its correlatives, together with the East Bosnian-Durmitor zone, constitute the External Dinarides, while the Dinaric Ophiolite zone and the Sava–Vardar zone represents units of the Internal Dinarides. The Adriatic Carbonate Platform comprises an Upper Palaeozoic basement, overlain by Upper Permian to Norian clastic sediments and platform carbonates with penecontemporaneous rift-related igneous rocks, the Norian-Lutetian carbonate platform, and Eocene overstep flysch sequences. The internal and external units of the Dinarides both contain exposed Palaeozoic basement units that have undergone various degrees of metamorphism (mainly up to greenschist, in some cases up to epidote-amphibolite facies conditions). The Palaeozoic basement units are composed of Ordovician to Carboniferous (Permian) metasediments (dominantly Carboniferous flysch and Permian molasse-type deposits) and metavolcanics mainly overlain by a Triassic carbonate-clastic cover. The degree of metamorphism increases from the northwest towards the southeast, whereas the age of metamorphism ranges from Variscan to Alpine. The Bosnian Flysch is a 4000–5000 m thick passive continental margin carbonate-clastic tectonostratigraphic unit of Jurassic to Late Cretaceous age. The Dinaric Ophiolite zone consists of Mesozoic radiolarite sequences with basalt, greywacke, and shale and an ophiolite mélange, ultramafic thrust sheets, and Late Jurassic–Early Cretaceous and Late Cretaceous overstep sequences. The Sava-Vardar zone contains Late Cretaceous to Palaeogene flysch sequences with volcanics, tectonized ophiolite mélangé, regionally metamorphosed sequences originating from the surrounding Late Cretaceous–Palaeogene rocks and synkinematic granitoids.

The geodynamic evolution of the Dinarides began with the Early Permian rifting of the Palaeozoic basement rocks (BOROJEVIĆ ŠOŠTARIĆ et al., 2009; BOROJEVIĆ ŠOŠTARIĆ et al., 2012), followed by the opening of the Tethyan ocean in the Late Triassic and the Late Jurassic–Early Cretaceous subduction and emplacement of the Dinaric ophiolites (PAMIĆ et al., 1998). Parts of the Sava-Vardar zone remained open until the Early Palaeogene (SCHMID et al., 2008).

3. GEOLOGY AND METALLOGENY OF THE CRM DEPOSITS
3.1. Antimony
(a) Palaeozoic, continental rift-related polymetallic hydrothermal deposits

a. The quartz-Sb-polymetallic (Zn, Hg, As, Ag) hydrothermal deposits of the Mid-Bosnian Schists Mts. form a mineralizing zone of 3×0.3 km around Fojnica Banja, Gradina and Čemernica with numerous veins and tabular-ore bodies with a maximum thickness of 1.2 metres. The largest deposit in this ore field is Čemernica, hosted within Carboniferous-Permian quartz-muscovite schists, sandstones, and carbonates. Čemernica is a hydrothermal vein-type to tabular type of deposit containing, stibnite, stibarsene, cinabarite, sphalerite, tetrahedrite, boulangerite, arsenopyrite, pyrite, and marcasite within a quartz matrix. The metal content is highly variable (Sb = 0.2–15%; Zn = 2–10%; Ag = 50–200 ppm; Hg = 0.01–0.1%; JURKOVIĆ et al., 1999).

b. The barite-Pb-Zn-Sb vein-type hydrothermal mineralization with 0.1–0.4% of Sb (Totinovac-Viduša) located near Jajce, is hosted within a Carboniferous-Permian rift-related sequence in the vicinity of a Palaeozoic quartz-porphry. Irregular veins, 0.1 – 0.5 m thick, and metasomatic bodies are composed of barite, galena, sphalerite, luzonite, stibnite, stibarsine and cinabarite (RAMOVIĆ et al., 1979).

c. The quartz-Sb vein-type hydrothermal deposit Podhrusanj is hosted within Palaeozoic schists, sandstones, and carbonate rocks of the southeastern Bosnian Drina-Ivanjica unit and is considered to be related to the granitic and syenite intrusion near Čajniče (PAMIĆ, 1982; 1995). The mineralization is located at the contact zone between the impermeable schists and permeable limestones. Average amounts of antimony in the mineralized carbonates vary from 1.1% to 3.4% of Sb (KUBAT 1982; 1995).

d. The small-scale polytehmetallic (Pb, Zn, Sb) vein and metasomatic replacement type deposit of Podkozara belongs to a similar setting as the Podhrusanj deposit (Drina-Ivanjica unit; RAMOVIĆ et al., 1979).

(b) Triassic advanced rift-related hydrothermal antimony deposits

a. The barite-polytehmetallic (Pb, Zn, Hg, Sb) hydrothermal vein-type and metasomatic deposits at the Rupice field (Rupice, Rid, Veliki do, Križ, Vevaca) are located within Upper Palaeozoic to Middle Triassic continental rift-related sandstone, limestone, and dolostone. The deposits are primarily mined for barite and Pb-Zn mineralization (Pb+Zn = 2.3 – 6.5%, whereas the antimony-bearing minerals stib-
nite, tetrahedrite, and boulangerite on average contain Sb between 0.05 and 4.9%. The ore also contains Ag of 65 g/t; Au of 0.3 g/t; Cu of 0.1%, and Hg of 0.02% (OPERTA & HYSNENI, 2016). Based on the superposition and sedimentary evidence, these deposits are considered to be related to a middle – upper Triassic advanced rift setting.

(c) Oligocene post-collisional deposits of the Sava-Vardar zone
The polymetallic (Pb, Zn, Sb, Ag) vein and metasomatic type hydrothermal deposits of the Srebrenice field (Lisac, Vitlovac, Čumavić) are related to the Oligocene dacite, andesite, and associated volcanoclastic formations that intruded into Palaeozoic schists. The typical mineralogy of galena, sphalerite, siderite, chalcopyrite, stibnite, and pyrrhotite is accompanied by various sulfosalts containing Pb, Sb, Cu, Bi, Ag (ZARIĆ et al., 2000). Small-scale greisen-type Sn-bearing mineralization developed at the magmatic-schists contact zone.

3.2. Bauxite
(a) External Dinaride bauxites
a. The South Bosnia region (Herzegovina; (BURIĆ & ŽIVALJEVIĆ, 1979))
i. Around 80 Upper Jurassic deposits (Viduša) are embedded within the Upper Jurassic limestone and dolostone near Viduša Mt. in a 25 km long zone. The deposits are saddle-shape, of boehmite to gibbsite type, and contain 44-62% of Al₂O₃, 2-10% of SiO₂, and 11-19% of Fe₂O₃.
ii. The most productive deposits are Upper Cretaceous – Palaeogene in age, embedded between Upper Cretaceous to Palaeogene carbonate rocks, with overlying Liburian beds, alevoline-numulite limestones, flysch sediments or Promina beds (Čitluk region: Blatnica-Lokvice, Mamići-Rasno-Hamzići, Osljari-

Figure 1. a. Geological scheme of studied area modified after PAMIĆ (1998), TOMLJENOVIC (2008) and PALINKAŠ (2008) with distribution of deposits and occurrences and corresponding keys-numbers linked to Appendix 2, Tables 1-4; b. Regional geological setting according to PAMIĆ (1998) with emplacement (red bounded) of studied area.
Krivodol, Služanj, Vitina-Lipno; **Lištiva region:** Crne liske-Kidačke njive, Resnica-Grabova draga, Uzarici-Knežpolje, Varož planina; **Mostar region:** Žovnica, Krstače-Cerovci doći; **Posušje region:** Mratinjačka-Medine stanine, Podzavelin-Vinica, Studena Vrela, Trebistovo-Sobač, Vinjani, Volujak-Kadim, Vučipolje, Zagorje; **Stolac region:** Dabriva, Gornji Brštanik, Hrgud. The boehmite-type deposits occur as lensoid layers/pockets within palaeokarst depressions with a maximum thickness of 15 metres. In the majority of the deposits, the amount of Al₂O₃ is high (47-56%), with proportionally low SiO₂ (<10%). With an increase in SiO₂ of up to 18%, the amount of Al₂O₃ decreases to 42%.

Some stratigraphically slightly higher horizons, overlying alevoline-numulite limestones (**Citiš region:** Krehin gradac-Blizanci, **Stolac region:** Bivolje brdo-Domanovići, Poplat) are smaller in size and of lower economic interest, containing 45-49% Al₂O₃ and variable amounts of SiO₂ (0.1-14%).

b. The Northwestern Bosnia region (Bosanska Krajina; (BURIĆ & ŽIVALJEVIĆ 1979))

i. The Middle Triassic deposits (Bjelaj, Veliki Skočaj) occur within palaeokarst surfaces of the Middle Triassic limestones as irregular layer-like lenses and pockets covered with Raibl Beds and Upper Triassic dolostone. The deposit thickness varies between 2 and 12 metres. Ooid to pisoid structures are common. The amount of Al₂O₃ (boehmite, rarely gibbsite) varies between 29 and 69%, whereas Fe₂O₃ varies between 2 and 20%, which affects the colour (white, pink, red bauxites). These deposits are of bauxite clay type, containing high SiO₂ (2-12%) and low variable amounts of Al₂O₃ (30-42%).

ii. The Upper Cretaceous – Neogene deposits (**Lištiva region:** Trn-Sliškovića lokve) overlie Upper Cretaceous rudist limestones and are overlain by Neogene clayey marls. These deposits are of bauxite clay type, containing high SiO₂ (1.5-2.5%) and variable amounts of Al₂O₃ (0.1-1%).

b. The Vlasenica-Srebrenica region

The Cretaceous karst bauxite deposits of the Vlasenica-Srebrenica region (Palež, Podbrača, Šumarna, Štedra, **Crvena stijene** region: Kosturi, Gerovi, Dragošnica, Žedanjsko, Pribojevici, Kutuzero) are similar to the other Internal Dinaride deposits of the Zlatibor and Počuta area in Serbia and the Grebnik area in Kosovo. The bauxite deposits of the Vlasenica-Srebrenica region are located in a 30 × 4 km NW-SE trending zone in karst depressions in the Middle Triassic limestones and are covered by Upper Cretaceous limestones and/or a series of Neogene conglomerates, sands, and clays (DANGIĆ, 2015). The bauxites are brown-red, hard boehmite-haematite in composition (anatase, brucite) with oolitic-pisolitic structure and appear in beds, lenses, and pocket fillings, sometimes over 40 m thick. The deposits vary in size from a few tens of thousands to over 10 million tons of bauxite (Bračan). Secondary kaolinitization is common, as well as the formation of diaspore.

3.3. Fluorite

(a) Early Palaeozoic continental rift-related deposits

i. As-polymetallic deposits with fluorite

The arsenic-polymetallic (As, Hg, Ba, F) hydrothermal deposit **Hrmza** is located near Kreševa in the Mid-Bosnian Schist Mts. The ore-bearing rocks are Permo-Carboniferous phylites, sandstones, and breccias. The mineralized zone is 0.5 to 3.0 m wide and consists of veins, impregnations, and nests. The main minerals are realgar and orpiment, followed by accessory fluorite, pyrite, bravoite, barite, muscovite, sphalerite, tourmaline, rutile, and antimonite. The fluorite has a dark purple color, and forms hexahedron crystals up to 1 cm in size. The tourmaline occurs regularly in veins along with rutile and less commonly with fluorite. The quartz is mostly idiomorphically developed. The mineralogy points to a transition from a pneumatolytic to a hydrothermal phase, with fluorite precipitating late (JELIĆ, 1979).

ii. Carbonate-hosted barite-fluorite deposits

The mineralized zone containing the barite-fluorite deposits of Mt. Meovršje is about 22 km long and 2 to 4 km wide and represents part of the Mid-Bosnian Schist Mountains (JELIĆ, 1979). The Meovršje Mt. encompasses a 300 m thick Devonian carbonate complex, containing predominantly light-gray dolostone, followed by limestone and marble limestone. The underlying metamorphic complex contains chlorite and muscovite schists, phylite, quartzite, and lydite. The carbonate complex hosts most of the barite deposits, which occur as impregnations, variously sized veins, or irregular bodies.

The barite deposits appear as almost monomineralic barite bodies, barite-quartz veins, **barite-fluorite** veins (Meovršje), and barite-tetrachloride veins. In the barite-fluorite veins, the fluorite has an octahedral habit, and is colourless, violet, or transparent. The octahedral habit of the barite is very common.
indicates that the formation of fluorite took place under temperatures >200°C.

The Meovršje deposit contains predominantly barite (90 - 99 % wt. \(\text{BaSO}_4 \) and about 6 % wt. \(\text{SrSO}_4 \)), ferroan dolomite, calcite, Hg-Sb tetrahedrite, quartz, pyrite, fluorite, and enargite. The accessory minerals are chalcopyrite, sphalerite, antimonite, sericite, tourmaline, and rutile (JELIĆ, 1979).

The barite-fluorite deposit Žune in NW Bosnia lies within the Upper Palaeozoic dolostone close to the contact with Lower Triassic schists and sandstones. The structure and texture of the vein show some evidence of hydraulic fracturing, an important indicator of boiling of hydrothermal fluid, as recognized in the fluid inclusion studies (PALINKAŠ et al., 2016). The barite-fluorite vein is 3 to 9 m thick and vertically cuts the Upper Palaeozoic dolomites in an E–W direction. The contact zone consists of metasomatically recrystallized host dolomite with strings of tiny barite veins and impregnations. The central part of the vein consists of pure barite and some fluorite. The fluorite is mostly violet but can be blue to yellowish and has an octahedral habit. The accessories are calcite, quartz, sulfides and sulfosalts (tetrahedrite, cinnabarite, pyrite, realgar), and Au (JEREMIĆ, 1958).

iii. Carbonate-hosted barite-siderite-fluorite deposits

The Vidrenjak-Ljubija deposit in NW Bosnia has a similar setting within the Upper Palaeozoic carbonate complex. However, the mineralization is discordant and irregular and contains siderite, limonite, sandy barite, and fluorite.

(b) Oligocene post-collisional occurrences

Rare occurrences of fluorite are found within pneumatolytic-hydrothermal alterations of S-type granitoids in the Motajica Mts.

3.4. Magnesite deposits of the Central Dinaride ophiolitic zone

The Bosnian magnesite deposits and occurrences are genetically linked with serpentinized peridotite and dunite rocks of the Central Dinaric Ophiolite zone of Jurassic age (Appendix 2, Table 4). The quality and quantity of the magnesite increase from the northwestern Kozara-Pastirevo region towards the southeastern Krivaja-Konjuh region and the Zlatibor region. The Bosnian deposits are of the Kraubath-type and appear as several hundred-metre long veins, veinlets, and impregnations of various thicknesses, containing micro-crystalline magnesite with variable primary carbonates (dolomite, calcite), and quartz (ILIĆ & JELIĆ, 1979; JURKOVIĆ et al., 2012). The vein-type ore varies between massive, banded, and breccia and is up to 7-8 metres thick. About 25% of the reviewed magnesite deposits contain more than 40% MgO (Appendix 2, Table 4). The previous exploitation was mainly underground. Brecciated fine-grained magnesite deposits are often cemented with coarse-grained neomagnesite or silica (quartz, opal, chalcedony), and contain remnants of the host-serpentinite, magnetite, or chromite. In the upper part of the deposits, silica veins and veinlets are very abundant, cross-cutting and prevailing over primary magnesite. Fe-hydroxide and Mn-oxide occur as a weak coating over the magnesite.

As a rule, the orientation of the majority of the micro-crystalline Bosnian magnesite veins follows the major Alpine tectonic structure oriented in a NW-SE direction. The oldest veins are of Early Cretaceous age, coeval with the onset of lateritization in the Dinarides. Their vicinity close to the Oligocene-Miocene volcanic/plutonic rocks (Moševac, and Vlasenica-Srebrenica fields), as well as the observed tectonic setting and textural sub-types (breccia-type) lead to the conclusion that their origin lies near the surface epithermal processes related to post-collisional magmatism in the Dinarides (ILIĆ & JELIĆ, 1979).

4. METHODOLOGY

4.1. InvestRM methodology

The development of the methodology within the InvestRM project is divided into several complementary phases (Fig. 2). Through constant feedback from project partners and from public presentations at project info days, the methodology was continuously improved, resulting in the selection of high-potential deposits for exploration or reinstating abandoned or ongoing mining activities.

1st phase: Geological data template

Geological templates gather available non-confidential geological data and tailor them to be aligned with:

- transferability to existing comparable international raw materials databases (EGDI-European Geological Data Infrastructure: http://www.europe-geology.eu/)

![Figure 2. Invest RM methodology divided into complementing phases.](image-url)
The geological template contains information on the geological characteristics of each of the 126 deposits (basic deposit information, deposit characteristics), supplemented with information on raw materials, reserve, processing, waste/environmental characteristics, additional info and references, thus enabling data harvesting and linking to the existing international raw materials deposits databases such as EGDI (EuroGeoSurveys’ European Geological Data Infrastructure; http://www.europe-geology.eu), and comparison with deposits worldwide. This is essential considering that the addressed critical raw materials in Bosnia and Herzegovina are currently only partly presented in worldwide databases. Geological datasets have been extracted from available elaborates, technical documentation, reports, scientific papers, and geological maps. Between the 1960s and the late 1980s, a mapping campaign supported by the government of the former Yugoslavia responsible for the economic growth and planning resulted in geological maps at a scale of 1:100,000 for the entire territory of the former state. Following the mapping campaign, ČIČIĆ and co-authors (1979) provided a comprehensive overview of the targeted raw materials in a book covering ferrous, non-ferrous, and industrial commodities, as well as the energy generating materials in Bosnia and Herzegovina, which was used as a starting point for geological data extraction and supplemented with recent publications on the selected deposits.

2nd phase: Evaluation and verification of geological data.

For each of the 126 deposits/occurrences, the investment potential was estimated. The selection criteria were extracted from the World Risk Report (2017), whereas setting and adjusting the specific parameters for the selection criteria was done by the InvestRM consortia and consists of: (a) geological criteria (a level of current geological knowledge, i.e., data quality and quantity), and (b) non-geological criteria (social licensing, environmental management, project permits, skills availability). Specific parameters for the geological criteria were set up separately for individual raw materials and are described in Appendix 1. These include quality and quantity criteria summarizing reserves, exploration level, and favourable geological characteristics. Reserves are aligned with the law governing geological exploration (Official Gazette of the FBiH No. 9/10) and the rulebook on classification, categorization, and calculation of solid mineral raw material reserves and keeping records on them (Official Gazette of the FBiH No. 36/12).

Reserves encompass A, B and C₁ categories (proven and measured), whereas resources are used for C₂, D₁ and D₂ categories (indicated and inferred) in line with the Official Gazette of the FBiH No. 36/12. Used literature sources for Appendix 2 do not contain subdivided economical and non-economical reserves.

3rd phase: Deposit ranking

The principal parameters influencing ranking are the geological data quality (complete and relevant datasets from the geological data template) and data quantity (reserves, available past exploration data), as well as social licensing, environmental management, and project permits. Parameters were weighed and assigned to ranks A, B or C, respectively, whereby A denoted excellent data with defined and up to date characteristics, B encompasses good-sufficient geological data, and C means no or minimal geological data with poorly estimated reserves and resources. The deposits considered to be the most potentially viable among the A rank deposits, namely those meeting all established criteria, were defined as A+ deposits with highly lucrative investment opportunities. The evaluated deposits were ranked and presented in detail in Appendix 2 (Tables 1-4).

4th phase: Recognized 10+ perspective deposits

Deposits ranked A+ were described as highly lucrative investment opportunities, while A ranked deposits also present investment opportunities but do not meet all the predefined criteria. A number of A ranked deposits could be upgraded to A+ deposits by providing additional datasets as part of the geological prospection.

4.2. Indicators to evaluate exploration and mining potential

The exploration potential was estimated based on the geological setting of the wider area around an occurrence and the available data from previous exploration campaigns regarding the level of

Figure 3. Data sources and processes used to calculate indicators of mining potential (Copyright of original data used from World integrated Trade Solutions (WITS) belong to the World Trade Organization (WTO). Conclusions and analyzes based on this data are the responsibility of the authors and do not necessarily represent the opinion of the WTO. LOM = Life Of Mine)
uncertainty. The type of exploration method and targeted raw material (in polymetallic deposits) was also important in defining the exploration potential. Reserves are a further important indicator (aligned with a valid classification and categorization method – Appendix 2 (Tables 1-4)).

To calculate the mining potential based on the geological data and economic information using the InvestRM tool, three indicators - world producer ranking, self-sustainability, and economic contribution - are introduced (Fig. 3).

The first indicator, 'world producer ranking', compares the theoretically mineable tons to the world production and helps to position Bosnia-Herzegovina on the global ranking list. The second indicator, 'self-sustainability', relates produced and imported tons, thus showing the ratio of materials derived from within BiH and is thus an indicator of self-sustainability. The last indicator, 'economic contribution', evaluates the contribution of the country’s mines to Bosnia-Herzegovina's economy in terms of taxed profits. A very simplified dynamic calculation method is applied to determine this value, as the input factors are based on assumptions. The calculation results based on current reserve tonnages are compared to numbers gained after upgrading C1 and C2 resources to A or B reserves.

5. RESULTS AND DISCUSSION

5.1. Exploration potential

The exploration potential of a specific mineral commodity depends on the geological potential, the number and distribution of occurrences and deposits in an area. Out of the total of 126 deposits of antimony, bauxite, fluorite, and magnesite in Bosnia and Herzegovina, 106 (or 84% of the investigated sites) are magnesite and bauxite deposits containing millions of tons of reserves and resources and showing high exploration potential (Table 1). When comparing all the reserves and resources, bauxites have the greatest exploration potential, followed by magnesite, antimony, and fluor spar (Table 1). The following results were obtained by applying the InvestRM methodology to the 126 investigated deposits:

1. Three out of five fluor spar deposits were evaluated as A+ deposits. A field reconnaissance investigating the three deposits indicated that only the Žune locality met each of the predefined criteria for the A+ rank.
2. Four of thirteen antimony deposits were evaluated as A+ deposits. The Čemernica and Podhrusanj deposits are abandoned deposits, while the Rupice and Veovača deposits are currently under development with an exploration license.
3. Six of fifty-seven magnesite deposits were evaluated as A+ deposits, including the magnesite field Kladanj with the most prospective operating deposit Miljevica and the poorly explored occurrences at Zeniča and Drinjača, all part of the Kladanj magnesite region. Furthermore, the abandoned deposit of Ošve, which is part of the Novi Seher magnesite field, was recognized as a highly prospective deposit. The magnesite regions of Teslić, with several abandoned deposits, and Snježotina, with nine deposits currently not operating, were also highly ranked (A+).
4. Fourteen out of fifty-one bauxite deposits were evaluated as A+ deposits. These deposits are highly ranked (A+).

In the areas listed above, the geological potential indicates highly lucrative investment opportunities with some additional exploration required to prove the reserves and resources estimated during previous campaigns. The magnesite and bauxite areas show a high prospectivity for exploration – with regions evaluated as A+ or A representing several deposits/regions controlled by the regional geological setting. In cases of positively evaluated magnesite, only the operational deposits were studied in detail. The areas surrounding existing deposits can hold additional resources and reserves, but this study included only operational or abandoned sites. Abandoned deposits were categorized into the group of prospective sites when exploitation (or exploration) activities were undertaken there in the past, and the deposit was later abandoned for various reasons, such as feasibility, legislation, or environmental hazards resulting from inappropriate exploitation and processing techniques. Larger areas present huge investment opportunities especially for long-term projects.

Magnesite and bauxite occurrences are generally ranked based on the amount of available data on reserves and resources and the quality of the data because these two CRM represent the primary or sole RM mined in the chosen deposits. Antimony and fluorite usually occur as secondary minerals in economically more interesting, predominantly Pb-Zn-Fe, or barite deposits. Therefore, reserves and resources are usually estimated, and the geological settings of studied areas were used as a key criterion. Prospective fluor spar and antimony occurrences were studied in the InvestRM consortium to provide the possible geological potential for further exploration and feasibility studies.

5.1.1. Bauxite

Bauxite deposits and occurrences are related to the Adriatic Carbonate Platform and the internal Dinaride Cretaceous karst units. Several promising bauxite-bearing areas have a high exploration potential (Table 1):

1. The Internal Dinarides Cretaceous karst deposit of the Vlasenica-Srebrenica region in eastern Bosnia hosts 12.950.000 t (MITROVIĆ, 2011) of reserves, representing 25% of the total bauxite reserves in BiH. Active exploitation is operated by the company Bauxite a.d. from Milići.
2. Grmeč mountain in the Una-Sana region has potential reserves (resources), with the bauxite-bearing potential estimated to be about 20.000.000 t (ČIĆIĆ, 1979), and has no active exploitation.
3. The External Dinarides bauxite of the South Bosnia region (Posušje to Trebinje), based on the number of registered bauxite deposits and occurrences, is an area with
potential for further bauxite exploration (BURIĆ & ŽIVALJEVIĆ, 1979). Active exploitation is operated by the company Bauxite Mines d.o.o. from Posušje.

5.1.2. Magnesite
Magnesite deposits and occurrences in BiH are spatially and genetically related to the Ophiolite zone of the Dinarides. According to the degree of exploration, the most economically interesting magnesite regions are as shown in Table 1:

1. The magnesite field of Kladanj which is a highly explored area with proven reserves of 193,484 t and a potential of 67,100 t (HODŽIĆ & DJEDOVIĆ, 2014). Active exploitation is operated by the company Rudar d.o.o. from Tuzla.

2. The Banja Luka magnesite field, with a low level of exploration and high-potential reserves exceeding 1,400,000 tons. It mainly belongs to the Snjegotina magnesite field (Jelovac = 420,000 t; Pločni = 437,757 t; ILIĆ & JELIĆ, 1979). The Snjegotina field contains 25 magnesite occurrences investigated in detail, and more than 40 were partially investigated. Previous research (ILIĆ & JELIĆ, 1979) yielded a promising geological and economic assessment. Further research would likely result in additional discoveries.

3. The magnesite field of Teslić, has three promising sites, namely Blatnica (260,000 t), Bukovački jarak (120,000 t) and Milošev jarak (377,000 t) (ILIĆ & JELIĆ, 1979). Magnesite bearing rocks include hornfels, amphibolite, and pyroxenite together with predominant serpentinized peridotite, whereby the magnesites have a high SiO2 and CaO contents. Semi-industrial-scale tests were conducted to explore the possibility of magnesite enrichment by various methods, with two-stage flotation giving optimal results (ČIČIĆ, 1979). Further industrial-scale testing is necessary to determine the techno-economic factors and classify proven reserves.

4. The magnesite field of Novi Šeher contains the Ošve deposit with 215,000 t of resources (150,000 t C1 + 65,000 t C2). Chemical analysis (CIČIĆ, 1979) has shown that the raw material is largely suitable for the production of metallurgical sinter, but not for the production of high-refractory bricks due to the elevated SiO2 and CaO contents. Semi-industrial-scale flotation experiments have shown promising results, similar to those for Teslić, and should be complemented with industrial-scale testing.

5.1.3. Antimony
Economically interesting concentrations of antimony in BiH are spatially distributed across several areas, regions, or zones:

1. Palaeozoic, continental rift-related polymetallic hydrothermal deposits
 a. The Central Bosnian Ore Mountains area (Ćemernica and Fojnica deposits) contains Ag, Hg and Zn. The mineralized zone of Cemernica is about 4.5 km long and about 120 m wide. Several ore veins were detected there, and the main ore vein was mined to the level of the Cemernica stream. Analyses show that the Ćemernica ore is an Sb, Hg, Zn and Ag ore enriched in W and Au. Antimony ore reserves of the A + B + C1 categories contain 299,235 t with contents of 3.3% Sb, 5.7% Zn, and 96 ppm Ag (JURKOVIĆ et al., 2012). Further exploration is needed to investigate the extent of mineralization and devise an extraction methodology.
 b. The southeastern Bosnia (Podhrusanj) deposit was exploited for antimony ore from 1965 to 1975, during which time only high-grade ore with an antimony content of 4.5% was extracted. Reports from 1977 state that the A + B + C1 reserves contain 74,651 t of ore with an average Sb content of 3.2% (KUBAT, 1982; 1995). Potential reserves of the C2 category containing about 115,000 t with 1.1% of Sb were also reported. Based on the metallogenetic analysis, Kubat (KUBAT, 1982; 1995) reported that the Podhrusanj region is very interesting for further exploration. The Podhrusanj deposit has only been partially explored. Mineralized limestones of 0.5 - 1.5 m thickness appear in the wider area of the deposit containing 410,500 t of A + B + C1 reserves with 3.4% Sb. Chemical analysis has shown that the ore does not contain As or Pb concentrations in heavy liquid analysis (classes -20 +2 mm), and the concentration by flow tables (classes -2 +0 mm) yielded a valuable antimony concentrate with a weight content of 13.9% and an Sb content of 43%, with a utilization degree of 81%.

2. Oligocene post-collisional deposits of the Sava-Vardar zone
 a. The Srebrenica field in Eastern Bosnia (Čumavići) consists of a 1m thick and several hundred-metre long main vein containing 7% Sb, 2.8% Zn, 0.3% Pb, 0.05% Cu, 0.1% WO3, and 80 g/t Ag. Preliminary flotation extraction analyses have shown the possibility for concentrating Sb, Zn and Ag, while the Pb content is inadequate for economical extraction. The Čumavići deposit is only partially explored, showing D2 reserves of 500,000 t (KUBAT, 1982; 1995). About 100 ha of terrain around the village of Čumavići is considered promising due to the identified outcrops of antimony ore.

3. Triassic advanced rift-related hydrothermal antimony deposits
 a. The Borovica-Vareš-Čevljanovići-Srednje ore zone (the Rupice, and Veovača deposits) consists of a complex polymetallic deposit of Ba-Zn-Pb ore with Sb and Hg. Significant geological research in combination with exploration drilling on the Rupice deposit was carried out in the second half of the 20th century. Exploration results summarized by Kurtanović (KURTANOVIC, 1990) revealed reserves of 1,498,011 t with 3% Pb and 3.5% Zn. KUBAT (1982; 1995) estimated reserves of Sb in the host dolostone of up to tens of thousands of tons with an average antimony content of 4.8%. The Veovača deposit, in comparison with the Rupice deposit, is characterized by a lower Sb content and a slightly higher Hg content. Ore reserves and resources of all categories are over 6,000,000 t with an average BaSO4 content of 16.3%, Zn of 1.6%, Pb of 0.8%, Hg of 0.1%, and Sb of 0.1% (KUBAT, 1982; 1995), and there is the possibility of discovering new ore resources in the north-eastern part of the Veovača deposit.
5.1.4. Fluorites
The occurrence of fluorite in BiH is small compared with the products of barite or arsenic mineralization. According to the scarce data, only five fluorite deposits were registered: Žune and Vidrenjak near Ljubija, Hrmza and Meovišje near Kreševo, and Pećine near Gornji Vakuf.

Based on the results of previous research (PALINKAŠ et al., 2016), as well as the conducted field research, the Žune deposit in the Ljubija ore area in the Republic of Srpska is the most promising. This deposit is Palaeozoic in age and hydrothermal in origin. It is represented by a single subvertical and partially depleted barite-fluorite vein that is several hundred metres long and has a maximum thickness of 10 m. The barite-fluorite vein is hosted by the Palaeozoic dolomites, near the contact with the Vrufen shales and sandstones. The proportion of fluorite is usually about 20%, but it increases with depth, which presents an opportunity for further exploration. The inferred fluorite reserves in this deposit are estimated to be 1,500 t.

5.2. Mining potential
According to the World Mining Data (REICHL & SCHATZ, 2021), the contribution from Bosnia-Herzegovina to the mining of antimony, bauxite, fluorspar, and magnesite is comparatively low. Between 2015 and 2019, only bauxite (crude ore) and magnesite are listed, ranking Bosnia-Herzegovina in 18th place out of the 28 bauxite producers and in 22nd place of the 23 magnesite producers (REICHL & SCHATZ, 2021). Based on the geological potential identified for the four selected commodities, Bosnia-Herzegovina is capable of contributing with 1,400 tons of useful components from ore. Within the Borovica-Vareš-Čevljaničić-Srednje ore zone, the Rupece and Veovača deposits are classified as prospective deposits containing economic ore reserves (KUBAT, 1982; 1995). Geological exploration is currently ongoing.

5.2.1. Indicator 1: World Producer Ranking

Antimony
The world production of antimony was 125,478 metric tons in 2019, and at the same time, there was no production at the EU level. Looking at the two abandoned mines Čevljanovići-Srednje ore zone, the Bujic and Veovača deposits are classified as prospective deposits containing economic ore reserves (KUBAT, 1982; 1995). Geological exploration is currently ongoing.

30 years, BiH could produce about 350 tons of Sb per year. This would make the country Europe’s only producer of antimony and place it in 8th position in the world rankings (Fig. 4a).

Magnesite
A similar approach for magnesite shows a slightly different picture. The world production of magnesite in 2019 was 27 million metric tons, with about 11% being mined in Europe (EC) and Bosnia-Herzegovina contributing with 1,400 tons. Looking at the deposits that have been identified as highly graded investment opportunities and only focusing on the abandoned and closed mines, Bosnia-Herzegovina is capable of producing an additional 36 kt of magnesite1. This would improve the country’s position from 22nd to 16th in the rankings (Fig. 4b).

Similar thoughts would be applicable for the bauxite and fluorite deposits and occurrences, but these are not emphasized here as Bosnia-Herzegovina already mines more than 1 million metric tons of bauxite per year, and fluorite occurrences will not play a major role based on the currently available data.

5.2.2. Indicator 2: Self-sustainability
A vital topic is the importing of necessary commodities. Currently, Bosnia-Herzegovina does not import any antimony ores and concentrates but imports about 2 to 3 tons of antimony oxides per year. Assuming a working processing technique, the stibnite deposits could provide around 2 tons of antimony per year. Depending on the field of application, Bosnia-Herzegovina may reduce the required imports and could even start exporting antimony ores. The European Union imports roughly 4 kt of antimony ores and would benefit from a local provider (World Trade Organization, 2021).

A similar approach for magnesite shows a slightly different picture. The world production of magnesite in 2019 was 27 million metric tons, with about 11% being mined in Europe (EC) and Bosnia-Herzegovina contributing with 1,400 tons. Looking at the deposits that have been identified as highly graded investment opportunities and only focusing on the abandoned and closed mines, Bosnia-Herzegovina is capable of producing an additional 36 kt of magnesite1. This would improve the country’s position from 22nd to 16th in the rankings (Fig. 4a).

Imports of magnesite vary, whereby it was 105 tons of sintered magnesite in 2019 (World Trade Organization, 2021). With the additional tonnage from the mines currently not operating, the magnesite mined in Bosnia-Herzegovina could reach self-sustainability and BiH could become an exporter.

Numbers on bauxite imports as crude ore are difficult to identify. Aluminum ore and concentrate imports amounted to 210

1 Taking the available resources upgraded to reserves (amount reduced by 25%) and assuming again a lifetime of 30 years for the underground mine operation, the deposits at Blatnica, Bukovljeni jarak and Milošev jarak from the Teslić and Jelovac fields and Pločni (from the Snježotina - Banja Luka field) could provide 29 kt. With the open pit mine in Osve reopened, there is a total amount of 36 kt.
kt in 2019, whereas exports were in the range of 32 kt (World Trade Organization 2021). Both values have increased in recent years. It seems unlikely that additional bauxite deposits can dramatically change the import to export ratio but might be able to help maintain the balance.

Fluorspar imports into Bosnia-Herzegovina were in the range of 1.4 kt in 2019. The assigned value for this import is about 550,000 USD. Utilizing the country’s own fluoride reserves would help to reduce these imports.

5.2.3. Indicator 3: Economic Contribution

This potential can also be expressed in monetary units. While the exact prices that could be obtained by selling the products cannot be forecast without proper feasibility studies, including market studies, the potential may be highlighted by simply assuming a perfect market and ideal conditions. Prices for antimony and raw magnesite are currently listed at 6586 USD/t and 89 USD/t, respectively (Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) 2021). All deposits examined here are underground mines, except the one in Ošve. To estimate the operating costs and capital costs for the mines, figures from an Estimator’s Guide (InfoMine USA, Inc. 2016) are extrapolated to account for the estimated production tonnage and updated to current values by assuming an inflation factor of 8.5%. For all subsurface mines, a mechanized cut and fill operation with adit access is assumed. This seems feasible, as all deposits in question are irregular veins or of vein-type. The open pit mine is assumed to have a waste to ore stripping ratio of 8:1. When combining these estimates with the production tonnages from the previous paragraph, the theoretically achievable prices and the estimated costs and, thus, a potential net profit value can be calculated (Table 2). The calculation is based on currently stated reserves and compared to a theoretical tonnage after additional exploration. The reserves and resources upgraded to reserves are taken from the InvestRM reports are adjusted to account for mining losses. Costs are based on figures from InfoMine but adjusted to the production rates for an estimated lifetime of 30 years per deposit. Together with prices for antimony and magnesite, a simple NPV calculation is performed. Further assumptions: 12% discount rate and a LOM of 30 years, no price or cost increases over the years; re-occurring capital costs every 10 years (50%, 25%, 25%).

For Cemernica, a positive value can be achieved if additional metals (Zn and Ag) are mined and sold. The focus should be on processing to ensure the inclusion of Zn and Ag in the product portfolio. Looking at the overall economy of Bosnia and Herzegovina, mines could contribute ten percent of the profit as corporate income tax.

In Podhrušanj, the loss can be halved if additional exploration can prove 410 kt. Further engineering to reduce the capital costs and a market study on price development may produce a positive NPV.

The open pit mine in Ošve can achieve a significant improvement (factor 10) in the mineability if reserves can be upgraded from the C1 and C2 to the A and B categories. Additional improvements in mine design can reduce operating and capital costs.

For the Telić and Banja Luka fields, the calculation shows that currently calculated losses can be halved if the deposits per field could be combined. Using these synergies together with a reserve re-classification and a proper mine design, the operations may become very profitable. Additionally, attention should be paid to the inclusion of a refinement step to improve the final product and increase the achievable prices.

Comparing average prices for antimony and magnesite between 2016 to 2020 with values from June 2020 to May 2021, an increase of 2% (antimony) and 1.8% (Magnesite) can be seen (Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) 2021).

As described, antimony deposits also host Zn, Ag or, in the case of Rupice, BaSO4. A closer analysis of the processability of the extracted ore could enhance the product portfolio of the mining sites in Rupice, Čemernica, and Srebenica and thus boost their profitability.

Fluorspar deposits currently do not provide enough data for a similar calculation, and most bauxite mines highlighted in the FIPA brochure are already operational. Therefore, both commodities are not included in this subsection.

All costs and price figures in this chapter are based on found assumptions but would require further market studies (true prices, real demand) and costs (re-opening the abandoned mines, processing, employees, and energy). Furthermore, more detailed mine plans are necessary to estimate mining losses and production figures. In some cases, e.g. Podhrušanj, additional exploration could improve the inferred reserves (see section 5.1 for comparison) but will generate some costs. For all mines, feasibility studies would deliver more realistic estimations about the profitability and might provide better profit values.

For all deposits described here, two different courses of action can be taken: starting exploitation or continuing extraction by renewing existing mining permits. Either way, a more profound financial calculation on a micro-economic level is necessary, as the most critical parameter for the exploitation is the financial feasibility of a mining project. A major decision driver for a company to start or continue mining of a particular deposit is the ability of the mine to create a profit. It is no easy task to answer the question about the true mineability of a mine or deposit. The general process of evaluating mine investment opportunities usually includes the assessment of four main, interrelated factors: the ore reserves, the cut-off grade (or quality), the mine size, and the production costs (GENTRY & O’NEIL, 1984).

For mining financial calculations, investors require a sound and reliable data base. This data needs to cover all the main factors of production, including the deposit and relevant geological data. Especially for foreign investors, it can be a very time-consuming and exhausting task to find consistent data on economic and social figures or deal with information about concessions or local political strategies. The InvestRM decision making tool offers a quick, user-friendly, and easy way to access and gather all the necessary information in a comprehensive report (HAINDL, 2020).

6. CONCLUSION

A total of 126 deposits and occurrences of antimony, bauxite, fluorspar, and magnesite occurrences in Bosnia and Herzegovina have been validated using the developed InvestRM methodology to determine their exploration and exploitation potential. The developed InvestRM methodology consists of the following steps:

1) preparation of the geological data templates in line with international raw materials datasets (M4EU, EGDI) for 126 deposits/occurrences;

2) evaluation and verification of the geological data in order to estimate the investment potential using criteria extracted from the World Risk Report (2017) and specific InvestRM parameters;
current production places BiH in 18th position in the World for antimony (0.2 Mt) exists in Bosnia and Hercegovina. However, tain deposits in Una-Sana region and South Bosnia regions from Šeher and bauxite regions Vlasenica-Srebrenica, Grmeč Mountain deposits in Una-Sana region and South Bosnia regions from Posušje to Trebinje; Appendix 3, Table I-4) meeting all predefined criteria and parameters.

Analysis shows that a significant potential in primary critical raw materials such as bauxite (56 Mt), magnesite (4 Mt), and antimony (0.2 Mt) exists in Bosnia and Hercegovina. However, current production places BiH in 18th position in the World for bauxite and 22nd for magnesite, with no production in antimony or fluorspar. Metallogenically, these commodities are associated with several large and distinctive tectonostratigraphic units within the Dinarides: (I) karst bauxites, predominantly hosted by the External Dinarides (Adriatic Carbonate Platform) and the Bosnian Flysch of the Internal Dinarides; (ii) magnesite deposits of Kraubath-type exclusively hosted by the Dinaric Ophiolitic Zone, and (iii) antimony within polymetallic deposits associated with Palaeozoic continentalifting, Triassic advancedifting and Oligocene post-collisional events of the Sava-Vardar zone.

Three indicators: the world producer ranking, self-sustainability, and economic contribution, are included in the analysis of the country’s mining potential. Bosnia-Herzegovina could play a major role in Europe’s strategy to become self-sustaining in the supply of critical raw materials. The brief economic discussion shows that there is a need for investments in geological prospection and engineering to transform the abandoned mines into operational sites and prepare feasibility studies. Antimony and fluorspar occurrences are part of the polymetallic deposits and can add value to low-feasibility deposits. Large magnesite and bauxite regions provide opportunities for additional exploration and improvements in the exploitation process. Considering all the facts, investments in exploration and mining could boost BiH’s economy and create value not only for the country itself, as it could be self-sustaining in antimony and magnesite, but also as a supplier for Europe.

ACKNOWLEDGEMENT
This work has been financially supported by EIT RawMaterials project no. 17051 Invest RM: Multifactor model for investments in the raw material sector, a part of the Horizon 2020 program. We would like to thank the Invest RM team https://investrm.eu/ for continuous fieldwork support, helpful advice, and discussion. Proof reading by native English speaker, Isabella MERSCH-DORF is highly appreciated.

REFERENCES
ANTON A., BURIĆ, P., DANGIĆ, A., ILIĆ, M., JELIĆ, M., JOVANOVIĆ, Č., JOVANOVIĆ, P., KAPELAR, I., KARAMATA, S., KUBAT, I., MILADINOVIĆ, D., OLUJČIĆ, J., PAMIĆ, J., PODUBSKY, V., RAMOVIĆ, M., SUNARIĆ-PAMIĆ, O., VAKANJAC, B., VARAČK, D., VASILJEVIĆ, R., VUVOVIĆ, M., & ŽIVANOVIĆ, D. (1979): Ležišta nemetala [Non-metallic deposits in Bosnian]. – In: ČIČIĆ, S. (ed.): Mineralne sirovine Bosne i Hercegovine: Ležišta nemetala [Mineral raw materials of Bosnia and Herzegovina: Non-metallic deposits in Bosnian]. Vol. 1/2, 2 volumes, 236-447.
BODULIĆ, G., JOVANOVIĆ, R., JOVANOVIĆ, P., JURIĆ, M., DURIĆ, S., KUBAT, I., & KULENOVIĆ, E. (1979): Ležišta crnih metala [Ferrous metal deposits in Bosnian]. – In: ČIČIĆ, S. (ed.): Mineralne sirovine Bosne i Hercegovine: Ležišta nemetala [Mineral raw materials of Bosnia and Herzegovina: Non-metallic deposits in Bosnian]. Vol. 2/4. 2 volumes, 215-414.
BOROJEVIĆ ŠOŠTARIĆ, S., NEUFAUER, H., HANDLER, R. & PALINKAŠ, L.A. (2012): Tectonoethernal history of the basement rocks within the NW Dinarides: new40Ar/39Ar ages and synthesis. – Geologica Carpathica, 63/6, 441–452. doi: 10.2478/v10096-012-0034-2
BOROJEVIĆ, S., PALINKAŠ, L.A., STRMIĆ PALINKAŠ, S., BERMANEC, V., NEUFAUER, F., SPANGENBERG, J. & PROCHASKA, W. (2009): Origin of siderite mineralisation in Petrova and Tigravska Gora Mts., NW Dinarides. – Miner. Petrol., 97/1–2, 111–128. doi: 10.1007/s00710-009-0065-2
BUDIŠ, I., GALIĆ, I. & DRAGIČIĆ, V. (2018): Research of bauxite deposits from underground mining works.– MGfP, 33/3, 95–110. doi: 10.17794/mgfp.2018.3.10
BUNDANSTALT FÜR GEOWISSENSCHAFTEN UND ROSTOFFE (2021): Preismonitor Rhostoff-Preismonitor. – Edited by DEUTSCHE ROSTOFFAGEN- TUR (DERA) in der BGR. Available online at https://www.deutsche-roststoffagentur.de/DERA/DE/Produkte/Rhostoffpreise/Preismonitor/Preismonitor_node.html, (checked on 8/27/2021)
BURIĆ, P. & ZIVALJEVIĆ, T. (1979): Ležišta boksita [Bauxite deposits in Bosnian]. – In: ČIČIĆ, S. (ed.): Mineralne sirovine Bosne i Hercegovine: Ležišta obojenih metala [Mineral raw materials of Bosnia and Herzegovina: Non-ferrous metals – in Bosnian]. Geoinženjerija, Sarajevo, Vol 2/3, 213–214.
ČIČIĆ, S. (ed.) (1979): Mineralne sirovine Bosne i Hercegovine: Ležišta nemetala [Mineral raw materials of Bosnia and Herzegovina: Non-metallic deposits – in Bosnian]. – Geoinženjerija Sarajevo. 2 volumes.
ČIČIĆ, S. (ed.) (1979): Mineralne sirovine Bosne i Hercegovine: Ležišta obojenih metala [Mineral raw materials of Bosnia and Herzegovina: Non-ferrous metals – in Bosnian]. – Geoinženjerija Sarajevo. 2 volumes.
DRAGIČEVIĆ, I., PAPIŠT, J. & PAVIĆIĆ, I. (2019): Geological settings of the Jajce bauxite bearing-area (Bosnia and Herzegovina). – Journal of Maps, 15/2, 744–750. doi: 10.1080/17445647.2019.1664652
GENTRY, D.W. & O'NEIL, T.J. (2016): Interpreters of the Tectonic. – Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers Inc, New York.

EUROPEAN COMMISSION (2011): Tackling the challenges in commodity markets and on raw materials. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. 25.– European Commission, Brussels.
EUROPEAN COMMISSION (2017): On the 2017 list of Critical Raw Materials for the EU. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. 490.– European Commission, Brussels.
EUROPEAN COMMISSION (2020): Study on the EU’s list of Critical Raw Materials – Final Report. – Publications Office of the European Union, Luxembourg. doi: 10.2875/11619
GENTRY, D.W. & O'NEIL, T.J. (1984): Mine investment analysis. – Society of Mining Engineers of American Institute of Mining, Metallurgical, and Petroleum Engineers Inc, New York.
GRUBIĆ, A. (1975): Geology of Yugoslavian bauxite. – In: Serbian Academy of Sciences and Arts, special edition, Book CDLXXXIII. Belgrade, 60–65.
GRUBIĆ, A., CVIJIĆ, R., MILOŠEVIĆ, A. & CELEIĆ, M. (2016): Interpreters of the metametageneic map of the Ljubija ore region Acelor Mittal Prijedor.– Fund of technical tool of mineral raw materials in Ljubija metallogeny area – Geo-management as production and development tool of mineral raw materials in Ljubija metallogeny area – in Bosnian.– Rudarski Institut, Prijedor, 348 p.

Haider, A. (2020): InvestRM – Investieren in Rohstoffe am Balkan. – Berg Huettten- monatsschr. 165/4, 211–215. doi: 10.17850/10031-020-00959-2
HODZIĆ, N. & DJEDOVIC, M. (2014): Elaborat o klasifikaciji, kategorizaciji i proračunu rezerve magneza i magnesijasa in Bosnian]. – In: ČIČIĆ, S. (ed.): Mineralne sirovine Bosne i Hercegovine: Ležišta nemetala [Mineral raw materials of Bosnia and Herzegovina: Non-metallic deposits – in Bosnian]. Geoinženjerija, Sarajevo, Vol 1/2, 273–309.

In: ČIČIĆ, S. (ed.) (1979): Mineralne sirovine Bosne i Hercegovine: Ležišta obojenih metala [Mineral raw materials of Bosnia and Herzegovina: Non-ferrous metals – in Bosnian]. – In: ČIČIĆ, S. (ed.): Mineralne sirovine Bosne i Hercegovine: Ležišta obojenih metala [Mineral raw materials of Bosnia and Herzegovina: Non-ferrous metals – in Bosnian]. Geoinženjerija, Sarajevo, Vol. 1/2, 236–447.

In: ČIČIĆ, S. (ed.) (2016): Interpreters of the Tectonics.– Earth Evol. Sci., 2/1, 4–23.

In: ČIČIĆ, M.D. (1979): Geology of Yugoslavia.– Geol. Survey GEMINI Special Publication, Belgrade, 187 p.

in: ČIČIĆ, S. (ed.): Mineralne sirovine Bosne i Hercegovine: Ležišta nemetala [Mineral raw materials of Bosnia and Herzegovina: Non-metallic deposits – in Bosnian]. – Geoinženjerija Sarajevo, V ol. 2/4. 2 volumes, 215–414.
Appendix 1

Table 1. Selection criteria parameters – Geological criteria.

Selection criteria 1 (according to Word Risk Report)	Parameters defined by InvestRM consortium	RANK (defined by InvestRM consortium)
Geological criteria		
Level of current geological knowledge - data quality		
Excellent geological data with defined and up to date CRM reserves and deposit characteristics. Data are based on references that describe the specific deposit (Elaborates, Technical documentation, Reports, Scientific papers, Geological maps). Moreover, the benchmark for assessing this level is at least 1% of essential characteristics delivered in the deposit template. Exploration and sampling data available for individual deposit.	A	
Good-sufficient geological data for CRM reserves estimation based on deposit characteristics. Data are based on references that describes the deposits wider area (Publications, Scientific papers, Geological maps), with similar geological characteristics. The second benchmark for assessing this level is at least 3% of essential characteristics delivered in the deposit template. Only partial exploration and sampling data for targeted CRM available (e.g.: Polymetal deposits with estimation of total reserves for several I&M, targeted CRM not or poorly individually described. Bauxite and Magnesite deposits with reserves estimation and deposits characteristics based on Bauxite or Magnesite region data with some exploration and sampling data for the individual deposit available.)	B	
No or minimum geological data for individual deposit, based on regional scale geological data, CRM reserves not defined or poorly estimated. Data are based on references that describe the deposits wider area on regional scale (Publications, Scientific papers, Geological maps). In this group less than 1% of essential characteristics are delivered in the deposit template. No data about exploration and sampling for individual deposit available. Reserves are estimated only on basic regional data.	C	
Level of current geological knowledge - quantity¹		
Fluorite deposits: Level A or B data quality, poorly estimated mineral resources, expert judgement-short explanations based on area geological characteristics and historical data. Antimony deposits: Level A data quality, more than 10,000 t of reserves (A=B+C category) and expert judgement. Magnesite deposits: Level A data quality, more than 100,000 t of reserves (A=B+C category). Bauxite deposits: Level A data quality, more than 1,000,000 t of reserves (A=B+C category) or more than 500,000 t of A+B category reserves.	A	
Fluorite deposits: Level A or B data quality, poorly estimated mineral resources or inaccessible documentation, expert judgement, historical data. Antimony deposits: Level A or B data quality, reserves are estimated only for all present raw materials in polymetallic deposit considering expert judgement. Magnesite deposits: Level A or B data quality, more than 10,000 t and less than 100,000 t of reserves (A+B+C category). Bauxite deposits: Level A or B data quality, more than 10,000 t and less than 1,000,000 t of reserves (A+B+C category).	B	
Fluorite deposits: Any level of data quality, inaccessible documentation, expert judgement-short explanations based on area geological characteristics and historical data. Antimony deposits: Level C of data quality with inaccessible reserves documentation considering expert judgement. Magnesite deposits: Any level of data quality, less than 10,000 t of reserves of any category. Bauxite deposits: Any level of data quality, less than 10,000 t of reserves A+B category or inaccessible reserves data.	C	

Table 2. Selection criteria parameters – Social licencing, Environmental management, Project permitting, Skills availability.

Selection criteria 2 (according to Word Risk Report)	Parameters defined by InvestRM consortium	A	B	C
Social licencing	Acceptance by Local community	Excellent, local community is aware of need for economical prosperity that industry brings along, local mines operate without conflict, supported by local community, location of the deposit is within poor rural area in the vicinity of urban area	Sufficient, local community is aware of need for economical prosperity that industry brings along, however several incidents have been recently reported from local mines operate, local community is partly supportive but worried from the aspects of health and safety	Insufficient or problematic based on current state of mining activities; local community does not accept industry due to focus on other area (agriculture, tourism), usually urban area. Local mines experience various problems related to social acceptance.
Environmental management	Legal requirements: Master plan, EIA, Environmental permit	Excellent - Environmental permit issued	Good - EIA prepared	Insufficient - exploitation filed NOT included in the Master plan
Project permitting	Legal requirements: Preliminary investigation work, Mining project, Concession permit	Excellent - Concession permit issued	Good - mining project approved	Insufficient - no research approved and/or no reserves determined
Skills availability	Labour cost, skills, task force defined in a WP2. Social and Economics data	4 - 5 unique rank for B&B; in general 15% higher than average salaries		

¹ Level of current geological knowledge - quantity: Fluorite deposits: Level A or B data quality, poorly estimated mineral resources, expert judgement-short explanations based on area geological characteristics and historical data. Antimony deposits: Level A data quality, more than 10,000 t of reserves (A=B+C category) and expert judgement. Magnesite deposits: Level A data quality, more than 100,000 t of reserves (A=B+C category). Bauxite deposits: Level A data quality, more than 1,000,000 t of reserves (A=B+C category) or more than 500,000 t of A+B category reserves.
Appendix 2. CRM Deposits in Bosnia and Herzegovina

Table 1. Antimony deposits in Bosnia and Herzegovina (data compiled after references used in verification and evaluation phase: CVIĆ (2004); ČIČ (1978); DANGIĆ (1978); GRUBIĆ et al., (2016); JAŠAREVIĆ et al., (2013); JURIĆ (1973); KUBAT et al. (1973); KUBAT (1995); MITROVIĆ (2011); PALINKAŠ et al., (2009; 2016); RAMOVIĆ (1963); Todorović (2016).)

Area	Deposit	Key to Figure 1	Age	Shape	Mineral	Commodity	Sb (%)	Pb+Zn (%)	Reserves (t)	Resources (t)	Reserves + Resources (t)	Data level	Quantity-perspectivity	Social licensing	Environmental management	Project permitting
Central Bosnia Canton	Čemernica 1	1	Carboniferous,	irregular, vein	Antimony-Stibnite	Sb-Zn-Hg-As-Ag	4.0	11,935	299,234			A	A+	B	B	B
	Totinovac-Viduša 2	2	Permian			Sb-Zn-Hg-As						B	C	C	C	C
Republic of Srpska (Field	Field Ljubija 3	3	Paleozoic-Triassic	irregular, vein	Antimony-Stibnite	Pb-Zn-Sb-Hg			1,100,000	2,000,000	3,100,000	B	B			
Ljubija)	Podhrusanj 4	4	Paleozoic-Middle	irregular, vein	Antimony-Stibnite	Pb-Zn-Sb-Hg						B	B			
Zenica-Doboj Canton	Field Rupice 5	5	Paleozoic-Middle	irregular, vein	Antimony-Stibnite	Ba-Pb-Zn-Au-Au-Sb-Hg	4.8		>10,000	3,000,000		A	A+	A	A	A
	Rupice 6	6	Triassic	layer	Antimony-Stibnite	Ba-Pb-Zn-Au-Au-Sb-Hg	4.8		>10,000	1,000,000		A	A+	A	A	A
	Vešić 6	7	Triassic	layer	Antimony-Stibnite	Ba-Pb-Zn-Au-Au-Sb-Hg	4.8		500,000	1,500,000		A	A+	A	A	A
	Križ 9	8	Triassic	layer, irregular	Antimony-Stibnite	Ba-Pb-Zn-Au-Au-Sb-Hg	4.8					A	A+	A	A	A
	Veovača 10	9	Triassic	vein	Antimony-Stibnite	Ba-Pb-Zn-Au-Au-Sb-Hg	4.8					A	A+	A	A	A
Republic of Srpska	Podkozara 11	11	Triassic	irregular, vein	Antimony-Stibnite	Ba-Pb-Zn-Au-Au-Sb-Hg	4.8					A	A+	A	A	A
	Field Srebrenica 12	12	Triassic	irregular, vein	Antimony-Stibnite	Ba-Pb-Zn-Au-Au-Sb-Hg	4.8					A	A+	A	A	A
	Lisac 13	13	Triassic	irregular, vein	Antimony-Stibnite	Ba-Pb-Zn-Au-Au-Sb-Hg	4.8					A	A+	A	A	A
	Vidovac 14	14	Triassic	irregular, vein	Antimony-Stibnite	Ba-Pb-Zn-Au-Au-Sb-Hg	4.8					A	A+	A	A	A
	Čumavić 15	15	Triassic	irregular, vein	Antimony-Stibnite	Ba-Pb-Zn-Au-Au-Sb-Hg	4.8					A	A+	A	A	A
Area	Deposit	Key to Figure 1	Enbeded between	Shape	Mineral	Chemical composition	Reserves	Resources	Data level	Quantity-perspective	Social licensing	Environmental management	Project permitting			
------	---------	-----------------	-----------------	-------	---------	----------------------	----------	-----------	------------	---------------------	----------------	------------------------	-----------------			
						Al₂O₃ (%) SO₂ (%) Fe₂O₃ (%) TiO₂ (%) A+B+C₁ C₂										
South Bosnia region (Herzegovina)																
Hercegovina-Neretva Canton (Čitluk region)	Blatnica-Lakvice	1	Upper Cretaceous-Paleogene	lensoidal, layer	Boehmite	53.4 5.4	1,070,958	A	A+	B	C	C				
	Kehin gradac-Bilanci	2														
	Mamići-Rasno-Hažići	3														
	Olijići-Krivodić	4														
	Slučanj	5														
	Vrša-Ljupio	6														
West Herzegovina Canton (Ustica region)	Crne loke-Kaldačke niye	7	Upper Cretaceous-Paleogene	lensoidal	Boehmite	41.7 18.3	427,257	A	B	B	C	C				
	Resnice-Grabova draga	8														
	Uzaric-Knežpolje	9														
	Vareš planina	10														
	Tim-Slijukovića luka	11														
Hercegovina-Neretva Canton (Mostar region)	Zavrica	12	Upper Cretaceous-Paleogene	lensoidal, layer	Boehmite	46.5 4.2	35,700	A	B	B	C	C				
	Jasenjani	13														
West Herzegovina Canton (Posušje region)	Črni lavka-Kaldačke niye	14														
	Matinića-Medine stanine	15														
	Pavlović-Vinica	16														
	Studenica Vila	17														
	Trebišća-Sobač	18														
	Vinari	19														
	Volujak-Kadić	20														
	Vučopolje	21														
Republic of Srpska	Bivolje brdo-Domanovići	22	Upper Cretaceous-Paleogene	lensoidal, layer	Boehmite	51.4 7.5	23,150	A	B	B	C	C				
	Babina	24														
	Gornji Britanik	25														
	Mratnića-Medine stanine	26														
	Poplast	27														
	Hodoj	28														
Northwestern Bosnia region (Bosanska Krajina)	Udržnje	29	Upper Cretaceous-Paleogene	lensoidal, layer	Gibbsite, Boehmite	47.7 13.3	421,000	A	B	A	A	A				
	Viduša	30														
	Velika-Šoljica	31	Upper Jurassic	saddle-shaped												
	Bjelaj	32														
	Veliki Šošljak	33														
	Knežjeva-Bravski vrh-Cimlina	34														
	Petoka-Tihotna-Trovrh	35														
	Suvaja-Šoljica	36														

Table 2. Bauxite deposits in Bosnia and Herzegovina (data compiled after references used in verification and evaluation phase: BUDEŠ et al., (2018); ČIČIĆ (1979); DANGIĆ (1988); DANGIĆ (2015); GRUBIĆ, A., (1975); MITROVIĆ (2011); PAVIĆIĆ et al., (2018)).
Table 2. Continued.

Location	Formation	Age	Type	Boehmite	Internal	External	Lithology	Activity	Source
Bešpelj-Crvene stijene	Upper-Lower Cretaceous	saddle-shaped		55.0–60.0	1.0–4.0	<21.0	3.0	116,375	A A A A A
Poljana	Upper-Lower Cretaceous	irregular and lensoidal		53.0–62.0	0.5–4.0	<2.10–30.0	2–3	300,000	A A A A A
Central Bosnia Canton									
Poljana	Upper-Lower Cretaceous								
Poljana	Upper-Lower Cretaceous								
Internal Dinaride bauxite									
Palež	Middle Triassic	tabular		42.0–55.0	1.0–20.0	17.0–30.0	2.0–3.5	no data	B C A A A
Šedina		irregular		41–55	5–20	20–34	no data	B C A A A	
Ždansko				34–53	2–37		60,000	B B A C A	
Kutzuzero				44–56	2–12		no data	C C A C A	
Pribojevići				37.8–64.6	250,000		B	A C A A	
East Bosnia region (Vlasenica-Sebenica) (38-49)									
Palež	Middle Triassic	tabular		50.0	280	8.0		4,827,809	A A+ A A A
Šeted		irregular		52.1	7.0	26.0		122,680	B B A C A
Ždansko				n.a.	no data		C	A C A A	
Kutzuzero				53.1	6.3	26.3	2.6	5,813,644	A A+ A A A
Pribojevići		tabular/lensoidal		n.a.	2,300,000	500,000	A	A+ A A A	
Republic of Srpska									
Crvene stijene-Vlasenica	Middle Triassic-Upper Cretaceous	irregular		50.9	6.3	29.0	2.8	5,000,000	A A+ A A A
Palež	Middle Triassic - Neogene	tabular		51.8	10.3	20.3	4,153,30	A A+ A A A	
Podbračan		tabular/lensoidal							
Šumarnica	Middle Triassic - Neogene								
Palež	Lower Cretaceous-Neogene								
Palež	Lower Cretaceous-Neogene								
Palež	Lower Cretaceous-Neogene								
Palež	Lower Cretaceous-Neogene								
Table 3. Fluorite deposits in Bosnia and Herzegovina (data compiled after references used in verification and evaluation phase: CVIJIĆ (2004); ČIČIĆ (1979); GRUBIĆ et al., (2016); JEJINA et al., (1977); JURIĆ (1973); JURKOVIĆ (1961); KUBAT (1995); MITROVIĆ (2011); PALINKAŠ et al., (2009; 2016)). Itallic stands for C1+C2 resources.

Area	Deposit	Key to Figure 1	Age	Shape	Mineral	Chemical composition	Reserves	Resources	Data level	Quantity-perspectivity	Social licensing	Environmental management	Project permitting
Tuzla Canton (Field Kladanj)	Magnesite Field Kladanj	1	Paleocene	Irregular, vein-type	Magnesite	28.5 - 45.1	0.4 - 36.9	0.4 - 11.6	0.6 - 3.3	116,000	20,000	B	B
	Miljevica	2											
	Zenica	3											
	Dinjaša	4											
Zenica-Doboj Canton (Field	Magnesite Field Moševec	5	Paleocene	Irregular, vein-type	Magnesite	28.5 - 45.1	0.4 - 36.9	0.4 - 11.6	0.6 - 3.3	116,000	20,000	B	B
Moševec	Boljšek	6											
	Maljevica	7											
	Paklomena	8											
	Šahmanska Bštica	9											
	Divan 1	10											
	Divan 2	11											
	Daska	12											
	Bela Portok	13											
	Drum	14											
Zenica-Doboj Canton (Field	Magnesite Field Novi Seher	15	Paleocene-Eocene	Irregular, vein-type	Magnesite	21.2 - 45.0	0.3 - 23.6	0.7 - 25.6	0.5 - 6.4	87,000	119,000	A	A
Novi Seher)	Olje	16											
	Brežice Klam	17											
	Samar	18											
	Veliki Kriz	19											
	Sač	20											
	Muratovac	21											
Zenica-Doboj Canton (Field	Magnesite Field Žepče	22	Paleocene	Irregular, vein-type	Magnesite	21.2 - 45.0	0.3 - 23.6	0.7 - 25.6	0.5 - 6.4	87,000	119,000	A	A
Žepče)	Lozinevac	23											
	Sežete	24											
	Čubinu brdo	25											
Zenica-Doboj Canton (Field	Magnesite Field Bajvat	26	Paleocene	Irregular, vein-type	Magnesite	29.0 - 51.7	0.1 - 21.7	1.3 - 40.2	0.7 - 7.7	43,500	22,000	A	A
Bajvat)	Polača njive	27											
	Velike ašvni	28											
	Krčevina	29											
Zenica-Doboj Canton (Field	Magnesite region Dištica	30	Paleocene	Irregular, vein-type	Magnesite	39.5 - 46.2	0.9 - 6.9	1.6 - 4.6	0.7 - 1.6	32,000		B	B
Dištica)	Maoća	31											
	Dištica	32											
Zenica-Doboj Canton (Field	Magnesite Field Olovo	33	Paleocene	Irregular, vein-type	Magnesite	45.1 - 46.5	0.1 - 0.8	1.1 - 3.0	0.4 - 0.7	8,500		B	B
Olovo)	Donje Lanište	34											
	Mladoševec	35											
	Tovarnica	36											
	Berina	37											
Magnesite Field Banja Luka-Snjegotina	38	44.3–45.0	1.2–4.1	1.5–4.6	1,231,900	A							
--------------------------------------	----	------------	---------	---------	-----------	---							
Jelovac	39	41.3–45.0	1.2–4.1	1.5–4.6	419,992	A+							
Mednepak	40	4.4–45.0	3.0–4.3	1.3–1.7	113,100	A							
Požnji	41	4.4–45.0	3.0–4.3	1.3–1.7	437,757	A+							
Snježnogora	42	4.4–45.0	3.0–4.3	1.3–1.7	42,050	A							
Čerava	43	4.4–45.0	3.0–4.3	1.3–1.7	164,937	A							
Staniškova	44	4.4–45.0	3.0–4.3	1.3–1.7	39,584	A							
Čadinica	45	4.4–45.0	3.0–4.3	1.3–1.7	14,500	A							

| Magnesite Field Banja Luka-Vrbanja | 46 | 44.3 | 1.4 | 1.0 | 9,497 | 14,500 | A |
|-------------------------------------|----|------|-----|------|----------|----|
| Jastavić | 47 | 44.3 | 1.4 | 1.0 | 9,497 | 14,500 | A |
| Repšte | 48 | 44.3 | 1.4 | 1.0 | 9,497 | 14,500 | A |

Magnesite Field Prnjavor	49	45.1	1.6	1.0	176,926	A
Raulića potok	50	45.1	1.6	1.0	39,926	A
Šigavac	51	45.1	1.6	1.0	39,926	A
Tanasića potok	52	45.1	1.6	1.0	39,926	A
Brezna	53	45.1	1.6	1.0	39,926	A
Stržbenica	54	45.1	1.6	1.0	39,926	A
Ravno brdo	55	45.1	1.6	1.0	39,926	A
Domačevac	56	45.1	1.6	1.0	39,926	A
Dugovac	57	45.1	1.6	1.0	39,926	A
Mala Ukrina	58	45.1	1.6	1.0	39,926	A

Magnesite Field Teslić	59	32.7	5.8	7.1	881,000	A
Blatnica	60	40.8	5.6	3.7	261,475	A
Bukovčić varoš	61	41.0	8.6	1.5	119,990	A
Milosavić varoš	62	41.0	8.6	1.5	119,990	A
Poljeterov do	63	42.6	2.1	3.3	377,456	A+
Školj	64	29.7	5.5	14.1	69,065	A
Vranilovići	65	41.6	3.8	2.2	25,000	A
Maksimov loka	66	27.3	18.5	10.0	9,000	A
Pasačac	67	42.5	5.0	1.6	10,000	A
Goveđa luka	68	29.2	1.0	1.0	10,000	A

Table 3. Continued.
Table 4. Magnesite deposits in Bosnia and Herzegovina (data compiled after references used in verification and evaluation phase: ČIČIĆ (1979); HODŽIĆ et al., (2014); OPERTA et al., (2018); MITROVIĆ (2011); SUNARIĆ-PAMIĆ et al. (1988)).

Area	Deposit	Key to Figure 1	Age	Shape	Mineral	Commodity	Flourspar (%	Reserves (A+B+C₃) Flourspar (t)	All RM (t)	Reserves + Resources (A+B+C₃+C₄+D)	Quantity per-spectivity	Data level	Social licencing	Environmental management	Project permitting
Internal Dinarides Canton	Meovišće 1	Paleozoc-Triasic	Ba-F	A/B	Fluorspar										
Hrmza 2 As-Sb-Hg-Ba-F A/B	Fluorspar	As-Sb-Hg-Ba-F	1,500,000	B	Fluorspar										
Pećine 3 Triassic	Fluorspar	Fe-Mn-F	514,000	B	Fluorspar										
Republic of Srpska Zene-Ljubija 4	Paleozoc-Triasic	Meovišće 1	Ba-F	20	1,500,000	3,100,000	A+	1,100,000	2,100,000						
Vidrenjak-Ljubija 5	Fluorspar	Fe-Mn-F	3,100,000	B	Fluorspar										