Effect of cold exposure on energy budget and thermogenesis during lactation in Swiss mice raising large litters

Zhi-Jun Zhao
School of Agricultural Science, Liaocheng University, 1 Hunan Lu, Liaocheng, Shandong, 252059, People’s Republic of China
Author for correspondence (zhaozj73@yahoo.com.cn)

Summary
In Swiss mice sustained energy intake (SusEI) during peak lactation has been previously suggested to be constrained by the capacity of the mammary glands to produce milk, supporting the “peripheral limitation” hypothesis. Here we experimentally examined if SusEI in these mice was not only limited peripherally but also constrained by the ability to dissipate heat. Female Swiss mice were provided with additional offspring above their natural litter sizes and were maintained during lactation either in warm (23°C) or cold (5°C) conditions. Food intake, thermogenesis, litter size and mass, and the weight of the mammary glands were measured. No differences were observed in asymptotic food intake at peak lactation, litter mass and thermogenesis between females raising litters of different size. Cold-exposed females increased food intake and thermogenic capacity, but weaned significantly smaller and lighter litters with smaller pup sizes compared with females in warm conditions. The weight of the mammary glands did not differ between warm and cold-exposed females, but within temperatures was positively related to litter mass. These data suggested that cold exposure increased food intake, but had no effect on the capacity of the mammary glands to secret milk because they were already working maximally in the females raising larger litters. The factors causing this limit in the mammary capacity remain elusive.

© 2012. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Key words: Cytochrome c oxidase (COX), Food intake, Lactation, Nonshivering thermogenesis (NST), Resting metabolic rate (RMR), Swiss mice

Introduction
Lactation is probably the most energy-demanding period in the lives of most female mammals, and energy intake during this phase appears to be limited (Koteja, 1996; Hammond and Diamond, 1997; Rogowitz, 1998; Speakman and Król, 2005, 2011). Understanding the nature of the limits during lactation has wide ecological relevance (Speakman and Król, 2011). Many studies have been performed in several different species (and strains of mice) to determine the factors that limit the sustained energy intake (SusEI) during peak lactation (Drent and Daan, 1980; Peterson et al., 1990; Hammond and Diamond, 1992; Weiner, 1992; Hammond et al., 1994; Koteja, 1996; Rogowitz, 1998; Hammond and Kristan, 2000; Johnson et al., 2001; Bacigalupe and Bozinovic, 2002; Król and Speakman, 2003a,b; Speakman and Król, 2005, 2011; Wu et al, 2009; Nagueib et al., 2010; Valencak et al., 2010). It seems that SusEI is not constrained physiologically by the capacity of the alimentary tract to absorb energy (the central limitation hypothesis), but may rather be limited by a combination of demands arising from peripheral tissues – the ‘peripheral limitation’ hypothesis (Hammond et al., 1994) or by the capacity of animals to dissipate heat – the ‘heat dissipation limitation (HDL)’ theory (Król and Speakman, 2003a,b; Speakman and Król, 2005, 2011).

The HDL theory suggests that SusEI at peak lactation is imposed by the capacity of an animal to dissipate body heat generated as a by-product of processing food and producing milk (Król and Speakman, 2003a,b). Under this theory, an animal has limited capacity to get rid of the heat by physical constraints, combined with an inability to store the heat internally because of the risks of hyperthermia (Speakman and Król, 2005, 2011). When the limits to heat dissipation are removed, such as during cold exposure, females consume more food and export significantly more milk and consequently wean larger litters (Król and Speakman, 2003a,b; Speakman and Król, 2005). The data from studies on MF1 mice strongly support the HDL theory. These data include observations that milk energy output during peak lactation is increased in females exposed to the cold, but decreased in females exposed to hot temperatures (Johnson and Speakman, 2001; Król and Speakman, 2003a,b; Speakman and Król, 2005, 2011). Removal of the fur also allowed MF1 females to elevate energy intake and to produce more milk compared with unshaved controls (Król et al., 2007).

We have previously performed studies on Swiss mice to determine factors limiting SusEI during peak lactation, and observed different responses to those observed in MF1 mice (Zhao and Cao, 2009; Zhao et al., 2010a). For example, when Swiss mice were dorsally shaved during peak lactation, fur-removal had no effect on milk production and litter growth, consistent with the prediction of ‘peripheral limitation’ hypothesis. These findings were also consistent with the
Asymptotic food intake

Food intake of the females was measured daily. Food intake was calculated as the mass of food missing from the hopper every day, subtracting orts mixed in the bedding (Cameron and Speakman, 2010). As there were no different differences in food intake between days 11 to 17 in females lactating at either cold or warm conditions, asymptotic food intake during peak lactation was calculated as the mean daily food intake between these days (days 11–17).

Resting metabolic rate (RMR) and nonshivering thermogenesis (NST)

RMR of the females was quantified as the rate of oxygen consumption, using an open-flow respirometry system (Sable system, USA). Air was passed at a rate of 600–850 ml/min through a cylindrical sealed Perspex chamber, which was immerged in water bath (±0.5°C). Gases leaving the chamber were dried (silica gel) and directed through the oxygen analyzer at a flow rate of 150–175 ml/min. The data were averaged and collected every 10 s by a computer connected analogue-to-digital converter (STD-U12, Sable system), and analyzed using a standard software (Sable system). On day 17 of lactation, RMR was measured for 2 hours at 30±0.5°C (within the thermal neutral zone of this species) (Speakman and Rossi, 1999). RMR was calculated from the lowest rate of oxygen consumption over 5 min. Oxygen consumption was calculated using the equation: \(\text{VO}_2 = \text{FR} \times \text{FiO}_2 \times (1 - \text{RQ}) \), where FR is the flow rate, \(\text{FiO}_2 \) is input fractional concentration of \(\text{O}_2 \) to the chamber, \(\text{FrCO}_2 \) is exit fractional concentration of \(\text{CO}_2 \) from the chamber, and RQ is respiratory quotient (Arch et al., 2006). Here, RQ was assumed to be 0.85 (Withers, 1977, Chi and Wang, 2011).

On day 17 of lactation, NST was measured next to RMR measurements. NST was quantified as the maximal rate of oxygen consumption induced by subcutaneous injection of norepinephrine (NE) (Shanghai Harvest Pharmaceutical Co. Ltd.) at 25±1°C. A mass-dependent dosage of NE was calculated according to the equation: \(\text{NE (mg/kg)} = \frac{6.6 \times (\text{MB}^{0.5})}{(\text{40})} \) (Heldmaier, 1971). NST measurement was carried out for 1 hour, and the highest rate of oxygen consumption over 5 min was averaged to estimate \(\text{NST}_{\text{max}} \). \(\text{NST}_{\text{max}} \) was calculated according to the same conversion equation as that used in RMR calculation. NST was calculated as \(\text{NST}_{\text{max}} \) minus RMR. RMR, \(\text{NST}_{\text{max}} \) and NST were corrected to standard temperature and air pressure conditions and expressed as \(\text{ml O}_2/\text{h} \) (Zhao et al., 2010b,c).

All measurements were made between 0900 and 1700h.

Sample collection and COX activity

After NST measurements on day 17 of lactation, females were sacrificed by decapitation between 0900 and 1100 h. Interscapular BAT was quickly removed and weighed and, mitochondria were prepared as described previously (Wiesinger et al., 1989; Zhao and Wang, 2005). Mitochondrial concentrations were measured using the Folin phenol method with bovine serum albumin as standard (Lowry et al., 1951). COX activity in the whole BAT tissue was determined polarographically with oxygen electrode units (Hansatech Instruments Ltd., England) (Zhao and Wang, 2005; Sundin et al., 1978). After BAT was removed, the mammary gland was separated carefully, pooled and weighed (to 1 mg).

Statistics

Data were analyzed using SPSS 13.0 statistic software. Two-way ANOVA (temperature × litter size) was used to examine effect of temperature and litter size on asymptotic food intake, litter size and mass, mean pup mass and BAT COX activity. Effects of temperature and litter size on RMR, NST and the weight of the mammary glands were determined using two-way ANCOVA with mass of whole body or carcass as covariates. Further, differences between LS=11, 13, 15, 17 and 19 females in either the cold or warm conditions were examined using Tukey’s HSD post-hoc tests where appropriate. Pearson’s correlation was performed to examine correlations between litter mass and litter size, asymptotic food intake, BAT COX activity and the weight of the mammary glands. Data were reported as means ± s.e.m. Statistical significance was determined at \(P < 0.05 \).

Results

Asymptotic food intake

Asymptotic food intake was significantly affected by cold exposure; cold-exposed females consumed more food than females in warm conditions (\(F_{1,62} = 12.19, P < 0.01 \) (Fig. 1). No significant differences were observed in asymptotic food intake between females raising 11, 13, 15, 17 and 19 offspring (\(F_{4,62} = 0.59, P > 0.05 \)) (Fig. 1).

Litter losses

Initial litter sizes are not different between the cold and warm conditions (day 0, \(F_{1,62} = 1.31, P > 0.05 \)). The sizes of litters...
Fig. 1. Effect of cold exposure on asymptotic food intake during lactation in Swiss mice raising large litters. Females were provided with additional pups on the day of parturition and then allowed to raise 11, 13, 15, 17 or 19 offspring (litter size, LS = 11, 13, 15, 17 or 19). On day 8 of lactation, half of females with their offspring in each group were transferred to the cold (5±1°C, Cold), the rest were still maintained in warm conditions (23±1°C, Warm). Data are presented as means ± s.e.m. **, significant effect of cold exposure (P<0.01).

Table 1. Litter size throughout the lactation period in cold-exposed Swiss mice raising large litters.

	Warm				
	LS = 11	LS = 13	LS = 15	LS = 17	LS = 19
Day of lactation	n = 7	n = 7	n = 7	n = 7	n = 7
7	10.7±0.2	12.1±0.3	13.9±0.5	15.7±0.3	17.7±0.6
8	10.7±0.2	11.9±0.3	13.6±0.8	15.7±0.3	17.9±0.5
9	10.6±0.2	11.9±0.3	13.4±0.8	15.6±0.4	17.6±0.6
10	10.6±0.2	11.9±0.3	13.1±0.9	15.6±0.4	17.4±0.8
11	10.3±0.3	11.9±0.3	12.9±0.9	15.4±0.5	17.1±0.7
12	10.3±0.3	11.9±0.3	13.0±0.9	15.4±0.5	16.9±0.7
13	10.3±0.3	11.9±0.3	12.7±0.9	15.4±0.5	16.9±0.7
14	10.3±0.3	11.9±0.3	12.9±0.9	15.3±0.4	16.9±0.7
15	10.3±0.3	11.9±0.3	12.9±0.9	15.1±0.4	16.7±0.7
16	10.3±0.3	11.9±0.3	12.9±0.9	15.1±0.4	16.6±0.6
17	10.3±0.3	11.9±0.3	12.9±0.9	14.9±0.5	16.3±0.7

	Cold				
	LS = 11	LS = 13	LS = 15	LS = 17	LS = 19
Day of lactation	n = 8	n = 8	n = 7	n = 7	n = 8
7	10.9±0.2	12.6±0.3	15.0±0.1	16.3±0.3	16.9±0.7
8	10.6±0.2	12.3±0.4	14.7±0.3	14.3±0.6	15.6±0.6
9	9.4±0.9	11.8±0.5	12.9±0.6	13.6±0.8	13.3±1.5
10	9.0±0.9	10.9±0.6	12.6±0.7	13.1±0.8	12.5±1.5
11	8.9±0.9	10.5±0.3	10.9±1.3	12.6±1.0	11.9±1.8
12	8.5±0.9	10.6±0.5	10.7±1.3	11.6±0.9	10.9±1.5
13	8.1±0.9	10.5±0.5	10.4±1.4	10.4±0.8	9.6±1.5
14	8.1±0.9	9.6±0.8	10.4±1.4	9.0±0.9	9.1±1.3
15	7.9±0.9	8.5±0.8	10.1±1.3	8.6±0.9	8.6±1.3
16	7.8±0.8	7.6±1.1	9.9±1.2	7.7±1.1	8.4±1.3
17	7.5±0.8	7.3±1.0	9.0±1.1	7.3±1.2	8.0±1.3

Females were provided with additional pups on the day of parturition and then allowed to raise 11, 13, 15, 17 or 19 offspring. On day 8 of lactation, half of females with their offspring in each group were transferred to the cold (5±1°C, Cold), the rest were still maintained at the warm (23±1°C, Warm). Values are presented as the means ± s.e.m. T, temperature; LS, litter size; *, P<0.05; **, P<0.01.

Litter mass and mean pup mass
We observed a significant difference in the litter mass between LS = 11, 13, 15, 17 and 19 groups on day 7 and 8 of lactation, but did not observe differences on days 9–17 for either warm or cold-exposed females (Table 2). Litter mass was not different between warm and cold-exposed females prior to cold exposure. Cold exposure had a significant effect on litter mass on days 8–17. Consequently, litters were weaned with a significantly lower mass in the cold-exposed females than females lactating in warm conditions (Table 2). Litter mass was positively correlated with litter size in the cold (r=0.90, P<0.01) and also in warm conditions (r=0.64, P<0.01) (Fig. 2A). A positive correlation between litter mass and asymptotic food intake was also observed in the cold (r=0.73, P<0.01) and warm conditions (r=0.68, P<0.01) (Fig. 2B). Mean pup mass was significantly affected by litter size throughout lactation, by which the larger litters the mothers supported, the lighter pups they raised and weaned (Table 3). Cold exposure had significant effect on mean pup mass on day 8 to 15 of lactation, and the pups raised in warm conditions were heavier than those in the cold (Table 3).

RMR and NST
Cold exposure had significant effect on RMR; cold-exposed females had a higher RMR at weaning than females lactating in warm conditions (F1,39=5.63, P<0.05) (Fig. 3A). NSTmax and NST were also significantly higher in females in the cold than warm conditions (NSTmax, F1,39=52.78, P<0.01) (Fig. 3B); (NST, F1,39=31.01, P<0.01) (Fig. 3C).

BAT COX activity
We observed a significant effect of cold exposure on BAT COX activity (F1,55=15.68, P<0.01) (Fig. 3D). Consistent with the changes in RMR, NSTmax and NST, BAT COX activity was increased in the cold-exposed females compared with that of warm-exposed females, by which COX activity was higher by 32%, 89%, 108%, 55% and 58% in females in the cold than warm conditions in LS = 11, 13, 15, 17 and 19 groups, respectively. No differences were observed in RMR, NSTmax, NST or BAT COX activity between LS = 11, 13, 15, 17 and 19 females (RMR, F4,39=0.48, P>0.05) (Fig. 3A); (NSTmax, F4,39=0.28, P>0.05) (Fig. 3B); (NST, F4,39=0.39, P>0.05) (Fig. 3C); (COX,
Females were provided with additional pups on the day of parturition and then allowed to raise 11, 13, 15, 17 or 19 offspring. On day 8 of lactation, half of females with their offspring were transferred to the cold (5±1°C, Cold), the rest were still maintained in warm conditions (23±1°C, Warm). Values are presented as the means ± s.e.m. T, temperature; LS, litter size; *, P<0.05; **, P<0.01.

F_{4,45}=0.45, P>0.05) (Fig. 3D). No correlation was observed between COX activity and asymptotic food intake in females lactating in the cold or warm conditions (Warm, r = −0.35, P>0.05; Cold, r = −0.32, P>0.05) (Fig. 4A). COX activity was negatively correlated with litter mass in females lactating in warm conditions (r = −0.38, P<0.05), but such a correlation was not significant in the females lactating in the cold (r = −0.28, P>0.05) (Fig. 4B).

Mammary glands
There was no significant effect of cold exposure on the weight of the mammary glands (F_{1,50}=1.36, P>0.05) (Fig. 5). For mice lactating in warm conditions, the weight of the mammary glands was heavier by 75% and 68% in LS=17 and 19 females respectively than in LS=13 females (F_{4,26}=3.19, P<0.05). There was no difference in the weight of the mammary glands between LS=11, 13, 15, 17 and 19 females in the cold conditions (Warm, 3.39±0.35, 3.79±0.32, 3.50±0.73, 5.92±0.97 and 5.67±0.78 g; Cold, 3.84±0.25, 4.02±0.54, 4.22±0.55, 3.76±0.42 and 4.50±1.24 g in LS=11, 13, 15, 17 and 19 groups respectively, F_{4,25}=0.22, P>0.05). The weight of the mammary glands was positively correlated with litter mass at weaning (Warm, r = 0.46, P<0.01, Cold, r = 0.53, P<0.01) (Fig. 6).
Females with their offspring in each group were transferred to the cold (5 ±1°C, Cold), the rest were still maintained at the warm (23 ±1°C, Warm). Values are presented as the means ± s.e.m. T, temperature; LS, litter size; *, \(P<0.05 \); **, \(P<0.01 \).

Fig. 3. Cold exposure on resting metabolic rate (RMR) (A), maximum nonshivering thermogenesis (NST\(_\text{max}\)) (B), NST (C) and activity of cytochrome c oxidase of brown adipose tissue (COX) (D) at weaning in cold-exposed Swiss mice raising large litters. Females were provided with additional pups on the day of parturition and then allowed to raise 11, 13, 15, 17 or 19 offspring. On day 8 of lactation, half of females with their offspring in each group were transferred to the cold (5 ±1°C, Cold), the rest were still maintained at the warm (23 ±1°C, Warm). Data are presented as means ± s.e.m. **, significant effect of cold exposure (\(P<0.01 \)).

Table 3. Mean pup mass (g) throughout the lactation period in cold-exposed Swiss mice raising large litters.

Days of lactation	Warm	Cold									
	LS=11	LS=13	LS=15	LS=17	LS=19						
	n=7	n=7	n=7	n=7	n=7						
5	5.3±0.2	5.0±0.1	4.3±0.2	4.2±0.1	4.0±0.1	5.0±0.2	4.8±0.2	4.5±0.2	4.5±0.1	4.4±0.1	LS,**
	5.9±0.2	5.6±0.1	4.8±0.2	4.6±0.1	4.3±0.1	5.2±0.2	5.1±0.2	4.6±0.2	4.6±0.1	4.6±0.2	T*, LS,**
6	6.4±0.2	6.1±0.1	5.2±0.3	5.0±0.1	4.7±0.1	5.7±0.2	5.4±0.2	4.9±0.4	4.9±0.2	4.7±0.2	T**, LS,**
7	6.8±0.2	6.5±0.1	5.6±0.2	5.4±0.1	4.8±0.1	5.8±0.2	5.7±0.2	5.0±0.3	4.9±0.2	4.9±0.3	T**, LS,**
8	7.1±0.2	6.9±0.1	5.9±0.2	5.6±0.1	5.1±0.1	6.1±0.2	5.9±0.3	5.2±0.4	5.1±0.3	5.1±0.3	T**, LS,**
9	7.4±0.3	7.2±0.1	6.1±0.3	5.8±0.2	5.4±0.1	6.4±0.3	6.0±0.2	5.6±0.5	5.3±0.4	5.4±0.3	T**, LS,**
10	7.7±0.3	7.6±0.2	6.5±0.3	6.0±0.2	5.6±0.1	6.9±0.3	6.1±0.3	5.8±0.4	5.6±0.4	5.8±0.3	T**, LS,**
11	7.9±0.3	7.9±0.4	6.7±0.4	6.2±0.2	5.7±0.1	7.2±0.4	6.4±0.3	6.1±0.4	5.7±0.4	6.4±0.3	T**, LS,**
12	8.0±0.3	7.8±0.2	6.8±0.4	6.3±0.2	5.9±0.1	7.2±0.5	6.4±0.3	6.2±0.4	5.5±0.6	6.6±0.4	T*, LS,**
13	8.0±0.3	7.9±0.3	6.9±0.4	6.4±0.2	5.9±0.2	7.3±0.6	6.6±0.4	6.4±0.4	6.2±0.4	6.8±0.4	LS,**
14	8.0±0.3	8.0±0.3	7.0±0.5	6.4±0.2	6.0±0.1	7.3±0.6	6.7±0.5	6.5±0.5	6.3±0.4	7.0±0.5	LS,**

Energy budget during lactation in cold-exposed mice

The difference between the two ideas is that the HDL theory predicts the animals can exploit their greater capacity to dissipate heat, when it is cold, by elevating their milk production, while the peripheral limitation hypothesis suggests that the mammary glands are assumed to already be working at their maximum capacity and therefore milk production will not changed after females are exposed to the cold.

Females generally increase food intake to meet the high energy demanding periods like lactation or cold exposure (Hammond and Diamond, 1992, 1997; Hammond et al., 1994, 1996; Koteja, 1996; Rogowitz, 1998; Hammond and Kristan, 2000; Król and Speakman, 2003a,b; Speakman and Król, 2005, 2011; Wu et al., 2009). We found positive correlations between asymptotic food intake and litter mass, indicating that increased food intake was largely allocated to milk production and hence pup growth in both warm and cold mice. Females that were manipulated to support 19 pups at parturition (LS=19) weaned on average 16.3 pups on day 17 of lactation at 23 °C, higher by 58% than the 10.3 pups at weaning in LS=11 mothers (\(P<0.01 \)). However, the weaned litter mass was not different between LS=11, 13, 15, 17 and 19 females (\(P>0.05 \)). These data suggest that the mammary glands of the females were working at maximal capacity and the
resultant milk was divided between more offspring as litter size was increased. This result is consistent with the previous studies in the same mouse strain (Zhao and Cao, 2009; Zhao et al., 2010a). For example, Hammond et al. (Hammond et al., 1996) manipulated female Swiss mice by surgically removing their mammary glands during late lactation but did not reduce litters they raised. They found that productivity in the halved glands did not change (Hammond et al., 1996; Speakman and Kro´l, 2005).

The key question is whether the milk secretion activity of the mammary glands was defined by intrinsic aspects of the gland itself, or whether the activity was dependent on the entire females capacity to dissipate heat. In other words, was activity of the mammary glands elevated in the cold (consistent with the HDL) or were the glands operating at the same level at 5˚C as they do at 23˚C (consistent with the peripheral limitation).

In our study females in the cold weaned smaller and lighter litters than females lactating in warm conditions. There are two interpretations for these data. First the cold-exposed mothers may have failed to upregulate their milk production (consistent with the peripheral limitation hypothesis). Combined with elevated pup demands in the cold this may have meant they were unable to maintain the large litter size, and consequently dams culled litter size to a level they could sustain. This would be consistent with previous studies indicating that this strain of mouse is peripherally limited at 23 ˚C (Zhao and Cao, 2009; Zhao et al., 2010a). However, another interpretation is that the female did upregulate her milk production in the cold (consistent with the HDL) but this increase was insufficient to offset these elevated pup demands, leading her to cull some of the pups. Unfortunately we do not have direct measures of milk production to separate between these alternative interpretations of the data.

If the females exposed to the cold were using their elevated capacity to dissipate heat to synthesise more milk they would not need to increase their thermogenic capacity using the more familiar routes of increased thermogenesis involving brown adipose tissue (Heldmaier et al., 1982; Klaus et al., 1988; Li and Wang, 2005; Wang et al., 2006; Cannon and Nedergaard, 2011). Yet cold-exposed females elevated RMR, NST and BAT COX.

![Fig. 4. Relationships between activity of cytochrome c oxydase of brown adipose tissue (COX) and asymptotic food intake (A) and litter mass (B) during peak lactation in cold-exposed Swiss mice raising large litters.](image1)

Females were provided with additional pups on the day of parturition and then allowed to raise 11, 13, 15, 17 or 19 offspring. On day 8 of lactation, half females with their offspring were transferred to a cold temperature (5±1˚C, Cold), the rest were still maintained at the room temperature (23±1˚C, Warm).

![Fig. 5. Effects of cold exposure on the weight of the mammary glands in Swiss mice raising large litters.](image2)

Females were provided with additional pups on the day of parturition and then allowed to raise 11, 13, 15, 17 or 19 offspring (litter size, LS=11, 13, 15, 17 or 19, six groups in total). On day 8 of lactation, half females with their offspring in each group were transferred to a cold temperature (5±1˚C, Cold), the rest were still maintained at the room temperature (23±1˚C, Warm). Data are presented as means ± s.e.m. Different letters above the columns indicate significant difference between LS=11, 13, 15, 17 and 19 groups (P<0.05).

![Fig. 6. Relationship between the weights of the mammary glands and litter mass at weaning in cold-exposed Swiss mice raising large litters.](image3)

Females were provided with additional pups on the day of parturition and then allowed to raise 11, 13, 15, 17 or 19 offspring. On day 8 of lactation, half females with their offspring were transferred to a cold temperature (5±1˚C, Cold), the rest were still maintained at the room temperature (23±1˚C, Warm).
activity compared with females lactating in warm conditions, indicating that females had increased the capacity of their BAT to produce heat to meet the heat loss caused by cold exposure. It suggests that mammary gland may set a peripheral limitation, leading us towards the former interpretation.

The growth of the mammary tissue is generally initiated during pregnancy which facilitates milk production during the subsequent lactation (Speakman, 2007, 2008). However, postpartum mammogenesis continues and is responsive to changes in demands during lactation. In the present study, consistent with this previous work, weight of the mammary glands was related to litter size. Females raising 17–19 pups in warm conditions had heavier mammary glands than mothers supporting 11–15 pups. This finding suggests that the mammary glands grew to enable greater milk production to support the larger litters. Yet, as discussed above the litter mass remained unchanged across the different litter sizes, suggesting that milk production was not elevated despite having larger glands. These data are consistent with prior work in this strain which indicate the mammary glands impose limits on reproductive performance (Hammond and Diamond, 1992, 1997; Hammond et al., 1994, 1996; Hammond and Kristan, 2000; Zhao and Cao, 2009; Zhao et al., 2010a). The new data however raise important questions about what imposes such limits on the mammary gland performance in these mice. Clearly the limit is not on the growth of the tissue. However, if the heavier glands in mice that raised larger litters did not generate more milk, the implication is that this enlarged gland actually generated less milk per gram of tissue, suggesting some constraint on milk secretion activity external to the gland itself. The nature of this constraint remains elusive. The manifest ability of the mice to grow their glands in response to litter size also begs the question of why the glands did not also grow when the mothers were exposed to the cold. At present there is no answer to this question.

Contrary to the apparent situation in Swiss mice, in MF1 mice milk production was increased as temperature got colder (Johnson and Speakman, 2001) and pups raised in the cold were consequently larger than those raised at 21°C, and those raised under hot conditions (30°C) were smaller (Johnson and Speakman, 2001; Król and Speakman, 2003a; Speakman and Król, 2005, 2011). The different results between MF1 mice and Swiss mice may be due to different levels of the capacity of the mammary glands to produce milk, relative to the limits imposed by the capacity to dissipate heat (Speakman and Król, 2011). For MF1 mice, the capacity to dissipate heat appears to be a constraint on maximum milk production. Cold-exposure or fur-removal elevates heat dissipation, allowing females to secrete more energy in milk and wean larger litters (Król and Speakman, 2003a; Speakman and Król, 2011). In contrast, Swiss mice seemed to have lower maximal milk production capacity relative to their capacity to dissipate heat. We have highlighted here that the nature of the limit on the mammary gland performance may be extrinsic to the mammary tissue itself, but the nature of such a limit remains unclear.

Acknowledgements
This work was supported by grants (no. 30800130 and 31070367) from the National Natural Science Foundation of China, and grants from the Shandong Provincial Education Department (no. J09LC70). I am grateful to Jing Cao, Liang Zhao and Ming-Zhen Li for the care of the animals and the assistance with this study, and to Prof. John R. Speakman, Institute of Biological and Environmental Sciences, University of Aberdeen, UK, for the useful discussions, constructive comments and the help in improving earlier versions of the manuscript.

Competing Interests
The author declares no competing interests.

References
Arch, J. R., Hislop, D., Wang, S. J. and Speakman, J. R. (2006). Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int. J. Obes. 30, 1322-1331.
Bacigalupe, L. D. and Bozinovic, F. (2002). Design, limitations and sustained metabolic rate: lessons from small mammals. J. Exp. Biol. 205, 2963-2970.
Cameron, K. M. and Speakman, J. R. (2010). The extent and function of ‘good grinding’ in the laboratory mouse (Mus musculus). Lab. Anim. 44, 1-7.
Cannon, B. and Nederpeld, J. (2011). Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 214, 242-253.
Chi, Q. S. and Wang, D. H. (2011). Thermal physiology and energetics in male desert hamsters (Phodopus roborovskii) during cold acclimation. J. Comp. Physiol. B 181, 91-103.
Drent, R. H. and Daan, S. (1980). The prudent parent: energetic adjustments in avian breeding. Arlose 68, 225-252.
Hammond, K. A. and Diamond, J. (1992). An experimental test for a ceiling on sustained metabolic-rate in lactating mice. Physiol. Zool. 65, 952-977.
Hammond, K. A. and Diamond, J. (1997). Maximum sustained energy budgets in humans and animals. Nature 386, 457-462.
Hammond, K. A. and Kristan, D. M. (2000). Responses to lactation and cold exposure by deer mice (Peromyscus maniculatus). Physiol. Biochem. Zool. 73, 547-556.
Hammond, K. A., Konarzewski, M., Torres, R. M. and Diamond, J. (1994). Metabolic ceilings under a combination of peak energy demands. Physiol. Zool. 67, 1479-1506.
Hammond, K. A., Lloyd, K. C. and Diamond, J. (1996). Is mammary output capacity limiting to lactational performance in mice? J. Exp. Biol. 199, 337-349.
Heldmaier, G. (1971). Nonshivering thermogenesis and body size in mammals. J. Exp. Biol. 73, 222-248.
Heldmaier, G., Steinlechner, S. and Rafael, J. (1982). Nonshivering thermogenesis and cold resistance during seasonal acclimation in the Djungarian hamster. J. Comp. Physiol. B 149, 1-9.
Johnson, M. S. and Speakman, J. R. (2001). Limits to sustained energy intake. V. Effect of cold-exposure during lactation in Mus musculus. J. Exp. Biol. 204, 1967-1977.
Johnson, M. S., Thomson, S. C. and Speakman, J. R. (2001). Limits to sustained energy intake. I. Lactation in the laboratory mouse Mus musculus. J. Exp. Biol. 204, 1925-1935.
Klaus, S., Heldmaier, G. and Riechert, D. (1988). Seasonal acclimation of bank voles and wood mice: nonshivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria. J. Comp. Physiol. B 158, 157-164.
Koteja, P. (1996). Limits to the energy budget in a rodent, Peromyscus maniculatus: does gut capacity set the limit? Physiol. Zool. 69, 994-1020.
Król, E. and Speakman, J. R. (2003a). Limits to sustained energy intake V. Energetics of lactation in laboratory mice at thermoneutrality. J. Exp. Biol. 206, 4255-4266.
Król, E. and Speakman, J. R. (2003b). Limits to sustained energy intake VII. Milk energy output in laboratory mice at thermoneutrality. J. Exp. Biol. 206, 4267-4283.
Król, E., Murphy, M. and Speakman, J. R. (2007). Limits to sustained energy intake. X. Effects of fur removal on reproductive performance in laboratory mice. J. Exp. Biol. 210, 4233-4243.
Lü, X. S. and Wang, D. H. (2005). Seasonal adjustments in body mass and thermogenesis in Mongolian gerbils (Meriones unguiculatus): the roles of short photoperiod and cold. J. Comp. Physiol. B 175, 593-600.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
Nagaii, M., Kober, M. and Trillmich, F. (2010). Mother is not like mother: Concurrent pregnancy reduces lactating guinea pigs’ responsiveness to pup calls. Behav. Processes 83, 79-81.
Petersen, C. C., Nagy, K. A. and Diamond, J. (1990). Sustained metabolic scope. Proc. Natl. Acad. Sci. USA 87, 2324-2328.
Rogowitz, G. L. (1998). Limits to milk flow and energy allocation during lactation in the hispid cotton rat (Sigmodon hispidus). Physiol. Zool. 71, 312-320.
Speakman, J. R. (2007). The energy cost of reproduction in small rodents. Acta Theriol. Suec. 27, 1-13.
Speakman, J. R. (2008). The physiological cost of reproduction in small mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 375-398.
Speakman, J. R. and Król, E. (2005). Limits to sustained energy intake IX: a review of hypotheses. J. Comp. Physiol. 187, 475-494.
Speakman, J. R. and Król, E. (2011). Limits to sustained energy intake. XIII. Recent progress and future perspectives. J. Exp. Biol. 214, 230-241.
Speakman, J. R. and Rossi, F. P. (1999). No support for socio-physiological suppression effect on metabolism of paired white mice (Mus sp.). Funct. Ecol. 13, 373-382.
Sundin, U., Moore, G., Nedergaard, J. and Cannon, B. (1978). Thermogenin amount and activity in hamster brown fat mitochondria: effect of cold acclimation. Am. J. Physiol. 252, 822-832.

Valencak, T. G., Hackländer, K. and Ruf, T. (2010). Peak energy turnover in lactating European hares: a test of the heat dissipation limitation hypothesis. J. Exp. Biol. 213, 2832-2839.

Wang, J. M., Zhang, Y. M. and Wang, D. H. (2006). Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. J. Comp. Physiol. B 176, 663-671.

Weiner, J. (1992). Physiological limits to sustainable energy budgets in birds and mammals: ecological implications. Trends Ecol. Evol. 7, 384-388.

Wiesinger, H., Heldmaier, G. and Buchberger, A. (1989). Effect of photoperiod and acclimation temperature on nonshivering thermogenesis and GDP binding of brown fat mitochondria in the Djungarian hamster Phodopus sungorus. Pflugers Arch. 413, 667-672.

Withers, P. C. (1977). Measurement of VO2, VCO2, and evaporative water loss with a flow-through mask. J. Appl. Phys. 42, 120-123.

Wu, S. H., Zhang, L. N., Speakman, J. R. and Wang, D. H. (2009). Limits to sustained energy intake. XI. A test of the heat dissipation limitation hypothesis in lactating Brandt’s voles (Lasiopodomys brandti). J. Exp. Biol. 212, 3455-3465.

Zhao, Z. J. (2011). Energy budget during lactation in striped hamsters at different ambient temperature. J. Exp. Biol. 214, 988-995.

Zhao, Z. J. and Cao, J. (2009). Effect of fur removal on the thermal conductance and energy budget in lactating Swiss mice. J. Exp. Biol. 212, 2541-2549.

Zhao, Z. J. and Wang, D. H. (2005). Short photoperiod enhances thermogenic capacity in Brandt’s voles. Physiol. Behav. 85, 143-149.

Zhao, Z. J., Cao, J. and Chi, Q. S. (2010a). Milk energy output during peak lactation in shaved Swiss mice. Physiol. Behav. 101, 59-66.

Zhao, Z. J., Cao, J., Liu, Z., Wang, G. Y. and Li, L. S. (2010b). Seasonal regulations of resting metabolic rate and thermogenesis in striped hamster (Cricetulus barabensis). J. Therm. Biol. 35, 401-405.

Zhao, Z. J., Cao, J., Meng, X. L. and Li, Y. B. (2010c). Seasonal variations in metabolism and thermoregulation in the striped hamster. J. Therm. Biol. 35, 52-57.