Negative Quasiprobabilities Enhance Phase Estimation in Quantum-Optics Experiment

Y. Batuhan Yilmaz, 1,* Noah Lupu-Gladstein, 1,* David R. M. Arvidsson-Shukur, 2,3
Aharon Brodutch, 1 Arthur O. T. Pang, 1 Aephraim M. Steinberg, 1 and Nicole Yunger Halpern 4,5,6,7

1 CQIQC and Department of Physics, University of Toronto, 60 Saint George St., Toronto, ON M5S 1A7, Canada
2 Hitachi Cambridge Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, UK
3 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
4 Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA
5 Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
6 ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
7 Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

*ybymaz@physics.utoronto.ca. The first two coauthors contributed equally.

Abstract: Uncertainty principles limit measurement precision, via operator noncommutation. Wielded correctly, noncommutation can boost precision. We relate metrological enhancement with negative quasiprobabilities, quantum extensions of probabilities. In a phase measurement, we amplify the precision per detected photon by two orders of magnitude.

© 2023 The Author(s)

1. Introduction

Quantum metrology aims to develop better techniques for measurement and estimation problems [1, 2]. The maximum sensitivity to a small change in a parameter θ of a quantum state $\rho(\theta)$ is quantified by quantum Fisher Information (QFI) $I(\theta)$, and QFI determines the lower bound for the variance of every unbiased estimator θ_0 of θ by the Cramer-Rao bound, $\text{var}(\theta_0) \geq 1/I(\theta)$. However, the information can be distilled into fewer trials with proper filtering, which can increase per-input information arbitrarily [3]. The filter has to be noncommutative, i.e. applying the filter at the different parts of the setup must have a different outcome. This non-commutation can be quantified by the negativity of the Kirkwood-Dirac distribution [4] of the system.

We demonstrated this distillation phenomenon with our filtering method partially postselected amplification (PPA) [5]. The information gained from the filtered trials can exceed conventional per–input-trial limits, but the lowered success probability counterbalances the total information [6].

![Fig. 1: Partially Postselected Amplification for polarimetry](image)

Single photons generated by a heralded–single-photon source (HSPS) enter a polarizing–beam-displacer (PBD0) and exit vertically polarized ($|1\rangle$). The half-waveplate (HWP0) with an optic axis angled 45° above the horizontal axis rotates the photons’ polarization by an angle $\theta(\alpha) - \pi$. HWP0 is tilted away from normal incidence through an angle α about its optic axis. The partial polarizer consists of a polarizing–beam-displacer interferometer, followed by a beam block in the undisplaced port. The horizontal-polarization transmission amplitude, t with $|t| \in [0, 1]$, is controlled by a half-waveplate (HWP2) inside the interferometer. All horizontally polarized photons are discarded when $|t| = 0$ and kept when $|t| = 1$.

2. Partially Postselected Amplification

Let a unitary $U(\theta) = \exp(i\theta A)$ imprint θ on an input state with the observable A. With the optimal input state $|0\rangle$, the imprinted state $U(\theta)|0\rangle = |\Psi(\theta)\rangle$ carries the most QFI possible without postselection, $I(\theta) = \Delta^2$, Δ being the difference between maximum and minimum eigenvalues of A. We apply a filter represented by a Kraus operator $K(t) = t|0\rangle\langle 0| + |1\rangle\langle 1|$, wherein $|t| \in [0, 1]$. For any $|t| < 1$, the filter does not commute with the generator A and enables noncommutative filtering. The postselected state carries the QFI $I(\theta) = [\Delta |t| p^\text{ps}(\theta,t)]^2$, $p^\text{ps}(\theta,t)$ being the success probability of postselection.
3. The Relation Between QFI and Nonclassicality Gap

Let \(\{|a\rangle\}_a\) and \(\{|a'\rangle\}_{a'}\) denote copies of an \(A\) eigenbasis and let \(\{K_f\}_f\) denote the Kraus operators for the possible outcomes of the filter. The information-bearing state \(\rho(\theta)\) is represented by the Kirkwood-Dirac quasiprobabilities \(\tilde{\rho}_{\rho(\theta)}(a, f, a') := \text{Tr}(\{a'\rangle\langle a'|K_fK_f^\dagger\langle a|\rho(\theta))\). Conditioning on a filter outcome \(f\) induces the conditional Kirkwood-Dirac distribution

\[
\tilde{\rho}_{\rho(\theta)}(a, a'| f) := \tilde{\rho}_{\rho(\theta)}(a, f, a')/\sum_{a, a'} \tilde{\rho}_{\rho(\theta)}(a, f, a').
\]

These quasiprobabilities are positive if \(A\) and \(K_f^\dagger K_f\) commute on the support of \(\rho(\theta)\) [7]. If \(\Delta \theta < \pi\) and \(|t|^2 < 1\), \(\tilde{\rho}_{\rho(\theta)}(a, a'| f)\) has negative elements, and the postselected QFI exceeds \(\Delta^2\).

Let \(x\) denote the vector of arguments for a Kirkwood-Dirac distribution \(\{\tilde{\rho}(x)\}_x\). Define the nonclassicality gap as the greatest difference between quasiprobabilities’ absolute squares:

\[
\max_{x} \left\{ |\tilde{\rho}(x)|^2 \right\} - \min_{x} \left\{ |\tilde{\rho}(x)|^2 \right\}.
\]

The gap > 1 only if a quasiprobability \(\notin [0, 1]\). For any postselection operator \(K_+\), the nonclassicality gap is proportional to the optimal input state’s postselected QFI:

\[
I(\theta) = 4\Delta^2 \times \left[\max_{a, a'} \left\{ |\tilde{\rho}_{\rho(\theta)}(a, a'| +)\right| ^2 \right\} - \min_{a, a'} \left\{ |\tilde{\rho}_{\rho(\theta)}(a, a'| +)\right| ^2 \right\}
\]

We obtain the conditional quasiprobabilities and QFIs from the tomography of the states. Figure 2 compares the nonclassicality gap with the QFI. The estimated QFI and nonclassicality gap are consistent with the theoretical QFI [Fig. 2(a)]. Thus, our experiment corroborates the relationship (2) between enhanced precision and quasiprobability negativity.

![Fig. 2: Information per detected state (a) and per input state (b) vs. magnitude of the postselection parameter, \(|t|\). The 4 times the nonclassicality gap and experimental QFI are within the error bars. Error bars denote the geometric standard error of 4 independent runs. Without postselection, our estimates are shot-noise–limited to the per–input-state precision 1 rad\(^{-2}\). As we increasingly filter (as \(|t|\) decreases), the per–detected-state QFI steadily increases when \(\theta \approx 0\). Filtering too much decreases the QFI when \(\tan(\theta/2) < |t|\). Despite sacrificing little per–input-state information, the smallest \(|t|\) and \(\theta\) provide a per–detected-state information > 200 rad\(^{-2}\).](image-url)

References

1. L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, and A. M. Steinberg, “Violation of heisenberg’s measurement-disturbance relationship by weak measurements,” Phys. Rev. Lett. 109, 100404 (2012).
2. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
3. D. R. M. Arvindsson-Shukur, N. Yunger Halpern, H. V. Lepage, A. A. Lasek, C. H. W. Barnes, and S. Lloyd, “Quantum advantage in postselected metrology,” Nat. Commun. 11, 3775 (2020).
4. J. G. Kirkwood, “Quantum statistics of almost classical assemblies,” Phys. Rev. 44, 31–37 (1933).
5. N. Lupu-Gladstein, Y. B. Yilmaz, D. R. Arvindsson-Shukur, A. Brodutch, A. O. Pang, A. M. Steinberg, and N. Y. Halpern, “Negative quasiprobabilities enhance phase estimation in quantum-optics experiment,” Phys. Rev. Lett. 128, 220504 (2022).
6. J. Combes, C. Ferrie, Z. Jiang, and C. M. Caves, “Quantum limits on postselected, probabilistic quantum metrology,” Phys. Rev. A 89, 052117 (2014).
7. D. R. M. Arvindsson-Shukur, J. Chevalier Drori, and N. Yunger Halpern, “Conditions tighter than noncommutation needed for nonclassicality,” J. Phys. A: Math. Theor. 54, 284001 (2021).