Vitamin B$_{12}$, folate, and the methionine remethylation cycle—biochemistry, pathways, and regulation

D. Sean Froese | Brian Fowler | Matthias R. Baumgartner

Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland

Correspondence
D. S. Froese, Division of Metabolism and Children's Research Center, University Children's Hospital, Steinwiesstrasse 75, Zurich CH-8032, Switzerland.
Email: sean.froese@kispi.uzh.ch

Communicating Editor: Shamima Rahman

Funding information
Swiss National Science Foundation, Grant/Award Numbers: SNSF 31003A_156907, SNSF 31003A_175779; University of Zurich

Abstract
Vitamin B$_{12}$ (cobalamin, Cbl) is a nutrient essential to human health. Due to its complex structure and dual cofactor forms, Cbl undergoes a complicated series of absorptive and processing steps before serving as cofactor for the enzymes methylmalonyl-CoA mutase and methionine synthase. Methylmalonyl-CoA mutase is required for the catabolism of certain (branched-chain) amino acids into an anaplerotic substrate in the mitochondrion, and dysfunction of the enzyme itself or in production of its cofactor adenosyl-Cbl result in an inability to successfully undergo protein catabolism with concomitant mitochondrial energy disruption. Methionine synthase catalyzes the methyl-Cbl dependent (re)methylation of homocysteine to methionine within the methionine cycle; a reaction required to produce this essential amino acid and generate S-adenosylmethionine, the most important cellular methyl-donor. Disruption of methionine synthase has wide-ranging implications for all methylation-dependent reactions, including epigenetic modification, but also for the intracellular folate pathway, since methionine synthase uses 5-methyltetrahydrofolate as a one-carbon donor. Folate-bound one-carbon units are also required for deoxythymidine monophosphate and de novo purine synthesis; therefore, the flow of single carbon units to each of these pathways must be regulated based on cellular needs. This review provides an overview on Cbl metabolism with a brief description of absorption and intracellular metabolic pathways. It also provides a description of folate-mediated one-carbon metabolism and its intersection with Cbl at the methionine cycle. Finally, a summary of recent advances in understanding of how both pathways are regulated is presented.

KEYWORDS
folate, hyperhomocysteinemia, methionine cycle, methylmalonic acidemia, one-carbon metabolism, vitamin B$_{12}$

1 | INTRODUCTION

Functional metabolism of vitamin B$_{12}$ and folate is critical to human health. Vitamin B$_{12}$ (cobalamin, Cbl) is not produced in humans but is required for the function of two enzymes, cytosolic methionine synthase (MS, EC 2.1.1.13) and mitochondrial methylmalonyl-CoA mutase (MUT, EC 5.4.99.2).\(^1\) MUT utilizes the adenosylated form of Cbl to catalyse the conversion of L-methylmalonyl-CoA to succinyl-CoA. This is an essential step in the catabolism of branched-chain amino acids.
acids, odd-chain fatty acids, and the side chain of cholesterol, and contributes to anaplerotic replenishment of the tricarboxylic acid cycle. By contrast, MS requires the methylated form of Cbl and catalyzes the remethylation of homocysteine to methionine using 5-methyltetrahydrofolate as methyl donor. The importance of this reaction extends beyond the production of methionine, an essential amino acid, because methionine is further converted to S-adenosylmethionine (AdoMet, often called SAM). The methyl group of AdoMet can be donated to form a wide range of vitally important methylated compounds, for example, creatine, epinephrine, and sarcosine, as well as methylated DNA, RNA, and proteins. The utilization of 5-methyltetrahydrofolate as methyl donor by MS inexorably links Cbl metabolism with folate-mediated one-carbon metabolism, which in addition to the production of methionine and AdoMet, is required for de novo purine synthesis, production of deoxythymidine monophosphate (dTMP), and is an important cellular energy source through reduction of NADP$^+$ to NADPH. The importance of these pathways to human health is underlined by the extent and severity of disease caused by their primary and secondary dysfunction.

This review discusses Cbl and folate metabolism, with an emphasis on the intracellular pathways involved in Cbl cofactor synthesis, methionine remethylation, and one-carbon metabolism. The biochemical functions and regulation of individual proteins within these pathways are discussed, along with the biochemical/cellular consequences of their dysfunction. It is intended that this paper functions as a stand-alone summary of current knowledge of cellular Cbl and folate metabolism, while additionally may serve as a primer for those readers interested in the clinical manifestations of blocks in these pathways, presented in the adjoining paper "The clinical presentation of cobalamin-related disorders: from acquired deficiencies to inborn errors of absorption and intracellular pathways."

2 | COBALAMIN METABOLISM—STRUCTURE AND INTAKE

Once called “nature’s most beautiful cofactor,” Cbl is at least nature’s most chemically complex coenzyme (Figure 1). The focal point of Cbl is the central cobalt atom, which can form between four and six bonds, and can exist in the reduction states cob(III) (most oxidized), cob(II), or cob(I)alamin (most reduced). There is a correlation between the cobalt oxidation state and its preferred number of coordinated elements, whereby cob(III)alamin often forms six bonds, cob(II)alamin forms five bonds, and cob(I)alamin forms four bonds. Of these, four cobalt bonds are always occupied by the nitrogen atoms of the planar corrin ring surrounding the cobalt. Cobalt may additionally bind a lower axial ligand, the dimethylbenzimidazole (DMB) moiety which attaches back to the corrin ring. When bound, Cbl is considered “base-on,” when not “base-off.” Finally, the cobalt atom may also or instead bind an upper axial ligand (R-group), which may consist of any number of compounds, but whose human cofactor forms include the adenosyl- (adenosylcobalamin, AdoCbl) or methyl- (methylcobalamin, MeCbl) moieties, while glutathionyl- (glutathionylcobalamin, GNCbl) and hydroxo- (hydroxocobalamin, OHCbl) are also physiologically important and cyano- (cyanocobalamin, CNCbl) is common in pharmaceutical preparations.

Cbl approximates 1300 to 1500 Da in size, and its complete synthesis requires more than 25 different steps, which can occur aerobically or anaerobically at large energetic cost. Complete Cbl synthesis is limited to selected Eubacteria and Archaea, whereas other Cbl-utilizing organisms must modify Cbl acquired following uptake from other sources. In humans, these sources are limited to animal products, and therefore a certain proportion of the population, with low intake of animal products, is moderately vitamin B$_{12}$ deficient, even though dietary requirements are only a few micrograms a day. Even processing of pre-synthesized Cbl is complicated and metabolically costly; currently, approximately 20 human genes are known to be involved in absorption, selection, transport, modification, and utilization of Cbl acquired from the diet.

FIGURE 1 Chemical structure of vitamin B$_{12}$ (cobalamin). The corrin ring and the dimethylbenzimidazole (DMB) moiety in the base-on configuration are indicated. Grey dashed lines represent nonessential bonds. R represents various upper axial ligands, including: adenosyl, methyl, glutathionyl, hydroxo, and cyano
Following ingestion of animal products containing vitamin B₁₂, rich sources of which include raw liver, kidney, shellfish, meat, or dairy products (United States Department of Agriculture (USDA) food composition database: https://ndb.nal.usda.gov/ndb/nutrients/), Cbl is freed in the stomach following proteolytic cleavage of the food stuffs. While still within the stomach, freed Cbl is bound by the protein haptocorrin, which is thought to protect the vitamin against further hydrolysis by the acidic environment.⁷,⁸ Haptocorrin itself is degraded in the duodenum by proteases stemming from the pancreas, following which intrinsic factor (IF) sequesters the released Cbl.⁷,⁸ IF is synthesized and secreted by parietal cells of the stomach, and its deficiency, either due to inborn errors or an autoimmune attack against the parietal cells, results in classical pernicious anemia.⁹,¹⁰ At the terminal ileum, IF-bound Cbl (IF-Cbl) is recognized by distinct cells (polarized epithelial enterocytes), which express a complex receptor composed of a heterodimer of amnionless and cubilin (cubam) in the apical brush border, which mediates cellular absorption of Cbl via endocytosis.¹¹–¹³ Malabsorption at this step occurs in the Imerslund-Gräsbeck syndrome, a rare disorder of Cbl deficiency¹⁴,¹⁵ caused by mutations of cubilin (CUBN)¹⁶ or amnionless (AMN).¹⁷

Inside the cell, the IF-Cbl complex is released from cubam, which recycles to the plasma membrane.¹² IF is degraded by the increasingly acidic environment during the transition from endosome to lysosome. The exact details of Cbl export across enterocytes remains to be clarified, but likely requires many of the same steps as intracellular Cbl processing in unpolarised cells (see next section). Export of free Cbl from the cell into the bloodstream is mediated by at least the basolateral multidrug resistance protein 1 (MRP1),¹⁸ although other methods/transporters may also be involved.¹⁹

In the blood, Cbl may be bound to either of two proteins—haptocorrin or transcobalamin (TC).²⁰ The far greater proportion is bound by haptocorrin, but the affinity of haptocorrin for Cbl is lower than that of TC. Haptocorrin-bound Cbl is not available to most cells, TC-bound Cbl, however, is readily taken up by most cells of the body due to recognition by CD320, the TC receptor.²¹ CD320 is expressed in virtually all tissues,²² and CD320-mediated uptake promotes TC-Cbl endocytosis. In the kidney, however, an important organ for Cbl storage and recycling,²³ uptake of TC-Cbl is instead mediated by the protein megalin on the apical membrane of proximal tubule cells.²⁴,²⁵

3 | INTRACELLULAR COBALAMIN TRANSPORT AND MODIFICATION

Following uptake of TC-Cbl via receptor-mediated endocytosis, intracellular synthesis of the cofactors AdoCbl and MeCbl depends on intracellular transport and modification of the incoming Cbls. The first step of this process is the release of Cbl from TC, which occurs by the same process as that for release of IF in enterocytes, that is, most likely by progressive release from and degradation of the sequestering protein in the acidic environment of the lysosome. Transport of the now free Cbl out of the lysosome and into the cytosol requires two integral membrane proteins, lipocalin-1-interacting membrane receptor domain-containing 1 (LMBD1)²⁶ and adenosine triphosphate (ATP)-binding cassette subfamily D member 4 (ABCD4).²⁷ Disturbed function of either of these proteins, which occurs in patients with cblF and cblJ defects respectively, results in accumulation of Cbl in the lysosome.

After export into the cytosol, Cbl is bound by the protein methylmalonic aciduria cblC type with homocystinuria (MMACHC), which then processes all incoming Cbls to a common cob(II)alamin form. MMACHC has been shown structurally²⁸,²⁹ to bind Cbl in a special base-off manner, which facilitates biochemical removal of the upper axial ligand either by reductive decyanation⁴⁰ or dealkylation.³¹ Mutation of MMACHC, which occurs in patients with the cblC defect,³³ results in decreased availability of Cbl for downstream enzymes, and the inability of cells to metabolize and therefore utilize certain Cbl forms (eg, CNCbl). Following reduction to cob(II)alamin, MMACHC-chaperoned Cbl is then targeted to either MS or MUT by methylmalonic aciduria cblD type with homocystinuria (MMADHC),³⁴ a protein which interacts with MMACHC only after MMACHC has bound and processed Cbl.³⁵ MMADHC contains a mitochondrial leader sequence at its N-terminus, and has been identified in both the cytosol and mitochondria.³⁶ Mutation of MMADHC, as in the cblD defect,³⁷ represents the most unique genotype-phenotype relationship in intracellular Cbl processing, whereby: (a) truncating mutations at the N-terminus do not affect delivery of Cbl to MS, but instead result in dysfunction of only MUT; (b) truncating mutations in the middle and toward the C-terminus of the protein result in disruption of cofactor synthesis/delivery to both enzymes; and (c) certain missense mutations near the C-terminus result in dysfunction of MS only.³⁷–³⁹

4 | THE MITOCHONDRIAL COBALAMIN PATHWAY

The mechanism by which Cbl enters the mitochondrion remains one of the great mysteries of Cbl metabolism. However, the recent discovery of mutation of wht-6 in Caenorhabditis elegans causing disruption of the mitochondrial but not cytosolic Cbl pathway in this organism is a tantalizing clue that a human ortholog in the ATP-binding cassette type G (ABCG) family of transporters may be the long sought after mitochondrial importer.⁴⁰ Once inside in the
mitochondria (Figure 2), Cbl may be further chaperoned in conjunction with MMADHC; however, data supporting this, other than the observation that MMADHC is found within the mitochondria, remain lacking. Mitochondrial Cbl is sequestered by the protein methylmalonic aciduria cblB type (MMAB), which catalyzes the ATP-dependent synthesis of AdoCbl, the cofactor form of MUT. Patients with genetic deficiency of MMAB, as in the cblB defect, suffer from isolated methylmalonic aciduria (MMAuria) related to inadequate function of MUT. There is a mutational hotspot in exon 7 of MMAB, which encodes the active site of the protein. By analogy to bacterial homologs, AdoCbl transfer from MMAB to MUT likely proceeds via direct association between the two proteins. This transfer, however, is gated by a third protein methylmalonic aciduria cblA type (MMAA), which additionally appears to protect the AdoCbl from oxidation during the MUT catalytic cycle in a guanosine triphosphate GTP dependent manner. Mutation of MMAA in patients is described as the cblA defect, and every patient mutation described to date either results in a complete loss of MMAA protein or interferes with the interaction between MMAA and MUT.

MUT itself catalyzes the rearrangement of L-methylmalonyl-CoA to succinyl-CoA in an AdoCbl dependent manner. This pathway is an extension of the propionate catabolic pathway, which is required for the breakdown of the branched-chain amino acids valine, isoleucine, methionine and threonine, odd-chain fatty acids and the side chain of cholesterol, and whose product enters the tricarboxylic acid cycle as an anapleurotic substrate. The mut-type MMAuria due to mutation of MUT is the most common cause of isolated MMAuria. The MUT protein consists of two domains, an N-terminal substrate-binding and a C-terminal cofactor-binding domain connected by a short linker, which exists in a homodimeric state. Many of the patient mutations which cause the generally more severe mut- subtype of disease occur within the substrate-binding domain, whereas mutations within the cofactor-binding domain often result in the usually later onset mut- disease subtype which at least in vitro is Cbl responsive. Mutation of MCEE, the enzyme directly upstream of MUT in the propionate catabolic pathway, as well as in SUCLG1 or SUCLA2, the genes encoding the heterodimeric enzyme succinate-CoA ligase immediately downstream of MUT, also result in disease including MMAuria of milder degree.

FIGURE 2 Intersection of the methylmalonyl-CoA catabolic pathway with adenosylcobalamin cofactor synthesis. Arrows depict enzymatic reactions. Protein names are in bold. Cobalamin forms are in red. ABCD4, ATP-binding cassette subfamily D member 4; AdoCbl, adenosylcobalamin; Cbl, cobalamin (no upper axial ligand attached); CoA, coenzyme A; Cyto, cytosol; LMBD1, lipocalin-1-interacting membrane receptor domain-containing 1; MCEE, methylmalonyl-CoA epimerase; Mito, mitochondrion; MMAA, methylmalonic aciduria cblA type; MMAB, methylmalonic aciduria cblB type; MMACHC, methylmalonic aciduria cblC type with homocystinuria; MMADHC, methylmalonic aciduria cblD type with homocystinuria; MUT, methylmalonyl-CoA mutase; R-Cbl, cobalamin with upper axial ligand (eg, cyano-, hydroxo-) attached; SUCLA2, succinate-CoA ligase ADP-forming beta subunit; SUCLG1, succinate-CoA ligase alpha subunit.

5 | THE CYTOSOLIC COBALAMIN PATHWAY AND THE METHIONINE (REMETHYLATION) CYCLE

Successful delivery of Cbl to MS within the cytosol depends on the concerted actions of MMACHC and
MMADHC, both of which have been shown to physically interact with MS.55 Once Cbl has been successfully delivered to MS, it is bound and reduced in such a way that cob(I)alamin is formed. This is the most reduced and reactive Cbl form, which is primed to bind the methyl group from the substrate 5-methyltetrahydrofolate and transfer it to homocysteine, forming methionine and tetrahydrofolate (THF) as products. Loss of MS function, owing to mutation of the encoding gene MTR, is defined as the cblG defect. This defect, or blocks in the synthesis of the cofactor MeCbl, results in accumulation of homocysteine (hyperhomocysteinemia, homocystinuria). A common dysfunction of the MS enzymatic reaction is the inadvertent oxidation of cob(I)alamin to cob(II)alamin, occurring approximately every 1:200-1000 catalytic turnovers.56 This cofactor oxidation renders MS enzymatically inactive, but it can be reactivated by methionine synthase reductase (MSR) via reductive methylation, a process which involves transfer of an electron from MSR to MS, coupled with the transfer of a methyl group from AdoMet.57 Dysfunction of MSR, through mutation of its encoding gene MTRR, is defined as the cblE defect.58

Intracellularly synthesized methionine, along with exogenous sources, is available for incorporation into proteins or further processing by the methionine cycle (Figure 3). The next step in the methionine cycle is the formation of AdoMet from methionine and adenosine triphosphate by methionine adenosyltransferase (MAT). MAT consists of a liver-specific isoenzyme (MAT1A) and a ubiquitously expressed isoenzyme (MAT2A) whose enzymatic activity is regulated by an associated subunit (MAT2B). Dysfunction of MAT1A is genetically linked with an inborn metabolic disorder of hypermethioninemia,59,60 while MAT2A has been implicated in predisposition to thoracic aortic aneurysms.61 AdoMet is the principal methyl donor in biological transmethylation reactions, acting as substrate for a plethora of enzymes, DNA, RNA, and proteins,63 including histones.64 Following transfer of the methyl group, S-adenosylhomocysteine (AdoHcy) is formed. This reaction proceeds in the forward direction in vivo provided the products are removed. To this end, AdoHcy is processed to homocysteine methyltransferase, an enzyme that is most strongly expressed in the liver and kidney,66,67 and may play a substantial role in production of methionine in those tissues. A description of the genes/proteins involved in intracellular Cbl metabolism and the remethylation cycle is provided in Table 1.

![FIGURE 3](image)

The remethylation pathway as depicted through the folate cycle, methionine cycle and intracellular production of MeCbl. Arrows depict enzymatic reactions. Protein names are in bold. Cobalamin forms are in red. Single carbon groups originating from formate and ending on methylated compounds are represented in blue. ABCD4, ATP-binding cassette subfamily D member 4; Ado, adenosine; AdoHcy, adenosylhomocysteine; AdoMet, S-adenosylhomocysteine; AHCY, adenosylhomocysteine; ATP, adenosine triphosphate; Cbl, cobalamin (no upper axial ligand attached); CH3-THF, 5-methyltetrahydrofolate; CH2-THF, 5,10-methylene tetrahydrofolate; CH3-CHOH, 5-methyltetrahydrofolate; CHO-THF, 5-formyltetrahydrofolate; CHO-, formate; dTMP, deoxythymidine monophosphate; Cyto, cytosol; LMBD1, lipocalin-1-interacting membrane receptor domain-containing 1; Lyso, lysosome; MATs, methionine adenosyltransferase(s); MeCbl, methylcobalamin; MMACHC, methylmalonic aciduria cblC type with homocystinuria; MMADHC, methylmalonic aciduria cblD type with homocystinuria; MS, methionine synthase; MSR, methionine synthase reductase; MTHFD1, methylenetetrahydrofolate dehydrogenase 1, cyclohydrolase and formyltetrahydrofolate synthetase 1; MTHFR, methylenetetrahydrofolate reductase; MTR, methyltransferase(s); R-Cbl, cobalamin with upper axial ligand (eg, cyano-, hydroxo-) attached; SHMT, serine hydroxymethyltransferase

6 | FOLATE-MEDIATED ONE-CARBON METABOLISM

The source of the MS substrate 5-methyltetrahydrofolate (CH3-THF) is the one-carbon metabolic cycle, whose carrier is folate. Folates encompass a set of molecules that contain
(a) a pteridine ring that can be oxidized or reduced; (b) a para-aminobenzoic acid linker that together with the pteridine ring may bind one-carbon units; and (c) a variable-length chain polyglutamate tail (Figure 4). Folic acid, an oxidized folate form and a commonly used synthetic food additive, is reduced at the double bond at nitrogen-8 to produce dihydrofolate (DHF), while further reduction of the double bond at nitrogen-5 generates THF, the active coenzyme form. Both enzymatic steps are catalyzed by dihydrofolate reductase (DHFR). Once reduced to THF, nitrogen-5 and/or nitrogen-10 may serve as acceptors of single carbon units. These carbons may be transferred at varying oxidation states, as determined by their source and the enzyme catalyzing the reaction.

CH₃-THF is the most common folate form in blood and tissues. However, other folate forms in which the bound carbon has a higher oxidation state also have vitally important cellular roles. For example, 5,10-methylene-THF (CH₂-THF) is used by thymidylate synthase (TYMS) for the production of dTMP from deoxyuridine monophosphate (dUMP), an important step in DNA synthesis, while 10-formyl-THF (CHO-THF) is required as a carbon donor for two steps in de novo purine synthesis. The interconversion between different folate forms occurs through the folate-mediated one-carbon metabolic pathway, such that the amount of a particular oxidation state of one-carbon-bound THF produced can be tailored according to cellular needs. This pathway is mainly compartmentalized between the cytosol and mitochondria, with smaller folate amounts found in the nucleus (nuclear folate not discussed here, see for example, 70). An important determinant of compartmentalization is the polyglutamate tail, which appears to serve as a localization signal within the cell. Monoglutamate but not polyglutamate forms is transported across the intestine by the proton-coupled folate transporter, the plasma membrane by the reduced folate carrier and across the mitochondrial membrane by the mitochondrial folate transporter, whereby polyglutamate forms are trapped intracellularly within the compartment the glutamate tail was added. This means circulating folates are also in the monoglutamate form, which may additionally be processed by the folate receptor that has particular significance at the choroid plexus. Another contributor to compartmentalization is that folates with one-carbon units bound (eg, CHO-THF, CH₃-THF), are
not known to cross the mitochondrial membrane. Finally, only a limited number of nonfolate metabolic intermediates within the one-carbon metabolic pathway are able to cross the mitochondrial membrane. Together, these lead to separation of the mitochondrial and cytosolic one-carbon metabolic pathways, which are connected only via specific metabolites. These separated pathways remain functional, however, because a complete set of enzymes exist in both compartments. It is not clear why a parallel set of enzymes in the cytosol/mitochondria are required, especially when the vast majority of one-carbon need is in the cytosol. However, an important clue may come from the finding that mitochondrial one-carbon oxidation accounts for approximately 50% of the NADPH produced in the cell, a massive reducing and energy source. From this has stemmed the hypothesis that one-carbon oxidation is localized to the mitochondria in order to uncouple it from glycolysis, which might be blocked by the depleted NAD⁺ levels that would arise should one-carbon oxidation take place in the cytosol.

In humans, the major source of one-carbon units is serine, which in the presence of THF is reversibly metabolized to glycine and CH₂-THF by the enzyme serine hydroxymethyltransferase (SHMT). At least two different isozymes of SHMT (cytosolic SHMT1 and mitochondrial SHMT2) exist, encoded by separate genes (SHMT1 and SHMT2, respectively). Studies using deuterated serine have demonstrated that the majority of one-carbon units transferred to methionine in healthy volunteers and in cell culture originate from the mitochondria (ie, starting from SHMT2), and this has been found to be the case in most cancer cell types as well. Therefore, the folate cycle may be thought to begin with demethylation of serine by mitochondrial SHMT2 in the presence of free THF, to form glycine and CH₂-THF (Figure 5). The cycle continues with the two-step oxidation of CH₂-THF to methenyl-THF (CH⁺-THF) and then CHO-THF by bifunctional methenyltetrahydrofolate dehydrogenase 2 (MTHFD2) or MTHFD2 like (MTHFD2L), isoenzymes with different expression patterns. The final mitochondrial step is the formation of formate and free THF by methenyltetrahydrofolate dehydrogenase 1 like (MTHFD1L). Formate is an important intermediate that is able to cross the mitochondrial membrane, and whose availability in the cytosol is an important determinant of the direction in which the cytosolic pathway proceeds.

Within the cytosolic pathway, methenyltetrahydrofolate dehydrogenase 1 (MTHFD1) catalyzes the incorporation of formate back into free THF to form CHO-THF, a required substrate for de novo purine synthesis, donating two carbon groups to the purine ring through the purinosome enzymes GART and ATIC, respectively (Figures 3 and 5). CHO-THF may alternatively be successively reduced to CH₂-THF by the second and third functions of the trifunctional enzyme MTHFD1. CH₂-THF has alternative fates depending on the needs of the cell: the remethylation of glycine to serine by SHMT1 to complete the folate cycle; the production of dTMP from dUMP for DNA synthesis by TYMS; or final reduction to CH₃-THF by methylenetetrahydrofolate reductase (MTHFR), providing the substrate for MS and the methionine cycle. This last option commits THF for use by MS, as the MTHFR catalyzed reduction is physiologically irreversible and MS is the only enzyme that utilizes CH₃-THF. One important consequence of this is that in the presence of MS deficiency, cellular folates may become trapped in the CH₃-THF form. This results in an inability to

FIGURE 5 Simplified folate-mediated one-carbon metabolism pathway in the cytosol and mitochondria. Arrows represent enzymatic reactions or transmembrane transport. Broken arrows represent multiple enzymatic steps. Numbers indicate the enzyme(s) responsible for the enzymatic reaction as follows (provided where possible as the human gene name): 1) SHMT2, 2) MTHFD2/MTHFD2L, 3) MTHFD2/MTHFD2L, 4) MTHFD1L, 5) MTHFD1 (synthetase), 6) MTHFD1 (cyclohydrolase), 7) MTHFD1 (dehydrogenase), 8) SHMT1, 9) GART and ATIC (in the de novo purine synthesis pathway), 10) MTHFR, 11) TYMS, 12) DHFR, 13) MTR, 14) MAT1A or MAT2A, 15) AdoMet-dependent methyltransferase, 16) AHCY, 17) CBS, 18) CTH
produce purines and dTMP, which is especially debilitating for quickly dividing cells (eg, blood cells in the bone marrow) and is the presumed cause of megaloblastic anaemia in Cbl deficiency.

The relative importance of each endpoint in the cytosolic pathway (purine synthesis, dTMP synthesis or methionine/AdoMet synthesis) has been investigated by supplying labeled serine or formate to various cell types, followed by determination of the relative incorporation of label to each of these final compounds. In quickly proliferating cells, including cultured cancer cells, stem cells, hematopoietic cells, and during development, the majority of labeled carbons are incorporated into purines and dTMP (reviewed in: 73,83), reflecting the predominant requirement of these cell types for DNA synthesis. In these situations, cells are exquisitely sensitive to folate depletion, manifesting in the efficacy of the folate analogs methotrexate and pemetrexed for cancer treatment,44 in neural tube defects arising from folate insufficiency,85 or mouse knockouts of mitochondrial folate processing enzymes,86 and in the macrocytic/megaloblastic anaemia presented in patients with insufficient folate uptake or blockages in folate processing.1 In slowly proliferating fibroblasts in culture, Stover and colleagues87 found that compared to control cells, the incorporation of formate into methionine of MTHFD1 deficient fibroblasts was decreased by 90% and into dTMP by 50%, but purine incorporation was unchanged. This again is consistent with sacrifice of the methionine cycle in favour of protecting nucleotide synthesis. In these situations, cells are exquisitely sensitive to folate depletion, manifesting in the efficacy of the folate analogs methotrexate and pemetrexed for cancer treatment,44 in neural tube defects arising from folate insufficiency,85 or mouse knockouts of mitochondrial folate processing enzymes,86 and in the macrocytic/megaloblastic anaemia presented in patients with insufficient folate uptake or blockages in folate processing.1

7 | ALLOSTERIC, GENETIC, AND EPIGENETIC REGULATION

Due to the vital nature and interconnection of the intracellular Cbl, methionine synthesis and one-carbon metabolic pathways, these processes undergo regulation to ensure the best use of the often limited substrates or cofactors available. While some of these regulation mechanisms have been known for some time, for example, allosteric enzyme modulation by AdoMet and AdoHcy, exciting emerging concepts regarding regulation at the gene, mRNA and enzyme level have recently been identified. In terms of intracellular Cbl cofactor synthesis, there is now compelling evidence for the regulation of MMACHC expression. The first piece of evidence was provided in patients who had loss of MMACHC activity and expression despite harbouring no identifiable mutations in the MMACHC gene. These patients were eventually found to harbour mutations in the kelch domain of the transcriptional coregulator host cell factor C1 (HCFC1),89-91 a molecular scaffold whose function is critical for cell proliferation and cell-cycle progression.92,93 Control of the cell cycle by HCFC1 has been shown to require formation of a complex with the transcription factors THAP domain-containing protein 11 (THAP11) and zinc finger protein 143 (ZNF143).94 Indeed, mutation of both THAP1195 and ZNF14396 has been shown to result in loss of MMACHC expression and clinical Cbl deficiency, thus demonstrating that this complex is also involved in MMACHC expression. This provides a link between Cbl cofactor synthesis and cell growth and proliferation, which connects the methionine and one-carbon cycles as well (see below). Interestingly, putative HCFC1 binding sites were also identified in the promoters of MTR and ABCD4; however, analysis of RNA and protein expression of these genes in fibroblasts showed no difference between HCFC1 patients and controls.91 In an alternative mechanism, loss of MMACHC expression has been described to be due to mutation of its neighbouring antisense oriented gene PRDX1, which causes hypermethylation of the promoter and first exon of MMACHC and thereby causes MMACHC silencing.97 Thus far, no other regulatory mechanisms have been described for proteins proximal to MMACHC in the intracellular Cbl pathway (ie, LMBD1 and ABCD4) or in the mitochondrial pathway (ie, MMAA, MMAB, MMDHC, and MUT).

MS sits at the conjunction of the Cbl cofactor synthesis pathway and the methionine cycle and therefore may represent a prime location for the regulation of both cycles simultaneously. A potential site of regulation was found on a 70-bp stretch of the 5′-untranslated region MTR mRNA. This site was suggested to be modulated by Cbl at an internal ribosome entry site (IRES) in conjunction with an unidentified protein.98,99 Unfortunately, these tantalizing initial findings have not been followed up, and evidence for the existence of the IRES is disputed.100 Nevertheless, clues to the presence of regulated expression of MTR exist. For example, homocysteine has been found to increase mRNA levels in Caco-2 cells,101 a link between MTR expression and the cell cycle has been found, whereby the MTR mRNA level is elevated during the S phase of synchronized U2OS cells,102 and MS activity is found to be lowest during G0 and G1 in human lymphocytes.103 Beyond MS, but within the methionine (re)methylation cycle, regulation of pathway activity at the enzymatic level by the metabolites AdoMet and AdoHcy is historically well known. Increased concentrations of AdoMet result in allosteric inhibition of MTHFR104 and MAT2A105,106 as well as concomitant activation of cystathionine β-synthase,107...
ensuring no new AdoMet is produced while excess homocysteine is released from the cycle. By contrast, increased local concentrations of AdoHcy enable dis-inhibition of MTHFR along with inhibition of AdoMet-dependent MTs.

Recently, a new intracellular sensor of AdoMet has been described. This new sensor, SAMTOR, has a relatively low dissociation constant for AdoMet of ~7 μM and interacts with the Gap Activity TOward Rags 1 (GATOR1)-complex associated with mammalian Target Of Rapamycin Complex 1 (mTORC1), the major regulator of cell growth and metabolism based on environmental cues, when intracellular AdoMet is depleted. Since methionine and AdoMet production are closely related, SAMTOR has also been suggested to serve as the mTORC1 linked sensor of methionine starvation. A further link between the methionine cycle and mTORC1 has been identified in mice with knockout of nitrogen permease regulator-like 2 (NPRL2), a protein with the GATOR1 complex. NPRL2 knockout mice exhibit low methionine and high CH3-THF levels characteristic of MS deficiency, which in this case is due to the inability to generate the low lysosomal pH required for release of free Cbl from transcobalamin. This dysfunction ultimately stems from lysosomal gene expression inhibition by the constitutively active mTORC1, and exhibits a mechanism by which mTORC1 may act back on the methionine cycle. Finally, Manning and colleagues found that mTORC1 stimulates de novo purine synthesis in mouse embryonic fibroblasts by inducing MTHFD2 transcription via activating transcription factor 4 (ATF4), a transcription factor involved in control of the cell cycle.

This latter finding illustrates the connection between these pathways and the cell cycle, which has been found for other proteins as well. A recent review by Stover and colleagues points out that MTHFD1 is predominantly expressed in the G1/S and G2 phases of the cell cycle in human fibroblasts, although the mechanism by which this regulation takes place is unclear. SHMT1 protein levels, by contrast, are elevated during the S phase of HeLa cells, but without changes in mRNA levels. Meanwhile, we found that phosphorylation of MTHFR leads to an increased sensitivity to AdoMet inhibition, and the kinase responsible for this phosphorylation has been suggested to be the cyclin dependent kinase 1 (CDK1) in association with cyclin B1. Together, these data provide a link between the cell cycle state and regulation of proteins involved in methionine cycle or the one-carbon metabolic pathway.

A further level of complexity of regulation exists in that these pathways may in turn regulate the expression of other genes and pathways in the cell. Studies performed mainly in cancer cells have indicated that altered methionine metabolism has an effect on histone methylation via altered function of histone MTs. Histone methylation drives gene expression up or down, depending on the modification placement. Since various histone MTs have differing affinities for AdoMet, decreased or fluctuating intracellular concentrations may have a larger impact on some histone modifications than others. In relation to just one type of histone methylation, transcriptionally activating H3K4me3, Locasale and colleagues found that modulating dietary methionine intake was sufficient to alter levels of histone methylation, with rapid changes in H3K4me3 levels and altered gene transcription following changes in methionine availability. Therefore, alterations in the methionine cycle, for example, due to genetic blocks in Cbl or folate pathway proteins, do not just result in hyper- or hypo-methylation, but altered methylation patterns. This is consistent with findings from an epigenome-wide association study performed in 90 mouse inbred strains, which found that genetic variation in Mtrr (encoding MSR) affected methylation of almost 500 loci throughout the genome. These methylation changes may have long-term effects, as transgenerational epigenetic inheritance ultimately coming from the maternal grandparents was found to result in intragenerational growth restriction, developmental delay, and congenital malformations in hypomorphic Mtrr mice.

In sum, the Cbl, methionine, and folate biochemical pathways are interlinked with other crucial pathways in the cell, with each exerting regulatory influence on the other.

8 | CONCLUSIONS/OUTLOOK

Within the cell, metabolism of Cbl and folate is interrelated. These pathways are joined metabolically at the methionine cycle, but are connected by regulation through other cellular metabolic and regulatory pathways at many points. Although shared function and regulation through particular metabolites have been known for some time, only now are we beginning to realise the extent to which these pathways are interdependent. This continued understanding of the effect alterations in single steps, either via regulation or through genetic blocks, has on all aspects of these pathways may finally bring us to a state where we can better comprehend, and perhaps predict, what will happen during therapeutic modulation or disease. This will be key to better modulating these pathways in health and disease.

ACKNOWLEDGMENTS

This work was supported by radiz, the Rare Disease Initiative Zurich, a Clinical Research Priority Program from the University of Zurich (to D.S.F. and M.R.B.) and the Swiss National Science Foundation (SNSF 31003A_175779 to M.R.B. and D.S.F., SNSF 31003A_156907 to M.R.B.). We
gratefully acknowledge the long-standing technical and scientific support of Terttu Suormala.

CONFLICTS OF INTEREST
M.R.B. declares that he has received educational and research grants from Actelion, Genzyme, Moderna, and Nutricia Metabolics and support for the E-HOD Registry/Cystadane surveillance program from Orphan Europe. D.S.F. and B.F. declare that they have no conflicts of interest.

AUTHOR CONTRIBUTIONS
D.S.F. conceived, designed, and drafted the article. B.F. and M.R.B. drafted and provided critical revision of the article. D.S.F. is the guarantor and corresponding author. All authors have read and approved the final version of the manuscript to be published.

ORCID
D. Sean Froese https://orcid.org/0000-0003-1557-3517

REFERENCES
1. Watkins D, Rosenblatt DS. Inherited disorders of folate and cobalamin transport and metabolism. In: Valle D, Beaudet AL, Vogelstein B, et al., eds. The Online Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill Medical; 2017.
2. Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis. 2008;31:350-360.
3. Stubbe J. Binding site revealed of nature's most beautiful cofactor. Science. 1994;266:1663-1664.
4. Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol. 1996;50:137-181.
5. Martens JH, Barg H, Warren MJ, Jahn D. Microbial production of vitamin B12. Appl Microbiol Biotechnol. 2002;58:275-285.
6. McLean E, de Benoist B, Allen LH. Review of the magnitude of folate and vitamin B12 deficiencies worldwide. Food Nutr Bull. 2008;29:S38-S51.
7. Allen RH, Seetharam B, Allen NC, Podell ER, Alpers DH. Correction of cobalamin malabsorption in pancreatic insufficiency with a cobalamin analogue that binds with high affinity to R protein but not to intrinsic factor, in vivo evidence that a failure to partially degrade R protein is responsible for cobalamin malabsorption in pancreatic insufficiency. J Clin Invest. 1978a;61:1628-1634.
8. Allen RH, Seetharam B, Podell E, Alpers DH. Effect of proteolytic enzymes on the binding of cobalamin to R protein and proteolytic factors, in vitro evidence that a failure to partially degrade R protein is responsible for cobalamin malabsorption in pancreatic insufficiency. J Clin Invest. 1978b;61:47-54.
9. Schwartz M. Intrinsic factor antibody in serum from patients with pernicious anaemia. Lancet. 1960;2:1263-1267.
10. Tanner SM, Li Z, Perko JD, et al. Hereditary juvenile cobalamin deficiency caused by mutations in the intrinsic factor gene. Proc Natl Acad Sci U S A. 2005;102:4130-4133.
11. Birn H, Verroust PJ, Nexø E, et al. Characterization of an epithelial similar to 460-kDa protein that facilitates endocytosis of intrinsic factor-vitamin B-12 and binds receptor-associated protein. J Biol Chem. 1997;272:26497-26504.
12. Fyfe JC, Madsen M, Hojrup P, et al. The functional cobalamin (vitamin B-12)-intrinsic factor receptor is a novel complex of cubulin and amnionless. Blood. 2004;103:1573-1579.
13. He Q, Madsen M, Kilkenney A, et al. Amnionless function is required for cubulin brush-border expression and intrinsic factor-cobalamin (vitamin B12) absorption in vivo. Blood. 2005;106:1447-1453.
14. Grasbeck R, Gordin R, Kantero I, Kuhlback B. Selective vitamin-B12 malabsorption and proteinuria in Young people - a syndrome. Acta Med Scand. 1960;167:289-296.
15. Imerslund o. Idiopathic chronic megaloblastic anemia in children. Acta Paediatr Suppl. 1960;49:1-115.
16. Aminoff M, Carter JE, Chadwick RB, et al. Mutations in CUBN, encoding the intrinsic factor-vitamin B-12 receptor, cubulin, cause hereditary megaloblastic anaemia 1. Nat Genet. 1999;21:309-313.
17. Tanner SM, Aminoff M, Wright FA, et al. Amnionless, essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anaemia. Nat Genet. 2003;33:426-429.
18. Beedholm-Ebsen R, van de Wetering K, Hardlei T, Nexø E, Borst P, Moestrup SK. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. Blood. 2010;115:1632-1639.
19. Nielsen MJ, Rasmussen MR, Andersen CBF, Nexø E, Moestrup SK. Vitamin B-12 transport from food to the body's cells-a sophisticated, multistep pathway. Nat Rev Gastro Hepat. 2012;9:345-354.
20. Morkbak AL, Hvas AM, Lloyd-Wright Z, et al. Effect of vitamin B-12 treatment on haptocorrin. Clin Chem. 2006;52:1104-1111.
21. Quadros EV, Nakayama Y, Sequeira JM. The protein and the gene encoding the receptor for the cellular uptake of transcobalamin-bound cobalamin. Blood. 2009;113:186-192.
22. Park HJ, Kim JY, Jung KI, Kim TJ. Characterization of a novel gene in the extended MHC region of mouse, NG29/Cd320, a homolog of the human CD320. Immune Netw. 2009;9:138-146.
23. Birn H. The kidney in vitamin B-12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins. Am J Physiol-Renal. 2006;291:F22-F36.
24. Birn H, Willnow TE, Nielsen R, et al. Megalin is essential for renal proximal tubule reabsorption and accumulation of transcobalamin-B-12. Am J Physiol-Renal. 2002;282:F408-F416.
25. Moestrup SK, Birn H, Fischer PB, et al. Megalin-mediated endocytosis of transcobalamin-vitamin-B-12 complexes suggests a role of the receptor in vitamin-B-12 homeostasis. Proc Natl Acad Sci U S A. 1996;93:8612-8617.
26. Rutsch F, Galius S, Miousse IR, et al. Identification of a putative lysosomal cobalamin exporter altered in the cobI defect of vitamin B12 metabolism. Nat Genet. 2009;41:234-239.
27. Coelho D, Kim JC, Miousse IR, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44:1152-1155.
28. Froese DS, Krojer T, Wu X, et al. Structure of MMACHC reveals an arginine-rich pocket and a domain-swapped dimer for its B12 processing function. *Biochemistry.* 2012;51:5083-5090.

29. Koutmos M, Gherasim C, Smith JL, Banerjee TA. Structural basis of multifunctionality in a vitamin B12-processing enzyme. *J Biol Chem.* 2011;286:29780-29787.

30. Kim J, Gherasim C, Banerjee RA. Decyanation of vitamin B12 by a trafficking chaperone. *Proc Natl Acad Sci U S A.* 2008;105:14551-14554.

31. Hannibal L, Kim J, Brash NE, et al. Processing of alkylcobalamin in mammalian cells: a role for the MMACHC (cbIC) gene product. *Mol Genet Metab.* 2009;97:260-266.

32. Lerner-Ellis JP, Gradinger AB, Watkins D, et al. Mutation and biochemical analysis of patients belonging to the cbIB complementation class of vitamin B12-dependent methylmalonic aciduria. *Mol Genet Metab.* 2006a;87:219-225.

33. Lerner-Ellis JP, Tirone JC, Pawelek PD, et al. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cbIC type. *Nat Genet.* 2006b;38:93-100.

34. Suormala T, Baumgartner MR, Coelho D, et al. The cbID defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis. *J Biol Chem.* 2004;279:42742-42749.

35. Froese DS, Kopec J, Fitzpatrick F, et al. Structural insights into the MMACHC-MMADHC protein complex involved in vitamin B12 trafficking. *J Biol Chem.* 2015;290:29167-29177.

36. Mah W, Deme JC, Watkins D, et al. Subcellular location of MMACHC and MMADHC, two human proteins central to intracellular vitamin B(12) metabolism. *Mol Genet Metab.* 2013;108:112-118.

37. Coelho D, Suormala T, Stucki M, et al. Gene identification for the cbID defect of vitamin B12 metabolism. *N Engl J Med.* 2008;358:1454-1464.

38. Jusufi J, Suormala T, Burda P, Fowler B, Froese DS, Baumgartner MR. Characterization of functional domains of the cbID (MMADHC) gene product. *J Inherit Metab Dis.* 2014;37:841-849.

39. Stucki M, Coelho D, Suormala T, Burda P, Fowler B, Baumgartner MR. Molecular mechanisms leading to three different phenotypes in the cbID defect of intracellular cobalamin metabolism. *Hum Mol Genet.* 2012;21:1410-1418.

40. McDonald MK, Fritz JA, Jia D, et al. Identification of ABC transporters acting in vitamin B12 metabolism in *Caenorhabditis elegans.* *Mol Genet Metab.* 2017;122:160-171.

41. Schubert HL, Hill CP. Structure of ATP-bound human ATP: cob(II)alamin adenosyltransferase. *Biochemistry.* 2006;45:15188-15196.

42. Dobson CM, Wai T, Leclerc D, et al. Identification of the gene responsible for the cbIB complementation group of vitamin B12-dependent methylmalonic aciduria. *Hum Mol Genet.* 2002a;11:3361-3369.

43. Dobson CM, Wai T, Leclerc D, et al. Identification of the gene responsible for the cbIB complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. *Proc Natl Acad Sci U S A.* 2002b;99:15554-15559.

44. Leal NA, Park SD, Kima PE, Bobik TA. Identification of the human and bovine ATP: cob(II)alamin adenosyltransferase cDNAs based on complementation of a bacterial mutant. *J Biol Chem.* 2003;278:9227-9234.

45. Padovani D, Labunskas T, Palfey BA, Ballou DP, Banerjee R. Adenosylntransferase tailors and delivers coenzyme B-12. *Nat Chem Biol.* 2008;4:194-196.

46. Plessl T, Burer C, Lutz S, Yue WW, Baumgartner MR, Froese DS. Protein destabilization and loss of protein-protein interaction are fundamental mechanisms in cbIA-type methylmalonic aciduria. *Hum Mutat.* 2017;38:988-1001.

47. Takahashi-Iniguez T, Gonzalez-Noriega A, Michalak C, Flores ME. Human MMAA induces the release of inactive cofactor and restores methylmalonyl-CoA mutase activity through their complex formation. *Biochimie.* 2017;142:191-196.

48. Froese DS, Kochan G, Muniz JR, et al. Structures of the human GTPase MMAA and vitamin B12-dependent methylmalonyl-CoA mutase and insight into their complex formation. *J Biol Chem.* 2010;285:38204-38213.

49. Forny P, Froese DS, Suormala T, Yue WW, Baumgartner MR. Functional characterization and categorization of missense mutations that cause methylmalonyl-CoA mutase (MUT) deficiency. *Hum Mutat.* 2014;35:1449-1458.

50. Forny P, Schnellmann AS, Buerer C, et al. Molecular genetic characterization of 151 Mut-type methylmalonic aciduria patients and identification of 41 novel mutations in MUT. *Hum Mutat.* 2016;37:745-754.

51. Dobson CM, Gradinger A, Longo N, et al. Homozygous nonsense mutation in the MCCE gene and siRNA suppression of methylmalonyl-CoA epimerase expression: a novel cause of mild methylmalonic aciduria. *Mol Genet Metab.* 2006;88:327-333.

52. Ostergaard E, Schwartz M, Batbayli M, et al. A novel missense mutation in SUCLG1 associated with mitochondrial DNA depletion, encephalomyopathic form, with methylmalonic aciduria. *Eur J Pediatr.* 2010;169:201-205.

53. Carrozzo R, Dionisi-Vici C, Steuerwald U, et al. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. *Brain.* 2007;130:862-874.

54. Ostergaard E, Hansen FJ, Sorensen N, et al. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. *Brain.* 2007;130:853-861.

55. Bassila C, Gherawari R, Flayac J, et al. Methionine synthase and methionine synthase reductase interact with MMACHC and with MMADHC. *Biochim Biophys Acta.* 2017;1863:103-112.

56. Fujii K, Galivan JH, Huennekens FM. Activation of methionine synthase: further characterization of flavoprotein system. *Arch Biochem Biophys.* 1977;178:662-670.

57. Olteanu H, Banerjee R. Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation. *J Biol Chem.* 2001;276:35558-35563.

58. Leclerc D, Wilson A, Dumas R, et al. Cloning and mapping of a gene responsible for the cblA complementation group of vitamin B12 processing. *Biochem J.* 1974;186:59-60.
Methionine adenosyltransferase deficiency. J Clin Invest. 1995; 96:1943-1947.

61. Guo DC, Gong L, Regalado ES, et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am J Hum Genet. 2015;96:170-177.

62. Katz JE, Plakic M, Clarke S. Automated identification of putative methyltransferases from genomic open reading frames. Mol Cell Proteomics. 2003;2:525-540.

63. Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem. 1990;1:228-237.

64. Mentch SJ, Locasale JW. One-carbon metabolism and epigenetics: understanding the specificity. Ann N Y Acad Sci. 2016;1363:91-98.

65. Baric I, Fumic K, Glenn B, et al. S-adenosylhomocysteine hydrolyase deficiency in a human: a genetic disorder of methionine metabolism. Proc Natl Acad Sci U S A. 2004;101:4234-4239.

66. Delgado-Reyes CV, Wallig MA, Garrow TA. Immunohistochemical detection of betaine-homocysteine S-methyltransferase in human, pig, and rat liver and kidney. Arch Biochem Biophys. 2001;393:184-186.

67. Sunden SL, Renduchintala MS, Park EI, Miklasz SD, Wright AJ, Dainty JR, Finglas PM. Folic acid metabolism in human one-carbon flux compensates for loss of the mitochondrial folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses, and disease.

68. Hou Z, Matherly LH. Biology of the major facilitative folate transporters SLC19A1 and SLC46A1.

69. Shin YS, Chan C, Vidal AJ, Brody T, Stokstad EL. Subcellular and disease.

70. Tibbetts AS, Appling DR. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Wiley Interdiscip Rev Syst Biol Med. 2018;10:e1426.

71. Visentin M, Diop-Bove N, Zhao R, Goldman ID. The intestinal absorption of folates. Annu Rev Physiol. 2014;76:251-274.

72. Hou Z, Matterly LH. Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. Curr Top Membr. 2014;73:175-204.

73. Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25:27-42.

74. Grapp M, Wrede A, Schweizer M, et al. Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun. 2013;4:2123.

75. Tilbetts AS, Appling DR. Compartimentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr. 2010;30:57-81.

76. Fan J, Ye J, Kamphorst JJ, Shlomot T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 2014;510:298-302.

77. Gregory JF 3rd, Cuskey GI, Shane B, Toth JP, Baumgartner TG, Stacpoole PW. Primed, constant infusion with [2H3]serine allows in vivo kinetic measurement of serine turnover, homocysteine remethylation, and transsulfuration processes in human one-carbon metabolism. Am J Clin Nutr. 2000;72:1535-1541.

78. Herbig K, Chiang EP, Lee LR, Hills J, Shane B, Stover PJ. Cytosolic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J Biol Chem. 2002;277:38381-38389.

79. Ducker GS, Chen L, Morschler RJ, et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 2016;23:1140-1153.

80. Bolusani S, Young BA, Cole NA, et al. Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase-isozyme expressed in adult tissues. J Biol Chem. 2011;286:5166-5174.

81. Nilsson R, Jain M, Madhusudhan N, et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun. 2014;5:3128.

82. Labuschagne CF, van den Broek NJ, Mackay GM, Vosden KH, Maddocks OD. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 2014;7:1248-1258.

83. Meiser J, Vazquez A. Give it or take it: the flux of one-carbon in cancer cells. FEBS J. 2016;283:3695-3704.

84. Chattopadhyay S, Moran RG, Goldman ID. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther. 2007;6:404-417.

85. Bailey LB, Berry RJ. Folic acid supplementation and the occurrence of congenital heart defects, orofacial clefts, multiple births, and miscarriage. Am J Clin Nutr. 2005;81:1213S-1217S.

86. Beaudin AE, Abarinov EV, Noden DM, et al. Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice. Am J Clin Nutr. 2011;93:789-798.

87. Field MS, Kamynina E, Watkins D, Rosenblatt DS, Stover PJ. Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis. Proc Natl Acad Sci U S A. 2015;112:400-405.

88. Stead LM, Brosnan JT, Brosnan ME, Vance RL. Is it time to reevaluate methyl balance in humans? Am J Clin Nutr. 2006;83:5-10.

89. Gerard M, Morin G, Bourillon A, et al. Multiple congenital anomalies in two boys with mutation in HCFC1 and cobalamin disorder. Eur J Med Genet. 2015;58:148-153.

90. Koularis C, Alexandrou A, Tanteles GA, Anastasiadou V, Sismi C. A novel HCFC1 variant in male siblings with intellectual disability and microcephaly in the absence of cobalamin disorder. Biochem Biophys Acta. 1990;1:228-237.

91. Yu HC, Sloan JL, Scharrer G, et al. An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. J Biol Chem. 2013;93:506-514.

92. Julien E, Herr W. Proteolytic processing is necessary to separate and ensure proper cell growth and cytokinesis functions of HCF-1. EMBO J. 2003;22:2360-2369.

93. Mangone M, Myers MP, Herr W. Role of the HCF-1 basic region in sustaining cell proliferation. PLoS One. 2010;5:e9020.

94. Parker JB, Yin H, Vinckevicius A, Chakravarti D. Host cell factor-1 recruitment to E2F-bound and cell-cycle-control genes is mediated by THAP11 and ZNF143. Cell Rep. 2014;9:967-982.

95. Quintana AM, Yu HC, Brebner A, et al. Mutations in THAP11 cause an inborn error of cobalamin metabolism and developmental abnormalities. Hum Mol Genet. 2017;26:2838-2849.

96. Pupavac M, Watkins D, Petrella F, et al. Inborn error of cobalamin metabolism associated with the intracellular accumulation of transcobalamin-bound cobalamin and mutations in ZNF143, which codes for a transcriptional activator. Hum Mutat. 2016;37:976-982.

97. Guent JL, Chery C, Oussalah A, et al. Publisher correction: a PRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients. Nat Commun. 2018;9:554.

98. Oltean S, Banerjee R. Nutritional modulation of gene expression and homocysteine utilization by vitamin B12. J Biol Chem. 2003;278:20778-20784.
101. Ortiou S, Alberto JM, Gueant JL, Merten M. Homocysteine increases methionine synthase mRNA level in Caco-2 cells. *Cell Physiol Biochem*. 2004;14:407-414.

102. Grant GD, Brooks L 3rd, Zhang X, et al. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. *Mol Biol Cell*. 2013;24:3634-3650.

103. Pelka-Fleischer R, Ruppelt W, Wilmanns W, Sauer H, Schalhorn A. Relation between cell cycle stage and the activity of DNA-synthesizing enzymes in cultured human lymphoblasts: investigations on cell fractions enriched according to cell cycle stages by way of centrifugal elutriation. *Leukemia*. 1987;1:182-187.

104. Sumner J, Jencks DA, Khani S, Matthews RG. Photoaffinity labeling of methylenetetrahydrofolate reductase with 8-azido-S-adenosylmethionine. *J Biol Chem*. 1986;261:7697-7700.

105. Halim AB, LeGros L, Geller A, Kotb M. Expression and functional interaction of the catalytic and regulatory subunits of human methionine adenosyltransferase in mammalian cells. *J Biol Chem*. 1989;274:29720-29725.

106. Sullivan DM, Hoffman JL. Fractionation and kinetic properties of rat liver and kidney methionine adenosyltransferase isozymes. *Biochemistry*. 1983;22:1636-1641.

107. Finkelstein JD, Kyle WE, Martin JL, Pick AM. Activation of cystathionine synthase by adenosylmethionine and adenosyl-lactate. *Biochem Biophys Res Commun*. 1975;66:81-87.

108. Daubner SC, Matthews RG. Purification and properties of methylenetetrahydrofolate reductase from pig liver. *J Biol Chem*. 1982;257:140-145.

109. Deguchi T, Barchas J. Inhibition of transmethylation of biogenic amines by S-adenosylhomocysteine. Enhancement of transmethylation by adenosylhomocysteine. *J Biol Chem*. 1971;246:3175-3181.

110. Hoffman DR, Cornatzer WE, Duerr JA. Relationship between tissue levels of S-adenosylmethionine, S-adenylhomocysteine, and transmethylation reactions. *Can J Biochem*. 1979;57:56-65.

111. Gu X, Orozco JM, Saxton RA, et al. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. *Science*. 2017;358:813-818.

112. Dutchak PA, Laxman S, Estill SJ, et al. Regulation of hematopoiesis and methionine homeostasis by mTORC1 inhibitor NPRL2. *Cell Rep*. 2015;12:371-379.

113. Ben-Sahra I, Hoixhaj G, Ricoutl SJH, Asara JM, Manning BD. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. *Science*. 2016;351:728-733.

114. Bar-Joseph Z, Siegfried Z, Brandeis M, et al. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. *Proc Natl Acad Sci U S A*. 2008;105:955-960.

115. Anderson DD, Eom JY, Stover PJ. Competition between sumoylation and ubiquitination of serine hydroxymethyltransferase 1 determines its nuclear localization and its accumulation in the nucleus. *J Biol Chem*. 2012;287:4790-4799.

116. Field MS, Kamynina E, Agunloye OC, et al. Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency. *J Biol Chem*. 2014;289:29642-29650.

117. Froese DS, Kopec J, Rembeza E, et al. Structural basis for the regulation of human 5,10-methylenetetrahydrofolate reductase by phosphorylation and S-adenosylmethionine inhibition. *Nat Commun*. 2018;9:2261.

118. Zhu B, Xiahou Z, Zhao H, Peng B, Xu X. MTHFR promotes heterochromatin maintenance. *Biochem Biophys Res Commun*. 2014;447:702-706.

119. Shiraki N, Shiraki Y, Tsuyama T, et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. *Cell Metab*. 2014;19:780-794.

120. Ulanovskaya OA, Zuhl AM, Cravatt BF. NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink. *Nat Chem Biol*. 2013;9:300-306.

121. Menth SJ, Mehrmohamadi M, Huang L, et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. *Cell Metab*. 2015;22:861-873.

122. Orozco LD, Morselli M, Rubbi L, et al. Epigenome-wide associations of liver methylation patterns and complex metabolic traits in mice. *Cell Metab*. 2015;21:905-917.

123. Padmanabhan N, Jia D, Geary-Joo C, et al. Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. *Cell*. 2013;155:81-93.

How to cite this article: Froese DS, Fowler B, Baumgartner MR. Vitamin B12, folate, and the methionine remethylation cycle—biochemistry, pathways, and regulation. *J Inherit Metab Dis*. 2019;42:673–685. https://doi.org/10.1002/jimd.12009