Analysis of the publication activity of agricultural universities

Gazizulina A.1, Samorukov V.2, Suslov E.3, Glushkova A.4
1Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia;
2Saint-Petersburg State Agrarian University, St. Petersburg, Russia;
3Russian Presidential Academy of National Economy and Public Administration, North-West Institute of Management, St. Petersburg, Russia;
4Samara University, Samara, Russia

Email:1albinagazizulina@gmail.com, 2swi.vatt@rambler.ru, 3suslovey@gmail.com, 4antonina.24@mail.ru

Abstract. For the analysis of publication activity there scientometric databases. The most famous international scientometric databases are the Web of Science and Scopus. These databases allow analyzing the publication activity of a scientist, scientific groups. Scopus and Web of Science allow you to conduct a scientific search on topics of interest, provide information on the citation of articles, include profiles of organizations. The article discusses the main scientometric indicators. The main scientometric indicators include H-index, SJR, SNIP, Impact Factor, CiteScore, Citation Count, Field-Weighted Citation Impact (FWCI). According to these indicators, the activities of both the individual scientist and the organization as a whole are evaluated. The article reveals topical issues of the state of publication activity of agrarian universities. The goal of the study is to analyze the number of publications by authors of leading universities in scientific journals, indexed in Scopus and the Web of Science, and the distribution of the number of publications in scientific fields to identify the main trends in the development of science in the agricultural sector. The leading universities selected for the study are QS World University Rankings by Subject: Agriculture & Forestry and Veterinary Science. The study analyzes the publication activity of agricultural universities. A model for assessing the quality of publications of a particular scientist or/and scientific groups has been developed. This model is designed to develop adequate measures to stimulate publication activity. The model allows to develop a strategy of publication activity aimed at achieving high places in international rankings of higher educational institutions. The paper proposes a risk classification of assessing the publication activity of a scientist.

Keywords: Agricultural Science, Ranking, Publication Activity.

Introduction

Recently, competition between universities is growing, not only domestically, but throughout the world. Higher education institutions are forced to be competitive. One of the tools for assessing the competitiveness of higher education are international rankings. With the help of international university rankings, students can compare and choose a place to study abroad. The most popular world university rankings are QS and THE.

The QS rating assesses more than 3 thousand universities around the world and makes a list of the best every year. QS experts compare universities by 6 indicators: academic reputation, reputation of university graduates among employers, the ratio of students to faculty members, the number of citations, the number of international students and the number of international staff of the university.
The THE ranking evaluates universities in terms of teaching quality, research influence (FWCI), and the university’s international popularity. Total rating evaluates 13 different indicators. The THE ranking also annually publishes a useful ranking of young universities. This list includes top universities younger than 50 years old.

More valuable for many students are subject QS ratings. Subject rankings will allow you to find the best universities in the field in which the current entrant wants to become a specialist. There are universities that do not fall into the overall ranking of QS World, but they may be the best in their narrow area (subject). Subject QS ratings assess academic reputation, employer reputation, quoting, the subject H-index. The article will consider the subject rating QS Subject Agriculture & Forestry.

Publishing Activity of Agrarian Universities

Subject ratings QS Subject Agriculture & Forestry assesses academic reputation (50%), employers’ reputation (10%), quoting for an article (20%), subject area H-index (20%) (Fig.1). In the article, we consider the publication activity of the subject rating QS Subject Agriculture & Forestry. QS analyzes 954 universities worldwide in this subject area and publishes the top 300. In Table 1 (www.topuniversities.com/subject-rankings/2019) are shown the best universities in the opinion of QS and their scores for publication activity. Analysis of publication activity is carried out at the expense of the analytical tool SciVal. For the comparative analysis, 10 universities from the TOP-50 were selected from Table 1.

![Figure 1](image-url)
Figure 1 QS World University Rankings by Subject Agriculture & Forestry

2019	2018	Institution	Location	Citations	H
1	1	Wageningen University	Netherlands	90,8	100,0
2	2	University of California, Davis (UCD)	United States	90,2	96,3
3	4	Swedish University of Agricultural Sciences	Sweden	89,1	91,9
4	10	Agro, ParisTech	France	76,4	68,5
5	11	ETH Zurich (Swiss Federal Institute of Technology)	Switzerland	91,9	88,4
6	3	Cornell University	United States	90,8	95,6
7	5	University of California, Berkeley (UCB)	United States	95,0	95,2
8	7	University of Wisconsin-Madison	United States	89,3	91,1
9	6	University of Reading	United Kingdom	91,0	79,8
10	16	China Agricultural University	China	78,9	81,6
11	8	Michigan State University	United States	88,4	92,9
12	9	Purdue University	United States	85,6	83,1
Rank	Institution	Country	Publication Rate		
------	--	-------------	-----------------		
12=	University of Copenhagen	Denmark	89.0		
	17= Norwegian University of Life Sciences (UMB)	Norway	85.1		
15=	Universitàt Hohenheim	Germany	84.2		
	12= University of British Columbia	Canada	91.0		
17	25= The University of Queensland (UQ)	Australia	87.6		
18	13= Iowa State University	United States	86.4		
19=	19= Texas A&M University	United States	81.6		
	17= University of Guelph	Canada	86.2		
21	40= University of Ghent	Belgium	88.6		
22	14= The University of Tokyo	Japan	82.8		
23	22= Oregon State University	United States	87.3		
24	48= Georg-August-Universität Göttingen	Germany	88.0		
25	47= Nanjing Agricultural University	China	81.7		
26	49= Technische Universität München	Germany	88.7		
27=	21= University of Illinois at Urbana-Champaign	United States	84.6		
	27= Warsaw University of Life Sciences	Poland	74.4		
29	27= North Carolina State University	United States	84.8		
30	22= Massey University	New Zealand	84.4		
31	34= Seoul National University (SNU)	South Korea	82.5		
32	24= Pennsylvania State University	United States	88.1		
33=	39= Universität für Bodenkultur Wien	Austria	87.3		
	33= University of Florida	United States	84.0		
35	45= Aarhus University	Denmark	86.4		
36	51-100= Sup Agro, Montpellier	France	74.0		
37	30= Ohio State University, Columbus	United States	87.2		
38	28= The University of Melbourne	Australia	88.2		
39	37= University of Minnesota	United States	88.8		
40	30= Kyoto University	Japan	79.2		
41	19= Australian National University (ANU)	Australia	90.6		
42	32= The University of Western Australia (UWA)	Australia	89.3		
43	51-100= University of Helsinki	Finland	86.4		
44	29= Washington State University	United States	84.8		
45=	51-100= Kansas State University	United States	83.7		
45=	51-100= McGill University	Canada	91.0		
45=	51-100= South China Agricultural University	China	75.3		
48	51-100= Universitàt di Bologna (UNIBO)	Italy	82.2		
49	36= Universidade de São Paulo (USP)	Brazil	78.2		
50=	51-100= Tokyo University of Agriculture and Technology	Japan	72.9		
50=	51-100= University of Massachusetts, Amherst	United States	89.0		
50=	51-100= Zhejiang University	China	84.5		

Analysis of publication activity by the indicator "number of articles" is presented in Table 2.
Evaluation of citations for publication. In the analysis, we will exclude the self-citation of publications. This indicator shows how, on average, the articles of scientists of these universities are cited. How many citations per one article. At the same time, in the analysis it is necessary to remember that the last year is always quoted worse, because articles just published. University of Swiss Federal Institute of Technology Zurich from the selected group shows the best positions in terms of citation on publications and rapid growth in the ranking. Over the year, his position improved by 7 places.

Table 3. Citations per Publication

Name	Overall	2014	2015	2016	2017	2018
China Agricultural University (10)	4.2	8.7	6.2	4.5	2.4	0.7
Kyoto University (40)	4.3	7.6	6.3	4.3	2.5	0.7
Swiss Federal Institute of Technology Zurich (5)	10.1	20.3	15.9	9	5	1.4
Texas A and M University (19)	5.3	10.8	7.6	5.2	3.1	0.7
Universidade de Sao Paulo (49)	3.8	7.7	5.6	3.7	2.1	0.6
University of Bologna (48)	5.7	11.4	8.5	5.2	2.9	0.7
University of Guelph (19)	6.3	12.7	9.4	5.5	3	1
University of Hohenheim (15)	5.7	11.4	8.8	4.9	3.2	0.9
Wageningen University & Research (1)	8	14.5	12.2	7.7	4.3	1.2
Warsaw University of Life Sciences (27)	3.4	7.6	5.3	4	1.7	0.5

Estimation of weighted average FWCI. Despite the fact that the FWCI indicator in the QS rating is not evaluated, we have compared these data. This indicator shows how much better or worse cited articles of scientists of a particular university are relative to the whole world.

Table 4. Field-Weighted Citation Impact

Name	Overall	2014	2015	2016	2017	2018
China Agricultural University (10)	0.82	0.84	0.77	0.83	0.84	0.83
Kyoto University (40)	0.87	0.75	0.8	0.92	0.96	0.89
Swiss Federal Institute of Technology Zurich (5)	1.75	1.87	1.91	1.64	1.75	1.61
Texas A and M University (19)	1.02	1.03	1.05	0.99	1.13	0.93
Universidade de Sao Paulo (49)	0.75	0.79	0.75	0.75	0.75	0.73
University of Bologna (48)	1.05	1.18	1.17	1.04	1.06	0.83
University of Guelph (19)	1.19	1.19	1.2	1.27	1.16	1.11
University of Hohenheim (15)	1.11	1.15	1.09	1.02	1.11	1.18
Wageningen University & Research (1)	1.57	1.59	1.68	1.49	1.61	1.47
Warsaw University of Life Sciences (27)	0.67	0.79	0.75	0.72	0.58	0.57
H5-indices. The h5-indices are calculated using a 5-year time window and the chart plots the latest year from the range. E.g. the data point for 2017 is the h5-index range of 2013-2017 (https://service.elsevier.com/app/answers/detail/a_id/27764/kw/h5/supporthub/scival/).

Name	Overall	2013	2014	2015	2016	2017
China Agricultural University (10)	49	39	44	44	46	49
Kyoto University (40)	41	43	44	46	42	41
Swiss Federal Institute of Technology Zurich (5)	63	54	55	61	61	63
Texas A and M University (19)	47	45	48	46	48	47
Universidade de Sao Paulo (49)	53	42	44	45	50	53
University of Bologna (48)	42	31	33	36	38	42
University of Guelph (19)	49	44	45	47	47	49
University of Hohenheim (15)	38	35	36	33	38	38
Wageningen University & Research (1)	78	70	73	76	79	78
Warsaw University of Life Sciences (27)	29	20	23	24	26	29

Conclusion

On the basis of data on the analysis of the publication activity of a university, it is possible to develop a policy for assessing the quality of publications of a particular scientist or scientific groups. Many countries now have university support programs and competitiveness programs. Such programs help to attract the best scientists in the world and the best students. Evaluation of publication activity, which uses the rating model, may be designed to develop adequate measures to stimulate publication activity. The rating model can also be used to develop a publishing strategy aimed at achieving high places in international rankings of higher educational institutions.

References

[1] Klochkov, Y. (2016). Monitoring centre for science and education. Paper presented at the 2016 5th International Conference on Reliability, Infocom Technologies and Optimization, ICRITO 2016: Trends and Future Directions, 26-29. doi:10.1109/ICRITO.2016.7784916
[2] Götting, M., Schwarzer, M., Gerber, A., Klingelhöfer, D., & Gorneberg, D. A. (2017). Pulmonary hypertension: Scientometric analysis and density-equalizing mapping. PLoS ONE, 12(1). doi:10.1371/journal.pone.0169238
[3] Győrffy, B., Nagy, A. M., Herman, P., & Török, Á. (2018). Factors influencing the scientific performance of momentum grant holders: An evaluation of the first 117 research groups. Scientometrics, 117(1), 409-426. doi:10.1007/s11192-018-2852-1
[4] Lamurias, A., Clarke, L. A., & Couto, F. M. (2017). Extracting microRNA-gene relations from biomedical literature using distant supervision. PLoS ONE, 12(3). doi:10.1371/journal.pone.0171929
[5] Lazarenko, V. A., Lipatov, V. A., Oleynikova, T. A., Severinov, D. A., & Filipov, N. B. (2018). Efficiency of ranking implementation in university management system: Practical experience. Vysshee Obrazovanie v Rossii, 27(6), 9-19. Retrieved from www.scopus.com
[6] Matthes, J., Giesler, M., Wagner-Menghin, M., Himmelbauer, M., Preusche, I., & Schüttelpelz-Brauns, K. (2017). Publication activity in medical education research: A descriptive analysis of submissions to the GMS zeitschrift für medizinische ausbildung in 2007-2015. [Publikationsaktivität in der medizinischen ausbildungsforschung: Eine deskriptive analyse]
der beiträge für die GMS zeitschrift für medizinische ausbildung aus den jahren 2007-2015] GMS Journal for Medical Education, 34(3) doi:10.3205/zma001109

[7] Olsen, K. A., & Malizia, A. (2017). Counting research ⇒ directing research, the hazard of using simple metrics to evaluate scientific contributions, an EU experience. Journal of Electronic Publishing, 20(1) doi:10.3998/3336451.0020.102

[8] Susarla, H. K., Dhar, V., Karimbux, N. Y., & Tinanoff, N. (2017). Do standard bibliometric measures correlate with academic rank of full-time pediatric dentistry faculty members? Journal of Dental Education, 81(4), 427-432. doi:10.21815/JDE.016.006

[9] Timilsina, M., Khawaja, W., Davis, B., Taylor, M., & Hayes, C. (2017). Social impact assessment of scientist from mainstream news and weblogs. Social Network Analysis and Mining, 7(1) doi:10.1007/s13278-017-0466-x