The unstructured C-terminus of the \(\tau\) subunit of
Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the \(\alpha\) subunit

Slobodan Jergic\(^1\), Kiyoshi Ozawa\(^1\), Neal K. Williams\(^1\), Xun-Cheng Su\(^1\),
Daniel D. Scott\(^1\), Samir M. Hamdan\(^1\), Jeffrey A. Crowther\(^1\), Gottfried Otting\(^1\) and
Nicholas E. Dixon\(^1,2,*\)

\(^1\)Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia and
\(^2\)Department of Chemistry, University of Wollongong, NSW 2522, Australia

Received October 19, 2006; Revised January 3, 2007; Accepted January 26, 2007

ABSTRACT

The \(\tau\) subunit of *Escherichia coli* DNA polymerase III holoenzyme interacts with the \(\alpha\) subunit through its C-terminal Domain V, \(\tau_{C16}\). We show that the extreme C-terminal region of \(\tau_{C16}\) constitutes the site of interaction with \(\alpha\). The \(\tau_{C16}\) domain, but not a derivative of it with a C-terminal deletion of seven residues \((\tau_{C16}7)\), forms an isolable complex with \(\alpha\). Surface plasmon resonance measurements were used to determine the dissociation constant \((K_D)\) of the \(\alpha-\tau_{C16}\) complex to be \(\sim 260\) pM. Competition with immobilized \(\tau_{C16}\) by \(\tau_{C16}\) derivatives for binding to \(\alpha\) gave values of \(K_D\) of 7 \(\mu\)M for the \(\alpha-\tau_{C16}7\) complex. Low-level expression of the genes encoding \(\tau_{C16}\) and \(\tau_{C16}7\), but not \(\tau_{C16}11\), is lethal to *E. coli*. Suppression of this lethal phenotype enabled selection of mutations in the 3′ end of the \(\tau_{C16}\) gene, that led to defects in \(\alpha\) binding. The data suggest that the unstructured C-terminus of \(\tau\) becomes folded into a helix–loop–helix in its complex with \(\alpha\). An N-terminally extended construct, \(\tau_{C24}\), was found to bind DNA in a salt-sensitive manner while no binding was observed for \(\tau_{C16}\), suggesting that the processivity switch of the replisome functionally involves Domain IV of \(\tau\).

INTRODUCTION

DNA polymerase III holoenzyme (Pol III HE), the enzyme responsible for *Escherichia coli* chromosomal DNA synthesis, is a complex of 10 different polypeptides (1–7). It is comprised of three functionally distinct but interconnected subassemblies: the core polymerase, the sliding clamp and the clamp loader complex (8).

There are two core polymerases in the HE, each consisting of three different subunits (9): \(\alpha\), the DNA polymerase (10); \(\varepsilon\), the proofreading exonuclease (11); and \(\theta\), which has a role in stabilizing \(\varepsilon\) (12). The core polymerase is neither highly processive nor rapid in DNA synthesis: it polymerizes nucleotides at a rate of \(\sim 20\) nt/s (13). The \(\beta\) sliding clamp subunit, needed for rapid and highly processive DNA synthesis (14), is a ring-shaped head-to-tail dimer (15). Once it is assembled onto DNA by the clamp loader complex, interaction of \(\beta_2\) with the \(\alpha\) subunit confers efficient synthesis on all core polymerase subassemblies (16).

The single clamp loader within Pol III HE contains seven subunits, with composition \(\tau_2\gamma\delta\delta'\chi\psi\) (17). It hydrolyzes ATP in a DNA-dependent manner to load \(\beta_2\) clamps onto DNA for interaction with both core polymerases (18–21). The \(\chi\) and \(\psi\) subunits are involved in binding to ssDNA-binding protein (SSB) (22) and participate in the primase-to-polymerase switch on the lagging strand (23). In an interaction modulated by \(\delta'\), the \(\delta\) subunit binds to \(\beta_2\) (24), inducing a conformational change in the clamp and subsequent opening of the \(\beta_2\) ring (25).

The three ATP motor subunits of the clamp loader (\(\gamma\) and the two \(\tau\) subunits) are encoded by the same gene, *dnaX* (26, 27). The 71-kDa \(\tau\) subunit (28) is the full-length *dnaX* product whereas \(\gamma\) (47 kDa) is a truncated form produced as the result of a programmed translational frameshift (29–31). The \(\gamma\) subunit and the N-terminal portions of the two \(\tau\) subunits bind \(\delta\) and \(\delta'\), forming a circular pentamer that functions as the clamp loader (32, 33).

The holoenzyme contains two \(\alpha\theta\delta\theta\varepsilon\) core polymerases to enable simultaneous replication of both the leading and the lagging strands (34). These and the clamp loader are held together by the two \(\tau\) subunits (35) via the strong \(\alpha-\tau\) interaction (34). Deletion of 48 residues from the
C-terminus of α (residues 1113–1160) eliminates its binding to τ, while removal of 705 residues or more from the N-terminus also has a large effect on τ binding. (36). While this may indicate there are two regions of α that contact τ, the involvement of the N-terminal domains of α might be indirect through stabilization of the C-terminal region or through conformational changes that occur during function of the complex. Indeed, there appear to be two different binding modes for the α–τ interaction (37–39) depending on whether or not the holoenzyme is bound to a primer-template DNA (39).

As shown in Figure 1A, the τ subunit has a five-domain structure (40), the N-terminalDomains I–III being identical to γ. The unique 24-kDa C-terminal fragment comprising most of Domain IV and all of Domain V (residues 430–643; referred to in this article as τc-24) is connected to Domain III by a proline-rich tether that may be flexible (38). The τc-24 protein can be isolated in monomeric form (41), and is reported to bind both to primed DNA (38) and to a 20-mer peptide from the C-terminus of α in an interaction modulated by DNA structure (39). The 8-kDa N-terminal region of τc-24 (termed Domain IVA, residues 430–498 of τ) is responsible for binding to DnaB helicase (42), and the 16-kDa C-terminal domain (Domain V; residues 499–643, here also referred to as τc-16) binds to α (40).

The solution structure of the folded core of Domain V of E. coli τ, a 14.3-kDa protein (called τc-14) derived from τc-16 by deletion of 18 C-terminal residues, has been determined by NMR spectroscopy (Figure 1B), and is reported in the accompanying article (43). Given that recent NMR studies (43,44) have also shown that all N- and/or C-terminal residues additional to the τc-14 core in the longer protein constructs τc-24, τc-22 (τc-24 lacking the C-terminal 18 residues), and τc-16 (see Figure 1A) are intrinsically unstructured, we can now develop a near-complete picture of the structure of the τ subunit in which the structured parts of Domains I–III and V are linked together by flexible segments that provide both docking sites for interactions with other proteins and DNA, as well as flexibility to enable structural transitions in the replisome as it cycles through its various functional states.

In this article, we describe the genesis of the τc-14 fragment and show that the additional residues in τc-16 relative to τc-14 are required for formation of an isolable complex with α. Alignment and secondary structure prediction combined with point mutagenesis and deletion studies suggest the induction of α-helices within the otherwise flexible (44) C-terminal region of τc-16 upon its interaction with α. We also show that although both τc-22 and τc-24 proteins bind weakly through predominantly electrostatic interactions to single-stranded (ss), double-stranded (ds) and primed DNA, τc-16 does not. This localizes the putative DNA-interaction site in τc-24 to Domain IVA. Implications for the role of this region of τ in switching processivity in Pol III HE are discussed.

MATERIALS AND METHODS

Plasmids

Full details of construction of plasmids are given in the Supplementary Data. Plasmids pPT153 and pJC490 that direct overproduction of the E. coli dnaX gene product(s) under control of tandem phage λ _pL_ and _pL_ promoters were as described (45). Plasmid pZT3(1G4G), which directs synthesis of the τ subunit of Pol III HE in the complete absence of γ, was a gift of Dr Zenta Tsuchihashi (46). A 1151-bp Ndel–NheI fragment of the dnaX gene was isolated from pZT3(1G4G) and ligated between the corresponding sites in pJC490 to give pJC491 (Supplementary Figure S1). As expected, this plasmid directed high-level overproduction of τ, but not γ, and has been used by us for overproduction of full-length τ (data not shown).
To construct pSH1062, designed to direct production of \(\tau_{C16} \) under control of a phage T7-promoter, a PCR was used with pPT153 as a template and primers designed to amplify the region of \(dnaX \) between the codon for Lys499 and the TGA stop codon. An ATG start codon was inserted immediately before codon 499 as part of an NdeI site and the stop codon was followed immediately by an EcoRI site. The NdeI–EcoRI fragment was inserted between the corresponding sites of pETMCSI (47). The same fragment was subsequently isolated from pSH1062 and inserted between the same sites in the \(\lambda \)-promoter vector pND706 (48) to give pSJ1064 (Figure S2). A similar strategy was used to construct plasmid pSJ1308, which directs production of \(\tau_{C14} \) in pND706, except that a TAA stop codon was inserted after the codon for Gin625 of \(\tau \), and pJC491 was used as a template for PCR amplification of the NdeI–EcoRI fragment (Figure S3). To construct T7-promoter plasmids pSJ1318 and pSJ1319 that direct production of \(\tau_{C16} \alpha11 \) and \(\tau_{C16} \Delta7 \), respectively, appropriate complementary oligonucleotide pairs were used to replace the 93-bp BssHII–EcoRI fragment at the 3’ end of the gene encoding \(\tau_{C16} \) in pSH1062. The NdeI–EcoRI fragment encoding \(\tau_{C16} \Delta7 \) was subsequently isolated from pSJ1319 and inserted between the same sites in pND706 (48) to yield pSJ1326.

Similar strategies were used to construct pSJ1330, a \(\lambda \)-promoter plasmid that directs overproduction of \(\tau_{C24} \) (N-terminal Met followed by Lys430–Ile643 of \(\tau \)) and pKO1297, a T7-promoter plasmid for overproduction of \(\tau_{C22} \) (N-terminal Met plus Lys430–Gln625 of \(\tau \)). Because the mRNA stem-loop structure normally involved in translational frameshifting in \(dnaX \) expression affected expression of the truncated genes, silent mutations were introduced to disrupt mRNA secondary structure without changing the amino acid sequence of the proteins (see Supplementary Data for details).

For biotinylation of \(\tau_{C14} \) and \(\tau_{C16} \), we first constructed a T7-promoter vector pKO1274 by insertion of two complementary oligonucleotides that encode the biotin-tag sequence MAGLNDFEAOQKIEWHEH (49) between the NdeI and MluI sites of pETMCSI (47). This operation resulted in elimination of the first NdeI site upstream of the biotin-tag sequence and allows fusion of a gene in-frame between unique NdeI and EcoRI sites to generate genes that encode N-terminally biotin-tagged proteins. NdeI–EcoRI fragments encoding \(\tau_{C14} \) and \(\tau_{C16} \) from pSJ1308 and pSJ1064 were then inserted into pKO1274 to yield pKO1282 and pKO1283, respectively. The complete bio-\(\tau_{C16} \) gene in pKO1283 was then isolated on a 527-bp XbaI–EcoRI fragment and inserted between corresponding sites in the \(\lambda \)-promoter vector pND706 (48) to yield pKO1294. For overexpression of N-terminally His\(_6\)-tagged \(E. coli \) biotin ligase, the \(birA \) gene was amplified by PCR using \(E. coli \) AN1459 (50) chromosomal DNA as a template, and inserted as a 972-bp NdeI–EcoRI fragment between corresponding sites in the T7-promoter vector pETMCSIlll (47) to yield pKO1298.

Nucleotide sequences of all oligonucleotide-derived and PCR-generated fragments inserted into vectors were confirmed by the Biomolecular Resource Facility, Australian National University.

E. coli strains

Strain AN1459 (50) was used routinely as host during plasmid construction. Strains used for protein expression included the lacP-T7 gene \(f^{+} \) strains BL21(\(\lambda \)DE3)recA (51) and BL21(\(\lambda \)DE3)/pLysS (52).

Targeted mutagenesis by error-prone PCR

Plasmid pSH1062 was used as a template for error-prone PCR amplification of the gene encoding \(\tau_{C16} \). The PCR product was generated using a primer corresponding to a DNA sequence preceding the unique BssHII site within the gene (\(5’\)-CGGTTGAAGACTGACTATC GTTGAAGATG\() and another complementary to a sequence following the stop codon and unique EcoRI site in the \(5’\)-CCTTTCGGGGCTTTGTAGCAG\). To generate mutations, Taq DNA polymerase was used in the presence of a blend of 3.3 (6 libraries) or 6.6 mM MnCl\(_2\)/MgCl\(_2\) (6 libraries). Each set of libraries, consisting of two separate reaction mixtures that were subsequently pooled, respectively had 3.0, 4.5, 6.0, 7.5, 9.0 and 15.0 mol% of MnCl\(_2\) in the Mn\(^{2+}\)/Mg\(^{2+}\) mixture. PCR products were isolated from an agarose gel following digestion with BssHII and EcoRI. Libraries of mutagenized fragments (93 bp) were ligated between the same restriction sites in pSH1062 and transformed into strain BL21(\(\lambda \)DE3)/recA. Transformants were selected for growth on LB plates containing 100 \(\mu \)g/ml ampicillin at 37°C. Plasmids were isolated from 32 randomly picked colonies, including representatives from all of the mutant libraries, and the nucleotide sequences of the mutant genes were determined. Eight plasmids did not yield interpretable sequences; the gene encoding \(\tau_{C16} \) in the remaining 24 plasmids all contained mutations that altered the amino acid sequence of the protein in the targeted region (see Results section). The six plasmids (pSJ1320–pSJ1325) that contained single point mutations, which respectively direct overproduction of mutant \(\tau_{C16} \) proteins S617P, I618T, L627P, F631I, L635P and D636G, were used for isolation of proteins for further study.

Proteins and peptides

The \(\alpha \) subunit of Pol III was purified as described previously (53). A representative method for purification of \(\tau_{C} \) domains (\(\tau_{C16} \), method B) is given below (see also Figure S4), while details of preparation of highly purified samples of \(\tau_{C24} \), \(\tau_{C22} \), \(\tau_{C16} \) (method A), \(\tau_{C14} \) (Figure S5), bio-\(\tau_{C16} \), bio-\(\tau_{C14} \), \(\tau_{C16} \) truncation and point mutants and biotin ligase (54) are described in the Supplementary Data. Protein concentrations were determined spectrophotometrically at 280 nm, using calculated values of \(\varepsilon_{280} \) (55): \(\alpha \) subunit, 95440 M\(^{-1}\)cm\(^{-1}\); \(\tau_{C24} \) and \(\tau_{C22} \), 25420 M\(^{-1}\)cm\(^{-1}\); \(\tau_{C14} \), \(\tau_{C16}\Delta11 \), \(\tau_{C16}\Delta7 \), \(\tau_{C16} \) and point mutants, 18350 M\(^{-1}\)cm\(^{-1}\); bio-\(\tau_{C14} \), bio-\(\tau_{C16} \), 24040 M\(^{-1}\)cm\(^{-1}\). Molecular weights of all purified proteins were confirmed by ESI-MS using a VG Quattro II mass spectrometer with samples that had been dialyzed extensively into 0.1% formic acid containing 1 mM 2-mercaptoethanol (see Supplementary Data). Peptides were synthesized using standard solid-phase methods at...
the Biomolecular Resource Facility, Australian National University, purified by reverse-phase HPLC and lyophilized. Their composition and purity was confirmed by MALDI-MS, and solutions were prepared by weight.

Purification of \(\tau_{C16} \) (method B)

Escherichia coli strain BL21(\(\lambda DE3 \))recA(pSJ1064) was grown at 30°C in LB medium containing ampicillin (100 mg/l) to \(A_{660} = 1.0 \), then overproduction of \(\tau_{C16} \) was induced at 42°C (2.5 h). Cells were harvested by centrifugation (11,000 \(\times \) g; 5 min), frozen in liquid N\(_2\) and stored at -70°C. After thawing, cells (8 g from 31 of culture) were resuspended in buffer A [50 mM Tris.HCl (pH 7.6), 1 mM EDTA, 1 mM dithiothreitol] containing 20 mM spermidine (120 ml). Proteinase inhibitor cocktail 'Complete' pills (Roche Diagnostics; 2 pills) were added together with 0.7 mM phenylmethanesulfonyl fluoride just prior to the cells being lysed with a French press operated at 12,000 p.s.i. The lysate was clarified by centrifugation (35,000 \(\times \) g; 30 min) to yield the soluble Fraction I. Proteins that were precipitated from Fraction I by addition of solid ammonium sulfate (0.36 g/ml) and stirring for 60 min were collected by centrifugation (35,000 \(\times \) g; 30 min) and dissolved in buffer A supplemented with 150 mM NaCl (40 ml). The solution was dialyzed against 3 changes of 2 l of the same buffer. Fractions containing proteins that did not bind to the column were pooled and dialyzed against 3 changes of 2 l of buffer A. The dialysate (Fraction III, 50 ml) was loaded at 2 ml/min onto a column (2.5 \(\times \) 16 cm) of Toyopearl DEAE-650M resin that had been equilibrated in the same buffer. Fractions containing proteins that did not bind to the column were pooled and dialyzed against 3 changes of 2 l of buffer A. The dialysate (Fraction IV, 23 ml, containing 54 mg of protein).

Changes of 2 l of 20 mM Tris.HCl (pH 7.6), 0.5 mM EDTA, 1 mM dithiothreitol were prepared by weight. Purification of MALDI-MS, and solutions were prepared by weight. Their composition and purity was confirmed by the Biomolecular Resource Facility, Australian National University.

Purification of \(\tau_{C16} \) (method B)

Escherichia coli strain BL21(\(\lambda DE3 \))recA(pSJ1064) was grown at 30°C in LB medium containing ampicillin (100 mg/l) to \(A_{660} = 1.0 \), then overproduction of \(\tau_{C16} \) was induced at 42°C (2.5 h). Cells were harvested by centrifugation (11,000 \(\times \) g; 5 min), frozen in liquid N\(_2\) and stored at -70°C. After thawing, cells (8 g from 31 of culture) were resuspended in buffer A [50 mM Tris.HCl (pH 7.6), 1 mM EDTA, 1 mM dithiothreitol] containing 20 mM spermidine (120 ml). Proteinase inhibitor cocktail 'Complete' pills (Roche Diagnostics; 2 pills) were added together with 0.7 mM phenylmethanesulfonyl fluoride just prior to the cells being lysed with a French press operated at 12,000 p.s.i. The lysate was clarified by centrifugation (35,000 \(\times \) g; 30 min) to yield the soluble Fraction I. Proteins that were precipitated from Fraction I by addition of solid ammonium sulfate (0.36 g/ml) and stirring for 60 min were collected by centrifugation (35,000 \(\times \) g; 30 min) and dissolved in buffer A supplemented with 150 mM NaCl (40 ml). The solution was dialyzed against 3 changes of 2 l of the same buffer. Fractions containing proteins that did not bind to the column were pooled and dialyzed against 3 changes of 2 l of buffer A. The dialysate (Fraction III, 50 ml) was loaded at 2 ml/min onto a column (2.5 \(\times \) 16 cm) of Toyopearl DEAE-650M resin that had been equilibrated in the same buffer. Fractions containing proteins that did not bind to the column were pooled and dialyzed against 3 changes of 2 l of buffer A. The dialysate (Fraction IV, 23 ml, containing 54 mg of protein).

The purity of the protein was assessed at each step by SDS-PAGE (see Supplementary Data).

Protein–protein interaction analysis by gel filtration

Gel filtration analysis of interactions between \(\alpha \) and \(\tau_{C16} \), \(\tau_{C16} \), \(\tau_{C16} \Delta 7 \), \(\tau_{C16} \Delta 11 \) and \(\tau_{C16} \) point mutants were carried out at 4°C using a column (1 \(\times \) 40 cm) of Sephacryl S100 HR (Amersham Biosciences) equilibrated in buffer GF and flowing at 0.5 ml/min. Excess \(\tau_{C16} \) protein was mixed with \(\alpha \) (see below) in buffer GF for 10 min at 4°C prior to loading. Unless stated otherwise, proteins in collected fractions (500 ml) were precipitated by addition of 2 ml of ice-cold acetone at 0°C. After 15 min, protein pellets were collected by centrifugation (20,000 \(\times \) g; 15 min) and dried for 10 min in air at room temperature prior to being dissolved in 40 \(\mu \)l of loading buffer and separated by electrophoresis in 15% SDS-PAGE gels that were stained with Coomassie blue. For these analyses, 35 \(\mu \)M \(\alpha \) was mixed with 85 \(\mu \)M \(\tau_{C16} \) in 120 \(\mu \)l of buffer, or 55 \(\mu \)M \(\alpha \) with 250 \(\mu \)M \(\tau_{C14} \) in 75 \(\mu \)l of buffer. Analysis of interaction between \(\alpha \) and the other proteins used mixtures of 15–20 \(\mu \)M \(\alpha \) and 60–80 \(\mu \)M \(\tau_{C16} \) protein in 150 \(\mu \)l of buffer.

Protein–protein interaction analysis by SPR

A BIACORE 2000 instrument was used to study interactions of \(\alpha \) with bio-\(\tau_{C16} \) in the absence (direct assay) or presence of competitor proteins and peptides (competition assay). All experiments were carried out at 20°C in surface plasmon resonance (SPR) buffer [50 mM Tris.HCl (pH 7.6), 1 mM EDTA, 1 mM dithiothreitol, 0.3 M NaCl, 0.005% surfactant P20].

For the direct assay, a streptavidin-coated sensor chip (SA chip; Biacore) was activated with three sequential injections of 1 mM NaCl, 50 mM NaOH (1 min each at 5 \(\mu \)l/min). A solution of 1 mM bio-\(\tau_{C16} \) in SPR buffer was immobilized to yield an increase of 30 response units (RU)s on one flow cell. Another flow cell was unmodified and served as a control. Binding studies were carried out at a flow rate of 30 \(\mu \)l/min in a carefully designed SPR buffer to completely eliminate non-specific binding of \(\alpha \) to the chip surface. Solutions of \(\alpha \) (0–3 nM) were made to flow during 500 s. After 500 s of dissociation, the flow cells were regenerated with a 1 min injection of 4 M MgCl\(_2\) at 5 \(\mu \)l/min. This completely removed \(\alpha \) from the surface of the chip. Sensorgrams were fit globally to a 1:1 Langmuir binding with mass transfer model, using BLAevaluation 3.1 software (Biacore). A similar flow cell with 30 RU of immobilized bio-\(\tau_{C16} \) was used for a similar experiment with concentration of \(\alpha \) as high as 1 \(\mu \)M.

Similar flow cells (15–20 RU of bio-\(\tau_{C16} \)) were used for the competitive binding assays; \(\alpha \) alone (1 nM) was first injected as described above, and dissociation monitored over 4000–5000 s to give values of the association (\(k_a \)) and dissociation rate constants, \(k_d \), and hence \(K_D(=k_d/k_a) \). Mixtures of 1 nM \(\alpha \) with a competitive inhibitor \(I \) of the interaction at 3 or 4 concentrations in an appropriate pre-determined range, were then injected, and sensorgrams were recorded as described above except that dissociation was monitored over 500 s. Each curve was fit separately (1:1 Langmuir binding model with mass transfer correction) to determine values of \(k_{a,app} \). Since \(k_d \) was shown not to be affected by the presence of \(I \), \(k_{d,app} \) gave values of the apparent dissociation constant \(K_{D,app} \) at each \(I \). In this analysis, we assumed simple competitive inhibition by \(I \) of \(\alpha \) binding to bio-\(\tau_{C16} \), so the value of \(R_{max} \) (computed RU at saturation with 1 nM \(\alpha \)) was also fixed for all sensorgrams within each experiment. Under these circumstances, the relationship between \(K_{D,app} \) and \(I \) is given by:

\[
K_{D,app} = K_D(\alpha - \tau_{C16}) \cdot \left(1 + \frac{[I]}{K_D(\alpha - I)}\right).
\]

Thus, a plot of \(K_{D,app} \) versus \([I]\) should be linear with intercept \(c = K_D(\alpha - \tau_{C16}) \) and slope \(m = K_D(\alpha - \tau_{C16})/K_D(\alpha - I) \) from which \(c/m = K_D(\alpha - I) \).
Protein–DNA interaction analysis by SPR

Interactions of τC domains with 5′-biotinylated ss and ds oligonucleotides and a DNA primer-template structure immobilized on an SA chip were studied with the BIACORE instrument in binding buffer, 10 mM Na.HEPES, pH 7.4, containing 0.005% surfactant P20. The 21-mer ssDNA was 5′-bio-(dp)10-CTTTAGTTAC AACATACTTAT-3′, where 5′-bio represents the site of biotinylation and (dp)10 represents a 10-mer abasic deoxyribosephosphate spacer (56). The 21-bp ds-DNA was comprised of the same oligonucleotide annealed to a perfectly complementary 21-mer, while the primer-template comprised the same 5′-biotinylated 21-mer annealed to a partially complementary 36-mer: 5′-AGCA GCCAGCTCCGAAATAAGTATGGTAACTAAAG. An SA chip (Biacore) was activated as described above. A solution of 2 nM of the 5′-biotinylated ssDNA in binding buffer containing 150 mM NaCl was first used to immobilize ~100 RU of ssDNA onto each of the surfaces of flow cells 2–4 (6 min each at a flow rate of 5 μl/min), while flow cell 1 was left unmodified and served as a control. Then, solutions of 1 μM of each of the complementary DNAs were used separately to prepare the surfaces of flow cells 3 and 4 with ds and primer-template DNA by hybridization (2 min at 5 μl/min).

Binding studies were carried out at a flow rate of 20 μl/min in binding buffer with various [NaCl] from 25 to 150 mM. Solutions of 1 μM τC24, τC22 and τC16 prepared by ~100-fold dilution in buffers with NaCl were co-injected for 180 s following the 60 s injection of the buffer used for protein dilution. Flow cells were regenerated with 1 min injections of 1 M MgCl2 at 5 μl/min.

RESULTS

Overproduction and proteolysis of τ

The plasmid pJC491 that directs overexpression of full-length τ under control of tandem temperature-inducible phage λ promoters was constructed by insertion of a fragment of the dnaX gene bearing silent A to G mutations in codons 428 and 429 (46) into the dnaX+ plasmid pJC490 (45). These mutations suppressed translational frameshifting, so that τ could be produced without significant production of γ (not shown). Nevertheless, in early attempts to purify τ from an ompT+ strain (AN1459) containing pJC490, proteolysis was observed to produce fragments of 47 kDa (NTerminal fragment similar in size to γ), 24 and 16 kDa, and these products could be enriched by overnight storage of cell lysates at 4°C prior to purification. We used this strategy to generate the three fragments and purified both of the smaller fragments by chromatography (not shown). They were identified from their molecular weights determined by ESI-MS to correspond to the Domain V (16.4 kDa) and Domain III–IVa and Domain IVa–V boundaries (i.e. after Lys429 and Lys498, respectively).

Overproduction and purification of τC16 (Domain V)

The part of dnaX that encodes τC16 (codons 499–643) was amplified by PCR and inserted into a phage T7-promoter vector to generate plasmid pSH1062. However, repeated attempts to introduce pSH1062 into strain BL21(λDE3) recA failed to give viable colonies, suggesting that expression of the gene that encodes τC16 is, even in a small amounts, lethal to E. coli, presumably due to sequestration of τC16 and consequent inhibition of its binding to native τ. This lethality was exploited in work described later to isolate mutants of τC16 that are defective in binding to τ. To obtain a strain that overproduces τC16, its coding region was subcloned into a phage λ-promoter vector to yield plasmid pSJ1064. Use of more tightly controlled expression from λ-promoters enabled production of the τC16 domain in good amounts; we had previously used a similar strategy for the production of the helicase-interaction domain of DnaG primase, which is similarly lethal to E. coli (58).

Following overproduction in strain AN1459 containing pSJ1064, τC16 was first purified in a yield of 13 mg/l of cell culture (Supplementary Data, method A). Its structure was initially examined by NMR measurements using a 0.45 mM solution at pH 7.0 and 30°C. Under these conditions, the protein underwent stepwise proteolysis to yield a final species with a molecular weight of ~14 000, as assessed by SDS-PAGE. This fragment remained stable for longer than a day of NMR measurements, and the final TOCSY spectrum suggested the 14-kDa product to be a well-structured protein suitable for structure determination by NMR (43). A second sample of similarly purified τC16 that had undergone partial proteolysis was chromatographed on a Mono-Q column, which separated a series of fragments (Supplementary Figure S6). The smallest of these had a molecular weight of 14 334.4 ± 1.9, determined by ESI-MS, which indicated it most likely comprised residues 499–625 (14 334.2 Da, including 18 residues from the C-terminus of τC16 (or recA)). PCR-generated gene fragments encoding each of these fragments were inserted into the λ-promoter vector pND706 (48). Although both of these plasmids directed overproduction of an ~14-kDa protein (not shown), only the product corresponding to residues 499–625 of τ (encoded in plasmid pSJ1308) was in the soluble fraction following cell lysis. We concluded this corresponded to the stable proteolysis product of τC16, and called the protein τC14. It lacks the last 18 residues from the C-terminus of τC16 (or τ). We found subsequently that more stable samples of τC16 could be prepared by a modified procedure (method B, see Materials and methods section) which used strain BL21(λDE3)recA/pSJ1064 for expression, and included treatment of the extract with protease inhibitors. The τC14 domain was similarly purified in good yield using strain BL21(λDE3)recA/pSJ1308.
In contrast to the T7-promoter plasmid encoding \(\tau_{C16} \) (i.e. pSH1062), a similar plasmid (pKO1296) containing the gene for \(\tau_{C14} \) could easily be introduced into and maintained in strain BL21(DE3)/recA, indicating that removal of the last 18 residues of \(\tau_{C16} \) suppressed its lethal phenotype. This provided the first indication that these residues might be involved in the \(\alpha-\tau \) interaction.

The C-terminal 18 residues of \(\tau \) are required for interaction with \(\alpha \)

We next used analytical gel filtration on a column of Sephacryl S100 HR to confirm that \(\tau_{C16} \), but not \(\tau_{C14} \), could form an isolable complex with \(\alpha \). The \(\alpha \) subunit alone or in complex with \(\tau_{C16} \) elutes in the void volume, while excess of the small \(\tau \) fragments are well resolved in the included volume (Figure 2A and B). The results clearly showed that while \(\tau_{C16} \) forms a stable isolable complex with \(\alpha \), \(\tau_{C14} \) did not (Figure S7A), indicating that the last 18 amino acids of \(\tau \) are required for the \(\alpha-\tau \) interaction.

In published work, we have shown that this region of \(\tau_{C16} \) is unstructured in solution (44); we presume it adopts an ordered structure when it interacts with \(\alpha \). Next we used SPR experiments with a BIACORE instrument to determine the interaction strength contributed by this 18-residue segment.

For comparison with previously reported experiments (40), we first prepared a N-terminally biotinylated version of \(\tau_{C16} \) (bio-\(\tau_{C16} \)), bound it to streptavidin on the surface of a Biacore SA chip, and analyzed its interaction with \(\alpha \) by SPR. Because of the slow diffusion of the 130-kDa \(\alpha \) subunit through the dextran layer of the SPR chip, quantification of dissociation constants (K\(_D \)) required low loadings of bio-\(\tau_{C16} \), use of a high flow rate (30\(\mu \)l/min) and correction of the data for mass transfer limitations as implemented in the Biacore software package.

Sensorgrams recorded at a range of concentrations of \(\alpha \) fit well globally to a 1:1 Langmuir binding model (with mass transfer) to yield a value of K\(_D(\alpha-\tau_{C16}) \) of...

Figure 2. Deletion mutant \(\tau_{C16\Delta7} \) does not form a stable complex with \(\alpha \). (A) Formation of a stable complex between \(E.\ coli \) \(\alpha \) and \(\tau_{C16} \). The \(\alpha-\tau_{C16} \) complex was resolved on a Sephacryl S-100 column. Samples from fractions (indicated by numbers in the left panel) were analyzed by 15% SDS-PAGE. The numbering of lanes corresponds to the numbering shown in the gel filtration profiles. (B) Under the same conditions, \(\tau_{C16} \) elutes as a single peak in the included volume. (C) Investigation of the interaction of \(\alpha \) and \(\tau_{C16\Delta7} \) by gel filtration. Under the same conditions as used to study the \(\alpha-\tau_{C16} \) complex, no stable interaction between \(\alpha \) and \(\tau_{C16\Delta7} \) was detected.
\(\alpha \) interacts weakly with the separated C-terminal region of \(\tau \)

Next we sought to determine if all interactions of \(\tau C_{16} \) with \(\alpha \) are mediated by the unstructured C-terminal segment by SPR measurements of the interactions of \(\alpha \) with synthetic 20- and 32-mer peptides corresponding to this portion of \(\tau \) (designated \(\tau C_{pep20} \) and \(\tau C_{pep32} \), respectively; Figure 1A). N-terminally biotinylated \(\tau C_{pep20} \) and \(\tau C_{pep32} \) were first immobilized directly onto Biacore SA chips. However, we were unable to detect interaction of \(\alpha \) (at 1 \(\mu \)M) with these surfaces (not shown). The most likely explanation for this behavior is that peptides positioned close to the chip surface are not accessible to \(\alpha \).

As an alternative method to evaluate \(\alpha \)-peptide interactions, we used a competitive binding assay, where 1 nM \(\alpha \) was mixed with various concentrations of the unbiotinylated competitor peptide [J], and then passed over bio-\(\tau C_{16} \) immobilized on the surface of the SPR chip. An apparent value of \(K_D \) (i.e. \(K_{D,app} \)) was then measured at each concentration of competitor using the Biacore software, with correction for mass transfer. Linear plots of \(K_{D,app} \) versus [J] according to Equation (1) (see right panels in Supplementary Figure S8) were then used to determine values of \(K_D(\alpha–\tau C_{16}) \) as described in the Materials and methods section. To validate this method, we examined competition by \(\tau C_{16} \) itself, and obtained a value of \(K_D(\alpha–\tau C_{16}) \) of \((1.3 \pm 0.4) \times 10^{-10} \) M (Figure S8A). That this value is close to that determined above by study of the interaction of \(\alpha \) directly with immobilized bio-\(\tau C_{16} \) indicates that the interaction is a simple one, that extension of \(\tau C_{16} \) by an N-terminal biotin-tag does not seriously affect its interaction with \(\alpha \), and that measurements of \(K_D(\alpha–\tau C_{16}) \) obtained by this competition assay can be used reliably to compare strengths of interactions between \(\alpha \) and fragments or mutant derivatives of \(\tau C_{16} \).

\(K_D(\alpha–\tau C_{pep32}) \) measured in this way was \(3.8 \pm 0.2 \) \(\mu \)M (Figure S8B). That this value is 30 000-fold greater than \(K_D(\alpha–\tau C_{16}) \) suggests that residues located in the folded (\(\tau C_{14} \)) core contribute to the binding of \(\tau C_{16} \) to \(\alpha \). Assuming the free energies of binding (\(\Delta G^\circ \)) to the two sites are additive, then binding to residues in \(\tau C_{14} \) is calculated to contribute about 5.7 kcal/mol, corresponding to \(K_D \sim 60 \mu \)M, which is a value too high to be measured reliably by SPR. This is in accord with the lack of detectable interaction between bio-\(\tau C_{14} \) and \(\alpha \).

Residues at the extreme C-terminus of \(\tau \) are required for binding to \(\alpha \)

We used additional approaches to further probe interactions of the C-terminus of \(\tau \) with \(\alpha \). Guided by sequence alignments that show several amino acids in this region to be highly conserved (see Figure 1B and ref. 43), perhaps because they interact with a similarly conserved region of \(\alpha \), we next deleted residues from the C-terminus of \(\tau C_{16} \), and measured their affinity for \(\alpha \) both by gel filtration (Figures 2C and S7B) and in the competitive SPR assay (Figure S8C and Table 1). Deletion of either 7 (in \(\tau C_{16\Delta 7} \)) or 11 residues (\(\tau C_{16\Delta 11} \)) from the C-terminus of \(\tau C_{16} \) resulted in soluble proteins that could be purified readily;
Table 1. Equilibrium constants K_D and differences in free energies $\Delta \Delta G^\circ$ for interactions of α with τ_C and mutant derivatives

Interaction	K_D (M)	$\Delta \Delta G^\circ$ (kcal/mol)
Direct SPR assay: α-bio-τ_C	$(2.64 \pm 0.02) \times 10^{-10}$	
Competitive SPR assay: α-16		
α-16		
α-16	$(1.3 \pm 0.4) \times 10^{-10}$	(0.0)
α-16pep32	$(3.8 \pm 0.2) \times 10^{-6}$	5.9 ± 0.2
α-16	$(6.7 \pm 1.8) \times 10^{-6}$	6.3 ± 0.4
α-16Δ11	$> 10^{-5}$	> 6.5
α-16Δ11 (Δτ-16Δ18)	$> 10^{-5}$	> 6.5
α-16[S617P]	$(1.6 \pm 0.6) \times 10^{-7}$	4.1 ± 0.4
α-16[I618T]	$(9.8 \pm 1.0) \times 10^{-10}$	1.1 ± 0.3
α-16[L627P]	$(1.5 \pm 0.4) \times 10^{-6}$	5.4 ± 0.4
α-16[F631I]	$(9.9 \pm 2.1) \times 10^{-8}$	3.5 ± 0.3
α-16[L635P]	$(2.4 \pm 0.2) \times 10^{-9}$	1.7 ± 0.3
α-16[D636G]	$(3.8 \pm 0.5) \times 10^{-9}$	1.9 ± 0.3

removal of these amino acids does not appear to affect folding of the isolated domain, consistent with NMR studies that showed the lack of defined structure for this region (44). Since a λ-promoter vector that contained the gene encoding $\tau_\mathrm{C}16$Δ11 could be easily maintained in strain BL21(λDE3)recA, its expression was not toxic to $E. \ coli$. However, the corresponding τ_C vector encoding the $\tau_\mathrm{C}16$Δ7 mutant could not be stably maintained, so a λ-promoter vector was again used to prepare this mutant protein. This suggested that deletion of seven residues may not be sufficient to completely prevent interaction of τ Domain V with α; this was examined further by gel filtration and competitive SPR experiments.

Neither $\tau_\mathrm{C}16$Δ7 nor Δ11 formed a complex with α sufficiently stable to enable its isolation by gel filtration (Figures 2C and S7C). However, weak interaction with $\tau_\mathrm{C}16$Δ7 was detected by SPR experiments; deletion of the 7 C-terminal residues raised the measured K_D to $6.7 \pm 1.8 \mu$M (Table 1), suggesting that these residues contribute $\sim 6.3 \text{kcal/mol to } \Delta G^\circ$. However, deletion of four further residues (in $\tau_\mathrm{C}16$Δ11) including the conserved residues Ala633 and Leu635 raised K_D further (to $> 10 \mu$M), such that interaction with α could no longer be detected.

Targeted mutagenesis of the C-terminal region of τ_C

Finally, to further probe the α–τ interaction, we carried out a targeted mutagenesis experiment on the C-terminal region of τ_C. The gene in the τ_C-promoter plasmid pSH1062 contains a unique BssHII site situated 28 codons before the stop codon, and a single EcoRI site is placed immediately after the gene. A series of error-prone PCRs were used to target mutations to this region, and the product fragment was digested with BssHII and EcoRI. Separate libraries of mutant gene fragments obtained with different MnCl2:MgCl2 ratios in the PCRs were then inserted between the corresponding sites in pSH1062, and then transformed into strain BL21(λDE3)recA. Nucleotide sequence determination revealed that plasmids in 24 randomly selected survivors that yielded interpretable sequences all carried mutations in the targeted region. The mutations included: (a) Nine single point mutations, resulting in mutant proteins L627P (three isolates), L635P (two isolates), S617P, I618T, F631I and D636G. The two mutants isolated more than once were derived from separate libraries. (b) Nine double point mutations, giving changes I618N/R628C, A620V/D632V, D621G/F630S, N622I/F631S, I624N/F630L, T626A/I640F, L627P/L635Q, D636N/R641S and P642S plus a TGA to AGA mutation at the stop codon. (c) Five frameshift mutations (three deletions and two insertions); and (d) A single alteration of the stop codon (TGA codon changed to CGA); stop-codon mutations result in extension of the protein by 17 additional residues at the C-terminus.

Of the six single point mutations that suppressed the lethality of the gene encoding τ_C, four were in codons for conserved hydrophobic residues (Figure 1B) and two were in neighboring residues. To examine the roles, if any, of these amino acids in the τ_C–α interaction, these six proteins were isolated. All were soluble when overproduced in $E. \ coli$ BL21(λDE3)/pLysS, and could be isolated in good yield.

Contributions of residues in the C-terminus of τ to α binding

Interactions between the mutant proteins and α were first assessed by gel filtration, as before. The results (Supplementary Figure S9) suggest that no single point mutation disturbed the interaction as much as the $\tau_\mathrm{C}16$Δ7 and Δ11 truncations. Nevertheless, it is clear for all of them that interaction with α was impaired, and this was most obvious for mutant τ_C16[L627P]. The relative strength of the interactions between the mutant proteins and α was then quantified more reliably using the SPR competition assay (Table 1 and Supplementary Figures S10 and S11).

The I618T, L635P and D636G mutations had rather modest effects on binding (changes in K_D of < 30-fold, $\Delta \Delta G^\circ < 1.9 \text{kcal/mol}$) and, as seen in the gel filtration data, the largest effect was with the L627P mutation (5.4kcal/mol). The S617P and F631I mutations had intermediate effects ($\Delta \Delta G^\circ$ of $\sim 4 \text{kcal/mol}$). Thus, although the data cannot determine that the sole reason for the lethal phenotype of modest production of $\tau_\mathrm{C}16$ is its interaction with α (as opposed to DNA or another replisomal component), all of the isolated mutant proteins had defects in α binding. This confirms that the unstructured C-terminal region of $\tau_\mathrm{C}16$ carries many determinants for interaction with α, and provides clues to the structure of the complex, as discussed further below.

Domain IVa of $\tau_\mathrm{C}24$ (and $\tau_\mathrm{C}22$) is responsible for its interaction with DNA

The $\tau_\mathrm{C}24$ protein (Domains IVa + V) has previously been shown to bind to primed DNA (38), and interaction between the C-terminal (20-mer) peptide from α and $\tau_\mathrm{C}24$ was proposed to be modulated by DNA structure (39). Accordingly, we used three different constructs, $\tau_\mathrm{C}24$, $\tau_\mathrm{C}22$ and $\tau_\mathrm{C}16$ in SPR experiments with ss, ds and primer-template DNA to map the region responsible for DNA
binding. Compared to τC24, τC22 lacks the 18 residues from the C-terminus that are involved in interaction with ζ (Figure 1A). Like τC14, τC22 could be overproduced in strain BL21(λDE3)/pLysS/pKO1297, where its synthesis is under control of a phage T7-promoter.

Surprisingly, we were unable to detect interaction between any of these protein constructs and any of the immobilized DNA structures in a buffer containing 150 mM NaCl. Further experiments using the same buffer containing 10 mM Mg(OAc)2 in the presence or absence of 1 mM ATP or AMP-PNP also yielded no evidence of interaction, and reduction of [NaCl] to 100 mM yielded similar negative results.

However, reduction of the NaCl concentration to 75 mM yielded detectable interaction between τC24 (and τC22, not shown) and all DNA structures, while further progressive decrease in [NaCl] to 50 and 25 mM led to stronger, non-stoichiometric binding (Figure 3B). The data show that as more nucleotides are immobilized on the surface (more negative charges), the stronger the interaction, and reduction of [NaCl] to 100 mM yielded similar negative results.

In contrast, Domain V alone (τC16) was observed not to bind to any of the DNA structures even at the lowest salt concentrations. The data therefore show that the 69 residues comprising Domain IVa of τC24 (and τC22) contain all determinants for DNA binding, and the strong salt dependence and lack of apparent specificity is likely due to the high net positive charge of this region coupled with its lack of defined tertiary structure (43).

DISCUSSION

Structural aspects of the ζ-τC16 interaction

This report shows the important role the extreme C-terminal region of the τ subunit of Pol III HE plays in its interaction with the ζ polymerase subunit. In the accompanying article (43), we describe the solution structure of the folded core of the C-terminal Domain V of τ (i.e. τC14) determined by NMR spectroscopy. The region between residues Pro507 and Ser617 of Domain V is structured; the last eight residues of τC14 were found to be mobile (43) and the following 18 residues present in τC16 beyond the end of τC14 (Figure 1A) are also unstructured and show no evidence of association with the folded core of Domain V (44). Nevertheless, that a peptide comprising just the last 32 residues of τ (τC pep32) and including all of this unstructured region does not associate as strongly with ζ as τC16 (Table 1) suggests that some residues in the folded region of Domain V directly or indirectly contribute to the interaction with ζ.

Sequence alignment reveals that certain residues in the C-terminal region of τC16 are highly conserved (Figure 1B, and ref. 43), and our mutagenesis data suggest that these conserved residues are important for interaction with ζ. This interaction thus provides yet another example of how an intrinsically unstructured region of a protein can fold into a defined structure when it interacts with its binding partner (59,60). Although this region contains many polar and charged amino acids, most of the conserved residues are non-polar and are spaced in such a way that suggests the folded structure of this part of τ in the ζ-τ complex comprises two amphipathic ζ-helices.

Secondary structure predictions suggest an extension of the C-terminal helix 6 of τC14 (43) which includes the conserved residues Ala614 and Ile618 (Figure 1B). We studied two single point mutants from this region, S617P and I618T. While the I618T mutation had only a modest effect on ζ binding (ΔΔG = 1.1 kcal/mol), the effect of the S617P mutation was larger (4.1 kcal/mol). Since the proline substitution at Ser617 would be expected to disrupt an ζ-helix, this is consistent with the interactions with ζ occurring via an incipient helix.

Structure prediction further suggests a β-turn involving Asp621–Asn623 followed by a helix from Ile624 to Phe631 with high propensity, or to Leu635 with lower propensity. This suggests that a second longer helix extending to Leu635 might be formed upon interaction with ζ. Consistent with this is the fact that the conserved residue mutant L635P located at the end of this hypothetical helix (Figure 1B) still interacts relatively strongly with ζ (ΔΔG = 1.7 kcal/mol) while the L627P mutation within it has the largest effect of those examined (5.4 kcal/mol). Taken together, these data suggest that a helix–loop–helix structure is induced on interaction with ζ, with the extended helix 6 serving as a scaffold that links the globular domain of τC14 and ζ. Whether the globular domain itself establishes contacts with ζ in either of the two proposed ζ-τ binding modes (38) remains to be shown. NMR studies of the interaction of τC16Δ11 with ζ yielded a dissociation constant of ~0.9 mM (61), indicating that additional binding residues are located within the structured portion near the end of helix 6. Two structures of ζ, from different bacteria, have recently been reported (62,63). Since τC16 is expected to be bound close to the C-terminus of ζ due to its close proximity to the β6 sliding clamp that binds in this region, one could speculate that the incipient additional helix 7 binds in a C-terminal cleft in ζ.

Of the remaining mutants examined, the D636G change had a modest effect on ζ binding (ΔΔG = 1.9 kcal/mol) while F631L resulted in a much weaker interaction (3.8 kcal/mol). Consistent with these data, Asp636 is not expected to disrupt an ζ-helix, this is consistent with the interactions with ζ occurring via an incipient helix.

Study of the single point mutants (Table 1) revealed that no single amino acid change is sufficient to completely disrupt the ζ-τ interaction, presumably because the interactions at the interface involve a series of residues located in an otherwise flexible segment of τ. Finally, we note that although no single point mutation was identified in the last seven amino acids of τC16, complete removal of this segment (in τC16Δ7; Figure 1B) had a large effect of binding of ζ (ΔΔG = 6.3 kcal/mol). There must therefore be further contacts with this region in the complex with ζ. Indeed, extension of this region in...
full-length τ by fusion of a biotin-tag sequence also disrupts the interaction (40). NMR studies (43) similarly suggest that all determinants in τC16 required for binding to α likely reside towards the end of helix 6 and in the following unstructured 26-residue segment that we propose to become structured on α binding.

Structural aspects of the α–τ interaction

The DnaB helicase interacts with Domain IV of τ, a region that immediately precedes helix 1 in the structure of τC14 (Figure 1) and an α subunit interacts with the extension of helix 6 of the τC14 domain in each of the two τ subunits in the clamp loader complex in the replisome (4–7). This places restraints on the α–DnaB and α–τ distances that need to be considered once there is sufficient information to build models of the structure of the replisome in its various functional states.

The DNA-binding properties of τC24 place further structural restraints. The τ subunit is known to house a DNA-sensing function that leads to active detachment of α from the β2 clamp when the last nucleotide of an Okazaki fragment on the lagging strand is incorporated, resulting in the processivity switch (6,7,38). Further, it was shown that Domain IVa + V of τ (τC24) senses a primed template structure, resulting in lowering of its affinity for the C-terminal region of α (39). Although we have shown that the highly basic Domain IVa region of τC24 interacts with DNA, we have been unable to confirm under our experimental conditions that it binds primer-template DNA with high affinity or significant specificity. Domain IV has previously been shown not to contribute directly to α binding (40). Considering the close proximity of the N- and C-terminal helices in the globular fold of Domain V (43), the DNA-binding Domain IV may readily interact with the α-binding site of τ to regulate the α–β2 interaction when Domain IV senses changes in DNA structure. Possibly, the affinity with the lagging strand is enhanced through interaction between Domains IV and/or V in neighboring τ subunits in the clamp loader complex. This would place rather severe geometric constraints on the positions of the two Pol III cores and DnaB in the replisome.

SUPPLEMENTARY DATA

Supplementary data is available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank Dr Zenta Tsuchihashi for providing plasmid pZT3(1G4G), and Drs Mark Mulcair and Patrick Schaeffer for assistance and advice with SPR experiments. This work was supported by the Australian Research Council, including project grants (to G.O. and N.E.D.), a CSIRO-Linkage Fellowship (to K.O.) and a Federation Fellowship (to G.O.). S.J. held an International Postgraduate Research Award. Funding to pay the Open Access publication charge was provided by the University of Wollongong.

Conflict of interest statement. None declared.

REFERENCES

1. Kornberg,A. (1988) DNA replication. Biochim. Biophys. Acta, 951, 235–239.
2. McHenry,C.S. (1988) DNA polymerase III holoenzyme of Escherichia coli. Annu. Rev. Biochem., 57, 519–550.
3. Kornberg,A. and Baker,T.A. (1991) DNA Replication. W.H. Freeman & Co., New York, NY.
4. Schaeffer,P.M., Headlam,M.J. and Dixon,N.E. (2005) Protein-protein interactions in the eubacterial replisome. IUBMB Life, 57, 5–12.
5. Johnson,A. and O’Donnell,M. (2005) Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem., 74, 283–315.
6. O’Donnell,M. (2006) Replisome architecture and dynamics in Escherichia coli. J. Biol. Chem., 281, 10653–10656.
7. Langston,L.D. and O’Donnell,M. (2006) DNA replication: keep moving and don’t mind the gap. Mol. Cell, 23, 155–160.
8. Kelman,Z. and O’Donnell,M. (1995) DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu. Rev. Biochem., 64, 171–200.
9. McHenry,C.S. and Crow,W. (1979) DNA polymerase III of Escherichia coli. Purification and identification of subunits. J. Biol. Chem., 254, 1748–1753.
10. Maki,H. and Kornberg,A. (1985) The polymerase subunit of DNA polymerase III of Escherichia coli. II. Purification of the α subunit, devoid of nucleic acid activities. J. Biol. Chem., 260, 12987–12992.
11. Scheidemann,R.H. and Eisenberg,H. (1984) A separate editing exonuclease for DNA replication: the ε subunit of Escherichia coli DNA polymerase III holoenzyme. Proc. Natl. Acad. Sci. U.S.A., 81, 7747–7751.
12. Taft-Benz,S.A. and Schaaper,R.M. (2004) The α subunit of Escherichia coli DNA polymerase III: a role in stabilizing the ε proofreading subunit. J. Bacteriol., 186, 2774–2780.
13. Fay,P.J., Johanson,K.O., McHenry,C.S. and Bambara,R.A. (1981) Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. J. Biol. Chem., 256, 976–983.
14. Kelman,Z. and O’Donnell,M. (1995) Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps. Nucleic Acids Res., 23, 3613–3620.
15. Kong,X.-P., Onrust,R., O’Donnell,M. and Kurian,J. (1992) Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell, 69, 425–437.
16. Stukenberg,P.T., Studwell-Vaughan,P.S. and O’Donnell,M. (1991) Mechanism of the sliding β-clamp of DNA polymerase III holoenzyme. J. Biol. Chem., 266, 11328–11334.
17. Pritchard,A.E., Dallmann,H.G., Glover,B.P. and McHenry,C.S. (1992) Three-dimensional structure of the σ subunit of DNA polymerase III holoenzyme DNAx complex: association of δδ with DNAx forms DNAxδδ. EMBO J., 19, 6536–6545.
18. O’Donnell,M., Jerezal,D. and Kurian,J. (2001) Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC. Curr. Biol., 11, R935–R946.
19. Ason,B., Handayani,R., Williams,C.R., Bertram,J.G., Hingorani,M.M., O’Donnell,M., Goodman,M.F. and Bloom,L.B. (2003) Mechanism of loading the Escherichia coli DNA polymerase III β sliding clamp on DNA. Bona fide primer/templates preferentially trigger the γ complex to hydrolyze ATP and load the clamp. J. Biol. Chem., 278, 10033–10040.
20. Williams,C.R., Snyder,A.K., Kuzmic,P., O’Donnell,M. and Bloom,L.B. (2004) Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp. I. Two distinct activities for individual ATP sites in the γ complex. J. Biol. Chem., 279, 4376–4385.
21. Snyder,A.K., Williams,C.R., O’Donnell,M. and Bloom,L.B. (2004) Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp. II. Uncoupling the β and DNA binding activities of the γ complex. J. Biol. Chem., 279, 4386–4393.
22. Glover,B.P. and McHenry,C.S. (1998) The χδε subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J. Biol. Chem., 273, 23476–23484.
23. Yuzhakov, A., Kelman, Z. and O’Donnell, M. (1999) Trading places on DNA. A three-point switch underlies primer handoff from primase to the replicative DNA polymerase. *Cell*, 96, 153–163.

24. Naktinis, V., Onrust, R., Fang, L.H. and O’Donnell, M. (1995) Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp. *J. Biol. Chem.*, 270, 13358–13365.

25. Jeruzalmi, D., Yuzhakov, A., Kelman, Z. and O’Donnell, M. (1999) Trading places on DNA. A three-point switch underlies primer handoff from primase to the replicative DNA polymerase. *Cell*, 96, 153–163.

26. Mullin, D.A., Woldringh, C.L., Henson, J.M. and Walker, J.R. (1983) Cloning of the *Escherichia coli dnaZ* region and identification of its products. *Mol. Gen. Genet.*, 192, 73–79.

27. Kodaira, M., Biswas, S.B. and Kornberg, A. (1983) The *dnaX* gene encodes the DNA polymerase III holoenzyme *γ subunit, precursor of the *γ subunit, the dnaZ gene product. Mol. Gen. Genet.*, 192, 80–86.

28. McHenry, C.S. (1982) Purification and characterization of DNA polymerase III*. Identification of *γ* as a subunit of the DNA polymerase III holoenzyme. *J. Biol. Chem.*, 257, 2657–2663.

29. Tsuschihashi, Z. and Kornberg, A. (1990) Translational frameshifting generates the *γ* subunit of DNA polymerase III holoenzyme. *Proc. Natl. Acad. Sci. U.S.A.*, 87, 2516–2520.

30. Flower, A.M. and McHenry, C.S. (1990) The *γ* subunit of DNA polymerase III holoenzyme of *Escherichia coli* is produced by ribosomal frameshifting. *Proc. Natl. Acad. Sci. U.S.A.*, 87, 3713–3717.

31. Blinkova, A.L. and Walker, J.R. (1990) Programmed ribosomal frameshifting generates the *Escherichia coli* DNA polymerase III *γ* subunit from within the *γ subunit reading frame. Nucleic Acids Res.*, 18, 1725–1729.

32. Jeruzalmi, D., O’Donnell, M. and Kuriyan, J. (2001) Crystal structure of the processivity clamp loader gamma (*γ*) complex of *E. coli* DNA polymerase III holoenzyme. *J. Biol. Chem.*, 276, 13366–13377.

33. Kim, D.R. and McHenry, C.S. (1996) Biotin tagging deletion analysis of domain limits involved in protein-macromolecular interactions. Mapping the *γ* binding domain of the DNA polymerase III *γ subunit. *J. Biol. Chem.*, 271, 20690–20698.

34. Stukenberg, P.T. and O’Donnell, M. (1995) Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. V. Four different polymerase-clamp complexes on DNA. *J. Biol. Chem.*, 270, 13384–13391.

35. Leu, F.P., Georgescu, R. and O’Donnell, M. (2003) Mechanism of the *E. coli* *γ* processivity switch during lagging-strand synthesis. *Mol. Cell.*, 11, 315–327.

36. López de Saro, F.J., Georgescu, R.E. and O’Donnell, M. (2003) A peptide switch regulates DNA polymerase processivity. *Proc. Natl. Acad. Sci. U.S.A.*, 100, 14689–14694.

37. Gao, D. and McHenry, C.S. (2001) *γ* binds and organizes *Escherichia coli* replication proteins through distinct domains. Partial proteolysis of terminally tagged *γ* to determine candidate domains and to assign domain V as the *α* binding domain. *J. Biol. Chem.*, 276, 4433–4440.

38. Dallmann, H.G., Kim, S., Pritchard, A.E., Marians, K.J. and McHenry, C.S. (2000) Characterization of the unique C terminus of the *Escherichia coli* *γ* DNA polymerase. Monomeric C-*γ* binds *α* and *DnaB* and can partially replace *γ* in reconstituted replication forks. *J. Biol. Chem.*, 275, 15512–15519.

39. Gao, D. and McHenry, C.S. (2001) *γ* binds and organizes *Escherichia coli* replication proteins through distinct domains. Domain IV, located within the unique C terminus of *γ*, binds the replication fork helicase, *DnaB*. *J. Biol. Chem.*, 276, 4441–4446.

40. Su,k.-C., Jergic, S., Keniry, M.A., Dixon, N.E. and Otting, G. (2007) Solution structure of Domains IVA and V of the *γ* subunit from *Escherichia coli* DNA polymerase III and interaction with the *α* subunit. *Nucleic Acids Res.*, accompanying paper.

41. Wu, P.S.C., Ozawa, K., Jergic, S., Su, X.-C., Dixon, N.E. and Otting, G. (2006) Amino-acid type identification in *15N*-HSQC spectra by combinatorial selective *15N*-labelling. *J. Biomol. NMR.*, 34, 13–21.

42. Ozawa, K., Jergic, S., Crowther, J.A., Thompson, P.R., Wijffels, G., Otting, G. and Dixon, N.E. (2005) Cell-free protein synthesis in an autodioxygen system for NMR studies of protein-protein interactions. *J. Biol. Chem.*, 32, 235–241.

43. Stukenberg, P.T. and O’Donnell, M. (2001) *γ* binds and organizes *Escherichia coli* replication proteins through distinct domains. *Proc. Natl. Acad. Sci. U.S.A.*, 100, 611–619.

44. Naktinis, V., Kornberg, A., Miles, C.S., Love, C.A. and Dixon, N.E. (2000) Interaction of the *Escherichia coli* replication terminator protein (Tus) with DNA: a model derived from DNA-binding studies of mutant proteins by surface plasmon resonance. *Biochemistry*, 39, 11989–11999.

45. Love, C.A., Lilley, E.P. and Dixon, N.E. (1996) Stable high-copy-number bacteriophage λ promoter vectors for overproduction of proteins in *Escherichia coli*. *Gene*, 176, 49–53.

46. Beckett, D., Kovalova, E. and Schatz, P.J. (1999) A minimal peptide substrate in biotin holozyme synthetase-catalyzed biotinylation. *Protein Sci.*, 8, 921–929.

47. Vasudevan, S.G., Armarego, W.L.F., Shaw, D.C., Lilley, E.P., Dixon, N.E. and Poole, R.K. (1991) Isolation and nucleotide sequence of the *hmp* gene that encodes a haemoglobin-like protein in *Escherichia coli*. *J. Biol. Chem.*, 266, 49–58.

48. Williams, N.K., Proskevelov, P., Liepinsh, E., Line, J., Sharpio, A., Littler, D.R., Curmi, P.M.G., Otting, G. and Dixon, N.E. (2002) *In vivo* protein cyclization promoted by a circularly permuted *Synechocystis* sp. PCC6803 *DnaB* mini-intein. *J. Biol. Chem.*, 277, 7790–7798.

49. Wijffels, G., Dalrymple, B.P., Proskevelov, P., Kongswan, K., Epa, V.C., Lilley, E.P., Jergic, S., Buchardt, J., Brown, S.E. et al. (2004) Inhibition of protein interactions with the *β* subunit of DNA polymerase III by peptides from *β* subunit reading frame. *Biochemistry*, 43, 5661–5671.

50. McVeer, L., Baxter, R.L. and Campopiano, D.J. (2000) Identification of the [Fe–S] cluster-binding residues of *Escherichia coli* biotin synthase. *J. Biol. Chem.*, 275, 13888–13894.

51. Gill, S.C. and Von Hippel, P.H. (1989) Calculation of protein extinction coefficients from amino acid sequence data. *Anal. Biochem.*, 182, 319–326.

52. Mulcair, M.D., Schaeffer, P.M., Oakley, A.J., Cross, H.F., Neylon, C., Hill, T.M. and Dixon, N.E. (2006) A molecular mousetrap determines polarity of termination of DNA replication in *E. coli*. *Cell*, 125, 1309–1319.

53. Pritchard, A.E., Dallmann, H.G. and McHenry, C.S. (1996) *In vivo* assembly of the *γ* complex of the DNA polymerase III holoenzyme expressed from a five-gene artificial operon. Cleavage of the *γ* complex to form a mixed *γ–γ* complex by the OmpT protease. *J. Biol. Chem.*, 271, 10291–10298.

54. Loscha, K., Oakley, A.J., Bancia, B., Schaeffer, P.M., Proskevelov, P., Otting, G., Lilley, E.P. and Dixon, N.E. (2004) Expression, purification, crystallization, and NMR studies of the helicase interaction domain of *Escherichia coli* DnaG primase. *Protein Expr. Purif.*, 33, 304–310.
59. Wright, P.E. and Dyson, H.J. (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. *J. Mol. Biol.*, 293, 321–331.

60. Tompa, P. (2005) The interplay between structure and function in intrinsically unstructured proteins. *FEBS Lett.*, 579, 3346–3354.

61. Su, X.-C., Jergic, S., Ozawa, K., Burns, N.D., Dixon, N.E. and Otting, G. (2007) Measurement of dissociation constants of high-molecular weight protein-protein complexes by transferred 15N-relaxation. *J. Biomol. NMR*, in press. (superscripted 15).

62. Lamers, M.H., Georgescu, R.E., Lee, S.-G., O’Donnell, M. and Kuriyan, J. (2006) Crystal structure of the catalytic α subunit of *E. coli* replicative DNA polymerase III. *Cell*, 126, 881–892.

63. Bailey, S., Wing, R.A. and Steitz, T.A. (2006) The structure of *T. aquaticus* DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. *Cell*, 126, 893–904.

64. Koradi, R., Billeter, M. and Wüthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. *J. Mol. Graph.*, 14, 51–55.