\[|V_{ub}| \text{ from Exclusive Semileptonic } B \rightarrow \pi \text{ Decays Revisited} \]

Jonathan M Flynn\(^a\) and Juan Nieves\(^b\)

\(^a\)School of Physics and Astronomy, University of Southampton
Highfield, Southampton SO17 1BJ, UK
\(^b\)Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada,
E–18071 Granada, Spain

Abstract

We update the extraction of \(|V_{ub}|\) from exclusive semileptonic \(B \rightarrow \pi\) decays, combining experimental partial branching fraction information with theoretical form factor calculations, using the recently revised HPQCD results for the form factors \(f_+\) and \(f_0\). We use Omnès representations to provide the required parametrisations of the form factors. The extracted value is \(|V_{ub}| = (3.47 \pm 0.29 \pm 0.03) \times 10^{-3}\), in striking agreement with \(|V_{ub}|\) extracted using all other inputs in CKM fits and showing some disagreement with \(|V_{ub}|\) extracted from inclusive semileptonic \(B \rightarrow \pi\) decays.

In this short note we update our extraction of \(|V_{ub}|\) from combined experimental and theoretical information on exclusive semileptonic \(B \rightarrow \pi\) decays in light of the recently revised values for the form factors \(f_+\) and \(f_0\) from the lattice QCD calculation by the HPQCD collaboration [1, 2]. Our analysis procedure and inputs are fully described in [3, 4]. We combine experimental partial branching fraction information with theoretical calculations of both form factors, using Omnès representations to provide parametrisations of the form factors. The Omnès representation for \(f_+(q^2)\) takes into account the existence of the \(B^*\) pole as described in [4].

We have used experimental partial branching fraction data from the tagged analyses of CLEO [5], Belle [6] and BaBar [7], and from the untagged analysis of BaBar [8, 9]. When computing partial branching fractions, we have used \(\tau_{B^0} = 1/\Gamma_{\text{Tot}} = (1.527 \pm 0.008) \times 10^{-12}\) s [10] for the \(B^0\) lifetime. For theoretical form-factor inputs we use the lightcone sumrule (LCSR) result \(f_+(0) = f_0(0) = 0.258 \pm 0.031\) [11] and lattice QCD results from FNAL-MILC [12–15] (using the three \(f_+(q^2)\) values quoted in [16] and reading off three values for \(f_0(q^2)\) at the same \(q^2\) points from [13]). The lattice QCD results from HPQCD [2] have recently been revised [1], and we note the updated HPQCD form factor values in table [17].

Our fit uses four evenly-spaced Omnès subtraction points for each form factor, covering the range \(0 \leq q^2 \leq q_{\text{max}}^2 = (m_B - m_\pi)^2\), together with the value of \(|V_{ub}|\). The best-fit parameters are:

\[
\begin{align*}
|V_{ub}| & = (3.47 \pm 0.29) \times 10^{-3} \\
 f_+(0) & = f_0(0) = 0.245 \pm 0.023 \\
f_+(q_{\text{max}}^2/3) & = 0.475 \pm 0.046 \\
f_+(2q_{\text{max}}^2/3) & = 1.07 \pm 0.08 \\
f_+(q_{\text{max}}^2) & = 7.73 \pm 1.29 \\
f_0(q_{\text{max}}^2/3) & = 0.338 \pm 0.089 \\
f_0(2q_{\text{max}}^2/3) & = 0.520 \pm 0.041 \\
f_0(q_{\text{max}}^2) & = 1.06 \pm 0.26
\end{align*}
\]

\(^1\)The changes to the results for \(f_0\) are relatively small so we do not expect large effects on analyses based on these values alone, for example, using \(f_0\) input to extract phase-shift information for \(s\)-wave elastic \(B\pi\) scattering [17].
we have assumed that the lattice input form factor data have independent statistical errors and fully-
combination.

From our fit we calculate the total branching fraction

\[B(B^0 \rightarrow \pi^- l^+ \nu) = (1.37 \pm 0.08 \pm 0.01) \times 10^{-4} \]

(3)

decays, 1.4 \pm 0.1 \text{GeV}^{-1} \text{ extracted from the unquenched lattice QCD results in [19]. We also calculate the combination,}

\[|V_{ub}| f^+(0) = (8.5 \pm 0.8) \times 10^{-4}. \]

(5)

A model-independent extraction of this combination can be performed by applying soft collinear
effective theory to \(B \rightarrow \pi \pi \) decays and deriving a factorisation result [20]. Our result compares
well with \(|V_{ub}| f^+(0) = (7.6 \pm 1.9) \times 10^{-4} \) quoted in [21] using the SCET/factorisation approach.

We have assumed that the lattice input form factor data have independent statistical errors and fully-
correlated systematic errors (but no correlations linking \(f_+ \) and \(f_0 \)). Since we do not know these

\[2 \text{ Expressions for } P, \phi \text{ and } z \text{ can be found in [16]. We set } t_0 = s_{th}(1 - \sqrt{1 - q_{\text{max}}^2/s_{th}}), \text{ where } s_{th} = (m_B + m_\pi)^2, \text{ which is the 'preferred choice', labelled BGLa, in [18]. This choice for } t_0 \text{ ensures that } |z| \leq 0.3 \text{ for } 0 \leq q^2 \leq q_{\text{max}}^2. \]

\[
\begin{array}{|c|c|c|}
\hline
q^2/\text{GeV}^2 & f_+(q^2) & f_0(q^2) \\
\hline
17.34 & 1.101 \pm 0.053 & 0.561 \pm 0.026 \\
18.39 & 1.273 \pm 0.099 & 0.600 \pm 0.021 \\
19.45 & 1.458 \pm 0.142 & 0.639 \pm 0.023 \\
20.51 & 1.627 \pm 0.185 & 0.676 \pm 0.041 \\
21.56 & 1.816 \pm 0.126 & 0.714 \pm 0.056 \\
\hline
\end{array}
\]

\textbf{Table 1} Revised HPQCD results for the form factors \(f_+ \) and \(f_0 \) [1]. The error shown is statistical only: the systematic error for each input form factor value is 10%.

In figure 1 we show the fitted form factors, the differential decay rate calculated from our fit and the quantities \(\log\left(\frac{m_B^2 - q^2}{f_+(q^2)/m_B^2}\right) \) and \(P \phi f_+ \) where the details of the fit and inputs can better be seen. The dashed magenta curve in the \(P \phi f_+ \) plot is a cubic polynomial fit in \(z \) to the output from our analysis. We note that the sum of squares of the coefficients in this polynomial safely satisfies the dispersive constraint \(\sum_n a_n^2 \leq 1 \) [16].

From our fit we calculate the total branching fraction

\[B(B^0 \rightarrow \pi^- l^+ \nu) = (1.37 \pm 0.08 \pm 0.01) \times 10^{-4} \]

where the first uncertainty is from our fit and the second is from the uncertainty in the experimental
\(B^0 \) lifetime. We evaluate

\[\frac{1}{m_B} \left. \frac{f_+(q_{\text{max}}^2)}{f_0(q_{\text{max}}^2)} \right|_{B\pi} = 1.4 \pm 0.4 \text{GeV}^{-1} \]

(4)

to be compared to the corresponding quantity in \(D \rightarrow \pi \) exclusive semileptonic decays, 1.4 \pm
0.1 \text{GeV}^{-1} extracted from the unquenched lattice QCD results in [19]. We also calculate the combination,

\[|V_{ub}| f^+(0) = (8.5 \pm 0.8) \times 10^{-4}. \]

(5)
Figure 1 Results obtained from the fit to experimental partial branching fraction data and theoretical form factor calculations. The top left plot shows the two form factors with their error bands, the lattice and LCSR input points (dots: green LCSR, red HPQCD, blue FNAL-MILC) and ‘experimental’ points (black triangles, upward-pointing for tagged and downward pointing for untagged data) constructed by plotting at the centre of each bin the constant form factor that would reproduce the partial branching fraction in that bin. The top right plot shows the differential decay rate together with the experimental inputs. The bottom plots provide more details of the inputs and fits by showing on the left \(\log \left(\frac{m_{B^*}^2 - q^2}{m_{B^*}^2} \right) f_+ (q^2) / m_{B^*}^2 \) as a function of \(q^2 \), and on the right \(P_\phi f_+ \) as a function of \(-z \). The dashed magenta curve in the bottom right plot is a cubic polynomial fit in \(z \) to the Omnès curve.

correlations we have also performed fits with no correlations in the lattice inputs and assuming correlated systematic errors linking \(f_+ \) and \(f_0 \). We find that the central fitted value for \(|V_{ub}| \) shifts by less than \(0.03 \times 10^{-3} \), which we will apply as a systematic error for our extracted value:

\[
|V_{ub}| = (3.47 \pm 0.29 \pm 0.03) \times 10^{-3}.
\]

(6)

This value differs by more than one standard deviation from the \(|V_{ub}| \) values extracted from inclusive semileptonic \(B \to \pi \) decays and quoted in [10]. However, using the inclusive determinations with the highest efficiency and best theoretical control leads to \(|V_{ub}| = (4.10 \pm 0.30_{\text{exp}} \pm 0.29_{\text{th}}) \times 10^{-3} \) [22] which is consistent with the value found here.

The result is in very good agreement with values for \(|V_{ub}| \) coming from CKM fits using inputs apart from \(|V_{ub}| \) itself. For example the angles-only fit in [23] leads to \(|V_{ub}| = (3.67 \pm 0.24) \times 10^{-3} \), while the UTfit collaboration’s result for \(|V_{ub}| \) determined from all other inputs, including Winter 2007 updated information [24] is \(|V_{ub}| = (3.44 \pm 0.16) \times 10^{-3} \).

The revised HPQCD results are in closer agreement with the FNAL-MILC results and lead to
smaller $|V_{ub}|$. These groups use different methods for treating heavy quarks in their simulations, so the agreement is very encouraging. However, since they both use the same input gauge field ensembles, it remains very important that the outputs are confirmed by independent simulations. Both lattice QCD and light cone sum-rules calculations of the $B \to \pi$ form factors, when combined with experimental partial branching fraction information, now agree on values of $|V_{ub}|$ around 3.5×10^{-3} or so (see equation (6) and also [16] and [18]), in striking agreement with the value obtained using all other inputs in global CKM fits. The hints of a disagreement with inclusive determinations of $|V_{ub}|$ are strengthened.

Acknowledgements

We thank Junko Shigemitsu for communicating the revised HPQCD results to us. JMF acknowledges the hospitality of the Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, MEC support for estancias de Profesores e investigadores extranjeros en régimen de año sabático en España SAB2005–0163, and PPARC grant PP/D000211/1. JN acknowledges support from Junta de Andalucía grant FQM0225 and MEC grant FIS2005–00810. JMF and JN acknowledge support from the EU Human Resources and Mobility Activity, FLAVIAnet, contract number MRTN–CT–2006–035482.

References

[1] E. Dalgic et al. Erratum to [2], to appear in Physical Review D; see also hep-lat/0601021v4.
[2] E. Dalgic et al., Phys. Rev. D73, 074502 (2006), hep-lat/0601021.
[3] J.M. Flynn and J. Nieves, Phys. Rev. D75, 013008 (2007), hep-ph/0607258.
[4] J.M. Flynn and J. Nieves, Phys. Lett. B649, 269 (2007), hep-ph/0703284.
[5] CLEO Collaboration, S.B. Athar et al., Phys. Rev. D68, 072003 (2003), hep-ex/0304019.
[6] Belle Collaboration, T. Hokuue et al., Phys. Lett. B648, 139 (2007), hep-ex/0604024.
[7] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 97, 211801 (2006), hep-ex/0607089.
[8] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 98, 091801 (2007), hep-ex/0612020.
[9] BABAR Collaboration, B. Aubert et al. (2006), EPAPS database entry E-PRLTAO-98-086710, http://www.aip.org/pubservs/epaps.html
[10] Heavy Flavor Averaging Group (HFAG), E. Barberio et al. (2007), arXiv:0704.3575 [hep-ex].
[11] P. Ball and R. Zwicky, Phys. Rev. D71, 014015 (2005), hep-ph/0406232.
[12] M. Okamoto et al., Nucl. Phys. Proc. Suppl. 140, 461 (2005), hep-lat/0409116.
[13] M. Okamoto, PoS LAT2005, 013 (2006), hep-lat/0510113.
[14] Fermilab Lattice, MILC and HPQCD Collaboration, P.B. Mackenzie et al., PoS LAT2005, 207 (2006).
[15] R.S. Van de Water and P. Mackenzie, PoS LAT2006, 097 (2006).

[16] M.C. Arnesen, B. Grinstein, I.Z. Rothstein, and I.W. Stewart, Phys. Rev. Lett. 95, 071802 (2005), hep-ph/0504209.

[17] J.M. Flynn and J. Nieves, Phys. Rev. D75, 074024 (2007), hep-ph/0703047.

[18] P. Ball, Phys. Lett. B644, 38 (2007), hep-ph/0611108.

[19] Fermilab Lattice Collaboration, C. Aubin et al., Phys. Rev. Lett. 94, 011601 (2005), hep-ph/0408306.

[20] C.W. Bauer, D. Pirjol, I.Z. Rothstein, and I.W. Stewart, Phys. Rev. D70, 054015 (2004), hep-ph/0401188.

[21] I.W. Stewart, in Proceedings of CKM2006: 4th International Workshop on the CKM Unitarity Triangle, Nagoya, Japan, 12–16 December 2006 (2006).

[22] M. Neubert, in Proceedings of FPCP 2007: 5th Conference on Flavor Physics and CP Violation, Bled, Slovenia, 12–16 May 2007 (2007).

[23] UTfit Collaboration, M. Bona et al., JHEP 10, 081 (2006), hep-ph/0606167.

[24] UTfit Collaboration, http://utfit.roma1.infn.it/ckm-results/ckm-results.html. CKM fits including Winter 2007 updates.