Fünf Jahre nach ihrer Entdeckung (Messung der Rotverschiebung von 3C 273 durch SCHMIDT, 1963) geben die Quasars den Theoretikern mehr Rätsel auf als je zuvor. Der Streit um ihre Natur und vor allem um ihre Entfernung reicht bis in die Tageszeitungen. Mittlerweile gibt es viele Übersichtsarikel, die z. T. auch detailliertere Informationen über Quasars enthalten [21, 63, 70], unter anderem auch in dieser Zeitschrift [69] 1.

Da es unmöglich ist, alle Beobachtungen und alle zur Zeit diskutierten theoretischen Probleme im Rahmen eines Artikels zu erwähnen, wollen wir uns eine Frage als Leitlinie wählen und uns nur kurze Abstecher erlauben:

Finden die Quasars ihren Platz in der Reihe der bisher bekannten Objekte, oder droben sie, die Physik zu revolutionieren?

Wichtigste Beobachtungen

Die Quasars wurden als Radioquellen entdeckt, die sich mit einem sternartigen optischen Objekt identifizieren ließen. Neuerdings findet man sie auch allein aufgrund der optischen Eigenschaften ("blue stellar objects", kurz "BSO", deren Radiostrahung erst später oder bisher gar nicht erfaßt wurde). Das sichtbare Objekt zeigt stets erheblichen Blau- und Violett-überschuß im Vergleich zu normalen Sternen. Über einem kontinuierlichen Spektrum liegen teilweise recht starke Emissionslinien (10 bis 100 Å breit), die sich meist dem Wasserstoff (Balmerlinien, Lyman Alpha) sowie ionisierten Atomen (z. B. bei Mg II 2789, C IV 1549 u. a.) zuordnen lassen, wenn man dem ganzen Spektrum eine Rotverschiebung z zuschreibt. Es gilt

\[1 + z = \frac{\lambda_{\text{beobachtet}}}{\lambda_{\text{emittiert}}}. \]

Die über 100 bisher gemessenen Rotverschiebungen von Quasars (vgl. den Katalog von BARBIER et al. [2] reichen bis \(z = 2,22 \)). Strahlung von Quasars wird im allgemeinen im Radiobereich (m- bis cm-Wellen) gemessen; es liegen aber auch schon einzelne Beobachtungen im mm-Gebiet und im Infraroten vor, z. B. für den an mindestens gelegenen hellen Quasar 3C 273 (\(z = 0,158 \)). Bei diesem wurde auch schon Röntgenstrahlung beobachtet.

Die spektrale Verteilung der Strahlung unterscheidet sich meist in verschiedenen Bereichen eines Objekts. Genauere Untersuchung ergibt fast immer, daß das Gesamtenspektrum durch Überlagerung der Strahlung verschiedener Komponenten entsteht, die entweder ineinander oder nebeneinander liegen.

Die langwellige Strahlung stammt vorwiegend aus relativ ausgedehnten Bereichen, die den sichtbaren Kern gleichmäßig ("Halo") oder in einer Zweikomponentenstruktur (ähnlich gewissen Radiogalaxien) umgeben. Bei einigen Quasars geht vom Kern ein schwach leuchtender Streifen ("jet") aus. Solche ausgedehnten Strukturen zeigen meist das für Synchrotronstrahlung typische Potenzspektrum [Flußdichte \(S(\nu) \sim \nu^{-\alpha} \)] mit einem "Spektralindex" \(\alpha \) in der Nähe von 1, das manchmal bei m-Wellen abgebildet. Es ist zeitlich unveränderlich (über viele Jahre hinweg).

Die Strahlung im kurzwelligen Radiobereich liegt jedoch häufig viel höher als dem abfallenden Potenzspektrum entspricht. Solche Strahlung kommt aus einer wesentlich engeren Komponente, in der auch das optisch sichtbare Objekt liegt. Dieser eigentliche Quasar-Kern ist oft so klein, daß auch mit neuesten interferometrischen Methoden (Basis von mehreren 1000 km [5]) keine Struktur erkennbar ist. Der Kern von 3C 273 erscheint sogar bei Dezimeterwellen schon kleiner als \(1/100 \) Bogensekunde. Obere bzw. untere Grenzen für Durchmesser lassen sich auch angeben, je nachdem, ob man bei der Beobachtungsfrequenz infolge der Inhomogenitäten des interplanetaren Mediums — Szintillation beobachtet oder nicht [36].

Fläche oder zu kurzen Wellenlängen hin wieder ansteigende Spektren sind offenbar immer zeitlich veränderlich, z. B. das Spektrum von 3C 273 (Fig. 1). Die Zeitskala der Veränderlichkeit nimmt mit der Wellenlänge ab (Jahre bei dm-Wellen, Monate bei mm-Wellen). Die typische Variabilität im Radiobereich [32, 33] deutet auf einen Ausbruch hochenergetischer Teilchen die dann expandieren. Dabei wandert das Strahlungsmaximum gegen das Energieverlustes der Teilchen zu größeren Wellenlängen. Außerdem wird die Wolke der Ausdehnung für zunehmend längere Wellen optisch dünn gegen Selbstabsorption, die zunächst die langwellige Strahlung zurückhalten kann. Die Radiostrah lung von Quasars ist oft merklich polarisiert, was ebenfalls auf den Synchrotronmechanismus hinweist. Auf damit zusammenhängende Probleme kommen wir im letzten Abschnitt zurück.

Die Variabilität mit kurzer Zeitskala im optischen Bereich erscheint bisher unregelmäßig. Zum Beispiel wuchs die Helligkeit von 3C 446 irgendwann zwischen Juli 1965 und Mai 1966 um einen Faktor 20, schwankte danach innerhalb von Monaten und Tagen bis zu einem Faktor 4 und einmal im September 1966 um einen Faktor 2 innerhalb von zwei Tagen [34, 56]. In diesem Fall hat sich die Intensität der Emissionslinien offenbar nicht so stark geändert wie die des Kontinuums, in dem sie nach dem Ausbruch durch das Spektrum von 3C 273 (Fig. 1). Die Zeitskala der Veränderlichkeit nimmt mit der Wellenlänge ab (Jahre bei dm-Wellen, Monate bei mm-Wellen).

Die typische Variabilität im Radiobereich [32, 33] deutet auf einen Ausbruch hochenergetischer Teilchen die dann expandieren. Dabei wandert das Strahlungsmaximum von der Intensität des interplanetaren Mediums — Szintillation beobachtet oder nicht [36].

Fläche oder zu kurzen Wellenlängen hin wieder ansteigende Spektren sind offenbar immer zeitlich veränderlich, z. B. das Spektrum von 3C 273 (Fig. 1). Die Zeitskala der Veränderlichkeit nimmt mit der Wellenlänge ab (Jahre bei dm-Wellen, Monate bei mm-Wellen). Die typische Variabilität im Radiobereich [32, 33] deutet auf einen Ausbruch hochenergetischer Teilchen die dann expandieren. Dabei wandert das Strahlungsmaximum gegen das Energieverlustes der Teilchen zu größeren Wellenlängen. Außerdem wird die Wolke der Ausdehnung für zunehmend längere Wellen optisch dünn gegen Selbstabsorption, die zunächst die langwellige Strahlung zurückhalten kann. Die Radiostrah lung von Quasars ist oft merklich polarisiert, was ebenfalls auf den Synchrotronmechanismus hinweist. Auf damit zusammenhängende Probleme kommen wir im letzten Abschnitt zurück.

Die Variabilität mit kurzer Zeitskala im optischen Bereich erscheint bisher unregelmäßig. Zum Beispiel wuchs die Helligkeit von 3C 446 irgendwann zwischen Juli 1965 und Mai 1966 um einen Faktor 20, schwankte danach innerhalb von Monaten und Tagen bis zu einem Faktor 4 und einmal im September 1966 um einen Faktor 2 innerhalb von zwei Tagen [34, 56]. In diesem Fall hat sich die Intensität der Emissionslinien offenbar nicht so stark geändert wie die des Kontinuums, in dem sie nach dem Ausbruch durch das Spektrum von 3C 273 (Fig. 1). Die Zeitskala der Veränderlichkeit nimmt mit der Wellenlänge ab (Jahre bei dm-Wellen, Monate bei mm-Wellen). Die typische Variabilität im Radiobereich [32, 33] deutet auf einen Ausbruch hochenergetischer Teilchen die dann expandieren. Dabei wandert das Strahlungsmaximum von der Intensität des interplanetaren Mediums — Szintillation beobachtet oder nicht [36].

Fläche oder zu kurzen Wellenlängen hin wieder ansteigende Spektren sind offenbar immer zeitlich veränderlich, z. B. das Spektrum von 3C 273 (Fig. 1). Die Zeitskala der Veränderlichkeit nimmt mit der Wellenlänge ab (Jahre bei dm-Wellen, Monate bei mm-Wellen). Die typische Variabilität im Radiobereich [32, 33] deutet auf einen Ausbruch hochenergetischer Teilchen die dann expandieren. Dabei wandert das Strahlungsmaximum gegen das Energieverlustes der Teilchen zu größeren Wellenlängen. Außerdem wird die Wolke der Ausdehnung für zunehmend längere Wellen optisch dünn gegen Selbstabsorption, die zunächst die langwellige Strahlung zurückhalten kann. Die Radiostrah lung von Quasars ist oft merklich polarisiert, was ebenfalls auf den Synchrotronmechanismus hinweist. Auf damit zusammenhängende Probleme kommen wir im letzten Abschnitt zurück.

1 Kürzlich erschien auch eine gründliche Monographie von BURRIDGE und BURRIDGE über Quasars in Buchform.

Quasars

PETER KAFKA

Max-Planck-Institut für Physik und Astrophysik, München
lich periodisch aus (mit etwa 13 Jahren Periode). Außerdem scheint die mittlere Helligkeit um ca. 30% pro Jahrhundert abzunehmen (vgl. Smith in [51]).

Neben den Eigenschaften der emittierten Strahlung ist auch die Beobachtung von Absorptionslinien sehr wichtig. Diese können Auskunft geben über die Objekte selbst (absorbierende Hülle?) wie auch über das Medium längs des Lichtweges. Eine dritte wesentliche Informationsquelle ist die statistische Verteilung aller Eigenschaften. Falls die Quasars weit entfernt sind, wird nämlich diese Verteilung bestimmt durch (1) die Raum-Zeit-Struktur des Kosmos, (2) die Häufigkeit der Quasars verschiedener Art in den Epochen der „Weltgeschichte“, (3) ihre individuelle Entwicklung sowie durch (4) die Eigenschaften des intergalaktischen Mediums und der eventuell längs des Lichtweges intervenierenden Objekte.

Wie weit sind Quasars entfernt?

Die absoluten Helligkeiten und Ausdehnungen der Quasars sowie ihre Verteilung im Kosmos lassen sich nur ermitteln, wenn man ihre Entfernungen kennt. Seit etwa 40 Jahren weiß man, daß ferne Galaxien eine Rotverschiebung zeigen, die mit deren Entfernung D durch das Hubble-Gesetz verknüpft ist:

$$D_z = z(1+z)$$

Für $z<1$ gilt etwa: D in Millionen Lichtjahren = $10^4 z$.

Für große z muß man verschiedene Entfernungs begriffe unterscheiden; das Gesetz hängt dann vom kosmologischen Modell ab. Die Rotverschiebung ferner Galaxien wird als Expansion des Kosmos interpretiert. Es liegt also die Annahme nahe, daß auch die Rotverschiebung bei Quasars so zu deuten ist („cosmologische Hypothese“).

Quasars wären demnach etwa 1 bis 10 Milliarden Lichtjahre entfernt, und die hellsten Quasars müßten über 10^{27} erg/sec ausstrahlen. Das ist mehr als das Hertzsprung-Strahlung der größten Galaxien, d.h., pro Jahr würde mehr als die Ruhmassenenergie der Sonne, $M_\odot c^2 = 2 \cdot 10^{27}$ erg, abgestrahlt. (Jedoch sind nicht alle Quasars so hell: ihre Strahlungsleistungen unterscheiden sich – je nach kosmologischem Modell – um Faktoren bis zu einigen hundert oder weniger. Wegen dieser „katastrophalen“ Energien suchte man andere Erklärungen für die Rotverschiebung, die geringere Entfernungen der Quasars zulassen („lokale Hypothesen“). Auch aus dem Scheitern einfacher Modellvorstellungen wurden Einwände gegen die kosmologische Hypothese abgeleitet.

In einer lokalen Theorie müßte die Rotverschiebung entweder kinematisch erklärt werden, d.h. die Quasars müßten nahezu mit Lichtgeschwindigkeit von uns fortfliegen, oder das Licht müßte beim Verlassen der Objekte Arbeit gegen äußerst starke Schwerkraft leisten, was eine „Gravitations-Rotverschiebung“ ergeben. Die kinematische Hypothese [67] führt zu erheblichen Schwierigkeiten: da zur Rotverschiebung $z=2$ wegen

$$1+z = \sqrt{(1+v/c)/(1-v/c)}$$

eine Geschwindigkeit $v = 0,8 c$ gehörte würde, wäre die kinetische Energie eines Quasars von der Größenordnung seiner Ruhmassenenergie. Zwar weisen einige Anzeichen auf stärkere Aktivität in unserem galaktischen Zentrum vor ca. 1 Million Jahren hin; die Vorstellung, daß dabei hunderte (wahrscheinlich noch viel mehr) kompakte Objekte mit $v \approx c$ herausgeschleudert wurden, müßte aber zu Modellen führen, die weit „katastrophaler“ Energien erfordern als die kosmologische Hypothese [59]. Übrigens wären in diesem Bilde Eigenbewegungen von Quasars in der Größenordnung von hundertstel Bogensekunden pro Jahrzehnt zu erwarten, die bisher nicht nachweisbar sind [57].

Es wurde auch die Möglichkeit diskutiert, daß Quasars aus anderen Galaxien herausgeschleudert wurden, jedoch scheint diese Hypothese schon daran, daß keine Radioquellen mit blauverschobenen (d.h. auf uns zu fliegenden) Objekten identifiziert wurden [39].

Die andere Alternative – Gravitations-Rotverschiebung – hat zwar noch illustre Befürworter (z.B. Burridge und Hoyle [9]), aber sie dürfte ebenfalls auf unüberwindliche Schwierigkeiten stoßen: Große Rotverschiebungen kämen nur zustande, wenn das Licht etwa in der Entfernung $R = M/M_{\odot}$ (in Kilometern) von einer Masse M ausgesandt würde. Bei Kugelsymmetrie gilt

$$1+z = \left(1 - \frac{2GM}{Rc^2}\right)^{-1/2},$$

wo G die Gravitationskonstante ist. Es wären also extrem dichte Zustände erforderlich. Ein sternartiges Gebilde, das allzu nahe an seinen „Schwarzschild-Radius“ $R = 2GM/c^2$ herangewachsen ist, kann aber vermutlich auch bei Zurückdrängung von Rotation und Magnetfeldern nicht stabil sein. Jede Art von „Druck“ wirkt nach der Allgemeinen Relativitätstheorie auch als Quelle von Schwerkraft und überwältigt daher von einer gewissen Grenze ab schließlich sich selbst. (Zum „Gravitationskollaps“ vgl. z.B. die Vorlesungen von Thorne in [14]. Die obere Grenze für Gravitations-Rotverschiebung eines kugelsymmetrischen, stabilen Einzelobjekts liegt deshalb wahrscheinlich unter $z = 0,62$ [4]. Außerdem müßten die rotverschobenen Linien ja alle aus einer dünnen Kugelschale stammen, die in dem zum z-Wert gehörigen Gravitationspotential läge. Aus den in
Quasarspektren auftretenden „verbotenen“ Linien gegeben sich aber Dichteverhältnisse im Emissionsgebiet, die das als unmöglich erscheinen lassen [20].

Hoyle und Fowler [27] haben ein Modell vorgeschlagen, das beide Schwierigkeiten umgeht: Das Licht müßte aus einer Gaswolke kommen, die im Zentrum eines gewaltigen Haufens von Neutronensternen oder kollabierenden Objekten liegt. Natürlich würde ein derart „seltzamer“ Modell viele interessante Probleme aufwerfen, jedoch soll es angesichts der Tatsachen, die für die kosmologische Hypothese sprechen, hier nicht weiter erörtert werden.

Kosmologische Gesichtspunkte

Die im Jahre 1965 entdeckte und als schwarze Strahlung von 3 K interpretierte isotrope Radiostrahlung im cm-Wellenbereich, das bisherige Verständnis der langreichweitigen Wechselwirkungen, sowie andere auf Beobachtungen gestützte Überlegungen sprechen zur Zeit für folgendes Bild der kosmologischen Entwicklung 4.

Vor rund 10 Milliarden Jahren hat die Welt mit einem überall unbeschränkt dichten und lebendigen Leben „angefangen“ und sich seither ständig durch Ausdehnung verdünnt. Dabei fällt die Temperatur der schwarzen Strahlung wie x^{-4}, wenn x eine mit dem Kosmos expandierende Länge bezeichnet. Die Energie dichte der Strahlung nimmt also wie x^{-3} ab. Etwa 10^{-2} sec nach dem Anfang sinkt die Temperatur unter 1000 K, und die Paarerzeugung schwerer Teilchen hört auf. Nach ca. 10 sec, bei ca. $6 \cdot 10^8$ K, erlischt auch die Paarerzeugung von Elektronen und Protonen, und die materielle Dichte fällt auf den Wert, der der „überschüssigen“ Materie entspricht. (Die in der Welt — oder in einem heute sehr großen Teil von ihr — scheinbar vorhandene Asymmetrie zwischen Materie und Antimaterie ist allerdings relativ beliebig klein, wenn man sie genügend nahe dem „Anfang“ betrachtet, wo die Strahlungs dichte — und demnach die Dichte von Teilchenpaaren — den „Überschuß“ beliebig stark überwiegen.) Von nun ab fällt die Materiedichte entsprechend der Volumenausdehnung wie x^{-3}. Nach 10^9 bis 10^{10} Jahren (je nach Modell) ist die dichteste gaskühle Stoffdichte gleich der Materiedichte und heute beträgt sie nur noch etwa $7 \cdot 10^{-34}$ g/cm3, während nicht weiter beliebig, aber vielleicht mehr als 10^{-34} g/cm3 an Materie vorhanden sind (wenn die Masse der Galaxien gleichmäßig verteilt gedacht wird).

Blicken wir in den Kosmos, so erscheinen uns zurückliegende Epochen mit einer Rotverschiebung $z + \frac{1}{10}$ die (heute) x (damals).

Solang Materie und Strahlung noch im Wärmegleichgewicht waren — das ist bei Temperaturen über ca. 3000 K — wurden vermutlich alle in der Dichte auftretenden Störungen schnell wieder ausgeglichen. Die Bildung von Strukturen in der Materie konnte also wahrscheinlich erst später einsetzen, d.h. bei Rotverschiebungen $z < 10$. Die Entstehung der Galaxien und Galaxienhaufen wirft viele Probleme auf, bis jetzt gibt es erst Ansätze zu einem Verständnis [15, 44, 71]. Vielleicht kam es schon in einem frühen Stadium der Strukturbildung zu Kollapsen und zu damit verbundenen Explosionen, die beide noch beobachtbar sein könnten. Jedoch sind bei alzu großen Entfernungen ($z \approx 2$ bis 10) vermutlich mehrere Absorptions- und Streuungsmechanismen wirksam, die eine Beobachtung individueller Objekte stören oder verhindern.

Bei einer theoretischen Betrachtungsweise der Entwicklung des Weltalls können wir also vorerst nicht mit Sicherheit sagen, welche Beobachtungen bei großen Rotverschiebungen zu erwarten sind. Stellen wir deshalb die Frage von der anderen Seite her: Welches Objekte erschienen uns, wenn wir bis an die Grenze der Leistungsfähigkeit moderner Instrumente gehen?

Normale Galaxien

Da sind zunächst die „normalen“ Galaxien (vor allem elliptische und spiralformige), die offenbar größtenteils in Haufen versammelt sind. Mit dem Mount-Palomar-Spiegel sind sie bis zu Rotverschiebungen der Größenordnung 1 sichtbar; bis dorthin ist rund 1 Milliarde von ihnen zu erwarten. (Die größte bisher bei einer Galaxie gemessene Rotverschiebung beträgt $z = 0,45$. Diese Galaxien sind mit den existierenden Radioteleskopen viel weiter weit sichtbar, da sie nur schwache Radiostrahler sind. Jedoch besitzen auch Spiralgalaxien, wie unsere eigene, sehr häufig einen kleinen Kern, in dem andere und stärkere Radiostrahlsungsmechanismen wirksam zu sein scheinen als im Rest der Galaxie [35].

Radiogalaxien

Gäbe es nur die „normalen“ Galaxien, so könnten nur immer größere Instrumente die Grenze hinausschieben, bis zu der wir in den Kosmos schauen. Die Radioastronomie brachte jedoch die Erkenntnis, daß von je einigen Tausend Galaxien eine in einem Zustand ist, in dem sie starke Radiostrahlung (über 10^{26} erg/sec) aussendet. Diese sog. Radiogalaxien lassen sich in zwei Gruppen unterteilen:

1. „Seyfert“- und „N-Typ“-Galaxien,
2. Zwei- oder mehrkomponentige Radiostrukturen, bei denen die optische Galaxie (oft ein elliptischer Riese vom D-Typ) etwa in der Mitte zwischen den Komponenten liegt.

Die Radiogalaxen der ersten Gruppe sind durch einen kompakten Kern charakterisiert, der starke Radiostrahlung emittiert und in dem offenbar heftige Bewegungen stattfinden. Oft erscheint der Kern optisch sternartig, und sein Spektrum ist dem der Quasars sehr ähnlich, zeigt jedoch keine ungewöhnlich große Rotverschiebung. Zum Beispiel hat die Seyfert-Galaxie NGC 1275 (= Radioquelle Perseus A = 3C 84) ein ähnliches Radiospektrum wie der Quasar 3C 273 [12]. Wie bei diesem ist die Strahlung bei Meterwellen unveränderlich und hat ein steiles Spektrum (Spektralindex $-1,25$, d.h. $S(\nu) \propto \nu^{-1,25}$). Sie kommt aus einem über ca. 26 Bogenminuten ausgedehnten „Halo“ (Komponente A). Bei Dezimeterwellen ist das Spektrum schon flacher (Index $-0,5$) und stammt aus einem engeren, dem Kern umgebenden Bereich von…

4 Zum intergalaktischen Medium vgl. z.B. [14, 15, 23, 45, 49]. Zum „Gravitationslinienverbreiterung“ und zur gravitativen Streuung vgl. [22, 50, 54].
ca. 10 Bogensekunden Durchmesser (Komponente B). Bei cm-Wellen schließlich steigt das Spektrum wieder an (auf ein fast horizontales Plateau) und ist zeitlich variabel (Anstieg um ca. 50% in 4 Jahren).

Der Durchmesser dieser Komponente C ist noch nicht genossen, liegt aber wahrscheinlich unter \(\frac{1}{100} \) Bogensekunde. Ein derartiges Radiospektrum läßt sich vermutlich durch wiederkehrende Ausbrüche hochenergetischer Teilchen aus dem Kern und durch den Synchrotronmechanismus erklären. Wenn die Komponenten B und A durch Teilchen aus früheren Ausbrüchen erzeugt werden, so mußten etwa \(10^5 \) bis \(10^6 \) Ereignisse der in Komponente C beobachteten Größenordnung stattgefunden haben. Bei einem zeitlichen Abstand von einigen Jahren sollten solche Ausbrüche also seit einigen Millionen Jahren auftreten. Die beschriebene Seyfert-Galaxie hat eine Rotverschiebung \(z = 0,018 \). Die scheinbare optische- und Radiohelligkeit sind etwa ebenso groß wie beim Quasar 3C 273, dessen Rotverschiebung aber \(z = 0,158 \) beträgt. Interpretiert man dieses Rotverschiebung kosmologisch, so folgt für 3C 273 eine 100mal größere Strahlungsleistung im Radio- und optischen Bereich als für NGC 1275. Wollte man aber folgern, daß beide Objekte wegen ihrer starken Ähnlichkeit auch absolut gleich hell waren, so müßte man beim Quasar die Rotverschiebung erklären — und das würde ihn eben doch wesentlich von der Radiogalaxie unterscheiden. Die Ähnlichkeit ist also durchaus kein überzeugendes Argument gegen die kosmologische Hypothese.

Kürzlich wurde bei zwei anderen Radiogalaxien auch optische Variabilität ähnlicher Art wie bei Quasars gefunden: 3C 371 (N-Typ; \(z = 0,05 \) [41, 55]) wurde im optischen Kontinuum innerhalb zweier Jahre etwa um einen Faktor 3 heller und scheint außerdem im Verlauf weniger Tage um 10% zu schwanken. Die optische Strahlungsleistung liegt etwa zwischen denen heller Seyfert-Galaxien und mittlerer Quasars (bei kosmologischer Interpretation der Rotverschiebung). Auch für die Seyfert-Galaxie NGC 4151 wurde über optische Variabilität (vor allem im nahen Infrarot) mit einer Zeitskala von Tagen berichtet [17]. Der schon länger vermutete fließende Übergang zwischen Radiogalaxien und Quasars derartiger Ähnlichkeit (vor allem bei längeren Wellen — also aus der Strahlung „älterer“ Teilchen). Offenbar hat also die Galaxie, die nicht mehr erkennen läßt, früher große Mengen energetischer Teilchen herausgeschleudert, die jetzt in einem Magnetfeld strahlen. Der typische Abstand der Radiokomponenten von der optischen Galaxie liegt in der Größenordnung von 1 Million Lichtjahren; die Explosionen müssen also vor entsprechend langer Zeit stattgefunden haben. Trotzdem wird bei den stärksten Quellen dieser Art (wie Cygnus A), immer noch eine Radioleistung von ca. \(10^{26} \) erg/sec ausgestrahlt — das ist ebensoviel wie die optische Strahlung der hellsten Galaxien. Die Leistung im Ausbruchsstadium muß zweifellos erheblich höher gewesen sein, und somit größer als bei den im Ausbruch begriffenen Radiogalaxien des N- oder Seyfert-Typs. Da derartige Ereignisse ziemlich selten sein müssen, ist ihre Beobachtung nur zu erwarten, wenn man große Volumina überblickt, d.h. sie sollten im allgemeinen mit großer Rotverschiebung erscheinen. Tatsächlich sollten sie aber auch optisch identifizierbar sein, denn schon die Ausbruchsstadien schwächerer Radiogalaxien liefern viel Energie im optischen Kontinuum und in Emissionslinien. So gesehen wäre die Entdeckung der Quasars keine Überraschung, sondern könnte prophetisch Zeit werden, wenn sie noch nicht stattgefunden hätte. Quasars als Familienmitglieder?

In dieses Bild paßt sehr gut die Tatsache, daß auch zahlreiche Quasars außerhalb ihres Kerns zwei Radiokomponenten zeigen (vor allem bei längeren Wellen — also aus der Strahlung „älterer“ Teilchen). Offenbar ist hier der Kern nach langer Zeit erneut in eine kritische Phase getreten. Er überstrahlt dann die Galaxie. Dennoch sollte diese vielleicht bei näheren Quasars mit großem Aufwand gerade noch nachweisbar sein. (Das Ergebnis der Suche könnte die hier akzeptierte Hypothese widerlegen.)

Der stetige Übergang zwischen Galaxien, Radiogalaxien und Quasars wird auch deutlich, wenn man die absolute Radiohelligkeit dieser Objekte gegen die Flächenhelligkeit aufträgt: Über verschiedene Typen hinweg besteht eine ausgeprägte Korrelation [24, 62]. Ebenso weist die Untersuchung der Leuchtkraftfunktion der Quasars auf diesen Übergang hin: Die Anzahl der Quasars pro Volumeneinheit nimmt wahrscheinlich mit abnehmender Radioleuchtkraft erheblich zu. Diese Auszählung der Quasars für verschiedene kosmologische Epochen (KAPKA [29, 30], M. SCHMIDT [58b]) deutet darauf hin, daß Quasars früher häufiger waren als heute. Quantitative Aussagen hierüber sind aber noch unzulässig, da das vorliegende Beobachtungsmaterial nicht die Vollständigkeit garantiert, die für die Elimination aller Auswahlfehler notwendig wäre. Vielleicht müssen auch manche der angegebenen Beobachtungsdaten revidiert werden [28]. Möglicherweise macht sich ein „Entwicklungseffekt“ (Abhängigkeit der Anzahl und der Eigenschaften der Objekte von der kosmologischen Epoche) auch schon bei Radiogalaxien bemerkbar [52]. Die Untersuchung der raumzeitlichen Verteilung sehr ferner Objekte — und auch schon die Elimination der Auswahlfehler — ist für jedes betrachtete kosmologische Modell gesondert vorzunehmen. Eine Bestimmung des „richtigen“ kosmologischen Modells würde jedoch mit Hilfe der Quasars trotz deren großer Rotverschiebung nicht möglich sein, solange man nicht genügend wahrt, wann und wie sie entstehen und wie sie sich weiterentwickeln (vgl. KAPKA [30]). Wir brauchen also eine detaillierte Theorie der Strukturen im Kosmos, bevor wir aus deren Verteilung die raumzeitliche Struktur des Kosmos selbst ableiten können. Lediglich das „steady-state-Modell“ ist durch den Nachweis von Entwicklungs-efekten ausgeschlossen.
Modelle mit kosmologischen Konstanten

Alle weitergehenden Versuche, Aussagen über das kosmologische Modell zu machen, sind noch verfrüht. Dennoch soll hier kurz das Problem der sog. kosmologischen Konstanten gestreift werden, das die „Weltanschauungen“ oft hart aufeinander prallen läßt:

Wegen der starken Verdünnung der Materie wird die Expansion des Kosmos heute und bis weit in die Vergangenheit allein durch die Gravitation bestimmt. Diese Aussage hat jedoch leider etwas tautologischen Charakter, denn die Gesetze der Schwerkraft im kosmischen Maßstab müssen gerade aus der Beobachtung dieser Expansion erschlossen werden. Falls die Schwerkraft dem Newtonschen Gesetz (in seiner relativistischen Verallgemeinerung) folgt und nur von den bekannten Formen der Materie und Energie ausgeht, wirkt sie immer verzögernd auf die Expansion. Falls jedoch auch vom „Vakuum“ Schwerkraft ausginge, so trüte in den Feldgleichungen die sog. kosmologische Konstante auf, die in der relativen Verallgemeinerung zu einem Expansionsdruck führen würde. Von dem Zeitpunkt an, da die auseinanderliegende Materie sich unter diese „Vakuumdichte“ verdünnt hätte, müßte die Expansion beschleunigt ablaufen. (Ya. B. ZELDOVICH — mündliche Mitteilung — spekulierter Autor, ob dem Vakuum in einer fundamentalen Theorie eine solche Eigenschaft zukommen könnte.) Bei passendem Verhältnis zwischen heutiger Materiedichte und „Vakuumdichte“ wäre denkbar, daß der Kosmos sich lange Zeit hindurch nur sehr langsam ausgedehnt hätte. Bei dem in Fig. 2 skizzierten Modell wäre z.B. die um den Wendepunkt gelegene Time 4,25·10^{-29} g/cm^3, keine kosmologische Konstante. Raum satte qualmig geradlinig („offen“). — II; Heutige Materiedichte 10^{-29} g/cm^3, kosmologische Konstante entsprechend einer „Vakuumdichte“ von 2,6·10^{-29} g/cm^3. Raum qualmig geradlinig („geschlossen“)

![Fig. 2. Expansion zweier typischer kosmologischer Modelle endlichen Alters (Rediprozeß Hubble-Konstante = 11 Milliarden Jahre). — 1: Heutige Materiedichte 4,25·10^{-29} g/cm^3, keine kosmologische Konstante. Raum satte qualmig geradlinig („offen“). — 11: Heutige Materiedichte 10^{-29} g/cm^3, kosmologische Konstante entsprechend einer „Vakuumdichte“ von 2,6·10^{-29} g/cm^3. Raum qualmig geradlinig („geschlossen“).](image)

jedoch auch vom „Vakuum“ Schwerkraft ausginge, so trüte in den Feldgleichungen die sog. kosmologische Konstante auf, die in der relativen Verallgemeinerung zu einem Expansionsdruck führen würde. Von dem Zeitpunkt an, da die auseinanderliegende Materie sich unter diese „Vakuumdichte“ verdünnt hätte, müßte die Expansion beschleunigt ablaufen. (Ya. B. ZELDOVICH — mündliche Mitteilung — spekulierte Autor, ob dem Vakuum in einer fundamentalen Theorie eine solche Eigenschaft zukommen könnte.) Bei passendem Verhältnis zwischen heutiger Materiedichte und „Vakuumdichte“ wäre denkbar, daß der Kosmos sich lange Zeit hindurch nur sehr langsam ausgedehnt hätte. Bei dem in Fig. 2 skizzierten Modell wäre z.B. die um den Wendepunkt gelegene Time 4,25·10^{-29} g/cm^3, keine kosmologische Konstante. Raum satte qualmig geradlinig („offen“). — II; Heutige Materiedichte 10^{-29} g/cm^3, kosmologische Konstante entsprechend einer „Vakuumdichte“ von 2,6·10^{-29} g/cm^3. Raum qualmig geradlinig („geschlossen“)

Die Weltmodelle mit kosmologischen Konstanten spielen auch eine Rolle in der Diskussion über die Absorptionslinien in Quasarspektren. BURBIDGE und BURBIDGE [8] haben in mehreren Spektren Absorptionslinien mit z \approx 1,45 gefunden, während die zugehörigen Emissions-Rotverschiebungen meist größer oder etwa gleich sind. BURBIDGE glaubt, hierin einen Beweis gegen die kosmologische Hypothese gefunden zu haben. SHKLOVSKY [61] dagegen betrachtet es als Beweis für diese: Wenn die Absorptionslinien häufig durch intervenierende Galaxien verursacht würden [9, 68], wäre die Häufung bei z \approx 4,95 zu erwarten, falls der Wendepunkt in der Geschichte des Kosmos (Fig. 2, Typ II) gerade bei dieser Rotverschiebung läge, und die Entwicklung dort noch viel flacher verlief als in Fig. 2. (Dann fiele auch der Antipol ein oder gar mehrmals in diesen Bereich). Ein derartiges Modell ergäbe jedoch als Alter der Welt 50 bis 100 Milliarden Jahre und ist deshalb wenig wahrscheinlich; wären die Galaxien schon vor so langer Zeit entstanden, wollte man auch andere Hinweise auf ein so hohes Alter erwarten, z.B. aus Sternentwicklung, Isotopenhaufigkeit u.a.

Objekte mit ausreichender Lebensdauer wären in der Nähe des Antipols in zwei diametral entgegengesetzten Richtungen beobachtbar [64]. Quasars oder ihre Relatives sind jedoch vermutlich nicht über genügend lange Zeiträume starke Radio- oder gar optische Strahler. Zusammenfassend läßt sich sagen: Im Augenblick sprechen keine Quasar-Beobachtungen signifikant gegen die einfachsten kosmologischen Modelle ohne kosmologische Konstante, sog. Friedmann-Modelle. Nach diesen Modellen kann das Weltall nicht älter als etwa 13 Milliarden Jahre sein und dehnte sich — verzögert durch „gewöhnliche“ Gravitation — ständig aus. Erst vollständigeres Beobachtungs- und ein Verständnis der Entstehung und Entwicklung der Galaxien und ihrer Haufen könnte eines Tages dazu zwingen, kompliziertere Gravitationsgleichungen in Betracht zu ziehen.

Ansätze zu Quasar-Modellen

„ Katastrophale“ Ereignisse sind theoretisch besonders schwer zu beschreiben. Es ist daher nicht verwunderlich, daß die Quasars noch nicht verstanden sind. Bei neuen Entdeckungen versuchen zunächst alle phantasiebegabten Forscher, die neuen Phänomene auf Mechanismen zurückzuführen, die dem von ihnen beherrschten Arbeitsgebiet nahestehen. So standen schon bald nach Entdeckung der Quasars viele interessante Vorschläge zur Diskussion, die hier nicht weiter verfolgt werden können. Beispiele sind: Materie-Antimaterie-Vernichtung beim Zusammenschuß von Objekten verschiedenen Materietypen (z.B. TELLER, 1965, mündliche Mitteilung), Gravitationslinseneffekt (REDSAL [50]; J. M. BARNOTTHY, 1965, preprints) oder Szintillation an Gravitationswellen (F. WINTERBERG, 1967, preprint), Expansion von Teilen des Universums, die hinter der allgemeinen Ausdehnung zurückgeblieben waren (NOVIKOV [40], ZELDOVICH und NOVIKOV [72]), oder schließlich gar die Beteiligung von „Quarks“

Die Befreiung großer Energien in kurzer Zeit deutet auf die Beteiligung von Instabilitäten wie Supernovae (FIELD [16]; COLGATE [10]) oder magnetohydrodynamischen Prozessen, die die Expansion der Galaxien beeinflussen konnten. (LING [42]).
mischer Effekte ähneln jenen, die vielleicht zu den „flares“ der Sonne führen (Sturrock [66]). Andererseits liegt es nahe, gerade solche Prozesse in Betracht zu ziehen, die in der Astrophysik bisher keine Rolle spielten, wie die Entwicklung extrem massereicher Sterne (Fowler [18] und dortige Zitate; Bisnovaty-Kogan et al. [3]) und sehr dichter magnetoturbulenten Plasmen (Ozernoy und Chertoprud [43] und dortige Zitate), oder auch das Auftreten von Sternzusammenstößen in dichten Kernen mancher Galaxien (z. B. Gold et al. in [51]; De Young und Axford [15]).

Colgate [10] hat ein bereits recht detailliertes Modell entworfen: In einer Galaxie wird unter Einfluß der Gravitation die Anzahl dichter Sterne im Kerngebiet so hoch, daß Sternzusammenstöße einsetzen (vgl. auch Spitzer und Saslaw [65]; von Hoerner [25]). Diese finden jedoch wahrscheinlich nicht mit genügend hohen Geschwindigkeiten statt, um direkt zur Freisetzung sehr großer Energien in Form relativistischer Teilchen führen zu können. Vielmehr kommt es einerseits zur Verschmelzung von Sternen und andererseits zur Erhöhung der interstellaren Gasdichte. Schließlich enthält in Colgates Modell ein Kerngebiet von etwa 1.1 Lichtjahr Durchmesser über 10.sup.6 Sterne, die im Mittel etwa Sonnenmasse haben. Einige Prozent der Gesamtmasse befinden sich dann jedoch in Sternen bis zu etwa 50 Sonnенmassen. Diese verbrauchen innerhalb weniger Millionen Jahre ihren gesamten nuklearen Brennstoff und erleiden dann einen Gravitationskollaps, der von einem Supernova-Ausbruch begleitet ist. (Rechnungen zur Theorie der Supernovae von Colgate und White [11]). Es ergibt sich ca. 5 Supernova-Ausbrüche pro Jahr, deren Energie in der Gaswolke (von ca. 2.10.sup.37 erg/cm Dichte) in Strahlung von ca. 10.sup.4 erg/sec umgewandelt wird. Dabei spielen verschiedene Mechanismen eine Rolle, deren Verständnis noch nicht weit genug fortgeschritten ist, als daß man das Modell schon als überzeugend bezeichnen könnte. Der Synchrotronmechanismus wird nur für langwellige Radiostrahlung herangezogen (Ausbrüche relativistischer Teilchen aus dem Kern), während von den kurzen Radiowellen bis zum Röntgenbereich der inverse Compton-Effekt (vgl. Rees [48c]) und Plasmaschwingungen wirksam sein sollen. Ein Einwand gegen Colgates Modell könnte sein, daß hier die Quasars im wesentlichen Spätstadien von Galaxien sein sollten, während die Entwicklungs-efekte in der Leuchtkraftfunktion eher darauf hindeuten, daß sie früher häufiger waren als heute. Dem würde eher die Vorstellung gerecht, daß vorzugsweise frühe Stadien der Galaxien beteiligt sind, wie dies in Fujimoto et al. [16] der Fall ist. In der Tat entsteht das Entstehungsstadium der Galaxien große Supernova-Häufigkeiten möglich wären. Es ist nicht ausgeschlossen, daß verschiedene Wege zur Entstehung der Quasar-Kerne führen. Jedoch wäre in Modellen, die den Supernova-Prozeß heranziehen, eine Korrelation der absoluten Helligkeit der Quasars mit der Zeitskala ihrer Variabilität zu erwarten. Die eben entdeckte Ähnlichkeit der optischen Schwankungen in Radiogalaxien und Quasars scheint dagegen zu sprechen — jedoch müssen hier mehr Beobachtungen abgewartet werden.

Alle derartigen Modelle — bei denen die Helligkeits-schwankungen statistisch auftreten müßten — werden jedoch widerlegt, falls man die langfristigen Schwankungen von 3C 273 für nicht zufällig hält. Manwell und Simson [38] haben zwar auch durch zufällige Überlagerung auf einem Computer Lichtkurven produziert, aber „ziemlich zufällige Ergebnisse“ aussehen, aber Gunzenko, Ozernoy und Chertoprud (1967, preprint) sind nach einem statistischen Test der Lichtkurve von 3C 273 zu 99 % überzeugt, daß diese nicht zufällig ist. Diese Überzeugung zweifelt aber zur Annahme eines Zentralobjekts, dessen Deile stärker miteinander verknüpft sind, als dies in den auf Supernovae oder Sternkollisionen gestützten Modellen der Fall ist. Ob das Fowlersche Modell eines oszillierenden Riesensternes in der Sternenlage ist, die Vielfalt der Beobachtungen zu erklären, scheint zweifelhaft. Außerdem scheint hier ein allgemein-relativistischer Kollaps schwer zu vermeiden. Eine russische Gruppe (Ozernoy und Chertoprud [43] und dortige Zitate) hat sich die Aufgabe gestellt, ein noch komplizierteres Gebilde zu betrachten: einen Plasmaball mit hoher Dichte, starken Magnetfeldern, heftiger Turbulenz und Rotation. Ein solches „Magnetoid“ sollte im Kern mancher Galaxien entstehen können und alle beobachteten Erscheinungen zulassen — „erklären“ kann man natürlich nicht noch sagen, da ein derartiges Modell ungeheuer schwierig zu behandeln ist. Angesichts der seltsamen Beobachtungen an Quasars ist dies aber kein Einwand gegen solche Vorstellungen.

Für eine stärkere Beteiligung von Plasmainstabilitäten oder anderen noch unverstandenen Mechanismen sprechen z. B. auch die Beobachtung der Zu- und Abnahme der optischen Helligkeit von 3C 446 um etwa 100 % innerhalb von zwei Tagen. Die rasche Variabilität wurde mehrfach als Argument gegen die kosmologische Deutung der Rotverschiebung angeführt (Hoyle et al. [26]): Wenn die Helligkeit eines einheitlichen Objekts z. B. innerhalb eines Monats wesentlich schwankt, darf die Größe des Objekts einen Lichtmonat nicht übersteigen, denn sonst würden die Schwankungen ausgeglichen. In allzu kleinen Objekten wären aber (bei kosmologischer Interpretation der Rotverschiebung) die Strahlungsdichten so hoch, daß der Synchrotronmechanismus gegenüber dem inversen Compton-Effekt keine Rolle mehr spielen dürfte, falls nicht extreme Magnetfeldstärken angenommen werden. Andererseits läßt sich aber die Variabilität im kurzwelligen Radiobereich anscheinend recht gut mit diesem Mechanismus deuten. Woltjer [70b] wollte diesen Widerspruch durch ein Modell mit anisotroper Geschwindigkeitsverteilung der Teilchen vermeiden. Daß selbst über die physikalischen Grundlagen solcher Modellvorstellungen noch Unklarheiten bestehen, zeigt z. B. die kürzlich entstandene Diskussion über die Rolle des stimulierten inversen Compton-Effekts [42, 49b].

Gegen die Beschränkung der Objektgröße durch die Schwankungszeitskala lassen sich ebenfalls Einwände erheben: Bei Expansion einer Wolke ungefähr mit Lichtgeschwindigkeit ersetzt die Verzögerung nach der Relativitätstheorie viel rascher als sie in Wirklichkeit ist [47, 48a]. Solche relativistischen Effekte könnten für die Variabilität der Quasars eine große Rolle spielen. Sie müßten wahrscheinlich auch herangezogen werden, wenn sich eine Meldung des Nachrichtenmagazins Time vom 29.12.1967 bestätigen sollte. Danach berichtete Matthews auf einer Tagung über Beobachtungen am Quasar 3C 287: Dieser
die Entwicklung der Quasars viele Probleme stellt. Hierbei spielt vor allem die noch unbeantwortete Frage nach der Materiedichte und der Stärke und Struktur von Magnetfeldern im intergalaktischen Raum eine Rolle. Werden z.B. die radiostrahlenden Plasmawolken, die aus dem Kern entweichen, durch Magnetfelder geleitet und zusammengehalten, oder spielt der Widerstand extragalaktischer Materie die entscheidende Rolle? (Vgl. Ryle und Longair [53]; De Young und Axford [15]).

Die typische Struktur, bei der die Komponenten auf entgegengesetzten Seiten der Muttergalaxie herausgeflohen sind, kann wahrscheinlich auch ohne die Geleise extragalaktischer Magnetfelder verstanden werden: In der Ebene der abgeflachten Galaxie ist der Widerstand der Materie zu groß, so daß ein Entweichen nur in Richtung der Achse möglich ist. Besondere Schwierigkeiten wird aber sicher das Verständnis solcher doppelten Radiogalaxien bereiten, bei denen die Komponenten viel kleiner sind als ihr Abstand von der Muttergalaxie (z.B. 3C 33). Das enge Zusammenhalten von Plasmawolken, die über längere Zeit hinweg mit extraterrestrialer Geschwindigkeit fliegen, ist schwer vorstellbar. Burridge [7] vermutet, daß kleine, kompakte, gravitativ gebundene Objekte als Kern solcher Komponenten existieren müßten — was natürlich wiederum neue Probleme aufwirft.

Schlußbemerkungen

Unsere eingangs gestellte Frage, ob die Quasars ihren Platz in der Reihe der bisher bekannten Objekte finden, läßt sich wohl bejahen. Es erscheint kaum noch zweifelhaft, daß man mit ihnen die Ausbruchsstadien großer Radiogalaxien entdeckt hat. Wann und warum aber die Kerne der Galaxien in einen so katastrophalen Zustand geraten, wie dieser physikalisch zu beschreiben ist, und welche Entwicklung schließlich zu den beobachteten Relikten — den zwei- oder komponentigen Radiogalaxien — führt, diese alles sind 5 Jahre nach Entdeckung der Quasars, trotz vieler Ansätze zu einem Verständnis, noch offene Fragen.