A Four-site Higgsless Model with Wavefunction Mixing

R. Sekhar Chivukula and Elizabeth H. Simmons

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

(Dated: October 23, 2018)

Motivated by models of holographic technicolor, we discuss a four-site deconstructed Higgsless model with nontrivial wavefunction mixing. We compute the spectrum of the model, the electroweak gauge boson vertices, and, for brane-localized fermions, the electroweak parameters to $\mathcal{O}(M_W^2/M_p^2)$. We discuss the conditions under which αS vanishes (even for brane-localized fermions) and the (distinct but overlapping) conditions under which the phenomenologically interesting decay $a_1 \to W \gamma$ is non-zero and suppressed by only one power of (M_W/M_p).

I. INTRODUCTION

Higgsless models of electroweak symmetry breaking may be viewed as “dual” to more conventional technicolor models and, as such, provide a basis for constructing low-energy effective theories to investigate the phenomenology of a strongly interacting symmetry breaking sector. One approach to constructing such an effective theory, the three-site model, includes only the lightest of the extra vector mesons typically present in such theories – the meson analogous to the ρ in QCD. An alternative approach is given by “holographic technicolor”, which potentially provides a description of the first two extra vector mesons – including, in addition to the ρ, the analog of the a_1 meson in QCD.

In this note we consider a four-site “Higgsless” model illustrated, using “moose notation”, in fig. 1. We show how, once an L_{10}-like “wavefunction” mixing term for the two strongly-coupled $SU(2)$ groups in the center of the moose is included, we can reproduce the features of the holographic model – including the vanishing of the parameter αS for brane-localized fermions and the existence (whether or not $\alpha S = 0$) of the potentially interesting decay $a_1 \to W \gamma$.

II. THE MODEL

The Lagrangian for the model consists of several parts. First, the usual nonlinear sigma model link terms

$$\mathcal{L}_\pi = \frac{f_\pi^2}{4} \left[\text{Tr} D^\mu \Sigma_1 D_\mu \Sigma_1^\dagger + \text{Tr} D^\mu \Sigma_3 D_\mu \Sigma_3^\dagger \right]$$

$$+ \frac{f_\pi^2}{4} \text{Tr} D^\mu \Sigma_2 D_\mu \Sigma_2^\dagger. \hspace{1cm} (1)$$

Next, the gauge-boson kinetic energies

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} \left(\tilde{W}_{0 \mu}^2 + \tilde{W}_{1 \mu}^2 + \tilde{W}_{2 \mu}^2 + \tilde{W}_{3 \mu}^2 \right), \hspace{1cm} (2)$$

where we denote the weakly-coupled $SU(2) \times U(1)$ fields by \tilde{W}_0 and $\tilde{W}_3 \equiv B$ (by convention, $i = 3$ vanishes for the charged sector), and the strongly coupled $SU(2)$ fields by $\tilde{W}_{1,2}$. And finally, there is an L_{10}-like mixing between the middle two sites

$$\mathcal{L}_\varepsilon = -\frac{\varepsilon}{2} \text{Tr} \left[\tilde{W}_{1 \mu \nu} \Sigma_2 \tilde{W}_{2 \mu \nu} \Sigma_1^\dagger \right], \hspace{1cm} (3)$$

where in this calculation we treat ε as an $O(1)$ parameter. This model has a “parity” (more precisely, a G-parity) symmetry in the $g = g' = 0$ limit, under which $\tilde{W}_1^\mu \to \tilde{W}_2^\mu$, $\Sigma_1 \to \Sigma_3^\dagger$, and $\Sigma_2 \to \Sigma_1^\dagger$. In the limit $f_2 \to \infty$, this model reduces to the three-site model considered in [2].

In unitary gauge (with $\Sigma_1 = \Sigma_2 = \Sigma_3 \equiv I$), the \mathcal{L}_ε term above corresponds to wavefunction-mixing of the fields \tilde{W}_i,

$$\mathcal{L} = -\frac{1}{4} \tilde{W}_{i \mu \nu} \tilde{Z}_{ij} \tilde{W}_{j \mu \nu} - \frac{1}{2} \tilde{W}_{i \mu} M_{ij}^2 \tilde{W}_{j \mu}^\dagger, \hspace{1cm} (4)$$

with

$$\tilde{Z} = \begin{pmatrix} 1 & \varepsilon & 0 \\ 1 & \varepsilon & 1 \\ 0 & 1 & 1 \end{pmatrix}. \hspace{1cm} (5)$$

To avoid ghosts, we require \tilde{Z} to be positive-definite, and hence $|\varepsilon| < 1$. [For fixed values of $2/f_2^2 + 1/f_3^2$, see eqn. (4)].

FIG. 1: The “moose” diagram for the $SU(2)^3 \times U(1)$ model considered in this note. The solid circles represent $SU(2)$ groups; the dashed circle, a $U(1)$ group; the “links”, $SU(2) \times SU(2)/SU(2)$ non-linear sigma models. In order to be phenomenologically realistic, we work in the limit $g, g' \ll g$; in this limit the model also has an approximate parity symmetry. We consider brane-localized fermions, which couple only the the $SU(2) \times U(1)$ at the ends of the moose, and add an L_{10}-like “wavefunction mixing” term to mix the two strongly-coupled $SU(2)$ groups in the middle two sites.
III. MASSES AND MIXING ANGLES

The eigenstates corresponding to the quadratic part of Lagrangian in eqn. (1) satisfy the generalized eigenvalue equation

\[M^2 \vec{v}_n = m^2_n \vec{Z} \vec{v}_n , \]

(6)

where \(\vec{v}_n \) is a vector in site-space with components \(v^i_n \). The superscript \(i \) labels the sites, running from 0 to 2 for charged-bosons \((n = W^\pm, \rho^\pm, \alpha_1^\pm) \), and 0 to 3 for neutral ones \((n = Z^0, \rho^0, \alpha_1^0, \gamma) \). If we choose eigenvectors normalized by \(\vec{v}^\dagger_n \vec{Z} \vec{v}_m = \delta_{nm} \), the gauge-eigenstate \((W^\nu_n) \) and mass-eigenstate \((W^\nu_{nm}) \) fields are related by

\[W^\nu_n = \sum_n v^i_n W^\nu_{nm} . \]

(7)

A. The \(g = g' = 0 \) Limit

Consider first the \(g = g' = 0 \) limit, in which we can determine the leading contributions to the heavy gauge-boson masses. Due to the parity symmetry in this limit, we expect the eigenvectors to be proportional to \(\vec{W}^\nu_1 \pm \vec{W}^\nu_2 \). Applying the normalization condition \(\vec{v}^\dagger_n \vec{Z} \vec{v}_m = \delta_{nm} \), we find a parity-even eigenvector (the “\(\rho \)”)

\[\vec{\rho}^\nu = \frac{1}{\sqrt{2(1 + \varepsilon)}} \left(\vec{W}^\nu_1 + \vec{W}^\nu_2 \right) , \]

(8)

with mass

\[m^2_\rho = \frac{\tilde{g}^2}{4} \frac{f_1^2}{1 + \varepsilon} , \]

(9)

and a parity-odd eigenvector (the “\(\alpha_1 \)”)

\[\vec{\alpha}_1^\nu = \frac{1}{\sqrt{2(1 - \varepsilon)}} \left(\vec{W}^\nu_1 - \vec{W}^\nu_2 \right) , \]

(10)

with mass

\[m^2_{\alpha_1} = \frac{\tilde{g}^2}{4} \frac{f_1^2 + 2f_2^2}{1 - \varepsilon} . \]

(11)

We note that the \(\rho \) and \(\alpha_1 \) are degenerate for

\[\varepsilon = - \frac{f_2^2}{f_1^2 + f_2^2} , \]

(12)
a value satisfying the constraint \(|\varepsilon| < 1 \). As \(\varepsilon \) becomes more negative, the \(\alpha_1 \) becomes lighter than the \(\rho \).

B. The Photon

Examining the eigenvalue eqn. (6) we see that the wavefunction factor \(\vec{Z} \) affects the normalization of a massless eigenvector, but not the orientation. We see, therefore, that the photon must be of the form

\[A_\mu = \frac{e}{g} W^3_{0\mu} + \frac{e}{g} W^3_{1\mu} + \frac{e}{g} W^3_{2\mu} + \frac{e}{g'} B_\mu , \]

(13)

or

\[(v_\gamma)^T = \left(\frac{e}{g} , \frac{e}{g} , \frac{e}{g} , \frac{e}{g'} \right) . \]

(14)

The electric charge \(e \) is, then, determined from the normalization condition to be

\[\frac{1}{g^2} = \frac{1}{g^2} + \frac{1}{g'^2} + 2(1 + \varepsilon) . \]

(15)

Examining the photon-couplings, we see that the unbroken gauge-generator has the expected form \(Q = T^3 + T_1^1 + T_2^3 + Y \).

C. The \(W \)-boson

Next, we consider a perturbative evaluation of the electroweak boson eigenvectors and eigenvalues, computed in powers of \(x = g/g' \). We start with the \(W \)-boson; the charged-boson mass matrix is given by

\[M^2_W = \frac{\tilde{g}^2}{4} \frac{f_1^2}{2(f_1^2 + 2f_2^2)^2} \begin{pmatrix} x^2f_1^2 & -xf_1^2 & 0 & 0 \\ -xf_1^2 & f_1^2 + f_2^2 & -f_2^2 & -f_2^2 \\ 0 & -f_2^2 & f_1^2 + f_2^2 & -x \tan \theta f_1^2 \\ 0 & 0 & -x \tan \theta f_1^2 & x^2 \tan^2 \theta f_1^2 \end{pmatrix} . \]

(16)

To \(\mathcal{O}(x^2) \) we find

\[v^0_W = \left[1 - f_1^4 + 2(1 + \varepsilon)f_1^2f_2^2 + 2(1 + \varepsilon)f_2^4 \right] x^2 , \]

\[v^1_W = x \frac{f_1^2 + f_2^2}{f_1^2 + 2f_2^2} W_1 , \]

\[v^2_W = x \frac{f_2^2}{f_1^2 + 2f_2^2} W_2 , \]

where we have computed, but do not display, the corrections of \(\mathcal{O}(x^3) \) to the last two components. For the corresponding eigenvalue we find

\[m^2_W = \frac{\tilde{g}^2}{4} \frac{f_1^2f_2^2}{f_1^2 + 2f_2^2} \left[1 - f_1^4 + 2(1 + \varepsilon)f_1^2f_2^2 + 2(1 + \varepsilon)f_2^4 \right] x^2 . \]

(18)

D. The \(Z \)-boson

The neutral gauge-boson mass matrix is

\[M^2_Z = \begin{pmatrix} x^2f_1^2 & -xf_1^2 & 0 & 0 \\ -xf_1^2 & f_1^2 + f_2^2 & -f_2^2 & 0 \\ 0 & -f_2^2 & f_1^2 + f_2^2 & -x \tan \theta f_1^2 \\ 0 & 0 & -x \tan \theta f_1^2 & x^2 \tan^2 \theta f_1^2 \end{pmatrix} . \]

(19)
where we have defined the angle θ by $g'/g \equiv \tan \theta$. Note that θ is the leading order weak mixing angle; we will later define a weak mixing angle θ_Z that is better suited to comparison with experiment. We have computed the Z-boson eigenvector to $O(x^3)$ – as the result is complicated, and the algebra unilluminating, we do not reproduce it here. For the Z-boson mass, we find

$$m^2_Z = \frac{g^2}{4 \cos^2 \theta} \left[f_1^2 f_2^2 \left(1 - \frac{(3 - \varepsilon) f_1^4 + 4(1 + \varepsilon)(f_1^2 f_2^2 + f_2^4) + (1 + \varepsilon)(f_1^2 + 2 f_2^2)^2 \cos 4\theta x^2 \sec^2 \theta}{4(f_1^2 + 2 f_2^2)^2} \right) \right].$$ (20)

IV. THE ELECTROWEAK PARAMETERS

From eqn. (7), we can compute the couplings of the mass-eigenstate W-boson couplings $g^f_W = g_0 v_W e^{\theta^i} B_i$, and the Z-boson couplings $g^f_Z = g v^2_0 I_3 + g' v^2_0 Y = g I_3 (v^2_0 - \tan \theta v^2_Z) + g' v^2_Z Q$. (22)

We may then compute the on-shell precision electroweak parameters at tree-level to $O(x^3)$, using the definitions and procedures outlined in [10][11]. The values of electric charge, eqn. (15), and m^2_Z, eqn. (20), are given above, and we find the Fermi constant

$$\sqrt{2} G_F = \frac{2}{v^2} = \frac{2}{f_1^2} + \frac{1}{f_2^2},$$ (23)

where $v \approx 246$ GeV.

The only non-zero precision electroweak parameter parameter is αS, which we tract

$$\alpha S = \frac{\varepsilon f_1^4 + 4(1 + \varepsilon)(f_1^2 f_2^2 + f_2^4) + (1 + \varepsilon)(f_1^2 + 2 f_2^2)^2 \cos 4\theta x^2 \sec^2 \theta}{(f_1^2 + 2 f_2^2)^2},$$ (24)

As expected, we can choose ε so that αS vanishes for any given value of f_1/f_2

$$\varepsilon \rightarrow -\frac{2(f_1^2 + f_2^2 f_2^2 + 2 f_2^2)}{f_1^2 + 2 f_2^2 f_2^2 + 2 f_2^2},$$ (25)

while satisfying $|\varepsilon| < 1$.

Note, however, that the value of the low-energy parameter $|\varepsilon|$ that makes αS vanish is of order one, larger than would be expected by naive dimensional analysis. This result is consistent with investigations of continuous 5d effective theories [14][15], and with investigations of plausible conformal technicolor “high-energy completions” of this model using Bethe-Salpeter methods [16][17], both of which suggest that $\alpha S > 0$ and that it may not be possible to achieve very small values of αS.

We note also that the result is consistent with the expectation of [18][19], since the value of ε required for αS to vanish results in axial-vector mesons which are lighter than the vector mesons.²

V. TRIPLE BOSON VERTICES

A. Electroweak Vertices

Consider the electroweak vertices γWW and ZWW. To leading order, in the absence of CP-violation, the triple gauge boson vertices may be written

$$\mathcal{L}_{TGV} = -i e^{c_Z} s_Z \left[(1 + \Delta \kappa_Z) W^+ \gamma W^- s_{Z}^\dagger (W^+ W^-) \right] - i e^{c_Z} s_Z \left[(1 + \Delta \theta^Z) (W^+ \gamma W^- - W^- \gamma W^+) \right] - i (W^+ \gamma W^- - W^- \gamma W^+) A_\nu,$$ (26)

where the two-index tensors denote the Lorentz field-strength tensor of the corresponding field. In the standard model, $\Delta \kappa_Z = \Delta \kappa = \Delta \theta^Z = 0$. Note that the expressions for κ_Z and g^Z_1 involve $c_Z \equiv \cos \theta_Z$ and $s_Z \equiv \sin \theta_Z$, as defined by

$$c^2_Z = \frac{e^2}{4 \sqrt{2} G_F M_Z^2},$$ (27)

rather than the leading order mixing angle θ.

Let us begin with the coupling of the photon of the form $(W^+ \gamma W^- - W^- \gamma W^+) A_\nu$. In terms of the wavefunctions v_γ, v_ν, this coupling is proportional to

$$g_\gamma = \sum_{i,j} g_i v^i_\gamma v^j_W Z_{ij} v^j_W.$$ (28)

From eqn. (14), we have $g_i v^i_\gamma = e$ and therefore, by applying the normalization condition $v^T_W Z v_W = 1$, we

² An alternative approach, Degenerate BESS [20][21], produces degenerate vector and axial mesons and $\alpha S = 0$ using a different theory without unitarity delay [10] – see “case I” described in [22].
obtain $g_v \equiv e$ independent of any choice of the four-site parameters — as required by gauge-invariance and consistent with the form of eqn. (26).

Next, we evaluate $\Delta \kappa_\gamma$, with

$$e [1 + \Delta \kappa_\gamma] = \sum_{i,j} g_i (v_i^x)^2 \tilde{Z}_{ij} v_j^x = e \sum_{i,j} \frac{g_i}{g_j} (v_i^x)^2 \tilde{Z}_{ij} ,$$

for which we calculate

$$\Delta \kappa_\gamma = \frac{\varepsilon f_1^4}{(f_1^2 + 2f_2^2)^2} x^2 = \frac{\varepsilon v_4^4}{f_2^2} x^2 .$$

(29)

Note that this vanishes in the absence of wavefunction mixing ($v \rightarrow 0$), and also in the “three-site” limit ($v/f_2 \rightarrow 0$), as consistent with [6].

Similarly we may compute $\Delta \kappa_{\gamma Z}$ and $\Delta \kappa_{\mu \nu}$, and find

$$\Delta g_1^2 = \Delta \kappa_{\gamma Z} + \frac{\varepsilon f_1^4}{(f_1^2 + 2f_2^2)^2} x^2,$$

$$= - \frac{(\varepsilon s_2^2 f_1^4 + (1 + \varepsilon) f_2^4 + 4 f_2^4) x^2}{(f_1^2 + 2f_2^2)^2 \cos(2\theta_Z)} ,$$

(31)

where the difference between θ and θ_Z is irrelevant to this order. Note that $\Delta g_1^2 - \Delta \kappa_{\gamma Z}$ vanishes when $\varepsilon \rightarrow 0$, and also, as expected [6], in the “three-site” limit $f_2 \rightarrow \infty$.

VI. SUMMARY

We have introduced a deconstructed Higgsless model with four sites and non-trivial wavefunction mixing, and have shown that it exhibits key features of holographic technicolor [3, 7]. The electroweak parameter αS vanishes for a value of the wavefunction mixing at which the a_1 is lighter than the ρ — even if all fermions are brane-localized. Furthermore, the model includes the decay $a_1 \rightarrow W \gamma$, suppressed by only one power of (M_W/M_ρ), in contrast with an $(M_W/M_\rho)^3$ suppression of the decay $\rho \rightarrow W \gamma$. These decays are of potential phenomenological interest at LHC.

VII. ACKNOWLEDGEMENTS

This work was supported in part by the US National Science Foundation under grant PHY-0354226. The authors acknowledge the hospitality and support of the Aspen Center for Physics, where this manuscript was completed. We thank Tom Appelquist, Veronica Sanz, Johannes Hirn, and Adam Martin for useful discussions.
[13] H. Georgi, Phys. Lett. B 298, 187 (1993) [arXiv:hep-ph/9207278].
[14] D. K. Hong and H. U. Yee, Phys. Rev. D 74, 015011 (2006) [arXiv:hep-ph/0602177].
[15] K. Agashe, C. Csaki, C. Grojean and M. Reece, JHEP 0712, 003 (2007) [arXiv:0704.1821 [hep-ph]].
[16] M. Harada, M. Kurachi and K. Yamawaki, Prog. Theor. Phys. 115, 765 (2006) [arXiv:hep-ph/0509193].
[17] M. Kurachi and R. Shrock, Phys. Rev. D 74, 056003 (2006) [arXiv:hep-ph/0607231].
[18] T. Appelquist and F. Sannino, Phys. Rev. D 59, 067702 (1999) [arXiv:hep-ph/9806409].
[19] T. Appelquist, P. S. Rodrigues da Silva and F. Sannino, Phys. Rev. D 60, 116007 (1999) [arXiv:hep-ph/9906555].
[20] R. Casalbuoni, et. al. Phys. Lett. B 349, 533 (1995) [arXiv:hep-ph/9502247].
[21] R. Casalbuoni, et. al., Phys. Rev. D 53, 5201 (1996) [arXiv:hep-ph/9510431].
[22] R. S. Chivukula, et. al., Phys. Rev. D 69, 015009 (2004) [arXiv:hep-ph/0307209].
[23] K. Hagiwara, R. D. Peccei, D. Zeppenfeld and K. Hikasa, Nucl. Phys. B 282, 253 (1987).