FAST ITERATIVE SOLUTION OF THE OPTIMAL TRANSPORT PROBLEM ON GRAPHS

A PREPRINT

Enrico Facca
Centro di Ricerca Matematica Ennio De Giorgi,
Scuola Normale Superiore,
Piazza dei Cavalieri, 3, 56126 Pisa, Italy
enrico.facca@sns.it

Michele Benzi
Scuola Normale Superiore,
Piazza dei Cavalieri, 7, 56126 Pisa, Italy
michele.benzi@sns.it

September 29, 2020

ABSTRACT

In this paper, we address the numerical solution of the Optimal Transport Problem on undirected weighted graphs, taking the shortest path distance as transport cost. The optimal solution is obtained from the long-time limit of the gradient descent dynamics. Among different time stepping procedures for the discretization of this dynamics, a backward Euler time stepping scheme combined with the inexact Newton-Raphson method results in a robust and accurate approach for the solution of the Optimal Transport Problem on graphs. It is found experimentally that the algorithm requires solving between \( O(1) \) and \( O(m^{0.36}) \) linear systems involving weighted Laplacian matrices, where \( m \) is the number of edges. These linear systems are solved via algebraic multigrid methods, resulting in an efficient solver for the Optimal Transport Problem on graphs.

Keywords: optimal transport problem, gradient descent, implicit time-stepping scheme, saddle point problem, algebraic multigrid methods

1 Introduction

The Optimal Transport Problem (OTP) is a type of optimization problem where the goal is to determine the optimal reallocation of resources from one configuration to another. The OTP is also known as the Monge-Kantorovich Problem, after Gaspard Monge, who proposed the first formulation of the problem in [1], and Leonid Kantorovich, who introduced in [2] the relaxed formulation studied nowadays.

In a rather general framework, the Monge-Kantorovich Problem can be formulated as follows. Consider a measurable space \( \mathcal{X} \), two non-negative measures \( f^+ \) and \( f^- \) with equal mass, and a cost function \( c : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \) such that \( c(x, y) \) describes the cost paid for transporting one unit of mass from \( x \) to \( y \). We want to find the optimal plan \( \gamma^* \) in the space \( \mathcal{M}_+(\mathcal{X} \times \mathcal{X}) \) (which we denote with \( \mathcal{M}_+(\mathcal{X} \times \mathcal{X}) \)) that solves the following minimization problem:

\[
\inf_{\gamma \in \mathcal{M}_+(\mathcal{X} \times \mathcal{X})} \left\{ \int_{\mathcal{X} \times \mathcal{X}} c(x, y) d\gamma(x, y) \right\} \quad \text{for all } A, B \text{ measurable subsets of } \mathcal{X} \quad \gamma(A, \mathcal{X}) = f^+(A) \quad \gamma(\mathcal{X}, B) = f^-(B) \quad \gamma^*.
\]

In recent years, a number of authors have contributed to the development of the OTP theory (see for example [3,4,5]), and several reformulations of this problem have been found, together with many connections with apparently unrelated areas. More recently, the mathematical “tools” provided by the OTP started to be used in more applied settings. An example of application is the use of the Wasserstein distance (which is the value obtained in the minimization Problem (1)) in inverse problems [6,7], image processing [8,9], and machine learning [10]. However, the use of these “tools” is hindered by the high computation cost of the numerical solution of the OTP.

In this paper we focus on the case where the ambient space \( \mathcal{X} \) of the OTP is a connected, weighted, undirected, graph \( G = (V, E) \) with \( n \) vertices and with \( m \) edges with strictly positive weights \( w \in \mathbb{R}^m \). In particular, we focus on sparse...
graphs, thus \( m = \mathcal{O}(n) \). We consider the cost function \( c \) given by the shortest weighted path metric on the graph \( \mathcal{G} \) which, given \( v_i, v_j \in \mathcal{V} \) is defined as

\[
c(v_i, v_j) = \text{dist}_{\mathcal{G}, w}(v_i, v_j) = \inf_{\mathcal{P}(v_i, v_j)} \left\{ \sum_{e \in \mathcal{P}(v_i, v_j)} w_e : \mathcal{P}(v_i, v_j) = \text{path in } \mathcal{G} \text{ connecting } v_i \text{ with } v_j \right\},
\]

a problem often referred to as \( L^1\)-OTP. As an example of application, the Wasserstein distance on graphs has been used in [11] to introduce an analog of Ricci curvature on graphs. This notion has been then used in [12, 13] in the study of community detection on graphs.

In the graph setting the transported measures \( f^+ \) and \( f^- \) of the OTP are simply two vectors \( b^+, b^- \in \mathbb{R}^n_+ = [0, +\infty]^n \) such that \( \sum_{i=1}^n b^+_i = \sum_{i=1}^n b^-_i \). Then Problem (1) becomes the following linear-programming problem:

\[
\inf_{\gamma \in \mathbb{R}^n_{\mathcal{G}}} \left\{ \text{tr}(D^T \gamma) : \begin{align*}
\gamma L_i &= b_i^+ \\
\gamma L^-_i &= b_i^-
\end{align*} \right\},
\]

where \( D \) is the distance matrix of the graph \( \mathcal{G} \) i.e., the symmetric matrix whose \((i, j)\) entry is equal to \( \text{dist}_{\mathcal{G}, w}(v_i, v_j) \).

We are now looking for an optimal matrix \( \gamma^* \in \mathbb{R}^n_{\mathcal{G}} \) (in general there may exist multiple solutions) in which entry \( \gamma^*_{i,j} \) describes the portion of “mass” optimally transported from the node \( v_i \) to node \( v_j \). Unfortunately, since the number of unknowns scales with \( \mathcal{O}(n^2) \), Problem (2) becomes intractable numerically for graphs with a large number of nodes. Moreover, in the graph setting, there is the additional cost of computing the distance matrix \( D \).

On the other hand, when \( c = \text{dist}_{\mathcal{G}, w} \), the OTP can be rewritten in the equivalent form of an \( \ell^1 \)-minimal flow problem, given by

\[
\min_{q \in \mathbb{R}^n} \left\{ \sum_{e=1}^m w_e |q_e| : \text{E}q = b^+ - b^- \right\},
\]

where \( E \) is the signed incidence matrix of the graph \( \mathcal{G} \). This problem has long been known in the study of network flows as the minimum-cost flow problem with no edge capacities. Different approaches like cycle canceling, network simplex, and the Ford-Fulkerson algorithms have been proposed to solve it (see [14] for a complete overview). More recently, the numerical solution of Problem (3) has been addressed via interior point methods in [15], where it is shown that the problem can be solved on bipartite graphs by solving \( \mathcal{O}(n^{3/2} \log n) \) weighted Laplacian systems. The numerical solution of Problem (3) as OTP on a graph has been studied in [16] using the simplex algorithm. More recently, [17] considered a quadratically regularized version of Problem (3) in order to deal with the non-uniqueness of the minimal flow.

In this paper, we consider a different approach where we obtain a solution of Problem (3) by means of an equivalent formulation described in [18], as a minimization problem for an energy functional \( \mathcal{L}(\mu) : \mathbb{R}^m_+ \to \mathbb{R} \) with \( \mu \in \mathbb{R}^m_+ \). Here \( \mu \) can be interpreted as a conductivity associated to the edges of the graph. In this paper, a minimum of \( \mathcal{L} \) is sought via a gradient descent approach, not applied directly to the functional \( \mathcal{L} \), but rather to its composition with the change of variable \( \Psi : \mathbb{R}^m \to \mathbb{R}^m \) that, acting component-wise, gives \( \mu = \Psi(\sigma) = \sigma^2/4 \). While minimizing \( \tilde{\mathcal{L}} = \mathcal{L} \circ \Psi \) is clearly equivalent to minimizing \( \mathcal{L} \), the first shows a much nicer convergence behavior.

The gradient descent approach applied to minimization of \( \tilde{\mathcal{L}}(\sigma) \) may be seen as finding the vector \( \sigma^* = \lim_{t \to +\infty} \sigma(t) \), where \( \sigma(t) \) solves the initial value problem

\[
\partial_t \sigma(t) = -\nabla \tilde{\mathcal{L}}(\sigma(t)), \quad \sigma(0) = \sigma_0.
\]

We compare in terms of accuracy and efficiency three approaches for the discretization of this ODE: the forward Euler time stepping (the classical gradient descent algorithm), the accelerated gradient descent method described in [19], and the backward Euler time stepping. The last approach results in solving a sequence on non-linear equations given by

\[
\sigma^{k+1} = \sigma^k - \Delta t_{k+1} \nabla \tilde{\mathcal{L}}(\sigma^{k+1}), \quad k = 0, 1, \ldots
\]

iterated until convergence to a steady state configuration. The above non-linear equation is solved via an inexact damped Newton-Raphson method, that requires the solution of a sequence of saddle point linear systems in the form

\[
\begin{pmatrix} A & B^T \\ B & -C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix},
\]

with \( A, B, C \) sparse matrices. In contrast, the forward Euler and the Accelerated Gradient descent both require the solution of only one weighted Laplacian system per step. However, the additional cost is off-set by the much smaller
number of time steps and linear systems to be solved to reach a steady state, hence the backward Euler method turns out to be the most efficient among those considered. We examine different approaches for the solution of the saddle point linear systems. The simplest approach, which exploits matrix $C$ being diagonal, turns out to be the most efficient, even if it may require using a smaller time step size $\Delta t_k$, thus more time steps. In fact, it only requires the solution of a sequence of linear systems involving weighted Laplacian matrices, which can be solved via algebraic multigrid methods. Moreover, the efficiency of this approach can be drastically improved removing along the time evolution removing those edges (and the corresponding nodes, if isolated) with conductivity $\mu = \Psi(\sigma)$ below a given small threshold.

The resulting method has been tested on different graphs and vectors $b$. In the numerical experiments where exact solutions are available, the numerical method proposed shows a high level of accuracy. The total number of linear systems to be solved, which accounts for almost all of the computation effort and which coincides with the total number of Newton steps, has been found experimentally to range between being constant with respect to number of edges to scaling like $O(m^{3.36})$ on graphs generated using the Erdős-Rényi, the Watts-Strogatz, and the Barabasi-Albert models.

## 2 OTP on graphs with cost $\operatorname{dist}_{G,w}$

Before presenting the functional $L$ we want to minimize, we need to introduce the equivalent formulations of the OTP addressed in this paper. To this aim, let us introduce some definitions and fix some notations. First, we define the vector

$$b = b^+ - b^-,$$

which will be referred to as forcing term. Then, fixing an orientation on the graph $G$ (that will have no influence in our formulation) we introduce matrices $E \in \mathbb{R}^{m \times m}$, $W \in \mathbb{R}^{m \times m}$ and $G \in \mathbb{R}^{m \times m}$ defined as

$$E_{e,i} = \begin{cases} 1 & \text{if } i = \text{“head” of edge } e \\ -1 & \text{if } i = \text{“tail” of edge } e \\ 0 & \text{otherwise} \end{cases}, \quad W = \text{diag}(w), \quad G = W^{-1}E^T.$$

Matrix $E$, which is the signed incidence matrix of the graph $G$, and matrix $G$ play the role of the (negative) divergence and gradient operators in the weighted graphs setting. Moreover, for any non-negative “conductivity” $\bar{\mu} \in \mathbb{R}_+^m$, we will denote with

$$L[\bar{\mu}] := E \text{diag}(\bar{\mu}) G$$

the $\bar{\mu}$-weighted Laplacian matrix of the graph $G$, and with

$$U[\bar{\mu}] := L[\bar{\mu}]^+ b,$$

the “potential” induced by the “conductivity” $\bar{\mu}$ and the forcing term $b$. Here and in the following, the symbol $^+$ denotes the Moore-Penrose generalized inverse. The action of the pseudo-inverse on a given vector is found computing the minimum norm solution of the corresponding (singular) linear system. Note that, since the graph $G$ is connected and the entries of the forcing term vector $b$ sum to zero, if $\bar{\mu}$ is strictly positive then $U[\bar{\mu}]$ is always well defined. If some entries of $\bar{\mu}$ are null, the forcing term $b$ must belong to range of $L[\bar{\mu}]$ for $U[\bar{\mu}]$ to be well defined.

### Equivalent formulations of OTP with cost $\operatorname{dist}_{G,w}$

The first equivalent formulation of the OTP with cost $\operatorname{dist}_{G,w}$ is given by the following minimal-cost flow problem:

$$\min_{q \in \mathbb{R}^m} \{\|Wq\|_1 \text{ s.t. } Eq = b\}, \quad \text{(4)}$$

where $\| \cdot \|_1$ denotes the $\ell^1$-norm. In an electrical flow analogy, we are looking for an optimal current $q^*$ that minimizes the overall total flux on the graph, measured with a weighted $\ell^1$-norm, under the constraint that the flux satisfies the Kirchhoff laws $Eq = b$.

The second equivalent problem, which is the dual of Problem (4), is the following maximization problem:

$$\max_{u \in \mathbb{R}^n} \left\{ b^T u \text{ s.t. } \|Gu\|_\infty \leq 1 \right\}, \quad \text{(5)}$$

where $\| \cdot \|_\infty$ denotes the $\ell^\infty$-norm. This last problem is actually a simplified version of the dual problem of the primal Problem (2) (see [3] for the detailed proof). Problems (4) and (5) may have multiple solutions.
A third equivalent formulation, which subsumes Problems (4) and (5), and which will be the one we actually solve in this paper, can be introduced by rewriting Problem (5) as follows:

$$\max_{u \in \mathbb{R}^n} \left\{ b^T u \mid (Gu)_e \leq 1 \forall e = 1, \ldots, m \right\}$$

$$\equiv \max_{u \in \mathbb{R}^n} \left\{ b^T u \mid \frac{w_e}{2} ((Gu)_e^2 - 1) \leq 0 \forall e = 1, \ldots, m \right\}$$

where we first square both sides of the inequality constraints in eq. (6), and then we multiply by the positive factor $w_e/2$ (the reason for these transformations will be clear later). Now, we can introduce a non-negative Lagrange multiplier $\mu \in \mathbb{R}^m_+$ for the inequality constraints in eq. (7), so that Problem (5) and eq. (7) become equivalent to the following inf-sup problem:

$$\inf_{\mu \in \mathbb{R}^m_+} \sup_{u \in \mathbb{R}^n} \Phi(u, \mu) := b^T u - \frac{1}{2} u^T L[\mu] u + \frac{1}{2} \mu^T w,$$

with Lagrangian $\Phi$. If we now introduce the functional

$$\mathcal{E}(\mu) = \sup_{u \in \mathbb{R}^n} \left( b^T u - \frac{1}{2} u^T L[\mu] u \right) = \frac{1}{2} b^T \mathcal{U}[\mu] = \frac{1}{2} b^T L^+[\mu] b,$$

which is the Joule dissipated energy associated to $\mu$, we may look at Problem (8) only in terms of the variable $\mu$. Hence, we want to find the optimal $\mu^*$ solving the following minimization problem:

$$\min_{\mu \in \mathbb{R}^m_+} \left\{ \mathcal{L}(\mu) = \mathcal{E}(\mu) + \frac{1}{2} w^T \mu \right\},$$

and then setting $u^* = \mathcal{U}[\mu^*]$. Again, in the electrical network analogy where $b^+$ and $b^-$ describe the electrical charge distributions, the above problem amounts to finding the optimal conductivity $\mu^*$ giving the best trade-off between the Joule dissipated energy $\mathcal{E}(\mu)$ and the "infrastructure cost" $\frac{1}{2} \mu^T w$. Problem (8) is actually a min-max problem since functional $\mathcal{L}(\mu)$ admits a minimum $\mu^*$, being convex and since $\lim_{\|\mu\| \to +\infty} \mathcal{L}(\mu) = +\infty$. Then, given a minimizer $\mu^*$, such maximization of the Lagrangian $\Phi$ of Problem (3) is equivalent to finding $u^* = \mathcal{U}[\mu^*]$. Any vector $u^*$ also solves Problem (5).

The relation among the different optimization problems presented in this section are described in the following proposition.

**Proposition 1** Problems (4), (5) and (6) are equivalent. This means that the following equalities hold:

$$\max_{u \in \mathbb{R}^n} \left\{ b^T u : \|Gu\|_{\infty} \leq 1 \right\} = \min_{q \in \mathbb{R}^m} \left\{ \|Wq\|_1 : Eq = b \right\} = \min_{\mu \in \mathbb{R}^m_+} \mathcal{L}(\mu).$$

Moreover, given a solution $\mu^*$ that minimizes the functional $\mathcal{L}$ we can recover a maximizer $u^*$ of Problem (5) by solving

$$L[\mu^*] u^* = b,$$

$$\| (Gu^*_e) \| \leq 1 \quad \forall e = 1, \ldots, m,$$

$$\| (Gu^*_e) \| = 1 \quad \mu^*_e > 0$$

*(the KKT equations for Problem (5)).* A minimizer $q^*$ of Problem (4) can be represented in the form

$$q^* = \text{diag}(\mu^*) Gu^*.$$  

Moreover, the following equality holds:

$$\mu^* = |q^*|.$$  

The proof of the equivalence between Problems (4) and (5) is a straightforward application of standard duality results (see [20], Section 4, Chapter 3). We refer the reader to [18] for the proof of the equivalence with the problem of minimizing $L$. The above proposition states that any optimal flux $q^*$ is induced by the gradient of the potential $u^*$, multiplied by the optimal conductivity $\mu^*$. Note that, for any pair $(q, u) \in \mathbb{R}^m \times \mathbb{R}^n$ satisfying the constraints $Eq = b$ and $\|Gu\|_{\infty} \leq 1$, the following inequality holds:

$$\text{DGap}(q, u) := \|Wq\|_1 - b^T u \geq 0,$$

where equality guarantees the optimality of $(q, u) \in \mathbb{R}^m \times \mathbb{R}^n$. The quantity $\text{DGap}(q, u)$ is called *Duality gap.*
It is important to note that any optimal solution $\mu^*$ may be zero on several edges, and there may be nodes where the corresponding rows of the matrix $L[\mu^*]$ is null, leading to a singular but compatible system of equations. This means that there may exist a large null-space of $L[\mu^*]$ that may be added to any admissible solution $u^*$ (an optimal potential), as long as the constraints in eq. (10b) are satisfied. However, it is easy to identify a base for this subspace, given by the “support” vectors of the node “surrounded” by edges with zero conductivity. Uniqueness of the solution of the primal problem may fail even in case when the dual admits a unique (up to a constant) solution (for example, see Test-case 1 in section 5).

All the discrete problems mentioned in this section find their counterpart in the OTP posed in a domain $\Omega \subset \mathbb{R}^d$ with cost equal to the Euclidean distance. We refer to [18] for a detailed description of these connections between discrete and continuous OT problems.

### 3 OTP solution via dynamical approaches

Among the different formulations of the OTP presented in the previous section, in this paper we will address the problem of finding a solution $\mu^*$ of the minimization Problem (9). The solution $u^*$ of Problem (5) will be derived from the equivalent min-max Problem (8), while the $q^*$ solution of Problem (4) will be given by eq. (11).

In this paper, the problem of minimizing $L$ is solved via a gradient descent approach, where we introduced a one-to-one transformation $\Psi: \mathbb{R}^m \rightarrow \mathbb{R}_+^m$, acting component-wise, with

$$\mu_e = \Psi(\sigma_e).$$

It is clear that any minimum $\mu^*$ of the functional $L$ can be recovered from any minimum $\sigma^*$ of the composed functional

$$\hat{L}(\sigma) = L(\Psi(\sigma)) = \frac{1}{2} \left( b^T L^+ \Psi(\sigma) b + w^T \Psi(\sigma) \right),$$

and vice-versa. We now differentiate with respect to $\sigma_e$ the functional $\hat{L}(\sigma)$, obtaining the following expression:

$$\partial_{\sigma_e} \hat{L}(\sigma) = \partial_{\mu_e} \left( L(\mu) \Psi(\sigma) \right) \partial_{\sigma_e}(\Psi(\sigma)) = \frac{1}{2} \left( b^T \partial_{\mu_e} \left( L^+[\mu] \right) b + w \right).$$

Using the following matrix identity (see [21] Theorem 4.3.))

$$\partial_{\mu_e} \left( L^+[\mu] \right) = -L^+[\mu] \partial_{\mu_e} (L[\mu]) L^+[\mu] + L^+[\mu] L^+[\mu]^T \partial_{\mu_e} \left( L^T[\mu] \right) (I - L[\mu] L^+[\mu])$$

$$+ (I - L^+[\mu] \langle L(\mu) \rangle) \partial_{\mu_e} \left( L^T[\mu] \right) L^+[\mu]^T L^+[\mu],$$

and the fact that $(I - L[\mu] L^+[\mu]) b = 0$, we obtain the following equation for the gradient of the functional $\hat{L}(\sigma)$:

$$\nabla \hat{L}(\sigma) = w \odot \Psi'(\sigma) \odot \frac{1}{2} \left( - \left( G \Upsilon \Psi(\sigma) \right)^2 + 1 \right).$$

Similar computations in the evaluation of the gradient of $\hat{L}(\mu)$ can be found in [18, 22].

In this paper, we use the transformation

$$\Psi(\sigma) = \sigma^2,$$

and we set the gradient descent dynamics in the space $\mathbb{R}^m$ endowed with the scalar product $\langle x, y \rangle_w := x^T \text{diag}(w) y$ and the norm $\|x\|_w := \sqrt{\langle x, x \rangle_w}$, which is introduced to remove the vector $w$ from the right-hand side of eq. (13). Given $\sigma_0 > 0$, the corresponding initial value problem is given by

$$\partial_t \sigma(t) = -\nabla_{\sigma} \hat{L}(\sigma) = \sigma(t) \odot \frac{1}{4} \left( \left( G \Upsilon \Psi(\sigma) \right)^2 - 1 \right),$$

$$\sigma(0) = \sigma_0.$$

A minimizer $\sigma^*$ of functional $\hat{L}(\sigma)$ is sought as the long-time limit of the solution $\sigma(t)$ of eq. (15). Solutions of Problems (4) and (9) and eq. (10) are then given by

$$\mu^* = \Psi(\sigma^*), \quad u^* = \Upsilon[\mu^*] \quad q^* = \mu^* \odot Gu^*.$$
The change of variable $\Psi$ in eq. (14) is introduced in order to recover the following dynamical system:

$$\partial_t \mu(t) = \mu(t) \odot \left( (GU \mu(t))^2 - 1 \right) = 2w^{-1} \odot \mu(t) \odot (- \nabla_\mu L(\mu(t))) \quad (16a)$$

$$\mu(0) = \mu_0 > 0. \quad (16b)$$

The steady state solution $\mu^* = \lim_{t \to +\infty} \mu(t)$ of eq. (16) and its variants have been related to different types of optimization problems, like the shortest path problem [23, 24], the Basis Pursuit Problem [18, 22] and different transport problems in a continuous setting [25, 26]. In [22] it has been shown that the dynamical system in eq. (16) can be interpreted as mirror descent dynamics for the functional $L$, where the descent direction is given by the product of the vector $- \nabla_\mu L(\mu(t))$ and the vector $\mu(t)$ (the factor $2w^{-1}$ has no particular influence on the dynamics). Due to the presence of the multiplicative term $\mu(t)$, the right-hand side of eq. (16a) tends to zero on those entries where $\mu(t)$ tends to zero. The numerical results presented in the above mentioned papers suggest that this scaling plays a crucial role in the good behavior of the numerical methods based on the dynamical system eq. (16). However, using the transformation in eq. (14), we can reinterpret eq. (16) as a "classical" gradient descent dynamics. In fact, if we multiply component-wise eq. (15a) by $\frac{1}{2} \sigma(t)$, we obtain

$$\partial_t \mu(t) = 2 \sigma(t) \odot \partial_t \sigma(t) = 2 \mu(t) \odot \left( (GU [\Psi(\sigma)])^2 - 1 \right) ,$$

which is equal to eq. (16a). Nevertheless, in eq. (15a), we keep scaling the gradient direction $(GU [\mu(t)])^2 - 1$ by a multiplicative factor $\sigma(t)$ which tends to zero on the same entries of $\mu(t)$, since $\sigma(t) = \sqrt{4\mu(t)}$.

**Remark 1** Other transformations, like $\Psi(\sigma) = \sigma^p \quad p \geq 1$ and $\Psi(\sigma) = e^\sigma$, have been considered in our experiments. However, in this paper we consider only the transformation in eq. (14), since it gives the best results in terms of global efficiency and robustness.

## 4 Numerical Solution

### 4.1 Time Discretization

In this section, we describe three approaches for the time-discretization of eq. (15) and to get a steady-state solution, i.e., we show how to build an approximate sequence $(\sigma^k)_{k=1, \ldots, k_{\max}}$ such that

$$\left\| \nabla_\sigma L(\sigma^k) \right\|_{w} = \left\| \sqrt{w} \odot \sigma^k \odot \frac{1}{2}(GU \sigma^k)^2 - 1 \right\|_2 \leq \hat{\epsilon}, \quad (17)$$

where $\hat{\epsilon} > 0$ is a fixed tolerance. We denote with $\tilde{k}$ the step at which eq. (17) is satisfied, writing $(\tilde{\sigma}, \tilde{u}) = (\sigma^{\tilde{k}}, u^{\tilde{k}})$. Our approximate solutions of Problems (4), (5) and (9) will be given, respectively, by

$$(\tilde{q} = \tilde{\mu} \odot GU \tilde{u}, \tilde{u}, \tilde{\mu}) \quad \text{with} \quad \tilde{\mu} = \Psi(\tilde{\sigma}).$$

**Forward Euler/Gradient Descent** The first approach is the forward Euler time-stepping, resulting in the classical Gradient Descent (GD) algorithm, where, given a sequence $\Delta t_k > 0$, the approximation sequence $(\sigma^k)_{k=1, \ldots, k_{\max}}$ is given by the following equation:

$$\sigma^{k+1} = \sigma^k + \Delta t_k \frac{\sigma^k}{4} \odot \left( (GU [\Psi(\sigma^k)])^2 - 1 \right), \quad k = 1, \ldots, k_{\max}.$$

At each time step, we only need to solve the linear system

$$L[\mu^k] u^k = b.$$

A similar discretization scheme, applied to eq. (16), has been successfully adopted in [22, 25, 18, 27, 28].
Accelerated Gradient Descent The second approach considered in this paper is the Accelerated Gradient Descent (AGD). In the AGD approach, first introduced in [19], the approximating sequence is generated as follows:

\[
\sigma^{k+1} = y^k - \Delta t_k \nabla \sigma \tilde{L}(y^k),
\]

\[
y^k = \sigma^k + \frac{k-1}{k+2} (\sigma^k - \sigma^{k-1}).
\]

Typically, the AGD performs better than GD, reaching steady-state with fewer time steps (we refer to [29] for a complete overview on the AGD approach and on its applications).

In our problem, GD and AGD have practically the same computational cost, requiring the solution of only a weighted Laplacian matrix per time step. However, both the GD and the AGD are explicit time-stepping schemes as shown in [30], and thus, in both approaches, the time step size \(\Delta t_k\) cannot be taken too large, due to well-known stability issues. Hence, a very large number of time steps may be required to reach the optimum, affecting the performance of the algorithm. On the other hand, implicit schemes do not suffer from this time step size limitation, at the cost of solving a non-linear equation. We will see that, in our formulation, the additional computational cost required at each time step is offset by a drastic reduction of the total number of time steps required to reach the steady-state solution.

Backward Euler-Gradient Flow We present the backward Euler time stepping of eq. (15), in the form of finding a sequence \((\sigma^k)_{k=1,\ldots,k_{\text{max}}}\) that, given a sequence of \(\Delta t_k\) and fixing \(\sigma^0 = \sigma_0\), solves the following minimization problem:

\[
\sigma^{k+1} = \arg \min_{\sigma \in \mathbb{R}^m} \left\{ \tilde{L}(\sigma) + \frac{1}{2\Delta t_k} \| \sigma - \sigma^k \|_w^2 \right\}.
\]

(18)

Readers familiar with optimization techniques will recognize in eq. (18) the Proximal Mapping, while readers familiar with the discretization of ODEs will recognize the classical backward-Euler discretization by casting the Euler-Lagrange Equations of eq. (18) in the form

\[
\frac{(\sigma^{k+1} - \sigma^k)}{\Delta t_k} = -W^{-1} \nabla \sigma \tilde{L}(\sigma^{k+1}) = \frac{1}{4} \sigma^{k+1} \odot \left( (G\mathcal{U}[\tilde{\Psi}(\sigma^{k+1})])^2 - 1 \right).
\]

However, it is better to rewrite eq. (18) in the form of an inf-sup problem, using the definition of \(\mathcal{L}\) in Problem (8) and eq. (9). In fact, the Lagrangian functional \(\Phi\) in Problem (8) in the \(\sigma\)-variable becomes

\[
\tilde{\Phi}(u, \sigma) = \Phi(u, \Psi(\sigma)) = b^T u - \frac{1}{2} u^T L[\Psi(\sigma)] u + \frac{1}{2} \Psi(\sigma)^T w,
\]

(19)

hence we look for the solution of the following problem:

\[
(u^{k+1}, \sigma^{k+1}) = \arg \min_{u \in \mathbb{R}^n} \arg \min_{\sigma \in \mathbb{R}^m} \left\{ \tilde{\Gamma}(u, \sigma, \sigma^k, \Delta t_k) := \tilde{\Phi}(u, \sigma) + \frac{1}{2\Delta t_k} \| \sigma - \sigma^k \|_{2,w}^2 \right\}.
\]

(20)

The solution pair \((u^{k+1}, \sigma^{k+1})\) can be found as the stationary point of the functional \(\tilde{\Gamma}\) in eq. (20), described by the following non-linear system of equations:

\[
0 = \begin{pmatrix}
-\nabla_u \tilde{\Gamma} \\
-\nabla_\sigma \tilde{\Gamma}
\end{pmatrix} = \begin{pmatrix}
f(u, \sigma, \sigma^k, \Delta t_k) \\
g(u, \sigma, \sigma^k, \Delta t_k)
\end{pmatrix} = \begin{pmatrix}
w \odot \left( \frac{1}{4} \sigma \odot ((G\mathcal{U}[\tilde{\Psi}(\sigma)])^2 - 1 - \frac{1}{\Delta t_k} (\sigma - \sigma^k)) \right) \\
L[\Psi(\sigma)] u - b
\end{pmatrix}.
\]

(21)

At each time step \(k\), we apply a damped version of the inexact Newton-Raphson method to eq. (21) that, given \(0 < \alpha \leq 1\), amounts to finding the sequence \((u^{k,r}, \sigma^{k,r})_{r=1\ldots r_{\text{max}}}\) with \((u^{k,1}, \sigma^{k,1}) = (u^k, \sigma^k)\) and defined as follows:

\[
\mathcal{J} \left[ u^{k,r}, \sigma^{k,r}, \Delta t_k \right] \begin{pmatrix} x \\ y \end{pmatrix} = - \begin{pmatrix}
f(u^{k,r}, \sigma^{k,r}, \Delta t_k) \\
g(u^{k,r}, \sigma^{k,r}, \sigma^k, \Delta t_k)
\end{pmatrix},
\]

(22)

\[
\begin{pmatrix} u^{k,r+1} \\ \sigma^{k,r+1} \end{pmatrix} = \begin{pmatrix} u^{k,r} \\ \sigma^k \end{pmatrix} + \alpha \begin{pmatrix} x \\ y \end{pmatrix},
\]

(23)

where matrix \(\mathcal{J}\) is the Jacobian matrix of the function \((f, g)\). At each Newton step we find an approximate solution of the linear system in eq. (22) such that

\[
\left\| \mathcal{J} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} f \\ g \end{pmatrix} \right\|_2 \leq \epsilon \left\| \begin{pmatrix} f \\ g \end{pmatrix} \right\|_2,
\]

(24)
with $\epsilon > 0$, iterated until
\[
\left\| \begin{bmatrix} f/\|b\| \\ g \end{bmatrix} \right\|_2 \leq \epsilon_N ,
\]
with $\epsilon_N > 0$ (we scale by $\|b\|$ in order to get a relative residual in the solution of the linear system that defines the function $f$). The damping parameter should be kept ideally $\alpha = 1$ in order to get the quadratic convergence of the Newton method. However, smaller $\alpha$ is used in order to prevent failures of the linear and the non-linear solvers.

The Jacobian matrix $\mathcal{J}$ in eq. (22) can be calculated as follows:
\[
\mathcal{J} [u, \sigma, \Delta t] = \begin{bmatrix} \mathcal{A} [\sigma] & \mathcal{B}^T [u, \sigma] \\ \mathcal{B} [u, \sigma] & \mathcal{C} [\Delta t, u, \sigma] \end{bmatrix},
\]
where
\[
\mathcal{A} [\sigma] = L[\Psi(\sigma)] = E \text{diag} (\Psi(\sigma)) G; \\
\mathcal{B} [u, \sigma] = \frac{1}{2} \text{diag} ((Gu) \odot \sigma) E^T , \\
\mathcal{C} [\Delta t, u, \sigma] = \text{diag} \left( w \odot (\frac{1}{4} \odot ((Gu)^2 - 1) + \frac{1}{\Delta t}) \right) .
\]
We will refer to the procedure described in this section as the Gradient Flow (GF) approach, as in [31].

**Remark 2** Here, it is worth highlighting some similarities between the Gradient Flow approach proposed in this paper and the interior point methods for the solution of minimization problems with non-linear constraints [32]. In fact, the functional $\mathcal{L}$ is nothing but the Lagrangian functional of the dual problem of Problem (5), where the constraints are rewritten as in eqs. (6) and (7). In interior point methods, this Lagrangian functional is relaxed with a penalization functional of the constraints (typically a logarithmic barrier function), scaled by a relaxation factor $\nu > 0$, that is progressively reduced along the optimization process. In our approach the relaxation functional is the distance square $\|x - y\|^2$ which plays the role of the factor $\nu$. In both schemes, the stationary equations for the scaled functional are solved via inexact Newton. Moreover the sequence of approximated solutions is following in both cases an underlying “curve”, the integral solution of the ODE (15) for the gradient descent equation, and the Central Path of the interior point methods.

### 4.2 Linear system solution

All the discretization schemes described in section 4.1 require the solution of a sequence of sparse linear systems. In the GD and the AGD approaches, these linear systems only involve weighted Laplacian matrices, thus algebraic multigrid solvers can efficiently handle these problems, often with computational time that scales linearly with the size of the matrix. In particular, in our experiments we adopt the AGgregation-based algebraic MultiGrid (AGMG) software described in [33] and the Lean Algebraic MultiGrid (LAMG) described in [34], which has been developed specifically for the solution of linear systems involving weighted Laplacian matrices. The GF approach instead requires the solution of the saddle point linear system in eq. (24). We refer to [35] for a complete overview on this topic. We propose two approaches to tackle this linear algebra problem.

**Reduced-MG approach** The first approach proposed in this paper exploits the fact that the matrix $C$ is diagonal, thus it can be trivially inverted, under some restriction on the time step size $\Delta t$. The resulting reduced linear system reads as
\[
\frac{S_C}{\mathcal{A} + \mathcal{B}^T C^{-1} \mathcal{B}} x = f + \mathcal{B}^T g = \bar{f} ,
\]
\[
y = C^{-1} (\mathcal{B} x - g) ,
\]
where matrix $S_C$ is nothing but the Schur complement of the block $C$ of the matrix $\mathcal{J}$, which can be rewritten in the form
\[
S_C = E \text{diag} (\bar{\mu}) W^{-1} E^T = L[\bar{\mu}] ,
\]
with $\bar{\mu}$ given by
\[
\bar{\mu} = \mu + \Delta t \frac{1}{1 - \frac{\Delta t}{4} ((Gu)^2 - 1)} .
\]
As long as $\bar{\mu}$ is positive, matrix $C$ takes the form of a weighted Laplacian matrix, thus it can be solved efficiently via algebraic multigrid solvers. We denote this approach with Reduced-MG. The downside of the Reduced-MG approach is that we are forced to impose a restriction on the time step size $\Delta t_k$, thus more time steps are required to reach steady state. In fact, in order to preserve positivity of $\bar{\mu}$ and to avoid division by numbers close to zero, at each time step, before starting the Newton process, we choose $\Delta t_k$ to satisfy the constraint

$$
\max_{e=1,\ldots,m} \left\{ c_{e,e} = \frac{1}{\Delta t_k} - (Gu)_{e}^2 + 1 \right\} \geq \varepsilon_C > 0.
$$

(28)

Then, the damping parameter $\alpha$ in eq. (23) is tuned so that eq. (28) holds at each step of the Newton process. We start from $\alpha = 1$ (which corresponds to the classical Newton method) and we progressively reduce $\alpha$ until condition (28) is met. If $\alpha$ becomes smaller than a prefixed lower bound $\alpha_0$ (which in our experiments is fixed at $\alpha_0 = 5 \times 10^{-2}$) we abort the Newton procedure, restarting it after halving the time step size $\Delta t_k$. Although having $\alpha < 1$ destroys the quadratic convergence of the Newton-Raphson approach, our numerical experiments suggest that it prevents in most cases the failure of the Newton method. After a few damped Newton iterations, $\alpha$ remains equal to 1 and the quadratic convergence is restored.

**Full-LSC approach** A possible strategy for avoiding the time step size limitation of the Reduced-MG approach is to solve the entire saddle point system instead of the reduced system. However, we want to avoid forming and then approximating the inverse of the Schur complement of the block $A$ of the matrix $J$, which is given by

$$
S_A = -(C + BA^{-1}B^T).
$$

To this aim, we first note that the matrix $J$ in eq. (26) can be factored as follows

$$
J = ZW[\Delta t, u, \sigma]Z^T,
$$

(29)

where matrices $W$ and $Z$ are given by

$$
W[\Delta t, u, \sigma] = \begin{pmatrix}
\operatorname{diag}(\Psi(\sigma)) & \frac{1}{2}\operatorname{diag}(\sigma \odot (Gu)) \\
\frac{1}{2}\operatorname{diag}(\sigma \odot (Gu)) & -\operatorname{diag}\left(\frac{1}{\Delta t} - \frac{1}{4}(Gu)^2 - 1\right)
\end{pmatrix},
$$

$$
Z = \begin{pmatrix}
EW^{-1/2} & 0 \\
0 & W^{1/2}
\end{pmatrix}.
$$

The factorization of $J$ in eq. (29) and the fact that matrices $Z, Z^T$ resembles the divergence and gradient operators in the graph setting, make us consider the Least Square Commutator (LSC) preconditioner, introduced in [36], as a preconditioner for solving the saddle point linear systems in our problem. The LSC preconditioner, applied to the solution of the linear system in eq. (22), can be written as

$$
P_W = (ZZ^T)^+ ZW^{-1}Z^T(ZZ^T)^+ = \begin{pmatrix}
L^+ & 0 \\
0 & W^{-1}
\end{pmatrix}.
$$

We use the preconditioner $P_W$ within the flexible GMRES algorithm [37]. This preconditioner would be extremely appealing from the computational point of view, since, besides a few diagonal scalings and sparse matrix-vector products, it only relies on solving twice a linear system with an unweighted Laplacian matrix. Unfortunately, the performance of the preconditioner degrades after a few time steps starting form $\mu_0 = 1$. This suggests considering a second factorization of the Jacobian matrix, namely

$$
J = Z_\mu V[\Delta t, u, \sigma]Z_\mu^T,
$$

where matrices $V$ and $Z_\mu$ are given by

$$
V[\Delta t, u, \sigma] = \begin{pmatrix}
I & \operatorname{diag}(Gu) \\
\operatorname{diag}(Gu) & -\operatorname{diag}\left(\frac{1}{\Delta t} - \frac{1}{4}(Gu)^2 - 1\right)
\end{pmatrix},
$$

$$
Z_\mu = \begin{pmatrix}
EW^{-1/2} & 0 \\
0 & W^{1/2}
\end{pmatrix}.
$$

Note that this factorization strongly relies on the transformation chosen, $\Psi(\sigma) = (\sigma)^2/4$. The resulting LSC preconditioner reads as follows:

$$
P_V = (Z_\mu Z_\mu^T)^+ Z_\mu V^{-1} Z_\mu^T (Z_\mu Z_\mu^T)^+ = \begin{pmatrix}
L_{\mu}^+ & 0 \\
0 & W^{-1}
\end{pmatrix}.
$$
again used within the flexible GMRES algorithm. Similar to the reduced system approach, at each time step and at each Newton step we restrict the time step size $\Delta t_k$ and the damping parameter $\alpha$ so that the following condition holds:

$$\max \left\{ \frac{1}{\Delta t} - \frac{1}{4} \left( \langle Gu \rangle^2 - 1 \right) + \langle Gu \rangle^2 \right\} \geq \varepsilon c ,$$

in order to avoid inversion of matrices close to being singular. In this case, the main computational effort is spent in the solution of two linear systems with $\mu$-weighted Laplacian matrices, which can be achieved with the algebraic multigrid approach. We denote this preconditioner approach as full-LSC.

## 5 Numerical Experiments

In this section, we describe three test cases we devised in order to test the accuracy and efficiency of the different methods proposed for the solution of the OTP on graphs.

**Test-case 1** The first test-case problem is the Single Source Shortest Path (SSSP), which can be described as follows. Fix a node $\bar{v}$ in the graph $G$, say $\bar{v} = v_1$. We want to find the shortest-path distance from the node $v_1$ to all other nodes in $G$. Thus we want to determine

$$d^* \in \mathbb{R}^n, \quad d^*_i := \text{dist}_G(v_1, v_i).$$

The solution of the SSSP is naturally related to the problem of finding a shortest path tree rooted at $v_1$. This is a spanning tree $T$ of $G$ such that, given any node $v$ in $V\setminus v_1$, the path from the root $v_1$ to $v$ (unique since $T$ is a tree) is a shortest path from $v_1$ to $v$ in $G$. Note that there may exist multiple shortest path trees. The SSSP and the OTP on graphs are related by the following proposition.

**Proposition 2** The solution of the SSSP problem rooted at $v_1$ is equivalent to solving the OTP on graphs with the following source and sink vectors:

$$b^+_i = \begin{cases} 0 & \text{if } i = 1 \\ 1/(n-1) & \text{otherwise} \end{cases}, \quad b^-_i = \begin{cases} 1 & \text{if } i = 1 \\ 0 & \text{otherwise} \end{cases}.$$

Given any shortest-path tree $T$ rooted at $v_1$, the vectors

$$u^* = d^*, \quad \mu^*_e(T) := \begin{cases} \frac{1}{n-1} \{\text{Number of shortest paths in } T \text{ between any node } v_i \text{ and } v_1 \text{ passing through edge } e\} & \text{if } e \in T \\ 0 & \text{otherwise} \end{cases},$$

$$q^* = \mu^* \odot Gu^*,$$

solve Problems $\{\text{7, 9,}\}$ and $\{\text{5}\}$ respectively.

**Proof 1** The proof of the above Proposition is based on the fact that vectors $q^*$ and $u^*$ in eqs. $\{\text{51, 53}\}$ and $\{\text{31}\}$ are admissible solutions of Problems $\{\text{1, 3,}\} and $\{\text{5}\}$, and the duality gap in eq. $\{\text{12}\}$ is zero, ensuring optimality of both solutions. Note that this holds true taking any convex combination of elements in the set $\{\mu^*(T) : T = \text{Shortest Path Tree rooted at } v_1\}$.

This test case is particularly relevant in our discussion, being an example where the solution of Problem $\{\text{5}\}$ is unique (up to a constant), while the solutions of Problems $\{\text{3, 4,}\}$ and $\{\text{9}\}$ are not. In fact, for any $\mu^*$, the kernel of the matrix $L[\mu^*]$ consists only of the constant vectors, since each node of the graph is "surrounded" by at least one edge with non-zero conductivity. In contrast, the attractor of the dynamical equation eq. $\{\text{15}\}$ is the image through the map $\Psi^{-1}$ of any convex combination of $\{\mu^*(T) : T = \text{Shortest path Tree}\}$.

In this test case we consider graphs describing the node connection of a regular grid triangulation of the square $[0,1] \times [0,1]$, thus two coordinates $(x_i, y_i)$ are assigned to each node $i$. The vector $\nu$ is the Euclidean distance between the nodes connected by two edges. Node $v_1$ has coordinates $(0.5, 0)$. We generate a sequence of graphs $(G_j = (V_j, E_j))_{j=0,\ldots,5}$ starting from an initial triangulation $T_0$ (reported in fig. $\{\text{1}\}$), conformally refined 5 times.
Test-case 2  The second test-case problem is the graph counterpart of Test-case 1 considered in [27], where the OTP is posed in the continuous setting $\mathcal{X} = [0, 1] \times [0, 1]$. We consider the same sequence of graphs $(\mathcal{G}_j)_{j=0,...,5}$ described in Test-case 1 and a forcing term $b$ given by
$$b_i = \begin{cases} 
C & \text{if } x_i, y_i \in [0.125, 0.375] \times [0.25, 0.75] \\
-C & \text{if } x_i, y_i \in [0.625, 0.875] \times [0.25, 0.75] \\
0 & \text{otherwise}
\end{cases},$$
where $C = (\sqrt{n} - 1)$. For this test-case there exist explicit solutions for Problems (4), (5) and (9). In fact, taking the barycenters of the edges of $\mathcal{G}$
$$(\bar{x}, \bar{y})_e = 0.5(x_i + x_j, y_i + y_j), \quad e = (v_i, v_j),$$
a solution $\mu^*$ of Problem (9) is given by
$$\mu^*_e = \begin{cases} 
C(\bar{x}_e - 0.125) & \text{if } \bar{x}_e \in [0.125, 0.375], \quad y_{v_1} = y_{v_2} \in [0.25, 0.75] \\
2 & \text{if } \bar{x}_e \in [0.375, 0.625], \quad y_{v_1} = y_{v_2} \in [0.25, 0.75] \\
C(0.875 - \bar{x}_e) & \text{if } \bar{x}_e \in [0.625, 0.875], \quad y_{v_1} = y_{v_2} \in [0.25, 0.75] \\
0 & \text{otherwise}
\end{cases},$$
while a solution of Problem (5) is given by
$$u^*_i = x_i.$$ (34)
Then, it is easy to check that $q^* = \mu^* \odot G u^*$ and $u^*$ satisfy the constraints of Problems (4) and (5) with zero duality gap, proving that they are optimal solutions. Note that there exist infinitely many solutions of Problem (5). In fact, it is possible to “perturb” the values of the solution $u^*$ in eq. (34) on those nodes “outside” the rectangle $[0.125, 0.875] \times [0.25, 0.75]$, still satisfying the constraints of Problem (5), while the value of the cost functional $b^T u^*$ remains the same.

In fig. 1, we report the graph $\mathcal{G}_0$, together with the spatial distribution of the forcing term $b$ and optimal solution $\mu^*$. 

Test-case 3  In the third test-case, we consider graphs less structured than those in Test-case 1 and Test-case 2. In particular we consider three well-known categories of synthetic random graphs: the Erdös-Rényi [38], the Watts-Strogatz [39], and the Barabasi-Albert graphs [40]. We generate graphs with increasing number of nodes/edges using the Python package Networkx (see [41]). We repeat this procedure 10 times, getting groups of 10 graphs with similar characteristics (number of nodes, number of edges, construction procedure) but different topology structure. We assign to each graph a different forcing term $b$ and weight $w$. The forcing term vector $b$ is generated randomly within a uniform distribution in $[-1, 1]$ on a fraction of the nodes. We consider two scenarios, one where all entries of the forcing term $b$ are non-zeros (similar to Test-case 1) and another where this holds only for the 10% of the entries (similar to
Figure 2: Plot of the quantity $err_{\mu^*}$ defined in eq. (35) versus CPU time for the Gradient Descent (GD), Accelerated Gradient Descent (AGD) and the Gradient Flow (GF) approaches. We report the results for Test-Case 2 using $G_3$ (66049 nodes and 197120 edges). The left panel reports the error evolution for the whole simulation. The right panel, with dashed border, magnifies the portion of the left panel where the GF approach converged to the optimal solution.

Test-case 2). The negative entries of the resulting vector $b$ are then scaled so that $b^T 1 = 0$. The weight vector $w$ is generated randomly with a uniform distribution in $[0.5, 1.5]$. This procedure is done in order to average the metrics of our simulations (total number of time steps, Newton steps, CPU time, etc.) when the results are presented.

6 Numerical Results

All the experiments presented in this section are done on a quad-core 1.8 GHz 64-bit Intel Core I7 machine with 16 GBs memory. The software is written in Matlab, with the linear solvers AGMG and LAMG working via MEX interface. All simulations were performed on a single core. We summarize in section 6.6 a discussion on the values of the different parameters that control our algorithm.

6.1 Gradient Descent - Accelerated Gradient Descent - Gradient Flow

In this section we compare in terms of accuracy and computational efficiency the three time discretization schemes for eq. (15) described in section 4.1, Gradient Descent (GD), Accelerated Gradient Descent (AGD), and Gradient Flow (GF). To this aim, we consider only Test case-2, where we have an explicit formula for the optimal solution $\mu^*$ of Problem (9), and we report in fig. 2 the evolution of the $\mu$-error

$$err_{\mu^*}(\mu) = \|\mu - \mu^*\|_w/\|\mu^*\|_w,$$  

(35)

with respect to CPU time for the three approaches. We present only the results for $G_3$ (66049 nodes and 197120 edges) since they are representative of what we observed using smaller and larger graphs. The initial data used is $\sigma_0 = \Psi^{-1}(1)$. In the GD and the AGD approaches, we start from an initial time step size $\Delta t_k = 0.1$ progressively increased by a factor 1.05 until a maximum of $\Delta t_k = 2$, which was found experimentally to guarantee stability of the schemes. In the GF scheme we adopt the Reduced-MG approach for the solution of the linear systems arising from the Newton method, thus the time step size is tuned according to condition eq. (28). For these experiments, the AGMG software turns out to be the most efficient among the multigrid solvers for the arising linear systems.

The left panel in fig. 2 shows that the GF approach outperforms the other two methods in terms of overall efficiency. On the right panel we magnify the portion of the left panel where the GF approach converges toward the optimal solution. Here, we can see that each time step of GD and AGD requires much less computational effort with respect to the GF approach, but more time steps are required. The error-versus-time plot using the GD approach is monotonically decreasing, but the convergence is extremely slow. Using the ADG scheme, the convergence toward the optimum is
The results in table 2 show that the number of time steps required to reach steady state is practically constant with the size of graph. From this, we can conclude that the GF approach reduces the number of time steps and non-linear iterations, resulting in a greater efficiency handled via algebraic multigrid methods.

6.2 Reduced-MG vs Full-LSC

In this section we compare the different approaches presented in section 4.2 for the solution of the saddle point linear system. We take the graphs $G_0$, $G_1$, and $G_2$ of Test-case 1. We consider $\sigma^0 = \Psi^{-1}(1)$, and we fix $\varepsilon = 10^{-6}$. In this experiment AGMG turns out to be, again, the most efficient multigrid solver for the linear systems with weighted Laplacian matrices we need to solve in both approaches. The Full-LSC approach requires less time steps, since the restriction in eq. (30) is less strict than that in eq. (28). This results in fewer linear systems to be solved and in fewer failures of the linear and non-linear solvers, but the overall performance of the preconditioner $\mathcal{P}_G$ is worse. In fact, not only it requires the approximate solution of two weighted Laplacian systems via multigrid solver for each flexible GMRES iteration, but the total number of iterations increases rapidly with the size of the graph.

The Reduced-MG approach may require a greater number of time steps and non-linear iterations, resulting in a greater number of linear systems to be solved. However, these linear systems involve weighted Laplacian matrices that can be efficiently handled via algebraic multigrid methods.

6.3 Test-case 1

In this section we present the results obtained for Test-case 1, taking the graphs $(G_j)_{j=0,\ldots,5}$. In this test case, we adopt the GF scheme combined with the reduced-MG approach, using the AGMG algorithm as algebraic multigrid solver, since it turns out to be the most efficient in terms of CPU time. In all experiments we used $\sigma^0 = \Psi^{-1}(1)$ as initial data. We use a tight tolerance $\varepsilon = 10^{-14}$ to declare the convergence toward the steady state. For this test-case, we measure the accuracy of the method using the relative error with respect to the optimal solution $u^*$ of Problem (5) given in eq. (31), i.e.,

$$\text{err}_{u^*}(u) := \|u - u^*\|_2/\|u^*\|_2.$$  (36)

The results in table 2 show that the number of time steps required to reach steady state is practically constant with respect to the size of graph. The same holds with the total number of Newton steps, which corresponds to the number of linear systems we need to solve. We attribute this phenomenon to the fact that, for this test case, the graph considered is “grid-like” and the kernel of matrix $L[\mu^*]$ consists only of the constant vectors. The experiments in the next sections show that when one of these two conditions fails, the total number of linear systems to be solved grows with the size of the graphs. We observed a modest increase in the average number of multigrid iterations per linear system, which goes from 12 for the smallest ($\approx 10^3$ nodes/edges) to 19 for the largest graph ($\approx 10^6$ nodes/edges). This results in a CPU
Table 2: Results for Test-case 1. From left to right, we report: the graph considered with the number of nodes $|V|$ and edges $|E|$; the number of time steps required to achieve steady state, the total number of Newton steps (equal to the number of linear systems to be solved), the total number of multigrid iterations performed, the CPU time in seconds, and the error in the steady state solution $\tilde{u}$ with respect to the optimal potential $\hat{u}$ defined in eq. (36).

Figure 3: Plot of the $u^*$-error (given in eq. (36)) and the norm of $\nabla \tilde{L}(\sigma(t))$ against the CPU time for Test-Case-1, for $G_0$ (left) and $G_5$ (right).

The second test case turns out to be a more challenging problem for the GF approach. In fact, using the Reduced-MG approach, the efficiency is strongly influenced by the evolution of the vector $(Gu)^2 - 1$, appearing in the definition of the matrix $C = \text{diag} \left( \frac{1}{\Delta t} - ((Gu)^2 - 1) \right)$ in eq. (26). When $\max((Gu)^2) < 1$ or $\max((Gu)^2) \approx 1$ a larger time step size $\Delta t_k$ and $\alpha = 1$ (the undamped Newton method) can be used. On the other
We summarize in table 3 the numerical results for Test-case 2, with and without the edge selection. While for the
where we can use the GD and the AGD approaches at a lower computational cost. As already mentioned in section 6,

Table 3: Numerical Results for Test-case 2. Each row corresponds to a different graph. Number of nodes/edges

| $G$ | $T$ | $N$ | AGMG | $L$ [s] | LBW [%] | LP [s] | $\|G\hat{u}\|_\infty - 1$ | $\text{err}_{\mu*}(\hat{\mu})$ |
|-----|-----|-----|------|--------|--------|-------|-----------------|-----------------|
| $G_0$ | 10 | 29 | 415 | 0.11 | (80-09-11) | 0.06 | 2.3e-13 | 3.5e-11 |
|     | 10 | 31 | 361 | 0.12 | (74-10-16) |     | 4.0e-14 | 8.4e-12 |
| $G_1$ | 12 | 36 | 539 | 0.39 | (83-06-11) | 0.54 | 1.9e-10 | 1.8e-11 |
|     | 10 | 38 | 523 | 0.39 | (80-08-12) |     | 1.0e-10 | 4.8e-13 |
| $G_2$ | 11 | 45 | 825 | 1.79 | (90-04-06) | 8.77 | 2.1e-13 | 4.6e-12 |
|     | 11 | 56 | 961 | 2.78 | (87-07-06) |     | 1.3e-11 | 2.5e-11 |
| $G_3$ | 11 | 56 | 1,166 | 14.4 | (93-03-04) | 189.74 | 1.4e-10 | 2.0e-11 |
|     | 11 | 65 | 1,323 | 15.3 | (89-06-05) |     | 1.3e-16 | 1.9e-12 |
| $G_4$ | 22 | 121 | 2,530 | 144 | (75-03-22) | 6,287 | 3.3e-11 | 1.8e-11 |
|     | 21 | 131 | 2,568 | 141 | (71-05-24) |     | 2.3e-16 | 9.2e-13 |
| $G_5$ | 101 | 329 | 5,312 | 1,230 | (83-04-13) |     |     |     |
|     | 37 | 242 | 4,765 | 888 | (76-06-18) |     | 1.0e-15 | 8.9e-14 |

hand, if $\max((Gu)^2) > 1$, more time and Newton steps are required to reach steady state. However, we note that most
of the edges where $\max((Gu)^2) >>> 1$ are those with conductivity $\mu$ going to zero. Thus, the rows of the matrix $L[\mu]$
corresponding to the nodes that belong to these edges became almost null. Oscillation of the potential $u$ and thus in
the gradient vector $Gu$, may appear when we get closer to the optimal solution $\sigma^* = \Psi^{-1}(\mu^*)$, which contains several
zeros entries.

A simple strategy to cope with this problem is to divide the graph $G$ in two sub-graphs, $G_{\text{on}} = (V_{\text{on}}, E_{\text{on}})$
and $G_{\text{off}} = (V_{\text{off}}, E_{\text{off}})$. The first, $G_{\text{on}}$, contains only those edges with conductivity $\mu$ above a fixed threshold $\delta > 0$, and
the nodes connected by those edges. The second, $G_{\text{off}}$, contains the remaining edges and nodes. The time evolution is
restricted to the graph $G_{\text{on}}$. On the graph $G_{\text{off}}$ the conductivity $\mu$ is set to zero on all edges in $E_{\text{off}}$, while the potential $u$
restricted to node in $V_{\text{off}}$ is fixed at the value given at the time of the selection. This strategy closely resembles the
Heuristic Optimality Check approach considered in [44] for the solution of the Basis Pursuit Problem. It may also be
seen as an application of the Active Set method in optimization [45]. On the other hand, from an algebraic perspective,
we are trying to identify and remove the near-null vectors of matrix $L[\mu]$. We summarize in table 3 the numerical results for Test-case 2, with and without the edge selection. While for the

We summarize in table 3 the numerical results for Test-case 2, with and without the edge selection. While for the

The drawback of this approach is that it requires to tune the parameter $\delta$. We found experimentally that $\delta = 10^{-10}$
is a suitable threshold for the test-cases considered. In all simulations we obtain highly accurate approximations of the
optimal solutions and the constraints on the vector $Gu$.
In order to show the accuracy and efficiency of the GF approach along the whole optimization process, we present
in fig. 3 the evolution of three different errors against the CPU time. In particular, we report the relative error with respect
to the optimal solution \( q^* \), the error of the cost functional in Problem 4, which estimates the error in computation
of the Wasserstein distance, and the error of the constraint of Problem 5. We report only the results for the smallest
and the largest graph, \( G_0 \) and \( G_5 \), using the Reduced-MG approach with selection of the active edges with \( \delta = 10^{-9} \).
Figure 3 shows how having a good approximation of the value of Problem 4 does not guarantee having a good solution
of the problem, since Problem 4 is convex but not strictly. Similar to Test-case 1, most of the computational effort is
spent during the initial phase where the errors are reduced approximately to \( 10^{-4} \). Then the convergence accelerates
and the optimal solutions of Problems 4 and 5 are found in few time steps. On the left panel of fig. 3, which shows
the results for \( G_0 \), we can see that the \( L^\infty \)-norm of \( Gu(\tau) \) converges rapidly to 1, thus large time step sizes are used,
and thus few time steps are required to reach steady state. On the right panel, which shows the results for \( G_5 \), we can
see that when the \( L^\infty \)-norm of the gradient vector \( Gu(\tau) \) exceeds 1 we are forced to shrink the time step size, resulting
in more but less costly time steps.

6.5 Test-case 3

In this section we summarize the numerical results obtained for the graphs of the Test-case 3. In this case, the LAMG
solver turns out to be more efficient and robust than the AGMG solver, which does not converge within the maximum
number of multigrid iterations (fixed at 100) when we consider the largest graphs. In all simulations, we started from
\( \sigma^0 = \Psi^{-1}(1) \), with the edge selection strategy active. We summarize in table 4 the averaged results for the different
inputs of systems of Test-case 3. We observed an increased number of time steps and Newton steps with the size of
the graph, with the later scaling, approximately, between \( O(n^{0.31}) \) and \( O(n^{0.36}) \). This result compares well with the
theoretical upper bound presented in [15], which estimates the cost of solving Problem 3 on bipartite graphs with the
solution of \( O(n^{3/7}) \). Unfortunately, as we already observed in Test case 1 and 2, the number of
multigrid iterations per linear system increases with the size of the graphs. Nevertheless, the resulting total CPU time
scales certainly better than the \( O(n^2) \)-time for solving the \( L^1 \)-OTP described in [16].

6.6 Parameter tuning

In this section we want to summarize the crucial role played by the different parameters introduced above. In particular
the non-linear tolerance \( \epsilon_N \), the linear solver precision \( \epsilon \), the bound \( \epsilon_C \) in eq. (28), and the lower bound \( \alpha_0 \) for the
damping parameter \( \alpha \). These parameters play competing roles in the accuracy and the performance of the algorithm.
For example, the value of \( \epsilon_C \) influences the time step size \( \Delta t \). Typically, taking smaller time steps results in a higher
number of time steps, but less non-linear iterations, each one requiring the solution of the linear system in eq. (22).
Table 4: Results for Test-case 3. The first column describes the test case (TC) considered, distinguishing among the Erdős-Rényi (ER), Watts-Strogatz (WS), and the Barabasi-Albert (BA) graphs. It also indicates the percentage of non-zero elements of \( b \), 10% or 100%. The second and third columns describe the dimensions of the graphs considered. From left to right, we report: the total number of time steps required to achieve convergence (T), the total number of Newton steps (N), the total number of LAMG iterations performed (LAMG), and the CPU-time in seconds required to achieve convergence. The results reported are the average of 10 different graphs with similar dimensions. The last columns reports the minimum and the maximum of the error in the constraint of Problems (4) and (5). In all simulation the duality gap in eq. (12) is close to machine precision.

Table 5: Parameters used in most of the numerical experiments.

| Parameter | Value |
|-----------|-------|
| \( \epsilon_N \) (non-linear tolerance in eq. (25)) | \( 10^{-8} \) |
| \( \epsilon \) (linear solver tolerance in eq. (24)) | \( 10^{-4} \) |
| \( \delta_{c} \) (\( \Delta t \) tuning in eq. (28)) | \( 10^{-8} \) |
| \( \alpha_0 \) (lower bound for \( \alpha \)) | \( 5 \times 10^{-2} \) |
| \( \hat{\epsilon} \) (convergence criterion in eq. (17)) | \( 10^{-12} \) |
| \( \delta \) (selection threshold) | \( 10^{-9} \) |
| \( \tau_{max} \) (max. Newton steps) | 30 |

Smaller time steps size also result in fewer failures of the linear and non-linear solvers. A second example is given by the lower bound \( \alpha_0 \) imposed to the damping parameter \( \alpha \). Smaller values of \( \alpha_0 \) results in fewer failures of the non-linear solver, but an increased number of damped Newton steps. In certain cases, it may be more convenient to perform two time steps with \( \Delta t \) rather than one single time step with \( 2\Delta t \).

Finding a good combination among all these parameters, in order to obtain fast and accurate solution of the OTP on graphs, is not a trivial task. In table 5 we summarize a combination of parameters that we found experimentally to give a good trade-off between accuracy and efficiency in finding the solution of the OTP on graphs.
7 Conclusions

In this paper we have presented a novel gradient descent approach for the numerical solution of the $L^1$-OTP on graphs. We have also presented different numerical approaches based on this gradient descent dynamics. The GF method with the Reduced-MG approach is found to be an accurate, efficient, and robust solver for the $L^1$-OTP on graphs. Different types of graphs have been used, with different forcing terms. The numerical experiments show that the number of time steps with the GF-Reduced-MG approach ranges between being constant and scaling proportionally to $O(n^{0.36})$ depending on the type of graph $G$ and the forcing term $b$. We observed the same scaling in the total number of Newton steps, which coincides with the number of linear systems with weighted Laplacian matrix we need to solve. The selection of active edges/nodes described in section 6.4 drastically affects the efficiency of the GF-Reduced-MG approach, even if it requires tuning a parameter that is problem-dependent.

The proposed approach is iterative, thus any approximate solution can be used as initial data for the approximation process. Thus it may be integrated with a fast but inaccurate algorithm for Problem (4), since most of the computation effort is spent in the initial steps, while closer to the optimum the convergence of the GF accelerates. This can be accomplished by introducing a multi-level version of the algorithm, like in [46], where an initial solution is obtained interpolating an approximate solution computed on a coarser graph. The coarsening/ prolongation strategy used by the AGMG and the LAMG softwares should provide an excellent tool to this aim. Parallelization of the multigrid linear solver is also a future improvement that we want to introduce in our method, in order to tackle problems on large-scale graphs. Depending on the graph structure, optimal scalability of the multigrid solver (which accounts for almost all the computation effort) can be achieved.

A second line of research should be aimed in making more robust and less problem-dependent the algorithm. In particular, the selection of the active-inactive portion of the graph described in section 6.4 may be replaced by the identification, via algebraic methods, of the near-null space of the weighted Laplacian matrices, similar to the approach proposed in [47]. Last, a deeper theoretical investigation of the proposed time-stepping scheme may help in defining new and more robust strategies to tune the parameters, summarized in table 5, that govern our algorithm.

References

[1] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. De l’Imprimerie Royale, 1781.
[2] Leonid V. Kantorovitch. On the translocation of masses. Management Sci., 5:1–4, 1958.
[3] Filippo Santambrogio. Optimal Transport for Applied Mathematicians. Birkäuser, NY, 2015.
[4] Luigi Ambrosio. Lecture notes on optimal transport problems. In Lecture Notes in Mathematics, pages 1–52. Springer, Berlin, Heidelberg, 2003.
[5] Cédric Villani. Optimal Transport: Old and New, volume 338. Springer Science & Business Media, 2008.
[6] Yunan Yang, Björn Engquist, Junzhe Sun, and Brittany F Hamfeldt. Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion. Geophysics, 83(1):R43–R62, 2018.
[7] Ludovic Métivier, Romain Brossier, Quentin Merigot, E Oudet, and Jean Virieux. An optimal transport approach for seismic tomography: Application to 3d full waveform inversion. Inverse Probl., 32(11):115008, 2016.
[8] Jan Lellmann, Dirk A Lorenz, Carola Schönlieb, and Tuomo Valkonen. Imaging with Kantorovich–Rubinstein discrepancy. SIAM J. Imaging Sci., 7(4):2833–2859, 2014.
[9] Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent. Optimal mass transport for registration and warping. Int. J. Comput. Vis., 60(3):225–240, 2004.
[10] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of Wasserstein gans. In Adv. Neural. Inf. Process. Syst., pages 5767–5777. Curran Associates, Inc., 2017.
[11] Yong Lin, Linyuan Lu, and Shing Tung Yau. Ricci curvature of graphs. Tohoku Mathematical Journal, 63(4):605–627, 2011.
[12] Jayson Sia, Edmond Jonckheere, and Paul Bogdan. Ollivier-Ricci curvature-based method to community detection in complex networks. Sci. Rep., 9(1):1–12, 2019.
[13] Chien-Chun Ni, Yu-Yao Lin, Feng Luo, and Jie Gao. Community detection on networks with ricci flow. Sci. Rep., 9(1):1–12, 2019.
[14] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, 1 edition, 1993.
[15] A Madry. Navigating central path with electrical flows: From flows to matchings, and back. In *2013 IEEE 54th Annual Symposium on Foundations of Computer Science*, pages 253–262, 2013.

[16] Haibin Ling and Kazunori Okada. An efficient earth mover’s distance algorithm for robust histogram comparison. *IEEE Trans. Pattern Anal. Mach. Intell.*, 29(5):840–853, 2007.

[17] Montacer Essid and Justin Solomon. Quadratically regularized optimal transport on graphs. *SIAM J. Sci. Comput.*, 40(4):A1961–A1986, 2018.

[18] Enrico Facca, Franco Cardin, and Mario Putti. Physarum dynamics and optimal transport for basis pursuit. arXiv pre-prints, 2018.

[19] Yu.E. Nesterov. A method for solving the convex programming problem with convergence rate $O(1/k^2)$. *Dokl. Akad. Nauk. SSSR*, 269(3):543–547, 1983.

[20] Ivar Ekeland and Roger Témam. *Convex Analysis and Variational Problems*. Classics in Applied Mathematics. SIAM, Philadelphia, 1999.

[21] Gene H. Golub and Victor Pereyra. The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. *SIAM J. Num. Anal.*, 10(2):413–432, 1973.

[22] Vincenzo Bonifaci. A Laplacian approach to $\ell^3$-norm minimization. *arXiv preprint arXiv:1901.08836*, 2019.

[23] Atsushi Tero, Ryo Kobayashi, and Toshiyuki Nakagaki. A mathematical model for adaptive transport network in path finding by true slime mold. *J. Theor. Biol.*, 244(4):553–564, 2007.

[24] Vincenzo Bonifaci, Kurt Mehlhorn, and Girish Varma. Physarum can compute shortest paths. *J. Theor. Biol.*, 309:121–133, 2012.

[25] Enrico Facca, Franco Cardin, and Mario Putti. Towards a stationary Monge-Kantorovich dynamics: The Physarum Polycephalum experience. *SIAM J. Appl. Math.*, 78(2):651–676, 2018.

[26] Enrico Facca, Franco Cardin, and Mario Putti. Branching structures emerging from a continuous optimal transport model. *arXiv preprint 1811.12691*, 2018. Under review at *J. Comp. Phys*.

[27] Enrico Facca, Sara Daneri, Franco Cardin, and Mario Putti. Numerical solution of Monge–Kantorovich equations via a dynamic formulation. *J. Scient. Comput.*, 82(3):1–26, 2020.

[28] Enrico Facca, Andreas Karrenbauer, Pavel Kolev, and Kurt Mehlhorn. Convergence of the non-uniform directed Physarum model. *Theor. Comput. Sci.*, 816:184 – 194, 2020.

[29] Yuriii E Nesterov. *Introductory Lectures on Convex Optimization: A Basic Course*. Springer, 1 edition, 2014.

[30] Damien Scieur, Vincent Roulet, Francis Bach, and Alexandre d’Aspremont. Integration methods and optimization algorithms. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, NIPS’17, pages 1109–1118, Red Hook, NY, USA, 2017. Curran Associates Inc.

[31] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient Flows in Metric Spaces and in the Space of Probability Measures*. Birkhäuser, Basel, 2 edition, 2005.

[32] Stephen J. Wright. *Primal-Dual Interior-Point Methods*. SIAM, Philadelphia, 1997.

[33] Yvan Notay. Aggregation-based algebraic multigrid for convection-diffusion equations. *SIAM J. Sci. Comput.*, 34(4):A2288–A2316, 2012.

[34] Oren E. Livne and Achi Brandt. Lean algebraic multigrid (LAMG): Fast graph Laplacian linear solver. *SIAM J. Sci. Comput.*, 34(4):B499–B22, 2012.

[35] Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle point problems. *Acta Num.*, 14:1–137, 2005.

[36] Howard Elman, Victoria E. Howle, John Shadid, Robert Shuttleworth, and Ray Tuminaro. Block preconditioners based on approximate commutators. *SIAM J. Sci. Comput.*, 27(5):1651–1668, 2006.

[37] Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. *SIAM J. Sci. Stat. Comput.*, 14(2):461–469, 1993.

[38] Paul Erdős and Alfred Rényi. On random graphs. *Publ. Math. Debrecen*, 6:290–297, 1959.

[39] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of “small–world” networks. *Nature*, 393(6684):440–442, 1998.

[40] Albert László Barabási and Réka Albert. Emergence of scaling in random networks. *Science*, 286(5439):509–512, 1999.
[41] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[42] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling Nesterov’s accelerated gradient method: Theory and insights. In Advances in neural information processing systems, pages 2510–2518, 2014.

[43] Kamesh Madduri, David A. Bader, W. Berry Jonathan, and Joseph R. Crobak. An experimental study of a parallel shortest path algorithm for solving large-scale graph instances. In Proceedings of the 9th Workshop on Algorithm Engineering and Experiments and the 4th Workshop on Analytic Algorithms and Combinatorics, number January 2018, pages 23–35, 2007.

[44] Dirk A. Lorenz, Marc E. Pfetsch, and Andreas M. Tillmann. Solving basis pursuit: Heuristic optimality check and solver comparison. ACM Trans. Math. Softw., 41(2):1–28, 2015.

[45] Chunlei Zhang and Raúl Ordóñez. Numerical Optimization. Springer, 2012.

[46] Michele Benzi, Eldad Haber, and Lauren Taralli. Multilevel algorithms for large-scale interior point methods. SIAM J. Sci. Comput., 31(6):4152–4175, 2009.

[47] Luca Bergamaschi, Enrico Facca, Ángeles Martínez Calomardo, and Mario Putti. Spectral preconditioners for the efficient numerical solution of a continuous branched transport model. J. Comput. Appl. Math., 354:259 – 270, 2019.