Hamilton’s Principle and Rankine-Hugoniot Conditions for General Motions of Mixtures
Henri Gouin, Sergey L. Gavrilyuk

To cite this version:
Henri Gouin, Sergey L. Gavrilyuk. Hamilton’s Principle and Rankine-Hugoniot Conditions for General Motions of Mixtures. Meccanica, 1999, 34 (1), pp.39-47. 10.1023/A:1004370127958 . hal-00249829

HAL Id: hal-00249829
https://hal.science/hal-00249829v1
Submitted on 8 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Hamilton’s Principle and Rankine-Hugoniot Conditions for General Motions of Fluid Mixtures

Henri Gouin and Sergey Gavrilyuk
Université d’Aix-Marseille, Faculté des Sciences et Techniques, Laboratoire de Modélisation en Mécédique et Thermodynamique, Case 322, Avenue Normandie-Niemen, 13397 Marseille Cedex 20, France

E-mail: henri.gouin@univ-cezanne.fr; sergey.gavrilyuk@univ-cezanne.fr

Abstract. In previous papers [1-2], we have presented hyperbolic governing equations and jump conditions for barotropic fluid mixtures. Now we extend our results to the most general case of two-fluid conservative mixtures taking into account the entropies of components. We obtain governing equations for each component of the medium. This is not a system of conservation laws. Nevertheless, using Hamilton’s principle we are able to obtain a complete set of Rankine-Hugoniot conditions. In particular, for the gas dynamics they coincide with classical jump conditions of conservation of momentum and energy. For the two-fluid case, the jump relations do not involve the conservation of the total momentum and the total energy.

1. Introduction

Hamilton’s principle is a well-known method to obtain the equations of motion in conservative fluid mechanics (see, for example, [3-6]). It is less known that this variational method is suitable to obtain the Rankine-Hugoniot conditions through a surface of discontinuity [7-9]. The variations of Hamilton’s action are constructed in terms of virtual motions of continua. The virtual motions may be defined both in Lagrangian and Eulerian coordinates [3,10]. Such virtual motions yield the governing equations in different but equivalent forms. However the shock conditions are not equivalent. For example, for the gas dynamics, Hamilton’s principle in the Lagrangian coordinates yields the conservation of momentum and energy. In the Eulerian coordinates, we obtain only the conservation of energy and the conservation of the tangential part of the velocity field [7,8]. Here we use variations in the Lagrangian coordinates.

1 Extended version of the paper: "Meccanica 34: 39-47, 1999".
We assume that Hamilton’s action is defined with the help of a Lagrangian function which is the difference between the kinetic energy and a potential depending on the densities, the entropies and the relative velocity of the components of the mixture. This potential can be interpreted as a Legendre transformation of the internal energy [1-2,11].

In [1-2,11], we have considered only the case of molecular mixtures. The heterogeneous fluid, when each component occupies only a part of the mixture volume, can be described by the same system if one of the component is incompressible. Indeed, if the phase “1” is incompressible, the average density ρ_1 is related with the volume concentration of component φ_1 by $\rho_1 = \rho_{10}\varphi_1$, where $\rho_{10} = \text{const}$ is the physical density of the phase “1”. Hence, the knowledge of the average densities gives the volume concentrations and the physical densities. In the present paper, we do not distinguish these two cases. We shall call both cases “two-fluid mixtures”.

It is well known (see for example Stewart and Wendroff [12]) that the governing equations of two-fluid mixtures are not generally in a divergence form. In this case we may not obtain the shock conditions for the system. Moreover, the system is often non-hyperbolic, which means the ill-posedness of the Cauchy problem. The hyperbolic two-fluid models were constructed by many authors (see for example [13]). The problem to obtain the Rankine-Hugoniot conditions was an open question. This is the aim of our paper. By using Hamilton’s principle in non-isentropic case we obtain the governing equations for each component and a complete set of Rankine-Hugoniot conditions generalizing those obtained in [1-2] for barotropic motions. To present the basic ideas, we consider first in section 2 the one-velocity case and extend this approach in sections 3 and 4 to the two-fluid mixtures.

Let use asterisk “∗” to denote conjugate (or transpose) mappings or covectors (line vectors). For any vectors a, b we shall use the notation $a^\ast b$ for their scalar product (the line vector is multiplied by the column vector) and ab^\ast for their tensor product (the column vector is multiplied by the line vector). The product of a mapping A by a vector a is denoted by $A a$. Notation $b^\ast A$ means covector c^\ast defined by the rule $c^\ast = (A^\ast b)^\ast$. The divergence of a linear transformation A is the covector $\text{div} A$ such that, for any constant vector a,

$$\text{div}(A) a = \text{div} (A a).$$

Let A be any linear mapping defined on Ω_0 and $B = \frac{\partial z}{\partial Z}$ be the Jacobian matrix associated with the change of variables $z = M(Z)$, z belongs to Ω. Then,

$$\text{div} A = \text{det} B \text{div} \left(\frac{B}{\text{det} B} A \right),$$

(1.1)

where div_0 (div) means the divergence operator in Ω_0 (Ω). Equation (1.1) plays an important role.

The identical transformation is denoted by I, and the gradient line (column) operator by ∇ (∇^\ast). For divergence and gradient operators in time-space we use respectively symbols Div and Grad.

The elements of the matrix A are denoted be a_{ij}^* where i means lines and j columns. The elements of the inverse matrix A^{-1} are denoted by \bar{a}_{ij}. If $f(A)$ is a scalar function of A, the matrix $\frac{\partial f}{\partial A}$ is defined by the formula

$$(\frac{\partial f}{\partial A})^j_i = \frac{\partial f}{\partial a_{ij}}.$$

The repeated latin indices imply summation. Index $\alpha = 1, 2$ refers to the parameters of components: densities ρ_α, velocities u_α, etc.
2. One velocity fluid

The consequences of this section are well known. We obtain the classical governing equations and the Rankine-Hugoniot conditions for the gas dynamics. Nevertheless, the presented method is universal and is extended for two-fluid mixtures in the following sections.

Let \(\mathbf{x} = \left(\frac{t}{x} \right) \) be Eulerian coordinates of a particle and \(D(t) \) a volume of the physical space occupied by a fluid at time \(t \). When \(t \) belongs to the finite interval \([t_0, t_1]\), \(D(t) \) generates a four-dimensional domain \(\Omega \) in the time-space. A particle is labelled by its position \(\mathbf{X} \) in a reference space \(D_0 \).

For example, if \(D(t) \) consists always of the same particles \(D_0 = D(t_0) \) and we can define the motion of the continuum as a diffeomorphism from \(D(t_0) \) into \(D(t) \):

\[
\mathbf{x} = \varphi_t(\mathbf{X}).
\]

The motion (2.1) of the fluid is generalized in the following parametric form

\[
\begin{align*}
 t &= g(\lambda, \mathbf{X}) \\
 \mathbf{x} &= \mathbf{\phi}(\lambda, \mathbf{X})
\end{align*}
\]

or

\[
\mathbf{z} = M(Z),
\]

where \(Z = \left(\lambda, \mathbf{X} \right) \) belongs to a reference space denoted \(\Omega_0 \) and \(M \) is a diffeomorphism from a reference space \(\Omega_0 \) into the time-space \(\Omega \) occupied by the medium.

Equations (2.2) lead to the following expressions for the differentials \(dt \) and \(dx \),

\[
\left(\frac{dt}{dx} \right) = B \left(\frac{d\lambda}{dx} \right),
\]

where

\[
B = \frac{\partial M}{\partial Z} = \left[\begin{array}{c}
\frac{\partial g}{\partial \lambda} \cdot \frac{\partial \phi}{\partial \lambda} \\
\frac{\partial g}{\partial \mathbf{X}} \\
\frac{\partial \phi}{\partial \lambda} \\
\frac{\partial \phi}{\partial \mathbf{X}}
\end{array} \right].
\]

In an explicit form, we obtain from (2.3)-(2.4)

\[
\begin{align*}
 dt &= \frac{\partial g}{\partial \lambda} d\lambda + \frac{\partial g}{\partial \mathbf{X}} d\mathbf{X}, \\
 dx &= \frac{\partial \phi}{\partial \lambda} d\lambda + \frac{\partial \phi}{\partial \mathbf{X}} d\mathbf{X}.
\end{align*}
\]

Eliminating \(d\lambda \) from the first equation of (2.5) and substituting into the second, we obtain

\[
dx = u dt + F d\mathbf{X},
\]

where the velocity \(u \) and the deformation gradient \(F \) are defined by

\[
u = \frac{\partial \phi}{\partial \lambda} \left(\frac{\partial g}{\partial \lambda} \right)^{-1}, \quad F = \frac{\partial \phi}{\partial \mathbf{X}} - \frac{\partial \phi}{\partial \lambda} \frac{\partial g}{\partial \mathbf{X}} \frac{\partial g}{\partial \lambda}^{-1}.
\]

Let

\[
\begin{align*}
 t &= G(\lambda, \mathbf{X}, \varepsilon) \\
 \mathbf{x} &= \Phi(\lambda, \mathbf{X}, \varepsilon)
\end{align*}
\]

or

\[
\mathbf{z} = M_r(Z),
\]

where \(\varepsilon \) is a scalar defined in the vicinity of zero, be a one-parameter family of virtual motions of the medium such that

\[
M_0(Z) = M(Z).
\]
We define the virtual displacement $\zeta = (\tau, \xi)$ associated with the virtual motion (2.7):

$$\tau = \frac{\partial G}{\partial \varepsilon}(\lambda, X, 0), \quad \xi = \frac{\partial \Phi}{\partial \varepsilon}(\lambda, X, 0)$$

or

$$\zeta = \frac{\partial M}{\partial \varepsilon}(Z)_{|\varepsilon=0}.$$ \hspace{1cm} (2.8)

From the mathematical point of view, spaces Ω_0 and Ω play a symmetric role. From the physical point of view they are not symmetric: the tensorial quantities (thermodynamic or mechanical) are defined either on Ω_0 or on Ω. Their image in the dual space depends on the motion of the medium. For example, the potential of body forces Π is defined on Ω and the entropy s is defined on Ω_0.

Let us consider any tensorial quantity represented in the form

$$(t, x) \in \Omega \longrightarrow f(t, x).$$

The tensorial quantity associated with the varied motion is

$$\tilde{f}(\lambda, X, \varepsilon) = f(G(\lambda, X, \varepsilon), \Phi(\lambda, X, \varepsilon)) = f(M_{\varepsilon}(Z)).$$

We define the variation of f by

$$\delta f = \frac{\partial f}{\partial \varepsilon}(\lambda, X, 0).$$

For a tensorial quantity represented in the form

$$(\lambda, X) \in \Omega_0 \longrightarrow h(\lambda, X),$$

the tensorial quantity associated with the varied motion is unchanged and

$$\delta h = 0.$$

Let the Lagrangian of the medium be defined in the form

$$L = L(z, \frac{\partial M}{\partial Z}, Z) = L(z, B, Z).$$

This expression contains the gas dynamics model where the Lagrangian is [3]

$$L = \frac{1}{2} \rho \left(1 + |u|^2\right) - \varepsilon(\rho, s) - \rho \Pi(z)$$

$$= \frac{1}{2} \rho V^* V - \varepsilon(\rho, s) - \rho \Pi(z).$$ \hspace{1cm} (2.9)

Here $V = \left(\frac{1}{u}\right)$ is the time-space velocity, $\Pi(z)$ is the external force potential, ρ is the density defined by $\rho \det F = \rho_0(X)$, and s is the entropy per unit mass defined by $s = s_0(Z)$.

It is not necessary to assume that s_0 is a function of X only. This property will be a consequence of the variational principle (see formula (D.1) in Appendix D).

The Hamilton action is:

$$a = \int_\Omega L(z, B, Z) \, d\Omega.$$ \hspace{1cm} (2.10)
For the gas dynamics we obtain from (2.4), (2.6):

\[\mathbf{V} = \left(\frac{1}{u} \right) = \frac{B \ell}{\mu}, \]

(2.11)

where \(\ell^* = (1, 0, 0, 0) \) and \(\mu = \ell^* B \ell = b_1^1 = \frac{\partial g}{\partial \lambda} \).

Consequently,

\[\frac{1}{2} \left(1 + |u|^2 \right) = \frac{1}{2} \frac{\ell^* B^* B \ell}{\mu^2}. \]

(2.12)

Moreover,

\[\rho = \frac{\mu}{\det B} \rho_0(\mathbf{X}). \]

(2.13)

In the Lagrangian coordinates Hamilton’s action (2.10) is

\[a = \int_{\Omega_0} L(\mathbf{z}, B, \mathbf{Z}) \det B \, d\Omega_0, \]

and the varied action is

\[a(\varepsilon) = \int_{\Omega_0} L(M_\varepsilon(\mathbf{Z}), \frac{\partial M_\varepsilon(\mathbf{Z})}{\partial \mathbf{Z}}, \mathbf{Z}) \det \left(\frac{\partial M_\varepsilon(\mathbf{Z})}{\partial \mathbf{Z}} \right) \det B \, d\Omega_0. \]

Let \(T(\Omega) \) be the tangent bundle of \(\Omega \).

The Hamilton principle is:

For any continuous virtual displacement \(\zeta \) belonging to \(T(\Omega) \) such that \(\zeta = 0 \) on \(T(\partial \Omega) \),

\[\delta a = \left. \frac{da}{d\varepsilon} \right|_{\varepsilon = 0} = 0. \]

Consequently,

\[\delta a = \int_{\Omega_0} \left\{ \det B \frac{\partial L}{\partial \mathbf{z}} \delta \mathbf{z} + \det B \left(\frac{\partial L}{\partial B} \delta B \right) + L \delta (\det B) \right\} d\Omega_0. \]

The Euler-Jacobi identity

\[\delta \det B = tr \left(\frac{\partial \det B}{\partial B} \delta B \right) = tr \left(B^{-1} \delta B \right) = \det B \left(B^{-1} \delta B \right) \]

and the relation issued from definitions (2.4), (2.8)

\[\delta B = \frac{\partial \zeta}{\partial \mathbf{Z}} = \frac{\partial \zeta}{\partial \mathbf{Z}} B \]

yield

\[\delta a = \int_{\Omega} \left\{ S^* \zeta + tr \left(T \frac{\partial \zeta}{\partial \mathbf{Z}} \right) \right\} d\Omega, \]

where

\[S^* = \frac{\partial L}{\partial \mathbf{Z}} \quad \text{and} \quad T = L I + B \frac{\partial L}{\partial B}. \]

The Gauss-Ostrogradskii formula involves

\[\delta a = \int_{\Omega} (S^* - \text{Div } T) \zeta d\Omega + \int_{\partial \Omega} N^* T \zeta \, d\omega, \]

where \(N^* \) is the external normal to \(\partial \Omega \) and \(d\omega \) is the local measure of \(\partial \Omega \).
If the motion is continuous on Ω and $\zeta = 0$ on $\partial \Omega$, we get
\[\delta a = \int_{\Omega} (S^* - \text{Div} \, T) \zeta \, d\Omega. \]

Consequently, the governing equations are
\[S^* - \text{div} \, T = 0. \tag{2.14} \]

In Appendix A we verify that (2.14) corresponds to classical momentum and energy equations. If there exists a surface Σ of discontinuity of B separating Ω into two parts Ω_1 and Ω_2 we get
\[\delta a = \int_{\Omega_1} (S^* - \text{Div} \, T) \zeta \, d\Omega_1 + \int_{\Omega_2} (S^* - \text{Div} \, T) \zeta \, d\Omega_1 + \int_{\Sigma} N^* [T] \zeta \, d\omega, \]
where $[T] = T_1 - T_2$ denotes the jump of T over Σ.

Consequently the fundamental lemma of calculus of variations involves the Rankine-Hugoniot conditions
\[N^* [T] = 0. \tag{2.15} \]

Because N^* is collinear to $[-D_n, n^*]$, where D_n is the normal velocity of Σ and n is the normal unit space vector, relations (2.15) are the classical Rankine-Hugoniot conditions representing the conservation of momentum and energy through the shock (see Appendix A and [7]).

3. Two-fluid models: General calculations

We shall study now two-fluid motions, the method being extended to any number of components. We generalize the representation of the motion (2.2) considering the motion of a two-fluid mixture as two diffeomorphisms [14]
\[z = M_\alpha (Z_\alpha), \]
where $Z_\alpha = \begin{bmatrix} \lambda_\alpha \\ X_\alpha \end{bmatrix}$ belongs to a reference space Ω_α associated with the α-th component. The Jacobian matrix is defined by the formula
\[B_\alpha = \frac{\partial M_\alpha}{\partial Z_\alpha} (Z_\alpha). \]

The velocity u_α and the deformation gradient F_α are defined similarly to (2.6). Two one-parameter families of virtual motions are associated with the two diffeomorphisms
\[\begin{cases} z = M_{1,\varepsilon_1} (Z_1) \\ z = M_2 (Z_2) \end{cases} \tag{3.1} \]
such that $M_{1,0} (Z_1) = M_1 (Z_1)$, and
\[\begin{cases} z = M_1 (Z_1) \\ z = M_{2,\varepsilon_2} (Z_2) \end{cases} \tag{3.2} \]
such that $M_{2,0} (Z_2) = M_2 (Z_2)$.

The two families extend the concept of virtual motion defined in section 2. Consider the family (3.1), but all the consequences are the same for the family (3.2). We define the virtual displacement of the first component by the relation
\[\zeta_1 = \left. \frac{\partial M_{1,\varepsilon_1}}{\partial \varepsilon_1} (Z_1) \right|_{\varepsilon_1 = 0}. \]
Virtual motion (3.1) generates a displacement of component "2"

\[M_{1, \varepsilon_1}(Z_1) = M_2(Z_2) \]

which defines \(Z_2 \) as a function of \(Z_1 \) and \(\varepsilon_1 \). Taking the derivative with respect to \(\varepsilon_1 \) and denoting

\[\delta_1 Z_2 = \frac{\partial Z_2}{\partial \varepsilon_1} \big|_{\varepsilon_1=0}, \]

we obtain

\[\delta_1 Z_2 = B_2^{-1} \zeta_1. \]

(3.3)

Let us consider any tensorial quantity \(f \) in Eulerian coordinates:

\[z \in \Omega \rightarrow f(z). \]

The tensorial quantity associated with the varied motion is then

\[\tilde{f}(Z_1, \varepsilon_1) = f(M_{1, \varepsilon_1}(Z_1)) \]

and consequently \(\delta_1 f = \frac{\partial \tilde{f}}{\partial \varepsilon_1}(Z_1, 0) \) is the variation of \(f \).

Let us consider the Lagrangian of the medium in the representation

\[L = L(z, B_1, B_2, Z_1, Z_2). \]

(3.4)

For example, the Lagrangian of a two-fluid mixture is [1-2, 4-6, 11]:

\[L = \frac{1}{2} \rho_1 (1+|u_1|^2) + \frac{1}{2} \rho_2 (1+|u_2|^2) - W(\rho_1, \rho_2, s_1, s_2, u_2 - u_1) - \rho \Pi(z), \]

(3.5)

where \(\rho_\alpha \) is the density of the \(\alpha \)-th component defined by

\[\rho_\alpha \det F_\alpha = \rho_{0,\alpha}(X_\alpha), \]

\(s_\alpha \) is the entropy per unit mass of the \(\alpha \)-th component defined by the relation

\[s_\alpha = s_{0,\alpha}(Z_\alpha), \]

and \(\Pi(z) \) is the potential of external forces.

One can easily obtain the formulae analogous to (2.11)-(2.13) for \(\rho_\alpha \) and \(u_\alpha \) in terms of \(B_\alpha \) and \(Z_\alpha \). Hence, the Lagrangian (3.5) may be rewritten in the form (3.4). The variation associated with the application (3.1) yields

\[\delta_1 a = \int_{\Omega_1} \delta_1 (L \det B_1) \, d\Omega_1. \]

Calculations presented in Appendix B give the following result:

\[\delta_1 a = \int_{\Omega} \left\{ tr \left(T \frac{\partial \zeta_1}{\partial z} - T_1 \frac{\partial \delta_1 Z_2}{\partial z} \right) + S_1 \zeta_1 \right\} \, d\Omega, \]

(3.6)

where

\[T = L I + B_1 \frac{\partial L}{\partial B_1} + B_2 \frac{\partial L}{\partial B_2}, \]

\[T_1 = B_2 \frac{\partial L}{\partial B_2} B_2, \]

\[S_1 = \frac{\partial L}{\partial Z_2} B_2^{-1} + \frac{\partial L}{\partial z}. \]

(3.7)
The Gauss-Ostrogradskii formula and relation (3.3) involve
\[\delta_1 a = \int_{\Omega} \left\{ \mathbf{S}_1^* - \text{Div} \mathbf{T} + (\text{Div} \mathbf{T}_1) B_2^{-1} \right\} \mathbf{\zeta}_1 \, d\Omega + \int_{\partial \Omega} \mathbf{N}^*(T - T_1 B_2^{-1}) \mathbf{\zeta}_1 \, d\Sigma. \tag{3.8} \]

Using the arguments described in section 2, we obtain from (3.8) both governing equations and Rankine-Hugoniot conditions for component "1"
\[\mathbf{S}_1^* - \text{Div} \mathbf{T} + (\text{Div} \mathbf{T}_1) B_2^{-1} = 0. \tag{3.9} \]
\[\mathbf{N}^*[T - T_1 B_2^{-1}] = 0. \tag{3.10} \]

Since \(T - T_1 B_2^{-1} = L I + B_1 \frac{\partial L}{\partial B_1} \), equation (3.10) is equivalent to
\[\mathbf{N}^* \left[L I + B_1 \frac{\partial L}{\partial B_1} \right] = 0. \tag{3.11} \]

Equations for component "2" are obtained by permutation indexes "1" and "2":
\[\mathbf{S}_2^* - \text{Div} \mathbf{T} + (\text{Div} \mathbf{T}_2) B_1^{-1} = 0 \tag{3.9'} \]
and
\[\mathbf{N}^*[T - T_2 B_1^{-1}] = 0 \tag{3.10'} \]

Formula (3.10') can be rewritten in an equivalent form
\[\mathbf{N}^* \left[L I + B_2 \frac{\partial L}{\partial B_2} \right] = 0. \tag{3.11'} \]

Let us remark that the equations (3.9) and (3.9') are not in a divergence form. Let us denote
\[\mathbf{S}^* = \frac{\partial L}{\partial z} \tag{3.12} \]
and
\[\mathbf{S}_{0\alpha}^* = \det B_\alpha \frac{\partial L}{\partial z_\alpha}, \quad T_{0\alpha} = -\det B_\alpha \frac{\partial L}{\partial B_\alpha} B_\alpha. \tag{3.13} \]

Identities
\[T_{02} \equiv -(\det B_2) B_2^{-1} T_1, \quad T_{01} \equiv -(\det B_1) B_1^{-1} T_2, \]
\[\mathbf{S}_1^* = \mathbf{S}^* + \frac{1}{\det B_2} \mathbf{S}_{02}^* B_2^{-1}, \quad \mathbf{S}_2^* = \mathbf{S}^* + \frac{1}{\det B_1} \mathbf{S}_{01}^* B_1^{-1}, \]
and (1.1) involve that (3.9) and (3.9') are equivalent to
\[\mathbf{S}^* - \text{Div} \mathbf{T} + \frac{1}{\det B_1} (\mathbf{S}_{01}^* - \text{Div}_1 T_{01}) B_1^{-1} = 0, \tag{3.14} \]
and
\[\mathbf{S}^* - \text{Div} \mathbf{T} + \frac{1}{\det B_2} (\mathbf{S}_{02}^* - \text{Div}_2 T_{02}) B_2^{-1} = 0, \tag{3.14'} \]
where \(\text{Div}_\alpha T_{0\alpha} \) means the divergence of \(T_{0\alpha} \) with respect to the \(\alpha \)-th Lagrangian coordinates. The following identity (C.1) proved in Appendix C,
\[\mathbf{S}^* - \text{Div} \mathbf{T} + \frac{1}{\det B_1} (\mathbf{S}_{01}^* - \text{Div}_1 T_{01}) B_1^{-1} + \frac{1}{\det B_2} (\mathbf{S}_{02}^* - \text{Div}_2 T_{02}) B_2^{-1} \equiv 0 \]
and (3.14), (3.14') yield
\[\mathbf{S}^* - \text{Div} \mathbf{T} = 0. \tag{3.15} \]
Hamilton’s Principle and Rankine-Hugoniot Conditions for General Motions of Fluid Mixtures

We see in the next section that for fluid mixtures, equation (3.15) represents the conservation laws of total momentum and total energy. Hence, (3.14) and (3.14') are equivalent to:

\[S_{01} - \text{Div}T_{01} = 0, \quad (3.16) \]
\[S_{02} - \text{Div}T_{02} = 0. \quad (3.16') \]

Equations (3.16) and (3.16') represent equations of motion for each component of a two-fluid medium in Lagrangian coordinates. They are less useful than equations in the Eulerian coordinates. However, they are in a divergence form and involve the conservation of the total momentum and the total energy.

4. Application to two-fluid mixtures

For a two-fluid mixture, the Lagrangian is (see (3.5)):

\[L = \frac{1}{2} \rho_1 |V_1|^2 + \frac{1}{2} \rho_2 |V_2|^2 - W(\rho_1, \rho_2, s_1, s_2, w) - \rho \Pi(z), \quad (4.1) \]

where

\[V_\alpha = \left(\begin{array}{c} u_\alpha \\ \ell \end{array} \right), \quad \rho_\alpha = \frac{\mu_\alpha \rho_0(\mathbf{X}_\alpha)}{\det B_{\alpha}}, \quad (4.2) \]
\[s_\alpha = s_0(\mathbf{Z}_\alpha). \quad (4.3) \]

Definitions (4.1)-(4.4) involve the governing equations (3.9), (3.9') in the following form (see Appendix D):

\[\begin{aligned}
\frac{\partial K_\alpha}{\partial t} + \text{rot} K_\alpha \times u_\alpha &= \nabla^\top (R_\alpha - K_\alpha u_\alpha) + \theta_\alpha \nabla^\top s_\alpha, \\
\frac{\partial \rho_\alpha}{\partial t} + \text{div} (\rho_\alpha u_\alpha) &= 0, \\
\frac{\partial (\rho_\alpha s_\alpha)}{\partial t} + \text{div} (\rho_\alpha s_\alpha u_\alpha) &= 0,
\end{aligned} \quad (4.5) \]

where

\[\rho_\alpha K_\alpha^* \equiv \frac{\partial L}{\partial u_\alpha} = \rho_\alpha u_\alpha^* - (-1)^\alpha \frac{\partial W}{\partial w}, \quad \text{with } w = u_2 - u_1, \]
\[R_\alpha \equiv \frac{\partial L}{\partial \rho_\alpha} = \frac{1}{2} |u_\alpha|^2 - \frac{\partial W}{\partial \rho_\alpha} - \Pi, \]
\[\rho_\alpha \theta_\alpha \equiv -\frac{\partial L}{\partial s_\alpha} = \frac{\partial W}{\partial s_\alpha}. \]

We notice here that the governing equations were obtained earlier by a different method in [11]. Equations (4.5) yield the conservation laws for the total momentum and the total energy associated with (3.15)

\[\frac{\partial}{\partial t} (\rho_1 K_1^* + \rho_2 K_2^*) + \text{div} \left(\rho_1 u_1 K_1^* + \rho_2 u_2 K_2^* + \left(\rho_1 \frac{\partial W}{\partial \rho_1} + \rho_2 \frac{\partial W}{\partial \rho_2} - W \right) I \right) + \rho \nabla \Pi = 0, \]
\[
\frac{\partial}{\partial t} \left(\sum_{\alpha=1}^{2} \rho_\alpha \frac{1}{2} |u_\alpha|^2 + \rho \Pi + W - \frac{\partial W}{\partial w} w \right) + \\
\text{div} \left(\sum_{\alpha=1}^{2} \rho_\alpha u_\alpha (K_\alpha^* u_\alpha - R_\alpha) \right) - \rho \frac{\partial \Pi}{\partial t} = 0.
\] (4.6)

In the general case, they are the only conservation laws admitted by the system. Hence, the system (4.5) is not in a divergence form. The Rankine-Hugoniot conditions (3.10)-(3.10') (or (3.11)-(3.11')) for this system are obtained in Appendix A(b) (see formulae (A.9)); they are

\[
- D_n (L - \rho_\alpha K_\alpha^* u_\alpha) + \rho_\alpha n^* u_\alpha (R_\alpha - K_\alpha^* u_\alpha) = 0,
\] (4.71)

\[
- D_n \rho_\alpha K_\alpha^* + n^* \left((L - \rho_\alpha R_\alpha) I + \rho_\alpha u_\alpha K_\alpha^* \right) = 0.
\] (4.72)

In addition, the mass conservation laws are expressed in the form

\[
\rho_\alpha (n^* u_\alpha - D_n) = 0.
\] (4.73)

Let us consider shock waves when \(n^* u_\alpha - D_n \neq 0 \). Taking into account (4.72) and (4.73) we obtain

\[
K_\alpha^* - (K_\alpha^* n) n = 0,
\] (4.81)

which means that \([K_\alpha] \) is normal to the shock. By using (4.71) and the identity

\[
L - \rho_\alpha K_\alpha^* u_\alpha = \frac{1}{D_n} n^* \left(\rho_\alpha u_\alpha (R_\alpha - K_\alpha^* u_\alpha) \right),
\]

we obtain from relation (4.72)

\[
K_\alpha^* u_\alpha - R_\alpha - D_n (K_\alpha^* n) = 0.
\] (4.82)

Consequently, (4.71) yields to

\[
L - \rho_\alpha R_\alpha + \rho_\alpha (n^* u_\alpha - D_n) K_\alpha^* n = 0.
\] (4.83)

Equations (4.71), (4.81) - (4.83) form a complete set of eight scalar Rankine-Hugoniot conditions, representing the conservation of mass, momentum and energy of \(\alpha \)-th component. For the gas dynamics, these conditions correspond to the classical shock conditions. We have to emphasize here that for the two-fluid model equations (4.81) - (4.83) do not involve the conservation of the total momentum and the total energy through the shock. We notice that the jump conditions (4.81) - (4.83) were obtained earlier for barotropic fluids using the variations in the Eulerian coordinates [1-2].

For contact discontinuities, when \(n^* u_\alpha - D_n = 0 \), we get from (4.71) - (4.73) \n
\[
L - \rho_\alpha R_\alpha = 0.
\] (4.84)
For the gas dynamics equation (4.8) corresponds to the continuity of the pressure. All the jump conditions are obtained from the Hamilton principle without any ambiguity.

5. Conclusion

Using the Hamilton principle we have obtained in the general conservative case the governing equations for two-fluid mixtures (4.5). The equations for the total quantities (total momentum and total energy) are in a divergence form (see (4.6)). The equations for the components are in divergence form only in the Lagrangian coordinates (see (3.16)-(3.16')). The Hamilton principle gives also a set of Rankine-Hugoniot conditions (4.71)−(4.72). Together with the equations of mass (4.73) they form a complete set of the jump relations. For the gas dynamics model they coincide with the classical Rankine-Hugoniot conditions of conservation of mass, momentum and energy.

6. Appendix A

In gas dynamics, the Lagrangian (2.9) is a function of $\mathbf{V} = \begin{pmatrix} \mathbf{U} \\ \rho \\ s \\ z \end{pmatrix}$, ρ, s and z. Formule (2.11)-(2.13) allow us to consider the Lagrangian as a function of z, B, Z:

$$\mathbf{V} = \frac{B}{\mu} \ell, \quad \mu = \ell^* B \ell, \quad \rho \det B = \mu \rho_0(X), \quad s = s_0(Z)$$

(A.1)

We need to calculate $T = L I + B \frac{\partial L}{\partial B}$. From (A.1) we have:

$$d\mu = \ell^* dB \ell = tr(\ell \ell^* dB), \quad \rho \frac{\partial L}{\partial \rho} d\rho, \quad \frac{\partial L}{\partial s} ds, \quad \frac{\partial L}{\partial z} dz.$$

(A.2)

Moreover,

$$\frac{\partial s}{\partial B} = 0.$$

(A.5)

The differential of $L = L(\mathbf{V}, \rho, s, z)$ is:

$$dL = \frac{\partial L}{\partial \mathbf{V}} d\mathbf{V} + \frac{\partial L}{\partial \rho} d\rho + \frac{\partial L}{\partial s} ds + \frac{\partial L}{\partial z} dz.$$

Taking into account relations(A.2)-(A.5), we obtain

$$dL = \frac{\partial L}{\partial \mathbf{V}} \left(\frac{dB}{\mu} \ell - \frac{B \ell}{\mu^2} d\mu \right) + \frac{\partial L}{\partial \rho} d\rho + \frac{\partial L}{\partial s} ds + \frac{\partial L}{\partial z} dz.$$
Henri Gouin and Sergey Gavrilyuk

\[
\text{tr} \left(\frac{\ell}{\mu} \frac{\partial L}{\partial \nabla V} dB - \frac{\partial L}{\partial \nabla V} \ell^* dB \right) + \frac{\partial L}{\partial \rho} \text{tr} \left(\frac{\partial L}{\partial \nabla V} dB \right) + \left(\frac{\partial L}{\partial \rho} \frac{\partial L}{\partial s} \frac{\partial L}{\partial \nabla Z} \right) dZ + \frac{\partial L}{\partial z} dz.
\]

Hence,

\[
\frac{\partial L}{\partial B} = \frac{\ell}{\mu} \frac{\partial L}{\partial V} \mu - \ell \ell^* \left(\frac{\partial L}{\partial V} B \right) \mu^2 + \frac{\partial L}{\partial \rho} \frac{\partial L}{\partial \rho} \frac{\partial L}{\partial B}.
\] \hspace{1cm} (A.6)

Then

\[
B \frac{\partial L}{\partial B} = B \frac{\ell}{\mu} \frac{\partial L}{\partial V} \mu - \left(\frac{\partial L}{\partial V} B \right) \mu \ell^* \mu^2 + \rho \frac{\partial L}{\partial \rho} \left(B \ell^* - I \right) .
\]

Taking into account (A.1), we obtain

\[
B \frac{\partial L}{\partial B} = V \frac{\partial L}{\partial V} \mu - \left(\frac{\partial L}{\partial V} V \right) \mu \ell^* + \rho \frac{\partial L}{\partial \rho} \left(V \ell^* - I \right) .
\] \hspace{1cm} (A.7)

and, (A.7) yields then

\[
T = L I + B \frac{\partial L}{\partial B} = \left(L - \rho \frac{\partial L}{\partial \rho} \right) I + V \frac{\partial L}{\partial V} \mu - \left(\frac{\partial L}{\partial V} V \right) \mu \ell^* + \rho \frac{\partial L}{\partial \rho} \left(V \ell^* - I \right) .
\] \hspace{1cm} (A.8)

a) In the case \(L = \frac{1}{2} \rho V^* V - \varepsilon(\rho, s) - \rho \Pi \) formula (A.8) can be rewritten in the form

\[
T = p I + \rho V V^* - \left(\frac{1}{2} V^* V + \varepsilon' + \Pi \right) \rho \ell^* ,
\]

where \(p = \rho c^2 - \varepsilon \). Then,

\[
T = \begin{bmatrix}
 -E , \rho u^* \\
 -(E + p)u , p I + \rho uu^*
\end{bmatrix} ,
\]

where \(E = \frac{1}{2} \rho V^* V + \varepsilon + \rho \Pi \) is the total volume energy.

Moreover, since \(S^* = -\rho \frac{\partial \Pi}{\partial z} \), we get the energy and momentum equations for gas dynamics motions

\[
\begin{cases}
 \frac{\partial E}{\partial t} + \text{div} \left((E + p)u \right) - \rho \frac{\partial \Pi}{\partial t} = 0 , \\
 \frac{\partial \rho u^*}{\partial t} + \text{div} \left(p I + \rho uu^* \right) + \rho \frac{\partial \Pi}{\partial x} = 0 .
\end{cases}
\]

Because \(N^* \) is collinear to \(-D_n , n^* \), the classical Rankine-Hugoniot conditions (2.15) are

\[
\begin{bmatrix}
 D_n E - (E + p)n^* u \\
 D_n \rho u^* - n^* (p I + \rho uu^*)
\end{bmatrix} = 0 .
\]

b) For the two-fluid model the Lagrangian is

\[
L = \frac{1}{2} \rho_1 V_1^* V_1 + \frac{1}{2} \rho_2 V_2^* V_2 - W(\rho_1, \rho_2, s_1, s_2, w) .
\]
Let us calculate δ and the Rankine-Hugoniot conditions for the two-fluid model are

We obtain similarly to (A.8)

$$L I + B_0 \frac{\partial L}{\partial B_\alpha} = \left(L - \rho_\alpha \frac{\partial L}{\partial \rho_\alpha} \right) I + V_\alpha \frac{\partial L}{\partial V_\alpha} - \left(\frac{\partial L}{\partial V_\alpha} V_\alpha - \rho_\alpha \frac{\partial L}{\partial \rho_\alpha} \right) V_\alpha \ell^*.$$

Here

$$\frac{\partial L}{\partial \rho_\alpha} = \rho_\alpha V_\alpha^* - \frac{\partial W}{\partial \rho_\alpha}$$

$$\frac{\partial L}{\partial \rho_\alpha} = \frac{1}{2} V_\alpha^* V_\alpha - \frac{\partial W}{\partial \rho_\alpha} - \Pi \equiv \rho_\alpha.$$

In a matrix form, we have

$$L I + B_0 \frac{\partial L}{\partial B_\alpha} = \begin{bmatrix} L - \rho_\alpha K_\alpha u_\alpha & \rho_\alpha K_\alpha \\ -\rho_\alpha u_\alpha K_\alpha^* u_\alpha - \rho_\alpha R_\alpha u_\alpha & (L - \rho_\alpha R_\alpha) I + \rho_\alpha u_\alpha K_\alpha^* \end{bmatrix},$$

and the Rankine-Hugoniot conditions for the two-fluid model are

$$N^* \begin{bmatrix} L - \rho_\alpha K_\alpha u_\alpha & \rho_\alpha K_\alpha \\ \rho_\alpha u_\alpha (R_\alpha - K_\alpha^* u_\alpha) & (L - \rho_\alpha R_\alpha) I + \rho_\alpha u_\alpha K_\alpha^* \end{bmatrix} = 0. \quad (A.9)$$

7. Appendix B

The variation $\delta_1 a$ is:

$$\delta_1 a = \int_\Omega \left\{ \delta_1 L + L \delta_1 (\det B_1)(\det B_1)^{-1} \right\} d\Omega = \int_\Omega \left\{ \delta_1 L + tr \left(L \frac{\partial \zeta_1}{\partial z} \right) \right\} d\Omega.$$

Formula (3.3) involves

$$\delta_1 L = tr \left(\frac{\partial L}{\partial B_1} \delta_1 B_1 + \frac{\partial L}{\partial B_2} \delta_1 B_2 \right) + \frac{\partial L}{\partial Z_1} B_1^{-1} \zeta_1 + \frac{\partial L}{\partial Z_2} \zeta_1. \quad (B.1)$$

By definition,

$$\delta_1 B_1 = \frac{\partial \zeta_1}{\partial z} B_1. \quad (B.2)$$

Let us calculate $\delta_1 B_2$. We get

$$\delta_1 B_2 = \delta_1 \left(\frac{\partial z_1}{\partial Z_2} \right) = \delta_1 \left(\frac{\partial z_2}{\partial Z_1} \right) \frac{\partial Z_1}{\partial Z_2} = \delta_1 \left(\frac{\partial z_2}{\partial Z_1} \right) \frac{\partial Z_1}{\partial Z_2} \frac{\partial Z_1}{\partial Z_1} \frac{\partial Z_1}{\partial Z_2}. \quad (B.3)$$

Since for any linear mapping $A : \delta(A^{-1}) = -A^{-1} \delta A A^{-1}$, we have

$$\delta_1 \left(\frac{\partial z_1}{\partial Z_2} \right) = -\frac{\partial z_1}{\partial Z_2} \delta_1 \left(\frac{\partial z_2}{\partial Z_1} \right) \frac{\partial Z_1}{\partial Z_2} = \frac{\partial z_1}{\partial Z_2} \delta_1 z_2 \frac{\partial Z_1}{\partial Z_2}. \quad (B.4)$$

Formulæ (B.3) and (B.4) involve that

$$\delta_1 B_2 = \frac{\partial \zeta_1}{\partial z} B_2 - \frac{\partial z_1}{\partial Z_2} \delta_1 z_2 \frac{\partial Z_1}{\partial Z_2} = \frac{\partial \zeta_1}{\partial z} B_2 - B_2 \frac{\partial \zeta_1}{\partial z} B_2. \quad (B.5)$$
Substituting (B.2) and (B.5) into (B.1) we get
\[
\delta_1 L = \text{tr} \left(\frac{\partial L}{\partial B_1} \frac{\partial \zeta_1}{\partial z} B_1 + \frac{\partial L}{\partial B_2} \left(\frac{\partial \zeta_1}{\partial z} B_2 - B_2 \frac{\partial \delta_1 Z_2}{\partial z} B_2 \right) \right) + \frac{\partial L}{\partial Z_2} B_2^{-1} \zeta_1 + \frac{\partial L}{\partial z} \zeta_1 =
\]
\[
= \text{tr} \left(\left(B_1 \frac{\partial L}{\partial B_1} + B_2 \frac{\partial L}{\partial B_2} \right) \frac{\partial \zeta_1}{\partial z} - B_2 \frac{\partial \delta_1 Z_2}{\partial z} \right) + \frac{\partial L}{\partial Z_2} B_2^{-1} \zeta_1 + \frac{\partial L}{\partial z} \zeta_1.
\]

Hence,
\[
\delta_1 L + \text{tr} \left(L \frac{\partial \zeta_1}{\partial z} \right) = \text{tr} \left(T \frac{\partial \zeta_1}{\partial z} - T_1 \frac{\partial \delta_1 Z_2}{\partial z} \right) + S^*_1 \zeta_1,
\]
where \(T, T_1 \text{ and } S^*_1 \) are defined in (3.7). The relation (3.6) is proved.

8. Appendix C

Theorem: The following expression is an identity
\[
S^* - \text{Div } T + \frac{1}{\det B_1} (S_{01} - \text{Div } T_{01}) B_1^{-1} + \frac{1}{\det B_2} (S_{02} - \text{Div } T_{02}) B_2^{-1} \equiv 0, \tag{C.1}
\]
where (see formulae (3.6), (3.12) - (3.13))

\[
\begin{cases}
S^* = \frac{\partial L}{\partial z}, \\
T = L I + B_1 \frac{\partial L}{\partial B_1} + B_2 \frac{\partial L}{\partial B_2}, \\
S^*_{0a} = \det B_a \frac{\partial L}{\partial Z_a}, \\
T_{0a} = - \det B_a \frac{\partial L}{\partial B_a}.
\end{cases}
\]

Proof: Using (1.1), we get
\[
\sum_{a=1}^{2} \frac{1}{\det B_a} (S^*_{0a} - \text{Div } T_{0a}) B_a^{-1} \equiv \sum_{a=1}^{2} \left(\frac{\partial L}{\partial Z_a} + \text{Div } (B_a \frac{\partial L}{\partial B_a}) \right) B_a^{-1}.
\]

We have to prove that this expression is identical to
\[
\text{Div } T - S^* \equiv \text{Div } \left(L I + B_1 \frac{\partial L}{\partial B_1} + B_2 \frac{\partial L}{\partial B_2} \right) - \frac{\partial L}{\partial z}.
\]

Indeed, by definition
\[
\text{Grad } L \equiv \frac{\partial L}{\partial z} + \frac{\partial L}{\partial Z_1} \frac{\partial Z_1}{\partial z} + \frac{\partial L}{\partial Z_2} \frac{\partial Z_2}{\partial z} + \text{tr} \left(\frac{\partial L}{\partial B_1} \frac{\partial B_1}{\partial z} \right) + \text{tr} \left(\frac{\partial L}{\partial B_2} \frac{\partial B_2}{\partial z} \right),
\]
where
\[
\left(\text{tr} \left(\frac{\partial L}{\partial B_a} \frac{\partial B_a}{\partial z} \right) \right)_p \equiv \left(\frac{\partial L}{\partial B_a} \right)^i_j \frac{\partial B^i_a}{\partial z^j}.
\]

Hence, we have to verify only the formula
\[
\text{Div } \left(B_a \frac{\partial L}{\partial B_a} \right) B_a^{-1} \equiv \text{Div } \left(B_a \frac{\partial L}{\partial B_a} \right) + \text{tr} \left(\frac{\partial L}{\partial B_a} \frac{\partial B_a}{\partial z} \right). \tag{C.2}
\]
Hamilton’s Principle and Rankine-Hugoniot Conditions for General Motions of Fluid Mixtures

To prove the identity (C.2) we may consider only $L = L(B)$, with $B = \frac{\partial z}{\partial z}$. Let $A = \frac{\partial L}{\partial B}$, then

$$\frac{\partial L}{\partial z} = \text{tr} \left(\frac{\partial L}{\partial B} \frac{\partial B}{\partial z} \right) = a^i \frac{\partial b^i}{\partial z}.$$

Hence,

$$\frac{\partial (b_i^b b_s^b)}{\partial z} b_p^s = \frac{\partial (b_i^b)}{\partial z} b^b b_s^b + b_j^b \frac{\partial b^b}{\partial z} b_p^s = \frac{\partial (b_i^b)}{\partial z} b^b b_s^b + b_j^b \frac{\partial b^b}{\partial z} b_p^s = \frac{\partial (b_i^b)}{\partial z} b^b b_s^b + b_j^b \frac{\partial b^b}{\partial z} b_p^s = \frac{\partial (b_i^b a_j^k)}{\partial z} b_p^s = \frac{\partial (b_i^b a_j^k)}{\partial z} b_p^s + b_j^b \frac{\partial a^k}{\partial z} b_p^s = \frac{\partial (b_i^b a_j^k)}{\partial z} b_p^s + b_j^b \frac{\partial a^k}{\partial z} b_p^s + a_k^m \frac{\partial b^k}{\partial z} b_p^s = \frac{\partial (b_i^b a_j^k)}{\partial z} b_p^s + a_k^m \frac{\partial b^k}{\partial z} b_p^s + a_k^m \frac{\partial b^k}{\partial z} b_p^s.$$

This is a proof of (C.2) and consequently (C.1).

9. Appendix D

First of all, we obtain the governing equations for each component in the Lagrangian coordinates. These equations yield easily the governing equation in the Eulerian coordinates. In the Lagrangian coordinates equations (3.16) – (3.16') are

$$S_{\alpha a}^* - \text{div}_a T_{\alpha a} = 0,$$

where

$$S_{\alpha a}^* = \text{det} B_a \frac{\partial L}{\partial Z_a} = R_a \mu_a \frac{\partial \rho_{\alpha a}}{\partial Z_a} - \text{det} B_a \rho_{\alpha a} \frac{\partial s_{\alpha a}}{\partial Z_a},$$

and

$$T_{\alpha a} = - \text{det} B_a \frac{\partial L}{\partial B_a}.$$

Similarly to (A.6) we obtain

$$\frac{\partial L}{\partial B_a} = \frac{\rho_{\alpha a} \mu_a}{\mu_a} \ell \ell^* \frac{\partial L}{\partial V_a} + \rho_{\alpha a} R_a \left(\ell \ell^* B_a - B_a^{-1} \ell \ell^* \right).$$

Consequently,

$$\text{det} B_a \frac{\partial L}{\partial B_a} B_a = \rho_{\alpha a} \ell \ell^* B_a - \rho_{\alpha a} \frac{\partial L}{\partial V_a} \ell \ell^* B_a + \rho_{\alpha a} R_a (\ell \ell^* B_a - \mu_a I).$$

If $\lambda_a = t$, $\mu_a = 1$, $B_a = \left[\begin{array}{cc} 1 & 0 \\ u_a & F_a \end{array} \right]$ and consequently,

$$T_{\alpha a} = \rho_{\alpha a} \left[\begin{array}{cc} 0 & -K_a^* F_a \\ 0 & R_a I \end{array} \right].$$

The governing equations of α-th component in the Lagrangian coordinates (t, X_a) are:

$$-\rho_{\alpha a} \ell \ell^* \text{det} B_a \frac{\partial s_{\alpha a}}{\partial t} = 0,$$

$$\frac{\partial}{\partial t} (\rho_{\alpha a} K_a^* F_a) - \text{div}_a (\rho_{\alpha a} R_a I) + R_a \frac{\partial \rho_{\alpha a}}{\partial X_a} - \rho_{\alpha a} \ell \ell^* \frac{\partial s_{\alpha a}}{\partial X_a} = 0.$$
Therefore,
\[\frac{\partial s_{0\alpha}}{\partial t} = 0, \]
\[(D.1) \]
\[\frac{\partial}{\partial t} (K^*_{\alpha} F_{\alpha}) - \nabla_{\alpha} R_{\alpha} - \theta_{\alpha} \nabla_{\alpha} s_{0\alpha} = 0. \]
\[(D.2) \]

Taking into account the identity
\[\frac{\partial F_{\alpha}}{\partial t} = \frac{\partial u_{\alpha}}{\partial x} F_{\alpha}, \]
and substituting the partial derivative with respect to time in the Lagrangian coordinates by the material derivative in the Eulerian coordinates, we obtain
\[\frac{d_{\alpha}}{dt} s_{0\alpha} = 0, \quad \text{with} \quad d_{\alpha} = \frac{\partial}{\partial t} + u_{\alpha} \nabla^*, \]
\[(D.1') \]
\[\frac{d_{\alpha}}{dt} K^*_{\alpha} + K^*_{\alpha} \frac{\partial u_{\alpha}}{\partial x} = \nabla R_{\alpha} + \theta_{\alpha} \nabla s_{\alpha}. \]
\[(D.2') \]
Let us note that (D.1'), (D.2') and the mass conservation laws are equivalent to (4.5).

References

1. Gavrilyuk, S.L., Gouin, H. and Perepechko, Yu.V., 'Un principe variationnel pour des mélange de deux fluides', C.R. Acad. Sci. Paris Série II b, 324 (1997), 485-490.

2. Gavrilyuk, S.L., Gouin, H. and Perepechko, Yu.V., 'Hyperbolic models of homogeneous two-fluid mixtures', Meccanica, 33 (1998), 161-175.

3. Serrin, J., 'Mathematical principles of classical fluid mechanics', Encyclopedia of Physics, VIII/1, Springer Verlag (1959), 125-263.

4. Berdichevsky, V.L., Variational Principles of Continuum Mechanics, Moscow, Nauka, 1983.

5. Geurst, J.A., 'Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures', Physica A 135 (1986), 455-486.

6. Geurst, J.A., 'Virtual mass in two-phase bubbly flow', Physica A 129 (1985), 233-261.

7. Gouin, H., 'Contribution à une étude géométrique et variationnelle des milieux continus', Thèse d'Etat, Université de Provence, France, (1978).

8. Gouin, H., 'Lagrangian representation and invariance properties of perfect fluid flows', in: Non Linear Problems of Analysis in Geometry and Mechanics, Research Notes in Mathematics, Pitman, 46 (1981), 128-139.

9. Serre, D., 'Sur le principe variationnel des équations de la mécanique des fluides parfaits', Math. Model. Num. Anal. 27(6) (1993), 739-758.

10. Gouin, H., 'Thermodynamic form of the equation of motion for perfect fluids of grad n', C.R. Acad. Sci. Paris Série II b, 305 (1987), 833-838.

11. Gouin, H., and Gavrilyuk, S.L., 'Dissipative models of mixtures', Rendiconti del circolo matematico di Palermo, serie II, Suppl. 78 (2006), 133-145.

12. Stewart, H.B., and Wendroff, B., 'Two-phase flow: models and methods', Journal of Comput. Physics 56 (1984), 363-409.

13. Prosperetti, A., and Satrape, J.V., 'Stability of two-phase flow models', in: Joseph, D.D. & Schaeffer, D.G., (Ed.) Two-Phase Flows and Waves, Springer Verlag (1990), 98-117.

14. Gouin, H., 'Variational theory of mixtures in continuum mechanics', Eur. J. Mech. B/Fluids 9 (1990), 469-491.