Smoothened-dependent and independent pathways in mammalian non-canonical Hedgehog signaling

Alessandra V. de S. Faria1,2,†, Adamu Ishaku Akyala1,3,†, Kaushal Parikh4, Lois W. Brüggemann5, C. Arnold Spek5, Wanlu Cao1, Marco J. Bruno1, Maarten F. Bijlsma5, Gwenny M. Fuhler1, Maikel P. Peppelenbosch1,4*

From the 1Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands. 2Department of Biochemistry and Tissue Biology, Biology Institute, University of Campinas, Campinas, São Paulo, Brazil. 3Department of Microbiology, Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi, Nasarawa State Nigeria. 4Department of Cell Biology, University Medical Center Groningen, The Netherlands. 5 Center for Experimental and Molecular Medicine, Academic Medical Center, Room H2-257, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

Running title: Smoothened non-canonical Hedgehog signaling

†These authors share first authorship
*To whom correspondence should be addressed: Maikel P. Peppelenbosch: Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, NL-3000 CA Rotterdam, The Netherlands, Telephone: +31-10-7032792, Fax: +31-10-7032793, Email: m.peppelenbosch@erasmusmc.nl

Keywords: Sonic Hedgehog; Signal Transduction; Endocytosis; non-canonical morphogen signaling; cell fate; kinome profiling; cell signaling; cancer; cell receptor; cytoskeletal remodeling

ABSTRACT

Hedgehog proteins are pivotal morphogens acting through canonical pathway involving first activation of ligand binding to Patched followed by alleviation of Smoothened receptors inhibition, leading to activation of Gli transcription factors. Noncanonical Hedgehog signaling remains poorly characterized, but is thought to be mainly dependent on Smoothened. However, Smoothened inhibitors have yielded only partial success in combating Hedgehog signal transduction-dependent cancer, suggesting that noncanonical Smoothened-independent pathways also are clinically relevant. Moreover, several Smoothened-dependent effects (e.g. neurite projection) do not require transcriptional activation, further suggesting biological importance of noncanonical Smoothened-dependent pathways. We comprehensive characterized the cellular kinome in Hedgehog-challenged murine wildtype and Smoothened-/- fibroblasts, as well as Smoothened agonist–stimulated cells. A peptide assay–based kinome analysis (in which cell lysates are used to phosphorylate specific kinase substrates), along with endocytosis, Lucifer yellow–based, and immunoblotting assays, identified an elaborate signaling network of both Smoothened-dependent and -independent pathways that mediates actin reorganization through Src-like kinases, activates various proinflammatory signaling cascades, and concomitantly stimulates Wnt and Notch signaling, while suppressing bone morphogenetic protein (BMP) signaling. The contribution of noncanonical Smoothened-independent signaling to overall effects of Hedgehog on cellular physiology appears to be much larger than previously envisioned and may explain the transcriptionally independent effects of Hedgehog signaling on cytoskeleton. The observation that Patched-dependent, Smoothened-independent, noncanonical Hedgehog signaling increases Wnt/Notch signaling provides a possible explanation for the failure of Smoothened antagonists in combating Hedgehog-dependent but Smoothened inhibitor–resistant cancer. Our findings suggest that inhibiting Hedgehog–Patched interaction could result in more effective therapies as compared to conventional Smoothened-directed therapies.

Introduction

Cell fate is determined by morphogens, molecules whose non-uniform distribution governs the pattern of tissue development [1,2]. Notable examples of
morphogens include Hedgehog, Wingless-related integration site (Wnt) and Bone morphogenetic protein (BMP) [3-5]. The intracellular signaling resulting from engagement of morphogens with their cognate receptors is involved in many physiological and pathophysiological processes, including embryogenesis, tissue regeneration, and carcinogenesis. Fully understanding morphogen signaling is therefor of the utmost importance [6]. Unfortunately, morphogen signaling is often extremely complex, a special case to point being signal transduction initiated by Hedgehogs [7].

Hedgehog proteins are a highly conserved family of intercellular signalling molecules. Originally identified as a Drosophila segment polarity gene required for embryonic patterning, several vertebrate homologues have been discovered—Indian (Ihh), Desert (Dhh) and Sonic Hedgehog (Shh), the latter being most extensively characterised [8]. Hedgehog signals are fundamental regulators of embryonic development, as illustrated by embryological malformations seen when accurate timing of Hedgehog signals during gestation is corrupted [9]. Hedgehog remains active in the post-embryonic period, maintaining histostasis in a variety of tissues, including the gastrointestinal tract and the immune system [10]. Continuous hedgehog signalling is an essential permissive factor for many cancers and causative in basal cell carcinoma of the skin [11]. In humans, one-allelic loss of the inhibitory hedgehog receptor Patched is sufficient to produce the so-called Gorlin syndrome [12], which is associated with rhabdomyosarcoma and the development of multiple basal cell carcinomas.

Despite the importance of Hedgehog signalling for human physiology and pathophysiology, the molecular details underlying this signalling pathway remain only partly characterized. The primary receptor for Hedgehogs is Patched, an unconventional receptor, as it does not convey the Hedgehog signal to the intracellular components of the pathway itself. Rather, binding of Hedgehog to Patched alleviates the inhibitory effect of Patched on another membrane receptor, Smoothened. The Patched inhibition alleviation is probably caused by internalization of Patched following Hedgehog binding, but the signaling mechanisms involved remain obscure [13]. Subsequently, Smoothened mediates the activation of the latent transcription factor glioma-associated oncogene (Gli) via a process which involves the kinase Fused (Fu), the Suppressor of Fused protein (Su(Fu)) [14, 15] and inhibition of Gli proteolysis. Gli proteins are considered the final transcriptional effectors of Hedgehog signaling, both in normal vertebrate development as well as oncological disease [16]. Together this signalling cascade may be termed the canonical hedgehog pathway. It is obvious that enhanced knowledge of the signaling elements involved in this pathway should prove exceedingly useful in defining novel rational therapy directed at disease emanating from aberrant activation of canonical Hedgehog signaling.

In addition to canonical Hedgehog signalling, a role for transcription-independent signalling via Hedgehog has also been suggested [17-19]. Tantalizingly, the presence of canonical and non-canonical Hedgehog signaling opens the theoretical possibility to uncouple the anti-cancer effect of Hedgehog signaling on cancer in general [20] and the trophic effect of Hedgehog signaling on specifically cancer stem cells. In the absence, however, of knowledge on the molecular pathways that mediate these non-canonical effects of Patched-dependent but Smoothened-independent Hedgehog signaling, this possibility remains hypothetical only. In an effort to address this issue, here we endeavor to characterize the signaling pathways involved.

Results

Hedgehog stimulation provokes rapid and marked reorganization of the cellular kinome

We set out to characterize the kinase activities associated with Hedgehog challenge in general, as well as those specifically associated with Patched activation or Smoothened activation in isolation. To this end we exploited the power of peptide array-based kinome profiling, which allows the generation of comprehensive descriptions of cellular kinase activities [21-23]. The general approach to this study, both technically and biologically is provided through Figure 1. We characterized the kinase signatures associated with Hedgehog stimulation of mouse embryonic fibroblasts (MEFs), which we have recently shown to constitute a powerful model for delineating signal transduction events [24]. We established that under our experimental conditions, these cells do not endogenously release Hedgehog (not shown). Cells were incubated for 10 min with either 2 µg/mL Shh or a vehicle control, and the cell lysates were employed for in vitro phosphorylation of peptide
arrays using $^{33}\text{P}-\gamma\text{-ATP}$. Arrays consisted of 1024 different undecapeptides, of which 48 are various technical controls, whereas the remaining 976 peptides provide kinase substrate consensus sequences spanning the entire mammalian kinome and which we have shown earlier to provide comprehensive insight in cellular signal transduction [25]. On each separate carrier, the array was spotted three times, to allow assessment of possible variability in substrate phosphorylation. As a control for the specificity of the reaction $^{33}\text{P}-\alpha\text{-ATP}$ was used; no incorporation of radioactivity was seen (data not shown). We then calculated the mean phosphorylation level for all substrates before and after the treatment (total number of data points is 9 for each group). The technical quality of the profiles was good, and we only allowed experiments in which the Pearson product moment correlation coefficient was more as 0.95 for the technical replicas. Results were collapsed on elective signal transduction categories (see experimental procedures and [25]).

The results are shown in Figure 2A and detailed in Supplementary table 1. They show that Hedgehog challenge provokes fast and substantial remodeling of cellular signaling. Particularly notable is the upregulation of mTOR signaling. mTOR is a key component of Hedgehog signaling and is a putative target for treating Hedgehog-driven cancers [26]. Other interesting points include an upregulation of G-protein-coupled receptor kinase enzymatic activity, which is able to control Smoothened activity [27, 28]. This is also in line with the fact that Smoothened itself is such a receptor and the observation that PKC enzymatic activity is upregulated, conform the canonical mode of action of G-protein coupled receptors. Strong regulation of PKA, a proposed regulator of Hedgehog signaling [29], is also seen. We observed activation of a variety of pro-inflammatory signaling modules (including Lyn, Fyn and peptides that are consensus substrates for Bruton’s tyrosine kinase), but as embryonic fibroblasts are not immunological cells, the importance of this observation is uncertain. In our untransformed epithelial model system, Hedgehog stimulation reduced Wnt signaling. These data are in line with studies shown that Hedgehog acts as an inhibitor of Wnt signaling in colon cells [30] although an activating role for Hedgehog on Wnt signaling has been proposed in cancer stem cells [31]. Lastly, the upregulation of substrate peptides for p21-activated kinase (Pak) activity and related molecules indicates that Hedgehog stimulation stimulates actin reorganization and morphological changes. Together, these data show that the effect of Hedgehog on the cellular kinome is rapid and profound.

Despite the great sensitivity and efficiency of array kinome profiling, we validated several of the key pathways by western blot (Figure 2B). Consistent with canonical Shh signaling, phosphorylation of PKC was observed (intensity of α-phosho-PKCδ/θ increased by a factor 1.22), showing the validity of these models. Secondly, we show an increased activity of the mTOR-PKB/Akt-S6 pathway upon Shh stimulation (intensity of α-phosho-Akt staining increased by a factor 1.75, $p<0.05$). Furthermore, in agreement with the Shh-induced cytoskeletal remodeling seen in kinome experiments, we observed an increase in Cofilin (intensity of α-phosho-cofilin staining increased by a factor 1.86, $p<0.05$) and Src family phosphorylation (intensity of α-phosho-Src staining increased by a factor 1.19). Although these changes in phosphorylation are more modest as those observed in the kinome array, they do support the peptide array data. As Western blot measures the sum of kinase and phosphatase activity, whereas the kinome array measures only kinase activity the Western blot data indicate the presence of compensatory mechanisms counteracting increased phosphorylation of substrate proteins. Hence, these data validate the robustness and validity of the kinome data.

Patched-dependent Smoothened-independent effects on cellular kinase activity

The existence of Patched-dependent Smoothened-independent signal transduction is supported by various observations [32] and appears highly relevant in that it is essential for cancer stem cell survival in colorectal cancer [31]. To test whether such signaling is present in our model system, we incubated embryonic fibroblasts with 3H-sucrose (which is membrane impermeable and is only taken up via endocytosis in most cell types) and challenged the cells with either a vehicle control or 2 µg/mL Shh, in the presence or absence of the Smoothened inhibitor cyclopamine (Figure 3A). We observed strong accumulation of radioactivity in Hedgehog-challenged cells, as well as in cells challenged with Hedgehog in the presence of...
cyclopamine, indicating that Smoothened-independent cellular function is present in Hedgehog-stimulated fibroblasts. As a control tomatidine (an alkaloid similar to cyclopamine that has no action on Smo) was used but no effect was observed (not shown). To confirm our observation using a more specific, clinically relevant Shh signaling inhibitor, we used Vismodegib. Vismodegib is described to be a specific Smoothened inhibitor and was FDA approved in 2012 for the use of advanced basal-cell carcinoma [33]. Vismodigib-treated cells were stimulated with Shh (2µg/mL), and incubated with Lucifer Yellow, a classic fluorescent molecule that can be used to quantify pinocytosis [44]. Lucifer Yellow uptake in the presence of Shh was not decreased by inhibition of Smoothened (Figure 3B). We thus concluded that endocytosis following Hedgehog stimulation does not require Smoothened activity and that hence our model system was suitable for investigating at least certain aspects of Smoothened-independent signal transduction.

To further characterize these aspects we performed kinome profiling of Smoothened−/− fibroblasts (originally obtained from Drs. James Chen and Philip Beachy and previously described by Varajosalo et al [35]), challenged with either a vehicle control or 2 µg/mL Shh for 10 min. The results are summarized in Figure 4A and Supplementary table 1 and reveal that the influence of Smoothened-independent Hedgehog-induced signaling on cellular kinase activity is substantial. Lacking however, is G protein-coupled receptor-associated signal transduction, which is obviously in line with the absence of Smoothened-dependent events. In particular, activation of cytoskeletal remodeling is seen following addition of Hedgehog, which correlates with a reduced activity of the negative Src activity regulator, Csk. This may relate to the observed Smoothened-independent effects of Hedgehog on endocytosis described above, especially as kinase enzymatic activity directed against FAK-responsive peptides is observed to be co-activated in our profiles, which fits canonical signaling on endocytosis [36]. Another prominent effect upon Hedgehog in Smoothened−/− fibroblasts is increased mTOR activation, whereas inflammatory signal transduction was also activated. Hedgehog in wild type fibroblasts provokes similar effects (see above) and thus these effects of Hedgehog signaling appear at least partially to stem from Smoothened-independent signaling. Similarly, activation of Wnt and Notch signaling is also seen and thus this aspect of Hedgehog signaling seems also independent of Smoothened. Interestingly, in the absence of Smoothened, Hedgehog activates rather than inhibits PKA, and it is tempting to speculate that this effect may relate to activating phosphorylation of Smoothened by PKA that has been described in Hedgehog signaling [37]. In conjunction, these results reveal that an unexpectedly large proportion of Hedgehog signal transduction towards the cellular kinome is mediated though non-canonical Patched-dependent Smoothened-independent signaling.

To simulate these Patched-dependent, smoothened independent effects, we also treated cells with Vismodigib in the presence and absence of Shh (Figure 1, 4B), and show that Wnt signaling (as measured by β-Catenin activity) was also indeed activated independently of smoothened in this system, as were PAK and S6 phosphorylation. Although the changes in phosphorylation observed on Western blot are more modest as those observed in the kinome array, they do support the peptide array data. As Western blot measures the sum of kinase and phosphatase activity, whereas the kinome array measures only kinase activity the Western blot data indicate the presence of compensatory mechanisms counteracting increased phosphorylation of substrate proteins. In addition we verified the nature of the Smoothened−/− fibroblasts by Western blot (Figure 4C).

These results, demonstrating the presence of a Smoothened-independent activation, suggest that treatment with Smoothened inhibitors may lack the potential to attenuate full Shh signaling and may provide some explanation as to why, while efficacious in some tumor types, the use of Vismodigib in other Shh-activated tumors (e.g. prostate cancer) shows less promise [38].

Cellular kinase response to selective Smoothened activation

Next, we decided to investigate the effects of selective Smoothened activation in MEFs. To this end we challenged cells with purmorphamine, a purine derivative that acts as a direct agonist of Smoothened [39]. The results are provided through Figure 5A and Supplementary table 1. We observe that purmorphamine results in inhibition of PKA. As Hedgehog stimulation in both WT and Smoothened−/− cells was increased, PKA activity appears dominated
by Patched-dependent, Smoothened independent signaling. Intriguingly, purmorphamine results in a downregulation of ROCK, which is important for a variety of cellular processes, but in particular for cytoskeletal reorganization [40]. It was earlier established that Smoothened is a powerful mediator of chemotactic responses, but only so when not located at the primary cilium [30]. At the primary cilium, Smoothened loses its capacity to stimulate chemotaxis. The apparent downregulation of ROCK activity following purmorphamine stimulation is thus best explained by a purmorphamine-dependent recruitment of Smoothened to the primary cilium.

The strong canonical responses to purmorphamine stimulation observed by others would agree with this notion, as would the marked downregulation of PKA activity in our profiles. We also employed the Smoothened agonist SAG to confirm some of these effects by Western blot analysis (Figure 5B). While generally lower than Shh (Figure 5B), SAG induced Src, Pak, PKB/S6 and Wnt signaling in MEFs. Although these changes in phosphorylation observed on Western blot are more modest as those observed in the kinome array, they do support the peptide array data. As Western blot measures the sum of kinase and phosphatase activity, whereas the kinome array measures only kinase activity the Western blot data indicate the presence of compensatory mechanisms counteracting increased phosphorylation of substrate proteins.

In some aspects, the rapid Smoothened-independent effects and rapid Smoothened-dependent effects on cellular kinase activities studied in our experimental set up, are similar, as both provoke mTOR activation and, in our model system, activation of Wnt signaling. In this sense, non-canonical signaling downstream of Patched and Smoothened may converge to produce the final phenotype. It is important to stress that our set up does not allow for studying the effects of canonical Hedgehog signaling, which requires transcriptional responses. Generally speaking canonical signaling and non-canonical signaling by morphogens counteract each other and the effects observed in this study partially substantiate that notion for Hedgehog signaling as well. Not seen downstream of specific Smoothened stimulation were strong pro-inflammatory responses, which therefore seem mainly Patched-dependent. Generally speaking, Patched-specific signaling events (i.e. the effects of Hedgehog stimulation on Smoothened−/− fibroblasts) were more pronounced as those provoked by purmorphamine stimulation as also evident from the number of peptides that became significantly phosphorylated (see experimental procedures), i.e. 180 peptides in Hedgehog-stimulated Smoothened−/− fibroblasts and 134 in purmorphamine-stimulated wild type fibroblasts. It thus appears that the major branch of non-canonical Hedgehog signaling is downstream of Patched but not of Smoothened (See Figure 6 and Table 1 for overview).

Discussion

Hedgehog signal transduction is highly unusual, containing many features unique to this signaling system (e.g. [41, 42]). Apart from canonical Hedgehog signaling, Hedgehog effects in physiology and pathophysiology also depend on so-called non-canonical signaling. For most morphogens, non-canonical signaling has been identified and effects observed are in general contrasting the effects derived from canonical signaling. An example is BMP signaling, which generally acts as a tumor suppressor in the colon [5]. In the presence of canonical BMP-signaling abrogating SMAD4 mutations, a non-canonical BMP-induced signaling pathway becomes evident that stimulates epithelial-to-mesenchymal transition and metastasis via activation of Rho and ROCK and further the colon cancer process [9]. Likewise, non-canonical Wnt signal transduction mediates important aspects of the action of this morphogen in the body through activation of small GTPases like Rac, Rho and Cdc42 to regulate the activity of ROCK, MAPK and JNK as well as Ca2+ signaling, also an effect important for colon cancer metastasis [43]. For Hedgehog also various modes of non-canonical signaling have been described, both downstream of Patched and independent of Smoothened as well as downstream of Smoothened. The most prominent example of the former concerns colorectal cancer stem cells [31]. Whereas canonical Gli-dependent Hedgehog signaling negatively regulates Wnt signaling in the normal intestine and intestinal tumors [30], Hedgehog signaling in colon cancer stem cells activates a non-canonical Patched-dependent but Smoothened-independent signaling that is required for survival of these cancer stem cells.

Apart from Patched-dependent Smoothened-independent non-canonical Hedgehog signaling, Smoothened-dependent Gli-independent non-
canonical Hedgehog signaling has also been described and likewise the molecular mechanisms involved are only partly understood. The interaction of Hedgehog with Patched stimulates the translocation of Smoothened to the primary cilium, which is required for the transcriptional Hedgehog response [26]. This translocation involves activation of phospholipase A\textsubscript{2} following Smoothened activation and results in the enzymatic release of arachidonic acid from plasma membrane phospholipids. Arachidonic acid metabolites are powerful actin cytoskeleton remodeling agents [44] and while located outside the primary cilium, Smoothened also mediates transcription-independent actin reorganization and chemotactic responses through the production of these metabolites [17-19]. The physiological importance of this non-canonical response to Hedgehog signaling is illustrated by its pivotal role in Hedgehog effects in directing neurite projection [18]. It has been shown that non-canonical Hedgehog effects on axonal guidance involve activation of Src-like kinases [19], and our data now yield a plethora of information regarding the signaling pathways contributing the non-canonical signaling induced by Hedgehog. The changes in kinase activity measured may derive from either altered expression of kinases or altered activity of the individual kinase enzymes involved. As the stimulation period of the experiments is very short (10 minutes) we feel the latter explanation the most probably but until experiments in the presence of translation inhibitors have been performed, other possibilities should be kept in mind. Similarly, it should be noted that there is a disconnect between effect size on Western blot and kinome array, suggesting that part of the kinase effects observed are counteracted by compensatory phosphatase activity, thus the importance of our observations for phenotypic cellular activities such as proliferation, viability, migration will remain to be investigated in other studies. Nevertheless, the final effect of Hedgehog in physiology and pathophysiology is resultant from the integration of both canonical and non-canonical Hedgehog signaling [32]. The potential of pharmacological inhibitors of Hedgehog signaling in the treatment of disease has received substantial attention and various trials employing pharmacological inhibitors of Hedgehog signaling have been conducted. Especially Vismodegib and Sonidegib have met with success in diseases driven by canonical Hedgehog signaling, in particular dermatological cancer [33]. Despite the evidence, however, that Hedgehog signaling is important for many gastrointestinal cancers [46], trials in this type of disease have not yet proven successful. In view of our data presented above that Patched and not Smoothened is a major mediator of non-canonical Hedgehog signaling and the momentum-gaining notion that especially non-canonical Hedgehog signaling may be important for maintaining gastrointestinal cancer [31], this may not be surprising. Vismodegib and Sonidegib target Hedgehog signaling at the level of Smoothened and leave Patched-dependent non-canonical Hedgehog signaling unaffected. Especially in view of the Patched-dependent Smoothened-independent Wnt signaling, one can easily imagine that especially the non-canonical branch of Hedgehog signaling is important in supporting growth in the gastrointestinal compartment. An implication of our results is thus that future Hedgehog-based therapy with respect to gastrointestinal cancer should be directed at counteracting the interaction of Patched with Hedgehog rather than the current strategy of targeting Smoothened. Obviously, proof of this notion awaits experimentation in cancer cells that are insensitive to Smoothened inhibitors but require extracellular Hedgehog.

Conclusions

Here we characterise the non-canonical aspect of Hedgehog signaling. We observe that such non-canonical signaling mainly involves Patched-dependent Smoothened-independent signaling, with especially activation of cytoskeletal remodeling and the activation of Wnt signaling being prominent elements. Thus, for efficient targeting of Hedgehog-dependent signaling it may prove essential to target such signaling at the level of Patched and not Smoothened.

Experimental procedures

Materials

Cyclopamine was from Biomol (Hamburg, Germany). Pumorphamine was from EMD Biochemicals (Darmstadt, Germany) and was dissolved in ethanol (final concentration 0.2 %). Recombinant Sonic HedgehogN was from R&D Systems (Minnesota, USA). Sonic Hedgehog inhibitor Vismodegib (GDC-0449) was from Selleck Chemicals (Texas, USA) and reconstituted in DMSO (final concentration 0.025%). Shh agonist
MgCl₂-HCl pH were lysed in 50μL lysis buffer (20mM Tris) and washed in ice-cold PBS and propagated at 37°C in a 5% CO₂ humidified atmosphere. For experiments a confluence of 50% cells was allowed to grow in six-wells plates. Stimulations were done, if appropriate, with 2 µg/mL Shh for 10 minutes. At 37°C in a 5% CO₂ humidified atmosphere. For data analysis, first every peptide was given an “on” call or “off” call (Markov state analysis). To do this, we assumed that the subset of signals representing the 1-e⁻¹ fraction of peptides having the lowest phosphorylation of all peptides contained pure noise and did represent meaningful phosphorylation. The distribution of this noise was fitted as a single exponent, using the amplitude-sorted row number of these substrates as the X domain of the distribution and this single exponent was assumed to describe noise for the entire dataset. Now for all data points within the subset, when the actual amplitude observed minus 1.96 the standard deviation was in excess of the value expected from distribution describing the noise, a substrate was given an “on” call (p < 0.05) in this Markov analysis. Subsequently results were collapsed on elective signal transduction categories and subjected to dichotomal significance analysis, contrasting Shh-stimulated cultures to parallel vehicle cultures or Purmorphamine-stimulated cultures to parallel unstimulated cultures. If a significant result (p < 0.05) was detected, we considered the result as robust evidence of differential activation of signal transduction between Hedgehog-stimulated and unstimulated cultures and in the depiction of results the corresponding signal transduction categories have been highlighted with a red border. For those signal transduction categories in which using this dichotomal testing based on number of Markov state “on” peptides did not result in statistical significance, the relative levels of phosphorylation were also tested using a paired T test, directly parametrically comparing phosphorylation of the corresponding spots. As we considered thus-discovered statistically significant differences

SAG (SML1314-1MG; #14454) was from Sigma-Aldrich (Missouri, USA) and Recombinant Murine Sonic Hedgehog (Shh) (315-22, 0513521) was from PeproTech, Inc.

Cell culture

Smoothed fibroblasts (provided by Dr. Taipale) and wild-type mouse embryonic fibroblast (provided by Dr. Scott) were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated by Dr. Scott were cultured in Dulbecco’s modified Eagle's medium (DMEM, Invitrogen, California, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen, California, USA), and propagated at 37°C in a 5% CO₂ humidified atmosphere. For experiments a confluence of 50% cells was allowed to grow in six-wells plates. Stimulations were done, if appropriate, with 2 µg/mL Shh for 10 minutes. Each experiment consisted of three biological replicas of experiments containing three technical replicas.

Kinome Profiling

For peptide array analysis, we employed the Pepchip kinomics array. The protocol and associated analysis has been described in detail elsewhere [25] and is based on the original protocol of van Baal et al. [47]. In short, cells were washed in ice-cold PBS and lysed in a non-denaturing complete lysis buffer (cells were lysed in 50μL lysis buffer (20mM Tris- HCl pH 7.5, 150mM NaCl, 1mM EDTA, 1mM EGTA, 1% Triton X-100, 2.5mM sodium pyrophosphate, 1mM MgCl₂, 1mM glycerophosphate, 1mM Na₃VO₄, 1mM NaF,1μg/mL Leupeptin, 1μg/mL Aprotinin, 1mM PMSF). Subsequently the cell lysates were cleared by centrifugation and peptide array incubation mix was produced by adding 10 μL of activation mix (50% glycerol, 50 μM ATP, 0.05% v/v Brij-35, 0.25 mg/ml bovine serum albumin) and 2 μL [γ⁻³²P] ATP (approx. 1000 kBq (Amersham AH968)). Next, the peptide array mix was added onto the chip, and the chip was kept at 37°C in a humidified stove for 90 minutes. Subsequently the peptide array was washed twice with Tris-buffered saline with Tween 20, twice in 2M NaCl, and twice in demineralised H₂O and then air-dried. The chips were exposed to a phosphor screen for 72 h, and the density of the spots was measured and analyzed with array software (ScanAnalyze). Using grid tools, spot density and individual background were corrected and spot intensities and background intensities were analyzed. Data from at least 9 independent data points were exported to an excel sheet for further analysis. Control spots on the array were analyzed for validation of spot intensities between the different samples. Inconsistent data (i.e., SD between the different data points >1.96 of the mean value) were excluded from further analysis. For each peptide the average and standard deviation of phosphorylation was determined and plotted in an amplitude-based hierarchical fashion. For data analysis, first every peptide was given an “on” call or “off” call (Markov state analysis). To do this, we assumed that the subset of signals representing the 1-e⁻¹ fraction of peptides having the lowest phosphorylation of all peptides contained pure noise and did represent meaningful phosphorylation. The distribution of this noise was fitted as a single exponent, using the amplitude-sorted row number of these substrates as the X domain of the distribution and this single exponent was assumed to describe noise for the entire dataset. Now for all data points within the subset, when the actual amplitude observed minus 1.96 the standard deviation was in excess of the value expected from distribution describing the noise, a substrate was given an “on” call (p < 0.05) in this Markov analysis. Subsequently results were collapsed on elective signal transduction categories and subjected to dichotomal significance analysis, contrasting Shh-stimulated cultures to parallel vehicle cultures or Purmorphamine-stimulated cultures to parallel unstimulated cultures. If a significant result (p < 0.05) was detected, we considered the result as robust evidence of differential activation of signal transduction between Hedgehog-stimulated and unstimulated cultures and in the depiction of results the corresponding signal transduction categories have been highlighted with a red border. For those signal transduction categories in which using this dichotomal testing based on number of Markov state “on” peptides did not result in statistical significance, the relative levels of phosphorylation were also tested using a paired T test, directly parametrically comparing phosphorylation of the corresponding spots. As we considered thus-discovered statistically significant differences
between the relevant experimental conditions less robust, in the depiction of the results they have been highlighted with an orange border. Note that due to differences in the number of peptides allotted to the signal transduction categories apparently large differences in phosphorylation not always yield statistically significant results, while smaller differences can produce such results if the number of substrates in such categories is large.

Endocytosis assay
Cells were grown on 24-well plates to 70% confluence and were stimulated with either 1 μg/mL Shh or vehicle control (0.1% BSA/PBS) and or cyclopamine (Biomol, Plymouth Meeting, Pennsylvania, United States) for 1 hour. After extensive washing with ice-cold PBS, cells were lysed in 1% Nonidet P-40 and the lysate was transferred to 4 mL of scintillation fluid and activity was determined on a Packard Tri-Carb scintillation counter (PerkinElmer, Wellesley, Massachusetts, United States). Values were corrected for solvent control treated cells on ice.

Lucifer Yellow assay
Mouse embryonic fibroblast were plated at a density of 3.5x10^3 cells/well. After 24 hours, Vismodegib was added (50μM DMSO 0.25%) for 15 minutes, followed by Shh treatment at 2μg/mL for 15 minutes. Stock solution of Lucifer Yellow CH dilithium salt (Sigma Aldrich, Germany) was prepared in PBS, and working solution in culture medium. The assay was performed using 35mM of Lucifer Yellow, incubated for 6 hours, at 37°C, 5% CO₂. After that, the supernatant was removed and the Lucifer Yellow fluorescence was measured by spectrophotometer CytoFluor MultiWell Plate 4000 (PerSeptive Biosystems, USA) with excitation 430nm and emission at 530nm. The concentration was calculated using a Lucifer Yellow curve.

Western blot
After treatment, the samples were prepared by adding 2X Laemml buffer (100 mM Tris-HCl (pH 6.8), 200 mM dithiothreitol, 4% SDS, 0.1% bromophenol blue and 20% glycerol) and samples were boiled for 95°C, 10 minutes. Cell extracts were resolved by SDS–PAGE and transferred to polyvinylidene difluoride membranes (Merck chemicals BV, Amsterdam, the Netherlands). Membranes were blocked in 50% Odyssey Blocking Buffer (LI-COR Biosciences, Lincoln, NE) in TBS and incubated overnight at 4°C with primary antibody. Primary antibodies: From Cell Signalling: phospho-Akt (Ser473) (#4060S); phospho-PKA C (Thr197) (#4781); phospho-Src Family (Tyr416) (#2101); phospho-PKCδ/θ (Thr638/641) (#9376); phospho-S6K Ribosomal (Ser235/236) (#4858); phospho-β-Catenin (Ser675) (#9567); phospho-PAK2 (Ser20) (#2607). From Santa Cruz: β–Actin (C4) (sc-47778). From SignalWay: phospho-cofilin (Ser3) (#11139) and phospho-ROCK2 (Ser1379) (#13005). Goat polyclonal anti-Smo C-17 was obtained from Santa Cruz. After washing in TBS-T, membranes were incubated with IRDye® antibodies (LI-COR Biosciences, Lincoln, NE) for 1 hour. Detection was performed using Odyssey reader and analyzed using manufacturers software.

Statistical analysis
Statistical analysis details for each experiment are described at the legend. Furthermore, statistical methods were: a) unpaired and paired t-student, confidence interval at 95%, two-tailed and b) one-way ANOVA repeated measures test, significance level alpha 0.05 (95% confidence interval), followed by post-test Turkey, (*) indicates significance P<0.05.

Additional files
Supplementary table 1: Full kinome results

Acknowledgements: we are grateful to our colleagues at our laboratory for sharing reagents and continuous support.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.
Authors’ contributions: The head group leaders M.P.P., M.F.B., M.J.B and C.A.S contributed for the article conceptualization; The principal group researchers K.P. and G.M.F were responsible to design the methodology; A.V.S.F., A.I.A, W.C. and L.B. performed the research investigation; A.I.A. was responsible for the original writing, and A.V.S.F., M.P.P., G.M.F., and M.F.B were responsible for reviewing and editing; The work was supervised by M.P.P and C.A.S. All authors read and approved the final manuscript.

References
1. Gilmour D, Rembold M, Leptin M. (2017). From morphogen to morphogenesis and back. Nature, 541, 311-320.
2. Briscoe J, Small S. (2015) Morphogen rules: design principles of gradient-mediated embryo patterning. Development, 142, 3996-4009.
3. Tabler JM, Rigney MM, Berman GJ, Gopalakrishnan S, Heude E, Al-Lami HA, Yannakoudakis BZ, Fitch RD, Carter C, Vokes S, Liu KJ, Tajbakhsh S, Egnor SR, Wallingford JB. (2017). Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx. Elife, pii: e19153.
4. Pani AM, Goldstein B. (2018). Direct visualization of a native Wnt in vivo reveals that a long-range Wnt gradient forms by extracellular dispersal. Elife, pii: e38325.
5. Hardwick JC, Kodach LL, Offerhaus GJ, van den Brink GR. (2008). Bone morphogenetic protein signalling in colorectal cancer. Nat Rev Cancer, 8, 806-812.
6. van den Brink GR, Offerhaus GJ. (2007). The morphogenetic code and colon cancer development. Cancer Cell, 11, 109-17.
7. Petrov K, Wierbowski BM, Salic A. (2007). Sending and Receiving Hedgehog Signals. Annu Rev Cell Dev Biol, 33, 145-168.
8. Pak E, Segal RA. (2016). Hedgehog Signal Transduction: Key Players, Oncogenic Drivers, and Cancer Therapy. Dev Cell, 38, 333-344.
9. Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM. (1996). Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell, 87, 661-673.
10. Büller NV, Rosekrans SL, Westerlund J, van den Brink GR. (2012). Hedgehog signaling and maintenance of homeostasis in the intestinal epithelium. Physiology (Bethesda), 27, 148-155.
11. Youssef KK, Van Keymeulen A, Lapouge G, Beck B, Michaux C, Achouri Y, Sotiropoulou PA, Blanpain C. (2010). Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol, 12, 299-305.
12. Gorlin RJ. (2004). Neviod basal cell carcinoma (Gorlin) syndrome. Genet Med, 6, 530-9.
13. Tukachinsky H, Petrov K, Watanabe M, Salic A. (2016). Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog. Proc Natl Acad Sci U S A, 113, E5866-E5875.
14. Kasper M, Jaks V, Fiaschi M, Toftgård R. (2009). Hedgehog signalling in breast cancer. Carcinogenesis. 30, 903-911.
15. Kasper M, Jaks V, Hohl D, Toftgård R. (2012). Basal cell carcinoma - molecular biology and potential new therapies. J Clin Invest, 122, 455-63.
16. Didiasova M, Schaefer L, Wygrecka M. (2018). Targeting GLI Transcription Factors in Cancer. Molecules, 23, pii: E1003.
17. Bijlsma MF, Borensztajn KS, Roelink H, Peppelenbosch MP, Spek CA. (2007). Sonic hedgehog induces transcription-independent cytoskeletal rearrangement and migration regulated by arachidonate metabolites. Cell Signal, 19, 2596-2604.
18. Bijlsma MF, Peppelenbosch MP, Spek CA, Roelink H. (2008). Leukotriene synthesis is required for hedgehog-dependent neurite projection in neuralized embryoid bodies but not for motor neuron differentiation. Stem Cells, 26, 1138-1145.
19. Yam PT, Langlois SD, Morin S, Charron F. (2009). Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron, 62, 349-362.
20. Gerling M, Büller NV, Kirn LM, Joost S, Frings O, Englert B, Bergström Å, Kuiper RV, Blaas L, Wielenga MC, Almer S, Kühl AA, Fredlund E, van den Brink GR, Toftgård R. (2016). Stromal
Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun, 7,12321.

21. Li Y, Arsenault RJ, Trost B, Slind J, Griebel PJ, Napper S, Kusalik A. (2012). A systematic approach for analysis of peptide array kinome data. Sci Signal, 5(220), pl2.

22. Peppelenbosch MP, Frijns N, Fuhler G. (2016). Systems medicine approaches for peptide arraybased protein kinase profiling: progress and prospects. Expert Rev Proteomics, 13, 571-578.

23. Baharani A, Trost B, Kusalik A, Napper S. (2017). Technological advances for interrogating the human kinome. Biochem Soc Trans, 45, 65-77.

24. Wang W, Yin Y, Xu L, Su J, Huang F, Wang Y, Boor PPC, Chen K, Wang W, Cao W, Zhou X, Liu P, van der Laan LIW, Kwekkeboom J, Peppelenbosch MP, Pan Q. (2017). Unphosphorylated ISGF3 drives constitutive expression of interferon-stimulated genes to protect against viral infections. Sci Signal, 10(476), pii: eaah4248.

25. Parikh K, Zhou L, Somasundaram R, Fuhler GM, Deuring JJ, Blokzijl T, Regeling A, Kuipers EJ, Weersma RK, Nij VJ, Alves M, Vogelaar L, Visser L, de Haar C, Krishnadath KK, van der Woude CJ, Dijkstra G, Faber KN, Peppelenbosch MP. (2014). Suppression of p21Rac signaling and increased innate immunity mediate remission in Crohn's disease. Sci Transl Med, 6, 233-53.

26. Wu CC, Hou S, Orr BA, Kuo BR, Youn YH, Ong T, Roth F, Eberhart CG, Robinson GW, Solecki DJ, Taketo MM, Gilbertson RJ, Roussel MF, Han YG. (2017). mTORC1-Mediated Inhibition of 4EBP1 Is Essential for Hedgehog Signaling-Driven Translation and Medulloblastoma. Dev Cell, 43, 673-688.e5.

27. Maier D, Cheng S, Faubert D, Hipfner DR. (2014). A broadly conserved g-protein-coupled receptor kinase phosphorylation mechanism controls Drosophila smoothened activity. PLoS Genet, 10, e1004399.

28. Li S, Li S, Han Y, Tong C, Wang B, Chen Y, Jiang J. (2016). Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase. PLoS Biol, 14, e1002481.

29. Moore BS, Stepanchick AN, Tewson PH, Hartle CM, Zhang J, Quinn AM, Hughes TE, Mirshahi T. (2016). Cilia have high cAMP levels that are inhibited by Sonic Hedgehog-regulated calcium dynamics. Proc Natl Acad Sci USA, 113, 13069-13074.

30. van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ, Nielsen C, Gaffield W, van Deventer SJ, Roberts DJ, Peppelenbosch MP. (2004). Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet, 36, 277-282.

31. Regan JL, Schumacher D, Staudte S, Steffen A, Haybaeck J, Keilholz U, Schweiger C, Golob-Schwarzl N, Mumberg D, Henderson D, Lehrach H, Regenbrecht CRA, Schäfer R, Lange M. (2017). Non-Canonical Hedgehog Signaling Is a Positive Regulator of the WNT Pathway and Is Required for the Survival of Colon Cancer Stem Cells. Cell Rep, 21, 2813-2828.

32. Brennan D, Chen X, Cheng L, Mahoney M, Riobo NA. (2016). Noncanonical Hedgehog signaling. Vitam Horm, 88, 55-72.

33. Khatra H, Bose C, Sinha S. (2017). Discovery of Hedgehog Antagonists for Cancer Therapy. Curr Med Chem, 24, 2033-2058.

34. Zhang M, Oldenhof H, Sieme H, Wolkers WF. (2016). Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. Biochim Biophys Acta, 1858, 1400-1409.

35. Varjosalo M, Li SP, Taipale J. (2006). Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Dev Cell, 10, 177-86.

36. Alanko J, Ivaska J. (2016). Endosomes: Emerging Platforms for Integrin-Mediated FAK Signalling. Trends Cell Biol, 26, 391-398.

37. Li S, Ma G, Wang B, Jiang J. (2014). Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation. Sci Signal, 7, ra62.

38. Maughan BL, Suzman DL, Luber B, Wang H, Glavaris S, Hughes R, Sullivan R, Harb R, Boudadi K, Paller C, Eisenberger M, Demarzo A, Ross A, Antonarakis ES. (2016). Pharmacodynamic study of the oral hedgehog pathway inhibitor, vismodegib, in patients with metastatic castration-resistant prostate cancer. Cancer Chemother Pharmacol, 78, 1297-1304.
39. Sinha S, Chen JK. (2006). Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat Chem Biol, 2, 29-30.

40. Riento K, Ridley AJ. (2003). Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol, 4, 446-56.

41. Bijlsma MF, Spek CA, Peppelenbosch MP. (2004). Hedgehog: an unusual signal transducer. Bioessays. 26, 387-94.

42. Dessaud E, McMahon AP, Briscoe J. (2008). Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development, 135, 2489-2503.

43. Haga RB, Ridley AJ. (2016). Rho GTPases: Regulation and roles in cancer cell biology. Small GTPases, 7, 207-221.

44. Peppelenbosch MP, Tertoolen LG, Hage WJ, de Laat SW. (1993). Epidermal growth factor-induced actin remodeling is regulated by 5-lipoxygenase and cyclooxygenase products. Cell, 74, 565-575.

45. Arensford AM, Dillard ME, Menke JM, Frank MW, Rock CO, Ogden SK. (2017). Sonic Hedgehog Activates Phospholipase A2 to Enhance Smoothened Ciliary Translocation. Cell Rep, 19, 2074-2087.

46. van Baal JW, Diks SH, Wanders RJ, Rygiel AM, Milano F, Joore J, Bergman JJ, Peppelenbosch MP, Krishnadath KK. (2006). Comparison of kinome profiles of Barrett's esophagus with normal squamous esophagus and normal gastric cardia. Cancer Res, 66, 11605-11612.

Footnotes: The study was supported by a research scholarship to A.I.A. provided by the Federal Government of Nigeria (TETFUND) in conjunction with the Nasarawa State University, Keffi (NSUK), Nasarawa State. A.V.S.F. was supported by fellowship from The São Paulo Research Foundation, FAPESP (2018/00736-0).

The abbreviations used are: BMP, Bone morphogenetic protein; Dhh, Desert Hedgehog; Fu, Fused kinase; Gli, Glioma-associated oncogene; Hh, Hedgehog; Ihh, Indian Hedgehog; Shh, Sonic Hedgehog; SuFu, Suppressor of Fused protein; Wnt, Wingless-related integration site; ROCK, Rho-associated coiled-coil-containing protein kinase; MAPK, Mitogen-activated protein kinase; JNK, c-Jun N-terminal kinase; MEF, Mouse embryonic fibroblast; mTOR, Mammalian target of rapamycin kinase; PKA, Protein kinase A; PKC, Protein kinase C; Pak, p21-activated kinase; FDA, Food and Drug Administration; PKB, Protein kinase B; FAK, Focal adhesion kinase; SAG, Smoothened Agonist.

TABLE 1. Summary of pathways analyzed using kinome. Cross comparison as a short description of kinome profiling showing the major pathways and statistical comparing the conditions: canonical and non-canonical pathways (Patched-dependent – Ptc-, and Smoothened-dependent – Smo-).

Pathway	Shh canonical	Statistics	Ptc-dependent	Statistics	Smo-dependent	Statistics
Survival	+	<0.01	+	0.03		
Mitogenic			+	0.01		
2nd messenger	+	<0.01	+	0.04		
Nutrient			+	0.02		
Cytoskeletal	+	<0.01	+	0.04		
Mitosis	-	0.02				
Inflammatory			+	0.01		
Stemness			+	0.05		
Smoothened non-canonical Hedgehog signaling

A

Cells are lysed in non-denaturing buffer, kinases are solubilized

Active kinases phosphorylate specific substrate peptides

ERK1/2 ISS kinase substrate
GSK3β substrate

Arrays generate more-or-less comprehensive overviews of cellular kinase activity

Set 1

Set 2

Set 3

Each array contains three identical sets of 1024 different kinase substrate peptides

Hydrogel-coated carrier

Arrays contain peptide substrate specific for certain kinases

B

Array

WT MEF

WT MEF + Shh 2μg/mL

Hedgehog-evoked changes in cellular kinase enzymatic activity

Validation

WT

WT + Shh 2μg/mL

WT MEF + Purmorphamine

Western Blot

Smo -/- MEF

Smo -/- MEF + Shh 2μg/mL

Hedgehog-evoked changes Ptc-dependent, Smo-independent in cellular kinase enzymatic activity

WT

WT + Shh 2μg/mL + Vismodegib 50μM

WT MEF

Purm/SAG

Smoothened evoked changes in cellular kinase enzymatic activity

WT

WT + SAG 100nM
FIGURE 1. Outline of the study. A. Technical approach – kinome profiling. In this study we aim to comprehensively characterize cellular kinase enzymatic activities. To this end appropriately stimulated cell cultures are washed with ice-cold PBS and lysed in a non-denaturing complete lysis buffer so as to solubilize cellular kinases. Lysates are the transferred to arrays consisting of a substrate peptide library, spotted in triplicate to assess technical reproducibility, which are spotted on a hydrogel-coated glass carrier. Upon addition of radioactive ATP and an activation mix, kinases –if enzymatically active- will phosphorylate substrate peptides. Incorporation of radioactive ATP into a substrate peptide is taken as measure of enzymatic kinase activity towards a particular substrate. The broad variation in specific substrates used (see also supplementary data) allows obtaining a more-or-less complete description of cellular signaling, the so-called kinome. B. Biological approach. In this study we first generate a description of the effects of Shh challenge on cellular signaling in general by comparing kinome profiling results of cultures challenged and not challenged by the morphogen. To identify signal transduction events that are downstream of Ptc but do not involve Smo, the Hedgehog provoked effects on the cellular kinome are studied in fibroblasts genetically deficient for Smo. Finally, to identify events that are solely dependent on the activation of Smo, we study the effects of the Smo agonist purmorphamine (purm). Several kinome profiling results are subsequently validated using a second approach, in which MEFs were stimulated with Shh and subjected to Western blot analysis. To simulate Ptc-dependent effects, cells are treated with the Smoothened inhibitor (Vismodegib) prior to Shh stimulation. To simulate Smo-dependent effects, cells are treated with the Smoothened agonist SAG.
FIGURE 2. Effects of Hedgehog stimulation on cellular signaling as determined by kinome profiling. (A) Murine fibroblasts were stimulated with 2 µg/mL Shh. Subsequently cells were lysed and the resulting lysates were used to phosphorylate arrays of different kinase substrates employing 33P-γ-ATP and radioactivity incorporated in the different substrates was determined. Peptide substrates were allotted to elective signal transduction elements. The picture depicts the number of peptides significantly phosphorylated (which means the number of peptides that received a Markov “on” call - see experimental procedures) for each element. A darker color reflects more kinase activity towards substrate elements and the results reveal the effects of Hedgehog stimulation on cellular signal transduction, thus a black color means all peptides were significantly phosphorylated, whereas a white color means that no peptides allotted to this signal transduction in this experimental condition were phosphorylated. Results were first statistically tested by a dichotomal analysis based on the number of Markov “on” calls observed in vehicle- and Shh-stimulated cultures. If statistically significant differences were noted the signal transduction category is highlighted with a red border and the level of significance observed is indicated in red. For signal transduction elements in which this very robust analysis fails to detect a statistically significant difference, a parametric test was performed. If this proved significant, the
category is highlighted with an orange color and corresponding level of significance is depicted as well. The results provide a wealth of data on the effects of Hedgehog stimulation on cellular signaling. (B) MEFs were grown in 6 wells plates. To simulate Smo and Ptc-dependent signaling, cells were treated with Shh (2 μg/mL) for 10 minutes and compared to unstimulated cells. Cells were lysed and proteins resolved by SDS-PAGE followed by blotting to PVDF and incubation of membrane with antibodies against the indicated phosphorylated proteins. Blots were reprobed with antibodies against β-Actin to confirm equal loading.

FIGURE 3. Effects of Hedgehog on endocytosis and the influence of Smoothened inhibition thereon. (A) Fibroblast cultures were grown in twenty-four-wells plates and incubated in a 1 mL containing 200 nCi of [3H]-sucrose in the presence or absence of either 1 μg/mL Shh and 10 μM cyclopamine or appropriate vehicle control. At the end of the experiment cells were extensively washed with ice-cold PBS and lysed in NP-40 for subsequent scintillation counting. As sucrose can only enter cells through fluid phase uptake, this provides a reliable measure of cellular endocytosis. We observe that Hedgehog stimulates fluid phase uptake and this effect does not require Smoothened as it is not sensitive to the Smoothened inhibitor cyclopamine. (B) Similarly, fluorescence spectrophotometry indicated that fibroblasts grown in 96 wells plates and treated with Shh (2 μg/mL) for 6 hours still show uptake of Luciferin Yellow (35 μM) even in the presence of the smoothened inhibitor Vismodigib (50 μM), indicative of a Ptc-dependent, Smo-independent cellular process.
FIGURE 4. Effects of Hedgehog stimulation on cellular signaling in Smo-deficient fibroblasts. Murine Smo^−/− fibroblasts were stimulated with 2 μg/mL Shh. Subsequently cells were lysed and the resulting lysates were used to phosphorylate arrays of different kinase substrates employing ^3^P-γ-ATP and radioactivity incorporated in the different substrates was determined. Peptide substrates were allotted to elective signal transduction elements and a darker color reflects more kinase activity towards substrate elements and the results reveal the effects of Hedgehog stimulation on cellular signal transduction. Results were first statistically tested by a dichotomal analysis based on the number of Markov “on” calls observed in vehicle-and Shh-stimulated cultures (highlighted with a red border). For signal transduction elements in which this very robust analysis fails to detect a statistically significant difference, a parametric test was performed (highlighted in orange). The results reveal an intricate web of Patched-dependent Smoothened-independent non-canonical signal transduction events. (B) Smo-independent signaling was investigated by treating cells in the presence of both Shh (2 μg/mL) and the Smoothened inhibitor
Vismodigib (50 μM, 30 minutes pre-incubation). Cells were lysed and proteins resolved by SDS-PAGE followed by blotting to PVDF and incubation of membrane with antibodies against the indicated phosphorylated proteins. Blots were reprobed with antibodies against β-Actin to confirm equal loading. C. Validation of the nature of the Smo−/− culture. BxPC3 cells were used as Smo+/+ control. Cells were lysed and proteins resolved by SDS-PAGE followed by blotting to PVDF and incubation of membrane with an antibody against Smo. Blots were reprobed with antibodies against β-Actin to confirm equal loading.
FIGURE 5. Effects of selective Smoothened activation by purmorphamine stimulation on cellular signaling in fibroblasts. (A) Murine fibroblasts were stimulated with purmorphamine. Subsequently cells were lysed and
the resulting lysates were used to phosphorylate arrays of different kinase substrates employing 33P-γ-ATP and radioactivity incorporated in the different substrates was determined. Peptide substrates were allotted to elective signal transduction elements and a darker color reflects more kinase activity towards substrate elements and the results reveal the effects of Hedgehog stimulation on cellular signal transduction. Results were first statistically tested by a dichotomal analysis based on the number of Markov “on” calls observed in vehicle-and Shh-stimulated cultures (highlighted with a red border). For signal transduction elements in which this very robust analysis fails to detect a statistically significant difference, a parametric test was performed (highlighted in orange). The results reveal a web of Smoothened-dependent signal transduction events clearly distinct from Patched-dependent signaling. (B) To investigate Ptc-independent signaling, cells were subjected to treatment with the Smo agonist SAG (100 nM) for 10 minutes. Cells were lysed and proteins resolved by SDS-PAGE followed by blotting to PVDF and incubation of membrane with antibodies against the indicated phosphorylated proteins. Blots were reprobed with antibodies against β-Actin to confirm equal loading.

FIGURE 6. Selected kinome profiling-detected Shh-provoked signal transduction events and the role of Patched and Smoothened therein. Blue elements are confirmed, whereas gray elements showed a trend but did not reach Bonferroni-corrected statistical significance. The results reveal that the role of Patched-dependent Smoothened-independent signal transduction is more prominent in transcription-independent cellular effects of Hedgehog as previously thought.

Smoothened non-canonical Hedgehog signaling
