Characterization of phase transformation and thermal behavior of Sedlecky Kaolin

Emese Kurovics • Institute of Ceramics and Polymer Engineering, University of Miskolc, Hungary • fememese@uni-miskolc.hu
Olgar B. Kotova • Institute of Geology, Komi Science Center, Ural Branch of the Russian Academy of Sciences, Russian Federation • kotova@geo.komisc.ru
Jamal Eldin F. M. Ibrahim • Institute of Ceramics and Polymer Engineering, University of Miskolc, Hungary • jamalafadou@gmail.com
Mohammed Tihthih • Institute of Ceramics and Polymer Engineering, University of Miskolc, Hungary • medtihthih@gmail.com
Shiyong Sun • Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, School of Environment and Resource, Southwest University of Science and Technology, China • shysun@swust.edu.cn
Péter Pala • Refratechnik Hungaria Ltd, Hungary
László A. Gömze • Institute of Ceramics and Polymer Engineering, University of Miskolc, Hungary, IGEX Engineering Service Ltd. • fegomzeg@uni-miskolc.hu

Abstract
The authors have examined how the properties are changing using different sintering temperature based on the kaolin. Kaolin powder and a mixture of kaolin and 10 m% alumina was made and measured their sintering properties (TG, DTG, DTA, height). Pellets were compacted from the powders and sintered at 450 °C, 575 °C, 775 °C, 870 °C, 1100 °C temperature. The volume shrinkage, sintering weight losses, microstructure and phase composition of sintered specimens were investigated. In the case of sintering at 450 °C the volume of the samples increased; with a further increase of the temperature a continuous volume decrease can be observed. Keywords: alumina, derivatograph, kaolin, mullite, XRD

Kulcsszavak: alumínium-oxid, derivatográf, kaolin, mullit, XRD

1. Introduction
In the case of ceramics, the used drying and sintering methods greatly influences the properties of the product [1-7], so it is important to know the effect of sintering temperature. Because of this both in the traditional and in the technical ceramic industry there are a significant role of selected temperature and the condition (atmosphere) of the heat treatment [8-13]. The heat treatment affects the composition, physical, mechanical and functional properties of the product [10-18]. The phase diagrams can help to plan the composition of the final product from the raw materials. Even the simple materials systems like Al2O3 - SiO2 also has been studied by many researchers. Two phase diagrams of Al2O3 - SiO2 system are shown in Fig. 1 [19-20]. The alumina-hydro-silicates such as the conventional kaolinite can also study partly with these phase diagrams, because they can show their thermal decomposition [21-22]. Many studies can be read regarding to the thermal properties of kaolin [23-26] and its kinetic analysis [27-28]. Kaolin and other clay minerals are usually raw materials obtained from nature which are widely used in the ceramic industry [29-32]. These materials may contain several contaminants and oxides, which may change the phases formed during heat treatment and their amount compared to what is theoretically expected.

In this research the authors have examined how the SedlecKY ml kaolin and alumina powder mixture behave under heating using a derivatograph and a heating microscope [33]. From the powder mixture ceramic specimens were also made to determine how the volume, weight and phases are changing using different sintering temperatures.

2. Materials and experiments
For the tests, kaolin and a mixture of kaolin and 10 m% alumina was milled in Retsch PM 400 planetary ball mill for 20 min at 150 rpm. The sintering behavior of powders were measured with a Camar Elettronica heating microscope and a MOM Derivatograph-C. During the tests, the furnaces were heated up to 1200 °C at a heating rate of 12 °C/min. The heating microscope took photos every 5 °C.

Specimens were made from the mixtures with uniaxially pressing method using a 100 kN mechanical pull-press machine. The pressed specimens were sintered in an electrical chamber kiln using different maximum kiln temperature and machine. The pressed specimens were sintered in an electrical chamber kiln using different maximum kiln temperature and were kept at this temperature for 3 hours (Fig. 2).

The maximum temperature for sintering was chosen based on the SiO2-Al2O3 phase diagram [20], waiting for the following phase transitions: 450 °C – kaolinite–metakaolinite;
1. ábra SiO₂-Al₂O₃ rendszer normál körülmények között (átvéve L. Gömze A., 2001 [16] N M Bobkova 2007 [17])

Fig. 1 SiO₂-Al₂O₃ system at normal (Taken from L. A. Gömze, 2001 [19] N M Bobkova 2007 [20])

2. ábra A 450 °C, 575 °C, 775 °C és 1100 °C hőmérsékleten szintertelt minták

Fig. 2 The specimens sintered at 450 °C, 575 °C, 775 °C, 1100 °C temperature

3. ábra Kaolin és alumínium-oxid keverék termoanalitikai görbéi

Fig. 3 Thermo-analytical curves of kaolin and alumina mixture

575 °C – α-quartz–β-quartz; 775 °C – andalusite–sillimanite; 870 °C – β-quartz–tridymite; 1100 °C – metakaolinite–mullite transitions. As the sintering temperature increases, the color of the specimens changes continuously. When the sintering temperature achieved 1100 °C the specimens became white. The change in color may indicate that the expected phase transitions have occurred. The properties of sintered specimens were measured, like volume shrinkage, sintering weight losses, microstructure, phase composition. The microstructures were examined by Hitachi TM-1000 scanning electron microscopy and XRD pattern were recorded with a Rigaku MiniFlex II X-ray diffractometer.

3. Results and discussions

The results of the thermo-analytical test of the kaolin-alumina mixture are shown in Fig. 3. From the achieved curves can be distinguish between drying 1, thermal degradation of kaolin 2-3 (conversion to metakaolin), formation of mullite 4 and sintering point 5 (where by the Camar Electronic the height of the sample compared to the original is 95%).

Sintering at 450 °C increases the volume of specimens while decreasing their mass. At 575 °C, a weight loss of more than 10% is observed, which is because of the kaolinite-metakaolinite conversion is complete. The kaolinite mineral loses its crystalline water content (kaolinite mineral composition: 39.52 m% Al₂O₃, 46.52 m% SiO₂, 13.96 m% H₂O). The change in mass from 575 °C was already slightly influenced by the added Al₂O₃ content. The initial volume of specimens and the volume of specimens sintered at 1250 °C were approximately the same for both mixtures (Fig. 4).

Some fracture samples were taken from the sintered specimens to examine the microstructure changes depending on the used maximum temperature. The fracture surface of the KA samples can be seen in the Fig. 5 where the characteristics structure of the clay minerals and the added fine-grained alumina are well observable.

The mineral composition was not significantly affected by the addition of Al₂O₃ and is present throughout the corundum phase in the samples due to the low sintering temperatures. The XRD pattern shown in the Fig. 6. The mineral composition of the samples from the used kaolin sintered at 450 °C contain α-quartz and clay minerals like kaolinite and muscovite. In the experiment as the sintering temperature increased, the phase transitions took place as expected. Thus, the XRD pattern of the samples prepared during the research confirm the Al₂O₃–SiO₂ phase diagram found in Bobkova’s book [20]. During the sintering at 1100 °C, the mullite phase was formed (Table 1). The proportion of crystalline phase is higher due to the addition of Al₂O₃ in the KA mixture. The ratio of mullite to tridymite was the same for both mixtures (mullite/tridymite ~ 10.6).
4. Conclusions

In this research work the Sedlecky ml kaolin as a traditional ceramic raw material were studied. The authors investigated how the microstructure, the phase composition changes depending on the used sintering temperature and how they will be changing when a small amount (10 m%) alumina were added to the kaolin raw mineral. From the experiments of derivatograph and heating microscopy investigation it can be concluded that both kaolin (K) and mixed (KA) powders shown the characteristic thermal curve of kaolin. The SEM and XRD results of the sintered specimens also confirm that 10 m% alumina has no significant effect on the sintering properties comparing the pure kaolin when low sintering temperatures are used but it can be seen that at 1100 °C the proportion of crystalline fraction is significantly higher in the case of the alumina-containing mixture due to
the corundum phase. The added alumina affects the functional properties of the ceramic products.

Acknowledgements

The described article was carried out as part of the EFOP-3.6.1-16-00011 “Younger and Renewing University – Innovative Knowledge City – institutional development” project implemented in the framework of the Széchenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund.

References

[1] L. A. Gömze, L. N. Gömze (2008): Relations between the material structures and drying properties of ceramic bricks and roof tiles, Építőanyag – JSBCM. Vol. 60, No. 4, p.102 http://dx.doi.org/10.14382/epitoanyag-jscbm.2008.16

[2] Kulkov S. N., Grigoriev. M. V. (2010): Sintering of Al₂O₃ ceramics based on different sizes powders. Építőanyag – JSBCM. Vol. 62, No.3. pp.66–69. http://dx.doi.org/10.14382/epitoanyag-jscbm.2010.13

[3] Kurovics E., Buzinov A. Y., Gömze A. L. (2016): Influence of raw materials composition on firing shrinkage, porosity, heat conductivity and microstructure of ceramic tiles. IOP Conf. Ser.: Mater. Sci. Eng. Vol. 123, 012058 https://doi.org/10.1088/1757-899X/123/1/012058

[4] Ibrahim J. F. M., Gömze A. L., Kotova O. B., Shchemelinina T. N., Shukshov D. A., Ignatiev G. V., Anchugova E. M. (2019): The influence of composition, microstructure and firing temperature on the density, porosity, and shrinkage of new zeolite-alumina composite material. Építőanyag – JSBCM Vol. 71, No 4 pp. 129–124. https://doi.org/10.14382/epitoanyag-jsbcm.2019.21

[5] Kurovics E., Kulkov S. N., Gömze A. L. (2018): Investigation of ceramic brick rods with blackened materials inside. Építőanyag – JSBCM Vol. 70, No.1. p 3 https://doi.org/10.14382/epitoanyag-jsbcm.2018.1

[6] J. F. M. Ibrahim, E. Kurovics, M. Títhith, P. Somdee, A. G. Gerezgiher, K. Kurovics E., Kulkov S. N., Gömze A. L. (2018): Investigation of ceramic brick rods with blackened materials inside. Építőanyag – JSBCM Vol. 70, No.1. p 3 https://doi.org/10.14382/epitoanyag-jsbcm.2018.1

[7] T. S. Aarnæs, M. Tangstad, (2019): Effect of H₂ on SiO and SiC formation, Építőanyag – JSBCM Vol. 71, No 6, pp. 194–197. p. https://doi.org/10.14382/epitoanyag-jsbcm.2019.34

[8] M. M. Abdelfattah, I. Kocserha, R. Géber (2019): The effect of calcium fluoride on the thermal behavior and mullitization of mullite formation from a kaolin raw material, Ceramics International, Vol. 27, No.5 pp. 517-522 https://doi.org/10.20522/S2272-8842/00(01)00110-3

[9] E. Kurovics, B. Udvardi, K. Román, J. E. F. M. Ibrahim, L. A. Gömze (2019): Examination of the carbonization process using kaolin and sawdust. WDT Transactions on Engineering Sciences Vol. 124 p. 17 https://doi.org/10.2495/MC190021

[10] Kurovics E., B. Udvardi, A. Gömze (2019): Examination of the carbonization process using kaolin and sawdust. WDT Transactions on Engineering Sciences Vol. 124 p. 17 https://doi.org/10.2495/MC190021

[11] Kurovics E., B. Udvardi, A. Gömze (2019): Examination of the carbonization process using kaolin and sawdust. WDT Transactions on Engineering Sciences Vol. 124 p. 17 https://doi.org/10.2495/MC190021

[12] K. Ornam, M. Kimsan, E. Cahyono (2015): Evaluation of alternative material compositions on firing shrinkage, porosity, heat conductivity and microstructure of ceramic tiles. IOP Conf. Ser.: Mater. Sci. Eng. Vol. 123, 012058 https://doi.org/10.1088/1757-899X/123/1/012058

[13] Kulkov, S. N., Dedova, E. S., Pedraza, F., Erdélyi, J. (2014): Porosity and shrinkage of new zeolite-alumina composite material. Építőanyag – JSBCM Vol. 71, No 4 pp. 129–124. https://doi.org/10.14382/epitoanyag-jsbcm.2014.7

[14] Feng, Ang –, Shiyong –, Mohammed –, Sun – (2010): Characterization of phase transformation and thermal behavior of Sedlecký Kaolin. Építőanyag – Journal of Silicate Based and Composite Materials, Vol. 72, No.4 (2020), 144–147. p. https://doi.org/10.14382/epitoanyag-jsbcm.2020.24

Réf.:
Kurovics, Emese – Kotova, Olga B. – Ibrahim, Jamal Eldin F. M. – Títhith, Mohammed – Sun, Shiyong – Pala, Péter – Gömze, László A.: Characterization of phase transformation and thermal behavior of Sedlecký Kaolin. Építőanyag – Journal of Silicate Based and Composite Materials, Vol. 72, No.4 (2020), 144–147. p. https://doi.org/10.14382/epitoanyag-jsbcm.2020.24