Exposure Risk of Global Surface O₃ During the Boreal Spring Season

Yiqi Zhou¹,² · Weili Duan¹,² · Yaning Chen¹,² · Jiahui Yi³ · Bin Wang⁴ · Yanfeng Di⁵ · Chao He⁶

Received: 2 September 2021 / Revised: 6 December 2021 / Accepted: 13 January 2022 / Published online: 29 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Surface ozone (O₃) is a primary pollutant produced by photochemical reactions, and its formation is driven by precursor emissions, chemical conversion, and weather conditions (Streets et al. 2007; Jerrett et al. 2009). Moreover, surface O₃ exposure poses a severe potential risk to human health (Yin et al. 2017; Huang et al. 2018; Lin et al. 2019), and numerous studies have demonstrated a significant correlation between spatiotemporal changes in O₃ and its impact on human health (Wang et al. 2021). Under the global warming and emission scenario RCP8.5, acute excess mortality associated with O₃ will increase in the future (Chen et al. 2018). Therefore, exploring the change regularities and exposure risk of global surface O₃ is of great significance for the implementation of strategies to reduce the negative impacts associated with O₃ exposure.

Keywords O₃ · Spatiotemporal variation · Exposure risk · Global · GAM
In the recent years, numerous studies have investigated the changes in O₃ concentrations on a spatial and temporal scale. However, researchers are mostly concerned about the risk of human and vegetation exposure to surface O₃ on the city scale, as well as the driving factors of O₃. For example, Seltzer et al. (2020) explored the spatiotemporal characteristics of surface O₃ concentrations in the United States and estimated the population exposure risk of surface O₃ during the summer months. Xue et al. (2020) used satellite remote-sensing data to investigate the spatiotemporal trends of O₃ exposure from 2013 to 2017 and concluded that O₃ is becoming a crucial player in the burden of disease caused by air pollutants in China. Feng et al. (2019) assessed the exposure of China’s population and vegetation (crops and forests) to O₃ pollution in 2015, and proposed that decision-makers should develop strategies for the protection of human and vegetation health from O₃. Wang et al. (2020a) revealed that aerosols are one of the primary driving factors increasing atmospheric O₃ concentrations, which requires the reduction of O₃ precursor emissions to reduce O₃ concentrations. Jeong et al. (2020) analyzed the impact of meteorological factors on the annual O₃ variability in South Korea and proposed that the O₃-meteorology relationship showed spatiotemporal differences depending on the topographical and emission distribution characteristics of each area.

Although current research on the spatiotemporal distribution of global surface O₃ and risk exposure assessments has achieved fruitful results, there are still the following shortcomings: First, owing to the limitations of global ground data accuracy and workload, previous studies have predominately focused on city-scale research, and changes in the O₃ concentration on a global, continental, and national scale have rarely been investigated. However, O₃ pollution is fluid and transregional; thus, it is necessary to conduct in-depth analyses on changes in O₃ concentrations and their development trends from a global perspective. Second, owing to the lack of surface O₃ monitoring data, most of the existing literature has used the O₃ concentration dataset generated by remote sensing inversion and other methods to for their analyses. This type of data is grid data with a large coverage area, and its timing changes are easily limited by accuracy. Third, previous studies have focused exclusively on the driving factors and sources of O₃; however, in the context of societal and economical development, it is crucial to analyze the effects of exposure to O₃ pollution.

In this study, we used daily O₃ concentrations in the boreal spring season from 2015 to 2020 and socioeconomic data worldwide from 2015 to 2020 to conduct the following analyses: First, using the MAKESENS model, Moran’s I analysis, and Hotspot analysis, we quantitatively estimated global spatiotemporal patterns of O₃ concentration changes in the boreal spring season from 2015 to 2020; Second, population exposed to surface O₃ concentrations in key countries around the global were analyzed; Third, the meteorological driving factors of O₃ were discussed based on these datasets.

Materials and Methods

Study Area

This research was conducted on a global scale, mainly focusing on five typical continents: Asia, Europe, North America, South America, and Oceania. Africa was not included in our research because previous studies have demonstrated less significant O₃ concentration changes for this continent compared to other global regions (Zhang et al. 2020; Klimont et al. 2017). According to the continent grouping provided by Natural Earth (https://www.naturalearthdata.com), our study area was divided into 11 areas (Fig. 1): Eastern Asia (EA), Southern Europe (SE), Northern North America (NN), Central South America (CS), Northern Europe (NE), Western Europe (WE), Western Asia (WA), Eastern Europe (EE), South-Central Asia (SA), Oceania (AO), and Southern South America (SS). In order to avoid too many groupings, we have carried out grouping induction according to the data attributes provided by Natural Earth. We grouped

![Fig. 1 Spatial distribution map of 347 key cities and 11 main research areas explored in this paper](https://example.com/springer.pdf)
small categories into large categories. For example, New Caledonia and French Polynesia are grouped in Melanesia and Polynesia based on the data from Natural Earth respectively, but these two countries belong to Oceania, so we divide them into Oceania (AO). In addition, we selected ten major countries based on factors such as GDP, population, proportion of secondary industry, and degree of development, namely China, Japan, India, South Korea, the United States, Poland, Spain, Germany, France, and the United Kingdom, for our analyses. The selected Asian countries include China, Japan, South Korea, and India, all of which are among the most polluted counties in the world. The main cause of pollution in these counties is overpopulation. However, due to the air quality control policies of various countries, the impact of human activities on O₃ pollution has been reduced. Few counties like France, Germany, and Spain are the center of attracting tourists throughout the year. The main cause of air pollution in these counties is road traffic. The United States and the United Kingdom, as established countries with rapid economic development, are also indispensable for their exploration. As a highly industrialized country, Poland has heavy industry, manufacturing and high-polluting enterprises. The main source of air pollution is industrial activities, including production, import and export transportation, etc. In addition, there are certain differences in climatic conditions in these countries. For example, China is mostly located in the monsoon region, India has a tropical monsoon climate, the UK has a temperate maritime climate, and so on. More detailed information about these 10 countries can be found in Supplementary Table S1.

Data Sources

Daily O₃ concentration and meteorological data (dew point, relative humidity, precipitation, pressure, temperature, wind speed) from March 1 to May 31 of each year from 2015 to 2020 were obtained from the World Air Pollution: Real-time air quality index (WAQI project, https://aqicn.org/). These data were compiled from 12,000 ground-based monitoring stations spatially distributed over 1000 major cities in more than 100 countries worldwide (Supplementary Fig. S1). We preprocessed the collected stations data and mainly followed the following principles: First, we excluded from the raw data daily values \(\leq 0 \) and missing values. Second, to calculate mean values, if monitoring data for a given month covered fewer than 27 days due to missing data, data for that station were excluded. Third, we removed abnormal values (> 1000 daily; Guo et al. 2017). Finally, we take the average of all the station data owned by each city, which is the daily O₃ concentration of that city. Generally, each city has 1–6 stations. Ultimately, we obtained O₃ concentration data for 347 cities (Fig. 1 and Supplementary Table S2), and carried out follow-up research on this basis. The population distribution data for 2020 were obtained from the World Bank (https://data.worldbank.org/indicator/), to explore the effects of O₃ exposure among global populations.

Methods

Research Framework

This paper used the MAKESENS model, the spatial autocorrelation model, and the GAM method to analyze the O₃ concentration data in the boreal spring season from 2015 to 2020. First, we used the MAKESENS model to calculate the change trend of O₃ concentration; Second, we chose the spatial autocorrelation model to explore the spatiotemporal changes on the trend of O₃ concentration, including cold/hot spot analysis and cluster analysis; Third, we explored the populations of 10 major countries under different levels of O₃ concentration; Finally, we used the GAM model to discuss the impact of meteorological factors on the changes in O₃ concentration. Figure 2 shows the research framework of this paper.

Fig. 2 Research framework of this paper
MAKESENS model

The MAKESENS model is often used to detect and estimate change trends in interannual atmosphere and precipitation (Sarkar and Ali 2009; Ali et al. 2012). This model is based on the nonparametric Mann–Kendall test for the trend and the nonparametric Sen’s method for the magnitude of the trend. The MAKESENS model does not assume the distribution of data; thus, outliers and missing values do not severely affect the model results (Partial and Kahya 2006). Therefore, we use the MAKESENS model to calculate the change trend of O3 concentration during the study period.

For time series with less than 10 data points, the MAKESENS model uses the S-test, and for time series with 10 or more data points, the Z-test is used. Since the research period of this paper is in the boreal spring season from 2015 to 2020, this time series contain 6 data points. Thus, S-test statistics based on the Mann–Kendall test were calculated as follows:

$$S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \text{sgn}(x_j - x_k)$$ \hspace{1cm} (1)

where x_j and x_k are the O3 concentrations at years j and k respectively, $j > k$, and,

$$\text{sgn}(x_j - x_k) = \begin{cases} 1, & \text{if } x_j - x_k > 0 \\ 0, & \text{if } x_j - x_k = 0 \\ -1, & \text{if } x_j - x_k < 0 \end{cases}$$ \hspace{1cm} (2)

The value of the S-statistics indicates the direction of the trend. A positive value of S-statistics indicates an increasing trend, whereas a negative value indicates a decreasing trend.

Sen’s method is typically used to estimate the true slope of an existing trend. It is usually assumed that the trend is linear. To get the slope Q, we first calculate the slopes of all data value pairs.

$$Q_i = \frac{x_j - x_k}{j - k}$$ \hspace{1cm} (3)

where $j > k$, x_j and x_k are the O3 concentration at times j and k respectively. i represented each data value pair, $i = 1, 2, 3, \ldots$.

If there are n values x_i in the time series we get as many as $N = n(n - 1)/2$ slope estimates Q_i. The Sen’s estimator of slope is the median of these N values of Q_i. The N values of Q_i are ranked from the smallest to the largest and the Sen’s estimator is.

$$Q = \frac{1}{2} [Q_{[N/2]} + Q_{[(N+1)/2]}], \text{ if } N \text{ is even}$$ \hspace{1cm} (4)

More details about MAKESENS model can be found in Salmi et al. (2002).

Spatial Autocorrelation Analysis

Spatial autocorrelation refers to the potential interdependence of variables in the same distribution area (Shan et al. 2020). Global spatial autocorrelation reflects the general trend of the spatial autocorrelation of raw data in the entire study area. Generally, Global Moran’s I is used as the measure index. The value range of Global Moran’s I is $[-1,1]$. At a certain significance level, there is a positive correlation if the Global Moran’s I value is > 0, which denotes a high-high clustering or low-low clustering, and a negative correlation if the Global Moran’s I value is < 0, which presents a spatial dispersion pattern. There is no spatial autocorrelation if the Global Moran’s I is 0. A global spatial autocorrelation analysis is used to judge the aggregation trend of data, but the instability of the local space is not reflected (Song et al. 2020). To analyze spatial autocorrelation more accurately, we measured the local spatial autocorrelation to explore spatial heterogeneity. The Anseline Local Moran’s I can distinguish spatial clustering with statistical significance, such as high-value clustering (hot spots) and low-value clustering (cold spots).

In this study, the Global Moran’s I was used to characterize the spatial autocorrelation of the change trend of O3 concentration based on 347 cities. This study used the Anseline Local Moran’s I to explore the local spatial autocorrelation of the change trend of O3 concentration. Then, we used a Hotspot analysis (Getis-Ord G^*_i) for the high-low clustering test. For the i spatial unit, the Global Moran’s I and Local Moran’s I were calculated as follows:

$$I_G = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}(x_i - \bar{x})(x_j - \bar{x})}{S^2 \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}}$$ \hspace{1cm} (6)

$$I_L = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}(x_i - \bar{x})(x_j - \bar{x})}{S^2}$$ \hspace{1cm} (7)

$$S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$ \hspace{1cm} (8)

$$Z(I) = \frac{|I - E(I)|}{\sqrt{V(I)}}$$ \hspace{1cm} (9)

$$E[I] = -1/(n-1)$$ \hspace{1cm} (10)
\[V[I] = E[I^2] - E[I]^2 \] (11)

where \(n \) is the number of spatial units (347 cities in this study), \(x_i \) and \(x_j \) are the change trend of \(O_3 \) concentrations of spatial units \(i \) and \(j \), respectively, and \(\bar{x} \) is the average change trend of \(O_3 \) concentration of all the units. \(W_{ij} \) is the spatial weight matrix of the units \(i \) and \(j \). A value of \(W_{ij} = 1 \) indicates a common edge between spatial units \(i \) and \(j \), otherwise \(W_{ij} = 0 \). For Moran’s \(I \), the standardized statistic \(Z(I) \) can be used to test whether there is a spatial autocorrelation relationship. The value of Moran’s \(I \) ranges between \([-1, 1]\) and the value of \(Z(I) \) is between \([-1.96, 1.96]\). At a significance level of 0.05, four different spatial autocorrelation clustering relationship types between Moran’s \(I \) value and \(Z(I) \) can be obtained (Zhou et al. 2019; Zhao et al. 2020): If Moran’s \(I > 0 \) and \(Z(I) > 1.96 \), the correlation is an HH type, which indicates that the increasing trend of \(O_3 \) concentration of this unit and neighboring units are higher than the average; thus, these areas are “hot spot” areas. If Moran’s \(I > 0 \) and \(Z(I) < -1.96 \), the correlation is an LL type, which indicates that the increasing trend of \(O_3 \) concentration of this unit and neighboring units are lower than average, and these areas are “cold spot” areas. If Moran’s \(I < 0 \) and \(Z(I) > 1.96 \), the correlation is an LH type, suggesting that the cell with a high increasing trend of \(O_3 \) concentration is surrounded by a cell with a low increasing trend of \(O_3 \) concentration. If Moran’s \(I < 0 \) and \(Z(I) < -1.96 \), the relationship is an HL type, meaning that the cell with a low increasing trend of \(O_3 \) concentration is surrounded by a cell with a high increasing trend of \(O_3 \) concentration.

Exposure Analytical Methods

The average \(O_3 \) concentration in each city is calculated by averaging the concentration of all air quality monitoring stations in a city. Based on the average \(O_3 \) concentration of 347 cities in the boreal spring season from 2015 to 2020, the change trend of \(O_3 \) concentration of each city is calculated. The natural breakpoint method (Yao et al. 2020) is used to divide all the change trend of \(O_3 \) concentration into four levels: extreme, strong, moderate, weak. According to the change trend of \(O_3 \) concentration, each city can be classified into these four levels. The population of cities at different levels will be classified as the exposed population of that level. The cities are aggregated to determine the number of exposed populations of different levels in each country (Guo et al. 2017).

GAM method

Meteorological factors are important driving factors affecting \(O_3 \) concentration and its change trend (Hu et al. 2021). Therefore, we believe that it is necessary to explore the driving meteorological factors of changes in \(O_3 \) concentration. Generalized additive model (GAM) is a flexible free regression model. By controlling the influence of confounding factors on the research object, we analyzed the complex nonlinear relationship between the response variables and other explanatory variables (Wood and Augustin 2002). It is more flexible in exploring the relationship between response variables and explanatory variables, and its results have a higher reliability (Gong et al. 2018). The general form of the GAM model is as follows:

\[Y = \beta_0 + \varphi_1(x_1) + \varphi_2(x_2) + \varphi_3(x_3) + \ldots + \varphi_n(x_n) + \epsilon \] (12)

where \(Y \) is the dependent variable; \(x_1, x_2, \ldots, x_n \) are the explanatory variables of \(Y \); \(\beta_0 \) is the intercept; \(\varphi_1, \varphi_2, \ldots, \varphi_n \) are the smoothing functions of the explanatory variable; \(\epsilon \) is the residual.

Six meteorological factors were selected as explanatory variables: mean dew point (DEWP, ℉), relative humidity (Rel.hum, %), precipitation (PRCP, inches), mean pressure (P, hPa), maximum temperature (T_max, ℉), and mean wind speed (WDSP, knots), and the \(O_3 \) concentration was selected as the response variable to construct a basic model. Moreover, \(F \)-statistics calculated by the GAM model were used to rank the importance of each meteorological factor. \(F \)-statistics comprehensively reflect the degree of freedom (e.d.f.) and the \(p \) value of each variable. In general, the larger the \(F \)-statistic, the more important the meteorological factor (Yang et al. 2019).

Results and Discussion

Spatiotemporal Patterns and Variations in \(O_3 \)

To reduce the cross-regional linkage pollution of cities worldwide, this study explored the temporal and spatial variation characteristics of the \(O_3 \) distribution by analyzing the dynamic evolution process of \(O_3 \) in the boreal spring season from 2015 to 2020 (Figs. 3 and 4). In general, the annual \(O_3 \) concentrations showed distinct spatial patterns and strong variations across the whole study area. At the regional scale, areas with high \(O_3 \) concentrations (average concentration > 20 μg/m³) are mainly located in EA, entire Europe, and NN, which are characterized by intensive human activities and well-developed economies. Conversely, low \(O_3 \) concentrations (average concentration < 10 μg/m³) were predominately distributed in the AO and SS regions (Fig. 4).

On a temporal scale, the global average \(O_3 \) concentration in the boreal spring season was 21.9 μg/m³ in 2015 and 25.9 μg/m³ in 2020. That is, the annual average concentration
of O3 worldwide showed a slight increase rate of 0.6 μg/m³/year. The gradual increase in O3 concentration around the globe was also confirmed in other studies (Finch and Palmer 2020; Lu et al. 2020). Previous studies have shown that O3 is a secondary pollutant that depends on its precursor emissions (He et al. 2021). Therefore, we hold that the increase in O3 concentration is inseparable from the change in the content of its precursors. On the urban scale, the formation of O3 was limited by the VOCs–NOx ratio (Sillman and He 2002). There are characteristics of high O3 with low NOx concentrations in urban areas, especially in cities where the economy is developed and people live in abundance. For example, Li et al. (2013) found that when the O3 formation regime was limited to volatile organic compounds (VOCs), NOx reduction increased the mean O3 concentration. That is, the reduction of VOCs emissions hindered the formation of O3, whereas the reduction of NOx emissions promoted the formation of O3. Over the past years, the reduction of O3 precursor emissions has been insufficient to shift from VOCs-limited to NOx-limited conditions, leading to an increase in O3 concentrations in cities because of the emission of vehicles (Sicard, 2021). Therefore, an effective strategy to reduce the O3 concentration is to reduce VOCs emissions and control NOx emissions (Oak et al. 2019).

Specifically, the annual average O3 concentration in the study area showed an inverted U-shaped growth during this period. The lowest O3 concentrations were observed in the boreal spring season of 2015, with an average of 21.9 μg/m³, and a peak O3 concentration of 27.3 μg/m³ was recorded in 2019, resulting in an increasing number of people being exposed to O3 pollution. Afterward, the O3 concentration decreased slightly, with an average concentration of 25.9 μg/m³ recorded in 2020. The decrease in the O3 concentration from 2019 to 2020 can be explained by the COVID-19 outbreak at the end of 2019. It can be seen that numerous countries worldwide experienced lockdown during this period, and the restriction on human activities reduced man-made emissions.
emissions. These phenomena indicate that the strict lockdown measures reduced NOx and VOCs emissions in the studied cities, contributing to low VOCs–NOx ratios, and therefore lower O3 concentrations. Therefore, global O3 pollution in 2020 improved to a certain extent (He et al. 2021; Zhang et al. 2020).

Spatial Difference of O3 Change Trend

Spatial distributions of the interannual trends global O3 concentrations in the boreal spring season from 2015 to 2020 are shown in Figs. 5 and 6. In this study, the MAKESENS model was used to calculate changes in the O3 concentration in the boreal spring season from 2015 to 2020. The O3 concentration for the most of the regions shows significant increasing trends, particularly EA, WE, and NN (Figs. 5 and 6). According to the analysis of O3 concentration pattern before, these regions not only have high O3 concentration, but also have a fast growth rate. The significant upward O3 trends can be attributed to a lower titration of O3 by NO due to the reduction in NOx emissions from road transport following the implementation of stringent vehicle emission standards in these regions (Wang et al. 2020b; Seo et al. 2018). Only a few areas showed a downward trend or no obvious changes.

We calculated the proportion of cities with increasing O3 concentration trends in the 347 cities, which is approximately 83.86%. That is, among the 347 cities studied, 291 cities showed an increase in the O3 concentration during the study period. Among them, a total of 157 cities had an average O3 concentration growth rate of 0–1 μg/m3/year. A total of 111 cities had an O3 concentration growth rate of 1–2 μg/m3/year, and 22 cities had an O3 concentration growth rate of 2–4 μg/m3/year. Only one city (Harbin, China) had an O3 concentration growth rate of >4 μg/m3/year. This can be attributed to the high heterogeneity of land use types in Harbin. The higher rate of increase in O3 concentration may be due to higher vegetation coverage, which emission release

higher concentrations of VOCs which were precursor pollutants of O3 (Li et al. 2020).

From a regional perspective, the growth trend varied between the regions, with significant spatial differences (Figs. 5 and 6). The CS region showed the most significant O3 concentration growth trend, with an average annual growth of more than 2.0 μg/m3/year. Moreover, a significantly negative trend was observed for SA (−1.2 μg/m3/year). Other regions that recorded significant increases in the O3 concentrations during the study period included NE (1.3 μg/m3/year), WE (1.0 μg/m3/year), EA (0.9 μg/m3/year), SE (0.8 μg/m3/year), EE (0.7 μg/m3/year), SS (0.4 μg/m3/year), NN (0.4 μg/m3/year), WA (0.3 μg/m3/year), and AO (0.0 μg/m3/year). We further analyzed why the O3 concentration change trend only showing a downward trend in SA. SA mainly contains three countries: India, Thailand, and Singapore. These three countries include ten cities: Delhi, Lampang, Bangkok, Seltzer nai, Chiang Mai, Rayong, Chon
Buri, Hyderabad, Lucknow, and Singapore. With the exception of Delhi, \(\text{O}_3 \) concentrations have shown a downward trend in other cities. The climate of these cities is affected by the northeast monsoon in winter, and the northeast wind will bring dryness, breeze, and poor air quality to these cities in winter. In spring, the monsoon begins to turn, and the southwest monsoon from the Indian Ocean and South China Sea will bring warm, humid, and unstable air masses. Compared with winter, these cities will usher in more precipitation and air quality will also improve (Janjai et al. 2016). Moreover, different countries have formulated a series of prevention and control policies for air pollution. For example, the Central Pollution Control Board (CPCB) of India has established a national environmental air quality standard to minimize the health-related pollution risks of the population (CPCB 2010). However, due to the rapid economic growth in Delhi, India, the number of vehicles per thousand in the population increased considerably from 317 in 2006 to 598 in 2018 (Tiwari et al. 2015). Thus, the surface \(\text{O}_3 \) concentration in Delhi often exceeds the standard. This also shows that the influence of human factors on changes in \(\text{O}_3 \) concentration is far greater than natural factors.

Figure 7 indicates trends in the global \(\text{O}_3 \) concentration in ten countries in the boreal spring season from 2015 to 2020. The average \(\text{O}_3 \) concentration of each country in the boreal spring season from 2015 to 2020 was: Japan (32.4 \(\mu g/m^3 \)), Korea (29.3 \(\mu g/m^3 \)), China (29.3 \(\mu g/m^3 \)), France (26.1 \(\mu g/m^3 \)), Spain (26.0 \(\mu g/m^3 \)), US (24.8 \(\mu g/m^3 \)), Germany (24.4 \(\mu g/m^3 \)), UK (23.8 \(\mu g/m^3 \)), Poland (23.6 \(\mu g/m^3 \)), and India (14.6 \(\mu g/m^3 \)). All the countries except for India showed an increasing \(\text{O}_3 \) concentration trend, whereas India recorded a decrease of 1.1 \(\mu g/m^3/year \) for the study period. Moreover, the UK recorded the highest growth rate of \(\text{O}_3 \), reaching 1.4 \(\mu g/m^3/year \), followed by Korea and France, with a growth rate > 1.0 \(\mu g/m^3/year \). In fact, various countries have formulated certain policies for air pollution. In the past period, the emission control strategies made by government have focused more on NOx rather than VOCs. And these policies were insufficient to shift the chemical regimes from VOCs-limited to

![Figure 7](image-url)
NOx-limited conditions, leading to O₃ formation in countries due to reduced O₃ titration by NO (Sicard 2021). The increase in O₃ concentration observed in South Korea is mainly due to the increase in VOCs and NOx emissions since 2010 (Seo et al. 2014). As a result, continuing NOx controls can reduce O₃ levels.

Spatial Clustering Pattern of the O₃ Change Trend

Figure 8a shows the distribution of the global autocorrelation significance test results. By calculating the Global Moran’s I index, it was determined that the Global Moran’s I index was positive during the study period and passed the significance test of 0.01 (p = 0.00). This indicates that the variation in the O₃ concentration in the study area had an enhanced positive spatial autocorrelation and showed an obvious aggregation state.

Figure 8b and c show the results of the Hotspot analysis and local spatial autocorrelation analysis. The results revealed two significant hot spots and two significant cold spots based on global O₃ concentration changes. Hot spots (i.e., high-value concentration areas (HH) of O₃ concentration growth rate) were mainly distributed in SE, EA, and the coastal areas of NN, which are characterized by the most severe O₃ pollution. Cold spots (i.e., low-value concentration areas (LL) of O₃ concentration growth rate) were predominately distributed in SS and SA, where O₃ pollution is relatively low. This is similar to the spatial agglomeration pattern of PM₂.₅ concentration around the globe (Yang et al. 2021). Li et al. (2019) believed that an important factor for the aggravation of O₃ pollution is the decrease of
PM$_{2.5}$ concentration, because a sharp reduction of PM$_{2.5}$ will cause the heterogeneous absorption of O$_3$ precursors, which will further aggravate the photochemical reaction of O$_3$. In addition, the sub-figures of Fig. 8c shows that sporadically appear as high-low (HL) clusters were observed in hot spots areas, suggesting that cities with high O$_3$ concentration growth rates are surrounded by cities with low O$_3$ concentration growth rates, such as Chongqing, Kunming, Harbin, and Beijing in China. In other words, although the overall O$_3$ concentration growth rate in hotspots is relatively high, there are still some cities that have higher O$_3$ concentration growth rates than the surrounding cities, thus forming a pattern of high-low (HL) clusters. We found that most of these cities are provincial capitals with rapid economic development and high population density in China. We believe that these provincial capitals need more winter coal and biomass combustion than surrounding areas (Wang et al. 2014), which has caused a rapid increase in O$_3$ concentration. However, the current changes in O$_3$ concentration are caused by a variety of factors, and the analysis of meteorological elements is also indispensable.

The Human Health Risk Exposure to O$_3$

The sustainable development goals (SDGs) propose to comprehensively control air pollution and strive to reduce the impact of environmental pollution on health (United Nations General Assembly, 2015). The third goal of the SDGs is good health and well-being, ensured by regular testing of the environmental quality. Long-term exposure to O$_3$ pollution has become a major global public health problem affecting human health (Zhang et al. 2019). Exposure to O$_3$ for 18–20 h can change the permeability of lung epithelial cells, and the mucociliary tissue of the lung is also stimulated by O$_3$. These effects increase the susceptibility to respiratory bacterial infections (Karthik et al. 2017). Therefore, there is an urgent need to explore the degree of population exposure to O$_3$ pollution.

The exposed population is calculated based on the population and O$_3$ concentration in each year. Thus, we explored the relationship between O$_3$ and the population in the boreal spring season from 2015 to 2020 (Fig. 9a). The outer circle is the horizontal axis, and the radius is the vertical axis, which are shown sequentially from the outside to the inside: First, the distribution relationship between population (y-value) and O$_3$ (x-value) in each year; Second, an O$_3$ data histogram distribution; Third, we selected O$_3$ data as the x-value and population data as the y-value to rank O$_3$ in descending order; Fourth, the center line segment from thin to thick indicates that the average O$_3$ concentration increases, and vice versa. Analyzing from the outer circle to the inner circle, it can be found that: (1) the O$_3$ concentration in each year ranged from 10–40 μg/m3, and there is no absolute linear relationship between the O$_3$ concentration and the population size; (2) most of the O$_3$ data used in this article are normally distributed; (3) when the O$_3$ concentration was between 30 and 40 μg/m3, the population is the largest; (4) The annual average O$_3$ concentration only declined from 2019 (27.34 μg/m3) to 2020 (25.86 μg/m3). In the remaining years, the average O$_3$ concentration was on the rise. In the boreal spring season of 2015, the average O$_3$ concentration was 21.88 μg/m3, which increased by 3.98 μg/m3 in 2020.

Population exposure risk can be measured by the number of people exposed to various types of O$_3$ concentrations.

![Fig. 9 a Relationship between population and O$_3$ in 2015–2020 in the boreal spring season. b Schematic diagram showing the increase trend of the four types of exposure (extreme, strong, moderate, and weak) of O$_3$ concentration and the corresponding population. The numbers in brackets indicate the proportion of population at each level](image)
Even if the exposure time is the same for different groups, there are certain risk differences for various O₃ concentrations. Using the natural breakpoint method to classify the growth trend of the O₃ concentration to explore the proportion of the population at potential exposure risk, we divided the exposure severity into four categories: extreme (1.88–5.31 μg/m³/year), strong (0.69–1.88 μg/m³/year), moderate (−0.92–0.69 μg/m³/year), and weak (−4.17–−0.92 μg/m³/year) (Fig. 8b). Overall, in the boreal spring season from 2015 to 2020, the O₃ concentration in the environment where 31.73 million people live in key cities in the world has increased at the extreme level, accounting for approximately 6.32% population. 87.15% of the population (437.26 million people) live in an environment where the O₃ concentration increases between −0.92 and 1.88 μg/m³/year. 6.53% of the population (32.75 million people) were exposed to a low O₃ concentration growth environment. However, as the O₃ concentration increases year by year, the number of people exposed to high concentrations of O₃ will continue to increase. We need to establish more stringent air pollution standards to prevent O₃ pollution from causing more and more damage to human health.

Combined with the spatial distribution of population density in the study area (Fig. 10a), it can be seen that the population density in EA, SA, and WE is higher. In general, the greater the population density, the higher the population exposed to O₃ pollution. It is therefore necessary to classify populations with different concentrations of O₃ pollution. Figure 10b shows the population at different levels of O₃ change trends in each country in the boreal spring season from 2015 to 2020. China has the largest population exposed to O₃ at the extreme level, up to 22.89 million. Moreover, Germany and the United Kingdom have >1 million people exposed to O₃ at the extreme level, followed by Poland (0.87 million), South Korea (0.46 million), Spain (0.34 million), Japan (0.31 million), and France (0.11 million). India and the United States did not have any people exposed at the extreme level. The top three countries exposed at the strong level are China, South Korea, and Japan. China (13.55 million) and India (6.80 million) had more people exposed to O₃ at a weak level, far exceeding those of other countries. Among them, Japan, the United States, Poland, Spain, Germany, France, and the United Kingdom had zero exposed people at weak level. In short, the exposed population at each level is the largest in China.

Fig. 10 Distribution of the global population and number of exposed populations at different levels in 10 key countries. a World population distribution map; and b histograms of population numbers at different levels (weak, moderate, strong, and extreme) in the 10 key countries
As the country with the highest global population, China, with its rapid economic development, ranks first in terms of the number of people exposed to all levels of O₃. Moreover, researchers have reported that the number of people determines the O₃ pollution and its changing trend to a large extent (Li et al. 2020; Wang et al. 2020a). However, it is interesting that India, also with an exceptionally high population, recorded a significantly lower population exposure to O₃ at the extreme level compared to Germany and the United Kingdom. This observation indicates that the population is not the only factor that influences the O₃ concentration (Escudero et al. 2014; Kim et al. 2018). Meteorological factors will affect the formation of O₃ precursors, which in turn affect the changes in O₃ concentration. Compared with SA and NA, countries in EA and Europe face higher levels of exposure risk. The extreme and strong risk levels were observed in areas with relatively high population numbers and O₃ concentration growth rates. Moreover, the results exhibit strong spatial aggregation, which is consistent with previous analyses of spatiotemporal O₃ patterns.

Driving Meteorological Factors and the Spatial Effects on O₃

To determine the main meteorological factors of O₃ concentration change in 347 cities in the world, we statistically analyzed the F-statistics and significance of various meteorological factors in the GAM model (Fig. 11). Throughout the study period, 347 cities around the world have significant correlations with meteorological conditions. Many studies have proposed that climate conditions are major impact force for day-to-day variations of O₃ (Zhao et al. 2016; Wang et al. 2017). From a regional perspective, mean wind speed was the most important meteorological condition in WE and SE, with F-statistics of 32.65 and 30.20, respectively. These two values far exceeded the other meteorological factors affecting these regions. Relative humidity (31.59) and mean pressure (22.61) were the main factors affecting the change in O₃ in NE. Mean dew point and mean wind speed were the two main factors affecting the changes in O₃ concentrations in EA and AO. SA was mainly affected by two meteorological factors: mean wind speed (9.61) and precipitation (7.35). During the entire study period, mean wind speed (30.20) and maximum temperature (11.14) were the main meteorological factors affecting the change in O₃ concentration in SE. From a national perspective, China, Germany, and France were mainly affected by maximum temperature and mean wind speed. Mean wind speed and relative humidity were the two major factors affecting the United States, Poland, and Spain (Supplementary Table S3).

Many studies have proposed that meteorological conditions are the main factors affecting the change in O₃ concentration (Cao and Yin 2020; Adhikari and Yin 2020). The results of the GAM model in the 10 countries selected for analysis indicated that maximum temperature, mean wind speed, and relative humidity play an important role in increasing the O₃ concentration. In addition, the O₃ concentrations in all 10 countries displayed significant correlations with meteorological conditions. For example, as the temperature continues to rise, the O₃ concentrations is rising in Europe (Hůnová et al. 2019) and China (Sun et al. 2019). That is, O₃ concentration increases with temperature. Moreover, significantly negative correlations between relative humidity and the O₃ concentration were observed in the countries during the study period. We found nonlinear declines in the O₃ concentrations with increasing relative humidity in China, and this finding was consistent with those of studies conducted in Europe (Mertens et al. 2019; Ordóñez et al. 2020). Specifically, as other variables were controlled, high relative humidity results in a reduction in O₃ and its precursors. As discussed above, O₃, as a secondary pollutant, cannot be formed without VOCs and NOx. According to previous studies, VOCs and NOx monitoring also exist in surface water and groundwater (Li et al. 2014, 2018). Evaporation is an important process that affects groundwater chemistry. Therefore, whether organic substances in water can volatilize into the air and affect the formation and change of O₃ needs to be further considered (Li et al. 2016, 2017; Mthembu et al. 2020).

Our research results have revealed the impact of O₃ pollution on human health to a certain extent, and attention should be paid to the issue of O₃ pollution in the future. However, this study also has certain limitations and deficiencies: First, due to the large scope of the research and the difficulty of data collection, one of the main limiting factors of this study is that the amount of data used to explore global changes in O₃ concentration may not be sufficient. Therefore, the calculation of changes in O₃ concentration in this paper can only reflect certain trends. Second, the selection of the population exposure model is still to be considered. We only used a simple analysis model, and follow-up studies can use multiple models for comprehensive comparison. Last, we have considered meteorological factors such as precipitation, maximum temperature, and mean dew point, but there are other meteorological factors that affect the changes in O₃ concentration, such as visibility. Subsequent studies should make more in-depth and detailed discussions. Meanwhile, we hope that the authorities can implement more stringent air quality policies and emission control strategies to improve environmental conditions and human health.

Conclusions

In this study, we analyzed the spatiotemporal variation of O₃ concentration and its change trend in 347 cities and 10 key countries around the globe in the boreal spring season from
2015 to 2020. We estimated the number of people exposed to O₃ at different levels, and discussed the effects of meteorological factors on the O₃ concentration in these regions. The preliminary conclusions are as follows:

First, in the boreal spring season from 2015 to 2020, the average concentration of O₃ worldwide showed a slight increase rate of 0.6 μg/m³/year. The world average O₃ concentration increased from 21.9 μg/m³ in the boreal
spring season of 2015 to 27.3 μg/m³ in 2019, and finally decreased to 25.9 μg/m³ in 2020, showing an inverted U-shaped growth. The O₃ concentration in most parts of the world showed a significant upward trend, particularly in EA, WE, and NN. The results show that the O₃ concentration around the globe is rising year by year, and most regions are threatened by O₃ pollution.

Second, in the boreal spring season from 2015 to 2020, most of the population in major global cities were exposed to O₃ concentrations of 30–40 μg/m³. Among them, 31.73 million people (approximately 6.32% of the total population) were exposed to O₃ concentrations at the extreme level, and 32.75 million people (6.53%) were exposed to O₃ concentrations at the weak level. It is not that the larger the total population of each country, the greater the number of exposed populations at all levels. It shows that the O₃ concentration is not directly proportional to the number of total population. The concentration of O₂ is mainly affected by its precursors, and meteorological factors can often affect the changes of the precursors.

Third, according to the F-statistics results, maximum temperature, mean wind speed, and relative humidity are the most important meteorological factors affecting the O₃ concentration. As the temperature rises, the O₃ concentration gradually rises. However, relative humidity is inversely proportional to O₃ concentration.

To sum up, with the gradual increase in O₃ concentration, the population in all regions of the world is suffering from O₃ pollution. The responsible government departments need to improve and strengthen the monitoring of O₃ pollution to ensure that the emissions of O₃ precursors (VOCs, NOx) comply with government regulations. In addition, various countries should conduct in-depth research on the meteorological factors that affect the changes in O₃ concentration, and explore the sustainable development path to reduce O₃ concentration.

Data Availability The data used to support the results of this research are shown in the manuscript and available from the corresponding author upon request.

Declarations

Conflict of interest All authors have no conflicts of interests to declare.

Ethical Approval All authors agree to participate.

Consent to Participate All authors agree to participate.

Consent for Publication All authors agree to the publication.

References

Adhikari A, Yin J (2020) Short-term effects of ambient ozone, PM2.5, and meteorological factors on COVID-19 confirmed cases and deaths in Queens, New York. Int J Environ Res Public Health 17:4047. https://doi.org/10.3390/ijerph17114047

Ali MH, Abustan I, Rahman MA, Haque AAM (2012) Sustainability of groundwater resources in the North-Eastern Region of Bangladesh. Water Resour Manage 26:623–641. https://doi.org/10.1007/s11269-011-9936-5

Cao B, Yin Z (2020) Future atmospheric circulations benefit ozone pollution control in Beijing–Tianjin–Hebei with global warming. Sci Total Environ 743:140645. https://doi.org/10.1016/j.scitotenv.2020.140645

Chen K, Fiore AM, Chen R, Jiang L, Jones B, Schneider A, Peters A, Bi J, Kan HD, Kinney PL (2018) Future ozone-related acute excess mortality under climate and population change scenarios in China: a modeling study. PLoS Med. https://doi.org/10.1371/journal.pmed.1002598

CPCB (Central Pollution Control Board) (2010) Air quality monitoring. Emission inventory and source apportionment studies for Indian cities. New Delhi: Central Pollution Control Board. Available from http://www.indiaenvironmentportal.org.in/content/322584/air-quality-monitoring-emission-inventory-and-source-apportionment-study-for-indian-cities/

Escudero M, Lozano A, Hierro J, Del Valle J, Martilla E (2014) Urban influence on increasing ozone concentrations in a characteristic Mediterranean agglomeration. Atmos Environ 99:322–332. https://doi.org/10.1016/j.atmosenv.2014.09.061

Feng Z, De Marco A, Anav A, Gualtieri M, Sicard P, Tian H, Fornasire F, Tao F, Guo A, Paolletti E (2019) Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ Int 131:104966. https://doi.org/10.1016/j.envint.2019.104966

Finch DP, Palmer PJ (2020) Increasing ambient surface ozone levels over the UK accompanied by fewer extreme events. Atmos Environ 237:117627. https://doi.org/10.1016/j.atmosenv.2020.117627

Gong X, Hong S, Jaffe DA (2018) Ozone in China: Spatial distribution and leading meteorological factors controlling O₃ in 16 Chinese cities. Aerosol Air Qual Res 18:2287–2300. https://doi.org/10.4209/aaqr.2017.10.0368

Guo HT, Cheng X, Gu Y, Wang H, Chen F, Bao S, Shi B, Xu W, Wang X, Zuo X, Zhang X, Meng C (2017) Assessment of PM2.5 concentrations and exposure throughout China using ground observations. Sci Total Environ 601:1024–1030. https://doi.org/10.1016/j.scitotenv.2017.05.263

He C, Hong S, Zhang L, Mu H, Xin A, Zhou Y, Liu J, Liu N, Su Y, Tian Y, Ke B, Wang Y, Yang L (2021) Global, continental, and...
national variation in PM$_{2.5}$, O$_3$, and NO$_2$ concentrations during the early 2020 COVID-19 lockdown. Atmos Pollut Res 12:136–145. https://doi.org/10.1016/j.apr.2021.02.002

Hu C, Kang P, Jaffe DA, Li C, Zhang X, Wu K, Zhou M (2021) Understanding the impact of meteorology on ozone in 334 cities of China. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2021.118221

Huang J, Li G, Xu G, Qian X, Zhao Y, Pan X, Jian H, Cen Z, Liu Q, He T, Guo X (2018) The burden of ozone pollution on years of life lost from chronic obstructive pulmonary disease in a city of Yangtze River Delta, China. Environ Pollut 242:1266–1273. https://doi.org/10.1016/j.envpol.2018.08.021

Hůnová I, Brabec M, Malý M (2019) What are the principal factors affecting ambient ozone concentrations in Czech mountain forests? Front for Glob Change 2:31. https://doi.org/10.3389/fggc.2019.00031

Janjai S, Buntoung S, Nunez M, Chiwpreecha K, Pattarapanitchai S (2016) Meteorological factors affecting lower tropospheric ozone mixing ratios in Bangkok, Thailand. J Atmos Sol-Terr Phys 147:76–89. https://doi.org/10.1016/j.jast_phys.2016.118221

Jeong Y, Lee HW, Jeon W (2020) Regional differences of primary meteorological factors impacting O$_3$ variability in South Korea. Atmosphere 11:74. https://doi.org/10.3390/atmos11010074

Jerritt M, Burnett RT, Pope CA III, Ito K, Thurston G, Krewski D, Shi Y, Calle E, Thun M (2009) Long-term ozone exposure and mortality. N Engl J Med 360:1085–1095. https://doi.org/10.1056/NEJMoa0803894.

Karthik LB, Sujith B, Sehgal M (2017) Characteristics of the ozone pollution and its health effects in India. Int J Med Public Health 7:56–60. https://doi.org/10.5530/ijmIPHd.2017.1.10

Kim S, Jeong D, Sanchez D, Wang M, Seco R, Blake D, Meinardi S, Barletta B, Hughes S, Jung J, Kim D, Lee G, Lee M, Ahn J, Lee S, Cho G, Sung M, Lee Y, Park R (2018) The controlling factors of photochemical ozone production in Seoul, South Korea. Aerosol Air Qual Res 18:2253–2261. https://doi.org/10.4209/aaqr.2017.11.0452

Klimont Z, Kupiainen K, Heyes C, Purohit P, Cofala J, Rafaj P, Borken-Kleefeld J, Schöpp W (2017) Global anthropogenic emissions of particulate matter including black carbon. Atmos Chem Phys 17:8681–8723. https://doi.org/10.5194/acp-17-8681-2017

Li Y, Lau AK, Feng JC, Zheng J, Liu S (2013) Importance of NOx control for peak ozone reduction in the Pearl River Delta region. J Geophys Res-Atmos 118:9428–9443. https://doi.org/10.1002/jgrd.50659

Li P, Wu J, Qian H, Lyu X, Liu H (2014) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36:693–712. https://doi.org/10.1007/s10653-013-9590-3

Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P (2016) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Expo Health 8:331–348. https://doi.org/10.1007/s12403-016-0193-y

Li P, Tian R, Xue C, Wu J (2017) Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res 24:13224–13234. https://doi.org/10.1007/s11356-017-7853-7

Li H, Yu X, Zhang W, Huan Y, Yu J, Zhang Y (2018) Risk assessment of groundwater organic pollution using hazard, intrinsic vulnerability, and groundwater value, Suzhou City in China. Expo Health 10:99–115. https://doi.org/10.1007/s12403-017-0248-8

Li K, Jacob DJ, Liao H, Shen L, Zhang Q, Bates KH (2019) Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc Natl Acad Sci USA 116:422–427. https://doi.org/10.1073/pnas.1812168116

Li B, Shi XF, Liu YP, Lu L, Wang GL, Thapa S, Sun XZ, Fu DL, Wang K, Qi H (2020) Long-term characteristics of criteria air pollutants in megacities of Harbin-Changchun megalopolis, Northeast China: spatiotemporal variations, source analysis, and meteorological effects. Environ Pollut 267:115441. https://doi.org/10.1016/j.envpol.2020.115441

Lin H, Guo Y, Ruan Z, Yang Y, Chen Y, Zheng Y, Cummings-Vaughn L, Rigdon SE, Vaughn MG, Sun S, Zhang L, WangQian XZM, Wu F (2019) Ambient PM$_{2.5}$ and O$_3$ and their combined effects on prevalence of presbyopia among the elderly: a cross-sectional study in six low-and-middle-income countries. Sci Total Environ 655:168–173. https://doi.org/10.1016/j.scitotenv.2018.11.239

Lu X, Zhang L, Wang X, Gao M, Li K, Zhang Y, Yue X, Zhang Y (2020) Rapid increases in warm-season surface ozone and resulting health impact in China since 2013. Environ Sci Technol Lett 7:240–247. https://doi.org/10.1021/acs.estlett.0c00171

Mertens M, Kerkweg A, Grewe V, Jöckel P, Sausen R (2019) Attributing land transport emissions to ozone and ozone precursors in Europe and Germany. Atmos Chem Phys Discuss 10:1–2. https://doi.org/10.5194/acp-2019-715

Mthembu PP, Elumalai V, Brindha K, Li P (2020) Hydrogeochemical processes and trace metal contamination in groundwater: impact on human health in the Maputaland coastal aquifer, South Africa. Expo Health 12:403–426. https://doi.org/10.1007/s12403-020-00369-2

Oak YJ, Park RJ, Schroeder JR, Crawford JJH, Blake DR, Weinheimer AJ, Woo JH, Kim SW, Yeo H, Fried A, Wisthaler A, Brune WH (2019) Evaluation of simulated O$_3$ production efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea. Elementa-Sci Anthrop 7:56. https://doi.org/10.1525/elementa.394

Orduñez C, Garrido-Perez JM, Garcia-Herrera R (2020) Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes. Sci Total Environ 747:141322. https://doi.org/10.1016/j.scitotenv.2020.141322

Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20:1011–2026. https://doi.org/10.1002/hyp.5993

Salmi T, Määtä A, Anttila P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates MAKESENS—the excel template application. Finish Meteorological Institute, Helsinki

Sarkar AA, Ali MH (2009) Water table dynamics of Dhaka City and its long-term trend analysis using the “MAKESENS” model. Water Int 34:373–382. https://doi.org/10.1080/0250806903151183

Selze KM, Shindell DT, Kasibhatla P, Malley CS (2020) Magnitude, trends, and impacts of ambient long-term ozone exposure in the United States from 2000 to 2015. Atmos Chem Phys 20:1757–1775. https://doi.org/10.5194/acp-20-1757-2020

Seo J, Youn D, Kim JY, Lee H (2014) Extensive spatiotemporal analyses of surface ozone and related meteorological variables in South Korea for the period 1999–2010. Atmos Chem Phys 14:6395–6415. https://doi.org/10.5194/acp-14-6395-2014

Seo J, Park DSR, Kim JY, Lim YB, Kim Y (2018) Effects of meteorology and emissions on urban air quality: a quantitative statistical approach to long-term records (1999–2016) in Seoul, South Korea. Atmos Chem Phys 18:16121–16137. https://doi.org/10.5194/acp-18-16121-2018

Shan Y, Wang X, Wang Z, Liang L, Li J, Sun J (2020) The pattern and mechanism of air pollution in developed coastal areas of China: From the perspective of urban agglomeration. PLoS One 15:e0237863. https://doi.org/10.1371/journal.pone.0237863
Sicard P (2021) Ground-level ozone over time: an observation-based global overview. Curr Opin Environ Sci Health 19:100226. https://doi.org/10.1016/j.coesh.2020.100226

Silman S, He D (2002) Some theoretical results concerning O₃–NOₓ–VOC chemistry and NOₓ–VOC indicators. J Geophys Res-Atmos 107:26. https://doi.org/10.1029/2001JD001123

Song W, Wang C, Chen W, Zhang X, Li H, Li J (2020) Unlocking the spatial heterogeneous relationship between Per Capita GDP and nearby air quality using bivariate local indicator of spatial association. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2020.104862

Streets DG, Fu JS, Jiang CJ, Hao J, He K, Tang X, Zhang Y, Wang Z, Li Z, Zhang Q, Wang L, Wang B, Yu C (2007) Air quality during the 2008 Beijing Olympic games. Atmos Environ 41:480–492. https://doi.org/10.1016/j.atmosenv.2006.08.046

Sun L, Xue L, Wang Y, Li L, Lin J, Ni R, Yan Y, Chen L, Li J, Zhang Q, Wang W (2019) Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015. Atmos Chem Phys 19:1455–1469. https://doi.org/10.5194/acp-19-1455-2019

Tiwari S, Dahiya A, Kumar N (2015) Investigation into relationships among NO, NO₂, NOₓ, O₃, and CO at an urban background site in Delhi, India. Atmos Res 157:119–126. https://doi.org/10.1016/j.atmosres.2015.01.008

United Nations General Assembly (2015) Transforming our world: the 2030 Agenda for Sustainable Development. United Nations, New York. Available from http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/L&Lang=E

Yang X, Geng L, Zhou K (2021) The construction and examination of social vulnerability and its effects on PM₂.₅ globally; combining spatial econometric modeling and geographically weighted regression. Environ Sci Pollut Res 28:26732–26746. https://doi.org/10.1007/s11356-021-12508-6

Yao X, Ge B, Yang W, Li J, Xu D, Wang W, Zheng H, Wang Z (2020) Affinity zone identification approach for joint control of PM₂.₅ pollution over China. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.115086

Yin P, Chen R, Wang L, Meng X, Liu C, Niu Y, Lin Z, Liu Y, Liu J, Qi J, You J, Zhou M, Kan H (2017) Ambient ozone pollution and daily mortality: a nationwide study in 272 Chinese cities. Environ Health Perspect 125:117006. https://doi.org/10.1289/EHP1849

Zheng JJ, Wei Y, Fang Z (2019) Ozone pollution: a major health hazard worldwide. Front Immunol 10:2518

Zhang Z, Arshad A, Zhang C, Hussain S, Li W (2020) Unprecedented temporary reduction in global air pollution associated with COVID-19 forced confinement: a continental and city scale analysis. Remote Sens 12:2420. https://doi.org/10.3390/rs12152420

Zhao S, Yu Y, Yin D, He J, Liu N, Qu J, Xiao J (2016) Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ Int 86:92–106. https://doi.org/10.1016/j.envint.2015.11.003

Zhou X, Huang S, Wang J, Kaiser S, Han X (2020) The impacts of air pollution on human and natural capital in China: a look from a provincial perspective. Ecol Indic 118:106759. https://doi.org/10.1016/j.ecolind.2020.106759

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.