A Systematic Literature Review of Influencing Factors and Strategies of Artificial Intelligence Adoption in the Construction Industry

M M Tjebane1*, I Musonda1 and C S Okoro2

1. Department of Construction Management and Quantity Surveying, University of Johannesburg, South Africa
2. Department of Finance and Investment Management, College of Business and Economics, University of Johannesburg, South Africa

*motheometa@gmail.com

Abstract. The construction industry has seen an increase in Artificial Intelligence (AI) in recent years, a paradigm shift in many industries. It puts under pressure for technological advancement. Therefore, AI is under great attention in the construction industry as a new strategic paver. This paper adopts a systematic literature review (SLR) approach and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to observe and understand the influencing factors and strategies for AI adoption. The SLR for AI-related research carried out between 2010 and 2020. Data was collected from ASCE Journals, Emerald Insight, Elsevier ScienceDirect, Engineering Village, Google Scholar, ICE virtual library, IOPscience, IEEE Xplore, ScienceDirect, Scopus, SpringerLink and Taylor & Francis. The paper identifies and classifies the new developments in AI research, making its implementation and adoption a reality in the construction industry. This review has the potential for construction industry stakeholders, especially those in developing countries, to utilise the accumulated evidence from selected systematic reviews to enable the usage of AI for infrastructure development.

1. Introduction
The construction industry of countries plays a vital role in growing the economy [1]. More significantly in developing countries. It contributes to job creation, infrastructure development, and GDP growth [2]. However, it is lagging when it comes to technology usage [3]. This is compared to most industries that have instilled digitalisation and innovation. As a result, those industries have seen improvement and productivity gains. The adoption of new-age technologies such as Artificial Intelligence (AI) bridges the gap with other industries and developed countries [4].

AI refers to technology that can think independently of humans. It is a constructed, artificial, or machine intelligence, distinguished from natural intelligence by its very definition [5]. AI technologies are as important as those that provoked socially, politically, and environmentally in previous centuries [6]. Some of the construction industry’s AI technologies include Building Information Modelling (BIM), sensor-based technologies, robotics, and wearable technologies [7]. This study aims to identify the influencing factors and strategies of AI adoption using a systematic literature review. This is to improve and assist in adopting AI technologies in the construction industry of developing countries.

2. Methodology
This study adopts a methodological approach to conducting a systematic literature review of influencing factors and AI adoption strategies in the construction industry. Systematic literature review (SLR) is a type of literature review that follows a specific review protocol and quality procedures to select relevant (primary) studies, extract and analyse appropriate information from the selected studies to answer...
specific research questions [8]. This approach can be used to draw logical inferences systematically based on the collected literature. Compared to other approaches, content analysis has the advantage of performing both qualitative and quantitative analyses of AI factors and strategies in the construction industry [9].

Various approaches and steps are taken when doing a systematic literature review with the same outcome [10]. This study took steps performed in accordance with [11].

2.1. Search Strategy

A systematic search was performed to identify the relevant AI articles published in the various databases from 2010 until 2020. Data was collected from ASCE Journals, Emerald Insight, Elsevier ScienceDirect, Engineering Village, Google Scholar, ICE virtual library, IOPscience, IEEE Xplore, Elsevier ScienceDirect, Elsevier Scopus, SpringerLink and Taylor & Francis. When searching for the relevant documents, various search terms were used. Furthermore, Boolean and database-specific operators such as AND, OR, and special characters such as truncation (*) or (?) were associated with the search terms were used [12]. The search terms used were Adoption, Artificial Intelligence, Construction industry, Construction Management, Factors, Influencing Factors, Strategies.

2.2. Inclusion and Exclusion Criteria

This review included empirical studies based on the relevant research topic, AI adoption in the construction industry, written in English and published between 2010 and 2020. Exclusion criteria are any empirical which pieces were excluded if they focused on any other than the construction industry.

A total of 837 articles was extracted from the various databases. Thirty-one duplicate publications were removed. Four hundred and twenty records were excluded as they were either not written in English, show no peer review process, did not focus on AI and the construction industry, leaving 386 studies. These 386 articles abstracts were read, excluding 350 records as they did not look at influencing factors or strategies of AI adoption in the construction industry, and 36 papers were selected for the final classification and analysis. From those papers, 20 papers focused on influencing factors and 16 on strategies. Fig. 1 shows the approach used during the selection of the studies.
3. Results

3.1. Descriptive analysis of the SLR findings

Figure 2 shows the 36 publications that identified AI influencing factors and strategies within the construction industry that has grown from 2010 to 2020, implying that AI is an emerging topic. 2019 has the highest number of publications of 12, while 2005 and 2006 each have one publication.

Figure 3 represents the publications per country. China leads in AI research in the construction industry accounting for eight publications, approximately 23% for articles used in the SLR. Portugal, Singapore, Saudi Arabia and Oman each have one publication.

Figure 4 shows the type of publications that used the SLR. Of the 36 publications used, 26 are journal articles making up approximately 73% of the study.

Figure 5 shows the research method of the publications.
Figure 2: Number of publications per year between 2010 and 2020

Figure 3: Country publications of studies
3.2. Factors Influencing the adoption of AI in the Construction Industry

Table 1 indicates factors influencing the adoption of AI in the construction industry. The most influential factor is the cost of adopting AI with 15 sources. This is closely followed by Skills and expert knowledge with 13 sources. Fragmented industry, improve work culture, internet services and perform technical tasks are the least influential factors. This is together with power supply, professional bodies support and project documentation with one source each.
Table 1: Factors influencing AI adoption

Influencing Factors	Source
3D detailing	[13], [15],[20],[28]
Clash Detection	[13],[20],[28]
Collaboration/communication	[15] ,[19],[22],[24],[25],[27],[28]
Comparability	[14],[17],[18],[23],[30]
Complexity	[14],[17],[18]
Cost of adopting AI	[14],[15],[16],[18],[19],[20],[21],[22],[23],[24],[25],[26],[28],[29],[31]
Costing and estimating	[13],[28]
Define project roles and responsibilities	[13],[28]
Documentation	[13],[28]
Facilities Management	[13],[28]
Fragmented industry	[15]
Goal Setting	[13],[22]
Government support	[15],[16],[17],[19],[20],[21],[22],[23],[24],[25],[28],[29]
Improve work culture	[15]
Internet Services	[23]
Legal Security	[25],[26],[27]
Market Pressure and Demand	[14],[15],[16],[17],[19],[20],[21],[22],[24],[26],[29]
Organisational Readiness	[14],[16],[17],[18],[29]
Organisational Size	[14],[17]
Perform Technical tasks	[13]
Power Supply	[23]
Professional bodies support	[19]
Project documentation	[13]
project effectiveness and productivity	[13], [15],[28]
project life cycling	[13],[20]
Reducing risk factors on project	[13],[15],[18],[21],[22],[24]
Relative Advantage	[14],[16],[17],[29]
Resistance to Change	[21],[26],[31],[32]
Scheduling	[20],[24],[28]
Site Layout Planning	[13],[28]
Skills and expert knowledge	[15], [18], [19],[20],[21],[22],[23],[24],[25],[28],[30],[31],[32]
Standardisation	[15], [19],[20],[21],[23],[24],[25],[26],[27],[28]
Successful delivery of project on time, within cost and expected quality	[13], [15],[24],[25],[26],[27],[29]
Supply Chain [22],[23]
Top management support [13], [14], [15],[16],[17], [18],[22],[23],[28],[29],[30],[32]
Trading Partners Support [14], [29]

3.3. Strategies Influencing the adoption of AI in the Construction Industry

Strategies of AI adoption are indicated in table 2 below. First, training and skills acquisition of personnel cited as a critical strategy in adopting AI in the construction industry. This is followed by AI academia, research and development, and the development of government policies. Next, evaluating Project delivery method, example projects, industry leadership are the least critical strategies of AI adoption. This is followed by measured benchmarks, merger and realistic timescale for adoption.

Table 2: Strategies of AI adoption
Strategies
AI academia, research and development
Benchmarking of best practice
Change Management
Communicating benefits
Communicating with vendors
Development of government policies
Evaluating Project Delivery Method
Example projects
Financial incentives for AI adoption
Industry leadership
Legal contracts and property rights
Low-cost loans and subsidies from government and financial institutions
Mandatory AI policies and regulations
Measured benchmarks
Merger
Provision of trail usage
Public awareness and initiative
Realistic timescale for adoption
Senior Leadership Commitment
Sharing of knowledge of AI technologies
Standardisation of AI practice in the construction industry
Training and skills acquisition of personnel
4. Conclusion and Future work

This research presented the influencing factors and strategies of AI adoption in the construction industry. This is based on publications made between 2010 and 2020 through a systematic literature review. A total of 36 publications were analysed in the review. It was determined that the number of publications was highest in 2019. However, only seven publications were made in 2017. This implies a decreasing interest in AI in the construction domain.

Geographically, the Asian countries are leading with 29 publications in total, while Nigeria is the only African country with only two publications. Also, it could tell us, Africa lacks in AI research. This could be due to a lot of reasons such as lack of facilities, collaboration and expertise. Thus, focus on expertise and collaboration must be encouraged while the government aids institutions with facilities. From the publications, the cost of adopting AI was found to be the most influential factor. This implies that the construction industry considers the transactional cost which goes with adopting AI. When first adopting AI, the infrastructure and equipment, in the long run, save money time for the organisations.

Training and skills acquisition of personnel was found to be the critical strategy. Stakeholders in various construction organisations are questioning whether AI will increase productivity. They are also curious if AI will eventually replace employees’ existing employment. Organisations are constantly changing. This is accomplished by transitioning to modern technology and software systems to help with a more dynamic approach to employee training and development.

Future studies should combine the literature review knowledge and acquire primary data through interviews and questionnaires. Future research should also look at developing a roadmap of AI adoption in the construction industry, focusing on developing countries.

References
[1] S. B. Rane, P. R. Potdar, and S. Rane, “Development of Project Risk Management framework based on Industry 4.0 technologies,” Benchmarking: An International Journal, vol. ahead-of-print, no. ahead-of-print, Oct. 2019, DOI: 10.1108/bij-03-2019-0123.
[2] T. Haupt and N. Harinarain, “The image of the construction industry and its employment attractiveness,” Acta Structilia 23(2), vol. 23, no. 1, Feb. 2017, doi: 10.18820/24150487/as23i2.4.
[3] F. Craveiro, J. P. Duarte, H. Bartolo, and P. J. Bartolo, “Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0,” Automation in Construction, vol. 103, pp. 251–267, Jul. 2019, DOI: 10.1016/j.autcon.2019.03.011.
[4] S. Girginkaya Akdag and U. Maqsood, “A roadmap for BIM adoption and implementation in developing countries: the Pakistan case,” Archnet-IJAR: International Journal of Architectural Research, vol. 14, no. 1, pp. 112–132, Sep. 2019, DOI: 10.1108/arch-04-2019-0081.
[5] M. Ryan, “In AI We Trust: Ethics, Artificial Intelligence, and Reliability,” Science and Engineering Ethics, Jun. 2020, DOI: 10.1007/s11948-020-00228-y.
[6] F. Fogliano, F. Fabbrini, A. Souza, G. Fidéllo, J. Machado, and R. Sarra, “Edgard, the Chatbot: Questioning Ethics in the Usage of Artificial Intelligence Through Interaction Design and Electronic Literature,” Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Healthcare Applications, pp. 325–341, 2019, DOI: 10.1007/978-3-030-22219-2_25.
[7] J. M. D. Delgado et al., “Robotics and automated systems in construction: Understanding industry-specific challenges for adoption,” Journal of Building Engineering, vol. 26, p. 100868,
Nov. 2019, DOI: 10.1016/j.jobe.2019.100868.

[8] M. Cubric, “Drivers, barriers and social considerations for AI adoption in business and management: A tertiary study,” Technology in Society, p. 101257, Apr. 2020, DOI: 10.1016/j.techsoc.2020.101257.

[9] H. Yan, N. Yang, Y. Peng, and Y. Ren, “Data mining in the construction industry: Present status, opportunities, and future trends,” Automation in Construction, vol. 119, p. 103331, Nov. 2020, DOI: 10.1016/j.autcon.2020.103331.

[10] W. ten Ham-Baloyi and P. Jordan, “Systematic review as a research method in post-graduate nursing education,” Health SA Gesondheid, vol. 21, pp. 120–128, Dec. 2016, DOI: 10.1016/j.hsag.2015.08.002.

[11] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement,” PLoS Medicine, vol. 6, no. 7, p. e1000097, Jul. 2009, DOI: 10.1371/journal.pmed.1000097.

[12] S. Madigan, M. Wade, G. Tarabulsy, J. M. Jenkins, and M. Shouldice, “Association Between Abuse History and Adolescent Pregnancy: A Meta-analysis,” Journal of Adolescent Health, vol. 55, no. 2, pp. 151–159, Aug. 2014, DOI: 10.1016/j.jadohealth.2014.05.002.

[13] A. Chegu Badrinath and S.-H. Hsieh, “Empirical Approach to Identify Operational Critical Success Factors for BIM Projects,” Journal of Construction Engineering and Management, vol. 145, no. 3, p. 04018140, Mar. 2019, DOI: 10.1061/(asce)co.1943-7862.0001607.

[14] M. Pan and W. Pan, “Understanding the Determinants of Construction Robot Adoption: Perspective of Building Contractors,” Journal of Construction Engineering and Management, vol. 146, no. 5, p. 04020040, May 2020, DOI: 10.1061/(asce)co.1943-7862.0001821.

[15] J. M. D. Delgado, L. Oyedele, T. Beach, and P. Demian, “Augmented and Virtual Reality in Construction: Drivers and Limitations for Industry Adoption,” Journal of Construction Engineering and Management, vol. 146, no. 7, p. 04020079, Jul. 2020, DOI: 10.1061/(asce)co.1943-7862.0001844.

[16] C.-C. Yeh and Y.-F. Chen, “Critical success factors for adoption of 3D printing,” Technological Forecasting and Social Change, vol. 132, pp. 209–216, Jul. 2018, DOI: 10.1016/j.techfore.2018.02.003.

[17] Y. Chen, Y. Yin, G. J. Browne, and D. Li, “Adoption of building information modeling in Chinese construction industry,” Engineering, Construction and Architectural Management, vol. 26, no. 9, pp. 1878–1898, Oct. 2019, DOI: 10.1108/ecam-11-2017-0246.

[18] H. M. F. Shehzad, R. B. Ibrahim, A. F. Yusof, and K. A. M. Khaidzir, “Building Information Modeling: Factors Affecting the Adoption in the AEC Industry,” 2019 6th International Conference on Research and Innovation in Information Systems (ICRIIS), Dec. 2019, DOI: 10.1109/icriis48246.2019.9073581.

[19] M. Abubakar, Y. M. Ibrahim, D. Kado, and K. Bala, “Contractors’ Perception of the Factors Affecting Building Information Modelling (BIM) Adoption in the Nigerian Construction Industry,” Computing in Civil and Building Engineering (2014), Jun. 2014, DOI: 10.1061/9780784413616.022.

[20] Y. Le, X. Zhang, and M. Liu, “Study on Influencing Factors of BIM Adoption in China’s Construction Industry Based on FA-SEM Model,” ICCREM 2019, Aug. 2019, DOI: 10.1061/9780784482308.010.

[21] O. Aljobaly and A. Banawi, “Evaluation of the Saudi Construction Industry for Adoption of Building Information Modelling,” Advances in Intelligent Systems and Computing, pp. 488–498, Jun. 2019, DOI: 10.1007/978-3-030-20454-9_49.

[22] S. Akmam Syed Zakaria, T. Gajendran, M. Skitmore, and G. Brewer, “Key factors influencing the decision to adopt industrialised building systems technology in the Malaysian construction industry: an inter-project perspective,” Architectural Engineering and Design Management, vol. 14, no. 1–2, pp. 27–45, Mar. 2017, DOI: 10.1080/17452007.2017.1298512.

[23] A. Afolabi, E. Iben, E. Aduwo, P. Tunji-Olayeni, and O. Oluwunmi, “Critical Success Factors
(CSFs) for e-Procurement Adoption in the Nigerian Construction Industry,” *Buildings*, vol. 9, no. 2, p. 47, Feb. 2019, DOI: 10.3390/buildings9020047.

[24] M. N. A. Rashid, M. R. Abdullah, and D. Ismail, “Critical Success Factors CSFs to Automation and Robotics in Industrialized Building System IBS,” *International Journal of Academic Research in Business and Social Sciences*, vol. 8, no. 12, Jan. 2019, DOI: 10.6007/ijarbss/v8-i12/5432.

[25] T. O. Olawumi and D. W. M. Chan, “Critical success factors for implementing building information modeling and sustainability practices in construction projects: A Delphi survey,” *Sustainable Development*, Jan. 2019, DOI: 10.1002/sd.1925.

[26] P. Li, S. Zheng, H. Si, and K. Xu, “Critical Challenges for BIM Adoption in Small and Medium-Sized Enterprises: Evidence from China,” *Advances in Civil Engineering*, vol. 2019, pp. 1–14, Feb. 2019, DOI: 10.1155/2019/9482350.

[27] Y. Dou, X. Xue, Z. Zhao, and Y. Jiang, “Measuring the Factors that Influence the Diffusion of Prefabricated Construction Technology Innovation,” *KSCE Journal of Civil Engineering*, vol. 23, no. 9, pp. 3737–3752, Aug. 2019, DOI: 10.1007/s12205-019-2029-3.

[28] M. Attarzadeh, R. L. K. Tiong, and T. Nath, “Identifying key factors for building information modelling adoption in Singapore,” *Proceedings of the ICE - Management, Procurement and Law*, vol. 168, no. 5, pp. 220–231, Oct. 2015, DOI: 10.1680/mpal.15.00030.

[29] T. Umar, “Key factors influencing the implementation of three-dimensional printing in construction,” *Proceedings of the Institution of Civil Engineers - Management, Procurement and Law*, pp. 1–14, Apr. 2020, DOI: 10.1680/jmapl.19.00029.

[30] W. Wang, S. Zhang, Y. Su, and X. Deng, “Key Factors to Green Building Technologies Adoption in Developing Countries: The Perspective of Chinese Designers,” *Sustainability*, vol. 10, no. 11, p. 4135, Nov. 2018, DOI: 10.3390/su10114135.

[31] I. D. Mohd. Arifin, E. M. A. Zawawi, and Z. Ismail, “Factors Influencing the Implementation of Technologies Behind Industry 4.0 in the Malaysian Construction Industry,” *MATEC Web of Conferences*, vol. 266, p. 01006, 2019, DOI: 10.1051/matecconf/201926601006.

[32] K. Sargent, P. Hyland, and S. Sawang, “Factors influencing the adoption of information technology in a construction business,” *Construction Economics and Building*, vol. 12, no. 2, p. 86, Jun. 2012, DOI: 10.5130/ajceb.v12i2.2448.

[33] Y. Tan, L. Shen, and C. Langston, “Competition Environment, Strategy, and Performance in the Hong Kong Construction Industry,” *Journal of Construction Engineering and Management*, vol. 138, no. 3, pp. 352–360, Mar. 2012, DOI: 10.1061/(asce)co.1943-7862.0000407.

[34] B. C. Lines and P. K. Reddy Vardireddy, “Drivers of Organizational Change within the AEC Industry: Linking Change Management Practices with Successful Change Adoption,” *Journal of Management in Engineering*, vol. 33, no. 6, p. 04017031, Nov. 2017, DOI: 10.1061/(asce)me.1943-5479.0000548.

[35] W. Pan, L. Chen, and W. Zhan, “PESTEL Analysis of Construction Productivity Enhancement Strategies: A Case Study of Three Economies,” *Journal of Management in Engineering*, vol. 35, no. 1, p. 05018013, Jan. 2019, DOI: 10.1061/(asce)me.1943-5479.0000662.

[36] A. Darko and A. P. C. Chan, “Strategies to promote green building technologies adoption in developing countries: The case of Ghana,” *Building and Environment*, vol. 130, pp. 74–84, Feb. 2018, DOI: 10.1016/j.buildenv.2017.12.022.

[37] I. Y. Wuni and G. Q. Shen, “Barriers to the adoption of modular integrated construction: Systematic review and meta-analysis, integrated conceptual framework, and strategies,” *Journal of Cleaner Production*, vol. 249, p. 119347, Nov. 2019, DOI: 10.1016/j.jclepro.2019.119347.

[38] P. Smith, “BIM Implementation – Global Strategies,” *Procedia Engineering*, vol. 85, pp. 482–492, 2014, DOI: 10.1016/j.proeng.2014.10.575.

[39] T. O. Olawumi and D. W. M. Chan, “Development of a benchmarking model for BIM implementation in developing countries,” *Benchmarking: An International Journal*, vol. 26, no. 4, pp. 1210–1232, May 2019, DOI: 10.1108/bij-05-2018-0138.
[40] A. H. Memon, I. A. Rahman, I. Memon, and N. I. A. Azman, “BIM in Malaysian Construction Industry: Status, Advantages, Barriers and Strategies to Enhance the Implementation Level,” *Research Journal of Applied Sciences, Engineering and Technology*, vol. 8, no. 5, pp. 606–614, Aug. 2014, DOI: 10.19026/rjaset.8.1012.

[41] T.-N. Dao, T.-Q. Nguyen, and P.-H. Chen, “BIM Adoption in Construction Projects Funded with State-managed Capital in Vietnam: Legal Issues and Proposed Solutions,” *Lecture Notes in Civil Engineering*, pp. 1211–1216, Oct. 2019, DOI: 10.1007/978-981-15-0802-8_194.

[42] S. M. Sepasgozar and S. Davis, “Digital Construction Technology and Job-site Equipment Demonstration: Modelling Relationship Strategies for Technology Adoption,” *Buildings*, vol. 9, no. 7, p. 158, Jun. 2019, DOI: 10.3390/buildings9070158.

[43] K. O. Ayinla and Z. Adamu, “Bridging the digital divide gap in BIM technology adoption,” *Engineering, Construction and Architectural Management*, vol. 25, no. 10, pp. 1398–1416, Nov. 2018, DOI: 10.1108/ecam-05-2017-0091.

[44] W. Ferron and Y. Turkan, “Toward a Roadmap for BIM Adoption and Implementation by Small-Sized Construction Companies,” *Advances in Informatics and Computing in Civil and Construction Engineering*, pp. 873–879, Oct. 2018, DOI: 10.1007/978-3-030-00220-6_105.

[45] N. A. Mahat, S. N. A. S. Alwee, H. Adnan, and A. A. Hassan, “Propelling Green Building Technologies Adoption in Malaysia Construction Industry,” *IOP Conference Series: Earth and Environmental Science*, vol. 233, p. 022032, Feb. 2019, DOI: 10.1088/1755-1315/233/2/022032.

[46] M. J. F. Silva, F. Salvado, P. Couto, and Á. V. e Azevedo, “Roadmap Proposal for Implementing Building Information Modelling (BIM) in Portugal,” *Open Journal of Civil Engineering*, vol. 06, no. 03, pp. 475–481, 2016, DOI: 10.4236/ojce.2016.63040.

[47] A. P. C. Chan, A. Darko, and E. E. Ameyaw, “Strategies for Promoting Green Building Technologies Adoption in the Construction Industry—An International Study,” *Sustainability*, vol. 9, no. 6, p. 969, Jun. 2017, DOI: 10.3390/su9060969.

[48] A. A. Zaini, A. W. Razali, H. C. Gui, N. Zaini, and S. D. Tamjehi, “Assessing Strategies of Building Information Modeling (BIM) Implementation in Sarawak Construction Industry,” *IOP Conference Series: Earth and Environmental Science*, vol. 498, p. 012086, Jun. 2020, DOI: 10.1088/1755-1315/498/1/012086.