Generators of Picard modular groups

Yueping Jiang, Jieyan Wang and Baohua Xie
College of Mathematics and Econometrics, Hunan University,
Changsha, 410082 Hunan, People’s Republic of China

Abstract
In this paper, we extend the method in [FFLP] to obtain the generators of the Picard modular groups $\text{PU}(2, 1; \mathcal{O}_d)$ with $d = 3, 7, 11$.

2000 Mathematics Subject Classification. 30M05, 22E40, 32M15.

Keywords: Picard modular groups, Complex hyperbolic space

1. Introduction
Picard modular group $\text{PU}(2, 1; \mathcal{O}_d)$ is the subgroup of $\text{PU}(2, 1)$ with entries in \mathcal{O}_d, where \mathcal{O}_d is the ring of algebraic integers in the imaginary quadratic number field $\mathbb{Q}(\sqrt{d})$ for any positive square-free integer d. If $d \equiv 1, 2 \pmod{4}$, then $\mathcal{O}_d = \mathbb{Z}[\sqrt{d}]$, and if $d \equiv 3 \pmod{4}$ then $\mathcal{O}_d = \mathbb{Z}[\frac{1+\sqrt{1+d}}{2}]$. The Picard modular groups $\text{PU}(2, 1; \mathcal{O}_d)$ are the simplest arithmetic lattices in $\text{PU}(2, 1)$.

In [FP], Falbel and Parker studied the group $\text{PU}(2, 1; \mathbb{Z}[\omega])$, where ω is a cube root of unity. They constructed a fundamental domain for the action of $\text{PU}(2, 1; \mathbb{Z}[\omega])$ on complex hyperbolic space H^2. Moreover, they gave a generator system and the corresponding presentation.

It is well known that the modular group $\text{PSL}(2, \mathbb{Z}) = \text{SL}(2, \mathbb{Z})/\{\pm I\}$ is generated by the transformations $z \mapsto z + 1$ and $z \mapsto -\frac{1}{z}$. Motivated by the statement of $\text{PSL}(2, 1; \mathbb{Z})$, in [KPS], A. Kleinschmidt and D. Persson asked if there is a simple description of $\text{SU}(2, 1; \mathbb{Z}[i])$ in terms of generators. In [FFLP], they proved that the Gauss Picard modular group $\text{SU}(2, 1; \mathbb{Z}[i])$ can be generated by four transformations, two Heisenberg translations, a rotation and an involution. It means that they gave a positive answer for the question raised by A. Kleinschmidt and D. Persson in [KPS].

In this paper, we extended the method in [FFLP] to the Picard modular groups $\text{PU}(2, 1; \mathcal{O}_d)$ with $d = 3, 7, 11$. As $d \equiv 3 \pmod{4}$ when $d = 3, 7, 11$, the elements of the ring \mathcal{O}_d can be described as $\mathcal{O}_d = \mathbb{Z}[-\frac{1+i\sqrt{d}}{2}]$, where the ring $\mathbb{Z}[-\frac{1+i\sqrt{2}}{2}]$ equals to the ring $\mathbb{Z}[\frac{1+\sqrt{2}}{2}]$. Let $\omega_d = \frac{-1+i\sqrt{d}}{2}$, then the Picard modular groups can be denoted as $\text{PU}(2, 1; \mathbb{Z}[\omega_d])$. We get the following results.

Theorem 1. The Picard modular group $\text{PU}(2, 1; \mathbb{Z}[\omega_3])$ with $\omega_3 = \frac{-1+i\sqrt{3}}{2}$ is generated by the Heisenberg translations

$$N_{(\omega_3, \sqrt{3})} = \begin{pmatrix} 1 & -\bar{\omega}_3 & \omega_3 \\ 0 & 1 & \omega_3 \\ 0 & 0 & 1 \end{pmatrix}, \quad N_{(1, \sqrt{3})} = \begin{pmatrix} 1 & -1 & \omega_3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

the rotation

$$M_{-\omega_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\omega_3 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

and the involution

$$R = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$
Theorem 2. The Picard modular group $\text{PU}(2, 1; \mathbb{Z}[\omega_7])$ with $\omega_7 = \frac{-1+i\sqrt{7}}{2}$ is generated by the Heisenberg translations

$$N_{(\omega_7, 0)} = \begin{pmatrix} 1 & -\overline{\omega_7} & -1 \\ 0 & 1 & \omega_7 \\ 0 & 0 & 1 \end{pmatrix}, \quad N_{(1, \sqrt{7})} = \begin{pmatrix} 1 & -1 & \omega_7 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

the rotation

$$M_{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

and the involution

$$R = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Theorem 3. The Picard modular group $\text{PU}(2, 1; \mathbb{Z}[\omega_{11}])$ with $\omega_{11} = \frac{-1+i\sqrt{11}}{2}$ is generated by the Heisenberg translations

$$N_{(\omega_{11}, \sqrt{11})} = \begin{pmatrix} 1 & -\overline{\omega_{11}} & -1 + \omega_{11} \\ 0 & 1 & \omega_{11} \\ 0 & 0 & 1 \end{pmatrix}, \quad N_{(1, \sqrt{11})} = \begin{pmatrix} 1 & -1 & \omega_{11} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

the rotation

$$M_{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

and the involution

$$R = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Similar to the modular group $\text{PSL}(2, \mathbb{Z})$, by using the generators of Picard modular group, for which we can construct a fundamental domain. Such as the Gauss Picard modular group $\text{PU}(2, 1; \mathbb{Z}[i])$, in [FFP], they gave a construction of a fundamental domain.

2. Preliminaries

Let $\mathbb{C}^{2,1}$ denote the 3 dimension complex vector space \mathbb{C}^3 equipped with the Hermitian form

$$\langle z, w \rangle = z_1 \bar{w}_3 + z_2 \bar{w}_2 + z_3 \bar{w}_1,$$

where $z = (z_1, z_2, z_3)^t$ and $w = (w_1, w_2, w_3)^t$. The vector x^t stands for the transposition of vector x. Consider the subspaces of $\mathbb{C}^{2,1}$:

$$V_- = \{ z \in \mathbb{C}^{2,1} | \langle z, z \rangle < 0 \};$$

$$V_0 = \{ z \in \mathbb{C}^{2,1} - \{0\} | \langle z, z \rangle = 0 \}.$$

Complex hyperbolic space \mathbb{H}_x^2 is defined to be the complex projective subspace $\mathbb{P}(V_-)$ equipped with the Bergman metric, where $\mathbb{P} : \mathbb{C}^{2,1} - \{0\} \to \mathbb{C}P^2$ is the canonical projection onto the complex projective space. We consider the complex hyperbolic space \mathbb{H}_x^2 as the Siegel domain $\{ z = (z_1, z_2) \in \mathbb{C}^2 : 2\mathcal{R}(z_1) + |z_2|^2 < 0 \}$. The boundary of complex hyperbolic space is $\partial \mathbb{H}_x^2 = \mathbb{P}(V_0)$, which can be identified with the one point compactification $\hat{\mathbb{R}}$ of Heisenberg group \mathbb{R} by stereographic projection. The Heisenberg group \mathbb{R} is the set $\mathbb{C} \times \mathbb{R}$ with the group law

$$(z_1, t_1)(z_2, t_2) = (z_1 + z_2, t_1 + t_2 + 2\Im(z_1 \bar{z}_2)).$$
The point at infinity is \(q_\infty = (1, 0, 0)^t \).

The group of biholomorphic transformations of complex hyperbolic space \(H^2 \) is \(\text{PU}(2, 1) \), which is the projectivisation of the unitary group \(\text{U}(2, 1) \) preserving the Hermitian form. It is well known that if \(A \in \text{PU}(2, 1) \) fixes \(q_\infty \) then \(A \) is upper triangular. There are three important classes of transformations fixing \(q_\infty \), Heisenberg translation, rotation and dilation. The group generated by all Heisenberg translations, rotations and dilations is the stabilizer of \(q_\infty \) in \(\text{PU}(2, 1) \).

Heisenberg translation by \((z, t) \in \partial H^2 \) is given by

\[
N_{z,t} \equiv \begin{pmatrix}
1 & -\bar{z} & (-|z|^2 + it)/2 \\
0 & 1 & z \\
0 & 0 & 1
\end{pmatrix}.
\]

The product of two Heisenberg translations \(N_{(z_1,t_1)} \) and \(N_{(z_2,t_2)} \) is the Heisenberg translation

\[
N_{(z_1,t_1)} \circ N_{(z_2,t_2)} = N_{(z_1+z_2,t_1+t_2+2\Im(z_1\bar{z}_2))}
\]

corresponding to the product of two points in the Heisenberg group \(\mathfrak{H} \).

The Heisenberg rotation by \(\beta \in S^1 \) is given by

\[
M_\beta \equiv \begin{pmatrix}
1 & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

The Heisenberg dilation by \(\lambda \in \mathbb{R}_+ \) is given by

\[
A_\lambda \equiv \begin{pmatrix}
\lambda & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \lambda^{-1}
\end{pmatrix}.
\]

The holomorphic involution \(R \), which swaps the point \(q_0 = (0, 0) \) and the point at infinity \(q_\infty \), is given by

\[
R \equiv \begin{pmatrix}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{pmatrix}.
\]

Let \(\Gamma_\infty \) be the stabilizer subgroup of \(q_\infty \) in \(\text{PU}(2, 1) \). Using Langlands decomposition, any element \(P \in \Gamma_\infty \) can be decomposed as a product of a Heisenberg translation, dilation, and a rotation:

\[
P = \begin{pmatrix}
p_{11} & p_{12} & p_{13} \\
0 & p_{22} & p_{23} \\
0 & 0 & p_{33}
\end{pmatrix} = NAM = \begin{pmatrix}
\lambda & -\beta \bar{z} & -|z|^2 + it \\
0 & \beta & \lambda^{-1} \bar{z} \\
0 & 0 & \lambda^{-1}
\end{pmatrix}.
\]

The parameters satisfy the corresponding conditions.

Through we have known that an element belonging to the subgroup \(\Gamma_\infty \) of \(\text{PU}(2, 1) \) is upper triangular, the following lemma gives a neccessary and sufficient condition to determine that an element of \(\text{PU}(2, 1) \) lies in \(\Gamma_\infty \).

Lemma 2.1 Let \(G = (g_{jk}) \in \text{PU}(2, 1) \). Then \(G \in \Gamma_\infty \) if and only if \(g_{31} = 0 \).

In [FL1] and [FL2], they have shown that the Langlands decomposition can also be used to descripr a holomorphic transformation \(G \in \text{PU}(2, 1) \) which is not in the stabilizer subgroup of the infinity point \(q_\infty \). Let \(N_{G(q_\infty)} \) be the Heisenberg translation which maps \(q_0 \) to \(G(q_\infty) \). It is quite easy to see that the transformation \(P = RN^{-1}_{G(q_\infty)}G \) belongs to \(\Gamma_\infty \), so

\[
G = N_{G(q_\infty)}RP = N_{G(q_\infty)}RNAM.
\]
The transformations N and P in the decomposition of G are not necessarily in the Picard modular group $\Gamma \equiv PU(2, 1; \mathcal{O}_{d})$, even if $G \in \Gamma$. It is clear that the entries of N and P are not necessarily integers in the ring \mathcal{O}_{d}.

3. The Picard modular groups $PU(2, 1; \mathcal{O}_{d})$

3.1 The case $d = 3$

In this section, we consider the Picard modular group $PU(2, 1; \mathcal{O}_{d})$ when $d = 3$. Let $\omega_3 = \frac{-1 + i\sqrt{3}}{2}$, then the ring \mathcal{O}_{d} can be written as $\mathbb{Z}[\omega_3]$. We first consider the stabilizer subgroup Γ_{∞} of the Picard modular group $PU(2, 1; \mathbb{Z}[\omega_3])$.

Lemma 3.1. Let $\Gamma_{\infty}(2, 1; \mathbb{Z}[\omega_3])$ denote the subgroup Γ_{∞} of Picard modular group $PU(2, 1; \mathbb{Z}[\omega_3])$. Then any element $P \in \Gamma_{\infty}(2, 1; \mathbb{Z}[\omega_3])$ if and only if the parameters in the Langlands decomposition of P satisfy the conditions

$$
\lambda = 1, \; t \in \sqrt{3}\mathbb{Z}, \; z \in \mathbb{Z}[\omega_3], \; \beta = \pm 1, \pm \omega_3, \pm \omega_3^2
$$

and the integers $\frac{t}{\sqrt{3}}$ and $|z|^2$ have the same parity.

Proof. It is quite easy to see that $\lambda = 1$. Considering the Langlands decomposition when $P \in \Gamma_{\infty}(2, 1; \mathbb{Z}[\omega_3])$, we can get that $|\beta| = 1, \; z \in \mathbb{Z}[\omega_3]$ and $t \in \sqrt{3}\mathbb{Z}$. Since the entries $\frac{|z|^2 + it}{2} \in \mathbb{Z}[\omega_3]$, $\frac{t}{\sqrt{3}} \in \mathbb{Z}$ and $|z|^2 \in \mathbb{Z}$, the integers $\frac{t}{\sqrt{3}}$ and $|z|^2$ have the same parity. As ω_3 is a cube root of unit, if $|\beta| = 1$, then $\beta = \pm 1, \pm \omega_3, \pm \omega_3^2$. q.e.d.

Proposition 3.2. The stabilizer subgroup Γ_{∞} of the infinity point q_{∞} in the Picard modular group $PU(2, 1; \mathbb{Z}[\omega_3])$ is generated by the Heisenberg translations $N_{(\omega_3, \sqrt{3})}$, $N_{(1, \sqrt{3})}$, and the rotation $M_{-\omega_3}$.

Proof. For any $P \in \Gamma_{\infty}(2, 1; \mathbb{Z}[\omega_3])$, we know that P is upper triangular. According to Lemma 1, there is no dilation component in its Langland decomposition, that is

$$
P = NM = \begin{pmatrix}
1 & -\bar{z} & (-|z|^2 + it)/2 \\
0 & 1 & z \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & 1
\end{pmatrix}.
$$

Since $\beta^6 = 1$, the rotation in P is $M_{-\omega_3}$, $M_{\omega_3^2} = M_{\omega_3}$, $M_{1} = M_{3\omega_3}$, $M_{\omega_3} = M_{4\omega_3}$, $M_{-\omega_3} = M_{5\omega_3}$, or $I = M_{6\omega_3}^5$. Therefore the rotation component of P in the Langland decomposition is generated by $M_{-\omega_3}$.

We now consider the Heisenberg translation part of P, $N_{(z, t)}$. Let $z = a + b\omega_3$, where $a, b \in \mathbb{Z}$, since $z \in \mathbb{Z}[\omega_3]$. Then $N_{(z, t)}$ splits as

$$
N_{(z, t)} = N_{(a + b\omega_3, t)} = N_{(b\omega_3, \sqrt{3}b)} \circ N_{(a, \sqrt{3}a)} \circ N_{(0, t - \sqrt{3}ab - \sqrt{3}a - \sqrt{3}b)}.
$$

Here $N_{(b\omega_3, \sqrt{3}b)}$ can be written as

$$
N_{(b\omega_3, \sqrt{3}b)} = N_{(\omega_3, \sqrt{3})}^b,
$$

since $b \in \mathbb{Z}$. Obviously, the Heisenberg translation $N_{(a, \sqrt{3}a)}$ can be written as

$$
N_{(a, \sqrt{3}a)} = N_{(1, \sqrt{3})}^a,
$$

since $a \in \mathbb{Z}$.

To obtain

$$
N_{(0, t - \sqrt{3}ab - \sqrt{3}a - \sqrt{3}b)} = N_{(0, 2\sqrt{3})}^{t - \sqrt{3}ab - \sqrt{3}a - \sqrt{3}b},
$$

we have completed the proof.
it suffice to show that the number \(\frac{t - \sqrt{3}(ab + a + b)}{2\sqrt{3}} \) is an integer, namely,

\[
\frac{t}{\sqrt{3}} - (ab + a + b) \in 2\mathbb{Z}.
\]

According to Lemma 3.1, the integers \(\frac{t}{\sqrt{3}} \) and \(|z|^2 = |a + b\omega_3|^2 = a^2 - ab + b^2 \) have the same parity. It can be easily seen that

\[
a^2 - ab + b^2 + (ab + a + b) = a(a + 1) + b(b + 1) \in 2\mathbb{Z}.
\]

Hence \(\frac{t}{\sqrt{3}} \) and \(ab + a + b \) have the same parity. This prove that

\[
\frac{t}{\sqrt{3}} - (ab + a + b) \in 2\mathbb{Z}.
\]

The Heisenberg translation \(N_{(0, 2\sqrt{3})} \) can be generated by \(N_{(1, \sqrt{3})} \) and \(M_{-1} \), i.e.

\[
N_{(0, 2\sqrt{3})} = (N_{(1, \sqrt{3})} \circ M_{-1})^2.
\]

This proposition is proved. q.e.d.

Proof of Theorem 1. Let \(G = (g_{jk})_{j,k=1}^3 \) be an element of the group \(\text{PU}(2, 1; \mathbb{Z}[\omega_3]) \). Since the result is obviously when \(G \in \Gamma_{\infty} \), which is the stabilizer subgroup of infinity \(q_{\infty} \), we may assume that \(G \) does not belong to the subgroup \(\Gamma_{\infty} \). Then \(g_{31} \neq 0 \) according to Lemma 2.1 and \(G \) maps \(q_{\infty} \) to \((g_{11}/g_{31}, g_{21}/g_{31}) \). Since \(G(q_{\infty}) \) is in \(\partial \mathbb{H}_2^3 \), then

\[
2\Re\left(\frac{g_{11}}{g_{31}}\right) = -\left|\frac{g_{21}}{g_{31}}\right|^2.
\]

Consider the Heisenberg translation \(N_{G(q_{\infty})} \) that maps \(q_0 \) to \(G(q_{\infty}) \). Note that the translation \(N_{G(q_{\infty})} \) is not necessarily in the Picard modular group \(\text{PU}(2, 1; \mathbb{Z}[\omega_3]) \) except \(|g_{31}| = 1 \). However, we known that

\[
RN_{G(q_{\infty})}^{-1} G = P.
\]

It is well known that the ring \(\mathcal{O}_3 = \mathbb{Z}[\omega_3] \) is Euclidean. Then we will successively approximate \(N_{G(q_{\infty})}^{-1} \) by Heisenberg translations in the Picard modular group to decrease the value \(|g_{31}|^2 \in \mathbb{Z} \) until it becomes 0. Therefore, \(G \) belongs to the subgroup \(\Gamma_{\infty} \) according to Lemma 2.1 and can be expressed as a product of the generators according to Proposition 3.2.

We calculate the entry in the lower left corner of the product

\[
G_1 \equiv RN_{(z, t)} G = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & -z \\ 1 & -\bar{z} & -|z|^2 + it \end{pmatrix} G.
\]

It follows that the entry \(g_{31}^{(1)} \) lying in the lower left corner of \(G_1 = (g_{jk}^{(1)}) \) is equal to

\[
g_{31}^{(1)} = g_{11} - g_{21} \bar{z} + g_{31} - \frac{|z|^2 + it}{2} = g_{31}\left(\Re\left(\frac{g_{11}}{g_{31}}\right) - \Re\left(\frac{g_{21}}{g_{31}}\frac{1}{\bar{z}}\right) - \frac{|z|^2}{2}\right) + i\Im\left(\frac{g_{11}}{g_{31}} - \Im\left(\frac{g_{21}}{g_{31}}\frac{1}{\bar{z}}\right) + \frac{t}{2}\right) = g_{31}(J_1 + iJ_2).
\]
We can simplify I_1 to

$$ I_1 = \frac{1}{2} \left(\frac{g_{21}}{g_{31}} + z \right)^2, $$

according to equation (1).

Let $\frac{2n}{g_{31}} = x + iy$. Since $z = a + b\omega_3 = (a - \frac{b}{2}) + \frac{b\sqrt{3}}{2}$, we can select two appropriate integers a and b satisfying $|x + (a - \frac{b}{2})| \leq \frac{1}{2}$ and $|y + \frac{b\sqrt{3}}{2}| \leq \frac{\sqrt{3}}{4}$. Hence we obtain the upper bound

$$ |I_1| \leq \frac{1}{4} \left(\left(\frac{1}{2} \right)^2 + \left(\frac{\sqrt{3}}{4} \right)^2 \right) = \frac{7}{32}. $$

Selecting some t in I_2, we can get the inequality $|I_2| = |\Im(\frac{2n}{g_{31}}) - \Im(\frac{2n}{g_{31}}z) + \frac{1}{2}| \leq \frac{\sqrt{3}}{4}$ since $t \in \sqrt{3}Z$. Therefore, we have the estimation of $g^{(1)}_{31}$

$$ |g^{(1)}_{31}|^2 = |g_{31}|^2 |I_1 + iI_2|^2 = |g_{31}|^2 (I_1^2 + I_2^2) \leq |g_{31}|^2 [(\frac{7}{32})^2 + (\frac{\sqrt{3}}{4})^2] < \frac{1}{4}|g_{31}|^2. $$

The preceding inequality tell us that we can reduce the matrix of the transformation G to the matrix of a transformation G_n with $g^{(n)}_{31} = 0$ by repeating this approximation procedure finitely many times. However, according to Lemma 2.1, this condition implies that the G_n belongs to the subgroups Γ_∞. As we shown in Proposition 3.2, the subgroup Γ_∞ can be generated by the Heisenberg translation $N_{(\omega_3, \sqrt{3})}$, $N_{(1, \sqrt{3})}$ and the Heisenberg rotation M_{ω_3}. Since the approximation procedure just uses the transformations in Γ_∞ and the transformation R. Hence the proof of Theorem 1 is completed. q.e.d.

3.2 The case $d = 7$

In this section, we consider the Picard modular group $\text{PU}(2, 1; O_d)$ when $d = 7$. Let $\omega_7 = \frac{-1+i\sqrt{7}}{2}$, then the ring O_d can be written as $\mathbb{Z}[\omega_7]$. In order to prove theorem 2, we start by considering the stabilizer subgroup Γ_∞.

Lemma 3.3 Let $\Gamma_\infty(2, 1; \mathbb{Z}[\omega_7])$ denote the subgroup Γ_∞ of Picard modular group $\text{PU}(2, 1; \mathbb{Z}[\omega_7])$. Then any element $P \in \Gamma_\infty(2, 1; \mathbb{Z}[\omega_7])$ if and only if the parameters in the Langlands decomposition of P satisfy the conditions

$$ \lambda = 1, \ t \in \sqrt{3}Z, \ z \in \mathbb{Z}[\omega_7], \ \beta = \pm 1, $$

and the integers $\frac{t}{\sqrt{7}}$ and $|z|^2$ have the same parity.

Proof. It is quite easy to see that $\lambda = 1$. Considering the Langlands decomposition when $P \in \Gamma_\infty(2, 1; \mathbb{Z}[\omega_7])$, we can get that $|\beta| = 1$, $z \in \mathbb{Z}[\omega_7]$ and $t \in \sqrt{3}Z$. Since the entries $\frac{-|z|^2+it}{2} \in \mathbb{Z}[\omega_7]$, $\frac{t}{\sqrt{7}} \in \mathbb{Z}$ and $|z|^2 \in \mathbb{Z}$, the integers $\frac{t}{\sqrt{7}}$ and $|z|^2$ have the same parity. As $|\beta| = 1$ and there is not an element in $\mathbb{Z}[\omega_7]$ except $-1, 1$ satisfying the preceding condition. This prove the lemma. q.e.d.

Proposition 3.4 The stabilizer subgroup Γ_∞ of the infinity point q_∞ in the Picard modular group $\text{PU}(2, 1; \mathbb{Z}[\omega_7])$ is generated by the Heisenberg translations $N_{(\omega_7, 0)}$, $N_{(1, \sqrt{7})}$ and the rotation M_{-1}.

Proof. It is similar to the proof of Proposition 1. Let $P \in \Gamma_\infty(2, 1; \mathbb{Z}[\omega_7])$. According to Lemma 1, it can be decomposed as the product of a Heisenberg translation $N_{(z, t)}$ and a rotation M_{β}. The Heisenberg rotation M_{β} is M_{-1} and $I = M_{-1}^2$ since $\beta^2 = 1$. Therefore, the rotation component of P in the Langland decomposition is generated by M_{-1}.

Let $z = a + b\omega_7$ with $a, b \in \mathbb{Z}$, the Heisenberg translation $N_{(z, t)}$ can be decomposed as

$$ N_{(z, t)} = N_{(a+b\omega_7, t)} = N_{(b\omega_7, 0)} \circ N_{(a, \sqrt{7}a)} \circ N_{(0, t-\sqrt{7}ab-\sqrt{7}a)}. $$
Here \(N_{(b\omega,0)} \) and \(N_{(a,\sqrt{\tau}a)} \) can be written as
\[
N_{(b\omega,0)} = N_{(0,0b)}, \quad b \in \mathbb{Z},
\]
and
\[
N_{(a,\sqrt{\tau}a)} = N_{(1,\sqrt{\tau})}, \quad a \in \mathbb{Z}.
\]
According to Lemma 3.3, integers \(\frac{a}{\sqrt{7}} \) and \(a^2 - ab + 2b^2 \) have the same parity. It can be easily seen that
\[
a^2 - ab + 2b^2 + (a + ab) = a(a + 1) + 2b^2 \in 2\mathbb{Z}.
\]
Therefore, \(\frac{a}{\sqrt{7}} \) and \(a + ab \) have the same parity, it means that
\[
\frac{t}{\sqrt{7}} = a + ab \in 2\mathbb{Z}.
\]
Hence the Heisenberg translation \(N_{(0,t - \sqrt{7}a - \sqrt{7}a)} \) can be written as
\[
N_{(0,t - \sqrt{7}a - \sqrt{7}a)} = N_{(0,2\sqrt{7})}^{t-\sqrt{7}(a+b)}.
\]
As \(N_{(0,2\sqrt{7})} \) can be decomposed as
\[
N_{(0,2\sqrt{7})} = (N_{(1,\sqrt{7})} \circ M_{-1})^2,
\]
this prove the proposition. \(\square \)

Proof of Theorem 2 Let \(G = (g_{jk})^3_{j,k=1} \) be an element of the group \(\text{PU}(2,1;\mathbb{Z}[^{\omega_7}]) \). We may assume that \(G \) does not belong to the subgroup \(\Gamma_{\infty} \), which is the stabilizer subgroup of infinity \(q_{\infty} \). Then \(g_{31} \neq 0 \) and \(G \) maps \(q_{\infty} \) to \((g_{11}/g_{31}, g_{21}/g_{31}) \). Since \(G(q_{\infty}) \) is in \(\partial \mathbb{H}^2 \), then
\[
2\Re\left(\frac{g_{11}}{g_{31}}\right) = -\left|\frac{g_{21}}{g_{31}}\right|^2. \tag{3}
\]
Consider the Heisenberg translation \(N_{G(q_{\infty})} \), that maps \((0,0)\) to \((G(q_{\infty}))\). Note that the translation \(N_{G(q_{\infty})} \) is not necessarily in the Picard modular group \(\text{PU}(2,1;\mathbb{Z}[^{\omega_7}]) \) except \(|g_{31}| = 1 \). However, we know that
\[
RN_{G(q_{\infty})}^{-1} = P.
\]
We will successively approximate \(N_{G(q_{\infty})}^{-1} \) by Heisenberg translations in the Picard modular group to decrease the value \(|g_{31}|^2 \in \mathbb{Z} \) until it becomes 0. Then \(G \) belongs to the subgroup \(\Gamma_{\infty} \) according to Lemma 1 and can be expressed as a product of the generators according to Proposition 3.4. The approximation step uses the fact that the ring \(\mathcal{O}_3 = \mathbb{Z}[^{\omega_7}] \) is Euclidean.

We calculate the entry in the lower left corner of the product
\[
G_1 \equiv RN_{(z,t)}G = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & -1 & -z \\ 1 & -\bar{z} & -|z|^2 + it \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right)
\]
so \(g_{31}^{(1)} \), the entry in the lower left corner of \(G_1 \) is equal to
\[
g_{31}^{(1)} = g_{11} - g_{21}\bar{z} + g_{31} \frac{-|z|^2 + it}{2} \\
= g_{31}\left(\frac{g_{11}}{g_{31}} - \frac{g_{21}}{g_{31}}\bar{z} + \frac{-|z|^2 + it}{2} \right)
\]
\[
= g_{31}\left(\Re(\frac{g_{11}}{g_{31}}) - \Re(\frac{g_{21}}{g_{31}}\bar{z}) - \frac{|z|^2}{2} \right) + i(\Im(\frac{g_{11}}{g_{31}}) - \Im(\frac{g_{21}}{g_{31}}\bar{z}) + \frac{t}{2}) \\
= g_{31}(I_1 + iI_2). \tag{4}
\]
We can simplify I_1 to

$$I_1 = -\frac{1}{2} \left(\frac{g_{21}}{g_{31}} + z \right)^2,$$

according to equation (3). Let $\frac{g_{21}}{g_{31}} = x + iy$. Since $z = a + b\omega = (a - \frac{b}{\sqrt{4}}) + \frac{b\sqrt{7}}{2}$, we can select two appropriate integers a and b satisfying $|x + (a - \frac{b}{\sqrt{4}})| \leq \frac{1}{2}$ and $|y + \frac{b\sqrt{7}}{2}| \leq \frac{\sqrt{7}}{4}$. Hence we get the upper bound

$$|I_1| \leq \frac{1}{2} \left(\left(\frac{1}{2} \right)^2 + \left(\frac{\sqrt{7}}{4} \right)^2 \right) = \frac{11}{32}.$$

Selectting some t in I_2, we can get the inequality $|I_2| \leq \frac{\sqrt{7}}{4}$. Therefore, we have the estimation of $g^{(1)}_{31}$

$$|g^{(1)}_{31}| = |g_{31}|^2 |I_1 + iI_2|^2 = |g_{31}|^2 (I_1^2 + I_2^2) \leq |g_{31}|^2 \left(\left(\frac{11}{32} \right)^2 + \left(\frac{\sqrt{7}}{4} \right)^2 \right) < \frac{37}{64} |g_{31}|^2.$$

Repeating this approximation procedure finitely many times we reduce the matrix of the transformation G to the matrix of a transformation G_n with $g^{(n)}_{31} = 0$. However, according to Lemma 2.1, this condition implies that the G_n belongs to the stabilizer subgroups of q_∞, Γ_∞. According to Proposition 3.4, the transformation G_n is generated by the Heisenberg translations $N_{(\omega_7, 0), n_1, (1, \sqrt{7})}$ and the rotation M_{-1}. Since the approximation procedure uses the transformation R and transformations in Γ_∞, this completes the proof of Theorem 2. q.e.d.

3.3 The case $d = 11$

In this section, we consider the Picard modular group $\textbf{PU}(2, 1; O_d)$ when $d = 11$. Let $\omega_{11} = \frac{-1 + \sqrt{11}}{2}$, then the ring O_d can be written as $\mathbb{Z}[\omega_{11}]$. We use the same method to prove theorem 3.

Lemma 3.5 Let $\Gamma_\infty(2, 1; \mathbb{Z}[\omega_{11}])$ denote the subgroup Γ_∞ of Picard modular group $\textbf{PU}(2, 1; \mathbb{Z}[\omega_{11}])$. Then any element $P \in \Gamma_\infty(2, 1; \mathbb{Z}[\omega_{11}])$ if and only if the parameters in the Langlands decomposition of P satisfy the conditions

$$\lambda = 1, \ t \in \sqrt{3}\mathbb{Z}, \ z \in \mathbb{Z}[\omega_{11}], \ \beta = \pm 1,$$

and the integers $\frac{1}{\sqrt{11}}$ and $|z|^2$ have the same parity.

Proof. It is quite easy to see that $\lambda = 1$. Considering the Langlands decomposition when $P \in \Gamma_\infty(2, 1; \mathbb{Z}[\omega_{11}])$, we can get that $|\beta| = 1, \ z \in \mathbb{Z}[\omega_7]$ and $t \in \sqrt{11}\mathbb{Z}$. Since the entries $-\frac{|z|^2 + d}{2} \in \mathbb{Z}[\omega_{11}], \ \frac{1}{\sqrt{11}} \in \mathbb{Z}$ and $|z|^2 \in \mathbb{Z}$, the integers $\frac{1}{\sqrt{d}}$ and $|z|^2$ have the same parity. As $|\beta| = 1$ and there is not an element in $\mathbb{Z}[\omega_{11}]$ except $-1, 1$ satisfying the preceding condition. This prove the lemma. q.e.d.

Proposition 3.6 The stabilizer subgroup Γ_∞ of the infinity point q_∞ in the Picard modular group $\textbf{PU}(2, 1; \mathbb{Z}[\omega_{11}])$ is generated by the Heisenberg translations $N_{(\omega_{11}, \sqrt{11}), n_1, (1, \sqrt{11})}$ and the rotation M_{-1}. q.e.d.

Proof. It can be arised from the identical arguments in the proofs of the proposition 3.4. Therefore we can obtain the following decomposition for the Heisenberg translation $N_{(z, t)}$, where $z = a + b\omega_7$ with $a, b \in \mathbb{Z}$

$$N_{(a + b\omega_{11}, t)} = N_{(\omega_{11}, \sqrt{11})}^b \circ N_{(1, \sqrt{11})}^a \circ N_{(0, \sqrt{11})}^{\frac{-\sqrt{7}a + \sqrt{7}b + \sqrt{11}t}{2\sqrt{11}}}.$$

And we just want to notice that the Heisenberg translation $N_{(0, \sqrt{11})}$ can be decomposed as

$$N_{(0, \sqrt{11})} = (N_{(1, \sqrt{11})} \circ M_{-1})^2.$$

q.e.d.
Proof of Theorem 3 The theorem can be proved by the same arguments in the proof of theorem 2. We only need to mention that the upper bound of I_1 and I_2 are

$$|I_1| \leq \frac{1}{2} \left(\frac{1}{2} \right)^2 + \left(\frac{\sqrt{11}}{4} \right)^2 = \frac{15}{32},$$

and $|I_2| \leq \frac{\sqrt{11}}{4}$. Hence the entry $g^{(1)}_{31}$ has the following estimation

$$|g^{(1)}_{31}|^2 = |g_{31}|^2 |I_1 + iI_2|^2 = |g_{31}|^2 (I_1^2 + I_2^2) \leq |g_{31}|^2 \left(\frac{15}{32} \right)^2 + \left(\frac{\sqrt{11}}{4} \right)^2 \leq \frac{15}{16} |g_{31}|^2.

q.e.d.

4. Remarks

In [FP], Falbel and Parker gave a presentation for the Picard modular group $\text{PU}(2, 1; \mathbb{Z}[\omega_3])$

$$\langle P, Q, R \rangle R^2 = (QP^{-1})^6 = P^{-1}RQP^{-1}R = P^3Q^{-2} = (RP)^3 = 1.$$

Moreover, the stabilizer subgroup of infinity q_{∞}, $\Gamma_{\infty} = \langle P, Q \rangle$. The elements P, Q and R are

According to Proposition 3.2, it is clear that $PQ^{-1} = M_{-\omega_3}$, $Q = N_{(1, \sqrt{3})} \circ M_{-\omega_3}$ and $P = M_{-\omega_3} \circ Q = M_{-\omega_3} \circ N_{(1, \sqrt{3})} \circ M_{-\omega_3}^3$. It means that the subgroup Γ_{∞} of $\text{PU}(2, 1; \mathbb{Z}[\omega_3])$ can be generated by a Heisenberg translation $N_{(1, \sqrt{3})}$ and a rotation $M_{-\omega_3}$. Hence the Picard modular group $\text{PU}(2, 1; \mathbb{Z}[\omega_3])$ is generated by $N_{(1, \sqrt{3})}$, $M_{-\omega_3}$ and R.

References

[FFLP] E. Falbel, G. Francsics, P. D. Lax, J. R. Parker, Generators of a Picard modular Group in two Complex Dimensions, Preprint (2009).

[FP] E. Falbel, J. R. Parker, The geometry of the Eisenstein-Picard modular group, Duke Math. J., 131(2006), 249–289.

[FL1] G. Francsics, P. Lax, A semi-explicit fundamental domain for a Picard modular group in complex hyperbolic space, Contemporary Mathematics, 238 (2005), 211–226.

[FL2] G. Francsics, P. Lax, An explicit fundamental domain for a Picard modular group in complex hyperbolic space, Preprint (2005).

[KP] A. Kleinschmidt, D. Persson, E-mail communication, 2008.