Research and Applications

Virtual care expansion in the Veterans Health Administration during the COVID-19 pandemic: clinical services and patient characteristics associated with utilization

Jacqueline M. Ferguson,1,2 Josephine Jacobs,3 Maria Yefimova,1,2,4 Liberty Greene,1,2 Leonie Heyworth,5,6 and Donna M. Zulman1,2

1Center for Innovation to Implementation, Veterans Affairs Palo Alto Health Care System, Menlo Park, California, USA, 2Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, California, USA, 3Health Economics Resource Center, Veterans Affairs Palo Alto Health Care System, Menlo Park, California, USA, 4Office of Research Patient Care Services, Stanford Health Care, Stanford, California, USA, 5Department of Veterans Affairs Central Office, Office of Connected Care/Telehealth, Washington, DC, USA and 6Department of Medicine, UC San Diego School of Medicine, San Diego, California, USA

Corresponding Author: Jacqueline M Ferguson, PhD, Center for Innovation to Implementation, Veterans Affairs Palo Alto Health Care System, MDP-152, 705 Willow Road, Menlo Park, CA 94025, USA (Jacqueline.Ferguson@va.gov)

Received 22 September 2020; Revised 16 October 2020; Editorial decision 19 October 2020; Accepted 26 October 2020

ABSTRACT

Objectives: To describe the shift from in-person to virtual care within Veterans Affairs (VA) during the early phase of the COVID-19 pandemic and to identify at-risk patient populations who require greater resources to overcome access barriers to virtual care.

Materials and Methods: Outpatient encounters (N = 42 916 349) were categorized by care type (eg, primary, mental health, etc) and delivery method (eg, in-person, video). For 5 400 878 Veterans, we used generalized linear models to identify patient sociodemographic and clinical characteristics associated with: 1) use of virtual (phone or video) care versus no virtual care and 2) use of video care versus no video care between March 11, 2020 and June 6, 2020.

Results: By June, 58% of VA care was provided virtually compared to only 14% prior. Patients with lower income, higher disability, and more chronic conditions were more likely to receive virtual care during the pandemic. Yet, Veterans aged 45–64 and 65+ were less likely to use video care compared to those aged 18–44 (aRR 0.80 [95% confidence interval (CI) 0.79, 0.82] and 0.50 [95% CI 0.48, 0.52], respectively). Rural and homeless Veterans were 12% and 11% less likely to use video care compared to urban (0.88 [95% CI 0.86, 0.90]) and non-homeless Veterans (0.89 [95% CI 0.86, 0.92]).

Discussion: Veterans with high clinical or social need had higher likelihood of virtual service use early in the COVID-19 pandemic; however, older, homeless, and rural Veterans were less likely to have video visits, raising concerns for access barriers.

Conclusions and Relevance: While virtual care may expand access, access barriers must be addressed to avoid exacerbating disparities.

Key words: Veterans, telemedicine, COVID-19, disparities, access to care
INTRODUCTION

As the novel severe acute respiratory syndrome coronavirus-2 spread through the US in March 2020 causing the COVID-19 pandemic, the Veterans Health Administration (VA) made a dramatic and unprecedented nationwide shift from in-person patient encounters to virtual care (ie, video- and phone-based care). Rapid expansion of virtual care was central to the VA national response to the COVID-19 pandemic. This shift was made possible by several VA strategies which increased training of care providers, expanded technology infrastructure, and provided consistent messaging regarding the transition to patients and stakeholders. Virtual care expansion was also facilitated by a loosening of national restrictions on the use of HIPPA-compliant video platforms and reimbursement for virtual care. Widespread adoption of virtual care across multiple clinical specialties was encouraged to bridge the physical gap between Veterans, VA, and its providers—especially in states under “stay at home” orders.

Virtual care has been critical to maintaining healthcare access when in-patient care is disrupted, especially during natural disasters. Perceived benefits of virtual care unique to the COVID-19 pandemic include reducing exposure among patients and providers as well as preserving in-person services for patients diagnosed with COVID-19 or other urgent care needs. In nonemergency settings, virtual care is widely recognized for increasing access to treatment, increasing patient satisfaction, and reducing cost to patients.

Despite this potential, there were concerns that the rapid transition to virtual care in March 2020, could exacerbate technology access disparities known as the digital divide. In particular, older Veterans, Veterans in rural locations, and those with low income may be vulnerable to the negative impacts caused by the digital divide and may face larger barriers to care while sheltering in place. Furthermore, Veterans with prior utilization of VA services may be more likely to stay in contact with VA through the virtual care transition, where Veterans with low VA care utilization may be more susceptible to access barriers.

Objectives

To inform policies and interventions related to virtual care expansion, we sought to describe the shift from in-person to virtual care within the VA during the first 3 months (88 days) of the COVID-19 pandemic. Our objectives were to: 1) describe the proportion of encounters for different types of care that took place in-person, by phone, and by video, and 2) characterize patients who utilized video- or phone-based care during the early phase of the pandemic, accounting for previous VA healthcare utilization. We also investigated variation in video- and phone-based care by rurality due to the potential for limited broadband in rural areas and the large expansion of VA virtual care in rural areas prior to the COVID-19 pandemic. Our goal was to identify patient populations that might require greater resources and support to overcome access barriers during this time and to inform VA policy post-COVID-19 given the likelihood of continued widespread use of virtual care in the future.

MATERIALS AND METHODS

Data sources and study population

VA encounters and Veteran patient data were drawn from the VA Corporate Data Warehouse, a repository for VA electronic health records. To examine trends in clinical encounters that took place in-person, by phone, and by video before and during COVID-19, we analyzed outpatient healthcare encounters, excluding compensation or pension examinations, (N = 42 916 349) that took place between January 5, 2020 and June 6, 2020.

For analyses of patient characteristics associated with video- and phone-based care, we identified Veterans in active care. Active care was defined as assignment to a primary care management team and having at least 1 VA outpatient encounter (excluding compensation or pension examinations) between March 11, 2019 and March 10, 2020. While COVID-19 may have been circulating earlier, March 11, 2020 was chosen as the start of the pandemic period, as it was the day the World Health Organization declared COVID-19 a pandemic. Shortly after, on March 15, VA leadership directed facilities to defer nonemergent care and to convert in-person care to virtual care whenever appropriate.

Veterans who were alive as of March 11, 2020 and aged between 18 to 105 years were included in analysis. Veterans who were missing data on rurality and priority enrollment group (described below) were excluded from analysis (< 0.5% combined). The analytic cohort comprised 5 400 878 Veterans who met all criteria, and they were followed for virtual care utilization through June 6, 2020.

Classification of VA outpatient encounters

Encounters were classified into type of care and method of care delivery using the VA Managerial Cost Accounting Stop Codes. These 3-digit codes are used to characterize all VA outpatient encounters to define clinical work units for resource allocation. Encounters were categorized into 6 mutually exclusive categories by type of care provided and grouped as follows: primary care, mental health care, specialty care, rehabilitation care, emergency/urgent care, and diagnostic/ancillary care (Supplementary Table 1). Based on the stop code and/or stop code pairing, each encounter was also categorized as in-person care, virtual care (phone or video-based), or supplementary remote care (Supplementary Table 2). Supplementary remote care included remote patient monitoring (ie, blood pressure measurements) as part of the national VA home telehealth program, Care Coordination/Home Telehealth.

Encounters were aggregated into weekly counts, starting on Sunday. Trends in the number of encounters overall, by type of care and care delivery method, were described graphically. Emergency/urgent care and supplementary remote care were not explicitly demarcated in figures but are included in totals, as they were less than 4% of all encounters combined and largely unaffected by the pandemic.

Veteran patient characteristics

Patient-level data included sociodemographic and clinical characteristics and VA utilization during the baseline period (March 11, 2019–March 10, 2020), as presented in Table 1. Race and ethnicity were recorded as the most frequently reported identification in the patient health records. Missing data on race, ethnicity, or marital status were treated as distinct categories. Twenty-eight chronic conditions and diagnoses were defined using International Statistical Classification of Disease-10 codes and selected based on prior VA research. Chronic conditions include: Acid-Related Diseases, Cancers (all types), Alzheimer’s Disease, Arthritis, Asthma, Chronic Obstructive Pulmonary Disease, Heart Failure, Diabetes, HIV/AIDS, Headache, Hepatitis C, Hypertension, Ischemic Heart Diseases, Lower Back Pain, Multiple Sclerosis, Parkinson’s Disease, Peripheral Vascular Disease, Pneumonia, Prostatic Hyperplasia, Renal Failure, Spinal Cord Injury, Stroke, Dementia, and Traumatic Brain Injury. Mental health conditions were defined using VA Program
Evaluation Resource Center definitions and include substance use disorders, severe mental illness (Bipolar disorder, severe depression, and additional psychotic disorders), depression, and posttraumatic stress disorder (PTSD). Urban and rural definitions were derived from US Census Bureau criteria. Highly rural areas were defined as areas with a population density less than 7 people per square mile.

Homelessness was defined using outpatient stop codes reflecting use of homeless services and VA diagnosis codes.

We incorporated information from the VA priority-based enrollment system, which categorizes patients into 8 groups based on their service-connected disability rating, income, recent military service, and other factors. We defined Veterans with high disability as those in groups 1 (> 50% service-connected disability) and 4 (VA catastrophically disabled). Veterans with low/moderate disability include groups 2 (30%–40% service-connected disability), 3 (10%–20% service-connected disability), and 6 (military exposures). Veterans with low income include those in group 5 (annual income below area-adjusted income threshold). Finally, Veterans with no service-connected disability included Veterans from groups 7 and 8 (0% service-connected disability).

We assessed prior utilization of VA healthcare as past use is associated with future use of VA care. Utilization of healthcare by care delivery method prior to the pandemic period was dichotomized (eg, prior phone use: yes/no). Prior utilization of specialty and rehabilitation care was combined into 1 category due to small numbers of rehabilitation care. Prior utilization of healthcare services by type of care provided was categorized by the interquartile ranges of the number of visits in the baseline period (ie, low utilization [≤ 25th

Characteristic	Use of Virtual Care	Use of Video Care
N	5,400,878	4,909,584
Age (median)	66	67
(interquartile range)	(51, 74)	(52, 74)
Age category (%)	18–44	17
	45–64	29
	65+	53
Sex (%)	Male	91
	Female	9.2
Race (%)	White	72
	Black/African American	18
	Asian	1.2
	American Indian/Alaska Native	0.94
	Native Hawaiian/Pacific Islander	0.93
Ethnicity (%)	Hispanic/Latino	6.8
	Not Hispanic/Latino	89
	Unknown/missing	3.9
Marital status (%)	Single/ divorced/ widowed	43
	Married	55
	Unknown/missing	1.5
Rural/urban dwelling (%)	Rural	33
	Urban	65
	Highly Rural	1.3
Priority group (%)	No service disability	17
	Low income	18
	Low/moderate disability	24
	High disability	41
Homeless (%)	4	
Chronic conditions (%)	1–2 Conditions	50
	3–4 Conditions	31
	5+ Conditions	19
Mental health condition (%)	34	

Note: Virtual care includes either phone-based or video-based care. Never users had no history of virtual care use between March 11, 2019 and June 6, 2020. Existing users had virtual care use between March 11, 2019 and March 10, 2020 but may or may not have had virtual care use between March 11, 2020 and June 6, 2020. New users had no history of virtual care use between March 11, 2019 and March 10, 2020, but had recorded use in the pandemic period of March 11, 2020–June 6, 2020.
percentile], average utilization \(\geq 25\text{th} \leq 75\text{th} \text{ percentile}\) and high utilization \(\geq 75\text{th} \text{ percentile}\). Prior mental health utilization was dichotomized into low and high use due to a limited range in number of mental health care visits.

Virtual care was defined as either phone- or video-based care. We classified Veterans into 3 categories based on their prepandemic and pandemic virtual care utilization: New, Never, and Existing Users. New Users had no history of virtual care use between March 11, 2019 and March 10, 2020 but had recorded use in the pandemic period of March 11, 2020 and June 6, 2020. Never Users had no history of virtual care use between March 11, 2019 and June 6, 2020. Existing Users had virtual care use between March 11, 2019 and March 10, 2020 but may or may not have had virtual care use between March 11, 2020 and June 6th, 2020. To examine the association of patient characteristics and virtual care use in the pandemic, we used a generalized linear model to predict virtual care during the pandemic (March 11, 2020 to June 6, 2020), adjusting for patient demographics, social determinants of health, comorbid conditions, and history of VA healthcare use. A second generalized linear model predicted the likelihood of video use (irrespective of phone-based care) during the pandemic. To evaluate the effect of measure modification by rurality, we examined the likelihood of virtual care and video care use in models stratified by Veteran urban and rural dwelling status. All models had standard errors clustered on the parent VA medical center (N = 140) where the patient was assigned a primary, mental health, specialty or rehabilitation, or other care team (in ranked order). All statistical analyses and graphical output were conducted in Stata 14 (StataCorp, LLC). This evaluation was conducted as part of the Virtual Access Quality Enhancement Research Initiative, which is designated as nonresearch quality improvement by VA program office partners in the VA Office of Rural Health.

RESULTS
Patterns of clinical care in VA

VA dramatically shifted patient care from in-person visits to other modalities between the prepandemic period and the first 2 months of the COVID-19 pandemic. As seen in Figure 1, between March and April 2020 a 3.3-fold reduction in in-person encounters (from a weekly average of 2 million to 600 000) co-occurred with a 2.65-fold increase in phone visits (from a weekly average of 327 275 to 869 251). Video visits also rose markedly from 10 000 a week prior to the pandemic to over 60 000 in April. In May 2020, VA was averaging over 114 000 video encounters a week—a 11.4-fold increase compared with prepandemic numbers. Effectively, by early June, VA was providing 58% of outpatient care encounters by phone or video, when it had averaged only 14% prior to the COVID-19 pandemic.

The decrease in in-person encounters and compensatory shift to other care modalities varied by type of care delivered (Figure 1). Mental health care and primary care were large contributors to the shift to virtual care; mental health care accounted for 55% of all video encounters and primary care accounted for 37% of all phone encounters. Among primary care encounters, prior to March 11, on average 71% of encounters took place in person, 29% via phone, and 0.2% on video. In comparison, after March 11, on average 19% of primary care encounters were in person, 77% by phone, and 4% by video. For mental health care, prior to March 11, 84% of encounters took place in person, 12% by phone and 2% by video. After March 11, 25% of mental health encounters were in person, 59% were by phone, and 15% were by video.

While mental health care had the largest percentage of its encounters provided through video-based care and the largest absolute number of video encounters, it had the smallest increase, only 6.4-fold, in video care in the first 3 months of the pandemic. In comparison, primary care had a 15.6-fold increase, specialty care had a 14.2-fold increase, and diagnostic/ancillary care had an 8-fold increase in video-based encounters. While the absolute number for rehabilitation care encounters was small, there was a 17.1-fold increase in video-based encounters—the largest increase in video care among all services. Rehabilitation care also had the largest fold increase in phone-based encounters (4.8-fold), followed by mental health care (4.5-fold), specialty care (2.9-fold), and diagnostic care (1.3-fold).

Patient characteristics associated with virtual care utilization

Approximately 58% of the 5 400 878 patients in the study cohort utilized virtual care in the first 3 months of the pandemic. Among all Veterans, 7% used both phone and video, 51% used either, and 42% did not use virtual care during the pandemic period. Veterans who used video-based care tended to also use phone-based care (84%), however, few Veterans with phone-based care also utilized video visits (12%).

Veterans who used virtual care before and/or during the pandemic were more likely to be non-White, Hispanic, single, urban, disabled, and experiencing homelessness (Table 1) compared to Veterans who never used virtual care. These differences increased when examining video care use. New users of video care were more likely to be urban dwelling (75% vs 65%), homeless (7% vs 4%), and have a high level of disability (58% vs 39%) compared to Veterans who never used video care. While there were minor differences in age and sex among new and never users of any virtual care, new users of video care were proportionally more female (17% vs 8%) and were on average 10 years younger than those who never used video care (57 vs 67 years). Patients with high levels of prepandemic utilization of primary, mental health, specialty or rehabilitation, and diagnostic/ancillary care were more likely to be new users of any virtual care and video care (Table 2).

In adjusted models, older age was only slightly associated with virtual care use in the pandemic period (Table 3). In contrast, older Veterans aged 45–64 and 65+ were substantially less likely to use video care compared to Veterans aged 18–44 years (Risk Ratio 0.80 [95% confidence interval (95% CI) 0.79, 0.82] and 0.50 [95% CI 0.48, 0.52], respectively). There were minor, and likely not clinically significant, differences in virtual care or video care use by race or ethnicity. Black Veterans had a marginally increased likelihood of using any virtual care (1.02 [95% CI 1.01,1.03]) and a slightly decreased likelihood of using video care compared to White Veterans (0.96 [95% CI 0.94, 0.97]). Highly rural and rural dwelling Veterans were less likely to use video-based care during the pandemic; with highly rural Veterans being 17% less likely to use video care during the pandemic period compared to urban Veterans (0.83 [95% CI 0.78, 0.87]). Homeless Veterans were 11% less likely to use video care in the pandemic compared to nonhomeless Veterans (0.89 [95% CI 0.86, 0.92]). Overall, Veterans with multiple chronic conditions, with a mental health condition, and Veterans with low income and high disability had higher likelihood of using video care.
video care utilization during the pandemic. Of note, prior users of video-based care were over twice as likely to use video care during the pandemic (2.52 [95% CI 2.36, 2.68]) compared to those with no prior utilization. Veterans with a history of high utilization of mental health care were nearly twice as likely to use video-based care as those with low past mental health care utilization.

Among models stratified by rurality, there was little evidence of effect measure modification among Veterans who used virtual or video care (Table 4). The risk ratio for video-based care comparing Veterans 65+ to those aged 18–44 years was marginally decreased among rural dwelling (0.46 [95% CI 0.44, 0.48]) compared with urban dwelling Veterans (0.52 [95% CI 0.50, 0.54]). Prior video use

Figure 1. Encounters at the Veterans Health Administration (VHA) between January 4 and June 6, 2020 by care delivery method and care type.

Dashed line represents March 11, 2020: World Health Organization declares COVID-19 a pandemic. *Represents 4-day week due to federal holiday.
Prior diagnostic/ancillary care

Low (1–2 encounters)	41.3	66.3	18.4	46.2
Average (3–9 encounters)	33.3	30.8	44.4	44.0
High (10+ encounters)	25.4	2.9	37.2	9.8

Prior use of virtual care (%)

Type of Care	Total	Never	Existing	New
Video	2.3	0	3.7	0
Phone	62	0	99	0
Prior supplementary remote care	15	6.9	20	11
Prior primary care				
Low (0–1 encounters)	27.5	57.5	13.5	41.2
Average (2–4 encounters)	43.6	38.9	43.8	50.1
High (5+ encounters)	28.8	3.6	42.7	8.7
Prior mental health care				
Low (0–1 encounters)	73.6	92.0	66.2	77.1
High (2+ encounters)	26.4	8.0	33.8	22.9
Prior specialty or rehabilitation care				
Low (0 encounters)	28.6	49.0	19.9	34.5
Average (1–6 encounters)	44.6	45.4	42.7	50.1
High (7+ encounters)	26.8	5.6	37.4	14.6
Prior diagnostic/ancillary care				
Low (1–2 encounters)	41.3	66.3	18.4	46.2
Average (3–9 encounters)	33.3	30.8	44.4	44.0
High (10+ encounters)	25.4	2.9	37.2	9.8

Table 2. Prior utilization of Veterans Health Administration care and use of virtual and video care (N = 5 400 878)

Note: Virtual care includes either phone-based or video-based care. Never users had no history of virtual care use between March 11, 2019 and June 6, 2020. Existing users had virtual care use between March 11, 2019 and March 10, 2020, but may or may not have had virtual care use between March 11, 2020 and June 6, 2020. New users had no history of virtual care use between March 11, 2019 and March 10, 2020 but had recorded use in the pandemic period of March 11, 2020–June 6, 2020.

was associated with a higher likelihood of pandemic video use among both urban (3.05 [95% CI 2.87, 3.25]) and rural (2.31 [95% CI 2.17, 2.46]) Veterans, compared to Veterans without prior video use.

DISCUSSION

This evaluation of virtual care use in VA illustrates the dramatic shift from in-person encounters to virtual care and how patterns varied by type of care and patient characteristics during the early phase of the COVID-19 pandemic. Similar to reports from other healthcare systems, such as the Centers for Medicare and Medicaid Services and Kaiser Permanente, VA saw an unprecedented increase in virtual care use. While specialty care and diagnostic/ancillary care had large relative increases in the number of video and phone encounters, the absolute numbers remained low—particularly for video encounters. This was likely due to multiple factors, including low baseline use of virtual care and the intentional postponement of elective procedures early in the pandemic. Providing virtual care is also more challenging for specialties that rely on physical exams or specialized equipment. However, evidence supporting the role of virtual specialty care, suggesting opportunities for future expansion. The low use of virtual care in the diagnostic/ancillary care services category reflects that some services, such as diagnostic tests and procedures, are particularly dependent on in-person contact and may lag as health systems scale up virtual care. Some of the difficulty in telemedicine conversion lies with the provider of care; for example, barriers in provider training or bandwidth limitations among teleworking providers. However, patients may also have preferences that limit the type of encounters that can be virtualized.

Analyses of virtual care users suggest that patients with higher levels of need (eg, individuals who were lower income, higher disability, older, and with more physical and chronic conditions) were generally more likely to receive virtual care. This may be indicative of VA efforts to ensure Veterans who need VA care the most can access care; programs such as the VA national loaned tablet program, and the distribution of phones to homeless Veterans early in the pandemic. Additionally, patients with higher levels of need may be more reliant on VA care and may have been more likely to have preexisting appointments which were converted to virtual care. During this time, there was also proactive and systemic contact between frontline clinicians and high-risk populations in primary and mental health care. However, the reduced likelihood of video care among homeless Veterans and Veterans over 45 years old sug-
Table 3. Adjusted risk ratios and 95% confidence intervals for virtual care use between March 11, 2020 and June 6, 2020 in Veterans in active care at the Veterans Health Administration (N = 5,400,878)

	Model 1: Any Virtual Care	Model 2: Any Video care
Age category		
45–64	1.04 (1.04, 1.05)	0.80 (0.79, 0.82)
65+	1.05 (1.04, 1.06)	0.50 (0.48, 0.52)
Sex		
Female	1.02 (1.02, 1.03)	1.31 (1.28, 1.33)
Race		
Black/African American	1.02 (1.01, 1.03)	0.96 (0.94, 0.97)
Asian	0.96 (0.95, 0.98)	0.97 (0.94, 1.01)
American Indian/Alaska Native	1.00 (0.99, 1.01)	0.99 (0.95, 1.02)
Native Hawaiian/Pacific Islander	1.01 (1.00, 1.01)	0.98 (0.95, 1.01)
Unknown/missing	0.99 (0.99, 1.00)	0.96 (0.94, 0.97)
Ethnicity		
Hispanic/Latino	1.00 (1.00, 1.01)	1.00 (0.98, 1.02)
Unknown/missing	0.98 (0.97, 0.99)	1.01 (0.99, 1.04)
Rural/urban status		
Rural	1.00 (0.99, 1.00)	0.88 (0.86, 0.90)
Highly rural	0.99 (0.97, 1.00)	0.83 (0.78, 0.87)
Priority category		
Low income	1.07 (1.06, 1.08)	1.01 (0.99, 1.03)
Low/moderate disability	1.03 (1.02, 1.03)	1.21 (1.19, 1.23)
High disability	1.10 (1.09, 1.10)	1.35 (1.33, 1.38)
Homeless		
Yes	1.02 (1.01, 1.03)	0.89 (0.86, 0.92)
Chronic conditions		
3–4 Conditions	1.11 (1.10, 1.11)	1.11 (1.10, 1.12)
5+ Conditions	1.10 (1.10, 1.11)	1.18 (1.16, 1.20)
Mental health condition		
Any	1.03 (1.03, 1.04)	1.22 (1.19, 1.26)
Prior video care		
Yes	1.07 (1.06, 1.08)	2.52 (2.36, 2.68)
Prior phone care		
Yes	1.18 (1.17, 1.20)	1.24 (1.22, 1.26)
Prior supp. remote care		
Yes	1.04 (1.03, 1.04)	1.15 (1.13, 1.18)
Prior primary care		
Low (0–1 encounters)	0.89 (0.88, 0.90)	1.00 (0.98, 1.01)
High (5+ encounters)	1.08 (1.07, 1.08)	1.14 (1.13, 1.16)
Prior mental health care		
Low (0–1)	1.26 (1.24, 1.27)	1.92 (1.84, 2.00)
High (2+ encounters)	1.11 (1.10, 1.12)	1.35 (1.32, 1.37)
Prior specialty/rehab care		
Low (0 encounters)	0.87 (0.87, 0.88)	0.87 (0.85, 0.88)
High (7+ encounters)	1.11 (1.10, 1.12)	1.35 (1.32, 1.37)
Prior diagnostic/ancillary care		
Low (1–2 encounters)	0.81 (0.80, 0.82)	0.84 (0.82, 0.85)
High (10+ encounters)	1.12 (1.11, 1.13)	1.16 (1.15, 1.18)

Note: Virtual care includes either phone-based or video-based care.
Models mutually adjusted for variables presented in table and also adjusted for current marital status. Standard errors clustered on VA medical center (N = 140). Prepandemic period is March 11, 2019–March 10, 2020; pandemic period is March 11, 2020–June 6, 2020.
Abbreviations: ref, reference category; rehab, rehabilitation; supp., supplementary.

suggests that disparities might persist due to patient preferences, usability barriers, access to technology, and reliable internet or other factors.

Many have raised concerns about the possibility of virtual care increasing disparities in healthcare access and quality of care.11–13 In this evaluation, Black Veterans had a decreased, but not clinically significant, likelihood of using video care in VA during COVID-19, and there were no other meaningful differences by race or ethnicity. This may reflect that the VA is able to reduce health disparities among race and ethnic groups as Veterans receive subsidized health-care that is not dependent on insurance coverage. However, consideration of racial and ethnic disparities in this analysis are limited by the categorization and potential misclassification of race and ethnicity in the VA. There are subgroups of both race and ethnicity that we are unable to characterize—each with different lived experiences of structural racism that may influence their access to virtual care. Nevertheless, rural Veterans had lower likelihood of video care use, raising concerns for access barriers possibly due to limited internet.1 Virtual visits in the VA are usually associated with attempts to overcome physical distance for rural Veterans; however, the results
Table 4. Adjusted risk ratios (95% confidence intervals) for virtual care use March 11, 2020–June 6, 2020 among Veterans in Veterans Health Administration active care, stratified by Veteran rurality status (N = 5 400 878)

Predicting any Virtual Care	Predicting any Video care	
Age category (ref: 18–44)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
45–64	1.03 (1.02, 1.04)	0.78 (0.77, 0.80)
65+	1.03 (1.02, 1.04)	0.46 (0.44, 0.48)
Sex (ref: Male)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Female	1.02 (1.02, 1.03)	1.30 (1.27, 1.33)
Race (ref: White)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
African American	1.02 (1.01, 1.03)	0.97 (0.93, 1.00)
Asian	0.96 (0.94, 0.98)	1.02 (0.95, 1.01)
American Indian/Alaska Native	0.99 (0.98, 1.01)	0.97 (0.91, 1.03)
Native Hawaiian/Pacific Islander	1.00 (0.98, 1.01)	0.94 (0.89, 0.99)
Unknown/missing	0.99 (0.98, 0.99)	0.94 (0.92, 0.97)
Ethnicity (ref: Not Hispanic/Latino)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Hispanic/Latino	1.01 (1.00, 1.01)	1.03 (0.99, 1.06)
Unknown/missing	0.98 (0.97, 0.99)	1.04 (1.00, 1.08)
Priority Category (ref: No Disability)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Low income	1.06 (1.06, 1.07)	1.04 (1.02, 1.07)
Low/moderate disability	1.02 (1.02, 1.03)	1.24 (1.20, 1.27)
Disability	1.10 (1.09, 1.10)	1.39 (1.36, 1.43)
Homeless (ref: No)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Yes	0.97 (0.96, 0.99)	0.96 (0.92, 1.00)
Chronic conditions (ref: 1–2)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
3–4 Conditions	1.11 (1.10, 1.12)	1.08 (1.06, 1.09)
5+ Conditions	1.12 (1.11, 1.13)	1.14 (1.11, 1.17)
Mental health condition (ref: None)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Any	1.03 (1.02, 1.04)	1.23 (1.20, 1.27)
Prior video care (ref: None)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Yes	1.08 (1.07, 1.09)	3.05 (2.87, 3.25)
Prior phone care (ref: None)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Yes	1.19 (1.18, 1.21)	1.26 (1.23, 1.29)
Prior supp. remote care (ref: None)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Yes	1.04 (1.03, 1.05)	1.17 (1.14, 1.20)
Prior primary care (ref: Avg: 2–4)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Low (0–1 encounters)	0.88 (0.87, 0.89)	0.90 (0.89, 0.90)
High (5+ encounters)	1.10 (1.09, 1.11)	1.01 (0.98, 1.03)
Prior mental health care (ref: Low: 0–1)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
High (2+ encounters)	1.26 (1.25, 1.28)	1.99 (1.91, 2.08)
Prior specialty/rehab care (ref: Avg 1–6)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Low (0 encounters)	0.88 (0.87, 0.89)	0.85 (0.83, 0.87)
High (7+ encounters)	1.10 (1.09, 1.11)	1.34 (1.30, 1.37)
Prior diagnostic/ancillary care (ref: Avg 3–9)	**Urban N = 3 529 801**	**Urban N = 3 529 801**
Low (1–2 encounters)	0.80 (0.79, 0.81)	0.85 (0.82, 0.87)
High (10+ encounters)	1.14 (1.13, 1.15)	1.17 (1.14, 1.20)

Note: Virtual care includes either phone-based or video-based care.

Models mutually adjusted for variables presented in table and also adjusted for current marital status. Standard errors clustered on VA medical center (N = 140).

Abbreviations: ref, reference category; rehab, rehabilitation; supp., supplementary.

from our study indicate that urban dwelling Veterans had higher likelihood of using video care. This increased likelihood of use among urban Veterans could reflect underlying patterns of COVID-19 risk as metropolitan centers were hardest hit in the first months of the pandemic.

While VA has achieved substantial improvements in healthcare quality over several decades, previous studies have reported health disparities in medication adherence, surgery, and other processes likely to be affected by quality and quantity of patient–provider communication. Physical distancing and the need for personal protective equipment (PPE) during the pandemic likely affected the ability of health care providers to counsel patients and listen to their concerns. The COVID-19 pandemic has also highlighted the importance of virtual care in areas of less contact and use of in-person care, particularly in rural areas. Our study indicates that Veterans who are rural and homeless are less likely to use virtual care, highlighting the need for further investigation on how virtual care is being utilized by these Veteran groups. Virtual care use was also higher among Veterans with certain conditions, such as mental health conditions, disabilities, and lower income, which aligns with previous research showing higher use of virtual care among these groups.

Several limitations should be noted. This evaluation focused on virtual care encounters and did not explore quality of care or clinical outcomes. Future studies should investigate patient and provider perceptions regarding the quality and comprehensiveness of virtual care. Our analysis may obscure health disparities at the medical center level and further studies are needed—particularly as the COVID-19 pandemic affected localities at different times and with varying intensity. Moreover, our study only examines the characteristics of patients using virtual care during the first 3 months of the pandemic. Therefore, our study would only identify health disparities and patterns of video or phone to home use that originated during, or were exacerbated by, the pandemic and not disparities that existed prior to the pandemic.
CONCLUSION

In this nationally representative study in a large integrated healthcare system during a pandemic, we identified variation in the clinical patterns of care and the characteristics of patients using virtual care. While each disaster will pose unique challenges, our study may inform system-level preparations for future events where virtual delivery of care would be beneficial. In addition to spurring widespread telemedicine implementation, the pandemic is likely to increase patient experience with, and interest in, virtual healthcare. Additional research will be needed to examine whether patients opt to receive care virtually and whether disparities in patient use persist when given the choice of virtual and in-person services in the future. COVID-19 has dramatically changed the way VA has provided care to Veterans and will likely have a lasting impact on how virtual care is utilized in VA.

FUNDING

This work was supported by in part by Career Development Award 19-120 (to JJ) from the US Department of Veterans Affairs Health Services Research and Development Service and by a Quality Enhancement Research Imitative PEI 18-205.

Views expressed are those of the authors and the contents do not represent the views of the US Department of Veterans Affairs or the United States Government.

AUTHOR CONTRIBUTIONS

Conceptualization: JMF, JJ, MY, LG, LH, DMZ. Data curation: LG. Formal analysis: JMF. Funding Acquisition: JJ, LH, DZ. Methodology: JMF, JJ, MY, LG, LH, DMZ. Visualization: J JMF. Project administration: DMZ. Writing-original draft: JMF. Writing-review and editing: JMF, JJ, MY, LG, LH, DMZ.

SUPPLEMENTARY MATERIAL

Supplementary material is available at the Journal of the American Medical Informatics Association online.

ACKNOWLEDGMENTS

The authors thank James Van Campen, Cindie Slightam, Camila Chaudhary, the VA Office of Connected Care, and the Virtual Access QUERI team for their help in supporting this evaluation.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Heyworth L, Kirsh S, Zulman D, Ferguson JM, Kizer KW. Expanding access through virtual care: the VA’s early experience with Covid-19. NEJM Catal Innov Care Deliv 2020; 1 (4): 1–11. doi: 10.1056/CAT.20.0327.

2. Connolly SL, Stolzmann KL, Heyworth L, Weaver KR, Bauer MS, Miller CJ. Rapid increase in telemental health within the department of Veterans affairs during the COVID-19 pandemic. Telemed e-Health 2020. Published online (doi: 10.1089/tmj.2020.0233).

3. Reddy A, Gunnink E, Deeds SA, et al. A rapid mobilization of ‘virtual’ primary care services in response to COVID-19 at Veterans Health Administra- tion. Healthcare 2020; 8 (4): 100464.

4. Der-Martirosian C, Chu K, Dubalian A. Use of telehealth to improve access to care at the U.S. Department of Veterans Affairs during the 2017 Atlantic Hurricane Season. Disaster Med Public Health Prep 2020; 1–5. doi: 10.1017/dmp.2020.88.

5. Der-Martirosian C, Heyworth L, Chu K, Mudoh Y, Dubalian A. Patient characteristics of VA telehealth users during Hurricane Harvey. J Prim Care Community Heal 2020; 11.doi: 10.1177/ 215012720931715.

6. Funderburk CD, Batulis NS, Zelones JT, et al. Innovations in the plastic surgery care pathway: using telemedicine for clinical efficiency and patient satisfaction. Plast Reconstr Surg 2019; 144 (2): 507–16.

7. Martinez KA, Rood M, Jhangiani N, et al. Patterns of use and correlates of patient satisfaction with a large nationwide direct to consumer telemedicine service. J Gen Intern Med 2018; 33 (10): 1768–73.

8. Nord G, Rising KL, Band RA, Carr BG, Hollander JE. On-demand synchronous audio video telemedicine visits are cost effective. Am J Emerg Med 2019; 37 (5): 890–4.

9. Sabesan S, Allen D, Loh K, et al.; Royal Australasian College of Physicians Telehealth Working Group. Practical aspects of telehealth: are my patients suited to telehealth? Intern Med J 2013; 43 (5): S81.

10. Sturesson L, Groth K. Clinicians’ selection criteria for video visits in outpatient care: Qualitative study. J Med Internet Res 2018; 20 (11): e288.

11. Nouri SS, Khoong EC, Lyles CR, Karliner LS. Addressing equity in telemedicine for chronic disease management during the Covid-19 pandemic. NEJM Catal 2020; 1 (3): 1–13. doi: 10.1056/CAT.20.0123.

12. Seifert A. The digital exclusion of older adults during the COVID-19 pandemic. J Gerontol Soc Work 2020; 1–3. doi: 10.1080/ 01634372.2020.1764687.

13. Bakhtiar M, Elbuluk N, Lipoff JB. The digital divide: how Covid-19’s telemedicine expansion could exacerbate disparities. J Am Acad Dermatol 2020; 83(5): e345–6. doi: 10.1016/j.jaad.2020.07.043.

14. Ramsetty A, Adams C. Impact of the digital divide in the age of COVID-19. J Am Med Inform Assoc 2020; 27 (7): 1147–8.

15. US Department of Veterans Affairs. 172VA10P2: VHA Corporate Data Warehouse – VA. 79 FR 4377. Updated August 8, 2020.

16. CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–March 16, 2020. MMWR 2020; 69: 343–6.

17. Frayne SM, Phibbs CS, Saechao F, et al. Sourcebook: Women Veterans in the Veterans Health Administration. Volume 4: longitudinal trends in sociodemographics, utilization, health profile, and geographic distribution. Washington, DC: US Department of Veterans Affairs.

18. Darkins A, Ryan P, Kohb R, et al. Care coordination/home telehealth: the systematic implementation of health informatics, home telehealth, and disease management to support the care of veteran patients with chronic conditions. Telemed e-Health 2008; 14 (10): 1118–26.

19. Yu W, Ravelo A, Wagner TH, et al. Prevalence and costs of chronic conditions in the VA health care system. Med Care Res Rev 2003; 60 (Suppl 3): 1465–675.
20. Fishman P, Von Korff M, Lozano P, Hecht J. Chronic care costs in managed care. *Health Aff* 1997; 16 (3): 239–47.
21. Ray GT, Collin F, Lieu T, et al. The cost of health conditions in a health maintenance organization. *Med Care Res Rev* 2000; 57 (1): 92–109.
22. National Academies of Sciences, Engineering, and Medicine. *Evaluation of the Department of Veterans Affairs Mental Health Services.* Washington, DC: National Academies Press; 2018.
23. Wang JZ, Dhanireddy P, Prince C, Larsen M, Schimpf M, Pearman G. 2019 Survey of Veteran Enrollees’ Health and Use of Health Care; 2019. https://www.va.gov/HEALTHPOLICYPLANNING/SOE2019/2019_Enrollee_Data_Findings_Report-March_2020_508_Compliant.pdf Accessed September 22, 2020.
24. Verma S. Early impact of CMS expansion of medicare telehealth during COVID-19. *Heal Aff Blog* 2020. doi: 10.1377/hblog20200715.454789
25. Seto B. Telehealth’s Time. *Permanente Medicine.* 2020. https://permanente.org/telehealths-time/ Accessed October 15, 2020.
26. Galea MDF. Telemedicine in rehabilitation. *Phys Med Rehabil Clin N Am* 2019; 30 (2): 473–83.
27. Russell TG. Physical rehabilitation using telemedicine. *J Telemed Telecare* 2007; 13 (5): 217–20.
28. Olayiwola JN, Anderson D, Jpeal N, et al. Electronic consultations to improve the primary care-specialty care interface for cardiology in the medically underserved: a cluster-randomized controlled trial. *Ann Fam Med* 2016; 14 (2): 133–40.
29. Su GL, Glass L, Tapper EB, Van T, Waljee AK, Sales AE. Virtual consultations through the Veterans Administration SCAN-ECHO project improves survival for Veterans with liver disease. *Hepatology* 2018; 68 (6): 2317–24.
30. Slightam C, Gregory AJ, Hu J, et al. Patient perceptions of video visits using Veterans Affairs telehealth tablets: survey study. *J Med Internet Res* 2020; 22 (4): e13682.
31. de Grood C, Raiss A, Kwon Y, Santana MJ. Adoption of e-health technology by physicians: a scoping review. *J Multidiscip Healthc* 2016; 9: 335–44.
32. Lambert D, Gale J, Hartley D, Croll Z, Hansen A. Understanding the business case for telemental health in rural communities. *JBehav Health Serv Res* 2016; 43 (3): 366–79.
33. Perry K, Gold S, Shearer EM. Identifying and addressing mental health providers’ perceived barriers to clinical video telehealth utilization. *J Clin Psychiat* 2020; 76 (6): 1125–34.
34. Brooks E, Turvey C, Augusterfer EF. Provider barriers to telemental health: obstacles overcome, obstacles remaining. *Telemed e-Health* 2013; 19 (6): 433–7.
35. Garvin L, Hu J, Slightam C, McInnes D, Zulman D. Virtual outreach: enhancing access for homeless veterans’ through video telehealth. Tablets Presented at Academy Health 2020 Annual Research Meeting; July 28–August 6, 2020. https://academyhealth.confex.com/academyhealth/2020arm/meetingapp.cgi/Paper/42564.
36. VAntage Point Contributor. America’s Adopt A Soldier donates laptops, mobile phones to keep Veterans connected. U.S. Department of Veterans Affairs; 2020. https://www.blogs.va.gov/VAntage/76199/americas-adopt-soldier-donates-laptops-mobile-phones-keep-veterans-connected/ Accessed September 18, 2020.
37. Trivedi AN, Grebla RC, Wright SM, Washington DL. Despite improved quality of care in the Veterans Affairs health system, racial disparity persists for important clinical outcomes. *Health Aff* 2011; 30 (4): 707–15.
38. Saha S, Freeman M, Toure J, Tippens KM, Weeks C, Ibrahim S. Racial and ethnic disparities in the VA health care system: a systematic review. *J Gen Intern Med* 2008; 23 (5): 654–71.
39. Rajasekaran K. Access to telemedicine—are we doing all that we can during the COVID-19 pandemic? *Otolaryngol Head Neck Surg* 2020; 163 (1): 104–6.
40. Miller CJ, McInnes DK, Stolzmann K, Bauer MS. Interest in use of technology for healthcare among veterans receiving treatment for mental health. *Telemed e-Health* 2016; 22 (10): 847–54.
41. Klee A, Stacy M, Rosenheck R, Harkness L, Tsai J. Interest in technology-based therapies hampered by access: a survey of veterans with serious mental illnesses. *Psychiatr Rehabil J* 2016; 39 (2): 173–9.