Sex Specific Transcriptional Regulation of Gonadal Steroidogenesis in Teleost Fishes

Partigya Sharma, Shriya Purohit, Sachin Kothiyal, Shilpa Negi and Indrashis Bhattacharya*

Department of Zoology, Hemvati Nandan Bahuguna (HNB) Garhwal University, Pauri Garhwal, India

Keywords: transcription factor, steroidogenesis, testosterone, estrogen, cortisol

INTRODUCTION

Fishes are developmentally diverse and economically essential organisms (1). Teleost fishes show remarkable gonadal plasticity by representing both gonochorism (one sex at a time) and hermaphroditism (more than one sex) (1–3). Gonochoristic teleosts mature as either males or females and remain in such sexual identity throughout adulthood, whereas hermaphroditic species are plastic in terms of sex-reversal signals, i) protogynous (female to male e.g. gilt-head sea bream Sparus auratus, bluehead wrasse Thalassoma bifasciatum), ii) protandrous (male to female e.g. clown fish Amphiprion sp, Premnas sp, Rice file eel Monopterus albus and black porgy Acanthopagrus schlegeli) or iii) in both directions for multiple times (e.g. Okinawa goby Trimma okinawae, cleaner wrasse Labroides dimidiatus and monogamous coral-dwelling gobies Paragobidon and Gobiodon) (1, 4). Sexual identity is controlled by social cues and environmental stimuli that operate via the cross-talk between hypothalamus–pituitary–gonadal (HPG) and hypothalamus–pituitary–inter-renal (HPI) axes involving neuro-endocrine factors like kisspeptin, dopamine, gonadotropin-releasing hormone (GnRH), gonadotropins (FSH and LH) and gonadal steroids like 17β-estradiol (E2) and testosterone (T) (5–7). Gonadal cells initiate the steroidogenic cascade under the influence of FSH and LH by transporting cholesterol from cytosolic lipid droplet to mitochondrial inner membrane via Steroidogenic acute regulatory protein (StAR) followed by its rate limited conversion to pregnenolone via P450sc enzyme (Cholesterol side chain cleavage enzyme) coded by Cyp11a1 gene (8). Pregnenolone then gets converted to T through multiple steps prior to the synthesis of bio-active male androgen i.e. 11-Keto-testosterone (11-KT) or female specific E2. The production of E2 from T depends on P450- aromatase enzyme coded by Cyp19a1a gene in ovaries whereas, T gets converted to 11- hydroxy-androstenedione (11-OHA) by 11β-hydroxylase enzyme coded by Cyp11b gene and subsequently 11-OHA acts as a substrate for 11β-hydroxysteroid dehydrogenase (11β-HSD) enzyme coded by Hsd11b2 gene to produce 11-KT in testes (1, 6–8).

Experimental feminization of XY fries and/or masculinization of XX fries have been successfully achieved by administration of exogenous E2 or T for two months respectively (9, 10) despite having a robust genetic mechanism for sex determination (GSD) in medaka Oryzias latipes (11, 12). Furthermore, long term depletion of endogenous P450 aromatase by fadrozole in adult teleosts like mekada (13), Nile-tilapia Oreochromis niloticus (14) or zebra-fish Danio rerio (15) results into functional female to male sex reversal. Consistently, a dramatic shift in plasma sex steroids also has been reported during gonadal trans-differentiation observed in natural sex changing fishes (3). For
example, in protogynous species a severe decline in E₂ leads to ovarian regression followed by a gradual elevation in circulatory 11-KT, whereas in protandrous fishes E₂ concentration rises with the decline of 11-KT level (2, 16). However, in bidirectional sex change, only E₂ (not 11-KT) shows such sexual shift in the circulatory pattern (2, 16). Therefore, the critical balance between the bio-conversion rates of T to either E₂ or 11-KT exclusively directs the sexual fate, reproductive maturation and fertility potential in fishes. The seasonal reproductive cyclicity of fishes is broadly categorized into five stages i) Resting Phase ii) Preparatory/Recrudescence Phase iii) Pre-Spawning/Developing Phase iv) Spawning Active/Capable Phase v) Post-Spawning/Regressing/Spent Phase (17). Interestingly, a drastic steroidogenic shift occurs in post-vitellogenic (Spawning Phase) ovaries during meiotic maturation of oocytes involving an inhibition of FSH signal leading to the suppression of \(Cyp19a1a \) promoter and thereby decline in E₂ production with subsequent LH mediated activation of 20β-Hsd promoter for the production of maturation inducing steroids [17α,20β-DPs (17α,20β-dihydroxy-4-pregnen-3-one or 17α,20β,21-trihydroxy-4-pregnen-3-one)] (6, 8, 18). Similarly, a dominant upregulation of Hsd11b2 promoter activity has been reported in testes ensuring the rise in 11-KT level in spawning males. Therefore, a complex interplay among the multiple \(cis \) acting sequences/elements and respective \(trans \) acting factors collectively regulate the sex specific differential promoter activities of the genes coding for key steroidogenic enzymes in teleost gonads (8). Although brain, kidney, liver and adipose tissues are other potential sites of steroidogenesis in fishes, we here briefly highlight the critical contribution of major transcription factors regulating gonadal steroidogenic output to determine fish reproduction.

GLUCOCORTICOID RECEPTORS

Corticosteroid like cortisol produced from adrenal glands acts \textit{via} glucocorticoid receptor (GR) and critically regulates the promoter function of \(Cyp19a1a \) and \(Cyp11c1/Cyp11b \) or \(Hsd11b2 \) genes thereby fixing the E₂: 11-KT concentration (2, 5). Cortisol induced GR blocks the aromatase enzyme in the ovaries of pejerrey \textit{Odontesthes bonariensis} (19) or Japanese flounder \textit{Paralichthys olivaceus} (20) and induces the promoter activity of \(Hsd11b2 \) in the testes of pejerrey (21) or European eel \textit{Anguilla anguilla} (22) in male favourable temperatures.

FOXL₂

FOXL₂ (Forkhead transcription factor 2), member of the winged helix/fork-head group of proteins is known for ovarian differentiation (23). Fox genes like \textit{Foxcl}, \textit{Foxfl}, \textit{Foxd₁} (a germ cell intrinsic transcription factor determinant of sexual fate in medaka) have been shown to determine the ovarian function (23). In ovary, FOXL₂ suppresses \textit{Dmrt1} and upregulates female programming genes like \textit{Cyp19a1a}, \textit{Rspo1} and \textit{Wnt4/βcatenin} etc and support E₂ production (23, 24). The co-localizations of FOXL₂ and P450 aromatase enzyme in the ovaries of adult medaka (25), Nile-tilapia (26–29) and Japanese flounder (30) suggest the critical involvement of FOXL₂ in transcriptional regulation of \(Cyp19a1a \) and E₂ production. In medaka, FOXL₂ protein is initially detected in the germine stem cells and maintained thereafter throughout the meiotic progression (23). In Nile-tilapia, the promoter region of \(Cyp19a1a \) possesses the core element ACAATAA from -545 to -538 known for the binding site for FOXL₂ (27). Over-expression of \(Foxl2 \) dominant negative mutant in XX tilapia triggers female to male reversal (27), whereas the loss of \(Foxl2 \) in XX tilapia leads to female to male reversal (27, 31–33). In Japanese flounder \(FOXL_2 \) directly activates the \(Cyp19a1a \) gene transcription by binding to the forkhead- responsive site (30).

AD4BP/SF-1

Ad4 Binding Proteins/Steroidealogenic Factor1 (AD4BP/SF-1) or Fushi Tarazu factor 1 (FTZ-F1) is an orphan nuclear receptor under subfamily 5 group A member 1 (NR5A1) that gets co-localized in the interstitial cells of pre-vitellogenic ovary and granulosa cells of the vitellogenic follicles along with FOXL₂ and P450 aromatase in medaka (34, 35) and Nile-tilapia (27). Although in TM3 cell lines and granulosa cells of Nile-tilapia, FOXL₂ alone can activate the gene transcription of \(Cyp19a1a \) as both these cells contain endogenous AD4BP/SF-1, FOXL₂ alone fails to show such impact on the \(Cyp19a1a \) promoter in HEK293 cells (27). However, with co-transfection of \(Ad4BP/SF1 \) and \(Foxl2 \), the P450 aromatase promoter gets pronouncedly activated indicating \(Foxl2 \) and \(Ad4BP/SF1 \) act synergistically to augment \(Cyp19a1a \) transcription (36). On the other hand, \(Ad4BP/SF-1 \) binds to two FF1 response elements on the promoter of \(Cyp11a1 \) gene and upregulates its transcription in zebra-fish (37).

DAX1

DAX1 (Dosage- sensitive sex reversal adrenal hypoplasia congenital critical region on the X chromosome, gene 1), an orphan receptor is a member of the nuclear receptor superfamily (NR0B1). \textit{Dax1} is expressed in adrenal cortex, gonads, ventromedial hypothalamus and pituitary gonadotrophs potentially crucial for testis differentiation (38–40). The expression of \textit{Dax1} is up-regulated by androgen in rainbow trout \textit{Oncorhynchus mykiss} during ovary to testis transition (41). In medaka, DAX1 has only one LXXLL- related motif in N-terminal and is involved in repressing E₂ synthesis in ovarian follicles (36). In medaka co-transfection of \textit{Dax1} along with \textit{AD4BP/SF-1} and \textit{Foxl2} in a dose dependent manner leads to a significant decline in the activity of \(Cyp19a1a \) promoter indicating that DAX1 negatively regulates \(Cyp19a1a \) expression by suppressing Ad4BP/SF1 and FOXL₂ proteins in ovarian follicles (36).
DMY/DMRT 1

In metazoans, double-sex and mab-3 related transcription factor 1 (Dmr1) is the critical inducer of testicular differentiation (42). Testes restricted expression patterns of Dmr1 have been found in medaka, Nile-tilapia, Olive flounder, Rainbow trout African catfish Clarias gariepinus, rare minnow Gobiocypris rarus, lake sturgeon Acipenser fulvescens, Atlantic cod Gadus morhua, pejerrey, shovelnose sturgeon Scaphirhynchus platorynchus and southern catfish Silurus meridionals (42). DMR1 either alone or in synergy with DAX1 represses the female programming genes like Cyp19a1a, Rspo1, Figla, Gdf9 and Wnt4/β-catenin and augments the transcription of male specific genes like Gsdf, Cyp11c1, Sox9/3, Amh etc in testes (42). The exposure of E2 downregulates Dmr1 transcription in medaka (43), African catfish (44), Nile-tilapia (28), rare minnow (45), pejerrey (46), zebra-fish (47) and rainbow trout (48). DMR1 directly suppresses Cyp19a1a promoter activity in medaka (36) and in Nile-tilapia (28). In XX tilapia, overexpression of Dmr1 leads to downregulation of Cyp19a1a expression and E2 production (28). However, knock-down of Dmr1 in XY tilapia (32) and mutation of Dmr1 in Cynoglossus milaevis (49) resulted in increased FoxL2 and Cyp19a1a expression without any male to female sex reversal. On the other hand, the loss of Dmr1 leads to an elevated expression of FoxL2 in zebra-fish (50) whereas an augmentation in both FoxL2 and Cyp19a1a in medaka (51). The duplicated copy of Dmrt1a on the Y chromosome Dmy/ Dmrt1bY (DM domain gene on the Y chromosome/doublesex and mab-3 related transcription factor 1b on the Y chromosome) acts as a master of male sex in medaka (12, 52). However, Dmy downregulates itself by binding to the conserved cis-regulatory elements like Izanagi, within its promoter (42). In differentiating testes of medaka, Dmy downregulates the hedgehog pathway by suppressing its receptor Pitch-2 and upregulating its antagonist Hhip (42).

SOX PROTEINS

The Sry related HMG box (Sox) gene(s) encode variety of transcription factor(s) critical for gonadal morphogenesis (5). Two paralogous forms of Sox9, namely Sox9a and Sox9b are reported in medaka and zebra-fish without any such sexual dimorphic expression pattern (53). In Indian rice-fish Oryzias dancena, Sox3 gene has been shown critical for sex determination by up-regulating expression of Gsdf (Gonadal soma-derived factor) (54). The expressions of Sox3 and Hsd11b2 are found to be associated with the initiation and progression of spermatogenesis in male catfish testis (8). Precisely, SOX3 binds to Hsd11b2 gene promote and transactivates its transcription in males (8). During development of zebra-fish, the transcription factor SOX5, directly downregulates the Dmrt1 transcription (42) whereas SOX5 downregulates Cyp19a1a transcription in the red spotted grunter Epinephelus akaara (55).

OTHER TRANSCRIPTION FACTORS

Wilm’s tumor 1 (WT1) is a key transcription factor having critical role in mammalian gonadal morphogenesis (5). In Indian catfish Clarias batrachus, WT1 has been shown to upregulate the promoter activity of Hsd11b2 (56). E2 bound Estrogen Receptor (coded by Esr1 gene) acts as a potential transcriptional inducer for Cyp19a1a in zebra-fish (57, 58). Finally, activated cAMP response element binding protein (CREB-P; phosphorylated at Ser-133 residue) differentially regulate the transcriptional control of Cyp19a1a and 20β-Hsd genes as found in ovaries of Nile-tilapia, rainbow trout and catfishes (8, 18). In pre-spawning vitellogenic ovaries, CREB-P upregulates the transcription of Cyp19a1a in synergy with Ad4BP/SF-1 and FOXL2 under the influence of FSH. However, in post-vitellogenic spawning ovaries such dominant transcription of Cyp19a1a gets downregulated due to selective inhibition of FSH signal followed by LH induced upregulation 20β-Hsd transcription by CREB-P alone synthesizing maturation inducing steroids (17α,20β-DPs) critical for the meiotic progression of developing oocytes (8, 18).

CONCLUSION

In summary, molecular techniques like Electrophoretic mobility shift assay (EMSA) or Chromatin immuno-precipitation (ChiP) assay investigating DNA-protein interactions have revealed the differential promoter activities of the key steroidogenic genes like Cyp19a1a, Cyp11b and Hsd11b2 by various transcription factors to regulate the turnover rate of T for fixing the E2: 11-KT concentration in fish gonads (8). For example, in males, DMR1 directly suppresses Cyp19a1a transcription, while DAX1 does the same via inhibiting FOXL2 and Ad4BP/SF-1 leading to the testicular differentiation. Conversely, FOXL2 and Ad4BP/SF-1 augment the expression of Cyp19a1a ensuring E2 production and promote the ovarian function. Figure 1 schematically represents the complex antagonistic genetic network that regulates the ovarian estrogenic or testicular androgenic milieu in teleost gonads. Supplementary Table 1 describes the critical role(s) of major transcription factors identified till date in different teleost species in a chronological order directing gonadal development and function. Supplementary Table 2 summarizes the effect of various environmental parameters on fish gonadal development and steroidogenesis.

FUTURE DIRECTIONS

Notably there is a potential scope for the commercial application of genetically engineered fishes having mutant transcription factors by advanced genome editing technologies like TALEN/CRI Spencer-CAS9 Transgenesis/RNAi mediated silencing etc. These gain in function (by transgenic over-expression/integration) or loss of function (by knock-out/down) models can be successfully implemented in aquaculture or fishery industry to increase the productivity/yield by manipulating fertility of fishes. However more studies are required in non-model teleost species by employing
advanced high throughput next generation sequencing with multi-omics approach to generate gonadal transcriptomic resource datasets. This may further help identify the involvement of new putative factor(s) like chromatin remodelling complexes, DNA-methyl-transferases (DNMTs) and novel micro-RNAs or long-non-coding RNAs which can potentially regulate the sex specific transcriptional switch in gonadal steroidogenesis (59).

AUTHOR CONTRIBUTIONS
IB conceived the idea. PS wrote the first draft of the Text, Figure, and Table with support from SP, SK and SN. IB generated the final form of the manuscript. All authors contributed to the article and approved the submitted version.

FUNIDNG
IB acknowledges the financial support from University Grants Commission (F.30104/2015BSR) and Department of Science and Technology (ECR/2018/000868). The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

ACKNOWLEDGMENTS
The authors are sincerely grateful to the Hon’ble Vice Chancellor, HNBGU, Research and Consultancy Coordination cell, HNBGU and past and present Head(s), Dept. of Zoology, HNBGU for valuable support.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2022.820241/full#supplementary-material
REFERENCES

1. Devlin RH, Nagahama Y. Sex Determination and Sex Differentiation in Fish: An Overview of Genetic, Physiological, and Environmental Influences. *Aquat. Int.* (2002) 9(3-4):191–364. doi: 10.1080/0969905022000045727

2. Todd EV, Liu H, Muncaster S, Gemmell NJ. Bending Genders: The Biology of Natural Sex Change in Fish. *Sexual Development: Genet Mol Biol Evol Endocrinol Embryol Pathol Sex Differentiation* (2016) 10(5-6):223–41. doi: 10.1159/000449297

3. Bhattacharya I, Modi D. Sex Determination in Teleost Fish. In: *Recent Updates in Molecular Endocrinology and Reproductive Physiology of Fish*. Singapore: Springer (2021). p. 121–38.

4. DeFako T, Capel B. Gonad Morphogenesis in Vertebrates: Divergent Means to a Convergent End. *Annu. Rev. Cell Dev Biol.* (2009) 25:457–82. doi: 10.1146/annurev.cellbio.042508.133550

5. Capel B. Vertebrate Sex Determination: Evolutionary Plasticity of a Fundamental Switch. *Nat Rev Genet.* (2017) 18(11):675–89. doi: 10.1038/nrg.2017.60

6. Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and Organisation of Gonadal Steroidogenesis in Bony Fishes-A Review. *Aquaculture* (2020) 473:223–46. doi: 10.1016/j.aquaculture.2020.09.004

7. Young G, Kusakabe M, Nakamura I, Lokman PM, Goetz FW. Gonadal Steroidogenesis in Teleost Fish. *Mol Aspects Fish Marine Biol.* (2005) 2:153–233. doi: 10.1142/9789812560289_0006

8. Rajakumar A, Senthilkumaran B. Steroidogenesis and its Regulation in Temperature-Dependent Sex Determination in the Japanese Flounder. *Front Endocrinol.* (2020) 11:1898. doi: 10.3389/fendo.2020.01898

9. Yamamoto TO. Sex Differentiation. In: *Gender Development: Genet Mol Biol Evol Endocrinol Embryol Pathol Sex Differentiation* (2016) 10(3):111–29. doi: 10.1159/000447611

10. Nishimura T, Tanaka M. The Mechanism of Germline Sex Determination in Vertebrates. *Biol Reprod.* (2016) 95(1):30. doi: 10.1095/biolreprod.115.138271

11. Nakamoto M, Matsuda M, Wang DS, Nagahama Y, Shibata N. Molecular Cloning and Analysis of Gonadal Expression of Foxl2 in the Medaka, Orzayas Latipes. *Biochem Biophys Res Commun.* (2006) 344(1):333–61. doi: 10.1016/j.bbrc.2006.03.137

12. Wang D, Kobayashi T, Zhou L, Nagahama Y. Molecular Cloning and Gene Expression of Foxl2 in the Nile Tilapia, Oreochromis Niloticus. *Biochem Biophys Res Commun.* (2004) 320(1):83–9. doi: 10.1016/j.bbrc.2004.03.133

13. Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, et al. Foxl2 Up-Regulates Aromatase Gene Transcription in a Female-Specific Manner by Binding to the Promoter as Well as Interacting With A4 Binding Protein/Steroidogenic Factor 1. *Mol Endocrinol* (2007) 21(5):712–25. doi: 10.1210/me.2006-0248

14. Wang DS, Zhou LY, Kobayashi T, Matsuda M, Shibata Y, Sakai F, et al. Doublesex- and Mab-3-Related Transcription Factor-1 Repression of Aromatase Transcription, a Possible Mechanism Favoring the Male Pathway in Tilapia. *Endocrinology* (2010) 151(3):331–40. doi: 10.1210/en.2009-0999

15. Ijiri S, Kanelo H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, et al. Sexual Dimorphic Expression of Genes in Gonads During Early Differentiation of a Teleost Fish, the Nile Tilapia Oreochromis Niloticus. *Biol Reprod.* (2008) 78(2):333–41. doi: 10.1095/biolreprod.107.064246

16. Yamaguchi T, Yamaguchi S, Hirota T, Kitanou T. Follicle-Stimulating Hormone Signaling and Foxl2 Are Involved in Transcriptional Regulation of Aromatase Gene During Gonadal Sex Differentiation in Japanese Flounder, Paralichthys Olivaceus. *Biochem Biophys Res Commun.* (2007) 359(4):935–40. doi: 10.1016/j.bbrc.2007.05.208

17. Zhang X, Li M, Ma H, Liu X, Shi H, Li M, et al. Mutation of Foxl2 or Cyp19a1a Results in Female to Male Sex Reversal in XX Nile Tilapia. *Endocrinology* (2017) 158(8):2634–47. doi: 10.1210/endo.2017-00127

18. Li MH, Yang HH, Li MB, Sun YL, Jiang XQ, Xie WP, et al. Antagonistic Roles of Dmr1 and Foxl2 in Sex Differentiation via Estrogen Production in Tilapia as Demonstrated by TALENs. *Endocrinology* (2013) 154(12):4814–25. doi: 10.1210/endo.2013-1451

19. Yang YJ, Wang Y, Li Z, Zhou L, Gui JF. Sequential, Divergent, and Cooperative Requirements of Foxl2a and Foxl2b in Ovary Development and Maintenance of Zebrafish. *Genetics.* (2017) 205(4):1511–72. doi: 10.1534/genetics.116.199133

20. Fukuda S, Tanaka M, Matsuyma M, Kobayashi D, Nagahama Y. Isolation, Characterization, and Expression of cDNAs Encoding the Medaka (Orzayas latipes) Ovarian Follicle Cytochrome P-450 aromatase. *Mol Reprod Dev.* (1996) 45(3):285–90. doi: 10.1002/mrd.20689

21. Nakamoto M, Wang DS, Suzuki A, Matsuda M, Nagahama Y, Shibata N. Dax1 Suppresses P450arom Expression in Medaka Ovarian Follicles. *Mol Reprod Dev.* (2007) 74(10):1239–46. doi: 10.1002/mrd.20689

22. Quest SE, Chan WK. Transcriptional Activation of Zebrafish Cyp11a1 Promoter Is Dependent on the Nuclear Receptor Flih. *J Mol Endocrinol.* (2009) 43(3):121–30. doi: 10.1677/ME-09-0029

23. Geffroy B, Baridonnet A. Sex Differentiation and Sex Determination in Eels: Consequences for Management. *Fisheries* (2016) 17(2):375–98. doi: 10.1111/faf12113

24. Bertho S, Pasquier J, Pan Q, Le Trionnaire G, Bode J, Postlethwait JH, et al. Foxl2 and Its Relatives Are Evolutionarily Conserved Players in Gonadal Sex Differentiation. *Sexual Development: Genet Mol Biol Evol Endocrinol Embryol Pathol Sex Differentiation Differentiation* (2016) 10(3):111–29. doi: 10.1159/000447611
