Fixed Subgroups of Endomorphisms of Free Products

Mihalis Sykiotis

March 29, 2022

Abstract

Let $G = \ast_{i=1}^n G_i$ and let ϕ be a symmetric endomorphism of G. If ϕ is a monomorphism or if G is a finitely generated residually finite group, then the fixed subgroup $Fix(\phi) = \{g \in G : \phi(g) = g\}$ of ϕ has Kurosh rank at most n.

1 Introduction

In [1], Bestvina and Handel proved the Scott conjecture, which says that if ϕ is an automorphism of a free group of rank n, then the subgroup $Fix(\phi)$ of elements fixed by ϕ has rank at most n. Their result was generalized by several authors in various directions. See, for example, [6] [5] [7] [2] [9]. In particular, the result of Bestvina and Handel was generalized both to arbitrary endomorphisms of free groups by Imrich and Turner [6] and to automorphisms of free products by Collins and Turner [5].

In this note, following the main idea of [6], we show that in many interesting cases the study of fixed subgroups of endomorphisms of free products is reduced to that of automorphisms, thereby obtaining new generalizations of Bestvina-Hadel’s result.

2000 Mathematics Subject Classification. 20E06, 20E36.
2 Preliminaries

Let $G = \ast_{i=1}^n G_i$ and let H be a non-trivial subgroup of G. By the Kurosh subgroup theorem, H is a free product $H = \ast_{i \in I} H_i \ast F$, where F is a free group and every factor H_i is the intersection of H with a conjugate of a free factor G_i. In the case where the rank $r(F)$ of F and the cardinality $|I|$ of I (which may be empty) are finite, the Kurosh rank of H with respect to the given splitting of G is defined to be the sum $r(F) + |I|$. We will usually omit the phrase “with respect ... splitting of G”, when the splitting of G is clear from the context.

Following [6], given a group G and an endomorphism ϕ of G, we define the stable image $\phi^\infty(G)$ of ϕ to be the intersection $\cap_{n=1}^\infty \phi^n(G)$. Clearly $\phi^\infty(G)$ is invariant under ϕ and contains $\text{Fix}(\phi)$. Thus $\text{Fix}(\phi) = \text{Fix}(\phi_\infty)$, where $\phi_\infty : \phi^\infty(G) \to \phi^\infty(G)$ denotes the restriction of ϕ to $\phi^\infty(G)$. The key observation is that if ϕ is a monomorphism, then ϕ_∞ is an automorphism. To see this, let $g \in \phi^\infty(G)$ be any element. Then for every n there exists an element g_n of $\phi^n(G)$ such that $g = \phi(g_n)$. Since ϕ is injective, $g_1 = g_n$ for all n and hence $g_1 \in \phi^\infty(G)$. This gives surjectivity of ϕ_∞.

Now, the basic idea can be described briefly as follows. Suppose that G is a free product and that ϕ_∞ is an automorphism sending non-infinite-cyclic factors of the stable image onto conjugates of themselves. By [9, Theorem 6.12], the Kurosh-rank of $\text{Fix}(\phi_\infty)$ does not exceed the Kurosh rank of $\phi^\infty(G)$. Thus to find an upper bound for the Kurosh rank of $\text{Fix}(\phi)$, we need to know something about the kurosh rank of $\phi^\infty(G)$. By [10, Theorem 6.5], the Kurosh rank of $\phi^\infty(G)$ is bounded above by the maximum of the Kurosh ranks of the images $\phi^n(G)$. In the case where G is a free group of rank n, it is immediate that the rank of every image $\phi^n(G)$ is less than or equal to n while in the case of a free product is not. However, we will see that this happens in many cases, in which we obtain that the Kurosh rank of $\text{Fix}(\phi)$ does not exceed the Kurosh rank of G.

3 Main Results

We start with the following result which has been obtained independently by Swarup [11].

Lemma 3.1. Let $G = \ast_{i=1}^n G_i \ast F$ and $H = \ast_{j=1}^m H_j \ast F'$, where each factor G_i is not infinite cyclic and F, F' are free groups, and let $\phi : G \to H$ be an epimorphism such that each factor G_i is mapped by ϕ into a conjugate of some H_j. Then $n + r(F) \geq m + r(F')$ and $r(F) \geq r(F')$.

Proof. By renumbering if necessary, we can assume that $H_1, \ldots, H_{m_0}, m_0 \leq m$ are the factors of H whose conjugates contain the non-trivial images of G_i, $i = 1, \ldots, n$ under ϕ. Note that $m_0 \leq n$. If N and K are the normal subgroups of G and H generated by $G_i, i = 1, \ldots, n$ and $H_j, j = 1, \ldots, m_0$ respectively, then $\phi(N) \subseteq K$, and so ϕ induces an epimorphism $\Phi : F \cong G/N \to H/K \cong H_{m_0+1} \ast \cdots \ast H_m \ast F'$. It follows that $r(F) \geq d(H_{m_0+1} \ast \cdots \ast H_m \ast F') = d(H_{m_0+1}) + \cdots + d(H_m) + r(F') \geq m - m_0 + r(F')$, and the lemma follows.

Let $G = \ast_{i=1}^n G_i$ and $H = \ast_{i=1}^m H_i$. A homomorphism $\phi : G \to H$ is said to be symmetric if each non-infinite-cyclic free factor of G is mapped by ϕ into a conjugate of some non-infinite-cyclic free factor of H. For example, if each factor G_i is freely indecomposable, then each injective homomorphism is symmetric.

The next lemma shows that symmetric automorphisms of free products map non-infinite-cyclic factors onto conjugates of themselves and therefore [9, Theorem 6.12] can be applied.

Lemma 3.2. Let $G = \ast_{i=1}^n G_i \ast F$ and let ϕ be an automorphism of G. If each factor G_i is mapped by ϕ into a conjugate of some G_j, then G_i is mapped by ϕ onto this conjugate.

Proof. Suppose on the contrary that there is a factor, say G_1, such that $\phi(G_1)$ is properly contained in gG_1g^{-1}, $g \in G$. By [3, Theorem 7] there is a free product decomposition $G = \ast_{i=1}^n G_i' \ast F'$ of G such that $\phi(G_i') = G_i$, $i = 1, \ldots, n$ and $\phi(F') = F$. If $x = \phi^{-1}(g)$, then $\phi(x^{-1}G_1x) \subset G_{i_1} = \phi(G_{i_1}')$.

and thus $x^{-1}G_1x \subset G'_{t_1}$. Since G'_{t_1} properly contains $x^{-1}G_1x$, there is a free product decomposition $G'_{t_1} = x_1G_1x_1^{-1} * K$, obtained from the initial decomposition of G, where K is a non-trivial subgroup of G. Thus $G = G_1 * \cdots * G_n * F = *_{i \neq i_1} G'_i * x_1G_1x_1^{-1} * K * F'$.

Now we consider the map $\psi : \{1, \ldots, n\} \to \{1, \ldots, n\}$, defined as follows: $\psi(i) = j$ if and only if $\phi(G_i)$ is contained in a conjugate of G_j. The injectivity of ϕ implies that ψ is well-defined, while the proof of Lemma 3.1 shows that ψ is surjective, and hence bijective. We conclude that the normal subgroup N of G generated by G_1, \ldots, G_n is contained in the normal subgroup N' of G generated by G_1, G'_i, $i \neq i_1$. Thus we have an epimorphism $\Phi : G/N \cong F \to G/N' \cong K * F'$. Since K is non-trivial, it follows that $r(F) > r(F')$, which contradicts the fact that the groups F and F' are isomorphic. □

Theorem 3.3. Let $G = *_{i=1}^n G_i * F$, where each factor G_i is not infinite cyclic and F is a free group. If $\phi : G \to G$ is a symmetric monomorphism of G, then the fixed subgroup $\text{Fix}(\phi)$ of ϕ has Kurosh rank at most $n + r(F)$.

Proof. By the remarks preceding Lemma 3.1 it suffices to show that the stable image $\phi^\infty(G)$ of ϕ has Kurosh rank at most $n + r(F)$, and that the automorphism ϕ_∞ of $\phi^\infty(G)$ is symmetric, since the theorem is true for symmetric automorphisms of free products [9].

First, we note that for each $k \geq 0$, the epimorphism $\phi_k : \phi^k(G) \to \phi^{k+1}(G)$ obtained by restricting ϕ to $\phi^k(G)$ is symmetric (where $\phi^0(G) = G$), which implies that $\phi^k(G)$ has Kurosh rank at most $n + r(F)$ for all k by Lemma 3.1. To see this, let $\phi^k(G) \cap xG_ix^{-1}$ be a non-infinite-cyclic free factor of $\phi^k(G)$ (with respect to the free product decomposition of $\phi^k(G)$ inherited from this one of G). The assumption that ϕ is symmetric implies that there is an index $j(i) \in \{1, \ldots, n\}$ and an element $g_i \in G$ such that $\phi(G_i) \subseteq g_iG_{j(i)}g_i^{-1}$. Thus $\phi(\phi^k(G) \cap xG_ix^{-1}) \subseteq \phi^{k+1}(G) \cap \phi(x)\phi(G_i)\phi(x)^{-1} \subseteq \phi^{k+1}(G) \cap \phi(x)\phi(G_i)\phi(x)^{-1}$. The latter group is a subgroup of $\phi^{k+1}(G)$ which stabilizes a vertex in any G-tree constructed from the given free product decomposition of G. It follows that $\phi(\phi^k(G) \cap xG_ix^{-1})$ is contained in a $\phi^{k+1}(G)$-conjugate of a free factor of $\phi^{k+1}(G)$ and hence ϕ_k is symmetric. The same argument shows that the automorphism ϕ_∞ is symmetric as well.
Since each term of the decreasing sequence of subgroups
\[G \supseteq \phi(G) \supseteq \phi^2(G) \supseteq \cdots \supseteq \phi^k(G) \supseteq \cdots \]
has Kurosh rank at most \(n + r(F) \), [10, Theorem 6.5] implies that the stable image \(\phi^\infty(G) \) of \(\phi \) also has Kurosh rank at most \(n + r(F) \).

Corollary 3.4. Let \(\phi \) be a monomorphism of a free product \(\ast_{i=1}^n G_i \) of freely indecomposable groups. Then \(\text{Fix}(\phi) \) has Kurosh rank at most \(n \).

In view of the preceding theorem, it is natural to seek conditions under which a free product endomorphism becomes “finally” a monomorphism. The second proof of the Hopficity of finitely generated residually finite groups sketched in [3], actually shows that the restriction of an endomorphism of a residually finite group to its stable image is a monomorphism (see also [4, Lemma 1]). For completeness, we include the argument here.

Lemma 3.5. Let \(\phi \) be an endomorphism of a finitely generated residually finite group \(G \). Then the restriction \(\phi^\infty : \phi^\infty(G) \to \phi^\infty(G) \) of \(\phi \) to \(\phi^\infty(G) \) is a monomorphism.

Proof. Let \(1 \neq g \in \ker(\phi^\infty) \). Then \(\phi(g) = 1 \) and for each positive integer \(n \) there is \(g_n \in G \) such that \(g = \phi^n(g_n) \). Since \(G \) is residually finite there is a finite group \(\Gamma \) and a homomorphism \(\pi : G \to \Gamma \) with \(\pi(g) \neq 1 \). We consider the sequence of homomorphisms \(\pi_n = \pi \circ \phi^n : G \to \Gamma \). Then \(1 \neq \pi(g) = \pi(\phi^n(g_n)) = \pi_n(g_n) \). On the other hand, \(\pi_m(g_n) = \pi(\phi^m(g_n)) = \pi(\phi^{m-n}(g)) = 1 \) whenever \(m > n \). It follows that there are infinitely many distinct homomorphisms from the finitely generated group \(G \) to the finite group \(\Gamma \), a contradiction.

Theorem 3.6. Let \(G = \ast_{i=1}^n G_i \ast F \) be a finitely generated residually finite group, where each factor \(G_i \) is not infinite cyclic and \(F \) is a free group. If \(\phi \) is a symmetric endomorphism of \(G \), then the fixed subgroup \(\text{Fix}(\phi) \) of \(\phi \) has Kurosh rank at most \(n + r(F) \).

Proof. The arguments of Theorem 3.3 show that the stable image \(\phi^\infty(G) \) of \(\phi \) has Kurosh rank at most \(n + r(F) \) and that the restriction \(\phi^\infty \) of \(\phi \) to
\(\phi^\infty(G)\) is a symmetric endomorphism. By Lemma 3.5, \(\phi^\infty\) is a monomorphism, so Theorem 3.3 applies.

\[\text{Theorem 3.7. Let } G = \ast_{i=1}^n G_i \text{ be a free product of finitely generated nilpotent and finite groups. If } \phi \text{ is an endomorphism of } G, \text{ then the fixed subgroup } \text{Fix}(\phi) \text{ of } \phi \text{ has Kurosh rank at most } n.\]

\[\text{Proof. Since each quotient of a nilpotent group is freely indecomposable, each of the epimorphisms } \phi_k : \phi^k(G) \to \phi^{k+1}(G) \text{ satisfies the hypothesis of Lemma 3.1. This implies that } \phi^\infty(G) \text{ has Kurosh rank at most } n. \text{ By Lemma 3.5, } \phi^\infty \text{ is a monomorphism. Also, it is easy to see that } \phi^\infty \text{ is symmetric. The theorem now follows by Theorem 3.3.}\]

\[\text{References}\]

[1] M. Bestvina and M. Handel, \textit{Train tracks and automorphisms of free groups}, Ann. of Math. (2) \textbf{135} (1992), no. 1, 1–51.

[2] G.M. Bergman, \textit{Supports of derivations, free factorizations, and ranks of fixed subgroups in free groups}, Trans. Amer. Math. Soc. \textbf{351} (1999), no. 4, 1531–1550.

[3] P. de la Harpe, \textit{Topics in Geometric Group Theory}, University of Chicago Press, Chicago and London, 2000.

[4] R. Hirshon, \textit{Some properties of endomorphisms in residually finite groups}, J. Austral. Math. Soc. Ser. A \textbf{24} (1977), 117–120.

[5] D.J. Collins and E.C. Turner, \textit{Efficient representatives for automorphisms of free products}, Michigan Math. J. \textbf{41} (1994), no. 3, 443–464.

[6] W. Imrich and E. C. Turner, \textit{Endomorphisms of free groups and their fixed points}, Math. Proc. Cambridge Phil. Soc. \textbf{105} (1989), no. 3, 421–422.

[7] W. Dicks and E. Ventura, \textit{The group fixed by a family of injective endomorphisms of a free group}, Contemporary Mathematics, vol. 195, 1996, pp. x+81.
[8] J.-R. Stallings, *Foldings of G-trees*, Arboreal Group Theory (Berkeley, CA, 1988), Math. Sci. Res. Inst. Publ. 19 (Springer, New York, 1991), pp. 355–368.

[9] M. Sykiotis, *Stable representatives for symmetric automorphisms of groups and the general form of the Scott conjecture*, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2405–2441.

[10] M. Sykiotis, *On subgroups of finite complexity in groups acting on trees*, J. Pure Appl. Algebra 200 (2005), no. 1-2, 1–23.

[11] G. A. Swarup, *Delzant’s variation on Scott Complexity*, arXiv:math.GR/0401308 January 23, 2004.

Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

E-mail address: msikiot@ucy.ac.cy, msykiot@math.uoa.gr