Testing An Identification Algorithm for Extragalactic OB Associations Using a Galactic Sample

Christine D. Wilson and Karen J. Bakker
Department of Physics and Astronomy, McMaster University, Hamilton Ontario Canada
L8S 4M1

Received ______________; accepted ______________
ABSTRACT

We have used a Galactic sample of OB stars and associations to test the performance of an automatic grouping algorithm designed to identify extragalactic OB associations. The algorithm identifies the known Galactic OB associations correctly when the search radius (78 pc) is defined by the observed stellar surface density, which suggests that the sample of Galactic OB associations constitutes a reasonably uniformly-identified sample. Roughly 25% of the groups identified automatically which contain more than 10 stars actually comprise two or more unrelated OB associations, which raises the concern that the largest extragalactic associations identified via this algorithm may also represent multiple associations. Galactic OB associations identified with a 78 pc search radius have diameters that are \sim3 times larger than OB associations identified with a 22 pc search radius in M33. Applying the smaller search radius to the Galactic data matches both the sizes and the number of member stars between the two galaxies quite well. Thus, we argue that this and similar algorithms should be used with a constant physical search radius, rather than one which varies with the stellar surface density. Such an approach would allow the identification of differences in the giant molecular cloud populations and star formation efficiency under most circumstances.

Subject headings: Galaxies: Individual (M33, NGC 6822) – Galaxies: Star Clusters – Galaxy: Open Clusters and Associations: General – Local Group
1. Introduction

Determining the properties of OB associations in galaxies is important for understanding how massive stars form. Differences in the properties of OB associations from one galaxy to another may indicate differences in the sizes of the molecular clouds from which the associations form, in the star formation efficiency in the molecular clouds, or in the relative numbers of high and low mass stars that are formed. However, obtaining a reliable comparison of association properties from one galaxy to another requires that the associations are identified in a consistent and unbiased way. Early identifications of OB associations were based on identifying clumps of blue stars by eye using photographic plates (e.g. M33, Humphreys & Sandage 1980). However, comparison of the properties of OB associations identified in this way is extremely difficult unless similar quality plates are available for all galaxies and one person has done the identification (Hodge 1986).

Recently, two automated techniques for identifying OB associations in galaxies have become available (Battinelli 1991; Wilson 1991). In addition, the availability of CCD data allows us to select stars based on strict color and magnitude cutoffs for input to the algorithms. Applying such an automated algorithm to CCD data for M33 and NGC 6822 showed that the number of member stars and diameters were quite similar for OB associations in the two galaxies (Wilson 1992), in contrast to earlier photographic results which suggested that the OB associations in NGC 6822 were a factor of three larger than those in M33 (Hodge 1977). These automated algorithms represent a standardized, objective approach to extragalactic OB association identification. However, we have little guarantee that the associations thus identified are true physical groupings of stars of similar age. The algorithms cannot distinguish between true associations and random projections of unrelated stars, although comparison of the actual data with groups identified from a random distribution of stars suggests that the larger associations are unlikely to be chance
projections (Wilson 1991). In addition, we might expect that the algorithm would merge associations in close proximity to one another into a single larger association.

One way to test the algorithm is to apply it to a sample of O stars and known OB associations in the solar neighborhood. Ideally, we would like to use a large sample of O stars for which membership in OB associations has been identified unambiguously using radial velocity and proper motion data. Although several samples of O stars exist (Humphreys & McElroy 1984, Blaha & Humphreys 1989, Garmany et al. 1982), the identification of OB associations is rather heterogeneous. While membership in associations within 1 kpc of the Sun is usually confirmed using photometry, radial velocity, and proper motion data (Garmany 1994), membership in more distant associations is likely to be assigned based only on position in the sky and a distance estimated from spectroscopic parallax (Garmany 1994, Humphreys 1978, Conti & Alschuler 1971). An additional complication is that the boundaries of the OB associations are generally somewhat arbitrarily defined, and in fact are rectangular (Garmany 1994). Thus in some sense the identification of OB associations beyond about 1 kpc from the Sun may be almost as ill-defined as “by-eye” identifications of OB associations in external galaxies. However, the Galactic data do have a greater spatial dynamic range; at 3 kpc, one arcminute corresponds to 1 pc, while at the distance of M33 one parsec corresponds to 0.25″. We can therefore assume that these “by-eye” identifications are more accurate than those in external galaxies. Thus it is reasonable to attempt to use this rather heterogeneous data set to test how well an automatic identification algorithm for OB associations manages to reproduce the a priori known Galactic OB associations.

In this paper we apply the automated identification algorithm of Wilson (1991) to the combined OB star catalog of Humphreys & McElroy (1984) and Blaha & Humphreys (1989), and also to the more limited catalog of Garmany et al. (1982) and compare the results with the OB associations identified in the catalog. We also apply the algorithm to a
random distribution of the stars as was done for the extragalactic data (Wilson 1991). The catalog and data processing are described in §2 and the algorithm and results are presented in §3. A comparison of the properties of the Galactic associations with those of M33 and NGC 6822 is presented in §4. The paper is summarized in §5.

2. The Galactic Catalog

One data set used to test the automated identification algorithm are the catalog of OB stars and supergiants in associations, clusters, and in the field from Humphreys & McElroy (1984) and Blaha & Humphreys (1989). This catalog contains (among other information) the absolute magnitude, distance, Galactic latitude and longitude, and association membership (if available). We also used the catalog of Galactic OB stars by Garmany et al. (1982), which is available in machine-readable format through the Astronomical Data Center. We limited our analysis to stars within 3 kpc of the Sun. To simulate the type of data available for external galaxies, we first projected the stars onto the plane of the Galaxy. To match the data available for M33 (Wilson 1991), we then applied a faint cutoff in absolute magnitude of $M_v = -4.4$. Note that, given the large scatter in M_v for a given O spectral type (0.5-0.8 mag, Garmany & Stencel 1992), this magnitude cutoff will eliminate some main sequence stars across the full range of O spectral types.

The resulting distribution of stars for the combined Humphreys catalog is shown in Figure 1a. One obvious feature in this diagram is the presence of many arc-like features; these features are the OB associations, whose member stars are assigned a common distance in the catalog. The distribution in the plane of the sky of the stars in a given OB association shows that they are extended in both dimensions (Garmany & Stencel 1992), and thus a reasonable assumption is that the associations also have some depth in the radial direction. Hence for each OB association we estimated its diameter from the length of the arc in
Figure 1a and then randomly distributed the stars about a circular region with the given diameter. The results are shown in Figure 1b and are much more similar in appearance to extragalactic data (cf. Wilson 1992).

3. Re-Identifying Galactic OB Associations Using an Automatic Algorithm

Candidate Galactic OB associations were identified using the “friends of friends” algorithm (Wilson 1991). The mean surface density of stars, Σ, was used to calculate the search radius, which is defined as $R_s = \sqrt{1/\pi \Sigma}$. For each star, the star list was searched to identify all stars lying within one search radius of the initial star. Any new stars identified in this way were checked in their turn for other stars lying within one search radius, until no more stars were added to the group. For this subset of the catalog, there are 1484 stars lying within 3 kpc of the Sun, so the search radius used was 78 pc. Galactic OB associations identified using the algorithm are compared with the previously identified associations in Figures 2-4. The algorithm places all stars in groups, some of which contain only one or two members. A minimum number of members ranging from 3 to 10 is commonly used when identifying significant OB associations in external galaxies. Wilson (1991) used a minimum member cutoff of 10, based on the sizes of groups identified from a random distribution of stars, while Battinelli (1991) adopted a minimum member cutoff of 3, so as not to miss the smallest associations. We also include results for a minimum member cutoff of 6, which was chosen based on our estimate of the contamination by random groups (see below). Figure 2 compares all previously known OB associations containing at least 3 stars brighter than $M_v = -4.4$ mag with the associations containing at least 3 members identified by the automatic algorithm. Figure 3 shows associations containing at least 6 bright stars, and Figure 4 shows associations containing at least 10 bright stars. A comparison of the associations identified by the algorithm with the actual data shows that only a single
association was missed by the algorithm in the case of associations with 10 or more bright stars, and that this association is recovered in the sample with 6 or more stars. Thus the Galactic OB associations identified in previous surveys appear to constitute an internally consistent sample, i.e. one that has been identified using a uniform scale length.

In some cases new associations are identified that were not known *a priori*; these associations may in fact be previously unidentified OB associations (due to their relatively low stellar content, large extent in radial distance, and, in some cases, proximity to the us), or they may be chance associations of physically unrelated stars. Assuming the latter, the relative fraction of “false” associations identified by the algorithm is 45% for a 3 member cutoff, 25% for a 6 member cutoff, and 10% for a 10 member cutoff. We can compare this result with the number of associations identified from a random distribution of stars with the same surface density and area. The relative number of associations identified from the random distribution as compared to the actual Galactic data is 300% for a 3 member cutoff, 40% for a 6 member cutoff, and 0% for a 10 member cutoff. Thus the random distribution of stars predicts significantly more associations with small numbers of members than are seen in the actual data. This result can be easily understood: the true stellar distribution is significantly clumped (Figure 1], and, with large numbers of stars grouped into several rich associations, there are many fewer stars to populate the field region. Thus a truly random distribution of stars may give an overly pessimistic estimate of the number of false associations identified using this automatic algorithm.

The mean diameter of the OB associations identified in previous surveys is about 150 pc (Garmany & Stencel 1992). The median diameter of the associations with more than 3 members identified automatically is 100 pc, while the median diameter of the associations with more than 10 members identified with the automatic algorithm is about twice as large (180 pc). Roughly 20-25% of the Galactic associations identified by the algorithm are
actually two or more nearby associations that the algorithm cannot physically separate. This result suggests that mis-identification of two nearby associations as a single association may be a significant problem for the larger associations. Such a mis-identification could have important consequences for our understanding of massive star formation: if two unrelated associations with different ages were mistakenly identified as a single association, we might conclude that a single OB association had undergone more than one episode of massive star formation. In addition, if an association had triggered the formation of second association through the process of self-propagating star formation, if the associations lie too close together in the sky, the two associations might not be separated and thus the age gradient might not be recognized.

The results of the analysis of the catalog of Garmany et al. (1982) are qualitatively similar to the results discussed above. For this catalog there are 404 stars lying within 3 kpc of the Sun, so the search radius used was 150 pc. This search radius did a reasonable job of identifying the previously known OB associations. For this data set, the relative fraction of “false” associations identified by the algorithm is 25% for a 3 member cutoff, 5% for a 6 member cutoff, and 0% for a 10 member cutoff, while the relative number of associations identified from the random distribution is 135% for a 3 member cutoff, 25% for a 6 member cutoff, and 0% for a 10 member cutoff. The median diameter of the associations with more than 3 members identified automatically is 160 pc, in good agreement with previous studies. However, the median diameter of the associations with more than 10 members identified with the automatic algorithm is twice as large (360 pc). This large diameter is due to the presence of four associations which are made up two or more nearby associations and also the presence of four associations which contain only a single association but have been extended to include nearby field stars. Because of the small number of associations with more than 10 members in this catalog, the relative fraction of associations that are in fact composed of multiple nearby associations increases from \(\sim 15\%\) for groups with at
least 3 members to $\sim 50\%$ for groups with at least 10 members.

4. Comparing Galactic and Extragalactic OB Associations

The main source of subjectivity in the use of this automated algorithm is the choice of the search radius. Wilson (1992) identified OB associations in NGC 6822 using two different search radii, the first determined from the surface density of blue stars (39 pc), and the second being the same physical radius (22 pc) that was used in a similar study of M33 (Wilson 1991). The main difference in the associations identified with the two different search radii occurs in the mean diameter of the associations, which is twice as large with the first (larger) search radius. However, the search radii calculated from the stellar surface density are fairly similar in the two regions studied, with that for NGC 6822 only 1.7 times larger than that for M33. In comparison, the search radius calculated for the Galactic data set is ~ 3.5 times larger than the M33 search radius.

Unless the presence of massive stars acts as a trigger for subsequent episodes of star formation (as may be the case in starburst or very active galaxies), the overall surface density of massive stars in a region probably has little bearing on the formation of OB associations. Thus tying the search radius to properties of the large-scale population, either through the stellar surface density (Wilson 1991) or through maximizing the number of groups (Battinelli 1991), is difficult to justify on physical grounds for normal galaxies. To first order, let us assume that OB associations form a population that is fairly homogeneous in its properties, particularly its size distribution, from one galaxy to another. Then it is more logical to identify OB associations using a search radius of a fixed *physical* length, rather than one which is tied to the stellar surface density. Since OB associations form in molecular clouds, this situation might be expected to hold if galaxies had similar molecular cloud populations and if the star formation efficiency in the individual molecular clouds
was roughly constant. While the universality of the molecular cloud population has yet to be tested in many galaxies, the giant molecular cloud population in M33 does appear very similar to that of the Milky Way (Wilson & Scoville 1990). Data on the star formation efficiency of individual clouds is even rarer, but some recent results (Wilson & Matthews 1995) suggest that the star formation efficiency in the two brightest HII regions in M33 is not much higher than the star formation efficiency in the Orion molecular cloud (Evans & Lada 1991). Thus the assumption that the populations of OB associations in M33 and the Milky Way have similar properties is justifiable, although such an assumption may not be true for other galaxies. In particular, molecular clouds in dwarf irregular galaxies appear to be smaller on average than those in spiral galaxies (Rubio et al. 1993).

In fact, the use of a search radius of fixed physical length does not prevent us from obtaining information about average cloud sizes and star formation efficiencies in galaxies. For example, consider two galaxies which contain molecular clouds of the same size but which have different star formation efficiencies. Identifying the associations with a fixed search radius would produce associations of similar sizes in both galaxies, but with different numbers of member stars, i.e. the galaxy with the larger star formation efficiency would have associations with more members (Figure 3). In comparison, if we study two galaxies with the same star formation efficiency but with different average cloud sizes, the algorithm would find larger associations containing more members in the galaxy with the most massive clouds. Since for giant molecular clouds the average density scales inversely with the cloud radius (Sanders et al. 1985), the total mass of the cloud goes as the radius squared. Thus the surface densities of stars in the associations in the two galaxies would be the same. Finally, consider two galaxies with different cloud sizes and different star formation efficiencies, with the galaxy containing the largest clouds having a lower star formation efficiency. Only in this situation are the results of the algorithm potentially unclear, since the search radius may be too small to identify properly the large, low surface
density associations in the second galaxy. Thus by adopting a fixed search radius for all galaxies, we can under many circumstances investigate both the relative cloud sizes and star formation efficiencies in different galaxies.

Under these assumptions, the choice of the search radius would in principle be entirely arbitrary. To determine the effect of the search radius on the properties of the identified associations, we have analyzed the Galactic catalog, the M33 catalog, and the NGC 6822 catalog with search radii of 12, 22, 41, 78, and 150 pc. Analysis of the Galactic data set shows that the median association radius is approximately linearly proportional to the search radius. For the M33 data set the median association radius increases more steeply with the search radius (roughly as the 1.6 power), while for the NGC 6822 data set the increase may be slightly less than linear. For all three galaxies the median number of stars per association is less sensitive to the search radius, and increases only by a factor of 2-3 as the search radius is increased by a factor of seven. The median radius and median number of stars in the associations agree quite well for all three galaxies when search radii in the range of 12-22 pc are used. For larger search radii the M33 associations are significantly larger than the Galactic associations. This result can probably be explained by the much higher stellar surface density in the M33 region than in the solar neighbourhood, since we would expect the radius of an association to increase faster with increasing search radius for a region with a higher surface density of field stars. We cannot probe search radii much below 12 pc, since a search radius of 6 pc is only 1.5 times larger than the seeing limit of the M33 data. Thus while it is possible that search radii in the range of 10-20 pc represent some kind of match to the intrinsic properties of OB associations, it is also possible that the results using larger search radii are more dependent on the underlying density of field stars, and thus any search radius below some maximum value would produce similar results in all galaxies.
For a more detailed comparison of the Galactic data with the M33 and NGC 6822 data we will fix the search radius at the value used in the M33 study, 22 pc (Wilson 1991). The OB associations identified by the algorithm using a 22 pc search radius are shown in Figure 6. Of the 48 associations with 3 or more members, the algorithm (1) identifies 21 compact associations very well, (2) identifies tight groups of stars in 10 of the associations but misses the outlying members, (3) identifies two or more small groups in 15 larger associations, and (4) completely fails to identify 2 associations. In comparison, the M33 data reveal 195 groups containing at least 3 members, some of which are likely to be chance superpositions of unrelated stars (see §3). The median properties of the groups in the two galaxies are very similar (diameter \(\sim 20 \) pc, number of members \(\sim 5 \)). Of the 31 associations with 10 or more members, the algorithm identifies tight groups of at least 10 stars in 12 of the associations, while most of the remaining associations are broken up into two or more groups with less than 10 stars. These 12 groups have a median diameter of 60 pc and a median of 18 stars identified as members. These results compare quite favorably to the associations identified with the same physical search radius in M33 (median diameter 60 pc; median of 15 members) and in NGC 6822 (median diameter 40 pc; median of 14 members; only 3 associations identified). Subject to the discussion above, these results suggest that if we are interested in studying rich, compact OB associations, using a search radius of a fixed physical size, and one that is not too large (about 20 pc), is the best approach to take in studying OB associations in different galaxies (see also Wilson 1992).

5. Conclusions

We have used two Galactic sample of OB stars and associations to test an automatic grouping algorithm used to identify extragalactic OB associations. By using a sample of stars for which association membership is already known, we can test whether the
automatic algorithm correctly identifies true physical OB associations. The main results are summarized below.

(1) The algorithm does a good job of identifying the known OB associations using a search radius which is defined by the stellar surface density, \(R_s = \sqrt{1/\pi \Sigma} = 78 \text{ pc} \). No known associations are missed, although a few nearby neighbors cannot be separated into two associations by the algorithm. The sample of Galactic OB associations identified in previous surveys thus appears to be a reasonably uniformly selected sample, despite the many different techniques used to determine association membership.

(2) The presence of a handful of groups identified by the algorithm but not known to be OB associations is used to estimate the level of contamination by chance groupings of unrelated stars. For the Galactic data, the contamination by chance groupings is \(\sim 45\% \) if groups as small as 3 members are included, and is \(\sim 25\% \) if only groups containing 6 or more members are counted as associations. This contamination is smaller than that obtained from a random distribution of stars, and suggests that truly random distributions of stars may provide an overly pessimistic estimate of the contamination by random groups obtained with this algorithm.

(3) The Galactic OB associations with at least 10 members identified using a search radius of 78 pc have mean diameters of 150 pc, substantially larger than associations identified using a similarly defined search radius (22 pc) in the inner kiloparsec of M33. Applying the same algorithm to the Galactic data with a search radius of 22 pc identifies only tight clumps of stars within the larger OB associations. However, the sizes and number of members of these tight clumps agree quite well with the properties of OB associations identified in M33 and NGC 6822 using the same physical search radius. This result suggests that we should use the same value for the search radius \textit{in parsecs} to identify the associations, rather than tying the search radius to the local stellar surface density. This
approach is most easily justified for comparing two galaxies with similar molecular cloud populations and star formation efficiencies, but is applicable under many conditions to galaxies with different cloud populations and star formation efficiencies.

(4) For Galactic associations with more than 10 members identified by the algorithm, 25% are in fact two or more nearby associations which cannot be separated by the algorithm. Thus there is some danger that the largest groups identified in nearby galaxies may contain more than one OB associations, which has implications for understanding the co-evality of star formation in associations.

C. D. W. would like to thank Roberta Humphreys for making available machine-readable copies of the catalogs and for her referee comments on the manuscript. C. D. W. was partially supported by NSERC Canada through a Women’s Faculty Award and Research Grant. Part of this work was performed while K. J. B. held an NSERC Targeted Female Undergraduate Summer Research Award.
REFERENCES

Battinelli, P., 1991, A&A, 244, 69
Blaha, C., & Humphreys, R. M., 1989, AJ, 98, 1598
Conti, P. S. & Alscher, W. R., 1971, ApJ, 170, 325
Evans, N. J. & Lada, E. A. 1991, in Fragmentation of Molecular Clouds and Star Formation, eds. E. Falgarone, F. Boulanger, & G. Duvert (Boston: Kluwer), 293
Garmany, C. D., 1994, PASP, 106, 25
Garmany, C. D., Conti, P. S., & Chiosi, C. 1982, ApJ, 263, 777
Garmany, C. D. & Stencel, R. E., 1992, A&AS, 94, 211
Hodge P. 1986, in Luminous Stars and Associations in Galaxies (I. A. U. Symp. 116), eds. C. W. H. de Loore, A. J. Willis, and P. Laskarides (D. Reidel: Boston), 369
Hodge, P. W., 1977, ApJS, 33, 69
Humphreys, R. M., 1978, ApJS, 38, 309
Humphreys, R. M., & McElroy, D. B., 1984, ApJ, 284, 565
Humphreys, R. M. & Sandage, A. R. 1980, ApJS, 44, 319
Rubio, M., Lequeux, J., & Boulanger, F. 1993, A&A, 271, 9
Sanders, D. B., Scoville, N. Z., & Solomon, P. M. 1985, ApJ, 289, 373
Wilson, C. D. 1991, AJ, 101, 1663
Wilson, C. D. 1992, ApJ, 384, L29
Wilson, C. D. & Matthews, B. C., 1995 ApJ, 455, 125
Wilson, C. D. & Scoville, N. 1990, ApJ, 363, 435

This manuscript was prepared with the AAS LATEX macros v4.0.
Fig. 1.— (a) The distribution of OB stars brighter than $M_v = -4.4$ mag lying within 3 kpc of the Sun from the catalog of Humphreys & McElroy (1984) and Blaha & Humphreys (1989). The short arcs are the OB associations and the Galactic Center lies along the positive X axis. (b) The same data, but with stars that are members of OB associations smeared into a circularly symmetric distribution (see text).

Fig. 2.— (a) The distribution of OB associations and field stars within 3 kpc of the Sun. Only stars brighter than $M_v = -4.4$ are shown. The associations are identified by the large symbols, the field stars by the small dots. Only associations with at least 3 members brighter than $M_v = -4.4$ are plotted with separate symbols. (b) The OB associations with at least 3 members identified by the automated “friends of friends” grouping algorithm. Stars outside the associations are not shown. A search radius of 150 pc was used to identify the OB associations.

Fig. 3.— The same as Figure 2, but for associations with at least 6 members.

Fig. 4.— The same as Figure 2, but for associations with at least 10 members.

Fig. 5.— Schematic illustration of how differences in the underlying giant molecular cloud populations and star formation efficiencies can be identified using a fixed physical search radius.

Fig. 6.— The OB associations with at least 3 members identified by the automated “friends of friends” grouping algorithm using a search radius of 22 pc to match the search radius used in studying OB associations in M33. Compare with the distribution of OB associations and field stars within 3 kpc of the Sun shown in Figure 2a.
Same Molecular Clouds	Larger Star Formation Efficiency
	(Associations have same radii, more members)

Larger Molecular Clouds	Lower Star Formation Efficiency
(Associations not identified with fixed search radius)	

Reference Galaxy	Fixed Search Radius

Larger Molecular Clouds	Same Star Formation Efficiency
(Associations have larger radii, more members)	
