Comparative analysis of primer-probe sets for RT-qPCR of COVID-19 causative virus (SARS-CoV-2)

Yujin Jung1,4, Gun-Soo Park1,2,†, Jun Hye Moon3,†, Keunbon Ku1, Seung-Hwa Beak1,4, Chang-Seop Lee5,6, Seil Kim1,7, Edmond Changkyun Park1,8, Daeui Park1,4, Jong-Hwan Lee1, Cheol Woo Byeon3, Joong Jin Lee3, Jin-Soo Maeng1,2, Seong-Jun Kim1, Seung Il Kim1,8, Bum-Tae Kim1, Min Jun Lee3,*, and Hong Gi Kim1,*

1 Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
2 Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
3 Department of Molecular Diagnostics, WELLS BIO, INC, MagokJungang 8-ro 1-gil, Gangseo-gu, Seoul 07795, Republic of Korea
4 Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
5 Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54986, Republic of Korea
6 Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
7 Division of Chemical and Medical Metrology, Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
8 Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea

† These authors contributed equally to this work.

* Corresponding authors: Hong Gi Kim (tenork@krict.re.kr), and Min Jun Lee (mjlee@wellsbio.net)
Supporting materials and methods

Polyacrylamide gel electrophoresis of PCR products

For electrophoresis of qRT-PCR products, polyacrylamide gel electrophoresis was performed. Briefly, 7.5% polyacrylamide gel was prepared with 1x TAE buffer (40mM Tris-Acetate, 1mM EDTA, diluted from 50X TAE, Biosesang, South Korea). Total 5 μL of each qRT-PCR product mixed with 6X Loading Dye (Biofact, South Korea) was loaded. The gel was stained in 1x TAE buffer containing 1x RedSafe Nucleic Acid Staining Solution (Intron biotechnology, South Korea) for 30 minutes at ambient temperature. The gel image was captured using ChemiDoc Touch Imaging System (Bio-Rad).

Melting curve analysis

For the melting curve analysis of qRT-PCR products, the same reagent, instrument, and method are used for qRT-PCR reaction with the following modifications. The reaction solutions were prepared with 1x SYBR Green I dye (Invitrogen) and probes were not added. Melting curves were made from melting steps from each extension temperature to 95°C.

SARS-CoV-2 genome alignment

The high-quality and complete SARS-CoV-genome sequenced up to 23 April 2020 retrieved from GISAID. The unique genome sequences were selected from the retrieved sequences using CDHIT [ref: Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu and Weizhong Li, CD-HIT: accelerated for clustering the next generation sequencing data. Bioinformatics, (2012), 28 (23): 3150-3152. doi: 10.1093/bioinformatics/bts565]. The genome sequences with more than one ambiguous sequences were removed using prinseq [ref: Schmieder R and Edwards R: Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27:863-864]. The processed genome sequences were aligned with MAFFT v7.450 [ref: Katoh, Standley 2013 (Molecular Biology and Evolution 30:772-780)] and the mismatches in primer and probe sites were determined.
Figure S1. Standard curve analyzed by known amounts of in vitro transcribed RNA standard (E gene) for quantification of (a) the first batch, and (b) the second batch of SARS-CoV-2 RNA.
Table S1. Comparative analysis of Ct values obtained from a repeated experiment by employing the second batch of SARS-CoV-2 RNA.

Reaction temperature	Target	Institute	Name	1.5 x 10^3 copies	1.5 x 10^4 copies	1.5 x 10^5 copies	1.5 x 10^6 copies	NTC					
			Mean Ct	STD									
60 °C	N	China CDC	N	26.50	0.072	29.80	0.070	32.40	0.118	36.09	0.149	37.53	1.529
		HKU	HKU-N	26.88	0.044	30.21	0.062	33.32	0.079	36.47	0.183	40.03*	-
		Japan NIID	NIID_2019-nCOV_N	24.05	0.006	27.09	0.058	30.20	0.108	33.82	0.282	N/A	N/A
		Thailand NIH	WH-NIC_N	29.08	0.060	32.40	0.076	34.75	0.104	38.93	1.271	44.55**	0.141**
		US CDC	2019-nCoV_N1	25.86	0.234	28.94	0.068	32.68	0.242	36.09	0.903	N/A	N/A
			2019-nCoV_N2	24.19	0.045	27.22	0.040	30.64	0.038	34.55	0.120	N/A	N/A
			2019-nCoV_N3	24.22	0.030	27.40	0.072	30.60	0.095	34.00	0.557	N/A	N/A
		China CDC	ORF1ab	24.43	0.025	28.01	0.042	30.61	0.102	34.15	0.559	N/A	N/A
		Charité	RdRp_SARSr	28.96	0.071	32.34	0.167	35.06	0.221	37.40	1.176	42.88**	2.291***
		HKU	HKU-ORF1b-nsp14	25.53	0.127	28.91	0.055	31.74	0.062	36.14	1.293	N/A	N/A
58 °C	N	China CDC	N	27.17	0.076	30.95	0.122	33.09	0.040	37.57	0.288	36.74*	-
		HKU	HKU-N	27.70	0.114	31.50	0.047	34.10	0.165	39.18	1.028	N/A	N/A
		Japan NIID	NIID_2019-nCOV_N	25.05	0.084	28.84	0.157	31.09	0.064	34.96	0.429	N/A	N/A
		Thailand NIH	WH-NIC_N	29.05	0.122	33.05	0.036	35.04	0.036	39.49	1.739	40.04**	1.414**
		US CDC	2019-nCoV_N1	26.96	0.02	30.84	0.095	32.95	0.422	36.13	1.525	N/A	N/A
			2019-nCoV_N2	25.26	0.066	29.20	0.191	31.30	0.046	35.79	1.325	N/A	N/A
			2019-nCoV_N3	25.32	0.067	29.18	0.050	31.20	0.135	35.37	0.952	N/A	N/A
		China CDC	ORF1ab	25.25	0.060	28.98	0.137	31.39	0.348	34.76	0.635	N/A	N/A
		Charité	RdRp_SARSr	29.54	0.092	33.59	0.390	35.27	0.521	37.47	0.370	N/A	N/A
		HKU	HKU-ORF1b-nsp14	25.83	0.044	29.63	0.080	32.01	0.072	35.12	0.522	N/A	N/A
55 °C	N	China CDC	N	26.3	0.182	29.67	0.307	32.92	0.231	35.63	1.081	37.68**	0.622**
		HKU	HKU-N	25.89	0.056	29.36	0.161	32.95	0.234	37.55	0.630	38.36*	-
		Japan NIID	NIID_2019-nCOV_N	23.76	0.107	27.05	0.038	30.27	0.029	34.73	1.287	N/A	N/A
-------------	------------------	------	------	------	------	------	------	------					
Thailand NIH	WH-NIC N	27.80	0.188	31.21	0.090	34.37	0.221	36.71	0.547	38.11	0.648		
US CDC	2019-nCoV_N1	27.15	0.069	30.88	0.312	33.13	0.350	37.41	0.366	37.54*			
	2019-nCoV_N2	26.38	0.012	30.97	0.093	32.5	0.137	36.37	0.100	N/A	N/A		
	2019-nCoV_N3	24.78	0.615	27.53	0.042	30.55	0.095	35.83	1.421	N/A	N/A		
China CDC	ORF1ab	24.83	0.075	28.39	0.082	32.13	0.193	35.27	0.237	N/A	N/A		
Charité	RdRp_SARSr	29.77	0.150	32.69	0.431	37.19	0.571	37.39	1.105	N/A	N/A		
HKU	HKU-ORF1b-nsp14	25.14	0.035	28.16	0.061	31.58	0.501	34.87	0.460	N/A	N/A		

* The assay showed positive signal from the single reaction of triplicate.
** The assay showed positive signals from the two reactions of triplicate.
Figure S2. Amplification curves of fluorescence intensity against PCR cycle with the second batch of SARS-CoV-2 RNA (Amplification is performed at 60°C). (a) N (China CDC), (b) HKU-N (HKU), (c) NIID_2019-nCOV_N (Japan NIID), (d) WH-NIC N (Thailand NIH), (e) 2019-nCoV_N1 (US CDC), (f) 2019-nCoV_N2 (US CDC), (g) 2019-nCoV_N3 (US CDC), (h) ORF1ab (China CDC), (i) RdRp_SARSr (Charité), and (j) HKU-ORF1b-nsp14 (HKU)
Figure S3. Amplification curves of fluorescence intensity against PCR cycle with the second batch of SARS-CoV-2 RNA (Amplification is performed at 58°C). (a) N (China CDC), (b) HKU-N (HKU), (c) NIID_2019-nCOV_N (Japan NIID), (d) WH-NIC N (Thailand NIH), (e) 2019-nCoV_N1 (US CDC), (f) 2019-nCoV_N2 (US CDC), (g) 2019-nCoV_N3 (US CDC), (h) ORF1ab (China CDC), (i) RdRp_SARSr (Charité), and (j) HKU-ORF1b-nsp14 (HKU)
Figure S4. Amplification curves of fluorescence intensity against PCR cycle with the second batch of SARS-CoV-2 RNA (Amplification is performed at 55°C). (a) N (China CDC), (b) HKU-N (HKU), (c) NIID_2019-nCOV_N (Japan NIID), (d) WH-NIC N (Thailand NIH), (e) 2019-nCoV_N1 (US CDC), (f) 2019-nCoV_N2 (US CDC), (g) 2019-nCoV_N3 (US CDC), (h) ORF1ab (China CDC), (i) RdRp_SARSr (Charité), and (j) HKU-ORF1b-nsp14 (HKU)
Figure S5. (a) Melting curve analysis and (b) polyacrylamide gel image of PCR products with primer-probe sets that show positive signals in the NTC samples. M: DNA ladder; 1: NTC sample with 2019-nCoV_N1 (US CDC); 2: PCR product with 2019-nCoV_N1 (US CDC); 3: NTC sample with N (China CDC); 4: PCR product with N (China CDC); 5: NTC sample with RdRp_SARSr (Charité); 6: PCR product with RdRp_SARSr (Charité)
Table S2. Clinical characteristics of laboratory-confirmed patients with COVID-19.

	Patient 1 (P1)	Patient 2 (P2)	Patient 3 (P3)	Patient 4 (P4)	Patient 5 (P5)	Patient 6 (P6)
Age (years)/Sex	72/M	57/M	72/F	38/M	21/F	32/F
Fever	-	+	+	-	+	+
Chills	-	+	-	-	-	+
Cough	+	+	+	-	-	-
Dyspnea	-	+	+	-	-	-
Diarrhea	-	-	-	-	-	-
Laboratory findings						
WBC	3,570	3,710	6,720	5,810	5,800	4,280
Hemoglobin	10.3	12.9	16.1	14	14.1	11.3
Platelet	157,000	42,000	190,000	254,000	304,000	261,000
AST	23	57	32	39	23	20
ALT	22	55	13	68	26	7
Creatinine	0.83	0.77	0.55	0.92	0.69	0.5
Used drug						
Lopinavir/ritonavir	+	+	+	+	+	+
Hydroxychloroquine	+	+	+	+	+	+
Outcome	Cured	Cured	Cured	Cured	Cured	Cured
Figure S6. Amplification curves of fluorescence intensity against PCR cycle with the RNAs extracted from clinical samples of healthy subjects. (a) NIID_2019-nCOV_N (Japan NIID), (b) 2019-nCoV_N2 (US CDC), (c) ORF1ab (China CDC), and (d) HKU-ORF1b-nsp14 (HKU)
Figure S7. Cross-reactivity test of the RT-qPCR assays for other coronaviruses. (a) NIID_2019-nCOV_N (Japan NIID), (b) ORF1ab (China CDC).
Table S3. Mismatch nucleotides at the binding sites of the recommended primer-probe sets.

Target	Institute	Name	Type	Primer/probe position (5' → 3')	Primer/probe nucleotide (*RC)	Mismatch nucleotide	Number of mismatch	Frequency (%)
		NIID_2019-nCOV_N_F2	F	4	T	C	2/3,323	0.06
				13	C	T	2/3,323	0.06
				16	G	A,T	3/3,323	0.09
				20	C	T	14/3,323	0.42
	Japan	NIID_2019-nCOV_N_R2	R	4	G*	T	1/3,323	0.03
				7	C*	T	2/3,323	0.06
				10	C*	T	2/3,323	0.06
				12	C*	T	1/3,323	0.03
				15	C*	G	3,323/3,323	100
				20	A*	T	1/3,323	0.03
		NIID_2019-nCOV_N_P2	P	6	G	A,T	2/3,323	0.06
				8	G	A	1/3,323	0.03
				9	C	T	1/3,323	0.03
				13	G	C	1/3,323	0.03
				17	T	C	1/3,323	0.03
				18	G	A,T	3/3,323	0.09
		ORF1ab-F	F	4	T	C	1/3,323	0.03
				17	C	T	1/3,323	0.03
		ORF1ab-R	R	9	T*	C	1/3,323	0.03
				15	A*	G	1/3,323	0.03
	China	ORF1ab-P	P	2	C	T	1/3,323	0.03
	CDC			8	C	T	1/3,323	0.03
				26	T	G	51/3,323	1.53

*RC : Reverse complement
References

1. Shu, Y.; McCauley, J., GISAID: Global initiative on sharing all influenza data--from vision to reality. Eurosurveillance 2017, 22, 30494.

2. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W., CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150-3152.

3. Schmieder, R.; Edwards, R., Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863-864.

4. Katoh, K.; Standley, D. M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution 2013, 30, 772-780.