SUPPLEMENTARY MATERIAL

Eburneolins A and B, New Withanolide glucosides from *Tricholepis eburnea*

Saima Maher\(^a\), Shagufta Rasool\(^a\), Rashad Mehmood\(^b\)\(^,*\), Shagufta Perveen\(^c\) and Rasool Bakhsh Tareen\(^d\)

\(^a\)H. E. J. Research Institute of Chemistry, International center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan

\(^b\)Department of Chemistry, Hazara University, Mansehra-21120, Pakistan

\(^c\)Department of Pharmacognocy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh11451, Saudi Arabia

\(^d\)Department of Botany, University of Balochistan, Sariab Road, Quetta, Pakistan

\(*\)Corresponding author Email: rashadhej@gmail.com; Tel. +92-997-414136, Fax. +92-997-414111
Eburneolins A (1) and B (2), new withanolide glucosides, have been isolated from the \textit{n}-butanolic fraction of the 75\% methanolic extract of aerial parts of \textit{Tricholepis eburnea}. Their structures were elucidated through spectroscopic analysis including ESI-MS, 2D NMR and acid hydrolysis.

Key words: Asteraceae, \textit{Tricholepis eburnea}, withanolide glucosides, eburneolin A, eburneolin B
1H NMR of Eburneolin A
13C NMR of Eburneolin A
DEPT 90 of Eburneolin A
DEPT 135 of Eburneolin A
HMOC of Eburneolin A
COSY of Eburneolin A
HMBC of Eburneolin A
1H NMR of Eburneolin B
13C NMR of Eburneolin B
DEPT 90 of Eburneolin B
DEPT 135 of Eburneolin B
HMOC of Eburneolin B
COSY of Eburneolin B
HMBC of Eburneolin B
Table S1. 1H (600 MHz) and 13C (125 MHz) NMR in CD$_3$OD spectral data of compounds 1 and 2.

	1H (J in Hz)		1H (J in Hz)	
1	214.5 C	217.8 C		
2	46.8 CH$_2$	40.0 CH$_2$	2.73 (1H, m)	2.09 (1H, m)
			2.06 (1H, d, $J = 17.3$)	
3	76.9 CH	15.8 CH	18.1 CH$_2$	0.08 (1H, t-like, $J = 4.5$)
			0.86 (1H, m)	
4	38.8 CH$_2$	2.69 (1H, dd, $J = 6.3, 13.6$)	2.48 (1H, d, $J = 13.6$)	
5	136.4 C	53.0 C		
6	127.0 CH	5.68 (1H, d, $J = 5.2$ Hz)	72.7 CH	1.30 (1H, m)
			1.24 (1H, m)	
7	26.4 CH$_2$	2.09 (2H, m)	30.0 CH$_2$	1.30 (1H, m)
			1.24 (1H, m)	
8	33.1 CH	2.26 (1H, m)	32.4 CH	
9	37.1 CH	2.14 (1H, dd, $J = 11.9, 6.3$)	40.8 CH	1.93 (1H, m)
10	54.5 C	---	36.1 C	
11	23.1 CH$_2$	2.08 (1H, m), 1.62 (1H, m)	21.6 CH$_2$	2.08 (1H, m)
			1.93 (1H, m)	
12	33.1 CH$_2$	2.34 (1H, ddd, $J = 11.8, 5.7$, 5.7); 1.26 (1H, m)	32.9 CH$_2$	2.32 (1H, m)
			1.31 (1H, m)	
13	55.0 C	---	48.6 C	
14	84.4 C	---	84.5 C	
15	76.5 CH	3.82 (1H, dd, $J = 11.7, 6.7$)	32.8 CH$_2$	1.81 (1H, m)
16	47.9 CH$_2$	2.91 (1H, dd, $J = 16.0, 6.7$); 1.59 (1H, dd, $J = 16.0, 11.7$)	21.9 CH$_2$	1.83 (1H, m)
			1.32 (1H, m)	
17	89.4 C	---	50.2 CH	3.59 (1H, m)
18	20.6 CH$_3$	1.33 (3H, s)	17.8 CH$_3$	1.38 (3H, s)
19	18.5 CH$_3$	1.31 (3H, s)	15.4 CH$_3$	1.55 (3H, s)
20	79.7 C	---	75.2 C	
21	19.7 CH$_3$	1.36 (3H, s)	21.5 CH$_3$	1.44 (3H, m)
22	82.9 CH	4.84 (1H, br s)	82.3 CH	4.42 (1H, m)
23	35.7 CH$_2$	2.63 (1H, br d)	34.4 CH$_2$	2.74 (1H, m)
		2.51 (1H, br d)		
24	153.4 C	---	156.9 C	
25	122.0 C	---	123.7 C	
26	169.1 C	---	165.8 C	
27	12.3 CH$_3$	1.84 (3H, s)	63.3 CH$_2$	5.09 (1H, d, $J = 10.5$)
				4.72 (1H, d, $J = 10.5$)
28	20.6 CH$_3$	1.95 (3H, s)	20.4 CH$_3$	1.83 (3H, s)
1'	103.1 CH	4.36 (1H, d, $J = 7.8$ Hz)	104.9 CH	4.97 (1H, d, $J = 7.8$)
2'	75.0 CH	3.13 (1H, dd, $J = 7.8, 8.6$)	75.2 CH	4.01 (1H, m)
3'	77.9 CH	3.33 (1H, d, $J = 5.2$)	78.6 CH	4.24 (1H, m)
4'	71.6 CH	3.25 (1H, m)	71.7 CH	4.37 (1H, m)
5'	78.0 CH	3.25 (1H, d, $J = 4.6$)	78.5 CH	3.95 (1H, m)
6'	62.7 CH$_2$	3.83 (1H, d, $J = 11.6$)	62.8 CH$_2$	4.53 (1H, dd, $J = 10.8, 4.6$)
		3.63 (1H, dd, $J = 11.6, 4.6$)		4.37 (1H, d, $J = 10.8$ Hz)
Figure S1: HMBC correlations of eburneolins A (1) and B (2)