Materials Research Express

PAPER

Fluorination-enhanced photoconductive effect in a wide band gap Ca$_3$Ti$_2$O$_7$-xF$_x$ thin films

Hao Lu1,3, Yang Yang1,3, Zhongshen Luo4, Sihui Wu4, Yanda Ji5, Yang Li6, Jinlei Zhang6, Guozhen Liu7, Yucheng Jiang1, Hao Yang1, Chunlan Ma1, Run Zhao8* and Ju Gao4

1 Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People’s Republic of China
2 Jiangsu Key Laboratory of Micro and Nano Heat Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
3 Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
4 School of Optoelectronic Engineering, Zaozhuang University, Zaozhuang 277160, People’s Republic of China
5 Hao Lu and Yang Yang contributed equally to this work.
* Authors to whom any correspondence should be addressed.
E-mail: zr@usts.edu.cn and jugao@hku.hk

Keywords: fluorination, photoconductive effect, Ca$_3$Ti$_2$O$_7$-xF$_x$ thin film

Abstract

In this work, Ca$_3$Ti$_2$O$_7$-xF$_x$ thin films on (110) SrTiO$_3$ substrates were prepared by two steps as deposited via pulsed laser deposition and fluorinated with polyvinylidene fluoride. Despite the unchanged crystal structure of the fluorinated films, the changed valence state can be used to confirm the incorporation of F$^-$ and the weakened chemical bond of Ca–O. Furthermore, we found that the photoelectric switch can be observed at a wide range of light wavelength from 405 nm to 808 nm. It is found that the photosensitivity of 4 × 104 (405 nm) in the fluorine has been increased by two orders of magnitude, which is most likely due to the deep energy levels in the reduced band gap of 2.3 eV. This work paves the way for the enhanced photoconductive devices via the anionic defect engineering.

1. Introduction

The 327 Ruddlesden-Popper (RP) layered A$_3$B$_2$O$_7$ compounds have been continuously investigated due to their special crystal structure and varying physical properties [1–4]. The inserted A-O layers in the 327 phase is different from the familiar perovskite ABO$_3$, which can bring in two different layers defined as rock-salt and perovskite layers [5]. In such orthorhombic oxides, two most studied systems are the Ca$_3$Ti$_2$O$_7$ (CTO$_7$) and Ca$_3$Mn$_2$O$_7$ compounds. The competition between interlayer rumpling and rotations occurred in this layer structure can lead to ferroelectricity or even multiferroicity [4, 6]. Although the ferroelectricity in RP material was derived from first principles calculations, the relevant switching of polarization still has been rarely observed in the pure 327 compounds. Therefore, the previous studies have come back to the traditional tuning method of cation substitution. To overcome the larger energy barrier for switchable polarization, the cation doping at the A-sites is a very efficient way for hybrid improper ferroelectricity in the CTO$_7$-based bulk [2, 7, 8]. Except for the above multiferroic behavior, the improved photocatalytic activity and photoluminescence has been formed via Rh and Eu substitution, respectively [9, 10]. Furthermore, to the pure CTO$_7$, it is worth pointing out that the stoichiometric bulk shows a direct gap of 3.94 eV while the Sr substitution for the reduced energy gap can be neglected [11]. Hence, we need to find out some else way to search the tuning effect on the electronic structure in the thin films with a wide band gap.

Despite the traditional cation doping, the anionic doping has been confirmed to be an effective alternative to enhance the physical properties of oxide films. The first one is oxygen vacancy, which is introduced during the deposition with high vacuum. A length of chemical bond and angle of the oxygen octahedron rotation can be changed by the oxygen vacancy effect [12]. However, the strain is often accompanied by this doping, causing that a competition mechanism can further result in an opposite tuning effect on the material character [13–16].
second one is fluorinated via the annealing after the deposition, from the thermal decomposition of polyvinylidene fluoride (PVDF) [17–19]. Monovalent F⁻ ions substituting for O²⁻ sites provide not only a certain concentration of electron donors but also a simulation as half oxygen vacancy [20]. Thus a wide range of varying in crystal lattice and resistance with the fluorine content can be realized in the fluorinated films [19, 21]. Additionally, the distortion of Mn octahedral can induce a local magnetic order in the electron doped SrMnO₃-based system [22, 23]. Here we report the effective way to prepare three groups of samples including CTOₓ₀.₆₂₅₄Fₐₓ, CTOₓ₂, and CTOₓ₂₋ₓFₓ films and compare the defect-induced photoconductive character of them. Our investigation begins with the definite crystal structure and verified fluorination in the CTOₓ₂₋ₓFₓ films. After the fluorinated treatment, the changed strain and chemical bonds can further lead to the subsequent photoelectric effect. Especially in fluorinated sample, there is a strong dependence between the photoelectric properties and the light of varied wavelength. Furthermore, we discuss that the origin of improved photoconductive behavior in the CTOₓ₂₋ₓFₓ film is the anionic doping and electronic reconstruction, via photosensitivity measurement and first-principles calculation.

2. Methods

The as-deposited CTOₓ₋ₓFₓ thin films on atomically flat SrTiO₃ (STO, 110) substrates were deposited via pulsed laser deposition (PLD, Lambda Physik, 248 nm, 3 Hz, 2 J cm⁻²). For the stoichiometric films, the fabrication process was maintained at the temperature of 850 °C and oxygen pressure of 0.1 mbar. Then the precursor films wrapped in Al foil were annealed with 0.1 g of PVDF, under a flowing gas of argon for 24 h to introduce fluorine. As shown in figure 1 (a), the PVDF pellets need to be placed on the foil rather than directly on the film sample, in order to fully fluorine dope rather than the charcoal-like adhere [21]. The thickness of three samples is kept at around 50 nm. The lattice constants and epitaxial characters of films were determined via an x-ray diffraction (XRD) 2θ-θ scan and reciprocal space mapping (RSM), using the Panalytical Empyrean concept, respectively. The presence and valence state of Ca, Ti, O, and F in the CTOₓ₋ₓFₓ film were confirmed by x-ray photoemission spectroscopy (XPS) at PH15000 VersaProbe. Three sets of films were chosen to measure for the photoconductive effect, including as-deposited CTOₓ₋ₓ, CTOₓ (annealed in an oxygen atmosphere of 500 mbar) and CTOₓ₋ₓFₓ films. Two point contacts are directly made on the surface of films by wire bonding. Electrical measurements were performed with a Keithley 6517B Source Meter at room temperature. The light illumination is supplied by the various semiconductor laser of 50 mW/cm², with various wavelength of, 405 nm, 532 nm, 655 nm, and 808 nm [24]. To investigate the underlying mechanism of fluorination-induced photoconductive effect, the generalized gradient approximation of Perdew–Burke–Ernzerhof (GGA-PBE) within the framework of density functional theory (DFT), as implemented in the Vienna ab initio simulation package (VASP) was carried out [25–28]. Monkhorst-Pack k-point meshes of 5 × 3 × 5 was used for 2 × 1 × 2 F-doped CTOₓ supercell [29]. A plane-wave cutoff energy of 450 eV was used for the self-consistent calculations. In order to obtain optimized geometries structures of fluorinated system, both lattice constants and atomic positions are fully optimized until the Hellmann–Feynman less than 0.02 eV Å⁻¹.

3. Results and discussion

Figure 1 (b) shows the XRD θ-2θ measurement, only the STO (110) and CTOF (010) reflections can be observed in spectrum. Without any additional peaks in the above spectrum, the influence on the epitaxial relationships and crystal structure of the films can be neglected after fluoride treatment. However, differ from the stoichiometric CTOₓ film fabricated on the STO substrate, the peaks of CTOF film appear at the higher 2θ angle, indicated a slightly decrement of the lattice constant along vertical alignment [3]. To estimate the three dimensional lattice constants, the symmetric and asymmetric RSM were performed and shown in figures 1 (c)–(e). The isolated CTOF (040) spot at a Qₓ of 0.7393 confirms the out-of-plane (020)CTOF//(110)STO which is consistent with the separated peaks in the θ-2θ scan. Meanwhile, a slight broadening along the Qₓ reveals that the lattice along b-axis is fully relaxed in the fluoride film (figure 1(c)). For the asymmetric CTOF (240) around the STO (310) reflection as shown in figure 1 (d), the lattice along a-axis is partially relaxed and stretched for a slight in-plane tension strain, same as that in the CTOₓ film [3]. Back to the lattice along vertical alignment, an out-of-plane contraction can be obtained from a higher Qₓ of CTOF (0 4 10) spots than that of STO (2 2 2) in figure 1(e). Hence, based on the above RSM images, we can obtain an orthorhombic CTOₓ₋ₓFₓ structure at room temperature with the lattice constants a = 5.469 Å, b = 5.411 Å, c = 19.257 Å. It is found that lattice misfit compared with the bulk is only 0.85% along the a-axis and −0.82% along the c-axis [30]. And the epitaxial relation between the film and substrate is [100]CTOF//(1–10)STO and [001]CTOF//(001)STO.

To further investigate the valence state and fluorination of CTOₓ₋ₓFₓ films, x-ray photoelectron spectroscopy (XPS) has been performed. After using Lorentzian–Gaussian fitting and Shirley background, the
Ca 2p and Ti 2p core level spectra both include one pair of spin–orbit doublets in figures 2(a) and (b). Similar with that in the CTO7 bulk, the peaks of Ti_{3p1/2} and Ti_{3p3/2} hold at 464.3 eV and 458.5 eV with no change on the binding energies, showing that the Ti-O bonds are stable after fluorination (discussed later) [31]. On the contrary, the binding energies of Ca_{2p1/2} and Ca_{2p3/2} peaks shifted to higher positions of 351.5 eV and 347.9 eV, both increased by 1.4 eV than that in the CTO7 bulk [31]. The peaks appears at higher binding energy due to the ionic character of the bonds and the weakened chemical bond of Ca-O, which is also responsible for the compensation of F inclusion [32]. Moreover, the asymmetric O1s spectra can be resolved into three peaks as shown in figure 2(c). Two higher peaks can be also observed in the CTO7_x_F_x film between that in darkness and under illumination, with the light of the constant intensity and various wavelengths. Whatever the wavelength, the sample resistance increases with the light on and decreases with the light off, presented good photoelectric responses at room temperature. In addition, it is found that the fluoride films take a more recovery time to dark resistance than to light resistance, attributed to the photogenerated charges trapped in the deep energy levels.
Figure 2. XPS spectra of (a) Ca 2p, (b) Ti 2p, (c) O 1s and (d) F 1s peaks for CTO$_{3-x}$F$_x$ film.

Figure 3. Time dependent resistance of CTO$_{3-x}$F$_x$ film with the light wavelength of (a) 405 nm, (b) 532 nm, (c) 655 nm and (d) 808 nm at room temperature. The vertical filling rectangular with various color represents the light with the different wavelength is on. (e) A comparison of the resistance under the various light, for the CTO$_{3-x}$F$_x$ film. (f) A comparison of the resistance between CTO$_7$, CTO$_{7-x}$ and CTO$_{3-x}$F$_x$ films with a light of 405 nm.
However, the other photoelectric characters of CTO7-F film are dependent on the wavelength, such as stability and photosensitivity. Especially, the both resistance with an 808 nm laser start to fluctuate after four cycles, which illustrate that the photoelectric effect is gradually eliminated. The most stable photoelectric behavior appears from 532 nm to 655 nm. For the photosensitivity with the different light, we selected a continuous period of on-off-on, from the whole resistance switch curves. For comparison, the photosensitivity is defined as $P_s = \frac{R_{\text{dark}}}{R_{\text{light}}}$, where R_{dark} and R_{light} is the resistance with the light off and on respectively. In figure 3(e), the photosensitivity increases with the decrement in wavelength from 10^8 (808 nm) to 4×10^5 (405 nm). This is because the more photogenerated charges can be produced with the increasing in the photon energy, leading to the reduced resistance under the illumination. As shown in figure 3(f), the photosensitivity of CTO$_7$, CTO$_7\delta$ and CTO$_7\times$F$_x$ films were compared to show that the fluorination can enhance the photoelectric behavior at room temperature. Based on the photosensitivity of CTO$_7$F$_x$ film as the reference, it is estimated to be 2×10^3 and 4×10^2 in CTO$_7\delta$ and CTO$_7$, respectively. The best photoconductive property can still be presented in the CTO$_7$F$_x$ film with a 405 nm light. In addition, it should be notice that a recovery time in the CTO$_7$ film differs from another two films. It recovers directly to dark resistance after the light remove, like as that to light resistance. By contrast, the slower recovery of resistance both can be observed in the CTO$_7\delta$ and CTO$_7\times$F$_x$ films, owing to the trapped centers caused by oxygen vacancy and fluorinated defect.

Back to the fluoride films, the first principles calculations were performed to uncover the underlying mechanism of enhanced photoelectric character. According to the above physical properties, two different positions of doped F ion (F1 and F2) were marked as black and red in the inset of figure 1(b). Specifically, the F1 position locates at the rock-salt layer while the F2 position locates at the perovskite layer. As shown in figure 4(a), the target system doped at F1 represents two distinct changes in the total density of states (TDOS). The first one is the decreasing in the band gap, from 2.45 eV (pure CTO$_7$) to 2.3 eV (fluorine) [8]. Both calculated band gap are lower than the bulk value of \sim3.94eV [11], because the GGA method were confirmed to underestimate the value of band gap [1]. Secondly, the distribution of TDOS appear at the Femi level (E_F, marked as magenta dashes), showing that this doping system possesses a certain conductivity induced by electron filling. Deep into the partial DOS in figure 4(b), the contribution near E_F is mainly from Ti d-bands, not from the incorporation of F. The additional electron donors created by monovalent F cause that the E_F moves up to the occupied conduction band, which is the origin of a certain conductivity. Besides, the hybridization between O 2p and Ti 3d explain that the fluorination can weak the chemical bond of Ca–O rather than that of Ti-O. The similar changes can be observed in the second system with the doped position of F2 (figures 4(c) and (d)). Hence, with the
incorporation of doping fluorion, the multiple effect of the reduced band gap and deep energy levels have an influence on the above photoelectric character.

4. Conclusion

In sum, we fabricated the CTO\(_{2.8}\) thin films on the STO (110) substrates via PLD, then post-annealed in the oxygen and argon atmosphere for CTO\(_2\) and CTO\(_{2.8}\)–F\(_x\) films, respectively. For the crystal structure, the CTO\(_{2.8}\)–F\(_x\) film owns an orthorhombic structure with a slight tension along a-axis and compression along c-axis. From the changed valence states, we found that the F-doping can replace the lattice oxygen led to not only the decreased O\(^{2-}\) ions but also the weakened Ca–O bonds. Meanwhile, the photosensitivity of fluorinated film shows a dependent relation with the wavelength, and has a better photoelectric behavior than that in another two films. The first principles calculations suggest that the induced fluoride can induce the equivalent oxygen vacancy, resulted in the upper Femi level and reduced bang gap.

Acknowledgments

We acknowledge the support of the National Natural Science Foundation of China (NSFC) under Grant No. 51802210, 11974304, 11704272, 12074282, 62004136, 22008164. This work also supported by the Natural Science Foundation of Jiangsu Province (Grants No. BK20180970, BK20190939), Jiangsu Undergraduate Training Program for Innovation and Entrepreneurship (No. 201910332020Z) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grants No. 19KJB150018).

ORCID iDs

Yanda Ji @ https://orcid.org/0000-0001-9979-6982
Jinlei Zhang @ https://orcid.org/0000-0003-3898-6322
Guozhen Liu @ https://orcid.org/0000-0002-6126-0725
Run Zhao @ https://orcid.org/0000-0003-4726-2844

References

[1] Lee C-H et al 2013 Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics Nature 502 532–6
[2] Oh Y S et al 2015 Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in \((\text{Ca},\text{Sr})\text{Ti}_2\text{O}_7\) crystals Nat. Mater. 14 407–13
[3] Li X et al 2017 Ultra-low coercive field of improper ferroelectric \(\text{Ca}_3\text{Ti}_2\text{O}_7\) epitaxial thin films Appl. Phys. Lett. 110 042901
[4] Zhang Y, Wang J and Ghosez P 2020 Unraveling the suppression of oxygen octahedra rotations in \(\{\text{Sr}\}_3\{\text{Ca}\}_1\{\text{Ti}\}_2\{\text{O}_6\}_{\text{fl}}\{\text{O}_6\}_{\text{lm}}\)
\(\{\text{Sr}\}_3\{\text{Ca}\}_1\{\text{Ti}\}_2\{\text{O}_6\}_{\text{fl}}\{\text{O}_6\}_{\text{lm}}\) Ruddlesden-Popper compounds: engineering multiferroicity and beyond Phys. Rev. Lett. 125 157601
[5] Bansal D et al 2019 Dynamic properties of the hybrid improper ferroelectrics \(\{\text{Sr}\}_3\{\text{Ca}\}_1\{\text{Ti}\}_2\{\text{O}_6\}_{\text{fl}}\{\text{O}_6\}_{\text{lm}}\)
\(\{\text{Sr}\}_3\{\text{Ca}\}_1\{\text{Ti}\}_2\{\text{O}_6\}_{\text{fl}}\{\text{O}_6\}_{\text{lm}}\) Phys. Rev. B 100 214304
[6] Benedek N A and Fennie C J 2011 Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling Phys. Rev. Lett. 106 107204
[7] Kumar U and Upadhyay S 2019 Investigation of structural, optical and electrical properties of \(\text{Sr}_3\text{Ti}_2\text{O}_7\), \(\text{Sr}_3\text{Ti}_2\text{O}_7_{\text{fl}}\text{Eu}_{0.05}\text{SnO}_3\) and \(\text{Sr}_2\text{Sn}_0.39\text{Eu}_{0.05}\text{SnO}_3\)
\(\text{Sr}_2\text{Sn}_0.39\text{Eu}_{0.05}\text{SnO}_3\) ruddlesden popper oxide Mater. Res. Express 6 055805
[8] Huang C et al 2019 Major improvement of ferroelectric and optical properties in Na-doped ruddlesden-popper layered hybrid improper ferroelectric compound, \(\text{Ca}_3\text{Ti}_2\text{O}_7\), J. Alloys Compd. 770 582–8
[9] Okazaki Y et al 2008 Photocatalytic activity of \(\text{Ca}_3\text{Ti}_2\text{O}_7\) layered-perovskite doped with Rh under visible light irradiation Mater. Lett. 62 3357–40
[10] Cao R et al 2014 Luminescence properties of \(\text{Ca}_3\text{Ti}_2\text{O}_7:\text{Eu}^{3+}\), \(\text{Bi}^{3+}\), \(\text{R}^+ = \text{Li}^+\), \(\text{Na}^+\), and \(\text{K}^+\) red emission phosphor J. Solid State Chem. 220 97–101
[11] Cherian J G et al 2016 Optical spectroscopy and band gap analysis of hybrid improper ferroelectric \(\text{Ca}_3\text{Ti}_2\text{O}_7\) Appl. Phys. Lett. 108 262901
[12] Zhao R and Yang H 2018 Oxygen vacancies induced tuning effect on physical properties of multiferroic perovskite oxide thin films Acta Phys. Sin. 67 156101
[13] Aschauer U et al 2013 Strain-controlled oxygen vacancy formation and ordering in \(\text{CaMnO}_{3}\) J. Phys. Rev. B 88 054111
[14] Guo H et al 2016 The origin of oxygen vacancies controlling La2/3Sr1/3MnO3 Electronic and Magnetic Properties Advanced Materials Interfaces 3 1500753
[15] Liang Y et al 2020 Oxygen-vacancy-induced atomic and electronic reconstructions in magnetic \(\text{SrTiO}_3\), thin films Mater. Res. Express 7 076105
[16] Zhao R et al 2020 Origin of unexpected lattice expansion and ferromagnetism in epitaxial \(\text{EuTiO}_3\), thin films Ceram. Int. 46 19990–5
[17] Moon E J et al 2014 Fluorination of epitaxial oxides: synthesis of perovskite oxyfluoride thin films JACS 136 2224–7
[18] Zhu J et al 2016 Unprecedented oxyfluoride oxyfluoride membranes with high-efficiency oxygen ion transport paths for low-temperature oxygen permeation Adv. Mater. 28 3511–5
[19] Onozuka T et al 2017 Reversible changes in resistance of perovskite nickelate \(\text{NdNiO}_3\) thin films induced by fluorine substitution ACS Applied Materials & Interfaces 9 10882–7
[20] Mohri S et al 2012 Transparent conductivity of fluorine-doped anatase TiO2 epitaxial thin films J. Appl. Phys. 111 093528
[21] Katayama T et al 2014 Topotactic fluorination of strontium iron oxide thin films using polyvinylidene fluoride J. Mater. Chem. C 2 5330–6
[22] Aich P et al 2019 Fluorinated hexagonal 4H SrMnO2: a locally disordered manganite J. Mater. Chem. C 7 3560–8
[23] Wang J, Lefler B M and May S J 2020 Synthesis and characterization of SrFeMn1−x(O,F)x−δ oxide (δ = 0 and 0.5) and oxyfluoride perovskite films Inorg. Chem. 59 9990–7
[24] Chen Y et al 2019 A universal method to fabricate p-n or Schottky heterojunctions based on two-dimensional electron gas Appl. Phys. Lett. 115 241603
[25] Kresse G and Hafner J 1993 Ab initio molecular dynamics for open-shell transition metals Phys. Rev. B 48 13115–8
[26] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865–8
[27] Kresse G and Furthmüller J 1996 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 11169–86
[28] Perdew J P, Burke K and Ernzerhof M 1998 Perdew, Burke, and Ernzerhof Reply Phys. Rev. Lett. 80 891–891
[29] Monkhorst H J and Pack J D 1976 Special points for Brillouin-zone integrations Phys. Rev. B 13 5188–92
[30] Elcombe M M et al 1991 Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3SrO4Ti3O10 and a refinement of Sr3Ti2O7 Acta Crystallographica Section B 47 305–14
[31] Takadama H et al 2001 XPS study of the process of apatite formation on bioactive Ti–6Al–4V alloy in simulated body fluid Sci. Technol. Adv. Mater. 2 389–96
[32] Demri B and Muster D 1995 XPS study of some calcium compounds J. Mater. Process. Technol. 55 311–4
[33] Tong B Y et al 2019 Polarization switching dynamics and switchable diode effect in hybrid improper ferroelectric Ca3Ti2O7 ceramics J. Am. Ceram. Soc. 102 1875–83
[34] Barreca D et al 2004 Nanocrystalline lanthanum oxyfluoride thin films by XPS Surf. Sci. Spectra 11 52–8
[35] Zhao R et al 2014 Manipulating leakage behavior via distribution of interfaces in oxide thin films Appl. Phys. Lett. 105 072907
[36] Brinzari V 2017 Mechanism of band gap persistent photoconductivity (PPC) in SrMn2O7 nanocrystalline films: Nature of local states, simulation of PPC and comparison with experiment Appl. Surf. Sci. 411 437–48