بهترین ویژگی‌های ویژه تحقیقات و سیاست‌گذاری در حوزه آموزشی

- اصول تنظیم قراردادها
- پروپوزال نویسی
- آموزش مهارت‌های کاربردی در ندوین و چاپ مقاله
Original Article

Comparative Antioxidant Activity and Total Flavonoid Content of Persian Pomegranate (Punica granatum L.) Cultivars

Mohammad Reza Shams Ardekani, Mannan Hajimahmoodi, Mohammad Reza Oveisi, Naficeh Sadeghi, Behrooz Jannat, Ali Mohammad Ranjbar, Narges Gholam and Tahereh Moridi

*Department of Traditional Pharmacy, School of Traditional Iranian Medicine, Tehran University of Medical Sciences, Tehran, Iran. †Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. ‡Ministry of Health and Medical Education, Tehran, Iran.

Abstract

Pomegranate (Punica granatum L.), Lythraceae, is mainly grown in Mediterranean region. It is one of the major cultivated productions of Iran, which have been used in folk medicine for many centuries. It has been proved that pomegranate has a high antioxidant activity and is effective in the prevention of atherosclerosis. This study compares the antioxidant activity, total phenolic and flavonoid contents of nine different pomegranate cultivars grown in Iran. Aqueous solutions of known Fe+2 concentration, vitamin E, vitamin C, gallic acid and catechin were used for calibration. The results showed that Sour summer pulp cultivar had the most antioxidant effect with significant difference with the other cultivar (p < 0.05) which can be introduced as a potent source of natural antioxidants, and the peel of three cultivars (Sweet saveh malas, Sour summer and Black peel) as a suitable source for extraction and purification of phenolic and flavonoid compound. The antioxidant capacity of pomegranate peel extract is 10 times higher than the pulp extract.

Keywords: Antioxidant activity; Fruit extract; Punica granatum; Lythraceae.

Introduction

Epidemiological studies show that consumption of fruits and vegetables with high phenolic and flavonoid contents are correlated with reduced cardiovascular (1, 2), inflammation (3, 4), cancer mortality (5-8) and some other disease rates (9, 10).

Polyphenolic compounds consist of different phenolic rings, out of which one of the major subgroups of these secondary metabolites are flavonoids. They show some functionality in the plant related to interaction with environment such as plant protection against ultraviolet radiation (11-13) and antimicrobial properties to protect plants against micro organisms (14).

As human consumption aspects, flavonoids are one of the major groups of phytochemicals with high antioxidant activity; they have been interesting subjects for general studies in recent years. Pomegranate (Punica granatum L.), Lythraceae, is mainly grown in Mediterranean regions and is one of the major cultivated productions of Iran. It has been consumed for many centuries or perhaps millenniums as fruit, beverage and food-related product. Pomegranate has been used in Iranian traditional medicine for different therapies. For example,
The fruit was effective as diuretic and prokinetic agent and also as liver revival. Some other parts of pomegranate tree were also used in anti-parasite and anti-diarrhea formulations. It was also applied in cosmetic and toiletries because of its styptic properties. Today pomegranate is known as antimicrobial (15-17), antiviral (18, 19) and anticaner (5-8) substance which has led to being the center of attention in many studies. Both pomegranate pulp and peel contain different kinds of antioxidants (20), including those which have not possibly been well characterized so far. It has been acknowledged that phenolic compounds such as flavonoids and anthocyanins are the major class of effective antioxidants in many fruits and vegetables. In this paper the antioxidative activity, total phenolic and total flavonoid contents of 9 different Iranian pomegranate cultivars were studied.

Experimental

Chemicals

All reagents and solvents were purchased from Merck (Darmstadt, Germany) and Sigma (St. Louis, MO) unless otherwise mentioned. All chemicals used in the experiments were of analytical grade.

Sample preparation

Nine cultivars of pomegranate were donated from Saveh Agricultural Investigation Center during September 2007. A total of 27 pomegranate fruits (three numbers of each cultivar) were collected and washed three times with distilled water. To prepare pomegranate extract, fresh fruits were peeled and their edible portions (seed coats and juice) were separated. 30 g of pulps and peels were weighted and extracted separately for 4 h by Soxhlet apparatus with acetone, followed by ethyl acetate, methanol and water solvent respectively (four hours for each solvent) to extract different kinds of antioxidant components. The four different extracts of every cultivar were mixed and dried on a water bath. 1 g of pulp and peel extracts were dissolved and diluted with methanol 80% (v/v) to 25 mL. To assay total antioxidant and phenolic content, pulp extracts were diluted 1:10 (v/v) where it was 1:100 (v/v) for peel extracts by 80% methanol.

Total flavonoid assay

Total flavonoid content was measured by the aluminum chloride colorimetric assay (21). An aliquot (1 mL) of extracts or standard solution of catechin (50, 100, 150, 200, 250 and 300 mg/L) was added to 10 mL volumetric flask containing 4 mL of double distilled water. Then 0.3 mL 5% NaNO2 was added to the flask and after 5 min, 0.3 mL AlCl3 (10%) was also added. At 6th min, 2 mL NaOH (1 M) was added and the total volume was made up to 10 mL with double distilled water. The solution was mixed completely and the absorbance level was measured versus prepared reagent blank at 510 nm. Total flavonoid content was expressed as mg catechin equivalents (CE) per one gram dry extract. The total flavonoid assay was measured three times for each pomegranate extract.

Total phenolic assay

Total phenolics were determined using Folin-Ciocalteu reagent as described by Velioğlu et al. (22) with slight modifications. The extract (200 µL) was mixed with 1.5 mL of Folin-Ciocalteu reagent (previously diluted 10 times with distilled water) and allowed to stand at room temperature for 5 min. 1.5 mL sodium bicarbonate solution (60 g/L) was added to the mixture and after incubation for 90 min at room temperature, the absorbance level was measured at 750 nm using a UV-Visible spectrophotometer (GBC, Cintra 40). Total phenolics were quantified by calibration curve obtained from measuring the absorbance of the known concentrations of gallic acid standard solutions (25-150 µg/mL in 80% methanol). The results were calculated as gallic acid equivalent (GAE) per one gram dry extract and reported as mean value ± SD.

Table 1. The total phenolic and flavonoid content of pulp extracts in nine different pomegranate cultivars.

Cultivar	Total phenolic mg GAE/g extract	Total flavonoids mg CE/g extract	Flavonoids/ Phenolics
1 Sweet white peel	13.74 ± 1.21	2.58 ± 0.21	0.13
2 Agha mohammad ali	12.63 ± 0.63	2.10 ± 0.14	0.16
3 North white peel	14.94 ± 1.60	2.34 ± 0.11	0.14
4 Sour white peel	16.92 ± 1.63	2.08 ± 0.08	0.11
5 Sweet malas	17.65 ± 1.28	1.10 ± 0.08	0.06
6 Sour Summer	21.03 ± 1.51	1.46 ± 0.05	0.09
7 Sweet saveth malas	19.22 ± 1.71	1.05 ± 0.06	0.06
8 Sweet acum	19.93 ± 0.42	1.34 ± 0.09	0.07
9 Black peel	19.06 ± 1.42	1.09 ± 0.08	0.07

Table 2. The total phenolic and flavonoid content of peel extracts in nine different pomegranate cultivars.

Cultivar	Total phenolic mg GAE/g extract	Total flavonoids mg CE/g extract	Flavonoids/ Phenolics
1 Sweet white peel	220.10 ± 11.23	25.05 ± 0.56	0.14
2 Agha mohammad ali	168.21 ± 6.39	33.52 ± 0.41	0.19
3 North white peel	192.72 ± 15.45	26.94 ± 0.48	0.14
4 Sour white peel	198.24 ± 4.81	28.30 ± 0.54	0.28
5 Sweet malas	212.11 ± 8.69	18.61 ± 0.53	0.15
6 Sour Summer	226.56 ± 18.98	35.92 ± 0.84	0.15
7 Sweet saveth malas	216.74 ± 19.01	34.71 ± 1.34	0.13
8 Sweet acum	184.10 ± 25.97	30.36 ± 2.44	0.16
9 Black peel	250.13 ± 33.03	36.40 ± 1.34	0.14
The flavonoid content in the pulp and peel extracts is expressed in terms of catechin equivalent (the standard curve equation: $y = 0.005x + 0.1478$, $r^2 = 0.9919$) ranged from 0.84 ± 0.08 to 2.14 ± 0.11 and 18.61 ± 0.53 to 36.40 ± 1.34 mg catechin equivalents per gram of extract respectively (Tables 1 and 2). Tables 1 and 2 also show the content of phenolic compounds that were measured in terms of gallic acid (the standard curve equation: $y = 0.005x - 0.0234$, $r^2 = 0.9975$). The total phenolic contents in the pulp and peel extracts varied from 11.62 ± 0.63 to 21.03 ± 1.51 and 98.24 ± 4.81 to 226.56 ± 18.98 mg gallic acid equivalents per gram of extract respectively.

Table 3. The total antioxidant activity of pomegranate pulp extract as FRAP value, in comparison with vitamins E and C.

Cultivar	micromol Fe/g extract	mg Vitamin E/g extract	mmol Vitamin C/g extract
1 Sweet white peel	325.697 ± 15.531	81.399 ± 4.796	0.160 ± 0.009
2 Agra mohammad ali	276.333 ± 7.684	69.433 ± 2.172	0.136 ± 0.004
3 North white peel	343.349 ± 18.311	85.953 ± 5.177	0.169 ± 0.010
4 Sour white peel	347.255 ± 22.103	86.961 ± 5.704	0.171 ± 0.011
5 Sweet melas	316.938 ± 15.431	79.137 ± 3.246	0.155 ± 0.002
6 Sour Summer	467.817 ± 10.818	118.074 ± 3.058	0.234 ± 0.060
7 Sweet saveh melas	347.104 ± 14.873	86.922 ± 4.205	0.171 ± 0.008
8 Sweet alac	410.349 ± 6.412	103.243 ± 1.813	0.204 ± 0.004
9 Black peel	312.052 ± 8.302	77.876 ± 2.347	0.153 ± 0.005

Table 4. The total antioxidant activity of pomegranate peel extract as FRAP value, vitamins E and C equivalent.

Cultivar	micromol Fe/g extract	mmol Vitamin E/g extract	mmol Vitamin C/g extract
1 Sweet white peel	4560.331 ± 63.451	1150.363 ± 16.173	2.277 ± 0.033
2 Agra mohammad ali	3401.354 ± 118.713	851.237 ± 30.635	1.675 ± 0.062
3 North white peel	4685.185 ± 96.655	1162.715 ± 24.821	2.301 ± 0.050
4 Sour white peel	4144.748 ± 73.967	1048.051 ± 18.712	2.071 ± 0.038
5 Sweet melas	3900.882 ± 433.021	979.798 ± 111.829	1.934 ± 0.225
6 Sour Summer	4788.401 ± 248.400	1209.126 ± 64.025	2.395 ± 0.129
7 Sweet saveh melas	4313.445 ± 140.326	1086.586 ± 36.223	2.148 ± 0.073
8 Sweet alac	3953.205 ± 113.149	1003.871 ± 34.226	1.982 ± 0.069
9 Black peel	4607.206 ± 78.405	1162.325 ± 20.131	2.301 ± 0.040

Results and Discussion

The flavonoid content in the pulp and peel extracts is expressed in terms of catechin equivalent (the standard curve equation: $y = 0.005x + 0.1478$, $r^2 = 0.9919$) ranged from 0.84 ± 0.08 to 2.14 ± 0.11 and 18.61 ± 0.53 to 36.40 ± 1.34 mg catechin equivalents per gram of extract respectively (Tables 1 and 2). Tables 1 and 2 also show the content of phenolic compounds that were measured in terms of gallic acid (the standard curve equation: $y = 0.005x - 0.0234$, $r^2 = 0.9975$). The total phenolic contents in the pulp and peel extracts varied from 11.62 ± 0.63 to 21.03 ± 1.51 and 98.24 ± 4.81 to 226.56 ± 18.98 mg gallic acid equivalents per gram of extract respectively. As it can be seen in Tables 1, the range of phenolic and phenol content in pulp (R² = 0.94 and 0.84 ± 0.08 to 2.14 ± 0.11 mg catechin per gram of extract) and the flavonoid content was 249.4 ± 24.4 ± 2.7 and 17.2 ± 3.3 (mg tannic acid/g extract) and the flavonoid content was 249.4 ± 17.2 and 59.1 ± 4.8 (mg rutin/g extract). It is obvious that the flavonoid contents in the flour's reports were more than the present study. Stangeland et al. in 2009 (29) evaluated the total antioxidant activity in 35 Ugandan fruits and vegetables. Among the tested samples, antioxidant activity of pomegranate was 5.11 ± 0.61 mmol Fe2+ per 100 g fresh weight. In this report, antioxidant activity in Sor summer cultivar with FRAP value equivalent to 4.678 ± 1.818 mmol Fe2+ per 100 g fresh weight is comparable with the measure reported in Stangeland’s study. To sum up, Sour summer cultivar is a potent source of natural antioxidants, phenolic and flavonoid content for beverage industry and the peel of three cultivars (Sweet saveh melas, Sour Summer and Black peel) are suitable sources of phenolic and flavonoid compound. This study is the most comprehensive comparison among different pomegranate cultivars in the basis of antioxidant activity, phenolic and flavonoid contents. Further studies on the effective antioxidants contained in these fruit fractions and the mechanisms by which they protect against disease development are highly recommended.

References

(1) Arts IC and Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. (2005) 81: 3175-3225.
(2) Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Helviläva M, Reunanen A, Hakulinen T and Aromaa A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. (2002) 76: 560-568.
(3) Rahman I, Biswas SK and Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Bioschein, Pharmacol (2006) 72: 1439-1452.
(4) Szewczenk LM and Punning TM. Mechanism-based inactivation of COX1 by red wine m-hydroxyconiferyl alcohol: A structure-activity relationship study. J. Nat. Prod. (2004) 67: 1777-1782.
(5) Menendez IA, Vaquez-Martín A, García-Villalba R, Carrasco-Pancorbo A, Oliveras-Ferramos C, Fernandez-Gutierrez A and Segura-Carretero A. tabanti-lor2 (erb-b2) oncogene effects of phenolic compounds directly isolated from commercial extra-virgin olive oil (EVOO). BMC Cancer (2008) 8: 377-400.
(6) Menendez IA, Vaquez-Martín A, Oliveras-Ferramos C, García-Villalba R, Carrasco-Pancorbo A, Fernandez-Gutierrez A and Segura-Carretero A. Analyzing effects of extra-virgin olive oil polyphenols on breast cancer-associated fatty acid synthase protein expression using reverse-phase protein microarrays. J. Int. Mol. Med. (2008) 22: 433-439.
(7) Gates MA, Mitonis AF, Tzvorer SS, Rosner B, Titis- Ernstof L, Hankinson SE and Cramer DW. Flavonoid intake and ovarian cancer risk in a population-based case-control study. Int. J. Cancer (2009) 124:1918-1925.
(8) Ramchandani AG, Karibasappa GS and Pakhele SS. Antitumor-promoting effects of polyphenolic extracts from Aegle marmelos and ‘Bael’ (Aegle marmelos). Int. J. Mol. Med. (2002) 9: 783-788.

www.SID.ir
from seedless and seeded Indian grapes. J. Environ. Pathol. Toxicol. Oncol. (2008) 27: 321-331.

(9) Vingtdeux V, Drees-Werringloer U, Zhao H, Davies P and Marambaud P. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci. (2008) 9: S6.

(10) Ono K, Hirohata M and Yamada M. Alpha-synuclein assembly as a therapeutic target of Parkinson’s disease and related disorders. Curr. Pharm. Des. (2008) 14: 3247-3266.

(11) Yamasaki S, Noguchi N and Mimaki K. Continuous UV-B irradiation induces morphological changes and the accumulation of polyphenolic compounds on the surface of cucumber cotyledons. J. Radiat. Res. (2007) 48: 443-454.

(12) Leu E, Krieger-Liszkay A, Guossias C and Gross EM. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol. (2002) 130: 2011-2018.

(13) Dinkova-Kostova AT. Phytochemicals as protectors against ultraviolet radiation: Versatility of effects and mechanisms. Planta Med. (2008) 74: 1548-1559.

(14) Choi C, Bareiss C, Walenciak O and Gross EM. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. J. Chem. Ecol. (2002) 28: 2245-2256.

(15) Machado TB, Leal CR, Amaral AC, Santos KR, Silva MG and Kuster RM. Antimicrobial ellagitannin of Punica granatum fruits. J. Braz. Chem. Soc. (2002) 13: 606-610.

(16) Reddy MK, Gupta SK, Jacob MR, Khan SI and Ferreira D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. (2007) 73: 461-467.

(17) Ahmad I and Beg AZ. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol. (2001) 74: 113-123.

(18) Gonçalves JLS, Lopes RC, Oliveira DB, Costa SS, Miranda MMFS, Romanos MTV, Santos NSO and Wigg MD. In vitro anti-rotavirus activity of some medicinal plants used in Brazil against diarrhea. J. Ethnopharmacol. (2005) 99: 403-407.

(19) Neurath AR, Strick N, Li YY and Debnath AK. Punica granatum (pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide. Ann. N. Y. Acad. Sci. (2005) 1056: 311-327.

(20) Mousavinejad G, Emam-Djomeh Z, Rezaei K and Haddad Khodaparast H. Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chem. (2009) 115: 1274-1278.

(21) Jia Z, Tang M and Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. (1999) 64: 555-559.

(22) Velioğlu YS, Mazza G, Gao L and Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J. Agric. Food Chem. (1998) 46: 4113-4117.

(23) Benzie IFF and Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Bio. Chem. (1999) 239: 70-76.

(24) Wong CC, Li HB, Cheng KW and Chen F. A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem. (2006) 97: 705-711.

(25) Marinova D, Ribarova F and Atanassova M. Total phenolics and flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metal. (2005) 40: 255-260.

(26) Li Y, Guo C, Yang J, Wei J, Xu J and Cheng S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. (2006) 96: 254-260.

(27) Hajimahmoodi M, Oveisii MR, Sadeghi N, Jannat B, Hadjibabaie M, Farahani E, Akrami MR and Namdar R. Antioxidant properties of peel and pulp hydro-extract in ten Persian pomegranate cultivars. Pak. J. Biol. Sci. (2008) 11: 1600-1604.

(28) Surveswaran S, Cai Y, Corke H and Sun M. Systematic evaluation of natural phenolic antioxidant from 133 Indian medicinal plant. Food Chem. (2007) 102: 938-953.

(29) Stangeland T, Remberg SF and Lye KA. Total antioxidant activity in 35 Ugandan fruits and vegetables. Food Chem. (2009) 113: 85-91.

This article is available online at http://www.ijpr.ir
۳۰ درصد تخفیف نوروزی ویژه کارگاه‌ها و فیلم‌های آموزشی

اصول تنظیم قراردادها

پروپوزال نویسی

آموزش مهارت‌های کاربردی در تدوین و چاپ مقاله