Supporting information

An “off–on–off” sensor for sequential detection of Cu$^{2+}$ and hydrogen sulfide based on naphthalimide-rhodamine B derivative and its application in dual-channel cell imaging

Shuai Wang, Haichang Ding, Yuesong Wang, Congbin Fan, Yayi Tu, Gang Liu*, Shouzhi Pu*

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China

*Corresponding author: E-mail address: liugang0926@163.com (G. Liu); pushouzhi@tsinghua.org.cn (S. Pu), Tel. & Fax: +86-791-83831996.

Contents

Table. 1. Comparison of the analytical performance of the sensors for copper/sulfide determination.

Fig. S1. 1H NMR spectrum of 1 in CD$_2$Cl$_2$.

Fig. S2. 13C NMR spectrum of sensor 1 in CD$_2$Cl$_2$.

Fig. S3. The ESI-MS spectrum of 1.

Fig. S4. Nonlinear curve fitting of the ratio change of absorbance (A_{564}/A_{425}) from 0 to 35 μM for 1 with Cu$^{2+}$ in CH$_3$CN–H$_2$O (9/1, v/v) solution at room temperature.

Fig. S5. The limit of detection (LOD) of the ratio change of absorbance (A_{564}/A_{425}) of sensor 1 towards Cu$^{2+}$ by UV-vis measured.

Fig. S6. Nonlinear curve fitting of the fluorescence titration data from 0 to 40 μM for 1 with Cu$^{2+}$ at 610 nm in CH$_3$CN–H$_2$O (9/1, v/v) solution at room temperature.

Fig. S7. The limit of detection (LOD) of 1 towards Cu$^{2+}$ by fluorescence measured at 610 nm.

Fig. S8. Nonlinear curve fitting of the ratio change of absorbance (A_{564}/A_{425}) from 0 to 35 μM for 1 with Cu$^{2+}$ in CH$_3$CN–H$_2$O (9/1, v/v) solution at room temperature.

Fig. S9. The limit of detection (LOD) of the ratio change of absorbance (A_{564}/A_{425}) of sensor 1 towards Cu$^{2+}$ by UV-vis measured.

Fig. S10. Nonlinear curve fitting of the fluorescence titration data from 0 to 40 μM for 1-Cu$^{2+}$ complex towards H$_2$S at 610 nm in CH$_3$CN–H$_2$O (7/3, v/v) solution at room temperature.

Fig. S11. The limit of detection (LOD) of 1-Cu$^{2+}$ complex towards H$_2$S by fluorescence measured at 610 nm.

Fig. S12. Normalized spectral overlap of fluorescence spectrum of naphthalimide (green) and absorption spectrum of rhodamine B (pink) in CH$_3$CN–H$_2$O (9/1, v/v) solution.
Sensor	$\lambda_{ex}/\lambda_{em}$ (nm)	Selectivity	Approaches	LOD	Ref.
Cu$^{2+}$	470/517		Fluorescence quench	1.0×10^{-7} M	Chem. Commun., 2009, 0, 7390–7392
S$^{2-}$			Fluorescence increase	4.2×10^{-7} M	
Cu$^{2+}$	494/523		Fluorescence quench	1.08×10^{-5} M	Dalton Trans., 2012, 41, 5799–5804
H$_2$S			Fluorescence increase	1.7×10^{-6} M	
Cu$^{2+}$	540/600		Fluorescence quench	no data	Chem. Commun., 2013, 49, 7510–7512
HS$^{-1}$			Fluorescence increase	1.0×10^{-6} M	
Cu$^{2+}$	243/436		Fluorescence quench	2.77×10^{-6} M	Dalton Trans., 2014, 43, 5815–5822
S$^{2-}$			Fluorescence increase	2.51×10^{-6} M	
Cu$^{2+}$	510/604		Fluorescence quench	8.95×10^{-8} M	J. Mater. Chem. B, 2017, 5, 8957–8966
S$^{2-}$			Fluorescence increase	1.36×10^{-7} M	
Cu$^{2+}$	530/581		Fluorescence increase	2.43×10^{-8} M	RSC Adv., 2014, 4, 5718–5725
S$^{2-}$			colorimetric	no data	
Cu$^{2+}$	325/528,610	H$_2$S	Fluorescence quench	2.3×10^{-7} M	This work

Table 1.
Fig. S2.
Fig. S3.
Fig. S4.

\[Y = 0.52887 \times X - 0.44648 \]

\[R = 0.99571 \]
Fig. S5.

\[Y = 0.37398 \times X - 0.02661 \]

\[R = 0.99579 \]

\[\text{LOD} = 3 \sigma / k \]

\[= 3 \times 0.03298 / 0.37398 \]

\[= 0.26456 \mu M \]}
Fig. S6.

\[Y = 60.5712 \times X + 109.64832 \]

\[R = 0.9876 \]
Fig. S7.

Emission Intensity (a.u.) vs. $[\text{Cu}^{2+}] / \text{I} (\mu\text{M})$

Y = 79.28338 * X - 46.16081
R = 0.99277
LOD = $3 \sigma / k$

$= 3 \times \frac{4.560702}{79.28338}$

$= 0.172572 \mu\text{M}$
Fig. S8.

\[Y = -0.1638 \times X + 16.31734 \]

\[R^2 = 0.97723 \]
Fig. S9.

The graph shows a linear relationship between A_{564}/A_{425} and [Cu$^{2+}$]1 (µM). The equation of the line is:

$$Y = -0.27333 \times X + 17.62838$$

The R^2 value is 0.9774. The LOD (Limit of Detection) is calculated as:

$$\text{LOD} = 3 \sigma / k = 3 \times 0.03635 / 0.27333$$

$$= 0.39897 \text{ µM}$$
Fig. S10.

The graph shows the relationship between emission intensity (a.u.) and the concentration of Cu$^{2+}$, with the equation

$$Y = -39.5825 \times X + 1920.65909$$

$$R^2 = 0.99854$$
Fig. S11.

\[Y = -40.66429 \times X + 1925.80952 \]

\[R^2 = 0.99524 \]

\[\text{LOD} = 3 \, \sigma / k \]

\[= 3 \times 3.139964 / 40.66429 \]

\[= 0.23165 \, \mu M \]
