Figueiredo Guimarães Hoshino, Maria Danielle; Tavares-Dias, Marcos
Ecology of parasites of Metynnis lippincottianus (Characiformes: Serrasalmidae) from the eastern Amazon region, Macapá, State of Amapá, Brazil
Acta Scientiarum. Biological Sciences, vol. 36, núm. 2, abril-junio, 2014, pp. 249-255
Universidade Estadual de Maringá
Brasil

Available in: http://www.redalyc.org/articulo.oa?id=187130419015
Ecology of parasites of *Metynnis lippincottianus* (Characiformes: Serrasalmidae) from the eastern Amazon region, Macapá, State of Amapá, Brazil

Maria Danielle Figueiredo Guimarães Hoshino and Marcos Tavares-Dias

1Programa de Pós-graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá Amapá, Brazil. 2Laboratório de Aquicultura e Pesca, Embrapa Amapá, Rod. Juscelino Kubitschek, km 5, 2600, 68903-419, Macapá, Amapá, Brazil. *Author for correspondence. E-mail: marcos.tavares@embrapa.br

ABSTRACT. The present study provides the first investigation on the ecological aspects of the parasites *M. lippincottianus* from the Amazonian basin, as well as the parasite-host relationship. 76 out of the examined fish (98.7%) were parasitized by at least one species of parasites. A total of 8,774 parasites were collected, being *Ichthyophthirius multifiliis*, *Anacanthorus jegui*, *Dadayius pacupeva*, *Digenea gen. sp.* (metacercariae), *Procamallanus* (Spirocamallanus) *inopinatus*, *Procamallanus* (Spirocamallanus) *sp.*, *Spinoxyuris oxydoras*, *Contracaecum* sp. larvae, *Dolops longicauda* and *Hirudinea gen. sp.* *Ichthyophthirius multifiliis* was the dominant species, followed by *A. jegui*. Among the endoparasites, *S. oxydoras* and *D. pacupeva* were predominant. The mean diversity of parasites was *HB* = 0.96 ± 0.32 and there was aggregate distribution pattern. A positive correlation of body weight with the abundance of *I. multifiliis* and *S. oxydoras* was observed, whereas a negative correlation of body weight with abundance of the *Contracaecum* sp. larvae was found. The relative condition factor (Kn) was not negatively affected by parasites, and a positive correlation of Kn and abundance of *S. oxydoras* was found. This study is the first one to record *I. multifiliis*, *D. longicauda* and *A. jegui* parasitizing *M. lippincottianus*, as well as the first record of *D. pacupeva* and *S. oxydoras* in the Amazonas river system.

Keywords: Amazon, Characiformes, *Metynnis lippincottianus*, parasites infracommunities.

Ecologia parasitária de *Metynnis lippincottianus* (Characiformes: Serrasalmidae) da região da Amazônia oriental, Macapá, Estado do Amapá, Brasil

RESUMO. O presente estudo constitui a primeira investigação sobre aspectos da ecologia parasitária e relação parasito-hospedeiro de *M. lippincottianus* da Amazônia. De 80 peixes examinados, 76 (98,7%) estavam parasitados por uma ou mais espécies. Foram coletados 8,774 parasitos, entre *Ichthyophthirius multifiliis*, *Anacanthorus jegui*, *Dadayius pacupeva*, metacercárias de *Digenea gen. sp.*, *Procamallanus* (Spirocamallanus) *inopinatus*, *Procamallanus* (Spirocamallanus) *sp.*, *Spinoxyuris oxydoras*, larvas de *Contracaecum* *sp.*, *Dolops longicauda* e *Hirudinea gen. sp.* *Ichthyophthirius multifiliis* foi a espécie de parasito dominante, seguido por *A. jegui* entre os endoparasitos houve predominância de *S. oxydoras* e *D. pacupeva*. A diversidade média de parasitosfoi *HB* = 0,96 ± 0,32 e houve padrão de distribuição agregado. Houve correlação positiva do peso corporal com a abundância de *I. multifiliis* e *S. oxydoras* e correlação negativa da abundância de larvas de *Contracaecum* *sp*. Apesar do elevado parasitismo o fator de condição relativo (Kn) dos hospedeiros não foi comprometido e houve correlação positiva do Kn com a abundância de *I. multifiliis*, *S. oxydoras* e *D. pacupeva*. Este foi o primeiro relato de *I. multifiliis*, *D. longicauda* e *A. jegui* para *M. lippincottianus* e ampliou a ocorrência de *D. pacupeva* e *S. oxydoras* para a Amazônia.

Palavras-chave: Amazônia, Characiformes, *Metynnis lippincottianus*, comunidades de parasitos.

Introduction

Parasites are recognized as important components of ecosystems specially when considering the dynamics of food web (MORLEY, 2012). Consequently, there has been increased research of these components in fish species of diverse ecosystems (LACERDA et al., 2012; RAKAUSKAS; BLAZEVICUIS, 2009; ROHDE et al., 1995; TAKEMOTO et al., 2009). Parasites can use intermediary and definite hosts via trophic web, which allows them to infect the fish species, but most parasite species show a high specificity to their hosts. Thus, the knowledge of parasites infecting fish is of particular interest not only regarding the host health, but also considering the relationship between parasite and host within the aquatic environment (LACERDA et al., 2012; MOREIRA et al., 2009, 2010; NEVES
et al., 2013; RAKAUSKAS; BLAZEVICIIUS, 2009; TAKEMOTO et al., 2009; YAMADA et al., 2012). Parasites can cause alterations in population dynamics and behavior of their hosts. Parasites influence the competition capacity in the predator-prey relationship. They can hinder the ability to swim, influencing the mating choice, sexual behavior and corporeal health of the host fish (GOMIERO et al., 2012). This study concerns the parasite relationship of the freshwater fish, *Metynnis lippincottianus* Cope, 1870 (Serrasalmidae), also commonly known as pacu CD. It is native to South America and found in French Guyana and Brazil distributed through the Amazon Basin, rivers of French Guyana (JÉGU, 2003), Paraná river (FROESE; PAULY, 2013; MOREIRA et al., 2009; YAMADA et al., 2012) and Tocantins river (SANTOS et al., 2004). *M. lippincottianus* is primarily herbivore, feeding on vegetable sources, seeds and phytoplanktonic algae, but occasionally consumes arthropods and debris (FROESE; PAULY, 2013; SANTOS et al., 2004), thus occupying the second trophic level of the food chain. This pelagic fish inhabits along the shores of rivers and lakes (FROESE; PAULY, 2013; MOREIRA et al., 2010; SANTOS et al., 2004) and measures at a maximum of 20 cm in length becoming sexually mature when it reaches 10 cm in length (SANTOS et al., 2004). Commercially, it is more valuable as an ornamental fish, but it is important species in the diet of riverine populations (MOREIRA et al., 2009; YAMADA et al., 2012).

In the Paraná river basin (Brazil), *M. lippincottianus* has been parasitized by *Dadayius pacupeva*, *Procamallanus (Spirocamallanus) inopnatus*, *Contracaecum larvae*, *Raphidascaris mahnerti* and *Spinoxyuris oxydoras* (MOREIRA et al., 2009; TAKEMOTO et al., 2009; MOREIRA et al., 2010; YAMADA et al., 2012). Even though this characid occurs in other hydrographic basins, such as the Amazon Basin, no study has been conducted on its parasites in the region, or any research has not been performed on the ectoparasites harbored by this fish. Therefore, this study evaluated the ecological aspects of parasites and the parasite-host relationship in *M. lippincottianus* of a tributary from the Amazonas river, in Northern Brazil.

Material and methods

Study area, fishes and parasite sampling

The Igarapé Fortaleza basin (Figure 1), located in the county of Macapá in the State of Amapá (eastern Amazon region) is a tributary of the Amazon river and has a main canal and a floodplain.

![Collection sites of Metynnis lippincottianus along the Igarapé Fortaleza basin, eastern Amazon region, Brazil.](image_url)
In the period from August to December of 2011, 80 specimens of *M. lippincottianus* were captured in the Fortaleza Igarapé basin (Figure 1), and analyzed for parasites. Fish were captured using nets with a 20-25 mm web (License ICMBio: 23276-1) placed into isothermal box with ice and taken to the Sanity Laboratory of Aquatic Organisms from Embrapa Amapá for parasitological analyses.

It exhibits unique characteristics: it is strongly influenced by the high pluviosity rates of the Amazon region and the diary strong tides of the Amazon delta (TAKYAMA et al., 2004), which create an ideal environment for fish inhabiting and feeding.

Collection and analysis of parasites

The captured fish where weighed (g) and measured for total length (cm). Each specimen was analyzed macroscopically and the observations were taken of the body surface, mouth, eyes, operculum, and gills. The gills were removed for ectoparasites collection while the gastro-intestinal tract was removed and examined for endoparasites collection. The parasites were collected, fixed, counted and stained using the method of Eiras et al. (2006). The ecological terms adopted followed the previous recommendations of Rohde et al. (1995) and Bush et al. (1997).

The index of Brillouin (HB), species richness, evenness index (E) and Berger-Parker dominance (d) were calculated for each infracommunity of parasites using the software Diversity (Pisces Conservation Ltda, UK). The index of dispersion (ID) and the index of evenness (H) were calculated for each infracommunity of parasites (RÓZSA et al., 2000) for species with prevalence >10%. ID significance was tested using the statistic d according to (LUDWIG; REYNOLDS, 1988) for each infracommunity.

The Pearson coefficient (r) was employed to test the relationship of total host length with prevalence of parasite infection and compared with previous studies on angular transformation of prevalence data (sine-arc √x), after which the samples of hosts were separated into five length classes. The Pearson coefficient of correlation (r) was employed to investigate a possible correlation of HB between the prevalence of parasite infestation and the host length of in the sample collection (ZAR, 2010).

Body weight data (g) and total length (cm) were used for calculating the relative condition factor (Kn) of the sampled fish (LE-CREN, 1951), and then compared with the norm (Kn = 1.0) using the t-test. The Pearson coefficient (r) was also used to determine possible correlations in the abundance of parasites versus fish length, body weight, and Kn of the hosts (ZAR, 2010).

During three fish collections the pH (6.6 ± 0.2), temperature (31.0 ± 0.3°C) and dissolved oxygen levels (2.0 ± 0.4 mg L⁻¹) were determined by using digital device for each purpose.

Results

80 specimens of *M. lippincottianus* with a total length of 7.1 ± 0.8 cm and weight of 12.1 ± 3.6 g were collected, 98.7% of the samples collected were infected with one or more species of parasites. Parasites were identified as *Ichthyophthirius multifiliis* Fouquet, 1876 (Ciliophora); *Anacanthorus jegui* Van Every and Kritsky, 1992 (Dactylogyridae); *Dadayius pacapecu* Lacerda et al. 2003 (Cladorchiidae), encapsulated metacercariae of *Digenea* gen. sp.; *Procamallanus (Spirocamallanus) inopinatus* Travassos et al. 1928, *Procamallanus (Spirocamallanus) sp.* (Camallanidae); *Spirocamallanus oxydoras* Pettet, 1994 (Pharyngodonidae); *Contracaecum Railliet & Henry, 1912* (Anisakidae), *Dolops longicauda* Heller, 1857 (Argulidae) and *Glossiphoniidae* gen. sp. (Hirudinea). *Ichthyophthirius multifiliis* was the dominant species, while nematode species were the most prevalent endoparasites (Table 1).

Table 1. Parasites of *M. lippincottianus* (n = 80) from the Igarapé Fortaleza basin, eastern Amazon, Brazil.

Parasites	Prevalence (%)	MI ± SD (Range)	MA	TNP	RD	SI
Ectoparasites						
Ichthyophthirius multifiliis	45.0	132.5 ± 157.2 (6-1133)	59.6	4.770	0.5437	Gills
Dolops longicauda	1.2	1.0 ± 0.1	0.01	1	0.0001	Gills
Anacanthorus jegui	95.0	19.1 ± 21.7 (1-138)	18.1	1.450	0.1653	Gills
Digenea sp. (metacercariae)	77.5	11.1 ± 10.2 (1-60)	8.6	0.0782	Gills	
Hirudinea gen. sp.	6.2	1.00 ± 0.2	0.06	5	0.0006	Gills
Endoparasites						
Dadayius pacapecu (adults)	82.5	11.0 ± 14.6 (1-77)	9.1	727	0.0082	Intestine
Dadayius pacapecu (metacercariae)	22.5	9.3 ± 7.3 (2-60)	2.1	168	0.0191	Intestine
Procamallanus (Spirocamallanus) inopinatus	36.2	6.1 ± 5.0 (1-32)	2.2	176	0.0201	Intestine
Procamallanus (Spirocamallanus) sp.	8.7	1.6 ± 0.5 (1-4)	0.1	11	0.0013	Intestine
Spirocamallanus oxydoras	65.0	12.5 ± 17.9 (1-95)	8.1	652	0.0743	Intestine
Contracaecum sp. (larvae)	68.7	2.3 ± 2.2 (1-15)	1.6	128	0.0146	Intestine

Acta Scientiarum. Biological Sciences Maringá, v. 36, n. 2, p. 249-255, Apr.-June, 2014
The mean richness of species was 4.9 ± 1.3 per host, with predominance of parasites in parasitized individuals from 4 to 6 species (Figure 2). The mean diversity (HB) was 0.96 ± 0.32, evenness (E) index was 0.48 ± 0.15 and dominance (d) index was 0.55 ± 0.18. The HB did not show a significant correlation (r = 0.17, p = 0.12) between parasite prevalence and total dominance (E0.32), evenness (E), index was 0.48 ± 0.15 and dominance (d) index was 0.55 ± 0.18. The HB did not show a significant correlation (r = 0.17, p = 0.12) between parasite prevalence and total length of hosts.

![Figure 2. Species richness in parasites infracommunity of Metynnis lippincottianus from the Igarapé Fortaleza basin, eastern Amazon, Brazil.](image)

Most of parasites species in Metynnis lippincottianus showed aggregate distribution pattern, which is typical of parasites of freshwater fish. However, I. multifiliis and P. (S.) inopinatus showed a higher index of discrepancy (Table 2) indicating a greater level of parasitic aggregation.

Table 2. Dispersion Index (ID), discrepancy Index (D) and statistic d for the parasites infracomunities of Metynnis lippincottianus from the Igarapé Fortaleza basin, eastern Amazon, Brazil.

Parasites	ID	d	D
Ichthyophthirius multifiliis	6.294	19.01	0.705
Anacanthorus jegui	4.218	13.28	0.374
Diplogaster sp. (metacercaire)	4.761	14.89	0.478
Procamall anus (S.) inopinatus	4.278	13.46	0.764
Spinoxyuris oxydoras	4.573	14.34	0.590
Contracaeum sp. (larvae)	1.682	3.77	0.537
Daleius paupera	4.283	13.48	0.486

The relative condition factor (Kn) for Metynnis lippincottianus (Kn = 1.000 ± 0.092, t = 0.023, p = 0.982) did not vary from the standard values of Kn, which indicates that the parasite infection did not harm the host’s body condition. The prevalence of parasite infection showed negative correlation (r = -0.701, p = <0.0001) with the length of host indicating the higher prevalence of parasites in smaller hosts. However, there was a positive correlation in the abundance of I. multifiliis and S. oxydoras when weight and Kn of the fish were compared, as well as the abundance of D. pacupeva with Kn relative condition factor. In contrast, the abundance of Contracaeum sp. larvae showed a negative correlation when compared with the length of the hosts (Table 3).

Table 3. Pearson coefficient (r) of correlation for parasite abundance compared with total length (cm), body weight (g), and relative condition factor (Kn) for Metynnis lippincottianus of the Igarapé Fortaleza basin, eastern Amazon, Brazil.

Parasites	Length (cm)	Weight (g)	Kn			
	r	p	r	p		
Ichthyophthirius multifiliis	0.063	0.580	0.250	0.025	0.253	0.023
Anacanthorus jegui	-0.063	0.559	-0.116	0.304	-0.078	0.493
Diplogaster sp. (metacercaire)	-0.066	0.559	-0.080	0.479	-0.097	0.389
Procamall anus (S.) inopinatus	-0.159	0.158	-0.055	0.628	0.110	0.332
Spinoxyuris oxydoras	-0.006	0.957	0.249	0.026	0.327	0.003
Contracaeum sp. (larvae)	-0.253	0.023	-0.132	0.240	0.073	0.518
Daleius paupera	0.007	0.947	0.169	0.132	0.230	0.040

Discussion

Specimens of Metynnis lippincottianus captured during the dry season in the Amazon showed the highest diversity of parasites (HB = 0.962 ± 0.32). Parasite samples were composed of one Protozoa, one Monogenoidea, two Digenea, four Nematoda, one Crustacea, and one Hirudinea. Ichthyophthirius multifiliis, A. jegui, D. pacupeva, metacercarie of Digenea, P. (S.) inopinatus, Procamallans (S.) sp., S. oxydoras and Contracaeum larvae showed a distribution pattern of aggregation. Aggregate dispersion for D. pacupeva, S. oxydoras, P. (S.) inopinatus, Contracaeum sp. and Raphidascaris (Sprentascaris) mahneri infesting Metynnis lippincottianus in the upper Paraná river basin was also reported, where D. pacupeva and S. oxydoras were the dominant parasites with HB = 0.337 (MOREIRA et al., 2009). Such a distribution pattern could be related to a parasite strategy for survival, genetic and immunity heterogeneity of the hosts, environmental conditions (KNUDSEN et al., 2004; MOREIRA et al., 2009, 2010; YAMADA et al., 2012), only R. (S.) mahneri was not found in the present study. On the other hand, ectoparasites were not found in the gills (I. multifiliis, A. jegui, metacercarie of digeneas, D. longicauda and hirudinias), which were not studied for this host from the Paraná river basin. Differences in richness and diversity of parasites for a host that inhabits different geographic regions could be associated with its ecology (size, age, heterogeneity of diet, and behavior), as well as the environmental conditions (KNUDSEN et al., 2004; MOREIRA et al., 2009, 2010; YAMADA et al., 2012).
factors, in particular, the physical and chemical parameters, the presence of intermediary hosts in the location, and seasonal differences (LACERDA et al., 2012; MOREIRA et al., 2009; NEVES et al., 2013; RAKAUSKAS; BLAZEVICIUS, 2009; SILVA et al., 2011; YAMADA et al., 2012), besides host density.

Ichthyophthirius multifiliis is a dominant parasite species infecting the pelagic fish, *M. lippincottianus* that showed higher levels of infection than those reported for the bentonic fish, *Oxydoras niger* of the Solimões river (SILVA et al., 2011). This ciliate fish parasite is common in natural habitats as well as in farmed fish (RAISSY et al., 2010; RAKAUSKAS; BLAZEVICIUS, 2009; WURTSDBAUGH; TAPIA, 1998). However, the infection is higher in fish raised in tanks. This is due to horizontal transmission of this parasite, which causes lesions on the gills and cutaneous surfaces, thus hindering respiration of the host and facilitating the entrance of bacteria (RAISSY et al., 2010). However, epizooty caused by *I. multifiliis* also occurs in natural populations (RAISSY et al., 2010; WURTSDBAUGH; TAPIA, 1998), but this occurrence has not been documented in wild fish in Brazil.

On the gills of *M. lippincottianus* captured along the tributaries of the Amazon river in the State of Amapá, high levels of infection by *A. jegui* were found. This is a species of monogenoidean originally described parasitizing another characid that inhabits the Amazonas River tributaries, *S. rhombeus* (VAN EVERY; KRITSKY, 1992). Monogenoideans are parasites with high specificity when compared with other taxa of helminths (SILVA et al., 2011; MOREIRA et al., 2009; NEVES et al., 2012; MOREIRA et al., 2009; NEVES et al., 2012; YAMADA et al., 2012), besides host density.

Leeches species of Glossiphoniidae family were observed on the gills of *M. lippincottianus* in low levels of infection, which is similar to the results described for *R. rutulus* from different ecosystems (RAKAUSKAS; BLAZEVICIUS, 2009). Glossiphoniidae are common parasites infecting freshwater fish worldwide, but they can occur in high density in some species of hosts (SKET; TRONTELJ, 2008). However, among freshwater fish inhabiting the Brazilian rivers and lakes, the species of the genera *Helobdella* and *Mymyzobdella* have been more common (TAKEMOTO et al., 2009).

Dolops longicauda occurred in low levels of infection on the gills of *M. lippincottianus*. This argulid is distributed in fish throughout Uruguay, Argentina, and Brazil (States of Mato Grosso, São Paulo, Paraná, Rio Grande do Sul, and Amazonas) (MALTA, 1998). However, this study is the first one to relate the occurrence of *D. longicauda* in *M. lippincottianus*, and also expand the occurrence of this parasite species for the eastern Amazon region.

In *M. lippincottianus* of the eastern Amazon, low levels of infection by Digenea metacercarie were observed on the gills, and *D. pacupeva* metacercarie were collected in the intestine. However, these levels of infection by *D. pacupeva* were lesser than those described for this same host from the Paraná River basin (MOREIRA et al., 2009; YAMADA et al., 2012), which was probably due to a lower ingestion of the infective stages of this digenean.

Differences in the abundance of *D. pacupeva* in *M. lippincottianus* were also reported by Moreira et al. (2009). Yamada et al. (2012) mentioned that ontogenetic alterations in the diet or habitat will make *M. lippincottianus* more susceptible to infections by *D. pacupeva*, a parasite that accumulates in the intestine. The species within Trematoda needs mollusks as first intermediate hosts (MOREIRA et al., 2009; MORLEY, 2012), and fish such as *M. lippincottianus* are the definite host of *D. pacupeva*. Although the main role of cercariae of these parasites, which are components of zooplankton (meroplankton), being to find and infect the target host; secondarily, they play an important role in the trophic web of aquatic environments. When they migrate in the water column searching for target hosts, they also become a food source for fish (MORLEY, 2012), including *M. lippincottianus*, a pelagic host, which showed high level of infection by *D. pacupeva*.

Mettynnis lippincottianus is an omnivorous fish that feeds on aquatic plants, phytoplanktonic algae, and at times will eat microcrustaceans, and detritus (FROESE; PAULY, 2013; SANTOS et al., 2004), but along the Igarapé Fortaleza basin it was found that this fish is a frequent predator of microcrustaceans and other invertebrates. Consequently, it became infected by four species of nematodes: *P. (S.) inopinatus*, *ProcamaULLAUS (S.)* sp., *S. oxydoras* and *ContraCAECAUM* sp. *S. oxydoras* was the predominant nematode; similar to that described for this same host from Paraná river basin (MOREIRA et al., 2009; YAMADA et al., 2012). On the other hand, the hosts of the present study showed higher levels of *P. (S.) inopinatus*, *ProcamaULLAUS (S.) inopinatus* and *ContraCAECAUM* larvae, which have low parasitic specificity (MORAVEC, 1998; MOREIRA et al., 2009). Chironomids are intermediate hosts of *P. (S.) inopinatus* while microcrustaceans are...
intermediate hosts of *Contracaecum* sp. (MOREIRA et al., 2009). Even though *S. oxydoras* is a nematode with a direct life cycle, it uses *Oxydoras kneri* (MORAVEC, 1998) and *M. lippincottianus* to reach its adult stage.

The Kn values of *M. lippincottianus* indicated that the body condition of the hosts was not affected by high infection of ectoparasites and endoparasites. The abundance of *I. multifiliis, D. pacupeva* and *S. oxydoras* was higher in fish with better relative conditions. Similarly, for *M. lippincottianus* from Paraná River basin was reported that the largest fish were infected by *D. pacupeva* and *S. oxydoras* and showed higher Kn values (MOREIRA et al., 2010).

Larger hosts support a higher degree of infection by these parasites because such parasites are not pathogenic and cause little harm to their host. On the other hand, more pathogenic and abundant parasites may reduce the condition factor of hosts (LACERDA et al., 2012). This is because they have minor chance of reacting to the infections when their immunological system does not aptly respond to the parasite infection.

The total length (5.0 - 10.0 cm) of *M. lippincottianus* (juveniles and sub-adults), which may be an expression of their age, showed negative correlation with abundance of *Contracaecum* larvae and Kn, indicating that larger and older individuals ingested a smaller quantity of food containing infective stages of these nematodes. Only host body weight showed a positive correlation with abundance of *I. multifiliis* and *S. oxydoras*, which indicates that larger-sized hosts accumulate higher quantities of these parasites. For this same host in the Paraná river basin, positive correlation was found between total length and abundance of *Contracaecum* sp., *D. pacupeva* and *S. oxydoras* (YAMADA et al., 2012), whose fish examined had from 1.4 - 13.4 cm in total length and were at all stages of its life cycle (fingerlings, juveniles, and adults). However, such discrepancies may have been caused by differences in ecosystems and variations in size (age) of the hosts that were examined in both studies.

Conclusion

Metynnis lippincottianus, a pelagic fish, showed diversity of ectoparasites and endoparasites. If one considers that this freshwater fish spends a greater part of its life cycle in areas with vegetation, it may be feeding on microcrustaceans and possibly, on cercariae of *D. pacupeva* and ostracods mollusks, which are constant items of their diet. Due to low parasites diversity, the HB was not correlated with the length of the hosts, which indicates little ontogenic variation in the diet of this host in its juvenile and sub-adult stages. Our results indicated that juveniles and sub-adults *M. lippincottianus* are omnivore fish during these phases of its life cycle. This study records the first occurrence of *I. multifiliis* in *M. lippincottianus*, and expands the occurrence of *D. pacupeva* and *S. oxydoras* for the Amazon region.
MORAVEC, F. **Nematodes of freshwater fishes of the Neotropical region.** Prague: Academia, 1998.
MORLEY, N. J. Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats. *Hydrobiologia*, v. 691, p. 7-10, 2012.
MOREIRA, L. H. A.; TAKEMOTO, R. M.; YAMADA, F. H.; CESCHINI, T. L.; PAVANELLI, G. C. Ecological aspects of metazoan endoparasites of *Metynnis lippincottianus* (Cope, 1870) (Characidae) from Upper Paraná river floodplain, Brazil. *Helminthologia*, v. 46, n. 4, p. 214-219, 2009.
MOREIRA, L. H. A.; YAMADA, F. H.; CESCHINI, T. L.; TAKEMOTO, R. M.; PAVANELLI, G. C. The influence of parasitism on the relative condition factor (Kn) of *Metynnis lippincottianus* (Characidae) from two aquatic environments: the upper Paraná river floodplain and Corvo and Guairacá rivers, Brazil. *Acta Scientiarum. Biological Sciences*, v. 32, n. 1, p. 83-86, 2010.
NEVES, L. R.; PEREIRA, F. B.; TAVARES-DIAS, M.; LUQUE, J. L. Seasonal influence on the parasite fauna of a wild population of *Astronotus ocellatus* (Perciformes: Cichilidae) from the Brazilian Amazon. *The Journal of Parasitology*, v. 99, n. 4, p. 718-721, 2013.
RÖZSA, L.; REICZIGEL, J.; MAJOROS, G. Quantifying parasites in samples of hosts. *The Journal of Parasitology*, v. 86, n. 2, p. 228-232, 2000.
SANTOS, G. M.; MERONA, B.; JURAS, A. A.; JÉGU, A. *Peixes do baixo rio Tocantins: 20 anos depois da Usina Hidroelétrica Tucuruí*. Brasília: Eletronorte, 2004.