Cilostazol Activates Function of Bone Marrow-Derived Endothelial Progenitor Cell for Re-endothelialization in a Carotid Balloon Injury Model

Rie Kawabe-Yako1,2, Masaaki Ii3,1, Osamu Masuo2, Takayuki Asahara1,4, Toru Itakura2

1 Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation, RIKEN Center for Developmental Biology, Kobe, Japan, 2 Department of Neurosurgery, Wakayama Medical University, Wakayama, Japan, 3 Group of Translational Stem Cell Research, Department of Pharmacology, Osaka Medical College, Osaka, Japan, 4 Department of Regenerative Medicine Science, Tokai University School of Medicine Kanagawa, Japan

Abstract

Background: Cilostazol (CLZ) has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM)-derived endothelial progenitor cell (EPC) contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs.

Methodology/Principal Findings: Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2 weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neo-intima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury.

Conclusions/Significance: CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neo-intima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for endothelial regeneration, which is a key event for preventing atherosclerosis or restenosis after vascular intervention.

Introduction

Re-endothelialization inhibits neointimal thickening, thereby suppressing development of the substrate for lipid deposition and macrophage accumulation that is believed to induce the formation of atherosclerotic lesions and may contribute to restenosis. Drug-eluting stents (DESs) have significantly reduced the rate of restenosis; however, DESs also appear to delay re-endothelialization [1]. This delay results in excessive rates of thrombosis, which could increase the occurrence of acute coronary syndromes. Endothelial cell loss from arterial wall resulting from mechanical removal (hemodynamic forces, PTCA, stenting) or cell apoptosis, might induce a cascade of events giving rise to vascular inflammation, smooth muscle cells proliferation and activation of thrombosis and lead to neointimal hyperplasia and vascular remodeling, eventually inducing restenosis, that is key features of atherosclerosis development, progression and complication. Thrombosis occurs as a consequence of the exposure of thrombogenic surfaces, both stent and denuded vascular wall, to blood stream. Therefore, acceleration of re-endothelialization is a very useful not only to repair endogenously injured vessels, but also to reduce neointimal formation and prevent intrastent restenosis and atherosclerosis development.

Endogenous re-endothelialization is driven not only by migration and proliferation of resident endothelial cells (ECs) adjacent to sites of injury, but also with the activity of endothelial progenitor cells (EPCs). Studies performed in our laboratory and others demonstrated that both exogenously infused EPCs and EPCs derived from bone marrow (BM) which can be mobilized to circulation by ischemia [2,3], physical training [4], and the administration of statins [5,6], estrogen [7,8], and a variety of cytokines [9,10,11], recruited to sites of arterial injury, where they promote re-endothelialization directly by the differentiation into mature endothelial cells and also indirectly by stimulating resident ECs and enhancing above process via EPC-released cytokines.
Cilostazol (CLZ) is a selective inhibitor of phosphodiesterase 3 (PDE3), and CLZ increases intracellular cAMP content and activates protein kinase A (PKA) [12], resulting in antiplatelet aggregation and peripheral vasodilatation. CLZ has therefore been used as a vasodilating anti-platelet drug for the treatment of ischemic symptoms in chronic peripheral arterial obstruction or intermittent claudication and for preventing recurrence of cerebral infarction [13,14]. CLZ also inhibits vascular smooth muscle cell proliferation and has been shown to reduce neointima formation following arterial injury in animal models [15,16,17]. It has also been demonstrated that CLZ reduces post-procedural in-stent restenosis (ISR) after coronary artery stenting in the CREST trial [18,19] and carotid artery stenting. [20] For the mechanistic insight of anti-neointimal formation, CLZ was shown to protect ECs from apoptosis induced by serum deprivation, high d-glucose, and lipopolysaccharide (LPS) [21,22] via a hepatocyte growth factor production [23] and a suppression of superoxide production induced by remnant lipoprotein particles [24]. Moreover, it was reported that CLZ attenuated the expression of vascular cell adhesion molecule-1 (VCAM-1) [25] and monocyte chemoattractant protein-1 (MCP-1) [26] and intercellular adhesion molecule (ICAM-1) and P-selectin [27], as a result, CLZ prevented monocyte or neutrophil adhesion to endothelial cells. CLZ has pleiotropic effects on vascular remodeling following injury as described above, however, the effect of CLZ on re-endothelialization, specifically, including EPC contribution has not been investigated. We therefore tested the hypothesis that CLZ might accelerate re-endothelialization in a rat carotid balloon injury model, and analyzed the pathophysiological functions of CLZ in EPC biology.

Results

Cilostazol Accelerates Re-endothelialization in Injured Artery

To evaluate the effect of CLZ on re-endothelialization, the carotid endothelial recovery following balloon denudation was assessed by Evans Blue staining. CLZ treatment accelerated re-endothelialization in the balloon-injured arterial segments. (Figure 1A) At 2 weeks, the re-endothelialized area in the CLZ-treated rats (n = 7) was 80.4±5.8% of the total denuded area. In contrast, the re-endothelialized area was limited to 49.6±4.9% of the total denuded area in the control group (n = 7) (P<0.001). At 4 weeks, re-endothelialized area in both control group and CLZ group were around 90% of the denuded area (91.6±3.4% vs. 91.4±3.7%, NS), suggesting that although re-endothelialization was almost completed at 4 weeks in both groups CLZ accelerated re-endothelialization in subacute phase which is critical timing for preventing neointimal development following arterial injury. (Figure 1B).

Cilostazol Inhibits Neointima Formation following Arterial Injury

The effect of CLZ on neointimal thickening was also examined at 2 and 4 weeks after carotid injury. (Figure 2A) In control rats (n = 13), intimal area/medial area (I/M) ratios increased markedly at 2 weeks (1.38±0.10) and 4 weeks (2.10±0.17). In contrast, I/M ratios of animals treated with CLZ (n = 13) were 0.66±0.11 at 2 weeks and 1.21±0.33 at 4 weeks (P<0.05 vs. control animals). (Figure 2B) CLZ exhibited statistically significant reduction of
neointimal thickening as well as acceleration of re-endothelialization compared with controls.

Cilostazol Increases Number of Circulating EPCs

To assess the number of circulating EPCs in peripheral blood, EPC culture assay was performed by double staining of cultured EPCs with DiI-acLDL and BS1-lectin. (Figure 3-A and 3-B) The number of circulating EPCs exhibited significant two-fold increase in CLZ group compared to control group (239 ± 25 vs. 113 ± 14/mm², *P* < 0.001, n = 8) before surgery, and the significant difference of 2.3-fold increase between CLZ group and control group sustained until 2 weeks after surgery (380 ± 53 vs. 163 ± 77/mm², *P* < 0.001, n = 5). At 4 weeks after surgery, the number of circulating EPCs in both groups decreased to similar level (98 ± 16 vs. 70 ± 10, NS, n = 8). (Figure 3-C) Since the number of EPCs assessed by EPC culture assay correlates with those assessed by FACS analysis with markers for Sca-1/Flk-1 in mouse peripheral blood-derived mononuclear cells [7,8], these findings suggest that CLZ has an effect of EPC mobilization from BM and CLZ further boosts the mobilization in subacute phase following vascular injury.

Characterization of EPCs

EPCs derived from peripheral blood were cultured in EPC differentiation medium for 4 days and characterized by immunofluorescent staining. Most of the EPCs expressed both several leukocyte antigens (CD14, CD45, CD34) and endothelial antigens (CD31, fetal liver kinase 1 (Flk-1), endothelial nitric oxide synthase (eNOS), von Willebrand factor (vWF)). (Figure 3-D);

![Figure 2. Cilostazol reduces neointima formation in injured carotid artery.](image-url)

Cilostazol Enhances BM-derived EPC Contribution to Re-endothelialization

To assess the contribution of BM-derived EPCs to accelerated re-endothelialization, BM from Tie2/lacZ mice was transplanted to nude rats, and carotid arteries were harvested from Tie2/lacZ BM transplanted nude rats 2 weeks after balloon injury. In this model, BM-derived EPCs originated from donor transgenic mouse are detected by β-galactosidase expression by LacZ gene which is regulated by endothelial specific Tie2 promoter. The β-galactosidase expression was identified by X-gal chemical staining or by immunochemical staining in tissue samples. The number of X-gal-positive cells on luminal surface was significantly greater in CLZ group (n = 5) cells/mm² than that in control group (n = 5) (48 ± 4 vs. 31 ± 2 cells/mm², *P* < 0.01). (Figure 4A and 4B) In addition, BM-derived Tie2/LacZ-positive EPCs were further identified by double-fluorescence immunostaining for β-galactosidase and the endothelium-specific marker isolectin B4 with cross sections at 2 weeks after carotid injury. In cross sections of carotid arteries from control group, only a few β-gal-positive and isolectin B4 double-positive cells were observed on the luminal surface. In contrast, numerous double-positive cells were observed on the re-endothelialized luminal surface in carotid arteries from CLZ-treated animals. (Figure 4C) These findings thus suggest that accelerated re-endothelialization achieved with CLZ involves enhanced EPC recruitment to the regenerated neoendothelium.

Cilostazol Increases EPC Functions In Vitro

To explore active mechanism of CLZ on rat EPCs, we performed a series of in vitro studies. The proliferation activity of EPCs pre-incubated with CLZ was significantly increased.
compared with that of vehicle-treated EPCs in a dose dependent manner. (Optical density at 450 nm wavelength: Vehicle 0.143±0.002 vs. 1 µM 0.152±0.002, P<0.05; 3 µM 0.152±0.002, P<0.05; 10 µM 0.157±0.001, P<0.01; 30 µM 0.163±0.001, P<0.001). (Figure 5A).

Next, cultured EPCs were incubated with CLZ at the indicated concentrations for 3 hours for assessment of adhesion activity. The adhesion activity of EPCs pre-incubated with CLZ was significantly increased, and CLZ-induced adhesion activity effect was enhanced peaking at a dose of 10 mM. (Adhered cell number: Vehicle 6994±108 vs. 1 µM 8418±241; 3 µM 10156±237; 10 µM 11303±176; 30 µM 9954±231 cells/well, P<0.001). (Figure 5B).

The migration activity in response to SDF-1α of EPCs pre-incubated with CLZ was significantly increased compared with vehicle-treated EPCs in a dose dependent manner. (Migration index: Vehicle 1.68±0.25 vs. 1 µM 2.23±0.16, NS; 3 µM 4.24±0.46 P<0.05; 10 µM 4.68±0.67, P<0.001; 30 µM 4.46±1.00, P<0.001) However, there was no promotional effect of CLZ on VEGF-induced EPC migration activity. (Figure 5C) This finding allowed us to focus on the association of CLZ and SDF-1α/CXCR4 signaling pathway rather than VEGF signaling pathway in EPC biological functions.

Cilostazol Enhances EPC Differentiation and Homing-related Gene Expression

To investigate whether CLZ has an impact on EPC differentiation, the effect of CLZ on mRNA expressions of EC lineage markers CD31 and vWF was examined by quantitative real-time RT-PCR at 2 days of growth after 3-hour CLZ treatment with the indicated concentrations. The mRNA expressions of CD31 and vWF were significantly upregulated in cultured EPCs with CLZ at doses of 3, 10, and 30 µM (Figure 6A) and only 30 µM (Figure 6C), respectively. We next further confirmed the protein expressions of CD31 and vWF in cultured EPCs by immunofluorescent staining. Numerous staining positive cells for CD31 (Figure 6B) and vWF (Figure 6D) were observed at 2 days of growth after 3-hour CLZ (30 µM) treatment, while only a few cells stained positive for CD31 and vWF without CLZ. Thus, by evaluating the expression of 2 different EC markers, CLZ directly enhanced EPC differentiation to EC lineage in vitro. Based on the result of EPC adhesion/proliferation activity increase by CLZ and migration activity increase in response to SDF-1α but not VEGF as described above, the mRNA expression of integrin αv and integrin β3 which are representative adhesion molecules in EPCs, CXCR4 which is a receptor for SDF-1α, and...
VEGF which is a critical growth factor for EPC differentiation, migration, and proliferation were examined by quantitative real-time RT-PCR. EPCs were grown for 5 days and were then incubated with CLZ for 3 hours at the indicated concentrations. The mRNA expressions of integrin \(\alpha_v \) (Figure 7A) and integrin \(\beta_3 \) (Figure 7B) were significantly upregulated by CLZ treatment at a dose of 10 \(\mu \text{M} \) and doses of 10 \(\mu \text{M} \) and 30 \(\mu \text{M} \), respectively. CLZ treatment also upregulated CXCR4 mRNA expression (Figure 7C) at any concentrations and did VEGF mRNA expression (Figure 7D) at doses of 10 \(\mu \text{M} \) and 30 \(\mu \text{M} \). These findings will be able to explain the reason of EPC functional activation by CLZ treatment.

Cilostazol Enhances Medial Expression of SDF-1\(\alpha \) in Injured Artery

We then examined the expression of SDF-1\(\alpha \) in injured artery one week after surgery by both quantitative real-time RT-PCR and immunofluorescent staining. The SDF-1\(\alpha \) mRNA expression was significantly upregulated in the CLZ-treated rats compared with that in control rats. (Figure 8A) Next, SDF-1\(\alpha \)-positive cells were identified in injured vascular wall by double-fluorescent immunostaining for \(\beta \)-galactosidase (\(\beta \)-gal, red) and isolectin B4 (green) with cross sections at 2 weeks after carotid injury. IEL, internal elastic lamina (Arrowheads); I, intima; L, lumen; and M, media. Arrows indicate \(\beta \)-gal and isolectin B4-double positive cells.

Discussion

In the present study, we have demonstrated novel biological effects of CLZ on vascular remodeling following arterial injury,
specifically, involving BM-derived EPC contribution to re-endothelialization which is a critical response to vascular injury in terms of inhibiting neointima formation. The major findings of this study are: 1) CLZ inhibits neointima formation accelerating re-endothelialization in injured artery, 2) CLZ-induced accelerated re-endothelialization is mediated by EPC mobilization from BM and circulating EPC recruitment to neoendothelium, 3) CLZ enhances functional properties, adhesion, migration proliferation, and differentiation upregulating adhesion molecule integrin αvβ3, chemokine receptor CXCR4, and growth factor VEGF mRNA in EPCs, and 4) CLZ markedly increase the expression of SDF-1α, which is a ligand for its receptor CXCR4, in medial VSMCs after injury, suggesting that CLZ accelerates re-endothelialization with enhanced EPC recruitment via a SDF-1α/CXCR4 axis in injured arteries.

EPCs were classified into two major cell types according to their time-dependent appearance in culture, so-called early-outgrowth EPCs and late-outgrowth EPCs. Early-outgrowth EPCs (eoEPCs) were obtained by culturing isolated mononuclear cells for 4–7 days and late-outgrowth EPCs (loEPCs) were appeared after 14–21 days in culture demonstrating acetylated LDL uptake and binding to Ulex lectin with expressions of CD31, CD34 (generally at low levels), VE-cadherin, Flk-1 and vWF. Unlike mature endothelial cells, eoEPCs express a monocyte marker CD14 and a pan-leucocyte marker CD45 [28,29,30,31]. A beneficial effect on endothelial repair after injury has been shown by eoEPCs in previous studies [32,33,34], and cultured EPCs we used in this study were also characterized as eoEPCs.

As demonstrated in previous studies, EPCs quickly recruit to sites of vascular injury by cytokines and growth factors [35] and stimulate neighbouring EC migration and proliferation by angiogenic growth factor production [36] contributing to endothelial regeneration in injured arteries. In addition, maintenance of normal number and function of circulating EPCs has
Figure 6. Cilostazol promotes EPC differentiation to endothelial lineage. Cultured EPCs were treated with Cilostazol at the indicated concentrations for 3 h and cultured for an additional 48 hours in EPC differentiation medium. Differentiation activity was examined by real-time RT-PCR analyses for CD31 (A) and vWF (C) mRNA expressions as endothelial markers. *P<0.05 and **P<0.01 vs. Vehicle. Representative immunofluorescence photomicrographs for CD31 (B) and vWF (D) in cultured EPCs treated with Cilostazol. Arrows indicate CD31- and vWF-positive cells. All experiments were performed in triplicate and confirmed the reproducibility.

doi:10.1371/journal.pone.0024646.g006

Figure 7. Cilostazol alters gene expression profile in cultured EPCs. Cultured EPCs were treated with Cilostazol at the indicated concentrations for 3 h, and total RNA was extracted. The expressions of adhesion molecule integrin αvβ3 (B), chemokine receptor CXCR4 (C) and growth factor VEGF (D) were examined by quantitative real-time RT-PCR analysis. *, P<0.05, **, P<0.01 and ***, P<0.001 vs. Vehicle. All experiments were performed in triplicate and confirmed the reproducibility.

doi:10.1371/journal.pone.0024646.g007
been reported to be an important novel endogenous vascular repair factor [37,38,39]. Therefore, recent studies have proposed that increase of circulating EPC number and activation of EPC function are unique strategies to enhance EPC-mediated re-endothelialization. The evidence of CLZ-induced EPC mobilization and homing to sites of injured artery for re-endothelialization that we have demonstrated in this study may give rise to a novel therapeutic strategy for vascular remodeling following vascular intervention as an EPC mobilizer/activator. Our study has also indicated that CLZ enhanced EPC functional properties of adhesion, proliferation, and migration, exhibiting the following possible mechanistic insight in the pathophysiological role of EPCs in re-endothelialization.

Vitronectin, an extracellular matrix protein, has been shown to influence cellular migration and differentiation [40,41,42], and Dufloucq et al. showed that VN expression was upregulated in injured rat carotid artery [43]. Our in vitro data of integrin \(\alpha v\beta 3 \) mRNA upregulation by CLZ treatment in EPCs can therefore demonstrate this study may give rise to a novel therapeutic strategy for vascular remodeling following vascular intervention as an EPC mobilizer/activator. Our study has also indicated that CLZ enhanced EPC functional properties of adhesion, proliferation, and migration, exhibiting the following possible mechanistic insight in the pathophysiological role of EPCs in re-endothelialization.

Vitronectin, an extracellular matrix protein, has been shown to influence cellular migration and differentiation [40,41,42], and Dufloucq et al. showed that VN expression was upregulated in injured rat carotid artery [43]. Our in vitro data of integrin \(\alpha v\beta 3 \) mRNA upregulation by CLZ treatment in EPCs can therefore explain the enhanced EPC adhesion activity against VN and EPC recruitment to injured vascular wall. Moreover, since interaction of integrin \(\alpha v\beta 3 \) and VN is important for cell differentiation [42], upregulation of integrin \(\alpha v\beta 3 \) in EPCs is also helpful for EPC differentiation to EC lineage following the attachment on denoendothelialized vascular wall. On the other hand, for EPC recruitment to injured vascular wall, a certain chemokine produced from injured artery is also crucial as well as adhesion molecule. Indeed, previous mouse studies have shown that SDF-1\(\alpha \) protein was expressed in injured carotid arteries with a marked mobilization of circulating Sca-1\(^{+}\)Lineage\(^{-}\) progenitor cells involving EPCs in peripheral blood resulting in cell homing to sites of re-endothelialization, and neutralization of SDF-1\(\alpha \) caused delayed re-endothelialization in injured arteries [44,45,46,47]. The receptor for chemokine SDF-1\(\alpha \), CXCR4, in EPCs are essential for the homing [45] and CXCR4-blocked EPCs could not recruit to injured arteries [33,48]. In contrast, overexpression of CXCR4 by gene transfer improves functional properties of human EPCs and enhances re-endothelialization in injured artery [49]. These evidences clearly show that SDF-1\(\alpha \)/CXCR4 axis is critical for EPC recruitment to injured vascular wall, and therefore upregulation of both CXCR4 in circulating EPCs and SDF-1\(\alpha \) in injured medial VSMCs by CLZ treatment might synergistically promote EPC-mediated re-endothelialization and CLZ failed to promote VEGF-induced migration activity of EPCs (Figure 5C) in our study. In addition, since SDF-1\(\alpha \) is a releasing chemokine, SDF-1\(\alpha \) produced from injured medial VSMCs may remotely influence BM and contribute to EPC mobilization from BM into circulation. Indeed, a previous report [48] and our data that timing of EPC mobilization and recruitment to injured arterial

![Figure 8. Cilostazol enhances SDF-1 expression in injured carotid artery.](https://example.com/figure8.png)
Materials and Methods

All procedures and animal care were approved by the Wakayama medical university Institutional Animal Care and Use Committee (Approval Number: 351) and the Ethical Committee in Institute of Biomedical Research and Innovation (IBRI)/RIKEN Center for Developmental Biology (Approval Number: AH21-02), and complied with the Japanese Physiological Society Guidelines for the Care and Use of Laboratory Animals. Cilostazol-[6-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2-(1H)-quinolinone (CLZ) were gifted from Otsuka Pharmaceutical (Tokushima, Japan). The Male Sprague-Dawley (SD) rats (16 to 19 weeks old, 350 to 450 g) were divided into two groups. One group was fed a standard rat diet (control group), and the other group was given a 0.2% CLZ mixed diet (CLZ group) resulting in approximately 60–80 mg/kg/day of CLZ intake. Previous study showed 50 mg/kg/per day of CLZ intake for 14 days in rat was 1.43±0.90 mmol/L of plasma concentration [59], therefore, plasma CLZ level in this study could be equivalent to the dose in human cases [60]. CLZ containing special diet was given 2 weeks before and 2 or 4 weeks after carotid injury until they were euthanized. The rats were anesthetized and underwent carotid balloon denudation as described previously [61]. The carotid arteries were examined histologically and blood samples were collected for circulating EPC count before and 2 or 4 weeks after balloon injury. Detailed materials and methods are available in Text S1 and Table S1 and Table S2.

Supporting Information

Text S1 Supplementary Materials and Methods.

Table S1 Antibodies used in Immunocytochemical and Immunohistochemical Analyses.

Table S2 Primers used in Real-time RT-PCR Analysis.

Author Contributions

Conceived and designed the experiments: MI OM TA RK-Y. Performed the experiments: MI RK-Y. Analyzed the data: MI RK-Y. Contributed reagents/materials/analysis tools: MI OM TA TI RK-Y. Wrote the paper: MI TA TI RK-Y.
16. Takahashi S, Oda K, Fujisawa R, Maeda H, Hayashi S, et al. (1992) Effect of cilostazol, a cyclic AMP phosphodiesterase inhibitor, on the proliferation of rat aortic smooth muscle cells in culture. J Cardiovasc Pharmacol 20: 900–906.

17. Tsuchiike E, Fukuhara A, Kobayashi T, Kimio M, Yamashiki K, et al. (1998) Impact of cilostazol on restenosis after percutaneous coronary balloon angioplasty. Circulation 100: 21–26.

18. Douglas JS Jr., Holmes DR Jr., Kerriekes DJ, Grines CL, Block E, et al. (2005) Coronary stent restenosis in patients treated with cilostazol. Circulation 112: 2826–2832.

19. Zhang Z, Foster JK, Kolm P, Jurkovitz CT, Parker KM, et al. (2006) Reduced 6-month resource use and costs associated with cilostazol in patients after successful coronary stent implantation: results from the Cilostazol for RESTEnosis (CREST) trial. Am Heart J 152: 770–776.

20. Takigawa T, Matsumura Y, Hayakawa M, Nemoto S, Matsumura A (2010) Cilostazol reduces restenosis after carotid artery stenting. J Vase Surg 51: 51–56.

21. Kim KY, Shin HK, Choi JM, Hong KW (2002) Inhibition of lipopolysaccharide-induced apoptosis by cilostazol in human umbilical vein endothelial cells. J Pharmacol Exp Ther 303: 709–715.

22. Morishita H, Huguki J, Hayashi SI, Yo Y, Aoki M, et al. (1997) Role of hepatic artery growth factor in restenosis regulation: prevention of high Glu-glucose induced endothelial cell death by prostaglandins and phosphodiesterase-type 3 inhibitor. Diabetesologia 40: 1053–1061.

23. Aoki M, Morishita R, Hayashi S, Jo N, Matsumoto K, et al. (2001) Inhibition of neointimal formation after balloon injury by cilostazol, accompanied by improvement of endothelial dysfunction and induction of hepatic artery growth factor in rat diabetes model. Diabetesologia 44: 1034–1042.

24. Shin HK, Kim YK, Kim KY, Lee JH, Hong KW (2004) Remnant lipoprotein particles induce apoptosis in endothelial cells by NADPH oxidase-mediated production of superoxide and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation: prevention by cilostazol. Circulation 109: 1022–1028.

25. Osokwa M, Saito H, Xu X, Sumitani S, Koshara H, et al. (2001) Cilostazol represses vascular cell adhesion molecule-1 gene transcription via inhibiting NF-kappaB binding to its recognition sequence. Atherosclerosis 158: 121–128.

26. Nishio Y, Kashiyagui A, Takahara N, Hidaoka H, Kitaka R (1997) Cilostazol, a cAMP phosphodiesterase inhibitor, attenuates the production of monocyte chemotactic protein-1 in response to tumor necrosis factor-alpha in vascular endothelial cells. Horm Metab Res 29: 491–495.

27. Om H, Okamnya S, Shimizu M, Fukuotomi T, Nakamura A, et al. (2004) Cilostazol inhibits high glucose-mediated endothelial-neutrophil adhesion by decreasing adhesion molecule expression via NO production. Microvasc Res 68: 119–125.

28. Zampetaki A, Kirton JP, Xu Q (2008) Vascular repair by endothelial progenitor cells. Cardiovasc Res 78: 413–421.

29. Sanada F, Taniyama Y, Azuma J, Ikekushi K, Dosaka N, et al. (2009) Hepatocyte growth factor, but not vascular endothelial growth factor, attenuates angiogenesis II-induced endothelial progenitor cell senescence. Hypertension 55: 77–82.

30. Leone AM, Valgimigli M, Giannico MB, Zaccone V, Perfetti M, et al. (2009) Cilostazol activates EPC function. Circulation 119: 1193–1203.

31. Shin HK, Lee HR, Lee DH, Hong KW, Lee JH, et al. (2010) Cilostazol enhances neovascularization in the mouse hippocampus after transient forebrain ischemia. J Neurosci 30: 2230–2238.

32. Hashimoto A, Miyakoda G, Kihara T, Miyazaki T (2006) Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A- and phosphatidylinositol 3-kinase/Akt-dependent mechanism. Atherosclerosis 189: 530–537.

33. Aicher A, Heschen C, Mildler-Rihan C, Urbich C, Bling C, et al. (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9: 1370–1376.

34. Dzau VJ, Gnecchi M, Pachori AS, Morello F, Mello LG (2005) Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 46: 7–18.

35. Lamping K (2007) Endothelial progenitor cells: sowing the seeds for vascular regeneration. Circ Res 101: 1245–1253.

36. Chavakis E, Aicher A, Heschen C, Sasaki K, Kaiser R, et al. (2005) Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 201: 63–72.

37. Chavakis E, Hain A, Vini M, Carmona G, Bianchi ME, et al. (2007) High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 101: 204–212.

38. Rahman S, Patel Y, Murray J, Patel KV, Sumathipala R, et al. (2005) Novel hepatocyte growth factor (HGF) binding domains on thrombin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol 6: 8.

39. Dufourcq P, Couillin N, Albrecht D, Derart D, Moreau C, et al. (2002) Vitrinectin is up-regulated. Rift vascular injury and vitronectin blockade coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol 6: 8.

40. Chavakis E, Aicher A, Vini M, Carmona G, Bianchi ME, et al. (2007) Cilostazol Activates EPC Function PLoS ONE | www.plosone.org 10 September 2011 | Volume 6 | Issue 9 | e24646 2010) CXC-45 gene transfer contributes to in vivo neovascularization capacity of endothelial progenitor cells. Cardiovasc Res 88: 462–470.

41. Hiatt WR (2002) Pharmacologic therapy for peripheral arterial disease and CLI. In: Hiatt WR, ed. Vascular repair by endothelial progenitor cells. Circulation 102: 486–493.

42. Shim HK, Lee HR, Lee DH, Hong KW, Lee JH, et al. (2010) Cilostazol enhances neovascularization in the mouse hippocampus after transient forebrain ischemia. J Neurosci 30: 2230–2238.

43. Hashimoto A, Miyakoda G, Kihara T, Miyazaki T (2006) Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A- and phosphatidylinositol 3-kinase/Akt-dependent mechanism. Atherosclerosis 189: 530–537.

44. Aicher A, Heschen C, Mildler-Rihan C, Urbich C, Bling C, et al. (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9: 1370–1376.

45. Dimmeler S, Zeiher AM (2004) Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J Mol Med 82: 671–677.

46. Urbich C, Aicher A, Heschen C, Denbach E, Hofmann WK, et al. (2002) Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39: 735–742.

47. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 946–947.