Preparation of polymeric aluminum ferric sulphate from waste residue of aluminum industry

Li jun1, Ju Yanmei1,a

1Guangxi Vocational & Technical Institute of Industry, Nanning, China, 530001

Abstract. Polymeric aluminum ferric sulphate (PAFS) was prepared from high-sulfur bauxite flotation tailings and red mud by roasting, acid leaching and polymerization. The effects of leaching temperature, leaching time, liquid-solid ratio on the leaching rate of Al3+ and Fe3+ were investigated. The optimal leaching conditions are as follows: leaching temperature 100°C, leaching time 90 min, sulfuric acid concentration 4.5 mol/L and liquid-solid ratio 5 mg/L. Infrared spectroscopy and X-ray diffraction analysis was carried out on the PAFS prepared under the optimum process parameters. The characterization of PAFS shows that the synthesized PAFS had polymeric aluminum, iron and hydroxyl structures. Wastewater disposal test of synthetic PAFS shows that the removal rates of COD, turbidity and chromaticity are 45.61%, 75% and 94.18%, respectively.

1 Introduction

High-sulfur bauxite flotation tailings is a kind of solid waste discharged from the bauxite ore beneficiation process[1]. Red mud, a highly alkaline residue, is a solid waste in production of alumina[2]. With increasingly stringent environmental protection policies, how to dispose of red mud and bauxite tailings at low cost has become one of the problems that restrict the sustainable development of the aluminum industry. A lot of research has been conducted on red mud and bauxite tailings, which are mainly used for the production of construction materials[3-5], filling materials[6,7], refractory materials[8], functional materials[9-11], etc. However, there are still problems such as low value-added products or high process energy consumption or limited solid waste consumption, resulting that most of produced red mud and bauxite flotation tailings are stored in landfills[12]. Based on the principle of complementary composition among multiple solid wastes, a study was conducted on the preparation of polymeric aluminium ferric sulfate flocculant (PAFS) from red mud and bauxite tailings, aiming to promote the reduction and resourceization of solid wastes in aluminum industry and to achieve the purpose of turning waste into treasure.

2 Experimental

2.1. Materials

High-sulfur bauxite flotation tailings and red mud were collected from an alumina plant of Chinalco, composed of particles less than 100 screen mesh. The chemical composition of raw material is shown in Table 1.

Mineralogical composition of raw material was established by X-ray diffraction. As shown in Fig.1, goethite, hematite, quartz, and boehmite were identified as main phases of red mud; diaspora, pyrite, illite, kaolinite, and anatase were identified as main phases of high-sulfur bauxite flotation tailings.

Table 1. Chemical composition of raw material

Composition	Fe2O3	TiO2	Na2O	K2O	CaO
Red mud	67.01	3.92	1.725	0.078	0.35
Tailings	26.3	2.25	0.13	1.19	0.53

Composition	SiO2	Al2O3	MgO	S	LOI
Red mud	7.90	5.01	3.90	0.09	13.24
Tailings	36.81	8.99	0.27	0.95	--

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
2.2. Apparatus

Chemical reagents: Concentrated sulfuric acid 98%; Analytical pure sodium bicarbonate; 35% hydrogen peroxide.

Equipment: Electronic Balance (AUW120D); Rex laboratory pH meter (PHS-3E); Electrothermal thermostatic water bath (DK-S22/S24). The water bath apparatus is shown in Fig. 2, which is used to leach aluminum and iron from the waste slags.

2.3. Experimental method

With red mud and tailings as the main raw materials, the polymerized aluminum sulfate iron flocculant is synthesized by acid leaching, oxidation, alkalization, maturation and aging processes. The reaction mechanism of different process steps are shown in table 2.

Table 2. Flocculant preparation mechanism

Process steps	Mechanism of reaction
Microwave roasting	Fe₂S₃ + 2FeS₁ₓᵧ + (1-x) / 2S₂
Acid leaching	Al₂O₃ + H₂SO₄ = Al₂(SO₄)₃ + 3H₂O
Alkalization (Aluminum	Al₂(SO₄)₃ + nH₂O = Al₂(OH)ₙ(SO₄)₃-n/2 + n/2H₂SO₄
and iron	Fe₂(SO₄)₃ + nH₂O = Fe₂(OH)ₙ(SO₄)₃-n/2 + n/2H₂SO₄
Polymerization	mAl₂(OH)ₙ(SO₄)₃-n/2 = [Al₂(OH)ₙ(SO₄)₃-n/2]ₘ
	kFe₂(OH)ₙ(SO₄)₃-n/2 = [Fe₂(OH)ₙ(SO₄)₃-n/2]ₜ

The preparation process is shown in Fig.3.

The sulfur in the high sulfur bauxite flotation tailings was removed by roasting at 600°C for 20 min. The sulfur-containing flue gas from the roasting process are absorbed by red mud slurry; then the slag and red mud slurry are leached by a certain concentration of sulfuric acid to obtain a high concentration of aluminum and iron leachate; the leachate is finally made into polymerized aluminum sulfate and iron flocculant through alkalization, polymerization and maturation.

3 Results and discussion

3.1. Optimization of acid leaching process

The flue gas generated during the roasting of high sulfur bauxite flotation tailings is absorbed by the red mud slurry. A small amount of aluminum and iron ions are leached from the red mud slurry. In order to obtain a high and properly proportioned concentration of aluminum and iron ions, sintered slag is added to the slurry, which is half the weight of the red mud, and then further leached with sulfuric acid.

3.1.1 Effect of temperature on leaching rate of Al³⁺ and Fe³⁺

The relationship between leaching rate of aluminum and iron and temperature is shown in Fig. 4, which was obtained under the conditions of sulfuric acid concentration of 5.30 mol/L, liquid-to-solid ratio of 6 mL/g, and reaction time of 90 min.

It is clear from the illustrations that both Al³⁺ and Fe³⁺ leaching ratio increased with the increase of heating.
temperature. The reasonable explanation is that the Brownian motion between molecules intensifies and more effective collisions are completed as the temperature increases. Although the increase in temperature is beneficial to improve the leaching rate, the increase in temperature will make the energy consumption increase. Considering comprehensively, 100°C was selected as the suitable acid leaching temperature.

3.1.2 Effect of time on leaching rate of Al^{3+} and Fe^{3+}

The relationship between leaching rate of aluminum and iron and time is shown in Fig.5, which was obtained under the conditions of sulfuric acid concentration of 5.30 mol/L, liquid-to-solid ratio of 6 mL/g, and reaction temperature of 100°C.

As seen in Fig.5, the leaching rate of aluminum and iron increased with the increase of leaching time. For the first 90 min, the aluminum and iron leaching rates increased significantly, and then the increase was not obvious. Considering that the leaching process was carried out at high temperature, the suitable acid leaching time was determined to be 90 min from the viewpoint of energy consumption and efficiency.

3.1.3 Effect of sulfuric acid concentration on leaching rate of Al^{3+} and Fe^{3+}

The relationship between leaching rate of aluminum and iron and sulfuric acid concentration is shown in Fig.6, which was obtained under the conditions of reaction temperature of 100°C, liquid-to-solid ratio of 6 mL/g, and reaction time of 90 min.

As shown in Figure 6, the leaching rates of Al^{3+} and Fe^{3+} first increased and then decreased with the increase of sulfuric acid concentration. Specifically, when the sulfuric acid concentration is less than 4.5 mol/L, the higher the acid concentration, the more molecules can be activated per unit volume, which is more conducive to the leaching reaction. However, when the sulfuric acid concentration is higher than 4.5 mol/L, sulfuric acid reacts with aluminum and iron oxides to produce sulfate, which is enriched on the oxide surface and deteriorates the leaching conditions. Therefore, the high concentration of sulfuric acid does not promote the leaching of metal oxides. It is more appropriate to choose 4.5 mol/L sulfuric acid for leaching.

3.1.4 Effect of liquid-to-solid ratio on leaching rate of Al^{3+} and Fe^{3+}

The relationship between leaching rate of Al^{3+} and Fe^{3+} and liquid-to-solid ratio is shown in Fig.8, which was obtained under the conditions of reaction temperature of 100°C, sulfuric acid concentration of 4.5mol/L, and reaction time of 90 min.

It can be seen from Fig.7 that the leaching rate of Al^{3+} and Fe^{3+} increases with the increase of liquid-solid ratio. Especially when the liquid-solid ratio is less than 5 mg/L, it has a significant effect on the leaching rate. Considering comprehensively, the liquid-solid ratio of 5 mg/L is more reasonable.
3.2. Leachate polymerization and product characterization

Al\(^{3+}\) and Fe\(^{3+}\) are polymerized by adding alkalizer to the leaches, which are obtained under optimal leaching conditions. The polymerization process involves the following chemical reactions\(^{[13]}\):

\[
\begin{align*}
\text{Al}^{3+} + 3 \text{OH}^- & \rightarrow \text{Al(OH)}_3^{\text{aq}} \\
\text{Fe}^{3+} + 3 \text{OH}^- & \rightarrow \text{Fe(OH)}_3^{\text{aq}}
\end{align*}
\]

According to the literature\(^{[14,15]}\), 1 mol/L sodium bicarbonate solution was used as the alkalizer, and the polymerization temperature was controlled at 85°C. The alkalizer was slowly added and stirred until the pH of the solution reached 2.95. After the alkalization, the solution was matured for 4 h at 60°C with a stirring rate of 300 r/min. Finally, the liquid PAFS was obtained by static cool down for 24 h.

PAFS (liquid) was dried under vacuum and low temperature environment. XRD and IR patterns of the prepared PAFS samples are shown in Fig. 8.

3.3. Industrial wastewater disposal test

The industrial wastewater was obtained from a chemical plant in Xinxiang, Henan Province, with original pH=6.52, COD=198.6 mg/L, turbidity=260 NUT, and chromaticity=8(times). Experimental synthetic PAFS and commercial PAFS (purchased from Zhengzhou Yisheng Chemical Co., Ltd.) were used for flocculation tests, respectively. The initial pH of the wastewater was adjusted to 7.0 and then the mass of the PAFS injection was controlled to be 0.18% of the wastewater. The treatment effect is shown in Table 3, which shows that the COD removal performance of the experimental synthetic PAFS is slightly lower than that of commercial product, while the turbidity and chromaticity removal rates are comparable.

Table 3. Flocculation test results of industrial wastewater

Flocculant	COD/%	Chromaticity/%	Turbidity/%
Synthetic PAFS	45.61	75.0	94.18
Commercial PAFS	50.65	75.0	93.23
4 Conclusions

In this paper, solid wastes (red mud and bauxite tailings) from the aluminum industry were used as raw materials to synthesize PAFS by roasting, acid leaching and polymerization, and the following conclusions can be obtained.

(1) It is feasible to synthesize PAFS by roasting, acid leaching and polymerization with red mud and bauxite tailings as raw materials. This technology is expected to promote the reduction of solid waste in aluminum industry and turn waste into treasure.

(2) The optimal leaching conditions of Al$^{3+}$ and Fe$^{3+}$ are as follows: leaching temperature 100℃, leaching time 90 min, sulfuric acid concentration 4.5mol/L and liquid-solid ratio 5 mg/L.

(3) Wastewater disposal test shows that the COD removal performance of the experimental synthetic PAFS is slightly lower than that of commercial product, while the turbidity and chromaticity removal rates are comparable.

References

1. Dongyang Ma, Zhendong Wang, Min Guo, Mei Zhang, Jingbo Liu. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application[J]. Waste Management, 2014, 34(11).

2. Khairul M A, Zanganeh J, Moghtaderi B. The composition, recycling and utilisation of Bayer red mud [J]. Resources, Conservation and Recycling, 2018, 141:483-498.

3. YANG H Z, CHEN C P, PAN L J, et al. Preparation of double-layer glass-ceramic/ceramic tile from bauxite tailings and red mud[J]. Journal of the European Ceramic Society, 2009, 29(10): 1887-1894.

4. YANG H Z, CHEN C P, SUN H W, et al. Influence of heat-treatment schedule on crystallization and microstructure of bauxite tailing glass - ceramics coated on.

5. YAN Zuxing. The application and research of cement-red mud concrete. Concrete, 2000 (10):18-20 (in Chinese).

6. Mangen Mu, Xiaozhen Gao, Taoming Guo,Xinping Hu. Experimental Study of Goaf Filling Materials Based on Red Mud[J]. IOP Conference Series: Materials Science and Engineering, 2018, 301(1).

7. Yong Guang Fang, Zheng Ke Chen, Yu Qian. Red Mud Powders Applied on Filling Rubber Composite Material[J]. Advanced Materials Research, 2013, 2735.

8. LI Y, REN Y, PEI D, et al. Mechanism of pore formation in novel porous permeable ceramics prepared from steel slag and bauxite tailings[J]. ISIJ International, 2019: ISIJINT-2018-782.

9. SHEN X J, QIU G B, VUE C S, et al. Multiple copper adsorption and regeneration by zeolite 4A synthesized from bauxite tailings[J]. Environmental Science and Pollution Research, 2017, 24(27): 21829-21835.

10. A. Cruceanu, R. Zăvoianu, O. D. Pavel, M. Florea, L. Mara. Alternative valorization of red mud waste as functional materials with catalytic activity for sulfide oxidation in wastewater[J]. International Journal of Environmental Science and Technology, 2018, 15(4).

11. Yanju Liu, Ravi Naidu, Hui Ming. Red mud as an amendment for pollutants in solid and liquid phases [J]. Geoderma, 2011, 163(1).

12. Novais Rui M, Carvalheiras João, Seabra Maria P, Pullar Robert C, Labrincha João A. Innovative application for bauxite residue: Red mud-based inorganic polymer spheres as pH regulators [J]. Journal of hazardous materials, 2018, 358.

13. Tian Baozhen, Zhang Yun. The preparation and application of Al-Fe co-polymer inorganic coagulant[J]. Industrial water treatment, 1998, 18(1): 17-19 (in Chinese).

14. Zhu G, Zheng H, Chen W, et al. Preparation of a composite coagulant: Polymeric aluminum ferric sulfate (PAFS) for wastewater treatment[J]. Desalination, 2012, 285: 315-323.

15. Wang W H, Liu Q W, Ning Z W. Preparation of polymeric aluminum ferric sulphate from industrial dross. Industrial Water Treatment, 2000.

16. PARKER D R, BERTSCH P M. Identification and quantification of the "Al$^{3+}$" tridecameric aluminum polycation using ferron [J]. Environmental Science & Technology, 1992, 26(5): 908-914.

17. Zhao R, Liu ZA, Chang Y, et al. Preparation of PAFS Cationic Flocculant in Various Fe$^{3+}$/Al$^{3+}$ Molar Ratio [J]. Journal of Inner Mongolia Normal University(Natural Science Edition), 2011, 40(5): 508-511 (in Chinese).