ON CNZ RING PROPERTY VIA IDEMPOTENT ELEMENTS

IMAN JALAL ALI*, CHENAR ABDUL KAREEM AHMED

Department of Mathematics, Faculty of Science, University of Zakho, Iraq

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, the concept of \(e \)-CNZ rings is introduced as a generalization of symmetric rings and a particular case of \(e \)-reversible rings. Regarding the question of how idempotent elements affect CNZ property of rings. In this note, we show that \(e \)-CNZ is not left-right symmetric. We present examples of right \(e \)-CNZ rings that are not CNZ and basic properties of right \(e \)-CNZ are provided. Some subrings of matrix rings and some extensions of rings such as Jordan extension are investigated in terms of right \(e \)-CNZ.

Keywords: CNZ ring; \(e \)-reversible ring; \(e \)-symmetric ring; \(e \)-reduced ring; idempotent element.

2010 AMS Subject Classification: 16U80, 16N60, 16D80, 16S50.

1. INTRODUCTION

Throughout this paper, all rings are noncommutative with identity and associative unless otherwise stated. For a ring \(R \), let \(Id(R) \), \(Z(R) \) and \(N(R) \) denote the set of all idempotents, the center and the set of all nilpotents of \(R \), respectively. We denote the ring of integers (resp., modulo \(n \)) by \(\mathbb{Z} \) (resp., \(\mathbb{Z}_n \)). We write \(\text{Mat}_n(R) \) (resp., \(\text{U}_n(R) \)) for the ring of all \(n \) by \(n \) full matrix (resp., upper triangular matrix) over \(R \), and \(D_n(R) \) stands for the subring of \(\text{U}_n(R) \) having main diagonal entries equal. \(R[x] \), \(R[x; x^{-1}] \), \(R[[x]] \) and \(R[[x; x^{-1}]] \) denote the polynomial ring,
the Laurent polynomial ring, the power series ring and the Laurent power series ring over \(R \), respectively. We use \(E_{ij} \) for the matrix with \((i, j)\) entry 1 and elsewhere 0.

A ring is called reduced if it has no nonzero nilpotent elements. A ring \(R \) is called CNZ [1] if \(ab = 0 \) implies \(ba = 0 \) for \(a, b \in N(R) \). The ring \(R \) with \(e \in Id(R) \) is called left \(e \) – reversible (resp., right \(e \) – reversible) if \(ab = 0 \) implies \(eba = 0 \) (resp., \(bae = 0 \)) for any \(a, b \in R \), and \(R \) is \(e \) – reversible [13] if it is both left and right \(e \) – reversible. The ring \(R \) is called left (resp., right) \(e \) – reduced [16] if \(eN(R) = 0 \) (resp., \(N(R)e = 0 \)), and also \(R \) is \(e \) – symmetric [16] if \(abc = 0 \) for all \(a, b, c \in R \) implies \(acbe = 0 \). The ring \(R \) is von Neumann regular [6] if for each \(a \in R \), there is a \(b \in R \) such that \(a = aba \). An element \(r \) of a ring \(R \) is central if \(ar = ra \) for all \(a \in R \), and \(R \) is said to be abelian [2] if every idempotent is central. Also an idempotent \(e \) of \(R \) is called right (resp., left) semicentral [4] if for each \(a \in R \), \(ea = eae \) (resp., \(ae = eae \)). \(R \) is called left (resp. right) \(e \) – semicommutative [14] if \(ab = 0 \) implies \(eaRb = 0 \) (resp. \(aRbe = 0 \)) for any \(a, b \in R \), and \(R \) is \(e \) – semicommutative if it is both left and right \(e \) – semicommutative. The ring \(R \) is reflexive [10] ring if \(aRb = 0 \) then \(bRa = 0 \) for any \(a, b \in R \).

2. Properties of Right \(e \) – CNZ Rings

In this section we deal with the basic properties of right \(e \) – CNZ rings. Being with the following definition.

Definition 2.1. Let \(R \) be a ring and \(e \in Id(R) \) with \(e \neq 0 \). Then \(R \) is called right \(e \) – CNZ (resp., left \(e \) – CNZ) if for any \(a, b \in N(R) \), \(ab = 0 \) implies \(bae = 0 \) (resp., \(eba = 0 \)). The ring \(R \) is \(e \) – CNZ if it is both left and right \(e \) – CNZ.

It is obvious that a ring \(R \) is CNZ if and only if \(R \) is \(1 \) – CNZ. The following example shows that \(e \) – CNZ property is not left-right symmetric. Also, the CNZ property of a ring with respect to an idempotent \(e \) depends on \(e \). There are rings \(R \) and idempotents \(e_1 \) and \(e_2 \) such that \(R \) is right \(e_1 \) – CNZ but not right \(e_2 \) – CNZ as the following example shows.

Example 2.2. Assume the ring \(R = U_2(Z_4) \) with \(E_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \), \(E_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \) \(\in Id(R) \), and \(N(R) = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, c \in \{0, 2\}, \ b \in Z_4 \right\} \). Then the followings hold.
(1) R is not CNZ.

(2) R is left $E_1 - CNZ$ but not right $E_1 - CNZ$.

(3) R is right $E_2 - CNZ$ but not left $E_2 - CNZ$

Solution. (1) R is not CNZ by [1, Example 2.8].

Let $A, B \in N(R)$ with $AB = 0$. Then BA is of the form
\[
\begin{pmatrix}
0 & x \\
0 & 0
\end{pmatrix}
\]
where $x \in \mathbb{Z}_4$. Assume that $x \neq 0$.

(2) R is left $E_1 - CNZ$ but R is not right $E_1 - CNZ$, for $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$ in $N(R)$
we have $BAE_1 = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \neq 0$.

(3) $BAE_2 = 0$ implies that R is right $E_2 - CNZ$ but R is not left $E_2 - CNZ$ since $E_2 BA \neq 0$.

In the next result, we give a characterization of right $e - CNZ$ property in terms of subsets of rings and its proof is straightforward.

Proposition 2.3. The following are equivalent for a ring R.

1. R is right $e - CNZ$.
2. For any nonempty subsets A, B of $N(R)$, being $AB = 0$ implies $BAe = 0$.

Proof. (1) \Rightarrow (2): Assume that (1) holds. Let $AB = 0$ for two subsets A, B of $N(R)$. Then $ab = 0$ for all $a \in A$ and $b \in B$, and so $bae = 0$ by (1). Therefore $BAe = \sum_{a \in A, b \in B} bae = 0$.

(2) \Rightarrow (1): is straightforward. \qed

Proposition 2.4.

1. Every CNZ ring is $e - CNZ$ ring.
2. Every $e - reversible$ ring is $e - CNZ$.
3. Every right $e - reduced$ ring is right $e - CNZ$.
4. Every $e - symmetric$ ring is right $e - CNZ$.

Proof. (1) Let R be a CNZ ring with $e^2 = e \in R$. Suppose that $ab = 0$ for $a, b \in N(R)$. Then $ba = 0$ and so $bae = 0$ and $eba = 0$.

(2) Let R be an $e - reversible$ ring with $e^2 = e \in R$. Suppose that $ab = 0$ for $a, b \in N(R)$. Since $N(R) \subseteq R$ and R is $e - reversible$ then $bae = 0$ and $eba = 0$.

(3) Since every right e–reduced ring is right e–reversible by [13, Example 2.5(2)], and every right e–reversible is right e–CNZ by (2) above. Then every right e–reduced is right e–CNZ.

(4) Assume that R is an e–symmetric ring. Let $a, b \in N(R)$ with $ab = 0$. R is with identity $1ab = 0$. By assumption $1bae = 0$ implies $bae = 0$. Therefore R is right e–CNZ. □

There are right e–CNZ rings R for some $e \in \text{Id}(R)$ but not CNZ. This yields that the converse of Proposition 2.4.(1) need not be true in general, as shown in Example 2.2.

Also the converse of Proposition 2.4.(2) is not true by the following example.

Example 2.5. Let A be a reduced ring, consider the ring $R = U_2(A)$. Then R is CNZ by [1, Theorem 2.7]. Therefore R is e–CNZ by Proposition 2.4.(1). Now for $a = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in U_2(A)$, and let $e = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ we have $ab = 0$ but $bae = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq 0$. Therefore R is not e–reversible.

The following properties of right e–CNZ rings do an essential roles throughout this paper.

Proposition 2.6.

1. The class of right e–CNZ ring is closed under subrings.
2. For a family $\{R_\lambda : \lambda \in \Delta\}$ of rings, the following statements are equivalent:
 i. R_λ is right e_λ–CNZ;
 ii. The direct product $\prod_{\lambda \in \Delta} R_\lambda$ of R_λ is right e–CNZ;
 iii. The direct sum $\bigoplus_{\lambda \in \Delta} R_\lambda$ of R_λ is right e–CNZ.
3. Let R be an abelian ring and $e \in \text{Id}(R)$. Then R is right e–CNZ if and only if both eR and $(1 - e)R$ are right e–CNZ.

Proof. (1) Let S be a subring of a ring R. Note that $\text{Id}(S) = \text{Id}(R) \cap S$ for any subring S of a ring R. Now let $s_1, s_2 \in N(S)$ with $s_1s_2 = 0$. Since $N(S) \subseteq N(R)$ and by assumption $s_2s_1e = 0$. Thus S is right e–CNZ.

(2) $(i) \Rightarrow (ii)$, let $a = (a_\lambda)$, $b = (b_\lambda) \in N(\prod_{\lambda \in \Delta} R_\lambda) \subseteq \prod_{\lambda \in \Delta} N(R_\lambda)$ with $ab = 0$ for each $\lambda \in \Delta$. By assumption $b_\lambda a_\lambda e_\lambda = 0$ for each $\lambda \in \Delta$. Then $bae = 0$.

(ii) \Rightarrow (i), (ii) \Rightarrow (iii), (iii) \Rightarrow (i). The proof comes from (1) and the fact that $\text{Id}(\bigoplus_{\lambda \in \Delta} R_{\lambda}) = \bigoplus_{\lambda \in \Delta} \text{Id}(R_{\lambda})$.

(3) This follows (2). Since $R \cong eR \oplus (1 - e)R$. \square

Lemma 2.7. The following are equivalent for a ring R and $e \in \text{Id}(R)$:

(i) R is a CNZ ring.

(ii) R is both an $e - \text{CNZ}$ and $(1 - e) - \text{CNZ}$ ring.

Proof. (i) \Rightarrow (ii): clear.

(ii) \Rightarrow (i): Let $a, b \in N(R)$ such that $ab = 0$. Since R is $(1 - e) - \text{CNZ}$ ring, then $ba(1 - e) = 0$. We get that $ba = 0$ as R is an $e - \text{CNZ}$ ring. Hence R is a CNZ ring. \square

Theorem 2.8. Let R be a ring and $e \in \text{Id}(R)$ is left semicentral. Then R is a right $e - \text{CNZ}$ ring if and only if eRe is an CNZ ring.

Proof. Let R be a right $e - \text{CNZ}$ ring with $(exe)(eye) = 0$, for $x, y \in N(R)$. By assumption $(eye)(exe) = 0$. Thus eRe is CNZ.

Conversely, Suppose that eRe is CNZ and $ab = 0$ for $a, b \in N(R)$. Since e is left semicentral and $abe = 0$ this implies $(eae)(ebe) = 0$, and hence $(ebe)(eae) = 0$ by assumption. We get $bae = 0$, since e is left semicentral. Thus R is right $e - \text{CNZ}$. \square

Similar to Theorem 2.8., we have the following result.

Proposition 2.9. Let R be a ring and $e \in \text{Id}(R)$ is right semicentral in R. Then R is left $e - \text{CNZ}$ if and only if eRe is CNZ.

Proposition 2.10. Let e be a left semicentral then the following are equivalent for a ring R.

1. R is right $e - \text{CNZ}$.
2. For any $a, b \in N(R)$, if $ab \in \text{Id}(R)$, then $bae \in \text{Id}(R)$.

Proof. (1) \Rightarrow (2): Let R be a right $e - \text{CNZ}$ ring and $a, b \in N(R)$ with $ab \in \text{Id}(R)$. Being $ab \in \text{Id}(R)$ implies $a(1 - ba)b = 0$. Then $(1 - ba)bae = 0$ by (1). Since e is left semicentral, $bae = baeba$. So $bae \in \text{Id}(R)$.
(2) ⇒ (1): Assume that for any \(a, b \in N(R) \) being \(ab \in Id(R) \) implies \(bae \in Id(R) \). Let \(a, b \in N(R) \) with \(ab = 0 \). Then \(ab \in Id(R) \) entailing \(bae \in Id(R) \). Hence \(bae = baeba = babae = 0 \) by the facts that \(ab = 0 \) and \(e \) is left semicentral. Thus \(bae = 0 \). So \(R \) is right \(e - \text{CNZ} \).

It is not necessary for the ring \(R \) to be right \(e - \text{CNZ} \) even if the ring \(R/I \) is right \(\bar{e} - \text{CNZ} \). We illustrate this by the following example.

Example 2.11. Consider the ring \(R = U_3(Z) \) and its idempotent \(E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \). \(R \) is not right \(E - \text{CNZ} \). For \(A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \), \(B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \) in \(N(U_3(Z)) \) we have \(AB = 0 \) but \(BAE = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0 \). Now, for a nonzero proper ideal \(I = \begin{pmatrix} 0 & 0 & Z \\ 0 & 0 & Z \\ 0 & 0 & Z \end{pmatrix} \) of \(R \). \(R/I \cong U_2(Z) \) is \(e - \text{CNZ} \) by [1, Theorem 2.7] and Proposition 2.4.(1).

Proposition 2.12. Let \(R \) be a ring with an ideal \(I \) and \(e \in Id(R) \) with \(e \) is central. If \(R/I \) is a right \(\bar{e} - \text{CNZ} \) ring and \(I \) is reduced as a ring without identity, then \(R \) is right \(e - \text{CNZ} \).

Proof. Let \(a, b \in N(R) \) with \(ab = 0 \). Then \(\bar{a}, \bar{b} \in N(R/I) \) and \(\bar{a}\bar{b} = 0 \). Since \(R/I \) is right \(\bar{e} - \text{CNZ} \), \(bae \in I \) by assumption. Then \((bae)^2 = baeba = beabae = 0 \). Since \(I \) is reduced implies \(bae = 0 \). Therefore \(R \) is right \(e - \text{CNZ} \).

In the next proposition, we show that \(R \) being right \(e - \text{CNZ} \) not necessary imply \(R/I \) being right \(\bar{e} - \text{CNZ} \).

Proposition 2.13. Let \(R \) be an \(e - \text{symmetric} \) ring and \(I \) an ideal of \(R \) with \(I = r_R(S) \) for some subset \(S \) of \(N(R) \). Then \(R/I \) is right \(\bar{e} - \text{CNZ} \).

Proof. Let \(\bar{a}, \bar{b} \in N(R/I) \) such that \(\bar{a}\bar{b} = 0 \). It follows that \(S\bar{a} = 0 \). The \(e - \text{symmetricity} \) of \(R \) implies that \(Sbae = 0 \). Therefore \(bae \in I \). This leads to \(\bar{b}\bar{a} \bar{e} = 0 \). Thus \(R/I \) is right \(\bar{e} - \text{CNZ} \).

Proposition 2.14. Every right \(e - \text{seminocommutative reflexive} \) ring is right \(e - \text{CNZ} \).
Proof. Let \(R \) be a right \(e \)–semicommutative reflexive ring and \(a, b \in N(R) \) such that \(ab = 0 \) then \(aRbe = 0 \) since \(R \) is right \(e \)–semicommutative and reflexivity yields \(beRa = 0 \). Since \(bea = 0 \), we have \(bRea = 0 \), and so \(bReae = 0 \). By [14, Theorem 2.4(1)], \(e \) is left semicentral. This leads \(bRae = 0 \). Thus \(bae = 0 \). □

Proposition 2.15. Let \(R \) be a Von Neumann regular abelian ring. Then \(R \) is a right \(e \)–CNZ ring.

Proof. Let \(a, b \in N(R) \) with \(ab = 0 \). There exists an \(c \in R \) such that \(a = aca \). Multiply this equality by \(b \) from left, we get \(ba = b(aca) \). Also, \(ca \) is idempotent. Since \(R \) is abelian, we have \(bae = (ca) bae = c (ab) ae = 0 \). Therefore \(R \) is a right \(e \)–CNZ ring. □

3. Relations to Right \(e \)–CNZ Rings

In this section we study the related rings and the extension rings of right \(e \)–CNZ rings, concentrating on matrix rings, polynomial rings, Jordan extension and some other kinds of extensions.

For a reduced ring \(R \), we now show that \(\text{Mat}_n(R) \) is neither right \(E \)–CNZ nor left \(E \)–CNZ for some \(E \in \text{Id}(\text{Mat}_n(R)) \).

Example 3.1. Let \(R \) be a reduced and \(E_{ij} \) denote the matrix unit in \(\text{Mat}_n(R) \) whose \((i, j)\)–th entry is 1 and the others are zero. Consider \(A = E_{23}, B = E_{12} \) in \(N(\text{Mat}_n(R)) \) and \(E = E_{11} + E_{33} \in \text{Id}(\text{Mat}_n(R)) \). Then \(AB = 0 \) and \(BA \neq 0 \). Also, \(BAE \neq 0 \) and \(EBA \neq 0 \). Thus \(\text{Mat}_n(R) \) is not right (resp., left) \(E \)–CNZ. Therefore \(\text{Mat}_n(R) \) is neither right \(E \)–CNZ nor left \(E \)–CNZ.

If \(R \) is a reduced ring, then both \(U_2(R) \) and \(D_2(R) \) are \(e \)–CNZ for every idempotent \(e \) of \(R \) by [1, Theorem 2.7] and Proposition 2.4.(1).

The next example shows that the ring \(U_2(R) \) is not \(e \)–CNZ when we replace the condition “\(R \) is reduced” with condition “\(R \) is \(e \)–CNZ”.

Example 3.2. Let \(R = \mathbb{Z}_4 \) be the ring of integers modulo 4. Then \(R \) is \(e \)–CNZ but not reduced. By [1, Example 2.8].

For \(a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, b = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \in N(U_2(\mathbb{Z}_4)) \) we have \(a^2 = 0 \) and \(b^3 = 0 \). Then \(ab = 0 \). But for
\[e = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad bae = \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \neq 0. \text{ Therefore } U_2(Z_4) \text{ is not right } e - \text{CNZ}. \]

For a reduced ring \(R, D_3(R) \) need not be CNZ by the same argument as in the proof as noted in [1, Remark 2.6(2)]. We note also the following.

In case \(n \geq 3 \), the ring \(R \) being reduced and \(e \in \text{Id}(R) \) need not imply \(D_n(R) \) being \(eI_n - \text{CNZ} \) as illustrated below.

Example 3.3. Let \(R \) be a reduced ring and \(e \in \text{Id}(R) \) with \(E = eI_3 \in \text{Id}(D_3(R)) \).

Consider \(A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \) and \(B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in N(D_3(R)) \).

Then \(AB = 0 \) and \(BAE = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{pmatrix} = \begin{pmatrix} 0 & 0 & e \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0. \)

However, there are CNZ rings and idempotents \(E \) in \(D_3(R) \) such that \(D_3(R) \) is right \(E - \text{CNZ} \).

Theorem 3.4. Let \(R \) be a reduced ring and \(n \) any positive integer such that \(n \geq 3 \). Then \(D_n(R) \) is right \(E_{22} - \text{CNZ} \) ring.

Proof. Consider \(n = 3 \). Let \(A = \begin{pmatrix} 0 & b & c \\ 0 & 0 & d \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & b' & c' \\ 0 & 0 & d' \\ 0 & 0 & 0 \end{pmatrix} \in N(D_3(R)) \) with \(AB = 0 \).

Being \(R \) reduced gives rise to \(BA = \begin{pmatrix} 0 & 0 & bd' \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \). Hence \(BAE_{22} = 0. \)

For any ring \(R, U_n(R), D_n(R) \) need not be \(e - \text{CNZ} \) for \(n \geq 3 \) by the following example.

Example 3.5. Take \(U_3(Z) \) for \(A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in N(U_3(Z)) \) we get \(AB = 0 \), but \(BAE \neq 0 \) for \(E = eI_3 \in \text{Id}(U_3(Z)) \).
For any ring R and $n \geq 2$, $V_n(R)$ is the subring of $Mat_n(R)$.

$$V_n(R) = \begin{pmatrix}
 a_1 & a_2 & a_3 & \ldots & a_{n-1} & a_n \\
 0 & a_1 & a_2 & \ldots & a_{n-2} & a_{n-1} \\
 0 & 0 & a_1 & \ldots & a_{n-3} & a_{n-2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \ldots & a_1 & a_2 \\
 0 & 0 & 0 & \ldots & 0 & a_1
\end{pmatrix} : a_i \in R, 1 \leq i \leq n$$

The nilpotents of $V_n(R)$ is given by

$$N(V_n(R)) = \begin{pmatrix}
 a_1 & a_2 & a_3 & \ldots & a_{n-1} & a_n \\
 0 & a_1 & a_2 & \ldots & a_{n-2} & a_{n-1} \\
 0 & 0 & a_1 & \ldots & a_{n-3} & a_{n-2} \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \ldots & a_1 & a_2 \\
 0 & 0 & 0 & \ldots & 0 & a_1
\end{pmatrix} : a_1 \in N(R), a_2, \ldots, a_n \in R$$

and

$$R[x]/(x^n) \cong V_n(R).$$

Theorem 3.6. Let R be a reduced ring, $e \in Id(R)$ and any positive integer $n \geq 3$. Then $V_n(R)$ is right $eI_n - CNZ$.

Proof. Clearly $V_n(R)$ is reversible by [12, Theorem 2.5] and so it is CNZ. This yields $V_n(R)$ is right $eI_n - CNZ$. \qed

Given a ring R and an (R,R) – bimodule M, the trivial extension of R by M is the ring $T(R,M) = R \oplus M$ with the usual addition and the next multiplication: $(c_1,m_1)(c_2,m_2) = (c_1c_2,c_1m_2 + m_1c_2)$. This is isomorphic to the ring of all matrices $\begin{pmatrix} c & m \\ 0 & c \end{pmatrix}$, where $c \in R$ and $m \in M$ and the usual matrix operations are used. Note $D_2(R) = T(R,R)$.

Proposition 3.7. Let R be a reduced ring. Then R is a right $e - CNZ$ ring if and only if the trivial extension $T(R,R)$ is a right $E - CNZ$ for each idempotent E of $T(R,R)$.
Example 3.8. \(R = U_2(\mathbb{Z}) \), \(R \) is CNZ by [1, Theorem 2.7] thus \(R \) is right \(E - \) CNZ. But \(R \) is not reversible (and so not reduced).

For \(A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \) and \(B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in N(T(R,R)) \), with \(A^3 = 0 \) and \(B^2 = 0 \), and consider the idempotent \(E = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in T(R,R) \). Then \(AB = 0 \), but \(BAE \neq 0 \). Therefore \(T(R,R) \) is not right \(E - \) CNZ.

A ring \(R \) is Armendariz [18] if whenever any polynomials \(f(x) = \sum_{i=0}^{m} a_i x^i \), \(g(x) = \sum_{j=0}^{n} b_j x^j \in R[x] \) satisfy \(f(x)g(x) = 0 \), \(a_i b_j = 0 \) for all \(i, j \). And also a ring \(R \) is called power-serieswise Armendariz [11] if for all \(a \in C_{f(x)} \) and \(b \in C_{g(x)} \), \(ab = 0 \) whenever \(f(x), g(x) \in R[[x]] \) satisfy \(f(x)g(x) = 0 \). Every power-serieswise Armendariz ring is definitely Armendariz, but not conversely by [11, Example 2.1].

Proposition 3.9. Let \(R \) be an Armendariz ring, then \(R \) is right \(e - \) CNZ with \(e \in Id(R) \) if and only if \(R[x] \) is right \(e - \) CNZ with \(e \in Id(R[x]) \).

Proof. It is enough to show that \(R[x] \) is right \(e - \) CNZ when so is \(R \). Assume that \(R \) is right \(e - \) CNZ with \(e \in Id(R) \). Let \(f(x)g(x) = 0 \) for \(f(x) = \sum_{i=0}^{m} a_i x^i \), \(g(x) = \sum_{j=0}^{n} b_j x^j \in N(R[x]) \) because...
\(N(R[x]) = N(R)[x]\) by [3, Corollary 5.2]. By hypothesis, \(a_ib_j = 0\), for all \(i\) and \(j\) implies that, \(b_ja_i = 0\) for \(0 \leq i \leq m, 0 \leq j \leq n\). This leads to \(g(x)f(x)e = 0\). Thus \(R[x]\) is right \(e - \text{CNZ}\). \(\Box\)

Note that: \(\text{Id}(R) = \text{Id}(R[x]) = \text{Id}(R[[x]])\) by [15, Lemma 2.1(1)].

Proposition 3.10. If \(R\) is a power-serieswise Armendariz ring, then the following conditions equivalent:

(i) \(R\) is right \(e - \text{CNZ}\) with \(e \in \text{Id}(R)\).

(ii) \(R[x]\) is right \(e - \text{CNZ}\) with \(e \in \text{Id}(R[x])\).

(iii) \(R[[x]]\) is right \(e - \text{CNZ}\) with \(e \in \text{Id}(R[[x]])\).

Proof. Let \(R\) be a power-serieswise Armendariz ring. Then it is suffices to prove that \(R[[x]]\) is right \(e - \text{CNZ}\) when so is \(R\). Note that \(N(R[[x]]) \subseteq N(R)[[x]]\) for a power-serieswise Armendariz ring \(R\) by [11, Lemma 2.3(2)] and [8, Lemma 2]. Therefore, it can be shown that \(R[[x]]\) is right \(e - \text{CNZ}\) if \(R\) is right \(e - \text{CNZ}\) by similar computation to the proof of Proposition 3.9. \(\Box\)

For a ring \(R\) with an endomorphism \(\alpha\), we denote \(R[x; \alpha]\) a skew polynomial ring (or an Ore extension of endomorphism type) whose elements are the polynomials \(\sum_{i=0}^{n} a_i x^i\), \(a_i \in R\), with usual addition and the multiplication related to \(xa = \alpha(a)x\) for any \(a \in R\). the set \(\{x^j\}_{j \geq 0}\) is immediately recognized as a left Ore subset of \(R[x; \alpha]\), so that \(R[x; \alpha]\) can be found and the skew Laurent polynomial ring \(R[x, x^{-1}; \alpha]\) can be formed. Elements of \(R[x, x^{-1}; \alpha]\) are finite sums of elements of the form \(x^{-j} \alpha x^i\) for nonnegative integers \(i\) and \(j\) and \(a \in R\). The skew power series ring is denoted by \(R[[x; \alpha]]\), and whose elements are the series \(\sum_{i=0}^{\infty} a_i x^i\) for nonnegative integers \(i\) and \(a_i \in R\). The skew Laurent power series ring \(R[[x, x^{-1}; \alpha]]\) which contains \(R[[x; \alpha]]\) as a subring, arises as the localization of \(R[[x; \alpha]]\) with respect to the Ore set \(\{x^j\}_{j \geq 0}\), also when \(\alpha\) is an automorphism of \(R\), it consists elements of the form \(x^s a_s + x^{s+1}a_{s+1} + \cdots + a_0 + a_1 x + \cdots\), for \(a_i \in R\) and integers \(s \leq 0\) and \(i \geq s\), with usual addition and the multiplication is defined by \(xa = \alpha(a)x\) for any \(a \in R\).

A ring \(R\) with an endomorphism \(\alpha\) is called skew power-serieswise Armendariz (simply, SPA) [17, Definition 2.1] if for all skew power series \(p(x) = \sum_{i=0}^{\infty} a_i x^i\), \(q(x) = \sum_{j=0}^{\infty} b_j x^j \in R[[x; \alpha]]\), \(p(x)q(x) = 0 \iff a_ib_j = 0\) for all \(i, j\).
Theorem 3.11. Let R be an SPA ring and α an automorphism of R. Then the following are equivalent.

1. R is right e–CNZ for each $e \in \text{Id}(R)$.
2. $R[x; \alpha]$ is right e–CNZ for each $e \in \text{Id}(R[x; \alpha])$.
3. $R[x, x^{-1}; \alpha]$ is right e–CNZ for each $e \in \text{Id}(R[x, x^{-1}; \alpha])$.
4. $R[[x; \alpha]]$ is right e–CNZ for each $e \in \text{Id}(R[[x; \alpha]])$.
5. $R[[x, x^{-1}; \alpha]]$ is right e–CNZ for each $e \in \text{Id}(R[[x, x^{-1}; \alpha]])$.

Proof. The proof is similar to [1, Theorem 3.11]. \qed

Corollary 3.12. Let R be a power-serieswise Armendariz ring. The following are equivalent:

1. R is right e–CNZ.
2. $R[x]$ is right e–CNZ.
3. $R[x, x^{-1}]$ is right e–CNZ.
4. $R[[x]]$ is right e–CNZ.
5. $R[[x, x^{-1}]]$ is right e–CNZ.

An element a of a ring R is called right regular if $ac = 0$ implies $c = 0$ for $c \in R$. In the same way, left regular is defined and it is regular if it is both left and right regular (and hence non-zero divisor).

Note that: $\text{Id}(\Delta^{-1}R) = \{u^{-1}e : e \in \text{Id}(R) \text{ and } u \in \Delta\}$

Theorem 3.13. Let R be a ring, Δ be a multiplicatively closed subset of R consisting of central regular elements, $1 \in \Delta$ and $e \in \text{Id}(R)$. Then R is right e–CNZ if and only if $\Delta^{-1}R$ is right $(1^{-1}e)$–CNZ.

Note that: $\text{N}(\Delta^{-1}R) = \Delta^{-1}\text{N}(R)$.

Proof. Assume that R is right e–CNZ, and let $a, b \in \text{N}(R)$, $s, t \in \Delta$ such that $(s^{-1}a)(t^{-1}b) = 0$. Since $\Delta \subseteq \text{Z}(R)$. We get $0 = (s^{-1}t^{-1})(ab) = (st)^{-1}(ab)$, and so $ab = 0$. Thus $bae = 0$ by assumption so we have $0 = (ts1)^{-1}(bae) = (t^{-1}b)(s^{-1}a)(1^{-1}e)$. Hence $\Delta^{-1}R$ is right $(1^{-1}e)$–CNZ.

Note: $\text{N}(\Delta^{-1}R) = \Delta^{-1}\text{N}(R)$.

Proof. Assume that R is right e–CNZ, and let $a, b \in \text{N}(R)$, $s, t \in \Delta$ such that $(s^{-1}a)(t^{-1}b) = 0$. Since $\Delta \subseteq \text{Z}(R)$. We get $0 = (s^{-1}t^{-1})(ab) = (st)^{-1}(ab)$, and so $ab = 0$. Thus $bae = 0$ by assumption so we have $0 = (ts1)^{-1}(bae) = (t^{-1}b)(s^{-1}a)(1^{-1}e)$. Hence $\Delta^{-1}R$ is right $(1^{-1}e)$–CNZ.
Conversely, Let \(a, b \in N(R) \) with \(ab = 0 \). Then \((1^{-1}a)(1^{-1}b) = 0 \) This implies \((1^{-1}b)(1^{-1}a) \) \((1^{-1}e) = 0 \) since \(\Delta^{-1}R \) is \((1^{-1}e) - \text{CNZ} \), and \(1^{-1}(bae) = 0 \). Hence \(bae = 0 \). Thus \(R \) is right \(e - \text{CNZ} \).

\[\square \]

Corollary 3.14. For a ring \(R \) with \(e \in \text{Id}(R) \). \(R[x] \) is right \(e - \text{CNZ} \) if and only if \(R[x,x^{-1}] \) is right \(e - \text{CNZ} \).

Proof. Assume that \(R[x] \) is right \(e - \text{CNZ} \) and \(\Delta = \{1, x, x^2, \ldots \} \). Since \(R[x,x^{-1}] = \Delta^{-1}R[x] \). It follows that \(R[x,x^{-1}] \) is right \(e - \text{CNZ} \) by Theorem 3.13. The sufficient is obvious, since the subrings of \(e - \text{CNZ} \) rings are also \(e - \text{CNZ} \). \[\square \]

Let \(R \) be a ring and \(\alpha \) a monomorphism of \(R \). Now we consider the Jordan’s construction of an over-ring of \(R \) by \(\alpha \) [9]. Let \(A(R, \alpha) \) be the subset \(\{x^{-i}r x^j : \ r \in R \text{ and } i \geq 0 \} \) of the skew Laurent polynomial ring \(R[x, x^{-1}; \alpha] \). Notice that for \(j \geq 0 \), \(x^j r = \alpha^j(r)x^j \) implies \(r x^{-j} = x^{-j} \alpha^j(r) \) for \(r \in R \). This yields that \(x^{-i}r x^j = x^{-(i+j)} \alpha^j(r)x^{i+j} \) for each \(j \geq 0 \). It follows that \(A(R, \alpha) \) forms a subring of \(R[x, x^{-1}; \alpha] \) with the natural operations that follow: \(x^{-i}r x^j + x^{-i}sx^j = x^{-(i+j)}(\alpha^j(r) + \alpha^j(s))x^{i+j} \) and \((x^{-i}r x^j)(x^{-i}sx^j) = x^{-(i+j)}\alpha^j(r)\alpha^j(s)x^{i+j} \) for \(i, j \geq 0 \) and \(r, s \in R \).

Note that \(A(R, \alpha) \) is an over-ring of \(R \), and \(\bar{\alpha} : A(R, \alpha) \to A(R, \alpha) \) defined by \(\bar{\alpha}(x^{-i}r x^j) = x^{-i}\alpha(r)x^j \) is an automorphism of \(A(R, \alpha) \). Jordan demonstrated, with the use of left localization of the skew polynomial \(R[x; \alpha] \) with respect to the set of powers of \(x \), that for any pair \((R, \alpha) \), such an extension \(A(R, \alpha) \) always exists in [9]. This ring \(A(R, \alpha) \) is usually called the Jordan extension of \(R \) by \(\alpha \). Note that: \(\text{Id}(A) = \{x^{-i}r x^j : \ r \in \text{Id}(R) \text{ and } i \geq 0 \} \).

Theorem 3.15. Let \(R \) be an Abelian ring with a monomorphism \(\alpha \). Then \(R \) is a right \(e - \text{CNZ} \) if and only if the Jordan extension \(A = A(R, \alpha) \) of \(R \) by \(\alpha \) is a right \(x^{-k}ex^k - \text{CNZ} \).

Proof. It is enough to show the necessity by Proposition 2.6 (1). Suppose that \(R \) is right \(e - \text{CNZ} \) and \(ab = 0 \) for \(a = x^{-i}r x^j \), \(b = x^{-i}sx^j \in N(A) \) for \(i, j \geq 0 \) and for \(x^{-k}ex^k \in \text{Id}(A) \), \(e \in \text{Id}(R) \). Then \(r, s \in N(R) \) obviously and so \(\alpha^m(r), \alpha^n(s) \in N(R) \) for any non-negative integers \(m \) and \(n \), since \(\alpha(N(R)) \subseteq N(R) \). From \(ab = 0 \), we have \(\alpha^j(r)\alpha^i(s) = 0 \) and hence \(0 = \alpha^i(s)\alpha^j(r) \) e by assumption. This implies \(bae = (x^{-j}sx^j)(x^{-i}r x^j)(x^{-k}ex^k) = x^{-(k+j+i)}\alpha^j(r)\alpha^i(s)x^{k+j+i} = 0 \).

Thus the Jordan extension \(A \) of \(R \) by \(\alpha \) is right \(x^{-k}ex^k - \text{CNZ} \). \[\square \]
Let \(R \) be an algebra over a commutative ring \(C \). Due to Dorroh [5], consider the abelian group \(R \oplus C \) with multiplication defined by \((a, b)(c, d) = (ac + da + bc, bd)\) where \(a, c \in R \), \(b, d \in S \). By this operation \(R \oplus C \) becomes a ring called Dorroh extension of \(R \) by \(C \) and denoted by \(D(R, C) \). By definition, \(C \) is isomorphic to a subring of \(R \). By this reason we may assume that \(C \) is contained in the center of \(R \) and use this fact in the sequel.

Lemma 3.16. [13, Lemma 3.1] Let \((a, b) \in D(R, C)\). Then \((a, b) \in \text{Id}(D(R, C))\) if and only if \(a + b \in \text{Id}(R) \), \(b \in \text{Id}(C) \).

Theorem 3.17. Let \(R \) be an algebra over a commutative domain \(C \) and \(D \) is the Dorroh extension of \(R \) by \(C \). Then \(R \) is right \(e-CNZ \) with \(e \in \text{Id}(R) \) if and only if \(D(R, C) \) is right \((e, 0) - CNZ\).

Proof. By assumption, let \(R \) be right \(e-CNZ \) with \((a, 0)(c, 0) = 0\) for \((a, 0), (c, 0) \in N(D) = (N(R), 0)\). Then \((ac, 0) = 0\) we get \(ac = 0 \) since \(a, c \in N(R) \) and \(R \) is right \(e-CNZ \) we have \(cae = 0 \). Hence \((c, 0)(a, 0)(e, 0) = (cae, 0) = (0, 0)\). Therefore \(D(R, C) \) is right \((e, 0) - CNZ\).

Conversely, By supposition, suppose that \(D(R, C) \) is right \((e, 0) - CNZ\) and \(ab = 0 \) for \(a, b \in N(R) \). Then \((a, 0)(b, 0) = 0\). By supposition \((b, 0)(a, 0)(e, 0) = 0\) This implies \((bae, 0) = 0\). Thus \(bae = 0 \). Therefore \(R \) is right \(e-CNZ \). \(\square\)

4. Related Topics

As consequences of our observation in our previous sections, we introduce further results related to our main concept.

Let \(T \) and \(S \) be any rings. Take \(M \) as \((T, S)\) – bimodule and \(R \) the formal triangular matrix \(R = \begin{pmatrix} T & M \\ 0 & S \end{pmatrix} \). Note that: \(N(R) = \begin{pmatrix} N(T) & M \\ 0 & N(S) \end{pmatrix} \).

Proposition 4.1. Let \(R = \begin{pmatrix} T & M \\ 0 & S \end{pmatrix} \) where \(T \) and \(S \) are rings, and \(M \) an \((T, S)\) – bimodule. If \(R \) is a right \(e-k \) – CNZ ring, with \(\begin{pmatrix} e & k \\ 0 & g \end{pmatrix} \in \text{Id}(R) \), then:

1. \(T \) is a right \(e-CNZ \) ring,
(2) S is a right g–CNZ ring.

Proof. Assume that R is right $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix}$–CNZ, where $\begin{pmatrix} e & k \\ 0 & g \end{pmatrix} \in Id(R)$. Then by simple computation we can check that $e \in Id(T)$, $g \in Id(S)$.

(1) For the idempotent $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, eRe is right e–CNZ, since the subrings of e–CNZ are e–CNZ and $eRe \cong T$, so T is right e–CNZ.

(2) A similar discussion to (1) we show that S is right g–CNZ with $g = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. □

The converse of Proposition 4.1. is not true in general.

Example 4.2. Take $A = \mathbb{U}_2(\mathbb{Z})$ be right e–CNZ and $R = \begin{pmatrix} T_2(A) & M_2(A) \\ 0 & S_2(A) \end{pmatrix}$.

For $a = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in N(R)$ we have $ab = 0$, but for $e = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in Id(R)$, $bae \neq 0$. Hence R is not right e–CNZ.

Let R be a ring and S a subring of R and $T[R,S] = \{(r_1, r_2, \ldots, r_n, s, s, \ldots) : r_i \in R, s \in S, n \geq 1, 1 \leq i \leq n\}$. Then $T[R,S]$ is a ring under the componentwise addition and multiplication. In the following we give necessary and sufficient conditions for $T[R,S]$ to be right E–CNZ.

Proposition 4.3. Let R be a ring and S a subring of R with the same identity as that of R. Let $e \in Id(S)$ and $E = (e, e, e, \ldots) \in Id(T[R,S])$. Then the following are equivalent.

1. $T[R,S]$ is a right E–CNZ ring.
2. R and S are right e–CNZ rings.

Proof. (1) ⇒ (2) Let $a, b \in R$ be nilpotents with $ab = 0$. Let $A = (a, 0, 0, 0, \ldots)$, $B = (b, 0, 0, 0, \ldots)$. Then A and B are nilpotents in $T[R,S]$ and $AB = 0$. By (1) $BAE = 0$ which
implies \(bae = 0 \). Thus \(R \) is right \(e - \text{CNZ} \). Let \(s, t \in S \) be nilpotents with \(st = 0 \). Let \(X = (0, s, s, s, \ldots) \), \(Y = (0, t, t, t, \ldots) \in T[R, S] \). Then \(X \) and \(Y \in N(T[R, S]) \) and \(XY = 0 \). By (1) \(YXE = 0 \) which implies \(tse = 0 \). Therefore \(S \) is right \(e - \text{CNZ} \).

(2) \(\Rightarrow \) (1) Let \(a = (a_1, a_2, \ldots, a_n, b, b, b, \ldots) \) and \(c = (c_1, c_2, \ldots, c_m, d, d, \ldots) \in T[R, S] \) be nilpotents with \(ac = 0 \). Then all components of \(a \) and \(c \) are nilpotents. We may assume that \(n \leq m \). Then \(a_i c_i = 0 \) where \(1 \leq i \leq n \), so \(c_i a_i e = 0 \). If \(n + 1 \leq i \), then \(b c_i = 0 \) and \(b d = 0 \). Hence \(c_i b e = 0 \) and \(d b e = 0 \). It follows that \(BAE = 0 \). Similarly, if \(m > n \), then we have \(BAE = 0 \). So \(T[R, S] \) is right \(E - \text{CNZ} \).

Similar to the proof of Proposition 4.3., we have the next proposition:

Proposition 4.4. Let \(R \) be a ring and \(S \) a subring of \(R \) with the same identity as that of \(R \). Then the following hold.

1. Let \(e \in \text{Id}(R) \). Then \(R \) is right \(e - \text{CNZ} \) if and only if \(T[R, S] \) is right \((e, e, \ldots, e, 0, 0, \ldots) - \text{CNZ} \) for every integer \(n \geq 1 \).

2. Let \(e_0 \in \text{Id}(S) \) and \(e_1, e_2, \ldots, e_n \in \text{Id}(R) \). Then \(R \) is right \(e_i - \text{CNZ} \) for every \(i = 0, 1, \ldots, n \) if and only if \(T[R, S] \) is right \((e_1, e_2, \ldots, e_n, e_0, e_0, \ldots) - \text{CNZ} \).

The rings \(H_{(x,y)}(R) \) [7]: Let \(R \) be a ring, and let \(x, y \in Z(R) \) be invertible in \(R \).

Let \(H_{(x,y)}(R) = \left\{ \begin{pmatrix} a & 0 & 0 \\ c & d & f \\ 0 & 0 & g \end{pmatrix} \in \text{Mat}_3(R) \mid a, c, d, f, g \in R, \ a - d = xc, \ d - g = yf \right\} \). Then \(H_{(x,y)}(R) \) is a subring of \(\text{Mat}_3(R) \).

Theorem 4.5. Let \(R \) be a ring with \(e \in \text{Id}(R) \) and \(E = eI_3 \in H_{(x,y)}(R) \). Then \(R \) is right \(e - \text{CNZ} \) if and only if \(H_{(x,y)}(R) \) is right \(E - \text{CNZ} \).

Proof. For the necessity, assume that \(R \) is right \(e - \text{CNZ} \).

Let \(A = \begin{pmatrix} a & 0 & 0 \\ c & d & f \\ 0 & 0 & g \end{pmatrix}, \ \ B = \begin{pmatrix} s & 0 & 0 \\ t & u & v \\ 0 & 0 & w \end{pmatrix} \in N(H_{(x,y)}(R)) \) with \(AB = 0 \). Then \(a, d, g \) and \(s, u, w \) are nilpotents in \(R \) and \(as = 0, cs + dt = 0, du = 0, dv + fw = 0, gw = 0 \). By assumption \(sae = 0, ude = 0, wge = 0 \). We must show that \((ta + uc)e = 0 \) and \((uf + vg)e = 0 \) to get \(BAE = 0 \).
We use $a - d = xc, d - g = yf, s - u = xt$ and $u - w = yv$ in the sequel without reference. By using these equalities, we have $ta + uc = t^{-1}(s - u)a + uc = x^{-1}sa - x^{-1}ua + x^{-1}(xuc) = x^{-1}sa - x^{-1}u(a - xc) = x^{-1}sa - x^{-1}ud = x^{-1}(sa - ud)$.

Multiplying the latter equalities on the right by e yields $(ta + uc)e = x^{-1}sa - x^{-1}ud = 0$, since $sae = 0$ and $ude = 0$.

By the same way, $uf + vg = y^{-1}(uyf) + y^{-1}(u - w)g = y^{-1}u(yf + g) - y^{-1}wg = y^{-1}ud - y^{-1}wg$.

Multiplying the latter equalities on the right by e we get $(uf + vg)e = y^{-1}ude - y^{-1}wge = 0$ since $ude = 0$ and $wge = 0$. It follows that $BA = 0$. Thus $H_{(x,y)}(R)$ is right $E - \text{CNZ}$.

Conversely, Let $a, b \in N(R)$ with $ab = 0$. Let $A = aI_3, B = bI_3 \in N(H_{(x,y)}(R))$. Then $AB = 0$ and $BAE = 0$ since $H_{(x,y)}(R)$ is right $E - \text{CNZ}$ we get $bae = 0$. Therefore R is right $e - \text{CNZ}$. □

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] A. M. Abdul-Jabbar, C. A. K. Ahmed, T. K. Kwak, Y. Lee, On Commutativity of nilpotent elements at zero, Commun. Korean Math. Soc. 32 (2017), 811-826.
[2] N. Agayev, A. Harmanci, S. Halicioğlu, On abelian rings, Turk. J. Math. 34 (2010), 465-474.
[3] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra. 319 (2008), 3128-3140.
[4] G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim, J. K. Park, Triangular matrix representations, J. Algebra. 230 (2000), 558-595.
[5] J. L. Dorroh, Concerning adjunctions to algebras, Bull. Am. Math. Soc. 38 (1932), 85–88.
[6] K. R. Goodearl, Von Neumann regular rings, Bull. Am. Math. Soc. 3 (1979), 752-757.
[7] A. Harmanci, H. Kose, Y. Kurtulmaz, B. Ungor, Reflexivity of rings via nilpotent elements, Rev. Unión Mat. Argent. 61 (2018), 277–290.
[8] S. Hizem, A note on nil power serieswise Armendariz rings, Rend. Circ. Mat. Palermo. 59 (2010), 87-99.
[9] D. A. Jordan, Bijective extensions of injective ring endomorphisms, J. London Math. Soc. 2 (1982), 435–448.
[10] J. Y. Kim, J. U. Baik, On idempotent reflexive rings, Kyungpook Math. J. 46 (2006), 597-601.
[11] N. K. Kim, K. H. Lee, Y. Lee, Power series rings satisfying a zero divisor property, Commun. Algebra. 34 (2006), 2205–2218.
[12] N. K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra. 185 (2003), 207-223.
[13] H. Kose, B. Ungor, A. Harmanci, Reversible ring property via idempotent elements, arXiv:2011.10843 (2020).
[14] H. Kose, B. Ungor, A. Harmanci, Semicommutativity of Rings by the Way of Idempotents, Filomat. 33 (2019), 3497-3508.
[15] T. K. Kwak, Y. Lee, Y. J. Seo, Reduced property over idempotents, J. Korean Math. Soc. 29 (2021), 483-492.
[16] F. Meng, J. Wei, e-Symmetric rings, Commun. Contemp. Math. 20 (2018), 1500039.
[17] A. Nasr-Isfahani, A. Moussavi, On skew power serieswise Armendariz rings, Commun. Algebra, 39 (2011), 3114–3132.
[18] M. B. Rege, S. Chhawchharia, Armendariz rings, Proc. Jpn. Acad. A: Math. Sci. 73 (1997), 14–17.