On the p-ranks of the ideal class groups of imaginary quadratic fields

Jaitra Chattopadhyay1 · Anupam Saikia1

Received: 24 May 2022 / Accepted: 19 September 2022 / Published online: 9 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

For a prime number $p \geq 5$, we explicitly construct a family of imaginary quadratic fields K with ideal class groups Cl_K having p-rank $\text{rk}_p(\text{Cl}_K)$ at least 2. We also quantitatively prove, under the abc-conjecture that for sufficiently large positive real numbers X and any real number ϵ with $0 < \epsilon < \frac{1}{p-1}$, the number of imaginary quadratic fields K with the absolute value of the discriminant $d_K \leq X$ and $\text{rk}_p(\text{Cl}_K) \geq 2$ is $\gg X^{\frac{1}{p-1}-\epsilon}$. This conditionally improves the previously known lower bound of $X^{\frac{1}{p-1}}$ due to Byeon and the recent bound $X^{\frac{1}{p}/(\log X)^2}$ due to Kulkarni and Levin.

Keywords Quadratic number fields · Class numbers · Ranks of class groups

Mathematics Subject Classification Primary 11R11; Secondary 11R29

1 Introduction

The question of the divisibility of class numbers of quadratic fields has been an object of much study for a long time. Due to the works of Nagell [31], and later by Ankeny and Chowla [1], it is known that there exist infinitely many imaginary quadratic fields K with class numbers h_K divisible by any given integer $n \geq 2$. Much later, Yamamoto [37], Weinberger [36], and many others proved the analogue for real quadratic fields.
There has also been much work done towards the quantitative study (cf. [3, 5, 7–9, 16, 17, 20, 28, 30, 34, 35, 38]). Apart from these, the topic of indivisibility of class numbers (cf. [2, 4, 11, 22, 32]) and simultaneous divisibility and indivisibility of class numbers (cf. [10, 18, 23, 24]) has received much attention in recent times.

Since the ideal class group Cl_K of K is a finite abelian group, it makes sense to consider the m-rank of Cl_K, for various integers $m \geq 2$. The m-rank of Cl_K, denoted by $\text{rk}_m(\text{Cl}_K)$, is defined to be the maximal integer $r \geq 0$ such that $(\mathbb{Z}/m\mathbb{Z})^r \subseteq \text{Cl}_K$. Note that if $\text{rk}_m(\text{Cl}_K) \geq 1$, then it immediately follows that h_K is divisible by m. Thus, the study of the quantity $\text{rk}_m(\text{Cl}_K)$ sheds more light on the question of m-divisibility of h_K. In particular, the case $m = 3$ has been extensively studied (cf. [12, 13, 21, 27, 29, 39]).

In this article, we are concerned about the ranks of the ideal class groups of imaginary quadratic fields. For integers $m \geq 2$, $n \geq 0$ and a large positive real number X, let

$$N^m_n(X) = \{ K = \mathbb{Q}(\sqrt{-d}) : d > 0 \text{ is square-free}, |d_K| \leq X \text{ and } \text{rk}_m(\text{Cl}_K) \geq n \}.$$

The following question arises naturally.

Question 1 What is the asymptotic behaviour of $N^m_n(X)$ as $X \to \infty$?

In [29], Luca and Pacelli proved that $N^2_3(X) \gg X^{\frac{1}{2}}$. Yu [39] recently improved that lower bound to $X^{\frac{1}{2} - \varepsilon}$. Also, Levin et al. [27] proved that $N^5_3(X) \gg X^{\frac{1}{2} - \varepsilon}$ is known due to Byeon [6]. Very recently, Kulkarni and Levin [26] improved this and proved that $N^2_m(X) \gg X^{\frac{1}{p-1}}/(\log X)^2$. In the same paper, Kulkari and Levin improved the lower bound of $N^5_3(X)$ to $X^{\frac{1}{15}}/(\log X)^2$. The reader is encouraged to look into [14, 15] and [25] for similar developments along this line.

In this paper, using a result of Poonen [33] on the density of square-free values of multi-variate polynomials, we slightly improve the lower bound for $N^2_p(X)$ for any prime number $p \geq 5$, by extending the method used by Yu [39]. More precisely, we prove the following theorem.

Theorem 1 Let $p \geq 5$ be a prime number, ε a real number with $0 < \varepsilon < \frac{1}{p-1}$ and X a sufficiently large positive real number. Then under the validity of the abc-conjecture, we have $N^2_p(X) \gg X^{\frac{1}{p-1} - \varepsilon}$.

Remark 1 In the course of the proof of Theorem 1, we shall construct an explicit infinite family of imaginary quadratic fields with ideal class groups having p-rank at least 2 and then count the number of distinct fields in the family with discriminant $\leq X$. We shall make use of the square-free values of a multi-variate polynomial of degree p. In order to do so, we apply a result of Poonen [33] which is valid under the assumption of the abc-conjecture.
2 A family of quadratic fields with \(\text{rk}_p(\text{Cl}_K) \geq 2 \)

In what follows, \(p \) always denotes a fixed prime number \(\geq 5 \). For two non-zero real-valued functions \(f \) and \(g \), we use the notation \(f \ll g \) or \(f = O(g) \) to mean that \(\frac{|f|}{|g|} \) is bounded and \(f \asymp g \) to mean that both \(f \ll g \) and \(g \ll f \) hold.

In this section, we prove a proposition that provides a parametric family of imaginary quadratic fields with ideal class groups having \(p \)-rank at least 2. Then by appropriately choosing the parameters, we shall count how many of these fields have the absolute values of their discriminants \(\leq X \). Our following proposition is an extension of Lemma 2.1 of Yu [39].

Proposition 1 For a positive real number \(X \), let \(q \) be a prime number with \(q \asymp X^{\frac{1}{2p(p-1)}} \). Let \(a \) and \(b \) be integers with \(\frac{1}{2p}q^{\frac{p}{p-2}} < a, b < \left(\frac{1}{2p} + \frac{1}{2p^2} \right)q^{\frac{p}{p-2}} \) and let

\[
f_q(a, b) = 2(a^p + b^p)q^p - (a - b)^2q^{2p} - g(a, b)^2,
\]

where \(g(a, b) = \frac{a^p - b^p}{a - b} \). If \(X \) is sufficiently large and \(f_q(a, b) \) is a square-free integer \(\geq 4ab \frac{p-1}{p} \frac{p+1}{2} q^{\frac{p}{p-2}} \), then the ideal class group of the imaginary quadratic field \(\mathbb{Q}(\sqrt{-f_q(a, b)}) \) contains a subgroup isomorphic to \(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \).

Proof Let \(X_1 = g(a, b) + (a - b)q^p \), \(Y_1 = aq \), \(X_2 = g(a, b) - (a - b)q^p \) and \(Y_2 = bq \). Then we see that

\[
X_1^2 - 4Y_1^p = -f_q(a, b) = X_2^2 - 4Y_2^p. \tag{1}
\]

For the sake of brevity, let \(D = f_q(a, b) \). It follows that for integers \(a \) and \(b \) in the given range, we have \(D > 0 \) and \(D \asymp X \). Again, \(4ab \frac{p-1}{p} \frac{p+1}{2} q^{\frac{p}{p-2}} \asymp X^{\frac{p}{2p-2}} \). Thus, \(D \geq 4ab \frac{p-1}{p} \frac{p+1}{2} q^{\frac{p}{p-2}} \) for sufficiently large values of \(X \).

Since \(D \) is assumed to be square-free, we get from (1) that \(X_j \) is odd and, therefore, \(-D \equiv 1 \pmod{4}\). Also, for \(j = 1, 2 \), from Eq. (1), we obtain

\[
\frac{X_j + \sqrt{-D}}{2} \cdot \frac{X_j - \sqrt{-D}}{2} = Y_j^p \text{ in } \mathcal{O}_{\mathbb{Q}(\sqrt{-D})}.
\]

Hence, \(X_j, Y_j^p \in \mathcal{I}_j := \left\langle \frac{X_j + \sqrt{-D}}{2}, \frac{X_j - \sqrt{-D}}{2} \right\rangle \). Since \(X_j^2 - 4Y_j^p = -D \) is assumed to be square-free, we conclude that \(\gcd(X_j, Y_j) = 1 \). Therefore, \(\mathcal{I}_j = \mathcal{O}_K \) and consequently, \(\left\langle \frac{X_j + \sqrt{-D}}{2} \right\rangle \) and \(\left\langle \frac{X_j - \sqrt{-D}}{2} \right\rangle \) are comaximal ideals in \(\mathcal{O}_{\mathbb{Q}(\sqrt{-D})} \). Thus, there exists an integral ideal \(a_j \subseteq \mathcal{O}_{\mathbb{Q}(\sqrt{-D})} \) such that

\[
\left\langle \frac{X_j + \sqrt{-D}}{2} \right\rangle = a_j^p \text{ and } \left\langle \frac{X_j - \sqrt{-D}}{2} \right\rangle = \overline{a}_j^p.
\]
Now, we prove that the ideal classes \([a_1]\) and \([a_2]\) of both \(a_1\) and \(a_2\) generate subgroups of order \(p\) inside \(Cl_{Q(\sqrt{-D})}\) and they intersect trivially. For that, it suffices to prove that \(a_1\), \(a_2\) and \(a_1b^t\) are all non-principal ideals in \(O_{Q(\sqrt{-D})}\), where \(b = a_2\) or \(\overline{a_2}\) and \(t = 1, \ldots, \frac{p-1}{2}\).

Case 1 The ideal \(a_j\) is non-principal. For otherwise, \(a_j = \left\langle \frac{\alpha_j + \beta_j \sqrt{-D}}{2} \right\rangle\) for some integers \(\alpha_j\) and \(\beta_j\) of same parity. Since \(a_j^p = \left\langle \frac{X_j + \sqrt{-D}}{2} \right\rangle\), it follows that \(\beta_j \neq 0\). Therefore,

\[
Y_j^p = N(a_j^p) = \left(N\left(\frac{\alpha_j + \beta_j \sqrt{-D}}{2} \right) \right)^p = \left(\frac{\alpha_j^2 + \beta_j^2 D}{4} \right)^p \geq \left(\frac{1 + D}{4} \right)^p > (ab \frac{p-1}{2} q \frac{p+1}{2})^p > Y_j^p,
\]

which is a contradiction. Therefore, \(a_j\) is non-principal for \(j = 1, 2\).

Case 2 For \(b = a_1^t\) or \(\overline{a_2^t}\) and \(t\) even, the ideal \(a_1b\) is non-principal. For otherwise, \(a_1b^t = \left\langle \frac{\alpha + \beta \sqrt{-D}}{2} \right\rangle\) for some integers \(\alpha\) and \(\beta\) of same parity. Then

\[
a_1^p b^{pt} = \left\langle \frac{X_1 + \sqrt{-D}}{2} \right\rangle \left\langle \frac{X_2 \pm \sqrt{-D}}{2} \right\rangle^t = \left\langle \frac{X_1 + \sqrt{-D}}{2} \right\rangle \left\langle \frac{\left(\sum_{i=0}^t \binom{t}{i} X_2^i (\pm \sqrt{-D})^{t-i} \right)}{2^t} \right\rangle.
\]

The coefficient of \(\sqrt{-D}\) is

\[
A := \pm \frac{1}{2^{t+1}} \left[X_1 \left(\sum_{i \text{ odd}} \binom{t}{i} X_2^i (\pm \sqrt{-D})^{t-i} \right) + \sum_{i \text{ even}} \binom{t}{i} X_2^i (\pm \sqrt{-D})^i \right].
\]

Since \(t\) is even, we write \(t = 2t_1\) for an integer \(t_1\). Then \(A = 0\) implies that \(X_2\) divides \(D^{t_1}\), which in turn implies that \(\gcd(X_2, D) > 1\). This, together with the equation \(X_2^2 + D = 4Y_2^p\), implies that \(\gcd(X_2, Y_2) > 1\), which is a contradiction to the assumption that \(D\) is square-free. Consequently, we get that \(A \neq 0\) and, therefore, \(\beta \neq 0\). Hence

\[
Y_1^p Y_2^p = N(a_1^p b^{pt}) = \left(\frac{\alpha^2 + D\beta^2}{4} \right)^p \geq \left(\frac{1 + D}{4} \right)^p > (ab \frac{p-1}{2} q \frac{p+1}{2})^p,
\]

which is a contradiction.
Case 3 For $b = a_2^t$ or $\overline{a_2}^t$ and t odd, the ideal $a_1 b$ is non-principal. Otherwise, $a_1 b^t = \left< \frac{\alpha + \beta \sqrt{-D}}{2} \right>$ for some integers α and β of same parity. Then, similar as before, the coefficient of $\sqrt{-D}$ in $\left< \frac{X_1 + \sqrt{-D}}{2} \right> \left< \frac{X_2 + \sqrt{-D}}{2} \right>^t$ is

$$B := \pm \frac{1}{2^{t+1}} \left[X_1 \left(\sum_{i \text{ odd}} \binom{t}{i} X_2^{i-1} (\pm \sqrt{-D})^{i-1} \right) + \sum_{i \text{ even}} \binom{t}{i} X_2^{i-1} (\pm \sqrt{-D})^i \right].$$

Since t is odd, we write $t = 2t_1 + 1$. Now, if $B = 0$, then we obtain that X_2 divides X_1D^t. The assumption that D is square free yields that $\gcd(X_2, D) = 1$. Thus X_2 divides X_1.

Since $X_2 \mid X_1$, we obtain that $X_2 \mid (X_1 \pm X_2)$. That is, $X_2 \mid g(a, b)$ and $X_2 \mid (a - b)q^p$. Now, we prove that X_2 is either p or $-p$. For that, let ℓ be a prime divisor of X_2. Then ℓ is odd. Moreover, $\ell \mid g(a, b)$ and $\ell \mid (a - b)q^p$. We note that if $\ell = q$, then $\ell^2 \mid f_\ell(a, b) = D$, a contradiction to the assumption that D is square-free. Consequently, $\ell \neq q$ and, hence, $a \equiv b \pmod{\ell}$. Again, $\ell \nmid ab$, because D is square free. Therefore, $0 \equiv g(a, b) \equiv pa^{p-1} \pmod{\ell}$ implies that $\ell = \pm p$. Thus, $X_2 = \pm p^k$, for some integer $k \geq 1$. Therefore, the congruence $a \equiv b \pmod{X_2}$ translates to $a \equiv b \pmod{p^k}$. Consequently, we have $0 \equiv g(a, b) \equiv pa^{p-1} \pmod{p^k}$. Since $p \nmid a$, this forces $k = 1$. Now, we prove that the equation $X_2 = \pm p$ has no solution in integers for $a, b \in [\frac{1}{2p} q^{\frac{p-2}{2}}, (\frac{1}{2p} + \frac{1}{2^pp^p}) q^{\frac{p-2}{2}}] \cap \mathbb{Z}$.

If possible, suppose that $X_2 = a^{p-1} + ap-2b + \ldots + ab^{p-2} + b^{p-1} - (a - b)q^p = \pm p$ has an integral solution in the aforementioned range. Then we have

$$p = |(a^{p-1} + ap-2b + \ldots + ab^{p-2} + b^{p-1}) - (a - b)q^p|$$
$$\geq |a^{p-1} + ap-2b + \ldots + ab^{p-2} + b^{p-1}| - |(a - b)q^p|$$
$$\geq \left(p \left(\frac{1}{2p} \right)^{p-1} - \left(\frac{1}{2p} \right)^p \right) q^{\frac{p(p-1)}{2(2p)^p}} = \frac{2p^2 - 1}{(2p)^p} \cdot q^{\frac{p(p-1)}{2p^2}}.$$

Since X is a large enough positive real number and $q \asymp X^{\frac{p-2}{2p^2}}$, we obtain that

$$p \geq \frac{2p^2 - 1}{(2p)^p} \cdot q^{\frac{p(p-1)}{2p^2}} \geq p,$$

which is a contradiction.

Therefore, $B \neq 0$ and, hence, $\beta \neq 0$. Hence,

$$Y_1^p Y_2^{p^t} = N(a_1^p b^{p^t}) = \left(\frac{\alpha^2 + D\beta^2}{4} \right)^p \geq \left(\frac{1}{4} \right)^p > \left(ab^{p-1} q^{p+1} \right)^p,$$

which is a contradiction.
Hence, both \([a_1]\) and \([a_2]\) generate a subgroup of order \(p\) inside \(Cl_{\mathbb{Q}(\sqrt{-D})}\) and they intersect trivially. Therefore, \(Cl_{\mathbb{Q}(\sqrt{-D})}\) contains a subgroup isomorphic to \(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}\). This completes the proof of the proposition.

\[\square\]

3 Square-free values of \(f_q\)

To prove Theorem 1, we need to estimate the number of square-free values assumed by the polynomial \(f_q(a, b)\) of Proposition 1, where \(a\) and \(b\) vary in a certain range. For that, we appeal to a result of Poonen [33]. In this section, first we prove two lemmas about the square-free values of the polynomial \(f_q\). We prove that \(f_q\), considered as a polynomial in two variables over \(\mathbb{Q}\), is square-free in the polynomial ring \(\mathbb{Q}[x, y]\). We also prove that \(f_q(a, b)\) is not divisible by the square of a fixed prime number for all \((a, b) \in \mathbb{N} \times \mathbb{N}\). This is necessary when we apply Poonen’s result on the square-free values of polynomials of several variables in our context.

Lemma 1 For a prime number \(q \geq 5\), the polynomial

\[
f_q(x, y) = 2(x^p + y^p)q^p - (x - y)^2q^{2p} - (x^{p-1} + x^{p-2}y + \ldots + y^{p-1})^2 \in \mathbb{Z}[x, y]
\]

is square-free as an element of \(\mathbb{Q}[x, y]\).

Proof Assume that \(f_q(x, y)\) is not square-free as an element of \(\mathbb{Q}[x, y]\). Then we can write \(f_q(x, y) = G(x, y)^2H(x, y)\) for some polynomials \(G\) and \(H\). We may also assume that \(G\) is irreducible in \(\mathbb{Q}[x, y]\). Differentiating the equation with respect to \(x\) and \(y\), we see that \(\frac{\partial f_q}{\partial x} = G^2 \frac{\partial H}{\partial x} + 2G(\frac{\partial G}{\partial x})H\) and \(\frac{\partial f_q}{\partial y} = G^2 \frac{\partial H}{\partial y} + 2G(\frac{\partial G}{\partial y})H\). That is, \(G(x, y)\) is a common divisor of \(f_q, \frac{\partial f_q}{\partial x}\) and \(\frac{\partial f_q}{\partial y}\). Therefore, \(G(x, y)\) also divides \(x\frac{\partial f_q}{\partial x} + y\frac{\partial f_q}{\partial y} = -(p - 2)((g(x, y)^2 - (x - y)^2q^{2p}) + pf_q(x, y)\) and consequently, \(G(x, y)\) divides \((g(x, y)^2 - (x - y)^2q^{2p})\). Since \(G\) is irreducible, \(G(x, y)\) divides \([g(x, y) - (x - y)q^p]\) or \([g(x, y) + (x - y)q^p]\). This implies that

\[
G(x, y)^2 \mid [g(x, y)^2 + (x - y)^2q^{2p} \pm 2(x^p - y^p)q^p].
\]

As \(G(x, y)^2\) divides \(f_q(x, y)\), we obtain

\[
G(x, y)^2 \mid [g(x, y)^2 + (x - y)^2q^{2p} - 2(x^p + y^p)q^p].
\]

From (2) and (3), it follows that \(G(x, y)^2 \mid 4x^pq^p\) or \(G(x, y)^2 \mid 4y^pq^p\). Hence, \(G\) is a power of \(x\) or a power of \(y\). This implies that \(f_q(x, 0) \equiv 0\) or \(f_q(0, y) \equiv 0\), which is clearly false. This completes the proof of the lemma.

\[\square\]

Lemma 2 Let \(q > p\) be a prime number and let \(f_q(x, y)\) be as in Lemma 1. Then there is no prime number \(\ell\) such that \(\ell^2\) divides \(f_q(a, b)\) for all \((a, b) \in \mathbb{N} \times \mathbb{N}\).
Proof If possible, suppose that ℓ is a prime number number such that ℓ^2 divides $f_q(a, b)$ for all $(a, b) \in \mathbb{N} \times \mathbb{N}$. In particular, $\ell^2 \mid f_q(a, a) = a^p(4q^p - p^2a^{p-2})$. For $a = 1$, this yields $4q^p \equiv p^2 \pmod{\ell^2}$. Since p is odd, this implies that ℓ is also odd. Moreover, $f_q(1, 1) \equiv 0 \pmod{\ell^2}$ implies that $\ell \neq p$ and $\ell \neq q$.

Now, let a be a primitive root modulo ℓ^2. Then the congruence $f_q(a, a) \equiv 0 \pmod{\ell^2}$ boils down to $4q^p \equiv p^2a^{p-2} \pmod{\ell^2}$. Using the congruence $4q^p \equiv p^2 (\mod \ell^2)$, we obtain $p^2 \equiv p^2a^{p-2} \pmod{\ell^2}$. Since $\ell \neq p$, this gives $a^{p-2} \equiv 1 \pmod{\ell^2}$. Since a is a primitive root modulo ℓ^2, it immediately follows that $\ell(\ell - 1) \mid (p - 2)$, which is impossible because $p - 2$ is odd and $\ell(\ell - 1)$ is even. This completes the proof of the lemma. □

Our objective is to estimate the quantity $\sum_{D \in f_q(a, b)} \mu^2(D)$, where a, b are integers with $\frac{1}{2p} q^p < a, b < (\frac{1}{2p} + \frac{1}{2p^p})q^p$ and μ is the Möbius function. In other words, we wish to count the number of times the bivariate polynomial f_q assumes a square-free value in a certain range. In view of this, we quote a result of Poonen [33] about the density of square-free values of a multivariable polynomial with integer coefficients, under the assumption of the abc-conjecture. Before stating the result, let us recall some notation, used in [33] as follows.

For positive real numbers B_1, \ldots, B_n, let

$$Box := Box(B_1, \ldots, B_n) := \{(a_1, \ldots, a_n) \in \mathbb{Z}^n : 0 < a_i \leq B_i \text{ for all } i\}.$$

For a set $\mathcal{S} \subseteq \mathbb{Z}^n$, define

$$\overline{\mu}_n(\mathcal{S}) := \limsup_{B_1, \ldots, B_{n-1} \to \infty} \limsup_{B_n \to \infty} \frac{|(\mathcal{S} \cap Box)|}{\#Box} \text{ and } \overline{\mu}_n(\mathcal{S}) := \liminf_{B_1, \ldots, B_{n-1} \to \infty} \liminf_{B_n \to \infty} \frac{|(\mathcal{S} \cap Box)|}{\#Box}.$$

If $\overline{\mu}_n(\mathcal{S}) = \mu_n(\mathcal{S})$, then $\mu_n(\mathcal{S})$ is defined to be the common value. Again,

$$\overline{\mu}_{weak}(\mathcal{S}) := \max \limsup_{B_{\sigma(1)} \to \infty} \limsup_{B_{\sigma(n)} \to \infty} \frac{|(\mathcal{S} \cap Box)|}{\#Box},$$

where σ runs through all the permutations of the set $\{1, \ldots, n\}$. Similarly, we define

$$\underline{\mu}_{weak}(\mathcal{S}) := \max \liminf_{B_{\sigma(1)} \to \infty} \liminf_{B_{\sigma(n)} \to \infty} \frac{|(\mathcal{S} \cap Box)|}{\#Box}.$$

If $\overline{\mu}_{weak}(\mathcal{S}) = \underline{\mu}_{weak}(\mathcal{S})$, then $\mu_{weak}(\mathcal{S})$ is defined to be the common value.
We quickly recall the abc-conjecture, which states that if a, b and c are pairwise relatively prime positive integers with $a + b = c$, then for any $\varepsilon > 0$, there exists a constant $C(\varepsilon) > 0$ such that $c < C(\varepsilon) \left(\prod_{\ell | abc} \ell \right)^{1+\varepsilon}$.

Proposition 2 ([33], Theorem 3.2 and Corollary 3.3) Let $F(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$ be a polynomial that is square-free as an element of $\mathbb{Q}[x_1, \ldots, x_n]$. Suppose that x_n appears in F. Let

$$\mathcal{S}_F := \{ x \in \mathbb{Z}^n : F(x) \text{ is square free} \}.$$

Assume the validity of the abc-conjecture. Then $\mu_n(\mathcal{S}_F) = \prod_{\ell} \left(1 - \frac{c_\ell}{\ell^{2n}} \right)$, where for each prime number ℓ, the quantity c_ℓ stands for the number of $\alpha \in (\mathbb{Z}/\ell^2\mathbb{Z})^n$ satisfying $F(\alpha) = 0$ in $\mathbb{Z}/\ell^2\mathbb{Z}$. Moreover, if x_n does not appear in F, then $\mu_{\text{weak}}(\mathcal{S}_F) = \prod_{\ell} \left(1 - \frac{c_\ell}{\ell^{2n}} \right)$.

Remark 2 Note that $f_q(x, y)$ satisfies the hypotheses of Proposition 2. Also, Lemma 2 asserts that the square of no fixed prime number divides $f_q(a, b)$ for all $a, b \in \mathbb{N}$. Therefore, each term in the Euler product $\prod_{\ell} \left(1 - \frac{c_\ell}{\ell^{2n}} \right)$ is non-zero for f_q. Moreover, Poonen also proved in [33] that the quantity c_ℓ in Proposition 2 satisfies $c_\ell = O(\ell^{2n-2})$, using techniques from algebraic geometry. Therefore, each term in the Euler product $\prod_{\ell} \left(1 - \frac{c_\ell}{\ell^{2n}} \right)$ is $1 + O \left(\frac{1}{\ell^2} \right)$ and, hence, the Euler product for f_q converges to a non-zero constant.

4 Proof of Theorem 1

Recall that for a large positive real number X, let q is a prime number with $q \asymp X^{\frac{p-2}{2p(p-1)}}$. That is, $c_1 X^{\frac{p-2}{2p(p-1)}} < q < c_2 X^{\frac{p-2}{2p(p-1)}}$ for two suitably chosen positive constants c_1 and c_2. For any such prime number q, we choose integers a and b with $\frac{1}{2p} q^{\frac{p}{p-2}} < a, b < (\frac{1}{2p} + \frac{1}{2p^2}) q^{\frac{p}{p-2}}$. Then we see that $f_q(a, b) > 0$ and $f_q(a, b) \asymp q^{\frac{p}{p-2}} \asymp X$. For the sake of convenience, let

$$S := \{(a, b) \in \mathbb{Z}^2 : \frac{1}{2p} q^{\frac{p}{p-2}} < a, b < \left(\frac{1}{2p} + \frac{1}{2p^2} \right) q^{\frac{p}{p-2}} \}$$

and

$$S(D) := \# \{(a, b) \in S : D = f_q(a, b) \}.$$
Also, let

\[S_1 := \sum_{D = f_q(a,b) \leq X} \mu^2(D)S(D) \quad \text{and} \quad S_2 := \sum_{D = f_q(a,b) \leq X} \mu(D)^2S(D)^2. \]

We note that \(S_1 \) counts the number of square-free positive integral values of \(f_q(a,b) \), where \((a,b) \in \mathcal{S}\). By Lemma 1, we see that \(f_q(X,Y) \) satisfies the hypotheses of Proposition 2. Therefore, from Proposition 2 and Remark 2, we conclude that \(S_1 \gg q^{\frac{p}{p-2}} \cdot q^{\frac{p}{p-2}} = q^{2\frac{p}{p-2}} \).

Now, we proceed to find an upper bound for \(S_2 \). From the definition of \(S_2 \), we see that \(S_2 \) is the number of square-free positive integers \(D \) with \(D = f_q(a,b) \), counted with multiplicity \(S(D)^2 \). Therefore, \(S_2 \) is bounded above by the number of quadruples \((a_1, a_2, b_1, b_2)\) such that \(f_q(a_1, b_1) = f_q(a_2, b_2) \). After simplifying, this boils down to

\[4q^p (a_1^p - a_2^p) = (g(a_1, b_1) + (a_1 - b_1)q^p)^2 - (g(a_2, b_2) + (a_2 - b_2)q^p)^2. \] \((4) \)

The right-hand side of (4) can be factorized as \((u-v)(u+v)\), where \(u = g(a_1, b_1) + (a_1 - b_1)q^p \) and \(v = g(a_2, b_2) + (a_2 - b_2)q^p \). Now, if \(a_1 = a_2 \), then for a fixed value of \(b_1 \), Eq. (4) reduces to a degree 2\((p-1) \) polynomial in the variable \(b_2 \) and thus there are at most 2\((p-1) \) integral solutions for \(b_2 \). Since \(a_1 = a_2 \) can be chosen in \(O(q^{\frac{p}{p-2}}) \) ways and similarly \(b_1 \) can also be chosen in \(O(q^{\frac{p}{p-2}}) \) ways, the number of choices for the quadruple \((a_1, a_2, b_1, b_2)\) in this case is \(O(q^{\frac{p}{p-2}} \cdot q^{\frac{p}{p-2}}) = O(q^{\frac{2p}{p-2}}) \). If \(a_1 \neq a_2 \), we may assume without loss of any generality that \(a_1 > a_2 \). For a fixed such tuple \((a_1, a_2)\), we find by (4) that \((u-v)(u+v) \neq 0 \). Now, \(4q^p (a_1^p - a_2^p) \) can be factorized into the product of two integers in \(\sigma_0(4q^p(a_1^p - a_2^p)) \) ways, where \(\sigma_0 \) stands for the divisor function. By using the classical result \(\sigma_0(N) = O(N^{\varepsilon}) \) for any \(\varepsilon > 0 \), we get that \(4q^p (a_1^p - a_2^p) \) can be factorized in \(O(q^{\varepsilon}) \) ways. For each such factorization and fixed values of \(a_1, a_2, u \) and \(v \), we have

\[a_1^{p-1} + a_1^{p-2}b_1 + \cdots + b_1^{p-1} + (a_1 - b_1)q^p = u \] \((5) \)

and

\[a_2^{p-1} + a_2^{p-2}b_2 + \cdots + b_2^{p-1} + (a_2 - b_2)q^p = v. \] \((6) \)

We see that (5) and (6) are polynomials of degree \(p-1 \) in the variables \(b_1 \) and \(b_2 \), respectively. Consequently, there are at most \(p-1 \) solutions in \(b_1 \) and \(b_2 \) of (5) and (6), respectively. Thus if \(a_1 \neq a_2 \), then each \(a_1 \) and \(a_2 \) can be chosen in \(O(q^{\frac{p}{p-2}}) \) ways, and corresponding to the tuple \((a_1, a_2)\), the integers \(u \) and \(v \) can be chosen in \(O(q^{\varepsilon}) \) ways. Therefore, the number of choices for the quadruple \((a_1, a_2, b_1, b_2)\) is \(O(q^{\frac{p}{p-2}} \cdot q^{\frac{p}{p-2}} \cdot q^{\varepsilon}) = O(q^{\frac{2p}{p-2}+\varepsilon}) \) ways. Hence, \(S_2 \ll q^{\frac{2p}{p-2}+\varepsilon} \).
Now, using the Cauchy–Schwarz inequality, we obtain

\[
\left(\sum_{D \leq X \atop S(D) > 0} \mu(D)^2 \right) \left(\sum_{D \leq X \atop S(D) > 0} \mu(D)^2 S(D)^2 \right) \geq \left(\sum_{D \leq X \atop S(D) > 0} \mu(D)^2 S(D) \right)^2.
\]

From inequality (7) and the estimates of \(S_1 \) and \(S_2 \), it follows that

\[
\sum_{D \leq X \atop S(D) > 0} \mu(D)^2 \gg q^{\frac{4p}{p-1}-\frac{2p}{p-2}\varepsilon} \gg q^{\frac{2p}{p-2}-\varepsilon} \gg X^{\frac{1}{p-1}-\varepsilon}.
\]

This, together with Proposition 1, completes the proof of Theorem 1. \(\square \)

Acknowledgements We gratefully acknowledge the anonymous referee for the detailed comments that helped us improve the quality of the paper. It is a pleasure for the authors to thank Indian Institute of Technology, Guwahati for providing excellent facilities to carry out this research.

References

1. Ankeny, N., Chowla, S.: On the divisibility of the class numbers of quadratic fields. Pac. J. Math. 5, 321–324 (1955)
2. Beckwith, O.: Indivisibility of class numbers of imaginary quadratic fields. Res. Math. Sci. 4 (2017), Paper No. 20
3. Bilu, Y., Luca, F.: Divisibility of class numbers: enumerative approach. J. Reine Angew. Math. 578, 79–91 (2005)
4. Byeon, D.: Class numbers of quadratic fields \(\mathbb{Q}(\sqrt{D}) \) and \(\mathbb{Q}(\sqrt{-D}) \). Proc. Am. Math. Soc. 132, 3137–3140 (2004)
5. Byeon, D.: Real quadratic fields with class number divisible by 5 or 7. Manuscripta Math. 120, 211215 (2006)
6. Byeon, D.: Imaginary quadratic fields with non-cyclic ideal class group. Ramanujan J. 11, 159–164 (2006)
7. Byeon, D., Koh, E.: Real quadratic fields with class number divisible by 3. Manuscripta Math. 111, 261–263 (2003)
8. Chakraborty, K., Ram Murty, M.: On the number of real quadratic fields with class number divisible by 3. Manuscripta Math. 111, 261–263 (2003)
9. Chattopadhyay, J.: A short note on the divisibility of class number of real quadratic fields. J. Number Theory 34, 389–392 (1999)
10. Chattopadhyay, J.: Real quadratic fields with class number divisible by 3. Manuscripta Math. 111, 261–263 (2003)
11. Chattopadhyay, J., Muthukrishnan, S.: On the simultaneous \(3 \)-divisibility of class numbers of triples of imaginary quadratic fields. Acta Arithmetica 197, 105–110 (2021)
12. Craig, M.: A type of class group for imaginary quadratic fields. Acta Arithmetica 22, 449–459 (1973)
13. Craig, M.: A construction for irregular discriminants. Osaka Math. J. 14, 365–402 (1977)
14. Gillibert, J., Levin, A.: Pulling back torsion line bundles to ideal classes. Math. Res. Lett. 19, 1171–1184 (2012)
15. Gillibert, J., Levin, A.: Elliptic surfaces over \(\mathbb{P}^1 \) and large class groups of number fields. Int. J. Number Theory 15, 2151–2162 (2019)
16. Heath-Brown, D.R.: Quadratic class numbers divisible by 3. Funct. Approx. Comment. Math. 37, 203–211 (2007)
17. Heath-Brown, D.R.: Corrigendum to [16]. Funct. Approx. Comment. Math. 43, 227 (2010)
18. Iizuka, Y.: On the class number divisibility of pairs of imaginary quadratic fields. J. Number Theory 184, 122–127 (2018)
19. Iwasawa, K.: A note on class numbers of algebraic number fields. Abh. Math. Sem. Univ. Hamburg 20, 257–258 (1956)
20. Kishi, Y., Miyake, K.: Parametrization of the quadratic fields whose class numbers are divisible by three. J. Number Theory 80, 209–217 (2000)
21. Kishi, Y., Komatsu, T.: Imaginary quadratic fields whose ideal class groups have 3-rank at least three. J. Number Theory 170, 46–54 (2017)
22. Kohnen, W., Ono, K.: Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication. Invent. Math. 135, 387–398 (1999)
23. Komatsu, T.: An infinite family of pairs of quadratic fields \(\mathbb{Q}(\sqrt{D}) \) and \(\mathbb{Q}(\sqrt{mD}) \) whose class numbers are both divisible by 3. Acta Arithmetica 104, 129–136 (2002)
24. Komatsu, T.: An infinite family of pairs of imaginary quadratic fields with ideal classes of a given order. Int. J. Number Theory 13, 253–260 (2017)
25. Kulkarni, A.: An explicit family of cubic number fields with large 2-rank of the class group. Acta Arithmetica 182, 117–132 (2018)
26. Kulkarni, K., Levin, A.: Hilbert’s irreducibility theorem and ideal class groups of quadratic fields. arXiv:2111.15582v1
27. Levin, A., Yan, S., Wiljanen, L.: Quadratic fields with a class group of large 3-rank. Acta Arithmetica 197, 275–292 (2021)
28. Luca, F.: A note on the divisibility of class numbers of real quadratic fields. C. R. Math. Acad. Sci. Soc. R. Can 25, 71–75 (2003)
29. Luca, F., Pacelli, A.: Class groups of quadratic fields of 3-rank at least 2: effective bounds. J. Number Theory 128, 796–804 (2008)
30. Murty, R.: Exponents of class groups of quadratic fields. Top. Number Theory. University Park 467, 229–239 (1999)
31. Nagell, T.: Über die Klassenzahl imaginär quadratischer Zahlkörper. Abh. Math. Seminar Univ. Hamburg 1, 140–150 (1922)
32. Ono, K.: Indivisibility of class numbers of real quadratic fields. Compos. Math. 119, 1–11 (1999)
33. Poonen, B.: Squarefree values of multivariable polynomials. Duke Math. J. 118, 353–373 (2003)
34. Scholz, A.: Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. Reine Angew. Math. 166, 201–203 (1932)
35. Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61, 681–690 (2000)
36. Weinberger, P.: Real quadratic fields with class numbers divisible by \(n \). J. Number Theory 5, 237–241 (1973)
37. Yamamoto, Y.: On unramified Galois extensions of quadratic number fields. Osaka J. Math. 7, 57–76 (1970)
38. Yu, G.: A note on the divisibility of class numbers of real quadratic fields. J. Number Theory 97, 35–44 (2002)
39. Yu, G.: Imaginary quadratic fields with class groups of 3-rank at least 2. Manuscripta Math. 163, 569–574 (2020)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.