Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions

Sung-ho Park¹, Yu Jung Sohn², Si Jae Park²* and Jong-il Choi¹*

Abstract

Background: Gamma aminobutyric acid (GABA) is an important platform chemical, which has been used as a food additive and drug. Additionally, GABA is a precursor of 2-pyrrolidone, which is used in nylon synthesis. GABA is usually synthesized from glutamate in a reaction catalyzed by glutamate decarboxylase (GAD). Currently, there are several reports on GABA production from monosodium glutamate (MSG) or glucose using engineered microbes. However, the optimal pH for GAD activity is 4, which is the limiting factor for the efficient microbial fermentative production of GABA as fermentations are performed at pH 7. Recently, DR1558, a response regulator in the two-component signal transduction system was identified in Deinococcus radiodurans. DR1558 is reported to confer cellular robustness to cells by binding the promoter regions of genes via DNA-binding domains or by binding to the effector molecules, which enable the microorganisms to survive in various environmental stress conditions, such as oxidative stress, high osmotic shock, and low pH.

Results: In this study, the effect of DR1558 in enhancing GABA production was examined using two different strategies: whole-cell bioconversion of GABA from MSG and direct fermentative production of GABA from glucose under acidic culture conditions. In the whole-cell bioconversion, GABA produced by E. coli expressing GadBC and DR1558 (6.52 g/L GABA from 13 g/L MSG·H₂O) in shake flask culture at pH 4.5 was 2.2-fold higher than that by E. coli expressing only GadBC (2.97 g/L of GABA from 13 g/L MSG·H₂O). In direct fermentative production of GABA from glucose, E. coli ΔgabT expressing isocitrate dehydrogenase (IcdA), glutamate dehydrogenase (GdhA), GadBC, and DR1558 produced 1.7-fold higher GABA (2.8 g/L of GABA from 30 g/L glucose) than E. coli ΔgabT expressing IcdA, GdhA, and GadBC (1.6 g/L of GABA from 30 g/L glucose) in shake flask culture at an initial pH 7.0. The transcriptional analysis of E. coli revealed that DR1558 conferred acid resistance to E. coli during GABA production. The fed-batch fermentation of E. coli expressing IcdA, GdhA, GadBC, and DR1558 performed at pH 5.0 resulted in the final GABA titer of 6.16 g/L by consuming 116.82 g/L of glucose in 38 h.

Conclusion: This is the first report to demonstrate GABA production by acidic fermentation and to provide an engineering strategy for conferring acid resistance to the recombinant E. coli for GABA production.

*Correspondence: parksj93@ewha.ac.kr; choji01@jnu.ac.kr
1 Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
2 Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background

Conventional petroleum-based methods for the production of valuable chemicals are associated with several challenges, such as environmental concerns and limited availability of fossil fuel. Hence, various bio-based production methods using renewable feedstocks have recently been developed [1, 2]. To address the growing demand for the production of value-added products, such as platform chemicals and biopolymers from renewable resources, several engineered microorganisms have been developed [3–9].

Gamma aminobutyric acid (GABA), a non-protein amino acid, is widely expressed in prokaryotic and eukaryotic organisms [10]. GABA is the primary inhibitory neurotransmitter in the nervous system of mammals. Generally, GABA is used in pharmaceuticals or food additives for its physiological functions [11–14]. Additionally, GABA has applications in the bio-based chemical and polymer industries, where GABA is used as the precursor of 2-pyrrolidone, which can be used as a solvent or as a monomer for the synthesis of nylon 4 [15, 16].

Several studies have reported the microbial production of GABA through proton-consuming decarboxylation of L-glutamate using two biological processes: whole-cell bioconversion or direct fermentation. GABA is mainly produced through whole-cell bioconversion of MSG or L-glutamate to GABA by heterologous expression of glutamate decarboxylase (GAD) in the host strain [15, 17–24]. Additionally, several metabolically engineered microorganisms, such as Corynebacterium glutamicum and Escherichia coli have been developed for the direct fermentative production of GABA from renewable resources, such as glucose and xylose [25–31]. However, there are still several limitations associated with the efficient microbial fermentative production of GABA. For example, the optimal pH for GAD activity is around 4.5, though generally fermentation process of various industrial microorganisms such as E. coli, C. glutamicum, and Lactobacillus is performed around pH 7. These limitations could be addressed by developing GAD able to efficiently convert glutamate into GABA at pH 7 or by developing host strains that supports the enhanced cell robustness under acidic stress for facilitation of the GAD activity. In this regards, the recombinant C. glutamicum strain expressing GAD that is active at a wide pH range was reported to produce 38.6 g/L GABA in 72 h fed-batch fermentation from glucose [32]. However, other strategy such as increasing cell tolerance to acidic stress for acidic fermentative production of GABA is but not yet developed.

Deinococcus radiodurans is reported to be resistant to various abiotic stress factors, such as γ-radiation, oxidizing agents, and desiccation [33]. Recently, DR1558, a response regulator in the two-component signal transduction system, was identified in D. radiodurans. The expression of DR1558, which exhibits a recA-like expression pattern, was reported to be enhanced (approximately 5.64-fold) in response to 15 kGy of gamma radiation [34]. DR1558 is reported to induce alterations in the cell by directly binding to the promoter regions of genes via DNA-binding domains or by binding to the effector molecules in response to environmental stress. One study has employed DR1558 for increasing the tolerance of E. coli against low pH, heat, and salt stresses [35]. Additionally, DR1558 has been used to enhance cell robustness and production of succinate, 2,3-butanediol (2,3-BDO) and poly(3-hydroxybutyrate) [P(3HB)] in the recombinant E. coli strains [36–38].

In this study, the effect of D. radiodurans DR1558 on GABA production was examined in the recombinant E. coli strains under low pH culture conditions using two different strategies: whole-cell bioconversion of MSG to GABA and direct fermentative production of GABA from glucose. The quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to evaluate the expression level of genes related to central metabolism and acid resistance (AR) under acidic challenge in the dr1558-overexpressing E. coli strains. Furthermore, fed-batch fermentation was carried out for direct fermentative production of GABA from glucose as a proof-of-concept and demonstrated that DR1558 can be robustly used in the fermentation scale.

Results and discussion

Examination of DR1558 expression for the acid-resistant conversion of MSG into GABA at low pH

The optimal pH for GAD, which catalyzes the conversion of glutamate into GABA, is around 4.5. This pH is lower than the neutral pH generally used for cell cultivation [39, 40]. Thus, we hypothesized that enhancing E. coli resistance to low pH may have a positive effect on GABA production as GABA can be produced at the pH optimum for the decarboxylation activity of GAD. To investigate the effect of DR1558 on GABA production, the recombinant E. coli WGB100 strain expressing GadBC and DR1558 and E. coli BL21(DE3) strain expressing only GadBC were cultured in the MR medium (pH 7.0) supplemented with...
20 g/L glucose and 5 g/L yeast extract. When the optical density at 600 nm (OD_{600}) of the culture reached 1.0, isopropyl-β-thiogalactoside (IPTG; final concentration, 0.5 mM) was added to the culture medium to induce protein expression. The cells were cultured for 8 h and transferred to the MR medium (pH 4.5) supplemented with 20 g/L glucose, 5 g/L yeast extract, and 13 g/L MSG·H₂O. The E. coli BL21(DE3) strain expressing only GadBC exhibited a low conversion yield (41%; conversion of 13 g/L MSG·H₂O into 2.97 g/L GABA) (Fig. 1b). However, the E. coli WGB100 strain expressing GadBC and DR1558 exhibited a high GABA yield (87.3%; conversion of 13 g/L MSG·H₂O into 6.31 g/L GABA) within 24 h. Incubating the E. coli WGB100 strain till 60 h resulted in the production of 6.52 g/L GABA corresponding to a 90% yield (Fig. 1a). In previous report, the productivity of 0.12 g GABA/L/h was obtained by recombinant E. coli equipped with the C-terminus synthetic complex of GadB and GadC (pH3BN) [41]. Additional expression of DR1558 along with the C-terminus synthetic complex of GadB and GadC in the engineered E. coli WGB100 in this study allowed the increased productivity of 0.26 g GABA/L/h [41].

Transcriptional analysis of genes involved in central metabolism and glutamate acid-dependent acid resistance (GDAR) system in E. coli

The qRT-PCR analysis was performed to analyze the expression patterns of 37 genes associated with the central carbon metabolism, AR system, and respiratory chain complexes in the E. coli WGB100 and control strains as summarized in Fig. 2 and Additional file 1: Table S2.

When the pH was decreased, the expression levels of genes involved in the central metabolic pathways, such as glycolysis and tricarboxylic acid (TCA) cycle in the E. coli WGB100 strain were upregulated when compared to those in the control strain (Additional file 1: Table S2). The expression levels of ptsG and pykA, which are associated with the glycolytic pathway, in the E. coli WGB100 strain were upregulated by 2.1- and 1.76-fold, respectively, when compared to the control strain. This indicated enhanced glucose uptake by the E. coli WGB100 strain. As shown in Fig. 1, although the production of acetate in the recombinant E. coli WGB100 strain expressing both GadBC and DR1558 was similar to that of the control strain, the glucose consumption increased by 1.51-fold. This suggested that the carbon flux towards acetate metabolism in the E. coli WGB100 strain decreased based on the production of acetate relative to the consumption of carbon source. The expression of the poxB gene, which is involved in acetate metabolism, was downregulated by 3.67-fold in the E. coli WGB100 strain when compared to its expression in the control strain (Additional file 1: Table S2). The downregulation of acetate metabolism was also observed in our previous study in the dr1558-overexpressing E. coli for the production of 2,3-BDO and P(3HB) [37, 38].

Under low pH conditions, E. coli can maintain the pH homeostasis of the intracellular environment via carboxylation of amino acid by the proton-consuming AR system [42, 43]. E. coli contains four different amino acids...
acid-dependent AR systems: GDAR, arginine-dependent acid resistance system (ADAR), lysine-dependent acid resistance system (LDAR), and ornithine-dependent acid resistance system (ODAR). Among these four systems, the GDAR system comprising GadA, GadB, and GadC is associated with low pH tolerance in the $dr1558$-overexpressing $E. coli$ [35, 44–48]. Hence, the expression pattern of genes involved in the GDAR system was examined.

The expression levels of $gadA$, $gadB$, and $gadC$ genes in the $E. coli$ WGB100 strain were upregulated by 2.19-, 1.13-, and 1.58-fold when compared to those in the control strain, respectively (Fig. 2b). Moreover, the mRNA levels of the $rpoS$ and $gadE$ genes, which indirectly affect the GDAR system, were also examined (Additional file 1: Table S2 and Fig. 2b). The proteins encoded by these genes, especially GadE, are involved in transcriptional regulation. GadE is the main regulator of the GDAR system and other acid fitness islands (AFIs), while RpoS is a sigma factor that simulates GadE expression [49, 50]. The transcriptional analysis revealed upregulated expression levels of $rpoS$ and $gadE$ genes, which subsequently increased the expression level of GDAR system.

Along with the GDAR system, various respiratory chain complexes, such as cytochrome b_{5} oxidase (Cyo), succinate dehydrogenase (SDH), and NADH dehydrogenase I (Nuo) that pump protons out of the cell are activated in $E. coli$ as a metabolic response to acidic stress [43]. Cyo exports cytoplasmic protons by converting molecular oxygen to $H_{2}O$ to generate the proton motive force (PMF) during aerobic growth under acidic conditions. Additionally, Nuo catalyzes the oxidation of NADH to NAD, which contributes to PMF by directly pumping out the protons [47, 51]. Hence, we also examined the expression level of genes associated with respiratory chain complexes. The expression levels of $nuoMN$ and $cyoABCD$ in the $dr1558$-overexpressing strain were 1.5-fold higher than those in the control strain (Fig. 2a). Thus, overexpression of DR1558 resulted in enhanced expression of GDAR system as well as the respiratory chain complexes, which improved cell viability of $E. coli$ WGB100 by conferring acid resistance during the conversion of MSG to GABA at low pH culture conditions.

Reconstruction of GABA production pathway for the direct production of GABA from glucose

The $E. coli$ WGB100 strain can convert MSG into GABA while consuming glucose at pH 4.5. Hence, we hypothesized that GABA could be produced directly from glucose at low pH culture conditions via production of glutamate, a direct precursor of GABA (Fig. 1). Therefore, we constructed the metabolic pathway for direct synthesis of GABA from glucose. In a previous study, enhanced expression of icdA encoding isocitrate dehydrogenase and $gdhA$ encoding glutamate dehydrogenase was reported to enhance the production of L-glutamate in the engineered $E. coli$ [52]. Thus, the two $E. coli$ BL21(DE3)-derived mutant strains, $E. coli$ DGB201 (BL21(DE3) ΔgabT expressing GdhA and, GadBC) and $E. coli$ DGB202 (BL21(DE3) ΔgabT expressing LcdA, GdhA and, GadBC), were investigated for the production of GABA from glucose (Table 1). The initial pH in the culture medium was set to 7.0 and the pH was not adjusted during the cultivation. After the formation of various organic acids, such as acetate and lactate,
resulted in decreasing the pH in the culture medium, GABA was produced from glucose by the *E. coli* DGB201 and DGB202 strains (Additional file 1: Figure S1). However, the *E. coli* DGB201 and DGB202 strains exhibited a low production of GABA (up to 0.19 and 0.4 g/L, respectively) from 30 g/L of glucose when they were cultured in the medium without additional inorganic nitrogen source at an initial pH of 7.0 (Fig. 3c). To produce GABA from glucose efficiently, the production of glutamate should be properly supported by the recombinant *E. coli* host strain. Previous studies have reported that the supplementation of inorganic nitrogen sources, such as

Table 1 Plasmid, strain used in this study
Plasmids, strains

pACYCDuet-1
pH3BN
pGB100
pGB101
pGB102
pGB103
pREDET
pMloxC
pJW168
Strain
BL21(DE3)
GB200
GB300
WGB100
WGB200
DGB101
DGB102
DGB201
DGB202
DGB203
DGB301
DGB302
DGB303

![Fig. 3](image-url) Effect of ammonium sulfate supplementation on cell growth, glucose consumption, and gamma aminobutyric acid (GABA) production. The *Escherichia coli* DGB201 and DGB202 strains were cultured in MR medium supplemented with 30 g/L glucose, 5 g/L yeast extract, and (0, 5, 10, or 15 g/L) ammonium sulfate. a Cell growth, b glucose consumption; c GABA production. Histogram shows the mean of three biological replicates and error bars represent standard deviation.
ammonium sulfate, urea, and ammonium chloride in the culture medium improved the production of L-amino acid by the microbial host strain [53]. Hence, ammonium sulfate was added to the culture medium containing 30 g/L glucose to examine its effect on the production of GABA. The cell growth and glucose consumption in both the E. coli DGB201 and DGB202 strains were not markedly affected with supplementation of ammonium sulfate at concentrations of up to 15 g/L (Fig. 3a, b). Interestingly, glutamate was not detected in any of the culture media and GABA production was proportional to the concentration of ammonium sulfate in the culture medium. The supplementation of 15 g/L ammonium sulfate resulted in the highest GABA concentrations of 1.7 and 1 g/L in the E. coli DGB202 and E. coli DGB201 strain, respectively (Fig. 3c).

Effect of DR1558 on direct production of GABA from recombinant E. coli

The effect of DR1558 on the production of GABA was examined in the E. coli DGB203 (BL21(DE3) ΔgabT expressing IcdA, GdhA, GadBC, and DR1558) strain. The E. coli DGB202 (BL21(DE3) ΔgabT expressing IcdA, GdhA, and GadBC) strain was used as a control. Both E. coli strains were cultured in the MR medium supplemented with 30 g/L glucose, 5 g/L yeast extract, and 15 g/L ammonium sulfate at an initial pH of 7.0 for 24 h. When the cultures reached an OD₆₀₀ of 0.5, 0.5 mM IPTG was added to induce the GABA production pathway.

The E. coli DGB203 strain exhibited a higher glucose consumption than the E. coli DGB202 strain (Fig. 4b). The final cell density of the E. coli DGB202 strain was higher than that of the E. coli DGB203 strain (Fig. 4a). Although glutamate was not detected in both E. coli DGB202 and DGB203 strains during cultivation, the titer and yield of GABA production in the E. coli DGB203 strain increased from 1.6 to 2.8 g/L and 0.059 to 0.093 (gGABA/gGlucose), respectively, when compared to those in the E. coli DGB202 strain (Fig. 4c, d).

As the yields of GABA obtained in both E. coli DGB202 and DGB203 strains were low, sucA encoding 2-oxoglutarate decarboxylase, which competes with gdhA encoding glutamate dehydrogenase in the GABA pathway, was deleted in the E. coli GB200 (BL21(DE3) ΔgabT) strain. The GABA titer in the E. coli DGB303 (BL21(DE3) ΔgabT ΔsucA expressing IcdA, GdhA, GadBC, and DR1558) strain slightly increased from 2.82 to 3.08 g/L when compared to that in the E. coli DGB203 strain. Additionally, the yield of GABA in the E. coli DGB303 strain significantly increased from 0.093 to 0.41 (gGABA/gGlucose), corresponding to a 4.41-fold increase, when compared to that in the E. coli DGB203 strain (Fig. 4d). However, the productivity of GABA production in the E. coli DGB303 strain decreased from 0.12 to 0.064 (g/L/h) when compared to that in the E. coli DGB203 strain. As sucA is an essential gene for E. coli cell growth, the final cell density of E. coli DGB303 was lower than that of E. coli DGB203. Therefore, E. coli DGB203 strain was selected for further experiments.

Interestingly, the E. coli DGB302 (BL21(DE3) ΔgabT ΔsucA expressing IcdA, GdhA, and GadBC genes) strain failed to convert glutamate into GABA and secreted 1.13 g/L glutamate into the culture medium, whereas the E. coli DGB303 strain did not secrete glutamate into the culture medium (Fig. 4c, d).

Production of GABA from glucose in fed-batch culture

To optimize the concentration of IPTG in the culture medium, different concentrations of IPTG (0.05, 0.1, 0.5, or 1 mM) were supplemented in the MR medium with a glucose/ammonium sulfate ratio of 2. The cell growth in the medium supplemented with 0.05 and 0.1 mM IPTG significantly decreased (from 23 to 16 of OD₆₀₀) when compared to that in the medium supplemented with 0.5 mM IPTG. However, in all concentrations of IPTG except for 1 mM, the titer of GABA was increased by the addition of IPTG. The highest titer of GABA (2.79 g/L) was obtained in the medium supplemented with 0.5 mM IPTG (Fig. 5). Based on these results, the fed-batch culture of the E. coli DGB203 strain was performed in the MR medium with a glucose/ammonium sulfate ratio of 2 and 0.5 mM IPTG.

The cells were cultured till OD₆₀₀ of 5 at pH 7.0 and IPTG was added to the culture medium at a final concentration of 0.5 mM to induce protein expression. The cells were further cultured for 5 h at pH 7.0 and then the pH was lowered to 5.0. GABA was initially not detected in the culture medium at pH 7.0 after induction. However, decreasing the pH to 5.0 and the addition of glucose enhanced the GABA production. The cell density reached an OD₆₀₀ of 82 in 38 h. The titer of GABA reached 6.16 g/L after 38 h and the glucose consumption was 116.82 g/L. During fed-batch fermentation, glutamate and fermentative by-products, such as acetate and lactate were not detected in the culture medium (Fig. 6). These results indicated that DR1558 was beneficial for the carbon flux toward GABA production under acidic environmental conditions at the fermentation scale.

Currently, there are several reports on direct fermentative production of GABA from glucose using engineered E. coli. The recombinant E. coli containing the synthetic scaffolds between icdA, gltB, and gadB produced 1.3 g/L of GABA from 10 g/L glucose in 48 h [25]. Additionally, GABA production from glucose through GABA shunt in the recombinant E. coli was 1.08 g/L from 10 g/L glucose in 48 h [30]. Recently, synthetic metabolic toggle
switch, which controls the expression of multiple metabolic states, was introduced in *E. coli* to produce GABA from glucose, which resulted in the production of 4.8 g/L GABA from 20 g/L glucose [56]. However, these GABA fermentation processes were performed in the shake flask scale. In this study, we demonstrated that introducing DR1558 in the GABA-producing *E. coli* provides robustness to cells against acid stress for fermentative scale production of GABA from glucose under acid culture conditions. Thus, this study provides an engineering strategy for GABA production from glucose in industrial processes under low pH condition.

Conclusions

In this study, we reported that DR1558 can enhance the production of GABA at low pH, optimal for GAD which had been a limiting factor for fermentative GABA production in the recombinant *E. coli*. We developed two
different GABA production strategies: whole-cell bioconversion of GABA from MSG and direct fermentative production of GABA from glucose. Under low pH culture conditions, the \(dr1558 \)-overexpressing \(E. coli \) exhibited enhanced cell growth rate and GABA production. Furthermore, the transcriptional analysis revealed that DR1558 enabled the growth of \(E. coli \) at pH 4.5 by increasing the expression levels of GDAR system and proton-pumping respiratory chain complexes. As the bioconversion of GABA from glutamate was observed with optimal cell viability under acidic conditions by the introduction of DR1558, fermentative production of GABA from glucose was also examined. The fermentative process enhanced the production of GABA with the expression of \(dr1558 \) in \(E. coli \) (Fig. 7). To the best of our knowledge, this is the first study to report the acidic fermentation of GABA. This study provides an engineering strategy for conferring AR to \(E. coli \), which can be used to produce GABA via the GAD system that functions at low pH.

Methods

Bacterial strains and plasmids

All bacterial strains, plasmids, and primers used in this study are listed in Table 1 and Additional file 1: Table S1. In this study, \(E. coli \) XL1-Blue (Stratagene Cloning Systems, La Jolla, CA, USA) was used for standard gene cloning. For the synthesis of GABA, \(E. coli \) BL21 (DE3) (New England Biolabs, Ipswich, MA, USA) and its mutants were used as host strains.

The \(E. coli \) GB200 (BL21(DE3) ΔgabT) and GB300 (BL21(DE3) ΔgabT ΔsucA) strains were constructed by deleting the corresponding genes in the chromosome of \(E. coli \) BL21(DE3) using the single-step gene knockout method as previously described [57].

The construction of pH3BN plasmid expressing \(N. crassa \) gadB and \(E. coli \) gadC, which convert glutamate into GABA, was previously described [41]. The pGB100 plasmid was constructed by inserting the \(dr1558 \) gene, which was amplified by PCR using the \(dr1558 \)-F and \(dr1558 \)-R primers, from the genomic DNA of \(D. radio-durans \) into the pACYCDuet-1 (Novagen, Madison, WI, USA) plasmid at the NcoI and BamHI restriction sites.

The pGB101, pGB102, and pGB103 plasmids were constructed based on the pACYCDuet-1 plasmid to synthesize endogenous glutamate, a precursor of GABA, from glucose. The pGB101 plasmid was constructed by inserting the \(dr1558 \) gene, which was amplified by PCR using the \(dr1558 \)-F and \(dr1558 \)-R primers, from the genomic DNA of \(D. radio-durans \) into the pACYCDuet-1 (Novagen, Madison, WI, USA) plasmid at the Ncol and BamHI restriction sites.

The pGB101, pGB102, and pGB103 plasmids were constructed based on the pACYCDuet-1 plasmid to synthesize endogenous glutamate, a precursor of GABA, from glucose. The pGB101 plasmid was constructed by inserting the \(dr1558 \) gene, which was amplified by PCR using the \(dr1558 \)-F and \(dr1558 \)-R primers, from the genomic DNA of \(D. radio-durans \) into the pACYCDuet-1 (Novagen, Madison, WI, USA) plasmid at the Ncol and BamHI restriction sites.

Finally, the \(dr1558 \) gene was inserted into the pGB102 plasmid at the Ncol and BamHI restriction sites to generate the pGB103 plasmid.

Culture condition for whole-cell bioconversion of glutamate to GABA

The \(E. coli \) WGB100 strain was used as a host strain for whole-cell bioconversion of glutamate to GABA. The
seed cultures were cultivated at 30 °C in a 10-mL tube containing 3 mL Luria–Bertani (LB) medium (10 g/L tryptone, 5 g/L yeast extract, and 5 g/L NaCl) for 12 h at 250 rpm. For shake flask cultures, 3% (v/v) seed cultures were added to 50 mL MR medium supplemented with 20 g/L glucose and 5 g/L yeast extract. The composition of the MR medium (pH 7.0) was as follows: 6.67 g/L KH₂PO₄, 4 g/L (NH₄)₂HPO₄, 0.8 g/L MgSO₄·7H₂O, 0.8 g/L citric acid, and 5 mL/L of trace metal solution. The composition of trace metal solution was as follows: 10 g/L FeSO₄·7H₂O, 2 g/L CaCl₂, 2.2 g/L ZnSO₄·7H₂O, 0.5 g/L MnSO₄·4H₂O, 1 g/L CuSO₄·5H₂O, 0.1 g/L (NH₄)₆Mo₇O₂₄·4H₂O, and 0.02 g/L Na₂B₄O₇·10H₂O prepared in 0.5 M HCl. MgSO₄·7H₂O was sterilized separately. Ampicillin (Ap, 100 μg/mL) and chloramphenicol (Cm, 35 μg/mL) were added to the medium depending on the antibiotic resistance marker of plasmids. When the OD₆₀₀ of the culture reached 1.0, IPTG was added to the culture medium at a final concentration of 0.5 mM to induce protein expression. The cells were cultured for 8 h after IPTG induction. The recombinant E. coli strain was harvested by centrifugation at 8000g and 4 °C for 10 min. The cell pellet was washed with distilled water to remove the salts. The cells were then transferred to fresh MR (pH 4.5) medium supplemented with 20 g/L glucose, 5 g/L yeast extract, and 13 g/L MSG·H₂O (Dae Jung Chemicals and Metals Co. Ltd., Siheung, Korea) for the production of GABA.

Culture condition for direct synthesis of GABA from glucose

For the direct synthesis of GABA from glucose, the recombinant E. coli DGB201, DGB202, and DGB203 strains were cultured in MR medium (pH 7.0) supplemented with 30 g/L glucose, 5 g/L yeast extract, and 15 g/L ammonium sulfate at 30 °C for 24 h. The recombinant E. coli DGB302 and DGB303 strains were cultured in the MR medium (pH 7.0) supplemented with 20 g/L glucose, 5 g/L yeast extract, and 10 g/L ammonium sulfate at 30 °C for 48 h. Next, 35 μg/mL chloramphenicol and 100 μg/mL ampicillin were added to the culture medium. When the OD₆₀₀ of the culture reached 0.5, IPTG was added to the culture medium at a final concentration of 0.5 mM.

The fed-batch culture was performed at 30 °C in a 5-L bioreactor (BioCNS, Daejeon, Korea) containing 1.8 L of MR medium supplemented with 5 g/L yeast extract, 20 g/L glucose, and 10 g/L ammonium sulfate. The seed
culture (200 mL) was prepared in LB medium. When the OD_{600} of the culture reached 5, IPTG was added to the culture medium at a final concentration of 0.5 mM for inducing protein expression. The culture pH was adjusted using 5 M NaOH and 5 M HCl. The level of dissolved oxygen concentration (DOC) was maintained at 20% by automatically increasing the agitation speed to 1000 rpm and supplying pure oxygen. The feeding nutrition solutions were added to the culture medium when glucose levels depleted. The composition of the feeding nutrition was as follows: 500 g/L glucose, 500 g/L ammonium sulfate, 400 g/L yeast extract, 150 g/L MgSO_4·7H_2O. For the GABA production, the culture pH was adjusted to 5.0 using 5 M HCl when the initially supplied glucose levels depleted.

Analytical procedure

The cell growth was analyzed by measuring the optical density (OD_{600}) using a UV spectrophotometer (Molecular Devices, San Jose, CA). To determine the GABA and glutamate contents, the cell supernatants were analyzed by high-performance liquid chromatography (HPLC, Agilent Technologies Inc., Santa Clara, CA) equipped with ZORBAX SB-C18 column (250 × 4.6 mm) (Agilent Technologies Inc., Santa Clara, CA) as described previously [58]. The concentrations of organic acids and glucose were analyzed by HPLC equipped with Aminex HPX-76H column (300 × 7.8 mm) (Bio-Rad, Hercules, CA).

qRT-PCR

To investigate the changes in the gene expression pattern, the cells were cultured for 3 h after the pH was reduced to 4.5. The cells were then harvested by centrifugation at 10,000g and 4 °C for 5 min (Fig. 1). Total RNA was extracted using the RNA mini prep kit (Qiagen, Venlo, The Netherlands), following the manufacturer's instructions. The isolated RNA was reverse transcribed using the first-strand cDNA synthesis kit (TaKaRa) in a Real-Time PCR system (Illumina Inc., San Diego, CA). The PCR conditions were as follows: 40 cycles of 95 °C for 10 s and at 58 °C for 30 s.

Supplementary information

Additional file 1: Table S1.

Primers used in this study. Table S2. Relative expression of multidrug resistance genes. Figure S1. Relative gene expression of multidrug resistance genes. Figure S2. Time profile of gene expression of multidrug resistance genes.

Abbreviations

Gene	Description
acce	Acetate synthase
acceE	Acetate synthase enzyme II
pdhR	NADH:quinone oxidoreductase I
PEP	Phosphoenolpyruvate
Pta	Phosphotransacetylase
Pyk	Pyruvate kinase
GadA	Glutamate decarboxylase A
GadB	Glutamate decarboxylase B
GadC	Glutamate/gamma-aminobutyrate antipporter
GadE	Glutamate/gamma-aminobutyrate antipporter
GadH	Glutamate dehydrogenase

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT) (NRF-2018R1D1A1B07064359), the C1 Gas Refinery Program through the NRF funded by the MSIT (NRF-2018M3D3A1A01024690), and a Golden Seed Project Grant funded by Ministry of Oceans and Fisheries (213008-05-3-SB910).

Authors’ contributions

SJP and JC conceived the project. SP, SJP, and JC generated ideas and designed research. SP performed research and analytical experiments. SP and YJS analyzed data. SP, YJS, SJP, and JC wrote the paper. All authors read and approved the final manuscript.

Funding

Funding sources are declared in acknowledgement section.
Availability of data and materials
Please contact corresponding author for data requests.

Ethics approval and consent to participate
Not applicable. Our manuscript does not report data collected from humans or animals.

Consent for publication
Not applicable. Our manuscript does not contain any individual person's data in any form.

Competing interests
The authors declare that they have no competing interests.

Received: 15 November 2019 Accepted: 1 March 2020
Published online: 10 March 2020

References
1. Kim HT, Baritugo K, Hyun SM, Kang TU, Sohn YJ, Kang KH, Jo SY, Song BK, Park K, Kim IK, Hwang YT, Lee SY, Park SJ, Joo JC. Development of metabolically engineered Corynebacterium glutamicum for enhanced production of cadaverine and its use for the synthesis of bio-polyamide 510. ACS Sust Chem Eng. 2020;8(1):129–38.
2. Oh YH, Eom IY, Joo JC, Yu JH, Song BK, Lee SH, Hong SH, Park SJ. Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J Chem Eng. 2015;32(10):1945–59.
3. Pang B, Valencia LE, Wang J, Wan Y, Lai R, Zargar A, Keasling JD. Technical advances to accelerate modular type I polyketide synthase engineering towards a retro-biosynthetic platform. Biotechnol Bioprocess Eng. 2019;24:413–23.
4. Kim HT, Baritugo K, Oh YH, Hyun SM, Kang TU, Kang KH, Jung SH, Song BK, Park K, Kim IK, Lee MO, Kam Y, Hwang YT, Park SJ, Joo JC. Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of bio-polyamide 510. ACS Sustain Chem. 2018;6:296–305.
5. Kim HT, Kim JK, Cha HG, Kang MJ, Lee HS, Kang TU, Yun EJ, Lee DH, Song BK, Park SJ, Joo JC, Kim KH. Biological valorization of polyethylene terephthalate monomers for waste upcycling. ACS Sustain Chem. 2019;7(24):19396–408.
6. Rhie MN, Kim H, Joo JC, Choo LL, Baritugo KA, Baylon MG, Lee J, Na JG, Kim LH, Kim TM, Park C, Hong SH, Joo JC, Park SJ. Recent advances in the metabolic engineering of Kibrisella pneumoniae: a potential platform microorganism for biofinereries. Biotechnol Bioprocess Eng. 2019;24(1):48–64.
7. Do KH, Park HM, Kim SK, Yun HS. Production of cis-vaccenic acid-oriented unsaturated fatty acid in Escherichia coli. Biotechnol Bioprocess Eng. 2018;23(3):100–7.
8. Choo SY, Rhie MN, Kim HT, Joo JC, Cho IU, Son J, Jo SY, Sohn YJ, Baritugo KA, Pyo J, Lee YJ, Park SJ. Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng. 2020;58:847–81.
9. Sohn YJ, Kim HT, Baritugo KA, Song HM, Ryu MH, Kang KH, Jo SY, Kim H, Kim YJ, Choi J, Park SK, Joo JC, Park SJ. Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli cells. Int J Biol Macromol. 2020;149:595–9.
10. Shelp BJ, Bown AW, McLean MD. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 1999;4:446–52.
11. Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis S. Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Front Psychol. 2015;6:1520.
12. Chua J-Y, Koh MKP, Liu S-Q. Gamma-aminobutyric acid: a bioactive compound in foods. Sprouted grains. Amsterdam: Elsevier; 2019. p. 25–54.
13. Kim SH, Shin B-H, Kim Y-H, Nam S-W, Jeon S-J. Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnol Bioprocess Eng. 2007;12:707–12.
14. Ting Wong CG, Bottiglieri T, Sneed OC III. GABA, γ-hydroxybutyric acid, and neurological disease. Ann Neurol. 2003;54:53–12.
15. Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal J. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng. 2013;36:885–92.
16. Saskatchewan I. Biosynthesis of polyamide 4, a biobased and biodegradable polymer. Microbiol Indones. 2008;2:119–23.
17. Le Vo TD, Kim TW, Hong SH. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli. Bioprocess Biosyst Eng. 2012;35:645–50.
18. Le Vo TD, Koj S-L, Lee SH, Park SJ, Hong SH. Overexpression of Neurospora crassa OR74A glutamate decarboxylase in Escherichia coli for efficient GABA production. Biotechnol Bioprocess Eng. 2013;18:1062–6.
19. Le Vo TD, Ko J-S, Lee SH, Park SJ, Hong SH. Improvement of gamma-aminobutyric acid production by an overexpression of glutamate decarboxylase from Pyrococcus horikoshii in Escherichia coli. Biotechnol Bioprocess Eng. 2014;19:327–31.
20. Plokhotov AV, Guszatiner M, Yampolskaya T, Kaluzhsky V, Sukhareva B, Schulga A. Preparation of γ-aminobutyric acid using E. coli cells with high activity of glutamate decarboxylase. Appl Biochem Biotechnol. 2000;88:257–65.
21. Yu P, Chen K, Huang X, Wang X, Ren Q. Production of γ-aminobutyric acid in Escherichia coli by engineering MG5 pathway: Prep Biochem Biotechnol. 2018;48:906–13.
22. Yu P, Ren Q, Wang X, Huang X, Hong X. Enhanced biosynthesis of γ-aminobutyric acid (GABA) in Escherichia coli by pathway engineering. Bioeng Chem. 2019;14:1:252–8.
23. Zhao A, Hu X, Li Y, Chen C, Wang X. Extracellular expression of glutamate decarboxylase B in Escherichia coli to improve gamma-aminobutyric acid production. AMB Expr. 2016;6:55.
24. Zhao W-t, Huang J, Peng C-l, Hu S, Ke P-y, Mei L-h, Yao S-j. Permeabilizing Escherichia coli for whole cell biocatalyst with enhanced biotransformation ability from γ-glutamate to GABA. J Mol Catal B Enzym. 2014;107:39–46.
25. Pham VX, Lee SH, Park SJ, Hong SH. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli. J Biotechnol. 2015;207:52–7.
26. Oka N, Takahashi C, Hatada K, Ogino C, Kondo A. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express. 2014;4:20.
27. Shi F, Li Y. Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol Lett. 2011;33:2469–74.
28. Somasundaram S, Lee SH, Park SJ, Hong SH. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. J Ind Microbiol Biotechnol. 2013;40:1285–96.
29. Shi F, Jiang J, Li Y, Li Y, Xie Y. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biotechnol. 2014;40:1:230–5.
30. Somasundaram S, Lee SH, Park SJ, Hong SH. Gamma-aminobutyric acid production through GABA shunt by synthetic scaffolds introduction in recombinant Escherichia coli. Biotechnol Bioprocess Eng. 2016;21:261–7.
31. Zhao A, Hu X, Wang X. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose. Appl Microbiol Biotechnol. 2017;101:1:3557–603.
32. Chai JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact. 2015;14:21.
33. Krisky AS, Radman M. Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol. 2013;5:3:a0132765–a0132765.
34. Liu Y, Zhou J, Omelchenko MV, Beliaev AS, Venkateswaran A, Stair J, Wu L, Thompson DK, Xu D, Pogozheva I. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci USA. 2003;100:4191–6.
35. Appukuttan D, Singh H, Park S-H, Jung J-H, Jeong S, Seo HS, Choi YJ, Lim S. Engineering synthetic multistress tolerance in *Escherichia coli* by using a deinococcal response regulator, DR1558. Appl Environ Microbiol. 2016;82:1154–66.

36. Guo S, Yi X, Zhang W, Wu M, Xin F, Dong W, Zhang M, Ma J, Wu H, Jiang M. Inducing hyperosmotic stress resistance in succinate-producing *Escherichia coli* by using the response regulator DR1558 from *Deinococcus radiodurans*. Process Biochem. 2017;61:30–7.

37. Park S, Sohn YJ, Park SJ, Choi J. Enhanced Production of 2,3-Butanediol in *Escherichia coli* K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97:6640–5.

38. Kim YH, Kim HJ, Shin J-H, Bhatia SK, Seo H-M, Kim Y-G, Yang Y-H, Park K. Application of diethyl ethoxymethylenemalonate (DEEMM) derivatization for monitoring of lysine decarboxylase activity. J Mol Catal B Enzym. 2015;105:65–73.

39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.