Current antimicrobial susceptibility pattern of uropathogens in a maternal and child health care hospital in Bangladesh

Ritu Saha1*, Afzalunnessa Binte Lutfor2, Arpita Deb3, Taskina Akhter4, Tamanna Sultana4

1Assistant Professor, 2-4Professor, 4Lecturer, Dept. of Microbiology, 1Bashundhara Ad-din Medical College Hospital, Dhaka, Bangladesh, 2-4Ad-din Women’s Medical College Hospital, Dhaka, Bangladesh

*Corresponding Author: Ritu Saha
Email: ritu86.smc@gmail.com

Abstract

Introduction: Urinary tract infection is still one of the most common infections among all age groups. The causative microorganisms of UTI and their sensitivity to different antibiotics varies in different areas, and changes with time. This necessitates periodic studies of the causative uropathogens and their antibiotic sensitivity pattern.

Aim: To observe the profile of common uropathogens and their antibiotic sensitivity patterns to commonly used antimicrobial agents.

Materials and Methods: A contemplative study was done at the department of Microbiology of Ad-din Women’s Medical College, Dhaka (AWMCH), Bangladesh, during January to December, 2017. Clean-catch midstream urine samples were collected from 7139 suspected urinary tract infection patients of different age and sex groups. Uropathogens were identified by standard microbiological techniques and antimicrobial susceptibility pattern was determined by Kirby Bauer Disc diffusion method following Clinical and Laboratory Standards Institute (CLSI) guidelines.

Result: In this study, Out of 7139 patients, 1664 (23.3%) were female. The predominant isolate was E. coli 712 (42.8%), followed by Coagulase negative Staphylococcus (CONS) 589 (35.4%), Acinetobacter 126 (7.5%), Enterobacter spp. 72 (4.3%), Klebsiella spp. 62 (3.7%), Enterococcus spp. & Proteus spp. 16 (1.9%). Imipenem (92%), amikacin (83.8%), piperacillin-tazobactam (85.4%), gentamycin (69.4%), levofloxacin (65.6%) shows higher sensitivity to Gram negative bacteria, whereas high resistance to ampicillin (17%), cefadroxil (20%) and amoxiclav (28%) were observed. On the other hand, Gram positive bacteria showed high resistance to nalidixic acid (70-95%), erythromycin (68-90%), and high sensitivity to nitrofurantoin, meropenem, vancomycin and linezolid. Vancomycin, linezolid and nitrofurantoin for Gram positive bacteria and amikacin, meropenem, piperacillin tazobactam, and colistin for Gram negative bacteria are still useful. As an empirical antibiotic against Gram negative organisms, amoxyclov is less effective as only 20% pathogens were susceptible. Both Gram positive and negative bacteria are highly resistant to quinolones, nitrofurantoin and cephalosporins with few exceptions.

Conclusion: Empiric antimicrobial agents should be selected on the basis of current antibiotic sensitivity pattern of the uropathogens prevalent in that area.

Keywords: Uropathogens, Urinary tract infection, Current Antimicrobial susceptibility pattern.

Introduction

Urinary tract infection (UTI) is one of the most common bacterial infections encountered in medical practice today in all age groups of population,1 which can also be considered as a major public health problem because of morbidity and financial loss. It also accounts for up to 40% of all hospital acquired infections.2 In spite of tremendous improvement in the diagnosis and treatment of urinary tract infections (UTIs), these infections still remain a major clinical problem.

Most infections are caused by retrograde ascent of fecal flora to urinary bladder and kidney via urethra, specially in females with their shorter and wider urethra.3 It is estimated that about 35% of healthy women suffer from symptoms of urinary tract infection at some point in their life. UTIs in female are also preceded by Vaginal colonization with uropathogens.4 Moreover, they are susceptible to trauma during sexual intercourse and bacterial passage through urethra up to the bladder during pregnancy and delivery due to their urethral and vaginal anatomy.5,6

Gram negative bacilli are mostly responsible for urinary tract infection. Of them E coli is most common causative agent of UTI.7 Other important causative Gram negative agents are Klebsiella, Enterobacter, Citrobacter, Proteus and Serratia species. The commonly isolated Gram positive pathogenic bacteria include Coagulase negative staphylococcus (Staphylococcus epidermidis, Staphylococcus saprophyticus) and Enterococcus species which results in UTI from their subsequent colonization of vaginal and perianal skin.8

The gastrointestinal tract is the major reservoir of S. saprophyticus. Association between UTI by S. saprophyticus and their rectal, vaginal, and urethral colonization was observed by Latham et al.9 in an early study. It is the second most common cause of UTI after E.coli in females of reproductive age.10

Identification of the uropathogens and their antibiotic susceptibility pattern is usually observed by doing Urine culture. Empirical antibiotic therapy is often given to the patient before the laboratory results of urine culture are available for reduction of the existing symptoms and prevention of renal complications. Antibiotic resistance is one of the major causes of treatment failure in case of UTIs.11 Indiscriminate use of antibiotics are responsible for emergence of resistant microorganisms to one or more of drug and gradual narrowing of scope for effective drugs to fight with bacterial infections including UTIs.12 Moreover, the prevalence and pattern of antimicrobial sensitivity of
uro pathogens are constantly changing with increasing uses of antimicrobial agents. So area-specific monitoring studies aimed to understand the types of uropathogens and their susceptibility patterns to various antibiotics may help clinicians to select proper empirical treatment.13

The aims of this study were A) to investigate microorganisms isolated from patients with UTI in a maternal and child health care based hospital and evaluate their in vitro susceptibility patterns to commonly used antimicrobial agents and B) to provide proper updates to the clinician and the hospital management about current antibiotic sensitivity pattern and help them updating antibiotic usage guidelines and policy.

Materials and Methods
A retrospective study on Urinary tract infection was done at the Microbiology laboratory of Ad-Din Women’s Medical College Hospital (AWMCH) based on available laboratory data. This study was conducted from January 2017 to December 2017 on 7139 patients with requisition of urine culture and sensitivity from outdoor and indoor of different departments of the hospital.

Sterile disposable containers were used for collection of clean catch midstream urine samples (MSU) (4-5 ml) and transported immediately to the laboratory. Urine culture was done by semi quantitative method on MacConkey, 5% blood agar and cystine lactose electrolyte deficient medium (CLED) agar (Oxoid Ltd, Basingstore, Hampire, UK) by using calibrated loops14 and incubated in aerobic condition for 24 hours at 37°C. Routine urine microscopy of all urine specimens was done for counting white blood cell (WBC). Growth of microorganisms from culture was compared with the report of routine microscopy for diagnosis of UTI. If after 24 hour incubation no colony appears on culture media, they were further incubated for 48 hours. The isolates were identified and confirmed by using standard microbiological and biochemical tests like Gram staining, growth on selective media, colony morphology on culture media, lactose fermentation, indole, and citrate utilization, H2S production, catalase, coagulase, oxidase, and urease test according to guidelines of WHO.15

The bacterial colonies were counted and multiplied by 100 to find out the number of bacteria present per milliliter of urine.8 Growth of more than 105 organisms per milliliter is considered as infection. However, if the patient have prominent symptoms, a smaller number of single type of bacteria (102 to 105/ml) is also reported as infection. In urine specimens obtained by suprapubic aspiration or from patient with an indwelling catheter, few colonies of bacteria per millilitre has been reported as UTI. On the other hand, colony counts>10⁵/ml of multiple species (≥3 types) are reported as contamination16 and the samples were repeated.

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility testing was performed on Mueller Hinton agar (Merck, Germany) using disk diffusion (Kirby Bauer’s) technique according to Clinical and Laboratory Standards Institute (CLSI) guidelines. The antibiotic discs of ampicillin (Amp), cephradine (Ceph), cotrimoxazole (Cot), ciprofloxacin (Cip), nitrofurantoin (Nit), levofloxacin (Lev), nalidixic acid (NA), ceftroxaxone (CTR), amoxiclav (AMC), cefixime(CXM), cefotaxime (CTX), gentamicin(Gen), amikacin (AK), ceftazidine (CAZ), meropenem (Mero), piperacillin-tazobactam (PIT), colistin (Col) were used for Gram negative bacteria and ampicillin (Amp), cephradine (Ceph), cotrimoxazole (Cot), ciprofloxacin (Cip), nitrofurantoin (Nit), levofloxacin (Lev), nalidixic acid (NA), cefotaxime (CTX), ceftriaxone (CTR), amoxiclav (AMC), gentamicin (Gen), ceftazidine (CAZ), amikacin (AK), meropenem (Mero), cefixime(CXM), oxacillin (Ox), cloxacillin (Clox), erythromycin (Ery), doxycycline (Do), vancomycin (Van), linezolid (Lz) were used for Gram positive bacteria. All antibiotic discs are obtained from Oxoid Ltd, Bashingstore, Hampire, UK.

Result
In this study, majority of the patients (88.5%, 6315/7139) were female (Fig. 1). Out of 7139 patients, 1664 (23.3%) showed positive urine cultures (Fig. 2) of which there were 1551 (93.2%) females and 113 (6.8%) males (Table-1). Among the growth positive cases, 61.7% (1028/1664) were infected by Gram negative bacilli while 636 (38.3%) cases were infected by Gram positive cocci (Table 3). Distribution of Gram reactive organisms isolated from urine samples are illustrated in Table 3. E. coli was the predominant isolates 712 (42.8%), followed by Coagulase negative Staphylococcus (CONS) 589 (35.4%), Acinetobacter 126 (7.5%), Enterobacter spp. 72 (4.3%), Klebsiella spp. 62 (3.7%), Enterococcus spp. & Proteus spp. 16 (1.9%).

The rates of susceptibility to 19 selected antimicrobial agents against Gram positive cocci and to 17 antimicrobial agents against Gram negative bacilli are summarized in Table 4 and Table 5, respectively.

In this study, Staphylococci were responsible for about 36% of UTIs cases; among these, CONS isolates were most frequently isolated. Gram positive bacteria showed high resistance to cephradine, nalidixic acid, erythromycin, and high sensitivity to nitrofurantoin, gentamicin, meropenem, vancomycin and linezolid. But interestingly, sensitivity of CONS towards ampicillin has a rising tendency (42.1%). (Table 4)

E. coli isolates, the predominant cause of UTIs, showed higher sensitivity to imipenem (92%), amikacin (83.8%), piperacillin- tazobactum (85.4%), gentamycin (69.4%), levofloxacin (65.6%), ciprofloxacin (62.1%) and nitrofurantoin (60%) and high resistance to ampicillin (17%), cephradin (11.8%), cotrim (26%) and amoxiclav (28%). Klebsiella strains displayed almost similar susceptibility pattern as for E. coli and showed high susceptibility to imipenem, amikacin, gentamycin, levofloxacin and cotrimoxazole and high resistance to ampicillin, cephradin, amoxiclav and nalidixic acid, ceftazidine and cefuroxime. Sensitivity pattern observed in Enterobacter species are almost similar of the sensitivity pattern of Klebsiella spp. (Table 5).
Acinetobacter species show higher susceptibility to colistin (94%), imipenem (79%), piperacillin tazobactum (73%) and gentamicin (72%) and lower susceptibility to cephradine (10%), nalidixic acid (22%) and cefuroxime (19%). But an increased sensitivity of Acinetobacter spp to ampicillin is observed in the present study (41.3%).

On Proteus strains, cephradine, ampicillin, nitrofurantoin, and amoxyclav showed poor (6.5%, 25%, and 22%, respectively) and meropenem, amikacin, ciprofloxacin, levofloxacin, ceftazidime, cefotaxim, ceftriaxone showed good sensitivity (93%, 81%, 71%, 68% and, 64%, respectively). On the other hand Pseudomonas species is much more sensitive to colistin, meropenem, piperacillin-tazobactam, amikacin and gentamycin (88%,75%, 69% & 63% respectively) but less susceptible to cotrimoxazole, cefuroxime and ciprofloxacin (25%, 31% & 37%).

Table 1: Distribution of samples received (7139) from UTI Patients on the basis of sex and growth of micro organisms

Sex	Growth Positive	Percentages	Growth negative	Percentages
Male	113	6.8	711	12.9
Female	1551	93.2	4764	87.1
Total	1664	100	5475	100

Table 2: Distribution of isolated Gram reactive microorganisms from total (7139) urine samples in 2017

Gram Reaction	Microorganisms	No	Percentages
Gram positive organism	CONS spp	589	35.4
	Enterococci	31	1.9
	Staphylococcus aureus	16	1
Total Gram positive organisms			38.3
Gram negative organism	E. coli	712	42.8
	Acinetobacter	126	7.5
	Enterobacter	72	4.3
	Klebsiella	62	3.7
	Proteus	31	1.9
	Pseudomonas	16	1
	Citrobacter	9	.5
Total Gram negative organisms			61.7

Table 3: Susceptibility pattern of Gram positive organisms causing Urinary tract infection

Antibiotics	CONS N=(589)	Enterococci N=(31)	Staph. Aureus N=(16)
Ampicillin	248 (42.1)	3 (9.7)	0 (0)
Cotrimoxazole	306 (52)	11 (35.5)	9 (56.3)
Ciprofloxacin	308 (52.3)	15 (48.4)	8 (50)
Nitrofurantoin	332 (56.4)	12 (38.7)	8 (50)
Nalidixic acid	34 (5.8)	10 (32.3)	5 (31.1)
Cefepime	154 (26.1)	435 (73.9)	5 (31.1)
Levofoxacine	320 (54.3)	12 (38.7)	11 (68.8)
Ceftriaxone	287 (48.7)	15 (48.4)	10 (62.5)
Cefotaxime	315 (53.5)	4 (12.9)	9 (56.3)
Amoxyclav	394 (66.9)	17 (54.8)	11 (68.8)
Oxacillin	203 (34.5)	(NU)	7 (43.8)
Cloxacillin	184 (31.2)	(NU)	7 (43.8)
Doxycycline	274 (46.5)	(NU)	8 (50)
Erythromycin	82 (13.9)	(NU)	5 (31.3)
Amikacin	139 (23.6)	17 (54.8)	8 (50)
Meropenem	407 (69.1)	19 (61.3)	10 (62.5)
Gentamicin	392 (66.6)	12 (38.7)	8 (50)
Vancomycin	572 (97.1)	26 (83.9)	14 (87.5)
Linezolid	581 (98.6)	31 (100)	16 (100)

NU= Not used
Table 4: Susceptibility pattern of Gram negative organisms isolated from Urinary tract infection

Antibiotics	E. Coli (N=712)	Acinetobacter (N=126)	Klebsiella (N=62)	Enterobacter (N=72)	Proteus (N=31)	Pseudomonas (N=16)	Citrobacter (N=9)
	S(%)	S(%)	S(%)	S(%)	S(%)	S(%)	S(%)
Ampicillin	124 (17.4)	52 (41.3)	13 (21)	11 (15.3)	8 (25.8)	(NU)	1 (11.1)
Cephradine	84 (11.8)	13 (10.3)	12 (19.4)	4 (5.6)	2 (6.5)	(NU)	(NU)
Cotrimoxazole	189 (26.5)	68 (54)	42 (67.7)	38 (52.8)	15 (48.4)	4 (25)	4 (44.4)
Ciprofloxacin	442 (62.1)	63 (50)	35 (56.5)	34 (47.2)	22 (71)	6 (37.5)	2 (22.2)
Levofloxacin	467 (65.6)	75 (59.5)	44 (71)	44 (61.1)	25 (80.6)	7 (43.8)	6 (66.7)
Nitrofurantoin	428 (60.1)	56 (44.4)	24 (38.7)	35 (48.6)	7 (22.6)	(NU)	(NU)
Nalidixic acid	232 (32.6)	28 (22.2)	14 (22.6)	14 (19.4)	15 (48.4)	(NU)	3 (33.3)
Ceftriaxone	397 (55.8)	56 (44.4)	21 (33.9)	24 (33.3)	20 (64.5)	(NU)	7 (77.8)
Cefotaxime	332 (46.6)	62 (49.2)	28 (45.2)	29 (40.3)	21 (67.7)	(NU)	(NU)
Amoxyclov	208 (29.2)	45 (35.7)	29 (46.8)	22 (30.6)	7 (22.6)	(NU)	(NU)
Cefuroxime	257 (36.1)	24 (19)	14 (22.6)	11 (15.3)	14 (45.2)	5 (31.3)	2 (22.2)
Amikacin	597 (83.8)	95 (75.4)	51 (82.3)	65 (90.3)	25 (80.6)	11 (68.8)	7 (77.8)
Meropenem	654 (91.9)	98 (77.8)	58 (93.5)	69 (95.8)	29 (93.5)	12 (75)	8 (88.9)
Gentamicin	495 (69.5)	91 (72.2)	48 (77.4)	52 (72.2)	13 (41.9)	10 (62.5)	6 (66.7)
Ceftazidime	310 (43.5)	53 (42.1)	17 (27.4)	18 (25)	22 (71)	7 (43.8)	5 (55.5)
Piperacillin	608 (85.4)	92 (73)	(NU)	(NU)	12 (75)	(NU)	(NU)
Tazobactam	(NU)	119 (94.4)	(NU)	(NU)	14 (87.5)	(NU)	(NU)

NU= Not Used

Discussion

The complications related to urinary tract infection with the rising resistance against antimicrobial agents, are matter of worldwide concern. This study shows the distribution of microorganisms isolated from patients with UTI and their susceptibility pattern to various antimicrobial agents at Ad-din Women’s Medical College Hospital (AWMCH) which provides mainly Maternal and Child health care.

In our study isolation rate of microorganisms from suspected UTI patients is 23.3% which is in agreement with report by Sheikh et al who have found 28.5% incidence rate, higher than the rate 8.06% reported in Iran17 and lower than the rate of 31.35% and 66.78% significant bacteriuria recorded in India.18,19 In Bangladesh Rezwana Haque found 42.66% and Khanam et al found 55.4% Growth positive cases in their study.4,20

Fig. 1: Distribution of urine samples received in Year 2017

Fig. 2: Sex distribution of the received sample in 2017

Rate of UTI in our hospital is lower than other reports from different Hospitals of our country. As majority of the patients in the hospital are female and urine culture is advised here routinely as antenatal check up to pregnant women21 this may be one reason of lower rate in our hospital.

Furthermore, 93.2% of the Growth positive cases are females in the present study. The sex distribution of patients in our study is consistent with those in other studies18,22,23 showing a predominance of females (88.69% of the positive cultures). It has thought that, ascending infection occur in female patient because of the short urethra. Moreover, women used some bad practices such as cleaning perineum forward from the anus to the vulva22 that can also cause urinary tract infection. Sexual activity has also been reported as a causative factor for higher prevalence of UTI in females.25 Males have longer urethra and some antimicrobial substances in prostatic fluid, so they are less prone to UTIs.26
Our study indicates that *E. coli* is still the most common cause of UTI in Bangladesh. This corresponds with the data obtained by other investigators. In addition, coagulase negative *Staphylococcus spp.* was the most common cause of UTI among Gram positive bacteria. Some recent studies have illustrated the importance of coagulase negative *Staphylococcus spp.* in urinary tract infections.

Acinetobacter with the rate of 7.5% was the third species that caused UTI. The increasing trend of UTI by Acinetobacter spp. indicates hospital acquired infection specially in those patients who have urinary catheter in situ because of their strong biofilm production along the catheter that ascends into the bladder along both the internal and external catheter surfaces. A feasible hospital antibiotic policy and strict maintenance, rigorous surveillance and good hospital infection control program are needed to control the increasing incidence of highly resistant Acinetobacter infections.

In our study, as with previous studies, *E. coli* demonstrated a very high microbial resistance to antibiotics. The analyzed results of antibiotic susceptibility test showed that *E. coli* was least sensitive to ampicillin (17%), ceftriaxone (11.8%), cotrimoxazole (26%) and amoxiclav (28%). On the other hand, the organism is highly sensitive to imipenem (92%), amikacin (83.8%), piperacillin-tazobactam (85.4%), gentamycin (69.4%), levofloxacin (65.6%), ciprofloxacin (62.1%) and nitrofurantoin (60%). This is similar to previous studies in Bangladesh, India, pakistan and Iran. Nitrofurantoin is still showing good susceptibility (60%) but it has a decreasing trend than other studies. Klebsiella and Enterobacter strains displayed almost similar susceptibility pattern as for *E. coli* but with a decreasing sensitivity to nitrofurantoin and ciprofloxacin, but good sensitivity to levofloxacin (Table-4). But other studies in our country show variable susceptibility of Gram negative organisms.

In the present study Gram negative bacteria showed increased susceptibility towards Aminoglycosides than other reports in our country. As gentamycin is available in only injectable form it is not suitable for empirical therapy in UTI. This may be the cause of increasing gentamycin sensitivity. Moreover amoxicillin-clavulanic acid is found less effective among Gram negative organisms which co-inside with study done by Jafri et al.

In the present study, the *coagulase negative Staphylococcus* showed increased resistance to ceftriaxone, nalidixic acid and erythromycin, respectively. Results showed that these bacteria was highly susceptible to gentamicin, amoxicillin-clavulanic acid, meropenem, vancomycin and Linezolid that corresponds with other study in our region and other parts of the world. So the Vancomycin and linezolid can be used as drug of choice in against UTI caused by Gram positive cocci. But interestingly, sensitivity of CONS towards ampicillin has a rising tendency (42.1%) which is probably attributed to prolonged cessation of use and no available commercial oral preparation in our country. All isolated Gram positive organisms shows good sensitivity to vancomycin and Linezolid.

The effective drugs for UTI are levofloxacin, amikacin and imipenem and piperacillin-tazobactam in our country. They are also recommended in some other studies. Low resistance to these drugs was observed because they’re relatively expensive compared to others and are not readily available. Thus, these drugs could be considered as alternative options in empirical treatment of UTIs.

In clinical practice, the β-lactamase inhibitors are often administered in combination with β-lactam antibiotics to extend the spectrum of antibacterial activity of the antibiotics. Tazobactam inhibits a broad range of plasmid mediated and chromosomal bacterial β-lactamases and is the most active of currently available β-lactamase inhibitors. The combination of this agent with piperacillin, a β lactamase-sensitive antibiotic, expands the activity of piperacillin to β-lactamases producing microorganisms, including Enterobacteriaceae. Isolates in this study were highly sensitive to PPF (75-85%).

Ciprofloxacin and Nitrofurantoin were considered as a remedy to UTI but recently efficacy of these drugs are decreasing day by day. So, careful uses of these drugs should be ensured so that, resistance rates to these antibiotics for UTIs do not increase.

All uropathogens in the present study showed a high resistance to cephalosporins (Cephradin, and ceftriaxone) (50-90%), while other studies have reported a comparatively lower resistance. The high resistance to cotrimoxazole, amoxyclav and cephalosporins in the present study indicate the easy access and indiscriminate use of these drugs for all kinds of infections.

Selective drug pressure is responsible for emergence of drug-resistant mutants. Moreover, use of antibiotics (Cotrimoxazole, Ciprofloxacin) in livestock for growth promotion is another important cause for development of resistance towards commonly used antimicrobials. So these drugs should not be considered as first-line therapy for the empiric treatment of UTI.

However in the current study we observed a generalized drug resistance to commonly used antibiotics particularly among Gram negative isolates. Increasing tendency of UTI is observed by known nosocomial pathogens like Acinetobacter and CONS. So careful monitoring of their antibiotic susceptibility pattern is necessary for reduction of treatment failure rate.

There are significant geographic differences in the susceptibility of commonly used antimicrobials against uropathogens. So, accurate knowledge on local epidemiology and antimicrobial resistance pattern of organisms causing UTI is essential to design effective therapy. Annual determination of bacterial sensitivity pattern in a particular area as a guideline is also recommended. In Bangladesh, dispensing of antibiotics are not restricted to prescription only, rather they are available over the counter. Evidence suggests that, if any antibiotic is used for a short time in the locality and withdrawn for some time, it brings remarkable changes in resistance...
pattern. Besides, gradual increase in antibiotic resistance demands establishment of Antimicrobial stewardship programs (involving pharmacists, physicians and other healthcare providers). One of the important limitation of our study is we could not confirm the hospital acquired and community acquired UTI. Species of all bacteria could not be identified because of inadequate laboratory settings. Moreover, MIC method was not done for antibiotic susceptibility testing.

Conclusion

In a nutshell, E.coli and CONS are the common pathogen causing UTI in our hospital. But infection with Acinetobacter is increasing day by day. Levofloxacin, amikacin, meropenem and piperacillin tazobactam are potential drug for UTI caused by Gram negative bacteria whereas, vancomycin and linezolid are effective against UTI caused by Gram positive cocci.

Acknowledgements

We are grateful to all Technician and the staffs of Microbiology Department, Laboratory Division, AWMCH.

Conflict of Interest: None.

References

1. Tambekar DH, Dhanorkar DV, Gullhane SR, Khandelwal VK, Dudhane MN. Antibacterial susceptibility of some urinary tract pathogens to commonly used antibiotics. Afr J Biotechnol 2006;5:1562–5.
2. Szasz M, Lehotkai N, Kristof K, Szabó D, Nagy K. Prevalence and antimicrobial resistance of uropathogens in different inpatient wards. Acta Microbiol Immunol Hung 2009;56:375–87.
3. Inabo H, Obanibi H. Antimicrobial susceptibility of some urinary tract clinical isolates to commonly used antibiotics. Afr J Biotechnol 2006;5(5):487-9.
4. Haque R, Akter ML, Salam MA. Prevalence and susceptibility of uropathogens: a recent report from a teaching hospital in Bangladesh. BMC Res Notes 2015;8(1):416.
5. Al Sweih N, Jamal W, Rotimi VO. Spectrum and antibiotic resistance of uropathogens isolated from hospital and community patients with urinary tract infections in two large hospitals in Kuwait. Med Prin Pract 2005;14(6):401-7.
6. Kolawole A, Kolawole O, Kandaki-Olukenyi Y, Babatunde S, Durowade K, Kolawole C. Prevalence of urinary tract infections (UTI) among patients attending Dalhatu Araf Specialist Hospital, Lafia, Nasarawa State. Nigeria. Int J Medicinal Med Sci. 2009;1(5):163-7.
7. Pallavi K, Georgi A, Asik MA, Prathiba M, Milly M. Urinary tract infections in the era of newer immunosuppressant agents: A tertiary care center study. Saudi J Kidney Dis Transplant 2010;21(5):876-80.
8. Masihkoor S, Goel S, Farooq U, Dayal N, Sridhar D, Bhaduria B. Prevalence of Urinary Tract Infection in Patients attending Teerthanker Mahaveer Medical College & Research Centre and Hospital Moradabad. Int Arch BioMedical Clin Res 2017;3(2):81-5.
9. Latham RH, Running K, Stamm WE. Urinary tract infections in young adult women caused by Staphylococcus saprophiticus. JAMA 1983;250:3063–6.
10. Rupp ME, Soper DE, Archer GL. Colonization of the female genital tract with Staphylococcus saprophiticus. J Clin Microbiol 1992;30(11):2975–9.
11. Gupta K. Addressing antibiotic resistance. Am J Med 2002;113:295–345.
12. Gold HS, Moellering RC. Antimicrobial drug resistance. N Engl J Med 1996;335:1445–53.
13. Farshad S, Ranjbar R, Japoni A, Hosseini M, Anvarinejad M, Mohammadzadegan R. Microbial susceptibility, virulence factors and plasmid profiles of uropathogenic Escherichia coli strains isolated from children in Jahron. Iran Arch Iran Med 2012;15:312–6.
14. Beyene G, Tsegaye W. Bacterial uropathogens in urinary tract infection and antibiotic susceptibility pattern in jimma university specialized hospital, southwest ethiopia. Ethiop J Health Sci 2011;21(2):141-6.
15. Vandepitte J. Basic laboratory procedures in clinical bacteriology. World Health Organization; 2003 Dec 31.
16. Stamm WE. Urinary tract infections and pyelonephritis. In: Kasper DL, Braunwald E, Fauci AS, et al., editors. Harrison’s principles of internal medicine. 16th ed. USA: McGraw-Hill companies Inc; 2005. p. 1715–21.
17. Khoshbakht R, Salimi A, Shirzad Aski H, Keshavarzi H. Antibiotic susceptibility of bacterial strains isolated from urinary tract infections in Karaj, Iran. Jundishapur J Microbiol 2013;6(1):86-90.
18. Savitha, T. Int J Curr Res 2011;2(1):67-72.
19. Mahesh El Complicated Urinary Tract Infection in a Tertiary Care Center in South India. Al Ameer J Med Sci 2010;3(2):120-7.
20. Khanam RA, Sharif A, Sharmi N, Sarker S, Jahan H & Yusuf MA. Clinical Utility of Antibiotic against Uropathogen Isolated at a Tertiary Care Hospital of Dhaka City. Am J Microbiol Res 2018;6(2):63-6.
21. Schlembach D. Urine analysis in pregnancy. Therapeutische Umschau. Revue Therapeutique 2006;63(9):585-9.
22. Modarres s, Nasiris Oskaio N. Bacterial etiologic agents of urinary tract infection in children in the Islamic Republic of Iran. East Mediterr Health J 1997;3(2):290-5.
23. Khameneh ZR, Afshar AT. Antimicrobial susceptibility pattern of urinary tract pathogens. Saudi J Kidney Dis Transpl 2009;20(2):251-3.
24. Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon 2003;49(2):53-70.
25. Adedeji B, Abdulkadir O. Etiology and antimicrobial resistance pattern of bacterial agents of urinary tract Infections in students of tertiary Institutions in Yola Metropolis. Biol Res 2009;3(3-4):67-70.
26. Farajinia S, Alikhani MY, Ghotsi-Rovani L, Nahl A, Rakhiband A. Causative agents and antimicrobial susceptibilities of urinary tract infections in the northwest of Iran. Int J Infect Dis 2009;13(2):140-4.
27. Biswas R, Rabhani R, Ahmed HS, Sarker MA, Zafirin N, Rahman MM. Antibiotic sensitivity pattern of urinary tract infection at a tertiary care hospital. Bangladesh Crit Care J 2014;2(1):21-4.
28. Huebner J, Goldmann DA. Coagulase-negative staphylococci: role as pathogens. Ann Rev Med 1999:50:223-36.
29. Jhora ST, Paul S. Urinary tract Infections caused by Staphylococcus Saprophiticus and their antimicrobial sensitivity pattern in young adult women. Bangladesh J Med Microbiol 2011;5(1):21-5.
30. Rodriguez-Banjo J, Marti S, Soto S, Fernandez-Cuenca F, Cisneros JM, Pachon J, et al. Spanish Group for the Study of Nosocomial Infections (GEIH). 2008. Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infect 2008;14:276–8. http://dx.doi.org/10.1111/j.1469-0691.2007.01916.x.
31. Urinary Tract Infection (UTI) in the Catheterized Patient 2017. Available at: www.infectiousdiseasesadvisor.com
32. Sudheendra KR, Basavaraj PV. Analysis of antibiotic sensitivity profile of biofilm-forming uropathogenic Escherichia coli. J Nat Sci, Biol Med 2018;9(2):175.
33. Jafri SA, Qusim M, Masoud MS. Antibiotic resistance of E. coli isolates from urine samples of Urinary Tract Infection (UTI) patients in Pakistan. Bioinformation 2014;10(7):419.
34. Singh A, Sharma R, Jain M, Vyas L. Hospital and community isolates of uropathogens and their antibiotic sensitivity pattern from a tertiary care hospital in North West India. Ann Med Health Sci Res 2014;4(1):51-6.
35. Ohlin B, Cederberg Å, Forssell H, Solhaug JH, Tveit E. Piperacillin/tazobactam compared with cefuroxime/metronidazole in the treatment of intra-abdominal infections. Eur J Surg 1999;165(9):875-84.
36. Tambekar DH, Dhanorkar DV, Gulhane SR, Khandelwal VK, Dudhane MN. Antibacterial susceptibility of some urinary tract pathogens to commonly used antibiotics. Afr J Biotechnol 2006;5:1562-5.
37. Chatterjee B, Kulathinal S, Bhargava A, Jain Y, Kataria R. Antimicrobial resistance stratified by risk factor among Escherichia coli strains isolated from the urinary tract at a rural clinic in Central India. Indian J Med Microbiol 2009;27:329–34.
38. Prashanth K, Badrinath S. In vitro susceptibility pattern of acinetobacter species to commonly used cephalosporins, quinolones and aminoglycosides. Indian J Med Microbiol 2004;22:97–103.
39. Maron DF, Smith TJ, Nachman KE. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Glob Health 2013;9:48.
40. Daza R, Gutierrez J, Piedrola G. Antibiotic susceptibility of bacterial strains isolated from patients with community-acquired urinary tract infections. Int J Antimicrob Agents 2001;18(3):211-5.
41. Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, Sahm DF. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother 2002;46(8):2540-5.
42. Chowdhury F, Sturm-Ramirez K, Abdullah Al Mamun A, Bhuiyan MU, Chisti MJ, Ahmed M, et al. Factors driving customers to seek health care from pharmacies for acute respiratory illness and treatment recommendations from drug sellers in Dhaka city, Bangladesh. Patient Prefer Adherence 2017;11:479.
43. Griffith M, Postelnick M, Scheetz M. Antimicrobial stewardship programs: methods of operation and suggested outcomes. Expert review of anti-infective therapy. 2012;10(1):63-73.
44. Lutfor AB, Saha R, Akter M, Deb A, Mahmud AM, & Khan SA. Changes in Five Years among Pathogens in Wound Infection and Their Susceptibility to Antimicrobials. Am J Infect Dis Microbiol 2018;6(1):1-8.

How to cite this article: Saha R, Afzalunnessa Binte Lutfor, Arpita Deb, Taskina Akhter, Tamanna Sultana. Current antimicrobial susceptibility pattern of uropathogens in a maternal and child health care hospital in Bangladesh. Indian J Microbiol Res 2019;6(2):135-41.