高電流GMA溶接によるステンレス鋼厚板の片側貫通溶接

馬場 勇人**, 門田 圭二***, 恵良 哲生**, 上山 智之**
前嶋 基志****, 門井 浩太***** 井上 裕滋***** 田中 学*****

**Single-Pass Full-Penetration Welding for Thick Stainless Steel Using High-Current GMAW**

This paper describes a high-current Gas Metal Arc Welding (GMAW) process using a constant voltage power source developed for high-efficiency welding of thick stainless steel plates. A short arc length as a welding condition is preferable to concentrate the arc and obtain a deep penetration for thick plate welding. However, it is easily found that an unstable arc derived from a short circuit happens irregularly by using a general purpose GMAW with constant voltage characteristic. A "low-frequency modulated voltage control" was applied for stabilizing a high-current arc that can maintain the short arc length without short circuiting. The welded joint using the developed welding process showed the similar corrosion resistance as that using the submerged arc welding, however, porosity was observed in the welded joints using the developed welding process in the current region of 400 A or above. Consequently, a new current waveform control that changes the welding current dynamically and periodically has been developed, which realized reducing porosity and single-pass full-penetration welding of 9 mm-thickness type 304 stainless steel plates with square groove.

Key Words: High-Current, GMAW, Thick Stainless Steel, Porosity, Current Waveform Control

1. 緒 言

ステンレス鋼の厚板溶接においては、サブマージアーカ溶接やプラズマ溶接、レーザ溶接、GMA溶接など、様々な特徴を持つ溶接プロセスが用いられている。サブマージアーカ溶接は広く適用実績のある厚板溶接プロセスであり、板厚20mmの片側貫通溶接をはじめとする様々な溶接施工法が報告されている1-5)。プラズマ溶接は、キーホール溶接により裏当なしでの完全溶込み溶接が可能であり、板厚9.5mmまでの片側貫通溶接が報告されている6,7)。レーザ溶接およびレーザー・アークハイブリッド溶接ではさらなる厚板の溶接が可能であり、板厚12mm～50mmのステンレス鋼の片側貫通溶接が報告されている8,9)。また近年は100kWクラスの高出力レーザ発振器も開発されており10,11)、今後さらなる厚板への適用が期待される。ただしこのような高能率溶接プロセスは、適用できる種類の種類や溶接姿勢、開先やギャップに対する要求精度、治具システムの特殊性など様々な制限があり、必ずしもあらゆる種類に適用できるわけではない。

一方GMA溶接は、溶接能率は上記プロセスに及ばないものの、柔軟性・汎用性が高く様々な種類に適用できる。したがって、多種の種類を有する複雑な製品、構造物や、少量多品種生産製品の溶接においては、汎用溶接プロセスとしてGMA溶接が用いられる場合が多い。ステンレス鋼のGMA溶接においては溶接ワイヤとしてソリッドワイヤを用いる場合とフラックス入りワイヤを用いる場合があり15-18)、前者は溶込みが深く、後者はビード外観が良好であることが大きな特徴のひとつである。本研究では厚板の片側貫通溶接法を開発するため、溶込みの深いソリッドワイヤを用いたGMA溶接に着目した。
ティの低減方法の確立が不可欠である。GMA溶接におけるポロシティ低減方法として、例えばYamamotoらは、アルミニウム合金の溶接を対象とした低周波パルススミグ溶接について報告しており、2種類のパルス条件を周期的に切り替えることで溶融池が振動し、溶融池中に存在するガスの外部への排出を促進しポロシティを低減できることを示している21-26)。またIzutaniらは亜鉛めっき鋼板のパルスマグ溶接について、低周波重疊パルス波形の適用によりポロシティを低減できることを報告している27)。

そこで本研究では、ステンレス鋼厚板の高能率・高品質GMA溶接法を開発するため、一般鉄鋼材料を対象に開発された高電流GMA溶接を安定化する「電圧振幅制御」28)、29)をステンレス鋼に適用し、アーク安定化に対する有効性を検証した。また、高電流GMA溶接により作製した溶接継手の耐食性と、溶接電流・アーク電圧波形制御によるポロシティ低減方法について検討した。それらの結果に基づき、ステンレス鋼厚板の片側貫通溶接法を開発したので報告する。

2. ステンレス鋼の高電流GMA溶接法の開発

2.1 溶接システムおよび供試材

本研究で用いた溶接システムの概観をFig.1に示す。溶接電源は高速シリアル通信ケーブルで接続され並列運転される2台のデジタルインバータ制御電源で構成されており、溶接専用LSI(ASIC)によって定電圧特性の溶接電源等価回路に基づいた電流変化量を高速デジタル演算することで、電流毎に最適な電源特性を得ることができる30)。定格出力電流は650 A・定格使用率は100%である。水冷溶接トーチは銅合金の3D造形技術を用いて冷却構造を最適化されており、上述の定格出力条件で使用することができる。

実験に使用した供試材をTable 1に示す。母材は汎用ステンレス鋼として広く普及しているSUS304を用いた。溶接ワイヤにはYS308を用い、シールドガスには98%Ar-2%O2混合ガスを用いた。

Table 1 Materials used.

| Base Metal | JIS G 4304: 2012, SUS304 |
|------------|--------------------------|
| Welding Wire | JIS Z 3321: 2013, YS308, φ1.6 mm |
| Shielding Gas | 98%Ar - 2%O2, 50 L/min |

Table 2 Welding conditions for bead-on-plate welding.

| Welding Current | 400 A | 600 A |
|----------------|-------|-------|
| Low-Frequency Modulated Voltage Control | Not Applied | Applied | Not Applied | Applied |
| Voltage Amplitude and Voltage Frequency | – | ±4 V, 100Hz | – | ±5 V, 100Hz |
| Arc Voltage | 28.5 V | 34.5 V |
| Welding Speed | 30 cm/min | 30 cm/min |
| Contact Tip to Work Distance | 20 mm | 20 mm |
Fig. 2 Welding current and arc voltage waveforms at welding current condition of 400 A.

(a) Without low-frequency modulated voltage control
(b) With low-frequency modulated voltage control

Fig. 3 Welding current and arc voltage waveforms at welding current condition of 600 A.

(a) Without low-frequency modulated voltage control
(b) With low-frequency modulated voltage control
お溶接電流については、高電流向けの直流リアクトルにおける電流変化率を再現するために数値演算をしているため、アーク電圧の変化に対して溶接電流は大きく変化していない。

アーク電圧の変動範囲は、溶接電流400 Aの条件では平均電圧28.5 Vに対して約-9 V～+5 V、溶接電流600 Aの条件では平均電圧34.5 Vに対して約-5 V～+2 Vである。略一定の溶接電流に対するアーク電圧の変動はアーク長の変化を表しており、特に平均電圧に対して瞬時に数V以上電圧低下しているアーク電圧波形は短絡に起因するものである。

一方、Fig. 2(b), Fig. 3(b)は、それぞれ溶接電流400 Aおよび600 Aの条件において、電圧振幅制限を適用した場合の溶接電流・アーク電圧変動を示している。いずれの溶接電流条件においても、電圧振幅制御によりアーク電圧が周期的に変化しているが、短絡現象を示す数V以上でのアーク電圧の瞬時低下は認められなかった。

また、Fig. 4およびFig. 5に示したアーク電圧の標準偏差を表すと、電圧振幅制限を適用した場合は適用しない場合に比べてアーク電圧の標準偏差が小さく、アーク電圧の不規則な変動が抑制されている。これは、短絡およびそれに続く抑制アーク長の変動が抑制されることによるとするもので、電圧振幅制限によりアークが安定化したと考えられる。電圧振幅制限を適用すると、高電圧期間において溶接電流が高くなることでアーク電圧が短絡するために抑制される一方で、短絡が抑制されると、溶接電流が400 A以上の条件において、後者が最適な電圧振幅が大きくなるのは、高い溶接電流ではワイヤ先端の液柱が長く伸びるため瞬間的な短絡が生じやすく、その抑制のためには溶接電流表面をより強く押しつける必要があることが理由であると考えられる。以上から、アーク安定化に寄与する電圧振幅には溶接電流条件に応じた適正値が存在したと考えられる。

Table 3 Optimal voltage amplitude and voltage frequency conditions for arc stabilization.

| Welding Current | Voltage Amplitude | Voltage Frequency |
|-----------------|-------------------|------------------|
| 200 A           | ±0 V              | -                |
| 300 A           | ±0 V              | -                |
| 400 A           | ±4 V              | 100 Hz            |
| 500 A           | ±5 V              | 100 Hz            |
| 600 A           | ±5 V              | 100 Hz            |

300 A以下の条件においては、溶滴移形形態が短絡移行となり電圧振幅制御の明確な効果が認められなかったため、300 A以下の電流領域では電圧振幅を±0 Vとしている。

電圧振幅が大きいほどアーク電圧の標準偏差が小さくなるのではないではなく、溶接電流400 Aの条件では電圧振幅±4 V、溶接電流500 A以上の電流領域では電圧振幅±5 Vの条件で標準偏差が最小となった。電圧振幅を大きくすると、高電圧期間に強いアーク圧力で溶融池を押すことで短絡を効果的に抑制する一方で、電圧振幅が大きすぎると、溶融池を過剰に押しつけ溶融池が不安定化したと考えられる。また溶接電流400 Aの条件と500 A以上の条件において、後者が最適な電圧振幅が大きくなるのは、高い溶接電流ではワイヤ先端の液柱が長く伸びるため瞬間的な短絡が生じやすく、その抑制のためには溶接電流表面をより強く押しつける必要があることが理由であると考えられる。以上から、アーク安定化に寄与する電圧振幅には溶接電流条件により適正値が存在したと考えられる。

電圧周波数は溶接電流条件によらず、50 Hz、100 Hz、150 Hzの3条件で100 Hzが最適となった。電圧周波数が小さいほど電圧振幅1周期あたりの低電圧領域が長くなり、溶融池を強く押さない状態が長く継続することで短絡を十分抑制できないと考えられる。一方電圧周波数が大きすぎると、電圧振幅1周期あたりの高電圧領域が短くなり溶融池を十分押しつづけられないため、アーク安定化に寄与する電圧周波数にも適正範囲が存在したと考えられる。
2.2.2 継手耐食性の評価

ステンレス鋼の高電流 GMA 溶接においては溶接入熱による継手耐食性の低下が懸念される。本研究で用いた SUS304 の溶接継手では特に、熱影響部において鋭敏化による粒界腐食が生じることが知られていることから、溶接継手の耐粒界腐食性を評価した。比較指標は、ステンレス鋼の高入熱溶接として広く実績のあるサブマージアーク溶接の継手とした。溶接材料および溶接条件を Table 4 に示す。サブマージアーク溶接の溶接条件は、溶接材料のメーカー推奨値に則り、溶接電流 500 A・溶接電圧 33 V・溶接速度 40 cm/min とした。これより比較基準となる入熱量を 24,750 J/cm とした。高電流 GMA 溶接の溶接条件は、サブマージアーク溶接と同オーダの入熱条件となる溶接電流 400 A・溶接電圧 29 V・溶接速度 30 cm/min（23,200 J/cm）とし、電圧振幅制御条件は Table 3 に則り電圧振幅±4 V・電圧周波数 100 Hz とした。また余盛の形成を抑えてアーク入熱を不足なく母材に与えるため、Fig. 6 に示す Y 開先内で溶接を行い継手を作製した。高電流 GMA 溶接継手およびサブマージアーク溶接継手の溶込み形状を Fig. 7 に示す。高電流 GMA 溶接継手の溶込み形状は、サブマージアーク溶接継手の溶込み形状と比較して中心部の溶込みが深い。フィンガー状の形成を示した。また高電流 GMA 溶接継手においては、溶込み深部近傍にポロンデの発生が認められた。

作製した溶接継手に対し、JIS G 0572: 2006 に準拠して硫
酸・硫酸第二鉄腐食試験を行い、粒界腐食を対象に耐食性を評価した。耐食性試験片はFig.8に示すように、溶接方向に5mm、ビードの幅方向に55mm、厚さ方向に溶接金属の最も幅が広い位置から15mmとなるように切り出し、湿式エメリー紙を用いて全面を600番まで研磨した。試験溶液は、蒸留水324mLと硫酸176mLの混合液に硫酸第二鉄を20.83g加えて作成した。浸漬時間24h毎に、腐食による質量減少量を測定し、腐食前の実測表面積と浸漬時間で除して腐食度を算出した。最大の累計浸漬時間は120hとした。得られた腐食度をFig.9に示す。高電流GMA溶接継手の腐食度の方が、サブマージアーク溶接継手の腐食度よりもやや小さい値を示した。本結果のみから必ずしも高電流GMA溶接継手の方が耐食性に優るとまで断定できないものの、腐食度の観点からは、サブマージアーク溶接と同じ入熱管理指針を適用できる可能性が示唆された。

2.3 ポロシティ低減方法の開発

2.2節において、電圧振幅制御の適用により、ステンレス鋼の高電流GMA溶接を安定化できることを示した。しかし安定化した高電流GMA溶接においても、Fig.7(a)に示したように、溶接継手にはポロシティが生じる場合があった。そこで、ステンレス鋼の高電流GMA溶接におけるポロシティの発生傾向を明らかにするとともに、ポロシティの発生を抑制する溶接電流・アーク電圧波形制御を開発した。

2.3.1 ポロシティの発生傾向

溶接電流を400A、500Aおよび600Aの3条件で変化させてビードオンプレート溶接を行い、放射線透過試験によりポロシティの発生傾向を確認した。電圧振幅制御条件は溶接電流に応じてTable 3の値を用いた。また溶接速度は30cm/min、ワイヤ突出し長さは20mmでそれぞれ一定とした。

溶接ビードの放射線透過試験像をFig.10に示す。また、溶接長300mmの範囲において、10mm×10mm領域内に観察される最大のポロシティの発生数を計測した結果をFig.11に示す。Fig.10およびFig.11より、溶接電流400Aの条件において、特に多くポロシティが発生していることがわかる。また溶接電流の増加に伴い、ポロシティの発生量は減少する傾向が認められる。この理由のひとつとして、溶接金属の凝固速度の影響が考えられる。同一の溶接電流条件においては、溶接電流が高くなるほど入熱増加によって凝固速度が低下するため、溶融池中に巻き込まれた気泡が溶融池の凝固前に外部に排出されやすくなり、溶接金属内に残存しにくくなったものと考えられる。

Fig.8 Schematic image of specimen size and collection position for corrosion test.

Fig.9 Corrosion rates in high-current GMAW and SAW joints.

Fig.10 Radiographic test images of weld bead using high-current GMAW.

Fig.11 Maximum number of porosity within prescribed area.
2.3.2 電流振幅制御によるポロシティ低減
先に述べたように、Yamamotoらはアルミニウム合金の溶接を対象とした低周波パルスミグ溶接について報告しており、2種類のパルス条件を周期的に切り替えることでポロシティを低減できることを示している21-26)。これは、各パルス条件における溶接電流の実効値の変化に伴うアーク力の変化によって、母材表面に対する溶融池の膨らみ部の高さが変化するような振動22,25)が生じることにより、溶融金属内部のガスの浮上が促進され溶融池より活発に排出された結果であると考察されている21,26)。そこで筆者らは、同様に溶接電流の実効値を変化させることでポロシティを低減する効果を狙いとした溶接電流・アーク電圧波形制御として「電流振幅制御」を検討した。電流振幅制御は、Fig. 12 に示す模式図のように設定電流を一定周期で変化させる制御である。電流振幅は±50 A~±150 A、電流周波数は1 Hz~3 Hzの範囲で適用した。高電流期間および低電流期間の設定電流を区別するため、平均電流に対する設定電流を、これ以降は中心設定電流と記す。また高／低電流各期間ともに、2.2.1項に述べた電圧振幅制御を適用した。Fig. 12 における設定電圧の周期的な変化は電圧波形制御によるものである。すなわち、電流振幅制御はポロシティの低減を目的とした制御であり、電圧振幅制御は各電流条件でのアーク安定化を目的とした制御である。このとき電圧振幅制御条件は、Table 3 の各溶接電流におけるアーク安定化に最適な電圧振幅制御条件に基づくものとし、各溶接電流間の電圧振幅および電圧周波数を線形補間したFig. 13 の条件を適用した。

例として、中心設定電流を400 Aとし、電流振幅±100 A、電流周波数2 Hzの条件で電流振幅制御を適用した場合の、溶接電流およびアーク電圧の波形をFig. 14 に示す。Fig. 14 において、例えば300 ms～550 ms間は高電流期間（500 A）であり、550 ms～800 ms間は低電流期間（300 A）である。Fig. 13 に示す電圧振幅制御条件にしたがい、高電流期間（500 A）には電圧振幅制御によって溶接電流・アーク電圧が電流周波数100 Hzで変化している。
電圧振幅が±0Vであるため、電圧振幅制御による溶接電流・アーク電圧の変化が現れていない。以上の制御が電流周波数2Hz（周期500ms）で繰り返されている。このときの高/低電流各期間における溶融池の観察結果をFig.15に示す。Fig.15の左側の観察結果は、ビードに対して45°上方の角度から溶融池を観察した結果であり、低電流間（300A）と高電流間（500A）ではアーク直下の溶融池のくぼみ形状が大きく変化している。これは溶接電流に応じたアーク圧力の差に起因していると考えられ、アーク圧力が大きくなる高電流期間の方が、より大きなくぼみが形成されている。またFig.15の右側の観察結果は、溶融池を水平方向から観察した結果を示している。低電流間と高電流間では溶融池上端の高いが大きく変化しており、高電流間の方が高くなっている。これは高電流期間に、強いアーク圧力によってアーク直下に上述のくぼみ形状が形成されると同時に、押し退けられた溶融金属が溶融池後方に流れるためであると考えられる。以上より、電流振幅制御の適用によって溶接池が高さ方向に振動することが示されたが、これは先に触れたYamamotoらの報告におかれた溶融池振動の挙動と類似しており、同様に溶融池内部の気泡の浮上・排出が促進されていることが示唆される。気泡の排出現象を確認するため、電圧振幅制御を適用した場合の溶融池現象を高速度カメラにより観察した。Fig.16に示す観察結果より、実際に溶融池から気泡が排出される様子が観察された。本研究において溶融池の振動にともなう溶融池内部の具体的な対流・攪拌現象の変化は明らかにされていないが、上述の気泡排出現象は電流振幅制御を適用しない場合には観察されなかったことから、電流振幅制御
による溶融池の振動が溶融池からの気泡の排出促進に寄与したと考えられる。

次に、中心設定電流を400 Aとし、電流振幅と電流周波数を変化させてビードオンプレート溶接を行った。溶接ビードの放射線透過試験像をFig.17に、ビード外観をFig.18に示す。

Fig.17に示すように、電流周波数1 Hzの条件においては、電流振幅±50 Aおよび±100 Aの場合にはポロシティが発生したが、電流振幅±150 Aの場合はポロシティは発生しなかった。また電流振幅±100 Aの条件においては、電流周波数が1Hzの場合にはポロシティが発生したが、電流周波数が2 Hzおよび3 Hzの場合には、ポロシティは発生しなかった。したがって、電流振幅が大きいほど、また電流周波数が大きいほど、ポロシティが減少する傾向が認められる。
電流振幅が大きいと、低電流期間と高電流期間のアーク圧力の差が大きくなることで溶融池の振動が大きくなり、電流周波数が小さいと単位時間あたりの溶融池の振動回数が多くなる。その結果、上述のように溶融池振動により気泡の排出が促進されると考えられ、本実験の範囲においては電流振幅と電流周波数が大きいほどポロシティが減少した。

一方、ビード外観についてはFig. 18に示すように、電流振幅制御を適用しない場合にはフラットなビード外観が得られたのに対し、電流振幅が大きくなるほど、また電流周波数が大きくなるほど、ビード表面に特徴的なしわが現れビード外観が悪化する傾向が認められた。これは上述のよう溶融池の振動が促進された結果であると考えられる。

以上の、電流振幅制御条件がポロシティ発生量およびビード外観に及ぼす影響をTable 5に整理する。ポロシティ抑制の観点からは、電流振幅および電流周波数が小さいほどフラットなビード外観が得られる。したがって、本電流振幅制御におけるポロシティ抑制効果は、ビード外観の許容範囲に依存するという知見が得られた。

3. 高電流GMA溶接による厚板高能率溶接

アークを安定化するための電圧振幅制御と、ポロシティを低減するための電流振幅制御を用いて、板厚9mmの片側貫通溶接続きを作製した。開先形状はFig. 19に示すFlapキャップは4mmとした。詳細な溶接条件をTable 6に示す。電流振幅制御条件は±75A・1.5Hzとし、電圧振幅制御条件は設定電流に応じてFig. 13の条件を用いた。ビード外観、溶込み形状および放射線透過試験像をFig. 20に示す。ポロシティのない完全溶込み溶接が行え、高品質・高能率のステンレス鋼の溶接を実現することができた。
4. 結言

本研究では、ステンレス鋼の高電流 GMA 溶接において、溶接電流・アーク電圧波形制御によるアーク安定化およびポロシティ低減方法を確立し、ステンレス鋼厚板の高能率溶接法を開発した。本報告の結論を以下にまとめるとする。

(1) 定電圧特性の溶接電源を用いて設定電圧を周期的に変化させる電圧振幅制御を、ステンレス鋼の高電流 GMA 溶接に適用することで、溶接電流 400A 以上の高電流域においてアークを安定化することができる。
(2) 高電流 GMA 溶接細孔と、同程度の入熱条件におけるサブマージアーク溶接細孔の腐食状態の差は小さい。高電流 GMA 溶接においてはサブマージアーク溶接と同様の入熱管理指針を適用できる可能性が示唆された。
(3) 溶接電流 400A 以上の高電流 GMA 溶接では多数のボロシティが発生するが、溶接電流を一定周期で変化させる電流振幅制御により、ボロシティを低減することができた。これは溶接電流の変化に伴うアーク圧力の変化により溶融池が振動し、溶融池外部への気泡の排出が促進された結果と考えられる。
(4) 電圧振幅制御および電流振幅制御の適用により、板厚 9mm の1面先巻き溶接について、安定かつボロシティのない片面貫通溶接を行うことができ、高能率・高品質の厚板溶接が実現された。

参考文献
1) K. Chi, M. S. Maclean, N. A. McPherson and T. N. Baker: Single sided single pass submerged arc welding of austenitic stainless steel, Materials Science and Technology, 23-9 (2007), 1039-1048.
2) A. L. Ward, J. E. Irvin, L. D. Blackburn, G. M. Slaughter, G. M. Goodwin and N. C. Cole: PREPARATION, CHARACTERIZATION,
AND TESTING OF AUSTENITIC STAINLESS STEEL WELDMENTS, Hanford Engineering Development Laboratory, HEDL-TME-71-118 (1971).

3) E. Taban, E. Deleu, A. Dhooge and E. Kaluc: Submerged arc welding of thick ferritic martensitic 12Cr stainless steel with a variety of consumables, Science and Technology of Welding and Joining, 13-4 (2008), 327-334.

4) J. Luo, Y. Yuan, X. Wang and Z. Yao: Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel, Journal of Materials Engineering and Performance, 22 (2013), 2477-2486.

5) N. A. McPherson, K. Chi, T. N. Baker: Submerged arc welding of stainless steel and the challenge from the laser welding process, Journal of Materials Processing Technology, 134-2 (2003), 174-179.

6) C. S. Wu, C. B. Jia and M. A. Chen: A control system for keyhole plasma arc welding of stainless steel plates with medium thickness, Welding Journal, 89-11 (2010), 225s-231s.

7) Z. M. Liu, Y. K. Liu, C. S. Wu and Z. Luo: Control of Keyhole Exit Position in Plasma Arc Welding Process, Welding Journal, 94-6 (2015), 196s-202s.

8) M. Zhang, G. Chen, Y. Zhou and S. Liao: Optimization of deep penetration laser welding of thick stainless steel with a 10kW fiber laser, Materials and Design, 53 (2014), 568-576.

9) Y. Kawahito, M. Mizutani and S. Katayama: High quality welding of stainless steel with 10kW high power fiber laser, Science and Technology of Welding and Joining, 14-4 (2009), 288-294.

10) C. Fang, J. Xin, W. Dai, J. Wei, J. Wu and Y. Song: Deep penetration laser welding of austenitic stainless steel thick-plates using a 20kW fiber laser, Journal of Laser Applications, 32 (2020), 012009.

11) X. Zhang, E. Ashida, S. Tarasawa, Y. Amma, M. Okada, S. Katayama and M. Mizutani: Welding of thick stainless steel plates up to 50mm with high brightness lasers, Journal of Laser Applications, 23 (2011), 022002.

12) E. M. Westin, K. Stelling and A. Gumenyuk: Single-Pass Laser-Gma Hybrid Welding of 13.5mm thick duplex stainless steel, Welding in the World, 55 (2011), 39-49.

13) C. Bagger and F. O. Olsen: Review of laser hybrid welding, Journal of Laser Applications, 17 (2005), 2-14.

14) Y. Kawahito, H. Wang, S. Katayama and D. Sumimori: Ultra high power (100kW) fiber laser welding of stainless steel, Optics Letters, 43-19 (2018), 4667-4670.

15) K. Furusawa and K. Yasuda: Study on Gas Metal Arc Welding Procedure of Stainless Steel, Quarterly Journal of the Japan Welding Society, 18-1 (2000), 33-39. (in Japanese)

16) E. M. Westin, R. Schnitzer, F. Ciccomascolo, A. Maderthoner, K. Grönlund and G. Runnslö: Austenitic stainless steel bimuth-free flux-cored wires for high-temperature applications, Welding in the World, 60 (2016), 1147-1158.

17) S. Holly, P. Mayer, C. Bernhard and G. Posch: Slag caracterisation of 308L-type stainless steel rutile flux-cored wires, Welding in the World, 63 (2019), 291-311.

18) Y. Sugitani, Y. Kanjo and Y. Nishi: Simultaneous Control of Penetration Depth and Bead Height by Controlling Multiple Welding Parameters, Quarterly Journal of the Japan Welding Society, 7-1 (1989), 21-26. (in Japanese)

19) K. Nishimoto, S. Natsume, K. Ogawa and O. Matsumoto: ステンレス鋼の溶接, Sanpo Publications, Inc (2001), 111-118. (in Japanese)

20) T. Kuribayashi and A. Kanai: Blowhole in MIG welding of stainless steel, Preprints of the National Meeting of JWS, 13 (1973), 112-113. (in Japanese)

21) H. Yamamoto, S. Harada, T. Ueyama and S. Ogawa: Study of low-frequency pulsed MIG welding, Welding International, 7-1 (1993), 21-26.

22) H. Yamamoto, S. Harada, T. Ueyama, S. Ogawa, F. Matsuda and K. Nakata: Beneficial effects of low-frequency pulsed MIG welding on grain refinement of weld metal and improvement of solidification crack susceptibility of aluminium alloys: Study of low-frequency pulsed MIG welding, Welding International, 7-6 (1993), 456-461.

23) H. Yamamoto, S. Harada, T. Ueyama, S. Ogawa, F. Matsuda and K. Nakata: Inhibiting effect of low-frequency pulsed MIG welding on blowhole generation in Al and its alloys (3rd report). Study of low-frequency pulsed MIG welding, Welding International, 8-8 (1994), 606-611.

24) H. Yamamoto, S. Harada, T. Ueyama and S. Ogawa: Development of Low Frequency Pulsed MIG Welding Process for Al and its alloy –Study on Low Frequency Pulsed MIG Welding Process (Report 1)–, Quarterly Journal of the Japan Welding Society, 10-2 (1992), 25-30. (in Japanese)

25) H. Yamamoto, S. Harada, T. Ueyama, S. Ogawa, F. Matsuda and K. Nakata: The Beneficial Effect of Low Frequency Pulsed MIG Welding Process on Grain Refinement of Weld Metal and Improvement of Solidification Crack Susceptibility for Al Alloy –Study on Low Frequency Pulsed MIG Welding Process (Report 2)–, Quarterly Journal of the Japan Welding Society, 10-4 (1992), 65-70. (in Japanese)

26) H. Yamamoto, S. Harada, T. Ueyama, S. Ogawa, F. Matsuda and K. Nakata: The Inhibitive Effect of Low Frequency Pulsed MIG Welding Process on Blowhole Generation for Al and Its Alloy –Study on Low Frequency Pulsed MIG Welding Process (Report 3)–, Quarterly Journal of the Japan Welding Society, 12-1 (1994), 64-69. (in Japanese)

27) S. Izutani, K. Yamazaki, R. Suzuki, Y. Ueda, K. Nakamura and T. Uezono: Blowhole Generation Phenomenon and Quality Improvement in GMAW of Galvanized Steel Sheet, International Journal of Automation Technology, 7-1 (2013), 103-108.

28) H. Baba, T. Era, T. Ueyama and M. Tanaka: Single pass full penetration jointing for heavy plate steel using high current GMA process, Welding in the World, 61 (2017), 963-969.

29) H. Komen, H. Baba, K. Kadota, T. Era, M. Tanaka and H. Terasaki: Three-dimensional particle simulation of burned space formation process during high current gas metal arc welding, Journal of Advanced Joining Processes, 1 (2020), 100019.

30) A. Ide, K. Ono, T. Era, K. Yamaguchi, T. Uezono and T. Ueyama: Development of the current waveform control method in the GMAW applying electronic engine, Preprints of the National Meeting of JWS, 91 (2012), 392-393. (in Japanese)

31) T. Uezono, K. Watanabe and T. Ueyama: Development of new waveform control method in MIG welding –Current control by digital simulator method–, Preprints of the National Meeting of JWS, 73 (2003), 224-225. (in Japanese)

32) Y. Ogino, Y. Hirata, S. Kihana and N. Nitta: Numerical simulation of blowhole generation in Al and its alloys (3rd report). Study of low-frequency pulsed MIG welding, Welding in the World, 63 (2019), 291-311.

33) Y. Sugitani, Y. Kanjo and Y. Nishi: Simultaneous Control of Penetration Depth and Bead Height by Controlling Multiple Welding Parameters, Quarterly Journal of the Japan Welding Society, 7-1 (1989), 21-26. (in Japanese)