LncRNA DLX6-AS1 Contributes to Epithelial–Mesenchymal Transition and Cisplatin Resistance in Triple-negative Breast Cancer via Modulating Mir-199b-5p/Paxillin Axis

Chuang Du¹, Yan Wang¹, Yingying Zhang¹, Jianhua Zhang¹, Linfeng Zhang¹, and Jingruo Li¹

Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive cancer types with high recurrence, metastasis, and drug resistance. Recent studies report that long noncoding RNAs (lncRNAs)-mediated competing endogenous RNAs (ceRNA) play an important role in tumorigenesis and drug resistance of TNBC. Although elevated lncRNA DLX6 antisense RNA 1 (DLX6-AS1) has been observed to promote carcinogenesis in various cancers, the role in TNBC remained unclear. In this study, expression levels of DLX6-AS1 were increased in TNBC tissues and cell lines when compared with normal tissues or breast fibroblast cells which were determined by quantitative real-time PCR (RT-qPCR). Then, CCK-8 assay, cell colony formation assay and western blot were performed in CAL-51 cells transfected with siRNAs of DLX6-AS1 or MDA-MB-231 cells transfected with DLX6-AS1 over expression plasmids. Knock down of DLX6-AS1 inhibited cell proliferation, epithelial-mesenchymal transition (EMT), decreased expression levels of BCL2 apoptosis regulator (Bcl-2), Snail family transcriptional repressor 1 (Snail) as well as N-cadherin and decreased expression levels of cleaved caspase-3, γ-catenin as well as E-cadherin, while up regulation of DLX6-AS1 had the opposite effect. Besides, knockdown of DLX6-AS1 in CAL-51 cells or up regulation of DLX6-AS1 in MDA-MB-231 cells also decreased or increased cisplatin resistance of those cells analyzed by MTT assay. Moreover, by using dual luciferase reporter assay, RNA immunoprecipitation and RNA pull down assay, a ceRNA which was consisted by lncRNA DLX6-AS1, microRNA-199b-5p (miR-199b-5p) and paxillin (PXN) was identified. And DLX6-AS1 function through miR-199b-5p/PXN in TNBC cells. Finally, results of xenograft experiments using nude mice showed that DLX6-AS1 regulated cell proliferation, EMT and cisplatin resistance by miR-199b-5p/PXN axis in vivo. In brief, DLX6-AS1 promoted cell proliferation, EMT, and cisplatin resistance through miR-199b-5p/PXN signaling in TNBC in vitro and in vivo.

Keywords
DLX6-AS1, miR-199b-5p, paxillin, triple-negative breast cancer, ceRNA

Introduction
Breast cancer is the most common cancer type with the highest mortality and morbidity worldwide for women, with an estimated 2.1 million diagnoses in 2018 alone¹. The risks of developing breast cancer are growing due to the increased exposure to the radiation and various chemicals in the environment, such as foods and personal care products containing hormones or endocrine-disrupting compounds². As the most aggressive form of breast cancer³, triple-negative breast cancer (TNBC) is characterized by a lack of expression of estrogen receptor, progesterone receptor, and human
epidermal growth factor receptor 2. Due to the poor response to endocrine and targeted therapies, the recurrence and metastasis of TNBC is incredibly higher than other types of breast cancer\(^4\). Although chemotherapy using platinum drugs is a common option for TNBC patients, especially for those who are diagnosed at early stages\(^5,6\), platinum drug resistance is intrinsic or triggered after several cycles of therapy\(^7\). Thus, it is urgent to clarify the mechanisms underlying TNBC tumorigenesis as well as platinum drug resistance with the aim to develop a new therapy strategy.

Long noncoding RNAs (lncRNAs) are a type of noncoding RNAs (ncRNAs) longer than 200 bp\(^8\). In spite of lncRNAs containing no open reading frames, they could regulate gene expressions at transcriptional and post-transcriptional levels by regulating chromatin remodeling or interaction with other RNA species\(^8\). Competing endogenous RNA (ceRNA) is one important mechanism of lncRNA-mediated regulation\(^9\). In this hypothesis, lncRNAs could function as sponges for microRNAs (miRNAs) to decrease the expression levels of miRNAs, leading to elevated translational activity of miRNAs\(^{s}\) targets\(^10\). Accumulating studies show that lncRNAs are involved in tumorigenesis, tumor development, and drug resistance of tumors through ceRNAs\(^11\).

lncRNA DLX6 antisense RNA 1 (DLX6-AS1) was first identified as an in-trans regulator that increases the transcriptional activity of the distal-less homeobox 5/6 (Dlx-5/6) enhancer\(^12\). Upregulated DLX6-AS1 level could promote carcinogenesis, progression, and stemness in glioma, renal cell carcinoma, liver cancer, and osteosarcoma via different targets\(^13\text{–}16\). However, its role in TNBC or breast cancer requires further investigation.

In this study, we measured DLX6-AS1 expressions in TNBC patients, and animal and cell models. We found that DLX6-AS1 in TNBC promoted cell proliferation, epithelial–mesenchymal transition (EMT), and cisplatin resistance via miR-199b-5p/paxillin (PXN) axis. These results deepen our understanding on TNBC tumorigenesis and chemotherapy drug resistance, shedding lights on the development of novel strategies for TNBC treatment.

Materials and Methods

Specimen Collection, Cell Culture, and Transfection

The project was approved by the Ethics Committee of the First Affiliated Hospital of Zhengzhou University (Approval No. 2019-KY-288) and following the World Medical Association Declaration of Helsinki. Written informed consent was obtained from all patients. Forty seven tumor tissues and 28 adjacent normal tissues were collected from July 2015 to September 2017 from TNBC patients who had not received chemotherapy or radiotherapy before surgery. The collected tissues were stored immediately in liquid nitrogen until use.

Table 1. Primers.
Primers
miR-199b-5p-F
miRNA-reverse
PXN-R
PXN-F
DLX6-AS1-F
DLX6-AS1-R

Human breast fibroblast cell line CCD-1095Sk and human TNBC cell lines HCC1599, MDA-MB-231, HCC1806, and HS578 T were purchased from American Type Culture Collection (ATCC, Manassas, VA, USA) and human TNBC cell line CAL-51 was ordered from Cobioer Co., Ltd (Nanjing, Jiangsu, China). Cells were cultured in Dulbecco’s modified Eagle’s medium (Gibco, Thermo Fisher Scientific [China] Co., Ltd, Shanghai, China) with 10% fetal bovine serum (Gibco, Thermo Fisher Scientific Co., Ltd, Shanghai, China), 100 units of penicillin/ml, and 100 ng of streptomycin/ml at 37°C in a 5% CO2 incubator.

Mimics and Inhibitor of miR-199b-5p, siRNA, Plasmids, and Adenovirus

Plasmids expressing DLX6-AS1, relevant siRNAs, mimics, and inhibitor of miR-199b-5p were ordered from Ribobio (Guangzhou RiboBio Co., Ltd, Guangzhou, China). Adenovirus expressing shRNA of DLX6-AS1 was produced by Hanbio Co., Ltd (Shanghai, China).

Quantitative Real-time Polymerase Chain Reaction (qRT-PCR)

Total RNAs were isolated from tissues or cells with TRizol™ reagent (15596026, Invitrogen™, Thermo Fisher Scientific Co., Ltd, Shanghai, China) according to the manufacturer’s protocol. For miR-199b-5p, cDNA synthesis and qRT-PCR were performed with Mir-X™ miRNA qRT-PCR kit (638314, Takara Bio USA, Inc., CA, USA) according to the manufacturer’s protocol. For lncRNA DLX6-AS1 and PXN, RNA was reverse transcribed into cDNA. qRT-PCR was performed using TB Green® Premix Ex Taq™ II (RR820A, Takara, Takara Biomedical Technology Co., Ltd, Beijing, China). Primer sequences are listed in Table 1. Relative gene expression levels were calculated using the \(2^{-\Delta\Delta Ct}\) method.

Western Blot

Total proteins were isolated from cells or tissues using RIPA buffer (CST, Danvers, MA, USA) with 1% protease inhibitor cocktails (Pierce, Rockford, IL, USA). Concentrations of isolated proteins were measured with BCA assay kit (Thermo Fisher Scientific, Waltham, MA, USA). Ten
micrograms of total proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred onto polyvinylidene difluoride membranes. After blocking in 5% skimmed milk and TBST wash, membranes were incubated with primary antibodies overnight at 4°C. After washed with TBST for three times, membranes were then incubated with corresponding horseradish peroxidase-conjugated secondary antibodies at room temperature for 1 h. Bands were visualized using electrochemiluminescence (Thermo Fisher Scientific, Waltham, MA, USA) and semi-quantified with Image J (National Institutes of Health, Bethesda, MD, USA). β-Actin was used as an internal control. Primary antibodies used in this study were purchased from CST Technology, Inc.: anti-Bcl-2 (1:1,000, 15071 S); anti-cleaved caspase-3 (1:1,000, 9661 S); anti-γ-catenin (1:1,000, 75550 S); anti-Snail (1:1,000, 3879); anti-E-cadherin (1:500,14472); anti-N-cadherin (1:500, 13116); anti-PXN(1:500, 2542); and β-actin (1:2,000, 3700).

CCK-8 Assay
Cells were seeded into 96-well plates and transfection was performed 24 h post-seeding. At indicated times, 10 μl of CCK-8 reagent was added into each well and further cultured at 37°C for 2 h. Then, OD490 was measured. Samples were assessed in sextuplicate and data were obtained from three independent experiments.

Cell Viability Assay
Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in 96-well plates. Indicated concentrations of cisplatin were added in the culture medium. Forty-eight hours post-transfection, 10 μl of MTT reagent was added into each well and cultured at 37°C for another 4 h. Culture medium was carefully removed, 150 μl dimethyl sulfoxide was added into each well, and plate was shaken for 10 min. Then, OD490 was measured and cell viability was calculated. Each sample was assessed in sextuplicate and data were obtained from three independent experiments.

Luciferase Reporter assay
Wild type and mutation of IncRNA DLX6-AS1 and 3’ untranslated region (UTR) of PXN with the predicted binding sites of miR-199b-5p were synthesized onto pmirGLO plasmids by Riobobio (Guangzhou RiboBio Co., Ltd). 293t cells were transfected with reporter vectors with mimics of miRNAs. Forty-eight hours post-transfection, cells were collected and lysed, and the activities of firefly and renilla luciferases were determined using the dual-luciferase reporter assay system (Promega, Madison, WI, USA). Each sample was assessed in quadruple and data were obtained from three independent experiments.
Statistical Analysis

The statistical analyses were performed using SPSS 20.0 software (SPSS, Inc., Chicago, IL, USA). Data were shown as means ± SD. Differences between groups were calculated using Student’s t-test for two groups or Tukey’s multiple comparisons test after analysis-of-variance test for three or more groups. P < 0.05 was considered statistically significant in this study.

Results

DLX6-AS1 Level Was Increased in TNBC Patients’ Tissues and Cell Models

To explore the role of DLX6-AS1 in TNBC, expression levels of DLX6-AS1 were first assessed in TNBC tissues by RT-qPCR. We observed that DLX6-AS1 was significantly upregulated in patients’ tissues (Fig. 1A) as well as in TNBC cell lines (Fig. 1B).

lncRNA DLX6-AS1 Regulated Cell Growth and EMT in TNBC Cells

Plasmids expressing DLX6-AS1 or relevant siRNA were constructed to increase or knock down expression of DLX6-AS1 in TNBC cells. Given MDA-MB-231 cells showed the lowest increase of DLX6-AS1 in our tested cell lines, whereas CAL-51 cells had the highest, and those two cell lines were chosen for further experiments. RT-qPCR showed that siRNAs significantly decreased DLX6-AS1 expression level in CAL-51 cells, whereas plasmids expressing DLX6-AS1 increased DLX6-AS1 expression levels in MDA-MB-231 cells (Fig. 2A). To assess the effects of DLX6-AS1 on cell growth ability, CCK-8 assay and colony formation assay were performed. CCK-8 assay demonstrated that DLX6-AS1 silence in CAL-51 cells by siRNAs markedly inhibited cell growth, whereas elevated DLX6-AS1 in MDA-MB-231 cells significantly promoted cell proliferation (Fig. 2B). Colony formation assay showed the similar results, and the relative colony numbers were reduced in siRNA-transfected CAL-51 cells, which were increased in MDA-MB-231 cells transiently overexpressing DLX6-AS1 (Fig. 2C), indicating that lncRNA DLX6-AS1 altered EMT of TNBC cells. Therefore, the key proteins involved in cell apoptosis and EMT were investigated through western blot. Cleaved caspase-3 is the key executor of cell apoptosis, while Bcl-2 was the inhibitor of apoptosis. E-cadherin and γ-catenin were considered as inhibitors of EMT, whereas N-cadherin and Snail promoted EMT. DLX6-AS1 knockdown decreased protein levels of Bcl-2, Snail, and N-cadherin, whereas cleaved caspase-3, γ-catenin, and E-cadherin expressions were increased. In addition, lncRNA DLX6-AS1 overexpression exhibited opposite effect (Fig. 2D). Collectively, these results illustrated that elevated DLX6-AS1 enhanced cell growth and EMT and inhibited apoptosis of TNBC cells, whereas DLX6-AS1 silence suppressed cell growth and EMT and promoted apoptosis.

lncRNA DLX6-AS1 Regulated Cisplatin Resistance of TNBC Cells

To determine the effect of lncRNA DLX6-AS1 on cisplatin resistance in TNBC cells, the half-maximal inhibitory
concentrations (IC$_{50}$) of CAL-51 and MDA-MB-231 cells under cisplatin treatment were measured by MTT assay. As shown in Fig. 3, DLX6-AS1 silence in CAL-51 cells shifted IC$_{50}$ of cisplatin from 8.192 to 3.335 μM, whereas DLX6-AS1 overexpression in MDA-MB-231 cells increased IC$_{50}$ of cisplatin from 18.420 to 48.260 μM, suggesting that DLX6-AS1 contributed to the cisplatin resistance in TNBC cells and DLX6-AS1 knockdown increased the cisplatin sensitivity in TNBC cells.

IncRNA DLX6-AS1 Binds with miR-199b-5p in TNBC Cells

Through Mircode website (http://mircode.org/index.php), we predicted that miR-199b-5p might be one of the miRNAs that bind to IncRNA DLX6-AS1 (Fig. 4A). We constructed relevant plasmids, and co-transfected miR-199b-5p with pmirGLO plasmids containing wild type (WT) or MUT of IncRNA DLX6-AS1. Combination of miR-199b-5p and WT indeed decreased the relative luciferase activity in dual
The luciferase reporter assay (Fig. 4B). Moreover, RNA immunoprecipitation assay was performed with anti-ago2 primary antibody. Expressions of lncRNA DLX6-AS1 and miR-199b-5p were highly enriched in the Ago2 group (Fig. 4C). Meanwhile, biotin-labeled lncRNA DLX6-AS1 probe was utilized to perform RNA pull-down assay, miR-199b-5p was highly enriched in lncRNA DLX6-AS1 WT probe group, whereas miR-199b-5p level in DLX6-AS1 MUT group was similar to that in the negative control (Fig. 4D). These results indicated that lncRNA DLX6-AS1 binds to miR-199b-5p, and miR-199b-5p level was increased upon lncRNA DLX6-AS1 knockdown (Fig. 4E). We speculated that DLX6-AS1 negatively regulated the expression of miR-199b-5p by direct binding.

Fig. 3. Long noncoding RNA DLX6-AS1 regulates cisplatin resistance of triple-negative breast cancer cells. (A) IC50 of CAL-51 cells transfected with siDLX6-AS1 to cisplatin were determined by MTT assay. (B) Half-maximal inhibitory concentration (IC50) of MDA-MB-231 cells transfected with DLX6-AS1 overexpression plasmids to cisplatin were determined by MTT assay. DLX6-AS1: DLX6 antisense RNA 1; IC50: half-maximal inhibitory concentration; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

Fig. 4. lncRNA DLX6-AS1 binds with miR-199b-5p and regulates expression levels of miR-199-5p. (A) Predicted binding sites of miR-199b-5p on lncRNA DLX6-AS1 are shown. (B) Dual luciferase reporter assay was performed. Relative luciferase activities of the cells transfected with indicated lncRNA and mimics of miRNA were measured. (C) RNA immunoprecipitation was performed using anti-ago2 or anti-IgG primary antibodies. Relative expression levels of miR-199b-5p or lncRNA DLX6-AS1 in the immunoprecipitated complex were determined by RT-qPCR. (D) Expression levels of miR-199b-5p were determined by RT-qPCR in the complex pulled down by the biotin-labeled DLX6-AS1 probes. (E) Expression levels of miR-199b-5p were determined by RT-qPCR in the cells transfected with siDLX6-AS1 or siNC (**, P < 0.01). DLX6-AS1: DLX6 antisense RNA 1; IgG: immunoglobulin G; lncRNA: long noncoding RNA; miRNA: microRNA; MUT: mutated; RT-qPCR: quantitative real-time polymerase chain reaction; WT: wild type.
PXN Was a Target of miR-199b-5p in TNBC Cells

It is reported that miRNAs regulate the expression levels of genes by directly targeting with their 3' UTR. By using the Targetscan website (http://www.targetscan.org/vert_71/), PXN was predicted as one potential target of miR-199b-5p (Fig. 5A). Combination expression of mimics of miR-199b-5p and pmirGLO plasmids containing WT 3' UTR of PXN showed a decreased luciferase activity (Fig. 5B). To further investigate the effect of miR-199b-5p on PXN expression, CAL-51 cells were transfected with mimics of miR-199-5p to enforce miR-199-5b level (Fig. 5C). We observed that mRNA and protein levels of PXN were significantly decreased in response to mimics of miR-199-5p (Fig. 5D, E). These results demonstrated that miR-199b-5p binds to PXN to negatively regulate PXN expression in TNBC cells.

DLX6-AS1 Regulated Cell Proliferation, EMT, and Cisplatin Resistance Through miR-199b-5p/PXN Axis

To determine whether lncRNA DLX6-AS1 functions through miR-199b-5p/PXN axis, inhibitor of miR-199b-5p was employed. miR-199b-5p inhibitor not only promoted cell proliferation, but also abolished the siDLX6-AS1-mediated effects (Fig. 6A, B). miR-199b-5p inhibitor could significantly increase PXN, Bcl-2, Snail, and N-cadherin expressions and decrease cleaved caspase-3, γ-catenin, and E-cadherin levels (Fig. 6C). As stated previously, siDLX6-AS1 mediated reduction of Bcl-2, Snail, as well as N-cadherin levels, and elevation of cleaved caspase-3, γ-catenin, as well as E-cadherin. Interestingly, miR-199b-5p inhibitor remitted siDLX6-AS1-induced changes in co-transfection with siDLX6-AS1 (Fig. 6C). Under cisplatin treatment, miR-199b-5p inhibitor increased cisplatin tolerance and abolished siDLX6-AS1-mediated cisplatin sensitivity (Fig. 6D). Taken together, lncRNA DLX6-AS1 regulates cell proliferation, EMT, and cisplatin resistance via miR-199b-5p/PXN axis in vitro.

IncRNA DLX6-AS1 Promoted Tumorigenesis Through miR-199b-5p/PXN Axis In Vivo

Role of DLX6-AS1 in vivo was further verified in vivo. Xenograft mice models were generated as previously described. Results showed that tumor size in xenografts received combined treatments of IncRNA DLX6-AS1 siRNA and cisplatin was smaller than those in the IncRNA DLX6-AS1 siRNA and cisplatin groups (Fig. 7A). Furthermore, we assessed PXN level in tumors using western blot. Results showed that DLX6-AS1 silence indeed decreased PXN expression in tumors and cisplatin treatment alone did not alter PXN level (Fig. 7B). We also assessed the
expression of Ki67, a valuable marker of proliferation in tumors. Results showed that either DLX6-AS1 knockdown or cisplatin treatment could significantly suppress Ki67 level compared with negative control. And co-treatment of DLX6-AS1 siRNA and cisplatin injection inhibited Ki67 much more than two single treatments (Fig. 7C). To sum up, these results revealed that DLX6-AS1 knockdown inhibited tumor growth and increased cisplatin sensitivity in vivo.

Discussion

Although various IncRNAs have been identified in TNBC through IncRNA arrays, the precise functions and underlying mechanisms of these IncRNAs in TNBC development and progression remain largely unclear. In this study, we observed that IncRNA DLX6-AS1 expression levels were significantly upregulated in TNBC tissues and cell lines. Such increased IncRNA DLX6-AS1 promoted cell proliferation, EMT, and cisplatin resistance in vitro and in vivo via miR-199b-5p/PXN axis.

So far, only a few IncRNAs in TNBC have been studied in detail, indicating that IncRNAs could not only function as biomarkers for diagnosis or prognosis, but also serve as regulators in tumorigenesis, progression, and drug resistance in TNBC. The aggressiveness, frequent distant metastasis, lack of targeted therapies, poor understanding of mechanism, and low response to chemotherapy of TNBC resulted in high mortality rate. Thus, investigation of underlying mechanisms of IncRNAs regarding tumorigenesis and chemotherapy drug resistance of TNBC might shed lights on development of new and effective therapy strategies.
observed in glioma, renal cell carcinoma, esophageal squamous cell carcinoma, osteosarcoma, and lung adenocarcinoma. In conclusion, these results demonstrated that DLX6-AS1 played a key role in TNBC progression, functioning as an oncogene in cancer. Colony formation assay also indicated that DLX6-AS1 promoted EMT, a premetastatic process. Recently illustrated lncRNAs rapidly emerged as key regulators of EMT in various types of cancers as reviewed by Heery et al. And Fu et al. found that DLX6-AS1 promoted EMT in gastric cancer. Further analysis of biomarkers of EMT by western blot showed that Snail and N-cadherin expressions were increased, whereas γ-Catenin and E-cadherin levels were decreased in TNBC cells overexpressing DLX6-AS1. These results suggested that DLX6-AS1 resulted in loss of epithelial phenotype and acquisition of mesenchymal properties, which were crucial for metastasis. Inhibition of metastasis could improve the outcome of TNBC, novel drugs and therapy strategies based on the inhibition of metastasis are developing. We discovered that DLX6-AS1 might be considered as a potential target for inhibition of metastasis of TNBC.

More importantly, we found that elevated DLX6-AS1 increased cisplatin resistance in TNBC in vitro and in vivo.
Clinical trials that included platinum-based regimens into neoadjuvant chemotherapy showed that platinum salts supplement might be beneficial for TNBC patients. However, the intrinsic or acquired platinum resistance made the outcome uncertain. Thus, considerable efforts have been made to find out the biomarkers for diagnosis and the mechanisms of drug resistance to enhance the drug efficacy for TNBC. Recent studies suggested IncRNA might mediate drug resistance. For instance, IncRNA urothelial carcinoma associated 1 was related with drug resistance in bladder cancer, breast cancer, lung cancer, gastric cancer, hepatocellular carcinoma, as well as ovarian cancer. Our findings that DLX6-AS1 might function as a biomarker for cisplatin resistance might provide a target for overcoming drug resistance.

Besides, we also found that DLX6-AS1 functions through miR-199b-5p/PXN axis in TNBC. However, the importance of this ceRNA pathway in TNBC needs further investigations, as both the IncRNAs and miRNAs could have multiple targets. Previous studies showed that DLX6-AS1 could bind to miR-613, miR-197-5p, miR-26a, and miR-129-5p, while miR-199b-5p could directly target with discoidin domain receptor 1 (DDR1), regulator of G protein signaling 17 (RGS17), kallikrein-related peptidase 10 (KLK10), and so on. Although we also found corresponding changes in the expression levels of miR-199b-5p/PXN in xenografts, the precise functions of DLX6-AS1 through miR-199b-5p/PXN or other signal pathways mentioned above need careful assessment.

In conclusion, this study reported that IncRNA DLX6-AS1 was upregulated in TNBC patients and cell models, serving an oncogenic role and enhancing cisplatin resistance of TNBC in vitro and in vivo, providing insights into DLX6-AS1 as a novel therapeutic target for TNBC treatment from bench to clinic.

Availability of Data and Materials
All data generated or analyzed during this study are included in this published article.

Authors’ Contributions
CD and JRL conceived and designed the experiments, YW and YYZ analyzed and interpreted the results of the experiments, and JHZ and LFZ performed the experiments.

Ethical Approval
Ethical approval to report this case was obtained from the Ethics Committee for Scientific Research and Clinical Trials of The First Affiliated Hospital of Zhengzhou University (Approval No. 2017-KY-063).

Statement of Informed Consent
Written informed consent was obtained from a legally authorized representative(s) for anonymized patient information to be published in this article.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Provincial Co-construction Alternative Project of Henan Province (Grant No. 2018010002).

ORCID iD
Jingrui Li https://orcid.org/0000-0003-2688-5938

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: CA-Cancer J Clin. 2018;68(6):394–424.
2. Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health. 2017;16(1):94–94.
3. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300.
4. Qin JJ, Yan L, Zhang J, Zhang WD. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp Clin Cancer Res. 2019;38(1):195–195.
5. Oualla K, Elzawahry HM, Arun BK, Reuben JM, Woodward WA, Eldin HG, Lim B, Mellas N, Ueno NT, Fouad TM. Novel therapeutic strategies in the treatment of triple-negative breast cancer. Ther Adv Med Oncol. 2017;9(7):493–511.
6. Zhang G, Ba C, Liu A, Ren D, Li H, Zhu J, Fan J, Zhang P. Investigation of paclitaxel-cisplatin one-cycle neoadjuvant chemotherapy plus trastuzumab in HER2-positive breast cancer. Eur J Gynaecol Oncol. 2018;39(6):899–902.
7. Gohr K, Hamacher A, Engelke LH, Kassack MU. Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38. BMC Cancer. 2017;17(1):711.
8. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2017;18(1):5–18.
9. Sahu A, Singhal U, Chinnaiyan AM. Long noncoding RNAs in cancer: from function to translation. Trends Cancer. 2015;1(2):93–109.
10. Bartonicek N, Maag JL, Dinger ME. Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol Cancer. 2016;15(1):43.
11. de Oliveira JC, Oliveira LC, Mathias C, Pedroso GA, Lemos DS, Salviano Silva A, Jucoski TS, Lobo-Alves SC, Zambalde EP, Cipolla GA, Gradia DF. Long non-coding RNAs in cancer: another layer of complexity. J Gene Med. 2019;21(1):e3065.
12. Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Gene Dev. 2006;20(11):1470–1484.

13. Zhang RM, Tang T, Yu HM, Yao XD. LncRNA DLX6-AS1/miR-129-5p/DLK1 axis aggravates stemness of osteosarcoma through wnt signaling. Biochem Bioph Res Co. 2018;507(1-4):260–266.

14. Zhang Y, Chen J, Xue Q, Wang J, Zhao L, Han K, Zhang D, Hou L. Prognostic significance of microRNAs in glioma: a systematic review and meta-analysis. Biomed Res Int. 2019;2019.

15. Zeng X, Hu Z, Ke X, Tang H, Wu B, Wei X, Liu Z, Long noncoding RNA DLX6-AS1 promotes renal cell carcinoma progression via miR-26a/PTEN axis. Cell cycle (Georgetown, Tex.). 2017;16(22):2212–2219.

16. Li D, Tang X, Li M, Zheng Y. Long noncoding RNA DLX6-AS1 promotes liver cancer by increasing the expression of WEE1 via targeting miR-424-5p. J Cell Biochem. 2019;120(8):12290–12299.

17. Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Gene Dev. 2006;20(11):1470–1484.

18. Shen X, Xie B, Ma Z, Yu W, Wang W, Xu D, Yan X, Chen B, Yu L, Li J, Chen X, et al. Identification of novel long non-coding RNAs in triple-negative breast cancer. Oncotarget. 2015;6(25):21730–21739.

19. Wang Q, Gao S, Li H, Lv M, Lu C. Long noncoding RNAs (lncRNAs) in triple negative breast cancer. J Cell Physiol. 2017;232(12):3226–3233.

20. Bautista RR, Gomez AO, Miranda AH, Dehesa AZ, Villarreal-garza C, Avilamoreno F, Arrieta O. Long non-coding RNAs: implications in targeted diagnoses, prognosis, and improved therapeutic strategies in human non- and triple-negative breast cancer. Clin Epigenetics. 2018;10(1):106.

21. Tang J, Li Y, Sang Y, Yu B, Lv D, Zhang W, Feng H. LncRNA PVT1 regulates triple-negative breast cancer through KLF5/beta-catenin signaling. Oncogene. 2018;37(34):4723–4734.

22. Han J, Han B, Wu X, Hao J, Dong X, Shen Q, Pang H. Knockdown of IncRNA H19 restores chemosensitivity in paclitaxel-resistant triple-negative breast cancer through triggering apoptosis and regulating Akt signaling pathway. Toxicol Appl Pharm. 2018;359:55–61.

23. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, Wang C, Hawke DH, Wang S, Zhang Y, Wei Y, et al. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat Cell Biol. 2016;18(2):213–224.

24. Li X, Zhang H, Wu X. Long noncoding RNA DLX6-AS1 accelerates the glioma carcinogenesis by competing endogenous sponging miR-197-5p to relieve E2F1. Gene. 2019;686:1–7.

25. Tian W, Jiang C, Huang Z, Xu D, Zheng S. Comprehensive analysis of dysregulated IncRNAs, miRNAs and mRNAs with associated ceRNA network in esophageal squamous cell carcinoma. Gene. 2019;696:206–218.

26. Zhang R, Tang T, Yu H, Yao X. LncRNA DLX6-AS1/miR-129-5p/DLK1 axis aggravates stemness of osteosarcoma through Wnt signaling. Biochem Bioph Res Co. 2018;507(1-4):260–266.

27. Li J, Li P, Zhao W, Yang R, Chen S, Bai Y, Dun S, Chen X, Du Y, Wang Y. Expression of long non-coding RNA DLX6-AS1 in lung adenocarcinoma. Cancer Cell Int. 2015;15(1):48–48.

28. Heery R, Finn SP, Cuffe S, Gray SG. Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel). 2017;9(4):38.

29. Fu X, Tian Y, Kuang W, Wen S, Guo W. Long non-coding RNA DLX6-AS1 silencing inhibits malignant phenotypes of gastric cancer cells. Exp Ther Med. 2019;17(6):4715–4722.

30. Olea-Flores M, Juárez-Cruz JC, Mendoza-Catalán MA, Padilla-Benavides T, Navarro-Tito N. Signaling pathways induced by leptin during epithelial-mesenchymal transition in breast cancer. Int J Mol Sci. 2018;19(11):3493.

31. Ling B, Watt K, Banerjee S, Newsted D, Truesdell P, Adams JJ, Sidhu SS, Craig AWB. A novel immunotherapy targeting MMP-14 limits hypoxia, immune suppression and metastasis in triple-negative breast cancer models. Oncotarget. 2017;8(35):58372–58385.

32. Reilly EAO, Gubbins L, Sharma S, Tully R, Guang MHZ, Weinergorzél K, McCaffrey J, Harrison M, Furlong F, Kell MR. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clinical. 2015;3:257–275.

33. Lee A, Djamgoz MBA. Triple negative breast cancer: emerging therapeutic modalities and novel combination therapies. Cancer Treat Rev. 2018;62:110–122.

34. Garrido-castro AC, Lin N, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9(2):176–198.

35. Deng H, Zhang J, Shi J, Guo Z, He C, Ding L, Tang JH, Hou Y. Role of long non-coding RNA in tumor drug resistance. Tumor Biol. 2016;37(9):11623–11631.

36. Wang H, Guan Z, He K, Qian J, Cao J, Teng L. LncRNA UCA1 in anti-cancer drug resistance. Oncotarget. 2017;8(38):64638–64650.

37. Oh S, Seo M, Choi J, Joo C, Lee SK. MiR-199a/b-5p Inhibits lymphangiogenesis by targeting discoidin domain receptor 1 in corneal injury. Mol Cells. 2018;41(2):93–102.

38. Zhang W, Qian S, Yang G, Zhu L, Zhou B, Wang J, Liu R, Yan Z, Qu X. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma. Gene. 2018;659:22–28.

39. Xu L, Duan Y, Wang P, Yin H. MiR-199b-5p promotes tumor growth and metastasis in cervical cancer by down-regulating KLK10. Biochem Bioph Res Co. 2018;503(2):556–563.