Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form

Adrian Creanga,1,2,3 Thomas D. Glenn,2 Randall K. Mann,1,2,4 Adam M. Saunders,1,2,4 William S. Talbot,2 and Philip A. Beachy1,2,3,4,5

1Institute for Stem Cell Biology and Regenerative Medicine, 2Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; 3Department of Molecular Biology and Genetics, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA; 4Department of Biochemistry, Stanford University, Stanford, California 94305, USA

Owing to their covalent modification by cholesterol and palmitate, Hedgehog (Hh) signaling proteins are localized predominantly to the plasma membrane of expressing cells. Yet Hh proteins are also capable of mobilizing to and eliciting direct responses from distant cells. The zebrafish \textit{you} gene, identified genetically >15 years ago, was more recently shown to encode a secreted glycoprotein that acts cell-nonautonomously in the Hh signaling pathway by an unknown mechanism. We investigated the function of the protein encoded by murine \textit{Scube2}, an ortholog of \textit{you}, and found that it mediates release in soluble form of the mature, cholesterol- and palmitate-modified Sonic hedgehog protein signal (ShhNp) when added to cultured cells or purified detergent-resistant membrane microdomains containing ShhNp. The efficiency of Scube2-mediated release of ShhNp is enhanced by the palmitate adduct of ShhNp and by coexpression in ShhNp-producing cells of mDispatchedA (mDispA), a transporter-like protein with a previously defined role in the release of lipid-modified Hh signals. The structural determinants of Scube2 required for its activity in cultured cell assays match those required for rescue of \textit{you} mutant zebrafish embryos, and we thus conclude that the role of Scube/You proteins in Hh signaling in vivo is to facilitate the release and mobilization of Hh proteins for distant action.

[Keywords: DispatchedA; Hedgehog; Scube2; morphogen release; palmitate]

Supplemental material is available for this article.

Received March 12, 2012; revised version accepted May 9, 2012.

The Hedgehog (Hh) signaling pathway plays critical roles in embryonic growth and patterning in organisms ranging from insects to mammals and also functions post-embryonically in tissue homeostasis [Teglund and Toftgard 2010]. Response to the Hh protein signal is mediated by Patched (Ptc), a transporter-like 12-pass transmembrane protein that inhibits the seven-transmembrane protein Smo [Wilson and Chuang 2010]. When present, the Hh protein signal binds Ptc and blocks its inhibition of Smo, thus permitting activation of an intracellular signal cascade that results in execution of a transcriptional program mediated by the Ci/Gli family of latent cytoplasmic transcription factors [Varjosalo and Taipale 2008].

The Hh protein signal heading this pathway is produced as a precursor that undergoes cleavage and cholesterol modification in an autoprocessing reaction, and the cholesterol-modified N-terminal signaling domain is further modified by covalent addition of palmitate, mediated by an acyltransferase [Mann and Beachy 2004; Buglin and Resh 2008]. These lipid modifications are particularly well characterized for \textit{Drosophila} Hh (Hh N-terminal processed domain [HhNp]) and the mammalian Hedgehog family member Sonic hedgehog (ShhNp), but likely are conserved for all or most Hh family members [Mann and Beachy 2004]. The lipid adducts cause the mature Hh signal to associate prominently with the plasma membrane of expressing cells, yet the Hh signal can elicit direct responses at considerable distances from the cells in which it is produced. Thus, for example, Hh proteins can elicit direct responses five to 10 cell diameters from their site of production in the \textit{Drosophila} wing imaginal disc (~50 μm in wing imaginal disc) [Strigini and Cohen 1997; Zhu and Scott 2004; Eugster et al. 2007] and at sig-
significant distances from their sources within the developing limb bud (~300 μm in limb bud) [Wang et al. 2000; Li et al. 2006] or neural tube (~50 μm in neural tube) [Briscoe et al. 2001; Chamberlain et al. 2008].

One factor involved in Hh release is the transporter-like protein Dispatched [Disp], related to Patched in sequence and predicted transmembrane topology. In the absence of Disp activity, HhNp is not released and accumulates in Hh-producing cells [Burke et al. 1999]. Loss of Disp function in vertebrates also disrupts the release of processed Hh proteins and produces a severe phenotype equivalent to the loss of multiple Hh family members [Caspersy et al. 2002; Kawakami et al. 2002; Ma et al. 2002; Nakano et al. 2004]. Interestingly, a Hh N-terminal domain lacking cholesterol, which can be generated by expression of a truncated form of the Hh open reading frame, can spread further from the site of biogenesis and elicit ectopic Hh pathway activation [Porter et al. 1996a,b; Li et al. 2006], thus eliminating the requirement for disp function [Burke et al. 1999]. Disp activity thus overcomes the restriction of HhN release that is imposed by cholesterol modification [Porter et al. 1996a,b; Li et al. 2006]. Palmitoylation of the Shh protein signal, on the other hand, appears to promote its mobilization, as loss of palmitoylation diminishes the range of Shh protein distribution through an as yet uncharacterized mechanism [Chen et al. 2004; Chamberlain et al. 2008].

We investigate here the Hh pathway function of vertebrate Scube (signal sequence, eubulin domain, epidermal growth factor-related) proteins, which contain nine EGF repeats and one CUB domain that are linked by a highly glycosylated spacer region [Grimmond et al. 2000, 2001; Yang et al. 2002; Wu et al. 2004]. While initially isolated and characterized in mammals, a functional role for these genes in development was suggested by the finding that the you mutation in zebrafish disrupts the Scube2 gene [Kawakami et al. 2005; Woods and Talbot 2005; Hollway et al. 2006]. Zebrafish “you class” developmental mutants are grouped together based on the abnormal U-shaped morphology of the somites and, in general, affect zebrafish genes in development was suggested by the finding that the you mutation in zebrafish disrupts the Scube2 gene [Kawakami et al. 2005; Woods and Talbot 2005; Hollway et al. 2006]. Zebrafish “you class” developmental mutants are grouped together based on the abnormal U-shaped morphology of the somites and, in general, affect zebrafish orthologs of mammalian Hh pathway components such as Sonic hedgehog [sonic-you], Dispatched [chameleon], Simo [slow muscle-omitted], and Gli2 [you-too] [van Eeden et al. 1996; Schauerte et al. 1998; Karlstrom et al. 1999; Chen et al. 2001; Varga et al. 2001; Nakano et al. 2004]. The function in Hedgehog signaling of you, the index mutant of the you class, however, remains elusive.

Clues to the function of the you gene product come from transplanation of marked mutant or wild-type cells into wild-type or mutant hosts. These studies showed that rescuing gene function can be supplied from cells that neither produce nor respond to Hh signals, thus indicating cell-nonautonomy of action [Kawakami et al. 2005; Woods and Talbot 2005]. Furthermore, widespread expression of Shh protein by injection of Shh mRNA at the one- to four-cell stage activates Hh response equivalently in wild-type and you mutant embryos; furthermore, morpholino-based knockdown of zPch1 efficiently activates Hh response in you mutant embryos [Woods and Talbot 2005]. These results indicate that Hh biogenesis and signal transduction machinery are not affected in you mutants [Woods and Talbot 2005] and that the need for you gene function is circumvented by ubiquitous Shh expression. The three members of the murine Scube family in aggregate are expressed in many tissues at many stages of development. Only mScube1, however, has been subjected to mutational analysis, and the associated phenotypes of prenatal lethality, neural tube closure defects, or acrania and exencephaly at birth [Tu et al. 2008] are inconclusive, although potentially consistent with disruption of some aspects of Hh signaling function.

In the analysis of Scube function presented here, we focused on the Scube2 ortholog of the zebrafish you gene and found an activity in Hh protein release. This activity generates a soluble form of dually lipid-modified ShhNp protein in a manner enhanced by palmitate modification and by the presence of Disp activity. Several portions of the Scube2 protein are dispensable for the release of ShhNp from cultured cells, and a minimal construct with in vitro function in ShhNp release can also rescue you zebrafish mutants, suggesting that Scube proteins function in vivo to release and mobilize Hh proteins for signaling activity.

Results

Coexpression of Scube2 and Shh increases soluble ShhNp protein levels and signaling activity in cultured cell medium

To examine release of Shh protein signal, we analyzed medium collected from HEK293S cells transfected with a full-length Shh expression construct [Fig. 1A]. These cells have previously been used to characterize aspects of Hedgehog protein biogenesis and release [Zeng et al. 2001; Chen et al. 2004]. We were unable to detect ShhNp protein by immunoblotting medium incubated with these cells for 1 d, although 2 d of incubation produced a low but detectable level of ShhNp [Fig. 1B, cf. lanes 1 and 3]. The level of ShhNp in the medium increased dramatically upon cotransfection of Shh with Scube2 [Fig. 1B, lanes 2,4].

We also assayed these media for their ability to activate the Hh pathway in Shh-LIGHT2 cells, which contain stably integrated Shh-responsive firefly luciferase and control Renilla luciferase reporters [Fig. 1A; Taipale et al. 2000]. We found that expression of Scube2 dramatically enhanced the otherwise low levels of pathway-stimulating activity, particularly with medium conditioned by 2 d of incubation [Fig. 1B]. In contrast, Scube2 expression exclusively in responsive cells did not enhance the Hh-sensitive reporter activity of cells stimulated by ShhN-conditioned medium [Supplemental Fig. 1].

We further characterized the Scube2-enhanced signaling activity released into the medium from ShhNp-expressing cells by subjecting such medium conditioned for 2 d to ultracentrifugation at 100,000g for 2 h, conditions that would be expected to sediment membrane-associated but not soluble proteins. We found that this affected neither the relative levels of ShhNp protein in the medium [Fig.
1C, cf. lanes 4, 5 and 3, 2) nor its signaling activity (Fig. 1C). We thus conclude that Scube2 augments the activity of ShhNp-conditioned medium by increasing the amount of soluble ShhNp and used medium cleared by centrifugation at 100,000g for 2 h throughout the remainder of this work.

Scube2 does not affect ShhNp stability

To determine whether Scube2 acts by increasing the stability of secreted ShhNp, we mixed medium containing ShhNp with control medium or medium containing Scube2 protein. These media were harvested following incubation with cells containing stably integrated and doxycycline-inducible expression constructs for Shh or for Scube2 [Fig. 2A]. The use of cells with a stably integrated, doxycycline-inducible Shh expression construct allowed us to collect more ShhNp in conditioned medium than with transiently transfected cells [Fig. 1]. We found that mixing conditioned medium containing ShhNp with medium containing Scube2 did not increase either the level of ShhNp detected by immunoblotting over time or the signaling activity in Shh-LIGHT2 cells when compared with ShhNp-containing medium mixed with control medium lacking Scube2 [Fig. 2B]. Taken together, these observations suggest that Scube2 does not act by stabilizing ShhNp in the medium or by augmenting the potency of ShhNp signaling activity, but by enhancing the release of ShhNp from Shh-expressing cells.

Soluble Scube2 enhances release of ShhNp from Shh-expressing cells

In our previous experiment [Fig. 1], we noted that coexpression of Scube2 with Shh increased the level of ShhNp protein and of signaling activity released into the medium. Scube2 has been reported to associate with the membranes of cells expressing it in vitro [Yang et al. 2002], raising the question of whether its function in releasing ShhNp may require presentation in the context of an expressing cell. We tested this possibility by harvesting soluble Scube2 protein in medium incubated with cells that inducibly express Scube2 and then adding this medium to cells inducibly expressing ShhNp [Fig. 2C]. We found that addition of exogenous Scube2 greatly enhanced the signaling activity of medium incubated with cells expressing ShhNp and also increased the amount of ShhNp protein detectable in the medium by immunoblotting [Fig. 2D].

Figure 1. Scube2 coexpression with Shh increases the release of soluble, active ShhNp protein. (A) Medium was harvested from HEK293S cells transiently transfected with expression plasmids for 3xFlag-tagged Scube2 or a control plasmid (see the Materials and Methods) along with Shh (2:1 ratio of Scube2 to Shh), and centrifuged at 18,000g for 30 min, and signaling was activity measured using Shh-responsive NIH-3T3 cells stably transfected with a firefly luciferase-based Shh pathway reporter and Renilla luciferase constitutive reporter (Shh-LIGHT2 cells). Culture media and whole-cell lysates harvested from HEK293 cells transiently transfected with the indicated constructs were probed by immunoblotting for expression of ShhNp (anti-ShhN antibody) and 3xFlag-tagged Scube2 (anti-Flag antibody). Tubulin was used as a loading control. Migration of molecular markers is indicated. (B) Scube2 increases the activity of ShhNp-conditioned medium by increasing the amount of soluble ShhNp in the medium. Medium harvested 48 h post-transfection was centrifuged at 100,000g for an additional 2 h. [B] Signaling activities of ShhNp-conditioned media collected from transfected HEK293S cells at specified time points and incubated for 48 h with Shh-LIGHT2 cells at a fivefold dilution of conditioned media with DMEM containing 0.5% calf serum. Relative reporter activities [firefly luciferase/Renilla luciferase] were normalized to relative reporter activity produced by medium collected from HEK293 cells not transfected with the Shh-expressing construct (shown in red here and throughout the study). Culture media and whole-cell lysates harvested from HEK293 cells transiently transfected with the indicated constructs were probed by immunoblotting for expression of ShhNp [anti-ShhN antibody] and 3xFlag-tagged Scube2 [anti-Flag antibody]. Tubulin was used as a loading control. Migration of molecular markers is indicated. (C) Scube2 increases the activity of ShhNp-conditioned medium by increasing the amount of soluble ShhNp in the medium. Medium collected 2 d after transfection and centrifuged at 18,000g for 30 min was further centrifuged at 100,000g for 2 h. The signaling activity of the medium was measured by incubation with Shh-LIGHT2 cells, and protein levels were analyzed by reducing SDS-PAGE and immunoblotting to detect Scube2-3xFlag [anti-Flag] and ShhNp proteins [anti-ShhN].
Scube mediates Hedgehog signal release

Figure 2. Externally supplied Scube2 acts by enhancing the release of ShhNp. (A) Experimental scheme to test for Scube2-mediated stabilization of ShhNp. HEK293 Flp-In T-REX cells with stably integrated constructs for tetracycline-inducible expression of Shh or 3xFlag-tagged Scube2 were incubated with doxycycline-containing medium. Medium harvested from these or control parental cells was centrifuged at 18,000g for 30 min followed by 100,000g for 2 h and mixed at a 1:1 ratio (v/v) to prepare three distinct conditioned media: (1) Scube2-conditioned medium, with 50% Scube2-conditioned medium and 50% control conditioned medium from parental cells; (2) ShhNp-conditioned medium, with 50% ShhNp-conditioned medium and 50% control conditioned medium; and (3) ShhNp–Scube2-conditioned medium, with 50% ShhNp-conditioned medium and 50% Scube2-conditioned medium. Each of these conditioned media was further incubated with parental HEK293 Flp-In cells for the indicated periods of time prior to assay. (B) Scube2 does not affect signaling activity or the stability of secreted ShhNp. Signaling activity of conditioned medium was measured at fivefold dilution with Shh-LIGHT2 cells. Signaling activity of control conditioned medium incubated with cells not expressing Shh was used for normalization. Media samples were also probed for ShhNp (anti-ShhN) and 3xFlag-tagged Scube2 (anti-Flag) by immunoblotting, with lysates from proportional fractions of cell cultures probed for actin expression as controls. (C) Experimental scheme to test for Scube2-mediated release of ShhNp. Stably integrated, tetracycline-inducible cells were used to prepare control or Scube2-containing medium as described in A. After 12 h of doxycycline treatment, medium from parental or Shh-expressing cells was replaced with control or Scube2-conditioned medium and incubated for the indicated periods of time. ShhNp-conditioned medium was centrifuged at 18,000g for 30 min, and the resulting supernatant was further centrifuged at 100,000g for 2 h. Activity measurements were carried out with Shh-LIGHT2 cells and 20-fold dilution of conditioned media with DMEM containing 0.5% calf serum. (D) Scube2 stimulates the release of ShhNp protein and signaling activity. Shh-expressing cells were incubated with control or Scube2-containing conditioned medium. Signaling activity of control conditioned medium was used for normalization. Scube2-containing conditioned medium increased signaling activity by ~10-fold and also increased the release of ShhNp, as detected by immunoblotting (performed as described in B).

Scube2 surmounts the restriction of ShhNp release imposed by cholesterol modification

To better understand the mechanism by which Scube2 enhances ShhNp release, we analyzed its effect on altered forms of Shh that are not processed normally. One of these variants, ShhN, introduces a stop codon after the site of processing (G198), thus producing a truncated protein and preventing autoprocessing and the associated cholesterol modification that is mediated by the C-terminal domain [Mann and Beachy 2004]. A second variant alters Cys25 to Ser (C25S), thus permitting normal autoprocessing and cholesterol modification while preventing N-terminal palmitoylation [Pepinsky et al. 1998; Chamoun et al. 2001]. In an experiment in which Scube2-conditioned medium was added to cells containing stably integrated expression constructs [Fig. 3A], we noted for ShhN that neither signaling activity nor release into the medium is much affected by the addition of Scube2 [Fig. 3B, lanes 13–18], although the overall level of protein released was much lower than that of wild-type ShhNp [Fig. 3B, cf. lanes 14,16,18 and 8,10,12], as previously reported, the ShhNpC25S protein lacks activity in cultured cell signaling assays. Similar results were noted for HEK293 cells transiently cotransfected for coexpression of Shh or ShhC25S with or without Scube2 (Supplemental Fig. 2). These results suggest that Scube2 activity is critical for the release of processed Shh proteins that are cholesterol-modified. We note, however, that palmitoylation may play a role in this release, as wild-type ShhNp appears to be released more efficiently than ShhNpC25S [Fig. 3B].

Palmitate modification of ShhNp enhances Scube2-mediated release

To explore further the potential role of palmitoylation of ShhNp in Scube2-mediated release, we examined the rate of ShhNp release from cells stably transfected for in-
Cells), plotted as a function of time (Fig. 4B), thus its presence significantly accelerates the rate of release. Absolutely required for Scube2-mediated release of ShhNp, shows that although the presence of a palmitate adduct is not necessary for Scube2 for its release in the medium and that palmitate augmentation augments Scube2-mediated release of ShhNp.

To further examine the basis for the effect of the palmitate adduct, we immunopurified ShhNp or ShhNpC25S from detergent-solubilized cells using anti-Shh 5E1 antibody coupled to Affigel beads. These immunocomplexes were then used to precipitate soluble Scube2. We found that Scube2 was precipitated approximately threefold more efficiently by ShhNp as compared with ShhNpC25S when assayed by either immunoblotting or Coomassie stains of precipitated proteins (Fig. 4C). This palmitate-dependent enhancement of the physical interaction between Scube2 and ShhNp seems likely to be the basis for enhanced Scube2-mediated release from cultured cells of ShhNp as compared with ShhNpC25S.

Figure 3. Role of lipid modification in Scube2-mediated release of the Shh signal. (A) HEK293 Flp-In T-REX cells were used to establish isogenic cell lines expressing ShhN, Shh, or ShhC25S. After 24 h of incubation with doxycycline-containing medium to induce protein expression, cells were incubated with control or Scube2-conditioned medium prepared as in Figure 2C and harvested after 6 h or 1 or 2 d of incubation. (B) Scube2 dramatically increases release of signaling activity from cells expressing ShhNp but not ShhN. The signaling activity of the medium was measured at 20-fold dilution using Shh-LIGHT2 cells. The signaling activity of the control conditioned medium was used for normalization. Immunoblotting of medium and whole-cell lysates using anti-ShhN (ShhN, ShhNp, or ShhNpC25S) and anti-Flag (Scube2-3xFlag) indicates that ShhN does not require Scube2 for its release in the medium and that palmitate modification augments Scube2-mediated release of ShhNp.

Scube2 mediates in vitro release of ShhNp from detergent-resistant membrane microdomains

The dually lipid-modified ShhNp protein is associated with detergent-insoluble glycolipid-enriched domains (DIGs) (Taipale et al. 2000), also termed membrane microdomains or lipid rafts. This association has also been demonstrated for ShhNpC25S, which is cholesterol- but not palmitate-modified (Chen et al. 2004). We tested whether Scube2 can release ShhNp from these lipid microdomains in a cell-free system by incubating DIGs from Shh- or ShhC25S-expressing cells with control or Scube2-containing conditioned medium, then assaying for soluble ShhNp by immunoblotting or signaling assays (Fig. 5A). We found that 3 h or 18 h of incubation with Scube2-containing medium significantly increased the amount of ShhNp released from DIGs in soluble form (Fig. 5B, cf. lanes 4,10 and 3,9) and also increased the amount of soluble signaling activity. In contrast, the level of soluble ShhNpC25S was not increased by incubation with Scube2 (Fig. 5B, cf. lanes 6,12 and 5,11). These results are consistent with our previous experiments demonstrating enhancement of Scube2-mediated release by palmitate modification and further demonstrate that Scube2 activity can be assayed in a cell-free context in vitro.

The soluble ShhNp released by Scube2 is dually lipid-modified

Scube2 can overcome cholesterol-mediated membrane tethering of ShhNp, and this Scube2-mediated release is enhanced by palmitate modification, suggesting that Scube2 may exert its effects primarily on mature, dually lipid-modified ShhNp. To test this hypothesis, we examined the modified state of soluble protein released by Scube2 from ShhNp-expressing cells using conditions previously established for reverse-phase HPLC analysis on a C4 matrix (Chamoun et al. 2001). Under these conditions, we are able to distinguish unmodified ShhN, ShhN proteins singly modified by either cholesterol or palmitate, and dually modified ShhN (Supplemental Fig. 3).

To obtain sufficient protein quantities for chromatography, we used immunoprecipitation to concentrate ShhNp from medium incubated with cells transfected for expres-
sion of Shh and either containing or lacking Scube2. As previously noted, the use of medium containing Scube2 significantly increased the level of ShhNp and the signaling activity in the medium. The immunoprecipitations made use of Affigel beads conjugated with the anti-Shh monoclonal antibody 5E1 and were judged to be effective based on the presence of the majority of ShhNp in the pellets and by its depletion from the medium, with the latter assessed by both signaling assays and immunoblotting (Fig. 6A,B).

ShhNp immunoprecipitated from medium was recovered from the Affigel-5E1 matrix by detergent elution and acetone precipitation and then subjected to reverse-phase HPLC analysis. We noted that the majority of the ShhNp from medium lacking Scube2 eluted in fractions characteristic of single modification by cholesterol, with a minority of the protein eluting as a dually modified species (Fig. 6C, top). In sharp contrast, although a similar level of ShhNp single modification by cholesterol was present in the Scube2-containing medium, the great majority of the protein eluted like ShhNp dually modified by cholesterol and palmitate (Fig. 6C, bottom). Our analysis shows that although some dually modified ShhNp is released in soluble form from cultured cells, Scube2 in the medium can specifically increase the amount of soluble, dually modified ShhNp that is released.

Scube2-mediated release of ShhNp is facilitated by Dispatched

The role of the Disp protein in the release of cholesterol-modified Hh proteins from producing cells is well established in Drosophila and vertebrates (Burke et al. 1999; Caspary et al. 2002; Kawakami et al. 2002; Ma et al. 2002; Nakano et al. 2004). In order to examine the role of Disp in Scube2-mediated release, we made use of mouse embryonic fibroblasts (MEFs) derived from DispA/C0/C0 mutant embryos [Ma et al. 2002]. These cells were retrovirally transduced in two stages [Fig. 7A]. In the first stage, cells were transduced with a virus containing an expression cassette for Shh linked by an internal ribosome entry site [IRES] to GFP or with the parental retrovirus containing [middle panel]. [Bottom panel] Quantification of Scube2-3xFlag and ShhNp/ShhNpC255 from scanned, Coomassie-stained gels with ImageJ software showed that Scube2 is more efficiently precipitated from medium by beads loaded with ShhNp as compared with ShhNpC255.
Creanga et al.

Figure 5. Scube2 increases the release of ShhNp from lipid rafts in a cell-free assay. (A) Experimental scheme to test for Scube2-mediated release of ShhNp protein in a cell-free assay. Lipid rafts (DIGs) isolated from HEK293 Flp-In T-REX cells expressing Shh or ShhC25S were purified with sucrose gradient fractionation and incubated with control or Scube2-containing conditioned medium prepared without serum for the indicated periods of time. (B) Signaling activities of supernatants obtained by incubation of ShhNp- or ShhNpC25S-containing lipid rafts with control or Scube2-containing conditioned medium for 3 h or 18 h and centrifuged at 100,000 g. Supernatants were probed for Shh- LIGHT2 cells at threefold dilution. DIG pellets and supernatants were probed with DIG pellets probed also for Flotillin-1 as loading controls. The migration of the molecular markers is indicated. Scube2-containing conditioned medium increases the signaling activity of ShhNp supernatants up to fourfold, and the presence of palmitate modification increases the Scube2-mediated release of ShhNp protein from DIGs in a cell-free assay.

Disp alone, or Shh and Disp together were cultured for further analysis and incubated with medium containing or lacking Scube2. We found that cells lacking Disp function released only minimal levels of ShhNp protein and signaling activity, even in the presence of Scube2 [Fig. 7B, lanes 3,4], as compared with cells expressing Disp and incubated in the presence of Scube2 [Fig. 7B, lane 6]. We conclude from these results that Scube2-mediated release of soluble ShhNp from cultured cells is facilitated by the action of Disp.

This apparent role of Disp in facilitating Scube2-mediated release of soluble ShhNp raises the question of whether Disp is expressed and active in HEK293 cells, where we carried out previous assays of Scube2 action (see above). We indeed noted the presence of DispA mRNA in HEK293 cells by RT–PCR (data not shown). To determine whether this mRNA produces functional Disp protein, we introduced DispA-AAA [Fig. 7C], a form of DispA altered in residues known to be critical for Disp function [Ma et al. 2002] and reported to exert a negative trans-dominant effect on wild-type Disp when overexpressed [Etheridge et al. 2010]. We noted that DispA-AAA cotransfection with Shh indeed reduced the level of soluble ShhNp and signaling activity released from HEK293 cells in either the presence or absence of Scube2 added to the medium [Fig. 7D, cf. lanes 3,4 and 1,2].

Structural determinants required for Scube2 function in releasing ShhNp

Previous studies showed that Scube2 can interact with ShhN via the CUB domain [Tsi et al. 2009] and that secretion of Scube2 is mediated by the spacer region C-terminal to the EGF repeats and by the Cys-rich domain preceding the CUB domain [Yang et al. 2002, Tsi et al. 2009]. With a series of Scube2 truncation alleles [Fig. 8A; Supplemental Fig. 4], we confirmed that the spacer and Cys-rich repeats contribute to secretion from expressing cells [Fig. 8B; Supplemental Fig. 4]. Also consistent with previous findings that the CUB domain can interact with ShhN, we found that the CUB domain was essential for release of ShhNp protein and signaling activity [Fig. 8B]. The minimal construct sufficient for function in our ShhNp release and signaling assays was Scube2ΔEGF, which contains the spacer region, the Cys-rich domains, and the CUB domain [Fig. 8A,B].

We tested our observation from cell culture that EGF repeats are not required for Scube2 activity in Hh signaling in vivo by performing a functional assay in zebrafish for zShh signaling activity. Zebrafish you mutants lack myod expression in adaxial mesoderm cells, which is indicative of a loss of zShh signaling [Lewis et al. 1999; Woods and Talbot 2005; Hollway et al. 2006]. We injected mRNA encoding wild-type or truncated forms of zScube2 lacking the EGF repeats into embryos from you/+ intercrosses and examined myod expression in adaxial mesoderm cells [Fig. 8C]. We found that all embryos homozygous for you [n = 26] lacked myod expression in adaxial cells at the 12-somite stage [Fig. 8C, left column]. When injected with 50 pg of wild-type zscube2 mRNA, 100% [n = 29] of embryos homozygous for you showed rescued expression of myod in adaxial cells [Fig. 8C, middle column]. Similarly, 93% [n = 60] of you mutant embryos that were injected with 50 pg of zscube2ΔEGF mRNA showed wild-type expression of myod in adaxial cells [Fig. 8C, right column]. Thus, the zScube2 construct lacking the EGF repeats was functional in vivo.
U-shaped appearance of somites due to defects in the specification of slow muscle fibers and the absence of horizontal myoseptum. These mutants, named you class mutants, were eventually shown to disrupt embryonic Hedgehog signaling, as first suggested by the demonstration that the sonic-you (syu) mutant inactivates the zebrafish sonic hedgehog gene (Schauerte et al. 1998). Other genes disrupted in you class mutants (you-too, chameleon, and slow muscle-omitted) were found to encode known components of the Hh pathway previously identified in Drosophila (Cubitus interruptus, dispatched, and smoothened, respectively) (Karlstrom et al. 1999; Chen et al. 2001; Varga et al. 2001; Nakano et al. 2004). The eponymous you mutant of this class, however, has no Drosophila ortholog (Kawakami et al. 2005; Woods and Talbot 2005; Hollway et al. 2006), and the molecular mechanism of its function in vertebrate Hedgehog signaling remained elusive.

Given that you appears to encode a secreted protein and that rescuing function of the you+ gene could be supplied from cells that neither produce nor respond to Hh signals (Woods and Talbot 2005), we tested the possibility that the you+ protein may act cell-nonautonomously in mediating the release of the lipid-modified Hedgehog protein. Indeed, we found that the Scube2 protein encoded by a mammalian ortholog of you can stimulate the release of ShhNp into the medium of cultured cells expressing Shh. This enhanced release of ShhNp in soluble form was detected by increased protein levels and signaling activity in culture medium conditioned by cells expressing Shh, the Scube2 protein could be provided by either cotransfecting Scube2 with Shh or adding soluble Scube2 protein to the medium of Shh-expressing cells. Importantly, Scube2 was unable to stabilize ShhNp or enhance the responsiveness of stimulated cells.

Our results support a conclusion distinct from that of a previous report, which suggested that Scube2 acts to enhance Shh response (Tsai et al. 2009). These previous experiments showed increased pathway activity when Shh-LIGHT2 cells transfected with Shh were additionally cotransfected with Scube2, but did not distinguish between Scube2 expression in Shh-producing or responding cells; our experiments now clearly show that Scube2 has its effect only when it is present with cells expressing Shh and not if it is present only with responding cells. Our results are fully consistent with the zebrafish data demonstrating that you+/Scube2 function can rescue you mutant embryos when supplied from cells that do not respond to Hh signals (Woods and Talbot 2005). Further support for ShhNp release as the major mode of Scube2 action in Hh signaling is provided by our structure/function analysis (Fig. 8), in which Scube2-mediated release of soluble ShhNp from cultured cells in vitro is strongly correlated with the ability to rescue the you mutant phenotype in vivo.

Mechanism of Scube2 action

Covalent linkage of the mature Hh signal to both palmitate and cholesterol raises the question of how the long-range action of a morphogen protein bearing dual lipid modifications is achieved. We therefore investigated the
covalent state of ShhNp in its soluble, active form, as released by Scube2, using HPLC separation to indicate hydrophobicity and the extent of lipid modification. We found that the bulk of ShhNp released by Scube2 is dually lipid-modified; in fact, our evidence indicates that N-terminal acylation of ShhNp actually plays a positive role in Scube2-mediated release of ShhNp in a soluble, active form (see below). How the hydrophobic character of dual lipid adducts is accommodated in the soluble form of ShhNp released by Disp/Scube remains to be determined. One possibility is the formation of a micelle-like complex with a hydrophobic core of interacting lipids, as previously suggested (Zeng et al. 2001; Chen et al. 2004).

Some reports have suggested that the release and activity of modified Hh proteins is dependent on sheddase-mediated removal of N-terminal amino acids and palmitate (Dierker et al. 2009; Ohlig et al. 2011). The Disp/Scube-mediated mechanism of release we describe here is distinct from this view of Shh signal activation by a sheddase (Dierker et al. 2009; Ohlig et al. 2011) in that [1] the form of the signal released by Disp/Scube retains its N-terminal amino acids and palmitate adduct, and [2] the presence/absence of Scube modulates release of ShhNp by 10-fold to 20-fold (Figs. 2D, 3B, 4B) as compared with an approximately twofold change in the presence/absence of sheddases (Dierker et al. 2009; Ohlig et al. 2011). We note that the retention of palmitate and N-terminal amino acids in the Disp/Scube-mediated mechanism we characterize is consistent with previous studies demonstrating a high signaling activity for purified, N-terminally acylated forms of the Shh signal (Pepinsky et al. 1998; Taipale et al. 2000). Sheddase-mediated removal of N-terminal amino acid residues and palmitate from ShhNp is an intriguing mode of possible regulation, but establishing its physiologic or pathological significance in Hh signaling may require genetic analysis like that for you in the zebrafish, which clearly indicates a physiological function for Scube proteins in vertebrate Hh signaling.

Previous work has shown that Dispatched plays a critical role in the mobilization of the Hedgehog signal in vivo (Burke et al. 1999; Caspary et al. 2002; Ma et al. 2002; Nakano et al. 2004), and some
evidence has been presented for the action of Dispatched in releasing ShhNp from cultured cells in a soluble form in vitro (Ma et al. 2002). A more recent report suggests that Dispatched acts by facilitating the transfer of modified ShhNp directly from one cell to another (Etheridge et al. 2010). This requirement for cell–cell contact in Disp function is not supported by Drosophila genetic studies, which clearly demonstrate a requirement for disp function exclusively in Hh-producing cells (Burke et al. 1999). Our studies further demonstrate that mammalian Disp can contribute to the Scube2-mediated release of a soluble, active form of the ShhNp protein in the absence of cell–cell contact. The cell contact-dependent mechanism of Disp-mediated release suggested by Etheridge et al. (2010) nevertheless could operate in some biological settings. The absence of a Scube ortholog in Drosophila suggests that the activity of Dispatched in mediating the release of the Drosophila Hh signal may be independent of a Scube ortholog, possibly due to the unique composition of Drosophila detergent-insoluble lipid microdomains (Rietveld et al. 1999).

The importance of palmitate modification
The importance of palmitoylation for Scube2 release of ShhNp has been noted (Chamoun et al. 2001; Kohtz et al. 2001; Lee and Treisman 2001; Micchelli et al. 2002; Chen et al. 2004). The Scube2-mediated release of ShhNp from DICs depends critically on the presence of palmitate for optimal efficiency (Fig. 5B). The mechanistic basis of this difference is suggested by more efficient binding of Scube2 to immobilized ShhNp as compared with immobilized ShhNpC25S (Fig. 4C); improved release of acylated ShhNp thus appears to be stimulated by favorable binding interactions between Scube2 and the acyl chain modification of ShhNp, although we note that Scube2 also shows reasonable albeit lower affinity for ShhNpC25S, which lacks acylation (Fig. 4C).

These results are consistent with and account for previously reported observations that the palmitate group not only enhances ShhNp potency (Pepinsky et al. 1998; Chamoun et al. 2001; Kohtz et al. 2001; Lee and Treisman 2001; Micchelli et al. 2002; Chen et al. 2004), but also facilitates the release or transport of ShhNp in the extracellular milieu (Chen et al. 2004; Chamberlain et al. 2008). The experiments in Chamberlain et al. (2008) are particularly striking, as they demonstrate that ShhNp produced in the notochord can spread through the extracellular matrix, traverse the neuroepithelium, and enter the lumen of the neural tube; the Shh protein is unable to do so, however, when acylation of ShhNp is disrupted by mutation of the Skn acyltransferase (Chen et al. 2004; Chamberlain et al. 2008).

Given the importance of palmitoylation in the release and movement of the ShhNp protein, it is interesting to note that Wnt proteins are palmitoylated and that, at least in Drosophila, EGF proteins are also palmitoylated.
PCR products of Myc-tagged zScube2 and zScube2 NIH-3T3 and Shh-LIGHT2 cells were grown in DMEM supplemented with 10% (v/v) FBS (Invitrogen). HEK293S (American Type Culture Collection [ATCC]) cells were digested with Xho1 and Xba1.

Cell culture and Hh reporter assay

HEK293 Flp-In T-REX cells [Invitrogen] were used to generate isogenic stable cell lines. HEK293 Flp-In T-REX cells were grown in DMEM supplemented with 10% (v/v) FBS tetracycline-free (Clontech), blasticidin [15 μg/mL, Invitrogen], and Zeocin [100 μg/mL, Invitrogen]. Hygromycin [75 μg/mL, Roche] was used to select stably transfected cells. Doxycycline (1 μg/mL, Sigma) was used to induce expression of inserted genes. Cycloheximide [50 μg/mL, Sigma] was used to inhibit protein biosynthesis in these cells.

Western blotting

Protein expression analysis of cultured cells transfected with expression plasmids using Fugene HD [Roche] were performed by harvesting cells and conditioned medium for reducing SDS-PAGE and immunoblotting. Whole-cell protein extracts were prepared by solubilization in radioimmunoprecipitation assay (RIPA) buffer containing 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, and protease inhibitor cocktail [Roche]. Medium was spun for 30 min at 18,000 g to remove cell debris (followed, when mentioned, by an additional centrifugation at 100,000 g for 2 h). Samples from both cell lysates and medium were mixed with sample buffer (Fermentas) containing DTT [50 mM final concentration] and analyzed by reducing SDS-PAGE followed by immunoblotting. Antibodies used for this study were as follows: anti-ShhN rabbit polyclonal [Porter et al. 1996b], anti-Flag M2 mouse monoclonal (Sigma), anti-HA (Covance), anti-tubulin mouse monoclonal [E2, ATCC], anti-CD8 coupled with Alexa 647 [BD Pharmingen], and anti-actin mouse monoclonal [Santa Cruz Biotechnology].
grown in 150-mm dishes and lysed in buffer containing 10 mM NaH2PO4 (pH 6.5), 150 mM NaCl, 1% Triton X-100, and a cocktail of protease inhibitors at 4°C [Taipale et al. 2000]. Whole-cell extracts were then mixed with the same volume of 80% sucrose to generate 40% sucrose lysate solution. Two sucrose density steps, 16.5 mL of 36% sucrose and 7 mL of 5% sucrose, were layered onto 14 mL of 40% sucrose lysate, and centrifugation was carried out in a Beckman Ti45 rotor at 35,000 rpm for 24 h at 4°C. Raft-containing fractions were visually identified and collected. Sucrose from these fractions was diluted by adding 4 vol of phosphate-buffered saline (PBS) [10 mM NaH2PO4 at pH 6.5, 150 mM NaCl], and rafts were precipitated by centrifugation. Rafts were resuspended in PBS and divided in equal volumes into 1.5-mL tubes. PBS was exchanged with Scube2-containing or control conditioned medium by centrifugation. Of note, Scube2-containing or control conditioned medium did not contain serum. After incubations with Scube2-containing or control conditioned medium for the indicated periods of time, rafts were harvested by centrifugation at 18,000g for 30 min. After incubation with protein sample buffer containing DTT for 10 min at 100°C, rafts were analyzed by SDS-PAGE followed by immunoblotting. Supernatants were centrifuged at 100,000g for an additional 2 h, and samples were collected for signaling activity measurements and expression analysis by SDS-PAGE followed by immunoblotting.

Reverse-phase HPLC analysis of mammalian Hedgehog proteins
HEK293S cells growing in 10-cm² dishes were transfected with expression plasmids for Shh, ShhN, ShhC25S, ShhNC25S, Scube2-3xFlag, or control. Three days post-transfection, media and cells were harvested. Medium [6 mL] was centrifuged at 3000g for 30 min followed by 100,000g for 2 h. After centrifugation, medium was incubated overnight with anti-Shh monoclonal antibody [5E1] immobilized on Affigel 10 beads [Bio-Rad]. The next day, beads were washed and eluted by incubation with 1× reducing sample buffer [Invitrogen] for 15 min at 37°C. Eluted proteins were acetone-precipitated. Whole-cell protein extracts were prepared from 10-cm² dishes by solubilization with 1 mL of RIPA buffer containing a cocktail of protease inhibitors [Roche] for 30 min at 4°C. After centrifugation at 18,000g for 30 min to remove insoluble material, 100 μL of whole-cell protein extract was acetone-precipitated. Protein precipitates were resuspended with 35 μL of 1,1,3,3,3 hexafluoro-2-propanol and solubilized with 70 μL of 70% formic acid followed by brief sonication. For reverse-phase HPLC, we used an acetonitrile: water gradient with 0.1% trifluoroacetic acid and 3% acetonitrile and 97% water and 100% acetonitrile. Eluted fractions were vacuum-dried, resolubilized in 1× reducing sample buffer, and analyzed by SDS/PAGE [Chamoun et al. 2001].

RNA synthesis and microinjection of zebrafish embryos
The full-length zscube2 and zscube24EGF constructs were linearized with NotI, and mRNA was synthesized using the SP6 mMessage mMachine kit [Ambion]. Final RNA was diluted in ultrapure water, and Phenol Red was added to a concentration of 5 mg/mL. The solution was adjusted so that the total mRNA injected into each embryo was 50 pg and the volume injected was 1 nL. After injection, embryos were maintained under standard conditions and staged according to Kimmel et al. [1995].

In situ hybridization and genotyping
Embryos were dechorionated by hand and then fixed at the 12-somite stage in 4% PFA overnight at 4°C. In situ hybridization for myod expression was performed using standard methods [Thissen and Thisse 2008] with an antisense myod probe [Weinberg et al. 1996]. Embryos were scored on the basis of myod expression in adaxial cells and were genotyped by PCR [forward primer, ACAGCTTTGCGCAATGGA; reverse primer, GCACCTTCAATACTCTTCCT] followed by a restriction digest with Hpy85L. The mutant band ran at 200 base pairs [bp], while the wild-type band ran at 185 bp.

Acknowledgments
We thank Masaki Kato, Xiaoyan Zheng, and Ben Myers for their help in completing this project. We also thank Keith Young, Jynho Kim, Navadar Sever, Wenchuan Liang, and Yong Chun Chong for reagents and protocols, and James Chen and Dan Leahy for critical review of the manuscript.

References
Beachy PA, Karthidakar SS, Berman DM. 2004. Tissue repair and stem cell renewal in carcinogenesis. Nature 432: 324–331.
Briscoe J, Chen Y, Jessell TM, Struhl G. 2001. A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol Cell 7: 1279–1291.
Buglio JA, Resh MD. 2008. Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem 283: 22076–22088.
Burke R, Nellen D, Bellotto M, Hafen E, Senti KA, Dickson BJ, Basler K. 1999. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99: 803–815.
Caspari T, Garcia-Garcia MJ, Huangfu D, Eggenschwiler JT, Wyler MR, Rakeman AS, Alcorn HL, Anderson KY. 2002. Mouse Dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling. Curr Biol 12: 1628–1632.
Chamberlain CE, Jeong J, Guo C, Allen BL, McMahon AP. 2008. Notochord-derived Shh concentrations in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning. Development 135: 1097–1106.
Chamoun Z, Mann RK, Nellen D, von Kessler DP, Bellotto M, Beachy PA, Basler K. 2001. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293: 2080–2084.
Chen W, Burgess S, Hopkins N. 2001. Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development 128: 2385–2396.
Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT. 2004. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes & Dev 18: 641–659.
Dierker T, Dreier R, Petersen A, Bordych C, Grobe K. 2009. Heparan sulfate-modulated, metalloprotease-mediated sonic hedgehog release from producing cells. J Biol Chem 284: 8013–8022.
Etheridge LA, Crawford TQ, Zhang S, Roelink H. 2010. Evidence for a role of vertebrate Disp1 in long-range Shh signaling. Development 137: 133–140.
Eugster C, Panakova D, Mahmoud A, Eaton S. 2007. Lipoprotein-associated protease-mediated and long-range signaling in vertebrates. Genes & Dev 11: 641–659.
Grimmond S, Larder R, Van Hateren N, Siggers P, Hulsegboe T, Arkell R, Greenfield A. 2000. Cloning, mapping, and expression analysis of a gene encoding a novel mammalian EGF-related protein (SCUBE1). Genomics 76: 74–81.

GENES & DEVELOPMENT 1097–1106.

Chamoun Z, Mann RK, Nellen D, von Kessler DP, Bellotto M, Beachy PA, Basler K. 2001. Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293: 2080–2084.
Chen W, Burgess S, Hopkins N. 2001. Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development 128: 2385–2396.
Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT. 2004. Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes & Dev 18: 641–659.
Dierker T, Dreier R, Petersen A, Bordych C, Grobe K. 2009. Heparan sulfate-modulated, metalloprotease-mediated sonic hedgehog release from producing cells. J Biol Chem 284: 8013–8022.
Etheridge LA, Crawford TQ, Zhang S, Roelink H. 2010. Evidence for a role of vertebrate Disp1 in long-range Shh signaling. Development 137: 133–140.
Eugster C, Panakova D, Mahmoud A, Eaton S. 2007. Lipoprotein-heparan sulfate interactions in the Hh pathway. Dev Cell 13: 57–71.
Creanga et al.

Grinnond S, Larder R, Van Hateren N, Siggers P, Morse S, Hacker T, Arkell R, Greenfield A. 2001. Expression of a novel mammalian epidermal growth factor-related gene during mouse neural development. *Mech Dev* 102: 209–211.

Holloway GE, Masule J, Gautier P, Evans TM, Keenan DG, Lohs C, Fischer D, Wicking C, Currie PD. 2006. Scube2 mediates Hedgehog signalling in the zebrafish embryo. *Dev Biol* 294: 104–118.

Karlstrom RO, Talbot WS, Schier AF. 1999. Comparative syn-teny cloning of zebrafish you-too: Mutations in the Hedgehog target gli2 affect ventral forebrain patterning. *Genes & Dev* 13: 388–393.

Kawakami T, Kawac K, Li YJ, Zhang W, Hu Y, Chuan PT. 2002. Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. *Development* 129: 5753–5765.

Kawakami A, Nojima Y, Toyoda A, Takahoko M, Satoh M, Kawakami A, Nojima Y, Toyoda A, Takahoko M, Satoh M, Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 2001. Sightless has homology to trans-

Ma Y, Erkner A, Gong R, Yao S, Taipale J, Basler K, Beachy PA. 2004. Novel lipid modifications of Hedgehog signalling in the zebrafish embryo. *Mech Dev* 12049–12054.

Schauer HE, van Eeden FJ, Fricke C, Odenthal J, Strahle U, Haffter P. 1998. Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. *Development* 125: 2983–2993.

Strigini M, Cohen SM. 1997. A Hedgehog activity gradient contributes to AP axial patterning of the Drosophila wing. *Development* 124: 4697–4708.

Taijale P, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, Smith MP, Beachy PA. 2000. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. *Nature* 406: 1005–1009.

Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S. 2006. Monounsaturated fatty acid mod-

ification of Wnt protein: Its role in Wnt secretion. *Dev Cell* 11: 791–801.

Tegland S, Toftgard R. 2010. Hedgehog beyond medullolblas-
toma and basal cell carcinoma. *Biochim Biophys Acta* 1805: 181–208.

Thisses C, Thisses B. 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos. *Nat Protoc* 3: 59–69.

Tsai MT, Cheng CJ, Lin YC, Chen CC, Wu AR, Wu MT, Hsu CC, Yang RB. 2009. Isolation and characterization of a se-
creted, cell-surface glycoprotein SCUBE2 from humans. *Biochem* / *J* 422: 119–128.

Tu CF, Yan YT, Wu SY, Diko J, Tsai MT, Cheng CJ, Yang RB. 2008. Domain and functional analysis of a novel platelet-

ed endothelial cell surface protein, SCUBE1. *J Biol Chem* 283: 12478–12488.

van Eeden FJ, Granato M, Schach U, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, et al. 1996. Genetic analysis of fin formation in the zebrafish, *Danio rerio*. *Development* 123: 255–262.

Varga ZM, Amores A, Lewis KE, Yan YL, Postlethwait JH, Eisen JS, Westerfield M. 2001. Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. *Development* 128: 3497–3509.

Variasolo M, Taijale P. 2008. Hedgehog: Functions and mecha-

nisms. *Genes & Dev* 22: 2454–2472.

Wang B, Fallon JF, Beachy PA. 2000. Hedgehog-regulated pro-
cessing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. *Cell* 100: 423–434.

Weinberg ES, Allende ML, Kelly CS, Abdelhamid A, Murakami T, Andermann P, Doree OG, Grunwald DJ, Riggelman B. 1996. Developmental regulation of zebrafish MyoD in wild-
type, no tail and spadetail embryos. *Development* 122: 271–280.

Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR III, Nusse R. 2003. Wnt proteins are lipid-
modified and can act as stem cell growth factors. *Nature* 423: 448–452.
Wilson CW, Chuang PT. 2010. Mechanism and evolution of cytosolic Hedgehog signal transduction. *Development* 137: 2079–2094.
Woods IG, Talbot WS. 2005. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish. *PLoS Biol* 3: e66. doi: 10.1371/journal.pbio.0030066.
Wu BT, Su YH, Tsai MT, Wasserman SM, Topper JN, Yang RB. 2004. A novel secreted, cell-surface glycoprotein containing multiple epidermal growth factor-like repeats and one CUB domain is highly expressed in primary osteoblasts and bones. *J Biol Chem* 279: 37485–37490.
Yang RB, Ng CK, Wasserman SM, Colman SD, Shenoy S, Mehraban F, Komives LG, Tomlinson JE, Topper JN. 2002. Identification of a novel family of cell-surface proteins expressed in human vascular endothelium. *J Biol Chem* 277: 46364–46373.
Zeng X, Goetz JA, Suher LM, Scott W Jr, Schreiner CM, Robbins DJ. 2001. A freely diffusible form of Sonic hedgehog mediates long-range signalling. *Nature* 411: 716–720.
Zhu AJ, Scott MP. 2004. Incredible journey: How do developmental signals travel through tissue? *Genes & Dev* 18: 2985–2997.
Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form

Adrian Creanga, Thomas D. Glenn, Randall K. Mann, et al.

Genes Dev. 2012, 26: originally published online June 7, 2012
Access the most recent version at doi:10.1101/gad.191866.112

Supplemental Material
http://genesdev.cshlp.org/content/suppl/2012/06/11/gad.191866.112.DC1

Related Content
Zebrafish genetics gets the Scube on Hedgehog secretion
Philip W. Ingham
Genes Dev. November, 2012 26: 2468-2470

References
This article cites 54 articles, 26 of which can be accessed free at:
http://genesdev.cshlp.org/content/26/12/1312.full.html#ref-list-1
Articles cited in:
http://genesdev.cshlp.org/content/26/12/1312.full.html#related-urls

License
Freely available online through the Genes & Development Open Access option.

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.