Hydroxyurea affects in vitro porcine oocyte maturation through increased apoptosis and oxidative stress

Wei Gao, Yongxun Jin, Jindong Hao, Siyi Huang, Dongxu Wang, Fushi Quan, Mingjun Zhang, Jiabao Zhang, Wenzhi Ren and Xianfeng Yu

Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China

Type of article: Original Article

Correspondence:
Wenzhi Ren (E-mail: rwz1964@163.com); Xianfeng Yu (E-mail: xianfeng79@jlu.edu.cn);
Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, 5333 Xi’an Road, Changchun 130062, China, Tel.: (86) 431-87836536
ABSTRACT — Hydroxyurea (HU) is an FDA-approved drug used to treat a variety of diseases, especially malignancies, but is harmful to fertility. We used porcine oocytes as an experimental model to study the effect of HU during oocyte maturation. Exposure of cumulus-oocyte complexes (COCs) to 20 μM (p < 0.01) and 50 μM (p < 0.001) HU reduced oocyte maturation. Exposure to 20 μM HU induced approximately 1.5-fold and 2-fold increases in Caspase-3 (p < 0.001) and P53 (p < 0.01) gene expression levels in cumulus cells, respectively, increased Caspase-3 (p < 0.01) and P53 (p < 0.001) protein expression levels in metaphase II (MII) oocytes and increased the percentage of apoptotic cumulus cells (p < 0.001). In addition, HU decreased the mitochondrial membrane potential (Δψm) (p < 0.01 and p < 0.001) and glutathione (GSH) levels (p < 0.01 and p < 0.001) of both cumulus cells and MII oocytes, while increasing their reactive oxygen species (ROS) levels (p < 0.001). Following parthenogenetic activation of embryos derived from MII oocytes, exposure to 20 μM HU significantly reduced total blastocyst cell numbers (p < 0.001) and increased apoptosis of blastocyst cells (p < 0.001). Moreover, HU exposure reduced the rate of development of 2-cell, 4-cell, blastocyst, and hatching stages after parthenogenetic activation (p < 0.05). Our findings indicate that exposure to 20 μM HU caused significant oxidative stress and apoptosis of MII oocytes during maturation, which affected their developmental ability. These results provide valuable information for safety assessments of HU.

Key words: Hydroxyurea, Porcine oocyte, Maturation, Apoptosis, Oxidative stress
INTRODUCTION

HU, a United States Food and Drug Administration-approved drug (1), is an inhibitor of ribonucleotide reductase commonly used to treat myeloproliferative disorders and sickle cell anemia (2). In addition, HU is used as an anti-tumor drug to treat various malignancies (3). However, HU has several adverse effects and should be used with caution in pregnant women and children. HU can cause abnormal embryonic development in mice, rats, and New Zealand white rabbits (4-9). Moreover, studies have shown that use of HU in pregnant women or babies can cause harmful effects (10) (11). In addition, HU can be extremely toxic to preimplantation embryos because it impacts blastocyst formation and development, compromises folliculogenesis, and reduces ovulation (12). HU inactivates ribonucleotide reductase and inhibits DNA synthesis in proliferating cells, and can increase apoptosis and induce cell cycle changes (11, 13, 14).

Accordingly, HU exposure induced apoptosis of fetal tissue cells, which resulted in abnormal tissue development in offspring (15). HU can increase the production of ROS (8, 16). The carbamoyl nitroso group is an intermediate of HU that can participate in electron transfer, ROS formation, and oxidative stress (17). As HU compromises folliculogenesis and can elicit apoptosis and oxidative stress, we hypothesized that HU causes apoptosis and oxidative stress during oocyte maturation.

Most research on HU has focused on effects during pre-implantation and post-implantation embryo development, while few reports describe the effects of HU during oocyte maturation. To address this need, the current study investigated the effects of HU on apoptosis and oxidative stress during maturation of porcine oocytes.

MATERIALS AND METHODS

Reagents

All chemicals and reagents, except those specifically noted, were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Drug treatment and experimental design

Previous studies exposed embryos to 2 mM HU for 2 h (18) or 0.237 mM for 1 h (12). Therefore, we used in vitro maturation (IVM) medium supplemented with 1, 10, 20, or 50 μM HU for 46–48 h.
IVM media supplemented with different concentrations of HU (0, 1, 10, 20, or 50 μM) were prepared prior to incubation with oocytes to examine maturation. We analyzed numbers of MII oocytes, as well as GSH and ROS levels, ΔΨm, and apoptosis.

Next, we cultured parthenogenetically activated MII oocytes [matured in IVM medium with 0 or 20 μM HU, followed by *in vitro* culture (IVC) medium without HU] to test the effect of HU on development of MII oocytes to blastocysts. We analyzed rates of blastocyst formation, total blastocyst cell numbers, and apoptosis of blastocyst cells.

Finally, we cultured parthenogenetically activated MII oocytes (matured in IVM medium without HU) in IVC medium containing 0, 1, 10, 20, or 50 μM HU to test the effect of HU on embryo development.

Collection of porcine oocytes and IVM

Approximately 200 porcine ovaries (obtained from the slaughterhouse) were stored in warm 0.9% saline solution containing 1% antibiotic and sent to the laboratory within 3 h. Using sterile syringes, porcine COCs were extracted from 3–6 mm diameter follicles and placed in a 50-mL tube. Collected COCs were washed three times by adding Tyrode’s lactate-HEPES buffered medium containing 1% antibiotic and 1 g/L polyvinyl alcohol (PVA). Next, 40–60 COCs were added to 450 μL of IVM medium (TCM-199; 0.91 mM sodium pyruvate, 75 mg/mL kanamycin, 0.6 mM L-cysteine, 10 ng/mL epidermal growth factor, 10 IU/mL luteinizing hormone, 10 IU/mL follicle-stimulating hormone, and 10% v/v porcine follicular fluid) per well of non-tissue culture-treated four-well plates (179830, Thermo Scientific, Waltham, MA, USA) and covered with 500 μL mineral oil. COCs were cultured in IVM medium for 44–46 h at 38.5°C with 5% CO₂/95% air. After maturation, we used HEPES buffer containing 1 mg/mL hyaluronidase to remove cumulus cells from COCs and collected cumulus cells and MII oocytes. We selected MII oocytes using a stereo microscope (180 – 400 × magnification) with a heating stage at 38.5°C. A 200-μm-diameter glass needle was used to collect oocytes with uniform cytoplasm and an extruded first polar body. We analyzed the rate of MII oocyte development at 46 h.

Parthenogenetic activation and IVC

The parthenogenetic activation system employed followed our previously described method (19, 20). Isolated MII oocytes (without cumulus cells) exhibiting homogeneous cytoplasm were used for
activation. MII oocytes were incubated in activation medium (280 mM mannitol, 0.01 mM CaCl₂, and 0.05 mM MgCl₂) for 2 min and then placed into an activation slot for activation with electrical pulses (1.0 kV/cm for 60 ms). Next, 40 – 60 activated MII oocytes/well were incubated in activation PZM-5 medium [7.5 μg/mL cytochalasin B, 0.4 mM MgSO₄·7H₂O, 108 mM NaCl, 2.0 mM L-glutamine, 20 mL/L BME amino acids, 10 mL/L MEM non-essential amino acids, 10 mM KCl, 0.35 mM KH₂PO₄, 5.0 mM hypotaurine, 25.07 mM NaHCO₃, 0.2 mM Na pyruvate, 2.0 mM Ca-(lactate)₂·5H₂O, 25 mg/mL gentamycin, 4 mg/mL bovine serum albumin (BSA), 28.516 μM L-cysteine]. After 4 h, activated MII oocytes were transferred into 450 μL IVC medium and covered with 500 μL mineral oil, and culture dishes were placed in an embryo incubator at 38.5°C with 5% CO₂ and 95% humidity. 2-cell, 4 – 8 cell, blastocyst, and hatching rates were analyzed at 46, 46 – 72, 168, and 192 h.

Evaluation of total cell numbers per blastocyst

Total blastocyst cell numbers were determined for 21 control group blastocysts (seven per group, matured in IVM medium followed by IVC medium without HU) and 21 HU-exposed blastocysts (seven per group, matured in IVM medium with 20 μM HU, followed by IVC medium without HU). Blastocysts were fixed with 4% (w/v) paraformaldehyde, washed three times with phosphate-buffered saline mixed with 1g/L PVA (PBS-PVA), and incubated in 10 μg/mL Hoechst 33342 for 5 min at 37°C. Finally, blastocysts were placed on a glass slide under a glass coverslip, and images were acquired with a digital camera and fluorescence microscope (E179168, Nikon, Tokyo, Japan).

Immunofluorescence staining and real-time reverse transcription polymerase chain reaction (RT-PCR)

MII oocytes were washed three times with PBS-PVA, fixed with 4% (w/v) paraformaldehyde solution, washed, and incubated with 0.2% (v/v) Triton X-100 for 15 – 20 min. Fixed oocytes were washed and incubated in 1% (w/v) BSA for 1 h at room temperature to block nonspecific binding. Oocytes were incubated with anti-P53 (1:100; Abcam, Cambridge, UK) and anti-Caspase-3 a (1:100; Abcam) antibodies at 4°C overnight. The following day, oocytes were washed, incubated with a secondary antibody (1:100; CY3-goat anti-rabbit; Boster Biological Technology, Wuhan, China) at 37°C for 1 – 2 h, washed three times, and placed in Hoechst 33342 for 5 min at 37°C. We used 24 (eight per group, control group) and 24 (eight per group, 20 μM HU group) MII oocytes to
examine P53 expression, and 21 (seven per group, control group) and 21 (seven per group, 20 μM HU group) MII oocytes to examine Caspase-3 expression. Immunostained oocytes were placed on glass slides and covered with a glass coverslip. Images were acquired with a digital camera with a fluorescence microscope.

Total mRNA was extracted from 5 × 10⁴ digested cumulus cells (from 20 MII oocytes) using a microRNA extraction kit (Qiagen, Dusseldorf, Germany). mRNA was reverse transcribed into cDNA using a reverse transcription kit (Tiangen Biotech, Beijing, China). SYBR green fluorescent dye (Tiangen Biotech), cDNA, ddH₂O, and primers (Supplementary Table 1) were added to the samples for PCR using an RT-PCR instrument (Eppendorf, Hamburg, Germany). RT-PCR cycles included pre-denaturation at 95°C for 15 min followed by 45 cycles of 95°C for 10 s (denaturation), 60°C for 20 s (annealing), and 72°C for 30 s (extension), followed by melting curve analysis. The β-Actin gene was used for standardization. Three independent experiments were performed, and the 2−ΔΔCt [ΔΔCt = ΔCt (case) − ΔCt (control)] method was used to calculate relative mRNA expression.

Flow cytometry detection of apoptosis in cumulus cells

Digested cumulus cells were collected using a low-speed centrifuge and washed in a 1.5-mL tube. The PBS supernatant was gently decanted after centrifugation. PBS-PVA cleaning solution was added and the cell slurry was gently mixed by pipetting. Following three washes, a solution containing 5 μL of Annexin V-FITC (Ca²⁺-dependent phospholipid binding protein; Solarbio Life Sciences, Beijing, China) was added to samples, which were mixed at 20°C for 10 min. Next, 5 μL of propidium iodide (Solarbio Life Sciences) was added to samples for incubation at 20°C for 5 min. Finally, samples were gently mixed with 500 μL of PBS (all steps in the dark) and analyzed within 1 h by flow cytometry.

TUNEL assay for detection of apoptosis in blastocysts

To measure apoptosis levels in blastocysts, 18 (six per group) and 18 (six per group) blastocysts from parthenogenetically activated MII oocytes (matured in IVM medium with 0 or 20 μM HU, followed by culture in IVC medium without HU) were washed three times with PBS-PVA, fixed with 4% (w/v) paraformaldehyde solution, washed, and incubated with 0.2% (v/v) Triton X-100 for 15–20 min. After washing three times with PBS-PVA, fixed blastocysts were incubated with TdT
and fluorescein-conjugated dUTPs (In Situ Cell Death Detection Kit; Roche, Mannheim, Germany) in the dark for 30 min at 37°C. Next, blastocysts were washed three times, placed in Hoechst 33342 for 5 min at 37°C, and washed again three times with PBS-PVA for 10 min each. Immunostained blastocysts were placed on glass slides and covered with glass coverslips. Images were acquired with a digital camera and fluorescence microscope.

GSH and ROS levels in MII oocytes and cumulus cells

To measure GSH levels, 48 (15–17 per group) and 50 (16–18 per group) MII oocytes from control and 20 μM HU groups, respectively, were incubated with IVM medium containing 10 μM 4-chloromethyl-6,8-difluoro-7-hydroxycoumarin (CMF2HC, Thermo Fisher Scientific) cell tracer blue dye for 20 min, washed three times, and analyzed by spectroscopy (blue fluorescence, UV filter, 370 nm). To examine ROS levels, 48 (15–17 per group) MII oocytes from control and 20 μM HU groups were washed three times with PBS-PVA and incubated with IVM medium containing 10 μM 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA; Thermo Fisher Scientific) for 15 min in non-treated four-well plates. Following incubation, plates were washed three times and analyzed using a fluorescence microscope (green fluorescence, UV filters, 490 nm). All images were stored as TIFF files and analyzed by ImageJ software (http://imagej.nih.gov).

Cumulus cells were washed three times for 5 min at 600 × g in 1.5-mL microcentrifuge tubes. Next, cells were incubated with IVM medium containing 10 μM CMF2HC or 10 μM H2DCFDA for 20 min and 15 min, respectively, followed by three washes. Cumulus cells incubated with CMF2HC were analyzed by a fluorescence microscope (blue fluorescence, UV filter, 370 nm). Images were stored as TIFF files and analyzed by ImageJ software. Approximately 1–5 × 10^4 cumulus cells incubated with H2DCFDA were placed on ice in the dark for analysis by flow cytometry (green fluorescence, UV filters, 490 nm). Expression of 2',7'-dichlorofluorescein is presented as the peak of the median FITC-A signal.

Δφm of MII oocytes and cumulus cells

Δφm was calculated as the ratio of red fluorescence (corresponding to activated mitochondria) to green fluorescence (corresponding to less activated mitochondria, J-monomer). Forty-five (15 per group) MII oocytes from control and 20 μM HU groups were washed three times with PBS-PVA, then incubated with IVM medium containing JC-1 fluorescent probe (Solarbio Life Sciences) at...
37°C for 20 min. After washing three times with JC-1 staining buffer, 15 oocytes per well were placed in 15 μL of JC-1 staining buffer and covered with 50 μL of mineral oil in six-well plates. For measurement of Δψm, cumulus cells were washed three times for 5 min at 600 × g in 1.5-mL microcentrifuge tubes. Next, cells were incubated with IVM medium containing JC-1 fluorescent probe at 37°C for 20 min, and then washed three times with JC-1 staining buffer. Cells were placed in 1 mL of JC-1 staining buffer per tube and transferred in 200-μL aliquots to wells of a six-well plate for analysis. Cells were analyzed using a fluorescence microscope with 490-nm (green fluorescence) and 530-nm (red fluorescence) excitation. Images stored as TIFF files were analyzed by ImageJ software.

Statistical analysis

Each experiment was repeated at least three times and data were analyzed by SPSS 20.0 software (IBM, Armonk, NY, USA). We used Student’s t-test to analyze comparisons of two groups and ANOVA test to analyze comparisons of more than two groups. p < 0.05 was considered statistically significant.

RESULTS

Effect of 1, 10, 20 and 50 μM HU on IVM and IVC of porcine oocytes

Porcine COCs were cultured in IVM media supplemented with 1, 10, 20, or 50 μM HU to determine the effect of HU on MII oocyte development. Exposure to 20 μM or 50 μM HU significantly decreased the percentage of MII oocytes compared with the control group (62.43% ± 5.13% and 25.86% ± 1.44% vs. 78.35% ± 1.43%, respectively, Fig. 1D). Therefore, 20 μM and 50 μM HU affected polar body extrusion in porcine oocytes.

MII oocytes cultured in IVM media with (20 μM) or without HU were subsequently cultured in IVC media to examine post-meiotic development to the blastocyst stage. Percentages of blastocysts were significantly decreased in the 20-μM HU group compared with the control group (39.00% ± 4.04% vs. 59.17% ± 2.78%, p < 0.01, Fig. 1C). Moreover, total blastocyst cell numbers were significantly decreased in the 20-μM HU group compared with the control group (49.52 ± 9.55 vs. 74.19 ± 13.92, Fig. 1A and B, p < 0.001). These results indicate that 20 μM HU affected post-meiotic development of MII oocytes.
Porcine COCs were cultured in IVM media without HU, and the resulting MII oocytes were cultured in IVC media supplemented with 0, 1, 10, 20, or 50 μM HU to examine the effect of HU on two-cell to hatching stage embryonic development. Percentages of 2- and 4-8-cell embryos were significantly decreased in the 50-μM HU group compared with the control group (72.89% ± 2.99% vs. 79.15% ± 2.65%, p < 0.05, Fig. 2A; and 52.52% ± 1.95% vs. 64.80% ± 7.45%, p < 0.05, Fig. 2B, respectively). Blastocyst formation rates of 10-, 20-, and 50-μM HU groups were significantly decreased compared with the control group [41.07% ± 1.41% (p < 0.05), 35.55% ± 1.33% (p < 0.01), and 27.33% ± 5.90% (p < 0.001) vs. 46.96% ± 1.53%, respectively, Fig. 2C]. Hatching rates in the 1-, 10-, 20-, and 50-μM HU groups were significantly decreased compared with the control group [19.92% ± 0.66% (p < 0.001), 16.04% ± 1.02% (p < 0.001), 13.46% ± 0.11% (p < 0.001), and 9.77% ± 0.93% (p < 0.001) vs. 22.79% ± 2.45%, respectively, Fig. 2D]. These results indicate that 1, 10, 20, and 50 μM HU affected MII oocyte development during the two-cell to hatching stage.

Apoptosis of MII oocytes, cumulus cells, and parthenogenetically activated blastocysts exposed to 20 μM HU

To determine the effect of HU on apoptosis, P53 and Caspase-3 expression levels were evaluated using immunofluorescence staining. Expression of P53 protein in MII oocytes was increased in the 20-μM HU group compared with the control group (80.84 ± 1.23 vs. 58.16 ± 2.90 pixels per oocyte, p < 0.001, Fig. 3A and 3C, respectively). Expression of Caspase-3 protein in MII oocytes was also increased following HU exposure compared with the control group (60.16 ± 1.04 vs. 46.82 ± 2.41 pixels per oocyte, p < 0.01, Fig. 3A and 3D, respectively).

Analysis of cumulus cell mRNA showed increased levels of Caspase-3 (1.00 ± 0.03 vs. 1.95 ± 0.04, p < 0.001, Fig. 3G) and P53 (1.00 ± 0.07 vs. 1.57 ± 0.11, p < 0.01, Fig. 3G) expression following 20 μM HU exposure. In addition, flow cytometry analyses showed increased apoptosis in 20-μM-HU-exposed cumulus cells (23.03 ± 0.07 % vs. 17.13 ± 0.21, p < 0.001, Fig. 3F). In parthenogenetically activated blastocysts derived from MII oocytes (matured in IVM medium with 20 μM HU), the percentage of apoptotic cells (10.60 ± 1.57 vs. 7.13 ± 1.34, p < 0.001, Fig. 3B and 3E) was significantly increased.

GSH and ROS levels in MII oocytes and cumulus cells exposed to 20 μM HU
To understand the mechanism of action by which HU affected porcine oocyte maturation, GSH and ROS levels were measured after *in vitro* oocyte maturation. ROS levels in MII oocytes were significantly higher in the 20-μM-HU-exposed group versus the control group (10.24 ± 1.19 vs. 5.15 ± 0.59 pixels per oocyte, p < 0.001, Fig. 4B and 4E). Conversely, GSH was significantly downregulated in the 20-μM HU group (26.35 ± 1.95 vs. 35.75 ± 2.04 pixels per oocyte, p < 0.001, Fig. 4A and 4C).

In parallel with fluorometric measurements, fluorescence microscopy measurements showed decreased levels of GSH (200.66 ± 3.48 vs. 220.45 ± 1.53, p < 0.01, Fig. 4A and 4D) in cumulus cells exposed to 20 μM HU. In addition, flow cytometry was used to measure ROS levels in cumulus cells. Cumulus cells exposed to 20 μM HU exhibited a significant increase in ROS (1681.25 ± 40.75 vs. 1292.35 ± 23.65, p < 0.001, Fig. 4B and 4F).

Δφm of MII oocytes and cumulus cells exposed to 20 μM HU

Additional investigation into the mechanism of action of HU focused on impacts to the Δφm of MII oocytes and cumulus cells. Exposure to 20 μM HU significantly reduced Δφm (0.65 ± 0.02 vs. 0.77 ± 0.01, p < 0.01, Fig. 5A, C) in cumulus cells and in oocytes (1.13 ± 0.10 vs. 2.01 ± 0.07, p < 0.001, Fig. 5B, D).

Discussion

Our results show that HU decreased the maturation rate of MII oocytes and significantly decreased the parthenogenetic activation rate of blastocysts. In addition, HU significantly decreased total blastocyst cell numbers. These findings indicate that HU can decrease the maturation and developmental ability of porcine oocytes. We also investigated the effects of HU on the two-cell to hatching stage of porcine embryonic development and found that HU significantly reduced development during the 2-cell to hatching stage. Our experimental results are consistent with previous studies (12, 21) showing that HU inhibits early embryonic development.

The P53 pathway plays a central role in embryonic stress response and teratogenesis (22). While activation of the P53 pathway in aneuploid cells reduces cell proliferation (23), P53 activation leads to cell cycle arrest and apoptosis during embryonic kidney development and in mouse embryonic stem cells (24, 25). During the organogenesis stage of embryonic development, HU significantly
increased levels of P53 and the P53-dependent protein Caspase-3 (26). In the current study, we observed a similar increase in both P53 and Caspase-3 protein levels following HU exposure of MII oocytes. The observed effects in oocytes demonstrate HU-induced toxicity in post-implantation embryos. Past work showed that HU induced high levels of P53 expression during \textit{in vitro} maturation of oocytes, which led to cell developmental arrest and disrupted extrusion of the second polar body (21). Therefore, HU exposure results in reduced maturity of oocytes, affecting their \textit{in vitro} maturation. During maturation, signaling between cumulus cells and oocytes elicits interactions of cell-secreted factors (27, 28). Proliferation and differentiation of cumulus cells are essential for the development of oocytes (29-33). The maturation of cumulus cells greatly influences the maturation of porcine oocytes. Previous work showed that reduced apoptosis of porcine cumulus cells leads to decreased expression of Caspase-3 and related apoptotic proteins, as well as a reduced BCL2/BAX ratio (34). Additionally, increased expression levels of apoptotic genes, such as p38, have been observed during porcine maturation (35, 36). We observed increased levels of P53 and Caspase-3 mRNA following HU exposure of cumulus cells. In parallel, flow cytometry and TUNEL assay analyses showed increased cumulus and blastocyst cell apoptosis because of HU exposure. Our results confirm that apoptosis of cumulus cells and oocytes is synchronized, but the mechanisms of HU-mediated apoptosis of cumulus cells and oocytes remain undetermined and need further study. We hypothesize that HU blocks oocyte maturation by increasing apoptosis of both oocytes and cumulus cells, and by directly inhibiting oocyte maturation.

During embryonic development, HU has been shown to induce nitric oxide (NO) through regulation of production and binding to fetal hemoglobin. Increased NO may result in oxidative stress and damage to the fetus. During oxidative stress, ROS levels increase and GSH levels decrease (25, 37). Several teratogens affect developing embryos by increasing their oxidative stress through increased ROS levels, especially during early organogenesis. Oxidative stress, in turn, leads to severe embryo damage (38). GSH is important in mouse embryo organogenesis, and GSH depletion significantly impacts oxidative stress and drug teratogenicity (39). We examined GSH and ROS levels in immature oocytes and found that ROS levels increased following HU exposure, while GSH levels were decreased. These findings, which are consistent with previous studies of
post-implantation embryos, suggest that the toxicological effects of HU extend to the maturation process. During embryonic development, cumulus expansion (31, 40, 41), apoptosis (41), and cell cycle regulation (42) are correlated with ROS levels in oocytes (43). Paracrine factors regulate intracellular ROS levels during IVM of porcine oocytes (44). In addition, regulation of cumulus cell lipid metabolism can increase GSH levels and decrease ROS levels during IVM, which results in improved developmental competence of somatic cell nuclear transfer embryos (45). As GSH and ROS levels appear to be critical for in vitro maturation of oocytes, we also analyzed GSH and ROS levels of cumulus cells. Cumulus cells exposed to HU showed decreased GSH levels and increased ROS levels, which suggests that HU exposure led to oxidative stress in these cells. This oxidative stress may result in diminished signaling between cumulus cells and oocytes, and inhibition of oocyte maturation. The main endogenous source of ROS is mitochondria, where Δφm is a key regulator of mitochondrial respiration. Depolarization of Δφm can lead to excessive ROS production. Our results indicate that the oxidative stress of porcine oocytes and cumulus cells are synchronized, but the mechanism of HU-mediated oxidative stress in oocytes and cumulus cells is unclear and needs further study. Our current study investigated the role of mitochondria in HU toxicity and found that HU increased mitochondrial depolarization. Our findings indicate that HU may have an adverse effect on electron transfer in mitochondria that results in increased ROS.

The current study shows that the toxic effect of HU on porcine oocyte maturation in vitro is modulated through increased apoptosis of oocytes and cumulus cells, and increased oxidative stress. These effects hinder polar body extrusion in oocytes, which negatively influences their maturation and embryo development. The current study helps with risk assessment associated with HU exposure during oocyte maturation.

ACKNOWLEDGMENTS

This work was supported by the Jilin Province Science and Technology Development Project (No. 20180623023TC) and Fundamental Research Funds for the Central Universities (No. 45119031C101). We thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.
Author Contribution Statement

Wenzhi Ren and Xianfeng Yu conceived and designed the experiments and wrote the manuscript.
Wei Gao performed the experiments and wrote the manuscript.
Yongxun Jin, Jindong Hao, Siyi Huang, Dongxu Wang, and Fushi Quan assisted in experiments.
Jiabao Zhang and Mingjun Zhang revised the manuscript.

Conflict of interest----- The authors declare that there is no conflict of interest.

Data Availability Statement

All data generated or used during the study are available from the corresponding author by request. (JiLin Province Science and Technology Development Project, No. 20180623023TC; Fundamental Research Funds for the Central Universities, No. 45119031C101).

All data generated or used during the study appear in the submitted article.

REFERENCES

1. Brose RD, Savonenko A, Devenney B, Smith KD, Reeves RH. Hydroxyurea Improves Spatial Memory and Cognitive Plasticity in Mice and Has a Mild Effect on These Parameters in a Down Syndrome Mouse Model. Front Aging Neurosci. 2019;11:96.
2. Banh S, Hales BF. Hydroxyurea exposure triggers tissue-specific activation of p38 mitogen-activated protein kinase signaling and the DNA damage response in organogenesis-stage mouse embryos. Toxicol Sci. 2013;133(2):298-308.
3. Tohamy HG, Gad El-Karim DR, El-Sayed YS. Attenuation potentials of royal jelly against hydroxyurea-induced infertility through inhibiting oxidation and release of pro-inflammatory cytokines in male rats. Environ Sci Pollut Res Int. 2019;26(21):21524-34.
4. Woo GH, Katayama K, Bak EJ, Ueno M, Yamauchi H, Uetsuka K, et al. Effects of prenatal hydroxyurea-treatment on mouse offspring. Exp Toxicol Pathol. 2004;56(1-2):1-7.
5. Yan J, Hales BF. Activator protein-1 (AP-1) DNA binding activity is induced by hydroxyurea in organogenesis stage mouse embryos. Toxicol Sci. 2005;85(2):1013-23.
6. Desesso JM, Scialli AR, Goeringer GC. D-mannitol, a specific hydroxyl free radical scavenger, reduces the developmental toxicity of hydroxyurea in rabbits. Teratology. 1994;49(4):248-59.
7. Hosako H, Little SA, Barrier M, Mirkes PE. Teratogen-induced activation of p53 in early postimplantation mouse embryos. Toxicol Sci. 2007;95(1):257-69.
8. Larouche G, Hales BF. The impact of human superoxide dismutase 1 expression in a mouse model on the embryotoxicity of hydroxyurea. Birth Defects Res A Clin Mol Teratol. 2009;85(9):800-7.
9. Chaube S, Murphy ML. The effects of hydroxyurea and related compounds on the rat fetus. Cancer Res. 1966;26(7):1448-57.
10. Byrd DC, Pitts SR, Alexander CK. Hydroxyurea in two pregnant women with sickle cell anemia. Pharmacotherapy. 1999;19(12):1459-62.
11. Rodriguez-Vazquez L, Marti J. An Animal Model for Assessing the Effects of Hydroxyurea Exposure Suggests That the Administration of This Agent to Pregnant Women and Young Infants May Not Be as Safe as We Thought. Int J Mol Sci. 2018;19(12).

12. Sampson M, Archibong AE, Powell A, Strange B, Roberson S, Hills ER, et al. Perturbation of the developmental potential of preimplantation mouse embryos by hydroxyurea. Int J Environ Res Public Health. 2010;7(5):2033-44.

13. Bjelica S, Diklic M, Dikic D, Kovacic M, Suboticki T, Mitrovic-Ajtic O, et al. Hydroxyurea-induced senescent peripheral blood mesenchymal stromal cells inhibit bystander cell proliferation of JAK2V617F-positive human erythroleukemia cells. FEBS J. 2019.

14. Charton R, Muguet A, Griesenbeck J, Smerdon MJ, Conconi A. In yeast cells arrested at the early S-phase by hydroxyurea, rRNA gene promoters and chromatin are poised for transcription while rRNA synthesis is compromised. Mutat Res. 2019;815:20-9.

15. Teng S, Ma C, Yu Y, Yi C. Hydroxyurea promotes TET1 expression and induces apoptosis in osteosarcoma cells. Biosci Rep. 2019;39(5).

16. Perez-Pasten R, Martinez-Galero E, Chamorro-Cevallos G. Quercetin and naringenin reduce abnormal development of mouse embryos produced by hydroxyurea. J Pharm Pharmacol. 2010;62(8):1003-9.

17. Kovacic P. Hydroxyurea (therapeutics and mechanism): metabolism, carbamoyl nitroso, nitroxyl, radicals, cell signaling and clinical applications. Med Hypotheses. 2011;76(1):24-31.

18. El Husseini N, Schlisser AE, Hales BF. Editor's Highlight: Hydroxyurea Exposure Activates the P53 Signaling Pathway in Murine Organogenesis-Stage Embryos. Toxicol Sci. 2016;152(2):297-308.

19. El Husseini N, Hales BF. The Roles of P53 and Its Family Proteins, P63 and P73, in the DNA Damage Stress Response in Organogenesis-Stage Mouse Embryos. Toxicol Sci. 2018;162(2):439-49.

20. Barbehenn EK, Wales RG, Lowry OH. The explanation for the blockade of glycolysis in early mouse embryos. Proc Natl Acad Sci U S A. 1974;71(4):1056-60.

21. Eppig JJ. Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev. 1996;8(4):485-9.

22. Guo J, Shi L, Gong X, Jiang M, Yin Y, Zhang X, et al. Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes. J Cell Sci. 2016;129(16):3091-103.

23. Budna J, Rybska M, Ciesiolka S, Bryja A, Borys S, Kranc W, et al. Expression of genes associated with BMP signaling pathway in porcine oocytes before and after IVM - a microarray approach. Reprod Biol Endocrinol.
31. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303-16.

32. Russell DL, Gilchrist RB, Brown HM, Thompson JG. Bidirectional communication between cumulus cells and the oocyte: Old hands and new players? Theriogenology. 2016;86(1):62-8.

33. Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruijf A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol Reprod Dev. 2002;61(3):414-24.

34. Park HJ, Chae SK, Kim JW, Yang SG, Jung JM, Kim MJ, et al. Ganglioside GM3 induces cumulus cell apoptosis through inhibition of epidermal growth factor receptor-mediated PI3K/AKT signaling pathways during in vitro maturation of pig oocytes. Mol Reprod Dev. 2017;84(8):702-11.

35. Villa-Diaz LG, Miyano T. Activation of p38 MAPK during porcine oocyte maturation. Biol Reprod. 2004;71(2):691-6.

36. Shimada M, Ito Y, Yamashita Y, Okazaki T, Isobe N. Phosphatidylinositol 3-kinase in cumulus cells is responsible for both suppression of spontaneous maturation and induction of gonadotropin-stimulated maturation of porcine oocytes. J Endocrinol. 2003;179(1):25-34.

37. Nader E, Grau M, Fort R, Collins B, Cannas G, Gauthier A, et al. Hydroxyurea therapy modulates sickle cell anemia red blood cell physiology: Impact on RBC deformability, oxidative stress, nitrite levels and nitric oxide synthase signalling pathway. Nitric Oxide. 2018;81:28-35.

38. Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod Toxicol. 2007;24(1):31-41.

39. Yan J, Hales BF. Depletion of glutathione induces 4-hydroxynonenal protein adducts and hydroxyurea teratogenicity in the organogenesis stage mouse embryo. J Pharmacol Exp Ther. 2006;319(2):613-21.

40. Su YQ, Sugiuara K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27(1):32-42.

41. Fu XH, Chen CZ, Wang Y, Peng YX, Wang WH, Yuan B, et al. COL1A1 affects apoptosis by regulating oxidative stress and autophagy in bovine cumulus cells. Theriogenology. 2019;139:81-9.

42. Fu XH, Chen CZ, Li S, Han DX, Wang YJ, Yuan B, et al. Dual-specificity phosphatase 1 regulates cell cycle progression and apoptosis in cumulus cells by affecting mitochondrial function, oxidative stress, and autophagy. Am J Physiol Cell Physiol. 2019;317(6):C1183-C93.

43. El Sheikh M, Mesalam A, Mesalam AA, Idrees M, Lee KL, Kong IK. Melatonin Abrogates the Anti-Developmental Effect of the AKT Inhibitor SH6 in Bovine Oocytes and Embryos. Int J Mol Sci. 2019;20(12).

44. Yoon JD, Hwang SU, Kim E, Jin M, Kim S, Hyun SH. GDF8 activates p38 MAPK signaling during porcine oocyte maturation in vitro. Theriogenology. 2017;101:123-34.

45. Lee S, Jin JX, Khoirinaya C, Kim GA, Lee BC. Lanosterol influences cytoplasmic maturation of pig oocytes in vitro and improves preimplantation development of cloned embryos. Theriogenology. 2016;85(4):575-84.
FIGURE LEGENDS

Fig. 1. Effects of HU on porcine oocyte maturation rate, blastocyst rate, and total cell numbers for parthenogenetically activated embryos.

Cumulus oocyte complexes were cultured in in vitro maturation media without (control) or with 1, 10, 20 or 50 μM HU. The resulting MII oocytes were cultured in in vitro culture media without HU. (A) Images of Hoechst 33342-stained cells from control and 20-μM-HU-exposed groups. Scale bar = 50 μm. (B) Histogram of blastocyst total cell numbers for control and 20 μM HU-exposed groups. (C) Maturation rates to blastocyst stage for control and 20-μM-HU-exposed groups. (D) Shows the MII oocyte maturation rate of control and 1-, 10-, 20-, or 50-μM-HU-exposed groups. Values shown are mean ± standard deviation of three independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001. a, b and c show the sorting of averages; a is the largest average, p < 0.05 indicates a significant difference between the two groups.

Fig. 2. Effect of HU on embryonic development after parthenogenic activation of pig embryos.

Cumulus oocyte complexes were cultured in in vitro maturation media without HU, and the resulting metaphase II oocytes were incubated in in vitro culture media supplemented with 0, 1, 10, 20 or 50 μM HU. (A) Rates of maturation to the two-cell stage. (B) Rates of maturation to the 4–8 cell stage. (C) Maturation rates to the blastocyst stage. (D) Hatching rates. Bars represent values of three independent replicate experiments. Values are mean ± standard deviation. a, b, and c show the sorting of averages; a is the largest average, p < 0.05 indicates a significant difference between the two groups.

Fig. 3. Apoptosis levels of MII oocytes, cumulus cells, and blastocysts exposed to HU.

Cells were cultured in in vitro maturation media supplemented with 0 or 20 μM HU. (A) P53 and Caspase-3 levels in MII oocytes, with apoptotic proteins labeled with red fluorescence and blue indicating nuclei. Scale bar = 100 μm. (B) dUTPs labeled with green fluorescence and blue, indicating nuclei, in blastocysts. Scale bar = 100 μm. (C) Signal strength of P53 protein expression. (D) Signal strength of Caspase-3 protein expression. (E) Percentage of apoptotic cells in blastocysts. (F) Percentage of apoptotic cumulus cells. (G) Relative expression levels of P53 and Caspase-3 mRNA in cumulus cells. Values indicate mean ± standard deviation of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001.

Fig. 4. Effect of HU on intracellular GSH and ROS levels in MII oocytes and cumulus cells.

Cells were cultured in in vitro maturation media supplemented with 0 or 20 μM HU. (A) Intracellular CMF2HC-stained (GSH) MII oocytes and cumulus cells following exposure to 0 or 20 μM HU (scale bar = 100 μm). (B) Intracellular H2DCFDA-stained (ROS) MII oocytes...
following exposure to 0 or 20 μM HU (scale bar = 100 μm), and median FITC-A values of H2DCFDA-treated cumulus cells by flow cytometry. (C and D) GSH signal intensity of MII oocytes and cumulus cells. (E) and (F) indicate the ROS signal intensity of MII oocytes and cumulus cells. The experiment was repeated three times and values shown are mean ± standard deviation. *p < 0.05, **p < 0.01 and ***p < 0.001.

Fig. 5. Effect of HU on Δψm of MII oocytes and cumulus cells.

Cells were cultured in *in vitro* maturation media supplemented with 0 or 20 μM HU. (A) and (B) show staining of intracellular JC-1 aggregates (red) and JC-1 monomers (green) in cumulus cells and MII oocytes after exposure to 0 or 20 μM HU (scale bar = 100 μm). (C) and (D) show the ratio of red fluorescence to green fluorescence. Bars represent values of three independent replicate experiments. Values shown are mean ± standard deviation. *p < 0.05, **p < 0.01 and ***p < 0.001.
(A) Blastocyst rate (%)

(B) Total cell number

(C)

(D) MI oocytes rate (%)

HU (20 μM)

Control

n=503

n=294

n=21

n=21

50μM 20μM 10μM 1μM Control

n=615

n=615

n=611

n=615

**

Downloaded from http://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20203091/907196/bsr-2020-3091.pdf by guest on 15 April 2021
(A) MII Oocytes GSH Cumulus Cells GSH (B) MII Oocytes ROS Cumulus Cells ROS

Control

20 μM-HU

(C) GSH level of MII oocytes

(D) GSH level of cumulus cells

(E) ROS level of MII oocytes

(F) ROS level of cumulus cells

n=48 n=50

n=48 n=48

*** *** *** ***
Supplementary Table 1. Primer sequences used for real-time PCR

Gene	Reference	Primer	Sequence	Annealing	Size
P53	AF098067	Forward	CCCAGCATCTCATCCGCAA	61 °C	254bp
		Reverse	ACACGCACCTCAAAGC		
Caspase-3	NM_214131.1	Forward	TTTGCGTGCTTCTAAGCCAT	60 °C	147bp
		Reverse	GGCAGGCCCTGAATTATGAAA		
β-actin	U07786	Forward	GTGGACATCAGGAAGGACCTCTAA	61 °C	137bp
		Reverse	TGATCTTGATCTTCATGGTGCT		