Data Article

Data set of in silico simulation for the production of clavulanic acid and cephamycin C by *Streptomyces clavuligerus* using a genome scale metabolic model

Stephania Gómez-Cerón, David Galindo-Betancur,
Howard Ramírez-Malule*

Universidad del Valle, Escuela de Ingeniería Química, A.A. 25360 Cali, Colombia

Abstract

Streptomyces clavuligerus (*S. clavuligerus*) is a Gram-positive bacterium which produced clavulanic acid (CA) and cephamycin C (CephC). In this data article, a curated genome scale metabolic model of *S. clavuligerus* is presented. A total of eighteen objective functions were evaluated for a better representation of CA and CephC production by *S. clavuligerus*. The different objective functions were evaluated varying the weighting factors of CA and CephC between 0, 1 y 2, whereas for the case of biomass the weight factor was varied between 1 and 2. A robustness analysis, by mean of flux balance analysis, showed five different metabolic phenotypes of *S. clavuligerus* as a function of oxygen uptake: (I) and (II) biomass production, (III) biomass and CephC production, (IV) simultaneous production of biomass, CA and CephC and (V) production of biomass and CA. Data of shadow prices and reduced cost are also presented.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

*Corresponding author.
E-mail address: howard.ramirez@correounivalle.edu.co (H. Ramírez-Malule).*

https://doi.org/10.1016/j.dib.2019.103992
2352-3409 © 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

A total of twenty-four reactions were added for a better representation of the production of clavulanic acid (CA) and cephamycin C (CephC) by *Streptomyces clavuligerus* (see Table 1). An array of eighteen combinations of different objectives functions varying the weighting factor of the slack variables was evaluated (see Table 2). The objective function was the maximization of biomass, CA and CephC. In order to evaluate the functionally of the objective functions the weighting factor of biomass, CA and CephC were varied (see experimental design). Table 2 also shows the metabolic scenarios where CA and CephC are produced or not.

The objective function No. 6 was the only one that included a metabolic phenotype that produced CA and CephC, simultaneously. Table 3 shows the fluxes of biomass, CA and CephC under different oxygen uptake for all eighteen combinations of the objective function (see also supplementary material 1).

Fig. 1 shows five different metabolic phenotypes of *S. clavuligerus* as a function of oxygen uptake: (I) and (II) biomass production, (III) biomass and CephC production, (IV) simultaneous production of biomass, CA and CephC and (V) production of biomass and CA. See also supplementary material 2.

2. Experimental design, materials, and methods

2.1. Model

The genome scale metabolic model reported by Ramirez-Malule et al. (2018) was used as starting point [10]. The published model consists of 1510 reactions (1305/205 internal/exchange fluxes) and 1187 metabolites (982/205 internal/external metabolites). The model was curated manually according to KEGG pathway (https://www.genome.jp/kegg/) and enzyme database (https://www.enzyme-database.org/). The improved metabolic model encompassed 1534 reactions (1322/212 internal/exchange fluxes) and 1199 metabolites (987/212 internal/external metabolites). Cytoscape was used to visualize unconnected reactions in the metabolic network [11].
2.2. Flux balance analysis

Flux balance analysis (FBA) was used to determine metabolic states [12,13]. Loop law constrains was applied to all FBA simulation ensuring that infeasible loops were not allowed [14]. The production of biomass, CA and CephC was used as objective function.

Reaction Comment	Reference
lys_L[c] <= 15dap[c] + co2[c]	Intracellular reaction/Added [1]
xyl_D[c] <= xylu_D[c]	Intracellular reaction/Added [2]
tre[c] + h2o[c] <= 2 glc_D[c]	Intracellular reaction/Added [3]
atp[c] + Dall[c] <= adp[c] + all6p[c]	Intracellular reaction/Added [4]
galur[c] <= dtgt[c]	Intracellular reaction/Added [5]
tsul[c] + cn[c] <= so3[c] + tcynt[c]	Intracellular reaction/Added [6]
xil[c] + nadp[c] <= xylu_L[c] + nadph[c] + h[c]	Intracellular reaction/Added [7]
aces[c] + tsul[c] <= sucys[c] + ac[c]	Intracellular reaction/Added [8]
xylu_L[c] <= lyx_L[c]	Intracellular reaction/Added [9]
mndl[c] <= cyan[c] + bزال[c]	Intracellular reaction/Added [9]
digalur[c] + h2o[c] <= 2 galur[c]	Intracellular reaction/Added [9]
LalaDglu[c] <= LalaLglu[c]	Intracellular reaction/Removed
dtgt[e] <= dtgt[c]	Transport reaction/Added
Dal[e] <= Dal[c]	Transport reaction/Added
mndl[e] <= mndl[c]	Transport reaction/Added
cn[e] <= cn[c]	Transport reaction/Added
sucys[e] <= sucys[c]	Transport reaction/Added
digalur[e] <= digalur[c]	Transport reaction/Added
xil[e] <= xil[c]	Transport reaction/Added
dtgt[e]	Exchange reaction/Added
Dal[e]	Exchange reaction/Added
mndl[e]	Exchange reaction/Added
cn[e]	Exchange reaction/Added
sucys[e]	Exchange reaction/Added
digalur[e]	Exchange reaction/Added
xil[e]	Exchange reaction/Added

Table 1

No.	Reaction Comment	Reference
1	lys_L[c] <= 15dap[c] + co2[c]	Intracellular reaction/Added [1]
2	xyl_D[c] <= xylu_D[c]	Intracellular reaction/Added [2]
3	tre[c] + h2o[c] <= 2 glc_D[c]	Intracellular reaction/Added [3]
4	atp[c] + Dall[c] <= adp[c] + all6p[c]	Intracellular reaction/Added [4]
5	galur[c] <= dtgt[c]	Intracellular reaction/Added [5]
6	tsul[c] + cn[c] <= so3[c] + tcynt[c]	Intracellular reaction/Added [6]
7	xil[c] + nadp[c] <= xylu_L[c] + nadph[c] + h[c]	Intracellular reaction/Added [7]
8	aces[c] + tsul[c] <= sucys[c] + ac[c]	Intracellular reaction/Added [8]
9	xylu_L[c] <= lyx_L[c]	Intracellular reaction/Added [9]
10	mndl[c] <= cyan[c] + bزال[c]	Intracellular reaction/Added [9]
11	digalur[c] + h2o[c] <= 2 galur[c]	Intracellular reaction/Added [9]
12	LalaDglu[c] <= LalaLglu[c]	Intracellular reaction/Removed

Table 2

No.	Objective function	Weighting factors	Robustness analysis: oxygen										
		Biomass	Clavulanic acid	Cephamycin C	Biomass	Clavulanic acid	Cephamycin C						
1		1	0	0	YES	NO	NO						
2		1	0	1	YES	NO	NO						
3		1	0	2	YES	NO	YES						
4		1	1	0	YES	YES	NO						
5		1	1	1	YES	YES	NO						
6		1	1	2	YES	YES	YES						
7		1	2	0	YES	YES	NO						
8		1	2	1	YES	YES	NO						
9		1	2	2	YES	YES	NO						
10		2	0	0	YES	NO	NO						
11		2	0	1	YES	NO	NO						
12		2	0	2	YES	NO	NO						
13		2	1	0	YES	YES	NO						
14		2	1	1	YES	YES	NO						
15		2	1	2	YES	YES	NO						
16		2	2	0	YES	YES	NO						
17		2	2	1	YES	NO	NO						
18		2	2	2	YES	NO	NO						
No. Objective function	Biomass (h⁻¹)	Clavulanic acid (mmol/gCDW*h)	Cephamicyn C (mmol/gCDW*h)										
------------------------	--------------	------------------------------	---------------------------										
	Oxygen uptake (mmol/gCDW*h)	2.1	4.35	9.15	14.1	2.1	4.35	9.15	14.1	2.1	4.35	9.15	14.1
1		1,433	2,156	2,848	2,848	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2		1,433	2,156	2,848	2,848	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3		1,433	1,917	2,581	2,848	0.000	0.222	1.069	2.151	0.000	0.000	0.000	0.000
4		1,433	1,992	2,581	2,848	0.000	0.222	1.069	2.151	0.000	0.000	0.000	0.000
5		1,433	1,992	2,581	2,848	0.000	0.222	1.069	2.151	0.000	0.000	0.000	0.000
6		1,433	1,917	2,541	2,848	0.000	0.000	0.952	2.151	0.000	0.205	0.108	0.000
7		1,433	1,992	2,581	2,848	0.000	0.222	1.069	2.151	0.000	0.000	0.000	0.000
8		1,433	1,974	2,581	2,848	0.000	0.196	1.069	2.151	0.000	0.000	0.000	0.000
9		1,433	1,992	2,581	2,848	0.000	0.222	1.069	2.151	0.000	0.000	0.000	0.000
10		1,433	2,156	2,848	2,848	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
11		1,433	2,156	2,848	2,848	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
12		1,433	2,156	2,848	2,848	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
13		1,433	2,156	2,848	2,848	0.000	0.000	0.970	2.151	0.000	0.000	0.000	0.000
14		1,433	2,156	2,848	2,848	0.000	0.000	0.707	2.151	0.000	0.000	0.000	0.000
15		1,433	2,156	2,848	2,848	0.000	0.000	0.707	2.151	0.000	0.000	0.000	0.000
16		1,433	2,156	2,848	2,848	0.000	0.222	1.069	2.151	0.000	0.000	0.000	0.000
17		1,433	1,992	2,581	2,848	0.000	0.222	1.069	2.151	0.000	0.000	0.000	0.000
18		1,433	1,992	2,581	2,848	0.000	0.222	1.069	2.151	0.000	0.000	0.000	0.000

Fig. 1. Profile of biomass, CA and CephC while varying oxygen uptake for the objective function No. 6.
2.3. Optimization problem statement

Metabolic fluxes were quantified by means of a two-stage optimization approach, which is a combination of the maximization of the objective function and minimization of the overall flux [10,15,16]. The mathematical problem can be represented as follows:

Stage one

\[
\text{maximize } Z = \left(w_{\text{biomass}} v_{\text{biomass}} + w_{\text{CA}} v_{\text{CA intracellular}} + w_{\text{CephC}} v_{\text{CephC intracellular}} \right) \tag{1}
\]

subject to: \(S^* v = 0 \)

\(v_{lb} \leq v \leq v_{ub} \)

Stage two:

\[
\text{minimize } \sum v_i^2 \tag{2}
\]

subject to: \(S^* v = 0 \)

\(v_{\text{biomass}} = v_{\text{optbiomass}} \)

\(v_{\text{CA extracellular}} = v_{\text{optCA extracellular}} \)

\(v_{\text{CephC extracellular}} = v_{\text{optCephC extracellular}} \)

\(v_{lb} \leq v \leq v_{up} \)

where \(Z \) is the objective function, \(S \) is the stociorometric matrix and \(v \) is the flux vector. \(w_{\text{biomass}}, w_{\text{CA}} \) and \(w_{\text{CephC}} \) are the weighting factors for biomass, intracellular flux of CA and CephC, respectively. \(v_{\text{biomass}}, v_{\text{CA intracellular}} \) and \(v_{\text{CephC intracellular}} \) are the biomass flux, intracellular flux of CA and CephC, respectively. \(v_{\text{optbiomass}}, v_{\text{optCA extracellular}} \) and \(v_{\text{optCephC extracellular}} \) are the optimal values for biomass and extracellular flux of CA and CephC, respectively, that resulted from solving the problem stated at stage one.

The first stage optimization problem was solved using a Gurobi solver, with a feasibility tolerance of \(10^{-6} \), while the second stage was solved using the MATLAB’s built-in fmincon solver, with a first order optimality and a maximum constraint violation within \(10^{-6} \).

Different objective functions were evaluated varying the weighting factors of CA and CephC between 0, 1 y 2, whereas for the case of biomass the weight factor was varied between 1 and 2 (see Table 2).

2.4. Robustness analysis

A robustness analysis was carried out to evaluate the functionally of the objective function when the optimal flux of oxygen was varied [12,13]. The identification of possible gene knockout was made by
sensitivity analysis using the concept of reduced costs. The reduced cost values represent the variation of the objective functions with respect to the fluxes related to each reaction and they are represented according to the equation (3). Additionally, the shadow prices were determined following the equation (4) [13,17].

\[
Z = Z_0 + \rho_i v_i, \quad \rho_i = -\frac{\partial Z}{\partial v_i}
\]

\[
\pi_i = -\frac{\partial Z}{\partial b_i}
\]

Where, \(\rho_i\) is the reduced cost, \(Z_0\) is the optimal solution, \(v_i\) is an internal flux that is not in the basis solution, \(\pi_i\) is the shadow prices and \(b_i\) is the exchange fluxes.

2.5. Computational tools

COBRA Toolbox v.3.0 synchronized with Matlab® as programming environment, and the Gurobi optimizer 7.5.2 was used to solve all optimization problems [18].

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103992.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.103992.

References

[1] M.O. López Revelles, Caracterización de las rutas de catabolismo de L-lisina en Pseudomonas putida KT2440, 2005.
[2] R.M. Hochster, R.W. Watson, Enzymatic isomerization of d-xylose to d-xylulose, Arch. Biochem. Biophys. 48 (1954) 120–129, https://doi.org/10.1016/0003-9861(54)90313-6.
[3] A. Schlosser, MsIX-dependent trehalose uptake in Streptomyces reticuli, FEMS Microbiol. Lett. 184 (2000) 187–192, https://doi.org/10.1111/j.1574-6968.2000.tb20683.x.
[4] C. Kim, S. Song, C. Park, K.I.M.E.T. Al, The D-Alloose Operon of Escherichia coli K-12 179 (1997) 7631–7637.
[5] H.J. Ashwell Gilbert, Wahta Albert, Uronic Acid Metabolism in Bacteria, 1960, p. 235.
[6] N. Nárdiz, I. Santamarta, L.M. Lorenzana, J.F. Martín, P. Liras, A rhodanese-like protein is highly overrepresented in the mutant S. clavuligerus oppA2::aph: effect on holomycin and other secondary metabolites production, Microb. Biotechnol. 4 (2011) 216–225, https://doi.org/10.1111/j.1751-7915.2010.00222.x.
[7] N. Nair, H. Zhao, Biochemical characterization of an L-xylulose reductase from Neurospora crassa, Appl. Environ. Microbiol. 73 (2007) 2001–2004, https://doi.org/10.1128/AEM.02515-06.
[8] T. Nakamura, H. Iwahashi, Y. Eguchi, Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium, J. Bacteriol. 158 (1984) 1122–1127.
[9] KEGG, Kyoto Encyclopedia of Genes and Genomes, 2018.
[10] H. Ramirez-Malule, S. Junne, M. Nicolás Cruz-Bournazou, P. Neubauer, R. Rios-Estepa, Streptomyces clavuligerus shows a strong association between TCA cycle intermediate accumulation and clavulanic acid biosynthesis, Appl. Microbiol. Biotechnol. 102 (2018) 4009–4023, https://doi.org/10.1007/s00253-018-8841-8.
[11] Paul Shannon, A. Markiel, D.R. Owen Ozier, Nitin S. Baliga, Jonathan T. Wang, N. Amin, T.I. Benno Schwikowski, Cytoscape, A software environment for integrated models of biomolecular interaction networks, Genome Res. (2003) 2498–2504, https://doi.org/10.1101/gr.1101103.metabolite.
[12] S. a Becker, A.M. Feist, M.I. Mo, G. Hannum, B.O. Palsson, M.J. Herrgard, Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox, Nat. Protop. 2 (2007) 727–733, https://doi.org/10.1038/nprot.2007.99.
[13] J. Schellenberger, R. Que, R.M.T. Fleming, I. Thiele, J.D. Orth, A.M. Feist, D.C. Zelinski, A. Bordbar, N.E. Lewis, S. Rahamian, J. Kang, D.R. Hyduke, B.O. Palsson, Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0, Nat. Protop. 6 (2011) 1290–1307, https://doi.org/10.1038/nprot.2011.308.
[14] J. Schellenberger, N.E. Lewis, B. Palsson, Elimination of thermodynamically infeasible loops in steady-state metabolic models, Biophys. J. 100 (2011) 544–553, https://doi.org/10.1016/j.bpj.2010.12.3707.
[15] R. Schuetz, I. Kuepfer, U. Sauer, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli, Mol. Syst. Biol. 3 (2007) 119, https://doi.org/10.1038/msb4100162.
[16] V.A. López-Agudelo, A. Baena, H. Ramirez-Malule, S. Ochoa, L.F. Barrera, R. Ríos-Estepa, Metabolic adaptation of two in silico mutants of *Mycobacterium tuberculosis* during infection, BMC Syst. Biol. 11 (2017) 107, https://doi.org/10.1186/s12918-017-0496-z.

[17] B. Palsson, *Systems Biology: Properties of Reconstructed Networks*, Cambridge University Press, 2005.

[18] S.A. Becker, A.M. Feist, M.L. Mo, G. Hannum, B.O. Palsson, M.J. Herrgard, Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox, Nat. Protoc. 2 (2007) 727–738, https://doi.org/10.1038/nprot.2007.99.