Corrections to scaling for block entanglement in massive spin chains

Pasquale Calabrese\(^1\), John Cardy\(^2,3\) and Ingo Peschel\(^4\)

\(^1\) Dipartimento di Fisica dell’Università di Pisa and INFN, Pisa, Italy
\(^2\) Oxford University, Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
\(^3\) All Souls College, Oxford, UK
\(^4\) Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
E-mail: calabres@df.unipi.it, j.cardy1@physics.ox.ac.uk and peschel@physik.fu-berlin.de

Received 23 July 2010
Accepted 11 August 2010
Published 7 September 2010

Online at stacks.iop.org/JSTAT/2010/P09003
doi:10.1088/1742-5468/2010/09/P09003

Abstract. We consider the Rényi entropies \(S_n\) in one-dimensional massive integrable models diagonalizable by means of corner transfer matrices (such as Heisenberg and Ising spin chains). By means of explicit examples and using the relation of the corner transfer matrix with the Virasoro algebra, we show that close to a conformally invariant critical point, when the correlation length \(\xi\) is finite but large, the corrections to the scaling are of the \textit{unusual} form \(\xi^{-x/n}\), with \(x\) the dimension of a relevant operator in the conformal theory. This is reminiscent of the results for gapless chains and should be valid for any massive one-dimensional model close to a conformal critical point.

Keywords: conformal field theory, integrable spin chains (vertex models), entanglement in extended quantum systems (theory)

ArXiv ePrint: 1007.0881
1. Introduction

In the last decade there has been increasing interest in quantifying the amount of entanglement that is present in the ground state of an extended quantum system \[1\]. A measure of the bipartite entanglement is given by the so-called Rényi entropies, defined as follows. Let \(|\Psi\rangle\rangle\langle\langle\Psi|\) be the ground state of an extended quantum mechanical system and \(\rho = |\Psi\rangle\langle\Psi|\) its density matrix. One then divides the Hilbert space into a part \(A\) and its complement \(B\) and considers the reduced density matrix \(\rho_A = Tr_B \rho\) of subsystem \(A\). Finally, the Rényi entropies are given by

\[
S_n = \frac{1}{1-n} \ln Tr \rho_A^n.
\]

The particular case \(n = 1\) of (1) is the von Neumann entropy \(S_1\) and it is usually called simply the entanglement entropy. However, the knowledge of \(S_n\) for different \(n\) characterizes the full spectrum of non-zero eigenvalues of \(\rho_A\) (see e.g. [2]) and provides significantly more information than \(S_1\).

The case that has been most widely studied is a critical one-dimensional system whose continuum limit is described by a conformal field theory (CFT) of central charge \(c\). When \(A\) is an interval of length \(\ell\) embedded in an infinite system, the asymptotic large-\(\ell\) behavior of the Rényi entropies is given by [3]–[5]

\[
S_n(\ell) \approx \frac{c}{6} \left(1 + \frac{1}{n} \right) \ln \ell + c'_n,
\]

where \(c'_n\) is a non-universal constant. This behavior has been verified analytically and numerically in numerous models. Only more recently has it been realized that such asymptotic behavior can be difficult to observe because of the presence of large and unusual corrections to the scaling behaving like [6]–[8]

\[
S_n(\ell) \approx \frac{c}{6} \left(1 + \frac{1}{n} \right) \ln \ell + c'_n + b_n \ell^{-2x/n},
\]

doi:10.1088/1742-5468/2010/09/P09003
where x is the scaling dimension of a relevant operator (i.e. $x < 2$) and b_n another non-universal constant. These power-law corrections decay slowly even for moderate values of n and completely obscure the asymptotic result for large n. In field-theory language, this unusual scaling originates from the conical singularities (at the boundary between A and B) present in the n-sheeted Riemann surface describing $\text{Tr} \rho_A^n$ \cite{7}.

However, universal scaling is not a prerogative of the gapless models. A nearby critical point influences a part of the parameter space called the ‘critical region’ in which the correlation length ξ (inverse gap) is large but finite. Simple scaling arguments suggest that when an infinite system is divided into two semi-infinite halves, the entanglement entropy should scale as

$$S_n \simeq \frac{c}{12} \left(1 + \frac{1}{n} \right) \ln \xi + C'_n, \quad (4)$$

where C'_n is yet another non-universal constant. (One could also fix the normalization of the correlation length in such a way that $C'_n = c'_n/2$, as is done in some practical instances \cite{9}.) This formula has indeed been corroborated by a general field-theory argument that parallels the c-theorem \cite{4} and it has been verified for many integrable models. In this massive case, the spatial division in to A and B is not as important as in the massless case. Indeed as long as the correlation length is smaller than all the separations (e.g. ℓ above), the Rényi entropies of many disjoint blocks are given by equation (4) multiplied by the number of boundary points between A and B. This is nothing but the one-dimensional area law. The question that naturally arises is that of whether unusual corrections to the scaling in ξ would also be present for the massive case.

By means of a simple scaling hypothesis, one could argue that corrections due to a finite correlation length in equation (3) should be functions of ξ/ℓ and then changing the limit from $\ell \ll \xi$ to $\ell \gg \xi$, one argues that

$$S_n \simeq \frac{c}{12} \left(1 + \frac{1}{n} \right) \ln \xi + C'_n + B_n \xi^{-x/n} \quad (5).$$

(Notice that the exponent of the corrections is half that in (3) because of the presence of a single conical singularity, analogously to the case for critical systems with boundaries \cite{7}.) However, because of the very unusual form of these corrections, one could doubt whether such a simple scaling argument gives the correct answer5. Here we provide the analytical evidence that in some integrable models in which S_n can be obtained through the Baxter corner transfer matrix \cite{10} this scaling is indeed correct and that further corrections are of the form $\xi^{-kx/n}$ and ξ^{-kx} with k integer.

2. Corrections to the scaling of Rényi entropies using the corner transfer matrix

When dealing with the geometric bipartition considered in this paper (i.e. two semi-infinite half-lines) the corner transfer matrix (CTM)—which is a classical tool of statistical mechanics \cite{10}—helps considerably in the derivation of the reduced density matrix ρ_A and hence for the characterization of the entanglement entropies \cite{4,11}.

5 This scaling analysis is corroborated by recent results for gapless systems in a trapping potential \cite{9}. In this case, the actual system is gapless, but a length scale is generated by the trapping potential and the resulting scaling is exactly given by equation (5) where ξ is replaced by the trap scale.

doi:10.1088/1742-5468/2010/09/P09003
Corrections to scaling for block entanglement in massive spin chains

In two-dimensional statistical models the CTM \hat{A} is the transfer matrix that connects a horizontal row (let us say the line $x < 0$) to a vertical one (let us say $y < 0$). Rigorously speaking, each element of \hat{A} is the partition function of the lower left quadrant when the spins on the negative x and y axes are fixed to given values. If, following Baxter [10], we choose the lattice in a clever way (i.e. rotated by $\pi/4$ with respect to the axes), the four corner transfer matrices are all equivalent (under some symmetry requirements on the model) and the full partition function is just $\text{Tr} \hat{A}^4$. It is also evident that the reduced density matrix of the quantum problem whose time-discretized version is the classical model under consideration (see e.g. [12,13]) is

$$\rho_A = \frac{\hat{A}^4}{\text{Tr} \hat{A}^4},$$

(6)

where the denominator is fixed by the normalization $\text{Tr} \rho_A = 1$.

For several models, it is possible to obtain this reduced density matrix exactly in the infinite-lattice limit. It always assumes the form [13,11]

$$\rho_A = \frac{e^{-H_{\text{CTM}}}}{\text{Tr} e^{-H_{\text{CTM}}}},$$

(7)

where H_{CTM} is an effective Hamiltonian, which, for many interesting integrable massive models, may be rewrittten in terms of free-fermionic operators (see [13] and references therein)

$$H_{\text{CTM}} = \sum_{j=0}^{\infty} \epsilon_j n_j,$$

(8)

where $n_j = c_i^\dagger c_i$ are fermion occupation numbers and have eigenvalues 0 and 1. These properties are very general features of a large class of massive integrable spin chains. The specificity of the model comes from the functional form of the ‘single-particle levels’ ϵ_j. In this basis ρ_A is diagonal and so the Rényi entropies are easily written for any value of n, not only integers.

One should mention that, for a given lattice Hamiltonian, there are several ways to construct a CTM. The one used above is particularly convenient because then the RDM is just its fourth power. In general, ρ_A will be given by the product ‘$ABCD$’ of four different CTMs which also do not need to be symmetric (although the product is). CTMs can be defined also for non-integrable models, but then one does not have closed and simple formulae for the eigenvalues and has to work numerically, see e.g. [12].

2.1. The non-critical XXZ chain

We start our analysis from the anisotropic Heisenberg model with the Hamiltonian

$$H_{XXZ} = \sum_j \left[\sigma_j^x \sigma_{j+1}^x + \sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z \right],$$

(9)

where the σs are the Pauli matrices. This model is gapless for $|\Delta| \leq 1$ and gapped for $|\Delta| > 1$ with a conformal point at $\Delta = 1$. We study the antiferromagnetic gapped regime with $\Delta > 1$. The XXZ model is usually solved by using a Bethe ansatz which is the...
framework most suited for calculating thermodynamical properties as well as correlation functions. Unfortunately, the Bethe ansatz is still rather ineffective for providing the entanglement entropies both in the coordinate [14] and the algebraic [15] approaches. Also the special combinatoric features at $\Delta = 1/2$ only allowed the calculation of S_n up to $\ell = 6$ [16]. By contrast, the CTM solution is very simple and the ‘single-particle levels’ of the resulting H_{CTM} are exactly known [13]:

$$\epsilon_j = 2j\epsilon \quad \text{with} \quad \epsilon = \text{arccosh}\Delta.$$ (10)

The correlation length of the model is also exactly known as a function of Δ [10], but for what follows we are only interested in its universal part in the critical regime $\xi \gg 1$:

$$\ln \xi \simeq \frac{\pi^2}{2\epsilon} + O(\epsilon^0).$$ (11)

The Rényi entropies are written straightforwardly:

$$S_n = \frac{1}{1-n} \left[\sum_{j=0}^{\infty} \log(1 + e^{-2nj\epsilon}) - n \sum_{j=0}^{\infty} \log(1 + e^{-2j\epsilon}) \right].$$ (12)

This formula is exact, but does not directly allow an expansion in terms of powers of the correlation length, i.e. for small ϵ. One could be tempted to perform an Euler–Maclaurin summation, that gives the correct leading behavior [4]. Unfortunately the subleading corrections that we are interested in are of the form $\xi^{-\alpha} \propto e^{-\alpha\pi^2/2\epsilon}$, and are not obtainable by asymptotic expansion in powers of ϵ^{-1} as given by the Euler–Maclaurin formula. One can however check straightforwardly that all the analytic corrections in ϵ do indeed vanish (this has been observed in [19] for $n \to \infty$).

We obtain the truly asymptotic expansion for small ϵ by using the Poisson resummation formula (as was similarly done for S_1 in [20]). This formula tells us that

$$\sum_{j=-\infty}^{\infty} f(|\epsilon j|) = \frac{2}{\epsilon} \sum_{k=-\infty}^{\infty} \hat{f} \left(\frac{2\pi k}{\epsilon} \right),$$ (13)

where

$$\hat{f}(y) = \int_{0}^{\infty} f(x) \cos(yx) \, dx.$$ (14)

For equation (12), defining

$$f_n(x) = \log(1 + e^{-2nx}),$$ (15)

we can rewrite the sum as

$$S_n = \frac{1}{1-n} \sum_{j=0}^{\infty} (f_n(\epsilon j) - nf_1(\epsilon j)) = \frac{1}{21-n} \sum_{j=-\infty}^{\infty} (f_n(|\epsilon j|) - nf_1(|\epsilon j|)) + \frac{\ln 2}{2},$$ (16)

Equation (12) has already been derived (actually the double of it) for the XY spin chain by Franchini et al in [17] by using previous results [18] based on integrable Fredholm operators and the Riemann–Hilbert problem. It turns out that in the XXZ model, only the dependence of ϵ on the Hamiltonian parameters is different, but equation (12) is identical. This could not have been known a priori. Deriving this result with CTM methods allows us to generalize the treatment to other models (such as the XXZ spin chain) for which the Riemann–Hilbert problem is not known. In [17] S_n has been rewritten in terms of elliptic functions, while here we use a different strategy.

doi:10.1088/1742-5468/2010/09/P09003
where we used $f_n(0) = \ln 2$. The cosine Fourier transform of $f_n(x)$ is
\[\hat{f}_n(y) = \frac{n}{y^2} - \frac{\pi}{2y} \text{csch} \frac{\pi x}{2n}. \] (17)

Plugging the last equation into the Poisson resummation formula we have that the two terms n/y^2 simplify, leading to the compact result
\[S_n = \frac{1}{1 - n} \sum_{k=\infty}^{-\infty} \left[\frac{n}{4k} \text{csch} \frac{\pi^2 k}{\epsilon} - \frac{1}{4k} \text{csch} \frac{\pi^2 k}{en} \right] + \ln 2 - \frac{1}{2}. \] (18)

The term $k = 0$ gives the leading diverging term in the limit $\epsilon \to 0$, and so the sum can be rewritten as
\[S_n = \frac{\pi^2}{24\epsilon} \left(1 + \frac{1}{n} \right) + \frac{\ln 2}{2} + \frac{1}{1 - n} \sum_{k=1}^{\infty} \left[\frac{n}{2k} \text{csch} \frac{\pi^2 k}{\epsilon} - \frac{1}{2k} \text{csch} \frac{\pi^2 k}{en} \right], \] (19)

where the leftover sum over k is vanishing in the limit $\epsilon \to 0$. This equation is exact for any ϵ, as it is equation (12) from which we started and it is just another expansion of the elliptic function found in [17]. However, in this form S_n is ready for asymptotic expansion close to $\epsilon = 0$. For small ϵ, we have
\[\text{csch} \frac{\pi^2 k}{en} \simeq 2 \exp \left(-\frac{\pi^2 k}{en} \right). \] (20)

Using equation (11), we have that each of these terms gives a correction of the form
\[\exp \left(-\frac{\pi^2 k}{en} \right) \simeq \xi^{-2k/n}. \] (21)

These subleading corrections clearly depend on the precise definition used for the correlation length. Thus the universal character is only in the exponents $2k/n$, the amplitudes being normalization dependent. These corrections agree with the scaling form proposed in the introduction, with $x = 2$. However, for the gapless case a multiplicative logarithmic correction is also introduced by a marginal operator [21], but it does not appear in the gapped phase. This result agrees with the recent ones in [22].

2.2. Other models

Several other models can be treated with the help of CTMs and the same procedure as above for the XXZ model applies. This generalization is made particularly simple by the fact that in the cases considered the only change is in the expression for ϵ_j as a function of the Hamiltonian parameters.

The most studied example is the Ising model in a transverse magnetic field with the Hamiltonian
\[H_1 = -\sum_j \left[\sigma^+_j \sigma^-_{j+1} + h \sigma^z_j \right]. \] (22)

This model displays a quantum critical point at $h = 1$ separating a ferromagnetic phase ($h < 1$) from a quantum paramagnetic one ($h > 1$). Rényi entropies for this model
have been already calculated in [17] and so the following results are not new, but just an asymptotic expansion of known expressions.

The ‘single-particle levels’ of the resulting H_{CTM} are [13]

$$\epsilon_j = \begin{cases} (2j + 1)\epsilon & \text{for } h > 1, \\ 2j\epsilon & \text{for } h < 1, \end{cases}$$

with $\epsilon = \pi \frac{K(\sqrt{1 - k^2})}{K(k)}$, (23)

where $K(k)$ is the complete elliptic integral of the first kind [23], and $k = \min\{h, h^{-1}\}$. An expression for the correlation length is exactly known [10], but for what follows we are only interested in the behavior close to the critical point

$$\ln \xi = \frac{\pi^2}{\epsilon} + O(\epsilon^0),$$

valid in both phases.

In the ferromagnetic phase $h < 1$, the dependence of ϵ_j on j is the same as in the XXZ model; only ϵ is different. Thus equation (19) is valid also for the Ising model. On plugging equation (24) into this expression, we get a leading term corresponding to the central charge $c = 1/2$ and corrections going like $\xi^{-k/n}$, in agreement with the presence of the energy operator of dimension $x = 1$ as in the conformal case [6,8].

In the paramagnetic phase $h > 1$, the calculation is equivalent, with the difference that the generalized Poisson resummation formula

$$\sum_{j=-\infty}^{\infty} f(|\epsilon(bj + a)|) = \frac{2}{eb} \sum_{k=-\infty}^{\infty} \hat{f}\left(\frac{2\pi k}{eb}\right) e^{2\pi ika/b},$$

must be used. From equation (23), we can choose $a = 1/2$ and $b = 1$ (or any multiple, by changing the definition of $f(x)$). The starting formula is

$$S_n = \frac{1}{1 - n} \sum_{j=0}^{\infty} (f_n(\epsilon(j + 1/2)) - nf_1(\epsilon(j + 1/2)))
= \frac{1}{2} \frac{1}{1 - n} \sum_{j=-\infty}^{\infty} (f_n(|\epsilon(j + 1/2)|) - nf_1(|\epsilon(j + 1/2)|)),$$

where we notice the absence of the additive $\ln 2$ term (connected with a non-degenerate ground state). Thus, after Poisson resummation we have

$$S_n = \frac{1}{1 - n} \sum_{k=-\infty}^{\infty} (-1)^k \left[\frac{n}{4k} \csch \frac{\pi^2 k}{\epsilon} - \frac{1}{4k} \csch \frac{\pi^2 k}{en} \right].$$

(27)

where the main difference compared to the previous case is the factor $(-1)^k$. Thus in the expansion in terms of the correlation length ξ the same power laws enter but with alternating amplitudes.

A particularly simple further generalization is the XY chain for which all the formulas above are the same (see e.g. [24]) and only the expression for k in terms of h and γ changes according to

$$k = \begin{cases} \sqrt{h^2 + \gamma^2 - 1}/\gamma & \text{for } h > 1, \\ \gamma/\sqrt{h^2 + \gamma^2 - 1} & \text{for } h < 1, \end{cases}$$

(28)

doi:10.1088/1742-5468/2010/09/P09003
valid for $\gamma^2 + h^2 > 1$. This is reminiscent of the fact that at $h = 1$ the transition is always in the Ising universality class and a simple rescaling can absorb the values of γ. Physically more interesting is the limit $h = 0$, not included in the case above, but with CTMs known [10]. One has $\epsilon_j = j\epsilon$ and $k = (1 - \gamma)/(1 + \gamma)$. The derivation of S_n is straightforward and one recovers the same corrections as for the Ising model, with a doubled leading term reflecting the values of the central charge $c = 1$. This is connected also to an exact relation between Ising and XX models [25].

Also XYZ chains (see [26] for S_1) and the spin $\kappa/2$ analogue of the XXZ quantum spin chain (see [20] for S_1) can be simply obtained from the formulas above.

2.3. The single-copy entanglement

The limit $n \to \infty$ requires a separate analysis, because in equation (5) the exponent of the corrections goes to zero, signaling the appearance of logarithmic corrections to the scaling as for the conformal case. S_∞ is called single-copy entanglement [27, 28, 19] and it is obtained by taking the limit $n \to \infty$ before the limit $\epsilon \to 0$, since the two do not commute. It is easy to get the logarithmic corrections exactly. For $n \to \infty$, equation (19) becomes

$$S_\infty = \frac{\pi^2}{24\epsilon} + \ln \frac{2}{2} + \sum_{k=1}^{\infty} \left[\frac{\epsilon}{2\pi^2 k^2} - \frac{1}{2k} \frac{\pi^2 k}{\epsilon} \right]$$

$$= \frac{\pi^2}{24\epsilon} + \ln \frac{2}{2} + \frac{\epsilon}{12} - \sum_{k=1}^{\infty} \frac{1}{2k} \frac{\pi^2 k}{\epsilon}.$$ (30)

The leftover sum gives standard power-law corrections and they do not involve ‘unusual’ exponents. The unusual part is in the logarithmic corrections encoded in the term $\epsilon/12$. Indeed using $\ln \xi = \pi^2/(ae)$ (with $a = 1$ for the Ising ferromagnetic case and $a = 2$ for XXZ), we have

$$S_\infty - S_\infty^{asy} \simeq \frac{\pi^2}{12a \log \xi}.$$ (31)

Notice that when written in terms of ϵ this expression has a unique correction that is particularly simple for the XXZ chain since $\epsilon = \text{arccosh}\Delta$.

For the Ising model in the paramagnetic phase $h > 1$, the terms $(-1)^k$ change the $1/\epsilon$ term, and the final result is

$$S_\infty = \frac{\pi^2}{24\epsilon} - \frac{\epsilon}{24} - \sum_{k=1}^{\infty} \frac{(-1)^k}{2k} \frac{\pi^2 k}{\epsilon}.$$ (32)

Notice that the amplitudes of the corrections are different in the two phases and their numerical values are of the same form as what was found for the critical XX spin chain [8]. These results for the single-copy entanglement in XY chains have also been reported in [19, 28].

3. Relation to Virasoro characters

The above examples may be considered as special cases of a more general phenomenon: that in many integrable models satisfying the Yang–Baxter relations, traces of powers of the CTM may be expressed in terms of the Virasoro characters of the corresponding CFT.
of the critical theory. These enjoy simple properties under modular transformations which allow us to extract the ‘unusual’ corrections to scaling discussed earlier.

To be specific, the Boltzmann weights of many integrable models lie on a curve specified by an elliptic modulus q, where the critical point corresponds to $q \to 1$. The examples of quantum spin chains considered above correspond to $q = e^{-2\epsilon}$. Baxter [10] showed that in these models the eigenvalues of the fourth power \hat{A}^4 of the CTM are all of the form q^{aN+b}, for integer $N \geq 0$, with a computable degeneracy d_N. It was then observed in the late 1980s (see, for example, [29,30]) that the degeneracy factors are just those appearing in the highest weight representations of the Virasoro algebras in the CFT which describes the scaling limit at the critical point, that is

$$\chi_{\Delta}(q) = q^{-c/24+\Delta} \sum_{N=0}^{\infty} d_N q^N,$$

where c is the central charge and Δ is the highest weight of the representation, giving the dimension $x = 2\Delta$ of a scaling operator of the theory. The value of Δ depends on the value of the spin at the origin, and the boundary conditions at infinity. This observation, although not proven in general, was based on the facts that (a) in the scaling limit at the critical point, but in a finite annulus with outer and inner radii $R_>$ and $R_<$, the eigenvalues of the CTM have precisely this form, with conjugate modulus \tilde{q} (defined below) equal to $R_>/R_<$—this follows from boundary CFT [31]; and (b) in the integrable RSOS models, the eigenstates of the CTM correspond to a semi-infinite walk on the corresponding A_m diagram, and the Virasoro generators act simply on the space of these paths. (In fact it was shown by the Kyoto group [32] that for higher integrable models obtained by fusion the result is not always a simple character but can be rather a branching coefficient of an affine algebra. However these still enjoy simple modular properties as described below.)

This means, in particular, that the partition function $\text{Tr} \hat{A}^4$ is proportional to $\chi_{\Delta}(q^a)$ for some Δ (which depends on, for example, which massive phase the model is in). Without loss of generality we take $a = 1$. In general the partition function may be a linear combination of characters, depending on the choice of boundary conditions at the origin and infinity. This complicates the argument without changing the general conclusion, and we shall assume that the boundary conditions are such as to pick out a single character, as in the examples discussed earlier. However we remark that, in the context of entanglement entropy, we should specify whether we fix the spin at the origin in the direct or in the dual lattice. In all examples above, we fixed the dual variable, leaving the bond between the two halves free. However, while at first it could sound strange, also fixing an actual spin at the origin makes sense for the entanglement entropy, because in the CTM this does not correspond to fixing it in the Hamiltonian (which would effectively divide the chain into two non-interacting halves). Rather it means projecting the ground state $|0\rangle$ into a subspace in which the spin at the origin is fixed, and measuring the entanglement between the two halves of the chain in this subspace. Thus we expect to be able to explore other values of Δ by such a procedure, and will therefore keep it general in what follows.

The point now is that the trace of \hat{A}^{4n} is, in the basis in which the CTM is diagonal, given simply by replacing $q \to q^n$, and thus

$$\text{Tr} \rho^n_A = \frac{\chi_{\Delta}(q^n)}{(\chi_{\Delta}(q))^n}. \quad (34)$$

doi:10.1088/1742-5468/2010/09/P09003 9
We are interested in the limit $q \to 1$ close to the critical point, where the series expressions (33) for $\chi_\Delta(q)$ are not very useful. However [33], the Virasoro characters transform linearly under a modular transformation $q \to \tilde{q}$, where, if $q = e^{-2\epsilon}, \tilde{q} = e^{-2\pi^2/\epsilon}$:

$$\chi_\Delta(q) = \sum_{\Delta'} S_{\Delta'}^\Delta \chi_{\Delta'}(\tilde{q}),$$

(35)

where $S_{\Delta'}^\Delta$ is the modular S-matrix which characterizes the CFT. Notice that the modular invariance plays exactly the same role as Poisson resummation above, but it is more general.

As $q \to 1, \tilde{q} \to 0$, so it is straightforward to extract the leading behavior and all the corrections. The leading term comes from $\Delta' = 0$, in which case we see that

$$\text{Tr} \rho^n_A \sim (S^0_\Delta)^{1-n} (\tilde{q}^{-c/24})^{n-1-n},$$

which gives

$$S_n \sim -\frac{c}{24} \left(1 + \frac{1}{n}\right) \ln \tilde{q} + \ln (S^0_\Delta) + o(1).$$

(36)

Comparing with (4), we see that $\tilde{q} \propto \xi^{-2}$. The $O(1)$ term is related to the Affleck–Ludwig boundary entropy [34] $q_\Delta = \ln(S^0_\Delta)^{1/2}$. Note that we get twice the boundary entropy because there are two semi-infinite chains adjoining the spin at the origin. The examples discussed earlier presumably correspond to $\Delta = 0$ and the corresponding $O(1)$ term can be absorbed into the non-universal constant of proportionality between \tilde{q} and ξ^{-2}.

The corrections now come from (a) integer powers of \tilde{q}, that is powers of ξ^{-2}, in the expansion of the character, and (b) other characters with $\Delta' > 0$. The leading terms of the latter form then give rise to corrections to (36):

$$(1-n)^{-1} \sum_{\Delta' > 0} \frac{S^\Delta_{\Delta'}}{S^0_\Delta} (\tilde{q}^{\Delta'/n} - n\tilde{q}^{\Delta'}) + \cdots.$$

(37)

(The second power is less important for $n > 1$ but is included so as to ensure the finiteness as $n \to 1$.) Recalling that $2\Delta' = x'$, we see that we get corrections of the form $\xi^{-x'/n}$ as expected. However, unless the matrix element $S^\Delta_{\Delta'}$ happens to vanish, in principle we get such contributions from all the scaling dimensions x' of primary fields, not just the relevant ones. Also, the higher order corrections in general involve powers which are all possible integer linear combinations of x'/n and x'. The evidence of these further corrections has been reported for simple gapless spin chains [8], but it would be as interesting to report them for the gapped case.

We can also derive a general result for the single-copy entanglement S_∞. Using equation (34) we see that

$$S_\infty = -(-c/24 + \Delta) \ln q + \ln \chi_\Delta(q).$$

(38)

The second term, after using the modular transformation, goes like $(-c/24 + \Delta') \log \tilde{q}$ plus power-law corrections. We expect the leading term in the sum over Δ' to come from $\Delta' = 0$. Thus we get a universal term $(c/12) \ln \xi$. This corresponds to the first term in equations (30) and (32). The first term in equation (38) gives the ‘unusual’ correction discussed in section 2.3. Since $\tilde{q} \propto \xi^{-2}$, $\ln \tilde{q} \sim -2\pi^2/\ln \xi$, so this correction has the form

$$\frac{2\pi^2(-c/24 + \Delta)}{\ln \xi}.$$

(39)
This agrees with the Ising case in the ferromagnetic phase given by equation (31) using $c = 1/2$, $\Delta = 1/16$, and in the paramagnetic equation (32) using $c = 1/2$ and $\Delta = 0$.

4. Concluding remarks

We showed that the corrections to the scaling of the Rényi entanglement entropies in gapped systems display the universal form (5) in the case when an infinite line is divided into two semi-infinite subsystems. We provided a few explicit examples using known corner transfer matrices and we argue that in the general case these corrections are a consequence of the modular invariance of the traces of powers of the CTM when expressed in terms of the Virasoro characters.

This result generalizes straightforwardly to more complicated bipartitions provided the correlation length ξ is smaller than all separations. Equation (5) only gets multiplied by the number of boundary points between A and B. The rigorous result for a finite interval of length ℓ obtained for the XY model [17] confirms this. However, for a finite interval, only when ℓ becomes much larger than ξ would the asymptotic behavior be visible. For smaller values of ℓ, a complicated crossover between the conformal result and the asymptotic one takes place, as already known for the leading terms [35]. The characterization of all these corrections is not only an academic task. In the case of the entanglement of two disjoint intervals in a conformal model, their precise knowledge has been fundamental for recovering the CFT predictions [36, 37] in numerical calculations [38–[41]. We believe that the same is true for massive systems, especially in the case of non-integrable models when numerical calculations are the only way to attack the problem. A final question is whether these unusual corrections are also present for other entanglement measures that displayed them in the gapless phases such as the valence bond entanglement [42], and if they are, whether it is possible to calculate them exactly.

Acknowledgments

This work has been done in part at the Max Planck Institute for the Physics of Complex Systems in Dresden, whose hospitality is gratefully acknowledged. We thank Masud Haque for fruitful discussions. PC is highly indebted to Fabian Essler for the collaboration in [8] on work that shares many analogies with the problem studied here. JC was supported in part by EPSRC Grant EP/D050952/1. We are grateful to all the authors of [22] for alerting us to a major typo in the first version of this paper.

References

[1] Amico L, Fazio R, Osterloh A and Vedral V, Entanglement in many-body systems, 2008 Rev. Mod. Phys. 80 517
Eisert J, Cramer M and Plenio M B, Area laws for the entanglement entropy—a review, 2010 Rev. Mod. Phys. 82 277
Calabrese P, Cardy J and Doyon B (ed), Entanglement entropy in extended systems, 2009 J. Phys. A: Math. Theor. 42 500301
[2] Calabrese P and Lelevre A, Entanglement spectrum in one-dimensional systems, 2008 Phys. Rev. A 78 032329
Franchini F, Its A R, Korepin V E and Takhtajan L A, Entanglement spectrum for the XY model in one dimension, 2010 arXiv:1002.2931

doi:10.1088/1742-5468/2010/09/P09003
Corrections to scaling for block entanglement in massive spin chains

[3] Holzhey C, Larsen F and Wilczek F, Geometric and renormalized entropy in conformal field theory, 1994 Nucl. Phys. B 424 443
[4] Calabrese P and Cardy J, Entanglement entropy and quantum field theory, 2004 J. Stat. Mech. P06002
[5] Calabrese P and Cardy J, Entanglement entropy and conformal field theory, 2009 J. Phys. A: Math. Theor. 42 504005
[6] Calabrese P, Campostrini M, Essler F and Nienhuis B, Parity effects in the scaling of block entanglement in gapless spin chains, 2010 Phys. Rev. Lett. 104 095701
[7] Cardy J and Calabrese P, Universal corrections to scaling in entanglement entropy, 2010 J. Stat. Mech. P04023
[8] Calabrese P and Essler F H L, Universal corrections to scaling for block entanglement in spin-$\frac{1}{2}$ XX chains, 2010 J. Stat. Mech. P08029
[9] Campostrini M and Vicari E, Scaling of bipartite entanglement in one-dimensional lattice systems, with a trapping potential, 2010 J. Stat. Mech. P08020
[10] Baxter R J, 1982 Exactly Solved Models in Statistical Mechanics (San Diego, CA: Academic)
[11] Peschel I and Eisler V, Reduced density matrices and entanglement entropy in free lattice models, 2009 J. Phys. A: Math. Theor. 42 504003
[12] Nishino T, Density matrix renormalization group method for 2D classical models, 1995 J. Phys. Soc. Japan. 74 3598
[13] Nishino T and Okunishi K, Density matrix and renormalization for classical lattice models, 1997 Strongly Correlated Magnetic and Superconducting Systems (Lect. Notes Phys. vol 478) p 167
[14] Okunishi K, Hieida Y and Akutsu Y, Universal asymptotic eigenvalue distribution of density matrices and corner transfer matrices in the thermodynamic limit, 1999 Phys. Rev. E 59 R6227
[15] Peschel I, Kaulke M and Legeza O, Density-matrix spectra for integrable models, 1999 Ann. Phys. Lpz. 8 153
[16] Vidal G, Latorre J I, Rico E and Kitaev A, Entanglement in quantum critical phenomena, 2003 Phys. Rev. Lett. 90 227902
[17] Latorre J I, Rico E and Vidal G, Ground state entanglement in quantum spin chains, 2004 Quant. Inf. Comput. 4 048
[18] Latorre J I and Riera A, A short review on entanglement in quantum spin systems, 2009 J. Phys. A: Math. Theor. 42 504002
[19] Sato J, Shiroishi M and Takahashi M, Exact evaluation of density matrix elements for the Heisenberg chain, 2006 J. Stat. Mech. P12017
[20] Alba V, Fagotti M and Calabrese P, Entanglement entropy of excited states, 2009 J. Stat. Mech. P10020
[21] Katsura H and Maruyama I, Derivation of matrix product ansatz for the Heisenberg chain from algebraic Bethe ansatz, 2010 J. Phys. A: Math. Theor. 43 175003
[22] Nienhuis B, Campostrini M and Calabrese P, Entanglement, combinatorics and finite-size effects in spin-chains, 2009 J. Stat. Mech. P02063
[23] Banchi L, Colomo F and Verrucchi P, When finite-size corrections vanish: the $S = 1/2$ XXZ model and the Razumov–Stroganov state, 2009 Phys. Rev. A 80 022341
[24] Franchini F, Its A R and Korepin V E, Rényi entropy of the XY spin chain, 2008 J. Phys. A: Math. Theor. 41 025302
[25] Its A R, Jin B-Q and Korepin V E, Entanglement in XY spin chain, 2005 J. Phys. A: Math. Gen. 38 2975
[26] Orus R, Latorre J I, Eisert J and Cramer M, Half the entanglement in critical systems is distillable from a single specimen, 2006 Phys. Rev. A 73 060303
[27] Weston R, The entanglement entropy of solvable Lattice models, 2006 J. Stat. Mech. L03002
[28] Lauflorenci N, Sorensen E S, Chang M-S and Affleck I, Boundary effects in the critical scaling of entanglement entropy in 1D systems, 2006 Phys. Rev. Lett. 96 100603
[29] Orus R, Latorre J I, Eisert J and Cramer M, Entanglement entropy in quantum impurity systems and systems with boundaries, 2009 J. Phys. A: Math. Theor. 42 504009
[30] Ercolessi E, Evangelisti S, Franchini F and Ravanini F, Unusual singular behaviour of the entanglement entropy in one dimension, 2010 arXiv:1008.3892
[31] Abramowitz M and Stegun I A, 1972 Handbook of Mathematical Functions (New York: Dover)
[32] Peschel I, On the entanglement entropy for a XY spin chain, 2004 J. Stat. Mech. P12005

doi:10.1088/1742-5468/2010/09/P09003
Corrections to scaling for block entanglement in massive spin chains

[25] Igloi F and Juhasz R, Exact relationship between the entanglement entropies of XY and quantum Ising chains, 2008 Europhys. Lett. 81 57003

[26] Ercolessi E, Evangelisti S and Ravanini F, Exact entanglement entropy of the XYZ model and its sine–Gordon limit, 2010 Phys. Lett. A 374 2101

[27] Eisert J and Cramer M, Single-copy entanglement in critical spin chains, 2005 Phys. Rev. A 72 42112

[28] Peschel I and Zhao J, On single-copy entanglement, 2005 J. Stat. Mech. P11002

[29] Cardy J, Boundary conditions in conformal field theory, 1989 Adv. Studies Pure Math. 19 127

[30] Cardy J, Conformal invariance and statistical mechanics: lecture notes, 1990 Fields, Strings and Critical Behavior (Proc. Les Houches Summer School in Theoretical Physics, 1989) (Amsterdam: North-Holland)

[31] Cardy J, Boundary conditions, fusion rules and the Verlinde formula, 1989 Nucl. Phys. B 324 581

[32] Date E, Jimbo M, Miwa T and Okado M, Automorphic properties of local height probabilities for integrable solid-on-solid models, 1987 Phys. Rev. B 35 2105

[33] Cardy J, Operator content of two-dimensional conformally invariant theories, 1986 Nucl. Phys. B 270 186

[34] Affleck I and Ludwig A W W, Universal non-integer ground state degeneracy in critical quantum systems, 1991 Phys. Rev. Lett. 67 161

[35] Cardy J, Castro-Alvaredo O A and Doyon B, Form factors of branch-point twist fields in quantum integrable models and entanglement entropy, 2008 J. Stat. Phys. 130 129

Castro-Alvaredo O A and Doyon B, Bi-partite entanglement entropy in integrable models with backscattering, 2008 J. Phys. A: Math. Theor. 41 275203

Doyon B, Bi-partite entanglement entropy in massive two-dimensional quantum field theory, 2009 Phys. Rev. Lett. 102 031602

Castro-Alvaredo O A and Doyon B, Bi-partite entanglement entropy in massive 1+1-dimensional quantum field theories, 2009 J. Phys. A: Math. Theor. 42 504006

Headrick M, Entanglement Rényi entropies in holographic theories, 2010 arXiv:1006.0047

[36] Furukawa S, Pasquier V and Shiraiishi J, Mutual information and compactification radius in a c = 1 critical phase in one dimension, 2009 Phys. Rev. Lett. 102 170602

[37] Calabrese P, Cardy J and Tonni E, Entanglement entropy of two disjoint intervals in conformal field theory, 2009 J. Stat. Mech. P11001

[38] Cardaglio M and Gliozzi F, Entanglement entropy and twist fields, 2008 J. High Energy Phys. JHEP11(2008)076

[39] Alba V, Tagliacozzo L and Calabrese P, Entanglement entropy of two disjoint blocks in critical Ising models, 2010 Phys. Rev. B 81 060411

[40] Fagotti M and Calabrese P, Entanglement entropy of two disjoint blocks in XY chains, 2010 J. Stat. Mech. P04016

[41] Igloi F and Peschel I, On reduced density matrices for disjoint subsystems, 2010 Europhys. Lett. 89 40001

[42] Alcaraz F C and Rittenberg V, Shared information in stationary states at criticality, 2010 J. Stat. Mech. P03024

Alcaraz F C, Rittenberg V and Sierra G, Entanglement in far from equilibrium stationary states, 2009 Phys. Rev. E 80 030102(R)

Kallin A B, González I, Hastings M B and Melko R, Valence bond and von Neumann entanglement entropy in Heisenberg ladders, 2009 Phys. Rev. Lett. 103 117203

Alet F, Capponi S, Laflorencie N and Mambrini M, Valence bond entanglement entropy, 2007 Phys. Rev. Lett. 99 117204

doi:10.1088/1742-5468/2010/09/P09003