A permutation pattern that illustrates the strong law of small numbers

DAVID CALLAN
Dept. of Statistics, University of Wisconsin-Madison, Madison, WI 53706
callan@stat.wisc.edu

Abstract

We obtain an explicit formula for the number of permutations of $[n]$ that avoid the barred pattern 1432. A curious feature of its counting sequence, 1, 1, 2, 5, 14, 43, 145, 538, 2194, ..., is that the displayed terms agree with A122993 in the On-Line Encyclopedia of Integer Sequences, but the two sequences diverge thereafter.

1 Introduction

A permutation π avoids the barred pattern 1432 if each instance of a not-necessarily-consecutive 432 pattern in π is part of a 1432 pattern in π, and similarly for other barred patterns. This paper is one of a series of notes counting permutations avoiding a 5 letter pattern with 2 bars that do not yield to Lara Pudwell’s method of Enumeration Schemes [3]. The question of whether there may be an automated method to fill in these and other gaps in Pudwell’s enumeration remains open. Here we treat the pattern 1432. A curious feature of the counting sequence is that it agrees through the $n = 8$ term with sequence A122993 in the On-Line Encyclopedia of Integer Sequences [4], an instance of the Strong Law of Small Numbers [5, 6].

Our method is to identify the structure of a 1432-avoider. This permits a direct count as a 5-summation formula according to five statistics of the permutation, four of which are the first entry a, the immediate predecessor of 1 denoted b, the position of 1 denoted j, and the number of left to right maxima that occur after 1 denoted k. One of these sums can be evaluated, leading to a faster formula.

2 1432-Avoiders

A “typical” 1432-avoider is illustrated in Figure 1 in matrix form. It has first entry $a = 5$, 1 is in position $j = 4$, the immediate predecessor of 1 is $b = 16$, and there are $k = 5$ left to right maxima that occur after 1. Here $j \geq 3$ so that 1, a, b are all distinct. The special cases $j = 1$ or 2 are treated later. There is a vertical blue line through the bullet representing the entry 1, and yellow vertical lines through the left to right maxima that occur after 1. These k yellow lines divide the the part of the matrix to the right of the blue line into $k + 1$ vertical strips (in white, one of which is vacuous in Figure 1).
Furthermore, horizontal lines through 1, a and b determine three horizontal strips indexed by $A = [2, a - 1]$, $B = [a + 1, b - 1]$, $C = [b + 1, n]$. There are $j - 3$ bullets to the left of the blue line in strip B and none in A or C. Hence, to the right of the blue line there are $A := a - 2$ bullets in strip A, $B := |B| - (j - 3) = b - a - j + 2$ bullets in strip B, and $C := n - b$ bullets in strip C. The following properties of a 14352-avoider are evident in the illustration and easily proved from the definition.

- The entries to the left of 1 are increasing, else together with 1, there is a 432 pattern with no available 1. Equivalently, the bullets in the gray vertical strip on the left are rising.
- The entries 2, 3, ..., $a - 1$ occur in that order, else together with b, there is a 432 pattern with no available 1. Equivalently, the bullets in horizontal strip A are rising.
- Entries in the interval (a, b) lie either to the left of 1 or to the right of $a - 1$, else together with b, there is a 432 pattern with no available 1. Equivalently, all bullets in horizontal strip B to the right of 1 are also to the right of $a - 1$.
- Every descent initiator after 1 is a left to right maximum, else together with a left to right maximum to its left (there is one), we have a 432 pattern with no available 5. Equivalently, the bullets in each vertical white strip A are rising.

Conversely, when the position j of 1 is ≥ 3, one can check that a permutation with these properties is 14352-avoiding.
To count permutations with these four properties, let \(i \in [1, k + 1] \) denote the left to right position of the first white strip containing an entry in \((a, b)\), that is, containing a bullet in horizontal strip \(B \) (when there is one).

The subpermutation of entries in \(C = [b + 1, n]\), when split at its left to right maxima, forms a partition in a canonical form: in each block, the largest entry occurs first and the rest of the block is increasing, and the blocks are ordered by increasing first entry. This yields \(\binom{C}{k} \) choices to determine the relative positions of entries in \(C \).

Next, choose \(j - 3 \) elements from \([a + 1, b - 1]\) to precede \(1 - \binom{b-a-1}{j-3} \) choices. The entries in \(B \) following 1 must be distributed into boxes (white strips) labeled \(i, i+1, \ldots, k + 1 \) in such a way that box \(i \) is nonempty—\((k - i + 2)^B - (k - i + 1)^B\) choices when \(B > 0 \). The bullets for entries in \(A \) must be distributed into boxes \(1, 2, \ldots, i \)—\(\binom{A+i-1}{i-1} \) choices when \(B > 0 \). In case \(B = 0 \), we merely distribute the bullets for entries in \(A \) into \(k + 1 \) boxes—\(\binom{A+k}{k} \) choices.

Recalling that \(A = a - 2 \), \(B = b - a - j + 2 \), \(C = n - b \), the contribution of the case \(j \geq 3 \) to the desired count is now seen to be

\[
\sum_{a=2}^{n-1} \sum_{b=a+1}^{n} \sum_{j=3}^{b-a+1} \sum_{k=1}^{n-b} \sum_{i=1}^{n-b-k+1} \binom{n-b}{k} \binom{b-a-1}{j-3} ((k - i + 2)^b - (k - i + 1)^b)^{a-i-3} \times \binom{a+i-3}{i-1} + \sum_{a=2}^{n-1} \sum_{b=a+1}^{n} \binom{n-b}{k} \binom{a+i-3}{i-1} \quad (1)
\]

When \(j = 1 \), the map “delete first entry” is a bijection to 4352-avoiding permutations of size \(n - 1 \), counted by the Bell number \(B_{n-1} \) [7]. When \(j = 2 \), we have \(a = b \) in Figure 1, and the count reduces to \(\sum_{a=2}^{n} \sum_{k=0}^{a-2} \binom{k+a-2}{a-2} \binom{n-a}{k} \) where \(\binom{0}{1} := 1 \).

The sum over \(j \) in (1) can be evaluated using the binomial theorem, and putting it all together we have, after minor simplifications, the following result.

Theorem. For \(n \geq 2 \), the number of permutations of \([n]\) avoiding the barred pattern 14352 is

\[
B_{n-1} + 1 + 2^{n-2} - n + \\
\sum_{a=0}^{n-3} \sum_{b=0}^{a-1} \sum_{k=0}^{a-b} \left(\sum_{i=0}^{k} \binom{n-4-a+k-i}{k-i} (i+2)^b - \binom{n-3-a+k}{k} \right) \binom{a-b}{k} + \\
\sum_{a=0}^{n-2} \sum_{k=0}^{n-2-a} \binom{k+a+1}{k+1} \binom{n-2-a}{k}.
\]

The first few terms of the counting sequence, starting at \(n = 1 \), are 1, 2, 5, 14, 43, 145, 538, 2194, 9790, 47491, 248706.
References

[1] David Callan, The number of 24135-avoiding permutations, preprint, arXiv:1110.6884, 4pp.

[2] David Callan, The number of 31542-avoiding permutations, preprint, arXiv:1111.3088, 5pp.

[3] Lara Pudwell, Enumeration Schemes for Permutations Avoiding Barred Patterns, Electronic J. Combinatorics 17 (1) (2010), R29, 27 pp.

[4] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.

[5] Guy, Richard K., The Strong Law of Small Numbers, American Mathematical Monthly 95 Issue 8 (1988), 697-712.

[6] Guy, Richard K., The Second Strong Law of Small Numbers, Mathematics Magazine 63 (1990), 3–20.

[7] David Callan, A combinatorial interpretation of the eigensequence for composition, J. Integer Sequences 9 (2006) Article 06.1.4, 12 pp.