M6A associated TSUC7 inhibition contributed to Erlotinib resistance in lung adenocarcinoma through a notch signaling activation dependent way

Kai Li¹†, Zi-Yang Peng¹†, Shan Gao¹†, Qing-Shi Wang¹, Rui Wang¹, Xiang Li¹², Guo-Dong Xiao³, Jing Zhang¹, Hong Ren¹, Shou-Ching Tang⁴* and Xin Sun¹*

Abstract
Background The small tyrosine kinase inhibitors (TKIs) subversively altered the lung cancer treatments, but patients will inevitably face the therapy resistance and disease recurrence. We aim to explore the potential roles of non-coding RNAs in sensitizing the TKIs effects. Methods: Multiple cellular and molecular detections were applied to confirm the mechanistic regulations and intracellular connections. Results We explored the specific gene features of candidates in association with resistance, and found that m6A controlled the stemness of EMT features through METTL3 and YTHDF2. The miR-146a/Notch signaling was sustained highly activated in a m6A dependent manner, and the m6A regulator of YTHDF2 suppressed TUSC7, both of which contributed to the resistant features. Functionally, the sponge type of TUSC7 regulation of miR-146a inhibited Notch signaling functions, and affected the cancer progression and stem cells’ renewal in Erlotinib resistant PC9 cells (PC9ER) and Erlotinib resistant HCC827 cells (HCC827ER) cells. The Notch signaling functions manipulated the cMYC and DICER inner cytoplasm, and the absence of either cMYC or DICER1 lead to TUSC7 and miR-146a decreasing respectively, formed the closed circle to maintain the balance. Conclusion PC9ER and HCC827ER cells harbored much more stem-like cells, and the resistance could be reversed by Notch signaling inactivation. The intrinsic miR-146 and TUSC7 levels are monitored by m6A effectors, the alternation of either miR-146 or TUSC7 expression could lead to the circling loop to sustain the new homeostasis. Further in clinics, the combined delivery of TKIs and Notch specific inhibitory non-coding RNAs will pave the way for yielding the susceptibility to targeted therapy in lung cancer.
Keywords Tyrosine kinase inhibitors, Notch signaling, Cancer stem cells, Therapy resistance, N6-methyladenosine

Background
Lung cancer is the most dangerous cancer type worldwide, topping the cancer related mortality [1]. The lung cancer incidence tends to be stable, and even decreased slightly in western world [1, 2], but situations on cancer prevention were severe in developing China [3–5]. Exploring more sensitive screening strategy, improving the radical operation methods, or developing more
effective adjuvant therapeutic agents was so urgent than ever [6, 7]. Lung adenocarcinoma consists of lots of therapy targets, and the EGFR Tyrosin Kinase related Inhibitors (TKIs) have been widely and effectively applied in clinical treatments for a decade, shortening the suffering process [8, 9]. However, inevitably, the targeted therapies must face the recurrence, and receive the second or third line of chem-radiotherapy [10–12], and to identify more novel and effective therapeutic molecules and agents will be helpful and promising.

Traditional non-coding genes were always referred to the miRNAs when researching the post-translational regulations, and the lncRNAs (long non-coding RNAs) and circRNAs (circular RNAs) were later revealed for supplementing the affection of RNA family of non-coding members [13–17]. Individually, they could act as crucial modulator toward to certain downstream genes in many ways [18, 19]. The N-6-methyladenosine (m6A) regulation of RNAs attracted lots attention due to its specific and strong modification ability of epigenetic functions [20–22]. The m6A controller of writers, readers, and erasers could modulate the mRNA stability and translation, to mediate downstream effects [23, 24]. However, the roles of m6A in controlling the non-coding RNAs biogenesis were still not clear. To further identify the candidates to improve the TKIs treatments sensitization, we tentatively explored the supporting role of TUSC7 in cancer suppression, trying to establish the m6A correlated lncRNA functions in modulating the TKIs therapies resistance.

Materials and methods

Cell lines and cell culture

The human lung adenocarcinoma cells lines (PC9 and HCC827), and human embryonic cell line (HEK-293 T) were purchased from ATCC (American Type Culture Collection, VA, USA) or the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). The Erlotinib-resistant cell lines (PC9/ER and HCC827/ER) were established by chronic exposure to increasing concentrations of drugs. The ectopic expression of TUSC or miR-146 in cells were constructed and restored as pervious study elucidated [25]. All cell lines were cultured in DMEM medium supplemented with 10% FBS (Gibco), 1% penicillin and 1% streptomycin, and incubated at 37 °C in a humidified atmosphere with 5% CO2.

Materials and agents

The Notch inhibitors were chosen as FLI-06 (inhibitor-1, ab120633, Abcam), and γ-Secretase inhibitor (inhibitor-2, ab146170, Abcam). Erlotinib was purchased from Sigma-Aldrich (SML156-50MG, Merck KGaA, Darmstadt, Germany).

Quantitative real-time PCR and western blot

Total RNA was extracted from cells using Trizol, according to the manufacturer’s protocol, and reverse-transcribed into cDNA by using SYBR RT-PCR kit (Takara, JAPAN). Real-time quantitative PCR (RT-qPCR) was performed with SYBR Premix ExTaqTM II Kit (Takara, JAPAN). The sequences of the primers for PCR were synthesized by Sangon Company (Shanghai, China) and were listed in Supplemental Materials and Methods. The relative expression of mRNA and miRNA were calculated by using the formula:2−ΔΔCT. For western blot analysis, the total protein from cell extracts was harvested using RIPA buffer contained protease inhibitors. The protein extracts were fractionated by 10% SDS-PAGE, transferred onto a nitrocellulose membrane, and then incubated with primary antibodies at 4 °C overnight, followed by HRP-conjugated secondary antibody (1:5000, #7074, Cell Signaling Technology) and visualized by using ECL Blotting Detection Reagents (Merck Millipore). The primary antibodies were as follows: anti-Notch1 (1:500; Rabbit mAb, #3608, Cell Signaling Technology), anti-Notch2 (1:1000, ab8926, Abcam), anti-NCSTN (1:1000, ab189125, Abcam), anti-Vinculin (1:8000, #4650, Cell Signaling Technology), anti-NUMB (1:1500, #2761, Cell Signaling Technology), anti-EGFR (1:2000, #4267, Cell Signaling Technology), anti-DICER1 (1:500, #5362, Cell Signaling Technology), anti-CMYC (1:1500, (9E10): sc-40, Santa Cruz), anti-Snail (1:1000, ab31787, Abcam), anti-METTL3 (1:2000, ab240595, Abcam), anti-YTHDF2 (1:1000, EPR20318, ab220163, Abcam).

Sphere formation assay

Single-cell suspensions (1000 cells per well) of different groups were plated on six-well ultralow attachment plates (Corning Incorporated) in serum-free DMEM/F12 Medium supplemented with 20ng/mL EGF (Invitrogen, Carlsbad, CA) and 4μg/mL insulin (Sigma-Aldrich, St. Louis, MO). After 1 week culture, the spheres of>50μm was quantified by using an inverted microscope.

Dual luciferase report assay

The putative sequences or mutant sequences of miR-146a target sites for TUSC7–3’UTR was synthesized and cloned into the pGL3 reporter vector (Promega). These constructed reporters were named pGL3-TUSC7-WT; pGL3-TUSC7-MUT. For luciferase assay, the cells were seeded onto 24-well plates and co-transfected with 200ng of pGL3-TUSC7/EGFR-WT or pGL3-TUSC7/EGFR-MUT, 20ng of pRL-TK plasmid as normalization control, together with miR-146a-5p mimic or miR-146a-5p control (GenePharma, Shanghai, China). After
48 h of transfection, Luciferase assays were performed by using the Dual Luciferase Reporter Assay System (Promega, WI, USA).

ALDEFLUOR assay and fluorescence-activated cell sorting (FACS)
Aldehyde dehydrogenase (ALDH) enzyme activity in lung cells was determined by ALDEFLUOR assay kit (Stem Cell Technologies, Grenoble, France) according to the manufacturer’s instructions. Briefly, 1 × 10^6/ml cells mixed with Aldeflour® assay buffer containing 1.5 μM bodipy-aminooacetalddehyde (BAAA, an ALDH substrate). Then, the cell/substrate mixture was incubated for 1 h at 37°C. Diethylaminobenzaldehyde (DEAB), a specific ALDH1 enzyme inhibitor, was used as negative control. The ALDH + population was detected in the green fluorescence channel (520–540 nm) of FACS Aria (Becton Dickinson). Stained cells analyzed and sorted by utilizing FACSDiva (BD Biosciences) and FlowJo software (Treestar, Ashland, OR). Nonviable cells were excluded using 1 μg propidium iodide (PI; Sigma Aldrich, Vienna, Austria).

RNA-immunoprecipitation
The cells (5 × 10^6)/ml were harvested and washed twice with ice-cold 1× PBS buffer. Collected cell pellet was lysed for 15 min on ice by RIPA buffer for 30 min, and pretreated with a 1:10 dilution in NT2 buffer. The cell lysate was further centrifuged at 15,000 × g for 15 min at 4°C, followed by treated with magnetic beads conjugated to human anti-ATG3 antibody (1:50) or the control IgG for 18 h at 4°C, and then were washed twice with cold NT2 Buffer. Magnetic beads subsequently mixed with the diluted lysates (10 μl beads/ml lysate). The mixture was re-suspended in 100 μl NT2 Buffer containing 30 μg proteinase K to digest the protein. Co-purified RNA was extracted by the TRIzol reagent and used in subsequent qRT-PCR assay.

M6A methylation quantification assay
The m6A methylation status of cells detected using the m6A RNA Methylation Quantification Kit (Epigentek, Cat#P-9005-113) according to the manufacturer’s instructions. In brief, 200 ng of total RNA was used as an input respectively. Then RNA samples were captured and detected by spectrophotometer (Bio Tek Instruments, Inc. US) at 450 nm. The level of m6A methylation was calculated according to the manufacturer’s instructions.

As for LC–MS/MS assay, mRNA was purified from the total RNA using via oligo dT magnetic beads. Then 200 ng mRNAs were incubated with 0.5 U nuclease P1 in reaction system at 42°C for about 1 h. After that, mRNAs were incubated with 3 μL of 1 M NH4HCO3 and 1 μL of 1 U/μL alkaline phosphatase at 37°C for 2 h. And mRNAs were diluted and filtered. After which, a C18 column were used to separate mRNAs [26–29]. Then mRNAs were analyzed by an Agilent (6410 QQQ) triple-quadrupole LC mass spectrometer. Calibration curves were used to calculate the Ratio of m6A to A.

Nude mouse xenograft model
A total of 21 4-week-old female BALB/c-a nu nude mice were purchased from Beijing Huafukang Biosciences (Beijing, China), then we maintained them in specific pathogen-free conditions. Control vector, TUSC7 knockout, FLI-06 treated H1975 cells (1 × 10^7) cells were suspended in 100 μl of serum-free DMEM medium (Hyclone, USA), mixed with matrix gel (Corning, USA), and then were injected subcutaneously. The changes in the tumor size were recorded every 3 or 5 days. We calculated the tumor volume using the following formula: \(V = \frac{1}{2} \times l \times w \times l \) (l is the longer axis, 2 is the shorter axis). All mice were sacrificed 28 days after the injection of cells. The dissected tumor samples were immersed in 4% paraformaldehyde (BioSharp, China) and embedded in paraffin.

Statistical analysis
Statistical analysis was carried out by using Graph Pad Prism 6 and SPSS 20.0 software (SPSS Inc., Chicago, IL, USA). All numerical data were expressed as mean ± standard deviation (SD). Experiments were carried out with three or more replicates. Two or more groups were assessed by using Student’s t test or ANOVA individually. \(P < 0.05 \) was considered to be statistically significant.

Results
Notch signaling activation in lung adenocarcinoma pointed to poor survival expectation
The important members of Notch signaling [30, 31] were screened for expression patterns with using Pan-Cancer Atlas of TCGA data base. The total samples of 507 patients were collected, and the heat maps indicated the universal overexpression of notch signaling participants (Fig. 1A–B), and EGFR was correlated with aberrant Notch expression. Deep analysis from TCGA (Nat Genet 2016 data base) indicated the grouped enrichment of Notch expression. Notch expression. Deep analysis from TCGA (Nat Genet 2016 data base) indicated the grouped enrichment of Notch signaling factors (Fig. 1C), and the changing was consistency in groups harboring most irregulated Notch functions (Fig. 1D).

The overall survival (OS) and Disease/Progression-free survival (DFS/PFS) data were acquired from TCGA data at the CBIOPORTAL FOR CANCER GENOMIC (http:// www.cbiportal.org/) [32, 33]. Notch signaling activation decreased the survival time (Fig. 1E), and patients tended
to bear relapse or resistance in shorter follow-up periods (Fig. 1F). The overall survival and first progression estimates were analyzed by applying Kaplan-Meier analysis (http://kmplot.com/analysis/) [34–36]. The highly expressed TUSC7 indicated better progression-free estimates in adenocarcinoma, comparing to the lower expressed groups (Fig. 1G). The functional EGFR signaling could transcriptionally activate multiple downstream pathways, and the positive relationship between miR-146a and EGFR was found (Fig. 1H). MiR-146 also correlated with Notch signaling factors expressions (Fig. 1I-J).

Erlotinib resistant cells harboring notch signaling activation and TUSC7 inhibition
Lung adenocarcinoma cell lines of PC9 and HCC827 were selected for their characteristics of specific EGFR mutant status, and the signatures of PC9 and HCC827 cells referring to erlotinib treatment were shown in Figure S1. The concentration of 0.2 μM Erlotinib was chosen as the function candidate, which decreased the Notch1 (Figure S2A) and Notch2 (Figure S2B) mRNA levels in PC9 and HCC827 cells. The Erlotinib treatment also increased the TUSC7 expression level significantly (Figure S2C), together with EGFR level slightly decreased (Figure S2D). Blotting results showed that the Erlotinib treatment decreased the Notch signaling factors in PC9 and HCC827 cells (Figure S2E).

We constructed Erlotinib resistant lung cancer cells with advancing concentration gradient (Figure S3), and the differentially expressed IncRNAs between Erlotinib sensitive and resistant cells were primarily detected by gene panel selection (Figure S2F). The differentially expressed IncRNAs were pasted for GO analysis of functional identification (Figure S2G). The detailed information showed that TUSC7 of both PC9ER (Figure S2H) and HCC827ER (Figure S2I) decreased greatly, and did not react to Erlotinib treatment, comparing to the Erlotinib sensitive cells. Last but not least Erlotinib failed to inhibit the Notch signaling functions in PC9ER and HCC827ER cells (Figure S2H-I).

Notch signaling inhibition was required for TUSC7 alleviating of the Erlotinib resistance
The stem-like cells were accrued for treatment resistance, and to study the stem cells’ renewal ability in contributing to Erlotinib resistance, the ALDH1 phenotype and spheres formation nature were applied. The Erlotinib resistant PC9ER and HCC827ER cells consisted of more stem-like cells (Fig. 2A-B), and Erlotinib treatment failed to decrease the stem cells number (Fig. 2C). Higher stem cells ratio indicated resistant status, and resulted in group resistance. The Notch inhibitors were chosen as FLI-06 (inhibitor-1, ab120633, Abcam), and γ-Secretase inhibitor (inhibitor-2, ab146370, Abcam). Both PC9 and HCC827 cells responded to Notch signaling inhibitors, with stem-like cells ratios decreasing significantly (Fig. 2D-E). The lowered concentration of Notch signaling inhibitors sensitized resistant cells to Erlotinib treatment (Fig. 2F, Figure S4A-B), indicating the synergistic effects of TKI agents and Notch signaling inhibitors.

To study the TUSC7 functions, Lentiviral based TUSC7 expression vesical was introduced into PC9ER and HCC827ER cells. Erlotinib alone inhibited the Notch signaling slightly, but TUSC7 effectively enhanced the Erlotinib functions in PC9ER (Fig. 2G) and HCC827ER cells (Fig. 2H), and stimulated the suppressive functions of Erlotinib in both PC9ER (Figure S4C) and HCC827ER cells (Figure S4D). Moreover, the addition of lowered concentration of Notch signaling inhibitor strengthened TUSC7 functions (Fig. 2G-H).

Next, we found that combined TUSC7 and Erlotinib decreased the stem cells ratio greatly in both PC9ER (Fig. 2I) and HCC827ER cells (Fig. 2J). The stem cells’ renewal suppression evaluation did not show significant differences between TUSC7 alone and the combination of TUSC7 and FLI-06 (Fig. 2K-L, Figure S4E-G).

(See figure on next page.)
The combined TUSC7 and Erlotinib decreased the stem cells associated signatures, decreasing EMT markers in PC9ER cells (Figure S5A) and HCC827ER cells (Figure S5B).

TUSC7 sensitization of Erlotinib through miR-146a/notch signaling inhibition was dependent on NUMB restoration

To reveal the transduction mechanisms, bioinformatic screening of the possible connections between TUSC7
and its binding partners was conducted. We noticed that miR-146a shared common sequences with the untranslated regions of TUSC7 (Fig. 3A), and miR-146a mimics decreased the Luc-activity of TUSC7 significantly (Fig. 3B) in 293 T cells, which was also confirmed in PC9ER (Fig. 3C) and HCC827ER cells (Fig. 3D). To testify the binding probabilities between TUSC7 and its downstream partner, biotin labeled sense and anti-sense RNAs of TUSC7 were used for RNA pull down detection, and the connection between TUSC7 and NUMB in resistant lung adenocarcinoma cells was identified (Fig. 3E). Further, RNA immunoprecipitation revealed that TUSC7 was enriched with NUMB expression in PC9ER cells (Fig. 3F, left) and HCC827ER cells (Fig. 3F right). Informatic screening of the potential miRNAs’ targets suggested that miR-146a may bind to NUMB (Fig. 3G), and NUMB decreased greatly in cancer group (Fig. 3H). The alignment of miR-146a and the 3’UTR of NUMB was constructed through using the enhanced green fluorescent protein (EGFP) reporter assay. The wild-type 3’UTR sequence and the mutant 3’UTR sequence of NUMB were cloned downstream from the EGFP-coding sequence respectively, to construct the reporter plasmid and the mutant vector. The co-transfection of miR-146a mimics and the wide-type reporter plasmid strongly reduced the EGFP intensity (Fig. 3I, left), but not happened in mutant-type reporter plasmid (Fig. 3I, right). On the contrary, TUSC7 did not reduce the EGFP activity of the NUMB (Fig. 3J). miR-146a decreased the NUMB expression, which could be rescued by TUSC7, and the TUSC7 inhibition (TUSC7-in) also decreased the NUMB at the protein level (Fig. 3K).

m6A in resistant cells contributed to TUSC7 inhibition and miR-146a overexpression

The pluripotency status of resistant PC9ER and HCC827ER cells contributed to specific miR-146a and TUSC7 patterns, and to characterize the roles of m6A in therapy resistance, we investigated the variations of m6A levels, and identified that the m6A levels of total RNAs from resistant cells were statistically more abundant than sensitive original cells by using LC/MS (Fig. 4A). To further characterize the roles of m6A in generating the resistance, we used siRNAs to tentatively test the m6A related processors in controlling of TUSC7 and miR-146a. METTL3 affected the miR-146a level (Fig. 4B), and YTHDF2 affected TUSC7 level (Fig. 4C), and results were all confirmed by using the lentiviral based METTL3/YTHDF2 knock-down systems (Fig. 4D-E). Dysregulated METTL3 (Fig. 4F) and YTHDF2 (Fig. 4G) affected the EMT and pluripotency features through controlling m6A status. Moreover, decreasing either METTL3 or YTHDF2 significantly altered Snail and EMT factors expressions. m6A at Sna1 mRNA was greatly increased in resistant cells [26, 37], and we found the METTL3 inhibition decreased m6A at Sna1(Fig. 4H), which later failed to activate the miR-146a promoter (Fig. 4I) [38]. In the other hand, the m6A at TUSC7 level increased in resistant cells (Fig. 4J), and the recognition of TUSC7 m6A peak by YTHDF2 depressed TUSC7 [39, 40]. The Me-RIP (methylated RNA immunoprecipitation) assay confirmed that the high abundance of m6A modification in cells with YTHDF2 inhibition (Fig. 4L). All the results revealed that m6A determined the expression levels of miR-146a and TUSC7 in resistant cells, sustaining the balanced status.

TUSC7 formed feedback loop with miR-146/notch signaling and lead the Erlotinib re-sensitization

The unique m6A at different RNA sequences determined intrinsic RNA expressions, cellular homeostasis may be disturbed when manipulating certain IncRNA candidate. CMYC was proved previously to promote the translation of IncRNAs [41–43], and DICER1 was critical for miRNAs maturation [44–46]. Results showed that in PC9ER and HCC827ER cells, Notch signaling inhibition lead to CMYC promoter activity decreasing, and TUSC7 inhibition strongly increased the activity (Fig. 5A). Inhibition of
Fig. 2 (See legend on previous page.)
Fig. 3 MiR-146a conducted NUMB degradation was blocked by TUSC7 in a sponge combination manner. A The predicated connection sites between TUSC7 and its binding partners showed that miR-146a shared the common untranslated regions. B Recombined miR-146a mimics decreased the Luc-activity of TUSC7 in 293T cells. MiR-146a decreased the Luc-activity of TUSC7 in PC9ER cells (C) and HCC827ER cells (D). E Blotting results referring to RNA pull-down test showed the connection between TUSC7 and NUMB in PC9ER and HCC827ER cells. F RNA immunoprecipitation revealed that TUSC7 was enriched with NUMB expression in PC9ER cells (Left) and HCC827ER cells (Right), and the IgG was set as the immunoprecipitation control; the MALAT1 was set as the primer control. G Informatic screening of the potential miRNAs' targets suggested that miR-146a may bind to NUMB. H The expression level of NUMB with 526 cancer and 59 normal samples in LUAD, and the expressions with 501 cancer and 49 normal samples in LUSC were evaluated, and NUMB decreased greatly in cancer group. I The co-transfection of miR-146a mimics and the wide-type reporter plasmid strongly reduced the EGFP intensity, and miR-146a mimics reduced nearly 40% of the TUSC7 luciferase intensity, but not happened in mutant-type reporter plasmid. J TUSC7 alone did not reduce the EGFP activity of NUMB. K MiR-146a decreased the NUMB expression, which could be rescued by TUSC7, and the TUSC7 inhibition (TUSC7-in) also decreased the NUMB level.
TUSC7 increased miR-146a expression, and then stimulated the DICER1 activity (Fig. 5B).

The scheme image represented the cMYC promoter detection modes (Fig. 5C), and the mutation blocked the EGFR/Notch signaling feedback loop on lncRNA transcription induction. Western blotting further confirmed that in PC9ER and HCC827ER cells, miR-146 and TUSC7 acted the opposite way to promote the DICER1/CCND1 expression (Fig. 5D). TUSC7 and miR-146a was sustained by cMYC (Fig. 5E, left) and DICER1 (Fig. 5E, right) respectively. The regulative signaling pathways were drafted and illustrated for detailed exhibition (Fig. 5F), the dysregulated TUSC7 and miR-146a formed the feedback loop with their downstream effectors to sustain the new homeostasis.

In vivo study confirmed the effective inhibition of TUSC7 exhibited on tumor growth, and the Notch signaling inactivation by using FLI-06 also suppressed the in vivo tumor expansion (Fig. 5G), further proved its suppressive functions.

Conclusion
Lung cancer treatments have been refined greatly, with constantly and novelty emerging components, and the small molecular compounds improved the life quality and expected response to therapies in patients carrying sensitive EGFR mutants [47–49]. Surgery manners have been evolved continuously with little operation wound and duration, however, the improvement has brought little progress on overall survival [50–52]. The 1st generation of small tyrosine kinase inhibitors subversively altered the lung cancer treatments, and the “small step” has made the “major progress”, increasing the PFS with little suffering.

Reality is cruel. No matter how ideal results the TKIs achieving, and certain genes and compounds sensitized to be correlated with 1st generation of TKI functions’ sustaining by cMYC (Fig. 5E, left) and DICER1 (Fig. 5E, right) respectively. The regulative signaling pathways were drafted and illustrated for detailed exhibition (Fig. 5F), the dysregulated TUSC7 and miR-146a formed the feedback loop with their downstream effectors to sustain the new homeostasis.

In vivo study confirmed the effective inhibition of TUSC7 exhibited on tumor growth, and the Notch signaling inactivation by using FLI-06 also suppressed the in vivo tumor expansion (Fig. 5G), further proved its suppressive functions.

Conclusion
Lung cancer treatments have been refined greatly, with constantly and novelty emerging components, and the small molecular compounds improved the life quality and expected response to therapies in patients carrying sensitive EGFR mutants [47–49]. Surgery manners have been evolved continuously with little operation wound and duration, however, the improvement has brought little progress on overall survival [50–52]. The 1st generation of small tyrosine kinase inhibitors subversively altered the lung cancer treatments, and the “small step” has made the “major progress”, increasing the PFS with little suffering.

Reality is cruel. No matter how ideal results the TKIs achieving, and certain genes and compounds sensitized to be correlated with 1st generation of TKI functions’ sustaining by cMYC (Fig. 5E, left) and DICER1 (Fig. 5E, right) respectively. The regulative signaling pathways were drafted and illustrated for detailed exhibition (Fig. 5F), the dysregulated TUSC7 and miR-146a formed the feedback loop with their downstream effectors to sustain the new homeostasis.

In vivo study confirmed the effective inhibition of TUSC7 exhibited on tumor growth, and the Notch signaling inactivation by using FLI-06 also suppressed the in vivo tumor expansion (Fig. 5G), further proved its suppressive functions.

Conclusion
Lung cancer treatments have been refined greatly, with constantly and novelty emerging components, and the small molecular compounds improved the life quality and expected response to therapies in patients carrying sensitive EGFR mutants [47–49]. Surgery manners have been evolved continuously with little operation wound and duration, however, the improvement has brought little progress on overall survival [50–52]. The 1st generation of small tyrosine kinase inhibitors subversively altered the lung cancer treatments, and the “small step” has made the “major progress”, increasing the PFS with little suffering.

Reality is cruel. No matter how ideal results the TKIs achieving, and certain genes and compounds sensitized to be correlated with 1st generation of TKI functions’ sustaining by cMYC (Fig. 5E, left) and DICER1 (Fig. 5E, right) respectively. The regulative signaling pathways were drafted and illustrated for detailed exhibition (Fig. 5F), the dysregulated TUSC7 and miR-146a formed the feedback loop with their downstream effectors to sustain the new homeostasis.

In vivo study confirmed the effective inhibition of TUSC7 exhibited on tumor growth, and the Notch signaling inactivation by using FLI-06 also suppressed the in vivo tumor expansion (Fig. 5G), further proved its suppressive functions.

Conclusion
Lung cancer treatments have been refined greatly, with constantly and novelty emerging components, and the small molecular compounds improved the life quality and expected response to therapies in patients carrying sensitive EGFR mutants [47–49]. Surgery manners have been evolved continuously with little operation wound and duration, however, the improvement has brought little progress on overall survival [50–52]. The 1st generation of small tyrosine kinase inhibitors subversively altered the lung cancer treatments, and the “small step” has made the “major progress”, increasing the PFS with little suffering.

Reality is cruel. No matter how ideal results the TKIs achieving, and certain genes and compounds sensitized to be correlated with 1st generation of TKI functions’ sustaining by cMYC (Fig. 5E, left) and DICER1 (Fig. 5E, right) respectively. The regulative signaling pathways were drafted and illustrated for detailed exhibition (Fig. 5F), the dysregulated TUSC7 and miR-146a formed the feedback loop with their downstream effectors to sustain the new homeostasis.

In vivo study confirmed the effective inhibition of TUSC7 exhibited on tumor growth, and the Notch signaling inactivation by using FLI-06 also suppressed the in vivo tumor expansion (Fig. 5G), further proved its suppressive functions.

Conclusion
Lung cancer treatments have been refined greatly, with constantly and novelty emerging components, and the small molecular compounds improved the life quality and expected response to therapies in patients carrying sensitive EGFR mutants [47–49]. Surgery manners have been evolved continuously with little operation wound and duration, however, the improvement has brought little progress on overall survival [50–52]. The 1st generation of small tyrosine kinase inhibitors subversively altered the lung cancer treatments, and the “small step” has made the “major progress”, increasing the PFS with little suffering.

Reality is cruel. No matter how ideal results the TKIs achieving, and certain genes and compounds sensitized to be correlated with 1st generation of TKI functions’ sustaining by cMYC (Fig. 5E, left) and DICER1 (Fig. 5E, right) respectively. The regulative signaling pathways were drafted and illustrated for detailed exhibition (Fig. 5F), the dysregulated TUSC7 and miR-146a formed the feedback loop with their downstream effectors to sustain the new homeostasis.

In vivo study confirmed the effective inhibition of TUSC7 exhibited on tumor growth, and the Notch signaling inactivation by using FLI-06 also suppressed the in vivo tumor expansion (Fig. 5G), further proved its suppressive functions.
Fig. 4 (See legend on previous page.)
reversed by Notch signaling inactivation. Interestingly and importantly, the intrinsic miR-146 and TUSC7 levels are monitored and sustained by m6A effectors, and disturbing the miR-146 and TUSC7 expression patterns will push themselves to form the circling loop to sustain the new homeostasis. Further in clinics, the combined using of TKIs and Notch specific inhibitory non-coding RNAs will pave the way for yielding the susceptibility to targeted therapy in lung cancer.

Fig. 5 TUSC7 sensitized Erlotinib treatment and formed feedback loop with miR‑146/Notch signaling cascade. A Notch signaling inhibition resulted in cMYC promoter activity decreasing, and TUSC7 inhibition strongly increased the activity. B Inhibition of TUSC7 increased miR-146a expression, and then stimulated the DICER1 activity. C The scheme image represented the cMYC promoter detection modes. D Western blotting confirmed that in PC9ER and HCC827ER cells, miR-146 and TUSC7 acted the opposite way to promote the DICER1/CCND1 expression. E TUSC7 and miR‑146a was sustained by cMYC (Left) and DICER1 (Right) respectively. F The regulative signaling pathways were drafted and illustrated for detailed exhibition. G In vivo study confirmed the effective inhibition of TUSC7 exhibited on tumor growth, and the Notch signaling inactivation by using FLI-06 also suppressed the in vivo tumor expansion.
ME-RIP Methylated RNA immunoprecipitation
EGFP Green fluorescent protein
ALDH Aldehyde dehydrogenase
RT-qPCR Real-time quantitative PCR
circRNAs circular RNAs
m6A N-6-methyladenosine
RT-qPCR Real-time quantitative PCR
ALDH Aldehyde dehydrogenase
BAAA Bodipy-aminooxacetaldheyde
DEAB Diethylaminobenzaldehyde
EGFP Green fluorescent protein
Me-RIP Methylated RNA immunoprecipitation

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13046-021-02137-9.

Additional file 1: Supplemental Figure 1. The sensitivity of Erlotinib in treating Lung adenocarcinoma harboring mutant EGFR. The sensitivity analysis was carried with using shared data of Genomics of Drug Sensitivity in Cancer at the SANGER site. A. The Erlotinib sensitivity referring to lung cancer samples of PAN data were randomly exhibited. B. The Erlotinib sensitivity referring to lung adenocarcinoma samples were randomly exhibited. Both PC9 (C) and HCC827 (D) were sensitive to Erlotinib treatment with concentration much lower than IC50. E. EGFR mutant lung cancer cells are very sensitive to Erlotinib treatment, comparing to that of lung cancer cells with wild type EGFR.

Additional file 2: Supplemental Figure 2. Signatures of the Erlotinib resistant lung adenocarcinoma cells. A. Erlotinib decreased the Notch1 mRNA level in both PC9 and HCC827 cells. B. Erlotinib decreased the Notch2 mRNA level in both PC9 and HCC827 cells. C. Erlotinib increased the TUSC7 expression level significantly in both PC9 and HCC827 cells. D. Addition of Erlotinib did not change the EGFR expression level in both PC9 and HCC827 cells. E. Erlotinib decreased the Notch signaling factors in PC9 and HCC827 cells. F. The newly established PC9ER and HCC827ER were analyzed for lncRNAs expression patterns, and the primarily results were showed in Heatmap. G. The differentially expressed lncRNAs between Erlotinib resistant cells and sensitive cells were categorized by using GO analysis, and TUSC7 was supposed to be inhibited in PC9ER and HCC827ER cells. Real-time PCR further confirmed the suppression of TUSC7 in PC9ER (H) and HCC827ER (I) cells.

Additional file 3: Supplemental Figure 3. Establishing the Erlotinib resistant cells. A. Osimertinib was dissolved in dimethyl sulfoxide (DMSO), and a total of 1×10^6 cells/ml of H1975 cells were seeded in a 6-wells plate and incubated in RPMI-1640 medium containing Osimertinib. The initial concentrations of Osimertinib were started with a concentration equal to the half-maximal inhibitory concentration of H1975 cells. After a cycle of Osimertinib treatment, only a small percentage of cells remained. Once cells had resumed normal growth and returned to 80% confluence under the light microscope, the next cycle began. The drug concentration was gradually increased for the next cycle until cells could survive with 10μM Osimertinib. After 6 months, the H1975SOR cells were successfully established and were then harvested for RNAs analysis. B. The images of gene probes detection were exhibited for illustration.

Additional file 4: Supplemental Figure 4. TUSC7 re-sensitized the resistant PC9ER cells and HCC827ER cells through Notch signaling inhibition. A-B. All lung cancer cells responded to Notch signaling inhibitors greatly, and the much-lowered concentration of Notch signaling inhibitor sensitized both PC9ER and HCC827ER cells to Erlotinib treatment. TUSC7 stimulated the suppressive functions of Erlotinib in both PC9ER (C) and HCC827ER cells (D). E. Differences of the proliferation inhibition ratios between TUSC7 alone and the combination of TUSC7 and FLI-06 was insignificant. F-G. Supplemented images.

Additional file 5: Supplemental Figure 5. Blotting results to prove that TUSC7 functioned through Notch signaling inhibition in resistant PC9ER cells and HCC827ER cells. The combined TUSC7 and Notch signaling inhibitor decreased the stem cells associated signatures, and decreased the EMT markers in PC9ER cells (A) and HCC827ER cells (B), but the inhibitory result was similar to that of using either TUSC7 or Notch signaling inhibitor alone.

Acknowledgments
The authors acknowledge assistants in the Center for Translational Medicine, Cancer Center of the First Affiliated Hospital of Xi’an Jiaotong University, and authors appreciated all the staff of the Thoracic Department, for their technical assistance. We also appreciated very much for Dr. Mallory Ellis and Dr. Leslie Robinson for her careful revision on words editing and language polishing.

Authors’ contributions
KL: Bioscientific experiments; Cells culturing, Experimental tests, draft revision; RNA/Protein tests. ZP: Bioscientific experiments; Study designation. QW: Experimental tests; Cells culturing. XL: Bioscientific experiments; Study designation. GX: Paper drafting; RNA/Protein tests; Statistical analysis; Data base screening; Figures preparation. JZ: RNA/Protein tests. HR: Study designation; Statistical analysis. ST: Paper drafting; Study designation; Statistical analysis; Images quality control; draft revision. XS: Paper drafting; Study designation; Statistical analysis; Data base screening; Figures preparation; References cross checking, draft revision. The authors read and approved the final manuscript.

Funding
The research leading to these results received funding from National Science Foundation for Young Scientists of China, grant No. 81602597 (Referred to Xin Sun), National Science Foundation for Young Scientists of China, Grant No. 82003140 (Referred to Guo-Dong Xiao), Foundation Research Project of Shaanxi Province, 2021SF-117 (Referred to Xin Sun), The Natural Science Basic Research Program of Shaanxi Province, No. 2018JFJ07 (Referred to Xin Sun). This work was also partly supported by the Scientific and Technological Planning project of Shaanxi Province, No. 2020JM-403 (Referred to Jing Zhang).

Availability of data and materials
The datasets during and/or analyzed during the current study available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. We stated that the protocol for the research project has been approved by the Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong university, and that it conforms to the provisions of the Declaration of Helsinki.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests” in this section.

Author details
1Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an City 710061, Shaanxi Province, China. 2Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA. 3Oncology Department, the First Affiliated Hospital of Zhengzhou University, Zheng Zhou City 450052, Henan Province, China. 4University of Mississippi Medical Center, Cancer Center and Research Institute, 2500 North State Street, Jackson, MS 349216, USA.

Received: 22 July 2021 Accepted: 8 October 2021 Published online: 16 October 2021
References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

2. Bogos K, Kiss Z, Gálffy G, Tamási L, Ostoros G, Müller V, et al. Revising Incidence and Mortality of Lung Cancer in Central Europe: An Epidemiology Review From Hungary. Front Oncol. 2019;9:1051.

3. Zheng R, Zeng H, Zuo T, Zhang S, Qiao Y, Zhou Q, et al. Lung cancer incidence and mortality in China, 2011. Thorac Cancer. 2016;7(1):94–9.

4. Chen WQ, Zuo TT, Zheng RS, Zeng HM, Zhang SW, He J. Lung cancer incidence and mortality in China in 2015. Zhonghua Zhong Liu Za Zhi. 2017;39(10):795–800.

5. Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European study of cohorts for air pollution effects (ESCAPE). Lancet Oncol. 2013;14(9):813–22.

6. Cai W-Y, Wei T-Z, Luo Q-C, Wu Q-W, Liu Q-F, Yang M, et al. The Wnt–β-catenin pathway represses let-7 microRNA expression through transactivation of Lin28 to augment breast cancer stem cell expansion. J Cell Sci. 2013;126(1):2877–89.

7. Chang W, Wang H, Kim W, Liu Y, Deng H, Liu H, et al. Hormonal Suppression of Stem Cells Inhibits Symmetric Cell Division and Gastrointestinal Tumorigenesis. Cell Stem Cell. 2020;26(5):739–54.e8.

8. Sini C, Tuzi A, Rossi G, Russo A, Pezzuto A. Acquired resistance in oncogene-addicted non-small lung cancer. Future Oncol. 2021;17(1):75.

9. Li X, Wang M, Du N, Liang T, Xiao G-D, Li K, et al. Matrine inhibitory effect on oestrogen induction of symmetric division is achieved by antagonizing of oestrogen induction of symmetric division through upregulating miR-31 expression in J. Cancer. 2019;10(24):6003–13. PMCID: 6856583.

10. Wang M, Lu B, Ren S, Wu W, Fang X, Yan C, et al. Long noncoding RNA LINC01116 contributes to Gefitinib resistance in non-small cell lung cancer through regulating IFI44. Mol Ther Nucleic Acids. 2020;19:218–27.

11. He J, Jin S, Zhang W, Wu D, Li J, Xu J, et al. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through modulating STAT3 signalling. J Drug Target. 2020;28(3):300–6.

12. Pang Y, Mao C, Liu S. Encoding activities of non-coding RNAs. Theranostics. 2017;7(15):3959–95. PMCID: 5701397.

13. Li X, Wang M, Du N, Liang T, Xiao G-D, Li K, et al. Long non-coding RNA LOCS54202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression. J Cancer. 2019;10(24):6003–13. PMCID: 6856583.

14. Wang M, Yu F, Wu W, Zhang Y, Chang W, Ponnamasy M, et al. Circular RNAs: a novel type of non-coding RNA and their potential implications in antiviral immunity. Int J Biol Sci. 2017;13(12):1497–506.

15. Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, et al. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukaemia. J Hematol Oncol. 2019;12(1):51.

16. Sulaiman SA, Muhsin NIA, Jamal R. Regulatory Non-coding RNAs Network in Non-alcoholic Fatty Liver Disease. Front Physiol. 2019;10:279.

17. Cerami E, Gao J, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. PMCID: 4160307.

18. Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, et al. Micro-RNA-146a directs the symmetric division of snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16(3):268–80.

19. Pan Z, Cai J, Lin J, Zhou H, Peng J, Liang J, et al. A novel protein encoded by circFND3B inhibits tumor progression and EMT through regulating Smad7 in colon cancer. Cancer Cell. 2020;19(1):130.

20. Wang M, Li J, Liu Y, Li J, Chen F, Liu J, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun. 2019;10(1):2065.

21. Shu D, Xu Y, Chen W. Knockdown of lncRNA BLACAT1 reverses the resistance of aflatinb to non-small cell lung cancer via modulating miR-146. Cancer Lett. 2020;448:251–60.

22. Xie F, Huang C, Liu F, Zhang H, Wang L, Ren S, et al. Circular RNA MEG3 synchronizes cell cycle progression and gastric tumorigenesis. Life Sci. 2019;232:116630.

23. Zhang H, Xiao X, Wei W, Huang C, Wang M, Wang L, et al. CircLIFR synergizes with MSH2 to attenuate chemoresistance via MutSoATP-p73 axis in bladder cancer. Mol Cancer. 2021;20(1):70.

24. Sui W, Li Y, Ye S, Li Z, Liu Y, Kuang W, et al. Methyltransferase 3 Mediated mRNA m6A Methylation Promotes Stress Granule Formation in the Early Stage of Acute Ischemic Stroke. Front Mol Neurosci. 2020;13:103. PMCID: 7289951.

25. Huang G, Wang M, Li X, Wu J, Chen S, Du N, et al. TUSC7 suppression of notch activation through sponging MiR-146 recapitulated the asymmetric cell division in lung adenocarcinoma stem cells. Life Sci. 2019;232:116630.

26. Lin X, Chai G, Wu Y, Li J, Chen F, Liu J, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun. 2019;10(1):2065.

27. Cho S, Lee G, Pickering BT, Jang C, Park JH, He L, et al. miTORC1 promotes cell growth via m6A-dependent mRNA degradation. Mol Cell. 2021;81(10):2064–75.e8.

28. Xu F, Li J, Li M, Cheng J, Zhao H, Wang S, et al. FBW7 suppresses ovarian cancer development by targeting the N6-methyladenosine binding protein YTIFHD2. Mol Cancer. 2021;20(1):45.

29. Wang M, Liu J, Zhao Y, He R, Xu X, Guo Y, et al. Ureapletion of METTL14 mediates the elevation of PERP mRNA N6 adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 2020;19(11):130.

30. Ito T, Kodoh S, Ichimura K, Hassan WA, Uddaka N. Small cell lung cancer, an epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive notch signaling and expression of achaete-scute complex homologue 1. Hum Cell. 2017;30(1):1–10.

31. Nowell CS, Radtke F. Notch as a tumour suppressor. Nat Rev Cancer. 2017;17(3):145–59.

32. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cbioPortal. Sci Signal. 2013;6(269):pl1. PMCID: 4160307.

33. Arman K, Möröy T. Crosstalk between MYC and lncRNAs in hematological malignancies. Front Oncol. 2019;9:511.

34. Győrffy B, Bottai G, Lehmann-Chi J, Kéri G, Órfi L, Iwamoto T, et al. TP53 regulation HIF-1α-Mediated Glycolysis. Immunity. 2019;50(3):600–15.e15.

35. Sarfraz H, Ahmed S, De A, Hommerich B, Eklund M, et al. mTORC1 promotes cell cycle progression and tumour growth in triple-negative breast cancer. EMBO Rep. 2021;22(10):1167–79.

36. Wang J, Chen Z, Li J, Ouy J, et al. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through modulating miR-31 expression. J Cancer. 2019;10(24):6003–13. PMCID: 6856583.

37. Sarfraz H, Ahmed S, De A, Hommerich B, Eklund M, et al. mTORC1 promotes cell cycle progression and tumour growth in triple-negative breast cancer. EMBO Rep. 2021;22(10):1167–79.
45. Sun X, Xu C, Tang SC, Wang J, Wang H, Wang P, et al. Let-7c blocks estrogen-activated Wnt signaling in induction of self-renewal of breast cancer stem cells. Cancer Gene Ther. 2016;23(4):83–9.
46. Sun X, Tang S-C, Xu C, Wang C, Qin S, Du N, et al. DICER1 regulated let-7 expression levels in p53-induced cancer repression requires cyclin D1. J Cell Mol Med. 2015;19(6):1357–65.
47. Liu Y. Small cell lung cancer transformation from EGFR-mutated lung adenocarcinoma: A case report and literatures review. Cancer Biol Ther. 2018;19(6):445–9 PMCID: 5927699.
48. Herbst RS, Morgenstern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54.
49. Soria J-C, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewkulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2017;378(2):113–25.
50. Song S-W, Lee H-S, Kim MS, Lee JM, Kim HJ, Nam B-H, et al. Preoperative serum fibrinogen level predicts postoperative pulmonary complications after lung cancer resection. Ann Thorac Surg. 2006;81(6):1974–81.
51. Wao H, Mhaskar R, Kumar A, Miladinovic B, Djulbegovic B. Survival of patients with non-small cell lung cancer without treatment: a systematic review and meta-analysis. Syst Rev. 2013;2:10.
52. Oshima Y, Tanimoto T, Yuji K, Tojo A. EGFR-TKI-Associated Interstitial Pneumonitis in Nivolumab-Treated Patients With Non-Small Cell Lung Cancer. JAMA Oncol. 2018;4(8):1112–5 PMCID: 5885195.
53. Li H, Hu H, Wang R, Pan Y, Wang L, Li Y, et al. Primary concomitant EGFR T790M mutation predicted worse prognosis in non-small cell lung cancer patients. Onco Targets Ther. 2014;7:513–24.
54. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17(11):637–58.
55. Wu SG, Shih JY. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer. 2018;17(1):38 PMCID: 5817870.
56. Sun X, Li K, Zhao R, Sun Y, Xu J, Peng Z-Y, et al. Lung cancer pathogenesis and poor response to therapy were dependent on driver oncogenic mutations. Life Sci. 2021;265:118797.
57. Sousa AC, Silveira C, Janeiro A, Malveiro S, Oliveira AR, Felizardo M, et al. Detection of rare and novel EGFR mutations in NSCLC patients: implications for treatment-decision. Lung Cancer. 2020;139:33–40.
58. Xu C, Xiao G, Zhang B, Wang M, Wang J, Liu D, et al. CCAT1 stimulation of the symmetric division of NSCLC stem cells through activation of the Wnt signalling cascade. Gene Ther. 2018;25(1):4–12.
59. Wang C, Yang Y, Zhang G, Li J, Wu X, Ma X, et al. Long noncoding RNA, EMS connects c-Myc to cell cycle control and tumorigenesis. (1091–6490 (Electronic)).
60. Xiao G, Li X, Li G, Zhang B, Xu C, Qin S, et al. MiR-129 blocks estrogen induction of NOTCH signaling activity in breast cancer stem-like cells. Oncotarget. 2017;8(61):103261–73 PMCID: 5732725.
61. Liu J, Zhao G, Ding X, Guo Y, Li Y, Xu Z, et al. Cyclin D1 promotes secretion of pro-oncogenic immuno-miRNAs and piRNAs. Clin Sci (Lond). 2020;134(7):791–805.
62. Yu Z, Wang L, Wang C, Ju X, Wang M, Chen K, et al. Cyclin D1 induction of Dicer governs microRNA processing and expression in breast cancer. Nat Commun. 2013;4(1):2812.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.