DETERMINATION OF GEOMETRIC AND KINEMATIC CHARACTERISTICS OF FDM 3D PRINT PROCESS

1. Introduction

The technology of additive production in recent years has become widespread in almost all spheres of human life and industries. Every second manufacturer in the world is increasing investments in additive manufacturing. Already more than 80% of prototypes and 60% of functional units are manufactured using 3D printing [1]. Analysts around the world see explosive growth in additive manufacturing. Already more than 80% of prototypes and 60% of functional units are manufactured using 3D printing [1]. The main disadvantages are that in all studies, various materials were tested with different printing parameters. The main disadvantages are that in all studies, various materials were tested with different printing parameters. The main disadvantages are that in all studies.

Similar studies were conducted by scientists from the University of Florida and the College of Engineering at the University of California at Berkeley [3]. The researchers tested a number of samples for tensile and shear forces made of ABS and PC. One of the main conclusions is that polymeric materials have characteristics that are exchangeable with temperature and strain rate. It is this feature that creates problems when printing with one or another consumable polymeric material. The main place for the appearance of defects is the line between the cold and hot layer. Therefore, it is of interest to study the properties between the layers of the material. To study this issue, tests of printed samples for strength were carried out.

Similar studies were also carried out [4–6], in which various materials were tested with different printing parameters. The main disadvantages are that in all studies,
the conditions for the manufacture of samples were very variable. Comparing the results for the same materials, a difference in values should be noted. This can be explained by the anisotropy of properties and the heterogeneity of the structure of printed samples.

Of particular interest is the study [7]. This study shows a macro photo of the cross section of the structure of samples printed by nozzles of various diameters and with different layer thicknesses. They show that the internal volume includes a large number of cavities, and their shape and size are unstable.

The structure of printed products is generally poorly defined, so the physical characteristics of the samples are also ambiguous. Therefore, it is necessary to study the process of applying the material along the layer, to determine the geometric parameters of a single layer.

So, the object of research is the geometric parameters of the discrete layer of the prototype. The aim of research is to establish patterns of influence such as kinematics and operating modes of 3D printers on the uniformity and speed of spatial printing.

2. Methods of research

Based on the previous studies performed by the authors, uneven results were revealed for each type of sample. In addition, in each group of strength tests there were a certain number of experiments that fall out of the general picture. Therefore, it is necessary to study in detail the geometric parameters and dynamics of the process of applying the material within a single layer.

The determination of the geometric parameters of an individual layer was carried out according to the following procedure:

1. 10 rectangular samples are produced (Fig. 1) with a length of 100 mm, a height of 20 mm and a thickness equal to the diameter of the nozzle 0.5 mm.

2. The print parameters are as follows: printing speed \(V_p = 30 \text{ mm/s} \); printing temperature \(T_p = 220 ^\circ \text{C} \); layer thickness \(h_l = 0.2 \text{ mm} \). The resulting samples were cut every 10 mm. For the obtained segments, the thickness and mass were measured.

As a recyclable material, polylactide (PLA) was used.

![Fig. 1. Scheme for printing samples](image)

The determination of the dynamics of the layer was carried out according to the following method:

1. The samples were modeled 100 mm long and 20 mm high with a scale in the form of walls every 10 mm (Fig. 2). The thickness of the samples is equal to the diameter of the nozzle.

2. Printing parameters met the most optimal conditions in accordance with previous studies: \(t_p = 220 ^\circ \text{C} \); \(V_p = 30 \text{ mm/s} \). The transition to the next layer occurred at one point, so the material is applied when moving the extruder from left to right, in the opposite direction, the idle stroke.

3. The sample was placed along the \(X \) axis of the 3D printer. On the contrary, a video camera is installed at the level of the working platform, focuses on the sample.

4. After completion of the scale, the camera turns on and the process of printing several layers is removed. For one sample, the survey is repeated 2–3 times.

5. These operations must be done for printers with mechanics such as Prusa i3 and H-Bot.

6. For the captured videos, frames are selected that correspond to the process of building one layer from the beginning of the application of the material to the return of the extruder to the zero position by reverse idle.

7. Each passage is reviewed frame by frame and the number of frames for each section is considered to be 10 mm. The number of frames per stop at the zero point of the layer is considered.

3. Research results and discussion

The results of measurements of the geometric parameters of the layer are as follows (Fig. 3, 4).

Based on the results, it is found that the thickness of the layer is uneven. At the beginning of the layer, the thickness is less than the diameter of the nozzle, gradually increasing and toward the end of the layer becomes larger than the diameter of the nozzle. Also, in the interval from the beginning of the layer to the middle, delamination is present. That is, at the beginning of the movement there is an underextrusion, and at the end a «swelling» of the layer (Fig. 4, 5).

The distribution of the print head movement speeds within the framework of the formation of one layer for two types of 3D printers: Prusa i3 [8] and H-Bot [9] is established. The results are shown in Fig. 5, 6.

![Fig. 2. The process of shooting the 3D printing process](image)

![Fig. 3. Changing the thickness of the extruded PLA layer from the print start point](image)
mechanics are always more than printing on Prusa i3. Moreover, prints for H-Bot kinematics show a greater deviation from the theoretical printing speed than printers with Prusa kinematics. The results are the basis for further more detailed study of the influence of the configuration of the forming organs and the design of FDM 3D printers on the spatial printing process.

4. Conclusions

The results of experimental studies of 3D printing show that each polymer layer is applied unevenly, increasing in length. Actual printing is always more theoretical, the time difference gradually increases with decreasing printing speed. Printers with H-Bot kinematics show a greater deviation from the theoretical printing speed than printers with Prusa kinematics. The results are the basis for further more detailed study of the influence of the configuration of the forming organs and the design of FDM 3D printers on the spatial printing process.

References

1. Wohlers Report 2013. Available at: https://wohlersassociates.com/press39.html
2. Surange, V. G., Gharat, P. V. (2016). 3D Printing Process Using Fused Deposition Modelling (FDM). International Research Journal of Engineering and Technology (IRJET), 3 (3). Available at: https://www.researchgate.net/publication/301557965_3D_PrintingProcess_Using_Fused_Deposition_Modelling_FDM
3. Cantrell, J. T., Rohde, S., Damiani, D., Garnani, R., DiSandro, L., Anton, J. et. al. (2017). Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyping Journal, 23 (4), 811–824. doi: http://doi.org/10.1108/rp-03-2016-0042
4. Doiyatej, M., Varun, M., Rajeev, P. (2016). Analysis of mechanical behavior of 3D printed ABS parts by experiments. International Journal of Scientific & Engineering Research, 7 (3). Available at: https://www.ijser.org/researchpaper/Analysis-of-mechanical-behavior-of-3D-printed-ABS-parts-by-experiments.pdf
5. Letcher, T., Waytashe, M. (2014). Material Property Testing of 3D-Printed Specimen in PLA on an Entry-Level 3D Printer. Volume 2A: Advanced Manufacturing. doi: http://doi.org/10.1115/inece2014-38579
6. Johnson, G. A., French, J. J. (2018). Evaluation of Infill Effect on Mechanical Properties of Consumer 3D Printing Materials. Advances in Technology Innovation, 3 (4), 179–184.
7. Koznetsov, V., Solonin, A., Uzhumtsev, O., Schilling, R., Tavitov, A. (2018). Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process. Polymers, 10 (3), 513. doi: http://doi.org/10.3390/polym10030513
8. Prusa research. Available at: https://www.prusa3d.com/
9. Weikert, S., Ratnaewara, R., Zirn, O. (2010). Modeling and measurement of H-Bot kinematic systems. Swiss Federal Institute of Technology Zurich. Available at: https://www.icvr.ethz.ch/ConfigurationM/jm/publications/MODELING_A_132867106151936/3314 mod.pdf
10. Ultimaker Cura. Available at: https://ultimaker.com/en/resources/52833-install-ultimaker-cura

Oleksyshen Vitalii, Postgraduate Student, Department of Chemical, Polymeric and Silicate Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: vitaliy.oleksyshen@gmail.com, ORCID: https://orcid.org/0000-0002-0477-2588

Sokolskyi Aleksandr, PhD, Associate Professor, Department of Chemical, Polymeric and Silicate Machine Building, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: sokol32@ukr.net, ORCID: https://orcid.org/0000-0002-7929-3576

Kolosov Oleksandr, Doctor of Technical Sciences, Professor, Senior Researcher, Member of Academy of Sciences of Higher Education of Ukraine, Ukrainian Patent Attorney, Department of Chemical, Polymeric and Silicate Machine Building, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: a-kolosov@ukr.net, ORCID: http://orcid.org/0000-0001-8939-0391

Solovei Vladyslav, Postgraduate Student, Department of Chemical, Polymeric and Silicate Engineering, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Ukraine, e-mail: vl_solovej84@gmail.com, ORCID: http://orcid.org/0000-0002-5638-2701