Yield and composition of milk and detection of plasma ghrelin and IGF – 1 in dairy buffalo fed with Moringa oleifera leaf meal (MoLM) supplement

N Tadeo Jr¹, V Abellera¹, R Vega², R Sulabo², A Rayos², R Baconguis², T Saludes³ and F Tadeo⁴

¹Faculty, PTIA-Isabela State University – Cabagan
²Faculty, University of the Philippines - Los Baños
³Researcher, Philippine Carabao Center, Los Baños
⁴Faculty, Villa Cacho Integrated School

E-mail: norberttadeojr@yahoo.com

Abstract. The study investigated the nutritive effects of Moringa oleifera leaf meal (MoLM) in terms of milk yield and composition and detection of putative plasma ghrelin and IGF-1 in dairy buffalo. A total of eight (8) lactating dairy buffalo in mid lactation stage were randomly allotted to two treatments (T1-Control and T2-30% MoLM + 70% Concentrate). Milk samples were analyzed using MilkoScan FT-1 milk analyzer. Data on the milk yield and milk composition were analyzed using factorial analysis in CRD by means of Statistix 10. Blood samples were collected before the during the feeding trial to test the presence of ghrelin and IGF-1 concentration using SDS-PAGE. In terms of milk yield and composition, no significant differences were noted between treatments but significant difference was noted in terms of milk collection on milk protein, lactose, TS and SNF. Both hormones (ghrelin and IGF-1) were detected in the blood of experimental animals before and after the feeding trial. This study demonstrated that MoLM can be a good alternative for commercial feed for dairy buffaloes.

1. Introduction

One way to increase milk production is through diet modification using protein-rich supplement like Moringa oleifera leaf meal (MoLM) [1]. Moringa leaves are also rich in carotene, iron, ascorbic acid [2]. The leaves of M. oleifera are rich in minerals like calcium, potassium, zinc, magnesium, iron and copper [3]. This plant contains phytochemicals such as tannins, sterols, terpenoids, flavonoids, saponins, anthraquinones, alkaloids and reducing sugar present along with anti-cancerous agents like glucosinolates, isothiocyanates, glycoside compounds and glycerol-1-9-octadecanoate [4].

In cows and does, its galactagogue properties have already been proven but information on the feeding value of MoLM in relation to buffalo production specifically in milk production are few. In relation to this, the study was focused on investigating the effects of MoLM and interval of milk collection in terms of milk yield and milk composition, and detection of putative plasma ghrelin and IGF-1. Ghrelin is small synthetic molecules called growth-hormone secretagogues (GHSs) that
stimulate the release of growth hormone (GH) from the pituitary [3]. On the otherhand, Insulin-like Growth Factor – 1 (IGF-1) is the mediator of the anabolic and mitogenic activity of GH [5]. Both the plasma ghrelin and IGF-1 are involved in partitioning the energy and nutrients towards milk production in dairy buffalo.

Results from this study aimed to produce new knowledge that will help dairy buffalo raisers improve their milk production and consequently increase their income.

2. Materials and Methods

A total of eight (8) lactating buffaloes weighing from 481 to 534 kilograms, five (5) parities and at the same lactation stage (mid lactation) were randomly allotted to two treatments. Each treatment was replicated four times with one animal per replicate. The dairy buffaloes were confined in individual pens and acclimatized for two weeks. The animals were assigned to the following treatments: T1 – Control (1.25% urea + 98.75% concentrate and T2 - 30% MoLM + 70% concentrate).

The dairy animals were given 70% fresh forages and 30% concentrates. MoLM was sourced out from different barangays in the municipalities of Ilagan, Tumauini, Delfin Albano, Cabagan, Sta Maria and Sto. Tomas Isabela. Green moringa leaves were harvested and dried under the sun for 72 hours.

Sun dried moringa leaves were ground and mixed in the concentrate diet of the animal at 30% level of the total concentrates.

The concentrates offered to the experimental animals was formulated by Gromax Incorporated using cereals, soybean meal, copra meal, molasses, rice bran, pollard, distillers dried grains soluble, limestone, biofos, vitamins, minerals and mold inhibitors as ingredients. The crude protein CP, ether extract (EE) and calcium (Ca) content of the concentrates was 16.00, 7.00, and 0.90% respectively. The proximate composition of the concentrates diet of the experimental animal is shown in Table 1.

Table 1. Proximate composition (%) of the different concentrates offered to control and treated animals (dry matter basis).
Treatment 1
Crude Protein (CP)
Crude Fiber (CF)
Ether Extract (EE)
Nitrogen Free Extract (NFE)
Ash
Calcium (Ca)
Phosphorus (P)
Gross Energy (kcal/kg)

The experimental animals were fed with MoLM mixed concentrates twice a day (early morning and late afternoon) and forage for 63 days. The amount of forage and concentrates given to the experimental animals was based on 5% dry matter requirements of the animals.

Prior to the administration of the supplements, the weights of the experimental animals were taken. After acclimatization, individual milk yield was collected and served as the initial milk yield. Milk was collected twice a day at 4:00 a.m. and 3:00 p.m. and recorded daily.

Concentrate diets of the lactating buffalo were analyzed by proximate analysis using standard AOAC methods 2000 [5].

Individual samples of milk were analyzed using MilkoScan FT-1 milk analyzer which analyses fat, protein, lactose, total solids, solid non fat of milk.
Before and after the administration of moringa in buffaloes’ diet, blood samples were collected. Collection of blood was done in the morning (3:30 a.m) at a two-week interval. Blood plasma was harvested after centrifugation and used in detecting the presence of putative ghrelin and IGF-1 hormones using Sodium Dodecyl Sulfate (SDS) Polyacrylamide Gel Electrophoresis (PAGE).

Data on milk yield and milk composition were analyzed using a Complete Randomized Design (CRD). Factor 1 was the different concentrates offered while factor 2 was the interval of milk sampling.

3. Results and Discussion

3.1. Milk yield

For nine (9) weeks of feeding trials, both Treatments 1 and 2 obtained the highest milk yield in the 2nd week while the lowest was in the 7th week (Table 2).

Weekly Collection	Treatment 1	Treatment 2
Initial	53.20	53.03
Week 1	51.28	49.95
Week 2	55.60	57.03
Week 3	52.83	54.45
Week 4	50.33	52.33
Week 5	49.25	49.73
Week 6	48.33	51.33
Week 7	46.78	48.33
Week 8	48.53	50.20
Week 9	47.18	49.33
MEAN ± SEM	50.33± 4.61	51.57± 5.03

In Treatment 2, an increase in milk yield of about of 0.48 kgs to 3.00 kgs per day was recorded.

![Figure 1](image)

Figure 1. Trend of milk yield of lactating buffaloes for 9 weeks feeding.

See-saw pattern was the trend of milk yield obtained in the study (Figure 1). Before feeding the experimental animals with test concentrates, the milk yield was high. However, a significant decrease
in the milk yield was noticed after the first administration of the test concentrates. On the 3rd week of
the administration, the milk yield increased again to a certain level and then declined gradually during
the succeeding weeks. Abrupt drop on milk yield was again noted on the 7th week but increased again
in the succeeding weeks of collection.

Decreased milk yield on the first week was due to the adjustment of the animals on the changes to
the feeds offered. Abrupt drop in milk yield noted on the 7th week could be due to climatic stress
brought about by the typhoon Glenda. It affected the feed intake of both control and treated animals.
According to Mauser et al [7] climatic changes (temperature and humidity) greatly affect milk
production in dairy animals. During the succeeding weeks of feeding, the animals were observed to
have gradually recovered. No significant difference was noted between the two treatments and on
different milk collections.

3.2. Milk composition
Milk collected before and after the administration of the two (2) treatments were examined. The
percentage of EE, CP, lactose, TS and SNF were analyzed using milk analyzer. The result of the
analyses is shown on Table 3.

Weekly Collection	Treatment 1	Treatment 2
Initial	8.70	7.82
1st Collection	9.21	8.58
2nd Collection	7.84	8.90
3rd Collection	8.77	8.88
4th Collection	8.68	9.44
MEAN ± SEM	8.64 ± 1.05	8.72 ± 0.58

The percentage milk fat in Treatment 1 ranged from 7.88 to 9.21\% while in Treatment 2, it ranged
from 8.58 to 9.44\%. Low milk fat content ranging (6.40 - 7.70\%) was reported Caroian et al. [8].

The result of this study on the fat content of buffaloes' milk was in accordance with the findings of
Khan et al. [6]. Slightly higher fat percentage value was obtained in this study compared to the values
recorded this is due to the fat content of the feeds offered (with MoLM) to the experimental animals is
higher but statistically, no significant difference was noted between the two treatments and milk
collection.

According to Caroian et al. [8] fat content varies depending on the stage of lactation and milk
production volume. The fat content level tends to decrease from 1st to 4th lactation and it gradually
increases until it reaches the maximum value. Slight decrease of milk fat will follow on the 8th
lactation. The percentage fat of buffaloes milk increases steadily from 5.5 to 7.5\% in the first and 10th
month of lactation.

Protein percentage showed no significant difference between the two treatments (Table 4). However, there was a significant difference of milk protein percentage between the initial milk
collection and the succeeding milk collections.

Studies conducted by Han et al.[9] and Caroian et al.[8] showed protein percentage ranging from
4.00- 5.00\%. The protein content obtained in this study was in accordance with the findings of Imran
et al.[10]. Compared to the values recorded by other researchers, higher protein percentage was
recorded in this study. Increasing protein content of the milk extracted from both treatments maybe
due to high protein content of the feeds offered to the experimental animals.
Table 4. Milk protein (%) content of lactating buffaloes fed with control and supplemented with 30% MoLM concentrates.

Weekly Collection	Treatment 1	Treatment 2
Initial	3.81	4.15
1st Collection	4.94	4.91
2nd Collection	5.65	5.63
3rd Collection	5.77	5.42
4th Collection	5.48	5.51
MEAN ± SEM	5.13 ± 0.29	5.12 ± 0.63

¹Superscript with different letters are significant (P≤ 0.05)

The lactose content in Treatment 1 ranged from 5.12 to 6.44% while in Treatment 2 it ranged from 4.77 to 6.46% (Table 5).

Table 5. Milk lactose (%) content of lactating buffaloes fed with control and supplemented with 30% MoLM concentrates.

Weekly Collection	Treatment 1	Treatment 2
Initial	4.86	4.60
1st Collection	5.12	4.77
2nd Collection	6.16	6.43
3rd Collection	6.44	6.46
4th Collection	6.33	6.42
MEAN ± SEM	5.78 ± 0.35	5.74 ± 0.20

¹Superscript with different letters are significant (P≤ 0.05)

On the other hand, Han et al. [9] and Caroian et al. [8] obtained 4.60 to 5.41% milk lactose. Significant difference was noted in milk collection where 2nd, 3rd and 4th collections are comparable to the initial and 1st milk collections. The result of the study indicates that prolong feeding of the two treatments will gradually increase the amount of lactose in milk.

The percent milk total solids of the two Treatments ranged from 19.95 to 24.02% and 19.21 to 24.07%. The analysis showed no significant difference. Comparable results were observed on different times of milk collections (Table 6).

Table 6. Total solids (%) content of lactating buffaloes fed with control and supplemented with 30% MoLM concentrates.

Weekly Collection	Treatment 1	Treatment 2
Initial	18.81	17.86
1st Collection	19.95	19.21
2nd Collection	22.93	22.10
3rd Collection	23.34	24.44
4th Collection	23.02	24.07
MEAN ± SEM	21.81 ± 1.68	21.54 ± 1.14

¹Superscript with different letters are significant (P≤ 0.05)

The TS ranges from 16.99 to 20.18% was recorded by Braun et al.[11]. The milk TS percentage obtained by Han et al. [9] ranged from 16.70 to 18.18%. Higher values of TS were obtained in this experiment than the values obtained from different studies due to the nutrients present in moringa which contributes in the milk composition.

Meanwhile, the percentages of SNF were similar in both treatments (Table 7). Higher SNF value was recorded in this experiment than to the data obtained by Ahmad et al. [12].
In terms of milk collections, 2nd – 4th week values were higher (P<.05) than those obtained from initial to 1st week.

Table 7. Solid non fat (%) content of lactating buffaloes fed with control and supplemented with 30% MoLM concentrates.

Weekly Collection	Treatment 1	Treatment 2
Initial	9.49	9.52
1st Collection	10.74	10.47
2nd Collection	10.74	10.47
3rd Collection	13.24	13.22
4th Collection	14.65	14.70
MEAN ± SEM	**11.77 ± 1.26**	**11.68 ± 0.69**

Superscript with different letters are significant (P≤ 0.05)

No significant difference in milk composition was observed in cows when fed with MoLM, SBM and “Iso” concentrates [14]. The same findings was observed by Sanchez et al. [1] in using 2 or 3 kg of Moringa in cows.

Prolong feeding of MoLM resulted to increase in SNF content of buffalo milk this maybe attributed by potent nutrients present in MoLM that are used during the formation of milk.

3.3. Putative ghrelin and IGF-1

The images of the gels after electrophoresis are shown Figures 2 and 3. In the gel, there was noticeable band between lysozyme (14.4kda) and aprotinin (6kda). This band is a possible indication of the presence of IGF-1(7.649kda) hormone. Ghrelin hormone (3.370kda) band was also visible between the bands of insulin B chain (3.5kda) and insulin A chain (2.5kda). Both hormones (IGF-1 and ghrelin) were detected in the blood of untreated buffaloes.

![Figure 2. Gel of blood plasma from treatment 2 after electrophoresis.](image)
Figure 3. Gel of blood plasma from treatment 1 after electrophoresis.

According to Kojima et al. [8] ghrelin is small synthetic molecules called growth-hormone secretagogues (GHSs) that stimulate the release of growth hormone (GH) from the pituitary. On the other hand, Insulin-like Growth Factor – 1 (IGF-1) is the mediator of the anabolic and mitogenic activity of GH [13]. High protein content of Moringa will stimulate the acinar cells of the stomach to release ghrelin which is a hunger stimulating peptide hormone. Ghrelin will activate the hypothalamic pituitary gland to release growth hormone and insulin-like growth factor-1 that are involved in partitioning the energy and nutrients towards milk production.

4. Conclusion
Feeding of concentrates with MoLM to dairy buffaloes had no effect in terms of milk yield and composition. Both hormones (putative IGF-1 and ghrelin) were detected in the blood of untreated buffaloes. Longer feeding trials must be done to test the long term effects of moringa in milk yield and quality and strategy on coating of MoLM is suggested to protect and reduce the MoLM from fast degradation in the rumen, reticulum and omasum and to reach the abomasums where ghrelin is produced and to maximize its effect in milk production.

Acknowledgement
I would like to extend my profound gratitude to the Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP) and Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development-Department of Science and Technology Dissertation Assistance (PCAARRD-DOST) and the Philippine Carabao Center (PCC) - Los Banos, Laguna for providing financial assistance and thesis grant.

References
[1] Sánchez N R, Spörndly E, Ledin I 2006 Effect of feeding different levels of foliage of Moringa oleifera to creole dairy cows on intake, digestibility, milk production and composition Livest. Sci. 5 24-30.
[2] Makkar H P S, Becker K 1996 Nutritional value and anti-nutritional components of whole and ethanol extracted Moringa oleifera leaves Anim. Feed Sci. Technol. 63 1-4 221-228.
[3] Kojima M, Hosada H, Date Y 1999 Ghrelin is a growth-hormone-releasing acylated peptide from stomach Physiol. Rev. 402 656-660.
[4] Berkovich L, Earon G, Ron I, Rimmon A, Vexler A, Lev-Ari S 2013 Moringav oleifera aqueous leaf extract down-regulates nuclear factor-kappa B and increases cytotoxic effect of chemotherapy in pancreatic cancer cells BMC Complement Altern. Med. 13 212-219.
[5] AOAC 2000 Official Methods of Analysis. AOAC Washington DC USA.
[6] Khan M A S, Islam M N Siddiki M S R 2007 Physical and chemical composition of swamp and water buffalo milk: a comparative study Ital. J. Anim. Sci. 6 1067-1070.
[7] Mauser G, Bauman Y, Nennick T, Sutathe E 2015 Impacts of climate change on milk in the United States The Prof. Geogr. 67 1 121-131.
[8] Caroian A, Miresan V, Radacu C, Cocan C, Daraban S, Caroian C 2013 Changes of buffalo milk physico-chemical parameter in population from Cluj County Anim. Biol. Anim. Husb. Int. J. Bioflux Soc. 5 2 188-193.
[9] Han X, Lee F L, Zhang L, Guo M R 2012 Chemical composition of water buffalo milk and its low-fat symbiotic yogurt development Funct. Food Health Dis. 24 86-106.
[10] Imran M, Khan H, Hassan S S, Khan R 2008 Physicochemical characteristics of various milk samples available in Pakistan J. Zhejiang Univ. Sci. B. 9 546-551.
[11] Braun P G, Stefanie P E 2008 Nutritional composition and chemico-physical parameters of water buffalo milk and milk products in Germany, Milchwiss Milk Sci. Int. 63 70-72.
[12] Ahmad S, Anjum F M, Huma N, Sameen A, Sahoor A 2008 Composition and Physico-chemical Characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins J. Anim. Plant Sci. 23 62-74.
[13] Laron Z 1999 Somatomedin-1 (recombinant insulin-like growth factor-I). Clinical pharmacology and potential treatment of endocrine and metabolic disorders Biodrugs. 11 55–70.
[14] Mendieta-Araica B, Spördly R, Reyes-Sánchez N, Spördly E 2010 Moringa (Moringa oleifera) leaf meal as a source of protein in locally produced concentrates for dairy cows fed low protein diets in tropical areas [irfankpm.staff.ipb.ac.id/files/2011/12/190411.docx].