Влияние органоминеральных добавок на физико-механические свойства и коррозионную стойкость цементно-песчаных растворов

Нго Суан Хунг¹, Танг Ван Лам², Б.И. Булгаков¹, О.В. Александрова¹, О.А. Ларсен¹

¹Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ); г. Москва, Россия;
²Ханойский горно-геологический университет; Ханой, Вьетнам

АННОТАЦИЯ
Введение. Масштабное строительство морских сооружений в прибрежной зоне Вьетнама требует разработки новых составов вяжущих веществ для гидротехнических бетонов и технологий приготовления бетонных смесей, а также их транспортирования к месту укладки.

Материалы и методы. Для получения растворной смеси использовано вяжущее, состоящее из сульфатостойкого портландцемента с добавлением тонкодисперсных минеральных добавок в виде низкокальциевой золы уноса (ЗУ) ТЭС «Вунг Анг» и микрокремнезема SF-90 (MK-90). Использован суперплástификатор SR 5000F и речной кварцевый песок. Формы и размеры частиц порошкообразных сырьевых материалов определяли методом лазерной гранулеметрии, исследование минерального состава сульфатостойкого цемента проводилось с помощью рентгенофазового анализа, влияние комплексных органоминеральных добавок на особенности фазового состава цементного камня изучали методом термогравиметрического анализа.

Результаты. Исследовано применение комплексных органоминеральных добавок в процентном соотношении от массы цемента: 1,1–1,45 % суперпластификатора SF 5000F, 10–15 % MK-90 и 30 % ЗУ, при водящее к ускорению в 1,4–1,9 раз набора прочности на сжатие и растяжение при изгибе образцов из цементно-песчаных растворов на основе сульфатостойкого цемента как в раннем возрасте, так и к 28 сут по сравнению с контрольными образцами. Установлено, что включение в состав модифицирующих добавок MK-90 и ЗУ благодаря их высокой пуццоланической активности позволяет снизить на 1,27–3,29 % содержание портландита в цементном камне в возрасте 28 сут по сравнению контрольным составом.

Выводы. Полученные результаты испытаний позволяют рекомендовать применение комплексных органоминеральных добавок для повышения коррозионной устойчивости цементно-песчаных составов, способствующих ускоренному формированию более плотной структуры цементного камня с низкой пористостью и морозостойкостью, а также снижению вредного воздействия сульфатов и других агрессивных факторов на структуру цементного камня. Применение таких добавок позволяет улучшить коррозионную стойкость цементно-песчаных растворов и обеспечить их использование для строительства морских гидротехнических сооружений во Вьетнаме.

КЛЮЧЕВЫЕ СЛОВА: низкокальциевая зола-уноса, микрокремнезем, сульфатостойкий портландцемент, суперпластификатор, прочность, относительная деформация, сульфатная коррозия, портландит

ДЛЯ ЦИТИРОВАНИЯ: Нго Суан Хунг, Танг Ван Лам, Булгаков Б.И., Александрова О.В., Ларсен О.А. Влияние органоминеральных добавок на физико-механические свойства и коррозионную стойкость цементно-песчаных растворов // Строительство: наука и образование. 2020. Т. 10. Вып. 1. URL: http://nso-journal.ru. DOI: 10.22227/2305-5502.2020.1.5

Effect of organo-mineral additives on physical-mechanical properties and corrosion resistance of sand-cement mortars

Ngo Xuan Hung¹, Tang Van Lam², Boris I. Bulgakov¹, Olga V. Aleksandrova¹, Oksana A. Larsen¹

¹Moscow State University of Civil Engineering (National Research University) (MGSU); Moscow, Russian Federation;
²Hanoi University of Mining and Geology; Hanoi, Vietnam

ABSTRACT
Introduction. TConstruction of large-scale offshore structures in the coastal area of Vietnam requires new compositions of binders for hydraulic concretes, advanced concrete mixing technologies, and concrete transportation to depositing sites.
ВВЕДЕНИЕ

В современном строительстве наиболее технологическим, экономически целесообразным и универсальным способом улучшения свойств бетонов различного назначения является применение комплексных модифицирующих составов, в том числе добавок, содержащих техногенные отходы, с целью получения бетона с высокой прочностью и долговечностью [1–8]. Один из основных показателей долговечности бетонов гидротехнического назначения — их стойкость к сульфатной коррозии [9–13].

Условия эксплуатации и использования железобетонных конструкций подобных сооружений осложнены также и другими воздействиями в виде незакономерных температурных нагрузок в зонах надвогового и переменного уровня воды, а также гидроабразивного истирания из-за присутствия в морской воде мелких твердых частиц, что вносит дополнительные сложности в выбор сырьевых компонентов.

Из-за недостаточной физической прочности строительных материалов, в том числе и бетонов, их качество в значительной степени зависит от соответствия строительных материалов требованиям различных нормативных документов, а также от эффективности используемых добавок на процесс формирования структуры и свойства цементного камня и степенью их взаимодействия с влагой и другими агрессивными факторами [14, 15].

Свойства бетонных конструкций оказывают влияние на скорость коррозии бетона и прочность бетона, которые во многом зависят от температурной среды. Бетон устойчив к коррозионным процессам, если он обладает высоким содержанием минералов, которые могут уменьшить влажность до определенного уровня, и способен впитывать воду из окружающей среды [16, 17]. Условия эксплуатации — изучение влияния различно- соединений комплексных модифицирующих добавок на процесс формирования структуры и свойства цементного камня [14, 15].

Свойства бетонных конструкций в сульфатной коррозии определяются следующими параметрами: прочность бетонной смеси, содержание воды в бетоне, температура, влажность, атмосферное давление, а также физико-механические свойства бетона, которые зависят от состава бетонной смеси и технологии ее получения [14, 15].

Материалы и методы

Материалы. В работе использованы следующие сырьевые компоненты. 1. Сульфатостойкий портландцемент (СЦ) типа ЦЕМ I CC 42,5 N производства завода «Гам Диет» (Вьетнам) с истинной плотностью 3,15 г/м³, состав и свойства которого соответствуют требованиям ГОСТ 22266-20131 и ВСН 6067:20042. С помощью метода рентгенографического анализа на порошковом рентгеновском дифрактометре XDA-8 Advance фирмы Bruker (ФРГ) был определен минеральный состав использованного СЦ (рис. 1, табл. 1).

1 ГОСТ 22266-2013. Цементы сульфатостойкие. Технические условия. М.: Стандарты, 2014. 12 с.
2 ТСН 6067:2004. Химический состав бетона — Yêu cầu kỹ thuật. Hanoi, Vietnam, 2004. 4 p.
Влияние органоминеральных добавок на физико-механические свойства и коррозионную стойкость цементно-песчаных растворов

Файл – Сульфитстойкий портландцемент ЦЕМ I СС 42,5 Н; Съемка – 25.07.2019; Анод – Cu

Начальный угол = 6,0; Конечный угол = 70,0; Шаг = 0,05; Экспозиция = 1,0; Скорость = 16; Максимальное число импульсов = 2320

Рис. 1. Рентгеновский спектр ЦС ЦЕМ I СС 42,5 Н производства «Там Диеп»

Табл. 1. Минеральный состав и физико-механические характеристики портландцемента ЦЕМ I СС 42,5 Н

Минеральный состав, % масс.	Удельная поверхность, см²/г	Нормальная густота, %	Сроки схватывания, мин	Прочность на сжатие, МПа						
С3S	С2S	С3А	С4АF	другие	C3S	C2S	C3А	C4АF	другие	
57,2	24,4	3,2	12,4	2,8	3680	29,3	120	254	18,4	51,5

Табл. 2. Химические составы сульфитстойкого портландцемента, ЗУ ТЭС «Вунг Анг» и микрокремнезема SF-90

Материалы	Средний химический состав, % масс.									
	SiO₂	Al₂O₃	Fe₂O₃	SO₃	K₂O	Na₂O	MgO	CaO	P₂O₅	Потери при прокаливании
СЦ	20,4	4,4	5,4	3,5	0,5	1,3	2,5	59,5	–	2,5
ЗУ ТЭС «Вунг Анг»	54,62	24,17	6,15	2,81	1,28	1,25	1,57	1,48	1,63	5,04
MK-90	91,65	2,25	2,47	–	–	0,58	–	0,51	–	2,54

Минеральный состав использованного портландцемента и его физико-механические характеристики приведены в табл. 1, а его химический состав и химические составы ЗУ ТЭС «Вунг Анг» и MK-90 — в табл. 2.

2. Низкокальциевая ЗУ ТЭС «Вунг Анг» (Вьетнам) класса F, соответствующая требованиям ГОСТ 25818-2017, и микрокремнезем SF-90 производства фирмы Vina Pacific (Вьетнам), показы в которого соответствуют ТУ 5743-048-02495332-96.

С использованием метода лазерной гранулометрии в Институте строительной науки и технологии (Вьетнам) был определен гранулометрический состав низкокальциевой ЗУ ТЭС «Вунг Анг», микрокремнезема SF-90 и ЦС (рис. 2).

3. Кварцевый песок р. Ло (Вьетнам) с модулем крупности M₉₅ = 2,95, истинной плотностью 2,62 г/см³ и насыпной плотностью в уплотненном состоянии 1540 кг/м³. Это песок I класса, соответствует требованиям ГОСТ 8736-2014 и TCVN 7570:2006.

4. Поликарбоксилатный суперпластификатор SR 5000F производства фирмы Silk Road (Корея) с плотностью водного раствора 1,1 г/см³ при температуре 20 ± 5 °С в соответствии с ГОСТ 24211-2008.

5. Водопроводная вода в качестве воды затворения для получения бетонной смеси, соответствует требованиям ГОСТ 23732-2011.

3 ГОСТ 25818-2017. Золы уноса тепловых электростанций для бетонов. Технические условия. М.: Стандарты, 2017. 23 с.
3 ГОСТ 25818-2017. Золы уноса тепловых электростанций для бетонов. Технические условия. М.: Стандарты, 2017. 23 с.
4 ТУ 5743-048-02495332-96. Микрокремнезем конденсированный. М., 1996. 23 с.
4 ТУ 5743-048-02495332-96. Микрокремнезем конденсированный. М., 1996. 23 с.
5 ГОСТ 8736-2014. Песок для строительных работ. Технические условия. М.: Стандарты, 2014. 7 с.
5 ГОСТ 8736-2014. Песок для строительных работ. Технические условия. М.: Стандарты, 2014. 7 с.
6 TCVN 7570:2006. Cốt liệu cho bê tông và vữa — Yêu cầu kỹ thuật. Hanoi, Vietnam, 2006. 11 p.
7 ГОСТ 24211-2008. Добавки для бетонов и строительных растворов. Общие технические условия. М.: Стандарты, 2012. 15 с.
7 ГОСТ 24211-2008. Добавки для бетонов и строительных растворов. Общие технические условия. М.: Стандарты, 2012. 15 с.
8 ГОСТ 23732-2011. Вода для бетонов и строительных растворов. М.: Стандарты, 2012. 35 с.
8 ГОСТ 23732-2011. Вода для бетонов и строительных растворов. М.: Стандарты, 2012. 35 с.
Методы. Методология работы включала:
• изучение формы и размеров частиц сырьевых компонентов проводили с помощью метода лазерной гранулометрии на приборе «BT-9300z» (КНР);
• исследование минерального состава использованного СЦ осуществляли с помощью рентгенфазового анализа на порошковом рентгеновском дифрактометре XDA-D8 Advance фирмы Bruker (ФРГ) в Институте строительной науки и технологии (СРВ);
• для проектирования состава цементно-песчаной смеси с комплексными органоминеральными добавками использовали стандарт ГОСТ 30744-2001;
• открытую пористость и полный объем пор цементного камня серии образцов определяли по ГОСТ 12730.4-78;
• среднюю плотность затвердевших растворов определяли на образцах-кубах размером 70,7 × 70,7 × 70,7 мм согласно ГОСТ 5802-86;
• прочность на растяжение при изгибе образцов-балочек размером 40 × 40 × 160 мм из цементно-песчаных растворов, а затем их половинок на сжатие — в соответствии с требованиями ГОСТ 30744-2001;
• определение деформации цементного камня в жидкой сульфатной среде проводили по ГОСТ Р 56687-2015 на образцах размером 25 × 25 × 254 мм;
• влияние комплексных органоминеральных модифицирующих добавок на особенности фазового состава цементного камня изучали методом термогравиметрического анализа на деривографе Labsys Evo S60/58988 фирмы Setaram (Франция).

Экспериментальные образцы изготавливали из растворных смесей с соблюдением следующих соотношений:
• при использовании поликарбоксилатного суперпластификатора SR 5000F водо-вяжущее отношение составляло $\frac{V}{V_{яж}} = 0,3$, где $V_{яж} = СЦ + МК-90 + ЗУ [17–19]$, а без суперпластификатора $\frac{V}{V_{яж}} = 0,5$;
• соотношение между песком и цементом $\Pi : СЦ$ равнялось 3 : 1;
• допускалось использование низкокальциевой ЗУ для замены 30 % масс. портландцемента в соответствии с ACI 211.4R-2008;
• количество поликарбоксилатного суперпластификатора SR 5000F в составе органоминеральной добавки, равное 1 % от массы вяжущего, было выбрано на основании результатов работ [13, 14];
• содержания микрокремнезема варьировалось от 10 до 15 % от массы цемента, что соответствовало требованиям ACI 211.4R-2008.

Составы растворных смесей, рассчитанные методом абсолютных объемов, представлены в табл. 3.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

1. Влияние комплексных органоминеральных добавок на физические свойства и эксплуатационные показатели разработанных растворов.

Результаты испытаний плотности, пористости цементного камня и относительной деформации

9 ГОСТ 30744-2001. Цементы. Методы испытаний с использованием полифракционного песка. М. : ГУП ЦПП, 2001. 30 с.
10 ГОСТ 12730-4-78. Бетоны. Методы определения показателей пористости. М. : Стандартинформ, 2007. 7 с.
11 ГОСТ 5802-86. Растворы строительные. Методы испытаний. М. : Стандартинформ, 1986. 19 с.
12 ГОСТ Р 56687-2015. Защита бетонных и железобетонных конструкций от коррозии. Метод определения сульфатостойкости бетона. М. : Стандартинформ, 2015. 8 с.
13 ACI 211.4R-2008. Guide for Selecting Proportions for High-Strength Concrete with Portland Cement and Fly Ash. 2010. 13 р.
Исследование пористости структуры цементного камня позволило установить, что введение разработанных комплексных органоминеральных добавок снижает как общую, так и открытую пористость цементного камня и таким образом увеличивает его плотность за счет заполнения межзернового пространства тонкодисперсными частицами микрокремнезема и ЗУ, снижения отношения \(\frac{B}{C} \) с 0,5 до 0,3, а также за счет образования гидратных фаз в виде менее растворимых низкоосновных гидросиликатов кальция благодаря высокой пущолиннаной активности использованных МК-90 и ЗУ (рис. 3).

Сульфатная коррозия связана с взаимодействием сульфат-ионов с алюминийсодержащими фазами цементного камня в присутствии гидроксида кальция, приводящим к образованию малорастворимых гидросульфоалюминатов кальция, обладающих большим мольным объемом, и в первую очередь этtringита, а также гипса [17, 18]. Для испытаний на сульфатостойкость изготовливались цементно-песчаные растворы в жидкой сульфатной среде затвердевших растворов представлены в табл. 4 и на рис. 3 и 4.

Табл. 3. Составы растворных смесей

Номер состава	ЗУ	В	СП	МК	СП	Вяж	СП	Вяж	Расход материалов на 1 м³ растворной смеси, кг									
	СЦ	ЗУ	МК	П	СП	Вяж	СЦ	ЗУ	МК	П	СП	Вяж	СЦ	ЗУ	МК	П	СП	Вяж
1	0	0.3	0	0	0	444	133	0	1333	0	289							
2	0	0.3	0	0.01	0	501	150	0	1502	0	6.51	195						
3	0	0	0.3	0.01	0	539	0	54	1618	5.93	178							
4	0	0	0	0.3	0.15	528	0	79	1585	6.07	182							
5	0	0.3	0	0.01	0	482	145	48	1446	6.75	202							
6	0	0.3	0	0.01	0.15	473	142	72	1420	6.86	206							

Табл. 4. Средняя плотность, пористость цементного камня и относительная деформация в жидкой сульфатной среде затвердевших растворов разработанных составов

Номер состава	Средняя плотность, кг/м³	Пористость цементного камня, %	Открытая пористость	Общая пористость	Относительная деформация в жидкой сульфатной среде, %	После 14 сут	После 28 сут
1 (контрольный)	2189	8,7	21,5	0,035	0,045		
2	2341	6,6	16,8	0,034	0,042		
3	2363	5,8	12,4	0,028	0,036		
4	2355	4,3	11,6	0,022	0,025		
5	2308	5,5	12,3	0,033	0,04		
6	2300	5,0	12,1	0,029	0,038		

Рис. 3. Пористость структуры цементного камня
чанные образцы размером 25 × 25 × 254 мм, которые испытывались в 5%-ном водном растворе сульфата натрия. Полученные результаты представлены в табл. 4 и на рис. 4.

Из приведенных на рис. 4 результатов следует, что средние значения относительной деформации в агрессивной жидкой сульфатной среде у образцов, содержащих модифицирующие добавки, по сравнению с контрольными образцами снижаются с 0,035 до 0,022 % и с 0,045 до 0,025 %, соответственно, после 14 и 28 сут испытаний. Таким образом, использование ЗУ ТЭС «Вунг Анг» и МК-90 в количествах, соответственно, 30 % и 10–15 % от массы цемента приводит к повышению сульфатостойкости цементно-песчаной матрицы.

2. Влияние комплексных органоминеральных добавок на прочность цементно-песчаных образцов.

Экспериментальные результаты определения прочности на сжатие и растяжение при изгибе цементно-песчаных образцов представлены в табл. 5.

Кроме того, результаты изучения влияния включения в состав мелкозернистой растворной смеси ЗУ ТЭС «Вунг Анг», микрокремнезема и суперпластификатора SR 5000F на кинетику набора прочности образцами из цементно-песчаных растворов в нормальных условиях твердения изображены на рис. 5.

В табл. 5 и на рис. 5 видно, что у цементно-песчаных образцов составов № 2–6 с комплексными органоминеральными добавками прочность на сжатие в возрасте 28 сут. возрастает с 1,5 до 1,8 раза по сравнению с контрольным немодифицированным составом № 1. При этом прочность повышается с увеличением содержания микрокремнезема в составе добавки с 10 до 15 % от массы портландцемента, и наибольшая прочность на сжатие образцов достигается при содержании МК, равном 15 %.

Это можно объяснить тем, что с увеличением содержания тонкодисперсных минеральных добавок в виде МК и низкокальциевой ЗУ ТЭС «Вунг Анг», дисперсность которых превосходит дисперсность цемента, а также из-за использования водоудерживающего поликарбоксилатного суперпластификатора SR 5000F возрастает плотность упаковки частиц в структуре цементных камней.

3. Термогравиметрический анализ цементного камня цементно-песчаных образцов.
Влияние органоминеральных добавок на физико-механические свойства и коррозионную стойкость цементно-песчаных растворов

С. 1–23

7

Влияние органоминеральных добавок на физико-механические свойства и коррозионную стойкость цементно-песчаных растворов

Для изучения влияния разработанных органоминеральных добавок на фазовый состав цементно-песчаного камня цементно-песчаных образцов применяли термогравиметрический анализ, который проводили на дериватографе системы Labsys Evo S60/58988 производства фирмы Setaram (Франция) в лабораториях строительного факультета Ханойского горно-геологического университета. Пробы, отобранные для исследований, предварительно обрабатывали этиловым спиртом, затем высушивали при 50 °С в лабораторной печи и хранили при этой же температуре до испытаний для исключения дальнейшей гидратации и карбонизации цементного камня [19, 20].

Согласно работам [20–22], на термограмме портландцементного камня в условиях нормального твердения присутствуют три основных эндотермических эффекта, вызванных удалением адсорбционной воды из гелеобразных продуктов гидратации и кристаллогидратной воды из гидросульфоалюминатов кальция (от 100 до 150 °С), а также дегидратацией портландита — Сa(ОН)₂ (от 430 до 580 °С) и диссоциацией примесей СаСО₃ (от 720 до 800 °С).

В соответствии с исследованиями [21, 22] содержание портландита в цементном камне можно рассчитать по формуле:

\[m_{Ca(OH)_2} = \frac{a \cdot 74}{18}, \% \]

где \(m_{Ca(OH)_2} \) — содержание Ca(OH)₂ цементного камня цементно-песчаных образцов, %; а — потери массы, %, за счет отщепления воды при разложении Ca(OH)₂, полученные методом термогравиметрического анализа; 74 и 18 — молекулярные массы Ca(OH)₂ и H₂O.

Полученные результаты исследования влияния разработанных комплексных органоминеральных добавок на потери массы при нагревании цементно-песчаных образцов в возрасте 28 сут твердения представлены на рис. 6–11 и в табл. 6.

Результаты термогравиметрического анализа образцов в возрасте 28 сут. нормального твердения показали первый эндоэффект при 119–130 °С, отражающий удаление слабо связанной адсорбционной воды, а также воды из кристаллогидратов гидросульфоалюминатов кальция.

Далее, второй эндоэффект при 498–507 °С относится к разложению портландита, и последний третий эндоэффект при 733–749 °С — к диссоциации CaCO₃, содержащегося в виде примеси в использованном песке.

Из рис. 6–11 видно, что при нагреве до 750 °С у всех исследованных образцов общие потери массы приближаются к 13–15 %. Потери массы за счет отщепления воды при разложении портландита, полученные методом термогравиметрического анализа, и содержание портландита в цементном камне исследованных образцов, вычисленное по формуле (1), представлены в табл. 7.

На основании приведенных в табл. 7 результатов термогравиметрического анализа цементно-песчаных образцов исследованных составов № 1–6 можно сделать вывод, что включение в состав модифицирующей добавки микрокремнезема и ЗУ ТЭС «Вунг Анг» за счет их высокой пуццоланической активности позволяет снизить на 1,27–3,29 % содержание портландита в цементном камне в возрасте 28 сут нормального твердения по сравнению с контрольным составом № 1, что будет способствовать повышению коррозионной стойкости цементного камня мелкозернистого бетона при эксплуатации в агрессивных средах.
Рис. 6. Кривые термического анализа цементного камня цементно-песчаных образцов состава № 1

Рис. 7. Кривые термического анализа цементного камня цементно-песчаных образцов состава № 2
Влияние органоминеральных добавок на физико-механические свойства и коррозионную стойкость цементно-песчаных растворов

Рис. 8. Кривые термического анализа цементного камня цементно-песчаных образцов состава № 3

Рис. 9. Кривые термического анализа цементного камня цементно-песчаных образцов состава № 4
Рис. 10. Кривые термического анализа цементного камня цементно-песчаных образцов состава № 5

Рис. 11. Кривые термического анализа цементного камня цементно-песчаных образцов состава № 6
Влияние органоминеральных добавок на физико-механические свойства и коррозионную стойкость цементно-песчаных растворов

Выводы

Согласно полученным результатам испытаний, можно сделать следующие выводы.

Применение комплексных органоминеральных добавок разработанных составов, состоящих в процентах от массы цемента из 1,1–1,45 % водоредуцирующего поликарбоксилатного суперпластификатора SF 5000F, 10–15 % микрокремнезема SF-90 и 30 % низкокальциевой ЗУ ТЭС «Вунг Анг», обладающих высокой пуццоланической активностью, приводит к повышению в 1,4–1,9 раза прочности на сжатие и растяжение при изгибе образцами из цементно-песчаных растворов на основе сульфостойкого цемента по сравнению с контрольными образцами как в раннем возрасте, так и к 28 сут нормального твердения.

Введение разработанных комплексных добавок в цементно-песчаный раствор приводит к формированию более плотной структуры цементного камня с низкой общей и открытой пористостью из-за снижения водо-вяжущего отношения и заполнения порового пространства тонкодисперсными активными минеральными наполнителями, связывающими портландит в менее растворимые низкоосновные гидросиликаты кальция.

Включение в состав модифицирующей добавки микрокремнезема и ЗУ ТЭС «Вунг Анг» благодаря их высокой пуццоланической активности позволяет снизить на 1,27–3,29 % содержание портландита в цементном камне в возрасте 28 сут нормального твердения по сравнению с контрольным составом, что будет способствовать повышению коррозионной стойкости цементного камня мелкозернистого бетона.

Применение разработанных комплексных органоминеральных добавок способствует повышению стойкости цементно-песчаных составов к сульфатной коррозии, что позволит использовать их для бетонов морских гидротехнических сооружений в прибрежной зоне Вьетнама.

Литература

1. Гергичны З. Зола уноса в составе цемента и бетона // Золошлаки ТЭС — удаление, транспорт, переработка, складирование : V Международная конференция, 24–25.04.2014. 41 с.
2. Ватин Н.И., Петросов Д.В., Калачев А.И., Лахтинен П. Применение зол и золошлаковых отходов в строительстве // Инженерно-строительный журнал. 2011. № 4 (22). С. 16–21.
3. Bui Danh Dai. Influence of ash of rice husk on the properties of mortar and concrete // Joint International Scientific Symposium «Scientific achievements in research on new modern building materials». Hanoi, 2006. Рp. 32–38.
4. Танг Ван Лам, Булгаков Б.И., Александрова О.В., Ларсен О.А. Возможность использования зольных остатков для производства материалов строительного назначения во Вьетнаме // Вестник БГТУ им. В.Г. Шухова. 2017. № 6. С. 6–12. DOI: 10.12737/article_5926a059214ca0.89600468
5. Sathawane S.H., Vairagade V.S., Kene K.S. Combine effect of rice husk ash and fly ash on concrete by 30 % cement replacement // Procedia Engineering. 2013. Vol. 51. Рp. 35–44. DOI: 10.1016/j.proeng.2013.01.009
6. Ивашина М.А., Кривобородов Ю.Р. Использование отходов промышленности в технологии сульфоалюминатного клинкера // Успехи в химии и химической технологии. 2017. Т. 31. № 1 (182). С. 22–24.
7. Баженова С.И., Алимов Л.А. Высококачественные бетоны с использованием отходов промышленности // Вестник БГТУ им. В.Г. Шухова. 2010. № 1. С. 226–230.
8. Ngo Van Toan. Research on the production of high-strength concrete using fine sand and mineral
additives mixed with activated blast-furnace slag and rice husk ash // Journal Building Materials — Environment. 2012. No. 4. Pp. 36–45.

9. Амуриева Е.В. Коррозионностойкий бетон для гидротехнического строительства // Градостроительные аспекты устойчивого развития крупных городов. 2009. № 93. С. 537–541.

10. Лесовик В.С., Федюк Р.С. Повышение непроницаемости фибробетонов на композиционном вяжущем // Материалы по геотехническим бетонам Рогунской ГЭС // Строительные материалы. 2017. № 9. С. 20–24.

16. Крамар Л.Я., Трофимов Б.Я., Талисман Л.С. Влияние добавки микрокремнезема на гидратацию аглита и сульфатостойкость цементного камня // Цемент. 1989. № 6. С. 14–7.

17. Кирсанова А.А. Влияние комплексных добавок с метакаолином на сульфатостойкость цементного камня // Наука ЮУрГУ. 2014. С. 929–934.

18. Галкин Ю.Ю., Удовод С.А. Фазовый анализ структуры цементного камня, изолированного при его раннем нагружении // Транспортные сооружения. 2018. Т. 5. № 1. DOI: 10.15862/21SATS118

19. Мчедлов-Петрсён О.П., Ушеров-Маршак А.В., Урженко А.М. Тепловыделение при твердении вяжущих веществ и бетонов. М.: Стройиздат, 1984. 225 с.

20. Ушеров-Маршак А.В. Общие закономерности процессов твердения неорганических вяжущих веществ // Докл. АН СССР. 1984. Т. 256. № 2. С. 417–420.

21. Иванов И.М., Матвеев Д.В., Орлов А.А., Крамар Л.Я. Влияние водоцементного отношения и суперпластификаторов на процессы тепловыделения, гидратации и твердения цемента // Вестник ЮУрГУ. Серия: Строительство и архитектура. 2017. Т. 17. № 2. С. 42–49. DOI: 10.14529/build170206

22. Зверинов М.С., Ахметжанов А.М., Манушин А.С., Потапова Е.Н. Определение пущановой активности метакаолина // Успехи в химии и химической технологии. 2016. Т. 30. № 7 (176). С. 44–46.
INTRODUCTION

The addition of multi-component modifying compositions, including additives that contain technogenic waste, to concretes in an effort to make them strong and durable, is the most technology-intensive, economically expedient and universal method of improving properties of concretes having different applications in the present-day construction industry [1–8]. Sulfate corrosion resistance is one of the main durability factors demonstrated by hydraulic concretes [9–13].

The media of reinforced concrete structures may turn severe in case of their exposure to other effects, such as freeze-thaw temperatures both above and below the water level and hydro-abrasive wear caused by small solids in the sea water. This fact makes it harder to choose raw materials for concretes to be used in the construction of hydraulic facilities [14, 15].

The sulfate corrosion resistance of concrete structures depends on (1) the density and porosity of concretes, and (2) the composition of hydration phases of cement stones [16, 17]. The mission of this research is to study the effect, produced by newly developed multi-component additives, comprising low-calcium fly ash, SF-90 and superplasticizer, on cement stone properties, and their ability to improve the cement stone’s density, strength and corrosion resistance for new concretes to be usable in the construction of offshore hydraulic structures.

Therefore, the following tasks must be completed:
• a study of the effect produced by multi-component additives on mortar mobility;
• a study of the effect produced by newly developed multi-component additives on the formation of the cement stone structure and the kinetics of its strength development;
• an assessment of the effect produced by organo-mineral additives on the cement stone deformation in a liquid sulfate media.

MATERIALS AND METHODS

Materials. The following raw materials were applied in the course of the research:
1. Sulfate resistant Portland cement (SC) CEM I CC 42.5 N, produced by Tam Diep (Vietnam), having the true density of 3.15 g/m³, whose composition and properties comply with GOST 22266-201314 and TCVN 6067:200415. X-ray phase analysis was applied and XDA-D8 Advance, an x-ray powder diffractometer, produced by Bruker (Germany), was employed to identify the mineral composition of the SC (Fig. 1, Table 1).

The mineral composition of the Portland cement and its physico-mechanical characteristics are provided in Table 1, while its chemical composition and the chemical compositions of fly ash of TPP “Vung Ang” and silica fume are available in Table 2. 2. Class F low calcium fly ash of TPP “Vung Ang” (Vietnam), complying with the GOST 25818-201716 requirements, and silica fume SF-90 produced by Vina Pacific (Vietnam), whose characteristics are similar to Technical specifications 743-048-02495332-9617.

Laser granulometry methods were used at the Institute of civil engineering science and technology (Vietnam) to identify the granulometric compositions of low calcium fly ash of TPP “Vung Ang”, silica fume SF-90 and sulfate-resistant Portland cement (Fig. 2).

3. Quartz sand brought from the Lo river (Vietnam), having fineness modulus Mf = 2.95, true density = 2.62 g/cm³ and the bulk density in the compacted state = 1,540 kg/m³. This is class I sand, it meets the specifications of GOST 8736-201418 and TCVN 7570:200619.

4. Polycarboxylate super-plasticizer SR 5000F produced by Silk Road (Korea); its water solution has the density of 1.1 g/cm³ at the temperature of 20 ± 5°C pursuant to GOST 24211-200820.

5. City water used as mixing water for concrete mixes, complying with the requirements of GOST 23732-201121.

Methods. The methodology contemplated:
• the use of BT-9300z (China) to study the shapes and sizes of component particles by the method of laser granulometry;
• the use of diffractometer XDA-D8 Advance (Bruker, Germany) to study the mineral composition of sulfate resistant Portland cement by the method of x-ray phase analysis at the Institute of civil engineering science and technology;
• All-Russian state standard GOST 30744-200122 was applied to develop the composition of a cement and sand mix having organo-mineral additives;
• All-Russian state standard GOST 12730.4-7823 was applied to identify the effective porosity and entire volume of a cement stone in a series of specimens;
All-Russian state standard GOST 5802-86[^24] was applied to identify the average density of the mortar stone using cubes having the following dimensions: 70.7 × 70.7 × 70.7 mm;

- All-Russian state standard GOST 30744-2001 was applied to identify the bending tensile strength of specimen, made of cement and sand mortars and having the dimensions of 40 × 40 × 160 mm; later their halves were applied to identify the compressive strength value;

- All-Russian state standard GOST 56687-2015[^25] was applied to identify the deformation of a cement stone in a liquid sulfate media; specimens, having the dimensions of 25 × 25 × 254 mm, were used for this purpose;

[^24]: GOST 5802-86. Building mortars. Testing methods. Moscow, Standartinform Publ., 1986; 19. (rus.).

[^25]: GOST P 56687-2015. Corrosion prevention in concrete and reinforced concrete structures. Concrete resistance identification method. Moscow, Standartinform Publ., 2015; 8. (rus.).

The use of derivatograph Labsys Evo S60/58988 (Setaram, France) to study the effect of multi-component organo-mineral modifying additives on features of the phase composition of a cement stone by the method of thermal gravimetric analysis.

Experimental specimens were made of mortar mixes in compliance with the following ratios:

- when polycarboxylate super-plasticizer SR 5000F (hereinafter – SP) was used, the water/binder ratio was equal to 0.3, if the binder was composed of sulfate resistant Portland cement + SF-90 + silica fume [17–19], but if polycarboxylate super-plasticizer SR 5000F was not added, the water/binder ratio was equal to 0.5;

- the sand/cement ratio was equal to 3/1;

- the use of low calcium fly ash was acceptable to replace the weight percentage (30%) of Portland cement pursuant to ACI 211.4R-2008[^26];

[^26]: ACI 211.4R-2008. Guide for selecting proportions for high-strength concrete with Portland cement and fly ash. 2010; 13.
The amount of polycarboxylate super-plasticizer SR 5000F as part of the organo-mineral additive equal to 1% of the binder weight, was chosen with reference to [13, 14];

- the content of silica fume varied from 10 to 15% of the cement weight pursuant to ACI 211.4R-2008.

Compositions of mortar mixes, calculated using the absolute volume method, are provided in Table 3.

RESULTS

1. **The effect of multi-component organo-mineral additives on physical properties and performance of newly developed mortars.**

 Cement stone density and porosity testing results and the value of the relative deformation of the mortar stone, obtained in the liquid sulfate medium, are provided in Table 4 and Fig. 3, 4.

 The study of the cement stone porosity has enabled the co-authors to find out that newly developed multi-component organo-mineral additives reduce effective and total porosities of the cement stone. Therefore, they boost its density by (1) filling the intergranular space with finely dispersed particles of silica fume and fly ash, (2) reducing the water/binder ratio from 0.5 to 0.3 and (3) generating hydrate phases, or less soluble low-basic calcium silicate hydrates, thanks to the high pozzolanic activity of SF-90 and fly ash (Fig. 3).

 Sulfate corrosion is caused by interaction between sulfate ions and aluminum-containing phases of the cement stone in the presence of calcium hydroxide that causes formation of low soluble hydrated calcium sulfoaluminates, primarily ettringite and gypsum, whose molar volume is bigger [17, 18]. Cement-sand specimens having the size of $25 \times 25 \times 254$ mm were manufactured for the purpose of sulfate resistance testing. They were tested in the 5% water solution of sodium sulfate. Testing results are available in Table 4 and Fig. 4.

 According to the findings, provided in Fig. 4, the average relative deformation of specimens containing modifying additives and exposed to the aggressive liquid sulfate medium, were lower than those of the benchmark specimens: they went down from 0.035 to 0.022 % and from 0.045 to 0.025 %, if tested on the 14th and 28th day of exposure. Therefore, the use of fly ash of TPP “Vung Ang”, silica fume SF-90 (SF-90) in the amounts equal to 30 % and 10–15 % of the cement weight boosts the sulfate resistance of a cement-sand matrix.

2. **The effect of multi-component organo-mineral additives on the strength of cement-sand specimens.**

 Experimental results, demonstrating the compressive and bending tensile strength of cement-sand specimens, are provided in Table 5.

 Moreover, the findings of the research into adding the fly ash of TPP “Vung Ang”, silica fume, and
superplasticizer SR 5000F into the small-grain mortar mix to study the kinetics of strength development by cement-sand mixes in a regular hardening medium are provided in Fig. 5.

Table 5 and Fig. 5 show that the compressive strength of cement-sand specimens № 2–6, having multi-component organo-mineral additives, goes up from 1.5 to 1.8 times at the age of 28 days if compared to unmodified benchmark specimen № 1. Indeed, the strength goes up along with the increase of the silica fume content in the composition of the additive from 10 to 15 % of the Portland cement weight, and compressive strength is maximal in the specimens that have a 15 % SF content.

The reason for this is (a) the rise in the content of finely dispersed mineral additives, namely, SF and low calcium fly ash of TPP “Vung Ang”, whose dispersive capacity exceeds the one of cement and (b) the use of water reducing polycarboxylate super-plasticizer SR 5000F that boosts the packing characteristic of particles in the cement stone.

3. Thermogravimetric analysis of the cement stone of cement-sand specimens.

A thermogravimetric analysis was performed using derivatograph Labsys Evo S60/58988 (Setaram, France) by the laboratories of the civil engineering faculty of the Hanoi university of mining and geology to study the effect of newly developed organo-mineral additives on the phase composition of the cement stone of cement-sand specimens. Specimens, selected for the studies, were pre-treated by ethanol and dried at 50 °С in the laboratory furnace; they were stored at the same temperature before testing to prevent further hydration and carbonization of the cement stone [19, 20].

According to [20–22], a thermogram, made in the process of regular Portland cement stone hardening, shows three principal endothermic effects, caused by (1) removal of adsorption water from jellylike hydration products and crystallization water from hydrated calcium sulfoaluminates (100 to 150 °C), (2) dehydration of Portlandite — Ca(OH)₂ (430 to 580 °C) and (3) dissociation of CaCO₃ admixtures (720 to 800 °C).

Pursuant to [21, 22], the Portlandite content in the cement stone can be calculated according to the formula:

$$ m_{\text{Ca(OH)₂}} = \frac{a \cdot 74}{18} $$.

where $m_{\text{Ca(OH)₂}}$ is the Ca(OH)₂ content in the cement stone of cement-sand specimens, %; a is the weight losses, %, caused by water removal in the course of decomposition of Ca(OH)₂, identified by the method of thermal gravimetric analysis; 74 и 18 are the values of the molecular weight of Ca(OH)₂ and H₂O.

The results of the research into the effect of newly developed multi-component organo-mineral additives on the weight loss in the course of heating 28-days old cement-sand specimens are shown in Fig. 6–11 and in Table 6.

The results of the thermogravimetric analysis of 28-day specimens demonstrated their first endo-effect at 119–130 °C; it was the removal of the slightly bonded adsorption water and the water from hydrated crystalline calcium sulfoaluminates. Further, the second endo-effect dealt with the decomposition of Portlandite at 498–507 °C, and the final third endo-effect caused the dissociation of CaCO₃, or a sand admixture, at 733–749 °C.

According to Fig. 6–11, if the specimens are heated up to 750 °C, their weight loss reaches 13–15 %. Table 7 shows the weight loss, caused by dehydration in the process of Portlandite decomposition and identified by the method of thermal gravimetric analysis, as well as the Portlandite content in the cement stone of the specimens, calculated pursuant to formula (1).

The results of the thermogravimetric analysis of cement-sand specimens having compositions 1–6, pro-

Composition No.	Average density, kg/m³	Cement stone porosity, %	Relative deformation in the liquid sulfate medium, %	Effective porosity	Total porosity	In 14 days	In 28 days
1 (benchmark specimen)	2,189	8.7	21.5	0.035	0.045		
2	2,341	6.6	16.8	0.034	0.042		
3	2,363	5.8	12.4	0.028	0.036		
4	2,355	4.3	11.6	0.022	0.025		
5	2,308	5.5	12.3	0.033	0.04		
6	2,300	5.0	12.1	0.029	0.038		

Table 5. Compressive and bending tensile strength of cement-sand specimens.

Composition No.	Average compressive strength values at different hardening ages, MPa	Bending tensile strength at the age of 28 days, MPa				
1 (benchmark)	9.5	18.3	27.7	36.8	38.6	4.1
2	16.2	28.3	45	57.1	61.7	6.8
3	17.1	30.2	48.6	62.7	67.3	7.4
4	17.8	30.9	51.3	65.9	70.4	7.6
5	14.3	26.1	44.4	56.6	59.1	6.3
6	15.5	28.4	45.9	59.1	63.5	7.0

Table 4. Average density, porosity of the cement stone; relative deformation of the mortar stone in the liquid sulfate medium containing newly developed compositions.
Effect of organo-mineral additives on physical-mechanical properties and corrosion resistance of sand-cement mortars

Fig. 3. Porosity structure of the cement stone

Fig. 4. Relative deformation of cement-sand specimens following 14 and 28 days of exposure to the liquid sulfate medium
vided in Table 7, enable the co-authors to make the conclusion that the presence of such modifying additives as silica fume and fly ash of TTP “Vung Ang” reduces the Portlandite content by 1.27–3.29 % in the normally hardened 28 days old cement stone if compared with benchmark specimen № 1 due to the high pozzolanic activity of these additives, which boost the corrosion resistance of the cement stone of small-grain concrete used in aggressive media.

CONCLUSIONS

The following conclusions can be derived from the testing results obtained by the co-authors. The application of newly developed multi-component organo-mineral additives, composed of 1.1–1.45 % of water reducing polycarboxylate super-plasticizer SF 5000F, 10–15 % of silica fume SF-90, and 30 % of low calcium fly ash of TPP “Vung Ang”, each value representing a percentage of the cement weight and having high pozzolanic activity, causes a 1.4–1.9-fold rise in compressive and bending tensile strengths of cement-sand specimens made of sulfate-resistant cement, if compared with benchmark specimens both in terms of early age and 28 days old specimens.

Newly developed multi-component additives, if added to cement-sand mortars, turn the cement stone structure denser and reduce their total and effective porosities due to the reduction in the water/binder ratio and the packing of the pore space with active mineral fine-dispersion fillers that convert Portlandite into less soluble low-basic hydrated calcium silicates.

The use of a modifying additive, composed of silica fume and fly ash of TPP “Vung Ang”, reduces the Portland-

Table 6. Results of the thermal analysis of the cement stone of cement-sand specimens

Composition No.	Endo-effect 1	Endo-effect 2	Endo-effect 3			
	Temperature, °C	Weight loss, %	Temperature, °C	Weight loss, %	Temperature, °C	Weight loss, %
1	119	10.42	498	3.87	733	0.78
2	120	9.65	505	3.56	740	0.83
3	125	9.43	505	3.41	735	0.80
4	130	9.0	507	3.07	745	0.80
5	125	9.21	499	3.24	749	0.80
6	130	9.12	500	3.22	745	0.81

Table 7. Weight losses caused by Portlandite decomposition, and Portlandite content in the cement stone of 28 days old specimens

Composition No.	Weight loss caused by decomposition of Ca(OH)₂, %	Portlandite content in the cement stone, %
1	3.87	15.91
2	3.56	14.64
3	3.41	14.02
4	3.07	12.62
5	3.24	13.32
6	3.22	13.24
Fig. 6. Cement stone thermal analysis curves. Composition 1 of cement-sand specimens

Fig. 7. Cement stone thermal analysis curves. Composition 2 of cement-sand specimens
Fig. 8. Cement stone thermal analysis curves. Composition 3 of cement-sand specimens

Fig. 9. Cement stone thermal analysis curves. Composition 4 of cement-sand specimens
Effect of organo-mineral additives on physical-mechanical properties and corrosion resistance of sand-cement mortars

Fig. 10. Cement stone thermal analysis curves. Composition 5 of cement-sand specimens

Fig. 11. Cement stone thermal analysis curves. Composition 6 of cement-sand specimens
The application of new multi-component organo-mineral additives improves the sulfate resistance of cement-sand compositions and makes them usable for marine concretes in the coastal area of Vietnam.

REFERENCES

1. Gergichny Z. Fly ash in the composition of cement and concrete. *Ash and Slag TPP — Removal, Transport, Processing, Warehousing : V International Conference, April 24—25, 2014.* Moscow, 41 p. (rus.).

2. Vatin N.I., Petrosov D.V., Kalachev A.I., Lakhtinen P. The use of ashes and ash and slag waste in construction. *Engineering and Construction Journal.* 2011; 4(22):16-21. (rus.).

3. Bui Danh Dai. Influence of ash of rice husk on the properties of mortar and concrete. *Scientific achievements in research on new modern building materials : Joint International Scientific Symposium.* Hanoi, 2006; 32-38.

4. Tang Van Lam, Bulgakov B.I., Aleksandrova O.V., Larsen O.A. Possibility of using bottom ash for manufacturing building materials in Vietnam. *Bulletin of Belgorod State Technological University named after V.G. Shukhov.* 2013; 51:35-44. DOI: 10.12737/ article_5926a059214ca0.89600468

5. Sathawane S.H., Vairagade V.S., Kene K.S. Combine effect of rice husk ash and fly ash on concrete by 30 % cement replacement. *Procedia Engineering.* 2013; 51:35-44. DOI: 10.1016/j.proeng.2013.01.009

6. Ivashina M.A., Krivoborodov Y.R. Use of waste industry in technology sulfoaluminate clinker. *Advances in Chemistry and Chemical Technology.* 2017; 31(1):(182):22-24. (rus.).

7. Bazhenova S.I., Alimov L.A. High-quality concrete using industrial waste. *Bulletin of Belgorod State Technological University named after V.G. Shukhov.* 2010; 1:226-230. (rus.).

8. Ngo Van Toan. Research on the production of high-strength concrete using sand and mineral additives mixed with activated blast-furnace slag and rice husk ash. *Journal Building Materials — Environment.* 2012; 4:36-45.

9. Anufriyeva Ye.V. Corrosion Resistant Concrete for Hydraulic Engineering. *Urban Planning Aspects of the Sustainable Development of Large Cities.* 2009; 93:537-541. (rus.).

10. Lesovik V.S., Fedyuk R.S. Increasing the tightness of fiber concrete on a composite binder : monograph. Belgorod, BGTU Publ., 2016; 165. (rus.).

11. Fedyuk R.S. Designing cement composites of increased impermeability. *Vestnik MGSU* [Proceedings of Moscow State University of Civil Engineering]. 2016; 5:72-81. (rus.).

12. Hoang Minh Duc, Nguyen Tuan Nam. Reducing the permeability of concrete and the ability to protect steel reinforcement in the marine environment with silica fume. *50th Scientific Conference of the Institute of Science and Technology of Construction.* Hanoi, 2013; 100-109. (rus.).

13. Lam Van Tang, Hung Xuan Ngo, Dien Vu Kim, Bulgakov B.I., Aleksandrova O.V. Effect of Complex Organo-Mineral Modifier on the Properties of Corrosion-Resistant Concrete. *MATEC Web of Conferences.* 2018; 251:01005. DOI: 10.1051/matecconf/201825101005

14. Lam Van Tang, Bulgakov B., Bazhenov Y., Aleksandrova O., Anh Ngoc Pham. Effect of rice husk ash on hydrotechnical concrete behavior. *IOP Conference Series: Materials Science and Engineering.* 2018; 365:032007. DOI: 10.1088/1757-899X/365/3/032007

15. Safarov K.B., Stepanova V.F., Faliqman V.R. The effect of mechanically activated low-calcium fly ash on the corrosion resistance of hydrotechnical concrete of the Rogun HPP. *Building Materials.* 2017; 9:20-24. (rus.).

16. Kramar L.Ya., Trofimov B.Ya., Talisman L.S. Effect of silica fume addition on alite hydration and sulfate resistance of cement stone. *Cement.* 1989; 6:14-17. (rus.).

17. Kirsanova A.A. The effect of complex additives with metakaolin on the sulfate resistance of cement stone. *Science SUSU.* 2014; 929-934. (rus.).

18. Galkin Yu.Yu., Udodov S.A. Phase analysis of the structure of cement stone isolated during its early loading. *Transport facilities.* 2018; 5(1):20. DOI: 10.15862/21SATS118 (rus.).

19. Mehedlov-Petrosyan O.P., Usherov-Marshak A.V., Urzhenko A.M. Heat release during hardening of binders and concrete. Moscow, Stroyizdat, 1984; 224. (rus.).

20. Usherov-Marshak A.V. General patterns of hardening of inorganic binders. *Report of Academy of Sciences of the Soviet Union.* 1984; 256(2):417-420. (rus.).

21. Ivanov I.M., Matveev D.V., Orlov A.A., Kramar L.Ya. The effect of water-cement ratio and superplasticizers on the processes of heat release, hydration and hardening of cement. *Bulletin of SUSU. Series: Construction and Architecture.* 2017; 17(2):42-49. DOI: 10.14529 / build170206 (rus.).

22. Zyryanov M.S., Akhmetzhanov A.M., Manushina A.S., Potapova Ye.N. Determination of pozzolanic activity of metakaolins. *Advances in chemistry and chemical technology.* 2016; 30(7):44-46. (rus.).
Effect of organo-mineral additives on physical-mechanical properties and corrosion resistance of sand-cement mortars

Bionotes: Ngo Xuan Hung — postgraduate of the Department of Technology of Binders and Concretes; Moscow State University of Civil Engineering (National Research University) (MGSU); 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ORCID: 0000-0003-2868-6342; xuanhung1610@mgsu.ru;

Tang Van Lam — Candidate of Engineering of Faculty of Civil Engineering; Hanoi University of Mining and Geology; 18 Pho Vien, Duc Thang, Bac Tu Liem, Ha Noi, Vietnam; ID PII: 3214-6263, ID Scopus: 57201185702, WoS Researcher: G-2948-2018, ORCID: 0000-0002-4857-835X; lamvantang@gmail.com;

Boris I. Bulgakov — Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Technology of Binders and Concretes; Moscow State University of Civil Engineering (National Research University) (MGSU); 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ORCID: 0000-0002-4737-8524, ResearcherID: H-1884-2018; BulgakovBI@mgsu.ru;

Olga V. Aleksandrova — Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Technology of Binders and Concretes; Moscow State University of Civil Engineering (National Research University) (MGSU); 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ORCID: 0000-0003-1791-8515; AleksandrovaOV@mgsu.ru;

Oksana A. Larsen — Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Technology of Binders and Concretes; Moscow State University of Civil Engineering (National Research University) (MGSU); 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ORCID: 0000-0002-9612-7190, Researcher ID: S-7860-2017; LarsenOA@mgsu.ru.