A Self-learning and Adaptive Control Scheme for Phantom Prosthesis Control Using Combined Neuromuscular and Brain-Wave Bio-Signals

Ejay Nsugbe
Oluwarotimi William Samuel
Mojisola Grace Asogbon
Guanglin Li

Correspondence: ejay.nsgbe@bristol.ac.uk, samuel@siat.ac.cn

7th International Electronic Conference on Sensors and Application
Contents

- Overview and Problem Statement
- Biosensors and Data Collection
- Proposed Self-Learning Control
- Results
- Conclusion and Future Work
- Acknowledgements
Overview and Problem Statement

- **Estimated** to be around **6,000 amputations** (National Amputee Statistical Database (NASDAB))

- Although Upper Limb amputees make up **small segment** of amputees - they have **high functional needs**

- With **Trauma** reported as main **cause** of amputation

- **Loss** of upper limb is said to influence overall **independence & ability to work**
Overview and Problem Statement

Functional Prosthesis/Myoelectric Prosthesis Control Scheme

Pattern Recognition/Motion Intent Decoding Sequence
Overview and Problem Statement

Current Limitations of Pattern Recognition Control:

- Intent decoders/Classifiers are trained via the ‘Supervised Learning’ framework - thus, expert in loop required & lag time induced from training process
- Classifier degradation due to uncertainties i.e. electrode shift, physiological changes in stump etc

 Proposed Solution

- Design of Self Learning and Adaptive Controllers with ‘Unsupervised Learning’ framework which can help further enhance intuitiveness of prosthesis control and increase overall autonomy

https://medium.com/the-21st-century/machine-learning-a-strategy-to-learn-and-understand-chapter-3-9daaad44fc55
Biosensors and Data Collection

Electromyography (EMG)

Represent superimposed electrical manifestations of action potentials from motor neurons, and can be mathematically modelled using dipole theory as a continuous extracellular action potential from a multiple source as seen in equation 1:

\[
\phi_e(t) = -\frac{a^2.\sigma_i}{4.\sigma_e} \cdot \int_{-\infty}^{+\infty} \frac{\partial IAP(x,t)}{\partial x} \cdot a_x \cdot \frac{\partial}{\partial x} \left(\frac{1}{r(x)} \right) dx
\]

Where \(\phi_e \) is the time varying extracellular potential, \(\sigma_e \) is the conductivity of the extracellular medium, \(\sigma_i \) is the intracellular conductivity, \(a \) is the radius of the fiber, \(t \) is time, \(r \) is the distance of the source excitation to the recording sensor, \(x \) is a point in space within the fiber element, \(a_x^- \) is the length of the anatomical fiber and \(\frac{\partial IAP}{\partial x} \) is the dipole strength at a point along the fiber axis.

EMG Sensors

The EMG instrumentation used for data acquisition by Li et al [1] was the Refa 128 high-density electrodes by TMS International BV, Netherlands, with 32 electrodes [2]. The acquisition electronics comprised of a bandpass filter in the 10-500Hz frequency range, 24bit resolution and a sample rate of 1024Hz.

1. Li, X.; Samuel, O.W.; Zhang, X.; Wang, H.; Fang, P.; Li, G. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees. J. NeuroEng. Rehabil. 2017, 14(2), doi: 10.1186/s12984-016-0212-z
2. Nsugbe E.; Phillips C.; Fraser M.; McIntosh, J. Gesture Recognition for Trans-humeral Prosthesis Control Using EMG and NIR. IET Cyber-Systems and Robotics 2020, doi: 10.1049/iet-csr.2020.0006
Biosensors and Data Collection

Electroencephalography (EEG)

EEG signals occur from the synchronous neuronal firing of billions of pyramid-like cells within the skull of a human being. Using a combination of dipole theory, and assuming the forward EEG problem, a measured potential of an EEG signal can be formulated as follows:

$$u(r_s, q, x) = \frac{\|q\|}{4\pi \sigma_L r_L^2} \sum_{n=1}^{\infty} \frac{2n+1}{n} \left(\frac{r_s}{r_L} \right)^{n-1} f_n [ncos \alpha P_n(cos \gamma) + cos\beta sin \alpha P_n^1(cos \gamma)]$$

(2)

Where s is the dipole source located within proximity of sphere of radius r, of moment q, boundary sphere r_L, anisotropic conductivity within boundary sub-domain of L, f_n is the EEG measurement for nth element in the infinite set, α is the angle between the point S and measurement point x, γ is the angle between two planar vectors pairs of S & q and S & x, P_n and P_n^1 represent the Legendre polynomial coefficient of the series.

EEG Sensors

The 64 sensors EEG channel EasyCap, Herrsching, Germany, with the Al-AgCl electrodes and Neuroscan system version 4.3 was used. The EEG signals were band passed filters in the region of 0.05-100Hz with a sample rate of 1024Hz.
Data Collection

- Simultaneous acquisition of EMG and EEG signals

- The Hand Open and Hand Close Gestures were used for the work done as part of this paper and represent key hand gestures in prosthesis control.
Proposed Self-Learning Architecture

- Assuming the acquisition of a bio-signal, the Self-Learning architecture comprising of an electrode selection process followed by a 3-phase self learning process as seen below:

0.1 Optimal Electrode Channel Selection
1. Feature Extraction and Fusion
2. Dimensionality Reduction
3. Iterative Clustering
Proposed Self-Learning Architecture

0.1 Optimal Electrode Channel Selection

- A first stage dimensionality reduction process which was done using a greedy search algorithm termed **Sequential Forward Selection (SFS)**

Create an empty set: $Y_k = \{\emptyset\}$, $k = 0$.
Select best remaining feature:
$x^+ = \arg \max_{x+ \in Y_k} [J(Y_k + x^+)]$
If $J((Y_k + x^+) > J(Y_k)$
 a. Update $Y_{k+1} = Y_k + x^+$
 b. $k = k + 1$
 c. Go back to step 2.

- From which 10 optimal Electrodes were selected for both EMG(from 32) and EEG(from 64)
Proposed Self-Learning Architecture

1. Automated Feature Extraction and Vector Fusion

- **EMG Bio-signal**
 - Mean Absolute Value: $\frac{1}{N} \sum_{n=1}^{N} |x_n|$
 - Waveform Length: $\sum_{n=2}^{N} |x_n - x_{n-1}|$
 - Zero Crossing: $\sum_{n=1}^{N} \text{sgn}(-x_{i}x_{i+1}) \text{sgn}(x) = \begin{cases} 1, & x > 0 \\ 0, & \text{otherwise} \end{cases}$
 - No. of Slope Sign Changes: $\sum_{n=1}^{N} \text{sgn}(-x_{i}x_{i+1}) \text{sgn}(x) = \begin{cases} 1, & x > 0 \\ 0, & \text{otherwise} \end{cases}$

- **EEG Features**

- **EMG Features**

- **EEG Features**
2. Dimensionality Reduction

Dimensionality Reduction with Principal Component Analysis (PCA)
Associated Steps:
- Mean Centring and Covariance Calculation
- Eigenvalues & Eigenvectors calculation, sorting and truncation
First 2 PC’s were selected which accounted for 95% of the info in the data

https://www.researchgate.net/publication/332536913_Unsupervised_machine_learning_in_atomistic_simulations_between_predictions_and_understanding
Proposed Self-Learning Architecture

3. Iterative Clustering

- Comparison Case Study involved two Unsupervised learning methods; K-Means clustering and Gaussian Mixture Model (GMM)

No. of clusters = No. of hand gestures
Cluster assignment was run 5 times each with the model that produced lowest performance index J selected

$$J = |(Number \ of \ motion \ repetitions \ performed \ * \ Number \ of \ electrode \ channels) - \sum_{i=1}^{n} x_i^k|$$

Where x_k^i is a data point assigned to a specific class k
Proposed Self-Learning Architecture

- Flow diagram of Self-Learning process
Results

For different sensor configurations i.e. EMG only, EEG only and EMG-EEG

	GMM-EMG Only	K-Means-EMG Only	GMM-EEG Only	K-Means-EEG Only	GMM-EMG-EEG	K-Means-EMG-EEG
Cluster Model 1	83%	81%	64%	63%	68%	83%
Accuracy						
Cluster Model 2	99%	81%	64%	58%	98%	83%
Accuracy						
Cluster Model 3	99%	81%	64%	58%	98%	83%
Accuracy						
Cluster Model 4	99%	81%	64%	58%	98%	83%
Accuracy						
Clustering Model 5	99%	81%	64%	58%	70%	83%
Accuracy						
Hold-Out Test	100%	80%	90%	60%	100%	80%
Accuracy						
Possible Extension towards Adaptive Control

- **Extension of Self Learning Control towards Adaptive Control**

 - Classifier Re-calibration to adapt to dynamic changes in the signal acquisition chain, which ultimately causes classifier degradation i.e. electrode shifts and physiological changes in stump.

- The Self-learning process for classifier recalibration - thus a form of Adaptive Control, can be initiated in either of two ways:
 * As an interrupt following a series of misclassified motion intents
 * As an interval based re-calibration prompt

https://www.embs.org/tbme/articles/limb-position-tolerant-pattern-recognition-myoelectric-prosthesis-control-adaptive-sparse-representations-extreme-learning/
Conclusion and Further Work

Conclusion

- A 3-phase Self Learning Controller framework has been proposed to help reduce lag-time in the prosthesis controller customization
- The Self Learning Control scheme consists of Feature Extraction Stage, Dimensionality Reduction and Unsupervised Iterative Clustering
- The control architecture can also be extended towards an adaptive framework to minimize classifier degradation due to drifts and uncertainties

Further Work

- Validation of designed control architecture on a wider cohort of Transhumeral amputees
- Further formalisation of the prospect of the adaptive control framework
Acknowledgements

The Research work was supported in part by the National Natural Science Foundation of China under Grants (#U1613222, #81850410557), the Shenzhen Science and Technology Program (#SGLH20180625142402055), and CAS President’s International Fellowship Initiative Grant (#2019PB0036). Mojisola G. Asogbon Samuel sincerely appreciates the support of Chinese Government Scholarship in the pursuit of a PhD degree at the University of Chinese Academy of Sciences, Beijing. We would like to thank Brian Kerr from Kerr Editing for proofreading the manuscript and Dr. Li Xiangxin for the assistance in the data acquisition process.