Treatment of corticosteroid-resistant ulcerative colitis with oral low molecular weight heparin

CHI Hui-Fei¹ and JIANG Xue-Liang²

Subject headings colitis; ulcerative/drug therapy; heparin/therapeutic use; corticosteroid-resistant

INTRODUCTION

The etiology and pathogenesis of ulcerative colitis (UC) have remained unclear. Treatment is nonspecific based on the anti-inflammatory agents corticosteroid and sulfasalazine. A significant proportion fail to respond to this therapy[1]. As the relapse, refractory or serious UC patients had a hypercoagulable state and an increased incidence of thromboembolic events[2-4], heparin has been used by some authors[5-7]. Yet, its half-life period is short, needing long-term injection, which restricts its further clinical application. Our previous studies have demonstrated oral LMWH not only overcomes the shortcomings of common heparin[8,9], but also has anti-inflammatory effects[10,11]. The aim of this paper is to study the therapeutic effects and mechanism of oral LMWH in patients with corticosteroid-resistant UC.

MATERIALS AND METHODS

Clinical materials

There were eight men and twelve women aged 21 years to 56 years (mean 33 years). All cases were histologically confirmed and met the diagnostic criteria of chronic non-infectious intestinal disease of China (Taiyuan meeting, 1993), including seventeen cases of severe, and three moderate UC. Duration of diseases ranged from 8 months to 11 years (mean 4.1 years). Rectal bleeding, diarrhea, mucus stool, abdominal pain were the main symptoms. Four patients were associated with thromboembolic diseases. All patients were treated with high-dose corticosteroid and sulfasalazine for more than 4 weeks without effect, sulfasalazine was maintained in combination with oral LMWH (366U/kg, twice daily) for more than 4 weeks. Prednisolone was tapered and stopped.

Monitoring parameters

Assessment of platelet activation and aggregability[2,4]. We used a sensitive flow cytometric technic designed to minimize sample handling and render fixation unnecessary to quantify platelet activation. Blood samples were incubated by 10 minutes of venesection with fluorescein isothiocyanate (FITC) conjugated antibodies to the platelet surface antigens, P-selectin (CD62P) and CD63 (Immunotech, Marseilles, France). Analysis was made within 15 minutes of venesection using a BD (Becton Dickinson Immunocytometry Systems) FAC Scan. TXA-2 (Suzhou Medical College) was measured using RIA method, samples were taken without tourniquet into chilled tubes containing 1:9 anticoagulant/antiaggregant solution (trisodium citrate 3.8%).

Assessment of efficacy

Pre- and post-treatment scores were calculated for the following disease parameters: ① Stool frequency (average number per day for the past week). ② Rectal bleeding (0: absent, 1: streak of blood on stools occasionally, 2: obvious blood on stool frequently, 3: complete bloody stools). ③ Colonoscopic appearance 0: normal vascular pattern, 1: mild lesion (loss of vascular pattern, mucosa edema, no bleeding), 2: moderate lesion (granularity and friability of the mucosa), 3: severe lesion (discrete ulceration and spontaneous bleeding). ④ Histological grading: serial biopsies of the rectum and the colon were taken. Five histological chang es seen in UC (cellular infiltrate in the lamina propria, cryptitis, crypt abscess...
formation, golet cell depletion, and regenerative hyperplasia of the epithelium) each were scored from 0 (absent) to 3 (severe), a total UC score of 5 or less indicated mild disease, a score of 5-10, moderate, and a score of 10-15 severe disease. General health status (0: excellent, 1: good, 2: poor, 3: poorer, 4: very poor, 5: poorest).

Statistical analysis
Student’s t test and Friedman test were used to assess the significance of differences between mean pre- and post-treatment parameters.

RESULTS
Therapeutic effects
Nineteen patients (95.0%) achieved clinical remission (normal stool frequency and no rectal bleeding) on a combination of oral LMWH and sulfasalazine. One patient had reduced rectal bleeding only. The average period of marked improvement was 2.9 weeks (range 1 week-4 weeks), and of remission was 5 weeks (range 1 week-12 weeks). Rectal bleeding ceased in 19 patients (5 patients within 5 days -8 days, the others within 2 weeks-7 weeks). Nineteen patients had general health condition improved earlier on oral LMWH, than bowel symptoms. There were highly significant improvement in mean scores for all disease parameters (Table 1).

CD54 in blood and tissues
CD54 elevated in both blood and tissues in corticosteroid-resistant UC patients (P < 0.01). CD54 in tissues being higher than in blood. After oral LMWH, CD54 lowered significantly in both blood and tissues (P < 0.01), but still higher than that of normal controls (P<0.05), (Table 3).

Complications
No serious complications were associated with the use of oral LMWH.

DISCUSSION
Heparin, a group of sulphated glycosaminoglycans, in addition to its physiological effects and anticoagulant, antithromboembolic, antiallergic, antiviral, antiedotoxice and immunoregulative biological activities, has a wide range of potentially anti-inflammatory effects, including inhibition of neutrophil elastase and inactivation of chemokines[5,13]. Compared with heparin, LMWH has a enhanced antithromboembolic effects, longer half life period, less bleeding tendency, higher bioavailability, easier absorption by oral administration[8,9], and has the anti inflammatory effects as well[10,11]. Previous reports[5-7] on improvement in UC patients treated with heparin prompted us to perform a pilot study of oral LMWH to find a more convenient and effective drug for patients with corticosteroid-resistant UC. The observed response to oral LMWH is paradoxical. Nineteen of 20 patients with corticosteroid-resistant UC achieved clinical remission and became asymptomatic on oral LMWH combined with sulfas alazine. Opposite to the traditional idea that heparin can enhance bleeding, rectal bleeding was the first symptom to be improved by oral LMWH. The results are similar to other reports of heparin treatment[5-7].

If oral LMWH has a therapeutic effect in UC, its mechanism of action should shed some light on the elusive pathogenesis of this disease. There are several thrombophilic features of UC that suggest the effect of oral LMWH on colitic symptoms may be attributable to its anticoagulant and antithrombotic properties. Evidence of a
thrombotic process in UC includes: reports of a hypercoagulable state[2-4], an increased incidence of thromboembolic event[14], and ischemic complications such as toxic megacolon and pyoderma gangrenosum. In this study, the membrane marks of platelet activity CD\textsubscript{10} and CD\textsubscript{63} increased significantly, and the derivative of active platelet TXA-2 also elevated, suggest that the blood platelet was in an active state, which not only led to a hypercoagulable state and an increased incidence of thromboembolic events, but also enhanced inflammatory reaction[24]. Activated hyperaggregable platelets in the mesenteric circulation could amplify the inflammatory cascade by promoting neutrophil recruitment and chemotaxis. P-selectin has an established action as the adhesion molecule for neutrophils, and circulating platelet aggregates may contribute to ischemic damage and infarction by occluding the intestinal microvasculature. Platelet derived thromboxane A\textsubscript{2} may also contribute to the ischemia by inducing local vasoconstriction. After treatment with oral LMWH, all these parameters dropped markedly, suggesting that the therapeutic effect of LMWH is partly related to inhibition of platelet activity[9]. CD\textsubscript{54} antigen reacts with the 85 kD-110 kD integral membrane glycoprotein, is also known as an intercellular adhesion molecule-1 (ICAM-1) expressed on endothelial cells and both resting (weak) and activated (moderate) lymphocytes and monocytes. CD\textsubscript{54} is ligand for the leukocyte function antigen-1 (CD\textsubscript{11a}). Its expression is up-regulated upon stimulation by inflammatory mediators such as cytokines and LPS, and it is involved in B cell-T cell co-stimulatory interactions. In this study, CD\textsubscript{54} elevated significantly in blood and tissues of UC patients, being in tissues higher than in blood[12]. Therefore, it could reflect the inflammation of intestinal mucosa. After oral LMWH, CD\textsubscript{54} dropped significantly in both blood and tissues, indicating that oral LMWH could relieve the inflammatory activity in these patients who received prednisolone for a long period (more than 4 weeks) and had no significant improvement and were regarded as corticosteroid-resistant refractory cases of UC. In other reports[5], heparin can also inhibit c-reactive protein (CRP), tumor necrosis factor (TNF) and L-selectin of UC patients. The detailed mechanisms by which the anti-inflammatory properties of oral LMWH are mediated in UC remain to be elucidated further.

From these results, we conclude that oral LMWH may play a role in treating corticosteroid-resistant UC, the mechanism is partly related to inhibition of platelet activity, hypercoagulable state and anti-inflammatory effects. No serious complications were found associated with the use of oral LMWH.

REFERENCES

1. Jiang XL, Quan QZ, Sun ZQ, Wang YJ, Qi F. Effect of glucorticoid on lymphocyte adhesion molecule phenotype expression in patients with ulcerative colitis. Zhongguo Weizhonghong Jiujiao Xue Zazhi, 1998;10:366-368
2. Collins CE, Cahill MR, Newland AC, Rampton DS. Platelets circulate in an activated state in inflammatory bowel disease. Gastroenterology, 1994;106:840-845
3. Jiang XL, Quan QZ, Liu TT, Wang YJ, Sun ZQ, Qi F, Ren HB, Zhang WL, Zhang L. Detection of platelet activity in ulcerative colitis patients. Xin Xiaohua Bingxue Zazhi, 1997;11:736
4. Jiang XL, Quan QZ, Sun ZQ, Wang YJ, Qi F. Relationship between syndrome-typing of ulcerative colitis and activation of platelet. Zhongyi Zazhi, 1997;38:730-731
5. Folwaczny C, Frike H, Endres S, Hartmann G, Jochum M, Loeschke K. Anti-inflammatory properties of unfractioned heparin in patients with highly active ulcerative colitis: a pilot study. Am J Gastroenterol, 1997;92:911-912
6. Evans RC, Wong VS, Morris AJ, Rhodes JM. Treatment of corticosteroid-resistant ulcerative colitis with heparin: a report of 16 cases. Aliment Pharmacol Ther, 1997;11:1037-1040
7. Gaffney PR, Doyle CT, Gaffney A, Hogen J, Hayes DP, Annis P. Paradoxical response to heparin in 10 patients with ulcerative colitis. Am J Gastroenterol, 1995;90:220-223
8. Cui HF, Zhang TM. Studies of oral preparation of low molecular weight heparin with heparin: a report of 16 cases. Zhongguo Yaoxue Zazhi, 1995;4:51-52
9. Cui HF, Zhang TM. Studies of oral preparation of low molecular weight heparin from low anticoagulant activity heparin. Shenghua Yaowu Zazhi, 1993;4:10-15
10. Jiang XL, Cui HF, Wang YJ, Quan QZ, Sun ZQ. Effects of oral low molecular weight heparin on hemorrhology of rabbit liver damaged by D-galactosamine. Xin Xiaohua Bingxue Zazhi, 1997;5:355-356
11. Jiang XL, Zhang JZ, Cui HF, Dong ZL, Wang YJ. Treatment on acute hepatitis with oral low molecular weight heparin. Xin Xiaohua Bingxue Zazhi, 1997;5:296
12. Jiang XL, Quan QZ, Chen GY, Yin GP, Sun ZQ, Wang YJ. Expression of adhesion molecules on tissues and peripheral lymphocytes in patients with ulcerative colitis. Zhonghua Xiao Hua Neijing Zazhi, 1998;15:292-294
13. Tyrrell DJ, Kilfeather S, Page CP. Therapeutic uses of heparin beyond its traditional role as an anticoagulant. Tips, 1995;16:198-204
14. Koening KP, McPhedran P, Spuro HM. Thrombosis in inflammatory bowel disease. J Clin Gastroenterol, 1987;9:627-631

Edited by MA Jing-Yun