Cancer Incidence Rate in Kurdistan-Iraq during 14 Years - Depend on Cancer Registry Program

Holem Hashm Balaky¹, Ardalan Abdulhamid Osman¹,², Pakestan Hammad Amin³,¹, Haval Abdullah khudher¹,⁴
¹Kurdistan Standardization Quality Control Administration, Hajiomaran, Ministry of Planning, Erbil, KRG, Iraq
²Knowledge University Research Center, Erbil, KRG, Iraq
³Medical Surgical Nursing of Department, Soran Technical Institute, Erbil Polytechnic University, Erbil, KRG, Iraq
⁴General Science Department, Faculty of Education, Soran University, Erbil, KRG, Iraq

Article History:
Received on: 10 Jan 2020
Revised on: 25 Jan 2020
Accepted on: 15 Feb 2020

Keywords:
Estimation, Cancer Incidence, Time Series, Erbil capital

ABSTRACT
The aim of this study was to identify the incident rate of different types of cancers and determine risks of cancer in Erbil Capital of Kurdistan Region Government from June 2004 to December 2017. This data was collected from registered cases in Nanakaly hospital for cancer. It included all cancer cases for different age groups during the a fore mentioned period; the results showed that the recorded number of cancer cases was 1021 with 27 types of cancer during. The highest recorded cancers are lung, breast, diffuse cancer, lymphoma, myeloid leukemia and acute lymphocytic leukemia by 9.43%, 24.40%, 10.61%, 9.10%, 8.95% and 8.78% respectively. The annual incident rate per 100,000 was 5712 and for all age groups were 67.26 in female and 4698 in women, from 53 to 376.5 cases/population/year. Incident rate showed to be 51.72% in female and 48.28% in male. It was last noticed that the most common cancer amongst females and males were breast, lung, myeloid leukemia, Lymphoma, Acute lymphocytic leukemia, Colon, ovary, and thalassemia by 21.01%, 1.80%, 5.71%, 4.54%, 4.41%, 1.69%, 1.42%, and 0.50% with the males by 3.05%, 7.68%, 5.56%, 6.17%, 5.67%, 2.81%, 0.18%, and 0.32% respectively. Projections of cancer trends to the year 2030 indicate to expected rises in both incidence and prevalence. It seems that the cancer cases in Erbil city is higher comparing to the cases of other cities like Sulaymaniyah especially for older age groups. In this survey, breast cancer in females, lung cancers in males were ranked first with other cancer all 14 years.

INTRODUCTION
Cancer is the leading cause of death worldwide and also the most important source of anxiety for human health in Kurdistan. The incidence of cancer is increasing all over the world and also rising with age (Curado et al., 2007; Ma and Yu, 2006). Every year, one out of every 250-350 people are diagnosed with cancer in Western countries, the incidence of cancer is even increasing yearly for 4-5 per 300 person, when the people over age of 60 (Yumuk et al., 2013).
According to some of the report, the incidents of cancer have showed increased in different governorates of Iraq, during 30 year period from (1965 to 1994). Nevertheless, all the governorate still register new incidence of cancer according to the reports of authorities (Al-Humadi, 2009; Othman et al., 2011; Hussein et al., 2017).

The variations of incidence of cancer in different geographical locations to some extent are due to different risk factors that are linked with many factor of pattern life (Parkin et al., 2009). Many factors have been identified to be involved in the aetiology of cancer such as alcohol, tobacco, occupation, air contamination, water pollutions, regimen of food and feeding, physical activity, infectious agents, solar radiation, and obesity which are all probable factors (Schottenfeld and Beebe-Dimmer, 2006; Higginson, 1968). Kurdistan region is a semi-autonomous part of Iraq and has been exposed to many epidemiological changes and environmental which lead to increased risk of cancer in this region (Othman et al., 2011). Kurdistan went through made the population more vulnerable to diseases a number of wars. The Kurdish people in Halabja city and many other areas from Kurdistan exposed to chemical bombardment during the Iraqi/Iranian War (from 1980 to 1988) (Salih, 1995). This devastation to Kurdistan may have the role in environmental pollution and increasing cancer incidence, especially high rates of haematological malignancies (Majid et al., 2012; Khoshnaw et al., 2016; Zangana and Garota, 2012).

The aim of this study is to identify incidence rate cancer in Erbil Capital of Kurdistan Region Government and to identify increase risk of cancer in this region.

MATERIALS AND METHODS

This research was started by collecting data registered from Nanakaly Cancer Hospital in Erbil city (Erbil is Capital of Kurdistan Region Government), between June 2004 to December 2017. A total of 1021 cases been registered during thirteen years. All the cases were inserted to excel data sheet and all duplicate names were removed. Data (including Data include name, age, sex, occupation, date of diagnosis, type of cancer, and primary site of involvement) was then sorted and distributed using international classification of diseases and use program (Minitab v.15).

All these hospital are now cooperating with each other to start a national cancer registry in Kurdistan provinces to improve cancer registration database. Although results presented in this paper represent majority of cancer cases but still we believe that some cancer cases are diagnosed and treated outside Kurdistan Region (Othman et al., 2011).

RESULTS AND DISCUSSION

The cancer types which are documented in include 27 different cancers (Table 1). Furthermore, according to the data analysis it can be seen that the
Table 1: Recorded number of cancer cases

Type of Cancer	Number	Percentage
Human Leukocyte	263	2.50%
Acute lymphocytic leukemia (ALL)	811	8.78%
Chronic lymphocytic leukemia (CLL)	146	1.39%
Lymphoma	950	9.10%
Hemophilia	222	2.11%
multiple myeloma	319	3.04%
Idiopathic thrombocytopenic purpura (ITP)	215	2.05%
Myeloid leukemia	934	8.95%
Anaplastic Anaemia	122	1.16%
Myelodysplastic syndrome (MDS)	86	0.84%
Anemia	379	3.61%
Diffuse Cancer	1113	10.61%
Sarcoma	107	1.02%
N-blastoma	61	0.58%
Breast	2457	24.40%
Lung	935	9.43%
Prostate	188	1.79%
Colon	250	2.38%
Bladder	51	0.48%
Stomach	122	1.16%
Ovary	91	0.86%
Larynx and Thyroid	29	0.27%
Head and Neck	68	0.64%
Pancreas	91	0.86%
Renal	38	0.36%
Thalassemia	65	0.62%
Pancytopenia	106	1.01%
Total	1021	100%

The annual incidence rate in both sex (male and female) was 11424 per-year from June 2004 to Dec. 2017 that is raised from 53.0 to 760.5 during 14 year ago in the all provinces, also the incident rate (IR) for all groups were female 6726 and male 4698 (Table 2). It can be noticed that the IR in the beginning is very low since the Nanakaly centre for cancer was opened in middle of 2004. Therefore, it took a few years to people to understand the mission of this centre and visit them to receive treatment and medication. Thus, the data of the starting years is very low. But then people were educated and visited the centre more and therefore the incident rate is increased dramatically, These finding are in accordance with (Hussein et al., 2017; Curado et al., 2007), and similar with (Khoshnaw et al., 2016).

The distribution of cancers according cases of cancer in patients with myeloid leukemia and lung were increased during fourteen years followed by breast cancer respectively (Figure 1). On the other hand, the lowest incident for cancer was larynx and thyroid and renal which were 29 and 38% respectively. Regarding age groups, it was also seen that the can-
Table 2: The Annual incidence rates in both sexes and age groups per 100,000 populations per year in all provinces from Jun-2004 to Dec-2017

Years	Annual IR in female	Annual IR in male	Annual IR*
June 2004	41	65	53
2005	120	120	120
2006	109	155	132
2007	219	276	247.5
2008	319	330	324.5
2009	361	347	354
2010	444	404	424
2011	427	380	403.5
2012	581	380	480.5
2013	725	449	587
2014	962	551	756.5
2015	891	494	692.5
2016	1055	466	760.5
Dec 2017	472	281	376.5
Total	6726	4698	5712

Table 3: Incidence rate of males and females according cancers from June 2004 to December 2017

Male Cancer Type	Male (n=4975)	Female (n=6209)
Breast	152	2305
Lung	783	167
Lymphoma	606	344
myeloid leukemia	579	355
Acute lymphocytic leukemia	486	364
Hemophilia	206	16
Colon	140	105
ITP	96	119
Chronic lymphocytic leukemia	78	37
Stomach	72	50
Anaplastic anaemia	71	51
Pancreas	61	30
Pancytopania	58	48
Thalasimia	16	19
Ovary	9	82
Head & Neck	7	6

cases with age of patients increased in 40 to 49 years of age (female were highest and male was lowest). Whereas age groups over 70 years showed lowest cases (Figure 2).

The pattern of total cancer incidents is increasing over the age from 10 years up to 40, but again it goes down overage. Similarly, the pattern of female cancer is similar to total cancer over time (Khoshnaw et al., 2016). However, the male of cancer incidence difference was decreases with increasing age up to 40-49, and once more increasing with increasing age group up to 60-69. This research agreement with (Othman et al., 2011; Yilmaz et al., 2011).

That is all the provinces registered in Nanakaly hospital in Erbil capital the model is $Y_t = 255 + 235.9t - 988t^2$. Based on the model the cancer cases will have increased in the chart and value of the projected results will be achieved. In (Figure 3) is Fre-
Table 4: Total cancer of Incidence rate in different countries in the world

Countries	Period/year	Incidence rate
Capital Erbil	2004-2017	57.12
Sulaymaniyah	2006-2013	50.40
Iraq republic	1994-2016	135.11
Turkey republic	1999-2005	118.00
Egypt	2008-2011	82.72
Cyprus	2007-2012	198.15
European union	1980-2003	398.52
Urinated state	2011-2015	519.7

Figure 4: Linear Trend Analysis Plot for Erbil Province

Figure 5: Trend Analysis for Women and Men Separately
frequency adjusted by the Patient cases.

The general trend of cancers cases for male and female in all parts of the city is registered in Nanakaly hospital in Erbil capital were studied (Figure 4). The quadratic trend analysis plot for male and female the model is \(Y_t=150.6+23.5t \) but In female, the model \(Y_t=10+64.3t \) shows a rising trend of this cancer, whereas, is male, the model has an exponential trend with equation \(Y_t=150.6+23.5t \) which also has an increasing trend but because of exponentially growth the result will be increased rapidly in male than female also the form is which has quadratic trend (Figure 5). and probably the incidents of cancer regardless of sex might increase in the following years as seen in the figures, this research disagreement with (Roya and Abbas, 2013), but agreement with (Hasnawi et al., 2009).

The most common cancer amongst females were breast, lung, myeloid leukemia, lymphoma, acute lymphocytic leukemia, Colon, ovary, and thalassemia as 21.01%, 1.80%, 5.71%, 4.54%, 4.41%, 1.69%, 1.42%, and 0.50%, respectively. Whereas, the most reported cancers in male were breast, lung, myeloid leukemia, lymphoma, acute lymphocytic leukemia, colon, ovary, and thalassemia as 3.05%, 7.68%, 5.56%, 6.17%, 5.67%, 2.81%, 0.18%, and 0.32% respectively. (Table 3). The average of common occurred cancer was composed of 48.28% of the total male cancers, while in females they accounted for 51.72% of the cases. Agreement with (Hussein et al., 2017) and disagreement with (Jemal et al., 2007).

The incident rate is different among the countries and even between the cities of a country. It can be seen from Table ??, that the incidence rate is dissimilar. Furthermore, it is also obvious that the Erbil and Sulaimaniyah cities recorded the lowest incident rate which is 57.12 and 50.4 respectively (Khoshnaw et al., 2016). On the other hand, the highest incident rate has been recorded in the Union state and European Union respectively with 519.7 and 398.52. (Jemal et al., 2007). Therefore, over the past 14 years, the registered cases of cancer are 57.12. This number seems to be more than the cancer cases which recorded in both Iraq and turkey (Pervaiz et al., 2017; Ibrahim et al., 2014).

CONCLUSIONS

Although Erbil capital of Kurdistan Region Government is considered a small province in Iraq, the prevalence and incidences of many cancers could be worth paying attention. Furthermore, breast cancer in females and anaemia cancer in males and were ranked first with other cancer during 14 years periods. Males had a lower prevalence of cancers as compared to females. Moreover, the older age group commonly suffered from cancer diseases than younger ages, therefore, that encouraging people to adopt healthier lifestyles especially avoiding anxiety and following healthy food habit and raising awareness could be useful to reduce and help cancer prevention.

ACKNOWLEDGEMENTS

We thank all the staff of the Nanakaly Cancer Hospital in Erbil city (Erbil is Capital of Kurdistan Region Government), and Ashti hospital in Soran city. Also special thanks to general directorate of Health\ MINistry of Health, to Kurdistan standardization quality control administration\ Ministry of Planning, and, Soran technical institute/Erbil poly-technic University.

Conflict of Interest

None.

Funding Support

None.

REFERENCES

Al-Humadi, A. H. 2009. Epidemiology of colon & rectal cancer in Iraq. World Journal of Colorectal Surgery, 1(1).

Curado, M. P., Edwards, B., Shin, H. R., Storm, H., Ferlay, J., Heanue, M., Boyle, P. 2007. Cancer incidence in five continents. IARC Scientific Publications, 160.

Hasnawi, A., Mosawi, S. M., Khziaie, A. J., Unan, A. A., Fadhil, O. F., Sami, H. M., S 2009. Cancer in Iraq: Distribution by primary tumor site. New Iraqi J Med, 5(1):5–8.

Higginson, J. V. 1968. International Agency for Research on Cancer. WHO chronicle. WHO Chronicle, 22(12):517–522.

Hussein, A., Al-Janabi, A., Naseer, Z., Hamody, T. 2017. Epidemiological Study of Cancers in Iraq-Karbala from 2008 to 2015. International Journal of Medical Research and Health Sciences, 6(1):79–86.

Ibrahim, A. S., Khaled, H. M., Mikhail, N. N., Baraka, H., KameL, H. 2014. Cancer Incidence in Egypt: Results of the National Population-Based Cancer Registry Program. Journal of Cancer Epidemiology, 2014:1–18.

Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Thun, M. J. 2007. Cancer Statistics. CA: A Cancer Journal for Clinicians, 57:43–66.

Khoshnaw, N., Mohammed, H. A., Abdullah, D. A.
2016. Patterns of Cancer in Kurdistan - Results of Eight Years Cancer Registration in Sulaymaniyah Province-Kurdistan-Iraq. *Asian Pacific Journal of Cancer Prevention*, 16(18):8525–8531.

Ma, X., Yu, H. 2006. Global burden of cancer. *The Yale Journal of Biology and Medicine*, 79(3-4):85–94.

Majid, R. A., Mohammed, H. A., Hassan, H. A., Abdulmahdi, W. A., Rashid, R. M., Hughson, M. D. 2012. A population-based study of Kurdish breast cancer in northern Iraq: Hormone receptor and HER2 status. A comparison with Arabic women and United States SEER data. *BMC Women’s Health*, 12(1):16–16.

Othman, R. T., Abdulljabar, R., Saeed, A., Kittani, S. S., Sulaiman, H. M., Mohammed, S. A., Hussein, N. R. 2011. Cancer incidence rates in the Kurdistan region. *Asian Pacific Journal of Cancer Prevention : APJCP*, 12(5):1261–1264.

Parkin, D. M., Olsen, A.-H., Sasieni, P. 2009. The potential for prevention of colorectal cancer in the UK. *European Journal of Cancer Prevention*, 18(3):179–190.

Pervaiz, R., Tulay, P., Faisal, F., Serakinci, N. 2017. Incidence of cancer in the Turkish Republic of Northern Cyprus. *Turkish Journal Of Medical Sciences*, 47(2):523–530.

Roya, N., Abbas, B. 2013. Colorectal Cancer Trends in Kerman Province, the Largest Province in Iran, with Forecasting until 2016. *Asian Pacific Journal of Cancer Prevention*, 14(2):791–793.

Salih, K. 1995. Anfal: The Kurdish genocide in Iraq. *Digest of Middle East Studies*, 4(2):24–39.

Schottenfeld, D., Beebe-Dimmer, J. 2006. Alleviating the Burden of Cancer: A Perspective on Advances, Challenges, and Future Directions. *Cancer Epidemiology Biomarkers & Prevention*, 15:2049–2055.

Yilmaz, H. H., Yazihan, N., Tunca, D., Sevinc, A., Olcayto, E. O., Ozgul, N., Tuncer, M. 2011. Cancer Trends and Incidence and Mortality Patterns in Turkey. *Japanese Journal of Clinical Oncology*, 41(1):10–16.

Yumuk, P. F., Kahraman, B., Yilmaz, M., Koyyeri, M., Binici, M., Turhal, N. S. 2013. An evaluation of lifestyle changes in Turkish cancer patients after diagnosis. *Journal of Clinical Oncology*, 31(15_suppl):e20503–e20503.

Zangana, A., Garota, S. 2012. Risk factors of breast cancer in a sample of Kurdish women of Kurdistan region - Iraq: A comparative study between pre-menopausal and post-menopausal women. *Zanco Journal of Medical Sciences*, 16(3):262–267.