Influence Function and Bootstrap Methods of Estimating the Standard Errors of the Estimators of Mixture Exponential Distribution Parameter

J. I. Udobi1,*, G. A. Osuji2, S. I. Onyeagu3 and H. O. Obiora-Ilouno4

1 Department of Statistics, Federal Polytechnic Oko, P.M.B 021 Aguata, Anambra State, Nigeria
 e-mail: joyis4jesus@yahoo.com

2 Department of Statistics, Nnamdi Azikiwe University Awka, PMB 5025 Awka, Anambra state, Nigeria
 e-mail: ga-osuji@unizik.edu.ng

3 Department of Statistics, Nnamdi Azikiwe University Awka, PMB 5025 Awka, Anambra state, Nigeria
 e-mail: onyeagusidney@gmail.com

4 Department of Statistics, Nnamdi Azikiwe University Awka, PMB 5025 Awka, Anambra state, Nigeria
 e-mail: ho.obiorailouno@unizik.edu.ng

\textbf{Abstract}

This work estimated the standard error of the maximum likelihood estimator (MLE) and the robust estimators of the exponential mixture parameter (θ) using the influence function and the bootstrap approaches. Mixture exponential random samples of sizes 10, 15, 20, 25, 50, and 100 were generated using 3 mixture exponential models at 2\%, 5\% and 10\% contamination levels. The selected estimators namely: mean, median, alpha-trimmed mean, Huber M-estimate and their standard errors (SE_n) were estimated using the two approaches at the indicated sample sizes and contamination levels. The results were compared using the coefficient of variation, confidence interval and the asymptotic relative efficiency of SE_n in order to find out which approach yields the more reliable, precise and efficient estimate of SE_n. The results of the analysis show that the two approaches do not equally perform at all conditions. From the results, the bootstrap method was found to be more reliable and efficient method of estimating the standard error of the arithmetic mean at all sample sizes and contamination levels. In estimating the standard error of the median, the influence function method was found to be more effective especially when the sample size is small and yet contamination is high. The
influence function based approach yielded more reliable, precise and efficient estimates of the standard errors of the alpha-trimmed mean and the Huber M-estimate for all sample sizes and levels of contamination although the reliability of the bootstrap method improved better as sample size increased to 50 and above. All simulations and analysis were carried out in R programming language.

1. Introduction

The exponential model has many practical applications especially in life testing. Blischke and Prabhakar Murthy [1]; and Murthy et al. [2] in their different works opined that the exponential distribution is the most commonly employed model in reliability and life testing analysis. Epstein [3] stated that the exponential distribution plays a role in life testing analogous to that of the normal distribution in other areas of statistics. A study on the estimation of exponential distribution parameter is therefore very important.

The maximum likelihood estimator (MLE) of the exponential distribution parameter (θ) is the arithmetic mean and the measure of its long run accuracy is the squared error which is also based on the mean. If the perfect exponential fit assumptions of the classical statistics are fully met the MLE is expected to be optimal in estimating the population parameter in terms of attaining the lowest possible asymptotic variance among a reasonable class of estimators. In the presence of outliers or other forms of contaminations however, the classical estimate can be very suboptimal (Ripley [4]). Writing on the effect of mild deviations from a parametric model on classical estimates, Hampel et al. [5] noted that the effect of contaminations on the squared error is even worse than that on the arithmetic mean.

An estimator of a parameter may have been preferred on the basis of its efficiency, computational, and robustness properties but its realization for a particular set of data is of a little value except there is an accompanying statistic that indicates its accuracy. The standard error is the tool generally employed in assessing the long run accuracy of a given statistical estimator (Staudte and Sheather [6]).

A method that provides accurate probability coverage for one measure of scale or location can perform poorly with another, a guide on which methods performs best for which estimator is therefore very important hence our reason for embarking on this work.

Staudte and Sheather [6], noted that the alpha-trimmed mean is highly efficient and robust for entire neighbourhoods of the exponential model.

This work estimated the standard error of the MLE and robust estimators of the
exponential distribution parameter θ using the influence function and the bootstrap approaches and compared the estimates on the basis of their coefficient of variation (CV), asymptotic relative efficiency (ARE) and confidence interval (CI) at various sample sizes and levels of contamination.

2. Theory and Methods

2.1. Mixture exponential models for contamination

One may view mixture models as a weighted average of some probability models. They arise in real life situations and are used to represent chance contamination.

If we presume that x_i is from model F with a probability $1 - \varepsilon$ and from a contaminating distribution G with a small probability ε we can write:

$$x \sim (1 - \varepsilon)F + \varepsilon G.$$ (1)

We may simply take the contaminating distribution G to be the point mass distribution at y so that $G = \delta_y$ and $\delta_y(x) = 1$ if $x > y$ and 0 otherwise, and as such, the equation (1) can be written as $x \sim (1 - \varepsilon)F + \varepsilon \delta_y$ as a simple model for proportion ε of outliers or contaminants at y and $F_{x,\varepsilon} = (1 - \varepsilon)F + \varepsilon \delta_y(x)$ is the mixture model.

Sometimes, contamination could be as a result of a proportion of observation ε coming from the same distribution family say exponential but with a larger scale. When this happens in the case of exponential distribution, it may be referred to as exponential contamination or exponential mixture.

If X has exponential distribution, we may write: $F = F_0(x) = 1 - e^{-\frac{x}{\theta}}$ as the cumulative distribution function F so that $f(x, \theta) = \frac{1}{\theta} e^{-\frac{x}{\theta}}; x > 0$. The cumulative distribution function for G the contaminating model may simply be chosen as $G(x) = 1 - e^{-\frac{x}{c\theta}}; c > 0$; so that $g(x) = \frac{1}{c\theta} e^{-\frac{x}{c\theta}}$ and $F_{x,\varepsilon} = (1 - \varepsilon)F \left(\frac{x}{\theta}\right) + \varepsilon F \left(\frac{x}{c\theta}\right) = (1 - \varepsilon) \frac{1}{\theta} e^{-\frac{x}{\theta}} + \varepsilon \frac{1}{c\theta} e^{-\frac{x}{c\theta}}$.

Staudte and Sheather [6] noted that if c is not very large, this kind of contamination is difficult to detect. They further asserted that goodness of fit test has power less than 0.15 at 5% alpha to distinguish this form of mixture distribution from exponential distribution even though such mixture models still undermines the optimality of the MLE estimator of θ and its standard error.
There are two approaches mostly employed in estimating the standard error of the estimators of the parameter of mixture exponential distribution are the influence function and the bootstrap based methods.

2.2. Variance of the estimators of the parameters of the mixture exponential distribution via the influence function (IF)

The Influence Function was introduced by Hampel ([7], [8]). It is the relationship between the influence a particular data point has on the value of an estimator and the distance of the data point from the estimate. Huber [9] traced the contributions of robust statistics to classical statistics and noted that among the basic robustness concepts influence function has become a standard tool. Hampel et al. [5] carried out a comprehensive treatment of influence function.

There are two approaches to calculating the influence function.

(1) By estimating a sample parameter $T(x_{n-1})$ from a sample of $n - 1$ points and estimating the same parameter $T(x_n)$ from a sample of n points obtained by one additional point x (a new observation) or (2) by estimating $T(x_n)$ from a sample of n points and estimating the same parameter $T(x_n)$ still from a sample of n points but by replacing one of the points say x_n with another point say x_r.

The difference between the two estimates using any of the procedures is the influence of the new point. The approximation of this difference as a function of the normalized distance of the new point x from y yields the influence function (Wainer [10]).

Let $T(x_{n-1}) = \frac{\sum_{i=1}^{n-1} x_i}{n-1}, i = 1, 2, ..., n$. Given an additional value of x, we calculate $T(x_n) = \frac{\sum_{i=1}^{n} x_i}{n}$, then $T(x_{n-1}) - T(x_n)$ is the influence of the nth point and $\frac{T(x_{n-1}) - T(x_n)}{1/n} = n(T(x_{n-1}) - T(x_n))$ yields the influence function (Wainer [10]).

For the mixture model $F_{x, \varepsilon} = (1 - \varepsilon)F + \varepsilon \delta x$, the relative influence on $T(F)$ of proportion ε of “bad” observations at x is formulated by: $\frac{T(F_{x, \varepsilon}) - T(F)}{\varepsilon}$ and the influence function of T at F is defined for each x by:

$$IF(x; T, F) = \lim_{\varepsilon \to 0} \left(\frac{T(F_{x, \varepsilon}) - T(F)}{\varepsilon} \right)$$ provided the limits exist. But $F_{x, \varepsilon} = (1 - \varepsilon)F + \varepsilon \delta x$ so that

$$IF(x; T, F) = \lim_{\varepsilon \to 0} \frac{T((1 - \varepsilon)F + \varepsilon \delta x) - T(F)}{\varepsilon}.$$ (2)
The asymptotic variance of the estimators are obtained via the formula of IF by
$$V(T,F) = \frac{1}{n} \sum_{i=1}^{n} IF^2(x_i;T,F)$$
and hence the asymptotic relative efficiency of a pair of estimators \(T_n; n \geq 1\) and \(S_n; n \geq 1\) can be obtained as \(ARE_{T,S} = \frac{V(S,F)}{V(T,F)}\) (Hampel et al. [5], Staudte and Sheather [6], Huber and Ronchetti [11]).

2.2.1. The arithmetic mean

The maximum likelihood estimator of the exponential distribution parameter \(\theta\) is the arithmetic mean \(\tilde{X}\) and it is standard error is \(s_{\tilde{x}}\) (Hampel et al. [5], Staudte and Sheather [6]). Let \(F_n\) be the empirical distribution of \(n\) observations from \(F\) whether or not \(F\) is continuous, then \(T(F_n) = \int xdf_n(x) = \sum xp_f(x) = \sum_{i=1}^{n} \frac{x_n}{n} = \tilde{X}_n\).

$$IF(x;T,F) = \frac{T(F_{x,e}) - T(F)}{\varepsilon}$$; if \(F\) has mean \(\mu = T(F); F_{x,e}\) has mean \((1 - \varepsilon)\mu + \varepsilon x\), then \(T(F_{x,e}) - T(F) = (1 - \varepsilon)\mu + \varepsilon x - \mu = \varepsilon(x - \mu) = \varepsilon(x - T(F))\) so that

$$IF(x;T,F) = \frac{\varepsilon(x - T(F))}{\varepsilon} = x - T(F).$$

Therefore for the arithmetic mean \(IF(x;T,F) = x - T(F)\) and \(V(T,F) = \frac{1}{n} \sum_{i=1}^{n} IF^2(x_i;T,F) = \frac{1}{n} \sum_{i=1}^{n} (x - T(F))^2\) (Staudte and Sheather [6], Wilcox [12], Huber, and Ronchetti [11]).

2.2.2. The trimmed mean \((\tilde{X}_{n,a})\)

Let \(x_1, x_2, \ldots, x_n\) be a set of observations such that \(x_1 \leq x_2 \leq \ldots \leq x_n\) is the observation in ascending order and let \(x_i = \text{the } i\text{th order statistics of the observation, an } \alpha - \text{trimmed mean} \) is given by \(T_\alpha(F_n) = \frac{1}{n - \alpha n} \sum_{i=1}^{n - \lfloor g \rfloor} x_i \approx \frac{1}{\alpha} \sum_{i=1}^{\alpha} x_i = \tilde{X}_{n,a}\) where: \(\alpha \in [0, \frac{1}{2}]\) is the required amount of trimming, \(\alpha = n - \lfloor g \rfloor\), \(g = na\) and \([.\] stands for integer part and the influence function estimate of its sample variance is: \(V(T_\alpha,F) = \frac{1}{n} \sum_{i=1}^{n} IF^2(x_i;T_\alpha,F) = E_{F_n}(IF(x;T_\alpha,F))^2 = \frac{s_w^2}{(1 - \alpha)^2n}\) and the standard error is \(\sqrt{V(T_\alpha,F)} = \frac{s_w}{\sqrt{(1 - \alpha)^2n}} = \frac{s_w}{(1 - \alpha)\sqrt{n}}\). The sample winsorized variance \(s_w^2 = \frac{1}{n - \alpha} \sum_{i=1}^{n} (w_i - \bar{w})^2\) and for exponential distribution,

$$w_i = \begin{cases} x_i & \text{if } 0 \leq x_i < x_{(n-g)} \\ x_{(n-g)} & \text{if } x_i \geq x_{(n-g)} \end{cases}.$$
Therefore to estimate the standard error of the trimmed mean using the influence function approach:

1. Compute the winsorized observations \(w_i \).

2. Compute the winsorized sample variance then divide by \((1 - \alpha)^2n\) (Staudte and Sheather [6], Maronna et al. [13], Wilcox [12]).

2.2.3. The Huber’s M-Estimate

Let \(x_1 \leq x_2 \ldots \leq x_n \) be a set of observations arranged in ascending order then the Huber’s M-estimator \(\hat{x}_{\text{mst}} \) is given by:

\[
T_n = (\hat{x}_{\text{mst}}) = k(\hat{\sigma}) + \frac{\sum_{t=i_1+1}^{n-i_2} x_t}{n - i_1 - i_2} = \frac{1.28(MADN(x))(i_2 - i_1)}{n - i_1 - i_2} + \frac{\sum_{t=i_1+1}^{n-i_2} x_t}{n - i_1 - i_2};
\]

where \(MADN(x) = \frac{MAD(x)}{x_{75}} \) and \(MAD(x) = \text{med}(|x_1 - M|, \ldots, |x_n - M|); i_1 \) is the number of observations \(x_i \) for which \(\frac{x_i - M}{MADN(x)} < -1.28 \) and \(i_2 \) is the number of observations \(x_i \) for which \(\frac{x_i - M}{MADN(x)} > 1.28 \). \(V(T_{\text{mst}}, F) = \frac{1}{n} \sum_{i=1}^{n} IF^2(x_i; T_{\text{mst}}, F) \) (Hampel et al. [5], Wilcox [12])

2.2.4. The qth quantile estimator

Given a set of observations \(x_1 \leq x_2 \ldots \leq x_n \), arranged in ascending order, for any \(q, 0 \leq q \leq 1 \), the \(q \)th quantile \(x_q \) may be defined by \(p(x \leq x_q) = q \). If we define \(m = q \lfloor n + 1 \rfloor \) where \(\lfloor q \rfloor \) is the greatest integer less than or equal to \(q(n + 1) \), \(x_q \) may simply be estimated as \(\hat{x}_q = X_{(m)} \) or in our usual notation as \(T_{n(q)} = X_{(m)} \) that is the \(m \)th observation. If \(X \) is continuous and \(f(x_q) > 0 \), the influence function (IF) of the \(q \)th quantile is given as:

\[
IF_q(x) = \begin{cases} \frac{q - 1}{f(x_q)} & \text{if } x < x_q \\ 0 & \text{if } x = x_q \\ \frac{q}{f(x_q)} & \text{if } x > x_q \end{cases}
\]

So that \(T_{n(q)} = \hat{x}_q = x_q + \frac{1}{n} \sum IF_q(X_i) \) with a remainder term that tends to zero as \(n \) tends to infinity and IF based estimated variance is given as \(V(\hat{x}_q) = \frac{q(1-q)}{n[f(x_q)]^2} \).
Influence Function and Bootstrap Methods of Estimating the Standard Errors …

So for \(q = 0.5 \) ie the median; \(V(T_{n(0.5)}) = \frac{1}{4n[f(x_{0.5})]^2} \) and the standard error \(SE_z = \frac{1}{2\sqrt{n}f(x_{0.5})} \) (Staudte and Sheather [6], Wilcox [12]).

For the exponential distribution the programme took cognizance of the lower limit of \(X \) which is 0.

2.3. Bootstrap estimation of the standard error of \(T_n \)

The bootstrap method for estimating a standard error is the second approach we employed for estimating the standard error of the estimates. Efron defined a re-sampling procedure that he coined as bootstrap (Efron [14]).

The idea of bootstrap is to use only what one knows from the data and not introduce extraneous assumptions about the population distribution.

The theoretical mean of the bootstrap distribution is the sample mean (Chernick and LaBudde [15]).

2.3.1. Algorithm for deriving the bootstrap estimate of the standard error of \(T_n \)

Let \(T_n \) be any estimator based on a random sample of observations: \(X_1, X_2, \ldots, X_n \); where the observations are Independently and identically distributed as \(F \). We wish to estimate \(\sqrt{V(T, F)} = SE_{T_n}(F) = \sqrt{V_F(T_n)} \) using the bootstrap method. The bootstrap estimate of \(SE_{T_n}(F) \) is defined by substituting the empirical distribution \(F_n \) by \(F \) (going by our symbol) (Efron [16]) where \(SE_{T_n}(F) \) is a known function of \(F \). Therefore:

- First fix \(F_n \) the empirical distribution which puts mass \(\frac{1}{n} \) on the \(n \) data points \(x_1, x_2, \ldots, x_n \)
- Draw a random sample of size \(n \) with replacement from the empirical distribution \(F_n \) to have \(X_1^*, X_2^*, \ldots, X_n^* \) the bootstrap sample, and calculate \(T_n^* = T_n(X_1^*, X_2^*, \ldots, X_n^*) \) which is the bootstrap estimate.
- Repeat the last step independently for \(B \) times so that we have: \(T_{n1}^*, T_{n2}^*, \ldots, T_{nB}^* \) and \(SE_{T_n}(F_n) = \frac{\sum_{b=1}^{B}(T_{nB}^* - \bar{T}_{nB})^2}{B-1} \) where \(\bar{T}_{nB} = \frac{\sum_{b=1}^{B}T_{nB}^*}{B} \). According to Efron ([16]) most often \(B = 100 \) will suffice.

2.4. Simulation study

Based on the models, indicated sample sizes and the levels of contamination, we...
generated data through simulation, estimated T_n, the standard error of the estimators of theta, estimated the standard error of the standard errors S_{ET}, and carried out our analysis.

The contaminated data were generated considering the case of contamination due to increased scale for exponential mixture models. Given the general mixture model $F_{x,\varepsilon} = (1 - \varepsilon)\frac{1}{\theta} e^{-\frac{x}{\theta}} + \varepsilon \frac{1}{c\theta} e^{-\frac{x}{c\theta}}$ employed in this research work, we choose $c =$ constant $= 3, 6, \text{ and } 9$. Specifically:

(i) $(1 - \varepsilon)\frac{1}{\theta} e^{-\frac{x}{\theta}} + \varepsilon \frac{1}{3\theta} e^{-\frac{x}{3\theta}}$ is tagged model one,

(ii) $(1 - \varepsilon)\frac{1}{\theta} e^{-\frac{x}{\theta}} + \varepsilon \frac{1}{6\theta} e^{-\frac{x}{6\theta}}$ is model 2 and

(iii) $(1 - \varepsilon)\frac{1}{\theta} e^{-\frac{x}{\theta}} + \varepsilon \frac{1}{9\theta} e^{-\frac{x}{9\theta}}$ is model 3.

We worked at 2%, 5%, 10% contamination levels and for sample sizes of, 10, 15, 20, 25, 50, and 100 to make for small, medium and large sample sizes. The multiplicative constants were chosen to make the estimators unbiased for θ. Without loss of generality, we assumed $\theta = 1$ since our estimators are scale equivariant. The “MASS”, “mixtools”, and the “WRS2” packages for R programming language were used for the simulation and analysis.

3. Method of Comparison

Generally, in evaluating the standard error estimates, what is important to us is for the standard error to be small relative to the estimate itself (Staudte and Sheather [6]). We will therefore compare the methods based on their ability to render the least standard error of the estimate.

3.1. Coefficient of variation (CV)

The relative standard error or the coefficient of variation of T_n is given by:

$$CV(T_n) = \frac{\sqrt{\text{Var}(T_n)}}{E(T_n)},$$

where $E(T_n)$ is estimated by T_n itself.

The coefficient of variation of the standard error of the estimator itself is a guide to its effectiveness. Staudte and Sheather [6] recommended the use of CV in evaluating the
standard error of estimates. The estimator has a variability which we want to be small relative to what it is estimating. Therefore the approach that returns larger CV is considered less reliable and the one that delivers mostly unreliable estimates will be deemed to be performing poorer than the other.

3.2 Confidence interval (CI)

The $\alpha\%$ confidence interval using the bootstrap method is given as:

$$\left(T_n^* (\ell+1), T_n^* (u) \right)$$

where T_n^* is an estimate of θ based on the bootstrap method, $\ell = \alpha B / 2$; $u = B - \ell$; α is the confidence level. The procedure that delivers a shorter interval is preferred to the other (Wilcox [12]).

3.3. The asymptotic relative efficiency (ARE)

Again the efficiency of $\hat{\theta}_1$ to $\hat{\theta}_2$ is $Eff (\hat{\theta}_1, \hat{\theta}_2) = \frac{\text{var}(\hat{\theta}_2)}{\text{var}(\hat{\theta}_1)}$, if $\text{var}(\hat{\theta}_2) > \text{var}(\hat{\theta}_1)$, $Eff > 1$ meaning that $\hat{\theta}_1$ is preferred however, if $Eff (\hat{\theta}_1, \hat{\theta}_2) < 1$, then $\hat{\theta}_2$ is preferred (Staudte and Sheather [6]).

4. Result and Discussion

The columns of the tables indicate the approach used for the particular estimation (influence function or bootstrap approach), the sample size used, the model employed, as well as the value of ε so that: $IF_{n, r, i,j}$ means influence function based estimate when $n = r$ for model i at $\varepsilon = j\%$ and $B_{n, r, i,j}$ = bootstrap based estimate at $n = r$, for model i and at $\varepsilon = j\%$.

An abridged version of the results of the analysis for the coefficient of variation and the confidence interval are included in the body of the work while the unabridged results are provide as appendix. This is to avoid producing an unnecessarily long report.

4.1. Coefficient of variation (CV) of the standard error estimate T_n

When CV is used as a tool for analysis, interest is typically to find out which procedure returns the smaller CV.

Table 1. Result of the Coefficient of Variation of T_n

When $n=10$ and $\varepsilon=2\%$	IFn10m12	Bn10m12	IFn10m22	Bn10m22	IFn10m32	Bn10m32
CV Mean T_ε	0.4307355	0.05696358	1.008673	0.107728	0.9956117	0.1860713
CV Med T_ε	0.05722674	0.121998	0.0905039	0.09064958	0.06205067	0.09914904
CV 10% trn/T_ε	0.03957395	0.0832623	0.04406564	0.0824341	0.04854952	0.1781203
	$n=10$ and $\varepsilon=5\%$	$n=10$ and $\varepsilon=10\%$	$n=100$ and $\varepsilon=2\%$	$n=100$ and $\varepsilon=5\%$	$n=100$ and $\varepsilon=10\%$	
------------------	-------------------------------	-------------------------------	-------------------------------	-------------------------------	-------------------------------	
CV TN	0.3835547	0.4816624	0.1851841	0.2288451	0.2684579	
CV Med TN	0.09783311	0.05622038	0.02557197	0.02581634	0.02862773	
CV 10% tmn TN	0.03641615	0.04267457	0.01346576	0.01400197	0.01552349	
CV 20% tmn TN	0.03680817	0.04123198	0.01366441	0.01223093	0.01305047	
CV $Hmest$ TN	0.1350465	0.09763311	0.01116545	0.1224908	0.1047202	
When $n=10$ and $\varepsilon=5\%$ IF $n=10m15$	CV $Mean$ T	0.3835547	0.4816624	0.1851841	0.2288451	
When $n=10$ and $\varepsilon=10\%$ IF $n=10m15$	CV Med T	0.09783311	0.05622038	0.02557197	0.02581634	
When $n=10$ and $\varepsilon=5\%$ IF $n=10m25$	CV 10% tmn T	0.03641615	0.04267457	0.01346576	0.01400197	
When $n=10$ and $\varepsilon=10\%$ IF $n=10m25$	CV 20% tmn T	0.03680817	0.04123198	0.01366441	0.01223093	
When $n=10$ and $\varepsilon=5\%$ IF $n=10m35$	CV $Hmest$ T	0.1350465	0.09763311	0.01116545	0.1224908	
When $n=10$ and $\varepsilon=10\%$ IF $n=10m35$	CV $Mean$ T	0.3835547	0.4816624	0.1851841	0.2288451	
When $n=100$ and $\varepsilon=2\%$ IF $n=100m15$	CV Med T	0.09783311	0.05622038	0.02557197	0.02581634	
When $n=100$ and $\varepsilon=5\%$ IF $n=100m15$	CV 10% tmn T	0.03641615	0.04267457	0.01346576	0.01400197	
When $n=100$ and $\varepsilon=10\%$ IF $n=100m15$	CV 20% tmn T	0.03680817	0.04123198	0.01366441	0.01223093	
When $n=100$ and $\varepsilon=2\%$ IF $n=100m25$	CV $Hmest$ T	0.1350465	0.09763311	0.01116545	0.1224908	
When $n=100$ and $\varepsilon=5\%$ IF $n=100m25$	CV $Mean$ T	0.3835547	0.4816624	0.1851841	0.2288451	
When $n=100$ and $\varepsilon=10\%$ IF $n=100m25$	CV Med T	0.09783311	0.05622038	0.02557197	0.02581634	
When $n=100$ and $\varepsilon=5\%$ IF $n=100m35$	CV 10% tmn T	0.03641615	0.04267457	0.01346576	0.01400197	
When $n=100$ and $\varepsilon=10\%$ IF $n=100m35$	CV 20% tmn T	0.03680817	0.04123198	0.01366441	0.01223093	

Here CV $Mean$ T_n is the CV of the standard error estimate T_n for the mean, CV Med T_n is the CV of the standard error estimate T_n for the median, $CV 10\%$ tmn T_n is the CV of the standard error estimate T_n for 10% trimmed mean, $CV 20\%$ tmn T_n is the CV of the standard error estimate T_n for the 20% trimmed mean, and CV $Hmest$ T_n is the CV of the standard error estimate T_n for the Huber’s M-estimate.

From Table 1 above, the highest coefficient of variation values returned by the influence function approach for model 1, model 2 and model 3 are for the standard error of the arithmetic mean and mostly at the lower levels of contamination and sample sizes.
The highest CV values returned by the bootstrap approach are for the standard error of the Huber’s M-estimate at lower sample sizes. The bootstrap approach was however more reliable than the influence function for the standard error of the arithmetic mean at all sample sizes and levels of contamination.

The influence function method was more reliable for the standard error of the median, the 10% and the 20% trimmed mean as well as the Huber’s M-estimate even though the bootstrap approach gained more reliability with Huber’s M-estimate with increased sample size. This implies that for a mixture exponential distribution the bootstrap approach is more effective than the influence function approach essentially for the standard error of the arithmetic mean under the conditions covered in this study.

4.2. The 95% confidence interval for the standard error estimate T_n.

When n=10 & ε = 2%	IFn10m12	Bn10m12	IFn10m22	Bn10m22	IFn10m32	Bn10m32
CI Mean Tn	0.2766077	0.8314	-0.7482768	0.783	-1.033458	0.871
CI Med Tn	0.4754683	0.1303	0.4337110	0.1505	0.4815322	0.177
CI 10% trimTn	0.1984403	0.6226	0.2078346	0.5794	0.2402176	0.670
CI 20% trimTn	0.1582550	0.4288	0.1562903	0.4198	0.2205365	0.3742
CI HmestTn	0.2155397	0.4288	0.1978728	0.673	0.1913133	4.967

When n=10 & ε = 5%	IFn10m15	Bn10m15	IFn10m25	Bn10m25	IFn10m35	Bn10m35
CI Mean Tn	0.3608059	0.899	-0.3662668	0.7361	-1.814372	0.893
CI Med Tn	0.2845203	0.899	0.4871484	0.1718	0.4543144	0.1388
CI 10% trimTn	0.1418869	0.6563	0.2079713	0.5459	0.1968265	0.7030
CI 20% trimTn	0.1233429	0.5090	0.1669658	0.4263	0.1615816	0.4796
CI HmestTn	0.1631623	5.349	0.2251599	2.131	0.2075221	6.544

When n=10 & ε = 10%	IFn10m10	Bn10m10	IFn10m20	Bn10m20	IFn10m30	Bn10m30
CI Mean Tn	0.2390448	1.113	-3.238097	1.258	-1.906115	1.880
CI Med Tn	0.5434780	0.1711	0.5995978	0.1633	0.5668662	0.1777
CI 10% trimTn	0.2430693	0.7684	0.2451516	0.624	0.2117765	0.954

*Table 2. Result at 95% confidence interval for T_n.***
CI Mean Tn = the confidence interval for Tn on the Mean, CI Med Tn = confidence interval for Tn on the median, CI 10% tmnTn= confidence interval for Tn on the 10% trimmed, CI 20% tmnTn= confidence interval for Tn on 20% trimmed, CI HmestTn= confidence interval for Tn on the Huber M-estimator.

Our interest is to find out which approach returns a shorter CI for Tn. From Table 2, the bootstrap approach returned shorter confidence intervals for the mean for all three levels of contamination and all sample sizes. At the lower contamination levels and sample sizes, the bootstrap method returned shorter interval for the standard error of the median than the influence function approach, as the contamination level increased however this advantage in precision was lost. The influence function approach was more precise for the standard error of the 10%, and 20% trimmed mean as well as the Huber’s M-estimate for a mixture exponential distribution.

CI 20% tmnTn	0.1813074	0.5379	0.1562903	0.5272	0.1687207	0.6287
CI Med Tn	0.2079469	0.8113	0.1812813	0.7495	0.1973796	1.0281
CI HmestTn	0.2378621	4.440	0.2638496	5.575	0.2359003	7.44
	0.3578948	8.424	0.3809222	8.235	0.3508940	14.41
CI Mean Tn	-	-	-	-	-	-
CI Med Tn	-	-	-	-	-	-
CI HmestTn	-	-	-	-	-	-
CI 10% tmnTn	-	-	-	-	-	-
CI 20% tmnTn	-	-	-	-	-	-
CI HmestTn	-	-	-	-	-	-

When n=100 and ε= 5%

CI Mean Tn	0.6233571	1.040	0.7286027	1.52	0.7685911	1.940
CI Med Tn	0.95558659	0.0897	0.1019220	0.0900	0.1022051	0.0870
CI HmestTn	0.09381420	0.1095417	0.0982	0.1099408	0.0984	
CI 10% tmnTn	0.08222304	0.6017	0.06331783	0.6417	0.06253255	0.6665
CI 20% tmnTn	0.04993297	0.4431	0.04921317	0.4557	0.05239614	0.4738
CI HmestTn	0.05197984	0.6488	0.06639718	0.6816	0.0667619	0.7291
CI Mean Tn	0.5841398	2.734	0.11556065	3.070	0.11909386	5.350
CI Med Tn	0.11079037	1.995	0.08294792	2.807	0.08476724	3.626
CI HmestTn	0.07814902	0.115556065	3.070	0.11909386	5.350	

When n=100- & ε= 10%

CI Mean Tn	0.8041398	1.312	0.8992901	2.080	1.556163	3.126
CI Med Tn	0.1027302	1.471	0.8858617	2.492	5.819326	4.059
CI HmestTn	0.09090002	1.054	0.1176777	1.040	0.1233243	0.1024
CI 10% tmnTn	0.05910087	0.6708	0.06721233	0.7462	0.06908224	0.7797
CI 20% tmnTn	0.04791090	0.4866	0.05647432	0.5167	0.05784181	0.5204
CI HmestTn	0.05020846	0.5242	0.05930473	0.5668	0.06142697	0.5790
CI Mean Tn	0.0882558	2.257	0.0914879	3.884	0.09309415	7.077
CI Med Tn	0.12472424	2.938	0.1334659	5.512	0.13790347	9.150
CI HmestTn	-	-	-	-	-	-
4.3. The asymptotic relative efficiency (ARE) of the standard error of T_n

The efficiency of the bootstrap based estimates relative to the influence function approach is presented on the table below.

Table 3. Result of the asymptotic relative efficiency (ARE) of the standard error of T_n

	$\epsilon = 2\%$	$\epsilon = 5\%$	$\epsilon = 10\%$
	$n=10$	$n=15$	$n=20$
eff_1			
eff_2			
eff_3			
eff_4			
eff_5			
eff_6			
eff_7			
eff_8			
eff_9			
eff_{10}			

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 113-136
Here eff_1 = the efficiency of the bootstrap based estimates relative to the influence function with respect to the standard error of the mean, eff_2 = the efficiency of the bootstrap based estimates relative to the influence function with respect to the standard error of the median, eff_3 = the efficiency of the bootstrap based estimates relative to the influence function with respect to the standard error of the 10% trimmed mean, eff_4 = the efficiency of the bootstrap based estimates relative to the influence function with respect to the standard error of the 20% trimmed mean, eff_5 = the efficiency of the bootstrap based estimates relative to the influence function with respect to the standard error of the Huber M-estimate. Also let M_1, M_2, M_3 stand for model1, model2 and model3 as defined earlier.

Table 4. The number of times bootstrap approach was more efficient than IF at different ε

ε	mean	median	10% trimmed mean	20% trimmed mean	Huber M-estimate
2%	54/54	9/54	0	0	0
5%	54/54	7/54	0	0	0
10%	54/54	8/54	0	0	0

From Table 3, we noticed that the bootstrap method is more efficient than the influence function approach for the estimation of the standard error of the mean, the influence function approach is more efficient for the estimation of the standard error of the median, the 10%, & 20% trimmed mean and the Huber’s m-estimator for a mixture exponential distribution.

5. Summary of Finding and Conclusion

5.1. Summary of finding

The following were the findings of the study:

The bootstrap approach yielded a more reliable, more precise and more efficient result for the estimation of the standard error of the arithmetic mean than the influence function approach did. This could possibly be explained by the claims of Chernick and LaBudde ([15]) that the arithmetic mean is the theoretical mean of the bootstrap distribution.

The coefficient of variation for the standard error of the arithmetic mean was high even more than 100% in some cases at lower sample sizes and higher contamination levels when the influence function approach was used which indicates a poor...
performance. This however improved with increase in the sample size especially for the IF method.

The influence function approach was more reliable for the standard error of the median especially at the higher levels of contamination.

For the 10% and 20% trimmed mean, the influence function approach also yielded more reliable, more precise and more efficient estimates than the bootstrap approach however, the results of the 20% trimmed mean are preferred.

At lower sample sizes and particularly with higher contamination levels, the influence function approach performed better than the bootstrap approach for the standard error of the Huber’s m-estimate particularly, in terms of effectiveness and reliability. This however greatly improved for the bootstrap method as the sample size increased to 50 and above.

5.2. Conclusion

In conclusion, the two procedures for estimating the standard error considered in this work do not equally perform under all conditions. For mixture exponential distribution and under the stipulated conditions, the influence function approach is generally preferred in estimating the standard error having been found more efficient, more reliable and precise in estimation in most cases especially at higher levels of contamination except for the arithmetic mean.

We therefore recommend that the bootstrap method should be the first choice preferred to the influence function approach in estimating the standard error of the arithmetic mean for mixture exponential distribution. For the standard error of the median, the alpha trimmed mean and the Huber M-estimator, the influence function approach should be the first choice. The standard error of 20% trimming performed better than 10% trimming.

References

[1] W. Blischke and D. N. Prabhakar Murthy, Reliability: Modeling, Prediction, and Optimization, John Wiley and Sons, 2000. https://doi.org/10.1002/978111818150481

[2] D. Murthy, M. Xie and R. Jiang, Weibull Models, John Wiley and Sons, 2004. DOI:10.002/047147326X

[3] B. Epstein, The Exponential Distribution and Its Role in Life Testing, Industrial Quality Control 15 (1958), 4-9.
[4] B. D. Ripley, *Robust Statistics*, M.Sc. in Applied Statistics MT2004.

[5] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel, *Robust Statistics: The Approach Based on Influence Functions*, John Wiley and Sons, Inc., Canada, 1986.

[6] R.G. Staudte and S. J. Sheather, *Robust Estimation and Testing*, John Wiley and Sons, Inc., New York, 1990. https://doi.org/10.1002/9781118165485

[7] F.R. Hampel, Contributions to the theory of robust estimation, Ph.D. thesis, University of California, Berkeley, 1968.

[8] F.R. Hampel, The influence curve and its role in robust estimation, *J. Am. Statist. Assoc.* 69 (1974), 383-393. https://doi.org/10.1002/9781118165485

[9] P. J. Huber, Robustness: Where are We Now?, *L_1*-Statistical Procedures and Related Topics, IMS Lecture Notes – Monograph Series, Volume 31, 1997.

[10] H. Wainer, Robust statistics: A survey and some prescriptions, *Journal of Educational Statistics* 1(4) (1976), 285-312. https://doi.org/10.3102/10769986001004285

[11] P. J. Huber and E. M. Ronchetti, *Robust Statistics*, 2nd ed., Wiley, New York, 2009.

[12] R.R. Wilcox, *Introduction to Robust Estimation and Hypothesis Testing*, 2nd ed., Academic Press, 2005.

[13] R.A. Maronna, R.D. Martin and V.J. Yohai, *Robust Statistics: Theory and Methods*, John Wiley and Sons, Ltd., England, 2006. https://doi.org/10.1002/0470010940

[14] B. Efron, Bootstrap methods: Another look at the jackknife, *Ann. Statist.* 7 (1979), 1-26. https://doi.org/10.1214/aos/1176344552

[15] M. R. Chernick and R. A. LaBudde, *An Introduction to Bootstrap Methods with Applications to R*, John Wiley & Sons, Inc., Hoboken, New Jersey and Canada, 2011.

[16] B. Efron, *The Jackknife, the Bootstrap and Other Resampling Plans*, SIAM, Philadelphia, 1982. https://doi.org/10.1137/1.97816111970319
Result of the Coefficient of Variation of T_n

When n=10 and $\varepsilon = 2\%$	IFn10m12	Bn10m12	IFn10m22	Bn10m22	IFn10m32	Bn10m32
CV Mean T_n	0.4307355	0.05696358	1.008673	0.107728	0.9956117	0.1860713
CV Med T_n	0.05722874	0.121998	0.0906509	0.09064958	0.06205067	0.09914904
CV 10% tnnT_n	0.03957395	0.0632623	0.04406564	0.0624341	0.04854952	0.1781203
CV 20% tnnT_n	0.03680817	0.0636865	0.04574305	0.05412152	0.04991686	0.1939246
CV HmestT_n	0.09763311	0.1086214	0.1366441	0.1200062	0.1318419	0.1351329

When n=10 and $\varepsilon = 5\%$	IFn10m15	Bn10m15	IFn10m25	Bn10m25	IFn10m35	Bn10m35
CV Mean T_n	0.3835547	0.06819947	0.776513	0.040609	1.165643	0.1502246
CV Med T_n	0.04123198	0.1037717	0.08191376	0.06791203	0.1288774	0.0817698
CV 10% tnnT_n	0.0380557	0.06369623	0.04329522	0.041706	0.0430507	0.1000914
CV 20% tnnT_n	0.03641615	0.06390621	0.03917372	0.0516966	0.0407597	0.0374469
CV HmestT_n	0.1350465	0.11165455	0.203535	0.130325	0.1990695	0.1602346

When n=10 and $\varepsilon = 10\%$	IFn10m10	Bn10m10	IFn10m20	Bn10m20	IFn10m30	Bn10m30
CV Mean T_n	0.4816624	0.06094511	0.7969795	0.110284	1.010452	0.1155721
CV Med T_n	0.05622038	0.1265833	0.06216959	0.09464207	0.1492849	0.0997504
CV 10% tnnT_n	0.04267457	0.08178365	0.04565435	0.1537206	0.05749545	0.1232185
CV 20% tnnT_n	0.04173948	0.09724286	0.04741101	0.08494325	0.04833963	0.1113086
CV HmestT_n	0.1224908	0.1316121	0.1038811	0.09389521	0.1216276	0.1513644

When n=15 and $\varepsilon = 2\%$	IFn15m12	Bn15m12	IFn15m22	Bn15m22	IFn15m32	Bn15m32
CV Mean T_n	0.977506	0.9267116	1.196078	1.3005	1.337995	1.095413
CV Med T_n	0.3052205	0.1875868	0.3007642	0.0924575	0.3253976	0.1677188
CV 10% tnnT_n	0.1524336	0.5872462	0.1601059	0.62407	0.1685818	0.567053
CV 20% tnnT_n	0.1316959	0.4953583	0.1345257	0.4618157	0.1377779	0.4849248
CV HmestT_n	0.2097556	4.17356	0.2104178	2.261791	0.2243302	4.391644

When n=15 and $\varepsilon = 5\%$	IFn15m15	B n15m15	IF n15m25	B n15m25	IF n15m35	B n15m35
CV Mean T_n	1.079279	1.068706	1.367796	1.292602	2.142445	1.498106
CV Med T_n	0.3134978	0.2082372	0.3156534	0.2055432	0.3412486	0.189422
CV 10% tnnT_n	0.1702153	0.6755228	0.1764464	0.6918751	0.307145	0.567053
CV 20% tnnT_n	0.1408037	0.5435577	0.142751	0.5597664	0.23049	0.4849248
CV HmestT_n	0.2264072	4.193927	0.2259005	5.211548	0.2243302	4.391644

When n=15 and $\varepsilon = 10\%$	IFn15m10	Bn15m10	IFn15m20	Bn15m20	IFn15m30	Bn15m30
CV Mean T_n	1.060691	0.9674195	1.265927	1.232958	1.620429	1.121002
CV Med T_n	0.2285878	0.1819971	0.225282	0.1987781	0.2377125	0.169723
CV 10% tnnT_n	0.1332488	0.6680231	0.1372087	0.6892312	0.1376816	0.6747918
CV 20% tnnT_n	0.1163239	0.5002373	0.1142462	0.5132513	0.1182036	0.4743597
CV HmestT_n	0.1934155	3.719893	0.18325	4.184207	0.2008959	3.508061
n=20 and ε=2%	IFn20m12	Bn20m12	IFn20m22	Bn20m22	IFn20m32	Bn20m32
---	---	---	---	---	---	---
CV Mean Tn	1.060691	0.967415	1.265927	1.232958	1.620429	1.121002
CV Med Tn	0.228578	0.1819971	0.225282	0.1987781	0.2377125	0.169723
CV 10% ttn Tn	0.1332488	0.6686253	0.1372087	0.6892312	0.1376816	0.6747918
CV 20% ttn Tn	0.1163239	0.5002373	0.1142462	0.5132513	0.1182036	0.4743597
CV Hmest Tn	0.1934155	3.719893	0.18325	4.184207	0.2000695	3.308061

n=20 and ε=5%	IFn20m15	Bn20m15	IFn20m25	Bn20m25	IFn20m35	Bn20m35
CV Mean Tn	1.164085	1.183336	1.495955	1.530552	1.505431	1.505431
CV Med Tn	0.2614947	0.2055002	0.2328776	0.1810504	0.2590309	0.1902197
CV 10% ttn Tn	0.1444517	0.7647136	0.1376903	0.8300896	0.1487749	0.812842
CV 20% ttn Tn	0.11661	0.5286491	0.11661	0.5669414	0.1257121	0.5291056
CV Hmest Tn	0.194061	3.582698	0.1984061	4.341629	0.2092236	4.577884

n=20 and ε=10%	IFn20m10	Bn20m10	IFn20m20	Bn20m20	IFn20m30	Bn20m30
CV Mean Tn	1.36348	1.234779	2.371529	2.072068	2.234384	1.671181
CV Med Tn	0.2805284	0.2207353	0.2774711	0.2180895	0.7513653	0.2012939
CV 10% ttn Tn	0.02531264	0.04068042	0.02891495	0.04492138	0.03320726	0.04719746
CV 20% ttn Tn	0.02393301	0.03849992	0.02560195	0.0508134	0.03481873	0.0398128
CV Hmest Tn	0.1128538	0.1284312	0.1235276	0.1230948	0.1272732	0.1395942

n=25 and ε=2%	IFn25m12	Bn25m12	IFn25m22	Bn25m22	IFn25m32	Bn25m32
CV Mean Tn	0.3239635	0.04003858	0.7058304	0.05864381	0.7988325	0.05662861
CV Med Tn	0.03823712	0.09434729	0.0295303	0.04191963	0.03068519	0.1032371
CV 10% ttn Tn	0.02531264	0.03625968	0.02883281	0.0508088	0.02626749	0.04354624
CV 20% ttn Tn	0.02393301	0.03585624	0.02950344	0.03906192	0.02463783	0.04437831
CV Hmest Tn	0.1128538	0.1048696	0.1243911	0.1344689	0.1152748	0.1159891

n=25 and ε=5%	IFn25m15	Bn25m15	IFn25m25	Bn25m25	IFn25m35	Bn25m35
CV Mean Tn	0.3239635	0.04003858	0.7058304	0.05864381	0.7988325	0.05662861
CV Med Tn	0.03823712	0.09434729	0.0295303	0.04191963	0.03068519	0.1032371
CV 10% ttn Tn	0.02531264	0.03625968	0.02883281	0.0508088	0.02626749	0.04354624
CV 20% ttn Tn	0.02393301	0.03585624	0.02950344	0.03906192	0.02463783	0.04437831
CV Hmest Tn	0.1128538	0.1048696	0.1243911	0.1344689	0.1152748	0.1159891

n=25 and ε=10%	IFn25m10	Bn25m10	IFn25m20	Bn25m20	IFn25m30	Bn25m30
CV Mean Tn	0.445413	0.04155351	0.7748815	0.04155351	0.7172928	0.08155868
CV Med Tn	0.0300703	0.05279967	0.05092504	0.05279967	0.03378353	0.07286246
CV 10% ttn Tn	0.0281504	0.04541698	0.03685324	0.04541698	0.03411938	0.1039369
CV 20% ttn Tn	0.02564059	0.03985788	0.03433863	0.03985788	0.03040753	0.0362011
CV Hmest Tn	0.109033	0.100869	0.134914	0.100869	0.1156228	0.05661229

n=50 and ε=2%	IFn50m12	Bn50m12	IFn50m22	Bn50m22	IFn50m32	Bn50m32
CV Mean Tn	0.1886186	0.02284893	0.545211	0.04709388	0.8420415	0.07455753
CV Med Tn	0.0307831	0.03273979	0.02971557	0.03074365	0.03547128	0.03552073
CV 10% ttn Tn	0.01939563	0.02439447	0.01970923	0.0288382	0.02395395	0.03342763
CV 20% tmnTn	0.01940844	0.02424277	0.01909364	0.02627209	0.02157181	0.02523321
-----------------------	------------	------------	------------	------------	------------	------------
CV Hmest Tn	0.1168254	0.03538665	0.5112604	0.08306549	0.07621776	
CV 10% tmn Tn	0.0212502	0.02823881	0.01811836	0.04492138	0.02199127	0.03933132
CV 20% tmn Tn	0.02183945	0.02161244	0.01891118	0.0508134	0.02092531	0.06237495
CV Hmest Tn	0.1153136	0.09966965	0.1113039	0.1230958	0.1170926	0.1030478
When n=50 and ε=5%	IFn50m15	Bn50m15	IFn50m25	Bn50m25	IFn50m35	Bn50m35
CV Mean Tn	0.2662618	0.03358685	0.5112604	0.08306549	0.07621776	
CV Med Tn	0.03114767	0.03453115	0.03947838	0.0672462	0.03065495	
CV 10% tmn Tn	0.0212502	0.02823881	0.01811836	0.04492138	0.02199127	0.03933132
CV 20% tmn Tn	0.02183945	0.02161244	0.01891118	0.0508134	0.02092531	0.06237495
CV Hmest Tn	0.1153136	0.09966965	0.1113039	0.1230958	0.1170926	0.1030478
When n=50 and ε=10%	IFn50m10	Bn50m10	IFn50m20	Bn50m20	IFn50m30	Bn50m30
CV Mean Tn	1.291617	1.387103	2.367365	2.378448	3.435958	3.390528
CV Med Tn	0.1778646	0.1360042	0.1778275	0.1356485	0.1909091	0.1490424
CV 10% tmn Tn	0.09638346	0.742071	0.05821992	0.08774134	0.9590077	
CV 20% tmn Tn	0.08109131	0.54313989	0.05459124	0.5494784	0.5889044	
CV Hmest Tn	0.1444413	2.69772	0.1592604	0.1379816	0.163959	8.115525
When n=100 and ε=2%	IFn100m12	Bn100m12	IFn100m20	Bn100m20	IFn100m30	Bn100m30
CV Mean Tn	0.1851841	0.02423298	0.3812978	0.4538339	0.5056724	0.0719155
CV Med Tn	0.02557197	0.02198737	0.026072	0.02660919	0.02224283	0.0241514
CV 10% tmn Tn	0.01346576	0.01772905	0.01228351	0.01839356	0.01823878	0.018725
CV 20% tmn Tn	0.01207272	0.0169637	0.01214709	0.0145907	0.01563112	0.0196117
CV Hmest Tn	0.1047202	0.0175984	0.100963	0.08272461	0.1326444	0.1091139
When n=100 and ε=5%	IFn100m5	Bn100m5	IFn100m5	Bn100m5	IFn100m5	Bn100m5
CV Mean Tn	0.2288451	0.02423298	0.3734015	0.4959519	0.4261752	0.05920616
CV Med Tn	0.02581634	0.02198737	0.02190671	0.0185176	0.0221687	0.02864529
CV 10% tmn Tn	0.01400197	0.01772905	0.01258529	0.01505818	0.01662085	0.02075339
CV 20% tmn Tn	0.01223093	0.0169637	0.01345667	0.01828625	0.01564633	0.01934215
CV Hmest Tn	0.1050312	0.0175984	0.09988048	0.0788894	0.1023692	0.09693356
When n=100, ε=10%	IFn100m10	Bn100m10	IFn100m10	Bn100m10	IFn100m10	Bn100m10
CV Mean Tn	0.26843799	0.02644563	0.379446	0.4486255	0.2506887	0.0594393
CV Med Tn	0.02826773	0.04109212	0.02312763	0.02202045	0.01910866	0.02822895
CV 10% tmn Tn	0.01552349	0.01803845	0.01674069	0.02455759	0.01715649	0.03570383
CV 20% tmn Tn	0.01308047	0.01795251	0.01683479	0.02195811	0.01686232	0.02625656
CV Hmest Tn	0.1022002	0.08615164	0.113449	0.07977504	0.1179325	0.06194797

Where CV Mean T_n = the CV of the standard error estimate T_n for the mean, CV Med T_n = the CV of the standard error estimate T_n for the median, CV10% tmn T_n = the CV of the standard error estimate T_n for 10% trimmed mean, CV20% tmn T_n = the CV of the standard error estimate T_n for the 20% trimmed mean, and CVHmest T_n = the CV of the standard error estimate T_n for the Huber’s M-estimate.
The Result of 95% Confidence Interval for the Standard Error Estimate T_n
When n=10 & $\varepsilon = 2\%$
$\text{CI Mean } T_n$
$\text{CI Med } T_n$
$\text{CI 10\% tmn } T_n$
$\text{CI 20\% tmn } T_n$
$\text{CI Hmest } T_n$
When n=15 & $\varepsilon = 2\%$
$\text{CI Mean } T_n$
$\text{CI Med } T_n$
$\text{CI 10\% tmn } T_n$
$\text{CI 20\% tmn } T_n$
$\text{CI Hmest } T_n$
When n=10 & $\varepsilon = 10\%$
$\text{CI Mean } T_n$
$\text{CI Med } T_n$
$\text{CI 10\% tmn } T_n$
$\text{CI 20\% tmn } T_n$
$\text{CI Hmest } T_n$
When n=15 & $\varepsilon = 10\%$
$\text{CI Mean } T_n$
$\text{CI Med } T_n$
$\text{CI 10\% tmn } T_n$
$\text{CI 20\% tmn } T_n$
$\text{CI Hmest } T_n$
Influence Function and Bootstrap Methods of Estimating the Standard Errors … 133

When n=20 & ε=5%	IFn20m15	Bn30m15	IFn20m25	Bn30m25	IFn20m35	Bn30m35
CI Mean Tn	0.3676821	0.919	-0.437536	1.054	-1.207781	0.923
CI 10% tmnTn	0.2923364	0.1653	0.294808	0.1636	0.310760	0.1556
CI Med Tn	0.3346593	0.2341	0.336561	0.2273	0.371791	0.1876
CI 10% tmnTn	0.1667799	0.5903	0.165472	0.6061	0.1546579	0.4951
CI Mean Tn	0.1338850	0.4900	0.134473	0.4944	0.1299385	0.4268
CI HmestTn	0.1862512	3.158	0.179354	3.970	0.1822979	3.358
CI Mean Tn	0.2665632	5.275	0.227446	6.384	0.2873176	5.231

When n=15 & ε=5%	IFn15m10	Bn15m10	IFn15m20	Bn15m20	IFn15m30	Bn15m30
CI Mean Tn	0.1173302	1.007	-0.485799	1.387	-1.336987	1.978
CI Med Tn	0.3104606	0.1898	0.343406	0.1428	0.3568073	0.1711
CI 10% tmnTn	0.1699933	0.5990	0.187540	0.6401	0.3864499	0.833
CI 20% tmnTn	0.1395646	0.4800	0.156421	0.5164	0.2169007	0.5345
CI HmestTn	0.1631967	4.496	0.212758	5.459	0.1764229	7.04
CI Mean Tn	0.2563146	6.587	0.305634	9.303	0.2722375	14.80

When n=20 & ε=2%	IFn20m12	Bn20m12	IFn20m22	Bn20m22	IFn20m32	Bn20m32
CI Mean Tn	0.4700585	0.8837	-0.642209	1.058	-0.939180	0.936
CI Med Tn	0.2106040	0.1529	0.205671	0.1736	0.2251585	0.1474
CI 10% tmnTn	0.1226453	0.6168	0.130999	0.6178	0.1290620	0.5845
CI 20% tmnTn	0.1095626	0.4483	0.108940	0.4709	0.1126304	0.4387
CI HmestTn	0.1519345	2.651	0.150318	2.826	0.160681	2.633
CI Mean Tn	0.2348965	5.184	0.216181	5.169	0.239458	4.126

When n=20 & ε=5%	IFn20m15	Bn30m15	IFn20m25	Bn30m25	IFn20m35	Bn30m35
CI Mean Tn	0.2011777	1.019	-0.197459	1.252	-0.8341707	1.127
CI Med Tn	0.2430208	0.1860	0.217218	0.1550	0.2412306	0.1606
CI 10% tmnTn	0.1371944	0.6734	0.126430	0.7217	0.1373912	0.7276
CI 20% tmnTn	0.1194342	0.4864	0.1095808	0.4640	0.1189174	0.4828
CI HmestTn	0.1635663	2.589	0.1607249	2.543	0.1730241	3.319
When n=20 & ε=10%	IFn20m110	Bn20m110	IFn20m210	Bn20m210	IFn20m310	Bn20m310
-------------------	-----------	----------	-----------	----------	-----------	----------
CI Mean Tn	0.3007132	1.119	-0.7337578	1.630	-1.9061155	1.381
	2.4262476	1.386	5.4768157	2.475	6.374884	1.929
CI Med Tn	0.3019793	0.1978	0.2690117	0.1861	0.5668662	0.1794
	2.4262476	0.2425	0.2940425	0.2448	0.9358643	0.2189
CI 10% tmnTn	0.1460895	0.7272	0.1446940	0.835	0.2117765	0.8308
	0.1703578	0.8939	0.1706794	1.168	0.2691653	1.0982
CI 20% tmnTn	0.1314148	0.7272	0.1086295	0.5703	0.1687207	0.4965
	0.1472259	0.8939	0.1218628	0.7706	0.1973796	0.6545
CI HmestTn	0.1723200	0.5185	0.1796197	4.177	0.2339003	4.257
	0.2773047	0.6170	0.2758760	8.305	6.645	
When n=25 & ε=10%	IFn25m12	Bn25m12	IFn25m22	Bn25m22	IFn25m32	Bn25m32
CI Mean Tn	0.4890923	0.9310	-0.2106751	0.963	-0.442431	0.972
	1.6049499	1.0877	2.8279571	1.266	3.269097	1.246
CI Med Tn	0.1987287	0.1415	0.1853379	0.1468	0.1924017	0.1209
	0.2254043	0.2063	0.2042620	0.1972	0.2128562	0.1810
CI 10% tmnTn	0.1180613	0.5756	0.1111825	0.5746	0.1188499	0.5647
	0.1297018	0.6641	0.1239449	0.7162	0.1306036	0.6755
CI 20% tmnTn	0.1023193	0.4526	0.09772582	0.4400	0.09999853	0.4363
	0.1106642	0.5250	0.10764067	0.5157	0.10838865	0.5219
CI HmestTn	0.1453086	2.513	0.1376685	1.934	0.1418061	2.461
	0.2115518	3.943	0.2085227	3.737	0.2086141	4.168
When n=25 & ε=5%	IFn25m15	Bn25m15	IFn25m25	Bn25m25	IFn25m35	Bn25m35
CI Mean Tn	0.4890923	0.9310	-0.2385952	1.054	-0.6875088	1.204
	1.6049499	1.0877	3.3349249	1.476	5.3718115	1.849
CI Med Tn	0.1987287	0.1514	0.2006585	0.1636	0.2008331	0.1616
	0.2254043	0.2225	0.2363698	0.2273	0.2429532	0.2065
CI 10% tmnTn	0.1180613	0.5961	0.10104827	0.6061	0.1182939	0.5824
	0.1297018	0.7116	0.1246446	0.7465	0.1342376	0.7156
CI 20% tmnTn	0.1023193	0.4651	0.09793224	0.4944	0.1046814	0.4640
	0.1106642	0.5431	0.10745425	0.6099	0.1172028	0.5324
CI HmestTn	0.1453086	2.653	0.1493066	3.970	0.1500870	2.616
	0.2115518	4.440	0.2252431	6.384	0.2295657	4.809
When n=25 & ε=10%	IFn25m110	Bn25m110	IFn25m210	Bn25m210	IFn25m310	Bn25m310
CI Mean Tn	0.3764002	1.151	-0.6349792	1.151	-0.5333497	2.253
	2.4242522	1.353	5.2602973	1.476	6.4646766	3.159
CI Med Tn	0.2003985	0.1574	0.2095686	0.1574	0.2100119	0.1536
	0.2237346	0.1989	0.2478849	0.1989	0.2304663	0.2107
CI 10% tmnTn	0.1298334	0.6195	0.1275750	0.6195	0.1235024	0.6867
	0.1414738	0.7455	0.1461411	0.7455	0.1409299	1.0778
CI 20% tmnTn	0.1137315	0.4997	0.1106894	0.4997	0.09834936	0.5249
	0.1237166	0.5832	0.1238097	0.5832	0.11002432	0.6586
CI HmestTn	0.1669713	2.783	0.1596007	2.783	0.1657117	2.296
	0.2399499	4.385	0.2501857	4.385	0.2435453	2.854
Influence Function and Bootstrap Methods of Estimating the Standard Errors

When \(n = 50 \) and \(\varepsilon = 2\% \)

CI Mean Tn	0.7251775	0.9107	0.1319687	1.177	-0.6200821	1.261
CI Hmest Tn	0.3675670	0.9992	2.4253176	1.401	3.8409951	1.696
CI Med Tn	0.1406456	0.1037	0.1590487	0.1098	0.1481759	0.1101
CI Mean Tn	0.1556507	0.1161	0.1659481	0.1285	0.1665379	0.1298
CI 10\% tmn Tn	0.08096043	0.5636	0.08688539	0.5826	0.1294313	0.5899
CI Med Tn	0.08737572	0.6252	0.09334865	0.6575	0.1380395	0.6862
CI Mean Tn	0.08813431	0.4232	0.07088998	0.4350	0.1262487	0.4467
CI Hmest Tn	0.1035887	1.508	0.1050807	2.327	0.1068781	2.426
CI Med Tn	0.1528995	2.079	0.1522667	3.327	0.1581533	3.366

When \(n = 50 \) and \(\varepsilon = 5\% \)

CI Mean Tn	0.4337382	1.071	0.2873809	1.054	0.008480444	0.923
CI Hmest Tn	1.9516650	1.236	3.3263202	1.476	4.28068744	1.268
CI Med Tn	0.1959973	0.1129	0.15367094	0.1636	0.1520699	0.1356
CI Mean Tn	0.2226730	0.1303	0.1784749	0.2273	0.1682198	0.1876
CI 10\% tmn Tn	0.1152711	0.6136	0.08790194	0.6061	0.08427305	0.4951
CI Med Tn	0.1279774	0.6850	0.09452166	0.7465	0.09193453	0.6175
CI Mean Tn	0.1006778	0.4474	0.07558114	0.4944	0.07198057	0.4268
CI Hmest Tn	0.1099809	0.4855	0.08041675	0.6099	0.07707923	0.5462
CI Med Tn	0.1471182	1.887	0.1155991	3.970	0.1097833	3.358
CI Mean Tn	0.2142982	3.117	0.1674125	6.384	0.1621595	5.231

When \(n = 50 \) and \(\varepsilon = 10\% \)

CI Mean Tn	0.6780164	1.276	0.3595472	2.098	0.3409801	2.886
CI Hmest Tn	1.9052167	1.476	4.3751835	2.641	6.5309352	3.748
CI Med Tn	0.1706519	0.1191	0.1678020	0.1252	0.1818391	0.1397
CI Mean Tn	0.1850774	0.1466	0.1886351	0.1438	0.1999792	0.1595
CI 10\% tmn Tn	0.09231594	0.6982	0.05821992	0.7745	0.09689876	0.8685
CI Med Tn	0.10045098	0.7849	0.05821992	0.9397	0.10685946	1.0482
CI Mean Tn	0.07862220	0.4972	0.05459124	0.5192	0.08367776	0.5587
CI Hmest Tn	0.08356043	0.5640	0.05459124	0.5854	0.09029031	0.6236
CI Med Tn	0.1185139	2.316	0.1335169	4.108	0.1303807	6.606
CI Mean Tn	0.1703687	3.194	0.185004	6.312	0.1975373	9.600

When \(n = 100 \) and \(\varepsilon = 2\% \)

CI Mean Tn	0.7489337	1.040	0.5057804	1.168	0.3075835	1.429
CI Hmest Tn	1.4050338	1.143	2.2074183	1.398	3.3488384	1.894
CI Med Tn	0.09460185	0.0897	0.09760391	0.0885	0.09807634	0.0854
CI Mean Tn	0.10290960	0.0973	0.10635042	0.0983	0.10552519	0.0955
CI 10\% tmn Tn	0.0595635	0.6017	0.06045759	0.5973	0.06008269	0.6167
CI Med Tn	0.06261780	0.6488	0.06330553	0.6451	0.06429406	0.6620
CI Mean Tn	0.04812407	0.4431	0.04936733	0.4462	0.04893748	0.4437
CI Hmest Tn	0.05006730	0.4748	0.05137927	0.4765	0.05151757	0.4774
CI Med Tn	0.07395161	1.995	0.07762542	1.938	0.07260207	2.224
CI Mean Tn	0.10472928	2.734	0.10854216	2.626	0.11312388	3.666

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 113-136
When $n=100$ and $\varepsilon = 5\%$

CI Mean T_n	IFn100m15	Bn100m15	IFn20m25	Bn100m25	IFn100m35	Bn100m35
0.6233571	1.040	0.7286027	1.52	0.7685911	1.940	
1.5306104	1.143	3.0484079	1.84	4.3724153	2.425	

CI Med T_n	IFn100m15	Bn100m15	IFn20m25	Bn100m25	IFn100m35	Bn100m35
0.09533659	0.0897	0.1019220	0.0900	0.1022051	0.0870	
0.10381420	0.0973	0.1095417	0.0982	0.1099408	0.0984	

CI 10% tmnT_n	IFn100m15	Bn100m15	IFn20m25	Bn100m25	IFn100m35	Bn100m35
0.060222304	0.6017	0.06331783	0.8417	0.06253255	0.6665	
0.06350337	0.6488	0.0669718	0.6816	0.0666719	0.7291	

CI 20% tmnT_n	IFn100m15	Bn100m15	IFn20m25	Bn100m25	IFn100m35	Bn100m35
0.04993297	0.4431	0.04921317	0.4557	0.05239614	0.4758	
0.05197984	0.4748	0.05153343	0.4886	0.05489366	0.5159	

CI HmestT_n	IFn100m15	Bn100m15	IFn20m25	Bn100m25	IFn100m35	Bn100m35
0.07814902	1.995	0.08294792	2.807	0.08476724	3.626	
0.11079037	2.734	0.11556065	3.807	0.11909386	5.350	

When $n=100$ & $\varepsilon = 10\%$

CI Mean T_n	IFn100m110	Bn100m110	IFn100m210	Bn100m210	IFn100m310	Bn100m310
0.8041398	1.312	0.8992901	2.080	1.556163	3.126	
2.0758830	1.471	3.8858617	2.492	5.819326	4.059	

CI Med T_n	IFn100m110	Bn100m110	IFn100m210	Bn100m210	IFn100m310	Bn100m310
0.1027302	0.0920	0.1089969	0.0944	0.1136669	0.0895	
0.1128831	0.1054	0.1176177	0.1040	0.1233243	0.1024	

CI 10% tmnT_n	IFn100m110	Bn100m110	IFn100m210	Bn100m210	IFn100m310	Bn100m310
0.05910087	0.6708	0.06721233	0.7462	0.0698224	0.7797	
0.06311327	0.7272	0.07160005	0.8250	0.07390841	0.9053	

CI 20% tmnT_n	IFn100m110	Bn100m110	IFn100m210	Bn100m210	IFn100m310	Bn100m310
0.04791090	0.4866	0.05647432	0.5167	0.05784181	0.5204	
0.05028046	0.5242	0.05930473	0.5668	0.06142697	0.5790	

CI HmestT_n	IFn100m110	Bn100m110	IFn100m210	Bn100m210	IFn100m310	Bn100m310
0.08882558	2.257	0.0914879	3.884	0.09309415	7.077	
0.12472424	2.938	0.1334659	5.512	0.13790347	9.150	

$CI Mean T_n$ = the confidence interval for T_n on the Mean, $CI Med T_n$ = Confidence Interval for T_n on the median, $CI 10\%$ tmnT_n = confidence interval for T_n on the 10% trimmed, $CI 20\%$ tmnT_n = confidence interval for T_n on 20% trimmed, $CI HmestT_n$ = confidence interval for T_n on the Huber M-estimator

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.