Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle

Randall B. Irmis1,2,* and Jessica H. Whiteside3

1Utah Museum of Natural History, 1390 E. Presidents Circle, Salt Lake City, UT, 84112-0050, USA
2Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112-0102, USA
3Department of Geological Sciences, Brown University, 324 Brook Street, Box 1846, Providence, RI 02912, USA

During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom–bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle.

Keywords: richness; evenness; relative abundance; Synapsida; Archosauromorpha; chaotic carbon interval

1. INTRODUCTION

The end-Permian mass extinction event at approximately 252.6 Ma [1] is the largest mass extinction in Phanerozoic Earth history in terms of diversity loss [2,3]. This event caused a permanent restructuring of marine and terrestrial ecosystems [4,5] that set the stage for the origin of modern biotas. Detailed examination of the marine fossil record demonstrates that these ecosystems took 5–8 million years to recover; not until the early Middle Triassic (Anisian) are diversity and complexity comparable with that of pre-extinction faunas [6–8]. The cause of this mass extinction has not been fully resolved, but multiple lines of evidence point to greenhouse gases and other compounds from the Siberian Traps [1,6,9,10] as a trigger. These data suggest major environmental stress during and immediately after the extinction event [11–13].

Connected with this environmental stress, the global carbon cycle displays major perturbations associated with the end-Permian extinction, beginning with a large-scale initial negative excursion, followed by multiple positive–negative couplets throughout the Early Triassic [7,8,14]. This ‘chaotic carbon interval’ [8] did not stabilize until the early Anisian (approx. 246–245 Ma), at the same time that marine ecosystems also recovered. Many authors have interpreted this chaotic carbon interval to represent multiple inputs of volcanogenic greenhouse gases [15] or an otherwise unstable palaeoenvironment [7,14]. However, one of us (J.H.W.) has recently suggested that these chaotic carbon intervals reflect ecosystem instability itself, caused by boom–bust cycles with repeated collapse owing to low redundancy in trophic and functional networks [8]. This interpretation is also consistent with both the low diversity throughout the Early Jurassic in the aftermath of the end-Triassic extinction [6,8] and Permo-Triassic ecological models [16,17].

Although well investigated in the marine fossil record, one of the major outstanding questions about the end-Permian mass extinction is how it affected terrestrial ecosystems. There is little doubt that a synchronous extinction event occurred on land [18], but how severe was it? The few detailed studies of Permo-Triassic terrestrial floras agree that they were affected by the extinction [19–23], but there is major disagreement over the severity of the extinction [24]. Independent of floral evidence, there is strong evidence for environmental stress on land [25–27].

Data are equally limited for non-marine vertebrates across the Permo-Triassic boundary. A number of studies have investigated the first and last appearances of individual lineages across the boundary [28–32], broadly agreeing that vertebrates were affected by the extinction, but reaching different conclusions on how quickly vertebrate faunas recovered. Few studies have investigated non-marine vertebrate taxonomic richness, relative
abundance, and evenness across the extinction and recovery interval. Those that have been published have reached conflicting conclusions; Pitrat’s [33] richness data indicated only a minor event at the end-Permian, whereas King [34,35] saw a larger effect on vertebrate assemblages, but concluded it was part of a longer gradual decline during the Late Permian. Fröbisch [36] examined species richness of the synapsid clade Anomodontia (dicynodonts and relatives), and determined that they were severely affected by the end-Permian extinction, even when accounting for geological sampling bias. Using a non-taxonomic approach, the analysis of Sahney & Benton [5] concluded that non-marine ecological guilds were severely affected by the end-Permian extinction event and did not recover until the Late Triassic.

The goal of our study is to elucidate the effect of the end-Permian extinction on terrestrial ecosystems, focusing on non-marine vertebrate faunas. By using specimen-level data, we ask what is the pattern of vertebrate richness, relative abundance and evenness across the Permo-Triassic boundary? Are these data consistent with an unstable ecological abundance and evenness across the Permo-Triassic boundary? Data are consistent with an unstable ecological abundance and evenness across the Permo-Triassic boundary? Data are consistent with an unstable ecological abundance and evenness across the Permo-Triassic boundary? Data are consistent with an unstable ecological abundance and evenness across the Permo-Triassic boundary? Data are consistent with an unstable ecological abundance and evenness across the Permo-Triassic boundary? Data are consistent with an unstable ecological abundance and evenness across the Permo-Triassic boundary? Data are consistent with an unstable ecological abundance and evenness across the Permo-Triassic boundary? Data are consistent with an unstable ecological abundance and evenness across the Permo-Triassic boundary? Data are consistent with an unstable ecological abundance and evenness across the Permo-Triassic boundary?

2. METHODS

(a) Choice of datasets

To investigate non-marine vertebrate palaeoecology across the Permo-Triassic boundary, we chose two published regional specimen-level datasets identified to genus. These data are ideal because they allow for easy sample-size standardization (i.e. by number of specimens), lessen problems with long-distance stratigraphic correlation and allow identification of any regional differences in patterns (in contrast with global analyses). Our main dataset comes from the Karoo Basin of southern Africa [37] and includes hundreds to thousands of specimens per temporal bin (see the electronic supplementary material); we removed erroneous occurrences mentioned by the original authors and did not include generically indeterminate records except in clade-level relative abundance analyses. We also used a second dataset from the Ural region of Russia [29], though the number of analyses we could conduct with these data was limited because of lower sample sizes (approx. 40–100 specimens per temporal bin; see the electronic supplementary material).

The temporal bins for our analyses were biostratigraphic zones identified by the original authors [29,37]. The correlation of these zones to the Permain and Triassic timescale follows Rubidge [38] for southern Africa and Benton et al. [29] for Russia. The absolute ages and durations for the Global Stratotype Section and Point–defined stages of the timescale follow the revisions of Walker & Geissman [39] and Mundil et al. [40].

(b) Analyses

We investigated raw generic richness for each temporal bin (i.e. total number of genera) irrespective of sample size. These data were also rarefied using ANALYTIC RAREFACTION v. 1.3 [41] to standardize for sample size (figure 1). The

Figure 1. Rarefaction curves of generic richness versus number of specimens for five Permo-Triassic assemblage zones (AZs) in the Karoo Basin of southern Africa. Dashed lines represent 95% confidence intervals.

The southern African dataset was rarefied to 241 specimens and the Russia dataset to 48 specimens (figure 2); these levels were chosen based on the smallest sample size among the temporal bins. We also investigated taxonomic richness for each major clade of vertebrates (figure 3a; see the electronic supplementary material), but could not rarefy these data because of low sample sizes, and the fact that unequal relative abundance between clades might bias results. Evenness of assemblages (figure 2) was calculated using Olzsiewski’s modification of Simpson’s Index [44]; to account for sample-size differences, we calculated confidence intervals for this metric using the method of Davis [45], based on Simpson’s original calculation of variance (see the electronic supplementary material). Finally, we explored the relative abundance of each major clade for each temporal bin (figure 3b) and accounted for sample-size differences by calculating confidence intervals using the method of Moore et al. [46] (see the electronic supplementary material).

To investigate possible taxonomic biases in our data, we revised the *Lystrosaurus* Assemblage Zone (AZ) data using recent publications (see the electronic supplementary material) and compared it with the original *Dicynodon* AZ data (see the electronic supplementary material). This constitutes a conservative test, because recent taxonomic revisions and newly described taxa should increase the generic richness of both time bins [47,48]. Therefore, revising only the post-extinction bin (*Lystrosaurus* AZ) should bias our data against finding a major extinction signal. If, despite this bias, we find strong evidence for extinction, it will show that our data are robust to taxonomic biases. These revised *Lystrosaurus* AZ data were used only for this taxonomic bias test (see the electronic supplementary material), and are not represented in figures 1–3.

Geological and sampling biases of palaeoecological data are a pervasive concern. Sample-size differences across temporal bins were accounted for through rarefaction, but we also evaluated other potential biases within our data. The amount of outcrop area that fossils are collected from can influence observed diversity; the greater the expanse of outcrop, the more likely one is to find additional specimens and taxa. We fitted a linear regression to the total outcrop and productive outcrop area estimates of King [35] versus...
total number of specimens, raw generic diversity and rarefied
generic richness (see the electronic supplementary material).
We also investigated whether the temporal duration of each
temporal bin affected diversity, as a longer temporal bin is likely to cir-
cumscribe a greater number of specimens and higher
diversity of taxa. We fitted a linear regression to bin duration
in millions of years versus raw generic richness for each
temporal bin in both the southern African and Russian
datasets (see the electronic supplementary material).

Figure 2. Comparison of raw generic richness, rarefied generic richness and evenness for non-marine tetrapods from the Permo-
Triassic of southern Africa and Russia to carbon isotopic records as a proxy for the global carbon cycle. Vertically adjacent to each
graph are the biostratigraphic divisions used for temporal bins in this analysis (AZs for southern Africa and svitas for Russia). See
text for details on calculation of richness and evenness, and correlation with geological timescale.

To investigate how non-marine vertebrate palaeoecology
across the Permo-Triassic interval relates to the global
carbon cycle, we make comparisons with two main isotopic
datasets: a $\delta^{13}C_{\text{org}}$ record from shallow marine carbonates
in South China [6]; and a $\delta^{13}C_{\text{carb}}$ record from non-marine
3. RESULTS

Despite sample sizes that range from less than 250 specimens to greater than 2500 specimens, the rarefaction curves show a clear difference in generic richness among southern African Permo-Triassic AZs (figure 1). The two Triassic bins (the *Lystrosaurus* and *Cynognathus* AZs) have much lower generic richness than the Late Permian *Cistecephalus* and *Dicynodon* AZs, even when accounting for sample size (figure 1). Somewhat surprisingly, the early Late Permian *Tropidostoma* AZ also has low generic diversity; although this bin historically has had lower collecting effort, our rarefied diversity estimate minimizes sample-size effects. Placing these data into stratigraphic sequence, both the raw and rarefied richnesses show a precipitous drop across the Permo-Triassic boundary (figure 2). Richness remains low during the Early Triassic; in southern Africa, richness is still depressed during the Middle Triassic *Cynognathus* AZ. By contrast, in Russia, richness appears to recover during the early Anisian (figure 2). In both the southern Africa and Russia datasets, generic richness during the early Late Permian is significantly lower than other Permian intervals, displaying values comparable to the Early Triassic temporal bins.

Evenness of these vertebrate assemblages shows similar patterns. Both in southern Africa and Russia, evenness declines across the Permo-Triassic boundary, but recovers by the early Middle Triassic (figure 2). In Russia, the decline across the Permo-Triassic boundary is not statistically significant, probably because of low sample sizes. Similar to the pattern in generic richness, evenness is also low in both southern Africa and Russia during the early Late Permian (figure 2). It also appears that in both regions, evenness recovers before richness during the Triassic Period. Only dicynodonts from southern Africa have a large enough sample size to investigate their clade-specific evenness patterns through time. These data demonstrate that southern African dicynodont evenness drops to near zero across the Permo-Triassic boundary because of the prevalence of *Lystrosaurus*, and does not recover during the Middle Triassic *Cynognathus* AZ (electronic supplementary material, figure S1).

Clade-specific generic richness for southern Africa also displays clear effects from the end-Permian mass extinction (figure 3a), with the caveat that these values cannot be sample-standardized because of low total sample sizes. These data display clearly the extinction of gorgonopian synapsids across the Permo-Triassic boundary. Dicynodonts show a major decline in richness across the boundary, whereas the decline in parareptiles and theroccephalian synapsids is more gradual and extends into the Middle Triassic (*Cynognathus* AZ; figure 3a). Both temnospondyl amphibians and archosauromorphs display a distinct increase in generic richness across the Permo-Triassic boundary, and this increase continues into the Middle Triassic (figure 3a).

The trends in relative abundance of individual clades for southern Africa are very different from those of richness. There are slight to moderate increases in the abundance of temnospondyls and parareptiles across the Permo-Triassic boundary, and similarly modest decreases in the relative abundance of gorgonopians (which go extinct) and theroccephalians, but all of these are either not statistically significant or only weakly so (figure 3b). Dicynodont abundance (relative to other tetrapod clades) does not change, probably because the latest Permian *Dicynodon* AZ and earliest Triassic *Lystrosaurus* AZ are dominated by their eponymous dicynodonts.
mens and observed richness. We observe a very weak temporal bin duration can increase the number of speci-

Dicynodon because the (electronic supplementary material, figure S2)

outcrop area, the relationship becomes highly significant from the comparison between number of specimens and

its available outcrop area, with over 2500 specimens in

S2 southern African temporal bin with raw and rarefied rich-

cation of these values across differing sample sizes. Low

sample size for clade-specific richness meant that we

our prediction that longer time bins should have higher

across different temporal bins [49]. The confidence inter-

vals we calculated for evenness [45] and relative abundance [46] metrics allow for conservative interpretation of these values across differing sample sizes. Low sample size for clade-specific richness meant that we could not rarely these data, so they will be most sensitive to the biases described below.

Geological outcrop area is one major bias of palaeoecological datasets, because more widespread outcrop affords the opportunity to discover more specimens and taxa. Comparison of the available outcrop area for each southern African temporal bin with raw and rarefied richness for each bin indicates that there is a very weak to no correlation, and a moderate correlation with number of specimens (electronic supplementary material, figure S2a–c). In contrast, when the *Dicynodon* AZ is removed from the comparison between number of specimens and outcrop area, the relationship becomes highly significant (electronic supplementary material, figure S2d). This is because the *Dicynodon* AZ is particularly fossiliferous for its available outcrop area, with over 2500 specimens in our dataset (figure 1). Like outcrop area, a longer temporal bin duration can increase the number of specimens and observed richness. We observe a very weak inverse correlation ($R^2 = 0.1962$) between bin duration and richness in southern Africa, but this is contrary to our prediction that longer time bins should have higher richness, and there is no significant correlation in the Russian dataset (electronic supplementary material, figure S3). Both of these biases are ameliorated by our rarefaction of the data, which has a weakly inverse corre-

lation, contrary to our prediction that they would be directly correlated (see the electronic supplementary material).

4. DISCUSSION

(a) Potential biases of observed patterns

Palaeoecological metrics like those reported above can correlate with a number of geological biases and other non-biotic controls. Thus, it is extremely important to investigate possible non-biological signals in any dataset; these primarily consist of sampling and geological biases, along with errors and other limitations among the original specimen data.

At the most basic level, sample size is a major control of diversity; greater sample size increases the potential to sample more taxa and clades. Conversely, low sample size can amplify stochastic effects, whereby a random draw is not representative of the total fossil assemblage; emerging methodological alternatives may help amelio-
rate this problem in the near future. For total generic richness, rarefaction minimizes unequal sample sizes across different temporal bins [49]. The confidence intervals we calculated for evenness [45] and relative abundance [46] metrics allow for conservative interpretation of these values across differing sample sizes. Low sample size for clade-specific richness meant that we could not rarely these data, so they will be most sensitive to the biases described below.

Geological outcrop area is one major bias of palaeoecological datasets, because more widespread outcrop affords the opportunity to discover more specimens and taxa. Comparison of the available outcrop area for each southern African temporal bin with raw and rarefied richness for each bin indicates that there is a very weak to no correlation, and a moderate correlation with number of specimens (electronic supplementary material, figure S2a–c). In contrast, when the *Dicynodon* AZ is removed from the comparison between number of specimens and outcrop area, the relationship becomes highly significant (electronic supplementary material, figure S2d). This is because the *Dicynodon* AZ is particularly fossiliferous for its available outcrop area, with over 2500 specimens in our dataset (figure 1). Like outcrop area, a longer temporal bin duration can increase the number of specimens and observed richness. We observe a very weak inverse correlation ($R^2 = 0.1962$) between bin duration and richness in southern Africa, but this is contrary to our prediction that longer time bins should have higher richness, and there is no significant correlation in the Russian dataset (electronic supplementary material, figure S3). Both of these biases are ameliorated by our rarefaction of the data, which has a weakly inverse corre-

lation, contrary to our prediction that they would be directly correlated (see the electronic supplementary material).

Our analyses are conducted at the genus level because specimen datasets identified to species are not currently available. This means that our analysis could differentially underestimate diversity because some genera are mono-

specific, whereas others include a great many species.

Proc. R. Soc. B (2012)
At present, there is no way to correct for this, other than to note that many Permo-Triassic genera are monospecific, and those that contain many species are currently being revised to include one or few species [47]. This limitation affects all richness and evenness values.

To summarize the inherent limitations of our data, we regard our analyses of rarefied generic richness, evenness and clade relative abundance to be the most robust to various biases (figures 2 and 3b), though richness is somewhat affected by outcrop area, and both rarefied richness and evenness are moderately affected by taxonomic issues. Raw total and clade-specific generic richness (figures 2 and 3a) are sensitive to nearly all of the potential biases described above; thus, we remain fairly conservative in our interpretation of the trends in these data.

Erroneous interpretation can also occur because of poor or incorrect geochronology for temporal bins. This is particularly relevant for our data; although the stages of the Permo-Triassic timescale are well dated [1,40], these radiometric ages and the definition of the stages themselves come from the marine record. In contrast, the terrestrial Permo-Triassic is very poorly dated, using non-biostratigraphic means [40], making it difficult to confidently correlate the biostratigraphic zones with the marine timescale. The correlation of the southern African AZs to the timescale [38] is consistent with available radiometric ages from the Karoo [55,56], but these U-Pb ages have large analytical uncertainties and are thus not precise enough to pinpoint geochronological boundaries, and some come from the southwestern part of the basin, where there are few vertebrate fossils [56]. As an example of how these correlations might mislead, it is tempting to interpret the low diversity of the *Tropidostoma AZ* in Africa and Malokinelskaya svita in Russia as the immediate after-effects of the end-Guadalupian extinction event (figure 2) [57,58], as did Fröbisch for his dicynodont data-set [36]. Yet the correlation of this AZ to the Permian timescale is only based on long-distance vertebrate biostratigraphic correlations, and could be completely erroneous. It is consistent with Fildani *et al.*’s [56] lithostratigraphic correlation to the better-dated southwestern Karoo Basin, but even these authors noted their lack of confidence in the correlation for this part of the section. Thus, we refrain from making this interpretation at the present time, and note that this uncertainty applies to any previous studies that attempted such a correlation.

There are also arguments over the specific placement of the Permo-Triassic boundary in classic Karoo sections [59], but this should have little effect on our data because the AZs encompass hundreds of metres of section, and few specimens are found within several metres of either side of the generally recognized Permo-Triassic boundary [28,30–32]. Even if some of these specimens are placed on the wrong side of the boundary, they are few, and will be unlikely to affect rarefaction or evenness analyses.

(b) Palaeoecology of non-marine tetrapods across Permo-Triassic boundary

Our analysis is the first to comprehensively investigate non-marine tetrapod richness, evenness and relative abundance during the end-Permian mass extinction and Triassic recovery using specimen-level data. Despite limitations discussed above, our data clearly demonstrate a major non-marine vertebrate extinction event across the Permo-Triassic boundary, as evidenced by a precipitous drop in rarefied total generic richness and evenness (figure 2). This contrasts with previous conclusions [33–35], but agrees with two recent studies [5,36]. These data also provide clear evidence for a long and delayed recovery. Sample-standardized richness and evenness do not recover, if at all, until the Middle Triassic (figure 2). These results differ strongly from recent conclusions of studies looking at first and last appearances of individual taxa [30–32], and older richness studies [33–35]. Within the available temporal scope of our analysis, it is clear that relative abundance of various clades was permanently changed after the end-Permian extinction (figure 3b), in agreement with analyses of ecological guilds [5]. This conclusion is also supported by the permanent drop in dicynodont evenness in southern Africa, and is consistent with the generic richness of individual clades (figure 3a), though these data are extremely sensitive to the biases outlined above. In summary, we argue that patterns in richness, evenness and relative abundance from both southern Africa and Russia all point to a major end-Permian extinction event in non-marine tetrapod communities, which did not recover until 5–8 million years later, during the Middle Triassic. Furthermore, the composition of these communities was permanently altered, with the extinction of gorgonopsians, decline in therocephalians, dicynodonts and parareptiles, and rise of temnospondyls, cynodonts and archosauromorphs (figure 3), though future improved sampling and taxonomy may slightly modify these observed patterns.

Prior to full recovery, these post-extinction Early Triassic ecosystems were dominated by a few very abundant forms that are considered ‘disaster taxa’, which took advantage of widespread ecological vacancies. This is exemplified in southern Africa by the extremely common dicynodont *Lystrosaurus*. Our data fully support *Lystrosaurus* as a disaster taxon; its Early Triassic proliferation is evident through the major drop in total and dicynodont evenness across the Permo-Triassic boundary and its widespread geographical range [60,61]; the ubiquity of *Lystrosaurus* relative abundance is the main reason why dicynodont relative abundance did not change across this boundary (figure 3b). The abundant Early Triassic procolophonid parareptile *Procolophon* in southern Africa may have also acted in a similar manner. The low-evenness Early Triassic *Lystrosaurus AZ*, dominated by *Lystrosaurus* and *Procolophon*, is consistent with other terrestrial disaster taxa such as the lycopod macrofossil *Pleuromeia* (and its possible palynomorph correlates) [19–23,62] and the pteridosperm palynomorphs *Lunatisporites* and *Striatosabiceae* [20]. Together, these data suggest low-diversity terrestrial ecosystems dominated by a few taxa that persisted for millions of years after the extinction, similar to evidence from marine ecosystems [8].

Our analysis is particularly novel in investigating evenness, which provides some striking patterns when compared with sample-standardized richness. It appears that in both southern Africa and Russia, evenness recovered to near-pre-extinction levels well before richness did (figure 2). This provides new insight into the ecological recovery of vertebrates on land in the wake of the end-Permian extinction. In particular, we suggest that this pattern is evidence for a two-step recovery, whereby the prevalence of a few disaster taxa is superseded as basic
trophic and functional links in the ecosystem are repaired, before the redevelopment of full ecosystem complexity as represented by taxonomic richness. These empirical data match well with simple models of ecosystem recovery from mass extinction [63], which also predict the appearance of disaster taxa and a delayed multi-step recovery, and trophic models suggesting that low evenness makes these Early Triassic ecosystems susceptible to instability [64].

In addition to the occurrence of disaster taxa, richness and evenness patterns from marine invertebrates and non-marine plants also match well with our new data from non-marine vertebrates. Though global analyses of land plant diversity show only a weak to moderate drop in diversity across the Permo-Triassic boundary [62,65], higher-resolution local and regional records of richness and first/last appearances provide strong evidence for a large land plant mass extinction, followed by delayed recovery in the Middle Triassic, millions of years later, and permanent changes in clades that comprise floral assemblages [19,22–24,62,66]. These data compare very well with our non-marine vertebrate record in both magnitude of the extinction, delay in recovery and permanent compositional changes. The same is true for marine records; large-scale global analyses of sample-standardized marine invertebrate palaeodiversity show one of the largest drops in Phanerozoic diversity across the Permo-Triassic boundary, and diversity levels do not even partially recover until the Middle–Late Triassic [3]. Evenness also drops across the boundary, but continues to decline throughout the Triassic [3], in contrast to its recovery in the Middle Triassic for non-marine vertebrates (figure 2). Regional marine invertebrate records show a similar pattern of a major drop in diversity at the Permo-Triassic boundary and a delayed Middle Triassic recovery [6,67], again consistent with our non-marine vertebrate data and published land plant data. Therefore, we can demonstrate unambiguously that the end-Permain mass extinction affected both marine and terrestrial ecosystems in similar ways: a large sudden drop in diversity associated with the extinction itself, low diversity throughout the Early Triassic and recovery during the Middle Triassic.

Permo-Triassic terrestrial ecosystems and the global carbon cycle

The low Early Triassic richness and delayed Middle Triassic recovery of marine and terrestrial ecosystems (including vertebrates) have been attributed to extrinsic effects such as volcanic activity and/or further greenhouse warming [10,14], because the post-extinction interval is associated with multiple major perturbations of the carbon cycle [6] (figure 2). However, modelling demonstrates that this delayed recovery can be explained largely from intrinsic ecosystem properties [63]. Rather than explaining it as evidence of palaeoenvironmental change, Whiteside & Ward [8] recently proposed that these Early Triassic positive and negative excursion couplets in the carbon cycle (‘chaotic carbon intervals’) record the instability of the ecosystem itself, whereby the abundance of a small number of disaster taxa and low redundancy of trophic links in the ecosystem lead to boom–bust cycles, which are manifested in the carbon cycle through changes in productivity. This hypothesis matches well with the marine invertebrate record [6,8], though there are alternative hypotheses for the correlation between carbon cycling and diversity [7], and differing explanations for this chaotic carbon pattern are not necessarily exclusive. Almost certainly, some component of these fluctuations reflects initial CO₂ output from flood basalt eruption, and subsequent atmospheric CO₂ consumption by weathering of these basalts [68]. However, this cannot explain the longer-term multi-million year variation in the carbon cycle, long after basalt eruptions stopped and flows were buried.

Our non-marine tetrapod data are fully consistent with the chaotic carbon hypothesis. The prevalence of disaster taxa, low richness and low evenness in the Early Triassic, along with the low diversity of producers (i.e. plants), would have made this unstable ecosystem susceptible to boom–bust cycles and further extinctions [17,64]. This compares well with available terrestrial carbon isotope records (figure 2), which, like those from marine strata, display multiple perturbations during the Early Triassic [14,42,43]. These carbon isotope records stabilize during the Middle Triassic, the same time that our non-marine vertebrate data show a full recovery in evenness, partial recovery of richness and major changes in relative abundance (figures 2 and 3). We suspect that the perturbations of the terrestrial carbon cycle reflect at least in part an unstable ecosystem, recorded by the low richness and evenness of Early Triassic non-marine vertebrates and plants. Though we cannot use this correlation to directly infer causation, our hypothesis that post-extinction terrestrial ecosystems suffered from instability as a result of loss of redundant trophic links is strongly supported by ecological modelling of vertebrate food webs for Late Permian and Triassic assemblages from southern Africa [16,17]. These models demonstrate that Early Triassic ecosystems were significantly more unstable than those of pre-extinction assemblages because low diversity and evenness meant fewer redundant trophic links [17], particularly in the disappearance of small to medium-sized herbivores [69]. This fits well with the chaotic carbon hypothesis proposed by Whiteside & Ward [8]. Future comparisons of the non-marine vertebrate record with the carbon cycle to test this hypothesis will benefit from more accurate and precise geochronological resolution, both internal to the study area(s) and in correlation with the marine record.

We thank E. B. Davis, P. A. Holroyd, C. Janis, C. A. Sidor and P. W. Ward for discussions related to this study. E. B. Davis provided advice on statistical measures for evenness, and J. L. Payne kindly shared the data files for the carbon isotope record from South China. E. B. Davis and C. F. Kammerer provided extremely valuable comments on an early version of this manuscript. Reviews by Ken Angielczyk and an anonymous referee greatly improved the final paper. Funding for this study was provided by the University of Utah (R.B.I.) and US National Science Foundation grant EAR 0801138 (J.H.W.). Open access was provided through an award from the University of Utah J. Willard Marriott Library Open Access Publishing Fund.

REFERENCES

1 Mundil, R., Ludwig, K. R., Metcalfe, I. & Renne, P. R. 2004 Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305, 1760–1763. (doi:10.1126/science.1101012)
2 Erwin, D. H., Bowring, S. A. & Jin, Y. 2002 End-Permian mass extinctions: a review. *Geol. Soc. Am. Spec. Pap.* 356, 363–383.

3 Alroy, J. et al. 2008 Phanerozoic trends in the global diversity of marine invertebrates. *Science* 321, 97–100. (doi:10.1126/science.1156965)

4 Alroy, J. 2010 The shifting balance of diversity among major marine animal groups. *Science* 329, 1191–1194. (doi:10.1126/science.1198910)

5 Sahney, S. & Benton, M. J. 2008 Recovery from the most profound mass extinction of all time. *Proc. R. Soc. B* 275, 759–765. (doi:10.1098/rspb.2007.1370)

6 Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P. & Knoll, A. H. 2004 Large perturbations of the carbon cycle during recovery from the end-Permian extinction. *Science* 305, 506–509. (doi:10.1126/science.1097023)

7 Stanley, S. M. 2009 Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. *Proc. Natl Acad. Sci. USA* 106, 15 264–15 267. (doi:10.1073/pnas.0907992106)

8 Whiteside, J. H. & Ward, P. D. 2011 Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. *Geology* 39, 99–102. (doi:10.1130/G31401.1)

9 Korte, C., Pande, P., Kalia, P., Kozur, H. W., Joachimski, M. M. & Oberhänsli, H. 2010 Massive volcanism at the Permo-Triassic boundary and its impact on the isotopic composition of the ocean and atmosphere. *J. Asian Earth Sci.* 37, 293–311. (doi:10.1016/j.jseaes.2009.08.012)

10 Payne, J. L., Turchyn, A. V., Paytan, A., DePaouo, D. J., Lehrmann, D. J., Yu, M. & Wei, J. 2010 Calcium isotope constraints on the end-Permian mass extinction. *Proc. Natl Acad. Sci. USA* 107, 8543–8548. (doi:10.1073/pnas.0914064107)

11 Xie, S., Pancost, R. D., Huang, X., Jiao, D., Lu, L., Huang, J., Yang, F. & Evershed, R. P. 2007 Molecular and isotopic evidence for episodic environmental change across the Permo/Triassic boundary at Meishan in South China. *Glob. Planet. Change* 55, 56–65. (doi:10.1016/j.gloplacha.2006.06.016)

12 Algeo, T., Shen, Y., Zhang, T., Lyons, T., Bates, S., Rowe, H. & Nguyen, T. K. T. 2008 Association of 3S-depleted pyrite layers with negative carbonate δ13C excursions at the Permain-Triassic boundary: evidence for upwelling of sulfide-rich ocean water masses. *Geochim. Cosmochim. Acta* 79, 1–10. (doi:10.1016/j.gca.2007.08.008)

13 Bond, D. P. G. & Wignall, P. B. 2010 Pyrite framboïd study of marine Permain-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. *Geol. Soc. Am. Bull.* 122, 1265–1279. (doi:10.1130/0016-7606(2010)122[1265:BPFSOM]2.0.CO;2)

14 Retallack, G. J., Sheldon, N. D., Carr, P. F., Fanning, M., Thompson, C. A., Williams, M. L., Jones, B. G. & Hutton, A. 2011 Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 308, 233–251. (doi:10.1016/j.palaeo.2010.09.022)

15 Payne, J. L. & Kump, L. R. 2007 Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. *Earth Planet. Sci. Lett.* 256, 264–277. (doi:10.1016/j.epsl.2007.01.034)

16 Angielczyk, K. D., Roopnarine, P. D. & Wang, S. C. 2005 Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo Basin, South Africa. *New Mex. Mus. Nat. Hist. Sci. Bull.* 30, 16–23.

17 Roopnarine, P. D., Angielczyk, K. D., Wang, S. C. & Hertog, R. 2007 Trophic network models explain instability of Early Triassic terrestrial communities. *Proc. R. Soc. B* 274, 2077–2086. (doi:10.1098/rspb.2007.0515)
Adrain, J. M. & Westrop, S. R. 2000 An empirical assessment of taxic paleobiology. *Paleobiology* 26, 423–434. (doi:10.1016/paleo.2007.06.004)

Kammerer, C. F., Angieczezyk, K. D. & Fröbisj, J. In press. A comprehensive taxonomic revision of *Dicynodon* (Therapsida, Anomodontia) and its implications for dicynodont phylogeny, biogeography, and biostratigraphy. *Soc. Vertebrate Paleontol. Mem.*

Huttonlocker, A. K., Sidor, C. A. & Smith, R. M. H. 2011 A new specimen of *Pronoscochrymus* (Therapsida: Theriocephalia: Akidnognathidae) from the Lower Triassic of South Africa and its implications for theriodont survivorship across the Permo-Triassic boundary. *J. Vertebrate Paleontol.* 31, 405–421. (doi:10.1080/07381649.2011.546720)

Tipper, J. C. 1979 Rarefaction and rarefiction—the use and abuse of a method in paleontology. *Paleobiology* 5, 423–434. (doi:10.1163/1566-5669(1979)005:423-434.0)

Adrain, J. M. & Westrop, S. R. 2000 An empirical assessment of taxic paleobiology. *Science* 289, 110–112. (doi:10.1126/science.289.5476.110)

Davis, E. B. & Paynson, N. D. 2007 Diversity biases in terrestrial mammalian assemblages and quantifying the differences between museum collections and published accounts: a case study from the Miocene of Nevada. *Paleogeogr. Palaeoclimatol. Palaeoecol.* 250, 139–149. (doi:10.1016/j.palaeo.2007.03.006)

Moore, J. R., Norman, D. B. & Upchurch, P. 2007 Assessment of taxic paleobiology. *Proc. R. Soc. Lond. B* 264, 423–434. (doi:10.1098/rspb.2007.0503)

Fildani, A., Weislogel, A., Drinkwater, N. J., McMhargue, T., Tankard, A., Wooden, J., Hodgson, D. & Flint, S. 2009 U-Pb zircon ages from the southwestern Karoo Basin, South Africa—implications for the Permo-Triassic boundary. *Geology* 37, 719–722. (doi:10.1130/G25255A.1)

Stanley, S. M. & Yang, X. 1994 A double mass extinction at the end of the Paleozoic Era. *Science* 266, 1340–1344. (doi:10.1126/science.266.5189.1340)

Jin, Y., Zhang, J. & Shang, Q. 1994 Two phases of the end-Permian mass extinction. *Can. Soc. Pet. Geol. Mem.* 17, 813–822.

Gastaldo, R. A., Neveling, J., Clark, C. K. & Newbury, T. S. 2009 The terrestrial Permo-Triassic boundary event bed is a nonevent. *Geology* 37, 199–202. (doi:10.1130/1130/G25255A.1)

Kitching, J. W., Collinson, J. W., Elliot, D. H. & Colbert, E. H. 1972 *Lystrosaurus* Zone (Triassic) fauna from Antarctica. *Science* 175, 524–527. (doi:10.1126/science.175.4021.524)

Cosgriiff, J. W., Hammer, W. R. & Ryan, W. J. 1982 The Pangaeain reptile, *Lystrosaurus maccagni*, in the Lower Triassic of Antarctica. *J. Paleontol.* 56, 371–385.

McElwain, J. C. & Punyasena, S. W. 2007 Mass extinction events and the plant fossil record. *Trends Ecol. Evol.* 22, 548–557. (doi:10.1016/j.tree.2007.09.003)

Solé, R. V., Montoya, J. M. & Erwin, D. H. 2002 Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. *Phil. Trans. R. Soc. Lond. B* 357, 697–707. (doi:10.1098/rstb.2001.0987)

Roopnarine, P. D. & Angieczezyk, K. D. 2011 The evolutionary palaeoecology of species and the tragedy of the commons. *Biol. Lett.* 67. (doi:10.1098/rstb.2011.0662)

Niklas, K. J. & Tiffney, B. H. 1994 The quantification of plant biodiversity through time. *Phil. Trans. R. Soc. Lond. B* 345, 35–44. (doi:10.1098/rstb.1994.0084)

Retallack, G. J. 1995 Permain–Triassic life crisis on land. *Science* 267, 77–80. (doi:10.1126/science.267.5194.77)

Payne, J. L., Lehrmann, D. J., Wei, J. & Knoll, A. H. 2006 The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. *Palaios* 21, 63–85. (doi:10.2110/pal.2005.p05-12p)

Schaller, M. F., Wright, J. D. & Kent, D. V. 2011 Atmospheric pCO2 perturbations associated with Central Atlantic Magmatic Province. *Science* 331, 1404–1409. (doi:10.1126/science.1199011)

Roopnarine, P. In press. Red queen for a day: models of symmetry and selection in paleoecology. *Evol. Ecol.* (doi:10.1007/s10682-011-9494-6)