On recoverability properties of fixed measurement matrices

Anatoly Eydelzon
Department of Mathematical Sciences
The University of Texas at Dallas

December 25, 2014

Abstract

The purpose of this paper is to extend a result by Donoho and Huo, Elad and Bruckstein, Gribnoval and Nielsen on sparse representations of signals in dictionaries to general matrices. We consider a general fixed measurement matrix, not necessarily a dictionary, and derive sufficient condition for having unique sparse representation of signals in this matrix. Currently, to the best of our knowledge, no such method exists. In particular, if matrix is a dictionary, our method is at least as good as the method proposed by Gribnoval and Nielsen.

1 Introduction

Given a data vector $\tilde{x} \in \mathbb{R}^n$, the linear measurements $y_i$ of the data $\tilde{x}$ consist of the inner products of $\tilde{x}$ with a number of measurement vectors $a_i \in \mathbb{R}^n$, $i = 1, 2, \ldots, m$, that is $y_i = \langle a_i, \tilde{x} \rangle$. In matrix form $\tilde{y} = A\tilde{x}$, where $A$ is an $m \times n$ matrix, called the measurement or encoding matrix, that consists of $a_i$’s as its rows and $m$ is the number of measurements.

If the number of measurements is less than the dimension of the data, that is, $m < n$, the linear system $A\tilde{x} = \tilde{y}$ is under-determined, and therefore

*anatoly@utdallas.edu
has infinitely many solutions, which makes the recovery of \( \tilde{x} \) impossible. However if (a) the data vector \( \tilde{x} \) is sufficiently sparse and (b) the encoding matrix \( A \) contains a sufficient number of measurements and satisfies certain properties, then \( \tilde{x} \) can be recovered (exactly or to a given accuracy) at a polynomial time complexity.

We consider the following recovery problem of a sparse vector \( \tilde{x} \in \mathbb{R}^n \) from its linear measurement \( \tilde{y} = A\tilde{x} \in \mathbb{R}^m \), where \( A \) is a known \( m \times n \) full rank matrix and \( m < n \). The associated optimization problem could be stated as

\[
\min_{x \in \mathbb{R}^n} \{ \|x\|_0 : Ax = \tilde{y} \},
\]

where \( \|x\|_0 \) is the number of nonzero entries of \( x \). This problem is non-convex and therefore can not be solved by conventional optimization methods.

On the other hand we can solve the following problem which can be written as a linear program (LP) via a standard transformation,

\[
\min_{x \in \mathbb{R}^n} \{ \|x\|_1 : Ax = \tilde{y} \}
\]

and ask a question: Under what conditions on \( A \) and \( \tilde{x} \) are the problems (1) and (2) uniquely solved by \( \tilde{x} \)?

**Definition 1 (Partition).** By a partition \( (S, Z) \) we mean a partition of the index set \( \{1, 2, \ldots, n\} \) into two disjoint subsets \( S \) and \( Z \) such that \( S \cup Z = \{1, 2, \ldots, n\} \) and \( S \cap Z = \emptyset \). In particular, for any \( x \in \mathbb{R}^n \), the partition \( (S(x), Z(x)) \) refers to the support \( S(x) \) of \( x \) and its complement – the zero set \( Z(x) \), namely

\[
S(x) = \{ i : x_i \neq 0, 1 \leq i \leq n \}, \quad Z(x) = \{ i : x_i = 0, 1 \leq i \leq n \}.
\]

**Definition 2 (k-balancedness).** A subspace \( V \subseteq \mathbb{R}^n \) is \( k \)-balanced (in \( l_1 \) norm) if for any partition \( (S, Z) \) with cardinality of \( S \) equals to \( k \)

\[
\|v_S\|_1 \leq \|v_Z\|_1, \forall v \in V.
\]

It is strictly \( k \)-balanced if the strict inequality holds for all \( v \neq 0 \).
Definitions of $k$-balancedness was introduced by Zhang in [7]. However, $k$-balancedness was used by Donoho and Huo in [2], Elad and Bruckshtein in [4], Gribnoval and Nielsen in [5].

**Theorem 1** (Necessary and Sufficient Conditions for Recovery). Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times n}$ be full rank such that $p + m = n$ and $AB^T = 0$. Then for any $\tilde{x}$ with $\|\tilde{x}\|_0 \leq k$ and $\tilde{y} = A\tilde{x}$, $\tilde{x}$ uniquely solves (1) and (2) if and only if $\text{range}(B^T) \subset \mathbb{R}^n$ is strictly $k$-balanced.

In [7] Zhang stated Theorem 1 in its current form and gave a simple proof by connecting equivalent recoverability conditions for different spaces. The theorem was used without being stated explicitly by Donoho and Huo in [2] and by Elad and Bruckshtein in [4] and was stated as Lemma by Gribnoval and Nielsen in [5].

**Definition 3** (Dictionary). We say that $A$ is a dictionary if the columns of $A$ are unit vectors.

**Definition 4** (Coherence of a Dictionary). Let $A \in \mathbb{R}^{m \times n}$ be a dictionary. The coherence of a dictionary $M(A)$ is defined by

$$M(A) = \max_{i \neq j} |\langle a_i, a_j \rangle|,$$

where $a_i, 1 \leq i \leq n$, is the $i$-th column of $A$.

Next theorem is due to Gribnoval and Nielsen [5].

**Theorem 2.** Let $k$ be a natural number and let $\|\tilde{x}\|_0 \leq k$. For any dictionary $A$, if $k < \frac{1}{2} \left(1 + \frac{1}{M(A)}\right)$ and $\tilde{y} = A\tilde{x}$, then $\tilde{x}$ is the unique solution to both (1) and (2).

It is necessary to mention that if $m$ is a power of 2, then there exists a dictionary $A$ such that $M(A) = \frac{1}{\sqrt{m}}$. See, for example [1] and [6].
2 Main Result

Definition 5 ($\gamma_{1,\infty}$-width). Let both $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times n}$ be of full rank and $p + m = n$ and $AB^T = 0$. We define $\gamma_{1,\infty}$-width of $A$ to be

$$\gamma_{1,\infty}(A) = \min_{x \in \mathbb{R}^p, x \neq 0} \frac{\|B^T x\|_1}{\|B^T x\|_\infty} = \min_{\|B^T x\|_1 = 1} \|B^T x\|_1. \quad (5)$$

The feasible set $\{x \in \mathbb{R}^p : \|B^T x\|_\infty = 1\}$ is non-convex, however, it is a union of $2n$ convex sets

$$\{x \in \mathbb{R}^p : \|B^T x\|_\infty = 1\} = \bigcup_{i=1}^n \pm F_i, \quad (6)$$

where

$$F_i = \{x \in \mathbb{R}^p : [B^T x]_i = 1; \|[B^T x]_j\| \leq 1, j \neq i\}. \quad (7)$$

Therefore,

$$\gamma_{1,\infty}(A) = \min_{1 \leq i \leq n} \min_{x \in F_i} \|B^T x\|_1. \quad (8)$$

For every $1 \leq i \leq n$, $\min_{x \in F_i} \|B^T x\|_1$ could be rewritten as a linear program via a standard transformation. Therefore, in order to compute $\gamma_{1,\infty}(A)$ it is necessary to solve $n$ linear programs. While it requires considerable computational efforts for a large $n$, the problem is solvable in polynomial time.

Alternatively, one can solve the reciprocal problem

$$\frac{1}{\gamma_{1,\infty}(A)} = \max_{\|B^T x\|_1 = 1} \|B^T x\|_\infty. \quad (9)$$

Next proposition presents sufficient condition for recovery. It follows directly from Theorem 1.

Proposition 1 (Sufficient Condition for Recovery). Recovery is guaranteed whenever $k < \frac{1}{2} \gamma_{1,\infty}(A)$.

Proof. Note, that $\|v_S\|_1 \leq \|v_Z\|_1$ is equivalent to $\|v_S\|_1 \leq \frac{1}{2} \|v\|_1$. Therefore,

$$\|v_S\|_1 \leq k \|v_S\|_\infty \leq k \|v\|_\infty \leq \frac{1}{2} \gamma_{1,\infty}(A) \|v\|_\infty \leq \frac{1}{2} \|v\|_1 \|v\|_\infty \leq \frac{1}{2} \|v\|_1. \quad \square$$
Now we are ready to show that estimated sparsity $k$ for guaranteed recovery of a dictionary $A$ computed using $\gamma_{1,\infty}$-width of $A$ is always greater or equal to the estimated sparsity $k$ computed using coherence of $A$.

**Theorem 3.** Let $A \in \mathbb{R}^{m \times n}$ be a dictionary and $m < n$. Let $B \in \mathbb{R}^{p \times n}$, such that $p + m = n$ and $AB^T = 0$. Let $k_1$ and $k_2$ be the sparsities for guaranteed recovery estimated by $\gamma_{1,\infty}(A)$ and $M(A)$ respectively. Then $k_1 \geq k_2$.

**Proof.** According to Theorem 2 and Proposition 1, it is enough to show that

$$1 + \frac{1}{M(A)} \leq \gamma_{1,\infty}(A). \quad (10)$$

We will follow the proof of Gribnoval and Nielsen [5].

Let $v \in \text{range}(B^T)$, then $Av = 0$, or, in vector form $\sum_{i=1}^{n} v_i a_i = 0$, where $a_i$, $1 \leq i \leq n$ is the $i$-th column of $A$. Then, $v_1 a_1 = -\sum_{i=2}^{n} v_i a_i$. Taking the inner product of both sides with $a_1$, we get $v_1 = -\sum_{i=2}^{n} v_i \langle a_i, a_1 \rangle$.

It follows that

$$|v_1| = \left| - \sum_{i=2}^{n} v_i \langle a_i, a_1 \rangle \right| \leq M(A) \sum_{i=2}^{n} |v_i| = M(A)(\|v\|_1 - |v_1|), \quad (11)$$

or

$$|v_1|(1 + M(A)) \leq \|v\|_1 M(A). \quad (12)$$

The same way for $2 \leq i \leq n$, we get

$$|v_i|(1 + M(A)) \leq \|v\|_1 M(A). \quad (13)$$

Since this is true for every index $1 \leq i \leq n$, it follows that for every vector $v \in \text{range}(B^T)$ the following inequality holds:

$$1 + \frac{1}{M(A)} \leq \frac{\|v\|_1}{\|v\|_\infty}. \quad (14)$$

Now if we take minimum over all $v \in \text{range}(B^T)$ we get:

$$1 + \frac{1}{M(A)} \leq \min_v \frac{\|v\|_1}{\|v\|_\infty} = \gamma_{1,\infty}(A). \quad (15)$$

which completes the proof. □
3 Conclusion

In this paper we defined $\gamma_{1,\infty}$-width of a measurement matrix $A$ and showed that if $A$ is a dictionary, our approach to estimate recoverability properties of $A$ is at least as good as coherence approach. Moreover, our method can be used to estimate the recoverability of $A$ even in the case $A$ is not a dictionary. Currently, to the best of our knowledge, no other such method exists.

References

[1] A. R. Calderbank, P. J. Cameron, W. M. Kantor and J. J. Seidel. $Z_4$-Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line-sets. Proc. London Math. Soc. (3), no. 2, pp. 436-480, 1997.

[2] D. Donoho and X. Huo. Uncertainty principles and ideal atomic decompositions. IEEE Trans. Inf. Theory 47 (2001), 2845-2862.

[3] M. Elad. Optimized Projections for Compressed Sensing IEEE Trans. Sign. Processing 55 (2002), 5695 - 5702.

[4] M. Elad and A. Bruckshtein. A Generalized Uncertainty Principle and Sparse Representations in Pairs of Bases IEEE Trans. Inf. Theory 48 (2002), 2558-2567.

[5] Rémi Gribnoual and Morten Nielsen. Sparse Representation in Union of Bases. IEEE Trans. Inf. Theory 49 (2003), no. 12, 3320-3325.

[6] T. Strohmer and R. Heath. Grassmannian Frames with Applications to Coding and Communications. Appl. Comp. Harm. Anal., vol. 14, no. 3, pp. 257-275, 2003.

[7] Y. Zhang. A Simple Proof for Recoverability of $l_1$ Minimization: Go Over or Under? Technical report TR05-09, Department of Computational and Applied Mathematics, Rice University, Houston, TX, 2005.