300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling

Hojun Songa,b,*, Christiane Amédégnato, Maria Marta Ciglianod, Laure Desutter-Grandcolasc, Sam W. Heads, Yuan Huang, Daniel Otte and Michael F. Whiting

aDepartment of Biology, University of Central Florida, Orlando, FL, USA; bDepartment of Entomology, Texas A&M University, College Station, TX, USA; cDépartement Systématique et Évolution, Muséum National d’Histoire Naturelle, ISYEB, UMR7205 CNRS MNHN UPMC EPHE, Paris, France; dDivisión Entomología, Museo de La Plata, La Plata, Argentina; eIllinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA; fInstitute of Zoology, Shaanxi Normal University, Xi’an, China; gDepartment of Biodiversity, Earth & Environmental Science, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA; hDepartment of Biology and M. L. Bean Museum, Brigham Young University, Provo, UT, USA

Accepted 4 February 2015

Abstract

Orthoptera is the most diverse order among the polyneopteran groups and includes familiar insects, such as grasshoppers, crickets, katydids, and their kin. Due to a long history of conflicting classification schemes based on different interpretations of morphological characters, the phylogenetic relationships within Orthoptera are poorly understood and its higher classification has remained unstable. In this study, we establish a robust phylogeny of Orthoptera including 36 of 40 families representing all 15 currently recognized superfamilies and based on complete mitochondrial genomes and four nuclear loci, in order to test previous phylogenetic hypotheses and to provide a framework for a natural classification and a reference for studying the pattern of divergence and diversification. We find strong support for monophyletic suborders (Ensifera and Caelifera) as well as major superfamilies. Our results corroborate most of the higher-level relationships previously proposed for Caelifera, but suggest some novel relationships for Ensifera. Using fossil calibrations, we provide divergence time estimates for major orthopteran lineages and show that the current diversity has been shaped by dynamic shifts of diversification rates at different geological times across different lineages. We also show that mitochondrial tRNA gene orders have been relatively stable throughout the evolutionary history of Orthoptera, but a major tRNA gene rearrangement occurred in the common ancestor of Tetrigoidea and Acridomorpha, thereby representing a robust molecular synapomorphy, which has persisted for 250 Myr.

© The Willi Hennig Society 2015.

Introduction

With more than 25 700 extant species, Orthoptera is the most diverse order among the polyneopteran insect lineages (Grimaldi and Engel, 2005; Eades et al., 2014). The order includes familiar singing insects, such as crickets and katydids, as well as often devastating pests, such as grasshoppers and locusts (Gangwere et al., 1997). Orthopteran insects have diversified into numerous lineages that occupy every conceivable terrestrial habitat outside the polar regions and play integral roles in the ecosystem (Uvarov, 1966; Kevan, 1982). Such diversity in form and function has attracted researchers who use these insects as model systems for studying anatomy, physiology, neurobiology, bioacoustics, chemical ecology, life-history traits, speciation research, and evolutionary ecology (Uvarov, 1966, 1977; Baccetti, 1987; Chapman and Joern, 1990; Gangwere et al., 1997; Pener and Simpson, 2009).

*Corresponding author:
E-mail address: hsong@tamu.edu

© The Willi Hennig Society 2015
The monophyly of Orthoptera is strongly supported by several morphological characters, such as the presence of the cryptopleuron and jumping hind legs among others (Kevan, 1982; Kristensen, 1991; Grimaldi and Engel, 2005), and the order is considered to be divided into two suborders: Ensifera (crickets, katydids, wetas, and their relatives) (Fig. 1) and Caelifera (grasshoppers, locusts, and their relatives) (Fig. 2). Despite the familiarity and the diversity of the group, the phylogenetic relationships within Orthoptera are poorly understood and its higher classification remains unstable due to a long history of conflicting taxonomic hypotheses based on different character sets, such as fossil wing venation (Zeuner, 1942; Sharov, 1968; Gorochov, 1995a), internal organs (Slifer, 1939; Judd, 1947; Dirsh, 1957; Baccetti, 1987), external morphology (Blackith and Blackith, 1968; Vickery and Kevan, 1983), and the male phallic complex (Chopard, 1920; Ander, 1939; Roberts, 1941; Dirsh, 1973; Amédégnato, 1974; Eades, 2000). Most of these hypotheses are precladistic and lack formal analyses, and there are major disagreements among even those based on the same set of morphological characters. In 1975, the higher classification of Orthoptera reached its most chaotic
When Dirsh proposed a superorder Orthopteroidea with ten new orders (Dirsh, 1975), although contemporary orthopterists agree that Dirsh’s treatment was extreme (Gurney, 1976; Kevan, 1976), the aftermath of taxonomic instability still lingers today and many new species are being described under conflicting classification schemes (Song, 2010).

Several researchers have proposed different higher classification schemes for Orthoptera and the major lineages based on modern cladistic methods using morphology and molecules (Fig. 3). Flook et al. (1999) produced the first modern phylogeny of Orthoptera based on 31 ingroup taxa representing all major lineages and three ribosomal loci, and redefined some superfamily concepts. Due to small taxon and character sampling, however, some of the relationships were not fully resolved, but this work still stands as the most comprehensive work for the entire order until now. In recent years, a number of studies used complete mitochondrial genome (mtgenome) sequences to infer the phylogeny of Orthoptera (Fenn et al., 2008; Sheffield et al., 2010; Zhou et al., 2010; Zhang et al.,...
but most of these had a relatively small taxon sampling often based only on available mtgenome data, not enough to seriously test previous classification schemes. At the level of suborders, Gwynne (1995) presented the first explicit cladistic analysis of Ensifera based on morphological characters coded from the taxonomic literature and used it to address the evolution of acoustic communication and mating behaviour in Ensifera. Nevertheless, this study also met with some sharp criticisms based on methodological grounds (Nickle and Naskrecki, 1997; Desutter-Grandcolas, 2003). Desutter-Grandcolas (2003) coded 85 morphological characters from 12 ensiferan terminals (three emblematic genera and nine families), which resulted in a well-resolved phylogeny, but this taxon sampling did not allow generalizations to be made about ensiferan evolution because polymorphism was included in the data matrix. Jost and Shaw (2006) then reconstructed the phylogeny of Ensifera based on three ribosomal loci and 51 terminals, which resulted in a radically different phylogenetic relationship from previous hypotheses, but the dataset used in this work was later shown to be highly sensitive to different analytical methods (Legendre et al., 2010). Zhou et al. (2014) presented a mtgenome phylogeny of Ensifera based on a newly sequenced mtgenome of Prophalangopsidae (representing Hagloidea) and available ensiferan mtgenomes, but the study lacked several key taxa from basal ensiferans to make a significant impact. As for Caelifera, Flook and Rowell (1997) proposed the

Fig. 3. Previous phylogenetic hypotheses of Orthoptera based on modern cladistic methods. Nodes from the original studies have been collapsed to show superfamilly-level relationships. Asterisks represent superfamilies sensu Eades et al. (2014) that were not found to be monophyletic in the original studies.
Species	Voucher ID	18S	28S	H3	Wingless	
ENSIFERA	Gryllidae	Brachytrupes sp.	OR426	KM853299	N/A	KM853569
		Meliornophora japonica	OR451	KM853308	KM853384	KM853561
		Eneroptera guayanensis	OR434	KM853304	KM853388	KM853564
		Euscyrtus japonicus	OR462	KM853311	KM853381	KM853558
		Modicogyllus volvovii	OR432	KM853302	KM853390	KM853566
		Sciobia fineti	OR431	KM853301	KM853391	KM853567
		Acheta domesticus	OR429	KM853300	KM853392	KM853568
		Gryllus assimilis	OR016	KM853317	KM853519	KM853563
		Hapithus symphonos	OR460	KM853310	KM853382	KM853559
		Nemobius sylvestris	OR472	KM853315	KM853378	KM853554
		Argicia braziliensis	OR468	KM853314	KM853386	KM853563
		Oecanthus niveus	OR031	KM853175	KM853514	KM853589
		Paragryllus sp.	OR458	KM853309	KM853390	KM853566
		Pentacentrus sp.	OR467	KM853299	KM853513	KM853586
		Selvaca troxalis	OR443	KM853306	KM853381	KM853564
		Phaloria sp.	OR447	KM853307	KM853388	KM853565
		Sclerogryllus sp.	OR440	KM853308	KM853389	KM853573
		Anaxipha praepostera	OR465	KM853313	KM853379	KM853566
Gryllotalpidae	Gryllotalpa	Gryllotalpa sp.	OR050	KM853176	KM853513	KM853688
		Gryllotalpa sp.	OR162	KM853183	KM853507	KM853682
		Scapteriscus sp.	OR161	KM853182	N/A	N/A
Mogoplistidae	Hoplosphyrum	Hoplosphyrum	OR424	KM853298	N/A	KM853570
Myrmecophilidae	Myrmecophila	Myrmecophila manni	OR022	KM853173	KM853517	KM853691
Hagloidea	Prophalangopsidae	Cyphoderis monstrosa	OR021	KF570814	KF570943	KF571077
		Tarragoilus diaturnus (mitgenome only)	OR021	N/A	N/A	N/A
Rhaphidophoroidea	Rhaphidophoridae	Disstramaena unicolor	OR418	KM853293	KM853396	KM853564
		Cataphalopus utahensis	OR017	KM853172	KM853518	KM853692
		Gammaurotettix genitalis	OR029	N/A	KM853515	N/A
Schizodactylidae	Schizodactylidae	Troglophilus neglectus	OR083	KF570820	KF570948	KF571092
		Comicus campestris	OR416	KM853292	KM853397	KM853575
		Schizodactylus inexpectatus	OR563	KM853344	N/A	KM853524
Stenopelmatoida	Anostostomatidae	Henicus brevivomeratus	OR420	KM853295	KM853396	KM853574
		Cnemotettix miniatius	OR415	KM853291	KM853398	KM853576
		Cooloola ziljan	OR412	KM853290	KM853399	KM853577
		Hadrogyllacris sp.	OR421	KM853296	KM853394	KM853572
		Prospogryllacris japonica	OR419	KM853294	KM853395	KM853573
Tettigonioidae	Stenopelmatidae	Stenopelmatops fuscus	OR024	KF570818	KF570941	KF571078
		Pachysaga sp.	OR014	KF570813	KF570940	KF571122
		Hemisaga sp.	OR484	KF570757	KF570987	KF571124
		Derzaczanthus onos (mitgenome only)	OR483	N/A	N/A	N/A
		Macroxyphus sumatranus	OR381	KF570803	KF570930	KF571110
		Ruspolia sp.	OR380	KF570793	KF570923	KF571109
		Odontolakis virescens	OR379	KF570792	KF570932	KF571108
		Salomonida sp.	OR145	KF570791	KF570928	KF571100
		Copiphora rhinoceros	OR142	KF570790	KF570918	KF571099
		Conocephalus dorsalis	OR082	N/A	N/A	KF571101
		Enyaliospis sp.	OR177	KF570690	KF570871	KF571102
		Acanthopus sp.	OR176	KF570692	KF570873	KF571101
		Glenophisus borneo	OR638	KF570686	KF570903	KF571193
		Hexacentrus japonicas	OR382	KF570685	N/A	KF571111
		Lipotactes maculatus	OR634	KF570698	KF570876	KF571189
		Mortoniellus ovatus	OR633	KF570697	KF570875	KF571188
Species	Voucher ID	18S	28S	H3	Wingless	
---------------------------	------------	-----------	-----------	-----------	----------	
Meioptilus micropennis	OR657	KF570812	KF570889	KF571458	KF571346	
Arachnocheta rehni	OR582	KF570695	KF570900	KF571139	KF571273	
Allotettigonia sp.	OR636	KF570703	KF570878	KF571191	KF571325	
Kuzicus megatetematus	OR635	KF570701	KF570877	KF571190	KF571324	
Xizicus fascipes		N/A	N/A	N/A	N/A	
(mtgenome only)						
Mecopoda elongata	OR385	KF570771	KF570912	KF571113	KF571248	
Eumecopoda sp.	OR384	KF570736	KF570881	KF571112	KF571247	
Phyllophora sp.	OR388	KF570858	KM5853413	KF571116	KF571251	
Euryptera sp.	OR387	KF570743	KF570863	KF571115	KF571250	
Dysonia sp.	OR386	KF570722	KF570849	KF571114	KF571249	
Trigonocorypha sp.	OR378	KF570745	KF570844	KF571107	KF571242	
Phranecoptera falcata	OR076	KF570718	KF570864	KF571089	KF571223	
Barbitistes sericea	OR069	KF570742	KF570859	KF571084	KF571219	
Acrometopa macropoda	OR043	KF570717	KF570853	KF571082	KF571217	
Sinochola longifissa		N/A	N/A	N/A	N/A	
(mtgenome only)						
Phasmodes sp.	OR485	KF570817	KF570944	KF571125	KF571259	
Phyllophora sp.	OR132	KF570816	KF570911	KF571096	KF571231	
Sasima sp.	OR131	KF570770	KF570910	KF571095	KF571230	
Phricataetypus viridis	OR393	KF570772	KF570909	KF571121	KF571256	
Pantecephylus sp.	OR392	KF570707	KF570823	KF571120	KF571255	
Teleutas sp.	OR391	KF570815	KF570829	KF571119	KF571254	
Idiarthrion sp.	OR389	KF570712	KF570827	KF571117	KF571252	
Panoploscclus sp.	OR377	KF570713	KF570826	KF571106	KF571241	
Typophyllus sp.	OR196	KF570693	KF570936	KF571103	KF571238	
Cymatomyra sp.	OR139	KF570779	KF570858	KF571098	KF571233	
Zabalius ophthalmicus	OR138	KF570884	KF570975	KF571369	KM583848	
Clonia sp.	OR201	KF570769	KF570880	KF571105	KF571240	
Peringueyella sp.	OR199	KF570810	KF570905	KF571104	KF571239	
Requena sp.	OR553	KF570696	KF570901	KF571133	KF571267	
Pholidoptera griseoaperta	OR079	KF570767	KF570893	KF571089	KF571224	
Tetrigonia cantans	OR075	KF570765	N/A	KF571087	KF571222	
Anabrus simplex	OR334	KF570763	KF570890	KF571081	KF571216	
Gampsoeles gratioa		N/A	N/A	N/A	N/A	
(mtgenome only)						
Tympanophora acrida	OR486	KF570777	KF570947	KF571126	KF571260	
Kavanaphila sp.	OR487	KF570700	KF570882	KF571127	KF571261	

CAELIFERA

Species	Voucher ID	18S	28S	H3			
Truxalis sp.	OR510	KM853325	KM853367	KM853543			
Hyalopteryx rufipennis	OR240	KM853210	KM853480	KM853565			
Calaphora	OR192	KM853192	KM853498	KM853673			
compressiornis	OR059	KM853177	KM853512	KM853687			
Aerida willensi		N/A	N/A	N/A			
Phlacea albonemsa	OR194	KM853194	KM853496	KM853671			
(mtgenome only)							
Paracalopterus caloptenoides	OR193	KM853193	KM853497	KM853672			
Calliptamus barbarus	OR574	KM853345	KM853498	KM853523			
Kinangopoa jeancelli	OR306	KM853322	KM853371	KM853547			
Aresceutica morogorica	OR305	KM853321	KM853372	KM853548			
Pezocatantops sp.	OR499	KM853320	KM853373	KM853549			
Urasulsaubroopunctata	OR498	KM853319	KM853374	KM853550			
Stenocatantops vitripennis	OR497	KM853318	KM853375	KM853551	KM853721		
Species	Voucher ID	18S	28S	H3	Wingless		
------------------------	------------	---------	---------	----------	----------		
Acridoidea							
Acrididae							
Retupsia validicornis	OR496	KM853317	KM853376	KM853552	KM853722		
Poraria sp.	OR494	KM853316	KM853377	KM853553	KM853723		
Catantops sp.	OR237	KM853209	KM853481	KM853656	KM853820		
Macrolophoria sp.	OR235	KM853208	KM853482	KM853657	KM853821		
Xenocatantops brachycerus	N/A	N/A	N/A	N/A			
Triaulida zeteschuensis	N/A	N/A	N/A	N/A			
Cyphacris sp.	OR334	KM853251	KM853429	KM853615	KM853782		
Calliptamula sp.	OR311	KM853241	KM853449	KM853625	KM853792		
Heteracris sp.	OR310	KM853240	KM853450	KM853626	KM853793		
Euprepocnemis ploraena	OR309	KM853239	KM853421	KM853621	KM853794		
Cataloipus sp.	OR218	KM853184	KM853482	KM853680	KM853843		
Shirakia shirakii (mtgenome only)	N/A	N/A	N/A	N/A			
Aulocara ellioti	OR521	KM853239	KM853363	KM853539	KM853710		
Mermiria intertexta	OR520	KM853238	KM853364	KM853540	KM853711		
Rhammatocerus schistocercaeus	OR346	KM853258	KM853432	KM853608	KM853776		
Prorocorypha snowi	OR228	KM853207	KM853483	KM853658	KM853822		
Syrbula montezenza	OR227	KM853206	KM853484	KM853659	KM853823		
Dichromorpha viridis	OR226	KM853205	KM853485	KM853660	KM853824		
Gomphocerus sibiricus (mtgenome only)	N/A	N/A	N/A	N/A			
Arcyptera coreana (mtgenome only)	OR307	N/A	N/A	N/A	N/A		
Kassonia vittata	OR304	KM853238	KM853452	KM853628	KM853795		
Leptacris sp.	OR303	KM853237	KM853453	KM853629	KM853796		
Pristocorypha sp.	OR302	KM853236	KM853454	KM853630	KM853797		
Stenacris sp.	OR342	KM853255	KM853435	KM853611	KM853778		
Tetraatleta sp.	OR338	KM853254	KM853436	KM853612	KM853779		
Leptysma marginicollis	OR214	KM853199	KM853491	KM853666	KM853830		
Marelia remipes	OR344	KM853256	KM853434	KM853610	N/A		
Ognevia longipennis (mtgenome only)	N/A	N/A	N/A	N/A			
Hesperotettix viridis	OR517	KM853327	KM853365	KM853541	KM853712		
Bradybotes obesa	OR515	KM853326	KM853366	KM853542	KM853713		
Pruina halasana	OR395	KM853277	KM853412	KM853589	KM853758		
Anapodisma miramae	OR356	KM853265	KM853425	KM853601	KM853769		
Jivarus roderosi	OR328	KM853249	KM853441	KM853617	KM853784		
Dichromphini	OR325	KM853248	KM853442	KM853618	KM853785		
Melanoplus bivittatus	OR245	KM853211	KM853479	KM853654	KM853818		
Ceracris kiangsai (mtgenome only)	N/A	N/A	N/A	N/A			
Species	Voucher ID	18S	28S	H3	Wingless		
-------------------------------	------------	-------------	-------------	--------------	----------		
Acridoidea							
Acridida							
Gastrimargus marnoriae	OR523	KM853331	KM853361	KM853537	KM853708		
(*mtgenome only*)	OR225	KM853204	KM853486	KM853661	KM853825		
Locusta migratoria	OR190	KM853390	KM853500	KM853675	KM853838		
Acrotylus patruelis	OR190	KM853326	KM853446	KM853622	KM853789		
Aiolopus simulatrix	OR188	KM853189	KM853501	KM853676	KM853839		
Tomonotus ferruginosus	OR522	KM853330	KM853362	KM853538	KM853709		
Psinidia fenestralis	OR522	KM853330	KM853362	KM853538	KM853709		
Heteropternis sp.	OR187	KM853188	KM853502	KM853677	KM853840		
Xanthippus sp.	OR187	KM853188	KM853502	KM853677	KM853840		
Trimerotropis sp.	OR186	KM853187	KM853503	KM853678	KM853841		
Locheuma bruneri	OR366	KM853268	KM853422	KM853598	KM853766		
Ommatolampis quadrimaculata	OR364	KM853267	KM853423	KM853599	KM853767		
Aspidophyma americana	OR361	KM853266	KM853424	KM853600	KM853768		
Vilerna sp.	OR336	KM853252	KM853438	KM853614	KM853781		
Syntomacrella sp.	OR323	KM853247	KM853443	KM853619	KM853786		
Abracris sp.	OR222	KM853202	KM853488	KM853663	KM853827		
Kosciacaula tristis	OR396	KM853278	KM853411	KM853588	KM853757		
Oxya hyla	OR315	KM853244	KM853446	KM853622	KM853789		
Paulinia acuminata	OR345	KM853257	KM853433	KM853609	KM853777		
Poecilocoleus napoana	OR368	KM853270	KM853420	KM853596	N/A		
Coscinea sp.	OR249	KM853212	KM853478	KM853653	KM853817		
Galidacris variabilis	OR371	KM853271	KM853419	KM853595	KM853764		
Paropaon sp.	OR337	KM853253	KM853437	KM853613	KM853780		
Spathosternum sp.	OR224	KM853203	KM853487	KM853662	KM853826		
Petamella prosternalis	OR360	KM853343	KM853439	KM853525	KM853697		
Tristria discoidalis	OR343	KM853338	KM853354	KM853530	KM853702		
Lentulidae	OR359	KM853336	KM853356	KM853532	N/A		
Rhainopomona magnificum	OR358	KM853335	KM853357	KM853533	KM853704		
Usambilla olivacea	OR296	KM853235	KM853455	KM853631	KM853798		
Lentula callani	OR295	KM853234	KM853456	KM853632	KM853799		
Lithidiidae	OR316	KM853245	KM853445	KM853621	KM853788		
Lithidiopsis carinatus	OR316	KM853245	KM853445	KM853621	KM853788		
Ommexechidae	OR579	N/A	N/A	KM853522	N/A		
Graea horrida	OR367	KM853269	KM853421	KM853597	KM853765		
Ommexexa brunneri	OR367	KM853269	KM853421	KM853597	KM853765		
Pamphagidae	OR288	KM853231	KM853459	KM853635	KM853802		
Hoplolopa sp.	OR216	KM853200	KM853490	KM853665	KM853829		
Porthesis carinata	OR151	KM853180	KM853509	KM853664	KM853647		
Pseudomethis rubinarginis	OR540	KM853337	KM853355	KM853531	KM853703		
(mtgenome only)	OR540	KM853337	KM853355	KM853531	KM853703		
Filchnerella helanshanensis	OR376	KM853276	KM853414	KM853590	KM853759		
(mtgenome only)	OR376	KM853276	KM853414	KM853590	KM853759		
Asiomethis zacharjini	OR354	KM853263	KM853427	KM853603	KM853771		
(mtgenome only)	OR354	KM853263	KM853427	KM853603	KM853771		
Asiothecis zacharjini	OR354	KM853263	KM853427	KM853603	KM853771		
Thrinchus schrenkii	OR354	KM853263	KM853427	KM853603	KM853771		
(mtgenome only)	OR337	KM853275	KM853415	KM853591	KM853760		
Pamphagodidae	OR374	KM853274	KM853416	KM853592	KM853761		
Species	Voucher ID	18S	28S	H3	Wingless		
---------	------------	-----	-----	----	----------		
Acridoidea Romaleidae	Acridophaga sp.	OR373	KM853273	KM853417	KM853593	KM853762	
	Pareauscias defusus	OR372	KM853272	KM853418	KM853594	KM853763	
	Costalmacris sp.	OR347	KM853259	KM853431	KM853607	KM853775	
	Diponthus argentinus	OR267	KM853222	KM853468	KM853643	KM853810	
	Xyleus modestus	OR265	KM853221	KM853469	KM853644	KM853811	
	Titanacris albipes	OR085	KM853178	KM853511	KM853686	KM853850	
Tristiridae	Tropidostethus angusticollos	OR203	KM853196	KM853494	KM853669	KM853833	
	Atacamedes diminuta	OR202	KM853195	KM853495	KM853670	N/A	
	Bafonacris claraziana	OR207	KM853198	KM853492	KM853671	KM853831	
	Stristira magellanica	OR204	KM853197	KM853493	KM853668	KM853832	
	Elasmoderus lutescens	OR532	KM853334	KM853538	KM853534	KM853705	
Eumastacoidea Chorotypidae	Chorotypus fenestratus (mtgenome only)	N/A	N/A	N/A	N/A		
	Xenerianthus affinis (mtgenome only)	OR397	KM853279	KM853410	KM853587	KM853756	
	Pielomastax zhengi (mtgenome only)	OR398	KM853280	KM853409	KM853586	KM853755	
	Eumastacidae	Eumastax salazari	OR405	KM853285	KM853404	KM853581	KM853750
	Morabidae	Biroella sp.	OR403	KM853283	KM853406	KM853583	KM853752
	Warramunga sp.	OR404	KM853284	KM853405	KM853582	KM853751	
	Thericleidae	Thericlesiella sp.	OR399	KM853281	KM853408	KM853585	KM853754
	Pseudothericles compressifrons (mtgenome only)	OR398	KM853280	KM853409	KM853586	KM853755	
	Pneumoroidea Pneumororidae	Physemacris variolosa	OR293	KM853233	KM853457	KM853633	KM853800
	Proscopioida Proscopiidae	Proscopia sp.	OR411	KM853288	KM853401	KM853578	KM853746
	Pyrgomorphoidea Pyrgomorphidae	Colemania sphenariaoides (mtgenome only)	OR286	KM853230	KM853460	KM853636	KM853803
	Orthracidae	Orthracidae	OR280	KM853226	KM853464	KM853639	N/A
	Monistria discreps	OR527	KM853322	KM853460	KM853636	KM853803	
	Chrotogonus sp.	OR527	KM853323	KM853461	KM853637	KM853804	
	Attractomorpha sp.	OR282	KM853228	KM853462	KM853638	KM853805	
	Aigele buerri	OR281	KM853229	KM853463	KM853639	KM853806	
	Desmoptera sp.	OR280	KM853228	KM853464	KM853640	KM853807	
	Pyrgomorpha granulata	OR278	KM853227	KM853465	KM853641	KM853808	
	Phymateus morbillosus	OR277	KM853226	KM853466	KM853642	KM853809	
	Mekongiella xizangensis (mtgenome only)	OR276	KM853225	KM853467	KM853643	KM853810	
	Mekongiana xiangchengensis (mtgenome only)	OR275	KM853224	KM853468	KM853644	KM53811	
	Pyrgomorphoidea	Colemania sphenariaoides (mtgenome only)	OR286	KM853230	KM853460	KM853636	KM853803
	Orthracidae	Orthracidae	OR280	KM853226	KM853464	KM853639	N/A
	Monistria discreps	OR527	KM853322	KM853460	KM853636	KM853803	
	Chrotogonus sp.	OR527	KM853323	KM853461	KM853637	KM853804	
	Attractomorpha sp.	OR282	KM853228	KM853462	KM53805	KM53805	
	Aigele buerri	OR281	KM853229	KM853463	KM53806	KM53806	
	Desmoptera sp.	OR280	KM853228	KM53807	KM53807	KM53807	
	Pyrgomorpha granulata	OR278	KM853227	KM53808	KM53808	KM53808	
	Phymateus morbillosus	OR277	KM853226	KM53809	KM53809	KM53809	
	Mekongiella xizangensis (mtgenome only)	OR276	KM853225	KM53810	KM53810	KM53810	
	Mekongiana xiangchengensis (mtgenome only)	OR275	KM853224	KM53811	KM53811	KM53811	
Tanaoceroida Tanaoceridae	Tanaocerus koebelei	OR559	KM853342	KM853350	KM853526	KM853698	
	Baetridiineae	Baetridiineae	OR261	KM853319	KM853347	KM853646	N/A
	Systoledeus spicupennis	OR251	KM853321	KM853346	KM853651	N/A	
	Mazarrida convexa	OR250	KM853322	KM853347	KM853652	KM853816	
	Thoradonta nodulosa	OR253	KM853319	KM853344	KM853649	N/A	
	Sclerema meli	OR252	KM853320	KM853345	KM853650	KM853815	
	Ablatatettix yunnanensis (mtgenome only)	N/A	N/A	N/A	N/A		
	Euparatettix nigritibis (mtgenome only)	OR259	KM853320	KM853350	KM853526	KM853698	
	Tetrigidae	Tetrix japonica	OR257	KM853319	KM853347	KM853646	N/A
	Trachytettix bufo	OR263	KM853322	KM853348	KM853651	KM853816	
Tridactyloidea Cylindrachetidae	Cylindraustralia sp.	OR527	KM853322	KM853346	KM853651	KM853816	
	Ripipterygidae	Ripipteryx andensis	OR527	KM853322	KM853346	KM853651	KM853816
	Tradiactylidae	Tradiactylidae	OR527	KM853322	KM853346	KM853651	KM853816
	Trigonopterygoidea Trigonopterygidae	Trigonopteryx hopei	OR290	KM853321	KM853344	KM853649	N/A
	Xyronotidae	Xyronotus aztecus	OR1175	KM853320	KM853344	KM853649	N/A

Hojun Song et al. / Cladistics 0 (2015) 1–31
first phylogeny of the suborder based on 32 ingroup taxa representing all major lineages and two mitochondrial ribosomal genes, but this dataset was not sufficient enough to resolve the basal relationships. Flook et al. (2000) studied the phylogenetic relationships among the lower caeliferans based on a slightly more expanded taxon sampling and redefined some superfam-

family concepts. Leavitt et al. (2013) conducted a thorough analysis of mtgenome data across major caeliferan superfamilies, but their taxon sampling was more biased toward Acridoidea than other lineages. All of these previous studies were lacking either in taxon or character sampling, and resulted in conflicting higher classification schemes. Therefore, a well-resolved higher-level phylogeny of Orthoptera is desperately needed.

The main objective of this research is to fill the void in the study of Orthoptera by establishing a robust phylogeny of Orthoptera based on comprehensive taxon and character sampling to provide a framework for natural classification and a reference for studying interesting evolutionary patterns within the order. We present a large-scale molecular phylogeny of Orthoptera based on 254 ingroup taxa and complete mtgenome data and nuclear genes. Using our phylogeny, we test previous phylogenetic hypotheses and propose a new classification scheme for the group. Using strongly corroborated fossil evidence, we present divergent time estimates for major orthopteran lineages and also explore whether different lineages have undergone different tempos of diversification throughout 300 Myr of evolution. Furthermore, we explore the evolution of mitochondrial gene rearrangements across the order based on complete mtgenome sequences.

Materials and methods

Taxon and character sampling

In this study, we generally used the classification scheme adopted by the Orthoptera Species File (Eades et al., 2014) in order to test it with our phylogenetic analysis. One exception was in the case of Tettigoniidae, in which we recognized only a single family Tettigoniidae, as no alternative hypothesis based on well-corroborated monophyletic groups have been proposed. We sampled a total of 254 taxa covering the phylogenetic diversity within Orthoptera, which represents the most comprehensive taxon sampling for this group to date (Table 1). Specifically, we included extant representatives from all 15 currently recognized orthopteran superfamilies (six ensiferan and nine caeliferan) representing all 12 ensiferan families and 24 out of 28 caeliferan families (Eades et al., 2014). We were not able to obtain DNA-grade samples for four families, which were Dericorythidae, Euschmidtiidae, Lathiceridae, and Mastacideidae. For outgroup taxa, we included four polynoeopteran species, Grylloblatta sculeni (Grylloblattodea), Tamolanica tamolana (Mantidae), Sclerophasma paresisense (Mantophasmatodea), and Timema californicum (Phasmatodea). For 69 terminals, which represented key taxa for understanding higher-level relationships, we included complete mtgenome data, ten of which were newly sequenced for this study. The remaining mtgenomes were either previously generated by us (Fenn et al., 2007, 2008; Sheffield et al., 2010; Leavitt et al., 2013) or obtained from GenBank (Table 2). For all taxa, we generated complete 18S and 28S ribosomal RNA sequences and two conserved nuclear protein-coding genes, histone 3 and wingless, all of which have been frequently used for higher-level insect phylogenetics (Flook et al., 1999; Whiting, 2002; Whiting et al., 2003; Svenson and Whiting, 2004; Jost and Shaw, 2006). For the 26 taxa for which we obtained mtgenome sequences from GenBank, we were not able to generate the other four genes due to an obvious lack of access to specimens. The DNA-grade tissue samples used for this study were either collected by the authors or provided by collaborators. They were preserved in 100% ethanol and vouched to the -80 °C cryofacility in the Insect Genomic Collection at Brigham Young University (BYU-IGC). We followed standard protocols for DNA extraction, polymer chain reaction (PCR),
sequencing, and primer walking for mtgenome sequencing, which we described in detail elsewhere (Sheffield et al., 2010; Leavitt et al., 2013; Mugleston et al., 2013). All newly generated mtgenomes were first uploaded as raw fasta files to MITOS (Bernt et al., 2013) to identify open reading frames (ORFs) and tRNAs. The initial MITOS annotation was used as a guideline to delimit gene boundaries and start and stop codons of each protein-coding gene were manually identified in Sequencher 4.8 (GeneCode), following the recommendation by Cameron (2014a). The annotations for the 10 newly sequenced mtgenomes are presented in Table S1. The DNA sequence data generated for this study are deposited to GenBank with accession numbers: KM657331–KM657340 (mtgenomes) and KM853171–KM853857 (nuclear genes).

Phylogenetic analyses

We employed several alignment strategies for different loci in our dataset. For both mitochondrial and nuclear protein-coding genes, we aligned based on the conservation of reading frames by first translating into amino acids in MEGA 5 (Tamura et al., 2011), aligning individually in MUSCLE (Edgar, 2004) using default parameters, and back-translating to nucleotides. The tRNA sequences were individually aligned in MUSCLE using default parameters. Mitochondrial ribosomal RNA (16S and 12S) genes were first aligned using E-INS-i strategy in MAFFT (Katoh et al., 2005). Then, we used predicted secondary structures of 16S and 12S of Locusta migratoria in RNAfold Web-Server (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) as input constraint files to perform secondary structure-based alignment in RNAsalsa (Stocsits et al., 2009). For nuclear ribosomal RNA (18S and 28S) genes, we first aligned using E-INS-i strategy in MAFFT and used GBlocks 0.91b (Castresana, 2000), while allowing gap positions within the final blocks. All these individual alignments were concatenated into a single matrix in MacClade 4 (Maddison and Maddison, 2005), with the data divided into a total of 71 data blocks (15 protein-coding genes divided into individual codon positions, 22 tRNAs, and two mitochondrial and two nuclear ribosomal genes). We then used PartitionFinder (Lanfear et al., 2012) using the “greedy” algorithm (heuristic search) with branch lengths estimated as “unlinked” to search for the best-fit scheme as well as to estimate the model of nucleotide evolution for each partition.

We performed two separate phylogenetic analyses differing in taxon and character sampling strategies. The first analysis was based on the complete mtgenome data (16 758 aligned bp) from 69 taxa to establish deep relationships within Orthoptera, which was also used for a divergence time estimate analysis. The second analysis was based on the total evidence data-set (21 025 aligned bp and 258 taxa), which represented a taxon-rich analysis, but had heterogeneously missing data. For 189 of 258 taxa, we did not have mtgenome data, and for 26 taxa, we did not have nuclear gene data. The rationale behind this second analysis was that the mtgenome data would establish robust “backbone” relationships, while the taxa without mtgenome data would still be able to form accurate phylogenetic relationships based on four nuclear genes.

We used parsimony and maximum likelihood (ML) inference methods to reconstruct the phylogeny of Orthoptera. For the parsimony analyses, we used TNT (Goloboff et al., 2003) using New Technology Search options with gaps treated as missing. We first reset RAM to 1000 Mbytes, held 1 000 000 trees, and set Gryllloblatta as a root prior to tree search. The minimum length was searched ten times using ratchet (Nixon, 1999), sectorial search, drift, and tree fusing (Goloboff, 1999) under default parameters and by setting random seed as 0 and the initial driven search level at 15. Bootstrap support values were calculated to assess nodal support. For the ML analyses, we used the best-fit partitioning scheme recommended by PartitionFinder with the GTR+Gamma model applied to each partition and analysed using RAxML 7.2.8 (Stamatakis et al., 2008) on XSEDE (Extreme Science and Engineering Discovery Environment, https://www.xsede.org) through CIPRES Science Gateway (Miller et al., 2011). Nodal support was evaluated using 5000 replications of rapid bootstrapping implemented in RAxML. The resulting trees were visualized using Fig-Tree (Rambaut, 2006–2009) and iTOL (Letunic and Bork, 2011). Our aligned datasets and the resulting trees were deposited to Dryad (doi: 10.5061/dryad.96r8b).

Topology test

In order to statistically test the previous phylogenetic hypotheses against our results, we performed the Shimodaira–Hasegawa (SH) test (Shimodaira and Hasegawa, 1999) and the approximately unbiased (AU) test (Shimodaira, 2002). We ran two rounds of the topological tests, one for the mtgenome analysis and another for the total evidence data. For the mtgenome phylogeny, we first obtained the best likelihood score from the ML analysis. Then, we ran three separate ML analyses using topological constraints that matched (i) the caeliferan superfamily-level relationships proposed by Flok et al. (1999, 2000), and the ensiferan relationships proposed by (ii) Desutter-Grandcolas (2003), and (iii) Jost and Shaw (2006). When making these constraints, unconstrained relationships were left as polytomy. Using the best trees
Taxonomic Information	Genbank Accession	Reference
ENSIFERA		
Gryllidae	Teleogryllus emma	NC_011823 Ye et al. (2008)
Gryllotidae	Gryllotata pluvialis	NC_011302 Fenn et al. (2008)
Myrmecophilidae	Myrmecophilus manni	NC_011301 Fenn et al. (2008)
Hagloidea		
Prophalangopsidae	Cyphoderis monstrosa	KM657332 This study
Teleogryllus emma	NC_021397 Zhou et al. (2014)	
Rhiphidophороidea		
Rhiphidoidea	Troglophila neglecta	NC_011306 Fenn et al. (2008)
Schizodactyloidea		
Schizodactylidae	Conicus campestris	KM657337 This study
Stenopelmatоidea		
Anostostomatidae	Henicus brevimucronatus	KM657338 This study
Tettigonioidea		
Tettigoniidae	Deracantha onos	NC_011813 Zhou et al. (2009)
Stenopelmatidae	NC_011301 Fenn et al. (2008)	
CAELIFERA		
Acridoidea	Acris willemsei	NC_011303 Fenn et al. (2008)
Phlaeoba albonema	NC_011827 Shi et al. (2008)	
Calliptamus italicus	NC_011305 Fenn et al. (2008)	
Tettigoniidae	NC_011301 Fenn et al. (2008)	
Lentulidae	Lentula callani	NC_020774 Leavitt et al. (2013)
Lithidiidae	Lithidiopsis carinatus	NC_020775 Leavitt et al. (2013)
Ommexechidae	Ommexeca raveni	NC_020776 Leavitt et al. (2013)
Pamphagidae	Thrinchus schrenkii	NC_014610 Zhang et al. (2011)
Pammagodidae	Prionotropus hystric	JX913764 Leavitt et al. (2013)
Thryrophorephorida	Pseudotmethis rubimarginis	NC_020303 Zhang et al. (2013b)
Tristriderida	Tristira magellanica	NC_020773 Leavitt et al. (2013)
Eumastacoidea	Chorotypus fenestratius	KM657333 This study
Eumastaciidae	Paraneustes nitida	JX913772 Leavitt et al. (2013)
Theliceridae	Pseudothericles compressifrons	KM657335 This study
Pneumoroidea	Physemacris variolosa	NC_014491 Shefield et al. (2010)
from these analyses, we calculated per-site log-likelihood score for each tree in RAxML using the –f g option, which we used as input data to obtain P-values for the SH and the AU tests in CONSEL (Shimodaira and Hasegawa, 2001). For the total evidence phylogeny, we ran four separate ML analyses using the topological constraints that matched the three above-mentioned studies as well as the mtgenome phylogeny, and performed the tests using the same procedure.

Divergence time estimate analysis

In order to estimate timing and rates of divergence across major orthopteran lineages using abundant fossil records, we performed a divergence time estimate analysis using BEAST v.1.8 (Drummond et al., 2012). For this analysis, we used the 69-taxa dataset based on the complete mtgenome data using the partitioning scheme and the models of nucleotide evolution recommended by PartitionFinder. We created an xml file in BEAUti (Drummond et al., 2012), specifying the starting tree, fossil priors, monophyly constraints, and parameters for molecular clock models. We used Yule process as a tree prior and exponential distribution as a distribution prior for fossil calibration points, which is shown to be suitable for modelling fossil calibrations (Ho, 2007). The ML phylogram generated from RAxML was transformed into an ultrametric chronogram using non-parametric rate smoothing (NPRS) in TreeEdit (Rambaut and Charleston, 2001), and the base of the ingroup was re-scaled to the minimum age of the earliest definitive fossil Orthoptera (299 MYA) to scale the entire chronogram. This rescaled chronogram was utilized as a user-specified starting tree for the BEAST analyses. We placed monophyly constraints on nine nodes on the phylogeny based on the previous studies (Flook et al., 1999; Leavitt et al., 2013) as well as the ML analysis, and we selected the corresponding nine fossil calibration points from the literature (Brongniart, 1885; Scudder, 1885; Piton, 1940; Sharov, 1968; Riek, 1976; Bethoux et al., 2002; Heads and Leuzinger, 2011) and applied age constraints as priors (Table 3). To assess convergence across independent runs, we conducted two separate analyses each for 100 million generations, sampling every 1000 generations. We inspected the results using Tracer (Rambaut and Drummond, 2003–2009) and discarded 25% of each run as burn-in, and combined the trees using LogCombiner (Rambaut and Drummond, 2002–2013a). A maximum clade credibility tree was summarized in TreeAnnotator (Rambaut and Drummond, 2002–2013b), and visualized in FigTree.

Diversification analysis

We used the program MEDUSA (Alfaro et al., 2009) in order to test whether certain lineages have given rise to clades with unusual species richness. We first reduced the total evidence ML phylogeny into a family-level tree by collapsing the nodes so that each terminal represented a single monophyletic family. We converted this reduced tree into a chronogram using the results from the divergence time estimate analysis. As for the species richness, we obtained the number of valid extant species in each family from the Orthoptera Species File (Eades et al., 2014) and the Mantodea Species File (Otte et al., 2014). We fitted a piecewise birth–death model to the chronogram and allowed the

Table 2 (Continued)

Species Genbank Reference	Reference
Proscopiidae	Proscopia sp. KM657336 This study
Pyrgomorphidae	Atractomorpha sinensis NC_011824 Ding et al. (2007)
Mekongiellidae	Mekongiella xizangensis NC_014451 Zhao et al. (2010)
Tanaocerus koebelei	NC_020777 Leavitt et al. (2013)
Tettigoniidae	Tettix japonica NC_018543 Xiao et al. (2012a)
Abdulattix yumanensis	NC_018542 Xiao et al. (2012b)
Trachytettix bufo	JX913766 Leavitt et al. (2013)
Cylindracethidae	Cylindraustralia sp. KM657334 This study
Rhipiphorinae	Rhiphipteryx andensis KM657340 This study
Tridactyloidea	Ellipes minuta NC_014488 Sheffield et al. (2010)
Ripiphorinae	Trigonopteryx hopei JX913767 Leavitt et al. (2013)
Tetrigidae	Tetrix japonica NC_018543 Xiao et al. (2012a)
Alulatettix yunnanensis	NC_018542 Xiao et al. (2012b)
Tridactylidae	Trigonopteryx hopei JX913767 Leavitt et al. (2013)
OUTGROUP	
Gryllloblattodea	Gryllloblattina sculleni DQ241796 Cameron et al. (2006)
Mantodea	Mantidinae NC_007702 Cameron et al. (2006)
Mantophasmatodea	Mantophasmatinae NC_007701 Cameron et al. (2006)
Phasmatoidea	Timematinae NC_007701 Cameron et al. (2006)
Grylloblatta sculleni	DQ241796 Cameron et al. (2006)
Tamolanica tanolana	NC_007702 Cameron et al. (2006)
Sclerophasma paresisense	NC_007701 Cameron et al. (2006)
Timema californicum	DQ241799 Cameron et al. (2006)

Taxonomic classification used in this table follows the Orthoptera Species File.
breakpoints to either be at the nodes or the stems. We used the sample size corrected Akaike information criterion (AICc) to assess the models and the net diversification rate \(r \) and relative extinction \(e \) were also estimated for each model.

Results

For the parsimony analysis of the complete mtgenome data (Fig. 4a), we found a single most parsimonious tree \((L = 130 \ 483; \ CI = 0.199; \ RI = 0.365) \). We failed to recover monophyly of Orthoptera as well as Stenopelmatoidae, Eumastacidae, and Acridoidea, although we recovered monophyletic suborders. Nodal supports were generally poor across all backbone nodes. For the ML analysis of the same data (Fig. 4b), we recovered robust monophyly for Orthoptera as well as each suborder and all of the superfamilies except Stenopelmatoidae. The parsimony analysis of the total evidence data yielded three most parsimonious trees \((L = 148 \ 589; \ CI = 0.204; \ RI = 0.414) \). A strict consensus tree (not shown) recovered monophyly of Orthoptera, Ensifera, and Caelifera, as well as Schizodactyloidea, Grylloidea, Hagloidea, Raphidophoroidea, Tetrigonioidea, Tridactyloidea, Tetrigidae, and Eumastacoidea. However, it did not find Stenopelmatoidae, Pyrgomorphoidea, and Acridoidea as monophyletic, and had wildly different placements for Proscopioidae, Trigonopterygoidae, and Tanaoceroidea from previous phylogenetic studies of Caelifera (Flook and Rowell, 1997; Flook et al., 1999, 2000; Leavitt et al., 2013). The ML analysis of the total evidence data recovered monophyly of Orthoptera, both suborders, and all 15 superfamilies (Fig. 5). Because mtgenome data and nuclear rRNA genes of Orthoptera have been known to exhibit base compositional heterogeneity and variable substitution rates (Legendre et al., 2010; Sheffield et al., 2010; Song et al., 2010; Leavitt et al., 2013), the poor performance of the parsimony analyses was to be expected. Thus, the further comments on phylogenetic relationships are based on the ML analyses.

Within Ensifera, we recovered monophyly for five of six superfamilies in the mtgenome analysis, and all six superfamilies in the total evidence analysis. In the mtgenome analysis, Gryllacrididae did not form a clade with other members of Stenopelmatoidae, but in the total evidence analysis, Gryllacrididae, Raphoglidae, Protogryllidae, Raphogla rubra, Protogryllus, and Prototetrix reductus formed a monophyletic group. Schizodactyloidea was found to be sister to Grylloidea in the mtgenome analysis, but it was placed basally to the non-grylloid ensiferans in the total evidence analysis. Within Grylloidea, two clades were consistently found, one consisting of Gryllidae, and the other consisting of Gryllotalpidae, Mogoplistidae, and Myrmecophilidae. In both analyses, Rhaphidophoroidea, Stenopelmatoidae, and Hagloidea formed a monophyletic group, which in turn was sister to Tetrigonoidea. Within Caelifera, we recovered monophyly for all nine superfamilies with the following phylogenetic relationships: (Tridactyloidea (Tetrigidae (Monodactylus curtipennis (Archaemastax jurassicus (Archaeomastax jurassicus))))). Within Acridoidea, Pyrgacrididae was the most basal lineage, followed by

Table 3

Fossil calibration constraints used in the divergence time estimate analysis

Taxon	Species	Median age [MYA] (minimum–maximum)	Notes	Reference	
ORTHOPTERA	Oedischioidea	Oedischia williamsoni	301.45 (299–303.9)	Oldest definitive Orthoptera	Brongniart (1885)
ENSIFERA	Grylloidea	Raphogla rubra	255.7 (251–260.4)	Oldest definitive Grylloidea	Bethoux et al. (2002)
	Protogryllida	Protogryllus	231.5 (228–235)	Oldest definitive Ensifera	Heads and Leuzinger (2011)
	Tettigonioidae	Tettigonella chazei	28.5 (23.1–33.9)	Oldest definitive Tettigonida	Piton (1940)
CAELIFERA	Locustopsoidea	Eolocustopsis primitiva	255.7 (251–260.4)	Oldest definitive Caelifera	Riek (1976)
	Tridactyloidea	Monodactylus curtipennis	131.15 (129.4–132.9)	Oldest definitive Tridactyloidea	Sharov (1968)
	Tettigonioidae	Prototetrix reductus	131.15 (129.4–132.9)	Oldest definitive Tettigonioida	Sharov (1968)
	Eumastacoidea	Archaeomastax jurassicus	154.25 (145–163.5)	Oldest definitive Eumastacida	Sharov (1968)
	Acridoidea	Acrida	35.95 (33.9–38)	Oldest definitive Acridoidea	Scudder (1885)

Hojun Song et al. / Cladistics 0 (2015) 1–31
Pamphagodidae + Pamphagidae, Lentulidae + Lithiidiidae, and Tristiridae. Ommexechidae showed a close relationship with Romaleidae in both analyses, but Romaleidae did not form a monophyletic group in the total evidence analysis. The monophyly of Acrididae was supported in the mtgenome analysis, but was not supported in the total evidence analysis due to paraphyly with Romaleidae.

When we compared our topology with the previous phylogenetic hypotheses using the SH and the AU test (Table 4), we found that the caeliferan relationship was not statistically different from that of Flook et al. (1999, 2000), but the ensiferan relationship was significantly different from both that of Desutter-Grandcolas (2003) and Jost and Shaw (2006). This pattern was found in both the mtgenome and the total evidence analyses. The topology deduced from the mtgenome data did not statistically differ from the total evidence topology.

The divergence time-estimate analysis based on nine fossil calibration points suggested that Orthoptera originated in the Carboniferous and the two suborders diverged in the Permian (Fig. 6). Within Ensifera, Grylloidea was the first lineage to diversify, starting in the Early Triassic and continuing throughout the Mesozoic. Other ensiferas diversified mostly in the Mesozoic and most of the major lineages within Tettigonioidea diversified in the Cretaceous. Caeliferan lineages showed different patterns of diversification and diverged into two groups that gave rise to two infraorders, Tridactylidea (Tridactyloidea) and Acrididea (the remaining eight superfamilies in the Orthoptera Species File (Eades et al., 2014)).

Fig. 4. Phylogenetic analyses based on complete mtgenome data. (a) The single most parsimonious tree from the parsimony analysis; (b) the most likelihood phylogram from the ML analysis. Branches are colour coded in red to indicate Ensifera and blue to indicate Caelifera. In the brackets are abbreviations of superfamily names. [SCHIZ]: Schizodactyloidea; [GRYLL]: Grylloidea; [STENO]: Stenopelmatoidea; [RHAPH]: Raphidophoroidea; [HAGLO]: Hagloidea; [TETTI]: Tettigonioidea; [TRIDA]: Tridactyloidea; [PROSC]: Proscopioidea; [EUMAS]: Eumastacoidea; [TANAO]: Tanaoceroidea; [PNEUM]: Pneumoroidea; [TRIGO]: Trigonopterygoidea; [PYRGO]: Pyrgomorphoidea; [ACRID]: Acrididea. Asterisk denotes paraphyletic groups. Superfamily names used in this figure follow the currently recognized 15 superfamilies according to the Orthoptera Species File (Eades et al., 2014).
Fig. 5. Total evidence phylogeny of Orthoptera inferred from ML analysis. Numbers above the nodes are bootstrap support values. Asterisk denotes paraphyletic groups. Superfamily names used in this figure follow the proposed classification scheme in the present study. Thus, Gryllotalpoidea is indicated here as a distinct superfamily, separate from Grylloidea.
Fig. 5. (continued)
late Palaeozoic. In the Late Triassic, Acrididea diverged into two lineages, Tettigoiidea and Acrido-morpha, a monophyletic group characterized by grasshopper-like morphology that includes seven superfamilies (Dirsh, 1975; Song, 2010). Eumastacoidea and Proscopidoidea flourished in the Mesozoic and modern grasshoppers of the superfamily Acridoidea were the most recently diverged group, which diversified in the mid- to the Late Cretaceous. The major lineages of Acrididae seemed to have radiated in the Cenozoic.

Our MEDUSA analysis showed that the background tempo of diversification across Orthoptera was characterized by a relatively low net rate \((r = 0.027 \text{ lineages per Myr})\) and a moderate turnover rate \((\varepsilon = 0.596)\). Using the number of validly described species as a proxy for clade-level diversity, we found that there were three episodes where the tempo of diversification significantly increased in Orthoptera (Fig. 7). The most significant change occurred in the clade consisting of Acrididae, Romaleidae, and Ommexechidae, which appeared to have gone through a major adaptive radiation with no major extinctions in the Cenozoic (node 1 in Fig. 7). The clade containing Tettigoniidae, Rhaphidophoridae, Prophalangiopidae, Anostostomatidae, Gryllacrididae, and Stenopelmatae also went through an increased rate of diversification (node 2 in Fig. 7). Pamphagidae independently went through an increased rate of diversification (node 3 in Fig. 7). The third most diverse lineage in Orthoptera is Gryllidae, but our analysis did not find it to show any major shift in tempo of diversification, which suggests that the clade has continued to diversify throughout the evolutionary history of Orthoptera.

Finally, the gene arrangement in the mtgenome across Orthoptera was examined and we found that most ensiferan lineages retained the ancestral gene arrangement, except two reported cases of gene rearrangements in Gryllidae and Tettigoniidae (Ye et al., 2008; Liu et al., 2013). We found an additional exception in a prothorangopsid Cyphoderris monstrosa, which had tRNA-Ala and tRNA-Arg reversed from the ancestral arrangement (Fig. 8). Within Caelifera, all three families of Tridactyloidea retained the ancestral condition, while the remaining caelifera superfamilies had the tRNA genes between cytochrome \(c\) oxidase subunit II (COII) and ATP synthase protein 8 (ATP8) rearranged so that tRNA-Asp was positioned before tRNA-Lys, which was reversed from the ancestral insect arrangement in which tRNA-Lys precedes tRNA-Asp. When this tRNA rearrangement was mapped onto the mtgenome phylogeny, we inferred that the rearrangement evolved in the common ancestor of Acrididea in the Late Permian or the Early Triassic (Fig. 6).

Discussion

Towards a phylogeny-based natural classification scheme for Orthoptera

This work represents the most comprehensive phylogenetic analysis of Orthoptera to date (Fig. 9) and presents an excellent opportunity to test previous hypotheses about the phylogenetic relationships among the major lineages within the order. Below, we comment on the higher-level relationships, which we can confidently resolve using the current data and we propose a new phylogeny-based natural classification scheme for Orthoptera (Table 5). The phylogeny of Ensifera has been contentious over the years and numerous hypotheses have been proposed based on different character systems (Ander, 1939; Zeuner, 1939; Judd, 1947; Blackith and Blackith,
recovered Gryllidae (crickets) as sister to a clade consisting of Gryllotalpidae (mole crickets), Mogoplistidae (scaly crickets), and Myrmeccophilidae (ant-loving crickets). The close relationship between Gryllidae and Gryllotalpidae has always been supported by previous studies (Ander, 1939; Zeuner, 1939; Judd, 1947; Sharov, 1968; Vickery, 1977), but their relationship with respect to the other two families has not been resolved because they have sometimes been included as subfamilies of Gryllidae (Rehn and Hebard, 1912). Our phylogeny strongly suggests that Mogoplistidae and Myrmeccophilidae form a clade, which is in turn sister to Gryllotalpidae. The clade formed by these three families is quite divergent from Gryllidae. Furthermore, many lineages within Gryllidae are also very divergent from each other, reflecting the ancient age of

Fig. 6. A divergence time-estimate analysis of Orthoptera based on mtgenome data and nine fossil calibration points using BEAST. White and yellow circles on nodes indicate posterior probability values over 90 and 95 respectively. Green bars represent the node age 95% credible intervals and the numbers next to the nodes are the estimated node ages. Terminals are colour coded to show superfamil-y level relationships. Superfamily names used in this figure follow the currently recognized 15 superfamilies according to the Orthoptera Species File (Eades et al., 2014). Asterisk denotes paraphyletic groups. Also shown is the evolution of tRNA gene rearrangement, which took place in the common ancestor of Ensifera is mainly divided into two groups, one consisting of Gryilloidea *sensu* Gorochov (1995b) and the other consisting of Schizodactyloidea *sensu* Kevan (1982), Hagloidea *sensu* Kevan (1982), Rhaphidophoroidea *sensu* Kevan (1982), Stenopelmatoidea *sensu* Kevan (1982), and Tettigonioidea *sensu* Kevan (1982). Although the internal relationships differ, this grouping is similar to the hypothesis proposed by Ander (1939) and corresponds to the infraorders Gryllidae *sensu* Vickery (1977) and Tettigoniidae *sensu* Vickery (1977). Within the infraorder Gryllidae, we have recovered Gryllidae (crickets) as sister to a clade consisting of Gryllotalpidae (mole crickets), Mogoplistidae (scaly crickets), and Myrmeccophilidae (ant-loving crickets). The close relationship between Gryllidae and Gryllotalpidae has always been supported by previous studies (Ander, 1939; Zeuner, 1939; Judd, 1947; Sharov, 1968; Vickery, 1977), but their relationship with respect to the other two families has not been resolved because they have sometimes been included as subfamilies of Gryllidae (Rehn and Hebard, 1912). Our phylogeny strongly suggests that Mogoplistidae and Myrmeccophilidae form a clade, which is in turn sister to Gryllotalpidae. The clade formed by these three families is quite divergent from Gryllidae. Furthermore, many lineages within Gryllidae are also very divergent from each other, reflecting the ancient age of
Fig. 7. Diversification patterns of major lineages of Orthoptera as deduced from MEDUSA analysis. Each terminal represents a monophyletic family and the number in parenthesis next to the family name indicates the number of validly described species within the family. Terminals are colour coded to show the species diversity. The MEDUSA analysis identified three episodes where diversification rate (r) and extinction rate (e) significantly changed, which are indicated by black circles on nodes. The up arrows indicate an increase in diversification rates. The images on the right show the representatives of the clades that experienced the shifts in diversification rate. (Photograph credit: Hojun Song [1, 2]. Piotr Naskrecki [3])
the group, and it may be reasonable to elevate some of the gryllid subfamilies to the family level, given more thorough analyses with more taxon sampling in the future. In recognition of the two deeply divergent clades within Gryllidea, we propose recognition of two superfamilies within the infraorder, Gryloidea, which includes Gryllidae and Gryllotalpoidae, which includes the remaining three families. As our taxon sampling for Gryllidea is relatively weak compared with other groups included in this study, additional sampling may be necessary to test this hypothesis, but an independent analysis using a larger taxon sampling finds a similar relationship (Chintauan-Marquier et al., in press), lending further support for this taxonomic change.

Within Tettigoniidea, we find a basal position of Schizodactyloidea, which comprises a small relict family Schizodactylidae (sand crickets), which is a novel hypothesis. The phylogenetic position of Schizodactyloidea within Ensifera has not been clear (Heads and Leuzinger, 2011). Jost and Shaw (2006), Legendre et al. (2010), as well as our mtgenome analysis, found it to be sister to Gryllidea, while other morphology-based studies placed them near Tettigoniidea (Ander, 1939; Gorochov, 1995a; Desutter-Grandeolans, 2003). Heads and Leuzinger (2011) supported a sister relationship between Schizodactyloidea and Gryllidea, which was first proposed by Gwynne (1995), but it was not based on a formal cladistic analysis. Upon close examination of our data, we find that the branch lengths of the members of Gryllidea are exceptionally long and it is possible that our mtgenome analysis may have been affected by long-branch attraction (Felsenstein, 1978; Bergsten, 2005), meaning that the resulting topology may be an analytical artefact, rather than an accurate relationship. The larger taxon and character sampling of the total evidence analysis seems to have overcome this issue.

We then recover a sister relationship between Tettigonioidae and the remaining three monophyletic superfamilies (Hagloidea, Rhaphidophoroidea, and Stenopelmatoidea). Many of the earlier taxonomists have considered Tettigonioidae and Hagloidea to be closely related because these are the only two superfamilies outside Gryllidea that emit sounds with a tegmental design and hear with tibial tympanal structures (Ander, 1939; Zeuner, 1939; Ragge, 1955; Gwynne, 1995; Desutter-Grandeolans, 2003). However, it is important to recognize that many ensiferans within Tettigonioidae can also produce femoro-abdominal stridulation, which can be perceived by either membranous tympana or mechanoreceptors (Desutter-Grandeolans, 2003). Tettigonioidae includes the most diverse and speciose orthopteran family, Tettigoniidae (katydids), which has the stridulatory file on the left tegmen (Gwynne, 2001), and Hagloidea, which includes only a
single extant family, Prophalangopsidae (ambidextrous crickets), and numerous extinct families, all of which have stridulatory files on both tegmina (Spooner, 1973). Jost and Shaw (2006) proposed a more radical scheme, which placed Hagloidea (represented by Cyphoderris only) as the most basal lineage within Ensifera and suggested that acoustic communication is the ancestral condition for Ensifera and has been lost multiple times. Recently, Zhou et al. (2014) suggested a sister relationship between Hagloidea and Rhaphidophoroidea based on mtgenome data, but the study lacked robust taxon sampling because it included only one species per superfamily and did not include the members of Stenopelmatoidea. Our study finds a novel relationship and does not find support for the sister relationship between Tettigonioidae and Hagloidea, or the sister relationship between Hagloidea and Rhaphidophoroidea, or the basal placement of Hagloidea. Instead, we find the clade (Rhaphidophoroidea (Hagloidea + Stenopelmatoidea)), which is, in turn, sister to Tettigoniidae. The acoustic communication is certainly a very complex syndrome that can be achieved from diverse ways of producing sound and equally diverse ways of perceiving sound (Desutter-Grandeol, 2003) and it is not well justified to treat it as a simple binary character to test whether it is ancestral or derived. A more appropriate way is to conduct a detailed anatomical study to carefully form homology statements of various components of sound production and hearing to optimize on to the phylogeny. Thus, a study with larger taxon sampling and detailed morphological analyses is necessary to fully understand the evolution of acoustic communication in these insects.

Recently, Heller et al. (2014) elevated the status for the tettigoniid subfamily Phaneropterinae to full family Phaneropteridae, which includes four plant-feeding subfamilies, Phaneropterinae, Pseudophyllinae, Mecopodinae, and Phyllophorinae, based on a recent molecular study by Mugleston et al. (2013) and a previous hypothesis by Gorochov (1995b). This taxonomic change implies that Phaneropteridae as a whole is a monophyletic group, but Mugleston et al. (2013) found that one of the pseudophylline tribes, Pterochozini, did not group with other pseudophyllines, but was placed at the base of katydid phylog-
eny, thereby rendering the concept of Phaneropteridae paraphyletic. Our study is built upon the data generated by Mugleston et al. (2013), and we also do not find strong support for the family Phaneropteridae. To make matters worse, Gorochov (2012) elevated several tribes within Pseudophyllinae to subfamilies and created a “subfamily group” Pseudophyllidae, but this hypothesis has not been fully tested. The katydid classification is clearly in a state of flux and a major revision of the classification will be required once a definitive phylogeny of Tettigoniidae becomes available. Thus, in this study, we recognize a single family, Tettigoniidae, that has always been found monophyletic.

Our study proposes a novel phylogenetic position for Rhaphidophoroidea, which includes a single cosmopolitan family Rhaphidophoridae (camel crickets).
Gorochov (2001) considered Rhaphidophoridae as a member of Stenopelmatoida, but our study shows that it is divergent from Stenopelmatoida. Likewise, a sister relationship between Stenopelmatoida and Hagloidea is also novel. Although our analysis based on the mtgenome finds only paraphyletic Stenopelmatoida, the total evidence analysis (Fig. 5) based on more taxon sampling strongly recovers the monophyly of the superfamily consisting of Anostomatidae (wetas and king crickets), Stenopelmatidae (Jerusalem crickets), and Gryllacrididae (raspy crickets and leaf-rolling crickets). Anostomatidae is found to be paraphyletic with respect to Coolooolidae (cooolola monsters), but evidence suggests that Coooloolidae are actually aberrant Anostomatidae, and Gorochov (2001) also expressed this view. However, more taxon sampling is required to fully resolve the relationships among Rhaphidophoroida, Stenopelmatoida, and Hagloidea, and allow the definition of monophyletic units of evolution for extant taxa and fossils.

We now have a very clear understanding of the phylogeny of Caelifera and the relationships among superfamilies. Like Ensifer, Caelifera is mainly divided into two infraorders, Tridactyloidea sensu Kevan (1982), which comprises a single superfamily, Tridactyloidea, and Acrididea sensu Kevan (1982), which includes all the other caeliferan superfamilies (Fig. 5). Previous molecular phylogenetic hypothesis of Caelifera (Flook and Rowell, 1997; Flook et al., 1999, 2000; Leavitt et al., 2013) and clarifies some of the conflicts from the earlier taxonomic work.

In this study, we find that Acridomorpha is divided into two groups: Proscopioidea sensu Descamps (1973b) + Eumastacoida sensu Descamps (1973b) and the clade consisting of the remaining five superfamilies. Proscopioidea comprises a single family Proscopiidae (jumping sticks). Although this phasmid-looking grasshopper family has sometimes been considered a member of Eumastacoida (Dirsh, 1961, 1975), we consider it here as a separate superfAMILY based on its unique apomorphies (Descamps, 1973a,b) as well as its robust basal position relative to other eumastacoids. Our study clarifies the ambiguous position of Proscopioidea as found by Matt et al. (2008). Eumastacoida includes seven families (Eades et al., 2014) that are commonly referred to as monkey grasshoppers. Of the remaining five superfamilies within Acridomorpha, the earliest diverging lineage is Tanaoceroida sensu Kevan (1982), which includes a small relict family Tanaoceridae, known only from three species endemic to the southwestern USA, and characterized by extremely long antennae and a rudimentary male phallic complex (Rehn, 1948; Dirsh, 1955; Grant and Rentz, 1967).

Then the lineage is divided into two clades, one consisting of Pneumoroidea sensu Flook et al. (2000) and Trigonopterygoidea sensu Flook et al. (2000) and the other consisting of Pygromorpha sensu Flook et al. (1999) and Acridoidea sensu Flook et al. (2000). Pneumoroidea contains one family, Pneumoridae (bladder grasshoppers, flying gooseberries), and 17 described species mostly found in South Africa, and is known for its femoro-abdominal stridulatory mechanism (Dirsh, 1965). Trigonopterygoidea consists of two rather divergent families, Trigonopterygidae and Xyronotidae. The former is endemic to Southeast Asia, contains 17 species, and is characterized by reversed male genitalia and foliaceous tegmina (Dirsh, 1952). The latter contains four species endemic to central Mexico and can be characterized by rudimentary
male genalia and a stridulatory ridge on the third abdominal tergite (Dirsh and Mason, 1979). Flook et al. (2000) recovered these two families as a monophyletic group and our study corroborates their findings. However, the sister relationship between Pneumoroidea and Trigonopterygoidea is novel. Dirsh and Mason (1979) considered Tanaoceridae, Pneumoroidea, and Xyronotidae to form a monophyletic lineage because of the apparently shared femoro-abdominal stridulatory mechanism, but Flook et al. (2000) thoroughly showed that this morphological trait must have evolved multiple times within the basal caeliferae and our findings bolster this idea.

Pygromorphoidea includes a single family, Pygromorphidae (gaudy grasshoppers), that contains about 470 species distributed globally, with most of its diversity found in the Old World, and is characterized by the presence of a groove in the fastigium (Kevan and Akbar, 1964). Members of this family are often large, strikingly coloured, and known to feed on toxic plants for their defense (Rowell, 1967; Chapman et al., 1986; Whitman, 1991). Dirsh (1975) placed the family Pamphagidae within Pygromorphoidea based on the similarity of male phallic structures, but our study clearly shows that Pygromorphidae alone forms a distinct sister lineage to Acridoidea, and Pamphagidae is firmly included within Acridoidea, which corroborates the earlier findings by Flook and Rowell (1997) and Flook et al. (1999).

Finally, Acridoidea is the largest superfamily within Acridomorpha, and currently includes 11 recognized families and more than 7900 described species, which are defined by the morphology of the male phallic complex and the lack of a basioccipital slit, among other characters (Roberts, 1941; Chopard, 1949; Dirsh, 1973; Amédégnato, 1974; Kevan, 1982; Eades, 2000). Many species in this group can be recognized as typical and familiar grasshoppers. Within Acridoidea, we find that Pyrgacrididae, which is endemic to Réunion Island in the Indian Ocean (Hugel, 2005), is the earliest diverging lineage, representing a transitional form between Pygromorphoidea and Acridoidea (Eades, 2000). Leavitt et al. (2013) found Pamphagidae + Pamphagodidae to be the basal lineage within Acridoidea, but their nodal support for the backbone relationships was poor. The present study is based on large taxon and character sampling and our nodal support is much stronger than that of Leavitt et al. (2013).

Divergence and diversification patterns of major orthopteran lineages

Orthoptera has evolved over 300 Myr (Sharov, 1968; Gorochov, 1995a; Storozhenko, 1997; Grimaldi and Engel, 2005) and its current diversity has been shaped by dynamic shifts of diversification rates at different geological times across different lineages within the order. Some clades are very diverse and show a cosmopolitan distribution, while others are represented by only a small number of species and have a very limited geographical distribution (Kevan, 1982). Moreover, different clades show characteristic morphological, ecological, and behavioral traits, which appear to be phylogenetically conserved within each lineage (Kevan, 1982). Using the divergence time estimates (Fig. 6) and the MEDUSA analysis (Fig. 7), we have revealed some interesting patterns of diversification, and here we comment on the evolution of the three most diverse and cosmopolitan orthopteran clades, crickets (Grylloidea), katydids (Tettigoniidae), and grasshoppers (Acrididae), to highlight the complexity of orthopteran evolution.

Crickets represent one of the most ancient lineages within Orthoptera and we estimate that they diverged from other groups probably in the Triassic. They form the third most diverse clade with more than 4800 known species (Eades, 2000) and our MEDUSA analysis shows that they did not experience any major shifts in diversification rates, implying that the lineage has continued to diversify since the origin of the clade (Fig. 7). However, this result needs to be interpreted cautiously because it is possible that different patterns might emerge if the whole diversity of Grylloidea indeed consists of multiple valid families (Chopard, 1949). Modern crickets are mostly nocturnal, brown or black in colour, and omnivorous scavengers (Alexander, 1968), and these ecological characters could have originated in the early Mesozoic. What sets the crickets apart from other ancient insects of similar ecological habits is their ability to communicate acoustically (Greenfield, 1997), even if the loss of acoustic communication is frequent in crickets, contrary to tettigonoids. Cricket songs are mainly used in the context of intraspecific sexual behaviour (Otte, 1992; Greenfield, 1997), which suggests that acoustic crickets are under sexual selection. Many closely related species can be diagnosed by their male calling songs. Sexually selected characters tend to evolve rapidly (Lande, 1981; West-Eberhard, 1983) and, in fact, sexual selection on male calling songs has been postulated as a likely reason for the extremely rapid speciation in a Hawaiian genus, Laupala (Mendelson and Shaw, 2005). At the same time, these songs can attract predators and parasitoids, which can provide strong selective pressure for the crickets to evolve silence rapidly (Pascoal et al., 2014), or modify their signals into less conspicuous ones, such as the ultrasounds used by Eoneopterinae (Robillard et al., 2007). Therefore, it is conceivable that both sexual selection on songs and natural selection may have played an important role for cricket diversification over the past 200 Myr, which may have contributed to the current diversity.
Katydid species are the most successful lineage within Orthoptera in terms of species diversity (Eades, 2000). They are also very diverse in terms of ecological traits, with their diets ranging from herbivory to carnivory, and they can be active during both the day and night (Gwynne, 2001). Like crickets, katydids communicate acoustically, with their songs ranging from audible sound to ultrasound (Greenfield, 1997; Gwynne, 2001; Montealegre-Z, 2009), with very rare loss of acoustic communication, and sexual selection has likely played an important role in their diversification. Although definitive fossils of Tettigoniidae are only known from the Cenozoic (Piton, 1940; Sharov, 1968; Gorochov, 1995b; Storozhenko, 1997), our divergence time-estimate analysis suggests that the family probably originated in the Late Jurassic and diversified into major lineages in the Cretaceous (Grimaldi and Engel, 2005). Furthermore, the MEDUSA analysis suggests that there was an increase in diversification rate in the lineage leading to this clade (Fig. 7). This period coincides with the diversification of angiosperms (Soltis et al., 2005) and complex palaeoclimatic patterns (Bender, 2013). Many modern katydids have tegmina resembling angiosperm leaves, which function as a defense mechanism against visual predators via crypsis or mimesis (Nickle and Castner, 1995), and a recent molecular phylogeny of Tettigoniidae (Mugleston et al., 2013) showed that leaf-like wings have evolved multiple times within the family. Among the herbivorous katydids, the diet habits vary across florivory, graminivory, and folivory (Gwynne, 2001), which suggests that the availability of diverse angiosperms could have promoted the diversification of katydids. Although katydids appear to show a cosmopolitan distribution, only three groups, Conocephalinae, Phaneropterinae, and Pseudophyllinae, are truly cosmopolitan, while the other lineages have more restricted distributions (Kevan, 1982; Eades et al., 2014). This suggests that the numerous vicariance events that followed the break-up first of Pangaea, and later of Gondwana and Laurasia, may have played an important role in the divergence of major katydid lineages. This biogeographical pattern also seems to explain the distribution of crickets.

Grasshoppers represent the most recently diverged lineage within Orthoptera. Fossil acridids are frustratingly scarce and most of the known fossils are from the mid- to late Cenozoic (Sharov, 1968; Storozhenko, 1997; Grimaldi and Engel, 2005). We estimate that the ancestral Acrididae probably originated in the Late Cretaceous, but it is likely that the major diversification events happened after the Cretaceous–Paleogene (K–Pg) boundary, well into the Cenozoic. The MEDUSA analysis identifies the lineage leading up to Acrididae to have undergone a significant increase in diversification rate with little or no extinction (Fig. 7). During the Cenozoic, global climate generally became temperate (Bender, 2013), and grasses evolved and became dominant (Strömbärg, 2011). Grasshoppers are exclusively herbivores and many lineages have adapted to graminivory (Uvarov, 1977). They are among the dominant herbivores of grasslands and rangelands, known to consume nearly 10% of plant biomass in such habitats (Gangwere et al., 1997). The most speciose acridid subfamily is Gomphocerinae (Eades et al., 2014), which has its mouthparts adapted for graminivory (Isley, 1944). Thus, it is conceivable that the diversification of grasses, and particularly the spread of open grasslands (Dixon et al., 2014), could have played an important role in the diversification of grasshoppers. By the Cenozoic, the continents had approached their present-day configuration and large oceanic barriers existed between them. Many grasshopper lineages are known to be strong fliers and colonizers, and an extreme example of their flight can be illustrated from locust swarms that can migrate long distances, often across continents (Pener and Simpson, 2009). This suggests a possibility that at least some of the current cosmopolitan distribution of Acrididae could have been due to dispersal events. Our total evidence phylogeny (Figs 5 and 9) shows that the branch lengths for taxa belonging to Acrididae are extremely short, suggesting that only few changes have accumulated in the nuclear genes we have used amongst grasshoppers. From another angle, this pattern highlights a possibility that Acrididae may have undergone an explosive adaptive radiation, powered by the evolution of a new niche space (grasslands) and frequent founder events after the colonization of new habitats.

Mitochondrial genome evolution

A typical metazoan mtgenome consists of 37 genes (13 protein-coding, two ribosomal RNAs and 22 transfer RNAs) and a variable size of AT-rich control region (Clary and Wolstenhome, 1985; Boore, 1999), and has been shown to accurately resolve phylogenetic relationships over broad evolutionary periods across many insect groups (Cameron, 2014b). In this study, we show that the mtgenome data are very useful in resolving the phylogeny of Orthoptera. We also demonstrate that not only the sequence data of the mtgenome, but also its gene arrangements, contain important phylogenetic information. Flook et al. (1995) sequenced the first orthopteran mtgenome from the migratory locust, Locusta migratoria, and noticed that two tRNA genes (tRNA-Lys and tRNA-Asp) between COII and ATP8 were reversed from the ancestral insect arrangement. Subsequently, this tRNA rearrangement has been reported from other caeliferans, but not in any of the ensiferans (Flook and Rowell, 1995; Fenn et al., 2008; Sheffield et al., 2010).
Leavitt et al. (2013) recently showed that Tridactyllidae was the only caelifera that did not have the rearrangement, thus retaining the ancestral condition. In this study, we show that all of the ensiferan superfamilies as well as all three families (Tridactylidae, Ripiphrygidae, and Cylindrachetidae) of the basal caelifera superfamily Tridactyloidea retain the ancestral gene arrangement (Fig. 8).

There are three exceptions, however. Ye et al. (2008) showed that the tRNA gene cluster tRNA-Asn–tRNA-Ser(AGN)–tRNA-Glu was inversely located in the minor strand in the cricket Teleogryllus emma, and Wolff et al. (2012) also showed that the congeneric T. commodus had the same gene rearrangement. It is not clear if other gryllids have this rearrangement. Additionally, Liu et al. (2013) found a novel gene order, 12S rRNA–tRNA-Ile–tRNA-Met–nad2–control region–tRNA-Gln–tRNA-Trp, in two katydid species in the genus Sinochloara, which was uniquely different from the ancestral order of 12S rRNA–control region–tRNA-Ile–tRNA-Gln–tRNA-Met–nad2–tRNA-Trp. Interestingly, none of the other Tettigoniidae mtgenomes shows this rearrangement, which suggests that this is an isolated incidence. In the present study, we also find that Cyphoderris monstrosa has tRNA-Arg–tRNA-Ala, instead of the ancestral tRNA-Ala–tRNA-Arg, but this appears to be an isolated case because another prophyllangopsid, Tarragoilus diuturnus, is not known to have any rearrangement (Zhou et al., 2014).

The only consistent tRNA gene rearrangement across the phylogeny is the one between COII and ATP8 and when this gene arrangement is mapped onto the phylogeny (Fig. 6), we find that it evolved in the common ancestor of Acrididea (Tetrodida + Acridoidea). This suggests that this rearrangement has persisted for nearly 250 Myr since this lineage diverged from Tridactyloidea. Thus, this gene rearrangement can be considered a clear molecular synapomorphy for Acrididea. Mitochondrial gene rearrangements have been frequently reported in Panaraneoptera and Holometabola (Cameron, 2014b), but so far Orthoptera is the only polynoeopteran lineage that shows this pattern and it appears to have happened infrequently. This pattern implies that such gene rearrangements must have been a rare event among polynoeopteran insects.

Future directions and challenges

The present study represents a major milestone for orthopteran systematics and provides a framework for a phylogeny-based natural classification system for Orthoptera (Table 5). While this study has clarified many long-standing issues, it has also identified several areas of research that need further investigations. The first area is the relationship among basal ensiferans. Given the diversity of Rhaphido-

phoroidea and Stenopelmatoidea, our taxon sampling in these groups is too sparse and these are also among the least studied groups within Orthoptera. Similarly, more sampling for Gryllidea is required to formally test the validity of Gryllotalpoidea and the relationships among the families, and check the definition of monophyletic families within Gryllidea. The second area is to thoroughly re-evaluate the classification of Tettigoniidae, specifically to address the recent taxonomic issue regarding the status of Phaneropteridae. The third area is the phylogeny of Tetrodidae, which is one of the more ancient lineages and the second most speciose superfamily within Caelifera. Tetrodidae has a cosmopolitan distribution and shows exceptional diversity in pronum morphology. Nevertheless, a phylogeny of Tetrodidae is completely unknown at this time. The last area is the phylogeny of Acridae and Romaleidae. Our current data are unable to resolve the majority of the relationships within these families, mainly because the markers that we have used are too conserved and because grasshoppers appear to have undergone explosive adaptive radiation. Despite the economical and ecological importance of the grasshoppers, we currently do not know the phylogenetic relationships among the major lineages. Therefore, there needs to be a collective effort to resolve these issues.

With advances in sequencing technologies (Shendure and Ji, 2008), a new approach to phylogenetic studies utilizing whole genome and transcriptome data, also known as phylogenomics, is becoming increasingly popular (Faircloth et al., 2012; Lemmon et al., 2012). For Orthoptera, however, phylogenomic studies currently remain a challenge because the order is known to have the largest nuclear genome size among insects (Hanrahan and Johnston, 2011) ranging from 1.52 to 16.56 Gb (Gregory, 2014). So far, the migratory locust, Locusta migratoria, is the only orthopteran to be sequenced and its genome is 6.5 Gb in size (Wang et al., 2014). Unfortunately, this genome is not fully annotated and there is currently no reference genome for any orthopteran, which makes gene annotation for any shotgun sequencing or RNA-seq very difficult. Yet, we remain hopeful that these challenges will be soon overcome with rapidly evolving sequencing technologies and bioinformatics, and we look forward to having a much more thorough understanding about the evolution of this fascinating group of insects.

Acknowledgements

We thank the Insect Genomic Collection of M. L. Bean Museum at Brigham Young University for
References

Alexander, R.D., 1968. Life cycle origins, speciation, and related phenomena in crickets. Q. Rev. Biol. 43, 1–41.

Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D.L., Carnevale, G., Harmon, L.J., 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414.

Amédégnato, C., 1974. Les genres d’acridiens neotropicaux, leur classification par familles, sous-familles et tribus. Acrida 3, 193–203.

Ander, K., 1939. Vergleichend-Anatomische und Phylogenetische Studien über die Ensifera (Saltatoria). Opusc. Entomol. Suppl. 2, 1–306.

Baccetti, B.M. (Ed.), 1987. Evolutionary Biology of Orthopteroid Insects. Ellis Horwood Limited, Chichester.

Bender, M.L., 2013. Paleoclimate. Princeton University Press, Princeton, NJ.

Bergsten, J., 2005. A review of long-branch attraction. Cladistics 21, 163–193.

Bernt, M., Donath, A., Jütting, F., Externbrink, F., Florentz, C., Fritsch, G., Pütz, J., Middendorf, M., stadler, P.F., 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319.

Bethoux, O., Nel, A., Lapeyrie, J., Gand, G., Galtier, J., 2002. Raphogla rubra gen. n., sp. n., the oldest representative of the clade of modern Ensifera (Orthoptera: Tetigoniidae, Gryllidae). Eur. J. Entomol. 99, 111–116.

Blackith, R.E., Blackith, R.M., 1968. A numerical taxonomy of orthopteroid insects. Aust. J. Zool. 16, 111–131.

Boore, J.L., 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780.

Bromingiart, C., 1885. Les insectes fossiles des terrains primaires. Coup d’œil rapide sur la faune entomologique des terrains paleozoiques. Bull. Soc. Amis Sci. Nat. Rouen, serie 3, 21.

Cameron, S.L., 2014a. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst. Entomol. 39, 400–411.

Cameron, S.L., 2014b. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95–117.

Cameron, S.L., Barker, S.C., Whiting, M.F., 2006. Mitochondrial genomics and the new insect order Mantophasmatodea. Mol. Phylogenet. Evol. 38, 274–279.

Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552.

Chapman, R.F., Joern, A. (Eds.) 1990. Biology of Grasshoppers. John Wiley & Sons, New York.

Chapman, R.F., Page, W.W., McCaffrey, A.R., 1986. Bionomics of the variegated grasshopper (Zonocerus variegatus) in West and Central Africa. Annu. Rev. Entomol. 31, 479–505.

Chintauan-Marquier, J., Legrand, F., Hugel, S., Robillard, T., Grandcolas, P., Nel, A., Zucon, D., Desutter-Grandcolas, L., in press. Laying the foundations of evolutionary and systematic studies in crickets (Insecta, Orthoptera): a multilocus phylogenetic analysis. Cladistics.

Chopard, L. 1920. Recherches sur la conformation et le développement des derniers segments abdominaux chez les Orthoptères. Thése de la Faculté des Sciences de Paris., Rennes: Imprimerie Oberthur.

Chopard, L. 1949. Ordres des Orthoptères. In: Grassé, P.P. (Ed.), Traité de Zoologie. Masson, Paris, pp. 617–722.

Clary, D.O., Wolstenhome, D.R., 1985. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 22, 252–271.

Descamps, M., 1973a. Notes préliminaires sur les genitalia de Proscopoidea (Orthoptera Acridomorpha). Acrida 2, 77–95.

Descamps, M., 1973b. Révision des Eumastacoidaea (Orthoptera) aux échelons des familles et des sous-familles (genitalia, répartition, phylogénie). Acrida 2, 161–298.

Desutter-Grandcolas, L., 2003. Phylogeny and the evolution of acoustic communication in extantEnsifera (Insecta, Orthoptera). Zool. Scr. 32, 525–561.

Ding, F.M., Shi, H.W., Huang, Y., 2007. Complete mitochondrial genome and secondary structures of trnL RNA and srRNA of Atractomorpha sinitensis (Orthoptera, Pygromorphidae). Zool. Res. 28, 580–588.

Dirsh, V.M., 1952. The restoration of the subfamily Trigonopteryginae Walker (Orthoptera, Acrididae). Ann. Mag. Nat. Hist. 5, 82–84.

Dirsh, V.M., 1955. Tanaoceridae and Xyronotidae: two new families of Acridoidea (Orthoptera). Ann. Mag. Nat. Hist. 8, 285–288.

Dirsh, V.M., 1957. The spermatheca as a taxonomic character in the subfamilies of Acridoidea (Orthoptera). Ann. Mag. Nat. Hist. 5, 82–84.

Dirsh, V.M., 1958. The position of the family Xyronotidae (Acridomorpha, Insecta). Z. Zool. Syst. Evol.-Forsch. 11, 133–154.

Dirsh, V.M., 1975. Classification of the Acridomorphid Insects. E.W. Clasey Ltd., Faringdon.

Dirsh, V.M., Mason, J.B., 1979. Systematic and phylogenetic postion of the family Xyronotidae (Acridomorpha, Insecta). Zool. Syst. Evol.-Forsch. 17, 201–210.
Letunic, I., Bork, P., 2011. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475–W478.

Liu, C., Chang, J., Ma, C., Li, L., Zhou, S., 2013. Mitochondrial genomes of two Sinoclora species (Orthoptera): novel genome rearrangements and recognition sequence of replication origin. BMC Genom. 14, 114.

Ma, C., Liu, C., Yang, P., Kang, L., 2009. The complete mitochondrial genomes of two band-winged grasshoppers, Gastrimargus marmoratus and Oedaleus asiaticus. BMC Genom. 10, 1–12.

Maddison, D.R., Maddison, W.P., 2005. MacClade 4. Sinauer Associates, Inc., Sunderland, MA.

Matt, S., Flook, P.K., Rowell, C.H.F., 2008. A partial molecular phylogeny of the Eumastacidea s. lat. (Orthoptera, Caelifera). J. Orthoptera. Res. 17, 43–55.

Mendelson, T.C., Shaw, K.L., 2005. Rapid speciation in an arthropod. Nature 433, 375–376.

Miller, M.A., Holder, M.T., Vos, R., Midford, P.R., Liebowitz, T., Mendelson, T.C., Shaw, K.L., 2005. Rapid speciation in an arthropod. Nature 433, 375–376.

Mendelson, T.C., I. (Ed.) Handbuch der Palaeonto1ogie. 1. Abteilung; 2. Band, Mollusca und Arthropoda. R. Oldenbourg, München and Leipzig, pp. 747–831.

Rambaut, A., Drummond, A.J., 2001. Phylogenetic Tree Editor v1.0 alpha 8.

Rambaut, A., Drummond, A.J., 2002–2013a. LogCombiner v1.8.0.

Rambaut, A., Drummond, A.J., 2002–2013b. TreeAnnotator v1.8.0.

Rambaut, A., Drummond, A.J. 2003–2009. Tracer: MCMC Trace Analysis Tool Version 1.5.0.

Rambaut, A., Charleston, M. 2001. TreeEdit: Phylogenetic Tree Editor v1.0 alpha 8.

Rambaut, A., Drummond, A.J., 2002–2013a. LogCombiner v1.8.0.

Rambaut, A., Drummond, A.J., 2002–2013b. TreeAnnotator v1.8.0.

Rehn, J.A.G., 1948. The locust genus Tanaocerus as found in the United States, and the description of a related new genus (Orthoptera: Acridoidea). Proc. Acad. Nat. Sci. Phila. 100, 1–22.

Rehn, J.A.G., Hebard, M., 1912. A revision of the genera and species of the group Mogoplistii (Orthoptera: Gryllidae) found in North America north of the Isthmus of Panama. Proc. Acad. Nat. Sci. Phil. 64, 184–234.

Riek, E.F., 1976. New Upper Permian insects from Natal, South Africa. Ann. Natal Museum 22, 755–789.

Roberts, H.R., 1941. A comparative study of the subfamilies of the Acrididae (Orthoptera) primarily on the bases of their phallic structures. Proc. Acad. Nat. Sci. Phil. 93, 201–246.

Robillard, T., Grandcolas, P., Desutter-Grandcolas, L., 2007. A shift toward harmonics for high-frequency calling shown with phylogenetic study of frequency spectra in Eoecterine crickets (Orthoptera, Gryllidoidea, Eoecteridae). Can. J. Zool. 85, 1264–1275.

Rowell, C.H.F., 1967. Experiments on aggregations of Phymateus paraparuscus (Orthoptera, Acrididae, Pygromorphidae). J. Zool. (Lond.) 152, 179–193.

Scudder, S.H. 1885. Insecta. In: Zettel, K.A. (Ed.) Palaeont. Inst. 118, 1–216.

Shedfield, N.C., Hiatt, K.D., Valentine, M.C., Song, H., Whiting, M.F., 2010. Mitochondrial genomics in Orthoptera using MOSAS. Mitochondrial DNA 21, 87–104.

Shendure, J., Hi, J., 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145.

Shi, H.W., Ding, F.M., Huang, Y., 2008. Complete sequencing and analysis of mtDNA in Philacdia albomana Zheng. Chin. J. Biochem. 24, 604–611.

Shimodaira, H., 2002. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508.

Shimodaira, H., Hasegawa, M., 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114–1116.

Shimodaira, H., Hasegawa, M., 2001. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247.

Slifer, E.H., 1939. The internal genitalia of female Acridinae, Oedipodinae and Pauliniinae (Orthoptera, Acrididae). J. Morphol. 65, 437–469.

Solis, D.E., Solis, P.S., Endress, P.K., Chase, M.W., 2005. Phylogeny and Evolution of Angiosperms. Sinauer, Sunderland, MA.

Song, H., 2010. Grasshopper systematics: past, present and future. J. Orthoptera. Res. 19, 57–68.

Song, H., Maríaño-Pérez, R., 2013. Re-evaluation of taxonomic units of male phallic complex in higher-level classification of Acridomorpha (Orthoptera, Caelifera). Insect Syst. Evol. 44, 241–260.

Song, H., Sheffield, N.C., Cameron, S.L., Miller, K.B., Whiting, M.F., 2010. When phylogenetic assumptions are violated: the effect of base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenies. Syst. Entomol. 35, 429–448.

Spooner, J.D., 1973. Sound production in Cyphoderris monstrosa (Orthoptera: Phalangopsidae). Ann. Entomol. Soc. Am. 66, 4–5.

Stamatakis, A., Hoover, P., Rougemont, J., 2008. A Rapid Bootstrap Algorithm for the RAxML Web-Servers. Syst. Biol. 73, 758–771.

Stoicescu, R.R., Letsch, H., Hertel, J., Misof, B., Stadler, P.F., 2009. Accurate and efficient reconstruction of deep phylogenies from structured RNAs. Nucleic Acids Res. 37, 6184–6193.

Storozhenko, S.Y. 1997. Fossil history and phylogeny of orthopteroid insects. In: Gangwere, S.K., Muralirangan, M.C., Palaeontologie. 1. Abtheilung; 2. Band, Mollusca und Arthropoda. R. Oldenbourg, M

Sun, H.M., Zheng, Z.M., Huang, Y., 2010. Sequence and phylogenetic analysis of complete mitochondrial DNA of two grasshopper species Gomphocerus rufus (Linnaeus, 1758) and...
