The subgroup normalizer problem for integral group rings of nilpotent groups

Andreas Bächle*

For a group G and a subgroup H of G this article deals with the normalizer of H in the units of a group ring RG. We prove that if H is cyclic it is only normalized by the ‘obvious’ units. Moreover we prove similar results for subgroups of nilpotent groups. This article presents work of the author’s PhD thesis [Bäc12].

Mathematics Subject Classification (2010): 16U70, 20C07, 20F18. Keywords: integral, group ring, normalizer, nilpotent.

1 Introduction

Let throughout G denote a (possibly infinite) group. Let R be a commutative ring with identity element 1. By RG we denote the group ring of G over R and by $U(RG)$ its group of units. RG is equipped with a natural augmentation map $\varepsilon: RG \to R$, sending an element (expressed as a linear combination with respect to the basis G) to the sum of its coefficients. Restricting this map to the group of units, we obtain as kernel $V(RG) = \text{Ker } \varepsilon|_{U(RG)}$, the group of units of augmentation 1, also called normalized units. Evidently, $U(RG) = U(R) \cdot V(RG)$, here $U(R)$ denotes the units of the ring R.

The group $U(RG)$ acts by conjugation on itself. Clearly $G \leq U(RG)$ is normalized by all elements of $G \cdot Z(U(RG))$, where Z denotes the center. The question if equality holds was raised by Jackowski andMarciniak [JM87, 3.7. Question] and is also a research problem in the fundamental book of Sehgal [Seh93, Problem 43]:

$$N_{U(RG)}(G) = G \cdot Z(U(RG)) \quad \quad \text{NP}(G, R)$$

*The author is supported by the Research Foundation Flanders (FWO – Vlaanderen).
It turned out that answering it in the negative was a crucial step for constructing a counter example for the isomorphism problem, the long-standing problem if a group is determined by its group ring over the integers. This was done by Hertweck in his PhD thesis [Her98, Theorem A, Theorem B] and published in the Annals of Mathematics in [Her01, Theorem A, Theorem B]. Although this example is known, there are important classes of groups for which $\text{NP}(G, \mathbb{Z})$ holds: for finite groups with normal Sylow 2-subgroups (Jackowski, Marciniak, [JM87]), finite metabelian groups with abelian Sylow 2-subgroups (Marciniak, Roggenkamp [MR01]), finite Blackburn Groups and groups having an abelian subgroup of index 2 (Li, Parmenter, Sehgal [LPS99]). Also for Frobenius groups (Petit Lobão, Polcino Milies [PLPM02]), finite quasi-nilpotent and finite 2-constrained groups with $G/\text{O}_2(G)$ having no chief factor of order 2 (Hertweck, Kimmerle [HK02]). Furthermore for locally nilpotent groups (Jespers, Juriaans, de Miranda, Rogerio [JJdMR02]), groups with every finite normal subgroup having a normal Sylow 2-subgroup (Hertweck [Her04]) and for arbitrary Blackburn groups (Hertweck, Jespers [HJ09]) $\text{NP}(G, \mathbb{Z})$ has been verified. (In some results more general coefficient rings than the integers are allowed.)

Considering subgroups $H \leq G$ of the group basis G, the statement corresponding to $\text{NP}(G, R)$ is

$$\text{NU}(RG)(H) = N_G(H) \cdot C_{U(RG)}(H).$$

We say that $H \leq G$ together with the coefficient ring R has the subgroup normalizer property, if this equality holds true. It is interesting to investigate for which groups $\text{NP}(H \leq G, R)$ holds and possibly find counterexamples with G having smaller order than in the previous mentioned example of Hertweck (there $|G| = 2^{25} \cdot 97^2$) to obtain a better insight into the structural properties that cause such phenomena.

A group G together with a commutative ring R has the subgroup normalizer property if $\text{NP}(H \leq G, R)$ holds for all subgroups H of G, i.e. if

$$\forall H \leq G: \text{NU}(RG)(H) = N_G(H) \cdot C_{U(RG)}(H).$$

The article is organized as follows: we restate the problem in terms of automorphisms (section 2). In the next section we prove that $\text{NP}(H \leq G, R)$ holds whenever H is cyclic. In section 4 we first prove a generalization of the famous ‘Coleman lemma’, which is subsequently used to show that $\text{SNP}(G, R)$ holds for locally-nilpotent groups. We also establish that $\text{SNP}(G, R)$ holds for finitely-generated torsion-free nilpotent groups G. It is shown that $\text{NP}(H \leq G, R)$ holds for torsion subgroups H of finitely-generated nilpotent groups G.

The notation is mainly standard. Let x and y be elements of a group. By $x^y = y^{-1}xy$ we denote the conjugate of x by y and by x^G the set of all G-conjugates of x. Further, $[x, y] = x^{-1}y^{-1}xy$ is the commutator of x and y. For subsets X and Y of a group $[X, Y]$ denotes the subgroup generated by all commutators $[x, y]$ for $x \in X$ and $y \in Y$.

2
(if one set is a singleton we omit the set braces). For the order of an element x we write $o(x)$. Moreover, $\text{Aut}(G)$ denotes the group of group automorphisms of the group G and $\text{Inn}(G)$ its subgroup of automorphisms induced by conjugation $\text{conj}(x) = (g \mapsto g^x = x^{-1}gx)$ by an element $x \in G$.

For an element $u = \sum_{g \in G} u_g g \in RG$ define by $\text{supp}(u) = \{ g \in G \mid u_g \neq 0 \}$ the support of u. For a group G, a G-adapted ring is an integral domain of characteristic zero in which a rational prime p is not invertible, whenever there exists an element of order p in G. Note that homomorphisms are written from the right (with exception of the augmentation of the group ring). We always assume that a ring has an identity element. $\text{U}(R)$ denotes the group of units of a ring R.

2 Automorphisms

The question $\text{NP}(H \leq G, R)$ can be restated using automorphisms.

Definition 1. Let G be a group, $H \leq G$ and R be a commutative ring. Set

$\text{Aut}_G(H) = \{ \varphi \in \text{Aut}(H) \mid \varphi = \text{conj}(g) \text{ for some } g \in N_G(H) \}$

and

$\text{Aut}_{RG}(H) = \{ \varphi \in \text{Aut}(H) \mid \varphi = \text{conj}(u) \text{ for some } u \in N_{\text{U}(RG)}(H) \}$,

the groups of automorphisms of H induced by elements of G and $\text{U}(RG)$, respectively.

Clearly, for $H \leq G$ we have $\text{Inn}(H) \leq \text{Aut}_G(H) \leq \text{Aut}_{RG}(H) \leq \text{Aut}(H)$.

Lemma 2. For a group G with subgroup H and a commutative ring R the following statements are equivalent

1. $\text{NP}(H \leq G, R)$ holds
2. $\text{Aut}_{RG}(H) = \text{Aut}_{G}(H)$
3. for every $u \in N_{\text{U}(RG)}(H)$ there exists a $g \in N_G(H)$ such that $[ug, H] = 1$. \square

3 Cyclic subgroups

We prove that $\text{NP}(H \leq G, R)$ holds for all rings R, provided H is cyclic with a similar calculation that occurred in the proof of [PLPM02, Theorem 3.1] and the simplified proof of [Her04, 17.3 Theorem] suggested by I. B. S. Passi. To this end we need the notation of an additive commutator: For $x, y \in RG$ set $[x, y]_L = xy - yx$, the additive
commutator of x and y. Let $[RG, RG]_L$ be the R-submodule of RG generated by all $[x, y]_L$, for $x, y \in RG$. The map $[-, -]_L : RG \times RG \to RG : (x, y) \mapsto [x, y]_L$ is R-bilinear. Let $\text{ccl}(G)$ denote the collection of all conjugacy classes of G. For $C \in \text{ccl}(G)$ define $\epsilon_C : RG \to R : \sum_{g \in G} u_g g \mapsto \sum_{g \in C} u_g$, the partial augmentation map with respect to the conjugacy class C. Direct calculations show that

$$[RG, RG]_L = \{ u \in RG \mid \forall C \in \text{ccl}(G) : \epsilon_C(u) = 0 \}.$$

Lemma 3. Let $H \leq G$, R a commutative ring, $\sigma \in \text{Aut}_{RG}(H)$. Then $x\sigma \in x^G$ for every $x \in H$.

Proof. There is an element $u \in N_U(RG)(H)$ such that $\sigma = \text{conj}(u)$. We have

$$x\sigma - x = u^{-1} xu - x = [u^{-1} x, u]_L \in [RG, RG]_L,$$

and consequently $\epsilon_C(x\sigma) = \epsilon_C(x)$ for all $C \in \text{ccl}(G)$. Together with $x\sigma \in H \leq G$ this implies $x\sigma \in x^G$. \square

Proposition 4. Let $H \leq G$. If H is cyclic, then $\text{NP}(H \leq G, R)$ holds for a commutative rings R.

Proof. Let $H = \langle x \rangle$ and $\sigma \in \text{Aut}_{RG}(H)$, then $x\sigma \in x^G$ by the previous Lemma 3 and hence there is a $g \in G$ such that $x\sigma = x\text{conj}(g)$, so $\sigma = \text{conj}(g)|_H \in \text{Aut}_G(H)$. \square

4 Nilpotent groups

We first prove a generalization of a well known result on the normalizer of p-subgroups, the so-called Coleman lemma (cf. [Col64]). We adapt the line of proof in [Her04, 19.4 Lemma] to boil it down to a finite group problem.

Lemma 5 (Coleman lemma, relative version). Let $H \leq G$ and R a commutative ring and p a rational prime such that $p \notin U(R)$. Let $u \in N_U(RG)(H)$. Then there exists $P \leq H$ with $|H : P| < \infty$, $p \nmid |H : P|$ and $x \in \text{supp}(u) \cap N_G(P)$ such that $x^{-1} u \in C_U(RG)(P)$.

Proof. Let $H \leq G$ and $u = \sum_{g \in G} u_g g \in N_U(RG)(H)$. For every $h \in H$ we have

$$\sum_{g \in G} u_g g = \sum_{g \in G} u_g h^{-1} gh^u,$$

and hence

$$g \in \text{supp}(u) \iff \forall h \in H : h^{-1} gh^u \in \text{supp}(u).$$
In particular, we obtain the following (right) action of the group H on the support of u:

$$\text{supp}(u) \times H \to \text{supp}(u) \quad (x, h) \mapsto h^{-1}xh^u.$$

The coefficients u_g of u are constant on the orbits of this action by (1). Let $K = \{ h \in H \mid \forall x \in \text{supp}(u): h^{-1}xh^u = x \} \leq H$ be the kernel of the action. Then H/K is isomorphic to a subgroup of the finite group $\text{Sym}(\text{supp}(u))$. Let $K \leq P \leq H$, such that P/K is a Sylow p-subgroup of H/K. The induced action of the p-group P/K on $\text{supp}(u)$ must have a fixed point $x \in \text{supp}(u)$, as $\varepsilon(u) \in U(R)$ and $p \not\in U(R)$ by assumption on R. But this implies $x^{-1}u \in C_{U(RG_1)}(P).$

The subgroup normalizer property behaves well with respect to direct products: Let G_1 and G_2 be groups and $j \in \{1, 2\}$. The natural projections $\pi_j: G_1 \times G_2 \to G_j$ give rise to ring homomorphisms $R[G_1 \times G_2] \to RG_j$ by the universal property of the group ring, which can be restricted to homomorphisms of the unit groups, $\Pi_j: U(R[G_1 \times G_2]) \to U(RG_j)$ (the box brackets are included for better readability). With the obvious inclusion maps we have the following diagram

$$
\begin{array}{cccc}
G_1 & \xleftarrow{\pi_1} & G_1 \times G_2 & \xrightarrow{\pi_2} & G_2 \\
U(RG_1) & \xleftarrow{\Pi_1} & U(R[G_1 \times G_2]) & \xrightarrow{\Pi_2} & U(RG_2)
\end{array}
$$

Lemma 6. Let $G = G_1 \times G_2$, R a commutative ring, and $H \leq G$. Assume that $\text{NP}(H \pi_1 \leq G \pi_1, R)$ and $\text{NP}(H \pi_2 \leq G \pi_2, R)$ hold, then also $\text{NP}(H \leq G, R)$ holds.

Proof. Let $u \in N_{U(RG_1)}(H)$. Set $H_j = H \pi_j \leq G_j$ and $u_j = u \Pi_j$. For every $x_1 \in H_1$ there exists $x_2 \in H_2$, such that $x_1x_2 \in H$. Now

$$
x_1^{u_1} = (x_1x_2)^{u \Pi_1} = (x_1x_2)^{u} \pi_1 \in H_1,
$$

hence $u_1 \in N_{U(RG_1)}(H_1)$. Analogously, we see that $u_2 \in N_{U(RG_2)}(H_2)$, so we get from the assumption elements $g_j \in N_{G_j}(H_j)$ and $z_j \in C_{U(RG_j)}(H_j)$ such that $u_j = g_jz_j$.

5
To construct the corresponding units in the group ring of G, set $w = u_1^{-1}u_2^{-1}u$. This unit is centralizing H: To see this, take any $x \in H$, then
\[
x^w = ((x\pi_1)(x\pi_2))^{(u^{-1}\pi_1)(u^{-1}\pi_2)} = ((x\pi_1)(u^{-1}\pi_1)(x\pi_2)(u^{-1}\pi_2))^{u} = (x^{u^{-1}}\pi_1(x^{u^{-1}}\pi_2))^{u} = x.
\]
A similar calculation shows that the element g defined as $g = g_1g_2$ acts on H by conjugation like u does, in particular $g \in N_G(H)$. Obviously, we have $z_j \in C_{U(RG)}(H)$. Hence
\[
u = u_1u_2u_1^{-1}u_2^{-1}u = (g_1g_2)(z_1z_2w) \in N_G(H) \cdot C_{U(RG)}(H).
\]

Proposition 7. If $G = G_1 \times G_2$ and R is a commutative ring, then
\[
\text{SNP}(G, R) \text{ holds } \iff \text{SNP}(G_1, R) \text{ and SNP}(G_2, R) \text{ hold}.
\]

Proof.
"\Rightarrow": Let $H_1 \leq G_1$ and $u_1 \in N_{U(RG_1)}(H_1)$. Set $H = H_1 \times 1 \leq G$. Using the inclusion map, $u_1 \in N_{U(RG)}(H)$. By assumption there are $g \in N_G(H)$ and $z \in C_{U(RG)}(H)$ such that $u_1 = g z$. Clearly $g_1 = g\pi_1 \in N_{G_1}(H_1)$ and $z_1 = z\pi_1 \in C_{U(RG_1)}(H_1)$. Hence we get $u_1 = u_1\pi_1 = (gz)\pi_1 = g_1z_1 \in N_{G_1}(H_1) \cdot C_{U(RG_1)}(H_1)$. In the same way we can verify the normalizer property for the second factor.

"\Leftarrow": Follows from Lemma 6.

A group is called **locally nilpotent**, if every finite subset is contained in a nilpotent subgroup or, equivalently, every finitely generated subgroup is nilpotent.

Theorem 8. Let G be a locally nilpotent torsion group. Then SNP(G, R) holds for G-adapted rings R. In particular SNP(G, R) holds for finite nilpotent groups G and G-adapted rings R.

Proof. By [Rob96, 12.1.1] we have that $G = \prod_{p \in P} G_p$, where P runs through all primes, G_p denotes the unique maximal p-subgroup of G, and Dr stands for the restricted direct product (i.e. the subgroup of the direct product containing those elements for which all but finitely many coordinates are equal to the identity element). Let $H \leq G$ and $u \in N_{U(RG)}(H)$. Define the set P of rational primes 'occurring' in the support of u:
\[
P = \{ p \in \mathbb{N} \mid p \text{ a prime and } \exists g \in \text{ supp}(u): p \mid o(g) \}.
\]
Now G can be decomposed as $G = X \times Y$, where $X = \prod_{p \notin P} G_p$ and $Y = Dr_{p \in P} G_p$. As $[X, Y] = 1$ and supp(u) $\subseteq X$ it follows that $[u, Y] = 1$. Let $\kappa : RG \to RX$ denote the natural projection. By Lemma 6 it is enough to show that $u\kappa$ acts on $H\kappa$ like an element of $G\kappa$. But this follows by induction on the finite number of primes in P, using Lemma 5 and Lemma 6.
Next, we aim for a generalization of this result for nilpotent groups which are not necessarily torsion.

Lemma 9. Let G be a group, $K \leq G$ and $C \leq Z(G)$ a central subgroup and R a commutative ring. Assume that $NP(KC \leq G, R)$ holds, then so does $NP(K \leq G, R)$.

Proof. Let $u \in N_{U(RG)}(K)$. As $C \leq Z(G)$ we have

$$u \in N_{U(RG)}(K) \subseteq N_{U(RG)}(KC) = N_G(KC) \cdot C_{U(RG)}(KC).$$

Hence there is a factorization $u = gz$ with $g \in N_G(KC)$, $z \in C_{U(RG)}(KC)$. For every $k \in K$ we get $K \ni k^u = k^g = (k^g)^2 = k^g$, so in fact $g \in N_G(K)$. Furthermore, $C_{U(RG)}(KC) = C_{U(RG)}(K)$, and hence $u = gz \in N_G(K) \cdot C_{U(RG)}(K)$. \square

For the next lemma we need some additional notation: Let $1 \to K \to E \to Q \to 1$ be a short exact sequence of groups, where K is an abelian group. For an automorphism φ of E fixing K as set denote by φ^Q the automorphism induced on the quotient group Q. Set

$$\text{Aut}(Q, K) = \{ \varphi \in \text{Aut}(E) \mid \varphi|_K = \text{id}_K \text{ and } \varphi^Q = \text{id}_Q \},$$

the group of automorphisms of E restricting to the identity on K and inducing the identity on the quotient group Q. The inner automorphisms of E contained therein form the normal subgroup $\text{Inn}(Q, K) = \text{Aut}(Q, K) \cap \text{Inn}(E)$. Note that after having fixed a Q-module structure on K the group $\text{Aut}(Q, K)$ does not depend on the concrete extension (cf. [Rot07, Corollary 9.17]). We need the following result and state it for the convenience of the reader.

Proposition 10 ([Rot07, Corollary 9.20]). For every group Q and every Q-module K, $H^1(Q, K) \simeq \text{Aut}(Q, K)/\text{Inn}(Q, K)$, where H^1 denotes the first cohomology group.

Lemma 11. Let $1 \to C \to G \to \overline{G} \to 1$ be a central extension, where C is torsion-free and let R be a commutative ring. Assume that $L \leq G$ with $C \leq L$ such that $|L : C| < \infty$. If $NP(L/C \leq G/C, R)$ holds, then $NP(L \leq G, R)$ holds as well.

Proof. Let $u \in N_{U(RG)}(L)$. Denote by bar the ring homomorphism $RG \to R\overline{G}$ induced by the natural homomorphism $G \to \overline{G}$. From $\overline{u} \in N_{U(R\overline{G})}(\overline{L})$ and the assumption we get that there is a $g \in G$ with $\text{conj}(\overline{u})|_{\overline{G}} = \text{conj}(\overline{g})|_{\overline{G}}$. We have $g \in C \cdot N_G(L) = N_G(L)$. Let $\sigma = \text{conj}(ug^{-1}) \in \text{Aut}_{RG}(L)$. As σ induces the identity on L/C and $C \leq Z(G)$ we have the following commuting diagram with the obvious horizontal maps

$$\begin{array}{ccc}
C & \longrightarrow & L \\
\downarrow{id} & & \downarrow{id} \\
C & \longrightarrow & L
\end{array}$$

$$\begin{array}{ccc}
\overline{C} & \longrightarrow & \overline{L} \\
\downarrow{\overline{\sigma}} & & \downarrow{\overline{id}} \\
\overline{C} & \longrightarrow & \overline{L}
\end{array}$$

7
So σ ∈ Aut(Δ, C). Now 1 → C ↪ L → T → 1 is a central extension of a finite group by a torsion-free group, hence \(H^1(Δ, C) = \text{Hom}(Δ, C) = 1 \). Hence Proposition 10 implies that σ = \(\text{conj}(t) \in \text{Inn}(Δ, C) \) for some \(t \in L \), so that \(\text{conj}(u)|_{L} = \text{conj}((t)j)|_{L} \in \text{Aut}_{G}(L) \).

Proposition 12. Let G be finitely generated nilpotent and \(H \leq G \) a torsion subgroup. Then NP(\(H \leq G, R \)) holds for G-adapted rings R.

Proof. First define a special central series of G in the following way. By [Rob96, 5.2.22 (ii)], a finitely generated nilpotent group X is infinite if and only if there is an element of infinite order in the center of X. Let \(U_0 = 1 \). Assume by induction that \(U_j \leq G \) is already defined and \(G/U_j \) is finitely-generated nilpotent. If this quotient is infinite then there is an element \(y_{j+1} \in Z(G/U_j) \) of infinite order, the pre-image \(U_{j+1} \) of \(\langle y_{j+1} \rangle \) in G; if \(G/U_j \) is finite, define \(U_{j+1} = U_j \). In any case the resulting quotient group is finitely generated nilpotent and consequently has the desired property for the induction process. This yields a chain

\[
1 = U_0 \leq U_1 \leq U_2 \leq U_3 \leq \ldots
\]

of normal subgroups of G. Define \(U = \bigcup_{j} U_j \). This is finitely generated as a subgroup of a finitely generated nilpotent group [Rob96, 3.1.6], hence the above chain is eventually constant, i.e. there is a minimal \(n \in \mathbb{N} \) such that \(U_n = U_{n+k} \) for all \(k \geq 0 \). But then \(G/U_n \) is finite nilpotent.

For \(0 \leq j \leq n \) define \(G_j = G/U_j \). The natural map \(G_j \to G_{j+1} \) is injective on torsion elements, as the kernel is torsion-free. Hence the torsion subgroup \(\text{Tor}(G) \) of G is isomorphic to a subgroup of the finite group \(G_n \) and hence finite. Thus, also \(H \) is finite.

Set \(C_j = U_{j+1}/U_j \leq Z(G_j) \). Additionally, let \(K_j = U_j H/U_j \leq G_j \), a finite subgroup, and \(L_j = U_{j+1} H/U_j \leq G_j \). Note that \(L_j = K_j C_j \). For every \(0 \leq j \leq n-1 \) we get a short exact sequence

\[
1 \to C_j \to G_j \to G_{j+1} \to 1.
\]

NP(\(K_n \leq G_n, R \)) holds by Theorem 8, as \(G_n \) is a finite nilpotent group. Using Lemma 11 and Lemma 9 while proceeding inductively along the sequence

\[
G = G_0 \to G_1 \to \ldots \to G_{n-1} \to G_n
\]

shows that NP(\(K_0 \leq G_0, R \)) holds.

We also have the following lifting lemma:

Lemma 13. Let G be a group, \(H \leq G \), R a commutative ring, and \(u \in \text{N}_{U(RG)}(H) \). Assume there is a normal subgroup \(N \) of G with \(N \leq C_G(H) \). Set \(\overline{\sigma} = G/N \) and denote by bar the reduction homomorphism, \(\overline{\sigma} : RG \to R\overline{G} \). Assume there is \(\overline{\pi} \in \text{supp}(\overline{\pi}) \) with \(\text{conj}(\overline{\pi})|_{\overline{T}} = \text{conj}(\overline{\pi})|_{\overline{T}} \). If \(N \) is torsion-free, then there is \(g \in \text{supp}(u) \) with \(\text{conj}(u)|_{H} = \text{conj}(g)|_{H} \).

8
Proof. We have \(\overline{\pi} \in N_{U(RG)}(\overline{H}) \), so by assumption there is a \(g \in \text{supp}(u) \) such that \(\text{conj}(\overline{\pi})|_{\overline{H}} = \text{conj}(\overline{\pi})|_{\overline{H}} \) (we may take any \(g \in H \cap \text{supp}(u) \neq \emptyset \)). Hence for all \(h \in H \) we have \(h^{-1}gh^{u} = \overline{g} \), this means \(h^{-1}gh^{u} = z_{h}g \), for some \(z_{h} \in N \).

Using \(z_{h} \in N \leq C_{G}(H) \) for all \(h \in H \) we have for \(h_{1}, h_{2} \in H \)

\[
\begin{align*}
 z_{h_{1}h_{2}}g &= (h_{1}h_{2})^{-1}g(h_{1}h_{2})^{u} = h_{2}^{-1}(h_{1}^{-1}gh_{1}^{u})h_{2}^{u} = h_{2}^{-1}z_{h_{1}}gh_{2}^{u} \\
 &= z_{h_{2}}^{-1}gh_{2}^{u} = z_{h_{1}h_{2}}g,
\end{align*}
\]

and hence \(z: H \to N: h \mapsto z_{h} \) is a homomorphism. Now (2) in the proof of Lemma 5 (page 4) shows that \(z_{h}g \in \text{supp}(u) \) for all \(h \in H \). As \(N \) is torsion-free, the finiteness of the support implies \(z_{h} = 1 \) for all \(h \in H \). By (3) we obtain \(\text{conj}(u)|_{H} = \text{conj}(g)|_{H} \).

Corollary 14. If \(G \) is nilpotent of class 2 and the center of \(G \) is torsion-free, then SNP\((G, R)\) holds for every commutative ring \(R \).

Proof. Set \(N = Z(G) \) in Lemma 13 and note that the assumption implies \(G' \leq Z(G) \), and hence that \(G/Z(G) \) is abelian.

Proposition 15. Let \(G \) be finitely-generated torsion-free nilpotent, then SNP\((G, R)\) holds for all commutative rings \(R \).

Proof. Let \(H \leq G \) and \(u \in N_{U(RG)}(H) \). Let \(1 = U_{0} < U_{1} < \ldots < U_{n+1} = G \) be a central series of \(G \), such that the factors \(C_{j} = U_{j+1}/U_{j} \) are all infinite cyclic groups (such a series exists by \([\text{Rob}96, \text{5.2.20}]\)). Define \(G_{j} = G/U_{j} \) and note that there is a natural exact sequence \(1 \to C_{j} \to G_{j} \to G_{j+1} \to 1 \) for every \(j \in \{1, \ldots, n - 1\} \). The natural projection maps make the following diagram commute

\[
\begin{array}{cccccc}
 & & RG & & & \\
 & & \downarrow \text{id} & & & \\
 & RG_{0} & \longrightarrow & RG_{1} & \longrightarrow & \cdots & \longrightarrow RG_{n-1} & \longrightarrow RG_{n}
\end{array}
\]

Denote by \(H_{j} \) the image of \(H \) in \(G_{j} \) and by \(u_{j} \) the image of \(u \) in \(U(RG_{j}) \). Obviously every element of the support of \(u_{n} \) acts on \(H_{n} \) like the element \(u_{n} \), so fix any such support element \(g_{n} \). Using induction together with Lemma 13 yields an element \(g_{j} \in \text{supp}(u_{j}) \) acting like \(u_{j} \) on \(H_{j} \) for every \(0 \leq j \leq n \). Consequently there is an element \(g = g_{0} \in \text{supp}(u) \) such that \(\text{conj}(u)|_{H} = \text{conj}(g)|_{H} \).

Remark 16. The last proof gives a direct argument for the proposition. The result can also be deduced by combining the theorems \([\text{MR}77, \text{Theorem 2.2.4}]\) and \([\text{Seh}93, \text{Lemma (45.3)}]\).
References

[Bäc12] Andreas Bächle, On torsion subgroups and their normalizers in integral group rings, Ph.D. thesis, Universität Stuttgart, 2012, http://elib.uni-stuttgart.de/opus/volltexte/2013/7887/ (Last visited: January 28, 2014).

[Col64] Donald B. Coleman, On the modular group ring of a p-group, Proceedings of the American Mathematical Society 15 (1964), 511–514.

[Her98] Martin Hertweck, Eine Lösung des Isomorphieproblems für ganz-zahlige Gruppenringen von endlichen Gruppen, Ph.D. thesis, Universität Stuttgart, 1998.

[Her01] Martin Hertweck, A counterexample to the isomorphism problem for integral group rings, Ann. of Math. (2) 154 (2001), no. 1, 115–138.

[Her04] Martin Hertweck, Contributions to the integral representation theory of groups, Habilitationsschrift, Universität Stuttgart, 2004, http://elib.uni-stuttgart.de/opus/volltexte/2004/1638/ (Visited: January 28, 2014).

[HJ09] Martin Hertweck and Eric Jespers, Class-preserving automorphisms and the normalizer property for Blackburn groups, J. Group Theory 12 (2009), no. 1, 157–169.

[HK02] Martin Hertweck and Wolfgang Kimmerle, Coleman automorphisms of finite groups, Mathematische Zeitschrift 242 (2002), 203–215.

[JJeMR02] E. Jespers, S. O. Juriaans, J. M. de Miranda, and J. R. Rogerio, On the Normalizer Problem, Journal of Algebra 247 (2002), 24–36.

[JM87] Stefan Jackowski and Zbigniew Marciniak, Group automorphisms inducing the identity map on cohomology, Journal of Pure and Applied Algebra 44 (1987), 241–250.

[LPS99] Yuanlin Li, Mike M. Parmenter, and Sudarshan Sehgal, On the Normalizer Property for Integral Group Rings, Communications in Algebra 27 (1999), no. 9, 4217–4223.

[MR77] Roberta B. Mura and Akbar Rhemtulla, Orderable groups, Dekker, New York, 1977.

[MR01] Zbigniew Marciniak and Klaus W. Roggenkamp, The normalizer of a fi-
nite group in its integral group ring and cech cohomology, Algebra - Representa-
tion Theory: Proceedings of the NATO Advanced Study Institute,
NATO Science Series II: Mathematics, Physics and Chemistry, Klaus W.
Roggenkamp and Mirela Ştenfănescu, 2001.

[PLPM02] Thierry Petit Lobão and César Polcino Milies, The normalizer property for
integral group rings of Frobenius groups, Journal of Algebra 256 (2002),
no. 1, 1–6.

[Rob96] Derek J.S. Robinson, A course in the Theory of Groups, Springer, 1996.

[Rot07] J.J. Rotman, An introduction to homological algebra, Universitext (1979),
Springer, 2007.

[Seh93] Sudarshan Sehgal, Units in integral group rings, Pitman monographs and
surveys in pure and applied mathematics, 1993.

Andreas Bächle
Vakgroep Wiskunde,
Vrije Universiteit Brussel,
Pleinlaan 2,
B-1050 Brussels
Belgium.
ABachle@vub.ac.be