On ID*-superderivations of Lie superalgebras

MENGMENG CAI and WENDE LIU*

School of Mathematical Sciences, Harbin Normal University
Harbin 150025, China

Abstract: Let L be a Lie superalgebra over a field of characteristic different from 2, 3. Write $\text{ID}^*(L)$ for the Lie superalgebra consisting of superderivations mapping L to L^2 and central elements to zero. In this paper we first give an upper bound for the superdimension of $\text{ID}^*(L)$. Then we characterize the ID^*-superderivation algebras for nilpotent Lie superalgebras of class 2 and model filiform Lie superalgebras.

Keywords: ID*-superderivation; nilpotent Lie superalgebras of class 2; model filiform Lie superalgebras

Mathematics Subject Classification 2010: 17B05, 17B30, 17B56

1. Introduction and preliminaries

In 2015, H. Arabynai and F. Saeedi studied derivation algebras of Lie algebras and proposed the notion ID^*-derivations of Lie algebras [AS15]. A ID^*-derivation of a Lie algebra L is a derivation sending L into L^2 and $Z(L)$ to zero, where L^2 and $Z(L)$ are the derived algebra and center of L, respectively. All the ID^*-derivations of a Lie algebra constitute a subalgebra of the full derivation algebra, which contains the inner derivation algebra.

The notion of ID^*-derivations may be naturally generalized to Lie superalgebra case. In this paper, we first give an upper bound for the superdimension of the ID^*-superderivation algebra for a Lie superalgebra L in terms of superdimension of L^2 and the minimal generator number pair of $L/Z(L)$, where L^2 and $L/Z(L)$ are the derived algebra and central quotient of L, respectively. Then we show that the minimal generator number pairs are unique for finite-dimensional nilpotent Lie superalgebras. Finally, we characterize the ID^*-superderivation algebras of nilpotent Lie superalgebras of class 2 and model filiform Lie superalgebras, which prove that the upper bound we obtained for the superdimension of the ID^*-superderivation algebra for a Lie superalgebra L is sharp.

Let F be the ground field of characteristic different from 2, 3 and $\mathbb{Z}_2 := \{0, 1\}$ be the abelian group of order 2. For a homogeneous element x in a vector superspace (superspace for short) $V = V_0 \oplus V_1$, write $\lvert x \rvert$ for the parity of x. In this paper the symbol $\lvert x \rvert$ implies that x has been assumed to be a homogeneous element.

In $\mathbb{Z} \times \mathbb{Z}$, we define a partial order as follows:

$$(m, n) \leq (k, l) \iff m \leq k, n \leq l.$$

For $m, n \in \mathbb{Z}$, we write $\lvert (m, n) \rvert = m + n$. We also view $\mathbb{Z} \times \mathbb{Z}$ as an additive group in the usual way.

*Correspondence: wendeliu@ustc.edu.cn (W. Liu), supported by the NSF of China (11471090, 11701158)
Write $\text{sdim} V$ for the superdimension of a superspace V and $\text{dim} V$ for the dimension of V as an ordinary vector space. Note that
\[\text{dim} V = |\text{sdim} V|. \]

A linear map of parity $\alpha \in \mathbb{Z}_2$, $D : L \to L$, is said to be a superderivation of L, if
\[D[x, y] = [D(x), y] + (-1)^{|x|}[x, D(y)] \]
for all $x, y \in L$. Denote by $\text{Der}_\alpha(L)$ the set of all the superderivations of parity α of L, where $\alpha \in \mathbb{Z}_2$. Then the superspace $\text{Der}(L) := \text{Der}_0(L) \oplus \text{Der}_1(L)$ is a Lie superalgebra with respect to bracket
\[[D, E] = DE - (-1)^{|D||E|}ED, \]
where $D, E \in \text{Der}(L)$. The elements of $\text{Der}(L)$ are called superderivations of L and $\text{Der}(L)$ is called the superderivation superalgebra of L.

For $x \in L$, the map $\text{ad}_x : L \to L$ given by $y \mapsto [x, y]$ is a superderivation of L, called inner. The set of all inner superderivations of L is denoted by $\text{ad}(L)$. It is a standard fact that $\text{ad}(L)$ is an ideal of $\text{Der}(L)$.

As in Lie algebra case, a superderivation of Lie superalgebra L is called an ID-superderivation if it maps L to the derived subsuperalgebra $[L, L]$. Denote by $\text{ID}(L)$ the set of all ID-superderivations of L,
\[\text{ID}(L) = \{ \alpha \in \text{Der}(L) \mid \alpha(L) \subseteq [L, L] \}. \]
Hereafter, write L^2 for the derived subalgebra $[L, L]$. Denote by $\text{ID}^*(L)$ the set of all ID-superderivations mapping all central elements to 0,
\[\text{ID}^*(L) = \{ \alpha \in \text{ID}(L) \mid \alpha(Z(L)) = 0 \}. \]
Obviously,
\[\text{ad}(L) \leq \text{ID}^*(L) \leq \text{ID}(L) \leq \text{Der}(L). \]

2. An upper bound for the superdimension of $\text{ID}^*(L)$

To describe the upper bound for the superdimension of ID^*-superderivation algebra, we need the concept of minimal generator number pairs for a Lie superalgebra. As usual, we write $\{x_1, \ldots, x_p \mid y_1, \ldots, y_q\}$ implying that x_i is even and y_j is odd in a superspace.

Definition 2.1. A generator set of a Lie superalgebra L,
\[\{x_1, \ldots, x_p \mid y_1, \ldots, y_q\}, \]
is said to be minimal if L can not be generated by any subset
\[\{a_1, \ldots, a_s \mid b_1, \ldots, b_t\} \]
with $(s, t) < (p, q)$. In this case, (p, q) is called a minimal generator number pair of L.

For finite-dimensional nilpotent Lie superalgebras, the minimal generator number pairs are unique (see Proposition 3.3). However, this does not necessarily hold in general.

For a subalgebra K of L and a pair of nonnegative integers (p, q), write $\lambda(K; p, q)$ for the number pair
\[(p \cdot \text{dim}(K)_0 + q \cdot \text{dim}(K)_1, q \cdot \text{dim}(K)_0 + p \cdot \text{dim}(K)_1). \]
The following theorem gives an upper bound for the superdimension of $\text{ID}^*(L)$.
On ID*-superderivations of Lie superalgebras

Theorem 2.2. Suppose L is a Lie superalgebra such that $\dim L^2 < \infty$ and $L/Z(L)$ is finitely generated. Then

$$\text{sdim} \lambda^* \leq \lambda(L^2; p, q),$$

where (p, q) is a minimal generator number pair of $L/Z(L)$. In particular, $\lambda^*(L)$ is finite-dimensional.

Proof. Suppose $\{x_1, \ldots, x_p \mid y_1, \ldots, y_q\}$ is a subset of L such that

$$\{x_1 + Z(L), \ldots, x_p + Z(L) \mid y_1 + Z(L), \ldots, y_q + Z(L)\}$$
is a minimal generator set of $L/Z(L)$. Define

$$\phi: \lambda^* \to (L^2)_{p} \oplus (L^2)_{q} \oplus (L^2)_{1},$$

$$\alpha \mapsto (\alpha(x_1), \ldots, \alpha(x_p), \alpha(y_1), \ldots, \alpha(y_q)).$$

Clearly, ϕ is an injective linear map. Therefore

$$\dim \lambda^*(L) \leq p \cdot \dim (L^2)_{p} + q \cdot \dim (L^2)_{q}.$$ \hfill (2.1)

Similarly,

$$\varphi: \lambda^* \to (L^2)_{q} \oplus (L^2)_{p} \oplus (L^2)_{1},$$

$$\beta \mapsto (\beta(y_1), \ldots, \beta(y_q), \beta(x_1), \ldots, \beta(x_p))$$
is an injective linear map and then

$$\dim \lambda^*(L) \leq q \cdot \dim (L^2)_{q} + p \cdot \dim (L^2)_{p}.$$ \hfill (2.2)

It follows from (2.1) and (2.2) that $\text{sdim} \lambda^*(L) \leq \lambda(L^2; p, q)$. \qed

Corollary 2.3. Let L be a Lie superalgebra. Then $\text{ad}(L)$ is finite-dimensional if and only if $\lambda^*(L)$ is finite-dimensional.

Proof. One direction is obvious. Suppose $\text{ad}(L)$ is finite-dimensional. Then $L/Z(L) \cong \text{ad}(L)$ is finite-dimensional and so is L^2. It follows from Theorem 2.2 that $\lambda^*(L)$ is finite-dimensional. \qed

3. Nilpotent Lie superalgebras of class 2 and model filiform Lie superalgebras

Let L be a Lie superalgebra over F. Recall that the lower central series of L is a sequence of ideals of L defined inductively by $L^1 = L$ and $L^n = [L^{n-1}, L]$ for $n \geq 2$. If there exists $n \geq 2$ such that $L^n = 0$, then L is called a nilpotent Lie superalgebra. The least integer n for which $L^{n+1} = 0$ is called the (nilpotent) class of L. Clearly, a Lie superalgebra is of class 1 if and only if it is abelian. We should mention that nilpotent Lie (super)algebras of class 2 are of particular interest in both mathematics and physics.

We also use the notion of super-nilindex for a Lie superalgebra $L = L_{\bar{0}} \oplus L_{\bar{1}}$. Write

$$C^0(L_{\alpha}) = L_{\alpha}, C^{k+1}(L_{\alpha}) = [L_{\alpha}, C^k(L_{\alpha})],$$
where $\alpha \in \mathbb{Z}_2$ and $k \geq 0$. If L is nilpotent, a pair (p, q) of nonnegative integers is called the super-nilindex of L, if

\[C^p(L_0) = 0, \ C^{p-1}(L_0) \neq 0; \ C^q(L_1) = 0, \ C^{q-1}(L_1) \neq 0. \]

Clearly, a Lie superalgebra is of super-nilindex $(1, 1)$ if and only if it is abelian with nontrivial even and odd parts.

A nilpotent Lie superalgebra of superdimension $(n + 1, m)$, where n and m are positive integers such that $n + m > 2$, is said to be filiform if its super-nilindex is (n, m) (see [N16], for example).

Let $L^{n,m}$ be a Lie superalgebra with basis

\[\{x_0, \ldots, x_n \mid y_1, \ldots, y_m\} \] (3.1)

and multiplication given by

\[[x_0, x_i] = x_{i+1}, \ 1 \leq i \leq n - 1, \ [x_0, y_j] = y_{j+1}, \ 1 \leq j \leq m - 1. \]

It is easy to prove that $L^{n,m}$ is a filiform Lie superalgebra, which is called the model filiform Lie superalgebra of super-nilindex (n, m) (see [N16], for example). We should mention that any filiform Lie superalgebra is a deformation of a model one in some sense (see [G04] for more details).

Among nilpotent Lie superalgebras of class 2, very interesting ingredients are the so-called generalized Heisenberg Lie superalgebras (see [NJ18] for non-superalgebra case).

Definition 3.1. A nonzero Lie superalgebra H is called a generalized Heisenberg Lie superalgebra if $H^2 = Z(H)$.

We note that a Heisenberg Lie superalgebra is a generalized Heisenberg Lie superalgebra with center of dimension 1 (see [RSS11] for more details). Before considering ID^*-superderivation algebras of generalized Heisenberg Lie superalgebras, let us point out that the minimal generator number pairs of nilpotent Lie superalgebras are unique. To prove this fact, we need a fact as in the Lie algebra case (see [M67, Corollary 2], [T73, Lemma 2.1]).

Lemma 3.2. Suppose L is a finite-dimensional nilpotent Lie superalgebra. If K is a sub-superalgebra of L such that $K + L^2 = L$. Then $K = L$.

Proposition 3.3. Suppose L is a finite-dimensional nilpotent Lie superalgebra. Then $\text{sdim}(L/L^2)$ is the unique minimal generator number pair of L.

Proof. Suppose (p, q) is a minimal generator number pair of L. Then $(p, q) \geq \text{sdim}(L/L^2)$, since L/L^2 is abelian. Then by Lemma 3.2, we have $(p, q) = \text{sdim}(L/L^2)$. The proof is complete.

Now we are position to determine the ID^*-superderivation algebras of generalized Heisenberg Lie superalgebras.

Proposition 3.4. Suppose H is a generalized Heisenberg Lie superalgebra of superdimension $\text{sdim}H = (m, n)$ and $\text{sdim}Z(H) = (m_1, n_1)$. Then

1. $\text{ID}^*(H)$ is isomorphic to the Lie superalgebra consisting of matrices

\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
A & 0 & C & 0 \\
0 & 0 & 0 & 0 \\
D & 0 & B & 0
\end{pmatrix} \in \mathfrak{gl}(m|n),
\]

where $A, C, D \in \mathbb{Z}_2$ and $k \geq 0$. If L is nilpotent, a pair (p, q) of nonnegative integers is called the super-nilindex of L, if

\[C^p(L_0) = 0, \ C^{p-1}(L_0) \neq 0; \ C^q(L_1) = 0, \ C^{q-1}(L_1) \neq 0. \]
where A, B, C and D are arbitrary matrices of formats $m_1 \times (m - m_1)$, $n_1 \times (n - n_1)$, $n_1 \times (m - n_1)$ and $m_1 \times (n - n_1)$, respectively.

(2) $\text{sdim}^{ID^*}(H)$ attains the upper bound $\lambda(H^2; p, q)$, where (p, q) is the minimal generator number pair of $H/\mathbb{Z}(H)$, which coincides with the superdimension of $H/\mathbb{Z}(H)$.

Proof. Suppose
\[
\{x_1, \ldots, x_{m-m_1+1}, \ldots, x_m \mid y_1, \ldots, y_{n-n_1+1}, \ldots, y_n\}
\]
is a basis of H such that $\mathbb{Z}(H)$ is spanned by
\[
\{x_{m-m_1+1}, \ldots, x_m \mid y_{n-n_1+1}, \ldots, y_n\}.
\]
Clearly, an even linear transformation of H is an ID^*-superderivation if and only if its matrix with respect to basis (3.2) is of form
\[
\begin{pmatrix}
0 & 0 & A & 0 \\
A & 0 & 0 & 0 \\
0 & 0 & B & 0 \\
\end{pmatrix},
\]
where A is an arbitrary $m_1 \times (m - m_1)$ matrix and B is an arbitrary $n_1 \times (n - n_1)$ matrix. In particular,
\[
\dim ID^*_0(H) = mn_1 + mn_1 - m_1^2 - n_1^2.
\]
Similarly, an odd linear transformation of H is an ID^*-superderivation if and only if its matrix with respect to basis (3.2) is of form
\[
\begin{pmatrix}
0 & 0 & C & 0 \\
0 & 0 & 0 & 0 \\
D & 0 & 0 & 0 \\
\end{pmatrix},
\]
where C is an arbitrary $n_1 \times (m - m_1)$ matrix and D is an arbitrary $m_1 \times (n - n_1)$ matrix. Therefore,
\[
\dim ID^*_1(H) = mn_1 + mn_1 - 2n_1 m_1.
\]
Since $H/\mathbb{Z}(H)$ is abelian and $\text{sdim}(H/\mathbb{Z}(H)) = (m - m_1, n - n_1)$, we have $(p, q) = (m - m_1, n - n_1)$ is the minimal generator number pair of $H/\mathbb{Z}(H)$. Hence
\[
\lambda(H^2; m - m_1, n - n_1) = (mn_1 + mn_1 - m_1^2 - n_1^2, nm_1 + mn_1 - 2n_1 m_1).
\]
Then by (3.3), we have
\[
\text{sdim}^{ID^*}(H) = \lambda(H^2; m - m_1, n - n_1).
\]
The proof is complete.

We should mention that there are many related researches on Heisenberg Lie superalgebras. For example, one may find a study on the cohomology of Heisenberg Lie superalgebras with coefficients in the trivial module [BL17].

Let us consider the ID^*-superderivation algebras of nilpotent Lie superalgebras of class 2. As in Lie algebra case, a nilpotent Lie superalgebra of class 2 is a direct sum of a generalized Heisenberg Lie superalgebra and an abelian Lie superalgebra [NJ18]:

On ID^*-superderivations of Lie superalgebras
Proposition 3.5. Let \(L \) be a finite-dimensional Lie superalgebra. Then \(L \) is nilpotent and of class 2 if and only if
\[
L = H \oplus S,
\]
where \(H \) is a generalized Heisenberg Lie subsuperalgebra and \(S \) is a central ideal of \(L \).

Proof. One direction is obvious. Suppose \(L \) is of nilpotent class 2. Then \(L^2 \subset Z(L) \) and there exists a central ideal \(S \) such that \(Z(L) = L^2 \oplus S \). Since \(L/L^2 \) is abelian, there exists an ideal \(H \) of \(L \) containing \(L^2 \) such that \(L/L^2 = H/L^2 \oplus Z(L)/L^2 \). Then
\[
L = H + Z(L) = H + L^2 + S = H + S.
\]
Note that \(H \cap Z(L) = L^2 \) and \(L^2 = H^2 \). Since \(S \cap L^2 = 0 \), we have \(S \cap H = S \cap H \cap Z(L) = S \cap L^2 = 0 \).

Hence \(L = H \oplus S \). We claim that \(Z(H) = L^2 \). In fact, it is clear that \(L^2 \subset Z(H) \). On the other hand, since \([Z(H), L] = [Z(H), H + Z(H)] = 0 \), we have \(Z(H) \subset Z(L) \cap H = L^2 \). So \(Z(H) = L^2 = H^2 \) and then \(H \) is a generalized Heisenberg Lie superalgebra. The proof is complete.

We call (3.4) a standard composition for a nilpotent Lie superalgebra of class 2. Note that the superdimension of \(L/Z(L) \) is just the unique minimal generator number pair of \(L/Z(L) \), since \(L/Z(L) \) is abelian.

Theorem 3.6. Let \(L \) be a finite-dimensional Lie superalgebra of nilpotent class 2 and \((p, q) \) the minimal generator number pair of \(L/Z(L) \). Suppose \(L = H \oplus S \) is a standard decomposition (Proposition 3.5) and
\[
\text{sdim}H = (m, n), \quad \text{sdim}Z(H) = (m_1, n_1), \quad \text{sdim}S = (s, t).
\]

Then

(1) \(\text{ID}^*(L) \) is isomorphic to the Lie superalgebra consisting of matrices
\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
A & 0 & C & 0 \\
0 & 0 & 0 & 0 \\
D & 0 & B & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \in \mathfrak{gl}(m|n),
\]
where \(A, B, C \) and \(D \) are arbitrary matrices of formats \(m_1 \times (m - m_1) \), \(n_1 \times (n - n_1) \), \(n_1 \times (m - m_1) \) and \(m_1 \times (n - n_1) \), respectively.

(2) \(\text{sdim} \text{ID}^*(L) \) attains the upper bound \(\lambda(L^2; p, q) \).

Proof. Since \(L = H \oplus S \) is a standard decomposition of \(L \), we have
\[
L^2 = H^2, \quad Z(L) = Z(H) \oplus S.
\]
Therefore, one sees that \(\text{ID}^*(L) \cong \text{ID}^*(H) \). Then our theorem follows from Proposition 3.5.
Finally, let us consider the ID*-superderivation algebras of model filiform Lie superalgebras. By Proposition 3.3, we have the following corollary.

Corollary 3.7. The minimal generator number pair of model filiform Lie superalgebra $L_{n,m}$ is $(2, 1)$.

Theorem 3.8. Let $L = L_{n,m}$ be a model filiform Lie superalgebra with a basis of $\mathfrak{sl}(n|m)$.

1. If $m > n = 1$, then $\text{ID}^*(L)$ is isomorphic to the Lie superalgebra consisting of matrices

\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
D & 0 & B & 0
\end{pmatrix} \in \mathfrak{gl}(m|n),
\]

where B is of form

\[
\begin{pmatrix}
b_{1,1} \\
b_{2,1} & b_{1,1} \\
\vdots & \vdots & \ddots \\
b_{m-1,1} & b_{m-2,1} & \cdots & b_{1,1}
\end{pmatrix},
\] (3.5)

D is of form

\[
\begin{pmatrix}
d_{1,1} \\
\vdots \\
d_{m-1,1}
\end{pmatrix}
\] (3.6)

with b_{ij}, d_{kl} arbitrary elements in \mathbb{F}.

If $n > m = 1$, then $\text{ID}^*(L)$ is isomorphic to the Lie superalgebra consisting of matrices

\[
\begin{pmatrix}
0 & 0 \\
A & 0
\end{pmatrix} \in \mathfrak{gl}(m|n),
\]

where A is of form

\[
\begin{pmatrix}
a_{1,1} & a_{1,2} \\
& a_{2,2} & a_{1,2} \\
\vdots & \vdots & \ddots \\
a_{n-1,1} & a_{n-2,2} & \cdots & a_{1,2}
\end{pmatrix}
\] (3.7)

with a_{ij} arbitrary elements in \mathbb{F}.

If $m \geq n \geq 2$, then $\text{ID}^*(L)$ is isomorphic to the Lie superalgebra consisting of matrices

\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
A & 0 & C & 0 \\
0 & 0 & 0 & 0 \\
D & 0 & B & 0
\end{pmatrix} \in \mathfrak{gl}(m|n),
\]

where A is of form (3.7), B is of form (3.5), D is of form

\[
\begin{pmatrix}
d_{1,1} & d_{1,2} \\
\vdots & \ddots \\
d_{n-1,1} & d_{n-2,2} & \cdots & d_{1,2} \\
\vdots & \ddots & \ddots \\
d_{m-1,1} & d_{m-2,2} & \cdots & d_{m-n+1,2}
\end{pmatrix}
\] (3.8)
and C is of form
\[
\begin{pmatrix}
c_{1,1} & & \\
c_{2,1} & c_{1,1} & \\
 & & \\
& & \\
c_{n-1,1} & c_{n-2,1} & \cdots & c_{1,1}
\end{pmatrix}
\]
with c_{st} and d_{mn} being arbitrary elements in \mathbb{F}.

If $n > m \geq 2$, then $\text{ID}^*(L)$ is isomorphic to the Lie superalgebra consisting of matrices
\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
A & 0 & C & 0 \\
0 & 0 & 0 & 0 \\
D & 0 & B & 0
\end{pmatrix}
\in \text{gl}(m|n),
\]
where A is of form (3.7), B is of form (3.5), C is of form
\[
\begin{pmatrix}
c_{1,1} & & \\
c_{2,1} & c_{1,1} & \\
 & & \\
& & \\
c_{m-1,1} & c_{m-2,1} & \cdots & c_{1,1}
\end{pmatrix}
\]
and D is of form
\[
\begin{pmatrix}
d_{1,1} & d_{1,2} & & \\
d_{2,1} & d_{2,2} & d_{1,2} & \\
 & & & \\
& & & \\
d_{m-1,1} & d_{m-2,1} & \cdots & d_{1,2}
\end{pmatrix}
\]
with c_{st} and d_{mn} being arbitrary elements in \mathbb{F}.

(2) $\text{sdim}\text{ID}^*(L)$ attains the upper bound $\lambda(L^2; p, q)$, where (p, q) is the minimal generator number pair of $L/\mathbb{Z}(L)$. Moreover
\[
(p, q) = \begin{cases}
(1,1), & m > n = 1 \\
(2,0), & n > m = 1 \\
(2,1), & m \geq 2, n \geq 2
\end{cases}
\]

Proof. Case 1: $m > n = 1$. Then
\[
\text{sdim}L^2 = (0, m-1), \quad \text{sdim}\mathbb{Z}(L) = (1,1).
\]
It is easy to see that $\text{sdim}(L/\mathbb{Z}(L))/(L/\mathbb{Z}(L))^2 = (1,1)$. By Proposition 3.3, we have $(1,1)$ is the minimal generator number pair of $L/\mathbb{Z}(L)$ and
\[
\lambda(L^2; 1, 1) = (m-1, m-1).
\]

Clearly, an even linear transformation of L is an ID^*-superderivation if and only if its matrix with respect to basis (3.1) is of form
\[
\begin{pmatrix}
0 & 0 \\
B & 0
\end{pmatrix}
\]
where B is of form (3.5). Hence, $\dim_{\mathcal{D}_0}(L) = m - 1$. Similarly, an odd linear transformation of L is an \mathcal{D}_0^*-superderivation if and only if its matrix with respect to basis (3.1) is of form
\[
\begin{pmatrix}
0 & 0 \\
D & 0
\end{pmatrix},
\]
where D is of form (3.6). Therefore $\dim_{\mathcal{D}_0}(L) = m - 1$. Then by (3.12), we have
\[
\text{sdim}_{\mathcal{D}_0}(L) = \lambda(L^2; 1, 1).
\]

Case 2: $n > m = 1$. Then
\[
\text{sdim} L^2 = (n - 1, 0), \quad \text{sdim} Z(L) = (1, 1).
\]
It is easy to see that $\text{sdim}(L/Z(L))/(L/Z(L))^2 = (2, 0)$. By Proposition 3.3, we have (2, 0) is the minimal generator number pair of $L/Z(L)$ and
\[
\lambda(L^2; 2, 0) = (2n - 2, 0).
\]

Clearly, an even linear transformation of L is an \mathcal{D}_0^*-superderivation if and only if its matrix with respect to basis (3.1) is of form
\[
\begin{pmatrix}
0 & 0 \\
A & 0
\end{pmatrix},
\]
where A is of form (3.7). Hence, $\dim_{\mathcal{D}_0}(L) = 2n - 2$. Similarly, an odd linear transformation of L is an \mathcal{D}_0^*-superderivation if and only if its matrix with respect to basis (3.1) is 0. Therefore $\dim_{\mathcal{D}_0}(L) = 0$. Then by (3.13), we have
\[
\text{sdim}_{\mathcal{D}_0}(L) = \lambda(L^2; 2, 0).
\]

Case 3: $m \geq n \geq 2$. Then
\[
\text{sdim} L^2 = (n - 1, m - 1), \quad L/Z(L) \cong L^{n-1,m-1}.
\]
It follows from Corollary 3.4 that (2, 1) is the minimal generator number pair of $L/Z(L)$ and
\[
\lambda(L^2; 2, 1) = (2n + m - 3, 2m + n - 3).
\]

Clearly, an even linear transformation of L is an \mathcal{D}_0^*-superderivation if and only if its matrix with respect to basis (3.1) is of form
\[
\begin{pmatrix}
0 & 0 \\
A & 0
\end{pmatrix},
\]
\[
\begin{pmatrix}
0 & 0 \\
D & 0
\end{pmatrix},
\]
\[
\begin{pmatrix}
0 & 0 \\
B & 0
\end{pmatrix}.
\]
where A is of form (3.7) and B is of form (3.5). Hence, $\dim \text{ID}_0^*(L) = 2n + m - 3$. Similarly, an odd linear transformation of L is an ID*-superderivation if and only if its matrix with respect to basis (3.1) is of form

$$\begin{pmatrix}
0 & 0 & C & 0 \\
0 & 0 & 0 & 0 \\
D & 0 & 0 & 0
\end{pmatrix},$$

where D is of form (3.8) and C is of form (3.9). Therefore $\dim \text{ID}_1^*(L) = 2m + n - 3$. Similarly, an even linear transformation of L is an ID*-superderivation if and only if its matrix with respect to basis (3.1) is of form

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
A & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix},$$

where A is of form (3.7) and B is of form (3.5). Hence, $\dim \text{ID}_0^*(L) = 2n + m - 3$. Similarly, an odd linear transformation of L is an ID*-superderivation if and only if its matrix with respect to basis (3.1) is of form

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & C & 0 \\
D & 0 & 0 & 0
\end{pmatrix},$$

where C is of form (3.10) and D is of form (3.11). Therefore, $\dim \text{ID}_1^*(L) = 2m + n - 3$. Then by (3.14), we have

$$\text{sdim} \text{ID}^*(L) = \lambda(L^2; 2, 1).$$

Case 4: $n > m \geq 2$. Then

$$\text{sdim}L^2 = (n - 1, m - 1), \quad L/Z(L) \cong L^{n-1,m-1}.$$

It follows from Corollary (3.7) that (2, 1) is the minimal generator number pair of $L/Z(L)$ and

$$\lambda(L^2; 2, 1) = (2n + m - 3, 2m + n - 3).$$

Clearly, an even linear transformation of L is an ID*-superderivation if and only if its matrix with respect to basis (3.1) is of form

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
A & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix},$$

where A is of form (3.7) and B is of form (3.5). Hence, $\dim \text{ID}_0^*(L) = 2n + m - 3$. Similarly, an odd linear transformation of L is an ID*-superderivation if and only if its matrix with respect to basis (3.1) is of form

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & C & 0 \\
D & 0 & 0 & 0
\end{pmatrix},$$

where C is of form (3.10) and D is of form (3.11). Therefore, $\dim \text{ID}_1^*(L) = 2m + n - 3$. Then by (3.14), we have

$$\text{sdim} \text{ID}^*(L) = \lambda(L^2; 2, 1).$$

The proof is complete.

For a more detailed description of the first cohomology group of model filiform Lie superalgebra with coefficients in the adjoint module, the reader is referred to [LY18].

References

[AS15] H. Arabyani, F. Saeedi, On dimensions of derived algebra and central factor of a Lie algebra. Bull. Iranian Math. Soc. 41 (2015): 1093–1102.
[BL17] W. Bai, W. Liu, Cohomology of Heisenberg Lie superalgebra. J. Math. Phys. 58 (2017): 021701-1–021701-14.

[G04] M. Gilg, On deformations of the filiform Lie superalgebra $L_{n,m}$. Comm. Algebra 32 (2004): 2099–2115.

[LY18] W. Liu, Y. Yang, Cohomology of model filiform Lie superalgebra. J. Algebra Appl. 17 (2018): 1850074-1–1850074-13.

[M67] E. I. Marshall, The Frattini subalgebra of a Lie algebra. J. London Math. Soc. 42 (1967): 416–422.

[N16] R. M. Navarro, Low-dimensional filiform Lie superalgebras. J. Geom. Phys. 108 (2016): 71–82.

[NJ18] P. Niroomand and F. Johari, The structure, capability and the Schur multiplier of generalized Heisenberg Lie algebras J. Algebra 505 (2018): 482–489.

[RSS11] M.C. Rodriguez-Vallarte, G. Salgado, O.A. Sanchez-Valenzuela, Heisenberg Lie superalgebras and their invariant superorthogonal and supersymplectic forms. J. Algebra 332 (2011): 71–86.

[T73] D. A. Towers, A frattini theory for algebras. Proc. London Math. Soc. 27 (3) (1973): 440–462.