Characterization of the genomic region containing the Shadow of Prion Protein (SPRN) gene in sheep
Evelyne Lampo, Mario van Poucke, Karine Hugot, Hélène Hayes, Alex van Zeveren, Luc J. Peelman

To cite this version:
Evelyne Lampo, Mario van Poucke, Karine Hugot, Hélène Hayes, Alex van Zeveren, et al.. Characterization of the genomic region containing the Shadow of Prion Protein (SPRN) gene in sheep. BMC Genomics, 2007, 8, pp.138. hal-02660536

HAL Id: hal-02660536
https://hal.inrae.fr/hal-02660536
Submitted on 30 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Research article

Characterization of the genomic region containing the Shadow of Prion Protein (SPRN) gene in sheep

Evelyne Lampo¹, Mario Van Poucke¹, Karine Hugot², Hélène Hayes³, Alex Van Zeveren¹ and Luc J Peelman*¹

Address: ¹Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; ²CRB GADIE, INRA, DGA, Laboratoire de Radiobiologie et d’Etude du Genome, INRA Jouy-en-Josas, F-78352 France; ³CEA, DSV, DRR, Laboratoire de Radiobiologie et d’Etude du Genome, INRA Jouy-en-Josas, F-78352 France

Email: Evelyne Lampo - Evelyne.Lampo@UGent.be; Mario Van Poucke - Mario.VanPoucke@UGent.be; Karine Hugot - Karine.Hugot@jouy.inra.fr; Hélène Hayes - Helene.Hayes@jouy.inra.fr; Alex Van Zeveren - Alex.VanZeveren@UGent.be; Luc J Peelman* - Luc.Peelman@UGent.be

* Corresponding author

Abstract

Background: TSEs are a group of fatal neurodegenerative diseases occurring in man and animals. They are caused by prions, alternatively folded forms of the endogenous prion protein, encoded by *PRNP* [1,2]. Since differences in the sequence of *PRNP* can not explain all variation in TSE susceptibility, there is growing interest in other genes that might have an influence on this susceptibility. One of these genes is *SPRN*, a gene coding for a protein showing remarkable similarities with the prion protein. Until now, *SPRN* has not been described in sheep, a highly relevant species in prion matters.

Results: In order to characterize the genomic region containing *SPRN* in sheep, a BAC mini-contig was built, covering approximately 200,000 bp and containing the genes ECHS1, PAOX, MTG1, SPRN, LOC619207, CYP2E1 and at least partially SYCE1. FISH mapping of the two most exterior BAC clones of the contig positioned this contig on Oari22q24. A fragment of 4,544 bp was also sequenced, covering the entire *SPRN* gene and 1206 bp of the promoter region. In addition, the transcription profile of *SPRN* in 21 tissues was determined by RT-PCR, showing high levels in cerebrum and cerebellum, and low levels in testis, lymph node, ileum, colon and rectum.

Conclusion: Annotation of a mini-contig including *SPRN* suggests conserved linkage between Oari22q24 and Hsap10q26. The ovine *SPRN* sequence, described for the first time, shows a high level of homology with the bovine, and to a lesser extent with the human *SPRN* sequence. In addition, transcription profiling in sheep reveals main expression of *SPRN* in brain tissue, as in rat, cow, man and mouse.

Background

TSEs are a group of fatal neurodegenerative diseases, caused by prions (PrPSc). These infectious particles are alternatively folded forms of the endogenous protein PrPC, encoded by *PRNP* [1,2]. Conversion of PrPC into PrPSc requires the presence of PrPSc and probably also of a not identified species-specific protein, 'protein X' [3,4].

In sheep, TSE susceptibility is influenced by polymorphisms of the *PRNP* gene, with the alleles coding for
alanine, arginine and arginine at positions 136, 154 and 171 of the prion protein associated with a high resistance to classical scrapie and BSE [5]. Nevertheless, this resistance is not absolute, since it has been shown that atypical scrapie can occur in sheep with the genotype ARR/ARR [6-11]. sheep with this genotype can be artificially infected with BSE [12] and infectivity has been detected in the spleen of an ARR/ARR sheep, experimentally infected with BSE [13]. Moreover, the presumed resistance of ARR/ARR sheep might be due to a longer incubation period in these animals and subclinically infected sheep might transmit TSE infections unnoticed [14,15]. Therefore, there is growing interest in other genes and proteins which could have an influence on TSE susceptibility in sheep.

One of these genes is PRND, a PRNP homologue found near the PRNP gene and having structural and biochemical similarities with PRNP [22]. However, no clear influence of PRND on TSE susceptibility has been found to date [16,17]. Also, a number of proteins with a high affinity for the prion protein, among which the 37-kDa/67-kDa laminin receptor, have been discovered [18,19] and could be important as ‘protein X’ candidates. In addition, gene expression studies in the brain of scrapie-infected mice have identified a large number of genes, potentially involved in the pathogenesis of TSEs [20-22].

Based on comparative genomics, Premzl et al. [23] have discovered SPRN, a new candidate gene which codes for the Shadoo protein of 130–150 amino acids. This gene has already been described in man, mouse, rat, fish [23] and cow [24] and is predicted in chimpanzee (Genbank:XM_001146049). The Shadoo protein has also been identified in Sumatran orang-utan, rhesus macaque, white-tufted-ear marmoset, rabbit, guinea pig, dog, little brown bat, gray short-tailed opossum, chicken and western clawed frog [25]. An evolutionary model proposes that SPRN shares a common ancestor with PRNP [26], since it presents several important similarities with PRNP. First, the open reading frame of SPRN is located entirely in the last exon, with one preceding non-coding exon (one or two in PRNP) [23,27]. In addition, Shadoo is predicted to be extracellular and glycosylphosphatidylinositol-anchored. Moreover, the most remarkable structural feature of Shadoo is the presence of a hydrophobic sequence, composed of aliphatic amino acids and very similar to the hydrophobic sequence typically found in PrP and PrP-like proteins [23,28,29].

Apart from the structural similarities between SPRN and PRNP, the expression profile of SPRN also makes this gene an interesting candidate for further research. According to the results of RT-PCR and Northern blot analyses in cow [24], RT-PCR in rat [23], and CDNA, EST and SAGE map data in man and mouse [25], SPRN is mainly expressed in brain tissue, the most important target organ for prion infections. Since PrP knock-out mice [30] and cattle lacking the prion protein [31] show no major phenotypic changes, another gene, possibly SPRN, might take over the physiological function of the prion protein.

In this study, the genomic region containing SPRN in sheep was investigated using comparative mapping and sequencing and transcription profiling of the SPRN gene were performed.

Results and discussion

Construction and annotation of a BAC mini-contig containing SPRN

The construction of a BAC contig containing SPRN was started by screening the INRA ovine BAC library with primers based on the genes PAOX and CYT2E1, with PAOX approximately 30,000 bp proximal from SPRN and CYT2E1 approximately 120,000 bp distal from SPRN, according to the human genome sequence. One BAC clone was found with the PAOX primers (OariBAC273H7) and two with the CYT2E1 primers (OariBAC265G4 and OariBAC567E3). Primers based on BESs of OariBAC273H7 and OariBAC265G4 did not permit to identify overlapping clones. Therefore, a new screening of the ovine BAC library was performed with the OariBAC273H7 UP primers, resulting in the identification of two new BAC clones (OariBAC182G04 and OariBAC161G10). Primers based on OariBAC161G10 BES (with one primer designed outside the repeat sequence, resulting in an amplicon of which 82 bp are not part of any repetitive element) showed an overlap between the PAOX and the CYT2E1 subcontig. The total mini-contig thus consists of five BAC clones and is shown in Figure 1. Based on a comparison with the human genome sequence, the contig can be estimated to cover approximately 200,000 bp.

Both BESs and internal BAC sequences were used to annotate the contig. Sequencing of the BESs of the five clones resulted in ten sequences, of which four contain a high amount of repeat sequences (Genbank:EI184567, Genbank:EI184564, Genbank:EI184562 and Genbank:EI184563). Three BESs could be annotated, one (Genbank:EI184569) by comparison with the human genome sequence (Genbank:AL360181), and two (Genbank:EI184565 and Genbank:EI184561) by comparison with bovine genes, showing homology with the intron sequence of respectively ECHS1 (Genbank:DO058603) and PAOX (Genbank:DO058602). Three BESs revealed no relevant homology. Detailed information on the BESs is given in Table 1.

Comparison of internal BAC sequences with the human genome sequence revealed the presence of ECHS1, PAOX,
human genome sequence corresponding to the sheep contig. Primers based on human sequences were tested for these genes, but no PCR product could be created on sheep DNA. All PCR products show a high level of homology with the human genome sequence, except that of MTG1, which shows homology only with the bovine sequence, probably because of the high intron content of the PCR product. Nucleotide identity and amino acid identity and positivity (amino acids are identical or share the same characteristics) of the amplicons with known sequences are shown in Table 2.

Order as well as orientation of the identified genes present in the sheep contig are identical to those of the corresponding region in man (Hsap10q26; human genome sequence), supporting conserved linkage between these species. In cattle, PAOX has an opposite orientation (Btau26q23; [24]). Remarkably, the block ECHS1, PAOX, MTG1 and SPRN seems highly conserved, as it is also found in man, mouse and even fugu [23]. The scavenger receptor close to SPRN in man and mouse, mentioned by Premzl et al. [23], is probably LOC619207 (as it codes for a scavenger receptor protein family member), and is therefore also present in the sheep contig.

FISH mapping of the contig

FISH mapping positioned clones OariBAC273H7 and OariBAC265G4 on chromosome Oari22q24 (Figures 2a and 2b). These results are in accordance with the homologous chromosome painting data reported by Iannuzzi et al., showing correspondences between the distal part of human chromosome 10 and sheep chromosome 22 [32]. Moreover, the presence of OariBAC273H7 and OariBAC265G4, the most exterior BAC clones of the contig, on the same chromosome location, shows that no chromosome jumping has taken place during the construction of the contig. Localization of the contig maps the genes ECHS1, PAOX, MTG1, SPRN, LOC619207, CYP2E1 and SYCE1 to Oari22q24.

Sequencing SPRN in sheep

Sequencing of the SPRN gene was started with primers based on the bovine sequence NW_993476 (a contig containing SPRN partially). Next, primers based on the sheep SPRN sequence obtained during this work and primers based on the bovine sequence DQ058606 were used (Table 3). The overlapping amplicons resulted in a sequence of 4,544 bp, covering the entire SPRN gene and a stretch of 1206 bp of the promoter region (Genbank: DQ058606). Exon 1 has a length of 108 bp, intron 1 a length of 735 bp and exon 2 a length of 2495 bp, of which 438 bp are coding sequence. All overlaps between the different amplicons (average overlap: 172 bp) were 100% identical. The intron/exon splice sites and the position of the coding sequence were determined by compar-
Table 1: Characteristics of the BESs.

OariBAC clone	Accession number	Length sequence (bp)	Annotation (repeats (class/family) or nucleic acid identity with described sequences)
273H7-UP	EI184560	650	No repeats, no homology found
273H7-RP	EI184569	723	Cow: NM_001076278: 91%
567E3-UP	EI184567	752	21–173: L1M4 (LINE/L1)
567E3-RP	EI184564	824	160–752: BovB (LINE/RTT)
265G4-UP	EI184562	743	29–823: L1MA4 (LINE/L1)
265G4-RP	EI184566	454	114–257: MER34A1 (LTR/ERV1)
182G04-UP	EI184568	171	318–426: L1MC3 (LINE/L1)
182G04-RP	EI184565	391	498–688: L1MC3 (LINE/L1)
161G10-UP	EI184561	267	
161G10-RP	EI184563	306	

OariBAC clone	Accession number	Length sequence (bp)	Annotation (repeats (class/family) or nucleic acid identity with described sequences)
273H7-UP	EI184560	650	No repeats, no homology found
273H7-RP	EI184569	723	Cow: NM_001076278: 91%
567E3-UP	EI184567	752	21–173: L1M4 (LINE/L1)
567E3-RP	EI184564	824	160–752: BovB (LINE/RTT)
265G4-UP	EI184562	743	29–823: L1MA4 (LINE/L1)
265G4-RP	EI184566	454	114–257: MER34A1 (LTR/ERV1)
182G04-UP	EI184568	171	318–426: L1MC3 (LINE/L1)
182G04-RP	EI184565	391	498–688: L1MC3 (LINE/L1)
161G10-UP	EI184561	267	
161G10-RP	EI184563	306	

Table 2: Amplicon characteristics of primers used for the annotation of the contig and the transcription profiling.

Gene symbol or primer’s name	Forward primer (5’-3’)	Reverse primer (5’-3’)	Ta (°C)	Length (bp)	Accession number	amplicons
ECHS1	GCAAGAAGTGGAAAAAGAAGCAAGCA	GGCTCTAAAAAACCAGCAGA	65	646		
PAOX	GATCTGGACATCTTCTTTGA	GTCTCTCCACACACCTCTG	65	274		
MTG1	CAGCTACCGCTATCACCGAGA	GGAGGAAGTCTGTGCTACCAGT	60	154		
SPRN	GCGAGGTGCTGCTGAGG	GCAGGCTCACACACACAGA	68	-		
LOC619207	GCGGCTGTCAGCAGGA	GGCTCTGCCCCCCAGGAG	65	220		
CYP2E1	AAGAAATATGACAGGTTGATGTGG	AGGGAAGGGATGTGATGAAT	60	117		
SYCE1	GAGACGGGCAAGGAGGACGT	GGCTCACATCTCCGACGCT	65	149		
OariBAC273H7 UP	GGCCATCCTGCTGACGACCAGTC	GGCTCACATCTCCGACGCT	65	149		
OariBAC265G4 RP	TGAAGTAAAGACCGACCAAA	TACGCTGACGATAGTACCC	63	328		
OariBAC161G10 RP	CAGCTTGGACGACCTTCTT	TTTAAACTGGCCACACACC	63	328		
ACTB	CGCAGCAGGATGACGAAAAGA	GCTGATCCACTGCTGTAAGG	60	148		
UP	CAGCTTTGAAAAAGGCAGGAGCG		55	-		
RP	CAGAGGAAAGAGGATGACGACATG	ATTACG	55	-		

For amplicons containing both exon and intron sequences (ECHS1, MTG1, and SYCE1), sequence identity and positivity is shown for the exon parts of the amplicon.
ison with the bovine (Genbank:DQ058606) and human (Genbank:NW_001012508) SPRN sequences. The 3’ end of the gene was determined by sequencing cDNA from cerebrum mRNA.

The coding sequence of sheep SPRN has 93% respectively 78% nucleic acid identity, and 95% respectively 76% amino acid identity with cow and man. The complete sequence obtained here (Genbank:DQ870545) has 92% nucleic acid identity with the bovine SPRN sequence (Genbank:DQ058606). The GC content of the coding sequence in sheep is high (79%), as in cow (77%) and man (79%). The overall GC content of the obtained SPRN sequence in sheep is 70%.

Comparison of the deduced amino acid sequence between sheep and other mammals reveals a high level of conservation in the typical hydrophobic region of SPRN (see Figure 3). This hydrophobic sequence, containing the palindrome sequence AGAAAGA, is a typical characteristic of SPRN and is very similar to the hydrophobic region found in PrP and PrP-like proteins [23,28,29]. In prion protein, this region has remained highly conserved during evolution [27,33] and thus may be an important functional region. The synthetic peptide PrP 106–126, containing the hydrophobic sequence, has been shown neurotoxic in vitro and in vivo [34,35] and this neurotoxicity seems to depend on the presence of the palindrome sequence [36]. The hydrophobic region also plays a role in the conversion of PrPC into PrPSc. PrPC without the palindrome sequence cannot be converted into PrPSc [37] and does not bind with PrPSc or PrP 106–126 [38]. Moreover, a PrP transgene expressing a mutant PrP with a deletion of the palindrome region acts as a dominant-negative mutant, inhibiting the conversion of wild-type PrPC into PrPSc [38].

Transcription profiling of SPRN by RT-PCR

After isolation of total RNA and subsequent conversion to cDNA, the presence of SPRN transcripts was examined by RT-PCR with SPRN primer no. 9 in 21 different tissues. The RT-PCR, performed in triplicate, showed high levels of SPRN mRNA in cerebrum and cerebellum (Figure 4a) and low levels in testis, lymph node, jejunum, ileum, colon and rectum (very faint bands on Figure 4a). No SPRN mRNA was detected in obex, spleen, kidney, liver, lung, heart, muscle, tongue, rumen, omasum, abomasum, duodenum and caecum. An RT-PCR with SPRN primer no. 11, also performed in triplicate, on the same tissues showed similar patterns. The results of a control PCR with ACTB primers are shown in Figure 4b.

These results of the transcription profiling in sheep are in good agreement with the data available in other species. Results of RT-PCR and Northern blot analyses in cattle [24], RT-PCR in rat [23] and cDNA, EST and SAGE map data analyses in man and mouse [25] all show that expression of SPRN is highest in brain tissue. Comparison of the SPRN transcription profile of the non-brain tissues between sheep and other species is more difficult, as the transcription level is lower in the other positive tissues, in sheep as well as in cow and rat.

Transcription profiling was performed by RT-PCR. This method permits the rapid testing of a large number of different tissues for the presence of a certain transcript. RT-PCR does not give detailed quantitative information on expression, therefore more time consuming methods like
real-time PCR or real competitive PCR are needed [39].
However, RT-PCR results give an overall view and can be the basis to choose tissues of interest for more extended, quantitative experiments.

Conclusion

In this study, *SPRN* as well as six genes surrounding the *SPRN* locus, *ECHS1*, *PAOX*, *MTG1*, *LOC619207*, *CYP2E1* and *SYCE1*, have been identified in sheep for the first time. A contig containing these genes was constructed and annotated, suggesting conserved linkage between sheep and man in this region. The contig was FISH mapped to Oari22q24. A 4,544 bp fragment was also sequenced, covering the entire *SPRN* gene and 1206 bp of the promoter region. A high level of sequence homology was found with the bovine *SPRN* and, to a lesser extent, with the human *SPRN*. In addition, the transcription profile of *SPRN* was determined in 21 ovine tissues, confirming that *SPRN* is mainly expressed in brain tissue. These results are the first description of the *SPRN* gene in sheep and should be useful as a basis for further research on this prion-like protein.

Methods

Primer design and PCR

Primers were designed with Primer3 [40] based on sequences found in NCBI Entrez Gene [41] or on BESs, and all amplicons were verified by sequencing. A list of the primers used with their conditions is given in Tables 2 and 3. PCR was performed with 0.5 U Faststart Taq DNA Polymerase (Roche), 2.0 mM Mg and 200 μM (each) dNTPs (Bioline) on 200 ng BAC DNA, 20–200 ng RNA or on reverse transcribed RNA. For the amplification of *SPRN* sequences, a 5x solution of GC-rich (supplied with the Faststart Taq DNA Polymerase) was added. PCR conditions were 5 min at 95°C, 40 cycles of 30 s at 95°C, 30 s at the annealing temperature and 1 min at 72°C, and a final 10 min elongation at 72°C.

Table 3: Amplicon characteristics of the *SPRN* primers used.

Number	Forward primer (5'-3')	Reverse primer (5'-3')	Ta (°C)	Position in sequence
1	ACTCCCGCTCTGGGCTCTGT	GGCTCTGTCTTGGTCTTGAAGGT	63	1–645
2	TTCAGGGGACCACAGGATCGAA	GGCTCTGTCTTGGTCTTGAAGGT	60	549–1035
3	GTGCCAGATGGGCTGTGAGGAG	GGCTCTGTCTTGGTCTTGAAGGT	60	973–1302
4	GAGACCGGATGCGTGAGGAG	GGCTCTGTCTTGGTCTTGAAGGT	64	988–1588
5	CAGGGGCTCCTTGCTGCTC	GGCTCTGTCTTGGTCTTGAAGGT	64	1375–1881
6	ATCCTCACCCGCTCCCTTCTTG	GGCTCTGTCTTGGTCTTGAAGGT	66	1619–2104
7	CCAGCTCGACGCCCTCTGTAGC	GGCTCTGTCTTGGTCTTGAAGGT	66	1967–2300
8	CGGTGCTCTGGCCTCTGTG	GGCTCTGTCTTGGTCTTGAAGGT	68	2082–2337
9	CCGAAGAAGGCTGAGGAGGAG	GGCTCTGTCTTGGTCTTGAAGGT	68	2189–2424
10	AGCTGGGGAGGCTGAGGAGGAG	GGCTCTGTCTTGGTCTTGAAGGT	68	2384–3061
11	AGCCCACCCGCTCAGTTGAGA	GGCTCTGTCTTGGTCTTGAAGGT	66	2852–3297
12	GTGCTCCTCGCTCGAGGAGGAG	GGCTCTGTCTTGGTCTTGAAGGT	66	3071–3725
13	CGGTGCTCTGGCCTCTGTG	GGCTCTGTCTTGGTCTTGAAGGT	65	3574–3996
14	GCCAGATGCCCTTCATCCTAC	GGCTCTGTCTTGGTCTTGAAGGT	65	3760–4330
15	GGAGGCTCGACGACACACT	GGCTCTGTCTTGGTCTTGAAGGT	65	4226–4504
16	CCCGCTCAGAAATTGTGACG	GGCTCTGTCTTGGTCTTGAAGGT	66	4263–4544
17	GTGACCTCCGCTCCAGGAGTGA	GGCTCTGTCTTGGTCTTGAAGGT	68	4354–4544
18	TCCAGTCTCCGTAGGTGAG	GGCTCTGTCTTGGTCTTGAAGGT	420	-
Construction and annotation of a BAC contig

Primers for the genes PAOX and CYP2E1 were used for the initial screening of the INRA ovine BAC library by PCR [42]. BAC DNA from three isolated BAC clones was purified from 200 ml culture using the Qiagen Plasmid Midi kit (Qiagen) and the BAC ends were sequenced with UP and RP, using 1 μg DNA per reaction. Primers designed on the BESs of the isolated BAC clones were used to find overlaps between these BAC clones and the OariBAC273H7 UP primers were used to screen the INRA ovine BAC library for new BAC clones in order to close the gap between the two subcontigs. Annotation of the contig was performed by comparing BESs with the human genome sequence and by PCR with primers for genes presumed to be present in the contig. Comparisons were done with NCBI Blast [43] and repeat sequences were detected and identified with Repeatmasker Web Server [44].

FISH

For probe preparation, BAC DNA extracts were prepared according to standard protocols and purified with the S.N.A.P. K1900-01 Miniprep kit (Invitrogen life technologies). DNA was then labelled by nick-translation with biotin-14-dATP (BioNick 18247-015 labelling system, Invitrogen life technologies), mixed with 100x total sonicated herring sperm DNA and 100x total sonicated sheep DNA, ethanol precipitated, slightly dried and resuspended in hybridization buffer.

R-banded chromosome spreads were obtained from sheep embryo fibroblast cell cultures synchronized with an excess of thymidine and treated with 5-bromodeoxyuridine during the second half of S phase [45]. Fluorescent in situ hybridization, signal detection and R-banding were performed as previously described [46] with 50–100 ng of biotin-14-dATP labelled probe per slide. Before hybridization to the chromosomes, probes were denatured at 100°C for 10 min and pre-hybridized at 37°C for 30–60 min. Slides were examined under a Zeiss Axioplan 2 epifluorescence microscope and the Applied Imaging Cytovision (version 2.7) software was used for image capturing and analysis. Chromosome identification and band nomenclature for sheep chromosomes follow the R-banded standard ideogram reported in ISCNDB2000 [47].

Sequencing

For sequencing SPRN in sheep, the primers mentioned in Table 3 were used. Amplicons of the SPRN primers no. 2, 3, 4 and 5 were cloned and sequenced with UP and RP. The other amplicons were sequenced by direct sequencing.

The 3’ end of the ovine SPRN sequence was obtained using mRNA from cerebrum tissue, isolated with the Illustra™ Quickprep Micro mRNA Purification kit according to the manufacturer’s protocol. The obtained mRNA then was converted into cDNA with the Improm-II Reverse Transcriptase kit (Promega) using a newly designed oligo dT primer (SPRN primer no. 18) which adds 42 bp to the cDNA. Finally, a PCR with SPRN primers no. 16, followed by a PCR with the nested SPRN primers no. 17 (both cre-
ating an amplicon including the polyA sequence) was performed on 10x diluted cDNA and the obtained amplicon was directly sequenced with SPRN primers no. 17.

All sequencing was performed on a Applied Biosystems 3730xl DNA Analyser with the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems).

RNA isolation, cDNA synthesis and RT-PCR

Tissues for RNA isolation were collected in a commercial sheep slaughterhouse, immediately frozen in liquid nitrogen, crushed to powder the same day and stored at -80°C. Total RNA was isolated with the Rneasy plus mini kit (Qiagen) on 30 mg tissue, except for heart, muscle and tongue, where TRIR (ABgene) and 80–100 mg tissue were used. Both methods were performed according to the manufacturer’s protocol and followed by a DNase treatment with RQ1 RNase-free DNase (Promega) and a spin-column purification with Microcon YM-100 (Millipore), according to the product’s user guides. RNA concentration and OD$_{260/280}$ ratio of the samples were measured with the Nanodrop ND-1000 Spectrophotometer (Isogen) and RNA quality was measured by evaluation of the 28S and the 18S ribosomal bands on a 0.8% agarose gel. Also, a minus RT-PCR was performed on 1 μl RNA to confirm the absence of any DNA contamination. After RNA controls, 0.2–1 μg RNA was converted into cDNA with the Improm-II Reverse Transcriptase kit (Promega) using Random and Oligo dT primers (each 0.5 μg per reaction), and the conversion was confirmed by a PCR with ACTB primers (giving an amplicon of different length on gDNA and cDNA) on 10x diluted cDNA. Determination of the transcription profile of SPRN was performed with SPRN primers no. 9 and SPRN primers no. 11 on 10x diluted cDNA.

List of abbreviations

ACTB: gene coding for actin-beta

ARR: genotype of PRNP coding for alanine-arginine-arginine at positions 136, 154 and 171 of PrP

BAC: bacterial artificial chromosome

BES: BAC end sequence

BSE: bovine spongiform encephalopathy

Btau: Bos taurus

cDNA: complementary DNA

CYP2E1: gene coding for cytochrome P450, family 2, subfamily E, polypeptide 1

ECHS1: gene coding for enoyl Coenzyme A hydratase, short chain, 1, mitochondrial

ERV: endogenous retrovirus

EST: expressed sequence tag

FISH: fluorescence in situ hybridization

gDNA: genomic DNA

HTG: high throughput genomic sequence

Hsap: Homo sapiens

LINE: long interspersed nuclear element

LOC619207: gene coding for scavenger receptor protein family member

Figure 4

Transcription profiling of SPRN in 21 sheep tissues. (a) RT-PCR with SPRN primers no. 9 and (b) Control PCR with ACTB primers. Marker (M) is the 1 Kb+ ladder (Invitrogen). Samples are cDNA of cerebrum (Cbu), cerebellum (Cbe), obex (Ob), spleen (Sp), kidney (Ki), liver (Li), lung (Lu), heart (He), muscle (Mu), tongue (To), testis (Te), lymph node (Ln), rumen (Ru), omasum (Om), abomasum (Ab), duodenum (Dd), jejunum (Je), ileum (Il), colon (Co), caecum (Ca), rectum (Re), positive control (+) and negative control (-).

Sample	M	Cbe	Cbu	Ob	Sp	Ki	Lu	Li	He	Mu	To	Te	ToMuHeLuLiKiSpObCbuM
--------	---	-----	-----	----	----	----	----	----	----	----	----	----	
(a)													
(b)													
LTP: long terminal repeat

MTG1: gene coding for mitochondrial GTPase 1 homolog (S. cerevisiae)

Oari: Ovis aries

PAOX: gene coding for polyanime oxidase (exo-N4-amino)

PCR: polymerase chain reaction

PRND: gene coding for prion protein 2 (dublet)

PRNP: gene coding for prion protein

PrP: prion protein

PrPSc: cellular form of the prion protein

PrPSc: disease causing form of the prion protein

RP: reverse primer

RT: reverse transcriptase

SAGE: serial analysis of gene expression

SPRN: gene coding for Shadow of prion protein

SYCE1: gene coding for synaptonemal complex central element protein 1

TSE: transmissible spongiform encephalopathy

UP: universal primer

Authors’ contributions

EL carried out the contig building and annotation, the sequencing, the transcription profiling, and drafted this manuscript. MVP participated in the study design and provided experimental support. KH performed the BAC screening. HH supervised the FISH mapping. AVZ supervised the study. LJP participated in the study design and also supervised the study. All authors read and approved the final manuscript.

Acknowledgements

The authors wish to thank Dominique Vander Donckt, Céline Ducroix-Crepy, Maud Bertaud and Elen Imant for excellent technical assistance. Evelyne Lampo is Research Assistant of the Research Foundation-Flanders (FWO).

References

1. Prusiner SB. Prions. Proc Natl Acad Sci USA 1998, 95:13363-13383.
2. Dalgaard NJ. Prion diseases. An overview. APMIS 2002, 110:3-13.
3. Fasano C, Campana V, Zuzolo C: Prions: protein only or something more? Overview of potential prion cofactors. J Mol Neurosci 2006, 29:195-214.
4. Kaneko K, Zulianello L, Scott M, Cooper CM, Wallace AC, James TL, Cohen FE, Prusiner SB: Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc Natl Acad Sci USA 1997, 94:10069-10074.
5. Hunter N: Scrapie and experimental BSE in sheep. Br Med Bull 2003, 66:171-183.
6. Buschmann A, Lukhien G, Schultz J, Erhardt G, Groshup MH: Neuronal accumulation of abnormal prion protein in sheep carrying a scrapie-resistant genotype (PrPARRARK). J Gen Virol 2004, 85:2727-2733.
7. Madec JY, Simon S, Lezmi S, Bencsik A, Grassi J, Baron T: Abnormal prion protein in genetically resistant sheep from a scrapie-infected flock. J Gen Virol 2004, 85:3483-3486.
8. Orge L, Gala A, Machado C, Lima C, Ochoa C, Silva J, Ramos M, Simas JP: Identification of putative atypical scrapie in sheep in Portugal. J Gen Virol 2004, 85:3487-3491.
9. De Bosscher H, Roels S, Dechamps P, Vanopdenbosch E: TSE detected in a Belgian ARR-homozygous sheep via active surveillance. Vet J 2007, 173:449-451.
10. Le Dur A, Beringue V, Andréoletti O, Reine F, Lai TL, Baron T, Bratberg B, Vilozie JL, Sarradin P, Benestad SL, Laude H: A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes. Proc Natl Acad Sci USA 2005, 102:16031-16036.
11. Saunders GC, Crawford S, Mountjoy SJ, Hope J, Windl O: PrP genotypes of atypical scrapie cases in Great Britain. J Gen Virol 2006, 87:3141-3149.
12. Houston F, Goldmann W, Chong A, Jeffrey M, Gonzalez L, Foster J, Parriham D, Hunter N: Prion diseases: BSE in sheep bred for resistance to infection. Nature 2003, 423:498.
13. Andréoletti O, Morel N, Lacroux C, Rouillon V, Barc C, Tabouret G, Sarradin P, Berthou P, Bernardet P, Mathey J, Lugan S, Costes P, Corbiere F, Espinoso JC, Torres JM, Grauss J, Schelcher F, Lantier F: Bovine spongiform encephalopathy agent in spleen from an ARR/ARR orally exposed sheep. J Gen Virol 2006, 87:1043-1046.
14. Hill AF, Collinge J: Subclinical prion infection in humans and animals. Br Med Bull 2003, 66:161-170.
15. Thackray AM, Klein MA, Bujdoso R: Subclinical prion disease induced by oral inoculation. J Virol 2003, 77:7991-7998.
16. Golinska E, Firsik M, Liberski PP: Doppel: the prion’s double. Folia Neuropathol 2004, 42(Suppl A):47-54.
17. Qin K, O’Donnell M, Zhao Y: Doppel: more rival than double to prion. Neurosci 2006, 141:1-8.
18. Hundt C, Peirin JM, Haik S, Gauzinski S, Leuchte C, Rieger R, Riley ML, Deslys JP, Dormont D, Lasmezas CI, Weiss S: Identification of interaction domains of the prion protein with its 37-kDa and 67-kDa laminin receptor. EMBO J 2001, 20:5876-5886.
19. Petrakis S, Sklavaditis T: Identification of proteins with high affinity for refolded and native PrP(C). Proteomics 2006, 6:4764-4694.
20. Xiang W, Windl O, Wunsch G, Dugas M, Kohlmann A, Dierkes N, Wester N, Kretschmar H: Identification of differentially expressed genes in scrapie-infected mouse brains by using global gene expression technology. J Virol 2004, 78:10515-10526.
21. Brown AR, Rebus S, McKimme C, Robertson K, Williams A, Fazekarley JK: Gene expression profiling of the preclinical scrapie-infected hippocampus. Biochem Biophys Res Commun 2005, 334(1):86-95.
22. Skinner PJ, Abbasi H, Chesebro B, Race RE, Reilly C, Reiley JK: Gene expression alteration in brains of mice infected with three strains of scrapie. BMC Genomics 2006, 7:114.
23. Premzl M, Sangiorgio L, Strumbo B, Marshall Graves JA, Simonic T, Gready JE: Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene 2003, 314:89-102.
24. Uboli C, Paulis M, Guidi E, Bertoni A, Meo GP, Perucatti A, Iannuzzi L, Raimondi E, Brunner RM, Aggige A, Ferretti L: Cloning of the bovine prion-like Shadoo (SPRN) gene by comparative analysis of the predicted genomic locus. Mamman Genome 2006, 17:1130-1139.
25. Premzl M, Gamulin V: Comparative genomic analysis of prion genes. BMC Genomics 2007, 8:1.
26. Premzl M, Gready JE, Jermyn LS, Simonic T, Marshall Graves JA: Evolution of vertebrate genes related to prion and Shadoo proteins–clues from comparative genomic analysis. Mol Biol Evol 2004, 21:2210-2221.
27. Lee YY, Westaway D, Smit AF, Wang K, Seto J, Chen L, Acharya C, Ankener M, Baskin D, Cooper C, Yeeo H, Prusiner SB, Hood LE: Complete genomic sequence and analysis of the prion protein

Page 9 of 10

(page number not for citation purposes)
gene region from three mammalian species. Genome Res 1998, 8:1022-1037.

28. Oldfors E, Simon D, Halttunen N, Hoffmann R, Baier M: Identification of cDNAs from Japanese pufferfish (Fugu rubripes) and Atlantic salmon (Salmo salar) coding for homologues to tetrapod prion proteins. FEBS Lett 2003, 538:96-100.

29. Suzuki T, Kurokawa T, Hashimoto H, Sugiyma M: cDNA sequence and tissue expression of Fugu rubripes prion protein-like: a candidate for the teleost orthologue of tetrapod PrPs. Biochem Biophys Res Commun 2002, 294:912-917.

30. Builer H, Fischer M, Lang Y, Blechschmidt H, Lipp H-P, DeArmond SJ, Prusiner SB. Repeatmasker Webserver (Institute for SystemsBiology).

31. Richt JA, Kasisanthan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl J*M, Kuroiwa Y: Production of cattle lacking prion protein. Nat Biotechnol 2007, 25:132-138.

32. Iannuzzi L, Di Meo GP, Perucatti A, Incarnato D: Comparison of the human with the sheep genome by use of human chromosome-specific painting probes. Mamm Genome 1999, 10:719-723.

33. Schatzl HM, Da Costa M, Taylor L, Cohen FE, Prusiner SB: Prion protein variation among primates. J Mol Biol 1995, 245:362-374.

34. Bergström AL, Cordes H, Zsurger N, Heegaard PM, Laursen H, Chabry J: Ammodation and structure relaxation abolish the neurotoxicity of the prion peptide PrP106-126 in vivo and in vitro. J Biol Chem 2005, 280:23114-23121.

35. Fioriti L, Quaglio E, Massignan T, Colombo L, Stewart RS, Salmona M, Colombo L, Stewart RS, White AR, McLean C, Friedhuber A, Maher F, Beyreuther K, Masters CL, Barrow CJ, Collins SJ, Cappai R: The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106-126. J Neurochem 1999, 73:1557-1565.

36. Norstrom EM, Mastrianni JA: The AGAAAAGA palindrome in PrP is required to generate a productive PrPSc-PrPc complex that leads to prion propagation. J Biol Chem 2005, 280:27236-27243.

37. Brown R: PrPSc-like prion protein peptide inhibits the function of cellular prion protein. Biochem J 2000, 352:511-518.

38. Ding C, Cantor CR: Quantitative analysis of nucleic acids – the last few years of progress. J Biochem Mol Biol 2004, 37:1-10.

39. Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols: Methods in Molecular Biology 2000:365-386 [http://www.ncbi.nlm.nih.gov/BLAST/]

40. van den Berg A, Fekete K, Böttcher M, Granberg F, Karlsson J, van Oosterhout C: Construction and characterization of a sheep BAC library of three genome equivalents. Mamm Genome 1999, 10:585-587.

41. NCBI Entrez Gene [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Gene&apid=1156781]

42. Vaiman A, Soravito C, Cribiu EP: Construction and characterization of a sheep BAC library of three genome equivalents. Mamm Genome 1999, 10:585-587.

43. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410 [http://www.ncbi.nlm.nih.gov/BLAST/]

44. Repeattmasker Webserver (Institute for SystemsBiology) [http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker]

45. Hayes H, Petit E, Dutrillaux B: Comparison of RBG-banded karyotypes of cattle, sheep, and goats. Cytogenet Cell Genet 1991, 57:51-55.

46. Hayes H, Petit E, Lemieux N, Dutrillaux B: Chromosomal localization of the ovine beta-casein gene by non-isotopic in situ hybridization and R-banding. Cytogenet Cell Genet 1992, 61:286-288.

47. Cribiu EP, Di Berardino D, Di Meco GP, Eggen A, Gallagher DS, Gustavsson I, Hayes H, Iannuzzi L, Popescu CP, Rubes J, Schmutz S, Stranzinger G, Vaiman A, Womack J: International System for Chromosome Nomenclature of Domestic Bovids (ISCNBD 2000). Cytogenet Cell Genet 2001, 92:283-299.