Idiopathic cervical spinal subdural haematoma: a case report and literature review

Bingjin Wang¹,*, Weifang Liu²,* and Xianlin Zeng¹

Abstract
This report describes a case of idiopathic cervical spinal subdural haematoma (SSDH) in which the haematoma was spontaneously absorbed without any treatment. A 68-year-old male patient presented with persistent neck pain and no obvious cause. Magnetic resonance imaging (MRI) revealed a space-occupying lesion at the C4–T1 levels. The lesion was initially misdiagnosed as a tumour. An operation was arranged to remove the tumour, but a preoperative computed tomography scan showed no obvious abnormal soft tissue density in the cervical spinal canal. Repeat enhanced MRI showed degeneration of the cervical vertebrae, but no obvious abnormal soft tissue density and no obvious enhanced signals in the cervical spinal canal. Spontaneous resolution of an idiopathic cervical SSDH was considered. Idiopathic cervical SSDH without obvious neurological symptoms are difficult to diagnose, so suspected cases should be carefully monitored. If the neurological symptoms grow progressively more debilitating with time, emergency surgery might need to be considered. To avoid unnecessary surgery, conservative management should be an option for patients with minimal neurological deficits and re-examination with MRI could be the best way to observe the dynamic changes taking place in the idiopathic cervical SSDH.

Keywords
Idiopathic, spinal subdural haematomas, neck pain

Date received: 28 October 2018; accepted: 17 January 2019

¹Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
²Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China

*These authors contributed equally to this work.

Corresponding author:
Xianlin Zeng, Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Email: zxl69222@163.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

Spinal subdural haematomas (SSDH) are rare.¹ The aetiology of SSDH includes anticoagulant therapy, spinal tap, acupuncture, arteriovenous malformation and coagulation disorders.¹–⁵ The identification of SSDH has improved with the availability of several imaging and symptom studies.¹,⁶ Most patients with SSDH present with radicular pain and motor, sensory or autonomic dysfunction.¹,⁷ Magnetic resonance imaging (MRI) provides a relatively definitive diagnosis.⁶,⁸ T1- and T2-weighted MRI images are considered adequate and reliable for the diagnosis of SSDH.⁹,¹⁰ In some cases, no specific factors were identified.¹¹ This current case is also unique because few cases have reported idiopathic SSDH that is only observed in the cervical region.¹¹,¹² This case report describes a patient with idiopathic cervical SSDH with neck pain. The haematoma was spontaneously absorbed completely without any treatment within 1 week.

Case report

In May 2017, a 68-year-old male patient presented at the outpatient department of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China with neck pain that had lasted 5 days without any obvious inducing factors. There was no history of anticoagulation and antiplatelet medication use including aspirin, warfarin and dicoumarol, trauma, local invasive operations or coagulation defects. He had not performed any strenuous exercise or work involving heavy-weight lifting. He had experienced hypertension for 3 years, but there was no evidence of other comorbidities, such as cardiovascular diseases, cerebrovascular diseases and haematological system diseases. On examination, his blood pressure was 134/91 mmHg and the physical examinations were normal. The sensation in the extremities and torso, and the myodynamia extremities (strength: 5/5 in all extremities) were normal, and the sphincter function was normal as well. The myelopathy signs evaluated included clonus (−), neck spasticity (−), hyperreflexia (−), inverted supinator reflex (−), bilateral Hoffmann sign (−) and bilateral Babinski sign (−).

Magnetic resonance imaging of the cervical vertebrae was performed at Hubei Cerebrovascular Disease Hospital, Xiantao, Hubei Province, China 5 days prior to arriving at Union Hospital. On analysing the MRI images, slightly long T1- and T2-weighted abnormal streak signals were identified in the subdural space, extending from C4 to T1 in the left rear of the spinal cord and compressing the spinal cord (Figure 1). The imaging findings suggested the presence of a space-occupying lesion at the level of C4 to T1. Therefore, a provisional diagnosis of a spinal subdural tumour was made.

Subsequently, the patient was admitted the outpatient department of Union Hospital on 20 May 2017 and routine preoperative examinations were performed. Arrangements were made to perform a surgical procedure to remove the tumour. His routine blood parameters, hepatorenal function, electrolyte and coagulation function were all normal. The blood platelet count was 273 g/l. The coagulation function analysis was as follows: prothrombin time, 12.5 s; international normalized ratio, 0.95; activated partial thromboplastin time, 34.4 s; fibrinogen level, 3.81 g/l; thrombin time, 17.5 s. Cervical spine posterior-anterior and lateral X-ray images showed degeneration of the cervical vertebrae. On the second day after admission, computed tomography (CT) images showed a thickening of the ligamentum flavum at the C4–C6 levels and degeneration of the cervical vertebrae (Figure 2). There was no obvious abnormal soft tissue density in the cervical
Figure 1. Magnetic resonance images of a 68-year-old male patient who presented with neck pain that had lasted 5 days without any inducing factors. The images show a space-occupying lesion at the C4–T1 levels (a and b). The arrows show a slightly long T1- and T2-weighted abnormal streak signal in the subdural space, which extended from C4 to T1 in the left rear of the spinal cord and compressed the spinal cord. The colour version of this figure is available at: http://imr.sagepub.com.

Figure 2. Repeat computed tomography images of a 68-year-old male patient who presented with neck pain that had lasted 5 days without any inducing factors. The images show thickening of the ligamentum flavum at the C4–C6 levels (a and b) and degeneration of the cervical vertebrae. No obvious abnormal soft tissue density was observed in the cervical spinal canal.
spinal canal. On the fifth day after admission, a repeat gadolinium-enhanced MRI scan showed degeneration of the cervical vertebrae; and no obvious abnormal soft tissue density and no obvious enhanced signals in the cervical spinal canal were observed (Figure 3). At the same time, the neck pain had improved. Therefore, the provisional diagnosis was revised to an idiopathic SSDH. Imaging-inconsistent SSDH was confirmed and spontaneous resolution of the idiopathic cervical SSDH was considered. Finally, the neck pain disappeared gradually without any treatment. There was no recurrence of symptoms after follow-up for 1 year.

This study was approved by the Institutional Review Board of Union

Figure 3. Enhanced magnetic resonance images of a 68-year-old male patient who presented with neck pain that had lasted 5 days without any inducing factors. The images show degeneration of the cervical vertebrae (a and b). There was no obvious abnormal soft tissue density and no obvious enhanced signal was observed in the cervical spinal canal (c and d). Contrast enhanced with gadolinium.
Hospital (no. 2017S214). All procedures in this retrospective study were undertaken in accordance with the ethical standards of the Institutional Review Board of Union Hospital and with the Declaration of Helsinki. Written informed consent was obtained from the patient.

Discussion

The thoracic spine is the most common location of SSDH. The aetiology of SSDH includes the use of coumarins or other haemostatic agents, coagulation disorders, structural malformations and the presence of no underlying pathological conditions. SSDH at the cervical or cervicothoracic levels are relatively rare. Several cases of cervical or cervicothoracic SSDH have been reported. Among them, only a few cases with obvious neurological symptoms and accurate diagnoses experienced the spontaneous resolution of the haematoma. However, a few cases reported idiopathic SSDH without underlying pathological conditions located only in the cervical region.

Previous published cases of idiopathic cervical or cervicothoracic SSDH without potential causative risks are reviewed and compared in Table 1. As observed with the current case, neck pain was the most common symptom and neurological dysfunction was relatively mild. The potential causative risks were unknown and conservative treatment was the preferred option.

In the current case, the spinal cord was clearly compressed as observed on the MRI images. In addition, non-acute neck pain and the absence of motor, sensory or transient dysfunction led to the misdiagnosis of the condition as a spinal subdural tumour. A previous case report had suggested the spontaneous resolution of idiopathic cervical SSDH presenting with acute hemiparesis. However, to date, no study has reported that idiopathic cervical SSDH presenting with non-acute neck pain can spontaneously be absorbed within only 1 week.

Although both MRI and CT scans can be used as complementary investigative tools providing the characteristic findings that are needed to establish the diagnosis of SSDH, MRI best depicts the location and the extent of the haemorrhage. However, in the current case, the re-examination of CT and MRI images did not show any sign of SSDH. Hence, the haematoma had completely resolved spontaneously. A previous case report stated that the redistribution of the haematoma to the spinal subdural space was a mechanism for the rapid spontaneous resolution of posttraumatic acute subdural haematoma. In the current case, redistribution of the haematoma was regarded as the primary reason for the spontaneous resolution of the idiopathic cervical SSDH.

Emergency surgical decompression is considered the primary choice for SSDH with severe neurological symptoms. It had been reported that 72% of cases with SSDH underwent surgical intervention. Conservative management is an alternative therapeutic option for acute SSDH presenting with transient hemiplegia. However, in cases with spontaneous SSDH, the outcome was favourable in only 59% of cases. SSDH carries a mortality rate of approximately 1.3% and a morbidity rate of 28%. Prompt and accurate diagnosis and emergency surgical decompression are regarded as the important factors affecting the prognosis of SSDH. Moreover, in a few cases of cervical or cervicothoracic SSDH, the haematomas were spontaneously absorbed or recovered after the administration of conservative treatment such as methylprednisolone pulse therapy.

Idiopathic cervical SSDHs without obvious neurological symptoms are easy to misdiagnose as tumours or other diseases. Hence, the patient should be strictly and
Table 1. Previous case reports of idiopathic cervical spinal subdural haematoma.\(^{11,12,15,16,18–20}\)

Author	Year	Age, sex	Symptoms	Myelopathy signs	Location	Potential risk	Treatment	Prognosis
Oh et al.\(^{12}\)	2009	59, F	Neck pain and motor weakness of left side	Motor weakness	C3–C6	Unknown	Conservative	Recovery
Yang et al.\(^{15}\)	2011	55, F	Back pain	Paralysis of both lower extremities and hypoesthesia	C2–T6	Unknown	Conservative	Recovery
		38, M	Chest and back pain	Hypoesthesia, hyperreflexia, sphincter dysfunction	C6–T6	Unknown	Conservative	Improvement
Park et al.\(^{16}\)	2012	48, F	Neck pain and motor weakness	Hypoesthesia and hemiparesis on right side	C3–C5	Unknown	Conservative	Recovery
Panciani et al.\(^{18}\)	2013	79, F	Paraplegia and urinary retention	Anaesthesia and sphincter dysfunction	C5–T6	Unknown	Delayed hemilaminectomy	Improvement
Chung et al.\(^{19}\)	2014	66, F	Headache and neck stiffness	None	C7–T4	Unknown	Conservative	Improvement
Ma et al.\(^{20}\)	2015	29, F	Neck and shoulder pain	Hyporeflexia Babinski and Chaddock signs (+)	C6–T2	Unknown	Conservative	Unknown about the prognosis of SSDH
Wang et al.\(^{11}\)	2018	43, F	Neck pain	Hyperreflexia of left leg	C2–C5	Unknown	Laminectomy	Improvement

F, female; M, male; SSDH, spinal subdural haematoma.
closely monitored. Emergency surgical decompression is performed in most cases of SSDH.1,22 If the neurological symptoms grow progressively debilitating with time, emergency surgery needs to be considered. However, it has been reported that conservative treatment may be justified in the presence of mild neurological deficits or in patients with early progressive improvement and poor general conditions.17 However, due to the severe consequence of cervical SSDH, the exact decision should be made considering the neurological symptoms and the imaging findings.

In conclusion, to avoid unnecessary surgery, conservative management should be an option for patients with minimal neurological deficits associated with a cervical SSDH. Re-examination of the MRI could be the best way to observe the dynamic changes taking place in the idiopathic cervical SSDH.

Declaration of conflicting interest
The authors declare that there are no conflicts of interest.

Funding
This research was funded by a grant from the National Natural Science Foundation of China (no. 81341039).

ORCID iD
Xianlin Zeng http://orcid.org/0000-0002-7693-7145

References
1. de Beer MH, Eysink Smeets MM and Koppen H. Spontaneous spinal subdural hematoma. Neurologist 2017; 22: 34–39.
2. Bruce-Brand RA, Colleran GC, Broderick JM, et al. Acute nontraumatic spinal intradural hematoma in a patient on warfarin. J Emerg Med 2013; 45: 695–697.
3. Eghbal K and Ghaaffarpasand F. An acute cervical subdural hematoma as the complication of acupuncture: case report and literature review. World Neurosurg 2016; 95: 616.e611–616.e613.
4. Kim SH, Choi SH, Song EC, et al. Spinal subdural hematoma following tissue plasminogen activator treatment for acute ischemic stroke. J Neurol Sci 2008; 273: 139–141.
5. Reitman CA and Watters W 3rd. Subdural hematoma after cervical epidural steroid injection. Spine (Phila Pa 1976) 2002; 27: E174–E176.
6. Kreppel D, Antoniadis G and Seeling W. Spinal hematoma: a literature survey with meta-analysis of 613 patients. Neurosurg Rev 2003; 26: 1–49.
7. Kyriakides AE, Lalam RK and El Masry WS. Acute spontaneous spinal subdural hematoma presenting as paraplegia: a rare case. Spine (Phila Pa 1976) 2007; 32: E619–E622.
8. Braun P, Kazmi K, Nogués-Meléndez P, et al. MRI findings in spinal subdural and epidural hematomas. Eur J Radiol 2007; 64: 119–125.
9. Post MJ, Becerra JL, Madsen PW, et al. Acute spinal subdural hematoma: MR and CT findings with pathologic correlates. AJNR Am J Neuroradiol 1994; 15: 1895–1905.
10. Küker W, Thiex R, Friese S, et al. Spinal subdural and epidural haematomas: diagnostic and therapeutic aspects in acute and subacute cases. Acta Neurochir (Wien) 2000; 142: 777–785.
11. Wang Y, Zheng H, Ji Y, et al. Idiopathic spinal subdural hematoma: case report and review of the literature. World Neurosurg 2018; 116: 378–382.
12. Oh SH, Han IB, Koo YH, et al. Acute spinal subdural hematoma presenting with spontaneously resolving hemiplegia. J Korean Neurosurg Soc 2009; 45: 390–393.
13. Schwartz FT, Sartawi MA and Fox JL. Unusual hematomas outside the spinal cord. Report of two cases. J Neurosurg 1973; 39: 249–251.
14. Reynolds AF Jr and Turner PT. Spinal subdural hematoma. Rocky Mt Med J 1978; 75: 199–200.
15. Yang NR, Kim SJ, Cho YJ, et al. Spontaneous resolution of nontraumatic
acute spinal subdural hematoma. *J Korean Neurosurg Soc* 2011; 50: 268–270.

16. Park YJ, Kim SW, Ju CI, et al. Spontaneous resolution of non-traumatic cervical spinal subdural hematoma presenting acute hemiparesis: a case report. *Korean J Spine* 2012; 9: 257–260.

17. Song T, Lee J, Choi Y, et al. Treatment of spontaneous cervical spinal subdural hematoma with methylprednisolone pulse therapy. *Yonsei Med J* 2011; 52: 692–694.

18. Panciani PP, Cornali C, Agnoletti A, et al. Recovery after delayed surgery in a case of spinal subdural hematoma. *Case Rep Neurol Med* 2013; 2013: 310854.

19. Chung J, Park IS, Hwang SH, et al. Acute spontaneous spinal subdural hematoma with vague symptoms. *J Korean Neurosurg Soc* 2014; 56: 269–271.

20. Ma Z, Fang F, Chui KL, et al. A rare etiology of severe acute heart failure: subacute spinal subdural hematoma in a young woman. *Int J Cardiol* 2015; 195: 61–63.

21. Wong ST, Yuen MK, Fok KF, et al. Redistribution of hematoma to spinal subdural space as a mechanism for the rapid spontaneous resolution of posttraumatic intracranial acute subdural hematoma: case report. *Surg Neurol* 2009; 71: 99–102.

22. Pereira BJ, de Almeida AN, Muio VM, et al. Predictors of outcome in nontraumatic spontaneous acute spinal subdural hematoma: case report and literature review. *World Neurosurg* 2016; 89: 574–577.e7.