ASYMPTOTIC N_p PROPERTY OF RATIONAL SURFACES

HÀ HUY TÀI

0. Introduction.

The pioneering work of Mumford ([M]), its amplifications by St. Donat ([SD]) and Fujita ([F]), the inspiring work of Green ([Gr]), followed by works of Green and Lasarsfeld ([G-L]) and Ein and Lasarsfeld ([E-L]), have captured the interest and have influenced a large number of researchers in the last fifteen years. Several authors have studied the defining equations of projective varieties and, more generally, the higher order syzygies among these equations. A significant algebraic property was introduced along this line of works ([Gr], [G-L]), the N_p property. It says that a variety is generated by quadratics, and its minimal free resolution is linear up to the first p steps. We recall in detail the definition of N_p property from [G-L].

Definition. Let Y be a smooth projective variety and let \mathcal{L} be a very ample line bundle on Y defining an embedding $\varphi_\mathcal{L} : Y \hookrightarrow \mathbb{P} = \mathbb{P}(H^0(Y, \mathcal{L})^*)$. Let $S = \text{Sym}^* H^0(Y, \mathcal{L})$, the homogenous coordinate ring of the projective space \mathbb{P}. Suppose A is the homogeneous coordinate ring of $\varphi_\mathcal{L}(Y)$ in $\mathbb{P}(H^0(Y, \mathcal{L})^*)$, and

$$0 \to F_n \to F_{n-1} \to \ldots \to F_0 \to A \to 0$$

is a minimal free resolution of A. The line bundle \mathcal{L}, or the embedding $\varphi_\mathcal{L}(Y)$ of Y, is said to have property N_p (for $p \in \mathbb{N}$) if and only if $F_0 = S$ and $F_i = S(-i-1)^{\alpha_i}$ with $\alpha_i \in \mathbb{N}$ for all $1 \leq i \leq p$. One also says that \mathcal{L}, or the embedding $\varphi_\mathcal{L}(Y)$ of Y, satisfies property N_0 if $\varphi_\mathcal{L}(Y)$ is projectively normal, i.e. \mathcal{L} is normally generated.

The question of having property N_p, for various values of p, has been studied on many different projective varieties, such as the Veronese varieties (cf. [O-P], [J-P-W]), and the Segre product of several projective spaces (cf. [G-P], [J-P-W], [Ru]). In this paper, we look at the same question for rational surfaces obtained by blowing up \mathbb{P}^2 at collections of points. Defining equations and the minimal free resolution of these surfaces have also been the objects of study for many authors, such as [C-S].

Key words and phrases. Rational surfaces, blowing up, fat points, resolution, N_p property.

2000 Mathematics Subject Classification. 14E25, 14J26, 13D02.
Our main result is the following theorem.

Theorem. Suppose $X = \{P_1, \ldots, P_s\}$ is a set of s distinct points in \mathbb{P}^2. $Z = m_1P_1 + \ldots + m_sP_s \subseteq \mathbb{P}^2$ is an arbitrary scheme of fat points with support X ($m_i \in \mathbb{N}$ $\forall i$). Let $\mathbb{P}^2(X)$ be the blowup of \mathbb{P}^2 along the points in X, $D_t = tE_0 - \sum^s_{i=1} m_iE_i \in \text{Pic} (\mathbb{P}^2(X))$, and $\sigma = \sigma(Z)$. Then, for each $p \in \mathbb{Z}_{\geq 0}$, $O_{\mathbb{P}^2(X)}(D_t)$ has property N_p for all $t \geq \max\{\sigma + 1, d, 1 + \frac{d+p}{3}\}$, where $d = \sum^s_{i=1} m_i$. In other words, the embedding of $\mathbb{P}^2(X)$ using D_t satisfies property N_p for all $t \geq \max\{\sigma + 1, d, 1 + \frac{d+p}{3}\}$.

This theorem gives a positive answer to a conjecture of Geramita and Gimigliano ([G-G]), where they considered the case when Z is reduced (i.e. $m_i = 1$ for all $i = 1, \ldots, s$) and stated that the embedding of $\mathbb{P}^2(X)$ using D_t should have property N_p for t big enough ($t \geq \sigma(Z) + p$). In this situation, even though our bound is not exactly the conjectural value $\sigma(Z) + p$, it will be easily seen that for $p \gg 0$, $\max\{\sigma + 1, d, 1 + \frac{d+p}{3}\} \ll \sigma + p$.

1. Preliminaries and Notations.

Suppose $X = \{P_1, \ldots, P_s\} \subseteq \mathbb{P}^2 = \mathbb{P}_k^2$ is a set of s distinct points (k is an algebraic closed field of characteristic 0) and let $\varphi_i \subseteq R = k[w_0, w_1, w_2]$ be the defining ideal of P_i for all $i = 1, \ldots, s$. We also let $\mathbb{P}^2(X)$ be the blowup of \mathbb{P}^2 along the points in X. It is well-known (see [Hart]) that $\text{Pic} (\mathbb{P}^2(X)) \simeq \mathbb{Z}^{s+1} \simeq < E_0, E_1, \ldots, E_s >$, where E_1, \ldots, E_s are the classes of the exceptional divisors and E_0 denotes the class of the pull-back of a general line in \mathbb{P}^2.

An approach to the study of the embeddings of $\mathbb{P}^2(X)$ that has been investigated is through “fat points” in \mathbb{P}^2 with support X. To be more precise, suppose m_1, \ldots, m_s are positive integers, and let $I = \varphi_1^{m_1} \cap \ldots \cap \varphi_s^{m_s} \subseteq R$. Then, the scheme of fat points associated to I is the subscheme $Z = m_1P_1 + \ldots + m_sP_s$ of \mathbb{P}^2 defined by the ideal I. Let $\sigma = \sigma(I) = \sigma(Z)$ be the least integer start from which the difference function of the Hilbert function of I vanishes (cf. [C-G-Q]). For each t, we have a divisor $D_t = tE_0 - \sum^s_{i=1} m_iE_i$ on $\mathbb{P}^2(X)$. By a general result of Coppens (cf. [G-G-P]) or a stronger version in \mathbb{P}^2 of Davis and Geramita ([D-G]), D_t is very ample on $\mathbb{P}^2(X)$ for all $t \geq \sigma + 1$, and D_σ is also very ample provided any line in \mathbb{P}^2 meets Z at least
than σ points (counted properly). It was shown in [G-G-P] that the embedding of $\mathbb{P}^2(X)$ using D_t, for $t \geq \sigma$ and D_t is very ample, is projectively normal and arithmetic Cohen-Macaulay (a.CM), i.e. the embedding of $\mathbb{P}^2(X)$ using D_t satisfies property N_0. When the scheme Z is reduced (i.e. $m_i = 1$ for all i) it was shown in [Gi-2] and [G-G] that the embedding of $\mathbb{P}^2(X)$ using D_t, for $t \geq \sigma + 1$, not only is projectively normal and a.CM, but also is generated by quadratics (i.e. satisfying properties N_0 and N_1). In [G-G], the authors further believed and conjectured that for $t \geq \sigma + p$, the embedding of $\mathbb{P}^2(X)$ using D_t should have property N_p.

We shall now recall some notation and result introduced by Green ([Gr]) that will be used for our proof of the main theorem.

Let Y be a projective scheme. Let L be a very ample line bundle and F a coherent sheaf on Y. Let $W = H^0(Y, L)$ and $S = \text{Sym}^* W$. Then, S is the homogeneous coordinate ring of $\mathbb{P}(W)$, the projective space into which Y is embedded using L. Let $B = B(L, F) = \bigoplus_{q \in \mathbb{Z}} H^0(Y, F \otimes qL) = \bigoplus_{q \in \mathbb{Z}} B_q$ a S-graded module.

Definition. The Koszul complex of B is defined to be

$$\ldots \rightarrow \bigwedge^{p+1} W \otimes B_{q-1} \xrightarrow{d_{p+1,q-1}} \bigwedge^p W \otimes B_q \xrightarrow{d_{p,q}} \bigwedge^{p-1} W \otimes B_{q+1} \rightarrow \ldots$$

and the Koszul cohomology groups of B are defined to be

$$K_{p,q}(L, F) = \frac{\ker d_{p,q}}{\text{im } d_{p+1,q-1}}, \ p, q \in \mathbb{Z}.$$

The following theorem relates the Koszul cohomology groups of B and its minimal free resolution over S.

Theorem A. (Green’s syzygy theorem - [Gr, 1.b.4]) Suppose

$$\ldots \rightarrow \bigoplus_{q \geq q_0} M_{1,q} \otimes S(-q) \rightarrow \bigoplus_{q \geq q_0} M_{0,q} \otimes S(-q) \rightarrow B \rightarrow 0$$

is a minimal free resolution of B over S, then

$$M_{p,p+q}(L, F) = K_{p,q}(L, F) \ \forall p, q.$$

Here, we write $M_{p,p+q}$ and $K_{p,q}$ as functions of L and F because B itself depends on L and F.

Green’s notations and results are applicable to our situation when the scheme Y is the blowup $\mathbb{P}^2(X)$ of \mathbb{P}^2, the line bundle L is the invertible sheaf $L(D_t)$ corresponding to the divisor D_t on $\mathbb{P}^2(X)$. In this case, we write $M_{p,p+q}(D_t, F)$ and $K_{p,q}(D_t, F)$ for
When the coherent sheaf \mathcal{F} is the structure sheaf $\mathcal{O}_{\mathbb{P}^2(X)}$ of $\mathbb{P}^2(X)$, we write $K_{p,q}(D_t)$ for $K_{p,q}(D_t, \mathcal{F})$.

2. Proof of the main theorem.

For $p = 0$, the result was already proved by [G-G-P]. Suppose $p \geq 1$. Let

$$d_p = \max\{\sigma + 1, d, 1 + \frac{d + p}{3}\},$$

where $d = \sum_{i=1}^{s} m_i$.

Let t be an arbitrary integer such that $t \geq d_p$. Let $D_t = tE_0 - \sum_{i=1}^{s} m_i E_i$ and $\mathcal{L} = \mathcal{L}(D_t)$ the invertible sheaf corresponding to D_t. Let $W = H^0(\mathbb{P}^2(X), \mathcal{L})$ and $S = \text{Sym}^t W$. Since $t \geq d_p \geq \sigma + 1$, D_t is very ample on $\mathbb{P}^2(X)$. Let \mathcal{V} be the embedding of $\mathbb{P}^2(X)$ into $\mathbb{P}(W)$ using the divisor D_t. We need to show that \mathcal{V} possesses property N_p.

Let $I_V \subseteq S$ be the defining ideal of \mathcal{V}, and let \mathcal{I}_V be the ideal sheaf of \mathcal{V} in $\mathbb{P}(W)$. Since D_t is very ample, we have an exact sequence

$$0 \to I_V \to S \to \bigoplus_{q \in \mathbb{Z}} H^0(\mathbb{P}^2(X), qD_t) \to \bigoplus_{m \in \mathbb{Z}} H^1(\mathbb{P}(W), \mathcal{I}_V(m)) \to 0.$$

Moreover, it was proved in [G-G-P] that \mathcal{V} is projectively normal, i.e.

$$\bigoplus_{m \in \mathbb{Z}} H^1(\mathbb{P}(W), \mathcal{I}_V(m)) = 0;$$

or in other words,

$$S/I_V \simeq \bigoplus_{q \in \mathbb{Z}} H^0(\mathbb{P}^2(X), qD_t).$$

Thus, the minimal free resolution of the homogeneous coordinate ring of \mathcal{V} is given by that of $\bigoplus_{q \in \mathbb{Z}} H^0(\mathbb{P}^2(X), qD_t)$. This, by Green’s syzygy theorem (Theorem A), is given by the Koszul cohomology groups $K_{r,n}(D_t)$, $r, n \in \mathbb{Z}$. More precisely, let $N = \dim W - 1$, then the minimal free resolution

$$0 \to F_{N-2} \to \ldots \to F_1 \to F_0 = S \to S/I_V \to 0$$

of the homogeneous coordinate ring of \mathcal{V} (since \mathcal{V} is projectively normal and a.CM as proved by [G-G-P], and the codimension of \mathcal{V} is 2, the length of its minimal free resolution must be $N - 2$) is given by

$$F_i = \bigoplus_{q \geq 1} K_{i,q}(D_t) \otimes S(-i - q)$$

for $i = 1, \ldots, N - 2$.
From [G-G-P, Corollary 2.6], we know that the Castelnuovo-Mumford regularity of I_V is at most 3, so

$$K_{i,q}(D_t) = 0 \text{ for all } i = 1, \ldots, N - 2, \text{ and } q \geq 3.$$

Observe further that if we can show $K_{p,2}(D_t) = 0$ for all $p \in \mathbb{N}$ and $t \geq d_p$, then the theorem is proved. This is because, by then, since $d_1 \leq d_2 \leq \ldots \leq d_p$, we can use induction to show that V has property N_i for all $i = 1, \ldots, p$; in particular, it has property N_p.

It follows from [G-G-P] that $H^1(\mathbb{P}^2(\mathbb{X}), mD_t) = 0$ for all $m \in \mathbb{Z}$. Let $K_{\mathbb{P}^2(\mathbb{X})}$ be the canonical divisor on $\mathbb{P}^2(\mathbb{X})$. By Green’s Duality theorem ([Gr, 2.c.6]), we have

$$K_{p,2}(D_t)^* = K_{N-2-p,1}(D_t, K_{\mathbb{P}^2(\mathbb{X})}).$$

Moreover, by Green’s Vanishing theorem ([Gr, 3.a.1]), we have

$$K_{N-2-p,1}(D_t, K_{\mathbb{P}^2(\mathbb{X})}) = 0 \text{ when } h^0(\mathbb{P}^2(\mathbb{X}), K_{\mathbb{P}^2(\mathbb{X})} + D_t) \leq N - 2 - p.$$

Therefore, it remains to check that

$$h^0(\mathbb{P}^2(\mathbb{X}), K_{\mathbb{P}^2(\mathbb{X})} + D_t) \leq N - 2 - p \text{ for all } t \geq d_p.$$ (2.1)

It is well-known that $K_{\mathbb{P}^2(\mathbb{X})} = -3E_0 + \sum_{i=1}^{s} E_i$. Thus,

$$K_{\mathbb{P}^2(\mathbb{X})} + D_t = (t - 3)E_0 - \sum_{i=1}^{s} (m_i - 1)E_i.$$

We have $D_t^2 = t^2 - \sum_{i=1}^{s} m_i^2 > t^2 - (\sum_{i=1}^{s} m_i)^2 \geq 0$ since $t \geq d_p \geq d = \sum_{i=1}^{s} m_i$, so

$$(K_{\mathbb{P}^2(\mathbb{X})} + D_t).D_t = K_{\mathbb{P}^2(\mathbb{X})}.D_t + D_t^2 > K_{\mathbb{P}^2(\mathbb{X})}.D_t.$$

Therefore, $H^2(K_{\mathbb{P}^2(\mathbb{X})} + D_t) = 0$ ([Hart, Lemma V.1.7]).

It follows from Serre’s Duality theorem that $H^1(K_{\mathbb{P}^2(\mathbb{X})} + D_t) = H^1(-D_t)$. By Kodaira’s theorem (cf. [Hart, p. 248]), since D_t is very ample, we have $H^1(-D_t) = 0$. Thus, $H^1(K_{\mathbb{P}^2(\mathbb{X})} + D_t) = 0$.

Now, using the Riemann-Roch theorem, we obtain

$$h^0(\mathbb{P}^2(\mathbb{X}), K_{\mathbb{P}^2(\mathbb{X})} + D_t) = \frac{1}{2}(K_{\mathbb{P}^2(\mathbb{X})} + D_t).D_t + 1$$

$$= \frac{1}{2}(t(t - 3) - \sum_{i=1}^{s} m_i(m_i - 1)) + 1$$

$$= \frac{1}{2}t(t - 3) - \sum_{i=1}^{s} \left(\frac{m_i}{2}\right) + 1.$$
Moreover, the Hilbert function of Z is increasing and stabilizes at $\deg(Z) = \sum_{i=1}^{s} (m_i + 1)$. Therefore,

$$N \geq \left(\frac{t + 2}{2}\right) - \deg(Z) - 1 = \frac{1}{2} (t + 1)(t + 2) - \sum_{i=1}^{s} \left(\frac{m_i + 1}{2}\right) - 1.$$

Hence,

$$N - 2 - p - h^0(\mathbb{P}^2(X), K_{\mathbb{P}^2(X)} + D_t) \geq 3t - 3 - p - \sum_{i=1}^{s} \left(\frac{m_i + 1}{2}\right) + \sum_{i=1}^{s} \left(\frac{m_i}{2}\right) = 3t - 3 - p - \sum_{i=1}^{s} m_i = 3t - 3 - p - d \geq 0.$$

The inequality (2.1) is verified, and the theorem is proved. \(\square\)

Remark: When $p \gg 0$, $1 + \frac{d + p}{3}$ is clearly the larger value compared to $\sigma + 1$ and d. Thus, for $p \gg 0$, $\max\{\sigma + 1, d, 1 + \frac{d + p}{3}\} = 1 + \frac{d + p}{3}$, which is essentially smaller than $\sigma + p$.

Acknowledgement: I would like to thank Prof. A.V. Geramita for suggesting me this problem as well as many other related questions on rational surfaces.

References

[C-G-O] Ciliberto, C., Geramita, A.V. and Orecchia, F. (1988). Remarks on a theorem of Hilbert-Burch. Boll. Unione. Math. Ital. 7, 2-B, 463-483.

[C-S] Ciliberto, C. and Sernesi, E. (1989). Curves on surfaces of degree $2r - \delta$ in \mathbb{P}^r. Comment. Math. Helv. 64, 300-328.

[CHTV] Conca, A., Herzog, J., Trung, N.V., and Valla, G. (1997). Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces. Amer. J. Math., 119, 859-901.

[C-H] Cutkosky, S.D. and Herzog, J. (1997). Cohen-Macaulay coordinate ring of blowup schemes. Comment. Math. Helv. 72, 605-617.

[D-G] Davis, E.D. and Geramita, A.V. (1988). Birational morphisms to \mathbb{P}^2: an ideal-theoretic perspective. Math. Ann. 83, 435-448.

[E-L] Ein, L. and Lazarsfeld, R. (1993). Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension. Invent. Math. 111, 51-67.

[F] Fujita, T. (1977). Defining equations for certain types of polarized variety. In Complex Analysis and Algebraic Geometry, W.L. Baily, Jr. and T. Shioda, eds. Cambridge Univ. Press. 165-173.

[G-P] Gallego, F.J. and Purnaprajna, B.P. Some results on rational surfaces and Fano varieties. Preprint [math.AG/0001107]

[G-G] Geramita, A.V. and Gimigliano, A. (1991). Generators for the defining ideal of certain rational surfaces. Duke Mathematical Journal, 62, no. 1, 61-83.

[G-G-H] Geramita, A.V., Gimigliano, A. and Harbourne, B. (1994). Projectively normal but superabundant embeddings of rational surfaces in projective space. J. Algebra. 169, no 3, 791-804.

[G-G-P] Geramita, A.V., Gimigliano, A. and Pitteloud, Y. (1995). Graded Betti numbers of some embedded rational n-folds. Math. Ann. 301, 363-380.
[Gi-1] Gimigliano, A. (1987). Linear systems of plane curves. PhD Thesis. Queen’s University, Kingston.

[Gi-2] Gimigliano, A. (1989). On Veronesean surfaces. Proc. Konin. Ned. Akad. van Wetenschappen, Ser. A, 92, 71-85.

[Gi-Lo] Gimigliano, A. and Lozonzeni, A. (1993). On the ideal of veronesean surfaces. Can. J. Math. 43, 758-777.

[Gr] Green, M. (1984). Koszul cohomology and the geometry of projective varieties. J. Diff. Geom. 19, 125-171.

[G-L] Green, M. and Lazarsfeld, R. (1988). Some results on the syzygies of finite sets and algebraic curves. Comp. Math. 67, 301-314.

[Ha-1] Hà, Huy Tài (2000). Rational surfaces from an algebraic perspective. PhD Thesis. Queen’s University, Kingston.

[Ha-2] Hà, Huy Tài. Box-shaped matrices and the defining ideal of certain blowup surfaces. J. Pure Appl. Algebra. To appear.

[H] Harbourne, B. (1986). The geometry of rational surfaces and Hilbert functions of points in the plane. Canad. Math. Soc. Conf. Proc. 6, 95-111.

[Hart] Hartshorne, R. (1977). Algebraic Geometry. Grad text in Math. 52. Springer-Verlag, New York.

[Hir] Hirschowitz, A. (1989). Une conjecture pour la cohomologie des diviseurs sur les surfaces rationelles generiques. J. Reine Angew. Math. 397, 208-213.

[Ho-1] Holay, S.H. (1996). Generators of ideals defining certain surfaces in projective space. Canad. J. Math. 48, no 3, 585-595.

[Ho-2] Holay, S.H. (1996). Free resolutions of the defining ideal of certain rational surfaces. Manuscripta Math. 90, no. 1, 23-37.

[J-P-W] Josefiak, T., Pragacz, P. and Weyman, J. Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices. Asterisque 87-88, 109-189.

[M] Mumford, D. (1969). Varieties defined by quadratic equations. C.I.M.E., III, 29-100.

[O-P] Ottaviani, G. and Paoletti, R. Syzygies of Veronese embeddings. Preprint [math.AG/0111131] to appear in Compositio Math.

[Ru] Rubei, E. On syzygies of Segre embeddings. Preprint [math.AG/0102123]

[SD] Saint-Donat, B. (1972). Sur les équations définissant une courbe algébrique. C. R. Acad. Sci. Paris 274, 324-327.

Institute of Mathematics, P.O. Box 631, Bò Hò, Hà Nôi 10000, Vietnam

E-mail address: tai@hanimath.ac.vn