INTRODUCTION

The labor is a unique experience for the mother and she anxiously waits for the labor pain to come naturally. But when this fails to happen, she undergoes a procedure that artificially initiates the labor which is called induction of labor. The familiarity of the procedure is slowly rising in every setting from rural to well-equipped urban hospital. There is a demand in reducing the rate of unnecessary cesarean section and improvement of fetal outcomes. This is considered when delivery is thought to be safer option than continuing the pregnancy [1]. Prostaglandins are lipids, found in cervical fluid, and deciding that reduce the inflammatory process and dilate the cervix [2,3]. Prostaglandin E2 and its group of drugs when used for ripening of cervix in case of favorable or unfavorable cervix, was effective in bringing cervical favorability and with good progress of labor by successful induction with vaginal delivery within 24 hrs without much operative delivery [4-7]. The reasons for considering induction are many and vary from obstetrician to obstetrician and from country to country [8]. The most common indication that requires induction of labor is postdated pregnancy [9-22]. Another frequently cited indication is term premature rupture of membrane [12,13,23,24]. Nevertheless, the hypertensive disorder remains a rare indication, rather this requires induction in higher rate [14,20,21,25,26]. The less frequent indications are oligohydramnios, IUGR, gestational diabetes, fetal distress, macrosomia, fetal death, decreased fetal movement, uncomplicated twins, polyhydramnios, Rh isoimmunization, choioamnionitis, heart disease, and other fetal indications [9-14]. In a meta-analysis, it is also observed that the common indications cited by many researchers are post-term pregnancy, PROM, oligohydramnios, twins, macrosomia, pre-eclampsia, diabetes, and IUGR [23]. The outcomes of induction of labor are comparatively better than the spontaneous labor as reviewed from certain studies, while other studies found higher adverse outcomes associated with induction than the spontaneous labor. The causes for failure are mostly failed induction, fetal distress, undiagnosed CPD, meconium stained liquor, nonprogress of labor, and prolonged latent phase [10-13,27,28].

METHODS

To collect a good number of quality studies with best recommendations, many electronic data bases were searched. The literature was collected from databases such as Pubmed, Scopus, Science Direct, and Google Scholar. The search was based on the keywords such as induction of labor, induction of labor, induction and c-section, Predictors of successful induction. Various standardized databases, such as Pub Med, Scopus, and Google Scholar, were used to collect the scientific studies, where prostaglandin was used as drug of choice for induction of labor. The key words used were induction of labor, indications of induction, induction by misoprostol, induction and risk of cesarean section, etc. The survey spans over 22 years of study articles published from the year 1995-2017.

Result: A total of 112 studies have been included to analyze the indications and risk of cesarean section. The most common indication found in most of the studies was post-term pregnancy. The risk of cesarean section varied from 3% to 48.7%. The common reasons for which the cesarean section was planned were, failed induction, nonprogress of labor, fetal distress, and undiagnosed CPD.

Conclusion: Most of the studies recommend induction of labor as a safer option with lower risk of c-section.

Keywords: Induction of labor, Indication of induction, Induction and c-section, Predictors of successful induction.
Chirwa found all three, hypertension (69.3%), PROM (15.0%), and postdated (12.6%) as common indications. Similarly, Sanchez-Ramos et al observed 80% of indications for post-term pregnancies and rest for pregnancy induced hypertension and PROM [42]. Mozurkewich et al. and Abdul and Guerra et al. reported both postdated and PROM are the common indications for induction with high-quality evidence from various studies, whereas oligohydramnios was found with moderate evidence [26,43]. The induction of labor is commonly indicated in prevention of prolonged pregnancy, prelabour rupture of membranes after 34 weeks, intrauterine fetal death, placental abruption, chorioamionitis, and hypertensive disorders as stated by NICE and ACOG [44,45]. Folasade and Orijimi also recorded 25% of indications for postdates and 26% for premature rupture of labor [24]. Lawani et al. found the major indications as postdates (45.8%), term PROM (31.9%), pre-eclampsia (4.7%), and preterm PROM (3.7%) [13].

The common causes for which the induction were carried out in the United States were pre-eclampsia and postdates pregnancies and in few cases the premature rupture of membrane [46]. When the pregnancy over 41 weeks is induced, it is associated with fewer cesarean sections compared to expectant management [47]. Similarly, Mishanina et al. reported that the postdates pregnancy is associated with a reduced risk of cesarean delivery [48]. When labor was induced in term PROM, the rate of cesarean section remained almost same as the compared group [32]. However, the induction in pre-eclamptic group, studied by Xenakis et al. shows higher rate of cesarean section (Table 2) [49].

The data reviewed gives a conflicting picture that there is a trends toward decreased cesarean section with good cervical dilatation after misoprostol administration and the same time it is evident that there is an increased cesarean delivery for fetal distress and undiagnosed CPD. Many studies revealed that the prostaglandin and its group of drugs when used for ripening of cervix in case of favorable or unfavorable cervix was effective in bringing cervical favorability, good progress of labor with a successful vaginal delivery within 24 hrs [34].

The rate of cesarean section was lowered by induction has been reported in many research studies. The successful vaginal delivery after induction was 70% [69], 75% [70], 89.1% [6]. Bueno et al. found that the vaginal delivery occurred in 73.5% of women in the induction group, and the rate of cesarean delivery was 26.5% [18]. Sahanz et al. reported vaginal delivery of 78.9% and 21.1% of cesarean section after induction of labor [56,71]. However, Admani found in her study the success rate of 50% with similar rate of failure. The similar rate was observed in the study of Pravati et al. [33]. Bello and Akinjotu found induction failed with cesarean section in about 36.5% of women. Boulvain et al. demonstrated higher cesarean section with adverse perinatal outcomes after induction of labor [30]. Induced women had significantly higher cesarean rate than the spontaneous group [5,72]. However, Boulvain et al. did not get any clear risk of c-section after induction [73]. Sometime it was observed that there are no significant differences in CS rates between the groups of vaginal misoprostol or dinoprostone after induction [74]. In other instances, there is a significant difference and it was found in CS rate between in the induction group and the spontaneous group both in nulliparous women (25.3% vs. 8.6%, p<0.001) and multiparous women (3.8% vs. 0.3%, p=0.002) [10]. Similarly, the induction is associated with a significant increase in the risk of C-section than those who delivered spontaneously [59]. Boulvain et al. demonstrated higher cesarean section with adverse perinatal outcomes after induction of labor [30]. Clader reported little higher (28%) rate of cesarean section than the vaginal delivery (11%) after induction of labor with misoprostol [75]. However, many studies reported higher rate of vaginal delivery after induction (70% [69], 75% [70], 89.1% [6]). The success rate for vaginal delivery was 70% and this rate varied little in accordance with the country or the method used [58]. Alfirevic et al. study revealed that though the vaginal prostaglandins increase the chance of uterine hyperstimulation but this increase the likelihood of vaginal birth within 24 hrs [76]. Whereas other studies shows the risk of cesarean delivery was 12% lower with labor induction than with expectant management (pooled relative
risk [RR] 0.88, 95% confidence interval [CI] 0.84-0.93; I²=0%) [48]. Wennerholm et al also confirmed higher c-section by expectant management rather in the induction method [77]. The cesarean delivery rate in the induction group was 36.5% compared to 34.4% in the expectant management group [78]. Women undergoing induction of labor at 39 weeks without an acute obstetric medical indication were more likely to deliver vaginally than those managed expectantly [79]. Caughey found whether it is 37 or 39, there is no difference in cesarean section but at 40 and 41 weeks of gestation the women had a lower risk of cesarean delivery [80].

The reason of cesarean section is described by Pravati et al. as poor progress, fetal distress, cephalo-pelvic disproportion, oligohydramnios, and meconium staining [33]. Dr Rashida found the reasons for cesarean

Table 2: The rate and causes of cesarean section after induction and its’ predicting factors

Author	Year	Rate of c-section (%)	Causes of cesarean section	Predictors of cesarean section
Chirwa [25]	2014	17	Failed induction, fetal distress, CPD	No misoprostol
Tolcher et al. [37]	2015	29.4	Nonreassuring heart rate	Advanced age, short height, greater BMI, weight gain, hypertension, diabetes, meconium stained liquor <3 cm
Verhoeven et al. [22]	2013	3	Failure to progress and fetal distress	History of preterm birth, maternal height and initial dilatation
Bueno et al. [18]	2007	26.5	Induction failure, nonreassuring fetal monitoring, pelvic disproportion, failure to progress	Cervical length, Bishop score and parity
Admani [10]	2014	32	Fetal distress, failed induction, nonprogress of labor and meconium stained liquor	Favorable Bishop score and average-sized infants
Lee et al. [50]	2015	25.3	Induction failure	Maternal age, BMI, Bishop score and parity
Park [51]	2007	14	Previous obstetric history, previous mid-trimester loss and preterm delivery	Earlier gestational age, previous obstetric history, and preterm delivery
Soni et al. [36]	2017	30.3	Failed induction, fetal distress, nonprogress of labor and undiagnosed CPD, malposition	Favorable Bishop score and average-sized infants
Ezechi et al. [28]	2004	27.92	Fetal distress, pro-long labor, and ante-partum hemorrhage	Maternal age, BMI, Bishop score and parity
Lawani et al. [13]	2014	24.1	Fetal distress, pro-long labor, and ante-partum hemorrhage	Maternal age, BMI, Bishop score and parity

BMI: Body mass index
as failed induction (52%), fetal distress (23%), and CPD (18%) [10].
Ezechi et al. reported the reasons for failed induction with misoprostol
include cephalopelvic disproportion, fetal distress, prolong labour, and
antepartum haemorrhage [28]. Lawani et al. also described about fetal
distress, prolonged labour, cephalopelvic disproportion as reasons for
cesarean section [13]. From the study of Bueno et al., it is understood that
the major reasons for cesarean section are induction failure (34%), non reassuring fetal monitoring (28.9%), pelvic disproportion (17%), and failure to progress (14.9%) [18].

The major predicting factor for a successful vaginal delivery after
induction is the cervical factor [20, 43, 52, 55, 60, 61, 81, 82]. Tekie et al. found in their meta-analysis, the Bishop score as greater determinant of successful induction [61]. Danileisen et al. stressed that a Bishop score of more than seven should be considered before induction as Bishop score is very good predictor of successful induction [55]. Vrouwenraets et al. reported that a Bishop score of 5 or less is a significant risk factor for a cesarean delivery [83]. Selo-Ojeme et al. viewed that regardless of membrane status, the CS rates were high in unfavorable cervix after induction of labor [84]. Dean Leduc highlighted that induction of labor among women with poor cervical dilatation is associated with higher rate of cesarean section [16]. Bello and Akinyotu found the predicting factors for risk of cesarean section are higher parity, later gestation and misoprostol ripening. Lee et al. observed the association of the higher CS rate with lower Bishop score, advanced maternal age, nulliparity and higher body mass index (BMI). Rashida reported the success rate induction with vaginal delivery that increased with increase of age. Rebecca Dekker found interestingly the rate is rising by age that is 29.5% in age 25-29 years to 33.0% in 30-34 years and 38.5% in 35-39 years and so on [85]. Rayamaji et al. also noticed failure rate of 53.8% with advanced maternal age >30 years [31]. Gerl et al. also viewed that age is directly related to risk of cesarean section after a induction [96]. Hurissa et al. reported about the risk of cesarean section in association with advanced age, primiparity, unfavorable bishop score, later gestation, PROM, and bad obstetric history. The success was again related independently to cervical factors and parity [18]. Hatfield et al., Grobman, Tokher et al. found older maternal age, shorter maternal height, greater BMI, greater weight gain during pregnancy, older gestational age, hypertension, diabetes mellitus, and initial cervical dilation as independent risk factors for increased risk of cesarean delivery [37, 62, 63]. Similarly, Crane reported the predictive factors as maternal age, weight, height, BMI, ethnicity, and socioeconomic status. Whereas Park found a single factor that is gestational age as a predictor of successful labor. Sometimes the failed induction was dependent on drug doses and cervical dilation [65-68]. Dublins reported increased cesarean delivery was associated with nulliparous rather than multiparous women with increased risk of instrumental delivery and shoulder dystocia [19]. Admani found higher rate of vaginal delivery in multipara than primipara. Lisa revealed that both the nulliparas (27%) and multiparas (15%) had an increased cesarean rate compared to spontaneous labor [87]. Compared to spontaneous onset of delivery, induction of labor is associated with an increased risk for emergency cesarean section among nulliparous and multiparous women [88]. Alicia ault cited that the major risk associated with a failed induction at 39 weeks is cesarean delivery [89]. Park reported earlier gestational age as a significant predictive factor for failed IOL [51]. The highest chance of success was observed after induction of labor where there are prior vaginal delivery and Fashionable cervix [90]. Timothy et al. in their systematic review found few researcher reporting about slower labors even after using higher doses of vaginal misoprostol [91] while other reported that high doses of oral or vaginal misoprostol are quite effective at achieving vaginal delivery. Pevzner et al. revealed that duration of labor, oxytocin requirements, and cesarean delivery rates are significantly higher with increasing BMI in prostaglandin-induced women (Table 3) [72].

The studies by meta-analysis, RCT and many other methods found different rate of risk of cesarean section at the end of the induction of labor. The risk of cesarean section depends on maternal factors such as age, parity, BMI, cervical score, baby size, medical, and obstetrical conditions complicating pregnancy. However, most of the studies found the induction is associated with more cervical ripening and successful vaginal delivery [6, 14, 69-70, 7, 69-98]. While few studies found the induction results in higher rate of cesarean delivery compared to expectant management [22, 19, 104].

Summary
This study tried to highlight various indications for which an induction of labor is decided for a woman. The common indications were post-term pregnancy, term PROM, hypertensive disorders, intrapartem fetal distress, fetal death, gestational diabetes, and other fetal indications. Among these, the most common indication was postdated pregnancy. The failure of induction with cesarean section was varied from 3% to 48.7%. However, most of the studies found higher rate of successful delivery after induction. The reason for which cesarean section was

Table 3: The net outcome after induction of labor

Author	Year	Research design	Net outcome (rate of cesarean section)
Mishanina et al.	2014	Systematic review and meta-analysis	Decreased
Hofmeyr and Gulmezoglu [92]	2001	Systematic review	Decreased
Wood et al. [93]	2014	Meta-analysis	Decreased
Gulmezoglu et al. [47]	2006	Systematic review	Decreased
Sanchez Ramos et al. [29]	2003	Systematic review	Decreased
Allirevic et al. [76]	2014	Systematic review	Decreased
Allirevic et al. [95]	2000	Systematic review	Decreased
Boulvain et al. [30]	2008	Systematic review	Decreased
Vogel et al. [35]	2013	Systematic review	Decreased
Crowley [96]	2000	Systematic review	No difference
Boulvain et al. [73]	2016	Systematic review	Not clear
Guerra et al. [26]	2009	Secondary analysis	Decreased
Cheng [97]	2008	RCT	Decreased
Koopmans et al. [98]	2009	RCT	Decreased
Pennel et al. [99]	2009	RCT	Increased
Bhutto et al. [100]	2013	RCT	Nil
Hermus et al. [101]	2009	Cohort	No difference
Marry et al. [37]	2015	Cohort	Decreased
Yeast et al. [102]	1999	Cohort	Decreased
Noah et al. [103]	2005	Retrospective	Decreased
Dubline et al. [19]	2000	Cohort	Increased
Johnson et al. [104]	2003	Cohort	Increased
Verhoeven et al. [22]	2012	Case control	Increased
done were failed induction, fetal distress, meconium stained liquor, undiagnosed CPD, and nonprogress of labor. The factors independently predicted the risk of cesarean section were age of mother, parity, BMI, cervical factors, indications, doses of drug and weight of baby. Most of the systematic reviews showed decreased rate of c-section after induction in term pregnancy. Hence, it is clear from the findings that induction of labor is beneficial in reducing the risk of cesarean section with better perinatal outcomes.

REFERENCES

1. Mckinnon AO, Squires EL, Vaala WE, Varner DD, McDonnell S. Abnormal sexual behavior In Equine Reproduction. West Sussex, UK: Wiley Blackwell, 2011. p. 1407-12.
2. Kandhaswamy A, Rangan S, Ahmed I, Meena KS. Synthesis, in silico docking and admet studies of arylacetic acid derivatives as prostaglandin H synthase-2 inhibitors. Asian J Pharm Clin Res 2017;10(4):68-72.
3. Bhuips CS, Rohit B, Kalyani D. Analgesic activity of hydroalcoholic extract of aerial parts of malvastrum coromandelianum. Asian J Pharm Clin Res 2016;9(5):146-9.
4. Wing DA, Gaffaney CA. Vaginal misoprostol administration for cervical ripening and labour induction. Clin Obstet Gynecol 2006;49(3):627-41.
5. Kelly AJ, Malik S, Smith L, Kavanagh J, Thomas J. Vaginal prostaglandin (PGE2 and PGF2a) for induction of labour at term. Database System Rev 2009;4:CD003101.
6. Abbati N, Danish N, Shakoor F, Parvez Z, Bilal SA. Effectiveness and safety of vaginal misoprostol for induction of labour in unfavourable cervix in 3rd trimester. J Ayub Med Coll Abbottabad 2008;20(3):33-5.
7. Crane JM, Butler B, Young DC, Hannah ME. Misoprostol compared with prostaglandin E2 for labour induction in women with term intact membranes and unfavourable cervix: A systematic review. BJOG 2006;113(6):1366-76.
8. Gulmezoglu AM, Crowther CA, Middleton P, Healeey E. Induction of labour for improving birth outcomes for women at or beyond term. Cochrane Database Syst Rev 2012;6:CD004945.
9. Mealing NM, Roberts CL, Ford JB, Simpson JM, Morris JM, Aust N Z J Obstet Gynecol. 2009; 49(6):599-605.
10. Admani R. Predictors of Successful Induction of Labor in Post Term Pregnancies at Kenyatta National Hospital, 2014. Available from: http://www.obsgyn.uonbi.ac.ke/sites/default/files/chs/medschool/Dr%20Rashida%20Admani.pdf.
11. Esiromo M. Maternal and Fetal Outcomes among Women at or Near Term Undergoing Pharmacological Induction of Labour at KNH. M.Med, Thesis U.O.N; 2011. Available from: http://www.erepository.uonbi.ac.ke/sites/default/files/chs/medschool/Dr%20Rashida%20Admani.pd.
12. Lamichhane S, Subedi S, Banerjee B, Bhattara R. Outcome of induction of labour. A prospective study. Ann Int Med Dent Res 2016;2(6):1-5.
13. Lawani OL, Onyebuchi AK, Iyoke CA, Okafio CN, Ajah LO. Obstetric outcome and significance of labour induction in a health resource poor setting. Obstet Gynecol Int 2014. DOI: 10.1155/2014/419621.
14. Michelson KA, Carr DB, Easterling TR. The impact of duration of labour for improving birth outcomes for women at or beyond term. Obstet Gynecol 2013;122(2):187-20.
15. Hatfield AS, Sanchez-Ramos L, Kaunitz AM. Titrated oral misoprostol for induction of labor among nulliparous women at term. Obstet Gynecol 2015;126(5):1059-68.
16. Heimstadt R, Skogvoll E, Mattsson LA, Johansen OJ, El-Nashar SA, et al. Predicting cesarean delivery after induction of labor among nulliparous women at term. Obstet Gynecol 2016;128(1-2):173-81.
17. Tolcher MC, Holbert MR, Weaver AL, McGree ME, Olson JE, El-Nashar SA, et al. Predicting cesarean delivery after induction of labor among nulliparous women at term. Obstet Gynecol 2013;125(5):1312-8.
18. Boulvain M, Kelly A, Iorion O. Intracervical prostaglandins for induction of labour. Cochrane Database Syst Rev 2008;1:CD006971.
19. Dan G, Mian A, Shehata R, Roberts CL, Argaman I, Connell P. Factors associated with failed induction of labour in a secondary care hospital. J Pak Med Assoc 2012;62(1):6-10.
20. Ezechi OC, Kalu BK, Njokkan FA, Nwokoro CA, Okeke GC. Vaginal misoprostol induction of labor: A Nigerian hospital experience. J Obstet Gynecol India 2004;24(3):239-42.
21. Sanchez-Ramos L, Olivier F, Delke I, Kaunitz AM. Labor induction versus expectant management for postterm pregnancies: A systematic review with meta-analysis. J Obstet Gynaecol. 2003;23(6):1312-8.
induction of labor more successful? Obstet Gynecol 1997;89(4):600-3.

50. Lee HR, Kim MN, You JY, Choi SJ, Oh SY, Roh CR, et al. Risk of cesarean section after induced versus spontaneous labor at term gestation. J Matern Fetal Neonatal Med 2015;28(5):314-26.

51. Park KH. Transvaginal ultrasonographic cervical measurement in predicted failing labor induction and cesarean delivery for failure to progress in nulliparous women. J Korean Med Sci 2007;22(4):722-7.

52. Jayaprakash S, Muralidharan L, Venkatesh S. Intrauterine PGE2 gel for induction of labour in patients with prelabour rupture of membranes with unfavorable cervix after 34 weeks period of gestation. Int J Reprod Contracept Obstet Gynecol 2016;5(2):1418-22.

53. Girma W, Tseadu F, Wolde M. Outcome of induction and associated factors among term and post-term mothers managed at Jimma university specialized hospital: A two years' retrospective analysis. Ethiop J Health Sci 2016;26(2):121-30.

54. Marroquin GA, Tudorica N, Salafia CM, Hecht R, Mikhail M. Induction of labor at 41 weeks of pregnancy among primiparas with an unfavorable Bishop score. Arch Gynecol Obstet 2013;288(3):989-93.

55. Danielsen C, White D, Hunter G, Olender M, Davis G. Using Bishop Score to Predict Labor Induction Time and Failure Rate; 2016. Available from: http://www.rowan.edu/som/education/graduate_medical/x-Danielsen_Pose.

56. Ahmadi S, Rahmani E, Motamed N, Ghorbanpoor M, Maneshi H. Bishop score predictive value in success of induced labor process among full term pregnant women referred to Persian Gulf Martyrs' Hospital in Bushehr in 2013. Iran South Med J 2016;19(4):620-8.

57. Parkes I, Kahiri D, Hants Y, Ezra Y. The indication for induction of labor impacts the timing of cesarean delivery. J Matern Fetal Neonatal Med 2016;29(2):224-8.

58. Vahratin A, Zhang J, Troendle JF, Sciscione AC, Hoffman MK. Labor progression and risk of cesarean delivery in electively induced nulliparas. Obstet Gynecol 2005;105(4):698-704.

59. Davey MA, King J. Caesarean section following induction of labour in uncomplicated first births-a population-based cross-sectional analysis of 42,950 births. BMC Pregnancy Childbirth 2016;16:92.

60. Laughon SK, Zhang J, Troendle J, Sun L, Reddy UM. Using a Bishop Score to Predict Labor Induction Time and Failure Rate; 2016. Available from: http://www.uptodate.com/contents/cervicalripening-and-induction-of-labor-in-women-with-a-prior-cesarean-delivery#H626360154. [Last updated on 2016 Mar 28].

61. Thorsell M, Lyrenäs S, Holmberg J, Hirshberg A, Srinivas SK. Term induction of labor and associated factors among women delivered at a major public hospital in Sweden. J Matern Fetal Neonatal Med 2016;29(2):172-6.

62. Thorsell M, Lyrenäs S, Andolf E, Kaivisto M. Induction of labor and the risk for emergency cesarean section in nulliparous and multiparous women. Acta Obstet Gynecol Scand 2011;90(10):1094-9.

63. Tennyson CB, Sahni N, Flara R, New York, USA. A randomised controlled trial of amniotomy and immediate oxytocin infusion versus amniotomy and delayed oxytocin infusion for induction of labor at term. Arch Gynecol Obstet 2009;279(6):873-80.

64. Socolovici D, Deal EJ, Socolovici D, Deal EJ. Randomized controlled trial. Obstet Gynecol 1997;89(4):600-3.

65. Dekker R. Maternal Age or Pregnancy at Age 35 or Older. Available from: http://www.uptodate.com/contents/cervicalripening-and-induction-of-labor-in-women-with-a-prior-cesarean-delivery#H626360154. [Last updated on 2016 Mar 22].

66. Thorsell M, Lyrenäs S, Holmberg J, Hirshberg A, Srinivas SK. Term induction of labor and the risk for cesarean delivery by parity. J Matern Fetal Neonatal Med 2012;24(7):1317-22.

67. Thorsell M, Lyrenäs S, Andolf E, Kaivisto M. Induction of labor and the risk for emergency cesarean section in nulliparous and multiparous women. Acta Obstet Gynecol Scand 2011;90(10):1094-9.

68. Hofmeyr GJ, Gulmezoglu AM. Vaginal misoprostol for cervical ripening and labor induction in late pregnancy. Cochrane Database Syst Rev 2001;11(2):113.7.

69. Moodley J, Venkatachalam S, Songca P. Misoprostol for cervical ripening at and near term - A comparative study. S Afr Med J 2003;93(5):371-4.

70. Wood S, Cooper S, Ross S. Does induction of labor increase the risk of cesarean section? A systematic review and meta-analysis of trials in women with intact membranes. BJOG 2014;121(6):674-85.

71. Alfirevic Z, Howarth G, Gaussmann A. Oral misoprostol for cervical ripening and labor induction. Cochrane Database Syst Rev 2014;6:CD001338.

72. Aflakpi A, Khamidi S, Zakeri A, Tavassoli M, Cohorts Database Syst Rev 2016;5:CD009938.

73. Moodley J, Venkatachalam S, Songca P. Misoprostol for cervical ripening at and near term - A comparative study. S Afr Med J 2003;93(5):371-4.

74. Vohlert P, Lyons PA, Weir CJ, Barber LW. Induction of labour in nulliparous and multiparous women: A UK, multicentre, open-label study of intravaginal misoprostol in comparison with dinoprostone. BJOG 2008;115(10):1279-88.

75. Alfirevic Z, Aflakpi A, Weeks AD. Oral misoprostol for induction of labour. Cochrane Database Syst Rev 2014;6:CD001338.

76. Alfirevic Z, Aflakpi A, Weeks AD. Oral misoprostol for induction of labour. Cochrane Database Syst Rev 2014;6:CD001338.
98. Koopmans CM, Bijlenga D, Groena H, Vijgen SM, Aarnoudse JG, Bekedam DJ, et al. Induction of labor versus expectant monitoring for gestational hypertension or mild pre-eclampsia after 36 weeks’ gestation (HYPITAT): A multicentre, open-label randomised controlled trial. Lancet 2009;374(9694):979-88.

99. Pennell CE, Henderson JJ, O’Neill MJ, McChlery S, Doherty DA, Dickinson JE. Induction of labour in nulliparous women with an unfavourable cervix: A randomised controlled trial comparing double and single balloon catheters and PGE2 gel. BJOG 2009;116(11):1443-52.

100. Bhutto A, Mahesh A, Khan A. Rectal misoprostol versus intravenous syntometrine in active management of third stage of labor in low risk women. Med Channel J 2013;4:40-43.

101. Hermus MA, Verhoeven CJ, Mol BW, de Wolf GS, Fiedeldeij CA. Comparison of induction of labour and expectant management in postterm pregnancy: A matched cohort study. J Midwifery Womens Health 2009;54(5):351-6.

102. Yeast JD, Jones A, Poskin M. Induction of labor and the relationship to cesarean delivery: A review of 7001 consecutive inductions. Am J Obstet Gynecol 1999;180(3):628-33.

103. Nooh A, Baghdadi S, Raouf S. Induction of labor: How close to the evidence-based guidelines are we? J Obstet Gynaecol 2005;25(5):451-4.

104. Johnson DP, Davis NR, Brown AJ. Risk of cesarean delivery after induction at term in nulliparous women with an unfavorable cervix. Am J Obstet Gynecol 2003;188(6):1565-9.