Numerical estimation of critical parameters using the Bond entropy

Rafael A. Molina1 and Peter Schmitteckert2

1Instituto de Estructura de la Materia - CSIC, Serrano 123, 28006, Madrid, Spain
2Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, 76128 Karlsruhe, Germany

Using a model of spinless fermions in a lattice with nearest neighbor and next-nearest neighbor interaction we show that the entropy of the reduced two site density matrix (the bond entropy) can be used as an extremely accurate and easy to calculate numerical indicator for the critical parameters of the quantum phase transition when the basic ordering pattern has a two-site periodicity. The actual behavior of the bond entropy depends on the particular characteristics of the transition under study. For the Kosterlitz-Thouless type phase transition from a Luttinger liquid phase to a charge density wave state the bond entropy has a local maximum while in the transition from the Luttinger liquid to the phase separated state the derivative of the bond entropy has a divergence due to the cancelation of the third eigenvalue of the two-site reduced density matrix.

PACS numbers: 03.67.Mn, 75.10.Jm
Keywords:

I. INTRODUCTION

A Quantum Phase Transition (QPT) is a qualitative change in the ground state of a quantum system as some parameter is varied$^{[1,2]}$. Contrary to classical phase transitions, QPTs occur at zero temperature and are due to the effect of quantum fluctuations and not of thermal fluctuations. The previous definition is very general, however, the abrupt change in the structure of the ground state that define the phase transition can have different consequences depending on the different cases. The ground state energy may become non-analytic when approaching the critical parameter. The energy gap between the ground state and the first excited state may go to zero in the critical point. The correlations at the critical point may decay as power laws instead of exponentially indicating a diverging correlation length. It is possible to find quantum systems which have some of these indications of the QPT and not others$^{[3,4]}$. For this reason, alternative ways for the classification of QPTs and for the numerical investigation of the critical parameters in a QPT can be very helpful.

In recent years quantum information concepts have started to be applied to the study of QPTs. One central concept in quantum information theory is the concept of entanglement$^{[3]}$. Two quantum systems in a pure state are entangled if their state cannot be written as the product of two separate pure states for each of the quantum systems. Entanglement measures quantum correlations and as correlations are typically maximum at the critical points of QPTs it was realized that some entanglement measures may have a singularity or a maximum at the critical point. The amount of entanglement has been shown to be a very sensitive quantity to the value of the critical parameter governing the phase transition$^{[6,7,8,9,10]}$. In particular, concurrence$^{[11]}$ has been used to investigate spin models and this quantity shows an extreme or singular behavior at the corresponding critical points$^{[2]}$. The block-block entanglement between two parts of the system has also been used, establishing connections with conformal field theory$^{[8,12,13]}$.

In a recent work Gu et al.$^{[14]}$ analyzed the local entanglement and its relationship with phase transitions in the one-dimensional and two-dimensional XXZ spin models$^{[14]}$. The local entanglement was measured with the Von-Neumann entropy of the two-site density matrix. It is more convenient numerically than the block-block entanglement as the size of the density matrix needed for the latter quantity grows exponentially with the size of the block. Using Bethe ansatz results for the one-dimensional XXZ model Gu and coworkers showed that the local information obtained from the entanglement entropy of the two-site density matrix is enough to study the phase transitions that occur in this model. Considering blocks larger than the characteristic length scales of the system (that in the critical point diverge) was shown to be unnecessary as the entanglement between a block of two spins and the rest of the system is sufficient to reveal the most important information about the system. Their results hint to the possibility of using these properties for the numerical study of phase transitions with small systems.

It is the purpose of this work to study numerically the local entanglement as a function of the size of the system. In particular, we will concentrate in the critical points of the phase transitions. We will study a one-dimensional model of spinless fermions with nearest-neighbor interactions that can be transformed through the Jordan-Wigner transformation to the XXZ model with spins at each site $S_j = 1/2$[15]. For repulsive interaction $V_1 = 2.0$ the ground state performs a Kosterlitz-Thouless type phase transition from a Luttinger Liquid to a charge density wave, which corresponds to an antiferromagnetically ordered state in the spin picture. For attractive interaction $V_1 = -2.0$ there is a phase transition to a phase separated state, which corresponds to a ferromagnet in the spin picture. We will show that the bond
entropy S_{bond} enables us to determine the critical points of both quantum phase transitions with an astonishing accuracy, albeit they present very different characteristics and symmetries. We will show how these differences are reflected in the behavior of the bond entropy. Finally we include next-nearest-neighbor interaction to test the generality of our finding. The effect of longer ranged interaction was studied before in the context of multiple umklapp scattering [16].

In the boundary condition when we apply the Jordan-Wigner transformation [15] commutes with the total Hamiltonian (specially in the "ferromagnetic" phase). The Hamiltonian under study, the invariance under translations it can be shown that we can write this matrix elements in terms of certain correlation functions [13, 20],

$$S_{\text{bond}} = \left(\begin{array}{cccc} u^- & 0 & 0 & 0 \\ 0 & \omega & z & 0 \\ 0 & z^* & \omega & 0 \\ 0 & 0 & 0 & u^+ \end{array} \right).$$

For this particular model using its invariance under translations it can be shown that we can write this matrix elements as the Von Neumann entropy of the reduced density matrix of two-neighboring sites $\hat{\rho}_{ii+1}$. As a result of the conservation of N the reduced density matrix can be written as a 4×4 matrix with three sectors of $N = 0$, $N = 1$, and $N = 2$. In the two-site basis $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$ it can be represented as,

$$\hat{\rho}_{ii+1} = \left(\begin{array}{cccc} u^- & 0 & 0 & 0 \\ 0 & \omega & z & 0 \\ 0 & z^* & \omega & 0 \\ 0 & 0 & 0 & u^+ \end{array} \right).$$

For this particular model using its invariance under translations it can be shown that we can write this matrix elements in terms of certain correlation functions [13, 20],

$$u^- = 1 + \langle \hat{n}_i \hat{n}_{i+1} \rangle - \frac{3}{2} \langle \hat{n}_i \rangle - \frac{1}{2} \langle \hat{n}_{i+1} \rangle,$$

$$u^+ = \langle \hat{n}_i \hat{n}_{i+1} \rangle + \frac{1}{2} \langle \hat{n}_i \rangle - \frac{1}{2} \langle \hat{n}_{i+1} \rangle,$$

$$\omega = \frac{1}{2} \langle \hat{n}_i \rangle + \frac{1}{2} \langle \hat{n}_{i+1} \rangle - \langle \hat{n}_i \hat{n}_{i+1} \rangle,$$

$$z = \frac{1}{2} \left(\langle \hat{c}_i^\dagger \hat{c}_{i+1} \rangle + \langle \hat{c}_{i+1}^\dagger \hat{c}_i \rangle \right).$$

We define the bond entropy S_{bond} as the Von Neumann entropy of the two-site density matrix $\hat{\rho}_{ii+1}$. In the model under study, the invariance under translations also implies that S_{bond} does not depend on the site i.

$$S_{\text{bond}} = -\sum_{j=1}^{N} \lambda_j \ln \lambda_j,$$

where λ_j are the four eigenvalues of the reduced two-site density matrix $\hat{\rho}_{i,i+1}$.

III. NUMERICAL RESULTS

In this section we will show the numerical results for the bond entropy as a function of the size of the system using the DMRG algorithm [21].

In Figure 1 show the results of S_{bond} at half filling for different number of sites L. The behavior of the
This resulted in a discarded entropy below 10\(^{-10}\) block and only two low lying states to check our results. In the transition (see below) we used at least 2050 states per lattice sweeps. Close to the CDW-I – Luttinger liquid to the phase transitions and applied always eleven finite differences of \(L_{\text{V}}\) region around \(V_{\text{c}} = 2\), including the five lowest lying states in order to treat the degeneracies correctly, leading to a discarded entropy typically below \(10^{-10}\), and up to \(2 \cdot 10^{-8}\) close to the phase transitions and applied always eleven finite lattice sweeps. Close to the CDW-I – Luttinger liquid transition (see below) we used at least 2050 states per block and only two low lying states to check our results. This resulted in a discarded entropy below \(10^{-12}\). We’d like to note that despite the large number of states the DMRG runs are much cheaper as compared to the calculations in [10], since no resolvent has to be computed, e.g. the largest run took about a hundred CPU minutes.

In Figure 2 we see a zoom of the last figure 1 for one particular case with parameter \(L = 30, N = 15\) in the region around \(V_{\text{I}} = 2\). When we calculate numerically the position of the maximum with DMRG we obtain the value of \(V_{\text{I}}\) with a precision better than \(10^{-5}\). Of course, in order to take full advantage of these properties of \(S_{\text{bond}}\) we need a very accurate algorithm such as DMRG. We used at least 500 states per block for the \(L \leq 30\) sites leading to a discarded entropy below \(10^{-9}\), and 1400 states per block for the 36 site system (see below), including the five lowest lying states in order to treat the degeneracies correctly, leading to a discarded entropy typically below \(10^{-10}\), and up to \(2 \cdot 10^{-8}\) close to the phase transitions and applied always eleven finite lattice sweeps. Close to the CDW-I – Luttinger liquid transition (see below) we used at least 2050 states per block and only two low lying states to check our results. This resulted in a discarded entropy below \(10^{-12}\). We’d like to note that despite the large number of states the DMRG runs are much cheaper as compared to the calculations in [10], since no resolvent has to be computed, e.g. the largest run took about a hundred CPU minutes.

In Figure 3 we see some examples comparing results at half-filling and outside half-filling. The qualitative behavior of the bond entropy is exactly the same around the first critical point \(V_{\text{ca}} = -2\), but the maximum of the bond entropy around \(V_{\text{cb}} = 2\) disappears as soon as we move outside half-filling reflecting the absence of the CDW transition for fillings different from 1/2.

IV. FERROMAGNETISM AND THE TWO-SITE DENSITY MATRIX

As we have mentioned before the slope of \(S_{\text{bond}}\) diverges at \(V_{\text{I}} = V_{\text{ca}}\). In Fig. 4 we show the results for the value of the third eigenvalue of the two-site density matrix \(\lambda_3\) for different sizes. We can reach a very high numerical precision in the determination of the ferromag-
netic critical point studying the cancellation of the third eigenvalue of the two-site density matrix.

In the thermodynamic limit at \(V_1 = -2 \), \(\omega = z = 1/4 \) in Eq. (4). One can immediately see that the equality of both matrix elements implies that one of the eigenvalues of the density matrix is zero, which leads to the singularity of \(S_{\text{bond}} \). If one tries a direct numerical examination of the values of the correlation functions independently one does not get a very accurate estimation of the critical parameter. However, the examination of the particular combination appearing in the Von Neumann entropy of the two-site density matrix allows a very accurate calculation even with very small system sizes due to the fact that although \(\omega \) and \(z \) converge slowly to the thermodynamic limit value 1/4, their difference converges very quickly to zero at the critical value of the interaction.

V. NEXT NEAREST-NEIGHBOR INTERACTION MODEL

In order to test the generality of our conclusions and to obtain a critical parameter of a phase transition in a model not solvable with Bethe ansatz we add next-nearest neighbors interaction,

\[
\hat{H} = -t \sum_{i=1}^{L} \left(\hat{c}_{i}^\dagger \hat{c}_{i-1}^\dagger + \hat{c}_{i-1}^\dagger \hat{c}_{i}^\dagger \right) + \sum_{i=1}^{L} V \left(\hat{n}_{i} - \frac{1}{2} \right) \left(\hat{n}_{i-1} - \frac{1}{2} \right) + \sum_{i=1}^{L} V_{2} \left(\hat{n}_{i} - \frac{1}{2} \right) \left(\hat{n}_{i-2} - \frac{1}{2} \right),
\]

where \(V_{2} \) is the strength of the interaction between sites separated by two lattice spacings. This Hamiltonian has been used to study the physics of materials that exhibit multiple phase transitions. Usually one considers \(V_{2} < V_{1} \) as one expects the interaction to reduce with distance. However, there can be exceptions if the nearest-neighbor interaction is suppressed by the lattice geometry.

The phase diagram of the model represented by the Hamiltonian (10) has been studied as a function of \(V_{1} \) and \(V_{2} \) by Schmitteckert and Werner [16]. In this paper the authors used DMRG to calculate the ground state curvature. The phase diagram depends on the filling, commensurability effects are extremely important due to the multiple umklapp scattering. If we concentrate on half-filling and repulsive interactions we have a charge density wave (CDW) phase in which the ground state is twofold degenerate with ordering pattern \((\circ\circ\circ)\) and \((\circ\circ\circ)\). Here \(\circ \) denotes a vacant and \(\bullet \) denotes an occupied site. In phase CDW II the ground state is fourfold degenerate with ordering pattern \((\circ\bullet\circ\circ)\), \((\circ\circ\bullet\circ)\), \((\circ\circ\circ\bullet)\), and \((\bullet\circ\circ\circ)\). We will follow reference [16] and study the critical parameters along the line \(V_{2} = 5 - 2V_{1} \). For example, studying systems of sizes up to \(L = 60 \) they obtained a critical point for the transition between the CDW I phase and the Luttinger Liquid phase as \((V_{1,c}, V_{2,c}) = (2.4 \pm 0.05, 0.2 \pm 0.1) \). In Fig. 5 we show results for the ground state bond entropy as a function of \(V_{2} \) for along the previous mentioned line for \(L = 36 \) and \(N = 18 \). Even from the small size used we can accurately determine the critical \(V_{2} \) as \(V_{2,c} = 0.280 \), which is within the error bars previously given by Schmitteckert and Werner [16]. The determination of the critical parameter for the transition between CDW I and the Luttinger liquid is done with much less numerical work as compared to the finite size analysis of excitation gaps and the ground state curvature in [16]. Notably, the finite size corrections are smaller, e.g. the results of the same analysis with \(L = 18 \) already gives a critical parameter of \(V_{2,c} = 0.277 \). In Fig. 5 we show the numerical results for the value of the next-neighbor interaction \(V_{2} \) in which we have a local maximum of \(S_{\text{bond}} \) (along the same line as before) as a function of the inverse
of the total length of the system $1/L$. We have calculated numerically the bond entropy at each size with an interval of 0.001 in V_2 in the region around the maximum of S_{bond}, except in the case of $L = 36$ where we have used an interval of $= 0.0002$. The values of V_2 in the maximum where obtained through a second-order polynomial fit of the numerical results for S_{bond}. The actual value of the interval used was not very critical as the fits were very good. With another second-order polynomial fit we can extrapolate the calculated values to obtain the result for the thermodynamic limit $V_{2,c} = 0.2814 \pm 0.0001$. In the inset of the figure we can see the numerical results used in the extrapolation of the value of the maximum of the bond entropy in the critical point. The extrapolated value being $S_{\text{max}} = 0.95385 \pm 0.00001$.

In this case the bond entropy and the two-site density matrix does not give very useful information about the phase transitions to charge density wave phases with ordering patterns with basic sizes bigger than two. We obtain no clear signature in the bond entropy for the quantum phase transition to CDW II. One may have to study entropies of density matrices of blocks with at least the size of the basic ordered block of the phases we are looking at. Also, one could try to study the bond entropy for the excited states. The numerical determination of critical parameters in this case is out of the scope of this study of the bond entropy and will be subject of future work. We note that in the case of CDW II the ground state is fourfold degenerate in the thermodynamic limit. However, the degeneracy of the two lowest lying states is lifted by finite size effects.

VI. CONCLUSIONS

The bond entropy defined as the Von Neumann entropy of the two-site density matrix can be a very effective tool for the study of phase transitions and critical parameters. Its behavior depends on the correlations in the ground state of the system.

We have studied the bond entropy for a model of spinless fermions with nearest-neighbor interactions and periodic boundary conditions. The size dependence of its behavior near the two critical points in the model has been studied in detail, showing an amazing precision in the estimation of the critical parameter. We have also studied a model with next-nearest neighbor interactions. We could determine the critical point of the phase transition from the Luttinger liquid to the CDW I state with an ordering pattern of period two. If the fundamental block contains only two sites we show that the bond entropy displays a clear signature of the quantum phase transitions and allows for the determination of the critical parameters. The bond entropy of the ground state could not be used for the transition to CDW II with ordering pattern of period four. In this case we may have to turn to a block entropy of higher size. In general, we can say that the bond entropy can be used as a numerical indicator for phase transitions but the actual behavior of the bond entropy is not universal and will depend on the QPT under study. Our results should open the way to the numerical study of phase transitions with small sized systems.

Acknowledgments

RAM wishes to acknowledge useful discussions with J. Dukelsky. He also acknowledges financial support at the Instituto de Estructura de la Materia-CSIC by an I3P contract funded by the European Social Fund. This work is supported in part by Spanish Government Grant FIS2006-12783-C03-01.

[1] S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).
[2] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys. 69, 315 (1997).
[3] F.D.M. Haldane, Phys. Lett. 93A, 464 (1983); F. Verstraete, M. Popp, J.I. Cirac, Phys. Rev. Lett. 92, 027901 (2004).
[4] F. Verstraete, M.A. Martín Delgado, J.I. Cirac, Phys. Rev. Lett. 92, 087201 (2004).
[5] F. Mintert, A. R. R. Carvalho, M. Kuš, A. Buchleitner, Phys. Rep. 415, 207 (2005).
[6] T. J. Osborne, M. A. Nielsen, Phys. Rev. A 66, 032110 (2002).
[7] A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416,
608 (2002).
[8] G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).
[9] J. Vidal, G. Palacios, R. Mosseri, Phys. Rev. A 69, 022107 (2004).
[10] J. Vidal, R. Mosseri, J. Dukelsky, Phys. Rev. A 69, 054101 (2004).
[11] S. Hill, W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997); W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[12] V. E. Korepin, Phys. Rev. Lett. 92, 096402 (2004).
[13] J.P. Keating, F. Mezzadri, Phys. Rev. Lett. 94, 050501 (2005).
[14] Shi-Jian Gu, Guang-Shan Tian, Hai-Qing Lin, New J. Phys. 8, 61 (2006).
[15] P. Jordan, E. Wigner, Z. Phys. 47, 631 (1928).
[16] P. Schmitteckert, R. Werner, Phys. Rev. B 69, 195115 (2004).
[17] N. Nagaosa, *Quantum Field Theory in Strongly Correlated Electronic Systems* (Springer-Verlag, Berlin, 1999).
[18] E. Lieb, D. Mattis, J. Math. Phys. 3, 749 (1962).
[19] X. Wang, P. Zanardi, Phys. Lett. A 301, 1 (2002).
[20] S. J. Gu, G. S. Tian, H. Q. Lin, Phys. Rev. A 71, 052322 (2005).
[21] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).