Improving Critical Thinking Skills To Learn Heredity With Discovery Based Unity of Sciences (DBUS) Model

Nur Khasanah 1,2, Sajidan 3, Sutarno 4, B A Prayitno 5
1Departement of Biology Education UIN Walisongo, Semarang
2Doctoral Science Education Program Universitas Sebelas Maret, Surakarta
3Department of Doctoral Science Education Program Universitas Sebelas Maret, Surakarta
4Department of Doctoral Science Education Program Universitas Sebelas Maret, Surakarta
5Department of Doctoral Science Education Program Universitas Sebelas Maret, Surakarta

Abstract. The Background of this research is the study of the integration of science and religion in science learning in Islamic Higher Education. The study discusses how to teach biology with Discovery Based Unity of Sciences (DBUS) model to improve students' critical thinking skill. Observation of research at UIN Walisongo and UIN Sunan Kalijaga. Classroom learning uses a discovery based Unity of sciences (DBUS) model. Samples in the study were 96 students of UIN Walisongo and 94 students of UIN Sunan Kalijaga in first year 2017/2018 and 2018/2019. The research used experimental method with T test pretest posttest experiment. The N-gain obtained by the experimental class is 0.23 is greater than the control group of 0.09 in UIN Walisongo. The gain obtained from the experimental class is 0.54 greater than the control group 0.16 in Sunan Kalijaga UIN. The results of the DBUS model study are feasible to improve critical thinking skills of heredity learning. Content validity between 0.75 to 1.00. Construct validity using structural equation model (SEM) method with lisserel analysis 8.7 with loading factor value of all critical thinking skill 0.575 and T-value of DBUS model> 1.96. The effectiveness of DBUS model with statistical test at UIN Walisongo Semarang by value of t value = 9,326 with sig 0,000 <0,05 and UIN Sunan Kalijaga obtained t value = 25,582 with sig value 0,000 <0,05.

1. Introduction

Critical thinking is a character (disposition) and skill (ability). Character and skill are two separate things within a person [1,2,3]. From the perspective of developmental psychology, character and skills are mutually reinforcing, therefore both must be explicitly taught together. The human character (disposition) is a consistent internal motivation within a person to act, respond to a person, event, or ordinary situation. Experiences reinforce a human character (disposition) characterized by apparent tendencies, which can be easily described, evaluated, and compared by themselves and others. Knowing one's character (disposition) allows us to predict how one tends to act or react in various situations [4,5].

Skill is manifested in deeds. A person with good skills tends to show a little mistake in doing tasks while less skilled people make more mistakes when given a number of similar tasks [1,6]. The results of educational research show that critical thinking is able to prepare learners to think in various disciplines, and can be used to fill the intellectual needs and the development of potential learners, to live their career and life [7,8]. Learning learners with critical thinking skills can influence the lives of learners to analyze some of the problems they encounter in everyday life [9,10]. Critical thinking skills can provide information can be used more productively, i.e by making decisions and problem solving. The importance of trained critical thinking skills in learning
provides students with the ability to develop strategies and tactics for success in future global competition. Through critical thinking skills, learners are invited to participate actively and effectively to build their knowledge [9]. Critical thinking is included in high-level thinking skills, along with creative thinking, problem solving, and decision-making which are all high-thinking skills that include analytical, synthesis, and evaluation skills [10,11]. According to Facione, there are six major skills of critical thinking skills involved in the critical thinking process. These skills are interpretation, analysis, evaluation, inference, explanation and self-regulation [1,2].

The education system in Indonesia is still focused on the delivery of information rather than the development of thinking skills of learners. The knowledge information provided to learners has not become knowledgeable until analyze, applying, synthesizing, evaluating and integrating into life. Educators should pay attention to critical thinking skills during learning because of the learners who have [12,13].

The need for learning models that can empower critical thinking skills. Discovery model based on unity of sciences is one model that can be applied in learning in class [14]. The DBUS (Discovery Based Unity of Sciences) model is a form of discovery model development by incorporating elements of regional culture and Islamic values. Stages DBUS model consists of; 1) Stimulation using local wisdom 2) Problem statement 3) Observation and data collection 4) Data processing 5) Verification based on religion 6) Generalization and awareness [15,16].

1.1 Heredity

Genes are the unit of inheritance of properties for living organisms or substances of heredity which are chemical compounds containing information and may duplicate themselves at the time of mitosis. The physical form is a sequence of DNA encoding a protein, polypeptide, or a RNA that has a function for the organism that has it. Genes cultivate and organize various types of characters in the body both physical and psychic [19,20]. Setting these characteristics through protein synthesis processes such as; the skin is formed by keratin, the muscle of actin and myosin, the blood of (Hb, globulin, and fibrinogen), the binding tissue of (collagen and elastin), bones of Osteocytes, cartilage of chondrocytes. Genes as hereditary factors are stored in chromosomes, which are inside beads called chromosome or nuclei of chromosomes [21,22].

In chromosomes there is 35% DNA of the entire chromosome. DNA is a living molecule and can replicate. DNA is a reservoir of genetic information to be inherited to these guidelines, show the best layout for your paper using Microsoft Word. If you don’t wish to use the Word template provided, please use the following page setup measurements.

Figure 1. Chromosome (http://www.aktifbelajar.com/2015/10/pewarisan-sifat-istilah-istilah-dalam.html)

In the body of the organism there are different chromosome numbers. In humans every somatic cell counts 46 chromosomes (except sperm and ovum cells, because it has a single set of chromosomes) or 23 pairs. 46 chromosomes are two sets of chromosomes consisting of each of the 23 chromosomes, a maternal set (from the mother) and a paternal set (from the father).

In Organism there are two kinds of chromosomes, namely: Sex chromosomes that determine the sex and chromosomes of the body (autosomes) of 23 pairs of chromosomes, 22 pairs of which are autosomes and 1 pair of gen that determine the sex [20,22].
1.2 Learning Heredity With the DBUS Model

The DBUS model is an integrative model of discovery based on Islamic values and values of society. In learning, students are invited to explore the noble cultural values of the concept of heredity. In addition, the value of religion became the basis in the implementation of the concept of heredity.

Achievement of learning is expected to explain the concept of heredity with the basis of the Qur'an, Sunnah and cultural values that exist in society. Indicators in learning include:

- a. Students understand and explain the basic concepts of heredity and utilization
- b. Students can implement basic concepts of heredity in the community.

Students are expected to be more critical in learning heredity by using the DBUS model. In classroom learning, students observed students' critical thinking skills. The indicator of critical thinking skills can be seen in table 1.

Table 1. Critical thinking skills indicator

No.	Indicator	Operational Indicator	No Butir
1	Interpretation	Revealing experiences	1
		Bring up data	2
		Telling the situation and events	3
		Bring out rules and procedures	4
2	Analyzation	Linking statements with confidence	5
		Describe experiences, reasons, and opinions	6
		Identify questions to disclose information, opinions and reasons	7
		Linking concepts in the form of reason and opinion	8
3	Evaluation	Giving statements from other people's perceptions	9
		Giving opinions from others' experiences	10
		Assess the strength of the relationship between questions and statements	11
		Distinguish information and opinions	12
4	Inference	Collect data and facts to draw temporary conclusions	13
		Make a hypothesis of information, facts and data available	14
		identify the elements needed to draw conclusions	15
		Consider relevant information from the data	16
5	Explain	Gives reason in the form of a convincing argument	17
		Provide evidence in the form of a convincing argument	18
		Provide methodology to convince arguments	19
		Providing contextual considerations in convincing arguments	20
6	self-regulation	Conducting cognitive activities	21
		Apply the concept in activities	22
		Apply learning outcomes in skills and analysis	23
		Provide assessment with questions, confirmation and validation	24
2. Methods
The population in this study were Biology Education students UIN Walisongo (96 people) and UIN Sunan Kalijaga (94 people) in the first year of 2017/2018. This study is a population study, meaning that all populations are sampled in the study [23,24]. This type of research is experimental with DBUS learning model as independent variable in research for experimental class and direct learning model for control class. The dependent variable is students' critical thinking skills.

The research instrument consists of learning tools, namely: Semester learning plan (RPS) and observation sheet of critical thinking skill. Learning devices are used in the implementation of learning, while the instrument of data collection as a means of data retrieval research results. The research data consist of observation of critical thinking skill of students obtained from observation done in class. All instruments are tested for validity before use. RPS and student observation sheets are tested for validity of experts in their field (judgment experts).

Instrument of observation of students' thinking skill as 24 indicator of critical thinking skill. The research data is the value of students' critical thinking skill. Data were analyze by descriptive statistic and T test. Descriptive analysis is used to describe the critical thinking skills of the learning model. Test T Test to test the hypothesis that has been formulated at 5% significance level.

The use of the DBUS model in empowering critical thinking skills is reviewed based on the comparison of normalized gain (N-gain) values, between the experimental and control groups. The normalized gain (N-gain) can be calculated by the equation [24,25,26] by the formula:

\[g = \frac{S_{\text{posttest}} - S_{\text{pretest}}}{S_{\text{maximum}} - S_{\text{pretest}}} \]

After the normality test, the homogeneity test of variance is performed before the T Test. Normal distributed data and homogeneous variance are obtained. Hypothesis of this research, that is: there is difference of critical thinking skill between student using DBUS model with student using conventional model. The hypothesis was tested with SPSS 18 program based on Test of Between-Subject Effects in SPSS output.

3. Results and Discussion
Here it is explained that g is the normalized gain (N-gain) of both models, the maximum S is the ideal score of the initial and final tests, S_{posttest} is the final test score, whereas S_{pretest} is the initial test score. The normalized low gain (N-gain) can be classified as follows:
- if the resulting $g \geq 0.7$ N-gain belongs to the high category
- if $0.7 > g \geq 0.3$, the resulting N-gain belongs to the moderate category
- if $g < 0.3$, the resulting N-gain belongs to the low category [24,25].

Tables 1 and 2 respectively demonstrate the scores and results of critical thinking skills analysis of experimental class and control class students on the concepts of heredity before and after the lecture. The table contains the average score of pre-test and post-test of students' critical thinking skills for each experimental class and control class.

Table 2. Score and analysis results critical thinking skills UIN Walisongo student

No	Concept	Experiment Class	Control class				
		n Pre test	Post test	N-gain	N Pre test	Post test	N-gain
1	Heredity	96 2.4583	7,4167	0,23	101 3,1683	5,0792	0,09
Based on Tables 2 and 3, it appears that the N-gain difference between the experimental and control groups when learning the Basic of Inheritance of Nature and Biotechnology with the DBUS model. The gain of the experimental class of 0.23 is greater than that of the control group of 0.09, so it generally illustrates the effectiveness of the application of the DBUS model in teaching the concept of heredity.

Table 3. Score and results of analysis of critical thinking skills
UIN student Sunan Kalijaga

No	Concept	Experiment class	Control class						
		N Pre test	Post test	N-gain	N Pre test	Post test	N-gain		
1	Heredity	94	7.1702	16.3511	0.54	48	5.0417	8.0625	0.16

Based on Table 2 and 3 it appears that the difference in N-gain between the experimental and control groups. If we review more generally, the N-gain obtained by the experimental class is 0.54 times greater than that of the control group 0.16, thus generally illustrating the effectiveness of the application of the DBUS model in heredity.

Described comparison between the experimental class (DBUS model) and the learning model class in the control group (discussion), in terms of empowering students' critical thinking skills. The comparison of these two models is done by comparing the gain of normalized (N-gain) experimental class and control class for critical thinking skills.

3.1 Effectiveness of DBUS model judging from obtaining score of critical thinking skill
To compare DBUS model classes and regular learning model classes, in terms of empowering students' critical thinking skills on the concept of heredity, a normalized score comparison test (g) of these skills is performed between the experimental and control classes (regular). This comparison is done by statistical test that is t test for normal distributed data. Table 2 and 3 show the data analysis of scores normalized students' critical thinking skills.

Table 4. Test of UIN Walisongo experimental t-test

Paired Samples Statistics	Mean	N	Std. Deviation	Std. Error Mean
Pair 1 Post test	7.4167	96	4.92398	.50255
Pair 1 Pre test	2.4583	96	1.88018	.19190

Paired Samples Correlations	N	Correlation	Sig.
Pair 1 Post test & pre test	96	.035	.736

Paired Samples Test	Paired Differences	95% Confidence Interval of the Difference	Sig. (2-tailed)
Mean	Std. Deviation	Std. Error Mean	df
Lower	Upper	T	
Paired Samples Statistics

	Mean	N	Std. Deviation	Std. Error Mean
Pair 1 Post test	7.4167	96	4.92398	.50255
Pre test	2.4583	96	1.88018	.19190

Paired Samples Correlations

	N	Correlation	Sig.					
Pair 1 Post test – pre test	4.95833	5.20914	.53166	3.90286	6.01380	9.326	95	.000

The result of statistical test in table 4.1 paired sample test statistic obtained pre test average value is 2.45 while average post test value of 7.4167 is correlation between pre test data and post test data is 0.035 with probability 0.035 <5%, it shows that the increase in student value from pre test to post test is evenly distributed in other words pre test data has a significant relationship with post test data. In table 4.14 paired sample test obtained account = 9,326 with sig value 0.000 <0,05 thus there is difference of pre test average value and mean value of post test. Because the mean value of post test is higher than the pre test average value, it can be said that the average value of post test is better than the average value of pre test. The magnitude of the percentage increase in the pre test value to the post test is:

\[
(7.4167 - 2.45) / 2.45 \times 100\% = 202.722\%.
\]

There was an increase of more than 200% critical thinking skills to UIN Walisongo students from the observation of learning activities using DBUS model. Increases in almost every indicator of critical thinking skills include: interpreting, analyzing, evaluating, inference, explaining and self regulation [2]

Table 5. T-test experiment control class UIN Sunan Kalijaga

Paired Samples Statistics

	Mean	N	Std. Deviation	Std. Error Mean
Pair 1 Post test	16.3511	94	3.05050	.31463
Pre test	7.1702	94	1.90437	.19642

Paired Samples Correlations

	N	Correlation	Sig.
Pair 1 Post test & pretest	94	.071	.496

Paired Samples Test

	Paired Differences	95% Confidence Interval of the Difference	Sig. (2-tailed)					
	Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	
Pair 1 Post test pre test	9.18085	3.47947	.35888	8.46819	9.89352	25.582	93	.000

The result of statistic test on paired table of statistic samples obtained pre test average value is 7.1702 while the average value of post test 16.3511 is correlation between pre test data and post test
data is 0.071 with probability 0.496 > 5%, it shows that improvement of critical thinking skill UIN student Sunan Kalijaga from pre test to post test is evenly distributed in other words pre test data has a significant relationship with post test data. On paired table sample test obtained \(t \) value = 25.582 with sig value 0.000 < 0.05 thus there is difference of pre test average value and mean value of post test. Because the mean value of post test is higher than the pre test average value, it can be said that the average value of post test is better than the average value of pre test. The magnitude of the percentage increase in the pre test value to the post test is \((16.3511 - 7.71702) / 7.71702 \times 100\% = 111.88\%\).

There is an increase of more than 100% critical thinking skills in UIN Sunan Kalijaga students from the observation of learning activities using DBUS model. The increase of almost every indicator of critical thinking skill includes: interpreting, analyzing, evaluating, inference, explaining and self regulation [1,3,6].

Parameter effect size in this study is to test the correlation coefficient then the effect size is determined by how big the difference. The way to calculate the effect size in this study was to use an average of Cohen. According to Cohen, the average effect size is the mean difference expressed in standard deviation units [24,26].

Effect size d Cohen = \(\frac{\text{mean difference}}{\text{standard deviation}}\)

So the result of effect size in this research are: Effect size d Cohen Result from UIN Walisongo

a. Effect size d Cohen Result from UIN Walisongo

Mean size	Std. Deviation
4.95833	5.2814

The Result effect size Model DBUS di UIN Walisongo
d = 4.95833/5.2814 = 0.9388287

b. Effect size d Cohen Result UIN Sunan Kalijaga

Mean size	Std. Deviation
9.18085	3.47947

The result of measure size of DBUS model size in UIN Sunan Kalijaga is
d = 9.18085/3.47949 = 2.63857714

Based on Cohen’s effect size criteria proposed by Cohen on the size of the effect are as follows:

- \(0 < d < 0.2\) Small effect (average difference of less than 0.2 standard deviation)
- \(0.2 < d < 0.8\) Medium effect (average difference of about 0.5 standard deviation)
- \(d > 0.8\) Large effect (average difference of more than 0.8 standardized deviation) [21].

So it can be concluded that the effect size of the DBUS model both in UIN Walisongo and UIN Sunan Kalijaga in the class of great effect because it has a value \(d > 0.8\) ie 0.93 in UIN walisongo and 2.63 from UIN Sunan Kalijaga.

4. **Conclusion**

The value of \(N\)-gain in UIN Walisongo obtained the experimental class of 0.23 is greater than the control group of 0.09, so the general application of the DBUS model in the General Biology lecture is effective. The effectiveness of the DBUS model implemented in UIN Sunan Kalijaga viewed \(N\)-gain obtained by experimental class of 0.54 is greater than the control group of 0.16, so it generally illustrates the effectiveness of the application of DBUS model in Biology lectures.
The results of statistical tests at UIN Walisongo Semarang obtained the average value of pre-test is 2.45 and the average value of post-test is 7.4167. The correlation between pre-test post-test is 0.035 <5% with t test value = 9.326 with sig value 0.000 <0.05 thus the percentage of increase of pre test value to post test is: (7.4167 - 2.45) / 2.45 x100% = 202.722%.

The result of statistic test in UIN Sunan Kalijaga obtained the average value of pre-test is 7.1702 and the average value of post-test is 16.3511. The correlation between pre-test data and post-test data is 0.071 with probability 0.496 <5%, it indicates that improvement of students' critical thinking skill. In the paired table the test sample obtained t test = 25.582 with sig value 0.000 <0.05 thus the difference of pre-test average value and average value of post stest. (16.3511 - 7.71702) / 7.71702 x100% = 111.88%.

Effect size of the DBUS model both in UIN Walisongo and UIN Sunan Kalijaga in a large effect class because it has a value of d> 0.8 ie 0.93 in UIN Walisongo and 2.63 from UIN Sunan Kalijaga.

5. References

[1] Facione Peter A 2011 Critical Thinking: What It Is and Why It Counts, Measured Reasons and The California Academic Press, Millbrae, CA
[2] Fisher, A. (2009). Berfikir Kritis: Sebuah Pengantar. Terj. Benyamin Hadinata. Jakarta: Erlangga.
[3] Hosnan. (2014). Pendekatan Saintifik dan Kontekstual dalam Pembelajaran Abad 21. Bogor: Ghalia Indonesia.
[4] Schunk, Dale H 2012 Learning Theories Jakarta: Pustaka belajar.
[5] Dike, Daniel 2009. Peningkatan Kemampuan Berpikir Kritis Siswa dengan Model TASC (Thinking Actively in a Social Context). Jurnal Pendidikan, 1(1), 15-29.
[6] Liliasari 2007 Scientific Concept and Generic Science Skill Relationship in the 21st Century Science Education. Bandung: SPS UPI
[7] Lin, Yu-Mei & Lee, Pei-Chen 2013 The Practise of Business’ Teaching: Perspective from Critical Thingking International Journal of Business and Commerce, 2 (6), 52-58.
[8] Tsai, C 2002 Nested epistemologies: Science Teachers’ Beliefs of Teaching, Learning and Science International Journal of Science Education, 24(8), 771-783.
[9] Trianto 2010 Model-model Pembelajaran Inovatif Berorientasi Konstruktif Jakarta: Prestasi Pustaka
[10] Sanjaya, W 2006 Strategi Pembelajaran Jakarta: Prenada Media Group.
[11] Sanjaya, Wina 2009 Penelitian Tindakan Kelas Jakarta: Kencana Prenada Media Group.
[12] Masek & Yamin 2011 The Effect of Problem Learning on Critical Thinking Ability: A Theoretical and Empirical Review. Internasional Review of Sosial Sciences and Humanities. 2 (1). 215-221.
[13] Wilis, Ratna 2006 Teori-Teori Belajar dan Pembelajaran Bandung: PT Gelora Aksara Pratama
[14] Daryanto 2014 Pendekatan Pembelajaran Saintifik Kurikulum 2013 Yogyakarta: Gava Media.
[15] Khasanah N. et al 2016 The discovery learning model and the implementation of learning with the unity of sciences in basic biology course to increase critical thinking skills Proceedings of the Asian Education Symposium 2016 (AES 2016), Bandung, Indonesia, 22-23 November 2016
[16] Khasanah N, et al 2017 Influence integrated science model and implementamtion learning with the unity of science in basic biology course to increase critical thinking International Journal of Science and Applied Science: Conference Series UNS
[17] Kementerian Pendidikan dan Kebudayaan 2013 Pengembangan Sumber Daya Manusia Pendidikan dan Kebudayaan dan Penjaminan Mutu Pendidikan Model Pembelajaran Penemuan (Discovery Learning) Jakarta: Kementerian Pendidikan Nasional.
[18] Kementerian Pendidikan dan Kebudayaan 2013a Implementasi Kurikulum 2013 untuk Peningkatan Mutu Pendidikan Indonesia Jakarta: Kementerian Pendidikan Nasional.
[19] Muh Khalifah Mustami 2013 Genetika Makassar UIN Alauddin Makassar
[20] Scott Abbott and Daniel J. Fairbanks 2016 Experiments on Plant Hybrids by Gregor Mendel.
Genetics, Vol. 204, 407–422 October 2016
[21] Suryo 2011 Genetika Manusia Yogyakarta. Gadjah Mada University Press
[22] Campbell Neil A., Mitchell and Reece 2010 Biologi Jilid 1 s.d 3,Edisi Kedelapan, Jakarta:
Erlangga
[23] Sudjana, Nana 2014 Penilaian Hasil Proses Belajar Mengajar. Bandung: PT. Remaja
Rosdakarya.
[24] Mohsen Tavakol and Reg Dennick 2011 Making Sense of Cronbach’s Alpha. International
Journal of Medical Education.
[25] Purwanto 2013 Evaluasi Hasil Belajar Yogyakarta: Pustaka Pelajar
[26] Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L 2006 Multivariate data
analysis 6th ed. Uppersaddle River: Pearson Prentice Hall.