Tumor-Related Prognostic Factors for Breast Cancer

William L. Donegan, MD

Introduction

The number of tumor-related features available to predict the prognosis of patients with breast cancer has grown impressively in recent years. Histology, tumor stage, and lymph-node status are now supplemented with measurements of steroid hormone receptors, ploidy, S-phase fractions, growth factors, oncogenes, and oncoprotein products. Cellular and molecular biology have not only advanced the understanding of carcinogenesis, but have provided a host of new biologic measures potentially related to clinical outcome.

Interest in prognostic factors has been stimulated by the success of systemic adjuvant therapy for early-stage, operable cancer of the breast. Any feature of a tumor, or combination of features, that accurately indicates which patients are destined for recurrence and which are not is of considerable importance. Patients destined for recurrence can be selected for systemic adjuvant therapy, while patients who will not have a recurrence can be spared the morbidity of a treatment that offers no benefit. In addition, refinement of prognostic information facilitates improved clinical testing by ensuring comparability of treatment groups and providing markers to measure the success or failure of specific therapies.

The literature devoted to prognostic factors for breast cancer is extensive. Scientific reports are supplemented by a multitude of letters, reviews, and meta-analyses. Univariate and multivariate analyses are basic techniques. Variables are individually compared with measures of outcome, and those that are significantly related to outcome are used in multivariate analyses to determine if they have independent predictive value. These are then combined to form new prognostic categories. The mix of individual variables changes, however, and interrelationships are not always consistent.

Measures of outcome are multiple, and relationships to outcome are subject to change with duration of follow-up. Confirmation of projected outcomes with prospective studies is largely lacking for newer variables. The complexities are such that computer models are needed for integration of information. Computerized neural networks that are designed to learn from new data and predict individual patient outcome are under development to assist clinicians in making decisions about clinical management. The purpose of this article is to review tumor-related biologic factors of current interest and relate them to prognosis and treatment objectives.

Histologic Type

Ductal Carcinoma in Situ

Ductal carcinoma in situ (DCIS) represents a small, but important, group of preinvasive breast cancers that can almost always be cured by local-regional therapy. DCIS made up 6.3 percent of 169,260 carcinomas (4.7 percent if lobular carcinoma in situ is excluded) reported to the National Cancer Institute’s Surveillance, Epidemiology, and End Results
(SEER) national registry between 1973-1987. Only one percent of these early cancers are associated with metastasis to axillary nodes, and almost all (98 percent) are cured by local-regional therapy regardless of their size. Local recurrence, particularly after breast-conserving therapy, is associated with poor nuclear grade and comedo-type necrosis, but because dissemination is infrequent, systemic adjuvant therapy is unnecessary.

MICROINVASIVE CARCINOMA

Invasive carcinoma carries with it the clear potential for metastasis and a diminished opportunity for cure. The term “microinvasive” is loosely used to describe the process of invasion in its earliest beginnings and to suggest that a tumor is still highly curable, possibly as curable as noninvasive carcinoma. No consensus exists on the definition of such tumors, and no consensus exists for the prognosis, other than that it is favorable. Distinguishing among in situ cancers, cancers with minimal signs of invasion, and those with a few millimeters of invasion is often difficult, and judgments among pathologists are not uniform. As a group, invasive carcinomas 5 mm or less in diameter have widely divergent rates of metastasis to regional lymph nodes, ranging from three to 28 percent in various reports. These rates are far higher than for noninvasive carcinomas and imply a poorer prognosis.

SPECIAL HISTOLOGIC TYPES OF INVASIVE CARCINOMA

A few special histologic types of invasive carcinoma pose a smaller risk of dissemination and death than other types of invasive ductal carcinoma. These types are pure mucinous, pure tubular, pure medullary, and pure papillary carcinoma. Mucinous carcinomas tend to occur later in life than the other three types. Typical medullary carcinoma is noteworthy because of the disparity between its aggressive histologic appearance and its less aggressive clinical behavior. However, it may be more aggressive than the other types mentioned.

These special types form a small group, representing less than six percent of all invasive carcinomas. Most special types are localized when diagnosed. When nodes are involved, the number of involved nodes is usually three or less. In a large study, Rosen et al found that patients with special histologic types measuring 1.0 cm or less in diameter had a 10-year recurrence-free survival of 100 percent. The 10-year survival for all patients with tumors measuring 3.0 cm or less was 91 percent. Five-year relative survivals (survival corrected for normal mortality) of patients in the SEER registry treated for each of these special forms of invasive carcinoma are about 95 percent compared with 80 percent for all other types of invasive ductal carcinoma.

Histologic and Nuclear Grade

A number of additional histologic features of invasive ductal and lobular carcinomas have prognostic value when considered in isolation. They include histologic grade, nuclear grade, tumor borders as stellate or circumscribed, peritumoral lymphatic and blood vessel invasion, and necrosis within the tumor. Many of these lose relevance in multivariate analyses.

Particular attention has been given to tumor differentiation as a morphologic indicator of tumor aggressiveness. Grading of differentiation can be performed without special equipment and is to some degree independent of axillary node status.

Histologic grade is currently based on the degree of tubule formation, number of mitoses, and nuclear pleomorphism in routine sections. These are combined as the Bloom-Richardson (B-R) grade or Scarff-Bloom-Richardson grade. Grades from 1 to 3 indicate progression.
from well differentiated (low or good grade) to poorly differentiated (high or poor grade). In general, well-differentiated tumors are a distinct minority. Histologic grade is found to increase with tumor size and with advancing anatomic stage. Histologic and nuclear grade are subordinate to node status and tumor size as prognostic features, but both are significant predictors of overall mortality for node-positive and node-negative patients. In a multivariate analysis by Fisher et al, neither histologic grade nor any of nine additional pathologic variables related univariately to prognosis had independent predictive value for 15-year survival of 620 stage I and II patients treated with radical mastectomy after the number of positive axillary nodes, tumor size, and nipple involvement were taken into account. In a similar analysis of 859 cases, Shek and Godolphin found that histologic type and degree of histologic differentiation had no incremental value for predicting death rates after the number of involved axillary nodes, tumor size, and nipple involvement were taken into account. In a similar analysis of 859 cases, Shek and Godolphin found that histologic type and degree of histologic differentiation had no incremental value for predicting death rates after the number of involved axillary nodes, tumor size, and nipple involvement were taken into account.

Histologic grade was second only to tumor diameter as a predictor of disease-free survival among aneuploid tumors according to Winchester et al. These investigators reported a disease-free survival of 100 percent for a small group of node-negative patients with nuclear grade 1 tumors or with histologic grade 1 aneuploid tumors.

An estimate of tumor grade is often included in a pathology report, but despite the clear influence of histologic and nuclear grading on prognosis and their ready availability, problems with tumor heterogeneity and with interobserver inconsistency continue to generate uncertainty about their role as routine prognostic indicators.

Tumor Angiogenesis

Tumor angiogenesis as a prognostic assay is predicated on the evidence that ingrowth of blood vessels is a necessity for sustained tumor growth and metastasis. Interest in neovascularity as a prognostic factor was stimulated by the work of Judah Folkman on tumor angiogenesis and by the potential for treatment with antiangiogenic agents. The prognostic relevance of tumor angiogenesis was first reported by Weidner et al, who counted microvessels (veins and arteries) in the most densely vascularized areas of 49 invasive carcinomas and found their number and density significantly increased in
cases with nodal and distant metastasis. The frequency of distant metastasis increased with increase in the vessel count.

Subsequently, other investigators have produced varying results. In a carefully performed, blinded study of 220 cases of invasive breast carcinoma, Axelsson et al found considerable variability in microvessel counts in different parts of the same tumor and between the readings of two evaluators. These investigators found no significant correlation between microvessel count and other tumor factors of prognostic value and no significant correlation between microvessel count and survival or metastasis-free survival. They concluded that microvessel assay in its present state was unsuited for general application in the management of patients.

Anatomic Staging

The anatomic extent of a cancer determined clinically or histologically is a classic and reliable indicator of prognosis, but an imprecise one. The general staging categories include localized (confined to...
breast tissue), regional (direct invasion to extramammary tissues or metastasis to regional lymph nodes), and distant (metastasis beyond regional tissues). These categories identify three general groups with distinctly different probabilities for survival after diagnosis and treatment but allocate potentially curable cases into only two categories. In both of these categories, a substantial proportion of cases are not cured. According to a statistical report from the NCI, the five-year relative survivals of localized and regional cases diagnosed during the years 1960 through 1964 were 84 and 53 percent, respectively, a difference of only 31 percent. For the three stages, Gardner and Feldman reported ten-year survival rates of 54, 28, and five percent for 1,024 patients diagnosed before 1981.

The five-stage TNM staging system is an improvement over general staging. It categorizes noninvasive carcinomas, which are highly curable, as stage 0. For staging invasive carcinomas, it places emphasis on size of the primary tumor and the extent of nodal metastasis. Excluding the incurable cases with distant metastasis (stage IV), the remaining stages of invasive carcinoma (stages I, IIA, IIB, IIIA, and IIIB) have an increasing likelihood of treatment failure and death. Five-year survivals for stages I to IIIB are 90, 80, 65, 50, and 40 percent, respectively.

Staging based on clinical or pathologic information is limited to providing a static picture of the disease. Within each stage are cases with differing biologic potential and speed of progression and a broad spectrum of prognoses. The most important components of anatomic staging are the size of the primary tumor and the extent to which regional lymph nodes are involved. These two variables are independent, but they are closely related. The probability of metastasis to regional nodes (both axillary and internal mammary) and to distant sites increases progressively as tumors enlarge. As continuous variables the number of nodal metastases and tumor size allow more precision for assessment of prognosis than does anatomic staging.

Metastasis to Regional Lymph Nodes

Axillary Lymph Nodes

Clinical examination of axillary lymph nodes is notoriously inaccurate for determining the presence of metastases (unless they are large and advanced) and provides a poor criterion for staging. In a representative study, examinations yielded false-negative results in 38.6 percent of cases and false-positive results in 27.3 percent.

The presence of metastasis to axillary lymph nodes on histologic examination of the nodes provides proof that a tumor with the capacity to metastasize has done so and may have metastasized to distant sites as well. Multivariate analyses regularly indicate that the presence or absence of metastasis to axillary lymph nodes is the single most influential predictor of posttreatment recurrence and death (Table 1). In the absence of systemic adjuvant therapy, the chance of recurrence within 10 years is 24 percent for patients without nodal metastasis on histologic examination and 76 percent for patients with nodal metastasis. Rotter’s interpectoral nodes, a subgroup of axillary nodes, contain metastases when all other axillary nodes are normal in only 0.5 percent of cases, and their contribution to prognosis is considered of little importance. While axillary metastasis is the most important determinant of prognosis in operable cases, the fact that a quarter of patients without axillary metastasis are not cured by local-regional therapy and some patients with metastasis are alive and well after many years (at 10 years, 30 percent overall and 17 percent for patients with metastasis to four or more nodes) indicate that they are an imperfect sign of systemic disease.
More prognostic information is derived from axillary lymph nodes than the fact of involvement alone. The most important information is the number of involved nodes. The absolute number of involved nodes provides a prognostic continuum that is directly related to the prospects for recurrence and indirectly related to survival.15,29,59-63 In one large study of 1,741 cases, the 10-year survival of patients with 0, 1 to 3, 4 to 9, and 10 or more involved nodes was 75, 62, 42, and 20 percent, respectively.29 The total number of nodes examined, and by inference the percentage of nodes involved, does not alter the prognostic importance of the absolute number of nodes that contain metastases, provided that sampling is sufficient to detect all positive nodes. Surgical removal or pathologic examination that is too limited is likely to provide misleading information.64 A level II axillary dissection is considered necessary to obtain reasonably accurate information.56

The size of metastases, the growth of metastases through the capsule of the lymph nodes, and the highest axillary level reached by the metastases can be related individually to prognosis, but all are interrelated in a complex manner and generally tend to be a function of the total number of involved nodes. Metastasis to increasing numbers of nodes results in larger metastases, extracapsular growth of metastases, and a higher axillary level of involvement.62 For example, extracapsular growth is seen only with macrometastases and influences prognosis adversely only when three or more nodes are involved.65,66 When the number of nodes with metastases is constant, the level of axillary involvement has no additional predictive value.62,67 Micrometastases (≤2 mm in diameter) are more favorable than macrometastases (>2 mm), and micrometastases rarely involve more than three nodes.68,69

Micrometastases found on routine sections of nodes or as occult metastases on multiple recuts of nodes initially considered free of metastasis are of interest because they potentially identify the subgroup of node-negative cases likely to relapse. A number of retrospective studies have found little or no difference in survival of patients with micrometastases compared with patients without metastases,70-72 but a recent prospective study by the International (Ludwig) Breast Cancer Study Group using multiple step sections of nodes showed a significantly poorer prognosis of patients with micrometastases.73

With this encouragement, more sensitive methods of detecting micrometastases in axillary nodes are being investigated in a continuing attempt to identify high- and low-risk populations of node-negative cases. The techniques being used include immunohistochemical methods with tumor-seeking monoclonal antibodies and polymerase chain reaction technology, which can detect minute amounts of messenger RNA related to human breast cancer.74 Models predict that monoclonal antibody techniques can detect one cancer cell among one million normal cells.72 Flow cytometry may be equally or even more sensitive. Monoclonal antibodies are also being used to detect micrometastasis in bone marrow samples of patients with early breast cancer, which may prove even more relevant to early distant relapse.75

INTERNAL MAMMARY LYMPH NODES

Internal mammary lymph nodes are also a primary lymphatic drainage basin of the breast. They are not routinely examined for pathologic staging, but they are involved in nine percent of cases when no metastases are found in axillary nodes, unmasking a high-risk group of “node-negative” cases.54 For this reason, histologic proof that they are free of metastasis provides additional evidence that a tumor is locally confined. Metastasis to these nodes has the same overall prog-
nostic importance as metastasis to axillary nodes. However, they are less accessible for examination, and their small number provides less potential for quantifying prognosis.

Internal mammary node metastasis is second only to axillary node metastasis as a prognostic variable, and it has been found more important than DNA ploidy and ERBB2 (c-erb B-2) expression. Internal mammary node metastasis indicates a worse prognosis than metastasis to either axillary nodes or internal mammary nodes alone, reducing ten-year survival from about 55 percent when either group is involved down to 30 percent when both are involved. It is likely that metastasis to internal mammary nodes simply indicates more widespread disease. Five involved regional nodes may have the same prognostic significance whether they are found only in the axilla or represent the total from both sites.

SUPRACLAVICULAR LYMPH NODES

Metastasis to supraclavicular nodes implies extensive involvement of axillary nodes, but it can occur in the absence of axillary involvement, suggesting passage through internal mammary nodes or blood-borne passage. The prognosis for patients with metastasis to this site is equated in the current TNM staging system with general dissemination of cancer (i.e., stage IV). While patients with supraclavicular metastasis regularly de-

Nodal status and primary tumor size are independent influences on survival of 24,740 patients with breast cancer. These two variables identify prognostic groups with five-year relative survivals from 99.2 to 45.5 percent. Relative survival is actuarial survival adjusted for age- and race-related natural mortality. Adapted from Carter et al.15

![Graph showing five-year relative survival (%) vs. tumor size (cm) for different node statuses.](image)
velop distant dissemination, their survival is not always as poor as that of patients with distant metastasis at the outset. The five-year survival of the latter rarely exceeds 18 percent. The five-year survival rates for patients found initially with ipsilateral supraclavicular metastasis in two reports were 30 and 34 percent, suggesting a prognosis intermediate between TNM stages III and IV.

Tumor Size

The importance of tumor size as a prognostic variable in cases of invasive carcinoma is robust enough to survive measurements derived variously from clinical estimates, mammograms, and gross and histologic sections. In many analyses it is second only to axillary node status as an independent prognostic factor. Tumor size is directly related to an increasing probability of regional metastasis, an increasing average number of involved axillary lymph nodes, and an increasing probability of recurrence and death.

The favorable prognosis of nonpalpable invasive carcinomas relative to palpable ones and of screening-detected versus nonscreening-detected cancers is easily explained by their smaller size. In one report cancers 0.1 to 5 mm and 6 to 10 mm in diameter produced axillary metastasis in only 7.7 and 12.5 percent of cases, respectively. However, the incidence of positive nodes can range up to 21 percent for both of these size groups. Tumors of equal size are prognostically similar whether they are palpable or not and regardless of how they are detected.

The influence of primary tumor size on prognosis can be appreciated in both node-negative and node-positive cases. This relationship probably reflects increasing vascular and lymphatic dissemination with progressive tumor growth. Of particular interest are node-negative cases, where tumor size provides a readily available means for identifying patients at low and high risk for recurrence.

Tumors 1.0 cm or less in diameter have an especially low risk of recurrence. The five-year disease-free survival of node-negative patients with tumors 1.0 cm or less in diameter is 92 to 96 percent. The 10-year relapse-free survival of 47 cases of invasive carcinoma measuring 1.0 cm or less on gross section or on mammograms reported by Tinnemans et al. exceeded 90 percent. A large study at Memorial Sloan-Kettering Cancer Center found a 10-year relapse-free survival of 91 percent.

Only 12 percent of 171 patients with tumors 1.0 cm or less in diameter had recurrence within 20 years of their primary treatment in a study by Rosen et al. Survival was significantly superior to that of patients with tumors 1.1 to 2.0 cm in diameter, and it was estimated that 80 percent of patients with tumors 1 cm or less were cured at 20 years. Tumor sizes were taken from the gross description of the specimen or from measurement on histologic sections.

These and other studies support the contention that patients with the combination of node-negative disease and a tumor diameter of 1 cm or less represent a favorable subset of patients who would not benefit significantly from systemic adjuvant therapy. As failure rates are high enough in any case with macrometastasis to axillary lymph nodes to justify systemic adjuvant therapy, investigations have largely focused on the ability of other biologic variables to further define the prognosis of node-negative individuals, a group that is increasing due to more widespread use of screening mammography.

Steroid-Hormone Receptor Proteins

Intracellular steroid-hormone receptor proteins, primarily estrogen receptor (ER) and progesterone receptor (PR),
have received intensive study both as indicators of prognosis and as guides to hormone and endocrine therapy. About 50 to 85 percent of breast cancers contain measurable amounts of ER. The frequency with which tumors contain ER and the concentration of ER increase with patient age, both reaching their highest levels in postmenopausal patients. Concentrations of 10 fmol/mg or more of cytosol protein are generally considered positive for clinical purposes, and upper levels can reach more than 1,000 fmol/mg.

The presence of ER implies that normal cellular mechanisms for processing estrogen have been maintained despite malignant change, particularly if PR is present. PR is expressed only after transcriptional activation of its gene by a functional ER-estrogen complex. The clinical importance of ER relates principally to the fact that its presence identifies hormone-sensitive tumors. About 50 to 60 percent of patients with significant amounts of ER in their tumors respond favorably to hormone or endocrine therapy. A higher percentage respond if ER levels are high and if both ER and PR are positive.

Patients with ER-positive tumors have prolonged disease-free survival after primary treatment, superior overall survival, and longer survival after recurrence compared with patients with ER-negative tumors, and this advantage is independent of axillary node status. However, the value of ER status as an independent prognostic variable is diminished by its association with other established indicators of favorable prognosis and by its relationship to successful hormone therapy. ER-positive cancers generally have low-grade histology, favorable nuclear grade, a low S-phase fraction, a normal complement of DNA, a low proliferative index, and a low thymidine labeling index.

The influence of therapy on prognosis is difficult to exclude because ER-positive patients so regularly receive and benefit from either adjuvant or palliative hormone therapy. In some studies the lengthened disease-free survival and survival of patients with ER-positive tumors are seen only in the presence of hormone therapy. Often the effect of ER-positive status as a discriminant is lost after several years, further suggesting a temporary influence of treatment. When node-positive patients not receiving adjuvant hormone therapy were studied, five-year disease-free survival was 20 percent higher for ER-positive patients than ER-negative patients. However, the five-year survival of the most favorable subgroup, patients with one to three positive nodes and ER-positive tumors, did not exceed 60 percent.

Among node-negative patients, hormone therapy is less of a confounding factor, and small but statistically significant differences in disease-free survival and overall survival from eight to 12 percent have been found between ER-positive and ER-negative cases after various periods of follow-up. A multivariate analysis of prognostic factors by McGuire that included ER and PR status for more than 3,000 cases shows ER status to be more important for prognosis than tumor size in node-negative cases but not in node-positive cases. Fisher et al found ER status to be less important for the prognosis of disease-free survival or overall survival than number of positive nodes and nuclear grade.

The indications are that ER status is a weak prognostic indicator and that PR status provides no important advantage. Both are probably more reflective of growth rate than of metastatic potential. ER status alone or in combination with axillary status fails to identify a node-negative or a node-positive subset that has a rate of recurrence low enough to exclude systemic adjuvant therapy.

Enzyme immunoassay and immunohistochemical methods of measuring ER in tissues depend on colorimetric reactions or on scoring systems based on visu-
al estimates of the number and intensity of stained cells. These semiquantitative methods show high correlations with the results of biochemical ligand-binding assays. Similar correlations have been demonstrated with response to hormone therapy and with prognosis.

The pS2 protein appears to identify a subset of ER-positive tumors with a particularly favorable outlook. pS2 protein is an estrogen-regulated secretory protein of unknown function, but it probably indicates a more intact cellular estrogen-processing mechanism. It is expressed predominantly by ER-positive tumors. When found in ER-negative tumors, it is in much lower concentrations. It is not expressed in other normal human tissue (except stomach). Values above 11 ng/mg are associated with increases in disease-free survival and overall survival of patients with ER-positive tumors.

After adjustment for tumor size, lymph node status, and ER status, negative pS2 status is still associated with early recurrence and death. Positive pS2 status in ER-positive patients indicates improved prognosis in both node-negative and node-positive patients. In patients with ER-positive/PR-positive tumors, positive pS2 status was associated with a five-year survival of 97 percent versus 54 percent for negative pS2 status.

In node-negative patients, pS2-positive and pS2-negative cases had overall survivals of 89 and 58 percent, respectively. In node-positive patients, pS2-positive and pS2-negative patients had overall survivals of 88 and 34 percent, respectively. pS2 status may be an even stronger predictor of adjuvant hormone responsiveness than ER status.

Ploidy and S-Phase Fraction

Flow cytometry with laser-stimulated DNA fluorescence makes automated measurement of the DNA content of individual cells and the number of cells in each phase of the cell cycle readily available. It is possible to determine whether the DNA of each cell is normal (diploid versus nondiploid) compared with a control and to determine the fraction of cells actively synthesizing DNA.

Normally, diploid cells are in the resting phase (G₀) or in the first gap phase of the cell cycle (G₁). Cells with twice the normal DNA content are in either the G₂ or early mitotic phase (M), and cells with intermediate amounts of DNA are in the synthesis phase (S). About 32 to 51 percent of tumors are diploid. The remainder are aneuploid to various degrees. The degree of departure from normal DNA content is calculated as the DNA index (i.e., the DNA content of the predominant cell population divided by diploid DNA content). By definition, a diploid tumor has a DNA index of 1.0.

Standardization of S-phase fraction (SPF) and ploidy has been a continuing challenge. It is not possible to obtain measurements in 10 to 20 percent of tumors, and contaminating debris and non-neoplastic cells are potential sources of error. The definition of high and low SPF varies between laboratories and is often adjusted to provide optimum separation of prognostic groups. Computer programs for determining SPF vary, and ploidy determined with flow cytometry differs from that determined from cell image analysis.

To obtain lengthy follow-up, archival fixed or frozen tissue is often used, producing histograms with more debris and variability than those prepared from fresh frozen tissues. For reliable results it has been recommended that fresh frozen tissue samples be used for SPF when possible; tissue samples contain at least 20 percent tumor cells; and results be segregated into three rather than two risk categories to avoid misclassifying cases with borderline values.

Aneuploidy tends to be associated with large tumor size and with high nuclear grade. SPF is high in medullary
carcinomas, large tumors, tumors with poor histologic differentiation, ER-negative/PR-negative tumors, and tumors of young patients. SPF and ploidy are weakly associated with node status, if at all.113-116

Results generally confirm that patients with diploid tumors or tumors with a low SPF have more favorable disease-free survival and observed survival than patients with aneuploid tumors or tumors with a high SPF.116-120 However, the differences may be small. In an analysis of 1,665 patients, Fisher et al112 found a nonsignificant difference in 10-year disease-free survival based on ploidy and only a difference of 13 percent in disease-free survival based on high or low SPF.112 This 13 percent difference dropped to 10 percent when adjustment was made for tumor size.

The results of a comprehensive evaluation of ploidy and SPF by Wenger et al116 involving 15,877 patients whose tumors were assayed in a large central laboratory help summarize the relationship between these two variables and their relationship to prognosis. SPF and ploidy were related because median SPFs were lower in diploid than aneuploid tumors. The medians were 3.4 percent for diploid tumors and 10.7 percent for aneuploid tumors. After SPFs were defined as high or low based on ploidy status (i.e., high, \textgreater6.7 percent for diploid tumors; high, \textgreater11 percent for aneuploid tumors), a multivariate analysis indicated that ploidy was not a significant prognostic variable for disease-free survival after node status, tumor size, SPF, and steroid receptors were taken into account. High and low SPFs separated both node-positive and node-negative patients into groups with high and low probabilities of disease-free survival. The four-year disease-free survivals of node-positive patients with high SPFs (2,222 patients) and low SPFs (3,919 patients) were 66 and 79 percent, respectively. The corresponding four-year disease-free survivals for node-negative patients were 86 and 92 percent.

In smaller studies of node-positive patients, other investigators have failed to find prognostic value for SPF after conventional indicators were considered. In a study of 167 node-positive patients, Witzig et al115 reported no value for using ploidy or SPF to predict survival or time to recurrence after number of positive nodes and tumor size were taken into account. The same was true for 490 node-positive patients treated in the Ludwig Group adjuvant chemotherapy protocols after node number, menopausal status, tumor grade, ER status, PR status, and tumor size were considered.113 A similar result was obtained for 197 patients treated with adjuvant chemotherapy and tamoxifen.121

Merkel et al87 summarized 13 studies of flow cytometry in node-negative patients and found that SPF was more predictive for treatment outcome than ploidy. Of the seven studies that analyzed SPF, all found it predictive of outcome, whereas only six of the 13 studies found ploidy predictive.

The results of multivariate analyses depend on several factors, including the particular measure of outcome. In a study of ploidy, SPF, mitotic grade, tumor diameter, histologic grade, and nuclear grade in node-negative patients, Merkel et al87 found histologic grade to be the only independent predictor of relapse, while tumor diameter and SPF were the only independent predictors of cancer-specific survival. Patients with histologic grade 1 tumors had a five-year recurrence rate of only five percent, which was not influenced by SPF. Evaluation of SPF did allow for stratification of high-grade tumors into more and less favorable groups. Patients with tumors with a high grade and high SPF had a five-year recurrence rate of 36 percent. In a Cox analysis of 10-year disease-free survival, only SPF was significantly correlated with distant recurrence when tumor size and ER status were included as the other variables.122 In a study that did not include SPF, Lewis110 found that ploidy was a more important
predictor of recurrence than histologic grade or tumor size.

SPF evaluation allows for stratification of node-negative patients with diploid tumors into high- and low-risk groups. Clark et al. reported that patients with diploid tumors with a low SPF (<6.7 percent) had a five-year disease-free survival of 90 percent. Patients with diploid tumors with a high SPF had a poor prognosis comparable to patients with aneuploid tumors. These same investigators initially found no influence of SPF on aneuploid tumors, but later came to the opposite conclusion in an analysis of patients with small, ER-positive, node-negative tumors.

In multivariate analyses, tumor size and SPF often emerge as independent determinants of prognosis in node-negative patients, permitting these prognostic factors to be combined to advantage. Bosari et al. were able to identify three discrete prognostic groups based on tumor size, SPF, and ploidy. Only 12 percent of patients with small (≤2.0 cm), diploid tumors with a low SPF (<5 percent) had recurrence within nine years. O’Reilly et al. found that patients with tumors 1.0 cm or less had a disease-free survival of 96 percent and placed them in a separate group. The remaining patients with tumors more than 1.0 cm in diameter with SPFs less than 10 percent or greater than 10 percent had five-year disease-free survivals of 78 and 52 percent, respectively. Indications are that SPF may be a useful discriminant for tumors even less than 1.0 cm in diameter. Stal et al. found that five out of six patients with tumors 1.0 cm or less who relapsed had tumors with high SPFs.

An international consensus group met in 1992 to consider the clinical use of DNA cytometry in carcinoma of the breast. The group concluded that operable breast cancers that were diploid, even up to a DNA index of 1.3, had a favorable prognosis compared with aneuploid tumors but that the advantage was small and tended not to survive as a prognostic determinant in multivariate analyses because of the correlation of ploidy with more powerful prognostic factors. SPF, however, was believed to have an important association with recurrence and mortality for both node-positive and node-negative breast cancers. This association was generally independent of other prognostic factors, although its strong correlation with tumor grade often caused it to lose significance as an independent prognostic variable, particularly when grading was expertly performed. Its practical utility lay in being less subjective than grading.

Mitotic Index and Thymidine Labeling Index

Mitotic index (MI) and thymidine labeling index (TLI) measure cellular proliferative activity directly on histologic sections. The MI is measured as the number of mitoses per specified number of high-power microscopic fields (usually 10 fields) in routine sections. It requires no special technology but varies with field selection. Baak et al. were able to correlate increasing MI with decreasing cancer-specific survival. The association was as significant as number of axillary metastases and more significant than tumor size or histologic grade. MI of 0 to 81 per 10 high-power microscopic fields produced a span of five-year cancer-specific survivals from 90 to 10 percent and 10-year cancer-specific survivals from 80 to 0 percent.

TLI is a direct measure of cells in S phase of the cell cycle. Slices of fresh tumor tissue are incubated with tritiated thymidine, and cells actively synthesizing DNA incorporate this radioactive label. The tissue section is then coated with photographic emulsion, allowed to develop autoradiographically for one week, and developed. Silver grains are found in the emulsion over cells that incorporated the radioactive thymidine. Two thousand cells are counted, and the TLI is ex-
pressed as the percentage of cancer cells that were labeled.

More conveniently, 5-bromo-2-deoxyuridine (BrdU) is used as the label and identified in S-phase cells with a specific antibody. In vivo measurement of TLI can be performed by intravenous injection of BrdU prior to excision of tissue. The percentage of tumor cells in S phase measured by these means varies from 0.1 to 36 percent.127,128 Some investigators have found close correlation between the TLI of primaries and their metastases.129 Others find considerable intratumoral heterogeneity of TLI.130 The correlation between high TLI and poor prognosis does not apply to medullary carcinomas, where biologic behavior is not commensurate with the high TLIs.

For histologic types other than medullary carcinomas, TLI is strongly predictive of outcome and is independent of nodal status, ploidy, and ER/PR status. High values are associated with high MIs, poor histologic differentiation, and young age. In a large, multi-

Prognostic Factor	Favorable	Unfavorable
Axillary lymph nodes	No metastasis	Metastasis present
Positive axillary nodes	1-3	4 or more
IM lymph nodes	No metastasis	Metastasis present
Tumor size	Small	Large
Histologic grade	I (well differentiated)	III (poorly differentiated)
Nuclear grade	I (well differentiated)	III (poorly differentiated)
Estrogen receptor	≥10 fmol/mg protein	<10 fmol/mg protein
Progesterone receptor	≥10 fmol/mg protein	<10 fmol/mg protein
pS2 protein	High (>11ng/mg)	Low (<11 ng/mg)
S-phase fraction	Low	High
Ploidy	Diploid	Aneuploid
Mitotic index	Low	High
TLI	Low	High
HER-2/neu (c-erbB-2)	Absent	Present
p53	Absent	Present
Ki-67	Low	High
PCNA/cyclin	Low	High
Cathepsin-D	Low	High
uPA	Low	High

IM = internal mammary, TLI = thymidine labeling index, uPA = urokinase plasminogen activator
variate analysis, TLI ranked fourth behind nodal status, tumor size, and nuclear size as an indicator of relapse-free survival. Among node-negative patients, it is superior to tumor size but not to ER status. Node-negative patients with a low TLI have five-year disease-free survivals of 85 to 89 percent. Meyer and Province reported that node-negative patients with tumors 2.0 cm or less in diameter that had a low TLI and were ER-positive had a five-year disease-free survival of 91 percent. For small tumors, however, TLI is not a strong discriminant.

Analysis of MI does not require any special preparations and is often found in reports from pathologists. However, TLI has not been adopted in practice, largely because the method is cumbersome, expert histologic interpretation is needed, and SPF determinations are available more conveniently with automated methods. Meyer et al, who have done most of the work with TLI, found no clear superiority of SPF determined by TLI or by flow cytometry for prediction of disease-specific relapse-free survival.

Ki-67 and PCNA/Cyclin

Ki-67 is a monoclonal antibody that identifies a nuclear antigen found in cells in the proliferative phases of the cell cycle (i.e., G1, S, G2, and M). It does not identify cells in the resting phase (i.e., G0). It is measured by an immunohistochemical assay. Until recently only fresh or frozen tissues could be used, but new antibodies permit the assay on fixed tissues. Fractions are larger than the SPF of tumors but have similar relationships to relapse and death. High Ki-67 scores are associated with poor histologic differentiation and with lymph node metastasis. Using 20 percent labeled cells as the cutoff to define high and low proliferation indices, Veronesi et al found that Ki-67 predicted four-year survival independently of node and ER status. Among node-positive patients, Railo et al found a significant difference in disease-free survival favoring Ki-67-positive/ER-negative patients over Ki-67-negative/ER-positive patients.

Proliferating cell nuclear antigen (PCNA)/cyclin is a nuclear antigen associated with proliferation that has promise as a prognostic marker. PCNA/cyclin level is correlated with SPF, TLI, and Ki-67 and has similar implications.

Proteases

CATHEPSIN-D

Cathepsin-D (CD) is an estrogen-dependent lysosomal protease that is synthesized by normal tissues and overexpressed and secreted by some breast cancers. Its secreted 52-kilodalton protein precursor (pro-cathepsin-D) has mitogenic activity and in an acid environment is proteolytic for basement membranes. CD is suspected of facilitating invasion and metastasis of breast cancer, and indeed, levels of CD tend to be higher in node-positive cases of breast cancer. The enzyme is measured with Western blot analysis, radioimmunoassay, or immunohistochemical methods. High levels are found in one third of breast cancers.

Overexpression of CD in breast cancer is associated with high risk of recurrence and poor survival, largely because of its relationship with node status. Whether it has any further implication is not settled, as inconsistent results have been obtained by investigators. Most studies suggest that CD has some significance for prognosis in patients with positive lymph nodes. Among node-negative patients results have conflicted, even in studies by the same investigators. In a multivariate analysis, Isola et al found that CD, tumor size, and SPF each had independent predictive value for disease-free survival of node-negative patients. But early indications that
CD may discriminate among node-negative patients were not confirmed in a much larger study of 1,489 patients at the University of Texas, San Antonio. Lack of uniform assay techniques among investigators may contribute to such inconsistencies. Because of strong linkage with node status and conflicting results of analyses, perhaps due to lack of standardization, the role of CD and pro-cathepsin-D as independent prognosticators remains uncertain.

Table 3

Recommendations for Systemic Adjuvant Therapy for Node-Negative and Node-Positive Patients

Category	Node Negative	Node Positive
Minimal/low risk (all ages)		
Ductal Carcinoma in situ ≤1cm, ER positive, and Grade I†	No treatment	ER negative
Good risk (all ages)		
1-2 cm, ER positive, and Grade I-II†	Tamoxifen	ER positive
High risk (one or more of)		
≥2 cm or ER negative or Grade II-III†		Postmenopausal
Premenopausal		
ER negative	Chemotherapy	ER negative
ER positive	Chemotherapy	ER positive
Postmenopausal	Chemotherapy	
ER negative	Tamoxifen	Chemotherapy
ER positive		Tamoxifen
>70 years old	Chemotherapy†	
and ER negative		
>70 years old and ER positive	Tamoxifen	

*For routine use or for baselines in clinical trials.
†Grade = histologic or nuclear grade
‡For selected patients in good condition.
Data from Goldhirsch et al.174
ER = estrogen receptor

For premenopausal women the most successful systemic adjuvant is combination chemotherapy. To date the addition of oophorectomy or tamoxifen to chemotherapy in ER-positive cases has not convincingly improved results compared with chemotherapy alone and is investigational.

For postmenopausal women with ER-positive tumors, tamoxifen is the preferred systemic adjuvant. The addition of chemotherapy to tamoxifen in some trials has had incremental value in ER-positive cases at high risk of recurrence. In ER-negative cases chemotherapy offers some benefit for postmenopausal women; the addition of tamoxifen in such cases is not of established value.
UROKINASE PLASMINOGEN ACTIVATOR
Urokinase plasminogen activator (uPA) is one of several proteases that have been implicated in the process of invasion and metastasis. It is a broad-spectrum serine endopeptidase that catalyzes conversion of plasminogen to plasmin. Plasmin can degrade various substrates in the extracellular matrix and can activate collagenses. Activity of uPA correlates with metastatic potential in animal tumor systems. The level of uPA can be measured with an enzyme-linked immunosorbent assay.

Investigations in human breast cancer indicate that high levels of uPA are correlated with a short disease-free interval and poor survival. As a prognostic marker, uPA level is independent of tumor size, node status, and ER status. The level of uPA has proved to be a discriminant for disease-free survival and observed survival in patients with positive nodes and those who are ER positive. It is also a discriminant for disease-free survival in patients with negative nodes. In node-negative patients and in patients with ER-positive tumors, low levels have been associated with five-year disease-free survivals of about 90 percent and 95 percent, respectively. This promising work awaits more general confirmation.

Proto-oncogenes, Oncogenes, and Tumor-Suppressor Genes
ERBB2 (HER-2/NEU, c-ERB B-2)
A number of proto-oncogenes and oncogenes have been investigated for their prognostic value. Proto-oncogenes are normal genes involved with cell growth and proliferation whose mutated forms promote neoplastic transformation. Examples include ERBB2, c-MYC, c-RAS, and RB1. ERBB2 has perhaps received the most attention in breast cancer. The encoded product of ERBB2 is a transmembrane glycoprotein receptor structurally similar to epidermal growth factor receptor (EGFR). Amplification results in overexpression of the cellular membrane receptor. Marks et al. found overexpression of ERBB2 and p53 to be independent markers of prognosis.

About one quarter of breast cancers overexpress ERBB2. It is not expressed in lobular carcinomas, and it is more often found in the in situ component of ductal carcinomas than in the invasive component. As a single variable, overexpression of ERBB2 is associated with poor prognosis, but the prognostic discrimination is almost entirely confined to node-positive patients. In node-negative patients, the influence on prognosis has been inconsistent and not clearly independent of other prognostic factors. The weakness of ERBB2 as a prognostic factor is evident in the fact that less than half of recurrent cancers show amplification.

As the prognostic influence of ERBB2 relates predominantly to node-positive patients, who usually receive systemic adjuvant therapy, it raises the possibility that ERBB2 is a marker for drug resistance. A similar influence, however, has been reported in node-positive patients who do not receive adjuvant chemotherapy. Amplification of ERBB2 has been related variously to increased sensitivity to doxorubicin adjuvant therapy, resistance to cyclophosphamide, methotrexate, 5-fluorouracil (CMF) combination chemotherapy, and resistance to hormone therapy. Its strong association with DCIS suggests it may be a marker for breast recurrence after breast-conserving therapy.

Less extensively studied proto-oncogenes in breast cancer include c-RAS, c-MYC, and INT2. The c-RAS gene encodes a p21 protein. Mutant overexpression of this gene can result in oncogenicity. Most breast cancers overexpress the p21 protein. High levels are associated with nodal involvement, advanced anatomic stage, and recurrence, suggesting a role in tumor progression. RB1 is a tumor suppressor gene. Loss of expression, which is found in 17 to 46 percent of
breast cancers, is associated with large tumor size and poor differentiation.159

EPIDERMAL GROWTH FACTOR RECEPTOR

Epidermal growth factor is structurally similar to transforming growth factor-α. EGFR is a large, transmembrane tyrosine kinase cell surface receptor that binds epidermal growth factor and transforming growth factor-α. EGFR is the product of the proto-oncogene c-ERBB. EGFR is measurable in most breast cancers, and overexpression or overstimulation of EGFR could result in unrestrained cell proliferation. Correlations between its expression in breast cancers and prognosis have been the subject of a number of studies, but the results have been inconsistent.160 High levels of EGFR are associated with ER-negative tumors, suggesting that it might identify tumors less likely to respond to hormone therapy, but this has not been shown convincingly.

p53

The p53 tumor suppressor gene, located on the short (p) arm of chromosome 17, is a negative regulator of cell proliferation. It is believed to function by blocking cells in G1, or by programing cell death (apoptosis). Its normally encoded nuclear protein has a life span too brief to be detected in cells, but the protein produced by mutant p53 is longer lasting and can be detected with immunohistochemical methods. Expression of mutant p53 is the most common genetic defect found in human cancers. It can be demonstrated in 14 to 26 percent of in situ and invasive breast cancers, depending on the criteria for positivity.161,162 Mutant p53 protein is more common in familial cases of breast cancer than in sporadic cases. It has been found in up to 52 percent of cases of breast and ovarian cancer syndrome and in all cases of Li-Fraumeni syndrome.162 It is strongly associated with other markers of high tumor proliferation rate (i.e., poor nuclear grade, ERBB2 protein overexpression, aneuploidy, high SPF, and ER-negative status), but it is independent of age, node status, and tumor size.162-164

Expression of mutant p53 has a negative influence on both overall survival and disease-free survival of breast cancer patients. In node-negative cases, some investigators have found that testing for expression of mutant p53 to predict disease-free survival is superior to testing for TLI, tumor size, and ER status. Silvestrini et al165 examined 256 node-negative cases and reported six-year disease-free survivals for cases with and without p53 mutant protein as about 60 percent and 90 percent, respectively.

In other reports the disease-free survival of node-negative patients without mutant p53 expression has been considerably lower.166 Allred et al166 found that 52 percent of the tumors of 700 node-negative patients showed some nuclear staining for mutant p53 protein. Increased staining correlated with progressive decreases in overall and disease-free survival. Disease-free survival at five years fell from 80 percent in negative cases to 58 percent in those with the most intense staining. In this study the prognostic importance of p53 positivity was independent of SPF, but this has not been found by other investigators.161

The close association between mutant p53 protein expression and other indicators of rapid cell proliferation establishes its link to prognosis, but often prevents it from surviving as an independent prognostic factor in multivariate analyses. Lack of uniformity in the method for assay of p53 protein is also evident among reports.

Discussion

Despite the deluge of information about prognostic factors, predicting specifically
which individuals are cured and which are not remains elusive; outcome continues to be attended by measures of doubt. Clinicians are well aware that some patients predicted to have recurrence and to die do not, and some with every indication of cure succumb to the disease. At best, prognostic indicators serve as guides for clinical decisions, which continue to require considerable judgment. These decisions are made easier by information that identifies patients whose chances of recurrence appear too small to justify the morbidity of adjuvant treatment (less than 10 percent according to the NCI Consensus Panel of 1990) and others whose risk is so great that extraordinary therapy may be justified.

Traditional pathologic features (i.e., nodal status, tumor size, and tumor differentiation) continue to provide guides for prognosis and are information that is routinely available. ER and PR are also important, but are more important for guiding selection of hormone treatment than for determining prognosis. Newer prognostic indicators relating to the proliferative rates of tumors are increasingly available and are potentially helpful, but for the most part their role is uncertain.

The lack of consensus among investigators about methods of measurement and about results and the absence of large, prospective studies justify reservations about their immediate application. How they relate to established parameters and to each other is still incompletely understood. Many may well prove redundant. Also unclear is how to properly evaluate combinations of good and bad indicators that are so often found in a single case. Table 2 shows the complexity of the information that is potentially available. Means for more completely integrating this information would be valuable.

ER and PR are the prime examples of prognostic indicators capable of identifying patients likely to respond to a particular form of therapy (i.e., hormone therapy). Poor histologic grade may indicate a higher potential for response to chemotherapy. The overexpression of c-ERBB2 may be a potential indicator of resistance to chemotherapy and hormone therapy. It is possible that reliable markers for resistance or sensitivity to specific chemotherapeutic agents will be forthcoming, information that could have a constructive influence on treatment planning.

With respect to decisions about systemic adjuvant therapy, prognostic factors provide important guides. Using information currently available, patients can be identified who have risks of recurrence and death less than 10 percent after potentially curative therapy. As adjuvant therapy can be expected to reduce the risk of recurrence by 30 percent, the potential benefit of an absolute reduction in recurrence of only two to three percent (10 X .30) may not justify the risks of adjuvant therapy in such cases.

Patients with an excellent prognosis include women with DCIS and women with negative axillary nodes whose invasive carcinomas are less than 1.0 cm in diameter or who have special histologic types of carcinoma less than 3.0 cm in diameter. On the other hand, patients with any number of metastases to regional lymph nodes and node-negative patients with tumors more than 2.0 cm in maximum diameter have recurrence rates high enough to derive a substantial benefit from systemic therapy.

Node-negative patients with tumors 1.0 to 2.0 cm in diameter have an intermediate prognosis with average five-year disease-free survivals of about 85 percent. It is in this group that measures of proliferation such as histologic or nuclear grade, SPF, and ER status may have the most value in deciding for or against systemic therapy.

The 1990 NIH Consensus Conference on treatment of early-stage breast cancer recognized emerging prognostic
factors but emphasized node status and tumor size in recommending no routine adjuvant treatment for node-negative patients with tumors 1.0 cm or less in diameter. At the 1992 and 1995 international St. Gallen consensus conferences, prognostic groups were based on node status, tumor size, ER status, and histologic or nuclear grade. Table 3 shows the recommendations for adjuvant systemic therapy outside of clinical trials that resulted from the second St. Gallen conference.

While prognosis can be estimated from available data, decisions for systemic adjuvant therapy are not based solely on risks of recurrence and survival. The patient’s general condition and tolerance for therapy are important considerations. Menopausal status and age influence the type of treatment that would be appropriate. The short- and long-term morbidities of adjuvant therapy vary considerably for hormonal and chemotherapeutic programs. Intensive chemotherapy protocols, often reserved for those with the highest risk of treatment failure, involve considerable morbidity and more than a negligible risk of mortality. It is paramount that patients understand the potential risks and the expected gains from treatment, as ultimately, they make the final decision.

References
1. Osborne CK: Prognostic factors in breast cancer. Principles & Practice of Oncology PPO Updates 1990;4:1-11.
2. Mittra I, MacRae KD: A meta-analysis of reported correlations between prognostic factors in breast cancer: Does axillary lymph node metastasis represent biology or chronology? Eur J Cancer 1991;27:1574-1583.
3. Yoshimoto M, Sakamoto G, Ohashi Y: Time dependency of the influence of prognostic factors on relapse in breast cancer. Cancer 1993;72:2993-3001.
4. Hacene K, LeDoussal V, Rouesse J, Brunet M: Predicting distant metastases in operable breast cancer patients. Cancer 1990;66:2034-2043.
5. Figueroa JA, Yee D, McGuire WL: Prognostic indicators in early breast cancer. Am J Med Sci 1993;305:176-182.
6. Bullock C: With computer, MDs can predict risk of relapse in breast ca. Oncology Times 1988;10:1, 37.
7. Ravdin PM, Clark GM: A practical application of neural network analysis for predicting outcome of individual breast cancer patients. Breast Cancer Res Treat 1992;22:285-293.
8. McGuire WL, Tandon AK, Allred DC, et al: How to use prognostic factors in axillary node-negative breast cancer patients. J Natl Cancer Inst 1990;82:1006-1015.
9. Berg JW, Hutter RV: Breast Cancer. Cancer 1995;75:257-269.
10. Silverstein MJ, Poller DN, Waisman JR, et al: Prognostic classification of breast ductal carcinoma-in-situ. Lancet 1995;345:1154-1157.
11. Fisher ER, Costantino J, Fisher B, et al: Pathologic findings from the National Surgical Adjuvant Breast Project (NSABP) Protocol B-17: Intraductal carcinoma (ductal carcinoma in situ). Cancer 1995;75:1310-1319.
12. Wong JH, Kopald KH, Morton DL: The impact of microinvasion on axillary node metastases and survival in patients with intraductal breast cancer. Arch Surg 1990;125:1298-1302.
13. Silverstein MJ, Gierson ED, Waisman JR, et al: Axillary lymph node dissection for T1a breast carcinoma: Is it indicated? Cancer 1994;73:664-667.
14. Nemoto T, Vana J, Bedwani RN, et al: Management and survival of female breast cancer: Results of a national survey by the American College of Surgeons. Cancer 1980;45:2917-2924.
15. Carter CL, Allen C, Henson DE: Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 1989;63:181-187.
16. Donegan WL: Staging and primary treatment, in Donegan WL, Spratt JS (eds): Cancer of the Breast, ed 4. Philadelphia, WB Saunders, 1995, p. 392.
17. Komaki K, Sakamoto G, Sugano H, et al: Mucinous carcinoma of the breast in Japan: A prognostic analysis based on morphologic features. Cancer 1988;61:989-996.
18. Silverberg SG, Kay S, Chitale AR, Levitt SH: Colloid carcinoma of the breast. Am J Clin Pathol 1971;55:355-363.
19. Carstens PH, Huvos AG, Foote FW Jr, Ashikari R: Tubular carcinoma of the breast: A clinicopathologic study of 35 cases. Am J Clin Pathol 1972;58:231-238.
20. Peters GN, Wolff M, Haagensen CD: Tubular carcinoma of the breast: Clinical pathologic correlations based on 100 cases. Ann Surg 1981;193:138-147.
21. Carter D, Orr SL, Merino MJ: Intracyctic papillary carcinoma of the breast: After mastectomy, radiotherapy, or excisional biopsy alone. Cancer 1983;52:14-19.
22. Rapin V, Contesso G, Mouriesse H, et al: Medullary breast carcinoma: A reevaluation of 95 cases of breast cancer with inflammatory stroma. Cancer 1988;61:2503-2510.
23. Fisher ER, Kenny JP, Sass R, et al: Medullary cancer of the breast revisited. Breast Cancer Res Treat 1990;16:215-229.
24. Garne JP, Aspégren K, Linell F, et al: Primary prognostic factors in invasive breast cancer with special reference to ductal carcinoma and histologic malignancy grade. Cancer 1994;73:1438-1448.
25. Rosen PR, Groshen S, Saigo PE, et al: A long-term follow-up study of survival in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma. J Clin Oncol 1989;7:355-366.
26. Rosen PP, Groshen S, Kinne DW, Norton L: Factors influencing prognosis in node-negative breast carcinoma: Analysis of 767 T1N0M0/T2N0M0 patients with long-term follow-up. J Clin Oncol 1993;11:2090-2100.
27. Lee AK, DeLellis RA, Silverman ML, et al: Prognostic significance of peritumoral lymphatic and blood vessel invasion in node-negative carcinoma of the breast. J Clin Oncol 1990;8:1457-1465.
28. Clemente CG, Boracchi P, Andreola S, et al: Peritumoral lymphatic invasion in patients with node-negative mammary duct carcinoma. Cancer 1992;69:1396-1403.
29. Fisher ER, Anderson S, Redmond C, Fisher B: Pathologic findings from the National Surgical Adjuvant Breast Project Protocol B-06: 10-year pathologic and clinical prognostic discriminants. Cancer 1993;71:2507-2514.
30. Rosen PP, Groshen S: Factors influencing survival and prognosis in early breast carcinoma (T1N0M0-T1N1M0): Assessment of 644 patients with median follow-up of 18 years. Surg Clin North Am 1990;70:937-962.
31. Davis BW, Gelber RD, Goldhirsh A, et al: Prognostic significance of tumor grade in clinical trials of adjuvant therapy for breast cancer with axillary lymph node metastasis. Cancer 1986;58:2662-2670.
32. Contesso G, Mouriesse H, Friedman S, et al: The importance of histologic grade in long-term prognosis of breast cancer: A study of 1,010 patients, uniformly treated at the Institut Gustave-Roussy. J Clin Oncol 1987;5:1378-1386.
33. Fisher ER, Redmond C, Fisher B: Histologic grading of breast cancer. Pathol Annu 1980;15:239-251.
34. Elston CW: Grading of invasive carcinoma of the breast, in Page DL, Anderson TJ (eds): Diagnostic Histopathology of the Breast. New York, Churchill Livingstone, 1990, pp 300-311.
35. Winchester DJ, Duda RB, August CZ, et al: The importance of DNA flow cytometry in node-negative breast cancer. Arch Surg 1990;125:886-889.
36. Henson DE, Ries L, Friedman LS, Carriaga M: Relationship among outcome, stage of disease, and histologic grade for 22,616 cases of breast cancer. Cancer 1991;68:2142-2149.
37. Fisher ER, Costantino J, Fisher B, Redmond C: Pathologic findings from the National Surgical Adjuvant Breast Project (Protocol 4). Cancer 1993;71:2141-2150.
38. Shek LL, Goldolphin W: Model for breast cancer survival: Relative prognostic roles of axillary nodal status, TNM stage, estrogen receptor concentration, and tumor necrosis. Cancer Res 1988;48:5565-5569.
39. Stierer M, Rosen HR, Weber R, et al: Long-term analysis of factors influencing the outcome in carcinoma of the breast smaller than one centimeter. Surg Gynecol Obstet 1992;175:151-160.
40. Fisher B, Fisher ER, Redmond C, Brown A: Tumor nuclear grade, estrogen receptor, and progesterone receptor: Their value alone or in combination as indicators of outcome following adjuvant therapy for breast cancer. Breast Cancer Res Treat 1986;7:147-160.
41. Fisher B, Redmond C, Fisher ER, Caplan R: Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node-negative breast cancer patients: Findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol 1988;6:1076-1087.
42. Gilchrist KW, Kalish L, Gould VE, et al: Interobserver reproducibility of histopathological features in stage II breast cancer. Breast Cancer Res Treat 1985;5:3-10.
43. Gresham GA: Grading of mammary carcinoma. Clin Oncol 1976;2:351-356.
44. Ravdin PM: A practical view of prognostic factors for staging, adjuvant treatment planning, and as baseline studies for possible future therapy. Hematol Oncol Clin North Am 1994;8:197-211.
45. Weidner N, Semple JP, Welch WR, Folkman J: Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991;324:1-8.
46. Van Hoef ME, Knox WF, Dhesi SS, et al: Assessment of tumor vascularity as a prognostic factor in lymph node negative invasive breast cancer. Eur J Cancer 1993;29A:1141-1145.
47. Toi M, Kasihiani T, Tominaga T: Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int J Cancer 1993;55:371-374.
48. Khanuja PS, Gimotty P, Fregene T, et al: Angiogenesis quantitation as a prognostic factor for primary breast carcinoma 2 cms or less, in Salmon SE (ed): Adjuvant Therapy of Cancer VII. Philadelphia, JB Lippincott Co, 1993, pp 226-232.
49. Axelson K, Ljung BM, Moore DH 2nd, et al: Tumor angiogenesis as a prognostic assay for invasive ductal breast carcinoma. J Natl Cancer Inst 1993;85:1653-1659.
48

CA—A CANCER JOURNAL FOR CLINICIANS

1995;87:997-1008.
50. Layfield LJ, Chrischilles EA, Cohen MB, Bottles K: The palpable breast nodule: A cost-effectiveness analysis of alternate diagnostic approaches. Cancer 1993;72:1642-1651.
51. Axtell LM, Cutler SJ, Myers MH (eds): End Results in Cancer Report No. 4. [DHEW Publication No. (NIH) 73-272]. Bethesda, Md, National Cancer Institute, 1972, p 101.
52. Gardner B, Feldman J: Are positive axillary nodes in breast cancer markers for incurable disease? Ann Surg 1993;218:270-278.
53. Beahrs OH, Henson EH, Hutter RVP, Kennedy BJ (eds): Manual for Staging of Cancer, ed 4. Philadelphia, JB Lippincott Co, 1992:149-154.
54. Veronesi U, Cascinelli N, Greco M, et al: Prognosis of breast cancer patients after mastectomy and dissection of internal mammary nodes. Ann Surg 1985;202:702-707.
55. Donegan WL: Mastectomy in the primary management of inammary mammary carcinoma, in Hardy JD (ed): Advances in Surgery, Vol. 6. Chicago, Year Book Medical Publishers Inc, 1972, pp 1-101.
56. Fisher B, Wolmark N, Bauer M, et al: The accuracy of clinical nodal staging and of limited axillary dissection as a determinant of histologic nodal status in carcinoma of the breast. Surg Gynecol Obstet 1981;152:765-772.
57. Fisher B: Some thoughts concerning the primary therapy of breast cancer. Recent Results Cancer Res 1976;57:150-163.
58. Cody HS 3rd, Egeli RA, Urban JA: Rotter’s node metastases: Therapeutic and prognostic considerations in early breast cancer. Ann Surg 1984;199:266-270.
59. Yang JH, Slack NH, Nemoto T: Effect of axillary nodal status on the long-term survival following mastectomy for breast carcinoma: Nodal metastases may not always suggest systemic disease. J Surg Oncol 1987;36:243-248.
60. Wilson RE, Donegan WL, Mettlin C, et al: The 1982 national survey of carcinoma of the breast in the United States by the American College of Surgeons. Surg Gynecol Obstet 1984;159:309-318.
61. Russo J, Frederick J, Ownby HE, et al: Predictors of recurrence and survival of patients with breast cancer. Am J Clin Pathol 1987;88:123-131.
62. Smith JA 3rd, Gamez-Araujo JJ, Gallager HS, et al: Carcinoma of the breast: Analysis of total lymph node involvement versus level of metastasis. Cancer 1977;39:527-532.
63. Donegan WL: Prognostic factors: Stage and receptor status in breast cancer. Cancer 1992; 70:1755-1764.
64. Boova RS, Bonanni R, Rosato FE: Patterns of axillary nodal involvement in breast cancer: Predictability of level one dissection. Ann Surg 1982;196:642-644.
65. Mambo NC, Gallager HS: Carcinoma of the breast: The prognostic significance of extranodal extension of axillary disease. Cancer 1977;39:2280-2285.
66. Donegan WL, Stine SB, Samter TG: Implications of extracapsular nodal metastases for treatment and prognosis of breast cancer. Cancer 1993;72:778-782.
67. Barth RJ Jr, Danforth DN Jr, Venzon DJ, et al: Level of axillary involvement by lymph node metastases from breast cancer is not an independent predictor of survival. Arch Surg 1991;126:574-577.
68. Rosen PP, Saigo PE, Braun DW, et al: Axillary micro- and macrometastases in breast cancer: Prognostic significance of tumor size. Ann Surg 1981;194:585-591.
69. Huvos AG, Hutter RVP, Berg JW: Significance of extracapsular macrometastases and micrometastases in mammary cancer. Ann Surg 1971;174:44-46.
70. Clayton F, Hopkins CL: Significance of lymph node-positive breast carcinomas. Cancer 1993;71:1780-1790.
71. Wilkinson EJ, Hause LL, Hoffman RG, et al: Occult axillary lymph node metastases in invasive breast carcinoma: Characteristics of the primary tumor and significance of the metastases. Pathol Ann 1982;17:67-91.
72. Fisher ER, Palekar A, Rockette H, et al: Pathologic findings from the National Surgical Adjuvant Breast Project. (Protocol No. 4). V. Significance of axillary node micro- and macrometastases. Cancer 1978;42:2032-2038.
73. International (Ludwig) Breast Cancer Study Group: Prognostic importance of occult axillary lymph node micrometastases from breast cancers. Lancet 1993;335:1565-1568.
74. Noguchi S, Aihara T, Nakamori S, et al: The detection of breast carcinoma micrometastases in axillary lymph nodes by means of reverse transcriptase-polymerase chain reaction. Cancer 1994;74:1595-1600.
75. Osborne MP, Rosen PP: Detection and management of bone marrow micrometastases in breast cancer. Oncology 1994;8:25-31.
76. Noguchi M, Koyasaki N, Ohta N, et al: Internal mammary nodal status is a more reliable prognostic factor than DNA ploidy and c-erb B-2 expression in patients with breast cancer. Arch Surg 1993; 128:242-246.
77. Noguchi M, Ohta N, Koyasaki N, et al: Reappraisal of internal mammary node metastases as a prognostic factor in patients with breast cancer. Cancer 1991;68:1918-1925.
78. Fentiman IS, Lavelle MA, Caplan D, et al: The significance of supraclavicular fossa node recurrence after radical mastectomy. Cancer 1986;57:908-910.
79. Kiricuta IC, Willner J, Kolbi O, et al: The prognostic significance of the supraclavicular lymph node metastases in breast cancer patients. Int J Radiat Oncol Biol Phys 1994;28:387-393.
80. Rosen PP, Groshen S, Saigo PE, et al: Pathologic prognostic factors in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma: A study of 644 patients with median follow-up of 18 years. J Clin Oncol 1989;7:1239-1251.
81. Ciatto S, Cecchini S, Iossa A, et al: Prognosis of
nonpalpable infiltrating carcinoma of the breast. Surg Gynecol Obstet 1990;170:61-64.
82. Tinnemans JG, Wobbes T, Holland R, et al: Treatment and survival of female patients with nonpalpable breast carcinoma. Ann Surg 1989;209:249-253.
83. Pagana TJ, Lubbe WJ, Schwartz SM, Sprechini GD: A comparison of palpable and nonpalpable breast cancers. Arch Surg 1989;124:26-28.
84. Tabar L, Duffy SW, Kruse JE: Detection method, tumor size and node metastases in breast cancers diagnosed during a trial of breast cancer screening. Eur J Cancer Clin Oncol 1987;23:959-962.
85. Maehle BO, Skjaerven R: Prediction of prognosis in axillary lymph node positive breast cancer patients: A statistical study. Br J Surg 1984;71:459-462.
86. O’Reilly SM, Camplejohn RS, Barnes DM, et al: Node-negative breast cancer: Prognostic subgroups defined by tumor size and flow cytometry. J Clin Oncol 1990;8:2040-2046.
87. Merkel DE, Winchester DJ, Goldsmith RA, et al: DNA flow cytometry and pathologic grading as prognostic guides in axillary lymph node-negative breast cancer. Cancer 1993;72:1926-1932.
88. Treatment of early stage breast cancer: NIH Consensus Development Conference. Consensus Statement 1990, June 18-21:8(6).
89. Alanko A, Heinonen E, Scheinin TM, et al: DNA flow cytometry and pathologic grading as prognostic guides in axillary lymph node-negative breast cancer. Cancer 1993;72:1926-1932.
90. Shek LL, Godolphin W: Survival with breast cancer: The importance of estrogen receptor quantity. Eur J Cancer Clin Oncol 1989;25:243-250.
91. Hahnel R, Woodings T, Vivian AB: Prognostic value of estrogen receptors in primary breast cancer. Br J Cancer 1984;50:667-672.
92. Baum M, Ebbs S, Brooks M, et al: Biological fallout from trials of adjuvant tamoxifen in early breast cancer, in Salmon SE (ed): Adjuvant Therapy of Cancer VI. Philadelphia, WB Saunders, 1984, pp 269-272.
93. Andry G, Suciu S, Pratola D, et al: Relation between estrogen receptor concentration and clinical and histological factors: Their relative prognostic importance after radical mastectomy for primary breast cancer. Eur J Cancer Clin Oncol 1989;25:319-329.
94. Thorpe SM, Rose C: Oestrogen and progesterone receptor determinations in breast cancer: Technology and biology. Cancer Surv 1986;5:505-525.
95. Crowe JP, Gordon NH, Hubay CA, et al: The prognostic importance of estrogen receptor level for stage I breast cancer patients. Curr Probl Surg 1984;41:24-28.
96. McGuire WL: Prognostic factors in primary breast cancer. Cancer Surv 1986;5:527-536.
97. Stewart JF, Rubens RD, Mills RR, et al: Steroid receptors and prognosis in operable (stage I and II) breast cancer. Eur J Cancer Clin Oncol 1983;19:1381-1387.
98. Holmes FA, Fritsche HA, Loewy JW, et al: Measurement of estrogen and progesterone receptors in human breast tumors: Enzyme immunoassay versus binding assay. J Clin Oncol 1990;8:1025-1035.
99. Marchetti E, Querzoli P, Moncharmont B, et al: Immunocytochemical demonstration of estrogen receptors by monoclonal antibodies in human breast cancer: correlation with estrogen receptor assay by dextran-coated charcoal method. Cancer Res 1987;47:2508-2513.
100. Bozzetti C, Naldi N, Guazzi A, et al: Determination of estrogen receptors in human breast cancer: Comparison between enzyme immunoassay and dextran-coated charcoal method. Tumori 1986;72:511-514.
101. McCarty KS Jr, Miller LS, Cox EB, et al: Estrogen receptor analyses: Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 1985;109:716-721.
102. Allred DC, Bustamante MA, Daniel CO, et al: Immunocytochemical analysis of estrogen receptors in human breast carcinomas: Evaluation of 130 cases and review of the literature regarding concordance with biochemical assay and clinical relevance. Arch Surg 1990;125:107-113.
103. Esteban JM, Felder B, Ahn C, et al: Prognostic relevance of carcinoembryonic antigen and estrogen receptor status in breast cancer patients. Cancer 1994;74:1575-1583.
104. Foekens JA, van Putten WLJ, Portengen H, et al: Prognostic value of pS2 protein and receptors for epidermal growth factor (EGF-R), insulin-like growth factor-1 (IGF-1-R) and somatostatin (SS-R) in patients with breast and ovarian cancer. J Steroid Biochem Mol Biol 1990;37:815-821.
105. Predine J, Spyrotas F, Prudhomme JF, et al: Enzyme-linked immunosorbent assay of pS2 in breast cancers, benign tumors, and normal breast tissues: Correlation with prognosis and adjuvant hormone therapy. Cancer 1992;69:2116-2123.
106. Ewers SB, Atwell R, Baldetorp B, et al: Prognostic potential of flow cytometric S-phase and ploidy prospectively determined in primary breast carcinomas. Breast Cancer Res Treat 1992;20:93-108.
107. Yuan J, Hennessy C, Corbett IP, et al: Node negative breast cancer: The prognostic value of DNA ploidy for long-term survival. Br J Surg 1991;78:844-848.
108. Ghali VS, Liao S, Teplitz C, Prudente R: A comparative study of DNA ploidy in 115 fresh-frozen breast carcinomas by image analysis versus flow cytometry. Cancer 1992;70:2668-2672.
109. Hedley DW, Clark GM, Cornelisse CJ, et al: Consensus review of the clinical utility of DNA cytometry in carcinoma of the breast: Report of the DNA Cytometry Consensus Conference. Cytometry 1993;14:482-485.
110. Lewis WE: Prognostic significance of flow cytometric DNA analysis in node-negative breast can-
cancer patients. Cancer 1990;65:2315-2320.
111. Johnson H Jr, Masood S, Belluco C, et al: Prognostic factors in node-negative breast cancer. Arch Surg 1992;127:1386-1391.
112. Fisher B, Gunduz N, Costantino J, et al: DNA flow cytometric analysis of primary operable breast cancer: Relation of ploidy and S-phase fraction to outcome of patients in NSABP B-04. Cancer 1991;68:1465-1475.
113. Hedley DW, Rugg CA, Gelber RD: Association of DNA index and S-phase fraction with prognosis of nodes positive early breast cancer. Cancer Res 1987;47:4729-4735.
114. Olszewski W, Darzynkiewicz Z, Rosen PP, et al: Flow cytometry of breast carcinoma. II. Relation of tumor cell cycle distribution to histology and estrogen receptor. Cancer 1981;48:985-988.
115. Witzig TE, Ingle JN, Schaid DJ, et al: DNA ploidy and percent S-phase as prognostic factors in node-positive breast cancer: Results from patients enrolled in two prospective randomized trials. J Clin Oncol 1993;11:351-359.
116. Wener CR, Beardslee S, Owens MA, et al: DNA ploidy, S-phase, and steroid receptors in more than 127,000 breast cancer patients. Breast Cancer Res Treat 1993;28:9-20.
117. Bosari S, Lee AKC, Tahan SR, et al: DNA flow cytometric analysis and prognosis of axillary lymph node-negative breast carcinoma. Cancer 1992;70:1943-1950.
118. Witzig TE, Gonchoroff NJ, Therneau T, et al: DNA content flow cytometry as a prognostic factor for node-negative breast cancer: The role of multi-parameter ploidy analysis and specimen sonication. Cancer 1991;68:1781-1788.
119. Clark GM, Dressler LG, Owens MA, et al: Prediction of relapse or survival in patients with node-negative breast cancer by DNA flow cytometry. N Engl J Med 1989;320:627-633.
120. Clark GM, Mathieu M-C, Owens MA, et al: Prognostic significance of S-phase fraction in good-risk, node-negative breast cancer patients. J Clin Oncol 1992;10:428-432.
121. Kute TE, Muss HB, Cooper MR, et al: Flow cytometry of breast carcinoma. II. Relation of tumor cell cycle distribution to histology and estrogen receptor. Cancer 1981;48:985-988.
122. Stal O, Dufmats M, Hatschek T, et al: S-phase fraction is a prognostic factor in stage I breast carcinoma. J Clin Oncol 1993;11:1717-1722.
123. Sigurdsson H, Baldetorp B, Borg A, et al: Indicators of prognosis in node-negative breast cancer. N Engl J Med 1990;320;1045-1053.
124. Witzig TE, Ingle JN, Cha SS, et al: DNA ploidy and the percentage of cells in S-phase as prognostic factors for women with lymph node negative breast cancer. Cancer 1994;74:1752-1761.
125. Meyer JS: Cell kinetics of breast and breast tumors, in Donegan WL, Spratt JS (eds): Cancer of the Breast. Philadelphia, WB Saunders Co, 1995, pp 279-280.
126. Baak JPA, Van Dop H, Kurver PH, Hermans J: The value of morphometry to classic prognosticata tors in breast cancer. Cancer 1985;56:374-382.
127. Goodson WH 3rd, Ljung BM, Waldman F, et al: In vivo measurement of breast cancer growth rate. Arch Surg 1991;126:1220-1224.
128. Meyer JS, Province M: Prolierative index of breast carcinoma by thymidine labeling: Prognostic power independent of stage, estrogen and progesterone receptors. Breast Cancer Res Treat 1988;12:191-204.
129. Goodson WH 3rd, Ljung B-M, Moore DH 2nd, et al: Tumor labeling indices of primary breast cancers and their regional lymph node metastases. Cancer 1993;71:3914-3919.
130. Meyer JS, Wittliff JL: Regional heterogeneity in breast carcinoma: Thymidine labelling index, steroid hormone receptors, DNA ploidy. Int J Cancer 1991;47:213-228.
131. Meyer JS, Province MA: S-phase fraction and nuclear size in long term prognosis of patients with breast cancer. Cancer 1994;74:2287-2299.
132. Silvestrini R, Daidone MG, Di Fronzo G, et al: Prognostic implication of labeling index versus estrogen receptors and tumor size in node-negative breast cancer. Breast Cancer Res Treat 1986;7:161-169.
133. Gerdes J, Lemke H, Baisch H, et al: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 1984;133:1710-1715.
134. Gasparini G, Pozza F, Meli S, et al: Breast cancer cell kinetics: Immunocytochemical determination of growth fractions by monoclonal antibody Ki-67 and correlation with flow cytometric S-phase and with some features of tumor aggressiveness. Anticancer Res 1991;11:2015-2021.
135. Veronese SM, Gambacorta M, Gottardi O, et al: Proliferation index as a prognostic marker in breast cancer. Cancer 1993;71:3926-3931.
136. Railo M, Nordling S, Von Boguslawsky K, et al: Prognostic value of Ki-67 immunolabelling in primary operable breast cancer. Br J Cancer 1993;68:579-583.
137. Vecchione A: New and old in prognosis determination. In Vivo 1993;7:623-626.
138. Pujol P, Maudelonde T, Daures JP, et al: A prospective study of the prognostic value of cathepsin D levels in breast cancer cytosol. Cancer 1991;71:2006-2012.
139. Isola J, Weitz S, Visakorpi T, et al: Cathepsin D expression detected by immunohistochemistry has independent prognostic value in axillary node-negative breast cancer. J Clin Oncol 1993;11:36-43.
140. Tandon AK, Clark GM, Chamness GC, et al: Cathepsin D and prognosis in breast cancer. N Engl J Med 1990;322:297-302.
141. Winstanley JH, Leimster SJ, Cooke TG, et al: Prognostic significance of cathepsin-D in patients with breast cancer. Br J Cancer 1993;67:767-772.
142. Stonelake PS, Baker PG, Gillespie WM: Steroid receptors, pS2 and cathepsin D in early clinically node-negative breast cancer. Eur J Cancer 1994;30A:5-11.
143. Seshadri R, Horsfall DJ, Firgaira F, et al: The relative prognostic significance of total cathepsin D

50 CA—A CANCER JOURNAL FOR CLINICIANS
and HER-2/neu oncogene amplification in breast cancer: The South Australian Breast Cancer Study Group. Int J Cancer 1994;56:1-65.

144. Ravdin PM, Tandon AK, Allred DC, et al: Cathepsin D by western blotting and immunohistochemistry: Failure to confirm correlations with prognosis in node-negative breast cancer. J Clin Oncol 1994;12:467-474.

145. Duffy MJ, Reilly D, McDermott E, et al: Urokinase plasminogen activator as a prognostic marker in different subgroups of patients with breast cancer. Cancer 1994;74:2276-2280.

146. Marks JR, Humphrey PA, Wu K, et al: Overexpression of p53 and HER-2/neu proteins as prognostic markers in early stage breast cancer. Ann Surg 1994;219:332-341.

147. Pierce LJ, Merino MJ, D’Angelo T, et al: Is c-erb B-2 a predictor for recurrent disease in early stage breast cancer? Int J Radiat Oncol Biol Phys 1994;28:395-403.

148. Allred DC, Clark GM, Tandon AK, et al: HER-2/neu in node-negative breast cancer: Prognostic significance of overexpression influenced by the presence of in situ carcinoma. J Clin Oncol 1992;10:599-605.

149. Press MF, Pike MC, Chazin VR, et al: HER-2/neu expression in node-negative breast cancer: Direct tissue quantitation by computerized image analysis and association of overexpression with increased risk of recurrent disease. Cancer Res 1993;53:4960-4970.

150. Gusterson BA, Gelber RD, Goldhirsh A, et al: Prognostic importance of c-erbB-2 expression in breast cancer. J Clin Oncol 1992;10:1049-1056.

151. Tett B, Brisson J: Prognostic significance of HER-2/neu oncoprotein expression in node-positive breast cancer: The influence of the pattern of immunostaining and adjuvant therapy. Cancer 1994;73:2359-2365.

152. Toikkanen S, Helin H, Isola J, Joensuu H: Prognostic significance of HER-2 oncoprotein expression in breast cancer: A 30-year follow-up. J Clin Oncol 1994;12:1044-1048.

153. Muss HB, Thor AD, Berry DA, et al: c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer. N Engl J Med 1994;330:1260-1266.

154. Hayes DF: Tumor markers for breast cancer. Ann Oncol 1993;4:807-819.

155. Leitzel K, Teramoto Y, Konrad K, et al: Elevated serum c-erb B-2 antigen levels and decreased response to hormone therapy of breast cancer. J Clin Oncol 1995;13:1129-1135.

156. Hurwitz M, Sawicki M, Samara G, Passaro E Jr: Diagnostic and prognostic molecular markers in cancer. Am J Surg 1992;164:299-306.

157. Leslie KO, Howard P: Oncogenes and antioncogenes in human breast carcinoma. Pathol Annu 1992;27:321-342.

158. Clair T, Miller WR, Cho-Chung YS: Prognostic significance of the expression of a ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res 1987;47:5290-5293.

159. Spandidos DA, Kariaossidi H, Malliri A, et al: Expression of ras, Rb1, and p53 proteins in human breast cancer. Anticancer Res 1992;12:81-89.

160. Mansour EG, Ravdin PM, Dressler L: Prognostic factors in early breast carcinoma. Cancer 1994;74:381-400.

161. Isola J, Visakorpi T, Holli K, Kallioniemi OP: Association of overexpression of tumor suppressor protein p53 with rapid cell proliferation and poor prognosis in node-negative breast cancer patients. J Natl Cancer Inst 1992;84:1109-1114.

162. Thor AD, Moore DH II, Edgerton SM, et al: Accumulation of p53 tumor suppressor gene protein: An independent marker of prognosis in breast cancers. J Natl Cancer Inst 1992;84:845-855.

163. Friedricks KS, Gluba S, Eidtmann H, et al: Overexpression of p53 and prognosis in breast cancer. Cancer 1993;72:3641-3647.

164. Davidoff AM, Herndon JE 2nd, Glover NS, et al: Relation between p53 overexpression and established prognostic factors in breast cancer. Surgery 1991;110:259-264.

165. Silvestrini R, Benini E, Daidone MG, et al: p53 as an independent prognostic marker in lymph node-negative breast cancer patients. J Natl Cancer Inst 1993;85:965-970.

166. Allred DC, Clark GM, Elleedge R, et al: Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst 1993;85:200-206.

167. Levine MN, Browman GP, Gent M, et al: When is a prognostic factor useful? A guide for the perplexed. J Clin Oncol 1991;9:348-356.

168. Robert NJ: Biologic indicators of prognosis in breast cancer. Hosp Pract 1990;25:93-98,101-102.

169. Gasparini G, Pozza F, Harris AL: Evaluating the potential usefulness of new prognostic and predictive indicators in node-negative breast cancer patients. J Natl Cancer Inst 1993;85:1206-1219.

170. McGuire WL, Clark GM: Prognostic factors and treatment decisions in axillary-node-negative breast cancer. N Engl J Med 1992;326:1756-1761.

171. Early Breast Cancer Trialists’ Collaborative Group: Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy: 133 randomised trials involving 31,000 recurrences and 24,000 deaths among 75,000 women. Lancet 1992;339:1-15,71-85.

172. Treatment of early-stage breast cancer. NIH Consensus Development Conference Consensus Statement. June 18-21, 1990, 8(6).

173. Glick JH, Gelber RD, Goldhirsh A, et al: Meeting highlights: Adjuvant therapy for primary breast cancer. J Natl Cancer Inst 1992;84:1479-1485.

174. Goldhirsh A, Wood WC, Senn H-J, et al: Meeting highlights: International consensus panel on the treatment of primary breast cancer. J Natl Cancer Inst 1995;87:1441-1445.