Functional significance of CD57 expression on human NK cells and relevance to disease

Carolyn M. Nielsen, Matthew J. White, Martin R. Goodier and Eleanor M. Riley *

Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK

CD57 IS A MARKER OF NK CELL DIFFERENTIATION

CD57 was first identified on cells with natural killer activity using the mouse monoclonal antibodies Human Natural Killer-1 (HNK-1) (1) and Leu-7 (2) and was subsequently assigned the cluster of differentiation (CD) designation, CD57, at the fourth International Workshop of Human Leukocyte Antigens in 1989. HNK-1/Leu-7/CD57 was initially believed to be uniquely expressed on NK cells – and was used to define this population (1,3) – although it was soon apparent that CD57 was expressed only on a subset of functionally distinct NK cells (4). CD57 was subsequently identified on CD8+ T cells (5–7) as well as cells of neural crest origin (1,8–13). Indeed, it was the neuroscience community that ultimately defined CD57 as a terminally sulfated carbohydrate epitope (glucuronic acid 3-sulfate) (14–16). In neural cells, the CD57 epitope is predominantly restricted to adhesion molecules (17) but little attention has been paid to the precise identity of the molecules expressing the CD57 epitope on NK cells and T cells, precluding a full understanding of the relationship between CD57 expression and lymphocyte function. Although one study identified the CD57 epitope on the IL-6 receptor gp130 of resting lymphocytes (18), the cells expressing CD57/gp130 were not identified and no comprehensive analysis of CD57-expressing molecules on T cells or NK cells has been reported.

While first characterized as an NK cell marker, CD57 has been most widely explored as a marker of replicative senescence on T cells (19). Under conditions of persistent immune stimulation, memory T cells convert from CD28+CD57− to CD28−CD57+ (20); CD57+ cells have short telomeres, low telomerase activity, low expression of cell-cycle associated genes and limited proliferative capacity (20,21). However, CD57+CD28−CD8+ T cells can proliferate given an appropriate cytokine milieu (22), their sensitivity to apoptosis is disputed (23,24), they are highly cytotoxic (25,26) and express natural killer receptors (27). CD57+CD8+ T cells should thus be regarded as terminally differentiated, oligoclonal populations of cytotoxic cells generated in response to chronic antigen stimulation.

In light of the T cell data it was suggested that CD57 may also be a marker of NK cells with poor proliferative capacity and, perhaps, a degree of immunosenescence (21,23,28). Indeed, acquisition of CD57 on NK cells – following stimulation with IL-2 or coculture with target cells – correlates with maturation of the CD56dim NK cell subset, with lower expression of NKP46, NKP30, NKG2D, and NKG2A, and higher expression of CD16, LIR-1, and killer cell immunoglobulin-like receptors (KIRs) (29). Similarly, in hematopoietic stem cell transplant recipients exposed to human cytomegalovirus (HCMV) infection, differentiation of CD56dim NK cells involves acquisition of CD57, loss of NKG2A, gain of KIRs, and changing expression of homing molecules (30). These studies, together with experiments in Rag2−/− γc−/− mice reconstituted with human hematopoietic stem cells and treated with IL-15 (30), and the observation that fetal and newborn NK cells lack CD57 (31), indicate that CD57+ NK cells differentiate from CD56brightCD57− NK cells in an irreversible process with highly stable expression of CD57 likely being the final step in maturation (30,32). This differentiation is accompanied by functional changes (29,30); compared with CD57− cells, CD57+ NK cells proliferate less well in response to IL-2 and IL-15 and produce less IFN-γ in response to IL-12 and IL-18, consistent with their lower levels of IL-12Rβ mRNA (29) and reduced surface expression of IL-2Rβ and IL-18Rα (30). On the other hand, CD57− NK cells retain their cytolytic potential (30) and a proportion of CD57+ NK cells are able to produce IFN-γ after crosslinking of CD16 [Ref. (29); White et al. submitted] indicating that CD57+ NK cells are intrinsically able to produce IFN-γ but that they may have different activation requirements.

In summary, therefore, progression from CD56bright to CD56dim/CD57+ to CD56dimCD57+ reflects a maturation pathway for NK cells (33,34) and rather than being a marker of anergy or...
Autoimmune diseases tend to be highly antigen-specific and mediated by autoantibodies or autoreactive T cells. In general, expanded populations of autoreactive CD57+ T cells are associated with more severe disease – Wegener’s granulomatosis (65), pars planitis (25), multiple sclerosis (MS) (66), type I diabetes mellitus (67), Graves’ disease (68), and rheumatoid arthritis (RA) (69), amongst others. This likely reflects killing of vital host cells by these highly cytotoxic lymphocytes (68), although the loss of T cells with immunosuppressive potential may also play a role (67).

Perhaps surprisingly, autoimmune disease is consistently associated with reduced frequencies or absolute numbers of circulating CD57+ NK cells and/or impaired NK cell cytotoxicity (Table 2) (70–78), suggesting that cytotoxic CD57+ NK cells may play a regulatory role, preventing or suppressing autoimmune disease. In MS, peripheral NK cells lose expression of FAS during relapse and regain it during remission (70) and FAS+ NK cells can inhibit myelin basic protein-specific T cell IFN-γ responses (79), suggesting that NK cells may regulate autoreactive T cells. On the other hand, chronic NK cell lymphocytosis (which is associated with peripheral neuropathy, arthritis, and vasculitis) is characterized by increased absolute numbers of circulating immature NK cells with low cytotoxicity (80, 81). Similarly, NK cells have been found in the inflammatory infiltrates of psoriatic skin lesions (82), in synovial fluid of joints affected by RA (83), and in pancreatic islets of type I diabetes patients (84). NK cells in the synovial fluid of patients with RA, and those infiltrating psoriatic skin lesions, are immature CD56dim or CD57− and able to secrete IFN-γ and TNF (85, 86), suggesting that they may contribute to the inflammation rather than suppress it (84).

Taken together, these data are consistent with the hypothesis that immature CD57− NK cells may contribute to autoimmune inflammation and tissue damage whereas more highly differentiated, cytotoxic, CD57+ NK cells may fulfill immunoregulatory role, possibly deleting chronically activated T cells, as in viral hepatitis (103).

CD57 Expression During Infection

Chronic viral infections such as HCMV (104), human immunodeficiency virus (HIV) (105), hepatitis C virus (106), and Epstein–Barr virus (EBV) (107) infections offer some of the clearest examples of expansion of CD57+ CD8+ T cells, presumably as a result of persistent antigenic stimulation, and increased proportions of CD57+ CD8+ T cells have also been reported in those infected with human parvovirus (108), measles (109), pulmonary tuberculosis (92), and toxoplasmosis (93). The majority of these CD57+ CD8+ T cells, at least in HCMV infection, appear to be antigen-specific and their presence is associated with a low incidence of reactivation (94, 95). Similar skewing of NK cells toward the CD57+ phenotype is now reported in a variety of viral infections (Table 2).

Increased frequencies of CD57+ CD16+ NK cells were first reported in HCMV-infected individuals by Gratama et al. (110) and have been repeatedly confirmed (99, 111, 112). Studies of hematopoietic stem cell transplantation (HSCT) have been particularly informative, allowing detailed comparison of stem cell differentiation into NK cells in HCMV-infected and uninfected transplant recipients (111, 112) with rapid and persistent expansion of CD57+ NK cells that are also NKG2C+, KIR−, CD158b+, and potent producers of IFN-γ after stimulation with MHC Class I-deficient target cells, only in the HCMV-infected group (111). We now know that HCMV drives expansion of NKG2C+ NK cells and
Table 1 | Associations between cancer prognosis and CD57 expression by NK cells.

Cancer type	Observations	Reference
Acute lymphoblastic leukemia	Increased NK cell activity and increased numbers of CD57+ and CD16+ NK cells in bone marrow associated with complete remission	Sorskaar et al. (57)
Hodgkin’s disease	Absence/low number of CD57+ NK cells in tumor tissue (by immunohistochemistry) associated with relapse	Ortaç et al. (58)
Non-Hodgkin’s lymphoma	Higher numbers of intratumoral CD57+ NK cells are associated with relapse free survival in pediatric cases	Ortaç et al. (58)
Metastatic tumors in the brain	CD57+ NK cells infiltrate brain metastases of various origins (lung, breast, and renal carcinomas; melanoma) but no correlation between numbers of infiltrating CD57+ NK cells and apoptosis of malignant cells	Vaquero et al. (59)
Colorectal cancer	Increased CD57+ NK cells in germinall centers of draining lymph nodes, but rarely in primary or metastatic lesions; CD57+ NK cells may prevent establishment of tumor in lymph nodes?	Adachi et al. (60)
Bladder carcinoma	Lower frequency of CD56+ and CD57+ PBMC in patients with invasive and non-invasive tumors is correlated with reduced cytotoxicity against T24 bladder cancer cell line	Hermann et al. (61)
Breast carcinoma	Survival is positively correlated with the number of tumor infiltrating CD57+ NK cells and with expression of CX3CL1 (a known NK cell chemoattractant) by the tumor cells	Park et al. (62)
Gastric carcinoma	CD57+ NK cell infiltration associated with a lower clinical grade tumor, reduced venous invasion, fewer lymph node metastases, less lymphocytic invasion, and increased 5 year survival outcome	Ishigami et al. (63)
Oral squamous cell carcinoma	Low density of tumor infiltrating CD57+ NK cells and high numbers of TNF+ cells associated with higher clinical staging	Turkseven and Oygur (64)
Esophageal squamous cell carcinoma	Tumor infiltrating CD57+ NK cells positively associated with increased survival over 80 months	Lv et al. (67)
Squamous cell lung carcinoma	Tumor infiltrating CD57+ NK cells positively correlated with increased survival 2 years after surgery	Villegas et al. (68)
Pulmonary adenocarcinoma	Higher absolute numbers of tumor infiltrating CD57+ NK cells correlated with tumor regression	Takanami et al. (89)
Various	Low numbers of CD57+ NK cells in peripheral blood are associated with carcinomas of colon, lung, breast, and neck; no association was with melanoma or sarcoma	Balch et al. (90)

that these cells preferentially acquire CD57 (97–99, 111, 112). In HCMV-uninfected donors, there are roughly equal proportions of CD57−NKG2C+ and CD57−NKG2C+ NK cells whereas the ratio of CD57−NKG2C+ to CD57−NKG2C+ NK cells ranges from <1 to >60 in HCMV-infected donors (99); whether this variation reflects varying duration of HCMV infection is not known. HCMV reactivation after HSCT is associated with a threefold increase in the ratio of CD57−NKG2C+ to CD57−NKG2C+ NK cells within one year (111). Yet, in the absence of HCMV infection, NKG2C+ NK cells are no more likely to acquire CD57 than are NKG2C− NK cells (112), suggesting that either binding of NKG2C to specific HCMV ligands or chronic viral infection per se drives NK cell differentiation. Importantly, CD57+CD16+ NK cells can kill HCMV-infected target cells (96) and this may be dependent upon, or enhanced by, α-HCMV antibodies (113).

While HCMV remains the clearest example of infection driving NK cell differentiation, other viral infections may cause a similar effect. For example, there is a three to fourfold expansion of the NK cell pool during acute hantavirus infection; NK cell numbers peak approximately 10 days after the onset of symptoms and remain above baseline for at least 60 days (114). This expansion is restricted to the NKG2C+ NK cell subset and the majority of these cells are CD57+, KIR+ and highly responsive to MHC Class I-deficient target cells. Hantavirus-infected endothelial cells express high levels of the NKG2C ligand HLA-E and expansion of the NKG2C+ NK cell subset is seen only in HCMV seropositive hantavirus patients, suggesting that hantavirus-induced HLA-E expression and/or inflammatory cytokines released during infection may drive the expansion and subsequent maturation of NKG2C+ NK cells that have been induced or “primed” by HCMV infection (114). Similarly, transient expansion of the CD57+ NKG2C+ NK cell population during acute chikungunya virus infection is also associated with HCMV seropositivity (115).

Expansion of the NKG2C+CD57+ NK cell subset has also been reported in HCMV+ individuals with chronic hepatitis B and hepatitis C infections, although the proportions of these cells did not differ markedly from previous reports in HCMV-infected but hepatitis virus-uninfected donors, leading the investigators to conclude that HCMV, rather than viral hepatitis, is the underlying driver of NK cell differentiation (97). In line with this, no...
Table 2 | Associations between autoimmune diseases or infections and CD57 expression by NK cells.

AUTOIMMUNE DISEASE	Observations	Reference
Alopecia areata	CD57⁺ NK cells are significantly reduced in peripheral blood of patients with multiple foci of alopecia	Imai et al. (91)
Atopic dermatitis	Reduced frequencies of CD57⁺ NK cells in peripheral blood of patients compared to healthy controls, with greatest reduction in the most severe cases	Wehrmann et al. (128) and Matsumura (127)
Sjögren’s syndrome	Decreased numbers of CD57⁺ NK cells observed in peripheral blood of patients compared to controls	Struyf et al. (128)
IgA nephropathy	Decreased proportion of CD57⁺ NK cells compared to healthy controls	Antonaci et al. (129)
Psoriasis	NK cells infiltrating skin lesions – but also unaffected skin – are predominantly CD57⁻low	Batista et al. (85)

INFECTION

HCMV	Increased proportions of CD57⁺ NK cells in infected individuals; CD57 expression limited to the NKG2C⁺ subset	Gratama et al. (110), Lopez-Vergès et al. (99) and Foley et al. (111, 112)
HIV	In chronic infections, there is a loss of CD57⁻/dim NK cells, but the absolute number of CD57⁺ NK cells remains constant	Hong et al. (100)
Chikungunya virus	Increased proportions of CD57⁺ NK cells after infection in HCMV⁺ patients	Petitdemange et al. (115)
Hantavirus	NKG2C⁺ NK cell subset expanded during infection in HCMV⁺ patients and the majority of these cells are CD57⁺	Björkström et al. (114)
Hepatitis B and C	NKG2C⁺ NK cell population is expanded in chronic infections, and these are predominantly CD57⁺, but co-infection with HCMV appears to be the driver of this effect	Béziat et al. (97)
Lyme disease	Conflicting evidence on whether chronic disease leads to a reduced proportion of CD57⁺ NK cells in peripheral blood	Stricker et al. (117), Stricker and Winger (118), and Marques et al. (119)

association was found between expansion of the NKG2C⁺ CD57⁺ NK cell subset and clinical indicators of hepatitis such as viral load or liver enzyme concentrations (97).

In HIV-infected individuals, the absolute number of CD57⁺ NK cells is stable and comparable to HIV-negative individuals but the ratio of CD57⁺ to CD57⁻ NK cells is higher than in uninfected individuals due to a gradual loss of CD57⁻ cells (which are highly dependent on monocyte and T cell-derived cytokines for their survival) (100). Unfortunately, the HCMV status of these subjects was not reported and may confound the comparison between accumulation of CD57⁺ NK cells and recurrence of genital herpes lesions due to herpes simplex virus 2 (HSV-2) infection (116), interpretation of this study is hindered by the lack of an HSV-2-uninfected control group.

There have been very few studies of NK cell subsets in the context of bacterial or parasitic infections. Patients with chronic Lyme Disease (Borrelia burgdorferi) have lower proportions of peripheral blood CD57⁺ NK cells compared to those with acute disease and uninfected controls and this phenotype was maintained for over 10 years in one person with persistent infection (117, 118). In contrast, no significant differences in numbers of peripheral blood CD3⁻CD57⁺ cells were noted between patients with post-Lyme disease syndrome, individuals recovered from Lyme disease and healthy controls (119). The suggestion (118) that high frequencies of CD57⁺ NK cells may be a biomarker of Lyme disease progression thus seems premature, especially given the potential impact on NK cell phenotype of HCMV and other infections.

In summary, viral infections are important drivers of NK cell differentiation with HCMV playing a primary role in selecting for NKG2C⁺ CD57⁺ cells and other viruses driving their expansion and differentiation.
CD57 EXPRESSION AND AGING

Given the enormous impact of infection on NK cell maturation and differentiation, it is not surprising that NK cell populations change with age, which is a proxy for cumulative exposure to infection and other physiological insults. At birth virtually no T cells express CD57 (120) but the proportion rises with age, reaching 20–30% in young adults (20); by 80 years of age 50–60% of CD8+ T cells are CD28- (and thus likely CD57+) (20, 121). Similarly, with increasing age, increasing numbers of circulating NK cells are achieved by an expansion of the CD56dim and CD57+ subsets and an absolute, as well as a proportional, decline in CD56bright cells (35, 53–55, 122–125). At birth, all CD56dim NK cells are CD57+; among European adults (18–60 years of age) 25–60% of CD56dim NK cells are CD57+ and this continues to increase slightly, but significantly, after the age of 80 years (124). Interestingly, CD56dimCD57+ NK cells accumulate very rapidly in an African (Gambian) population reaching adult levels (20–70%) by the age of 5 years (Goodier et al. unpublished); this may reflect very high HCMV seroprevalence rates in this age group in this community.

The increased proportion of CD56dimCD57+ NK cells in the elderly likely explains the maintenance of NK cell cytotoxic responses despite reduced responsiveness to cytokine stimulation [reviewed in Ref. (56)], however, the significance of these changes in terms of overall immune competence is poorly understood. The gradual loss of the CD56bright NK cell population, and the consequent decline in NK-derived cytokines that activate dendritic cells and monocytes, has been assumed to contribute to age-associated declines in immune competence but the potential counterbalancing effect of an increased proportion of highly cytotoxic CD57+ NK cells has received little attention (123). Comprehensive studies are now needed to assess the cytokine-producing and cytotoxic function of individual NK cell subsets in response to cytokine stimulation as well as activation via CD16 and NCRs and the extent to which this changes with age and HCMV status.

CONCLUSION AND FUTURE DIRECTIONS

CD57 is a very useful marker of NK cell maturation, identifying cells with potent cytotoxic potential but decreased sensitivity to cytokines and reduced replicative potential. CD57+ NK cells appear to be a stable sub-population, increasing with age and exposure to pathogens (especially, but not exclusively, HCMV) and their presence is consistently associated with better outcomes in cancer and autoimmune disease. However, the majority of clinical studies have been cross-sectional, with limited follow up and data on crucial confounding factors such as HCMV infection are typically lacking. Recent studies of HSCT (111, 112) demonstrate the power of prospective and longer term studies in beginning to assign causality in terms of NK cell phenotype, function, and disease. Nevertheless, precise understanding of the role of CD57 expression on NK cells requires a detailed dissection of the underlying biology of CD57, about which very little is known. Given that there is no evidence that CD57 is expressed on murine NK cells, this is not a simple task. Possible approaches in human NK cells might include conducting a comprehensive analysis of NK cell molecules expressing CD57, blocking CD57 in in vitro functional NK cell assays, or manipulating expression or enzymatic activity of B3GAT1 (the key enzyme in the biosynthesis of CD57) using RNA interference or specific inhibitors.

ACKNOWLEDGMENTS

Our studies of CD57 expression on NK cells are supported by a program grant from the UK Medical Research Council (G1000808) and Carolyn M. Nielsen is supported by an MRC Ph.D., Studentship in Vaccine Research (MR/J003999/1).

REFERENCES

1. Abo T, Balch CM. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol (1981) 127(3):1024–9.
2. Knapp W, Rieber P, Dorken B, Schmitz RE, Stein H, vd Borne AE. Towards a better definition of human leucocyte surface molecules. Immunol Today (1989) 10(8):253–8. doi:10.1016/0167-5699(89)90135-7
3. Abo T, Cooper MD, Balch CM. Characterization of HNK-1+ (Leu-7) human lymphocytes. I. Two distinct phenotypes of human NK cells with different cytotoxic capability. J Immunol (1982) 129(4):1752–7.
4. Lanier LL, Le AM, Phillips JH, Warner NL, Babgeoff GC. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol (1983) 131(4):1789–96.
5. Manara GC, Ferrari C, De Panfilis G. HNK-1 antigen is not specific for natural killer cells. JInvest Dermatol (1988) 91(4):374–5. doi:10.1111/j.1523-1747.1988.ep12476309
6. Clement LT, Grossi CE, Garland GL. Morphologic and phenotypic features of the subpopulation of Leu-2+ cells that suppresses B cell differentiation. J Immunol (1984) 133(5):2461–8.
7. Markey AG, MacDonald DM. HNK-1 antigen is not specific for natural killer cells. J Invest Dermatol (1989) 92(5):774–5. doi:10.1111/j.1523-1747.1989.ep12722580
8. Lipinska M, Braham K, Gaillard JM, Carlu C, Tursz T. HNK-1 antibody detects an antigen expressed on neuroectodermal cells. J Exp Med (1983) 158(5):1775–80. doi:10.1084/jem.158.5.1775
9. Schiller-Petrovic S, Gebhart W, Lasmann H, Rumpold H, Kraft D. A shared antigenic determinant between natural killer cells and nervous tissue. Nature (1983) 306(5939):179–81. doi:10.1038/306179a0
10. Shioida Y, Nagura H, Tsutsumi Y, Shimamura K, Tamaoki N. Distribution of Leu 7 (HNK-1) antigen in human digestive organs: an immunohistochemical study with monoclonal antibody. Histochem J (1984) 16(8):843–54. doi:10.1007/BF01002790
11. Ando I, Tamaki K. HNK-1 antibody reacts with peripheral nerves and sweat glands in the skin. Br J Dermatol (1985) 113(2):175–8. doi:10.1111/j.1365-2133.1985.tb02061.x
12. Bunn PA Jr, Limnolia I, Minna JD, Carney D, Gazdar AF. Small cell lung cancer, endocrine cells of the fetal bronchus, and other neuroendocrine cells express the Leu-7 antigenic determinant present on natural killer cells. Blood (1985) 65(3):764–8.
13. Lauwerjens IM, van Ranst L. Leu-7 immunoreactivity in human, monkey, and pig bronchopulmonary neuroendocrine cells and neuroendocrine cells. J Histochem Cytochem (1987) 35(1):687–91. doi:10.11735/jhc.35.6.1030668
14. Chou DK, Ilyas AA, Evans JE, Costello C, Quares RH, Jungalwala FB. Structure of sulfated glucuronyl glycolipids in the nervous system reacting with HNK-1 antibody and some IgM paraproteins in neuropathy. J Biol Chem (1986) 261(25):1717–25.
15. Yoshio H, van Zuylen CW, Orberger G, Vliegenthart JF, Schachner M. Characterization of the HNK-1 carbohydrate epitope on bovine peripheral myelin glycoprotein P0. J Biol Chem (1996) 271(38):22957–60. doi:10.1074/jbc.271.38.22957
16. Ariga T, Koiriyama T, Freedle L, Latov N, Saito M, Kon K, et al. Characterization of sulfated glucuronic acid containing glycolipids reacting with IgM antibodies in patients with neuropathy. J Biol Chem (1987) 262(2):848–53.
17. Kunemund V, Jungalwala FB, Fischer G, Chou DK, Keilhauer G, Schachner M. The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions. J Cell Biol (1988) 106(1):213–23. doi:10.1083/jcb.106.1.213
18. Cebo C, Durier V, Lagani P, Maes E, Florea D, Lefebvre T, et al. Function and molecular modeling of the interaction between human interleukin 6 and its HNK-1 oligosaccharide ligands. J Biol Chem (2002) 277(14):12246–52. doi:10.1074/jbc.M106816200

www.frontiersin.org

December 2013 | Volume 4 | Article 422 | 5
19. Sze DM, Giesajtis G, Brown RD, Raitakari M, Gibson J, Ho J, et al. Clonal cytotoxic T cells are expanded in myeloma and reside in the CD8(+)CD57(-)CD28(-) compartment. Blood (2001) 98(9):2817-27. doi:10.1182/blood.V98.9.2817

20. Vallejo AN. CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev (2005) 205:158-69. doi:10.1111/j.1600-065X.2005.00256.x

21. Focosi D, Bestagno M, Burrone O, Petrini M. CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol (2010) 87(1):107-16. doi:10.1189/jlb.0809566

22. Chong LK, Aicheler R, Llewellyn-Lacey S, Tomasec P, Brennan P, Wang EC. Proliferation and interleukin 5 production by CD8(+), CD57(T) cells. Eur J Immunol (2008) 38(4):995–1000. doi:10.1002/eji.200737587

23. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty S, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood (2003) 101(7):2711–20. doi:10.1182/blood-2002-07-2103

24. Wood KL, Twigg HJ, III, Dosell AL. Dysregulation of CD8+ lymphocyte apoptosis, chronic disease, and immune regulation. Front Biosci (Landmark Ed) (2009) 14:3771–81. doi:10.2741/3487

25. Pedroza-Seres M, Linares M, Vooruind S, Enrique RB, Lascurain R, Garfias Y, et al. Purp planitis is associated with an increased frequency of effector-memory CD4(+)CD57(+) T cell compartment. Br J Ophthalmol (2007) 91(10):1393–8. doi:10.1136/bjo.2007.116277

26. Chattopadhyay PK, Betts MR, Price DA, Gostick E, Horton H, Roederer M, et al. Expression of CD57 distinguishes CD4+/CD57+ T cells of the nodular lymphocyte predominance subtype, and related cytokines in healthy aging. J Clin Immunol (2010) 30(7):616–23. doi:10.1002/jcb.1830140707

27. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer (NK) cell receptors for therapeutic intervention. Semin Immunol (2011) 23(1):235–71. doi:10.1016/j.smim.2012.04.023

28. Phillips JH, Lanier LL. A model for the differentiation of human natural killer cells. Studies on the in vitro activation of Leu-11+ granular lymphocytes with NK22A, KIR, and CD57 define a process of CD56dim NK cell differentiation uncoupled from NK cell education. Blood (2010) 116(19):3853–64. doi:10.1182/blood-2010-04-281675

29. Abo T, Miller CA, Balch CM. Characterization of human granular lymphocyte subpopulations expressing HK-1 (Leu-7) and Leu-11 antigens in the blood and lymphoid tissues from fetuses, neonates and adults. Eur J Immunol (1984) 14(7):112–7. doi:10.1002/eji.1831407070

30. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immune senescence: effect of aging on cells and receptors of the innate immune system. Semin Immunol (2012) 24(5):331–41. doi:10.1016/j.smim.2012.04.008

31. Cichocki F, Miller JS, Brycson VT. Epigenetic regulation of NK cells, and disease. Frontiers in Immunology | NK Cell Biology December 2013 | Volume 4 | Article 422 | 6

32. Sze DM, Brown RD, Yuen E, Gibson J, Ho J, Raitakari M, et al. Predictive value of CD8highCD57+ lymphocyte subset in interferon therapy of patients with renal cell carcinoma. Anticancer Res (2002) 22(3B):3679–83.

33. Chariyalertsak D, Psalskoniene V, Jonusauskaita R, Aztaksaite K, Alednavicius E, Mauricas M, et al. Peripheral blood CD8highCD57+ lymphocyte levels may predict outcome in melanoma patients treated with adjuvant interferon-alpha. Anticancer Res (2008) 28(2B):1139–42.

34. Agak J, Baba H. Prognostic value of CD57(+) T lymphocytes in the peripheral blood of patients with advanced gastric cancer. Int J Clin Oncol (2008) 13(6):528–35. doi:10.1002/ijc.23086

35. Krishnaraj R, Blandford G. Age-associated alterations in human natural killer cells. Curr Opin Immunol (2011) 23(2):129–34. doi:10.1016/j.coi.2010.12.006

36. McNeair SE, Rea IM, Alexander HD, Morris TC. Changes in natural killer cells, and distribution according to genotype. Eur J Immunol (1975) 5(2):112–7. doi:10.1002/eji.1830505208

37. Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer (1975) 16(2):216–29. doi:10.1002/ijc.291160205

38. Herberman RB, Nunn ME, HOLDEN HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer (1975) 16(2):230–9. doi:10.1002/ijc.291160205

39. Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, Ramakrishna S. Immune system: a double-edged sword in cancer. Inflamm Res (2013) 62(9):823–34. doi:10.1007/s00011-013-0645-9

40. Bubenik J. MHC class I down-regulation: tumour escape from immune surveillance (review). Int J Cancer (2004) 107(2):487–91.

41. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res (2009) 69(8):3563–9. doi:10.1158/0008-5472.CAN-08-3807

42. Abo T, Cooper MD, Balch CM. Postnatal expansion of the natural killer and killer cell populations in humans identified by the monoclonal HNK-1 antibody. J Exp Med (1982) 155(1):31–8. doi:10.1083/jem.155.1.312

43. Krishnaraj R, Blandford G. Age-associated alterations in human natural killer cells. 2. Increased frequency of selective NK subsets. Cell Immunol (1988) 114(1):137–48. doi:10.1016/S0008-4794(88)90261-4

44. McNelar SE, Resa IM, Alexander HD, Morris TC. Changes in natural killer cells, the CD57CD8 subset, and related cytokines in healthy aging. J Clin Immunol (1998) 18(1):31–8. doi:10.1023/A:1002385319787

45. Gayoso I, Sanchez-Correa B, Campos C, Alonso C, Pera A, Casado JG, et al. Innate immune senescence of human natural killer cells. J Immunol (2011) 186(4):337–43. doi:10.4049/jimmunol.100538005

46. Sorskaa D, Forre O, Lie SO. Increased natural-killer cell-activity and numbers of Leu-7 and Leu-11b (CD 16)-positive cells in bone-marrow of children in remission from acute lymphoblastic leukemia. Scand J Immunol (1989) 29(1):85–92. doi:10.1111/j.1365-3083.1989.tb01100.x
58. Ortaç, R, Aktas, S, Diniz, G, Erbay, A, Vergin, C. Prognostic role of natural killer cells in pediatric mixed cellularularity and nodular sclerosing Hodgkin’s disease. *Araq Quant Cytol Histol* (2002) 24(5):249–53.

59. Vagnero J, Zurita M, Aguayo C, Costa S. Apoptosis is not correlated with the presence of CD57+ NK cells in brain metastases. *Acta Neurochir* (Wien) (2003) 145(9):773–6. doi:10.1007/s00701-003-0887-1.

60. Adachi W, Usuda N, Sugeno A, Iida F. Immune-competent cells of regional lymph-nodes in colorectal-cancer patients. 2. Immunohistochemical analysis of Leu+ cells. *J Surg Oncol* (1990) 45(4):234–41. doi:10.1002/jso.2930450406.

61. Hermann GG, Petersen KR, Steven K, Zeuthen J. Reduced LAK cytotoxicity of peripheral blood mononuclear cells in patients with bladder cancer: decreased LAK cytotoxicity caused by a low incidence of CD56+ and CD57+ mononuclear blood cells. *J Clin Immunol* (1990) 10(3):311–20. doi:10.1007/BF00917476.

62. Park MH, Lee IS, Yoon JH. High expression of CXCL11 by tumor cells correlates with a good prognosis and increased tumor-infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma. *J Surg Oncol* (2000) 76(4):386–92. doi:10.1002/(SICI)1096-9896(200003)76:4<386::AID-JSO3>3.0.CO;2-V.

63. Issigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma. *Cancer* (2000) 88(3):577–83. doi:10.1002/(SICI)1097-0248(20000201)88:3<577::AID-CNCN13>3.0.CO;2-V.

64. Turkseven MR, Ogyur T. Evaluation of natural killer cell defense in oral squamous cell carcinoma. *Oral Oncol* (2010) 46(5):334–7. doi:10.1016/j.oraloncology.2010.02.019.

65. Giacombe R, Wang XB, Kakoulidou M, Levet AK. Characterization of the expanded T-cell populations in patients with Wegener’s granulomatosis. *J Intern Med* (2006) 260(5):224–30. doi:10.1111/j.1365-2699.2006.01688.x.

66. Ratts RB, Karandikar NJ, Hussain RZ, Choy J, Northrop SC, Lovett-Racke AE, et al. Phenotypic characterization of autoreactive T cells in multiple sclerosis. *J Neuroimmunol* (2006) 178(1–2):100–10. doi:10.1016/j.jneuroim.2006.08.010.

67. Mikulová Z, Praksova P, Stourac P, Bednarik J, Strajtova L, Pacasova R, et al. Role of natural killer cells in the immunopathogenesis of multiple sclerosis. *Exp Dermatol* (2007) 16(1):29–34. doi:10.1111/j.1600-0625.2006.03236.x.

68. Aramaki T, Ida H, Izumi Y, Fujikawa K, Huang M, Arima K, et al. A significant upregulation of CD57 around angiogenesis in patients with colon cancer. *Br J Haematol* (2010) 150(2):296–307. doi:10.1111/j.1365-2141.2009.07515.x.

69. Wang EC, Lawson TM, Vedhara K, Moss PA, Lehner PJ, Borysiewicz LK. Natural killer type 2 bias in remission of multiple sclerosis. *Arthritis Rheum* (2002) 46(7):1763–72. doi:10.1002/art.10140.

70. Batista MD, Ho EL, Kuebler PJ, Milush LL, Janier LL, Kallah EG, et al. Skewed distribution of natural killer cells in psoriasis skin lesions. *Exp Dermatol* (2013) 22(1):64–6. doi:10.1111/exd.12060.

71. de Matos CT, Berg L, Michaelson J, Fellander-Tsai L, Karre K, Soderstrom K. Activating and inhibitory receptors on synovial fluid natural killer cells of arthritis patients: role of CD94/NKG2A in control of cytokine secretion. *Immunology* (2007) 122(2):291–301. doi:10.1111/j.1365-2125.2006.07283.x.

72. Le L, Pan K, Li XD, She KL, Zhao JJ, Wang W, et al. The accumulation and prognostic value of tumor infiltrating IL-17 producing cells in esophageal squamous cell carcinoma. *PloS One* (2011) 6(3):e18219. doi:10.1371/journal.pone.0018219.

73. Villegas FR, Costa S, Villarrubia VG, Jimenez R, Chillón MJ, Jarreño J, et al. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. *Lung Cancer* (2002) 35(1):23–8. doi:10.1016/S0165-5176(02)00065-9.

74. Takahashi K, Miyake S, Kondo T, Terao K, Hatakenaka M, Hashimoto S, et al. Natural killer type 2 bias in remission of multiple sclerosis. *J Clin Invest* (2001) 107(5):R23–9. doi:10.1172/JCI11819.

75. Krastukoff LF, Morgan NG, Zecchini D, White R, Petkau AJ, Satoh J, et al. A long-term study of patients with chronic natural killer cell lymphocytosis. *Br J Haematol* (1999) 107(4):960–6. doi:10.1046/j.1365-2141.1999.01624.x.

76. Aramaki T, Ida H, Tanaka F, Aratake K, et al. Chronic natural killer cell lymphocytosis: a descriptive clinical study. *Blood* (1994) 84(8):2721–5.

77. O’Gorman M, Smith R, Garrison A, Shamiyeh E, Pachman L. Lymphocyte sub-sets in peripheral blood from newly diagnosed, untreated patients with juvenile dermatomyositis (JDM) are associated with disease activity scores (DAS). *Arthritis Rheum* (2002) 46(9):5490–99.
interferon-independent component requiring expression of early viral proteins and characterization of effector cells. J Immunol (1985) 134(4):2695–701.

97. Bézat V, Dalgard O, Asselah T, Hallon P, Redossa P, Bouidaa A, et al. CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol (2012) 42(2):447–57. doi:10.1002/eji.201141826

98. Gumà M, Angulo A, Vilches C, Gómez-Lozano N, Malats N, López-Botet M. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. J Immunol (2004) 172(4):2364–71. doi:10.1128/JI.10165-09

99. Hong HS, Eberhard JM, Keudel P, Bollmann BA, Ballmaier M, Bhatnagar N, et al. The role of human cytomegalovirus infection in the expansion of CD56dim CD16+ NK cells. J Virol (2010) 84(11):5825–35. doi:10.1128/JVI.00562-09

100. Peppa D, Gill US, Reynolds G, Easom NJ, Pallett LJ, Schurich A, et al. Up-regulation of immunoreceptor tyrosine-based inhibitory motifs in CD57+ T cells in HIV-1-infected and uninfected individuals. J Immunol (2006) 177(8):5145–54.

101. Wallace DL, Masters JE, De Lara CM, Henson SM, Worth A, Zhang Y, et al. Human cytomegalovirus-specific CD8+ T-cell expansions contain long-lived cells that retain functional capacity in both young and elderly subjects. Immunology (2011) 132(1):27–38. doi:10.1111/j.1365-2567.2010.03334.x

102. Ly P, Prisic J, Bock M, Leung-Sing S, Kolaitis E, et al. Human cytomegalovirus infection increases the expression of CD57 in long-term activated cytolytic CD8+ T cells. J Immunol (1999) 162(4):2695–701. doi:10.4049/jimmunol.162.4.2695

103. Marques A, Brown MR, Fleisher TA. Natural killer cell counts are not different between patients with post-Lyme disease syndrome and controls. Clin Vaccine Immunol (2004) 11(5):653–6. doi:10.1128/CVI.11.5.653-6.2004

104. Ribeiro P, Alonso MC, Carracedo J, Ramirez R, Ostos B, et al. NK cell number and function in patients with chronic Lyme disease: a longitudinal study. J Clin Immunol (2012) 32(1):43–8. doi:10.1007/s10875-011-9507-9

105. Petitdemange C, Becquart P, Wauquier N, Bézat V, Debé P, Leroy EM, et al. Unconventional repertoire profile is imprinted during acute chikungunya virus infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog (2011) 7(9):e1002268. doi:10.1371/journal.ppat.1002268

106. Jörnvik SJ, Svansson A, Malmberg KJ, Eriksson K, Ljunggren HG. Characterization of natural killer cell phenotype and function during recurrent human HSV-2 infection. PLoS One (2011) 6(11):e27664. doi:10.1371/journal.pone.0027664

107. Stricker RB, Burzasceno J, Winger E. Long-term decrease in the CD57 lymphocyte subset in a patient with chronic Lyme disease. Ann Agric Environ Med (2002) 9(1):111–3.

108. Stricker RB, Winger EE. Decreased CD57 lymphocyte subset in patients with chronic Lyme disease. Immun Lett (2001) 76(1):41–5. doi:10.1016/S0165-2478(00)00316-3

109. Merkus P, Rooijendaal M, Roosnek E, Sissoms JG, Carmichael AJ. Large clonal expansions of human virus-specific memory cytotoxic T lymphocytes within the CD57+ CD28- CD8+ T-cell population. Immunology (1999) 98(3):443–9. doi:10.1046/j.1365-2567.1999.00901.x

110. Borrego F, Alonso MC, Galaní M, Carracedo J, Ramírez R, Ostos B, et al. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol (1999) 34(2):253–65. doi:10.1016/S0531-5565(98)00076-X

111. Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, et al. Expansion of cytotoxic CD8+ and CD28- T cells in healthy ageing people, including centenarians. Immunology (1996) 88(4):501–7. doi:10.1046/j.1365-2567.1996.00869.x

112. Hong HS, Eberhard JM, Keudel P, Bollmann BA, Ballmaier M, Bhatnagar N, et al. The role of human cytomegalovirus infection in the expansion of CD56dim CD16+ NK cells. J Virol (2010) 84(11):5825–35. doi:10.1128/JVI.00562-09

113. Gratale PW, Khin-Nelemans HC, Langelaar RA, den Oottander GIJ, Stijnen T, D’Amaro L, et al. Flow cytometric and morphologic studies of HNK1+ (Leu7+) lymphocytes in relation to cytomegalovirus carrier status. Clin Exp Immunol (1988) 74(2):190–5.

114. Floyer B, Cooley S, Verneris MR, Curtsinger J, Luo X, et al. Human cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood (2012) 119(11):2665–74. doi:10.1182/blood-2011-10-386995

115. Petrideman G, Becquart P, Wauquier N, Bézat V, Debé P, Leroy EM, et al. Unconventional repertoire profile is imprinted during acute chikungunya virus infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog (2011) 7(9):e1002268. doi:10.1371/journal.ppat.1002268

116. Jörnvik SJ, Svansson A, Malmberg KJ, Eriksson K, Ljunggren HG. Characterization of natural killer cell phenotype and function during recurrent human HSV-2 infection. PLoS One (2011) 6(11):e27664. doi:10.1371/journal.pone.0027664

117. Stricker RB, Burzasceno J, Winger E. Long-term decrease in the CD57 lymphocyte subset in a patient with chronic Lyme disease. Ann Agric Environ Med (2002) 9(1):111–3.

118. Stricker RB, Winger EE. Decreased CD57 lymphocyte subset in patients with chronic Lyme disease. Immun Lett (2001) 76(1):41–5. doi:10.1016/S0165-2478(00)00316-3

119. Pettigrew IJ,鲷魚 H, 纽约 T, 洛杉矶 S, 沙门氏菌 AM, 乔明 C, 赖利 E. 具有潜在冲突的 NK 细胞的检测和功能变化。Front Immunol (2013) 4(2):190–5. doi:10.3389/fimmu.2013.00422

120. Nielsen CM, White MJ, Goodier MR and Riley EM (2013) Functional significance of CD57 expression on human NK cells and relevance to disease. Front. Immunol. 2013 | Volume 4 | Article 422 | doi: 10.3389/fimmu.2013.00422

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 02 October 2013; accepted: 20 November 2013; published online: 09 December 2013.

Citation: Nielsen CM, White MJ, Goodier MR and Riley EM (2013) Functional significance of CD57 expression on human NK cells and relevance to disease. Front. Immunol. 4:222. doi: 10.3389/fimmu.2013.00422

This article was submitted to NK Cell Biology, a section of the journal Frontiers in Immunology.

Copyright © 2013 Nielsen, White, Goodier and Riley. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.