SLICING UP A 2-SPHERE

YEVGENY LIOKUMOVICH

ABSTRACT. We show that for every complete Riemannian surface M diffeomorphic to a sphere with $k \geq 0$ holes there exists a Morse function $f : M \to \mathbb{R}$, which is constant on each connected component of the boundary of M and has fibers of length no more than $52\sqrt{\text{Area}(M)} + \text{length}(\partial M)$. We also show that on every 2-sphere there exists a simple closed curve of length $\leq 26\sqrt{\text{Area}(S^2)}$ subdividing the sphere into two discs of area $\geq \frac{1}{3}\text{Area}(S^2)$.

1. INTRODUCTION

Let M be a Riemannian 2-sphere. Denote the area of M by $|M|$. In this paper we consider the problem of slicing M by short curves.

We start with the following isoperimetric problem: when is it possible to subdivide M into two regions of large area by a short simple closed curve?

Papasoglu [P] used Besicovitch inequality to show that there exists a simple closed curve of length $\leq 2\sqrt{3}|M| + \epsilon$ subdividing M into two regions of area $\geq \frac{1}{4}|M|$. A similar result was independently proved by Balacheff and Sabourau [BS] using a variation of Gromov’s filling argument.

On the other hand, consider the 3-legged starfish example on Figure 1.

Figure 1. Example of a sphere that cannot be subdivided into two equal halves by a short curve
For any $r > \frac{1}{3}$, if the tentacles are sufficiently thin and long, the length of the shortest simple closed curve subdividing M into two regions of area $\geq r|M|$ can be arbitrarily large.

Our first result shows that the starfish example on Figure 1 is the worst thing that can happen.

Theorem 1. There exists a simple closed curve γ of length $\leq 26\sqrt{|M|}$ subdividing M into two subdiscs of area $\geq \frac{1}{3}|M|$.

Theorem 1 follows from the following result.

Theorem 2. There exists a map f from M into a trivalent tree T, such that fibers of f have length $\leq 26\sqrt{|M|}$ and controlled topology: preimage of an interior point is a simple closed curve, preimage of a terminal vertex is a point and preimage of a vertex of degree 3 is homeomorphic to the greek letter θ.

Theorem 2 follows from a more general Theorem 10 in Section 2 for spheres with $k \geq 0$ holes. Using different methods Guth [G] proved existence of a map from M into a trivalent tree with lengths of fibers bounded in terms of hypersphericity of M. It follows from Theorem 0.3 in [G] that there exists such a map with fibers of length $\leq 34\sqrt{|M|}$.

If instead of a simple closed curve we allow subdivison by 1-cycles, we show that M can be subdivided into two regions of arbitrary prescribed ratio of areas by a 1-cycle of length $\leq 52\sqrt{|M|}$. In fact, we prove the following

Theorem 3. There exists a Morse function $f : M \to \mathbb{R}$ with fibers of length $\leq 52\sqrt{|M|}$.

This extends the result of Balacheff and Sabourau [BS] that there exists a sweep-out of M by 1–cycles of length $\leq 10^8\sqrt{|M|}$.

Alvarez Paiva, Balacheff and Tzanev [ABT] show that existence of a Morse function on a Riemannian 2-sphere with bounded fibers yields a length-area inequality for the shortest periodic geodesic on a Finsler 2-sphere (for both reversible and non-reversible metrics). Note that arguments used by Croke [C] to prove the length-area bound for the shortest closed geodesic on a Riemannian 2-sphere (see also [R] for the best known constant) can not be directly generalized to the Finsler case because co-area inequality fails for non-reversible Finsler metrics.

Hence, Theorem 3 yields a better constant for Theorem VI in [ABT]. We phrase the result in the language of optical hypersurfaces as it is done there.

Theorem 4. Every optical hypersurface $\Sigma \subset T^*S^2$ bounding a volume V carries a closed characteristic whose action is less than $160\sqrt{V}$.
The reason for constants 26 and 52 in our theorems is the following. We obtain the desired slicing of the sphere by repeatedly using the result of Papasoglu to subdivide the sphere into smaller regions by a curve of length at most $2\sqrt{3}$ times the square root of the area of the region. At each step the area of the region reduces at least by a factor of $\frac{3}{4}$. We then assemble these subdivide curves into one foliation with lengths bounded by the geometric progression

$$\sum_{i=0}^{\infty} 2\sqrt{3}(\frac{3}{4})^{i/2} \sqrt{|M|} = 4\sqrt{3}(2 + 3\sqrt{3}) \sqrt{|M|} \leq 26 \sqrt{|M|}$$

In the proof of Theorem 3 some subdividing curves are used twice so an additional factor of 2 appears.

After the first subdivision happens our regions are no longer spheres, but rather spheres with a finite number of holes. It may not be possible to find a short simple closed curve subdividing it into two parts of area $\leq \frac{3}{4}$ of its area. Instead we may have to use a collection of arcs with endpoints on the boundary subdividing the region into many pieces, each of small area. The issue is then how to assemble all of these subdividing curves into one foliation.

The main technical result of this paper (proved in the next section, see Lemma 7) is that we can always choose these subdividing arcs in such a way that they belong to a single connected component of the boundary of a certain subregion A_1 with area of A_1 between $\frac{1}{4}$ and $\frac{3}{4}$ of the area of the region. This result make assembling curves into one foliation a straightforward procedure.

Acknowledgements. The author would like to thank Juan Carlos Alvarez Paiva, Florent Balacheff, Gregory Chambers, Alexander Nabutovsky and Regina Rotman for valuable discussions about this paper.

The author gratefully acknowledges the support by Natural Sciences and Engineering Research Council (NSERC) CGS graduate scholarship, and by Ontario Graduate Scholarship.

2. Subdivision by short curves

Let M be a Riemannian 2-sphere. For $0 < r \leq \frac{1}{2}$ let $S_r(M)$ denote the set of simple closed curves on M that divide it into subdiscs of area $\geq r|M|$. Define $c(M, r) = \inf_{\gamma \in S_r(M)} |\gamma|$ and $c(r) = \sup c(M, r)$, where the supremum is taken over all metrics on S^2 of area 1.

By definition $c(r)$ is increasing and by Proposition 2 below it is lower semicontinuous. For any $r > \frac{1}{3}$ it follows from the example in the introduction (see Figure 1) that $c(r) = \infty$. For $r = \frac{1}{4}$ we have the following result of Papasoglu.

Theorem 5. (Papasoglu) $c(r) \leq 2\sqrt{3}$
We will need to generalize Theorem 5 to spheres with finitely many holes and allow a larger class of subdividing curves than just simple closed curves. When the surface has boundary we will allow the subdividing curve γ to consist of several arcs with endpoints on the boundary. In this case we will define a distinguished connected component A_1 of $M \setminus \gamma$ and require that γ is contained in a connected component of ∂A_1. This is a technical condition that will make it easier to repeatedly cut the surface into smaller pieces and concatenate the subdividing curves to obtain a slicing of M.

Let M_k be a complete Riemannian 2-surface with boundary homeomorphic to a sphere with k holes. Let γ be a simple closed curve in the interior of M_k or a union of finitely many arcs $\gamma = \bigcup \gamma_i$, where γ_i are arcs with endpoints on ∂M that do not pairwise intersect and have no self-intersections. Let $\{A_i\}$ be the set of connected components of $M \setminus \gamma$. Let $S_{M_k}(r)$ denote the set of all such γ on M_k that in addition satisfy

1. $|A_i| \leq (1 - r)|M|$
2. $|A_1| \geq r|M|$
3. γ is contained in a connected component of ∂A_1

Define $c(M_k, r) = \inf_{\gamma \in S_r(M_k)} |\gamma|$ and $c_k(r) = \sup c(M_k, r)$, where the supremum is taken over all metrics on a sphere with k holes that have area 1.

We have the following useful fact.

Proposition 6. $c_k(r)$ and $c(r)$ are lower semi-continuous.

Proof. We prove the result for $c_k(r)$ and for $c(r)$ it will follow as a special case from the argument below.

Let $\{r_n\}$ be an increasing sequence converging to r for some $0 < r \leq \frac{1}{3}$. Fix $\epsilon > 0$. Let M_k be a complete Riemannian surface of area 1 diffeomorphic to a sphere with k holes. We would like to show that for some r_n there exists $\gamma \in S_r(M_k)$ with $|\gamma| \leq c_k(r_n) + \epsilon$.

We can find $\delta > 0$ small enough so that it satisfies the following requirements:

1. The area of the δ-tubular neighbourhood of ∂M satisfies $|N_\delta(\partial M_k)| < \frac{\epsilon}{100}$.
2. Any ball $B_\delta(x)$ around $x \in N_\delta(\partial M_k)$ is bilipschitz diffeomorphic to the Euclidean disc of radius δ with Lipschitz constant between 0.9 and 1.1. In particular, $3\delta^2 < |B_\delta(x)| < 4\delta^2$.
3. $\delta < \frac{\epsilon}{100}$

For such a δ choose r_n so that $r - r_n < (1 - r)\delta^2$. Let $\gamma \in S_{M_k}(r_n)$ be the subdividing arcs of length $\leq c_k(r_n) + \epsilon/2$. In the following argument it will be more convenient to consider γ', the connected component of ∂A_1 that contains γ. If γ is a closed curve then $\gamma' = \gamma$. If γ is a union of arcs then γ' is a closed curve made out of arcs of γ and arcs of ∂M.
Let B_1 denote the element of $\{A_1, M \setminus A_1\}$ of smaller area and B_2 denote the element of larger area. We can assume that $|B_1| < r$ for otherwise we are done. Therefore, we have $r_n \leq |B_1| < r$ and $1 - r < |B_2| \leq 1 - r_n$.

Let M' denote $M \setminus N_\delta(\partial M_k)$. By our choice of δ we have that the area of a ball $|B_\delta(x)| \geq 3\delta^2$ for $x \in M'$ and $|M' \cap B_2| \geq 0.99|B_2|$. By Fubini’s theorem we obtain

\[
\int_{M'} |B_\delta(x) \cap B_2| = |B_2 \cap M'| \int_{M'} |B_\delta(x)| \geq 3/2(1 - r)|M'|\delta^2.
\]

Hence, for some $x \in M'$ we have $|B_\delta(x) \cap B_2| \geq 3/2(1 - r)|M'|$. Since $M' \cap B_1$ is non-empty we can always find such a ball so that $\gamma' \cap B_\delta(x)$ is non-empty.

We will now construct a new curve β that coincides with γ' outside of $B_{1,16\delta}(x)$ and divides M_k into regions B'_1 and B'_2 so that one of them is connected and each of them has area $\geq r$. Moreover, $|\beta| < |\gamma'| + \epsilon/2$. This implies the desired inequality $c(r, M_k) \leq c(r_n, M_k) + \epsilon$.

We construct β by cutting γ' at the points of intersection with $\partial B_\delta(x)$ and attaching arcs of $\partial B_\delta(x)$. We do it in such a way that $B_\delta(x)$ is now entirely contained in the smaller of two regions. This increases the area of the smaller region by at least $(1 - r)\delta^2$ and increases the length of the subdividing curve by at most $2|\partial B_\delta(x)| \leq 16\delta < \epsilon/2$.

The procedure is illustrated in Figure 2. Let $\{C_j\}$ be connected components of $B_1 \setminus B_\delta(x)$ and $\{c'_j\}$ denote connected components of $\partial C_j \cap \partial B_\delta(x)$. First we erase all arcs of γ' that are in $B_\delta(x)$. For each j we erase the arc c_j^1 from $\partial B_\delta(x)$. For each $c_j^1, i > 1$, we add a copy of c_j^1 and perturb it so that the new curve β does not intersect $B_\delta(x)$ in the neighbourhood of c_j^1. This does not increase the number of connected components of either region.

\[\square\]

Proposition 7. Suppose $r \leq \frac{1}{4}$, then $c_k(r) = c(r)$.

In the proof of Proposition 7 we will use the following simple topological fact.
Lemma 8. Let M_k be a submanifold with boundary of S^2 and let γ be a simple closed curve in S^2. Suppose the intersection of γ and ∂M is non-empty and transversal. If A denotes a connected component of $S^2 \setminus \gamma$ then there exists an arc $a \subset \gamma$ and an arc $b \subset \partial M$, such that $a \cup b$ bounds a disc $D_{a\cup b} \subset A$ and $D_{a\cup b} \cap M$ is connected.

Proof. The proof is illustrated on Figure 3. Let $p_1 \in \partial M \cap \gamma$. As the number of points of intersection of each connected component of ∂M with γ is even, there will be another point $q_1 \in \partial M \cap \gamma$ and an arc $b_1 \subset \partial M \cap A$ with endpoints p_1 and q_1. Let a_1 be an arc of γ that starts at p_1 with $a_1(0, \varepsilon) \subset M$ and ends at q_1.

The curve $a_1 \cup b_1$ is a simple closed curve enclosing a disc $D_{a_1 \cup b_1} \subset A$. that contains a non-empty subset of $M \cap A$. Assume that $\overline{A}_1 = D_{a_1 \cup b_1} \cap M$ has more than one connected component. Let A_1 be a component of \overline{A}_1 with $b_1 \subset \partial A_1$ and let A_2 be a different component. Define a point $p_2 \in a_1$ by

$$p_2 = a_1(\inf_{0 \leq t \leq 1} \{t|a_1(t) \in \partial A_2\})$$

It follows from the definition that $p_2 \in \partial M$. We can find a point $q_2 \in \gamma \cap \partial M$ and an arc $b_2 \subset \partial M \cap A$ from p_2 to q_2.

The interior of $\gamma \setminus a$ is contained in the interior of $S^2 \setminus A$. It follows that $q_2 \in a_1$. Denote the arc of a_1 between p_2 and q_2 by a_2. We have that $a_2 \cup b_2$ separates S^2 into a disc $D_{a_2 \cup b_2}$ that contains A_2 and its complement that contains A_1. Set $\overline{A}_2 = D_{a_2 \cup b_2} \cap A$. It is non-empty and has fewer connected components than \overline{A}_1. We iterate this procedure until we are left with just one connected component.

\square
We now prove Proposition 7.

The direction \(c(r) \leq c_k(r) \) is simple. Given a Riemannian 2-sphere we can make \(k \) holes in it of small area and small boundary length. Here we did not use that \(r \leq \frac{1}{4} \).

To prove the other direction we proceed as follows. Let \(\epsilon \) be a small positive constant. Given a sphere with \(k \) holes \(M_k \) of area 1 we attach \(k \) discs of total area \(\epsilon \) to the boundary of \(M_k \). We obtain a Riemannian 2-sphere \(M \).

Let \(\gamma_1 \) be a simple closed curve of length \(\leq c_r(M) + \epsilon \) subdiving \(M \) into two subdiscs \(A \) and \(B \) of area between \(r(1+\epsilon) \) and \((1-r)(1+\epsilon) \). Suppose \(A \) is a subdisc of area \(\geq \frac{1}{2}(1+\epsilon) \). If \(\gamma_1 \) is disjoint from \(\partial M_k \) we conclude that \(c(M_k,\frac{r}{1+\epsilon}) \leq c_r(M)+\epsilon \).

Suppose \(\gamma_1 \) intersects \(\partial M_k \). By Lemma 8 there exists an arc \(a_1 \) of \(\gamma_1 \) and an arc \(b_1 \) of \(\partial M_k \), such that \(A_1 = D_{a_1 \cup b_1} \cap M_k \subset A \) is connected.

We consider two possibilities. First, suppose \(|A_1| \geq r(1+\epsilon) \). Let \(\gamma_2 \) be the intersection of \(a_1 \) with the interior of \(M_k \). \(A_1 \) is a connected component of \(M_k \setminus \gamma_2 \) of area between \(r-\epsilon \) and \(1-r+\epsilon \). The rest of connected components of \(M_k \setminus \gamma_2 \) have area less than \(1-r+\epsilon \). So \(c(M_k,r-\epsilon) \leq c_r(M)+\epsilon \).

Alternatively, suppose \(|A_1| < r(1+\epsilon) \). In this case we can define a new curve \(\gamma_2 \), such that the number of connected components of \(M_k \setminus \gamma_2 \) is smaller than the number of connected components of \(M_k \setminus \gamma_1 \). We do this by replacing the arc \(a_1 \) of \(\gamma_1 \) by \(b_1 \subset \partial M_k \). Note that we can slightly perturb the part of the new curve that coincides with \(b_1 \) so that it is entirely in \(M \setminus M_k \), in particular, the intersection of \(\gamma_2 \) with \(\partial M_k \) is transversal and the length of the intersection of \(\gamma_2 \) with the interior of \(M_k \) is smaller than that of \(\gamma_1 \). As a result we transferred the area of \(A_1 \) from \(A \) to \(B \). Since \(|A_1| < r(1+\epsilon) \), \(r \leq \frac{1}{4} \) and \(|A| \geq \frac{1+\epsilon}{2} \) we obtain that the area of each of the two discs \(M \setminus \gamma_2 \) is at least \(r(1+\epsilon) \). In this way we can continue reducing the number of connected components of \(M_k \setminus \gamma_i \) until one of the subdiscs of \(M \setminus \gamma_i \) contains only one connected component of \(M_k \) or until we encounter the first possibility above.

By Proposition 6 we conclude that \(c_k(r) \leq c(r) \).

3. \(T \)-maps

Definition 9. A map \(f \) from \(M_k \) to a trivalent tree \(T \) is called a \(T \)-map if the topology of fibers of \(f \) is controlled in the following way: the preimage of any point in an edge of \(T \) is a circle, there exist \(k \) terminal vertices \(x_k \in T \), such that \(f^{-1}(x_k) \) is a connected component of \(\partial M_k \), the preimage of any other terminal point of \(T \) is a point, and the preimage of a trivalent vertex of \(T \) is homeomorphic to the greek letter \(\theta \).

Theorem 10. For \(r \in (0,\frac{1}{4}] \) and any \(\epsilon > 0 \) there exists a \(T \)-map \(f \) from \(M_n \), \(n \geq 0 \), so that each fiber of the map has length less than \(\frac{c(r)}{1-\sqrt{1-r}} + |\partial M_n| + \epsilon \).

Theorem 2 follows by taking \(r = \frac{1}{4} \) and applying Theorem 5.
In the proof we will repeatedly use the following simple fact, so it is convenient to state it as a separate lemma.

Lemma 11. Let A_1 and A_2 be two closed smooth submanifolds with boundary of M, such that $\alpha = A_1 \cap A_2$ is a connected arc. Let c_i denote the connected component of ∂A_i that contains α. Suppose $|c_1 \cup c_2| < L$ and that each A_i admits a T–map with fibers of length $< L$, then $A_1 \cup A_2$ admits a T–map with fibers of length $\leq L$.

Proof. From the assumption that A_i admits a T–map it follows that there exists an embedded cylinder $C_i \subset A_i$ and a map $f_i : C_i \to [0, 1]$ with fiber $f_i^{-1}(0) = c_i$ and the length of all fibers $< L$. The boundary $\partial C_i = c_i \cup c'_i$ with c'_i contained in the interior of A_i.

Let a_1 and a_2 be the endpoints of α. For a sufficiently small $\delta > 0$ we perform a surgery on the the closed curves in the foliation $\{f_i^{-1}(t)|0 \leq t \leq \delta\}$. The surgery happens in the δ–neighbourhood of a_i and is depicted on Figure 4.

As a result of the surgery we obtain three families of curves. The “outer” family converging to $c_1 \cup c_2$, and two “inner” families each converging to c'_1 or c'_2. These three families are separated by a θ graph (drawn in red on Figure 4). This surgery defines the desired T–map.

\[\square \]

We will need first a version Theorem 10 for very small balls.

Lemma 12. For any $\epsilon > 0$ there exists $l > 0$, such that for every disc $D \subset M$ with $|\partial D| \leq l$ there exists a diffeomorphism f from D to the standard closed disc $D_{st} =$

Figure 4. Surgery in the neighbourhood of a_i
Figure 5. Tree T in D'

$\{x^2 + y^2 \leq 1\}$ so that the preimage of each concentric circle $f^{-1}(\{x^2 + y^2 = \text{const}\})$, has length $\leq (1 + \epsilon)|\partial D|$.

Proof. For $\delta > 0$ sufficiently small every ball $B \subset M$ of radius δ is $(1 + \epsilon)$ bilipschitz diffeomorphism to a disc in the closed upper half-plane \mathbb{R}^2_+. Let D' denote the image of D under such a diffeomorphism. After a small perturbation we may assume that the projection p onto y coordinate of $\partial D'$ is a Morse function.

Define a 1-dimensional simplicial complex $T \subset D'$ as follows. Let a be a regular value of the projection function $p|_{\partial D'}$ restricted to the boundary of D'. $p^{-1}(a)$ is a finite union of disjoint closed intervals $\{v_i\}$. We set $T \cap p^{-1}(a)$ to be the midpoints of $v_i's$. If a and b are two consecutive critical values of p, it follows that $T \cap p^{-1}(a,b)$ is a collection of disjoint simple arcs as on Figure 5.

At a critical point $\partial D'$ locally looks like the graph of a function $f(x) = \pm x^2$. We connect the endpoints of the intervals of T by a horizontal arc tangent to the critical point.

Note that D' retracts onto T, so in particular T must be connected and simply connected, hence a tree. We contract D along the edges of T in the obvious way. As a result we obtain a contraction of ∂D inside D to a point through curves of length $\leq (1 + \epsilon)|\partial D|$. After a small perturbation we can assume that this homotopy realizes the desired diffeomorphism. For details we refer the reader to [CR], where it is shown that if there exists a homotopy of the boundary of D to a point through curves of length $< L$, then there exists a diffeomorphism from D to D_{st} so that preimages of concentric circles have length $< L$.

Lemma 13. For any $\epsilon > 0$ there exists $A > 0$, such that for every disc $D \subset M$ with $|D| \leq A$ there exists a T–map f from D with fibers of length less than $|\partial D| + \epsilon$.

Proof. The proof is similar to that of Lemma 2.2 in [LNR].
Choose $A < \min\{\epsilon, \frac{d}{6}\}$, where l is as in Lemma 12. The proof is by induction on $n = \lceil \frac{|\partial D|}{\sqrt{|A|}} \rceil$. For $n \leq 8$ the result follows by Lemma 12. Assume the Lemma to be true for all subdiscs with $\lceil \frac{|\partial D|}{l} \rceil < n$ and consider the case when this quantity equals $n \geq 8$.

Subdivide ∂D into 4 arcs of equal length. By Besicovitch Lemma we can find an arc α of length $\leq \sqrt{|A|}$ connecting two opposite arcs. α subdivides D into two subdiscs D_1 and D_2 of area $\leq A$ and boundary length $\leq \frac{3}{4}|\partial D| + \sqrt{|A|} \leq (n-1)\sqrt{|A|}$. Hence, by inductive assumption D_1 and D_2 admit T–maps with fibers of length $\leq |\partial D|$. By inductive assumption each disc admits a T–map with fibers of length $\leq |\partial D| + \epsilon$. We also have $|\partial D_1 \cup \partial D_2| \leq |\partial D| + \epsilon$ so the result follows by Lemma 11.

We need to generalize this result about small discs to other small sumbmanifolds of M_n.

Lemma 14. For any $\epsilon > 0$ there exists $A > 0$, such that for every submanifold with boundary $M_k \subset M_n$, with $|M_k| \leq A$ there exists a T–map f from M_k with fibers of length $\leq |\partial M_k| + 4(k-1)\sqrt{A} + \epsilon$.

Proof. Let M_k be a closed submanifold with boundary of M_n and let c be a connected component of ∂M_k. If $\text{dist}(c, \partial M_k \setminus c) = d$ then there exists an open ball $B(d/2) \subset M_k$ of radius $d/2$ whose interior does not intersect the boundary of M_k (and in particular, it does not intersect the boundary of M_n). As $d \to 0$ the area of $B(d/2)$ approaches the area of a Euclidean disc of the same diameter. Since M_n is compact this happens uniformly for all balls of radius $d/2$ disjoint from the boundary. For d sufficiently small we may conclude that $|M_k| \geq 3(d/2)^2$. Hence, for a sufficiently small A, if $|M_k| \leq A$ then the distance $\text{dist}(c, \partial M_k \setminus c) \leq \frac{2d}{3}\sqrt{A}$. We attach $k - 1$ arcs $\{\gamma_i\}$ to the boundary of ∂M_k of total length less than $2(k-1)\sqrt{A}$ and so that $\partial M_k \cup \bigcup \gamma_i$ is connected and its complement in M_k is homeomorphic to a disc. Denote this disc by D.

Consider the normal δ–neighbourhood N_{δ} of ∂D in M_k (see Figure 6) for some small δ. By Lemma 13 the complement of N_{δ} in M_k admits a T map with fibers of length $\leq |\partial M_k| + 4(k-1)\sqrt{A} + \epsilon$. Let α be a short closed curve in N_{δ} which separates one connected component of ∂M_k from other connected components as on Figure 6 α separates N_{δ} into two regions. Let B denote the region that contains only one connected component of ∂M_k. By Lemma 11 we can extend the T–map to $D \cup B$. By chopping off connected components of ∂M_k and applying Lemma 11 repeatedly we obtain the desired T–map.

□
The proof of Theorem 10 proceeds inductively by cutting M into smaller pieces until their size is small enough so that Lemma 14 can be applied. We assemble T–maps on these smaller regions to obtain one map from M with the desired bound on lengths of fibers.

Fix $\varepsilon > 0$ and let A be as in Lemma 14. Let $N = \lceil \log_{4/3}(\frac{|M|}{A}) \rceil$. We claim that for every $M_k \subset M_n$ with $(\frac{3}{4})^{n+1}|M_n| < |M_k| \leq (\frac{3}{4})^n|M_n|$ there exists a T–map with fibers of length

\begin{equation}
\leq |\partial M_k| + 4(N - n + k)\sqrt{A} + \sum_{i=n}^{N-1} c(r)(\frac{3}{4})^{i/2}\sqrt{|M_k|} + \varepsilon
\end{equation}

When $n = N$ the inequality (1) is true by Lemma 14. We assume it to be true for $n + 1 \leq N$ and prove it for n.

By Proposition 7 there exists $\gamma \in S(M_k, r)$ of length $\leq c(r) + \varepsilon'$. We have two possibilities.

Case 1. γ is a simple closed curve.

In this case γ separates M_k into two regions N_1 and N_2 of area $|N_i| \leq (\frac{3}{4})^{n+1}|M|$. The number of connected components of ∂N_i is at most $k + 1$.

By inductive assumption N_1 and N_2 admit T–maps into trees T_1 and T_2 respectively. We construct T by identifying the terminal vertex $f_1(\gamma)$ of T_1 with the terminal vertex $f_2(\gamma)$ of T_2. T–map f is defined by setting it equal to f_i when restricted to N_i. A simple calculation shows that lengths of fibers of f satisfy the desired bound.

Case 2. γ is a collection of arcs with endpoints on ∂M_k.

Let \{ $S_1, ..., S_j$ \} be connected components of ∂M_k that intersect arcs of γ. For a sufficiently small δ the normal neighbourhood $N_\delta(S_i)$ is foliated by closed curves of
length very close to $|S_i|$, which are transverse to the arcs of γ. In particular, each $N_\delta(S_i)$ admits a $T-$map with fibers of length $\leq |S_i| + \epsilon'$. Let B' denote $A_1 \cup N_\delta(S_i)$ and M_k' denote $M_k \setminus N_\delta(S_i)$. (See Figure 7)

Let C be the connected component of $\partial B'$ that contains $\gamma \cap M_k'$. We say that an arc α of γ is a horseshoe if α is in M_k' and the endpoints of α lie on the the same connected component of $\partial M_k'$. We will use the following simple observation.

Lemma 15. If γ contains no horseshoes then there exists a connected component S of $\partial M_k'$, such that $S \cap C$ is connected.

Proof. Let S be a connected component of $\partial M_k'$ and suppose $S \cap C$ contains more than one interval. Let S' be an interval of $S \setminus C$ and let a and b denote the endpoints of S'. $C \setminus a \cup b$ consists of two arcs, call them C_1 and C_2. Let $S_1 \neq S$ be a connected component of $\partial M_k'$ that intersects C_1. We claim that C_2 does not intersect S_1. For suppose it does, consider then a subarc C_3' of C_1 from a until the fist point of intersection with S_1 and denote this point by a_1. Similarly denote by C_2' the subarc of C_2 from a until the fist point of intersection with S_1 and call it a_2. Let S'_1 be an arc of S_1 from a_1 to a_2, then $\beta = C_1' \cup C_2' \cup S'_1$ is a closed curve separating M_k' into two connected components. Moreover, the point b and points of $(C_1' \cup C_2') \cap S$ belong to different connected components of $M_k' \setminus \beta$. This a contradiction since B' is connected.

Suppose the intersection $C \cap S_1$ is not connected. We can then find a subarc $C_3 \subset C_1$ that intersects S_1 only at the endpoints. The number of connected components of $\partial M_k'$ that intersect C_3 is strictly smaller than the number of components that intersect C_1. Proceeding this way we can find an arc of C that has endpoints on
S_j and its interior intersects only one connected component S_{j+1} of $\partial M'_k$. It follows that $S_{j+1} \cap C$ is connected.

We can now construct the desired T–map. By inductive assumption there exists a T–map on B' with fibers $\leq |\partial B'| + 4(N-n-1+k')\sqrt{A} + \sum_{i=n+1}^{N-1} c(r)(3/4)^{i/2} \sqrt{|M|} + e'$. Note that $|\partial B'| \leq |\partial M_k| + c(r)\sqrt{|M_k|} + e'$ and the number of connected components k' of $\partial B'$ satisfies $k' \leq k$.

Suppose first that $\alpha \subset \partial B'$ is a horseshoe. It separates M'_k into two connected components. Let B_2 denote the connected component that does not contain B'. Since $|B_2| \leq (\frac{3}{4})^{n+1}|M|$, it admits a T–map that with the desired bound on length of fibers. By Lemma 11 we can extend the T–map to $B' \cup B_2$.

We continue extending the T–map until there are no horseshoes left. Suppose we have a T–map defined on $B \subset M'_k$. Let C be the connected component of ∂B that separates it from $M'_k \setminus B$. Let S be the boundary of $\partial N_\delta(S_k)$, such that $S \cap C$ is connected. By Lemma 11 we can extend the map to $B \cup N_\delta(S_k)$.

We continue extending the T–map until we cover M_k entirely.

To finish the proof of Theorem 10 recall that $N \sqrt{A} = \lfloor \log_{4/3}(\frac{|M|}{A}) \rfloor \sqrt{A} \to 0$ as $A \to 0$. Since A can be chosen arbitrarily small Theorem 10 follows from 11.

Now we can prove Theorem 1. Let M be a Riemannian 2-sphere and $f : M \to T$ a T–map with fibers of length $\leq 26\sqrt{|M|}$. If there are no trivalent vertices in T we can find a short closed curve that separates M into two halves of equal area.

For each trivalent vertex $v_k \in T$ let $\alpha^k_1 \cup \alpha^k_2 \cup \alpha^k_3 = \theta_k = f^{-1}(v_k)$. Denote the closed curve $\alpha^k_1 \cup \alpha^k_3$ by γ^k_{ij}. Assume that for every k, i, j $(i \neq j)$ γ^k_{ij} separates M into two discs, s.t. the area of the smaller disc is strictly smaller than $\frac{1}{3}|M|$. Let k, i, j be such that the area of the smaller disc is maximized among all such curves.

Let D_s denote the smaller and D_t denote the larger of the subdiscs of $M \setminus \gamma^k_{ij}$. Let e denote the edge of T adjacent to v_k, such that $f^{-1}(e) \subset D_t$. We observe that the other two edges adjacent to v_k are contained in $f(D_s)$, for otherwise it would follow that the area of the smaller disc is not maximal for γ^k_{ij}.

We conclude that for some $x \in e f^{-1}(x)$ subdivides M into two discs of area $\geq \frac{1}{3}|M|$ for otherwise it would again contradict our choice of γ^k_{ij}.

4. Morse function

In this section we prove the existence of a Morse function f from M to \mathbb{R} with short preimages.

Definition 16. Let M be a manifold with boundary. A function $f : M \to \mathbb{R}$ is called an m–function if it is Morse on the interior of M, constant on each boundary component and maps boundary components to distinct points disjoint from the critical values of f.
Theorem 17. For \(r \in (0, \frac{1}{4}] \) and any \(\epsilon > 0 \) there exists a \(T \)-map \(f \) from \(M_n \), \(n \geq 0 \), so that each fiber of the map has length less than \(\frac{2c(r)}{1-\sqrt{1-r}} + |\partial M_n| + \epsilon \).

Theorem 3 follows by taking \(r = \frac{1}{4} \) and applying Theorem 5. The proof of Theorem 17 proceeds along the same lines as the proof of Theorem 10. There are two main differences. The first difference is that we would like the function to be smooth (in particular, curves in the foliation \(f^{-1}(x) \) are not allowed to have corners) and have singularities of Morse type. This is accomplished by a simple surgery described in Lemma 18.

The second difference is that we would like to bound the length of the whole level set, not just of the individual connected components.

We will need one technical lemma similar to concatenation Lemma 11. Let \(\theta \subset M_n \) denote a union of three non-intersecting simple arcs \(\alpha_i \) with common endpoints. \(\theta \) subdivides \(M_n \) into three regions \(U_{12}, U_{23}, U_{13} \), choosing the indices so that \(\alpha_i \cup \alpha_j \subset \partial U_{ij} \). Let \(l_{ij} \) denote a curve obtained by pushing \(\alpha_i \cup \alpha_j \) inside \(U_{ij} \) by a small perturbation, so that it is contained in a small normal neighbourhood of \(\theta \), smooth and has length \(< |\alpha_i| + |\alpha_j| + \epsilon \). Let \(U(\theta) \) denote the neighbourhood of \(\theta \) bounded by curves \(l_{ij} \) (see Figure 8).

Lemma 18. \(U(\theta) \) admits an \(m \)-map \(f: U(\theta) \to [0,2] \) with \(f(l_{23}) = 0 \), \(f(l_{12}) = 1 \), \(f(l_{13}) = 2 \), and fibers satisfying the following inequalities:

1. For \(x \in [0, 0.5] \), \(|f^{-1}(x)| \leq |\alpha_2| + |\alpha_3| + \epsilon \)
2. For \(x \in (0.5, 1] \), \(|f^{-1}(x)| \leq 2|\alpha_1| + |\alpha_2| + |\alpha_3| + \epsilon \)
3. For \(x \in (1, 2] \), \(|f^{-1}(x)| \leq |\alpha_1| + |\alpha_3| + \epsilon \)

Finally, let \(n_{ij} \) denote an outward unit normal at some point on \(l_{ij} \), then \(df(n_{23}) < 0 \), \(df(n_{12}) > 0 \) and \(df(n_{13}) > 0 \).

Proof. Let \(a \) and \(b \) denote the endpoints of \(\alpha_i \). Since \(M \) is orientable, the normal tubular neighbourhood of \(\alpha_i \cup \alpha_j \) is homeomorphic to the cylinder. Let \(l_{ij} \) be the
boundary component of the tubular neighbourhood that does not intersect α_k, ($k \neq i, j$). After a small perturbation in the neighbourhood of a and b we can assume that l_{ij} is smooth and there is a diffeomorphism f_{ij} from $(0, 1] \times S^1$ onto the region between $\alpha_i \cup \alpha_j$ and l_{ij} with $|f_{ij}(t \times S^1)| \leq |\alpha_i \cup \alpha_j| + \epsilon$.

Let c be the midpoint of α_1. We perform a straightforward surgery to the curves $\{f_{ij}(t \times S^1)\}$ depicted on Figure 9. In the neighbourhood of c we can choose a coordinate chart so that curves in the new foliation are given by $f(x, y) = 0.5 - x^2 + y^2$.

Now we prove the analogue of Lemmas 13 and 14 for $m-$functions.

Lemma 19. For any $\epsilon > 0$ there exists $A > 0$, such that for every disc $D \subset M$ with $|D| \leq A$ there exists an $m-$map f from D with fibers of length less than $|\partial D| + \epsilon$.

Proof. As in the proof of Lemma 13, we proceed by induction on $n = \left\lceil \frac{|\partial D|}{\sqrt{|A|}} \right\rceil$. However, the inductive assumption is now different. We would like to show that for every $\epsilon > 0$ a subdisc $D \subset M$ admits an $m-$map with fibers of length

$$\leq |\partial D| + (4 + 2\sqrt{2})\sqrt{|D|} + \epsilon'$$

Assume the Lemma to be true for all subdiscs with $\left\lceil \frac{|\partial D|}{\sqrt{|A|}} \right\rceil < n$.

We take the tubular neighbourhood of D and foliate it by closed curves of length $\leq |\partial D| + \epsilon'$. The innermost curve γ we subdivide into 4 arcs of equal length. By Besciovitch Lemma we can find an arc α of length $\leq \sqrt{|D|}$ connecting two opposite subarcs of γ.
Let N be the neighbourhood of $\partial D \cup \alpha$ as in Lemma 18. Note that ∂N has 3 connected components: one of them is ∂D and denote the other two by C_1 and C_2, bounding subdiscs D_1 and D_2 respectively. Assume that D_1 is a disc of smaller area, hence $|D_1| < \frac{1}{2}|D|$.

N admits an $m-$map $f_0 : N \to [0,2]$ with fibers of length $|f^{-1}(x)| \leq |\partial D| + 2\sqrt{|D|} + \epsilon'$ for $x \in [0,1]$ and $|f^{-1}(x)| \leq |\partial D_2| + \epsilon'$ for $x \in (1,2]$.

Since $|\partial D_1| \leq (n - 1)\sqrt{A}$ by inductive assumption D_1 admits an $m-$map f_1 with fibers of length $< |\partial D_1| + \frac{4+2\sqrt{2}}{\sqrt{A}} \sqrt{|D|} + \epsilon'$. After appropriately scaling f_1 on a small neighborhood of C_1 and multiplying by -1 if necessary we can assume that $f_1(C)$ is the minimum point of f_1. Furthermore, we scale and shift f_1 so that $f_1(C_1) = 1$ and $f_1(D_1)$ is contained between 1 and 1.5 We now extend the $m-$map to $N \cup D_1$ with fibers of length

$$\leq |\partial D_1| + |\partial D_2| + \frac{4+2\sqrt{2}}{\sqrt{A}} \sqrt{|D|} + \epsilon'$$

$$\leq |\partial D| + (4 + 2\sqrt{2}) \sqrt{|D|} + \epsilon'$$

By inductive assumption D_2 admits an $m-$function f_2 with fibers of length $\leq |\partial D| + (4 + 2\sqrt{2}) \sqrt{|D|} + \epsilon'$. We modify f_2 so that it takes on its minimum at $f_2(C_2) = 2$. We can now extend f to the whole of D.

Setting $A < \epsilon^2/100$ and $\epsilon' < \epsilon/10$ we obtain the desired result.

□

Lemma 20. For any $\epsilon > 0$ there exists $A > 0$, such that for every submanifold with boundary $M_k \subset M_n$, with $|M_k| \leq A$ there exists an $m-$map f from M_k with fibers of length $\leq 2|\partial M_k| + 4(k-1)\sqrt{A} + \epsilon$.

Proof. As in the proof of Lemma 14 we connect all components of ∂M_k with $(k - 1)$ closed curves γ_i of total length $\leq 2(k - 1)\sqrt{|M_k|}$ and denote the union of γ_is and ∂M_k by C. Denote the normal $\delta-$neighbourhood of C in M_k by N. After a small perturbation we can assume that the boundary of N is smooth.

The complement D of N in M_k is a disc and so by Lemma 19 it admits an $m-$map with fibers of length $\leq |\partial M_k| + 4(k-1)\sqrt{A} + \epsilon$. Next we proceed as in the proof of Lemma 14 extending the domain of the $m-$function over connected components of ∂M_k one by one.

Let $\{\beta_i\}_{i=1}^k$ be a collection of nested simple closed curves in N and N_i denote the subset of N between β_i and β_{i+1}. We require that $|\beta_i| \leq |\partial M_k| + 4(k-1)\sqrt{A} + \epsilon$, $\beta_1 = \partial D$ and for each i, N_i contains exactly one connected component of ∂M_k. We can then apply Lemma 18 to extend the $m-$function from D to N_1 and inductively to the whole of M_k.

By appropriately scaling and shifting functions obtained at each step we ensure that the desired bound on the lengths of fibers is maintained.

Now we are ready to prove Theorem \[17\]. The proof is similar to that of Theorem \[10\]. Again we proceed by induction on \(\lceil \log_{4/3}(\frac{|M_n|}{A}) \rceil\).

Fix \(\epsilon > 0\) and let \(A\) be as in Lemma \[20\]. Let \(N = \lceil \log_{4/3}(\frac{|M_n|}{A}) \rceil\). We claim that for every \(M_k \subset M_n\) with \((\frac{3}{4})^n|M_n| < |M_k| \leq (\frac{3}{4})^n|M_n|\) there exists an \(m\)-map with fibers of length

\[
\leq |\partial M_k| + 4(N - n + k)\sqrt{A} + \sum_{i=n}^{N-1} 2c(r)(\frac{3}{4})^{i/2}\sqrt{|M_n|}
\]

Choose \(\gamma \in S(M_k, r)\) of length \(\leq c(r) + \epsilon'\).

Case 1. \(\gamma\) is a simple closed curve.

Let \(N_1\) and \(N_2\) denote the two components of \(M_n \setminus \gamma\). In this case there is an \(m\)-function \(f_1\) from \(N_1\) onto \([a, b]\) and an \(m\)-function \(f_2\) onto \([b, c]\). Hence, we obtain an \(m\)-function \(f : M_n \to [a, c]\) satisfying the same bound on the length of the fibers. Using the inductive assumption we calculate that this length bound is exactly what we want.

Case 2. \(\gamma\) is a collection of arcs with endpoints on the boundary of \(\partial M_n\).

As in the proof Theorem \[10\] we add a small collar around boundary components of \(M_n\) that intersect \(\gamma\). We apply the inductive assumption to \(B' \subset M_n\) and extend this map to regions separated from \(B'\) by \(\text{“horseshoes”}\). Then we extend the map to collars whose intersection with \(\partial B'\) is a connected arc. We iterate this procedure until we extended the map to all of \(M_n\). By appropriately scaling the \(m\)-functions obtained for each region we ensure the correct bound on the length of fibers.

References

[ABT] J. C. Alvarez Paiva, F. Balacheff, K. Tzanev, Isosystolic inequalities for optical hypersurfaces, preprint, math arXiv:1308.5522

[BS] F. Balacheff, S. Sabourau, Diastolic and isoperimetric inequalities on surfaces, Ann. Sci. Ecole Norm. Sup. 43 (2010) 579-605.

[CR] G. R. Chambers, R. Rotman, Contracting loops on a Riemannian 2-surface, preprint, math arXiv:1311.2995

[C] C. B. Croke, Area and the length of the shortest closed geodesic, J. Differential Geom. 27 (1988), no. 1, 121.

[G] L. Guth, Lipschitz maps from surfaces. Geom. Funct. Anal. 15 (2005), No 5, 10521099.

[LNR] Y. Liokumovich, A. Nabutovsky, R. Rotman, Contracting the boundary of a Riemannian 2-disc, preprint, math arXiv:1205.5474

[P] P. Papasoglu, Cheeger constants of surfaces and isoperimetric inequalities, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5139-5162.
[R] R. Rotman, The length of a shortest closed geodesic and the area of a 2-dimensional sphere, Proc. Amer. Math. Soc. 134 (2006), no. 10, 3041-3047