Nomogram to predict disease recurrence in patients with locally advanced rectal cancer undergoing rectal surgery after neoadjuvant therapy: retrospective cohort study

Jacques-Emmanuel Saadoun1*, Hélène Meillat1, Christophe Zemmour2, Serge Brunelle3, Alexandra Lapeyre4, Cécile de Chaisemartin1 and Bernard Lelong1

1Department of Digestive and Surgical Oncology, Institut Paoli-Calmettes, Marseille, France
2Department of Clinical Research and Investigation, Biostatistics and Methodology Unit, Paoli-Calmettes Institute, Marseille, France
3Department of Radiology, Institut Paoli-Calmettes, Marseille, France
4Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France

*Correspondence to: Jacques-Emmanuel Saadoun, Department of Digestive Surgical Oncology, Paoli-Calmettes Institute, 232 Boulevard Sainte Marguerite, Aix-Marseille University, 13009 Marseille, France (e-mail: jacques.saadoun@gmail.com)

Abstract

Introduction: Prognostic models can be used for predicting survival outcomes and guiding patient management. TNM staging alone is insufficient for predicting recurrence after chemoradiotherapy (CRT) and surgery for locally advanced rectal cancer. This study aimed to develop a nomogram to better predict cancer recurrence after CRT followed by total mesorectal excision (TME) and tailor postoperative management and follow-up.

Materials and Methods: Between 2002 and 2019, data were retrospectively collected on patients with rectal adenocarcinoma. Data on sex, age, carcinoembryonic antigen (CEA) level, tumour location, induction chemotherapy, adjuvant chemotherapy, tumour downsizing, perineural invasion, lymphovascular invasion, pathological stage, resection margins (R0 versus R1), and pelvic septic complications were analysed. The variables significantly associated with cancer recurrence were used to build a nomogram that was validated in both the training and validation cohorts. Model performance was evaluated by receiver operating characteristic curve and area under the curve (AUC) analyses.

Results: After applying exclusion criteria, 634 patients with rectal adenocarcinoma were included in this study. Eight factors (CEA level, adjuvant chemotherapy, tumour downsizing, perineural invasion, lymphovascular invasion, pathological stage, resection margins (R0 versus R1), and pelvic septic complications) were identified as nomogram variables. Our nomogram showed good performance with an AUC of 0.74 and 0.75 in the training and validation cohorts respectively.

Conclusion: Our nomogram is a simple tool for predicting cancer recurrence in patients with locally advanced rectal cancer after neoadjuvant CRT followed by TME. It provides an individual risk prediction of recurrence to tailor surveillance.

Introduction

Colorectal cancer ranks third in incidence and second in terms of cancer-related mortality worldwide. With the introduction of total mesorectal excision (TME) and neoadjuvant chemoradiotherapy (CRT), 5-year local recurrence (LR) rates have decreased from 25 per cent to 5–10 per cent. The primary cause of LR is the involvement of the circumferential resection margin (CRM). Other factors include anastomotic leakage (AL), abdominoperineal excision (APE), nodal positivity, advanced T category, lymphovascular invasion, perineural invasion, and poor differentiation; however, it is still difficult to predict LR, and its prognosis remains poor. The overall 5-year survival rate is 15 per cent, owing to difficulties in early diagnosis and surgical treatment. LR is most often diagnosed following patients experiencing worsening symptoms linked to advanced disease. Achieving R0 resection is the main independent prognostic factor, which can be challenging in this patient group.

Early detection of LR before symptom development increases the R0 resection rate and enhances prognosis which could be achieved by identifying high-risk patients earlier through enhanced surveillance.

With improvements in locoregional control, the leading cause of death in patients with locally advanced rectal cancer (LARC) is now distant metastasis (DM), raising the question of the importance of systemic therapy. Presently, adjuvant chemotherapy is recommended in node-positive (N+) patients after CRT and TME; however, its value remains debated as no benefit has been proven for disease-related outcomes in these patients, possibly because of low compliance in dedicated studies.

Recently, randomized clinical trials (RCTs) have reported significant improvement in distant metastases and survival rates in patients with LARC using a ‘total neoadjuvant therapy’ (TNT) approach, which consists of intensifying preoperative treatment with a combination of radiotherapy or chemoradiotherapy and systemic chemotherapy. This strategy has become the
standard treatment for LARC; however, the impact of postoperative chemotherapy remains unclear. Although systematically planned in the study protocol, compliance with postoperative chemotherapy is limited. Non-administration of this chemotherapy was linked to a medical decision in two-thirds of cases. This reflects current practices regarding the personalization of treatments according to the consensus of the multidisciplinary team and not only according to the TNM staging system, which does not consider certain radiological and pathological factors or the preoperative treatment response.

Given the importance of risk stratification and prognosis prediction, a stable and easily computable prediction model is needed for clinical applications to help clinicians make postoperative medical decisions as a step toward enhanced personalized treatment of rectal cancer. This study aimed to develop a nomogram that could accurately predict the probability of recurrence after CRT and TME for patients with LARC.

Methods

Patient population

Between January 2002 and June 2019, we evaluated all consecutive patients who underwent curative surgery for LARC after CRT at our department (Paoli-Calmettes Institute, Marseille, France). Exclusion criteria were as follows: the presence of concomitant cancer, previous pelvic irradiation, emergency surgery, local excision, or synchronous metastases.

Ethical statement

This study was conducted in accordance with the most recent version of the Declaration of Helsinki, and the study protocol was approved by the Institutional Ethics Committee of the Paoli-Calmettes Institute (IPC 2021-084).

Preoperative assessment

The pre- and post-therapeutic evaluations included a digital rectal examination, thoracoabdominal and pelvic CT, serum carcinoembryonic antigen (CEA) measurement, pelvic MRI, and endoscopic ultrasound.

Neoadjuvant therapy

In our department, preoperative CRT is indicated for patients with T3 and/or N+ adenocarcinomas of the lower and middle rectum, as well as for those with ultra-low T2 tumours. Our standard CRT protocol consists of a total dose of 50 Gy, with a daily dose of 2 Gy combined with capecitabine 800 mg/m² administered twice daily on each day of radiotherapy.

Since 2010, patients with a predicted threatened CRM (1 mm or less) on MRI received induction chemotherapy (FOLFIRINOX: leucovorin calcium, fluorouracil, irinotecan hydrochloride, and oxaliplatin, four cycles) before CRT.

Rectal surgery

Rectal surgery consisted of TME with a minimum 1 cm distal margin and was performed 8–10 weeks at the end of CRT. A transanal approach with standardized endoanal dissection was used for low rectal tumours. For lesions more than 3 cm from the anorectal junction, mechanical trans-sutural anastomosis was performed. A colonic J pouch anal or side-to-end anastomosis was preferred over a straight anastomosis, with a covering defunctioning loop ileostomy.

Extra-levator APE was performed in cases of levator or external anal sphincter involvement after CRT.

Fig. 1 Flow chart

CRT, chemoradiotherapy.
Histological analysis
The tumour stage was assessed using the eighth edition of the UICC/AJCC staging system. A negative margin was defined as clear circumferential and longitudinal margins (at least 1 mm).

Adjuvant therapy
The strategy was decided upon at a multidisciplinary team meeting. According to the reference, patients with positive lymph nodes (stage 3) were indicated for adjuvant chemotherapy (LV5FU2 or FOLFOX). Some patients with initial lymph node involvement and negative lymph nodes in the specimen also received postoperative chemotherapy.

Follow-up
Patients were followed up every 3 months for the first 2 years and every 6 months for the next 3 years through clinical examination and thoracoabdominal CT and evaluation of CEA levels. An annual follow-up was then proposed until the 10th year or until death.

Primary endpoint
Recurrence was defined as the presence of a radiologically and biopsy-proven tumour. LR was defined as a tumour within the pelvis (including the perineal wound) and the site of anastomosis, and DM was defined as the evidence of a tumour outside these areas.

Time to recurrence was defined by the interval between the surgery and the date of recurrence (local or metastatic).

Risk stratification
To improve the clinical impact of this study, we defined three levels of risk of recurrence. In the absence of a precise staging of the recurrence risk for patients with rectal cancer, we based the risk stratification by extrapolating from colonic cancer. As patients with stage 2 and 3 colonic cancer have an estimated 5-year recurrence risk of 30 per cent and 55 per cent respectively, we categorized patients into high-risk (estimated risk of 55 per cent or higher), intermediate (estimated risk between 30 per cent and 55 per cent) and low-risk groups (estimated risk of less than 30 per cent) based on nomogram scores.

Data collection
Data on patient and tumour characteristics, treatment details, and oncological outcomes were collected from a retrospective database.

Table 1 Clinical and surgical characteristics of locally advanced rectal cancer patients after chemoradiotherapy followed by surgery

Variable	All patients (n = 634)	No recurrence (n = 462)	Recurrence (n = 172)	P
Sex ratio (M:F)	406 (64:228 (36)	296 (64:1):166 (35.9)	110 (63.9):62 (36.1)	0.999
Age (years), median (range)	64 (24–91)	64 (24–91)	63 (33–88)	0.720
BMI (kg/m²), median (range)	24.6 (14.8–45.0)	24.5 (14.8–40.6)	24.7 (15.1–45.0)	0.570
Malnutrition				
Yes	101 (15.9)	75 (16)	26 (15)	
No	533 (84.1)	387 (84)	146 (85)	
Co-morbidities				
Cardiovascular history	82 (12.9)	64 (13.8)	18 (10.5)	0.260
Diabetes mellitus	71 (11.1)	55 (12)	16 (9.3)	0.360
Respiratory	59 (9.3)	47 (10)	12 (7)	0.220
ASA score				
1–2	551 (86.9)	403 (87.2)	148 (86.1)	0.690
3	83 (13.1)	59 (12.8)	24 (13.9)	
CEA level (mg/l)				
<5	460 (74.2)	360 (79.3)	100 (60.2)	<0.001
≥5	160 (25.8)	94 (20.7)	66 (39.8)	
Missing data	14	8	6	
Tumour location				
Low	380 (59.9)	267 (57.8)	113 (65.7)	0.067
Mid	254 (40.1)	195 (42.2)	59 (34.3)	
Distance from anal verge (mm), median (range)	50 (0–190)	55 (0–190)	50 (0–130)	0.004
cT stage				
1–2	42 (6.6)	37 (8)	5 (2.9)	0.004
3–4	592 (93.4)	425 (92)	167 (97.1)	
Neoadjuvant chemotherapy	71 (11.2)	51 (11)	20 (11.6)	0.830
Interval between CRT and surgery (weeks), median (range)	7 (1–46)	7 (1–25)	8 (1–46)	0.460
Surgical approach				
Open	95 (15)	61 (13.2)	34 (19.8)	0.198
Laparoscopy	385 (60.7)	287 (62.1)	98 (57)	
Robotic	48 (7.6)	37 (8)	11 (6.4)	
TaTME	106 (16.7)	77 (16.7)	29 (16.8)	
Surgical procedure				
LAR	508 (80.1)	387 (83.8)	121 (70.4)	0.003
APE	126 (19.9)	75 (16.2)	51 (29.6)	
Pelvic infectious complication				<0.001
No	494 (77.9)	385 (83.3)	109 (63.4)	
Yes	140 (22.1)	77 (16.7)	63 (36.6)	
90 days morbidity				0.012
Clavien 1–2	519 (81.9)	389 (84.2)	130 (75.6)	
Clavien 3–4	115 (18.1)	73 (15.8)	42 (24.4)	

Values are n (%) unless otherwise indicated. CRT, chemoradiotherapy; TaTME, transanal total mesorectal excision; AR, anterior resection; APE, abdominoperineal excision, LAR, low anterior resection.
Malnutrition was defined as patients with a low bodyweight (BMI of less than 18.5 kg/m² in patients aged under 70 years and less than 21 kg/m² in patients aged more than 70 years and/or unintentional weight loss of 5 per cent or higher in 1 month or 10 per cent or higher in 6 months).

Postoperative complications were analysed and classified using the Clavien–Dindo classification. Postoperative pelvic infectious complications (PICs) were defined as AL, purulent drainage from the pelvic drain or surgical site, and/or pelvic abscess on imaging.

The present study complies with STROBE guidelines (Fig. S1).

Statistical analysis
Statistical analyses were performed using SAS® software version 9.4 (SAS Institute, Cary, NC, USA) and R version 4.2.0, at a significance level of \(\alpha = 0.05 \). Categorical variables are expressed as numbers and percentages, whereas continuous variables are expressed as median (minimum–maximum). In this study, each patient was randomly assigned to the training and validation cohorts at a 2:1 ratio. Patient characteristics were compared using the Fisher’s exact, chi-squared (categorical variables), or Wilcoxon’s test (quantitative endpoints), depending on the training/validation cohort and sample size. The training cohort was used to identify prognostic factors for rectal cancer recurrence using univariable logistic models. Significant variables in the univariable analysis were then included as independent covariates in a multivariable logistic regression model. ORs, with their two-sided Wald’s confidence intervals and tests for significance, were provided. An associated nomogram was built, and the validation cohort was used to assess the performance of the model. Calibration plots and Pearson’s goodness-of-fit tests were used to demonstrate the reliability of the multivariable model in the training and validation cohorts. Diagnostic performances were evaluated both in the training and validation cohorts using receiver operating characteristic (ROC) curves and area under the curve (AUC) (with their bilateral confidence intervals). The maximum value of AUC was 1.0, indicating a perfect classifier, whereas 0.5 indicated a random chance to correctly discriminate recurrence with the model. To determine correlations, Pearson’s simple correlation coefficient was used.

Results
Clinicopathological characteristics
Among the 779 patients with rectal adenocarcinoma who underwent surgery after CRT, 145 were excluded based on the exclusion criteria or due to missing data (Fig. 1).

Table 2 Oncological characteristics of locally advanced rectal cancer patients after chemoradiotherapy followed by surgery

Variable	All patients (n = 634)	No recurrence (n = 462)	Recurrence (n = 172)	P
Tumour size (mm), median (range)	25 (0–170)	20 (0–120)	30 (0–170)	<0.001
Missing data	3	1	2	
Downsizing				
<50%	345 (54.4)	234 (50.7)	111 (64.5)	0.003
>50%	289 (45.6)	228 (49.3)	61 (35.5)	
CRM (mm), median (range)	6 (0–50)	8 (0–34)	4 (0–50)	<0.001
Missing data	35	32	3	
Distal margin (mm), median (range)	50 (0–190)	55 (0–190)	50 (0–130)	0.003
Differentiation				
Poor	34 (5.4)	19 (4.1)	15 (8.7)	0.014
Moderate	246 (38.8)	170 (36.8)	76 (44.2)	
Well	341 (53.8)	264 (57.1)	77 (44.8)	
Mucinous	13 (2)	9 (2)	4 (2.3)	
Perineural invasion				<0.001
No	550 (86.7)	418 (90.5)	132 (76.7)	
Yes	84 (13.3)	44 (9.5)	40 (23.3)	
Lymphovascular invasion				<0.001
No	543 (85.7)	416 (90)	127 (73.8)	
Yes	91 (14.3)	46 (10)	45 (26.2)	
Pathological T category				<0.001
0	95 (15)	86 (18.6)	9 (5.2)	
1	61 (9.6)	52 (11.3)	9 (5.2)	
2	185 (29.2)	147 (31.8)	38 (22.1)	
3	266 (41.9)	167 (36.1)	99 (57.6)	
4	27 (4.3)	10 (2.2)	17 (9.9)	
Pathological N category				<0.001
Negative	429 (67.7)	352 (76.2)	77 (44.8)	
Positive	205 (32.4)	110 (23.8)	95 (55.2)	
Stage				<0.001
0–I–II	429 (67.7)	352 (76.2)	77 (44.8)	
III	205 (32.3)	110 (23.8)	95 (55.2)	
Resection margin				<0.001
R0	567 (89.4)	428 (92.6)	139 (80.8)	
R1	67 (10.6)	34 (7.4)	33 (19.2)	
Adjuvant chemotherapy	224 (35.3)	125 (27.1)	99 (57.6)	<0.001
Follow-up (months), median (range)	70.4 (2.1–233)	75 (2.1–233)	57.1 (4.8–224)	<0.001
Loss of follow-up	78 (12)	56 (12)	22 (15)	0.822
Death				<0.001
CRC-related	106 (57)	1 (1)	105 (98)	
Non-CRC-related	80 (43)	78 (99)	2 (2)	

Values are n (%) unless otherwise indicated. CRM, circumferential resection margin; TNM, tumour node metastasis.
With a median [min-max] follow-up of 70.4 (range 2.1–233) months, 172 of 634 patients (27.1 per cent) developed recurrence, of whom 116 (18.3 per cent) had distant metastases, 21 (3.3 per cent) developed LR, and 35 (5.5 per cent) developed both local and distant recurrences. For these patients, the median time to recurrence was 16.5 (range 1–100) months. The demographic and clinicopathological characteristics of all studied patients are summarized in Tables 1 and 2. Adjuvant therapy modalities are described in Table S1.

Nomogram variable screening

After reviewing the literature, we selected the following 12 variables impacting the prognosis of patients undergoing rectal cancer surgery and those available in our database for analysis: age (more than 70 years), sex, CEA level (more than 5 mg/l), neoadjuvant chemotherapy, tumour location (low versus medium), tumour downsizing (less than 50 per cent), lymphovascular invasion, perineural invasion, resection margin, AJCC staging (stages 1–2 versus stage 3), postoperative PIC, and adjuvant therapy (Table 3). Significant variables identified in the univariable analysis were then included in the multivariable logistic regression model.

Nomogram construction and validation

All 634 patients were randomly assigned to the training cohort (423 patients) and a validation cohort (211 patients) in a 2:1 ratio. There were no significant differences in the clinicopathological characteristics between the two cohorts (Table S2). Univariable analysis showed that CEA levels more than 5 mg/l, postoperative PIC, tumour downsizing, lymphovascular invasion, perineural invasion, resection margin, AJCC staging, and adjuvant therapy were significant predictors of recurrence (Table 3).

These variables were used to build a nomogram that can predict the probability of disease recurrence. For each patient, a score of 450 points was obtained to evaluate the risk of cancer recurrence (Fig. 2). We did not develop a nomogram that predicts LR or DM separately because of the insufficient number of events; however, preliminary analysis showed similar risk factors, regardless of the type of recurrence (Table S3).

Validation of the model

With an AUC value of 0.74 (95 per cent c.i. 0.69 to 0.8), the model had a good discrimination capability in the training cohort. The AUC value of the nomogram for prediction was approximately 0.75 (95 per cent c.i. 0.67 to 0.83) in the validation cohort. These data showed that the nomogram was sufficiently predictive in the validation group. The ROC curves are shown in Fig. 3. Calibration plot for the prediction model in the training and validation cohorts both demonstrated satisfactory consistency (Fig. S2). The likelihood ratio test for the nested models on training data showed that the nomogram provided highly significant supplementary information compared with the univariable model with only TNM staging (LR 33.1; d.f. 7; Table 3 Univariable and multivariable analysis of risk factors of recurrence in training cohort.

Variables	Patients	Events	Univariate analysis	Multivariable analysis		
			OR (95% c.i.)	P	OR (95% c.i.)	P
Sex ratio (M:F)	145:266	41 (28.3):9 (25.9)	0.9 (0.6; 1.4)	0.609	–	–
Age (years)						
<70	285	78 (27.4)	0.9 (0.6; 1.5)	0.677	–	–
≥70	126	32 (25.4)				
CEA level (mg/l)						
<5	306	68 (22.2)	2.3 (1.5; 3.8)	<0.001	1.7 (1.1; 2.9)	0.035
≥5	105	42 (40)				
Tumour location						
Low	249	73 (29.3)	0.7 (0.5; 1.1)	0.147	–	–
Mid	162	37 (22.8)				
Neoadjuvant chemotherapy						
No	361	98 (27.2)	0.9 (0.4; 1.7)	0.638	–	–
Yes	50	12 (24)				
Adjuvant chemotherapy						
No	259	45 (17.4)	3.6 (2.3; 5.6)	<0.001	1.9 (1.1; 3.7)	0.039
Yes	152	65 (42.8)				
Downsizing (<50%)	215	67 (31.2)	0.6 (0.4; 0.9)	0.035	0.9 (0.6; 1.6)	0.881
>50%	196	43 (21.9)				
Perineural invasion						
No	350	79 (22.6)	3.5 (2.6; 2.3)	<0.001	1.8 (0.9; 3.6)	0.084
Yes	61	31 (50.8)				
Lymphovascular invasion						
No	355	82 (23.1)	3.3 (1.9; 5.9)	<0.001	1.4 (0.7; 2.9)	0.351
Yes	56	28 (50)				
Stage						
0–I–II	278	51 (18.4)	3.6 (2.3; 5.6)	<0.001	1.5 (0.8; 2.9)	0.219
III	133	59 (44.4)				
Resection margin						
R0	370	91 (24.6)	2.7 (1.4; 5.1)	0.003	1.7 (0.8; 3.5)	0.174
R1	41	19 (46.3)				
Pelvic infectious complication						
No	327	72 (22)	2.9 (1.8; 4.8)	<0.001	2.5 (1.5; 4.3)	<0.01
Yes	84	38 (45.2)				

Values are n (%) unless otherwise indicated. OR, odds ratio; c.i., confidence interval.
A comparison of AUC values reveals an improvement equal to 0.10 (95 per cent Wald IC, 0.05 to 0.14).

Correlation between the nomogram score and time of recurrence
From this nomogram, we calculated the corresponding score for each patient who developed recurrence and categorized patients into three groups according to the evaluation of the risk of recurrence: low risk, less than 30 per cent (score 0–134); intermediate risk, 30–55 per cent (score 135–249); high risk, more than 55 per cent (score 250 or higher) (Table 4).

A high nomogram score had a statistically significant negative correlation with the delay in recurrence ($r = -0.214; P = 0.003$). When the nomogram score increases by 10 units, time of recurrence decreases by a mean of 12.2 days.
Table 4 Median time to local or metastatic recurrence in the overall cohort (n = 634) according to nomogram score

Nomogram score	Low risk	Intermediate risk	High risk
Patients	434	122	78
Events	79 (18.2)	47 (58.5)	46 (58.9)
Local	8 (10.1)	17 (14.9)	6 (13.5)
Metastatic	55 (79.6)	32 (68.1)	29 (63.1)
Local + metastatic	16 (20.3)	8 (17)	11 (23.9)
Time to recurrence (months), median (range)	19.1	17.7 (1–99)	10.8 (0.7–93)

Values are n (%) unless otherwise indicated.

Discussion

Treatment strategies for LARC are becoming more complex and are evolving toward a personalized approach that goes beyond the TNM staging system, which is commonly used to predict disease-free and individual survival in patients with rectal cancer. Surgical and oncological treatment modalities are determined according to the characteristics of the patient, tumour, and imaging and therapeutic responses, which can vary greatly from one team to another. To address these new challenges, we constructed a nomogram based on eight factors to predict the recurrence risk in LARC following CRT and surgery to assist with medical decisions.

Several studies have attempted to develop a prediction score for recurrence following rectal cancer surgery, including both rectal and colonic surgeries, or for patients with and without neoadjuvant therapy. Van Gijn et al. developed a nomogram based on Dutch, Swedish, and Polish trials; however, half of the patients did not receive neoadjuvant radiotherapy. Yeo et al. developed a prediction model for recurrence based on radiological variables at diagnosis and did not consider any other criteria, including response to neoadjuvant therapy when administered, which significantly reduced the clinical significance of their results.

Only Valentini et al. developed nomograms to predict DM, LR, and overall survival in patients undergoing rectal cancer surgery based on five large European RCTs; however, the results are difficult to adapt to current practice, as the 2795 patients included were treated between 1993 and 2003 with different modalities of pre- and postoperative radiotherapy, surgery (TME was introduced in 1999), and adjuvant chemotherapy. They claimed that ypN and ypT are associated with distant and local recurrences. Compared with other surgical procedures, APE was a risk factor for metastatic recurrence but not for LR. Adjuvant therapy significantly decreased the risk of LR but not the risk of metastatic recurrence. More recent studies have shown that the worse prognosis after APE in comparison with restorative resection was not related to the surgical technique itself but to the patient and tumour characteristics with more frequent margin involvement. After adjusting for clinical stage, tumour distance from the anal verge, and tumour size, Lee et al. described comparable local and distant recurrence rates after APE. Consequently, we did not consider surgical intervention in our analysis but rather the tumour location, pathological stage, and resection margins (R0 versus R1).

We also collected clinical data often unavailable in studies evaluating the risk factors for recurrence rectal cancer surgery, including postoperative complications, especially PICs. We found a strong independent association between PIC and recurrence (OR 2.50, 95 per cent c.i. 1.45 to 4.32; P = 0.001), and it seemed to have a similar impact on local and distant recurrences. The data in the literature are contradictory; however, a recent meta-analysis showed that AL was associated with increased LR and reduced disease-free survival. The impact of PICs has recently been highlighted; PICs have a worse impact on the prognosis following the resection of rectal cancer and colorectal liver metastasis compared with non-infective postoperative complications. Poor oncological outcomes can be attributed to viable tumour cells released during sepsis or soluble factors released during the inflammatory response, which may increase tumour aggressiveness and reduce the effectiveness of the immune system. Including PICs in our model increases its strength and provides a clinically relevant patient-specific risk of recurrence. Some measures can be implemented to reduce PICs, including the correction of preoperative malnutrition, sarcopenia, or anaemia.

Contrastingly, adjuvant chemotherapy was associated with a poorer prognosis in our study. Contrary to that observed in patients with colon cancer, the benefit of adjuvant chemotherapy has never been proven in patients with LARC after preoperative CRT. Currently, CRT is recommended for patients with ypT1–3 (stage III); poor responders after CRT and TME are correlated with a poorer prognosis. We excluded patients who underwent local excision to analyse the most homogeneous population; however, we excluded the best responders, which could introduce bias in the adjuvant treatment effect analysis. Collette et al. demonstrated that only patients with a good prognosis (ypT0–2) benefit from adjuvant chemotherapy with increased disease-free survival. The same prognostic factors could determine tumour sensitivity for preoperative and additional adjuvant therapy.

Our study does not allow us to conclude on the role of adjuvant chemotherapy in LARC; however, it raises the question of the possibility of predicting the therapeutic response and/or intensification of the preoperative treatment. Recent RCTs have shown significant improvements in DM and survival rates in patients with LARC using the TNT approach. This strategy increases the rate of complete histological response and decreases chemotherapy neurotoxicity.

In our study, all patients received long-course CRT, according to the same protocol, using the same dose, enabling us to evaluate the most homogeneous population. However, neoadjuvant CT (FOLFIRINOX—four cycles as per the GRECCAR 4 trial) was administered in 71 patients (11.2 per cent). This variable was included in our multivariable analysis to avoid bias and was not significant. TNT has become the standard treatment for LARC, however, the impact of postoperative chemotherapy remains unclear. In the PRODIGE 23 trial, 3 months of adjuvant chemotherapy was planned systematically, but 90 patients (22 per cent) did not receive any treatment, and 115 patients (28.2 per cent) received at least 80 per cent of the planned doses.

Our nomogram is a simple tool for assessing the risk of LARC recurrence after CRT and surgery. The strength of our study is the size and homogeneity of the patients included, allowing for model validation in an internal cohort. The statistical performance of the nomogram was good, with an AUC of 0.74 and 0.75 in the training cohort and validation cohorts respectively, providing a better prediction model than TNM staging alone.

Our nomogram score also correlated with the time to recurrence. Although early detection of recurrence may potentially favour surgery with curative intent and improve survival, studies evaluating intensified follow-up programmes of patients with rectal cancers after curative treatment are contradictory and
show no improvement in overall survival. These studies involved all patients, regardless of tumour stage or prognostic factor. We believe that patients identified as high risk for recurrence according to our nomogram would benefit from a closer follow-up. As we found similar risk factors being responsible for local and distant recurrences, the two possible follow-up options are liver and pelvic MRI or positron emission tomography, either in place of or alternating with CT.

Our study had several limitations. First, selection bias because of the retrospective nature and inclusion of patients with complete information only; however, only 21 patients were excluded due to missing data or were lost to follow-up before 3 years. Some variables were not included in the analysis due to a significant amount of missing data, although they may have prognostic value, such as MRI criteria (extramural vascular invasion and predictable CRM) or genetic biomarkers (KRAS and BRAF mutations and MMR status). Second, the nomogram was constructed based on our single-centre experience. Although internally validated in the validation cohort, external validation of our nomogram in a prospective multicentric cohort is necessary.

Funding

The authors have no funding to declare.

Acknowledgements

J-E.S. and H.M. were responsible for conceptualization and writing, original draft preparation and creation. C.Z. was responsible for original draft preparation, methodology, and formal analysis. S.B. was responsible for writing, original draft creation. A.L. and C.D.C. were responsible for conceptualization and original draft review and editing. B.L. was responsible for conceptualization, original draft review and editing, and supervision. This study was conducted in accordance with the most recent version of the Declaration of Helsinki, and the study protocol was approved by the Institutional Ethics Committee of the Paoli-Calmettes Institute (IPC 2021-084).

Disclosure

The authors declare no conflict of interest.

Supplementary material

Supplementary material is available at BJS Open online.

Data availability

Data are available on request from the authors.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68: 394–424.
2. Heald RJ, Husband EM, Byall RDH. The mesorectum in rectal cancer surgery—the clue to pelvic recurrence? Br J Surg 2005; 69: 613–616.
3. Heald RJ, Ryall RDH. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet 1986; 327: 1479–1482.
4. Palmer G, Martling A, Cedermark B, Holm T. A population-based study on the management and outcome in patients with locally recurrent rectal cancer. Ann Surg Oncol 2007; 14: 447–454.
5. Visser O, Baikx R, Zoetmulder FAN, Levering CC, Meijer S, Slors JFM et al. The influence of total mesorectal excision on local recurrence and survival in rectal cancer patients: a population-based study in greater Amsterdam. J Surg Oncol 2007; 95: 447–454.
6. Dresen RG, Peters EEM, Rutten HJT, Nieuwenhuijzen GAP, Demeyere TBJ, van den Brule AJC et al. Local recurrence in rectal cancer can be predicted by histopathological factors. Eur J Surg Oncol 2009; 35: 1071–1077.
7. Koedam TWA, Bootsma BT, Deijen CL, van de Brug T, Kazemier G, Cuesta MA et al. Oncological outcomes after anastomotic leakage after surgery for colon or rectal cancer: increased risk of local recurrence. Ann Surg 2022; 275: e420–e427.
8. Kusters M, Marijnen CAM, van de Velde CJH, Rutten HJT, Lahaye MJ, Kim JH et al. Patterns of local recurrence in rectal cancer; a study of the Dutch TME trial. Eur J Surg Oncol 2010; 36: 470–476.
9. Nagtegaal ID, Quirke P. What is the role for the circumferential margin in the modern treatment of rectal cancer? J Clin Oncol 2008; 26: 303–312.
10. Guyot F, Faivre J, Manfredi S, Meny B, Bonithon-Kopp C, Bouvier AM. Time trends in the treatment and survival of recurrences from colorectal cancer. Ann Oncol 2005; 16: 756–761.
11. Iversen H, Martling A, Johansson H, Nilsson PJ, Holm T. Pelvic local recurrence from colorectal cancer: surgical challenge with changing preconditions. Colorectal Dis 2018; 20: 399–406.
12. Park YY, Lee J, Han YD, Cho MS, Hur H, Min BS et al. Survival outcomes after isolated local recurrence of rectal cancer and risk analysis affecting its resectability. J Surg Oncol 2020; 122: 1470–1480.
13. Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AO10–94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 2012; 30: 1926–1933.
14. van Gijn W, Marijnen CAM, Nagtegaal ID, Cranenbarg EMK, Putter H, Wiggers T et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol 2011; 12: 575–582.
15. Rouanet P, Mullier E, Lelong B, Maingon P, Tuch Jj, Pezet D et al. Tailored treatment strategy for locally advanced rectal carcinoma based on the tumor response to induction chemotherapy: preliminary results of the French phase II multicenter GRECCAR4 trial. Dis Colon Rectum 2017; 60: 653–663.
16. Conroy T, Bosset JF, Etienne PL, Rio E, François É, Mesgouez-Nebout N et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 2021; 22: 702–715.
17. Bahadoer RR, Dijkstra EA, van Etten B, Marijnen CAM, Putter H, Cranenbarg EMK et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial. Lancet Oncol 2021; 22: 29–42.
18. Rouanet P, Mourregot A, Azar CC, Carrere S, Gutowski M, Quenet F et al. Transanal endoscopic proctectomy: an innovative...
procedure for difficult resection of rectal tumors in men with narrow pelvis. Dis Colon Rectum 2013;56:408–415

19. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging: the eighth edition AJCC cancer staging manual. CA Cancer J Clin 2017;67:93–99

20. Manfredi S, Bouvier AM, Lepage C, Hatem C, Dancourt V, Faivre J. Incidence and patterns of recurrence after resection for cure of colonic cancer in a well defined population. Br J Surg 2006;93:1115–1122

21. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004;240:205–213

22. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ et al. Strengthening the Reporting of Observational Studies in epidemiology (STROBE): explanation and elaboration. PLoS Med 2007;4:e297

23. Zaťar SN, Hu CY, Snyder RA, Cuddy A, You YN, Lowenstein LM et al. Predicting risk of recurrence after colorectal cancer surgery in the United States: an analysis of a special commission on cancer national study. Ann Surg Oncol 2020;27:2740–2749

24. van Gijn W, van Stiphout RGPM, van de Velde CJH, Valentini V, Lammering G, Gambacorta MA et al. Nomograms to predict survival and the risk for developing local or distant recurrence in patients with rectal cancer treated with optional short-term radiotherapy. Ann Oncol 2015;26:928–935

25. Yeo DM, Oh SN, Lee MA, Lee IK, Lee YS, Oh ST et al. The development and validation of a predictive model for recurrence in rectal cancer based on radiological and clinicopathological data. Eur Radiol 2021;31:8586–8596

26. Valentini V, van Stiphout RGPM, Lammering G, Gambacorta MA, Barba MC, Bebenek M et al. Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. J Clin Oncol 2011;29:3163–3172

27. Shihab OC, Brown G, Daniels IR, Heald RJ, Quirke P, Moran BJ. Patients with low rectal cancer treated by abdominoperineal excision have worse tumors and higher involved margin rates compared with patients treated by anterior resection. Dis Colon Rectum 2010;53:53–56

28. Reshef A, Lavery I, Kiran RP. Factors associated with oncologic outcomes after abdominoperineal resection compared with restorative resection for low rectal cancer: patient- and tumor-related or technical factors only? Dis Colon Rectum 2012;55:51–58

29. Lee HG, Kim CW, Lee JL, Yoon YS, Park JJ, Lim SB et al. Comparative survival risks in patients undergoing abdominoperineal resection and sphincter-saving operation for rectal cancer: a 10-year cohort analysis using propensity score matching. Int J Colorectal Dis 2022;37:989–997

30. Chuwa EWL, Seow-Choen F. Outcomes for abdominoperineal resections are not worse than those of anterior resections. Dis Colon Rectum 2006;49:41–49

31. Yang J, Chen Q, Jindou L, Cheng Y. The influence of anastomotic leakage for rectal cancer oncologic outcome: a systematic review and meta-analysis. J Surg Oncol 2020;121:1283–1297

32. Fernández-Moreno M, Dorcaratto D, Garcés-Albir M, Muñoz E, Arvizu R, Ortega J et al. Impact of type and severity of postoperative complications on long-term outcomes after colorectal liver metastases resection. J Surg Oncol 2020;122:212–225

33. Gamboa AC, Lee RM, Turgeon MK, Varliamos C, Regenbogen SE, Hrebinko KA et al. Impact of postoperative complications on oncologic outcomes after rectal cancer surgery: an analysis of the US rectal cancer consortium. Ann Surg Oncol 2021;28:1712–1721

34. Alonso S, Pascual M, Salvans S, Mayol X, Mojal S, Gil MJ et al. Postoperative intra-abdominal infection and colorectal cancer recurrence: a prospective matched cohort study of inflammatory and angiogenic responses as mechanisms involved in this association. Eur J Surg Oncol 2015;41:208–214

35. Salvans S, Mayol X, Alonso S, Messegue R, Pascual M, Mojal S et al. Postoperative peritoneal infection enhances migration and invasion capacities of tumor cells in vitro: an insight into the association between anastomotic leak and recurrence after surgery for colorectal cancer. Ann Surg 2014;260:939–944

36. Hu WH, Eisenstein S, Parry L, Ramamoorthy S. Preoperative malnutrition with mild hypoalbuminemia associated with postoperative mortality and morbidity of colorectal cancer: a propensity score matching study. Nutr J 2019;18:33

37. Trejo-Avila M, Bozada-Gutiérrez K, Valenzuela-Salazar C, Herrera-Esquível J, Moreno-Portillo M. Sarcopenia predicts worse postoperative outcomes and decreased survival rates in patients with colorectal cancer: a systematic review and meta-analysis. Int J Colorectal Dis 2021;36:1077–1096

38. Janjan NA, Crane C, Feig BW, Cleary K, Dubrow R, Curley S et al. Improved overall survival among responders to preoperative chemoradiation for locally advanced rectal cancer. Am J Clin Oncol 2001;24:107–112

39. Collette L, Bosset JF, den Dulk M, Nguyen F, Mineur L, Maingon P et al. Patients with curative resection of CT3-4 rectal cancer after preoperative radiotherapy or radiochemotherapy: does anybody benefit from adjuvant fluorouracil-based chemotherapy? A trial of the European organisation for research and treatment of cancer radiation oncology group. J Clin Oncol 2007;25:4379–4386

40. Primrose JN, Perera R, Gray A, Rose P, Fuller A, Corkhill A et al. Effect of 3 to 5 years of scheduled CEA and CT follow-up to detect recurrence of colorectal cancer: the FACS randomized clinical trial. JAMA 2014;311:263

41. Renehan AG, Egger M, Saunders MP, O’Dwyer ST. Impact on survival of intensive follow up after curative resection for colorectal cancer: systematic review and meta-analysis of randomised trials. BMJ 2002;324:813