Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017

Marjolein J. Poen1, Theo M. Bestebroer1, Oanh Vuong1, Rachel D. Scheuer1, Henk P. van der Jeugd2,3, Erik Kleyheeg2,3, Dirk Eggink1,4, Pascal Lexmond1, Judith M.A. van den Brand1, Lineke Begeman1, Stefan van der Vliet1, Gerhard J.D.M. Müskens5, Frank A. Majoors6, Marion P.G. Koopmans1, Thijs Kulkens1, Ron A.M. Fouchier1

1. Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
2. Netherlands Institute of Ecology (NIOO-KNAW), Department of Animal Ecology, Wageningen, the Netherlands
3. Vogeltrekstation – Dutch Centre for Avian Migration and Demography (NIOO-KNAW), Wageningen, the Netherlands
4. Academic Medical Center Amsterdam, Laboratory of Experimental Virology, Amsterdam, the Netherlands
5. Alterra, Center for Ecosystem Studies, Wageningen University, Wageningen, the Netherlands
6. Sovon, Dutch Centre for Field Ornithology, Nijmegen, the Netherlands

Correspondence: Ron A M Fouchier (r.fouchier@erasmusmc.nl)

Citation style for this article:
Poen Marjolein J., Bestebroer Theo M., Vuong Oanh, Scheuer Rachel D., van der Jeugd Henk P., Kleyheeg Erik, Eggink Dirk, Lexmond Pascal, van den Brand Judith M.A., Begeman Lineke, van der Vliet Stefan, Müskens Gerhard J.D.M., Majoors Frank A., Koopmans Marion P.G., Kulkens Thijs, Fouchier Ron A.M.. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017. Euro Surveill. 2018;23(4):pii=17-00449. https://doi.org/10.2807/1560-7917.ES.2018.23.4.17-00449

Introduction: Highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild birds in multiple European countries. Methods: Here we report on the detection of HPAI H5N8 virus in 57 wild birds of 12 species sampled during active (32/5,167) and passive (25/36) surveillance activities, i.e. in healthy and dead animals respectively, in the Netherlands between 8 November 2016 and 31 March 2017. Moreover, we further investigate the experimental approach of wild bird serology as a contributing tool in HPAI outbreak investigations. Results: In contrast to the first H5N8 wave, local virus amplification with associated wild bird mortality has occurred in the Netherlands in 2016/17, with evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) viruses. Discussion: These apparent differences between outbreaks and the continuing detections of HPAI viruses in Europe are a cause of concern. With the current circulation of zoonotic HPAI and LPAI virus strains in Asia, understanding of the drivers responsible for the global spread of Asian poultry viruses via wild birds is needed.
The 2016/17 group B viruses first detected in Russia (Tyva and Uvs-Nuur Lake) in May–June 2016 (blue) and later in other European countries.

Only bootstrap values above 70% are shown. The 2014/15 group A H5 viruses with their N8 genes (pink) are phylogenetically distinct from the 2016/17 group B viruses first detected in Russia (Tyva and Uvs-Nuur Lake) in May–June 2016 (blue) and later in other European countries (green) and the Netherlands (orange).

Figure 2

Tanglegram of highly pathogenic avian influenza H5 clade 2.3.4.4 virus (left) and the accompanying N8 genes (right) based on 250 bootstraps.

Only bootstrap values above 70% are shown. The 2014/15 group A H5 viruses with their N8 genes (pink) are phylogenetically distinct from the 2016/17 group B viruses first detected in Russia (Tyva and Uvs-Nuur Lake) in May–June 2016 (blue) and later in other European countries (green) and the Netherlands (orange).
this virus belonged to group B (A/breeder duck/Korea/Gochang1/2014-like) viruses [4,11]. These group B viruses had been detected previously in China and South Korea in 2014, but had not been reported since [3,12]. From mid-October 2016 onwards, group B lineage HPAI H5N8 viruses were detected in both India [13] and in European countries. Unlike the 2014/15 group A viruses, group B viruses caused local die-offs of wild birds in many countries, often resulting in wild bird deaths preceding those in poultry [14-16]. The introduction of these group B HPAI H5N8 viruses in the Netherlands was marked by a die-off of tufted ducks (Aythya fuligula) and great crested grebes (Podiceps cristatus) in the Gouwzee (52°27'09"N, 5°04'07"E), a large fresh water lake, on 8 November 2016 [14,17]. Most of the internal genes of this ‘second wave’ HPAI H5N8 virus were derived from Eurasian LPAI viruses via reassortment, after their original detection in China and South Korea in 2014 and Russia in May 2016 [11,15]. Occasional reassortment of the neuraminidase (NA) gene also led to a few detections of clade 2.3.4.4 HPAI H5N5 and H5N6 viruses [18].

Wild migratory birds were shown to be the most probable vectors for the first global spread of HPAI H5N8 in 2014 that coincided with the timing and flyways of the autumn migration, based on a recent worldwide phylogenetic study of HPAI H5N8 viruses [5,19]. These avian influenza viruses constitute a constant animal and human health threat, where the risk in part is determined by the (evolving) genomic constitution of the circulating viruses. It is therefore of crucial importance to actively monitor influenza viruses and their evolution in wild bird populations, to monitor trends and diversity of circulating viruses, and to assess the risk of spread for strains that are unusual in their genetic make-up and/or spread for animal and human health. In this study we have performed intense active surveillance in wild birds in the Netherlands in response to the HPAI H5N8 introduction in Europe in late 2016. We performed both virological and serological studies to attempt to identify wild bird species that might contribute to the spread and maintenance of this virus.

Methods

Ethical statement

The capture of free-living birds was approved by the Dutch Ministry of Economic Affairs based on the Flora and Fauna Act (permit number FF/75A/2009/067, FF/75A/2014/054 and licence number 951 to Vogeltrekstation NIOO-KNAW). Handling and sampling of free-living birds was approved by the Animal Experiment Committee of the Erasmus Medical Center (permit number 122–11–31). Free-living birds were released into the wild after sampling and all efforts were made to minimise animal suffering throughout the procedures.

Study population

A continuous active surveillance programme of resident and migrating wild birds for avian influenza viruses is in place in the Netherlands. The ongoing surveillance efforts were intensified in response to the first detection of HPAI H5N8 virus in the Netherlands in 2016 between 13 November and 31 December 2016, the period during which mortality among wild birds and outbreaks in poultry holdings were occurring in the country, and from 8 February until 19 February 2017, when die-offs of wild birds and outbreaks in poultry had ceased. On 1 March and 23 October 2016, as well as approximately during the first period of intensified surveillance (13 November to 21 December 2016), and on 8 February 2017, blood samples were obtained in addition to samples for virus detection.

Sample collection

Live wild birds were captured using duck decoys, cannon nets, leg nooses, swan hooks, or manually. Birds were sampled routinely for virus detection using oropharyngeal and cloacal swabs as described elsewhere [10]. In addition, fresh faecal samples were collected from Eurasian wigeons (Anas penelope) for virus detection. Fresh faecal samples were collected by trained ornithologists able to distinguish species-specific droppings from locations where large homogeneous groups of Eurasian wigeons were foraging in the field. Blood samples were collected for serum antibody detection as described previously [10]. In addition to active surveillance, oropharyngeal and/or cloacal swabs of a limited number of freshly dead wild birds were opportunistically collected for virus detection (i.e. passive surveillance).

Virus detection, isolation and characterisation

Samples for virus detection were analysed for the presence of HPAI H5(N8) virus using matrix- and H5-specific real-time reverse-transcription PCR (RRT-PCR) assays, followed by haemagglutinin (HA) and NA gene sequencing as previously described [7]. Samples testing positive in matrix and H5 specific RRT-PCR were inoculated in Madin–Darby canine kidney (MDCK) cells. Samples were characterised as HPAI H5 virus by detection of a multi-basic cleavage site upon Sanger sequencing of the HA gene.

Virus sequencing and phylogeny

Full length HA and NA sequences of all virus isolates and full genome sequences for a subset of these were obtained by Sanger sequencing. All sequences were deposited in a public database (http://www.gisaid.com). Primer sequences are available upon request.

For HA and NA phylogeny, sequences obtained in this study were supplemented with publicly available sequences of HPAI H5 viruses of clade 2.3.4.4 detected globally between 2014 and 2017. These additional sequences were obtained from the Global Initiative on Sharing Avian Influenza Data database (http://www.gisaid.com) on 20 May 2017 (Table 1).
Isolate ID	Isolates name	Collection date	Originating laboratory	Submitting Laboratory	Authors
EPI_ISL_257700	A/Mute_Swan/Czech_Republic/1813–17/2017	5 Feb 2017	Not listed	State Veterinary Institute Prague	Nagy, A.
EPI_ISL_250885	A/Mute_Swan/Czech_Republic/54–17_2/2017	2 Jan 2017	Not listed	State Veterinary Institute Prague	Nagy, A.
EPI_ISL_248663	A/Mallard/Czech_Republic/722–17_2/2017	15 Jan 2017	Not listed	State Veterinary Institute Prague	Nagy, A.
EPI_ISL_247713	A/Tufted_Duck/Denmark/17740–1/2016	8 Nov 2016	Technical University of Denmark	Animal and Plant Health Agency (APHA)	Hjulsager CK, Krog JS, Larsen LE, Kvigsaaard ŁK, Essen S
EPI_ISL_238197	A/Mute_Swan/Croatia/78/2016	12 Nov 2016	Not listed	Croatian Veterinary Institute	Not listed
EPI_ISL_238196	A/Mute_Swan/Croatia/70/2016	30 Oct 2016	Not listed	Croatian Veterinary Institute	Not listed
EPI_ISL_237945	A/Tufted_Duck/Germany/AR8459-L01988/2016	8 Nov 2016	Not listed	Friedrich-Loeffler-Institut	Not listed
EPI_ISL_237944	A/Tufted_Duck/Germany/AR8444-L01987/2016	7 Nov 2016	Not listed	Friedrich-Loeffler-Institut	Not listed
EPI_ISL_237732	A/Tufted_Duck/Germany-SH/R8446/2016	7 Nov 2016	Not listed	Friedrich-Loeffler-Institut	Not listed
EPI_ISL_238039	A/Chicken/Germany-SH/R8758/2016	11 Nov 2016	Not listed	Friedrich-Loeffler-Institut	Not listed
EPI_ISL_237921	A/Wild_Duck/Poland/82A/2016	2 Nov 2016	Not listed	National Veterinary Research Institut Poland	Świętoń E, Śmietanka K
EPI_ISL_175535	A/MuteSwan/Sweden/SVA150313KU0141/ SZ543/2015	5 Mar 2015	National Veterinary Institute, Sweden	National Veterinary Institute, Sweden	Zohari S, Ullman K, Olofsson A
EPI_ISL_238896	A/Chicken/Sweden/SVA161122KU0453/ SZ0209321/2016	21 Nov 2016	National Veterinary Institute, Sweden	National Veterinary Institute, Sweden	Not listed
EPI_ISL_231685	A/Black-headed_Gull/Tyva/41/2016	25 May 2016	State Research Center of Virology and Biotechnology (VECTOR)	WHO National Influenza Centre Russian Federation	Fadeev A, Komissarov A, Egorova A, Sintsova K, Musaeva T, Susloparov I, Marchenko V, Ryzhikov A
EPI_ISL_231684	A/Wild_Duck/Tyva/35/2016	25 May 2016	State Research Center of Virology and Biotechnology (VECTOR)	WHO National Influenza Centre Russian Federation	Fadeev A, Komissarov A, Egorova A, Sintsova K, Musaeva T, Susloparov I, Marchenko V, Ryzhikov A
EPI_ISL_224580	A/Great_Crested_Grebe/Tyva/341/2016	25 May 2016	Research Institute of Experimental and Clinical Medicine	Research Institute of Experimental and Clinical Medicine	Sharshov K, Kurskaya O, Sobolev I, Alekseev A, Alikina T, Kobilov M, Shestopalov A
EPI_ISL_234057	A/grey_heron/Uvs-Nuur_Lake/20/2016	25 May 2016	Research Institute of Experimental and Clinical Medicine	Research Institute of Experimental and Clinical Medicine	Sharshov K, Kurskaya O, Sobolev I, Alekseev A, Alikina T, Kobilov M, Shestopalov A
EPI_ISL_234058	A/common_tern/Uvs-Nuur_Lake/26/2016	25 May 2016	Research Institute of Experimental and Clinical Medicine	Research Institute of Experimental and Clinical Medicine	Sharshov K, Kurskaya O, Sobolev I, Alekseev A, Alikina T, Kobilov M, Shestopalov A
EPI_ISL_269601	A/Eurasian_Herring_Gull/Netherlands/2/2016	20 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen, MJ, Van Der Jeugd, HP, Vuong, O, Scheuer, RD, Fouchier, RAM et al.
Isolate ID	Isolates name	Collection date	Originating laboratory	Submitting Laboratory	Authors
------------	---------------	-----------------	------------------------	-----------------------	---------
EPI_ISL_268916	A/Caspian Gull/Netherlands/1/2016	20 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_255910	A/Mew Gull/Netherlands/1/2016	23 Nov 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269602	A/Lesser Black-backed Gull/Netherlands/1/2016	20 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269697	A/Great Black-backed Gull/Netherlands/4/2016	14 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269599	A/Great Black-backed Gull/Netherlands/3/2016	23 Nov 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269597	A/Great Black-backed Gull/Netherlands/1/2016	23 Nov 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_255892	A/Great Black-backed Gull/Netherlands/2/2016	23 Nov 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269600	A/Great Crested Grebe/Netherlands/2/2016	21 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269696	A/Eurasian Wigeon/Netherlands/23/2016	05 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269694	A/Eurasian Wigeon/Netherlands/1/2016	04 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269596	A/Eurasian Wigeon/Netherlands/13/2016	14 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269595	A/Eurasian Wigeon/Netherlands/12/2016	14 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269594	A/Eurasian Wigeon/Netherlands/22/2016	14 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269593	A/Eurasian Wigeon/Netherlands/11/2016	13 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269592	A/Eurasian Wigeon/Netherlands/8/2016	09 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269591	A/Eurasian Wigeon/Netherlands/6/2016	09 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
Isolate ID	Isolates name	Collection date	Originating Laboratory	Submitting Laboratory	Authors
------------	---------------	-----------------	------------------------	-----------------------	---------
EPI_ISL_268937	A/Eurasian_Wigeon/Netherlands/10/2016	08 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_255914	A/Eurasian Wigeon/Netherlands/9/2016	04 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_255912	A/Eurasian Wigeon/Netherlands/4/2016	09 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269703	A/Eurasian_Wigeon/Netherlands/25/2016	05 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269695	A/Eurasian_Wigeon/Netherlands/21/2016	05 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269692	A/Mallard/Netherlands/3/2017	11 Jan 2017	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269604	A/Mallard/Netherlands/1/2017	07 Jan 2017	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269603	A/Mallard/Netherlands/51/2016	20 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_255913	A/Mallard/Netherlands/2/2017	07 Jan 2017	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_268927	A/Common_Buzzard/Netherlands/1/2016	07 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_255891	A/Tufted Duck/Netherlands/1/2016	25 Nov 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_268866	A/Back-headed_Gull/Netherlands/9/2016	20 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_268800	A/Black-headed_Gull/Netherlands/17/2016	20 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_268799	A/Back-headed_Gull/Netherlands/8/2016	20 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_268929	A/Common_Eider/Netherlands/2/2016	20 Dec 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
EPI_ISL_269693	A/Common_Pochard/Netherlands/1/2016	25 Nov 2016	Erasmus Medical Center	Erasmus Medical Center	Poen,MJ, Van Der Jeugd,HP, Vuong,O, Scheuer,RD, Fouchier,RAM et al.
Table 2a

Wild bird species sampled for virus detection in the Netherlands before and during the second wave of highly pathogenic avian influenza H5N8 virus in Europe and results of virological assays, February 2016–March 2017 (n = 10,726)

Order	Family	Species	1 February 2016–7 November 2016	8 November 2016–31 March 2017	Found dead								
			Alive without clinical signs	Alive without clinical signs	Found dead								
			Number of birds sampled	Number of birds	H5 positive	Number of birds sampled	Number of birds	H5 positive	Pathotype	Number of birds sampled	Number of birds	H5 positive	Pathotype
			Alive without clinical signs	AIV positive	H5 positive	Alive without clinical signs	AIV positive	H5 positive	Pathotype	Alive without clinical signs	AIV positive	H5 positive	Pathotype
			Number of birds sampled	AIV positive	H5 positive	Number of birds sampled	AIV positive	H5 positive	Pathotype	Number of birds sampled	AIV positive	H5 positive	Pathotype

Ducks

- **Common eider** *(Somateria mollissima)*
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: 1x HPAI

- **Common pochard** *(Aythya ferina)*
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: n.i.

- **Common shelduck** *(Tadorna tadorna)*
 - Number of birds sampled: 2
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Domestic duck** *(Anas platyrhynchos domesticus)*
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds: 1
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Egyptian goose** *(Alopochen aegyptiacus)*
 - Number of birds sampled: 30
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds: 17
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Eurasian teal** *(Anas crecca)*
 - Number of birds sampled: 46
 - AIV positive: 21
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds: 42
 - AIV positive: 5
 - H5 positive: 1
 - Pathotype: 1x LPAI

- **Eurasian wigeon** *(Anas penelope)*
 - Number of birds sampled: 639
 - AIV positive: 339
 - H5 positive: 10
 - Pathotype: NA
 - Number of birds: 2,634
 - AIV positive: 118
 - H5 positive: 37
 - Pathotype: 14x HPAI, 23x n.i., 2x LPAI

- **Gadwall** *(Anas strepera)*
 - Number of birds sampled: 131
 - AIV positive: 65
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds: 11
 - AIV positive: 1
 - H5 positive: 1
 - Pathotype: 1x LPAI

- **Garganey** *(Anas querquedula)*
 - Number of birds sampled: 2
 - AIV positive: 2
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Greater scaup** *(Aythya marila)*
 - Number of birds sampled: 1
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds sampled: 2
 - AIV positive: 1
 - H5 positive: 0
 - Pathotype: NA

- **Mallard** *(Anas platyrhynchos)*
 - Number of birds sampled: 3,169
 - AIV positive: 555
 - H5 positive: 20
 - Pathotype: NA
 - Number of birds sampled: 1,824
 - AIV positive: 338
 - H5 positive: 78
 - Pathotype: 17x HPAI, 3x LPAI, 5x n.i., 2x HPAI

- **Northern pintail** *(Anas acuta)*
 - Number of birds sampled: 12
 - AIV positive: 9
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds sampled: 6
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Northern shoveler** *(Anas clypeata)*
 - Number of birds sampled: 14
 - AIV positive: 4
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds sampled: 3
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Tufted duck** *(Aythya fuligula)*
 - Number of birds sampled: 2
 - AIV positive: 1
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds sampled: 2
 - AIV positive: 0
 - H5 positive: 1
 - Pathotype: 1x HPAI

Geese

- **Barnacle goose** *(Branta leucopsis)*
 - Number of birds sampled: 589
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Bean goose** *(Anser fabalis)*
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Canada goose** *(Branta canadensis)*
 - Number of birds sampled: 23
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds sampled: 3
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Great white-fronted goose** *(Anser albifrons)*
 - Number of birds sampled: 27
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA
 - Number of birds sampled: 40
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Greylag goose** *(Anser anser)*
 - Number of birds sampled: 310
 - AIV positive: 3
 - H5 positive: 1
 - Pathotype: 1x LPAI
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

Swans

- **Bewick’s swan** *(Cygnus columbianus bewickii)*
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- ** mute swan** *(Cygnus olor)*
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

- **Whooper swan** *(Cygnus cygnus)*
 - Number of birds sampled: 0
 - AIV positive: 0
 - H5 positive: 0
 - Pathotype: NA

AIV: avian influenza virus; HPAI: highly pathogenic avian influenza; LPAI: low pathogenic avian influenza; NA: not applicable; n.i.: not identifiable because of low virus load.
Maximum likelihood (ML) phylogenetic trees were constructed based on the HA (1,637 nt: position 49–1,685) and NA (1,227 nt: position 64–1,291) genes. ML trees were generated using PhyML version 3.1 using the general time-reversible (GTR) model, performing sub-tree pruning and regrafting (SPR) searches [20]. The reliability of the phylogenetic grouping was assessed with 250 bootstrap replicates. Trees were visualised using Figtree version 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree). ML trees of HA and NA were used in Dendroscope version 3.5.9 (http://dendroscope.org/) [21] to display a tanglegram between the HA and NA midpoint rooted phylogenies. The twines were colour-coded according to wave and location.

Antibody detection

Serum samples were initially screened for the presence of clade 2.3.4.4 H5(N8)-specific (A/Chicken/...).
Table 3
Wild bird species sampled in the Netherlands for antibody detection in response to the second wave of highly pathogenic avian influenza (HPAI) H5N8 virus in Europe, 2016/2017 (n = 459) and those showing HPAI H5 clade 2.3.4.4-specific antibodies (n = 20) based on repeated haemagglutination inhibition assays (HI), March 2016–February 2017

Order	Family	Species	Number of individuals	1 March 2016	23 October 2016	13 November 2016–8 February 2017			
				Tested	H5 clade 2.3.4.4-	Tested	H5 clade 2.3.4.4-	Tested	H5 clade 2.3.4.4-
				Tested	specific antibodies		specific antibodies		specific antibodies
Anseriformes	Ducks	Egyptian goose (Alopochen aegyptiaca)	0	0	0	0	10	0	
		Eurasian teal (Anas crecca)	0	0	0	0	22	0	
		Eurasian wigeon (Anas penelope)	28	2	41	1	63	2	
		Gadwall (Anas strepera)	0	0	0	0	5	0	
		Mallard (Anas platyrhynchos)	0	0	0	0	72	11	
		Northern pintail (Anas acuta)	0	0	0	0	6	0	
		Tufted duck (Aythya fuligula)	0	0	0	0	1	0	
		Swans	Bewick’s swan (Cygnus columbianus bewickii)	0	0	0	0	20	0
			Mute swan (Cygnus olor)	0	0	0	0	24	3
			Whooper swan (Cygnus cygnus)	0	0	0	0	3	0
Charadriiformes	Gulls	Black-headed gull (Chroicocephalus ridibundus)	0	0	0	0	88	1	
		Caspian gull (Larus cachinnans)	0	0	0	0	1	0	
		Eurasian herring gull (Larus argentatus)	0	0	0	0	15	0	
		Mew gull (Larus canus)	0	0	0	0	7	0	
Gruiformes	Rails	Common coot (Fulica atra)	0	0	0	0	35	0	
		Water rail (Rallus aquaticus)	0	0	0	0	16	0	
Passeriformes	Corvidae	Eurasian magpie (Pica pica)	0	0	0	0	1	0	
Pelicaniformes	Ardeidae	Grey heron (Ardea cinerea)	0	0	0	0	1	0	
Total	NA	NA	28	2	41	1	390	17	

NA: not applicable.

Table 4
Overview of wild birds or wild birds’ droppings, which were sampled in the Netherlands during active surveillance, and positive for highly pathogenic avian influenza H5N8 virus, 23 November 2016–28 January 2017 (n = 32 birds)

Species	Location	Status	Date	Number of animals
Eurasian wigeon	Echtenerburg	Dropping	23 November 2016	1
Eurasian wigeon	Warder	Live without clinical signs	04 December 2016	3
Common buzzard	Hippolytushoef	Live without clinical signs	07 December 2016	1
Eurasian wigeon	Oud Alblas	Live without clinical signs	08 December 2016	1
Eurasian wigeon	Oud Alblas	Live without clinical signs	12 December 2016	1
Eurasian wigeon	Nijkerk	Dropping	12 December 2016	3
Eurasian wigeon	Nijkerk	Dropping	14 December 2016	2
Eurasian wigeon	Nijkerk	Dropping	21 December 2016	3
Mallard	Oud Alblas	Live without clinical signs	07 January 2017	6
Mallard	Oud Alblas	Live without clinical signs	09 January 2017	4
Mallard	Oud Alblas	Live without clinical signs	10 January 2017	2
Mallard	Oud Alblas	Live without clinical signs	11 January 2017	2
Mallard	Oud Alblas	Live without clinical signs	24 January 2017	1
Mallard	Oud Alblas	Live without clinical signs	25 January 2017	1
Mallard	Oud Alblas	Live without clinical signs	28 January 2017	1
Netherlands/EMC-3/2014 and A/Great Black-backed Gull/Netherlands/3/2016) and LPAI H5(N2)-specific (A/Mallard/Netherlands/3/1999) antibodies in a haemagglutination inhibition (HI) assay according to standard procedures [10,22]. Due to the generally high non-specific haemagglutination induced by wild bird sera in previous HI assays [10], all sera were pre-treated with 10% turkey red blood cells for 1 hour at 4 °C before analysis. Negative controls, based on incubation of serum without virus, were used to measure non-specific haemagglutination of each serum sample. Serum samples from experimentally inoculated ferrets [23] were used as positive controls.

Serum samples that tested positive for either LPAI H5N2 or HPAI H5 clade 2.3.4.4-specific antibodies were further tested in an HI assay against HPAI viruses of the H5 clades 1 (A/Viet Nam/1194/2004), 2.1 (A/Indonesia/5/2005), 2.2 (A/Turkey/Turkey/1/2005), and 2.3.4 (A/Anhui/1/2005), and retested against the 2016 clade 2.3.4.4 virus (A/Great Black-backed gull/Netherlands/3/2016). The viruses used, except the 2016 HPAI H5N8 virus and the LPAI H5N2 virus, were recombinant viruses based on an A/PR/8/34 virus backbone, containing the HA (without the multi-basic cleavage site) and NA of the representative H5 strains to enable this study within biosafety level 2 laboratories. Assays with the wild type 2016 HPAI H5N8 virus were performed simultaneously in biosafety level 3 conditions.

Subsequently, samples were tested in a virus neutralisation (VN) assay as described previously [10], using titrated virus stocks of the same LPAI H5N2 and HPAI H5 clade 1, 2.1, 2.2, 2.3.4, and 2016 2.3.4.4 representatives.

Sera were categorised as being either LPAI or HPAI biased or ambiguous, where a bias is defined as a cut-off of > 1 log₂ differences in titre in HI assays [24].

Results

Study population
Here we report the data of 5,167 wild birds that were tested for the presence of avian influenza viruses between 8 November 2016 and 31 March 2017 in response to the re-introduction of HPAI H5N8 viruses in the Dutch wild bird population on 8 November 2016 [17]. In addition, we report on all data obtained in our routine active surveillance activities before the first evidence of re-introduction of HPAI H5N8 virus into the Netherlands, 1 February until 7 November 2016 (n = 5,523) (Table 2, Figure 1). All birds were caught alive and did not show clinical signs of disease. Also, samples were obtained from 36 birds belonging to 17 species that were sampled post mortem (Table 2).

For antibody detection, serum samples from 459 birds of various species were analysed (Table 3). The majority of these samples were obtained between 13 November and 21 December 2016 (n = 367, 18 species) and on 8 February 2017 (n = 23 mallards (Anas platyrhynchos)). In addition we included blood samples from Eurasian wigeons obtained on 1 March (n = 28) and 23 October 2016 (n = 41) that were not analysed previously (Table 3).

Virus detection, isolation and characterisation
There was no evidence for the presence of HPAI H5(N8) virus in any of the birds (n = 5,523) sampled during routine active surveillance between 1 February and 7 November 2016. In the subsequent period (between 8 November 2016 and 31 March 2017), samples from 145 birds (2.8%) tested positive for the presence of H5

Table 5

Search results for sequences with high similarity to the eight genes found in the full genomes of six highly pathogenic avian influenza H5N8 virus isolates from the Netherlands, 2016/17

Gene	BLAST result	Identity	Classification
PB2	[6/6] A/duck/Bangladesh/26920/2015(H3N6)	198.7%	LPAI
PB1	[5/6] A/chicken/Hunan/S1267/2010(H4N6)	197.7%	LPAI
PA	[1/6] A/duck/Mongolia/179/2015(H3N8)	97.5%	LPAI
HA	[6/6] A/duck/Eastern China/S1109/2014(H5N8)	198.7%	HPAI H5 clade 2.3.4.4
NP	[6/6] A/Mallard/Netherlands/15/2011(H6N8)	199.2%	LPAI
NA	[6/6] A/duck/Eastern China/S1109/2014(H5N8)	198.6%	HPAI H5 clade 2.3.4.4
MP	[6/6] A/duck/Mongolia/179/2015(H3N8)	198.1%	LPAI
NS	[3/6] A/duck/Eastern China/S1109/2014(H5N8)	198.8%	HPAI H5 clade 2.3.4.4
	[3/6] A/goose/Yangzhou/0420/2014(H5N8)	197.9%	HPAI H5 clade 2.3.4.4

BLAST: basic local alignment search tool; HA: haemagglutinin; MP: matrix protein; NA: neuraminidase; NP: nucleoprotein; NS: non-structural protein; PA or PB: polymerases (PA, PB2, PB1).

a Searches were carried out using the National Center for Biotechnology Information (NCBI) nucleotide-BLAST.
HA by RRT-PCR. The presence of HPAI H5 clade 2.3.4.4 virus was confirmed in samples of 57 birds (Table 2). Of these, 23 birds (17 mallards, 5 Eurasian wigeons and one common buzzard (Buteo buteo)) were caught and sampled alive without clinical signs, and from nine birds (Eurasian wigeons) fresh droppings were tested positive. (Table 4). In total, viruses were isolated in MDCK cells from 48 samples from 33 birds. All cultured viruses belonged to the HPAI H5N8 subtype. The last detection of HPAI clade 2.3.4.4 virus in living birds was in mallards on 28 January 2017. Since then, no additional HPAI clade 2.3.4.4 H5 viruses have been detected in this study.

Virus sequencing and phylogenetic analysis

Full length HA and NA sequences of all 48 isolates were obtained by Sanger sequencing. Analysis of these 48 samples showed no differences between sequences obtained from cloacal and oropharyngeal swabs from the same bird, so only one sequence per bird was included in further analyses.

In accordance with previous reports [11,15,25], our phylogenetic analysis (Figure 2) shows a clear distinction for both HA and NA between the 2014/15 group A HPAI H5N8 viruses and the 2016/17 group B viruses. Also, the Russian viruses from May 2016 were distinguishable from the ones that entered eastern European countries (Croatia and Czech Republic) and subsequently more western European counties like Germany and the Netherlands for both HA and NA. The subclade consisting only of Dutch duck and gull viruses might indicate more local virus evolution within the Netherlands. In support, the viruses detected in live mallards in early

Table 6
Details of the results on low pathogenic (LPAI) H5- and highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4-specific antibody positive sera using haemagglutination inhibition assays and the resulting HPAI/LPAI bias, Netherlands, 2016/17 (n = 29)

Sample ID	Species	Collection date	LPAI	HPAI H5 clade 2.3.4.4	Bias
C320-297	Black-headed gull	29 November 2016	<10	20	HPAI
320-312	Black-headed gull	05 December 2016	<10	20*	HPAI
309-9	Eurasian wigeon	01 March 2016	<10	20	HPAI
309-13	Eurasian wigeon	01 March 2016	<10	10	Ambiguous
309-23	Eurasian wigeon	01 March 2016	<10	20*	HPAI
C309-51	Eurasian wigeon	23 October 2016	40	40	Ambiguous
318-57	Eurasian wigeon	04 December 2016	<10	10*	Ambiguous
318-63	Eurasian wigeon	04 December 2016	40	640	HPAI
318-70	Eurasian wigeon	04 December 2016	20	<10	LPAI
318-75	Eurasian wigeon	04 December 2016	10	80	HPAI
320-55	Mallard	09 December 2016	320	40	LPAI
314-1813	Mallard	08 February 2017	<10	20	HPAI
314-1815	Mallard	08 February 2017	30	20	Ambiguous
314-1817	Mallard	08 February 2017	<10	40	HPAI
314-1819	Mallard	08 February 2017	30	<10	LPAI
314-1820	Mallard	08 February 2017	<10	10	Ambiguous
314-1823	Mallard	08 February 2017	40	<10	LPAI
314-1824	Mallard	08 February 2017	<10	120	HPAI
314-1825	Mallard	08 February 2017	40	20	Ambiguous
314-1826	Mallard	08 February 2017	40	40	Ambiguous
314-1827	Mallard	08 February 2017	10	<10	Ambiguous
314-1832	Mallard	08 February 2017	10	20	Ambiguous
314-1835	Mallard	08 February 2017	30	20	Ambiguous
320-295	Mute swan	05 December 2016	<10	30	HPAI
320-641	Mute swan	07 December 2016	<10	30	HPAI
320-699	Mute swan	14 December 2016	30	<10	LPAI
320-729	Mute swan	15 December 2016	<10	20	HPAI
320-355	Whooper Swan	20 December 2016	80	<10	LPAI

HPAI H5 clade 2.3.4.4: highly pathogenic avian influenza A/Great-black backed gull/Netherlands/3/2016 (H5N8); LPAI: low pathogenic avian influenza A/Mallard/Netherlands/3/1999 (H5N2).

* Titre could not be confirmed in a second haemagglutination inhibition HI assay.
Influenza A virus H5-specific antibody detection in wild birds

Seroreactivity of 459 wild bird sera was determined for different influenza H5 viruses. In a total of 29 sera, antibody titres directed to LPAI H5(N2) (A/Mallard/Netherlands/3/1999) or 2016 HPAI H5 clade 2.3.4.4 (A/Great Black-backed Gull/Netherlands/3/2016) or to both of these viruses were detected. There was good correspondence for high reacting sera (HI titre ≥ 40) between the HI antibody titres generated with the 2014 HPAI H5 clade 2.3.4.4 virus and the 2016 virus, suggesting that there has been limited antigenic drift of HPAI H5N8 viruses since 2014. In sera with lower HI titres, there was a strong bias to only react with the 2016 H5 clade 2.3.4.4 virus. When the HI assay for H5 clade 2.3.4.4-specific antibody positive sera was repeated, all but three titres were reproduced. Of the 10 sera showing antibody titres to both LPAI H5 and HPAI H5 clade 2.3.4.4 virus, one was LPAI-biased, two were HPAI-biased and seven showed ambiguous titres. Overall, 4.2% (18/431) of the sera obtained from October 2016 onwards showed evidence of the presence of HPAI clade 2.3.4.4 H5-specific antibodies based on HI assays in duplo (Table 6) which was confirmed by VN assays in 14/18 samples from October 2016 onwards and 1/2 from 1 March 2016.

The overall HPAI H5 antibody incidence between October and December 2016 was 2.0% (8/408). However, in mallards sampled on 8 February 2017 this was 43.5% (10/23) compared with 2.0% (1/49) in mallards sampled between October and December 2016. Comparing the 2016/17 winter with the same seasons in previous years, indicated that mallards and black-headed gulls (Chroicocephalus ridibundus) first tested positive for HPAI H5 clade 2.3.4.4-specific antibodies in the 2016/17 winter. In contrast, for Eurasian wigeons, common coots (Fulica atra) and mute swans (Cygnus olor) the detected incidence appeared to be lower in 2016/17 compared to the 2014/15 winter (Table 7). Taking into account all the bird species considered by the surveillance over the different winters, a preliminary incidence of HPAI H5 clade 2.3.4.4-specific antibodies can be calculated as 0% before 2014, rising to 4.6% during the first outbreak of HPAI H5N8 virus, decreasing to 3.5% in the 2015/16 winter and rising to 4.2% in the 2016/17 winter (Table 7).

Discussion

Here, we report on our virological findings in wild birds during the second wave of European HPAI H5(N8) outbreaks in 2016/17 and further investigate the use of serology in addition to virology in an outbreak situation. In this study we detected HPAI H5N8 viruses in 57 birds of 12 species. Initially, HPAI H5N8 virus was detected in dead wild birds by passive surveillance in mainly tufted ducks and Eurasian wigeons, followed by scavengers [16]. After these die-offs, the virus was detected in live wild birds and shifted from being found mostly Eurasian wigeons early in the outbreak towards mallards later in the outbreak, despite the fact that both species were screened throughout time. Although the number of HPAI H5(N8) infected wild birds identified by passive surveillance in this study and others [16-18] was much higher because of the massive die-offs and subsequent mandatory testing, the high virus prevalence in mallards would have been missed in passive surveillance studies since hardly any mallards were found dead and infected [16]. Likewise, the period of time of virus detection lasted longer in active surveillance compared with passive surveillance. Our results show that the mallard viruses from January 2017 were largely indistinguishable from the other HPAI H5N8 viruses, including those of tufted ducks, indicating that mallards might be more resistant to disease compared with other duck species, similarly to previous findings for HPAI H5N1 in mallards [26] and might therefore act as a reservoir species.

Results of analyses at the whole genome level indicated that the HA, NA and NS genes of Dutch H5N8 viruses were most closely related to 2014 HPAI H5N8 group B Eastern China viruses, while the other five genes were derived from Eurasian LPAI viruses. This genetic makeup is similar to viruses detected in Russia (May 2016) and Germany (autumn/winter 2016) [11,15]. Compared with the May 2016 Russian viruses, viruses in the Netherlands showed similar new reassortment events for the NP and PA genes as was described for the German viruses [15] (Table 5).

In contrast to the 2014/15 European emergence of HPAI H5N8, when a single lineage of HPAI spread across Europe, the chain of events during the 2016/17 HPAI H5 emergence shows more similarities to the 2014/15 situation in the United States (US), where the HPAI H5N8 group A viruses reassorted with local LPAI viruses causing massive and long lasting detection in both poultry and wild birds and local die-offs in wild birds [6]. While this manuscript was in preparation, detections of HPAI
H5 clade 2.3.4.4 virus in Europe were still reported in Belgium, Luxembourg, the Netherlands and the United Kingdom [18], even though migrating birds had largely left their European wintering sites, suggesting that virus amplification was now occurring in local resident birds. This is a cause of concern, as establishment of HPAI viruses among wild birds is difficult to control and may give rise to a situation comparable to that in Asia with new outbreaks in wild birds and poultry not being caused by novel introductions of HPAI viruses from distant areas, but from within the local populations. It remains unclear, however, what drivers are responsible for the duration of virus circulation in a wild bird population, either long (US 2014/15 and Europe 2016/17) or short (Europe 2014/15), and based on current knowledge we cannot predict how the H5 situation among wild birds in Europe will evolve.

In case of introduction of new HPAI viruses, it would be highly beneficial to be able to target active surveillance to key species for virus detection to avoid excessive costs, sampling efforts, and inclusion of unnecessarily large numbers of animals. We therefore examined the use of experimental approaches for serology for the second time in an outbreak situation. To confirm serological data and to be able to determine the HPAI/LPAI and HPAI clade bias with some accuracy, we performed both HI and VN assays. Sera of 12 birds showed exclusive titres or a bias towards HPAI virus, seven to LPAI virus and seven remained ambiguous [24]. VN assays confirmed the presence of HPAI H5 clade 2.3.4.4-specific antibodies in 14/18 sera from October 2016 onwards and 1/2 from 1 March 2016. High cross-reactivity patterns and low initial titres in both assays showed that specifying biases towards one of the different HPAI H5 clades is very difficult. Further optimisation and validation of the assays are required to provide rough estimates of the seropositivity in subsequent years. Preliminary comparisons between the winters using the same HI assay starting from the 2014/15 winter show an outbreak-related incidence of HPAI H5 clade 2.3.4.4-specific antibodies of 0% before 2014, rising to 4.6% during the first outbreak of HPAI H5N8 virus, decreasing to 3.5% in the 2015/16 winter and rising to 4.2% in the 2016/17 winter. Despite a similar antibody incidence between both outbreak periods, an apparent decreasing antibody incidence in two species detected throughout all three screening periods (Eurasian wigeons and mute swans) can be observed. This might be a consequence of differences in timing in peak prevalence between the first wave in 2014, with a very limited number of wild birds detected with a HPAI H5N8 infection (i.e. local virus amplification) [27,28] but high antibody incidence, and the current second wave, with substantial local virus replication and lower incidence of antibodies. These data could suggest that virus amplification in wigeons in 2014/15 took place before arrival of these birds in the Netherlands, whereas in 2016/17 virus amplification primarily took place within the Netherlands resulting in associated die-offs [14,16]. Unfortunately, we were unable to collect sera from wigeons late in the season in 2016/17 to confirm increasing antibody incidence. However, the mallards that were tested later in the outbreak (February 2017) showed an increase in antibody incidence after a peak in virus detections a few weeks earlier compared with those tested earlier in the outbreak (November–December 2016).

Recently, clade 2.3.4.4 H5N6 viruses started to circulate in both poultry and wild birds in south-east Asian counties [29] after their original detection in China [30], resembling HPAI H5N8 dispersion of 2014. In contrast to HPAI H5N8 viruses, these H5N6 viruses have caused sporadic human infections, including fatalities [31]. Hence it will be important to monitor the movements of these viruses by intense monitoring of wild bird populations in the coming winter seasons. In terms of multiple

Table 7

Overview of highly pathogenic avian influenza H5 clade 2.3.4.4-specific antibody incidence in the Netherlands based on haemagglutination inhibition assays starting from the first wave of this virus in 2014/2015 up to February 2017

Species	2014/15 a	2015/16 b	2016/17 c			
	Positive/total	Percentage	Positive/total	Percentage	Positive/total	Percentage
Eurasian wigeon	12/78	15.4%	5/73	6.8%	3/104	2.9%
Lesser white-fronted goose	1/3	33.3%	0	U	0	U
Mute swan	29/88	33.0%	5/24	20.8%	3/24	12.5%
Common coot	1/84	1.2%	1/22	4.5%	0/35	0%
Black-headed gull	0/262	0.0%	0/31	U	1/88	1.1%
Mallard	0/93	0.0%	0/18	U	1/72	15.3%
Egyptian goose	0/62	0.0%	1/28	3.6%	0/10	0%
Total	43/940	4.6%	12/347	3.5%	18/431	4.2%

U: unknown.
a Data previously published [10].
b Data (partly) previously published [10] and supplemented with Eurasian wigeon data from this study (n = 28) from 1 March 2016.
c Data obtained in the current study from 23 October 2016 to 8 February 2017.
intracontinental spread of HPAI H5 viruses, global outbreaks were preceded by detections on breeding sites in Russia (Uvs-Nuur Lake district) and China (Qinghai Lake) after their initial detections in south-east Asia [11,32-35]. Increasing global collaborations and performing annual targeted active surveillance in China and on Russian breeding sites, and in Europe as autumn migration starts, will be important to provide early warning signals of HPAI virus dissemination.

Acknowledgements

The authors thank Anne van der Linden, Judith Guldemeester, Stefanie Vester, Sevgi Seven-Deniz, Celine Sweeney, Rob Beerens, Manon Bridé, Suzan Pas, Miranda de Graaf and Dennis de Meulder for providing technical assistance. We gratefully acknowledge Teunis en Joke de Vaal, Bert Pellegrin, Jan Berkouwer, Arie Keijzer, Jan en Lilian Slijkerman, Leon Kelder, Peter de Vries, Manon Kaandorp, Hans Zantinge, Jan Beekman, Alwin Hut, Peter Volten, Harma Scholten, Evert-Jan Epping, Ton Eggenhuizen, Henk Koffijberg, Cor van Aart, Henk ten Klooster, Sophie Brasseur, Sjoerd Dirksen, Fred Cottaar, Maarten van Kleewee, Jose Verbeek, Jan Veggelin, Teja Curk, Chiel Boom, Martijn van der Sluijs, Kees Oosterbeek, Tijs van den Berg, Boena van Noorden, Jan Biemans, Rinus van Engelen, Jok van Bijnen, Peter van Run, Jan Vennink, Mardik Leopold, Roy Slaterus, Marko Cortel, Mariette Smit, Mr. Bronk, Jan van der Winden and the Kreupel tern research group for their involvement in obtaining the clinical samples. Last, we thank Ger van der Water for excellent logistical assistance.

We gratefully acknowledge the originating and submitting laboratories of the sequences from GISAID’s EpiFlu Database on which this research is based. All submitters of data may be contacted directly via the GISAID website (www.gisaid.org). This work was supported by The Dutch Ministry of Economic Affairs, Horizon 2020 project COMPARE and NIAID/NIH contract HHSN272201400008C.

Conflict of interest

None declared.

Authors’ contributions

MP: performing serological assays, compiling the data and drafting the manuscript; TB and SV: excellent technical assistance. We gratefully acknowledge Teunis en Joke de Vaal, Bert Pellegrin, Jan Berkouwer, Arie Keijzer, Jan en Lilian Slijkerman, Leon Kelder, Peter de Vries, Manon Kaandorp, Hans Zantinge, Jan Beekman, Alwin Hut, Peter Volten, Harma Scholten, Evert-Jan Epping, Ton Eggenhuizen, Henk Koffijberg, Cor van Aart, Henk ten Klooster, Sophie Brasseur, Sjoerd Dirksen, Fred Cottaar, Maarten van Kleewee, Jose Verbeek, Jan Veggelin, Teja Curk, Chiel Boom, Martijn van der Sluijs, Kees Oosterbeek, Tijs van den Berg, Boena van Noorden, Jan Biemans, Rinus van Engelen, Jok van Bijnen, Peter van Run, Jan Vennink, Mardik Leopold, Roy Slaterus, Marko Cortel, Mariette Smit, Mr. Bronk, Jan van der Winden and the Kreupel tern research group for their involvement in obtaining the clinical samples. Last, we thank Ger van der Water for excellent logistical assistance.

We gratefully acknowledge the originating and submitting laboratories of the sequences from GISAID’s EpiFlu Database on which this research is based. All submitters of data may be contacted directly via the GISAID website (www.gisaid.org). This work was supported by The Dutch Ministry of Economic Affairs, Horizon 2020 project COMPARE and NIAID/NIH contract HHSN272201400008C.

Conflict of interest

None declared.

Authors’ contributions

MP: performing serological assays, compiling the data and drafting the manuscript; TB and SV: excellent technical assistance. We gratefully acknowledge Teunis en Joke de Vaal, Bert Pellegrin, Jan Berkouwer, Arie Keijzer, Jan en Lilian Slijkerman, Leon Kelder, Peter de Vries, Manon Kaandorp, Hans Zantinge, Jan Beekman, Alwin Hut, Peter Volten, Harma Scholten, Evert-Jan Epping, Ton Eggenhuizen, Henk Koffijberg, Cor van Aart, Henk ten Klooster, Sophie Brasseur, Sjoerd Dirksen, Fred Cottaar, Maarten van Kleewee, Jose Verbeek, Jan Veggelin, Teja Curk, Chiel Boom, Martijn van der Sluijs, Kees Oosterbeek, Tijs van den Berg, Boena van Noorden, Jan Biemans, Rinus van Engelen, Jok van Bijnen, Peter van Run, Jan Vennink, Mardik Leopold, Roy Slaterus, Marko Cortel, Mariette Smit, Mr. Bronk, Jan van der Winden and the Kreupel tern research group for their involvement in obtaining the clinical samples. Last, we thank Ger van der Water for excellent logistical assistance.

We gratefully acknowledge the originating and submitting laboratories of the sequences from GISAID’s EpiFlu Database on which this research is based. All submitters of data may be contacted directly via the GISAID website (www.gisaid.org). This work was supported by The Dutch Ministry of Economic Affairs, Horizon 2020 project COMPARE and NIAID/NIH contract HHSN272201400008C.

Conflict of interest

None declared.

Authors’ contributions

MP: performing serological assays, compiling the data and drafting the manuscript; TB and SV: excellent technical assistance. We gratefully acknowledge Teunis en Joke de Vaal, Bert Pellegrin, Jan Berkouwer, Arie Keijzer, Jan en Lilian Slijkerman, Leon Kelder, Peter de Vries, Manon Kaandorp, Hans Zantinge, Jan Beekman, Alwin Hut, Peter Volten, Harma Scholten, Evert-Jan Epping, Ton Eggenhuizen, Henk Koffijberg, Cor van Aart, Henk ten Klooster, Sophie Brasseur, Sjoerd Dirksen, Fred Cottaar, Maarten van Kleewee, Jose Verbeek, Jan Veggelin, Teja Curk, Chiel Boom, Martijn van der Sluijs, Kees Oosterbeek, Tijs van den Berg, Boena van Noorden, Jan Biemans, Rinus van Engelen, Jok van Bijnen, Peter van Run, Jan Vennink, Mardik Leopold, Roy Slaterus, Marko Cortel, Mariette Smit, Mr. Bronk, Jan van der Winden and the Kreupel tern research group for their involvement in obtaining the clinical samples. Last, we thank Ger van der Water for excellent logistical assistance.
21. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61(6):1061-7. https://doi.org/10.1093/sysbio/sys062 PMID: 22780991

22. Hirst GK. Studies of Antigenic Differences among Strains of Influenza a by Means of Red Cell Agglutination. J Exp Med. 1943;78(5):407-23. https://doi.org/10.1084/jem.78.5.407 PMID: 19871338

23. Richard M, Herfst S, van den Brand JM, Lexmond P, Bestebroer TM, Rimmelzwaan GF, et al. Low Virulence and Lack of Airborne Transmission of the Dutch Highly Pathogenic Avian Influenza Virus H5N8 in Ferrets. PLoS One. 2015;10(6):e0129827. https://doi.org/10.1371/journal.pone.0129827 PMID: 26090682

24. Gilbert M, Koel BF, Bestebroer TM, Lewis NS, Smith DJ, Fouchier RA. Serological evidence for non-lethal exposures of Mongolian wild birds to highly pathogenic avian influenza H5N1 virus. PLoS One. 2014;9(12):e113569. https://doi.org/10.1371/journal.pone.0113569 PMID: 25502318

25. Selim AA, Erfan AM, Hagag N, Zanaty A, Samir AH, Samy M, et al. Highly Pathogenic Avian Influenza Virus (H5N8) Clade 2.3.4.4 Infection in Migratory Birds, Egypt. Emerg Infect Dis. 2017;23(6):1048-51. https://doi.org/10.3201/eid2306.162056 PMID: 28918040

26. Keawcharoen J, van Riel D, van Amerongen G, Bestebroer T, Beyer WE, van Lavieren R, et al. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis. 2008;14(4):600-7. https://doi.org/10.3201/eid1404.071016 PMID: 18394278

27. World Organisation for Animal Health (OIE). Update on highly pathogenic avian influenza in animals (types H5 and H7). Paris: OIE; 2014. Available from: http://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2014/

28. World Organisation for Animal Health (OIE). Update on highly pathogenic avian influenza in animals (types H5 and H7). Paris: OIE; 2015. Available from: http://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2015/

29. Si YJ, Lee IW, Kim EH, Kim YI, Kwon HI, Park SJ, et al. Genetic characterisation of novel, highly pathogenic avian influenza (H5N6) viruses isolated in birds, South Korea, November 2016. Euro Surveill. 2017;22(1):30434. https://doi.org/10.2807/1560-7917.ES.2017.22.1.30434 PMID: 28079520

30. Bi Y, Mei K, Shi W, Liu D, Yu X, Gao Z, et al. Two novel reassortants of avian influenza A (H5N6) virus in China. J Gen Virol. 2015;96(Pt 5):975-81. https://doi.org/10.1099/vir.0.000056 PMID: 25604926

31. Zhang Y, Chen M, Huang Y, Zhu W, Yang L, Gao L, et al. Human infections with novel reassortant H5N6 avian influenza viruses in China. Emerg Microbes Infect. 2017;6(6):e50. https://doi.org/10.1038/emi.2017.38 PMID: 28588293

32. Sharshov K, Silko N, Sousloparov I, Zaykovskaya A, Shestopalov A, Drozdov I. Avian influenza (H5N1) outbreak among wild birds, Russia, 2009. Emerg Infect Dis. 2010;16(2):349-51. https://doi.org/10.3201/eid1602.090974 PMID: 2013582

33. Marchenko VY, Susloparov IM, Kolosova NP, Goncharova NI, Shipovalov AV, Durymanov AG, et al. Influenza A(H5N8) virus isolation in Russia, 2014. Arch Virol. 2015;160(11):2857-60. https://doi.org/10.1007/s00705-015-2570-4 PMID: 26306756

34. Marchenko VY, Susloparov IM, Komissarov AB, Fadeev A, Goncharova NI, Shipovalov AV, et al. Reintroduction of highly pathogenic avian influenza A/H5N8 virus of clade 2.3.4.4. in Russia. Arch Virol. 2017;162(5):1381-5. https://doi.org/10.1007/s00705-017-3246-z PMID: 28138776

35. Li M, Liu H, Bi Y, Sun J, Wong G, Liu D, et al. Highly Pathogenic Avian Influenza A(H5N6) Virus in Wild Migratory Birds, Qinghai Lake, China. Emerg Infect Dis. 2017;23(4):637-41. https://doi.org/10.3201/eid2304.161866 PMID: 28169827

License and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence, and indicate if changes were made.

This article is copyright of the authors, 2018.