Dissipation-assisted preparation of steady spin-squeezed states of SiV centers

Jia-Qiang Chen, Yi-Fan Qiao, Xing-Liang Dong, Xin-Lei Hei, and Peng-Bo Li*
Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices,
Department of Applied Physics, Xi’an Jiaotong University, Xi’an 710049, China
(Dated: October 7, 2021)

We propose an efficient scheme for generating spin-squeezed states at steady state in a spin-mechanical hybrid system, where an ensemble of SiV centers are coupled to a strongly damped nanomechanical resonator. We show that, there exists a collective steady state in the system, which is exactly formed by the collective spin states plus the zero excitation state of the mechanical mode. The generation of the steady spin-squeezed state is based on a dissipative quantum dynamical process in which the mechanical dissipation plays a positive role but without destroying the target state. We demonstrate that the spin-squeezed steady state can be deterministically prepared via dissipative means, with the optimal spin squeezing up to $4/N$ in the ideal case, where N is the number of spins. This work provides a promising platform for quantum information processing and quantum metrology.

I. INTRODUCTION

Spin-squeezed states are quantum correlated states where the fluctuation of one component of the total spin is suppressed below the standard quantum limit. It has been proved that spin-squeezed states are closely related to entangled states [1–5], which lie at the heart of quantum information [6–8] and quantum metrology [9–14]. For these reasons, various schemes for generating spin-squeezed states have been proposed, for instance, the schemes based on nondemolition measurements [15–18], interactions with squeezed light [19–21], and nonlinear interactions [22–24]. In particular, spin squeezing using the one-axis twisting model has been realized in experiments [25]. Despite the exciting progress, it still faces enormous challenges to generate spin-squeezed states. Specifically, due to the disturbance of the environment, most of these spin-squeezed states are temporary and fragile. Recent works on the generation of target states by “quantum reservoir engineering” [26–30] provide us a new avenue for investigating spin squeezing. By appropriately designing the interactions with the reservoir, the dissipation can play a positive role in steering system into the target state.

Solid defects in diamond including nitrogen-vacancy (NV) [31–42], silicon-vacancy (SiV) [43–53], and germanium-vacancy (GeV) [54] color centers have been extensively studied in recent years. They consist of a substitutional impurity atom replacing the carbon atom and adjacent to vacancies. The color center exhibits excellent optical properties, which makes it easy to manipulate and detect [55–58]. More importantly, it has long coherence time [59–62], which can be used as an excellent qubit and a weak signal detector [63–65]. In addition, the color center embedded in a solid-state device is sensitive to the crystal strain, thus giving rise to a coupling with the mechanical mode. Hybrid systems directly mediated by crystal strain do not require extra structures, thus avoiding the emergence of extra decoherence. Single-crystal diamond, with desirable optical and mechanical properties, is a natural carrier of color centers. Spin-mechanical hybrid quantum systems based on color centers in diamond have been used to produce spin-squeezed states [66–69]. Although mechanical resonators can achieve high quality factors [70–72] with the great progress of nanofabrication techniques, the produced quantum state is still inevitably spoiled by dissipation and decoherence. Therefore, it is highly desirable to prepare persistent and high-quality spin-squeezed states. Note that dissipation-assisted schemes for spin squeezing have been investigated in cavity QED [29] and photonic waveguide systems [36]. However, the spin-phononic hybrid system we considered is fundamentally different from the photonic system. The solid-state phononic device could have important applications in all-phonon quantum information processing and quantum metrology.

In this work, we propose an efficient scheme to generate spin-squeezed states at steady state in a hybrid system, where an ensemble of SiV centers are coupled to a nanomechanical resonator by crystal strain. Because of the excellent optical and strain response of the ground states of the SiV center, it is possible to design two pairs of Raman processes. In the case of large detunings, we can adiabatically eliminate the high energy levels, thus obtaining the desired interactions. We first show that the system possesses a steady squeezed state with no phonon excitations. Under the condition of large dissipations for the mechanical resonator, the mechanical mode will continuously absorb energy from the SiV centers and subsequently decay back to its ground state, steering the spins into a steady squeezed state. This process is verified by numerical simulations. It is important to note that this process does not depend on the initial state of the system. Consider the more realistic case where there exists spin dephasing of SiV centers, and the system gives rise to suppressed spin squeezing. Then, we consider the case of a large number of spins via analytic methods. Ideally, by choosing the appropriate parameters, the spin squeezing can be up to the magnitude of $4/N$. In the presence of
spin dephasing, the squeezing is suppressed. When the particle number N increases, the effect of spin dephasing will be reduced so that the spin squeezing is close to the ideal case. This work presents a useful proposal for generating spin-squeezed states via dissipative means, which may bring abundant applications in quantum information processing and quantum sensing.

II. THE MODEL

As illustrated in Fig. 1(a), the setup under consideration is realized by a doubly clamped nanobeam with an ensemble of embedded SiV centers. Here the diamond samples used in this study have a [001]-oriented top surface, and the beam is along the [110] direction (Y axis). Thus, there are four possible orientations of SiVs - [111], [11$ar{1}$], [1$ar{1}$1], [$ar{1}$11] - in a diamond crystal. We choose the SiVs in z|[111] direction, and the total Hamiltonian is given by

$$H = H_{\text{SiV}} + H_t + H_I + H_d,$$

where the individual terms represent the Hamiltonian of the SiV centers, the mechanical mode of the diamond beam, the strain coupling of the SiV centers to the mechanical mode, and the classical driving, respectively.

For the SiV center, the electronic ground states consist of four spin-orbit degenerate states $|e_x, \downarrow\rangle$, $|e_x, \uparrow\rangle$, $|e_y, \downarrow\rangle$, and $|e_y, \uparrow\rangle$, with spin $S = 1/2$. In the presence of an external magnetic field $\vec{B} = B\hat{z}$, the level structure is affected by the spin-orbit coupling (SO), the Jahn-Teller (JT) effect and Zeeman effect. Thus the Hamiltonian of the SiV center is given by

$$H_{\text{SiV}} = -\lambda_{SO}\vec{L}\cdot\vec{S} + H_{\text{JT}} + f\gamma_LBL_z + \gamma_SBS_z.$$

Here, γ_L and γ_S are the orbital and spin gyromagnetic ratios, respectively. The spin-orbit coupling with the strength $\lambda_{SO}/2\pi \approx 45\text{GHz}$ [73] is much stronger than the other terms. Therefore, we first consider the spin-orbit coupling and treat the JT interaction and Zeeman interaction as disturbance. In the above basis, as the projections of angular momentum L_x, L_y are vanished, the first term is reduced to $-\lambda_{SO}L_zS_z$. The corresponding eigenstates are two doublet states $|e_-, \downarrow\rangle$, $|e_-, \uparrow\rangle$ and $|e_+, \downarrow\rangle$, $|e_+, \uparrow\rangle$, where $|e_\pm\rangle = (|e_x\rangle \pm i|e_y\rangle)/\sqrt{2}$ are the eigenstates of the orbital angular momentum operator L_\pm. Due to the JT interaction strength $\gamma \ll \lambda_{SO}$, we neglect the mixing of energy levels caused by the JT effect and only consider the change of eigenenergy $\omega = \sqrt{\lambda_{SO}^2 + 4\gamma^2}$. As the orbital Zeeman interaction is suppressed by $f \approx 0.1$, it can be neglected and the Zeeman effect simply splits the spin states with $\omega_B = \gamma_S B$. Thus, the Hamiltonian for a single SiV center reads

$$H_{\text{SiV}} = \omega_B|2\rangle\langle 2| + (\omega + \omega_B)|4\rangle\langle 4|.$$

Besides, we add two controlled fields $\Omega_1/2$ with frequencies $\omega_1/2$ to drive the transitions $|1\rangle \rightarrow |4\rangle$, $|3\rangle \rightarrow |4\rangle$, respectively. So, the corresponding Hamiltonian is given by

$$H_d = \Omega_1|4\rangle\langle 1|e^{-i\omega_1t} + \Omega_2|3\rangle\langle 2|e^{-i\omega_2t} + \text{H.c.}.$$}

For the mechanical resonator, we choose a doubly clamped diamond beam with a length L, width w, and thickness t, satisfying $L \gg w, t$. In the case of small beam displacements, the strain $\epsilon = \epsilon_0(a + a^*)$ is linear, where ϵ_0 is strain induced by the zero-point motion of the beam, and $a^+(a)$ is the creation (annihilation) operator for the phonon mode with frequency ω_0. The corresponding Hamiltonian is

$$H_t = \omega_0a^+a.$$}

The strain results in the mixture of the orbital states [73, 74] (see Appendix A). In the rotating-wave approximation, the Hamiltonian for the strain coupling reads

$$H_I = g(a^+J_- + aJ_+),$$}

where $J_\pm = (J_y)^\dagger = |3\rangle\langle 3| + |4\rangle\langle 4|$ is the spin-conserving lowering operator. Finally, combine the Hamiltonian of SiV and mechanical mode into free Hamiltonian $H_0 = H_{\text{SiV}} + H_t$.

The key idea of this scheme is to design an appropriate interaction and bring the system into the desired state by means of dissipations. We first consider the case where there is only mechanical dissipation. Assuming that the characteristic time scale of the system Hamiltonian is much longer than the reservoir correlation time, the environment can therefore be considered as a memoryless reservoir. So we can get the Markovian master equation

$$\frac{d\rho}{dt} = -i[H, \rho] + \kappa D[a]\rho,$$}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1}
\caption{(Color online) (a) A diamond nanomechanical resonator with an ensemble of embedded SiV centers. The length, width and thickness of the beam are $L, w,$ and t, respectively. Local perpendicular strain induced by the bending of the beam couples the SiV centers to the mechanical oscillator. Two sets of coordinates: (x, y, z) corresponds to the internal basis of the SiV center, and (X, Y, Z) corresponds to the axes of the beam. (b) The level structure of the ground state of a SiV center. Two time-dependent microwave driving fields induce the Raman processes between $|3\rangle \leftrightarrow |2\rangle$, and $|4\rangle \leftrightarrow |1\rangle$.}
\end{figure}
where $D[\alpha]\rho = 2\rho\rho^\dagger - \rho\rho^\dagger - \rho^\dagger\rho$ is the standard Lindblad operator and κ is the mechanical dissipation rate.

To get more insight into the underlying physics, we first apply several transformations to the Hamiltonian to get an effective Hamiltonian. First, in a rotating frame where the classical fields are not oscillating in time just by the following unitary operation $U_R = e^{i\Omega t}$, with

$$R = \omega_1|4\rangle\langle 4| + \omega_2|3\rangle\langle 3|,$$

(8)

the Hamiltonian for a single SiV center becomes $H^R = U_RHU_R^\dagger + iU_R^\dagger U_R$.

Next, in the case of large detunings $\Delta \gg \Omega_1/2$, we apply the Schrieffer-Wolff (SW) transformation [73] $U_S = e^S$ with $S = \frac{i}{\Delta}(|4\rangle\langle 1| - |1\rangle\langle 4|) + \frac{i}{\Delta^2}(|3\rangle\langle 2| - |2\rangle\langle 3|)$ and $\Delta = \omega + \Delta_B - \omega_1 = \omega - \Delta_B - \omega_2$, which satisfy $[H_0^R, S] = 0$. Keeping the terms up to $(\Delta/\Delta_B)^2$ and ignoring the energy shifts, we obtain

$$H^S = H_0^R + \frac{1}{2}[H^R, S] + e^S H^R e^{-S}.$$

(9)

Finally, turning into the interaction picture by performing the unitary transformation $U_I = e^{-iH_0^R t}$, we have the following Hamiltonian

$$H_I = g a^+(|1\rangle\langle 3| e^{-i\Delta t} + \frac{\Omega_1}{\Delta} (|4\rangle\langle 3| e^{i2\omega B t} - \frac{\Omega_2}{\Delta} |1\rangle\langle 2|))$$

$+ ga^+(|2\rangle\langle 4| e^{-i\Delta t} + \frac{\Omega_2}{\Delta} (|3\rangle\langle 4| e^{-i2\omega B t} - \frac{\Omega_1}{\Delta} |2\rangle\langle 1|))$

$+ \text{H.c.}$.

(10)

Under the condition $\Delta, \omega_B \gg g, \Omega_1/2$, the fast oscillating terms $e^{\pm i\Delta t}$ and $e^{\pm i2\omega_B t}$ can be completely discarded in the rotating-wave approximation. In this case, we implement the standard Raman-transition process with the Λ-type and can eliminate the high energy levels under the large detuning condition. Therefore, the states $|3\rangle, |4\rangle$ can be safely eliminated to obtain the effective Hamiltonian

$$H_{\text{eff}} = \frac{g\Omega}{\Delta} a^+(\sin \theta S_+ + \cos \theta S_-) + \text{H.c.},$$

(11)

where $\sin \theta = \Omega_1/\Omega$ with $\Omega^2 = \Omega_1^2 + \Omega_2^2$ and $\sigma_- = (\sigma_+)^\dagger = |1\rangle\langle 2|$. We further introduce the collective operators $S_+ = (S_+)^\dagger = \sum_j \sigma_j^+$ and $S_z = \frac{1}{2} \sum_j (|2\rangle\langle 2| - |1\rangle\langle 1|)$, which satisfy the usual angular momentum commutation relations

$$[S_+, S_-] = 2S_z, [S_z, S_\pm] = \pm S_\pm.$$

(12)

For an ensemble of SiV centers, the sum runs over all SiV centers, and we obtain the total effective Hamiltonian

$$H_{\text{eff}} = \frac{g\Omega}{\Delta} a^+(\sin \theta S_+ + \cos \theta S_-) + \text{H.c.}$$

$$= \frac{g\Omega}{\Delta} a^+ D_- + \text{H.c.},$$

(13)

where $D_- = D_-^\dagger = \sin \theta S_+ + \cos \theta S_-$. The coupling $g\Omega/\Delta$ is therefore an effective Rabi frequency. Meanwhile, the effective master equation is given by

$$\frac{d\rho}{dt} = -i[H_{\text{eff}}, \rho] + \kappa D[\alpha] \rho.$$

(14)

The Hamiltonian H_{eff} describes the transition between the states $\{|1\rangle, |2\rangle\}$, creating or annihilating a phonon, while the Lindblad term will drive the transition from the phonon state $|n\rangle$ to $|n-1\rangle$. Hence, the combined effect of the unitary and dissipative dynamics drives the system to the state $|\Psi\rangle = |n\rangle|0\rangle$, i.e., the tensor product of the steady state $|\psi\rangle$ of SiV centers and the phonon vacuum state $|0\rangle$. Since the steady state satisfies $d\rho/dt = 0$, the steady state of SiV centers should obey the equation

$$D_- |\psi\rangle = 0.$$

(15)

Assuming the total spin of the system $S = N/2$, one can expand the steady state in the basis of the eigenstates of S_z as $|\psi\rangle = \sum_m c_m |S = N/2, S_z = -N/2 + m\rangle$. By solving the equation (15), we get the recursion relation between c_m and c_{m+2}. Assuming $c_1 = 0$, we only have the even terms left

$$c_{m=2n} = (-1)^n \tan^2 \left(\frac{N/2}{n} \right) \left(\frac{N}{2n} \right)^{-1/2} c_0.$$

(16)

Here $(\delta)_m = \binom{N/2}{m} / \binom{N}{m}$ are the binomial coefficients and the normalization condition of the state $\sum_m |c_m|^2 = 1$ determines the value of c_0. Note that the mean spin of the steady state is along the $-z$ direction, and the fluctuation $\langle \Delta S_z^2 \rangle$ is suppressed. This is exactly a steady spin-squeezed state that we expect. To quantify the degree of squeezing, we use the spin squeezing parameter introduced by Wineland et al [76, 77]. For this system, the spin squeezing parameter reduces to

$$\xi^2 = \frac{N \langle S_z^2 \rangle}{\langle S_z^2 \rangle^2}.$$

(17)

III. NUMERICAL SIMULATIONS

If the mechanical dissipation is sufficiently large, the mechanical mode can be adiabatically eliminated. The reduced master equation for the SiV centers is

$$\frac{d\rho_N}{dt} = \gamma D[D_-] \rho_N.$$

(18)
where $\gamma = g^2 \Omega^2 / \Delta^2 \kappa$ is the collective decay rate induced by mechanical dissipation.

Fig. 2(a) shows the results given by equation (7), (14) and (18). We can find that the values for the squeezing parameter calculated from the effective Hamiltonian (13) are almost the same as those obtained from the Hamiltonian (1), demonstrating the reasonability of adiabatic eliminations of the high energy levels. Furthermore, we find that the squeezing parameter at the steady state is the same for the two cases obtained from equation (14) and equation (18), respectively. This demonstrates that, in the large dissipation limit, the phononic degree of freedom can be adiabatically eliminated from the dynamics. Fig. 2(b) shows the results for the squeezing parameter obtained from equation (14) with different initial states. The system almost simultaneously evolves into the unique steady spin-squeezed state independent of the initial state. Therefore, we can conclude that equation (18) approximately equals to equation (14) in the large dissipation limit. Subsequent discussions will be uniformly based on equation (18).

Assuming the initial state as $|N/2, -N/2\rangle$, we plot the spin squeezing parameter of the numerical solution [78] compared with the steady state $|\psi\rangle$ as a function of $\tan \theta = \Omega_1 / \Omega_2$ in Fig. 3. As expected, the numerical results coincides with the steady state case, indicating that the system evolves to the desired spin-squeezed state.

When $\tan \theta = 0$, the spin squeezing parameter $\xi^2 = 1$ is the standard quantum limit (SQL) corresponding to a spin coherence state. When $\tan \theta < 1$, the numerical result completely coincides with the steady state case, and the spin squeezing parameter is less than 1, indicating that the steady state is a spin-squeezed state. The degree of spin squeezing can be enhanced continuously with the increasing of $\tan \theta$. When $\tan \theta \to 1$, there is a large deviation between these two cases, since the evolution time of the system will increase rapidly and become infinite at $\tan \theta = 1$. This is due to the fact that the evolution rate is proportional to $\cos(2\theta)$, which will be seen in the following analysis.

As the Hamiltonian commutes with the total spin S^2 and the master equation doesn’t break the conservation of total spin, the total spin will be a constant of motion. Therefore, this steady squeezed state could be produced independent of the z component of the angular momentum. The time evolution of the spin squeezing parameter for an ensemble of spins with different S_z is shown in Fig. 4. When $t = 0$, all the spin squeezing parameters $\xi^2 \geq 1$, which means that they are not squeezed at the initial time. Then under the assistance of mechanical dissipation, the system starting from different initial states is steered into the same steady squeezed state. It indicates that one total spin corresponds to a common steady state. Compared to Fig. 4(a), Fig. 4(b) gives a reduced squeezing parameter, which is exactly the result shown in Fig. 3. In addition, since the effective decay rate decreases as $\tan \theta$ increases, the evolution time increases.

Now we consider the more realistic case, where the dephasing of SiV centers with a rate Γ is taken into account. The corresponding master equation can be obtained as

$$\frac{d\rho_N}{dt} = \gamma \mathcal{D}[D_-] \rho_N + \Gamma \sum_j \mathcal{D}[\sigma_j^z] \rho_N. \tag{19}$$

Where $\mathcal{D}[\sigma_j^z] \rho_N$ represents the relaxation process with rate γ and $\mathcal{D}[D_-] \rho_N$ describes the spin dephasing breaks the dependence on the total spin.

Fig. 3. (Color online) The spin squeezing parameter as a function of $\tan \theta$ with $N = 100$ spins.

Fig. 4. (Color online) Time evolution of the squeezing parameter ξ^2 for initial states with different m_z. The parameters are $N = 100$, (a) $\tan \theta = 0.2$ and (b) $\tan \theta = 0.9$.

Fig. 5. (Color online) Time evolution of the squeezing parameter ξ^2 starting from initial states with different total spins. Here the parameters are $N = 8$, $\tan \theta = 0.2$. (a) $\Gamma = 0$. The steady state does depend on the total spins of the initial state. (b) $\Gamma = 0.1\gamma$. The spin dephasing breaks the dependence on the total spin.
squeezing parameter ξ^2, about 0.67.

In Fig. 5(b), the spin dephasing with the rate $\Gamma = 0.1 \gamma$ is taken into account. With the same initial conditions as in Fig. 5(a), the spin squeezing parameters eventually evolve to the same value, which implies that spin dephasing couples different total spin-S manifolds and the system has a unique steady state independent of the total spins. Compared to Fig. 5(a), the first part of the curves are remarkably similar, where the collective decay induced by phonon dominates the entire evolution. As time goes on, although the dephasing rate is very small, it still shows a great influence: a steady spin-squeezed state completely independent of the initial state is obtained. If we focus on the case with the total spin $S = N/2$, the existence of spin dephasing reduces the degree of squeezing and seems to compete with the squeezing process caused by the phonon decay. But the dependence of the system on the initial state is completely eliminated. In addition, when using a spin ensemble to prepare the spin squeezing, the degree of squeezing usually increases with the number of particles.

IV. APPROXIMATE ANALYTIC SOLUTIONS

In order to measure the degree of squeezing in the case of large particle numbers, it is better to find the expression for the spin squeezing parameter under proper approximations. Note that the spin squeezing parameter ξ^2 is given by the ratio of $\langle S_z^2 \rangle$ to $\langle S_z \rangle^2$, and we first neglect spin dephasing and solve for the time evolution of $\langle S_z^2 \rangle$ and $\langle S_z \rangle$ from the equation (18)

$$\frac{d\langle S_z \rangle}{dt} = -2\gamma(\cos^2 \theta \langle S_z \rangle - \sin^2 \theta \langle S_z \rangle) \quad (20)$$

$$\frac{d\langle S_z^2 \rangle}{dt} = -2\gamma(\sin \theta - \cos \theta) \langle S_z \rangle \langle S_z \rangle \langle S_z \rangle + S_z S_z + S_z S_z + H.c. \rangle. \quad (21)$$

Due to the main spin along $-z$ axis, we use linearization $\langle S_z \rangle \approx -N/2$ and define the small fluctuation as $\delta S_z = S_z + N/2$ to get the simplified equations

$$\frac{d\langle \delta S_z \rangle}{d\tilde{t}} = -2N\gamma\cos(2\theta) [\langle \delta S_z \rangle - \frac{\sin^2 \theta}{\cos(2\theta)}] \quad (22)$$

$$\frac{d\langle S_z^2 \rangle}{dt} = -2N\gamma\cos(2\theta) \{\langle S_z^2 \rangle - \frac{N[1 - \sin(2\theta)]}{4\cos(2\theta)} \}. \quad (23)$$

We can see that they decay exponentially in time, and $\gamma_{eff} = 2N\gamma\cos(2\theta)$ is the effective rate. When the system reaches steady state, the expectation values of the two operators will not change. We can substitute the steady state solution of the equations into equation (17)

$$\xi^2 = \frac{N^2[1 - \sin(2\theta)]\cos(2\theta)}{[N\cos(2\theta) - 2\sin^2 \theta]^2}. \quad (24)$$

In Fig. 6, we compare this approximate expression with the exact solution of the steady state $|\psi\rangle$. The approximation is valid only if $\tan \theta$ is small. When $\tan \theta$ gets large, the approximate result gradually deviates and even breaks the Heisenberg limit at $\tan \theta = 1$. The deviation comes from two reasons: (1) with the increase of $\tan \theta$, the probability of occupying the highly excited states increases, as shown in the numerical solution. That means $\langle S_z \rangle \rightarrow 0$, resulting in a rapid increase of spin squeezing parameter. (2) at $\tan \theta \sim 1$, the approximate result gives rise to $\langle S_z \rangle = \frac{\sin^2 \theta}{\cos(2\theta)} - \frac{N}{2} \rightarrow \infty$, an infinite denominator, which drives the spin squeezing parameter down to zero.

![FIG. 6](Color online) Spin squeezing ξ^2 for (a) $N = 10$ and (b) $N = 100$ spins. Exact solution of steady state (solid red line) and the analytic approximate solution (dashed blue line).
where $\eta = \gamma/\Gamma$ is the single spin cooperativity. Note that the spin squeezing parameter should be equal to $4/N\eta$ when $N\eta$ is large. We present the calculation of the spin squeezing parameter with different η in Fig. 8. We find that the dephasing only slightly affects the spin squeezing parameter for a wide parameter range. It competes with the squeezing process induced by the mechanical dissipation. However, as the value of $\tan \theta$ increases, the dephasing effect will be significant. The spin squeezing parameter has a minimum value corresponding to the optimal squeezing in the presence of dephasing. By increasing the number of SiV centers and decreasing the dephasing rate, the system will work very well even for large $\tan \theta$.

![Figure 7](image1.png)

Fig. 7. (Color online) (a) Time evolution of $\delta S_\eta/N$ for different $\tan \theta$ with $N = 100$. (b) The optimal squeezing ξ_0^2 as a function of N. The red curve corresponds to the analytic approximate solution with $\tan^2 \theta = \frac{N}{N+10}$. The blue curve corresponds to $4/N$.

In conclusion, we have proposed a scheme to generate steady spin-squeezed state in a spin-mechanical hybrid system. We find a collective steady state in the system, which is exactly formed by the collective spin states plus the zero excitation state of the mechanical mode. In the case of large detuning, the system of total spin $S = N/2$ can be steered to a steady squeezed state with the assistance of mechanical dissipation. In the ideal case, the squeezing $\xi_0^2 \sim 4/N$ can be achieved. In the presence of spin dephasing, the spin squeezing is reduced. The generation of the steady spin-squeezed state is not dependent on the initial state of the system and the degree of spin squeezing can reach the result in the ideal case as N increases. This spin-mechanical system provides a promising platform for studying the nonclassical state.

![Figure 8](image2.png)

Fig. 8. (Color online) The analytic approximate solution as a function of $\tan \theta$ in the presence of dephasing for (a) $N = 100$ and (b) $N = 1000$ spins.

VI. CONCLUSION

In conclusion, we have proposed a scheme to generate steady spin-squeezed state in a spin-mechanical hybrid system. We find a collective steady state in the system, which is exactly formed by the collective spin states plus the zero excitation state of the mechanical mode. In the case of large detuning, the system of total spin $S = N/2$ can be steered to a steady squeezed state with the assistance of mechanical dissipation. In the ideal case, the squeezing $\xi_0^2 \sim 4/N$ can be achieved. In the presence of spin dephasing, the spin squeezing is reduced. The generation of the steady spin-squeezed state is not dependent on the initial state of the system and the degree of spin squeezing can reach the result in the ideal case as N increases. This spin-mechanical system provides a promising platform for studying the nonclassical state.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China under Grant No. 11774285, and Natural Science Basic Research Program of Shaanxi (Program No. 2020JC-02).
Appendix A: Strain coupling

The detailed derivation for the strain coupling between SiV centers and mechanical resonators has been discussed in Refs [73, 74, 80]. Here we follow the discussions and present the key results. In what follows, we use two sets of coordinates: the internal basis of the SiV center and the axes of the diamond crystal (X||[110], Y||[110], Z||[001]). There are four possible directions of the color center inlaid on the diamond sample, [111], [111], [111] and [111] respectively. For a long and thin beam, the bending modes can be described by elasticity theory and Euler-Bernoulli flexure theory. The wave equation for beam deflections of the neutral axis obeys

\[EI \frac{\partial^4 U}{\partial Y^4} = -\rho A \frac{\partial^2 U}{\partial t^2}, \]

(A1)

where \(U \) represents the beam deflection in the Z direction and \(Y \) is along the length of the beam. Here, \(E \approx 1.05 \text{TPa} \) is Young’s modulus of diamond, \(I = wt^3/12 \) is the moment of inertia of the beam, \(\rho \approx 3500 \text{kg} \cdot \text{m}^{-3} \) is the mass density of diamond, and \(A = wt \) is the cross sectional area in the transverse plane. Solutions of the above equation for a doubly clamped beam take the form \(U_n(t,Y) = u_n(Y)e^{-i\omega_n t} \). According to the boundary conditions \(u(0) = u'(0) = u(L) = u'(L) = 0, u_n(Y) \) is given by

\[u_n(Y) = \cos k_n Y - \cosh k_n Y - \frac{\cos k_n L - \cosh k_n L}{\sin k_n L - \sinh k_n L} \times (\sin k_n Y - \sinh k_n Y). \]

(A2)

The wavenumbers \(k_n \) satisfy \(\cos k_n L \cosh k_n L = 1 \), and the eigenfrequencies are given by

\[\omega_n = k_n^2 \sqrt{\frac{EI}{\rho A}}. \]

(A3)

We consider the frequency near 46 GHz, which is obtained when \(kL = 67.55 \). For small beam displacements, the strain induced by the beam motion is linear \(\epsilon = \epsilon_0 (a + a^\dagger) \). Here, \(\epsilon_0 \) is the strain induced by the beam zero-point motion and \(a \) is the annihilation operator of the phonon mode. Assuming that the SiV center is located in the midpoint along the beam and away from the neutral axis of the beam, i.e., \(Y = L/2, R_0 \approx t/2 \), the strain induced by the zero point motion of the beam is

\[\epsilon_0 = -R_0 \frac{h}{2\rho A L \omega_n} \frac{\partial^2 u_n(L/2)}{\partial Y^2} \approx 8 \times 10^{-9}. \]

(A4)

In the beam’s basis, the strain tensor is given by

\[\epsilon_b = \begin{bmatrix} -\nu \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & -\nu \epsilon \end{bmatrix}, \]

(A5)

where \(\nu = 0.2 \) is the Poisson ratio. Now we need to transform the above strain tensor from the beam’s basis into the SiV’s basis. For the SiVs oriented along the [111] and [111] direction, the transformed strain tensors are

\[\epsilon_{\parallel}^{[111]} = \begin{bmatrix} \frac{1}{2}(1 - 2\nu)\epsilon & 0 & -\frac{\sqrt{3}}{2}(1 + \nu)\epsilon \\ 0 & -\nu \epsilon & 0 \\ -\frac{\sqrt{3}}{2}(1 + \nu)\epsilon & 0 & \frac{1}{2}(2 - \nu)\epsilon \end{bmatrix}, \]

(A6)

\[\epsilon_{\parallel}^{[111]} = \begin{bmatrix} \frac{1}{2}(1 - 2\nu)\epsilon & 0 & \frac{\sqrt{3}}{2}(1 + \nu)\epsilon \\ 0 & -\nu \epsilon & 0 \\ \frac{\sqrt{3}}{2}(1 + \nu)\epsilon & 0 & \frac{1}{2}(2 - \nu)\epsilon \end{bmatrix}. \]

(A7)

For the SiVs oriented along the [111] and [111] directions, the transformed strain tensors are the same

\[\epsilon_t = \begin{bmatrix} -\nu \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & -\nu \epsilon \end{bmatrix}. \]

(A8)

By projecting the strain tensor onto the irreducible representation of \(D_{3d} \), the strain coupling within the framework of linear elasticity theory can be given by

\[H_{\text{strain}} = \sum_{e} V_e \epsilon_e, \]

(A9)

where \(e \) runs over the irreducible representations. It can be shown that the only contributing representations are the one-dimensional representation \(A_{1g} \) and the two-dimensional representation \(E_g \).

\[\epsilon_{A_{1g}} = t_{\parallel}(\epsilon_{xx} + \epsilon_{yy}) + t_{\perp}\epsilon_{zz}, \]

\[\epsilon_{E_g} = d(\epsilon_{xx} - \epsilon_{yy}) + f\epsilon_{xz}, \]

\[\epsilon_{E_g} = -2de_{xy} + f\epsilon_{yz}, \]

(A10)

where \(t_{\parallel}, t_{\perp}, d, f \) are four strain-susceptibility parameters. It is valid to drop the \(f \) terms due to \(f/d \sim 10^{-4} \). The effects of these strain components on the electronic states are described by

\[V_{A_{1g}} = |e_x\rangle\langle e_x| + |e_y\rangle\langle e_y| \]

\[V_{E_g} = |e_x\rangle\langle e_x| - |e_y\rangle\langle e_y| \]

\[V_{E_g} = |e_x\rangle\langle e_y| + |e_y\rangle\langle e_x|. \]

(A11)

Since \(V_{A_{1g}} \) is the identity matrix, the \(\epsilon_{A_{1g}} \) term only gives rise to the uniform energy shift of all states and can be neglected. Finally, we rewrite the strain Hamiltonian in the basis of \(|e_+\rangle, |e_-\rangle \)

\[H_{\text{strain}} = d(\epsilon_{xx} - \epsilon_{yy})(L_+ + L_-), \]

(A12)

where \(L_+ = L_+ = |3\rangle\langle 1| + |2\rangle\langle 4| \) is the orbital raising operator. We find the common form of the coupling for four kinds of SiVs, and the difference is only the strength of the coupling: \(g_0 = \frac{1}{2}(1 + \nu)ed \) and \(g_0 = (1 + \nu)ed \) corresponding to ([111], [111]) and ([111], [111]) orientations. Finally, by using a rotating wave approximation, we get the Hamiltonian in the text

\[H_{\text{strain}} = g a J_+ + H.c., \]

(A13)
where \(J_- \) is the spin-conserving lowering operator. For the SiV center in \([111], [111]\) orientations, the coupling strength is

\[
g = (1 + \nu) \epsilon d \approx 2\pi \times 10 \text{ MHz.} \quad (A14)
\]

Appendix B: Effects of magnetic fields

To avoid the non-uniform coupling, we adjust the magnetic field to pick up the color centers in a certain orientation. The static magnetic field \(\vec{B} = (B_x, B_y, B_z) \) is represented in the internal coordinate of the four color centers. In the basis of \(|e_x, \downarrow\rangle, |e_x, \uparrow\rangle, |e_y, \downarrow\rangle \) and \(|e_y, \uparrow\rangle \), we neglect the small orbital Zeeman effect and the Hamiltonian of the single SiV center is given by

\[
H_{\text{SiV}} = \begin{pmatrix}
\gamma_z B_x - \frac{1}{2} i \gamma S B_z & \gamma_S B_x - \frac{1}{2} i \gamma S B_y & \gamma_y - \frac{1}{2} i \lambda & 0 \\
\gamma_S B_x + \frac{1}{2} i \gamma S B_y & \gamma_z B_x - \frac{1}{2} i \gamma S B_z & 0 & \gamma_y + \frac{1}{2} i \lambda \\
\gamma_y + \frac{1}{2} i \lambda & 0 & \gamma_z B_x + \frac{1}{2} i \gamma S B_y & -\gamma_x - \frac{1}{2} i \gamma S B_z \\
\gamma_y - \frac{1}{2} i \lambda & -\gamma_x + \frac{1}{2} i \gamma S B_z & -\gamma_x + \frac{1}{2} i \gamma S B_z & \gamma_z B_x + \frac{1}{2} i \gamma S B_y
\end{pmatrix}
\]

(B1)

The eigenvalues of the above matrix can be directly solved as

\[
E = \pm \sqrt{\gamma^2 + \frac{1}{4} \lambda^2_{SO} + \frac{1}{4} \gamma_z^2 B_z^2} \pm \sqrt{\gamma_z^2 B_z^2 (\gamma^2 + \frac{1}{4} \lambda^2_{SO}) + \frac{1}{4} (\gamma_S^2 B_x^2 + \gamma_S^2 B_y^2)^2}
\]

(B2)

where \(\gamma = \sqrt{\gamma^2 + \gamma_z^2 B_z^2} \). For example, we choose the direction of the magnetic field along the [111] direction, and the magnitude satisfies \(\gamma_z |B_z| = 2\pi \times 20 \text{ GHz} \). For the SiV in the [111] direction, the energy level splittings are

\[
\Delta \omega_{11}/2\pi \approx 66 \text{ GHz} \quad (B3)
\]

\[
\Delta \omega_{32}/2\pi \approx 26 \text{ GHz.} \quad (B4)
\]

For the other three kinds of SiV centers, these values become

\[
\Delta \omega'_{11}/2\pi \approx 53 \text{ GHz} \quad (B5)
\]

If we choose the frequencies of the driving fields as \(\omega_1/2\pi \approx 66 \text{ GHz} \) and \(\omega_2/2\pi \approx 26 \text{ GHz} \), only the SiV centers in the [111] direction can be excited, and the other SiV centers are off-resonant with the driving field. Therefore, Only the SiV centers in the [111] direction are selected to participate in the Raman process. In addition, the orbital splitting for all the color centers is

\[
\omega/2\pi \approx 46 \text{ GHz.}
\]

[1] Jian Ma, Xiaoguang Wang, C.P. Sun, and Franco Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89 (2011).
[2] Xiaoguang Wang and Barry C. Sanders, “Spin squeezing and pairwise entanglement for symmetric multicubit states,” Phys. Rev. A 68, 012101 (2003).
[3] J. K. Korbicz, J. I. Cirac, and M. Lewenstein, “Spin squeezing inequalities and entanglement of n qubit states,” Phys. Rev. Lett. 95, 120502 (2005).
[4] Giuseppe Vitagliano, Iagoba Apellaniz, Iñigo L. Egusquiza, and Géza Tóth, “Spin squeezing and entanglement for an arbitrary spin,” Phys. Rev. A 89, 032307 (2014).
[5] Yuan Zhou, Bo Li, Xiao-Xiao Li, Fu-Li Li, and Peng-Bo Li, “Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions,” Phys. Rev. A 98, 052346 (2018).
[6] Nick Bigelow, “Quantum engineering: Squeezing entanglement,” Nature 409, 27 (2001).
[7] Otfried Gühne and Géza Tóth, “Entanglement detection,” Phys. Rep. 474, 1 (2009).
[8] Luigi Amico, Rosario Fazio, Andreas Osterloh, and Vlatko Vedral, “Entanglement in many-body systems,” Rev. Mod. Phys. 80, 517 (2008).
Xiao-Xiao Li, Bo Li, and Peng-Bo Li, “Simulation of the negatively charged silicon-vacancy center in diamond,” Phys. Rev. B 89, 235101 (2014).

Jonas Nijs Becker, Johannes Görlitz, Carsten Arend, Matthe Markham, and Christoph Becher, “Ultrafast all-optical coherent control of single silicon vacancy colour centres in diamond,” Nat. Commun. 7, 13512 (2016).

A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko, and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond,” Phys. Rev. Lett. 113, 113602 (2014).

K. Thiel, H. Park, F. Jelezko, M. A. Tschudin, D. Rohner, J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, N. Y. Yao, P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, and M. D. Lukin, “Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide,” Phys. Rev. Lett. 118, 233603 (2017).

G. D. Fuchs, V. V. Dobrovitski, R. Hanson, A. Batra, C. D. Weis, T. Schenkel, and D. D. Awschalom, “Excited-state spectroscopy using single spin manipulation in diamond,” Phys. Rev. Lett. 101, 117601 (2008).

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330, 1212 (2010).

Benjamin Pingault, Jonas N. Becker, Carsten H. H. Schulte, Carsten Arend, Christian Hepp, Tillmann Godde, Alexander I. Tartakovskii, Matthew Markham, Christoph Becher, and Mete Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond,” Phys. Rev. Lett. 113, 263601 (2014).

Jonas N. Becker, Benjamin Pingault, David Groß, Mustafa Gündoğan, Nadezhda Kukharchyk, Matthew Markham, Andrew Edmonds, Mete Atatüre, Pavel Bushev, and Christoph Becher, “All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures,” Phys. Rev. Lett. 120, 053603 (2018).

Gopalakrishnan Balasubramanian, Philipp Neumann, Daniel Twitchen, Matthew Markham, Roman Kolesov, Norikazu Mizuochi, Junichi Isoya, Jocelyn Achard, Johannes Beck, Julia Tissler, Vincent Jacques, Philip R. Hemmer, Fedor Jelezko, and Jörg Wrachtrup, “Ultra-long spin coherence time in isotopically engineered diamond,” Science 336, 1283 (2012).

N. Bar-Gill, L.M. Pham, A. Jarmola, D. Budker, and R.L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” New J. Phys. 119, 223602 (2017).

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283 (2012).
waveguide-assisted steady-state entanglement of silicon-vacancy centers,” Phys. Rev. A 101, 042313 (2020).

[69] Bo Li, Xiaoxiao Li, Pengbo Li, and Tongcang Li, “Preparing squeezed spin states in a spin–mechanical hybrid system with silicon-vacancy centers,” Adv. Quantum Technol. 3, 2000034 (2020).

[70] P. Ovartchaiyapong, L. M. A. Pascal, B. A. Myers, P. Lauria, and A. C. Bleszynski Jayich, “High-quality factor single-crystal diamond mechanical resonators,” Appl. Phys. Lett. 101, 163505 (2012).

[71] Michael J. Burek, Nathalie P. de Leon, Brendan J. Shields, Birgit J. M. Hausmann, Yiwen Chu, Qimin Quan, Alexander S. Zibrov, Hongkun Park, Mikhail D. Lukin, and Marko Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084 (2012).

[72] Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5, 3638 (2014).

[73] M.-A. Lemonde, S. Meesala, A. Sipahigil, M. J. A. Schuetz, M. D. Lukin, M. Loncar, and P. Rabl, “Phonon networks with silicon-vacancy centers in diamond waveguides,” Phys. Rev. Lett. 120, 213603 (2018).

[74] Srujan Meesala, Young-Ik Sohn, Benjamin Pingault, Linbo Shao, Haig A. Atikian, Jeffrey Holzgrafe, Mustafa Gündoğan, Camille Stavrakas, Alp Sipahigil, Cleaven Chia, Ruffin Evans, Michael J. Burek, Mian Zhang, Lue Wu, Jose L. Pacheco, John Abraham, Edward Bieielejce, Mikhail D. Lukin, Mete Atatüre, and Marko Lončar, “Strain engineering of the silicon-vacancy center in diamond,” Phys. Rev. B 97, 205444 (2018).

[75] J. R. Schrieffer and P. A. Wolff, “Relation between the anderson and kondo hamiltonians,” Phys. Rev. 149, 491 (1966).

[76] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, “Squeezed atomic states and projection noise in spectroscopy,” Phys. Rev. A 50, 67 (1994).

[77] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy,” Phys. Rev. A 46, R6797 (1992).

[78] M Perarnau-Llobet, A González-Tudela, and J I Cirac, “Multimode fock states with large photon number: effective descriptions and applications in quantum metrology,” Quantum Science and Technology 5, 025003 (2020).

[79] Richard Nelz, Philipp Fuchs, Oliver Opaluch, Selda Somusen, Natalia Savenko, Vitali Podgursky, and Elke Neu, “Color center fluorescence and spin manipulation in single crystal, pyramidal diamond tips,” Applied Physics Letters 109, 193105 (2016).

[80] Preeti Ovartchaiyapong, Kenneth W. Lee, Bryan A. Myers, and Ania C. Bleszynski Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5, 4429 (2014).