ABSTRACT

“SIMURG_CITIES” is the research and development project that is developed under the main project named SIMURG: “A performance-based and Sustainability-oriented Integration Model Using Relational database architecture to increase Global competitiveness of Turkish construction industry in industry 5.0 era”, is a relational database model that is currently being developed in a dissertation for performance-based development and assessment of sustainable and sophisticated solutions for the built environment. This study aims to analyze the key performance indicators (KPIs) at «Cities Level» for the smart city concept that is referred to as «Layers» in the master project. KPIs for the concept of a smart city are determined by using the meta-analysis technique. Hence, the three most reputable urban journals issued from 2017 through 2020 are reviewed in this study. In addition to this, models of smart city frameworks/assessment tools/KPIs are reviewed within the context of this paper; environment, economy, and governance were found to have domain themes on urban sustainability according to the literature review. Consequently, efficient and integrated urban management, environmental monitoring and management, public and social services of urban development, and sustainability are found to be the most important dimensions in urban and regional planning. SIMURG_CITIES evaluation models for urban projects can use the findings of this paper.

JOURNAL OF CONTEMPORARY URBAN AFFAIRS (2021), 5(1), 59-76.
https://doi.org/10.25034/jcua.2021.v5n1-5

1. Introduction

With globalization, individuals living within the same community which has different demographics structures, and understanding of life have increased and also lifestyles and expectations of these individuals have changed. The characteristics of built...
environment-related value systems have differentiated utilizing individuals’ age, culture, educational level, etc. Nevertheless, policymakers (individuals/companies/institutions/local authorities) have designed living spaces uniformly assuming there is a single type of individual according to their value systems. While policymakers are preparing urban policies, cities continue to grow depending on rent since there are no tools to help rational decision making and decision support systems that can be measured. At this point, performance-based design and building of built environments to evaluate alternatives in a comparative way seems to have increased attractiveness for individuals/companies/institutions/local authorities of policymakers. As a result of the examinations made, it has been concluded that the model which will be developed for the solution of the identified problem must include and reveal the components of the solution in the dimensions stated by Şenoğlu et al. (2018).

The United Nations (UN) assumed seventeen Sustainable Development Goals (SDGs) that are aimed to “stimulate action over the next 15 years in areas of critical importance for humanity and the planet” in the last publication of the global sustainable development agenda, “Transforming Our World: The 2030 Agenda for Sustainable Development”. Features as part of the targets referred to 3rd goal on “good health and well-being”, 4th goal on “quality education”, 8th goal on “economic growth”, 9th goal on “innovation and infrastructure”, and 11th goal on “sustainable cities and human settlements” (United Nations, 2015). Sustainability is the main concept among those that can be achieved by the integrated use of the other key concepts which are innovation, competitiveness, competition by design, performance-based building production process, integration of building production processes and interoperability supported by BIM (Building Information Modelling) and information classification systems (Kanoğlu et al., 2018). These concepts seem to be the key factors to design an integrated model that increases the competitive advantage of the national construction industry in the global market. Additional concepts that are not of less importance compared with the first set are transparency, accountability, and consistency. What the individuals, institutions, companies, and society need in Turkey are the practical and accessible tools that provide these concepts at all levels of decision-making. The problem is the lack of these tools that allow the governments and municipalities to propose suitable identities defined by the concepts or “layers” such as historical/smart/green/slow/safe/resilience etc., that are presented by specific KPIs and associated weights, for their built environments at all levels and to develop consistent policies for this purpose that helps individuals in matching up their attributes with social, cultural, economic, educational, etc., characteristics of the built environment they are supposed to live. Many more sub-components such as management, planning, energy, transportation, infrastructure resources, etc. of cities are needed to make a sustainable performance-based assessment, as well as KPI’s set, should be determined from its parameters for the design to be aesthetic, compatible with user needs and functions.

SIMURG: “A performance-based and Sustainability-oriented Integration Model Using Relational database architecture to increase Global competitiveness of the Turkish construction industry in industry 5.0 era” is integrated with the subprojects conducted by Şenoğlu et al. (2018) within the SIMURG_ALKU&ITU Virtual Laboratory, established on the Research Gate Scientific Communication Platform (https://www.researchgate.net/profile/Alaattin_Kano slugg). Şenoğlu et al. (2018) designed the open-ended project that improvement for concerned models at all hierarchical levels of “performance-based design and construction” of the built environment manner in various sub-projects in two supplementary fields, i.e., “product” and “process” dimensions. “Building components”, “building elements”, “building premises”, “buildings”, “projects”, “lands”, “quarters”, “settlements”, “counties” and “cities” levels on “product side” and “operations”, “projects”, “departments”, “firms”, “groups of firms”, “sectors”, “national economies” and “global economy” levels on “process side” are the hierarchical levels of these dimensions. All the levels are required, specific KPIs and weights are determined together with organisational, computational, and computer models are designed. SIMURG_CITIES, the relational database model that is currently being
conducted by Ülker under the supervision of Kanoğlu et al. (2018) in her dissertation entitled SIMURG_CITIES: "A Performance-Based Integrated Model for Design and Evaluation of Sustainable and Sophisticated Solutions at Cities Level: Determination of Key Performance Indicators and Principles of Model at Conceptual Dimension". The main goal of the project is to determine the KPIs of performance of built environments at the city level in terms of the combinations of level-specific and layer/concept specific KPIs in both expert and user point of views and integrate the findings with SIMURG_INTEGRATED, the final output of the master project. This paper aims to analyse and determine the KPIs at "Cities Level" for the smart concept that is referred to as “Layers” in the master project. Also, the other aim of the paper is to review Models of smart city frameworks/assessment tools/KPIs on urban development and sustainability owing to the literature review.

2. Materials and Methods
The conceptual framework of this research is based upon an analysis of KPIs for the smart city concept. Meta-analysis is used to make a classification of the literature in the study. It also purposes to allow for a better understanding of the smartness of an urban framework acquired with the augmented use of sustainable thinking, particularly regarding urban studies. Hence, at first, this research demonstrates the descriptions of concepts and hypothetical basics of smart cities. Literature review link to the papers and researches is submitted, with the keywords "smart cities" or "smart city" and its integration with terms regarding urban planning and city assessment/framework/performance indicator/KPI. The literature review on the background of the sustainability approach indicated that research referring in related to the urban framework is based on the headings of “smart cities” or "digital cities". The research was carried out through a search of libraries and scientific databases, particularly Taylor & Francis Online, Scopus, Science Direct, Web of Science and the most respected urban journals, Cities, Journal of Urban Technology, Sustainable Cities and Society for the period of 2017-2020 to gather information and systematically review the hypothetical literature. As a result, fifty relevant papers were selected from these journals to analyse, determine, and categorize the concept of smart cities and their KPIs. The writers, subjects and methodologies of the reviewed fifty papers are presented in the Table 1 and 2. The purpose is to allow for better practical and accessible tools/performance-based assessment that provides this concept in all levels of decision-making in the future.

Table 1. Papers associated with KPIs of Smart City that have been issued in Urban Literature during 2017-2020.

Writers	Year	Journal	Subject	Research Methodology
Lam & Yang	2020	Cities	PPP for SC projects	Multi-attribute utility analysis
Wataya & Shaw	2019	Cities	Measuring soft assets in SCs development	Co-value creation evaluation
Molinillo et al.	2019	Cities	Measurement of SC communication via SM	Digital content analysis
Montalto et al.	2019	Cities	Measurement of the cultural vitality of ECs	An empirical approach
Huovila et al.	2019	Cities	Standardized indicators for sustainable SCs	Comparative analysis
Lam & Ma	2019	Cities	Identifying potential pitfalls in SCs development	An exploratory analysis
Heaton & Parlikad	2019	Cities	Infrastructure assets in SC framework	A conceptual framework
Shmelev & Shmeleva	2019	Cities	Multidimensional sustainability assessment for SC	Performance benchmarking
Yigitcanlar et al.	2018	Cities	Multidimensional sustainability assessment for SC	A systematic literature review
Ruhlandt	2018	Cities	Governance of SCs	A systematic literature review
Anthopoulos	2017	Cities	Performance analysis of international SC cases	A multi-methods approach
Navarro et al.	2017	Cities	ICT use and capability on SCs	Component analysis
Ahvenniemi	2017	Cities	Assessment framework for sustainable SCs	Performance benchmarking
Table 2. Papers associated with KPIs of Smart City that has been published in Urban Literature from 2017 to 2020 (continued).

Writers	Year	Journal	Subject	Research Methodology
Yang et al.	2020	Sustainable Cities and Society	Smart Transportation	A coupled simulation method
Shapsough et al.	2020	Sustainable Cities and Society	Smart Energy	Performance measurement
Tang et al.	2020	Sustainable Cities and Society	Smart Transportation	Machine learning methods
Deveci et al.	2020	Sustainable Cities and Society	Assessment framework of SC projects	Interval Agreement Method
Sáez et al.	2020	Sustainable Cities and Society	Sustainbale City performance	Performance benchmarking
Sharifi	2020	Sustainable Cities and Society	SC assessment tools and indicator sets	Performance measurement
Yigitcanlar et al.	2019	Sustainable Cities and Society	Smart and sustainable cities	A systematic literature review
Karji et. al.	2019	Sustainable Cities and Society	Assessment of Social Sustainability Indicators	A case study research
Ghofrani et al.	2019	Sustainable Cities and Society	Smart building	Neural Networks approach
Akande et al.	2019	Sustainable Cities and Society	Smart Sustainbale City performance	Component analysis
Horgan & Dimitrijević	2019	Sustainable Cities and Society	Smart Citizen	A case study research
Nitoslawski et al.	2019	Sustainable Cities and Society	Smart Environment	A literature review
Wainum et al.	2019	Sustainable Cities and Society	Smart Energy	Multi-attribute decisionmaking
Mattoni et al.	2019	Sustainable Cities and Society	Smart Energy	Performance measurement
Zhu et al.	2019	Sustainable Cities and Society	Smart Energy	Machine learning methods
Michalec et al.	2019	Sustainable Cities and Society	Smart Environment	A discourse analysis
Zhang et al.	2018	Sustainable Cities and Society	Performance Evaluation for Smart Transportation	TOPSIS, A case study
Manupati et al.	2018	Sustainable Cities and Society	Urban renewal under SCs mission	Multi-criteria decision making
Ahmad & Chan	2018	Sustainable Cities and Society	Smart Energy	Machine learning methods
Silva et al.	2018	Sustainable Cities and Society	Sustainable SCs	A literature review
Alkhalidi et al.	2018	Sustainable Cities and Society	Smart Environment	The energy evaluation method

PPP: Public-Private Partnerships, SC: Smart City, SM: Social Media, ECs: European cities, Iss: Innovation Systems, CP: Civic participation.
3. Results: Meta-Analysis for KPI’s of Layer-Based Approach in Sustainability Assessment

This section elaborates on the reviewed fifty papers in the literature and seven key themes and forty-four sub-themes/dimensions which are referred to in the last studies by Sharifi (2019, 2020) for the smart city assessment. The “typology of smart city evaluation tools and indicator sets” of Sharifi (2019, 2020) is used as a base for the meta-analysis table. Specific KPIs determined for each paper were marked in the meta-analysis table according to relevant themes or sub-themes/dimensions which were conducted topics in the papers. The findings of the meta-analysis are indicated in Tables 3, 4, and 5 that show the ratings of themes and sub-themes/dimensions related KPIs of a smart city in urban literature. The rating of seven themes for related KPIs of the smart city in the literature (Table 6), the major result of this research is that: environment, economy, governance-institutional, and data management is found to be the most important themes in urban and regional planning. Besides, the themes which are people, living and mobility (transport & ICT) need to become as important as the other themes.

Theme	Dimension	Aghamolaei et al. 2018	Dall’O’ et al. 2017	Bibri & Krogstie 2017	Hukkalainen et al. 2017	Poggi et al. 2017	Massana et al. 2017
	Performance Evaluation for Smart Energy						
	The energy evaluation method						
	SC assessment tools and indicator sets						
	Performance measurement						
	Sustainable SC assessment tools/indicator sets						
	A systematic literature review						
	Smart Energy						
	Holistic energy analysis						
	Performance Evaluation for Smart Energy						
	A case study research						
	Performance Evaluation for Smart Energy						
	A case study research						

PPP: Public-Private Partnerships, SC: Smart City, SM: Social Media, ECs: European cities, Iss: Innovation Systems, CP: Civic participation.

| Table 3. Themes and Sub-themes of the reviewed papers on Urban Literature.
Sharifi (2019) Assessment Tools & KPIs for Smart Cities	Relevant Studies for KPIs in Literature (2017-2020)

Theme	Dimension	Lam & Yang (2020)	Wataya & Show (2019)	Montalto et al. (2019)	Hukkalainen et al. (2019)	Lam & Ma (2019)	Heaton & Parlikad (2019)	Smirneov & Shmelev (2019)	Yigitcanlar & Yigitcanlar (2017)	Ruhlandt (2018)	Anthopoulos (2017)	Navarro et al. (2017)	Alvarado (2017)	Gessa & Sancha (2020)	Kisi & Setliff (2019)	Costa-Ulubat et al. (2018)	Falco et al. (2018)
	Innovation/innovation culture	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Knowledge economy	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Entrepreneurship	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Finance	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Tourism	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Employment	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Local & Global Interconnectedness	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Productivity and efficiency	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Flexibility of the labor market	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Impacts	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Education/ lifelong learning	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Level of qualification/ ICT skills	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Cosmopolitanism/ open mindedness	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Visioning and leadership	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Legal and regulatory frameworks	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Participation	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Transparency	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Public and social services	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Table 4. Themes and Sub-themes of the reviewed papers in Urban Literature (continued).

Theme	Dimension
Efficient & integrated urban management	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Environment	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
General infrastructure	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Built environment/planning and design	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Materials	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Energy resources	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Water resources	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Waste (solid waste, waste water, sewage)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Environmental quality/pollution	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Living	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Social cohesion/inclusion	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Equity and justice	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cultural development	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Housing/livelihood quality	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Healthcare	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Safety and security	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Convenience and satisfaction/well-being	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mobility (Transport & ICT)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Transport infrastructure	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Transportation management	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ICT infrastructure	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ICT management	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ICT accessibility	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Data management	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Data openness	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sensing and collecting	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Judging (analytics)	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reacting	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Learning	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PhD Candidate. Burcu Ülker, Prof. Dr. Alaattin Kanoğlu and Prof. Dr. Özlem Özçevik
Table 5. Themes and Sub-themes of the reviewed papers in Urban Literature (continued).

Theme	Dimension	Total for dimensions
Economy	Innovation/innovation culture	122
	Knowledge economy	19
	Entrepreneurship	18
	Finance	19
	Tourism	17
	Employment	20
	Local & Global Interconnectedness	17
	Productivity and efficiency	40
	Flexibility of the labor market	16
	Impacts	32
People	Education/lifelong learning	21
	Level of qualification/ICT skills	27
	Cosmopolitanism/open mindedness	20
Governance -institutional	Visioning and leadership	36
	Legal and regulatory frameworks	18
	Participation	27
	Transparency	19
	Public and social services	40
	Efficient & integrated urban management	44
Environment	Environmental monitoring & management	41
	General infrastructure	34

Shanli (2019) Assessment Tools & KPIs for Smart Cities Relevant Studies for KPIs in Literature (2017-2020)
The highest and lowest ten ratings of forty-four dimensions for related KPIs of a smart city in the literature review are defined in Table 7. The other critical result of this research is efficient and integrated urban management, environmental monitoring and management, public and social services, productivity and efficiency and data management in urban development and sustainability are found to be the highest important dimensions. However, housing/livelihood quality, the flexibility of the labour market, smart tourism and smart healthcare are found to be the lowest ratings of dimensions. Smart/sustainable city planning has been revealed for the development of the lives of urban citizens and increasing civic development and sustainability.
services/assets; also, given the closeness of modern technology, citizens’ requirements and tools of interacting with their regional administrations is changing (Nitolslawski et al., 2019). At this critical point of change, cultural development, innovation, and entrepreneurship are the main dimensions to be considered. Since, culture is a concept that social, emblematic, and economic implications can mention people’s customs, religions, and attitude, or economic activities based on symbolic values, artistic creation and creative skills also are a key for involved improvement, strengthening social ties and solidarity, and promoting innovation and creativity (Montalto et al, 2019).

4. Discussions
Modern cities tackle numerous economic, social, and spatial troubles, together with which they perform in an extremely volatile environment, which pushes them to seek an optimum development model. Nowadays, countless concepts/models (such as eco/green/compact/smart/slow/resilient/agile/sustainable city etc.) of urban development have been discussed by researchers. In this section, the model/concept of smart city frameworks/performance indicators/assessment tools is researched and discussed in detail in the literature.

Cities act a crucial part socioeconomically and environmentally at a global level. The city infrastructure appeals to numerous people looking at the advantages of urbanisation over the conventional rural lifestyles inside various cultural contexts. The United Nations (UN) estimates that almost 7 billion people will inhabit in urban fields by 2050 (Streitz, 2015). Some other 1.3 million people around the world move into a city every week (Carter, 2020). Consequently, cities and their executives are meeting myriad difficulties and opportunities as their facilities and infrastructure are placed under ever enhancement levels of pressure (Breetzke and Flowerday, 2016). A rising trend is that manage the impact of these difficulties and opportunities in the usage of Information and Communication Technology (ICT) among an accessible integrated infrastructure for a concept of smart city (Ismagilova et al., 2019). Numerous cities are focusing their struggles to be “smarter” by using ICT to develop different ways of city management and operation, including regional traffic control, offer upscale life for people, transportation, economy, online applications of public services and environment (Li et al., 2017). Smart cities are innovations for the improvement of targets in the quality of life and development by the utilization of smarter approaches and technology (Lim et al., 2019). Smart cities have been researched extensively for almost three decades and there are many ways of looking at them. Smart city studies first arose in the year 1992 in which “The Technopolis Phenomenon: Smart Cities, Fast Systems, Global Networks” (Gibson et al., 1992). Then, Graham and Marvin (1996) began the research of the link between ICTs and urban fields with “Telecommunications and the City”. Some studies in this recent field of knowledge are from Mitchell, 1995, 1999, 2003; and Castells, 1996). In the early 2000s as the best efficient research was “urban ICT studies”, Graham (2004) accomplished to research “the complex and poorly understood set of relationships between telecommunications and the development, planning and management of contemporary cities”. In the study of ICT-driven urban development and innovation have engaged the attention of researchers (Mora et al., 2017). The key centre of smart cities is on the act of ICT infrastructure. The plentious environmental concerns as a significant motive of urban development at the part of relational/social capital and education/human capital (Komininos, 2002; Shapiro, 2008; Deakin, 2010).

Many definitions for “Smart Cities” in use globally, but smart city defines as “a new concept and a new model, which applies the new generation of information technologies, such as the internet of things, cloud computing, big data and space/geographical information integration, to facilitate the planning, construction, management and smart services of cities” according to SAC (ISO/IEC 2015). In literature, meanwhile, there is not any certain description of a smart city, a few basic dimensions of a smart city have been described (Giffinger et al., 2007; Fusco Girard et al., 2009; Van Soom, 2009). These dimensions cover “smart” governance/environment/mobility/economy/living/people. Briefly, “education” (e.g., egovernment or e-democracy), “technical infrastructure” (e.g., transportation or logistic), “industry” (e.g., business parks or districts), “participation” (e.g., government
administration, citizens), and various “soft factors” (e.g., security/safety, green, efficient and sustainable energy) are defined in the literature regarding smart city (Giffinger et al. 2007; Lombardi et al. 2012). In addition to them, Anthopoulos (2015) and Anthopoulos et al., (2016) have defined seven utilization areas of smart cities: “resource, transportation, urban infrastructures, living, government, economy, and coherency” thus they founded the theoretical structure of smart cities. While academics maintain to qualify smart cities as a recent and up-and-coming subject of research, the study of conceptualising and describing is still on-going (Townsend, 2013; Kitchin, 2014; Christopoulos et al., 2014; Greco and Cresta, 2015; Albino et al., 2015; Fernandez-Anez, 2016). On the other hand, the technology-focused vision of smart cities generally positions smart cities like cash cow and expects to produce a lot of money (Zanella et al., 2014). This rising market provides an opportunity for various growth initiatives, especially in a period of recession (Paroutis et al., 2014). big firms such as ABB, Fujitsu, IBM apply information and communication technologies as tools for smart-city development to motivate urban innovation. Nevertheless, this “corporate smart-city model” is condemned since it has not successfully explained the cultural and social developments of smart-city manner except for technological terms (Mora et al., 2017). Regarding this censure, Shin (2010) showed the failure of this model empirically and highlighted the shortcomings of the firm and technology-focused development for smart cities. Likewise, Shwayri (2013). Townsend (2013), Yigitcanlar & Lee (2014) and Yigitcanlar (2016) reported in some samples of these smart cities. On the other hand, from the recent studies, a holistic approach of smart cities has risen to base on human-centric vision, the balanced integration of economic, social, cultural, technological, environmental, and human sides (Townsend, 2013; Hemment and Townsend, 2013; Komninos, 2014; Christopoulos et al., 2014; Angelidou, 2014; Concilio and Rizzo, 2016; Hollands, 2015, 2016). After all Mora et al., 2017 have underlined that “the knowledge necessary to understand the process of building effective smart cities in the real world has not yet been produced, nor have the tools for supporting the actors involved in this activity”. In a nutshell, smart cities have factors such as “community”, “technology”, “policy”; the inclusive conceptual vision of the framework centres on finding the results in the development areas, i.e., “economy”, “society”, “environment”, “governance” which are associated with five results “productivity”, “sustainability”, “accessibility”, “wellbeing”, “liveability”, “governance” (Yigitcanlar et al., 2018). In addition to them, Sharifi (2019, 2020) has examined the strengths and weaknesses by evaluating thirty-four topics/schemes between smart city indicators. The results have shown that the widely known topics/themes are: “economy”, “people”, “governance”, “environment”, “mobility”, “living” and “data”.

5. Conclusions
SIMURG_CITIES, the relational database model of performance-based development and evaluation of built environment entities at cities level with an emphasis of “sophisticated solutions" such as slow, green, safe, smart, resilient, etc. in a comparative way have been developed. This study analysed the KPIs at Cities Level for smart city concept by using meta-analysis technique and literature reviewed that has been issued in three best reputable urban journals from 2017 through 2020. Environment, economy, governance and data management were found to have domain themes, as well as efficient and integrated urban management, environmental monitoring and management, public and social services in urban development and sustainability, are found to be the highest important dimensions of urban and regional planning. In addition to these, smart tourism, smart healthcare, smart people, smart transportation as well as the dimensions of cultural development, innovation, creativity and entrepreneurship are also open to development. This detailed study presents a crucial understanding of the key basic research topics/themes in smart cities, emphasizing the restrictions of the latest improvements and potential further aspects. The results of this research might be used in SIMURG_CITIES to assess/evaluate urban development models by related target groups such as smart city policymakers/planners/developers to prefer the best appropriate tools for their requirements, can be used as a foundation for performing future crucial analyses of
assessment/evaluation framework, may also lead the performance-based development and assessment of sustainable and sophisticated solutions in the future.

Acknowledgement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interests
The authors declare no conflict of interest.

References
Aghamolaei, R., Shamsi, M.H., Tahsildoost, M., & O’Donnell, J. (2018). Review of district-scale energy performance analysis: Outlooks towards holistic urban frameworks. Sustainable Cities and Society, 41, 252–264. https://doi.org/10.1016/j.scs.2018.05.048

Ahmad, T., & Huanxin Chen, H. (2018). Utility companies strategy for short-term energy demand forecasting using machine learning based models. Sustainable Cities and Society, 39, 401–417. https://doi.org/10.1016/j.scs.2018.03.002

Ahvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities?. Cities, 60, 234–245. https://doi.org/10.1016/j.cities.2016.09.009

Akande, A., Cabral, P., Gomes, P., & Casteleyn, S. (2019). The Lisbon ranking for smart sustainable cities in Europe. Sustainable Cities and Society, 44, 475–487. https://doi.org/10.1016/j.scs.2018.10.009

Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart cities: Definitions, dimensions, performance, and initiatives. Journal of Urban Technology, 22(1), 3–21. https://doi.org/10.1080/10630732.2014.942092

Alkhalidi, A., Qoaider, L., Khashman, A., Al-Alami, A.R., & Jiryes, S. (2018). Energy and water as indicators for sustainable city site selection and design in Jordan using smart grid. Sustainable Cities and Society, 37, 125–132. https://doi.org/10.1016/j.scs.2017.10.037

Angelidou, M. (2014). Smart city policies: A spatial approach. Cities, 41(Supplement), 3–11. https://doi.org/10.1016/j.cities.2014.06.007

Anthopoulos, L. G. (2015). Understanding the smart city domain: A literature review. In M.P. Rodriguez-Bolívar (ed.), Transforming city governments for successful smart cities, 8, 9–21. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-03167-5_2

Anthopoulos, L. G. Janssen, M., & Weerakkody, V. (2016). A Unified Smart City Model (USCM) for Smart City Conceptualization and Benchmarking. International Journal of Electronic Government Research (JEGR), 12(2), 77-93. https://doi.org/10.4018/IJEGR.2016040105

Anthopoulos, L. G. (2017). Smart utopia VS smart reality: Learning by experience from 10 smart city cases. Cities, 63, 128-148. https://doi.org/10.1016/j.cities.2016.10.005

Arslan, S., & Kanoğlu, A. (2010). Başarım Tabanlı Yapım: Anahtar Kavramlar, Olanaklar, Bariyerler ve Bir Model [Performance Based Production: Key Concepts, Opportunities, Barriers and a Model], M.T. Birgönlü & C. Budayan (ed.), 1. Proje ve Yapım Yönetimi Kongresi, 29 Eylül – 1 Ekim 2010, ODTÜ Kültür ve Kongre Merkezi, Ankara. http://www.pyyk2010.metu.edu.tr/ozetler1.pdf

Bibri, S.E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183–212. https://doi.org/10.1016/j.scs.2017.02.016

Breetzke, T., & Flowerday, S. V. (2016). The usability of IVRs for smart city crowdsourcing in developing cities. Electronic Journal of Information Systems in Developing Countries, 73(1), 1–14. https://doi.org/10.1002/j.1681-4835.2016.tb00527.x

Carter, C. (2020). Seoul City Profile. Smart Cities Reports, Smart Cities World. Available from: https://www.smartcitiesworld.net/opinions/smart-cities-reports/smartcitiesworld-city-profile--seoul
Castells, M. (1996). The Rise of the Network Society. Oxford: Balckwell Publishing Ltd.

Christopoulou, E., Ringas, D., & Garofalakis, J. (2014). The Vision of the Sociable Smart City in N. Streitz and P. Markopoulos, eds., Distributed, Ambient, and Pervasive Interactions: Second International Conference, DAPI 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014. Proceedings, Berlin, Springer. https://doi.org/10.1007/978-3-319-07788-8

Concilio, G., & Rizzo, F. (2016). Human Smart Cities: Rethinking the Interplay between Design and Planning. Springer, Berlin. https://doi.org/10.1007/978-3-319-33024-2

Costa-Liberato, P.M.D., Alén-González, E., & Azevedo-Liberato, D.F.V.D. (2018). Digital Technology in a Smart Tourist Destination: The Case of Porto. Journal of Urban Technology, 25(1), 75-97. https://doi.org/10.1080/10630732.2017.1413228

Dall’O’, G., Bruni, E., Panza, A., Sarto, L., & Khayatian, F. (2017). Evaluation of cities’ smartness by means of indicators for small and medium cities and communities: A methodology for Northern Italy. Sustainable Cities and Society, 34, 193–202. https://doi.org/10.1016/j.scs.2017.06.021

Deakin, M. (2010). SCRAR: the smart cities (inter)regional academic network supporting the development of a trans-national comparator for the standardisation of e-government services. In: C. Reddick, ed. Comparative e-government: an examination of e-government across countries. Berlin, Springer. https://doi.org/10.1007/978-3-319-58577-2

Deal, B., Pan, H., Pallathucheril, V., & Fulton, G. (2017). Urban Resilience and Planning Support Systems: The Need for Sentience. Journal of Urban Technology, 24(1), 29-45. https://doi.org/10.1080/10630732.2017.1285018

Deveci, M., Pekaslsanc, D., & Fatih Cantez, F. (2020). The assessment of smart city projects using zSlice type-2 fuzzy sets based Interval Agreement Method. Sustainable Cities and Society, 51, 101741. https://doi.org/10.1016/j.scs.2019.101741

Horgan, D., & Dimitrijević, B. (2019). Frameworks for citizens participation in planning: From conversational to smart tools. Sustainable Cities and Society, 48, 101550. https://doi.org/10.1016/j.scs.2019.101550

Fernandez-Anez, V. (2016). Stakeholders Approach to Smart Cities: A Survey on Smart City Definitions. In E. Alba, F. Chicano, and G. Luque, eds., Smart Cities. First International Conference, Smart-CT 2016, Málaga, Spain, June 15-17, 2016, Proceedings, Berlin: Springer. https://doi.org/10.1007/978-3-319-39595-1_16

Fernandez-Anez, V., Guillermo Velazquez, G., Perez-Prada, F., & Monzón, A. (2018). Smart City Projects Assessment Matrix: Connecting Challenges and Actions in the Mediterranean Region. Journal of Urban Technology, 25, 97. https://doi.org/10.1080/10630732.2018.1498706

Falco, E., Malavolta, I., Radzimski, A., Ruberto, S., Iovino, L., & Gallo, F. (2018). Smart City L’Aquila: An Application of the “Infostructure” Approach to Public Urban Mobility in a Post-Disaster Context. Journal of Urban Technology, 25(1), 99-121. https://doi.org/10.1080/10630732.2017.1362901

Fusco Girard, L., Lombardi, P., & Nijkamp, P. (2009). Creative Urban Design and Development. International Journal of Sustainable Development, 12(2/3/4). https://www.inderscience.com/info/inarticletoc.php?jcode=ijsd&year=2009&vol=12&issue=2/3/4

Gessa, A., & Sancha, P. (2020). Environmental Open Data in Urban Platforms: An Approach to the Big Data Life Cycle. Journal of Urban Technology, 27(1), 27-45. https://doi.org/10.1080/10630732.2019.1656934

Ghofrani, A., Nazemi, S.D., & Jafari, M.A. (2019). HVAC load synchronization in smart building communities. Sustainable Cities and Society, 51, 101741. https://doi.org/10.1016/j.scs.2019.101741
Gibson, D.V., Kozmetsky, G., & Smilor, R.W. eds. (1992). The Technopolis Phenomenon: Smart Cities, Fast Systems, Global Networks, Lanham, MD: Rowman & Littlefield Publishers. https://doi.org/10.1002/bs.3830380207

Giffinger, R., Fertner, C., Kramar, H., Kalasek, R., Pichler-Milanovic, N., & Meijers, E. (2007). Smart Cities: Ranking of European Medium-Sized Cities. Centre of Regional Science, Vienna. http://www.smart-cities.eu/download/smart_cities_final_report.pdf

Graham, S., & Marvin, S. (1996). Telecommunications and the City: Electronic Spaces. Urban Places. New York City, NY: Routledge.

Graham, S. (2004). Introduction: From Dreams of Transcendence to the Remediation of Urban Life. In S. Graham, ed., The Cybertocities Reader. New York, USA: Routledge, 1–29. https://www.uoc.edu/uocpapers/5/dt/eng/graham.html

Greco, I., & Cresta, A. (2015). A Smart Planning for Smart City: The Concept of Smart City as an Opportunity to Re-think the Planning Models of the Contemporary City. In O. Gervasi, B. Murgante, S. Misra, M.L. Gavrilova, A.M. Alves Coutinho Rocha, C. Torre, D. Taniar, and B.O. Apduhan, eds., Computational Science and Its Applications - ICCSA 2015: 15th International Conference, Banff, AB, Canada, June 22-25, 2015, Proceedings, Berlin, Springer, 563–576. https://doi.org/10.1007/978-3-319-21407-8_40

Heaton, J., & Parlikad, A. K. (2019). A conceptual framework for the alignment of infrastructure assets to citizen requirements within a Smart Cities framework, Cities, 90, 32–41. https://doi.org/10.1016/j.cities.2019.01.041

Hemment, D., & A. Townsend, A. (2013). eds., Smart Citizens, Manchester:FutureEverything. https://core.ac.uk/download/pdf/153534188.pdf

Hollands, R.G. (2016). Beyond the Corporate Smart City? Glimpses of Other Possibilities of Smartness. In S. Marvin, A. Luque-Ayala, and C. McFarlane, eds., Smart Urbanism: Utopian Vision or False Dawn? New York City, NY: Routledge: 168–184. https://doi.org/10.4324/9781315730554

Hukkalainen, M.N.S., Virtanen, M., Paiho, S., & Airaksinen, M. (2017). Energy planning of low carbon urban areas - Examples from Finland. Sustainable Cities and Society, 35, 715–728. https://doi.org/10.1016/j.scs.2017.09.018

Huovila, A., Bosch, P., & Airaksinen, M. (2019). Comparative analysis of standardized indicators for Smart sustainable cities: What indicators and standards to use and when? Cities, 89, 141–153. https://doi.org/10.1016/j.cities.2019.01.029

Ismagilova, E., Hughes, L., Dwivedi, Y.K., & Raman, K.R. (2019). Smart cities: Advances in research—An information systems perspective. International Journal of Information Management, 47, 88–100. https://doi.org/10.1016/j.ijinfomgt.2019.01.004

ISO/IEC (2015). Smart Cities, Preliminary Report, 2014. ISO/IEC JTC 1. Information technology, Switzerland. https://www.iso.org/files/live/sites/isoorg/files/developing_standards/docs/en/smart_cities_report-jtc1.pdf

Joss, S., Cook, M., & Dayot, Y. (2017). Smart Cities: Towards a New Citizenship Regime? A Discourse Analysis of the British Smart City Standard. Journal of Urban Technology, 24(4), 29-49. https://doi.org/10.1080/10630732.2017.1336027

Kanoğlu, A., Yazıcıoğlu, D., & Özçevik, Ö. (2018). SIMURG: A Performance-Based and Sustainability-Oriented Integration Model Using Relational Database Architecture to Increase Global Competitiveness of Turkish Construction Industry in Industry 4.0 Era. 5th International Project and Construction Management Conference (IPCMC2018), November 16-18, Girne, North Cyprus. http://pcmc2018.ciu.edu.tr/index.php/ipcmc-2018-proceedings/
Karjia, A., Woldesenbet, A., Khanzadi, M., Tafazzoli, M. (2019). Assessment of Social Sustainability Indicators in Mass Housing Construction: A Case Study of Mehr Housing Project. *Sustainable Cities and Society, 50*, 101697. https://doi.org/10.1016/j.scs.2019.101697

Kitchin, R. (2014). The Real-time City? Big Data and Smart Urbanism. *GeoJournal, 79*(1), 1–14. https://doi.org/10.1007/s10708-013-9516-8

Kiuru, J., & Inkinen, T. (2019). E-Capital and Economic Growth in European Metropolitan Areas: Applying Social Media Messaging in Technology-Based Urban Analysis. *Journal of Urban Technology, 26*(2), 67–88. https://doi.org/10.1080/10630732.2019.1579513

Komninos, N. (2002). *Intelligent cities: innovation, knowledge systems and digital spaces*. London: Spon Press. https://doi.org/10.1504/IJIRD.2009.022726

Komninos, N. (2014). The Age of Intelligent Cities: Smart Environments and Innovation-for-all Strategies. New York City, NY: Routledge. https://doi.org/10.4324/9781315769349

Lam, P.T.I., & Yang, W. (2020). Factors influencing the consideration of Public-Private Partnerships (PPP) for smart city projects: Evidence from Hong Kong. *Cities, 99*, 102606. https://doi.org/10.1016/j.cities.2020.102606

Lam, P.T.I., & Ma, R. (2019). Potential pitfalls in the development of smart cities and mitigation measures: An exploratory study. *Cities, 91*, 146–156. https://doi.org/10.1016/j.cities.2018.11.014

Li, X., Zhu, Y., & Wang, J. (2017). Efficient encrypted data comparison through a hybrid method. *Journal of Information Science and Engineering, 33*(4), 953–964. https://doi.org/10.6688/JISE.2017.33.4.6

Lim, Y., Edelenbos, J., & Gianoli, A. (2019). Identifying the results of smart city development: Findings from systematic literature review. *Cities, 95*, 102397. https://doi.org/10.1016/j.cities.2019.102397

Lombardi, P., Giordano, S., Farouh, H., & Yousef, W. (2012). Modelling the Smart City Performance. Innovation: *The European Journal of Social Science Research, 25*(2), 137-149. https://doi.org/10.1080/13511610.2012.660325

Manupati, V.K., Ramkumar, M., & Digjoy Samanta, D. (2018). A multi-criteria decision making approach for the urban renewal in Southern India. *Sustainable Cities and Society, 42*, 471–481. https://doi.org/10.1016/j.scs.2018.08.011

Massana, J., Pous, C., Burgas, L., Melendez, J., & Colomer, J. (2017). Identifying services for short-term load forecasting using data driven models in a Smart City platform. *Sustainable Cities and Society, 28*, 108–117. https://doi.org/10.1016/j.scs.2016.09.001

Mattoni, B., Nardecchia, F., & Bisegna, F. (2019). Towards the development of a smart district: The application of an holistic planning approach. *Sustainable Cities and Society, 48*, 101570. https://doi.org/10.1016/j.scs.2019.101570

Michalec, A.O., Hayes, E., & Longhurst, J. (2019). Building smart cities, the just way. A critical review of “smart” and “just” initiatives in Bristol, UK. *Sustainable Cities and Society, 47*, 101510. https://doi.org/10.1016/j.scs.2019.101510

Mitchell, W.J. (1995). *The City of Bits: Space, Place, and the Infobahn*. Cambridge, MA: The MIT Press.

Mitchell, W.J. (1999). *E-topia: Urban Life, Jim—but Not as We Know It*. Cambridge, MA: The MIT Press. https://doi.org/10.7551/mitpress/2844.001.0001

Mitchell, W.J. (2003). *Me++: The Cyborg Self and the Networked City*. Cambridge, MA: The MIT Press. https://doi.org/10.7551/mitpress/4512.001.0001

Molinillo, S., Anaya-Sánchez, R., Morrison, A. M., & Coca-Stefaniak, J.A. (2019). Smart city communication via social media: Analysing residents’ and visitors' engagement. *Cities, 94*, 72
247–255. https://doi.org/10.1016/j.cities.2019.06.003

Montalto, V., Moura, C. J. T., Langedijk, S., & Saisana M. (2019). Culture counts: An empirical approach to measure the cultural and creative vitality of European cities. Cities, 89, 167–185. https://doi.org/10.1016/j.cities.2019.01.014

Mora, L., Bolici, R., & Deakin, M. (2017). The First Two Decades of Smart-City Research: A Bibliometric Analysis. Journal of Urban Technology, 24(1), 3-27. https://doi.org/10.1080/10630732.2017.1285123

Navarro, J. L. A., Ruiz, V. R. L., & Peña, D. N. (2017). The effect of ICT use and capability on knowledge-based cities. Cities, 60, 272–280. https://doi.org/10.1016/j.cities.2016.09.010

Nitoslawski, S.A., Galleb, N.J., Boscha, C.K.V.D., & Steenberg, J.W.N. (2019). Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustainable Cities and Society, 51, 101770. https://doi.org/10.1016/j.scs.2019.101770

Paroutis, S., Bennett, M., & L. Heracleous, L. (2014). A Strategic View on Smart City Technology: The Case of IBM Smarter Cities During a Recession. Technological Forecasting and Social Change, 89, 262–272. https://doi.org/10.1016/j.techfore.2013.08.041

Pak, B., Chua, A., & Moore, A. V. (2017). FixMyStreet Brussels: Socio-Demographic Inequality in Crowdsourced Civic Participation. Journal of Urban Technology, 24(2), 65-87. https://doi.org/10.1080/10630732.2016.1270047

Poggi, F., Firmino, A., & Amado, M. (2017). Assessing energy performances: A step toward energy efficiency at the municipal level. Sustainable Cities and Society, 33, 57–69. https://doi.org/10.1016/j.scs.2017.05.014

Ruhlandt, R. W. S. (2018). The governance of smart cities: A systematic literature review. Cities, 81, 1–23. https://doi.org/10.1016/j.cities.2018.02.014

Sáez, L., Heras-Saizarbitoria, I., & Rodríguez-Núñez, E. (2020). Sustainable city rankings, benchmarking and indexes: Looking into the black box. Sustainable Cities and Society, 53, 101938. https://doi.org/10.1016/j.scs.2019.101938

Sharifi, A. (2019). A critical review of selected smart city assessment tools and indicator sets. Journal of Cleaner Production, 233, 1269-1283. https://doi.org/10.1016/j.jclepro.2019.06.172

Sharifi, A. (2020). A typology of smart city assessment tools and indicator sets. Sustainable Cities and Society, 53, 101936. https://doi.org/10.1016/j.scs.2019.101936

Shapiro, J. M. (2008). Smart cities: quality of life, productivity, and the growth effects of human capital. The review of economics and statistics, 88(2), 324-335. https://doi.org/10.1162/rest.88.2.324

Shapsough, S. Takrouri, M., Dhaouadi, R., & Zualkernan, I. (2020). An IoT-based remote IV tracing system for analysis of city-wide solar power facilities. Sustainable Cities and Society, 57, 102041. https://doi.org/10.1016/j.scs.2020.102041

Shmelev, S. E., & Shmeleva, I. A. (2019). Multidimensional sustainability benchmarking for smart megacities. Cities, 92, 134–163. https://doi.org/10.1016/j.cities.2019.03.015

Shin, D. (2010). A Realization of Pervasive Computing: Ubiquitous City. In D.F. Kocaoglu, T.R., &erson, and T.U. Daim, eds., 2010 Proceedings of PICMET '10: Technology Management for Global Economic Growth, Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE): 1–10. https://ieeexplore.ieee.org/document/5603449

Shwayri, S.T. (2013). A Model Korean Ubiquitous Eco-City? The Politics of Making Songdo. Journal of Urban Technology 20(1), 39–55. https://doi.org/10.1080/10630732.2012.735409

Silva, B.N., Khan, M., & Han, K. (2018). Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities, Sustainable Cities and Society,
Streitz, N. (2015). Citizen-centred design for humane and sociable hybrid cities. *Hybrid City*, 17–20. https://www.semanticscholar.org/paper/Citizen-Centred-Design-for-Humane-and-Sociable-Streitz/604401b5815a80535f7ad6c4bf232bc203b8204d

Tang, T., Liu, R., & Choudhury, C. (2020). Incorporating weather conditions and travel history in estimating the alighting bus stops from smart card data. *Sustainable Cities and Society*, 53, 101927. https://doi.org/10.1016/j.scs.2019.101927

Townsend, A. (2013). *Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia*, New York City, NY: W.W. Norton & Company Ltd.

UN (United Nations), (2015). Transforming our world: The 2030 agenda for sustainable development. United Nations, New York, United States. https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf

Ülker, B., Kanoğlu, A., & Özçevik, Ö. (2018). SIMURG_CITIES: A Performance-Based Integrated Model for Design and Evaluation of Sustainable and Sophisticated Solutions at Cities Level: Determination of Key Performance Indicators and Principles of Model at Conceptual Dimension. 5th International Project and Construction Management Conference (IPCMC2018), November 16-18, Girne, North Cyprus.

Van Soom, E. (2009). Measuring Levels of Supply and Demand for E-Services and E-Government: A Toolkit for Cities. Smart Cities Research Brief, no. 3, European Union. https://smartcities-infosystem.eu/

Walnum, H.T., Haugea, A.L., Lindberga, K.B., Mysena, M., Nielsenb, B.F., & Sørnesa, K. (2019). Developing a scenario calculator for smart energy communities in Norway: Identifying gaps between vision and practice. *Sustainable Cities and Society*, 46, 101418. https://doi.org/10.1016/j.scs.2019.01.003

Wataya, E., & Shaw, R. (2019). Measuring the value and the role of soft assets in smart city development. *Cities*, 94, 106–115. https://doi.org/10.1016/j.cities.2019.04.019

Wong, C.Y., Ng, B.K., Azizan, S.A., & Hasbullah, M. (2018). Knowledge Structures of City Innovation Systems: Singapore and Hong Kong. *Journal of Urban Technology*, 25(1), 47-73. https://doi.org/10.1080/10630732.2017.1348882

Yanga, L., Zhanga, L., Stettlerb, M.E.J., Sukitpaneenitb, M., Xiao, D., & Damd, K.H.V. (2020). Supporting an integrated transportation infrastructure and public space design: A coupled simulation method for evaluating traffic pollution and microclimate. *Sustainable Cities and Society*, 52, 101796. https://doi.org/10.1016/j.scs.2019.101796

Yigitcanlar, T., & Lee, S.H. (2014). Korean Ubiquitous-eco-city: A Smart-sustainable Urban Form or a Branding Hoax? *Technological Forecasting and Social Change*, 89, 100–114. https://doi.org/10.1016/j.techfore.2013.08.034

Yigitcanlar, T. (2016). Technology and the City: Systems, Applications and Implications, New York City, NY: Routledge. https://eprints.qut.edu.au/90993/

Yigitcanlar, T., Kamruzzaman, Md., Buys, L., Ioppolo, G., Sabatini-Marques, J., da Costa, E.M., & Yun, J.J. (2018). Understanding ‘smart cities’: Intertwining development drivers with desired outcomes in a multidimensional framework. *Cities*, 81, 145–160. https://doi.org/10.1016/j.cities.2018.04.003

Yigitcanlar, T., & Kamruzzaman, Md. (2019). Smart Cities and Mobility: Does the Smartness of Australian Cities Lead to Sustainable Commuting Patterns? *Journal of Urban Technology*, 26(2), 21-46. https://doi.org/10.1080/10630732.2018.1476794

Yigitcanlar, T., Kamruzzaman, Md., Marcus Foth, M., Sabatini-Marquesd, J., Costad, E.d., & Ioppoloe, G. (2019). Can cities become smart without being sustainable? A systematic review of the literature. *Sustainable Cities and Society*
Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of Things for Smart Cities. *IEEE Internet of Things Journal, 1*(1), 22–32. https://doi.org/10.1109/JIOT.2014.2306328

Zhang, X., Zhang, Q., Sun, T., Zoua, Y., & Chena, H. (2018). Evaluation of urban public transport priority performance based on the improved TOPSIS method: A case study of Wuhan.

Zhu, J., Shen, Y., Song, Z., Zhou, D., Zhang, Z., & Kusiak, A. (2019). Data-driven building load profiling and energy management. *Sustainable Cities and Society, 49*, 101587. https://doi.org/10.1016/j.scs.2019.101587
