Research Article

Central configurations of the circular restricted 4-body problem with three equal primaries in the collinear central configuration of the 3-body problem

Jaume Llibre*

Department of Mathematics, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

Abstract

In this paper we classify the central configurations of the circular restricted 4-body problem with three primaries with equal masses at the collinear configuration of the 3-body problem and an infinitesimal mass.

Introduction and results

The well-known Newtonian n-body problem concerns with the motion of n mass points with positive mass mi moving under their mutual attraction in R3 in accordance with Newton’s law of gravitation.

The equations of the motion of the n-body problem are

$$\dot{r}_i = - \sum_{j=1, j\neq i}^n m_j (r_i - r_j) / r_{ij}^3, \quad 1 \leq i \leq n,$$

where we have taken the unit of time in such a way that the Newtonian gravitational constant be one, and r_{ij} (i=1,…,n) denotes the position vector of the i-body, r_{ij} = ||r_i - r_j|| is the Euclidean distance between the i-body and the j-body.

The solutions of the 2-body problem (also called the Kepler problem) has been completely solved, but the solutions for the n-body for n>2, is still an open problem.

For the Newtonian n-body problem the simplest possible motions are such that the configuration formed by the n-bodies is constant up to rotations and scaling, such motions are called the homographic solutions of the n-body problem, and are the unique known explicit solutions of the n-body problem when n>2. Only some special configurations of particles are allowed in the homographic solutions of the n-body problem, called by Wintner [1] central configurations. Also, central configurations are of utmost importance when studying bifurcations of the hypersurfaces of constant energy and angular momentum, for more details see Meyer [2] and Smale [3]. These last years some central configurations have been used for different missions of the spacecrafts in the solar system, see for instance [4,5].

More precisely, let

$$M = m_1 + \cdots + m_n, \quad c = \frac{m_1 r_1 + \cdots + m_n r_n}{M},$$

be the total mass and the center of masses of the n bodies, respectively.
A configuration \(r=(r_1,\ldots,r_n) \) is called a central configuration if the acceleration vectors of the \(n \) bodies are proportional to their positions with respect to the center of masses with the same constant \(\lambda \) of proportionality, i.e.

\[
\sum_{j=1}^{n} \frac{m_j (r_i - r_j)}{r_j^3} = \lambda (r_i - c), \quad 1 \leq j \leq n,
\]

where \(\lambda \) is the constant of proportionality.

Equations (1) are strongly nonlinear and to find the explicit central configurations \((r_1,\ldots,r_n)\) in function of the masses \(m_1,\ldots,m_n \) when \(n=3 \) is an unsolved problem.

There is an extensive literature on the study of central configurations, see for instance Euler [6], Lagrange [7], Hagihara [8], Llibre [9,10], Meyer [2], Moeckel [11], Moulton [11], Saari [12], Smale [3], ..., and the papers quoted in these references.

In this paper we are interested in the planar central configurations of a circular restricted 4-body problem. Of course, for the central configurations of the 4-body problem there are many partial results, see for instance the papers [13-66].

We note that the set of central configurations is invariant under translations, rotations, and homothecies with respect their center of mass. It is said that two central configurations are equivalent if after having the same center of mass (doing a translation if necessary) we can pass from one to the other through a rotation around its common center of mass and a homothecy. This defines a relation of equivalence in the set of central configurations. From now on when we talk about a central configuration, we are talking on a class of central configurations under this relation of equivalence.

The objective of the present article is to study the central configurations of the circular restricted 4-body problem with three equal primaries in the collinear central configuration of the 3-body problem. We recall that for the 3-body problem when the three masses are equal there is a unique collinear central configuration, where the mass in the middle equidistant from the other two, of course the equal masses can be permuted in the positions.

As in any circular restricted problem the objective is to describe the motion of the infinitesimal mass with respect to the primaries. Usually this problem is studied in a rotating system of coordinates where the positions of the primaries remain fixed, see for more details on the restricted problems the book of Szebehely [67].

More precisely, taking the unit of mass equal to the masses of the three primaries and since a central configuration is invariant under rotations and homothecies through its center of mass without loss of generality we can assume that the position vector \(r_i \) of the three primaries with masses \(m_1=m_2=m_3=1 \) are

\[
r_i = (x_i, y_i) = (-1,0), \quad r_2 = (x_2, y_2) = (0,0), \quad r_3 = (x_3, y_3) = (1,0).
\]

(2)

We denote the position of the infinitesimal mass \(m_4=0 \) by \(\{x,y\} = (x,y) \). Then our main result is the following one.

Theorem 1 The circular restricted 4-body problem with three primaries of equal masses \(m_1=m_2=m_3=1 \) with position vectors given in (2), and one infinitesimal mass \(m_4=0 \) with position vector \(r_4 = (x_4, y_4) = (x,y) \) have the following six central configurations with \(r_i \) for \(i=1 \) being:

(i) \(p_1 = (x, y) = (0, 1.1394282249562009..) \), where the value of the coordinate \(y \) is a root of the polynomial

\[-16 - 48y^2 + 48y^3 + 120y^4 + 23y^5 + 120y^6 - 75y^7 + 48y^8 - 75y^9 - 25y^{10}; \]

(ii) \(p_2 = (x, y) = (0, -1.1394282249562009..) \);

(iii) \(p_3 = (x, y) = (1.7576799791694022..,0) \), where the value of the coordinate \(y \) is a root of the polynomial

\[-4 + 5x^3 - 12x^4 - 10x^5 + 5x^7; \]

(iv) \(p_4 = (x, y) = (0.49466649101736443..,0) \), where the value of the coordinate \(y \) is a root of the polynomial

\[-4 + 8x^3 + 21x^4 - 4x^5 - 10x^6 + 5x^7; \]

(v) \(p_5 = (x, y) = (-0.49466649101736443..,0) \);

(vi) \(p_6 = (x, y) = (-1.7576799791694022..,0) \).

Figure 1.

The proof of Theorem 1 is given in the next section.
Proof of theorem 1

From (1) we obtain the following eight equations for the central configurations of the 4-body problem in the plane

\[e_j = \sum_{j=1, j\neq i}^{5} \frac{m_j (x_j - x_i)}{r_{ij}^3}, \quad 1 \leq j \leq 4, \]

\[e_{j+5} = \sum_{j=1, j\neq i}^{5} \frac{m_j (y_j - y_i)}{r_{ij}^3}, \quad 1 \leq j \leq 4, \]

Where \(c = (c_1, c_2). \) Substituting in (3) the expressions (2), we get the six points coordinates of these six points numerically using the Newton method (see for instance [68]), we get the six points and the position vector of \(P_i \) which corresponds to this six points.

First we look for the solutions \((0,y)\) with \(y>0, \) then system \(e_i (x,y) =0 \) and \(e_j (x,y) =0 \) reduce to

\[\frac{5y^3}{4} - \frac{2y}{y^2 + 1} - \frac{1}{y} = 0, \]

or equivalently to

\[8y^3 = (1 + y^2)^{3/2} (-4 + 5y)^3. \]

Therefore \(\lambda = -5/4, \) and the position vector of \(r_i = (x_i, y_i) \) in order to have a central configuration of the circular restricted 4-body problem must be a real solution of the system

\[e_i = -e_i = \frac{5}{4} + \lambda = 0, \]

\[e_i - e_j - e_k - e_m = 0, \]

\[e_i = y \left(-\lambda - \frac{1}{(x^2 + y^2)^{3/2}} \right) = 0. \]

In Figure 2 we have shown the curves \(e_i (x,y) =0 \) and \(e_j (x,y) =0, \) and in Figure 3 the intersection of these two curves. We see that these two curves intersect in six points inside the rectangle \(R = \{ (x,y) \in \mathbb{R}^2 : -2.2 \leq x \leq 2.2, -2.2 \leq y \leq 2.2 \}. \) Computing the coordinates of these six points numerically using the Newton method (see for instance [68]), we get the six points \(P_i \) which appear in the statement of Theorem 1. Of course we have omitted the three points where are located the three primaries in the intersections of the two curves \(e_i (x,y) =0 \) and \(e_j (x,y) =0, \) because there really these two curves are not defined. Now we shall prove that these six points obtained numerically really are solutions of the system \(e_i (x,y) =0 \) and \(e_j (x,y) =0. \)

We note that equations \(e_i (x,y) =0 \) and \(e_j (x,y) =0 \) are invariant if we change \(x \) by \(-x, \) and \(y \) by \(-y, \) so if \((x,y) \) is a solution of the system \(e_i (x,y) =0 \) and \(e_j (x,y) =0, \) also \(-x,y, \)

\((x,-y) \) and \((-x,-y) \) are solutions. So in order to prove Theorem 1 we only need to study the solutions of system \(e_i (x,y) =0 \) and \(e_j (x,y) =0 \) satisfying \(x \geq 0 \) and \(y \geq 0. \) Moreover, from Figure 3 we see that all the solutions are of the form \((x,0)\) or \((0,y),\) and since in the origin \((0,0)\) there is one primary, we must look only for the solutions \((x,0)\) or \((0,y)\) with \(x > 0 \) and \(y > 0. \)

Citation: Llibre J (2021) Central configurations of the circular restricted 4-body problem with three equal primaries in the collinear central configuration of the 3-body problem. Trends Comput Sci Inf Technol 6(1): 001-006. DOI: https://dx.doi.org/10.17352/tcsit.000031
Now we look for the solutions \((x,0)\) with \((x>0)\) of the system
\[e_2(x,y) = 0 \quad \text{and} \quad e_4(x,y) = 0. \] For these solutions the system reduce to
\[\frac{5x}{4} - \frac{1}{x} + \frac{1-x}{|1-x|^2} = \frac{1+x}{|1+x|^{3/2}}, \]
which is equivalent to
\[\frac{5x}{4} - \frac{1}{x} + \frac{1-x}{|1-x|^2} = \frac{1+x}{|1+x|^{3/2}}. \]
Squaring the both sides of the previous equality we obtain
\[\frac{25x^2}{16} + \frac{1-(x-1)(5x^2-4)}{2x(x-1)} - \frac{(x-1)(5x^2-4)}{2x} = 0. \]
Writing this equation with a common denominator, which only vanishes at the positions of the primaries, its numerator equal zero can be written as
\[8(x-1)^2(x+1)^4(5x^2-4) = |x-1|^3 \] (16 - 64x^2 - 40x^4 + 96x^6 + 288x^8 - 39x^{12} - 112x^4 - 84x^6 + 160x^8 + 150x^{10} - 40x^{12} + 100x^{14} + 25x^{16}). \]
Squaring again the both sides of the this equality we get
\[(x-1)^2(-4+8x^2-12x^4+10x^6+5x^8)(-4+8x^2-12x^4+10x^6+5x^8) \] \[(-4+8x^2+21x^4-40x^6+5x^8)(-4+16x^4+5x^6+4x^8-10x^6+5x^8) = 0. \]
The real zero \(x=1\) is not good because it correspond to the position of a primary. The unique real root of the polynomial \(-4+5x^2-10x^4+5x^6\) is \(1.7575799791694022\). which also is a zero of equation (5), and consequently provides the central configuration \(P_4\), and by the symmetries of the equations of the central configurations also provides the central configuration \(P_5\).

The unique real root of the polynomial \(-4+8x^2+21x^4-4x^{10}+5x^{12}\) is \(0.64966664410171345\). which also is a zero of equation (5), and consequently provides the central configuration \(P_4\), and due to the symmetries of the equations of the central configurations also provides the central configuration \(P_5\).

The real roots of the polynomials \(-4+8x^2-11x^4-4x^6+10x^8+5x^{10}\) and \(4+16x^2+5x^4+4x^6-10x^8+5x^{10}\) are not zeros of the equation (5). This completes the proof of Theorem 1.

Acknowledgements

The first author is partially supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación grants PID2019-104655GB-I00 (FEDER), the Agència de Gestió d’Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE–2017–777911.

References

1. Wintner A (1941) The Analytical Foundations of Celestial Mechanics, Princeton University Press. Link: https://bit.ly/3n70sBv
2. Meyer KR (1987) Bifurcation of a central configuration. Celestial Mech 40: 273-282. Link: https://bit.ly/3o7RcIl
3. Smale S (1970) Topology and mechanics II: The planar n-body problem. Inventiones math 11: 45-64. Link: https://bit.ly/3NhJtW
4. Gómez G (2001) Dynamics and Mission Design Near Libration Points. Vol. I: Fundamentals: The case of collinear libration points, World Scientific Monograph Series in Mathematics 2. Link: https://bit.ly/387jULc
5. Gómez G (2001) Dynamics and Mission Design Near Libration Points. Vol. I: Fundamentals. The case of collinear libration points, World Scientific Monograph Series in Mathematics 2. Link: https://bit.ly/387jULc
6. Euler L (1767) De moto rectilineo trium corporum se mutuo attahentium. Novi Comm Acad Sci Imp Petrop 11: 144-151. Link: https://bit.ly/3858Jhg
7. Lagrange JL (1783) Essai sur l’analyse de deux corps, recueil des pieces qui ont remporte le prix de l’Academie royale des Sciences de Paris,tome IX, 1772, reprinted in Ouvres 6: 229-324.
8. Hagihara Y (1970) Celestial Mechanics. 1. MIT Press, Massachusetts.
9. Llibre J (1991) On the number of central configurations in the n-body problem. Celestial Mech Dynam Astronom 50: 89-96.
10. Llibre J (2017) On the central configurations of the n-body problem. Appl Math Nonlinear Sci 2: 509-518. Link: https://bit.ly/2JHBBZS
11. Moeckel R (1990) On central configurations. Math Zeit soefift 205: 499-517. Link: https://bit.ly/3M34xv
12. Saari DG (1980) On the role and properties of central configurations. Celestial Mech 21: 9-20. Link: https://bit.ly/38622zR
13. Albouy A (1995) Symetrie des configurations centrales de quatre corps. CR Acad Sci Paris 320: 217-220. Link: https://www.romaticsolver.org/paper/Sym%C3%A9trie-des-configurations-centrales-de-quatre-Albouy/44082da8d129373cc5eeae0706ddcc5583aa238e1
14. Albouy A (1995) The symmetric central configurations of four equal masses, Hamiltonian dynamics and celestial mechanics (Seattle, WA, 1995). 131–135, Contemp. Math. 198, Amer. Math. Soc., Providence, RI, 1996.
15. Albouy A, Fu Y, Sun S (2008) Symmetry of planar four body convex central configurations. Proc R Soc Lond Ser A Math Phys Eng Sci 464: 1355-1365. Link: https://hal.archives-ouvertes.fr/hal-00153212
16. Albouy A, Kaloshin V (2012) Finiteness of central configurations of five bodies in the plane. Ann Math 176: 535-588. Link: https://annals.math.princeton.edu/2012/176-1/p10
17. Ibarz-Ramírez M, Corbera M, Delgado J, Llibre J (2004) The number of planar central configurations for the 4-body problem when 3 mass positions are fixed. Proc Amer Math Soc 133: 529-536. Link: https://bit.ly/3pC0LM0x
18. Ibarz-Ramírez M, Delgado J (2003) Central configurations of the symmetric restricted 4-body problem. Celestial Mech Dynam Astronom 87: 371-381. Link: https://bit.ly/3b0Y9GM
19. Ibarz-Ramírez M, Llibre J (2013) The symmetric central configurations of the 4-body problem with masses. Appl Math Comp 219: 596-6001. Link: https://bit.ly/3p8Bge2E
20. Ibarz-Ramírez M, Llibre J (2018) Hjelmslev quadrilateral central configurations. Phys Letters A 383: 103-109. Link: https://bit.ly/3pAS85wE
21. Ibarz-Ramírez M, Llibre J (2019) Equilic quadrilateral central configurations. Commun Nonlinear Sci Numer Simul 78: 104872. Link: https://bit.ly/3hM34xr
22. Alvarez-Ramirez A, Santos AA, Vidal C (2013) On co-circular central configurations of the symmetric 4-body problem for homogeneous force law. J Dynam Differential Equations 25: 269-290. Link: https://bit.ly/3pLCMOx
23. Arribas M, Abad A, Elipe A, Palacios M (2016) Equilibria of the symmetric body-problem with masses. Appl Math Comp 219: 5996-6001. Link: https://bit.ly/3pA85eW
24. Arenstorf RF (1982) Central configurations-centrales-de-quatre-Albouy/44082da8d129373cc5eeae0706ddcc5583aa238e1
25. Llibre J, Xiang D (2018) Central configurations of the collinear restricted 4-body problem with radiation pressure. Astrophys. Space Sci 361: 12. Link: https://bit.ly/38UNfAe
26. Alvarez-Ramirez A, Santos AA, Vidal C (2013) On co-circular central configurations in the four and five-body problem for homogeneous force law. J Dynam Differential Equations 25: 269-290. Link: https://bit.ly/3pLCMOx
27. Arenstorf RF (1982) Central configurations of four bodies with one inferior mass. Cele Mech Dynamics 28: 9-15. Link: https://bit.ly/3aWsRBv

Citation: Llibre J (2021) Central configurations of the circular restricted 4-body problem with three equal primaries in the collinear central configuration of the 3-body problem. Trends Comput Sci Inf Technol 6(1): 001-006. DOI: https://dx.doi.org/10.17352/tcsit.000031
25. Barros JF, Leandro ESG (2011) The set of degenerate central configurations in the planar restricted four-body problem. SIAM Journal on Mathematical Analysis 43: 634-661. Link: https://bit.ly/3Hyuvfk

26. Barros JF, Leandro ESG (2014) Bifurcations and enumeration of classes of relative equilibria in the planar four-body problem. SIAM Journal on Mathematical Analysis 46: 1165-1203. Link: https://bit.ly/3pK1aQq

27. Bernat J, Llibre J, Perez-Chavela E (2009) On the planar central configurations of the 4-body problem with three equal masses. Dyn Contin Discrete Impuls. Syst Ser A Math Anal 16: 1-13.

28. Chenciner A (2017) Are nonsymmetric balanced configurations in the planar four-body problem with three equal masses virtual or real?. Regul Chaotic Dyn 22: 677-687. Link: https://bit.ly/3rWBDQ

29. Corbera M, Cors JM, Llibre J, Perez-Chavela E (2019) Trapezoid central configurations. Appl Math Comput 346: 127-142. Link: https://bit.ly/3n5WCSW

30. Corbera M, Llibre J (2014) Central configurations of the 4-body problem with masses m1=m2>m3=m4=0 and m small. Appl Math Comput 246: 121-147. Link: https://bit.ly/2MpY0Dc

31. Corbera M, Cors JM, Llibre J (2011) On the central configurations of the planar 4-body problem. Celestial Mech Dynam Astronom 109: 27-43.

32. Corbera M, Cors JM, Roberts GE (2018) A four-body convex central configurationwith perpendicular diagonals is necessarily a kite. Qual Theory Dyn Syst 17: 367-374. Link: https://bit.ly/3bdf8GL

33. Corbera M, Cors JM, Roberts GE (2019) Classifying four-body convex central configurations. Celestial Mech Dynam Astronom 131: 34. Link: https://bit.ly/3HyFst

34. Cors JM, Roberts GE (2012) Four-body co-circular central configurations. Nonlinearity 25: 343-370. Link: https://bit.ly/2MdGgO

35. Cors JM, Llibre J, Ollé M (2004) Central configurations of the planar coorbital satellite problem. Celestial Mech Dynam Astronom 89: 319-342. Link: https://bit.ly/2Lg1hDO

36. Deng Y, Li B, Zhang S (2017) Four-body central configurations with adjacent equal masses. J Geom Phys 114: 329-335. Link: https://bit.ly/3LA115

37. Deng Y, Li B, Zhang S (2017) Some notes on four-body co-circular central configurations. J Math Anal Appl 453: 398-409. Link: https://bit.ly/3xwq1T1

38. Deng C, Zhang S (2014) Planar symmetric concave central configurations in Newtonian four-body problems. J Geom Phys 83: 43-52. Link: https://bit.ly/3pMwvGF

39. Rdi B, Czirj KZ (2016) Central configuration of four bodies with an axis of symmetry. Celestial Mech Dynam Astronom 125: 33-70. Link: https://bit.ly/2MqBEkZ

40. Fernandes AC, Llibre J, Mello LF (2017) Convex central configurations of the 4-body problem with two pairs of equal masses. Arch Rational Mech Anal 226: 303-320. Link: https://bit.ly/3BOfFxW

41. Gannaway JR (1981) Determination of all the central configurations of the planar 4-body problem with one inferior mass, Ph. D., Vanderbilt University, Nashville, USA.

42. Fernandes AC, Garcia BA, Llibre J, Mello LF (2018) New central configurations of the (+1) body problem. J Geom Phys 124: 199-207. Link: https://bit.ly/3l2K6m

43. Grebenikov EA, Ikhansov EV, Prokopenya AN (2006) Numerico-symbolic computations in the study of central configurations in the planar Newtonian four-body problem, Computer algebra in scientific computing, 192–204. Lecture Notes Comput Sci. Link:

44. Hampton M (2003) Co-circular central configurations in the four-body problem. EQUADIFF 99: 993-998. Link: https://bit.ly/3Swt63F

45. Hampton M, Moeckel R (2006) Finiteness of relative equilibria of the four-body problem. Invent Math 163: 289-312. Link: https://bit.ly/34YmsSj

46. Hassan MR, Ullah MS, Aminul HM, Prasad U (2017) Applications of planar Newtonian four-body problem to the central configurations. Appl Appl Math 12: 1088-1108. Link: https://bit.ly/3HyCIP

47. Leandro ESG (2006) On the central configurations of the planar restricted four-body problem. J Differential Equations 226: 323-351. Link: https://bit.ly/3o8W0vk

48. Llibre J (1976) Posiciones de equilibrio relativo del problema de 4 cuerpos. Publicaciones Matemáticas UAB 3: 73-88. Link: https://bit.ly/2KMCZCi

49. Llibre J, Yuan P (2019) Bicentric quadrilateral central configurations. Appl Math Comput 362: 124507. Link: https://bit.ly/3rK7yK0

50. Llibre J, Yuan P (2020) Tangential trapezoid central configurations. Regul Chaotic Dyn 25: 651-661. Link: https://bit.ly/2X3F6nG

51. Long Y (2003) Admissible shapes of 4-body non-collinear relative equilibria. Adv Nonlinear Stud 3: 495-503. Link: https://bit.ly/3bLezrc

52. Long Y, Sun S (2002) Four-Body Central Configurations with some Equal Masses. Arch Ration Mech Anal 162: 25-44. Link: https://bit.ly/3b9zZck

53. MacMillan WD, Bartky W (1932) Permanent Configurations in the Problem of Four Bodies. Trans Amer Math Soc 34: 838-875. Link: https://bit.ly/2X3EYeV

54. Ouyang T, Xie Z (2005) Collinear central configuration in four-body problem. Celestial Mech Dynam Astronom 93: 147-166. Link: https://bit.ly/3hzJPqA

55. Pedersen P (1944) Librationspunkte im restringierten Vierkörperproblem. Danske Vid Selsk Math Fys 21: 1-80. Link: https://bit.ly/3b1fMA

56. Perez-Chavela E, Santoprete M (2007) Convex four-body central configurations with some equal masses. Arch Rational Mech Anal 185: 481-494. Link: https://bit.ly/3naQzMB

57. Pina E (2013) Computing collinear 4-body problem central configurations with given masse. Discrete Contin. Dyn Syst 33: 1215–1230. Link: https://bit.ly/38UE9e

58. Pina E, Lonnig P (2010) Central configuration for the planar Newtonian four-body problem. Celest Mech Dyn Astron 108: 73-93. Link: https://bit.ly/2LdRAWW

59. Rusu D, Santoprete M (2016) Bifurcations of central configurations in the four-body problem with some equal masses. SIAM J Appl Dyn Syst 15: 440-458. Link: https://bit.ly/2KWiGgK

60. Shi J, Xie Z (2010) Classification of four-body central configurations with three equal masses. J Math Anal Appl 363: 512-524. Link: https://bit.ly/2LdKITn

61. Shoaib M, Kashif AR, Szücs-Csillik I (2017) On the planar central configurations of rhomboidal and triangular four- and five-body problems. Astrophys Space Sci 362: 182. Link: https://bit.ly/2L7i4G5

62. Simo C (1978) Relative equilibrium solutions in the four-body problem. Cel Mechanics 18: 165-184. Link: https://bit.ly/3pFMbXJ

63. Tang, J. (2006) A study on the central configuration in the Newtonian 4-body problem of celestial mechanics (Chinese). J Systems Sci Math Sci 26: 647-650.

64. Xie Z (2012) Isoceles trapezoid central configurations of the Newtonian four-body problem. Proc Roy Soc Edinburgh Sect A 142: 655-672. Link: https://bit.ly/3o6LID5

65. Yoshimi N, Yoshioka A (2018) 3+1 Moulton configuration. SUT J Math 54: 173-190.
66. Herget P (1967) Theory of orbits, The restricted problem of three bodies, Academic Press, New York. Link: https://bit.ly/3n7ki9a

67. Bernat J, Llibre J, Perez-Chavela E (2009) On the planar central configurations of the 4-body problem with three equal masses. Dyn Contin Discrete Impuls. Syst Ser A Math Anal 16: 1-13.

68. Stoer J, Bulirsch R (1980) Introduction to numerical analysis, Springer-Verlag, New York. Link: https://bit.ly/3521NNi

Citation: Llibre J (2021) Central configurations of the circular restricted 4-body problem with three equal primaries in the collinear central configuration of the 3-body problem. Trends Comput Sci Technol 6(1): 001-006. DOI: https://dx.doi.org/10.17352/tcsit.000031