Effect of integrated nutrient and agronomic management on growth, productivity, nutrient uptake and soil residual fertility status of soybean

R. Sikka*, D. Singh, J.S. Deol and Navneet Kumar

Department of Soil Science,
Punjab Agricultural University, Ludhiana-141 004, Punjab, India.

ABSTRACT

A field experiment on soybean was conducted at the regional research farm of the Punjab Agricultural University, Naraingarh (Distt. Fateh Garh Sahib) for three years under irrigated conditions for productivity enhancement through integrated nutrient and other agronomic interventions. There were twelve treatments comprising different levels of N, P, K, FYM and agronomic management practices. The results revealed that soybean significantly responded to the application of N, P, K and FYM. Maximum yield was recorded in the treatment where FYM was applied with NPK and resulted in an increase of 10.8 per cent over NPK alone. Application of additional 30 kg N ha⁻¹ at pre-flowering or at pod initiation did not significantly enhance the yield over the basal dose of NP applied at sowing. Application of 4 tonnes wheat straw mulch + 30 kg N + 60 kg P₂O₅ and 30 kg N + 60 kg P₂O₅ ha⁻¹ showed similar effect on seed yield of soybean. No statistical difference in soybean yield was observed in the conventional flat and bed sowing treatments. Pre-emergence application of pendimethaline @ 1.5 l ha⁻¹ along with one hand weeding at 40 days after sowing (DAS) and two hand weeding at 20 and 40 DAS were equally effective for weed control and in influencing the soybean yield. The application of N, P, K and FYM, in different treatments, treatment with *Bradyrhizobium japonicum* and sowing on beds all significantly improved the N, P and K uptake by soybean over control. Application of FYM to soybean resulted in maximum nutrient uptake by soybean. After three years a significant improvement in soil organic carbon, available N, P and K was observed in all treatments over control.

Key words: Available nutrients, Farm yard manure, Integrated, Nutrients, Organic carbon, Productivity, Soybean, Uptake.

INTRODUCTION

Soybean [*Glycine max* (L.) Merr.] is an important pulse and oilseed crop and is a rich source of high quality protein and essential amino acids. Owing to large amount of dietary fiber and low amount of saturated fat it is also considered as “Golden bean”. Its oil is used as cooking medium and for manufacturing several industrial products, such as vanaspati ghee, soaps, paints, insecticides, disinfectants etc. Its seeds are used for preparation of soy tofu, soya milk, soya sprouts, soya nuts, etc. Soybean oil cake is used for preparation of biscuits, protein rich bread and other confectionary, bakery, high protein livestock feed etc. (Chauhan and Singh, 2004). Further, its cultivation also improves soil health as it fixes nitrogen from the atmosphere, thus improves the productivity of succeeding crops.

Soybean being an energy rich legume is very nutrient exhaustive also and requires higher amounts of N, P and K fertilizers as compared to other legumes. But the productivity as well as profitability of soybean cultivation is declining mainly due to imbalanced fertilization. Continuous exploitation of soil resources for cultivation of crops without addition of fertilizers and their inadequate supply create nutrient imbalance in soil, which inhibits the potential productivity of crops (Arbad et al., 2014). Sole application of NPK fertilizers leads to emergence of micro nutrient deficiencies while integrated use of FYM and NPK sustains crop productivity. Further, integrated use of organic as well as inorganic sources of nutrients can have promising effect in arresting the decline in productivity on long term basis by improvement in the physical, chemical and biological properties of the soil (Tiwari, 2002).

Organic manures in addition to inorganic nutrients create congenial soil conditions for nodule development and nitrogen fixation thus improving vegetative growth, metabolic activity and root growth (Singh et al., 2010) which leads to achieve enhanced yields (Shivkumar and Ahlawat, 2008; Mere et al., 2013). Soybean is more responsive to nitrogen fertilization in high yielding environments and an approach to apply nitrogen can be its split application wherein a part can be supplied during the growing season (Mirshekari, 2013). Application of nitrogen at pre-flowering stage improved growth (Bly et al., 1998) and yield of soybean (Mirshekari, 2013). Adequate phosphorus nutrition increases many aspects of plant development viz., flowering, fruiting.

Corresponding author’s e-mail: rajeevpau@gmail.com
root growth etc. and play an important role in nitrogen fixation (Lingaraju et al., 2016). Balance nutrition is, therefore, of utmost importance to harvest maximum yields from soybean.

In addition to nutrient management, other agronomic manipulations viz., planting methods, weed control, mulching etc. can further help to get improved yields. Therefore, the present investigation was undertaken to evaluate the effect of chemical fertilizers, organic manures and other agronomic interventions on productivity of soybean and soil health under a semi-arid sub tropical environment in north India on a typic haplustept.

MATERIALS AND METHODS

A field experiment was conducted at the research farm of the regional research station, Punjab Agricultural University, Naraingarh during consecutive three kharif seasons on a sandy clay loam soil. The soil of the experimental field was low in available N (125.4 kg/ha), high in available P (37.1 kg/ha), and available K (266.0 kg/ha) having alkaline pH (8.13). Soybean variety SL 525 was sown during second fortnight of June and harvested during second fortnight of October. The experiment was laid in randomized complete block design (RCBD) with twelve treatments each on fixed site viz-T1: Control (N.P.K.), T2: 30 kg N ha\(^{-1}\) at sowing, T3: 30 kg N ha\(^{-1}\) + 60 kg P\(_2\)O\(_5\) at sowing + 30 kg N ha\(^{-1}\) at pre-flowering, T4: 30 kg N + 60 kg P\(_2\)O\(_5\) ha\(^{-1}\) at sowing, T5: 30 kg N + 60 kg P\(_2\)O\(_5\) + 30 kg K\(_2\)O ha\(^{-1}\) at sowing, T6: 30 kg N + 60 kg P\(_2\)O\(_5\) + 10 tonnes FYM ha\(^{-1}\) at sowing, T7: 30 kg N + 60 kg P\(_2\)O\(_5\) + 30 kg K\(_2\)O + 10 tonnes FYM ha\(^{-1}\) at sowing, T8: 30 kg N + 60 kg P\(_2\)O\(_5\) + 30 kg K\(_2\)O + 10 tonnes FYM ha\(^{-1}\) + Rhizobium japonicum at sowing without seed treatment.

Asper the treatments FYM was incorporated at the time of field preparations. The required quantities of nutrient elements N, P and K were applied through urea, SSP/DAP and MOP except for the treatment T7 respectively. Full dose of N, P and K were applied before the sowing of soybean. The seeds were treated with Bradyrhizobium japonicum culture before sowing. Two hand weedicings were performed in all treatments except in treatment T7. Soybean was sown at a row spacing of 45 cm and the crop was irrigated as and when required. All the recommended cultural operations other than the treatments were practiced to raise the crop. After three years of experimentation, surface soil samples (0-15 cm) were analyzed for organic carbon (Walkley and Black, 1934), available N (Subbiah and Asija, 1956), available P (Olsen et al., 1954) and available K (Merwin and Pech, 1950). At the time of harvest, grain and straw samples of soybean were collected from different treatments and were oven-dried at 70\(^\circ\)C. The dried samples were ground in a stainless steel Willey mill. For the determination of N in soybean grain and straw, a known weight of grain and straw were digested in concentrated H\(_2\)SO\(_4\) at 350\(^\circ\)C and the digest was analysed for N by Kjeldahl distillation method. For the determination of P and K the grain and straw samples were digested at 150\(^\circ\)C in diacid mixture of HClO\(_4\) and HNO\(_3\) in the ratio of 3:1. The uptake of NPK by grain and straw was calculated by multiplying the NPK content with the respective oven dried grain and straw yield of soybean. The total NPK uptake was calculated by summing the grain and straw uptake. The data were statistically analysed in RCBD by applying the significance among different treatments. The correlation and path analysis (Dewey and Lu, 1959) were carried out using SAS (6.2) statistical software.

RESULTS AND DISCUSSION

Growth characters and yield: The number and dry weight of nodules plant\(^{-1}\) increased significantly with the inoculation of seed with Bradyrhizobium japonicum over the control without seed inoculation with Rhizobium (Table 1). Application of 30 kg N, 60 kg P\(_2\)O\(_5\) and 30 kg K\(_2\)O ha\(^{-1}\) along with 10 tonnes of FYM in T9, recorded the maximum number and dry weight of nodules plant\(^{-1}\) followed by T8, Mere et al., (2013) also found that the addition of organic manure along with inorganic fertilizers provided congenial conditions for nodulation and thus resulting more N fixation and higher yield. Plant height was not significantly influenced by the application of different agronomic inputs. Application of 4 tonnes of wheat straw mulch along with 30 kg N and 60 kg P\(_2\)O\(_5\) ha\(^{-1}\) in T5 resulted in maximum plant height. Mean pods plant\(^{-1}\) was significantly influenced under different treatments. Significantly higher number of pods plant\(^{-1}\) were recorded in all the treatments as compared to control (T1) and where only 30 kg N ha\(^{-1}\) (T7) was applied. Highest number of pods plant\(^{-1}\) were observed in T9, though the 100 seed weight remained statistically similar under all the treatments (Table 1).

As perusal of data in (Table 1) revealed that seed yield ranged from 21.9 to 31.6 q ha\(^{-1}\). Minimum seed yield was recorded in the control (T1) and maximum under T9 treatment. Application of 10 tonnes of FYM along with 30 kg N, 60 kg P\(_2\)O\(_5\) and 30 kg K\(_2\)O ha\(^{-1}\) recorded the highest seed yield. These results are corroborated by the findings of Sikka et al. (2013) and Arbad et al. (2014). The increase in yield over the control (T1) was significant under all the treatments except T1, where the increase was non-significant. Highest mean yield observed under T9 (31.6 q/ha) was 44.3 per cent higher than control treatment. Application of 30 kg N/ha in T9, resulted in 9.5 per cent increase in yield over control (T1). Application of 30 kg N ha\(^{-1}\) in T7 and 30 kg N and 60 kg P\(_2\)O\(_5\) ha\(^{-1}\) in T7 resulted in 9.6 and 26.9 per cent higher mean yield than the control respectively. Combined
Table 1: Effects of different treatments on yield attributes and yield of soybean (Mean of three years)

Treatments	Plant height (cm)	Nodules/plant	Dry weight of nodules/plant (mg)	Pods/plant	100 seed weight (g)	Seed yield (q/ha)	Stover yield (q/ha)
T1 Control (N, P, K)	99.3	34.3	290	107.8	11.7	21.9	45.3
T2 N	104.3	46.7	370	111.0	11.7	24.0	46.0
T3 N, P + N, K at pre F	102.3	44.3	430	132.7	11.0	27.9	44.3
T4 N, P, K	100.9	43.7	426	132.4	11.4	27.8	46.2
T5 N, P, K	103.9	40.7	465	138.5	11.5	28.5	42.4
T6 N, P, K + FYM	104.6	50.0	517	159.8	11.1	30.3	46.3
T7 N, P, K + 10t FYM	105.6	55.7	530	172.6	11.0	31.4	45.7
T8 N, P, K without Rhizobium	102.7	52.0	367	129.2	11.7	26.8	43.1
T9 N, P, K + 4t straw mulch	106.3	40.3	260	138.2	11.0	30.0	47.7
T10 N, P, K + Pendi @ 0.45 kg/ha+1 HW	103.6	47.0	437	137.8	11.4	29.4	46.2
T11 N, P, K @ pod initiation	101.9	41.7	394	141.8	11.3	28.8	45.2
T12 N, P, K + 10t FYM on beds	103.9	47.7	424	155.0	11.4	29.3	47.4
CD (F=0.05)	NS	NS	132	17.4	NS	2.19	NS

Table 2: Correlation coefficients of yield and yield attributes of soybean.

	Plant height (cm)	Nodules/plant	Dry weight of nodules/plant (mg)	Pods/plant	100 seed weight (g)	Seed yield (q/ha)	Stover yield (q/ha)
Nodules/plant	0.84**						
Dry weight of nodules/plant (mg)	0.70*	0.81**					
Pods/plant	0.84**	0.79**	0.74*				
100 seed weight (g)	0.38	0.48	0.69*	0.47			
Seed yield (q/ha)	0.81**	0.80**	0.72*	0.94**	0.47		
Stover yield (q/ha)	0.67	0.72*	0.67*	0.65*	0.39	0.71*	

** significant at 1% and * significant at 5%

application of N and P in T4 treatment recorded over all increase in yield by 15.8 per cent over the use of N alone in T4, indicating the importance of P nutrition for soybean. Mean seed yield was highest under T6 followed by T5, T12, T11, T9, T7 and T2 treatments which were statistically at par among themselves but were significantly superior than the control. Combined use of NPK in T3 tended to enhance the seed yield over NP alone (T3). The integrated use of FYM with NP in T6 and with NPK in T9, enhanced seed yield by 9.0 and 10.0 per cent over T3 and T4 treatments, respectively. Mean seed yield of soybean increased by 30.1, 38.4 and 44.3 per cent with the application of NPK, FYM + NP and FYM + NPK over the control, respectively. Hegde et al. (1993) also reported that application of FYM @ 10 t/ha for 10 years continuously, improved soil health and maintained yield. Application of additional 30 kg N ha⁻¹ at pre-flowering stage or at pod initiation in T4 did not increase the yield over T4 where no additional N was applied. There was no significant improvement in yield with the use of wheat straw mulch @ 4 tonnes in T5 as the differences in yield between T4 and T5 treatment at the same level of NP applied were not significant.

Seed treatment with *Bradyrhizobium japonicum* did not cause significant increase in T8 over T4 treatment (without inoculation with *Rhizobium*) at the same level of agronomic inputs. Pre-emergence application of pendimethalin at 1.51 ha⁻¹ and one hand weeding at 40 DAS and 2 hoeings at 20 and 40 DAS were equally effective in influencing the yield. Conventional flat sowing in T4 and bed planting in T4, with same inputs of NP + FYM recorded statistically similar yield. Results have indicated that N, NP and integrated use of FYM with NP and NPK are the critical inputs for improving the yield of soybean. Application of wheat straw mulch @ 4 tonnes ha⁻¹, *Rhizobium* inoculation and bed planting with similar inputs and additional application of 30 kg N ha⁻¹ at pre-flowering stage or at pod initiation did not improve the yield significantly. Different agronomic inputs did not influence the straw yield significantly (Table 1). However, on an average application of wheat straw mulch in T9 produced the highest straw yield followed by bed planting in T3 and FYM with NP under T3.

Correlation: Correlation analysis revealed that seed yield was highly positively and significantly correlated with plant height, nodules per plant and pods per plant (Table 2). The results of path analysis revealed that number of pods per plant had a direct effect on seed yield whereas plant height, nodules per plant, dry weight of nodules and stover yield had indirect effect via pods per plant towards seed yield (Table 3). About 94% yield variation was explained by above stated characters. The study suggested that number of pods
Table 3: Direct and indirect effects of yield attributes based on correlation on seed yield of soybean.

Plant height (cm)	Nodules/plant	Dry weight of nodules/plant (mg)	Pods/plant	100 seed weight (g)	Stover yield (q/ha)	Correlation with seed yield	
Control (N)	0.081	0.071	0.040	0.66	0.0021	0.045	0.84
N							
0.081							
N	0.075	0.081	0.050	0.57	0.0023	0.046	0.85
Dry weight of pods/plant (mg)	0.051	0.062	0.049	0.45	0.0045	0.049	0.73
Pods/plant	0.071	0.067	0.045	0.79	0.0029	0.045	0.92
100 seed weight (g)	0.026	0.029	0.037	0.29	0.0072	0.028	0.45
Stover yield (q/ha)	0.047	0.052	0.041	0.041	0.0021	0.063	0.75

Explained variation = 95% Diagonal values represent direct effects and off diagonal values represent indirect effects.

Table 4: Effect of different treatments on total N, P and K uptake (Mean of three years)

Treatments	N uptake (kg/ha)	P uptake (kg/ha)	K uptake (kg/ha)
Control (NPK)	168.2	29.7	81.0
T_1 Na	186.7	30.3	99.2
T_1 N_2Na + N_30 at pre F	219.0	35.4	98.4
T_1 Na_30	207.0	36.7	107.8
T_1 N_2Na+K_30	218.6	33.5	94.7
T_1 N_2Na+K_30+10t FYM	231.8	35.5	113.7
T_1 N_2Na+K_30+10t FYM	241.3	37.3	111.8
T_1 N_2Na without Rhizobium	213.2	32.1	93.1
T_1 N_2Na+4t straw mulch	229.8	35.7	107.8
T_10 N_2Na+Pendi @ 1.5 l ha^-1 + 1 HW	215.6	37.3	89.3
T_11 N_2Na+N_30 at pod initiation	224.2	32.9	95.3
T_12 N_2Na+10t FYM on beds	226.3	35.7	115.7

CD (P=0.05) = 22.5 4.4 NS 48.9

Table 5: Effect of different treatments on organic carbon and available N, P & K of soil (after three years)

Treatments	OC (%)	Available N (kg/ha)	Available P (kg/ha)	Available K (kg/ha)
Control (NPK)	0.55	97.8	30.1	176.8
T_1 Na	0.62	115.7	29.4	168.1
T_1 Na_2Na + N_30 at pre F	0.62	134.2	39.2	187.5
T_2 Na_30	0.63	122.4	38.4	191.4
T_1 Na_2Na+K_30	0.59	128.8	38.4	196.2
T_1 Na_2Na+K_30+10t FYM	0.70	147.8	41.2	188.1
T_1 Na_2Na+K_30+10t FYM	0.68	151.4	39.8	216.8
T_1 Na_30 without Rhizobium	0.58	107.8	34.3	196.2
T_2 Na_30+N_30 without mulch	0.62	111.3	34.8	194.2
T_10 N_2Na+Pendi @ 1.5 l ha^-1 + 1 HW	0.58	121.2	34.8	188.1
T_11 N_2Na+N_30 at pod initiation	0.63	122.4	35.7	178.8
T_12 N_2Na+10t FYM on beds	0.67	139.9	40.2	180.3

CD (P=0.05) = 0.02 8.2 1.95 6.3

per plant is the character of prime importance because the component trait has shown significant association with seed yield of soybean.

NPK uptake: The total N uptake increased sequentially over control with the addition of N alone (186.7); nitrogen and phosphorus (207.0 kg ha^-1); nitrogen, phosphorus and potassium (218.6 kg ha^-1); nitrogen, phosphorus, potassium and FYM (241.3 kg ha^-1) and nitrogen, phosphorus and sowing on beds (226.3 kg ha^-1). Minimum grain N uptake (168.2 kg ha^-1) was recorded in control and the maximum (241.8 kg ha^-1) recorded in T_12 (Table 4). All the fertilizer treatments recorded significantly higher grain N uptake as compared to control (T_0) where no fertilizer was added. Application of additional N at pre-flowering or at pod-initiation significantly increased N uptake as compared to the treatments where no additional N was applied. Application of P along with N recorded significantly higher total P uptake (T_1) as compared to the treatments where only N was applied (T_2). In all the treatments the total P uptake was significantly higher over control. Maximum total K
uptake was also recorded in T_1 and minimum was recorded in T_7. The differences however were non-significant among T_1, T_7, and T_11 treatments. Maximum mean total NPK uptake was recorded in T_4, treatments and minimum was recorded in control T_9, which was significantly less than the mean total N uptake recorded in all other treatments except T_4 treatment where the increase was statistically non-significant.

Residual available nutrients in soil: Maximum organic carbon (0.70%) was found in T_6 where 30 kg N, 60 kg P_2O_5, and 10 tonnes FYM ha^{-1} was applied and this was significantly higher than all other treatments except T_9 where it was statistically at par (Table 5). Minimum organic carbon (0.55%) was observed under control treatments. The changes in the organic carbon content under T_6, T_7, T_4, and T_1 were statistically at par among themselves. Maximum content of available N was recorded under T_4 where 30 kg N, 60 kg P_2O_5, 30 kg K_2O and 10 tonnes FYM ha^{-1} was applied followed by T_7 treatment which were statistically similar with each other but the treatment T_9 recorded significantly higher available N than all other treatments. Application of additional nitrogen at pre-flowering also resulted in significantly higher available N content (T_7) as compared to the treatment where no additional N was applied (T_9). However, minimum available N was recorded under the control treatment. The available P content of the soil varied from 29.4 (T_7) to 41.2 (T_6) kg ha^{-1}. Inclusion of P in different treatments resulted in significantly higher available P content of the soil than the treatment where no fertilizer (T_6) or only N was applied (T_7). The available P content of the soil was statistically at par among T_6, T_7, T_8, T_9, and among T_8, T_7, T_4, T_11 treatments. The available K content of the soil varied from 168.1 to 216.8 kg ha^{-1}. The maximum content of available K was recorded in T_4 where 30 kg N, 60 kg P_2O_5, 30 kg K_2O and 10 tonnes FYM ha^{-1} was applied and minimum was observed under the treatment where only N was applied. In similar studies Sikka et al. (2016) also found significant improvement in OC, available N, P and K with the inclusion of N, P, K, FYM and Bio-fertilizer in fertilization schedule as compared to the control. Arbad et al. (2014) also reported the buildup of soil nutrients (NPK) with application of 10 t/ha of FYM along with recommended NPK (30 kg N, 60 kg P_2O_5, 30 kg K_2O/ha) to soybean in soybean-safflower cropping system.

CONCLUSION

It maybe concluded that combined application of 10 t FYM along with 30 kg N, 60 kg P_2O_5 and 30 kg K_2O/ha resulted in realizing higher productivity of soybean. Application of additional nitrogen either at preflowering or at pod initiation, sowing on beds and straw mulching did not prove beneficial in increasing the soybean yield. The combined application of FYM along with NPK also helps in maintaining higher levels of available N, P and K besides increasing the organic carbon status of soil.

REFERENCES

Arbad, B.K., Ismail, S. and Dhawan, A.S. (2014). Influence of long term use of farmyard manure and inorganic fertilizer on grain yield and nutrient availability in vertisols under soyabean-safflower sequence cropping. *Legume.Res.*, **37**(6): 600-606.

Bly, A., Woodard, H.J. and Winther, D. (1998). Nitrogen application timing and rate effects on irrigated soybean grain parameters at Estelline and Aurora, SD in 1998. Soil PR98-36. In: Soil/Water Science Research 1998 Annual Report, TB 99. South Dakota Agricultural Experimental Station, Bookings, SD.

Chauhan, G.S. and Singh, N.B. (2004). Present status of soybean production and uses in India. In Soybean Production and Improvement in India. Singh et al. (Eds) NRCS, Indore:1 - 9.

Dewey, D. R. and Lu, K. H. (1959). A correlation with path analysis of component of crested wheat grass seed production. *Agron. J.* **51**:515-18.

Hegde, D.M. and Dwivedi, B. S. (1994). Crop response to biofertilizers in irrigated areas. *Fertil. News* **39**(4): 19-26

Lingaraju, N.N., Hunshal, C.S. and Salakinkop, S.R. (2016). Effect of biofertilizers and foliar application of organic acids on yield, nutrient uptake and soil microbial activity in soybean. *Legume. Res.*, **39**(2): 256-261.

Mere, V., Singh, A. K., Singh, M., Jamir, Z. and Gupta, R.C. (2013). Effect of nutritional schedule on productivity and quality of soybean varieties and soil fertility. *Leg. Res.*, **36**(6): 528-534.

Merwin, H.D. and Peech, M. (1950) Exchangeability of soil potassium in the sand, silt and clay fractions as influenced by the nature of the complementary exchangeable cation, *Soil Sci Soc Am J.* **15**: 125–128.

Mirkhekar, B. (2013). Spraying of soybeans with nitrogenous fertilizers at earlier flowering stage: an ecofriendly fertilization management system to improve crop yield. *Legume. Res.*, **36**(4): 318-322.

Olsen, S. R, Cole, C. V., Watanabe, F. S. and Dean, L. A. (1954). Estimation of available phosphorus by extraction with sodium bicarbonate. *USDA Circular No. 939 pp. 19.*

Shivakumar, B. G and Ahlawat, I. P. S. (2008) Integrated nutrient management in soybean *Glycine max* -wheat (*Triticum aestivum*) cropping system. *Indian J. Agron.* **53**(4): 273-278.

Sikka, R., Singh, D. Deol, J.S. and Kaur J (2013). Productivity enhancement of soybean as influenced by integrated nutrient and other agronomic interventions in sub - humid Punjab, India. *Legume Res.* **36** (6): 768-773.

Singh, G. Aggarwal, N. and Kumar, V. (2010). Integrated nutrient management in lentil with organic manures, chemical fertilizers and biofertilizers. *J. Food Legumes* **23**: 149-151.

Subbiah, B V and Asija, G L (1956). A rapid procedure for estimation of available nitrogen in soils. *Curr. Sci.* **25**: 259-260.

Tiwari, K.N. (2002). Lecture on nutrient management for sustainable Agriculture, *J. Indian Soc. Soil Sci.* **50**: 374-397.

Walkley A and Black I A (1934). An examination of Degtareff method for determining soil organic matter and a proposed modification of the chronic acid titration method. *Soil Sci.* **4**: 51-56.