Prevalence of sarcopenia as a comorbid disease: A systematic review and meta-analysis

Jacob Pacificoa, Milou A.J. Geerlingsb,c,, Esmee M. Reijniersea, Christina Phassouliotisa, Wen Kwang Lima, Andrea B. Maiera,c,*

a Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
b Department of Clinical Physical Therapy, VieCuri Medical Center, Venlo, the Netherlands
c Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands

\textbf{ARTICLE INFO}

Section Editor: Emanuele Marzetti
Keywords:
Sarcopenia
Cardiovascular diseases
Dementia
Diabetes mellitus
Respiratory tract diseases
Aged

\textbf{ABSTRACT}

\textbf{Background:} Sarcopenia shares risk factors with various other age-related diseases. This meta-analysis aimed to determine the prevalence of sarcopenia as a comorbid disease.

\textbf{Methods:} Medline, EMBASE and Cochrane databases were searched for articles from inception to 8th June 2018, reporting the prevalence of sarcopenia in individuals with a diagnosis of cardiovascular disease (CVD), dementia, diabetes mellitus or respiratory disease and, if applicable their controls. No exclusion criteria were applied with regards to definition of sarcopenia, individuals' age, study design and setting. Meta-analyses were stratified by disease, definition of sarcopenia and continent.

\textbf{Results:} The 63 included articles described 17,206 diseased individuals (mean age: 65.3 ± 1.6 years, 49.9% females) and 22,375 non-diseased controls (mean age: 54.6 ± 16.2 years, 53.8% females). The prevalence of sarcopenia in individuals with CVD was 31.4% (95% CI: 22.4–42.1%), no controls were available. The prevalence of sarcopenia was 26.4% (95% CI: 13.6–44.8%) in individuals with dementia compared to 8.3% (95% CI: 2.8–21.9%) in their controls; 31.1% (95% CI: 19.8–45.2%) in individuals with diabetes mellitus compared to 16.2% (95% CI: 9.5–26.2%) in controls; and 26.8% (95% CI: 17.8–38.1%) in individuals with respiratory diseases compared to 13.3% (95% CI: 8.3–20.7%) in controls.

\textbf{Conclusions:} Sarcopenia is highly prevalent in individuals with CVD, dementia, diabetes mellitus and respiratory disease.

\section{1. Introduction}

Older adults are at risk of developing age-related diseases resulting in multimorbidity, which is defined as the coexistence of two or more diseases (Violan et al., 2014). Over 50% of older adults are afflicted with 3 or more chronic diseases (Guiding principles for the care of older adults with multimorbidity: an approach for clinicians, 2012). Sarcopenia is an age-related disease characterised by low muscle mass, muscle strength and physical performance (Fielding et al., 2011; Zanker et al., 2019) and is prevalent in up to 15% of healthy older adults (Reijnierse et al., 2015b) up to 76% of acutely hospitalised older patients (Bianchi et al., 2017; Cruz-Jentoft et al., 2014; Reijnierse et al., 2018) and up to 69% of patients admitted to post-acute geriatric rehabilitation (Churilov et al., 2018). Sarcopenia is associated with poor health outcomes such as cognitive impairment (Chang et al., 2016), depression (Chang et al., 2017), functional decline (Beaudart et al., 2017), falls (Yeung et al., 2019), fractures (Yeung et al., 2019) and mortality (Beaudart et al., 2017).

Other diseases such as cardiovascular diseases (CVD), dementia, diabetes mellitus (DM) and respiratory diseases are frequently co-occurring in older individuals and share common risk factors with sarcopenia such as aging, physical inactivity, malnutrition and/or obesity (Baumgart et al., 2015; Cerri et al., 2015; Fletcher et al., 2002; Pierik et al., 2017; Postma et al., 2015; Sabzamakan et al., 2014). Currently, sarcopenia is frequently underdiagnosed in clinical practice (Reijnierse et al., 2017; Yeung et al., 2019) despite effective interventions to increase muscle mass, muscle strength and physical performance (Kamleh et al., 2019; Martin-Cantero et al., 2019) and willingness of older adults

* Corresponding author at: Department of Medicine and Aged Care, @Age, The Royal Melbourne Hospital, The University of Melbourne, City Campus, Level 6 North, 300 Grattan Street, Parkville, Victoria 3050, Australia.

\textbf{E-mail address:} andrea.maier@unimelb.edu.au (A.B. Maier).
to undergo treatment to counteract sarcopenia (Van Ancum et al., 2019). To date, treatment protocols do not take comorbid diseases into account (Yoshimura et al., 2017). Therewith it is of utmost importance to determine the prevalence of sarcopenia in cohorts of older adults at risk, to eventually introduce diagnostics and treatment of the disease.

This systematic review and meta-analysis aimed to determine the prevalence of sarcopenia in individuals with CVD, dementia, DM and respiratory disease.

2. Methods

2.1. Search strategy

A systematic search was performed in Medline, EMBASE, and Cochrane for published articles from inception date until 8th June 2018. The protocol was registered at PROSPERO International prospective register of systematic reviews (CRD42019127817). The systematic review was conducted according to the PRISMA standards (Moher et al., 2010). Pre-defined search terms included MeSH terms and keywords for ‘cardiovascular disease’, ‘dementia’, ‘diabetes mellitus’, ‘respiratory disease’ and ‘sarcopenia’. The search was constructed by a senior liaison librarian of the biomedical university library, The University of Melbourne. The complete search strategy can be found in Table A.1. The reference section of each included article was also used to identify additional relevant articles.

2.2. Article selection

All articles were assessed for eligibility via title and abstract screening and subsequently as full-text articles by two independent reviewers (JP and MAJG). A third reviewer (WKL) resolved any discrepancies between the two reviewers. Articles were selected if they included individuals with one of the following diseases: CVD, dementia, DM or respiratory disease. These diseases were chosen as they are highly prevalent at older age and among the top ten leading cause of global deaths (World Health Organisation, 2018). No restrictions were applied in regards to the definition of sarcopenia, age of individuals, study design and study setting. Articles were excluded if: individuals had active cancer as cancer cachexia is difficult to distinguish from sarcopenia (Cruz-Jentoft et al., 2010), the applied sarcopenia definition was not described, animal studies, conference abstracts, case reports (less than five reported cases), reviews, letters to the editor and articles not published in English.

2.3. Data extraction and quality assessment

Two independent reviewers (JP and MG) extracted the data and assessed the quality of included articles. The following data were extracted: study characteristics (first author, publication year), cohort characteristics (continent, study setting, type of disease, age, sample size, sex) stratified for disease groups and controls if applicable, and characteristics of sarcopenia diagnosis (definition of sarcopenia, prevalence for the total cohort and stratified for sex, and assessment method for each parameter included in the sarcopenia diagnosis). Controls were defined as not afflicted with the disease of interest. The weighted mean age of the individuals was calculated if the age was stratified by groups.

A modified Newcastle-Ottawa Scale (NOS) (Table A.2) was used to assess the quality of each article (Lo et al., 2014; Wells et al., 2001). The NOS evaluates the quality of an article through three criteria: 1) Selection, 2) Comparability and 3) Exposure. High-quality articles were defined as ≥ 4 stars (Hermont et al., 2014).

2.4. Statistical analysis

A random-effects model (Fleiss, 1993) was used to pool prevalence rates of sarcopenia separately for disease groups and controls, presented as a percentage and 95% confidence interval (CI). Analyses were stratified for articles with controls and articles without controls. If articles included controls but did not report the prevalence of sarcopenia, these articles were grouped with the articles without controls. If an article included more than one disease group was or stratified sarcopenia prevalence by severity of diseases, groups were included separately in the meta-analyses.

Subgroup-analyses were performed based on the definition of sarcopenia and continent. Sarcopenia definitions vary in their inclusion of muscle parameters (muscle mass, muscle strength and physical performance) and their cut-off values for each parameter (Baumgartner et al., 1998; Chen et al., 2014; Cruz-Jentoft et al., 2010; Fielding et al., 2011; Ishii et al., 2014; Janssen et al., 2004; Janssen et al., 2002; Newman et al., 2003; Studenski et al., 2014). This variance has been shown to impact on the prevalence of sarcopenia in various cohorts (Bijlsma et al., 2014; Reijnierse et al., 2018; Reijnierse et al., 2015b). Current definitions include muscle mass alone (Baumgartner et al., 1998; Delmonico et al., 2007; Janssen et al., 2004; Janssen et al., 2002; Newman et al., 2003); muscle mass and muscle strength (Nishikawa et al., 2016); muscle mass and physical performance (Fielding et al., 2011; Muscaritoli et al., 2010) and muscle mass, muscle strength and physical performance (Chen et al., 2014; Cruz-Jentoft et al., 2010; Studenski et al., 2014). Articles presenting sarcopenia prevalence by use of multiple sarcopenia definitions, the following definitions were selected for the meta-analysis: 1) the definition which applied to the cohort's country of origin was used (e.g. European Working Group for Sarcopenia in Older People (EWGSOP) for European cohorts, Asian Working Group for Sarcopenia (AWGS) for Asian cohorts) or 2) if 1 was not applicable, results were prioritised based on the following order: EWGSOP, AWGS, Foundation for the National Institutes of Health (FNIH), Baumgartner, other definitions.

If a study included both disease groups and controls, odds ratios (OR) for sarcopenia were calculated and a random-effects model was used to pool these OR. If an article included multiple disease groups or disease severities, they were combined into one disease group for the above analyses.

Heterogeneity was assessed using the I²-test, where a value of < 25% was rated low, 25–75% was moderate, and > 75% was high heterogeneity (Higgins and Thompson, 2002). A two-sided p-value of < 0.05 was considered statistically significant. All meta-analyses were performed using Comprehensive Meta-Analysis (version 3.3; Biotstat Inc., Englewood NK).

3. Results

3.1. Search strategy

The search strategy identified 6727 articles (Table A.1) and 38 articles were identified from other sources. A total of 1728 duplicate articles were removed. Following title and abstract screening (4999 articles), 214 articles were included for full-text review, of which 63 articles were included in the systematic review and meta-analysis (Fig. 1).

3.2. Study characteristics

Table 1 shows the characteristics of the included studies. Most articles (40/63) included individuals from Asia, 17/63 from Europe, 5/63 from North and South America and 1/63 from Australia. The mean age of the included 17,206 diseased individuals was 65.3 ± 11.6 years and 49.9% were female and the mean age of the included 22,375 controls was 54.6 ± 16.2 years and 53.8% were female. Thirteen articles included CVD, eleven articles dementia, 21 articles DM and 18 articles respiratory disease. The group of CVD consisted of acute and chronic heart failure, heart failure with preserved ejection fraction and stroke.
Dementia included Alzheimer’s disease (mild and moderate) and cognitive impairment (unspecified and severe). The DM group included type 1 and 2 DM, latent autoimmune diabetes, DM with peripheral neuropathy, diabetic nephropathy and diabetic retinopathy (proliferative and non-proliferative). Respiratory diseases included chronic obstructive pulmonary disease (COPD) and restrictive lung disease.

Table 2 shows the sarcopenia prevalence and the applied definitions, including AWGS (17/63), Baumgartner (19/63), Delmonico (1/63), EWGSOP (2010) (18/63), FNIH (4/63), International Working Group for Sarcopenia (IWGS) (2/63), Janssen (2002 and 2004) (6/63), Japan Society of Hepatology (1/63), Newman (3/63) and Special Interest Group on cachexia-anorexia (SIG) (1/63). The parameters used in each definition of sarcopenia are given in Table A.3.

3.3. Quality assessment

Table A.4 shows the total NOS score and individual question scores for each included article. Eighteen studies were scored as high quality and forty-five studies were scored as low quality. The NOS includes four questions referring to controls. If an article did not include a control group, the ‘selection’, ‘comparability’ and ‘exposure’ criteria were not scored maximally.

3.4. Meta-analysis

Table 3 summarizes the prevalence of sarcopenia in disease groups (Fig. 2) and controls (Fig. 3) and the OR for being sarcopenic in diseased groups compared to controls (Fig. A.1). Nineteen out of 63 articles reported the prevalence of sarcopenia in both diseased cohorts (dementia, DM, respiratory disease) and controls. There were no articles reporting the prevalence of sarcopenia in CVD and controls. All disease groups had a higher prevalence of sarcopenia compared to their controls. Individuals with dementia had a sarcopenia prevalence of 26.4% (95% CI: 13.6–44.8%, I² = 94.6%) compared to a sarcopenia prevalence of 8.3% in controls (95% CI: 2.8–21.9%, I² = 97.0%; OR = 3.14, 95% CI: 1.51–6.55). In individuals with DM, sarcopenia was prevalent in 31.1% (95% CI: 19.8–45.2%, I² = 97.2%) compared to a prevalence of 16.2% in controls (95% CI: 9.5–26.2%, I² = 98.2%; OR = 2.07, 95% CI: 1.62–2.65). In individuals with respiratory disease, 26.8% (95% CI: 17.8–38.1%, I² = 96.8%) were diagnosed with sarcopenia compared 13.3% in controls (95% CI: 8.3–20.7%, I² = 88.4%; OR = 2.71, 95% CI: 2.03–3.62).

In articles without controls, the sarcopenia prevalence was 31.4% (95% CI: 22.4–42.1%, I² = 95.1%) in individuals with CVD, 27.4% (95% CI: 14.4–45.8%, I² = 95.3%) with dementia, 20.7% (95% CI: 14.5–28.7%, I² = 90.1%) with DM and 25.3% (95% CI: 16.8–36.5%, I² = 98.2%) with respiratory disease (Fig. 4, Table 3).

In individuals with CVD, sarcopenia prevalence was the highest when diagnosed with the AWGS definition (40.4%, 95% CI: 27.1–55.3%, I² = 94.6%) compared to the Baumgartner definition (22.3%, 95% CI: 15.4–31.2%, I² = 83.5%) and EWGSOP (20.7%, 95% CI: 9.3–39.8%, I² = 92.5%) (Fig. A.2). Dementia cohorts had the highest prevalence of sarcopenia when diagnosed using the AWGS definition (28.7%, 95% CI: 12.3–53.7%, I² = 96.9%) compared to the Baumgartner (24.1%, 95% CI: 10.5–46.3%, I² = 90.9%) and EWGSOP definitions (22.8%, 95% CI: 12.1–38.7%, I² = 22.8%) (Fig. A.3). In DM, the Janssen (2004) definition (78.6%, 95% CI: 61.3–89.4%, I² = 19.4%) yielded the highest prevalence of sarcopenia compared to the AWGS (16.5%, 95% CI: 14.3–18.9%, I² = 0.0%), Baumgartner (20.1%, 95% CI: 10.5–35.1%, I² = 87.3%), EWGSOP (42.4%, 95% CI: 23.7–63.5%, I² = 93.1%), Janssen (2002) (25.9%, 95% CI: 7.7–59.3%, I² = 98.7%) and other definitions (19.5%, 95% CI: 9.8–35.1%, I² = 71.3%) (Fig. A.4). In respiratory disease cohorts had the highest prevalence of sarcopenia when diagnosed by the AWGS definition (32.3%, 95% CI: 29.4–35.4%, I² = 34.3%) compared to the Baumgartner (32.2%, 95% CI: 14.8–56.6%, I² = 99.1%), EWGSOP (23.7%, 95% CI: 14.4–36.4%, I² = 96.6%) and other definitions (14.4%, 95% CI: 5.7–31.9%, I² = 89.5%) (Fig. A.5).

In individuals with CVD, sarcopenia was more prevalent in Asia (44.7%, 95% CI: 34.2–55.8%, I² = 92.1%) in comparison to Europe (15.5%, 95% CI: 10.8–21.6%, I² = 72.0%). Dementia cohorts also had the highest prevalence of sarcopenia in Asia (33.3%, 95% CI: 21.1–48.4%, I² = 95.0%) compared to Europe (12.6%, 95% CI: 3.5–36.5%, I² = 93.9%). In DM, sarcopenia was most prevalent in Asia...
First author (year)	Continent	Setting	Disease	Age (y)	Sample size	Type	Age (y)	Sample size
					N Female			N Female
Cardiovascular disease								
Bekfani (2016)	Europe	OP	HFpEF	69.8 ± 8.5	117 38			
dos Santos (2017)	Europe	NR	CHF	68.8 ± 9.6	228 47			
Fulster (2013)	Europe	NR	CHF	66.9 ± 10.6	200 41			
Harada (2017, a)	Asia	IP	CVD	73.0 ± 12.0	132 52			
Harada (2017, b)	Asia	IP	CVD	72.0 ± 12.0	322 135			
Izawa (2016, a)	Asia	OP	CVD	70.8 ± 4.5	67 NA			
Izawa (2016, b)	Asia	OP	CVD	70.9 ± 4.5	63 NA			
Onoue (2016)	Asia	IP	CHF	76.1 ± 6.2	119 46			
Ryan (2017)	N. America	CD	Stroke	63.0 ± 13.8	190 74			
Shiraishi (2018)	Asia	IP	Stroke	72.2 ± 12.5	202 95			
Tsuchida (2018)	Asia	IP	CHF	75.0 ± 11.4	38 13			
Vahlberg (2016)	Europe	CD	Stroke	74.0 ± 7.0	134 41			
Yashuda (2017)	Asia	IP	CVD	76.2 ± 6.9	239 98			
Dementia								
Abellan van Kan (2013)	Europe	CD	CI	NR	2533 2533	Cog. healthy	NR	492 492
Chong (2015)	Asia	CD	AD-Mild	76.4 ± 6.9	68 44			
Papachristou (2015)	Europe	CD	SCI	78.9 ± 4.8	133 NA			
Sugimoto (2017)	Asia	OP	AD	78.0 ± 6.0	208 135			
Sugimoto (2016)	Asia	OP	AD	79.2 ± 5.9	343 234			
Gillette-Guyonnet (2000)	Europe	RC (DG)	AD	81.5 ± 4.9	32 32	Healthy	81.6 ± 2.5	32 32
Henwood (2017)	Australia	RC	Dementia	82.4 ± 6.6	46 28			
Huang (2015)	Asia	CD	Dementia	73.4 ± 5.4	731 345			
Papachristou (2015)	Europe	CD	SCI	78.9 ± 4.8	133 NA			
Sugimoto (2017)	Asia	OP	AD	78.0 ± 6.0	208 135			
Sugimoto (2016)	Asia	OP	AD	79.2 ± 5.9	343 234			
Tay (2018)	Asia	CD	AD-Mild	NR	74 NA			
Tsugawa (2017)	Asia	OP	AD	82.6 ± 5.1	106 63			
Diabetes mellitus								
Aghili (2014)	Asia	NR	DM-T2	52.7 ± 10.4	51 30			
Alptncar (2014)	Asia	NR	DM	63.4 ± 7.7	32 NR	Non-DM	48.7 ± 22.1	34 NR
Bittel (2017)	N. America	OP	DM-T2	55.0 ± 11.0	12 6	Non-DM	67.0 ± 6.0	10 5
Bouchi (2017, a)	Asia	OP (DG)	DM-T2-PN	64.0 ± 13.0	21 6	Non-DM	64.0 ± 8.0	41 19
Bouchi (2017, b)	Asia	OP	DM-T2	64.0 ± 11.0	312 127			
Bouchi (2017, c)	Asia	OP	DM-T2-PN	64.0 ± 11.0	238 93			
Celiker (2018)	Asia	OP (DG)	DM	61.7 ± 7.2	56 NR	Healthy	59.4 ± 6.5	53 NR
Fukuda (2017)	Asia	OP	DM-NDR	63.0 ± 12.0	261 97			
Ida (2017)	Asia	OP	DM	71.9 ± 5.4	207 81			
Jansen (2015)	Europe	NR	DM-COA	60.3 ± 8.4	29 6			
Kim (2014)	Asia	OP (DG)	DM-T2	71.2 ± 4.8	144 85	Non-DM	70.5 ± 5.0	270 140
Kim (2010)	Asia	NR (DG)	DM-T2	58.9 ± 8.9	414 196	Non-DM	58.2 ± 10.5	396 244
Koo (2016)	Asia	CD	DM	57.0 ± 13.4	690 278	Non-DM	46.1 ± 15.5	12,102 6180
Mori (2017)	Asia	OP	DM-T1	55.7 ± 10.3	36 27			
Murata (2018)	Asia	OP	DM-T2	73.3 ± 6.1	288 137			
Osaka (2018)	Asia	OP	DM-T2	66.2 ± 11.6	285 126			
Tanaka (2015)	Asia	IP	DM-T2	60.2 ± 12.5	191 NA			
Trierweiler (2018)	S. America	OP	DM-T2	65.8 ± 8.8	83 59	Healthy	65.9 ± 8.8	83 59
Ucak (2018)	Asia	OP	DM-T2	56.6 ± 11.5	98 NA			
Wang (2016)	Asia	CD (DG)	DM-T2	68.6 ± 7.1	236 120	Healthy	69.4 ± 7.2	854 450
Yang (2016)	Asia	NR	DM-T2	52.8 ± 10.8	762 261	Non-DM	51.7 ± 8.1	793 243
Respiratory disease								
Byun (2017)	Asia	OP	COPD	68.4 ± 8.9	80 13			
Chung (2015)	Asia	CD	COPD	54.6 ± 10.2	1039 279	Healthy	64.5 ± 9.6	6077 3731
Costa (2018)	S. America	OP	COPD	67.9 ± 8.6	121 65			
Costa (2015)	S. America	OP	COPD	67.4 ± 8.7	91 50			
di Gregorio (2018)	Europe	IP	COPD	69.8 ± 8.0	263 NR			

(continued on next page)
Table 1 (continued)

First author (year)	Continent	Setting	Disease	Age (y)	Sample size	Control			
				N	Female	Type	Age (y)	Sample size	
Gologanu (2014)	Europe	NR	COPD	65.6 ± 7.5	36 3	NA			
Hwang (2016)	Asia	CD	COPD	63.9 ± 10.6	777 NA	NA			
Jones (2015)	Europe	OP	COPD	70.4 ± 9.7	622 268	NA			
Joppa (2016)	Europe	NR	COPD	63.5 ± 7.1	2000 686	NA			
Kneppers (2017)	Europe	NR	COPD	62.0 ± 7.6	92 31	NA			
Koo (2014)	Asia	CD	COPD	64.0 ± 14.4	574 NA	NA			
Lee (2017)	Asia	CD	COPD	65.8 ± 8.0	748 173	NA			
Lee (2016)	Asia	CD	COPD	65.9 ± 7.9	858 217	NA			
Limpawattana (2017)	Asia	OP	COPD	70.0 ± 9.0	121 9	NA			
Pothirat (2016)	Asia	OP	COPD	75.7 ± 5.3	40 NA	Healthy 77.7 ± 7.0	46 NA	Non-COPD 52 17	NA
van de Boil (2016)	Europe	OP	COPD	64.0 (3.0-87.0)	505 217	NA			
van de Boil (2015)	Europe	NR	COPD	64.0 (3.0-87.0)	505 217	NA			

Age data are presented as: mean ± SD or median (range).

ACOS = asthma-COPD overlap syndrome, AD = Alzheimer’s disease, AD-Mild = mild AD, AD-Mod = moderate AD, CD = community-dwelling, CG = control group, CHF = chronic heart failure, CI = cognitive impairment, Cog. healthy = cognitively healthy, COPD = chronic obstructive pulmonary disease, DM-COA = Charcot osteoarthropathy, DM-COA = Charcot osteoarthropathy, DM-NDR = non-diabetic retinopathy, DM-T1 = type-1 DM, DM-T2 = type-2 DM, DM-T2-PN = DM-T2 with peripheral neuropathy, HFpEF = heart failure with preserved ejection fraction, IP = inpatient, LAD = left autoimmune diabetes, S. America = South America, SCI = severe CI.

4. Discussion

The prevalence of sarcopenia is significantly higher in individuals with dementia, DM and respiratory disease compared to individuals without these diseases, irrespective of the applied definition of sarcopenia. The highest prevalence of sarcopenia was found in individuals with COPD compared to individuals with dementia, DM and respiratory disease.

Sarcopenia shares many risk factors with CVD, dementia, DM and respiratory disease, such as sedentary behaviour, low physical activity, inflammation, malnutrition and various other mechanisms, which might explain the higher prevalence of sarcopenia in individuals with these age-related diseases.

4.1. Sedentary behaviour and physical activity

Sedentary behaviour is a form of physical inactivity defined as performing insufficient amounts of physical activity (Gonzalez et al., 2017) associated with low energy expenditure (Pate et al., 2008). Low physical activity is highly prevalent in older adults (Watson et al., 2016) and older adults may spend an average of 10 h per day in sedentary behaviour (Fitzgerald et al., 2015), which is a known risk factor of sarcopenia (Dennison et al., 2017). With each one hour increment of daily sitting time, community-dwelling older adults are 33% more likely to develop sarcopenia (Gianoudis et al., 2015). A sedentary lifestyle is also a risk factor of sarcopenia and CVD (Bekiani et al., 2016; Lee et al., 2012), dementia (Burns et al., 2019), DM (Lee et al., 2012) and respiratory diseases (Pothisrat et al., 2016), which may partly explain why sarcopenia is more prevalent in individuals with these diseases.

Individuals may also experience a more sedentary lifestyle as a result of CVD, dementia, DM and respiratory diseases. Individuals with CVD, e.g. chronic heart failure, experience a lower level of exercise capacity (Fulster et al., 2013), leading to more physical activity (Brunjes et al., 2017). Individuals with dementia spend up to 72% of their day in sedentary behaviour (van Alphen et al., 2016) and individuals with DM spend an average of 9 h a day in sedentary behaviour (Mathe et al., 2017). Individuals with respiratory disease have increased energy expenditure due to enhanced expiration and also experience physical inactivity caused by exercise intolerance (Pothisrat et al., 2016).

4.2. Inflammation

Systemic inflammation is common at higher age (Franceschi and Campisi, 2014) and especially in individuals with age-related diseases (Guo et al., 2015). Interleukin-6, a widely studied inflammatory marker, is common in the pathogenesis of many age-related diseases, including DM and Alzheimer’s disease (Franceschi and Campisi, 2014; Maggio et al., 2006). Furthermore, systemic inflammation has been associated with lower levels of muscle mass and strength (Londhe and Guttridge, 2015; van Attevelde et al., 2019), particularly in older adults, potentially through oxidative stress increasing the activation of catabolic processes (Dalle et al., 2017). Higher lipid levels lead to cell stress and apoptosis which could lead to inflammation and the inflammation damages blood vessels and may cause atherosclerosis, a precursor to CVD (Golia et al., 2014). Beta-amyloid and tau proteins, thought to be the cause of Alzheimer’s disease, cause glial cells to produce inflammatory mediators which cause synaptic loss (Maggio et al., 2006). Type-2 DM may be caused by inflammation as low-grade inflammation may cause insulin resistance leading to type-2 DM (Lontchi-Yimagou et al., 2013). Smoking is strongly associated with COPD as it triggers an inflammatory immune response due to inhaled toxins, which contributes to the development of COPD (Racanelli et al., 2018). As
Table 2
Sarcopenia prevalence by disease groups.

First author (year)	Sarcopenia definition	Sarcopenia prevalence	Controls			
	Disease	Total n (%)	Female n (%)	Male n (%)	Female n (%)	Male n (%)
Cardiovascular disease						
Bekfani (2016)	Baumgartner HFpEF	23 (19.7)	3 (7.9)	20 (25.3)	NA	
dos Santos (2017)	Baumgartner CHF	37 (16.2)	1 (2.1)	36 (19.9)	NA	
Fulster (2013)	Baumgartner CHF	39 (19.5)	2 (4.9)	37 (23.3)	NA	
Harada (2017, a)	AWGS CVD	29 (26.0)	35 (40.0)	13 (16.3)	NA	
Harada (2017, b)	AWGS CVD	28 (28.0)	56 (41.5)	34 (28.2)	NA	
Izzawa (2016, a)	EWGSOP CVD	25 (37.3)	NA	25 (37.3)	NA	
Izzawa (2016, b)	EWGSOP CVD	24 (38.1)	NA	24 (38.1)	NA	
Onoue (2016)	NA HF	82 (68.9)	29 (62.0)	53 (72.6)	NA	
Ryan (2017)	Baumgartner Stroke	32 (16.8)	12 (16.2)	20 (17.2)	NA	
	EWGSOP Stroke	27 (14.3)	14 (18.9)	13 (11.2)	NA	
	IWGS Stroke	32 (16.7)	16 (21.6)	16 (13.8)	NA	
	FNHI Stroke	34 (17.9)	7 (9.5)	27 (23.3)	NA	
Shiraiishi (2018)	AWGS Stroke	108 (53.5)	47 (49.5)	61 (57.0)	NA	
Tsuchida (2018)	2SD < young ref.	20 (52.6)	4 (30.8)	16 (64.0)	NA	
Vahlberg (2016)	EWGSOP Stroke	9 (7.0)	NR	NR	NA	
Yasuda (2017)	AWGS CVD	126 (52.7)	59 (60.2)	67 (47.5)	NA	
Dementia						
Abellan van Kan (2013)	Baumgartner CI	43 (10.3)	NR	NR	240 (10.4)	NR
	Delmonico CI	71 (17.5)	NR	NR	438 (19.0)	NR
	Newman CI	62 (15.1)	NR	NR	362 (15.7)	NR
	IWGS CI	64 (15.3)	NR	NR	326 (14.0)	NR
	SIG CI	22 (5.4)	NR	NR	67 (2.9)	NR
	EWGSOP CI	28 (6.7)	NR	NR	114 (4.9)	NR
Chong (2014)	Baumgartner AD-Mild	19 (31.6)	NR	NR	NA	
	AD-Mod	3 (23.1)	NR	NR	NA	
	EWGSOP AD-Mild	21 (35.1)	NR	NR	NA	
	EWGSOP AD-Mod	4 (30.8)	NR	NR	NA	
Chong (2015)	AWGS AD-Mild	32 (47.1)	NR	NR	49 (24.6)	NR
	AD-Mod	9 (60.0)	NR	NR	NA	
Gillette-Guyonnet (2000)	Baumgartner AD	13 (40.6)	13 (40.6)	7 (21.9)	7 (21.9)	NA
Henwood (2017)	EWGSOP Dementia	5 (11.4)	NR	NR	NA	
Huang (2015)	AWGS Dementia	50 (6.8)	14 (4.1)	36 (9.3)	NA	
Papachristos (2015)	EWGSOP Dementia	8 (7.5)	NA	8 (7.5)	11 (1.5)	NA
	FNHI Dementia	6 (5.7)	NA	6 (5.7)	13 (1.8)	NA
Sugiimoto (2017)	AWGS AD	38 (18.3)	NR	NR	NA	
Sugiimoto (2016)	EWGSOP AD	80 (23.3)	NR	NR	3 (8.6)	NR
Tay (2018)	EWGSOP AD-Mild	37 (50.0)	NR	NR	NA	
	AD-Mod	10 (71.4)	NR	NR	NA	
Tsugawa (2017)	AWGS AD	40 (37.7)	24 (38.1)	16 (37.2)	NA	
Diabetes mellitus						
Aghili (2014)	Baumgartner DM-T2	1 (2.0)	NR	NR	NA	
	Janssen CI (2002)	DM-T2	NR	NR	NA	
	Janssen CI (2002)	DM-T2	0 (0.0)	0 (0.0)	0 (0.0)	NA
Alpinar (2014)	MM 2SD < young ref.	DM-T2	0 (0.0)	NR	2 (5.9)	NR
	MS 2SD < young ref.	DM-T2	4 (12.5)	NR	5 (14.7)	NR
Bittel (2017)	Janssen (2004)	DM-T2	10 (83.0)	NR	6 (60.0)	NR
	DM-T2-PN	16 (76.0)	NR	NR	NA	
Bouchi (2017, a)	AWGS DM-T2	28 (13.3)	NR	4 (9.8)	NR	
	LADA	7 (35.0)	NR	NR	NA	
Bouchi (2017, b)	AWGS DM-T2	56 (17.0)	NR	NR	NA	
Bouchi (2017, c)	AWGS DM-T2	42 (17.7)	18 (19.8)	24 (16.6)	NA	
Celiker (2018)	EWGSOP DM	12 (21.4)	NR	8 (15.1)	NR	
	DM-Nu	17 (34.0)	NR	NR	NA	
Fukuda (2017)	Low MM + low MS	DM-NDR	40 (15.5)	NR	NR	
	DM-NDR	8 (20.7)	NR	NR	NA	
	DM-PDR	7 (40.0)	NR	NR	NA	
Ida (2017)	EWGSOP DM	41 (19.8)	23 (28.4)	18 (14.3)	NA	
Jansen (2015)	Baumgartner DM-COA	5 (17.2)	NR	NR	NA	
	DM-COA	5 (17.2)	NR	NR	NA	
	DM-Nu	1 (11.1)	NR	NR	NA	
Kim (2014)	Baumgartner DM-T2	40 (27.8)	6 (7.1)	34 (57.6)	66 (24.4)	12 (8.57)
	Janssen (2002)	DM-T2	36 (25.0)	22 (25.9)	14 (23.7)	37 (13.7)
	Janssen (2002)	DM-T2	57 (39.6)	28 (32.9)	29 (49.2)	54 (20.0)
Kim (2010)	Janssen (2002)	DM-T2	65 (15.7)	NR	27 (6.9)	NR

(continued on next page)
inflammation plays a role in muscle health (i.e. muscle mass and strength) and the development of age-related diseases, this may explain why sarcopenia is more prevalent as a comorbid disease.

4.3. Malnutrition

Malnutrition is a condition which is common in older adults, particularly protein-energy malnutrition (Agarwal et al., 2013). About 10% of older adults do not have a sufficient protein intake to meet the nutritional recommendations which may lead to a decline in muscle mass (Cruz-Jentoft et al., 2017). As such, malnutrition can lead to sarcopenia, but they also often co-occur in individuals (Reijnierse et al., 2015a; Vandewoude et al., 2012). Cognitivedecline and dementia have been associated with malnutrition (Favaro-Moreira et al., 2016) due to a reduced intake (Volkert et al., 2015). Malnutrition is also very common in individuals with COPD (Raad et al., 2019) mainly due to

Table 2 (continued)

First author (year)	Sarcopenia definition	Sarcopenia prevalence
Koo (2016)	Janssen CI (2002)	DM 450 (66.0) NR NR
Mor (2017)	Janssen C2 (2002)	DM-T1 6 (16.7) 6 (22.2) 0 (0.0) NA
Murata (2018)	AWGS	DM-T2 44 (15.3) 21 (15.3) 23 (15.2) NA
Osaka (2018)	Japan Society of Hepatology	DM-T2 25 (8.8) 17 (13.5) 8 (5.0) NA
Tanaka (2015)	EWGSOP	DM-T2 85 (44.5) NA 85 (44.5) NA
Trierweiler (2018)	FNIH	DM-T2 13 (15.7) 9 (15.3) 4 (16.7) 2 (2.4) 0 (0.0) 2 (8.3)
Ucak (2018)	EWGSOP	DM-T2 99 (78.0) NA 97 (99.0) NA
Wang (2016)	AWGS	DM-T2 35 (14.8) 15 (12.5) 20 (17.2) 96 (11.2) 43 (9.6) 53 (13.1)
Yang (2016)	Baumgartner	DM-T2 342 (44.9) 117 (44.8) 225 (44.9) 208 (26.2) 64 (26.3) 144 (26.2)

Respiratory diseases

Byun (2017) | EWGSOP | COPD | 20 (25.0) 3 (23.1) 17 (25.4) 566 (9.2) 175 (4.9) 381 (16.2) |
Chung (2015)	Baumgartner	COPD	283 (27.2) 34 (12.2) 249 (32.8) NA
Costa (2015)	Baumgartner	COPD	37 (40.7) NR NR NA
Costa (2018)	FNIH	COPD	15 (12.4) NR NR NA
Di Gregorio (2018)	EWGSOP	COPD	63 (24.2) NR NR NA
Gologanu (2014)	Low MM + high BMI	COPD	3 (8.3) NR NR NA
Hwang (2017)	Baumgartner	COPD	41 (5.3) NA 41 (5.3) NA
Jones (2015)	EWGSOP	COPD	90 (14.5) 33 (12.3) 57 (16.1) NA
Joppa (2016)	NA	COPD	682 (34.1) 173 (25.2) 509 (38.7) 55 (10) NR NR
Kneppe (2017)	BAUMGARTNER	COPD	39 (42.4) 10 (32.3) 29 (47.5) NA
Koo (2014)	1SD < young ref.	COPD	155 (27.0) NA 155 (27.0) NA
Lee (2016)	AWGS	COPD	286 (33.3) 60 (27.7) 226 (35.3) NA
Lee (2017)	AWGS	COPD	251 (33.6) 48 (28.7) 203 (35.3) NA
Limpawattana (2017)	AWGS	COPD	35 (31.8) 12 (27.3) 23 (43.8) NA
Lipton (2016)	Low MM + high BMI	COPD	12 (9.9) NR NR NA
Sergi (2006)	Baumgartner	COPD	15 (38) NA 15 (38) 14 (31) NA 14 (31)
van de Boul (2016)	Baumgartner	COPD	14 (31.1) 1 (6.25) 3 (44.8) 3 (5.8) 0 (0.0) 3 (8.6)
van de Boul (2015)	Baumgartner	COPD	437 (86.5) 198 (91.2) 239 (83.0) NA

ACOS: asthma-COPD overlap syndrome, AD: Alzheimer’s disease, AD-Mild: mild AD, AD-Mod: moderate AD, CHF: chronic heart failure, CI: cognitive impairment, COPD: chronic obstructive pulmonary disease, CVD: cardiovascular disease, DM: diabetes mellitus, DM-COA: Charcot osteoarthropathy, DM-NDR: non-diabetic retinopathy, DM-Ne: diabetic nephropathy, DM-NPDR: non-proliferative diabetic retinopathy, DM-Nu: diabetic neuropathy, DMPDR: proliferative diabetic neuropathy, DM-T1: type-1 DM, DM-T2: type-2 DM, DM-T2-PN: DM-T2 with peripheral neuropathy, EWGSOP: European Working Group for Sarcopenia in Older People, FNIH: Foundation for the National Institutes of Health, HFpEF: heart failure with preserved ejection fraction, IWGS: International Working Group for Sarcopenia in Older People, LADA: latent autoimmune diabetes, NA: not applicable, NR: not reported, RLD: restrictive lung disease, SCI: severe CI, SIG: Special Interest Group on cachexia-anorexia.

* There was no stratification for Janssen (2002) classes in this article.

ACOS = asthma-COPD overlap syndrome, AD = Alzheimer’s disease, AD-Mild = mild AD, AD-Mod = moderate AD, CHF = chronic heart failure, CI = cognitive impairment, COPD = chronic obstructive pulmonary disease, CVD = cardiovascular disease, DM = diabetes mellitus, DM-COA = Charcot osteoarthropathy, DM-NDR = non-diabetic retinopathy, DM-Ne = diabetic nephropathy, DM-NPDR = non-proliferative diabetic retinopathy, DM-Nu = diabetic neuropathy, DM-PDR = proliferative diabetic neuropathy, DM-T1 = type-1 DM, DM-T2 = type-2 DM, DM-T2-PN = DM-T2 with peripheral neuropathy, EWGSOP = European Working Group for Sarcopenia in Older People, FNIH = Foundation for the National Institutes of Health, HFpEF = heart failure with preserved ejection fraction, IWGS = International Working Group for Sarcopenia, LADA = latent autoimmune diabetes, NA = not applicable, OR = odds ratios.
insufficient protein and energy intake due to the higher requirements, putting patients at risk for sarcopenia (Nguyen et al., 2019).

4.4. Relevance of diagnosing sarcopenia

Sarcopenia was only recently given an ICD-10 code (M62.84) and as such is newly recognised as a disease. It is important to diagnose and intervene sarcopenia due to its associations with a plethora of health outcomes such as cognitive impairment (Chang et al., 2016), loss of dependence (Beaudart et al., 2017), fractures (Yeung et al., 2019), fractures (Yeung et al., 2019) and mortality (Beaudart et al., 2017). Typical sarcopenia interventions consist of exercise and nutrition-based interventions.

Resistance exercise training (RET) is a commonly used exercise intervention in treating sarcopenia (Kamleh et al., 2019). Furthermore, nutritional interventions, such as protein, creatine and β-hydroxy-β-methylbutyric acid supplementation, are also effective in increasing muscle mass in older adults (Martin-Cantero et al., 2019) and combined RET and protein supplementation have been shown to enhance the effectiveness in increasing muscle mass and muscle strength (Liao et al., 2017). However, comorbidities such as CVD, dementia, DM and respiratory diseases may interfere with these interventions. Individuals with CVD and respiratory diseases have increased exercise intolerance (Fulster et al., 2013; Pothirat et al., 2016) and would potentially be unable to complete rigorous RET. Individuals with dementia need adapted protocols to comply with the intensity and load of a RET or dietary plan.

A multifaceted intervention, i.e. exercise training and nutritional intervention, can not only treat sarcopenia but potentially also prevent the occurrence of sarcopenia (Cruz-Jentoft et al., 2019). As the present review indicates that sarcopenia is more prevalent when present alongside diseases, there is the need for future research to develop...
tailored interventions when sarcopenia is present as a comorbid disease.

4.5. Sarcopenia prevalence in controls

The sarcopenia prevalence varied between 8.3% and 16.2%, which is comparable to prevalence rates reported in an earlier review including community-dwelling populations (Cruz-Jentoft et al., 2014).

4.6. Strengths and limitations

This is the first review systematically determining the prevalence of sarcopenia in the major age-related diseases CVD, dementia, DM and respiratory disease. In the absence of a worldwide accepted definition of sarcopenia (Suetta and Maier, 2019), all definitions of sarcopenia were included, allowing for the inclusion of all studies. A limitation of this, however, is that the differences between definitions may have contributed to a higher heterogeneity of the meta-analyses results. Stratification for sarcopenia definition reduced the heterogeneity values while maintaining a higher prevalence of sarcopenia in the disease groups than the controls. Articles which studied dynapenia (age-related low muscle strength) (Chang et al., 2018) and muscle failure (Sueta and Maier, 2019) were excluded from the search, as they are different from sarcopenia (age-related low muscle mass and strength).

The heterogeneity could also be influenced by differences in the study setting and disease severity. It can also not be excluded that included participants in specific disease groups suffered from other diseases than the disease of interest, which might have overestimated the sarcopenia prevalence.

5. Conclusion

Sarcopenia is highly prevalent as a comorbid disease in individuals with CVD, dementia, DM and respiratory disease, which highlights the need to screen and diagnose sarcopenia.

Future research should investigate if individuals with sarcopenia as a comorbid disease experience worse health outcomes than their non-sarcopenic counterparts. Furthermore, it should be determined if sarcopenia as a comorbid disease require specific tailored interventions taking the index disease into account.
Acknowledgment

The authors would like to thank Patrick Condron (senior liaison librarian, Brownless Biomedical Library, Faculty of Medicine, Dentistry & Health Sciences, the University of Melbourne), who greatly assisted with the construction of the search strategy. This study was supported by an unrestricted grant of the University of Melbourne, Australia received by Professor Andrea B. Maier.

Appendix A

Table A.1
Search strategy.

Number	Search (MEDLINE (Ovid))
1	muscle weakness/ or muscular atrophy/ or sarcopenia/
2	(sarcopenia or “muscular atrophy” or “muscle weakness” or “muscular weakness”).ti,ab.
3	1 or 2
4	(“cardiovascular disease”” or (CVD and cardiovascular) or “myocardial infarction” or (MI and infarction) or (AMI and infarction) or “congestive heart failure” or “congestive cardiac failure” or stroke or “ischaemic heart disease” or (IHD and ischaemic) or “coronary heart disease” or (CHD and coronary) or “hypertensive heart disease”).ti,ab.
5	exp Cardiovascular Diseases/
6	4 or 5
7	(“respiratory tract disease”” or “lung disease”” or asthma or “chronic obstructive pulmonary disease” or (COPD and pulmonary) or “interstitial lung disease” or (ILD and interstitial) or “chronic bronchitis”).ti,ab.
8	exp Respiratory Tract Diseases/
9	7 or 8
10	(dementia or “Alzheimer’s disease” or (AD and Alzheimer’s) or “vascular dementia” or (VaD and dementia) or “Lewy Body dementia” or “Lewy Body disease” or “Lewy Body”).ti,ab.
11	exp DEMENTIA/
12	10 or 11
13	diabet*.ti,ab.
14	exp DIABETES MELLITUS/
15	13 or 14
16	6 or 9 or 12 or 15
17	3 and 16
18	(case report” or editorial or letter or review”).pt.
19	17 not 18
20	limit 19 to English language

Number	Search (EMBASE (Ovid))
1	“muscle weakness/ or “muscular atrophy” or sarcopenia/
2	(sarcopenia or “muscular atrophy” or “muscle weakness” or “muscular weakness”).ti,ab.
3	1 or 2
4	(“cardiovascular disease”” or (CVD and cardiovascular) or “myocardial infarction” or (MI and infarction) or (AMI and infarction) or “congestive heart failure” or “congestive cardiac failure” or stroke or “ischaemic heart disease” or (IHD and ischaemic) or “coronary heart disease” or (CHD and coronary) or “hypertensive heart disease”).ti,ab.
5	exp Cardiovascular Diseases/
6	4 or 5
7	(“respiratory tract disease”” or “lung disease”” or asthma or “chronic obstructive pulmonary disease” or (COPD and pulmonary) or “interstitial lung disease” or (ILD and interstitial) or “chronic bronchitis”).ti,ab.
8	exp Respiratory Tract Diseases/
9	7 or 8
10	(dementia or “Alzheimer’s disease” or (AD and Alzheimer’s) or “vascular dementia” or (VaD and dementia) or “Lewy Body dementia” or “Lewy Body disease” or “Lewy Body”).ti,ab.
11	exp DEMENTIA/
12	10 or 11
13	diabet*.ti,ab.
14	exp DIABETES MELLITUS/
15	13 or 14
16	6 or 9 or 12 or 15
17	3 and 16
18	(case report” or editorial or letter or review”).pt.
19	17 not 18
20	limit 19 to English language
21	limit 20 to conference abstract status
22	20 not 21

Number	Search (Cochrane (Ovid))
1	muscle weakness/ or muscular atrophy/ or sarcopenia/
2	(sarcopenia or “muscular atrophy” or “muscle weakness” or “muscular weakness”).ti,ab.
3	1 or 2
4	(“cardiovascular disease”” or (CVD and cardiovascular) or “myocardial infarction” or (MI and infarction) or (AMI and infarction) or “congestive heart failure” or “congestive cardiac failure” or stroke or “ischaemic heart disease” or (IHD and ischaemic) or “coronary heart disease” or (CHD and coronary) or “hypertensive heart disease”).ti,ab.
5	exp Cardiovascular Diseases/
6	4 or 5

(continued on next page)
Table A.1 (continued)

Number	Search (Cochrane (Ovid))
7	(“respiratory tract disease” or “lung disease” or asthma or “chronic obstructive pulmonary disease” or (COPD and pulmonary) or “interstitial lung disease” or (ILD and interstitial) or “chronic bronchitis”).ti,ab.
8	exp Respiratory Tract Diseases/
9	7 or 8
10	(dementia or “Alzheimer’s disease” or (AD and Alzheimer’s) or “vascular dementia” or (VaD and dementia) or “Lewy Body dementia” or “Lewy Body disease” or “Lewy Body” or (DLB or Lewy)).ti,ab.
11	exp DEMENTIA/
12	10 or 11
13	diabet*.ti,ab.
14	exp DIABETES MELLITUS/
15	13 or 14
16	6 or 9 or 12 or 15
17	3 and 16
18	(case report* or editorial or letter or review*).pt.
19	17 not 18
20	limit 19 to English language

Table A.2
Newcastle-Ottawa Scale.

Selection
1. Is the case definition (participant with diabetes, dementia, cardiovascular or respiratory diseases) adequate?
 a. Yes, validated diagnostic criteria or clinical diagnosis
 b. Yes, e.g. record linkage or based on self-reports
 c. No description
2. Representativeness of the cases
 a. Consecutive or obviously representative series of cases
 b. Potential for selection bias or not stated
3. Selection of Controls
 a. Community controls
 b. Hospital controls without disease of cases
 c. No description
 d. No control
4. Definition of Controls
 a. No history of disease of the cases
 b. No description of the source
 c. No control

Comparability
1. Comparability of cases and controls on the basis of the design or analysis
 a. Study controls for age (within 5 years)
 b. Study controls for sex (within 10%)
 c. No control

Exposure
1. Ascertainment of exposure (sarcopenia)
 a. Defined diagnostic criteria (EWGSOP, AWGS, IWGS, Baumgartner, Janssen, etc.)
 b. Non-defined diagnostic criteria
 c. Non-objective measure of sarcopenic parameters
 d. No description
2. Same method of ascertainment for cases and controls
 a. Yes
 b. No
 c. No control

Table A.3
Sarcopenia definitions and their parameters with cut-off values used in included articles.

First author (year)	Sarcopenia definition	Assessment method/cut-off values			
Baumgartner		Muscle Mass	Muscle strength	Physical performance	
Bekfani (2016)		DXA M ASMI < 7.26 kg/m²	NA	NA	NA
dos Santos (2017)		DXA M ASMI/m² ≤ NR	NA	NA	NA
Fulster (2013)		DXA M SMI < 7.26 kg/m²	NA	NA	NA
Harada (2017, a)	AWGS	BIA M SMI < 7.0 kg/m²	HGS < 26.0 kg	10 m-walk < 0.8 m/s	
Harada (2017, b)	AWGS	DXA M SMI < 7.0 kg/m²	HGS < 26.0 kg	10 m-walk < 0.8 m/s	
		F SMI < 5.4 kg/m²	< 18.0 kg	< 0.8 m/s	

(continued on next page)
Table A.3 (continued)

First author (year)	Sarcopenia definition	Assessment method/cut-off values	Muscle Mass	Muscle strength	Physical performance
Izawa (2016, a)	EWGSOP	BIA M	HGS < 30 kg	10 m-walk	NR
Izawa (2016, b)	EWGSOP	BIA M	HGS NR	10 m-walk	NR
Onoue (2016)	NA	NA	NA	NA	NA
Ryan (2017)	Baumgartner	DXA M	ALM/h² < 7.26 kg/m²	NA	NA
		F	ALM/h² < 5.45 kg/m²	6-minute walk < 0.8 m/s	NA
	EWGSOP	DXA M	ALM/h² < 7.23 kg/m²	NA	6-minute walk < 1.0 m/s
	IWGS	DXA M	ALM/h² < 5.67 kg/m²	NA	NA
	FNIH	DXA M	ALM/BMI < 0.512	NA	NA
Shirasaki (2018)	AWGS	BIA M	SMI < 7.0 kg/m²	NA	NA
		F	SMI < 5.7 kg/m²	6-minute walk < 1.0 m/s	
Tsuchida (2018)	Baumgartner	DXA M	SMI < 6.87 kg/m²	NA	NA
Vahlberg (2016)	EWGSOP	BIA M	ASMI < 7.0 kg/m²	HGS < 26.0 kg	4 m-walk < 0.8 m/s
		F	ASMI < 5.7 kg/m²	6-minute walk < 0.8 m/s	
Dementia	Abellian van Kan (2013)	Baumgartner	DXA F	HGS < 26.0 kg	4 m-walk < 1.0 m/s
		F	HGS < 18.0 kg	10 m-walk < 1.0 m/s	
	Gillette-Guyonnet (2000)	Baumgartner	DXA F	HGS < 26.0 kg	4 m-walk < 1.0 m/s
		F	HGS < 18.0 kg	10 m-walk < 1.0 m/s	
	Henwood (2017)	EWGSOP	ASMI ≤ 2SD < control	NA	NA
		F	ASMI ≤ 2SD < control	NA	NA
	Huang (2015)	AWGS	ASMI ≤ 37%	NA	NA
		F	ASMI ≤ 28%	6 m-walk < 1.0 m/s	
	Papachristos (2015)	EWGSOP	ASMI < 7.23 kg/m²	HGS < 26.0 kg	4 m-walk < 0.8 m/s
		F	ASMI < 5.4 kg/m²	6 m-walk < 0.8 m/s	
	Sugimoto (2017)	AWGS	ASMI < 7.0 kg/m²	HGS < 26.0 kg	Timed Up and Go > 14 s
		F	ASMI < 5.4 kg/m²	6 m-walk < 0.8 m/s	
	Sugimoto (2016)	EWGSOP	ASMI < 7.0 kg/m²	HGS < 26.0 kg	Timed Up and Go < 13.56 s
		F	ASMI < 5.4 kg/m²	6 m-walk < 0.8 m/s	
	Tay (2018)	EWGSOP	ASMI < 7.0 kg/m²	HGS < 26.0 kg	NA
		F	ASMI < 5.4 kg/m²	NA	
	Tsugawa (2017)	AWGS	ASMI < 7.0 kg/m²	HGS < 26.0 kg	6 m-walk < 0.8 m/s
		F	ASMI < 5.7 kg/m²	6 m-walk < 0.8 m/s	
Diabetes mellitus	Aghili (2014)	Baumgartner	DXA M	ASMI < 7.26 kg/m²	10 m-walk < 1.0 m/s
		F	ASMI < 5.45 kg/m²	10 m-walk < 1.0 m/s	
	Jansen (2002)	DEXA M	SMI 2SD < control	NA	NA
	Jansen (2002)	F	SMI 2SD < control	6 m-walk < 0.8 m/s	
	Newman (2018)	DXA M	Residuals < 20th percentile	NA	NA
	Alpinar (2014)	MM 2SD < young ref.	BIA FMMI < 16.91 kg/m²	NA	NA
		NA	Isokinetic Knee F/E	95.56 Nm	NA
	Bittel (2017)	Jansen (2004)	NA	NA	NA
		F	95.56 Nm	NA	
	Bouchi (2017, a)	AWGS	ASMI < 7.0 kg/m²	HGS < 26.0 kg	NA
		F	ASMI < 5.4 kg/m²	< 18.0 kg	
	Bouchi (2017, b)	AWGS	ASMI < 7.0 kg/m²	HGS < 26.0 kg	NA
		F	ASMI < 5.4 kg/m²	< 18.0 kg	
	Bouchi (2017, c)	AWGS	ASMI < 7.0 kg/m²	HGS < 26.0 kg	NA
		F	ASMI < 5.4 kg/m²	< 18.0 kg	
	Celiker (2018)	BIA M	ASMI < 7.0 kg/m²	HGS < 26.0 kg	6 m-walk < 1.0 m/s
		F	ASMI < 5.4 kg/m²	6 m-walk < 1.0 m/s	
	Fukuda (2017)	Low MM + low MS	DXA M	ASMI < 7.0 kg/m²	NA
		F	ASMI < 5.4 kg/m²	< 18.0 kg	
	Ida (2017)	EWGSOP	BIA M	ASMI < 6.80 kg/m²	5 m-walk < 0.8 m/s
		F	ASMI < 6.40 kg/m²	5 m-walk < 0.8 m/s	
	Jansen (2015)	Baumgartner	DXA M	ALM/h² < 7.23 kg/m²	NA
		F	ALM/h² < 5.67 kg/m²	NA	

(continued on next page)
First author (year)	Sarcopenia definition	Assessment method/cut-off values	Muscle Mass	Muscle strength	Physical performance
Kim (2014)	Baumgartner	DXA M ASMI < 7.40 kg/m²	NA	NA	NA
		F ASMI < 5.14 kg/m²	NA	NA	NA
Janssen (2002)		DXA M ASMI/wt < 29.5%	NA	NA	NA
		F ASMI/wt < 23.2%	NA	NA	NA
Janssen (2002)		DXA M SMI < 24.4%	NA	NA	NA
		F SMM/wt < 25.8%	NA	NA	NA
Kim (2010)	Janssen Cl (2002)	DXA M ASMI/wt < 32.3%	NA	NA	NA
		F ASMI/wt < 25.6%	NA	NA	NA
Janssen Cl (2002)		DXA M ASMI/wt < 29.1%	NA	NA	NA
		F ASMI/wt < 23.0%	NA	NA	NA
Mori (2017)	AWGS	BIA M SMI < 7.0 kg/m²	HGS < 26.0 kg	5 m-walk	< 0.8 m/s
		F SMI < 5.4 kg/m²		6 m-walk	< 0.8 m/s
Murata (2018)	AWGS	BIA M SMI < 7.0 kg/m²	HGS < 26.0 kg		NA
		F SMI < 5.4 kg/m²			NA
Osaka (2018)	Japan Society of Hepatology	BIA M SMI < 7.0 kg/m²	HGS < 26.0 kg		NA
Tanaka (2015)	EWGSOP	DXA M SMI/wt < 8.67 kg/m²	NA	NA	NA
		F SMI/wt < 4.1 kg/m²	NA	NA	NA
Trierweiler (2018)	FNHI	DXA M ALM/BMI < 0.789	NA	6-minute walk	< 0.8 m/s
		F ALM/BMI < 0.512	NA		NA
Ucak (2018)	EWGSOP	BIA M SMI < 10.75 kg/m²	NA	NA	NA
Wang (2016)	AWGS	BIA M SMI < 7.0 kg/m²	HGS < 26.0 kg	4 m-walk	< 0.8 m/s
Yang (2016)	Baumgartner	DXA M ASMI < 7.26 kg/m²	NA	NA	NA
		F ASMI < 5.45 kg/m²	NA	NA	NA
Respiratory diseases	Byun (2017)	EWGSOP BIA M SMI 2SD < young ref.	HGS ≤ 30 kg	4 m-walk	< 0.8 m/s
		F SMI 2SD < young ref.	≤ 20 kg		NA
Chung (2015)	Baumgartner	DXA M ASMI < 6.95 kg/m²	NA	NA	NA
		F ASMI < 4.94 kg/m²	NA	NA	NA
Costa (2018)	FNHI	DXA M ALM/BMI < 0.789	NA	6-minute walk	< 0.8 m/s
		F ALM/BMI < 0.512	NA		NA
Costa (2015)	Baumgartner	DXA M ASMI < 7.26 kg/m²	NA	NA	NA
		F ASMI < 5.45 kg/m²	NA	NA	NA
Di Gregorio (2018)	EWGSOP	BIA M SMI < 8.50 kg/m²	HGS ≤ 30 kg	4 m-walk	< 0.8 m/s
		F SMI ≤ 5.75 kg/m²	≤ 20 kg		NA
Gologanu (2014)	Low MM + high BMI	BIA M FMMI ≤ 16 kg/m²	NA	NA	NA
		F FMMI ≤ 15 kg/m²	NA	NA	NA
Hwang (2017)	Baumgartner	DXA M ASMI < 6.94 kg/m²	NA	NA	NA
		F SMI < 5.45 kg/m²	NA	NA	NA
Jones (2015)	EWGSOP	BIA M NR HGS ≤ 30 kg	F NR	4 m-walk	NR
		F NR ≤ 20 kg	NA		NA
Joppa (2016)	NA	BIA M FMI < 10th percentile	NA	NA	NA
Kneppers (2017)	Baumgartner	DXA M ASMI < 7.23 kg/m²	NA	NA	NA
		F ASMI < 5.76 kg/m²	NA	NA	NA
Koo (2014)	ISD < young ref.	DXA M SMI < 29.8%	NA	NA	NA
Lee (2017)	AWGS	DXA M ASMI < 7.0 kg/m²	NA	NA	NA
		F ASMI < 5.4 kg/m²	NA	NA	NA
Lee (2016)	AWGS	DXA M ASMI < 7.0 kg/m²	NA	NA	NA
		F ASMI < 5.4 kg/m²	NA	NA	NA
Limpawattana (2017)	AWGS	DXA M ASMI < 7.0 kg/m²	HGS < 26.0 kg	6-minute walk	< 0.8 m/s
		F ASMI < 5.4 kg/m²	< 18.0 kg		NA
Pothirat (2016)	Low MM + high BMI	BIA M FMI ≥ 16 kg/m²	NA	NA	NA
		F FMI ≥ 15 kg/m²	NA	NA	NA
Sergi (2006)	Baumgartner	DXA M ASMI < 7.26 kg/m²	NA	NA	NA
van de Bool (2016)	Baumgartner	DXA M ASMI < 7.23 kg/m²	NA	NA	NA
		F ASMI < 5.76 kg/m²	NA	NA	NA
van de Bool (2015)	Baumgartner	DXA M ASMI < 7.23 kg/m²	NA	NA	NA
		F ASMI < 5.76 kg/m²	NA	NA	NA

ALM = appendicular lean mass, ASMI = appendicular skeletal muscle mass index, AWGS = Asian Working Group for Sarcopenia, BIA = bioelectrical impedance analysis, BMI = body mass index, C1 = class 1, C2 = class 2, CC = calf circumference, DXA = dual energy X-ray absorptiometry, EWGSOP = European Working Group for Sarcopenia in Older People, F = female, F/E = flexion/extension, FMFI = fat-free mass index, FNHI = Foundation for the National Institutes of Health, HGS = handgrip strength, IWGS = International Working Group for Sarcopenia, LM = lean muscle mass, M = male, MM = muscle mass, MS = muscle strength, NA = not applicable, NR = not reported, SD = standard deviation, SIG = Special Interest Group on cachexia-anorexia, SMI = skeletal muscle mass index, SPPB = short physical performance battery, young ref. = young reference group.
Table A.4
Quality assessment of included articles using the Newcastle-Ottawa Scale.

First author (year)	Selection	Comparability	Exposure	Total
	Q1 Q2 Q3 Q4	Q1 Q1 Q2		
Abellan van Kan (2013)	1 0 0 1	0 1 1	4	
Aghili (2014)	1 0 0 0	0 1 0	2	
Alipinar (2014)	0 0 0 1	0 1 1	3	
Bekiani (2016)	1 0 0 0	0 1 0	2	
Bittel (2017)	1 0 0 1	1 1 1	5	
Bouchi (2017, a)	1 0 0 1	2 1 1	6	
Bouchi (2017, b)	1 0 0 0	0 1 0	2	
Bouchi (2017, c)	1 1 0 0	0 1 0	3	
Byun (2017)	1 1 0 0	0 1 0	3	
Celiker (2018)	1 0 0 1	1 1 1	5	
Chong (2015)	1 1 1 1	1 1 1	7	
Chong (2014)	1 0 0 0	0 1 0	2	
Chung (2015)	1 1 1 1	0 1 1	6	
Costa (2018)	1 0 1 0	0 1 0	3	
Costa (2015)	1 1 0 0	0 1 0	3	
Di Gregorio (2018)	1 1 0 0	0 1 0	3	
dos Santos (2017)	1 0 0 0	0 1 0	3	
Fukuda (2017)	1 0 0 0	0 1 0	2	
Fulster (2013)	1 1 0 0	0 1 0	3	
Gillette-Guyonnet (2000)	1 0 1 1	2 1 1	7	
Gologanu (2014)	1 1 0 0	0 1 0	2	
Harada (2017, a)	1 0 0 0	0 1 0	2	
Harada (2017, b)	1 1 0 0	0 1 0	3	
Henwood (2017)	1 0 0 0	0 1 0	2	
Huang (2015)	1 0 0 0	0 1 0	2	
Hwang (2017)	1 0 0 0	0 1 0	2	
Iida (2017)	1 0 0 0	0 1 0	2	
Izawa (2016, a)	1 1 0 0	0 1 0	3	
Izawa (2016, b)	1 0 0 0	0 1 0	2	
Jansen (2015)	1 1 0 0	0 1 0	2	
Jones (2015)	1 1 0 0	0 1 0	3	
Joppa (2016)	1 1 0 0	0 1 0	4	
Kim (2014)	1 1 1 1	2 1 1	8	
Kim (2010)	1 0 1 1	1 1 1	6	
Knepers (2017)	1 1 0 0	0 1 0	3	
Koo (2016)	1 1 1 0	0 1 1	5	
Koo (2014)	1 1 0 0	0 1 0	2	
Lee (2017)	1 1 0 0	0 1 0	3	
Lee (2016)	1 1 0 0	0 1 0	3	
Limpawattana (2017)	1 0 0 0	0 1 0	2	
Mori (2017)	0 0 0 0	0 1 0	1	
Murata (2018)	1 0 0 0	0 1 0	2	
Onoue (2016)	1 1 0 0	0 1 0	2	
Osaka (2018)	1 1 0 0	0 1 0	3	
Papachristou (2015)	1 0 1 1	2 1 1	7	
Pothirat (2016)	1 0 0 0	0 0 0	1	
Ryan (2017)	1 0 0 0	0 1 0	2	
Serji (2006)	1 0 1 1	2 1 1	6	
Shiraiishi (2018)	1 1 0 0	0 1 0	3	
Sugimoto (2017)	1 1 0 0	0 1 0	3	
Sugimoto (2016)	1 0 0 1	2 1 1	6	
Tanaka (2015)	1 0 0 0	0 1 0	2	
Tay (2018)	1 0 0 0	0 1 0	2	
Trierweiler (2018)	1 0 0 1	2 1 1	6	
Tsudhida (2018)	1 0 0 0	0 1 0	2	
Tsugawa (2017)	1 0 0 0	0 1 0	2	
Ucak (2018)	1 0 0 0	0 1 0	2	
Vahlberg (2016)	1 0 0 0	0 1 0	2	
van de Boel (2016)	1 1 1 1	2 1 1	8	
van de Boel (2015)	1 0 0 0	0 1 0	2	
Wang (2016)	1 0 1 0	2 1 1	6	
Yang (2016)	1 0 0 1	2 1 1	6	
Yoneda (2017)	1 0 0 0	0 1 0	2	
Fig. A.1. Risk of sarcopenia in disease (dementia, DM and respiratory disease) groups compared to controls. Heterogeneity (I^2): dementia (80.9%), DM (62.2%), respiratory disease (57.3%).

![Image](image1.png)

Fig. A.2. Sarcopenia prevalence in articles including individuals with CVDs stratified by sarcopenia definitions. Heterogeneity (I^2): AWGS (94.6%), Baumgartner (93.5%), EWGSOP (92.5%). AWGS = Asian Working Group for Sarcopenia, EWGSOP = European Working Group for Sarcopenia in Older People.

![Image](image2.png)

Fig. A.3. Sarcopenia prevalence in articles including individuals with dementia stratified by sarcopenia definitions. Heterogeneity (I^2): AWGS (96.9%), Baumgartner (90.9%), EWGSOP (94.0%). AWGS = Asian Working Group for Sarcopenia, EWGSOP = European Working Group for Sarcopenia in Older People.
Group by	Study name	Statistics for each study	Event rate and 95% CI	Relative weight	
Definition	Event rate	Lower limit	Upper limit		
AWGS	Bouchi (2017, a) (A)	0.135	0.095	0.188	14.34
AWGS	Bouchi (2017, a) (B)	0.390	0.177	0.574	3.19
AWGS	Bouchi (2017, b)	0.176	0.141	0.226	19.10
AWGS	Bouchi (2017, c)	0.176	0.133	0.230	18.91
AWGS	Mori (2017)	0.167	0.077	0.325	3.49
AWGS	Murata (2018)	0.153	0.116	0.199	19.90
AWGS	Wang (2016)	0.148	0.108	0.200	16.89
AWGS	0.165	0.143	0.189		
Baumgartner	Aghili (2014) (1)	0.020	0.003	0.126	9.64
Baumgartner	Jansen (2015) (A)	0.172	0.074	0.353	19.10
Baumgartner	Jansen (2015) (B)	0.091	0.013	0.439	9.17
Baumgartner	Jansen (2015) (C)	0.111	0.015	0.500	9.03
Baumgartner	Kim (2014) (1)	0.278	0.211	0.356	25.85
Baumgartner	Yang (2016)	0.449	0.414	0.484	27.21
Baumgartner	0.201	0.105	0.351		
EWGSOP	Celiker (2018) (A)	0.214	0.126	0.341	21.21
EWGSOP	Celiker (2018) (B)	0.340	0.223	0.480	21.82
EWGSOP	Ida (2017)	0.198	0.149	0.258	23.14
EWGSOP	Tanaka (2015)	0.445	0.376	0.516	23.40
EWGSOP	Ucak (2016)	0.990	0.931	0.999	10.63
EWGSOP	0.424	0.237	0.635		
Janssen (2002)	Aghili (2014) (2b)	0.010	0.001	0.136	13.77
Janssen (2002)	Kim (2010)	0.157	0.125	0.195	28.74
Janssen (2002)	Kim (2014) (3)	0.396	0.319	0.478	28.57
Janssen (2002)	Koo (2016)	0.659	0.623	0.694	28.92
Janssen (2002)	0.269	0.077	0.503		
Janssen (2004)	Bittel (2017) (A)	0.833	0.523	0.958	30.43
Janssen (2004)	Bittel (2017) (B)	0.762	0.540	0.897	69.57
Janssen (2004)	0.766	0.613	0.894		
Other	Alpinar (2014)	0.015	0.001	0.201	6.91
Other	Fukuda (2017) (A)	0.153	0.114	0.202	37.98
Other	Fukuda (2017) (B)	0.211	0.109	0.308	25.60
Other	Fukuda (2017) (C)	0.412	0.210	0.648	25.67
Other	0.195	0.098	0.351		

Fig. A.4. Sarcopenia prevalence in articles including individuals with DM stratified by sarcopenia definitions. Heterogeneity (I^2): AWGS (19.4%), Baumgartner (87.3%), EWGSOP (93.1%), Janssen (2002) (98.7%), Janssen (2004) (0.0%), other (71.3%). AWGS = Asian Working Group for Sarcopenia, EWGSOP = European Working Group for Sarcopenia in Older People.

Group by	Study name	Statistics for each study	Event rate and 95% CI	Relative weight	
Definition	Event rate	Lower limit	Upper limit		
AWGS	Lee (2016)	0.333	0.303	0.366	41.52
AWGS	Lee (2017) (A)	0.336	0.303	0.370	39.02
AWGS	Lee (2017) (B)	0.318	0.238	0.411	10.07
AWGS	Limpawattana (2017)	0.240	0.172	0.324	9.40
Baumgartner	Chung (2015) (A)	0.272	0.246	0.300	12.73
Baumgartner	Chung (2015) (B)	0.120	0.107	0.148	12.71
Baumgartner	Costa (2015) (1)	0.407	0.311	0.510	12.49
Baumgartner	Hwang (2017)	0.053	0.039	0.071	12.61
Baumgartner	Knoppers (2017)	0.424	0.327	0.527	12.90
Baumgartner	Sergi (2008)	0.375	0.240	0.532	12.14
Baumgartner	van de Boot (2015)	0.805	0.633	0.902	12.06
Baumgartner	van de Boot (2016)	0.311	0.194	0.459	12.16
Baumgartner	0.322	0.148	0.566		
EWGSOP	Byon (2017)	0.250	0.167	0.356	22.55
EWGSOP	Di Gregorio (2018)	0.240	0.192	0.285	25.22
EWGSOP	Jones (2015)	0.145	0.119	0.175	25.74
EWGSOP	Joppa (2016)	0.341	0.321	0.362	26.50
EWGSOP	0.237	0.144	0.364		
Other	Gologanu (2014)	0.083	0.027	0.229	25.94
Other	Koo (2014)	0.270	0.235	0.308	39.12
Other	Pothirat (2016)	0.099	0.057	0.167	34.04
Other	0.144	0.067	0.319		

Fig. A.5. Sarcopenia prevalence in articles including individuals with respiratory diseases stratified by sarcopenia definitions. Heterogeneity (I^2): AWGS (34.3%), Baumgartner (99.1%), EWGSOP (96.6%), other (89.5%). AWGS = Asian Working Group for Sarcopenia, EWGSOP = European Working Group for Sarcopenia in Older People.
Fig. A.6. Sarcopenia in disease groups (CVD, dementia, DM and respiratory disease) of all articles stratified by continent.

Heterogeneity (I²):
- CVD + Asia (92.1%), CVD + Europe (72.0%), dementia + Asia (95.0%), dementia + Europe (93.9%), DM + Asia (97.2%), DM + Europe (0.0%), DM + North America (0.0%), respiratory disease + Asia (96.8%), respiratory disease + Europe (98.6%), respiratory disease + South America (95.1%).

References

Agarwal, E., Miller, M., Axley, A., Ieening, E., 2013. Malnutrition in the elderly: a narrative review. Maturitas 76 (4), 296–302. https://doi.org/10.1016/j.maturitas.2013.07.013.

Baumgart, M., Snyder, H.M., Carrillo, M.C., Fazio, S., Kim, H., Johns, H., 2015. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 11(6), 718–726. https://doi.org/10.1016/j.jalz.2015.05.016.

Baumgarner, R.N., Koehler, K.M., Gallagher, D., Romero, L., Heymsfield, S.B., Ross, R.R., Garry, P.J., Lindeman, R.D., 1998. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 147 (8), 755–763. https://doi.org/10.1093/oxfordjournals.aje.a009520.

Beaudart, C., Zaaria, M., Pasleau, F., Regirer, J.Y., Bruyere, O., 2017. Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS One 12 (1), e0169548. https://doi.org/10.1371/journal.pone.0169548.

Bekfani, T., Pellicori, P., Morris, D.A., Ebner, N., Valentova, M., Steinbeck, L., Wachter, R., Elser, S., Sliziuik, V., Scheffold, J.C., Sandek, A., Doehner, W., Cleland, J.G., Lainscak, M., Anker, S.D., von Haehling, S., 2016. Sarcopenia in patients with heart failure with preserved ejection fraction: impact on muscle strength, exercise capacity and quality of life. Int J Cardiol Heart Vasc 222, 41–46. https://doi.org/10.1016/j.ijcard.2016.07.135.

Bianchi, L., Abete, P., Belletti, G., Bo, M., Rovani, A., Corica, F., Di Bari, M., Maggio, M., Landi, F., Rizzo, M.R., Rossi, A.P., Landi, F., Volpato, S., & for the, G. G. I. (2017). Prevalence and clinical correlates of sarcopenia, identified according to the EWGSOP definition and diagnostic algorithm, in Hospitalized Older People: The GLISTEN Study. J. Gerontol. A Biol. Sci. Med. Sci., 72(11), 1575–1581. doi:https://doi.org/10.1093/gerona/glw343

Bijlsma, A.Y., Meskers, C.G., vandenEshof, N., Westendorp, R.G., Sipila, S., Stenroth, L., Sillanpaa, E., McPhee, J.S., Jones, D.A., Narici, M., Gapeyeva, H., Paasuke, M., Voit, T., Barnouin, Y., Hogrel, J.Y., Butler-Browne, G., Maier, A.B., 2014. Diagnostic criteria for sarcopenia and physical performance. Age (Dordr.) 36 (1), 275–285. https://doi.org/10.1007/s11357-013-9556-5.

Brenjes, D.L., Kenel, P.J., Christian Sulze, P., 2017. Exercise capacity, physical activity, and morbidity. Heart Fail. Rev. 22 (2), 133–139. https://doi.org/10.1007/...
