Galaxies in a simulated ΛCDM universe – II. Observable properties and constraints on feedback

Dušan Kereš,1⋆Neal Katz,2⋆Romeel Davé,3⋆Mark Fardal2⋆ and David H. Weinberg4⋆

1Institute for Theory and Computation, Harvard–Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
2Astronomy Department, University of Massachusetts, Amherst, MA 01003, USA
3University of Arizona, Steward Observatory, Tucson, AZ 85721, USA
4Ohio State University, Department of Astronomy, Columbus, OH 43210, USA

Accepted 2009 April 15. Received 2009 April 11; in original form 2009 January 11

ABSTRACT
We compare the properties of galaxies that form in a cosmological simulation without strong feedback to observations of the z = 0 galaxy population. We confirm previous findings that models without strong feedback overproduce the observed galaxy baryonic mass function, especially at the low- and high-mass extremes. Through post-processing we investigate what kinds of feedback would be required to reproduce the statistics of observed galaxy masses and star formation rates. To mimic an extreme form of ‘preventive’ feedback, such as a highly efficient active galactic nucleus ‘radio mode’, we remove all baryonic mass that was originally accreted from shock-heated gas (‘hot-mode’ accretion). This removal does not bring the high-mass end of the galaxy mass function into agreement with observations because much of the stellar mass in these systems formed at high redshift from baryons that originally accreted via ‘cold mode’ on to lower mass progenitors. An efficient ‘ejective’ feedback mechanism, such as supernova-driven galactic winds, must reduce the masses of these progenitors before they merge to form today’s massive galaxies. Feedback must also reduce the masses of lower mass z = 0 galaxies, which assemble at lower redshifts and have much lower star formation rates. If we monotonically remap galaxy masses to reproduce the observed mass function, but retain the simulation-predicted star formation rates, we obtain fairly good agreement with the observed sequence of star-forming galaxies. However, we fail to recover the observed population of passive, low star formation rate galaxies, especially at the high-mass end. Suppressing all hot-mode accretion improves the agreement for high-mass galaxies, but it worsens the agreement at intermediate masses. Reproducing these z = 0 observations requires a feedback mechanism that dramatically suppresses star formation in a fraction of galaxies, increasing with mass, while leaving star formation rates of other galaxies essentially unchanged.

Key words: methods: numerical – cooling flows – galaxies: evolution – galaxies: formation – galaxies: luminosity function, mass function.

1 INTRODUCTION
One of the oldest challenges in galaxy formation theory is to explain its overall inefficiency, specifically how to prevent too much gas from cooling on to the central galaxies of dark matter haloes and forming stars, resulting in higher mass galaxies at a given number density than observed (e.g. White & Frenk 1991). A second, related challenge is to explain the bimodality in galactic properties, where

⋆E-mail: dkeres@cfa.harvard.edu (DK); nsk@astro.umass.edu (NK); rad@astro.as.arizona.edu (RD); fardal@astro.umass.edu (MF); dhw@astronomy.ohio-state.edu (DHW)

© 2009 The Authors. Journal compilation © 2009 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/396/4/2332/1030564
by guest
on 29 July 2018
the IGM metal distribution rely on scaling relations appropriate for momentum-driven winds (Murray, Quataert & Thompson 2005; Oppenheimer & Davé 2006). However, it is not yet clear under which conditions these winds operate in general. If the feedback at low masses is a SN-driven wind, it is more likely to be efficient at high redshifts, when galaxies had star formation rates (SFRs) that are an order of magnitude or more higher than they are today. At lower redshifts, efficient feedback is also needed in low-mass objects, but winds are less likely to be sufficient to remove gas from galaxies (Mac Low & Ferrara 1999; Ferrara & Tolstoy 2000) owing to their lower SFRs.

Much of the recent focus has been on the properties of massive galaxies. Some recent semi-analytic models (SAMs) of galaxy formation (e.g. Bower et al. 2006; Cattaneo et al. 2006; Croton et al. 2006; Somerville et al. 2008) are able to reproduce the global properties of massive ellipticals, which appeared too blue and too massive in earlier theoretical models. All these models suppress star formation in massive haloes by means of feedback from active galactic nuclei (AGN). In several models, supermassive black holes accreting gas that has cooled from the surrounding hot halo atmosphere provide strong feedback to the hot halo gas, which prevents or slows the gas cooling. This type of feedback from AGN is often called ‘radio mode’ feedback, since it is believed to operate in massive radio galaxies. However, such feedback cannot directly change the galaxy morphology, which is believed to be changed by major mergers (Toomre 1977), i.e. mergers of galaxies with similar masses. During major mergers the rapid inflow of gas into the central parts can feed the black hole in the Galactic Centre, which in turn can ionize, heat and expel the surrounding cold gas. In idealized simulations of such major mergers, this ‘quasar mode’ feedback was also successful in preventing the accretion of gas after the merger (Di Matteo, Springel & Hernquist 2005). Moreover, these simulations are typically evolved outside of their cosmological environment and do not model the subsequent evolution of haloes, so it is still unclear how long this ‘quasar mode’ feedback effect lasts before gas can fall in from the IGM and once again start cooling on to the galaxy.

In our previous work (Kereš et al. 2005, hereafter K05) and in the first paper in this series (Kereš et al. 2009, hereafter K09), we followed the buildup of galaxies and halo gas in a Λ cold dark matter (ΛCDM) universe (inflationary CDM with a cosmological constant), using hydrodynamic simulations without any of the strong feedback processes just mentioned. We showed that it is the smooth accretion of intergalactic gas that dominates the global galactic gas supply, not accretion by merging, and that it proceeds via two stages. First, gas accretes through filamentary streams, where it remains relatively cold before it reaches the galaxy (Katz et al. 2003, K05). This accretion mode, which we call cold-mode accretion, is very efficient because the gas does not need to cool and hence it falls in on approximately a free-fall time. This means that the baryonic growth closely mimics the growth of the dark matter halo, albeit with a slight time delay. Cold-mode accretion dominates the global growth of haloes at high redshifts and the growth of lower mass objects at late times. As the dark matter halo grows larger, a larger fraction of the infalling material shock heats to temperatures close to the virial temperature. In the denser, central regions, a fraction of this hot gas is able to cool. This latter process is the ‘classical’ scenario by which galaxies gain gas (e.g. Rees & Ostriker 1977; White & Rees 1978), and to differentiate it from the previous mode we call it hot-mode accretion. The dominant accretion mode depends on halo mass, and the transition between these two regimes occurs at a mass of \( M_{\text{halo}} \sim 2-3 \times 10^{13} \, M_\odot \). A similar (albeit slightly lower) transition mass between shock-heated and non-shock-heated halo gas is found in spherically symmetric calculations (Birnboim & Dekel 2003), and the physics behind this transition are apparently related to the ratio of post-shock compression and cooling times. In haloes with masses near the transition mass, cold filamentary flows still supply the central galaxy with gas even though some of the infalling gas shock heats to near the virial temperature. At higher redshifts, cold filaments are even able to survive within haloes above this transition mass, i.e. haloes dominated by hot halo gas (K05, Dekel & Birnboim 2006; Ocvirk, Pichon & Teyssier 2008, K09). Overall, the bulk of the baryonic mass in galaxies is accreted through the cold accretion mode, and on average no galaxy of any mass acquires more than about 30 per cent of its mass through hot-mode accretion (K09).

We can sort the galaxy feedback processes discussed above into two classes: those that prevent gas from entering a galaxy in the first place, ‘preventive’ feedback, and those that expel a fraction of the gas that does manage to enter the galaxy, ‘ejective’ feedback. AGN radio mode heating and photoionization are examples of preventive feedback, while winds driven by SNe or AGN ‘quasar mode’ are examples of ejective feedback. (The same feedback process could, in principle, be both ejective and preventive – for example, if the energy released in a quasar-driven wind heats the surrounding halo gas and thereby prevents it from cooling.) The effectiveness of these two feedback types should vary depending on the dominant accretion mode in the halo hosting the galaxy. Because cold-mode haloes have very little halo gas outside of the cold dense filaments, it is doubtful whether ejective feedback can drastically affect the accretion of gas. However, ejective feedback could lower the masses of galaxies in these haloes by expelling already accreted material. In this case, whether or not the winds escaped into the IGM would only be determined by energetics (assuming winds cannot destroy dense filamentary streams of gas), since the haloes are mostly devoid of gas. Such winds, however, might be stopped by the quasi-spherical, hot haloes that surround hot-mode galaxies, making them ineffective. Conversely, preventive feedback like the ‘radio mode’ of AGN is likely most effective in hot-mode haloes, where it can prevent the hot, dilute gas that is in quasi-static equilibrium from cooling (as discussed in K05). The exceptions may be at very low masses, where photoionization and pre-heating could prevent gas from getting into the haloes in the first place by strongly reducing the gas cooling rates.

To understand the role of feedback during galaxy formation and evolution, one also has to understand how galaxies are supplied with baryons and in particular with the gas that provides the fuel for star formation. This is difficult with current SAMs, as they do not yet accurately track cold-mode accretion. On the other hand, simulations currently lack the resolution necessary to accurately simulate either preventive or ejective feedback processes directly within a cosmological environment. Therefore, it is important to gain understanding of when and where feedback is necessary to explain the observed properties of galaxies. In this paper, we do this from the vantage point of our own cosmological simulations, which do not include any strong feedback mechanisms. By comparing the observed properties of galaxies with the galaxies that form in our simulations, we confirm the conventional wisdom that one or more strong feedback mechanisms are needed to prevent the excessive accumulation of baryons into galaxies. We draw inferences about where in redshift and galaxy/halo mass gas accretion must be suppressed, and what feedback mechanisms are likely to be successful. To mimic an extreme version of preventive feedback, e.g. a perfectly efficient AGN ‘radio mode’, we remove all the gas accreted...
through hot mode from all galaxies. We show that this extreme feedback scenario only slightly improves the match between simulated and observed galaxy masses, which still disagree at the faint and bright ends.\(^1\) Therefore, effective feedback from starburst winds is required. In addition, a selective feedback mechanism, like one that occurs primarily during major mergers, is probably required to explain the bimodality of the galaxy population.

A large fraction of the results presented in this paper are presented in slightly different form as a part of D. Kereš’s PhD thesis at the University of Massachusetts, Amherst (Keres 2007).

In Section 2, we describe our new simulations, and the specifics of our procedure for removing hot-mode accretion, as well as the ‘cold drizzle’ in massive galaxies which we suspect to be numerically enhanced. In Section 3.1, we compare the observed stellar mass function (SMF) of galaxies to that of simulated galaxies both with and without hot-mode accretion. We discuss in Section 3.2 the accumulation of galaxy mass and the stellar component, and in Section 3.3 we compare the observed SFRs with the simulations, again with and without hot-mode accretion. We discuss the feedback mechanisms needed to bring the masses and specific star formation rates (SSFRs) of the simulated galaxies into better agreement with the observations in Section 4 and conclude in Section 5.

2 SIMULATION

We described the simulation analysed in this paper in K09, but for completeness we summarize its main properties here. We adopt a CDM model dominated by a cosmological constant, \(\Lambda\)CDM, with the following cosmological parameters: \(\Omega_m = 0.26, \Omega_\Lambda = 0.74, h = H_0/(100\text{\,km\,s}^{-1}\text{\,Mpc}^{-1}) = 0.71\) and a primordial power spectrum index of \(n = 1.0\). For the amplitude of the mass fluctuations, we use \(\sigma_8 = 0.75\), and for the baryonic density we adopt \(\Omega_b = 0.044\). All of these cosmological parameters are consistent with the newest measurements from the Wilkinson Microwave Anisotropy Probe team (Spergel et al. 2007) and with various large-scale structure measurements,\(^2\) except for the primordial power spectrum index which is slightly higher in our simulations. We model a 50.0\,h\(^{-1}\)\,Mpc comoving periodic cube using 288\(^3\) dark matter and 288\(^3\) gas particles, i.e. around 50 million particles in total. Gravitational forces are softened using a cubic spline kernel of comoving radius 10\,h\(^{-1}\)\,kpc, approximately equivalent to a Plummer force softening of \(\epsilon_{\text{grav}} = 7.2\,h^{-1}\)\,kpc. Using the naming scheme from K09, we will refer to this simulation as L50/288 later throughout the text.

We include the relevant cooling processes using primordial abundances as in Katz, Weinberg & Hernquist (1996), omitting cooling processes associated with heavy elements or molecular hydrogen. In all of these simulations, we include a spatially uniform, extra-galactic ultraviolet (UV) background that heats and ionizes the gas. The background redshift distribution and spectrum are slightly different than in K05. The background flux starts at \(z = 9\) and is based on Haardt & Madau (2001) (for more details about the calculation of this UV background, see Oppenheimer & Davé 2006). We note here that smaller volume simulations with our new UV background and with the version used in K05 showed no notable differences in the evolution of the galaxy population in the redshift range \(0 < z < 4\) of interest in this paper.

The initial conditions are evolved using the SPH code GADGET-2 (Springel 2005). The calculation of the gravitational force is a combination of the particle mesh algorithm (Hockney & Eastwood 1981) for large distances, and the hierarchical tree algorithm (Barnes & Hut 1986; Hernquist 1987) for small distances. The SPH algorithm (Lucy 1977; Gingold & Monaghan 1977) used here is entropy and energy conserving, and it is based on the version used in Springel & Hernquist (2002). The public version of this code was modified (both by Springel and by us) to include the cooling, the uniform UV background and the two-phase star formation algorithm.

Once the particle reaches a density above the star-forming threshold, star formation proceeds in a two-phase medium where the SN energy released by Type II SNe during star formation balances cold cloud formation and evaporation by the hot medium as in McKee & Ostriker (1977). This enables more stable gas-rich discs, but it does not produce galactic outflows, i.e. SN feedback only provides disc pressurization. In this model, the dependence of the SFR on density is still governed by a Schmidt law (Schmidt 1959). The model parameters are the same as in Springel & Hernquist (2003), which were selected to match the \(z = 0\) Kennicutt law (Kennicutt 1998). The threshold density for star formation is the density where the mass-weighted temperature of the two-phase medium equals 10\,000 K. In practice, this threshold density remains constant in physical units during the simulation and corresponds to a hydrogen number density of \(n_H = 0.13\,\text{cm}^{-3}\). Each gas particle within the two-phase medium has an assigned SFR, but the actual conversion from gas to star particles occurs stochastically (Springel & Hernquist 2003), similar to the algorithm in Katz (1992). Each star particle inherits half of the initial gas mass of the gas particle.

To identify bound groups of cold, dense baryonic particles and stars, which represent galaxies, we use the program skid\(^3\) (see K05 for more details). Briefly, a galaxy identified by skid contains gravitationally bound groups of stars and gas with an overdensity higher than 1000 relative to the mean baryonic density and \(T < 3 \times 10^4\) K. Here, we slightly alter these criteria by using an increased temperature criterion at densities where the two-phase medium develops to allow star-forming, two-phase medium particles to be part of a skid group, since at high densities the mass-weighted temperatures in the two-phase medium can be higher than 10\,000 K. After the identification of a galaxy (skid group), we determine its total stellar mass and SFR. The stellar mass is simply the sum of the masses of the star particles, and the ‘instantaneous’ SFR is the sum of the ‘instantaneous’ SFRs of all the gas particles, calculated from the properties of the two-phase medium.

The simulation here accounts for mass loss from stars that explode as Type II SNe, but not for the larger fraction of mass lost from intermediate-mass stars, which can be 0.3–0.4 at late times for a Kroupa (2001) or diet Salpeter initial mass function (IMF) (Bell & de Jong 2001). After beginning the simulation discussed in this paper, we added this effect to the code and tested it in smaller volume simulations. We find very similar rates of stellar mass breakup in the two simulations. In other words, the global density of stars as a function of redshift remains nearly unchanged, but the global SFRs increase, by up to a factor of 2 at late times. Thus, we expect delayed recycling to have little effect on the masses or stellar ages.

---

\(^1\) This conclusion is contrary to the conjecture of K05, most likely because the more accurate smoothed particle hydrodynamic (SPH) formulation used here leads to much lower hot accretion rates (K09). The galaxy population in our present simulations is a better match to observations than that of K05, but suppression of hot mode produces little further improvement.

\(^2\) http://lambda.gsfc.nasa.gov/product/map/dr2/parameters.cfm (see the \(\Lambda\)CDM/all values).

\(^3\) http://www-hpcc.astro.washington.edu/tools/skid.html
of a typical galaxy but to boost the individual SFRs by about a factor of 2. We caution, however, that this test was performed using simulations without strong feedback. Ejective feedback processes might succeed in removing the recycled gas before it forms stars, thus resulting in lowered stellar masses and smaller increases in the SFR. We will comment in more detail on the possible effects of mass feedback in Section 3.3.

2.1 Removing hot-mode accretion

In K05, we showed that much of the gas in galaxies entered through cold mode, and argued that removing a large fraction of the remaining hot-mode accretion could bring the simulated galaxies into better agreement with the observed galaxy masses and colours. The simulation method used in K05 in fact suffered from numerically enhanced hot-mode cooling rates (Pearce et al. 2001; Springel & Hernquist 2002), owing to an enhanced density of the hot phase at hot–cold boundaries. Our new simulation has a much larger volume and contains many more galaxies in massive haloes, and it also uses an SPH algorithm that prevents numerical overcooling. Thus, we can more reliably test the significance of hot-mode accretion.

Models of preventive feedback suppress the hot-mode accretion to varying degrees. For example, in models of ‘radio mode’ feedback (Croton et al. 2006), a black hole at the centre of its halo suppresses the accretion only if it contains enough mass to provide a significant input of energy into the halo gas, and only if it resides in a halo containing a significant hot atmosphere, and it need not be 100 per cent effective. However, the SAM of Cattaneo et al. (2006) assumes the complete shutdown of accretion in massive haloes, above a critical mass and below a critical redshift. In our case, to mimic the most extreme case of preventive feedback, we choose to completely ignore all the gas particles that cool from any hot halo, regardless of halo mass or redshift.

The method we use to identify hot-mode accretion is similar to that used in K05. Starting with particles in galaxies at $z = 0$, we follow the particles back through time and flag all the particles that have ever reached a temperature higher than $2.5 \times 10^5$ K. (Particles within the star-forming two-phase medium can exceed this threshold owing to the contribution from the hot phase to the mass-weighted temperature. Here, we ignore these particles, since they clearly have already been accreted into a galaxy.) Then, we produce a new, revised list of galaxy stellar, gas and total masses along with galactic SFRs, excluding the contribution from particles flagged as accreting through hot mode.

2.2 Removing cold-mode accretion in massive galaxies

In K09, we showed that in GADGET-2 simulations massive haloes contain many cold clumps of gas that are not identified by $\text{SKID}$ as galaxies. Such clumps survive within the hot halo gas, and because the ram pressure drag on such objects is likely overestimated, they fall on to the central galaxy in just over a free-fall time, a process we term ‘cold drizzle’. As a result, the contribution of cold mode to the total gas accretion falls to a minimum around a galaxy mass of $10^{11} \, M_\odot$ and then rises again at higher masses (see fig. 8 of K09). Whether or not such cold clumps should form and survive in very hot haloes is not clear (see the discussion in K09). However, the accretion rate of these clumps is almost certainly overestimated, since in most SPH implementations the effective cross-section for ram pressure is overestimated at low resolution, increasing the drag on a cold clump as it moves through a hot medium (Tittley, Pearce & Couchman 2001). Furthermore, it is possible that many of these clumps would be destroyed by surface instabilities that are hard to model correctly in SPH (Agertz et al. 2007) or by conduction.

To bracket the correct solution, therefore, we remove cold-mode accretion on to galaxies more massive than $10^{11} \, M_\odot$ to see how the properties of our simulated galaxies change. We use the galaxy’s mass at the time the gas particle accretes (without adjusting its mass for hot-mode removal). Even though this cut-off mass is well into the hot-mode regime, a large mass fraction of these massive galaxies are built up by gas initially accreted through cold mode, if it joined the massive galaxy through mergers. We do not remove this indirect cold-mode accretion but since some of the subresolution $\text{SKID}$ identified groups are also cold clouds, we also remove all the gas that was accreted from progenitors below our resolution limit of 64 particles to make the effect of cloud removal more extreme. We then recalculate the galaxy properties.

3 RESULTS

3.1 The stellar mass function

We begin the comparison of simulated and observed galaxy properties with the $z \sim 0$ SMFs. In Fig. 1, we compare the observed ($g$-band-derived) SMF from Bell et al. (2003) to the SMF from our L50/288 simulation. We plot the SMF starting from our adopted resolution limit. The stellar masses in Bell et al. (2003) are based on data from the Sloan Digital Sky Survey (SDDS) (York et al. 2000) and the diet Salpeter IMF, and are shown to be consistent with the masses derived from the near-infrared Two-Micron All-Sky Survey survey (Skrutskie et al. 2006). The simulated galaxies are overabundant at all galaxy masses, with the largest disagreements occurring at the low- and high-mass ends. By matching the integrated number density of galaxies above a certain mass in the simulation with the observations, we estimate the difference in mass between the observed and simulated galaxies (assuming the same rank ordering of galaxies by mass in the simulation and observations). We show this

![Figure 1](https://academic.oup.com/mnras/article-abstract/396/4/2332/1030564)
difference as a correction factor $f_{\text{corr}} = M_{\text{sim}}/M_{\text{match}}$ in the lower panel of Fig. 1.

The masses of the most massive simulated galaxies are about a factor of 3–5 higher than those observed. One can immediately conclude that strong feedback, which is not included in our simulations, is needed to decrease the masses of these simulated massive galaxies. The differences decrease at intermediate masses, around the ‘knee’ of the observed mass function, where the simulated masses are only high by a factor of $1.5–2$. At masses lower than several times $10^{10} \, M_\odot$, the differences between the observed and simulated SMFs are enormous. To match the number density of observed galaxies requires suppressing the masses of the simulated galaxies by more than an order of magnitude. These differences suggest that a very efficient mechanism must prevent the formation of the majority of low-mass galaxies with masses up to several times $10^{10} \, M_\odot$, or that it must drastically lower their masses to bring the simulated galaxies into agreement with the observations.

Another possibility is that the observed galaxies contain significantly more gas and less stars at similar galaxy masses. Of course these conclusions are not new or unique to our work, and we will discuss the required properties of this mechanism in more detail in the Discussion section. The total amount of baryons locked in the stellar component in our simulation is 18 per cent, which is about a factor of 3 higher than the observed value (e.g. Bell et al. 2003). While the differences between the simulated and observed galaxies are large at the high- and low-mass ends, the stellar masses of galaxies are in relatively good agreement around the ‘knee’ of the mass function where a large fraction of the global stellar mass is concentrated, making this disagreement more moderate globally.

The galaxy masses in Fig. 1 do not account for stars dispersed into the intracluster medium from the hierarchically built remnants. Observationally, in clusters of $M_h \sim 3 \times 10^{14} \, M_\odot$, about 20–30 per cent of all stars in a halo are part of the ICS+central galaxy system, which is dominated by intracluster stars (ICSs) (e.g. Gonzalez, Zaritsky & Zabludoff 2007). In fractional terms, this is not far from what we find in our simulated massive haloes, which have 20–35 per cent of their stars in the ICS at halo masses of about $10^{14} \, M_\odot$. The fraction of ICSs is also subject to the exact definition of where the light of the central (brightest) cluster galaxy ends and becomes ICS and, therefore, any comparison of this aspect of our simulation to the observations is quite uncertain. However, the combined mass of the central galaxy and the ICS is already higher in our simulations than what is observed. Furthermore, most of the massive galaxies in our simulation are in haloes of even lower mass, where ICS is likely an even less important stellar component. Given these facts, it appears unlikely that a large fraction of the factor of $\sim 3$ larger galaxy mass in the simulations could be explained by having more ICS in the simulation.

In Section 2.1, we discussed removing the hot mode to mimic the extreme case of preventive feedback. We plot the SMF with hot-mode accretion removed in Fig. 1 (dashed line). We see that the decrease in galaxy masses caused by this extreme feedback does bring the simulations into better agreement with the observations at high masses, but the change in mass is only modest. The change is largest at intermediate masses, around the ‘knee’ in the observed mass function. The typical change is several tens of per cent at masses of around $10^{11} \, M_\odot$ and is even smaller at higher masses. The removal of hot-mode accretion even changes galaxy masses in objects with masses as small as several times $10^{10} \, M_\odot$, because there are still some galaxies at these small masses with significant hot-mode accretion at low redshifts. At even lower masses, however, there is almost no change in mass after hot-mode removal, which is not unexpected since all low-mass galaxies are built exclusively through cold-mode accretion.

The most surprising feature of this curve is the almost negligible change at the high-mass end. We conclude from this plot that the removal of hot-mode accretion, to mimic an extreme case of preventive feedback such as an AGN radio mode, cannot explain the observed steep drop in the SMF at the high-mass end. The removal of hot-mode accretion only partially succeeds at intermediate masses, where the simulated mass function is indeed quite close to the observed one, but only over a small range of masses. Previously, in K09, we saw that the accretion of many galaxies at low redshift is completely dominated by hot-mode accretion and yet their masses are not greatly affected by hot-mode removal. We provide an explanation for this seeming contradiction in the next section and later, where we discuss the processes needed to bring the simulated galaxy masses into better agreement with the observations.

In Section 2.2, we discussed the removal of the cold gas infall in massive galaxies in addition to removing all hot mode, since we suspect this infall to be a numerical artefact. We show the results of this in Fig. 1 as the dot–dashed line. The effect on massive galaxies is again rather small and, by construction, it only affects the most massive objects. Typically, most galaxies of around $10^{12} \, M_\odot$ have their masses lowered by only $\sim 20$ per cent when the cold drizzle is removed. Therefore, even without cold-mode accretion in massive galaxies, preventive feedback alone (such as an extreme AGN radio mode) is not sufficient to bring the high-mass end of the observed and simulated SMFs into agreement.

### 3.2 Galaxy buildup and the fossil record

In Fig. 2 (left-hand panel), we plot lines showing the median redshift at which galaxies formed 25, 50 and 75 per cent of their $z = 0$ stellar mass as a function of the stellar mass of the galaxies. To indicate the scatter from one galaxy to another, we also show the mass-weighted stellar formation redshift (the redshift when 50 per cent of the $z = 0$ stellar mass was formed) for each individual galaxy. The rising trend with mass has been described as the ‘downsizing’ of galaxy formation. Sometimes this trend has been explained as a consequence of particular feedback models, but here we see that it is present in our SPH simulations without strong feedback, and therefore is a natural consequence of hierarchical models of galaxy formation (see also Dave 2006). Even the buildup of dark matter haloes proceeds in a similar way, where the bulk of the present halo mass of massive haloes was already assembled in lower mass progenitors (above a given minimum mass) at earlier times than the bulk of the mass in low-mass haloes (Neistein, van den Bosch & Dekel 2006).

For comparison, we also present in Fig. 2 (right-hand panel) observational estimates of the stellar formation redshifts from the spectral analysis galaxies from the Sloan Digital Sky Survey (SDSS) by Panter et al. (2007) (triangles). To generate these lines, we have taken the SFR as a function of redshift in each of five mass bins from...
their fig. 4, assumed the SFR to be constant within each redshift bin, extended the minimum redshift to \( z = 0 \) and interpolated the cumulative stars formed to get the 25, 50 and 75 per cent redshifts. The analysis of Panter et al. (2007), made purely from the integrated spectra of the local galaxy population, is clearly difficult and subject to systematic errors (from the dust model, surface brightness biases, spectroscopic fibre coverage or imperfections in the spectral modelling among others). The errors increase rapidly with the redshift, so the 25 per cent curve is more reliable than the 75 per cent one. However, the global behaviour of star formation and stellar mass as a function of redshift is in reasonable agreement with direct observations, and the overall ‘downdsizing’ picture inferred from this data set has been confirmed by many previous studies. We also show the observationally inferred mass-weighted stellar age from Gallazzi et al. (2008). Their analysis differs in detail from Panter et al. (2007), and it results in significantly younger stellar ages at all masses, but especially at the low-mass end. We show the formation redshift of 50 per cent of the galaxy stellar component (diamonds) from their fig. 9 (they do not provide 25th and 75th percentiles). To compare the simulated galaxies to these observations, we correct the simulated galaxy stellar masses by the correction factor from Fig. 1. By comparing the stellar formation redshift in the simulations to the observed values, one can infer whether the bulk of such a mass correction, which in nature would happen through some feedback mechanism, needs to occur below the observationally inferred formation redshift, in the case where the observed formation redshifts are higher than those simulated or above the observational redshift in the opposite case. Both the observational results and our simulation show that stars in the progenitors of massive galaxies form very early. However, at the high-mass end the simulated stellar ages are in rough agreement with the results of Panter et al. (2007) but are much higher than those of Gallazzi et al. (2008). It is beyond the scope of this paper to track the differences in the observationally inferred stellar ages, but it is clear that the systematic uncertainties in these estimates are still very significant. While the differences between the observed data sets are large at the low-mass end, both observational estimates indicate that the simulated galaxies form too early, implying that their formation should be more suppressed at early times (we discuss this in more detail in Section 4.1).

In Fig. 3, we show the contribution of gas initially accreted through cold mode to the final masses of galaxies at \( z = 2 \) and 0 (the second panel is similar to fig. 7 in K09). The dispersion in the cold-mode fractions is large at all masses, but the overall trends with galaxy mass (indicated with the median line) are clear. We demonstrated in K09 that at \( z > 2 \), cold-mode accretion completely dominates the smooth gas accretion rates at all masses. Around \( z = 2 \), hot mode starts to be an important source of gas in a limited mass range, around few times \( 10^{10} \, M_\odot \). However, from Fig. 3 one can see that typical high-redshift galaxies at any mass build up 90–100 per cent of their mass through cold-mode accretion, making the hot-mode contribution insignificant at these early times.

The situation is a bit more complicated at \( z = 0 \). As expected, a typical low-mass galaxy forms almost completely through cold-mode accretion. The contribution of hot-mode accretion increases with mass up to a maximum of 25–30 per cent for galaxies with masses of around \( 4-5 \times 10^{10} \, M_\odot \), but then the trend reverses and the median hot-mode contribution decreases in more massive galaxies. (We emphasize that this hot-mode contribution is measured over the entire history of the baryons that make up the galaxy, whereas a plot of the current accretion would show much larger hot-mode fractions.) The increase in the cold-mode contribution at higher masses owes to the increased contribution of mergers, which mostly adds material that was originally accreted through cold mode. This occurs because the merging progenitor galaxies accrete the bulk of their mass at much earlier times when cold-mode accretion dominates the buildup of galaxies at all masses. This trend is reinforced by the lack of substantial hot-mode accretion in massive haloes at \( z < 2 \). The mass dependence of the cold-mode fractions also explains why the simulated mass function is most affected by hot-mode removal at masses of \( \sim 0.3-1 \times 10^{13} \, M_\odot \), since these are the galaxies that had the largest fractions of their total mass accreted through hot mode.

In Fig. 3, we also plot the median fraction of mass initially accreted in cold mode after the cold-mode accretion is removed from massive galaxies as described in Section 2.2. The residual cold drizzle contributes around 20 per cent to the galaxy mass, so removing it increases the ratio of hot to cold mode by around 20 per cent; since this ratio is itself small, this change raises the cold-mode contribution by several percentage points at most.

From Fig. 2, it is clear that bulk of the stellar mass in massive galaxies forms prior to \( z = 2 \), in much smaller objects whose formation is completely dominated by cold-mode accretion. The most massive progenitors of these galaxies at \( z > 2 \) contain typically only \( \sim 20-25 \) per cent of their present mass. These objects later merge...
to form even more massive galaxies. Since in high-redshift galaxies only a small fraction of the baryonic mass is gained through the cooling of hot halo gas, the removal of hot-mode accretion cannot significantly affect the masses of these galaxies. Therefore, any feedback mechanism that aims to lower the masses of the most massive galaxies must actually affect the masses of their lower mass, high-redshift progenitors as we discuss in Section 4.1.

3.3 Specific star formation rates

The final observable we shall consider is the current SFR of individual galaxies, which is most usefully presented relative to its mass as the SSFR. Quite frequently galaxy colour is used as a proxy for SSFR, although of course a galaxy’s colour depends on its current SFR, the previous star formation history and the amount of dust attenuation. Colour–magnitude plots incorporating observations of many thousands of galaxies have become commonplace, and the main features of these plots are by now familiar (e.g. Baldry et al. 2004): there is a red sequence of galaxies, mostly populated by massive, early types with low SSFRs, distinctly offset from a blue cloud of late type, lower mass galaxies with high SSFRs. While part of this division can be caused by dust attenuation, most of the differences are clearly caused by varying amounts of recent star formation. However, for comparison to the simulations, a plot of log(SSFR) versus galaxy stellar mass is more useful. Obtaining this requires modelling each observed galaxy’s spectral energy distribution to obtain transformations from magnitude to mass and from colours to log(SSFR); the latter transformation in particular is highly non-linear.

Just such a plot of the low-redshift galaxy population was recently obtained by Salim et al. (2007), using UV data from the Galaxy Evolution Explorer (GALEX) satellite (Martin et al. 2005) combined with ugriz photometric data from the SDSS (York et al. 2000). Their analysis builds upon and supersedes earlier optical-only work by Kauffmann et al. (2003) and Brinchmann et al. (2004). The authors consider a wide range of star formation histories for every observed galaxy and assign each a likelihood, leading to a two-dimensional probability distribution of SSFR and stellar mass for each individual galaxy (where the SSFR is averaged over the last 100 Myr). If one simply plots the mean value of this distribution for individual galaxies in the observed sample, it shows an obvious bimodality, as one can see in the left-hand panel of Fig. 4. The ‘blue cloud’ galaxies identified in a colour–magnitude diagram now correspond to a tight star-forming sequence in the upper part of the plot, partly because scatter caused by variations in metallicity and dust has been removed by the spectral energy distribution fitting. The tight ‘red sequence’ of the colour–magnitude diagram now corresponds to a low-SSFR sequence, broadened by the non-linear transformation between colour and log(SSFR), and there is a significant bridge population between the two sequences. (The relative prominence of the low-SSFR sequence in the left-hand panel of Fig. 4 is partly an artefact: there is a lower limit of SSFR $10^{-5}$ Gyr$^{-1}$ allowed in the models of SSFR history used in Salim et al. (2007) causing the mean log(SSFR) of individual low-SSFR galaxies to cluster around a value somewhat higher than this.)

A fairer representation of observed galaxies in this plot smears each individual galaxy over its full two-dimensional probability distribution in SSFRs and mass, and normalizes it by the effective survey volume at each mass, i.e. $V/V_{\text{max}}$. We show this result, which is the only one that should be compared with simulations, as the solid contours in the right-hand panels of Fig. 4. This figure is equivalent to the grey-scale image shown as the lower panel of fig. 15 in Salim et al. (2007). We generate the contours from a grid with a spacing of 0.05 in log(M) and 0.1 in log(SSFR), and plot contours encompassing 25, 50, 75 and 90 per cent of the maximum probability density (from darkest to lightest shading).

With these changes, the lower mass galaxies become more prominent, and the low-SSFR sequence smears out into a flat ledge covering a very wide range of SSFRs that extends downwards from the star-forming sequence – in contrast to the colour–magnitude diagram, one might now describe the features as a ‘blue sequence’ and a ‘red cloud’. The star-forming sequence persists as a tight SSFR versus galaxy mass relation at relatively high SSFRs, around 0.3 Gyr$^{-1}$ at stellar masses of $1-5 \times 10^{10} M_\odot$. SSFRs in this sequence decrease towards higher masses. The sequence dominates the number density over several orders of magnitude in galaxy mass, up to $10^{12} M_\odot$, although some galaxies have low SSFRs even at intermediate and lower galaxy masses. The tightness and weak

Figure 3. The fraction of galactic baryonic mass initially accreted through cold mode plotted as a function of galaxy mass at $z = 2$ and 0. The solid line plots the median fraction acquired through cold mode, and the dashed line shows the median cold-mode fraction after the removal of potentially spurious cold mode for massive galaxies (only at $z = 0$), in bins of 0.15 dex in mass.
dependence on mass of this relation were discussed extensively in the literature (e.g. Noeske et al. 2007).

In the same plot, we also show the properties of the simulated galaxies. As we discussed previously, the masses of the simulated galaxies are much higher than those of observed galaxies. Hence, even if the present SFR in a simulated galaxy were to correspond to the observed values, the SSFRs would be much lower than those observed. To avoid this problem, we correct the masses of the simulated galaxies using the correction factors $f_{\text{corr}}$ in Fig. 1, assuming that the mass rank order of the simulated galaxies is preserved. This is similar in spirit to halo and subhalo matching models that try to connect the observed properties of galaxies to the dark matter haloes and subhaloes from N-body simulations (e.g. Yang, Mo & van den Bosch 2003; Conroy, Wechsler & Kravtsov 2006; Vale & Ostriker 2006), except in our case we are connecting observed and simulated galaxies. Furthermore, to account for the different IMFs used in Bell et al. (2003), a diet Salpeter (1955) IMF, and that used in Salim et al. (2007), a Kroupa (2001) IMF, we lower these corrected masses by log $M = 0.15$.

We leave the SFRs of individual galaxies unchanged in this plot, so that the SSFRs increase by a factor of $f_{\text{corr}}^{-1}$. Our reasoning is that here we are essentially examining the SFRs as a function of halo mass, and the adjustment to the mass should just enable a fair comparison of galaxies residing in similar haloes. In K09, we showed that the SFRs of individual galaxies closely follow the smooth gas accretion rates. As we discuss in Section 4.1, if the mechanism that is responsible for producing the correct mass function is ejective feedback from SN-driven winds, it should not significantly affect the accretion of intergalactic gas at low redshift, when such feedback is inefficient, and hence it would also not likely affect the tight relation between gas accretion and star formation. Therefore, the long-term mass accumulation of galaxies (that we are trying to correct with the mass renormalization) should not affect the low-redshift SFRs. Since the simulated galaxies have exact values for both their SSFRs and their masses, to compare them with the observational data we add two-dimensional Gaussian uncertainties. We choose the mass uncertainties to have $\sigma_{\log M} = 0.07$ and the SSFR uncertainties to have $\sigma_{\log \text{SSFR}}$ linearly decreasing from 0.6 for the lowest SSFRs to 0.2 for the highest SSFRs, both in rough agreement with the errors present in Salim et al. (2007).

Most of the simulated galaxies also reside in a well-defined star-forming sequence with properties that are similar to the observed star-forming sequence. There is, however, a sizeable population of simulated galaxies with zero SSFR, which possibly corresponds to part of the observed red sequence. Owing to our limited mass and time resolution, the transition between zero SFR galaxies and star-forming galaxies suffers from discretization effects, with the lowest possible non-zero simulated SFR being around 0.02 $\text{M}_\odot \text{yr}^{-1}$. When we plot these zero SSFR simulated galaxies, we assign them a very low SSFR of $\sim 10^{-8} \text{Gyr}^{-1}$, before adding Gaussian uncertainties. While most of the observed red sequence galaxies reside at the high-mass end, most of the simulated zero SSFR galaxies reside at the low-mass end. Interestingly, the mass dependence and scatter of the simulated star-forming sequence at $z = 0$ are consistent with the observed trends. The median SSFRs of simulated galaxies at a given mass are very close to the observed sequence except around $10^{10} \text{M}_\odot$, where they are several tenths of a dex lower. However, as noted in Section 2, the current simulations do not include mass feedback from intermediate-mass stars. On average at least, this effect might boost the typical SFR by up to 0.3 dex, bringing the low-mass star-forming sequence back into agreement with the observed one, but if the same effect operates at high masses it would make their simulated SSFRs too high.

To quantify any differences in the way galaxies populate the high- and low-SSFR regions, approximately corresponding to ‘red’ and ‘blue’ galaxies, we determine the fraction of galaxies with SSFRs lower and higher than 0.01 $\text{Gyr}^{-1}$. We plot the fraction of low-SSFR galaxies in the lower-right panel of Fig. 4 for both observed (solid line) and simulated (dashed line) galaxies. The observed galaxy sample has about 20 per cent of its galaxies in the red sequence.

**Figure 4.** Left-hand panel shows the distribution of individual galaxy SSFRs as a function of their stellar mass in the sample of Salim et al. (2007). Individual values represent the mean of the probability density distribution for each galaxy. The upper-right panel shows contours encompassing the top 25, 50, 75 and 90 per cent (from darker to lighter grey) of the observed cumulative probability density distribution in the SSFR–galaxy mass plane weighted by the effective survey volume at each mass (solid contours). The simulated galaxies are also plotted (dashed contours). The lower-right panel plots the fraction of galaxies with SSFRs less than 0.01 $\text{Gyr}^{-1}$ versus mass for the observed sample (solid line) and the simulation (dashed line). The simulated masses are renormalized to match the observed galaxy SMF (see the text for details).
for $M_{\text{gal}} < 10^{10} M_{\odot}$. In the simulation, the fraction of low-SSFR galaxies is about 25–30 per cent, which is slightly higher than the observed fraction. However, the differences begin to increase towards higher masses and by around $10^{11} M_{\odot}$ about 60 per cent of the observed galaxies have very low SSFRs, while all but 15 per cent of the simulated galaxies reside on the star-forming sequence. The discrepancies get even larger at higher masses. This illustrates a generic problem that occurs for massive galaxies in simulations and SAMs without feedback: they form too many stars at late times and hence are too blue on average.

The differences between the simulated and observed galaxies in Fig. 4 thus show some different symptoms than those in the mass function plot (Fig. 1). At low masses, the current SFRs agree well with the observations, whereas the simulation masses are much higher. Alternatively, whereas the masses should be reduced at high redshift by ejective feedback from SN-driven winds, perhaps it should not significantly affect the gas supply and SFRs at low redshift when such feedback is inefficient (as we will discuss in Section 4.1). Starting at $\sim 10^{10} M_{\odot}$ where the simulated masses are in the best agreement, however, the fraction of star-forming galaxies starts to diverge strongly from the observed fractions, even though the actual SFRs of those galaxies still on the star-forming sequence are in reasonable agreement.

As we did with the mass function, to mimic an extreme version of preventive feedback in hot haloes, we completely remove all the hot-mode accretion and plot the resulting galactic properties in the left-hand panels of Fig. 5. We again renormalize the galaxy masses to match the observed mass function after the removal of the hot mode in the same way as in Fig. 4. This hot-mode removal does not change any of the properties at the low-mass end because these galaxies accrete their gas almost exclusively through cold-mode accretion. As we showed before, even the highest mass galaxies do not significantly change their masses when hot-mode accretion is removed, but they do significantly change their SSFRs. Up to masses of $M_* \sim 10^{11} M_{\odot}$, the average SSFRs of simulated galaxies change enough to be roughly consistent with the observed galaxies. However, if one looks more closely, this leaves too few galaxies to correspond to the observed star-forming sequence. Even at intermediate masses of around $10^{10} M_{\odot}$, the removal of the hot mode ruins the relatively good agreement between the observed and simulated star-forming sequence. Although the fraction of galaxies below our adopted ‘red sequence threshold’ is similar to the observed fraction, the typical SSFR of a star-forming galaxy is now a factor of 3–5 lower than those observed. Even if one were to include mass feedback from intermediate-mass stars as in Section 2, the SSFR would still be low by a factor of about 2. This suggests the need for a selective feedback mechanism, which only significantly affects star formation in a fraction of the galaxies at a given mass to preserve the star-forming sequence. Finally, at masses greater than $6\times 10^{10} M_{\odot}$ the discrepancies persist and are as large as when the hot mode is not removed.

In the right-hand panels of Fig. 5, we remove both the hot- and the cold-mode accretion in galaxies more massive than $10^{11} M_{\odot}$ (before the mass renormalization), i.e. the possibly spurious cold drizzle. We again renormalize the stellar masses of galaxies using the corrections from Fig. 1 to match the observed mass function. The SSFRs of the galaxies at the massive end are reduced even further and are more similar on average to the observed massive galaxies than when we only remove the hot-mode accretion. The rough agreement in the red fraction now extends up to galaxy masses of about $2 \times 10^{11} M_{\odot}$ with the more massive galaxies remaining discrepant. However, once again there are not enough galaxies on the star-forming sequence owing to the nature of our mock feedback that affects approximately all galaxies above a given mass (in the case of cold drizzle removal) and above a given halo mass (in the case of hot-mode removal). Again, the need for a more selective feedback mechanism is obvious from the observed SSFR distribution alone, as a significant fraction of galaxies even at the largest masses appear to be part of a normal star-forming sequence.

To summarize, removing all the hot-mode accretion and the potentially spurious cold-mode accretion from massive galaxies yields a fraction of simulated ‘red’ galaxies that is similar to but actually slightly higher than the observed sample around $10^{11} M_{\odot}$, suggesting that this recipe removes too much late-time accretion. Furthermore, this procedure moves all galaxies away from the star-forming sequence, and therefore is not supported by observations. However, the problem at the very massive end (above $2 \times 10^{11} M_{\odot}$) remains the same, where only a small fraction of the simulated galaxies have low enough SSFRs. The removal of hot-mode accretion and ‘cold drizzle’ significantly lowers their SSFRs, but they are still higher.

**Figure 5.** Same as the right-hand panel of Fig. 4, but the simulation results are computed after suppressing all hot-mode accretion (left-hand panel) or all hot-mode accretion and all ‘cold drizzle’ in massive ($M_* > 10^{11} M_{\odot}$) galaxies (right-hand panel).
than those observed. Therefore, preventive feedback mechanisms like radio mode AGN alone are probably not sufficient to make the most massive galaxies, those with $M_{\text{gal}} \gtrsim 2 \times 10^{11} M_{\odot}$, red enough. These massive galaxies are typically the central galaxy of a group or cluster, and their SSFRs remain too high because fresh gas for star formation arrives through minor mergers. Therefore, to keep the central galaxies red enough, an efficient feedback mechanism needs to lower the gas content of the satellite galaxies before they merge, or to prevent star formation from the gas that arrives with the satellites. Another possibility is that a fraction of the gas identified as coming from mergers actually comes from stripped galactic discs (similar to the ‘cold drizzle’) but which we cannot identify as such. Because of our limited time spacing between the simulation outputs (and possibly the numerically enhanced infall of such cold clumps), some of the gas stripped between two outputs can end up in the central galaxy of a massive halo by the next simulation output and, therefore, be identified as coming from merger.

4 DISCUSSION

4.1 Feedback and the galaxy mass function

Many authors emphasize the overabundance of massive galaxies and their lack of red colours in simulations and SAMs (e.g. K05; Bower et al. 2006; Croton et al. 2006; Cattaneo et al. 2007) and usually blame excessive gas cooling on to central galaxies in massive haloes, i.e. hot-mode accretion, for this failure. However, in K09 we demonstrated that many galaxies in massive haloes have almost stopped accreting gas from their hot virialized atmospheres and their masses are still a factor of $\sim 3$ too large compared to the observations, indicating that the problem of massive galaxy formation is more complex. Most of the material currently present in the most massive galaxies was originally acquired by smaller galaxies at very early times, as shown in Fig. 2, through cold-mode accretion, which dominates gas accretion in all galaxies at early times. The time by which a significant fraction of a current galaxy’s mass is already accreted into its progenitors is a strong function of galaxy mass. The most massive galaxies today have their mass accreted into their progenitors, and hence most of their stars form, before $z \sim 2$. Such a scenario is a natural consequence of hierarchical halo and galaxy formation, and this ‘downsizing’ effect is ubiquitous in both cosmological simulations (Dave 2006) and SAMs of galaxy formation (De Lucia & Blaizot 2007). This is the reason why preventive feedback alone, e.g. AGN activity, cannot significantly lower the masses of the most massive galaxies, contrary to the assumptions in some popular current models.

This finding also helps us to elucidate the nature of the feedback mechanism needed to fix the problems at the high-mass end in the simulated galaxy mass function. Feedback in low- and intermediate-mass objects that form at early times, which subsequently hierarchically merge to make the massive galaxies today, must be very efficient at high redshifts to reduce their masses before they transform that mass into stars. Since these galaxies gain most of their mass through cold-mode accretion, it is natural that it should be an ejective feedback mechanism like some form of galactic winds. Standard ejective feedback mechanisms have little or no effect on cold-mode accretion since the gas is already cold and has a high-momentum flux. However, since cold-mode-dominated haloes do not possess a hot halo of gas, the winds are free to leave the galaxy unimpeded as long as they have enough energy. In fact, many high-redshift galaxies show evidence of very strong, high-velocity outflows of gas (Shapley et al. 2003). Strong feedback in high-redshift galaxies could be the consequence of momentum-driven winds, which could operate in starburst galaxies (Murray et al. 2005). In this model, driving galactic outflows requires a very efficient starburst with a high SFR per unit surface area. At redshifts $z \geq 2$, almost all galaxies have sufficiently high SFRs to enable this efficient feedback mechanism (see the discussion in Oppenheimer & Davé 2006). To match the observed mass function, it is probably still necessary to have some preventive feedback, especially to prevent the re-accretion of the necessarily large amounts of ejected gas. Once a galaxy’s halo grows massive enough, it will gain a hot halo of gas that will impede the winds, quenching the feedback. This could lead to a natural upper mass cut-off to the ejective feedback mechanism at approximately the dividing mass between hot- and cold-mode haloes, $\sim 2-3 \times 10^{11} M_{\odot}$ (in reality this mass could be up to a factor of 3 higher in simulations with strong outflows and metal line cooling).

Another alternative is to somehow keep the high-redshift galaxies gas rich, with only a small fraction of their mass converted into stars, then remove the gas during some violent process occurring during galaxy mergers. However, this requires a significantly different star formation algorithm than we use in our simulations, which does not produce such gas-rich massive galaxies. Even then, it is not clear if quasar-driven winds or some other mechanism would be sufficient to remove enough of the gas before the progenitors merge into a massive galaxy and convert the gas into stars.

The largest differences between the observed and simulated mass functions occur at stellar masses around and below $10^{10} M_{\odot}$ (simulated mass). Obviously, the comparison of theoretical and observational SMFs highlights the need for very efficient feedback at the low-mass end, but it is far from clear what mechanism actually reduces the masses of these galaxies. It is possible that a mechanism similar to the starburst-driven winds that operate at high redshift, which is necessary to lower the mass function at the high-mass end, is also able to lower the $z = 0$ galaxy masses at the low-mass end. However, we demonstrated that most of these galaxies acquire a large fraction of their stellar mass at late times (after $z \sim 1.5$) and, therefore, such feedback needs to be active at late times. In general, feedback from SN-driven winds (Dekel & Silk 1986) is the most popular candidate and is often used in SAMs (Somerville & Primack 1999; Cole et al. 2000; Croton et al. 2006). Simple calculations indicate that such feedback should be effective in haloes with circular velocities up to $V_{\text{c}} \sim 100 \text{ km s}^{-1}$ (Dekel & Silk 1986), which is enough to significantly affect this problematic mass range. However, realistic hydrodynamic simulations show that such feedback has difficulty in significantly reducing galaxy masses in galaxies with $M_{\text{gal}} > 10^{9} M_{\odot}$ (Mac Low & Ferrara 1999; Ferrara & Tolstoy 2000), unless the SFRs are extremely high at high redshifts (Fujita et al. 2004). In some models, the winds exhibit a thresholding behaviour: for example, in the momentum-driven wind models discussed above the star formation rate surface density in most spiral galaxies at late times is not high enough to drive outflows at all after $z < 1.5$, except in a small number of starburst galaxies (see Martin 2005; Oppenheimer & Davé 2006 and references therein). Therefore, an additional efficient feedback mechanism appears necessary at the low-mass end that can affect galaxies forming at much later times. These findings place strong requirements on cosmological simulations that model galaxy formation. The smallest objects that are often poorly resolved need to be resolved in detail at all times to understand the way feedback mechanisms interact with the infalling and galactic gas.

UV background heating can affect the formation of galaxies that would form in haloes with $M_{h} \lesssim 0.5-1 \times 10^{11} M_{\odot}$ at $z = 0$, but
it is efficient for only much lower mass galaxies at higher redshifts (e.g. Quinn, Katz & Efstathiou 1996; Thoul & Weinberg 1996; Gnedin 2000; Hoefn 2006). Other alternatives include pre-heating by gravitational pancaking. In hierarchical galaxy formation models like $\Lambda$CDM, at low redshifts many intermediate mass haloes form in much more massive, flattened structures. In this pre-heating scenario, one assumes that the gas in these structures is shock-heated to $\sim 5 \times 10^7$ K, a temperature equivalent to the expected infall velocities on to these structures, thus preventing the gas from collapsing into haloes of lower virial temperature (Mo et al. 2005). However, some $N$-body simulations suggest that this scenario does not work in practice because haloes in the problematic mass range actually form in pancakes of much lower mass and, therefore, in regions with temperatures lower than previously thought (Crain et al. 2007).

The least likely possibility we consider is that a large fraction of the baryons in late-forming galaxies are locked in a gaseous component. If the observed gas fraction were substantially higher than in the simulations, this would lead to a very different SMF for galaxies with similar total mass. However, we checked this directly and found that our simulated baryonic mass function is no more discrepant with the observed baryonic mass function from Bell et al. (2003) than with the SMF. In addition, the observed mass functions of HI gas (Rosenberg & Schneider 2002; Zwaan et al. 2005) and of the molecular gas (Keres, Yun & Young 2003) show a smaller fraction of objects with gas masses comparable to the stellar masses in the most problematic mass range we analyse, $5 \times 10^9 \lesssim M \lesssim 5 \times 10^{10} M_\odot$, suggesting that stellar mass dominates a galaxy’s baryonic mass in this mass range. Only at lower masses does the gas begin to dominate the baryonic mass of galaxies (e.g. Geha et al. 2006), and hence begin to alleviate the differences between the observed and simulated SMFs. However, even if the baryons in these lower mass objects remained mostly gaseous, they would greatly overproduce the observed HI mass function (Mo et al. 2005).

4.2 Transforming the star-forming sequence into a ‘red sequence’

In the previous section, we showed that the observed and simulated star-forming sequence of galaxies share similar properties. However, the simulations are missing a large fraction of the passively evolving galaxies with very low SFRs, which dominate the massive end in the observations. Removing all the hot-mode accretion and the (potentially spurious) cold drizzle produces a larger population of passive galaxies, but it makes the fraction of star-forming galaxies too low, especially at intermediate masses. Reproducing the observations requires a mechanism that suppresses accretion in a fraction of galaxies but not in all galaxies, with the fraction itself increasing from intermediate to high masses. In addition, observed red sequence galaxies are preferentially early-type (morphologically) relative to galaxies on the star-forming sequence (e.g. Schiminovich et al. 2007) and suppressing accretion will not in itself change a galaxy’s morphology, though it can help preserve early types by preventing the regrowth of discs.

A promising candidate mechanism for moving galaxies to the red sequence is quasar and starburst-driven winds, occurring during the mergers of gas-rich galaxies (Di Matteo, Springel & Hernquist 2005; Springel, Di Matteo & Hernquist 2005). Using the halo occupation distribution and the evolution of a type-separated galaxy mass function, (Hopkins et al. 2008a,b) show that such a model, which assumes that star formation stops after the major mergers of gas-rich galaxies, can explain the buildup of the red sequence over time as well as the fraction of red galaxies as a function of galaxy mass. The transformation from the blue to the red sequence during these events is aided by several processes: the development of a shocked hot virialized medium that slows the cooling of gas, quasar mode AGN feedback from the growing black holes and starburst-driven winds, which all occur nearly simultaneously. The fraction of galaxies at a given mass that has undergone such a transition is an increasing fraction with increasing galaxy mass, a trend that is required to be consistent with the observations. This model requires that most galaxies do not return to a star-forming phase after the star formation initially stops, so a long-term preventive feedback mechanism is still necessary to prevent further gas accretion, perhaps ‘radio mode’ AGN feedback (Ciotti & Ostriker 2001; Sijacki & Springel 2006). Even the need for this ‘maintenance’ feedback could be avoided in a large fraction of massive haloes owing to the natural development of constant density cores that prevent cooling from the hot atmosphere, as we found in K09. However, if the accretion of cold gaseous clumps also occurs in massive haloes (i.e. if ‘cold drizzle’ is not a numerical artefact), then this maintenance feedback must also be able to prevent the bulk of this form of accretion. In addition, accounting for metal cooling can enhance the cooling in massive haloes where it can dominate at temperatures typical of halo gas. This could make the problem of preventing the accretion and re-accretion of gas in massive haloes even more severe.

Of course the major mergers of late-type galaxies have the additional advantage that they result in remnants with early-type morphologies (Toomre 1977; Di Matteo et al. 2005), as required for the majority of galaxies on the red sequence. Therefore, most red sequence galaxies in such models would undergo colour and morphological transformations as a consequence of the same astrophysical process. In addition, this violent feedback combination could contribute to a faster termination of the cold accretion mode in massive haloes, especially at low redshift. At high redshift, this might happen only in very massive haloes hosting massive galaxies
with modest gas fractions, because the high gas fraction of lower mass galaxies make merger-driven central gas flows and therefore starburst and quasar winds less efficient (Hopkins et al. 2009).

In conclusion, AGN radio mode feedback in very massive objects, mimicked by hot-mode removal, can dramatically lower the SSFRs of massive galaxies but it should not affect every object with hot-mode accretion and should have a galaxy mass dependence. The total removal of hot-mode accretion removes too much recent star formation. As a consequence, SAMs that completely remove this accretion in massive haloes must adopt a hot-mode suppression threshold mass, i.e. the mass above which hot mode is suppressed is higher than the mass where hot virialized haloes dominate (Cattaneo et al. 2006). However, this approach, without additional assumptions, might have difficulty matching the evolution of the red sequence over time, as shown by Hopkins et al. (2008b).

5 CONCLUSIONS

We describe some observational consequences of a cosmological SPH simulation of galaxy formation in a ΛCDM universe using GADGET-2. The simulation covers a wide dynamic range: it is able to resolve galaxies with masses larger than $\sim 5 \times 10^9 M_\odot$ and contains several cluster size haloes with masses $>10^{14} M_\odot$. The SPH algorithm used in GADGET-2 is not prone to numerical overcooling. However, the simulation does not incorporate strong feedback, and, like other simulations and analytic models with weak feedback, it predicts an excessive fraction of baryons in galaxies. Detailed analysis of the simulation (see K09) allows us to understand the physics of galaxy assembly in the absence of strong feedback, and the comparison to observations in this paper indicates what forms of feedback (ejective or preventive, dependence on redshift and galaxy mass) are needed to reconcile ΛCDM predictions with observed galaxy populations.

We compare the observed galaxy mass function with the simulation results and conclude that the simulations overproduce galaxies at all masses. The problem is most severe at the low- and high-mass ends. The removal of baryons that were accreted through hot mode, to mimic an extreme form of preventive feedback, only mildly lowers their mass, since the hot-mode contribution to the total baryonic mass in galaxies is modest. This form of feedback is not enough to bring the SMF of the simulated galaxies into agreement with the observations, even at the high-mass end. This failure owes to cosmic ‘downsizing’, where most of the massive galaxies have already formed most of their stellar mass in smaller objects at high redshift, and these smaller systems accreted their mass through cold-mode accretion.

These findings suggest that an extremely efficient feedback mechanism is necessary in high-redshift galaxies at low and intermediate masses to reduce their masses substantially. Then, owing to the hierarchical nature of massive galaxy buildup, this will significantly lower the masses of these massive galaxies at late times. A natural candidate for this feedback mechanism is starburst-driven winds, although our analysis does not directly constrain the exact nature of the feedback. However, since cold-mode-dominated galaxies must predominantly be affected, it must be some form of ejective feedback. Once the galaxy halo gains enough in mass to become hot-mode accretion-dominated and develops a hot atmosphere, this ejective feedback will be naturally quenched. At low redshifts, an additional feedback mechanism is necessary to reduce the masses of low-mass galaxies. This feedback mechanism must have the property that it substantially reduces the galaxy masses but retains similar SFRs in low- and intermediate-mass star-forming galaxies today.

We demonstrate that most of the simulated galaxies are part of the star-forming sequence whose properties are similar to the observed star-forming sequence. However, while this sequence contains only a small fraction of observed galaxies at high masses, we show that a large fraction of simulated massive galaxies are still part of this star-forming sequence at $z = 0$. Therefore, these massive galaxies have SSFRs that are too high on average, caused by a small amount of residual hot-mode accretion, by potentially numerically induced and hence potentially spurious cold-mode accretion, and by merging with gas-rich smaller objects in massive haloes. The removal of the hot-mode accretion which mimics extreme preventive feedback in hot haloes, like an extreme form of radio mode AGN, is enough to make the massive galaxies red enough on average. Such extreme feedback, however, should be selective since the removal of all the hot-mode accretion from all galaxies ruins the agreement with the observed star-forming sequence. This suggests that the feedback in haloes with $M_h > 10^{12} M_\odot$ should affect around half of galaxies with intermediate masses, e.g. Milky Way mass haloes, but should affect most of the galaxies in group and cluster size haloes. This could be accomplished through feedback that occurs during the gas-rich major mergers of galaxies, especially if such mergers occur in hot virialized haloes.

ACKNOWLEDGMENTS

We are grateful to Samir Salim for sharing with us stellar masses and SSFRs from his paper and for useful comments. DK acknowledges the support of the ITC fellowship at the Harvard College Observatory. We also acknowledge support from NSF grant AST-0205969 and from NASA grants NAGS-13308 and NNG04GK68G.

REFERENCES

Agertz O. et al., 2007, MNRAS, 380, 963
Baldry I. K., Glazebrook K., Brinkmann J., Ivezić Ž., Lupton R. H., Nichol R. C., Szalay A. S., 2004, ApJ, 600, 681
Barnes J., Hut P., 1986, Nat, 324, 446
Bell E. F., de Jong R. S., 2001, ApJ, 550, 212
Bell E. F., McIntosh D. H., Katz N., Weinberg M. D., 2003, ApJS, 149, 289
Birnboim Y., Dekel A., 2003, MNRAS, 345, 349
Bower R. G., Benson A. J., Malbon R., Helly J. C., Frenk C. S., Baugh C. M., Cole S., Lacey C. G., 2006, MNRAS, 370, 645
Brinchmann J., Charlot S., White S. D. M., Tremonti C., Kauffmann G., Heckman T., Brinkmann J., 2004, MNRAS, 351, 1151
Cattaneo A., Dekel A., Devriendt J., Guiderdoni B., Blaizot J., 2006, MNRAS, 370, 1651
Cattaneo A. et al., 2007, MNRAS, 377, 63
Cioffi D., Ostriker J. P., 2001, ApJ, 551, 131
Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
Conroy C., Wechsler R. H., Kravtsov A. V., 2006, ApJ, 647, 201
Crain R. A., Eke V. R., Frenk C. S., Jenkins A., McCarthy I. G., Navarro J. F., Pearce F. R., 2007, MNRAS, 377, 41
Croton D. J. et al., 2006, MNRAS, 365, 11
Dave R., 2006, in Le Brun V., Mazure A., Arnouts S., Burgarella D., eds, The Fabulous Destiny of Galaxies: Bridging Past and Present REVIEW – Building Galaxies with Simulations. Frontier Group, Paris, p. 219
Davé R., Oppenheimer B. D., Sivanandam S., 2008, MNRAS, 391, 110
Dekel A., Birnboim Y., 2006, MNRAS, 368, 251
Dekel A., Silk J., 1986, ApJ, 303, 39
De Lucia G., Blaizot J., 2007, MNRAS, 375, 2
Di Matteo T., Springel V., Hernquist L., 2005, Nat, 433, 604
Ferrara A., Tolstoy E., 2000, MNRAS, 313, 291

© 2009 The Authors. Journal compilation © 2009 RAS, MNRAS 396, 2332–2344

Downloaded from https://academic.oup.com/mnras/article-abstract/396/4/2332/1030564 on 29 July 2018
2344  D. Kereš et al.

Fujita A., Mac Low M.-M., Ferrara A., Meiksin A., 2004, ApJ, 613, 159

Gallazzi A., Brinchmann J., Charlot S., White S. D. M., 2008, MNRAS, 383, 1439

Geha M., Blanton M. R., Masjedi M., West A. A., 2006, ApJ, 653, 240

Gingold R. A., Monaghan J. J., 1977, MNRAS, 181, 375

Gnedin N. Y., 2000, ApJ, 542, 535

Gonzalez A. H., Zaritsky D., Zabludoff A. I., 2007, ApJ, 666, 147

Hartnett P., Madau P., 2001, in Neumann D. M., Tran J. T. V., eds, Modelling the UV/X-ray Cosmic Background with CUBA (astro-ph/0106018)

Hernquist L., 1987, ApJS, 64, 715

Hockney R. W., Eastwood J. W., 1981, Computer Simulation Using Particles. McGraw-Hill, New York

Hoef t M., Yepes G., Gottlöffel S., Springel V., 2006, MNRAS, 371, 401

Hopkins P. F., Hernquist L., Cox T. J., Kereš D., 2008a, ApJS, 175, 356

Hopkins P. F., Cox T. J., Kereš D., Hernquist L., 2008b, ApJS, 175, 390

Hopkins P. F., Cox T. J., Younger J. D., Hernquist L., 2009, ApJ, 691, 1168

Katz N., 1992, ApJ, 391, 502

Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19

Katz N., Keres D., Dave R., Weinberg D. H., 2003, in Rosenberg J. L., Putman M. E., eds, ASSL Vol. 281, The IGM/Galaxy Connection. Kluwer, Dordrecht, p. 185

Kauffmann G. et al., 2003, MNRAS, 341, 54

Kennicutt R. C., Jr, 1998, ApJ, 498, 541

Keres D., 2007, PhD thesis, Univ. Massachusetts

Keres D., Yun M. S., Young J. S., 2003, ApJ, 582, 659

Kereš D., Katz N., Weinberg D. H., Davé R., 2005, MNRAS, 363, 2 (K05)

Kereš D., Katz N., Fardal M., Davé R., Weinberg D. H., 2009, MNRAS, 395, 1160 (K09)

Kroupa P., 2001, MNRAS, 322, 231

Lucy L. B., 1977, AJ, 82, 1013

McKee C. F., Ostriker J. P., 1977, ApJ, 218, 148

Mac Low M.-M., Ferrara A., 1999, ApJ, 513, 142

Martin C. L., 2005, ApJ, 621, 227

Martin D. C. et al., 2005, ApJ, 619, L1

Mo H. J., Yang X., van den Bosch F. C., Katz N., 2005, MNRAS, 363, 1155

Murray N., Quataert E., Thompson T. A., 2005, ApJ, 618, 569

Neistein E., van den Bosch F. C., Dekel A., 2006, MNRAS, 372, 933

Noeske K. G. et al., 2007, ApJ, 660, L43

Ocvirk P., Pichon C., Teyssier R., 2008, MNRAS, 390, 1326

Oppenheimer B. D., Davé R., 2006, MNRAS, 373, 1265

Oppenheimer B. D., Davé R., 2008, MNRAS, 387, 577

Panter B., Jimenez R., Heavens A. F., Charlot S., 2007, MNRAS, 378, 1550

Pearce F. R., Jenkins A., Frenk C. S., White S. D. M., Thomas P. A., Couchman H. M. P., Peacock J. A., Efstathiou G., 2001, MNRAS, 326, 649

Quinn T., Katz N., Efstathiou G., 1996, MNRAS, 278, L49

Rees M. J., Ostriker J. P., 1977, MNRAS, 179, 741

Rosenberg J. L., Schneider S. E., 2002, ApJ, 567, 247

Salim S. et al., 2007, ApJS, 173, 267

Salpeter E. E., 1955, ApJ, 121, 161

Schiminovich D. et al., 2007, ApJS, 173, 315

Schmidt M., 1959, ApJ, 129, 243

Shapley A. E., Steidel C. C., Pettini M., Adelberger K. L., 2003, ApJ, 588, 65

Sijacki D., Springel V., 2006, MNRAS, 366, 397

Skrutskie M. F. et al., 2006, AJ, 131, 1163

Somerville R. S., Primack J. R., 1999, MNRAS, 310, 1087

Somerville R. S., Hopkins P. F., Cox T. J., Robertson B. E., Hernquist L., 2008, MNRAS, 391, 481

Spergel D. N. et al., 2007, ApJS, 170, 377

Springel V., 2005, MNRAS, 364, 1105

Springel V., Hernquist L., 2002, MNRAS, 333, 649

Springel V., Hernquist L., 2003, MNRAS, 339, 289

Springel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776

Thoul A. A., Weinberg D. H., 1996, ApJ, 465, 608

Tittley E. R., Pearce F. R., Couchman H. M. P., 2001, ApJ, 561, 69

Toomre A., 1977, in Tinsley B. M., Larson R. B., eds, Evolution of Galaxies and Stellar Populations. Yale Univ. Observatory, New Haven, p. 401

Vale A., Ostriker J. P., 2006, MNRAS, 371, 1173

Weinberg D. H., Hernquist L., Katz N., 1997, ApJ, 477, 8

White S. D. M., Frenk C. S., 1991, ApJ, 379, 52

White S. D. M., Rees M. J., 1978, MNRAS, 183, 341

Yang X., Mo H. J., van den Bosch F. C., 2003, MNRAS, 339, 1057

York D. G. et al., 2000, AJ, 120, 1579

Zwaan M. A., Meyer M. J., Staveley-Smith L., Webster R. L., 2005, MNRAS, 359, L30

This paper has been typeset from a TEX/LATEX file prepared by the author.