Vitamin D up-regulates the vitamin D receptor by protecting it from proteasomal degradation in human CD4+ T cells

Kongsbak, Martin; von Essen, Marina R; Boding, Lasse; Levring, Trine B; Schjerling, Peter; Lauritsen, Jens P H; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte M; Geisler, Carsten

Published in:
PLOS ONE

DOI:
10.1371/journal.pone.0096695

Publication date:
2014

Document version
Early version, also known as pre-print

Citation for published version (APA):
Kongsbak, M., von Essen, M. R., Boding, L., Levring, T. B., Schjerling, P., Lauritsen, J. P. H., Woetmann, A., Ødum, N., Bonefeld, C. M., & Geisler, C. (2014). Vitamin D up-regulates the vitamin D receptor by protecting it from proteasomal degradation in human CD4+ T cells. PLOS ONE, 9(5), 1-12. [e96695]. https://doi.org/10.1371/journal.pone.0096695
Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation in Human CD4+ T Cells

Martin Kongsbæk1, Marina R. von Essen1, Lasse Boding1, Trine B. Levring1, Peter Schjerling2, Jens P. H. Lauritsen1, Anders Woetmann1, Niels Ødum1, Charlotte M. Bonefeld1, Carsten Geisler1*

1 Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 2 Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

The active form of vitamin D3, 1,25(OH)2D3, has significant immunomodulatory properties and is an important determinant in the differentiation of CD4+ effector T cells. The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) and are believed to correlate with the VDR protein expression level in a given cell. The aim of this study was to determine if and how 1,25(OH)2D3 by itself regulates VDR expression in human CD4+ T cells. We found that activated CD4+ T cells have the capacity to convert the inactive 25(OH)D3 to the active 1,25(OH)2D3 that subsequently up-regulates VDR protein expression approximately 2-fold. 1,25(OH)2D3 does not increase VDR mRNA expression but increases the half-life of the VDR protein in activated CD4+ T cells. Furthermore, 1,25(OH)2D3 induces a significant intracellular redistribution of the VDR. We show that 1,25(OH)2D3 stabilizes the VDR by protecting it from proteasomal degradation. Finally, we demonstrate that proteasome inhibition leads to up-regulation of VDR protein expression and increases 1,25(OH)2D3-induced gene activation. In conclusion, our study shows that activated CD4+ T cells can produce 1,25(OH)2D3 and that 1,25(OH)2D3 induces a 2-fold up-regulation of the VDR protein expression in activated CD4+ T cells by protecting the VDR against proteasomal degradation.

Introduction

In addition to its fundamental activity to maintain calcium and phosphorus homeostasis, the active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), has important immunomodulatory properties [1]. Epidemiological studies have shown that vitamin D deficiency is associated with higher risk of infections such as tuberculosis [2] and with increased risk of autoimmune diseases such as type 1 diabetes mellitus [3] and multiple sclerosis [4,5]. Data from animal studies support a potential protective effect of vitamin D in autoimmune diseases [6–9], and the efficacy of high-dose vitamin D supplementation in patients with autoimmune diseases or infections is being tested in clinical trials [10,11].

The biological actions of 1,25(OH)2D3 are mediated by the vitamin D receptor (VDR) that belongs to the nuclear hormone receptor superfamily [12,13]. Interaction of 1,25(OH)2D3 with VDR induces heterodimerization with the retinoid X receptor (RXR) and translocation of 1,25(OH)2D3-VDR/RXR complexes into the nucleus [8,14–17]. The 1,25(OH)2D3-VDR/RXR complexes bind to specific DNA sequences called vitamin D response elements (VDRE) in target genes, and dependent on the recruited co-regulators either augment or inhibit transcription of the target gene [17–19].

Responses to 1,25(OH)2D3 correlate with the VDR protein expression level in a given cell [20–22]. VDR expression varies with cell type and cellular differentiation, and is modulated by numerous stimuli including steroid and protein hormones, retinoids and growth factors such as epidermal growth factor, insulin and insulin-like growth factor [9,23]. Furthermore, in some cell types VDR expression is modulated by the presence of its own ligand 1,25(OH)2D3. This type of receptor regulation has in some previous studies been called homologous regulation or auto-regulation. The typical response to 1,25(OH)2D3 is up-regulation of VDR expression. This can be caused by increased VDR gene transcription, concordant with the presence of VDRE in the VDR gene [24–29] and/or by stabilization of the VDR [22,26,30–35].

Naïve CD4+ T cells have the potential to differentiate into different types of effector cells that determine the nature of the immune response [36,37]. One important determinant in the differentiation of CD4+ effector T cells is vitamin D. Thus, 1,25(OH)2D3 inhibits production of IFN-γ and augment the production of IL-4, thereby restraining Th1 differentiation and promoting Th2 differentiation, and furthermore, 1,25(OH)2D3...
inhibits Th17 differentiation and induces differentiation of Treg [38–46]. Whether 1,25(OH)2D3 mediates its effect directly on CD4+ T cells or indirectly via APC or maybe by a combination of the two is still debated. If 1,25(OH)2D3 should have a direct effect of CD4+ T cells they must express the VDR. However, contradictory results have been reported concerning the expression of the VDR in human T cells. Most studies find that unstimulated T cells do not express the VDR, but that they start to express the VDR following activation with either lectins, antibodies against the T cell receptor (TCR), or phorbol esters in combination with ionomycin [47–56]. In contrast, some studies find that unstimulated T cells do express the VDR [57,58]. These opposing results might be explained by the different subpopulations of leucocytes studied and the different methods for detection of the VDR applied. Only few studies have analyzed VDR expression in purified human CD4+ T cells and even here contradictory results have been reported. Thus, some studies find that unstimulated CD4+ T cells do not express the VDR but starts to express it following activation [49,54], whereas other studies report that unstimulated CD4+ T cells do express the VDR [57].

Two studies have indicated that activation-induced VDR expression is augmented by 1,25(OH)2D3 in PBMC and T cells, respectively [52,55]. In contrast, another study on purified CD4+ T cells found that unstimulated CD4+ T cells already express the VDR, and that neither activation nor 1,25(OH)2D3 induced up-regulation of the VDR, but that the combination did [57]. Thus, whether and how 1,25(OH)2D3 regulates VDR protein expression in CD4+ T cells remains to be determined.

As the VDR protein expression level is key for the cellular sensitivity to 1,25(OH)2D3, and 1,25(OH)2D3 influences the differentiation of CD4+ effector T cells, the aim of this study was to determine whether 1,25(OH)2D3 regulates VDR protein expression in human CD4+ T cells, and, if so, to elucidate the mechanisms behind this type of VDR regulation.

Materials and Methods

Chemicals and antibodies

25(OH)D3 (BML-DM-100-0001) and 1,25(OH)2D3 (BML-DM200-0050) were from Enzo Life Sciences, Inc., Ann Arbor, MI. Stock solutions of 2.5 mM 25(OH)D3 and 2.4 mM 1,25(OH)2D3 were prepared in anhydrous (≥99.5%) ethanol and stored at −80°C. To determine 1,25(OH)2D3 in the supernatants we used the 1,25-Dihydroxy Vitamin D EIA kit (AC-62F1) from IDS, Tyne and Wear, UK according to the manufacturer’s instructions. Antibodies used included anti-VDR (D-6) and anti-CD3ξ (6B10.2) from Santa Cruz Biotechnology, Santa Cruz, CA, anti-p53 (9282) from Cell Signaling Technology, Danvers, MA, anti-GAPDH from (ab9485) from Abcam, Cambridge, MA and HRP-rabbit anti-mouse Ig (P0260) from DAKO, Glostrup, Denmark. Cycloheximide ready made solution 100 mg/ml in DMSO (C4859), phorbol 12-myristate 13-acetate (PMA, P6139), ionomycin (10634), monensin (M5273), leptomycin B (LMB) (L2913) and ketoconazole (K1003) were from Sigma-Aldrich, St. Louis, MO. A fresh solution of ketoconazole 20 mg/ml in anhydrous ethanol was prepared before each experiment. The proteasome inhibitors lactacyclin (426100) and MG-132 (474788) were from Merck Millipore, Nottingham, UK.

Ethics statement, cell culture and T cell polarization

Mononuclear cells from blood were isolated by Lymphoprep (Axis-Shield, Oslo, Norway) density gradient centrifugation from healthy donors after obtaining informed, written consent in accordance with the Declarations of Helsinki principles for research involving human objects. The study was approved by The Committees of Biomedical Research Ethics for the Capital Region in Denmark (H-3-2009-132). Naive CD4+ T cells were isolated using EasySep Human Naive CD4+ T Cell Enrichment Kit (19153, Stemcell Technologies, Grenoble, France). The resulting cell population contained 55–90% CD4+ T cells of which more than 96% were CD45RA+. The purified naive CD4+ T cells were cultured in serum-free X-VIVO 15 medium (1041, Lonza, Verviers, Belgium) at 37°C, 5% CO2 at a cell concentration of 1×106 cells/ml in flat-bottomed 24-well tissue culture plates (142475) from Nunc, and stimulated with Dynabeads Human T-Activator CD3/CD28 beads (11131D, Life Technologies, Grand Island, NY) at a cell to bead ratio of 3:1 for 3 days. Cells present in the culture after 3 days were defined as activated T cells. In some experiments 25(OH)D3 or 1,25(OH)2D3 was added to the medium during the stimulation period. In polarization studies purified naive CD4+ T cells were cultured and stimulated as described above in the presence of recombinant human IL-12 (5 ng/ml, 219-IL, R&D Systems) plus human IL-4 antibody (1 µg/ml, MAB204, R&D Systems) for Th1 polarization; in the presence of recombinant human IL-4 (10 ng/ml, 200-04, Peprotech) plus human IFN-γ antibody (1 µg/ml, MAB285, R&D Systems) for Th2 polarization and in recombinant human IL-1β (10 ng/ml, 201-LB, R&D Systems), recombinant human IL-6 (20 ng/ml, 206-IL, R&D Systems), recombinant human IL-23 (10 ng/ml, 1290-IL, R&D Systems) and recombinant human TGF-β1 (5 ng/ml, 240-B, R&D Systems) plus human IFN-γ antibody (1 µg/ml) and human IL-4 antibody (1 µg/ml) for Th17 polarization.

Flow cytometry

After three days of stimulation the CD3/CD28 beads were removed from the cells, and the cells were re-stimulated with PMA (50 ng/ml) and ionomycin (500 ng/ml) in the presence of monensin (3 µM) as previously described [59]. The cells were then stained with PerCP/Cy5.5 anti-human CD4 (317428, BioLegend), fixed and permeabilized with BD Cytofix/Cytoperm followd by BD Perm/Wash according to the manufacturer instructions, and finally stained intracellularly with FITC mouse anti-human IFN-γ (554551, BD Pharmingen), anti-human IL-17A APC (17–7179, eBioscience), FITC Rat Anti-Human IL-4 (554484, BD Pharmingen) or PE anti-human IL-13 (501903, BioLegend). Data were acquired on a FACSCalibur (BD, Bromby, Denmark) and subsequently analyzed using FlowJo software.

Western blot and regression analyses

For Western blot analysis, whole cell lysates were obtained by treatment of the cells with lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM MgCl2) supplemented with 1% Triton X-100, 1× Protease inhibitor cocktail (P8340, Sigma-Aldrich) and 5 mM EDTA. The samples were run under reducing conditions on 10% polyacrylamide gels for 2 hours at 100 volt in 1× NuPAGE MOPS SDS Running buffer (XCell SureLock Mini-Cell Module, Life Technologies). For specific detection of proteins in the cytoplasmic and the nuclear fractions the NE-PER nuclear and cytoplasmic extraction reagents were used according to the manufacturer (78833, Thermo Fisher Scientific Inc., IL). An equal number of cells per lane were used for Western blot analysis regardless whether naive or activated T cells were studied. The proteins were transferred to nitrocellulose membrane sheets (Amersham Bioscience) in 1× NuPAGE Transfer buffer supplemented with 10% methanol for 60 min at 40 volt (XCell II Blot Module, Life Technologies). The membranes were subsequently blocked for 60 min in Tris-buffered saline supplemented with 5%
milk powder (Blotting Grade Blocker Non Fat Dry Milk, Bio-Rad) and 0.1% Tween 20 (P1379, Sigma-Aldrich) and incubated at 4 °C for 24 hours with primary antibodies diluted in Tris-buffered saline supplemented with 5% bovine serum albumin (A4503, Sigma-Aldrich) and 0.1% Tween 20. The membranes were washed, and the proteins visualized following 60 min incubation at room temperature with secondary HRP-rabbit anti-mouse Ig using ECL (Amersham Biosciences) technology. The anti-VDR antibody recognized the VDR with an approximate m.w. of 50 kDa [54], anti-p53 recognized p53 with an approximate m.w. of 53 kDa, anti-GAPDH recognized GAPDH with an approximate m.w. of 40 kDa, and anti-CD3 recognized CD3 with an approximately m.w. of 16 kDa under reducing conditions [60].

For band density quantification ECL exposed sheets were analyzed in a ChemiDoc MP Imaging System from Bio-Rad. To determine the half-life, \(t_{1/2} \), of the VDR, cells activated in the absence or presence of 25(OH)\(_2\)D\(_3\) for 3 days were subsequently treated with the protein synthesis inhibitor cycloheximide for 0–4 hours, and the VDR protein expression levels determined by Western blot. The density of the bands were quantified and normalized to the density of the band of 25(OH)\(_2\)D\(_3\)-treated cells at time zero. Exponential regression analysis on the mean relative band density from 3 independent experiments were performed by use of Microsoft Excel and defined as \(D(t) = D(0) e^{-k t} \), where \(D(t) \) is the density at time \(t \), \(D(0) \) is the initial density, i.e. the density at time \(t = 0 \), and \(k \) is the decay constant. The half-life was determined as \(t_{1/2} = \ln(2)/k \) and the mean VDR lifetime as \(1/k \). To determine the increase in VDR protein expression following treatment of the cells with proteasome inhibitors, the bands were quantified and normalized to the density of the bands at time zero. Linear regression analysis on the mean relative band density from 3 independent experiments were performed by use of Microsoft Excel and defined as \(D(t) = at + D(0) \), where \(D(0) \) is the density at time \(t = 0 \), and \(a \) is the coefficient of inclination.

Real-time RT-PCR

mRNA for VDR and CYP24A1 were measured by real-time RT-PCR. For this, 2–5×10\(^6\) CD\(^4^+\) T cells were lysed in TriReagent (Molecular Research Center) and 1-bromo-3-chloro-propane (BCP) added to separate the sample into an aqueous and an organic phase. The RNA was precipitated from the aqueous phase using isopropanol, washed with ethanol and dissolved in RNase free water. Synthesis of complementary DNA (cDNA) was performed using 500 ng total RNA and Omniscript reverse transcriptase (Qiagen) in a total of 20 \(\mu \)l cDNA was diluted 1:10 in TE/salmon DNA buffer (10 mM Tris pH 8.0, 1 mM EDTA, 1 \(\mu \)g/ml Salmon testes DNA, D7636, Sigma-Aldrich), and 5 \(\mu \)l diluted cDNA (12.5 ng RNA) subsequently amplified (25 \(\mu \)l) in Quantitect SYBR Green Master Mix (Qiagen) with specific primers (100 nM) on a Stratagene MX3005P real-time PCR machine (Agilent Technologies). The thermal profile was set to 95 °C for 10 min, followed by 50 cycles of amplification: 95 °C for 15 s, 58 °C for 30 s, 63 °C for 90 s. Signal intensity was measured at the 63 °C step and the threshold cycle (C\(_t\)) values were related to a standard curve made with known concentrations of DNA oligos (Ultramer oligos, Integrated DNA technologies, Leuven, Belgium) diluted in TE/salmon DNA buffer. After amplification reactions ran at 95 °C for 60 s, 55 °C for 30 s and heating slowly to 95 °C to confirm specificity of the PCR products by melting curve analysis. Primers used for RT-PCR (sense/antisense primer) were:

VDR (CAGGGCCCAACTTCCAGACACACT/ATCCAGATTGGAGAAGGCTTGGA)

CYP24A1 (CCACGGGCAGAAGATTGGAGG/TTGTCAGAGTTGAGAATGGGT).

The data were normalized to number of cells by calculation from the total RNA yield per cell in each sample (the raw data represents number of target cDNA molecules measured per 12.5 ng total RNA).

Statistical analysis

Statistical analyses were performed using Student’s t test with a 5% significance level, paired observations and equal variance.

Results

Activated human CD4\(^+\) T cells produce 1,25(OH)\(_2\)D\(_3\) and up-regulates VDR protein expression in the presence of 25(OH)\(_3\)D\(_3\)

25-hydroxyvitamin D\(_3\) (25(OH)\(_3\)D\(_3\)) is the inactive precursor of the active form of vitamin D3, 1,25(OH)\(_2\)D\(_3\), and is considered the most reliable parameter when determining the vitamin D status of a subject. The normal range for serum concentrations of 25(OH)\(_3\)D\(_3\) is 25–170 nM, whereas the range for serum concentrations of 1,25(OH)\(_2\)D\(_3\) is 60–110 pM, approximately 1000-fold lower than 25(OH)\(_3\)D\(_3\) [61]. It has been reported that T cells, especially following activation, express the 25(OH)\(_3\)D\(_3\) 12\(\alpha\)-hydroxylase CYP27B1 that converts the inactive 25(OH)\(_3\)D\(_3\) to the active 1,25(OH)\(_2\)D\(_3\); however, whether T cells can convert 25(OH)\(_3\)D\(_3\) to 1,25(OH)\(_2\)D\(_3\) in physiological relevant concentrations is a matter of debate [55,62]. To study whether 25(OH)\(_3\)D\(_3\) in physiological concentrations affects VDR expression, we first analyzed whether T cells actually had the ability to produce 1,25(OH)\(_2\)D\(_3\) from 25(OH)\(_3\)D\(_3\) in our experimental setup. We purified naive CD4\(^+\) T cells and either left them unstimulated or stimulated them with CD3/CD28 beads in the presence of increasing concentrations of 25(OH)\(_3\)D\(_3\). After 3 days we measured the concentration of 1,25(OH)\(_2\)D\(_3\) in the supernatants. Activated T cells clearly had the ability to convert 25(OH)\(_3\)D\(_3\) to 1,25(OH)\(_2\)D\(_3\) and produced significant amounts of 1,25(OH)\(_2\)D\(_3\) compared to unstimulated T cells (Fig. 1A). In cell free control samples with 25(OH)\(_3\)D\(_3\) but without T cells, 1,25(OH)\(_2\)D\(_3\) could not be detected (Fig. 1A). These results demonstrate that activated human CD4\(^+\) T cells have the capacity to produce 1,25(OH)\(_2\)D\(_3\) from 25(OH)\(_3\)D\(_3\). To study how 1,25(OH)\(_2\)D\(_3\) affects VDR expression, we first analyzed whether T cells actually had the ability to produce 1,25(OH)\(_2\)D\(_3\) from 25(OH)\(_3\)D\(_3\) in the supernatants. Activated T cells clearly had the ability to convert 25(OH)\(_3\)D\(_3\) to 1,25(OH)\(_2\)D\(_3\) and produced significant amounts of 1,25(OH)\(_2\)D\(_3\) from 25(OH)\(_3\)D\(_3\) in parallel with the 1,25(OH)\(_2\)D\(_3\) production (Fig. 1A–C). Compared to T cells activated in the absence of 25(OH)\(_3\)D\(_3\), VDR protein expression was increased 2.0–2.3 fold in T cells activated in the presence of physiological concentrations of 25(OH)\(_3\)D\(_3\). As 25(OH)\(_3\)D\(_3\) (Fig. 1B and data not shown).

These data demonstrated that T cell activation leads to VDR expression, and that presence of the VDR ligand further up-regulates VDR protein expression in activated T cells. To determine whether the 25(OH)\(_3\)D\(_3\)-induced VDR up-regulation was caused by increased VDR gene transcription, we measured VDR mRNA expression by real-time RT-PCR in naive T cells and in T cells activated in the absence or presence of 25(OH)\(_3\)D\(_3\). In accordance with the results obtained by the Western blot analyses, we found that naive T cells express no or very low levels.
of mRNA for VDR, and that T cell activation strongly induced VDR gene transcription (Fig. 1D). However, addition of 25(OH)D₃ did not significantly increase VDR mRNA expression in activated T cells (Fig. 1D). As control, we determined whether addition of 25(OH)D₃ had any effect on classical 1,25(OH)₂D₃-responsive genes by measuring CYP24A1 mRNA in parallel with VDR mRNA. In contrast to the VDR mRNA, addition of 25(OH)D₃ during T cell activation resulted in a massive up-regulation of CYP24A1 mRNA (Fig. 1D & E). From these experiments we could conclude that whereas 1,25(OH)₂D₃-
responsive genes is strongly up-regulated in CD4^+ T cells activated in the presence of 25(OH)D_3. VDR gene transcription is not affected by the presence of 25(OH)D_3 in CD4^+ T cells.

Finally, to study whether polarization of activated CD4^+ T cells towards the Th1, Th2 or Th17 lineage affected VDR expression we activated naive CD4^+ T cells with CD3/CD28 beads in the presence of IL-12 plus anti-IL-4 for Th1 polarization, IL-4 plus anti-IFN-γ for Th2 polarization and IL-1β, IL-6, IL-23 and TGF-β1 plus anti-IFN-γ and anti-IL-4 for Th17 polarization. As control, naive T cells were activated in the absence of cytokines or anti-cytokines antibodies. In this experiment these control cells were termed Th0 cells. After 3 days of activation we determined VDR protein expression by Western blot analysis. We found that ketoconazole efficiently inhibited the levels. We found that ketoconazole inhibited 1,25(OH)_{2}D_{3} efficiently inhibited the up-regulation of the VDR protein in the supernatants and the intracellular VDR protein expression bands gave the equations $D(t) = 0.37e^{0.24t}$ with $R^2 = 0.90$ for T cells activated in the absence of ketoconazole, $D(t) = 0.37e^{0.41t}$ with $R^2 = 0.88$ and $D(t) = 0.37e^{0.24t}$ with $R^2 = 0.90$ for T cells activated in the presence of the indicated concentrations of ketoconazole, 25(OH)D_3 (100 nM) and 1,25(OH)_{2}D_{3} (10 nM).

1,25(OH)_{2}D_{3} increases the half-life of the VDR

The above data indicated that 1,25(OH)_{2}D_{3} mainly mediates VDR up-regulation by stabilization of the VDR. To directly determine how 1,25(OH)_{2}D_{3} affects the half-life of the VDR, we activated T cells in the absence or presence of 100 nM 25(OH)D_3 and 1,25(OH)_{2}D_{3} for 3 days. Subsequently, we treated the cells with the protein synthesis inhibitor cycloheximide for 0–4 hours and determined the VDR protein expression levels by Western blot analysis of whole cell lysates. We found that cycloheximide caused a gradual decrease in VDR protein expression with time in both untreated cells and cells treated with 25(OH)D_3 (Fig. 3A). Regression analyses of the relative mean values of the density of the VDR bands gave the equations $D(t) = 0.37e^{-0.41t}$ with $R^2 = 0.88$ and $D(t) = 0.29e^{0.24t}$ with $R^2 = 0.90$ for T cells activated in the absence and presence of 25(OH)D_3, respectively (Fig. 3B). From these results, the half-life (1/2) of the VDR was calculated to be 1.7 h in untreated cells and 2.9 h in cells treated with 25(OH)D_3 resulting in a mean VDR lifetime of 2.5 h and 4.2 h, respectively. Thus, we could conclude that 1,25(OH)_{2}D_{3} up-regulates the VDR by increasing 1/2 and the mean lifetime of the VDR by approximately 1.7-fold.
Previous studies in other cell types than T cells have indicated that the VDR rapidly shuttles between the cytosol and the nucleus. The VDR is thus distributed to both the cytosol and the nucleus in the absence of 1,25(OH)_{2}D_{3}, and interaction of 1,25(OH)_{2}D_{3} with the VDR shifts the localization of the VDR in favor of the nucleus in most but not all cell types studied [8,15–17]. To study the intracellular distribution of the VDR in T cells, we activated the cells in the absence or presence of 100 nM 25(OH)D_{3} for 3 days.

Figure 3. 1,25(OH)_{2}D_{3} increases the half-life of the VDR. (A) Representative Western blot of VDR and CD3ε (loading control) in whole cell lysates from T cells activated in the absence or presence of 25(OH)D_{3} (100 nM) and then treated with cycloheximide (10 μg/ml) for the time indicated. The half-lives (t_{1/2}) for the VDR in the absence or presence of 25(OH)D_{3} are given below the blot. (B) Relative VDR protein expression obtained from Western blot analysis of whole cell lysates from T cells activated in the absence (W) or presence (W+25(OH)D_{3}) of 25(OH)D_{3} (100 nM) and then treated with cycloheximide (10 μg/ml) for the time indicated. The density of the VDR bands were normalized to the density of the VDR bands at time zero of T cells stimulated in the presence of 25(OH)D_{3}. Shown are the mean relative densities from 3 independent experiments and the curves obtained by regression analysis for W (D(t) = 0.37e^{-0.41t}, R^2 = 0.88) and W+25(OH)D_{3} (D(t) = 0.89e^{-0.24t}, R^2 = 0.90). (C) Representative Western blot of VDR, GAPDH and CD3ε (loading controls) expression in the cytoplasmic (C) and nuclear (N) fractions of T cells activated in the absence or presence of 25(OH)D_{3} (100 nM) and T cells activated in the absence of 25(OH)D_{3} and then treated for 4 h with 1,25(OH)_{2}D_{3} (10 nM). (D) Distribution of the VDR in the cytoplasmic (C) and nuclear (N) fractions of T cells treated as described in (C), mean ± SEM (n=4; * p<0.01). (E) Representative Western blot of VDR and CD3ε (loading control) expression in the cytoplasmic fraction of T cells treated as described in (A). (F) Relative VDR protein expression obtained from Western blot analysis of the cytoplasmic fraction from T cells activated in the absence (C) or presence (C+25(OH)D_{3}) of 25(OH)D_{3} (100 nM) and then treated with cycloheximide (10 μg/ml) for the time indicated. The density of the VDR bands were normalized to the density of the VDR bands at time zero of T cells stimulated in the presence of 25(OH)D_{3}. Shown are the mean relative densities from 3 independent experiments and the curves obtained by regression analysis for C (D(t) = 2.11e^{-0.44t}, R^2 = 0.94) and C+25(OH)D_{3} (D(t) = 0.76e^{-0.26t}, R^2 = 0.70). (G) Representative Western blot of VDR expression in the nuclear fraction of T cells treated as described in (A). (H) Relative VDR protein expression obtained from Western blot analysis of the nuclear fraction from T cells activated in the absence (N) or presence (N+25(OH)D_{3}) of 25(OH)D_{3} (100 nM) and then treated with cycloheximide (10 μg/ml) for the time indicated. The density of the VDR bands were normalized to the density of the VDR bands at time zero of T cells stimulated in the presence of 25(OH)D_{3}. Shown are the mean relative densities from 3 independent experiments and the curves obtained by regression analysis for N (D(t) = 0.68e^{-0.33t}, R^2 = 0.99) and N+25(OH)D_{3} (D(t) = 0.86e^{-0.21t}, R^2 = 0.90).

doi:10.1371/journal.pone.0096695.g003
and subsequently determined the VDR protein expression levels in the cytoplasmic and nuclear fractions by Western blot analysis (Fig. 3C). We found that in the absence of 25(OH)D₃ the VDR was distributed with approximately 35% in the cytoplasm and 65% in the nucleus, and that the presence of 25(OH)D₃ induced a significant redistribution of the VDR resulting in localization of approximately 15% of the VDR in the cytoplasm and 85% in the nucleus (Fig. 3D). To investigate whether it actually was the active 1,25(OH)₂D₃ that caused the VDR distribution, we treated T cells that had been activated in the absence of 25(OH)D₃ with 10 nM 1,25(OH)₂D₃ for the last 4 hours of the stimulation period and subsequently determined the VDR protein expression levels in the cytoplasmic and nuclear fractions. We found that approximately 95% of the VDR was located in the nucleus in T cells treated with 1,25(OH)₂D₃ (Fig. 3C and D), and we could conclude that 1,25(OH)₂D₃ induces a substantial redistribution of the VDR in activated T cells.

To study whether the 1,25(OH)₂D₃-induced redistribution of the VDR to the nucleus could explain the increased t½ of the VDR, we activated T cells in the absence or presence of 100 nM 25(OH)D₃. Subsequently, we treated them with cycloheximide for 0–4 hours and determined the VDR protein expression levels in the cytoplasmic and nuclear fractions separately by Western blot analysis. We found that the half-lives of the VDR were quite similar in the cytoplasm and nucleus, and that 1,25(OH)₂D₃ augmented the t½ of the VDR to the same degree in both compartments (Fig. 3E–H). Thus, 1,25(OH)₂D₃ increased the t½ from 1.6 to 2.7 h in the cytosol and from 1.3 to 3.0 h in the nucleus.

1,25(OH)₂D₃ stabilizes the VDR by protecting it from proteasomal degradation

To this point, our data indicated that the degradation rate of the VDR in human CD4⁺ T cells is regulated by 1,25(OH)₂D₃. Degradation of most cytosolic and nuclear proteins is carried out by the ubiquitin-proteasome pathway [64,65]. To determine whether the VDR is degraded by the proteasomes in T cells, we activated the cells in absence of 25(OH)D₃ for 3 days. Subsequently, we treated the cells with 0 to 10 µM of the proteasome inhibitor lactacystin for 1 h, and then added cycloheximide for 1 additional hour. Finally, we determined the VDR protein expression levels by Western blot analysis of the whole cell lysates and the cytosolic and nuclear fractions separately by Western blot analysis. We found that the half-lives of the VDR were quite similar in the cytoplasm and nucleus, and that 1,25(OH)₂D₃ augmented the t½ of the VDR to the same degree in both compartments (Fig. 3E–H). Thus, 1,25(OH)₂D₃ increased the t½ from 1.6 to 2.7 h in the cytosol and from 1.3 to 3.0 h in the nucleus.

Leptomycin B neither inhibits nuclear export nor degradation of the VDR

Leptomycin B neither inhibits nuclear export nor degradation of the VDR

Leptomycin B neither inhibits nuclear export nor degradation of the VDR

From the results above it could be concluded that 1,25(OH)₂D₃ inhibits the proteasomal degradation of the VDR in human CD4⁺ T cells. At the same time 1,25(OH)₂D₃ induces translocation of the VDR from the cytosol to the nucleus. Previous studies in osteoblasts have suggested that the VDR is protected against proteasomal degradation in the nucleus [34], and this could also be the case for T cells. However, we found similar t½ for the VDR in the cytosol and the nucleus, and at first sight this indicated that translocation of the VDR to the nucleus did not explain the 1,25(OH)₂D₃-induced protection of the VDR. Yet, other studies have shown that the VDR rapidly shuttles between the cytosol and the nucleus [67], and at least two different scenarios could thus be envisioned: (i) 1,25(OH)₂D₃-induced protection of the VDR against proteasomal degradation is independent of VDR localization and takes place equally well in the cytosol and the nucleus, or (ii) the VDR is mainly degraded in the cytosol, and 1,25(OH)₂D₃ protects the VDR by affecting the cytoplasmic-nuclear shuttling in favor for localization of the VDR in the nucleus. To study which of these models that is valid in T cells, we set out to determine how blocking of the nuclear export of the VDR affected VDR stability. If scenario (i) was correct then blocking nuclear export should not affect the VDR protein expression level; however, if scenario (ii) was correct blocking nuclear export should lead to increased VDR.
levels. Leptomycin B (LMB) inhibits CRM1/exportin1 [68] and thereby blocks nuclear export of a variety of molecules including p53. p53 is normally exported from the nucleus to the cytoplasm where it is degraded, and treatment of cells with LMB consequently results in increased levels of p53 [66]. As it has been reported that LMB also blocks the export of unliganded VDR from the nucleus [67], we activated T cells in the absence of 25(OH)D₃ for 3 days and subsequently treated the cells with increasing concentrations of LMB for 4 hours. We then determined the levels of VDR and p53 by Western blot analysis of the whole cell lysates. As expected, we found that LMB treatment resulted in increased levels of p53; however, LMB did not affect VDR levels (Fig. 6A and B). This suggested that scenario (i) was correct. To verify that LMB actually did block export of unliganded VDR from the nucleus, we determined the levels of VDR and p53 in the cytosolic and nuclear fractions of cells activated in the absence of 25(OH)D₃ and subsequently treated with increasing concentrations of LMB. Surprisingly, unlike p53 the VDR did not accumulate in the nucleus after LMB treatment (Fig. 6C). From these results we could conclude that CRM1/exportin1 is not required for nuclear export of the VDR in T cells, and consequently we could not determine whether VDR in primary T cells is degraded in the cytosol, the nucleus or in both compartments.

Discussion

In this study we determined the effect of 1,25(OH)₂D₃ on VDR expression in purified human CD4⁺ T cells activated with CD3/CD28 beads in vitro. We confirmed that naive CD4⁺ T cells do not express the VDR. Activation of the CD4⁺ T cells induces VDR expression, and we found that 1,25(OH)₂D₃ further up-regulates the VDR protein expression approximately 2-fold by protecting the VDR against proteasomal degradation. Previous studies in other cell types have demonstrated that 1,25(OH)₂D₃ can up-regulate the VDR by increasing VDR mRNA expression [24–29] and/or by stabilizing the VDR at the protein level [22,26,30–35]. Contradictory studies on VDR expression and the effect of 1,25(OH)₂D₃ on VDR expression in T cells have been published. Thus, two previous studies have indicated that activation-induced VDR expression is augmented by 1,25(OH)₂D₃ in PBMC and T cells, respectively [52,55]. In contrast, another study found that unstimulated CD4⁺ T cells already express the VDR, and that neither activation nor 1,25(OH)₂D₃ induces up-regulation of the VDR, but that the combination does [57]. Thus, whether and how 1,25(OH)₂D₃ regulates VDR expression in CD4⁺ T cells has remained unknown until the present study.

To mimic physiological conditions, we incubate the cells with physiological concentrations of the precursor 25(OH)D₃, which is found in 1000-fold higher concentrations in serum than 1,25(OH)₂D₃. We found that activated T cells can indeed convert 25(OH)D₃ to the active 1,25(OH)₂D₃. The capacity of activated T cells to produce 1,25(OH)₂D₃ is in good agreement with studies demonstrating the expression of the 1α-hydroxylase CYP27B1 in activated T cells [55,62]. In contrast to our results, Jeffery et al. found that human T cells did not have the capacity to produce 1,25(OH)₂D₃, although they found that T cell activation induced significant up-regulation of CYP27B1 [62]. We believe that this discrepancy can be explained by the fact that Jeffery et al. measured 1,25(OH)₂D₃ production after only 24 hours of T cell activation, whereas we measured it after 3 days of activation.

We found that 1,25(OH)₂D₃ up-regulates VDR protein expression approximately 2-fold in activated T cells without affecting VDR mRNA expression. As control we analyzed the effect of 25(OH)D₃ on known 1,25(OH)₂D₃-responsive genes like CYP24A1 that became strongly up-regulated in CD4⁺ T cells activated in the presence of 25(OH)D₃, while VDR gene transcription was unaffected by the presence of 25(OH)D₃ in CD4⁺ T cells. This is in good agreement with observations in mouse fibroblasts and rat intestinal epithelial cells [30], the human...
Figure 5. 1,25(OH)2D3 stabilizes the VDR by protecting it from proteasomal degradation. (A) Representative Western blot of VDR and CD3ζ (loading control) expression in whole cell lysates of T cells activated for 3 d in the absence or presence of 25(OH)D3 (100 nM) and then treated with lactacystin (10 μM) for the time indicated. The coefficients of inclination (coi) obtained from the curves in B are given below the blots. (B) Relative VDR protein expression obtained from Western blot analysis of whole cell lysates (W) of T cells activated for 3 d in the absence or presence (± 25(OH)D3) of 25(OH)D3 (100 nM). The density of the VDR bands were normalized to the density of the VDR bands at time zero of T cells activated in the absence or presence of 25(OH)D3, respectively. Shown are the mean relative densities from 3 independent experiments and the curves obtained by linear regression analysis of the mean values. (C) Representative Western blot of VDR, p53 and CD3ζ (loading control) in whole cell lysates of T cells activated for 3 d in the absence of 25(OH)D3 and then treated with the indicated concentrations of 1,25(OH)2D3 for 4 h. (D) Relative VDR and p53 protein expression obtained from Western blot analysis of whole cell lysates from T cells treated as described in C. The density of the VDR and p53 bands were normalized to the density of the VDR and p53 bands of T cells not treated with 1,25(OH)2D3, respectively. Results are presented as mean ± SEM (n = 3; * p < 0.05). (E) Relative CYP24A1 mRNA expression in T cells activated for 3 d in the absence of 25(OH)D3 and then treated with increasing concentrations of 1,25(OH)2D3 for 12 hours in the absence or presence of 10 μM lactacystin. The CYP24A1 mRNA levels were normalized to CYP24A1 mRNA levels of T cells not treated with 1,25(OH)2D3. Results are presented as mean ± SEM (n = 5; * p < 0.05). doi:10.1371/journal.pone.0096695.g005

breast cancer cell line T-47D [32], the human osteoblastic sarcoma cell line MG-63 [33], and the human keratinocyte cell line HaCaT [22], in which 1,25(OH)2D3 up-regulated VDR protein expression 2-3-fold without affecting VDR mRNA expression. Our results is also concordant with a previous study that found that 1,25(OH)2D3 up-regulated VDR expression in PBMC following activation; however, the types of cells that up-regulated the VDR was not identified in that study [52]. Our results are in contrast to the study by Baek et al. which found that 1,25(OH)2D3 up-regulated VDR mRNA expression in activated T cells [55]. This discrepancy might be explained by the facts that Baek et al. in contrast to us did not study purified subpopulations of T cells and furthermore used 1,25(OH)2D3 in concentrations more than 100 fold higher than physiological concentrations. Interestingly, a recent study found that 25(OH)D3 induced a 2-fold up-regulation in VDR mRNA expression in human monocytes [29]. Thus, the presence of monocyte in T cell preparations could confuse the results and might explain some of the inconsistent results on VDR regulation in T cells. Our results are also in contrast to a study by Veldman et al. which found that unstimulated CD4+ T cells already express the VDR, and that neither activation nor 1,25(OH)2D3 induces up-regulation of the VDR, but that the combination does [57]. The discrepancy between our study and the study by Veldman et al. most probably can be explained by the different methods used to detect the VDR. Whereas we used the highly specific and sensitive anti-VDR antibody D-6 in Western blot analyses [69], Veldman et al. used a catching-ELISA with the IVG8C11 anti-VDR antibody produced against partially purified pig VDR [70] as the catching antibody. Later studies have demonstrated that IVG8C11 has extremely low sensitivity against the VDR [69], and thus the signals measured in the ELISA by Veldman et al. probably did not result from VDR binding.

By inhibiting CYP27B1 with ketoconazole we could block the conversion of 25(OH)D3 to 1,25(OH)2D3 and the up-regulation of the VDR protein expression in T cells activated in the presence of 25(OH)D3. In contrast, exogenous added 1,25(OH)2D3 still induced VDR protein up-regulation in the presence of ketoconazole. Although ketoconazole also inhibits other members of the cytochrome P450 superfamily, these results indicated that it is only the active form of vitamin D3 that has the potential to up-regulate the VDR. By blocking protein synthesis with cycloheximide we found that 1,25(OH)2D3 increased the half-life of the VDR in T cells by approximately 1.7-fold in accordance with previous studies in other cell types, which found that 1,25(OH)2D3 increased the VDR half-life approximately 2-fold [22,30,33].

We found that in the absence of 1,25(OH)2D3 the VDR distributes with approximately 35% in the cytosol and 65% in the nucleus in activated T cells. Addition of 1,25(OH)2D3 caused a significant redistribution of the VDR resulting in localization of more than 90% of the VDR in the nucleus. These findings extend prior studies in other cell types, which indicated that the VDR...
demonstrated that human CD4+ proteasome pathway is the major route of disposal for most stabilization of the VDR in osteoblasts [34]. The ubiquitin-suggested that nuclear import of the VDR is important for degradation of the VDR. Blocking proteasome activity leads to enhanced 1,25(OH)2D3-induced gene regulation. This is in good agreement with previous studies that found VDR up-regulation and enhanced sensitivity to 1,25(OH)2D3 following proteasome inhibition in keratinocytes and osteoblasts [22,35].

Whereas most ligands desensitize their receptors, 1,25(OH)2D3 up-regulates its receptor and thereby increases the sensitivity of T cells for 1,25(OH)2D3. Combined with our observation that the VDR is expressed by all naive T cells independently of the cytokine environment during the early stages of activation this substantiates that 1,25(OH)2D3 can play important roles in the early stages of T cell differentiation if found in sufficiently high local concentrations [30–46,62].

In conclusion, our study establishes that naive human CD4+ T cells do not express the VDR but that they start to express the VDR following stimulation via the TCR and CD28 independently of the presence of Th1, Th2 and Th17 polarizing cytokines. We further show that activated CD4+ T cells produce biological active concentrations of 1,25(OH)2D3 when provided with physiological concentrations of 25(OH)D3, and that 1,25(OH)2D3 induces a 2-fold up-regulation of VDR protein expression. We demonstrate that the 1,25(OH)2D3-induced VDR up-regulation is not caused by increased VDR mRNA expression but by protecting the VDR against proteasomal degradation. Finally we show that VDR up-regulation has functional consequences for 1,25(OH)2D3-responsive genes and thereby most probably consequences for CD4+ T cell differentiation and the ensuing immune response.

Supporting Information

Figure S1 IFN-γ expression in polarized CD4+ T cells activated for 3 days. FACS plots of naive CD4+ T cells activated for 3 days with CD3/CD28 beads in the presence of IL-12 plus anti-IL-4 for Th1 polarization, IL-4 plus anti-IFN-γ for Th2 polarization and IL-1b, IL-6, IL-23 and TGF-β1 plus anti-IFN-γ and anti-IL-4 for Th17 polarization. As control, naive T cells were activated in the absence of cytokines or anti-cytokines antibodies (Th0 cells). The cells were stained for cell surface expression of CD4 and intracellular expression of IFN-γ and analyzed by flow cytometry. (TIF)

Acknowledgments

The expert technical help of Bodil Nielsen is gratefully acknowledged. We thank August T. G. Crone for helpful comments on the mathematical models.
Author Contributions
Conceived and designed the experiments: MKrE LB TBL PS CMB JPJHL AW NO CG. Performed the experiments: MKrE. Analyzed the data: MKrE LB TBL PS CMB JPJHL AW NO CG. Contributed reagents/materials/analysis tools: NO CG. Wrote the paper: MKrE LB TBL PS CMB JPJHL AW NO CG.

References
1. DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Ann J Clin Nutr 80: 1698–1696S.
2. Nnoaham KE, Clarke A (2008) Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int J Epidemiol 37: 113–119.
3. Eysel P, Laura E, Reuten A, Janwilai M, Marten AM, et al. (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358: 1500–1503.
4. Ascherio A, Munger KL, Willett WC, Simon KC (2010) Vitamin D and multiple sclerosis. Lancet Neurol 9: 599–612.
5. Simpson SF, Taylor B, Blizard L, Ponsoby AL, Pitta F, et al. (2010) Higher 25-hydroxyvitamin D is associated with lower relapse risk in multiple sclerosis. Ann Neurol 68: 193–205.
6. Lemire JM, Ince A, Takashima M (1992) 1,25-Dihydroxyvitamin D3 attenuates the expression of experimental murine lipus of MRL/l mice. Autoimmunity 12: 143–148.
7. Zella JB, DeLuca HF (2003) Vitamin D and autoimmune diabetes. J Cell Biochem 88: 216–229.
8. Nagal S, Na, Sathnachalam R (2005) Noncaemic actions of vitamin D receptor ligands. Endocr Rev 26: 662–687.
9. Bouillon R, Carmeliet G, Verlinden L, van EE, Verstuyf A, et al. (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29: 726–776.
10. Dorr J, Oltraum S, Skaarhs H, Paul F (2012) Efficacy of vitamin D supplementation in multiple sclerosis (EVIDEMIS Trial): study protocol for a randomized controlled trial. Trials 13: 15.
11. Coutsous AK, Wilkinson RJ, Hanifa Y, Nikolayevskyy V, Elkington PT, et al. (2012) Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc Natl Acad Sci U S A 109: 15449–15454.
12. Baker AR, McDermott DP, Hughes M, Crisp TM, Mangelsdorf DJ, et al. (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A 85: 3294–3298.
13. Moor DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, et al. (2006) International Union of Biochemistry and Molecular Biology. XVII. The NR1H1 and NR1H2 receptors: a constitutive androstane receptor, pregnane X receptor, farnesoid X receptor, and constitutive androstane receptor, pregnane X receptor, farnesoid X receptor, and constitutive androstane receptor. J Cell Biochem 100: 617–628.
14. Heilig H, Shimizu Y, Minoshima S, Shimizu N, Hauserl CA, et al. (1998) Novel nuclear localization signal between the two DNA-binding zinc fingers in the vitamin D receptor. J Cell Biochem 70: 94–109.
15. Prager K, Racic A, Lin GC, Barsouy J (2000) Dimerization with retinoid X receptor and T cell function. Front Immunol 4 (148): 1–10.
16. Kerner SA, Scott RA, Pike JW (1989) Sequence elements in the human vitamin D receptor and T cell function. Front Immunol 4 (148): 1–10.
17. Hoax CN, DeLuca HF, Maenpaa PH (2000) 1,25-Dihydroxyvitamin D3 receptors by vitamin D analogs in cultured mammalian cells. Endocrinology 141: 1686–1694.
18. Thien R, Baier K, Pietschmann P, Pfeifer M, Willheim M (2005) Interactions of 1 alpha,25-dihydroxyvitamin D3 with IL-12 and IL-4 on cytokine expression of human T lymphocytes. J Clin Immunol 25: 548–567.
19. van Eeten E, Mathieu C (2005) Immunoeregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol 97: 93–101.
20. Mora JR, Ibata M, von Andrian UH (2008) Vitamin D effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8: 605–608.
21. Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, et al. (2009) 1,25-Dihydroxyvitamin D3 and IL-2 can combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 183: 5486–5490.
22. Correale J, Ysrraelit MC, Gaitan MI (2009) Immunomodulatory effects of Vitamin D in multiple sclerosis. Brain 132: 1146–1150.
23. Palmer MT, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2: 933–944.
24. Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 146: 845–858.
25. van Eeten E, Mathieu C (2005) Immunoeregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol 97: 93–101.
26. Mora JR, Ibata M, von Andrian UH (2008) Vitamin D effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8: 605–608.
27. Jaaskelainen T, Ruchan S, Mahonen A, DeLuca HF, Maenpaa PH (2000) Mechanism of action of superactive vitamin D analogs through regulated receptor degradation. J Cell Biochem 76: 548–551.
28. Plev S, Nguyen CT (2010) The importance of nuclear import in protection of the vitamin D receptor from polyubiquitination and proteasome-mediated degradation. J Cell Biochem 110: 926–934.
29. Kaiser MF, Heider U, Mielch M, Zang C, von M, et al. (2013) The proteasome inhibitor bortezomib stimulates osteoblastic differentiation of human osteoblast precursors via upregulation of vitamin D receptor signalling. Eur J Haematol 90: 263–272.
30. Murphy KM, Ivata M, von Andrian UH (2008) Vitamin D effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 8: 605–608.
31. Jeffery LE, Burke F, Mura M, Zheng Y, Qureshi OS, et al. (2009) 1,25-Dihydroxyvitamin D3 and IL-2 can combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J Immunol 183: 5486–5490.
32. Perlen E, Knippenberg S, Muris AH, Thewissen M, Smolders J, et al. (2011) Effects of vitamin D on the peripheral adaptive immune system: a review. Autoimmun Rev 10: 733–743.
33. Joshi S, Patanella LE, Liu KX, Gaffen SL, Liu H, et al. (2011) 1,25-dihydroxyvitamin D3 ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol 31: 3653–3669.
34. Urry Z, Chambers ES, Xystrakis E, Dimeloe S, Richards DF, et al. (2012) The role of Lphala,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct FoxP3+ and IL-10+ CD4+ T cells. Eur J Immunol 42: 2697–2700.
35. Provvedini DM, Tsoukas CD, Delfos L, Manolagas SC (1983) 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science 221: 1181–1183.
36. Bhatta HK, Amato EP, Clemens TN, Holick MF, Krane SM (1987) Specific high-affinity receptors for 1,25-dihydroxyvitamin D3 in human peripheral blood mononuclear cells: presence in monocytes and induction in T lymphocytes following activation. J Clin Endocrinol Metab 57: 1301–1310.
37. Provvedini DM, Manolagas SC (1989) Alpha,25-dihydroxyvitamin D3 receptor distribution and effects in subpopulations of normal human T lymphocytes. J Clin Endocrinol Metab 68: 774–779.
38. Kiakia M, Norman AW, Bishop JE, Lin CW, Karmakar A, et al. (1991) 1,25-Dihydroxyvitamin D3 receptor RNA expression in hematopoietic cells. Blood 77: 1238–1247.
39. Yu XP, Mochalas H, Hustmyer FG, Manolagas SC (1991) Vitamin D receptor expression in human lymphocytes. Signal requirements and characterization by western blots and DNA sequencing. J Cell Biochem 260: 7588–7595.
40. Yu XP, Hustmyer FG, Gorbatov R, Manolagas SC (1991) Demonstration of a 1,25-dihydroxyvitamin D3-responsive protein in human lymphocytes: immunologic crossreactivity and inverse regulation with the vitamin D receptor. Proc Natl Acad Sci U S A 88: 8347–8351.
53. Chen L, Cencioni MT, Angelini DF, Borrellino G, Battistini L, et al. (2005) Transcriptional profiling of gamma delta T cells identifies a role for vitamin D in the immunoregulation of the V gamma 9V delta 2 response to phosphate-containing ligands. J Immunol 174: 6144–6152.

54. von Essen MR, Konigshak M, Schierding P, Olgaard K, Odum N, et al. (2010) Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol 11: 344–349.

55. Barke F, Koef H, Overbergh L, van EE, Verstuyf A, et al. (2010) Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D(3) in the immune system. J Steroid Biochem Mol Biol.

56. Joseph RW, Bayraktar UD, Kim TK, St John LS, Popat U, et al. (2012) Vitamin D receptor upregulation in alloreactive human T cells. Hum Immunol 73: 693–696.

57. Veldman CM, Cantorna MT, DeLuca HF (2000) Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys 374: 334–338.

58. Diaz L, Martinez-Reza I, Garcia-Becerra R, Gonzalez L, Larrea F, et al. (2011) Calcitriol stimulates prolactin expression in non-activated human peripheral blood mononuclear cells: breaking paradigms. Cytokine 55: 188–194.

59. Nielsen MM, Lovato P, Macleod AS, Witherden DA, Skov L, et al. (2014) IL-1beta-Dependent Activation of Dendritic Epidermal T Cells in Contact Hypersensitivity. J Immunol.

60. Dietrich J, Geisler C (1998) T cell receptor zeta allows stable expression of receptors containing the CD3ε leucine-based receptor-sorting motif. J Biol Chem 273: 26201–26204.

61. Feldman D, Pike JW, Glowacki J (2011) Vitamin D. Burlington: Elsevier Academic Press.

62. Jeffery LE, Wood AM, Qureshi OS, Hou TZ, Gardner D, et al. (2012) Availability of 25-hydroxyvitamin D3 to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol 189: 5155–5164.

63. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, et al. (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311: 1770–1773.

64. von Mikecz A (2006) The nuclear ubiquitin-proteasome system. J Cell Sci 119: 1977–1984.

65. Schwartz AL, Circhano-Arnold A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49: 73–96.

66. Freedman DA, Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18: 7288–7293.

67. Prafer K, Barsony J (2002) Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol Endocrinol 16: 1738–1751.

68. Hutton S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17: 193–201.

69. Wang Y, Beckland BR, DeLuca HF (2010) Identification of a highly specific and versatile vitamin D receptor antibody. Arch Biochem Biophys 494: 166–177.

70. Dame MC, Pierce EA, Prahl JM, Hayes CE, DeLuca HF (1986) Monoclonal antibodies to the porcine intestinal receptor for 1,25-dihydroxyvitamin D3: interaction with distinct receptor domains. Biochemistry 25: 4525–4534.

71. Masuyama H, MacDonald PN (1998) Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J Cell Biol 71: 429–440.

72. Chi Y, Hong Y, Zong H, Wang Y, Zou W, et al. (2009) CDK11p58 represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation. Biochem Biophys Res Commun 380: 493–498.