Zooplankton diversity in Lake Tondano, Indonesia

R L Toruan1,*

1Research Centre for Limnology, Indonesian Institute of Sciences. Cibinong Science Centre and Botanical Garden, Jl. Raya Bogor Km 46, Cibinong, Kabupaten, Bogor 16911, Indonesia

*Corresponding author: reliana@limnologi.lipi.go.id

Abstract. Study on freshwater ecology have been long focused on subtropical habitats with few references to tropical regions including Indonesia. Zooplankton, in particular, is an important component of aquatic ecosystem as they are key player of aquatic food webs, thus a solid understanding of their community structure can be of direct benefit to freshwater ecosystem management. The spatial patterns of zooplankton diversity in Lake Tondano, Celebes Island – Indonesia were studied in 2013, with the main aim was to understand how local environmental and habitat heterogeneity driving the zooplankton community structure. We performed field samplings to collect zooplankton using a vertical tow with a 156 µm mesh plankton net from 1 meter above sediment to the surface and to measure environmental parameters using portable multi probes water quality checker from three different water columns. The sampling sites were selected to include different habitats within the lake to look at diversity of the entire zooplankton communities including Rotifers, Cladocerans, and Copepods in Lake Tondano, Indonesia. A total of 21 species of cladocerans, 31 copepods, and 60 rotifers were identified from Lake Tondano. Our result indicates a relatively low number of cladocerans which is may be associated with high predatory pressure from planktivorous fish, especially within the open pelagic zone.

Keywords: Lake Tondano; tropical lake; zooplankton diversity

1. Introduction

Zooplankton are among the most abundant organisms and the key player in aquatic ecosystem food webs as primary consumer [1, 2]. Their community structure (species richness and species composition) is driven by complex interaction of many physico-chemical and environmental factors such as temperature, salinity, and nutrient concentration [3, 4]. Their distribution also depends on interaction of biotic factors including phytoplankton and macroinvertebrate and fish predation [5]. Rotifers, Cladocera’s, and Copepods are considered the most important zooplankton to study community structure in relation to environmental heterogeneity.

In lakes ecosystems, zooplankton was identified as a top-down force for the phytoplankton yield and microbial community through preferential grazing and filter-feeding which increases water clarity [1, 6]. On the other hand, the bottom-up forces, such as high nutrient loading, may responsible for the phytoplankton growth and alga blooms which are known to be related to the decrease of zooplankton abundance and biomass, particularly due to the reduction of larger size zooplankton [7]. Furthermore, the present of submerge macrophytes in the lakes may inhibit phytoplankton growth through competition over nutrient uptake from the water column, thus maintain the clarity of water [8]. Submerge macrophyte beds also play an important role in zooplankton community structure by...
providing refuge for zooplankton especially when predation pressure is high due to increased water clarity (reference).

A significant number of studies have suggested that many factors may be responsible for zooplankton community structure in lake ecosystems. These include: water chemistry [1, 9, 10], land use and watershed disturbance [11-13], urban development [14], nutrient and phytoplankton assemblages [6], fish predation [15, 16] and biological invasion [17].

Lakes in the agricultural-dominated catchments, for instance, were found to have a lower species number of zooplankton as compared to those in relatively least-agricultural impacted [10, 13]. While Dodson, Everhart, Jandl, and Krauskopf [10] suggest that increased nutrient was responsible for the increased phytoplankton biomass and was associated with the reduced of zooplankton richness, [18] suggest that increased cyanobacteria biomass is linked with the shift in the size of zooplankton communities which further influence the functioning of lake systems.

Studies explored the relationship between environmental variables and zooplankton community structure has been the interest of limnologist for many decades [19-21], and zooplankton diversity has been widely used as bio-monitoring tools for freshwater ecosystems. However, the focus has been given toward northern temperate region with few references toward tropical region, and especially, almost no references have been reported from freshwater ecosystems in Indonesia. This study was designed to outline the spatial distribution pattern of zooplankton along with environmental heterogeneity in Lake Tondano, Indonesia.

2. Methodology

2.1. Study area

This study was carried out in Lake Tondano, situated between 1°10’ N and 124°55’ E in Sulawesi Island in the province of North Sulawesi, Indonesia (figure 1). Climate is identified as rainy tropical (monsoon) marked by a rainy season from November to April (mean temperature of 22 °C) and dry season from May to October (mean temperature of 25 °C). Annual mean precipitation is around 2400 mm (NEO, TRMM).

The lake has a total area varies between 46 km² and 53 km² during dry and wet seasons respectively with total volume of water approximately 410 mil.m³. Long term average water level of the lake carried between 684 and 691 m and was influenced by annual rainfall event. The lake serves as the main freshwater source for domestic and aquaculture practices. However, increasing pressure from anthropogenic activities including aquaculture practices and land-use changes have been identified as the main stressor to water quality deterioration in the lake.

Figure 1. Sampling sites.
2.2. Sampling methodology
Water sample for zooplankton and water quality analysis was collected once during wet season in May 2013. The sampling sites were chosen to include littoral and pelagic zones and inlet and outlet of the lake. Zooplankton samples were collected by vertical tow using a 156 µm mesh size plankton net from 1 meter above the sediment bed to surface and were fixed in 4% formalin until further analysis. Zooplankton sample analysis, species including quantitative estimation and identification to species level (where possible) was done under light dissecting microscope (Nikon). Environmental variables were measured at three different water columns (including surface, Secchi Depth, and near the sediment) and were averaged.

2.3. Data analysis
Zooplankton community structure was displayed as list of species presence and absence, total abundance, and relative abundance of the three functional groups including Cladocera, Copepod, and Rotifera. Ordination technique such as Principal Correspondence Analysis (PCA) was used to see the variability in environmental variables and zooplankton distribution. Multiple regression analysis was used to determine the relationship between the environmental variables and zooplankton abundance, species richness, and diversity index. Zooplankton community structure including species dominance curve and diversity index were assessed using a PC-ORD 6.22 for windows while PCA and multiple regression analysis were done using SigmaPlot 14.

3. Result and discussion
3.1. Environmental variables
Table 1 summaries general environmental parameter and the morphology of the Lake. Lake Tondano has a total lake area of 46-53 km². Mean annual rainfall varied between 1300 mm and 2500mm with an average annual rainfall of 2143 mm. Maximum water depth of 35.5 m with an average water depth of 8.88m while Secchi depth varied between 2 to 3 meters. Ordination biplots of the principles component analysis (PCAs) show that most of the variability in environmental factors was explained by Total nitrogen, pH, Temperature, and Dissolved Oxygen (45% explained variability, figure 2). Based on Carlson’s Trophic Status Index (TSI), Lake Tondano is considered mesotrophic (Carlson Index 50.83), except for TN6 (Eris) which was considered eutrophic (Carlson index 60.81). Eutrophic condition in TN6 was related to intensive aquaculture activities in the area where TN6 is the center for Floating Fish Cage (KJA) activities in the lake. TN 5 (Rombokken) point was also considered eutrophic with TSI index of 55.57. Nutrient concentration in this location was also related to aquaculture activities. The ecological status scoring method indicated that lake Tondano was in fairly good condition with an ecological score of 32 as per May 2013 (Research Centre for Limnology, unpublished report).

Table 1. General characteristic of Lake Tondano and mean values of the main environmental parameters of the studied area.

Lake area	Maximum depth	35.5 m	
Catchment area	46-53 km²		
Lake area: Catchment area	43 km²	Mean depth	8.88 m
	1:5.12	Volume	410.10⁶ m³
Chlorophyll-a (µgL⁻¹)	1.3	TN2	1.3
Total Nitrogen (mgL⁻¹)	1.23	TN3	0.35
Total Phosphate (mgL⁻¹)	0.036	TN4	1.73
pH	7.49	TN5	0.39
Temperature (°C)	24.08	TN6	0.44
Dissolved oxygen	6.58	TN7	7.71
Conductivity (mS.cm⁻¹)	0.229	TN8	8.25
Secchi depth (m)	2.2	TN9	0.07
Maximum depth (m)	8.0	TN10	0.12
	13.2	TN11	0.63
	19.8		
3.2. Zooplankton community structure

The list of presence and absence of all species identified from the lake is presented in Table 2. A total of 112 zooplankton species were identified from Lake Tondano during the study including 60 rotifers, 21 cladocerans, and 31 copepods. Zooplankton composition was similar in the lakes in all sampling points and was dominated by rotifers which contributed to ~50% of the total special number and density (Figure 4). Based on species dominance curve analysis (Figure 3), five most dominant species were *Brachionus calyciflorus*, *Trichocerca* sp., *Trichocerca similis*, *Keratella valga*, and *Keratella tropica*; which belonged to Rotifers group. Shanon-diversity index ranged from 1.73 to 1.85 and there were no significant differences between sampling locations.

Figure 2. PCA ordination graph showing the variability in environmental factors in Lake Tondano.

Figure 3. Species dominance curve showing five most dominant zooplankton in Lake Tondano which belonged to Rotifers group including *Brachionus calyciflorus*, *Trichocerca* sp., *Trichocerca similis*, *Keratella valga*, and *Keratella tropica*.
Table 2. Zooplankton species list and their presence (*) and absence (0).

Family	Species	TN2	TN3	TN4	TN5	TN6	TN7	TN8	TN10	TN11
Harpaticoidea	Epischura lacustris	*	*	*	*	*	*	0	*	*
	Epischura sp.	+	+	+	+	+		+		
	Harpacticoid sp.	+	+	+	+	+		0	*	*
	Oxydiaptomus sanguenensis									
Calanoidea	Oxydiaptomus birgei	*	*	*	*	*	*	+	*	
	Leptodiaptomus minutus									
	Leptodiaptomus sicilis									
	Leptodiaptomus ashlandi									
	Skistodiaptomus sp.	+	+	+	+	+		0		
	Ospartricium sp.	+	+	+	+	+		0		
	Acaloaiaptomus sp.	+	+	+	+	+		0		
	Diacyclops sp.	+	+	+	+	+		+		
	Diacyclops robustus	+	+	+	+	+	0	+		
	Cyclops scutifer	+	+	+	+	+	0	+		
	Cyclops edax	+	+	+	+	+		+		
	Tropocyclops sp.	+	+	+	+	+		+		
	Orthocyclops modestus	+	+	+	+	+	+	0		
	Diacyclops thomasi	0								
	Macrocylops albidus	+	+	+	+	+		+		
	Eucyclops agilis	+	+	+	+	+		+		
	Eucyclops sp.	+	+	+	+	+	0	+		
	Megacyclops viridis	+	+	+	+	+		+		
	Enecyclops sp.	+	+	+	+	+		+		
	Microcylops varicans	+	+	+	+	+		+	0	
	Tropocyclops sp. 2	+	+	+	+	+		+		
	Paracyclops sp.	+	0	+	0	0		+		
	Macrocylops sp.	+	+	+	+	+	0	+		
	Cyclops sp.	+	+	+	+	+		+		
	Diacyclops sp. 2	+	+	+	+	+		+		
	Acanthocyclops sp.	+	+	+	+	+	0	+		
	Daphnia ambiguca	+	+	+	+	+		+		
	Daphnia pulex	+	+	+	+	+		+		
	Daphnia parvula	+	+	+	+	+		+		
	Daphnia magna	+	+	+	+	+		+		
	Daphnia pulicaria	+	+	+	+	+		+		
	Daphnia longiremis	+	+	+	+	+		+		
	Diaphanosoma birgei	+	+	+	+	+		+		
	Diaphanosoma brachyurum									
	Ceriodaphnia sp.	+	+	+	+	+		+		
	Sinocephalus sp.	+	+	+	+	+		+		
	Sida crystallina	+	+	+	+	+		+		
	Eubosmina	+	+	+	+	+		+		
	Bosmina longirostris	+	+	+	+	+		+		
	Eubosmina coregioni	+	+	+	+	+		+		
	Eubosmina longispina	+	+	+	+	+		+		
	Chidorus sp.	+	+	+	+	+		+		
	Leberis aenigmatosa	+	+	+	+	+	0	+		
	Leydigia sp.	+	+	+	+	+		+		
	Alonella sp.	+	+	+	+	+		+		
	Alona sp.	+	+	+	+	+		+		
	Pleuroxus sp.	+	+	+	+	+		+		

International Symposium on Aquatic Sciences and Resources Management
IOP Conf. Series: Earth and Environmental Science 744 (2021) 012092 doi:10.1088/1755-1315/744/1/012092
Family	Species	Sampling location
Brachionidae	*Brachionus bidentatus*	TN2
	Brachionus. leydigi	TN3
	Brachionus calyciflorus	TN4
	Brachionus. falcatus	TN5
	Brachionus caudatus	TN6
	Brachionus. ulceolaris	TN7
	Brachionus. dichotomus	TN8
	Platyias quadracornis	TN10
	Plutionus patulas	TN11
	Keratella tropica	TN2
	Keratella quadrata	TN3
	Keratella valga	TN4
	Keratella tecta	TN5
	Keratella cochlearis	TN6
	Keratella procyrva	TN7
	Keliotica longispina	TN8
	Notholca sp.	TN10
	Anuraeopsis sp.	TN11
Collurellidae	*Corurella sp.*	TN2
	Lepadella ehrenbergii	TN3
	Lepadella elliptica	TN4
	Lepadella lindau	TN5
Trochosphaeridae	*Filinia longiseta*	TN6
	Filinia opolinsis	TN7
	Filinia terminalis	TN8
	Filinia fassa	TN9
	Filinia saltator	TN10
	Filinia pelgeri	TN11
	Filinia austriensis	TN2
Lecanidae	*Lecane quadridentata*	TN3
	Lecane cornata	TN4
	Lecane bulla	TN5
	Lecane elachis	TN6
	Lecane sinuate	TN7
	Lecane pusilla	TN8
	Lecane formosa	TN9
	Lecane inermis	TN10
	Lecane grandis	TN11
	Lecane unguata	TN2
Trichoceridae	*Trichocerca sp.*	TN3
	Trichocerca rutmeri	TN4
	Trichocerca flagellata	TN5
	Trichocerca kostei	TN6
	Trichocerca similis	TN7
	Trichocerca pusilla	TN8
	Trichocerca stylata	TN9
	Trichocerca myersi	TN10
Nottomatidae	*Cephalodella mucronata*	TN2
	Cephalodella tenuiseta	TN3
	Cephalodella tantioides	TN4
	Drilophaga sp.	TN5
	Eothinia sp.	TN6
	Entroplea sp.	TN7
Rotifers exhibit a wide range of habitat adaptation and are indicator of water quality. In Lake Tondano, most dominant species belongs to these taxa with the five-top of dominant species were *Brachionus calicyflorus*, *Trichocerca* sp, *Keratella valga*, *Trichocerca similis*, and *Polyarthra* sp. Lake Tondano is subjected to invasive free-floating macrophyte blooming such as *Eichornia crassipes* and submerged macrophyte such as *Ceratophyllum demersum* (RC for limnology 2014, unpublished). This substrate rich habitat from macrophyte colony provides suitable habitat for benthic organisms such as rotifers which correspond with high frequency and abundance of rotifers in all sampling sites.

Copepods were the second dominant group and contributed to 27.6% of the total number. Number of Cladocera’s, on the other hand, was relatively low (18%) and was dominated by small-sized
Cladocera’s including *Daphnia pulex* and *Eubosmina*. Cladocera’s, particularly large *Daphnia* sp., are considered to play important role to control top-down pressure in lake ecosystem due to their ability to filter phytoplankton particle and as food sources for planktivorous fish. Increasing pressure from fish predation in lakes may lead to a shift from *Daphnia* dominated community to a community dominated by rotifers and cyclopoid [16]. The ecosystem of Lake Tondano has been long considered as being strongly affected by increasing fish population (RC for Limnology, unpublished). The fish community in Lake Tondano is characterized by a mixture of native species such as *Ophielaotris aporos* and introduced species *Osteochilus vittatus* and *Oreochromis niloticus*. There is evidence to indicate that fish predation play a role in driven zooplankton community structure in this lake, however, further study is needed to fully understand the tropics interaction which should include the main abiotic community including fish, macroinvertebrate, zooplankton, and benthic communities.

Zooplankton community structure and heterogeneity is the result of a complex interaction between biotic and abiotic component [1, 3]. Our result indicates that there was no significant relationship between environmental factor and the zooplankton abundance and species number (Multiple regression analysis using the environmental factors such as temperature, Total Nitrogen, Total Phosphate and Chlorophyll as independent variables and zooplankton abundance and species number as dependent variables). This can be related to the similarity in environmental variables in all sampling locations, suggested that spatial variability of environmental factors was not identified in Lake Tondano.

4. Conclusion
Zooplankton community composition in Lake Tondano comprised of 112 species and was dominated by rotifers followed by Copepod and Cladocera. Low number of Cladocera species in this lake might be correlated with the pressure of fish predation which is observed to be high in the lake. However, further analysis and study are necessary to confirm this preliminary conclusion.

Acknowledgments
This work was supported by the annual research grant (DIPA 2013) of the Research Centre for Limnology, Indonesian Institute of Sciences. Author would like to thank the assistance and encouragement from technical staff and research fellow during the fieldwork and sampling preparation.

References
[1] Jeppesen E, Nõges P, Davidson T, Haberman J, Nõges T, Blank K, Lauridsen T, Søndergaard M, Sayer C, Laugaste R, Johansson L, Bjerring R, and Amsinck S 2011 Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD) *Hydrobiologia* 676 279-97
[2] Dodson S I, Newman A L, Will-Wolf S, Alexander M L, Woodford M P and Van Egeren S 2009 The relationship between zooplankton community structure and lake characteristics in temperate lakes (Northern Wisconsin, USA) *Journal of Plankton Research* 31 93-100
[3] Pinel-Alloul B, Méthot G, Verreault G, and Vigneault Y 1990 Zooplankton Species Associations in Quebec Lakes: Variation with Abiotic Factors, Including Natural and Anthropogenic Acidification *Canadian Journal of Fisheries and Aquatic Sciences* 47 110-21
[4] Stemberger R S, Larsen D P and Kincaid T M 2001 Sensitivity of zooplankton for regional lake monitoring *Canadian Journal of Fisheries & Aquatic Sciences* 58 2222-32
[5] Jeppesen E, Lauridsen T, Mitchell S F and Burns C W 1997 Do planktivorous fish structure the zooplankton communities in New Zealand lakes? *New Zealand Journal of Marine and Freshwater Research* 31 163-73
[6] Ghadouani A, Pinel-Alloul B and Prepas E E 2003 Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities *Freshwater Biology* 48 363-81
[7] Scheffer M and van Nes E 2007 Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size Hydrobiologia 584 455-66
[8] Scheffer M and Carpenter S R 2003 Catastrophic regime shifts in ecosystems: linking theory to observation Trends in Ecology & Evolution 18 648-56
[9] Dodson S I, Lillie R A and Will-Wolf S 2005 Land use, Water chemistry, Aquatic vegetation, and Zooplankton Community Structure of Shallow Lakes Ecological Applications 15 1191-8.
[10] Dodson S, Everhart W, Jandl A and Krauskopf S 2007 Effect of watershed land use and lake age on zooplankton species richness Hydrobiologia 579 393-9
[11] Van Egeren S, Dodson S, Torke B and Maxted J 2011 The relative significance of environmental and anthropogenic factors affecting zooplankton community structure in Southeast Wisconsin Till Plain lakes Hydrobiologia 668 137-46
[12] Patalas K and Salki A 1992 Crustacean Plankton in Lake Winnipeg: Variation in Space and Time as a Function of Lake Morphology, Geology, and Climate Canadian Journal of Fisheries and Aquatic Sciences 49 1035-59
[13] Hoffmann M D and Dodson S I 2005 Land use, primary productivity, and lake area as descriptors of zooplankton diversity Ecology 86 255-61
[14] Gélinas M and Pinel-Alloul B 2008 Relating crustacean zooplankton community structure to residential development and land-cover disturbance near Canadian Shield lakes Canadian Journal of Fisheries & Aquatic Sciences 65 2689-702
[15] Meester L D, Maas S, Dierckens K and Dumont H J 1993 Habitat selection and patchiness in Scapholeberis: horizontal distribution and migration of S.mucronata in a small pond Journal of Plankton Research 15 1129-39
[16] Jeppesen E, Søndergaard M, Jensen J P, Mortensen E and Sortkjær O 1996 Fish-induced changes in zooplankton grazing on phytoplankton and bacterioplankton: a long-term study in shallow hypertrophic Lake Søbygaard Journal of Plankton Research 18 1605-25
[17] Mines C H, Ghadouani A, Legendre P, Yan N D and Ivey G N 2013 Examining shifts in zooplankton community variability following biological invasion Limnol.Oceanogr 58 399-408
[18] Ghadouani A, Pinel-Alloul B and Prepas E E 2006 Could increased cyanobacterial biomass following forest harvesting cause a reduction in zooplankton body size structure? Canadian Journal of Fisheries & Aquatic Sciences 63 2308-17
[19] Pinel-Alloul B, Downing J A, Perusse M and Codin-Blumer G 1988 Spatial Heterogeneity in Freshwater Zooplankton: Variation with Body Size, Depth, and Scale Ecology 69 1393-400
[20] Stemberger R S and Lazorchak J M 1994 Zooplankton Assemblage Responses to Disturbance Gradients Canadian Journal of Fisheries and Aquatic Sciences 51 2435-47
[21] Lampert W 1997 Zooplankton research: the contribution of limnology to general ecological paradigms Aquatic Ecology 31 19-27