Assessment of the Costs of Preventive Works Concerning Fire Hazard on the Example of Selected Longwalls of Two Mining Companies

Ocena kosztów prac profilaktycznych w zakresie zagrożenia pożarowego na przykładzie wybranych ścian eksploatacyjnych dwóch spółek węglowych

ABSTRACT

Aim: The article aims to present and evaluate the costs of preventive works carried out in 16 selected longwall panels in the mines of two coal mining companies. The article is based on the analysis of data made available by the companies, which the author has properly prepared to enable their comparison.

Introduction: Fires occurring in coal mines are one of the more frequent technical hazards. Consequently, the mine’s ventilation departments are responsible for carrying out preventive measures to limit and minimise the fire risk. The danger of a fire in mine workings is connected not only with the possibility of exogenic fire, which is influenced by external factors such as machine and equipment failures, short-circuits in electrical installations or the possibility of a fire on transport routes, but also with endogenic fire, which the low-temperature oxidation of coal may cause with the remains left in long-wall caving. The costs of prevention depend on the method of ventilation of the longwall faces and the coal’s susceptibility to spontaneous combustion.

Methodology: The costs of coal mining are very high. They are related to the increasingly difficult mining conditions, which are influenced mainly by the increasing depth of exploitation and the increase in natural and technical hazards during mining work. The costs of mining within a longwall area are usually divided into the costs of starting up the longwall, its exploitation and liquidation. Within this division, more detailed cost analyses are rarely conducted. As part of the research conducted since 2015, ways of cost assessment were developed on the basis of appropriately prepared cost tables for various natural and technical hazards occurring within the ventilation hazards presented in the example discussed in the article. Based on the analyses of unit costs of fire hazard prevention elements obtained in coal companies and the developed cost tables, the costs of prevention works were compiled. The costs of prevention works were evaluated and compared for 16 longwall faces using the elaborated indices.

Conclusions: Correctly applied fire hazard prevention in hard coal mines is one of the main elements of maintaining functional safety. Costs of hazard prevention in mines were usually compared together with the costs of exploitation, longwall equipment, media and crew working days. Cost tables were developed as part of the research to allow for cost assessment and determination of fire prevention cost indices.

Keywords: coal mining, fire hazard, preventive work, cost of preventive work

Type of article: review article

ABSTRAKT

Cel: Celem artykułu jest przedstawienie i ocena kosztów prac profilaktycznych prowadzonych w 16 wybranych ścianach eksploatacyjnych w kopalniach dwóch spółek węglowych. Artykuł opiera się na analizie udostępnionych przez spółki danych, które zostały odpowiednio przygotowane przez autora w celu możliwości ich porównania.

Wprowadzenie: Pożary występujące w kopalniach węgla kamiennego są jednymi z częściej pojawiających się zagrożeń technicznych. W związku z tym niezbędne jest prowadzenie profilaktyki ograniczającej ryzyko powstania pożarów przez działy wentylacyjne w kopalniach. Niebezpieczeństwo powstania pożaru w wyrobiskach górniczych dotyczy nie tylko możliwości powstania pożaru egzogenicznego, na który wpływ mają czynniki zewnętrzne związane z awariami maszyn i urządzeń, zwarciami w instalacjach elektrycznych czy możliwości powstania pożaru na drogach transportu, ale także pożaru endogenicznego, który może powstać na skutek niskotemperaturowego utleniania się węgla pozostawionego w zrobach zawałowych ścian eksploatacyjnych. Koszty prowadzonej profilaktyki są zależne od sposobu przewietrzania rejonów ścian oraz skłonności węgla do samozapalenia.

Metodologia: Eksploatacja węgla kamiennego jest bardzo kosztowna ze względu na coraz trudniejsze warunki górnicze. Koszty prowadzonej eksploatacji w ramach rejonu ściany podzielone są najczęściej na koszty rozruchu ściany, jej eksploatacji i likwidacji. W tym zakresie rzadko prowadzi się bardziej szczegółowe analizy kosztów. W ramach badań prowadzonych od 2015 r. wypracowano sposoby oceny kosztów na podstawie odpowiednio przygoto
Introduction

Hard coal mining is still one of the main elements of the Polish critical infrastructure related to the production of electricity. Thermal coal supplied to conventional power plants is currently exploited by two coal companies, Polska Grupa Górnicza S.A. (PGG S.A.), which comprises of 7 mines and Jastrzębska Spółka Węglowa S.A. (JŚW S.A.), which manages 5 mines. The mines affiliated with PGG S.A. produce exclusively steam coal for the purposes of electricity production and fuel coal for individual consumers, whereas JŚW S.A. produces mainly coking coal, necessary for steel production, which is sold to the EU countries. A portion of the production is also thermal coal, sold in Poland for power and heating purposes.

During the exploitation of hard coal seams in underground excavations there are several threats that limit or impede its exploitation. Generally, the hazards occurring in mines can be divided into two groups: technical hazards connected with technical aspects of conducting mining work and natural threats, which are caused by nature. According to the Polish mining regulations, these hazards include: rock burst hazard, methane hazard, gas and rock outburst hazard, coal dust explosion hazard, climatic hazard, water hazard and radioactive substance hazard. One of the main hazards is the risk of a fire, which is present in every hard coal mine due to the combustible nature of the raw material used, which is coal.

Fires occurring in mine workings can be divided into technical fires, which are called exogenic fires due to the external nature of the applied source causing ignition, and endogenic fires, associated with the natural low-temperature oxidation of coal and the possibility of its self-ignition during the accumulation of thermal energy in the place of self-ignition.

Both exogenous and endogenous fires have occurred in coal mining in the last five years, and their number is shown in Table 1.

Wprowadzenie

Górnictwo węgla kamiennego jest nadal jednym z głównych elementów polskiej infrastruktury krytycznej, związanej z produkcją energii elektrycznej. Węgiel energetyczny dostarczany do elektrowni konwencjonalnych eksploatowany jest obecnie w dwóch spółkach węglowych – Polskiej Grupie Górnicy S.A., w której skład wchodzi 7 kopalń oraz Jastrzębskiej Spółce Węglowej S.A., która zarządza 5 kopalniami. Kopalnie zrzeszone w Spółce PGG S.A. produkuje wyłącznie węgiel energetyczny na potrzeby produkcji energii elektrycznej oraz węgiel opałowy dla odbiorców indywidualnych, zaś spółka JŚW S.A. dostarcza w głównej mierze węgiel koksovski, niezbędny do produkcji stali, którego odbiorcą są państwa UE. Część produkcji stanowi także węgiel energetyczny, sprzedany w Polsce na potrzeby energetyczne i opałowe.

W czasie eksploatacji pokładów węgla kamiennego w wyrobiskach podziemnych występuje szereg zagrożeń ograniczających lub utrudniających jego eksploatację. Ogólnie zagrożenia występujące w kopalniach można podzielić na dwie grupy: zagrożenia techniczne związane z technicznymi aspektami prowadzenia robót górniczych oraz zagrożenia naturalne, które wywołane są przez naturę. Do tych zagrożeń wg przepisów górniczych należy zaliczyć: zagrożenia: tąpaniami, metanowymi, wyrzutami gazów i skał, wybuchem pyłu węglowego, klimatyczne, wodne oraz substancjami promieniotwórczymi. Jednym z głównych zagrożeń jest zagrożenie pożarowe, które występuje w każdej kopalni węgla kamiennego ze względu na palny charakter eksploataционnego surowca.

Pożary występujące w wyrobiskach górniczych można podzielić na pożary techniczne, które nazywa się pożarami egzogenicznymi ze względu na zewnętrzny charakter przyłożonego źródła powodującego zapłon oraz pożary endogeniczne, związane z naturalnym niskotemperaturowym utlenianiem się węgla i możliwością jego samozapłonu w czasie akumulacji energii cieplnej w miejscu samozagrzewania.

W ostatnich pięciu latach w kopalniach wystąpiły zarówno pożary egzogeniczne, jak i endogeniczne, a ich liczba została przedstawiona w tabeli 1.
Coal mines, while exploiting hard coal and coking coal seams, must apply ongoing preventive measures aimed at reducing fire hazard in coincidence with other hazards. Unfortunately, this kind of activities is often opposite to fire prevention.

The requirement to conduct constant prevention to reduce the hazards occurring during the exploitation of coal beds has an indirect impact on the price of the raw material itself.

According to §504 of the regulation on detailed requirements for running underground mining plants "underground fire shall be understood as the occurrence in the underground workings of an open fire, glowing or burning substance with an open flame, as well as the ascertainmment in the mine air of fumes or a quantity of carbon monoxide in the district air current greater than 25 dm3/min. It does not report and does not register as an underground fire the persistence in mine air of fumes, carbon monoxide in amounts greater than 25 dm3/min, resulting from:

- the use of permissible technological processes, in particular blasting work, welding work, the operation of combustion-powered machinery, or
- the release of carbon monoxide due to mining operations".

Due to the nature of exogenous fire development in hard coal mines, there are many combustible materials that can ignite and cause a fire due to improper handling.

These materials include, among others: coal, wood, electric cables, conveyor belts, lubricants, oils, plastic braziers, flammable and explosive gases, coal dust as well as paper, rags and all kinds of production waste such as containers for used chemicals.

Due to the ban on the use of open fire imposed at the end of the 1950s, the number of exogenic fires occurring is low. Currently used dispatching systems, equipped with automatic CO sensors, responsible, among other things, for continuous monitoring of the fire hazard, alert on any exceedance of the carbon monoxide PDS in mine workings [2] and notify the mine rescue services to assess the hazard and fight it. Since 2009, when continuous automatic CO-metering was introduced, all exogenous fires were detected within a short time and nipped in the bud.

Another group of underground fires are endogenous fires [3].

Table 1. Number of fires in Polish coal mining sector from 2017–2021

Type of fire / Typ pożaru	Years / Lata	2017	2018	2019	2020	2021	Total / Razem
Exogenic / Egzogeniczny		2	5	5	7	1	20
Endogenic / Endogeniczny		8	8	11	2	2	31
Total / Razem		10	13	16	9	3	51

Source: Statistics from the State Mining Authority in Katowice [1].

Zdroje: Dane statystyczne Wyższego Urzędu Górniczego w Katowicach [1].
the presence of crushed coal prone to low-temperature oxidation,
inflow of air to the place of coal accumulation,
possibility of accumulation of heat energy released during the coal oxidation reaction [4].

In case of endogenous fire hazard, the exploited coal seams have been divided into 5 groups of the spontaneous combustion liability of coal. According to the PN-93/G-04558 standard [5–6], one differentiates between coals of very low, low, medium, high and very high liability to spontaneous combustion. Depending on the spontaneous combustibility group, mines select appropriate fire prevention measures already at the level of creating a technical design of the longwall panel.

Although endogenous fires do not pose a direct threat to the crew working in the excavations due to the fact that they develop over a long period of time, ranging from several days to even several weeks, their development may result in the necessity to temporarily close off the exploited longwall panel and apply extensive fire prevention measures in order to restore the longwall for further exploitation. Preventive works connected with firefighting can be divided into active and passive.

Active firefighting measures are taken, similar to those used for typical fires on the surface, using firefighting equipment such as fire pipes, fire extinguishers, hydrants, bulk materials, fire blankets and equipment for administering extinguishing media. An extension of fire prevention is preventive work, which is carried out only in mine workings to prevent the spread of fire. As part of this prevention measures, building materials are used which make it possible to build isolation dams in order to enclose the fire-prone area of the workings.

If all active forms of prevention make it impossible to extinguish the fire, passive preventive measures are taken. The main element of such works is surrounding the fire area with explosion-proof isolation dams in order to cut off the inflow of air with oxygen to the fire area. Subsequently, work is carried out to equalise the pressure (aerodynamic potential) around the fire area in order to reduce the migration of air through the fire area. The aim is to reduce the supply of oxygen to the fire focus and self-extinguish. Passive prevention work can take several months.

In the context of endogenous fires, which most often occur in the coal seam or in cave-ins, i.e. areas after the coal seam has been removed, active prevention is used. Because of the difficult direct access to places where endogenous fires may occur, directional drilling is used to inject water or mixtures of water and power plant waste.

For endogenous fires, the main prevention focuses on two aspects:
- constant monitoring of the fire risk through gas sampling for the so-called “early detection of endogenous fires”;
- the application of prevention methods based on restricting the flow of air with oxygen to areas where there are remnants of crushed coal.

The early detection of underground fires is based on three basic indices; the CO quantity index (V_{CO}), the CO rise index (ΔCO) and the Graham index (G) [2]. The first two indices make it possible to assess the hazard at measuring stations located at the inlet zwallcałs. Od 2009 roku, kiedy to wprowadzono stałą, automatyczną CO-metrię wszystkie pożary egzogeniczne były wykryte w krótkim okresie czasu i zlikwidowane w zarodku.

Inną grupę pożarów podziemnych stanowią pożary endogeniczne [3]. Do rozwoju tego typu pożaru niezbędne są trzy elementy:
- obecność rozdrobnionego węgla skłonnego do niskotemperaturowego utleniania,
- dopływ powietrza do miejsca nagromadzenia węgla,
- możliwość akumulacji energii cieplnej wydzielającej się w czasie reakcji utleniania węgla [4].

Biorąc pod uwagę skłonność do samozapalenia i wystąpienie pożaru endogenicznego, eksploatowane pokłady węgla zostały podzielone na pięć grup samozapalności. Zgodnie z normą PN-93/G-04558 [5–6] różni się węgla o bardzo małej, małej, średniej, dużej i bardzo dużej skłonności do samozapalenia. W zależności od grupy samozapalności kopalnie dobierają odpowiednią profilaktykę przeciwpożarową już na poziomie tworzenia projektu technicznego ściany eksploatacyjnej.

Ze względu na długotrwały okres rozwoju pożaru endogenicznego, trwający od kilku dni do nawet kilku tygodni, nie są one bezpośrednim zagrożeniem dla pracującej w wyrobiskach załogi, ale w konsekwencji ich rozwoju może dojść do konieczności czasowego otamowania rejonu ściany eksploatacyjnej i stosowania szerokiej zakrojonej profilaktyki ppoż. w celu przywrócenia ściany do dalszej eksploatacji. Prace profilaktyczne związane ze zwalczaniem pożarów można podzielić na aktywne i pasywne.

W ramach aktywnego zwalczania zagrożenia pożarowego stosuje się podobną profilaktykę do przytypowych pożarach na powierzchni, wykorzystując sprzęt gaśniczy w postaci rurociągów ppoż., gaśnic, hydrantów, materiałów syrykowych, koców gaśniczych oraz sprzętu do podawania mediów gaśniczych. Rozszerzeniem profilaktyki ppoż. są prace profilaktyczne, które wykonuje się tylko w wyrobiskach górniczych w celu uniemożliwienia rozprzestrzeniania się pożaru. W ramach tej profilaktyki stosuje się materiały budowlane, umożliwiające postawienie tam izolacyjnych w miejscu wystąpienia pożaru.

W przypadku gdy wszelkie aktywne formy profilaktyki unie-możliwiają ugaszenie pożaru, przystępuje się do prac profilaktycz-nych pasywnych. Głównym ich elementem jest otamowanie rejonu wyrobisk za pomocą tam izolacyjnych przeciwpyrywowych w celu odcienienia dopływu powietrza z tlenem do ogniaska pożarowego. W dalszej kolejności prowadzi się prace związane z wyrówna- niem ciśnień (potencjału aerodynamicznego) wokół pola pożarowego we w celu ograniczenia migracji powietrza przez rejon, w którym wystąpił pożar. Ma to na celu ograniczenie dopływu tlenu do ogniaskiego pożaru i samougaszenie. Prace profilaktyczne pasywne mogą trwać nawet kilka miesięcy.

W ramach pożarów endogenicznych, które najczęściej występują w caliźnie węglowej lub zrobach zawalowych (czyli miejscach po wybraniu pokładu węgla) stosuje się profilaktykę aktywną. Bezpośredni dostęp do miejsc, w których może dojść do powstania pożaru endogenicznego jest utrudniony, dlatego stosuje się wiercenia kierunkowe w celu podawania wody lub mie- szanin wody z odpadami pochodzącymi z elektrowni.

SAFETY & FIRE TECHNOLOGY 185
and outlet to/from the excavations in the longwall region, while the Graham index makes it possible to assess the fire hazard in the caving left after the exploited hard coal seam (see Figure 1).

W przypadku pożarów endogenicznych główna profilaktyka skupia się na dwóch aspektach:

– stałym monitorowaniu zagrożenia pożarowego poprzez pobieranie prób gazowych do tzw. wczesnego wykrywania pożarów endogenicznych,

– stosowania metod profilaktyki opartych na ograniczeniu dopływu powietrza z tlenem do miejsc, w których występują resztki rozkruszonego węgla.

Wczesne wykrywanie pożarów podziemnych oparte jest na trzech podstawowych wskaźnikach: ilości CO (V_{CO}), przyrostu CO (ΔCO) oraz Grahama (G) \[2\]. Dwa pierwsze wskaźniki umożliwiają ocenę zagrożenia na stacjach pomiarowych zlokalizowanych na wlocie i wylocie do/z wyrobisk rejonu ściany, zaś za pomocą wskaźnika Grahama ocenia się zagrożenie pożarowe w zrobach zawalowych pozostałych po wyeksploatowanym pokładzie węgla kamiennego (zob. ryc. 1).

![Diagram of the arrangement of measuring stations for the measurements of fire hazard in the area of the longwall](image1)

Figure 1. Diagram of the arrangement of measuring stations for the measurements of fire hazard in the area of the longwall.

Rycina 1. Schemat rozmieszczenia stacji pomiarowych do pomiarów zagrożenia pożarowego w rejonie ściany eksploatacyjnej.

Source: Own elaboration based on [7].

Źródło: Opracowanie własne na podstawie [7].

One of the main ways of limiting the start and development of endogenous fires is the use of inert gases (nitrogen, carbon dioxide), with nitrogen being the most commonly used because of the lower risk of an anaerobic atmosphere developing in mine workings in the event of it leaking into the workings. Inert gases are fed to the goafs of longwalls using means of pipelines built into the mine workings. The place where the gas is fed into the pipeline is located on the surface. Gas is obtained by using two methods: the gasification method using liquid nitrogen or carbon dioxide, or the method for extracting nitrogen from atmospheric air \[8\]. The gas yield using both methods is approximately 700 Nm\(^3\)/h.

Prevention works related to the fire hazard are currently applied practically in all active faces longwalls to limit the development of spontaneous coal combustion.

Jednym z głównych sposobów ograniczenia powstania i rozwoju pożarów endogenicznych jest stosowanie gazów obojętnych (AZOT, ditenek węgla), przy czym najczęściej wykorzystuje się azot ze względu na mniejsze ryzyko powstania atmosfery beztlenowej w wyrobiskach górniczych w przypadku jego wycieków do wyrobisk. Gazy obojętne podawane są do zrobów zawalowych ścian z wykorzystaniem rurociągów zabudowanych w wyrobiskach górniczych. Miejsce podawania gazu do rurociągu zlokalizowane jest na powierzchni. Gaz otrzymuje się na dwa sposoby: wykorzystując metodę zgazowania ciekłego azotu lub ditenku węgla lub metodę pozyskiwania azotu z powietrza atmosferycznego \[8\]. Wydajność gazu z wykorzystaniem obu metod to ok. 700 Nm\(^3\)/godz.

Prace profilaktyczne związane z zagrożeniem pożarowym stosowane są obecnie praktycznie we wszystkich czynnych
Due to the necessity to continuously carry out prevention works related to the fire hazard in mine workings, mines incur considerable costs of their application all the time.

Preventive works and their costs for a sample on the example of a longwall panel

Longwall face 1 was operated in the longwall system with a roof collapse. The length of the face was 243 m, and its operational height was 1.5–2.0 m. The longwall length was 834 m. The ventilation was carried out in the inverted "Y" mode from the boundaries (see Figure 2), and air was supplied to the wall through heading 1 and freshened up through heading 2.

The longwall had an average output of 706 Mg/day. The exploitation period on the longwall was 523 days, and the total output was 369,320 Mg.

The longwall faced all hazards related to ventilation, such as: methane hazard category IV, fire hazard – coal self-ignition group I, critical climate hazard level I and coal dust explosion hazard class B. There were no other natural hazards. The main parameters of the longwall are summarised in Table 2.

As part of fire hazard prevention, mainly inert gases (N₂ and CO₂) were used, which were continuously fed into the goafs in order to create an anaerobic atmosphere. To limit air migration into the caving goafs, chemical foams and antipyrogenic materials were used along the entire length of the longwall, behind the mechanised lining sections, in order to prolong the fire incubation time. Mineral materials in the form of mineral-cement binders were also used to seal isolation dams and isolation plugs rebuilt with the progress of the longwall on the line of the longwall caving and on the gallery headings.

Table 2. Characteristics of longwall 1 at the coalmine “B”

Parameter	Value
Length of longwall face / Długość ściany	243 m
Face height / Wysokość eksploatacyjna ściany	1.5–2.0 m
Longitudinal inclination of the longwall / Nachylenie podłużne ściany	2°–6°
Transverse inclination of the longwall face / Nachylenie poprzeczne ściany	-6°–5°
Panel length / Wybieg ściany	834 m
Mean output / Wydobycie średnie	706 Mg/day / 706 Mg/dobę
-----------------------------------	-------------------------
Exploitation system / System eksploatacji	Longitudinal retreat longwall mining with caving / Podłużny od granic
Ventilation system / Sposób przewietrznia	„Y“
Methane hazard / Zagrożenie metanowe	Methane hazard class IV / IV kategoria zagrożenia metanowego
Absolute methane emission / Metanowość kryterialna	29.54 m³CH₄/min
Fire hazard / Zagrożenie pożarowe	Spontaneous combustion group I / I grupa samozapałności
Spontaneous fire incubation time / Okres inkubacji pożaru	82 days / 82 dni
Coal dust explosion hazard / Zagrożeń wybuchem pyłu węglowego	Class B / Klasa B
Climatic hazard / Zagrożeń klimatycznych	Critical level I / Poziom krytyczny I
Virgin rock temperature / Temperatura pierwotna górotworu	32°C
Rock burst hazard / Zagrożenia tąpaniami	No rock burst propensity / Brak zagrożenia tąpaniami
Water hazard / Zagrożenia wodne	No water hazard / Brak zagrożenia wodnego
Longwall exploitation period / Okres eksploatacji ściany	523 days / 523 dni
Total output from the longwall / Całkowite wydobycie ze ściany	369,320 Mg

Source: Own elaboration based on [9].

Zródło: Opracowanie własne na podstawie [9].
The range of fire risk prevention works used in longwall 1, together with their unit costs, is summarised in Table 3.

Table 3. List of costs of fire prevention practices for longwall 1

No. / Lp.	Name of the cost / Nazwa kosztu	No./Amount / Ilość/Liczba	Unit cost [PLN] / Koszt jednostkowy [PLN]	Total cost [PLN] / Koszt całkowity [PLN]	
1.	Use of chemical materials: / Wykorzystanie materiałów chemicznych:				
	– light foams / – piany lekkie,	5,000 dm³	60 PLN/dm³	300,000.00 PLN	
	– hard foams / – piany ciężkie,	2,775 dm³	70 PLN/dm³	194,250.00 PLN	
	– antipyrogenic agents / – środki antypirogeniczne	1,000 dm³	60 PLN/dm³	60,000.00 PLN	
2.	Additional works for the application of chemical materials (bore-holes, injection) / Prace pomocnicze przy podawaniu materiałów chemicznych (wiercenie otworów, zatłaczanie)	Not applicable / Nie dotyczy			
3.	Use of mineral materials: / Wykorzystanie materiałów mineralnych:	220 Mg	740 PLN/Mg	162,500.00 PLN	
4.	Additional works on the application of mineral materials (bore-holes, injection) / Prace pomocnicze przy podawaniu materiałów mineralnych (wiercenie otworów, zatłaczanie)	Not applicable / Nie dotyczy			
5.	Cuboid concrete blocks / Betonity prostopadłościenne	3,000 pcs. / szt.	3.25 PLN/pcs. / PLN/szt.	9,750.00 PLN	
6.	Performance of packwalls (1 running meter) / Wykonawstwo pasów podsadzkowych (1 mb)	Not used / Nie stosowano			
7.	Other construction materials / Inne materiały budowlane	Not used / Nie stosowano			
8.	Laboratory tests of gas samples for early detection of spontaneous fires conducted by the mining facility / Badania laboratoryjne prób gazowych do wczesnego wykrywania pożarów endogenicznych wykonywane przez kopalnię	580 pcs. / szt.	25 PLN/pcs./ PLN/szt.	14,500.00 PLN	
9.	Laboratory tests of gas samples for early detection of spontaneous fires conducted in order / Badania laboratoryjne prób gazowych do wczesnego wykrywania pożarów endogenicznych wykonywane na zlecenie	450 pcs. / szt.	170 PLN/pcs./ PLN/szt.	76,500.00 PLN	
10.	Additional measurements (thermographic camera, pyrometer) / Pomiar pomocniczy (kamera termowizyjna, pirometr) /	Yes / Tak	Camera / Kamera 200 h Pyrometer / Pirometr 150 h		
11.	Use of inert gases – N₂ or CO₂ / Zużycie gazów inertnych – N₂ lub CO₂	CO₂	249,837.5 m³	1.78 PLN/m³	444,710.75 PLN
	Zużycie gazów inertnych – N₂ lub CO₂	N₂	816,088.4 m³	0.77 PLN/m³	628,388.07 PLN
12.	Inertization works / Obsługa prac inertyzacyjnych	–	–	–	
13.	Lease or cost of use of inertization devices / Dzierżawa lub koszt użytkowania urządzeń inertyzacyjnych	420 days / dni	2,550 PLN/day / PLN/doba	1,071,000.00 PLN	
14.	Man–days related to preventing the fire hazard / Robocznictwo związane ze zwalczaniem zagrożenia pożarowego	450 man-days / dniów	358.00 PLN	164,680.00 PLN	
15.	Man–days of the mine rescue workers working at the preventive works / Robocznictwo ratowników górniczych przy pracach profilaktycznych	2,120 man-days / dniów	489.00 PLN	1,036,680.00 PLN	
16.	Use of water and other utilities / Zużycie wody i innych mediów	4,200 m³ water / wody	–	–	
17.	Total cost of the preventive works / Całkowity koszt działań profilaktycznych	–	–	4,162,958.82 PLN	

Source: Own elaboration based on [9–10].

Źródło: Opracowanie własne na podstawie [9–10].
As it results from the statement (see Table 3), the costs of fire hazard prevention for one longwall are not low. The biggest cost is represented by the use of inert gases and man-days connected with the prevention works, especially for the mine rescuers who conduct fire prevention works in hard coal mines.

In the further part of the article, an analysis of the costs of prophylactic works for fire hazard for selected longwalls of two coalmining companies will be presented on the basis of the developed cost indices.

Prevention costs and cost indicators for longwalls

The following cost indicators [11–14] have been developed to assess the cost of fire prevention:

- percentage share of the cost of prevention in relation to the obtained revenue U_p, \%,
- cost of prevention per 1 Mg of mined coal K_{pM} PLN/Mg,
- cost of prevention calculated per 1 m of wall progress K_{pm} PLN/m,
- cost of prevention calculated per 1 day of wall progression K_{pd} PLN/day.

The percentage share of the prevention measure costs U_p was calculated using the formula:

$$U_p = \frac{K_p}{P_e} \cdot 100\% \; [\%]$$ \hspace{1cm} (1)

where:

K_p – prevention cost, PLN,
P_e – total revenue from coal sold, PLN.

The cost of prevention per 1 Mg of mined coal K_{pM} was calculated based on the formula:

$$K_{pM} = \frac{K_p}{W_c} \; [\text{PLN/Mg}]$$ \hspace{1cm} (2)

where:

K_p – prevention cost, PLN,
W_c – total output from the longwall face, Mg.

The cost of prevention calculated per 1 m of longwall face progress K_{pm} was calculated according to the formula:

$$K_{pm} = \frac{K_p}{W_{se}} \; [\text{PLN/m}]$$ \hspace{1cm} (3)

where:

K_p – prevention cost, PLN,
W_{se} – total run of the longwall face, m.

Koszty profilaktyki i wskaźniki kosztów dla ścian eksploatacyjnych

In the further part of the article, an analysis of the costs of prophylactic works for fire hazard for selected longwalls of two coalmining companies will be presented on the basis of the developed cost indices.

Jako wynika z zestawienia (zob. tab. 3) koszty profilaktyki zagrożenia pożarowego dla jednej ściany eksploatacyjnej nie są niskie. Największy koszt stanowi stosowanie gazów obojętnych oraz roboczodniówki związane z pracami profilaktycznymi, w szczególności ratowników górniczych, którzy prowadzą w kopalniach węgla kamiennego prace w ramach profilaktyki przeciwpożarowej.

W dalszej części artykułu zostanie przedstawiona analiza kosztów prac profilaktycznych zagrożenia pożarowego dla wybranych ścian eksploatacyjnych dwóch spółek węglowych, na podstawie opracowanych wskaźników kosztów.

W celu oceny kosztów profilaktyki zagrożenia pożarowego zostały opracowane następujące wskaźniki kosztów [11–14]:

- udział procentowy kosztów profilaktyki w stosunku do uzyskanego przychodu U_p, \%,
- koszt profilaktyki w przeliczeniu na 1 Mg wydobycie K_{pM} zł/Mg,
- koszt profilaktyki w przeliczeniu na 1 mb postępu ściany K_{pm} zł/m,
- koszt profilaktyki w przeliczeniu na 1 dobę biegu ściany K_{pd} zł/dobę.

Udział procentowy kosztów profilaktyki U_p obliczony został na podstawie wzoru:

$$U_p = \frac{K_p}{P_e} \cdot 100\% \; [\%]$$ \hspace{1cm} (1)

gdzie:

K_p – koszt profilaktyki, zł,
P_e – przychód całkowity ze sprzedanego węgla, zł.

Koszt profilaktyki w przeliczeniu na 1 Mg wydobycie węgla K_{pM} obliczony został na podstawie wzoru:

$$K_{pM} = \frac{K_p}{W_c} \; [\text{zł/Mg}]$$ \hspace{1cm} (2)

gdzie:

K_p – koszt profilaktyki, zł,
W_c – całkowite wydobycie ze ściany, Mg.

Koszt profilaktyki w przeliczeniu na 1 mb postępu ściany K_{pm} obliczony został na podstawie wzoru:

$$K_{pm} = \frac{K_p}{W_{se}} \; [\text{zł/m}]$$ \hspace{1cm} (3)

gdzie:

K_p – koszt profilaktyki, zł,
W_{se} – wybieg całkowity ściany, m.
The cost of prevention calculated per 1 day of the longwall face run \(K_{\text{d}} \) was calculated using the formula:

\[
K_{\text{d}} = \frac{K_{\text{P}}}{l_{\text{d}}} \quad [\text{PLN/day}]
\]

where:

- \(K_{\text{P}} \) – prevention cost, PLN,
- \(l_{\text{d}} \) – number of working days of the longwall run, day.

Calculated cost indices for exemplary longwalls of two coal mining companies are presented in Table 3.

The analysis of the costs of preventive works was carried out for the data in the year 2020. To compare the costs of preventive works under the fire hazard, the average annual price of one tonne of thermal coal was determined according to the price of coal in ARA ports (Amsterdam-Rotterdam-Antwerp). In 2020, this price amounted to 56.05 USD [15], which, when converted to PLN according to the average annual USD exchange rate in the National Bank of Poland [16], gives 218.47 PLN. It is worth noting that the average annual retail price of 1,000 kg of coal in Poland in 2020 was PLN 887.95 [17].

The analysis of the costs of the preventive works was conducted for 16 longwalls operated in the mines of two coal mining companies.

The costs of the preventive works, with cost indices are summarised in Table 4.

Table 4. Costs and ratios of fire prevention costs for selected longwalls of two coal mining companies

Longwall faces / Sciany	Total coal output / Wydobycie całkowite \(W_c \) Mg	Total revenue / Przychód całkowity \(P_c \) PLN	Cost of the fire prevention / Koszt profilaktyki ppoż. \(K_{\text{PP}} \) PLN	Cost percentage constituted by fire prevention / Udział kosztu profilaktyki ppoż. na 1 Mg wydobycia \(U_{\text{PP}} \) %	Cost of the fire prevention per 1 Mg of the output / Koszt profilaktyki ppoż. na 1 Mg wydobycia \(K_{\text{PP}} \) PLN/Mg	Cost of the fire prevention per 1 meter of advancement / Koszt profilaktyki ppoż. na 1 m postępu ściany \(K_{\text{PP}} \) PLN/m	Cost of fire prevention per 1 day of advancement / Koszt profilaktyki ppoż. na 1 dobę biegu ściany \(K_{\text{PP}} \) PLN/dobę / PLN/day
Longwall face / Sciana 1A	1,303,819	284,845,536.93	1,840,149.90	0.65	1.41	1,368.14	1,860.62
Longwall face / Sciana 2A	558,018	121,910,192.46	7,475,712.70	6.13	13.40	9,772.17	27,585.65
Longwall face / Sciana 3A	389,392	85,070,470.24	2,399,711.70	2.82	6.16	2,112.42	21,236.38
Longwall face / Sciana 4A	561,807	122,737,975.29	3,694,356.77	3.01	6.58	5,166.93	19,141.74
Longwall face / Sciana 5A	1,237,743	270,409,713.21	11,749,548.56	4.35	9.49	8,969.12	24,788.08
Longwall face / Sciana 6A	346,417	75,681,721.99	1,573,923.75	2.08	4.54	3,703.35	3,944.67
Longwall face / Sciana 7A	487,795	106,568,573.65	4,858,262.01	4.56	9.96	10,017.03	5,722.33
Longwall face / Sciana 8A	106,802	23,333,032.94	750,765.04	3.22	7.03	3,575.07	5,865.35
The analysis of the costs of the prevention works under the fire hazard covered 16 exemplary longwall faces operated in the mines of two mining companies. Previous research contradicts the thesis that the costs of preventive works should increase in case of a higher fire hazard group. This is because of the fact that in the mines where the safety culture is higher, the costs of prevention are also higher, but there are less frequent situations where the danger increases and there is a need to introduce additional active prevention. Nor do prevention costs depend on the total income from the longwall. This is clearly visible in Figure 3 in the case of the first two longwall faces, where for longwall face 1A the total income is the highest among all analysed longwalls, while the cost of fire prevention is low.

In longwall face 2A the cost of prevention in relation to the total income is already noticeable.

Table: Cost of fire prevention

Longwall faces / Ściany	Total coal output / Wydobycie czarnego węgla Wc / Mg	Total revenue / Przychód całkowity Pr / PLN	Cost of the fire prevention / Koszt profilaktyki ppoż. Kpp / PLN	Cost percentage constituted by fire prevention / Udział kosztu profilaktyki ppoż. na 1 Mg wydobycia PLN/Mg	Cost of the fire prevention per 1 Mg of the output / Koszt profilaktyki ppoż. na 1 Mg wydobycia KPP poż. / PLN/Mg	Cost of the fire prevention per 1 meter of advancement / Koszt profilaktyki ppoż. na 1 m postępu ściany / KPP poż. / PLN/m	Cost of fire prevention per 1 day of advancement / Koszt profilaktyki ppoż. na 1 dobę biegu ściany / KPP poż. / PLN/dobę / PLN/day
Longwall face / Ściana 1B	369,320	80,685,340.40	4,162,958.82	5.16	11.27	4,991.56	7,959.77
Longwall face / Ściana 2B	534,585	116,790,784.95	3,909,027.83	3.35	7.31	5,706.61	11,954.21
Longwall face / Ściana 3B	522,280	114,102,511.60	3,153,754.20	2.76	6.04	3,391.13	11,065.80
Longwall face / Ściana 4B	175,964	38,442,855.08	806,395.04	2.1	4.58	2,643.92	5,305.23
Longwall face / Ściana 5B	713,995	155,986,487.65	4,709,123.50	3.02	6.60	6,765.98	16,072.09
Longwall face / Ściana 6B	441,811	96,522,449.17	1,861,078.20	1.93	4.21	1,988.33	10,947.52
Longwall face / Ściana 7B	252,711	55,209,772.77	497,764.32	0.9	1.97	949.93	11,739.79
Longwall face / Ściana 8B	604,617	132,090,675.99	2,722,371.18	2.06	4.50	3,974.26	16,399.83

Source: Own elaboration based on [9–10].

Zhodło: Opracowanie własne na podstawie [9–10].
The share of the fire prevention costs according to formula (1) is the quotient of the prevention cost KP to the total revenue from coal sold PC. As indicated in the example of the longwall face No 1 of the "B" mine, the highest cost of prevention results from the works related to inertization of caving goafs of the longwall and the costs of working days of the mine rescuers, who take part in the prevention works. According to Figure 4, the share of fire prevention costs varies greatly and ranges from 0.65% to 6.13% for company A and from 0.9% to 5.16% for company B. The average value of the share of fire prevention costs in company A was 3.35%. In case of company B, the value is slightly lower, as it amounted to 2.66%.

Figure 3. Costs of fire prevention in relation to total revenue of the analysed longwall faces
Rycina 3. Koszty profilaktyki przeciwpożarowej w stosunku do przychodu całkowitego w analizowanych ścianach eksploatacyjnych
Source: Own elaboration based on Table 4.
Źródło: Opracowanie własne na podstawie tabeli 4.

Figure 4. Cost percentage constituted by fire prevention in the analyzed longwall faces
Rycina 4. Udział kosztów profilaktyki przeciwpożarowej w analizowanych ścianach eksploatacyjnych
Source: Own elaboration based on Table 4.
Źródło: Opracowanie własne na podstawie tabeli 4.
The main index characterises the prevention costs is the fire prevention cost per 1 tonne of coal. The values of this index are presented in Figure 5. The values of the index are also highly diversified. The lowest cost among the analysed longwalls occurred in longwall face 1A and amounted to 1.41 PLN/Mg of coal, while the highest cost occurred in longwall face 2A and amounted to 13.4 PLN/Mg. According to the calculations, this is as much as a 5.48% difference in the cost of prophylaxis in relation to the price of 1 tonne of coal. In case of the analysed longwalls of mining company B, the difference in costs is not so great, as it is in the range of 1.97–11.27 PLN/Mg. The average values of the index are respectively 7.32 PLN/Mg for company A and 5.81 PLN/Mg for company B, which represents 3.35% of the average coal price for company A and 2.65% of the average coal price for company B.

Figure 5. Cost of the fire prevention per 1 Mg of the output in the analysed longwall faces

Quite interesting results were obtained for the last two indices; fire prevention cost per 1m of the longwall progress (see Figure 6) and fire prevention cost per 1 day of the longwall run (see Figure 7). The analysed indices show more tangible how high the costs are incurred by the mines in relation to the fire prevention. In case of company A, among the analysed longwalls there are 3 for which the cost of fire prevention in terms of 1mb of the longwall progress is very high and amounts respectively to 9,772.17 PLN/m for longwall 2A, 8,969.12 PLN/m for wall 5A and 10,017.04 PLN/m for wall 7A. These are huge preventive costs considering that the average run of the longwall faces is around 1,000 m. There are also longwall faces with a relatively low value of the index, which was, for example, 1,368.14 PLN/m for longwall face 1A and 949.93 PLN/m for longwall face 7B. The average value of the index for both companies was 5,585.53 PLN/m and 3,801.47 PLN/m respectively.

The last analysed index is the prophylaxis cost per 1 day of the longwall face’s operation (see Figure 7), which shows how

Dość ciekawe wyniki uzyskano dla dwóch ostatnich wskaźników – kosztu profilaktyki przeciwpożarowej w przeliczeniu na 1 m postępu ściany (zob. ryc. 6) oraz kosztu profilaktyki przeciwpożarowej w przeliczeniu na 1 dobę biegu ściany (zob. ryc. 7). Analizowane wskaźniki pokazują bardziej dokładnie jak wysoko koszty ponoszą kopalnie w związku z stosowaną profilaktyką przeciwpożarową. W przypadku spółki A występują 3 ściany eksploatacyjne spośród analizowanych, dla których koszty profilaktyki przeciwpożarowej w przeliczeniu na 1 m postępu ściany jest bardzo wysoki i wynosi odpowiednio: 9772,17 zł/m dla ściany 2A, 8969,12 zł/m dla ściany 5A i 10 017,04 zł/m dla ściany 7A. Są to olbrzymie koszty zważali na średnią długość ściany wynosi ok. 1000 m. Są także ściany o stosunkowo niskiej wartości wskaźnika, który wyniósł przykładowo 1368,14 zł/m dla ściany 1A oraz 949,93 zł/m dla ściany 7B. Średnia wartość wskaźnika dla obu spółek wyniosła odpowiednio 5585,53 zł/m i 3801,47 zł/m.

Ostatnim analizowym wskaźnikiem jest koszt profilaktyki w przeliczeniu na 1 dobę biegu ściany (zob. ryc. 7), który
much the applied fire prophylaxis costs per day. This cost results directly from the time the longwall was in operation. The shorter the time, the higher the cost of prevention. The most expensive was the fire prevention of longwall face 2A, where the cost of daily prevention amounted to PLN 27,585.66 PLN/day. This was due to a very short exploitation period of the wall, amounting to only 271 days. In case of longwall face 7B, where the cost of daily prevention was only PLN 1,173.97 PLN/day, the exploitation period was very long and amounted to 424 days. The average values for both companies were 13,768.10 PLN/day for company A and 10,109.80 PLN/day for company B respectively.

Figure 6. Fire prevention costs per 1 meter of advancement in the analysed longwall faces

Rycina 6. Koszty profilaktyki przeciwpożarowej w przeliczeniu na 1 m postępu ściany w analizowanych ścianach eksploatacyjnych

Source: Own elaboration based on Table 4.

źródło: Opracowanie własne na podstawie tabeli 4.

Figure 7. Fire prevention costs per 1 day of advancement in the analysed longwall faces

Rycina 7. Koszty profilaktyki przeciwpożarowej w przeliczeniu na 1 dobę biegu ściany w analizowanych ścianach eksploatacyjnych

Source: Own elaboration based on Table 4.

źródło: Opracowanie własne na podstawie tabeli 4.
Conclusions

Of the ventilation-related preventive measures currently used, fire hazard prevention and coal dust explosion prevention are practically always applied. Costs borne by the mines for its application may not be the highest among hazard prevention measures in hard coal mining, but they constitute an indispensable element of the total cost in the coal mining process. Unfortunately, the costs of prophylactics are gradually increasing as mining operations are carried out in the deeper parts of the mines.

Of the natural and technical hazard prevention, fire hazard prevention must be adapted to the prevailing geological-mining conditions. It cannot be precisely predicted and adjusted when developing a technical design of the longwall panel, which includes methods for hazard prevention. The projects in this field discuss only the main aspects of applying prevention in accordance with the mining regulations. The details of how to carry out fire prevention evolve with the progress of mining work and emerging problems related to the increase in fire hazard.

For many years attempts have been made to develop an appropriate algorithm for dealing with fire hazards. Unfortunately, to this day, it has not been fully developed and mines rely on methods developed within the framework of their own practice as well as practice in other mines during the prevention. Fire hazard is not the only hazard for which no methodology has been developed to reduce it. Methane and climate hazards are also such hazards. However, in case of both hazards, mining regulations directly indicate what preventive measures should be taken to limit the increase in the hazard. In case of the methane hazard, the regulations unequivocally indicate the necessity of applying demethylation, while in case of the climatic hazard, air-conditioning of the mine workings must be applied and/or a reduced working time for the crew must be introduced, and if the permissible temperature at the workplace is exceeded, the crew must be withdrawn until the permissible climate parameters are restored.

However, it must be said that fire prevention offers the most choice among the available methods of combating the hazard.

When comparing the costs of fire prevention to other natural and technical hazard prevention, it can be said that the costs of fire prevention are the lowest. However, there are situations where it is necessary to seal the longwall area together with precious valuable assets such as powered roof supports, shearers and other longwall equipment. However, it is not always possible to recover the lost equipment, and its cost often exceeds PLN 100 million. Therefore, a fire hazard prevention is the primary determinant of safety in the longwall area during coal seam mining.

The necessity of applying goal inertia takes the highest share of the cost of fire prevention. On the other hand, the highest share of the fire prevention cost is taken by the necessity to use caving inertia and working day’s pay spent on fire hazard control, especially working day's spent by the rescuers on fire prevention.

It should also be noted that the overriding condition for conducting mining works is the safety of the crew, and therefore the size of the costs of the preventive works is of little importance.

Podsumowanie

Spośród stosowanych obecnie prac profilaktycznych związanych z wentylacją, profilaktyka zagrożenia pożarowego obok profilaktyki zagrożenia wybuchem pyłu węglowego jest stosowana praktycznie zawsze. Koszty ponoszone w tym zakresie przez kopalnie nie są możliwe spostrzec, dając najniższe spostrzeń działań profilaktycznych w przypadkach zagrożeń występujących w górnictwie węglowym. Jednak stanowią nieodzowny element całkowitego kosztu w procesie eksploatacji węgla. W związku z prowadzeniem eksploatacji w coraz głębszych partiach kopalni koszty takich działań niestety sukcesywnie wzrastają.

Spośród działań profilaktycznych związanych z zagrożeniami naturalnymi i technicznymi profilaktykę zagrożenia pożarowego należy dostosowywać do panujących warunków geologiczno-górniczych i nie da się jej dokładnie przewidzieć i dostosować na etapie tworzenia projektu technicznego ściany, w ramach którego zawarte są metody prowadzenia profilaktyki zagrożeń. Projekty w tym zakresie omawiają jedynie główne aspekty jej stosowania zgodnie z przepisami górmicznymi. Szczególnie prowadzonej profilaktyki przeciwpożarowej ewoluują wraz z postępem robót górniczych i pojawiającymi się problemami związanymi ze wzrostem zagrożenia pożarowego.

Przez wiele lat podejmowano próby wypracowania odpowiedniego algorytmu postępowania w wypadku wystąpienia zagrożenia pożarowego. Niestety do dnia dzisiejszego cel ten nie został w pełni osiągnięty, a kopalnie w czasie prowadzonej profilaktyki bazują na metodach wypracowanych zarówno w ramach właściwej praktyki, jak i praktyk postępowania w innych zakładach górniczych. Zagrożenie pożarowe nie jest jedynym zagrożeniem, dla którego nie została wypracowana metodyka postępowania w celu jego ograniczenia. Są nimi także zagrożenie metanowe i klimatyczne. Jednak w ramach obu zagrożeń przepisy górnicze wskazują bezpośrednio, jakie elementy profilaktyki należy przedsięwziąć, aby ograniczyć wzrost zagrożenia. W przypadku zagrożenia metanowego przepisy jednoznacznie wskazują na konieczność prowadzenia lub stosowania odmetanowania, w razie wystąpienia zagrożenia klimatycznego należy stosować klimatyzację wyrobisk górniczych oraz/lub wprowadzić skrócony czas pracy załog, a w przypadku przekroczenia dopuszczalnej temperatury na stanowisku pracy wycofać załogę do czasu przywrócenia dopuszczalnych parametrów klimatu.

Należy jednak zauważyć, że to właśnie profilaktyka zagrożenia pożarowego daje najwięcej możliwości wyboru spostrzeń dostępnych metod walki z zagrożeniem.

Porównując koszty profilaktyki przeciwpożarowej do innych profilaktyk zagrożeń naturalnych i technicznych można powiedzieć, że są one najniższe. Zdarzają się jednak sytuacje, w których dochodzi do konieczności otamowania rejonu ściany wraz z wysokocennym majątkiem w postaci obudowy zmechanizowanej, kombajnu ścianowego i reszty wyposażenia ściany. Nie zawsze zachodzi jednak możliwość odzyskania utraconego sprzętu, a jego koszt to niejednokrotnie wartość przekraczająca 100 mln zł. Dlatego to właśnie profilaktyka zagrożenia pożarowego jest głównym wyznacznikiem bezpieczeństwa w rejonie ściany w czasie eksploatacji pokładów węgla.
Najwyższy udział kosztu profilaktyki przeciwpożarowej stanowi inertyzacja zrabów zawalowych oraz wynagrodzenia za robocznodniówki związane ze zwalczaniem zagrożenia pożarowego, w szczególności robocznodniówki ratowników przeprowadzane w ramach prac profilaktycznych. Należy też zaznaczyć, że nadrzędnym warunkiem prowadzenia robót górniczych jest bezpieczeństwo załogi, dlatego wielkość kosztów prowadzonych prac profilaktycznych nie ma większego znaczenia.

Literature / Literatura

[1] Stan bezpieczeństwa i higieny pracy w górnictwie, https://www.wug.gov.pl/bhp/zdarzenia [dostęp: 13.03.2022 r.]

[2] Rozporządzenie Ministra Energii z dnia 23 listopada 2016 r. (z późn. zm.) w sprawie szczegółowych wymagań dotyczących prowadzenia ruchu podziemnych zakładów górniczych (Dz. U. 2017, poz. 1118.).

[3] Maciejasz Z., Kruk F., Pożary podziemne w kopalniach, Część I, Wydawnictwo „Śląsk”, Katowice 1977.

[4] Cygankiewicz J., Prognozowanie procesu samozapalenia węgla w podziemiach kopalni, Wydawnictwo GIG, Katowice 2018.

[5] PN-93/G-04558 Węgiel kamienny – Oznaczanie wskaźnika samozapalności. Wydawnictwo „Śląsk”, Katowice 1996.

[6] Obracaj D., Korzec M., Vu T., The influence of the sample preparation on the result of coal propensity to spontaneous combustion in the high-temperature adiabatic method, „Journal of the Polish Mineral Engineering Society” 2021, 2 (1), 65–78.

[7] Strumiński A., Zwalczanie pożarów w kopalniach głębinowych, Wydawnictwo „Śląsk”, Katowice 1996.

[8] https://cen-rat.bytom.pl/inertyzacja/ [dostęp 13.03.2022].

[9] Projekty techniczne ścian eksplotacyjnych dwóch spółek węgla kamiennego (mat. niepublikowane).

[10] Projekty prac profilaktycznych dla ścian eksplotacyjnych dwóch spółek węgla kamiennego, (mat. niepublikowane).

[11] Musioł D., Działania w zakresie profilaktyk aerologicznych jako niezbędny element nakładów na wyдобycie w ścianach eksplotacyjnych, „Systemy wspomagania w inżynierii produkcji, Górnictwo – perspektywy i zagrożenia” 2016, 1 (13), 122–137.

[12] Musioł D., Koszty prac profilaktycznych w aspekcie zagrożenia metanowego dla wybranych rejonów ścian eksplotacyjnych, „Wiadomości Górnicze” 2017, 6, 2017, 317–326.

[13] Musioł D., Koszty profilaktyk aerologicznych w porównaniu do ceny węgla w warunkach jednej z kopalni węgla kamiennego, Systemy wspomagania w inżynierii produkcji, „Górnictwo Równoważonego Rozwoju” 2017, 6(2), 214–23.

[14] Musioł D., Ocena kosztów prac profilaktycznych w ramach zagrożenia klimatycznego na przykładzie wybranych ścian eksplotacyjnych, [w:] Wybrane zagrożenia aerologiczne w polskich kopalniach, W. Dziurzyński (red.), Wydawnictwo Archives of Mining Sciences, Kraków 2019, 193–206.

[15] https://www.wnp.pl/gornictwo/notowania/ceny_wegla [dostęp 14.03.2022].

[16] Statystyki średniego kursu Dolara Amerykańskiego w NBP za 2020 r.

[17] https://stat.gov.pl/sygnalne/komunikaty-i-obwieszczenia/ -lista-komunikatow-i-obwieszczen/komunikat-w-sprawie-przecietnej-sredniorocznej-ceny-detalicznej-1000-kg-wegla-kamiennego-w-2020-roku,53,8.html [dostęp 14.03.2022].