Novel pyrrolobenzodiazepine (PBD) benzofused hybrid molecules inhibit NF-κB activity and synergise with bortezomib and ibrutinib in hematological cancers. *Haematologica.*

https://doi.org/10.3324/haematol.2019.238584
Novel pyrrolobenzodiazepine benzofused hybrid molecules inhibit NF-κB activity and synergise with bortezomib and ibrutinib in hematological cancers

by Thomas Lewis, David B. Corcoran, David E. Thurston, Peter J. Giles, Kevin Ashelford, Elisabeth J. Walsby, Christopher D. Fegan, Andrea G.S. Pepper, Khondaker Miraz Rahman, and Chris Pepper

Haematologica 2020 [Epub ahead of print]

Citation: Thomas Lewis, David B. Corcoran, David E. Thurston, Peter J. Giles, Kevin Ashelford, Elisabeth J. Walsby, Christopher D. Fegan, Andrea G.S. Pepper, Khondaker Miraz Rahman, and Chris Pepper. Novel pyrrolobenzodiazepine benzofused hybrid molecules inhibit NF-κB activity and synergise with bortezomib and ibrutinib in hematological cancers.
Haematologica. 2020; 105:xxx
doi:10.3324/haematol.2019.238584

Publisher's Disclaimer.
E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Novel pyrrolobenzodiazepine benzofused hybrid molecules inhibit NF-κB activity and synergise with bortezomib and ibrutinib in hematological cancers

Thomas Lewis¹, David B. Corcoran², David E. Thurston², Peter J. Giles¹,³, Kevin Ashelford¹,³, Elisabeth J. Walsby¹, Christopher D. Fegan¹, Andrea G. S. Pepper⁴, Khondaker Miraz Rahman²* and Chris Pepper¹,⁴*

¹Division of Cancer & Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, ²School of Cancer and Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, ³Wales Gene Park, Heath Park, Cardiff, CF14 4XN, ⁴Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, BN1 9PX.

*These authors contributed equally to this work

Running title: Novel PBDs inhibit NF-κB in hematological cancers

Key words: pyrrolobenzodiazepine, multiple myeloma, chronic lymphocytic leukemia, NF-κB, synergy

Abstract word count: 218

Word count: 3322

Figures: 6

Corresponding author:
Professor Chris Pepper, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, BN1 9PX. Tel: 01273 678644 Email: c.pepper@bsms.ac.uk

Conflict of interests: All of the authors declare that they have no conflict of interests.
Abstract

Chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) are incurable hematological malignancies that are pathologically linked with aberrant NF-κB activation. In this study, we identified a group of novel C8-linked benzofused Pyrrolo[2,1-c][1,4]benzdiazepines (PBD) monomeric hybrids capable of sequence-selective inhibition of NF-κB with low nanomolar LD₅₀ values in CLL (n=46) and MM cell lines (n=5). The lead compound, DC-1-192, significantly inhibited NF-κB DNA binding after just 4h exposure and demonstrating inhibitory effects on both canonical and non-canonical NF-κB subunits. In primary CLL cells, sensitivity to DC-1-192 was inversely correlated with RelA subunit expression (r²=0.2) and samples with BIRC3 or NOTCH1 mutations showed increased sensitivity (P=0.001). RNA-sequencing and gene set enrichment analysis confirmed the over-representation of NF-κB regulated genes in the down-regulated gene list. Furthermore, in vivo efficacy studies in NOD/SCID mice, using a systemic RPMI 8226 human multiple myeloma xenograft model, showed that DC-1-192 significantly prolonged survival (P=0.017). In addition, DC1-192 showed synergy with bortezomib and ibrutinib; synergy with ibrutinib was enhanced when CLL cells were co-cultured on CD40L-expressing fibroblasts in order to mimic the cytoprotective lymph node microenvironment (P = 0.01). Given that NF-κB plays a role in both bortezomib and ibrutinib resistance mechanisms, these data provide a strong rationale for the use of DC-1-192 in the treatment of NF-κB-driven cancers, particularly in the context of relapsed/refractory disease.
Introduction

Nuclear factor kappa B (NF-κB) denotes a family of homo- and heterodimeric transcription factors composed of five subunits: p65 (Rel A), p50, Rel B, p52 and c-Rel [1]. These subunits exert their effects via the canonical or non-canonical signaling pathways [2]. NF-κB is maintained in an inactive state in the cytoplasm but following IκB kinase (IKK) activation NF-κB is shuttled into the nucleus where it exerts its transcriptional effects [3]. NF-κB regulates the transcription of genes that are essential for cell survival, proliferation, inflammation and invasion/metastasis. These processes are commonly dysregulated in cancers, including CLL and MM, leading to the constitutive aberrant activation of NF-κB [2-4]. Indeed, NF-κB has been shown to play a central role in disease progression and drug resistance in these hematological cancers [5,6]. Whilst treatment with currently established therapies, such as the proteasome inhibitor bortezomib or the BTK inhibitor ibrutinib, are initially effective in a significant proportion of patients [7,8], there is evidence to suggest that treatment with both of these agents causes an increase in NF-κB activation which has been linked to drug resistance and treatment failure [9,10]. Therefore, direct inhibition of NF-κB could potentially resensitize tumor cells, thus highlighting this transcription factor as a potential therapeutic target [11-13].

Pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are naturally occurring molecules produced by Streptomyces bacteria whose family members include anthramycin (Figure 1) and tomaymycin [14,15]. PBDs are a class of sequence-specific covalent DNA minor groove binding agents that are selective for GC-rich sequences, which have recently been evaluated as potential chemotherapeutic agents in clinical trials.
More recently, members of the PBD family have been developed as cytotoxic payloads for attachment to antibodies to form Antibody-Drug Conjugates (ADCs), and a number of these are currently undergoing clinical evaluation for the treatment of leukemia and lung cancer [18].

This study identified three lead compounds (DC-1-192, DC-1-92 and DC-1-170; Figure 1) from a library screen of 87 novel synthetic C8-linked benzofused PBD monomeric hybrids based on their *in vitro* cytotoxicity. The compounds were then further evaluated for their biological properties, including differential toxicity, in malignant and age-matched normal B- and T-cells. In terms of their mechanism of action, PBD monomers can recognise and bind to specific sequences of DNA and therefore have the potential to act as competitive inhibitors of transcription factors. Previous research has shown that PBD monomers such as GWL-78 preferentially inhibit the transcription factor NF-Y [19], whilst PBD monomers such as the DC-81-indole hybrid [20] and KMR-28-39 are potent NF-κB inhibitors [21]. The aim of this study was to determine the biological properties of these novel C8-linked benzofused PBD monomers by investigating their cytotoxic profiles in multiple myeloma cell lines, primary CLL cells and age-matched normal B- and T-lymphocytes. We went on to investigate their ability to inhibit NF-κB and whether they could potentiate the effects of the targeted agents bortezomib and ibrutinib, currently used in the treatment of myeloma and CLL, respectively.
Methods

Detailed methods can be found in Supplementary information.

Cell lines, primary CLL cells and normal lymphocytes

Primary chronic lymphocytic leukemia (CLL) cells (n=46) and age-matched normal B- and T-cells were obtained with informed consent in accordance with the ethical approval granted by South East Wales Research Ethics Committee (02/4806). In addition, five multiple myeloma cell lines, JJN3, U266, OPM2, MM.1S and H929 were obtained from DSMZ. The provenance of the cell lines was verified by multiplex PCR of minisatellite markers; all were certified mycoplasma-free.

Measurement of in vitro apoptosis

Apoptosis was assessed using Annexin V and propidium iodide labeling. Samples were analyzed using an Accuri C6 flow cytometer with CFlow software (BD Biosciences).

Enzyme Linked Immuno-sorbent Assay (ELISA) for NF-κB subunits

Nuclear levels of p65, p50, p52 and RelB DNA binding were assessed in JJN3 and U266 cells treated for 4h with DC-1-92, DC-1-170 (0nM-20nM) and DC-1-192 (0nM-5nM).

Synergy with bortezomib and ibrutinib

The synergy between the PBDs and bortezomib or ibrutinib was determined in the JJN3 cells and primary CLL cells respectively. Fixed molar ratios were derived from
experimentally-determined LD_{50} values for each PBD and clinically achievable concentrations of bortezomib and ibrutinib, respectively.

RNA Isolation and RNA-sequencing

JJN3 cells were treated with 20nM of either DC-1-170 or DC-1-192 for 4h. RNA was extracted using an RNeasy mini-kit (Qiagen) in accordance with the manufacturer’s instructions. 100-900ng of high-quality total RNA (RNA integrity number >8) was depleted of ribosomal RNA, and the sequencing libraries were prepared using the Illumina TruSeq Stranded Total RNA with Ribo-Zero Gold™ kit (Illumina Inc.).

In vivo systemic xenograft model of myeloma in NOD/SCID mice

NOD/SCID mice were sub-lethally irradiated prior to tail vein inoculation with the human myeloma cell line RPMI8226 (1 x 10^7) to initiate tumor development. The date of inoculation was denoted as Day 0; intravenous treatment with vehicle only; 0.05% DMSO in saline (n=7) or 1mg/kg of DC-1-192 (n=7) was started at Day 5. Survival was evaluated from the first day of treatment until death.

Statistical Analysis

All statistical analysis was performed using Graphpad Prism 6.0 software (Graphpad Software). Normal distribution of the data was established using the omnibus K2 test. Univariate comparisons were made using the Student’s t-test for paired and unpaired observations. All toxicity data from drug treatment were used to produce sigmoidal dose-response curves from which LD_{50} values were calculated. Toxicity data from synergy experiments were processed using CalcuSyn software using the
median effect method to subsequently calculate the combination index (CI) for each pair of agents; CI values less than 1 were indicative of synergy [22].

Results

Cytotoxic screening of PBD compounds identified three lead compounds

Initial cytotoxicity screening (trypan blue exclusion assay) of a library of 87 novel synthetic C8-linked benzofused PBD monomeric hybrids (PBDs) was carried out using the multiple myeloma cell line, JJN3. Three lead compounds were selected for further investigation based on their cytotoxic effects at nanomolar concentrations. The chemical structures of all three compounds, together with that of Anthramycin on which they are based, are shown in Figure 1.

In vitro and in vivo cytotoxicity of the lead PBD compounds in multiple myeloma cell lines

The relative cytotoxicity of the three lead compounds was then assessed in five different multiple myeloma cell lines, JJN3, U266, OPM2, MM.1S and H929 using an Annexin V/propidium iodide apoptosis assay. The cells were cultured for 48h in increasing concentrations (1nM-100nM) of DC-1-92, DC-1-170 and DC-1-192 and were compared with untreated controls. Each compound showed a dose-dependent increase in apoptosis; a representative example of the data generated is shown in Figure 2A. The dose-response curves for each compound were compared in each cell line using overlaid sigmoidal plots (Figure 2B) and the mean LD$_{50}$ values were then calculated for each treatment and plotted on the bar chart shown in Figure 2C. Although each cell line showed differential sensitivity to the three compounds, in every case DC-1-192 was the most cytotoxic PBD with DC-1-170 showing the least cytotoxicity (Figure 2D). The LD$_{50}$ values for DC-1-192 were compared
with the published NF-κB index value for each cell line [23]. The NF-κB index is the average of the log2 values for 10 NF-κB regulated genes (excluding BIRC3/clAP2); the higher the index value, the more NF-κB-dependent the cell line is deemed to be. With the exception of JJN3 cells, sensitivity to DC-1-192 appeared to be inversely associated with the NF-κB index; a concept we went on to explore in subsequent experiments. In order to investigate the anti-tumor effects of DC-1-192 \textit{in vivo}, we employed a systemic model of multiple myeloma in which NOD/SCID mice (two groups of seven mice) were inoculated with the human RPMI 8226 myeloma cell line (1x10^7 cells). Treatment was initiated 5 days after inoculation with either DC-1-192 (1mg/kg) or vehicle control. DC-1-192 was administered once per day (five days/week) for three weeks by intravenous injection and animals were monitored daily for morbidity and mortality. DC-1-192 significantly prolonged the survival of the mice; median survival in the DC-1-192-treated mice was 68 days versus 56 days in untreated mice (P = 0.017, HR = 2.98; Figure 2E).

\textit{Comparative cytotoxicity in primary CLL and normal B- and T-lymphocytes}

Primary CLL cells and age-matched normal B- and T-lymphocytes obtained from healthy donors were treated with increasing concentrations of DC-1-92, DC-1-170 and DC-1-192. Apoptosis was measured using CD19/CD3/Annexin V labelling to determine the percentage of apoptosis induced by the PBDs in CD19^+ B-cells and CD3^+ T-cells as shown in Supplementary Figure 1A. Supplementary Figure 1B shows the comparative dose-responses for each of the cell types indicating that normal lymphocytes were less susceptible to the effects of the PBDs. As was the case with the three multiple myeloma cell lines, DC-1-192 was the most potent cytotoxic agent in primary CLL cells. Supplementary Figures 1C and 1D
show that CLL cells were significantly more sensitive to the effects of the PBDs when compared with age-matched normal B- and T-lymphocytes.

DC-1-192 shows preferential cytotoxicity in CLL cells carrying a NOTCH1 or BIRC3 mutation

All of the CLL samples treated with DC-1-192 (n= 46) showed nanomolar LD$_{50}$ values with a mean LD$_{50}$ value for the entire CLL cohort of 3.8nM (Figure 3A). We next examined whether sensitivity to DC-1-192 was associated with any of the known prognostic markers. There was no significant difference in mean LD$_{50}$ value between $IGHV$ mutated and $IGHV$ unmutated samples (Figure 3B); CD38 positive and CD38 negative samples (\geq/<20%) (Figure 3C) and beta2 microglobulin high and low samples (\geq/<3.5mg/L)(Figure 3D). However, samples derived from patients with a BIRC3 (n=3) or NOTCH1 (n=11) mutation were significantly more sensitive to the effects of DC-1-192 (Figure 3E) suggesting that elevated NF-κB signalling may be a determinant of sensitivity [24, 25]. In keeping with this concept, the nuclear expression the NF-κB subunit p65 (RelA) was inversely correlated with DC-1-192 LD$_{50}$ values (Figure 3F).

Nuclear localisation of NF-κB subunits following treatment with PBDs

We have previously shown that PBD monomers, such as KMR-28-39, have NF-κB inhibitory effects [21]. We, therefore, determined the NF-κB inhibitory properties of this new series of compounds in two myeloma cell lines JNJ3 and U266. JNJ3 cells overexpress both the canonical and non-canonical NF-κB subunits and possess an EFTUD2-NIK fusion gene which lacks the TRAF3 binding domain resulting in the accumulation of a cytoplasmic EFTUD2-NIK
fusion protein. U266 cells exhibit a TRAF3 mutation causing the stabilisation of wild-type NIK protein [23,24]. Both cell lines were treated for 4h with up to 20nM of each agent and the relative change in nuclear p65 (RelA), p50, p52 and RelB DNA binding was determined as a function of the untreated control. Levels of c-Rel were not evaluated in this study as JJN3 cells show very low levels of this subunit relative to the dominant canonical subunits p65 and p50. In JJN3 cells, all the PBDs showed significant inhibition of p65, p50 and RelB but no significant reduction in p52 (Figure 4A). In contrast, U266 cells showed a significant reduction in the nuclear DNA binding of all four subunits (Figure 4B).

Transcriptional effects of DC-1-170 and DC-1-192 on JJN3 cells

As predicted, RNA-sequencing analysis of DC-1-170 and DC-1-192 revealed a dominant inhibitory effect on gene transcription with a smaller subset of genes showing increased transcription following exposure to the drug. In unsupervised hierarchical clustering, the samples clustered according to treatment condition (Figure 5A). Strikingly, 4040/5077 (80%) of the genes altered by exposure to the drugs were common to both PBD compounds (Figure 5B) suggesting that their structural similarity resulted in the inhibition of a conserved set of genes. Furthermore, Gene set enrichment analysis, using WebGestalt (WEB-based GEne SeT AnaLysi s Toolkit)[25], confirmed that NF-κB regulated genes were significantly over-represented in the down-regulated gene list, with a normalised enrichment score of -1.7750 (Figures 5C and 5D). These data suggest that inhibition of NF-κB target genes may contribute to the cytotoxicity of these compounds.

Synergy between DC-1-192 in combination with bortezomib or ibrutinib
Over expression of NF-κB is associated with chemotherapeutic drug resistance in both CLL and multiple myeloma [26,27]. Having established that DC-1-192 inhibited nuclear NF-κB DNA binding and down-regulated NF-κB target genes, we set out to determine whether these inhibitory properties could enhance the killing effect of both bortezomib and ibrutinib in the JJN3 myeloma cell line and primary CLL cells, respectively. To investigate synergy, JJN3 and primary CLL cells (n = 5) were treated with increasing concentrations of DC-1-192 both alone and in combination with bortezomib in JJN3 cells and ibrutinib in CLL samples. The fixed molar ratios employed in the combination studies were determined experimentally using the LD_{50} values calculated from the previous toxicity data. The fraction affected plots and isobologram plots for the drugs and drug combinations in JJN3 cells (Figure 6A), and in primary CLL cells (Figure 6B) show that the cytotoxic effects of DC-1-192 are potentiated by the addition of bortezomib and ibrutinib, respectively. Furthermore, the combination of DC-1-192 with bortezomib and ibrutinib showed synergy (CI values <1) at the level of LD_{50}, LD_{75} and LD_{90} with an incremental increase in synergistic effect from LD_{50} to LD_{90} (Figure 6C). Furthermore, DC-1-192 showed increased synergy with ibrutinib when primary CLL cells were co-cultured on CD40L-expressing fibroblasts (Figure 6D) suggesting that these agents may be particularly effective in the treatment of tissue resident CLL cells.

Discussion

NF-κB is a master regulator of a number of cellular processes that contribute to cancer progression including cell survival and proliferation. Furthermore, it is often implicated in drug resistance, highlighting its potential as a therapeutic target [12,13]. The interest in small molecular DNA-binding agents, such as the PBD
monomers, has increased in recent years due to their ability to selectively bind to specific sequences within the minor groove of DNA; a characteristic that separates them from traditional alkylating agents. This raises the possibility that they can selectively inhibit transcription factors [16], so this study set out to determine the \textit{in vitro} and \textit{in vivo} biological effects of a series of novel C8-linked PBD-benzofused hybrids.

Initially library screening identified three lead compounds. All three PBDs showed high potency in five different multiple myeloma cell lines with LD\textsubscript{50} values in the low nanomolar range. Subsequently, the PBDs showed similar high potency in a cohort of 46 primary chronic lymphocytic leukemia samples and significantly lower toxicity in normal age-matched B- and T-lymphocytes. The most cytotoxic PBD, DC-1-192, showed a 2.4-fold and 4.6-fold differential toxicity in CLL cells suggesting that this compound has a positive therapeutic index. We went on to show that DC-1-192 was well tolerated in a systemic \textit{in vivo} xenograft model of myeloma and significantly prolonged the survival of the mice.

Subset analysis of the CLL cohort data revealed that DC-1-192 was equipotent in poor prognostic groups including \textit{IGHV} unmutated cases (P=0.96). Furthermore, samples derived from patients with BIRC3 or NOTCH1 mutations showed significantly increased sensitivity to DC-1-192. These mutations are known to cause aberrant activation of NF-\kappaB signaling and are associated with resistance to chemoimmunotherapy and inferior clinical outcome [28-32]. Although these mutations are linked with non-canonical NF-\kappaB activation, here we showed that
nuclear expression of the canonical p65 subunit was a predictor of \textit{in vitro} sensitivity to DC-1-192.

Given these findings, we plotted the previously published NF-κB index for each of the myeloma cell lines [23] against their respective LD$_{50}$ for DC-1-192. 4/5 of the cell lines showed an inverse relationship between their NF-κB index and DC-1-192 LD$_{50}$ value suggesting that response to DC-1-192 was influenced by how NF-κB-dependent the cell lines were. JJN3 cells were the exception to this rule; these cells manifest a high NF-κB index (10.8) but were relatively resistant than the other four cell lines to the cytotoxic effects of DC-1-192 (mean LD$_{50}$ = 6nM). The reasons for this are likely to be multiple and may be unrelated to NF-κB, but it is worthy of note that JJN3 cells possess a cytoplasmic EFTUD2-NIK fusion gene, which may alter p100 processing to p52. Indeed, when we assessed the impact of the PBDs on nuclear NF-κB subunit DNA binding in JJN3 cells, all three compounds showed significant inhibition of the p65 and p50 canonical subunits as well as the non-canonical subunit RelB after 4h. In contrast, no significant change in p52 was observed following treatment with the PBDs. We subsequently repeated the experiments using the U266 cell line, which has a TRAF3 mutation leading to the cytoplasmic accumulation of NF-κB inducing kinase (NIK) [23,24]. These cells showed a significant reduction in all four NF-κB subunits including p52 following short-term treatment with PBDs.

The rapid reduction in nuclear NF-κB subunit expression indicates that NF-κB inhibition precedes apoptosis in these cells and may to contribute to the efficacy of the PBDs. Given the DNA binding charcteristics of these compounds, it seems
possible that they compete for NF-κB binding motifs, thereby inhibiting the transcription of NF-κB target genes. The reduction in nuclear NF-κB subunits observed in this study may be caused by the shuttling of unbound NF-κB back to the cytoplasm and/or targeted degradation [33,34].

Activation of NF-κB has also been implicated in the development of chemotherapeutic drug resistance in myeloma and CLL [35]. Several DNA damaging agents, including melphalan and fludarabine, have been shown to induce the activity of NF-κB, thereby contributing to cellular resistance to the cytotoxic effects of these treatments [6,36]. In myeloma, bortezomib has been shown to re-sensitise malignant cells to the effects of chemotherapy [37]. However, the emergence of a bortezomib-resistant sub-clones ultimately leads to relapse in many patients [38].

One putative mechanism of bortezomib resistance is the constitutive expression of NF-κB. Although bortezomib can prevent de novo activation of the canonical pathway, it has no significant effect on constitutive NF-κB activity [27]. In this study, we showed that direct competitive inhibition of NF-κB at the site of transcription led to the re-sensitisation of multiple myeloma cells to the effects of bortezomib. This synergistic effect is likely to be multi-factorial, but indicates that bortezomib and the PBDs have different molecular targets.

Similarly, in CLL bruton’s tyrosine kinase (BTK) has been shown to be a critical downstream mediator of BCR signaling that is often constitutively activated in CLL patients. The targeting of this kinase with the BTK inhibitor, ibrutinib has shown notable effects in patients with relapsed CLL [39,40] and this is mediated, at least in
part, by the distal inhibition of NF-κB [41]. However, emerging evidence of resistance mechanisms to ibrutinib strongly implicate NF-κB [42]. Here, we show that the combination of DC-1-192 with ibrutinib produced cytotoxic synergy suggesting that the PBDs and ibrutinib target NF-κB through different mechanisms and/or that they have other, non-overlapping, molecular targets. Furthermore, synergy was enhanced when primary CLL cells were co-cultured on CD40L-expressing fibroblasts in order to mimic the lymph node microenvironment. This suggests that PBDs may be particularly useful in targeting tissue resident tumor cells.

In summary, the novel PBDs evaluated in this study showed low nanomolar toxicity in both primary CLL cells and myeloma cell lines. In addition, primary CLL cells carrying BIRC3 or NOTCH1 mutations were preferentially sensitive to the cytotoxic effects of DC-1-192 suggesting that this agent may be a potential therapeutic option for these poor risk subsets. Mechanistically, the PBDs demonstrated promising dual inhibitory properties on both the canonical and non-canonical NF-κB pathways; a characteristic that has been previously linked to significant anti-tumor effects in multiple myeloma [43]. Furthermore, the PBDs showed in vitro synergy with bortezomib and ibrutinib in MM and CLL respectively, providing a strong rationale for the use of these agents in the treatment of relapsed/refractory B-cell neoplasms.

Acknowledgements

This work was supported by a grant (No. 12-1263/JGATCBR) from Worldwide Cancer Research (formerly AICR) to DET, KMR and CP in 2012. This support included a PhD
studentship held by DBC, which enabled all of the novel medicinal chemistry. CP, CDF and AGSP are also supported by a Bloodwise Programme Continuity Grant (18005).

Author contributions

TL performed experiments, analysed data and drafted the manuscript. DBC performed experiments, analysed data and revised the manuscript. KMR and DET conceived and supervised the synthetic chemistry and revised the manuscript, PJG, KA and AGSP analysed data and revised the manuscript. EJW analysed data and revised the manuscript. CDF provided vital reagents and revised the manuscript. CP conceived and supervised the cell biology experiments, analysed data and revised the manuscript.

Conflict of interest

All of the authors declare that they have no material conflict of interests.

References

1. Zheng C, Yin Q, Wu H. Structural studies of NF-κB signaling. Cell Res. 2011;21(1):183-195.
2. Gasparini C, Celeghini C, Monasta L, Zauli G. NF-κB pathways in hematological malignancies. Cell Mol Life Sci. 2014;71(11):2083-2102.
3. Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene. 2006;25(51):6706-6716.
4. Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G. Targeting NF-kappaB in hematologic malignancies. Cell Death Differ. 2006;13(5):748-758.
5. Abdi J, Chen G, Chang H. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Oncotarget. 2013;4(12):2186-2207.
6. Hewamana S, Alghazal S, Lin TT, et al. The NF-kappaB subunit Rel A is associated with in vitro survival and clinical disease progression in chronic lymphocytic leukemia and represents a promising therapeutic target. Blood. 2008;111(9):4681-4689.
7. Merchionne F, Perosa F, Dammacco F. New therapies in multiple myeloma. Clin Exp Med. 2007;7(3):83-97.
8. Byrd JC, Brown JR, O'Brien S, et al. RESONATE investigators. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213-223.
9. Hideshima T, Ikeda H, Chauhan D, et al. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood. 2009;114(5):1046-1052.
10. Ahn IE, Underbayev C, Albitar A, et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood. 2017;129(11):1469-1479.
11. Wang CY, Mayo MW, Baldwin AS. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science. 1996;274(5288):784-787.
12. Hideshima T, Chauhan D, Richardson P, et al. NF-kappaB as a therapeutic target in multiple myeloma. J Biol Chem. 2002;277(19):16639-16647.
13. Pepper C, Hewamana S, Brennan P, Fegan C. NF-kappaB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol. 2009;5(7):1027-1037.
14. Antonow D, Thurston DE. Synthesis of DNA-interactive pyrrolo[2,1-c][1,4]benzodiazepines (PBDs). Chem Rev. 2011;111(4):2815-2864.
15. Gerritana B. Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines. Med Res Rev. 2012;32(2):254-293.
16. Rahman KM, Vassoler H, James CH, Thurston DE. DNA Sequence Preference and Adduct Orientation of Pyrrolo[2,1-c][1,4]benzodiazepine Antitumor Agents. ACS Med Chem Lett. 2010;1(8):427-432.
17. Puzanov I, Lee W, Chen AP, et al. Phase I pharmacokinetic and pharmacodynamic study of SJG-136, a novel DNA sequence selective minor groove cross-linking agent, in advanced solid tumors. Clin Cancer Res. 2011;17(11):3794-3802.
18. Mantaj J, Jackson PJ, Rahman KM, Thurston DE. From Anthracyclin to Pyrrolobenzodiazepine (PBD)-Containing Antibody-Drug Conjugates (ADCs). Angew Chem Int Ed Engl. 2017;56(2):462-488.
19. Kotecha M, Kluzar J, Wells G, et al. Inhibition of DNA binding of the NF-Y transcription factor by the pyrrolobenzodiazepine-polyamide conjugate GWL-78. Mol Cancer Ther. 2008;7(5):1319-1328.
20. Hu WP, Tsai FY, Yu HS, Sung PI, Chang LS, Wang JJ. Induction of apoptosis by DC-81-indole conjugate agent through NF-kappaB and JNK/AP-1 pathway. Chem Res Toxicol. 2008;21(7):1330-1336.
21. Rahman KM, Jackson PJ, James CH, et al. GC-targeted C8-linked pyrrolobenzodiazepine-biaryl conjugates with femtomolar in vitro cytotoxicity and in vivo antitumor activity in mouse models. J Med Chem. 2013;56(7):2911-2935.
22. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440-446.
23. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood. 2010;115(17):3541-3552.
24. Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12(2):131-144.
25. Zhang B, Kirov S, Snoddy J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005;33(Web Server issue):W741-48.
26. Hertlein E, Byrd JC. Signalling to drug resistance in CLL. Best Pract Res Clin Haematol. 2010;23(1):121-131.
27. Markovina S, Callander NS, O’Connor SL, et al. Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res. 2008;6(8):1356-1364.
28. Diop F, Moia R, Favini C, et al. Biological and clinical implications of BIRC3 mutations in chronic lymphocytic leukemia. Haematologica. 2020;105(2):448-456.
29. Benedetti D, Tissino E, Pozzo F, et al. NOTCH1 mutations are associated with high CD49d expression in chronic lymphocytic leukemia: link between the NOTCH1 and the NF-kB pathways. Leukemia. 2018;32(3):654-662.
30. Asslaber D, Wacht N, Leisch M, Qi Y, et al. BIRC3 Expression Predicts CLL Progression and Defines Treatment Sensitivity via Enhanced NF-kB Nuclear Translocation. Clin Cancer Res. 2019;25(6):1901-1912
31. Del Poeta G, Dal Bo M, Del Principe M, et al. Clinical significance of c.7544-7545 del CT NOTCH1 mutation in chronic lymphocytic leukaemia. Br J Haematol. 2013;160(3):415-418.
32. Rossi D, Rasi S, Fabbri G, et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 2012; 119(2):521.
33. Hoffmann A, Levchenko A, Scott ML, Baltimore D. The I kappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science. 2002;298(5596):1241-1245.
34. Natoli G, Chiocca S. Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. Sci Signal. 2008;1(1):pe1.
35. Godwin P, Baird AM, Heavey S, Barr MP, O’Byrne KJ, Gately K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol. 2013;3:120.
36. Baumann P, Mandl-Weber S, Oduncu F, Schmidmaier R. Alkylating agents induce activation of NFkappaB in multiple myeloma cells. Leuk Res. 2008;32(7):1144-1147.
37. San Miguel JF, Schlag R, Khuageva NK, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 2008;359(9):906-917.
38. Murray MY, Auger MJ, Bowles KM. Overcoming bortezomib resistance in 548 multiple myeloma. Biochem Soc Trans. 2014;42(4):804-808.
39. Woyach JA, Bojnik E, Ruppert AS, et al. Bruton's tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL). Blood. 2014;123(8):1207-1213.
40. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32-42.
41. Herman SE, Mustafa RZ, Gyamfi JA, et al. Ibrutinib inhibits BCR and NF-κB signaling and reduces tumor proliferation in tissue-resident cells of patients with CLL. Blood. 2014;123(21):3286-3295.

42. Jayappa KD, Portell CA, Gordon VL, et al. Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in CLL and MCL. Blood Adv. 2017;1(14):933-946.

43. Fabre C, Mimura N, Bobb K, et al. Dual inhibition of canonical and noncanonical NF-κB pathways demonstrates significant antitumor activities in multiple myeloma. Clin Cancer Res. 2012;18(17):4669-4681.

Figure Legends

Figure 1. The structures of Anthramycin and three structurally-related C8-linked benzofused PBD hybrids. Anthramycin (the first PBD to be isolated from a Streptomyces species), and the three synthetic PBDs, DC-1-192, DC-1-92 and DC-1-170, identified as lead compounds in this study.

Figure 2. PBDs induce apoptosis in multiple myeloma cell lines in a dose-dependent manner. (A) An example of Annexin V and propidium iodide bivariate plots obtained from JJN3 cells treated with increasing concentrations of DC-1-92. A dose-dependent increase in the proportion of Annexin V+/PI− and Annexin V+/PI+ was observed. (B) Sigmoidal dose-response curves illustrating the comparative effects of each compound in U266, OPM2, H929, JJN3 and MM1.S multiple myeloma cell lines. (C) Comparative analysis of the three lead PBDs in the five multiple myeloma cell lines revealed significant differential sensitivity to each compound and between each cell line but DC-1-192 was the most potent PBD in all five cell lines (D) shows the relationship between the NF-κB index of each of the cell lines with their respective mean DC-1-192 LD50 value. (E) In order to investigate the in vivo anti-tumor effects of DC-1-192, NOD/SCID mice were systemically inoculated with the human RPMI 8226 myeloma cell line. DC-1-192 (1mg/kg) significantly prolonged the survival of the mice when compared to untreated control mice. All in vitro experiments were performed in triplicate and data are presented as mean ± SD. The in vivo experiment was performed in treated and untreated mice (n=7 for each group).

Figure 3. DC-1-192 was highly cytotoxic in primary CLL cells and showed preferential effects in BIRC3 and NOTCH1 mutated samples. (A) All 46 samples tested showed low nanomolar LD50 values when treated with DC-1-192. Analysis of prognostic subsets revealed that DC-1-192 was equipotent in (B) IGHV mutated and unmutated samples, (C) CD38 positive and CD38 negative samples and (D) beta2 microglobulin high and low samples. (E) In contrast, BIRC3 and NOTCH1 mutated samples showed significantly increased sensitivity to DC-1-192. (F) There was an inverse relationship between nuclear DNA binding of the canonical NF-κB subunit, p65, and DC-1-192 LD50 values.

Figure 4. PBDs show marked inhibitory effects on both canonical and non-canonical NF-κB subunits. JJN3 and U266 cells were treated with DC-1-92, DC-1-170 and DC-1-192 for 4 hours, nuclear extracts were then generated from these samples and the amount of p65,
p50, p52 and Rel B was quantified and expressed relative fold change as a function of the untreated controls. (A) JJN3 cells showed significant reductions in nuclear expression p65, p50 and Rel B NF-κB subunits but no change in p52 following exposure to DC-1-92, DC-1-170 and DC-1-192. (B) In contrast, U266 cells showed significant reductions in nuclear expression of all four NF-κB subunits. All experiments were performed in triplicate. P-values: *<0.05, **<0.01, ***<0.001 and ****<0.0001. ns denotes changes that were not statistically significant.

Figure 5. RNA sequencing and gene set enrichment analysis revealed that DC-1-170 and DC-1-192 preferentially inhibited NF-κB target genes. (A) Unsupervised hierarchical clustering revealed a strong drug-associated transcriptional signature for both DC-1-170 and DC-1-192. (B) The majority of the significantly altered transcripts were down-regulated in response to drug 4418/5077 (87%). Strikingly, 4040/5077 (80%) of the changes were common to both DC-1-170 and DC-1-192. Both (C) Gene set enrichment analysis showed over representation of NF-κB target genes in the gene list commonly down-regulated by exposure to DC-1-170 and DC-1-192. (D) Shows the top 12 over-represented pathways in the commonly down-regulated gene list following exposure to DC-1-170 and DC-1-192. The table also shows the normalized enrichment scores, p-values and false discovery rates for each canonical gene set.

Figure 6. DC-1-192 demonstrates cytotoxic synergy with bortezomib and ibrutinib. Synergy between DC-1-192 and bortezomib was experimentally determined in JJN3 cells and between DC-1-192 and ibrutinib in primary CLL cells. The fixed molar ratios for each combination were derived from the mean LD_{50} values for DC-1-192 and the clinically achievable doses of bortezomib and ibrutinib. Apoptosis was determined using the Annexin V/PI assay. (A) The fraction affected plot and the isobologram plot for DC-1-192, bortezomib and their respective combination (1:15) in JJN3 cells. (B) The fraction affected plot and isobologram plot for DC-1-192, ibrutinib and their combination (1:3000) in primary cells. (C) The combination indices for the combination DC-1-192 with bortezomib and DC-1-192 with ibrutinib at the level of LD_{50}, LD_{75} and LD_{90} in primary CLL cells (n = 5). (D) Comparison of the combination indices generated by the combination of DC-1-192 and ibrutinib in monoculture and CD40L-expressing co-culture. All JJN3 cell line experiments were performed in triplicate. All of the primary CLL experiments were performed on samples derived from 5 individual patients with data presented as the mean of duplicate experiments.
Mean $LD_{50} = 3.8 \text{nM}$

A

B

C

D

E

F

$r^2 = 0.2; p = 0.0018$
D

GeneSet	Description	Enrichment Score	Normalized Enrichment Score	p-value	FDR
hsa04630	JAK-STAT signaling pathway	-0.6824	-1.9718	0.0012	0.0725
hsa05222	Small cell lung cancer	-0.7432	-1.7127	0.0013	0.1986
hsa04640	Hematopoietic cell lineage	-0.7257	-1.8594	0.0024	0.0642
hsa04064	NF-kappa B signaling pathway	-0.7806	-1.7750	0.0026	0.1348
hsa04080	Neuroactive ligand-receptor interaction	-0.5484	-1.8622	0.0053	0.0785
hsa05323	Rheumatoid arthritis	-0.6686	-1.7070	0.0062	0.1831
hsa04727	GABAergic synapse	-0.6176	-1.6455	0.0144	0.2779
hsa05133	Pertussis	-0.6619	-1.6262	0.0280	0.2904
hsa04150	mTOR signaling pathway	0.2546	1.0526	0.3760	0.6415
hsa05231	Choline metabolism in cancer	0.3838	1.0528	0.3765	0.6835
hsa00270	Cysteine and methionine metabolism	0.3715	1.0227	0.3816	0.6622
hsa04662	B cell receptor signaling pathway	0.2764	1.0024	0.4237	0.6656
Methods

Culture conditions for cell lines, primary CLL cells and normal lymphocytes

Primary chronic lymphocytic leukemia (CLL) cells were obtained from patients attending outpatients’ clinics at the University Hospital of Wales with informed consent in accordance with the ethical approval granted by South East Wales Research Ethics Committee (02/4806). Age-matched normal B- and T-cells were obtained from healthy volunteers again with informed consent. Five multiple myeloma cell lines, JNJ3, U266, OPM2, MM.1S and H929, were maintained in liquid culture at densities ranging between 0.5-2x10^6 cells/ml. JNJ3 cells were maintained in DMEM media containing 20% fetal bovine serum (FBS), 1% sodium pyruvate and 1% penicillin and streptomycin. U266, OPM2, MM.1S and H929 cells were maintained in RPMI media containing 20% FBS, 1% L-glutamate and 1% penicillin and streptomycin. All cell lines were purchased from DSMZ and were used for these experiments within 6 months of purchase. In each case, the provenance of the cell lines was verified by multiplex PCR of minisatellite markers, and all were certified mycoplasma-free. In terms of NF-κB mutations, JNJ3 cells possess an EFTUD2-NIK fusion gene which lacks the TRAF3 binding domain resulting in the accumulation of a cytoplasmic EFTUD2-NIK fusion protein. MM.1S and U266 cells exhibit TRAF3 mutations resulting in the stabilisation of wild-type NIK protein. H929 and OPM2 cells do not have any NF-κB-related mutations. In terms of their reliance on NF-κB signaling, MM.1S cells exhibit the highest NF-κB index followed by JNJ3 cells (10.8), U266 cells (10.41), OPM2 cells (9.03) and H929 cells (8.37). [1]

Primary CLL and normal lymphocytes were isolated by density gradient centrifugation using Histopaque (Sigma-Aldrich) and were then maintained in RPMI media containing 10% FBS, 5ng/ml IL-4, 1% L-glutamine and 1% penicillin and streptomycin. All cells were cultured at
37°C in 5% CO₂ atmospheric conditions. Cell counts and viability (trypan blue exclusion) were determined using the Vi-Cell XR cell counter (Beckman Coulter). Primary CLL cells were also co-cultured on CD40L-expressing fibroblasts (10:1 ratio) in order to mimic the lymph node microenvironment. Subsequently, synergy between ibrutinib and DC-1-192 was determined under these cytoprotective conditions.

Measurement of in vitro apoptosis

Aliquots of each cell type (1x10⁶ cells) were cultured for 48h, harvested by centrifugation (300xg for 5 mins) and then resuspended in 195μL of a calcium-rich buffer. Subsequently, 5μL of Annexin V (Biolegend) was added to the cell suspension, and cells were incubated in the dark for 10 mins prior to washing. Cells were finally resuspended in 190μL of calcium-rich buffer together with 10μL of propidium iodide (PI). Apoptosis was assessed by dual-colour immunofluorescent flow cytometry using an Accuri C6 flow cytometer, and data were analysed using CFlow software (BD Biosciences).

Measurement of apoptosis in normal B- and T-lymphocytes

Peripheral blood mononuclear cells from age-matched healthy donors (1x10⁶ cells) were treated with concentrations of DC-1-92, DC-1-170 and DC-1-192 between 1 nM-100nM for 48h. Cells were then harvested and stained with APC-conjugated CD19, PE-conjugated CD3 and FITC-conjugated Annexin V (Biolegend). Using an Accuri C6 flow cytometer, a gating strategy (shown in Figure 2) was employed to quantify apoptosis in CD19⁺ B-cells and CD3⁺ T-cells, with appropriate compensation applied.
Enzyme Linked Immuno-sorbent Assay (ELISA) for NF-κB subunits

JJN3 and U266 cells were treated for 4h with DC-1-92, DC-1-170 (0 nM-20nM) and DC-1-192 (0nM-5nM). Pellets containing 5x10⁶ cells were then harvested, and subsequently, nuclear extracts were prepared using a nuclear extraction kit (Active Motif). Total protein was determined by DC protein assay (Biorad) in each nuclear extract using a standard curve of known concentrations of BSA. Nuclear extracts containing 1 μg of total protein from each treatment were then added to an NF-κB family kit (Active Motif) in accordance with the manufacturer’s instructions. Levels of p65, p50, p52 and Rel B DNA binding were then assessed to determine relative levels of each subunit in the nucleus. The absorbance measurements (450nm) were subsequently converted into ng/μg of nuclear extract for each sample.

Synergy with bortezomib and ibrutinib

The synergy between DC-1-192 in combination with either bortezomib or ibrutinib was determined in the JJN3 cells and primary CLL cells respectively. The molar ratios were experimentally determined using the mean LD₅₀ value for DC-1-192 and the clinically achievable concentrations of bortezomib and ibrutinib. The fixed molar ratio for DC-1-192:bortezomib was 1:15 and was 1:3000 for DC-1-192:ibrutinib. Cells were treated with each drug individually and in combination at the defined molar ratio. Treated cells were incubated alongside untreated controls for 48h, before being labelled with Annexin V-FITC/PI and then analysed on an Accuri C6 flow cytometer. CalcuSyn software (Biosoft) was used to establish whether synergy was evident between the PBD compounds and bortezomib or ibrutinib and expressed as a combination index (CI); CI values <1 were considered to demonstrate synergy.
RNA Isolation

JJN3 cells were treated with either DC-1-170 or DC-1-192 at 20nM in triplicate alongside untreated controls for 4h. From each sample, 5x10^6 cells were then harvested, washed in ice cold PBS and re-suspended in 1ml of Trizol reagent (Thermo Fisher). RNA was extracted following the addition of chloroform and 70% ethanol, and an RNeasy mini-kit (Qiagen) was then used in accordance with the manufacturer’s instructions to isolate RNA to be used in RNA sequencing (RNA-seq) analysis.

RNA Sample Preparation and Sequencing

Total RNA quality and quantity was assessed using an Agilent 2100 Bioanalyzer and an RNA Nano 6000 kit (Agilent Technologies). 100-900 ng of Total RNA with an RNA integrity number (RIN) >8 was depleted of ribosomal RNA, and the sequencing libraries were prepared using the Illumina® TruSeq® Stranded Total RNA with Ribo-Zero Gold™ kit (Illumina Inc.). The steps included rRNA depletion and cleanup, RNA fragmentation, 1st strand cDNA synthesis, 2nd strand cDNA synthesis, adenylation of 3’-ends, adapter ligation, PCR amplification (12-cycles) and validation. The manufacturer’s instructions were followed except for the cleanup after the Ribo-Zero depletion step where Ampure®XP beads (Beckman Coulter) and 80% Ethanol were used. The libraries were validated using the Agilent 2100 Bioanalyser and a high-sensitivity kit (Agilent Technologies) to ascertain the insert size, and the Qubit® (Life Technologies) was used to perform the fluorometric quantitation. Following validation, the libraries were normalized to 4nM, pooled together and clustered on the cBot™2 following the manufacturer’s recommendations. The pool was then sequenced using a 75-base paired-end (2x75bp PE) dual index read format on the Illumina® HiSeq2500 in high-output mode according to the manufacturer’s instructions. Subsequently, analysis was performed after
trimming to remove adaptor sequences and low-quality base calls. Trimmed reads were then mapped to the standard reference 'hg19' using the alignment software package 'bwa-mem' (http://bio-bwa.sourceforge.net). Downstream analysis of the data was performed using GenView2 software (in-house analysis tool developed by Peter Giles), Ingenuity Pathway Analysis (Qiagen) and WebGestalt (WEB-based GEne SeT AnaLysis Toolkit).

In vivo systemic xenograft model of myeloma in NOD/SCID mice

Female NOD/SCID mice were sourced from Beijing AK Bio-Technology Co. Ltd. (Beijing, China). The care and use of animals were conducted in accordance with the regulations of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). Before commencement of treatment, all animals’ weights were measured. As body weight can influence the effectiveness of any given treatment, mice were assigned to groups using a randomized block design based on their body weight. Mice were sub-lethally irradiated with 200 cGy with a 60Co source one day before inoculation with human myeloma cells. Subsequently, each mouse was inoculated intravenously into the tail vein with RPMI8226 tumor cells (1×10^7) in 0.1 mL of PBS to initiate tumor development. The date of tumor cell inoculation was denoted as Day 0; intravenous treatment with vehicle only; 0.05% DMSO in saline ($n = 7$) or 1mg/kg of DC-1-192 ($n = 7$) was started at Day 5 and continued once per day (five days/week) for three weeks. Survival was evaluated from the first day of treatment until death.

References

1. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood. 2010;115(17):3541-3552.
Supplementary Figure 1. PBDs showed preferential cytotoxicity in primary CLL cells compared with healthy non-malignant B- and T-lymphocytes. (A) Non-malignant B-cells and T-cells were identified using the gating strategy shown, which allowed the enumeration of the percentage of apoptotic cells in each lymphocyte subset. (B) Apoptotic dose-response graphs illustrating the comparative effects of DC-1-92, DC-1-170 and DC-1-192 on primary CLL cells and non-malignant B-cells and T-cells. (C) Comparison of the mean LD_{50} values showed that all three PBDs were significantly more potent in primary CLL cells when compared with age-matched normal B-cells and T-cells. (D) DC-1-192 showed the differential cytotoxic effects (therapeutic index), when comparing CLL cells with normal B-cells (2.4 fold) and CLL cells with normal T-cells (4.6 fold). P-values: *<0.05, **<0.01, ***<0.001 and ****<0.0001.
Supplementary Table 1. Summary of patient characteristics

Parameter	Number
Total number of CLL samples	46
IGHV-mutated	19
IGHV-unmutated	27
CD38 (<20%)	21
CD38 (>20%)	25
B2M (<3.5mg/L)	26
B2M (>3.5mg/L)	17
ND	3
11q-	7
17p-	2
Trisomy 12	4
Normal or 13q-	33
NOTCH1 mutation	11
BIRC3 Mutation	3
ND	13

IGHV-mutated: >2% deviation from the germline immunoglobulin sequence

IGHV-unmutated: ≤2% deviation from the germline immunoglobulin sequence

B2M – beta 2 microglobulin

ND – not determined

Supplementary Table 2. Down regulated genes following treatment with DC-1-192 or DC-1-170.

NCBI gene	Symbol	p-value	fdr p-value	log2FC				
NM_001178002	ATP8B3	0.000109833	0.000952962	-1.314857411				
NM_138813	ATP8B3	0.000116051	0.001000195	-1.305261044				
NM_053280	ODF3	0.000123633	0.001056964	-1.291597745				
NM_173502	PRSS36	0.000134112	0.001135771	-1.283259211				
NM_138277	C6orf25	0.000151094	0.001263734	-1.28048462				
NR_033419	SLC39A2	0.000172884	0.001421191	-1.27659082				
NM_014579	SLC39A2	0.000172884	0.001421191	-1.27659082				
NM_001256588	SLC39A2	0.000172884	0.001421191	-1.27659082				
NM_031948	PRSS27	0.000186671	0.001512764	-1.270186813				
NM_002773	PRSS8	0.000188026	0.001521855	-1.27012031				
NM_000835	GRIN2C	0.000205285	0.001636418	-1.252708627				
NM_001198568	ADCY4	0.0002614	0.002014009	-1.242070041				
NM_001198592	ADCY4	0.0002614	0.002014009	-1.242070041				
NM_139247	ADCY4	0.0002614	0.002014009	-1.242070041				
NM_001039771	CBLN3	0.000283877	0.002153685	-1.223676635				
NM_015927	TGFBI11	0.000185587	0.001506447	-1.22284725				
NM_001906	CTRB1	0.00033854	0.002513216	-1.218446714				
NM_032123	KIRREL2	0.000305352	0.002298301	-1.217407175				
Gene Symbol	Description	Fold Change	P-Value	Adjusted P-Value				
-------------	-------------	-------------	---------	-----------------				
NM_199180	KIRREL2	0.000305352	0.00298301	-1.217407175				
NM_152784	CATSPERD	0.000239338	0.001869228	-1.21132651				
NM_016239	MYO15A	0.000154472	0.001288362	-1.211317261				
NM_145239	PRRT2	0.0002754	0.00201225	-1.196779346				
NM_024003	L1CAM	0.000454228	0.003232351	-1.1926505999				
NM_00425	L1CAM	0.000454228	0.003232351	-1.1926505999				
NM_001143963	L1CAM	0.000454228	0.003232351	-1.1926505999				
NM_199179	KIRREL2	0.000383961	0.00280004	-1.186031884				
NM_018059	RADIL	0.000498364	0.003502809	-1.184281703				
NM_001098671	RASGRP2	0.000527608	0.003675322	-1.178835719				
NM_004183	BEST1	0.000382288	0.002791266	-1.176067984				
NM_138275	C6orf25	0.000454587	0.003238984	-1.16999221				
NM_138273	C6orf25	0.000454587	0.003238984	-1.16999221				
NM_001256442	PRRT2	0.000389995	0.002838517	-1.164571775				
NM_00139443	BEST1	0.000534296	0.003711469	-1.154773442				
NM_175931	CBFA2T3	0.000154789	0.001290286	-1.15435706				
NM_001256508	TBC1D10C	0.000577404	0.003950286	-1.15178063				
NM_153819	RASGRP2	0.000740038	0.004841853	-1.147249819				
NR_046266	TBC1D10C	0.000594811	0.004058785	-1.14583465				
NM_005393	PLXNB3	0.000446766	0.003186881	-1.144637737				
NM_00163257	PLXNB3	0.000446766	0.003186881	-1.144637737				
NM_00177597	THPO	0.000730469	0.004795087	-1.141526079				
NM_00177598	THPO	0.000730469	0.004795087	-1.141526079				
NM_001506	GPR32	0.000633257	0.004284519	-1.154773442				
NM_001007533	PPP1R27	0.000594811	0.004058785	-1.14583465				
NM_001098670	RASGRP2	0.000845102	0.005400835	-1.135294123				
NM_030792	GDPD5	0.000402889	0.00291968	-1.152294082				
NM_001853	COL9A3	0.0001981	0.001589349	-1.13167239				
NM_198517	TBC1D10C	0.000691803	0.004587881	-1.133162104				
NM_138277	C6orf25	0.000841714	0.005380608	-1.129950694				
NM_031308	EPPK1	0.00024828	0.001929935	-1.127144817				
NM_000641	IL11	0.000707282	0.004669694	-1.123883233				
Accession	Gene Symbol	FDR	q-value	log2FoldChange	P-Value			
-----------	-------------	-----	---------	----------------	---------			
NR_027254	LOC388387	0.00078255	0.005070874	-1.114064889				
NM_014443	IL17B	0.000144645	0.001214239	-1.110541699				
NR_027004	FAM181A-S1	0.00073248	0.00480815	-1.105933979				
NM_138272	C6orf25	0.001077966	0.006636403	-1.105862299				
NM_025260	C6orf25	0.001077966	0.006636403	-1.105862299				
NM_032512	PDZD4	0.000996112	0.00480815	-1.102384105				
NM_153018	ZFP3	0.000935147	0.005892655	-1.101579931				
NM_002870	RAB13	0.000523186	0.003649568	-1.101497332				
NM_052874	STX1B	0.000830916	0.005327739	-1.100476726				
NM_000150	FUT6	0.001181232	0.007157968	-1.09949761				
NM_006149	LGALS4	0.001391485	0.008186647	-1.08532879				
NR_002570	CYP2D7P1	0.000114372	0.000988025	-1.084491767				
NM_001144826	RUNDC3A	0.000170832	0.001407436	-1.084313152				
NM_006695	RUNDC3A	0.000167935	0.00138780	-1.084076727				
NM_001247994	POU2F2	0.000289541	0.00793492	-1.076298778				
NM_153345	TMEM139	0.000972023	0.006082462	-1.07496812				
NM_001242773	TMEM139	0.000972023	0.006082462	-1.07496812				
NM_001242775	TMEM139	0.000972023	0.006082462	-1.07496812				
NM_002698	POU2F2	0.000133678	0.007924045	-1.073014597				
NM_001207025	POU2F2	0.000133678	0.007924045	-1.073014597				
NM_006071	PKDREJ	0.000162376	0.009302771	-1.071052625				
NM_033165	FGF8	0.000266837	0.002047405	-1.06284788				
NM_006119	FGF8	0.000266837	0.002047405	-1.06284788				
NM_138277	C6orf25	0.001372742	0.008092395	-1.062847997				
NM_138272	C6orf25	0.001372742	0.008092395	-1.062847997				
NM_138273	C6orf25	0.001372742	0.008092395	-1.062847997				
NM_025260	C6orf25	0.001372742	0.008092395	-1.062847997				
NM_001242376	GFAP	0.001289541	0.007924045	-1.062847997				
NM_001080487	PABPN1L	0.000176523	0.00976532	-1.062108899				
NM_022124	CDH23	0.000121945	0.007349552	-1.061403733				
NM_001122890	GGT6	0.000664366	0.00445832	-1.059758779				
NM_001135217	LRR2C2	0.000101228	0.00088711	-1.05841034				
NM_198893	STAC2	0.000243504	0.001898269	-1.05653015				
NM_198847	NKP1D1	0.000278178	0.00118013	-1.056453622				
NM_001143980	CCDC154	0.001283842	0.007670273	-1.05586169				
NR_04090	CYP21A1P	0.001334671	0.00791507	-1.053674168				
NM_001037340	PDE4B	0.000106826	0.000930133	-1.049661921				
NM_021924	CDHR5	0.000240185	0.001847366	-1.049425969				
NM_001171968	CDHR5	0.000240185	0.001847366	-1.049425969				
NR_04003	TMEM139	0.001312632	0.007806178	-1.044378348				
NM_001242776	TMEM139	0.001312632	0.007806178	-1.044378348				
Gene Symbol	Description	p-Value 1	p-Value 2	Odds Ratio 1	Odds Ratio 2			
-------------	-------------	-----------	-----------	-------------	-------------			
NM_001242777	TMEM139	0.001312632	0.007806178	-1.044378348				
NM_153254	TTL10	0.000387329	0.002821835	-1.043862629				
NM_001130413	SCNN1D	0.001850883	0.010373953	-1.043125628				
NM_152612	CCDC116	0.001907355	0.010614393	-1.043060394				
NM_001077191	GPBAR1	0.00032725	0.002440983	-1.04018659				
NM_006142	SFN	0.002226097	0.012049714	-1.040074778				
NM_138275	C6orf25	0.002052989	0.011285364	-1.039853301				
NM_138274	C6orf25	0.002052989	0.011285364	-1.039853301				
NM_138273	C6orf25	0.002052989	0.011285364	-1.039853301				
NM_001004342	TRIM67	0.00212087	0.011602708	-1.038914334				
NM_001040701	FUT6	0.002141599	0.011681698	-1.038061965				
NM_021819	LMAN1L	0.001316725	0.00782739	-1.035025423				
NM_001018116	MURC	0.001590258	0.009145161	-1.033731276				
NM_001105669	TTC24	0.00038197	0.002790691	-1.031649465				
NM_138275	C6orf25	0.001860244	0.010404834	-1.030787156				
NM_138274	C6orf25	0.001860244	0.010404834	-1.030787156				
NM_001130045	TTL10	0.000856553	0.005464616	-1.029950483				
NM_001408	CELSR2	0.00031597	0.002365162	-1.025670909				
NM_001051	SSTR3	0.002383825	0.012725011	-1.024838163				
NM_001161440	PTPRH	0.00259671	0.013631239	-1.024311633				
NM_006841	SLC38A3	0.0014923	0.00866146	-1.022174013				
NM_153338	GGT6	0.00095876	0.006017203	-1.02181118				
NM_001077194	GPBAR1	0.001080955	0.006650669	-1.019459029				
NM_176820	NLRP9	0.002641647	0.013815878	-1.019252561				
NM_005975	PTK6	0.002662642	0.013908731	-1.01871768				
NM_001100876	PHYHD1	0.002837349	0.014630834	-1.014863597				
NM_024637	GAL3ST4	0.002705608	0.014088411	-1.013656315				
NR_037668	SCNN1D	0.002571701	0.013529165	-1.013185545				
NM_152536	FGD5	0.002764637	0.014327996	-1.013175585				
NM_001100877	PHYHD1	0.002869676	0.014766779	-1.011343557				
NM_174933	PHYHD1	0.002961466	0.015105713	-1.008953463				
NM_052819	CARD14	0.001287629	0.007683626	-1.008282523				
NM_014428	TJP3	0.002946509	0.015068219	-1.007851462				
NM_201650	LRRC23	0.000262011	0.002017671	-1.006671443				
NM_182704	SELV	0.00115256	0.007020011	-1.00582114				
NM_207348	SLC25A34	0.000360877	0.002652532	-1.001194349				
NM_002292	LAMB2	0.00189131	0.010542871	-1.000978473				
NM_001042454	TGFBI1	0.002341286	0.012553553	-1.00042358				
NM_001164719	TGFBI1	0.002341286	0.012553553	-1.00042358				
NM_138296	PTCR4	0.000413202	0.002986892	-0.999781656				
NM_001039616	SPRED3	0.003413171	0.016958571	-0.996005599				
Gene ID	Symbol	EASE Score 1	EASE Score 2	q-value 1	q-value 2			
-------------	--------	--------------	--------------	-------------	-------------			
NM_005309	GPT	0.000260111	0.002006674	-0.99526094				
NM_004062	CDH16	0.002955481	0.015101105	-0.990353698				
NM_006992	LRRCC23	0.000431963	0.003097647	-0.988680871				
NM_145044	ZNF501	0.000474171	0.003350996	-0.987824617				
NM_005187	CBFA2T3	0.002834804	0.01462025	-0.984513578				
NM_0033163	FGFR8	0.000977972	0.006114534	-0.983191999				
NM_001080395	AATK	0.003568841	0.017573363	-0.983191999				
NM_001008409	TTL9	0.001815318	0.010203481	-0.982160005				
NM_001039651	SAPC	0.002955481	0.015101105	-0.988680871				
NM_001142685	ARHGAP32	0.000374211	0.002740371	-0.97559284				
NM_001135219	PIP5KL1	0.001815318	0.010203481	-0.982160005				
NM_001204285	MUC1	0.004426525	0.020873222	-0.966281599				
NR_00135219	PIP5KL1	0.000374211	0.002740371	-0.97559284				
NM_00104285	MUC1	0.004473907	0.021036567	-0.960852903				
NM_00102974	LRRC73	0.004715676	0.018695909	-0.951880318				
NM_001204744	CDH16	0.00368224	0.018695909	-0.951880318				
NR_001256358	PTK6	0.004426525	0.020873222	-0.966281599				
NM_001171933	GFAP	0.003494719	0.015685098	-0.958086639				
NM_001131019	GFAP	0.003494719	0.015685098	-0.958086639				
Gene Symbol	Gene Name	FDR	Benjamini FDR	Z Score				
------------------	-----------	-------	---------------	---------				
NM_001166034	SBSN	0.006462333	0.028212304	-0.925594205				
NM_001195684	TGFBR3	0.002320893	0.012460702	-0.925106038				
NR_002930	PTPRV	0.004224546	0.020099395	-0.924941658				
NM_021569	GRIN1	0.00099666	0.006215688	-0.921264203				
NM_003049	SLC10A1	0.000668709	0.004468635	-0.919251556				
NR_002773	AOC4	0.005016338	0.023055814	-0.918423311				
NM_033025	SYDE1	0.005605074	0.025161027	-0.918395566				
NM_031264	CDHR5	0.00189458	0.01055714	-0.918375549				
NM_001203263	IL17RC	0.000617937	0.00420019	-0.918089274				
NM_003738	PTCH2	0.000786021	0.005087824	-0.918025904				
NM_032214	SLA2	0.000133744	0.001132971	-0.916888306				
NM_001042522	SPRED3	0.00586107	0.026030997	-0.91677008				
NR_026864	PRSS30P	0.001846562	0.010353639	-0.90693085				
NR_002946	MMP23A	0.00115363	0.007025085	-0.90498505				
NM_003709	KLF7	0.007413631	0.031554119	-0.904797639				
NM_0153460	IL17RC	0.000565434	0.003886882	-0.911117999				
NM_032732	IL17RC	0.000565434	0.003886882	-0.911117999				
NR_026864	PRSS30P	0.001846562	0.010353639	-0.90693085				
NR_002946	MMP23A	0.006407748	0.028031658	-0.905744367				
NM_003709	KLF7	0.007413631	0.031554119	-0.904797639				
NM_0153461	IL17RC	0.000535585	0.003719559	-0.90498505				
NM_002501	NFIX	0.00115363	0.007025085	-0.904243311				
NM_033310	KCNK4	0.002070984	0.011369561	-0.903498835				
NM_000283	PDE6B	0.007754327	0.032690502	-0.903132337				
NM_001145291	PDE6B	0.007754327	0.032690502	-0.903132337				
NM_001145292	PDE6B	0.007754327	0.032690502	-0.903132337				
NM_015237	KIAA1107	0.004926227	0.022745911	-0.902129408				
NM_015693	INTU	0.002047468	0.011271692	-0.899488614				
NM_018302	C4orf19	0.00227603	0.012275277	-0.89860835				
NM_153007	ODF4	0.001531493	0.008864701	-0.897872789				
NM_005985	SNAI1	0.000575793	0.003943496	-0.897535009				
NM_175077	SLA2	0.000200285	0.001604281	-0.897282221				
NM_018674	ACCN4	0.007007998	0.030195395	-0.896379141				
NM_182847	ACCN4	0.007007998	0.030195395	-0.896379141				
NM_001105539	ZBTB10	0.000119528	0.001025998	-0.895601665				
NM_138278	BNIPL	0.000161049	0.001337585	-0.894738461				
NM_000506	F2	0.004883909	0.022592639	-0.894328983				
NM_182920	ADAMTS9	0.000753208	0.004907497	-0.892686553				
NM_001195014	CD4	0.001218496	0.007346327	-0.891440203				
NM_001195017	CD4	0.001218496	0.007346327	-0.891440203				
NM_001195016	CD4	0.001218496	0.007346327	-0.891440203				
NM_001195015	CD4	0.001218496	0.007346327	-0.891440203				
Gene	Probabilities	Log2 Odds	Odds Ratio					
--------------	---------------	-----------	------------					
NM_000616	CD4	0.001218496	0.007346327	-0.891444023				
NM_001171740	C3orf18	0.008840918	0.036208045	-0.890371558				
NM_032546	TRIM54	0.07102826	0.030545452	-0.889656284				
NM_016210	C3orf18	0.008893403	0.036342852	-0.889588264				
NM_001114100	SEZL2	0.01909155	0.016022421	-0.887543199				
NM_000633	BCL2	0.02605988	0.013665457	-0.887109543				
NM_032281	ELAVL3	0.02605988	0.013665457	-0.887109543				
NM_198479	C19orf54	0.001718057	0.009756847	-0.885357931				
NM_144698	ANKRD35	0.009316253	0.037625863	-0.884930440				
NM_01128827	DLG4	0.004550814	0.021330684	-0.884167677				
NM_032649	CNDP1	0.009248071	0.037396236	-0.881167677				
NM_014722	FAM65B	0.009735321	0.038974071	-0.879419576				
NR_033910	LOC100130275	0.009876657	0.039428348	-0.878014708				
NM_080877	SLC34A3	0.00986746	0.039471426	-0.877892666				
NM_001207026	POU2F2	0.003894169	0.018810635	-0.877834050				
NM_138277	G6orf25	0.00371441	0.018160765	-0.879948140				
NM_058164	OLFM2	0.009735321	0.038974071	-0.879419576				
NM_024719	GRTP1	0.00987486	0.039430352	-0.878018199				
NR_033910	LOC100130275	0.009876657	0.039428348	-0.878014708				
NM_00163724	LOC388588	0.008234575	0.034224738	-0.871638936				
NM_001024215	FBLIM1	0.009064054	0.036852714	-0.871187013				
NM_187841	TRIM54	0.008476631	0.035020165	-0.870772489				
NM_207627	ABCG1	0.005109285	0.023387649	-0.870621761				
NM_207628	ABCG1	0.005109285	0.023387649	-0.870621761				
NM_207629	ABCG1	0.005109285	0.023387649	-0.870621761				
NM_005373	MPL	0.0098527	0.039353854	-0.870512368				
NM_016818	ABCG1	0.005094093	0.023386082	-0.870423543				
NM_004915	ABCG1	0.005094093	0.023386082	-0.870423543				
NM_207174	ABCG1	0.005094093	0.023386082	-0.870423543				
NM_001099439	EPHA10	0.00945346	0.038060762	-0.869757285				
NM_022367	SEMA4A	0.000478412	0.003374546	-0.86882875				
NM_00119300	SEMA4A	0.000478412	0.003374546	-0.86882875				
NM_003782	B3GALT4	0.003379487	0.016808068	-0.867301756				
NM_001004323	C7orf61	0.009848749	0.039348653	-0.867182287				
NR_028048	CRAT	0.02739253	0.014236164	-0.866505914				
Gene Name	Description	Freq1	Freq2	Freq3	Freq4	Value		
-------------	-------------	-------	------------	-------	------------	-------------		
NM_001243168	PTCRA	0.003229311	0.016191235		-0.866004161			
NM_031936	GPR61	0.007771078	0.032747182		-0.865545847			
NM_206961	LTK	0.009079092	0.036898712		-0.86269304			
NM_002344	LTK	0.009079092	0.036898712		-0.86269304			
NM_001525	HCRTR1	0.010370774	0.04101521		-0.864734017			
NM_138275	C6orf25	0.007275793	0.03114511		-0.864712138			
NM_138274	C6orf25	0.007275793	0.03114511		-0.864712138			
NM_000600	IL6	0.007275793	0.03114511		-0.864712138			
NM_020804	PACSIN1	0.002274023	0.012270993		-0.861679331			
NM_001199583	PACSIN1	0.002274023	0.012270993		-0.861679331			
NM_001185091	GRIN1	0.002582327	0.013567718		-0.853254789			
NM_000832	GRIN1	0.002582327	0.013567718		-0.853254789			
NM_001177317	SLC34A3	0.012237383	0.046814921		-0.852639442			
NM_001177316	SLC34A3	0.012237383	0.046814921		-0.852639442			
NM_001159554	P2RX6	0.0010966	0.006734381		-0.852236548			
NM_005446	P2RX6	0.0010966	0.006734381		-0.852236548			
NM_001139515	DACH2	0.009881523	0.039437175		-0.851706277			
NM_014276	RBPJ	0.004123631	0.019698112		-0.850028003			
NM_001243169	PTCRA	0.001545323	0.008931224		-0.849589511			
NM_001193301	SEMA4A	0.0068495	0.04552597		-0.849526846			
NM_006314	CNKSR1	0.009143946	0.03711533		-0.849496088			
NR_023345	CNKSR1	0.009143946	0.03711533		-0.849496088			
NM_178545	TMEM52	0.009757996	0.039054324		-0.84858846			
NM_152654	DAND5	0.007650798	0.032359819		-0.847021555			
NM_001159642	BNN1P	0.000275258	0.002101707		-0.846635501			
NM_001710	CFB	0.012101138	0.046395241		-0.846298852			
NM_172168	NOXO1	0.00665884	0.04452761		-0.846091745			
NM_001185090	GRIN1	0.002701235	0.014070859		-0.844676042			
NM_000359	TGM1	0.00731877	0.03126321		-0.844617377			
NM_00755	CRAT	0.00379678	0.018427733		-0.844597342			
NM_005608	PTPRCAP	0.010619239	0.041758889		-0.84434005			
NM_017857	SSH3	0.001046233	0.006476821		-0.841905474			
NR_038988	LOC100287765	0.00499089	0.02298021		-0.841193859			
NM_001195520	LOC100507055	0.011403858	0.044299145		-0.837017585			
NM_001242774	TMEM139	0.011610621	0.04492232		-0.836829726			
NM_199242	UNC13D	0.010837574	0.042443357		-0.836445361			
NM_053006	TSSK2	0.005999274	0.026529826		-0.836109259			
NM_001144825	RUNCDC3A	0.00209286	0.011474817		-0.834457544			
NM_002386	MC1R	0.000181882	0.001480008		-0.833578026			
NM_025260	C6orf25	0.005616122	0.025188789		-0.831308601			
NM_000576	IL1B	0.005616122	0.025188789		-0.831308601			
Gene Symbol	Gene Name	Fold Change Mean	Fold Change SD	Correlation				
-------------	------------	------------------	----------------	-------------				
NR_02726	C15orf34	0.009471408	0.03811267	-0.831125519				
NM_001083606	PTCH1	0.003487124	0.017253889	-0.830829503				
NM_006950	SYN1	0.009161102	0.037150719	-0.830156924				
NM_133499	SYN1	0.009161102	0.037150719	-0.830156924				
NM_000264	PTCH1	0.003806388	0.01847068	-0.831125519				
NM_001001891	ANO7	0.004995031	0.022992152	-0.829017276				
NM_005167	PPMLJ	0.009199957	0.037268872	-0.828578339				
NM_139021	MAPK15	0.004613233	0.020990681	-0.827436818				
NM_052948	ARHGAP33	0.003767336	0.018338073	-0.82849207				
NM_001083606	PTCH1	0.003487124	0.017253889	-0.830829503				
NM_000264	PTCH1	0.003806388	0.01847068	-0.831125519				
NM_006950	SYN1	0.009161102	0.037150719	-0.830156924				
NM_133499	SYN1	0.009161102	0.037150719	-0.830156924				
GenBank Acc.	Gene Symbol	F	Z	p	Adj p	S1	S2	
------------	-------------	---	---	---	------	----	----	
NM_138273	C6orf25	0.00778122	0.032762043	-0.792954572				
NM_138274	C6orf25	0.00778122	0.032762043	-0.792954572				
NM_006181	NTN3	0.007437195	0.031604622	-0.792362325				
NM_014246	CELSR1	0.000229119	0.001797923	-0.792060201				
NM_001164730	REEP1	0.012497385	0.047546381	-0.789615161				
NM_053281	DACH2	0.009548002	0.038348154	-0.788522976				
NM_053284	WFIKKN1	0.007133018	0.030618501	-0.787719623				
NM_032580	HES7	0.007213848	0.030907154	-0.786807627				
NM_001165967	HES7	0.007213848	0.030907154	-0.786807627				
NM_016938	EFEMP2	0.006715838	0.029147736	-0.784302885				
NM_001163213	FGFR3	0.000530996	0.00369459	-0.783040493				
NM_033064	ATCAY	0.004941398	0.022812417	-0.779013024				
NM_002250	KCNN4	0.004844033	0.022441182	-0.777193954				
NM_000142	FGFR3	0.006723293	0.0448778	-0.77582306				
NM_015311	OBSL1	0.00617628	0.027187157	-0.772208417				
NM_001114171	FOSB	0.0006273	0.004252162	-0.771672497				
NM_172166	MSH5	0.00179555	0.010113412	-0.770546371				
NM_172165	MSH5	0.00179555	0.010113412	-0.770546371				
NM_002441	MSH5	0.00179555	0.010113412	-0.770546371				
NR_038448	LOC440288	0.000555742	0.03830894	-0.770391611				
NM_001083605	PTCH1	0.007222075	0.030929301	-0.77019033				
NM_001146175	ZNF414	0.009508996	0.038230205	-0.76851618				
NM_001083607	PTCH1	0.007516057	0.031894112	-0.767915813				
NR_026914	MGC16275	0.000266221	0.012044264	-0.760872636				
NM_022463	NXN	0.008981935	0.036629086	-0.76547845				
NM_006732	FOSB	0.000522794	0.003647777	-0.762049012				
NM_021641	ADAM12	0.000266221	0.002044264	-0.760872636				
NM_001013653	LRR2C6	0.000947726	0.033711714	-0.759258671				
NM_001012302	ANO9	0.000220903	0.012032383	-0.75958364				
NM_004099	GUCA1A	0.000220903	0.012032383	-0.75958364				
NM_014975	MAST1	0.000220903	0.012032383	-0.75958364				
NM_001083604	PTCH1	0.008332486	0.034562975	-0.755137781				
NM_174942	GAS2L3	0.009713942	0.038898626	-0.754160716				
NR_036532	UBAC2-AS1	0.000220903	0.012032383	-0.753359159				
NM_020870	SH3RF1	0.000220903	0.012032383	-0.753359159				
NM_013278	IL17C	0.000220903	0.012032383	-0.753359159				
NR_037846	MSH5-SAPCD1	0.000220903	0.012032383	-0.753359159				
NM_005418	ST5	0.000220903	0.012032383	-0.753359159				
NM_213618	ST5	0.000220903	0.012032383	-0.753359159				
NM_014298	QPRT	0.000220903	0.012032383	-0.753359159				
Gene	Fold Change	p-value	q-value	Adjusted Fold Change				
--------------------	-------------	---------	---------	----------------------				
NM_013974 DDAH2	0.001134306	0.006930132	-0.746680315					
NM_030773 TUBB1	0.0043947	0.020756088	-0.74525736					
NM_003052 SLC34A1	0.002138	0.011674923	-0.743937321					
NM_007000 UPK1A	0.003583452	0.017630703	-0.742614419					
NR_024120 DBIL5P	0.006560579	0.028574047	-0.742573111					
NM_001003794 MGLL	0.009052305	0.036839321	-0.742400897					
NM_022965 FGFR3	0.011363051	0.007113087	-0.742573111					
NM_003052 SLC34A1	0.002138	0.011674923	-0.742614419					
NM_001136503 C19orf77	0.005262933	0.023958251	-0.740512698					
NM_001003794 MGLL	0.009052305	0.036839321	-0.740512698					
NM_001136503 C19orf77	0.005262933	0.023958251	-0.740512698					
NM_003052 SLC34A1	0.002138	0.011674923	-0.740512698					
Gene Symbol	Gene Name	Value 1	Value 2	Value 3	Value 4			
-------------	-----------	---------	---------	---------	---------			
NM_005567	LGALS3BP	0.001517372	0.008793241	-0.693730102				
NM_003565	ULK1	0.000732482	0.004805995	-0.693538394				
NM_020404	CD248	0.003270422	0.016366982	-0.692984825				
NM_001256313	STK3	0.000127942	0.00108879	-0.692308685				
NM_001122769	LCA5	0.00795801	0.033341067	-0.691084648				
NM_001253845	ADM2	0.011935464	0.045890307	-0.687757625				
NM_178564	NRB2P2	0.006732472	0.0292114	-0.68739558				
NM_002334	LRP4	0.00158984	0.009145161	-0.684851332				
NM_00125008	ADAMTSL4	0.001625708	0.009312098	-0.684644442				
NM_001146316	IRS2	0.006314457	0.027709201	-0.681696958				
NM_001146316	IRS2	0.006314457	0.027709201	-0.681696958				
NR_034086	LOC648987	0.00108081	0.000939684	-0.680196631				
NM_001202233	NR4A1	0.000132301	0.001122351	-0.677440194				
NM_025257	SLC44A4	0.008796108	0.036064287	-0.67416205				
NM_153618	SEMA6D	0.001902728	0.010598549	-0.676881772				
NM_001162499	CAND2	0.009237867	0.037362298	-0.675013343				
NM_006213	PHKG1	0.000897434	0.005682726	-0.676128468				
NM_152795	HIF3A	0.009237867	0.037362298	-0.675013343				
NM_022462	HIF3A	0.009237867	0.037362298	-0.675013343				
NM_152794	HIF3A	0.009237867	0.037362298	-0.675013343				
NM_001135191	ASAP2	0.001873551	0.010469406	-0.674594166				
NM_133465	KIAA1958	0.000299335	0.002260566	-0.67091041				
NM_144603	NOXO1	0.002691835	0.014033906	-0.6691673				
NM_001256105	WNT5A	0.00953562	0.030030373	-0.668919765				
NM_013264	DDX25	0.01057461	0.041633033	-0.668296022				
NR_024089	LINCO0162	0.004011272	0.019251126	-0.668131287				
NM_001136021	NFATC2	0.006989638	0.030150797	-0.667209393				
NM_173091	NFATC2	0.007128076	0.030614644	-0.66652185				
NM_002441	MSH5	0.000531399	0.003695972	-0.66561864				
NM_0020928	ZSWIM6	0.005268433	0.023964988	-0.66537749				
NM_001145524	YPEL3	0.000173096	0.001422536	-0.665778035				
NM_001001666	ANO7	0.004102128	0.019620623	-0.66537749				
NM_003887	ASAP2	0.002096436	0.011488068	-0.66506186				
NM_0019302	ADAMTSL4	0.00278551	0.002119225	-0.664432407				
NM_153619	SEMA6D	0.002280698	0.012295989	-0.662063195				
NM_032219	MFS6D	0.006430953	0.028106948	-0.662045026				
NM_001171093	FAM131A	0.00012867	0.001094046	-0.661590781				
NM_153617	SEMA6D	0.002381137	0.012713986	-0.660450335				
NM_032641	SP5B2	0.000643766	0.004341989	-0.660323301				
Gene	Symbol	Log2FoldChange	p-Value	Adjusted p-Value				
--------	----------	----------------	-----------	-----------------				
NFATC2	NM_001174072	0.007912325	0.033182413	-0.658855196				
MOGAT3	NM_178176	0.004341274	0.020556027	-0.658421393				
SGPP2	NM_152386	0.001394089	0.008198712	-0.658390082				
TMLHE	NM_001184797	0.00372591	0.018202017	-0.657213198				
MSH5	NM_172166	0.00721361	0.004747881	-0.656346287				
TRIM14	NM_033219	0.001833389	0.010289486	-0.655118315				
CAND2	NM_012298	0.005519366	0.02485513	-0.653943109				
YJEFN3	NM_198537	0.005295458	0.024046008	-0.653493863				
SEMA6D	NM_020858	0.002636522	0.013796359	-0.652870558				
SNCAIP	NM_001256733	0.00584814	0.00399699	-0.652223737				
GLB1L	NM_024506	0.004592404	0.021468061	-0.652005262				
WNK4	NM_032387	0.009318467	0.03762969	-0.651754076				
SNCAIP	NM_001242935	0.007361533	0.031391755	-0.648621168				
TOM1L2	NM_001033551	0.00967781	0.006062302	-0.648162095				
WDFY2	NM_052950	0.006355485	0.027835808	-0.644314577				
STK3	NM_006281	0.000111359	0.000981389	-0.643348848				
DLF4	NM_001365	0.003042661	0.015429822	-0.642851987				
MSH5	NM_025259	0.00941749	0.005926715	-0.64129824				
FAM115C	NM_173678	0.001679933	0.009571046	-0.641464635				
CXADR	NM_001207065	0.004787508	0.022236696	-0.640838767				
FCHO2	NM_001146032	0.003665875	0.017945726	-0.640597613				
GDF1	NM_001492	0.002010878	0.011103169	-0.636604408				
CERS1	NM_021267	0.002010878	0.011103169	-0.636604408				
ABCC3	NM_003786	0.008914187	0.036413273	-0.63571341				
THAP7-AS1	NM_027051	0.010390059	0.041065273	-0.634692815				
ZBTB46	NM_025224	0.004308676	0.020424633	-0.63449406				
NCKAP5	NM_207481	0.007202734	0.030868711	-0.632355459				
DENND1B	NM_144977	0.00259485	0.00200341	-0.630307016				
PHYHIP	NM_014759	0.012350638	0.047145009	-0.629112434				
PHYHIP	NM_001099335	0.012350638	0.047145009	-0.629112434				
FAM27C	NM_027421	0.012366578	0.047193735	-0.627673839				
ANO8	NM_020959	0.000212983	0.001688693	-0.626047513				
PACSIN3	NM_016223	0.000104898	0.000916032	-0.625547449				
PACSIN3	NM_001184974	0.000104898	0.000916032	-0.625547449				
SSBP2	NM_012446	0.00684491	0.004552597	-0.625300481				
UBA C2-AS1	NM_036531	0.012496258	0.047546381	-0.625276767				
TTN	NM_133379	0.000170592	0.00140624	-0.624895681				
RXF1	NM_002918	0.011907733	0.045807391	-0.624420752				
SERINC5	NM_001174072	0.000263669	0.002028859	-0.623628568				
Gene Accession	Gene Symbol	Log2 Fold Change	p Value	q Value	Adjusted p Value			
---------------	-------------	-----------------	---------	---------	-----------------			
NM_000395	CSF2RB	0.009377103	0.037825354	-0.623207064				
NM_058229	FBXO32	0.004972781	0.022925247	-0.622945902				
NM_012191	NAT6	0.008035589	0.033601352	-0.622053628				
NM_001164711	AMT	0.005351023	0.024255328	-0.621806712				
NM_001012984	C16orf86	0.009153011	0.03713311	-0.620666454				
NM_003939	BTRC	0.000308686	0.023193999	-0.61957113				
NR_015454	MAFG-AS1	0.000700389	0.004634088	-0.617741141				
NM_001159643	MCTP2	0.000103282	0.000903781	-0.616200942				
NR_027422	FAM27B	0.008423564	0.034820254	-0.613503581				
NM_001143779	IFT81	0.005538957	0.024928243	-0.617864858				
NR_015454	MAFG-AS1	0.000700389	0.004634088	-0.617741141				
Gene Symbol	Description	T1 Value	P1 Value	adjustedP1 Value				
-------------	-------------	----------	----------	-----------------				
NM_207115	ZNF580	0.00120178	0.007269145	-0.594629136				
NR_034178	SRGAP2P2	0.0019201	0.010675326	-0.593372016				
NM_001144382	PLCL2	0.000384504	0.002803315	-0.592188169				
NM_001190201	CES4A	0.002381332	0.012713986	-0.591960908				
NM_015076	CDK19	0.006412446	0.028039826	-0.591927557				
NM_001184975	PACSIN3	0.000382021	0.002790691	-0.591874756				
NM_172166	MSH5	0.006106929	0.026927454	-0.591588445				
NM_172165	MSH5	0.006106929	0.026927454	-0.591588445				
NM_001256312	STK3	0.000577682	0.003951885	-0.59145188				
NM_001007026	ATN1	0.001434023	0.008388752	-0.590589576				
NM_001201402	GALC	0.011576052	0.044821569	-0.590379988				
NM_021937	EEFSEC	0.000192603	0.001515128	-0.589207673				
NM_000203	IDUA	0.010369035	0.041013793	-0.588795151				
NM_001198999	SEMA6D	0.003889942	0.018795	-0.58873953				
NM_015209	KAZN	0.001720209	0.009766805	-0.588438006				
NM_024660	IGFLR1	0.000851596	0.005435329	-0.588048782				
NM_152228	TAS1R3	0.010646375	0.041843452	-0.587039				
NM_198207	CERS1	0.002709221	0.014104753	-0.585346059				
NM_001242463	FBXO32	0.001076722	0.040092373	-0.583927749				
NM_021202	TP53INP2	0.006865073	0.029695689	-0.58139805				
NM_014735	PHF16	0.002135596	0.011666084	-0.58171345				
NM_001207064	CXADR	0.009114829	0.037023699	-0.581712296				
NM_001199098	BAIAP3	0.000178801	0.001460136	-0.58150743				
NM_001199099	BAIAP3	0.000178801	0.001460136	-0.58150743				
NM_001256735	SSBP2	0.002218323	0.012022964	-0.580550442				
NM_153697	ANKRD44	0.001391123	0.008186563	-0.58034092				
NM_153498	CAMK1D	0.000198465	0.001591846	-0.580025113				
NM_002441	MSH5	0.007548896	0.032010637	-0.579990768				
NM_024646	ZYG11B	0.000614047	0.004178526	-0.579755994				
NM_00135707	ACBD4	0.00135146	0.007998672	-0.579406027				
NM_001144951	GLYCTK	0.011091698	0.043295939	-0.579152672				
NM_003933	BAIAP3	0.000185482	0.001505999	-0.578820894				
NM_001199097	BAIAP3	0.000198964	0.001594558	-0.578579667				
NM_014055	IFT81	0.006045885	0.026708125	-0.577804066				
NM_000153	GALC	0.012383256	0.047245246	-0.576836882				
NR_045553	THBS3	0.002397509	0.012786569	-0.576785788				
NM_003793	CTSF	0.000593824	0.004052982	-0.576025748				
NM_145253	FAM100A	0.011409256	0.044310884	-0.573803844				
NM_152363	ANKLE1	0.000614748	0.004182344	-0.573703842				
NM_018349	MCTP1	0.000272877	0.002085751	-0.573683428				
NM_016368	ISYNA1	0.000181381	0.001476736	-0.572947126				
Gene Symbol	Gene Name	Fold Change 1	Fold Change 2	Log2 Fold Change				
--------------	------------	---------------	---------------	-----------------				
NM_001178056	PARP8	0.000404446	0.002932873	-0.572377443				
NM_182899	CREB5	0.012705129	0.048157947	-0.571855918				
NM_182898	CREB5	0.012705129	0.048157947	-0.571855918				
NM_004904	CREB5	0.012705129	0.048157947	-0.571855918				
NM_001011666	CREB5	0.012705129	0.048157947	-0.571855918				
NM_001256736	SSBP2	0.002792549	0.014445288	-0.571702442				
NM_003743	NCOA1	0.001011193	0.000887069	-0.570562107				
NM_147233	NCOA1	0.001011193	0.000887069	-0.570562107				
NM_001201427	DAAM2	0.001460571	0.008512213	-0.570245768				
NR_026702	GLYCTK	0.005966176	0.026410971	-0.570059155				
NM_001163423	ZNF580	0.001484598	0.008624424	-0.569752895				
NM_004925	AQP3	0.001647432	0.009416570	-0.569443221				
NM_001256734	SSBP2	0.00261762	0.013721609	-0.569145284				
NM_001244706	CSAD	0.008096093	0.033781467	-0.56893416				
NM_153607	C5orf41	0.007884836	0.033099824	-0.56863595				
NM_002391	MDK	0.001906647	0.010614393	-0.565422052				
NM_015345	DAAM2	0.00145064	0.008464297	-0.565709966				
NM_00191061	SLC25A22	0.000115964	0.001000173	-0.565422052				
NM_147223	NCOA1	0.000117876	0.001014752	-0.565145822				
NM_020902	CAMSAP3	0.000806176	0.005197901	-0.56435825				
NM_001080429	CAMSAP3	0.000808632	0.005210346	-0.563893416				
NM_130468	CHST14	0.012167977	0.046609408	-0.563846594				
NR_046367	EGFL7	0.000497852	0.003500042	-0.563652019				
NM_001199096	BAIAP3	0.000294281	0.002225228	-0.563345309				
NM_001014765	FBXO44	0.001608583	0.009228234	-0.562796458				
NM_024698	SLC25A22	0.000162362	0.00347363	-0.562682325				
NR_045110	EGFL7	0.000508264	0.00355725	-0.562050094				
NR_045111	EGFL7	0.000508264	0.00355725	-0.562050094				
NM_013974	DDAH2	0.004079635	0.019535049	-0.5618948				
NM_001012333	MDK	0.002219414	0.012026683	-0.56185275				
NM_012334	MYO10	0.000385351	0.00357251	-0.561347365				
NM_005528	DNAJC4	0.001597016	0.009177822	-0.56131709				
NM_001099755	SYBU	0.000162586	0.001348468	-0.561122718				
NM_016215	EGFL7	0.000524581	0.003655091	-0.560830523				
NM_001161562	TNIK	0.004978117	0.022930664	-0.560607529				
NM_001161561	TNIK	0.004978117	0.022930664	-0.560607529				
NM_001161560	TNIK	0.004978117	0.022930664	-0.560607529				
NM_015028	TNIK	0.004978117	0.022930664	-0.560607529				
NM_033401	CNTNAP4	0.010058986	0.040037891	-0.559399057				
NM_201446	EGFL7	0.000588434	0.004018958	-0.557138927				
NM_001122772	AGAP2	0.000189547	0.001530306	-0.557061938				
Gene Symbol	p-Value	FDR	p-Value	FDR	p-Value	FDR	p-Value	FDR
-------------	---------	------	---------	------	---------	------	---------	------
NM_001080475	0.00353711	0.017441706	-0.556602294					
NM_001017395	0.001094194	0.006725163	-0.556105547					
NM_001099746	0.000200634	0.001606208	-0.555914945					
NM_001099749	0.000200634	0.001606208	-0.555914945					
NR_023380	0.001225322	0.007373213	-0.555865802					
NM_001161563	0.005710852	0.025516373	-0.554525613					
NM_001161566	0.005710852	0.025516373	-0.554525613					
NM_001161565	0.005710852	0.025516373	-0.554525613					
NM_001161564	0.005710852	0.025516373	-0.554525613					
NM_032042	0.000412373	0.002983806	-0.554371952					
NM_020998	0.002175864	0.011829518	-0.552704236					
NM_020397	0.000756319	0.004924615	-0.552175182					
NM_022841	0.001528718	0.008852089	-0.552027934					
NM_001135956	0.01254159	0.047684035	-0.551428295					
NM_015512	0.000178713	0.001460136	-0.549970424					
NM_001207063	0.012129193	0.046478819	-0.549717123					
NM_001135955	0.010242576	0.040610891	-0.549668574					
NM_001170938	0.000384708	0.002804114	-0.547847225					
NM_138994	0.01188056	0.045727213	-0.547701192					
NM_001013436	0.000365872	0.002685263	-0.547588957					
NM_001077445	0.003771278	0.018354651	-0.547301429					
NM_001136258	0.010167195	0.040387453	-0.54632167					
NR_045573	0.00054161	0.003754381	-0.5458604					
NM_001003700	0.00107534	0.00935479	-0.545820909					
NM_015136	0.000696694	0.004617229	-0.54572085					
NM_001164755	0.005847467	0.025978347	-0.545608799					
NM_001163417	0.000627934	0.004253548	-0.545130604					
NM_001256308	0.00419273	0.003021957	-0.545046965					
NM_152754	0.004881192	0.022583587	-0.544577496					
NM_173584	0.002847892	0.014673208	-0.543210642					
NM_001161574	0.003525131	0.017395603	-0.543043683					
NM_001131028	0.007423535	0.031577649	-0.543005053					
NM_052893	0.002212502	0.012000167	-0.541942961					
NM_001130517	0.000416451	0.003005261	-0.541579618					
NM_031482	0.008221811	0.03418125	-0.540045112					
NM_001018000	0.0032889256	0.016439089	-0.539757639					
NM_002119	0.003666805	0.017945726	-0.539195617					
NM_006642	0.000899009	0.005690279	-0.538910574					
NM_018196	0.010103573	0.04017769	-0.538538384					
NM_001018001	0.003737281	0.018239574	-0.53822861					
NM_001080	0.000643367	0.004340283	-0.537677686					
Gene ID	Gene Symbol	Log2FoldChange1	Log2FoldChange2	p-value1	p-value2			
--------------	-------------	----------------	----------------	----------	----------			
NM_170740	ALDH5A1	0.000643367	0.004340283	-0.537677686				
NM_170672	RASGRP3	0.001150125	0.007010461	-0.537453603				
NM_147127	EVC2	0.000682448	0.004540029	-0.537188536				
NM_014808	FARP2	0.001500241	0.007802451	-0.536968516				
NM_183413	FBXO44	0.003122766	0.015763417	-0.53690242				
NM_021126	MPST	0.000479479	0.003380631	-0.536431298				
NM_006977	ZBTB25	0.000682448	0.004540029	-0.537188536				
NM_032824	TMEM87B	0.00198885	0.001594354	-0.535738435				
NM_001174095	ZEB1	0.000841608	0.005380608	-0.535369478				
NM_001252607	THBS3	0.004510267	0.016288575	-0.534382025				
NR_001093725	FER1L4	0.000572017	0.003923059	-0.53420863				
NM_002119	HLA-DOA	0.00012857	0.001093504	-0.533927749				
NR_037846	MSH5-SAPCD1	0.005583051	0.025088692	-0.533847938				
NM_145262	GLYCTK	0.0002986752	0.015203374	-0.532895626				
NR_026699	GLYCTK	0.0002986752	0.015203374	-0.532895626				
NM_033220	TRIM14	0.001114835	0.043357777	-0.532563434				
NM_022737	LPPR2	0.005616345	0.025188789	-0.531858778				
NM_001174093	ZEB1	0.00065046	0.003677711	-0.531792499				
NM_001099272	BTBD9	0.002767329	0.014339446	-0.531377008				
NM_006939	SOS2	0.003209184	0.016106625	-0.531144777				
NM_00114614	MFGE8	0.003782345	0.018384026	-0.531060084				
NR_024038	MPST	0.000528198	0.003677711	-0.530437768				
NM_001164754	ASPH	0.008215341	0.034163909	-0.530199804				
NM_001017999	KAZN	0.004244358	0.02017428	-0.52989041				
NM_130898	CREB3L4	0.002419353	0.012886882	-0.52977544				
NM_019600	FAM214A	0.001701014	0.009679453	-0.529428419				
NM_033182	FBXO44	0.003350447	0.016697171	-0.529252081				
NM_007112	TMEM87B	0.004872739	0.022558527	-0.528949041				
NM_001161573	MAFF	0.005554225	0.024938365	-0.528934465				
NM_001253389	ISYNA1	0.000596878	0.004071018	-0.528462904				
NM_001145963	SLC12A4	0.000104693	0.00914779	-0.526423434				
NM_000512	GALNS	0.001907321	0.010614393	-0.525381655				
NM_006257	PRKCI	0.00311804	0.015744912	-0.525299382				
NM_003306	TRPC4	0.012253289	0.046857676	-0.525127103				
NM_016179	TRPC4	0.012253289	0.046857676	-0.525127103				
NM_001256304	DTNB	0.000453639	0.003230481	-0.525074976				
NM_001145962	SLC12A4	0.000113544	0.00981389	-0.525024519				
NM_001242409	FAM59A	0.000188671	0.001525646	-0.524589046				
NM_022751	FAM59A	0.000188671	0.001525646	-0.524589046				
Gene Name	Gene_symbol	Value	Significance	LogRatio				
-----------	-------------	-------	--------------	----------				
NM_001255980	CREB3L4	0.003077985	0.015579709	-0.524446228				
NM_152312	GYLT1L1B	0.004089808	0.019577454	-0.52435289				
NM_207363	NCKAP5	0.001276694	0.007635677	-0.524348024				
NM_001173425	DFNB31	0.002781409	0.014402359	-0.52286328				
NM_001255978	CREB3L4	0.002781409	0.014402359	-0.52286328				
NM_001242413	PRKCQ	0.003792708	0.018419335	-0.52209187				
NM_001172418	BTBD9	0.004570311	0.021388335	-0.521930621				
NM_001081560	DMPK	0.000787356	0.00509424	-0.521386273				
NM_001255980	CREB3L4	0.002781409	0.014402359	-0.52286328				
NM_001172418	BTBD9	0.004570311	0.021388335	-0.521930621				
NM_001081562	DMPK	0.000811678	0.005225444	-0.519903442				
NM_006037	HDAC4	0.000259086	0.002001884	-0.519258683				
NM_001135706	ACBD4	0.001451497	0.008467635	-0.520474361				
NM_001135707	ACBD4	0.001451497	0.008467635	-0.520474361				
NM_006645	STARD10	0.004157071	0.019832346	-0.520185779				
NM_001081562	DMPK	0.000811678	0.005225444	-0.519903442				
NM_001135705	LPPR2	0.007522767	0.031918056	-0.51667042				
NM_001170794	BACH2	0.0042915	0.020359275	-0.515734857				
NM_004409	DMPK	0.00964186	0.006042326	-0.515605066				
NR_045574	ISYNA1	0.000835031	0.005350283	-0.515517504				
NM_024507	KREMEN2	0.009757775	0.037487855	-0.514225089				
NM_001145961	SLC12A4	0.000206289	0.00164263	-0.515350942				
NM_148965	TNFRSF25	0.0075999	0.032190171	-0.513551773				
NM_183360	DTNB	0.000412898	0.002985775	-0.513550942				
NM_004067	CHN2	0.00172334	0.001419024	-0.512992669				
NM_003790	TNFRSF25	0.00762862	0.032293406	-0.512502139				
NM_148967	TNFRSF25	0.010550326	0.041593888	-0.511896948				
NM_014770	AGAP2	0.000415813	0.00300284	-0.51154081				
NM_001139488	RASGRP3	0.001444933	0.008437626	-0.511494065				
NM_021907	DTNB	0.00043976	0.003145964	-0.510527475				
Accession	Gene	Fold Change	p-Value	Adjusted p-Value	q-Value			
-------------	--------	-------------	---------	------------------	---------			
NM_020859	SHROOM3	0.000252898	0.001960188	-0.510383489				
NM_001014979	C16orf93	0.005821261	0.02589677	-0.50979944				
NM_001195620	C16orf93	0.012447332	0.04740508	-0.509745058				
NM_001159770	SLC39A11	0.00783904	0.05077437	-0.50466866				
NM_021916	ZNF70	0.009765714	0.039079952	-0.50269766				
NM_016202	ZNF580	0.004049373	0.019403155	-0.50922244				
NM_001174101	PRR7	0.005806649	0.0258395	-0.508573978				
NM_015833	ADARB1	0.00174267	0.009871698	-0.508549586				
NM_172389	NFATC1	0.000189146	0.001528655	-0.508020129				
NM_001256303	DTNB	0.00477025	0.003367961	-0.507922858				
NM_015188	TBC1D12	0.003041297	0.015425536	-0.507841102				
NM_001174096	ZEB1	0.000949258	0.005966391	-0.506764397				
NM_015376	RASGRP3	0.002740052	0.014237827	-0.50571429				
NM_001166136	EVC2	0.001530225	0.00885909	-0.505624221				
NM_001128128	ZEB1	0.001093166	0.006720235	-0.505443792				
NM_030567	PRR7	0.004589069	0.021455845	-0.505035318				
NM_021140	KDM6A	0.001171972	0.007113457	-0.50502102				
NM_012338	SLC17A1	0.000260303	0.002007633	-0.50655595				
NM_001174094	ZEB1	0.001089279	0.006697728	-0.50589316				
NM_015376	RASGRP3	0.002740052	0.014237827	-0.50571429				
NM_001166136	EVC2	0.001530225	0.00885909	-0.505624221				
NM_001128128	ZEB1	0.001093166	0.006720235	-0.505443792				
NM_030567	PRR7	0.004589069	0.021455845	-0.505035318				
NM_021140	KDM6A	0.001171972	0.007113457	-0.50502102				
NM_012338	SLC17A1	0.000260303	0.002007633	-0.50655595				
NM_001174094	ZEB1	0.001089279	0.006697728	-0.50589316				
Gene Symbol	Gene Name	Fold Change	q Value	P Value				
-------------	-----------	-------------	---------	---------				
NM_001243733	VEGFB	0.001888079	0.01053046	-0.499068807				
NM_001112	ADARB1	0.002291819	0.012351468	-0.498673797				
NM_172387	NFATC1	0.000223596	0.001760625	-0.498601076				
NM_000080	CHRNA5	0.005874624	0.026075611	-0.498015122				
NM_001163152	ETV1	0.000766566	0.004979245	-0.497439931				
NM_005704	PTPRU	0.001471195	0.008555677	-0.496659989				
NM_133177	PTPRU	0.001471195	0.008555677	-0.496659989				
NM_133178	PTPRU	0.001471195	0.008555677	-0.496659989				
NM_145007	NLRP11	0.000766566	0.004979245	-0.497439931				
NR_027140	TNFRSF10B	0.007988967	0.033451898	-0.496198907				
NM_001002266	Mar-08	0.005726458	0.025574564	-0.496113882				
NM_022478	CDH24	0.00196753	0.010896213	-0.496034795				
NM_001128613	NUDB22	0.002524264	0.013331004	-0.495901456				
NM_003377	VEGFB	0.001805417	0.010161284	-0.495310379				
NM_001184906	FBXL20	0.007302114	0.031204619	-0.493915133				
NM_183412	FBXO44	0.006532511	0.028464316	-0.495181772				
NM_001002265	Mar-08	0.002507482	0.013258871	-0.494842938				
NM_198584	CA13	0.000795407	0.005140735	-0.493768308				
NM_001193524	FAM65A	0.000795407	0.005140735	-0.493768308				
NM_012477	WBP1	0.000795407	0.005140735	-0.493768308				
NM_016573	GMIP	0.002415615	0.012533849	-0.493768308				
NM_001039569	AP1S3	0.002415615	0.012533849	-0.493768308				
NM_001105529	ATP8A1	0.002415615	0.012533849	-0.493768308				
NM_207351	PRRT3	0.002415615	0.012533849	-0.493768308				
NM_014048	MKL2	0.002415615	0.012533849	-0.493768308				
NM_033148	DTNB	0.002415615	0.012533849	-0.493768308				
NM_015016	MAST3	0.002415615	0.012533849	-0.493768308				
NM_152243	CDC42EP1	0.002415615	0.012533849	-0.493768308				
NM_001142641	FBRS1	0.002415615	0.012533849	-0.493768308				
NM_172114	CAMK2D	0.002415615	0.012533849	-0.493768308				
NM_172115	CAMK2D	0.002415615	0.012533849	-0.493768308				
NM_172129	CAMK2D	0.002415615	0.012533849	-0.493768308				
NM_00135704	ACBD4	0.002415615	0.012533849	-0.493768308				
NM_014831	TRAK1	0.002415615	0.012533849	-0.493768308				
NM_00199621	NCOA7	0.002415615	0.012533849	-0.493768308				
NM_001012957	DISC1	0.002415615	0.012533849	-0.493768308				
NM_183361	DTNB	0.002415615	0.012533849	-0.493768308				
NM_021813	BACH2	0.002415615	0.012533849	-0.493768308				
NM_145021	Mar-08	0.002415615	0.012533849	-0.493768308				
NM_001160230	ADARB1	0.002415615	0.012533849	-0.493768308				
Gene Symbol	Gene Name	Expression Value	Gene Expression Value	Log2 Fold Change				
-------------	-----------	------------------	-----------------------	-----------------				
NM_144641	PPM1M	0.002523581	0.013331004	-0.48879979				
NM_032875	FBXL20	0.001444011	0.008433899	-0.48817769				
NM_001163418	FAM172A	0.003905575	0.018856533	-0.488679031				
NM_173511	FAM117B	0.010712531	0.042064521	-0.48837353				
NM_032344	NUDT22	0.00170117	0.009679453	-0.488140397				
NM_001198535	OXR1	0.000177689	0.001454176	-0.487626343				
NM_001120	MFS5D10	0.000189241	0.001529002	-0.487423949				
NM_005533	IFI35	0.000329718	0.002456928	-0.487307069				
NR_026845	C21orf119	0.008338834	0.03457585	-0.486759023				
NM_001253726	KREMen2	0.012396163	0.047270212	-0.485641308				
NM_194291	TMEM65	0.000884818	0.005616003	-0.48546322				
NM_001145923	SCAPEr	0.006367831	0.02792024	-0.485276922				
NM_005781	TNK2	0.000570785	0.003917323	-0.485038047				
NM_152730	C6orf170	0.011781341	0.045429949	-0.485017032				
NM_000052	ATP7A	0.000426052	0.003062651	-0.484970184				
NM_001159601	RAB28	0.000204955	0.001634631	-0.481527744				
NM_006095	ATP8A1	0.005136664	0.023491267	-0.481470314				
NM_024770	METTL8	0.000348331	0.002568982	-0.481331671				
NM_001146069	MFS5D10	0.000205507	0.001637282	-0.480845182				
NM_005786	TSHZ1	0.000194808	0.001565467	-0.48059998				
NM_001010938	TNK2	0.000735018	0.004818561	-0.480236273				
NM_014869	IQSEC1	0.002359144	0.012622736	-0.480184484				
NM_021224	ZNF462	0.007024535	0.030270899	-0.480028723				
NM_021994	ZNF277	0.010078672	0.040094764	-0.479903999				
NM_003890	FCGBP	0.001992355	0.011021372	-0.47983759				
NM_015073	SIPA1L3	0.00049934	0.003508844	-0.479561902				
NM_001017979	RAB28	0.000223949	0.001762942	-0.479456996				
NM_020800	IFT80	0.000142458	0.001192849	-0.47926214				
NM_001164540	DISC1	0.0038903	0.018795	-0.47910211				
NM_004943	DMWD	0.000190253	0.001534673	-0.479047946				
NM_006346	PIBF1	0.000952017	0.005978674	-0.478377529				
NM_006162	NFATC1	0.000403212	0.002925355	-0.478062014				
NM_020376	PNPLA2	0.001009306	0.006287955	-0.477663271				
NM_001142782	MAGI3	0.00069931	0.004630435	-0.477479864				
NM_001199620	NCOA7	0.000657646	0.004412568	-0.476078098				
NR_036467	IFFO1	0.002312151	0.012431542	-0.475660504				
NR_016815	GYPC	0.000584374	0.003994905	-0.475304289				
NR_024408	LOC253039	0.006130555	0.0270179	-0.475092144				
NM_001255981	CREB3L4	0.00846058	0.034973298	-0.475023439				
NR_027674	ADARB1	0.004277413	0.020307029	-0.474887555				
NM_001255979	CREB3L4	0.007625195	0.032283506	-0.474679744				
Gene Symbol	Gene Symbol	Value 1	Value 2	Value 3				
-------------	-------------	--------	--------	--------				
NM_080730	IF001	0.002798961	0.014461479	-0.474459227				
NM_001039670	IF001	0.002798961	0.014461479	-0.474459227				
NM_001199619	NCOA7	0.000676747	0.004512203	-0.473984974				
NM_173078	SLITRK4	0.001279259	0.007649043	-0.473921323				
NM_024113	C11orf49	0.009997029	0.039844648	-0.473753204				
NM_001003677	C11orf49	0.009997029	0.039844648	-0.473753204				
NM_001164537	DISC1	0.002897538	0.014874095	-0.473205198				
NM_018662	DISC1	0.002897538	0.014874095	-0.473205198				
NM_152900	MAGI3	0.000768593	0.004990227	-0.473196567				
NM_001003676	C11orf49	0.007657208	0.032377524	-0.472873113				
NM_152686	DNAJC18	0.012670751	0.0480767	-0.471321904				
NM_006295	VAR	0.000518763	0.003623054	-0.470685549				
NM_032591	SLC9A7	0.009890523	0.039452444	-0.470620398				
NM_001193457	IF001	0.003022228	0.015356253	-0.469808585				
NM_001242607	NCAM1	0.007502628	0.0318508	-0.469529206				
NM_181351	NCAM1	0.007502628	0.0318508	-0.469529206				
NM_181782	NCOA7	0.001049549	0.006489689	-0.469453147				
NM_003842	TNFRSF10B	0.010310375	0.040825239	-0.469188097				
NM_001024382	HMBS	0.002050029	0.011281611	-0.468894685				
NM_052916	RNF157	0.00019228	0.001549405	-0.468244445				
NM_145738	SYNGR1	0.010918669	0.042710291	-0.468206457				
NM_007255	B4GALT7	0.000414244	0.002993702	-0.467916457				
NM_001164750	ASPH	0.003199717	0.016069964	-0.467722696				
NM_001190241	IFT80	0.000217286	0.001719598	-0.467314499				
NM_001206484	ATF3	0.002309548	0.012423824	-0.466739524				
NM_001122842	NCOA7	0.001136028	0.006939228	-0.466657234				
NR_026777	ZNF37BP	0.00011048	0.0009583	-0.466543992				
NM_001149	ANK3	0.002425446	0.012912393	-0.466042882				
NM_139076	FAM175A	0.003476702	0.017208053	-0.465979121				
NM_024776	PEAK1	0.002716154	0.014128467	-0.46591644				
NM_000615	NCAM1	0.007908988	0.033173566	-0.465641333				
NM_015556	SIPA1L1	0.001133494	0.006926597	-0.465226565				
NM_004249	RAB28	0.000319629	0.002388935	-0.46504104				
NM_147187	TNFRSF10B	0.01111177	0.043357203	-0.464954375				
NM_032499	C15orf41	0.008399056	0.034762498	-0.464796153				
NM_031413	CECR2	0.00074814	0.004883038	-0.464694557				
NM_001166271	SPATA13	0.000689655	0.004577725	-0.463567538				
NM_002101	GYPC	0.000575221	0.003940489	-0.463137712				
NM_001256584	GYPC	0.000575221	0.003940489	-0.463137712				
NM_002917	RFNG	0.001363663	0.008053252	-0.462240732				
NR_028080	FAM172A	0.006497223	0.028341422	-0.462003448				
Gene Symbol	Description	p-value 1	p-value 2	p-value 3				
-------------	-------------	-----------	-----------	-----------				
NM_001206488	ATF3	0.002489457	0.013172936	-0.46174321				
NM_001184883	PLCB3	0.000142371	0.001197861	-0.460820873				
NM_014934	DZIP1	0.00028542	0.002164284	-0.459565251				
NM_016154	RAB4B	0.010318153	0.040850592	-0.458774916				
NM_145886	PIDD	0.000466643	0.00330487	-0.45867863				
NM_001168724	TMEM135	0.000112027	0.000969741	-0.457765423				
NM_001184749	SLITRK4	0.001163023	0.007070692	-0.457632326				
NM_001171133	FAM3A	0.004793115	0.022252306	-0.457001503				
NM_001184750	SLITRK4	0.001957269	0.010853549	-0.456530992				
NM_032306	ALKBH7	0.00393962	0.018983898	-0.455740096				
NM_022918	TMEM135	0.000117973	0.001014998	-0.455151581				
NM_144973	DENNDSB	0.001385779	0.008161157	-0.455094689				
NM_001080448	EPHA6	0.000714726	0.00471256	-0.454748174				
NM_001161662	WWC1	0.001053168	0.00650257	-0.454491712				
NM_001161661	WWC1	0.001053168	0.00650257	-0.454491712				
NM_015238	WWC1	0.001053168	0.00650257	-0.454491712				
NM_001082579	RBFOX2	0.000188049	0.001521855	-0.454454809				
NM_001082578	RBFOX2	0.000188049	0.001521855	-0.454454809				
NM_020843	SCAPER	0.008054628	0.033665172	-0.454363811				
NM_018438	FBXO6	0.011313404	0.044022578	-0.454063078				
NM_001024647	RAB3IP	0.000728209	0.004783419	-0.454023357				
NM_030962	SFB2	0.002666435	0.013925912	-0.454023236				
NM_203474	PORCN	0.00549483	0.024767158	-0.453958858				
NM_203475	PORCN	0.00549483	0.024767158	-0.453958858				
NM_002839	PTPRD	0.003313127	0.016538922	-0.452965992				
NM_001005739	VPS54	0.004051562	0.019410006	-0.452772525				
NM_001025239	TSPAN4	0.002883095	0.014820437	-0.452726628				
NM_001082577	RBFOX2	0.000264826	0.002035813	-0.452566298				
NM_014309	RBFOX2	0.000268503	0.002057534	-0.452540996				
NM_018226	RNPEPL1	0.000813879	0.005237339	-0.452460554				
NM_199334	THRA	0.010481785	0.041366162	-0.452205105				
NM_130393	PTPRD	0.004567474	0.021381794	-0.451825346				
NM_130392	PTPRD	0.004567474	0.021381794	-0.451825346				
NM_130391	PTPRD	0.004567474	0.021381794	-0.451825346				
NM_001171025	PTPRD	0.004567474	0.021381794	-0.451825346				
NM_001040712	PTPRD	0.004567474	0.021381794	-0.451825346				
NM_052924	RHPN1	0.002017365	0.011130714	-0.45181514				
NM_001190242	IFT80	0.000673312	0.004493332	-0.451653333				
NM_001122870	PPM1M	0.006827261	0.029557942	-0.451341677				
NM_001134368	SLC6A6	0.000532379	0.003699887	-0.450604921				
NM_021120	DLG3	0.002035183	0.011210293	-0.449166186				
Accession	Description	Expression Level 1	Expression Level 2	Adjusted p-Value				
--------------	-------------	--------------------	--------------------	------------------				
NM_003271	TSPAN4	0.003639036	0.017853927	-0.448967721				
NM_144571	CNOT6L	0.001020063	0.006343005	-0.448791449				
NM_002119	HLA-DOA	0.001484758	0.008624424	-0.448538732				
NM_016516	VPS54	0.004372734	0.02065891	-0.448465474				
NM_001987	ETV6	0.000441909	0.0031583	-0.448462978				
NM_145887	PIDD	0.000595682	0.004063793	-0.448224204				
NM_198968	DZIP1	0.000396481	0.002882626	-0.448140039				
NM_021021	SNTPB1	0.000681105	0.004532664	-0.447874173				
NM_001134382	IQSEC1	0.001668023	0.009515959	-0.446908379				
NM_024949	WWC2	0.000867765	0.005524288	-0.44686701				
NM_001136127	DNM3	0.001718127	0.009756847	-0.446846633				
NM_015569	DNM3	0.001718127	0.009756847	-0.446846633				
NM_022825	PORCN	0.006154206	0.027106051	-0.44762179				
NM_203473	PORCN	0.006154206	0.027106051	-0.44762179				
NM_014887	N4BP2L2	0.001330409	0.007897677	-0.44651145				
NM_001243960	NEDD4L	0.001378464	0.01165395	-0.446544898				
NR_037687	PLXNC1	0.000212839	0.001688002	-0.446425059				
NM_014957	DENND3	0.000221257	0.001744522	-0.445727455				
NM_00932	PLCB3	0.000247376	0.001923915	-0.444944392				
NM_024527	ABHD8	0.003477928	0.017211257	-0.444924706				
NM_022092	CHTF18	0.001463094	0.008521904	-0.444289931				
NM_001243750	NUDT8	0.005827866	0.02591496	-0.444206499				
NM_001204505	DGKH	0.000160856	0.00133636	-0.443846542				
NR_033237	FAM3A	0.003281444	0.016408323	-0.443798313				
NM_015185	ARHGEF9	0.003840427	0.018608508	-0.443484246				
NM_021806	FAM3A	0.003225149	0.016173092	-0.443348561				
NM_001031695	RBFOX2	0.000354716	0.002613064	-0.443156621				
NM_001082576	RBFOX2	0.000359528	0.00264458	-0.443127662				
NM_020461	TUBGCP6	0.000477696	0.003371095	-0.442892724				
NR_037945	STX16-NPEPL1	0.000531598	0.003695972	-0.442774904				
NM_001204506	DGKH	0.000170473	0.001406053	-0.442434412				
NR_027783	SAT1	0.000653334	0.004390577	-0.442260239				
NR_033422	SLC11A2	0.0001979632	0.010957190	-0.442250601				
NR_033948	P2RX7	0.0011465087	0.044507901	-0.442104007				
NM_003422	MZF1	0.005295032	0.024046008	-0.441777577				
NM_177401	MIDN	0.005138844	0.023497619	-0.441730301				
NM_032918	RERG	0.000108767	0.000944269	-0.441650961				
NR_045786	LOC100861402	0.00014537	0.001219638	-0.441149181				
NR_045787	LOC100861402	0.00014537	0.001219638	-0.441149181				
NM_147128	ZNRF2	0.001965072	0.010890721	-0.440779302				
NM_023078	PYCRL	0.000561752	0.003866944	-0.440750335				
Gene Symbol	Description	Log2 Fold Change	Log10 (p-value)					
-------------	-------------	-----------------	----------------					
NM_001253884	ALPK1	0.007390533	0.031482865					
NM_001164213	LRCH1	0.007347713	0.031358897					
NM_181843	NUDT8	0.007131615	0.030616904					
NM_016340	RAPGEF6	0.000735412	0.004819973					
NM_033951	P2RX7	0.01273032	0.048228827					
NM_014925	R3HDM2	0.002458536	0.013041552					
NM_001715	BLK	0.009890659	0.039452444					
NM_024734	CLMN	0.000404983	0.002936055					
NM_001030287	ATF3	0.008609399	0.035450671					
NM_001099281	HEATR7A	0.001015699	0.006320172					
NM_001012758	NUDT17	0.010995555	0.042960152					
NM_001674	ATF3	0.004116292	0.019672539					
NM_001025237	TSPAN4	0.00470738	0.02193052					
NM_001244871	DAB2	0.011306378	0.044006763					
NM_130849	SLC39A4	0.005614821	0.025188789					
NM_001171132	FAM3A	0.004107173	0.019638434					
NM_001025234	TSPAN4	0.004709563	0.021936378					
NR_003003	SCARNA17	0.001215721	0.007338527					
NM_001040619	ATF3	0.004785303	0.022229926					
NM_001039936	CHN2	0.008472987	0.035009976					
NM_001164386	RAPGEF6	0.000837575	0.005358494					
NR_027673	ADARB1	0.008948597	0.03653324					
NM_017667	CCDC132	0.00324647	0.016266286					
NM_198055	MZF1	0.005043011	0.023152444					
NM_014790	JAKMIP2	0.010740027	0.042144464					
NM_001244888	AGAP1	0.005124568	0.023450385					
NM_001079803	GAA	0.001998244	0.011045725					
NM_001204873	NPEPL1	0.012842054	0.04855927					
NM_001113299	HIPK2	0.000103814	0.000907636					
NM_032852	ATG4C	0.010069871	0.040075849					
NM_001025236	TSPAN4	0.00494377	0.022816279					
NM_001025235	TSPAN4	0.00494377	0.022816279					
NM_000152	GAA	0.002145341	0.011693527					
NM_175080	P2RX5	0.009053884	0.036839321					
NM_001204520	P2RX5	0.009053884	0.036839321					
NM_198904	GABRG2	0.009048197	0.036833599					
NM_000816	GABRG2	0.009048197	0.036833599					
NM_012181	FKBP8	0.000368438	0.002702088					
NM_198903	GABRG2	0.009200458	0.037268872					
Gene Symbol	Description	P1	P2	P3				
-------------	-------------	----	----	----				
EYA1		0.011964637	0.045972733	-0.430558309				
P2RX5		0.010001272	0.039848881	-0.430257537				
P2RX5		0.010001272	0.039848881	-0.430257537				
PDE4B		0.0002615	0.002014253	-0.430136561				
POM121L10P		0.012709787	0.048163153	-0.430031123				
LSR		0.00339981	0.016898752	-0.429961455				
GAA		0.001994414	0.011026606	-0.429721886				
RYK		0.000664399	0.004445832	-0.429696337				
RYK		0.000664399	0.004445832	-0.429696337				
PIK3R5		0.011530425	0.044685661	-0.429678062				
ALPK1		0.006747805	0.02925657	-0.429345718				
RGS13		0.00795883	0.005141708	-0.429106432				
VPS13A		0.000417221	0.003009885	-0.429101448				
ATG4C		0.012765444	0.048331088	-0.429066477				
RAPGEF6		0.001200038	0.007260086	-0.42900883				
RAPGEF6		0.001200038	0.007260086	-0.42900883				
SLC39A4		0.006191836	0.027239496	-0.428996053				
PIK3R5		0.012229318	0.046802142	-0.42735066				
RGS13		0.00891044	0.005650697	-0.428481024				
CASK		0.003465724	0.017165154	-0.427884131				
CHCHD6		0.002630584	0.01377499	-0.42785444				
DENND1A		0.002694805	0.014044462	-0.427726183				
CASK		0.003426187	0.017009021	-0.427443249				
PIK3R5		0.012341301	0.047121476	-0.427405485				
VPS13A		0.000448746	0.003198699	-0.426872724				
FAM3A		0.004375699	0.020669631	-0.426841053				
TRMT11		0.004363694	0.020630491	-0.426692408				
UBAC2		0.000151801	0.001268937	-0.426386399				
HEATR7A		0.001029095	0.006388471	-0.426265434				
ATG4C		0.011870099	0.045700953	-0.426072832				
PDE4B		0.000312556	0.002343735	-0.42574692				
APBA2		0.000231715	0.001816852	-0.425594117				
APBA2		0.000231715	0.001816852	-0.425594117				
ZNF711		0.012933863	0.04882566	-0.42508517				
SLC11A2		0.003909236	0.018871144	-0.42503532				
MZT2B		0.00154539	0.008931224	-0.424991764				
UAP1L1		0.001578692	0.009092728	-0.424714873				
SLC25A10		0.00143597	0.008396838	-0.424590193				
RAB3IP		0.000254258	0.001968861	-0.424588012				
LETMD1		0.000766247	0.004979245	-0.424468583				
LOC100287042		0.001034948	0.006422122	-0.424168816				
Gene ID	Gene Symbol	Value1	Value2	Value3				
--------------	-------------	---------	---------	---------				
NM_003730	RNASET2	0.001593487	0.009159313	-0.424013068				
NM_000190	HMBS	0.002097508	0.011491823	-0.423899983				
NM_001134773	STX16	0.000148229	0.001242046	-0.423651909				
NM_000252	MTM1	0.005033338	0.023118346	-0.423641352				
NM_003763	STX16	0.000155179	0.001293175	-0.423580084				
NM_080702	EVI2A	0.000564388	0.003881488	-0.422967309				
NM_001130026	FAM115C	0.005088756	0.023329613	-0.422469516				
NM_001001433	STX16	0.000149527	0.001251692	-0.421065817				
NM_001134772	STX16	0.00015643	0.001302865	-0.420997172				
NM_001698	AUH	0.006431579	0.035522381	-0.41996923				
NM_001113528	METTL15	0.008248409	0.034277438	-0.42037325				
NM_025144	ALPK1	0.007990315	0.033452828	-0.420436185				
NM_015925	LSR	0.004395626	0.020757162	-0.42021955				
NR_037941	STX16	0.000190113	0.001533963	-0.419970771				
NM_017771	PXK	0.000159689	0.028106947	-0.420865021				
NM_177454	FAM171B	0.00934937	0.036805447	-0.422711724				
NM_004639	BAG6	0.000254961	0.001973093	-0.422469516				
NM_080703	BAG6	0.000251795	0.001953172	-0.419656973				
NM_002890	RASA1	0.001311848	0.007806178	-0.418386306				
NM_000503	EYA1	0.011113627	0.043357777	-0.419705841				
NM_180989	GPR180	0.004556873	0.021355715	-0.417873511				
NM_177967	UBAC2	0.000388343	0.002827834	-0.418094564				
NM_00118037	VPS13A	0.00544853	0.003773339	-0.417604642				
NM_205834	LSR	0.004046563	0.019401696	-0.417487511				
NM_033305	VPS13A	0.0055043	0.003799567	-0.416432193				
NM_006747	SIPA1	0.009416576	0.037945841	-0.416425954				
NM_024430	PSTPIP2	0.011690365	0.0451524	-0.415973613				
NM_003688	CASK	0.004436136	0.020890383	-0.415512225				
NM_130847	AMOTL1	0.000824941	0.005300493	-0.415490517				
NR_045018	LETMD1	0.001152377	0.007020011	-0.4152706				
NM_001003927	EVI2A	0.000656206	0.00440485	-0.41526096				
NM_001174116	DMXL2	0.006966173	0.03006736	-0.415184723				
NM_015263	DMXL2	0.006966173	0.03006736	-0.415184723				
NM_001174129	SLC11A2	0.003535407	0.01744052	-0.415169749				
NM_033396	TNKS1BP1	0.000273857	0.002092621	-0.415151378				
NM_001001795	C8orf82	0.002797269	0.01445929	-0.415089149				
Gene Symbol	Name	FDR	Adjusted FDR	p Value				
-------------	--------	------	--------------	---------				
NM_002039	GAB1	0.007354753	0.03137542	-0.414992003				
NM_001243689	LETMD1	0.001060757	0.006541461	-0.414937041				
NM_152586	USP54	0.010539231	0.041526695	-0.414472867				
NM_153690	FAM43A	0.001599078	0.009184348	-0.414372734				
NM_172208	TAPBP	0.001382724	0.008148007	-0.414285623				
NM_003172	SURF1	0.002694999	0.0020641	-0.413666863				
NM_175625	RAB3IP	0.000330559	0.002461943	-0.413593967				
NM_002335	LRP5	0.002093852	0.011478138	-0.41324951				
NM_001174128	SLC11A2	0.00369917	0.018089228	-0.412933588				
NM_000617	SLC11A2	0.00369917	0.018089228	-0.412933588				
NM_014737	RASSF2	0.000167738	0.001386558	-0.412909966				
NM_001174125	SLC11A2	0.003816498	0.018507646	-0.412889276				
NM_172208	TAPBP	0.002954946	0.015100968	-0.41286018				
NM_015023	WDTC1	0.00103213	0.000903442	-0.412259091				
NM_001173480	ARHgef9	0.007907094	0.033173566	-0.411745135				
NM_005077	TLE1	0.008314551	0.034513402	-0.410822575				
NM_015328	AHCYL2	0.001859236	0.01040311	-0.410635342				
NM_001130720	AHCYL2	0.001859236	0.01040311	-0.410635342				
NM_001540	HSPB1	0.004549659	0.021328635	-0.410616021				
NM_001025238	TSPAN4	0.008695588	0.035735968	-0.410536488				
NM_001694	ATP6V0C	0.00575171	0.025676998	-0.409786225				
NM_025204	TRABD	0.004043666	0.019390935	-0.409247434				
NM_003061	SLIT1	0.006861874	0.029686173	-0.409242953				
NM_207123	GAB1	0.008179096	0.034063277	-0.409038998				
NM_001204	BMPR2	0.012049554	0.046245203	-0.408998798				
NR_026644	UBAC2	0.00352466	0.002597773	-0.408811095				
NM_001142885	TMOD2	0.010538286	0.041526695	-0.408593455				
NM_020761	RPTOR	0.000667707	0.004463506	-0.40854243				
NM_001009998	SSBP4	0.001687065	0.009607995	-0.408148731				
NR_037719	PLSCR3	0.011177894	0.043575164	-0.407868999				
NM_002314	LIMK1	0.001012	0.006302094	-0.407457796				
NM_152636	METTL15	0.010527388	0.041502043	-0.407433521				
NM_170774	RASSF2	0.000197231	0.00158323	-0.407272846				
NM_172208	TAPBP	0.001385454	0.00816086	-0.406669394				
NM_032627	SSBP4	0.001776928	0.0100327	-0.406525144				
NM_020319	ANKY2	0.00042498	0.003057902	-0.40609063				
NM_012478	WBP2	0.000780766	0.005060421	-0.405904263				
NR_037943	STX16	0.000771426	0.00507529	-0.405818706				
NM_134262	RORA	0.001942494	0.010787722	-0.405692302				
NM_001105251	ZFYVE16	0.004253518	0.020214584	-0.405465639				
NM_001174130	SLC11A2	0.005655691	0.025334667	-0.404337602				
Gene Name	Symbol	Log2 Fold Change	Adj. P Value	q Value				
------------	--------	-----------------	-------------	---------				
GNG4	NM_001098721	0.009828284	0.039277448	-0.403991112				
POLG2	NM_007215	0.000832094	0.005333764	-0.403694631				
TMOD2	NM_014548	0.011729707	0.04525142	-0.403686751				
SIDT1	NM_017699	0.005690546	0.025463931	-0.403441037				
BRD3	NM_007371	0.012633199	0.04794646	-0.403421527				
LIMK1	NM_01204426	0.001447193	0.008449164	-0.403277832				
POLG2	NM_139245	0.000832094	0.005333764	-0.403277832				
TMOD2	NM_01174126	0.011729707	0.04525142	-0.403686751				
SLC11A2	NM_01134398	0.00321792	0.016145014	-0.402201403				
BRD3	NM_017699	0.005690546	0.025463931	-0.403441037				
LIMK1	NM_001098721	0.009828284	0.039277448	-0.403991112				
POLG2	NM_007215	0.000832094	0.005333764	-0.403694631				
TMOD2	NM_014548	0.011729707	0.04525142	-0.403686751				
SIDT1	NM_017699	0.005690546	0.025463931	-0.403441037				
BRD3	NM_007371	0.012633199	0.04794646	-0.403421527				
LIMK1	NM_01204426	0.001447193	0.008449164	-0.403277832				
POLG2	NM_139245	0.000832094	0.005333764	-0.403277832				
TMOD2	NM_01174126	0.011729707	0.04525142	-0.403686751				
SLC11A2	NM_01134398	0.00321792	0.016145014	-0.402201403				
BRD3	NM_017699	0.005690546	0.025463931	-0.403441037				
LIMK1	NM_001098721	0.009828284	0.039277448	-0.403991112				
POLG2	NM_007215	0.000832094	0.005333764	-0.403694631				
TMOD2	NM_014548	0.011729707	0.04525142	-0.403686751				
SIDT1	NM_017699	0.005690546	0.025463931	-0.403441037				
BRD3	NM_007371	0.012633199	0.04794646	-0.403421527				
LIMK1	NM_01204426	0.001447193	0.008449164	-0.403277832				
POLG2	NM_139245	0.000832094	0.005333764	-0.403277832				
TMOD2	NM_01174126	0.011729707	0.04525142	-0.403686751				
SLC11A2	NM_01134398	0.00321792	0.016145014	-0.402201403				
Gene Accession	Gene Symbol	Fold Change	p-value	q-value	Benjamini-Hochberg corrected p-value			
---------------	-------------	-------------	---------	---------	-------------------------------------			
NM_033544	RCCD1	0.005291946	0.024038636	-0.392789177				
NM_001244193	KIAA0586	0.002884135	0.014823217	-0.392786735				
NR_037942	STX16	0.001252243	0.007513204	-0.39273222				
NM_005668	ST8SIA4	0.000225786	0.001775991	-0.392500518				
NM_001025160	CD97	0.001490796	0.008656112	-0.391317372				
NM_133494	NEK7	0.000116888	0.001006828	-0.391306745				
NM_201266	NRP2	0.000645796	0.004350739	-0.391258604				
NM_003872	NRP2	0.000645796	0.004350739	-0.391258604				
NM_001098722	GNG4	0.009784386	0.039133981	-0.391025322				
NM_198569	GPR126	0.011282421	0.043945757	-0.390970196				
NR_045019	LETMD1	0.002634384	0.013787601	-0.390861404				
NM_144718	MICAL3	0.002682421	0.013992191	-0.390828117				
NM_001032395	GPR126	0.011870133	0.045700953	-0.390465672				
NM_001166693	AFF1	0.001014599	0.000914224	-0.38872587				
NM_001077238	SPPL2B	0.000656347	0.00440485	-0.387946146				
NR_029427	WDR13	0.008719275	0.035803339	-0.38738069				
NM_015241	MICAL3	0.002131315	0.011646981	-0.387505754				
NM_001079669	TMTC4	0.004433027	0.020889775	-0.387188483				
NM_004785	SLC9A3R2	0.004707568	0.02193052	-0.387141414				
NM_006729	DIAPH2	0.005223678	0.023801296	-0.38695642				
NM_004639	BAG6	0.001602241	0.009198954	-0.386883969				
NM_080703	BAG6	0.001602241	0.009198954	-0.386883969				
NM_080702	BAG6	0.001610895	0.00923793	-0.386703144				
NM_153047	FYN	0.000272888	0.002085751	-0.386688443				
NM_024112	C9orf16	0.012954148	0.048877402	-0.386604463				
NM_005935	AFF1	0.00113523	0.00981839	-0.38621572				
NM_001244191	KIAA0586	0.002981753	0.015185733	-0.386107652				
NM_201279	NRP2	0.000743352	0.004860325	-0.385623951				
NM_001166163	PPP1R9A	0.000234598	0.001835586	-0.385446852				
NM_181312	TAZ	0.001453347	0.008475101	-0.385120647				
NM_001171796	C8orf83	0.009650854	0.038708924	-0.385112646				
NM_006901	MYO9A	0.001610895	0.00923793	-0.384968858				
NM_015170	SULF1	0.003547038	0.017483383	-0.384818134				
NM_001244189	KIAA0586	0.002787653	0.014427146	-0.383984675				
NM_001244192	KIAA0586	0.003005724	0.015279013	-0.383625873				
Gene	Symbol	p-value	q-value	p-value	q-value	p-value		
----------	--------	---------	---------	---------	---------	---------		
NM_002093	GSK3B	0.000617039	0.004196939	-0.383489427				
NM_001146156	GSK3B	0.000619616	0.004210637	-0.383478035				
NM_198082	CCDC57	0.00302247	0.015356253	-0.383474352				
NM_017650	PPP1R9A	0.0002531	0.001961242	-0.383303013				
NM_014738	KIAA0195	0.000351808	0.002593571	-0.38311618				
NM_004480	FUT8	0.00866145	0.035605521	-0.38297355				
NM_001159547	BEND4	0.000517064	0.003613732	-0.382965427				
NM_001080453	INTS1	0.000317184	0.002371411	-0.382926012				
NM_001636	SLC25A6	0.000760642	0.00498057	-0.382846177				
NM_178167	ZNF598	0.000750154	0.004891888	-0.382557107				
NM_001166426	WDR13	0.008274301	0.034365813	-0.382474208				
NM_001244190	KIAA0586	0.002949898	0.015082951	-0.382423043				
NM_012197	RABGAP1	0.002573651	0.013534097	-0.382376777				
NM_002943	RORA	0.004412942	0.020815775	-0.382295223				
NM_134261	RORA	0.004412942	0.020815775	-0.382295223				
NM_024050	DDA1	0.001427026	0.008350879	-0.382271349				
NM_004104	FASN	0.000415227	0.002999346	-0.382259798				
NM_181313	TAZ	0.001587542	0.009137512	-0.382219936				
NM_152988	SPPL2B	0.000872208	0.005546628	-0.381884698				
NM_178155	FUT8	0.005287058	0.02402745	-0.381680577				
NM_001163034	RPTOR	0.001611539	0.009239845	-0.381563138				
NM_134260	RORA	0.004399915	0.020770815	-0.381507926				
NM_017883	WDR13	0.009887981	0.039452356	-0.381102806				
NM_017694	MFSDE6	0.004522174	0.021220343	-0.381009504				
NM_001018073	PCK2	0.000167036	0.001382288	-0.380965262				
NM_001160392	TRPT1	0.007732533	0.032631027	-0.380912481				
NM_018999	FAM190B	0.010938781	0.042772074	-0.380693262				
NM_138385	TMEM129	0.00305522	0.015483	-0.38032409				
NM_001142594	ITPK1	0.007668611	0.032411905	-0.380280475				
NM_001166161	PPP1R9A	0.000212165	0.001683221	-0.379701239				
NM_005160	ADRBK2	0.000745107	0.00486859	-0.379655937				
NM_058237	PPP4R4	0.008963643	0.036584615	-0.379468869				
NM_004560	ROR2	0.008589278	0.035387157	-0.379408911				
NM_001128204	SULF1	0.004289825	0.02035458	-0.379329238				
NM_017514	PLXNA3	0.009793295	0.03915028	-0.379210014				
NM_152542	PPM1K	0.004506589	0.021163447	-0.379129191				
NM_032023	RASSF4	0.000416261	0.003004623	-0.37907417				
NM_000116	TAZ	0.001574575	0.009073422	-0.37867431				
NM_000156	GAMT	0.003808246	0.018476678	-0.378389898				
NM_000218	KCNQ1	0.001630888	0.009337147	-0.378007953				
NM_152992	POMZP3	0.0111398	0.04344376	-0.377563482				
NM_001080477	ODZ3	0.004196912	0.019990325	-0.377555432				
NM_194071	CREB3L2	0.012245771	0.046840979	-0.376218854				
NM_153048	FYN	0.000474334	0.003351354	-0.37976566				
NM_002065	GLUL	0.00054682	0.003780795	-0.37582366				
NM_006339	HMG20B	0.000122622	0.001049527	-0.37584065				
NM_032813	TMTC4	0.004100361	0.01961533	-0.375718193				
NM_181311	TAZ	0.001737014	0.009843412	-0.375713627				
NM_052905	FMNL2	0.000809747	0.005216399	-0.374946378				
NM_004095	EIF4EBP1	0.000367699	0.002698	-0.374276532				
NM_153265	EML3	0.000512431	0.003584726	-0.374128726				
NM_207578	PRKACB	0.000677092	0.004512482	-0.374042973				
NM_004639	BAG6	0.001880477	0.010500212	-0.37355379				
NM_080703	BAG6	0.001880477	0.010500212	-0.37355379				
NM_024704	KIF16B	0.003891456	0.018772872	-0.373442302				
NM_001127266	TMEM129	0.002860549	0.014724916	-0.373408293				
NM_001033044	GLUL	0.000625961	0.004247258	-0.373308661				
NM_001128221	VGLL4	0.000202417	0.001618737	-0.373040737				
NM_007309	DIAPH2	0.007156509	0.030698483	-0.372549803				
NM_001142649	ANOS	0.005842655	0.025960854	-0.372542405				
NM_213599	ANOS	0.005842655	0.025960854	-0.372542405				
NM_025009	CEP135	0.007767614	0.032737228	-0.372132569				
NM_018474	PLK1S1	0.006779886	0.029369954	-0.371623527				
NM_015312	KIAA1109	0.000139057	0.001174631	-0.371612714				
NM_139265	EHD4	0.000338849	0.002514429	-0.371401107				
NM_001127395	METTL21A	0.010727643	0.042107169	-0.371716488				
NM_207406	BEND4	0.000727344	0.004778791	-0.371169795				
NM_013301	CDC106	0.007320566	0.031265485	-0.37110472				
NM_032167	SNX29	0.000213483	0.001691754	-0.370921666				
NM_001128220	VGLL4	0.000238652	0.00186485	-0.370889859				
NM_005052	RAC3	0.000685133	0.004552796	-0.370498137				
NM_001164840	LYRM4	0.007350868	0.031367854	-0.370366183				
NM_001166162	PPP1R9A	0.000346071	0.002555082	-0.37027786				
NM_080702	BAG6	0.00206408	0.011342135	-0.370236514				
NM_001163022	PLK1S1	0.009682255	0.038804964	-0.370040142				
NM_003801	GPAA1	0.001046594	0.006479509	-0.369867033				
NM_001142864	PIEZO1	0.000316759	0.002370414	-0.369795717				
NM_001166160	PPP1R9A	0.000288585	0.002184941	-0.369651858				
NM_001165417	SLC25A11	0.000290806	0.00220007	-0.369614324				
NM_001252076	SLC9A3R2	0.010677975	0.041939913	-0.369578072				
NM_001164165	ASB3	0.005046046	0.023162396	-0.36949146				
NM_001163023	PLK1S1	0.011861666	0.045689323	-0.369360556				
Entrez Gene ID	Symbol	Log2 Fold Change	p-value					
----------------	--------	-----------------	-----------------					
NM_016436	PHF20	0.000275623	-0.368952419					
NM_182734	PLCB1	0.001785698	-0.3688515					
NM_001174157	ZFAT	0.006134113	-0.368849708					
NM_006295	VARS	0.000180336	-0.368510681					
NM_001198569	ATP6V0C	0.012819241	-0.36843678					
NM_031472	TRPT1	0.003347063	-0.368296138					
NM_001130012	SLC9A3R2	0.007650843	-0.36794335					
NM_013265	C11orf2	0.002028927	-0.367885775					
NM_001033056	GLUL	0.000640952	-0.36763666					
NM_006521	TFE3	0.004277754	-0.36736846					
NM_003864	SAP30	0.0083976	-0.367170867					
NM_001197026	PLEKHA8	0.003130104	-0.365904869					
NM_001080497	MEGF9	0.011549224	-0.365716058					
NM_015055	SWAP70	0.00322211	-0.36581778					
NM_014427	CPNE7	0.00569545	-0.36535496					
NM_020410	ATP13A1	0.000172766	-0.365238791					
NM_001013841	STAP2	0.001606111	-0.365084067					
NM_001105204	RUSC1	0.004223699	-0.36499309					
NM_001243403	CLEC16A	0.00275442	-0.364821116					
NM_033407	DOCK7	0.002623418	-0.364559501					
NM_000944	PPP3CA	0.000678278	-0.364308576					
NM_001130691	PPP3CA	0.000684666	-0.364288454					
NM_199051	FAM5C	0.001936249	-0.363923418					
NM_001160389	TRPT1	0.003759611	-0.363707057					
NM_001199865	KIF16B	0.005792066	-0.363500745					
NM_001160393	TRPT1	0.004761685	-0.363264921					
NM_178156	FUT8	0.009191347	-0.363192936					
NM_015175	NBEAL2	0.00278315	-0.362992926					
NM_001135751	DERL3	0.000204007	-0.36269397					
NM_000254	MTR	0.00126039	-0.362502506					
NM_006309	LRRFIP2	0.000745613	-0.362500079					
NM_001201965	ASB3	0.005458574	-0.362435877					
NM_014667	VGLL4	0.000163654	-0.361908325					
NM_001033678	TRPT1	0.003968428	-0.361891914					
NR_037648	FOXRED1	0.001778084	-0.361869306					
NM_178507	OAF	0.002135215	-0.361707305					
NM_001165418	SLC25A11	0.000417502	-0.361643233					
NM_001040118	ARAP1	0.00113293	-0.361586379					
NM_014875	KIF14	0.000162517	-0.361274817					
NM_153636	CPNE7	0.006700325	-0.360866828					
NM_005600	NIT1	0.004354248	-0.360509965					
Gene ID	Gene Name	log2 Ratio	log2 Fold Change	p-Value				
-------------	-----------	------------	------------------	----------				
NM_001204088	NBL1	0.002186309	0.011877614	-0.360374197				
NM_017724	LRRFIP2	0.000962352	0.006033382	-0.360276349				
NM_181671	PITPNC1	0.000284967	0.002161396	-0.36015866				
NM_138924	GAMT	0.00709236	0.030532184	-0.359797565				
NM_005380	NBL1	0.005824744	0.025908385	-0.359482633				
NM_182744	NBL1	0.005019473	0.023065361	-0.359042879				
NM_001204089	NBL1	0.002919451	0.014950425	-0.358423119				
NM_001204086	NBL1	0.005554922	0.024983658	-0.358422933				
NM_033100	CDHR1	0.001233408	0.007415169	-0.357974467				
NM_175052	ST8SIA4	0.002577625	0.01354803	-0.357325682				
NM_012102	RERE	0.011870837	0.045700953	-0.357323616				
NM_003562	SLC25A11	0.000427819	0.003073865	-0.357026251				
NM_145182	LRPRF5	0.003788825	0.018403483	-0.356905606				
NM_014045	LRP10	0.000320467	0.002393998	-0.356541545				
NM_01128205	SULF1	0.007814477	0.03286947	-0.356880833				
NM_006453	TBL3	0.005976531	0.026444991	-0.356541545				
NM_01171690	GCAT	0.007691566	0.03248121	-0.356266933				
NM_018645	HES6	0.008069644	0.033708969	-0.356218123				
NM_001142853	HES6	0.008134137	0.033916395	-0.356179171				
NM_001204084	NBL1	0.005421692	0.24523046	-0.356178093				
NM_001164773	BCAT2	0.000414674	0.002995957	-0.356171885				
NM_001013703	EIF2AK4	0.000277457	0.00114153	-0.356098784				
NM_005188	CBL	0.000182843	0.0014862	-0.355907288				
NM_006295	VARS	0.000499476	0.00350897	-0.355791574				
NM_152641	ARID2	0.000267547	0.002051265	-0.35556932				
NM_153828	RTN4	0.000675193	0.004504175	-0.355526757				
NM_001135190	ARAP1	0.000892927	0.005659012	-0.355460994				
NM_000837	GRINA	0.001248315	0.007492665	-0.355333625				
NR_024333	LOC147727	0.001854061	0.010385884	-0.355238105				
NM_016208	VPS28	0.000835256	0.00535057	-0.354719888				
NM_183057	VPS28	0.000878502	0.005794956	-0.354456181				
NM_001160390	TRPT1	0.004923442	0.022736584	-0.354309159				
NM_001164389	RAPGEF6	0.012141427	0.046519699	-0.35415974				
NM_006799	PRSS21	0.001047823	0.006484414	-0.35411038				
NM_144956	PRSS21	0.001047823	0.006484414	-0.35411038				
NR_040711	KCNQ1	0.003464556	0.017165092	-0.353840502				
NM_001260	CDK8	0.011669529	0.045093866	-0.353624439				
NM_001135924	VWDE	0.005659799	0.025349245	-0.353619277				
NM_017918	CCDC109B	0.007386417	0.031469843	-0.353588316				
NM_015407	ABHD14A	0.005305041	0.024079714	-0.353134121				
Gene	Description	Fold Change	p-Value					
--------	-------------	-------------	----------					
NM_001042681	RERE	0.012784003	0.048389023					
NM_207520	RTN4	0.000745604	0.004869752					
NM_001201482	OSBPL6	0.005526263	0.024882416					
NM_001134369	LRRFIP2	0.001060163	0.006540347					
NM_004563	PCK2	0.002488855	0.001933394					
NM_001478	B4GALNT1	0.011485294	0.044568879					
NM_144767	AKAP13	0.000340389	0.002521272					
NM_015192	PLCB1	0.0028863	0.014831777					
NM_001185094	NIT1	0.00544491	0.024600787					
NM_015559	SETBP1	0.006698947	0.029091423					
NR_038120	ELMO1	0.000553614	0.003819766					
NM_017547	FOXRED1	0.002920017	0.014950751					
NM_012292	HMHA1	0.003650957	0.017900593					
NM_001128206	SULF1	0.009411849	0.037940511					
NM_001042517	DIAPH3	0.007665958	0.032405301					
NM_005419	STAT2	0.000528523	0.003679106					
NM_001127396	STXB2	0.001432556	0.00838182					
NM_001009184	GRINA	0.001396626	0.008212017					
NM_198332	STAT2	0.00055689	0.003837026					
NM_015035	ZHX3	0.00029854	0.002255709					
NM_005009	NME4	0.008106627	0.03382067					
NM_201263	WARS2	0.003733854	0.018227987					
NM_001122837	SLC5OA1	0.000180194	0.001470244					
NM_032523	OSBPL6	0.005274303	0.02397682					
NM_145159	JAG2	0.005197404	0.023717945					
NM_152663	RALGPS2	0.001166975	0.00709182					
NM_014431	KIAA1274	0.002212906	0.012000167					
NM_001197126	IRF3	0.002685668	0.014004591					
NM_144957	PRSS21	0.00179109	0.010097861					
NM_015836	WARS2	0.003754158	0.0182979					
NM_001220767	IKZF1	0.000780376	0.005060096					
NM_001201480	OSBPL6	0.005587496	0.025104872					
NM_020145	SH3GLB2	0.000760766	0.00498057					
NM_001001132	ITSN1	0.005440077	0.024593264					
NM_181472	CMTM7	0.001102871	0.006767296					
NM_001018076	NR3C1	0.001855781	0.010389648					
NM_145207	SPATA5	0.00033902	0.002514891					
NR_037849	WBPI	0.00337171	0.016639381					
NM_001220770	IKZF1	0.001053289	0.00650257					
NM_006184	NUCB1	0.000186887	0.00151403					
NR_038121	ELMO1	0.000503538	0.003529161					

Fold Change and p-Value
Gene Name	Symbol	Fold Change	p-Value	q-Value	Beta Value
PPP3CA	NM_001130692	0.001331621	0.007901411	-0.345168777	
STXBP2	NM_006949	0.001590947	0.009146481	-0.345145395	
ELMO1	NM_001039459	0.000518443	0.003621668	-0.345121385	
ZNF395	NM_018660	0.000383358	0.002796898	-0.344794187	
IKZF1	NM_001220772	0.001587199	0.009137312	-0.344128986	
STXBP2	NM_006949	0.001590947	0.009146481	-0.345145395	
ELMO1	NM_001039459	0.000518443	0.003621668	-0.345121385	
ZNF395	NM_018660	0.000383358	0.002796898	-0.344794187	
IKZF1	NM_001220772	0.001587199	0.009137312	-0.344128986	
STXBP2	NM_006949	0.001590947	0.009146481	-0.345145395	
ELMO1	NM_001039459	0.000518443	0.003621668	-0.345121385	
ZNF395	NM_018660	0.000383358	0.002796898	-0.344794187	
IKZF1	NM_001220772	0.001587199	0.009137312	-0.344128986	
STXBP2	NM_006949	0.001590947	0.009146481	-0.345145395	
ELMO1	NM_001039459	0.000518443	0.003621668	-0.345121385	
ZNF395	NM_018660	0.000383358	0.002796898	-0.344794187	
IKZF1	NM_001220772	0.001587199	0.009137312	-0.344128986	
STXBP2	NM_006949	0.001590947	0.009146481	-0.345145395	
ELMO1	NM_001039459	0.000518443	0.003621668	-0.345121385	
ZNF395	NM_018660	0.000383358	0.002796898	-0.344794187	
Gene ID	Gene Name	Log2 Fold Change			
----------------------	-----------	-----------------	---	---	---
NM_001139467	TBL1X	0.00206599	0.011344239	-0.340017924	
NM_002226	JAG2	0.005489748	0.024755515	-0.339936931	
NM_001139466	TBL1X	0.002064616	0.011342984	-0.339793013	
NM_001122839	SLC50A1	0.000234375	0.001834323	-0.339535592	
NM_001114752	CD55	0.002178678	0.01184265	-0.339425372	
NM_001139466	TBL1X	0.002064616	0.011342984	-0.339793013	
NM_001122839	SLC50A1	0.000234375	0.001834323	-0.339535592	
NM_001114752	CD55	0.002178678	0.01184265	-0.339425372	
NM_001139466	TBL1X	0.002064616	0.011342984	-0.339793013	
NM_001122839	SLC50A1	0.000234375	0.001834323	-0.339535592	
NM_001114752	CD55	0.002178678	0.01184265	-0.339425372	
Gene ID	Gene Symbol	FPKM (Mean)	FPKM (Standard Deviation)	Fold Change	
------------------	-------------	-------------	---------------------------	-------------	
NM_001080121	PRNP	0.002960616	0.015103968	-0.33414264	
NM_183079	PRNP	0.002960616	0.015103968	-0.33414264	
NM_000311	PRNP	0.002960616	0.015103968	-0.33414264	
NM_019001	XRN1	0.000154605	0.001289112	-0.333607942	
NM_006286	TFDP2	0.000937616	0.00590571	-0.33406395	
NM_001127715	STXB5	0.008834984	0.036193717	-0.333894634	
NM_000574	CD55	0.002417176	0.012877594	-0.333064859	
NM_001723	DST	0.000399688	0.002157961	-0.333182194	
NM_001042604	XRN1	0.000168868	0.001395125	-0.333064859	
NM_001202502	NIPSNAP1	0.000270546	0.002070517	-0.332797767	
NM_015401	HDAC7	0.000731336	0.004799719	-0.33220073	
NM_054012	ASS1	0.001287238	0.010464833	-0.332367026	
NM_001100423	SPATS2L	0.003742436	0.018249749	-0.332350515	
NM_001008485	SLC41A3	0.000125101	0.001067993	-0.331949762	
NM_001098416	HDAC7	0.000731336	0.004799719	-0.33187955	
NM_015384	NIPBL	0.002460365	0.013046873	-0.331852906	
NM_015535	SPATS2L	0.00187238	0.010464833	-0.331739394	
NR_024188	PPP1R21	0.00813259	0.033914704	-0.331638478	
NM_197974	HOMER1	0.010470071	0.041330911	-0.33198643	
NM_173630	RTTN	0.000125101	0.001067993	-0.331949762	
NM_017693	BIVM	0.005365863	0.024307523	-0.33198643	
NM_001098416	HDAC7	0.000731336	0.004799719	-0.33187955	
NM_015384	NIPBL	0.002460365	0.013046873	-0.331852906	
NM_015535	SPATS2L	0.00187238	0.010464833	-0.331739394	
NR_024188	PPP1R21	0.00813259	0.033914704	-0.331638478	
NM_014982	PCNX	0.000754193	0.004912836	-0.33159633	
NM_006876	B3GNT1	0.011173414	0.043543414	-0.331459996	
NM_058195	CDKN2A	0.00674273	0.029243097	-0.33103267	
NM_139029	CD151	0.002406134	0.012825664	-0.330971372	
NM_004357	CD151	0.002406134	0.012825664	-0.330971372	
NM_006295	VARS	0.00121613	0.00733951	-0.3304861	
NM_138822	PAM	0.000310631	0.002331657	-0.330699863	
NM_002603	PDE7A	0.000227412	0.001787357	-0.33052965	
NM_006060	IKZF1	0.001008019	0.006648765	-0.330377389	
NM_014835	OSBPL2	0.002143532	0.011687953	-0.33030843	
NM_001178141	TFDP2	0.001285309	0.007676042	-0.33006316	
NM_133433	NIPBL	0.002733074	0.014206537	-0.329859068	
NM_001167583	ZFAT	0.014109863	0.044310884	-0.329853161	
NM_014911	AAK1	0.011881786	0.045727213	-0.32983212	
NM_001220775	IKZF1	0.003443542	0.017072362	-0.329742949	
NM_177974	CASC4	0.002111943	0.011562385	-0.329309931	
NM_002121	HLA-DPB1	0.002845702	0.014666271	-0.329203931	
NM_032520	GNPTG	0.006249581	0.027456948	-0.328986152	
NM_173471	SLC25A26	0.007102957	0.030545452	-0.328953146	
accession	gene	log2 fold change	p-value 1	p-value 2	fold change
------------	--------	-----------------	-----------	-----------	-------------
NM_001220765	IKZF1	0.001428632	0.008362153	-0.328692074	
NM_001080394	KIAA0146	0.000896346	0.005677051	-0.328594915	
NM_001202546	CUX1	0.007986467	0.033446144	-0.328449119	
NM_001098534	BAG6	0.010513486	0.04145712	-0.328447425	
NM_001178140	TFDP2	0.001723702	0.009775751	-0.328444208	
NM_001080394	KIAA0146	0.000896346	0.005677051	-0.328594915	
NM_001202546	CUX1	0.007986467	0.033446144	-0.328449119	
NM_001098534	BAG6	0.010513486	0.04145712	-0.328447425	
NM_001178140	TFDP2	0.001723702	0.009775751	-0.328444208	
NM_001080394	KIAA0146	0.000896346	0.005677051	-0.328594915	
NM_001202546	CUX1	0.007986467	0.033446144	-0.328449119	
NM_001098534	BAG6	0.010513486	0.04145712	-0.328447425	
NM_001178140	TFDP2	0.001723702	0.009775751	-0.328444208	
NM_001080394	KIAA0146	0.000896346	0.005677051	-0.328594915	
NM_001202546	CUX1	0.007986467	0.033446144	-0.328449119	
NM_001098534	BAG6	0.010513486	0.04145712	-0.328447425	
NM_001178140	TFDP2	0.001723702	0.009775751	-0.328444208	
NM_001080394	KIAA0146	0.000896346	0.005677051	-0.328594915	
NM_001202546	CUX1	0.007986467	0.033446144	-0.328449119	
NM_001098534	BAG6	0.010513486	0.04145712	-0.328447425	
NM_001178140	TFDP2	0.001723702	0.009775751	-0.328444208	
NM_001080394	KIAA0146	0.000896346	0.005677051	-0.328594915	
NM_001202546	CUX1	0.007986467	0.033446144	-0.328449119	
NM_001098534	BAG6	0.010513486	0.04145712	-0.328447425	
NM_001178140	TFDP2	0.001723702	0.009775751	-0.328444208	
NM_001080394	KIAA0146	0.000896346	0.005677051	-0.328594915	
NM_001202546	CUX1	0.007986467	0.033446144	-0.328449119	
NM_001098534	BAG6	0.010513486	0.04145712	-0.328447425	
NM_001178140	TFDP2	0.001723702	0.009775751	-0.328444208	
NM_001080394	KIAA0146	0.000896346	0.005677051	-0.328594915	
NM_001202546	CUX1	0.007986467	0.033446144	-0.328449119	
NM_001098534	BAG6	0.010513486	0.04145712	-0.328447425	
NM_001178140	TFDP2	0.001723702	0.009775751	-0.328444208	
NM_001080394	KIAA0146	0.000896346	0.005677051	-0.328594915	
NM_001202546	CUX1	0.007986467	0.033446144	-0.328449119	
NM_001098534	BAG6	0.010513486	0.04145712	-0.328447425	
NM_001178140	TFDP2	0.001723702	0.009775751	-0.328444208	
Gene	Description	Log2 Fold Change	P-Value		
--------------	-------------	-----------------	----------		
BCAT2		0.000721659	0.004748789	-0.324176431	
SLC41A3		0.005744633	0.025631203	-0.324170868	
STK39		0.0003689	0.002704812	-0.32361608	
RASA3		0.002457864	0.013041552	-0.323506516	
CMTM7		0.001903932	0.010603291	-0.323274334	
SPATS2L		0.002677423	0.013975932	-0.322476915	
GCAT		0.0090556	0.036839321	-0.322461671	
SLC41A3		0.003273295	0.016373089	-0.32205856	
ZAK		0.002302928	0.012397849	-0.321800847	
ELOVL6		0.00775375	0.025738873	-0.321695949	
ARID3A		0.002009732	0.011100969	-0.32168691	
LLGL1		0.007342818	0.031346305	-0.321502954	
IFR3		0.004770773	0.022176294	-0.321502954	
RPS6KA3		0.005626895	0.0252323	-0.321611398	
MIF4GD		0.001750059	0.009907885	-0.321558494	
IRF3		0.002163073	0.011772898	-0.32103107	
GRN		0.003363959	0.016736441	-0.320888487	
PDK1		0.00363959	0.016736441	-0.320888487	
LW6E		0.003363959	0.016736441	-0.320888487	
C19orf6		0.008389017	0.034735464	-0.320872745	
ICAM3		0.002457864	0.013041552	-0.323506516	
ATXN3		0.012581065	0.047803543	-0.321239654	
IRF3		0.005209318	0.023103453	-0.32103107	
GRN		0.002163073	0.011772898	-0.32103107	
PDK1		0.00104819	0.006485334	-0.320006061	
LY6E		0.003363959	0.016736441	-0.320888487	
C19orf6		0.008389017	0.034735464	-0.320872745	
WDR18		0.007841059	0.032962618	-0.320802097	
CUX1		0.010016455	0.039884632	-0.320628292	
SKIV2L		0.00386773	0.018716386	-0.32050481	
TCN2		0.006655104	0.028934852	-0.320264671	
GGT1		0.004182423	0.019937288	-0.320248784	
C1orf85		0.001964717	0.010890721	-0.320210074	
PCYT2		0.005737719	0.025615384	-0.320140172	
CNTNA1		0.00062766	0.004253548	-0.320071073	
PAM		0.000505126	0.003538622	-0.31969875	
DCBLD2		0.00773512	0.032751095	-0.319636732	
BCAT2		0.000705447	0.004661066	-0.319627037	
PCYT2		0.006104542	0.026927221	-0.319206348	
PCYT2		0.006104542	0.026927221	-0.319206348	
PCYT2		0.005705683	0.025508617	-0.319016762	
TDP2		0.00219492	0.01191568	-0.318859775	
Wnt5B		0.000628541	0.004256687	-0.318786028	
Gene	Description	P-value_1	P-value_2	P-value_3	
--------	-------------	-----------	-----------	-----------	
NM_032642	WNT5B	0.000645947	0.004350774	-0.318687043	
NM_000321	RB1	0.000555886	0.003830998	-0.318263695	
NM_015173	TBC1D1	0.006282195	0.027587997	-0.318177691	
NM_198440	DERL3	0.00272796	0.002085751	-0.318168861	
NM_000876	IGF2R	0.00175162	0.001437925	-0.318151587	
NM_000876	FLNA	0.01303587	0.007764822	-0.317954909	
NM_00110556	FLNA	0.01303587	0.007774017	-0.317954909	
NM_000321	RB1	0.000555886	0.003830998	-0.318263695	
NM_015173	TBC1D1	0.006282195	0.027587997	-0.318177691	
NM_198440	DERL3	0.00272796	0.002085751	-0.318168861	
NM_000876	IGF2R	0.00175162	0.001437925	-0.318151587	
NM_000876	FLNA	0.01303587	0.007764822	-0.317954909	
NM_00110556	FLNA	0.01303587	0.007774017	-0.317954909	
Gene ID	Gene Name	FDR	q-value	Log10_p_value	Log10_fdr
-------------	-----------	-------	---------	---------------	-------------
NM_001184787	PARD3	0.000259188	0.002002016	-0.313573532	
NM_002843	PTPRJ	0.002845477	0.014666271	-0.313394304	
NM_005265	GGT1	0.004458176	0.020979193	-0.313211653	
NM_018036	ATG2B	0.001008139	0.006283922	-0.313015894	
NM_003113	SP100	0.009403806	0.037917628	-0.312824135	
NM_176096	CDK5RAP3	0.00663008	0.044440525	-0.312712861	
NM_030802	FAM117A	0.003435564	0.017035649	-0.31238444	
NM_001008395	C7orf59	0.008715369	0.03579746	-0.312315754	
NR_033289	GK5	0.00337987	0.02510365	-0.312315754	
NM_148416	ATXN2L	0.001631338	0.009337147	-0.312130145	
NM_001033028	CYFIP1	0.00154162	0.01286139	-0.311863584	
NM_001032365	GGT1	0.005050286	0.023171935	-0.311694023	
NM_001145008	BTN3A1	0.001404237	0.008249395	-0.311623127	
NM_001166112	PNPLA6	0.009431562	0.037993457	-0.311623127	
NM_001033026	C19orf6	0.008755028	0.035930559	-0.311505492	
NR_002569	SCARNA9	0.008212686	0.034157646	-0.310976531	
NM_002431	MNAT1	0.011260355	0.043867851	-0.31048999	
NM_145714	ATXN2L	0.001706852	0.009337147	-0.31048999	
NM_001134649	EIF4E3	0.003605708	0.017710882	-0.31048999	
NM_001184726	TCN2	0.009057041	0.036839321	-0.310638057	
NM_025256	EHMT2	0.005668398	0.025383932	-0.30956347	
NM_032378	EEF1D	0.006685448	0.029044265	-0.309072568	
NM_001166345	MDFIC	0.007398768	0.031499885	-0.309072568	
NM_199072	MDFIC	0.007398768	0.031499885	-0.309072568	
NM_001164605	FXD5	0.005373889	0.003732191	-0.308989582	
NM_001242501	MIF4GD	0.009478111	0.019014116	-0.308213622	
NM_002336	LRPR6	0.00935349	0.037740348	-0.308213622	
NM_030587	B4GALT2	0.004521408	0.021220343	-0.308059042	
NM_013976	GCDH	0.001491719	0.008659781	-0.307984904	
NM_003780	B4GALT2	0.00590003	0.02331732	-0.307318186	
NM_001253912	TBC1D1	0.010390342	0.041065273	-0.3070728	
NM_033071	SYNE1	0.005040874	0.023149383	-0.306775683	
NM_031229	RBCK1	0.01254888	0.047699548	-0.306762972	
NM_001020	RPS16	0.006178271	0.027191896	-0.306566544	
NM_006702	PNPLA6	0.010761212	0.042205483	-0.306519248	
NM_001130053	EIF1D	0.00735248	0.03170231	-0.306340025	
NM_001184970	PACSIN2	0.011865609	0.045698857	-0.306106187	
NM_007245	ATXN2L	0.001883252	0.01051176	-0.305861234	
NM_005962	MXI1	0.00961298	0.006029313	-0.305693657	
NM_001199629	MYL6B	0.008921482	0.036432554	-0.305663453	
NM_002311	LIG3	0.000872054	0.005546628	-0.305617601	
NM_002116	HLA-A	0.002957543	0.015103968	-0.30550874	
NM_182961	SYNE1	0.005223436	0.023801296	-0.30362337	
NM_018200	HMG20A	0.007938586	0.033287845	-0.30523709	
NM_016434	RTEL1	0.011557627	0.044767729	-0.30490567	
NM_001823	CKB	0.007680032	0.032446334	-0.30479034	
NM_001163484	DCAF11	0.001122315	0.006868172	-0.30470933	
NM_001146191	MPZL1	0.000376828	0.002756819	-0.30158833	
Gene	Description	Expression 1	Expression 2	Expression 3	Expression 4
-----------	-------------	--------------	--------------	--------------	--------------
NM_003959	HIP1R	0.003506163	0.017330778	-0.301300841	
NR_001298	HLA-DRB6	0.009060237	0.036842236	-0.30126095	
NM_006623	PHGDH	0.000286274	0.002169649	-0.301232512	
NM_024751	GSTCD	0.003875047	0.018739701	-0.300977517	
NM_001134650	EIF4E3	0.005890501	0.036842236	-0.300977517	
NR_001298	HLA-DRB6	0.009060237	0.036842236	-0.30126095	
NM_001100166	PHACTR2	0.007424472	0.031577649	-0.300468582	
NM_006623	PHGDH	0.000286274	0.002169649	-0.301232512	
NM_024751	GSTCD	0.003875047	0.018739701	-0.300977517	
NM_001134650	EIF4E3	0.005890501	0.036842236	-0.300977517	
NM_001100166	PHACTR2	0.007424472	0.031577649	-0.300468582	
NM_001008487 SLC41A3 0.006961138 0.030054355 -0.297834785					
NM_001242868 SLAIN1 0.003450735 0.017099463 -0.297785728					
NM_006569 CGREF1 0.000328699 0.002449947 -0.297670445					
NM_00135555 EPB41L2 0.002519249 0.013313982 -0.297657756					
NM_001184793 PARD3 0.00148208 0.008612236 -0.297597653					
NM_199073 NDUFAF3 0.002321551 0.012460835 -0.297496623					
NM_021978 ST14 0.001427745 0.008360253 -0.297486867					
NM_001100164 PHACTR2 0.007425607 0.031577957 -0.297084277					
NM_022748 TNS3 0.00026422 0.00203257 -0.29706736					
NM_001256265 EPB41L2 0.002566504 0.013520438 -0.296563412					
NM_002617 PEX10 0.008153978 0.033985958 -0.296421453					
NM_00528 MAN2B1 0.011645311 0.045042785 -0.296395999					
NM_00173498 MAN2B1 0.011645311 0.045042785 -0.296395999					
NR_028406 FYXD5 0.00100845 0.006283939 -0.296295487					
NM_001040153 SLAIN1 0.007368238 0.031402715 -0.295952186					
NM_153827 MINK1 0.001164167 0.007076204 -0.295805937					
NM_015340 LARS2 0.001402967 0.008246041 -0.295680373					
NM_00134367 SLC6A6 0.000157765 0.001312513 -0.295192014					
NM_003043 SLC6A6 0.000157765 0.001312513 -0.295192014					
NM_002401 MAP3K3 0.004757781 0.022126286 -0.295121306					
NR_003190 USP32P1 0.012295373 0.046988374 -0.294951435					
NM_001256265 FLII 0.000197297 0.001583328 -0.294942805					
NM_134445 CD99L2 0.005131604 0.023478965 -0.294908999					
NM_007326 CYB5R3 0.01086184 0.045042785 -0.294821935					
NM_001171661 CYB5R3 0.010966442 0.042857675 -0.294778615					
NM_018227 UBA6 0.008283654 0.034399852 -0.294724762					
NM_007181 MAP4K1 0.01039763 0.041088612 -0.294386066					
NM_001184790 PARD3 0.000663181 0.004440685 -0.294026146					
NM_024874 KIAA0319L 0.002494153 0.013195431 -0.293993365					
NM_006117 ECI2 0.007800219 0.032824893 -0.29399007					
NR_028588 ECI2 0.007800219 0.032824893 -0.29399007					
NM_022977 ACSL4 0.003271053 0.016367381 -0.293789963					
NM_005514 HLA-B 0.006344151 0.027818475 -0.293747535					
NM_00134364 MAP4 0.000141083 0.001188705 -0.293626865					
NM_198321 GALNT10 0.004547911 0.021323803 -0.293275444					
NM_001166239 CGREF1 0.000482953 0.003402542 -0.293242446					
NM_001431 EPB41L2 0.002391149 0.01275723 -0.29299255					
NM_199002 ARHGEF1 0.003754852 0.018298284 -0.292992311					
NM_022457 RFWD2 0.001086802 0.00668388 -0.292978009					
NM_001184788 PARD3 0.000622995 0.004229732 -0.292904975					
NM_004458 ACSL4 0.003565153 0.017558654 -0.292846038					
gene	symbol	p-value	q-value	adj.p.value	
---	---	---	---	---	---
NM_001252660	EPB41L2	0.003156294	0.015897557	-0.292758589	
NM_016086	STYXL1	0.004073432	0.019508488	-0.292698518	
NM_198970	AES	0.000700641	0.004634088	-0.292662013	
NM_001130	AES	0.000700641	0.004634088	-0.292662013	
NM_001024937	MINK1	0.00134174	0.007945891	-0.292643144	
NM_016824	ADD3	0.002611663	0.013692802	-0.292539239	
NM_015716	MINK1	0.00425023	0.008354216	-0.29252408	
NM_170663	MINK1	0.00426447	0.008358079	-0.29251581	
NM_001042600	MAP4K1	0.010812229	0.042355263	-0.292311965	
NM_001039547	GK5	0.00112805	0.006899006	-0.292218456	
NM_001166010	ECI2	0.007808403	0.032853225	-0.292073012	
NM_001253826	GALNT14	0.00966601	0.038754022	-0.291514518	
NM_018842	BAIAP2L1	0.001123531	0.007422344	-0.291457469	
NR_038103	TECR	0.003057205	0.015487722	-0.29144122	
NR_038104	TECR	0.00308872	0.015626062	-0.291418904	
NM_145802	Sep-06	0.005363497	0.024304214	-0.291373814	
NM_001500	GMDS	0.008335367	0.034650396	-0.291322164	
NM_001184786	PARD3	0.000566559	0.003893715	-0.291157523	
NM_006035	CDC42BPB	0.011535566	0.044699756	-0.291028252	
NM_021723	ADAM22	0.00399888	0.002897462	-0.291023059	
NM_203390	RBM12B	0.012754056	0.04830457	-0.290773006	
NM_206836	ECI2	0.00914082	0.037111533	-0.290769949	
NM_031462	CD99L2	0.003126936	0.015781786	-0.290768593	
NM_001242614	CD99L2	0.003133532	0.015804339	-0.290764267	
NM_001184785	PARD3	0.000626148	0.004247258	-0.290416993	
NM_006373	VAT1	0.007254278	0.004247258	-0.290416993	
NM_00138501	TECR	0.003081747	0.015596098	-0.290341074	
NM_004240	TRIP10	0.003893715	0.002897462	-0.29023059	
NM_001129819	CY5R3	0.012754056	0.04830457	-0.290773006	
NM_006373	VAPI	0.003081747	0.015596098	-0.290341074	
NM_007056	CLASRP	0.008019896	0.03355304	-0.289881444	
NM_00142650	HNRPLP	0.00914082	0.037111533	-0.290769949	
NM_001121	ADD3	0.003519981	0.017387512	-0.289458637	
NM_005312	RAPGEF1	0.00895736	0.005674394	-0.289156178	
NM_014868	RNF10	0.000626148	0.004247258	-0.290416993	
Gene Symbol	Gene Name	CRP (Old)	CRP (New)	CRP (New)	
-------------	-----------	-----------	-----------	-----------	
NM_021722	ADAM22	0.000430966	0.003092552	-0.289016443	
NM_016351	ADAM22	0.0004376	0.003132024	-0.289000057	
NM_139048	HLTF	0.000722916	0.004754958	-0.288476959	
NM_203351	MAP3K3	0.0058305	0.025922347	-0.288467895	
NM_001243777	CEP57	0.0020526	0.011285364	-0.288457513	
NM_001206609	SELPLG	0.000698472	0.004626947	-0.287334771	
NM_01135589	GDAP2	0.000910068	0.005746808	-0.287179358	
NM_001206609	SELPLG	0.008815516	0.036138875	-0.285059732	
NM_01136135	RPL28	0.006224103	0.027357148	-0.28591988	
NM_001003828	PARVB	0.009640427	0.038672322	-0.28457219	
NM_025230	DCAF11	0.000496009	0.022877387	-0.28457219	
NM_003884	KAT2B	0.008815516	0.036138875	-0.285059732	
NM_173359	EIF4E3	0.00039099	0.003141931	-0.284689767	
NM_001199388	EPB41L2	0.009535929	0.038320378	-0.28457219	
NM_001256430	STON2	0.005973969	0.02468547	-0.285513732	
NM_198969	AES	0.00039099	0.003141931	-0.284689767	
Gene Symbol	Description	Log2 Fold Change	Degree	Enrichment Score	
-------------	-------------	-----------------	--------	-----------------	
NM_001077198	ATG9A	0.006442116	0.028140579	-0.283665754	
NM_001077198	MBNL1	0.000121869	0.001044584	-0.283568377	
NM_001077198	KIAA0664	0.003406384	0.016927678	-0.283373227	
NM_001077198	SELPLG	0.008554291	0.035267462	-0.283011996	
NM_001077198	RNF31	0.005833371	0.025931231	-0.283261632	
NM_001077198	EPG5	0.002421651	0.012896809	-0.283259777	
NM_001077198	MBP	0.000546291	0.003779566	-0.283128664	
NM_001077198	GALK2	0.004354871	0.02060383	-0.282998614	
NM_001077198	SCMH1	0.008709958	0.03578279	-0.282703767	
NM_001077198	HLA-DP1	0.002702612	0.014075275	-0.28267096	
NM_001077198	MAGED1	0.003942269	0.018990501	-0.282528065	
NM_001077198	MAGED1	0.003942269	0.018990501	-0.282528065	
NM_001077198	MBNL1	0.000140284	0.00118307	-0.282515515	
NM_001077198	ATG9A	0.007090114	0.030528657	-0.282244098	
NM_001077198	UNC13B	0.000246842	0.001920267	-0.282067789	
NM_001077198	CAPN1	0.004288017	0.020349249	-0.282065161	
NM_001077198	TPDS2	0.001420896	0.008334931	-0.281948884	
NM_001077198	GTPBP1	0.00168514	0.009598873	-0.281767228	
NM_001077198	VPS13B	0.000567966	0.003901584	-0.2815708	
NM_001077198	KIAA1979	0.000210657	0.001673378	-0.281559494	
NM_001077198	MAPKAP1	0.000289607	0.00219212	-0.280908856	
NM_001077198	RALY	0.000515517	0.003605467	-0.2808717	
NM_001077198	HLA-B	0.002476298	0.013112641	-0.280492332	
NM_001077198	NBR1	0.000554835	0.003826944	-0.280337756	
NM_001077198	MXI1	0.002852393	0.014688018	-0.280218957	
NM_001077198	CBS	0.000839799	0.005371571	-0.279989014	
NM_001077198	ACTN1	0.000203359	0.001624961	-0.279863479	
NM_001077198	ACTN1	0.000205344	0.001636418	-0.279859525	
NM_001077198	MBNL1	0.000185949	0.001508558	-0.279788022	
NM_001077198	SVIL	0.006686133	0.029044265	-0.279736482	
NM_001077198	DPYD	0.000549406	0.003794261	-0.279657909	
NM_001077198	BTN3A2	0.001353235	0.008053252	-0.279629477	
NM_001077198	BSL2	0.001411229	0.008283131	-0.27962757	
NM_001077198	IGFBP7	0.001161047	0.006832624	-0.279568363	
NM_001077198	BTN3A1	0.003027965	0.015378914	-0.27942483	
NM_001077198	MAPKAP1	0.000227259	0.001786631	-0.279402679	
NM_001077198	ADD3	0.005439903	0.024593264	-0.279238354	
NM_001077198	NDUF11	0.012376612	0.047225962	-0.279005587	
NM_001077198	NDUFV1	0.004799148	0.022276834	-0.278995196	
NM_001077198	TARS2	0.000301557	0.002275036	-0.278936697	
NM_001077198	CD99L2	0.006726703	0.029194535	-0.278805385	
Gene Symbol	Description	Fold Change	p-Value	Log2FoldChange	
-------------	-------------	-------------	---------	----------------	
NM_002746					
NM_012154					
NM_017684					
NM_020821					
NM_031862					
NM_00198868					
NM_003162					
NM_024757					
NM_00119939					
NM_00116833					
NM_020921					
NM_00103733					
NM_005186					
NM_018303					
NM_0011553					
NM_021738					
NM_00103733					
NM_00117220					
NM_016479					
NM_017890					
NM_00112862					
NM_031858					
NM_152221					
NR_045602					
NM_024572					
NM_207295					
NM_017432					
NR_024388					
NM_00116610					
NM_020148					
NM_00101588					
NM_003119					
NR_040008					
NM_012120					
NM_018080					
NM_00118088					
NM_00114516					
NM_012448					
NM_022373					
NM_014608					
NM_002746					
MAPK3		0.011384843	0.044245014	-0.278745458	
CYFIP1		0.003266068	0.016350698	-0.277942464	
VPS13C		0.003272206	0.016370396	-0.277939437	
NBR1		0.000681189	0.004532664	-0.277614759	
CAPN1		0.004844371	0.022441182	-0.277573537	
STRN		0.007612372	0.032233807	-0.27746089	
EHM1		0.004535474	0.021275563	-0.277135781	
EPB41L2		0.005479401	0.024716357	-0.277079197	
ME2		0.00018977	0.001531611	-0.277074558	
NIN		0.008398599	0.034762498	-0.27701657	
CYFIP2		0.005270354	0.023964988	-0.27684393	
EXOC2		0.004587292	0.021450916	-0.276774165	
IGFBP7		0.000990738	0.006185244	-0.276569552	
SVIL		0.006438483	0.028128844	-0.276490583	
CYFIP2		0.003283469	0.016415686	-0.276470409	
SCMH1		0.012154379	0.046563321	-0.276358957	
SHISA5		0.004129256	0.019713582	-0.276252815	
VPS13B		0.000710026	0.004684689	-0.276195526	
SPIRE1		0.003857916	0.018684106	-0.276124927	
NBR1		0.00079444	0.005136721	-0.276070776	
CSNK1E		0.006885024	0.029768989	-0.275959566	
GALNT14		0.009030403	0.036781318	-0.275805125	
GALNT14		0.009100176	0.036969234	-0.275800612	
MBNL1		0.000220457	0.001739875	-0.275764179	
PT0V1		0.010137439	0.040296186	-0.275598242	
LOC152217		0.010002113	0.039848881	-0.275359824	
NDUFV1		0.005296136	0.024046008	-0.2753356	
SPIRE1		0.00396871	0.019093113	-0.275293085	
TSC22D3		0.008496511	0.035082788	-0.275210042	
SPG7		0.00198698	0.010995735	-0.275146134	
CAPN1		0.005203718	0.023743112	-0.27504606	
CD2AP		0.007453375	0.031668853	-0.275007203	
VPS13C		0.005269656	0.023964988	-0.274920467	
VPS13C		0.005270894	0.023964988	-0.274919873	
PRMT3		0.010742232	0.042147732	-0.274772777	
STAT5B		0.001157438	0.007042505	-0.274479134	
HERPUD2		0.009319874	0.037630257	-0.274369397	
CYFIP1		0.000677078	0.004512482	-0.274256527	
MAPK3		0.007738185	0.03264097	-0.274181349	
Accession	Gene Name	Expression	Fold Change	Adj P Value	
-----------	-----------	------------	-------------	-------------	
NM_001040056	MAPK3	0.007738185	0.03264097	-0.274181349	
NM_198057	TSC2D3	0.008848214	0.036222948	-0.27411209	
NM_001172219	SCMH1	0.011937083	0.045890595	-0.274073225	
NM_207294	MBNL1	0.00244134	0.01901683	-0.273444125	
NR_034166	NDUFA11	0.008114513	0.033848817	-0.273275884	
NM_181719	TMCO4	0.004094979	0.019403155	-0.272847992	
NM_024605	ARHGAP10	0.005243631	0.023884885	-0.27278491	
NM_00730	CTDSP2	0.00163373	0.001353861	-0.272671884	
NM_005862	STAG1	0.002037986	0.011223655	-0.272283382	
NM_172209	TAPBP	0.007061467	0.030408002	-0.271880428	
NM_006828	ASCC3	0.000445023	0.003178261	-0.27183337	
NM_03644	FBXW11	0.001914299	0.010649048	-0.27173272	
NM_139045	SMARCC2	0.000928007	0.005850144	-0.270698315	
NM_001719	BMP7	0.002322052	0.012460835	-0.270593939	
NM_13905	SMARCA2	0.001640503	0.009328279	-0.27023524	
NM_0013070	BSCL2	0.001914299	0.010649048	-0.270053154	
NM_001493	GDI1	0.006798685	0.02942806	-0.27005938	
NM_001130420	BCL2L1	0.000928007	0.005850144	-0.270698315	
NM_001130702	MANBA	0.008064942	0.033694066	-0.270053154	
NM_001145166	PRMT3	0.000928007	0.005850144	-0.270698315	
NM_002044	GALK2	0.005704152	0.02550561	-0.26889928	
NM_002116	HLA-A	0.007126879	0.030614259	-0.268547459	
NM_003310	TSSC1	0.004668533	0.021775983	-0.268445408	
Gene Name	Gene ID	Gene Feature	F-test	p-value	Log2 Fold Change
--------------	-------------	--------------	----------	----------	------------------
RNF167	NM_015528		0.003967858	0.019093113	-0.268386994
EIF2C2	NM_01164623		0.003628824	0.017815589	-0.268317693
CYP1P2	NM_014376		0.003894916	0.018811184	-0.268288616
SH3BP1	NM_018957		0.005872432	0.026073666	-0.26654351
RPL8	NM_033301		0.008030739	0.033588948	-0.266224514
SLC37A4	NM_001164623		0.005110979	0.023391802	-0.263574178
HLA-C	NM_001164279		0.005872432	0.026073666	-0.26654351
HLA-C	NM_001164280		0.005872432	0.026073666	-0.26654351
ZDHHC16	NM_001164278		0.005872432	0.026073666	-0.26654351
EIF2C2	NM_001164623		0.005110979	0.023391802	-0.263574178
HLA-C	NM_001164280		0.005872432	0.026073666	-0.26654351
HLA-C	NM_001164280		0.005872432	0.026073666	-0.26654351
ZDHHC16	NM_001164278		0.005872432	0.026073666	-0.26654351
EIF2C2	NM_001164623		0.005110979	0.023391802	-0.263574178
HLA-C	NM_001164280		0.005872432	0.026073666	-0.26654351
HLA-C	NM_001164280		0.005872432	0.026073666	-0.26654351
ZDHHC16	NM_001164278		0.005872432	0.026073666	-0.26654351
-----	-----	-----	-----		
NM_033688	PEF1	0.007800565	0.032824893	-0.262916248	
NM_001042679	RHOC	0.00146789	0.008543907	-0.262790213	
NM_147175	HS6ST2	0.004779317	0.02220559	-0.262459812	
NM_198046	ZDHHC16	0.00917987	0.037211594	-0.261774189	
NM_001128627	SPIRE1	0.007774211	0.032751095	-0.261766012	
NM_003190	TAPBP	0.007751577	0.032690502	-0.261742645	
NM_198043	ZDHHC16	0.012339358	0.047120112	-0.261562938	
NM_001031804	MAF	0.00030939	0.002324103	-0.261452422	
NM_052966	FAM129A	0.002139953	0.011681025	-0.26144455	
NM_000289	PFKM	0.000125184	0.001068165	-0.261241782	
NM_006364	SEC23A	0.00628501	0.027592204	-0.261031828	
NM_001077188	HS6ST2	0.005077555	0.023281585	-0.261020459	
NM_002116	HLA-A	0.002260959	0.012220609	-0.261018116	
NM_033020	TRIM33	0.001234957	0.00742148	-0.260645861	
NM_021154	PSAT1	0.001119103	0.006849923	-0.260429078	
NM_001164277	SLC37A4	0.006036659	0.026679266	-0.259883719	
NM_003818	CDS2	0.003465344	0.017165154	-0.259762614	
NM_015906	TRIM33	0.001224264	0.007370633	-0.259689941	
NM_207122	EXT2	0.000941696	0.005926715	-0.259331143	
NM_198044	ZDHHC16	0.012623506	0.047921913	-0.259107785	
NM_005505	SCARB1	0.003307367	0.016515176	-0.25893414	
NM_001001329	PRKCSH	0.001411177	0.008283131	-0.258855059	
NM_145012	CCNY	0.010198472	0.040471223	-0.258817026	
NM_001082533	CA10	0.007273831	0.031114511	-0.258567885	
NM_002743	PRKCSH	0.001372218	0.008093295	-0.258351755	
NM_012414	RAB3GAP2	0.004363942	0.020630491	-0.258298092	
NM_001398	ECH1	0.002864008	0.014740168	-0.258211011	
NM_000184	HBG2	0.012902591	0.048726179	-0.258129615	
NM_015057	MYCBP2	0.000344971	0.002550122	-0.257684151	
NM_022307	ICA1	0.009472698	0.03811267	-0.25750051	
NM_001006617	MAPKAP1	0.000354358	0.00261107	-0.257405018	
NM_002496	NDUFS8	0.011300776	0.043996486	-0.257083324	
NM_014857	RABGAP1L	0.002525136	0.013333237	-0.256830599	
NM_015965	NDUFA13	0.006288642	0.027604704	-0.256236809	
NM_001013253	LSP1	0.003962133	0.019080003	-0.256099581	
NM_145799	Sep-06	0.002912552	0.014925384	-0.256049152	
NM_001013255	LSP1	0.004094135	0.019595007	-0.255671352	
NM_001082534	CA10	0.008009131	0.03351744	-0.255624543	
NR_003010	SCARNA12	0.008062004	0.033691263	-0.255415033	
NM_012392	PEF1	0.011523045	0.044674539	-0.255299948	
NM_001166269	HAUS4	0.009159959	0.037150719	-0.255291973	
Gene ID	Gene Name	p-value	Adjusted p-value	Fold Change	
------------	-------------	----------	------------------	-------------	
NM_017815	HAUS4	0.009140798	0.037111533	-0.255260346	
NM_001242932	LSP1	0.004143784	0.019775306	-0.25514982	
NM_012233	RAB3GAP1	0.008086541	0.033746348	-0.255097711	
NM_001172435	RAB3GAP1	0.008086541	0.033746348	-0.255097711	
NM_001013254	LSP1	0.004186048	0.01994642	-0.255092045	
NM_006726	LRBA	0.003631758	0.017824105	-0.254972523	
NM_199141	CARM1	0.003753224	0.018296353	-0.254667587	
NM_001256030	CD48	0.012874145	0.048641218	-0.254350913	
NM_001199282	LRBA	0.003588371	0.017649062	-0.254121057	
NM_001038702	CDC42SE2	0.002724879	0.014168893	-0.253896714	
NM_001197248	BTN3A2	0.002065178	0.011343976	-0.253669354	
NM_024044	SLX1B	0.009442456	0.038021879	-0.2535072	
NM_001014999	SLX1A	0.009442456	0.038021879	-0.2535072	
NM_020178	CA10	0.008401977	0.034768701	-0.253488342	
NM_018959	DAZAP1	0.001114838	0.006827957	-0.253458549	
NM_001197247	BTN3A2	0.002001361	0.011060896	-0.253299123	
NM_170711	DAZAP1	0.001137751	0.006945472	-0.253209578	
NM_007047	BTN3A2	0.002118552	0.011592159	-0.253201126	
NM_133631	ROBO1	0.000980927	0.006131723	-0.253086936	
NM_015937	PIGT	0.000390001	0.002838517	-0.25300642	
NM_001668	ARNT	0.000635859	0.004297435	-0.252982531	
NM_020135	WRNIP1	0.009834488	0.039296957	-0.252940178	
NM_058179	PSAT1	0.000959251	0.006019019	-0.252926735	
NM_014203	AP2A1	0.012948892	0.04863776	-0.252844043	
NM_130787	AP2A1	0.012948892	0.04863776	-0.252844043	
NM_181672	OGT	0.00105222	0.006502149	-0.252702473	
NM_014865	NCAPD2	0.000152884	0.001276552	-0.252679673	
NR_037672	SERF2	0.00010267	0.00089895	-0.252506567	
NM_004599	SREBF2	0.000676555	0.004511937	-0.252472403	
NM_001178083	EXT2	0.001315357	0.007820824	-0.252468048	
NM_000262	NAGA	0.012125745	0.046474259	-0.252277295	
NM_052875	VPS26B	0.001951787	0.010828081	-0.252132175	
NM_178427	ARNT	0.000645662	0.004350739	-0.251680609	
NM_001197325	ARNT	0.000645662	0.004350739	-0.251680609	
NM_002121	HLA-DPB1	0.005713852	0.0255221	-0.251647782	
NM_001033853	RPL3	0.000259942	0.002006418	-0.251263533	
NM_181673	OGT	0.001012813	0.006305838	-0.251083009	
NM_030796	VOPP1	0.000227877	0.001790537	-0.250809563	
NM_004194	ADAM22	0.004620004	0.021573328	-0.25052069	
NM_004356	CDB1	0.010495616	0.041409747	-0.250443962	
NM_001197249	BTN3A2	0.002504968	0.013247934	-0.250413842	
Gene Symbol	Description	Score	p Value	q Value	
-------------	-------------	-------	---------	---------	
NM_001143830	PIGT	0.000926631	0.00584395	-0.25029671	
NM_001200001	NOTCH2	0.000130872	0.001112131	-0.250136165	
NM_006875	PIM2	0.000249175	0.001935371	-0.249943331	
NM_005095	ZMYM4	0.003448527	0.017091375	-0.249205135	
NM_001166270	HAUS4	0.012308264	0.047031591	-0.249177402	
NR_037949	BSCL2	0.003521923	0.017388436	-0.249049041	
NR_037948	BSCL2	0.003521923	0.017388436	-0.249049041	
NM_005852	CHD3	0.000543285	0.003764238	-0.248965077	
NM_002223	ITPR2	0.004891641	0.022624888	-0.248787094	
NM_001145845	ROBO1	0.001262503	0.007567126	-0.248782983	
NM_001122955	BSCL2	0.003523616	0.017391012	-0.248649258	
NM_001206974	DHP5	0.007896564	0.033139697	-0.248002425	
NM_021721	ADAM22	0.000504701	0.023163245	-0.247855082	
NM_133443	GPT2	0.003206846	0.01609761	-0.247799174	
NM_001184729	PIGT	0.000407241	0.002949538	-0.247755517	
NM_002941	ROBO1	0.00227441	0.012270993	-0.247755455	
NM_138392	SHKB1	0.008221297	0.03418125	-0.247620805	
NR_038370	NDRG3	0.010328255	0.040879695	-0.246858192	
NM_023018	NADK	0.008195871	0.034113857	-0.246763695	
NM_032750	ABHD14B	0.010357708	0.040979899	-0.246545889	
NM_013406	DHP5	0.006456538	0.028191145	-0.244649625	
NM_001006619	MAPKAP1	0.000628724	0.004256958	-0.246308162	
NM_198196	CD96	0.010637942	0.041815836	-0.246277954	
NM_001005273	CHD3	0.000669689	0.004473171	-0.24621156	
NM_013335	GMPPA	0.010324957	0.040872086	-0.245940971	
NM_003367	USF2	0.006742551	0.029243097	-0.245766364	
NM_001080432	FTO	0.005447157	0.024600787	-0.24560586	
NM_002123	HLA-DQ81	0.001232329	0.007410183	-0.245121175	
NM_024117	MAPKAP1	0.000784752	0.005080712	-0.244622046	
NM_017653	DYM	0.00998655	0.039813565	-0.244585468	
NM_001243961	HLA-DQ81	0.001271717	0.00760987	-0.244356979	
NM_001005271	CHD3	0.000660697	0.00442803	-0.244346285	
NM_001012516	ITM2C	0.001425027	0.008354216	-0.244077424	
NM_009967	RPL3	0.00305569	0.002298301	-0.243724052	
NM_014891	PDAP1	0.003880281	0.018761479	-0.243627462	
NM_001146314	ABHD14B	0.011906467	0.045807391	-0.243553319	
NM_001144995	CCDC85C	0.011267954	0.043891703	-0.243251342	
NM_031407	HUWE1	0.000358296	0.002636171	-0.24311189	
NM_001085471	FOXN3	0.001221263	0.007358386	-0.242960791	
NM_005816	CD96	0.01171892	0.04522742	-0.242833906	
NM_001143830	GAS2	0.010647848	0.041843706	-0.242791261	
Gene	Description	MaxFoldChange	AdjPVal	FDR	
--------	-------------	---------------	---------	-------	
NM_000992	RPL29	0.00470884	0.0033014	0.242589104	
NM_021629	GNB4	0.0107963	0.042304016	0.242097923	
NM_020240	CDC42SE2	0.03764861	0.018329028	0.242044885	
NM_015902	UBR5	0.00276019	0.002104811	0.241560145	
NM_001199877	SERF2	0.00182123	0.001480755	0.241198521	
NM_005443	PAPSS1	0.009793828	0.03915028	0.24111362	
NM_001184730	PIGT	0.001542496	0.008917966	0.241033698	
NM_005617	RPS14	0.00059955	0.004086426	-0.240868197	
NM_022733	SMAP2	0.005946615	0.026340145	-0.240778118	
NM_000991	RPL28	0.004088893	0.019576225	-0.240231476	
NM_001198995	NADK	0.01046063	0.041304614	-0.240193504	
NR_038192	DHPS	0.007434684	0.03159901	-0.23988494	
NM_001146333	SUMF2	0.00780733	0.005060421	-0.23978931	
NM_020165	RAD18	0.010757574	0.042196781	-0.239753911	
NM_001166241	CGREF1	0.006384058	0.027944477	-0.239705047	
NM_006633	IQGAP2	0.003059343	0.015493687	-0.23958174	
NM_001190965	ZMYM2	0.005641613	0.02528685	-0.239437192	
NM_001018108	SERF2	0.00203558	0.001625676	-0.239383073	
NM_001198994	NADK	0.008317477	0.034513402	-0.239130638	
NM_001083613	TMEM219	0.011882274	0.045727213	-0.239110071	
NM_001199876	SERF2	0.00208256	0.001656517	-0.239109942	
NM_001198993	NADK	0.00909209	0.036941432	-0.239095462	
NM_004824	CDYL	0.007323568	0.031273813	-0.239024078	
NM_005514	HLA-B	0.002232432	0.012081804	-0.238924598	
NM_005197	FOXN3	0.001742059	0.009870119	-0.238866041	
NM_015302	HAUS5	0.005946631	0.026340145	-0.238537397	
NM_003331	TYK2	0.009563661	0.038405854	-0.23844441	
NM_194280	TMEM219	0.012111535	0.046429112	-0.238382484	
NM_172020	POM121	0.008467996	0.034990088	-0.238370414	
NM_001605	AARS	0.00654112	0.00439481	-0.238279947	
NM_006675	TSPAN9	0.005140872	0.023503278	-0.238082397	
NM_001168320	TSPAN9	0.005148219	0.023526008	-0.238080815	
NM_198837	ACACA	0.003656804	0.017923346	-0.237986745	
NM_002372	MAN2A1	0.002140392	0.011681025	-0.237975983	
NM_001930	DHPS	0.008007588	0.033515702	-0.237947763	
NM_005907	MAN1A1	0.002821636	0.014559917	-0.237929158	
NM_000401	EXT2	0.003002016	0.015265386	-0.237916891	
NM_198838	ACACA	0.003515192	0.017366743	-0.237835271	
NM_001136134	RPL28	0.00456542	0.021381794	-0.237581618	
NM_001242992	PARN	0.00848333	0.034937244	-0.23749891	
NM_005028	PIP4K2A	0.002030011	0.011185951	-0.237080153	
Gene Identifier	Gene Symbol	log2Ratio	P-value	Fold Change	
----------------	-------------	-----------	---------	-------------	
NM_016145	WDR83OS	0.002116886	0.011585173	-0.23700554	
NM_145341	PDCD4	0.000817723	0.005258658	-0.236816838	
NM_005993	TBCD	0.011384518	0.044245014	-0.236754536	
NM_014456	PDCD4	0.000830337	0.005259947	-0.23621633	
NM_001199875	SERF2	0.000251659	0.001953133	-0.235806713	
NM_145341	PDCD4	0.000817723	0.005258658	-0.236816838	
NM_005993	TBCD	0.011384518	0.044245014	-0.236754536	
NM_014456	PDCD4	0.000830337	0.005259947	-0.23621633	
NM_001199875	SERF2	0.000251659	0.001953133	-0.235806713	
NM_145341	PDCD4	0.000817723	0.005258658	-0.236816838	
NM_005993	TBCD	0.011384518	0.044245014	-0.236754536	
NM_014456	PDCD4	0.000830337	0.005259947	-0.23621633	
NM_001199875	SERF2	0.000251659	0.001953133	-0.235806713	
NM_145341	PDCD4	0.000817723	0.005258658	-0.236816838	
NM_005993	TBCD	0.011384518	0.044245014	-0.236754536	
NM_014456	PDCD4	0.000830337	0.005259947	-0.23621633	
NM_001199875	SERF2	0.000251659	0.001953133	-0.235806713	
NM_145341	PDCD4	0.000817723	0.005258658	-0.236816838	
NM_005993	TBCD	0.011384518	0.044245014	-0.236754536	
NM_014456	PDCD4	0.000830337	0.005259947	-0.23621633	
NM_001199875	SERF2	0.000251659	0.001953133	-0.235806713	
NM_145341	PDCD4	0.000817723	0.005258658	-0.236816838	
NM_005993	TBCD	0.011384518	0.044245014	-0.236754536	
NM_014456	PDCD4	0.000830337	0.005259947	-0.23621633	
Gene ID	Symbol	FPKM 1	FPKM 2	log2 Fold Change	
------------	--------	--------	--------	----------------	
NR_026590	CDYL	0.009046484	0.036833599	-0.230056456	
NM_002582	PARN	0.010004943	0.039854812	-0.229506058	
NM_015411	SUMF2	0.001310131	0.007800676	-0.229429473	
NM_018387	STRBP	0.001385444	0.00816086	-0.229356986	
NM_001012514	ITM2C	0.002482701	0.013141864	-0.2288134	
NM_001042469	SUMF2	0.001428169	0.00836109	-0.2285318	
NM_016604	KDM3B	0.001310131	0.007800676	-0.2285318	
NM_001242828	ELOVL5	0.004047742	0.019401796	-0.228122477	
NM_001136131	APP	0.000207422	0.001651211	-0.228327279	
NM_020365	EIF2B3	0.012416242	0.047322489	-0.228122477	
NM_001143970	CDYL	0.009522163	0.038280589	-0.228122477	
NM_001136136	RPL28	0.00185209	0.010378758	-0.229285318	
NM_001244580	TRRAP	0.001080602	0.006649877	-0.229285318	
NM_001130069	SUMF2	0.002096216	0.011488068	-0.229285318	
NM_001031835	PHKB	0.01063315	0.041802531	-0.22978725	
NM_032361	THOC3	0.007708043	0.032537862	-0.2293075	
NM_0198591	BSG	0.00117916	0.0010148	-0.2293075	
NM_004635	MAPKAPK3	0.009873694	0.039428348	-0.225643461	
NM_006196	PCBP1	0.012435848	0.04736684	-0.225643461	
NM_003496	TRRAP	0.002753546	0.014285463	-0.227371673	
NM_01166588	ELOVL5	0.001460493	0.00812213	-0.226674297	
NM_001145933	TKTL1	0.000117916	0.0010148	-0.225930539	
NM_198591	BSG	0.004161919	0.019852285	-0.22527492	
NM_001031835	PHKB	0.009873694	0.039428348	-0.225643461	
NM_001136136	RPL28	0.001460493	0.00812213	-0.226674297	
NM_001031835	PHKB	0.009873694	0.039428348	-0.225643461	
NM_001136136	RPL28	0.001460493	0.00812213	-0.226674297	
Gene Accession	Gene Symbol	FPKM	Adj FPKM	Volcano Score	
----------------	-------------	------	----------	---------------	
NM_022156	DUS1L	0.010541445	0.041529912	-0.220783906	
NM_003003	SEC14L1	0.008840032	0.036208045	-0.219921196	
NM_001386	DPYSL2	0.006611122	0.028756948	-0.219215082	
NM_001640	APEH	0.005995811	0.026518456	-0.219044497	
NR_037673	SERF2	0.004355232	0.02060383	-0.218899732	
NM_145869	ANXA11	0.00877591	0.036308197	-0.218134708	
NM_145868	ANXA11	0.008877591	0.036308197	-0.218134708	
NM_016480	PAIP2	0.010383748	0.041050132	-0.218020297	
NM_001145934	TKTL1	0.002428123	0.001929915	-0.217670234	
NM_001157	ANXA11	0.009007577	0.036698629	-0.21709097	
NM_0032360	ACBD6	0.011385457	0.044245014	-0.216697802	
NM_018979	WNK1	0.012583274	0.047805825	-0.215773051	
NM_003486	SLC7A5	0.011326806	0.044063189	-0.215901109	
NM_001135243	TCOF1	0.003509653	0.017342259	-0.215773051	
NM_001143999	SEC14L1	0.009590909	0.038233205	-0.215214644	
NM_001143998	SEC14L1	0.009590909	0.038233205	-0.215214644	
NM_006289	TLN1	0.001069192	0.00658921	-0.21518568	
NM_001144001	SEC14L1	0.012083281	0.046334692	-0.214541091	
NM_003760	EIF4G3	0.012737779	0.048250936	-0.214383888	
NM_024665	TBL1XR1	0.010881502	0.04259294	-0.213893206	
NM_198834	ACACA	0.008122233	0.033876266	-0.213811654	
NM_182762	MACC1	0.001618146	0.009272357	-0.212780743	
NM_080546	SLC44A1	0.004916735	0.022712673	-0.21256207	
NR_003249	HNRNPD1	0.002312534	0.012431542	-0.211821533	
NM_001207000	HNRNPD1	0.004529452	0.021250667	-0.211795469	
NM_001042470	SUMF2	0.002473237	0.013098767	-0.21171588	
NM_015909	NBAS	0.003428611	0.017012531	-0.211354274	
NM_006353	HMGN4	0.002745566	0.014258996	-0.211145716	
NM_032217	ANKRD17	0.008915688	0.036413893	-0.211004016	
NM_198839	ACACA	0.009148356	0.037119291	-0.21058078	
NM_014313	TMEM50A	0.010359093	0.04097992	-0.21054623	
NM_001135244	TCOF1	0.004129523	0.019713582	-0.210263077	
NM_001195141	TCOF1	0.004129523	0.019713582	-0.210263077	
NM_001135245	TCOF1	0.004370813	0.020653118	-0.210153113	
NM_000356	TCOF1	0.004370813	0.020653118	-0.210153113	
NM_001008657	TCOF1	0.012074908	0.046318581	-0.209912232	
NM_198889	ANKRD17	0.009200958	0.037268872	-0.209748318	
NM_018238	AGK	0.010469965	0.041330911	-0.209725477	
NM_032635	TMEM147	0.011048681	0.043139359	-0.209204956	
NM_033554	HLA-DPA1	0.004524259	0.021301602	-0.209098412	
NM_002227	JAK1	0.01723391	0.009775751	-0.208947565	
Gene ID	Gene Name	Log2 Fold Change	p-Value	q-Value	Adjusted Fold Change
--------------	-----------	------------------	---------	---------	---------------------
NM_001242597	TMEM147	0.011291416	0.043965803	-0.208473552	
NM_001009	RPS5	0.005275628	0.023979171	-0.208322036	
NM_001202414	AKR1A1	0.005176062	0.023635069	-0.207128024	
NM_002070	GNAI2	0.010010011	0.039869655	-0.206930111	
NM_001198801	EIF4G3	0.012080876	0.046334692	-0.206766392	
NR_003001	SCARNA7	0.00317131	0.015951561	-0.206605910	
NM_000516	GNAS	0.005275628	0.023979171	-0.206513535	
NM_001022	RPS19	0.007896464	0.033139697	-0.204781922	
NM_001202413	AKR1A1	0.00541254	0.024489108	-0.204742090	
NM_007051	FAF1	0.008911768	0.0364129	-0.204694822	
NM_006809	TOMM34	0.008643098	0.035544832	-0.204573666	
NM_006066	AKR1A1	0.006136513	0.027036137	-0.203767466	
NM_001981	EPS15	0.011337205	0.04409787	-0.203203771	
NM_080426	GNAS	0.001878088	0.010492788	-0.202766167	
NM_001077489	GNAS	0.001893074	0.010550729	-0.202707015	
NM_00135242	NDRG1	0.0012527	0.008837464	-0.202448466	
NM_006311	NCOR1	0.011934377	0.045890307	-0.201994437	
NM_153326	AKR1A1	0.006417607	0.028058266	-0.20133756	
NM_005892	FMNL1	0.008872892	0.036298972	-0.200220071	
NM_00130065	MYO9B	0.006543379	0.028507491	-0.198639518	
NM_000997	RP1L37	0.00662397	0.04437436	-0.198480453	
NM_015236	LPHN3	0.009467441	0.038106996	-0.198047945	
NM_001110	ADAM10	0.011390762	0.044259844	-0.197998526	
NM_004145	MYO9B	0.006687911	0.029047744	-0.19795049	
NM_001042466	PSAP	0.000887105	0.00562932	-0.195668901	
NM_002778	PSAP	0.000887546	0.005630918	-0.195668801	
NM_057161	KLHDC3	0.011603541	0.044910447	-0.195607825	
NM_001042465	PSAP	0.000897936	0.005684695	-0.195513744	
NM_181077	GOLGA8A	0.009353489	0.037740348	-0.194788952	
NM_001039590	USP9X	0.008829094	0.036174574	-0.194679665	
NM_001039591	USP9X	0.008970144	0.036591045	-0.19428313	
NM_174908	CCDC50	0.00740282	0.031512622	-0.19410848	
NM_006332	IFI30	0.00236105	0.012629588	-0.193342841	
NM_001166425	GNAI2	0.012477014	0.047493203	-0.192378996	
NM_016592	GNAS	0.003192489	0.016047226	-0.191393815	
NR_003259	GNAS	0.002922255	0.014959631	-0.191213963	
NM_080425	GNAS	0.003328687	0.016602651	-0.190946989	
Gene Symbol	Gene Name	Fold Change	t-value	q-value	
-------------	-----------	-------------	---------	---------	
NM_001077490	GNAS	0.003328687	0.016602651	-0.190946989	
NM_004152	OAZ1	0.010456656	0.041297231	-0.190033283	
NR_037946	HNRNPUL2-BSCL2	0.01052969	0.041505611	-0.18993567	
NM_00334	UBA1	0.006998789	0.031109042	-0.18970904	
NM_153280	UBA1	0.00726928	0.031109042	-0.18953153	
NM_001199184	ATP2C1	0.012435526	0.04736684	-0.18776274	
NM_002568	PABPC1	0.002631681	0.013778305	-0.18293938	
NM_001862	COX5B	0.008636783	0.035533611	-0.18163318	
NM_001242524	HLA-DPA1	0.012060288	0.046274446	-0.18123488	
NM_006460	HEXIM1	0.003537381	0.017441706	-0.18014658	
NM_001749	CAPNS1	0.0107265	0.042107169	-0.17950936	
NM_003554	HLA-DPA1	0.012886261	0.048676881	-0.17946298	
NM_001003962	CAPNS1	0.010805213	0.042333356	-0.17934321	
NM_005216	DDOST	0.007532265	0.031949232	-0.17804501	
NM_005165	ALDOC	0.012847881	0.048575123	-0.17561723	
NM_019111	HLA-DRA	0.00238923	0.01274928	-0.17364567	
NM_001155	ANXA6	0.003399995	0.016898752	-0.17191251	
NM_052862	RCSD1	0.003665682	0.017945726	-0.17140560	
NM_001009999	KDM1A	0.010348359	0.04094836	-0.16822977	
NM_005051	QARS	0.01086094	0.042521577	-0.16836148	
NM_015013	KDM1A	0.010238814	0.040606812	-0.16780205	
NM_002124	HLA-DRB1	0.010676885	0.041939913	-0.16611429	
NM_001243965	HLA-DRB1	0.010569452	0.041623694	-0.16600693	
NM_030810	TXNDC5	0.00224222	0.012041758	-0.16533845	
NM_001193544	ANXA6	0.005959876	0.026387015	-0.16209334	
NM_006098	GN2B1L	0.011824719	0.045576545	-0.16099044	
NR_037616	TXNDC5	0.004467484	0.021013015	-0.15882978	
NM_001145549	TXNDC5	0.004497718	0.021135151	-0.15844295	
NM_019111	HLA-DRA	0.008381413	0.03471365	-0.15330944	
NR_003662	RPSAP58	0.006115955	0.026961553	-0.15289890	