Membrane Localization of β-Amyloid 1–42 in Lysosomes

A POSSIBLE MECHANISM FOR LYSOsome LABILIZATION

Received for publication, June 22, 2009, and in revised form, April 22, 2010 Published, JBC Papers in Press, April 29, 2010, DOI 10.1074/jbc.M109.036798

Rui-Qin Liu, Qing-Hua Zhou, Shang-Rong Ji1, Qiang Zhou, Du Feng, Yi Wu1, and Sen-Fang Sui2

From the State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China

β-Amyloid peptide (Aβ42) is the core protein of amyloid plaque in Alzheimer disease. The intracellular accumulation of Aβ42 in the endosomal/lysosomal system has been under investigation for many years, but the direct link between Aβ42 accumulation and dysfunction of the endosomal/lysosomal system is still largely unknown. Here, we found that both in vitro and in vivo, a major portion of Aβ42 was tightly inserted into a small portion peripherally associated with the lysosomal membrane, whereas its soluble portion was minimal. We also found that Aβ42 molecules inserted into the membrane tended to form multiple oligomeric aggregates, whereas Aβ40 peptides formed only dimers. Neutralizing lysosomal pH in differentiated PC12 cells decreased the lysosomal membrane insertion of Aβ42 and moderated Aβ42-induced lysosomal labilization and cytotoxicity. Our findings, thus, suggest that the membrane-inserted portion of Aβ42 accumulated in lysosomes may destabilize the lysosomal membrane and induce neurotoxicity.

Alzheimer disease (AD)3 is the most common age-related neurodegenerative disorder, and the production and cerebral deposition of β-amyloid peptide (Aβ) is widely believed to be central to the development of AD (1, 2). The main isoforms of Aβ in AD are Aβ40 and Aβ42 (containing 40 and 42 amino acids, respectively) generated from the proteolytic processing of amyloid precursor protein (APP) (3). Aβ42 is more neurotoxic than Aβ40 and is the principle species associated with amyloid plaque (4–7), but the exact molecular mechanisms of how Aβ42 damages the neurons and deposits in brain still remain unclear.

Classically, extracellular deposition of Aβ was thought to be important in AD pathogenesis. More recent evidences have demonstrated that intraneuronal Aβ may play a crucial role in the early progression of the disease and pointed toward the importance of endosomal/lysosomal compartments in this pathogenic process (8–12). The endosome/lysosome pathway participates in Aβ production (13–18), and Aβ-released outside neurons in soluble or aggregated form can also be re-internalized and act inside endosomal/lysosomal compartments (19). Nixon and co-workers (20) suggested that autophagosomes and other prelysosomal vacuoles are involved in AD. Recently Ling et al. (21) reported that Aβ42 expression, but not that of Aβ40, in Dro sophila induces an age-dependent impairment of neuronal autophagy at a post-lysosomal stage, leading to extensive neuronal damage and death. Yang et al. (22, 23) reported that loss of lysosomal membrane integrity occurs in response to Aβ42 accumulation and is an early event in neuron death. Previous studies demonstrated that internalized Aβ42 is largely resistant to degradation and accumulates as insoluble aggregates in late endosomes or secondary lysosomes in a variety of cells (24–27); in contrast, shorter peptides such as Aβ40 are rapidly degraded and do not accumulate (24, 25, 28). Notably, careful studies of human brain and brains from Alzheimer transgenic mice using C-terminal-specific antibodies against Aβ40 and Aβ42 established that most of the intraneuronal Aβ end at residue 42, not at residue 40, and are frequently co-localized with cathepsin D, a lysosomal marker (8, 29). The oligomeric Aβ has been found to be most pathogenic (30–32). In tissue derived from the human brain, Aβ oligomerization initiates within cells rather than in the extracellular space (33). Others have reported that Aβ oligomerization could occur in the endosomal compartments (34, 35). The low pH of endosomes and lysosomes and their ability to concentrate solutes may provide an ideal environment in which to promote amyloid fibril assembly (24, 25). Overall, the interaction between Aβ42 and the lysosomal system seems to be pivotal for the preferential accumulation of Aβ42 in neurons and association with AD pathogenesis.

Here, we show that a major portion of Aβ42 accumulated in lysosomes was inserted into the lysosomal membrane, where they remained undegraded. We also present evidence that the multiorer oligomer of Aβ42 formed in association with the lysosome membrane at low pH. The pH-dependent membrane insertion of Aβ42 could cause membrane instability and lysosomal leakage. Our findings provide a possible mechanism for the lysosomal accumulation of Aβ42 and its association with lysosome disruption, which have been hypothesized to be involved in AD pathology.
Membrane Localization of β-Amyloid 1–42 in Lysosomes

MATERIALS AND METHODS

Aβ Peptides, Antibodies, and Reagents—Lyophilized Aβ (AnaSpec Co.) was dissolved in dimethyl sulfoxide to obtain a 2 mM stock solution that was centrifuged (15,000 g) for 10 min to remove insoluble particulates (36) and stored at −70 °C until use. Monoclonal antibody 6E10, which recognizes an epitope within residues 1–17 of human Aβ, was purchased from Chemicon International Inc. Rabbit polyclonal antibody to the human C terminus of Aβ42, which does not cross-react with Aβ40 or APP, was from Signet Laboratories Inc. Mouse monoclonal antibody to human C terminus of Aβ40, which does not cross-react with Aβ42, was from Upstate Biotechnology. Antibodies against Lamp-1, Rab7, Rab6, and calnexin were from Santa Cruz Biotechnology. Secondary antibodies were obtained from ZhongShan Biotechnology. All lipids, bafilomycin A1 (BafA1), chloroquine, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Lucifer Yellow, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Lucifer Yellow, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Lucifer Yellow, and removing membranes by ultracentrifugation for 30 min at 200,000 g. The membrane pellet was incubated with albumin, and 50 ng/ml 2.5 S nerve growth factor for up to 8 days. Mouse neuroblastoma N2a cells double-transfected with cDNAs encoding human βAPP harboring the “Swedish” mutant (βAPPsw) and PS1 (N2a APPsw × PS1) were maintained in medium containing 45% Dulbecco’s modified Eagle’s medium, 50% Opti-MEM, 5% fetal bovine serum, antibiotics, and 0.2 mg/ml G418.

Preparation and Characterization of Lysosome—The procedure was performed as described (39). Briefly, cells were harvested by trypsinization and washed with phosphate-buffered saline and homogenization buffer (HB; 0.25 mM sucrose, 10 mM HEPES, 1 mM EDTA (pH 7.4)). Hereinafter all manipulations were carried out at 4 °C using pre-cooled reagents. Washed cells were resuspended in HB supplemented with protease inhibitor mixture at 1 × 10^6/ml and then homogenized using a Dounce glass Teflon homogenizer. Homogenates were spun at 800 × g for 10 min to pellet nuclei and unbroken cells, which were then rehomogenized in a half-volume of HB. Supernatant was combined and centrifuged at 3000 × g for 10 min to remove large heavy mitochondria. The resultant supernatant subsequently was centrifuged for 10 min at 18,000 × g, obtaining a pellet resuspended in HB. The resuspension (0.5 ml) was layered on 6.5 ml of iso-osmotic (0.25 mM sucrose) Percoll (GE Healthcare) at a concentration of 30% (pH 7.4), with a 1-ml cushion of 2.5 mM sucrose at the bottom. After centrifuging at 44,000 × g for 40 min in a fixed-angle rotor (H熄chi P70AT2), fractions of ~0.5 ml were carefully collected from the top of tube. Percoll was removed as described (40). Proteins were measured with BCA protein assay kit (Pierce). Organelle markers assayed for lysosomes were acid phosphatase (39) and β-hexosaminidase (41).

For preparation of a mouse brain lysosomal fraction, equal amounts of brain tissue derived from analogous cortical regions or hippocampus from brains of APP × PS1 transgenic or wild type mice sacrificed at different ages (2 and 10 months) were processed as described for cells with slightly modifications. After dissection, brain tissue was immersed immediately in ice-cold HB and homogenized. Homogenate was digested with DNase I (250 μg/ml for 30 min) and centrifuged at 1000 × g for 10 min to remove nuclei and intact cells. The supernatant was collected and centrifuged again to remove blood cells. Next purification of lysosomes was carried out as described above.

Latency Measurements—Intactness of lysosomes was assessed by measuring the activity of β-hexosaminidase under isotonic conditions with or without 0.1% Triton X-100. Latency (%) of lysosomes is expressed as (activity with detergent minus activity without detergent)/(activity with detergent) × 100. When the effect of Aβ on the intactness of lysosome was tested, lysosomes were incubated in the absence or presence of Aβ for 30 min before conducting latency measurement. The buffer used in the experiment was 5 mM citrate/phosphate (pH 4.5 or 7.4, isotonic osmolality was adjusted with sucrose).

Lysosomal Subfractionation—All the fractionation procedures were conducted at 0–4 °C. Soluble (luminal) lysosomal proteins were obtained by resuspending the lysosomes in phosphate-buffered saline, freeze/fracturing them in dry ice/ethanol, and removing membranes by ultracentrifugation for 30 min at 200,000 × g. The membrane pellet was incubated with...
Membrane Localization of β-Amyloid 1–42 in Lysosomes

0.1 M Na₂CO₃ (pH 11.0) (42) for 30 min and spun as above to give peripheral membrane proteins. The pellet of carbonate-washed membrane was further stripped by incubation with 1 M NaCl (43) for 30 min and spun as above. The ultimate membrane pellet was solubilized in 2% SDS and designated as membrane-inserted proteins. All buffers were supplemented with protease inhibitor mixture.

In Vitro Incubation with Biological Membranes—Samples containing 100 μg of protein of isolated PC12 lysosomes were sonicated on ice for 15 s and ultracentrifuged at 200,000 × g for 30 min. The obtained membrane pellet was resuspended in 100 μl of Na₂HPO₄-citric acid buffers (20 mM, pH 4.5 or 7.4). Freshly dissolved Aβ peptides (0.1 μM) were added and incubated at 37 °C for 60 or 120 min. After incubation, the samples were ultracentrifuged as above to yield a supernatant (free unlabeled Aβ) and membrane pellet. The pellet was extracted with 0.1 M Na₂CO₃ (pH 11.0) and 1 M NaCl sequentially for loosely attached Aβ. Finally, the pellet containing membrane integrated Aβ was solubilized in 2% SDS. For enzyme hydrolysis, 1 mg/ml trypsin was added to the 60-min incubation mixture of Aβ42 and membrane at 37 °C for 5 or 15 min just before ultracentrifugation.

Immunoblotting—Western blots for Aβ detection were performed as described (44). Analysis was performed using the public domain NIH ImageJ program (available on the Internet).

Measurement of Lysosomal Membrane Instability—Membrane instability and leakage of PC12 lysosomes were assessed by observing the distribution change of lysosomal fluorescent dye Lucifer Yellow or the leakage of lysosomal enzyme β-hexosaminidase into cytosol. For measuring the distribution of Lucifer Yellow, cells were labeled with Lucifer Yellow (0.1 mg/ml) at 37 °C for 16 h and washed 3 times. Labeled cells with or without BafA1 pretreatment were then incubated with Aβ42 at 37 °C for 6 h and visualized on a Nikon E800 microscope. To assess the leakage of β-hexosaminidase, cells that had been incubated with Aβ42 in the presence or absence of BafA1 were collected and homogenized ten strokes. Cytosol fraction was obtained by ultracentrifugation, and the activity of β-hexosaminidase was assayed as a percentage of total activity obtained from cell homogenates. Assays were repeated in three independent experiments performed in duplicate. The significance of the results was assessed by Student’s t test.

For lysosomes in brain, samples from the cortex or hippocampus of 2- and 10-month-old transgenic or wild type mice were homogenized and centrifuged. Then the activity of β-hexosaminidase was assayed as for cells. Purified lysosomal fraction were also incubated in 0.15 or 0.25 M sucrose at 37 °C for 5 min, then the suspension was used for the assay of lysosomal integrity by measuring the activity of β-hexosaminidase (45, 46).

Measurement of Cell Viability—Cell viability assays were carried out by MTT dye conversion assay (47) in 96-well cell culture plates. Cell viability was expressed as a percent of absorption of vehicle-treated control. In addition, cell death was evaluated by measuring the amounts of cytoplasmic lactate dehydrogenase released into medium. Lactate dehydrogenase activities were measured using a CytoTox96 nonradioactive assay kit (Promega), according to the manufacturer’s instructions. Cytotoxicity was expressed as percentage of released lactate dehydrogenase per total cellular lactate dehydrogenase content. Assays were repeated in three independent experiments, each performed in triplicate.

RESULTS

Aβ42 Can Insert into the Lipid Membrane via Its C Terminus in a pH-Dependent Manner—Previous studies implicate that a likely primary target of Aβ is the membrane, as the peptide may alter many of its important physical and biological properties (48–50). Therefore, we first examined the membrane insertion ability of Aβ42 via monolayer experiments. The surface pressure is believed to increase when the protein penetrates into the monolayer, and as reported earlier, it does not change if the protein only interacts with phospholipid head groups (51, 52). Thus, the increase in surface pressure (Δπ) of the lipid monolayer post-injection of proteins into subphase can only be interpreted as the result of actual insertion of the proteins into the phospholipid monolayer. Δπ can be obtained as a function of the initial surface pressures (π_i) for each sample. Plotting a series of Δπ versus π_i would yield a straight line with a negative slope, which intersects the abscissa at a point defined as the critical insertion pressure (π_c). The value of π_c is used to evaluate the penetration ability of the protein into this lipid monolayer.

Fig. 1A shows Δπ-π_i plots of Aβ42 for the total brain lipid monolayer under various pH conditions. The values of π_c at pH 7.0, 6.0, 5.0, and 4.0 were 27.9, 30.6, 32.2, and 34.9 mN/m, respectively. Fig. 1B shows the Δπ-π_i plots of Aβ42 for an eggPC monolayer under different pH values. The values of π_c for eggPC under pH 7.0, 6.0, 5.0, and 4.0 were 27.7, 30.1, 32.0, and 36.1 mN/m, respectively. Fig. 1C gives the correlation between π_i and pH, clearly indicating that the membrane insertion ability of Aβ42 increased with decreasing pH. Same experiments were performed with other phospholipid mixtures, such as PC/phosphatidylethanolamine, PC/sphingomyelin, and PC/cerebroside, with similar effects (data not shown). These data suggest that the membrane insertion ability of Aβ42 is critically dependent on pH and not sensitive to lipid composition. The biological membrane pressure had been established to be 31–34 mN/m (53). The packing density of the lipid monolayer with a surface pressure in this range is assumed to be comparable to that of the lipid bilayer (54, 55). Thus, the monolayer results indicated that Aβ42 is able to insert into a physiological bilayer at a pH lower than 5.5.

To further characterize membrane-associated Aβ42, papain was used to hydrolyze Aβ42 after it reacted with lipid vesicles based on the fact that Aβ42 inserted into a lipid membrane would be resistant to digestion. The hydrolysis products were analyzed by MALDI-TOF MS. The MS peaks from a typical enzyme hydrolysis of the Aβ42 solution were identified and summarized in supplemental Table S1. Fig. 2, A and B, show the MS spectra of the hydrolysis products of Aβ42 in the absence and presence of vesicles at pH 4.0. The two MS spectra exhibit some obvious differences; the peaks of m/z 2932, 3672, and 4072 disappeared in the presence of vesicles. In comparison, we
found that the inaccessible cleavage sites were Gly33-Leu34 and
Gly37-Gly38, both of which are located in the C-terminal trans-
membrane domain of A/H9252. In contrast, the mass spectra in the
presence and absence of vesicles at pH 7.0 were almost identical
(supplemental Fig. S1), indicating that papain could access
nearly all the A/H9252 cleavage sites after reacting with vesicles at
neutral pH. Therefore, we concluded that A/H9252 inserts into
lipid vesicles via its C-terminal at low pH, thus protecting its
C-terminal sites from cleavage.

FIGURE 1. Aβ42 can insert into lipid membranes in a pH-dependent man-
er. The interaction between Aβ42 and total brain lipid monolayers (A) or
eggPC (B) was detected via monolayer surface pressure measurements at
various pH values. The surface pressure change (Δπ) caused by peptide inser-
tion into the lipid monolayer can be obtained as a function of the initial sur-
face pressure π₀. A plot of Δπ versus π₀ yields a straight line with a negative
slope that intersects the abscissa at a limiting surface pressure, the critical
insertion pressure, πc. The value of πc is a quantitative measure to evaluate
the insertion ability of the peptide into the lipid monolayer. The concentra-
tion of Aβ42 was 800 nM, and Na2HPO4-citric acid was the buffer used to
supply a sufficient pH range. Panel C gives the correlation between the critical
insertion pressure πc and pH.

Lyosome-accumulated Aβ42 Mainly Inserts into the Lysosomal Membrane in Cells—To investigate whether Aβ42 could
integrate into biological membranes of intracellular acidic
organelles, we incubated differentiated PC12 cells with 1 μM
freshly dissolved Aβ42 for 6 h at 37 °C, then the cells were
washed with phosphate-buffered saline and transferred into
fresh medium for 6 h. After incubation, the cells were har-
vested, and the lysosomes were isolated on a self-generated Per-
coll gradient as described under “Materials and Methods.” The
two lysosomal enzyme markers, acid phosphatase and β-hex-
osaminidase, are shown to be concentrated in fractions 11 and
12, indicating that the bulk of lysosomes was contained in the
two fractions (Fig. 3A). Intactness of the organelles was above
90% based on a latency measurement. We also characterized
our lysosomal preparations by Western blot (supplemental
Table S1) and electron microscopy (supplemental Fig. S3). The
lysosomal proteins Lamp-1 and Rab7 were markedly enriched
in the lysosomal fraction, whereas the endoplasmic reticulum
Membrane Localization of β-Amyloid 1–42 in Lysosomes

![Graph](image)

FIGURE 3. Distribution of accumulated Aβ42 in differentiated PC12 cells. Differentiated PC12 cells were incubated with 1 μM freshly dissolved Aβ42 for 6 h in binding media and 6 h in fresh media and then homogenized. A, post-nuclear supernatant was fractionated on a Percoll gradient as described under "Materials and Methods" and analyzed for the distribution of acid phosphatase, β-hexosaminidase, and density. B, internalized Aβ42 existed in the fractions with peak values of lysosomal enzyme markers. Gradient fractions were electrophoresed in a 16% Tris-Tricine gel, electroblotted onto a nitrocellulose membrane, and probed with an Aβ42 antibody.

(ER) and Golgi markers calnexin and Rab6 were undetectable, suggesting that the ER and Golgi were not present in this lysosomal fraction. Immunelectron microscopy analysis further confirmed that the lysosomal fraction was mostly composed of Lamp-1-positive lysosomes.

We also examined the subcellular location of endocytosed Aβ42 in PC12 cells. Western blot analysis of gradient fractions with a specific Aβ42 antibody showed that Aβ42 applied extracellularly was enriched in the lysosomal fraction (Fig. 3B). Also, immunofluorescence analysis displayed a co-localization of Aβ42 with Lyso Tracker (data not shown). These results indicated that exogenous Aβ42 could be taken up by PC12 cells and located to lysosomes.

To determine the intralysosomal distribution of Aβ42, isolated lysosomes were fractionated into a soluble and a membrane fraction. The membrane fraction was then sequentially extracted with carbonate and sodium chloride, which are widely used to strip peripherally membrane-attached proteins (42, 43). After these treatments, the proteins remaining in the membrane fraction were considered to be tightly inserted into the lysosomal membrane. Thus, the proteins of intact lysosomes were fractionated into “soluble,” “membrane-associated” (Na2CO3-extractable and NaCl-extractable), and “membrane-inserted” (detergent-extractable) fractions. As controls, β-hexosaminidase, a lysosomal matrix marker, was detected entirely within the soluble fraction (Fig. 4A), whereas Lamp-1, a lysosomal membrane marker, was enriched in the membrane-inserted fraction (Fig. 4B, top panel), indicating that the lysosome was substantially fractionated.

The lysosomal distribution of internalized Aβ42 was shown in Fig. 4B, bottom panel. The internalized Aβ42 was markedly enriched in the membrane-inserted fraction, whereas only a small portion was extracted by 0.1 M Na2CO3, and its soluble portion was nearly undetectable.

Furthermore, we examined the lysosomal localization of the endogenous Aβ42 accumulated in N2a APPswe×PS1-transfected cells. Immunoblots with a specific Aβ42 antibody, Aβ40 antibody, and E6E10 (recognizing residues 1–17 of Aβ) showed that Aβ42 was markedly localized in the membrane-inserted fraction with only a small portion loosely attached to the membrane (Na2CO3 extraction), and its soluble portion was also undetectable (Fig. 4C, top panel). Aβ40, however, was undetected in any fraction of the lysosomes (Fig. 4C, middle panel), indicating that Aβ42 preferably accumulated in the lysosomes of cells. Combining the results from PC12 and N2a cells, one may suppose that Aβ42 mostly tightly inserted into the lysosomal membrane may play an important role in neuronal toxicity. Additionally, we investigated the subcellular localization of Aβ42 in brains from APP×PS1 transgenic mice using immunelectron microscopy. The results in supplemental Fig. S4, in agreement with the recent findings (29, 56), clearly showed that the immunoreactivity of intraneuronal Aβ42 increased with aging (there were more gold particles in the lysosomes of a 10-month-old mouse than a young mouse) and localized predominantly to lysosomes of neurons in transgenic mice (compared to less gold particles in the endoplasmic reticulum and mitochondria).

Effect of Alkalizing Drugs on the Insertion of Aβ42 into the Lysosomal Membrane—To assess the effect of pH on the lysosomal distribution of Aβ42, the lysosomal pH was altered by BafA1 or chloroquine. BafA1 specifically inhibited the transmembrane component of ATPases, the H+ pump responsible for the acidification of late endosomes and lysosomes (57). Chloroquine, a weak base, accumulated in lysosomes where it raises the pH (58). Differentiated PC12 cells were incubated with 1 μM Aβ42 for 6 h in the presence or absence of 10 nm BafA1 or 10 μM chloroquine, then washed with phosphate-buffered saline and transferred into fresh medium for 6, 12, or 24 h (Fig. 4, D and E). An equal quantity of isolated lysosomes was fractionated as described above and analyzed by Western blotting. BafA1 induced an obvious effect on the lysosomal distribution of Aβ42, decreasing the level of membrane-inserted Aβ42 from ~90% to nearly 50% (Fig. 4D). A similar effect was also observed with chloroquine (Fig. 4E), indicating that Aβ42 can insert into the lysosomal membrane in a pH-dependent manner.

Extending the incubation time from 6 to 12 and 24 h, only Aβ42, which tightly integrated into the membrane, remained detectable in the lysosomes, whereas the fraction peripherally attached to the membrane became undetectable (Fig. 4, E and F). The lysosomal system is known to process or digest cargoes from phagocytosis, endocytosis, and autophagy (59, 60). Therefore, the fact that the membrane-inserted Aβ42 remained undegraded suggests that this form may resist hydrolysis by lysosomal proteases.

Aβ42 and Aβ40 Differ in their Interaction with the Lysosomal Membrane—To explore whether another pathologically important peptide, Aβ40, and a shorter peptide, Aβ28, also inserted into and accumulated at the lysosomal membrane after internalization by differentiated PC12 cells, we incubated syn-
Membrane Localization of β-Amyloid 1–42 in Lysosomes

To further clarify the molecular basis of pH affecting the interaction of Aβ peptides with biological membranes, we incubated Aβ monomers of different lengths with purified lysosomal membrane for 60 min in acidic (pH 4.5) or neutral (pH 7.4) buffer in vitro. Fig. 6A shows the membrane interaction of Aβ monomers, indicating that pH has a significant effect on the distribution of Aβ42 and Aβ40. The levels of membrane insertion and membrane association decreased at pH 7.4, whereas the water-soluble fractions increased compared with those at pH 4.5. In addition, the amount of membrane insertion of Aβ42 was greatly higher than that of Aβ40 at both pH 4.5 and 7.4. Compared with Aβ42, Aβ40 existed mainly in the water-soluble (pH 7.4) or membrane-associated state (pH 4.5). Moreover, regardless of pH 4.5 or 7.4, Aβ28 only existed in the free form without any membrane association (data not shown). Extending the incubation time from 60 to 120 min (Fig. 6B) made it clearer that pH plays an important role in Aβ-membrane interactions. Note that at lower pH, Aβ42 preferred to form many multiple-molecular weight oligomeric aggregates in both the membrane-associated and membrane-inserted fractions, whereas Aβ40 occurred only in dimers.

To demonstrate that membrane insertion may protect Aβ42 from hydrolysis by proteases, we treated an incubation mixture of Aβ42 and the lysosomal membrane with trypsin for different times. As expected, trypsin degraded most free and membrane-attached Aβ42 within 15 min, whereas membrane-inserted Aβ42 mostly persisted (Fig. 6C). As a control, mixture of Aβ42 with only buffer showed complete degradation within 15 min (data not shown). These data provided further evidence that Aβ42 molecules resist degradation in the membrane-inserted state. Here, we also examined the membrane-insertion characteristics of Aβ42 with an electron microscope. An incubation mixture of Aβ42 and the lysosomal membrane was washed first with carbonate and NaCl to remove loosely attached Aβ42 and then immunogold-labeled with 6E10 (the N terminus antibody of Aβ42) antibody, further indicating that Aβ42 inserted into the lysosomal membrane through its C terminus (supplemental Fig. S5).

Aβ42 Induces Lysosomal Labilization of PC12 Cells in a pH-dependent Manner—To assess whether pH has an effect on Aβ42-induced lysosomal labilization, we performed a combination of a fluorescence assay and an enzyme activity analysis. For the fluorescence assay, we used Lucifer Yellow, a membrane-impermeable marker of fluid-phase pinocytosis that accumulates in secondary lysosomes, to determine lysosomal leakage as previously described (22, 25). Differentiated PC12 cells were incubated first with Lucifer Yellow and then with Aβ42 for 6 h at 37°C and examined under a fluorescence microscope. As shown in Fig. 7A, untreated control cells dis-
played a punctate pattern of fluorescence, revealing small, circumscribed, vesicular structures resembling intact lysosomes. After treatment with Aβ42, the cells displayed a diffuse intracellular pattern of fluorescence, indicating lysosomal leakage into the cytosol. However, this redistribution of Lucifer Yellow could be counteracted partly if the cells were pretreated with 5 nM BafA1 for 20 min before the addition of Aβ42.

The effect of a neutralizing pH on Aβ42-induced lysosomal labilization was examined by measuring the release of β-hexosaminidase into the cytosol in differentiated PC12 cells in the presence and absence of 5 nM BafA1. As shown in Fig. 7B, the activity of the released β-hexosaminidase in the cytosolic fraction of Aβ42-treated cells was 40% higher than that in the untreated control. BafA1 treatment resulted in a pronounced decrease in Aβ42-induced lysosomal leakage, whereas BafA1 alone did not affect lysosomal leakage of β-hexosaminidase. These results indicate that BafA1 moderates the Aβ42-induced instability of lysosomes.

We also separately examined the effects of Aβ42, Aβ40, and Aβ28 on the latency of isolated lysosome under neutral or acidic pH. As shown in Fig. 7C, we observed deleterious effects of Aβ42 on lysosomal membranes that were especially prominent under acidic pH, whereas Aβ40 and Aβ28 did not obviously affect lysosomal membrane intactness. These results consistently demonstrated that Aβ42 caused membrane instability under lower pH.

Alkalizing Drugs Provide Dose-dependent Protection against Aβ42-mediated Cytotoxicity—The effects of BafA1 and chloroquine on Aβ42-induced cytotoxicity were determined using an MTT assay and lactate dehydrogenase release. Fig. 8A shows that cell toxicity measured by the MTT assay increased with the concentration of Aβ42, whereas the addition of BafA1 partly prevented cell death induced by Aβ42 at all concentration levels. A similar phenomenon was observed in the lactate dehy-
Membrane Localization of β-Amyloid 1–42 in Lysosomes

A

B

C

FIGURE 7. Aβ42-induced lysosomal membrane permeability in a pH-dependent manner. A, BafA1 moderated Aβ42-induced release of Lucifer Yellow from the lysosomes of PC12 cells. Lucifer Yellow-labeled cells were incubated with or without BafA1 (5 nM). After 30 min, 25 μM Aβ42 was added. The cells were then incubated at 37 °C for 6 h and visualized under a Nikon fluorescence microscope. Aβ42 treatment caused lysosomal leakage as revealed by fluorescence that diffused into the cytoplasm; pretreatment with BafA1 moderated the Aβ42-induced release of Lucifer Yellow, and the cells displayed the same discrete punctate pattern of fluorescence as the control (Ctrl). The inset is the corresponding phase-contrast image. B, cytosolic β-hexosaminidase activity was determined as described under “Materials and Methods” to evaluate the effect of BafA1 on Aβ42-induced lysosome leakage. Values are the means ± S.D. of three independent experiments performed in duplicate. Statistical analysis was conducted using Student’s two-tailed t test (*, p < 0.05; **, p < 0.005). C, shown is the effect of Aβ42 isoforms on the latency of isolated lysosomes. Purified lysosomes were resuspended in isotonic citrate/phosphate buffer (5 mM, adjusted with sucrose) and incubated with 1 μM Aβ at 37 °C for 30 min before measuring β-hexosaminidase activity in the presence or absence of 0.1% Triton X-100.

drogenase release assay (Fig. 8B). The effect of chloroquine on Aβ42-induced cytotoxicity was identical to that of BafA1 (Fig. 8, C and D). These results suggest that lower pH plays a critical role in Aβ42-induced cell toxicity.

Aβ42 Inserts into Lysosomal Membrane and Induces Lysosome Instability in Aged Transgenic Mice—Finally we investigated whether the insertion of Aβ42 into the lysosomal membrane and the resulting labilization occurred in vivo. For this, we isolated lysosomes from cortical regions or hippocampus from brains of transgenic mice at different ages (2 and 10 months). Analogous wild type mice were used as control. In 10-month-old transgenic mice, the immunoblotting of subfractions of lysosomal matrix enzyme β-hexosaminidase after homogenization and the leakage of this enzyme from the lysosomal fraction after incubation in hypotonic condition. First, we found that the percentage of β-hexosaminidase in the cytosolic fraction showed an apparent increase in aged transgenic mice, with about an 80% increase in the 10-month-old transgenic mice compared with the same old wild type mice (Fig. 9B). The increase of free β-hexosaminidase reflects the increase of lysosomal instability in the older transgenic mice brains. The lysosome labilization in aged transgenic mice brain was further established by the evidence that the integrity of the lysosomes from aged transgenic mice decreased greatly after incubation at 37 °C for 5 min in hypotonic sucrose than that of the control lysosomes (Fig. 9C and D). It indicates that the lysosomes of aged transgenic mice were more susceptible to the osmotic imbalance across their membranes and, therefore, lost their enzyme latency markedly.

DISCUSSION

Although the pathogenic pathway of Aβ-induced neuronal death in AD has been investigated for years, the definitive pathogenesis is still unclear. Recently, a lysosomal branch of the cell death cascade may be important in the disease process. The prevailing model describes that Aβ accumulation in lysosomes resists degradation and eventually causes the release of degradation-resistant insoluble aggregates and other lysosome contents into the cytosol, consequently leading to neuron toxicity (21–23, 61). However, the molecular mechanism involved in the lysosomal accumulation of Aβ42 remains to be clarified. Additionally, lysosomes are organelles that contain a variety of digestive enzymes. Thus, knowing how a mass of Aβ42 escapes degradation and accumulates in lysosomes is important in understanding Aβ42-specific neurotoxicity.

We first employed two model membrane systems, monolayers and vesicles (a closed bilayer), to explore the effect of pH on Aβ42-membrane interactions. We found that Aβ42 could insert into the lipid vesicles via its hydrophobic C terminus under acidic conditions and that the membrane insertion ability of Aβ42 increased with decreasing pH. This implies that Aβ42 can insert into the membranes of endosomes (pH 5–6.5) and lysosomes (pH 4–5). Therefore, we isolated and purified lysosomes from differentiated PC12 cells with extracellularly applied Aβ42 and N2a APPsw×PS1-transfected cells and examined the intralysosomal distribution of exogenous and endogenous Aβ42.

For the first time we determined that lysosomal-accumulated Aβ42 could be divided into three parts: a soluble state in the lysosome lumen; a membrane-attached state, loosely adsorbed onto the lysosomal membrane surface that can be
Membrane Localization of β-Amyloid 1–42 in Lysosomes

![Graphs showing cell viability and LDH release](image)

FIGURE 8. BafA1 and chloroquine moderated Aβ42-mediated cytotoxicity. Cytotoxicity was determined by a MTT assay (A and C) or lactate dehydrogenase (LDH) release assay (B and D) as described under “Materials and Methods.” Differentiated PC12 cells were preincubated with various doses of BafA1 (A and B) or chloroquine (CHQ, C and D). Aβ42 was added after 30 min. The cells were then incubated for 48 h, and the assays were performed.

Detached by cations; and a membrane-inserted state, tightly associated with the membrane, that cannot be extracted by cations. In differentiated PC12 cells, with the addition of 1 µM Aβ42, we found that a great majority of the lysosomal-accumulated Aβ42 was in a membrane-associated state, whereas the Aβ42 in the lysosomal lumen was minimal and nearly undetectable under the experimental conditions. Moreover, we found that the membrane-related Aβ42 was mostly tightly inserted into the lysosomal membrane, whereas only a small portion was peripherally associated with the membrane. Identical results were obtained from the N2a cells stably expressing human APPswe and PS1.

Next, raising the intracellular pH with alkalinizing drugs reduced the level of the membrane-inserted Aβ42 and increased that of the membrane-attached portion. Moreover, after prolonging the incubation time of Aβ42 with PC12 cells from 6 to 12 and 24 h, quite a large amount of Aβ42 was found to be retained in the membrane-inserted fraction, whereas the membrane-attached Aβ42 disappeared. Trypsin digestion of the incubation mixture of Aβ42 and the membrane also indicated that the membrane-inserted Aβ42 cannot be easily hydrolyzed. Based on these results, one can reasonably presume that the massive accumulation of Aβ42 in lysosomes may result from nondegradation by lysosomal proteases because of its membrane insertion, thereby providing the physical prerequisite for Aβ42 neurotoxicity.

Our previous study showed that the insertion ability of Aβ40 is strongly dependent upon the ratio of cholesterol to phospholipids under neutral pH (37). However, in a separate examination we found that cholesterol has little influence on the membrane insertion ability of Aβ42; the corresponding πc for eggPC and the cholesterol-containing eggPC monolayer are almost the same (data not shown). Here we show that there are significant differences in the membrane insertion between Aβ42 and Aβ40, and the level of membrane-inserted Aβ40 was very low or negligible compared with Aβ42 at either pH 4.5 or 7.4 (Fig. 6A). Our investigation on the hydrophobic exposure of Aβ42 by an 1-anilino-8-naphthalenesulfonate fluorescence probe showed that the hydrophobic exposure of Aβ42 increases with decreasing pH (data not shown), corresponding to its increasing ability of membrane insertion. These data suggested that the magnitude of hydrophobicity may be the main factor involved in the membrane insertion, and the difference in membrane insertion ability between Aβ42 and Aβ40 may be due to the difference of the two hydrophobic amino acid residues, as Aβ28, the isoform without C-terminal transmembrane domain, cannot insert into the membrane at all.

Unlike Aβ42, in cell culture models Aβ40 was degraded much more rapidly after internalization (23, 25), and in AD patients and animal models, it is Aβ42, not Aβ40, that is detected in intracellular accumulation (8, 29, 56, 62). Our comparison of the plasma membrane binding of Aβ in differentiated PC12 cells (supplemental Fig. S6) shows that the binding of Aβ42 is only about 2-fold that of Aβ40. Thus, the great difference in the cumulative amount of internalized Aβ42 and Aβ40 may be caused mainly by the different rate of degradation due to their difference in membrane insertion ability. Additionally, incubation of Aβ with the lysosomal membrane showed that membrane-inserted Aβ42 tends to form multi-oligomeric aggregates that are poorly degraded, whereas Aβ40 forms only dimers. Thus, this differential interaction of Aβ42 and Aβ40 with the membrane could be the underlying cause for the preferential accumulation of Aβ42 in lysosomes and neuronal death. This finding may explain the paradoxical observations that Aβ40 is the primary proteolytic product of APP in neurons (63), whereas it is Aβ42 that predominantly exhibits intraneuronal accumulation and neurotoxicity (64, 65).

However, our present study does not account for the formation of Aβ oligomers and the particular mechanism of membrane insertion of the protein. From the in vitro interaction results of Aβ with membrane in this current manuscript (Fig. 6A), we can make sure that monomeric Aβ can insert into the...
Membrane Localization of β-Amyloid 1–42 in Lysosomes

A

free Na₂CO₃

NaCl

insertion

6E10

anti-α42

B

Percentage of total β-hexosaminidase activity

Cortex

hippocampus

D

Lysozyme latency

wt-2

tg-2

wt-10

tg-10

Figure 9. Aβ42 inserts into lysosomal membrane and induces lysosome instability in aged transgenic mice. A, the distribution of Aβ42 in lysosomes from cortex of 10-month-old APP × PS1 transgenic (tg-10) mice was examined in each lysosomal fraction using specific anti-Aβ42 and 6E10 antibodies. wt, wild type; B, β-hexosaminidase activity in the cytosolic fraction is plotted as the percentage of total activity. Homogenate from each group (n = 4 mice per group) was separated into cytosolic and pellet fractions. β-Hexosaminidase activity in each fraction was measured (*, p < 0.05; ***, p < 0.001). Shown are the effects of hypotonic conditions on the osmotic stability of cortical (C) or hippocampal (D) lysosomes from APP × PS1 transgenic or wild type mice at different ages. Lysosomes were incubated in isotonic (0.25 M) or hypotonic (0.15 M) sucrose medium at 37 °C for 5 min. Free and total β-hexosaminidase activity was measured immediately after the incubation. Lysosome latency was calculated. Values are the means ± S.D. of four measurements (*, p < 0.05; **, p < 0.05).

membrane. There may be many aggregates in solution for the aggregating property of Aβ42. Aβ oligomerization has also been shown to occur during interaction with lipid bilayers, in particular lipid rafts (66, 67). Therefore, we cannot distinguish the origination of the oligomeric Aβ42 on the membrane. It is unclear whether the membrane insertion of Aβ42 takes place before, after, or during its oligomerization. The mechanism and dynamics by which Aβ42 oligomerizes when it interacts with membrane are very complicated and remain to be established.

Previous reports have suggested that the lysosomal accumulation of Aβ42 may play an important role in neuronal cell death and that the loss of lysosomal membrane impermeability is involved in Aβ42 pathogenesis (22, 23, 68, 69), but what is essential for the Aβ42-induced lysosomal damage remains to be shown. We confirmed the view that Aβ42 applied extracellularly leads to fluorescence diffusion of endocytosed punctate Lucifer Yellow and lysosomal enzyme leakage. Treatment with alkalizing drugs, such as chloroquine and BafA1, obviously ameliorated lysosome damage and cell death. A recent publication by Li et al. (68, 69) reported that apoE4 and Aβ42 might work in concert at lower pH to increase the susceptibility of lysosomes to disruption. They also pointed out that the question of whether the apoE4/Aβ42 complex or the two molecules, independently, destabilize the membranes still remains to be resolved. Our study demonstrates that Aβ42 itself in the membrane-inserted form can destabilize the lysosomal membrane. Consistent with the observations that Aβ42 inserts to the lysosomal membrane at acidic pH and destabilizes them in vitro, aged transgenic mice expressing human APP and PS1 also showed tight binding of Aβ42 to the lysosomal membrane in the cortical region and fragile lysosomes in cortex and hippocampus. These data in vivo emphasized the importance of lysosomal pathway induced by Aβ42.

Taken together, if Aβ42 resulting from extracellular uptake or intracellular generation accumulates within the endocytic compartments of neurons, the acidic characteristics of endosomal/lysosomal organelles could provide a favorable environment for the membrane insertion of Aβ42 that may protect it from degradation and result in lysosome instability. Additionally, the concentration effect of lysosomes and the pathological accumulation of membrane-bound Aβ42 may favor the oligomerization of Aβ42, which probably then acts as a seed for further aggregation. Our findings suggest that lysosomal Aβ insertion may be pathogenic, and regulating intracellular pH pharmacologically may have a therapeutic effect on AD.

Acknowledgments—We thank Dr. Huaxi Xu for kindly providing the mouse neuroblastoma N2a cells double-transfected with cDNAs encoding human βAPP harboring the Swedish mutant (βAPPsw) and human PS1 (N2a APPsw×PS1).

REFERENCES

1. Selkoe, D. J. (1991) Neuron 6, 487–498

2. Hardy, J. A., and Higgins, G. A. (1992) Science 256, 184–185

3. Hardy, J., and Selkoe, D. J. (2002) Science 297, 353–356

4. Selkoe, D. J. (1994) J. Neuropathol. Exp. Neurol. 53, 438–447

5. Yankner, B. A. (1996) Neuron 16, 921–932

6. Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A., and Klein, W. L. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 6448–6453

7. McGowan, E., Pickford, F., Kim, J., Onstead, L., Eriksen, J., Yu, C., Skipper, L., Murphy, M. P., Beard, J., Das, P., Jansen, K., Delucia, M., Lin, W. L., Doliol, A., Wang, R., Eckman, C. B., Dickson, D. W., Hutton, M., Hardy, J., and Golde, T. (2005) Neuron 47, 191–199

8. Gouras, G. K., Tsai, J., Naslund, J., Vincent, B., Edgar, M., Checler, F., Greenfield, J. P., Haroutunian, V., Buxbaum, J. D., Xu, H., Greengard, P., and Relkin, N. R. (2000) Am. J. Pathol. 156, 15–20
