Gis-Based Fire Risk Spatial Assessment for Semiconductor Plant

Hongga Li1, 2,* and Xiaoxia Huang1, 2
1Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
2Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen, China

*Corresponding author e-mail: lihg@aircas.ac.cn

Abstract. Traditional fire risk assessment of semiconductor plant mainly relies on engineer experience from fields of fire control, chemistry, construction, semiconductor and insurance, and lacks a collaborative tool to integrate different design blueprints and locate high risk regions. In this paper, we introduce GIS into fire risk research for semiconductor industry, and propose a GIS-based spatial and quantitative method of fire risk assessment. Based on semiconductor plant spatial database extracted from diversified indoor maps, we set up a fire risk index system and integrate factors of potential fire source, operation risks of fabrication process, fire proof design and fire management to identify the high fire risk regions by using analytic hierarchy process. The proposed method improves spatial analysis capabilities of fire risk assessment for more and more complex semiconductor factories.

1. Introduction
With the rapid growth of semiconductor consumption, semiconductor investments become more expensive. In the insurance field, semiconductor manufacturing enterprises can be summarized as three high, that is, high risk, high vulnerability and high insurance amount. On the one hand, lots of flammable, explosive, corrosive and toxic chemical materials are widely applied in the chip manufacturing process. On the other hand, clip equipment is sensitive to smoke and fire, and manufacturing needs to be done in a clean room.

Particularly for semiconductor industry, as pointed out by historical statistics [1][2], fire and explosion are the major disasters and will cause great damage. For example, on September 4th of 2013, a fire, which followed a chemical explosion during the installation of new manufacturing equipment at a SK Hynix plant in Wuxi, China, began at 3:30 p.m. and burned until nearly 6 p.m. The regions damaged by fire are not large, but it leaded to huge economic losses. The smoke damaged the DRAM fabrication (FAB)’s clean-room facilities and broke more than 800 sets of equipment. Finally, insurance companies paid US $860 million in total for equipment damage, building reconstruction, interrupted operation and indemnities.

Various traditional fire risk assessment methods have been developed to address the physical situation and seek to measure/predict and assess the acceptability of risk in a particular place and situation [3]. As outlined by Watts and Hall [4][5], the fire risk analysis may be classified into four categories: checklists, narratives, indexing and probabilistic methods. Alternatively, the types of assessments that are currently available for the purposes of fire hazard assessments can typically be
defined into three categories such as Qualitative, Semi-Qualitative and Quantitative methods as recognized by Ramachandran [6].

Existing assessment methods are based on Fire Service Act and the Building Standards Act, and mainly focus on architectural structure. Thus, high-standard fire prevention evaluation regulations such as National Fire Prevention Association (NFPA), Factory Mutual (FM), and Semiconductor Equipment and Materials International (SEMI) [7] are important supplement for assessment.

However, until now, special studies and assessment method of fire potential risks available for semiconductor factory are still scarce. Besides short of evaluation tools for semiconductor modern factories, the main reason is lack of tools for integrating a great diversity of indoor and outdoor maps, such as factory layout, architectural design, structural construction, production equipment, fire protection and pipelines, and lack of fire risk spatial analysis capabilities to locate risks in the more and more complex semiconductor factories.

Thus, in this paper, we introduce GIS database and analysis into fire risk assessment research for semiconductor industry, and propose a GIS-based fire risk spatial assessment. Combined with the information of architecture, structure, equipment, pipelines and fire services, the semiconductor plant spatial database is constructed after the steps of data transforming, extracting and cleaning. And then we establish a new fire risk spatial assessment method, which integrated potential fire source, operation risks of fabrication process, fire proof design, fire management, to identify and locate high risk regions.

2. Study Area and Data
Yangtze Memory Technologies Co., Ltd., established in Wuhan, China in July 2016, is an IDM memory company with a focus on the design, production and sales of 3D NAND flash memory chips for mobile devices, computing, and consumer electronics. The semiconductor fabrication plant has four floors. The building and facility are provided with fire detection system, automatic sprinkler system, indoor & outdoor hydrant systems and portable fire extinguishers throughout the buildings. The occupancies of semiconductor fabrication plant are summarized as following:

Floor	Occupancies
L10	No cleanroom
	Utility supporting area, chemical supply, waste chemical collection, power room, PCW, DI, HVAC, goods transporting etc.
L20	cleanroom
	Clean sub-fab, chemical booster room
L30	cleanroom
	Fabrication Plant (FAB)
L40	cleanroom
	Truss, HVAC, power rooms, MAU

3. The Proposed Method
Our main process of fire risk spatial assessment can be summarized in four parts: indoor fire application mapping and spatial database, fire risk spatial assessment index analysis, determination of indicator weight and fire risk spatial assessment (Figure 1).
3.1. Indoor fire application mapping and spatial database
Unlike the tradition indoor map which is applied for navigation in large-scale commercial buildings, the content of indoor map is focus on industrial process and building fire safety [8]. Therefore, the production steps are as follows:

1. Obtain semiconductor plant data. The main data source includes the architectural and structure, semiconductor equipment assembly blueprint, pipeline design and fire protection design map. Because the production process is often adjusted, equipment and position need to be verified on site.

2. Meanwhile, attribute data can be obtained from building design, equipment test and assembly reports.

3. Design semiconductor plant indoor map. Because the above data involves a lot of other content, data need to be transformed, extracted and cleaned according to fire application. The fire application data is expressed with map graphical symbols (points, lines, faces) and annotation symbols.

4. Establish spatial database for fire risk assessment. The database includes two group spatial layers, outdoor maps for recording function divisions and buildings in the industrial park, such as fabrication, hazardous chemical warehouse, pipe racks/bridges, H2 generation station, special gas station, silane station and so on. Meanwhile, indoor maps provide a detailed expression of the complex structure, different fire services and diverse equipment of each workshop for each floor.

3.2. Fire risk spatial assessment index
Fire risk (FR) is defined as the product of the probability of fire occurrence and damage to be expected on the occurrence of fire (severity).

\[FR = \sum_{i=1}^{n} P_i \times C_i \]

Where FR is the fire risk, i is different part of workshop, \(P_i \) is the probability of fire occurrence, \(C_i \) is consequences damage value, and \(n \) represents the total part number of workshop. Probability of fire can be used to forecast the probability of a fire disaster, whereas fire severity represents the degree of damage from a disaster.
Besides traditional fire risk assessment index of public buildings such as structure, fire management and social fire safety prevention, potential chemicals ignition and fabrication process for semiconductor factory are considered and added into assessment index system. Thus, in this paper, the fire risk assessment index is composed of 5 categories as follows.

Table 2. Fire risk assessment index for semiconductor plant.

C1. Potential chemicals ignition risk index	C2. Fabrication process hazard risk index
1.1 Usage amount of hazardous chemicals	**Production process**
Flammable/ Explosive gas types	Type, such as diffusion, etching
Corrosive chemicals	Workshop area
Organic solvent	Machine interval distance
Storage capacity of hazardous chemicals	
Flammable/ Explosive gas	Machine usage age
Corrosive chemicals	Machine maintenance
Organic solvent	Process temperature
Delivery of hazardous chemicals	
Pipe usage age	Process voltage
Pipe material	Process pressure
Pipe length and radius	Machine abnormal alarm
Scrubbers	Valve Manifold Box
Monitoring and protection	**Personnel operation**
Fume Exhaust Systems	Operator quality
Explosion venting protection	CCTV Monitor
Operation valve interlock	Safety guards’ checks
C3. Building structure risk index	
C4. Fire safety management	
C5. Social safety prevention	
Risk of spreading	
Internal or Exterior fire wall	Fire management
Internal or Exterior fire door	Equipment maintenance
Fire compartment area	Emergency Responses
Fire resistance rating	Fire emergency plan
Columns & Beams	Fire training and drills
Floor height	Organization management
Heating Ventilation and Air Conditioning	Inspection potential safety hazard
Combustion materials	
Machine material	Production safety monitoring
Roof material	Firefighting equipment
Floor material	Communication ability
Pipe valve material	
Door material	Fire brigade
Window material	
Link Bridges & pipe racks	Fire Fighting Command System
AMHS	Fire brigade Arrival time
Fire protection system	
Fire Detection Systems	Municipal facilities population density
Fire pump system	Road network
Sprinkler systems	Social safety control
Gaseous suppression systems	Public fire safety awareness
Evacuation passage	Guarantee cooperation

3.3. Determination of indicator weight

Considering new materials and processes are adopted for semiconductor plants, moreover, the frequency of fires is lower, it is difficult for data collection and fire risk assessment is mainly based on expert experience [9][10]. Thus, in this paper, analytic hierarchy process (AHP) with expert experience, a regional fire risk assessment model, is applied to determination weight of above 68 indicators, 14 sub-categories and 5 categories.
Firstly, the relative importance of above indicators for fire risk is determined by one to one comparisons. A pairwise comparison matrix for all indicators is designed, and we gather statistics of the comparison matrix scored from experts in semiconductor field such fire, safety, architecture, equipment and manufacture. Finally, above comparison matrix results are synthesized to calculate the relative importance, i.e., weights for each indicator and category in the hierarchy, to identify the risk level of a certain workshop. The weight of main categories is illustrated in Table 3.

Table 3. Weights of main fire risk assessment categories index.

Category	Weight
C1. Potential chemicals ignition risk index	0.4503
C2 Fabrication process hazard risk index	0.2349
C3 Building structure risk index	0.1731
C4 Fire safety management	0.0750
C5 Social safety prevention	0.0666

Generally, the priority ranking and consistency judgments are given by the eigenvector of each pairwise comparison matrix. The principal eigenvalue \((\lambda_{\text{max}})\) is 15.9062, and the consistency index \((CI)\) and consistency ratio \((CR)\) for sub-categories are calculated as follows. For \(CR\) is less than 0.1, the proposed assessment is considered as acceptable.

\[
CI = \frac{\lambda_{\text{max}} - n}{n - 1} = \frac{15.9062 - 14}{14} = 0.1466
\]

\[
CR = \frac{CI}{RI} = \frac{0.1466}{1.57} = 0.0934
\]

Where \(CI\) is consistency index, \(CR\) consistency ratio, \(n\) number of sub-categories and \(RI\) is random index.

3.4. Fire Risk Spatial Assessment

Every workshop in the plant is divided into different functional regions, and each functional region includes spatial boundary and above assessment indicators. These indicators in the list are scored by experts, and conducted spatial overlay analysis according to above indicator weights to derive serial fire risk maps for each floor. These maps include single indicator analysis, category risk analysis, and final fire risk map (Figure 2).
4. Result Analysis
According to the indicator weights, sub-categories of production process, usage amount of hazardous chemicals, storage capacity of hazardous chemicals, delivery of hazardous chemicals are mainly factors, which result high fire risk.

In the cleanroom for usage amount of hazardous chemicals, high temperature, voltage and pressure in the process with high price of machine, workshops of wet etch, chemical vapor deposition, diffusion, and Photolithography have highest risk. Meanwhile, in the first floor, the workshops of exhaust gas scrubbers, silane, H2 and ClF3 chemical supply are also high risk. Furthermore, in these workshops, as an exchange and control equipment which links different pipes, and dispenses flammable gas to machines and exhaust to scrubbers, valve manifold box has a high fire risk, and results some fire in history.

5. Conclusion
For the semiconductor factory involves a variety of drawings and information, the traditional fire risk assessment method lacks a collaborative integrated platform. In this paper, based on GIS indoor maps and spatial analysis, we propose a fire risk index system and spatial assessment method for semiconductor plant. After calibration and verification by factory and insurance experts, this method and fire risk assessment results have been applied to plant emergency response teams.

6. Acknowledgments
The Project Supported by National Natural Science Foundation of China, No.41971363, and Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources (No. KF-2018-03-032 and No. KF-2016-02-012).

References
[1] J. R. Chen, Characteristics of Fire and Explosion in Semiconductor Fabrication Processes, Process Safety Progress, 21(2002):19-25.
[2] Y. L. Wang, Y.M. Chang, M.L. You, K.Y. Chen, C.P. Lin and C.M. Shu, Fire Safety Assessment Research for High-Tech Plants, Advanced Materials Research, 328-330(2011), 920-924.
[3] C. J. Chang, “Study on fire risk quantitative evaluations and risk improvement techniques,” Doctoral Thesis, Graduate School of Mechanical Engineering, National Taiwan University, June 2006.
[4] J.M. Watts, J.R. Hall, Introduction to Fire Risk Analysis SFPE Handbook for Fire Protection Engineering (third ed.), NFPA, Quincy, MA, 2002.
[5] J.M. Watts, J.R. Hall, Introduction to Fire Risk Analysis, SFPE Handbook of Fire Protection Engineering Volume 3, Fifth Edition, Society of Protection Engineers, Boston, Massachusetts and Springer Science, New York, NY,2817-2826, 2016.
[6] Ramachandran G., Charters D., Quantitative Risk Assessment in Fire Safety, New York NY, Spoon press,2011.
[7] SEMI S14-0309 Safety Guidelines for Fire Risk Assessment and Mitigation for Semiconductor Manufacturing Equipment, https://www.osha.gov/semiconductors/standards
[8] Xiaoxia Huang, Hongga Li, Xia Li, Lin Zhang, “Fire Numerical Simulation Analysis for Large-scale Public Building in 3D GIS,”, in Conference Proceedings of IEEE International Geoscience and Remote Sensing Symposium 2019, pp.7522 -7525.
[9] Lau, C.K., Lai, K.K., Lee, Y.P., Du, J., Fire risk assessment with scoring system using the support vector machine approach, Safety Science, 78(2015)188–195.
[10] S.Z. Zhao, M.C. Weng, Y.Q. Liu, Fire risk assessment for large-scale commercial buildings based on structure entropy weight method, Safety Science, 94(2017) 26-40.