Novel red-emitting Lu$_3$Te$_2$Li$_3$O$_{12}$: Eu$^{3+}$ phosphor with high color purity for n-UV WLEDs

Mingyang Qu1,2, Xiyan Zhang*, Xiaoyun Mi1, Quansheng Liu1, Shaoqiu Xu1

1Country School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
2Research Center for Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China

Abstract. In this work, a series of red emitting Lu$_3$Te$_2$Li$_3$O$_{12}$: Eu$^{3+}$ phosphors were synthesized for the first time by high temperature solid state reaction. The structure was characterized by X-ray diffraction. The excitation spectra, emission spectra and CIE chromaticity coordinate were studied. The phosphors show strong red emission at 611 nm due to the 5D$_{0}$-7F$_{2}$ transition of Eu$^{3+}$ ions. The optimal doping concentration of Eu$^{3+}$ in LTL host is $x = 0.5$ due to the concentration quenching mechanism of dipole-dipole interaction. The CIE chromaticity coordinates of the LTL: 0.5Eu$^{3+}$+ phosphor is (0.644,0.355), and the purity of the color is up to 93.61%. The phosphor can be considered as a potential red emitting candidate for near UV WLEDs.

1 Introduction

With the continuous enhancement of people's awareness, the exploration of new technologies to meet these needs has become a research hotspot in the field of lighting. [1-4] In the past decades, white light emitting diodes (WLEDs) have been considered as the next generation of solid-state light sources due to their advantages of energy saving, environmental protection and long life. At present, the commercial way to produce white light is to combine blue light chip (InGaN) with yellow phosphor Y$_3$Al$_5$O$_{12}$: Ce$^{3+}$ (YAG: Ce$^{3+}$). Although owning many advantages, this method is limited due to the lack of red emission and low color rendering index (CRI<80), which goes against its application in the environment with the requirements for high color rendering, such as indoor, hospital and museum. Recently, the combination of near ultraviolet (n-UV) LED chips and red-, green- and blue-emitting phosphors to obtain warm white light become an effective way to solve the above problem. However, the existing commercial red phosphors, such as nitriles or sulfides, have either harsh synthesis conditions or poor chemical stability. Therefore, it is of great significance to develop novel oxide red phosphors with good chemical stability, high efficiency and convenient synthesis.

The garnet-type compound with the formula of A$_3$B$_2$C$_5$O$_{12}$ possess the characteristics of stable lattice and high thermal conductivity, which is considered as a potential host for optical materials.[5-7] Although many famous phosphors with garnet structure have been widely studied and applied, such as yellow phosphors Y$_3$Al$_5$O$_{12}$: Ce$^{3+}$, green phosphors Lu$_3$Al$_5$O$_{12}$: Ce$^{3+}$ and Ca$_3$Sc$_2$Si$_5$O$_{12}$: Ce$^{3+}$, etc., the red emitting garnet-type phosphors have been rarely reported.

In this work, a series of Lu$_3$Te$_2$Li$_3$O$_{12}$:xEu$^{3+}$ (LTL: Eu$^{3+}$) phosphors were successfully prepared using high temperature solid-state reaction in air atmosphere. The crystal structure, photoluminescence (PL) properties, CIE chromaticity coordinates and color purity of the samples have been systematically studied. The results show that, Lu$_3$Te$_2$Li$_3$O$_{12}$: xEu$^{3+}$ phosphors with high color purity have broad application prospects for UV-pumped WLEDs.

2 Experimental Section

A series of Eu$^{3+}$ ions activated Lu$_3$Te$_2$Li$_3$O$_{12}$: xEu$^{3+}$ compounds have been prepared by a traditional high temperature solid-state reaction in air. In a representative preparation process, the appropriate amount of raw materials was weighed and mixed together according to stoichiometric mole ratio as following: Lu$_2$O$_3$ (99.99%), TeO$_2$ (A.R.), Li$_2$CO$_3$ (A.R.) and Eu$_2$O$_3$ (99.99%). After full grounding in an agate mortar, the final mixed powder was transferred into the alumina crucible and preheated at 500 °C for 1 hour. And then the mixture was reground and sintered at 900 °C for 5 hours. The obtained product was naturally cooled down to room temperature, grounded into powder for further characterization. The X-ray diffraction (XRD) patterns of the sample were examined by Rigaku/Ultima IV X-ray diffractometer within 20 range from10° to 80°. The photoluminescence spectrum and photoluminescence excitation spectrum were measured by a Hitachi F-7000 fluorescence spectrophotometer equipped with a 150W Xe lamp.

* Corresponding author: zhangxiyan@cust.edu.cn

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
3 Results and Discussions

The XRD patterns of LTL: xEu³⁺ (x=0.1, 0.3, 0.4, 0.6, 0.8 and 1.0) were shown in Fig.1(a). All of the patterns are consistent with Lu₃Te₃LiO₁₂ (PDF:26-1170) in the International Centre for Diffraction Data (ICDD) database, which exhibited as garnet-type structure and correspond to the la 3d space group of the cubic system. No other diffraction peaks of raw materials or impurities are observed in the patterns. The enlarged diffraction peaks at the range of 35.6°-36.4° were presented in Fig. 1(b). In addition, with dropping Eu³⁺ in host, it is obvious that the main diffraction peak (crystal face (4 2 0)) of the sample moves to a lower angle, indicating that lattice expands due to the doping of rare earth ions in LTL host and the offset increases with the doping content, the values of (2θ) increased obviously. This is consistent with the low angle shift of the main diffraction peak in Fig.1(b).

Table 1. The fitted values of cell parameters of Lu₃Te₃LiO₁₂: xEu³⁺(x = 0.1, 0.3, 0.4, 0.6, 0.8 and 1.0).

x	a(Å)	V(Å³)	x	a(Å)	V(Å³)
0.1	12.17	1803.226	0.6	12.23	1829.274
0.3	12.19	1813.615	0.8	12.25	1839.764
0.4	12.21	1818.825	1.0	12.28	1850.294

Fig. 2(a) and (b) display the typical excitation spectrum and emission spectrum of LTL: 0.1Eu³⁺ phosphors excited at 395 nm and monitored at 611 nm. Monitored at the optimum emission wavelength of 611nm, a broad band ranging from 200 nm to 290 nm and some narrow emission lines in the ultraviolet and visible spectral areas can be observed in Fig. 2(a). The band peaking at 256 nm are assigned to the charge-transfer state transition of O₂⁻ → Eu³⁺ ligand-to-metal. A sequence of sharp excitation bands located at 320nm, 362nm, 383nm, 395nm, 417nm, 464nm, 526nm and 536nm in the wavelength region from 300 nm to 550 nm belongs to the spin-forbidden F₀ → H₆, J₀, K₀, L₀, M₀, N₀, O₀, 1D₀, 2, 1, 0 and 2F₁ → 2D₁ transition of Eu³⁺ ions [8]. It is worth noting that the excitation peak at 395 nm exhibits the secondary intensity, demonstrating that LTL: Eu³⁺ phosphor can be used for WLED devices excited by n-UV. Upon the excitation of 395 nm, the PL spectrum shows a series of emission peaks centering at 570, 594, 611, 656 and 709 nm, which are assigned to the spin-forbidden 4f→4f transition of Eu³⁺, namely 3D₀→F₅₀, 1, 2, 3, 4 energy transition. Obviously, the emission intensity peaking at 613 nm attributed to 3D₀ → 3F₂ transition is the strongest. In general, R is used to evaluate the positional symmetry of Eu³⁺ ions, which can be calculated by Formula R = I (3D₀→F₂) / I (3D₀→F₁) is based on the measured PL emission spectrum [9]. The R-value was about 4.409 in LTL: 0.1Eu³⁺ sample, which indicated that Eu³⁺ ion replaced the asymmetric site of LTL host.
The relationship between PL intensity and Eu3+ concentration in LTL: xEu3+(x=0, 0.1, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9 and 1.0) is depicted in Figure 3(a) and its inset. It can be observed that the profile of all samples doped with different ionic contents of Eu3+ are similar. As shown in the inset, under 395 nm excitation, with the increase of Eu3+ concentration, the emission intensity increases continuously, reaches the maximum value at \(x = 0.5\), and then begins to decline. The reason for the decrease of emission intensity is attributed to the effect of concentration quenching, which is caused by the non-radiative energy transfer within the nearest Eu3+ ions.

According to the theory of resonance energy transfer reported by Reisfeld’s group, energy transfer among activator ions in the following ways: the exchange interaction or electric multipolar interaction [10]. Whether or not the exchange interaction mechanism is responsible for energy transfer relies mainly on the critical distance \(R_c\) in host. Generally speaking, exchange interaction may occur with \(R_c < 5\) Å. On the contrary, if the value of \(R_c\) is larger than 5 Å, the electric multipolar interaction may be dominant. Therefore, as an important parameter, \(R_c\) can be estimated via the Blasse’s equation as follow [11]:

\[
R_c = 2(3V/4\pi N)^{1/3} \tag{1}
\]

Here \(N = 24\), which represents the maximum number of sites occupied by rare-earth ions in the unit cell and \(V = 1824.79\) Å\(^3\), which refers to the volume of the crystal cell, and \(x_c\) refers to the concentration of Eu3+ ions at which the energy transfer efficiency is approximately 0.5. Taking the above parameters into formula (1), it can be calculated that \(R_c = 6.62\) Å. The value of critical distance larger than 5 Å state clearly that the main reason of energy transfer among activated Eu3+ ions in this system depended on the electric multipolar interaction.

To determine the mechanism of concentration quenching between activator ions, Dexter proposed that the relationship between the emission intensity of the sample and the doping content of the activator is given by the equation as follow

\[
I/x = k[1 + \beta(x\theta)^{3/2} - 1] \tag{2}
\]

here, \(x\) stands for the activator concentration of Eu3+ ion after the concentration quenching, the \(I\) is integrated luminescence intensity, \(k\) and \(\beta\) are constants for each type of interaction for a given host lattice under the same excitation condition. \(\theta\) is a constant of multipolar interaction and equals 6, 8, or 10 corresponding to the nearest-neighbor ions corresponding to dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions, respectively.

As depicted in Fig. 3(b), the relation between log(I/x) on log(x) was found to be relatively linear, with the slope fitted to be -1.27. Accordingly, the value of \(\theta\) was calculated to be 3.81, and hence found to be closest to the above value of 6, indicating that the concentration quenching should be caused by dipole-dipole interaction for Eu3+ ion in the LTL host.

Fig. 4 presented the CIE chromaticity coordinates of LTL: xEu3+, commercial Y2O2S: Eu3+ phosphor and standard red light. It can be seen that, as the increasing ratio of Eu3+, the CIE coordinates are gradually migrated from (0.640, 0.360) to (0.645, 0.354), which is better than that of the commercial Y2O2S: Eu3+ red phosphor (0.622, 0.351) and very close to the National Television Standard Committee standard value (0.670, 0.330). In addition, the color purity is an important index to measure the properties of phosphors, which can be...
calculated by the expression described by Fred Schubert [12]:

\[\text{Color \ purity} = \frac{(x_s - x)^2 + (y_s - y)^2}{(x_s - x)^2 + (y_s - y)^2 + (z_s - z)^2}^{1/2} \] (3)

where \((x_s, y_s)\) represents the CIE coordinate of the samples with various \(\text{Eu}^{3+}\) concentrations, \((x, y)\) stands for the color coordinate of the white illumination and \((x_d, y_d)\) is the chromaticity coordinates of the dominant wavelength.

Table 2. The CIE chromaticity coordinates and color purity of LTL: \(\text{xEu}^{3+}\) phosphors.

\(\text{Eu}^{3+}\) concentrations (mol)	CIE chromaticity coordinates	Color purity (%)	
	\(x\)	\(y\)	
0.1	0.640	0.360	92.68
0.3	0.643	0.356	93.37
0.5	0.644	0.355	93.61
0.7	0.645	0.355	93.89
1.0	0.645	0.354	93.86

As shown in Table 2, the result of calculation reveals that the LTL: \(\text{xEu}^{3+}\) phosphors possess high color purity and excellent chromaticity coordinate characteristics. The results show that the sample has high color purity and excellent chromaticity coordinate characteristics. As shown in the illustration in Fig. 10, the strong red emission of LTL: 0.5\(\text{Eu}^{3+}\) sample is observed by the digital camera under 365 nm UV irradiation.

![Fig. 4. Typical CIE chromaticity coordinates of LTL: \(\text{xEu}^{3+}\) phosphors, \(\text{Y}_2\text{O}_2\text{S}: \text{Eu}^{3+}\) and standard red light and the inset shows the photograph of LTL: 0.5\(\text{Eu}^{3+}\).](image)

4 Conclusions

A new type of red phosphor \(\text{Lu}_5\text{Te}_2\text{Li}_3\text{O}_{12}: \text{xEu}^{3+}\) was prepared by high temperature solid state method. The results show that the phosphor can be effectively excited by near ultraviolet light and emit strong red emission. The optimal dopant concentration of \(\text{Eu}^{3+}\) is about 0.5. The critical distance of \(\text{Eu}^{3+}\) is 6.62 Å. The reason of concentration quenching mechanism in LTL was confirmed to be dipole-dipole interaction among the nearest ions. \(\text{Eu}^{3+}\)-doped LTL phosphors with outstanding CIE chromaticity coordinates and color purity are potential red phosphors for WLED.

References

1. Y. Chen, K. Wu, J. He, Z. Tang, J. Shi, Y. Xu and Z. Liu, J. Mater. Chem. C. 5 (2017) 8828-8835
2. M. Hermus, P. Phan, A. C. Duke and J. Brgoch, Chem. Mater. 29(2017) 5267-5275
3. C. Li, H. Zheng, H. Wei, S. Qiu, L. Xu, X. Wang and H. Jiao, Dalton. T. 47(2018)6860
4. Y. Xiao, W. Xiao, L. Zhang, Z. Hao, G. Pan, Y. Yang, X. Zhang and J. Zhang, J. Mater. Chem. C. 6(2018) 12159-12163
5. Z. Xia and Q. Liu, Prog Mater Sci, 84(2016)59-117.
6. Y. Wang, J. Ding and Y. Wang, J. Phy. Chem. C. 121(2017)27018-27028
7. Z. Xia and A. Meijerink, Chem. Soc. Rev. 46(2017)275-299
8. W. T. Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys. 49(1968)4450-4455
9. Y. Yang, L. Wang, P. Huang, Q. Shi, Y. Tian and C. Cui, Polyhedron. 129(2017)65-70
10. L. G. Van Uitert, J. electrochem. soc. 114(1967) 1048-1053
11. G. Blasse, Phys. Lett. A. 28(1968)444-445
12. H. Deng, Z. Gao, N. Xue, J. Jeong and R. Yu, J. Lumin. 192(2017)684-689