

Fasim-LongTarget enables fast and accurate genome-wide IncRNA/DNA binding prediction

Yujian Wen a,1, Yijin Wu a,1, Baoyan Xu a,1, Jie Lin a,*, Hao Zhu a,b,*

a Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
b Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China

1 These authors contributed equally to the work.

Abstract

Many long noncoding RNAs (lncRNAs) can bind to DNA sequences proximal and distal to abundant genes, thereby regulating gene expression by recruiting epigenomic modification enzymes to binding sites. Because an lncRNA's target genes scattering in a genome have correlated functions, epigenetic analyses should often be genome-wide on both genome and transcriptome levels. Multiple tools have been developed for predicting lncRNA/DNA binding, but fast and accurate genome-wide prediction remains a challenge. Here we report Fasim-LongTarget (a revised version of LongTarget), compare its performance with TDF and LongTarget using the experimental data of the lncRNA MEG3, NEAT1, and MALAT1, and describe a case of genome-wide prediction. Fasim-LongTarget is as accurate as LongTarget and more accurate than TDF and is 200 times faster than LongTarget, making accurate genome-wide prediction feasible. The code is available on the Github website (https://github.com/LongTarget/Fasim-LongTarget), and the online service is available on the LongTarget website (https://lncRNA.smu.edu.cn).

1. Introduction

Many long noncoding RNAs (lncRNAs) epigenetically regulate gene expression by binding to DNA sequences and recruiting epigenomic modification enzymes to binding sites. LncRNAs and these enzymes show enriched distributions at binding sites [1], indicating that a DNA binding site (DBS) may host multiple lncRNAs. Following specific base-pairing rules, a lncRNA binds to a duplex DNA sequence by forming a triplex that comprises triplex-forming oligonucleotides (TFO) in the lncRNA and a triplex-targeting site (TTS) in the DNA sequence. Thus, overlapping TTSs indicate a DBS, and overlapping TFOs indicate a DNA binding domain (DBD). At or near DBSs are lncRNAs' target genes. Abundant studies have revealed that lncRNA's target genes have correlated functions (e.g., multiple imprinted genes regulated by the lncRNA H19 control embryonic growth) [2] and that lncRNAs regulate target genes genome-wide (e.g., the lncRNA XIST regulates the inactivation of nearly all genes on the X chromosome in female mammals) [3].

The specific base-pairing rules (i.e., Hoogsteen and reverse Hoogsteen rules) [4] make triplexes, TFOs, TTSs, DBDs, and DBSs computationally predictable. Largely two kinds of methods have been developed to predict triplexes. Upon canonical Hoogsteen/reverse Hoogsteen base-pairing rules, Triplexator uses substring search to find triplexes (which are consecutive paired nucleotides with a small error rate such as <=2 consecutive mismatches) [5]. The nature of the substring search makes the triplexes very short (16–20 bp) and prone to occur, making it hard to judge whether triplexes form a DBD/DBS. To help predict DBS/DBD, TDF (Triplex Domain Finder), which runs upon Triplexator or TRIPLEXES (TRIPEXES performs substring search faster than Triplexator does), was developed. TDF statistically tests if several triplexes form a DBD/DBS [6].

LongTarget took another approach. It first translates the DNA sequence into RNA sequences upon 24 Hoogsteen/reverse Hoogsteen rulesets, then uses a variant of the Smith-Waterman algorithm to identify all local alignments in each lncRNA/translated RNA pair [7]. This local alignment can flexibly identify very long triplexes but is more time-consuming. In addition, because a lncRNA can be parallel or anti-parallel to a DNA sequence, a pair of lncRNA/DNA sequences generate 48 lncRNA/translated RNA pairs and demands 48 local alignments.
The two kinds of methods have pros and cons. By using sub-string search to identify triplexes, Tripleplexer/TRIPLEXES + TDF is fast but the triplexes are short (14–20 bp) and less overlapping; thus, TDF spends extra time on statistically testing whether triplexes likely form DBD/DBS. By using local alignment to identify triplexes, LongTarget is slow but the triplexes are long (>60 bp); thus, no statistical test is needed because long triplexes often overlap at a DBS. Although LongTarget is integrated into a platform supported by multiple genomes and an IncRNA database [8], true genome-wide prediction is infeasible due to time consumption. So far, no methods has been satisfactorily used for genome-wide IncRNA/DNA binding.

Experimental studies have gone from single genes to gene sets and further to the whole genome, and abundant IncRNAs have been identified in mammalian genomes. The two factors drive genome-wide analysis of IncRNA-mediated epigenetic regulation on the genome and transcriptome levels (e.g., the regulatory relationship between differentially expressed protein-coding genes and IncRNA genes in cancer cells). We report Fasim-LongTarget (abbr. Fasim), which is about 200 times faster than yet almost equally powerful as LongTarget. First, we introduce the revised alignment algorithm; then, we use three experimentally generated IncRNA/DNA binding datasets to evaluate the performance of TDF, Fasim, and LongTarget; finally, we describe a case of genome-wide prediction.

2. The Fasim algorithm

The Smith-Waterman algorithm has been revised in two ways. On the one hand, Waterman and Eggert extended the algorithm by outputting multiple non-intersecting local alignments [9], and Huang and Miller greatly reduced the space and time consumption of the Waterman-Eggert algorithm (the SIM program) [10]. On the other hand, Farrar used the Single-Instruction Multiple-Data (SIMD) instruction to parallelize the Smith-Waterman algorithm (Striped Smith-Waterman) [11], and Zhao et al. developed a C/C++ library for the SIMD Smith-Waterman algorithm [12]. LongTarget calls SIM to identify multiple local alignments (triplexes) between a translated DNA sequence and an IncRNA sequence [7–8]. Upon the five works, Fasim is developed. In the command line of Fasim (i.e., fasim(Ms, Ns, Gs, Qs, triplet length, DNA sequence list, IncRNA sequence)), Ms, Ns, Gs, Qs are the scores of match, mismatch, gap open, and gap extension, and triplet length is the minimal length of triplexes. DNA sequence list and IncRNA sequence specify the files of DNA and IncRNA sequences. In accordance, variables Mn, Nn, Gn, Qn are the numbers of match, mismatch, gap open, and gap extension. Fasim outputs two files; one contains the distribution of DBSs and can be uploaded to the UCSC Genome Browser as a custom track, and the other contains detailed information of TTSs, TFOs, DBSs, and DBDs.

First, given a translated DNA sequence and an IncRNA sequence, Fasim uses SIMD to compute the scoring matrix and identifies and outputs the best alignment using the standard Smith-Waterman algorithm. Second, Fasim uses the scoring matrix to identify and output the remaining local alignments whose number is determined by the parameter Threshold. For example, if the IncRNA sequence = CGATGTTGGACCT, and the translated DNA sequence = ACCG-GATGAATTGGACTG, and the Threshold = 0.8 (i.e., 80% of the best alignment’ score), then Threshold would be 0.8 which determines the number of the remaining local alignments. Our revised scoring matrix adds three rows: max, tmscore, and finalscore, which store the maximal score of each column, the maximal scores that are >Threshold, and the maximal scores that are local maximum (Fig. 1A). Third, upon the ordered values of finalscore, Fasim first identifies the ending position of a local alignment, then uses the following computation to determine the starting position of the local alignment. For an ending position Pi, the starting position is at Pi-(Mn + Nn + Gn + Qn). Because the identity = \(\frac{Mn}{Mn + Nn + Gn + Qn} \), and score = \(Mn + Nn - Gs + (Gn + Qn) - Qn \), in this example if Gn ≤ 3, Ms = 5, Ns = 4, Gs = 8, Qs = 4, then \(Mn + Nn + Gs + Qn = \frac{\text{finalscore} - (Nn - Gs - Qn - Gs)}{Ns - Gn - Gn - Qn} \). Finally, by examining all values in the finalscore row, Fasim identifies and reports all non-intersecting local alignments without revising the scoring matrix. Two key revisions make Fasim faster than SIM. (a) Fasim computes the large scoring matrix for a pair of sequences using the SIMD instructions only once. (b) Fasim finds multiple local alignments by revising the scoring matrix; by using extra rows to store critical information, Fasim finds multiple local alignments without revising the large scoring matrix. These revisions make Fasim report fewer alignments than SIM. For example, if a short alignment with a higher score lies within a large alignment with a lower score, SIM reports both, but Fasim reports only the short one. The reduction of time consumption depends on sequence length. If the IncRNA and translated RNA are long, identifying the starting positions of local alignments by testing multiple short alignments (i.e., potential triplexes) is much faster than identifying the starting and ending positions of local alignments by revising and checking the whole scoring matrix.

3. Performance evaluation

We used the experimentally detected DNA binding regions (called peaks) of three IncRNAs to evaluate TDF, LongTarget, and Fasim. MEG3 (ENST00000451743), NEAT1 (ENST00000534112), and MALAT1 (ENST00000534336) have 532, 3692, and 670 peaks in three cell lines, ranging from 500 to 1500 bp, 500–1500 bp, and about 10 Kb, respectively [13–14]. We used these peaks as the target DNA sequences and used their 532’2, 3692’2, and 670’2 neighboring sequences (1000 bp for MEG3 and NEAT1, 15000 bp for MALAT1) as the negative controls.

We let TDF call TRIPLEXES to predict triplexes, with the parameters triplet length >= 14 for MEG3 but >= 16 for NEAT1 and MALAT1 (as the original authors did), maximum of mismatch <= 3, consecutive errors <= 2, and repeat time = 100. We ran LongTarget and Fasim with the default parameters (triplex length >= 60 and identity >= 0.6). Fasim and TDF predicted similar numbers of TTSs per DBS. Fasim reported fewer TTSs per DBS (and per peak) than LongTarget, due to not revising the scoring matrix; however, the length and number of DBD/DBS predicted by Fasim are only slightly shorter and fewer than the length and number of DBD/DBS predicted by LongTarget. These indicate that Fasim and LongTarget can equally well predict long triplexes, DBDs, and DBSs. Although TDF predicts DBSs/DBDs upon statistically testing TTSs/TFOs, the length of DBSs/DBDs predicted by TDF is significantly shorter than the length of DBSs/DBDs predicted by LongTarget and by Fasim [Supplementary Fig. 1]

Next, we examined the time consumption of the three methods. Fasim is about 200–300 times faster than LongTarget and even much faster than TDF upon these datasets (Fig. 1B). Finally, we used the Precision-Recall curves (PRC) and Receiver Operating Characteristic (ROC) curves to evaluate the power of the three methods. To this end, we defined several quantitative measures. TTSscore is the score of triplexes reported by TRIPLEXES and scores of local alignments reported by LongTarget and Fasim, DBSscore is computed as \(\sum (\text{TTSscore}, \text{TTSscore}, \ldots, \text{TTSscore}) \), where these
TTSs overlap within the DBS. NPeakscore is the normalized scores of peaks, computed as \(\sum (DBS_{1}\cdot score + DBS_{2}\cdot score + \ldots + DBS_{k}\cdot score) / (peak\ length)\). TTSscore, DBSscore, and NPeakscore quantify the strength of each TTS, DBS, and peak (a peak may contain multiple DBSSs). Upon these quantitative measures and PRC and ROC curves, Fasim slightly underperforms LongTarget and clearly outperforms TDF (Fig. 1C; Supplementary Fig. 1) (because the peaks' neighboring regions were used as the negative controls, the PRC and ROC curves of MEG3 are somewhat different from those where random regions were used as the negative controls) [6].

4. Application

Early studies revealed that H19 and Airn regulate the imprinted expression of IGF2 and IGF2R to control the embryonic growth of mammals. Later studies revealed that H19 is the master regulator of genomic imprinting by regulating many genes. Thus, predicting H19's DBSSs genome-wide is an interesting application. Fasim took 817 h (times of all cores, using a Xeon(R) E7-4830 v3, 2.10 GHz) to predict H19's DBSSs in the human genome hg38 (22 autosomal and 2 sex chromosomes). Thus, by using modern multi-core CPUs, analyzing lncRNA-mediated epigenetic regulation genome-wide is feasible (e.g., predicting target genes of H19 and Airn in human and mouse genomes and analyzing species-specificity of genomic imprinting).

Using chromosome 21 and chromosomal 22 (which has more 'N' than chromosome 21), we further compared Fasim, TDF, and LongTarget (with parameters mentioned above). Fasim took 11.38/11.16 h, and TDF took 17.90/20.46 h to predict DBSSs on chromosome 21/22, respectively (LongTarget would take 34 days to finish chromosome 21). Upon H19 and chromosome 21/22, Fasim identified DBD1 (the top-ranked DBD) at 2387–2451 bp (the mean length of DBSSs is 82/86 bp), LongTarget identified DBD1 at 2386–2451 bp (upon the finished part), but TDF had no DBD passed the statistical test. By manual checking, TDF identified the best DBD at 2368–2450 bp, but the mean length of DBSSs is 20 bp (TTSs were not integrated into DBSSs). Of note, we previously used LongTarget to analyze H19 and genomic imprinting in mammals. The predicted DBSSs in annotated imprinted genes agree with experimental reports, and the predicted DBD1 was at 2366–2465 bp [15]. That LongTarget and Fasim predicted the same DBD1 upon imprinted genes and chromosome 21/22, respectively, suggests the reliability of the prediction.

5. Brief remarks

Triplexes identified by the two kinds of methods are quite different. Those identified by substring search are shorter and have a higher identity than those identified by local alignment. Which kind of triplexes is biologically more reasonable may await more experimental investigations. Although a higher identity may indicate higher stability, identity alone may not critically determine lncRNA/DNA binding [7]. Triplexes with high identity are inevitably short, and it can be time-consuming to statistically test whether a set of short triplexes, which are less prone to overlap, form a DBS. On the other hand, triplexes identified by local alignment are often long because mismatches are more tolerable, and these triplexes are prone to overlap at DBSSs. Long TTSs and DBSSs are unlikely to be obtained by chance and are strong signs of true DNA binding sites. Although Fasim reports fewer triplexes than
LongTarget, the number and length of DBSs predicted by LongTarget and Fasim are similar, ensuring that Fasim has comparable power with LongTarget.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Department of Science and Technology of Guangdong Province (2020A1515010803) and the National Natural Science Foundation of China (31771456).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.csbj.2022.06.017.

References

[1] Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 2010;38:662–74.
[2] Alipoor B, Parvar SN, Sabati Z, Ghaedi H, Ghasemi H. An updated review of the H19 IncRNA in human cancer: molecular mechanism and diagnostic and therapeutic importance. Mol Biol Rep 2020;47:6357–74.
[3] Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 2002;36:233–78.
[4] Abu Almakarem AS, Petrov AI, Stombaugh J, Zirbel CL, Leontis NB. Comprehensive survey and geometric classification of base triples in RNA structures. Nucl Acids Res 2012;40:1407–23.
[5] Buske FA, Bauer DC, Mattick JS, Bailey TL. Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 2012;22:1372–81.
[6] Kuo CC, Hanzelmann S, Senturk Cetin N, Frank S, Zajzon B, Derks JP, et al. Detection of RNA-DNA binding sites in long noncoding RNAs. Nucl Acids Res 2019;47:e32.
[7] He S, Zhang H, Liu H, Zhu H. LongTarget: a tool to predict IncRNA DNA-binding motifs and binding sites via Hoogsteen base-pairing analysis. Bioinformatics 2015;31:178–86.
[8] Lin J, Wen Y, He S, Yang X, Zhang H, Zhu H. Pipelines for cross-species and genome-wide prediction of long noncoding RNA binding. Nat Protoc 2019;14:795–818.
[9] Waterman MS, Eggert M. A new algorithm for best subsequence alignments with application to tRNA-tRNA comparisons. J Mol Biol 1987;197:723–8.
[10] Huang X-Q, Miller W. A time-efficient linear-space local similarity algorithm. Adv Appl Math 1991;12:337–57.
[11] Farrar M. Striped Smith-Waterman speeds database searches six times over other SIMD implementations. Bioinformatics 2007;23:156–61.
[12] Zhao M, Lee WP, Garrison EP, Marth GT. SSW library: an SIMD Smith-Waterman C/C++ library for use in genomic applications. PLoS ONE 2013;8:e82138.
[13] Mondal T, Subhash S, Vaid R, Enroth S, Uday S, Reinius B, et al. MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat Commun 2015;6:7743.
[14] West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 2014;55:791–802.
[15] Liu H, Shang X, Zhu H. LncRNA/DNA binding analysis reveals losses and gains and lineage specificity of genomic imprinting in mammals. Bioinformatics 2017;33:1431–6.