A remark on the minimal dilation of the semigroup generated by a normal UCP-map

Yusuke Sawada

Abstract

There are known three ways to construct the minimal dilation of the discrete semigroup generated by a normal unital completely positive (UCP-) map on a von Neumann algebra, which are given by Arveson, Bhat-Skeide and Muhly-Solel. In this paper, we clarify the relation of the constructions by Bhat-Skeide and Muhly-Solel, and show that they are essentially the same.

1 Introduction

A dynamical transformation in a quantum physical system is described by a completely positive (CP-) map on an operator algebra in a broad sense. We consider a von Neumann algebra M acting on a Hilbert space H and a normal unital completely positive (UCP-) map T on M. Stinespring’s dilation theorem ensures the existence of a normal representation (π, \mathcal{K}) of M and an isometry v on \mathcal{K} such that $T(x) = v^* \pi(x)v$ for all $x \in M$. When we consider a time evolution, the n-times transformation T^n is important, but it is difficult to deal with representations $\{\pi_n\}_{n=1}^{\infty}$ associated with $\{T^n\}_{n=1}^{\infty}$.

Now we consider the minimal dilation of the semigroup $\{T^n\}$ that is a large von Neumann algebra $N \supset M$ and a $*$-endomorphism α on N such that T^n is represented by α^n for each $n \in \mathbb{N}$, and it is desirable that (N, α) is minimal. To be accurate, the notion of minimal dilations is introduced in [5] as the following.

Definition 1.1. Let M be a von Neumann algebra and T be a normal UCP-map on M. A triplet (N, α, p) of a von Neumann algebra $N \supset M$, a $*$-endomorphism α on N and a projection $p \in N$ is called a dilation of T if
$M = pNp$ and $T^n(x) = p\alpha^n(x)p$ for all $x \in M$ and $n \in \mathbb{Z}_{\geq 0}$. Moreover, a dilation (N, α, p) of T is called minimal if N is generated by $\bigcup_{n=0}^{\infty} \alpha^n(M)$ and the central projection $c(p)$ of p coincides 1_N.

Dilations for a C^*-algebra A and those for a continuous semigroup $\{T_t\}_{t \geq 0}$ consisting of CP-maps on A are also defined in a similar way. It is known that a minimal dilation is unique if it exists. Then the question of the existence of the minimal dilation arises. Bhat[8] proved the existence of the minimal dilation in the case when $A = \mathcal{B}(\mathcal{H})$ which consists of all bounded operators on a Hilbert space \mathcal{H}, and each T_t is unital. In [9], he generalized a way of the construction in stages and constructed a minimal dilation on a C^*-algebra A under the assumption that A is unital and $\|T_t(1_A)\| \leq 1$ holds for all $t \geq 0$. These are called the minimal dilation theory for C^*-algebras.

After that, Bhat-Skeide[10] constructed the minimal dilation on a von Neumann algebra $N \supset A$ in the case when A is a von Neumann algebra and a semigroup $\{T_t\}_{t \geq 0}$ of normal CP-maps on A has a continuity with respect to $t \geq 0$, by using inductive limits of the tensor products of Hilbert bimodules. On the other hand, Arveson[1],[2] introduced the product systems and gave a one-to-one correspondence between product systems and semigroups $\{\alpha_t\}_{t \geq 0}$ of \ast-endomorphisms called the E_0-semigroups. Consequently, he classified product systems. But after that, it is understood that Arveson’s theory contains the dilation theory substantially, and his idea affected the constructions of dilations. Muhly-Solel[13] proved the result in [10] for normal UCP-maps $\{T_t\}_{t \geq 0}$ by the similar way as [10]. But the constructions are different in its appearance and no direct relation was known.

In this paper, we overview the constructions in [10] and [13], of the minimal dilation in the sense of Definition 1.1 in the case when given semigroup is a discrete semigroup $\{T^n\}_{n=0}^{\infty}$ generated by a normal UCP-map. We shall make their direct relationship clear and reveal that these constructions are essentially the same. The dilation of a discrete semigroup is applicable to the theory of non-commutative Poisson boundaries in [12].

In what follows, we assume that all Hilbert spaces are separable, and $\mathcal{B}(\mathcal{H}, \mathcal{K})$ means the set of all bounded operators from \mathcal{H} to \mathcal{K}. If $\mathcal{K} = \mathcal{H}$, we denote $\mathcal{B}(\mathcal{H}, \mathcal{K})$ by $\mathcal{B}(\mathcal{H})$. For a set X, the identity map on X is denoted by id_X and $F^0 = \text{id}_X$ for every map $F : X \to X$. The unit of a unital algebra A is denoted by 1_A.

The author is deeply grateful to Prof. Shigeru Yamagami for insightful
2 Preliminaries

We recall the notion of W^*-modules and the related notation about them.

Definition 2.1. (1) For von Neumann algebras N and M, a Hilbert space \mathcal{H} with normal \ast-representations of N and the opposite von Neumann algebra M° of M is a W^*-N-M-bimodule if their representations commute. When $N = \mathbb{C}$ or $M = \mathbb{C}$, we call \mathcal{H} a right W^*-M-module or a left W^*-N-module, respectively. We write a W^*-N-M-bimodule, a right W^*-M-module and a left W^*-N-module by $N\mathcal{H}M$, $\mathcal{H}M$ and $N\mathcal{H}$, respectively.

(2) Let N be a von Neumann algebra, X_N and Y_N be right W^*-N-modules, and NZ and NW be left W^*-N-modules. $\text{Hom}(X_N, Y_N)$ and $\text{Hom}(NZ, NW)$ are the sets of all right and left N-linear bounded maps, respectively. If $X = Y$ and $Z = W$, they are denoted by $\text{End}(X_N)$ and $\text{End}(NZ)$, respectively.

(3) We denote the standard representation space of a von Neumann algebra M in [11] by $L^2(M)$.

We recall Hilbert modules which are tools to construct the minimal dilation in the ways by Bhat-Skeide and Muhly-Solel. It is a module over a von Neumann algebra M with an M-valued inner product.

Definition 2.2. Let M be a von Neumann algebra and E be a right M-module. If a map $(\cdot, \cdot) : E \times E \to M$ is defined and satisfies the following properties, then E is called a Hilbert M-module.

1. $(x, \alpha y + \beta z) = \alpha(x, y) + \beta(x, z)$ ($x, y, z \in E$, $\alpha, \beta \in \mathbb{C}$).
2. $(x, ya) = (x, y)a$ ($x, y \in E$, $a \in M$).
3. $(x, y)^\ast = (y, x)$ ($x, y \in E$).
4. $(x, x) \geq 0$ ($x \in E$).
5. For every $x \in E$, $x = 0$ if and only if $(x, x) = 0$.

comments and suggestions.
(6) E is complete with respect to the norm defined by $\|x\| = \|(x, x)\|^\frac{1}{2}$.

Suppose E and F are Hilbert M-modules. For a right module homomorphism $b : E \to F$, a right module homomorphism $b^* : F \to E$ is called the adjoint of b when $(y, bx) = (b^* y, x)$ holds for every $x \in E$ and $a \in M$. We denote the set of all right module homomorphism with the adjoint by $\mathcal{B}^a(E, F)$. Automatically, $b \in \mathcal{B}^a(E, F)$ is bounded and $\mathcal{B}^a(E, E)$ is a C*-algebra.

If a surjection $u \in \mathcal{B}^a(E, F)$ satisfies that $(ux, uy) = (x, y)$ for every $x, y \in E$, it is called an isomorphism. Then E and F are said to be isomorphic and we write $E \cong F$.

Definition 2.3. Let M and N be von Neumann algebras and E be a Hilbert N-module. We call E a Hilbert M-N-bimodule when it is an M-N-bimodule satisfying

$$(x, ay) = (a^* x, y)$$

for every $x, y \in E$ and $a \in M$.

Definition 2.4. Let M, N and P be von Neumann algebras, E be a Hilbert N-M-bimodule and F be a Hilbert M-P-bimodule. Left and right actions of $a \in M$ and $c \in P$ on the algebraic tensor product $E \otimes_{\text{alg}} F$ are defined by $a(x \otimes y)c = (ax) \otimes (yc)$ for each $x \in E$ and $y \in F$. We define that

$$(x \otimes y, x' \otimes y') = (y, (x, x')y')$$

for each $x, x' \in E$ and $y, y' \in F$, and put $\mathcal{N} = \{z \in E \otimes_{\text{alg}} F \mid (z, z) = 0\}$. The tensor product $E \otimes_M F$ of E and F is defined by the completion of $(E \otimes_{\text{alg}} F)/\mathcal{N}$ with respect to the norm induced from the above inner product. The left and right actions can be extended on $E \otimes_M F$, thus $E \otimes_M F$ becomes as Hilbert N-P-bimodules.

The tensor product is associative, and for a Hilbert M-M-bimodule E, we can identify that $\mathcal{B}^a(E) \subset \mathcal{B}^a(E) \otimes_M 1_E \subset \mathcal{B}^a(E \otimes_M E)$.

We introduce the GNS-construction with respect to a normal UCP-map, see [16] for example.

Definition 2.5. Suppose M is a von Neumann algebra and $T : M \to M$ is a normal UCP-map. We define a Hilbert M-M-bimodule $E(M, T)$ by the
completion of \((M \otimes_{\text{alg}} M)/\mathcal{N}\) with respect to a norm induced from an inner product
\[
(a \otimes b, a' \otimes b')_T = b^* T(a^* a') b' \quad (a, a', b, b' \in M),
\]
where \(\mathcal{N} = \{z \in M \otimes_{\text{alg}} M \mid (z, z)_T = 0\}\). If we put \(\xi = 1_M \otimes 1_M + \mathcal{N}\), then span\((M\xi M)\) is dense in \(E(M, T)\) and \(T(a) = (\xi, a\xi)\) holds for all \(a \in M\).

We call the couple \((E(M, T), \xi)\) the GNS-representation with respect to \(T\).

There is an important identification in Bhat-Skeide’s construction as the following.

Definition 2.6. Let \(M\) be a von Neumann algebra acting on a Hilbert space \(H\) and \(E\) be a Hilbert \(M\)-module. Then \(H\) and \(E\) are a Hilbert \(M\)-\(C\)-bimodule and a Hilbert \(C\)-\(M\)-bimodule, respectively, and hence we can define the tensor product \(E \otimes M H\) as Hilbert bimodules. For \(\xi \in E\), we define \(L_\xi: H \ni h \mapsto \xi \otimes h \in E \otimes_M H\). Then we can identify \(E\) as a right \(M\)-submodule of \(B(H, E \otimes_M H)\) by \(B_a(E) \subset B(H, E \otimes_M H)\) is a von Neumann subalgebra; see [16].

A tensor product defined as follows is used in Muhly-Solele’s construction.

Definition 2.7. Let \(M\) be a von Neumann algebra acting on a Hilbert space \(H\) and \(T\) be a normal UCP-map on \(M\). We define a sesquilinear form on the algebraic tensor product \(M \otimes_{\text{alg}} H\) by
\[
(x \otimes \xi, y \otimes \eta) = (\xi, T(x^* y) \eta) \quad (x, y \in M, \ \xi, \eta \in H).
\]
We define the Hilbert space \(M \otimes_T H = (M \otimes_{\text{alg}} H)/\mathcal{N}\), where \(\mathcal{N} = \{z \in M \otimes_{\text{alg}} H \mid (z, z) = 0\}\).

A representation \(\pi_T\) of \(M\) on \(M \otimes_T H\) is defined by
\[
\pi_T(y)(x \otimes \xi) = yx \otimes \xi \quad (x \in M, \ \xi \in H).
\]
3 Some isomorphisms between W^*-bimodules

In this section, some new results on isomorphisms between W^*-bimodules are stated as Proposition 3.3–Corollary 3.6. In Subsection 4.4, they will be used to see a relation between two constructions of the minimal dilation, which are given by Bhat-Skeide and Muhly-Solel.

First, we introduce notations with respect to W^*-modules and the relative tensor products in [15], and recall the facts about them (cf. [17] and [6]).

Fact 3.1. (1) Let M be a von Neumann algebra and \mathcal{H}_M be a W^*-M-module. For each positive normal functional ϕ on M, let $(\pi_\phi, \mathcal{H}_\phi, \xi_\phi)$ be the GNS-representation of M with respect to ϕ. We denote $\pi_\phi(x)\xi_\phi$ for each $x \in M$. Since \mathcal{H} is decomposable into cyclic representations, there exists a family of vectors $\{\xi_i\}_{i \in I}$ in \mathcal{H} such that $\mathcal{H} = \bigoplus_{i \in I} \mathcal{H}_{\omega_i}$ where $\omega_i(x) = (\xi_i, x\xi_i)$. Moreover, if we denote the support of ω_i by q_i, we have

$$\mathcal{H} \cong \bigoplus_{i \in I} (L^2(M)q_i) \cong \bigoplus_{i \in I} L^2(M)q_i$$

as W^*-M-module where q is the diagonal matrix whose diagonal entries are $\{q_i\}_{i \in I}$.

(2) For a W^*-M-N-bimodule $\mathcal{M}\mathcal{H}_N$, we denote the dual Hilbert space of \mathcal{H} by \mathcal{H}^*. For every $\xi^* \in \mathcal{H}^*$, the right action of $x \in M$ and the left action of $y \in N$ to ξ^* are defined by

$$y\xi^*x = (x^*\xi^*y^*)^* \in \mathcal{H}^*.$$

Then \mathcal{H}^* becomes an N-M-bimodule.

(3) For each right W^*-M-module \mathcal{H}_M and left W^*-M module $\mathcal{M}\mathcal{K}$, we denote the relative tensor product of \mathcal{H} and \mathcal{K} with respect to M by $\mathcal{H} \otimes^M \mathcal{K}$. The relative tensor product is associative. For a faithful semi-finite normal weight ϕ, the subspace of sums of the form $\xi\phi^{-\frac{1}{2}}\eta$’s is dense in $\mathcal{H} \otimes^M \mathcal{K}$. The relative tensor products have the following property.

$$\mathcal{H} \otimes^M L^2(M) \cong \mathcal{H}, \ L^2(M) \otimes^M \mathcal{K} \cong \mathcal{K},$$

$$\mathcal{K} \otimes^{(M)^*} \mathcal{K}^* \cong L^2(M), \ K^* \otimes^M \mathcal{K} \cong L^2(M')$$

where these isomorphisms mean as W^*-modules.
We fix a von Neumann algebra M. Let X_M be a Hilbert M-module and H_M be a right W^*-M-module. We can define the right W^*-M-module $H(X)_M$ and the Hilbert M-module $X(H)_M$ as the following.

$$H(X)_M = (X \otimes_M L^2(M))_M;$$

$$(x \otimes \xi, y \otimes \eta)_{H(X)} = (\xi, (x, y)\eta) \quad (x \otimes \xi, y \otimes \eta \in H(X)),$$

$$X(H) = \text{Hom}(L^2(M)_M, H_M)_M,$$

$$(x, y)_{X(H)} = x^*y \in \text{End}(L^2(M)_M = M \quad (x, y \in X(H)).$$

This gives a one-to-one correspondence between Hilbert M-modules and right W^*-M-modules.

From now on, we fix a von Neumann algebra M acting on a Hilbert space \mathcal{H} and a normal UCP-map T on M. We see relations between the relative tensor product \otimes^M and the tensor product \otimes_T defined in Section 1.

Definition 3.2. Since M acts on the standard space $L^2(M)$ of M, we can define a left W^*-M-module $\mathcal{H}(M, T) = M \otimes_T L^2(M)$ (Definition [2.7]). We define a right action of M on $\mathcal{H}(M, T)$ by $(x \otimes \xi)y = x \otimes \xi y$ for each $x, y \in M$ and $\xi \in L^2(M)$. Then $\mathcal{H}(M, T)$ is a W^*-M-M-bimodule.

Proposition 3.3. An isomorphism $\mathcal{H}(M, T) \otimes^M \mathcal{H}(M, T) \cong M \otimes_T (M \otimes_T L^2(M))$ holds as W^*-bimodules.

Proof. Let ϕ be a faithful semi-finite normal weight on M. We define a correspondence from an each vector

$$((x \otimes_T y) \phi^{\frac{1}{2}})(z \otimes_T \phi^{\frac{1}{2}}w) \in (M \otimes_T L^2(M)) \otimes^\phi (M \otimes_T L^2(M)) \cong (M \otimes_T L^2(M)) \otimes^M (M \otimes_T L^2(M)) = \mathcal{H}(M, T) \otimes^M \mathcal{H}(M, T);$$

and to the vector

$$x \otimes_T ((yz) \otimes_T (\phi^{\frac{1}{2}} \phi^{-\frac{1}{2}} \phi^{\frac{1}{2}} w)) = x \otimes_T ((yz) \otimes_T (\phi^{\frac{1}{2}} w)) \in M \otimes_T (M \otimes_T L^2(M)).$$

Then this correspondence gives a W^*-bimodule isomorphism. \qed

Proposition 3.4. An isomorphism $\mathcal{H}(M, T) \otimes^M \mathcal{H} \cong M \otimes_T \mathcal{H}$ holds as W^*-bimodules.
Proof. Let ϕ be a faithful semi-finite normal weight on M. By Fact 3.1 (1) with respect to the decomposition of \mathcal{H}, each vector $\xi \in \mathcal{H}$ can be represented as $\bigoplus_{i \in I} \xi_i$ for some $\xi_i \in p_i L^2(M)$ and the projection p_i. We define a correspondence which maps
\[
(x \otimes_T y) \phi^{-\frac{1}{2}} \bigoplus_{i \in I} \xi_i \in (M \otimes_T L^2(M)) \otimes^M \mathcal{H}
\]
to $x \otimes_T \left(\bigoplus_{i \in I} \xi_i \right) \in M \otimes_T \mathcal{H}$. This correspondence is a unitary.

Now, we have
\[
\mathcal{H}(M, T) \otimes^M \mathcal{H}(M, T) \otimes^M \mathcal{H}(M, T) = (M \otimes_T L^2(M)) \otimes^M (M \otimes_T L^2(M)) \otimes^M (M \otimes_T L^2(M))
\]
\[
\cong (M \otimes_T L^2(M)) \otimes^M (M \otimes_T (M \otimes_T L^2(M)))
\]
\[
\cong (M \otimes_T (M \otimes_T (M \otimes_T L^2(M))))
\]

Indeed the first isomorphism is implied from Proposition 3.3 and the third isomorphism is given by a unitary defined by
\[
(x_1 \otimes_T x_2 \phi^{\frac{1}{2}}) \phi^{-\frac{1}{2}} (x_3 \otimes_T (x_4 \otimes_T \phi^{\frac{1}{2}} x_5)) \mapsto x_1 \otimes_T ((x_2 x_3) \otimes_T (x_4 \otimes_T \phi^{\frac{1}{2}} x_5))
\]
for each $x_1, x_2, x_3, x_4, x_5 \in M$ similarly to the proof of Proposition 3.4. In the same way, we have
\[
\underbrace{\mathcal{H}(M, T) \otimes^M \cdots \otimes^M \mathcal{H}(M, T)}_{n \text{ times}} \cong \underbrace{M \otimes_T (M \otimes_T L^2(M)) \cdots}_{n \text{ times}}.
\]

We define a W^*-M-M-bimodule
\[
_M \mathcal{H}_n(M, T)_M = \underbrace{M \otimes^M \cdots \otimes^M \mathcal{H}(M, T)}_{n \text{ times}}
\]
and a $W^*-M'-M'$-bimodule
\[
(M')^\phi \mathcal{H}'_n(M, T)(M')^\phi = (M')^\phi \underbrace{\mathcal{H}^* \otimes^M \mathcal{H}_n(M, T) \otimes^M \mathcal{H}(M')^\phi}_{\text{for each } n \in \mathbb{N}}.
\]
Proposition 3.5. We have an isomorphism
\[\mathcal{H}'_n(M, T) \cong \mathcal{H}'_1(M, T) \otimes (M')^n \mathcal{H}'_1(M, T) \]
as \(W^*\)-bimodules for all \(n \in \mathbb{N}\).

Proof. By Fact 3.1 (3), we have isomorphisms
\[
\mathcal{H}'_1(M, T) \otimes (M')^n \mathcal{H}'_1(M, T)_{M'} \\
= \mathcal{H}^* \otimes M \mathcal{H}(M, T) \otimes M (M')^n \mathcal{H}^* \otimes M \mathcal{H}(M, T) \otimes M \mathcal{H} \\
\cong \mathcal{H}^* \otimes M \mathcal{H}(M, T) \otimes M L^2(M) \otimes M \mathcal{H}(M, T) \otimes M \mathcal{H} \\
\cong \mathcal{H}^* \otimes M \mathcal{H}(M, T) \otimes M \mathcal{H}(M, T) \otimes M \mathcal{H} \\
= \mathcal{H}'_2(M, T)
\]
as \(W^*\)-\((M')^n\)-\((M')^n\)-bimodules. \(\square\)

Corollary 3.6. We have an isomorphism
\[\mathcal{H}_n(M, T) \otimes M \mathcal{H} \cong M \otimes_T (M \otimes_T \cdots (M \otimes_T (M \otimes_T \mathcal{H})) \cdots) \]
as \(W^*\)-bimodules for all \(n \in \mathbb{N}\).

A map defined by
\[
\text{Hom}_{(M, M)}(M \otimes_T L^2(M)) \otimes M \mathcal{H} \\
\ni X \mapsto X' \in \text{Hom}_{(M', M')}(M' \otimes M \mathcal{H}, M' \otimes M \mathcal{H}) \\
X' : \mathcal{H}^* \otimes M \mathcal{H} \ni \eta \gamma \xi \mapsto \eta \gamma \xi X' \in \mathcal{H}^* \otimes M \mathcal{H}
\]
induces isomorphisms
\[
\text{Hom}_{(M', M)}(M \otimes_T L^2(M)) \otimes M \mathcal{H} \\
\cong \text{Hom}_{(M', M)}(M' \otimes M \mathcal{H}, M' \otimes M \mathcal{H}) \\
\cong \text{Hom}_{(M', M)}(L^2(M'), M' \otimes M \mathcal{H}) \quad (\because \text{Fact 3.1 (3)})
\]
Then \(\text{Hom}_{(M', M)}(L^2(M'), M' \otimes M \mathcal{H})\) corresponds to \(\mathcal{H}^* \otimes M \mathcal{H} = \mathcal{H}'_1(M, T)\) by Fact 3.1 (4).
4 Two constructions of the minimal dilation

In this section, we describe two constructions of the minimal dilation by Bhat-Skeide\cite{10} and Muhly-Solel\cite{13}, and see a relation between these constructions. We fix a von Neumann algebra M acting on a Hilbert space \mathcal{H} and a normal UCP-map T on M.

4.1 Bhat-Skeide’s construction

Let $(E(M, T), \xi)$ be the GNS-representation with respect to T. We put

$E_n = E(M, T) \otimes_M \cdots \otimes_M E(M, T),$

$\xi_n = \xi \otimes \cdots \otimes \xi$

n times

Then (E_n, ξ_n) is the GNS-representation with respect to T^n for each $n \in \mathbb{N}$ by the uniqueness of the GNS-representation. Let E be an the inductive limit of the inductive system $(\{E_n\}_{n=0}^{\infty}, \{\xi_{n-m} \otimes \text{id}_{E_n}\}_{n, m=0}^{\infty})$. We define $\mathcal{K}_n = E_n \otimes_M \mathcal{H}$ for each $n \in \mathbb{N}$ and $\mathcal{K} = E \otimes_M \mathcal{H}$. By the identification in Definition 2.6 and \cite{16}, each $E^n \subset \mathcal{B}(\mathcal{H}, \mathcal{K}_n)$ is a von Neumann M-M-bimodule and $E^n \subset \mathcal{B}(\mathcal{H}, \mathcal{K})$ is so, where $\overline{-}$ means the strong closure.

We define an endomorphism θ on $\mathcal{B}^a(\overline{E^n})$ by

$\theta(b) = b \otimes \text{id}_{\overline{E^n}} \in \mathcal{B}^a(\overline{E^n} \otimes \overline{E^n}) \cong \mathcal{B}^a(\overline{E^n})$ \quad ($b \in \mathcal{B}^a(\overline{E^n})$).

For each $a \in M$, we define $j_0(a) \in \mathcal{B}^a(\overline{E^n})$ by

$j_0(a)(\eta) = \xi a(\xi, \eta)$ \quad ($\eta \in E$)

and $j_n = \theta^n \circ j_0 \in \mathcal{B}^a(\overline{E^n})$ for each $n \in \mathbb{N}$. Then we have

$j_m(1_M)j_n(a)j_m(1_M) = j_m(T^{n-m}(a))$

for all $n \geq m$ and $a \in M$. We can identify that $M = j_0(M)$. Let N be a von Neumann algebra generated by $j_{\mathbb{Z}_{\geq 0}}(M)$, p be $j_0(1_M)$ and α be a restriction of θ to N. Then the conditions in Definition 1.1 are satisfied.
4.2 Muhly-Solel’s construction

Put \(E(0) = M' \). For each \(n \in \mathbb{N} \), we define \(\mathcal{H}_n = (M \otimes_T (\cdots \otimes_T (M \otimes_T \mathcal{H}) \cdots)) \)
and \(E(n) = \text{Hom}(M \mathcal{H}, M \mathcal{H}_n) \). Each \(E(n) \) admits an \(M' \)-valued inner product defined by
\[
(X, Y) = X^*Y \in M' \quad (X, Y \in E(n)),
\]
and we can define left and right actions of \(M' \) on \(E(n) \) by
\[
(xX)\xi = (1_M \otimes \cdots \otimes 1_M \otimes x)X\xi \quad (x \in M', X \in E(n), \xi \in \mathcal{H}),
\]
\[
(Xx)\xi = X(x\xi) \quad (x \in M', X \in E(n), \xi \in \mathcal{H}).
\]
Then \(E(n) \) becomes a \(W^* \)-correspondence over \(M' \) in the sense of [13], and we identify \(E(n) \otimes_{M'} E(m) \) with \(E(n+m) \) by a map
\[
U_{n,m} : E(n) \otimes_{M'} E(m) \ni X_n \otimes X_m \mapsto (1_M \otimes \cdots \otimes 1_M \otimes X_n)X_m \in E(n+m)
\]
for each \(n, m \in \mathbb{Z}_{\geq 0} \).

Now, we put \(\bar{P}_0 = \text{id}_{E(0)} \) and \(\mathcal{L}_0 = \mathcal{H} \), and for each \(n \in \mathbb{N} \) define a map \(P_n : E(n) \to \mathcal{B}(\mathcal{H}) \) by \(P_n(X) = i^* \circ X \) for each \(X \in E(n) \). Let \(\mathcal{L}_n \) be a Hilbert space which is given by the completion of \(E(n) \otimes_{\text{alg}} \mathcal{H} \) with respect to an inner product defined by
\[
(X \otimes \xi, Y \otimes \eta) = (X\xi, Y\eta) \quad (X, Y \in E(n), \xi, \eta \in \mathcal{H}).
\]
For each \(0 < m < n \), we define isometric operators \(u_{n,m} \) by
\[
u_{n,m} = (U_{n,m-n} \otimes 1_{\mathcal{B}(\mathcal{H})})(\text{id}_{E(m)} \otimes \bar{P}_{n-m}^*) : \mathcal{L}_m \to \mathcal{L}_n,
\]
\[
u_{n,0} = \bar{P}_n^* : \mathcal{L}_0 \to \mathcal{L}_n,
\]
\[
u_{n,n} = 1_{\mathcal{B}(\mathcal{L}_n)} : \mathcal{L}_n \to \mathcal{L}_n,
\]
where for all \(Q : E(n) \to \mathcal{B}(\mathcal{H}) \), a map \(\bar{Q} : \mathcal{L}_n \to \mathcal{H}_n \) is defined by \(\bar{Q}(X \otimes \xi) = Q(X)\xi \) for each \(X \in E(n) \) and \(\xi \in \mathcal{H}_n \). Let \(\mathcal{L} \) be the inductive limit of \((\{\mathcal{L}_n\}_{n=0}^\infty, \{u_{nm}\}_{n,m=0}^\infty) \) and \(\iota_n : \mathcal{L}_n \to \mathcal{L} \) be the canonical embedding for each \(n \in \mathbb{Z}_{\geq 0} \). For each \(m \in \mathbb{Z}_{\geq 0} \) and \(X_n \in E(n) \), we define \(V_n(X_n) \in \mathcal{B}(\mathcal{L}) \) by
\[
V_n(X_n)(\iota_m(X_m \otimes \xi)) = \iota_{m+n}(U_{n,m}(X_n \otimes X_m) \otimes \xi) \quad (X_m \in E(m), \xi \in \mathcal{H}).
\]
We put \(N = V_0(M')' \) and define \(\alpha(x) = \tilde{V}_1(\id_{E(1)} \otimes x)\tilde{V}_1^* \) for each \(x \in N \). Then \(\alpha \) is a normal unital \(\ast \)-endomorphism on \(N \) such that

\[
\begin{align*}
\iota_0^* N \iota_0 &= M, \\
T^n(\iota_0^* x \iota_0) &= \iota_0^* \alpha^n(x) \iota_0 \quad (n \in \mathbb{Z}_{\geq 0}, \ x \in N), \\
T^n(y) &= \iota_0^* \alpha^n(\iota_0 y \iota_0^*) \iota_0 \quad (n \in \mathbb{Z}_{\geq 0}, \ y \in M).
\end{align*}
\]

We identify \(M \) with \(\iota_0^* M \iota_0^* \) and define a projection \(p = \iota_0^* \iota_0^* \in N \). Then we have

\[
M \cong \iota_0^* M \iota_0^* = \iota_0^* \iota_0^* N \iota_0 \iota_0^* = p N p \subset N.
\]

Thus the semigroup \(\{\alpha^n\}_{n=0}^\infty \) is the minimal dilation of the semigroup \(\{T^n\}_{n=0}^\infty \) in the sense of [3] and [4]. We have constructed the minimal dilation in the sense of Definition [1].

4.3 The minimal dilation on the standard space

We see Muhly-Solel’s construction of the minimal dilation when \(\mathcal{H} = L^2(M) \). When we use the notation in Subsection 4.2, \(E(0) = M' \) and for each \(n \in \mathbb{N} \),

\[
\begin{align*}
\mathcal{H}_n &= (M \otimes_T (\cdots \otimes_T (M \otimes_T L^2(M)) \cdots))_{n \text{ times}}, \\
E(n) &= \Hom(M L^2(M), M \mathcal{H}_n), \\
\mathcal{L}_n &= E(n) \otimes L^2(M).
\end{align*}
\]

Then for \(n \in \mathbb{Z}_{\geq 0} \), a map \(U_n : E(n) \otimes_M L^2(M) \ni X \otimes \xi \mapsto X \xi \in \mathcal{H}_n \) gives an isomorphism \(\mathcal{L}_n \cong \mathcal{H}_n \) as Hilbert spaces. Now, for \(n \geq m \), we define an isometry

\[
v_{n,m} = U_n u_{n,m} U_m^* : \mathcal{H}_m \to \mathcal{H}_n
\]

where \(u_{n,m} : \mathcal{L}_m \to \mathcal{L}_n \) is the isometry defined in Subsection 4.2. Then \((\{\mathcal{H}_n\}_{n=0}^\infty, \{v_{nm}\}_{n,m=0}^\infty) \) is an inductive system, and let \(\mathcal{H}' \) be the inductive limit of it. Similarly as Subsection 4.2, for each \(n \in \mathbb{Z}_{\geq 0} \), let \(\kappa_n : \mathcal{H}_n \to \mathcal{H}' \) be the canonical embedding and we define \(V'_n(X_n) \in \mathcal{B}(\mathcal{H}') \) for each \(X_n \in E(n) \) by

\[
V'_n(X_n)(\kappa_m(x_1 \otimes \cdots \otimes x_m \otimes \xi)) = \kappa_{n+m}(x_1 \otimes \cdots \otimes x_m \otimes X_n \xi)
\]

\[
(m \in \mathbb{Z}_{\geq 0}, \ x_1 \otimes \cdots \otimes x_m \otimes \xi \in \mathcal{H}_m).
\]
Then we can prove an analogue of the result in Subsection 4.2 by looking the proof of the original theorem \([13]\) i.e., if we define

\[
R = V_0'(M')',
\]

\[
\beta(x) = V_1' (\text{id}_{E(1)} \otimes x) \tilde{V}_1' (x \in R),
\]

then \(\beta\) is a normal unital \(*\)-endomorphism on \(R\) such that

\[
\begin{align*}
\kappa_0^* R \kappa_0 &= M, \\
T^n (\kappa_0^* x \kappa_0) &= \kappa_0^* \alpha^n (x) \kappa_0 \quad (n \in \mathbb{Z}_{\geq 0}, x \in N), \\
T^n (y) &= \kappa_0^* \alpha^n (\kappa_0 y \kappa_0^*) \kappa_0 \quad (n \in \mathbb{Z}_{\geq 0}, y \in M).
\end{align*}
\]

4.4 The relation between the two constructions

In this subsection, we use the notations in Section 3, Subsection 4.1 and 4.2.

By Proposition 3.4,

\[
E(1) = \text{Hom}(M \mathcal{H}, MM \otimes_T \mathcal{H}) \cong \text{Hom}(M \mathcal{H}, M (M \otimes_T L^2(M)) \otimes^M \mathcal{H})
\]

holds, and hence \(E(1)\) corresponds to \(\mathcal{H}^* \otimes^M (M \otimes_T L^2(M)) \otimes^M \mathcal{H}\). Hence we get a one-to-one correspondence

\[
E(n) \cong E(1) \otimes_{M'} \cdots \otimes_{M'} E(1) \longleftrightarrow \mathcal{H}^* \otimes^M \mathcal{H}_n(M, T) \otimes^M \mathcal{H}.
\]

for each \(n \in \mathbb{N}\).

On the other hand, for each \(n \in \mathbb{N}\), we can define the tensor product \(E_n \otimes_T L^2(M)\) similarly as Definition 2.7 where \(E_n\) is in Subsection 4.1. Then we have \(\mathcal{H}_2 = M \otimes_T (M \otimes_T L^2(M)) \cong E_1 \otimes_T L^2(M)\) as left \(W^*\)-module. Indeed for all \(x_1, x_2, y_1, y_2 \in M\) and \(\xi_1, \xi_2 \in L^2(M)\),

\[
(x_1 \otimes y_1 \otimes \xi_1, x_2 \otimes y_2 \otimes \xi_2)_{\mathcal{H}_2} = (y_1 \otimes \xi_1, T(x_1^* x_2^* y_2 \otimes \xi_2)_{\mathcal{H}_1},
\]

\[
= \xi, (y_1^* T(x_1^* x_2^* y_2 \xi_2))_{L^2(M)},
\]

\[
= ((x_1 \otimes y_1, x_2 \otimes y_2)_{\mathcal{H}} \xi_2)_{L^2(M)},
\]

holds. By induction, we have

\[
\mathcal{H}_{2n}(M, T) \cong E_n \otimes_T L^2(M)
\]

for each \(n \in \mathbb{N}\).

This concludes that the constructions of the dilation by Bhat-Skeide and Muhly-Solel are essentially the same.
References

[1] W. Arveson, Continuous analogues of Fock space, Mem. Amer. Math. Soc. 80 (1989), no. 409, iv+66 pp.

[2] W. Arveson, Continuous analogues of Fock space. IV, Essential states, Acta Math. 164 (1990), no. 3-4, 265-300.

[3] Wm. Arveson, Minimal E_0-semigroups, Operator Algebras and their Applications (Fillmore, P., and Mingo, J., Eds.), Fields Institute Communications. AMS (1997), 1-12.

[4] Wm. Arveson, The index of a quantum dynamical semigroup (English summary), J. Funct. Anal. 146 (1997), no. 2, 557-588.

[5] W. Arveson, Noncommutative dynamics and E-semigroups, Springer Monographs in Mathematics. Springer-Verlag, New York (2003), x+434 pp.

[6] M. Baillet, Y. Denizeau, J. F. Havet, Indice d’une espérance conditionnelle, Compositio Math. 66 (1988), no. 2, 199-236.

[7] B. V. R. Bhat, Markov dilations of nonconservative quantum dynamical semigroups and a quantum boundary theory, Ph. D. Thesis, Indian Statistical Institute, New Delhi (1993).

[8] B. V. R. Bhat, An index theory for quantum dynamical semigroups, Trans. Amer. Math. Soc. 348 (1996), no. 2, 561-583.

[9] B. V. R. Bhat, Minimal dilations of quantum dynamical semigroups to semigroups of endomorphisms of C^*-algebras, J. Ramanujan Math. Soc. 14 (1999), no. 2, 109-124.

[10] B. V. R. Bhat, M. Skeide, Tensor product systems of Hilbert modules and dilations of completely positive semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 4, 519-575.

[11] U. Haagerup, The standard form of von Neumann algebras. Math. Scand. 37 (1975), no. 2, 271-283.
[12] M. Izumi, E_0-semigroups: around and beyond Arveson’s work, J. Operator Theory 68 (2012), no. 2, 335-363.

[13] P. S. Muhly, B. Solel, Quantum Markov processes (correspondences and dilations), Internat. J. Math. 13 (2002), no. 8, 863-906.

[14] W. L. Paschke, Inner product modules over B^*-algebras. Trans. Amer. Math. Soc. 182 (1973), 443-468.

[15] J. L. Sauvageot, Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory 9 (1983), no. 2, 237-252.

[16] M. Skeide, Generalised matrix C^*-algebras and representations of Hilbert modules, Math. Proc. R. Ir. Acad. 100A (2000), no. 1, 11-38.

[17] M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, 125. Operator Algebras and Non-commutative Geometry, 6. Springer-Verlag, Berlin (2003). xxii+518 pp.

Yusuke Sawada,
Graduate School of Mathematics,
Nagoya University,
Furocho, Chikusa-ku, Nagoya, 464-8602, Japan,
E-mail: m14017c@math.nagoya-u.ac.jp