Apolipoprotein E-Mimetic Peptide COG1410 Promotes Autophagy by Phosphorylating GSK-3β in Early Brain Injury Following Experimental Subarachnoid Hemorrhage

Xinshen Li1, Jianhua Peng1, Jinwei Pang1, Yue Wu2, Xueping Huang3, Yong Li1, Jian Zhou1, Long Gu1, Xiaochuan Sun2, Ligang Chen1, Michael P. Vitek4 and Yong Jiang1*

1Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China, 2Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, 3Department of Neurosurgery, Luzhou People’s Hospital, Luzhou, China, 4Medicine, Duke University Medical Center, Durham, NC, United States

COG1410, a mimetic peptide derived from the apolipoprotein E (apoE) receptor binding region, exerts positive effect on neurological deficits in early brain injury (EBI) after experimental subarachnoid hemorrhage (SAH). Currently the neuroprotective effect of COG1410 includes inhibiting BBB disruption, reducing neuronal apoptosis, and neuroinflammation. However, the effect and mechanism of COG1410 to subcellular organelles disorder have not been fully investigated. As the main pathway for recycling long-lived proteins and damaged organelles, neuronal autophagy is activated in SAH and exhibits neuroprotective effects by reducing the insults of EBI. Pharmacologically elevated autophagy usually contributes to alleviated brain injury, while few of the agents achieved clinical transformation. In this study, we explored the activation of autophagy during EBI by measuring the Beclin-1 and LC3B-II protein levels. Administration of COG1410 notably elevated the autophagic markers expression in neurons, simultaneously reversed the neurological deficits. Furthermore, the up-regulated autophagy by COG1410 was further promoted by p-GSK-3β agonist, whereas decreased by p-GSK-3β inhibitor. Taken together, these data suggest that the COG1410 might be a promising therapeutic strategy for EBI via promoting autophagy in SAH.

Keywords: subarachnoid hemorrhage, early brain injury, autophagy, apolipoprotein E, glycogen synthase kinase 3 beta

INTRODUCTION

Subarachnoid hemorrhage (SAH) constitutes ~5% of all strokes with high mortality and morbidity (van Gijn and Rinkel, 2001; Bederson et al., 2009). The pathophysiological mechanism of SAH is not fully understood and recent studies mainly focus on early brain injury (EBI). EBI describes the brain injury typified by brain edema, elevated intracranial hypertension (ICP), and microcirculation compromise, within the first 72 h after SAH, which offers new approaches for the treatment of SAH (Kusaka et al., 2004).

During EBI, subcellular organelle functions become disordered, and the autophagy-lysosomal system is activated (Chen et al., 2015). As the main intracellular recycling system during conditions...
of starvation and various stressors, autophagy is a critical
for neuronal survival (Mizushima and Komatsu, 2011). It
is well-documented that a properly enhanced autophagy
serves as neuroprotection, and mainly achieved through
anti-inflammatory processes in acute brain injury (Galluzzi
et al., 2016), pharmacologic upregulation of autophagy could
slow the progression of Huntington disease and tauopathy
models (Mizushima and Komatsu, 2011). Furthermore, several
pharmacological activators of autophagy could effectively
decrease acute brain injury in the SAH model (Galluzzi et al.,
2016). However, few of those agents are feasible for clinical
application.

The regulation of autophagy is a very complex process.
As the direct downstream target of Akt, p-GSK-3β strongly
induces the cytoplasmic autophagy (Park et al., 2013), and
closely correlates with the alleviation of acute brain injury in
SAH (Endo et al., 2006). Previous studies have shown that
p-GSK-3β can be up-regulated by exogenous administration
of apoE, thereby promoting neuronal survival (Han, 2004; Hayashi
et al., 2007). However, apoE holoprotein is greatly restricted due
to a molecular weight of 34 kDa, which makes it hard to cross
the blood-brain barrier (BBB), thereby limiting its translational
study.

Recently, a modified apolipoprotein E (apoE) mimetic peptide
called COG1410 has been widely investigated. COG1410 is
an apoE-mimetic peptide derived from the receptor-binding
region, which could activate downstream receptors and produce
beneficial effects. With a composition of apoE residues 138–
149, and the modification of two amino residues, COG1410
could effectively cross the blood brain barrier (BBB), and
potentially have a long duration for the treatment of SAH
(Wu Y. et al., 2016). We recently showed that COG1410 could
exert neuroprotective effects in EBI after experimental SAH,
and activate downstream effectors including Akt (Pang et al.,
2016; Wu Y. et al., 2016). Based on these observations, we aimed to
investigate the effect of COG1410 on autophagy and the potential
mechanism, during EBI after experimental SAH.

MATERIALS AND METHODS

Animals

A total of 130 adult male C57BL/6J mice were obtained from the
Laboratory Animal Center of Chongqing Medical University, in
which 98 mice were included in the experiment, and the other 32
mice died unexpectedly, as shown in the Supplementary Table 1.
All the mice were aged 6–8 weeks, with a mean (±SD) weight
of 20 ± 2 g. We followed the Guide for the Care and Use of
Laboratory Animals of China, the number of mice was
minimized as shown in the figures, and all the experimental mice
were euthanized under deep anesthesia.

Induction of SAH

To better mimic EBI process, we chose the endovascular
perforation SAH model, as previously described (Peng et al.,
2017). Briefly, mice were anesthetized with sodium pentobarbital
and placed in a supine position. In the condition of mechanical
ventilation, the right carotid artery was exposed, and a 5-0
filament was inserted into the isolated right external carotid
artery to rupture the bifurcation of the right internal carotid
artery (ICA). For the sham-operated mice, the filament entered
the ICA but did not pierce the bifurcation. A sharp increase in
ICP was a reliable parameter to detect the induction of SAH in
the mouse model, and we mainly judged the success of SAH by
monitoring the occurrence of the typical Cushing response.

Animal Groups

To evaluate the time course of autophagy in EBI, typical SAH
models were induced, and after 6, 24, 48, and 72 h, the brain
specimens were removed under deep anesthesia and randomly
divided into five groups; the sham group was included, and each
group comprised 5 mice based on the sample size calculation
method (Charan and Kantharia, 2013). To observe the effect of
the apoE-mimetic peptide, 53 mice were assigned to four groups:
sham-operated, SAH operated for 24 h, saline-treated and
COG1410-treated. In each group, 6 mice were used for western
blotting measurement, 6 mice were used for immunofluorescence
staining analysis, and the other mice was used for transmission
electron microscope. For the mice in the COG1410 group,
the peptide was injected via the tail vein immediately after
SAH (2 mg/kg; Laskowitz et al., 2012). To explore the
role of p-GSK-3β, 50 mice were divided into five groups: SAH+
saline, SAH+COG1410, SAH+COG1410+DMSO,
SAH+COG1410+OA, and SAH+COG1410+LY. In each
group, 5 mice were used for western blotting measurement, and
the other 5 mice were used for immunofluorescence staining
analysis. In the last three groups, dimethyl sulfoxide (DMSO),
okadaic acid (OA), and LY294002 (LY) were injected through
the lateral ventricle, the injections were performed 15 min before
the SAH operation, with a microsyringe fixed to the stereotaxic
frame, the coordinates were −0.9 mm anteroposterior, ±1.5 mm
medialateral, and −3.5 mm doroventral from the bregma (Yang
et al., 2014; Baker and Götz, 2016). We acquired the DMSO
(sc-358801), OA (sc-3513A), and LY294002 (CAS 936487-67-1)
from Santa Cruz Biotechnology.

Measurements of Neurological Deficit and
SAH Severity

Garcia score (Garcia et al., 1995) consisted of six programs, the
scores of the first three programs were 0–3, and the scores of the
last three programs were 1–3. Each score was an integer, with the
minimum score equal to 3 and the maximum score equal to 18.

A new grading system was utilized to grade the SAH model
(Sugawara et al., 2008). Basal cisterns were divided into six
segments, and each segment was graded from 0 to 3; grades 0, 1,
2, and 3 indicate no obvious subarachnoid blood clot, a minor
blood clot, a moderate blood clot, and a large subarachnoid
blood clot with an invisible cerebral arterial circle, respectively.
Additionally, total grades of 0–7, 8–12, and 13–18 indicated mild,
moderate, and severe SAH, respectively.

Western Blot

According to the previous reports, autophagy is more
pronounced in the injured hemisphere, especially in the
fronto-basal cortex (Lee et al., 2009), so the right hemisphere was
quickly removed from the deeply anesthetized mouse and cut into pieces on ice. The pieces were subsequently homogenized in RIPA buffer that was previously mixed with a protease inhibitor (PMSF, 0.1 mM) and phosphatase inhibitor (sodium orthovanadate, 1 mM), and the mixture was centrifuged to obtain supernatant extracts. After the extracts were diluted with loading buffer, the protein extracts were transferred to polyvinylidene difluoride membranes after SDS-polyacrylamide gel electrophoresis and incubated with primary antibodies, which included Beclin-1 (1:500, Proteintech, 11306-1-AP), LC3B-II (1:200, Bioss Antibody, bs-4843R), p-GSK-3β (Serine 9) (1:200, Santa Cruz Biotechnology, sc-11757-R). Horseradish peroxidase-conjugated secondary antibodies were incubated with the primary antibodies, and the signal was detected by an ECL reagent (Thermo Scientific, #15168) and quantified using Image Lab software (Bio-Rad, ChemiDoc XRS+).

Immunofluorescence Staining
The brains were prefixed with 4% paraformaldehyde, dehydrated in the gradient concentration of sucrose solutions (20, 30%), and cut into frozen sections at the thickness of 6 µm. Then primary antibodies including Beclin-1 and LC3B-II, as well neuronal marker anti-NeuN (1:500, Merck Millipore, MAB377), were incubated on the sections. After the primary antibodies were labeled with fluorophore-conjugated secondary antibody, including anti-rabbit secondary antibody (1:200, Abbkine, Dylight 488) and anti-mouse secondary antibody (1:200, Abbkine, Dylight 549), the cell nuclei were counterstained with DAPI. The region of interest was observed with a fluorescence microscope (Nikon, C-HGFI), and the co-staining positive neurons were counted (MediaCybernetics, Image-ProPlus 6.0).

Transmission Electron Microscopy
Mice were deeply anesthetized and sacrificed. Samples from the glutaraldehyde prefixed right fronto-basal cortex were then quickly acquired, cut into small samples, placed in 2.5% phosphate-buffered glutaraldehyde and stored overnight at 4°C. After dehydration in a graded ethanol series and subsequent fixation with osmium tetroxide, the samples were impregnated with epoxy resin and placed in an embedding medium. Sections that were 60-nm thick were sliced and stained with a saturated uranyl acetate solution, and the ultrastructure of neurons was observed using an electron microscope (JEOL, JEM-1400).

Statistics
The statistics were analyzed by SPSS software 17.0 (SPSS Inc., Chicago, IL, USA), significance was assessed by one-way analysis of variance (ANOVA) followed by the LSD, and the data are presented as mean ± SD.

RESULTS

Autophagy Is Activated and Peaked at 24 H After Experimental SAH
To investigate the alteration of autophagy (Figure 1A) in EBI after Experimental SAH, we measured a time course of Beclin-1 and LC3B-II, two commonly used autophagic markers (Liang et al., 2008; Mizushima and Yoshimori, 2014). According to protein quantification results, both the Beclin-1 and LC3B-II (Figure 1B) levels were elevated at 6 h and peaked at 24 h compared with the sham group. The results indicate that the autophagy level is enriched at 24-h, and thus, the time point is appropriate for the subsequent intervention study.

The Specimen, SAH Grade, and Neurological Score of SAH Models
In Figure 2A, blood clots were evident in the ventral subarachnoid space of SAH mice, but not in the control animals. The boxed region represents the right fronto-basal cortex areas for immunofluorescence staining and transmission electron microscopy. In Figure 2B, the SAH grade of mice in SAH group, SAH+Saline group, and SAH+COG1410 group were higher than that in Sham group, but were not statistically different when they compared with each other. In Figure 2C, neurological scores of the SAH group were strongly decreased relative to the sham group, but the neurological dysfunction can be significantly attenuated by the administration of COG1410. These data suggest that the SAH models are typical and steady, and the neurologic defect of mice models could be improved by COG1410 treatment.

Transmission Electron Microscopy of COG1410 Promoted Neuron Autophagy
Through analysis of electron microscope images captured by a blinded observer, we found that subcellular structures, including the nuclear membrane, mitochondria and endoplasmic reticulum, were relatively intact in the sham group (Figure 3A). After experimental SAH, the mitochondria began to swell...
FIGURE 2 | The Specimen, SAH Grade, and Neurological Score of SAH Models. (A) For the sham-operated mice, there were no distributions of hemorrhage or blood clot in the basal pool (The left picture), but for the typical SAH models, the blood clots distributed into the basal cistern and nearly covered the circle of Willis, as indicated by black arrow heads (The right picture). The boxed region represents the right fronto-basal cortex area, which is the region of interest for immunofluorescence microscopy and transmission electron microscopy. (B) The total SAH grade in the SAH, SAH+saline and SAH+COG1410 groups showed no significant difference, the grades were 15.33 ± 1.21, 14.33 ± 1.63, and 13.83 ± 1.83, respectively ($n=6$ animals per group). (C) Mice subjected to SAH for 24 h had significantly low Garcia scores compared with the sham-operated mice (SAH: 11.20 ± 2.05, vs. sham: 16.40 ± 1.14); after administration of COG1410, the neurological score significantly increased to 15.20 ± 0.84 ($n=6$ animals per group). **$P < 0.01$ vs. sham group; ##$P < 0.01$ vs. SAH group.

FIGURE 3 | The subcellular structure and autophagic activity in neurons. (A) The complete nuclear membrane (white arrow head), healthy endoplasmic reticulum (white pentagram) and mitochondria (white arrows) in the relatively normal neuron of the sham group. (B) In the neuron of the SAH model, the nuclear membrane was shrunken, mitochondria were typically swollen and deformed (open white arrow), and the early autolysosome began to form (white asterisk). (C) In SAH+saline group, the multiple-membrane autophagosome (black arrows) appeared in the neuronal cytoplasm. (D) In the SAH+COG1410 group, both the typical autophagosomes (black arrows) and autolysosome (white asterisk) were visible in the neuron.

in the neurons, the nuclear membrane became shrunken, and the early autolysosome was evident (Figure 3B). In the saline group, the multiple-membrane autophagosome became evident and contained cytoplasmic disintegration (Figure 3C). After administration of COG1410, autophagy was increased, and neurons showed both autophagosomes and autolysosomes in the cytoplasm (Figure 3D). These results suggest that the administration of COG1410 could enhance neuronal autophagy, which may contribute to the breakdown of injured cellular components after SAH.
COG1410 Improves Autophagy Level

Beclin-1 and LC3B-II levels in right brain hemispheres, as quantified by western blot, were prominently elevated after SAH, and then picked up at 24 h. COG1410 treatment significantly increased Beclin-1 and LC3B-II levels when compared with the saline-treated group 24 h after SAH (Figures 4A,B). To confirm the major cell type of Beclin-1 and LC3B-II, immunofluorescence analysis that involved double staining with NeuN was performed, and the results were consistent with the quantitative data from the western blot analysis (Figures 4C–E). These data indicate that the administration of COG1410 elevates autophagy in the injured brain and in neuronal cells of an SAH model.

The ApoE-Mimetic Peptide Elevates p-GSK-3β Level

Given that the phosphorylation of GSK-3β is an important regulator for autophagy (Zhou et al., 2011; Park et al., 2013), we conducted western blot (Figure 5A) and immunofluorescence (Figure 5D) analyses for p-GSK-3β in the right cerebral hemisphere. According to the quantification results (Figure 5B), the total p-GSK-3β level increased sharply in the SAH group and administration of COG1410 further increased the p-GSK-3β level of ipsilateral hemisphere compared with SAH+Saline group. The number of co-staining neurons was also augmented in the SAH group and further increased by the administration of COG1410 (Figure 5C). This shows that p-GSK-3β expression...
Li et al. COG1410 Promotes Autophagy in EBI

FIGURE 5 | p-GSK-3β level of mice brain and neuron after administrating COG1410. (A,B) In the western blot analysis, p-GSK-3β level was increased substantially in the SAH group compared to the Sham group, and enhanced further in the SAH+COG1410 group compared to the SAH+Saline group, while there were no major differences between the SAH+Saline group and SAH group (n = 6 animals per group). (C,D) The co-staining of NeuN and p-GSK-3β indicates that the expression of p-GSK-3β was further elevated by COG1410, as the analysis result shown (n = 6 animals per group). **P < 0.01 vs. the sham group; #P < 0.05 vs. the SAH group.

in the brain and neurons is also elevated after treatment with COG1410, which is closely related to the altered autophagy by administration of COG1410.

The Phosphorylation and Dephosphorylation of GSK-3β Were Effectively Achieved

As the main inactive state of GSK-3β, p-GSK-3β could be effectively achieved by a serine inhibitor OA, and greatly depressed by the PI3K inhibitor LY (Park et al., 2013). In western blot, the p-GSK-3β level was increased after administrating COG1410. Furthermore, the p-GSK-3β level was significantly elevated after the OA injection but apparently reduced after the LY injection (Figures 6A,B). Immunofluorescence further supported the results of western blot (Figures 6C,D).

COG1410 Promotes Neuronal Autophagy by Promoting the Phosphorylation of GSK-3β

COG1410 increased the protein levels of autophagy, and the band densities of Beclin-1 and LC3B-II were both further promoted in the SAH+COG1410+OA group. However, the protein level showed a striking decrease in the SAH+COG1410+LY group (Figures 7A,B). Additionally, the immunofluorescence staining for the co-staining analysis was also consistent with the western blot analysis (Figures 7C–E).

DISCUSSION

In this present study, we assessed the neuroprotective effects of COG1410 and explored the possible underlying mechanism of COG1410 in neuronal autophagy during EBI after SAH. With the administration of apoE-mimetic peptide COG1410, the autophagy was further promoted, accompanied by the improvement of neurological score. Additionally, we confirmed that the autophagy-promoting effect of COG1410 can be achieved by the phosphorylation of GSK-3β, both in the injured brain tissue and neuronal cell.

As an essential pathway to recycle long-lived proteins and damaged organelles (Levine and Klionsky, 2004; Wu H. et al., 2016), autophagy is ubiquitously present in various diseases, and the current studies consider brain autophagy as important for neuronal survival in SAH (Galluzzi et al., 2016). The pharmacological promotion of autophagy significantly alleviates the acute brain injury of SAH (Jing et al., 2012; Zhao et al., 2013; Chen et al., 2014; Shao et al., 2014), whereas inhibition of autophagy using either 3-MA or wortmannin can worsen the brain injury (Jing et al., 2012; Zhao et al., 2013) or eliminate the neuroprotective effects of enhanced
autophagy (Shao et al., 2014). These observations suggest that properly augmented autophagy levels benefit neuronal survival and may affect the prognosis of EBI. In the current study, administration of COG1410 increased autophagic markers and p-GSK-3β levels, and the neurological scores of SAH models were improved. This may suggest that COG1410-promoted autophagy is a protective intervention for SAH models, and points to the potential involvement of p-GSK-3β in the process.

As the downstream effector kinase of Akt, p-GSK-3β could be increased by the phosphorylation of Akt (Wang et al., 2017), and promote the survival of damaged neurons (Hetman et al., 2006; Liang and Chuang, 2007; Collino et al., 2008). The Akt/GSK-3β signaling could also alleviate acute brain injury following experimental SAH (Endo et al., 2006). Our previous study demonstrated that COG1410 could effectively promote the phosphorylation of Akt (Wu Y. et al., 2016). Furthermore, phosphorylated GSK-3β profoundly induces the occurrence of neuronal autophagy (Zhou et al., 2011). Thus, we hypothesized that COG1410 promotes autophagy by indirectly facilitating the phosphorylation of GSK-3β. In this study, the apoE analog could promote autophagy when GSK-3β was phosphorylated by OA, but depress autophagy when GSK-3β was dephosphorylated by LY. In fact, the exogenous administrated apoE effectively phosphorylates GSK-3β through LRP1/GSK-3β pathway, and significantly activates downstream pathways by binding to LRP-1 [8, 34]. Therefore, COG1410 may also promote the phosphorylation of GSK-3β through LRP1/GSK-3β pathway, but it remains further confirmation.

According to our previous study, among the three subtypes of apoE protein-coding gene (APOE), the APOE4 isoform is
unfavorable for neuronal survival compared to the APOE3 isoform (Jiang et al., 2007, 2015), while COG1410 is derived from the apoE-receptor-binding region and free from the APOE polymorphism. Additionally, COG1410 can effectively pass through the BBB. By reducing the number of activated microglia, COG1410 effectively alleviates the neuroinflammatory response in TBI (Jiang and Brody, 2012), and decreases the neurologic deficit during intracranial hemorrhage (Laskowitz et al., 2012). As a neuroprotective agent, COG1410 can inhibit BBB disruption with the activating of CypA/NF-κB/MMP-9 pathway, and reduce apoptosis and neuroinflammation by activating downstream effectors in EBI following SAH (Pang et al., 2016; Wu Y. et al., 2016). From these facts, COG1410 retains the receptor-binding property of apoE holoprotein, the peptides could activate the downstream effectors, and produce neuroprotection in EBI after experimental SAH.

Although these data indicate the potential neuroprotection and the possible mechanism of COG1410-promoted autophagy, our study has some limitations. The other GSK isoforms are incompletely detected by the experiments, and the neurological effect of COG1410 in the late phase of SAH is worthy of future studies. Additionally, further investigation needs to be performed in the safety, efficacy, and clinical study of the apoE-mimetic peptide.

AUTHOR CONTRIBUTIONS

XL, YJ: Designed the study; XL, JHP, JWP, XH, YL, JZ, LG: Contributed to the sample preparation, data collection, and data analysis; YW, XS, LC, YJ: Directed the experiments; COG1410 was a gift from MV; XL, JHP, JWP: Wrote the manuscript together, and all the authors reviewed the manuscript.

FUNDING

This study was supported by grants from the National Science Foundation of China (No. 81371319, No. 81771278), Luzhou Municipal Government—Southwest Medical University Joint Project (2016LZXNYD-Z02, 2016LZXNYD-J12), the Youth
Innovation Project of Sichuan Medical Scientific Research (Q17082) and Sichuan Provincial Health Department of scientific research project (17PJ076).

ACKNOWLEDGMENTS

We give thanks to the Laboratory Animal Center of Chongqing Medical University for they provided dependable animals; authors are grateful for Prof. Lixue Chen at the Experimental Research Center, Affiliated Hospital of Chongqing Medical University, for the selfless help throughout our work.

REFERENCES

Baker, S., and Götz, J. (2016). A local insult of okadaic acid in wild-type mice induces tau phosphorylation and protein aggregation in anatomically distinct brain regions. Acta Neuropathol. Commun. 4:32. doi: 10.1186/s40478-016-0300-0

Bederson, J. B., Connolly, E. S. Jr., Batjer, H. H., Dacey, R. G., Dion, J. E., Diringer, M. N., et al. (2009). Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 40, 994–1025. doi: 10.1161/STROKEAHA.108.191395

Charan, J., and Kantharia, N. D. (2013). How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 4, 303–306. doi: 10.4103/0976-500X.119726

Chen, S., Wu, H., Tang, J., Zhang, J., and Zhang, J. H. (2015). Neurovascular events after subarachnoid hemorrhage: focusing on subcellular organelles. Acta Neurochir. Suppl. 120, 39–46. doi: 10.1007/978-3-319-04981-6_7

Collino, M., Thiemermann, C., Mastrocola, R., Gallicchio, M., Benetti, E., Miglio, G., et al. (2008). Treatment with the glycogen synthase kinase-3β inhibitor, TDZD-8, affects transient cerebral ischemia/reperfusion injury in the rat hippocampus. Shock 30, 299–307. doi: 10.1097/SHK.0b013e318164e762

Endo, H., Nito, C., Kamada, H., Yu, F., and Chan, P. H. (2006). Akt/GSK3β survival signaling is involved in acute brain injury after subarachnoid hemorrhage in rats. Stroke 37, 2140–2146. doi: 10.1161/STR.01000229888.55078.72

Galluzzi, L., Bravo-San Pedro, J. M., Blomgren, K., and Kroemer, G. (2016). Autophagy in acute brain injury. Nat. Rev. Neurosci. 17, 467–484. doi: 10.1038/nrn.2016.31

Garcia, J. H., Wagner, S., Liu, K. F., and Hu, X. J. (1995). Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26, 627–634. doi: 10.1161/01.STR.26.4.627

Han, X. (2004). The role of apolipoprotein E in lipid metabolism in the central nervous system. Cell. Mol. Life Sci. 61, 1896–1906. doi: 10.1007/s00018-004-0409-2

Hayashi, H., Campenot, R. B., Vance, D. E., and Vance, J. E. (2007). Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1. J. Neurosci. 27, 1933–1941. doi: 10.1523/JNEUROSCI.5471-06.2007

Hetman, M., Cavanaugh, J. E., Kimelman, D., and Xia, Z. (2000). Role of glycogen synthase kinase-3β in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20, 2567–2574.

Jiang, L., Zhong, J., Dou, X., Cheng, C., Huang, Z., and Sun, X. (2015). Effects of ApoE on intracellular calcium levels and apoptosis of neurons after mechanical injury. Neuroscience 301, 375–383. doi: 10.1016/j.neuroscience.2015.06.005

Jiang, Y., and Brody, D. L. (2012). Administration of COG1410 reduces axonal amyloid precursor protein immunoreactivity and microglial activation after controlled cortical impact in mice. J. Neurotrauma 29, 2332–2341. doi: 10.1089/neu.2012.2362

Jiang, Y., Sun, X., Gui, L., Xia, Y., Tang, W., Cao, Y., et al. (2007). Correlation between APOE—491AA promoter in epsilon4 carriers and clinical deterioration in early stage of traumatic brain injury. J. Neurotrauma 24, 1802–1810. doi: 10.1089/neu.2007.0299

Jing, C. H., Wang, L., Liu, P. P., Wu, C., Ruan, D., and Chen, G. (2012). Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 213, 144–153. doi: 10.1016/j.neuroscience.2012.03.055

Kusaka, G., Ishikawa, M., Nanda, A., Granger, D. N., and Zhang, J. H. (2004). Signaling pathways for early brain injury after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 28, 916–925. doi: 10.1097/01.WCB.0000125886.48838.7E

Laskowitz, D. T., Lei, B., Dawson, H. N., Wang, H., Bellows, S. T., Christensen, D. J., et al. (2012). The apoE-mimetic peptide, COG1410, improves functional recovery in a murine model of intracerebral hemorrhage. Neurocrit. Care 16, 316–326. doi: 10.1007/s12028-011-9641-5

Lee, J. Y., He, Y., Sagar, O., Keep, R., Hua, Y., and Xi, G. (2009). Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Res. 1287, 126–135. doi: 10.1016/j.brainres.2009.06.028

Levine, B., and Klionsky, D. J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477. doi: 10.1016/S1534-5807(04)00099-1

Li et al. COG1410 Promotes Autophagy in EBI

Mizushima, N., and Komatsu, M. (2011). Autophagy: renovation of cells and organelles. J. Biochem. 150, 1–12. doi: 10.1093/toxsci/kft158

Mizushima, N., and Yoshimori, T. (2014). How to interpret LC3 immunoblotting. Autophagy 3, 542–545. doi: 10.4161/auto.4600

Peng, J., Wu, Y., Tian, X., Peng, J., Wu, Y., et al. (2016). Inhibition of blood-brain barrier disruption by an apolipoprotein e-mimetic peptide ameliorates early brain injury in experimental subarachnoid hemorrhage. Trans. Stroke Res. 8, 257–272. doi: 10.11297/tjor.2016-0507-1

Park, C. H., Lee, B. H., Ahn, S. G., Yoon, J. H., and Oh, S. H. (2013). Serine 9 and tyrosine 216 phosphorylation of GSK-3beta differentially regulates autophagy in acquired cadmium resistance. Toxicol. Sci. 135, 380–389. doi: 10.1093/toxsci/kft158

Peng, J., Wu, Y., Tian, X., Peng, J., Kuai, L., Cao, F., et al. (2017). High-throughput sequencing and co-expression network analysis of lincRNAs and mRNAs in early brain injury following experimental subarachnoid haemorrhage. Sci. Rep. 7:46577. doi: 10.1038/srep46577

Shan, A., Wang, Z., Wu, H., Dong, X., Li, Y., Tu, S., et al. (2014). Enhancement of autophagy by histone deacetylase inhibitor trichostatin a ameliorates neuronal apoptosis after subarachnoid hemorrhage in rats. Mol. Neurobiol. 53, 18–27. doi: 10.1007/s12035-014-9896-0

Sugawara, T., Ayer, R., Jadhav, V., and Zhang, J. H. (2008). A new grading system for aneurysm rupture: the Hunt and Hess scale revisited. Neurosurgery 63, 1132–1139. doi: 10.1227/01.NEU.0000325266.54847.2D

van Gijn, J., and Rinkel, G. J. (2001). Subarachnoid hemorrhage: diagnosis, causes and management. Brain 124(Pt 2), 249–278. doi: 10.1093/brain/124.2.249

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnins.2018.00127/full#supplementary-material

Supplementary Table 1 | Experimental design and mortality rate.
Wang, Y., Sawyer, T. W., Tse, Y. C., Fan, C., Hennes, G., Barnes, J., et al. (2017). Primary blast-induced changes in Akt and GSK3beta phosphorylation in rat hippocampus. Front. Neurol. 8:413. doi: 10.3389/fneur.2017.00413

Wu, H., Niu, H., Wu, C., Li, Y., Wang, K., Zhang, J., et al. (2016). The autophagy-lysosomal system in subarachnoid haemorrhage. J. Cell. Mol. Med. 20, 1770–1778. doi: 10.1111/jcmm.12855

Wu, Y., Pang, J., Peng, J., Cao, F., Vitek, M. P., Li, F., et al. (2016). An apoE-derived mimic peptide, COG1410, alleviates early brain injury via reducing apoptosis and neuroinflammation in a mouse model of subarachnoid hemorrhage. Neurosci. Lett. 627, 92–99. doi: 10.1016/j.neulet.2016.05.058

Yang, Y., Zhang, X., Cui, H., Zhang, C., Zhu, C., and Li, L. (2014). Apelin-13 protects the brain against ischemia/reperfusion injury through activating PI3K/Akt and ERK1/2 signaling pathways. Neurosci. Lett. 568, 44–49. doi: 10.1016/j.neulet.2014.03.037

Zhao, H., Ji, Z., Tang, D., Yan, C., Zhao, W., and Gao, C. (2013). Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol. Biol. Rep. 40, 819–827. doi: 10.1007/s11033-012-2120-z

Zhou, X., Zhou, J., Li, X., Guo, C., Fang, T., and Chen, Z. (2011). GSK-3beta inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury. Biochem. Biophys. Res. Commun. 411, 271–275. doi: 10.1016/j.bbrc.2011.06.117

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Li, Peng, Pang, Wu, Huang, Li, Zhou, Gu, Sun, Chen, Vitek and Jiang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.