Catalyst Controlled Regiodivergent C–H Alkynylation of Thiophenes

Arup Mondal,[a] and Manuel van Gemmeren[a]

Dedicated to Professor Bart Jan Ravoo on the occasion of his 50th birthday

Abstract: Alkynes are highly attractive motifs in organic synthesis due to their presence in natural products and bioactive molecules as well as their versatility in a plethora of subsequent transformations. A common procedure to insert alkynes into hetero(arenes), such as the thiophenes studied herein, consists of a halogenation followed by a Sonogashira cross-coupling. The regioselectivity of this approach depends entirely on the halogenation step. Similarly, direct alkynylation of thiophenes have been described that follow the same regioselectivity patterns. Herein we report the development of a palladium catalyzed C–H activation/alkynylation of thiophenes. The method is applicable to a broad range of thiophene substrates. For 3-substituted substrates where controlling the regioselectivity between the C2 and C5 position is particularly challenging, two sets of reaction conditions enable a regiodivergent reaction, giving access to each regioisomer selectively. Both protocols use the thiophene as limiting reagent and show a broad scope, rendering our method suitable for late-stage modification.

The direct functionalization of thiophenes, to access their valuable derivatives, is an important target in organic chemistry due to the broad use of thiophenes in material sciences and medicinal chemistry.[1] Alkynes are one of the key motifs for organic chemists and the most commonly used method for insertion of it into (hetero)arenes is Sonogashira cross-coupling,[2] where the regioselectivity of the product formation depends on (pseudo)halogenation step. Considering the importance of alkynylated thiophenes in pharmaceuticals and organic materials,[3] an alternative direct access to these products is highly desirable since this would not only make the method more atom- and step-economic, but could also deliver complementary products in cases where there is a challenge in regioselectivity. In 2010, Waser and co-workers reported a gold and Brensted acid-catalyzed C5-alkynylation of 2-substituted thiophenes.[4] In this study, they also reported one example of an electron-rich 3-substituted thiophene, which was selectively alkynylated in the C2-position (Scheme 1). Furthermore, Su and co-workers reported a Pd-catalyzed oxidative cross-coupling of 2-substituted thiophenes and phenyl acetylenes, the later one being used as limiting reagent.[5] However, to the best of our knowledge no general method, which enables the alkynylation of thiophenes irrespective of the substitution pattern, has been reported to date. Especially for 3-substituted thiophenes, the control over the regioselectivity between C5 and C2 position remains unaddressed.

For such 3-substituted thiophenes, the regioselectivity of the C–H activation is mainly governed by the steric and electronic properties of the substituents as well as the sensitivity of the catalyst system towards these effects.[6,7] For substrates bearing electron-donating substituents in the 3-position, the C2 product is electronically favored and hence an electrophilic reagent or catalyst is expected to induce the functionalization in this position. In contrast, a catalyst that is more sensitive to steric hindrance is expected to lead to C5-substitution through a pathway in which the steric clash between the catalyst and the substituent in the 3-position is avoided. For electron-withdrawing groups in the 3-position another effect comes into play. Since many of these substituents are also Lewis-basic, they can act as directing groups (DGs) thereby favoring the functionalization in the neighboring C2-position (and in principle also the often less reactive C4-position) through chelation control. In 2017, Zeng and co-workers reported a directed Ir-catalyzed ortho-alkynylation of arenes which included one example of such a carboxylate-directed, C2-selective alkynylation of a 3-substituted thiophene (Scheme 1).[8]

![Scheme 1](image)

Scheme 1. Explored and Unexplored Areas of Regioselective C–H Alkynylation of 3-Substituted Thiophenes.

Also in 2017, Echavarren and co-workers reported a Ru-catalyzed ortho-alkynylation of arenes. As part of this study they demonstrated the carboxylic acid-directed alkynylation of 3-substituted thiophenes to get di-alkynylation at the C2- and C4-position.[9] One example of a C2-selective mono-alkynylation employing 4-bromothiophene-3-carboxylic acid as substrate was...
also reported (Scheme 1). In 2018, the same group reported a Rh-catalyzed ortho-alkynylation of arenes, which included one example of a 3-substituted thiophene with benzyl ether as weak DG to deliver the C2 product (Scheme 1).\cite{11} As highlighted above, the direct C−H alkylation of thiophenes remains a highly challenging yet attractive goal. For C2-substituted substrates substantial limitations still exist with respect to the scope of substrates that can be addressed. The more challenging 3-substituted substrates have to date only been addressed in isolated cases leading to C2-selective functionalization. Based on these observations and our recent experience in controlling the regioselectivity of C−H activations on heteroarenes,\cite{12} we hypothesized that through the design of suitable catalysts a regiodivergent reactivity enabling both a C2- and a C5-selective alkylation of thiophenes could be developed.\cite{13} Additionally, we expected that one of these catalyst systems would likely display a broad scope with respect to thiophenes with simpler substitution patterns as well, thereby allowing us to develop a general method for the alkylation of thiophenes.

We thus began our studies with 3-hexyl thiophene 1a as model compound. We expected that by applying our dual ligand enabled catalyst design,\cite{13} which is known to deliver products under sterically controlled conditions, we would be able to induce an alkylation in the C5-position. Although our initial experiments delivered poor regioselectivities, we observed a highly promising ligand control of the regioselectivity when increasing the steric demand of the substituent on the amino acid-derived ligand (L1–L4, Scheme 2).

Using L4, we proceeded to optimize the reaction conditions and identified the protocol shown in Entry 1 of Table 1. Under these conditions the target compound 3a-C5 was obtained in good yield (71%) and regioselectivity (94:6). Importantly, our control experiments revealed that the reaction is indeed dual ligand-enabled, since in the absence of either ligand, substantially worse reaction outcomes were observed (Entries 2-4).

With the optimized reaction conditions in hand, we proceed to explore the scope of the reaction (Scheme 3). The sterically controlled nature of the catalyst system is visible if one compares the selectivity of the entries 3a-C5–3c-C5, where a decrease in the steric bulk of the alkyl substituent somewhat decreases the C5 selectivity, albeit still remaining good even for the small methyl group. Electron-withdrawing ester and ketone substituents are also tolerated and give products with good C5 selectivity under both electronic and sterically controlled conditions (Scheme 3).

All reactions were conducted on a 0.1 mmol scale. A range of products were obtained, including a series of arenes, which included thiophene, benzene, and naphthalene derivatives. Importantly, our protocol works well for a series of 3-aryl substituted thiophenes (Scheme 3), as well as a series of 3-alkyl substituted thiophenes (Scheme 3).

Using L4, we proceeded to optimize the reaction conditions and identified the protocol shown in Entry 1 of Table 1. Under these conditions the target compound 3a-C5 was obtained in good yield (71%) and regioselectivity (94:6). Importantly, our control experiments revealed that the reaction is indeed dual ligand-enabled, since in the absence of either ligand, substantially worse reaction outcomes were observed (Entries 2-4).

With the optimized reaction conditions in hand, we proceed to explore the scope of the reaction (Scheme 3). The sterically controlled nature of the catalyst system is visible if one compares the selectivity of the entries 3a-C5–3c-C5, where a decrease in the steric bulk of the alkyl substituent somewhat decreases the C5 selectivity, albeit still remaining good even for the small methyl group. Electron-withdrawing ester and ketone substituents are also tolerated and give products with good C5 selectivity under both electronic and sterically controlled conditions (Scheme 3).

All reactions were conducted on a 0.1 mmol scale. A range of products were obtained, including a series of arenes, which included thiophene, benzene, and naphthalene derivatives. Importantly, our protocol works well for a series of 3-aryl substituted thiophenes (Scheme 3), as well as a series of 3-alkyl substituted thiophenes (Scheme 3).
Scheme 4. Ligand Development for C2 Selectivity. All reactions were conducted on a 0.1 mmol scale. Yields and ratios were determined using GC-FID analysis using 1,3,5-trimethoxybenzene as an internal standard.

Unfortunately, combining these effects in L7 did not deliver satisfactory results. We thus proceeded to test stronger electron-withdrawing substituents on the ligand. We installed a COCF3-substituent (L8) and a SO2CF3-substituent (L9) on the nitrogen of glycine and gratifyingly, L8 was able to deliver a 4:1 selectivity in favor of the C2 product. Lastly, we tested ligand L10, which constitutes a permutation of the positive effects seen in L5 and L8. However, this ligand gave a reduced yield and no improvement in the regioselectivity compared to L8, which was therefore chosen for further optimization studies. We proceed to screen various other parameters which led us to identify reaction conditions under which a good yield and regioselectivity are obtained (for details, see the Supporting Information).

These conditions were then used to explore the scope of the C2-selective alkynylation (Scheme 5). The trend in C2 selectivity observed from hexyl to methyl substituent (Scheme 5, 3a-C2–3c-C2) shows that this catalyst system, while predominantly controlled by electronics, is sensitive to sterics as well, since the C2-selectivity is best when steric hindrance at this position is low. Halide substituents (3p-C2 and 3q-C2) as well as a strong electron-donating methoxy (3r-C2) group give the C2 product exclusively. We also tested various aryl-substituted thiophenes (Scheme 5, entries 3i-C2–3m-C2). In contrast to the C5-selective protocol and as expected for an electronically controlled reaction, we observed a much stronger dependence of the reaction outcome on the electronic nature of the substituent. An electron-donating methoxy substituent (3i-C2) on the phenyl ring gives substantially higher C2-selectivity than an electron-poor ester substituent (3m-C2). Irrespective of these effects on the regioselectivity, the functional group compatibility was found to be good for the C2-selective protocol as well. Finally, this catalyst system can also be used to deliver alkynylation product from an amino acid-derived thiophene derivative (3n-C2) and an estrone derivative (3o-C2) with good C2 selectivity.

Having established the thiophene scope for our regiodivergent protocols, we were interested to evaluate the use of other bromoalkynes with both protocols (Scheme 6). We found that a considerable range of bromoalkynes could be used in both directions with good yield and selectivity.

Scheme 5. Reaction scope (C2 selectivity). All reactions were conducted on a 0.2 mmol scale. a. Reaction conducted at 35 °C with 2 equivalents of reagent. b. Reaction conducted at 50 °C. c. Reaction conducted on a 1 mmol scale.

Scheme 6. Alkyne scope. All reactions were conducted on a 0.2 mmol scale. a. Reaction conducted at 35 °C with 2 equivalents of alkyn reagent.
A TBS-group was well tolerated (4-C5 and 4-C2), as well as various alkyl-substituted bromoalkynes as reagent (5-C5–11-C5 and 5-C2–11-C2). Unfortunately, phenylacetylene-derived bromoalkynes gave unsatisfactory results under our reaction conditions. However, the regiodivergent reactivity developed herein can nevertheless be harnessed for such target compounds. To demonstrate this, we performed the deprotection of the TIPS-group followed by Sonogashira cross-coupling with 4-iodotoluene in both directions using our standard substrate and isolated the desired products 13-C5 and 13-C2 in synthetically useful yield (Scheme 7).

As mentioned earlier, we expected that once the challenging regioselective alkynylation of 3-substituted thiophenes would be addressed, the respective catalyst systems would likely also provide a general method for the alkynylation of all types of thiophenes. We tried the conditions developed for the C5 and C2-selective alkynylations on 2-ethyl thiophene (15a, Scheme 8) as model substrate and found that the later delivered satisfactory results. An electron donating methoxy substituent (15b) is well tolerated. Likewise, an aryl substituent in the 2-position led to a good reaction outcome (15c). Finally, halide substituents (15d–e) and 2,3-di substitution (15f) were found to be well tolerated.

In summary, we have developed a pair of general catalysts for the Pd-catalyzed non-directed C–H activation/alkynylation of thiophenes that are suitable for all kinds of substitution patterns on the thiophene. For regioselectivity-wise challenging 3-substituted substrates the protocols are complementary, giving a regiodivergent access to the C5- and C2-alkynylated products respectively. Overall, a broad scope with respect to the thiophene and alkyne reaction partner can be addressed, including structurally complex examples. In all cases the thiophene substrate is used as the limiting reagent, which renders this protocol attractive in the context of late-stage modification.

Acknowledgements

We gratefully acknowledge financial support from the DFG (Emmy Noether Programme), Max Planck Society (Otto Hahn Award to M.v.G.), and WWU Münster. We thank the members of our NMR and MS departments for their excellent service, as well as M. Farizyan for providing starting materials and and S. Bognar for confirming the reproducibility of the reaction. Also, thanks to A. Utiry, K. K. Ghosh and H. Chen for valuable discussions and proof reading of the manuscript. Furthermore, we are indebted to Prof. F. Glorius for his generous support.

Keywords: C–H Activation • Alkynylation • Regioselectivity • Regiodivergent • Thiophenes

[1] The chemistry of Heterocyclic Compounds, Wiley-Interscience, New York, 1994.
[2] a) H. Doucel, J.-C. Hierso, Angew. Chem. Int. Ed. 2007, 46, 834; b) R. Chinchilla, C. Nájera, Chem. Soc. Rev. 2011, 40, 5084.
[3] F. Diederich, P. J. Stang, R. R. Tykwinski, Acetylene chemistry, Chemistry, biology, and material science, Wiley-VCH, Weinheim, 2005.
[4] J. P. Brand, J. Waser, Angew. Chem. Int. Ed. 2010, 49, 7304.
[5] a) X. Jie, Y. Shang, P. Hu, W. Su, Angew. Chem. Int. Ed. 2013, 52, 3630; b) additionally, a single example of a C5-selective alkynylation with a 2,3-disubstituted thiophene substrate has been described by Li and coworkers: B. Liu, W. Ouyang, J. Nie, Y. Gao, K. Feng, Y. Huo, Q. Chen, X. Li, Chem. Commun. 2020, DOI: 10.1039/D0CC4738B.
[6] For C–C bond-forming reactions of 3-donor-substituted thiophenes, see: a) P. Forgione, M.-C. Brochu, M. St-Onge, K. H. Thesen, M. D. Bailey, F. Biloedeau, J. Am. Chem. Soc. 2006, 128, 11350; b) J. Fournier Dit Chabert, B. Marquez, L. Neville, L. Joucla, S. Broussoux, P. Bouhours, E. David, S. Pellet, C. Brochu, M. St-Onge, K. H. Thesen, M. D. Bailey, F. Biloedeau, J. Am. Chem. Soc. 2006, 128, 11350; c) J. Zhao, J. Wang, B. Yan, M. Huang, Y. Zhu, Y. Wu, W. Su, Tetrahedron Lett. 2009, 50, 2758; d) B. Join, T. Yamamoto, K. Itami, Angew. Chem. Int. Ed. 2009, 48, 3644; e) B. Liegault, I. Petrov, S. I. Gorelsky, K. Fagnou, J. Org. Chem. 2010, 75, 1047; f) H. Zhang, D. Liu, C. Chen, A. Lei, Chem. Eur. J. 2011, 17, 9581; g) Y. Zhang, Z. Li, Z.-Q. Liu, Org. Lett. 2012, 14, 226; h) Z. Jiang, L. Zhang, C. Dong, Z. Cai, W. Tang, H. Li, L. Xu, J. Xiao, Adv. Synth. Catal. 2012, 354, 3225; i) Y. Li, J. Wang, B. Yan, M. Huang, Y. Zhi, Y. Wu, W. Wu, Tetrahedron 2015, 71, 2729; j) B. J. Gorsline, L. Wang, P. Ren, B. P. Carrow, J. Am. Chem. Soc. 2017, 139, 9605; k) Z.-K. Wen, T.-T. Song, Y.-F. Liu, J.-B. Chao, Chem. Commun. 2018, 54, 3668; l) Y. Álvarez-Casas, M. Á. Fernández-Ibáñez, Eur. J.
For C–C bond-forming reactions of 3-acceptor-substituted thiophenes, see: a) L. Lavenot, C. Gozzi, K. Ilg, I. Orlova, V. Penalva, M. Lemaire, J. Organomet. Chem. 1998, 567, 49; b) B. Glover, K. A. Harvey, B. Liu, M. J. Sharp, M. F. Tymoschenko, Org. Lett. 2003, 5, 301; c) J. J. Dong, H. Doucet, Eur. J. Org. Chem. 2010, 2010, 611; d) S. H. Park, J. Y. Kim, S. Chang, Angew. Chem. Int. Ed. 2020, 59, 12213; e) H. Chen, M. Farizyan, F. Ghiringhelli, M. van Gemmeren, Eur. J. Org. Chem. 2020, DOI: 10.1002/ejoc.202000659.

For silylation and borylation reactions of 3-substituted thiophenes, see: a) G. A. Chotana, V. A. Kallepalli, R. E. Maleczka, M. R. Smith, Tetrahedron 2008, 64, 6103 b) T. Hatanaka, Y. Ohki, K. Tatsumi, Chem. Asian. J. 2010, 5, 1657; c) D. W. Robbins, J. F. Hartwig, Org. Lett. 2012, 14, 4266; d) S. L. Miller, G. A. Chotana, J. A. Fritz, B. Chattopadhyay, R. E. Maleczka, M. R. Smith, Org. Lett. 2019, 21, 6388; e) C. Karmel, C. Z. Rubel, E. V. Kharitonova, J. F. Hartwig, Angew. Chem. Int. Ed. 2020, 59, 6074; f) J. S. Wright, P. J. H. Scott, P. G. Steel, Angew. Chem. Int. Ed. 2020, DOI: 10.1002/anie.202001520; and ref. [6b].

C. Chen, P. Liu, J. Tang, G. Deng, X. Zeng, Org. Lett. 2017, 19, 2474.

E. Tan, A. I. Konovalov, G. A. Fernández, R. Doreil, A. M. Echavarren, Org. Lett. 2017, 19, 5561.

E. Tan, O. Quinonero, M. Elena de Orbe, A. M. Echavarren, ACS Catal. 2018, 8, 2166.

E. M. Beck, N. P. Grimster, R. Hatley, M. J. Gaunt, J. Am. Chem. Soc. 2006, 128, 2538; b) K. Ueda, K. A. Fritz, B. Chattopadhyay, R. E. Maleczka, M. R. Smith, Org. Lett. 2019, 21, 6388; c) I. Sasaki, J. Taguchi, S. Hiraki, H. Ito, T. Ishiyama, Chem. Eur. J. 2015, 21, 9236; d) Y. Su, S. Gao, Y. Huang, A. Lin, H. Yao, Chem. Eur. J. 2015, 21, 15820; e) C. Nájera, I. P. Beletskaya, M. Yus, Chem. Soc. Rev. 2019, 48, 4515.

H. Chen, P. Wedi, T. Meyer, G. Tavakoli, M. van Gemmeren, Angew. Chem. Int. Ed. 2016, 57, 2497; b) D. Zhao, P. Xu, T. Ritter, Chem. 2019, 5, 97; c) H. Chen, A. Mondal, P. Wedi, M. van Gemmeren, ACS Catal. 2019, 9, 1979; d) A. Mondal, H. Chen, L. Flämig, P. Wedi, M. van Gemmeren, J. Am. Chem. Soc. 2019, 141, 18662.

T. Liu, J. X. Qiao, M. A. Poss, J.-Q. Yu, Angew. Chem. Int. Ed. 2017, 56, 10924; b) S. Porey, X. Zhang, S. Bhowmick, V. Kumar Singh, S. Guin, R. S. Paton, D. Maili, J. Am. Chem. Soc. 2020, 142, 3782.
A method for the direct C–H alkynylation of thiophenes has been developed. Complementary sets of reaction conditions enable a regiodivergence for 3-substituted substrates, giving selective access to either the C2 or the C5 alkynylation products. The method works for various substitution patterns on the thiophene, features a broad scope, and uses the thiophene as the limiting reagent, rendering it suitable for late-stage modification.

Institute and/or researcher Twitter usernames: @vanGemmerenLab @WWU_Muenster