Catalytic Decomposition of Residual Ozone over Cactus-like MnO$_2$ Nanosphere: Synergistic Mechanism and SO$_2$/H$_2$O Interference

Hairong Tang, Zhihua Wang, Jiaming Shao, Fawei Lin, Peixi Liu, Yong He, and Yanqun Zhu

ABSTRACT: Ground-level ozone is an irritant and is harmful to human respiratory and nervous systems. Thus, four manganese oxides with different crystals were hydrothermally synthesized to decompose residual ozone (deO$_3$) in an ozone synergistic—oxidation system. Among them, a cactus-like MnO$_2$-IV nanosphere exhibited the highest deO$_3$ activity, with excellent tolerance to water vapor and SO$_2$/H$_2$O, which could maintain >88% deO$_3$ efficiency in the high-humidity and sulfur-containing conditions. It benefits from the unique morphology, high specific surface area, superior redox properties, oxygen chemisorption capabilities, abundant surface-active hydroxyl species, and low valence Mn species. More importantly, the detailed interference mechanism of O$_2$/O$_3$/H$_2$O/SO$_2$ molecules on MnO$_2$-IV was revealed utilizing in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy. H$_2$O generally caused recoverable deactivation, but that caused by SO$_2$ was irreversible. The synergistic effect of SO$_2$/H$_2$O promoted the formation of an unstable sulfate species, thereby deepening the deactivation but inhibiting the irreversible poisoning. Finally, nine specific steps to decompose ozone via surface-active hydroxyl/intermediates were established.

1. INTRODUCTION

Ozone has strong oxidizing properties and is one of the strongest oxidants in nature. Excess ground-level ozone is an irritant and is harmful to human respiratory and nervous systems, which can cause serious respiratory symptoms like coughing, chest tightness, and tachypnea. Moreover, breathing ambient air containing ozone can induce asthma symptoms. Commonly, ground-level ozone can be generated naturally via photochemical reactions under conditions of high temperature, sufficient sunshine, and dry air. Nowadays, anthropogenic ground-level ozone, derived from the nitrogen oxides (NO$_x$) and volatile organic compounds (VOCs), has been listed as one of the main air pollutants. Therefore, a lot of work has been devoted to controlling the emission of air pollutant precursors. Furthermore, the emissions and unorganized diffusion issues of indoor residual ozone are also important, such as wastewater treatment, disinfection, air purifiers, laser printers, and so on. For these occasions where ozone is actively generated and released, more work has been devoted to controlling (indoor) ozone emission under simple gas components. However, there is still a lack of research on complex industrial conditions.

Recently, ozone synergistic—oxidation technology has been rapidly applied to industries for flue gas treatment. These medium-sized boilers/furnaces in biomass power plants, thermal power plants, and industries such as rubber, glass, and waste incineration are limited by space, flue gas conditions, and capital, resulting in unavailable application of traditional selective noncatalytic reduction (SNCR) technology and selective catalytic reduction (SCR) technology for NO$_x$ abatement. In contrast, ozone can preferentially convert insoluble NO into highly soluble NO$_2$/N$_2$O$_5$ at a low temperature (80–140 °C), whereas SO$_2$ cannot be oxidized by ozone under these conditions. Further, the insoluble mercury and VOCs can also be oxidized into soluble Hg$^{2+}$ and environmentally friendly CO$_2$ and H$_2$O by O$_3$, respectively. Subsequently, the oxidized soluble NO$_2$, N$_2$O$_5$, Hg$^{2+}$, and CO$_2$ can be absorbed together with SO$_2$ in a wet scrubber. It is advantageous that the original wet flue gas desulfurization (WFGD) system can undertake the absorption functions and achieve a simultaneous multipollutant removal function. However, due to the load/fuel fluctuations in actual engineering applications, residual ozone can be detected in the exhaust gas especially when excess ozone is injected to achieve a higher denitrification efficiency. Sometimes residual ozone even reaches up to ∼22 ppm under the molar ratio of O$_3$/NO around 2.9, which exceeds the standards of 50 ppb (suggested by World Health Organization) and 0.16 mg/m3.
The residual ozone has already received public attention and has hindered the applications of ozonation technology. Therefore, there is an urgent need to develop an effective method to eliminate the residual ozone, especially one that can adapt to the complex flue gas conditions.

So far, the reported technologies to eliminate ozone include activated carbon adsorption, liquid absorption, thermal decomposition, and direct catalytic decomposition. Among them, the direct catalytic decomposition method, benefiting from its stability, safety, and economy, is considered as the most promising way to achieve nonhazardous disposal of ozone. In terms of non-noble catalysts, manganese-based catalysts generally exhibit excellent low-temperature activity and promote the decomposition of ozone (deO$_3$) 26,27 Therefore, considerable research has been devoted to revealing the deO$_3$ mechanism of Mn-based catalysts. As shown in eqs 1−3, the widely accepted mechanism consists of the dissociative adsorption of O$_3$ and the desorption of adsorbed intermediates (the symbol * represents active sites). $^{28−30}$

Research shows that manganese oxides can form various crystals with different tunnel structures through MnO$_6$ octahedra units, which provide abundant active sites and oxygen vacancies. 27,31 Herein, surface oxygen vacancies can significantly improve the adsorption and decomposition of O$_3$ molecules. 30 Furthermore, the surface defects and low valence Mn$^{3+}$/Mn$^{4+}$ species in the structure also play key roles in the ozone decomposition process. 32 In addition to pure MnO$_2$, the deO$_3$ behaviors of supported MnO$_2$ catalysts are closely related to the characteristics of support and the loading situation of Mn species. For instance, the deO$_3$ activity of MnO$_2$/ZSM-5 zeolite is related to the surface acidic sites and hydrophobicity of the ZSM-5 support. 20,33 Zhu et al. obtained α-MnO$_2$ nanofibers with a high concentration of surface oxygen vacancies by vacuum deoxidation, which increased their ozone removal rate from 32.6 to 95% in dry gas flow. 30 Moreover, the specific intermediate and binding method of O$_3$ molecules adsorbed on the Mn-based samples is also a hot research topic, which has not yet been further explored. For example, Mn(OH)$_4$(O$_2$)$^+$ species on MnO$_2$/Al$_2$O$_3$ are considered to be the possible compound for the adsorbed oxygen species. 28 Given that the complex compositions in flue gas and water vapor can cause catalyst deactivation, it is an important factor for the deO$_3$ applications. For example, the ozone removal rate of α-MnO$_2$ nanofibers at 12 h decreased from 97 to 48%, whereas the relative humidity (RH) increased from <5 to 30%. 30 Doping and modifying (K, 34 Na, 35 Fe, 21 Ni, 36 and Ce, 37 etc.) could adjust the average valence of Mn and promote the oxygen vacancies, thus obtaining a better deO$_3$ performance and water vapor resistance capability. MnFe$_{0.5}$O$_2$ catalyst modified by Fe atoms has more abundant surface Mn$^{3+}$ (Mn$^{4+}$) species and can maintain over 85% ozone conversion under >90% RH. 21 Nevertheless, most of the above-mentioned work was aimed at a simple application condition. The interference mechanism of water vapor on ozone decomposition is generally unclear, especially under the complex flue gas containing multiple components.

\[
\text{O}_3(g) + \ast \rightarrow \text{O}^+ + \text{O}_2(g) \quad (1)
\]

\[
\text{O}_3(g) + \text{O}^+ \rightarrow \text{O}_2(g) + \text{O}_2^+ \quad (2)
\]

\[
\text{O}_2^* \rightarrow \text{O}_2(g) + \ast \quad (3)
\]

In summary, the existing research on O$_3$ decomposition has made relatively good progress in catalyst synthesis and decomposition mechanism. However, detailed literature on high humidity and low sulfur conditions is rare, resulting in a few useful works when dealing with residual O$_3$ in the ozone synergistic−oxidation system. In particular, under sulfur-containing and humidity conditions, the specific changes of the intermediate product and the deactivation mechanism on the catalyst surface are still unclear. To the best of our knowledge, there is no report for ozone elimination closely integrated with the actual flue gas conditions of the ozone synergistic−oxidation system.

Hence, this work was devoted to revealing the decomposition behavior of O$_3$ molecules on hydrothermally synthesized manganese oxides, especially with the interference of water vapor and SO$_2$. Notably, the detailed O$_3$/O$_2$/H$_2$O/SO$_2$ adsorption behaviors on cactus-like MnO$_2$ were revealed utilizing in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and X-ray photoelectron spectroscopy (XPS). More importantly, a novel mechanism in which ozone molecules are decomposed via the surface-active hydroxyl
species was proposed. This work provides deeper insight into residual ozone decomposition and promotes the industrial applications of affordable Mn-based catalysts in the ozone synergistic–oxidation system.

2. EXPERIMENTAL METHODOLOGY

2.1. Preparation of Catalysts. Four manganese oxides with different crystalline structures (abbreviated as MnO2-I, MnO2-II, MnO2-III, and MnO2-IV) were synthesized by a uniform hydrothermal method. In the synthesis of MnO2-I, 16 mmol KMnO4 (Sinopharm, China) and 6 mmol MnSO4·H2O (Sinopharm, China) were dissolved in 160 mL of deionized water under ultrasonic stirring for 20 min, and the solution was kept at 140 °C for 12 h in a 200 mL Teflon-lined autoclave. The precipitation was further dried at 110 °C for 12 h after thorough centrifugation and washing, and then the obtained powder was annealed at 300 °C for 3 h in air. The syntheses of MnO2-II, MnO2-III, and MnO2-IV were similar to that of MnO2-I except for the differences of precursors and hydro-thermal conditions. Specifically, MnO2-II was synthesized with (NH4)2S2O8 (Sinopharm, 10 mmol) and MnSO4·H2O (10 mmol). For MnO2-III, the solution with (NH4)2S2O8 (16 mmol) and MnSO4·H2O (16 mmol) was hydrothermally reacted at 90 °C for 24 h. Further, MnO2-IV was synthesized via the hydrothermal reaction of KMnO4 (36 mmol) and MnSO4·H2O (6 mmol) at 240 °C for 24 h. All of the reagents were of analytical grade, and the catalysts were screened with 40–60 mesh before the activity tests.

2.2. Activity Tests. The O3 decomposition activity and SO2/H2O resistance tests of the synthesized manganese oxides were evaluated in a fixed-bed furnace, and the schematic diagram is shown in Figure 1. The experimental setup consisted of a gas-feeding system, an ozone generation–detection system, an electric heated reaction furnace, and a Fourier transform infrared (FTIR) analyzer. Source gas was supplied from cylinder bottles (Hangzhou Jingong Special Gas Co., Ltd., 99.999% for O3, 99.999% for N2, 1000 ppm/balance N2 for SO2) and controlled by mass flow controllers (MFCs, O2/O2, Beijing Sevenstar Electronics Co., Ltd.; N2, SO2, Alicat Scientific, Inc.). Ozone was generated by a dielectric barrier discharge (DBD) reactor (VMUS-1S, AZCO Industries., Ltd.) and divided into two parts. The initial O3 concentration was monitored by a high concentration ozone analyzer (BMT-964B, O3, Inc., range: 0–20 g/Nm3, resolution: 0.1 g/Nm3), and then one O3 stream was mixed with N2 according to the calculated molar ratio. The residual O3 after decomposition was measured by a dual beam ozone monitor (model 205, 2B Technologies, Inc., 0–250 ppm, resolution 0.1 ppb). The reaction furnace was equipped with a K-type thermocouple inserted to monitor the reaction temperature.

In each test, 0.15 g of MnO2 was mixed with quartz sand (SiO2, Sinopharm, 40–60 mesh) and placed in a quartz cylindrical tube (inner diameter: 12 mm). The total flow rate was kept at approximately 1.5 L/min with the gas hour space velocity (GHSV) of ~30000 h⁻¹ (or ~90000 h⁻¹), and the initial O3 concentration in the mixed gas was ~100 ppm. For facilitating comparison and multiple replicates, the activity data after a 300 min test were used to investigate their deO3 performance, and the stability results (MnO2-IV, 12 h) are shown in the Supporting Information (Figure S1). Subsequently, MnO2-IV was selected to do further tolerance investigations because of its highest activity among four manganese oxides. The H2O/SO2 tolerance tests were performed based on the high-humidity gas conditions and “ultralow emission” standards (SO2 < 35 mg/Nm³) after the scrubber. Water vapor or 10 ppm (28.57 mg/Nm³) SO2 was introduced into the reactor after a 60 min stabilization at 80 °C to investigate the catalytic tolerance to water vapor and SO2. Water vapor was carried via a nitrogen flow by the heating–bubbling method and measured by a humidity analyzer (TH21E, Anymetre, Inc.). The inlet and outlet concentrations of SO2 were monitored with a Gasmet DX4000 FTIR analyzer. The O3 decomposition efficiency was calculated by the following eq 4:

$$\eta_{O_3} = \frac{[O_3]_{\text{inlet}} - [O_3]_{\text{outlet}}}{[O_3]_{\text{inlet}}} \times 100\% $$

where η_{O_3} represents the ozone decomposition efficiency of the catalyst. $[O_3]_{\text{inlet}}$ and $[O_3]_{\text{outlet}}$ represent the initial and outlet ozone concentration in parts per million, respectively.

2.3. Catalyst Characterization. Powder X-ray diffraction (XRD) patterns were obtained on a Rigaku D/max 2550PC diffractometer using monochromatized Cu Kα radiation (λ = 1.5406 Å, step size = 0.05°, 4° min⁻¹ from 10 to 80°). The surface area of catalyst was determined by the Brunauer–Emmett–Teller (BET) model from nitrogen adsorption–desorption isotherms (at 77 K, Gemini V2380 chemical adsorption analyzer). Moreover, the Barrett–Joyner–Halenda (BJH) method was used to calculate pore volume and average pore diameter. The micromorphology of the catalyst was detected on a Hitachi SU-70 field emission scanning electron microscope (FE-SEM). X-ray photoelectron spectra were recorded on a Thermo Scientific ESCALAB 250Xi analyzer using a standard Al Kα source (1486.6 eV), and all binding energies are referenced to the C 1s peak at 284.8 eV.

The hydrogen temperature-programmed reduction (H2-TPR) and oxygen temperature-programmed desorption (O2-TPD) measurements were conducted on a Micromeritics AutoChem II 2920 chemical adsorption analyzer with a thermal conductivity (TCD) detector. In the H2-TPR test, ~50 mg of catalyst was loaded in the U-type quartz tube to undergo the pretreatment. The sample was first purged at 200 °C for 1 h under 30 mL/min of He flow and then cooled naturally to 100 °C. After stabilization, the program was heated to 800 °C (10 °C/min) under 20 mL/min of 5 vol % H2/Ar flow, and the signal intensity was recorded by the TCD detector. The hydrogen consumption was referenced to the data of standard copper oxide and further quantified. For O2-TPD, ~50 mg of catalyst was similarly pretreated and then cooled to 50 °C. In the subsequent adsorption, the catalyst was treated in a 50 mL/min of 2 vol % O2/He flow for 1 h and further purged under 30 mL/min of He for 50 min to remove residual gas as well as physically adsorbed species. Furthermore, the program was heated to 900 °C (10 °C/min) under 50 mL/min of He flow, and the TPD data were collected by a Hiden QIC20 mass spectroscope.

FTIR spectra of samples before/after the reactions were collected on a Thermo Nicolet iS50 FTIR spectrometer. Further, in situ DRIFTS data were conducted on an iS50 spectrometer equipped with a reaction chamber (Praying Mantis) and detected by a mercury cadmium telluride (MCT/A) detector. For each test, the catalyst was purged by 100 mL/min of N2 flow at 150 °C for 30 min and then cooled naturally to 80 °C. Subsequently, the in situ spectra were recorded at a
resolution of 4 cm\(^{-1}\) in a 600–4000 cm\(^{-1}\) range under specific simulated flue gas conditions (O\(_2\)/O\(_3\)/SO\(_2\)/H\(_2\)O).

3. RESULTS AND DISCUSSION

3.1. Crystal Structures, Morphologies, and Textural Properties. Powder XRD data were collected to confirm the crystal structures of four synthesized MnO\(_x\), and their patterns are shown in Figure 2. Figure S2 represented the standard XRD patterns of JCPDS 44-0141 (\(\alpha\)-MnO\(_2\)),\(^{38}\) JCPDS 24-0735 (pyrolusite, \(\beta\)-MnO\(_2\)),\(^{39}\) JCPDS 14-0644 (nsutite, \(\gamma\)-MnO\(_2\)),\(^{40}\) and JCPDS 52-0556 (birnessite-type potassium MnO\(_2\), \(\delta\)-MnO\(_2\)).\(^{41,42}\) The diffraction pattern for the MnO\(_2\)-I sample exhibits typical characteristic peaks at 12.8, 18.1, 28.8, 37.5, 42.0, 49.9, 60.3, and 69.7\(^\circ\), corresponding to (110), (200), (211), (301), (521), and (541) planes of \(\alpha\)-MnO\(_2\), respectively. The MnO\(_2\)-II sample exhibits sharp peaks at 28.7, 37.3, 42.8, 56.7, 59.4, and 72.3\(^\circ\) corresponding to (110), (101), (211), (220), and (301) planes of \(\beta\)-MnO\(_2\), respectively. Both MnO\(_2\)-I and MnO\(_2\)-II had sharp and intense diffraction peaks as well as no impurity peaks, indicating their highly crystalline nature and high purity.\(^{43}\) Nevertheless, the diffraction patterns for MnO\(_2\)-III and MnO\(_2\)-IV were much weaker. The wide diffraction peaks with low intensities observed in MnO\(_2\)-III at 22.4, 37.1, 42.6, 56.1, and 65.6\(^\circ\) were ascribed to (120), (131), (300), (160), and (421) planes of \(\gamma\)-MnO\(_2\), indicating the poor crystallinity of \(\gamma\)-MnO\(_2\) in MnO\(_2\)-III.\(^{44}\) Additionally, the broad peaks with a slight shift at 12.4, 25.0, 37.1, 42.1, ~49.7, and ~65.5\(^\circ\) observed over MnO\(_2\)-IV were partially assigned to (003), (006), (012), (015), (018), and (110) planes of \(\delta\)-MnO\(_2\), respectively. This indicated that there are weak crystallization and slight lattice defects associated with \(\delta\)-MnO\(_2\) in the MnO\(_2\)-IV phase. Further, the relatively intense diffraction peak at 12.4\(^\circ\) ((003) plane) suggested that more MnO\(_6\) octahedral units had extended growth along the plane, which possibly formed the local layered structures under the stabilization of plentiful K\(^+\) or H\(_2\)O molecules as the template.\(^{45}\) The XRD results confirmed that four high-purity manganese oxides with different crystals were successfully synthesized.

Scanning electron microscopy (SEM) measurements were collected to further distinguish morphologies and surface structures of the synthesized MnO\(_2\). As shown in Figure 3a1,a2, SEM images showed that particles of MnO\(_2\)-I adopted a slender and regular rod-like morphology with diameters of 50–100 nm and lengths of 1–6 \(\mu\)m that tended to be randomly distributed and clustered in loose clusters. Moreover, SEM images (Figure 3b1,b2) presented that MnO\(_2\)-II mainly consisted of nanowires that were shorter but thicker than those of MnO\(_2\)-I, as well as a few flat-regular flakes with diameters of 150–400 nm. These morphologies coincided with the good crystallinity in their XRD results (Figure 2). Different from the former two with the randomly distributed nanorods/nanowires, SEM images of both MnO\(_2\)-III and MnO\(_2\)-IV exhibited some agglomerated particles. As shown in Figure 3c1,c2, SEM images of MnO\(_2\)-III catalysts presented some rough nano-spheres with diameters of 3.5–10.0 \(\mu\)m, and each nanosphere was composed of closely packed nanowires as well as prolate agglomerated nanoflakes, confirming its weak crystallization in the XRD pattern. Further, Figure 3d1,d2 presents that MnO\(_2\)-IV consisted of cactus-like nanospheres, and the diameters ranged from 1.0 to 5.6 \(\mu\)m. Interestingly, MnO\(_2\)-IV nanospheres agglomerated more compactly and smaller than the other three samples, and the surface morphologies of the

![Figure 2. Powder XRD patterns of manganese oxides in the 2\(\theta\) range of 10–80\(^\circ\).](image)

![Figure 3. SEM images of (a1,a2) MnO\(_2\)-I, (b1,b2) MnO\(_2\)-II, (c1,c2) MnO\(_2\)-III, and (d1,d2) MnO\(_2\)-IV.](image)
particles (Figure 3h) showed lichen-like or cactus-like structures with many thin flaky protrusions. This should be related to the layered structures of weakly crystalline δ-MnO₂ on the surface, attributed to the intense peak ((003) plane) in its XRD pattern.

The textural properties were investigated by N₂ adsorption--desorption characterization and are summarized in Table 1.

Table 1. Textural Properties of Manganese Oxides

catalyst	BET surface area (m²·g⁻¹)	pore volume(BJH) (mL·g⁻¹)	avg. pore diameter(BJH) (nm)
MnO₂-I	22	7.8	16.9
MnO₂-II	11	3.3	12.9
MnO₂-III	42	17.0	18.0
MnO₂-IV	84	29.5	12.6

The detailed nitrogen adsorption--desorption isotherms are shown in Figure S3, and the inset curves in Figure S3 show the pore size distribution calculated by the BJH method. All of these catalysts exhibit type IV isotherms with a H3 hysteresis loop and the low nitrogen adsorption--desorption average pore diameter. The average pore size decreased in the order of MnO₂-IV > MnO₂-III > MnO₂-I > MnO₂-II. Among them, MnO₂-IV possessed the largest specific surface area of 84 m²·g⁻¹, which was beneficial to decompose ozone. In comparison, MnO₂-II possessed the lowest specific surface area and pore volume of 11 m²·g⁻¹ and 29.5 mL·g⁻¹, respectively, possibly resulting in a poor catalytic activity. The detailed nitrogen adsorption--desorption isotherms are shown in Figure S3, and the inset curves in Figure S3 show the pore size distribution calculated by the BJH method. All of these catalysts exhibit type IV isotherms with a H3 hysteresis loop and the low nitrogen adsorption--desorption average pore diameter. This indicates that these catalysts possessed plentiful mesopores, and the pore structures were very irregular. The average pore size decreased in the order of MnO₂-III > MnO₂-I > MnO₂-II > MnO₂-IV. Specifically, MnO₂-I and MnO₂-II possessed a broad mesopore distribution in the range of 2–20 nm, in particular, concentrated in the range of 2–6 nm, with a slow tail distribution above 20 nm. This led to the very weak hysteresis loop and the low nitrogen adsorption--desorption capacity, corresponding to the low specific surface area. MnO₂-III possessed a broad mesopore distribution in the range of 4–50 nm with a wide peak centered at 15.6 nm and several small peaks below 4 nm. Nevertheless, MnO₂-IV possessed a concentrated mesopore distribution in the range of 3–20 nm with two sharp peaks centered at 3.9 and 6.3 nm and a wide peak centered at 15.5 nm. Given the low proportion of peaks at <4 nm in the curves of MnO₂-III (Figure 3c), the smaller pores observed in MnO₂-IV should be attributed to the tiny gaps formed by the surface cactus-like structure, which could increase the surface reaction area.

3.2. O₃ Decomposition Performance. After determining the basic characteristics of the synthesized catalyst, the ozone decomposition tests were carried out. The ozonation reactor is usually installed upstream of the wet scrubber inlet for flue gas treatment, where the flue gas temperature is around 80–140 °C. Moreover, the original WFGD tower is used as the wet scrubber in most renovation projects and is operated at 40–80 °C to achieve better removal efficiency. Additionally, the wet-plume elimination device is sometimes applied downstream of the wet scrubber outlet to condense, dehydrate, and reheat the flue gas, which further increased the flue gas temperature even over 100 °C. Hence, in order to screen out the catalyst that can effectively decompose ozone at the outlet condition of the wet scrubber, the deO₃ activities of four synthesized MnO₂ under 25–100 °C as well as different GHSV were investigated, and the results are shown in Figure 4. Moreover, the quartz sand (SiO₂) was used as an object of reference to characterize the natural decomposition efficiency of ozone, which was found to be less than 1% below 100 °C and therefore could be ignored here.

As shown in Figure 4a, the ozone decomposition efficiency of these samples increased as flue gas temperature increase when GHSV was set at ~30000 h⁻¹. The deO₃ activity of MnO₂-II with the smallest specific surface area (11 m²·g⁻¹) and the highest crystallinity was significantly lower than that of the other three, and its deO₃ efficiency only reached 75.86% even at 97 °C. MnO₂-IV with the largest specific surface area (84 m²·g⁻¹) showed the best overall activity. It indicated that the specific surface area had a great influence on the ozone decomposition activity. Nevertheless, the samples except for MnO₂-II exhibited similarly high activities. Specifically, their deO₃ activities at 25 °C were all higher than 90% and decreased in the order of MnO₂-IV (98.75%) > MnO₂-III (97.63%) > MnO₂-I (94.11%), further achieving ~100% above 60 °C, which was not strictly following their BET sequence. Meanwhile, the gap between their activities was also not as obvious as that in their BET results, suggesting that the catalytic activity was not only determined by BET results. In fact, the specific surface area is just one of the important factors.

![Figure 4. O₃ conversion efficiency over four synthesized MnO₂ at different temperatures when GHSV was set at ~30000 h⁻¹ (a) and ~90000 h⁻¹ (b).](https://doi.org/10.1021/acsomega.2c00120)
affecting the catalytic activity. Other catalytic properties, such as structure, redox properties, valence states of key elements, etc., also have an impact on its activity. Moreover, it also suggested that the gaps between the above three samples cannot be well-distinguished under the tested conditions. Therefore, the GHSV was further set at ~90000 h⁻¹ by reducing the amount of catalyst to make a detailed comparison.

As shown in Figure 4b, a higher GHSV implied that the reactants were in contact with samples for less time, and thus their ozone decomposition efficiency exhibited a significant drop. The activity sequence was MnO₂-IV > MnO₂-I > MnO₂-III > MnO₂-II. The activity order of MnO₂-I and MnO₂-III was inconsistent with that in Figure 4a, attributed to the difference of their out-diffusion effects. The higher GHSV also promoted a mass transfer coefficient that exhibited a positive impact on chemical reactions. This effect might have a stronger promoting effect on MnO₂-I, thus leading to an obvious gap and a higher deO₃ activity compared to that of MnO₂-II/III. Overall, MnO₂-I and MnO₂-IV showed excellent ozone decomposition activity, achieving 93.11 and 96.00% at 58 °C, respectively. In addition, the deO₃ efficiency of MnO₂-IV further reached 100% over 81 °C, positively benefiting from its unique cactus-like structure, large specific surface area, and slight lattice defects. Hereby, MnO₂-IV was selected as the material for the subsequent sulfur and water vapor resistance tests.

3.3. TPR/TPD Results. The catalytic activity of ozone decomposition is usually correlated with redox properties, oxygen adsorption–desorption capabilities, and the surface transferance of oxygen species, thus H₂-TPR and O₂-TPD experiments were conducted, and the results are shown in Figure 5. Table 2 calculates their total H₂ consumption in the reduction process based on the H₂ uptake of standard copper oxide. As shown in the inset patterns of Figure 5a, the diffraction pattern for MnO₂-I after H₂ reduction under 500 °C exhibited sharp and intense peaks that corresponded to MnO (JCPDS #07-0230), and the same was true for the other samples. This indicated that these peaks in H₂-TPR profiles should be assigned to the reduction of high valence manganese to Mn²⁺, mainly proceeding along the reduction process of Mn⁴⁺ → Mn³⁺ → Mn²⁺, i.e., the multimodal reduction process of MnO₂ → Mn₃O₄ → MnO₂ → MnO. Commonly, the peaks below ~300 °C were assigned to the reduction from Mn⁴⁺ species to Mn³⁺, and the peaks above 300 °C were assigned to the reduction from Mn³⁺ species in different compound forms to Mn⁰ species. The amount of H₂ consumption increased in the order of MnO₂-IV < MnO₂-I < MnO₂-III < MnO₂-II, in contrast to their deO₃ activity sequence, and the sample that consumed less H₂ generally exhibited a better deO₃ performance. This indicated that manganese species with lower valence benefitted from ozone decomposition. Moreover, it was notable that MnO₂-IV could be reduced at the lower temperature (corresponding to the first reduction peak centered at 275 °C) and consumed the least amount of hydrogen (8.97 mmol·gcat⁻¹). Hence, MnO₂-IV possessed the best reducibility and the lowest average valence of Mn species, which was beneficial to eliminate ozone effectively.

It is well-accepted that surface-active oxygen species and oxygen vacancies are important for the process of oxygen adsorption, conversion, and desorption. Therefore, O₂-TPD tests were conducted to investigate the oxygen adsorption–desorption behavior of synthesized MnO₂. As shown in Figure 5b, the desorption peaks below 250 °C were associated with physically adsorbed oxygen. The peaks in the range of 250–600 °C were attributed to the release of the chemically adsorbed oxygen species, as well as part of the subsurface lattice oxygen, while the peaks above 600 °C were attributed to the bulk lattice oxygen species. Both MnO₂-IV and MnO₂-I had obvious desorption peaks below 250 °C, which had a relatively good catalytic activity, coinciding with the reported studies that the deO₃ activity was related to the low-temperature oxygen adsorption–desorption properties. Most obviously, MnO₂-IV had the largest low-temperature peak centered at 124 °C and a weak broad peak in the range of 250–530 °C. This reflected that MnO₂-IV possessed an excellent oxygen adsorption capacity, abundant oxygen vacancies, and active oxygen species, beneficial to its excellent catalytic activity. In addition, neither the least active MnO₂-II nor the relatively better active MnO₂-III exhibited almost no oxygen desorption below 250 °C but corresponded to a significant difference in deO₃ activity. This was partly related to the gap of their specific surface areas. Moreover, it suggested that the deO₃ activity of the catalyst was not only determined by its oxygen adsorption–desorption behavior but also affected by various properties of the material. Therefore, a comprehensive measure is required in designing and optimizing catalyst formulations.

3.4. Surface Elements. X-ray photoelectron spectroscopy was used to characterize the oxidation state of Mn and O species, which were highly correlated with catalytic activities. Mn 2p₃/₂, O 1s, and Mn 3s XP spectra of the original samples are shown in Figure S4, and those spectra of the spent samples after decomposing ozone are shown in Figure 6. Further, by deconvolution of XPS curves, the details of species

Table 2. Peak and Hydrogen Consumption in H₂-TPR Profiles over Four Synthesized MnO₂

catalyst	first peak center (°C)	second peak center (°C)	total H₂ consumption (mmol·gcat⁻¹)
MnO₂-I	309		11.21
MnO₂-II	329	475	13.08
MnO₂-III	282	383	12.41
MnO₂-IV	275		8.97

Figure 5. (a) H₂-TPR profiles and (b) O₂-TPD profiles of samples: (I) MnO₂-I, (II) MnO₂-II, (III) MnO₂-III, and (IV) MnO₂-IV. The inset curve shows XRD patterns of MnO₂-IV after 500 °C/TPR reaction.
concentration ratios and Mn average oxidation state (AOS) were calculated and summarized in Table 3. Mn 3s spectra (Figure 6c) were fitted to two peaks centered at ~89.1 and ~84 eV, and then AOS could be calculated by eq 5,56 where ΔEs presented the difference in binding energy between the centers of the two peaks.

\[
AOS = 8.956 - 1.126ΔEs
\]

(5)

As shown in Figure 6a and Figure S4A, the Mn 2p\(_{3/2}\) spectra centered at ~642 eV were deconvolved to three peaks located at ~640.5, ~642.0, and ~642.7 eV, corresponding to Mn\(^{2+}\), Mn\(^{3+}\), and Mn\(^{4+}\) species,\(^{31,57}\) respectively. The detailed distribution energies of manganese and oxygen species are listed on Table S1. Both the ratio of low valence Mn species ((Mn\(^{3+}\) + Mn\(^{2+}\))/Mn\(^{4+}\)) and the calculated AOS (Table 3) decrease in the order of MnO\(_2\)-IV > MnO\(_2\)-II > MnO\(_2\)-III > MnO\(_2\)-II, coinciding with their deO\(_3\) performance as well as their H\(_2\) consumption in the H\(_2\)-TPR results. Further, MnO\(_2\)-IV-O\(_3\) exhibited the lowest manganese AOS (3.51) after the 5 h deO\(_3\) experiments, followed by MnO\(_2\)-I-O\(_3\) (3.56) and

![Figure 6. XPS spectra for samples after O\(_3\) decomposition reaction: (a) Mn 2p\(_{3/2}\), (b) O 1s, and (c) Mn 3s. Samples: (I) MnO\(_2\)-I-O\(_3\), (II) MnO\(_2\)-II-O\(_3\), (III) MnO\(_2\)-III-O\(_3\), and (IV) MnO\(_2\)-IV-O\(_3\).](https://doi.org/10.1021/acsomega.2c00120)

Table 3. XPS Results of Mn 2p and O 1s of MnO\(_2\)-I, MnO\(_2\)-II, MnO\(_2\)-III, MnO\(_2\)-IV, and Their Spent Samples

catalyst	Mn 2p\(_{3/2}\)	O 1s						
	Mn\(^{2+}\) (%)	Mn\(^{3+}\) (%)	Mn\(^{4+}\) (%)	(Mn\(^{3+}\) + Mn\(^{2+}\))/Mn\(^{4+}\)	AOS	O\(_{O_3}\) (%)	O\(_{ad}\) (%)	O\(_{la}\) (%)
MnO\(_2\)-I	40.7	53.5	5.8	1.46	3.69	1.1	40.0	58.9
MnO\(_2\)-II	56.8	42.4	0.8	0.76	3.91	0.5	33.6	65.9
MnO\(_2\)-III	52.8	46.1	1.1	0.89	3.81	1.1	36.4	62.5
MnO\(_2\)-IV	40.6	51.2	8.2	1.46	3.63	1.9	34.2	63.9
MnO\(_2\)-I-O\(_3\)	46.1	46.4	7.5	1.17	3.56	1.3	38.7	60.0
MnO\(_2\)-II-O\(_3\)	56.3	42.7	1.0	0.78	3.87	0.0	43.6	56.4
MnO\(_2\)-III-O\(_3\)	50.5	49.5	0.0	0.98	3.74	1.1	41.8	57.1
MnO\(_2\)-IV-O\(_3\)	42.8	47.8	9.4	1.34	3.51	4.7	31.1	64.2
MnO₂-III-O₃ (3.74). The lower AOS commonly represented more low valence Mn species and more oxygen vacancies, indicating more active centers and higher efficiency in catalytically decomposing ozone. Notably, after deO₃ reaction, the proportions of Mn³⁺ species in the spent MnO₂-I and MnO₂-IV decreased from 53.5 to 46.4% and from 51.2 to 47.8%, respectively. Meanwhile, the proportions of Mn⁴⁺ and Mn²⁺ species were improved. However, the ratios of Mn³⁺ species in MnO₂-II or MnO₂-III that possessed a relatively poor deO₃ activity were approximately unchanged by reacting with ozone. Therefore, it indicated that Mn³⁺ species were the key intermediate factors of the valence transition in the ozone decomposition cycle process. Above all, MnO₂-IV possessed the most oxygen vacancies as well low valence Mn species, thus exhibiting the highest deO₃ activity.

The O 1s spectra of four MnO₂ and their ozone-treated samples are shown in Figure S4B and Figure 6b, respectively. The curves were approximately deconvolved to three peaks located at ∼529.7, ∼531.5, and ∼533 eV, corresponding to lattice oxygen (Oₐ), adsorb oxygen (Oₐ₂), and hydroxyl oxygen (Oₐ₋H) species, respectively. As reported, the surface-adsorbed oxygen species exhibits high activities in the oxidation reaction. Therefore, it indicated that Mn³⁺ species were the key intermediate factors of the valence transition in the ozone decomposition cycle process. Above all, MnO₂-IV possessed the most oxygen vacancies as well low valence Mn species, thus exhibiting the highest deO₃ activity.

3.5. Water Vapor and Sulfur Resistance. Through the above characterization, MnO₂-IV possessed the largest specific surface area, the best low-temperature reducibility, and the most low valence Mn species, oxygen vacancies, and hydroxyl oxygen species, resulting in the highest catalytic activity. However, even if the stringent ultralow emission standard (SO₂ < 35 mg/Nm³) was met, residual SO₂ after the wet scrubber would also cause sulfur poisoning. Further, the nearly saturated water vapor in the flue gas also had an uncertain impact on the catalyst. Therefore, the resistance tests to H₂O and SO₂ were subsequently conducted over MnO₂-IV to investigate its performance in the complex flue gas condition, and the results are shown in Figure 7. The moisture humidity in the simulated flue gas was changed by adjusting the ratio of N₂ flow through the bubbling–evaporation device, and the concentration of SO₂ in the sulfur resistance experiment was set at ~10 ppm (approximately equal to 30 mg/Nm³).
3.5.1. Catalytic Activity under H2O/SO2/(SO2 + H2O).

The deO3 activities of MnO2-IV in H2O/SO2 resistance tests at 80 °C are shown in Figure 7a. Obviously, the decomposition efficiency could maintain at ~100% in the low-humidity condition (~1.0% H2O). In addition, the outlet ozone concentration was less than 0.2 ppm (Figure 7b), even increasing the initial O3 concentration to 300 ppm, which exhibited good tolerance to low concentration water vapor. As water vapor concentration was increased to ~2.0%, the deO3 efficiency decreased and finally stabilized at ~97.0% within the 240 min test. Interestingly, its efficiency rapidly turned back to ~100% after stopping the bubbling. It suggested that excess H2O possibly competed with O3 molecules for the surface-active sites on MnO2-IV. Specifically, H2O molecules would be adsorbed and desorbed at the sites, and the dynamic process should be affected by temperature, GHSV, and O3/H2O concentration, etc. Herein, when the H2O molecule achieved the adsorption–desorption equilibrium under a low humidity, the unoccupied active sites were sufficient to decompose O3, thus the deO3 efficiency could be stable at 100%. However, after increasing to an unbearable humidity, the left active sites could not decompose ozone completely, and thus the slight deactivation occurred.

To further reveal the interference of water vapor, a lasting circular test was conducted on MnO2-IV by a periodic H2O treatment, and the deactivation–reactivation curves are shown in Figure 7c. It is notable that the deO3 efficiency could always be restored to ~100% after switching to dry gas flow. It indicated that the effect of adsorption–desorption water vapor on the active sites was slight and even partially reversible. Therefore, its deO3 efficiency could gradually recover to ~100% as the desorption process of H2O molecules with the release of surface sites. However, the deO3 activity decreased to the level of the former cycle quickly once switching to wet gas flow and exhibited more and more deactivation in the wet–dry cycle. This was because only part of the physically adsorbed H2O molecules could be desorbed by simply switching to dry gas flow below 100 °C. The incomplete desorption released the partial active sites, and this effect was cumulative, corresponding to the equilibrium of competitive adsorption. Hence, H2O molecules would compete with O3 molecules for the remaining active sites in the next switch of
wet gas flow, resulting in a faster and more serious deactivation. After being dried under vacuum and purged via N₂ flow, the active sites occupied by physically adsorbed H₂O molecules could be fully released. In addition, the slight changes in the bulk phase of MnO₂-IV excited more oxygen vacancies in O₃−H₂O deactivation—reactivation loops. Thus, the water vapor tolerance of spent MnO₂-IV (Figure 7d, 110 °C, 12 h) was even better than that of the untreated sample.

In the sulfur resistance experiment, the catalyst quickly deactivated with the introduction of SO₂, and its deO₃ efficiency finally slowly decreased to 93.3%. Moreover, the catalytic efficiency could hardly recover after stopping SO₂ and even incessantly dropped to 93.1%. In brief, SO₂ would compete with O₃ molecules for surface active sites, as H₂O molecules did. The initial rapid decline in the deO₃ activity could be attributed to the low resistance of the competition between SO₂ and O₃ molecules during the initial poisoning. As the adsorption—desorption equilibrium (like H₂O molecules) was approached, the resistance increased and so the deactivation rate gradually went slowly. Moreover, the formed sulfate/sulfite could not be decomposed at 80 °C and further blocked the active centers, leading to the irreversible deactivation. Therefore, although MnO₂-IV maintained the deO₃ efficiency of over 90% within the 300 min sulfur resistance experiment, the optimization and improvement were necessary for the actual project application containing SO₂.

Regarding the synergistic interference of water vapor and SO₂, the catalytic activity of MnO₂-IV exhibited a larger decreasing trend and amplitude compared to that associated with poisoning after reactivation. This could be attributed to the low resistance of the competition between SO₂ and O₃ molecules during the initial poisoning. As the adsorption—desorption equilibrium (like H₂O molecules) was approached, the resistance increased and so the deactivation rate gradually went slowly. Moreover, the formed sulfates/sulfites could not be decomposed at 80 °C and further blocked the active centers, leading to the irreversible deactivation. Therefore, although MnO₂-IV maintained the deO₃ efficiency of over 90% within the 300 min sulfur resistance experiment, the optimization and improvement were necessary for the actual project application containing SO₂.

Further, the broadening of the peak centered at 25.0° was suppressed under the interference of H₂O corresponding to the irreversible poisoning probably. The XPS results of Mn 2p½/2 O 1s Mn 3s, and S 2p in the spent MnO₂-IV are shown in Figure 8. Moreover, the details were calculated by deconvolution of XPS curves and are summarized in Table 4, where the abbreviated sample (i.e., MnO₂-IV-O₃/SO₂/H₂O) presented the spent MnO₂-IV experienced sulfur and water resistance tests. As shown in Figure 8a and Table 4, the ratio of low valence Mn species in MnO₂-IV-O₃/SO₂ especially that of Mn³⁺ species was significantly reduced after sulfur poisoning and was converted into Mn⁴⁺ species. However, the above conversion of Mn²⁺ and Mn³⁺ species was weakened by water vapor. The proportion of (Mn³⁺ + Mn⁴⁺)/Mn⁵⁺ decreased in the order of MnO₂-IV-O₃ > MnO₂-IV-O₃/SO₂/H₂O > MnO₂-IV-O₃/SO₂, coinciding with their catalytic performance. This suggested that SO₂ could promote the irreversible oxidation of low valence Mn species, whereas H₂O could inhibit this trend. Thus, MnO₂-IV-O₃/SO₂, which suffered from severe sulfur poisoning, had the highest AOS, followed by MnO₂-IV-O₃/SO₂/H₂O, which underwent slight sulfur poisoning.

Further, as shown in Figure 8b, the ratio of the lattice oxygen in the samples decreased significantly after sulfur poisoning. This could be attributed to the transformation from manganese oxides to manganese sulfate/manganese sulfite. Moreover, the ratio of hydroxyl oxygen species of the spent samples was generally higher than that for the original MnO₂-IV and further that in the MnO₂-IV-O₃/SO₂/H₂O was higher than the others, indicating that H₂O molecules could promote the formation of surface-active hydroxyl oxygen species via decomposing ozone process.

The S 2p spectra were fitted by deconvolution, as shown in Figure 8d, the effect of spin—orbit splitting could be observed for sulfur compounds. The binding energy difference between S 2p½/2 and S 2p½/2 peak was held at ~1.2 eV, and the area ratio was fixed at 0.5. The peaks were located at 167.54 and 168.18 eV, corresponding to the S 2p½/2 peak of SO₃ and the S 2p½/2 peak of SO₄, respectively. Further, the area ratio of SO₃ to SO₄ in MnO₂-IV-O₃/SO₂ was 1.24, whereas that ratio in MnO₂-IV-O₃/SO₂/H₂O was higher than the former, ~2.78. Obviously, more sulfite species were formed under the promotion of water vapor, consistent with the analysis in section 3.5.1. It could be concluded that in the high-humidity sulfur-containing condition, water vapor would promote the combination with SO₂ and tend to generate more sulfites on the active sites, thereby aggravating the deactivation. After water vapor and SO₂ was stopped, part of the active sites occupied by H₂O molecules could be released. Further, the degradable, desorbed sulfites originating from the interference of H₂O molecules could be partially decomposed, whereas sulfate could not, inhibiting irreversible sulfur poisoning accordingly. As a result, the catalyst activity rose to a value.

Table 4. XPS Results of Mn 2p and O 1s of MnO₂-IV and the Spent Samples after O₃/SO₂/H₂O Treatment

catalyst	Mn ²p½/2	Mn ³s (%)	Mn ⁴p (%)	(Mn²⁺ + Mn⁴⁺)/Mn⁵⁺	AOS O₃–H (%)	O₃ (%)	O₂ (%)
MnO₂-IV	40.6	51.2	8.2	1.46	3.63	1.9	34.2
MnO₂-IV–O₃	42.8	47.8	9.4	1.34	3.51	4.7	31.1
MnO₂-IV–O₃/SO₂	51.2	45.1	3.7	0.95	3.49	4.2	56.8
MnO₂-IV–O₃/SO₂/H₂O	49.9	45.8	4.3	1.00	3.53	5.2	69.4

Further, the broadening of the peak centered at 25.0° was suppressed under the interference of H₂O corresponding to the irreversible poisoning probably. The XPS results of Mn 2p½/2 O 1s Mn 3s, and S 2p in the spent MnO₂-IV are shown in Figure 8. Moreover, the details were calculated by deconvolution of XPS curves and are summarized in Table 4, where the abbreviated sample (i.e., MnO₂-IV-O₃/SO₂/H₂O) presented the spent MnO₂-IV experienced sulfur and water resistance tests. As shown in Figure 8a and Table 4, the ratio of low valence Mn species in MnO₂-IV-O₃/SO₂ especially that of Mn³⁺ species was significantly reduced after sulfur poisoning and was converted into Mn⁴⁺ species. However, the above conversion of Mn²⁺ and Mn³⁺ species was weakened by water vapor. The proportion of (Mn³⁺ + Mn⁴⁺)/Mn⁵⁺ decreased in the order of MnO₂-IV-O₃ > MnO₂-IV-O₃/SO₂/H₂O > MnO₂-IV-O₃/SO₂, coinciding with their catalytic performance. This suggested that SO₂ could promote the irreversible oxidation of low valence Mn species, whereas H₂O could inhibit this trend. Thus, MnO₂-IV-O₃/SO₂, which suffered from severe sulfur poisoning, had the highest AOS, followed by MnO₂-IV-O₃/SO₂/H₂O, which underwent slight sulfur poisoning.

Further, as shown in Figure 8b, the ratio of the lattice oxygen in the samples decreased significantly after sulfur poisoning. This could be attributed to the transformation from manganese oxides to manganese sulfate/manganese sulfite. Moreover, the ratio of hydroxyl oxygen species of the spent samples was generally higher than that for the original MnO₂-IV and further that in the MnO₂-IV-O₃/SO₂/H₂O was higher than the others, indicating that H₂O molecules could promote the formation of surface-active hydroxyl oxygen species via decomposing ozone process.

The S 2p spectra were fitted by deconvolution, as shown in Figure 8d, the effect of spin—orbit splitting could be observed for sulfur compounds. The binding energy difference between S 2p½/2 and S 2p½/2 peak was held at ~1.2 eV, and the area ratio was fixed at 0.5. The peaks were located at 167.54 and 168.18 eV, corresponding to the S 2p½/2 peak of SO₃ and the S 2p½/2 peak of SO₄, respectively. Further, the area ratio of SO₃ to SO₄ in MnO₂-IV-O₃/SO₂ was 1.24, whereas that ratio in MnO₂-IV-O₃/SO₂/H₂O was higher than the former, ~2.78. Obviously, more sulfite species were formed under the promotion of water vapor, consistent with the analysis in section 3.5.1. It could be concluded that in the high-humidity sulfur-containing condition, water vapor would promote the combination with SO₂ and tend to generate more sulfites on the active sites, thereby aggravating the deactivation. After water vapor and SO₂ was stopped, part of the active sites occupied by H₂O molecules could be released. Further, the degradable, desorbed sulfites originating from the interference of H₂O molecules could be partially decomposed, whereas sulfate could not, inhibiting irreversible sulfur poisoning accordingly. As a result, the catalyst activity rose to a value.
higher than that under the effect of SO\textsubscript{2} alone, but that could not be recovered completely.

3.6. In Situ DRIFTS Study. In situ DRIFTS was conducted to reveal surface intermediates in ozone decomposition process, and the interference of SO\textsubscript{2}/H\textsubscript{2}O was also investigated. In order to obtain specific information about the adsorption of O\textsubscript{2}/O\textsubscript{3}/SO\textsubscript{2}/H\textsubscript{2}O molecules on MnO\textsubscript{2}-IV, the different gas components were introduced in sequence balanced with nitrogen.

3.6.1. O\textsubscript{2}−O\textsubscript{3}−SO\textsubscript{2} (the Order of Injected Gas). The tests were marked based on the order of injecting gas as “O\textsubscript{2}−O\textsubscript{3}−SO\textsubscript{3}” and “(SO\textsubscript{2}+O\textsubscript{2})−O\textsubscript{3}”, where the (SO\textsubscript{2}+O\textsubscript{2}) presented the co-injection of SO\textsubscript{2} and O\textsubscript{2}. As shown in Figure 9a, the background was collected after N\textsubscript{2} flow purge, and then O\textsubscript{2} was preinjected with N\textsubscript{2} as the balance gas. The spectra of 0 min in Figure 9a correspond to the introduction of ozone (∼200 ppm). The broad weak band located at ∼3320 cm-1 could be ascribed to the extensional vibration of O−H groups from interlayer bound water, and the band at 1680−1610 cm-1 characterized the bending mode of adsorbed water.63,64 As O\textsubscript{3} was injected, the above bands became weaker slowly, and the small band peaks at ∼3740 cm-1 correspond to the mono-coordinated hydroxyl groups (i.e., surface free hydroxyl). The centered peaks at ∼3582 cm-1 were assigned to the O−H stretching modes from adsorbed H\textsubscript{2}O\textsubscript{2}, two-coordinated OH species (i.e., a doubly bridging hydroxyl group), etc.65,66 Accordingly, the associated interlayer water and adsorbed water were converted into highly active hydroxyl groups by ozone and active oxygen species, and then hydroxyl groups could participate in ozone decomposition, verifying the XPS results (section 3.5.2).

The adsorption intensity of the above intermediates increased with time after ozone injection and tended to stabilize until the surface was saturated. The bands in the region of 950−600 cm-1 were generally ascribed to the lattice vibration of metal oxides,63 e.g., the adsorbed peroxide (O\textsubscript{2}2−) on oxide surfaces generated via ozone.67 Further, the broad bands centered at 1400, 1240, and ∼800 cm-1 should be ascribed to the adsorbed oxygen/ozone species linked to the MnO\textsubscript{2}-IV surface.53 Specifically, the intermediate at 1400 cm-1 should be assigned to atomic oxygen attached to the strong Lewis acid sites, which was considered to be the main deO\textsubscript{3} active sites on natural zeolite.68 Nevertheless, there was also research that shows this intermediate was the cause, resulting in the sustained deactivation in the deO\textsubscript{3} process over the ε-MnO\textsubscript{2} catalyst.55 Therefore, the sample was subsequently purged in N\textsubscript{2} flow for another 30 min to determine the roles of the above species in the deO\textsubscript{3} process over MnO\textsubscript{2}-IV. Interestingly, except for the band at ∼1400 cm-1, there was almost no drop in the other ozone-related intermediate peaks. It indicated that this intermediate could be partially transformed or decomposed on MnO\textsubscript{2}-IV, resulting in its excellent catalytic performance accordingly.

After the injection of O\textsubscript{3} and SO\textsubscript{2}, the intensities of the bands at 1240 and 1400 cm-1 decreased significantly. Meanwhile, the bands in the range of 1275−1240 cm-1 were enhanced, which were commonly attributed to the characteristic vibration peak of bisulfate (HSO\textsubscript{4}−) species.69 Finally, three strong bands at ∼1276, ∼1116, and 1046 cm-1 were observed, corresponding to bidentate sulfate, chelating sulfite,70 and sulfite species, respectively. This suggested that the ozone-related intermediates were converted into more stable sulfate/sulfite species in SO\textsubscript{2}-containing gas flow, thus leading to the continuous deactivation of the catalyst. In addition, the bands at 910 and 816 cm-1 also shrunk and shifted slightly, confirming the activity analysis that the crystal lattice of manganese oxide was changed in the sulfur poisoning process.

Figure 9. In situ DRIFT spectra of MnO\textsubscript{2}-IV exposed to (a) O\textsubscript{2}−O\textsubscript{3}−SO\textsubscript{2} and (b) (SO\textsubscript{2}+O\textsubscript{2})−O\textsubscript{3} in sequence.
3.6.2. (SO₂+O₂)−O₃. The coadsorption DRIFTS of (SO₂+O₂) was conducted to further distinguish the adsorbed species related to SO₂, and the spectra are shown in Figure 9b. The bands at 1276, 1130, and 1040 cm⁻¹ were also observed after the coadsorption of SO₂ and O₂, which had a little shift compared to those in the O₂−O₃−SO₂ test (section 3.6.1). Notably, SO₂ molecules would occupy the surface-active sites after coadsorption and even form sulfate/sulfite species, which further hindered the adsorption−decomposition of O₃. In addition, as shown in the inset curve of Figure 9b, the intensity of the band at 1276 cm⁻¹ was significantly improved after ozone injection. This indicated that more sulfate species were accumulated on the surface. There was little change in intensity of the band at 1130 cm⁻¹, which was attributed to this stable sulfate species, hardly affected by ozone. However, the band at 1046 cm⁻¹ was assigned to the unstable sulfi te species and became weaker as well as those bands ascribed to the lattice vibration, part of which were further converted to sulfate species by strong-oxidizing ozone. Therefore, it caused a sustained slow deactivation of MnO₂-IV, consistent with the results in Figure 7 and Figure 8.

In addition, after ozone injection, the band of bound water exhibited a smaller drop than that in the O₂−O₃−SO₂ condition, and the bands of active hydroxyl groups were also weaker. This indicated that SO₂ possibly inhibited the generation of OH species from the reaction between ozone and bound water, thereby reducing the catalytic activity.

3.6.3. Interference of H₂O on Ozone Decomposition. Bound water and active hydroxyl groups played a key role in the deO₃ process. Therefore, in situ H₂O interference DRIFTS experiments were conducted to further reveal the mechanism of water in the decomposition process. Given the water tolerance of the in situ reactor and the measurement interference, MnO₂-IV was fully preadsorbed with H₂O via bubbling before the continuous online detection. According to the order of injected gas, the tests were marked as “H₂O, (SO₂+O₂)−O₃”, “H₂O, SO₂−(O₂+O₃)”, and “H₂O, O₂−O₃−SO₃”, where the (SO₂+O₂) presented the co-injection of SO₂ and O₂.

The conditions and procedures in Figure 10a were similar to those in Figure 9a, except for the water vapor preadsorption. Most obviously, the band at 790 cm⁻¹ ascribed to the metal−oxygen bond was not observed after ozone injection. Further, the intensities of the broad bands at ∼3250 cm⁻¹ were obviously decreased, which represented the decrease of bound water. The band at ∼3600 cm⁻¹ corresponding to the hydroxyl species was strengthened. This suggested that H₂O molecules were bonded on MnO₂-IV after water vapor preadsorption and thus hindered the combination between O₃ molecules with surface oxygen vacancies, coinciding with the results of section 3.5.1. Meanwhile, the bound water was dissociated to surface active hydroxyl species by ozone. Interestingly, MnO₂-IV could still maintain an over 90% deO₃ efficiency in the H₂O resistance experiment (Figure 7), but the intensities of the metal−oxygen bond (e.g., 790 cm⁻¹) had little change. Thus, O₃ molecules are probably bound to the surface-active hydroxyl species as well as H₂O molecules, which had been adsorbed on the active sites.30 Subsequently, the association intermediates underwent the deO₃ reaction. In other words, O₃ molecules could be decomposed utilizing the surface-active hydroxyl species over MnO₂-IV, instead of being decomposed via oxygen vacancies, which was different from the classic mechanism. In addition, excess H₂O molecules are possibly associated with the adsorbed H₂O molecules by hydrogen...
bonds and even formed water film to cover the catalyst, resulting in the recoverable deactivation.

3.6.4. Interference of H2O on Sulfur Poisoning. As shown in Figure 10b, after oxygen injection, a relatively large weak broad band in the range of 3200–3600 cm⁻¹ was observed after SO₂ was injected. It should be attributed to the reaction of SO₂ with the bound water/adsorbed water, accompanying by the formation of a few hydroxyl species. For the synergistic effect of SO₂ and H₂O, the band of the SO₂-related species on the H₂O-pretreated sample, especially the band at 1276 cm⁻¹ (ascribed to the stable sulfate species), was relatively weaker than that in Figure 9b. Further, the injected ozone promoted the formation of stable sulfate species, similar to the tests in Figure 9. However, comparing Figure 9a with Figure 10a and Figure 10c, it should be noticed that the intensity of the above sulfate species (1276 cm⁻¹) on the H₂O-pretreated sample was relatively weaker than that of other species (the bands at 1116 and 1046 cm⁻¹). Furthermore, as shown in Figure 10d, the FTIR result of MnO₂-IV-SO₂/H₂O exhibited a weaker peak than with MnO₂-IV-SO₂. The above results indicated that the abundant bound water (or active hydroxyl species) could inhibit the formation of stable sulfate species on MnO₂-IV, which further confirmed the conclusions of H₂O/SO₂ resistance tests (section 3.5.1) and S 2p XP spectra (Figure 8d).

3.6.5. deO₃ Mechanism under Water Interference. Based on the above findings, the mechanism of O₃ molecules being decomposed via bound water and surface-active hydroxyl over MnO₂-IV was proposed. The theoretical diagram is shown in Figure 11, where [o] represents oxygen vacancy and HO• represents surface free hydroxyl. As a comparison, the diagram of the widely reported deO₃ mechanism on oxygen vacancies is shown in Figure S6. The detailed steps are shown in Table 5, where -OH, -HO₂⁻, and -O₂⁻⁻ represent surface-active species/intermediates.

First, the injected H₂O molecules and interlayer water were adsorbed or transferred to surface-active oxygen vacancies (following step 1). After the stimulation of ozone, the associated H₂O molecules and adsorbed water were converted into highly active hydroxyl groups. Moreover, O₂ molecules were combined with surface-associated H₂O molecules (step 2) and surface-active hydroxyl (steps 4 and 6). Subsequently, the intermediates were decomposed into surface free hydroxyl, hydroxyl species, active oxygen, peroxide species, and oxygen (steps 3, 5, and 7). The surface free hydroxyl excited via the decomposition process could be decomposed into water and oxygen (step 9) or be associated with oxygen vacancies and further participate in the deO₃ reaction, meanwhile providing electrons for steps 3, 5, and 7.

4. CONCLUSION

In this work, four manganese oxides with different crystals were hydrothermally synthesized for the decomposition of residual ozone in the ozone synergistic-oxidation system. The synthesized MnO₂ and their spent samples were systematically characterized by XRD, SEM, BET, XPS, H₂-TPR, O₂-TPD, FTIR, and in situ DRIFTS. The specific conclusions are listed in the following:

(i) Cactus-like MnO₂-IV nanospheres possess unique δ-MnO₂-layered morphology, high specific surface area, superior redox properties, oxygen chemisorption capabilities, abundant surface-active hydroxyl species, and low valence Mn species.

(ii) MnO₂-IV exhibited the highest ozone decomposition activity, achieving ~100% efficiency at 40–100 °C. It also showed the excellent tolerance to SO₂/H₂O, which could maintain over 88% deO₃ efficiency in the sulfur-containing high-humidity condition.

(iii) O₃ molecules could be bound to the surface-active hydroxyl species as well as the adsorbed H₂O molecules. Subsequently, the association intermediates could undergo the deO₃ reaction over MnO₂-IV, instead of being directly decomposed on oxygen vacancies. In addition, excess H₂O molecules possibly associated with the adsorbed H₂O molecules by hydrogen bonds and even formed water film to cover the catalyst, resulting in the recoverable deactivation.

(iv) The deactivation caused by SO₂ was irreversible. Further, the synergistic effect of SO₂/H₂O promoted the formation of unstable sulfate species, thereby deepening the deactivation but inhibiting the irreversible poisoning.

Table 5. Specific Reactions of Ozone Decomposition over MnO₂-IV under Water Interference

reactions under water interference	step
[o] + H₂O → H₂O−[o]	1
H₂O−[o] + O₃ → O₃−[H₂O−[o]]	2
O₃−[H₂O−[o]] + e− → [o]−OH + HO• + O₂	3
[o]−OH + O₃ → [o]−OH−O₂	4
[o]−OH−O₃ + O₃ → [o]−HO₂−O₂	5
[o]−HO₂−O₃−O₃ + e− → [o]−O₂−²⁻ + HO• + O₂	6
[o]−O₂−²⁻ → [o] + O₂ + 2e⁻	7
2HO• → H₂O + 0.5O₂ + 2e⁻	8

Figure 11. DeO₃ mechanism over MnO₂-IV by bound water and surface-active hydroxyl species. The white, red, blue, and green balls represent oxygen vacancy, O atom, H atom, and Mn atom, respectively.
patterns of spent MnO2-IV, deO3 mechanism on oxygen vacancies, and detailed data of XPS results (PDF)

AUTHOR INFORMATION

Corresponding Author

Zhihua Wang — State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China; © orcid.org/0000-0001-8935-593X

Authors

Hairong Tang — State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China; © orcid.org/0000-0001-8935-593X

Jianning Shao — State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China; © orcid.org/0000-0001-5461-8277

Peixi Liu — State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China

Yong He — State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China; © orcid.org/0000-0001-7037-9007

Yanqun Zhu — State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China; © orcid.org/0000-0001-0981-2078

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c00120

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was financially supported by the National Natural Science Foundation of China (52125605) and the Fundamental Research Funds for the Central Universities (2021FZZX001-11).

REFERENCES

1. Hollingsworth, J. W.; Kleeberger, S. R.; Foster, W. M. Ozone and pulmonary innate immunity. *Proc. Am. Thorac. Soc.* 2007, 4 (3), 240-6.

2. Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. *Environ. Sci. Pollut. Res.* 2018, 25 (9), 8074–8088.

3. Karisa, M.; Foraker, R.; Pennell, M.; Buckley, T.; Diaz, P.; Criner, G. J.; Wilkins, J. R. Short-term and Long-term Effects of Ambient Ozone and Fine Particulate Matter on the Respiratory Health of Chronic Obstructive Pulmonary Disease Subjects. *Arch Environ. Occup H* 2015, 70 (1), 56–62.

4. Kim, B.-J.; Kwon, J.-W.; Seo, J.-H.; Kim, H.-B.; Lee, S.-Y.; Park, K.-S.; Yu, J.; Kim, H.-C.; Lee, J.-H.; Park, J.; Kim, S.-Y.; Lee, C.-G.; Kang, D.-M.; Ha, M.; Hong, Y.-C.; Kwon, H.-J.; Hong, S.-J. Association of ozone exposure with asthma, allergic rhinitis, and allergic sensitization. *Ann. Allerg Asthma Im* 2011, 107 (3), 214–219.

5. Goodman, J. E.; Zu, K.; Loftus, C. T.; Lynch, H. N.; Prueitt, R. L.; Mohar, I.; Shubin, S. P.; Sax, S. N. Short-term ozone exposure and asthma severity: Weight-of-evidence analysis. *Environ. Res.* 2018, 160, 391–397.

6. Pinto, D. M.; Blande, J. D.; Souza, S. R.; Nerg, A.-M.; Holopainen, J. K. Plant Volatile Organic Compounds (VOCs) in Ozone (O3) Polluted Atmospheres: The Ecological Effects. *J. Chem. Ecol.* 2010, 36 (1), 22–34.

7. Wu, R.; Xie, S. Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds. *Environ. Sci. Technol.* 2017, 51 (5), 2574–2583.

8. Rekhate, C. V.; Srivastava, J. K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater: A review. *Chemical Engineering Journal Advances* 2020, 3, 100031.

9. Loeb, B. L.; Thompson, C. M.; Drago, J.; Takahara, H.; Baig, S. Worldwide Ozone Capacity for Treatment of Drinking Water and Wastewater: A Review. *Ozone Sci. Eng.* 2012, 34 (1), 64–77.

10. Britigan, N.; Alshawa, A.; Nizkorodov, S. A. Quantification of Ozone Levels in Indoor Environments Generated by Ionization and Ozonolysis Air Purifiers. *J. Air Waste Manage* 2006, 56 (5), 601–610.

11. Shao, J.; Xu, C.; Wang, Z.; Zhang, J.; Wang, R.; He, Y.; Cen, K. NOx reduction in a 130 t/h biomass-fired circulating fluid bed boiler using coupled ozonation and wet absorption technology. *Ind. Eng. Chem. Res.* 2019, 58 (39), 18134–18140.

12. Ma, Q.; Wang, Z.; Lin, F.; Kuang, M.; Whiddon, R.; He, Y.; Liu, J. Characteristics of O3 Oxidation for Simultaneous Desulfurization and Denitrification with Limestone-Gypsum Wet Scrubbing: Application in a Carbon Black Drying Kiln Furnace. *Energy Fuels* 2016, 30 (3), 2302–2308.

13. Yamamoto, Y.; Yamamoto, H.; Takada, D.; Kuroki, T.; Fujishima, H.; Okubo, M. Simultaneous Removal of NOx and SOx from Flue Gas of a Glass Melting Furnace using a Combined Ozone Injection and Semi-dry Chemical Process. *Ozone Sci. Eng.* 2016, 38 (3), 211–218.

14. Lin, F.; Wang, Z.; Zhang, Z.; He, Y.; Zhu, Y.; Shao, J.; Yuan, D.; Chen, G.; Cen, K. Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury. *Chem. Eng. J.* 2020, 382, 123030.

15. Ling, S. H.; Jing, C. Y.; Zhang, L. J. Analysis Flue Gas Denitration Technology for Small and Medium Sized Coal-Fired Industrial Boilers. *AMR* 2015, 1092-1093, 810–813.

16. Lin, F.; Wang, Z.; Ma, Q.; Yang, Y.; Whiddon, R.; Zhu, Y.; Cen, K. Catalytic deep oxidation of NO by ozone over MnO2 loaded spherical alumina catalyst. *Appl. Catal., B* 2016, 198, 100–111.

17. Shao, J.; Yang, Y.; Whiddon, R.; Wang, Z.; Lin, F.; He, Y.; Kumar, S.; Cen, K. Investigation of NO Removal with Ozone Deep Oxidation in Na2CO3 Solution. *Energy Fuels* 2019, 33 (5), 4454–4461.

18. Shao, J.; Lin, F.; Wang, Z.; Liu, P.; Tang, H.; He, Y.; Cen, K. Low temperature catalytic ozonation of toluene in flue gas over Mn-based catalysts: Effect of support property and SO2/water vapor addition. *Appl. Catal., B* 2020, 266, 118662.

19. Wang, Z.; Zhou, J.; Zhu, Y.; Wen, Z.; Liu, J.; Cen, K. Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. *Fuel Process. Technol.* 2007, 88 (8), 817–823.

20. Wei, L.; Chen, H.; Wei, Y.; Jia, J.; Zhang, R. Ce-promoted Mn/ZSM-5 catalysts for highly efficient decomposition of ozone. *J. Environ. Sci.* 2021, 103, 219–228.

21. Liu, Z.; Ma, J.; He, H. Decomposition of high-level ozone under high humidity over Mn-Fe catalyst: The influence of iron precursors. *Catal. Commun.* 2015, 59, 156–160.

22. Berman, J. D.; Fann, N.; Hollingsworth, J. W.; Pinkerton, K. E.; Rom, W. N.; Szema, A. M.; Breysse, P. N.; White, R. H.; Curriero, F. C. Health Benefits from Large-Scale Ozone Reduction in the United States. *Environ. Health Perspect.* 2012, 120 (10), 1404–1410.

23. Yang, S.; Zhu, Z.; Wei, F.; Yang, X. Carbon nanotubes/activated carbon fiber based air filter media for simultaneous removal of particulate matter and ozone. *Building and Environment* 2017, 125, 60–66.

24. Lin, F.; Zhu, Y.; Xu, C.; Ma, Q.; Wang, Z.; Zhou, J.; Cen, K. Experimental study on residual ozone decomposition in process of multi-pollutants removal by ozone. *J. Zhejiang Univ-Eng. Sci.* 2015, No. 07, 1249–1254.
Modified MnO₂ To Significantly Improve Its Stability for Gaseous Pollutant.

Catalytic oxidation.

anode materials for Li-ion batteries.

ACS Omega http://pubs.acs.org/journal/acsodf

Catal. Lett.

A Comprehensive review.

Building and Environment 2021, 187, 107370.

Li, X.; Ma, J.; He, H. Recent advances in catalytic decomposition of ozone. J. Environ. Sci. 2020, 94, 14–31.

Li, W.; Gibbs, G. V.; Oyama, S. T. Mechanism of Ozone Decomposition on a Manganese Oxide Catalyst. In Situ Raman Spectroscopy and Ab Initio Molecular Orbital Calculations. J. Am. Chem. Soc. 1998, 120 (35), 9041–9046.

Liu, Y.; Yang, W.; Zhang, P.; Zhang, J. Nitric acid-treated birnessite-type MnO₂: An efficient and hydrophilic material for humid ozone decomposition. Appl. Surf. Sci. 2018, 442, 640–649.

Zhu, G.; Zhu, J.; Jiang, W.; Zhang, Z.; Wang, J.; Zhu, Y.; Zhang, Q. Surface oxygen vacancy induced α-MnO₂ nanofiber for highly efficient ozone elimination. Appl. Catal., B 2017, 209, 729–737.

Yang, W.; Su, Z.; Xu, Z.; Yang, W.; Peng, Y.; Li, J. Comparative study of α-, β-, γ- and δ-MnO₂ on toluene oxidation: Oxygen vacancies and reaction intermediates. Appl. Catal., B 2020, 260, 118150.

Ma, J.; Wang, C.; He, H. Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Appl. Catal., B 2017, 201, 503–510.

Brodu, N.; Manero, M.-H.; Andriantsiferana, C.; Pic, J.-S.; Valdés, H. Role of Lewis acid sites of ZSM-5 zeolite on gaseous ozone abatement. Chem. Eng. J. 2013, 231, 281–286.

Zhu, G.; Zhu, J.; Li, W.; Yao, W.; Zong, R.; Zhu, Y.; Zhang, Q. Tuning the K⁺ Concentration in the Tunnels of α-MnO₂ To Increase the Content of Oxygen Vacancy for Ozone Elimination. Environ. Sci. Technol. 2018, 52 (15), 8684–8692.

Hong, W.; Zhu, T.; Sun, Y.; Wang, H.; Li, X.; Shen, F. Enhancing Oxygen Vacancies by Introducing Na⁺ into OMS-2 Tunnels To Promote Catalytic Ozone Decomposition. Environ. Sci. Technol. 2019, 53 (22), 13332–13343.

Rao, Y.; Zeng, D.; Cao, X.; Qin, G.; Li, S. Synthesis of doped MnO₃/diatomite composites for catalyzing ozone decomposition. Ceram. Int. 2019, 45 (6), 6966–6971.

Liu, Y.; Zhang, P. Removing Surface Hydroxyl Groups of Ce-Modified MnO₂ To Significantly Improve Its Stability for Gaseous Ozone Decomposition. J. Phys. Chem. C 2017, 121 (42), 23488–23497.

Li, K.; Chen, C.; Zhang, H.; Hu, X.; Sun, T.; Jia, J. Effects of phase structure of MnO₂ and morphology of δ-MnO₂ on toluene catalytic oxidation. Appl. Surf. Sci. 2019, 496, 143662.

Chen, T.; Dou, H.; Li, X.; Tang, X.; Li, J.; Hao, J. Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde. Microporous Mesoporous Mater. 2009, 122 (1), 270–274.

Wei, C.; Xu, C.; Li, B.; Du, H.; Kang, F. Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J. Phys. Chem. Solids 2012, 73 (12), 1487–1491.

Tang, X.; Li, H.; Liu, Z.-H.; Yang, Z.; Wang, Z. Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure. J. Power Sources 2011, 196 (2), 855–859.

Kim, H.-m.; Saito, N.; Kim, D.-w. Solution Plasma-Assisted Green Synthesis of MnO₂ Adsorbent and Removal of Cationic Pollutant. Journal of Chemistry 2019, 2019, 7494292.

Li, Z.; Liu, H.; Ruan, H.; Hu, R.; Su, Y.; Hu, Z.; Huang, J. In situ synthesis rodlike MnO₂/reduced graphene oxide composite as anode materials for Li-ion batteries. Journal of Materials Science: Materials in Electronics 2017, 28 (23), 18099–18105.

Huang, X.; Cui, W.; Yu, J.; Lu, S.; Liao, X. Preparation of Mesoporous MnO₂ Catalysts with Different Morphologies for Catalytic Oxidation of Organic Compounds. Catal. Lett. 2021, DOI: 10.1007/s10562-021-03745-y.

Ji, J.; Lu, X.; Chen, C.; He, M.; Huang, H. Potassium-modulated δ-MnO₂ as robust catalysts for formaldehyde oxidation at room temperature. Appl. Catal., B 2020, 260, 118210.

Zhao, B.; Ran, R.; Wu, X.; Weng, D. Phase structures, morphologies, and NO catalytic oxidation activities of single-phase MnO₂ catalysts. Appl. Catal., A 2016, 514, 24–34.

Zhang, Z.; Lin, F.; Xiang, L.; Yu, H.; Wang, Z.; Yan, B.; Chen, G. Synergistic effect for simultaneously catalytic ozonation of chlorobenzene and NO over MnCoO₃ catalysts: Byproducts formation under practical conditions. Chem. Eng. J. 2022, 427, 130929.

Wang, L.; Wu, H.; Wang, Q.; Zhou, C.; Zhang, Z.; Yang, H.; Zhou, Y. Emission reduction of condensable particulate matter in ammonia-based desulfurized flue gas by heterogeneous vapor condensation. Chem. Eng. Process. Process Intensification 2021, 167, 108519.

Cui, Z.; Guo, X.; Li, H. High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries. J. Power Sources 2013, 244, 731–735.

Sun, L.; Zhao, P.; Liu, Y.; Tan, B.; Yu, C.; Feng, N.; Wang, L.; Wan, H.; Guan, G. Enhancing the catalytic activity of MnO₂ via structural phase transition for propane combustion: Promotional role of ionic liquid. Journal of Environmental Chemical Engineering 2021, 9 (6), 106453.

Huang, C.; Ji, Q.; Zhang, H.; Wang, Y.; Wang, S.; Liu, X.; Guo, Y.; Zhang, C. Ru-incorporated Co₃O₄ nanoparticles from self-sacrificial ZIF-67 template as efficient bifunctional electrocatalysts for rechargeable metal-air battery. J. Colloid Interface Sci. 2022, 606, 654–665.

Xing, X.; Zhao, T.; Cheng, J.; Duan, X.; Li, W.; Li, G.; Zhang, H.; Zhao, H. Promotional effect of Cu additive for the selective catalytic oxidation of n-butylamine over CeZrOₓ catalyst. Chin. Chem. Lett. 2021, DOI: 10.1016/j.ccl.2021.09.056.

Su, Z.; Yang, W.; Wang, C.; Xiong, S.; Cao, X.; Peng, Y.; Si, W.; Weng, X.; Yue, M.; Li, J. Roles of oxygen vacancies in the bulk and surface of CeO₂ for toluene catalytic combustion. Environ. Sci. Technol. 2020, 54 (19), 12684–12692.

Jia, J.; Zhang, P.; Chen, L. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl. Catal., B 2016, 189, 210–218.

Hong, W.; Shao, M.; Zhu, T.; Wang, H.; Sun, Y.; Shen, F.; Li, X. To promote ozone catalytic decomposition by fabricating manganese vacancies in e-MnO₂ catalyst via selective dissolution of Mn-Li precursors. Appl. Catal., B 2020, 274, 119088.

Zhang, G.; Xiang, L.; Lin, F.; Wang, Z.; Yan, B.; Chen, G. Catalytic deep degradation of CI-VOCs with the assistance of ozone at low temperature over MnO₂ catalysts. Chem. Eng. J. 2021, 426, 130814.

Peng, Y.; Si, W.; Li, J.; Critten, J.; Hao, J.; Experimental and DFT studies on Sr-doped LaMnO₃ catalysts for NOₓ storage and reduction. Catalysis Science & Technology 2015, 5 (4), 2478–2485.

Chen, G.; Wang, Z.; Lin, F.; Zhang, Z.; Yu, H.; Yan, B.; Wang, Z. Comparative investigation on catalytic ozonation of VOCS in different types over supported MnOₓ catalysts. J. Hazard. Mater. 2020, 391, 122218.

Mo, S.; Zhang, Q.; Li, J.; Sun, Y.; Ren, Q.; Zou, S.; Zhang, Q.; Lu, J.; Fu, M.; Mo, D.; Wu, J.; Huang, H.; Ye, D. Highly efficient mesoporous MnO₂ catalysts for the total toluene oxidation: Oxygen-Vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl. Catal., B 2020, 264, 118464.

Lin, F.; Wang, Z.; Zhang, Z.; Xiang, L.; Yuan, D.; Yan, B.; Wang, Z.; Chen, G. Comparative investigation on chlorobenzene oxidation by oxygen and ozone over a MnO₂/Al₂O₃ catalyst in the presence of SOₓ. Environ. Sci. Technol. 2021, 55 (5), 3341–3351.

Fantauzzi, M.; Rigoldi, A.; Elsener, B.; Atzei, D.; Rossi, A. A contribution to the surface characterization of alkali metal sulfates. J. Electron Spectrosc. Relat. Phenom. 2014, 193, 6–15.
(62) Kim, S. S.; Britcher, L.; Kumar, S.; Griesser, H. J XPS study of sulfur and phosphorus compounds with different oxidation states. *Sains Malaysiana* 2018, 47 (8), 1913–1922.

(63) Chesalov, Y. A.; Chernobay, G. B.; Andrushkevich, T. V. FTIR study of the surface complexes of β-picoline, 3-pyridine-carbaldehyde and nicotinic acid on sulfated TiO2 (anatase). *J. Mol. Catal. A: Chem.* 2013, 373, 96–107.

(64) Wang, Y.; Hu, X.; Guo, T.; Tian, W.; Hao, J.; Guo, Q. The competitive adsorption mechanism of CO2, H2O and O2 on a solid amine adsorbent. *Chem. Eng. J.* 2021, 416, 129007.

(65) Luo, L.; LaCoste, J. D.; Khamidullina, N. G.; Fox, E.; Gang, D. D.; Hernandez, R.; Yan, H. Investigate interactions of water with mesoporous ceria using in situ VT-DRIFTS. *Surf. Sci.* 2020, 691, 121486.

(66) Katsigiannopoulos, D.; Grana, E.; Tsitoni, K.; Moutsios, I.; Manesi, G.-M.; Nikitina, E. A.; Chalmpes, N.; Moschovas, D.; Gournis, D.; Ivanov, D. A.; Avgeropoulos, A. Structure/Properties relationship of anionically synthesized diblock copolymers "grafted to" chemically modified graphene. *Polymers (Basel)* 2021, 13 (14), 2308.

(67) Che, M.; Tench, A. J. Characterization and reactivity of molecular oxygen species on oxide surfaces. In *Advances in Catalysis*; Eley, D. D., Pines, H., Weisz, P. B., Eds.; Academic Press, 1983; Vol. 32, pp 1–148.

(68) Chao, C. Y. H.; Kwong, C. W.; Hui, K. S. Potential use of a combined ozone and zeolite system for gaseous toluene elimination. *J. Hazard. Mater.* 2007, 143 (1), 118–127.

(69) Zhang, L.; Li, L.; Cao, Y.; Yao, X.; Ge, C.; Gao, F.; Deng, Y.; Tang, C.; Dong, L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3. *Appl. Catal., B* 2015, 165, 589–598.

(70) Liu, H.; Chen, Z.; Wang, H.; You, C. Active centers response to SO2 and H2O poisoning over Fe-W-Ni exchanged zeolite for high-temperature NH3-SCR: Experimental and DFT studies. *Appl. Surf. Sci.* 2021, 570, 151105.