Rizi, K. and Murdan, S. and Danquah, Cynthia A. and Nicklin, Jane and Bhakta, Sanjib (2015) Development of a rapid, reliable and quantitative method – “SPOTi” for testing antifungal efficacy. Journal of Microbiological Methods 117 , pp. 36-40. ISSN 0167-7012.

Usage Guidelines:
Please refer to usage guidelines at contact lib-eprints@bbk.ac.uk.
Development of a rapid, reliable and quantitative method — “SPOTi” for testing antifungal efficacy

Khalida Rizi a,b, Sudaxshina Murdan a, Cynthia A. Danquah b, Jane Faull b, Sanjib Bhakta b,*

a Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
b Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK

A R T I C L E I N F O

Article history:
Received 7 June 2015
Received in revised form 2 July 2015
Accepted 2 July 2015
Available online 13 July 2015

Keywords:
SPOTi
Antifungals
Dermatophytes
Screening
Drug discovery

A B S T R A C T

A reference method for the antimicrobial susceptibility testing of common fungal pathogens such as dermatophytes, is currently lacking. In this study, we report the successful adaptation of solid agar-based spot culture growth inhibition assay (SPOTi) for dermatophytes, currently being used as a gold-standard in the antitubercular drug discovery field. The fungal-SPOTi assay correlated with the disc-diffusion method, and is validated using mycelial plugs. We propose the fungal-SPOTi as a high-throughput alternative to the disc-diffusion and broth micro-dilution anti-fungal assays to screen novel anti-fungals.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dermatophytes, a group of fungi, are responsible for causing infection of the hair, skin and nails in one-fifth of the world’s population (Marques et al., 2000). Treatment of fungal infections is not always straightforward, for example, in onychomycosis, up to 50% of patients in clinical practice are estimated to be treatment failures (Arrese and Pierard, 2003) and 47% suffer a relapse, possibly as a result of incorrect treatment and strain heterogeneity (Bradley et al., 1999). An immediate solution to improve treatment outcomes is a rapid, straightforward and accurate means to profile the drug susceptibility of these fungal pathogens. This will allow clinicians to make an informed choice when prescribing a therapy. While several drug susceptibility screening methods for bacteria (Wiegand et al., 2008) and fungi such as yeasts and filamentous fungi have existed for many years (Rex et al., 1993), dermatophytes still lack an undisputable quantitative assay. An increase in research activity related to anti-fungal susceptibility testing of dermatophytes has led to the development of a number of broth micro- and macro-dilution methods (Araujo et al., 2009), agar-based methods using disc diffusion (Nweze et al., 2010; Macura, 1993); and E-Test (Mendez et al., 2008), colorimetric modifications (Castro et al., 2007), bioluminescence assays to enhance MIC determinations (Yoshida et al., 1997). A limitation of many of these reported methods is their long incubation times (up to 15 days) (Macura, 1993; Karaca and Koc, 2004). In addition, solid agar-based methods for dermatophytes often report the minimum inhibitory concentration (MIC) of a drug as the concentration at which the fungal growth showed a relative growth inhibition in percent, which can give rise to discrepancies owing to operator-subjectivity (Channoum et al., 2006).

A rapid, but reliable method that is universally reproducible is needed in both the clinical setting, where determination of antibiotic resistance profile is the goal, and the academic and/or industrial drug-discovery wet-laboratories where irreversible identification of novel lead molecules takes precedence. This calls for a stewardship engaged in the development of assay techniques that are objective, gold-standard and feasible.

We originally developed and previously reported a high-throughput, solid agar-based assay conducted in multi-well (six-well to ninety-six well) plates to test inhibitors of bacterial growth and viability, known as the SPOTi assay (Evangelopoulos and Bhakta, 2010; Gupta and Bhakta, 2012; Guzman et al., 2013). The latter has been independently used in a clinical setting for antibacterial drug susceptibility testing (Hall et al., 2012).

In this paper, we report the successful adaptation and application of this methodology, which can be used to test anti-fungal drug susceptibility as well as screening novel inhibitor libraries against fungal pathogens. At the first instance, we tested four antifungal agents; amorolfine, terbinafine, ciclopirox olamine and nystatin against four dermatophyte strains; Trichophyton rubrum, Trichophyton tonsurans, Trichophyton

http://dx.doi.org/10.1016/j.mimet.2015.07.005
0167-7012/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
equinum and Trichophyton mentagrophytes, and validated the assay using disc diffusion and mycelial plug methods.

2. Materials and methods

2.1. Materials

Four antifungal agents; amorolfin HCl (Ranbaxy Research Laboratories, India), terbinafine HCl (AK Scientific, USA) and ciclopirox olamine (Insight Biotechnology Ltd, UK) and nystatin (Sigma Aldrich Ltd, UK) were used. Sabouraud’s dextrose agar (SDA), Sabouraud’s dextrose broth (SDB) and dimethyl sulfoxide DMSO were purchased from Sigma-Aldrich, UK.

2.2. Isolates

Four dermatophytes strains T. rubrum (CBS 118892), T. tonsurans (CBS 112818), T. equinum (CBS 127.97) and T. mentagrophytes (MUCL 9823) were used.

2.3. Methods

2.3.1. Preparation of inocula

Stock inoculum suspensions of the dermatophytes were prepared from 14-day old cultures grown on Sabouraud’s dextrose agar (SDA), Sabouraud’s dextrose broth (SDB) and dimethyl sulfoxide DMSO were purchased from Sigma-Aldrich, UK.

2.3.2. High throughput SPOTi assay

The methodology, with required modification from previously published method (Guzman et al., 2013; Evangelopoulos and Bhakta, 2010; Gupta and Bhakta, 2012), is schematically shown in Fig. 1. Serial two fold dilutions of drug were prepared from a stock solution in DMSO. Two μL of each dilution were dispensed into the individual wells of a 96-well plate followed by the addition of 200 μL of SDA media using a Multidrop™ Combi multi-dispenser (Thermo Scientific, UK). The final drug concentration range in the agar ranged between 10 and 0.005 μg/mL for ciclopirox olamine and nystatin and 0.15 and 0.00007 μg/mL for terbinafine HCl and amorolfine HCl. The wells were then spotted using a multichannel pipette with 5 μL of dermatophyte spore suspension. This was equivalent to approximately 2000 dermatophyte spores per well.

2.3.3. Disc diffusion susceptibility testing

Discs loaded with ciclopirox olamine, nystatin, amorolfine HCl and terbinafine HCl were prepared according to the potency in the Neo-Sensitabs Susceptibility Testing Catalogue (Rosco Diagnostica Ltd, Denmark). A disc with 27 mm diameter and 0.1 mm thickness was placed on the surface of the agar and incubated at room temperature for 48 hours. The diameter of the inhibition zone was measured and used to determine the MIC value.

Table 1

Fungi	Count (spores/ml)	CFU (spores/ml)
T. rubrum	50 × 10⁴	46 × 10⁴
T. equinum	61 × 10⁴	43 × 10⁴
T. tonsurans	47 × 10⁴	26 × 10⁴
T. mentagrophytes	38 × 10⁴	19 × 10⁴

Table 2

Fungi	MIC (μg/ml)	Amorolfine	Terbinafine	Ciclopirox	Nystatin
T. rubrum	0.01	0.0006	2.5	1.2	
T. equinum	0.005	0.012	2.5	1.2	
T. tonsurans	0.01	0.012	1.2	0.6	
T. mentagrophytes	0.02	0.0006	2.5	1.2	

Fig. 1. Schematic explanation of the spot culture growth inhibition (SPOTi) assay.
The drug load per disc, hence the amounts available for drug diffusion into the agar gel were 50 μg for ciclopirox olamine and nystatin, and 5 μg for terbinafine and amorolfine. 100 μl of T. rubrum inocula was spread on the surface of SDA plates then the diffusion discs were placed in the centre of the plates. The plates were then incubated at 32 °C for 6 days. The diameters of ZOI were measured, using Image J software. Results were averaged for 3 plates for each antifungal agent.

Table 3

ZOIs of ciclopirox, nystatin, amorolfine and terbinafine against T. rubrum. Mean ± standard deviation are shown (n = 3).

Antifungal agents	Zone of inhibition (cm)
Ciclopirox	5.39 ± 0.31
Nystatin	2.65 ± 0.37
Amorolfine	9.00 ± 0.00
Terbinafine	7.95 ± 0.32

The drug load per disc, hence the amounts available for drug diffusion into the agar gel were 50 μg for ciclopirox olamine and nystatin, and 5 μg for terbinafine and amorolfine. 100 μl of T. rubrum inocula was spread on the surface of SDA plates then the diffusion discs were placed in the centre of the plates. The plates were then incubated at 32 °C for 6 days. The diameters of ZOI were measured, using Image J software. Results were averaged for 3 plates for each antifungal agent.
2.3.4. Validation of the SPOTi assay using mycelial plugs

Using ciclopirox as a model drug, the SPOTi assay described above in 96-well plates was validated using a 6-well plate and mycelial plugs of 5 mm diameter. Drug solutions were diluted in 5 ml SDA in each well to produce drug concentrations of: 10, 5, 2.5, 1.2 and 0.6 μg/mL. In the last well, the pure solvent (DMSO) was used to ensure that it does not negatively affect fungal growth. T. rubrum mycelial plugs of 0.6 mm diameter were then placed in the centre of each well and incubated at 32 °C. This experiment was performed in triplicates. An additional 6-well plate was used as a growth control where no antifungals or solvents were mixed with SDA.

3. Results and discussion

3.1. MICs determined by SPOTi, ZOI and mycelial plugs

With the modified SPOTi assay, dermatophyte growth was assessed over a 6 day period after inoculation the MICs (Table 2) of the antifungal drugs could be reliably determined at day 3, as shown by photographic images shown in Fig. 2 for T. rubrum. Compared to the disc-diffusion and broth micro-dilution methods, where a 7 day incubation period is recommended (Norris et al., 1999), SPOTi offers a significant advantage and ease of performance.

Encouragingly, the results from the SPOTi, quantitative in nature, agreed with the qualitative ones obtained from the disc-diffusion tests (a qualitative analysis) that were performed alongside to validate the former approach, i.e. a higher potency of amorolfine and terbinafine which gave larger ZOI at lower concentrations, compared to ciclopirox and nystatin (Table 3).

Taking ciclopirox as a model drug, the SPOTi assay was compared with the traditional method of inoculation using mycelial plugs (Wright et al., 1983) (Fig. 3), where the MIC of ciclopirox was found to be 2.5 μg/mL (Fig. 3). This is the same as that determined with SPOTi (Table 2) and establishes the fact that, in spite of using only the conidia of the fungi in the SPOTi assay, the MIC determination by SPOTi is representative of all forms of the pathogen-hyphae and spores, thereby displaying the robustness and reproducibility of the assay.

In the absence of a dermatophytes' susceptibility assessment standard, disc-diffusion method is still widely used primarily due to its convenience. The major critique of this method arises from the fact that when a disc containing a given amount of an antifungal is placed on an agar plate, there follows a slow release of the drug out of the disc, into the agar, followed by its diffusion within the agar over time. This is likely to form a concentration gradient with higher drug concentrations found near the drug-loaded disc. Thus dermatophytes further away from the disc will be exposed to a lower drug concentration. Furthermore, the interpretation of zone of inhibition (ZOI) can often be subjective, with definitions of measured areas ranging from “area of no growth” to “areas up to normal growth”. Finally, ZOI does not allow the direct comparison of various agents in terms of MIC; and is only qualitative even when areas of inhibitions are reported, as these values cannot be used to determine MIC. For example, an area of more than 20 mm is indicative of susceptibility when testing terbinafine but only an area of 15 mm is indicative of susceptibility with nystatin (Rosco Diagnostica Ltd, 2007/2008). Nonetheless, comparison of this method with the broth micro-dilution assay has resulted in favourable correlation with some antifungal agents, where an increase of MIC is accompanied by a decrease of inhibition zone diameters (National Committee for Clinical Laboratory Standards, 1997; National Committee for Clinical Laboratory Standards, 2002), as is also seen through this work (Tables 2 and 3).

With the SPOTi assay, more quantitative results are obtained through direct observation. Drug concentrations resulting in ‘no fungal growth’ are identified as the MIC. The main advantage of this assay, compared to the disc diffusion method, is that the concentration of the drugs that fungal colonies are exposed to is uniform in each well as the drug is mixed thoroughly in the agar. Hence, SPOTi allows for quantitative measurement of MICs.

4. Conclusions

We have shown SPOTi to be a rapid, reliable and quantitative susceptibility assay for dermatophytes. The encouraging results attest to the use of this assay on other fungi, for antifungal susceptibility testing as well as for the screening of novel antifungal agents and it may prove to be a gold-standard susceptibility assay for fungi. SPOTi has already proven to be a success story in the identification of antimycobacteria from varied sources such as natural, synthetic and has recently been instrumental in repurposing drugs (Guzman et al., 2013). We expect this success to translate effortlessly when using fungi, and endeavour to adapt this convenient, effective technique for other types of fungal pathogens.
Funding

This project was partly funded by EPSRC, grant code EP/I009221/1.

Competing financial interests

The authors declare no competing financial interests.

Acknowledgments

This work was conducted during the efficacy testing of anti-fungal nail patches, and we acknowledge Prof A Kinloch, Dr M Charalambides and Dr Idris Mohammed, from Imperial College London, who worked on the mechanical properties of nail patches. Marie-josee Maugueret-Minerve, Microbiology Research Unit manager, is also thanked for her technical help.

References

Araujo, C.R., Miranda, K.C., Fernandes, D.D.L., Soares, A.J., Silva, M.D.R., 2009. In vitro susceptibility testing of dermatophytes isolated in Goiania, Brazil, against five antifungal agents by broth microdilution method. Rev. Inst. Med. Trop. Sao Paulo 51, 9–12.

Arrese, J.E., Pierard, G.E., 2003. Treatment failures and relapses in onychomycosis: a stubborn clinical problem. Dermatology 207, 255–260.

Bradley, M.C., Leidich, S., Isham, N., Elewski, B.E., Ghannoum, M.A., 1999. Antifungal susceptibilities and genetic relatedness of serial Trichophyton rubrum isolates from patients with onychomycosis of the toenail. Mycoses 42 (Suppl. 2), 105–110.

Castro, C., Serrano, M., Valverde, A., Pemán, J., Almeida, C., Martín-Mazuelos, E., 2007. Comparison of the Sensititre YeastOne colorimetric antifungal panel with the modified Clinical and Laboratory Standards Institute broth microdilution (M38-A) method for antifungal susceptibility testing of dermatophytes. Chemotherapy 54, 427–430.

Evangelopoulos, D., Bhakta, S., 2010. Rapid methods for testing inhibitors of mycobacterial growth. Methods Mol. Biol. 642, 193–201.

Ghannoum, M.A., Arthington-Stagg, B., Chaturvedi, V., Espinel-Ingroff, A., Pfaffer, M.A., Rennie, R., Rinaldi, M.G., Walsh, T.J., 2006. Interlaboratory study of quality control isolates for a broth microdilution method (modified CLSI M38-A) for testing susceptibilities of dermatophytes to antifungals. J. Clin. Microbiol. 44, 4353–4356.

Gupta, A., Bhakta, S., 2012. An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 67, 1380–1391.

Guzman, J.D., Evangelopoulos, D., Gupta, A., Birchall, K., Mwaigwisya, S., Saxty, B., McHugh, T.D., Gibbons, S., Malkinson, J., Bhakta, S., 2013. Antituberular specificity of ibuprofen and the other 2-arylpropanoic acids using the HT-Spot whole-cell phenotypic assay. BMJ Open 3.

Hall, L., Jude, K.P., Clark, S.L., Dionne, K., Merson, R., Boyer, A., Parrish, N.M., Wengenack, N.L., 2012. Evaluation of the Sensitivity MycoTB plate for susceptibility testing of the Mycobacterium tuberculosis complex against first- and second-line agents. J. Clin. Microbiol. 50, 3732–3734.

Karaca, N., Koc, A.N., 2004. In vitro susceptibility testing of dermatophytes: comparison of disk diffusion and reference broth dilution methods. Diagn. Microbiol. Infect. Dis. 48, 259–264.

Macura, A.B., 1993. In vitro susceptibility of dermatophytes to antifungal drugs: a comparison of two methods. Int. J. Dermatol. 32, 533–536.

Marques, S.A., Robles, A.M., Tortorano, A.M., Tuculet, M.A., Negroni, R., Mendes, R.P., 2000. Mycoses associated with AIDS in the Third World. Med. Mycol. 38 (Suppl. 1), 269–279.

Mendez, C.C., Serrano, M., Valverde, A., Pemán, J., Almeida, C., Martín-Mazuelos, E., 2008. Comparison of E-Test, disk diffusion and a modified CLSI broth microdilution (M 38-A) method for in vitro testing of itraconazole, fluconazole and voriconazole against dermatophytes. Med. Mycol. 46, 119–123.

National Committee For Clinical Laboratory Standards, 1997. Reference method for broth dilution antifungal susceptibility testing Of yeasts. Approved Standard NCCLS Document M27-A. Wayne: National Committee for Clinical Laboratory Standards.

National Committee For Clinical Laboratory Standards, 2002. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved Standard CLSI Document M38-A. Wayne: Committee for Clinical Laboratory Standards.

Norris, H.A., Elewski, B.E., Ghannoum, M.A., 1999. Optimal growth conditions for the determination of the antifungal susceptibility of three species of dermatophytes with the use of a microdilution method. J. Am. Acad. Dermatol. 40, 59–513.

Nweeze, E.I., Mukherjee, P.K., Channoum, M.A., 2010. Agar-based disk diffusion assay for susceptibility testing of dermatophytes. J. Clin. Microbiol. 48, 3750–3752.

Rex, J.H., Pfaffer, M.A., Rinaldi, M.G., Polak, A., Galgiani, J.N., 1993. Antifungal susceptibility testing. Clin. Microbiol. Rev. 6, 367–381.

Rosco Diagnostica Ltd, 2007/2008. User’s Guide NEO-SENSITABS Susceptibility Testing. 19th ed Rosco Diagnostica Ltd, Denmark.

Sharma, M., Sharma, M., 2011. Influence of culture media on mycelial growth and sporulation of some soil dermatophytes compared to their clinical isolates. J. Microbiol. Antimicrob. 3, 163.

Sharma, M., Sharma, M., Chandra, S., 2012. Influence of temperature and relative humidity on growth and sporulation of some common dermatophytes. Indian J. Fundam. Appl. Life Sci. 2, 1–6.

Weltzman, I., Summerbell, R.C., 1995. The dermatophytes. Clin. Microbiol. Rev. 8, 240–259.

Wiegand, I., Hilpert, K., Hancock, R.E., 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175.

Wright, L., Scott, E., 1983. The sensitivity of mycelium, arthrospores and microconidia of Trichophyton mentagrophytes to imidazoles determined by in-vitro tests. J. Antimicrob. Chemother. 12, 317–327.

Yoshida, T., Uchida, K., Yamaguchi, H., 1997. An ATP bioluminescence assay applicable to rapid fluconazole susceptibility testing of dermatophytes. Microbiol. Immunol. 41, 377–386.