On the fundamental group of Hom(\mathbb{Z}^k, G)

José Manuel Gómez · Alexandra Pettet · Juan Souto

Abstract Let G be a compact Lie group. Consider the variety $\text{Hom}(\mathbb{Z}^k, G)$ of representations of \mathbb{Z}^k into G. We can see this as a based space by taking as base point the trivial representation 1. The goal of this paper is to prove that $\pi_1(\text{Hom}(\mathbb{Z}^k, G))$ is naturally isomorphic to $\pi_1(G)^k$.

1 Introduction

Let G be a compact Lie group. The set $\text{Hom}(\mathbb{Z}^k, G)$ can naturally be identified with the subset of G^k consisting of ordered commuting k-tuples in G. In this way, $\text{Hom}(\mathbb{Z}^k, G)$ can be given a topology as a subspace of G^k making it into a, possibly singular, real analytic variety. Let $1 \in \text{Hom}(\mathbb{Z}^k, G)$ be the trivial representation. Then $\text{Hom}(\mathbb{Z}^k, G)$ can be seen as a based space with base point 1. As announced in the abstract, the goal of this paper is to prove the following result:

The second author has been partially supported by NSF Grant DMS-0856143 and NSF RTG Grant DMS-0602191. The third author has been partially supported by the NSF Grant DMS-0706878, NSF Career Award 0952106 and the Alfred P. Sloan Foundation.

J. M. Gómez
Department of Mathematics, University of British Columbia,
Vancouver, BC, Canada
e-mail: josmago@math.ubc.ca

A. Pettet (✉) · J. Souto
Department of Mathematics, University of Michigan,
Ann Arbor, MI, USA
e-mail: apettet@umich.edu

J. Souto
e-mail: jsouto@umich.edu

A. Pettet
Mathematical Institute, University of Oxford, 24-29 St Giles’,
Oxford OX1 3LB, UK
Theorem 1.1 Let G be a compact Lie group. Then for every $k \geq 1$ there is a natural isomorphism

$$\pi_1(\text{Hom}(\mathbb{Z}^k, G)) \cong \pi_1(G)^k.$$

Theorem 1.1 is due to Torres-Giese and Sjerve [10] in the case that G is either SO(3), SU(2) or U(2). In their work, Torres-Giese and Sjerve determine the topological type of $\text{Hom}(\mathbb{Z}^k, G)$ and compute its fundamental group via the Seifert-van Kampen Theorem. Our approach is as follows. Let G be a compact Lie group and denote by G_0 the connected component of G containing the unit 1_G. The natural inclusion $i : G_0 \hookrightarrow G$ gives rise to a map

$$\text{Hom}(\mathbb{Z}^k, G_0) \xrightarrow{i^*} \text{Hom}(\mathbb{Z}^k, G)$$

that induces an isomorphism of fundamental groups. Therefore, we can assume without loss of generality that G is a compact connected Lie group. Observe that in general $\text{Hom}(\mathbb{Z}^k, G)$ is not connected even if G is connected and simply connected. We denote by $\text{Hom}(\mathbb{Z}^k, G)_\mathbb{1}$ the connected component of $\text{Hom}(\mathbb{Z}^k, G)$ containing the trivial representation $\mathbb{1}$. We are thus interested in computing $\pi_1(\text{Hom}(\mathbb{Z}^k, G)_\mathbb{1})$. Fix T a maximal torus in G, let $N(T)$ be the normalizer of T in G and $W = N(T)/T$ the associated Weyl group. Following Baird [2], we consider the continuous surjection

$$\sigma_k : G/T \times_W T^k = G \times_{N(T)} T^k \to \text{Hom}(\mathbb{Z}^k, G)_\mathbb{1}$$

$$(g, t_1, \ldots, t_k) \mapsto (gt_1g^{-1}, \ldots, gt_kg^{-1}).$$

When $k = 1$ this map corresponds to the classical map given by conjugation

$$\sigma_1 : G/T \times_W T \to G$$

$$(g, t) \mapsto gtg^{-1}.$$

If G^{reg} denotes the subspace of regular elements in G, then Weyl’s covering theorem (see [3, Theorem 3.7.2]) asserts that the restriction of σ_1 to $G/T \times_W (G^{\text{reg}} \cap T)$ is a G-equivariant real-analytic diffeomorphism onto G^{reg}. An analogous result is true in general for $k \geq 2$. The map σ_k is the main tool that we will use to compute $\pi_1(\text{Hom}(\mathbb{Z}^k, G)_\mathbb{1})$. Using a general position argument we show that the map σ_k is π_1-surjective. Then, under the additional assumption that G is simply connected, we show that every element in a suitable generating set of $\pi_1(G \times_{N(T)} T^k)$ is in the kernel of $\pi_1(\sigma_k)$. At this point we will have proved Theorem 1.1 in the case that $\pi_1(G)$ is trivial. To finish, we reduce the general case to the simply connected case by passing to a suitable cover \tilde{G} of the group G and studying the relation between $\text{Hom}(\mathbb{Z}^k, G)_\mathbb{1}$ and $\text{Hom}(\mathbb{Z}^k, \tilde{G})_\mathbb{1}$.

In the course of the proof of Theorem 1.1 we will need in a key way that G is compact because otherwise the map σ_k above will fail to be surjective. However, we would like to mention that the two last authors of this note have proved in [8] that if G is the group of complex points of a connected reductive algebraic group and K is a maximal compact subgroup, then the inclusion of $\text{Hom}(\mathbb{Z}^k, K)$ into $\text{Hom}(\mathbb{Z}^k, G)$ is a homotopy equivalence. Since also G and K are homotopy equivalent, we deduce from Theorem 1.1:

Corollary 1.2 Let G be the group of complex points of a connected reductive algebraic group. For every $k \geq 1$ there is a natural isomorphism $\pi_1(\text{Hom}(\mathbb{Z}^k, G)) \cong \pi_1(G)^k$.

This paper is organized as follows. In Sect. 2 we prove Theorem 1.1 for simply connected groups. In Sect. 3 we extend this to general compact Lie groups. Finally in Sect. 4 we discuss some examples showing that Theorem 1.1 fails if the base point of $\text{Hom}(\mathbb{Z}^k, G)$ is no longer assumed to be in $\text{Hom}(\mathbb{Z}^k, G)_\mathbb{1}$.
Remark The space \(\text{Hom}(\mathbb{Z}, G) \) is naturally homeomorphic to \(G \); hence, Theorem 1.1 is trivially satisfied for \(k = 1 \). Therefore, we will assume from now on that \(k \geq 2 \). Also, note that Theorem 1.1 holds trivially for finite groups. Thus we can also assume that \(G \) has rank at least 1.

2 The simply connected case

In this section we prove Theorem 1.1 for the particular case where \(G \) is a simply connected Lie group.

From now on fix a compact connected Lie group \(G \) and \(T \) a maximal torus in \(G \). Let \(N(T) \) be the normalizer of \(T \) in \(G \) and denote by \(W = N(T)/T \) the Weyl group associated to \(T \). Let \(N(T) \) be the normalizer of \(T \) in \(G \) and denote by \(W = N(T)/T \) the Weyl group associated to \(T \).

To \(g \in G \) and \(t_1, \ldots, t_k \in T \) we can associate the representation

\[
\rho(g, t_1, \ldots, t_k) : \mathbb{Z}^k \to G
\]

\[
(n_1, \ldots, n_k) \mapsto g t_1^{n_1} \cdots t_k^{n_k} g^{-1}.
\]

This way we obtain a continuous map

\[
\tilde{\sigma}_k : G \times T^k \to \text{Hom}(\mathbb{Z}^k, G)
\]

\[
(g, t_1, \ldots, t_k) \mapsto \rho(g, t_1, \ldots, t_k)
\]

which is constant along the orbits of the diagonal action of \(N(T) \) on \(G \times T^k \). Thus we have an induced map

\[
\sigma_k : G \times_{N(T)} T^k \to \text{Hom}(\mathbb{Z}^k, G).
\]

Observe that

\[
G \times_{N(T)} T^k = G/T \times_W T^k
\]

is a real-analytic manifold and that the map \(\sigma_k \) is a morphism of real-analytic spaces. Moreover, since \(W \) acts freely on \(G/T \), the projection onto the first factor induces a fibration sequence of the form

\[
T^k \to G/T \times_W T^k \to G/N(T).
\]

Let \(\text{Hom}(\mathbb{Z}^k, G)_1 \) be the connected component of \(\text{Hom}(\mathbb{Z}^k, G) \) containing the trivial representation

\[
1 : \mathbb{Z}^k \to G
\]

\[
(n_1, \ldots, n_k) \mapsto 1_G.
\]

In [2], Baird studied properties of the map \(\sigma_k \). For instance, by [2, Lemma 4.2] the map \(\sigma_k \) is a surjection onto \(\text{Hom}(\mathbb{Z}^k, G)_1 \), and this space is precisely the subspace of \(\text{Hom}(\mathbb{Z}^k, G) \) consisting of commuting \(k \)-tuples contained in some maximal torus of \(G \). Also, by [2, Theorem 4.3], the fibers of \(\sigma_k \) have the cohomology of a point if one has, for example, coefficients over a field of characteristic 0. From this we deduce in particular that the fibers of \(\sigma_k \) are connected. These facts are summarized in the following proposition:

Proposition 2.1 The space \(\text{Hom}(\mathbb{Z}^k, G)_1 \) is precisely the subspace of \(\text{Hom}(\mathbb{Z}^k, G) \) of commuting \(k \)-tuples contained in some maximal torus of \(G \), and the map \(\sigma_k : G \times_{N(T)} T^k \to \text{Hom}(\mathbb{Z}^k, G)_1 \) is surjective and has connected fibers.
The map σ_k is certainly not injective; however, there is a large set on which it has this desirable property. Recall that the action of $N(T)$ on T by conjugation induces the action $W \sim T$. We denote by $(T^k)^* \subset T^k$ consisting of all k-tuples (t_1, \ldots, t_k) with the property that the trivial element is the only element in W which fixes t_i for $i = 1, \ldots, k$. Clearly, $T^k \setminus (T^k)^*$ is a compact analytic subset of co-dimension at least k because $(T^k)^*$ contains the subspace of k-tuples $(t_1, \ldots, t_k) \in T^k$ for which at least one of the t_i’s is regular. Therefore we obtain the following:

Lemma 2.2 The complement of $G \times_{N(T)} (T^k)^*$ in $G \times_{N(T)} T^k$ is a compact analytic subset of co-dimension at least $k \geq 2$.

The open set $G \times_{N(T)} (T^k)^*$ will be important to us because it is homeomorphic to a very large subset of $\text{Hom} (\mathbb{Z}^k, G)_{\mathbb{I}}$:

Lemma 2.3 The restriction of the map σ_k to $G \times_{N(T)} (T^k)^*$ is a homeomorphism onto its image.

Proof Note that $G \times_{N(T)} T^k$ is a compact space and $\sigma_k : G \times_{N(T)} T^k \to \text{Hom} (\mathbb{Z}^k, G)_{\mathbb{I}}$ is a continuous map. In particular, σ_k is a closed map. This shows that the restriction of σ_k to the open subspace $G \times_{N(T)} (T^k)^*$ is a continuous, closed and surjective map onto its image. Therefore it suffices to see that restriction of σ_k to $G \times_{N(T)} (T^k)^*$ is injective. This is clear by definition of $(T^k)^*$.

Definition 1 Define \mathcal{H}^\ast to be the image of $G \times_{N(T)} (T^k)^*$ under the map σ_k. We will refer to \mathcal{H}^\ast as the regular part of $\text{Hom} (\mathbb{Z}^k, G)_{\mathbb{I}}$. Also define $\mathcal{H}^\circ = \text{Hom} (\mathbb{Z}^k, G)_{\mathbb{I}} \setminus \mathcal{H}^\ast$, the complement of the regular part in $\text{Hom} (\mathbb{Z}^k, G)_{\mathbb{I}}$. We will refer to \mathcal{H}° as the singular part of $\text{Hom} (\mathbb{Z}^k, G)_{\mathbb{I}}$.

Remark The subspace \mathcal{H}° is precisely the set of all representations $\rho : \mathbb{Z}^k \to G$ whose image has a maximal torus as its Zariski closure; we will not need this fact.

Lemma 2.4 The singular part \mathcal{H}° is nowhere dense and does not disconnect connected open subsets of $\text{Hom} (\mathbb{Z}^k, G)_{\mathbb{I}}$.

Proof The fact that \mathcal{H}° is nowhere dense follows from the fact that σ_k is surjective and that the preimage $G \times_{N(T)} (T^k)^*$ of its complement $\mathcal{H}^\ast = \text{Hom} (\mathbb{Z}^k, G)_{\mathbb{I}} \setminus \mathcal{H}^\circ$ is dense in $G \times_{N(T)} T^k$.

We prove now that \mathcal{H}° does not separate any connected open set $U \subset \text{Hom} (\mathbb{Z}^k, G)_{\mathbb{I}}$. Suppose that we have such a set U; if $U \cap \mathcal{H}^\circ = \emptyset$ then there is nothing to prove, so also suppose that this is not the case. Then the connectivity of the fibers of σ_k implies that the preimage $\sigma_k^{-1}(U)$ of U under the surjective map σ_k is connected as well. On the other hand,

$$\sigma_k^{-1}(\mathcal{H}^\circ) = (G \times T^k)/N(T) \setminus (G \times (T^k)^*)/N(T)$$

has co-dimension at least $k \geq 2$ by Lemma 2.2. A set of co-dimension at least 2 in a manifold does not disconnect connected open sets, and hence $\sigma_k^{-1}(U \setminus \mathcal{H}^\circ)$ is connected. As $\sigma_k^{-1}(U \setminus \mathcal{H}^\circ)$ and $U \setminus \mathcal{H}^\circ$ are homeomorphic, by Lemma 2.3, we have that \mathcal{H}° does not disconnect connected open sets.

Recall that $\text{Hom} (\mathbb{Z}^k, G)_{\mathbb{I}}$ is real analytic and that, as the image of the compact analytic set

$$(G \times_{N(T)} T^k) \setminus (G \times_{N(T)} (T^k)^*)$$
under the analytic map σ_k, the subset \mathcal{H}^s is closed and analytic. In particular, by the Whitney stratification theorem \cite{9,11}, $\text{Hom}(\mathbb{Z}^k, G)_1$ admits the structure of a simplicial complex in such a way that \mathcal{H}^s is a subcomplex. The following lemma gives the reason we proved Lemma 2.4 at all:

Lemma 2.5 Let X be a compact simplicial complex and $Y \subset X$ a subcomplex. Suppose that $X \setminus Y$ is dense, and that Y does not separate any connected open set in X. If $x_0 \in X \setminus Y$ is the basepoint, then $\pi_1(X \setminus Y, x_0)$ surjects onto $\pi_1(X, x_0)$.

Proof Suppose that we have a loop γ in X based at x_0; we want to homotope γ away from Y. Note that, as Y is a nowhere dense subcomplex, we can homotope γ so that it meets Y in a finite number of points; suppose that γ has been chosen to minimize this number.

Seeking a contradiction, assume that γ meets Y at some point p, and let $U \subset X$ be a small open contractible neighborhood of p. Let also $J \subset U$ be the proper subarc of γ containing p and let $p_\pm \notin Y$ be the endpoints of J. Since $U \setminus Y$ is connected, we can connect p_\pm inside $U \setminus Y$ by some arc I. Since U is contractible, both I and J are homotopic to each other in U while fixing p_\pm. It follows that we can replace the curve γ by a homotopic curve which meets Y in a point less than γ did. This is not possible by the choice of γ, so the lemma follows. \hfill \Box

Remark Lemma 2.5 can be proved in greater generality, but we will only need the version presented here.

From Lemmas 2.4 and 2.5, it follows that $\pi_1(\mathcal{H}^r)$ surjects onto $\pi_1(\text{Hom}(\mathbb{Z}^k, G)_1)$ if we take as base point some element $x_0 \in \mathcal{H}^r$. On the other hand, \mathcal{H}^r is the homeomorphic image of $G \times_{N(T)} (T^k)^*$ under the map σ_k by Lemma 2.3. Since the fundamental group of a connected space does not depend, up to isomorphism, on the chosen base point we deduce the following:

Corollary 2.6 If G is a compact connected Lie group, the map

$$\sigma_k : G \times_{N(T)} T^k \to \text{Hom}(\mathbb{Z}^k, G)_1$$

is π_1-surjective. \hfill \Box

Our next goal is to prove that the homomorphism

$$\pi_1(\sigma_k) : \pi_1(G \times_{N(T)} T^k) \to \pi_1(\text{Hom}(\mathbb{Z}^k, G)_1)$$

is trivial if we further assume that G is simply connected. Recall that $\text{Hom}(\mathbb{Z}^k, G)_1$ is a based space, with base point 1. We can also view $G \times_{N(T)} T^k$ as a based space by taking as base point the class representing the element $(1_G, \ldots, 1_G) \in G \times T^k$. With this choice of base points, the map σ_k is a based map.

We will show that $\pi_1(\sigma_k)$ is the trivial map by showing that a suitable set of generators of $\pi_1(G \times_{N(T)} T^k)$ is in the kernel of $\pi_1(\sigma_k)$. In order to describe such a set of generators, recall that projection onto the first factor $p_1 : G \times_{N(T)} T^k \to G / N(T)$ induces a fibration sequence of the form

$$T^k \to G \times_{N(T)} T^k \xrightarrow{p_1} G / N(T). \quad (2.1)$$

The tail end of the associated homotopy long exact sequence is the following exact sequence:

$$\pi_1(T^k) \to \pi_1(G \times_{N(T)} T^k) \to \pi_1(G / N(T)) \to 1. \quad (2.2)$$
Observe that the map p_1 admits a section
\[s : G/N(T) \to G \times_{N(T)} (T^k) \]
where 1_G is the unit element in G, and $[\cdot]$ denotes the class of the corresponding element in $G/N(T)$ and $G \times_{N(T)} T^k$, respectively. This section gives a splitting of the sequence (2.2). We deduce:

Lemma 2.7 $\pi_1(G \times_{N(T)} T^k)$ is generated by $\pi_1([1_G] \times T^k)$ and by $\pi_1(s(G/N(T)))$. \square

At this point we would like to notice that the composition of the section s with the map σ_k is the constant map; the image is namely the trivial representation 1. It follows that
\[\pi_1(s(G/N(T))) \subset \text{Ker}(\pi_1(\sigma_k)). \]

In particular, by Lemma 2.7, in order to show that $\pi_1(\sigma_k)$ is trivial it suffices to show that the restriction of the map σ_k to the fiber $[1_G] \times T^k$ is trivial in π_1. We do this next. Identifying
\[\pi_1(T^k) = \pi_1(T) \times \cdots \times \pi_1(T) \]
we see that $\pi_1(T^k)$ is generated by loops which are constant on each component but one. More concretely, for every $1 \leq a \leq k$ let
\[i_a : T \to T \times \cdots \times T \]
\[x \mapsto (1_G, \ldots, x, \ldots, 1_G). \]
be the natural inclusion of T into the a-th factor of $T \times \cdots \times T$. Then $\pi_1(T^k)$ is generated by loops of the form $\eta(t) = i_a(\gamma(t))$, where $\gamma : [0, 1] \to T$ is a loop in T based at 1_G. Note that the image of a loop of the form $i_a(\gamma)$ under σ_k is a loop (ρ_t) in $\text{Hom}(\mathbb{Z}^k, G)_1$ where each $\rho_t = \sigma_k(\eta(t))$ is given by
\[\rho_t(n_1, \ldots, n_k) = i_a(\gamma(t)^n_a), \]
where here by abuse of notation we also denote by
\[i_a : G \to \text{Hom}(%001\frac{Z^k}{G}, G) \]
\[g \mapsto (1_G, \ldots, g, \ldots, 1_G) \]
the inclusion of G into the a-th factor of $\text{Hom}(\mathbb{Z}^k, G) \subset G^k$. By assumption, and this is the first and only time that we use this assumption, $\pi_1(G)$ is trivial. Hence, the loop $\gamma(t)$ can be contracted in G to the trivial loop. Let
\[[0, 1] \times [0, 1] \to G \]
\[(s, t) \mapsto \gamma^s(t) \]
be such a homotopy with $\gamma^0(t) = \gamma(t)$ and with $\gamma^1(t) = 1_G$ for all t. Consider the homotopy
\[[0, 1] \times [0, 1] \to \text{Hom}(\mathbb{Z}^k, G)_1, \]
\[(t, s) \mapsto \rho_t^s \]
where
\[\rho_t^s(n_1, \ldots, n_k) = i_a(\gamma^s(t)^{n_a}). \]
This homotopy begins with the loop \((\rho_t) = \sigma_k(\eta)\) and ends with the constant curve with image the trivial representation \(1\). We have proved that the restriction of \(\sigma_k\) to the fiber \(\{1_G\} \times T^k\) of the fibration

\[G \times_{N(T)} T^k \to G/N(T) \]

is trivial in \(\pi_1\). Combining this fact with our earlier observations, we deduce that \(\pi_1(\sigma_k)\) is the trivial homomorphism. On the other, by Lemma 2.6, the map \(\pi_1(\sigma_k)\) is surjective. This proves that

\[\pi_1\left(\text{Hom}(\mathbb{Z}^k, G)_1\right) = 1. \]

In conclusion, we have proved the following theorem:

Theorem 2.8 Let \(G\) be a simply connected compact Lie group. If \(\text{Hom}(\mathbb{Z}^k, G)\) has base point \(1\), then

\[\pi_1(\text{Hom}(\mathbb{Z}^k, G)) = 1. \]

This is precisely Theorem 1.1 in the case where \(G\) is simply connected.

3 The general case

In this section we prove Theorem 1.1 for any compact Lie group \(G\).

To begin with, suppose that \(G\) is a compact Lie group. Denote by \(G_0\) the connected component of \(G\) containing \(1_G\). As mentioned in the introduction, the natural inclusion \(i : G_0 \hookrightarrow G\) gives rise to a map

\[\text{Hom}(\mathbb{Z}^k, G_0) \overset{i_*}{\to} \text{Hom}(\mathbb{Z}^k, G) \]

that induces an isomorphism of \(\pi_1\) for any \(k\). Because of this we only need to consider the case where \(G\) is a compact connected Lie group. Suppose then that \(G\) is such a Lie group. By [5, Theorem 6.19] we can write \(\tilde{G} = \tilde{G}/K\), where \(K\) is a finite subgroup in the center of \(\tilde{G}\), and where

\[\tilde{G} = (S^1)^r \times G_1 \times \cdots \times G_s \]

for some compact simply connected and simple Lie groups \(G_1, \ldots, G_s\). If we write

\[H = G_1 \times \cdots \times G_s \]

then \(\tilde{G} = (S^1)^r \times H\) and \(H\) is a compact and simply connected Lie group. Notice that the projection map

\[p : \tilde{G} \to G \]

is both a homomorphism and a covering map, with covering group \(K\); in particular, it is a local isomorphism. In [4, Lemma 2.2], Goldman showed that if \(\pi\) is a finitely generated group and \(p : G' \to G\) is a local isomorphism, then composition with \(p\) defines a continuous map

\[p_* : \text{Hom}(\pi, G') \to \text{Hom}(\pi, G), \]

\(\diamond\) Springer
such that the image of p_* is a union of connected components of $\text{Hom}(\pi, G)$. Moreover, if Q is a connected component in the image of p_*, then the restriction of p_*

$$(p_*)|_{p_*^{-1}(Q)} : p_*^{-1}(Q) \to Q$$

is a covering map, with covering group $\text{Hom}(\pi, K)$. We can apply this to the particular case of $\pi = \mathbb{Z}^k$ and $Q = \text{Hom}(\mathbb{Z}^k, G)$. Thus we obtain a covering map

$$p^{-1}(\text{Hom}(\mathbb{Z}^k, G)_1) \to \text{Hom}(\mathbb{Z}^k, G)_1$$

with covering group $K^k = \text{Hom}(\mathbb{Z}^k, K)$. For this covering map, the action of K^k on $p^{-1}(\text{Hom}(\mathbb{Z}^k, G)_1)$ corresponds to left component-wise multiplication. By Lemma 2.1, the space $\text{Hom}(\mathbb{Z}^k, \tilde{G})_1$ is precisely the subspace of $\text{Hom}(\mathbb{Z}^k, \tilde{G})$ of commuting k-tuples contained in some maximal torus of \tilde{G}. Using this and the fact that in any compact Lie group the center is contained in any maximal torus (see for example [7, Corollary 4.47]), it follows that

$$p^{-1}(\text{Hom}(\mathbb{Z}^k, G)_1) = \text{Hom}(\mathbb{Z}^k, \tilde{G})_1.$$

This shows that we have a covering sequence

$$K^k \xrightarrow{i_*} \text{Hom}(\mathbb{Z}^k, \tilde{G})_1 \xrightarrow{p_*} \text{Hom}(\mathbb{Z}^k, G)_1.$$

The long exact sequence in homotopy associated to this covering map shows that there is a short exact sequence

$$1 \to \pi_1(\text{Hom}(\mathbb{Z}^k, \tilde{G})_1) \xrightarrow{p_*} \pi_1(\text{Hom}(\mathbb{Z}^k, G)_1) \xrightarrow{\delta} K^k \to 1. \quad (3.1)$$

On the other hand there is a natural homeomorphism

$$\text{Hom}(\mathbb{Z}^k, \tilde{G})_1 \cong \text{Hom}(\mathbb{Z}^k, (S^1)^r) \times \text{Hom}(\mathbb{Z}^k, H)_1.$$

In particular

$$\pi_1(\text{Hom}(\mathbb{Z}^k, \tilde{G})_1) \cong \pi_1(((S^1)^r)^k) \times \pi_1(\text{Hom}(\mathbb{Z}^k, H)_1).$$

As H is a compact and simply connected Lie group, by Theorem 2.8 we have $\pi_1(\text{Hom}(\mathbb{Z}^k, H)_1) = 1$. Thus

$$\pi_1(\text{Hom}(\mathbb{Z}^k, \tilde{G})_1) \cong \pi_1(((S^1)^r)^k) \cong (\mathbb{Z}^r)^k,$$

with an isomorphism induced by the inclusion map

$$(S^1)^r \to (S^1)^r \times H = \tilde{G}\]

$$x \mapsto (x, 1).$$

This shows that (3.1) is a short exact sequence of the form

$$1 \to (\mathbb{Z}^r)^k \xrightarrow{p_*} \pi_1(\text{Hom}(\mathbb{Z}^k, G)_1) \xrightarrow{\delta} K^k \to 1. \quad (3.2)$$

On the other hand, we also have a covering space $K \xrightarrow{i} \tilde{G} \xrightarrow{p} G$ and the long exact sequence in homotopy associated to this sequence gives a short exact sequence

$$1 \to \pi_1(\tilde{G}) \xrightarrow{p_*} \pi_1(G) \xrightarrow{\delta} K \to 1.$$
By taking the direct sum k-copies of this sequence we obtain a short exact sequence

$$1 \rightarrow (\mathbb{Z}^r)^k \xrightarrow{(p_x)^k} (\pi_1(G))^k \xrightarrow{(\delta)^k} K^k \rightarrow 1.$$ (3.3)

We claim that we can find a natural homomorphism h_G making the following diagram commuting:

$$
\begin{array}{cccccc}
1 & \rightarrow & (\mathbb{Z}^r)^k & \xrightarrow{(p_x)^k} & (\pi_1(G))^k & \xrightarrow{(\delta)^k} K^k & \rightarrow & 1 \\
\downarrow{id} & & \downarrow{h_G} & & \downarrow{id} & & \downarrow{id} \\
1 & \rightarrow & (\mathbb{Z}^r)^k & \xrightarrow{p_*} & \pi_1(\text{Hom}(\mathbb{Z}^k, G)_1) & \xrightarrow{\delta} K^k & \rightarrow & 1.
\end{array}
$$ (3.4)

Then by the five lemma it follows that

$$h_G : (\pi_1(G))^k \rightarrow \pi_1(\text{Hom}(\mathbb{Z}^k, G)_1)$$

is an isomorphism, hence proving Theorem 1.1.

To construct the homomorphism h_G, define for every $1 \leq a \leq k$

$$j_a : \pi_1(G) \rightarrow (\pi_1(G))^k$$

$$[\alpha] \mapsto (1, \ldots, [\alpha], \ldots, 1).$$

In other words, j_a is the inclusion of $\pi_1(G)$ into the a-th factor of $(\pi_1(G))^k$. Notice that the elements in the image of j_1, \ldots, j_k generate $(\pi_1(G))^k$, and thus it suffices to define h_G on elements of the form $j_a([\alpha])$ for some $1 \leq a \leq k$ and some loop $\alpha : [0, 1] \rightarrow G$ based at 1_G. For such elements define

$$h_G(j_a([\alpha])) = [i_a(\alpha)] \in \pi_1(\text{Hom}(\mathbb{Z}^k, G)),$$

where as before

$$i_a : G \rightarrow \text{Hom}(\mathbb{Z}^k, G)$$

$$g \mapsto (1_G, \ldots, g, \ldots, 1_G)$$

the inclusion of G into the a-th factor of $\text{Hom}(\mathbb{Z}^k, G) \subset G^k$. In this way we obtain a well-defined homomorphism

$$h_G : (\pi_1(G))^k \rightarrow \pi_1(\text{Hom}(\mathbb{Z}^k, G)).$$

From the definition it follows at once that h_G is a natural map. To see that diagram (3.4) commutes note that for every $1 \leq a \leq k$ we have a morphism of fibration sequences

$$
\begin{array}{cccccc}
K & \xrightarrow{i} & \tilde{G} & \xrightarrow{p} & G \\
\downarrow{i_a} & & \downarrow{i_a} & & \downarrow{i_a} \\
K^k & \xrightarrow{i_*} & \text{Hom}(\mathbb{Z}^k, \tilde{G})_1 & \xrightarrow{p_*} & \text{Hom}(\mathbb{Z}^k, G)_1.
\end{array}
$$

The naturality of the long exact sequence in homotopy shows that the corresponding diagram in homotopy groups commutes. This diagram is precisely the restriction of (3.4) onto the a-th factor. This proves the commutativity of (3.4).
4 Examples and general remarks

In this section we explore the situation in which the base point of $\text{Hom}(\mathbb{Z}^k, G)$ is no longer assumed to be in the path-connected component $\text{Hom}(\mathbb{Z}^k, G)_1$. For instance, our second example below shows that even if G is simply connected, $\text{Hom}(\mathbb{Z}^k, G)$ may have connected components with non-trivial π_1.

To start, let H be a compact connected Lie group. As pointed out above, the space $\text{Hom}(\mathbb{Z}^k, H)$ is not necessarily connected. This can be explained as follows. Suppose first that H is not simply connected. Then H can be written in the form $H = G/K$, where G is the universal cover of H and $K \subset G$ is a closed central subgroup. Let

$$p : G \to G/K = H$$

be the natural projection. Given a commuting sequence (x_1, \ldots, x_k) in H we can find a lifting \tilde{x}_i of x_i in G for all $1 \leq i \leq k$. The sequence $(\tilde{x}_1, \ldots, \tilde{x}_k) \in G^k$ is not necessarily a commuting sequence. Instead, $[\tilde{x}_i, \tilde{x}_j] \in K = \text{Ker}(p) \subset Z(G)$. We call such a sequence a K-almost commuting sequence in G. Following [1], given a Lie group G and a closed subgroup $K \subset Z(G)$, we denote by $B_k(G, K)$ the set of K-almost commuting k-tupels; that is, the set of sequences (x_1, \ldots, x_k) such that $[x_i, x_j] \in K$ for all $1 \leq i, j \leq k$. The set $B_k(G, K)$ is given the subspace topology under the natural inclusion $B_k(G, K) \subset G^k$. It is easy to see that projection map $p : G \to G/K$ induces a K^k-principal bundle

$$p_* : B_k(G, K) \to \text{Hom}(\mathbb{Z}^k, G/K).$$

This shows that we can understand the space of commuting elements in G/K by studying the space of K-almost commuting elements in G. For example, by keeping track of the different commutators of sequences in $B_k(G, K)$ this space can be broken down into a disjoint union of subspaces that are both open and closed in $B_k(G, K)$, hence a union of path-connected components. Moreover, the image of these components under the map p_* provides different path-connected components of the space $\text{Hom}(\mathbb{Z}^k, G/K)$.

\textbf{Example 1} Given an integer $m \geq 1$ and any prime number p, consider $\text{SU}(p)^m$, the product of m copies of $\text{SU}(p)$. Let $\Delta(\mathbb{Z}/p)$ be the diagonal inclusion of \mathbb{Z}/p into the center of $\text{SU}(p)^m$. Define

$$G_{m,p} := \text{SU}(p)^m/\Delta(\mathbb{Z}/p).$$

Thus $G_{m,p}$ is the m-fold central product of $\text{SU}(p)$. The space of commuting elements in $G_{m,p}$ can be understood by studying the space of almost commuting elements in $\text{SU}(p)^m$. Indeed, let $E_p \subset \text{SU}(p)$ be the quaternion group Q_8 of order eight when $p = 2$ and the extraspecial p–group of order p^3 and exponent p when $p > 2$. In [1] it was proved that for any $k \geq 1$ the space $\text{Hom}(\mathbb{Z}^k, G_{m,p})$ has

$$N(k, m, p) = \frac{p^{(m-1)(k-2)} (p^k - 1) (p^{k-1} - 1)}{p^2 - 1} + 1$$

path–connected components. One of these path-connected components is $\text{Hom}(\mathbb{Z}^k, G_{m,p})_1$ and all others are homeomorphic to

$$A_{m,p} := \text{SU}(p)^m/((\mathbb{Z}/p)^{m-1} \times E_p).$$

The path-connected components of $\text{Hom}(\mathbb{Z}^k, G_{m,p})$ that are homeomorphic to $A_{m,p}$ have the additional property that the centralizer in $G_{m,p}$ of any sequence in them is a finite group.
Let \(x \in \operatorname{Hom}(\mathbb{Z}^k, G_{m,p}) \) be a point which is taken as the base point of \(\operatorname{Hom}(\mathbb{Z}^k, G_{m,p}) \). Using Theorem 1.1 it follows that

\[
\pi_1(\operatorname{Hom}(\mathbb{Z}^k, G_{m,p}), x) \cong \pi_1(G_{m,p})^k \cong (\mathbb{Z}/p)^k
\]

whenever \(x \) lies in \(\operatorname{Hom}(\mathbb{Z}^k, G_{m,k})_1 \). On the other hand, if \(x \) lies in a path-connected component of \(\operatorname{Hom}(\mathbb{Z}^k, G_{m,p}) \) that is homeomorphic to \(A_{m,p} \), then since \(SU(p)^m \) is simply connected we have that

\[
\pi_1(\operatorname{Hom}(\mathbb{Z}^k, G_{m,p}), x) \cong (\mathbb{Z}/p)^{m-1} \times E_p.
\]

Note in particular that \(\pi_1(\operatorname{Hom}(\mathbb{Z}^k, G_{m,p}), x) \) is independent of \(k \) in this case.

Now let’s turn our attention to the case of a Lie group \(G \) that is assumed to be simply connected. Even in this situation the space \(\operatorname{Hom}(\mathbb{Z}^k, G) \) is not necessarily path-connected. If fact by [2, Theorem 4.1], if \(G \) is a compact simple Lie group such that \(\operatorname{Hom}(\mathbb{Z}^k, G) \) is path-connected for every \(k \geq 1 \), then \(G \) is either \(SU(m) \) or \(Sp(m) \) for some \(m \geq 1 \). Thus in general, the space \(\operatorname{Hom}(\mathbb{Z}^k, G) \) has many path-connected components. This can be seen as follows. Let \(x := (x_1, \ldots, x_k) \in \operatorname{Hom}(\mathbb{Z}^k, G) \) and consider the centralizer \(Z_G(x) \) of the \(k \)-tuple \((x_1, \ldots, x_k) \) in \(G \). Let \(S \) be a maximal torus in \(Z_G(x) \). Proposition 2.1 shows that \(x \) lies in \(\operatorname{Hom}(\mathbb{Z}^k, G) \) if and only if \(S \) is a maximal torus in \(G \). Therefore the space \(\operatorname{Hom}(\mathbb{Z}^k, G) \) is not path-connected precisely when we can find a commuting \(k \)-tuple \(x \) such that \(Z_G(x) \) does not contain a maximal torus in \(G \). The following example, first studied by Kac and Smilga in [6], illustrates this possibility.

Example 2 The space \(\operatorname{Hom}(\mathbb{Z}^3, \operatorname{Spin}(7)) \) has two path-connected components. One of these components is \(\operatorname{Hom}(\mathbb{Z}^3, \operatorname{Spin}(7))_1 \) the other component we denote by \(B_3 \). In [6], it was proved directly that in \(\operatorname{Spin}(7) \) there is a commuting triple \((x_1, x_2, x_3) \), unique up to conjugation, such that any maximal torus in \(Z_{\operatorname{Spin}(7)}(x_1, x_2, x_3) \) has rank 0, thus explaining the existence of \(B_3 \). This can also be seen in the following way. As explained in [6], we can find an element \(x_1 \) in \(\operatorname{Spin}(7) \) such that

\[
Z_{\operatorname{Spin}(7)}(x_1) = (\operatorname{SU}(2))^3 / \Delta(\mathbb{Z}/2) = G_{3,2}.
\]

By the previous example, the space \(\operatorname{Hom}(\mathbb{Z}^2, G_{3,2}) \) has two different path-connected components. In particular, we can choose \((x_2, x_3) \in \operatorname{Hom}(\mathbb{Z}^2, G_{3,2}) \) outside the path-connected component containing the trivial representation \(1 \). As pointed out above, elements in this component have the additional property that \(Z_{G_{3,2}}(x_2, x_3) \) is a finite group. This shows that any maximal torus in \(Z_{\operatorname{Spin}(7)}(x_1, x_2, x_3) \) has rank 0, as any maximal torus in \(Z_{G_{3,2}}(x_2, x_3) \) already has rank 0, hence explaining the existence of an exotic path-connected component in \(\operatorname{Hom}(\mathbb{Z}^3, \operatorname{Spin}(7)) \). Moreover, the triple \((x_1, x_2, x_3) \) is unique up to conjugation in \(\operatorname{Spin}(7) \). This shows that the conjugation action of \(\operatorname{Spin}(7) \) on \(B_3 \) is transitive; in particular there is a homeomorphism

\[
B_3 \cong \operatorname{Spin}(7) / Z_{\operatorname{Spin}(7)}(x_1, x_2, x_3).
\]

Using the work in [1] it is easy to see that

\[
Z_{\operatorname{Spin}(7)}(x_1, x_2, x_3) = Z_{G_{3,2}}(x_2, x_3) \cong (\mathbb{Z}/2)^4.
\]

This shows that

\[
B_3 \cong \operatorname{Spin}(7)/(\mathbb{Z}/2)^4 \cong \operatorname{SO}(7)/(\mathbb{Z}/2)^3,
\]

\[\text{Springer} \]
for some embedding \((\mathbb{Z}/2)^3 \hookrightarrow \text{SO}(7)\). Using this and Theorem 1.1, we see that if \(y \in \text{Hom}(\mathbb{Z}^3, \text{Spin}(7))\) is taken as the base point, then

\[
\pi_1(\text{Hom}(\mathbb{Z}^3, \text{Spin}(7)), y) = 1
\]

whenever \(y \in \text{Hom}(\mathbb{Z}^3, \text{Spin}(7))_{\mathbb{L}}\). In contrast, if \(y \in B_3\) then by (4.1)

\[
\pi_1(\text{Hom}(\mathbb{Z}^3, \text{Spin}(7)), y) = (\mathbb{Z}/2)^4.
\]

Examples 1 and 2 show that Theorem 1.1 may not hold if the base point of \(\text{Hom}(\mathbb{Z}^k, G)\) is no longer assumed to be in \(\text{Hom}(\mathbb{Z}^k, G)_{\mathbb{L}}\).

Acknowledgments We would like to thank Mladen Bestvina, Alejandro Ádem and Enrique Torres-Giese for very pleasant and informative conversations.

References

1. Ádem, A., Cohen, F.R., Gómez, J.M.: Commuting elements in central products of special unitary groups. to appear in Proc. Edinburgh Math. Soc. Arxiv:math/0905.2895 [math.AT]
2. Baird, T.: Cohomology of the space of commuting n-tuples in a compact Lie group. Algebr. Geom. Topol 7, 737–754 (2007)
3. Duistermaat, J.J., Kolk, J.A.C.: Lie Groups, Universitext. Springer, Berlin (2000)
4. Goldman, W.M.: Topological components of spaces of representations. Invent. Math. 93(3), 557–607 (1988)
5. Hofmann, K.H., Morris, S.A.: The Structure of Compact Groups. A Primer for the Student—A Handbook for the Expert. Second revised and augmented edition, de Gruyter Studies in Mathematics, vol. 25. Walter de Gruyter & Co, Berlin (2006)
6. Kac, V., Smilga, A.: Vacuum structure in supersymmetric Yang-Mills theories with any gauge group. In: The Many Faces of the Superworld, pp. 185–234. World Science Publications, River Edge (2000)
7. Knapp, A.W.: Lie Groups Beyond an Introduction. Second Edition, Progress in Mathematics, vol. 140. Birkhäuser Boston, Inc., Boston (2002)
8. Pettet, A., Souto, J.: Commuting tuples in reductive groups and their maximal compact groups (in preparation)
9. Thom, R.: Ensembles et morphismes stratifiés. Bull. Am. Math. Soc 75, 240–284 (1969)
10. Torres-Giese, E., Sjerve, D.: Fundamental groups of commuting elements in Lie groups. Bull. Lond. Math. Soc. 40(1), 65–76 (2008)
11. Whitney, H.: Tangents to an analytic variety. Ann. Math. 81(2), 496–549 (1965)