Accuracy of Cone-beam Computed Tomography and Extraoral Bitewings Compared to Intraoral Bitewings in Detection of Interproximal Caries

Osama M Felemban1, Cheen Y Loo2, Aruna Ramesh3

ABSTRACT

Aim and objective: The purpose of this study is to evaluate the diagnostic accuracy of cone-beam computed tomography (CBCT) and extraoral bitewings in the detection of interproximal caries compared to intraoral bitewings.

Materials and methods: Seven preserved cadaver heads with 106 teeth (molars, premolars, and canines) including 183 proximal surfaces were used. Five radiographic modalities were studied: intraoral bitewings, extraoral bitewings, iCAT 3D, ProMax 3D high resolution, and ProMax 3D low resolution. Seven pediatric dental residents were recruited and calibrated as observers and asked to evaluate each proximal surface. Teeth were extracted, mounted, drilled, caries detection dye was applied, and the surfaces were examined under the light microscope. Interexaminer reliability, sensitivity, specificity, and area under the curve values were compared.

Results: No significant differences were found in sensitivity, specificity, and area under the curve values between the five radiographic modalities. Restorations may influence the accuracy of caries diagnosis.

Conclusion: Cone-beam computed tomography radiographs and extraoral bitewings showed similar accuracies in detecting interproximal caries compared to intraoral bitewings. This suggests that with proper training and experience, CBCT and extraoral bitewings could be comparable to intraoral bitewings in detecting interproximal caries.

Clinical significance: Cone-beam computed tomography and extraoral bitewings could potentially serve as alternatives to intraoral bitewings to diagnose proximal caries, especially when the CBCT study is needed for a specific diagnostic purpose.

Keywords: Cone-beam computed tomography diagnostic accuracy, Cone-beam computed tomography, Dental caries, Dental digital radiography, Extraoral Bitewings, Interproximal caries, Intraoral bitewings.

The Journal of Contemporary Dental Practice (2020): 10.5005//journals-10024-2979

INTRODUCTION

Since the introduction of the cone-beam computed tomography (CBCT) technology to the world of dentistry in the late 1990s, there has been great interest in CBCT by dentists from multiple specialties such as oral and maxillofacial surgery, orthodontics, implantology, endodontics, periodontics, and forensic dentistry.1,2 The promising feature of this new technique is the ability to produce three-dimensional radiographic images that are cheaper and utilize a much lower radiation dose than conventional CT.3 The advantages of CBCT include easy handling, office-size machines, ability to generate three-dimensional and two-dimensional images, accessibility, and user-friendly viewing software.4 The applications of CBCT in the clinical dental practice include diagnosis of maxillofacial pathology and skeletal fractures of the head, planning of implant placements, temporomandibular joint (TMJ) assessment, diagnosis and treatment planning in orthodontics, and diagnosis of vertical root fractures.5,6 The main drawback of CBCT is its higher dose of radiation compared to conventional dental radiography. However, there is a wide variation in radiation doses among different CBCT machines.7 Despite the relatively higher radiation dose imparted to the patient, the use of the CBCT technology has managed to increase dramatically in the field of dentistry by offering new applications that were not previously available. A potential application of CBCT is caries diagnosis. The CBCT imaging is better tolerated by patients, compared to intraoral imaging techniques, as it is associated with less discomfort during imaging.8 Although CBCT should not be used for the sole purpose of caries diagnosis, it would be more efficient if the dentist was able to diagnose caries from a CBCT scan that was done for other diagnostic purposes.9

© Jaypee Brothers Medical Publishers. 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Although intraoral bitewing radiographs are considered the standard of care in diagnosing interproximal caries, it is challenging sometimes to obtain bitewings in patients who have increased gag reflex or in uncooperative pediatric patients, which might lead to a dental disease going undetected. In addition, the improper positioning of intraoral films or sensors may require a retake of the image. An alternative diagnostic modality that does not require the placement of a sensor or a film inside the oral cavity might be beneficial in providing appropriate dental care for these patients. The concept of extraoral bitewings has been recently introduced by a few panoramic X-ray machines manufacturers. A special software program utilizes the same projection technique of the panoramic X-ray to produce extraoral bitewings images that show the crown and roots of premolars and molars in addition to parts of the maxillary sinus and the mandibular canal. The improved interproximal projection geometry of the extraoral bitewing images shows interproximal contacts without overlap because the rotational movement of the machine ensures that the X-ray beam is perpendicular to each contact area during the imaging. The purpose of this study is to evaluate the diagnostic accuracy of CBCT and extraoral bitewings in the detection of interproximal caries compared to intraoral bitewings.

Materials and Methods
This study was designed as an in vitro study. The study protocol was exempt by the Health Sciences Campus Institutional Review Board at Tufts University. The sample size was calculated by SAS 9.3, assuming disease prevalence = 60%, sensitivity = 0.17, and specificity = 0.90. It was found that 140 surfaces were required to estimate 95% confidence intervals for the sensitivity and specificity with an 80% power. The Anatomy Department of the School of Medicine at Tufts University provided seven cadaver heads for the study. The seven cadaver heads included 106 teeth (molars, premolars, and canines), which provided 183 surfaces (the mesial and distal surfaces of molars and premolars and the distal surfaces of canines) for radiographic examination. The use of cadaver heads allowed accurate anatomical representation of osseous and soft tissues along with teeth in their natural alignment in the jaws.

Imaging
The cadaver heads were mounted on customized bases for easier handling and positioning in the X-ray machines. The heads were radiographically imaged with intraoral digital bitewings, ProMax (extraoral bitewings), i-CAT, and ProMax 3D high and low resolution. Table 1 shows the different radiographic modalities that were used in the study and the specifications of each machine. Images were labeled with the anatomy lab’s cadaver number. Figure 1 presents an example of positioning a cadaver head in the Promax Planmeca CBCT unit for imaging.

Caries Detection
After the imaging, the teeth were extracted from the cadaver specimens, preserved in saline, and mounted on dental stone bases. The proximal nonrestored surfaces of the teeth were drilled with high-speed fissure bur to create a small narrow cavity. All proximal surfaces were drilled whether caries was visible or not to ensure that caries was detected in surfaces that did not show surface enamel destruction. Caries detection dye was applied into the cavity to determine the depth of the carious lesions. In cases of restored surfaces, the restorations were removed, and the caries detection dye was then applied. Each surface was evaluated under a 10x magnification light microscope and categorized into: 1—sound; 2—caries extends less than half of the enamel depth; 3—caries extends more than half of the enamel depth; 4—caries extends less than a third of the dentin depth; 5—caries extends more than a third but less than two-thirds of the dentin depth; 6—caries extends more than two-thirds of the dentin depth.

Table 1: The X-ray machines' specifications and settings used in the study

X-ray modality	kV	mA	Scan time (seconds)	Detector	FOV	Voxel size	Software
Intraoral bitewings	70	7	0.08	CDR Elite (Schick)	–	–	MiPACS Dental Enterprise Viewer 3.1.1320, Medicor Imaging, Lead technologies, inc, Charlotte, NC
Gendex GX-770							
Extraoral bitewings	68	8	8.6	CCD sensor	–	–	
ProMax							
I-CAT 3D	120	18.66	20	Amorphous silicon flat panel sensor with CSI scintillator	13 × 13 cm	0.3 mm	Xoran technologies LLC, Ann Arbor, MI
ProMax 3D high resolution	76	6	18	Flat-panel sensor (CMOS FP)	8 × 8 cm	0.16 mm	Planmeca Romexis 4.0 viewer, Planmeca ISA Inc, Roselle, IL
ProMax 3D low resolution	84	6	17.1 (2.8)		8 × 8 cm	0.32 mm	

Fig. 1: A cadaver head mounted on the ProMax CBCT machines
Calibration and Observation Sessions

Seven residents in the postgraduate pediatric dentistry program were recruited as observers. Residents from the pediatric dentistry department were chosen because pediatric dentistry is one of the specialties that is more frequently involved in diagnosis of proximal caries than other specialties, e.g., orthodontics or prosthodontics. Each participant was given an information sheet describing the study. Participation was voluntary and had no effect on a student’s academic standing.

Calibration sessions were held to train and calibrate each observer in diagnosing caries using the different radiographic modalities in the study. Sample images of teeth (teeth that were not included in the study) with sound and carious interproximal surfaces were presented to the observers during these training sessions. In addition, the observers were trained to navigate the software used for viewing the images of each radiographic modality. Each calibration session was approximately 30 minutes long. Following each calibration session, there was an evaluation session where the residents evaluated the study images individually. Calibration and evaluation sessions took place in a dimly lit room and the observers were given Excel spreadsheets to record their evaluations. Each evaluation session lasted approximately 45–60 minutes. There was a 1-week interval between evaluation sessions to minimize learning bias.

The sessions were as follows:

- Session 1a: Software calibration of intraoral bitewings
- Session 1b: Evaluation of intraoral bitewings
- Session 2a: Software calibration of extraoral bitewings
- Session 2b: Evaluation of extraoral bitewings
- Session 3a: Software calibration of i-CAT images
- Session 3b: Evaluation of i-CAT images
- Session 4a: Software calibration of ProMax images
- Session 4b: Evaluation of ProMax high-resolution images
- Session 4c: Evaluation of ProMax low-resolution images

The original software of each radiographic modality was used by the observers to allow adjustment of brightness, contrast, and plane of viewing for the best possible viewing approach that simulated the clinical practice. The images were viewed on similar screens with identical color/brightness and screen resolution settings. The display screens were 17-inch Dell 1703FP TFT LCD (Dell, TX, USA) screens. The images were presented to the observers in a different and random order in each session to minimize learning bias. The viewers were asked to evaluate and rate with confidence each proximal surface coronal to the cementoenamel junction on a scale adapted from the literature,10,11,14–17 as follows:

- Definitely no caries
- Probably no caries
- Questionable
- Probably caries
- Definitely caries

Scores 1 and 2 were treated as sound and scores 3–5 were considered caries for purposes of calculating sensitivity and specificity. An example of the radiographic images of the five radiographic modalities is shown in Figure 2.

Data Analysis

The statistical plan was analogous to the statistical analysis of the previous research concerning CBCT and caries11,15–22 for easier comparison of the results. Interobserver agreement was evaluated by the intraclass correlation coefficient (ICC). Scores above 0.75 were considered excellent, scores between 0.60 and 0.74 were considered good, scores between 0.40 and 0.59 were considered fair, and scores below 0.40 were considered poor.23 Sensitivity, specificity, and area under the curve (AUC) were calculated for each observer and the values were compared using the ANOVA test to detect any significant differences between the five radiographic modalities. To evaluate the effects of restorations on the accuracy of caries diagnosis, a supplemental analysis was conducted by excluding restored surfaces and analyzing only nonrestored surfaces. The IBM SPSS Statistics 23 software was used for the analyses.

Results

A total 183 proximal surfaces were included in the study. Approximately half of the surfaces were found to be carious, 16.94% of the surfaces were restored with amalgam, and 9.29% were restored with composite. Table 2 shows the frequency of restorations and caries in the extracted teeth according to the depth of lesions, as determined using caries detection dye. Table 3 shows the interexaminer reliability for each radiographic modality measured by ICC for all surface and after excluding
restored surfaces. Intraoral bitewings showed excellent agreement (0.884–0.886) between observers while all the other radiographic modalities showed good agreement (0.631–0.773) as demonstrated by the ICC values. Excluding restored surfaces had a slight effect on the values of the ICC. Table 4 shows the sensitivity and specificity for the five radiographic modalities for each observer for all the surfaces. The values of sensitivities, specificities, and AUC of extraoral bitewings and the three CBCT machines were very comparable to intraoral bitewings indicating that they have similar diagnostic accuracy. Table 5 shows the same parameters after excluding the restored surfaces. In general, the AUC values of the observers were slightly higher when all surfaces were analyzed compared to analyzing only nonrestored surfaces. Table 6 shows the mean sensitivities, specificities, and AUC values for each of the radiographic modalities including and excluding restored surfaces. No statistically significant differences were found between the five radiographic modalities in terms of sensitivity, specificity, and AUC values when including or excluding restored surfaces, which indicates that the diagnostic accuracies of interproximal caries of extraoral bitewings and the three CBCT modalities were similar to intraoral bitewings. Including restored surfaces in the analysis negatively impacted the sensitivity of intraoral bitewings, which suggests that restorations in intraoral bitewings may interfere with the detection of caries under restorations. However, including restored surfaces significantly increased the specificity values of intraoral and extraoral bitewings, which implies that the observers were more likely to correctly identify the absence of caries under restorations when these proximal surfaces were truly caries-free. Excluding restored surfaces significantly decreased the AUC values of the three CBCT machines, which may indicate that CBCT could enhance caries detection under restorations.

Discussion

Even though CBCT is a relatively new technology, it has managed to find applications in many fields of dentistry. The use of CBCT as a tool for caries diagnosis has not gained much interest. Justifiably, the main reason is the higher radiation dose of CBCT imparted to the patient compared to conventional intraoral radiographs. However, if CBCT radiographs were proven to have comparable and satisfactory caries diagnostic abilities to intraoral modalities, this would allow dentists to retrieve one extra piece of information from a CBCT scan that is obtained for any other diagnostic purpose.

Table 2: Frequency of restorations and carious lesion according to depth as determined by caries detection dye

Caries depth	Amalgam	Composite	No restoration	Total
Sound	11 (6.01%)	8 (4.37%)	70 (38.25%)	89 (48.63%)
Enamel	8 (4.38%)	4 (2.19%)	34 (18.58%)	46 (24.87%)
Dentin	12 (6.56%)	5 (2.74%)	31 (16.94%)	48 (26.23%)
Total	31 (16.94%)	17 (9.29%)	135 (73.77%)	183 (100%)

For example, a CBCT scan that has been ordered for an implant treatment planning could additionally be used to diagnose interproximal caries. In fact, this would exclude the need for bitewings to diagnose caries, which will decrease the radiation dose received by the patient. Additionally, future advances in detector types and software algorithms may lead to a substantial decrease in the radiation exposure of CBCT.

The aim of this study was to assess the efficacy of CBCT and extraoral bitewings in diagnosing interproximal caries, compared to intraoral digital bitewings. The findings show that the difference in accuracy between the five radiographic modalities was not significant, indicating that CBCT and extraoral bitewings are useful alternatives to intraoral bitewings. CBCT has been investigated as a caries diagnostic tool and several advantages have been proposed for that purpose. The results of our study agree with several in vitro studies that have explored the area of caries diagnosis using CBCT and indicated that CBCT performed similarly or slightly better than conventional radiography in terms of sensitivity, specificity, accuracy, and area under the curve (AUC) values. Tsuchida et al. found no statistical difference between the AUC values of the 3DX Accuitomo and film (Kodak Insight). Hailer-Neto et al. also found that the 3DX Accuitomo showed comparable sensitivity and specificity to photo-stimulable phosphor plate (PSP) (DigoraFMX; Gendex DC) and film (Kodak Insight; Gendex DC), but the 3G NewTom showed lower accuracy. Akdeniz et al. showed that the 3DX Accuitomo was more accurate in determining lesion depth than film (Kodak F-speed; Gendex Oxalis DC) or Digora FMX (Soredex; Gendex Oxalis DC). Young et al. concluded that the 3DX Accuitomo improved the detection of proximal caries extending into dentin compared to a charge-coupled device (Gendex 1000). Senel et al. compared Kodak E speed (Trophy Trex), PSP (Diagora Optime; Trophy Trex), and an ILUMA scanner (Kodak) and found similar AUC values between all the radiographic modalities. Kayipmaz et al. found that the AUC values obtained from CBCT (Kodak 9500) were not significantly different from the AUC values of film and phosphor plate. These studies showed compelling in vitro evidence that the diagnostic efficacy of the studied CBCT systems was as good as film or phosphor plate. Therefore, Qu et al. compared five different CBCT systems (NewTom9000, 3DX Accuitomo, KODAK 9000 3D, Promax3D, a DCT Pro) in proximal detection and found no statistical difference between the AUC values. Few studies demonstrated contradicting results in which the conclusion was that the NewTom 3G did not improve the accuracy of caries diagnosis over the E-speed film. However, the study showed that the NewTom 3G had slightly higher values of sensitivity, specificity, and AUC values than E-speed film. Also, Krzyzostaniak et al. found that the accuracy of NewTom 3G in diagnosing proximal noncavitated caries was inferior to that of conventional film and PSP plates. The diagnostic power of CBCT for occlusal caries has also been investigated and consistently found to be superior to that of digital and phosphor plate intraoral bitewings. Few studies have compared extraoral to intraoral bitewings but the results were conflicting. Khan et al.

Table 3: The interexaminer reliability for each radiographic modality measured by ICC including and excluding restored surfaces

ICC	Intraoral bitewings	Extraoral bitewings	iCAT	ProMax 3D high	ProMax 3D low
All surfaces	0.884	0.773	0.729	0.675	0.715
p value	>0.001	>0.001	>0.001	>0.001	>0.001
Excluding restored	0.884	0.737	0.752	0.631	0.696
p value	>0.001	>0.001	>0.001	>0.001	>0.001
Table 4: The sensitivity, specificity, and AUC for intraoral bitewings, extraoral bitewings, iCAT, and ProMax 3D high and low resolution for each observer for all the surfaces

Observers	Intraoral bitewings	Extraoral bitewings	iCAT	ProMax 3D high	ProMax 3D low					
	Sens	Spec								
Obs1	35.42	71.91	56.25	49.44	50	59.55	60.42	43.82	45.83	59.55
	0.548		0.542		0.545		0.515		0.524	
Obs2	23.96	82.02	33.33	83.15	38.54	66.29	42.71	70.79	59.38	49.44
	0.546		0.575		0.512		0.571		0.546	
Obs3	28.13	79.78	50	59.55	55.12	56.18	45.83	59.55	36.46	68.54
	0.590		0.549		0.565		0.521		0.531	
Obs4	59.38	46.07	39.58	64.04	77.08	30.43	32.29	67.42	28.13	74.16
	0.589		0.525		0.546		0.510		0.507	
Obs5	32.29	64.04	47.92	51.96	45.83	60.76	47.29	66.29	43.75	68.54
	0.529		0.509		0.510		0.592		0.566	
Obs6	32.29	66.29	57.29	57.3	57.29	49.44	57.29	40.45	61.46	42.7
	0.499		0.607		0.528		0.508		0.517	
Obs7	35.42	64.04	37.5	60.76	52.08	46.07	88.54	20.22	67.71	43.82
	0.526		0.496		0.539		0.554		0.553	

Table 5: The sensitivity, specificity, and AUC for intraoral bitewings, extraoral bitewings, iCAT, and ProMax 3D high and low resolution for each observer for the surfaces after excluding restored surfaces

Observers	Intraoral bitewings	Extraoral bitewings	iCAT	ProMax 3D high	ProMax 3D low					
	Sens	Spec								
Obs1	53.80	48.50	51.00	47.10	54.20	50.00	53.10	50.00	51.10	48.30
	0.489		0.446		0.495		0.401		0.486	
Obs2	54.50	48.20	70.40	54.80	45.50	44.1	57.1	50.00	50.00	46.30
	0.520		0.575		0.427		0.540		0.449	
Obs3	54.20	48.20	56.50	50.80	55.30	50.80	46.70	46.20	48.40	45.30
	0.537		0.580		0.487		0.463		0.448	
Obs4	52.40	46.80	46.00	41.70	52.90	49.10	50.00	48.00	41.90	44.60
	0.524		0.505		0.514		0.534		0.402	
Obs5	47.60	44.60	52.90	50.00	52.30	48.80	49.10	45.30	50.00	48.00
	0.428		0.518		0.465		0.427		0.495	
Obs6	55.70	52.20	51.40	48.50	50.70	45.50	40.70	44.40	50.00	47.70
	0.580		0.525		0.478		0.465		0.519	
Obs7	51.20	46.90	51.10	49.10	47.30	44.90	53.80	58.80	57.10	57.50
	0.500		0.453		0.443		0.524		0.541	
CBCT and Extraoral Bitewings in Detection of Interproximal Caries

The means of AUC in each radiographic modality including and excluding restored surfaces

	Sensitivity	Specificity	AUC values			
	Including restored surfaces	Excluding restored surfaces	p value	Including restored surfaces	Excluding restored surfaces	p value
Intraoral bitewings	35.27 ± 11.39	52.77 ± 2.71	0.002	67.73 ± 12.01	47.91 ± 2.31	0.004
Extraoral bitewings	45.98 ± 9.36	54.19 ± 7.79	0.10	60.88 ± 11.04	48.85 ± 3.98	0.019
iCAT	53.70 ± 12.04	51.17 ± 3.60	0.603	52.67 ± 11.97	47.60 ± 2.70	0.312
ProMax 3D high resolution	53.48 ± 18.04	50.07 ± 5.36	0.646	52.86 ± 18.53	48.24 ± 4.32	0.626
ProMax 3D low resolution	48.96 ± 14.40	49.79 ± 4.46	0.889	58.10 ± 12.87	48.96 ± 4.86	0.094
p value	0.089	0.547		0.222	0.951	

The effects of restoration on the diagnostic accuracy of the five radiographic modalities were investigated. The sensitivity of intraoral bitewings was significantly higher after the exclusion of restored surfaces. The specificity of intraoral and extraoral bitewings decreased after the exclusion of restored surfaces. The exclusion of restored surfaces did not affect the sensitivity or specificity of the CBCT images. The changes in sensitivity and specificity in two-dimensional images could be related to the superimposition of restoration on adjacent proximal surfaces. As there is no superimposition with three-dimensional modalities, the presence or absence of preexisting restoration did not impact the sensitivity and specificity of these modalities. Regarding the AUC values, no significant difference in intraoral and extraoral bitewing images was evident when including or excluding restored surfaces. However, there was a significant improvement in AUC values for CBCT modalities when including restored surfaces versus excluding them. This could be explained by the corresponding increasing trend in sensitivity and specificity in the three-dimensional modalities when including the restored surfaces.

Several advantages of CBCT over film and phosphor plate have been described in the literature. An interesting finding in our study and in previous studies was that CBCT had higher sensitivity without a loss of specificity, compared to film and phosphor plate. This suggests that CBCT can better identify carious lesions that might have gone undiagnosed with conventional dental radiographs. Another advantage that has been described in the literature for CBCT over film was the ability to determine the depth of carious lesion more accurately. This could be explained by the fact that carious lesions extending into dentin are pyramidal in shape with the apex of the pyramid toward the pulp. When film and phosphor plates produce two-dimensional images of three-dimensional carious lesions, the sound dentin around the apex of the pyramid blurs the actual extent of the lesion on the radiograph. Cone-beam computed tomography eliminates this deficiency by producing three-dimensional images of three-dimensional objects allowing the viewer to fully control the plane of view. The use of cadaver heads can also be considered as a strength of the study, since it captured the natural alignment of the teeth and exactly represented the soft tissue around the teeth.

One limitation in our study was the low AUC scores obtained for all modalities in this study, which was also found in previous studies. Of the 183 surfaces included in the study, 48.63% of the surfaces were diagnosed as sound and 24.87% were enamel lesions (Table 2). We think the AUC values obtained across all modalities in this study were influenced by the fact that the majority of the carious surfaces in our study were shallow lesions compared to studies that had higher AUC values with predominantly deep dentin lesions (70.7%). This was an observation that was also made by Kamburoglu et al. in their study, recognizing that higher or lower AUC values obtained from different caries methods are highly dependent on the depth of caries. Further research is needed to investigate the applicability of CBCT and extraoral bitewings in clinical situations.

Conclusion

The objective of the study was to determine the diagnostic accuracy of CBCT and extraoral bitewings in the detection of interproximal caries in comparison to the current standard of care—intraoral bitewing radiographs. This study presents that CBCT and extraoral bitewings can aid as alternatives to intraoral bitewings to diagnose proximal caries, especially when a specific diagnostic task determines the need for CBCT.

Clinical Significance

Our findings suggest that there is no significant difference in the diagnostic ability of intraoral bitewings, extraoral bitewings, and CBCT for interproximal caries. This implies that CBCT and extraoral bitewings could potentially serve as alternatives to intraoral bitewings to diagnose proximal caries, especially when the CBCT study is needed for a specific diagnostic purpose, making additional radiation burden unnecessary, particularly for uncooperative pediatric patients, because CBCT and extraoral bitewings are more comfortable for patients.

Acknowledgments

We wish to express our sincere thanks to the residents of the Tufts pediatric dentistry program for their participation. Special thanks to Jennifer Middle Basset, Eugenia Boger, and Cristina Sevilla, for their valuable guidance and contribution to the research.

References

1. Arai Y, Tammisalo E, Iwai K, et al. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 1999;28(4):245–248. DOI: 10.1038/sj.dmfr.4600448.
2. Mozzo P, Procacci C, Tacconi A, et al. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 1998;8(9):1558–1564. DOI: 10.1007/s003300050586.

3. Brooks SL. CBCT dosimetry: orthodontic considerations. Semin Orthod 2009;15(1):14–18. DOI: 10.1053/j.sodo.2008.02.028.

4. De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 2009;38(6):609–625. DOI: 10.1016/j.ijom.2009.02.028.

5. Hassan B, Metska ME, Ozok AR, et al. Detection of vertical root fractures in endodontically treated teeth by a cone beam computed tomography scan. J Endod 2009;35(5):719–722. DOI: 10.1016/j.joen.2009.01.022.

6. Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin North Am 2008;52(4):707–730. DOI: 10.1016/j.dcn.2008.05.005.

7. Ludlow JB, Timothy R, Walker C, et al. Effective dose of dental CBCT—a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol 2015;44(1):20140197. DOI: 10.1259/dmfr.20140197.

8. Tyndall DA, Rathore S. Cone-beam CT diagnostic applications: caries, periodontal bone assessment, and endodontic applications. Dent Clin North Am 2008;52(4):825–841. DOI: 10.1016/j.dcn.2008.05.002.

9. Park YS, Ahn JS, Kwon HB, et al. Current status of dental caries diagnosis using cone beam computed tomography. Imaging Sci Dent 2011;41(2):43–51. DOI: 10.5624/isd.2011.41.2.43.

10. Khan EA, Tyndall DA, Caplan D. Extraoral imaging for proximal caries detection: bitewings vs scanogram. Oral Surg, Oral Med, Oral Pathol, Oral Radiol, Endod 2004;98(6):730–737. DOI: 10.1016/j.tripleo.2004.08.006.

11. Kamburoglu K, Kolsuz E, Murat S, et al. Proximal caries detection accuracy using intraoral bitewing radiography, extraoral bitewing radiography and panoramic radiography. Dentomaxillofac Radiol 2012;41(6):450–459. DOI: 10.1259/dmfr.2012.06.028.

12. Abdinian M, Razavi SM, Faghihian R, et al. Accuracy of digital bitewing images scanned with different resolutions. Clin Oral Investig 2011;15(5):1015–1021. DOI: 10.1007/s00784-011-0599-7.

16. Kayipmaz S, Sezgin OS, Saricaoglu ST, et al. An in vitro comparison of diagnostic abilities of conventional radiography, storage phosphor, and cone beam computed tomography to determine occlusal and approximal caries. Eur J Radiol 2011;80(2):478–482. DOI: 10.1016/j.ejrad.2010.09.011.

17. Zhang ZL, Qu XM, Li G, et al. The detection accuracies for proximal caries by cone-beam computed tomography, film, and phosphor plates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111(1):103–108. DOI: 10.1016/j.tripleo.2010.06.025.

18. Akdeniz BG, Grondahl HG, Magnusson B. Accuracy of proximal caries depth measurements: comparison between limited cone beam computed tomography, storage phosphor and film radiography. Caries Res 2006;40(3):202–207. DOI: 10.1159/000092226.

19. Qu X, Li G, Zhang Z, et al. Detection accuracy of in vitro approximal caries by cone beam computed tomography images. Eur J Radiol 2011;79(2):e24–e27. DOI: 10.1016/j.ejrad.2009.05.063.

20. Senel B, Kamburoglu K, Ucok O, et al. Diagnostic accuracy of different imaging modalities in detection of proximal caries. Dentomaxillofac Radiol 2010;39(8):501–511. DOI: 10.1259/dmfr/28628723.

21. Tuschiha R, Araki K, Okano T. Evaluation of a limited cone-beam volumetric imaging system: comparison with film radiography in detecting incipient proximal caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;104(3):412–416. DOI: 10.1016/j.tripleo.2007.02.028.

22. Valizadeh S, Tavakkoli MA, Karimi Vajigh H, et al. Evaluation of cone beam computed tomography (CBCT) system: comparison with intraoral periapical radiography in proximal caries detection. J Dent Res Dent Clin Dent Prospects 2012;6(1):1–5.

23. Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 1994;6(4):284–290. DOI: 10.1037/1040-3590.6.4.284.

24. Krzyżostaniak J, Kulczyk T, Czarnecka B, et al. A comparative study of the diagnostic accuracy of cone beam computed tomography and intraoral radiographic modalities for the detection of noncavitated caries. Oral Surg Oral Med Oral Pathol Oral Radiol 2015;119(3):667–672. DOI: 10.1016/j.ijom.2014.12.014.

25. Kamburoglu K, Murat S, Yucel SP, et al. Occlusal caries detection by using a cone-beam CT with different voxel resolutions and a digital intraoral sensor. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109(5):e63–e69. DOI: 10.1016/j.tripleo.2009.12.048.

26. Kamburoglu K, Sonmez G, Berktaş ZS, et al. Effects of various cone-beam computed tomography settings on the detection of recurrent caries under restorations in extracted primary teeth. Imaging Sci Dent 2017;47(2):109–115. DOI: 10.5624/isd.2017.47.2.109.