A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16)

Received for publication, August 14, 2019, and in revised form, September 5, 2019. Published, Papers in Press, September 9, 2019, DOI 10.1074/jbc.RA119.010619

Alexander Holm Viborg11, Nicolas Terrapon§¶, Vincent Lombard§#, Gurvan Michel¶, Mirjam Czjzek‡, Bernard Henrissat§§, and Harry Brumer‡‡

From the 1Michael Smith Laboratories and the Departments of **Chemistry, **Biochemistry and Molecular Biology, and 55Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, the 3Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, F-13288 Marseille, France, the 4USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, F-13288 Marseille, France, the 3Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France and the 4**Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Edited by Gerald W. Hart

Glycoside hydrolase family (GH) 16 comprises a large and taxonomically diverse family of glycosidases and transglycosidases that adopt a common β-jelly-roll fold and are active on a range of terrestrial and marine polysaccharides. Presently, broadly insightful sequence–function correlations in GH16 are hindered by a lack of a systematic subfamily structure. To fill this gap, we have used a highly scalable protein sequence similarity network analysis to delineate nearly 23,000 GH16 sequences into 23 robust subfamilies, which are strongly supported by hidden Markov model and maximum likelihood molecular phylogenetic analyses. Subsequent evaluation of over 40 experimental three-dimensional structures has highlighted key tertiary structural differences, predominantly manifested in active-site loops, that dictate substrate specificity across the GH16 evolutionary landscape. As for other large GH families (i.e. GH5, GH13, and GH43), this new subfamily classification provides a roadmap for functional glycogenomics that will guide future bioinformatics and experimental structure–function analyses. The GH16 subfamily classification is publicly available in the CAZy database. The sequence similarity network workflow used here, SSNpipe, is freely available from GitHub.

Complex carbohydrates—oligosaccharides and polysaccharides of diverse residue and linkage composition— are central to a wide range of biological processes, such as energy storage, inflammation, host–pathogen interactions, diseases, and differentiation/development (1). Not least, manifold complex carbohydrates play essential structural roles in the cell walls in terrestrial and marine biomass (2, 3). These biomass sources represent major sinks in the global carbon cycle (4, 5) and a vast renewable resource for the production of energy, chemicals, and materials (6).

The synthesis, rearrangement, and ultimate saccharification of the vast diversity of glycosidic linkages in natural carbohydrates require a correspondingly broad range of specific carbohydrate-active enzymes (CAZymes). In light of the continually accelerating rate of sequence data deposition, the CAZY database has emerged as a central resource uniting specificity, mechanistic, and structural information within actively curated, sequence-based families of glycosyltransferases, glycoside hydrolases (GHs), polysaccharide lyases, carbohydrate esterases, auxiliary activity enzymes, and associated noncatalytic carbohydrate-binding modules (CBMs) (7, 8). The CAZY classification offers extraordinary predictive power on the family level, whereby the key active-site residues, the catalytic mechanism, and the overall three-dimensional fold are generally strictly conserved. Family classification is also a broad predictor of substrate specificity, in terms of overall glycosidic linkage orientation (α or β) and saccharide composition. However, the subtle natural variations in configuration among structurally related groups of complex carbohydrates has given rise to several “polyspecific” families, which comprise diverse activities. As it pertains to genomics and bioinformatics, polyspecificity

This work was supported in part by funding for the project SYNBIORICS: Functional Genomics and Technoeconomic Models for Advanced Biopolymer Synthesis from Genome Canada (Project no. 10405), with additional support from Ontario Genomics, Genome Quebec, and Genome British Columbia (to H. B.). This work was also supported in part by computational resources provided by WestGrid and Compute Canada (to H. B.), by Grants ANR-14-CE06-0017 and ANR-17-CE20-0032 from the Agence Nationale de la Recherche (to B. H.), and by the Novozymes Prize from the Novo-Nordisk Foundation (to B. H.). Finally, this work was supported in part by the Agence Nationale de la Recherche via the investment expenditure program IDEALG Grant ANR-10-BTBR-04 (to M. C. and G. M.) and by European Union Horizon 2020 Program Project 727892, GeniaLG–GENetic diversity exploitation for Innovative Macro-ALGal biorefinery (to G. M. and M. C.). The authors declare that they have no conflicts of interest with the contents of this article.

Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license.

This article is not assigned with Figs. S1–S3.

1 These authors contributed equally to this work.

2 To whom correspondence may be addressed: AFMB UMR 7257 Case 932, Campus de Luminy, 163 Avenue de Luminy, 13288 Marseille CEDEX 09, France. Tel.: 33-491-82-55-87; E-mail: bernard.henrissat@afmb.univ-mrs.fr.

3 To whom correspondence may be addressed: Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada. Tel.: 604-827-3738; E-mail: brumer@msl.ubc.ca.

4 The abbreviations used are: CAZyme, carbohydrate-active enzyme; SSN, sequence similarity network; HMM, hidden Markov model; MSA, multiple sequence alignment; GH, glycoside hydrolase (family); CBM, carbohydrate-binding module; PDB, Protein Data Bank; XET, xyloglucan endo-transglycosylase.
displays the number of clusters/subfamilies as a drum. In contrast to MSA-based phylogenies, SSNs are based on all-versus-all pairwise local sequence alignments, the computational requirements of which scales linearly with the number of sequences and are easily amenable to parallelization. Notably, the resulting networks of nodes and edges, which can be rapidly generated using any Expect (E) value or bit score as a threshold, usually resolve the same monophyletic groups observed in corresponding phylogenetic trees (16). Like phylogenetic approaches, SSNs can underpin the creation of subfamilies and establish a robust framework to predict substrate specificity and highlight unexplored sequence space (17).

Glycoside hydrolase family 16 (GH16) is a polyspecific family of β-glycanases involved in the degradation or remodeling of cell wall polysaccharides in marine and terrestrial biomass (see Table 1). GH16 represents a current challenge for functional subfamily classification because of its large size and diversity. GH16 members are widely distributed across the domains of life, including bacteria (18), oomycetes (19), fungi (20, 21), plants (22, 23), and animals (terrestrial insects and marine invertebrates (24, 25)), in which they play manifold biological roles. GH16 members are united by a compact (∼30 kDa) β-jelly roll structural fold (26), which nonetheless has a remarkable evolutionary plasticity that gives rise to specificities for a plethora of complex terrestrial and marine cell-wall carbohydrates, hydrolase and transglycosylase activities, and noncatalytic substrate-binding functions (21, 27–29). Presently, GH16 comprises ∼8,000 sequences in the public CAZy database representing 15 known activities (7), which is comparable with other large families (GH5 and GH43) for which subfamily classifications have been established (GH13 is an exception, with nearly 10-fold more members, whereas GH30 is 4-fold smaller than GH16) (9–13). Only 2.5% of GH16 sequences have been enzymatically characterized (7), which challenges functional prediction.

Here we present a comprehensive subfamily classification of GH16 based on large-scale SSN analysis of the entire GH16 sequence space as a roadmap for future functional glycogenomics. The subfamily topology was equal to that obtained by classical phylogenetic analysis of a reduced sequence data set. The resulting robust subfamilies were used in turn to generate hidden Markov models (HMMs), which will form the basis for the automated incorporation of new sequences into the continually expanding CAZy database.

Results

Subfamily delineation

All-versus-all pairwise local sequence alignments were calculated for 22,946 GH16 domain sequences from the CAZy database in 210 min on a desktop computer (Intel Xeon Processor E5–1620 v4, 8 cores, 3.5 GHz, 16 GB RAM). For comparison, the computational time was reduced to 13 min using 128 cores on Compute Canada’s WestGrid high-performance infrastructure. Subsequently, the BLAST result file was indexed over thresholds in intervals of 5 log units for E values between 10⁻⁵ and 10⁻¹²⁰. Our preliminary SSN and HMM analyses indicated that the 10 SSNs for E-value thresholds between 10⁻²⁰ and 10⁻⁶⁵ were of most interest with the number of subfamilies ranging from 3 at $E = 10^{-20}$ to 27 at $E = 10^{-65}$ (Fig. 2). Mapping

Figure 1. Subfamily delineation based on distinct analysis/representation. This artificial example of 15 sequences to be classified into subfamilies illustrates the relationships between distinct representation and analysis. The numbers 1–4 indicate four hypothetical subfamily classifications that are concordant in all three representations. A, evolutionary tree. Reconstruction from a phylogenetic analysis or hierarchical clustering. Subfamily delineation consists of drawing a vertical line (below numbers 1–4) and making a family for each outcoming branch. B, SSN connection graph. SSNs with sequences represented as nodes (circles) and all pairwise sequence relationships (alignments) above a defined E-value threshold indicated with edges (lines). At increased thresholds (numbers 1–4), the connected components break up into an increasing number of subcomponents, representing putative subfamily delineations (16). C, SSN tabular summary. Each column (numbers 1–4 for each E-value threshold, separated by a vertical dashed line) depicts a distinct subfamilization and displays the number of clusters/subfamilies as colored boxes and the number of members/sequences in each cluster/subfamily.
sequence origin and the 15 currently known substrate specific-
ities (from nearly 200 biochemically characterized GH16 pro-
teins (7)(Table 1) reveals the distribution of these features
across emergent subfamilies (Fig. 2).

To determine the threshold at which optimal discrimination
of subfamilies is achieved, a library of HMMs was created for
each SSN, and their performance was evaluated by computing
precision and recall rates using all 22,946 GH16 members as
input (Fig. 3). It was observed that at a threshold of

\[E \leq 10^{-5} \]

the HMM library was able to retrieve all of the sequence assign-
ments into the 26 subfamilies, with limited loss of precision at
high \(E \) values, compared with SSN based on lower thresholds

![Figure 2. Summary of GH16 sequence similarity networks.](image)

GH16 subfamilies	#	Name
1	FUN1	
2	FUN2	
3	LAM1	
4	LAM2	
5	UNK3	
6	UNK4	
7	UNK5	
8	EGA	
9	MB	
10	GAL	
11	POR1	
12	POR2	
13	FUN1	
14	UNK6	
15	AGA2	
16	AGA1	
17	CAR	
18	CH11	
19	CH12	
20	XTH	
21	LIC	
22	UNK1	
23	UNK2	

sequence origin and the 15 currently known substrate specific-
ities (from nearly 200 biochemically characterized GH16 pro-
teins (7)(Table 1) reveals the distribution of these features
across emergent subfamilies (Fig. 2).
GH16 subfamilies

Name	Taxonomical distribution	EC	No. of sequences	No. of characterized members	Representative PDB structure (reference)	
FUN1	Eukaryota 3.2.1.39	Endo-β(1,3)-glucanase	6,300	13	2CL2 (33)	
		Endo-β(1,3)/β(1,4)-glucanase				
		Hyaluronidase				
		2.4.1.-	Transglycosylase			
		2.4.1.-/3.2.1.-	Transglycosylase	3,422	1	
LAM1	Diverse 3.2.1.39	Endo-β(1,3)-glucanase	3,749	38	4CTE (37)	
		Endo-β(1,3)/β(1,4)-glucanase				
		2.4.1.-	Transglycosylase			
		2.4.1.-/3.2.1.-	Transglycosylase	3,422	1	
LAM2	Eukaryota 3.2.1.39	Endo-β(1,3)-glucanase	1,896	13		
		Endo-β(1,3)/β(1,4)-glucanase				
		2.4.1.-	Transglycosylase			
		2.4.1.-/3.2.1.-	Transglycosylase	3,422	1	
UNK3	Protein bacteria		115	0		
UNK4	Protein bactriea		51	0		
UNK5	Protein bactriea		51	0		
EGA	Bacteria 3.2.1.-	Endo-β(1,4)-galactosidase	41	1		
MB	Mycobacterium 3.2.1.181	Endo-β(1,3)-galactanase	346	0	4PQ9 (unpublished)	
GAL	Diverse 3.2.1.181	Endo-β(1,3)-galactanase	343	3		
POR1	Bacteria 3.2.1.178	β-Porphyranse	52	1	3JUJ (39)	
POR2	Bacteria 3.2.1.178	β-Porphyranse	20	3	4AWD (40)	
FUR1	Bacteria 3.2.1.-	Fucosidase	44	1		
AGA2	Bacteria 3.2.1.81	β-Agarase	24	2	6HY3 (42)	
AGA1	Bacteria 3.2.1.81	β-Agarase	153	32	4ATF (43)	
CAR	Bacteria 3.2.1.83	β-D-Glucosidase	38	6	5OCR (44)	
CHI1	Fungi 3.2.1.83	β-D-Glucosidase	125	2		
		2.4.1.-/3.2.1.-	β-D-Glucosidase	125	2	
CHI2	Fungi 3.2.1.83	β-D-Glucosidase	1,129	1		
		2.4.1.-/3.2.1.-	β-D-Glucosidase	1,129	1	
XTH	Plantae 3.2.1.151	Xyloglucan endo-hydrolase	719	34	2VH9 (48)	
LIC	Diverse 3.2.1.151	Xyloglucan endo-hydrolase	719	34	2VH9 (48)	
UNK1	Fungi 3.2.1.151	Xyloglucan endo-hydrolase	719	34	2VH9 (48)	
UNK2	Ascomycota 3.2.1.151	Xyloglucan endo-hydrolase	719	34	2VH9 (48)	

Figure 3. Performance of GH16 hidden Markov model libraries. HMM libraries of GH16 subfamilies, generated from the SSN at each threshold (color-coded in the legend), were evaluated in their ability to assign each GH16 module to the correct subfamily delineated by the individual SSNs. The curves show the evolution of the precision and recall (see “Experimental Procedures” for definitions) with increasing SSN E-value cutoff (cf. Fig. 2 and Fig. 4), with points corresponding to variation in HMM E-value thresholds.

(Fig. 3). For SSNs induced by higher thresholds, GH16 was only broken down into an increasing number of subfamilies, primarily along taxonomic lines (Figs. S1 and S2). Such divisions are unlikely to be functionally significant and rather are likely only to reflect sequence drift caused by speciation. In this analysis, it is also helpful to keep the limit analysis in mind: division of GH16 into 22,946 individual subfamilies would result in recall and precision values of 100% at the subfamily level, yet it would provide no predictive power. Thus, although the data in Fig. 3 would suggest that the HMM library from the SSN at $E = 10^{-60}$ may have the best performance, practically this represents little performance gain and might be unnecessarily stringent. Analysis of the taxonomic distribution and number of unclustered sequences between the SSN at $E = 10^{-60}$ and the previous SSN at $E = 10^{-55}$ suggest that the latter would be a more pragmatic choice, considering that the continuous growth of GH16 family would likely result in new sequences filling the gaps between subfamilies that are too finely divided. Hence, the SSN at $E = 10^{-55}$ and the corresponding HMM library was chosen for the creation of the final subfamilies in GH16.

In total, 23 subfamilies were defined using the SSN based on the $E = 10^{-55}$ threshold (Fig. 4A), which collectively assigned 22,367 sequences to a subfamily (97.5% of all GH16 modules analyzed). Subfamily size ranges from 20 to 6,300 sequences. The taxonomical diversity within subfamilies mainly occurs at the phylum level, with only four subfamilies (GH16_3, GH16_10, GH16_14, and GH16_21) present in multiple kingdoms of life. The lowest taxonomical diversity was in an early diverging group of mycobacterial sequences (GH16_9), which robustly formed a distinct subfamily (Fig. 2). Notably, one of the earliest emerging features that distinguishes subfamilies is the presence or absence of the β-bulge sequence motif (EXDXXE versus EXDXXE) in the active-site β-strand presenting the catalytic residues (Fig. 2), which is a key structural feature among GH16 members (30).

A limitation of SSNs is the inability to establish phylogenetic relationships between subfamilies. To establish overall context and to validate further the subfamily classification of GH16, a maximum-likelihood phylogenetic tree was constructed from 50 randomly selected sequences from each subfamily defined by the SSN. The delineation of subfamilies from the SSN (Fig. 2 and Fig. 4A) is identical to the monophyletic groups inferred...
from the phylogenetic tree (Fig. 5A). Importantly, all clades comprising individual subfamilies are supported by high bootstrap values.

The SSN analysis delineated GH16 sequences into “characterized” subfamilies with one or more biochemically or structurally characterized members (denoted in the CAZy database (7)) and “uncharacterized” subfamilies for which structural-functional data are currently lacking. Table 1 summarizes the taxonomic range of source organisms, experimentally determined enzyme activities, and available tertiary structures for each subfamily shown in Fig. 4A. Specific sequence accessions, including subfamily membership and characterization details, may be accessed directly in the CAZy database (http://www.cazy.org/GH16.html)(7).5 In total, 16 of 23 subfamilies contained at least one biochemically characterized member, and 11 had a three-dimensional structure representative. Salient features of individual subfamilies are detailed below. Analogous to previous GH subfamily classifications (9, 10, 12), subfamilies are systematically referenced as “GH16_\(n\),” where \(n\) is the subfamily number.

Characterized subfamilies

GH16_1—The largest GH16 subfamily, GH16_1, has 6,300 members, which comprise almost exclusively fungal enzymes, with a few members from a pathogenic nematode. GH16_1 is very distinct, already separating at a threshold of \(E = 10^{-85}\) and exhibiting no significant segregation prior to a threshold of \(E = 10^{-55}\) (Fig. 4A and Fig. S1). Only fungal enzymes have been characterized in this subfamily: endo-\((1,3)\)-glucanases (EC 3.2.1.39) and endo-\((1,3)/(1,4)\)-glucanases (EC 3.2.1.6) have been reported for nine enzymes, whereas activity toward hyaluronate (hyaluronidase, EC 3.2.1.35) has been reported for two enzymes (31). Interestingly, one representative of this subfamily has been reported to be an exo-\((1,3)\)-glucosyltransferase/elongating \(\beta\)-transglucosylase (EC 2.4.1.–) (32).

Structurally, GH16_1 is defined by the presence of numerous helical elements on the core \(\beta\)-jelly-roll fold: two in the N-terminal region and four in the C-terminal region, most of which are located on the opposite side of the structure from the active site cleft (Fig. 5B). The \(\alpha\) helix carries a conserved tryptophan, Trp-257 (PDB code 2CL2 (33)), that points into the active site and faces a loop, which is consolidated by a disulfide bridge. Together, these elements define the positive enzyme subsites (34) in this subfamily. A notable sequence pattern “WPA... WPX” (X is often Y or N, but also A, T, or I) is shared with GH16_3 and GH16_9 members. The WPX motif is located in a loop bordering the active-site cleft at the negative subsites and therefore likely contributes to substrate specificity.

GH16_2—Members of GH16_2 are almost exclusively reported in fungi, with less than 2% of the members found in plant-damaging oomycetes (water molds) and algae. GH16_2 is

5 Please note that the JBC is not responsible for the long-term archiving and maintenance of this site or any other third party hosted site.
very distinct and shows almost no sequence diversity even at a threshold of $E = 10^{-120}$ (Figs. S1 and S2). Only a single biochemically characterized member, a cell-wall active $\beta(1,6)$-glucanase/transglucosylase (EC 3.2.1.–/2.4.1.–) from Saccharomyces cerevisiae, is known (35). Interestingly, GH16_2 members lack a signal peptide that is otherwise commonly associated with members of fungal GH16 subfamilies. No tertiary structural representatives currently exist in GH16_2.

GH16_3—Historically known as the laminarinase subfamily (30, 36), GH16_3 is a large and extremely sequence-diverse subfamily (Fig. 4A) found in all kingdoms. Endo-$\beta(1,3)$-glucanase (EC 3.2.1.99) and/or endo-$\beta(1,3)/\beta(1,4)$-glucanase activity (EC 3.2.1.6) has been reported in members of the Metazoa, Fungi, Archaea, and Bacteria. The broad taxonomical diversity of GH16_3 members makes this subfamily particularly sensitive to the threshold E-value cutoff, such that increasingly strict cutoff values result in fragmentation along taxonomic lines.

The large sequence and taxonomic diversity is reflected by low structural homology in this subfamily, where only very few stretches and features are strictly conserved among the subfamily members. No tertiary structural representatives currently exist in GH16_3.

Figure 5. Phylogenetic tree and structure–function relationships of GH16. A, maximum-likelihood phylogenetic tree was generated using up to 30 representative sequences for each GH16 subfamily defined by the sequence similarity network shown in Fig. 4. Three GH7 cellulases (GH7 and GH16 constitute clan GH-B) (7) were used to root the tree. Bootstrap values based on 100 replicates are shown. The tree separates (indicated by a line) GH16 enzymes with the β-bulge active-site motif EXDXE from those with the β-strand active-site motif EXDXE, concordant with previous analyses (30, 51). Branch coloring is identical to that used in Figs. 2 and 4; subfamily numbering and mnemonics are given in Fig. 2. Subfamily membership of all GH16 members is available on the actively curated CAZy database (http://www.cazy.org/GH16.html). B, ribbon drawings of 3D structures of representative subfamily members (where present, see Table 1). Loops, structural elements and residues that are characteristic of a given subfamily are colored with their respective color (color bar underneath the structural icon), the same as in the phylogenetic tree in A.
erved histidine residue (His-155) facing this aromatic side chain. A structurally conserved short helical segment in different GH16_3 members (residues 210–218) is located next to this loop and possibly participates in shaping the overall active-site cleft of GH16_3.

GH16_4.—GH16_4 can be considered as a subfamily derived from GH16_3, which segregates along with GH16_5 and GH16_6 at lower E-value thresholds (Figs. 2 and 4B). GH16_4 contains members from the Metazoa and Fungal kingdoms, with endo-β(1,3)-glucanase (EC 3.2.1.39) activity reported for 13 enzymes from Metazoa. Significantly, ~9% of the 1,900 GH16_4 members, across Metazoa and Fungi, have lost one or both of their catalytic residues, although this feature is not resolved into monophyletic groups in a phylogenetic analysis (data not shown). In comparison, this is the case for only 0.7% of GH16_3 members and 1% of all other GH16 members. No tertiary structural representatives currently exist in GH16_4.

GH16_8.—One enzyme in the GH16_8 subfamily has been demonstrated to have endo-β(1,4)-galactosidase activity (EC 3.2.1.―) (38). The members of this subfamily have very high sequence similarity (no fragmentation in the SSN from \(E = 10^{-40} \) to \(10^{-120} \), Fig. 2, Figs. S1 and S2), despite having members from both Firmicutes and Actinobacteria. Approximately 75% of GH16_8 enzymes are linked to CBM32, members of which are known to bind galactose and are associated with wide variety of other GH domains. No tertiary structural representatives currently exist in GH16_8.

GH16_9.—GH16_9 is comprised entirely of members from Mycobacteria. Although this observation contravenes our usual strict requirement for taxonomic diversity to establish a subfamily, the early segregation of this group at comparatively high \(E \) values (Fig. 2) supports the creation of a robust subfamily. Presently, biochemical function has not been defined for any GH16_9 member, but five members have been structurally characterized.

A structural characteristic of this subfamily is the low content of helical elements (Fig. 5B), in which only a short helix is present in the N-terminal region adjacent to the first loop near the negative subsites. Remarkably, GH16_9 members generally lack aromatic residues in the negative subsites as compared with other subfamilies. A tryptophan (Trp-154 in PDB code 4PQ9 (unpublished)) present in a conserved loop is positioned to accommodate a substrate in the positive subsites. Additionally, a conserved histidine (His-161), which is also present in GH16_1, GH16_3, GH16_16, GH16_11, GH16_17, and GH16_12, is found on the β-strand next to the catalytic EXDXXE motif.

GH16_10.—Endo-β(1,3)-galactanases are exclusive to subfamily GH16_10, members of which have very high sequence similarity (SSN analysis indicates a stable group until a threshold cutoff of \(E = 10^{-85} \); Fig. 4A). Strikingly, this similarity is maintained across a wide taxonomic diversity, including the bacterial phyla Actinobacteria and Bacteroidetes, the fungal phyla Ascomycota and Basidiomycota, and the early-diverging fungal lineage Chytridiomycota. Endo-β(1,3)-galactanase activity has been reported twice in Ascomycota species and once in Basidiomycota, whereas the bacterial members remain to be biochemically characterized. No tertiary structural representatives currently exist in GH16_10.

GH16_11—GH16_11 is composed exclusively of bacterial members from the phylum Bacteroidetes, except for one member from Coraliomargarita, a bacterial member of the phylum Verrucomicrobia. The activity in GH16_11 is defined based on a single biochemically characterized β-porphyranase (EC 3.2.1.178) (39).

Some key structural features of GH16_11 are shared with the β-agarase (GH16_15 and GH16_16), the β-porphyranase (GH16_12), and the κ-carrageenanase (GH16_17) subfamilies, which is consistent with their close phylogenetic relationships (Fig. 5a and Fig. S3). These subfamilies have a characteristic N-terminal feature that consists of a short β-strand followed by a helical element, which is not present in other GH16 members. GH16_11 is distinguished further by the spatial organization of the first loop bordering the negative subsites of the active-site cleft, as well as a conserved loop close to the C terminus. This loop contains a characteristic arginine residue (Arg-70 in PDB code 3JUU (39)) in addition to a conserved tryptophan, Trp-67, that is also present in GH16_16, both of which are involved in substrate binding. The loop formed by a conserved sequence motif close to the C terminus (residues 256–265 in PDB code 3JUU) is also structurally distinct from those in other subfamilies.

GH16_12—Like GH16_11, GH16_12 is composed exclusively of bacterial members from the Bacteroidetes phylum, except for one member from Coraliomargarita (Verrucomicrobia). GH16_12 contains three biochemically characterized β-porphyranases (EC 3.2.1.178). GH16_11 and GH16_12 are highly related and form a uniform subfamily at lower thresholds, precisely resolving into two subfamilies at the SSN threshold of \(E = 10^{-55} \) (Figs. 2 and 4).

Consistent with the high relatedness of the two subfamilies, the major characteristic structural features are shared between the two subfamilies, including the N terminus and the first loop bordering the negative subsites. GH16_12 is distinguished by specific amino acid substitutions in the aromatic platform of the −1 subsite, as well as various loops throughout the tertiary structure. Specifically, a loop between the C-terminal two β-strands shared with GH16_11 is distinguished by sequence motives that are not identical between the two subfamilies, namely the stretch from residues 221 to 230 is WNPVPK-DGGM in PDB code 3JUU, whereas the structurally identical stretch from residues 288 to 297 is WEKQVPTAED in PDB code 4AWD (40). Additionally, the motif comprising residues 210 to 228 in 4AWD, which in many other subfamilies forms a β-strand that terminates the β-sheet at the positive subsites, has a characteristic structure in GH16_12 members. This structure begins at the level of the inner concave β-sheet at the positive subsites and then changes level to spatially board the outer β-sheet of the β-jelly-roll fold.

GH16_13—GH16_13 comprises sequences from marine bacteria and is the newest subfamily to have its activity revealed by biochemical characterization. One biochemical characterized member was shown to hydrolyze furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs (41). This subfamily has wide taxonomic distribution in
the bacterial kingdom. No tertiary structural representatives currently exist in GH16_13.

GH16_15—Two β-agarases (EC 3.2.1.81) have been reported in the small GH16_15 (currently 24 members). This subfamily is very distinct from the other β-agarase-containing subfamily, GH16_16 (Fig. 2), to which it forms a sister clade with high bootstrap support (Fig. 5A). A member of GH16_15 has recently been shown to hydrolyze specifically complex agars from *Ceramiales* species, functionally distinguishing this subfamily from GH16_16 (42). Notably, unlike GH16_16, no CBMs are associated with GH16_15.

Together with functional characterization, the first structural representative of GH16_15 has recently been solved (PDB code 6HY3) (42). This structure reveals high structural similarity with GH16_16, with differences mainly observed in specific amino acid substitutions. Particularly notable are two aromatic residues (Trp-110 and Tyr-112 in PDB code 6HY3) that are located in the negative binding subsites and a characteristic loop (residues 291–300) located near the positive binding subsites, which presents two tryptophan residues (Trp-291 and Trp-297) that point into the active-site cleft. Another unique feature of GH16_15 is the presence of a conserved arginine (Arg-186) near the active site EXDXXE motif, as well as a second strictly conserved arginine (Arg-224) located in the positive subsites.

GH16_16—Considering the size of GH16_16 (153 sequences), it is the most densely studied subfamily in GH16 with 32 biochemically characterized β-agarases (EC 3.2.1.81) from Bacteroidetes, Proteobacteria, and Actinobacteria. A CBM3 or CBM6 is found associated with approximately half of the GH16_16 members.

In GH16_16 a characteristic α-helix (Gly-94–Glu-99 in PDB code 4ATF (43)). This helix is not directly bordering the active site groove; however, it is immediately followed by a GH16_16-specific loop that contains a well-conserved tryptophan residue (Trp-109) constituting subsite −3. Another characteristic feature of GH16_16 is the C-terminal motif from residues 308 to 315 that also presents an α-helix providing a tryptophan that forms the +3 subsite. Opposite of this feature is a loop including residues His-215–Phe-222, which contains a strictly conserved arginine residue (Arg-219) that is involved in binding the 3,6-anhydro bridge of agaro in subsite −2.

GH16_17—GH16_17 contains κ-carrageenases (EC 3.2.1.83) from both Proteobacteria and Bacteroidetes. GH16_17 is the most distinct subfamily among those that hydrolyze marine carbohydrates, because it segregates at comparatively high E-value thresholds (Figs. 2 and 4). Examination of sequence subgroups in this subfamily highlights how sequence differences caused by speciation can give the appearance of further subfamilies without a functional basis. The SSN subclusters (Fig. 4) and phylogenetic clades (Fig. 5) correspond roughly to taxonomic subdivisions. Two members from different subbranches have been structurally and biochemically analyzed, indicating that subtle differences in substrate recognition and mode of action (perhaps even the lifestyle of the organism) are the result of evolutionary drift, whereas substrate specificity have remained constant; both are clearly κ-carrageenases (44). Despite the observed phylogenetic divergence from the β-agarases (GH16_15 and GH16_16) and the β-porphyrinases (GH16_12), subfamily GH16_17 contains a similar, characteristic N-terminal spatial arrangement (Fig. 5B).

A significant key feature of GH16_20 is the addition of a large C-terminal domain (residues 232–264 in PDB code 2VH9 (48); InterPro and PFAM “XET_C”) that extends the active-site cleft at the positive subsites. In addition, a well-conserved loop region (residues 181–190) is located immediately adjacent to
the catalytic residues and provides a strictly conserved tryptophan (Trp-185) that forms a hydrophobic platform at the +1 subsite. At the negative subsites, the loops bordering the active site cleft are characteristically short in GH16_20 members (49). The resulting broadening of the active site cleft appears to be responsible for the recognition of the highly branched xyloglucan chain (50, 51). One exception is the loop that precedes the β-strand containing the catalytic EXDXE motif, which is specifically lengthened in the xyloglucan endo-hydrolases (28).

Notably, the aromatic platform of the −1 subsite in GH16_20 members is a phenylalanine (Phe-92), directly preceding the active site E motif, which is specifically lengthened in GH16_1_1_1 members (49). This subfamily with at least 20 members and sufficient taxonomical diversity. Among these is the only characterized GH16 member from a virus (Paramaecium bursaria Chlorella virus 1, GenBankTM accession no. AAc96462.1), which is an endo-β(1,3)/β(1,4)-glucanase that is distant from, but most closely related to, members of subfamily GH16_3. Other examples include two small groups related to the GH16_11 and GH16_12 β-porphyranase subfamilies, containing eight members and one biochemically characterized β-porphyranase each: β-porphyranase A (PDB codes 3ILF and 4ATE) (39, 43) and β-porphyranase C, respectively, from Zobellia galactanivorans DsijT. It is anticipated that these orphan sequences may seed additional subfamilies as the number of sequences in GenBankTM, from which the CAZy database is derived, continues to grow (7).

Discussion

Advantages and limitations of SSN-based subfamily classification

The utilization of a sequence similarity network–based approach allowed the division of 22,946 GH16 catalytic modules into subfamilies in a scalable, computationally efficient manner. Comparatively rapid generation of an all-versus-all pairwise scoring matrix, facile generation of SSNs at increasing BLAST E-value thresholds, and analysis of precision and recall rates guided the selection of an SSN cutoff value producing 23 robust subfamilies (Figs. 2 and 4A). A particular advantage of the SSN-based approach versus classical phylogenetic methods based on MSAs is the ability to utilize the full sequence data set without the need for down-sampling to reduce computation time.

For example, the previous division of GH5 (9) and GH43 (12) into subfamilies based on molecular phylogeny coped with the large amount of sequences (2,333 and 4,455, respectively) by employing the common practice of initial clustering of similar sequences, using algorithms such as UCLUST and CD-hit (55, 56) to reduce the data sets. The clustering percentage identity limitations for UCLUST and CD-hit are 50 and 40%, respectively; thus, to obtain a reliable clustering, percentage identity cutoffs are usually set at 75% or higher (9, 12). In our preliminary analyses, applying a clustering cutoff of 75% to the 22,946 GH16 sequences yielded a reduced data set of 7,557 sequences, which is still an order of magnitude larger than the data set limitations for highly accurate MSA (57, 58) and subsequent maximum-likelihood phylogenetic tree estimation (59). Thus, a significant advantage of SSN generation is the superior computational efficiency caused by fundamental differences in algorithm complexity compared with phylogenetic approaches. This allowed us to analyze the entire, unreduced GH16 data set, which is 5, 10, and 13 times larger, respectively, than those used to classify GH43, GH5, and GH13 into subfamilies (9, 10, 12).

Not least, a significant advantage of the combined BLAST-SSN approach is that it allows immediate recall of exact sequences.
GH16 subfamilies

from the data set, including their precise location within the SSN, at any time, whereas individual sequence information is lost in phylogenies based on representative sequences.

On the other hand, SSNs are unable to establish unambiguous evolutionary relationships between subfamilies. As observed for the SSN at \(E = 10^{-55} \) (Fig. 4A), which we use to define GH16 subfamilies, there is no intersubfamily connectivity, whereas at a relaxed threshold of \(E = 10^{-25} \), the SSN reveals only the most basic relationships (Fig. 4B). For example, GH16_17, which contains the marine carbohydrate-active \(\kappa \)-carrageenases, shows no connectivity to the other marine polysaccharide subfamilies GH16_16, GH16_11, GH16_13, GH16_14, and GH16_15 at \(E = 10^{-25} \), whereas these subfamilies appear to be connected to more evolutionarily distant subfamilies (30), e.g. GH16_3 (comprising terrestrial endo-\(\beta \)(1,3)-glucanases and endo-\(\beta \)(1,3)/\(\beta \)(1,4)-glucanases; Fig. 4B). In contrast, a representative phylogenetic tree (Fig. 5A) clearly indicates that the \(\kappa \)-carrageenases form a sister clade to the other marine subfamilies, in agreement with a previously proposed evolution of GH16 diversity (30).

A roadmap for functional glycogenomics

The delineation of large families such as GH16 into subfamilies can greatly improve predictive power to guide future functional analyses of individual family members, as has been previously exemplified for GH5 (9), GH13 (10), GH43 (12), and the polysaccharide lyase families (13). In particular, subfamily association can provide strong suggestions of likely substrates, or substrate families, that should be prioritized in biochemical assays. Not least, subfamilies with no, or very few, functionally characterized members hold significant untapped potential for biochemical discovery. Together, ongoing exploration of “known” and “unknown” subfamilies will continue to refine understanding of protein structure–function relationships across the evolutionary landscape of GH16.

In such endeavors, and especially for unsupervised bioinformatics, it is essential to bear in mind that this subfamily classification has certain predictive limitations. Sequence alignment–based approaches to delineate subfamilies, including both SSN and phylogenetic approaches, have insufficient resolution to segregate sequences differing by minor variations, which may nonetheless have large effects on biochemical and biological function. For example, it is well-known that single amino acid substitutions can switch substrate specificity in glycosidases (60, 61).

Within GH16 subfamilies, such limitations are exemplified by several cases. Neither SSNs (Fig. 4A) nor phylogeny (Fig. 5A) allow for the segregation of the \(\beta \)(1,3)-glucanases in GH16_4 from the homologous noncatalytic binding proteins, in which the catalytic residues are mutated, even at very high threshold values (\(E > 10^{-85} \); Figs. S1 and S2). GH16_3 is known to comprise both endo-\(\beta \)(1,3)-glucanases (laminarinases, EC 3.2.1.39) and endo-\(\beta \)(1,3)/\(\beta \)(1,4)-glucanases (the latter hydrolyzing the \(\beta \)(1,4)-bond in mixed-linkage glucan, EC 3.2.1.73) (62), which likewise do not segregate cleanly in SSNs nor phylogenies. Lastly, the canonical double-displacement mechanism of GH16 enzymes allows for both glycosyl transfer to water (hydrolysis, EC 3.2.1.–) and/or carbohydrate acceptor substrates (transglycosylation, EC 2.4.1.–) (63). The subfamily classification described here does not segregate transglycosylases from hydrolases in four fungal subfamilies (GH16_1, GH16_2, GH16_18, and GH16_19) and one plant subfamily (GH16_20) (28) (Table 1), indicating that the determinants of such specificities represent weak sequence signals masked by background sequence noise.

In light of current rapid increases in sequence data volume and a comparatively limited amount of experimental CAZyme characterization, there is significant potential for the propagation of inaccurate functional annotations caused by overconfident bioinformatic assignments. Consequently, this jeopardizes the usefulness of such annotations. We therefore advocate a conservative approach, in which functional predictions are abandoned altogether in (meta)genomic sequence annotation, in favor of simply designating all predicted proteins by their family and subfamily numbers, e.g. GH16_\(n \).

The evolution of structure–function relationships in GH16

At the highest level, this subfamily classification enables the evolution of major structural features to be mapped across GH16. Generally, variability within a subfamily is concentrated in the loops connecting the \(\beta \)-strands of the concave \(\beta \)-sheet (forming the active site groove) rather than in the N-terminal or C-terminal regions. In contrast, the termini typically vary substantially between subfamilies (Fig. 5B), e.g. the additional N- and C-terminal helices in GH16_1 or the expanded C terminus in GH16_20, which have significant functional ramifications (28).

Interestingly, some large subfamilies are highly conserved, such as the mycobacterial-specific GH16_9 subfamily and the plant-specific GH16_20 XTHs, whereas some smaller subfamilies, such as the GH16_16 \(\beta \)-agarases and GH16_17 \(\kappa \)-carrageenases, display substantial variability, even though they appear to display the same global substrate specificity (within the limits of current biochemical characterization). This might be related to specific constraints with respect to their biological functions. For example the crucial biological role of GH16_20 xyloglucan endo-transglycosylases and endo-hydrolases in plant growth and development (22, 46) might constrain sequence variations, whereas the bacterial catabolic enzymes may have diversified as a consequence of adaptation to available substrate diversity and environmental niches (2, 3, 64, 65). If this hypothesis holds true for the currently uncharacterized mycobacterial GH16_9 enzymes, a crucial biological role of the GH16 enzymes for these organisms can be expected.

Looking to the future: emerging subfamilies

The CAZy database is derived exclusively from the NCBI GenBank™ daily releases for practical reasons (7). Consequently, CAZy database, and thus the entire GH16 sequence set used here, does not capture sequences from nascent (meta)genomic efforts, especially unfinished genomes from sequencing center databases (e.g. Joint Genome Institute, Broad Institute, Beijing Genomics Institute, etc.). Thus, it can be reasonably anticipated that the number of GH16 subfamilies will increase beyond the 23 presented here as the number of sequences in GenBank™ continues to increase. This
includes subfamilies from currently identified groups with fewer than 20 sequences or currently low taxonomic diversity, as well as newly emergent subfamilies from currently unexplored sequence space.

An example of an emerging GH16 subfamily is comprised of recently identified mixed-function endo-(1,3)/β(1,4)-glucanases/endo-xylanoglucanases from plants, for which biochemical and structural information exists (e.g. PDB code 5DZF and 5DZG) (51). These EG16 (endo-glucanase, GH16) members represent functional intermediates and an evolutionary link between the classic bacterial endo-(1,3)/β(1,4)-glucanases in GH16_21 and the plant xylanases endo-glucosylases and endo-hydrolases in GH16_20 (50, 51). A comprehensive census using genomes and transcriptomes of over 1,200 plant species has revealed a large collection of EG16 sequences in plant sequence databases, which are currently not deposited in GenBank™ (23). Generation of SSNs including 717 plant EG16 orthologs with the 22,946 CAZy GH16 entries indicated that EG16 members segregate from GH16_20 at a threshold between $E = 10^{-35}$ and $E = 10^{-40}$ (data not shown) and thus will form an independent subfamily in the future. This subfamily was verified by maximum likelihood phylogeny, in which EG16 members constitute a sister group to the xylanase endo-glucosylases and endo-hydrolases with high bootstrap support (Fig. 5A).

CODA

Since the introduction of protein SSN analysis in its present form a decade ago (16), the use of SSNs has been growing in popularity for the analysis of large data sets (17, 66-74), in part because of a lower computational demand than classical molecular phylogeny. Here, we have utilized the power of SSN analysis to devise a robust subfamily classification of the large and diverse family GH16. This framework, which collates biochemical and structural data on characterized members, will enable more refined functional prediction to guide future bioinformatics and experimental studies. Nonetheless, we advocate a conservative approach to protein annotation, in which uncharacterized enzymes are referred to solely by their subfamily membership, to avoid the propagation of misleading functional annotation in public databases. To aid future sequence annotation, the GH16 subfamily classification is now publicly available in the CAZy database (http://www.cazy.org/GH16.html).5

Experimental procedures

Data acquisition

All GH16 members were extracted from the CAZy database (February 2018) (7) and used to retrieve amino acid sequences from GenBank™. During this step, additional metainformation was gathered, including taxonomic lineage (kingdom, phylum, class, order, family, genus, and species ranks), modularity (presence of CBMs, signal peptides, etc.) of the full-length sequence (semimanually annotated using in-house CAZy pipelines) (75), and both biochemical and structural information from the literature. Sequences with less than 95% coverage to the GH16 family model were considered as fragments (13.7% in total) and not included in the final data set.

Sequence similarity network analysis

All-versus-all pairwise local alignments of the 22,946 GH16 domain protein sequences were computed by BLAST+ 2.2.31 with default settings (specifically, scoring matrix: BLOSUM62; gap opening: 11; gap extension: 1) (76) using GNU Parallel (77), which generated the E value, bit score, alignment length, sequence identity, and sequence similarity for sequence pairs. The data were filtered using specific E-value threshold cutoffs (from least stringent, $E = 10^{-3}$, to most stringent, $E = 10^{-120}$) to generate a series of associated SSNs. To formally constitute a subfamily, connected clusters were required to contain at least 20 sequences, which ensured diversity above the taxonomic class level to mitigate against bias arising from over-representation of closely related organisms and GH16 homologs (9–13). Members of each putative subfamily were identified using NetworkX (78). SSNs were visualized with Cytoscape (79) using the yFiles organic layout. To simplify the display of large SSNs, nodes representing highly similar sequences (E value of 10^{-85}) were merged into metanodes using the depth-first search algorithm (80). The bioinformatics workflow used here has been packaged into a graphical user interface-based program, SSNpipe, which is freely available on GitHub (https://github.com/ahvdk/SSNpipe).5

Subfamily assessment/validation using hidden Markov models

Each SSN, defined by its clustering threshold (BLASTP E value), can be considered as a set of N assignments ($p \to s$), where each of the 22,946 proteins, p, is assigned to its subfamily, s, among S total subfamilies. HMMs for each subfamily in each SSN were used to measure precision and recall rates to assess SSN utility and validate the choice of an optimal threshold value for GH16, as follows.

A library of $S+1$ HMMs was assembled, corresponding to one HMM for each subfamily s and an additional HMM for the remaining GH16 members. Each HMM was generated using the hmmbuild command in HMMER3.2 with default parameters (81). Sequence sets were first reduced in redundancy (75%) using UCLUST (55), the resulting sequences were aligned with MAFFT using the G-INS-i strategy (iterative refinement, using weighted sum-of-pairs and consistency scores, of pairwise Needleman-Wunsch global alignments) (82), and each alignment was inspected in Jalview (83) to manually define the boundaries of the GH16 module.

The hmscan command in HMMER3.2 was then used to search the 22,946 GH16 modules against the collection of $S+1$ HMMs. A protein p' was considered to belong definitively to a subfamily HMM, s', only if (i) the best-matching HMM E value was below 10^{-30} and (ii) the second best-matching HMM had an E value at least 10^{-10} fold greater (i.e. less significant). The resulting set of P predictions ($p' \to s'$) was compared with the N reference assignments ($p \to s$) from the SSN. Identities between predictions and assignments were counted as true positives (TP). Predictions ($p' \to s'$) for a protein p' not initially assigned to the same subfamily or to any subfamily (GH16 members unclassified in a subfamily by the SSN) were counted as false positives (FP). The assignments ($p \to s$) for a protein p not
predicted in any subfamily (GH16 unclassified at the subfamily level by the HMMs) are counted as false negatives (FN). To generate precision/recall plots, precision = TP/(TP + FP) and recall = TP/(TP + FN).

Molecular phylogeny

For each subfamily, 30 random sequences (or all sequences in subfamilies with less than 30 members) were aligned with MAFFT using the G-INS-i (iterative refinement, using weighted sum-of-pairs and consistency scores, of pairwise Needleman–Wunsch global alignments) strategy (82). Three GH7 sequences (GenBank™ accessions CAA37878.1, ABY56790.1, and AAM54070.1) were included as an out-group. The quality of the alignment was ensured by manual inspection in Jalview (83) and corrected according to available structural information if necessary. A maximum-likelihood phylogenetic tree was estimated with RAxML (84) (100 bootstrap replicates) and visualized using iTOL (85).

Structural comparison

The crystal structure coordinates for 42 GH16 members were downloaded from the Protein Data Bank (PDB) and pairwise-superimposed starting from one of the shortest sequences (PDB code 1GBG) using the SSM algorithm (86) in Coot (87). One representative member was selected for those subfamilies where multiple structures are available (Table 1). For each subfamily, at least 10 randomly chosen sequences, in addition to that of the structural representative, were aligned with Multalin (88) and visualized adding the secondary structure elements using Esprit (89). For each subfamily the superimposed coordinates were visually inspected for conserved and divergent residues around the active site groove, the central −1 and +1 binding subsites, and conserved and characteristic features were highlighted in structural icons using PyMOL (PyMOL Molecular Graphics System, version 2.0, Schrödinger).

Acknowledgment—Dima Vavilov (Michael Smith Laboratories, University of British Columbia) is acknowledged for technical assistance with accessing computational infrastructure.

References

1. Varzi, A. (2017) *Essentials of Glycobiology*, 3rd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
2. Popper, Z. A., Michel, G., Hervé, C., Domozycz, D. S., Willats, W. G., Tuohy, M. G., Kloareg, B., and Stengel, D. B. (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. *Annu. Rev. Plant Biol.* 62, 567–590 CrossRef Medline
3. Burton, R. A., Gidley, M. J., and Fincher, G. B. (2010) Heterogeneity in the chemistry, structure and function of plant cell walls. *Nat. Chem. Biol.* 6, 724–732 CrossRef Medline
4. Field, C. B., Behrenfeld, M. I., Randerson, J. T., and Falkowski, P. (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. *Science* 281, 237–240 CrossRef Medline
5. Bar-On, Y. M., Phillips, R., and Milo, R. (2018) The biomass distribution on Earth. *Proc. Natl. Acad. Sci. U.S.A.* 115, 6506–6511 CrossRef Medline
6. Ragaúskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cai, Y., Eckert, C. A., Frederick, W. J., Jr., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielzen, J. R., Murphy, R., Templer, R., and Tschaplinski, T. (2006) The path forward for biofuels and biomaterials. *Science* 311, 484–489 CrossRef Medline
7. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res.* 42, D490–D495 CrossRef Medline
8. CAZympedia Consortium (2018) Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. *Glycobiology* 28, 3–8 CrossRef Medline
9. Aspeborg, H., Coutinho, P. M., Wang, Y., Brunner, H., and Henrissat, B. (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). *BMC Evol. Biol.* 12, 186 CrossRef Medline
10. St. John, F. J., González, J. M., and Pozharski, E. (2010) Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. *FEBS Lett.* 584, 4435–4441 CrossRef Medline
11. Lombard, V., Bernard, T., Rancurel, C., Brunner, H., Coutinho, P. M., and Henrissat, B. (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. *Biochem. J.* 432, 437–444 CrossRef Medline
12. Mewis, K., Lenfant, N., Lombard, V., and Henrissat, B. (2016) Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization. *Appl. Environ. Microbiol.* 82, 1686–1692 CrossRef Medline
13. Liu, K., Linder, C. R., and Warnow, T. (2010) Multiple sequence alignment: a major challenge to large-scale phylogenetics. *PLoS Curr.* 2, RRN1198 Medline
14. Carrillo, H., and Lipman, D. (1988) The multiple sequence alignment problem in biology. *SIAM J. Appl. Math.* 48, 1073–1082 CrossRef
15. Atkinson, H. J., Morris, J. H., Ferrin, T. E., and Babbitt, P. C. (2009) Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. *PLoS One* 4, e46345 CrossRef Medline
16. Copp, J. N., Akiva, E., Babbitt, P. C., and Tokuriki, N. (2018) Revealing unexplored sequence–function space using sequence similarity networks. *Biochemistry* 57, 4651–4662 CrossRef Medline
17. El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D., and Henrissat, B. (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. *Nat. Rev. Microbiol.* 11, 497–504 CrossRef Medline
18. Brouwer, H., Coutinho, P. M., Henrissat, B., and de Vries, R. P. (2014) Carbohydrate-related enzymes of important *Phytophthora* plant pathogens. *Fungal Genet. Biol.* 72, 192–200 CrossRef Medline
19. Zhao, Z., Liu, H., Wang, C., and Xu, J.-R. (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. *BMC Genomics* 14, 274 CrossRef Medline
20. Cabib, E., Farkas, V., Kosik, O., Blanco, N., Arroyo, J., and McPhie, P. (2008) Assembly of the yeast cell wall: Chh1p and Chh2p act as transglycosylases in vivo and in vitro. *J. Biol. Chem.* 283, 29859–29872 CrossRef Medline
21. Rose, J. K., Braam, J., Fry, S. C., and Nishitani, K. (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydro-
lysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 43, 1421–1435 CrossRef Medline

23. Behar, H., Graham, S. W., and Brumer, H. (2018) Comprehensive cross-genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages. Plant J. 95, 1114–1128 CrossRef Medline

24. Hughes, A. L. (2012) Evolution of the βGRP/GNPB/β-1,3-glucanase family of insects. Immunogenetics 64, 549–558 CrossRef Medline

25. Elyakova, L. A., and Shilova, T. G. (1979) Characterization of the type of action of β-1,3-glucanases from marine invertebrates. Comp. Biochem. Physiol. Part B Comp. Biochem. 64, 245–248 CrossRef

26. Keitel, T., Simon, O., Borriss, R., and Heinemann, U. (1993) Molecular and active-site structure of a Bacillus 1,3–1,4-β-glucanase. Proc. Natl. Acad. Sci. U.S.A. 90, 5287–5291 CrossRef Medline

27. Hehemann, J.-H., Boraston, A. B., and Cizzek, M. (2014) A new sweet wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae. Curr. Opin. Struct. Biol. 28, 77–86 CrossRef Medline

28. Baumann, M. J., Eklöf, J. M., Michel, G., Kallas, A. M., Teeri, T. T., Cizzek, M., and Brunner, H. 3rd (2007) Structural evidence for the evolution of xyloglucanase activity from xylloglucan endo-transglycosylases: biological implications for cell wall metabolism. Plant Cell 19, 1947–1963 CrossRef Medline

29. Lee, H., Kwon, H. M., Park, J. W., Kurokawa, K., and Lee, B. L. (2009) N-terminal GGBP homology domain of Gram-negative binding protein 3 functions as a β-1,3-glucan binding motif in Tenebrio molitor. BMB Rep. 42, 506–510 CrossRef

30. Michel, G., Chantalat, L., Duee, E., Barbeyron, T., Henrissat, B., Kloareg, B., and Dideberg, O. (2001) The κ-carrageenase of P. carrageenovora features a tunnel-shaped active site. Structure 9, 513–525 CrossRef Medline

31. Bakke, M., Kamei, J., and Obata, A. (2011) Identification, characterization, and molecular cloning of a novel hyaluronidase, a member of glycosyl hydrolase family 16, from Penicillium spp. FEBS Lett. 585, 115–120 CrossRef Medline

32. Qin, Z., Yang, S., Zhao, L., You, X., Yan, Q., and Jiang, Z. (2017) Catalytic mechanism of a novel glycoside hydrolase family 16 'elongating' β-trans-glycosylase. J. Biol. Chem. 292, 1666–1678 CrossRef

33. Vasur, J., Kawai, R., Larsson, A. M., Igarkhi, K., Sandgren, M., Samejima, M., and Ståhlberg, J. (2006) X-ray crystallographic native sulfur SAD structure determination of laminarinase Lam16A from Phaeocystis chrysostomum. Acta Crystallogr. D Biol. Crystallogr. 62, 1422–1429 CrossRef

34. Davies, G. I., Wilson, K. S., and Henrissat, B. (1997) Nomenclature for sugar-binding subites in glycosyl hydrolases. Biochem. J. 321, 557–559 CrossRef Medline

35. Bowen, S., and Wheals, A. E. (2004) Incorporation of Sed1p into the cell wall of Saccharomyces cerevisiae involves KRE6. FEBS Yeast Res. 4, 731–735 CrossRef Medline

36. Barbeyron, T., Gerard, A., Potin, P., Henrissat, B., and Klooarg, B. (1998) The κ-carrageenase of the marine bacterium Cytophaga drosbachiensis: structural and phylogenetic relationships within family-16 glycosid hydrolases. Mol. Biol. Evol. 15, 528–537 CrossRef Medline

37. Labourel, A., Jam, M., Legentil, L., Syla, B., Hehemann, J.-H., Ferrières, V., Cizzek, M., and Michel, G. (2015) Structural and biochemical characterization of the laminarinase ZgLamC GH16 from Zobellia galactanivorans suggests preferred recognition of branched laminarin. Acta Crystallogr. D Biol. Crystallogr. 71, 173–184 CrossRef

38. Ashida, H., Maskos, K., Li, S.-C., and Li, Y. (2002) Characterization of a novel endo-β-glucosidase specific for releasing the disaccharide GlcNAcβ1–4Glc from glycoconjugates. Biochemistry 41, 2388–2395 CrossRef Medline

39. Hehemann, J.-H., Correc, G., Barbeyron, T., Helbert, W., Cizzek, M., and Michel, G. (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 CrossRef Medline

40. Hehemann, J.-H., Kelly, A. G., Pudlo, N. A., Martens, E. C., and Boraston, A. B. (2012) Bacteria of the human gut microbiome catalyze red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl. Acad. Sci. U.S.A. 109, 19786–19791 CrossRef Medline
GH16 subfamilies

58. Yamada, K. D., Tomii, K., and Katoh, K. (2016) Application of the MAFFT sequence alignment program to large data: reexamination of the usefulness of chained guide trees. *Bioinformatics* 32, 3246–3251 CrossRef Medline

59. Liu, K., Linder, C. R., and Warnow, T. (2011) RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation. *PLoS One* 6, e27731 CrossRef Medline

60. Arnal, G., Stogios, P. J., Asohan, J., Skarina, T., Savchenko, A., and Brumer, H. (2018) Structural enzymology reveals the molecular basis of substrate regiospecificity and processivity of an exemplar bacterial glycoside hydrolase family 74 endo-xylolucanase. *Biochem. J.* 475, 3963–3978 CrossRef Medline

61. Ichinose, H., Fujimoto, Z., Honda, M., Harazono, K., Nishimoto, Y., Uzura, A., and Kaneko, S. (2009) A β-l-arabinofuranosidase from *Streptomyces avermitilis* is a novel member of glycoside hydrolase family 27. *J. Biol. Chem.* 284, 25097–25106 CrossRef Medline

62. Tamura, K., Henisworth, G. R., Déjean, G., Rogers, T. E., Pudlo, N. A., Urs, K., Jain, N., Davies, G. J., Martens, E. C., and Brumer, H. (2017) Molecular mechanism by which prominent human gut bacteroidetes utilize mixed-linkage β-glucans, major health-promoting cereal polysaccharides. *Cell Rep.* 21, 417–430 CrossRef Medline

63. Sinnott, M. L. (1990) Catalytic mechanism of enzymic glycosyl transfer. *Chem. Rev.* 90, 1171–1202 CrossRef Ref

64. Xu, S. Y., Huang, X., and Cheong, K. L. (2017) Recent advances in marine algae polysaccharides: isolation, structure, and activities. *Mar. Drugs* 15, E388 CrossRef Medline

65. Gow, N. A. R., Latge, J.-P., and Munro, C. A. (2017) The fungal cell wall: structure, biosynthesis, and function. *Microbiol. Spectr.* 5, 188–192 CrossRef Medline

66. Glaesner, M. E. (2017) Finding enzymes in the gut metagenome. *Science* 355, 577–578 CrossRef Medline

67. Levin, B. J., Huang, Y. Y., Peck, S. C., Wei, Y., Martinez-Del Campo, A., Marks, J. A., Franzosa, E. A., Huttenhower, C., and Balskus, E. P. (2017) A prominent glycolyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. *Science* 355, eaai8386 CrossRef Medline

68. An, L., Cogan, D. P., Nava, C. D., Jiménez-Osés, G., Nair, S. K., and van der Donk, W. A. (2018) Substrate-assisted enzymatic formation of lysinoalanine in duramycin. *Nat. Chem. Biol.* 14, 928–933 CrossRef Medline

69. Welsh, M. A., Taguchi, A., Schaefer, K., Van Tyne, D., Lebreton, F., Gilmore, M., Kahl, S. M., Kaneko, S., and Kaneko, S. (2009) A radical SAM epimerase in Bacillus subtilis. *Nat. Chem.* 1, 1171–1202 CrossRef Medline

70. Jeoung, J.-H., and Dobbek, H. (2018) ATP-dependent substrate reduction GH16 subfamilies. *Nat. Commun.* 6, 10008 CrossRef Medline

71. Benjdia, A., Guillot, A., Ruffié, P., Leprince, J., and Berteau, O. (2017) Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. *Nat. Chem.* 9, 698–707 CrossRef Medline

72. Giessen, T. W., and Silver, P. A. (2017) Widespread distribution of encapsulin nanocompartments reveals functional diversity. *Nat. Microbiol.* 2, 1702 CrossRef Medline

73. Coutinho, P. M., Rancurel, C., Stam, M., Bernard, T., Couto, F. M., Danchin, E. G. J., and Henrissat, B. (2009) Carbohydrate-active enzymes database: principles and classification of glycosyltransferases. In *Bioinformatics for Glycobiology and Glycomics*, pp. 89–118, John Wiley & Sons, Ltd., Chichester, UK

74. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T. L. (2009) BLAST+: architecture and applications. *BMC Bioinformatics* 10, 421 CrossRef Medline

75. Tange, O. (2011) GNU Parallel: the command-line power tool. *USENIX Mag.* 36, 42–47

76. Hagberg, A. A., Schultz, D. A., and Swart, P. J. (2008) Exploring network structure, dynamics, and function using NetworkX. *Proceedings of the 7th Annual Python in Science Conference, Pasadena, CA*, August 19–24, 2008, (Varoquaux, G., Vaught, T., and Millman, J., eds) pp. 11–16

77. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* 13, 2498–2504 CrossRef Medline

78. Tarjan, R. (1972) Depth-first search and linear graph algorithms. *SIAM J. Comput.* 1, 146–160 CrossRef

79. Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A., and Punta, M. (2013) Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. *Nucleic Acids Res.* 41, e121 CrossRef Medline

80. Katoh, K., and Standley, D. M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780 CrossRef Medline

81. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., and Barton, G. J. (2009) Jalview version 2: a multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25, 1189–1191 CrossRef Medline

82. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30, 1312–1313 CrossRef Medline

83. Letunic, I., and Bork, P. (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. *Nucleic Acids Res.* 44, W242–W245 CrossRef Medline

84. Krisinnel, E., and Henrick, K. (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. *Acta Crystallogr. D Biol. Crystallogr.* 60, 2256–2268 CrossRef Medline

85. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of the new Coot server. *Acta Crystallogr. D Biol. Crystallogr.* 66, 421–435 CrossRef Medline

86. Smith, B., and Waterhouse, A. M. (2015) Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* 13, 2498–2504 CrossRef Medline

87. Cattoir, V., and Gouet, P. (2014) Deciphering key features in protein structure databases with the new ENDscript server. *Nucleic Acids Res.* 42, W320–W324 CrossRef Medline