Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Pediatric TB detection in the era of COVID-19

Javeed A. Golandaj

Population Research Centre, Under Ministry of Health and Family Welfare, GOI, JSS Institute of Economic Research, Dharwad, Karnataka 580004, India

Abstract

The effect of COVID-19 and measures in response to it on human lives, including healthcare, was enormous. The necessary healthcare services including communicable diseases, such as Tuberculosis (TB) were badly affected. Here an attempt has been made to trace the number of notified Pediatric TB cases during and after COVID-19 lockdown and unlock period, and then compared with the same period of previous year. The epidemic data on notified pediatric TB cases for 2019 and 2020 were extracted from the Health Management Information System (HMIS) database. The absolute numbers of monthly pediatric TB notifications from January to September for the year 2020 were compared to 2019, and the percentage decrease was estimated. The HMIS data shows that there is a significant decrease in pediatric TB notifications during COVID-19 epidemic in India. Especially, when the lockdown and related restrictions in response to COVID-19 was imposed, notifications were significantly decreased compared to the same period during the previous year. Even, the reduction numbers of pediatric TB notifications during post-lockdown are still more worrying. Though, little improvements were observed suddenly after lockdown was removed, but then-after again consisted decrease was reported; and these numbers again substantially lower than the numbers of previous year. Adequate measures to diagnose, control, and prevent TB focusing young children, should be implemented simultaneously with response to COVID-19 pandemic. Further, effective steps should be taken to remove the fear arising due COVID-19 pandemic among masses, so that the healthcare seeking may be improved.

© 2021 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.

1. Introduction

The first case of COVID-19 (CoronaVirus Disease 2019) – an infectious respiratory disease – was identified in Wuhan, China in December, 2019 and severely out broke across the globe including India (the first case of COVID-19 in India was identified on January 30, 2020 in Kerala). In India, like other countries, the effect of COVID-19 and measures in response to it on human lives was enormous, including healthcare. The necessary healthcare services including communicable diseases, such as Tuberculosis (TB) were badly affected. TB, a biggest infectious killer, is a major public health crisis across the world. India contributes more than one-fourth of new TB cases and around one-third of TB deaths globally. Though, roughly a million children (aged <15 years) TB cases estimated globally each year (11% of global TB cases), but the risk of death is much higher among children (14% of global TB
Early detection and quick treatment initiation as well as prevention of transmission from TB positive adult family members, since household source is most commonly implicated for young children, are crucial.

These important elements of cascade of care are affected because the entire focus of healthcare was diverted to COVID-19. Moreover, the impact of COVID-19 on overall TB notification is well documented; however, nothing is known about the specific impact of COVID-19 epidemic on detection of Pediatric TB cases in India, especially, during lockdown and unlock period. Here, an attempt has been made to analyze the real-time monthly service delivery data of 2020 and compared to that of 2019.

2. Data source and methods

The monthly notified childhood disease-TB cases and Child immunization-BCG for 2019 and 2020 were extracted from the Health Management Information System (HMIS), a web-based administrative database under the Ministry of Health and Family Welfare (MoHFW). The services on which the HMIS provides data range from Maternal and Child services, immunization and family planning to the treatment of disease. The absolute numbers from the January to September for the year 2020 were compared to that of 2019 figures. The percentage decrease during April to September in 2020 was estimated by comparing the previous year of 2019. The HMIS data is available in public domain at https://nrhm-mis.nic.in/SitePages/Home.aspx.

3. Results

Pediatric TB data illustrate that drastic drop was observed during April (−36%) in notified pediatric TB cases after COVID-19 forced lockdown was imposed. Though, little improvements were observed during May (−12% decrease) and June (−14%) months, but then-after consisted and drastic decrease was observed in next months. In August 2020, case notifications were down by more than half (−53%) compared with the same month in 2019 (Fig. 1). Similarly, the number of cases of pediatric TB registered in April 2020 fell to just half the February levels. Moreover, in August 2020 these numbers fell to more than 55% compared to the February levels (Fig. 1). During the overall lockdown period, a total 2953 Pediatric TB cases were reported compared to 3888 cases during the same period of 2019, a reduction of 24%. However, a more worrying reduction of 36% was observed during the post-lockdown period (June to September, 2020); a total of 6251 Pediatric TB cases were reported compared to 9821 cases in 2019, 3570 less cases in absolute numbers (Table 1).

In addition to Pediatric TB detection, the HMIS data shows serious disruption in providing BCG vaccine - which provides protection against childhood TB. At the national level a decline of 15 and 37% were observed during March and April 2020 compared to the same period of 2019. There-after also on an average around 15% decrease was observed in every month. In April 2020, over 6 lakh fewer BCGs were provided to the children than in April 2019. In subsequent months, there was some evidence of an improvement, but these numbers are also significantly fewer than the previous year of 2019 (Fig. 2). When compared to the January 2020 figure, the number of children receiving BCG vaccine was over 2.6 lakh fewer in March 2020. The decline in April was even sharper – the number of children received the BCG in April 2020 fell to just half to the January 2020 levels (Fig. 2). In particular, a total of 213,983 (−4%; 5,732,168 vs. 5,946,151), 820,680 (−23%; 2,683,552 vs. 3,504,232) and 1,058,784 (−13%; 7,114,513 vs. 8,173,297) fewer BCG immunizations were done during overall period of pre-lockdown, lockdown and post-lockdown (June–September) compared to 2019, respectively (Table 1). Overall, at the national level around 2.1 Crore children were vaccinated for BCG during January–December 2020 compared to more than 2.4 Crore in 2019, more than three million fewer children.

Fig. 1 – Trends in registered Pediatric TB notifications for January to September 2020 in comparison to 2019 and percentage decrease during COVID-19 epidemic, India, HMIS, 2019–20. Note: Nationwide COVID-19 forced lockdown was imposed during March 25, 2020 to May 31, 2020; COVID-19, coronavirus disease 2019; HMIS, Health Management Information System; TB, tuberculosis. Source: Author’s calculations based on pediatric TB notifications data extracted from the HMIS database.
4. Discussion

While, almost similar symptoms are being seen both in COVID-19 and TB,11–14 and as COVID-19 does not appear generally to have similar affect among children compared to adults, hence, it is assumed that children will cope better and do not need similar attention from healthcare services for COVID-19.15 Additionally, during the era of COVID-19, where the entire focus of healthcare is diverted to tackle COVID-19 epidemic and other healthcare services are neglected,16 the disruptions in access to the prevention, monitoring and timely treatment of TB is expected, particularly among young children. Moreover, everyone is discouraged from using healthcare services, unless severely unwell, due to fear of getting infected and labeled as COVID-19 positive.17 Hence, families are reluctant to bring unwell children to the healthcare facilities for investigation.

Usually, pediatric TB is relatively neglected and the all emphasis has been on adult disease.18 Apart from this, TB rarely presents as an acute, severe illness in children but progresses silently. If not regularly reviewed for timely diagnosis and early initiation of treatment then TB can be more fatal among young children compared to adults. However, the data shows severe disruptions in the detection of pediatric TB during COVID-19 epidemic. Though, Stop TB Partnership advocates that a 10% decrease in TB case notification may be attributed to maintaining physical distancing in high TB burden countries,19 but it may not be true in case of children. Because, as most TB in young children is acquired in their own household, hence, social distancing measures that keep a family together for a long period of time are likely to result in more exposure of children to infectious TB cases.

5. Conclusion

In order to protect young children from the risk of getting TB infection, it is being suggested that the COVID-19 screening
should gather information about TB in the household. However, to effectively tackle the TB during COVID-19, the health ministry has issued guidance for bi-directional TB-COVID screening, TB screening for ILL and SARI cases,\(^{20}\) this should be strictly implemented for COVID-19 screening. Lastly, it must be noted that TB is the oldest and more killer than the other communicable disease; and hamper in measures to diagnose, control, and prevent TB during this pandemic may dampen the government of India’s aim to eradicate TB by 2025, which also consequently lead to great loss in achieving global committed targets to end TB in general. Hence, the situation warrants continuity of essential TB interventions through the national TB program should be implemented simultaneously with response to COVID-19 pandemic. Further, effective steps should be taken to remove the fear arising due COVID-19 pandemic among masses, so that the healthcare seeking may be improved.

Disclosures and declaration

Availability of data and materials

The data used for the study is obtained from the India’s Health Management Information System (HMIS) web-portal under union health ministry which is available in public domain. No separate ethics statement and consent for publication was required for this study.

Informed consent

Not applicable.

Author’s contributions

Sole author.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflicts of interest

The author has none to declare.

Acknowledgements

The author is thankful to the Statistical Division, Ministry of Health and Family Welfare, Government of India for accessibility of the HMIS data.

References

1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–473.
2. Ministry of Health and Family Welfare (MoHFW). Update on Novel Coronavirus: one positive case reported in Kerala. MoHFW, New Delhi; 2020. Posted on January 30, 2020, 1.33 PM, Release ID: 1601095, available at: https://pib.gov.in/PressReleaseDisplayPage.aspx?PRID=1601095 (Accessed January 28, 2021).
3. Ministry of Home Affairs (MoHA). Guidelines on the Measure to Be Taken by Ministers/Departments of Government of India. New Delhi: State/Union Territory Governments and State/Union Territory Authorities for Containment of COVID-19 Epidemic in the Country; 2020.
4. Pulla P. Covid-19: India imposes lockdown for 21 days and cases rise. BMJ. 2020;368:m1251. https://doi.org/10.1136/bmj.m1251.
5. Iyengar KP, Jain VK. Tuberculosis and COVID-19 in India: double trouble!. Indian J Tubercul. 2020;67(4):s175–s176. https://doi.org/10.1016/j.ijtb.2020.07.014.
6. World Health Organization (WHO). Global Tuberculosis Report 2019. Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO. Available at: https://www.who.int/tb/publications/global_report/en/.
7. Miller FJW, Seal RME, Taylor MD. Tuberculosis in Children. London, UK: J & A Churchill Ltd; 1963.
8. Marais BJ, Gie RP, Schaaf HS, et al. The clinical epidemiology of childhood pulmonary tuberculosis: a critical review of literature from the pre-chemotherapy era. Int J Tuberc Lung Dis. 2004;8(3):278–285.
9. Nakaoaka H, Lawson L, Squire SB, et al. Risk for tuberculosis among children. Emerg Infect Dis. 2006;12(9):1383–1388.
10. Golland J. Insight into the COVID-19 led slow-down in TB notifications in India. Indian J Tubercul. 2020;68(1):142–145. https://doi.org/10.1016/j.ijtb.2020.12.005.
11. Ahn DG, Shin HJ, Kim MH, et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol. 2020;30(3):313–324. https://doi.org/10.4014/jmb.2003.03011.
12. World Health Organization (WHO). WHO Director-General’s Remarks at the Media Briefing on 2019-nCoV on 11 February 2020. Available at: https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020. Accessed January 28, 2021.
13. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. https://doi.org/10.1056/NEJMoa2001017.
14. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Resp Med. 2020;8(5):475–481. https://doi.org/10.1016/S2213-2600(20)30079-5.
15. Togun T, Kampmann B, Stoker NG, et al. Anticipating the impact of the COVID-19 pandemic on TB patients and TB control programmes. Ann Clin Microbiol Antimicrob. 2020;19:21. https://doi.org/10.1186/s12941-020-00363-1.
16. Pai M. COVID-19 coronavirus and tuberculosis: we need a damage control plan. Forbes; Mar 17, 2020. Available at: https://www.forbes.com/sites/madhukarpai/2020/03/17/covid-19-and-tuberculosis-we-need-a-damage-control-plan/#f72dd45295caExternal Link. Accessed January 28, 2021.
17. Dhawad P. Fear of Public Healthcare, High Medical Bills Stop People Going for COVID-19 Test. the Times of India; August 5, 2020. Available at: https://timesofindia.indiatimes.com/city/ludhiana/fear-of-public-healthcare-high-medical-bills-stop-people-from-going-for-covid-19-test/articleshow/77358011.cms. Accessed January 28, 2021.

18. Newton SM, Brent AJ, Anderson S, Whittaker E, Kampmann B. Paediatric tuberculosis. Lancet Infect Dis. 2008;8(8):498–510. https://doi.org/10.1016/S1473-3099(08)70182-8.

19. Stop TB Partnership in collaboration with Imperial College; Avenir Health. Johns Hopkins University and USAID; Geneva, Switzerland. The Potential Impact of the COVID-19 Response on Tuberculosis in High-Burden Countries: A Modeling Analysis. Available at: http://www.stoptb.org/assets/documents/news/Modeling%20Report_1%20May%202020_FINAL.pdf. (Accessed on 28th January, 2021).

20. Ministry of Health and Family Welfare (MoHFW) (d. n.). Guidance Note on Bi-directional TB-COVID Screening and Screening of TB Among ILI/SARI Cases. Available at: https://www.mohfw.gov.in/pdf/1TBCOVID screening guidance note.pdf. (Accessed on 28th January, 2021).