Table 1 Possible mechanisms of COVID-19–related cognitive dysfunction

Mechanism
Indirect CNS involvement through inflammatory or immune response
Viral encephalitis due to direct CNS invasion
COVID-19–related organ failure (lung, heart, kidney, or vasculature) and metabolic dysfunction
COVID-19 ICU-related delirium
Large-vessel stroke or lacunar stroke syndrome
Exacerbation or unmasking of underlying cognitive impairment or neurodegenerative process
Medication-related adverse reaction
Other unknown mechanism

Abbreviations: CNS, central nervous system; COVID-19, coronavirus disease 2019; ICU, intensive care unit.

Acknowledgments

The authors would like to thank Salwa Almomen, MBBS, and the authors have no conflict of interest to declare.

Author Contributions: Dr Alkeridy wrote the manuscript, Dr Almaghlouth reviewed, edited, and approved the final version.

Sponsor’s Role: This study was not sponsored by any party.

References

1. Annweiler CR, Fauxon E, et al. Neurological, cognitive and behavioral disorders during COVID-19: the nitric oxide track. J Am Geriatr Soc. 2020. https://doi.org/10.1111/JAGS-11531-1-May-20.

2. Inouye SK, van Dyck CH, Alessi CA, Balkin S, Siegal AP, Horwitz RI. Clarifying confusion: the confusion assessment method: a new method for detection of delirium. Ann Intern Med. 1990;113(12):941-948.

3. Girard TD, Thompson JL, Pandharipande PP, et al. Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study. Lancet Respir Med. 2018;6(3):213-222.

4. Inouye SK, Westendorp RGI, Saczynski JS. Delirium in elderly people. Lancet. 2014;383(9920):911-922.

5. Fong TG, Tulebaev SR, Inouye SK. Delirium in elderly adults: diagnosis, prevention and treatment. Nat Rev Neurol. 2009;5(4):210-220.

6. Hughes CG, Pandharipande P, Ely EW. Delirium: Acute Brain Dysfunction in the Critically Ill. Cham: Springer; 2020.

7. Iroegbu JD, Benatoula CW, Ijomone OM. Potential neurological impact of coronaviruses: implications for the novel SARS-CoV-2. Neurol Sci. 2020;41:1329-1337. https://doi.org/10.1007/s10072-020-04469-4 [Epub ahead of print].

8. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; e201127. https://doi.org/10.1001/jamaneurol.2020.1127.

9. Pleasure SJ, Green AJ, Josephson SA. The spectrum of neurologic disease in the severe acute respiratory syndrome coronavirus 2 pandemic infection: neurologists move to the frontlines. JAMA Neurol. 2020. https://doi.org/10.1001/jamaneurol.2020.1065. Online ahead of print.

10. Alkeridy WA, Almaghlouth I, Alrashed R, et al. A unique presentation of delirium in a patient with otherwise asymptomatic COVID-19. J Am Geriatr Soc. 2020. https://doi.org/10.1111/jgs.16336. Online ahead of print.

Addressing Hearing Loss to Improve Communication During the COVID-19 Pandemic

To the Editor: Change occurs quickly in emergencies. The coronavirus disease 2019 (COVID-19) response has resulted in rapid modifications in healthcare delivery. Home-based medicine and telemedicine are swiftly evolving and being promptly deployed, as is in-room videoconference technology for inpatients. Necessary precautions, including distancing and personal protective equipment (PPE), have become the norm. Importantly, these changes may exacerbate communication barriers faced by persons with hearing loss.

Hearing loss affects half of all adults older than 60 years. However, little consideration is given to addressing hearing loss for effective communication. Hearing loss limits communication via poor auditory encoding of speech signals, resulting in reduced clarity of speech. Cognitive processing, especially working memory, may also be impacted as adults with hearing loss attempt to make sense of poor signals. The stressful, busy, and noisy hospital environment exacerbates problems, leading to limited treatment understanding and increased frustration.

Importantly, poor communication may mediate the association between hearing loss and health outcomes. Adults with hearing loss have increased risk of 30-day readmission, experience longer length of stay, and are less satisfied with care. Moreover, hearing loss is associated with poor functional recovery following intensive care unit admissions. Sensory deprivation may increase risk to experience delirium as older adults are cut off from communication and their environment.

The current extended use of PPE during the COVID-19 pandemic limits visualization of the mouth, preventing lip-reading, and acts as a general sound barrier. Even when using videoconferencing equipment, lag and poor image quality may cause significant visual barriers. Coupled with noisy hospital environment (e.g., alarms and constant communication among staff), these visual barriers render the natural sensory substitution compensation methods used by adults with hearing loss as futile. Additionally, distancing may limit access to caregivers or interpreters (American Sign Language) to facilitate conversations during visits.

Thoughtful consideration of addressing barriers is needed (Figure 1). In the outpatient and telehealth setting,
clear surgical masks allow visualization of the mouth. In hospitals, N95 masks that prevent visualizing the mouth are required in the patient’s room. However, utilization of clear surgical masks outside of the room could improve communication between patients and providers over videoconferencing. Notably, utilization of clear surgical masks outside of the patient’s room could also improve communication among providers, most of whom have been required to wear surgical masks throughout the day during the COVID-19 pandemic.

Figure 1. Checklist of methods to address hearing loss for clinician use. COVID-19, coronavirus disease 2019.
Technology offers additional solutions. Handheld amplifiers can increase signal volume but require sterilization considerations (i.e., one device cannot be shared) and are not compatible with videoconferencing technology. More advanced solutions through smartphones, such as speech to text and amplifier applications with customization for user preferences, should be considered. Using smartphone applications eliminates the need for sharing products in some cases and may be integrated into videoconferencing technology. Moreover, simple methods, such as preparing common questions and statements on placards with large text and using whiteboard for written statements, can help facilitate communication.

Providers should adopt changes to communication beyond the environment and technology to accommodate the needs of adults with hearing loss across settings. The reductionist approach that increased volume from an amplifier is all that is needed oversimplifies hearing loss. Many adults with mild/moderate hearing losses (36 of the 38 million adults with hearing loss in the United States) benefit immensely from communication techniques, including ensuring attention, facing patients, speaking slowly rather than shouting, and choosing to rephrase rather than repeat information. These tactics also compliment and augment the technologic and environmental modifications noted above. Moreover, these techniques improve all communication regardless of hearing loss status and could go a long way in improving patient-provider communication in the United States.

Fundamental to addressing hearing loss is the need for better surveillance. Many with more mild losses do not recognize their hearing loss as it may pose few problems in everyday life. However, the demanding healthcare communication environment, especially during the pandemic, may pose significant barriers. At minimum, healthcare settings should ask about hearing loss and incorporate these methods to intervene with struggling adults.

Communication is vital to patient-centered care.10 Although improvements have been made to empathetic communication training, little consideration has been given to the communication needs of the millions of Americans with hearing loss. Addressing hearing loss to improve communication and treatment understanding could improve rehabilitation following intensive care unit stay and reduce risk of a 30-day readmission. Moreover, improved sensory awareness may prevent delirium, whereas improved patient-provider rapport may improve satisfaction with care. Although immediate accommodations must be made during this crisis, long-term consideration of sustainable approaches to address hearing loss are equally important.

Nicholas S. Reed, AuD, Cochlear Center for Hearing and Public Health, The Johns Hopkins University, Baltimore, Maryland
Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Lauren E. Ferrante, MD, MHS, Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut

Esther S. Oh, MD, PhD Cochlear Center for Hearing and Public Health, The Johns Hopkins University, Baltimore, Maryland Division of Geriatric Medicine and Gerontology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland

ACKNOWLEDGMENTS
Conflict of Interest: N.S.R. reports salary funding from National Institute on Aging/National Institutes of Health Grant 1K23AG065443-01 to support research relevant to the area of interest. N.S.R. reports nonfinancial scientific advisory role with Shoebox, Inc. L.E.F. is supported by a Paul B. Beeson Emerging Leaders in Aging Career Development Award (K76 AG057023). There are no other reported relevant conflicts of interest.

Author Contributions: Concept and drafting and revision of the manuscript for important intellectual content: N.S.R., L.E.F., and E.S.O.

Sponsor’s Role: Sponsors had no role in the design, methods, subject recruitment, data collection, analysis, or preparation of this study.

REFERENCES
1. Tumlinson A, Altman W, Glaudemans J, Gleckman H, Grabowski DC. Post-acute care preparedness in a COVID-19 world [published online ahead of print, 2020 Apr 28]. J Am Geriatr Soc. 2020;68(6):1150-1154. https://doi.org/10.1111/jgs.16519.
2. D’Adamo H, Yoshikawa T, Ouslander JG. Coronavirus disease 2019 in geriatrics and long-term care: the ABCDs of COVID-19. J Am Geriatr Soc. 2020;68(5):912-917. https://doi.org/10.1111/jgs.16445.
3. Goman AM, Lin FR. Prevalence of hearing loss by severity in the United States. Am J Public Health. 2016;106(10):1820-1822. https://doi.org/10.2105/AJPH.2016.303299.
4. Cohen JM, Blustein J, Weinstein BE, et al. Studies of physician-patient communication with older patients: how often is hearing loss considered? a systematic literature review. J Am Geriatr Soc. 2017;65(8):1642-1649. https://doi.org/10.1111/jgs.14860.
5. Smith S, Manan NSIA, Toner S, et al. Age-related hearing loss and provider-patient communication across primary and secondary care settings: a cross-sectional study [published online ahead of print April 7, 2020]. Age Ageing. 2020;afaa041. https://doi.org/10.1093/ageing/afaa041.
6. Busch-Vishniac IJ, West JE, Barnhill C, Hunter T, Orellana D, Chivukula R. Noise levels in Johns Hopkins Hospital. J Acoust Soc Am. 2005;118(6):3629-3645. https://doi.org/10.1121/1.118327.
7. Reed NS, Altan A, Deal JA, et al. Trends in health care costs and utilization associated with untreated hearing loss over 10 years. JAMA Otolaryngol Head Neck Surg. 2019;145(1):27-34. https://doi.org/10.1001/jamaoto.2018.2873.
8. Reed NS, Betz JF, Kucharska-Newton AM, Lin FR, Deal JA. Hearing loss and satisfaction with healthcare: an unexplored relationship. J Am Geriatr Soc. 2019;67(3):624-626. https://doi.org/10.1111/jgs.15689.
9. Ferrante LE, Pisani MA, Murphy TE, Gahbauer EA, Leo-Summers LS, Gill TM. Factors associated with functional recovery among older intensive care unit survivors. Am J Respir Crit Care Med. 2016;194(3):299-307. https://doi.org/10.1164/rcrm.201506-1256OC.
10. Institute of Medicine (US) Committee on Quality of Health Care in America. Crossing the Quality Chasm: A New Health System for the 21st Century. Washington, DC: National Academies Press (US); 2001.