Evolution of Seventh Cholera Pandemic and Origin of 1991 Epidemic, Latin America

Connie Lam, Sophie Octavia, Peter Reeves, Lei Wang, and Ruiting Lan

Thirty single-nucleotide polymorphisms were used to track the spread of the seventh pandemic caused by *Vibrio cholerae*. Isolates from the 1991 epidemic in Latin America shared a profile with 1970s isolates from Africa, suggesting a possible origin in Africa. Data also showed that the observed genotypes spread easily and widely.

The seventh cholera pandemic began in 1961, and by 1966, it had affected most of Asia. Cholera incidence then decreased slightly until 1971, when an upsurge was observed in Africa and Europe, which had been free of cholera for >100 years (1). Cholera rates remained relatively low during the 1980s, with the disease confined to Asia and Africa. However, 2 major cholera outbreaks appeared in the 1990s: first, a resurgence of cholera in Africa, and, second, outbreaks that started in Peru became the first cholera epidemic in Latin America since 1895 (2). In addition, a novel serotype caused major outbreaks on the Indian subcontinent in 1992. That strain was referred to as O139 Bengal and was later shown to be a variant of the seventh pandemic clone with its replacement of the O antigen (1). Pulsed-field gel electrophoresis (3), amplified fragment length polymorphism analysis (4), and ribotyping (1) have been applied to seventh pandemic isolates but did not fully resolve the relationships of the various outbreaks. In this study, we used genome-wide single-nucleotide polymorphisms (SNPs) to track the evolution and spread of the seventh cholera pandemic, including the O139 Bengal strain.

The Study

The availability of complete genome sequences of a pre–seventh pandemic isolate, M66–2 (5), a seventh pandemic isolate, N16961 (6), and the partial genome sequence of an O139 Bengal isolate, MO10 (7), enabled identification and use of SNPs as evolutionary markers in *Vibrio cholerae*. A set of 18 SNPs was chosen from 125 N16961 SNPs (5) and 12 SNPs selected from 59 identified by comparison of the N16961 and MO10 genome sequences. The SNPs selected were mostly from genes with known function and were distributed throughout the 2 chromosomes for the N16961 SNPs and the large chromosome for the MO10 SNPs. We have previously shown that recombinant regions could be identified by the differences in distribution of SNPs in such regions (5); for this study, only mutational SNPs were selected.

The 30 SNPs (online Technical Appendix, www.cdc.gov/EID/content/16/7/1130-Techapp.pdf) were used to type a collection of 64 seventh pandemic *V. cholerae* isolates. SNPs were detected by using hairpin primer real-time PCR. SNP data for 3 complete *V. cholerae* genomes (M66–2, N16961, MJ-1236) and 4 partially sequenced genomes (MO10, RC9, B33, CIRS 101) (7) were obtained from the National Center for Biotechnology Information (Rockville, MD, USA) and included in the analysis. The 71 isolates were divided into 10 SNP profiles by using the 30 SNPs (online Appendix Table, www.cdc.gov/EID/content/16/7/1130-appT.htm). Three profiles were represented by 1 isolate only, whereas the remaining profiles contained 4–17 isolates. The Simpson index of diversity for all SNP combinations was 0.929.

A maximum-parsimony tree (Figure) was constructed to show the relationships of the SNP profiles. The tree was fully resolved with no reverse or parallel changes in the seventh pandemic isolates. The pre–seventh pandemic strains were used as an outgroup and placed at the base of the tree. Six groups could be distinguished, with each group containing SNP profiles differing by no more than 1 SNP. The ladderized tree shows the stepwise evolution of the SNP profiles and groups. Group I at the bottom of the tree originated in Indonesia in 1961. It contains mostly isolates from Asia but continued to be isolated in Southeast Asia. The other groups evolved sequentially. Group II contains isolates from Africa from the 1970s to the 1990s and all 4 isolates from Latin America; group III contains earlier 1970s isolates from Asia and 1980s isolates from Africa; group IV contains late 1970s and 1980s isolates from Asia only; while group V contains 1990s isolates from Asia and Africa. Group VI contains only O139 isolates with the same SNP profile.

Conclusions

The presence of isolates from Africa in 3 groups can be explained by multiple introductions of cholera into Africa from cholera-endemic regions in Asia. The isolates in the first introduction in the 1970s shared a single origin (group...
II). However, during the late 1980s and early 1990s, cholera outbreaks appeared to be caused by strains from 3 related sources. The first source came from group II, which was already established in Africa, and the second and third sources came from groups III and V in Asia. Because both groups were supported by multiple SNPs, it is less likely that the 1970s isolates from Africa and Asia evolved in parallel to fall into the same groups. Additionally, B33 in Group V carries a classical CTX prophage (8), which indicates that this strain likely originated in Asia.

The cholera epidemic in Latin America was originally suspected to have come from Asia and to have been facilitated by the discharge of contaminated ballast water into Peruvian ports by international trade ships (2). However, the isolates from Latin America analyzed in this study were closely related to isolates found in Africa in the 1970s and 1990s. Four isolates, 2 from Peru and 1 each from Brazil and French Guiana, had an SNP profile identical to the 12 isolates from Africa that originated during that period. No isolates from Asia fell into this group. This finding suggests that the strain that caused the epidemic in Latin America came from Africa rather than Asia.

The outbreak in Peru occurred in parallel with the upsurge of cholera generally in Africa (I) and could have been imported at that time. However, the epidemic strain may have reached Latin America well before it caused the epidemic in 1990s, given the ability of the organism to persist in the marine environment for long periods (2). The strain could have been brought into the region during the mass migration from Africa to Latin America in the 1970s (9). The isolates from Latin America differ by 1 locus from the other seventh pandemic strains (Asia and Africa) by multilocus enzyme electrophoresis (10) and also differ in the Vibrio spp. seventh pandemic island-II gene cluster (11), which suggests that further evolution occurred after the strain separated from its likely ancestral strain from Africa and supports this latter scenario. The epidemic strain in Latin America could not have originated from the 1990s isolates from Asia in Groups III–V because they arose later than Group II isolates. However, a 1970s lineage in Asia that spread to Africa may have remained in Asia until the 1990s but was not represented in the isolates sampled. Further investigation is needed to resolve this hypothesis. Furthermore, although the SNP profiles of the isolates from Africa and Latin America are identical, they may have diverged substantially because the SNPs used can only determine node positions but not branch length caused by phylogenetic discovery bias (12).

Our SNP data clearly show that O139 Bengal was a derivative of the seventh pandemic, as previously suggested (13). Nine of the 12 O139 SNPs can now be seen to have arisen in its O1 precursor strain because they were present in seventh pandemic isolates as early as 1979 (online Technical Appendix). These SNPs also resolved the relationships of Groups IV–V. Some studies have suggested that the O139 variant may have multiple origins (14). However, our results suggest that these O139 isolates from the then new epidemic have a single origin, which is consistent with earlier ribotyping data (15).
Our data show each of the groups/genotypes spread easily and widely to multiple countries or regions. This finding suggests that cholera epidemics or upsurges, which often occurred at the same time in many countries, were caused by the spread of newly arisen genotypes. Additionally, a genotype can also persist for long periods. Thus, in cholera-endemic regions such as Southeast Asia and Africa, cholera can be caused not only by an endemic genotype, but also by new epidemic genotypes. This finding is useful for control of cholera epidemics.

Acknowledgments

We thank Yi Ren and Gordon Stevenson for technical assistance. We also thank all strain donors, including J. Albert, A. Dodin, P. Eccheveria, J. Kaper, T. Popovic, B. Sack, C. Salles, W.C. Yam, and the reviewers for their helpful suggestions.

This research was supported by a Goldstar award from the University of New South Wales.

Ms Lam is a PhD student in medical microbiology at the University of New South Wales. Her research interests include molecular epidemiology and evolution of pathogenic bacteria.

References

1. Reeves PR, Lan R. Cholera in the 1990s. Br Med Bull. 1998;54:611–23.
2. Seas C, Miranda J, Gil AI, Leon-Barua R, Patz J, Huq A, et al. New insights on the emergence of cholera in Latin America during 1991: the Peruvian experience. Am J Trop Med Hyg. 2000;62:513–7.
3. Singh DV, Matte MH, Matte GR, Jiang S, Sambaena F, Shukla BN, et al. Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates. Appl Environ Microbiol. 2001;67:910–21. DOI: 10.1128/AEM.67.2.910-921.2001
4. Lan R, Reeves PR. Pandemic spread of cholera: genetic diversity and relationships within the seventh pandemic clone of Vibrio cholerae determined by amplified fragment length polymorphism. J Clin Microbiol. 2002;40:172–81. DOI: 10.1128/JCM.40.1.172-181.2002
5. Feng L, Reeves PR, Lan R, Ren Y, Gao C, Zhou Z, et al. A recalibrated molecular clock and independent origins for the cholera pandemic clones. PLoS One. 2008;3:e4053. DOI: 10.1371/journal.pone.0004053
6. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 2000;406:477–83. DOI: 10.1038/35020000
7. Chum J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A. 2009;106:15442–7. DOI: 10.1073/pnas.0907787106
8. Faruque SM, Tam VC, Chowdhury N, Dirapath P, Dziejman M, Heidelberg JF, et al. Genomic analysis of the Mozambique strain of Vibrio cholerae O1 reveals the origin of El Tor strains carrying classical CTX prophage. Proc Natl Acad Sci U S A. 2007;104:5151–6. DOI: 10.1073/pnas.0700365104
9. Tauxe RV, Blake PA. Epidemic cholera in Latin America. JAMA. 1992;267:1388–90. DOI: 10.1001/jama.267.10.1388
10. Evins GM, Cameron DN, Wells JG, Greene KD, Popovic T, Gion-Cerezio S, et al. The emerging diversity of the electrophoretic types of Vibrio cholerae in the Western Hemisphere. J Infect Dis. 1995;172:173–9.
11. Nusrin S, Gil AI, Bhuiyan NA, Safa A, Asakura M, Lanata CF, et al. Peruvian Vibrio cholerae O1 El Tor strains possess a distinct region in the Vibrio seventh pandemic island-II that differentiates them from the prototype pandemic El Tor strains. J Med Microbiol. 2009;58:342–54. DOI: 10.1099/jmm.0.005397-0
12. Pearson T, Busch JD, Ravel J, Read TD, Rhoto SD, U’ren JM, et al. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc Natl Acad Sci U S A. 2004;101:15356–41. DOI: 10.1073/pnas.0403844101
13. Karaisis DK, Lan R, Reeves PR. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxicogenic, non-O1 Vibrio cholerae. J Bacteriol. 1995;177:3191–8.
14. Faruque SM, Saha MN, Asadulghani, Sack DA, Sack RB, Takeda Y, et al. The O139 serogroup of Vibrio cholerae comprises diverse clones of epidemic and nonepideemic strains derived from multiple V. cholerae O1 or non-O1 progenitors. J Infect Dis. 2000;182:1161–8. DOI: 10.1086/315507
15. Faruque SM, Abdul Alim AR, Roy SK, Khan F, Nair GB, Sack RB, et al. Molecular analysis of rRNA and cholera toxin genes carried by the new epidemic strain of toxigenic Vibrio cholerae O139 synonym Bengal. J Clin Microbiol. 1994;32:1050-3.

Address for correspondence: Ruiting Lan, University of New South Wales, School of Biotechnology and Biomolecular Sciences, Sydney, New South Wales 2052, Australia; email: r.lan@unsw.edu.au

Manage your email to focus on content of interest to you.

GovDelivery

www.cdc.eid/ncidod/eid/subscrib.htm
Group	SNP profile (no. isolates)	N16961 SNPs†*	MO10 SNPs††
	vc 067 vc 083 vc 083 vc 098 vc 108 vc 109 vc 124 vc 094 vc 204 vc 208 vc 209 vc 267 vc 196 vc 024 vc 107 vc 032 vc 157 vc 189 vc 236 vc 256 vc 187 vc 095 vc 108 vc 186 vc 207 vc 131 vc 000 vc 084 vc 170 vc 259	vc 236 vc 256 vc 187 vc 095 vc 108 vc 186 vc 207 vc 131 vc 000 vc 084 vc 170 vc 259	
Pre- 7th	1 (2)	T A G C A C C T G C G G A C C C C C G	A C C C C T C A G G G C
	2 (1)	T A G C A C C T G C G G A C C C C C G	A C C C C T C A G G G C
I	3 (1)	G G A T T T T T C A T T A A C C C C C G	A C C C C T C A G G G C
	4 (13)	G G A T T T T T C A T T A T C C C C C G	A C C C C T C A G G G C
II	5 (17)	G G A T T T T T C A T T A T T T T C C G	A C C C C T C A G G G C
III	6 (7)	G G A T T T T T C A T T A T T T T T A	A C C C C T C A G G G C
IV	7 (7)	G G A T T T T T C A T T A T T T T T A	G T A T T T T C A G G G C
V	8 (1)	G G A T T T T T C A T T A T T T T T A	G T A T T G T T T G G G C
VI	10 (15)	G G A T T T T T C A T T A T T T T T A	G T A T T G T T T A G G C

Appendix Table. Single nucleotide polymorphism profiles of 71 isolates of pandemic *Vibrio cholerae*.

SNP, single-nucleotide polymorphism. Complete details for each strain and SNP profile can be found in the online Technical Appendix (www.cdc.gov/EID/content/16/7/1130-Techapp.pdf). SNP data for 7 isolates were obtained from GenBank (accession nos. RC9-ACHX00000000, MJ-1236-CP001385/CP001486, B33-ACHZ00000000, CIRS 101-ACVA00000000, MO10-AAKF00000000, N16961-AE003852, M66-2-CP001233).

†SNPs were selected from a comparison of N16961 with M66-2, and N16961 with MO10. The exact location of each SNP can be found in the online Technical Appendix. SNP mutations are shaded; ancestral SNPs have been left unshaded. The SNPs are grouped in the order in which the mutations are inferred to have occurred.
Evolution of Seventh Cholera Pandemic and Origin of 1991 Epidemic, Latin America

Technical Appendix

Methods

Primers and Location of Single Nucleotide Polymorphisms studied

The detection of each single nucleotide polymorphism (SNP) required 2 forward primers. The first forward primer contained the SNP of the seventh pandemic at the 3' end, while the second primer contained the SNP of either MO10 O139 Bengal or M66-2 pre–seventh pandemic. A complementary tail was added to the 5’ end of each forward primer to form a hairpin structure. Alterations to the original primer sequence were also made to facilitate the folding of the primer into a hairpin structure. Table A-1 and Table A-2 contain the name, location, forward and reverse primer for each SNP. The same reverse primer was used for each pair of SNP reactions.

Hairpin Real-Time PCR (HP RT-PCR)

All RT-PCRs were carried out in a Rotor-Gene 6000 instrument (Corbett Life Science, Mortlake, New South Wales, Australia) with a 72-well rotor disk. Each RT-PCR reaction consisted of ≈100 ng DNA, 2.5 μmol each of forward and reverse primers and 5 μL SensiMixPlus SYBR Green (Quantace, Alexandria, New South Wales, Australia) (includes 2× Mix containing reaction buffer), Heat- Activated Taq DNA polymerase, dNTPs 6 mM MgCl₂, SYBR Green I. MilliQ water was added to adjust the final volume to 10 μL. The thermal cycling conditions were set up as follows: stage 1, 95°C for 10 min to activate Taq polymerase, stage 2, 95°C for 15 s, 69°C for 30 s, repeated 10 × followed by stage 3, 95°C for 15 s, 60°C for 30 s, repeated 40 ×. On completion of each run, data were collected and analyzed with Rotor-Gene operating software v1.7.87 (Corbett Life Science). The fluorescent signal for each reaction was measured at the end of each cycle and plotted on a fluorescence curve. The cycle threshold (Ct) was set across the amplification curves during the exponential fluorescence phase.
Locus	Gene	Annotation	Location in N16961	7th Pandemic	SNP*	M86-2	Reverse primer (5’ → 3’)		
Large chromosome		DNA-directed RNA polymerase, beta subunit	1128966	393808	atctttaccTGCCTGCAAGTGAAGAT	T	gtcctttaccTGCCTGCAAGTGAAGAT	C	GAAGTATGAGCTGCGATGTC
vc00329	rpoC	Phosphoenolpyruvate-protein phosphotransferase	2500200	765286	tcctctacGCCTTGGGATAGAAGA	A	ctcctctacGCCTTGGGATAGAAGA	G	TCCCCATGCGAGCTTTTA
vc0672	ptsP	Ferrochelatase	3047424	943582	caaacattAGCCGA	C	gcaaacattAGCCGA	G	CCCTCAGCACATGAAAAAT
vc1088	oppA	Oligopeptide ABC transporter, periplasmic oligopeptide-binding protein	3603104	1202761	agacaaATGCCTATCATAACGAGGTTG	T	gcacacattTGCCTTGAATTGAGGTTTG	C	TGCTGTTGTTATATGCTTGGC
vc1248	Methyl-accepting chemotaxis protein	Entero bacterin synthetase component F-related protein	4280560	1435093	aacgctcACCTATCATCAACGAGGTTG	T	gcacacattTGCCTTGAATTGAGGTTTG	C	TGCTGTTGTTATATGCTTGGC
vc1579	hslU	Protease HslU, ATPase subunit HslU	4859896	1770713	aatactgcccAGTATCGCCAGTATTTG	T	gcacacattTGCCTTGAATTGAGGTTTG	C	TGCTGTTGTTATATGCTTGGC
vc1686	Methyl-accepting chemotaxis protein	Maltose/maltodextrin ABC transporter, ATP-binding protein	5627680	2128112	ttctctcGCCTATCATAACGAGGTTG	T	gtcctttaccTGCCTGCAAGTGAAGAT	C	GAAGTATGAGCTGCGATGTC
vc2046	MalK	Maltooligosaccharide ABC transporter, ATP-binding protein	6871640	2285018	ctcctctacGCCTATCATAACGAGGTTG	T	gtcctttaccTGCCTGCAAGTGAAGAT	C	GAAGTATGAGCTGCGATGTC
vc2080	hsdC	Succinate dehydrogenase, cytochrome b556 subunit	7821560	2336169	acctctTGACAGGGTGGGAGAGTTG	T	gcacacattTGCCTTGAATTGAGGTTTG	C	TGCTGTTGTTATATGCTTGGC
vc2674	hsiU	Protease HsiU, ATPase subunit HsiU	8699216	2927259	tgcctttaccTCCGCTGATGAGAGGG	A	gcgcctTAAACCTTGATGAAAAGC	G	TGGTGAAGTACCGCCAAA
Small chromosome		DNA-directed RNA polymerase, beta subunit	956775	302905	gttgcggcGATACAACCTGAGGGCAAGCT	T	gttgcggcGATACAACCTGAGGGCAAGCT	C	TCCTGTTAGCCTTGGGCAAG
vca0247	MalK	Maltooligosaccharide ABC transporter, ATP-binding protein	1128966	302905	gttgcggcGATACAACCTGAGGGCAAGCT	T	gttgcggcGATACAACCTGAGGGCAAGCT	C	TCCTGTTAGCCTTGGGCAAG
vca0946	maK	Maltose/maltodextrin ABC transporter, ATP-binding protein	1128966	830773	gttgcggcGATACAACCTGAGGGCAAGCT	T	gttgcggcGATACAACCTGAGGGCAAGCT	C	TCCTGTTAGCCTTGGGCAAG
vca1073	scnA	Conserved hypothetical protein	1128966	956775	gttgcggcGATACAACCTGAGGGCAAGCT	T	gttgcggcGATACAACCTGAGGGCAAGCT	C	TCCTGTTAGCCTTGGGCAAG

*SNP, single nucleotide polymorphism. Nucleotides in lower case indicate a complementary tail which was added to the primer to form a hairpin structure. Bold and italic nucleotides indicate that a deliberate change has been made to the sequence to facilitate the folding of the primer into a hairpin structure. Bold and underlined nucleotides indicate the corresponding SNP of either the 7th pandemic or M-662.
Table A-2: Name, location and primers of the Vibrio cholerae O139 MO10 single-nucleotide polymorphisms

Locus	Gene	Annotation	Location in N16961	7th pandemic	MO10	Reverse primer (5'→3')
vc0008	Amino acid ABC transporter ATP binding protein	cgatacggagtatgttgttggggtgtG	5414	tggatacggagtatgttgttggggtgtA	A	GCGTGAACCTTCTTGGACG
vc0847	Phage family integrase	caacagccttgccgttttcggcgttgT	913179	caacagccttgccgttttcggcgttgA	T	GCGATCGTTGATTTTATT
vc0959	Haemolysin (putative)	ggccagaagtcctggtgcatcctttgtG	1024406	gcgagagtcctggtgcatcctttgtC	C	GGTCCGAGTAGAAGTCC
vc1082	Hypothetical protein	ggctttcttttgggttgtggagaggcG	1149751	ggtttcttttgggttgtggagaggcC	C	AGATGGCCAAATACCTTA
vc1318	ompV	tgtcagacatattgcttggtgtagG	1401874	tgtcagacatattgcttggtgtagA	A	TACCGCAAGGGCCAACAA
vc1707	Hypothetical protein	gccgaaaggtcttggtgtcttttgtG	1838624	gccgaaaggtcttggtgtcttttgtC	T	GGTCCGAGTAGAAGTCC
vc1865	Hypothetical protein	accagacatttattcttggtgagtG	2005889	accagacatttattcttggtgagtC	T	GGTCCGAGTAGAAGTCC
vc1877	1pxk	gattctgatgttgccatgccaagcG	2021732	gattctgatgttgccatgccaagcA	A	TATCAACCGGCGGCAAAA
vc2077	Ferrus iron transport protein B	gcacagcttgccctgacacagttggtG	2242253	gcacagcttgccctgacacagttggtC	C	TACACACGCTGCTGCTT
vc2362	Threonine Synthetase	ttctctcttcttttggtggagggG	2518900	ttctctcttcttttggtggagggA	C	ATCAACACGCTGCTGCTT
vc2562	cpdB	gttgactctgcatcataacaggtgtagcG	2744542	gttgactctgcatcataacaggtgtagcA	A	TACACACGCTGCTGCTT

*Bold and italic nucleotides indicate that a deliberate change has been made to the sequence to facilitate the folding of a hairpin structure. Bold and underlined nucleotides indicate the corresponding SNP of either the 7th pandemic or MO10.

Table A-3: Single-nucleotide polymorphism (SNP) profiles of 71 isolates of pandemic Vibrio cholerae

Group	SNP profile	Isolate	Year	Location
Pre-7th				
1	M66-2†	1937	Indonesia	T A G C A C T G C G A C C C C C G
	M543	1938	Iraq	T A G C A C T G C G A C C C C C G
	M640	1954	Egypt	T A G C A C T G C G A C C C C C A
	M793	1961	Indonesia	A C C C C C T C A G G G C
	M608	1968	Thailand	G G A T T T T C A T T T A A C C C C G
	M789	1989	Hong Kong	G G A T T T T C A T T T A T C C C C G
	M803	1961	Hong Kong	G G A T T T T C A T T T A T C C C C G
	M804	1962	India	G G A T T T T C A T T T A T C C C C G
	M805	1963	Cambodia	G G A T T T T C A T T T A T C C C C G
	M806	1964	India	G G A T T T T C A T T T A T C C C C G
	M807	1966	Vietnam	G G A T T T T C A T T T A T C C C C G
	M808	1969	Vietnam	G G A T T T T C A T T T A T C C C C G

*SNP, single nucleotide polymorphism. Nucleotides in lower case indicate a complementary tail which was added to the primer to form a hairpin structure.

Page 3 of 5
M811	1971	Burma	G G A T T T T T C A T A T T C C C C G A C C C C T C A G G G C
M815	1973	Philippines	G G A T T T T T C A T T A T C C C C G A C C C C T C A G G G C
M820	1978	Malaysia	G G A T T T T T C A T T A T C C C C G A C C C C T C A G G G C
M862	1993	Indonesia	G G A T T T T C A T A T C C C C G A C C C C T C A G G G C
M863	1992	Indonesia	G G A T T T T C A T A T C C C C G A C C C C T C A G G G C
M809	1970	Sierra Leone	G G A T T T T C A T A T T C C C G A C C C C T C A G G G C
M821	1982	France	G G A T T T T C A T T A T T C C C G A C C C C T C A G G G C
M833	1979	Bangladesh	G G A T T T T C A T T A T C C C G A C C C C T C A G G G C
M647	1970	Bangladesh	G G A T T T T C A T T A T T T T T A A C C C C T C A G G G C
M796	1976	Bangladesh	G G A T T T T C A T T A T T T T T T A A C C C C T C A G G G C
M630	1993	France	G G A T T T T C A T T A T T T C C G A C C C C T C A G G G C
M812	1971	Chad	G G A T T T T C A T T A T T T T C C G A C C C C T C A G G G C
M817	1974	Chad	G G A T T T T C A T T A T T T T C C G A C C C C T C A G G G C
M810	1970	Ethiopia	G G A T T T T C A T T A T T T T C C G A C C C C T C A G G G C
M813	1972	Senegal	G G A T T T T C A T T A T T T T C C G A C C C C T C A G G G C
M814	1972	Morocco	G G A T T T T C A T T A T T T T C C G A C C C C T C A G G G C
M816	1974	Senegal	G G A T T T T C A T T A T T T T C C G A C C C C T C A G G G C
M819	1975	Germany	G G A T T T T C A T T A T T T T C C G A C C C C T C A G G G C
M818	1975	Comoros Islands	G G A T T T T C A T T A T T T T C C G A C C C C T C A G G G C
M650	1976	India	G G A T T T T C A T A T T T T T T A A C C C C T C A G G G C
M648	1970	Bangladesh	G G A T T T T C A T T A T T T T T A A C C C C T C A G G G C
M797	1976	Bangladesh	G G A T T T T C A T T A T T T T T T A A C C C C T C A G G G C
M925	1988	Zaire	G G A T T T T C A T T A T T T T T A A C C C C T C A G G G C
M646	1979	Bangladesh	G G A T T T T C A T T A T T T T T A A G T A T T T A C A G G G C
M652	1981	India	G G A T T T T C A T T A T T T T T A A G T A T T T A C A G G G C
M685	1991	India	G G A T T T T C A T T A T T T T T A A G T A T T T A C A G G G C
M740	1985	Thailand	G G A T T T T C A T T A T T T T T A A G T A T T T A C A G G G C
M769	1992	Vietnam	G G A T T T T C A T T A T T T T T A A G T A T T T A C A G G G C
M791	1991	Thailand	G G A T T T T C A T T A T T T T T A A G T A T T T A C A G G G C

Page 4 of 5
Code	Year	Location	Sequence Information
M824	1987	Algeria	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A G G C
M1236	1994	Bangladesh	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A G G C
CIRS101	2002	Bangladesh	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A G G C
B33†	2004	Mozambique	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A G G C
M827	1990	Guinea	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A G G C
M828	1991	Morocco	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A G G C

| VI | 10 | | |

Code	Year	Location	Sequence Information
M834	1993	Bangladesh	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A G A A T T
M833	1993	Bangladesh	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A G A A T
M985	1992	India	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M987	1992	India	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M989	1993	India	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M988	1993	Bangladesh	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M986	1992	India	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M984	1992	India	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M835	1993	Bangladesh	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M573	1993	India	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M540	1993	India	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M542	1993	Bangladesh	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M545	1993	India	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M801	1993	Bangladesh	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M541	1992	India	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T
M010†	1992	India	GG G A T T T T C A T T A T T T T T T A G T A T T G T T A A A T

§ SNPs were selected from comparison between N16961 with M66-2 and N16961 with MO10. SNP mutations are shaded in blue, ancestral SNPs have been left unshaded. The SNPs are grouped in the order in which the mutations are inferred to have occurred. Horizontal lines separate individual SNP profiles.

† SNP data for these isolates was obtained from GenBank (accession nos: RC9- ACHX0000000, MJ-1236- CP001385/CP001486, B33- ACHZ0000000, CIRS 101- ACVA0000000, MO10- AAKF0000000, N16961- AE003852, M66-2- CP001233)