Intersection homology \mathcal{D}-Module and Bernstein polynomials associated with a complete intersection

Tristan Torrelli

Abstract. Let X be a complex analytic manifold. Given a closed subspace $Y \subset X$ of pure codimension $p \geq 1$, we consider the sheaf of local algebraic cohomology $H^p_Y(\mathcal{O}_X)$, and $\mathcal{L}(Y, X) \subset H^p_Y(\mathcal{O}_X)$ the intersection homology \mathcal{D}_X-Module of Brylinski-Kashiwara. We give here an algebraic characterization of the spaces Y such that $\mathcal{L}(Y, X)$ coincides with $H^p_Y(\mathcal{O}_X)$, in terms of Bernstein-Sato functional equations.

1 Introduction

Let X be a complex analytic manifold of dimension $n \geq 2$, \mathcal{O}_X be the sheaf of holomorphic functions on X and \mathcal{D}_X the sheaf of differential operators with holomorphic coefficients. At a point $x \in X$, we identify the stalk $\mathcal{O}_{X,x}$ (resp. $\mathcal{D}_{X,x}$) with the ring $\mathcal{O} = \mathbb{C}\{x_1, \ldots, x_n\}$ (resp. $\mathcal{D} = \mathcal{O} \langle \partial/\partial x_1, \ldots, \partial/\partial x_n \rangle$).

Given a closed subspace $Y \subset X$ of pure codimension $p \geq 1$, we denote by $H^p_Y(\mathcal{O}_X)$ the sheaf of local algebraic cohomology with support in Y. Let $\mathcal{L}(Y, X) \subset H^p_Y(\mathcal{O}_X)$ be the intersection homology \mathcal{D}_X-Module of Brylinski-Kashiwara ([5]). This is the smallest \mathcal{D}_X-submodule of $H^p_Y(\mathcal{O}_X)$ which coincides with $H^p_Y(\mathcal{O}_X)$ at the generic points of Y ([5], [3]).

A natural problem is to characterize the subspaces Y such that $\mathcal{L}(Y, X)$ coincides with $H^p_Y(\mathcal{O}_X)$. We prove here that it may be done locally using Bernstein functional equations. This supplements a work of D. Massey ([15]), who studies the analogous problem with a topological viewpoint. Indeed, from the Riemann-Hilbert correspondence of Kashiwara-Mebkhout ([11], [17]), the regular holonomic \mathcal{D}_X-Module $H^p_Y(\mathcal{O}_X)$ corresponds to the perverse sheaf $\mathcal{C}_Y[n-p]$ ([7], [9], [16]) where as $\mathcal{L}(Y, X)$ corresponds to the intersection complex IC^*_Y ([5]). By this way, this condition $\mathcal{L}(Y, X) = H^p_Y(\mathcal{O}_X)$ is equivalent to the following one: the real link of Y at a point $x \in Y$ is a rational homology sphere.

1Laboratoire J.A. Dieudonné, UMR du CNRS 6621, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France. E-mail: tristan_torrelli@yahoo.fr

2000 Mathematics Subject Classification: 32S40, 32C38, 32C40, 32C25, 14B05.

Keywords: intersection homology \mathcal{D}-modules, local algebraic cohomology group, complete intersections, Bernstein-Sato functional equations.
First of all, we have an explicit local description of $L(Y, X)$. This comes from the following result, due to D. Barlet and M. Kashiwara.

Theorem 1.1 ([3]) *The fundamental class $C^Y_X \in H^p_{[Y]}(\mathcal{O}_X) \otimes \Omega^p_X$ of Y in X belongs to $L(Y, X) \otimes \Omega^p_X$.***

For more details about C^Y_X, see [1]. In particular, if h is an analytic morphism $(h_1, \ldots, h_p) : (X, x) \rightarrow (\mathbb{C}^p, 0)$ which defines the complete intersection (Y, x) - reduced or not -, then the inclusion $L(Y, X)_x \subset H^p_{[Y]}(\mathcal{O}_X)_x$ may be identified with:

$$L_h = \sum_{1 \leq k_1 < \cdots < k_p \leq n} D \cdot \frac{m_{k_1, \ldots, k_p}(h)}{h_1 \cdots h_p} \subset R_h = \frac{\mathcal{O}[1/h_1 \cdots h_p]}{\prod_{i=1}^p \mathcal{O}[1/h_1 \cdots h_i \cdots h_p]}$$

where $m_{k_1, \ldots, k_p}(h) \in \mathcal{O}$ is the determinant of the columns k_1, \ldots, k_p of the Jacobian matrix of h. In the following, $\mathcal{J}_h \subset \mathcal{O}$ denotes the ideal generated by the $m_{k_1, \ldots, k_p}(h)$, and $\delta_h \in R_h$ the section defined by $1/h_1 \cdots h_p$.

When Y is a hypersurface, we have the following characterization.

Theorem 1.2 *Let $Y \subset X$ be a hypersurface and $h \in \mathcal{O}_{X,x}$ denote a local equation of Y at a point $x \in Y$. The following conditions are equivalent:

1. $L(Y, X)_x$ coincides with $H^p_{[Y]}(\mathcal{O}_X)_x$.
2. The reduced Bernstein polynomial of h has no integral root.
3. 1 is not an eigenvalue of the monodromy acting on the reduced cohomology of the fibers of the Milnor fibrations of h around any singular points of Y contained in some open neighborhood of x in X.*

Let us recall that the *Bernstein polynomial* $b_f(s)$ of a nonzero germ $f \in \mathcal{O}$ is the monic generator of the ideal of the polynomials $b(s) \in \mathbb{C}[s]$ such that:

$$b(s)f^s = P(s) \cdot f^{s+1}$$

in $\mathcal{O}[1/f, s]f^s$, where $P(s) \in \mathcal{D}[s] = \mathcal{D} \otimes \mathbb{C}[s]$. The existence of such a nontrivial equation was proved by M. Kashiwara ([8]). When f is not a unit, it is easy to check that -1 is a root of $b_f(s)$. The quotient of $b_f(s)$ by $(s+1)$ is the so-called *reduced Bernstein polynomial* of f, denoted $\tilde{b}_f(s)$. Let us recall that their roots are rational negative numbers in $]-n, 0[$ (see [20] for the general case, [26] for the isolated singularity case).
Example 1.3 Let \(f = x_1^2 + \cdots + x_n^2 \). It is easy to prove that \(b_f(s) \) is equal to \((s + 1)(s + n/2)\), by using the identity:

\[
\left[\frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right] \cdot f^{s+1} = (2s + 2)(2s + n)f^s
\]

In particular, \(R_f \) coincides with \(L_f \) if and only if \(n \) is odd.

These polynomials are famous because of the link of their roots with the monodromy of the Milnor fibration associated with \(f \). This was established by B. Malgrange [14] and M. Kashiwara [10]. More generally, by using the algebraic microlocalization, M. Saito [20] prove that \(\{ e^{-2i\pi \alpha} \mid \alpha \text{ root of } \hat{\beta}_f(s) \} \) coincides with the set of the eigenvalues of the monodromy acting on the Grothendieck-Deligne vanishing cycle sheaf \(\phi_f C_{X(x)} \) (where \(X(x) \subset X \) is a sufficiently small neighborhood of \(x \)). Thus the equivalence \(2 \iff 3 \) is an easy consequence of this deep fact.

We give a direct proof of \(1 \iff 2 \) in part 4.

Remark 1.4 In [2], D. Barlet gives a characterization of \(3 \) in terms of the meromorphic continuation of the current \(\int_{X(x)} f^{\lambda} \square \).

Remark 1.5 The equivalence \(1 \iff 3 \) for the isolated singularity case may be due to J. Milnor [18] using the Wang sequence relating the cohomology of the link with the Milnor cohomology. In general, this equivalence is well-known to specialists. It can be proved by using a formalism of weights and by reducing it to the assertion that the \(N \)-primitive part of the middle graded piece of the monodromy weight filtration on the nearby cycle sheaf is the intersection complex (this last assertion is proved in [19] (4.5.8) for instance). It would be quite interesting if one can prove the equivalence between \(1 \) and \(3 \) by using only the theory of \(D \)-modules.

In the case of hypersurfaces, it is well known that condition \(1 \) requires a strong kind of irreducibility. This may be refined in terms of Bernstein polynomial.

Proposition 1.6 Let \(f \in \mathcal{O} \) be a nonzero germ such that \(f(0) = 0 \). Assume that the origin belongs to the closure of the points where \(f \) is locally reducible. Then \(-1\) is a root of the reduced Bernstein polynomial of \(f \).

Example 1.7 If \(f = x_1^2 + x_3x_2^2 \), then \((s + 1)^2\) divides \(b_f(s) \) because \(f^{-1}\{0\} \subset \mathbb{C}^3 \) is reducible at any \((0, 0, \lambda), \lambda \neq 0\) (in fact, we have: \(b_f(s) = (s + 1)^2(s + 3/2) \)).
What may be done in higher codimensions? If \(f \in \mathcal{O} \) is such that \((h,f)\)
defines a complete intersection, we can consider the Bernstein polynomial \(b_f(\delta_h, s)\) of \(f\) associated with \(\delta_h \in \mathcal{R}_h\). Indeed, we again have nontrivial functional equations:

\[
b(s)\delta_h f^s = P(s) \cdot \delta_h f^{s+1}
\]

with \(P(s) \in \mathcal{D}[s]\) (see part 2). This polynomial \(b_f(\delta_h, s)\) is again a multiple of \((s + 1)\), and we can define a reduced Bernstein polynomial \(\tilde{b}_f(\delta_h, s)\) as above. Meanwhile, in order to generalize Theorem 1.2, the suitable Bernstein polynomial is neither \(\tilde{b}_f(\delta_h, s)\) nor \(b_f(\delta_h, s)\), but a third one trapped between these two.

Notation 1.8 Given a morphism \((h, f) = (h_1, \ldots, h_p, f) : (\mathbb{C}^n, 0) \to (\mathbb{C}^{p+1}, 0)\) defining a complete intersection, we denote by \(b'_f(h, s)\) the monic generator of the ideal of polynomials \(b(s) \in \mathbb{C}[s]\) such that:

\[
b(s)\delta_h f^s \in \mathcal{D}[s](\mathcal{J}_{h,f}, f)\delta_h f^s.
\]

Lemma 1.9 The polynomial \(b'_f(h, s)\) divides \(b_f(\delta_h, s)\), and \(b_f(\delta_h, s)\) divides \((s + 1)b'_f(h, s)\). In other words, \(b'_f(h, s)\) is either \(b_f(\delta_h, s)\) or \(b_f(\delta_h, s)/(s + 1)\).

The first assertion is clear since \(\mathcal{D}[s]\delta_h f^{s+1} \subset \mathcal{D}[s](\mathcal{J}_{h,f}, f)\delta_h f^s\). The second relation uses the identities:

\[
(s + 1)m_{k_1, \ldots, k_{p+1}}(h, f)\delta_h f^s = \sum_{i=1}^{p+1} (-1)^{p+i+1}m_{k_1, \ldots, k_i, \ldots, k_{p+1}}(h) \frac{\partial}{\partial x_{k_i}} \cdot \delta_h f^{s+1}
\]

for \(1 \leq k_1 < \cdots < k_{p+1} \leq n\), where the vector field \(\Delta^h_{k_1, \ldots, k_{p+1}}\) annihilates \(\delta_h\). In particular, we have: \((s + 1)b'_f(h, s)\delta_h f^s \in \mathcal{D}[s]\delta_h f^{s+1}\), and the assertion follows.

As a consequence of this result, \(b'_f(h, s)\) coincides with \(\tilde{b}_f(\delta_h, s)\) when \(-1\) is not a root of \(b'_f(h, s)\); but it is not always true (see part 3). We point out some facts about this polynomial in part 3.

Theorem 1.10 Let \(Y \subset X\) be a closed subspace of pure codimension \(p + 1 \geq 2\), and \(x \in Y\). Let \((h, f) = (h_1, \ldots, h_p, f) : (X, x) \to (\mathbb{C}^{p+1}, 0)\) be an analytic morphism such that the common zero set of \(h_1, \ldots, h_p, f\) is \(Y\) in a neighbourhood of \(x\). Up to replace \(h_i\) by \(h_i^m\) for some non negative integer \(m \geq 1\), let us assume that \(\mathcal{D}\delta_h = \mathcal{R}_h\). The following conditions are equivalent:
1. $\mathcal{L}(Y, X)_x$ coincides with $H^p_{[Y]}(\mathcal{O}_X)_x$.

2. The polynomial $b'_f(h, s)$ has no strictly negative integral root.

Let us observe that the condition $\mathcal{D}\delta_h = \mathcal{R}_h$ is not at all a constraining condition on (Y, x). Moreover, using the boundaries of the roots of the classical Bernstein polynomial, one can take $m = n - 1$ (since $1/(h_1 \cdots h_p)^{n-1}$ generates the \mathcal{D}-module $\mathcal{O}[1/h_1 \cdots h_p]$, using Proposition 4.2 below). Finally, one can observe that this technical condition $\mathcal{D}\delta_h = \mathcal{R}_h$ is difficult to verify in practice. Thus, let us give an inductive criterion.

Proposition 1.11 Let $h = (h_1, \ldots, h_p) : (X, x) \to (\mathbb{C}^p, 0)$ be an analytic morphism defining a germ of complete intersection of codimension $p \geq 1$. Assume that -1 is the only integral root of the Bernstein polynomial $b_{h_1}(s)$. Moreover, if $p \geq 2$, assume that -1 is the smallest integral root of $b_{h_{i+1}}(\delta_{h_i}, s)$ with $h_i = (h_1, \ldots, h_i) : (X, x) \to (\mathbb{C}^i, 0)$, for $1 \leq i \leq p - 1$. Then the left \mathcal{D}-module \mathcal{R}_h is generated by δ_h.

Example 1.12 Let $n = 3$, $p = 2$, $h_1 = x_1^2 + x_2^3 + x_3^4$ and $h_2 = x_1^2 - x_2^3 + 2x_3^4$. As h_1 defines an isolated singularity and $h = (h_1, h_2)$ defines a weighted-homogeneous complete intersection isolated singularity, we have closed formulas for $b_{h_1}(s)$ and $b_{h_2}(\delta_{h_1}, s)$, see [28], [22]. From the explicit expression of these two polynomials, we see that they have no integral root smaller than -1. Thus δ_h generates \mathcal{R}_h.

The proofs of Theorems 1.2 & 1.10 are given in part 4. They are based on a natural generalization of a classical result due to M. Kashiwara which links the roots of $b_f(s)$ to some generators of $\mathcal{O}[1/f]f^\alpha$, $\alpha \in \mathbb{C}$ (Proposition 4.2). The last part is devoted to remarks and comments about Theorem 1.10.

Acknowledgements. This research has been supported by a Marie Curie Fellowship of the European Community (programme FP5, contract HPMDC-T-2001-00097). The author is very grateful to the Departamento de Álgebra, Geometría y Topología (Universidad de Valladolid) for hospitality during the fellowship, to the Lehrstuhl VI für Mathematik (Universität Mannheim) for hospitality in November 2005, and to Morihiko Saito for judicious comments.

2 Bernstein polynomials associated with a section of a holonomic \mathcal{D}-module

In this paragraph, we recall some results about Bernstein polynomials associated with a section of a holonomic \mathcal{D}_X-Module.
Given a nonzero germ \(f \in \mathcal{O}_{X,x} \cong \mathcal{O} \) and a local section \(m \in \mathcal{M}_x \) of a holonomic \(\mathcal{D}_X \)-Module \(\mathcal{M} \) without \(f \)-torsion, M. Kashiwara [9] proved that there exists a functional equation:

\[
b(s)mf^s = P(s) \cdot mf^{s+1}
\]

in \((\mathcal{D}m) \otimes \mathcal{O}[1/f, s]f^s\), where \(P(s) \in \mathcal{D}[s] = \mathcal{D} \otimes \mathbb{C}[s] \) and \(b(s) \in \mathbb{C}[s] \) are nonzero. The Bernstein polynomial of \(f \) associated with \(m \), denoted by \(b_f(m, s) \), is the monic generator of the ideal of polynomials \(b(s) \in \mathbb{C}[s] \) which satisfies such an equation. When \(f \) is not a unit, it is easy to check that if \(m \in \mathcal{M}_x - f\mathcal{M}_x \), then \(-1 \) is a root of \(b_f(m, s) \).

Of course, if \(\mathcal{M} = \mathcal{O}_X \) and \(m = 1 \), this is the classical notion recalled in the introduction.

Let us recall that when \(\mathcal{M} \) is a regular holonomic \(\mathcal{D}_X \)-Module, the roots of the polynomials \(b_f(m, s) \) are closely linked to the eigenvalues of the monodromy of the perverse sheaf \(\psi_f(Sol(\mathcal{M})) \) around \(x \), the Grothendieck-Deligne nearby cycle sheaf, see [12] for example. Here \(Sol(\mathcal{M}) \) denotes the complex \(RHom_{\mathcal{D}_X}(\mathcal{M}, \mathcal{O}_X) \) of holomorphic solutions of \(\mathcal{M} \), and the relation is similar to the one given in the introduction (since \(Sol(\mathcal{O}_X) \cong \mathbb{C}_X \)). This comes from the algebraic construction of vanishing cycles, using Malgrange-Kashiwara \(V \)-filtration [14], [10].

Now, if \(Y \subset X \) is a subspace of pure codimension \(p \), then the regular holonomic \(\mathcal{D}_X \)-Module \(H^p_Y(\mathcal{O}_X) \) corresponds to \(\mathbb{C}_Y[n-p] \). Thus the roots of the polynomials \(b_f(\delta, s), \delta \in H^p_Y(\mathcal{O}_X)_x \), are linked to the monodromy associated with \(f : (Y, 0) \to (\mathbb{C}, 0) \). For more results about these polynomials, see [21].

3 The polynomials \(b'_f(h, s) \) and \(\tilde{b}_f(\delta_h, s) \)

Let us recall that \(b'_f(h, s) \) is always equal to one of the two polynomials \(b_f(\delta_h, s) \) and \(\tilde{b}_f(\delta_h, s) \). In this paragraph, we point out some facts about these Bernstein polynomials associated with an analytic morphism \((h, f) = (h_1, \ldots, h_p, f) : (\mathbb{C}^n, 0) \to (\mathbb{C}^{p+1}, 0) \) defining a complete intersection.

First we have a closed formula for \(b'_f(h, s) \) when \(h \) and \((h, f) \) define weighted-homogeneous isolated complete intersection singularities.

Proposition 3.1 ([22]) Let \(f, h_1, \ldots, h_p \in \mathbb{C}[x_1, \ldots, x_n], p < n, \) be some weighted-homogeneous of degree 1, \(\rho_1, \ldots, \rho_p \in \mathbb{Q}^+ \) for a system of weights \(\alpha = (\alpha_1, \ldots, \alpha_n) \in (\mathbb{Q}^+)^n \). Assume that the morphisms \(h = (h_1, \ldots, h_p) \)
and \((h, f)\) define two germs of isolated complete intersection singularities. Then the polynomial \(b'_f(h, s)\) is equal to:

\[
\prod_{q \in \Pi} (s + |\alpha| - \rho_h + q)
\]

where \(|\alpha| = \sum_{i=1}^{n} \alpha_i\), \(\rho_h = \sum_{i=1}^{p} \rho_i\) and \(\Pi \subset \mathbb{Q}^+\) is the set of the weights of the elements of a weighted-homogeneous basis of \(\mathcal{O}/(f, h_1, \ldots, h_p)\mathcal{O} + J_{h, f}\).

When \(h\) is not reduced, the determination of \(b'_f(h, s)\) is more difficult, even if \((h, f)\) is a homogeneous morphism.

Example 3.2 Let \(p = 1, f = x_1\) and \(h = (x_1^2 + \cdots + x_n^n)^\ell\) with \(\ell \geq 1\). By using a formula given in [24], Remark 4.12, the polynomial \(\tilde{b}_{x_1}(\delta_h, s)\) is equal to \((s+n-2\ell)\) for any \(\ell \in \mathbb{N}^* = \mathbb{C}^* \cap \mathbb{N}\). For \(\ell \geq n/2\), let us determine \(b'_{x_1}(h, s)\) with the help of Theorem 1.10. From Example 1.3, we have \(R_h = D \delta_h\) if \(\ell \geq n/2\), and \(L_{h, x_1} = \mathcal{R}_{h, x_1}\) if and only if \(n\) is even.

If \(n \leq 2\ell\) is odd, \(b'_{x_1}(h, s) = (s+1)(s+n-2\ell)\) because of Theorem 1.10 (since \(L_{h, x_1} \neq \mathcal{R}_{h, x_1}\)). On the other hand, if \(n \leq 2\ell\) is even, we have \(b'_{x_1}(h, s) = (s+n-2\ell) = \tilde{b}_{x_1}(\delta_h, s)\) by the same arguments.

Let us refine this last fact by a direct calculus.

As \(\tilde{b}_{x_1}(\delta_h, s) = (s+n-2\ell)\) divides \(b'_{x_1}(h, s)\), we just have to check that this polynomial \((s+n-2\ell)\) provides a functional equation for \(\tilde{b}_{x_1}(\delta_h, s)\) when \(n\) is even. First, we observe that

\[
(s+n-2\ell)\delta_h x_i^n = \left[\sum_{i=1}^{n} \frac{\partial}{\partial x_i} x_i^n\right] \cdot \delta_h x_i^n
\]

If \(\ell = 1\), we get the result (since \(J_{h, x_1} = (x_2, \ldots, x_n)\mathcal{O}\) in that case). Now we assume that \(\ell \geq 2\). Let us prove that \(x_i \delta_h x_i^n\) belongs to \(\mathcal{D}(J_{h, x_1}, x_1)\delta_h x_i^n\) for \(2 \leq i \leq n\). We denote by \(g\) the polynomial \(x_1^n + \cdots + x_n^n\) and, for \(0 \leq j \leq \ell-1\), by \(\mathcal{N}_j \subset \mathcal{D}(J_{h, x_1}, x_1)\delta_h x_i^n\) the submodule generated by \(x_1 \delta_h x_i^n, x_2 g^j \delta_h x_i^n, \ldots, x_n g^j \delta_h x_i^n\). In particular, \(h = g^\ell, N_{\ell-1} = \mathcal{D}(J_{h, x_1}, x_1)\delta_h x_1^n\) and \(\mathcal{N}_{j+1} \subset \mathcal{N}_j\) for \(1 \leq j \leq \ell - 2\). To conclude, we have to check that \(\mathcal{N}_0 = \mathcal{N}_{\ell-1}\).

By a direct computation, we obtain the identity:

\[
\frac{\partial}{\partial x_1} \left[2(\ell - j) g^{j-1} x_1^2 + \sum_{k=2}^{n} \frac{\partial}{\partial x_k} x_k g^j\right] \cdot \delta_h x_i^n = 2(\ell - j)(n+2(\ell - j)-1)x_1 g^{j-1} \delta_h x_1^n
\]

for \(2 \leq i \leq n, j > 0\). As \(n\) is even, we deduce that \(x_i g^{j-1} \delta_h x_1^n\) belongs to \(\mathcal{N}_j\) for \(2 \leq i \leq n\). In other words, \(\mathcal{N}_{j-1} = \mathcal{N}_j\) for \(1 \leq j \leq \ell - 1\); thus \(\mathcal{N}_0 = \mathcal{N}_{\ell-1}\), as it was expected.
As the polynomial $b'_f(h, s)$ plays the role of $\tilde{b}_f(s)$ in Theorem 1.10, a natural question is to compare these polynomials $b'_f(h, s)$ and $\tilde{b}_f(\delta_h, s)$. Of course, when $(s + 1)$ is not a factor of $b'_f(h, s)$, then $b'_f(h, s)$ must coincide with $\tilde{b}_f(\delta_h, s)$; from Theorem 1.10 this sufficient condition is satisfied when $D\delta_h = R_h$ and $R_{h,f} = L_{h,f}$. But in general, all the cases are possible (see Example 3.2); nevertheless, we do not have found an example with f and h reduced and $b'_f(h, s) = b_f(\delta_h, s)$. Is $b'_f(h, s)$ always equal to $\tilde{b}_f(h, s)$ in this context? The question is open. Let us study this problem when (h, f) defines an isolated complete intersection singularity. In that case, let us consider the short exact sequence:

\[
0 \rightarrow \mathcal{K} \hookrightarrow \frac{D[s] \delta_h f^s}{D[s](J_{h,f}, f) \delta_h f^s} \rightarrow (s + 1) \frac{D[s] \delta_h f^s}{D[s] \delta_h f^{s+1}} \rightarrow 0
\]

where the three \mathcal{D}-modules are supported by the origin. Thus the polynomial $b'_f(h, s)$ is equal to $\text{l.c.m}(s + 1, \tilde{b}_f(\delta_h, s))$ if $\mathcal{K} \neq 0$ and it coincides with $\tilde{b}_f(\delta_h, s)$ if not. Remark that \mathcal{K} is not very explicit, since there does not exist a general Bernstein functional equation which defines $\tilde{b}_f(\delta_h, s)$ - contrarily to $\tilde{b}_f(s)$, see part 4. In [23], [24], we have investigated some contexts where such a functional equation may be given. In particular, this may be done when the following condition is satisfied:

$\textbf{A}(\delta_h)$: The ideal $\text{Ann}_D \delta_h$ of operators annihilating δ_h is generated by $\text{Ann}_\mathcal{O} \delta_h$ and operators $Q_1, \ldots, Q_w \in \mathcal{D}$ of order 1.

Indeed, because of the relations: $Q_i \cdot \delta_h f^{s+1} = (s + 1)[Q_i, f] \delta_h f^s$, $1 \leq i \leq w$, we have the following isomorphism:

\[
\frac{D[s] \delta_h f^s}{D[s](J_{h,f}, f) \delta_h f^s} \cong (s + 1) \frac{D[s] \delta_h f^s}{D[s] \delta_h f^{s+1}}
\]

where $J_{h,f} \subset \mathcal{O}$ is generated by the commutators $[Q_i, f] \in \mathcal{O}$, $1 \leq i \leq w$. Thus $\tilde{b}_f(\delta_h, s)$ may also be defined using the functional equation:

\[
b(s) \delta_h f^s \in D[s](J_{h,f}, f) \delta_h f^s
\]

and $\mathcal{K} = D[s](J_{h,f}, f) \delta_h f^s / D[s](J_{h,f}, f) \delta_h f^s$. For more details about this condition $\textbf{A}(\delta_h)$, see [25].
4 The proofs

Let us recall that $\tilde{b}_f(s)$ may be defined as the unitary nonzero polynomial $b(s) \in \mathbb{C}[s]$ of smallest degree such that:

$$b(s)h^s = P(s) \cdot h^{s+1} + \sum_{i=1}^{n} P_i(s) \cdot h_{x_i}' h^s$$ \hspace{1cm} (2)$$

where $P(s), P_1(s), \ldots, P_n(s) \in \mathcal{D}[s]$ (see [13]).

Remark 4.1 The equation (2) is equivalent to the following one:

$$b(s)h^s = \sum_{i=1}^{n} Q_i(s) \cdot h_{x_i}' h^s$$

where $Q_i(s) \in \mathcal{D}[s]$ for $1 \leq i \leq n$. Indeed, one can prove that $h^{s+1} \in \mathcal{D}[s](h_{x_1}', \ldots, h_{x_n}')h^s$ i.e. h belongs to the ideal $I = \mathcal{D}[s](h_{x_1}', \ldots, h_{x_n}') + \text{Ann}_{\mathcal{D}[s]}h^s$. This requires some computations like in [24] 2.1., using that: $h \partial_{x_i} - sh_i' \in I, 1 \leq i \leq n$.

Proof of Proposition 1.6 By semi-continuity of the Bernstein polynomial, it is enough to prove the assertion for a reducible germ f. Let us write $f = f_1 f_2$ where $f_1, f_2 \in \mathcal{O}$ have no common factor. Assume that -1 is not a root of $\tilde{b}_f(s)$. Then, by fixing $s = -1$ in (2), we get:

$$\frac{1}{f} \in \sum_{i=1}^{n} \mathcal{D} h_{x_i}' f^{-1} + \mathcal{O} \subset \mathcal{O}[1/f_1] + \mathcal{O}[1/f_2]$$

since $f_{x_i}'/f = f_{x_i}'/f_1 + f_{x_i}'/f_2, 1 \leq i \leq n$. But this is absurd since $1/f_1 f_2$ defines a nonzero element of $\mathcal{O}[1/f_1 f_2]/\mathcal{O}[1/f_1] + \mathcal{O}[1/f_2]$ under our assumption on f_1, f_2. Thus -1 is a root of $\tilde{b}_f(s)$. □

The proofs of the equivalence between 1 and 2 in Theorem 1.2 and of Theorem 1.10 are based on the following result:

Proposition 4.2 Let $f \in \mathcal{O}$ be a nonzero germ such that $f(0) = 0$. Let m be a section of a holonomic \mathcal{D}-module \mathcal{M} without f-torsion, and $\ell \in \mathbb{N}^*$. The following conditions are equivalent:

1. The smallest integral root of $b_f(m, s)$ is strictly greater than $-\ell - 1$.

2. The \mathcal{D}-module $(\mathcal{D}m)[1/f]$ is generated by $mf^{-\ell}$.
3. The \mathcal{D}-module $(\mathcal{D}^m[1/f])/\mathcal{D}^m$ is generated by $mf^{-\ell}$.

4. The following \mathcal{D}-linear morphism is an isomorphism:

$$
\pi_{\ell} : \frac{\mathcal{D}[s]mf^s}{(s+\ell)\mathcal{D}[s]mf^s} \longrightarrow (\mathcal{D}^m)[1/f]
$$

$$
P(s) \cdot mf^s \mapsto P(-\ell) \cdot mf^{-\ell}
$$

Proof. This is a direct generalization of a well known result due to M. Kashiwara and E. Björk for $m = 1 \in \mathcal{O} = \mathcal{M}$ (Proposition 6.2, Proposition 6.1.18, 6.3.15 & 6.3.16).

Let us prove $1 \Rightarrow 4$. First, we establish that π_{ℓ} is surjective. It is enough to see that for all $P \in \mathcal{D}$ and $l \in \mathbb{Z}$: $(P \cdot m)f^l \in \mathcal{D}mf^{-\ell}$. By using the following relations:

$$
\left(\left[\frac{\partial}{\partial x_i} Q \right] \cdot m \right)f^l = \left[\frac{\partial}{\partial x_i} f - l \frac{\partial f}{\partial x_i} \right] \cdot ((Q \cdot m)f^{l-1})
$$

where $1 \leq i \leq n$, $Q \in \mathcal{D}$ and $l \in \mathbb{Z}$, we obtain that for all $P \in \mathcal{D}$, $l \in \mathbb{Z}$, there exist $Q \in \mathcal{D}$ and $k \in \mathbb{Z}$ such that $(P \cdot m)f^l = Q \cdot mf^k$. Thus, we just have to prove that $mf^k \in \mathcal{D}mf^{-\ell}$ for $k < -\ell$.

Let $R \in \mathcal{D}[s]$ be a differential operator such that:

$$
b_f(m, s)mf^s = R \cdot mf^{s+1}
$$

and let $k \in \mathbb{Z}$ be such that $k < -\ell$. Iterating (3), we get the following identity in $\mathcal{D}m[1/f, s]f^s$:

$$
b_f(m, s - \ell - k - 1) \cdots b_f(m, s + 1)b_f(m, s)mf^s = Q(s) \cdot mf^{s-\ell-k}
$$

(4)

where $Q(s) \in \mathcal{D}[s]$. By assumption on ℓ, we have: $c(k) \neq 0$. Thus, by fixing $s = k$ in (4), we get $mf^k \in \mathcal{D}mf^{-\ell}$ and π_{ℓ} is surjective.

Let us prove the injectivity of π_{ℓ}. If we fix $P(s) \in \mathcal{D}[s]$, then we have the following identity in $\mathcal{D}m[1/f, s]f^s$:

$$
P(s) \cdot mf^s = (Q(s) \cdot m)f^{s-l}
$$

where $Q(s) \in \mathcal{D}[s]$ and l is the degree of P. Assume that $P(s) \cdot mf^s \in \ker \pi_{\ell}$. Thus there exists a nonnegative integer $j \in \mathbb{N}$ such that $f^jQ(-\ell)$ annihilates $m \in \mathcal{M}$. In particular: $P(s) \cdot mf^s = (s + \ell)(Q' \cdot m)f^{s-l}$, where $Q' \in \mathcal{D}[s]$ is the quotient of the division of Q by $(s + \ell)$. As in the beginning of the proof,
we obtain that $P(s) \cdot mf^s = (s + \ell)\tilde{Q} \cdot mf^{s-k}$ where $\tilde{Q} \in \mathcal{D}[s]$ and $k \in \mathbb{N}^*$. From (3), we get:

$$b_f(m, s - 1) \cdots b_f(m, s - k + 1)b_f(m, s - k) P(s) \cdot mf^s = (s + \ell)\tilde{Q}S \cdot mf^s$$

where $S \in \mathcal{D}[s]$. By division of $d(s)$ by $(s + \ell)$, we obtain the identity:

$$d(-\ell)P(s) \cdot mf^s = (s + \ell)[\tilde{Q}S + e(s)P(s)] \cdot mf^s$$

where $e(s) \in \mathbb{C}[s]$. Remark that $d(-\ell) \neq 0$ by assumption on ℓ. Thus $P(s) \cdot mf^s \in (s + \ell)\mathcal{D}[s]mf^s$, and π_ℓ is injective. Hence the condition 1 implies that π_ℓ is an isomorphism.

Observe that 4 \Rightarrow 2 and 2 \iff 3 are clear. Thus let us prove 2 \Rightarrow 1. Let $k \in \mathbb{Z}$ denote the smallest integral root of $b_f(m, s)$. Assume that $-\ell > k$. We have the following commutative diagram:

$$
\begin{array}{ccc}
0 & \to & 0 \\
\downarrow & & \downarrow \\
0 & \to & \mathcal{D}[s]mf^{s+1} \hookrightarrow \mathcal{D}[s]mf^s \to \mathcal{D}[s]mf^s/\mathcal{D}[s]mf^{s+1} \to 0 \\
\downarrow & & \downarrow
\end{array}
\begin{array}{ccc}
\downarrow & & \\
0 & \to & \mathcal{D}[s]mf^{s+1} \hookrightarrow \mathcal{D}[s]mf^s \to \mathcal{D}[s]mf^s/\mathcal{D}[s]mf^{s+1} \to 0 \\
\downarrow & & \downarrow
\end{array}
\begin{array}{ccc}
\downarrow & & \\
\mathcal{D}mf^{k+1} & \hookrightarrow & \mathcal{D}mf^k \\
\downarrow & & \\
0 & & \\
\end{array}
\begin{array}{ccc}
\downarrow & & \\
\downarrow & & \\
\downarrow & & \\
\end{array}
\begin{array}{ccc}
\downarrow & & \\
\downarrow & & \\
\downarrow & & \\
0 & & \\
\end{array}
$$

where ν is the left-multiplication by $(s-k)$. Remark that the second column is exact (since 1 \Rightarrow 4), that u is surjective, and that i is an isomorphism (since $mf^{-\ell} \in \mathcal{D}mf^{k+1}$ generates $\mathcal{D}m[1/f]$ by assumption).

After a diagram chasing, one can check that ν is surjective. Thus the \mathcal{D}-module $\mathcal{D}[s]mf^s/\mathcal{D}[s]mf^{s+1}$ is Artinian, as the stalk of a holonomic \mathcal{D}-Module [indeed, it is the quotient of two sub-holonomic \mathcal{D}-Modules which are isomorphic (see [8, 9])]. As a surjective endomorphism of an Artinian module is also injective, ν is injective. But this is absurd since k is a root of $b_f(m, s)$. Hence, $-\ell$ is less or equal to the smallest integral root of f. \square

Remark 4.3 Obviously, the statement does not work for any $\ell \in \mathbb{Z}$ (take $m = 1 \in \mathcal{O} = \mathcal{M}$ and $\ell = -1$). Nevertheless, it is true for any $\ell \in \mathbb{C}$ such that for all root $q \in \mathbb{Q}$ of $b_f(m, s)$, we have: $-\ell - q \notin \mathbb{N}^* = \mathbb{N} \cap \mathbb{C}^*$.

11
Obviously, Proposition 1.11 is obtained by iterating this result. Let us prove Theorem 1.10.

Proof of Theorem 1.10. If $b'(h, s)$ has no strictly negative integral root, then $D\delta_{h, f} = R_{h, f}$ (Lemma 1.9 and Proposition 4.2, using that $D\delta_h = R_h$), and we just have to remark that $\delta_{h, f}$ belongs to $L_{h, f}$ when -1 is not a root of $b'(h, s)$. Indeed, by fixing $s = -1$ in the defining equation of $b'(h, s)$:

$$b'_f(h, s)\delta_h f^s \in D[s](J_{h, f}, f)\delta_h f^s$$

we get:

$$\delta_h f^{-1} \in \sum_{1 \leq k_1 < \cdots < k_p \leq n} Dm_{k_1, \ldots, k_p}(h, f)\delta_h f^{-1} + D\delta_h \subset R_h[1/f].$$

Thus $\delta_{h, f} \in R_{h, f} \cong R_h[1/f]/R_h$ belongs to $L_{h, f}$.

Now let us assume that $L_{h, f} = R_{h, f}$. As $L_{h, f} \subset D\delta_{h, f}$, we also have $D\delta_{h, f} = R_{h, f}$ i.e. -1 is the smallest integral root of $b_f(\delta_h, s)$ (Proposition 4.2, using the assumption $D\delta_h = R_h$). So let us prove that -1 is not a root of $b'_f(h, s)$, following the formulation of 27 Lemma 1.3. Since $\delta_{h, f} \in L_{h, f} = \sum_{1 \leq k_1 < \cdots < k_p \leq n} Dm_{k_1, \ldots, k_p}(h, f)\delta_h f^{-1}$, we have: $1 \in D\delta_{h, f} \cap \text{Ann}_D\delta_{h, f}$, or equivalently: $1 \in D(J_{h, f}, f) + \text{Ann}_D\delta_h f^{-1}$ (using that $Df(\delta_h f^{-1}) = R_h$). Moreover, as -1 is the smallest integral root of $b_f(\delta_h, s)$, an operator P belongs to $\text{Ann}_D\delta_h \otimes 1/f$ if and only if there exists $Q(s) \in D[s]$ such that $P - (s + 1)Q(s) \in \text{Ann}_D[s]\delta_h f^s$ (Proposition 4.2). Thus we have:

$$D[s] = D[s](s + 1, J_{h, f}, f) + \text{Ann}_D[s]\delta_h f^s.$$

In particular, if $(s + 1)$ was a factor of $b'_f(h, s)$, we would have:

$$\frac{b'_f(h, s)}{s + 1} \in D[s](b'_f(h, s), J_{h, f}, f) + \text{Ann}_D[s]\delta_h f^s$$

But from the identity (1), we have:

$$b'_f(h, s) \in D[s](J_{h, f}, f) + \text{Ann}_D[s]\delta_h f^s$$

and this is a defining equation of $b'_f(h, s)$. Thus:

$$\frac{b'_f(h, s)}{s + 1} \in D[s](J_{h, f}, f) + \text{Ann}_D[s]\delta_h f^s$$

In particular, $b'_f(h, s)$ divides $b'_f(h, s)/(s + 1)$, which is absurd. Therefore -1 is not a root of $b'_f(h, s)$, and this ends the proof. □
Proof of the equivalence between 1 and 2 in Theorem 1.2. Up to notational changes, the proof is the very same than the previous one. Assume that \(\tilde{b}_h(s) \) has no integral root. On one hand, \(D\delta_{h} \) coincides with \(R_h = O[1/h]/O \) by Proposition 4.2 (take \(m = 1 \) and \(M = O \)). On the other hand, by fixing \(s = -1 \) in (2), we get

\[
\frac{1}{h} \in \sum_{i=1}^{n} D \frac{h' x_i}{h} + O \subset O[1/h]
\]

and \(\delta_h \in L_h \). Hence \(L_h = R_h \).

Now let us assume that \(L_h = R_h \). As \(L_h \subset D\delta_{h} \subset R_h \), \(\delta_h \) generates \(R_h \). In particular, \(-1\) is the only integral root of \(b_h(s) \) by using Proposition 4.2 (since the roots of \(b_h(s) \) are strictly negative). By the same arguments as in the proof of Theorem 1.10 one can prove that \(-1\) is not a root of \(\tilde{b}_h(s) \). Thus \(\tilde{b}_h(s) \) has no integral root, as it was expected □

Remark 4.4 Under the assumption \(D\delta_{h,f} = R_{h,f} \), we show in the proof of Theorem 1.10 that if \(\delta_{h,f} \) belongs to \(L_{h,f} \) then \(-1\) is not a root of \(b'_{f_1}(h,s) \). As the reverse relation is obvious, a natural question is to know if this assumption is necessary. In terms of reduced Bernstein polynomial, does the condition: \(-1\) is not a root of \(\tilde{b}_h(s) \) caraceterize the membership of \(\delta_{h} \) in \(L_h \)?

5 Some remarks

Let us point out some facts about Theorem 1.10:

- The assumption \(D\delta_{h} = R_{h} \) is necessary. This appears clearly in the following examples.

Example 5.1 Let \(p = 1 \) and \(h = x_1^2 + \cdots + x_4^2 \). As \(b_h(s) = (s + 1)(s + 2) \), we have \(D\delta_{h} \neq R_{h} \) (Proposition 1.2). If \(f_1 = x_1 \), then \(b'_{f_1}(h,s) = (s + 2) \) by using Proposition 3.1 where as \(L_{h,f_1} = R_{h,f_1} \) (Example 1.3 or because \(D\delta_{f_1} = R_{f_1} \) and \(b'_{f_1}(h,s) = (s + 3/2) \)).

Now if we take \(f_2 = x_5 \), we have \(L_{h,f_2} \neq R_{h,f_2} \) and \(b'_{f_2}(h,s) = 1 \) since:

\[
\frac{2}{x_1^2 + \cdots + x_4^2} x_5^s = \left[\sum_{i=1}^{4} \frac{\partial}{\partial x_i} x_i \right] \cdot \frac{1}{x_1^2 + \cdots + x_4^2} x_5^s.
\]

- If \(p = 1 \), this condition \(D\delta_{h} = R_{h} \) just means that the only integral root of \(b_h(s) \) is \(-1\) (Proposition 4.2).
- The condition $\mathcal{L}_h = \mathcal{R}_h$ clearly implies $\mathcal{D}\delta_h = \mathcal{R}_h$, but it is not necessary; see Example 1.7 for instance. An other example with $p = 1$ is given by $h = x_1x_2(x_1 + x_2)(x_1 + x_2x_3)$ since $b_h(s) = (s + 5/4)(s + 1/2)(s + 3/4)(s + 1)^3$.

- Contrarily to the classical Bernstein polynomial, it may happen that an integral root of $b'_f(h,s)$ is positive or zero (see Example 3.2 with $f = x_1$, $h = (x_1^2 + \cdots + x_2^2)^\ell$ and $\ell \geq 2$). In particular, 1 is an eigenvalue of the monodromy acting on $\phi_f\mathcal{C}_{h^{-1}(0)}$. For that reason, we do not have here the analogue of condition 3, Theorem 1.2.

- In [6], the authors introduce a notion of Bernstein polynomial for an arbitrary variety Z. In the case of hypersurfaces, this polynomial $b_Z(s)$ coincides with the classical Bernstein-Sato polynomial. But it does not seem to us that its integral roots are linked to the condition $\mathcal{L}_{h,f} = \mathcal{R}_{h,f}$. For instance, if $h = x_1^2 + x_2^2 + x_3^2$ and $f = x_1^2 + x_2^2 + x_3^2$ then one can check that $b'_f(h,s) = b(f^s,s) = (s + 3/2)$; in particular $\mathcal{L}_{h,f} = \mathcal{R}_{h,f}$. Meanwhile, by using [6], Theorem 5, we get $b_Z(s) = (s + 3)(s + 5/2)(s + 2)$ if $Z = V(h, f) \subset \mathbb{C}^6$.

References

[1] Barlet D., Familles analytiques de cycles et classes fondamentales relatives, Lect. Notes in Math. 807, 1980

[2] Barlet D., Multiple poles at negative integers for $\int_A f^\lambda \Box$ in the case of an almost isolated singularity, Publ. RIMS, Kyoto Univ. 35 (1999) 571–584

[3] Barlet D., Kashiwara M., Le réseau L^2 d’un système holonome régulier, Invent. math. 86 (1986) 35–62

[4] Björk, J.E., Analytic \mathcal{D}-Modules and Applications, Kluwer Academic Publishers 247, 1993

[5] Brylinski, J.L., La classe fondamentale d’une variété algébrique engendre le D-module qui calcule sa cohomologie d’intersection, Astérisque 101–102 (1983)

[6] Budur N., Mustata M., Saito M., Bernstein-Sato polynomials of arbitrary varieties, Compositio Math. 142 (2006) 779–797

[7] Grothendieck A., On the de Rham cohomology of algebraic varieties, Pub. Math. I.H.E.S. 29 (1966) 95–105
[8] Kashiwara M., *B-functions and holonomic systems*, Invent. Math. 38 (1976) 33–53

[9] Kashiwara M., *On the holonomic systems of differential equations II*, Invent. Math. 49 (1978) 121–135

[10] Kashiwara M., *Vanishing cycle sheaves and holonomic systems of differential equations*, Lect. Notes in Math. 1016 (1983) 136–142

[11] Kashiwara M., *The Riemann-Hilbert problem for holonomic systems*, Publ. RIMS, Kyoto Univ. 20 (1984) 319–365

[12] Maisonobe Ph., Mebkhout Z., *Le théorème de comparaison pour les cycles évanescents*, Éléments de la théorie des systèmes différentiels géométriques, 311–389, Sémin. Congr., 8, Soc. Math. France, Paris, 2004

[13] Malgrange B., *Le polynôme de Bernstein d’une singularité isolée*, Lect. Notes in Math. 459 (1975) 98–119

[14] Malgrange B., *Polynôme de Bernstein-Sato et cohomologie évanescente*, Astérisque 101-102 (1983) 243–267

[15] Massey D., *Intersection cohomology, monodromy, and the Milnor fiber*, arXiv:math.AG/0404312

[16] Mebkhout Z., *Local cohomology of an analytic space*, Publ. RIMS, Kyoto Univ. 12 (1977) 247–256

[17] Mebkhout Z., *Une équivalence de catégorie. Une autre équivalence de catégorie*, Compositio Math. 51 (1984) 51–88

[18] Milnor J., *Singular points of complex hypersurfaces*, Ann. Math. Stud. vol. 61, Princeton Univ. Press, 1969

[19] Saito M., *Mixed Hodge modules*, Publ. RIMS, Kyoto Univ. 26 (1990) 221–333

[20] Saito M., *On microlocal b-function*, Bull. Soc. Math. France 122 (1994) 163–184

[21] Torrelli T., *Équations fonctionnelles pour une fonction sur un espace singulier*, Thèse, Université de Nice-Sophia Antipolis, 1998

[22] Torrelli T., *Équations fonctionnelles pour une fonction sur une intersection complète quasi homogène à singularité isolée*, C. R. Acad. Sci. Paris 330 (2000) 577–580
[23] Torrelli T., *Polynômes de Bernstein associés à une fonction sur une intersection complète à singularité isolée*, Ann. Inst. Fourier 52 (2002) 221–244

[24] Torrelli T., *Bernstein polynomials of a smooth function restricted to an isolated hypersurface singularity*, Publ. RIMS, Kyoto Univ. 39 (2003) 797–822

[25] Torrelli T., *On meromorphic functions defined by a differential system of order 1*, Bull. Soc. Math. France 132 (2004) 591–612

[26] Varchenko A.N., *Asymptotic Hodge structure in the vanishing cohomology*, Math. USSR Izvestijà 18 (1982) 469–512

[27] Walther U., *Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic arrangements*, Compos. Math. 141 (2005) 121–145

[28] Yano T., *On the theory of b-functions*, Publ. R.I.M.S. Kyoto Univ. 14 (1978) 111–202