Δ⁹-THC and N-arachidonoyl glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for signaling at GPR18

Douglas McHugh¹ ², Daniel Roskowski¹, Sisi Xie¹ and Heather B. Bradshaw¹ *

¹ Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
² Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, USA

Microglial cells are extremely plastic and undergo a variety of CNS-prompted shape changes relative to their location and current role. Signaling molecules from neurons also regulate microglial cytokine production. Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS. N-arachidonoyl glycine (NAGly) and Δ⁹-tetrahydrocannabinol (Δ⁹-THC) signaling via GPR18 has been introduced as an important new target in microglial–neuronal communication. Our hypothesis is that endogenous NAGly-GPR18 signaling regulates phenotypic shape and cytokine production in microglia, and is mimicked by Δ⁹-THC in the BV-2 microglia model system. BV-2 microglia were exposed to NAGly and Δ⁹-THC or Vh for 12 h, which resulted in significant differences in the cell morphologies expressed. Cannabidiol (CBD) was effective at antagonizing the effects of both NAGly and Δ⁹-THC. Using ELISA-based microarrays, BV-2 microglia were exposed to NAGly and Δ⁹-THC or Vh for 3 h and the presence of 40 cytokines in the culture media quantified. Production of IL-10, TNF-α and IL-6, IL-12, IL-18 and IL-33 were significantly altered by NAGly and Δ⁹-THC, and antagonized by CBD. These data add to an emerging profile that emphasizes NAGly as a component of an endogenous system present in the CNS that tightly integrates microglial proliferation, recruitment, and adhesion with neuron-glial interaction and tissue remodeling.

Keywords: Δ⁹-THC, NAGly, microglia, BV-2, phenotype, cytokine, morphology, GPR18

INTRODUCTION

Microglial cells are extremely plastic and undergo a variety of shape changes relative to their location and current role (Block et al., 2007; Colton and Wilcock, 2010). Ramified microglia possess a characteristic form composed of long branching processes that are very sensitive to alterations in the local microenvironment (Feder and Amigorena, 2005; Ravich, 2005). Amoeboid microglia scavenge CNS plaque and foreign agents and mediate cytotoxic and inflammatory signaling (Gordon, 2003; Feder and Amigorena, 2005; Ravich, 2005; Garden and Muller, 2006). Microglia have a significant impact on overall CNS stability and may act as an essential link in the interaction of cytokines with neurons (Zhang et al., 2003). In both developmental and post-developmental contexts, microglia discriminately engulf and eliminate dead or dying neurons. They are especially prevalent during rewiring of the brain when there are large amounts of extracellular apoptotic debris to remove.

These processes must be tightly controlled in order to sustain the least possible collateral damage to adjacent neurons. Indeed, microglial activity is not only orchestrated to excising standards, but the coupling between the death of neurons and their degrada tion by microglia is both striking and swift. This remarkable relationship suggests a fast-acting communication between neurons and microglia, such that the microglia are forewarned of the specific task (i.e., apoptosis, infection, or damage). Once the phagocytic task of amoeboid microglia is complete a return to the resting (i.e., multi-branched, surveillant) form is usually observed. Yet, microglia are also implicated in virtually all CNS neuropathological processes, where they become highly reactive to dying neurons and provoke sustained secondary neurotoxicity (Carson, 2002; Eikelenboom et al., 2002; Stroemer, 2002; Danton and Dietrich, 2003; van Rossum and Hanisch, 2004). This extreme dichotomy of behavior underscores the importance of understanding the specific signaling systems that both recruit and instruct microglia to adapt their phenotype selectively in response to damaged/dying/apoptotic neurons, and which are foundational to our ability to monitor and manage dysregulated microglial activity.

Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS. Walter et al. (2003) reported the involvement of the endogenous cannabinoid signaling in recruiting microglia toward dying neurons in vitro. Recently the pharmacology of N-arachidonoyl glycine (NAGly), various cannabinoids (most notably Δ⁹-tetrahydrocannabinol (Δ⁹-THC)) and other signaling ligands at GPR18 receptors has been described. During the same timeframe, NAGly-GPR18 signaling was also introduced as an important new target in microglial–neuronal communication (see McHugh, 2012; McHugh et al., 2012a,b for review). NAGly is synthesized in the CNS primarily from AEA via a fatty acid amide hydrolase (FAAH)
dependent pathway and can be prevented by URB597, an irre-
versible inhibitor of FAAH (Bradshaw et al., 2009). It is ineffective as an agonist at either CB1 or CB2 receptors despite the obvi-
ous structural overlap with AEA (Iara et al., 1999; Begg et al.,
2005; Mackie and Stella, 2016). Instead, NAGly acts as a high
affinity ligand for the GPR55-coupled GPCR GPR18 (Kohino et al., 2006; McGough et al., 2010, 2012a,b; McGough, 2012) and a par-
4514al agonist of GPR18-coupled GPR92 receptors (Chen et al., 2008). Δ2-THC is a well-established agonist at GPR55-coupled cannabi-
4515noid CB2 and CB1 receptors (for review, see Pertsems et al., 2010). More recent investigations have raised the prospect of
Δ2-THC signaling via non-CB1 and non-CB2 GPCRs, includ-
ing GPR55 and GPR18, although the current pharmacology of
GPR55 is complicated and inconsistent (Pertsems et al., 2010). Here, we explore the hypothesis that NAGly–GPR18 signal-
ing regulates morphological and cytokine signaling plasticity,
which is mimicked by Δ2-THC in the BV-2 microglia model system.

MATERIALS AND METHODS

Cannabinoids and related lipids are practically stable during
storage, with concentration changes attributed to oxidation, tem-
perature effects, and lipophilic binding. The lipid compounds
tested in this study were prepared in 100% DMSO to a stock
concentration of 100 mM, aliquoted and kept at −20°C. Fresh
 aliquots were used for each independent experiment. Compounds
were serially diluted to achieve the desired final working concen-
trations, where each contained 0.1% DMSO as vehicle. NAGly
were tested in this study were prepared in 100% DMSO to a stock
storage, with concentration changes attributed to oxidation, tem-
peratures, where each contained 0.1% DMSO as vehicle. NAGly
was purchased from Cayman Chemicals (Farmington, NY, USA), lipopolysaccharide (LPS), and phorbol 12-myristate 13-
acetate (PMA) from Sigma-Aldrich (St. Louis, MO, USA). Δ2-THC and Cannabinol (CBD) were provided by Dr. Ken Mackier, Indiana University.

CELLS IN CULTURE

The mouse microglial cell line BV-2 (a gift from Dr. N. Stella, Uni-
4525versity of Washington, Seattle), which was originally generated by
immortalizing primary microglia (Illassi et al., 1993), were grown
in high glucose DMEM (Gibco, USA) supplemented with FBS
(5%), penicillin (100 units/ml), streptomycin (100 μg/ml), and
l-glutamine (0.292 mg/ml). BV-2 cells were passaged every 2–3 days
for a maximum of 30 passages. Media was replaced with serum-
free Ham’s F-12 phenol red-free media (Gibco, USA), supple-
4527mented with penicillin (100 units/ml), streptomycin (100 μg/ml)
and l-glutamine (0.292 mg/ml), 16 h prior to the start of experi-
ents.

BV-2 MORPHOLOGY EXPERIMENTS

BV-2 microglia were plated using serum-free Ham’s F-12 phenol
red-free media on 25 mm × 75 mm glass microscope slides that
were classed as flat, amoeboid, bipolar, multipolar, and flat. This amounted to 200+ cells per individual treatment replicate. Categorization was based on the number of processes that branched directly off the cell body. A cell was considered to be unipolar if it has one process, bipolar two, triplar three, and multipolar four or more. The amoeboid and flat categories had zero processes. To distinguish between these,
cells that were overly three-dimensional and irregularly rounded
were classed as amoeboid, while those with their cytoplasm spread
over a larger area, with wavy edges and little three-dimensional depth were classed as flat (Figure 1).

BV-2 CYTOKINE RELEASE EXPERIMENTS

~90% confluent BV-2 cells were incubated for 3 h (5% CO2 atmos-
4959phere at 37°C) in 3 ml serum-free Ham’s F-12 phenol red-free
media with Vh control (0.1% DMSO), 10 mM NAGly, 10 nM
Δ2-THC, 100 nM CBD, 10 mM NAGly + 100 nM CBD, or 10 nM
Δ2-THC + 100 nM CBD. 10 mM PMA was used as positive control.
Each condition was tested in triplicate per individual experiment.
The media was removed and replaced for 20 min with 12 ml of
cytoskeleton buffer with sucrose and formaldehyde. This buffer
consisted of 10 mM 2-N-morpholinosulphonic acid (MES),
138 mM KC1, 3 mM MgCl2, 2 mM EGTA in 1 L H2O, with its pH
adjusted to 6.1. It was stored at 4°C in between use. 0.32 mM sucrose
was added to a 50 ml aliquot of the solution prior to each experi-
ment and thoroughly vortexed. Next formaldehyde was added to
the aliquot to achieve a concentration of 3.7%. Following the 20 min
incubation, the slides were then washed with phosphate-buffered
saline (PBS) three times. Next, permount was pipetted onto the
slide and a glass coverslip placed on top. Slides were then put in
a dark drawer, where they were protected from light, and left to
dry for at least 24h. Images from 10 random fields of view were
collected at ×20 magnification using a Nikon 80i light microscope
from each microscope slide. Cell morphology was recorded and
categorized by multiple investigators who were blind to the treat-
ment condition into six categories: amoeboid, unipolar, bipolar,
tripolar, multipolar, and flat. This amounted to 200+ cells per
individual treatment replicate. Categorization was based on the
4540number of processes that branched directly off the cell body. A cell
was considered to be unipolar if it has one process, bipolar two,
tripolar three, and multipolar four or more. The amoeboid and
flat categories had zero processes. To distinguish between these,
cells that were overly three-dimensional and irregularly rounded
were classed as amoeboid, while those with their cytoplasm spread
over a larger area, with wavy edges and little three-dimensional depth were classed as flat (Figure 1).

Figure 1

Δ2-THC, NAGly and microglial phenotype at 37°C with Vh control (0.1% DMSO), 10 nM NAGly, 10 nM
Δ2-THC, 100 nM CBD, 10 nM NAGly + 100 nM CBD, or 10 nM
Δ2-THC + 100 nM CBD. 10 mM PMA was used as positive control. 1 μg/ml LPS was used as positive control. After the incubation, the culture media was carefully removed (to minimize transferring any cells) and placed in 15 ml cen-
trifuge tubes. Tubes were left undisturbed on the bench for
10 min to allow any cell debris to settle to the bottom. 100 μl of
culture media was then collected and the presence of 40
cytokines quantified using Quantibody Mouse Cytokine Array 4
(RayBiotec, Inc.). Odyssey blocking buffer (Li-Cor #927-40000),
Li-Cor IRDye 800CW Streptavidin (#926-32230), and Odyssey infra-red imager (Li-Cor Biosciences). The Quantibody kit is a
multiplexed, sandwich ELISA based array that enables researchers to
accurately determine the concentration of multiple cytokines
simultaneously. Odyssey settings were resolution, 21 μm, quality,
highest, focal offset, 1.0 mm, and intensity, 10 for the 800 nm
channel (the 700 nm channel was not required). The cytokines
tested by the array were as follows: AR, Axl, CD27L, CD38, CD40, CXCL16, IGF-I, E-selectin, Fractalkine, GPR55, IGFBP-
2, IGFBP-3, IGFBP-6, IGF-I, IL-12p70, IL-17E, IL-17F, IL-
1ra, IL-2 Ra, IL-20, IL-23, IL-28, I-TAC, MDC, MIP-2, MIP-3α,
OPN, OPG, Prolactin, Pro-matrix metallopeptidase-9 (Pro-MMP-9), P-selectin, Resistin, SCF, SDF-1α, TPO, VCAM-1, VEGF, and VEGF-D.

ANALYSIS OF DATA

All data are expressed as means ± s.e.mean and n = number of independent experiments. Statistical analyses were performed with GraphPad Prism 4 or SPSS. One-way ANOVA (p < 0.05) with LSD post hoc test was run to determine significance between treatment conditions.

RESULTS

EFFECTS OF Δ⁹-THC AND NAGly ON BV-2 MICROGLIAL MORPHOLOGY

Microglial cells are extremely plastic and exist in a variety of morphologies, including: amoeboid, unipolar, bipolar, tripolar, multipolar, and flat, which are illustrated in Figure 1. At rest, BV2 microglia display primarily an amoeboid morphology (44%) with varying degrees of branched morphologies (Table 1). Data here replicated previous findings that 10 nM PMA induced a shift in morphology from one that was round and amoeboid to a non-round form with cytoplasmic extensions (Table 1). Likewise, 10 nM NAGly and 10 nM Δ⁹-THC significantly reduced the relative percentage of BV-2 microglia that manifest the amoeboid phenotype; instead, prompting them to adopt a non-round, branched morphology with cytoplasmic extensions, most of which was classified as being bipolar in shape (Table 1). Other than a small but significant decrease in the relative percentage of unipolar BV-2 microglia in the presence of 10 nM Δ⁹-THC revealed by 100 nM CBD, Δ⁹-THC and NAGly produced non-significant fluctuations in the unipolar, tripolar, multipolar, or flat categories (Table 1). However, the morphologic phenotypic shift evoked by 10 nM NAGly and 10 nM Δ⁹-THC was antagonized by 100 nM CBD, which is

Table 1 | Percentage of BV2 cell morphologies with vehicle and six treatment groups.

	Ameboid	Unipolar	Bipolar	Tripolar	Multipolar	Flat
Vehicle	43.75 ± 2.2	17.31 ± 1.2	19.81 ± 1.8	6.20 ± 0.8	6.80 ± 1.0	4.54 ± 0.8
PMA	35.44 ± 2.4*	19.59 ± 1.3	24.29 ± 2.0	6.85 ± 1.2	9.43 ± 2.0	4.33 ± 0.5
CBD	40.72 ± 4.3	18.82 ± 1.9	22.08 ± 3.0	5.85 ± 1.6	10.49 ± 2.0	4.13 ± 0.7
NAGly	32.53 ± 2.4*	18.40 ± 1.5	25.84 ± 1.9*	6.81 ± 0.7	8.82 ± 1.6	5.99 ± 1.0
NAGly+CBD	46.84 ± 3.9	17.43 ± 1.8	18.34 ± 2.1*	5.09 ± 0.9	7.37 ± 2.1	4.95 ± 1.6
Δ⁹-THC	28.90 ± 2.8*	15.68 ± 1.7	33.57 ± 4.0*	6.45 ± 1.9	10.59 ± 2.5	4.81 ± 0.8
Δ⁹-THC+CBD	42.82 ± 6.9*	11.89 ± 2.6*	23.61 ± 4.4	4.06 ± 1.7	10.41 ± 4.2	7.20 ± 2.1

Bold denotes a significant difference from vehicle values (p < 0.05). * denotes significant difference from NAGly values (p < 0.05). * denotes significant difference from Δ⁹-THC values (p < 0.05).
in keeping with our previous reports of GPR18 pharmacology (McHugh et al., 2010, 2012a,b; McHugh, 2012). 100 nM CBD alone had no significant effects on BV-2 microglial shape (Table 1). When all branched morphologies are combined and compared to those cells in the amoeboid morphology, it is clear that there is an profound effect on the branched verses non-branched phenotype in the presence of Δ⁹-THC and NAGly and that this is reversed with CBD (Figure 2).

EFFECTS OF Δ⁹-THC AND NAGly ON BV-2 MICROGLIAL CYTOKINE RELEASE

Microglia signal and support numerous other cells by secreting a variety of signaling molecules and growth factors, including cytokines. Of the forty cytokines quantified by the Quantibody array, the production of five cytokines were significantly altered in BV-2 microglia in a concentration-dependent manner by NAGly and Δ⁹-THC. They were: Axl, CD40, IGF-I, OPN, and Pro-MMP-9 (Figure 3).

Axl is a member of the tyrosine-protein kinase receptor (RTK) family and activated by the vitamin K-dependent protein, growth-arrest-specific 6 (Gas6; Mark et al., 1996). 10 nM and 100 nM concentrations of NAGly, 100 nM Δ⁹-THC and 1 μg/ml LPS caused a significant increase in the basal production of the cytokine Axl, while 10 nM Δ⁹-THC produced a significant reduction (Figure 3A). CD40 is a co-stimulatory protein and member of the TNF-receptor superfamily (Chatzigeorgious et al., 2009). 10 nM and 100 nM concentrations of NAGly and Δ⁹-THC, together with 1 μg/ml LPS caused a significant increase in the basal production of the cytokine CD40 (Figure 3B). IGF-1 activates the Insulin-like growth factor 1 receptor (IGF1R), which is a receptor tyrosine kinase present on many cell types in many tissues (Jones and Clemmons, 1995). 100 nM Δ⁹-THC significantly increased basal IGF-1 levels, as did 1 μg/ml LPS, but 10 nM Δ⁹-THC had no effect. On the other hand, 10 nM NAGly produced a significant drop in IGF-1, while 100 nM NAGly produced a significant increase (Figure 3C). OPN is expressed in a range of immune cells, including macrophages, neutrophils, dendritic cells, and T and B cells (Mazzali et al., 2002). 10 nM and 100 nM concentrations of NAGly and Δ⁹-THC together with 1 μg/ml LPS caused a significant increase in the basal production of the cytokine OPN (Figure 3D). Pro-MMP-9 is the precursor form of MMP-9, which degrades type IV and V collagens (Toth et al., 2003). 10 nM and 100 nM Δ⁹-THC significantly increased basal Pro-MMP-9 levels, as did 1 μg/ml LPS and 100 nM NAGly. On the other hand, 10 nM NAGly produced a significant drop in Pro-MMP-9 (Figure 3E). Changes in cytokine production levels evoked by 10 nM NAGly and 100 nM Δ⁹-THC for all five cytokines were significantly attenuated by 100 nM CBD (Figures 4A–E).

DISCUSSION

Microglia play crucial roles in the development, on-going activity and regeneration of the CNS. For example, during CNS injury, microglia participate in inflammation and wound healing by migrating into damaged tissue, where they proliferate and act as phagocytic scavengers (Zhang et al., 2003). Microglia communicate with and support other cells by secreting a variety of signaling molecules and growth factors (Zhang et al., 2003). Microglia actively influence the environment of the CNS and may act as an essential link in the interaction of cytokines with neurons (Zhang et al., 2003). They also actively regulate the number of functional synapses in the CNS and glutamate receptor

![Graph](image-url)
expression (Li et al., 2013). This does not merely take place during development, but rather constitutes a dynamic, reversible, and continuous event in the mature brain. Hence, they are directly involved in the modulation of synaptic activity (Li et al., 2013). In short, microglia are highly complex cells found in the CNS that exhibit multiple forms and functional specializations, and it has long been appreciated that microglial cells exist in extremely different cell shapes ranging from an amoeboid to a ramified phenotype. Indeed, microglial cells adapt their cell morphology to the meet the functional demands of their microenvironment: amoeboid, when they have to eliminate cell debris; ramified, when they have to keep their microenvironment under surveillance; branched cytoplasmic extensions, when they make direct contact with synaptic elements to modulate activity; and non-polarized, when they secrete cytokines and reactive oxygen or nitrogen species. Moreover, the CNS microenvironment also prompts microglia to adapt their cytokine release profile to meet functional demands (i.e., pro- versus anti-inflammatory). The mechanisms regulating these adaptations are poorly understood and prompt the question of what triggers cytological plasticity in microglia. Our previous research has shown that Δ⁹-THC and NAGly are full agonists at GPR18 with EC₅₀ values in the nanomolar range, and that NAGly-GPR18 signaling drives potent microglia migration, proliferation as well as mitogen-activated protein kinase (MAPK) activation. Given this, we explored the hypothesis that Δ⁹-THC and NAGly, putatively also through GPR18 receptors, regulates morphological and cytokine signaling plasticity in BV-2 microglia.

Δ⁹-THC AND NAGLY: MORPHOLOGICAL PLASTICITY

Our observations demonstrate that both Δ⁹-THC and NAGly influenced the shape of BV-2 microglia (Table 1). 10 nM concentrations of both molecules significantly reduced the proportion of cells that manifested the amoeboid phenotype by means of generally increasing the number of cytoplasmic processes branching off the microglial cell body. These morphological shifts were prevented by co-treatment with 100 nM CBD, which alone had no effects. (Pöttler et al., 2006) have reported that the addition of PMA decreased the number of amoeboid and increased the number of branched BV-2 microglia in vitro. Our results reproduced and confirmed their findings. A significant percentage of BV-2 microglia assumed a bipolar phenotype when exposed to Δ⁹-THC or NAGly. If the data is simplified by collapsing the shape categories into amoeboid versus branched, when exposed to Vh alone there is an almost equivalent amount of both phenotypes; however, the addition of PMA, NAGly, and Δ⁹-THC significantly shifted the percentage distribution in favor of branched, which was reversed by co-addition of CBD. This suggests that there may be a particular functional relevance to the branched morphology in the neuronal environment of the CNS. In support of this, recent reports state that non-amoeboid microglia contact active synapses, implying a cell-cell interaction between ramified microglia and neurons have also described how ramified microglia contribute to the protection of neurons from excitotoxicity (Tremblay et al., 2010; Fontainhas et al., 2011). Microglia are capable of adapting their cytoskeleton to adopt any of the six shapes categorized here. While this morphological plasticity is continuous in the sense that...
the changes are not binary or quantal, microglia do not necessarily have to progress from amoeboid to unipolar to bipolar to tripolar... etc. The different morphological stages of microglial activation and their functional consequences have not been fully ascertained in detail; this is an emerging field of interest to which our data contribute.

Δ^9-THC AND NAGly: CYTOKINE SIGNALING PLASTICITY

Cytokines are varied substances (e.g., interferons, interleukins, growth factors, etc.) that are released by certain cells of the immune system and have an effect on other cells. The secretion profile of five cytokines (Axl, CD40, IGF-I, OPN, and Pro-MMP-9) was significantly altered in BV-2 microglia by Δ^9-THC and NAGly; the changes were attenuated by CBD (100 nM). Axl is an enzyme of the RTK family and is involved in the transduction of signals from the extracellular matrix to the cytoplasm by binding growth factors like vitamin K-dependent protein growth-arrest-specific gene 6 (Gastk et al., 1996). Axl is involved in the mediation of cell aggregation by homotypic binding (Heide et al., 1998), which is an interaction between the same adhesion molecule expressed by different cell types (e.g., neurons and microglia). Axl signaling plays a role in cell growth and survival in normal and cancer cells, including colon cancer and melanoma (Sensi et al., 2011). Interestingly, the first report to describe GPR18 arose unanticipated from expression studies by Gantz et al. (1997), who inadvertently isolated the GPCR from the human colon cancer Colo 320DM cell line. While, Qin et al. (2010) reported that expression levels of GPR18 were not only constitutively active but also ∼ 24-fold higher in human metastatic melanoma compared with benign nevi.

CD40 is a co-stimulatory protein and member of the TNF-receptor superfamily; it is found on antigen presenting cells and has been found to be essential in mediating a broad variety of immune and inflammatory responses (Chatzigeorgious et al., 2009). CD40 helps mediate the induction of potent microbiocidal substances in glial cells, including reactive oxygen species and nitric oxide, leading to the destruction of ingested microbes (Cao et al., 2009). The interaction of this cytokine with TNF receptors have been found to be necessary for amyloid beta (Aβ)-induced microglial activation (Tan et al., 2002), and thus is thought to be an early event in Alzheimer’s disease pathogenesis. IGF-1 activates the IGFIR, which is a receptor tyrosine kinase present on many cell types in many tissues (Jones and Clemmens, 1995). It is a primary mediator of the effects of growth hormone and one of the most potent natural activators of the AKT signaling pathway (Gallagher et al., 2010). IGF-1 has growth-promoting effects on almost every cell in the body, it regulates cellular growth, development and DNA synthesis, especially in neuronal cells (Ueno et al., 2013). OPN is expressed in a range of immune cells, including macrophages, neutrophils, dendritic cells, and T and B cells (Mazzali et al., 2002). This cytokine is a chemottractant that promotes cell recruitment to inflammatory sites. OPN also functions as an adhesion protein, involved in cell attachment and wound healing, and mediates cell activation, cell survival (by regulating apoptosis) and cytokine production (Mazzali et al., 2002). Proteins of the matrix metalloproteinase (MMP)
family are secreted as inactive pro-MMP proteins and subse-
quentley cleaved by extracellular proteases (Toth et al., 2003).
They are involved in the breakdown of extracellular matrix in
normal physiological processes, such as embryonic development,
reproduction, and tissue remodeling, as well as in disease pro-
cesses, such as arthritis, intracerebral hemorrhage, and metastasis
(Wang and Türke, 2005). MMP-9 degrades type IV and V collagens
(Kahari and Saarialho-Kere, 1997).

While there is general interest in, as well as reports in the litera-
ture and ongoing investigations into, the influence of cannabinoids
on cytokine signaling, this is the first data regarding these five
specific cytokines in BV-2 microglia. A synopsis of the overall func-
tional roles of these five cytokines would include growth, adhesion,
tissue remodeling and apoptotic regulation. Their modulation
implies an important role for the underlying mechanism of action
exploited here by Δ9-THC and NAGly. The effects observed were
concentration-dependent, where the most extreme differences in
response between 10 nM and 100 nM of NAGly and Δ9-THC were:
decreased versus increased IGF-1 and Pro-MMP-9 basal lev-
els for NAGly; and decreased/no change versus increased IGF-1
and Axl basal levels for Δ9-THC. Antagonism of Δ9-THC and
NAGly effects by 100 nM CB1 is in keeping with our previous
reports of GPR18 pharmacology (McHugh et al., 2010, 2012a,b).
Further investigation is needed to fully ascertain the involvement
of GPR18 and to rule in or rule out other potentially relevant
receptors (e.g., CB2, CBR2, GPR92). A time course study leading
up to and continuing beyond the time points used here would be
beneficial in determining when and to what extent does maximal
cytosplasmic branching and cytokine release induced by Δ9-THC
and NAGly occur in the BV-2 cells. This would also help clarify the
apparent switching of some of the cytokines from below basal to
above basal levels (e.g., IGF-1 at 10 nM and 100 nM Δ9-THC and
NAGly), as would tests with additional concentrations. Cytokine
signaling is known to be complex, and often includes opposing
reactions (e.g., pro- versus anti-inflammatory) that are consid-
ered to be physiologically routine. Alternatively, ligand-receptors
interactions at GPCR’s are often subject to desensitization, which
may explain the differential effects observed. As mentioned above,
it is also possible that Δ9-THC and NAGly are acting via multiple
receptors to produce a form of physiological antagonism with
respect to cytokine release.

The findings in this study support our hypothesis that Δ9-THC
and NAGly, putatively through GPR18 receptors, regulate mor-
phological and cytokine signaling plasticity in BV-2 microglia.
These data add to an emerging profile that emphasizes NAGly as
a component of an endogenous system present in the CNS that
tightly integrates microglial proliferation, recruitment, and
adhesion with neuron-glia interactivity and tissue remodeling.
A greater understanding of this system is essential to improving
our ability to therapeutically monitor and manage dysregulated
microglial activity.

AUTHOR CONTRIBUTIONS
Douglas McHugh: cytokine experiments; BV-2 microglia shape
categorization and quantification, data interpretation; statistical
analyses. Sisi Xie: BV-2 microglia shape categorization and coordi-
nation of the studies; data interpretation; statistical analyses; and manuscript
preparation. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS
This work was supported by NIH DA018224. We thank Anisa
Curry-Viette, Hannah Kasak-Gilholf, and Harpo Rooender for their
work on validating the cell morphology phenotyping assay.

REFERENCES
Bege, M. Li, Fischer, P., Botik, S., Oosi, Huyson, D., Ollendorf, L., Mo, M., et al.
(2005). Evidence for novel cannabinoid receptors. Pharmacol. Ther. 106,135–145.
doi: 10.1016/j.pharmthera.2004.11.003
Blai, E., Barness, L., Bocchini, V., Mozola, R., and Bostini, E. (1990). Immor-
talization of murine microglial cells by a v-araf-myv carrying retrovirus. J.
Neurooncology 17, 229–237. doi: 10.1007/BF00090875
Block, M. L., Zeca, L., and Hong, J.-S. (2007). Microglia-mediated neuroto-
icity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69.
doi: 10.1038/nrn2138
Blandau, H., Zimmermann, N., Hsu, S., Bentov, V., Staats, J., Maudus, R., et al.
(2009). The endocannabinoid machinery is a processor for the signaling lipid
N-arachidonoyl glycine by two distinct pathways. BMC Biochem. 10.14.
doi: 10.1186/1471-2091-10-14
Cao, L., Hamer, C. D., Malen, J. T., and Du Lee, J. A. (2009). Critical role
of microglial CCR4 in the maintenance of neuronal hypersensitivity in a murine
model of neuropathic pain. Eur. J. Neurosci. 30, 5922–5930. doi: 10.1111/j.1460
9555.2009.06607.x
Cawson, M. J. (2002). Microglia: a liaison between the immune and central nervous
systems: functional implications for multiple sclerosis. Glia 40, 218–231. doi:
10.1002/glia.10145
Chatzigeorgious, A., Lyberi, M., Chatzilymperris, G., Nezos, A., and Rampe,
E. (2009). CCR4/CCR4: signaling and its implications in health and disease.
BioFactors 35, 474–485. doi: 10.1016/j.bif.2010.01.002
Colton, C., and Wlcek, D. (2010). Assessing activation states in microglia.
CNS Neurosci. Drug. T argets 9, 174–191. doi: 10.2174/15680061079101201105
Dumont, G. H., and Detrich, W. D. (2003). Inflammatory mechanisms of ischemia
and stroke. J. Neurophysiol. Exp. Neurol. 42,127–128.
Eikelenboom, P., Rut, C., Van Geel, W. A., Hommann, J. J., Roussenov, 1. M.,
and Roos, M., et al. (2011). Microglial morphology and dynamic behavior is regulated
by neuromodulatory glutamatergic and GABAergic neurotransmission. PLoS ONE
6,e17593. doi: 10.1371/journal.pone.0017593
Gallagher, J., Frey, V., Ferguson, R. D., and Lefford, D. (2010). The pathway from
diabetes and obesity to cancer, on the route to targeted therapy. Endocr. Pract.
16, 865–871. doi: 10.4158/EP10098.RA
Garr, I., Murakoa, A., Yang, Y.-K., Samuelson, L. C., Zimmerman, E. M., and
Cox, H. H., et al. (1997). Cloning and chromosomal localization of a gene (GPR18)
encoding a novel receptor and transmembrane receptor highly expressed in epithelial
tissues. Genomics 42, 462–466. doi: 10.1006/geno.1997.4792
Gardner, G. A., and Moller, T. (2006). Microglia biology in health and disease.
J. Neuroimmune Pharmacol.: uncovering the molecular mechanisms. Glia 40, 218–231. doi:
10.1002/glia.10145
Heide, I., Sokoll, A. C., Henz, B. M., Nagel, S., Kreissig, K., Grützkau, A., et al.
(2006). Microglia biology in health and disease. Neuroimmune Pharmacol.
1, 127–137. doi: 10.1007/s11481-006-9015-5
Gordon, S. (2005). Alternative activation of macrophages. Nat. Rev. Immunol.
5, 23–35. doi: 10.1038/nri1678
Heidel, I., Solok, A. C., Hertz, B. M., Nagel, S., Krogsgaard, K., Forster, A., et al.
(1998). Regulation and possible function of ail expression in immature human
macrophages. Am. J. Hematol. 77, 199–205. doi: 10.1002/(SICI)1091-1029(20004)
30330.392–393. doi: 10.1126/science.1140052
Heinemann, A. M., Wang, M., Liang, K. F., Chen, S., Merri, P., Dumain, M., et al.
(2011). Microglial morphology and dynamic behavior is regulated by neuromodulatory
Glutamatergic and GABAergic neurotransmission. PLoS ONE 6.e17593. doi: 10.1371/
journal.pone.0017593
Járai, Z., Wagner, J. A., Varga, K. R., Lake, K. D., Compton, D. R., Martin, B. R., et al.
(1999). Cannabinoid-induced mesenteric vasodilation through an endothelial
endothelial proteinase-04-00162” — 2014/1/2 — 11:05 — page 7 — #7
site distinct from CB1 or CB2 receptors. Proc. Natl. Acad. Sci. U.S.A. 96, 1436– 1441. doi: 10.1073/pnas.96.3.1436

K., K. ug, G., Woltmann, L. F., and Tietk e, S. E. (2013). Microglia actively regulate the number of functional synapses. PLoS ONE 8, e62693. doi: 10.1371/journal.pone.0062693

Jenos, J. L., and Clements, D. R. (1995). Insulin-like growth factors and their binding proteins: biological actions. Bioehem. J. 306, 3–38

Kühler, V., and Banati, R.-B. (1997). Matrix metalloproteinases in schizophrenia. Exp. Dermatol. 6, 199–213. doi: 10.1111/1600-0622.1997.00016.x

Kolmo, M., Hasegawa, H., Iwasa, A., Misawa, M., Miyazaki, T., Oka, K., et al. (2006). Identification of N-arachidonoylglycine as the endogenous ligand for orphan G-protein-coupled receptor GPR18. Biochem. Biophys. Res. Commun. 347, 825–832. doi: 10.1016/j.bbrc.2006.04.175

Mackie, J., and Stoll, N. (2006). Cannabinoid receptors and endocannabinoids: Frontiers for new players. J. Exp. Med. 202, 1081–1094.

Mark, M., Chen, J., Hammonds, B. G., Sadiq, M., and Godowsky, E. F. (1996). Characterization of Gas6, a member of the superfamily of G domain-containing proteins, as a ligand for Rac and Aer. J. Biol. Chem. 271, 9785–9790. doi: 10.1074/jbc.271.16.9785

Mattukia, M., Kipari, T., Oljarsahonu, A., Wess, H.-J., Johnson, R., and Bradshaw, H. B. (2012a). (9-THC and NAGly and microglial phenotype

Ji, K., Akgul, G., Wollmuth, L. P., and Tirschka, S. E. (2013). Microglia as endogenous ligands for GPR92.

Oh, D. Y., Yoon, J. M., Moon, M. J., Hwang, J. I., Choe, H., Lee, J. Y., Kang, M. R., Chen, J., Hammonds, R. G., Sadick, M., and Godowsky, E. F. (1996). Like cops on the beat: the active role of resting microglia. Dermatol. Sci. 6, 199–206. doi: 10.1111/j.1600-0622.1996.tb00164.x

Kähäri, V.-M., and Saariaho-Kere, U. (1997). Matrix metalloproteinase-9/9αB-FI in human endometrial cell line, HEC-1B. J. Biol. Chem. 272, 20780–20786. doi: 10.1074/jbc.272.31.20780

B. J. Pharmacol. 167, 2414–2424. doi: 10.1111/j.1476-5381.2011.02019.x

van Rossum, D., and Hansich, U.-K. (2004). Microglia. Annu. Rev. Immunol. 22, 305– 411. doi: 10.1146/annurev.immunol.22.010703.151302

Botterweck, G., Botterweck, L., Witting, A., Wade, C., Xie, Y., Kunos, G., Mackie, K., and Streit, W. J. (2002). Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40, 135–139. doi: 10.1002/glia.10154

Jia, P., Zhou, T., Sun, J. M., Nakamura, Y., Kikutani, K., Ishii, M., et al. (2011). Laryngeal nerves require microglial support for survival during postnatal development. Nat. Neurosci. 14, 543–551. doi: 10.1038/nn.2839

McHugh, J. R., and Tietk e, S. E. (2006). Microglia interac tion antigens express a functional Axl receptor kinase. J. Neurosci. 26, 9188–9196. doi: 10.1523/JNEUROSCI.2213-06.2006

McHugh, D., Roskowski, D., Xie, S, and Bradshaw, H. B. (2014). Cannabinoid receptors and endocannabinoids: Frontiers for new players. J. Exp. Med. 202, 1081–1094.

Stella, N. (2003). Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 23, 1388–1405.

Wang, J., and Tietk e, S. E. (2005). Neuroprotection by inhibition of matrix metalloproteins in a mouse model of intracerebral haemorrhage. Brain 128, 1622–1633. doi: 10.1098/brain.2005.1849

Zhang, J., Guo, Z., Li, C., Kordis, H., Hatcher, L. M., Rosien, F. J. (2003). Neurotrophins regulate proliferation and survival of two microglial cell lines in vitro. Exp. Neurol. 183, 669–681. doi: 10.1016/S0014-4886(02)00222-X

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 31 August 2013; paper pending published: 12 October 2013; accepted: 09 December 2013; published online: 02 January 2014.

Copyright © 2014 McHugh, Roskowski, Xie and Bradshaw. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided that the original author(s) or licen se are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.