Quantum compiling with variational instruction set for accurate and fast quantum computing

Ying Lu, Peng-Fei Zhou, Shao-Ming Fei, Shi-Ju Ran

1Department of Physics, Capital Normal University, Beijing 100048, China
2School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
3Max-Planck-Institute for Mathematics in the Sciences, 04103, Leipzig, Germany

(Dated: May 17, 2023)

The quantum instruction set (QIS) is defined as the quantum gates that are physically realizable by controlling the qubits in a quantum hardware. Compiling quantum circuits into the product of the gates in a properly-defined QIS is a fundamental step in quantum computing. We here propose the quantum variational instruction set (QuVIS) formed by flexibly-designed multi-qubit gates for higher speed and accuracy of quantum computing. The controlling of qubits for realizing the gates in a QuVIS are variationally achieved using the fine-grained time optimization algorithm. Significant reductions on both the error accumulation and time cost are demonstrated in realizing the swaps of multiple qubits and quantum Fourier transformations, compared with the compiling by the standard QIS such as the quantum microinstruction set (QuMIS, formed by several one- and two-qubit gates including the one-qubit rotations and controlled-NOT gate). With the same requirement on quantum hardware, the time cost by QuVIS is reduced to be less than one half of that by QuMIS. Simultaneously, the error is suppressed algebraically as the depth of the compiled circuit is reduced. As a general compiling approach with high flexibility and efficiency, QuVIS can be defined for different quantum circuits and adapt to the quantum hardware with different interactions.

I. INTRODUCTION

Efficient compiling of quantum algorithms to physically-executable forms belongs to the fundamental issues of quantum computing. A widely-recognized compiling way is to transform the circuit into the product of executable elementary gates, which are named as quantum instruction set (QIS) [1–5]. A QIS should be constructed according to the fundamental physical mechanism of quantum hardware. For instance, a superconducting quantum computer can adopt the quantum microinstruction set (QuMIS) [6] as the instructive set that is formed by several one- and two-qubits gates including the one-qubit rotations and controlled-NOT (CNOT). For the quantum photonic circuits, the elementary gates represent certain basic operations on single photons [7, 8]. The efficiency of compiling a given quantum algorithm with a chosen QIS can be characterized by the complexity (e.g., depth) of the compiled circuit.

A typical way of realizing the elementary gates in a QIS is by controlling the dynamics of quantum hardware. Different quantum platforms are usually described by different controlling process. For instance, superconducting circuits employ microwave-pulse techniques to manipulate the qubits [9, 10] through, e.g., cross resonance [11], parametric modulation [12], and etc.. Another typical quantum hardware is the nuclear magnetic resonance (NMR) systems [13–21]. For such systems, a key issue of realizing quantum circuits or algorithms, such as Shor’s factoring algorithm [22] and Harrow-Hassidim-Lloyd related algorithms [23], is to determine the tunable time-dependent pulses. The efficiency can be characterized by the time cost of the controlling process.

For the two-qubit gates, such as CNOT and swap gates, the optimal time cost has theoretically-given bounds [24–26]. For the N-qubit gates with $N > 2$, such bounds are not rigorously given in most cases, and variational methods including the machine learning (ML) techniques have recently been adopted in such optimal-control problems [27–37]. Besides, quantum many-body systems have also been used to implement the measurement-based quantum computation [38–44]. However, most conventional methods concern the controlling of a few qubits. The utilizations of the many-body dynamics for quantum computing [29, 32, 33, 36, 45–47] are much less explored due to the exponentially-high complexity.

For all known quantum computing platforms, noise is inevitable and will induce computational errors that make the results unstable or unreliable. One way of fighting against errors is the error correction codes [48], such as Calderbank-Shor-Steane codes [49], Reed-Muller quantum codes [50], and Toric codes [51]. However, the implementation of quantum error correction codes will significantly increase not only the number of qubits but also the complexity of circuits. This issue is particularly important in the noisy intermediate-scale quantum (NISQ) era, where the number of available qubits and the connectivity among them are limited. Besides, noise will also lead to decoherence, meaning that the qubits will gradually become less entangled, losing the supremacy over classical computing. Prolonging the coherence time and reducing the time cost so that the quantum computing tasks are executed within the coherence duration belong to the significant and challenging issues for quantum computing in the NISQ era (see, e.g., Refs. [52–56]).

Aiming at higher efficiency and accuracy, we here propose the quantum variational instruction set (QuVIS) for compiling the quantum circuits. A QuVIS is defined as the flexibly-designed multi-qubit quantum gates that can be realized by controlling the magnetic pulses imposed on the interacting spins in a quantum hardware. The pulse sequences are variationally determined using the fine-grained time optimization (FPGTO) algorithm [36], which manages to efficiently realize the given multi-qubit unitary transformations. We take

* Corresponding author. Email: feishm@cnu.edu.cn
1 Corresponding author. Email: sjran@cnu.edu.cn
FIG. 1. (Color online) (a) The nine elementary gates \{U_m\} \((m = 0, \ldots, 8)\) in the 3-qubit QuVIS for compiling the \(N\)-qubit QFT circuits for \(N \leq 9\). We use “H” to denote Hadamard gate, use two crosses connected by a vertical line to denote swap gate, and use “\(R_p\)” connected to a dot to denote controlled phase shift gate with the phase \(\theta = \pi/2^p\). The error and the time used to implement each elementary gate are shown in Table I. By adding necessary swap gates, the \(N\)-qubit QFT circuits compiled by the 3-qubit QuVIS are shown in (b). QuMIS [6] as an example to compare the performances (error and time cost). Our results show that QuVIS significantly reduces the number of the elementary gates in the compiled circuit, thus suppresses the accumulation of errors and the time cost. These advantages of QuVIS are demonstrated on compiling the circuits of \(N\)-qubit quantum Fourier transformation (QFT) [57–59] and multi-qubit swap circuits. We show the elementary gates of the QuVIS designed for the \(N\)-qubit QFT in Fig. 1 (a) and the compiled circuits for \(N = 3, \ldots, 9\) in (b). Thanks to the generality and stability of FGTO on realizing unitary transformations, QuVIS can be adaptively defined for different quantum hardware with various interaction types (e.g., Ising or Heisenberg interactions), connectivities, and strengths among the qubits, according to the considered quantum hardware.

II. VARIATIONAL INSTRUCTION SET

To realize a target unitary transformation \(\hat{U}\), we optimize the adjustable parameters in the time-dependent Hamiltonian \(\hat{H}(t)\) so that the time evolution operator in the duration \(T\) optimally gives \(\hat{U}\), i.e., \(\hat{U} \simeq e^{-i \int_0^T \hat{H}(t) dt}\). We take the Plank constant \(\hbar = 1\) for simplicity. In many existing quantum hardware, the adjustable parameters of the Hamiltonian concerns the one-body terms, i.e., the magnetic pulses [16, 17, 60, 61]. We here take the Ising model with time-dependent transverse fields for demonstration. The Ising Hamiltonian can be written as

\[
\hat{H}(t) = \sum_{nn'} J_{nn'} \hat{S}_n^z \hat{S}_{n'}^z - 2\pi \sum_n [h_n^x(t) \hat{S}_n^x + h_n^y(t) \hat{S}_n^y],
\]

(1)

with \(\hat{S}_n^\alpha\) the spin operator in the \(\alpha\) direction \((\alpha = x, y, z)\), \(J_{nn'}\) the coupling constants between the \(n\)-th and \(n'\)-th spins, and \(h_n^\alpha(t)\) the adjustable magnetic pulses along the spin-\(\alpha\) direction on the \(n\)-th spin at the time \(t\). The goal becomes optimizing \(h_n^\alpha(t)\) to minimize the difference

\[
\varepsilon \equiv \left| \hat{U} - e^{-i \int_0^T \hat{H}(t) dt} \right|
\]

(2)

where \(|*|\) is the Frobenius norm. Such optimizations can be efficiently implemented by the gradient-descent methods even when \(\hat{U}\) concerns multiple qubits. Due to the generality of the optimization scheme, we are able to consider additional restrictions in the optimization process. For instance, we may restrict that only the magnetic field in either the \(x\) or \(y\) direction can be imposed at each time, or the strength of magnetic fields should be limited to a certain range. Such restrictions (and many restrictions in the realistic hardware) will not break the automagical differentiation chain, and thus can be readily considered in the optimization.
FIG. 2. (Color online) The elementary gates for compiling the QFT circuits with 3-qubit QuVIS can be recursively derived. Panels (a) and (b) show the definitions of the \(m\)-th elementary gate \(U_m\) for \(m \geq 3\) with odd and even \(m\), respectively. The circuit after compiling the \(N\)-qubit QFT circuit can also be derived as illustrated in Panel (c) for odd \(N\) and (d) for even \(N\).

We utilize the fine-grained time optimization (FGTO) [36] to optimize the pulse sequences for the target gates. The idea is to avoid being trapped in local minima by gradually fine-graining the time discretization. The validity of this strategy has been demonstrated on the state-preparation tasks. We take the Trotter-Suzuki form [62, 63] and discretize the total time \(T\) to \(K\) identical slices. The evolution operator can be approximated as

\[
\hat{U}(T) = e^{-i\tau\hat{H}(\vec{K})} \ldots e^{-i\tilde{\tau}\hat{H}(2\tilde{\tau})} e^{-i\tilde{\tau}\hat{H}(\tilde{\tau})},
\]

with \(\tilde{\tau} = \frac{T}{K}\) that controls the Trotter-Suzuki error. For varying the magnetic fields, we introduce \(\tau = \kappa \tilde{\tau}\) with \(\kappa\) a positive integer, and assume \(h_n^\alpha(t)\) to take the constant value \(h_n^{\alpha_k}(t) = h_n^{\alpha_k}\) during the time of \((k-1)\tilde{\tau} \leq t < k\tilde{\tau}\) (with \(k = 1, \ldots, K\) and \(K = \frac{T}{\tilde{\tau}}\)). In other words, \(\tau\) controls the maximal frequency of the magnetic pulses, and the magnetic fields are allowed to change for \(K\) times in the controlling duration. During the optimization, \(\tau\) is reduced gradually to increase the fineness of time discretization. We start from a relatively large \(\tau\) and reduce it to \(\tau/2\) when \(\{h_n^{\alpha_k}\}\) converge. The length (i.e., the dimension of the index \(k\)) of the pulse sequences will be doubled. At the beginning of the optimization with a new (smaller) \(\tau\), the pulse sequences are initialized as \(h_n^{\alpha_k,2k-1} = h_n^{\alpha_k,2k} \leftrightarrow h_n^{\alpha_k}\).

The magnetic fields are updated as

\[
h_n^{\alpha} \leftarrow h_n^{\alpha} - \eta \frac{\partial \epsilon}{\partial h_n^{\alpha}},
\]

where the gradients \(\frac{\partial \epsilon}{\partial h_n^{\alpha}}\) can be obtained by, e.g., the automatic differentiation technique in Pytorch [64]. We use the optimizer Adam [65] to dynamically control the learning rate \(\eta\).

The QuVIS for different quantum circuits can be defined flexibly. Specifically, we call a QuVIS to be \(N\)-qubit when the elementary gates therein are at most \(N\)-qubit. Let us take the QFT as an example, which belongs to the most frequently used circuits in implementing quantum algorithms including Shor [66] and Grover algorithms [67]. Fig. 1 (a) gives the 3-qubit QuVIS for the \(N\)-qubit QFT with \(N \leq 9\), and (b) shows the circuits after compiling. The magnetic fields to realize each elementary gate is obtained by the algorithm explained above.

The complexity of obtaining the magnetic fields on a classical computer (i.e., optimization complexity) increases exponentially with \(N\) (the maximal number of qubits in the elementary gates of QuVIS). This optimization complexity is independent on the number of qubits \(N\) in the circuit that is to be compiled. In comparison, we may consider the whole quantum circuit as a large unitary transformation, and use FGTO to minimize the distance between this unitary transformation and the time-evolution operator. We dub such a simple and "brute-force" scheme as direct control, which will be used later as a baseline. In this case, we need to simulate the time evolution of an \(N\)-qubit system, thus the optimization complexity of the direct control scheme increases exponentially with \(N\).

Here we focus on the QuVIS with \(N = 2\) and \(3\), which already exhibits significant advantages on efficiency and accuracy (see the benchmark results). Be aware that one can use a desktop computer to access the QuVIS’s for \(N \leq 6\) without any problems. Other than QFT, QuVIS can also be designed flexibly for different quantum circuits or algorithms. One may find more details on the optimization and the controlling sequences for realizing the elementary gates of QuVIS in the Supplemental Material [68].

The elementary gates or most of them in a QuVIS can be derived recursively. Taking the QuVIS for QFT as an example, the elementary gates from \(U_0\) to \(U_2\) are designed manually. Clear regularity appears to derive the rest of gates recursively. For the definitions of the elementary gates in QuVIS, the \(m\)-th gate \(U_m\) iscomposed of the rotational gate \(R_{m+1}\) and a SWAP gate when \(m\) is odd. For an even \(m\), \(U_m\) is composed of two rotational gates \((R_{m+1} + R_m)\) and two SWAP gates, see Fig. 2(a) and (b). Considering to compile the \(N\)-qubit QFT by QuVIS, the circuit consists of \(U_2, U_4, U_6, \ldots, U_{N-5}, U_{N-3}, U_{N-1}\), and the (N(1)-qubit QFT circuit, when \(N\) is odd [Fig. 2(c)]. When \(N\) is even, the \(N\)-qubit QFT circuit consists of \(U_2, U_4, U_6, \ldots, U_{N-4}, U_{N-2}, U_{N-1}\), and the (N(1)-qubit QFT circuit [Fig. 2(d)].
TABLE I. The time cost T to implement the elementary gates $\{U_m\}$ ($m=0,\ldots,8$) of the 3-qubit QuVIS [Fig. 1(a)] for QFT. The second row shows the results by directly taking $\{U_m\}$ as the target gates in Eq. (2), and the third row shows those by compiling $\{U_m\}$ to the product of the elementary gates in QuMIS.

	U_0	U_1	U_2	U_3	U_4	U_5	U_6	U_7	U_8
QuVIS	0.3	2.1	2.1	1.4	2.4	1.5	2.4	1.5	2.4
QuMIS	2.3	8.4	6.0	2.6	5.1	2.5	5.0	2.5	5.0

III. BENCHMARK RESULTS

Below, we take the Hamiltonian for time evolution to be the nearest-neighbor Ising chain, where the coupling constants satisfy

$$J_{n,n'} = \begin{cases} 2\pi & \text{for } n' = n + 1 \\ 0 & \text{otherwise} \end{cases}. \quad (5)$$

In our demonstration, we fix the magnetic fields along the spin-z direction as zero, and allow to independently adjust the fields along the spin-x and y directions. Such a case often appears in the controlling by the radio-frequency pulses [17, 69].

Table I shows the time cost T for realizing the elementary gates $\{U_m\}$ ($m=0,\ldots,8$) by FGTO (second row). For comparison, we also estimate the time cost by compiling each gate to the product of the elementary gates in QuMIS (third row). To conveniently and fairly compare the time cost, we take the time when the error [Eq. (2)] decreases to about $O(10^{-2})$. The time cost of implementing the elementary gate in the QuVIS using FGTO is significantly shorter than that by compiling them to the product of the elementary gates in QuMIS. Note that in general, the loss function will decrease as the total time duration T increases, until the limit of the optimization scheme is reached. Such a limit is determined by many factors including the gradient step (learning rate) and other optimization tricks (such as the optimizer, for which we choose Adaptive Moment Estimation [70]). In our simulations, the loss function will eventually converge to about $O(10^{-6})$ (see Fig. S2 in the supplemental material).

In Fig. 3, we demonstrate the time costs T and the error ε in realizing the circuits for N-qubit QFT. The direct control scheme is used as a baseline method to compare with QuVIS and QuMIS. Though it exhibits the lowest error, its disadvantage is that the computational cost increases exponentially with the number of qubits N in the quantum circuit to be compiled. Thus, it is not feasible to apply to the circuits of large sizes.

Compared with QuMIS, significant reductions on both the time cost T and error ε are demonstrated by using the 2- and 3-qubit QuVIS for compiling. Since T is determined by the number of elementary gates and the time to realize each of them, it is approximately linear to the number of qubits N. We have

$$T = \gamma_T N + \beta_T, \quad (6)$$

with the slope $\gamma_T \simeq 17.41, 9.25,$ and 7.65 for QuMIS and \tilde{N}-qubit QuVIS with $\tilde{N} = 2$ and 3, respectively.

FIG. 3. (Color online) (a) The time cost T and (b) error ε in realizing the N-qubit QFT using the direct control, 2-qubit QuVIS, 3-qubit QuVIS, and QuMIS. The dash lines give the linear fitting of the time cost T versus N [Eq. (6)]. In the optimization for the direct control, the time cost is estimated under the condition that ε is no more than 10^{-1}. For the 2-qubit QuVIS, 3-qubit QuVIS, and QuMIS, ε changes exponentially with N [Eq. (7)]. Note the fittings are performed using the data for $N \geq 5$.

Since each elementary gate inevitably introduces certain error (fixed to be $O(10^{-2})$ in our simulations), the error ε for the whole circuit generally accumulates exponentially as N increases. We have

$$\varepsilon \equiv \beta \varepsilon e^{\gamma_N}, \quad (7)$$

with the exponent coefficient $\gamma \simeq 0.22, 0.2$, and 0.18 for QuMIS and \tilde{N}-qubit QuVIS. A reduction of γ indicates an algebraic improvement, essentially because that the number of elementary gates (i.e., depth) of the compiled circuit is reduced by increasing N.

The key advantage of QuVIS is from the “end-to-end” optimization strategy for the magnetic pulses. When a unitary transformation is compiled to the product of several gates, the conventional schemes require accurate implementations of all gates. However, we actually care about the unitary transformation itself but not any intermediate results within the compiled circuit.

An \tilde{N}-qubit QuVIS is designed by dividing the target circuit into many sub-circuits [Fig. 1(b)], where each sub-circuit is at most \tilde{N}-qubit and the total number of the sub-circuits should be as small as possible. These sub-circuits define the el-
elementary gates in the QuVIS [Fig. 1(a)]. The magnetic pulses are optimized by directly finding the optimal path to each elementary gate, without considering the intermediate results within the corresponding sub-circuit. Meanwhile, a properly designed QuVIS will significantly reduce the number of elementary gates in a compiled circuit. For these reasons, the circuit compiled by a QuVIS exhibits much less error and time cost compared with that by a standard QIS.

To provide an explicit demonstration, we show in Fig. 6 the error $\varepsilon(t)$ in the controlling duration

$$\varepsilon(t) = \left| \hat{U}(\theta) - e^{-i \int_0^t \hat{H}(t') dt'} \right|.$$

This quantity gives the distance at a certain time point t with $0 \leq t \leq T$, where the magnetic fields are still optimized by minimizing $\varepsilon(T)$ [Eq. (2)]. As an example, we take $\hat{U}(\theta)$ to be the controlled phase shift gate

$$\hat{U}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & e^{i\theta} \end{bmatrix}.$$

For the phase shift $\theta = \frac{\pi}{8}$, $\frac{\pi}{4}$, and $\frac{\pi}{2}$, Fig. 6 compares the error $\varepsilon(t)$ [Eq. (8)] by directly minimizing the distance to the target gate (direct control) and by the standard compiling. Using QuMIS, $\hat{U}(\theta)$ is decomposed to the product of the single-qubit rotation gates \hat{R}^z and CNOT \hat{C}, which can be formally written as

$$\hat{U}(\theta) = \hat{S}(\alpha) \hat{R}^z(\theta_1) \hat{C} \hat{R}^z(\theta_2) \hat{C} \hat{R}^z(\theta_3),$$

where $\hat{R}^z(\theta_1)$, $\hat{R}^z(\theta_2)$ and $\hat{R}^z(\theta_3)$ are single-qubit rotations along the spin-z direction satisfying $\hat{R}^z(\theta_1) \hat{R}^z(\theta_2) \hat{R}^z(\theta_3) = I$, and $\hat{S}(\alpha) = e^{i\alpha}$ a phase factor [71]. Note that all single-qubit gates in Eq. (10) are acted on the second qubit. In other words, when the control qubit (the first one here) is in the state $|1\rangle$, the target qubit (second one) will be acted by $\hat{S}(\alpha) \hat{R}^z(\theta_1) \hat{X} \hat{R}^z(\theta_2) \hat{X} \hat{R}^z(\theta_3)$ with \hat{X} is Pauli-x operator.

The time costs of realizing the elementary gates in QuMIS are illustrated by the colored shadows. The time cost of direct control is indicated by the x-coordinate of the last triangle, which is about five times shorter than QuMIS. Note for a single-qubit rotation $\hat{R}^z(\theta)$, it can be written as the one-body evolution operator with the magnetic field along the corresponding direction, i.e., $\hat{R}^z(\theta) = e^{-i \theta \hat{S}^z} \Leftrightarrow \hat{U}(\alpha, T) = e^{-iT \hat{h}^a} \hat{S}^a$. Therefore, the time cost of $\hat{R}^z(\theta)$ is estimated as $T = \frac{\theta}{h^a}$. Without losing generality, we here take $h^a = 10$ to estimate the time costs of single-qubit rotations.

An important observation is that even the time cost of a single CNOT ($T = 0.5$ theoretically given in Refs. [25, 26]) is longer than that of $\hat{U}(\theta)$ by direct control. Meanwhile, direct control also exhibits much lower errors with $\varepsilon \sim O(10^{-2})$. For QuMIS, the error accumulates and finally reaches $O(10^{-1})$ that is about ten times larger than that by direct control. Therefore, from the perspective of QuVIS, it becomes less efficient and accurate by decomposing the $\hat{U}(\theta)$ into the product of $\hat{S}(\alpha) \hat{R}^z(\theta_1) \hat{C} \hat{R}^z(\theta_2) \hat{C} \hat{R}^z(\theta_3)$.
CNOT and the single-qubit rotations.

The pulse sequences can be optimized for the quantum platforms with different interactions. Fig. 5 shows the time cost \(T \) and the corresponding error \(\varepsilon \) for the \(N \)-qubit swap circuit using direct control with Ising and Heisenberg interactions. The circuit swaps the first qubit to the last [see the inset of Fig. 5(a)]. The time \(T \) is estimated by keeping the error of each elementary gate to be \(O(10^{-1}) \) or less. Linear scaling of \(T \) given by Eq. (6) is observed for both kinds of interactions. Thanks to the flexibility of the optimization algorithm, the pulse sequences can be obtained for any types and strengths of the interactions, and the error of realizing the elementary gates can be readily estimated.

IV. SUMMARY

We here propose the quantum variational instruction set (QuVIS) for the efficient quantum computing based on the dynamics of the interacting spin systems controlled by pulse sequences of magnetic fields. The key idea of QuVIS is by flexibly defining the multi-qubit elementary gates, where we ignore the intermediate processes but optimize the magnetic fields to directly realize the target unitary transformations. By taking the \(N \)-qubit quantum Fourier transformation as an example, significant reductions on the time cost and error accumulations are demonstrated compared with the standard quantum instruction set. QuVIS provides a flexible quantum compiling scheme generally for the quantum platforms with known interactions. For the cases where the interactions are unknown, one can combine with the methods that estimate the interactions using, e.g., the machine learning of the local observables and reduced density matrices [72–74].

ACKNOWLEDGMENT

This work is supported by NSFC (Grant No. 12004266, No. 11834014, No. 12075159, and No. 12171044), Beijing Natural Science Foundation (Grant No. Z190005), Foundation of Beijing Education Committees (Grant No. KM202010028013), the key research project of Academy for Multidisciplinary Studies, Capital Normal University, and the Academician Innovation Platform of Hainan Province.

[1] Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger, and Benoît Valiron, “Quipper: a scalable quantum programming language,” in Proceedings of the 34th ACM SIGPLAN conference on Programming language design and implementation (2013) pp. 333–342.
[2] Dave Wecker and Krysta M Svore, “Liqui > : A software design architecture and domain-specific language for quantum computing,” (2014), arXiv:1402.4467.
[3] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T Chong, and Margaret Martonosi, “Scaffcc: Scalable compilation and analysis of quantum programs,” Parallel Computing 45, 2–17 (2015).
[4] Frederic T Chong, Diana Franklin, and Margaret Martonosi, “Programming languages and compiler design for realistic quantum hardware,” Nature 549, 180–187 (2017).
[5] Thomas Häner, Damian S Steiger, Krysta Svore, and Matthias Troyer, “A software methodology for compiling quantum programs,” Quantum Science and Technology 3, 020501 (2018).
[6] Xiang Fu, Michel Adriaan Rol, Cornelis Christiaan Bultink, J Van Someren, Nader Khamassi, Imran Ashraf, RFL Vermeulen, JC De Sterke, WJ Vlothuizen, RN Schouten, et al., “An experimental microarchitecture for a superconducting quantum processor,” in Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (2017) pp. 813–825.
[7] Jeremy L O’Brien, Akira Furusawa, and Jelena Vučković, “Photonic quantum technologies,” Nature Photonics 3, 687–695 (2009).
[8] Álán Aspuru-Guzik and Philip Walther, “Photonic quantum simulators,” Nature physics 8, 285–291 (2012).
[9] Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and William D Oliver, “A quantum engineer’s guide to superconducting qubits,” Applied physics reviews 6, 021318 (2019).
[10] David C. McKay, Stefano Filipp, Antonio Mezzacapo, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta, “Universal gate for fixed-frequency qubits via a tunable bus,” Phys. Rev. Appl. 6, 064007 (2016).
[11] Jerry M. Chow, A. D. Córcoles, Jay M. Gambetta, Chad Rigetti, B. R. Johnson, John A. Smolin, J. R. Rozen, George A. Keefe, Mary B. Rothwell, Mark B. Ketchen, and M. Steffen, “Simple all-microwave entangling gate for fixed-frequency superconducting qubits,” Phys. Rev. Lett. 107, 080502 (2011).
[12] Matthew Reagor, Christopher B Osborn, Aleks Tezak, Alexey Staley, Guenevere Prawiroatmodjo, Michael Scheer, Nasser Ali-doust, Eyob A Sete, Nicolas Didier, Marcus P da Silva, et al., “Demonstration of universal parametric entangling gates on a multi-qubit lattice,” Science Advances 4, eaao3603 (2018).
[13] David G. Cory, Mark D. Price, and Timothy F. Havel, “Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing,” Physica D: Nonlinear Phenomena 120, 82–101 (1998), proceedings of the Fourth Workshop on Physics and Consumption.
[14] Jonathan A Jones, RH Hansen, and Michael Mosca, “Quantum logic gates and nuclear magnetic resonance pulse sequences,” Journal of Magnetic Resonance 135, 353–360 (1998).
[15] Jonathan A Jones and Michele Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” The Journal of chemical physics 109, 1648–1653 (1998).
[16] Lieven MK Vandersypen, Matthias Steffen, Gregory Bryta, Costantino S Yannoni, Mark H Sherwood, and Isaac L. Chuang, “Experimental realization of shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001).
[17] L. M. K. Vandersypen and I. L. Chuang, “Nmr techniques for quantum control and computation,” Rev. Mod. Phys. 76, 1037–1069 (2005).
[18] Ji Bian, Min Jiang, Jiangyu Cui, Xiaomei Liu, Botao Chen, Yunlan Ji, Bo Zhang, John Blanchard, Xinhua Peng, and Jiangfeng Du, “Universal quantum control in zero-field nuclear magnetic
resonance,” Phys. Rev. A 95, 052342 (2017).
19] Isaac L. Chuang, Neil Gershenfeld, and Mark Kubinec, “Experimental implementation of fast quantum searching,” Phys. Rev. Lett. 80, 3408–3411 (1998).
20] Jonathan A Jones, “Fast searches with nuclear magnetic resonance computers,” Science 280, 229–229 (1998).
21] Jingfu Zhang, Zhiheng Lu, Lu Shan, and Zhiwei Deng, “Realization of generalized quantum searching using nuclear magnetic resonance,” Phys. Rev. A 65, 034301 (2002).
22] Peter W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Review 41, 303–332 (1999), https://doi.org/10.1137/S0036144598347011.
23] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd, “Quantum algorithm for linear systems of equations,” Phys. Rev. Lett. 103, 150502 (2009).
24] Andrew S. Darmawan, Gavin K. Brennen, and Stephen D. Bartlett, “Measurement-based quantum computation in two-dimensional phase of matter,” New Journal of Physics 14, 013023 (2012).
25] Richard Jozsa, “Quantum algorithms and the Fourier transform,” Rev. Mod. Phys. 80, 1053–1074 (2008).
26] Jonathan A. Jones, “Fast searches with nuclear magnetic resonance computers,” Science 280, 229–229 (1998).
27] Ying Lu, Yue-Min Li, Peng-Fei Zhou, and Shi-Ju Ran, “Preparation of many-body ground states by time evolution with variational microscopic magnetic fields and incomplete interactions,” Physical Review A 104, 052413 (2021).
28] Ilija Khait, Juan Carraresquilla, and Divira Segal, “Optimal control of quantum thermal machines using machine learning,” Phys. Rev. Research 4, L013029 (2022).
29] Artur Ekert and Richard Josza, “Quantum communication and Shor’s factoring algorithm,” Rev. Mod. Phys. 68, 733–753 (1996).
30] John Preskill, “Quantum computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
31] Dominic V. Else, Ilia Schwarz, Stephen D. Bartlett, and Andrew C. Doherty, “Symmetry-protected phases for measurement-based quantum computation,” Phys. Rev. Lett. 108, 240505 (2012).
32] Keeskei Fujiki and Tomoyuki Morimae, “Topologically protected measurement-based quantum computation on the thermal state of a nearest-neighbor two-body hamiltonian with spin-3/2 particles,” Phys. Rev. A 85, 010304 (2012).
33] Andrew S. Darmawan, Gavin K. Brennen, and Stephen D. Bartlett, “Measurement-based quantum computation in a two-dimensional phase of matter,” New Journal of Physics 14, 013023 (2012).
34] Tzu-Chi Wei and Robert Rausendorf, “Universal measurement-based quantum computation with spin-2 affleck-kennedy-lieb-tasaki states,” Phys. Rev. A 92, 012310 (2015).
35] Tzu-Chi Wei and Ching-Yu Huang, “Universal measurement-based quantum computation in two-dimensional symmetry-protected topological phases,” Phys. Rev. A 96, 032317 (2017).
36] A.M. Steane, “Quantum reed-muller codes,” IEEE Transactions on Information Theory 45, 1701–1703 (1999).
37] A. R. Calderbank and Peter W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996).
38] Tzu-Chi Wei and Robert Rausendorf, “Universal quantum computation,” Phys. Rev. Lett. 105, 020502 (2005).
39] A. R. Calderbank and Peter W. Shor, “Quantum error correction,” SIAM Review 45, 1–38 (1999).
40] Artur Ekert and Richard Josza, “Quantum communication and Shor’s factoring algorithm,” Rev. Mod. Phys. 68, 733–753 (1996).
41] John Preskill, “Quantum computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
42] Keeskei Fujiki and Tomoyuki Morimae, “Topologically protected measurement-based quantum computation on the thermal state of a nearest-neighbor two-body hamiltonian with spin-3/2 particles,” Phys. Rev. A 85, 010304 (2012).
43] Andrew S. Darmawan, Gavin K. Brennen, and Stephen D. Bartlett, “Measurement-based quantum computation in a two-dimensional phase of matter,” New Journal of Physics 14, 013023 (2012).
44] Tzu-Chi Wei and Robert Rausendorf, “Universal measurement-based quantum computation with spin-2 affleck-kennedy-lieb-tasaki states,” Phys. Rev. A 92, 012310 (2015).
45] Tzu-Chi Wei and Ching-Yu Huang, “Universal measurement-based quantum computation in two-dimensional symmetry-protected topological phases,” Phys. Rev. A 96, 032317 (2017).
46] A. R. Calderbank and Peter W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A 54, 1098–1105 (1996).
47] A.M. Steane, “Quantum reed-muller codes,” IEEE Transactions on Information Theory 45, 1701–1703 (1999).
48] A. R. Calderbank and Peter W. Shor, “Quantum error correction,” SIAM Review 45, 1–38 (1999).
49] Artur Ekert and Richard Josza, “Quantum communication and Shor’s factoring algorithm,” Rev. Mod. Phys. 68, 733–753 (1996).
50] John Preskill, “Quantum computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
[59] Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory, “Implementation of the quantum fourier transform,” Phys. Rev. Lett. 86, 1889–1891 (2001).

[60] Murphy Yuezhn Niu, Sergio Boixo, Vadim N. Smelyanskiy, and Hartmut Neven, “Universal quantum control through deep reinforcement learning,” 5, 33.

[61] Yuval Baum, Mirko Amico, Sean Howell, Michael Hush, Maggie Liuzzi, Pranav Mundada, Thomas Merkh, Andre R.R. Carvalho, and Michael J. Biercuk, “Experimental deep reinforcement learning for error-robust gate-set design on a superconducting quantum computer,” PRX Quantum 2, 040324 (2021).

[62] Hale F Trotter, “On the product of semi-groups of operators,” Proceedings of the American Mathematical Society 10, 545–551 (1959).

[63] Masuo Suzuki, “Generalized trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems,” Communications in Mathematical Physics 51, 183–190 (1976).

[64] See the official website of Pytorch at https://pytorch.org/.

[65] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, edited by Yoshua Bengio and Yann LeCun (2015).

[66] P.W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science (1994) pp. 124–134.

[67] Lov K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).

[68] See the Supplemental Material at [the url provided by the publisher].

[69] Jun Li, Ruixia Fan, Hengyan Wang, Bingtian Ye, Bei Zeng, Hui Zhai, Xinhua Peng, and Jiangfeng Du, “Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator,” Phys. Rev. X 7, 031011 (2017).

[70] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,” (2017), arXiv:1412.6980 [cs.LG].

[71] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).

[72] Tao Xin, Sui Lu, Ningping Cao, Galit Anikeeva, Dawei Lu, Jun Li, Guili Long, and Bei Zeng, “Local-measurement-based quantum state tomography via neural networks,” npj Quantum Information 5, 109 (2019).

[73] Xue-Yang Li, Feng Lou, Xin-Gao Gong, and Hongjun Xiang, “Constructing realistic effective spin hamiltonians with machine learning approaches,” New Journal of Physics 22, 053036 (2020).

[74] Xinran Ma, Z. C. Tu, and Shi-Ju Ran, “Deep learning quantum states for Hamiltonian estimation,” Chinese Physics Letters 38, 110301 (2021).
SUPPLEMENTAL MATERIAL OF “QUANTUM COMPILING WITH VARIATIONAL INSTRUCTION SET FOR ACCURATE AND FAST QUANTUM COMPUTING”

In this supplemental material, we provide more information on realizing N-qubit quantum Fourier transformation (QFT) by direct control, and the sequences of magnetic fields for realizing the elementary gates $\{\hat{U}_m\} (m = 0, \ldots, 8)$ in the 3-qubit quantum variational construction set (QuVIS) for QFT.

As an example, we take the time-dependent Hamiltonian as the quantum Ising model with transverse fields, which reads

$$\hat{H}(t) = \sum_{n=1}^{N-1} 2\pi \hat{S}^z_n \hat{S}^z_{n+1} - \sum_{n=1}^{N} [2\pi h^x_n(t) \hat{S}^x_n + 2\pi h^y_n(t) \hat{S}^y_n].$$

(11)

Its adjustable parameters only concern the one-body terms, i.e., the magnetic fields along the spin-x and y directions. The evolution operator for the time duration T is approximated by Trotter-Suzuki decomposition (we take Plank constant $\hbar = 1$ as the energy scale) as

$$e^{-i \int_0^T \hat{H}(t) dt} \simeq \prod_{k=1}^{K} \prod_{\alpha=1}^{[\hat{\tau}/\tau']} \exp \left[-i 2\pi \tau \left(\sum_{n=1}^{N-1} \hat{S}^z_n \hat{S}^z_{n+1} + \sum_{n=1}^{N} h^x_n \hat{S}^x_n + \sum_{n=1}^{N} h^y_n \hat{S}^y_n \right) \right].$$

(12)

with $\tau = T/K$ controlling the maximal frequency of the pulse sequences, $\tau' \leq \tau$ the Trotter step that controls the Trotter error, and $[\star]$ the round-down operation. Specifically speaking, we assume that the magnetic field on the n-th qubit along the α direction for $(k-1)\tau < t \leq k\tau$ takes the constant value $h^\alpha_{n,k}$. An extra term $\exp \left[-i 2\pi \tau' \hat{H}(t) \right]$ will be added for each k if τ'/τ is not an integer, with $\tau' = \tau - \tau[\hat{\tau}/\tau']$.

To realize a target unitary transformation \hat{U} (which can be a circuit or an elementary gate in a QuVIS), the goal is to optimize $\{h^\alpha_{n,k}\}$ so that the evolution operator approximately gives the unitary transformation, i.e., $\hat{U} \simeq e^{-i \int_0^T \hat{H}(t) dt}$. The error can be characterized by the distance between these two operators as

$$\varepsilon = \left| \hat{U} - e^{-i \int_0^T \hat{H}(t) dt} \right|.$$

(13)

The minimization of ε suffers from the local minima. In the reference [Phys. Rev. A 104, 052413 (2021)], the fine-grained time optimization (FGTO) is proposed. Its key idea is to gradually decrease τ the discretization of time. We start from a relatively large τ and reduce it to $\tau/2$ when $\{h^\alpha_{n,k}\}$ converge. The length (i.e., the dimension of the index k) of the pulse sequences will be doubled. At the beginning of the optimization with a new (smaller) τ, the pulse sequences are initialized as $h^\alpha_{n,2k'} = h^\alpha_{n,k}$.

Fig. 8 shows the error ε against T for the elementary gate U_0 and U_1 of the 3-qubit QuVIS, where ε gradually decreases with T and finally converges to about $O(10^{-6})$. Such a convergence is relevant to the gradient step, the optimization tricks, and etc.

![FIG. 6. (Color online) The error ε [Eq. (13)] with different total evolution duration T for the N-qubit QFT with $N = 2, \ldots, 6$ by the direct control. In general, one can get lower ε by increasing T. Longer evolution time is required to reach a preset error if N increases. The errors from the direct control are controlled to be about 10^{-2}.](image-url)
FIG. 7. (Color online) (a) The 18 elementary gates in the 3-qubit QuVIS for compiling the N-qubit QFT circuits. (b) The quantum circuits obtained by compiling the N-qubit QFT using 3-qubit QuVIS.

FIG. 8. (Color online) The error ε [Eq. (13)] against T for the elementary gate U_0 and U_1 of 3-qubit QuVIS.
TABLE II. The magnetic field \(h_{n,k}^x \) and \(h_{n,k}^y \) to realize the \(U_0 \). We take the total time \(T = 0.3 \), \(K = 30 \), and thus the Trotter step \(\tau = 0.3/30 \).

\(k \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 1(y) \)	\(n = 2(y) \)
1	-6.3436	-3.7902	-10.6531	-2.2952
2	-3.0663	-2.5666	-7.8483	-0.9786
3	-0.8042	-1.4897	-2.7742	-0.5759
4	1.4108	0.2407	-2.0954	1.4366
5	-0.2386	0.8113	-0.7169	-0.8223
6	-0.6567	-0.4742	-1.0502	-0.1966
7	-2.5890	2.2577	1.8811	1.2432
8	-3.5995	8.3355	4.0959	3.7025
9	-9.7905	15.0687	8.3486	9.4295
10	-10.9155	14.8157	8.1618	9.3899
11	-7.2839	9.6363	3.7334	4.5950
12	-1.7695	2.3193	0.4712	1.1888
13	-0.7274	0.7271	0.2993	-0.5318
14	-0.0610	-1.7262	0.3490	-0.6623
15	-0.5250	-0.4243	0.4238	0.2466
16	1.7278	-0.2230	-0.5317	-1.1350
17	0.0913	0.4952	0.4933	0.5174
18	1.1080	0.0677	-0.8623	1.2928
19	0.5613	1.2517	-0.7554	0.1241
20	-1.4861	-1.0340	-0.0924	-0.5402
21	-0.4367	-0.1092	1.2535	0.4316
22	0.4703	0.3763	0.1804	-1.5238
23	1.3779	0.0176	-0.5020	1.3240
24	-0.0154	1.4071	-0.3968	-0.1486
25	0.2852	0.8851	-1.1667	-0.7854
26	1.0493	0.2743	-0.1713	0.5072
27	-1.0012	0.0204	-0.4635	0.1802
28	-0.1479	-1.7088	1.1921	2.6167
29	0.2587	-1.3326	0.3467	8.3018
30	-3.6296	-4.6202	1.6824	13.9121
TABLE III. The magnetic field \(h_{n,k}^x \) and \(h_{n,k}^y \) to realize the \(U_1 \). We take the total time \(T = 2.1 \), \(K = 210 \), and thus the Trotter step \(\tau = 2.1/210 \).

\(k \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 2(y) \)	\(n = 1(y) \)	\(n = 2(y) \)	
1	-3.4147	-3.8211	-2.0099	16.7485	-0.7455	3.0740
2	-0.8133	0.2982	-0.9820	5.5036	-0.4445	4.3913
3	0.0319	0.3530	-1.1379	2.4777	0.1856	4.3259
4	1.0085	1.8444	-0.8803	-0.2038	-0.5711	1.7134
5	1.8824	2.4604	-1.5054	2.3626	1.0999	1.3400
6	0.0705	0.6606	-1.6240	-0.3138	1.3012	0.1534
7	1.2676	-0.1463	-1.6989	-0.0276	0.6886	-0.0877
8	-0.0844	0.4414	-0.2004	-0.1291	-1.6622	-2.4073
9	-0.0049	0.5100	-0.3836	0.2350	1.2074	0.5928
10	0.2562	1.2860	0.5758	0.4566	-0.5847	-0.7951
11	0.4229	-0.2634	2.3422	0.3876	0.7007	-1.6211
12	0.6171	-0.8857	0.5191	-0.6533	-0.3883	-3.2495
13	-1.0714	0.0198	2.4038	-0.2674	0.0805	-3.5685
14	0.3092	-0.3611	3.1461	-0.5552	-1.2283	-2.9055
15	-0.3125	-0.5026	1.5848	-0.8636	-0.3548	-3.4281
16	-0.2428	0.4804	-0.4931	1.5621	0.1488	-3.4240
17	0.8039	0.5937	1.0759	-0.6678	0.5464	-3.9306
18	-0.9167	-0.8745	-0.0585	0.8266	0.3088	-4.9664
19	-0.5853	-0.9372	-0.2507	-1.0405	0.1533	-4.1153
20	-0.0736	-0.7058	-0.6681	-0.9849	-0.8221	-0.8515
21	-1.0554	-0.9907	-1.2716	-0.1011	1.3063	0.1300
22	-2.3522	-2.1188	1.0767	-0.6782	0.8369	-1.1784
23	-1.2217	-4.0387	1.1589	-2.8714	-1.3640	-0.8764
24	-1.9387	-1.5465	0.5893	-1.4291	-0.1402	-0.5009
25	-1.6625	-2.3744	0.1241	-1.4803	0.4519	-1.1503
26	-2.5193	-4.0149	1.9440	-2.4898	-1.0445	0.3162
27	-0.4150	-1.7092	2.0026	-1.8115	-1.0488	-0.4063
28	-2.5318	-2.6098	0.4450	-1.4753	0.2544	0.6979
29	-2.1763	-3.4708	0.9842	-2.6846	-1.4472	0.7161
30	-0.6029	-1.0750	0.6086	-2.3789	0.3496	-0.1641
31	-1.5332	-3.1712	-1.0694	-1.0335	-1.1311	1.5650
32	-1.1240	-3.1616	1.5169	-1.7175	-0.7458	1.2908
33	-1.8252	-1.0948	0.7538	-1.3476	-0.0981	-0.4058
34	0.3358	-1.2475	0.7883	-1.0972	1.4659	0.0194
35	-0.9043	0.2713	0.2336	0.1542	0.4812	0.2448
36	1.0882	0.8272	1.0814	1.0142	-1.8801	0.0957
37	0.7293	1.5899	-0.0977	-0.1336	0.8470	0.4472
38	0.2424	-0.1857	1.4733	0.7816	-0.5369	-1.1616
39	0.5022	1.8581	0.6235	1.1648	-0.5315	-0.6321
40	1.1886	1.1018	0.4796	0.2705	0.6710	-0.0911
41	0.2829	0.7428	0.0290	1.6281	-0.4039	-0.3375
42	-0.3313	0.6984	-0.3877	0.3296	0.3192	-1.0189
43	0.6499	-1.0900	-0.6471	-0.6993	-0.1076	0.6677
44	-1.1131	-0.2451	0.5027	-0.2010	-0.5470	0.2007
45	1.5389	1.5040	1.0088	1.3115	-0.7731	-0.2459
46	-0.2117	0.7633	-0.5196	-0.0789	0.6081	-2.1055
47	0.6576	-0.6756	0.0015	0.3407	-0.3122	0.0659
48	-0.5639	-0.2928	-0.3767	-0.6435	-0.0115	2.1621
49	0.4355	0.0862	0.1733	-0.2984	-0.6924	0.5241
50	-0.5587	-0.0612	-1.4305	0.2353	0.1287	0.2409
U_1	$n = 1(x)$	$n = 2(x)$	$n = 3(x)$	$n = 1(y)$	$n = 2(y)$	$n = 3(y)$
-------	------------	------------	------------	------------	------------	------------
k = 51	-0.8192	-0.7235	-0.6687	0.7281	0.9322	-0.7641
k = 52	0.2525	-0.0066	1.0928	-1.5057	-1.9388	-0.7399
k = 53	-0.1577	-1.1730	-0.5157	-0.2108	0.6388	-0.1768
k = 54	0.0171	0.9999	0.0703	-0.1239	-0.6903	0.2969
k = 55	-0.1934	-0.8984	-0.3649	-0.1265	0.4941	-0.8252
k = 56	-0.5435	0.5608	-0.0205	1.1567	-2.0490	1.8442
k = 57	0.3730	0.2435	0.6328	0.0253	0.4051	-1.0176
k = 58	-0.1041	1.1201	-0.2486	0.1955	0.4392	0.2792
k = 59	0.6712	-1.7599	-1.6239	-0.5149	0.2197	0.0073
k = 60	-0.3862	0.3891	0.9713	-0.0644	-0.9717	1.0222
k = 61	0.1091	0.7370	0.2535	-0.1296	-0.4633	-0.0708
k = 62	-0.9368	-1.2044	0.1774	1.0362	0.0703	-0.9852
k = 63	-0.1158	0.7096	-0.4063	-0.5891	-0.4696	-1.2398
k = 64	0.7458	-0.0230	-0.5256	0.5461	-0.8800	0.5363
k = 65	0.4087	0.3105	1.0175	0.4399	0.8308	0.4978
k = 66	-1.1336	-1.1318	-1.3428	-0.6749	-0.7581	-0.2409
k = 67	-0.4246	0.6042	0.0546	0.2102	-0.9284	-0.0245
k = 68	-0.3268	-0.1534	-1.1469	0.4092	-0.3580	-0.3806
k = 69	0.3065	-0.3756	-0.1318	0.5049	-0.7214	-0.4102
k = 70	-0.1396	0.5964	0.9494	-1.1289	0.4816	-0.2729
k = 71	-0.0415	-0.1126	-1.2562	0.4876	-0.1782	0.0140
k = 72	0.0742	-0.6520	0.1015	0.8096	-1.5120	0.9765
k = 73	-1.2607	0.5914	0.2961	0.4578	-0.5015	-0.6162
k = 74	-0.2426	0.1014	-0.9106	0.3241	-0.2605	-0.6473
k = 75	0.0963	-0.8962	-0.3299	0.3464	-0.2060	-0.0192
k = 76	-2.4564	-0.9783	-0.1703	1.2220	-2.8604	-0.1388
k = 77	-1.3282	1.1254	-1.3201	1.9518	-2.0831	0.1960
k = 78	-3.3464	-1.9387	0.1348	2.2226	-2.1156	0.9485
k = 79	-1.2904	0.0854	-0.5258	3.4616	-3.3618	0.2907
k = 80	-3.6484	-0.2048	0.1880	1.9580	-3.3475	-0.5270
k = 81	-4.0249	0.6047	0.7093	2.4865	-3.0199	-0.2750
k = 82	1.1158	0.0480	-0.0764	1.4542	-0.4802	-0.7908
k = 83	-1.9373	-0.1539	-0.6784	0.5798	-0.3541	1.2778
k = 84	-0.4480	-0.4258	-0.1531	0.4771	-1.0867	-0.7276
k = 85	-0.9380	-0.3957	0.7547	1.3876	-1.3364	-0.8330
k = 86	-0.6785	-0.0601	0.2361	1.1397	-1.2687	1.1904
k = 87	-0.8903	1.4750	0.7987	2.0930	-0.3737	0.5962
k = 88	0.2481	-0.3543	-1.3561	-1.2810	-0.3077	-0.9846
k = 89	0.5961	0.9152	-1.0651	-0.9891	0.8453	-0.7857
k = 90	0.2093	0.6796	-0.0943	-1.1174	1.6282	0.7937
k = 91	1.2496	-0.2015	0.8431	0.1686	1.1860	-0.0055
k = 92	0.7832	-0.9352	-0.3586	-0.5382	-0.0002	-0.7935
k = 93	-0.1817	-0.0195	0.0331	0.2164	-0.8404	0.2537
k = 94	-0.6142	1.0755	-0.6808	0.1275	0.4172	-0.9302
k = 95	0.5604	0.1567	-0.4618	-1.3930	1.7317	1.2034
k = 96	0.4671	-0.0258	0.1204	-0.0171	-0.8760	-0.0719
k = 97	1.3370	0.0636	-0.6323	0.0008	1.3928	-1.5317
k = 98	0.3095	0.1771	-0.9435	-1.0459	0.9731	-0.1540
k = 99	-0.0927	-0.6081	-0.7563	0.6624	-0.4739	0.5242
k = 100	-0.2242	0.9923	0.4157	-1.1845	0.5700	0.3070
\(U_1 \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 3(x) \)	\(n = 1(y) \)	\(n = 2(y) \)	\(n = 3(y) \)
---	---	---	---	---	---	---
k = 101	-0.0430	-0.1798	-0.8335	0.2956	0.1394	0.1235
k = 102	0.1795	0.5883	1.3912	-0.5283	0.2500	-0.4987
k = 103	0.7849	-0.6582	-1.8932	-0.8270	1.3872	0.1138
k = 104	-0.2103	-0.2454	0.6195	1.5247	-0.8407	-0.5403
k = 105	-0.5493	-0.0167	-1.0297	-0.8404	0.1436	0.3149
k = 106	-0.0588	0.3188	0.3290	0.3744	0.2609	0.6131
k = 107	0.7508	-0.6567	0.4842	0.2464	0.4345	-0.6913
k = 108	-0.3468	0.5013	-0.2360	-1.0026	-0.7936	0.0466
k = 109	-0.8126	-0.0325	0.4108	0.7466	0.2845	0.6307
k = 110	0.3814	-0.2837	0.3226	-0.7339	-0.0248	0.0843
k = 111	-0.8790	-0.7201	1.0436	0.4348	-0.6178	1.2581
k = 112	0.4659	-1.1009	0.9424	0.2651	-0.8523	0.0310
k = 113	0.4561	0.2099	1.4528	0.4682	-1.3905	0.9090
k = 114	-1.4685	-0.4346	2.8768	0.2638	-2.0963	0.8676
k = 115	-0.4281	-0.2747	1.9207	-0.8205	-1.2604	0.8229
k = 116	1.2683	-0.2786	1.8562	-0.1067	-1.3139	0.6329
k = 117	-0.3188	-1.2553	3.0456	1.4255	-2.1918	1.3352
k = 118	1.1799	0.0002	2.4763	-0.2141	-2.7083	0.4553
k = 119	-0.4029	0.0553	1.2929	0.1120	-0.9577	0.5246
k = 120	-0.5726	-0.7088	1.5396	-0.1195	-1.5755	0.2934
k = 121	0.5433	0.4429	1.8865	-0.8678	-1.8923	1.7828
k = 122	-0.8434	-0.2333	1.9155	-0.0524	-0.5733	-0.0744
k = 123	0.8640	-0.7813	0.5913	0.5346	-1.6004	-0.2522
k = 124	1.0682	0.5988	0.3504	-0.3432	-0.6974	0.9899
k = 125	0.4970	0.3628	-0.1384	-0.1251	-0.4201	0.0601
k = 126	0.1049	-0.5864	1.2452	0.2847	0.0280	-1.2063
k = 127	-0.4758	-1.2236	0.5580	-0.5949	-0.7440	1.7869
k = 128	-0.0959	0.4593	1.0287	-0.7532	-2.1575	-0.6792
k = 129	0.9805	-0.4649	0.1448	-1.0190	0.2305	0.0536
k = 130	0.7373	-0.9612	0.1200	1.0262	-1.0259	0.9496
k = 131	-0.8106	1.6781	-0.5863	-0.2583	0.9478	0.4814
k = 132	-0.5512	-1.5649	1.1185	0.4441	-0.6738	-1.4479
k = 133	1.4686	-0.0925	-0.8895	-0.3206	-0.2144	0.9672
k = 134	-0.7317	0.0583	0.6345	-0.4489	-0.4568	-0.2971
k = 135	0.9157	-0.3134	0.9340	-0.0508	-0.6724	-0.0738
k = 136	0.4383	0.3584	-0.3337	-0.3652	-0.7035	0.1259
k = 137	0.1792	-0.1678	0.1198	0.5327	0.4406	1.3347
k = 138	-0.1865	-0.7605	-0.9812	-0.4094	-0.6515	-1.6239
k = 139	-0.6334	0.7768	1.8492	0.0911	-0.1065	0.5077
k = 140	0.6621	-0.7636	-0.3521	-1.3415	-0.6762	-0.2149
k = 141	-0.4066	0.7882	0.0568	1.4276	0.9405	0.0743
k = 142	-0.4697	-1.1260	0.0779	-0.3740	-0.4493	0.7198
k = 143	0.9803	-0.1126	-0.6304	-0.3264	-1.1469	-0.2948
k = 144	0.7310	-0.1349	0.6400	-1.6119	-0.7477	-0.1130
k = 145	0.3036	1.0495	0.4112	-0.1393	0.9448	-0.1434
k = 146	-0.4152	-0.8299	0.3305	2.0436	-0.9542	0.5407
k = 147	0.1787	0.3528	-1.6006	-0.2565	0.3296	-1.0705
k = 148	-0.0072	-0.6754	1.0168	0.7854	0.3271	0.9556
k = 149	-0.6233	0.1163	0.6022	-0.2565	-0.0887	-0.8145
k = 150	1.5196	-0.5514	0.5686	-1.3810	-0.7360	0.7011
k	151	152	153	154	155	156
-------	-------------	-------------	-------------	-------------	-------------	-------------
	-1.4397	-0.8447	-0.4617	0.9424	0.8580	-1.4291
	0.4479	-0.3353	-0.0559	-0.3454	-0.3978	-0.9241
	-0.5748	-0.6616	0.7613	0.7606	-0.5344	0.6070
	0.5781	-0.0446	-0.3373	-1.0824	-0.2750	-0.9404
	-0.2040	-0.2068	0.0640	0.3090	0.5280	0.2569
	1.1206	-0.6124	0.7021	1.1042	0.5038	-0.9468
	-0.1648	-1.2321	0.7535	-1.8622	-0.0313	-0.2164
	0.1257	-0.8960	-0.6550	-0.4567	-0.6064	-1.0363
	-1.4294	0.5294	-0.4207	1.8168	-0.8600	0.3855
	-1.0149	0.9916	-0.9909	-1.2859	-0.1199	1.5385
	0.1661	-0.7599	0.8022	2.0893	-0.0361	-1.1644
	0.5705	-0.0648	-1.3692	0.0541	-1.8650	0.9125
	-0.5406	2.4538	-1.0424	0.3249	-0.8959	2.2856
	-0.5616	2.5351	-0.9666	0.0655	-1.2104	2.6288
	0.4635	1.0112	-0.5917	-1.4067	0.0499	0.6648
	0.9018	2.4805	-1.6409	0.9480	-1.3873	2.5865
	-1.6056	1.5161	-0.2536	-0.2322	-0.2005	1.7128
	0.4039	1.0885	-0.3960	0.5404	-0.8573	0.7622
	0.4089	1.8984	-2.3446	0.6874	-1.0016	2.4507
	-1.4479	3.0304	-0.9721	0.3428	-2.1613	1.8583
	0.2109	3.6182	-1.9075	0.2083	-0.2391	3.7422
	2.6034	2.2206	0.3099	-0.0615	0.1650	1.5420
	0.9751	2.0029	-1.1253	-0.3173	0.2215	1.5627
	1.3518	1.0694	-0.2038	1.4124	0.3458	1.6760
	-0.3838	0.0626	-0.7435	-0.8287	-0.5211	-0.0841
	0.1213	0.0826	1.2323	-0.0121	0.2944	0.2832
	1.2852	1.0426	-0.6974	-1.1975	-0.4452	0.2115
	0.2056	-0.0484	0.2662	1.7223	0.0221	-0.0082
	1.6371	-0.5046	-1.5263	-0.9854	-0.5302	0.4902
	-2.2776	-1.0252	0.8653	0.0176	0.5750	-0.2287
	0.3878	1.2829	0.2964	-1.2685	-0.0072	0.2623
	-0.4517	-0.9953	-0.3527	-0.0975	-1.6893	0.4367
	-0.8167	0.3383	-0.0868	0.0351	-0.1657	-0.0760
	-0.4117	1.1684	-0.7079	-0.0488	-0.3323	-0.5868
	-1.3313	0.5939	-0.6475	-0.2641	-0.6028	2.1760
	-0.3075	-0.4660	0.1530	-2.1002	-0.0383	-0.9303
	-0.5409	-1.2327	-0.5156	-0.8451	0.1434	1.0490
	-0.2733	2.0398	0.6810	-1.1512	-1.3900	0.4584
	0.6202	0.3336	-0.5326	-0.3926	0.3803	1.0011
	-0.6963	-0.1997	-0.6772	-2.2227	-1.1096	-0.1659
	-1.0259	0.3642	1.6919	0.9827	0.8769	-0.6163
	-0.2158	-2.4216	0.2529	-1.6489	0.7045	-1.1849
	-0.5857	-2.4965	1.4981	-1.6325	1.7687	-2.5781
	-0.3266	-4.9159	5.6041	2.6711	2.7437	-5.4814
	-1.2466	-6.6847	4.4555	0.4559	5.6266	-6.3627
	-2.1941	-10.1357	6.7105	-1.2221	4.9589	-8.4529
	-3.2330	-8.7070	7.1565	-3.3480	5.2573	-6.8711
	-3.5933	-4.3359	3.3765	-3.2594	3.4150	-4.3395
	-3.6489	-3.2714	2.8060	-3.7303	2.2632	-4.0933
	-4.3694	-1.5627	0.5476	-5.5844	1.6988	-0.6736
U_1	$n = 1(x)$	$n = 2(x)$	$n = 3(x)$	$n = 1(y)$	$n = 2(y)$	$n = 3(y)$
-------	-------------	-------------	-------------	-------------	-------------	-------------
k = 201	-1.6040	-0.8448	2.5724	-1.5631	1.0153	-0.7850
k = 202	0.1850	0.1846	-0.4303	0.0155	-0.0768	-0.3154
k = 203	1.3274	-0.1745	0.9304	-0.2085	0.1299	0.2376
k = 204	1.7737	-0.1940	-1.3270	0.5072	0.5162	-0.1313
k = 205	1.5486	0.7277	-0.7744	3.0820	-1.7889	0.4750
k = 206	1.9122	-0.2521	-0.3037	2.5793	0.1055	-0.4412
k = 207	4.2434	1.2512	-1.2009	3.0575	-0.4410	1.1753
k = 208	3.4602	-2.0269	-0.5980	3.2769	-3.5424	-0.0797
k = 209	4.9201	-0.0843	0.1663	4.9350	-7.5115	0.3765
k = 210	3.0609	-0.5940	1.9197	6.1301	-13.2567	-0.7216
TABLE IV. The magnetic field \(\{ h^x_{n,k} \} \) and \(\{ h^y_{n,k} \} \) to realize the \(U_2 \). We take the total time \(T = 2.1 \), \(K = 210 \), and thus the Trotter step \(\tau = 2.1/210 \).

\(k \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 2(y) \)	\(n = 1(y) \)	\(n = 2(y) \)	
1	-0.9321	2.2444	5.0748	15.8218	0.0510	-2.0459
2	-1.2790	-0.0636	4.4257	7.2754	-0.4515	-1.9556
3	1.2962	-0.2390	1.7553	2.2986	0.0086	-0.6888
4	-0.9038	0.6719	2.7338	0.5179	-0.7817	-1.8169
5	0.3002	0.2591	0.5652	-1.0982	-1.1519	-0.1771
6	-0.0593	-1.9728	0.6902	-0.3732	0.5104	0.3538
7	-0.0150	0.0074	-0.0742	0.0991	0.5979	1.3673
8	1.6088	-1.4279	-2.2539	-0.6970	0.0165	1.1636
9	-0.6454	0.3258	-3.2610	0.4419	-0.2232	1.7090
10	0.7580	-1.3463	-0.5253	-0.6256	-0.0658	0.8976
11	0.5614	-0.1024	-4.0845	-0.5837	0.4979	-0.4207
12	1.0207	-0.2855	-1.8269	0.4573	0.1599	0.6511
13	-0.2389	0.0736	-3.1654	0.0022	0.5300	0.0870
14	-0.0768	-0.7238	-2.9826	1.6022	0.8824	1.8007
15	-1.4775	2.0828	-2.8637	-1.0238	0.6149	-0.7949
16	0.3404	-0.4100	-3.0940	-0.4125	0.0469	0.8672
17	-0.4163	0.3303	-2.4780	0.2984	0.4408	1.2418
18	-1.4336	1.6042	-3.4336	-0.5824	1.1181	0.6081
19	-0.6138	0.7518	-3.6660	-0.1739	-0.1250	-0.6821
20	-0.8359	0.9506	-0.9339	1.4022	1.3862	0.9957
21	0.0130	1.9490	-1.5253	-0.6677	0.0610	-0.8995
22	-3.9132	0.8026	-1.1969	-0.6694	1.4012	0.0307
23	-0.6604	1.6686	-1.1469	-0.3806	-0.0849	-0.1022
24	-0.4835	0.3414	0.1159	-0.4385	0.8008	-0.5930
25	-1.7296	2.3625	-0.2746	0.4451	1.4090	0.6890
26	-2.6563	1.4098	-0.0777	0.6476	1.5298	-0.2598
27	-2.7992	3.0873	0.3749	-0.6408	0.8050	2.5081
28	-3.0599	1.9044	0.7030	-0.7520	1.1567	-0.0107
29	-2.0937	1.5969	-1.0166	-0.6281	0.8256	0.2247
30	-3.1555	3.0167	0.7663	0.8230	1.7460	0.5082
31	-3.1846	1.7304	0.6906	0.7364	1.6417	0.5610
32	-1.9657	1.2769	0.7087	-1.9648	-0.0043	0.3406
33	0.4906	-0.0249	-1.6195	-0.1835	1.0928	-0.8525
34	-2.7502	0.8120	0.2484	-0.5933	-0.6990	0.7246
35	0.8468	1.5301	0.1626	0.1073	0.5081	-0.1658
36	-1.5919	-0.4863	1.1583	1.1081	-0.2712	0.4244
37	-0.3663	-0.6616	0.0776	-2.2775	0.2710	0.7481
38	1.8409	-0.3228	-0.1652	0.0488	-1.1436	-0.5240
39	1.0993	-0.8595	-0.1259	-0.6708	-0.4883	0.4428
40	0.5986	-1.0587	-0.2369	0.7991	0.3664	0.8133
41	0.7628	-1.4685	-0.1838	0.8929	-0.4263	0.2496
42	1.1323	-0.2603	-0.0124	-0.2085	-1.3270	-0.4686
43	1.8708	-0.7386	-1.1776	-0.7479	-0.0423	0.4773
44	0.8907	-1.3288	1.1145	1.5039	-0.2944	-0.1168
45	-0.7380	-0.1758	-0.9594	0.0210	0.5321	-0.2168
46	1.3662	-1.0437	0.7650	-1.0737	0.9312	-0.2940
47	0.3288	-0.0877	0.0856	0.0801	-0.4240	0.9458
48	-0.5484	1.1750	-0.1030	0.6593	0.8775	0.0205
49	-0.7790	-0.8871	-0.9870	0.0615	0.0781	-0.5871
50	-0.1899	0.0237	1.0872	0.9650	1.4161	-0.3594
\[
\begin{array}{cccccccc}						
U_2 & n = 1(x) & n = 2(x) & n = 3(x) & n = 1(y) & n = 2(y) & n = 3(y) \\						
\hline						
k = 51 & 0.8638 & 0.1006 & -1.1436 & 0.1981 & -0.9254 & 0.2057 \\						
k = 52 & -0.9101 & 0.0996 & -0.5079 & -0.7331 & -0.0426 & 0.0845 \\						
k = 53 & -0.0080 & 0.0029 & 1.3779 & -0.0895 & 0.8093 & -0.6866 \\						
k = 54 & -0.4507 & 0.2945 & 0.0438 & -0.9654 & 1.3726 & -0.7635 \\						
k = 55 & 0.8989 & -0.3776 & -0.9052 & -0.1659 & -0.3638 & -0.3753 \\						
k = 56 & -0.5178 & 0.1098 & 0.5428 & 0.4260 & 0.1111 & 1.1257 \\						
k = 57 & -0.9347 & -0.1549 & -0.5542 & 0.5124 & -0.1046 & -1.1074 \\						
k = 58 & -0.5467 & 0.7002 & 0.6888 & 1.1663 & 0.5723 & 0.5850 \\						
k = 59 & -0.4881 & -0.5088 & -0.2312 & -1.1359 & 0.3835 & -0.4397 \\						
k = 60 & 1.3351 & -0.9205 & -0.1001 & -1.0821 & -0.0069 & -0.3808 \\						
k = 61 & -0.2821 & 0.1058 & 0.6929 & -1.3747 & 0.5318 & 0.4796 \\						
k = 62 & -0.2394 & -0.2245 & -1.0760 & -0.4364 & 0.6351 & 0.8372 \\						
k = 63 & 1.4556 & -0.1621 & -0.6021 & -0.0643 & 1.0536 & -0.4349 \\						
k = 64 & 0.0052 & 0.3492 & 0.6850 & 2.1628 & -0.7467 & -1.2189 \\						
k = 65 & -0.3197 & 0.1016 & 0.3926 & -1.1907 & 0.5330 & -0.7249 \\						
k = 66 & 1.1452 & -0.4783 & -0.7764 & -0.1624 & 0.0916 & 2.0471 \\						
k = 67 & -1.0126 & 0.9789 & 0.2473 & 0.1898 & 0.1727 & -0.6747 \\						
k = 68 & 0.6102 & -0.9973 & 0.3368 & -0.3953 & 1.1227 & -0.6955 \\						
k = 69 & -0.2128 & -0.3215 & -0.5586 & 0.2307 & -0.4845 & -0.4752 \\						
k = 70 & -0.1519 & 0.0926 & 0.6919 & 0.0309 & 0.6635 & 0.9195 \\						
k = 71 & -0.0025 & -0.2085 & 0.9871 & -0.3611 & -0.0011 & 1.1313 \\						
k = 72 & 0.0161 & -0.3090 & -1.9893 & -1.3328 & 0.1982 & -0.5592 \\						
k = 73 & -0.5684 & -0.4167 & -0.0048 & 0.1386 & 0.3653 & 0.3195 \\						
k = 74 & 0.1505 & -0.3484 & 0.4884 & -0.5252 & 1.0681 & -0.4424 \\						
k = 75 & -0.3726 & -1.4227 & 0.9062 & -0.9214 & -0.0744 & 1.2909 \\						
k = 76 & -1.1528 & -1.0858 & 0.2389 & -1.4969 & 0.6927 & 0.1107 \\						
k = 77 & -0.8957 & -1.5185 & 0.5154 & -1.3855 & 0.7097 & 0.6838 \\						
k = 78 & -0.8218 & -1.0152 & -0.0289 & -3.5408 & 1.8983 & 0.6548 \\						
k = 79 & 0.1935 & -1.9288 & -0.5483 & -2.6112 & 1.5493 & -0.1404 \\						
k = 80 & -0.0135 & -1.3001 & 0.0068 & -2.6720 & 1.5208 & 1.0647 \\						
k = 81 & -0.0729 & -0.4039 & 0.3404 & -0.7398 & 1.5344 & -1.1504 \\						
k = 82 & -0.2642 & -0.9311 & 0.4237 & -3.3772 & 0.1463 & 0.6727 \\						
k = 83 & 1.3710 & -1.4475 & -1.3666 & -1.6759 & 2.3805 & 1.4607 \\						
k = 84 & -0.1036 & 0.4696 & 0.7758 & -1.7686 & 1.1187 & -0.2162 \\						
k = 85 & 0.0092 & -0.1990 & 0.0366 & -1.3787 & 0.7072 & -0.8584 \\						
k = 86 & 0.7725 & -0.8474 & -0.7306 & -0.8575 & 0.1038 & 0.6068 \\						
k = 87 & 0.2116 & -0.0968 & 0.6619 & -0.6260 & 0.5604 & -0.0044 \\						
k = 88 & -0.3529 & 0.4691 & -0.2613 & -1.1110 & 0.5171 & -0.6815 \\						
k = 89 & 0.2147 & -0.4808 & -0.3448 & -1.4637 & 1.3444 & 1.0857 \\						
k = 90 & 1.2558 & 0.5759 & 0.5181 & 1.2443 & -1.2894 & -0.3904 \\						
k = 91 & 0.0901 & -0.1989 & -0.2311 & -0.1756 & -0.3653 & -0.0968 \\						
k = 92 & -0.2933 & -0.0983 & 0.6269 & -0.5505 & 0.2998 & -0.4043 \\						
k = 93 & 0.7059 & -0.3641 & -0.8206 & 2.1590 & 0.2492 & 1.7738 \\						
k = 94 & -1.9597 & 0.8179 & 0.9332 & -1.7370 & -0.5710 & -0.8972 \\						
k = 95 & 0.0489 & -1.4160 & -1.0728 & 0.7507 & -0.1169 & -0.6851 \\						
k = 96 & 1.6479 & 0.9193 & 1.3011 & 1.1753 & -0.6547 & 0.2856 \\						
k = 97 & -0.2640 & 0.5071 & -0.2929 & 0.3718 & -0.3011 & 0.5710 \\						
k = 98 & 0.0963 & -1.1286 & 0.6931 & -1.2780 & 1.0387 & -0.0130 \\						
k = 99 & 0.6781 & 0.1112 & -1.6536 & 0.5915 & 0.5790 & -0.1870 \\						
k = 100 & -1.8027 & 0.6000 & 1.2505 & -0.8377 & -1.3371 & -0.3123 \\						
\end{array}						
\]						
k	x_1	x_2	x_3	y_1	y_2	y_3
------	--------	--------	--------	--------	--------	--------
101	0.6057	-1.0131	-0.7978	1.2223	-0.5644	0.1666
102	-0.5434	1.2605	0.8576	1.4137	0.9446	-0.1119
103	-0.6791	-1.3416	1.3308	-1.2702	0.3304	0.2832
104	-0.0135	-1.2531	-1.2727	-1.7741	-0.6272	0.1118
105	-0.1895	0.6120	-0.9407	0.7862	-0.0254	-1.0076
106	0.1406	0.7285	1.1331	1.0889	0.0320	0.1747
107	0.2608	0.6448	0.2450	-0.7631	0.9055	1.1218
108	-0.9299	0.1991	-0.9808	-1.3190	-1.5463	1.1415
109	1.6701	-0.1990	-0.6934	-0.0427	1.1763	-0.7417
110	-0.2701	-0.5754	0.3084	0.2705	-0.6557	-0.4369
111	0.6111	0.9274	-0.4236	0.2788	1.0532	-0.6498
112	-0.2235	-0.8791	1.3063	1.2293	0.1845	1.1626
113	-0.5489	-0.1097	-0.8794	0.4645	-0.5513	-0.9871
114	-1.2399	0.5996	-2.3074	-0.0658	0.3943	-0.2218
115	0.3717	0.3835	-0.6642	-0.3905	0.8827	-1.0585
116	0.8549	-2.4270	-0.5147	0.5080	1.3851	-4.1396
117	-0.3046	-1.5988	0.0228	0.6253	2.2435	-2.5884
118	0.5207	-1.4744	-0.5561	-0.0668	0.5641	-3.1207
119	1.0573	-2.5730	0.5648	0.2225	3.0816	-4.6523
120	-0.7817	-1.6433	0.9551	0.9200	0.5705	-2.1310
121	0.6959	-1.7878	1.5258	0.5068	1.1998	-2.3720
122	-1.7448	1.1095	1.0822	0.1403	0.8924	0.2661
123	1.1987	-0.0474	-0.8825	-0.1069	0.6928	0.5539
124	1.3570	-0.7138	-1.5569	0.5394	-0.2304	0.2531
125	0.1343	-0.6693	-0.7980	-0.5423	0.7470	-1.0810
126	-0.6430	0.1972	-0.6676	1.5405	1.1875	-0.4320
127	-0.4404	-0.7585	0.8197	0.3099	0.2919	0.2003
128	0.6899	-0.2308	-1.1744	0.0720	0.1939	-1.5141
129	-2.2707	-0.1607	-0.5657	1.3121	1.3104	-0.6938
130	0.4910	-1.6237	-0.3419	0.3168	0.1393	-0.8300
131	0.1218	0.7677	0.3128	-0.3376	0.3443	-0.2577
132	-0.5506	-0.9462	-0.6790	-0.6180	0.6501	0.0294
133	0.1635	-0.6636	-0.3785	0.3002	0.2410	-1.2577
134	-1.2535	0.1833	-0.3380	0.4685	0.0103	0.8859
135	0.2886	-0.1079	0.4228	-0.7365	0.1603	-0.4226
136	-0.1660	0.3440	0.0323	-0.1385	1.3965	-1.7762
137	-1.9064	-0.7235	0.7519	-0.2042	0.9710	-0.6587
138	0.2411	0.2004	0.9578	-0.8523	-0.4401	0.5696
139	1.1969	0.2976	0.7952	-1.3478	0.4978	-0.4085
140	-0.6915	0.5459	-0.1760	0.2951	-0.4687	1.4489
141	-0.0261	-0.4246	-0.6874	0.6453	1.3628	-0.4377
142	-0.3891	0.7031	2.0067	1.6123	-0.5141	-0.2719
143	-1.0489	0.9198	0.0807	-0.3760	0.4603	-0.0830
144	0.6646	-0.8605	-0.8185	-1.1069	0.4688	0.5325
145	0.3902	-0.9528	-0.8469	1.8961	0.0164	-0.3644
146	-1.4438	0.5313	0.0587	-0.1161	-0.4698	0.3378
147	0.8971	-0.8607	0.0482	1.4967	-0.6019	-0.4093
148	2.6201	0.2533	-0.5853	-0.3332	0.0341	1.1618
149	0.7706	-1.1012	-1.4620	0.4966	-1.1145	0.9280
150	0.4415	-1.6061	-1.5434	1.2103	-1.1162	-1.5120
U_2	$n = 1(x)$	$n = 2(x)$	$n = 3(x)$	$n = 1(y)$	$n = 2(y)$	$n = 3(y)$
-------	-----------	-----------	-----------	-----------	-----------	-----------
k = 151	0.2527	-0.7305	-1.3446	0.7102	-0.1333	1.1143
k = 152	1.6466	-1.1449	-0.2993	1.4097	-1.1295	-0.4325
k = 153	2.5597	-0.6725	-1.1527	0.9171	-0.3002	-0.6644
k = 154	1.3426	-0.6200	0.1700	-0.9980	-0.4493	0.1966
k = 155	1.4351	-1.1697	-0.8807	-0.6109	1.1026	-0.2231
k = 156	0.3653	0.3289	-0.5449	-1.3587	-0.6615	-0.9834
k = 157	0.0089	1.2944	1.9033	-1.2837	1.3006	-1.1698
k = 158	-1.6712	1.2088	2.5372	-0.9982	1.9044	-0.9948
k = 159	-0.4404	2.3009	2.5840	-1.3783	1.5066	-1.8620
k = 160	-1.2869	1.7329	2.3153	-1.5527	2.2566	1.5055
k = 161	-0.8492	0.4720	0.9210	-0.1608	0.5544	0.3641
k = 162	-3.2612	-0.6071	0.5838	-1.8944	1.8056	0.2124
k = 163	0.6373	-0.0388	-0.3192	0.0692	-0.1104	1.0089
k = 164	-3.2019	-0.8690	-0.1748	-1.2495	-0.8366	1.8069
k = 165	-2.8062	-0.6749	-2.1556	0.3564	0.2595	0.3846
k = 166	-0.7665	-3.3604	-1.6140	0.3729	-1.1401	2.1948
k = 167	-1.4956	-1.6235	-1.8833	-0.5352	-1.3598	1.4771
k = 168	-3.9638	-2.9522	-3.4365	-2.0014	-1.8258	1.8212
k = 169	-3.3112	-3.7243	-3.4797	-0.4458	-1.1735	-0.2331
k = 170	-3.2116	-3.3001	-2.4705	0.0680	-2.2744	3.0676
k = 171	-4.1624	-2.8908	-2.8953	-1.6175	-2.6254	1.4034
k = 172	-3.8620	-2.1695	-2.8004	0.9129	-2.3775	0.5077
k = 173	-3.0388	-2.7084	-2.6647	-2.0789	-1.9743	0.9956
k = 174	-3.0718	-1.5885	-0.4335	-0.2537	-0.0781	0.0608
k = 175	-1.7553	-0.9626	-1.8735	0.5650	-0.6568	0.3619
k = 176	0.4272	-0.3302	0.1341	-1.9354	-0.5556	0.0541
k = 177	0.9200	0.0995	-0.1247	-1.6999	0.1924	-0.0414
k = 178	0.2371	1.2239	0.1910	-0.8490	0.7887	-0.6867
k = 179	1.8447	1.3918	0.1409	1.3508	-0.0135	-0.5443
k = 180	3.4828	0.6696	0.5309	1.0281	0.0919	1.3775
k = 181	2.2630	0.0737	0.3920	1.4129	-0.9169	-0.5260
k = 182	4.2086	0.5010	0.1044	-0.4830	-1.1075	-0.1662
k = 183	4.7346	-0.3095	-0.4829	1.7050	1.3781	-0.4115
k = 184	6.3270	0.6419	0.1955	-0.2330	-0.6259	0.5724
k = 185	8.1618	-0.7676	-0.0913	-0.9638	-1.2170	0.8000
k = 186	6.3206	-0.8093	-0.6257	-0.7557	1.3749	-0.5488
k = 187	4.0160	-0.3354	-0.8875	1.2168	0.0646	-0.9429
k = 188	5.5944	1.7870	1.8194	-0.0612	1.0148	0.5267
k = 189	4.4377	2.1227	3.4097	-0.8719	0.4539	1.8896
k = 190	5.4586	1.9310	2.9080	-0.3204	2.2774	-0.7592
k = 191	1.8512	5.3412	3.5976	-0.4566	1.9857	-3.9251
k = 192	3.5491	5.8403	5.4916	-1.7487	2.8872	-3.4502
k = 193	-0.3870	7.6998	5.6106	0.4965	4.0878	-5.4193
k = 194	0.2817	5.2146	5.5547	0.3978	4.7204	-5.6196
k = 195	-0.7883	5.3136	4.7667	0.1807	2.6227	-2.1603
k = 196	1.0495	3.7701	2.9840	0.4477	2.2509	-3.7637
k = 197	-0.6395	3.5229	2.7393	-0.4999	2.5443	-2.1529
k = 198	-2.0957	-0.2848	-0.0264	0.4795	0.4778	-0.9497
k = 199	-1.2336	0.1184	1.1453	1.1832	-0.1231	-1.7212
k = 200	-0.0241	0.6829	1.0604	-1.7618	-0.6297	0.9643
U_2	$n = 1(x)$	$n = 2(x)$	$n = 3(x)$	$n = 1(y)$	$n = 2(y)$	$n = 3(y)$
-------	------------	------------	------------	------------	------------	------------
k = 201	-3.3502	0.8609	-1.0468	-2.2938	0.1745	-0.7520
k = 202	-1.8336	-0.7190	-0.1131	-1.1447	-0.0502	0.3246
k = 203	-4.3332	-0.0054	-0.4384	-2.0500	-1.8797	0.9046
k = 204	-4.4136	0.2021	0.1994	-2.1387	-0.3884	0.9044
k = 205	-5.1375	1.0719	-0.2773	-3.3513	-1.1329	0.1719
k = 206	-5.1783	0.2201	-0.5733	-1.9876	0.3098	-0.0315
k = 207	-6.0091	1.2966	0.1418	-2.5188	0.8608	-1.7112
k = 208	-5.9253	0.1547	-0.4121	-3.6755	1.1350	-0.8394
k = 209	-3.0352	-0.5561	0.6317	-3.1084	-0.0399	1.3061
k = 210	-5.7163	-1.0228	0.7422	-2.5126	0.3025	-1.4748
TABLE V. The magnetic field \(\{ h_{n,k}^x \} \) and \(\{ h_{n,k}^y \} \) to realize the \(U_3 \). We take the total time \(T = 1.4, K = 140 \), and thus the Trotter step \(\tau = 1.4/140 \).

\(k \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 1(y) \)	\(n = 2(y) \)
1	-0.3013	0.6898	2.0804	2.3129
2	1.9663	-1.6758	2.8192	2.8023
3	0.5549	-0.9799	6.6289	5.8073
4	-3.3017	2.6915	3.8890	3.6518
5	-2.2577	2.0026	3.5685	3.9652
6	-1.0841	0.8933	2.7589	3.2097
7	0.5790	-0.9628	2.8981	2.9964
8	-0.5938	-0.2181	0.3778	0.4349
9	1.2867	-1.1046	-2.4842	-1.7224
10	5.1227	-4.6993	0.5133	1.5694
11	7.8952	-7.8056	0.3229	1.1889
12	7.6685	-7.5507	0.8109	1.8358
13	7.9800	-7.8991	-0.3139	1.2077
14	7.0826	-6.3822	0.5319	2.1095
15	6.7904	-5.8247	1.3127	3.4760
16	7.4198	-6.3234	1.2699	4.0113
17	6.8843	-5.9637	0.7805	4.0820
18	8.9028	-7.7565	-1.2415	3.9404
19	11.0921	-7.2771	1.1998	7.4028
20	10.2281	-4.7293	3.3589	9.0195
21	8.5036	-3.2137	3.2325	8.0789
22	4.9248	-0.0869	3.8729	5.6893
23	3.3373	0.5823	3.1788	4.5364
24	2.4893	0.1262	2.3184	3.3949
25	0.2711	0.2313	0.3894	0.7260
26	3.9599	-1.0280	0.3018	3.8876
27	4.8101	-1.7498	0.6004	4.8259
28	4.6589	-3.2849	-0.9669	3.9356
29	3.5137	-3.0289	-1.2080	2.1920
30	1.2842	-0.4135	0.7954	0.4999
31	-2.7696	3.1934	2.8270	-1.6469
32	-3.0742	2.0582	0.6459	-1.9723
33	-0.3375	-0.3248	-0.0688	-0.2657
34	-4.7728	0.8942	-0.2092	-4.9253
35	-5.4736	2.9464	0.6520	-5.3191
36	-3.6858	4.4211	2.6389	-2.8041
37	-1.7142	4.1431	3.8056	-0.8135
38	-4.2603	5.8271	5.2430	-3.1770
39	-4.7149	7.0799	6.5922	-3.2409
40	-6.7825	5.4296	4.8850	-5.5439
41	-5.7127	3.8216	3.0749	-4.9133
42	-3.9646	1.7427	1.7826	-4.3335
43	-5.8723	5.5228	6.2841	-6.5840
44	-7.2392	4.7574	5.6681	-8.0936
45	-4.8331	6.7425	7.6709	-6.8321
46	-4.2301	6.0560	7.8902	-6.1040
47	-5.7417	2.7318	5.6999	-6.3428
48	-8.1405	-2.0764	1.8409	-7.2712
49	-6.4570	-2.1037	0.6303	-6.0865
50	-3.0735	-0.7572	0.4468	-3.2424
U_3	$n = 1(x)$	$n = 2(x)$	$n = 1(y)$	$n = 2(y)$
------	-----------	-----------	-----------	-----------
k = 51	-1.6813	0.2456	1.5494	-2.3641
k = 52	-3.4904	-0.6832	2.2672	-3.5932
k = 53	-6.8864	-3.4631	0.5759	-5.3982
k = 54	-4.3939	-3.3412	-1.1810	-2.7840
k = 55	-5.1608	-3.6406	-0.0280	-3.1507
k = 56	-9.1840	-8.3819	-2.9732	-3.5767
k = 57	-8.6474	-9.1475	-4.9321	-2.1195
k = 58	-5.0953	-6.2194	-4.8005	0.3034
k = 59	-3.0884	-4.9052	-5.7624	3.0337
k = 60	-1.4021	-4.5920	-8.2047	5.9622
k = 61	2.1014	-1.3760	-7.2546	6.7343
k = 62	2.1802	-0.1168	-5.0166	5.0981
k = 63	3.5982	1.6584	-4.9749	5.3959
k = 64	5.0615	3.3535	-3.8911	5.0132
k = 65	4.5994	3.4049	-2.5797	3.7139
k = 66	4.2682	3.4667	-1.7141	2.9867
k = 67	2.3441	1.5553	-1.4837	1.9214
k = 68	4.4770	4.1934	0.5178	-0.3395
k = 69	6.8188	6.8455	1.4379	0.1599
k = 70	1.4365	1.4646	1.6480	-0.5113
k = 71	1.2124	1.4865	1.7503	-1.5816
k = 72	1.1083	1.5572	1.2475	-0.3065
k = 73	-3.9556	-3.6434	-0.6016	1.0322
k = 74	-5.1651	-5.0495	-2.4095	1.8704
k = 75	-4.3269	-4.5579	-3.4252	3.1242
k = 76	-5.5002	-5.9442	-2.2259	1.9677
k = 77	-4.3731	-4.8007	-1.1158	0.8789
k = 78	-4.7624	-4.9313	0.8498	-0.6345
k = 79	-5.8675	-5.6529	0.2216	0.4208
k = 80	-7.4554	-7.4393	-0.2079	0.8705
k = 81	-5.7754	-5.6349	0.3481	0.4156
k = 82	-7.2466	-7.1422	-0.7590	2.3293
k = 83	-6.0836	-7.4344	1.9651	-1.1254
k = 84	-0.6208	-2.4614	4.4232	-4.9430
k = 85	0.3161	-1.3657	5.5679	-5.3057
k = 86	-1.3631	-2.5825	4.9789	-4.1180
k = 87	-1.1755	-2.5955	3.7987	-2.8255
k = 88	-2.4128	-5.2943	6.7224	-4.9442
k = 89	-1.4295	-4.9038	7.4261	-6.1642
k = 90	-0.5483	-4.7447	8.5752	-6.6171
k = 91	-3.9226	-8.1902	9.0814	-4.3921
k = 92	-5.0471	-9.8116	9.8059	-3.8832
k = 93	-5.9671	-8.0343	6.4631	-0.5940
k = 94	-5.1896	-4.9201	2.5549	1.5108
k = 95	-3.2045	-1.6076	-0.6870	1.8737
k = 96	1.3626	2.7757	-3.2038	-0.2436
k = 97	5.5103	6.0238	-4.3448	-2.1171
k = 98	6.6218	3.9142	-0.7176	-4.4587
k = 99	4.6669	1.3857	1.4593	-4.0256
k = 100	2.6157	-1.0261	3.3831	-3.5496
\[
U_3
\begin{array}{c|cccc}
 & n = 1(x) & n = 2(x) & n = 1(y) & n = 2(y) \\
\hline
k = 101 & -0.7701 & -1.5993 & 1.8172 & -0.4466 \\
k = 102 & 1.1877 & 0.1617 & 0.1401 & -1.7052 \\
k = 103 & 3.3483 & 2.8258 & -1.3492 & -2.6478 \\
k = 104 & 2.7608 & 3.2752 & -2.0487 & -1.3747 \\
k = 105 & 2.4689 & 2.5301 & -1.3436 & -1.3255 \\
k = 106 & 0.7241 & 1.7005 & -1.5418 & 0.0607 \\
k = 107 & 2.8957 & 2.2921 & -1.9007 & -1.7697 \\
k = 108 & 5.8387 & 1.7308 & -0.1880 & -5.3866 \\
k = 109 & 9.9328 & 4.0350 & -0.1831 & -9.4331 \\
k = 110 & 6.1316 & 4.6205 & -1.8361 & -5.2738 \\
k = 111 & 4.0654 & 4.0514 & -2.4047 & -2.6972 \\
k = 112 & 1.0598 & 0.5511 & 0.1714 & -0.5715 \\
k = 113 & -0.4527 & 0.5250 & 0.1133 & 0.3158 \\
k = 114 & -4.7197 & 1.3737 & -2.1018 & 4.7338 \\
k = 115 & 3.9833 & 2.9796 & -3.9834 & 4.2917 \\
k = 116 & 4.6895 & 5.2612 & -6.1258 & 4.4971 \\
k = 117 & 4.0913 & 11.9618 & -12.3784 & 3.1920 \\
k = 118 & 4.8464 & 16.4502 & -15.9209 & 1.5144 \\
k = 119 & 5.9893 & 13.9175 & -12.6063 & 0.2683 \\
k = 120 & 5.5206 & 11.5481 & -11.1715 & -1.7718 \\
k = 121 & -1.3884 & 7.0621 & -9.0315 & -5.0502 \\
k = 122 & -2.6533 & 7.1403 & -8.4916 & -5.2956 \\
k = 123 & -3.1900 & 7.7507 & -10.1782 & -7.3712 \\
k = 124 & -4.0935 & 8.5129 & -10.7590 & -7.9273 \\
k = 125 & -3.0029 & 6.0644 & -6.5449 & -4.7275 \\
k = 126 & -3.3279 & 3.9070 & -1.6671 & -0.0439 \\
k = 127 & 0.1943 & 0.2535 & -3.6212 & 2.2916 \\
k = 128 & 5.7114 & 4.4429 & -2.3921 & 3.0641 \\
k = 129 & 4.5031 & 4.2912 & 1.0085 & 0.0371 \\
k = 130 & 4.9527 & 4.9473 & 0.6279 & -0.6635 \\
k = 131 & 2.6744 & -2.0351 & 1.0116 & 0.1589 \\
k = 132 & 1.6746 & -1.8458 & 5.1837 & 4.6184 \\
k = 133 & 0.2553 & -0.5199 & 5.2782 & 5.1045 \\
k = 134 & 0.8528 & -0.6242 & 7.8238 & 7.6382 \\
k = 135 & -0.3117 & 0.4587 & 10.5626 & 10.3049 \\
k = 136 & -0.7691 & 1.0353 & 8.1004 & 7.7608 \\
k = 137 & -1.8482 & 2.2602 & 6.7951 & 5.8148 \\
k = 138 & -5.0096 & 5.0863 & 4.0321 & 2.6305 \\
k = 139 & -3.9430 & 4.1822 & 2.2074 & 1.6109 \\
k = 140 & -2.3068 & 2.2747 & 1.3346 & 1.6188
\end{array}
\]
TABLE VI. The magnetic field $\{h_{n,k}\}$ and $\{h_{n,k}^{y}\}$ to realize the U_4. We take the total time $T = 2.4$, $K = 240$, and thus the Trotter step $\tau = 2.4/240$.

U_4	$n = 1(x)$	$n = 2(x)$	$n = 2(y)$	$n = 1(y)$	$n = 2(y)$
k = 1	-3.1399	-1.3311	-0.3132	0.4410	-0.5488
k = 2	-0.5521	-0.2380	-1.1714	1.8920	-1.5596
k = 3	-0.1767	-0.4128	0.7828	0.6015	-0.7912
k = 4	0.2408	0.3326	-0.3585	-0.6166	0.3082
k = 5	-0.4013	0.4130	0.4504	0.6606	-0.0870
k = 6	0.5652	-0.1958	0.1217	-0.2205	-0.0274
k = 7	-0.0111	0.3937	-0.7590	-0.4727	0.9442
k = 8	-0.3808	-0.0217	-0.6470	-0.0255	-0.0214
k = 9	1.2404	0.2855	-0.3329	0.8077	-0.4433
k = 10	-0.7909	-0.2668	1.1551	-0.5602	-0.3123
k = 11	-1.0340	0.3846	-0.0362	0.6150	0.3348
k = 12	1.5015	-0.6916	0.9730	-1.4521	-0.3507
k = 13	-0.2677	0.3895	0.3674	1.3469	-0.5841
k = 14	0.0886	-0.2195	0.0075	-0.2220	-0.0985
k = 15	-0.7987	0.4449	-0.4475	-0.7129	0.0254
k = 16	0.3241	-0.4236	-0.5141	0.6492	0.4976
k = 17	-0.0949	-0.0890	0.5911	-0.6831	-0.3636
k = 18	0.4927	0.8441	0.5310	1.4443	-0.2258
k = 19	-0.5981	-1.4469	-0.0350	-0.6738	0.1468
k = 20	0.2250	0.9165	-0.2778	-0.5613	-0.1711
k = 21	0.3403	-0.3719	-0.0920	-0.2940	-0.4387
k = 22	-0.4480	0.9587	-0.5935	0.6179	0.4671
k = 23	0.1334	-1.3089	-0.8583	0.1402	0.4005
k = 24	0.2414	0.8321	1.6036	0.2495	-0.8645
k = 25	0.1287	-0.1720	-0.7438	-0.7473	0.7819
k = 26	-0.5790	0.2960	-0.3249	0.9559	-0.7948
k = 27	0.4255	-0.5570	-0.1693	-0.7377	-0.1122
k = 28	-0.3082	0.0392	1.2730	-0.5650	0.5374
k = 29	-0.0488	0.5511	0.0224	1.5939	0.0768
k = 30	-0.2380	-0.0259	-0.9378	-0.3804	-0.0519
k = 31	-0.5196	0.0602	0.4376	0.6011	0.6561
k = 32	0.2934	0.4224	0.7844	-0.0778	-0.7455
k = 33	0.9194	-0.8792	1.1014	-0.4470	0.0831
k = 34	-0.4739	0.4336	0.0960	-0.7660	-0.3170
k = 35	0.9872	-1.3573	-0.0373	-0.9527	-0.8858
k = 36	2.4229	-1.2597	1.1320	-2.5054	-2.0700
k = 37	2.9265	-1.1346	-0.0703	-1.7508	-3.1126
k = 38	3.6535	-1.9103	-2.0972	-3.2614	-3.6936
k = 39	4.2895	-2.7786	-2.6421	-4.0976	-4.8762
k = 40	4.6094	-1.9102	-5.1800	-3.0320	-5.8824
k = 41	3.2971	-2.6700	-7.0146	-2.6955	-5.1263
k = 42	3.8795	-2.8708	-6.6087	-3.8850	-3.8934
k = 43	1.9980	-1.8754	-5.4319	-1.6440	-4.1423
k = 44	2.2340	-1.4397	-4.9629	-1.2333	-3.2689
k = 45	0.7533	-0.2500	-4.5647	-0.7530	-0.4971
k = 46	0.7861	-0.6107	-3.5159	-0.3548	-0.1884
k = 47	0.1908	-0.1923	-3.1319	-1.4127	-0.2589
k = 48	-1.1941	0.3993	-0.7520	1.5424	0.7093
k = 49	-0.7288	1.1904	-1.7170	1.1854	1.9235
k = 50	-2.0932	0.5364	-0.1239	1.1110	2.4445
\[
\begin{array}{ccccccc}					
U_4 & n = 1(x) & n = 2(x) & n = 3(x) & n = 1(y) & n = 2(y) & n = 3(y) \\					
\hline					
k = 51 & -1.5698 & 0.8711 & -1.1907 & 1.7242 & 1.5744 & 0.5597 \\					
k = 52 & -1.1742 & 0.9349 & 1.1554 & -0.0185 & 2.0398 & -0.5263 \\					
k = 53 & -2.1322 & -0.1598 & 0.6798 & 1.4861 & 2.5103 & -1.6766 \\					
k = 54 & -1.1913 & 1.856 & 2.5809 & 1.4748 & 2.2867 & -2.7907 \\					
k = 55 & -1.9647 & 0.7391 & 2.9639 & 0.3857 & 1.5100 & -2.1667 \\					
k = 56 & 0.2022 & 0.6071 & 3.3680 & 1.5482 & 1.5099 & -4.6117 \\					
k = 57 & -0.7052 & 0.3675 & 0.0058 & 0.9180 & 1.4132 & -2.8520 \\					
k = 58 & -1.8856 & 1.2757 & 1.6920 & 0.6645 & 2.3718 & -3.1326 \\					
k = 59 & -0.8732 & -0.1785 & 1.7356 & 0.2416 & 0.9451 & -3.2475 \\					
k = 60 & 0.3390 & 0.5296 & 3.4170 & 0.9207 & 0.4176 & -0.8971 \\					
k = 61 & -0.5026 & -0.7836 & 1.0626 & -0.0346 & -0.6203 & -0.6892 \\					
k = 62 & 0.0462 & 0.6785 & 1.6937 & -0.3927 & 0.2849 & -1.2376 \\					
k = 63 & 0.3985 & -0.8679 & 2.0053 & -0.2308 & -0.1560 & -1.1642 \\					
k = 64 & 0.3728 & 0.3050 & 1.6264 & -0.4993 & -0.9551 & -0.6814 \\					
k = 65 & 0.5270 & -0.4845 & -0.8532 & 0.8557 & 0.5766 & -0.1627 \\					
k = 66 & -0.1177 & -1.6847 & 1.0600 & -1.2372 & -1.1320 & -1.2255 \\					
k = 67 & -0.7318 & 0.2860 & 0.0807 & -0.3785 & 0.6608 & -1.4919 \\					
k = 68 & 0.7210 & -1.1612 & -0.1120 & -0.5629 & -1.8502 & -1.2968 \\					
k = 69 & 0.0316 & -1.2800 & -2.0685 & -1.3608 & 0.2316 & -1.3686 \\					
k = 70 & 0.7029 & 0.3452 & 0.8434 & 0.9833 & -0.1913 & -0.8664 \\					
k = 71 & -0.8821 & 0.1027 & -1.2158 & -0.3952 & -0.4226 & -0.4364 \\					
k = 72 & 0.6052 & -1.3864 & 0.5334 & -0.7174 & -0.1033 & -1.7177 \\					
k = 73 & 0.9654 & -1.0875 & 0.1441 & -0.3171 & -0.1396 & -0.0656 \\					
k = 74 & -1.6565 & -0.5386 & 0.0114 & -0.7924 & 0.2674 & 0.9377 \\					
k = 75 & 0.6927 & -0.8723 & -1.4187 & -1.0641 & -0.8017 & 1.0522 \\					
k = 76 & -1.6428 & -0.6295 & -0.1289 & 0.1902 & 1.4880 & 0.0029 \\					
k = 77 & 0.7423 & -0.5538 & -0.5295 & -0.3605 & -0.3927 & -0.8954 \\					
k = 78 & -0.6657 & 0.6581 & -0.8625 & 0.1921 & 0.4310 & -1.5744 \\					
k = 79 & 0.0948 & -0.6358 & -1.4144 & -1.0752 & 0.4006 & 1.0122 \\					
k = 80 & -0.4546 & -0.8386 & 0.0692 & 0.7477 & 0.5822 & 1.7645 \\					
k = 81 & -0.7553 & -0.8082 & -0.1889 & -0.4776 & 0.2518 & 1.5239 \\					
k = 82 & 0.1025 & -0.6883 & -0.9371 & -1.3321 & 0.9833 & 0.2876 \\					
k = 83 & -1.1271 & 0.2357 & -0.7550 & -0.0556 & -0.2024 & 1.1280 \\					
k = 84 & -0.5079 & -0.7137 & -0.9255 & -0.6732 & 1.7012 & 1.3794 \\					
k = 85 & 0.5169 & -1.0935 & -0.8925 & -0.0001 & 0.1091 & 1.0988 \\					
k = 86 & -1.7681 & 0.3668 & -0.0939 & -0.0305 & 0.4388 & 0.0137 \\					
k = 87 & -0.0675 & -0.8260 & -0.3400 & -0.0073 & 0.8921 & 0.5788 \\					
k = 88 & 0.6667 & -0.0065 & -0.4542 & -0.5208 & -1.5913 & 0.4587 \\					
k = 89 & -0.3508 & -0.0440 & 0.4690 & -0.3244 & 1.2504 & 1.5357 \\					
k = 90 & 0.5621 & -0.5092 & -0.3184 & 0.5605 & -0.0703 & -1.5902 \\					
k = 91 & -0.5536 & 0.0236 & -0.0392 & -0.0956 & -0.5065 & -0.4437 \\					
k = 92 & -2.0650 & -2.7254 & 0.4952 & -1.7111 & 0.2524 & 1.3253 \\					
k = 93 & 1.1706 & 0.7848 & 1.6880 & 0.1034 & 0.1204 & -0.0054 \\					
k = 94 & 0.0700 & -1.3226 & 1.3571 & -0.7726 & -0.4275 & 1.1066 \\					
k = 95 & -1.5610 & -1.3303 & 1.1383 & -0.8866 & 0.6330 & -0.0722 \\					
k = 96 & -0.3471 & -1.1450 & 1.4733 & -0.4084 & -0.3077 & 0.3488 \\					
k = 97 & -1.8577 & -1.3504 & 0.0573 & -2.0687 & 1.7147 & 1.2301 \\					
k = 98 & -1.9187 & -3.7685 & 1.3514 & -3.0897 & 1.5611 & 1.0447 \\					
k = 99 & -2.4258 & -2.9656 & -0.2349 & -3.0016 & 1.7130 & 0.5552 \\					
k = 100 & -2.4073 & -1.5576 & 2.0556 & -3.0424 & 1.0118 & 0.2184 \\					
\end{array}					
\]					
\[\begin{array}{cccccccc}					
U_k & n = 1(x) & n = 2(x) & n = 3(x) & n = 1(y) & n = 2(y) & n = 3(y) \\					
\hline					
k = 101 & -1.9844 & -3.1773 & 1.2756 & -1.7699 & 0.1711 & 1.0828 \\					
k = 102 & -0.3046 & -1.7774 & -0.6470 & -1.1303 & 0.5014 & -0.9075 \\					
k = 103 & -2.4655 & -1.3024 & 0.9717 & -2.1335 & 2.1251 & 2.0064 \\					
k = 104 & 0.0023 & -1.4732 & 0.9782 & -1.6488 & -0.4384 & 0.8949 \\					
k = 105 & -0.9081 & -0.9190 & -0.4786 & -0.2323 & 0.0264 & -1.0107 \\					
k = 106 & -0.4276 & -0.3397 & 1.8277 & -0.7637 & -0.7670 & -1.3961 \\					
k = 107 & -0.6592 & -0.6806 & 0.3859 & -0.1351 & -0.0043 & 2.0599 \\					
k = 108 & 0.5587 & 0.2238 & -1.6966 & 0.2464 & 0.5786 & -0.2606 \\					
k = 109 & -0.4247 & -0.8459 & -0.2536 & -1.1855 & -0.4245 & 0.6678 \\					
k = 110 & 0.9039 & 0.9080 & -0.3888 & 0.7823 & 0.5117 & -0.7001 \\					
k = 111 & -0.3809 & 0.8253 & -0.9486 & 0.2925 & -1.4940 & -0.4665 \\					
k = 112 & 0.5083 & 0.6912 & -1.6531 & 0.3468 & 0.8699 & 0.4395 \\					
k = 113 & 0.5166 & 1.1485 & 0.5384 & 1.8126 & -0.2350 & -0.7499 \\					
k = 114 & -1.0530 & 0.9254 & -0.3755 & 1.1053 & -0.0344 & -1.3863 \\					
k = 115 & 2.2880 & 0.6879 & -1.5014 & -0.4374 & -1.4847 & 0.5374 \\					
k = 116 & -0.3557 & -0.3268 & 0.3308 & 0.5713 & 0.2750 & -1.5474 \\					
k = 117 & 0.6820 & 1.8142 & -2.3720 & 1.1137 & 0.4601 & 0.1514 \\					
k = 118 & 0.8592 & 2.0646 & 0.4167 & 1.1657 & -0.6337 & -1.1029 \\					
k = 119 & -0.0791 & 0.0099 & -1.1231 & 0.4935 & -0.3122 & -0.3699 \\					
k = 120 & 1.4099 & 1.6683 & -1.2237 & 0.0211 & -0.8192 & -1.1000 \\					
k = 121 & 0.3025 & 0.5899 & -1.4521 & 1.1584 & -0.1892 & -1.8537 \\					
k = 122 & 0.1656 & 1.5205 & 0.0352 & 1.2239 & -0.4460 & -1.1087 \\					
k = 123 & 1.2341 & 0.7049 & -0.7365 & 1.3579 & -0.8903 & -0.5525 \\					
k = 124 & -0.4067 & 0.7695 & -0.5511 & -0.6906 & 0.5760 & 0.4287 \\					
k = 125 & 0.1001 & 0.7109 & -1.0441 & 0.6888 & 0.6398 & -0.3938 \\					
k = 126 & -0.2291 & -0.2414 & 0.1932 & -0.9425 & -0.4745 & -1.2187 \\					
k = 127 & 1.2464 & 0.5829 & -0.2836 & 1.7851 & -1.3693 & -0.6940 \\					
k = 128 & -1.3443 & 0.9145 & -1.2762 & 0.2835 & 0.0767 & 0.4424 \\					
k = 129 & 1.9826 & -0.0497 & 1.3228 & -0.6429 & -0.0019 & -1.1058 \\					
k = 130 & 0.1706 & 0.6601 & -0.5795 & 1.2670 & -1.4766 & -1.1458 \\					
k = 131 & 0.3836 & 0.5808 & -0.8097 & -0.2146 & 0.6124 & -0.1744 \\					
k = 132 & -0.4099 & 0.4178 & -0.2374 & 0.3820 & -0.5832 & 0.6158 \\					
k = 133 & 0.5572 & -0.5423 & 0.3808 & -0.4898 & -0.5387 & -0.9254 \\					
k = 134 & -0.5428 & 0.3102 & 0.2864 & -0.8082 & 0.2871 & -0.6172 \\					
k = 135 & -0.4629 & 0.2224 & -0.0432 & 1.9419 & -0.5202 & -0.1225 \\					
k = 136 & 0.1078 & 0.1379 & 0.1462 & -0.7973 & -0.5623 & 0.4133 \\					
k = 137 & 0.4305 & 1.1417 & -2.2303 & 1.0669 & 0.2826 & -0.4483 \\					
k = 138 & 0.0550 & 1.8998 & -0.4555 & -0.4352 & -0.0367 & -1.7876 \\					
k = 139 & 0.0468 & -0.8549 & -0.6274 & -0.5021 & -0.1112 & 1.0492 \\					
k = 140 & 0.4199 & 1.2309 & -0.8389 & 0.3785 & -0.7395 & -1.1343 \\					
k = 141 & 0.3805 & 1.0077 & -0.6289 & 0.1664 & -0.5298 & -1.6278 \\					
k = 142 & -0.2714 & 1.0038 & 0.0390 & 0.2457 & 1.1600 & 0.3615 \\					
k = 143 & 0.0126 & 0.5020 & -0.8938 & 0.1578 & -0.4529 & -0.2240 \\					
k = 144 & 0.0029 & 0.2915 & -1.3425 & 0.9299 & -0.2992 & -0.3624 \\					
k = 145 & -0.6525 & 1.6546 & -0.5807 & 1.0314 & 0.3319 & -0.5370 \\					
k = 146 & -0.3091 & 0.1283 & -0.9745 & -1.0170 & 0.3814 & -0.7005 \\					
k = 147 & -1.0808 & 0.8062 & -0.1377 & -1.1660 & -0.3127 & 0.0437 \\					
k = 148 & 1.0403 & 0.8617 & -0.5365 & -0.7923 & 0.4339 & -0.4028 \\					
k = 149 & 0.8457 & -0.2154 & -0.7487 & 1.5650 & -0.8334 & -0.2391 \\					
k = 150 & -0.7177 & 1.2763 & -0.2921 & -1.5015 & -0.3843 & -1.1196 \\					
\end{array}\]					
U_k	$n = 1(x)$	$n = 2(x)$	$n = 3(x)$	$n = 1(y)$	$n = 2(y)$
---	---	---	---	---	---
k = 151	-0.0381	-0.2964	1.1658	-0.7654	0.6615
k = 152	-0.4272	1.7936	-0.9579	-1.5698	-1.3101
k = 153	1.1254	0.0933	-1.5330	-2.5213	1.1144
k = 154	1.2585	1.9223	-0.8864	-1.2513	-0.4482
k = 155	-0.1030	0.1198	0.2463	-1.8194	-1.3198
k = 156	3.1583	1.8197	-0.6107	-1.3098	-0.4684
k = 157	0.7200	-0.6694	-0.0616	-0.9040	-0.5482
k = 158	1.5316	2.1077	1.3145	-1.9474	-1.1497
k = 159	0.3653	-0.7209	-0.9414	-3.6117	-1.6492
k = 160	0.8082	1.6539	0.0286	0.1085	0.1939
k = 161	2.1566	-0.3162	-0.2847	0.0212	-0.0195
k = 162	0.2728	0.6332	1.3232	-0.7381	-1.4131
k = 163	-0.2406	-0.2230	-0.2639	-0.8155	-1.0413
k = 164	2.2268	-0.3208	-0.0809	-2.1267	-0.1094
k = 165	0.5020	1.3041	-0.2081	0.0395	-0.5602
k = 166	-0.1747	-0.8633	0.3954	1.2749	0.5647
k = 167	-1.3444	-0.3706	0.5789	0.7703	-0.9974
k = 168	-0.6205	0.3575	-0.7021	-0.9082	0.2372
k = 169	0.3047	0.0243	-0.1113	0.7192	-0.8039
k = 170	0.0766	-0.3669	0.6823	-0.2772	-0.5376
k = 171	-0.7586	-0.7411	0.3463	3.6627	0.6023
k = 172	-0.6612	0.3990	-0.8883	3.8282	1.0136
k = 173	-1.4034	-0.0892	-0.3008	4.4628	1.5291
k = 174	-2.1151	0.9573	-0.4216	3.1727	1.8140
k = 175	-3.2974	-0.2263	-0.9325	3.6865	0.9706
k = 176	-2.6493	0.2074	-0.7705	3.4449	1.2616
k = 177	-2.2155	1.8618	-0.2273	3.4569	1.1980
k = 178	-2.0014	-0.1971	0.6715	2.0038	0.3040
k = 179	-0.8572	0.6373	-1.3071	2.6036	1.7682
k = 180	-2.6140	1.0344	-0.3877	2.2794	1.4569
k = 181	-1.5079	-0.0193	-1.2553	1.2821	-0.0680
k = 182	-0.9859	0.6224	0.7282	0.4147	0.7981
k = 183	0.5751	0.3124	-0.4723	0.7836	1.9635
k = 184	-0.7569	0.3112	-1.1520	0.3423	-0.7020
k = 185	0.4991	0.1372	-0.4504	0.9584	1.0249
k = 186	-0.4727	0.1324	-0.0668	0.6295	1.0568
k = 187	-1.0307	1.1179	-0.6820	0.0742	0.5828
k = 188	0.4529	-0.2620	-0.2963	-0.6761	1.0357
k = 189	1.0805	-0.4248	0.1985	-0.3718	0.6427
k = 190	-0.6357	0.4436	-1.5641	1.9811	1.0400
k = 191	-0.0317	1.6920	-0.6058	-0.2276	0.8646
k = 192	0.0619	0.3797	-2.7288	-0.3298	1.5739
k = 193	0.5642	0.4736	-0.5104	-0.0388	3.0720
k = 194	-0.2059	0.0228	-1.4125	-0.0894	1.2328
k = 195	0.6676	0.6144	-0.5402	0.2242	-0.2793
k = 196	0.3775	0.5841	-1.2423	1.4395	2.0598
k = 197	0.1711	0.3110	-1.5649	-0.4033	2.1641
k = 198	-1.0392	-0.3854	0.0086	-0.6755	0.4255
k = 199	0.9586	0.2959	-0.3385	0.8109	-0.5772
k = 200	-0.3089	0.9157	-1.2308	0.0573	0.4441
k	U_4	$n = 1(x)$	$n = 2(x)$	$n = 3(x)$	$n = 1(y)$
-----	------	-----------	-----------	-----------	-----------
201	0.5653	-0.5405	-0.7020	0.2396	1.0270
202	-1.5339	0.9237	-0.3006	0.3722	0.2643
203	-0.1794	-0.9906	-1.4394	-0.5788	1.3299
204	0.9270	-0.0349	1.4508	-0.6796	-0.0544
205	0.1871	1.0170	-1.3885	0.4854	-0.2825
206	0.5602	-0.9537	0.4518	0.3764	-0.0677
207	0.3622	-0.7845	0.1973	0.1933	-0.5404
208	-0.5959	0.5000	0.2975	-0.0443	0.4162
209	-1.3198	0.1247	0.5076	0.4624	-1.0362
210	0.5584	-0.6432	-0.8318	-0.7981	0.3995
211	-0.0910	0.1380	0.5789	-1.5210	-1.0188
212	0.5556	-0.7152	0.6993	1.0083	-0.9440
213	-0.2985	-0.3154	0.7481	1.0800	0.1437
214	0.3471	0.7468	0.2959	-0.1976	-0.2677
215	-2.1678	0.2088	-0.4992	-1.5300	-0.4815
216	1.0138	0.0287	-0.2955	0.2734	0.9842
217	0.2675	-0.0360	-0.3827	-0.7699	-0.5115
218	0.7301	-1.0597	0.0875	1.3133	0.1456
219	0.0647	-0.0943	0.5794	0.1400	-0.3619
220	-0.3716	1.3691	-0.0494	-0.6996	0.3461
221	0.0536	-0.3729	0.6924	-0.1847	-0.4538
222	0.3521	-1.0723	-0.3071	0.9212	-0.6271
223	-1.7305	0.8650	0.0524	-0.5264	0.0890
224	0.1975	0.2479	-0.8111	0.7615	0.7300
225	0.5998	0.1125	0.7356	-1.0472	-0.2236
226	1.0030	-1.1524	-0.1302	0.5804	-0.2289
227	-0.7027	0.8413	-0.4075	-1.3250	-0.4507
228	0.1510	0.2130	0.6315	0.8479	0.1338
229	-0.7510	-0.3138	0.2952	0.3316	0.3841
230	1.5620	-0.3757	0.5131	-0.3037	-0.0294
231	-1.9953	0.4244	-0.2135	0.2366	-1.0386
232	0.3711	0.7532	0.2707	-0.4504	1.2299
233	0.2800	-0.7048	-0.1458	-0.1241	0.0124
234	-0.4787	0.2848	0.4068	-0.5122	-0.7292
235	-1.0827	0.9135	-0.8944	-0.9160	-0.4269
236	-0.3028	1.1600	-1.8356	-0.9649	-1.8644
237	-0.1127	-1.6378	-3.6744	-0.0702	-2.3183
238	0.1285	-1.3918	-5.6498	0.2656	-7.4304
239	0.7556	-4.3882	-6.1580	1.5096	-9.8624
240	3.3681	-3.9471	-9.6811	3.7935	-7.5747
TABLE VII. The magnetic field \(\{ h^{x}_{n,k} \} \) and \(\{ h^{y}_{n,k} \} \) to realize the \(U_5 \). We take the total time \(T = 1.5, K = 150 \), and thus the Trotter step \(\tau = 1.5/150 \).

\(k \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 1(y) \)	\(n = 2(y) \)
1	-0.2526	0.1246	3.7404	3.0209
2	1.6681	0.6400	2.7494	3.0677
3	2.4961	-2.2851	2.7072	2.1781
4	2.9811	-1.7380	1.9319	3.8018
5	1.9753	-1.3127	3.7385	3.9821
6	2.4912	-0.8143	2.4790	3.1630
7	1.5543	-0.4459	1.9010	3.2737
8	-1.0301	0.0714	2.6000	2.5327
9	0.6190	0.2893	4.9189	5.1051
10	-0.9145	1.8110	4.9778	4.7549
11	2.2380	-0.0513	3.4676	2.4581
12	1.2574	-0.1669	0.6712	1.0851
13	2.4185	-0.9994	-1.4006	-2.1871
14	2.9395	-2.6496	-3.8133	-3.9296
15	-0.6851	-1.2116	-2.9466	-1.8856
16	-0.1705	-1.1679	1.2177	1.1947
17	-1.0095	0.3071	1.8800	2.2700
18	0.1706	0.0043	2.6368	2.8897
19	-1.6443	1.7420	2.9502	2.8978
20	0.1484	0.5451	1.9206	1.8664
21	-0.6175	1.3404	0.0965	0.1524
22	-0.5354	0.0646	0.3845	0.1705
23	-1.2667	1.0534	0.5836	1.5982
24	-2.9108	1.9516	0.9146	2.1680
25	-4.5054	5.8352	1.4020	2.4383
26	-3.4600	3.5100	-0.3623	-0.6410
27	-3.5943	3.8112	-0.1034	0.4345
28	-2.2527	2.4694	-0.3615	-1.5182
29	0.6457	-1.2564	1.1800	-0.5666
30	1.9776	-2.0831	0.4144	0.8941
31	-0.5707	0.7404	0.0031	0.4086
32	0.3491	-1.0029	0.8530	-0.4141
33	2.5444	-3.4526	2.3435	0.7268
34	1.4273	-3.6367	2.7479	3.3037
35	0.0380	-1.8066	5.0485	4.8795
36	1.9915	-1.8039	4.2991	2.9149
37	2.2054	-1.1861	0.8717	1.4543
38	-0.6112	0.2691	-0.4956	0.1168
39	-0.9064	-1.4375	2.0170	1.1817
40	0.3668	-2.5075	5.0434	3.8808
41	0.3173	-1.2452	3.0140	3.3211
42	1.3983	-1.6547	2.7824	1.5080
43	0.4329	-1.7543	2.3334	2.2348
44	0.7272	-0.5318	1.6959	0.9251
45	2.0530	-2.0223	0.9667	0.0104
46	0.7987	-1.6202	0.5566	0.0448
47	0.1448	-1.2377	2.3564	1.5607
48	3.0052	-3.0343	2.0746	-0.8107
49	3.0164	-3.7420	1.7484	0.5607
50	2.4051	-3.3567	2.4668	-0.2093
\(U_5 \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 1(y) \)	\(n = 2(y) \)
---	---	---	---	---
k = 51	2.5880	-3.7934	1.9601	0.7360
k = 52	2.8453	-3.0569	2.6682	0.7348
k = 53	1.6256	-1.3941	0.0388	0.2349
k = 54	1.0472	-0.0278	-0.5968	-0.8466
k = 55	-0.2945	-0.7209	0.4633	0.1301
k = 56	1.9436	-1.2473	0.5889	-1.4228
k = 57	2.1115	-1.7457	0.5882	-0.2029
k = 58	1.2535	-0.2340	-1.7668	-1.7960
k = 59	-1.5562	-2.0844	1.2904	1.4427
k = 60	-1.9965	-0.8013	2.9557	4.1294
k = 61	-1.3134	-1.0579	4.2440	2.8136
k = 62	0.4010	-1.0429	2.0132	2.4081
k = 63	-0.9822	-0.0765	0.9883	1.2413
k = 64	-1.0256	-0.9401	1.2979	2.1422
k = 65	-2.6047	0.7554	2.0554	2.4107
k = 66	0.7008	-2.0508	3.0583	1.3541
k = 67	0.3928	0.2368	0.6944	1.0951
k = 68	2.3045	-0.2244	-0.2178	-3.1556
k = 69	2.6364	-4.2079	2.1429	-2.5706
k = 70	5.4591	-5.7987	3.6920	-1.6735
k = 71	3.5216	-2.8556	0.9333	-1.6257
k = 72	4.5994	-4.3587	2.5825	-2.7191
k = 73	2.7692	-3.2347	1.3990	-2.0412
k = 74	2.8459	-4.4682	2.5667	-1.1891
k = 75	0.4149	-4.1219	3.1490	1.3078
k = 76	0.1911	-1.7613	2.8000	1.1801
k = 77	1.3493	-3.6537	3.2450	-0.3828
k = 78	0.2633	-2.8981	2.4800	0.8117
k = 79	0.2121	-3.9180	3.6141	1.9291
k = 80	-1.6444	-1.9306	1.9565	2.8974
k = 81	-2.1680	0.5414	0.4910	3.7339
k = 82	-2.3613	2.0650	-1.2469	1.7934
k = 83	-1.3519	1.8666	-0.3321	1.4421
k = 84	-1.0795	2.0930	-1.5513	1.0793
k = 85	-0.1410	3.0525	-2.7122	0.6634
k = 86	-1.6061	4.5136	-5.1965	0.3532
k = 87	-2.7500	2.4274	-2.3690	1.5370
k = 88	-2.7017	2.3668	-2.8468	3.0772
k = 89	-4.0052	3.9566	-2.9829	3.4661
k = 90	-1.5546	3.3843	-0.9596	-0.1451
k = 91	3.1230	-0.2147	2.0831	-4.0856
k = 92	5.7104	-0.5531	0.7696	-4.6915
k = 93	4.8799	1.6250	-1.0852	2.8016
k = 94	5.6395	1.8766	-1.4020	-5.8369
k = 95	4.5006	2.1990	-1.1791	-4.2450
k = 96	3.7820	0.2779	-0.5617	-4.0616
k = 97	3.9715	1.7994	-0.8202	-1.6538
k = 98	3.4630	5.2659	-6.1354	-0.0737
k = 99	1.1020	5.1909	-5.2286	-0.5282
k = 100	-0.8056	2.1055	-2.4895	1.1413
U_5	$n = 1(x)$	$n = 2(x)$	$n = 1(y)$	$n = 2(y)$
--------	------------	------------	------------	------------
k = 101	1.2317	2.9320	-1.5134	-1.2433
k = 102	1.3720	0.0728	0.9427	-2.0653
k = 103	1.6216	0.3880	-0.3022	-1.3144
k = 104	0.5013	-0.2014	-0.3159	0.1511
k = 105	0.3475	2.1549	-1.5947	-0.0111
k = 106	-0.4067	-1.3875	1.4739	-1.4629
k = 107	-0.8883	-2.3651	1.1065	0.0069
k = 108	-2.2037	-1.4782	2.3604	-0.6614
k = 109	-2.1095	-6.3693	8.0903	-5.3226
k = 110	-3.1532	-9.0691	10.1082	-6.3236
k = 111	-7.0005	-9.2098	10.8300	-9.1489
k = 112	-10.0418	-9.0828	10.4089	-11.7373
k = 113	-10.7213	-4.2940	6.8605	-11.8130
k = 114	-12.6123	-2.2676	4.6582	-13.4543
k = 115	-8.5273	-1.8780	1.4160	-9.1319
k = 116	-6.6439	-0.2624	0.9106	-5.8611
k = 117	-3.6398	0.2160	1.5550	-3.7036
k = 118	-0.2161	0.2311	0.6399	-1.2154
k = 119	-0.8604	-1.9287	-3.0573	-2.1241
k = 120	-3.2426	-1.6135	-2.5290	-2.9640
k = 121	-2.5214	-1.2555	-0.8024	-3.0732
k = 122	0.0669	-3.1705	-3.5522	-1.0695
k = 123	-2.0315	-1.4761	-1.7030	-2.3565
k = 124	-0.3285	-3.2044	-3.6016	-1.6975
k = 125	-1.9314	-2.3359	-3.4687	-2.1790
k = 126	-1.5121	-1.8576	-2.5777	-3.4398
k = 127	-0.2876	-5.2960	-4.9778	-2.2165
k = 128	0.0126	-3.6526	-3.9353	-2.0813
k = 129	-0.1752	-4.5850	-4.6113	-1.1762
k = 130	-0.0184	-2.6688	-1.6010	0.9150
k = 131	0.5295	1.1838	2.4918	2.8165
k = 132	0.5328	1.7703	2.9513	1.7527
k = 133	4.8500	-1.0009	3.8282	4.6626
k = 134	5.0508	-0.8025	1.6563	5.3937
k = 135	3.4649	0.9136	2.0530	4.2167
k = 136	2.1847	-1.2600	-1.8036	-0.7139
k = 137	1.0971	-2.6555	-1.1729	0.3723
k = 138	2.2864	-2.9983	-1.8096	0.0194
k = 139	0.8524	-1.1379	-0.9944	1.2727
k = 140	0.7051	-1.1809	0.0583	0.7243
k = 141	2.0693	-0.5950	0.4014	1.0973
k = 142	0.7342	-0.5464	-1.7316	0.0858
k = 143	-2.1975	0.6435	-1.4736	-1.3813
k = 144	-2.5274	1.9138	1.5171	-0.4073
k = 145	-2.1093	2.1553	0.8365	-0.8790
k = 146	-1.9177	1.3776	3.0303	2.3630
k = 147	-2.2983	6.7777	6.2899	3.5370
k = 148	-0.9916	2.7220	4.5059	2.0086
k = 149	-0.3714	3.3358	4.3745	3.1917
k = 150	0.5901	2.3989	3.6287	1.8607
TABLE VIII. The magnetic field \(h_{n,k}^x \) and \(h_{n,k}^y \) to realize the \(U_6 \). We take the total time \(T = 2.4 \), \(K = 240 \), and thus the Trotter step \(\tau = 2.4/240 \).

\(k \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 2(y) \)	\(n = 1(y) \)	\(n = 2(y) \)	
k = 1	-0.2497	0.5100	4.6057	0.1791	-1.0998	2.6481
k = 2	0.0249	0.7050	1.8959	0.4812	-0.1437	2.2382
k = 3	-0.0737	0.0018	3.2687	-0.5180	0.3367	4.3415
k = 4	0.3004	0.6355	2.2547	-0.5387	0.6146	4.6550
k = 5	-0.3977	0.0744	0.9662	0.3782	-0.7550	1.1707
k = 6	-0.1321	-0.8564	3.0828	0.2397	0.2449	1.2369
k = 7	1.2458	-0.2453	1.1611	0.4628	0.2579	2.8446
k = 8	-0.0410	-0.2238	1.7107	-0.3510	0.1138	3.3307
k = 9	0.0482	-0.1133	0.7612	-0.1571	-0.4761	3.2158
k = 10	0.1226	-0.3333	1.2913	1.0394	0.3437	1.6395
k = 11	-0.6786	0.4511	1.5438	-1.2230	0.1131	0.3672
k = 12	1.2900	-0.8149	1.7018	0.8837	-0.1279	0.1619
k = 13	-0.4542	0.4077	-1.4424	0.2678	0.1022	0.3666
k = 14	-0.3925	0.0112	2.5954	-1.1944	-0.3038	0.7046
k = 15	0.6936	-0.7256	2.9381	1.3273	0.6654	2.0340
k = 16	0.0992	-0.1562	2.3905	-0.4345	-0.5225	2.0666
k = 17	-0.3363	0.7024	-0.3099	-0.1439	0.4516	-1.3397
k = 18	0.3010	-0.2941	0.6795	-0.3060	0.0068	0.7117
k = 19	0.1947	-0.8227	0.9383	0.9409	0.0547	0.4389
k = 20	-0.3030	0.7227	1.6339	-0.6365	-0.0204	0.8248
k = 21	0.4186	-0.2512	0.5572	0.2006	0.3036	-0.1682
k = 22	0.3339	-0.4374	3.2906	-0.4819	-0.0996	0.3561
k = 23	0.0773	-0.2488	3.2947	1.0339	0.3491	0.2117
k = 24	0.5940	-0.3842	2.6403	-0.6882	0.4131	0.3652
k = 25	-0.0961	-0.1766	1.4033	0.6474	-0.0449	0.3936
k = 26	0.3577	-0.1267	0.7737	-0.3568	0.2396	1.0767
k = 27	0.9932	-0.9528	-1.1835	0.5438	0.0194	1.0800
k = 28	-0.6148	0.2068	0.2946	0.1714	-0.2739	1.2675
k = 29	0.2592	0.5301	1.3283	-1.1459	0.9701	-0.5932
k = 30	0.5661	-1.0014	-0.7129	1.1155	-0.4828	0.2167
k = 31	-0.0974	-0.0790	-2.0837	-0.0418	0.2309	0.8544
k = 32	-0.4153	0.7190	2.4903	-0.2009	-0.0176	-0.0750
k = 33	-0.1156	0.0407	-0.6648	-0.3556	-0.3345	3.5027
k = 34	-0.7763	0.4420	-0.2415	0.1740	-0.4198	2.9147
k = 35	-0.5739	0.7836	-1.0124	-0.8213	-0.1795	2.1210
k = 36	-1.2475	1.0725	0.2090	0.2006	-1.0854	1.9880
k = 37	-2.0875	1.7737	-1.7354	-0.8707	-0.6578	3.5988
k = 38	-2.3562	2.5401	-1.1890	-1.2288	-1.9213	3.0115
k = 39	-2.5962	2.1614	-2.8732	-0.6994	-0.5245	0.5470
k = 40	-1.9370	2.2612	-2.6067	-0.9017	-0.6927	1.6354
k = 41	-3.3529	3.5538	0.1994	-1.2801	-2.3016	2.3844
k = 42	-3.9522	3.6449	-0.7579	-2.0025	-0.6658	2.1435
k = 43	-2.7147	3.1080	-0.7506	-1.3693	-1.4146	2.0251
k = 44	-3.5562	3.3642	0.5208	-0.7883	-1.4118	1.3013
k = 45	-1.2342	1.7352	0.7285	-1.5216	-0.8081	0.6694
k = 46	-1.4974	1.5003	-0.6003	-0.0495	-0.7494	0.9592
k = 47	-1.5123	1.3625	0.8287	-1.1562	-0.4456	-1.0044
k = 48	-0.9222	0.7596	0.3311	0.3031	0.0617	1.2409
k = 49	-0.1771	0.9073	0.2327	-0.8101	-0.3872	-0.7456
k = 50	0.3457	-0.3019	-0.4592	-0.1071	0.8912	-1.6617
\(k \)	\(1(x) \)	\(2(x) \)	\(3(x) \)	\(1(y) \)	\(2(y) \)	\(3(y) \)
---	---	---	---	---	---	---
51	0.2293	-0.1974	1.3549	0.4354	0.3913	-2.0596
52	0.1708	-0.2360	1.6599	-0.2171	0.0145	-2.9738
53	0.9497	-0.6061	0.0885	0.2058	1.0790	-3.2615
54	0.9410	-0.3143	0.9997	0.4361	0.3976	-1.2407
55	0.0385	-0.8826	0.2962	-0.1107	0.3552	-2.6491
56	0.8990	-1.0162	-0.5688	0.4652	0.5910	-4.0023
57	-0.4595	0.9487	-0.2555	-1.1582	0.4212	-1.6263
58	0.1967	-0.5828	1.9200	0.7814	-0.0284	-3.6451
59	-0.3427	0.5144	0.8206	-0.4582	-0.8010	-5.3699
60	-0.6327	0.1961	4.9460	0.2867	0.2842	-5.2996
61	-0.1334	-0.0552	1.8155	-0.5128	-0.9071	-6.3875
62	-0.1437	-0.0070	1.4065	0.7076	-0.1855	-4.4658
63	-0.5631	0.2988	0.9549	0.1304	-1.2845	-4.0951
64	-0.0022	-0.8754	1.3772	0.0530	0.0762	-3.1494
65	-0.9005	0.9382	1.6113	0.3982	-0.9520	-1.7153
66	-0.9640	1.1759	-0.9038	-1.3353	-0.1427	-3.4355
67	-1.1093	1.4659	0.8907	-0.1260	-0.9382	-0.8112
68	-0.6497	-0.1434	0.4517	-0.1485	-0.8709	0.4111
69	-1.1084	0.2823	-1.1100	0.6714	-0.6260	-0.2579
70	-0.1659	1.0483	-1.2623	-0.9916	-0.2640	1.4863
71	0.3889	-1.0637	2.6154	1.1193	-0.8970	0.1784
72	0.5019	-1.1718	-1.5268	0.4800	0.4616	0.7580
73	1.0217	-0.0371	-0.6952	-0.3413	0.7095	1.0803
74	0.4548	-1.6547	-1.4636	1.5419	-1.1784	1.8978
75	2.0522	-2.5478	-1.5775	1.0337	0.7353	3.2762
76	1.8818	-1.9901	0.2168	1.4019	0.0990	3.4103
77	1.5872	-1.8037	-1.9318	1.1995	0.9050	2.5260
78	2.5796	-2.6645	0.2639	0.2065	0.5396	1.1376
79	0.6160	-1.0943	-1.9713	1.2473	-0.0543	1.4170
80	2.2016	-2.6234	-0.0936	2.0287	-0.3434	0.2427
81	0.2440	-0.5663	0.8386	0.0509	0.3013	1.4575
82	1.1208	-1.3572	1.6573	0.9017	-0.6723	0.2705
83	0.8330	-1.2746	-0.7094	1.0317	0.0676	-0.4265
84	0.4784	-0.6772	-0.3022	0.6693	-1.1912	-1.9409
85	0.1527	-1.0302	-0.1321	1.0256	-0.3774	-0.7110
86	-0.3339	0.4299	0.1565	0.5461	-0.6756	-0.2130
87	-0.9695	0.7349	0.9767	-0.8313	-0.6078	-0.2664
88	-0.7578	0.9104	0.1028	-0.5076	-0.3770	-0.2071
89	-1.5662	1.0492	-0.9742	0.0987	-1.0238	0.1586
90	-1.8082	1.4760	1.6350	-0.4980	-1.1528	0.2706
91	-3.5910	2.0715	-1.6109	-0.3766	-2.2525	-0.8808
92	-4.7826	2.8131	0.2375	-0.6913	-2.8126	0.0599
93	-5.6533	1.8214	-0.9985	1.7860	-5.4466	0.9610
94	-6.2494	2.1494	0.7913	0.9679	-5.0451	0.5309
95	-6.0232	0.0094	0.6204	3.2637	-5.6863	1.6145
96	-5.7642	-1.9743	0.3634	5.4769	-5.8287	-0.1831
97	-3.1857	-2.0570	0.9970	3.8914	-4.4166	1.0443
98	-1.6637	-1.5974	-0.8119	2.9415	-1.4966	-0.2871
99	0.2905	-2.1846	0.0633	2.2079	-0.3810	-0.7365
100	1.7103	-1.8892	0.5831	2.1311	1.0482	0.0474
\(U_k \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 3(x) \)	\(n = 1(y) \)	\(n = 2(y) \)	\(n = 3(y) \)
---	---	---	---	---	---	---
k = 101	0.6342	-0.4127	0.3592	-0.1613	0.9504	-0.4756
k = 102	0.9622	-1.3255	0.2260	1.2500	0.2236	0.2948
k = 103	1.1919	-0.2715	-0.1248	0.4849	1.3527	-0.5681
k = 104	1.0399	-0.6070	0.4787	0.5657	0.1895	-0.9628
k = 105	1.1831	-1.1931	-0.6240	0.6814	1.7484	-0.0850
k = 106	1.4211	0.0566	1.1138	-0.6054	0.7383	-0.8036
k = 107	1.2733	-0.2696	-0.9167	0.4214	1.4671	-1.5569
k = 108	2.2583	0.3825	-1.0613	-0.7845	1.4125	-0.8874
k = 109	0.1382	0.2597	-0.7990	-0.8129	1.0632	0.7141
k = 110	0.5294	2.4637	0.6654	-3.4660	0.5259	-1.3354
k = 111	-0.0600	0.7608	-1.8189	-1.1049	0.9983	0.5959
k = 112	0.2433	0.5666	-0.2355	-0.9332	-0.1152	0.4741
k = 113	0.0857	-0.4730	0.7996	0.8568	0.4126	-0.2464
k = 114	-0.7309	-0.3102	-0.0753	0.3886	-1.0595	0.1654
k = 115	-0.8474	-0.5113	0.8846	0.5018	-0.4977	0.6323
k = 116	0.0687	-1.5196	0.8803	1.5395	-0.1705	-0.5812
k = 117	1.1532	-0.5956	0.8352	0.8651	1.0861	-1.8948
k = 118	1.2610	-2.1000	0.5458	1.8863	0.4116	-0.2986
k = 119	0.9542	-0.1573	0.4726	-0.3353	0.6030	-0.3120
k = 120	0.3157	-0.4195	-0.7642	1.0190	0.6675	-1.4958
k = 121	-0.6037	0.9358	-0.4251	-1.2423	0.2859	0.1319
k = 122	1.2662	0.8658	-1.6587	-1.9123	1.0581	0.0555
k = 123	-0.7083	-0.2148	1.8770	0.4092	-0.6858	0.4097
k = 124	0.4383	-0.8965	-0.4765	1.2739	0.5403	-1.2734
k = 125	0.5906	-0.3870	-0.4375	0.1691	0.7754	-0.6085
k = 126	-0.0127	-0.2100	1.3154	-0.6363	-0.5204	0.2515
k = 127	0.0153	-0.5443	-0.1410	1.4373	1.1514	-1.2137
k = 128	1.1814	-0.8403	0.6119	-0.8554	0.0885	-0.6511
k = 129	-0.3000	-0.1949	0.0313	0.2398	0.5958	-1.1151
k = 130	-0.0253	-0.3855	-0.6876	1.3431	1.6171	-1.3558
k = 131	0.8574	0.6221	-0.9965	-1.3431	0.9829	-1.1882
k = 132	1.4093	0.2932	-1.0950	-0.1061	-0.0424	1.1168
k = 133	-1.6021	0.0560	1.1571	-0.2351	0.3153	-0.6914
k = 134	-0.0224	-2.1051	1.2736	0.5741	0.1614	-1.2320
k = 135	1.0398	-0.1283	0.4872	0.8099	0.0371	0.5007
k = 136	0.5117	-2.0192	3.1982	0.7251	-1.2972	0.3734
k = 137	0.5460	-0.5513	-0.3862	-0.8436	0.9115	-1.5308
k = 138	-0.8305	-2.0184	2.4183	1.0194	0.2808	-1.1414
k = 139	0.6484	-0.6940	-0.1552	0.7488	0.9286	-1.0251
k = 140	0.9324	-0.6275	0.3299	-0.5230	0.3176	-1.1611
k = 141	-0.5727	-0.0288	-0.2859	0.5503	0.9698	0.1843
k = 142	0.6834	-0.5247	0.2075	0.5470	0.1517	-0.8578
k = 143	0.0115	-0.6031	0.0583	0.0999	0.3607	-0.2075
k = 144	0.6445	0.1604	-0.3327	-0.4248	1.0129	-1.1478
k = 145	-0.1157	-1.5002	0.8939	-0.0401	0.7601	-0.5056
k = 146	-1.0156	0.2320	-0.6296	0.4957	0.2479	-0.8245
k = 147	1.4528	-0.6224	0.5890	-0.0444	0.1165	0.5528
k = 148	0.3910	0.0077	0.0862	0.2878	0.2239	-0.7557
k = 149	-0.3090	-0.7507	-0.2607	-0.8667	0.9054	-0.4209
k = 150	-0.9814	-1.1492	0.7348	0.7931	1.2270	-1.7805
\(k\)	\(u_1\)	\(u_2\)	\(u_3\)	\(u_4\)	\(u_5\)	\(u_6\)
-------	--------	--------	--------	--------	--------	--------
151	2.5441	-0.1285	-0.5492	1.9298	1.0187	-0.2967
152	-0.5263	-0.4344	-0.1148	1.5449	-0.9696	-0.3728
153	2.5069	-1.9371	1.8807	3.3706	1.0012	-0.9541
154	2.8177	-1.2702	-0.2051	3.5884	1.7461	-1.7164
155	3.5532	-2.4746	0.2541	5.4222	2.0584	-1.2955
156	3.6865	-3.0133	1.6482	4.5209	1.8216	-2.0246
157	5.3629	-2.1009	1.0093	5.6013	1.3854	-1.0893
158	3.2508	-1.5557	1.0159	4.8110	0.7089	-1.2521
159	2.3113	-1.4735	0.3272	2.2139	0.5875	-0.7050
160	1.5108	0.6337	-0.5165	2.6061	0.9515	-0.6268
161	1.1144	-0.8417	0.3754	0.8785	0.0181	-0.7966
162	1.4739	2.5723	-2.1625	-0.1372	0.3432	1.6444
163	-0.6243	1.4597	-1.1525	2.4763	-0.3772	-0.0981
164	0.3369	0.8460	-0.8825	1.4742	0.3315	0.4967
165	0.7927	1.7313	-0.4667	0.4228	-0.7494	1.1793
166	0.9698	0.4669	-0.8108	1.5671	-0.9358	0.7446
167	1.1372	0.8029	1.1279	2.4921	-1.5319	1.3628
168	1.7965	1.0105	0.2148	2.4779	-1.6808	1.2128
169	1.1066	-0.0565	0.8361	3.3446	-1.4931	1.0528
170	1.6203	-0.8178	2.4117	1.3056	-3.2471	1.4867
171	-0.3907	-0.5066	1.6747	1.1380	-1.6241	1.3827
172	1.4366	-1.9333	3.5140	1.0523	-3.8961	1.6563
173	1.6733	-2.3979	3.5801	-1.0994	-3.3345	1.8975
174	-0.4327	-2.4188	4.2035	1.9170	-3.4876	1.6206
175	2.7023	-1.7373	2.4756	0.8910	-2.6992	1.1741
176	-2.5149	-2.6103	3.8079	-0.0256	-2.3125	0.9095
177	-0.2765	-1.1047	1.9390	0.6525	-2.9622	1.6635
178	1.0761	-1.4828	2.2710	-1.6931	-1.8798	1.4990
179	-0.8890	-1.2216	1.3190	-0.9410	-0.6968	-0.5431
180	-0.1714	0.2841	-0.2742	-0.5971	0.1241	0.1886
181	0.6810	-0.9119	0.7839	-2.2962	-0.7963	0.7992
182	-0.9661	-1.5085	2.1487	-3.8352	-0.8373	-0.0148
183	-1.4630	-0.2181	-1.0004	-2.4378	-0.0323	-0.2055
184	-1.8593	-0.0547	0.8867	-1.2222	0.5280	-0.1456
185	0.3687	-0.1625	0.2235	-2.4090	-0.7823	0.1959
186	-0.8649	-0.2477	-0.4522	-2.3104	0.4266	0.2853
187	-0.3630	0.2040	0.3773	-1.4621	-0.3819	0.0836
188	-1.7172	-0.8647	0.8658	-3.6875	-1.0089	-0.0698
189	0.3811	0.2311	0.0835	-2.9513	0.9259	0.2949
190	-2.2472	0.1088	-0.4193	-4.7990	-0.6047	-0.5472
191	-1.3934	0.5527	-0.4266	-1.9552	0.5506	0.7527
192	-3.6108	-0.3222	0.6292	-2.6698	-1.1103	0.1774
193	-1.1116	0.6030	-0.3311	-3.6438	0.5391	-0.1937
194	-1.8659	-0.1383	-0.0841	-1.8250	-0.0278	-0.2995
195	-2.1469	0.2837	0.0106	-4.1913	0.0307	0.1365
196	-1.5381	-0.0246	-0.3392	-0.4023	0.1320	0.2697
197	0.2755	0.3334	0.0450	-0.9398	-0.4266	-0.1241
198	-1.2135	0.0766	-0.3073	-2.2976	0.1746	0.0231
199	-0.4564	0.3118	0.0377	-3.5800	0.6158	-0.3087
200	1.2304	-0.5379	0.0306	-2.1017	-0.0444	0.2004
U_k	$n = 1(x)$	$n = 2(x)$	$n = 3(x)$	$n = 1(y)$	$n = 2(y)$	$n = 3(y)$
-------	------------	------------	------------	------------	------------	------------
k = 201	-1.0091	0.0717	0.1447	-2.3102	-0.9485	0.3595
k = 202	0.7319	-0.7980	1.9473	-1.6241	-0.8940	0.0608
k = 203	-0.6019	-0.2369	-1.3414	-1.8735	0.6588	0.1589
k = 204	0.7618	0.6465	0.6701	-2.0000	-0.1725	0.2333
k = 205	-0.9652	-1.0499	0.2322	-1.3188	-0.0966	-0.5307
k = 206	-0.0716	0.0247	-0.1714	-1.4013	0.1459	0.2868
k = 207	0.6375	0.3228	0.3815	-0.0697	-0.0387	-0.3556
k = 208	1.0556	-0.0518	-1.1395	-1.3549	0.7532	-0.1796
k = 209	0.2084	0.6197	-0.6573	-0.4375	0.6007	0.0239
k = 210	0.2041	0.0160	-1.2012	1.4764	1.6795	-1.4283
k = 211	-0.8707	1.7507	-1.2584	-0.1201	1.1723	-0.3162
k = 212	0.3641	1.7571	-3.6915	1.7068	2.2355	-0.7183
k = 213	-2.1490	1.1355	-1.8241	0.2234	3.0251	-1.6082
k = 214	0.1913	1.7935	-3.4551	0.0835	2.4501	-1.2599
k = 215	-0.9782	1.5256	-1.9330	2.8319	1.5322	-0.3388
k = 216	-0.1892	0.9690	-1.2525	2.7615	1.0560	-0.1371
k = 217	0.1296	0.2785	-0.8096	1.6869	0.9226	-0.7903
k = 218	1.0527	0.4527	-1.0480	2.0070	1.3962	-0.9055
k = 219	-1.1609	1.9602	-2.4592	1.7495	1.0293	-0.0413
k = 220	0.0233	0.3002	-0.4368	0.0215	1.0744	-0.3903
k = 221	0.2057	0.4032	-0.7961	3.8456	0.0112	-0.0764
k = 222	1.1215	-0.9045	0.7974	2.8182	-0.3056	0.1484
k = 223	0.2380	0.6181	0.6179	2.2711	-0.7342	0.4130
k = 224	-1.9212	-0.4644	-0.6315	1.7733	0.6346	-0.4686
k = 225	-1.6073	0.6629	0.1208	1.2946	-0.3228	0.0028
k = 226	-0.2471	-0.9007	0.2399	-0.4366	-0.1159	0.3984
k = 227	-1.8641	0.2169	1.1007	1.2990	-0.9743	-0.0506
k = 228	-0.6277	-0.8043	-0.3847	2.9792	0.1297	-0.0305
k = 229	-1.7364	0.2657	0.7675	1.4363	-1.1358	1.2176
k = 230	-1.3001	-0.8696	1.3749	2.1750	-0.3747	-0.3063
k = 231	-0.9274	-0.2153	0.7034	0.1955	-1.5643	0.2801
k = 232	-1.2262	0.1537	0.4000	0.6389	0.0954	0.3367
k = 233	-0.4531	-0.0809	-1.2914	1.8893	0.6666	-0.6706
k = 234	0.1263	-0.1042	0.5897	-0.6283	0.2951	0.1873
k = 235	1.2462	-0.6808	0.6191	-1.8905	-0.8330	0.8086
k = 236	0.7472	-0.0007	0.8730	-1.8918	-1.2670	-0.0703
k = 237	0.3365	-0.3152	-0.0922	-3.3202	0.6544	0.0629
k = 238	-1.3025	0.2276	0.7842	-1.9508	-0.8519	-0.0795
k = 239	2.6797	-0.4895	-0.6262	-1.6803	1.1234	-0.0455
k = 240	1.9043	1.8449	-1.4301	-2.7422	2.0332	-0.4887
TABLE IX. The magnetic field \(\{ h_{n,k}^x \} \) and \(\{ h_{n,k}^y \} \) to realize the \(U_7 \). We take the total time \(T = 1.5 \), \(K = 150 \), and thus the Trotter step \(\tau = 1.5/150 \).

\(k \)	\(n = 1^x \)	\(n = 2^x \)	\(n = 1^y \)	\(n = 2^y \)
1	-0.3705	0.7404	-2.2725	1.9695
2	-0.5166	0.9703	-2.9934	3.2378
3	-0.8282	0.3253	-4.6689	5.5886
4	-3.4511	-3.9501	-2.7337	4.6895
5	-2.9346	-4.4916	1.2076	-0.2509
6	-3.5153	-4.2509	2.1102	-0.6278
7	-3.4764	-4.3856	3.2708	-2.4318
8	-2.6649	-1.3968	0.2630	0.4391
9	-2.7897	-3.3116	-0.1689	1.0473
10	-0.7897	-1.2483	1.3966	-1.4109
11	-1.6616	-0.5653	-0.2530	0.8250
12	-1.1292	-0.9766	-1.5652	1.8094
13	-0.2327	-1.8956	1.9170	-0.5119
14	-3.4021	-5.2759	4.0633	-1.7587
15	-1.4086	-1.9822	2.6256	-3.2874
16	-0.3101	-0.2818	0.3869	-0.5278
17	1.3966	-0.0107	1.4603	-2.0006
18	1.1360	-1.4390	2.4943	-2.0590
19	3.2508	-2.6842	7.1111	-7.3492
20	1.3257	-3.2178	8.7344	-6.6072
21	-2.0391	-5.4549	7.4119	-3.9485
22	-1.7732	-3.4062	3.5163	-2.0535
23	-0.5254	-3.0454	3.3596	-2.2090
24	0.6132	-0.9206	2.2320	-2.0705
25	-1.6152	-1.6894	1.7488	0.0244
26	-0.9442	-1.0303	0.8608	0.1477
27	-1.6180	-0.2858	-0.0325	0.5459
28	-1.0272	0.8669	-2.0457	1.8836
29	-1.0489	0.3155	-0.7703	1.8124
30	-2.0362	-0.4560	-1.1062	2.5058
31	-2.4666	-1.6563	0.6054	2.6600
32	-3.9026	-3.8241	1.2868	2.7302
33	-2.8106	-4.0288	3.2241	1.2640
34	-5.6794	-4.6301	2.7589	3.2397
35	-4.8464	-3.8464	1.5571	3.4497
36	-3.5971	-4.1672	2.8036	2.4600
37	-5.6358	-4.0537	3.0084	3.5910
38	-6.1116	-1.6108	0.0659	5.0438
39	-5.5117	-1.4443	-0.0498	4.9331
40	-5.4632	-0.0593	-1.0744	5.0709
41	-4.5327	0.4904	-1.3064	4.8061
42	-5.2452	-0.2299	-0.0169	5.3880
43	-5.0037	-0.0388	-1.1352	5.2533
44	-2.4918	-1.7239	0.3843	2.2793
45	0.8406	0.8001	-2.3733	-1.5682
46	3.2918	1.2361	-1.2747	-2.7537
47	2.3145	0.3350	0.7600	-1.4167
48	-1.3139	-1.2846	2.0841	1.0473
49	-1.6076	-0.3532	0.2067	1.1481
50	-1.0486	1.0838	-1.4230	0.1070
\[
\begin{array}{|c|c|c|c|c|}
\hline
k & n = 1(x) & n = 2(x) & n = 1(y) & n = 2(y) \\
\hline
51 & -0.6962 & 3.0570 & -2.6846 & 0.1486 \\
52 & -2.3608 & 4.4487 & -3.4551 & 1.3807 \\
53 & -4.3060 & 6.0901 & -4.6075 & 3.9650 \\
54 & -4.9172 & 3.7296 & -2.5484 & 6.2037 \\
55 & -4.4166 & -1.2446 & 2.4751 & 6.3218 \\
56 & -4.3375 & -1.8877 & 2.9552 & 4.8968 \\
57 & -3.4468 & -1.3041 & 2.4319 & 4.3666 \\
58 & -3.4155 & -2.2296 & 4.1334 & 5.2853 \\
59 & -2.9040 & -3.3432 & 4.6732 & 4.3610 \\
60 & -3.6194 & -1.1292 & 1.9167 & 3.3156 \\
61 & 0.8508 & -2.1299 & -0.3451 & -0.0529 \\
62 & 4.3167 & -3.1878 & 0.1358 & -3.6369 \\
63 & 5.3033 & -2.5975 & -1.5194 & -5.1241 \\
64 & 7.3549 & -3.6611 & -1.9622 & -7.2313 \\
65 & 6.6834 & -2.7832 & -3.7870 & -7.5724 \\
66 & 8.4264 & -4.0727 & -6.1349 & -9.5312 \\
67 & 8.0340 & -4.0257 & -5.5215 & -8.4432 \\
68 & 7.5268 & -4.6247 & -3.8015 & -5.4431 \\
69 & 5.9580 & -3.9140 & 0.9138 & -1.1790 \\
70 & 1.5367 & -2.5099 & 2.2585 & 1.0650 \\
71 & 1.7482 & -2.0359 & -1.4135 & -1.2691 \\
72 & 2.8366 & -2.3218 & -0.5019 & -0.7011 \\
73 & 3.4355 & -2.9426 & 0.1137 & 0.1309 \\
74 & 4.0421 & -4.1018 & 1.7852 & 1.5238 \\
75 & 2.3729 & -3.6382 & 0.3138 & -0.0141 \\
76 & 3.1021 & -4.4546 & -3.2257 & -3.4668 \\
77 & 2.6305 & -3.4594 & -5.2942 & -5.1924 \\
78 & 2.4397 & -2.5809 & -6.0839 & -5.7607 \\
79 & 4.0990 & -4.6263 & -4.6487 & -3.4001 \\
80 & 3.6415 & -4.3473 & -4.7208 & -4.0082 \\
81 & 2.8657 & -3.4483 & -3.3234 & -2.5402 \\
82 & 2.3063 & -4.2417 & -3.8335 & -2.6306 \\
83 & 2.6833 & -4.9530 & -6.5102 & -4.6822 \\
84 & 2.5315 & -3.5296 & -3.3138 & -2.8524 \\
85 & 0.1518 & -2.8151 & -4.4174 & -3.8003 \\
86 & -0.1966 & -2.5503 & -4.5648 & -4.9089 \\
87 & -2.0226 & 0.3361 & -3.3995 & -4.3808 \\
88 & -1.5433 & -0.4988 & -2.7224 & -3.2207 \\
89 & -2.7775 & 0.1050 & -3.1876 & -3.9565 \\
90 & -1.4475 & -0.8277 & -3.7126 & -4.4386 \\
91 & -2.3526 & 3.0629 & 0.0389 & -2.7027 \\
92 & -2.3910 & 2.9488 & 1.6977 & 0.4620 \\
93 & -2.2472 & -0.2066 & -0.7622 & -1.6189 \\
94 & -4.2601 & 0.3724 & -2.8594 & -5.5259 \\
95 & -4.9125 & 2.1216 & -1.5749 & -4.4102 \\
96 & -4.8849 & -0.7817 & -5.0292 & -6.0978 \\
97 & -2.6004 & -0.6992 & -3.6189 & -4.2148 \\
98 & -2.6792 & -1.3454 & -3.8476 & -4.5368 \\
99 & -2.0830 & -0.4759 & -1.2520 & -3.7175 \\
100 & -6.7770 & 2.7766 & -0.2464 & -6.7678 \\
\hline
\end{array}
\]
\[U_r \]

\(k \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 1(y) \)	\(n = 2(y) \)
101	-4.7892	3.7055	0.7347	-4.9249
102	-4.5129	6.3534	3.6925	-2.8425
103	-1.6407	3.2257	1.9700	0.7434
104	0.9135	0.1234	-0.3691	1.1464
105	2.5218	2.4065	2.2181	2.4364
106	4.2815	1.0633	2.1705	5.5850
107	3.6486	-0.7873	-0.1190	4.2195
108	6.1605	-0.9506	-0.1549	6.0285
109	5.7685	-1.4181	-1.2901	6.1628
110	8.0975	-1.9213	-2.2184	8.3573
111	7.8093	-2.1697	-1.8491	7.0730
112	4.9079	0.2941	0.1853	4.3080
113	4.6151	2.0773	1.2474	3.6618
114	4.3725	2.2511	1.0913	4.0540
115	4.5689	2.1802	0.5624	4.9227
116	3.3739	-0.6980	-1.6006	4.8958
117	2.1912	-2.6106	-2.7291	3.5495
118	-0.0854	-3.4488	-3.1774	1.6202
119	-1.0148	-4.1647	-3.5637	1.0449
120	-2.7083	-5.4887	-4.2491	-0.5109
121	-2.0545	-3.3708	-3.3560	-1.0891
122	1.0898	-1.2574	-2.6448	1.3658
123	0.3544	-1.1689	-0.8077	0.7470
124	0.4170	-0.1354	-0.6397	-0.1654
125	1.5574	1.8262	0.8196	1.1471
126	0.8886	-0.9301	-1.1602	1.5405
127	0.3367	0.4575	1.6530	-0.7058
128	-2.6321	-0.2643	0.9123	-2.7929
129	1.6575	2.8506	0.3039	0.7397
130	2.4741	1.1891	-1.1725	3.7775
131	3.0558	-1.1682	-4.5637	5.8539
132	3.9791	-1.7888	-5.8601	6.7845
133	3.7700	-1.1576	-5.9619	6.6329
134	6.9622	0.3871	-7.6182	8.2955
135	8.6600	5.2974	-0.6722	3.5811
136	8.7055	7.9043	0.2819	3.2822
137	6.5844	6.2585	-0.0892	2.7289
138	7.4712	6.8446	-0.3996	2.0159
139	5.5326	4.7820	1.0219	0.9575
140	2.9934	3.4390	0.8179	-0.5517
141	4.7350	4.5505	0.2372	0.2679
142	2.1326	2.8425	0.9935	0.3514
143	-0.7069	0.5600	-2.1452	3.1298
144	-2.1579	-1.2998	-5.2724	5.6212
145	-1.9909	-2.0051	-5.4242	6.0145
146	-2.4572	-2.8524	-4.1960	4.1915
147	-2.5790	-2.0725	-2.9108	3.6713
148	-2.4397	-2.6506	-3.0788	2.5832
149	0.1206	-0.5779	-1.0792	0.9379
150	-0.3263	-0.9031	0.6624	-0.7256
The magnetic field \(h_{n,k}^x \) and \(h_{n,k}^y \) to realize the \(U_8 \). We take the total time \(T = 2.4 \), \(K = 240 \), and thus the Trotter step \(\tau = 2.4/240 \).

\(k \)	\(n = 1(x) \)	\(n = 2(x) \)	\(n = 2(y) \)	\(n = 1(y) \)	\(n = 2(y) \)	
1	-0.1964	-0.1354	0.5574	0.6408	-0.2138	0.4839
2	0.0325	0.1663	1.4338	-0.4663	0.0921	0.0175
3	0.3204	0.4952	-0.4223	0.2553	-0.1883	-3.0474
4	-0.5582	-0.2317	-1.5425	-0.2554	-0.1940	0.5426
5	0.1921	-0.1450	-1.8036	0.2723	0.0540	0.8655
6	0.2638	-0.2091	1.2852	-0.4073	0.1310	1.4299
7	-0.2484	0.0221	0.3596	0.2274	0.0892	-0.2893
8	0.1629	-0.0354	0.5150	-0.1841	0.0817	0.9211
9	-0.0216	0.1870	0.2506	0.5010	0.0485	-1.3520
10	-0.0227	-0.2180	-0.5389	-0.5687	-0.1332	0.4494
11	-0.2040	0.3911	0.7210	0.5023	0.0300	-0.4511
12	0.3693	-0.1108	0.1412	-0.0882	0.0612	-0.1555
13	-0.5216	-0.0128	-0.3378	-0.2964	-0.0649	-0.5057
14	0.2654	-0.0604	-0.5419	-0.1881	0.0092	0.7802
15	0.4437	0.0949	0.5684	0.5467	0.0218	-0.0602
16	-0.5564	0.0211	-0.8301	-0.2757	-0.1025	-0.7989
17	0.2193	-0.1076	0.8206	0.1940	-0.0134	1.3782
18	0.0885	-0.1952	0.5780	0.0543	0.2780	1.1913
19	-0.3347	0.0828	1.2417	-0.1789	-0.0460	-0.0229
20	-0.0283	0.1247	0.9786	-0.0308	-0.0201	-0.9949
21	0.5402	0.1170	-1.1264	0.0868	0.1216	-0.8418
22	-0.1314	-0.2807	-1.0437	0.1700	-0.1198	0.2278
23	-0.3174	0.3247	0.6763	0.1612	0.0016	0.5266
24	0.2336	-0.0874	0.4514	-0.0431	0.1657	-0.0174
25	0.0631	-0.3358	-0.9528	-0.5447	-0.2279	-0.4011
26	-0.0350	0.1208	-0.2412	0.5940	0.3036	1.2169
27	-0.3285	0.1971	1.6296	-0.2669	-0.1390	-0.1696
28	0.1518	0.1882	-0.0392	0.2904	-0.2453	-0.8207
29	0.5037	-0.2744	0.0314	-0.1582	0.4945	-0.6429
30	-0.6081	0.0815	-1.2773	-0.2481	-0.2017	0.6642
31	0.3393	-0.1732	0.7116	0.1987	0.0977	-0.5622
32	-0.1870	0.1414	-0.6511	-0.1451	-0.2327	0.8980
33	0.0537	-0.0777	0.0351	0.3840	0.0198	0.1905
34	0.1647	0.1165	1.1805	-0.5742	0.5805	-0.4713
35	-0.2511	0.0168	-0.5271	0.3519	-0.4875	0.1119
36	0.8786	-0.6140	-1.1511	-0.7078	0.8011	0.5482
37	-0.9812	0.2112	0.9722	0.0686	-0.3376	0.4277
38	1.0396	-0.1245	0.5370	-0.6912	0.9813	-0.1468
39	0.5140	-0.8973	-0.8012	-1.0086	0.8259	0.1653
40	0.3033	0.1072	0.6715	-0.1332	0.3591	0.0230
41	0.5960	-0.7849	-0.7219	-1.1298	1.1688	0.1402
42	0.3368	-0.1364	0.1101	-0.3024	0.1865	0.2353
43	0.1361	0.1091	-0.0198	1.1228	-0.6426	-0.0149
44	-1.8033	1.8536	-0.0315	3.1250	-2.6197	-0.1099
45	-2.6431	2.1817	1.4988	3.8498	-3.9005	0.3544
46	-2.0327	1.7509	2.2129	2.5856	-2.4917	-0.1871
47	-1.5091	1.2848	-0.2959	2.2291	-2.5231	-2.4802
48	-1.0721	1.0609	-1.3103	1.9584	-1.7951	0.7090
49	-1.2240	1.3430	0.4776	1.9440	-1.9524	-0.0108
50	-1.1674	1.1199	-0.9466	1.8040	-1.8550	0.7833
\[
\begin{array}{cccccc}						
U_k & n = 1(x) & n = 2(x) & n = 3(x) & n = 1(y) & n = 2(y) \\						
k = 51 & -0.7311 & 0.9778 & -2.1063 & 1.5264 & -1.5150 & 1.4853 \\						
k = 52 & -1.0637 & 0.9191 & -2.4300 & 1.3508 & -1.5941 & 2.5860 \\						
k = 53 & -0.9906 & 1.8992 & -5.4433 & 2.4631 & -2.3271 & 4.7369 \\						
k = 54 & -1.4883 & 1.3989 & -4.7217 & 1.7757 & -2.1774 & 5.8143 \\						
k = 55 & -0.5910 & 1.2083 & -3.6907 & 1.0375 & -1.1325 & 6.6304 \\						
k = 56 & -0.3842 & 0.4904 & -2.0815 & 0.6741 & -1.0001 & 7.0988 \\						
k = 57 & -0.1251 & 0.2545 & -1.0689 & 0.4593 & 0.0651 & 3.6885 \\						
k = 58 & -0.5690 & -0.2179 & 1.9134 & 0.2145 & -0.7588 & 3.5111 \\						
k = 59 & 0.4715 & 0.1042 & 2.5138 & -0.7808 & 1.0638 & -1.5959 \\						
k = 60 & 0.5783 & -0.2713 & 0.6394 & -0.2482 & 0.8796 & -1.9223 \\						
k = 61 & 0.7956 & 0.4721 & 0.4588 & -0.1527 & 0.8349 & -6.0286 \\						
k = 62 & -0.5042 & 0.1328 & -3.0321 & 0.0877 & 0.0036 & -7.9777 \\						
k = 63 & 0.1165 & 0.0181 & -5.6363 & -0.2908 & 0.0812 & -9.6478 \\						
k = 64 & 0.1349 & -1.6608 & -6.7784 & -0.8701 & 0.1040 & -10.3526 \\						
k = 65 & -0.7041 & -0.6958 & -7.6261 & 0.2663 & -1.1033 & -9.2226 \\						
k = 66 & -0.6291 & -1.2602 & -7.0101 & -0.5122 & -0.3721 & -8.6933 \\						
k = 67 & 0.3520 & -1.4950 & -4.8012 & -1.5767 & 0.5068 & -4.4460 \\						
k = 68 & 0.4280 & -0.4953 & -4.2930 & -0.0500 & 0.5479 & -3.3755 \\						
k = 69 & -0.1631 & -0.6049 & -1.5382 & -1.1061 & 0.3867 & -2.8850 \\						
k = 70 & 0.8206 & -0.3541 & 0.5777 & -0.5207 & 0.8316 & -0.4166 \\						
k = 71 & -0.1184 & 0.6151 & 1.2548 & 1.5843 & -1.3653 & -0.4301 \\						
k = 72 & -1.9919 & 2.3652 & 2.9784 & 7.1491 & -6.9846 & 0.0608 \\						
k = 73 & -7.0820 & 5.1630 & 3.4279 & 16.0150 & -15.9127 & 1.3160 \\						
k = 74 & -6.6565 & 0.5252 & 3.1987 & 15.2162 & -15.8241 & 2.1979 \\						
k = 75 & -3.3504 & -1.4321 & 2.1520 & 6.8679 & -7.2427 & 2.5237 \\						
k = 76 & -0.7482 & -0.2651 & 1.6247 & 2.8339 & -3.3199 & 1.4753 \\						
k = 77 & -1.0538 & -0.5175 & 1.6959 & 0.0844 & 0.3353 & 2.0002 \\						
k = 78 & 0.0962 & 0.5142 & -0.4794 & -0.6929 & 0.3270 & 1.4591 \\						
k = 79 & -0.1925 & -0.6172 & -1.0276 & -1.0647 & 1.1199 & 0.1430 \\						
k = 80 & -0.1831 & -0.5107 & -1.2810 & -0.2180 & 0.5797 & 0.3674 \\						
k = 81 & 0.0214 & -0.6741 & -0.9685 & 0.3544 & -0.7733 & -0.0519 \\						
k = 82 & -0.4771 & -0.2143 & -0.4271 & -0.2990 & 0.5649 & -0.5018 \\						
k = 83 & -0.4417 & -0.8338 & -0.3423 & -0.5530 & 0.6195 & -1.3563 \\						
k = 84 & -0.8453 & -1.5374 & -2.7623 & 0.3722 & -0.2228 & -2.0843 \\						
k = 85 & -0.9017 & -0.7556 & -0.6520 & -0.3409 & 0.2808 & -0.7631 \\						
k = 86 & -0.5179 & -1.1492 & -2.1173 & 0.5594 & -0.3712 & -0.4393 \\						
k = 87 & -0.9058 & -0.7012 & -1.3507 & -0.7211 & 0.3013 & -0.7321 \\						
k = 88 & -0.2074 & -0.5945 & 0.2821 & 0.7615 & -0.3271 & 1.0586 \\						
k = 89 & -0.5055 & -0.3316 & -0.8676 & -1.1187 & 0.5471 & 0.1336 \\						
k = 90 & -0.3736 & -0.7780 & 1.4085 & 0.6205 & 0.0304 & 1.2241 \\						
k = 91 & -1.0850 & -0.6578 & 0.0013 & -0.7407 & 0.7223 & 0.0146 \\						
k = 92 & 0.1581 & -0.5176 & -0.0295 & 0.2586 & -0.4259 & 1.0154 \\						
k = 93 & -0.1642 & -0.0656 & -0.0866 & -0.6472 & 0.3461 & -0.0473 \\						
k = 94 & -1.2593 & -1.2674 & 1.0027 & 0.3073 & 0.5370 & -0.0727 \\						
k = 95 & -0.4867 & -0.5756 & -0.4564 & -0.5982 & 0.1068 & 0.1257 \\						
k = 96 & -0.3506 & -0.3758 & 0.9898 & -0.4554 & 0.4837 & 0.4646 \\						
k = 97 & -0.0788 & -0.2635 & 0.0172 & -0.2535 & 0.2450 & -0.8244 \\						
k = 98 & -0.6792 & -0.9901 & -0.2986 & 0.2838 & -0.2235 & 0.3856 \\						
k = 99 & -1.3551 & -0.8937 & 0.7042 & -0.1247 & 0.4579 & 0.8973 \\						
k = 100 & -0.9827 & -1.0704 & -0.0312 & -0.4293 & 0.2858 & -0.5039 \\						
\end{array}						
\]						
U_k	$n = 1(x)$	$n = 2(x)$	$n = 3(x)$	$n = 1(y)$	$n = 2(y)$	$n = 3(y)$
-------	------------	------------	------------	------------	------------	------------
k = 101	0.5999	0.3717	0.1938	-0.6864	0.2490	-0.1972
k = 102	-0.9259	-0.8905	-0.3828	0.1348	-0.0080	0.4886
k = 103	-0.5460	-0.8173	0.7303	0.3933	0.1030	0.2454
k = 104	-1.4416	-0.8336	0.4176	-0.9764	0.4933	0.0653
k = 105	-0.7658	-0.9364	0.3241	0.0540	0.3319	0.0873
k = 106	-0.9889	-1.0460	0.0772	-0.2409	-0.2708	1.3143
k = 107	-0.7426	-0.6130	0.1028	-0.1694	0.4821	-0.3219
k = 108	-1.1930	-0.6777	0.8422	-0.7166	0.6172	0.5327
k = 109	-0.0284	-0.4452	-0.2181	-0.1336	-0.2171	0.7155
k = 110	-0.2947	-0.6331	1.1749	-0.0577	0.2572	0.6631
k = 111	-1.7367	-0.9663	-0.3477	-0.0495	0.1792	0.2495
k = 112	-0.3530	-0.5432	-0.3191	-0.2828	0.0239	0.0659
k = 113	0.1323	-0.0674	0.8956	-0.1006	0.0835	-0.0578
k = 114	-1.1334	-0.7905	0.1192	-0.3892	0.1018	0.5495
k = 115	0.0271	-0.3539	0.4268	-0.1725	0.4617	0.1696
k = 116	-0.9667	-0.6755	0.6605	0.4656	0.1016	-0.0007
k = 117	-1.1017	-0.7523	0.1699	-1.0379	0.2326	0.5616
k = 118	0.1223	-0.4286	0.2210	0.1881	-0.2439	0.6148
k = 119	-0.6911	-0.8879	-0.0559	0.0169	0.1048	0.6509
k = 120	-0.8344	-0.3886	1.2054	-0.4237	0.3060	-0.1652
k = 121	-0.5687	-0.3572	0.2695	0.1343	0.6151	0.1742
k = 122	-0.7081	-1.2850	0.3022	-0.4573	-0.4885	1.2187
k = 123	-0.4091	-0.1759	0.2070	-0.0596	0.5103	-0.4166
k = 124	-0.4558	-0.7478	1.6001	-0.6028	0.2627	0.7634
k = 125	-1.9135	-1.7277	0.3185	0.2386	0.2163	0.9829
k = 126	-1.1097	-1.2523	1.8652	-0.2004	1.1460	0.8982
k = 127	-1.2415	-1.4360	0.6540	-0.9242	-0.4895	1.1963
k = 128	-0.9763	-1.0913	0.6183	0.2892	0.8726	0.5730
k = 129	-1.3506	-1.2241	1.2944	-0.5118	0.3000	0.5238
k = 130	-0.6151	-0.1769	0.3785	-0.4223	0.3402	-0.0594
k = 131	-0.2085	-1.5305	1.2769	-0.2132	0.4208	1.3819
k = 132	-1.2348	-0.2479	-0.1384	-0.2679	0.1398	-0.2308
k = 133	0.6713	-0.2118	0.0364	-0.2022	0.0522	0.3637
k = 134	0.2649	0.7970	-0.4923	0.2253	-0.3484	-0.7677
k = 135	-0.1413	-0.0703	-0.5254	0.2639	0.0603	0.3231
k = 136	1.9253	1.6938	-2.1500	-0.4613	-0.9702	-0.8591
k = 137	1.2187	3.0688	-3.9961	0.6808	-1.3318	-2.2833
k = 138	1.5585	4.1890	-3.5964	0.6567	-0.9685	-3.6671
k = 139	2.3958	5.6644	-5.3761	-0.0726	-1.9083	-4.3228
k = 140	2.3321	3.8809	-4.9391	0.7093	-1.6187	-2.9000
k = 141	1.7162	3.0762	-2.2110	0.4195	-0.3973	-2.7611
k = 142	-0.0533	1.2424	0.0117	0.6362	0.2848	-0.9376
k = 143	0.6783	-0.0695	-1.3392	0.1377	-0.9110	0.9659
k = 144	1.8556	1.3655	-0.0583	-0.2193	0.0119	-1.3316
k = 145	-0.1389	0.2034	-0.4443	0.7072	-0.4674	0.2075
k = 146	-0.6448	0.0485	-0.2546	0.9508	0.1905	0.3814
k = 147	-0.1006	0.7786	-0.1458	-1.0812	-0.2947	-0.9609
k = 148	1.0941	0.8135	-0.6102	-0.2893	-0.0791	-0.2085
k = 149	1.0776	0.4587	-0.4455	0.6296	-0.6592	0.2495
k = 150	-0.5677	0.5472	-1.3809	0.2236	-0.5103	-0.4347
\begin{tabular}{	c	c	c	c	c	c
\hline						
k & $n = 1(x)$ & $n = 2(x)$ & $n = 3(x)$ & $n = 1(y)$ & $n = 2(y)$ & $n = 3(y)$ \\						
\hline						
151 & 0.0808 & 0.9299 & 0.5641 & 0.0420 & 0.5412 & -0.9917 \\						
152 & 0.2886 & 0.4480 & -0.0449 & -0.0209 & 0.0806 & -0.0808 \\						
153 & 1.1902 & 0.5130 & -0.8305 & 0.2831 & -0.4322 & -0.1359 \\						
154 & 0.0060 & 0.7637 & -0.3311 & 0.3710 & -0.2660 & -0.4119 \\						
155 & -0.6007 & 0.2732 & -0.4268 & 0.3711 & 0.0529 & -0.2235 \\						
156 & -0.8136 & 1.1444 & -0.1257 & -0.1407 & 0.0181 & -0.7677 \\						
157 & 1.1652 & 0.1600 & -0.4883 & 0.2076 & -0.0431 & 0.0738 \\						
158 & 0.6901 & 0.9426 & 0.0875 & -0.2615 & 0.3173 & -1.1120 \\						
159 & 0.0000 & 0.7136 & -0.4886 & 1.4184 & -0.2580 & -0.1210 \\						
160 & -0.8596 & 0.5533 & -0.1060 & 0.6797 & 0.3606 & -0.4388 \\						
161 & -0.3290 & 0.0230 & -0.6720 & 0.0027 & -0.3703 & -0.3476 \\						
162 & -1.5564 & 0.3922 & 0.1570 & -0.1427 & -0.1157 & 0.2959 \\						
163 & -1.5071 & 0.7322 & -1.4326 & -0.8739 & -1.1021 & -0.1858 \\						
164 & -1.0073 & 0.7132 & -0.0393 & -1.8938 & -0.0492 & -0.0282 \\						
165 & 0.5871 & 0.1671 & -1.5185 & -2.3846 & -2.0053 & 0.6368 \\						
166 & 0.1891 & 0.4758 & -0.0196 & -0.6986 & 0.2166 & -0.2719 \\						
167 & -1.6092 & 0.6076 & -0.1446 & -0.1298 & 0.0383 & -0.1427 \\						
168 & 2.1238 & 0.6298 & -0.5776 & -1.0459 & -0.4903 & -0.2178 \\						
169 & -0.6290 & 0.5335 & -0.4162 & -1.9514 & -0.3071 & -0.6607 \\						
170 & 1.1547 & 0.4893 & 0.7192 & -0.5962 & 0.6936 & 0.0374 \\						
171 & 1.3334 & 0.0350 & -0.7454 & -0.4764 & -0.3665 & -0.2960 \\						
172 & 1.7970 & 0.2582 & 0.7535 & 1.6309 & 0.7862 & -0.4704 \\						
173 & 1.9576 & 0.4952 & -0.0917 & 2.4415 & 0.3863 & -0.2556 \\						
174 & 1.0101 & 0.4759 & 0.0569 & 1.6056 & 0.2476 & -0.7091 \\						
175 & -0.5659 & 0.2880 & -0.0818 & 3.3892 & 0.1786 & -0.0445 \\						
176 & -0.1824 & 0.4317 & -0.0492 & 2.3736 & 0.1950 & -0.4587 \\						
177 & -1.9000 & 0.7658 & 0.1341 & 1.6147 & -0.1111 & -0.2100 \\						
178 & 1.6808 & 0.0389 & -0.5010 & 3.2364 & -0.6480 & 0.6709 \\						
179 & -2.0566 & 0.0888 & -1.3876 & 5.3780 & -2.0226 & 0.9703 \\						
180 & -3.3874 & -0.0912 & -0.8260 & 2.2689 & -1.1152 & 0.7573 \\						
181 & -1.7896 & 0.7218 & -0.0429 & 2.5596 & -0.2454 & -0.0495 \\						
182 & -2.8611 & -0.0722 & -1.1346 & 2.3330 & -1.8792 & 0.9679 \\						
183 & -3.0475 & -0.1827 & -0.3563 & 5.0140 & -0.3165 & 0.2725 \\						
184 & -4.5952 & 0.2317 & 0.1371 & 2.0947 & -0.0584 & -0.0803 \\						
185 & -4.7295 & -0.1828 & -0.4253 & 1.8775 & 0.0370 & 0.0672 \\						
186 & -5.5162 & 0.7354 & 1.1998 & 2.0912 & 1.9759 & -1.9224 \\						
187 & -6.8597 & 0.4436 & 1.5111 & 1.7517 & 2.4582 & -1.3352 \\						
188 & -5.2603 & 0.1783 & 0.5230 & -0.5840 & 1.4685 & -1.1877 \\						
189 & -3.0551 & 0.7883 & 1.3483 & -1.3330 & 2.8078 & -2.3733 \\						
190 & -3.1749 & 0.9857 & 2.0128 & -0.0054 & 2.8244 & -2.2644 \\						
191 & -2.1840 & 0.6814 & 1.2896 & 1.5566 & 2.9816 & -2.4679 \\						
192 & -1.6495 & 1.1208 & 1.7077 & -0.3147 & 3.0000 & -2.8896 \\						
193 & 0.0116 & 1.0460 & 2.0517 & -0.2028 & 3.5869 & -3.1703 \\						
194 & -0.2020 & 1.4319 & 2.3433 & 2.1483 & 3.9288 & -3.6277 \\						
195 & 1.3310 & 0.9638 & 1.7484 & -0.0362 & 2.3952 & -2.3371 \\						
196 & -1.6379 & 0.1365 & 0.2820 & 0.7715 & 0.9662 & -0.8434 \\						
197 & -0.7191 & 0.5750 & 1.3295 & -0.0243 & 1.2183 & -0.9866 \\						
198 & -0.2917 & -0.2237 & -0.6067 & -0.1481 & -0.7580 & 0.4400 \\						
199 & 0.0729 & -0.4015 & 0.0249 & 1.6642 & 0.2433 & 0.3855 \\						
200 & 0.3200 & 0.4265 & -0.0227 & -1.1348 & -0.4394 & -0.2376 \\						
\hline						
\end{tabular}						
k	U_8	$n = 1(x)$	$n = 2(x)$	$n = 3(x)$	$n = 1(y)$	$n = 2(y)$
-----	-------	------------	------------	------------	------------	------------
201	0.1851	-0.3027	-0.2313	-0.6224	-0.2308	0.4237
202	0.3373	-0.1564	-0.1595	0.4800	-0.4786	0.4838
203	-0.4025	-0.1951	-0.2184	0.1315	-0.1005	0.2085
204	0.1924	0.1927	-0.0123	-0.2683	-0.0073	-0.2202
205	-0.6061	-0.0088	-0.0667	-0.4358	0.0909	-0.1600
206	0.8832	0.0074	0.4528	-0.1001	0.0337	0.1368
207	-0.5419	-0.1157	-0.1850	0.8787	0.0395	0.0856
208	0.9253	-0.0057	-0.2678	-0.8395	-0.3350	0.0817
209	-0.7681	-0.0309	-0.1522	0.4588	0.0056	-0.0884
210	-0.4833	0.2350	0.8427	-0.4831	0.5107	-0.1172
211	0.3878	-0.3619	-0.7889	0.4298	-0.5002	0.2327
212	0.2069	0.1264	-0.0369	-0.5119	-0.1667	0.0731
213	0.4192	0.0896	0.4234	0.2875	0.4526	-0.3377
214	-0.0419	-0.2486	0.0016	-0.3356	-0.2956	0.3255
215	-0.2345	0.4118	-0.1152	0.3200	0.1094	-0.1331
216	-0.2525	-0.5582	-0.6480	0.2351	-0.3046	0.1731
217	0.1157	0.4294	1.0737	-0.4754	0.5241	-0.3761
218	0.3751	-0.1244	-0.3250	0.5557	-0.2961	0.1505
219	-0.4375	-0.1699	-0.5155	-0.2671	-0.0523	0.5630
220	0.2453	0.1453	0.5209	0.2550	0.0524	-0.7839
221	-0.8965	0.0126	-0.2346	-0.4932	0.1844	0.4766
222	1.1723	-0.1134	0.1486	-0.2059	-0.3770	-0.3529
223	-0.0232	-0.0024	-0.0564	-0.3911	0.1393	0.4904
224	-0.2515	0.0746	-0.2600	1.2237	0.0294	-0.4737
225	0.1753	0.0320	0.4737	-0.5426	-0.0340	0.1718
226	-0.4739	-0.1096	-0.3549	0.3637	0.1009	-0.0440
227	-0.2347	-0.1328	0.3732	-0.0695	0.0483	0.3735
228	0.3886	0.2770	-0.3323	-0.8629	-0.1518	-0.4218
229	0.4751	-0.1249	-0.3121	1.0229	-0.0448	0.1137
230	-0.4849	-0.1256	0.8595	-1.0858	0.0350	0.0294
231	0.4678	0.1733	-0.8908	0.5089	-0.0645	-0.2047
232	-0.5673	-0.1521	0.9013	0.3118	0.1152	0.2747
233	0.0965	-0.0123	-0.5516	-0.3942	0.0034	0.1099
234	0.1571	0.2348	-0.4072	0.6478	0.0619	-0.2829
235	0.0818	-0.2755	0.9426	-0.7527	-0.2879	-0.1061
236	-0.2254	0.0503	-0.4772	0.2242	0.2594	0.4254
237	0.3674	0.0689	-0.0217	-0.1411	-0.1638	-0.3212
238	-0.5263	-0.0650	-0.0960	0.3284	0.1430	0.0386
239	0.3836	0.0012	0.3485	-0.3412	-0.1537	0.1364
240	-0.5613	-0.1712	-0.2343	0.1277	0.1728	-0.2248