THE EFFECT OF HELIUM-ENHANCED STELLAR POPULATIONS ON THE ULTRAVIOLET-UPTURN PHENOMENON OF EARLY-TYPE GALAXIES

CHUL CHUNG, SUK-JIN YOON, AND YOUNG-WOOK LEE
Center for Galaxy Evolution Research and Department of Astronomy, Yonsei University, Seoul 120-749, Republic of Korea; ywlee2@yonsei.ac.kr
Received 2011 August 17; accepted 2011 September 14; published 2011 September 29

ABSTRACT

Recent observations and modeling of globular clusters (GCs) with multiple populations strongly indicate the presence of super-helium-rich subpopulations in old stellar systems. Motivated by this, we have constructed new population synthesis models with and without helium-enhanced subpopulations to investigate their impact on the UV-upturn phenomenon of quiescent early-type galaxies (ETGs). We find that our models with helium-enhanced subpopulations can naturally reproduce the strong UV-upturns observed in giant elliptical galaxies assuming an age similar to that of old GCs in the Milky Way. The major source of far-UV (FUV) flux, in this model, is relatively metal-poor and helium-enhanced hot horizontal-branch stars and their progeny. The Burstein et al. relation of the FUV − V color with metallicity is also explained either by the variation of the fraction of helium-enhanced subpopulations or by the spread in mean age of stellar populations in ETGs.

Key words: galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: individual (M87) – galaxies: stellar content – ultraviolet: galaxies

1. INTRODUCTION

It is well established that the far-ultraviolet (FUV) flux (“UV-upturn”) observed in the nearby quiescent early-type galaxies (ETGs) originates from a minority population of hot horizontal-branch (HB) stars and their progeny (see, e.g., Greggio & Renzini 1990; O’Connell 1999; Brown et al. 2000). Recently, significant progress has been made as to the origin of these hot HB stars in old stellar systems. This new theory is based on the recent observations and modeling of globular clusters (GCs) with extended HB, such as ω Cen and NGC 2808, where the multiple main sequences and hot HBs in these clusters can only be explained by the presence of super-helium-rich subpopulations (D’Antona & Caloi 2004; Norris 2004; Lee et al. 2005; Piotto et al. 2005, 2007).

The origin of this helium enhancement is most likely due to the pollution from the intermediate-mass asymptotic giant branch stars and/or fast-rotating massive stars, or due to the enrichment by supernovae (Ventura & D’Antona 2008; Decressin et al. 2007; Piotto et al. 2005; Lee et al. 2009). Therefore, the likely presence of super-helium-rich subpopulations and the resulting hot HB stars in old stellar systems deserve further investigation, as they could be a major source of the FUV flux in quiescent elliptical galaxies. The purpose of this Letter is to report our first result on the UV-upturn phenomenon predicted from the Yonsei evolutionary population synthesis models with helium-enhanced subpopulations.

2. POPULATION SYNTHESIS MODELS

The models presented in this Letter were constructed using the Yonsei Evolutionary Population Synthesis code. The readers are referred to Park & Lee (1997), Lee et al. (2000), and C. Chung et al. (2011, in preparation) for the details of model construction. In order to investigate the effect of helium-enhanced stellar population on the UV-upturn, we have used the most up-to-date Yonsei-Yale (Y2) stellar isochrones and HB evolutionary tracks (S.-I. Han et al. 2011, in preparation) with different values of helium abundance (Y = 0.23, 0.33, and 0.38). We apply the same Reimers (1977) mass-loss parameter (η), and enhancement in α-elements ([α/Fe]) for both helium-enhanced and normal helium populations (see Table 1).

Figure 1 shows an example of our model H-R diagrams and corresponding spectral energy distributions (SEDs) of simple stellar populations (SSPs) for normal helium and helium-enhanced populations. Since helium-rich stars evolve faster than helium-poor stars, helium-rich stars have lower masses at a given age. This effect has a striking difference on the HB stage (see the left panels). The mean temperature of HB stars in the helium-enhanced (Y = 0.33) population is ~11,500 K greater than that of the normal helium (Y = 0.23) population at a given metallicity ([Fe/H] = −0.9) and age (11 Gyr). Consequently, the helium-enhanced models show extremely strong far-UV flux compared to the normal helium models.

In order to include this effect of the helium-enhanced population into the composite SED for a model elliptical galaxy, we have employed the following procedures in the model construction. First, helium abundances of helium-enhanced subpopulations were chosen to be Y = 0.33 and 0.38, as these values are roughly required to reproduce the extreme blue HB stars observed in the Milky Way GCs (D’Antona & Caloi 2004, 2008; Lee et al. 2005; Piotto et al. 2005; S.-J. Joo & Y.-W. Lee 2011, in preparation). In our modeling, populations having these two helium abundances were mixed half and half. Second, we have used mean FUV – V colors of UV-strong GCs in M87 (Sohn et al. 2006) to set the fraction of helium-enhanced subpopulations at a given metallicity (see Figure 2(a)). Figure 2(b) shows the fraction of helium-enhanced subpopulations as a function of metallicity, which was adopted in our model with helium-enhanced subpopulations to reproduce the observed trend of FUV – V color with metallicity in M87 GCs. Figure 2(c) displays the contribution of helium-enhanced subpopulations in the metallicity distribution function (MDF) used in our construction of the composite stellar population model for giant elliptical galaxies. This MDF was adopted from the simple chemical evolution model of Kodama & Arimoto (1997).

According to the list of Lee et al. (2007), about 30% of the Milky Way GCs have extended HB, each of which contains
about 30% of helium-enhanced subpopulations (Lee et al. 2005; Piotto et al. 2005, 2007; Yoon et al. 2008; Han et al. 2009; Bellini et al. 2010), so about 9% of the stellar population in the Milky Way GCs are assumed to be helium-enhanced populations. In our composite model for giant elliptical galaxies, the number fraction of helium-enhanced subpopulations is about \(\sim 11\% \), which agrees roughly with that estimated in the Milky Way GCs. This fraction of helium-enhanced subpopulations is reduced to \(\sim 6.4\% \) only when hot enough (\(T_{\text{eff}} \geq 20,000 \) K) blue HB stars are counted, which are actually responsible for the far-UV flux in our model giant elliptical galaxies.\(^1\)

3. COMPARISON WITH OBSERVATIONS

Figure 3 presents our composite models constructed with and without helium-enhanced subpopulations compared with the SEDs observed by the \(IUE \) satellite for two giant elliptical galaxies NGC 4552 and NGC 4649. In our models, the value of mean metallicity (\(\langle \text{Fe/H} \rangle \)) was chosen such that they can reproduce the observed Mg \(b \) (\(\approx 4.6 \) Å) index of these galaxies (see also Figure 4), assuming that \(\alpha/\text{Fe} \) is 0.3 in giant elliptical galaxies (Worthey et al. 1992; Thomas et al. 2005; Kormendy et al. 2009). The parameters adopted in our models presented in Figure 3 are listed in Table 1. It is clear from Figure 3 that our models with helium-enhanced subpopulations can naturally reproduce not only the strong far-UV upturns but also the 2500 Å dips observed in NGC 4552 and NGC 4649, while the models without helium-enhanced subpopulations fail to reproduce the far-UV upturns, unless the age of the underlying stellar population is increased to \(\sim 16 \) Gyr (Park & Lee 1997; Yi et al. 1999). Therefore, the minority population (\(\sim 6.4\% \)) of helium-enhanced hot HB stars and their progeny are responsible for the observed far-UV flux in this scenario.\(^2\)

Our composite models with helium-enhanced subpopulations predict that about 85% of the far-UV flux comes from the metal-poor side (\(\langle \text{Fe/H} \rangle \leq 0.0 \)) of the MDF. In this regard, this model is qualitatively similar to the “metal-poor HB model” of Park & Lee (1997), but it does not need to invoke unrealistically old ages (\(\sim 16 \) Gyr) as in the model of Park & Lee (1997; see also Yi et al. 1999). Our composite models with helium-enhanced subpopulations can reproduce the UV-upturn at the mean age

\(^1\) For a dwarf elliptical galaxy like M32, where the observed UV-upturn is weak (\(F(UV-V) = 7.3 \) in AB magnitude system), all of the HB population is predicted to be cooler than 20,000 K. Brown et al. (2000) found from their \(HST/STIS \) photometry of M32 that stars passing through the HB at \(T_{\text{eff}} \geq 8500 \) K comprise only a small fraction (about 7%) of the total HB population. This fraction is roughly consistent with that (\(\sim 5.5\% \)) predicted from our models for M32.

\(^2\) Most of the helium-rich HB stars in our models are too hot to have any significant effect on metal lines, such as \(\text{Ca} \, \pi \, \text{H} + \text{He} / \text{Ca} \, \pi \, \text{K} \) index. The \(\text{Ca} \, \pi \, \text{H} + \text{He} / \text{Ca} \, \pi \, \text{K} \) index of our model for a giant elliptical galaxy (presented in Figure 3) is 1.15, which is consistent with the observation (1.16; Rose 1985) to within the error (\(\pm 0.03 \)).
of 11 Gyr, in the age scale where the inner halo GCs of the Milky Way is 12 Gyr old. If the age of the oldest GCs in the Milky Way is more like 13 Gyr (Dotter et al. 2010), our age for the giant elliptical galaxies would also increase by 1 Gyr. These ages for giant elliptical galaxies (11–12 Gyr) are consistent with the value estimated from the Balmer line indices to within the error (Trager et al. 2000; Thomas et al. 2005; Trager et al. 2008; Graves et al. 2009).

In Figure 4, we have plotted the Mg b line strength against FUV $-$ V color for the sample of quiescent ETGs from Bureau et al. (2011). Superposed grids are our composite models with (blue) and without (red) helium-enhanced subpopulations. The observed ETGs show clear correlation between FUV $-$ V and Mg b that is analogous to the Burstein et al. (1988) relation. Our composite models predict that the strength of UV-upturn is controlled by the fraction of helium-enhanced subpopulation, the mean age, and the mean metallicity of the underlying stellar population. Among these three factors, the fraction of helium-enhanced subpopulation appears to be the most effective factor in determining the strength of the UV-upturn. For example, our 11 Gyr models with and without helium-enhanced subpopulations would explain most of the color spread in FUV $-$ V. If all ETGs in this sample, however, contain a similar fraction of helium-enhanced subpopulations, an age spread spanning \sim6 Gyr would be required to reproduce the observed spread in FUV $-$ V color, in the sense that bluer galaxies are older. This is because the mean temperature of HB stars decreases as the age of the stellar population gets younger (see Lee et al. 1994; Park & Lee 1997). An age spread of this magnitude is also indicated from the Balmer line dating of ETGs (Trager et al. 2000, 2008; Thomas et al. 2005; Graves et al. 2009), which suggests that some age spread is indeed responsible for the spread in FUV $-$ V color. The observed fading of FUV flux with look-back time for the bright cluster elliptical galaxies in $z < 0.3$ (Ree et al. 2007) also supports this possibility. Note from Figure 4 that our models both with and without helium-enhanced subpopulations predict fading of FUV flux with increasing look-back time.

4. DISCUSSION

We have demonstrated that the presence of relatively metal-poor and helium-enhanced subpopulations in ETGs can naturally reproduce the observed UV-upturn phenomenon, without invoking unrealistically old ages. Although the presence of helium-enriched stars appears to solve many of the problems associated with the UV-upturn phenomenon, it is important to note that the origin of this helium enhancement is not fully understood yet. Consequently, it is not clear yet whether the proposed mechanisms to produce helium-enhanced stars in GCs will also be important on the galactic scales. Nevertheless, several lines of evidence do suggest that a minority population of helium-enhanced stars would also be present in ETGs.

3 Our models were constructed with α/Fe = 0.3, while some galaxies in Figure 4 have lower values of α/Fe. If α/Fe = 0.1, the FUV $-$ V color gets redder by a small amount (\sim0.1), while the Mg b index is more affected (decreases by \sim0.4 Å). Therefore, the model grids in Figure 4 shift mostly downward as α/Fe decreases, and this should only have a little effect on the predicted age spread among sample galaxies.
M54), are characterized by very extended HB with helium-enhanced extreme blue HB stars (Lee et al. 2005; Piotto et al. 2005; Bellini et al. 2010; Siegel et al. 2007; D’Antona & Caloi 2008; S.-J. Joo & Y.-W. Lee 2011, in preparation). Second, the orbital kinematics of Milky Way GCs with extended HB, which is indicating the presence of helium-enhanced subpopulation, are distinct from normal GCs, and are fully consistent with the hypothesis that they are the remaining relics of the early building blocks predicted in the hierarchical merging paradigm of galaxy formation (Lee et al. 2007; Bekki et al. 2007). Finally, as discussed above, when the observed trend of FUV − V color with metallicity for the UV-strong GCs (presumably with the extended HB) in the giant elliptical galaxy M87 is combined with the expected MDF of a model giant elliptical galaxy, the FUV − V color similar to that observed in giant elliptical galaxies is reproduced. This is again consistent with the building block origin for these GCs, according to which the helium-enhanced subpopulations in ETGs would have been supplied by these early galaxy building blocks.

If normal ETGs are prevailed by helium-enhanced populations, as suggested in this Letter, they would have impacts not only on UV, but also on other wavelength regimes affected by relatively hot blue HB stars, such as Balmer absorption lines (Lee et al. 2000). In this respect, it is important to note that Schiavon et al. (2006) found that their models (without helium-enhanced subpopulations) of passive evolution cannot reproduce the unexpectedly strong Balmer line indices of ETGs at $z \approx 0.1$ and $z \approx 0.9$. It would be interesting to see how our models with helium-enhanced subpopulations are matched with these observations. The well-known discrepancy between the Hβ and higher order Balmer lines (“Balmer mismatch”; Schiavon 2007) is also an important issue, for which the helium-enhanced populations could play a role. Our forthcoming paper (C. Chung et al. 2011, in preparation) will discuss these issues in more detail, together with their connection with the UV-upturn phenomenon.

We thank the referee for a number of helpful suggestions. Support for this work was provided by the National Research Foundation of Korea to the Center for Galaxy Evolution Research. S.J.Y. acknowledges support from the Mid-career Researcher Program (No. 2009-0080851) and the Basic Science Research Program (No. 2009-0086824) through the NRF of Korea, and support from the KASI Research Fund 2011.

REFERENCES
Bekki, K., Yahagi, H., Nagashima, M., & Forbes, D. A. 2007, MNRAS, 382, L87
Bellini, A., Bedin, L. R., Piotto, G., et al. 2010, AJ, 140, 631
Brown, T. M., Bowers, C. W., Kimble, R. A., Sveigart, A. V., & Ferguson, H. C. 2000, ApJ, 532, 308
Bureau, M., Jeong, H., Yi, S. K., et al. 2011, MNRAS, 414, 1887
Burstein, D., Bertola, F., Buson, L. M., Faber, S. M., & Lauer, T. R. 1988, ApJ, 328, 440
D’Antona, F., & Caloi, V. 2004, ApJ, 611, 871
D’Antona, F., & Caloi, V. 2008, MNRAS, 390, 693
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007, A&A, 464, 1029
Dorman, B., O’Connell, R. W., & Rood, R. T. 1995, ApJ, 442, 105
Dotter, A., Sarajedini, A., Anderson, J., et al. 2010, ApJ, 708, 698
Graves, G. J., Faber, S. M., & Schiavon, R. P. 2009, ApJ, 693, 486
Greggio, L., & Renzini, A. 1990, ApJ, 364, 35
Han, S.-I., Lee, Y.-W., Joo, S.-J., et al. 2009, ApJ, 707, L190
Kodama, T., & Arimoto, N. 1997, A&A, 320, 41
Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R. 2009, ApJS, 182, 216
Lee, H.-c., Yoon, S.-J., & Lee, Y.-W. 2000, AJ, 120, 998
Lee, J.-W., Kang, Y.-W., Lee, J., & Lee, Y.-W. 2009, Nature, 462, 480
Lee, J.-W., Demarque, P., & Zinn, R. 1994, ApJ, 423, 248
Lee, Y.-W., Gim, H. B., & Casertani-Dinescu, D. I. 2007, ApJ, 661, L49
Lee, Y.-W., Joo, S.-J., Han, S.-I., et al. 2005, ApJ, 621, L57
Norris, J. E. 2004, ApJ, 612, L25
O’Connell, R. W. 1999, ARA&A, 37, 603
Park, J.-H., & Lee, Y.-W. 1997, ApJ, 476, 28
Piotto, G., Bedin, L. R., Anderson, J., et al. 2007, ApJ, 661, L53
Piotto, G., Villanova, S., Bedin, L. R., et al. 2005, ApJ, 621, 777
Ree, C. H., Lee, Y.-W., Yi, S. K., et al. 2007, ApJS, 173, 607
Reimers, D. 1977, A&A, 57, 395
Rose, J. A. 1985, AJ, 90, 1927
Schiavon, R. P. 2007, ApJS, 171, 146
Schiavon, R. P., Faber, S. M., Konidaris, N., et al. 2006, ApJ, 651, L93
Siegel, M. H., Dotter, A., Majewski, S. R., et al. 2007, ApJ, 667, L57
Sohn, S. T., O’Connell, R. W., Kundu, A., et al. 2006, AJ, 131, 866
Thomas, D., Maraston, C., Bender, R., & Mendes de Oliveira, C. 2005, ApJ, 621, 673
Trager, S. C., Faber, S. M., & Dressler, A. 2008, MNRAS, 386, 715
Trager, S. C., Faber, S. M., Worthey, G., & Gonzalez, J. J. 2000, AJ, 119, 1645
Ventura, P., & D’Antona, F. 2008, MNRAS, 385, 2034
Worthey, G., Faber, S. M., & Gonzalez, J. J. 1992, ApJ, 398, 69
Yi, S., Demarque, P., & Oemler, A., Jr. 1998, ApJ, 492, 480
Yi, S., Lee, Y.-W., Woo, J.-H., et al. 1999, ApJ, 513, 128
Yoon, S.-J., Joo, S.-J., Ree, C. H., et al. 2008, ApJ, 677, 1080