Sums of two triangularizable quadratic matrices over an arbitrary field

Clément de Seguins Pazzis∗†

December 13, 2011

Abstract

Let \(K \) be an arbitrary field, and \(a, b, c, d \) be elements of \(K \) such that the polynomials \(t^2 - at - b \) and \(t^2 - ct - d \) are split in \(K[t] \). Given a square matrix \(M \in M_n(K) \), we give necessary and sufficient conditions for the existence of two matrices \(A \) and \(B \) such that \(M = A + B, \ A^2 = aA + bI_n \) and \(B^2 = cB + dI_n \). Prior to this paper, such conditions were known in the case \(b = d = 0, a \neq 0 \) and \(c \neq 0 \) [4] and in the case \(a = b = c = d = 0 \) [1]. Here, we complete the study, which essentially amounts to determining when a matrix is the sum of an idempotent and a square-zero matrix. This generalizes results of Wang [5] to an arbitrary field, possibly of characteristic 2.

AMS Classification : 15A24; 15B33.

Keywords : quadratic matrices, rational canonical form, characteristic two, companion matrices, idempotent matrix, square-zero matrix

1 Introduction

1.1 Basic notations and aims

Let \(K \) be an arbitrary field, and \(\overline{K} \) an algebraic closure of it. We denote by \(\text{car}(K) \) the characteristic of \(K \). We denote by \(M_n(K) \) the algebra of square matrices with

∗Professor of Mathematics at Lycée Privé Sainte-Geneviève, 2, rue de l’École des Postes, 78029 Versailles Cedex, FRANCE.
†e-mail address: dsp.prof@gmail.com
n rows and entries in \(\mathbb{K} \), and by \(I_n \) its identity matrix. Similarity of two square matrices \(A \) and \(B \) is denoted by \(A \sim B \). Given \(M \in M_n(\mathbb{K}) \), we denote by \(\text{Sp}(M) \) the set of eigenvalues of \(M \) in the field \(\mathbb{K} \). We denote by \(\mathbb{N} \) the set of non-negative integers, and by \(\mathbb{N}^* \) the set of positive ones.

A matrix of \(M_n(\mathbb{K}) \) is called **quadratic** when it is annihilated by a polynomial of degree two. More precisely, given a pair \((a, b) \in \mathbb{K}^2 \), a matrix \(A \) of \(M_n(\mathbb{K}) \) is called \((a, b) \)-**quadratic** when \(A^2 = aA + bI_n \). In particular, a matrix is \((1, 0)\)-quadratic if and only if it is idempotent, and it is \((0, 0)\)-quadratic if and only if it is square-zero.

Let \((a, b, c, d) \in \mathbb{K}^4 \). A matrix is called an \((a, b, c, d)\)-**quadratic sum** when it may be decomposed as the sum of an \((a, b)\)-quadratic matrix and of a \((c, d)\)-quadratic one. Note that a matrix which is similar to an \((a, b, c, d)\)-quadratic sum is an \((a, b, c, d)\)-quadratic sum itself. Our aim here is to give necessary and sufficient conditions for a matrix of \(M_n(\mathbb{K}) \) to be an \((a, b, c, d)\)-quadratic sum.

In \[5\], Wang has expressed such conditions in terms of rational canonical forms when \(\mathbb{K} \) is the field of complex numbers, and his proof actually encompasses the more general case of an algebraically closed field of characteristic not 2. In our recent \[4\], we have worked out the case \(b = d = 0 \), \(a \neq 0 \) and \(c \neq 0 \), i.e., we have determined when a matrix may be written as \(aP + cQ \), where \(P \) and \(Q \) are idempotent matrices (this generalized earlier results of Hartwig and Putcha \[3\]). In \[1\], Botha has worked out the case \(a = b = c = d = 0 \) for an arbitrary field, generalizing results of Wang and Wu \[6\]; as in \[4\], fields of characteristic 2 yield somewhat different results than the others.

The purpose of this paper is to solve the remaining cases, assuming that the polynomials \(t^2 - at - b \) and \(t^2 - ct - d \) are split over \(\mathbb{K} \).

The basic strategy is to reduce the situation to a more elementary one. Assume, for the rest of the section, that \(t^2 - at - b \) and \(t^2 - ct - d \) are split over \(\mathbb{K} \), and let \(\alpha \) be a root of \(t^2 - at - b \) and \(\beta \) be one of \(t^2 - ct - d \). Then an \((a, b)\)-quadratic matrix is a matrix of the form \(\alpha I_n + P \), where \(P \) is \((a - 2\alpha, 0)\)-quadratic. We deduce that a matrix of \(M_n(\mathbb{K}) \) is an \((a, b, c, d)\)-quadratic sum if and only if it splits as \((\alpha + \beta)I_n + M \), where \(M \) is an \((a - 2\alpha, 0, c - 2\beta, 0)\)-quadratic sum.

We are thus reduced to studying the case \(b = d = 0 \).

In the case \(b = d = 0 \) and \(a \neq 0 \), notice furthermore that an \((a, b, c, d)\)-quadratic sum is simply the product of \(a \) with a \((1, 0, \frac{c}{a}, 0)\)-quadratic sum. Therefore, the case \(b = d = 0 \) is essentially reduced to three cases:
(i) \(b = d = 0, \ a \neq 0 \) and \(c \neq 0 \);
(ii) \(a = b = c = d = 0 \);
(iii) \(a = 1 \) and \(b = c = d = 0 \).

Case (i) has been dealt with in [4], and case (ii) more recently in [1]. Therefore, only case (iii) remains to be studied in order to complete the case where both polynomials \(t^2 - at - b \) and \(t^2 - ct - d \) are split over \(K \). In other words, it remains to determine which matrices may be decomposed as the sum of an idempotent and a square-zero matrix. This has been done by Wang in [5] for the case \(K = \mathbb{C} \). Our aim is to generalize his results.

1.2 Main theorem

Definition 1. Let \((u_n)_{n \geq 1}\) and \((v_n)_{n \geq 1}\) be two non-increasing sequences of non-negative integers. Let \(p > 0 \) be a positive integer. We say that \((u_n)\) and \((v_n)\) are \(p \)-intertwined when
\[
\forall n \geq 1, \ u_{n+p} \leq v_n \quad \text{and} \quad v_{n+p} \leq u_n.
\]

Notation 2. Given \(A \in M_n(K) \), \(\lambda \in \mathbb{K} \) and \(k \in \mathbb{N}^* \), we set
\[
n_k(A, \lambda) := \dim \ker(A - \lambda I_n)^k - \dim \ker(A - \lambda I_n)^{k-1},
\]
and
\[
j_k(A, \lambda) := n_k(A, \lambda) - n_{k+1}(A, \lambda)
\]
i.e., \(n_k(A, \lambda) \) (respectively, \(j_k(A, \lambda) \)) is the number of blocks of size \(k \) or more (respectively, of size \(k \)) associated to the eigenvalue \(\lambda \) in the Jordan reduction of \(A \).

Our main theorem follows.

Theorem 1. Let \(M \in M_n(K) \). The following conditions are equivalent:

(i) \(M \) is a \((1, 0, 0, 0) \)-quadratic sum.
(ii) \(\forall \lambda \in \mathbb{K} \setminus \{0, 1\}, \ \forall k \in \mathbb{N}^* , \ j_k(M, \lambda) = j_k(M, 1 - \lambda) \), the sequences \((n_k(M, 0))_{k \geq 1} \) and \((n_k(M, 1))_{k \geq 1} \) are 2-intertwined, and, if \(\text{car}(K) \neq 2 \), the Jordan blocks of \(M \) for the eigenvalue \(\frac{1}{2} \) are all even-sized.
(iii) There are matrices $A \in M_p(\mathbb{K})$ and $B \in M_{n-p}(\mathbb{K})$ such that $M \sim A \oplus B$, where all the invariant factors of A are polynomials of $t(t-1)$ and A has no eigenvalue in $\{0, 1\}$, the matrix B is triangularizable with $\text{Sp}(B) \subset \{0, 1\}$, and the sequences $(n_k(B,0))_{k \geq 1}$ and $(n_k(B,1))_{k \geq 1}$ are 2-intertwined.

1.3 Structure of the proof

The equivalence between conditions (ii) and (iii) of Theorem 1 is a straightforward consequence of the kernel decomposition theorem and of Proposition 9 of [4], which we restate:

Proposition 2. Let $A \in M_n(\mathbb{K})$ and $\alpha \in \mathbb{K}$. The following conditions are equivalent:

(i) The invariant factors of A are polynomials of $t(t-\alpha)$.

(ii) For every $\lambda \in \mathbb{K}$,

- if $\lambda \neq \alpha - \lambda$, then $\forall k \in \mathbb{N}^*, j_k(A, \lambda) = j_k(A, \alpha - \lambda)$;
- if $\lambda = \alpha - \lambda$, then $\forall k \in \mathbb{N}, j_{2k+1}(A, \lambda) = 0$.

The equivalence of (i) and (iii) is much more involving and takes up the rest of the paper:

- In Section 2, we show that the equivalence (i) \Leftrightarrow (iii) needs to be proven only in the following elementary cases:
 - (a) M has no eigenvalue in $\{0, 1\}$;
 - (b) M is triangularizable and $\text{Sp}(M) \subset \{0, 1\}$.

- In Section 3, we prove that (i) \Leftrightarrow (iii) holds in case (a).

- In Section 4, we prove that (i) \Leftrightarrow (iii) holds in case (b).

2 Reduction and reconstruction principles

2.1 A reconstruction principle

Let M_1 and M_2 be two $(1, 0, 0, 0)$-quadratic sums (respectively in $M_{n}(\mathbb{K})$ and $M_{p}(\mathbb{K})$). Split up $M_1 = A_1 + B_1$ and $M_2 = A_2 + B_2$, where A_1, A_2 are idempotent
and B_1, B_2 are square-zero. Then $M_1 \oplus M_2 = (A_1 \oplus A_2) + (B_1 \oplus B_2)$, while $A_1 \oplus A_2$ is idempotent and $B_1 \oplus B_2$ is square-zero. Therefore $M_1 \oplus M_2$ is a $(1, 0, 0, 0)$-quadratic sum.

2.2 The basic lemma

The following lemma is a key tool to analyze quadratic sums in general.

Lemma 3. Let $(a, b, c, d) \in \mathbb{K}^4$. Let A and B be respectively an (a, b)-quadratic and a (c, d)-quadratic matrix of $M_n(\mathbb{K})$. Then A and B both commute with $(A + B)((a + c)I_n - (A + B))$.

Proof. Let $C := (A + B)((a + c)I_n - (A + B))$ and note that $C = (a + c)(A + B) - A^2 - B^2 - AB - BA = -(b + d)I_n + cA + aB - AB - BA$.

Therefore

$$AC - CA = a(AB - BA) - A^2B + BA^2 = -bB + bB = 0$$

and by symmetry $BC - CB = 0$.

Corollary 4. Let $(A, B) \in M_n(\mathbb{K})^2$ such that $A^2 = A$ and $B^2 = 0$. Then A and B both commute with $(A + B)(A + B - I_n)$.

2.3 Reduction to elementary cases

Let $M \in M_n(\mathbb{K})$. The minimal polynomial μ of M splits up as

$$\mu(t) = P(t) t^p (t - 1)^q,$$

where $P(t)$ has no root in $\{0, 1\}$ and $(p, q) \in \mathbb{N}^2$. Let M_1 (respectively, M_2) be a matrix associated to the endomorphism $X \mapsto MX$ on the vector space $\text{Ker} P(M)$ (respectively, on the vector space $\text{Ker} M^p(M - I_n)^q$). By the kernel decomposition theorem, one has

$$M \sim M_1 \oplus M_2,$$

while $P(M_1) = 0$ and $t^p(t - 1)^q$ annihilates M_2. If implication (iii) \Rightarrow (i) holds for M_1 and M_2, then the reconstruction principle of Section 2.1 shows that it also holds for M.

Conversely, assume that $M = A + B$ for a pair $(A, B) \in M_n(\mathbb{K})^2$ with $A^2 = A$ and $B^2 = 0$. By Corollary 4, A and B both commute with $M(M - I_n)$, and
hence they stabilize the subspaces $\text{Im}(M(M - I_n))^n$ and $\text{Ker}(M(M - I_n))^n$ in the Fitting decomposition of $M(M - I_n)$. Using an adapted basis of K^n for this decomposition, we find $P \in \text{GL}_n(K)$, an integer $p \geq 0$, matrices A_1, B_1 in $M_p(K)$ and matrices A_2, B_2 in $M_{n-p}(K)$ such that

$$A = P(A_1 \oplus A_2)P^{-1} \quad \text{and} \quad B = P(B_1 \oplus B_2)P^{-1},$$

the matrices $M_1 := A_1 + B_1$ and $M_2 := A_2 + B_2$ being both $(1, 0, 0, 0)$-quadratic sums, with $M_1(M_1 - I_p)$ non-singular and $M_2(M_2 - I_{n-p})$ nilpotent. In other words, M_1 has no eigenvalue in $\{0, 1\}$ and M_2 is triangularizable with $\text{Sp}(M_2) \subset \{0, 1\}$. If implication $(i) \Rightarrow (iii)$ holds for both M_1 and M_2, then it clearly holds for M.

We conclude that equivalence $(i) \Leftrightarrow (iii)$ needs to be proven only in the following special cases:

(a) M has no eigenvalue in $\{0, 1\}$;
(b) M is triangularizable with $\text{Sp}(M) \subset \{0, 1\}$.

3 The case M has no eigenvalue in $\{0, 1\}$

3.1 A lemma on companion matrices

Notation 3. Given a monic polynomial $P = t^n - a_{n-1} t^{n-1} - \cdots - a_1 t - a_0 \in K[t]$, we denote its *companion matrix* by

$$C(P) := \begin{bmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & 0 & \cdots & 0 & a_1 \\ 0 & 1 & \cdots & 0 & a_2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & a_{n-2} \\ 0 & \cdots & \cdots & 0 & 1 & a_{n-1} \end{bmatrix} \in M_n(K).$$

Notation 4. For $E \in M_p(K)$, we set

$$U_E := \begin{bmatrix} I_p & E \\ I_p & 0_p \end{bmatrix} \in M_{2p}(K).$$

We start with two easy lemmas on the matrices of type U_E.

6
Lemma 5. Given two similar matrices \(E \) and \(E' \) of \(M_p(\mathbb{K}) \), the matrices \(U_E \) and \(U_{E'} \) are similar.

Proof. Choosing \(R \in \mathrm{GL}_p(\mathbb{K}) \) such that \(E' = R E R^{-1} \), a straightforward computation shows that
\[
U_{E'} = (R \oplus R) U_E (R \oplus R)^{-1}.
\]

Conjugating by a well-chosen permutation matrix, the following result is straightforward:

Lemma 6. Given square matrices \(A \) and \(B \), one has \(U_{A \oplus B} \sim U_A \oplus U_B \).

We now examine the case \(E \) is a companion matrix. The following lemma generalizes Lemma 14 of [4] and is the key to equivalence (i) \(\iff \) (iii) in Theorem 1 for a matrix with no eigenvalue in \(\{0, 1\} \):

Lemma 7. Let \((\alpha, \beta) \in \mathbb{K}^2\). Let \(P(t) \) be a monic polynomial of degree \(n \). Then
\[
\begin{bmatrix}
\alpha I_n & C(P) \\
I_n & \beta I_n
\end{bmatrix} \sim C(P((t-\alpha)(t-\beta))).
\]

Lemma 7 was stated and proved in [4] with the extra condition that \(\alpha \neq 0 \) and \(\beta \neq 0 \), but an inspection of the proof shows that this condition is unnecessary.

Corollary 8. Let \(P \in \mathbb{K}[t] \) be a monic polynomial. Then the companion matrix \(C(P(t(t-1))) \) is a \((1,0,0,0)\)-quadratic sum.

Proof. Indeed, Lemma 7 shows, with \(n := \deg P \), that
\[
C(P(t(t-1))) \sim A + B \quad \text{with} \quad A = \begin{bmatrix} I_n & 0_n \\ I_n & 0_n \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0_n & C(P) \\ 0_n & 0_n \end{bmatrix}.
\]

Obviously, \(A^2 = A \) and \(B^2 = 0 \), and hence \(C(P(t(t-1))) \) is the sum of an idempotent and a square-zero matrix.

3.2 Application to \((1,0,0,0)\)-quadratic sums

Let \(M \in M_n(\mathbb{K}) \).
• Assume that each invariant factor of M is a polynomial of $t(t - 1)$. Then we may find monic polynomials P_1, \ldots, P_p such that

$$M \sim C(P_1(t(t - 1))) \oplus \cdots \oplus C(P_p(t(t - 1))).$$

Using Corollary 8 and the reconstruction principle of Section 2.1, we deduce that M is a $(1,0,0,0)$-quadratic sum.

• Conversely, assume that $M = A + B$ for some pair $(A, B) \in M_n(\mathbb{K})^2$ such that $A^2 = A$ and $B^2 = 0$. Assume furthermore that M has no eigenvalue in $\{0, 1\}$. This last assumption yields

$$\text{Ker } A \cap \text{Ker } B = \text{Ker}(A - I_n) \cap \text{Ker } B = \{0\}.$$

Therefore

$$\dim \text{Ker } A \leq n - \dim \text{Ker } B = \text{rk } B \quad \text{and} \quad \dim \text{Ker}(A - I_n) \leq \text{rk } B.$$

Adding these inequalities yields $n \leq 2 \text{rk } B$. However $2 \text{rk } B \leq \text{rk } B + \dim \text{Ker } B = n$ since $\text{Im } B \subset \text{Ker } B$. It follows that

$$\dim \text{Ker } A = \dim \text{Ker}(A - I_n) = \dim \text{Ker } B = \text{rk } B = \frac{n}{2}$$

and hence

$$\mathbb{K}^n = \text{Ker } A \oplus \text{Ker } B.$$

Set now $p := \frac{n}{2}$. Using a basis of \mathbb{K}^{2p} which is adapted to the decomposition $E = \text{Ker } B \oplus \text{Ker } A$, we find $P \in \text{GL}_n(\mathbb{K})$ and matrices C, D in $M_p(\mathbb{K})$ such that

$$A = P \begin{bmatrix} I_p & 0_p \\ C & 0_p \end{bmatrix} P^{-1} \quad \text{and} \quad B = P \begin{bmatrix} 0_p & D \\ 0_p & 0_p \end{bmatrix} P^{-1}.$$

Using $\text{Ker}(A - I_n) \cap \text{Ker } B = \{0\}$, we find that C is non-singular. Setting $Q := \begin{bmatrix} I_p & 0_p \\ 0 & C \end{bmatrix}$, we finally find some $D' \in M_p(\mathbb{K})$ such that

$$M = (PQ) \begin{bmatrix} I_p & D' \\ I_p & 0_p \end{bmatrix} (PQ)^{-1} \sim U_{D'}.$$

The rational canonical form of D' yields monic polynomials P_1, \ldots, P_q such that $D' \sim C(P_1) \oplus \cdots \oplus C(P_q)$ and P_k divides P_{k+1} for every $k \in \{1, \ldots, q - 1\}$. By Lemmas 5 and 6 this yields

$$M \sim U_{C(P_1)} \oplus \cdots \oplus U_{C(P_q)}.$$

8
Using Corollary 8, it follows that

\[M \sim C(P_1(t(t-1))) \oplus \cdots \oplus C(P_q(t(t-1))). \]

Finally, \(P_k(t(t-1)) \) divides \(P_{k+1}(t(t-1)) \) for every \(k \in \{1, \ldots, q-1\} \), and hence \(P_1(t(t-1)), \ldots, P_q(t(t-1)) \) are the invariant factors of \(M \). Since \(M \) has no eigenvalue in \(\{0,1\} \), we conclude that \(M \) satisfies condition (iii) in Theorem 1.

We conclude that equivalence (i) \(\Leftrightarrow \) (iii) of Theorem 1 holds for any square matrix with no eigenvalue in \(\{0,1\} \).

4 The case \(M \) is triangularizable with eigenvalues in \(\{0,1\} \)

4.1 A review of Wang’s results

In [5, Lemma 2.3], Wang proved the following characterization of pairs of nilpotent matrices \((M, N)\) for which the sequences \((n_k(M,0))_{k \geq 1}\) and \((n_k(N,0))_{k \geq 1}\) are \(p\)-intertwined (generalizing a famous theorem of Flanders [2]).

Theorem 9 (Wang). Let \(p \in \mathbb{N}^* \) and \((M, N) \in M_r(\mathbb{K}) \times M_s(\mathbb{K})\) be a pair of nilpotent matrices. The following conditions are equivalent:

(i) The sequences \((n_k(M,0))_{k \geq 1}\) and \((n_k(N,0))_{k \geq 1}\) are \(p\)-intertwined.

(ii) There is a pair \((X, Y) \in M_{r,s}(\mathbb{K}) \times M_{s,r}(\mathbb{K})\) such that \(M^p = XY\), \(N^p = YX\), \(MX = XN\) and \(YM = NY\).

Wang only considered the field of complex numbers but an inspection of his proof reveals that it holds for an arbitrary field.

In [5], implication (i) \(\Rightarrow \) (ii) of Theorem 9 is used, with \(p = 2 \), to obtain the following result:

Proposition 10. Let \(M \in M_n(\mathbb{K}) \) be a triangularizable matrix with eigenvalues in \(\{0,1\} \) and assume that the sequences \((n_k(M,0))_{k \geq 1}\) and \((n_k(M,1))_{k \geq 1}\) are 2-intertwined. Then \(M \) is a \((1,0,0,0)\)-quadratic sum.

Again, Wang’s proof in [5, Lemma 2.2, “Sufficiency” paragraph] holds for an arbitrary field and we shall not reproduce it. We deduce that implication (iii) \(\Rightarrow \) (i) in Theorem 1 holds when \(M \) is triangularizable with eigenvalues in \(\{0,1\} \).
4.2 A necessary condition for being a \((1, 0, 0, 0)\)-quadratic sum

Here, we prove the converse of Proposition 10:

Proposition 11. Let \(M \in M_n(\mathbb{K})\) be a triangularizable matrix with eigenvalues in \(\{0, 1\}\). Assume that \(M\) is a \((1, 0, 0, 0)\)-quadratic sum. Then the sequences \((n_k(M, 0))_{k \geq 1}\) and \((n_k(M, 1))_{k \geq 1}\) are 2-intertwined.

Proving this will complete our proof of Theorem 1.

In [5], Wang proved Proposition 11 in the special case \(\mathbb{K} = \mathbb{C}\). An inspection shows that his proof works for an arbitrary field of characteristic not 2, but fails for a field of characteristic 2 (due to Wang’s systematic use of the division by 2). Our aim is to give a proof that works regardless of the characteristic of \(\mathbb{K}\). In order to do this, we will reduce the situation to the one where no Jordan block of \(M\) has a size greater than 3 (in other words \(M^3(M - I_n)^3 = 0\)). Let us start by considering that special case:

Lemma 12. Let \(M \in M_n(\mathbb{K})\) be a \((1, 0, 0, 0)\)-quadratic sum such that \(M^3(M - I_n)^3 = 0\). Then \(n_3(M, 0) \leq n_1(M, 1)\) and \(n_3(M, 1) \leq n_1(M, 0)\).

Proof. We lose no generality in assuming that

\[
M = \begin{bmatrix} I_p + N & 0 & 0 \\ 0 & N' \end{bmatrix},
\]

where \(p + q = n\), \((N, N') \in M_p(\mathbb{K}) \times M_q(\mathbb{K})\), and \(N^3 = 0\) and \((N')^3 = 0\).

With the same block sizes, we may find some \(B = \begin{bmatrix} B_1 & B_3 \\ B_2 & B_4 \end{bmatrix} \in M_n(\mathbb{K})\) such that \(B^2 = 0\) and \((M - B)^2 = M - B\). By Corollary 4 \(B\) commutes with \(M(M - I_n) = \begin{bmatrix} N^2 + N & 0 \\ 0 & (N')^2 - N' \end{bmatrix}\). It follows that \(B_1\) commutes with \(N + N^2\), whilst \(B_4\) commutes with \(N' - (N')^2\).

However \(N = (N + N^2) - (N + N^2)^2\) and \(N' = (N' - (N')^2) + (N' - (N')^2)^2\).

Therefore \(B_1\) commutes with \(N\), and \(B_4\) commutes with \(N'\).

Next, the identities \((M - B)^2 = M - B\) and \(B^2 = 0\) yield:

\[
M^2 - MB - BM = M - B.
\]

We deduce:

\[
N'B_2 + B_2N = 0; \quad NB_3 + B_3N' = 0,
\]
\[N^2 + N = NB_1 + B_1N + B_1 = (2N + I_p)B_1 \quad \text{and} \quad \left(N'
ight)^2 - N' = (2N' - I_q)B_4. \]

Therefore
\[B_1 = (I_p + 2N)^{-1}(N + N^2) = (I_p - 2N + 4N^2)(N + N^2) = N - N^2 \]
and
\[B_4 = (I_q - 2N')^{-1}(N' - (N')^2) = (I_q + 2N' + 4(N')^2)(N' - (N')^2) = N' + (N')^2. \]

Using this, we compute
\[B_2^2 = \begin{bmatrix} N^2 + B_3B_2 & \quad ? \\ \quad ? & \quad (N')^2 + B_2B_3 \end{bmatrix}. \]

Since \(B_2 = 0 \), we deduce that
\[N^2 = (-B_3)B_2 \quad \text{and} \quad (-N')^2 = B_2(-B_3). \]

Recalling that
\[(-N')B_2 = B_2N \quad \text{and} \quad N(-B_3) = (-B_3)(-N'), \]
Theorem 9 yields \(n_3(N, 0) \leq n_1(-N', 0) \) and \(n_3(-N', 0) \leq n_1(N, 0) \), i.e., \(n_3(M, 1) \leq n_1(M, 0) \) and \(n_3(M, 0) \leq n_1(M, 1) \).

We finish by deducing the general case from the above special one:

Proof of Proposition 11. We think in terms of endomorphisms of the space \(\mathbb{K}^n \).

Let \(u \) be an endomorphism of \(\mathbb{K}^n \) such that \(u^n(u - \text{id})^n = 0 \), and assume that there is an idempotent endomorphism \(a \) and a square-zero endomorphism \(b \) such that \(u = a + b \).

By Corollary 4, \(E_k := \ker(u^k(u - \text{id})^k) \) is stabilized by \(a \) and \(b \) for every \(k \in \mathbb{N} \).

Let \(k \in \mathbb{N} \). Then \(a \), \(b \), and \(u \) induce endomorphisms \(a' \), \(b' \), and \(u' \) of \(E_{k+3}/E_k \), with \((a')^2 = a' \), \((b')^2 = 0 \), and \((u')^3(u' - \text{id})^3 = 0 \) (as \(u^3(u - \text{id})^3 \) maps \(E_{k+3} \) into \(E_k \)). Applying Lemma 12 to \(u' \), we find that \(n_3(u', 1) \leq n_1(u', 0) \) and \(n_3(u', 0) \leq n_1(u', 1) \).

In order to conclude, it suffices to note that
\[\forall i \in \{1, 2, 3\}, \ n_i(u', 0) = n_{k+1}(u, 0) \quad \text{and} \quad n_i(u', 1) = n_{k+1}(u, 1). \]

Note indeed, using the kernel decomposition theorem, that the characteristic subspace of \(u' \) for the eigenvalue 0 is \((\ker u^{k+3} \oplus \ker(u - \text{id})^k)/(\ker u^k \oplus \ker(u - \text{id})^k) \).
id)^k), and hence the nilpotent part of \(u' \) is similar to the endomorphism \(v : x \mapsto u(x) \) of \(\text{Ker}\ u^{k+3}/\text{Ker}\ u^k \). However \(\text{Ker}\ v^i = \text{Ker}\ u^{k+i}/\text{Ker}\ u^k \) for every \(i \in \{0, 1, 2, 3\} \). Therefore

\[
n_i(u', 0) = n_i(v, 0) = \left(\dim \text{Ker}\ u^{k+i} - \dim \text{Ker}\ u^k \right) - \left(\dim \text{Ker}\ u^{k+i-1} - \dim \text{Ker}\ u^k \right) = n_{k+i}(u, 0)
\]

for every \(i \in \{1, 2, 3\} \). In the same way, one proves that \(n_i(u', 1) = n_{k+i}(u, 1) \) for every \(i \in \{1, 2, 3\} \).

The special cases \(i = 1 \) and \(i = 3 \) yield \(n_{k+3}(u, 1) \leq n_{k+1}(u, 0) \) and \(n_{k+3}(u, 0) \leq n_{k+1}(u, 1) \).

This completes our proof of Theorem 1.

5 Addendum: a simplified proof of a result on linear combinations of idempotent matrices

In this last section, we wish to show how the strategy of Section 4.2 may be adapted so as to yield a simplified proof of the following result of [4]:

Proposition 13. Let \(\alpha, \beta \) be distinct elements of \(\mathbb{K} \setminus \{0\} \). Let \(M \in M_n(\mathbb{K}) \) be an \((\alpha, 0, \beta, 0)\)-quadratic sum such that \((M - \alpha I_n)^n(M - \beta I_n)^n = 0\). Then the sequences \((n_k(M, \alpha))_{k \geq 1}\) and \((n_k(M, \beta))_{k \geq 1}\) are 1-intertwined.

Proof. As in the proof of Proposition 11 one can use the commutation with \((M - \alpha I_n)(M - \beta I_n) = M(M - (\alpha + \beta)I_n) + \alpha\beta I_n\) (see Lemma 3) to reduce the situation to the one where \((M - \alpha I_n)^2(M - \beta I_n)^2 = 0\). In that case, we lose no generality in assuming that

\[
M = (\alpha I_p + N) \oplus (\beta I_q + N'),
\]

where \(p + q = n \), \(N \in M_p(\mathbb{K}) \) and \(N' \in M_q(\mathbb{K}) \) satisfy \(N^2 = 0 \) and \((N')^2 = 0 \). Note that

\[
(M - \alpha I_n)(M - \beta I_n) = (\alpha - \beta)(N \oplus (-N')).
\]

Let then \(A \) and \(B \) be idempotent matrices such that \(M = \alpha A + \beta B \). Split

\[
A = \begin{bmatrix} A_1 & A_3 \\ A_2 & A_4 \end{bmatrix},
\]

12
where A_1, A_2, A_3, A_4 are respectively $p \times p$, $q \times p$, $p \times q$ and $q \times q$ matrices. By Lemma 3 A commutes with $(M - \alpha I_n)(M - \beta I_n)$; as $\alpha \neq \beta$, we deduce that A_1 commutes with N.

On the other hand, the identity $(M - \alpha A)^2 = \beta(M - \alpha A)$ yields:

$$\alpha(\alpha + \beta)A = \alpha (AM + MA) + \beta M - M^2.$$

Evaluating the upper-left blocks on both sides and using the commutation $A_1N = NA_1$, we deduce:

$$\alpha(\alpha + \beta)A_1 = 2\alpha(\alpha I_n + N)A_1 + \beta(\alpha I_n + N) - (\alpha I_n + N)^2$$

and hence

$$\alpha((\beta - \alpha)I_n - 2N)A_1 = \alpha(\beta - \alpha)I_n + (\beta - 2\alpha)N.$$

As $\alpha(\beta - \alpha) \neq 0$ and $N^2 = 0$, we deduce that

$$A_1 = \left(I_n + \frac{\beta - 2\alpha}{\alpha(\beta - \alpha)} N \right) \left(I_n - \frac{2}{\beta - \alpha} N \right)^{-1} = I_n + \frac{\beta}{\alpha(\beta - \alpha)} N,$$

and it follows that the upper-left block of B is $\frac{1}{\beta}(\alpha I_n + N - \alpha A_1) = \frac{\alpha}{\beta(\alpha - \beta)} N$.

By symmetry, one has $A_4 = \frac{\beta}{\alpha(\beta - \alpha)} N'$. We deduce that

$$A - A^2 = \begin{bmatrix} \frac{\beta}{\alpha(\alpha - \beta)} N - A_3 A_2 & ? \\ ? & \frac{\beta}{\alpha(\beta - \alpha)} N' - A_2 A_3 \end{bmatrix}.$$

Setting $X := \alpha(\alpha - \beta)A_2$ and $Y := \frac{1}{\beta}A_3$, we find:

$$N = XY \quad \text{and} \quad -N' = YX.$$

The main theorem of [2] (or Theorem 9 for $p = 1$, noting that $NX = XYX = X(-N')$ and $YN = YXY = (-N')Y$) then shows that the sequences $(n_k(N, 0))_{k \geq 1}$ and $(n_k(-N', 0))_{k \geq 1}$ are 1-intertwined, i.e., the sequences $(n_k(M, \alpha))_{k \geq 1}$ and $(n_k(M, \beta))_{k \geq 1}$ are 1-intertwined.

References

[1] J.D. Botha, Sums of two square-zero matrices over an arbitrary field, *Linear Algebra Appl.* 436-3 (2012) 516-524.
[2] H. Flanders, Elementary divisors of AB and BA, Proc. Amer. Math. Soc. 2 (1951) 871-874.

[3] R.E. Hartwig, M.S. Putcha, When is a matrix a difference of two idempotents?, Lin. Multilin. Alg. 26 (1990) 267-277.

[4] C. de Seguins Pazzis, On linear combinations of two idempotent matrices over an arbitrary field, Linear Algebra Appl. 433-3 (2010) 625-636.

[5] J.-H. Wang, Sums and products of two quadratic matrices, Linear Algebra Appl. 129-1 (1995) 127-149.

[6] J.-H. Wang, P.Y. Wu, Sums of square zero operators, Studia Mathematica 99-2 (1991) 115-127.