A taxonomic revision of the genus Phrynoglossus in Indochina with the description of a new species and comments on the classification within Occidozyginae (Amphibia, Anura, Dicroglossidae)

Gunther Köhler1, Joseph Vargas1, Ni Lar Than2, Tilman Schell3, Axel Janke3,4, Steffen U. Pauls1,3,5, Panupong Thammachoti6

1 Senckenberg Forschungsinstutit und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt a.M., Germany
2 East Yangon University, Thanlyin, Yangon, Myanmar; nilarthan65@gmail.com
3 LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt a.M., Germany
4 Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Straße 14-16, 60325 Frankfurt a.M., Germany
5 Institute of Insect Biotechnology, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
6 Department of Biology, Faculty of Science, Chulalongkorn University; Bangkok, Thailand 10330

Abstract

We revise the frogs of the genus Phrynoglossus from Indochina based on data of external morphology, bioacoustics and molecular genetics. The results of this integrative study provide evidence for the recognition of three distinct species, one of which we describe as new. Phrynoglossus martensii has a vast geographic distribution from central and southern Thailand across southern China to Vietnam, Laos, and Cambodia. Phrynoglossus myanhessei sp. nov. is distributed in central Myanmar whereas Phrynoglossus mag-napustulosus is restricted to the Khorat Plateau, Thailand. These three species occur in allopatry and differ in their mating calls, external morphology, and in genetic distances of the 16S gene of 3.8–5.9%. Finally, we discuss and provide evolutionary evidence for the recognition of Phrynoglossus as a genus distinct from Occidozyga. Members of both genera form reciprocal monophyletic groups in our analyses of mtDNA data (16S) and are well differentiated from each other in morphology and ecology. Furthermore, they differ in the amplexus mode with Phrynoglossus having an inguinal amplexus whereas it is axillary in Occidozyga. We further provide a de novo draft genome of the holotype based on short-read sequencing technology to a coverage of 25-fold. This resource will permanently link the genetic characterization of the species to the name-bearing type specimen.

Key words

amplexus mode, bioacoustics, cryptic species diversity; Dicroglossidae, genome; Khorat Plateau, Myanmar, new species, Occidozyga; Phrynoglossus myanhessei sp. n., Thailand
Introduction

Southeast Asia is recognized as a major global biodiversity hotspot (Myers et al. 2000; Mittermeier 2004; Corlett 2014), and the amphibian order Anura is well represented in this region. However, it seems that the actual diversity of anurans in this part of the world is still grossly underestimated due to poor sampling of areas with difficult or dangerous access and because most of the supposedly wide-spread species actually constitute species complexes of two or more distinct species (e.g., Funk et al. 2011; Hasan et al. 2012; Köhler et al. 2019). During field work in Myanmar and Thailand we came across variation in the advertisement call of the common mud or puddle frogs, in this region all currently referred to as Occidozyga martensiis Peters, 1867 (Niyomwan et al. 2019; Frost 2020). These observations prompted us to collect this group of frogs to obtain a reasonable geographic coverage with the goal to evaluate whether these really are a single species occurring in a large geographic area or if these actually represent a complex of several – morphologically similar (cryptic) – species with smaller geographic ranges.

The generic placement of martensiis in either Phrynoglossus Peters, 1867 or Occidozyga Kuhl and van Hasselt, 1822 has caused some controversy among recent authors. It seems that the majority of authors have treated Phrynoglossus as a synonym of Occidozyga (e.g., Duellman and Trueb 1994; Nguyen et al. 2009; Frost 2020) whereas others have recognized them as two valid genera (e.g., Manthey and Grossmann 1997; Ohler and Dubois 1999; Ziegler, 2002; Köhler et al. 2018). Here we provide a short summary of the taxonomic history of Phrynoglossus and Occidozyga:

The genus name Occidozyga was introduced by Kuhl and van Hasselt 1822. Its type species (by subsequent designation of Stejneger 1925) was described as Rana lima Gravenhorst 1829 a few years later. In 1859, Günther described Oxyglossus laevis based on material from the Philippines. Oxyglossus Tschudi 1838 is an objective synonym of Occidozyga Kuhl and van Hasselt 1822 according to Ohler and Dubois (1999) whereas Ooeidozyga, Oxydozyga, Occidogyna are incorrect subsequent spellings of Occidozyga (Dubois 1981, Frost 2020). The genus name Oreobatrachus Boulenger 1896 is a synonym of Phrynoglossus Peters 1867 according to Smith (1931).

In 1896, Boulenger introduced his new species Oreobatrachus baluensis from „Mount Kina Balu, North Borneo [= Sabah]“, Malaysia (Borneo). Smith (1931) placed Oreobatrachus Boulenger 1896 in the synonymy of Phrynoglossus Peters 1867. With the introduction of the latter genus, Peters (1867) described the new species P. martensiis, the holotype of which he had received from Bangkok, Thailand. In 1877, Peters described Microdicosorus sumatranus from Sumatra, Indonesia. Smith (1916) discussed the taxa laevis, lima and martensiis and considered martensiis to be a subspecies of laevis. Also, he described and illustrated the tadpoles of lima and martensiis and provided natural history notes for the two taxa. He stated (Smith 1916: 175) that “O. lima is strictly aquatic in its habits” whereas martensiis, “although never far from water, is seldom to be found in it.” Taylor (1922) introduced the new species Micrixalus diminutivus based on specimens from “near Pasananka, Zamboanga, Mindanao”, Philippines. Inger (1954) transferred the latter taxon to the genus Ooeidozyga. In 1927, Smith described two new species from Sulawesi, Indonesia: Ooeidozyga semipalmata from „Lowah, near Mt. Bonthain“, and Ooeidozyga celebensis from “Djikoro, Mt. Bonthain”. Based on specimens from “Rana Mese, 1200 m. H., West-Flores”, Indonesia, Mertens (1927) described Oxydozyga floresiana. In 1958, Taylor and Elbel introduced their new species Ooeidozyga magnapustulosa with type locality in “Ban Na Phua (subvillage), Kan Luang (village), Na Kae (district), Nakhon Phanom (province), Thailand, elevation approx. 200 m”. More recently, Iskandar et al. (2011) analyzed the morphological variation in populations of frogs related to Occidozyga semipalmata and recognized the populations from „Bantayan, Mount Tombokita, Balantak Mountains …, Desa (=Village) Bualemo, … Sulawesi Province, Indonesia” as a distinct species that they named Occidozyga tompotika.

In his treatment of the herpetofauna of Mount Kinabalu, Borneo, Smith (1931) pointed out the unique tongue morphology of Ooeidozyga lima, strikingly different from the other species of that genus, and proposed to retain only O. lima in the genus and to transfer the remaining species to the genus Phrynoglossus. However, this proposal was not widely accepted by subsequent authors (e.g., Inger 1954, 1996) who preferred to maintain all species in a single genus (i.e., Occidozyga respectively its synonym Ooeidozyga). Inger (1996) argued that of the five supposedly diagnostic characters listed for Phrynoglossus, only one, the tongue morphology, would distinguish the species of the latter genus from Occidozyga.

Further evidence for considering Phrynoglossus as a synonym of Occidozyga was provided in the large-scale molecular phylogeny of amphibians of Pyron and Wiens (2011) where the two species of Phrynoglossus were nested within the species of Occidozyga, thereby rendering the latter genus paraphyletic if Phrynoglossus was recognized as a valid genus. Basal to the clade containing the species of Phrynoglossus and Occidozyga is Ingerana in the tree of these authors. However, aside from tongue morphology, there is additional evidence in favor of recognizing these two groups as distinct genera (see our Results section), and we therefore recognize Phrynoglossus as a valid genus distinct from Occidozyga.

Materials and methods

Specimens examined for this study were personally collected by GK, NLT, and PT (see Appendix 1 for specimens examined). Specimens labeled with GK field numbers were deposited in the collections of Senckenberg Forschungsmuseum Frankfurt (SMF) or at East Yangon University (EYU), Thanlyin, Myanmar, and those with
PT field numbers were deposited in the collection of the Chulalongkorn University, Museum of Natural History (CUMZ), Bangkok.

Prior to preservation of collected specimens in the field, we took color photographs of each individual in life. We euthanized the frogs with a pericardial injection of T61. We cut tissue samples from one forelimb or from the tongue and preserved these in 98% non-denatured ethanol for DNA extraction. The tissue samples were deposited in the collection of SMF and CUMZ. Specimens were then preserved by injecting a solution of 5 mL absolute (i.e., 36%) formalin in 1 L of 96% ethanol into the body cavity, and stored in 70% ethanol. Coordinates and elevation were recorded using Garmin GPS receivers with built-in altimeters. All coordinates were recorded in decimal degrees, WGS 1984 datum. Capitalized colors and color codes (in parentheses) followed Köhler (2012).

In evaluating species’ boundaries within and among populations, we followed the evolutionary species concept (Simpson 1951; Wiley 1978). As lines of evidence for species delimitation, we applied a phenotypic criterion (external morphology), the genetic distinctness of a mitochondrial genetic marker as well as a criterion for reproductive isolation (bioacoustic data).

Abbreviations used are EYD (eye diameter); FL (foot length); HL (head length); HW (head width); IND (internasal diameter); IOD (interorbital diameter); NED (nostril–eye distance); HNL (hand length); SHL (shank length); SL (snout length); SVL (snout–vent length); TED (tympanum–eye distance); THL (thigh length); TYD (longitudinal tympanum diameter). Webbing formulae follow (Savage and Heyer 1997). Terminology of snout shape follows Heyer et al. (1990).

We recorded anuran vocalizations using a digital audio recorder (Olympus LS-12) with a Sennheiser ME 66 shotgun microphone capsule and a Sennheiser K6 powering module. The microphone was positioned between 0.5 and 1.5 m from the calling frog. Aside from the GPS coordinates and elevation above sea level of the locality we also noted ambient air temperature and determined SVL of the recorded individual. Files were recorded as uncompressed 24-bit WAV files at a sampling frequency of 96 kHz. Audio files were deposited in the Fonoteca Zoológica, Museo Nacional de Ciencias Naturales, Madrid, Spain.

The spectral and temporal parameters were analyzed and the power spectra were calculated in RAVEN PRO 1.4. (Bioacoustics Research Program 2011). Spectrograms were obtained using the Blackman window function at 3db Filter Bandwidth of 141 Hz; grid spacing of 21.5 Hz; overlap 90%. Frequency information was generated through Fast Fourier Transformation (FFT, width 2,048 samples). Temporal measurements of calls such as repetition rates, duration of notes, and number of pulses, were measured on the waveforms. Terminology in call descriptions follows Köhler et al. (2017). The map was created using ArcMap 10.4. Additionally to the specimens examined by us, we also plotted specimens from the Field Museum (FMNH), Chicago, not examined by us.

Marker based analysis

We extracted DNA following the protocol of Ivanova et al. (2006). To eliminate potential PCR-inhibiting contaminants, the tissue samples were incubated for 14 hours at 4°C in 200 µL low PBS buffer (20 µL PBS in 180 µL of water) before overnight digestion with the vertebrate lysis buffer at 56°C. After extraction, DNA was eluted in 50 µL TE buffer. Fragments of the mitochondrial 16S rRNA (16S) were amplified in an Eppendorf Mastercycler® Pro using the following protocol: initial denaturation for 2 min at 94°C; followed by 40 cycles with denaturation for 35 s at 94°C, hybridization for 35 s at 48.5°C, and elongation for 60 s at 72°C; final elongation for 10 min at 72°C. The reaction mix for each sample contained 1 µL DNA template, 14 µL water, 2.5 µL PCR-buffer, 1 µL 25 mM MgCl₂, 4 µL 2.5 mM dNTPs (Invitrogen), 0.5 µL (containing 2.5 units) Taq Polymerase (Peqlab), and 1 µL of the primer (16S: forward: L2510, 5’–CGCCTGTTTATCCAAAAACAT–3’; reverse: H3056, 5’–CCGGTCTGAACTCAGATCACGT–3’; from Eurofins MWG Operon). DNA extraction, PCR, and sequencing were done at SMF for the samples from Myanmar and at Chulalongkorn University for the samples from Thailand. We generated 35 new sequences for this study (see Appendix 2). Additionally, we downloaded relevant 16S sequences from GenBank (Appendix 2). Because the frogs of the genus Ingerana Dubois, 1987 are supposedly the closest relatives of Phrynoglossus and Occidozyga (see Pyron and Wiens 2011) we included sequences of Ingerana tenasserimensis (Sclater 1892) in our analyses. Our dataset contains the type species of Ingerana (i.e., Rana tenasserimensis Sclater, 1892), Occidozyga (i.e., Rana lima Gravenhorst, 1829), and Phrynoglossus (i.e., Phrynoglossus martensis Peters, 1867).

We aligned the sequences with MUSCLE (Edgar 2004) using the default settings in Geneious 6.1.2. (Kearse et al. 2012). For software applications, sequence data formatting was converted using the online server Alter (Glez-Peña et al. 2010). The best substitution model for each gene was identified using PartitionFinder2 (Lanfear et al. 2017), with linked branch lengths via PhyML 3.0 (Guindon et al. 2010). Model selection used the corrected (for finite sample size) Akaike Information Criterion (AICc) (Burnham and Anderson 2002). Limnonectes limborgi (GK-7110) was used as outgroup (Pyron and Wiens 2011).

Bayesian Inference analyses (BI) used MrBayes 3.2 (Ronquist et al. 2012) with five runs with eight chains. The first 25% of trees were discarded as burn-in. MCMC runs used an initial set of 1,000,000 generations with sampling every 500 generations, and adding 500,000 generations until chains reached convergence. Convergence was considered achieved when the standard deviation of split frequencies was 0.015 or less. Additionally, convergence was diagnosed by PRSF (Potential Scale Reduction Factor), which should approach 1.0 as runs converge (Gelman and Rubin 1992). We used the IQTree webserver (Trifinopoulos et al. 2016) to run a Maximum Likelihood (ML) analysis using 10,000 ultrafast Bootstrap approximation (UFBoot) replicates with 10,000 maximum iterations.
Whole genome sequencing and assembly

De novo whole genome sequencing and assembly began with genomic DNA extraction from muscle tissue of the holotype according to standard phenol/chloroform procedures (Sambrook and Russell 2001). The resulting DNA was resuspended in TE buffer (10 mM Tris-Cl, 0.1 mM EDTA) and stored at -20°C. Quality checks for high molecular weight DNA were performed by agarose gel electrophoresis (Sambrook and Russell 2001). The DNA sample was shipped on dry ice to Novogene (UK) for short read Illumina genome sequencing. One genomic library (insert size: 350 bp) was prepared and 150 bp paired-end reads were sequenced on an Illumina NovaSeq 6000 platform (San Diego, CA). Raw reads are deposited under the accession number SRR13288470.

A k-mer profile was generated from the raw reads using Jellyfish 2.3.0 (Marçais and Kingsford 2011) and analyzed in the GenomeScope webserver (Vurture et al. 2017). Raw reads were trimmed for low quality regions and adapter sequences and filtered for possible contamination using Trimmomatic 0.39 (Bolger et al. 2014) and Kraken 2.0.9 (Wood et al. 2019) respectively. Best k-mer length was estimated by KmerGenie 1.7051 (Chikhi and Medvedev 2014). Nuclear genome assembly was conducted in Velvet 1.2.10 (Zerbino and Birney 2008) without reporting contigs smaller than 500 bp. The mitochondrial genome was assembled from the genomic data separately using NOVOplasty 4.2 (Dierckxsens et al. 2017). Annotation of the mitochondrial genome was manually merged and curated in Geneious Prime 2020.2.3 (https://www.geneious.com) from automatic annotations of GeSeq (Tillich et al. 2017) and MITOS2 (Donath et al. 2019) web servers. Scaffolds matching the mitochondrial genome assembly and scaffolds smaller than 500 bp were removed from the nuclear genome assembly. Finally, the mitochondrial genome assembly was added and quality was checked by backmapping the reads to the assembly with bwa mem 0.7.17-r1188 (Li 2013), searching for possible contamination with Blobtools 1.1.1 (Laetsch and Blaxter 2017) and screening for single-copy orthologs with BUSCO 4.1.4 (Simão et al. 2015). For detailed description see Appendix 3.

Results and Conclusions

The final 16S alignment for 69 samples (genera Ingerana, Occidozyga, and Phrynoglossus) was 599 nucleotide positions long. GTR+G was determined to be the best fitting model of sequence evolution. The trees obtained by BI, ML, *BEAST, and ABGD analyses show a high degree of congruence at well-supported nodes, with some differences in branch arrangement at poorly supported nodes (Figs. 1, 2 and 3). Our final phylogenetic analyses recover the deep divergences between the genera Ingerana, Occidozyga, and Phrynoglossus (Figs. 1, 2 and 3). These three genera form monophyletic groups in all analyses.

Ingerana is the sister clade to a clade containing Occidozyga plus Phrynoglossus. There is much genetic structure in the Occidozyga clade indicating the possible presence of cryptic species among the populations currently referred to as O. lima (Gravenhorst, 1829). Among the specimens here referred to the genus Phrynoglossus, four major clades are recognizable and also supported by the ABGD analysis (Fig. 3). Clade 1 (≈ Group 7 in our ABGD analysis) contains specimens from southern Thailand including Bangkok (≈ type locality of P. martensii) and are therefore considered to represent the “true” P. martensii. Clade 2 (≈ Group 8 in our ABGD analysis) contains specimens from northern Thailand, southern China, Vietnam, Laos, and Cambodia. Clade 3 (≈ Group 11 in our ABGD analysis) is geographically restricted to the Khorat Plateau, Thailand, and includes specimens from Ban Kan Luang (≈ type locality of P. magnapustulosis Taylor and Elbel, 1958) and are therefore considered to represent the latter species. Finally, Clade 4 (≈ Group 10 in our ABGD analysis) contains specimens from central and lower Myanmar. We consider these four clades as candidate species. The genetic distances among these clades vary from 3.5% to 5.9% (Table 1).

In bioacoustics, the advertisement calls of males from Clades 1, 3, and 4 can be readily distinguished whereas the calls of males from Clades 1 and 2 are exceedingly similar (Table 2; Fig. 4). Males of P. magnapustulosis (our Clade 3) emit an advertisement call that sounded “mourning” to our ears (“maaaaaaa”). It has a duration of 243–437 ms (mostly in the 300 ms range) with its dominant frequency mostly in the range of 3500–3700 Hz (3187–3790 Hz) and a gap duration between calls of 2.3–5.3 s, mostly 3–4 s. On the contrary, the call of P. martensii (Clade 1) is very short (sounding like “bicc”) with a duration of 40–48
ms and a dominant frequency of 3467–3596 Hz. The gap duration between calls varies from 2.8–3.9 s. The calls of males from Myanmar (Clade 4) are somewhat similar to the calls of *P. martensii* but are of longer duration (82–114 ms) and lower pitched (dominant frequency 2454–2885 Hz). The gap duration between calls varies from 1.8–4.8 s. The advertisement call of our “cf. *martensii*” (Clade 2) is very similar to the call of *P. martensii* (Clade 1) and differs only in having mostly a shorter gap duration between calls (0.5–3.0 s, mostly < 2.5 s in “cf. *martensii*” versus 2.8–3.9 in *P. martensii*).

In external morphology, specimens of these four clades are somewhat conservative in external morphology but show differences in some morphometric values (Fig. 5;
Table 3) as well as in the amount of toe webbing and in some details of coloration (see respective diagnosis sections below). Also, there is sexual dimorphism evident in several morphometric characters such as SVL, SHL, FL, and HL. *Phrynoglossus magnapustulosus* have the smallest SVL (males < 20 mm versus > 20 mm in the other clades) and also have a much larger ratio TYD/SVL compared to those from the other clades.

Thus, based on the results of the analyses of mtDNA data, morphology, and bioacoustics, we recognize three of the four clades as defined above as species level units (i.e., our OTUs 1, 3 and 4) whereas we tentatively consider our OTU 2 to be conspecific with our OTU 1 since we are unable to find any diagnostic differences in morphology or bioacoustics that would separate these two OTUs. Based on the respective type localities, our Clade 1 is assigned to *Phrynoglossus martensii* whereas our Clade 3 is referred to as *P. magnapustulosus*. Clade 4 represents an undescribed species for which no name is available. Thus, we describe the *Phrynoglossus* from central and lower Myanmar as a new species below.

Regarding the recognition of *Phrynoglossus* as a valid genus distinct from *Occidozyga*, we find support by the results of our genetic and morphologic analyses as well as our field observations on the amplexus mode of these frogs. *Phrynoglossus* has an inguinal amplexus whereas *Occidozyga* has an axillary amplexus (Fig. 6). The two genera differ readily in tongue morphology with *Occidozyga* having a very slender, worm-like tongue whereas the tongue is fleshy and thick in *Phrynoglossus* (Fig. 7a,b). Also, species of the two groups differ strikingly in skin texture (Fig. 7c,d) and mucosome, at least judged from touching these frogs with bare hands: species of *Phrynoglossus* have a smooth skin and are extremely slimy and thus difficult to constrain manually. On the other hand, *Occidozyga* has a rough skin and is not slimy at all. Finally, the two groups differ in ecology: species of *Phrynoglossus* are terrestrial frogs that are usually found on mud at the shore of small water bodies whereas *Occidozyga* is a fully aquatic species that always remains in the water body. For the issue of possible paraphyly of this group of frogs see also our results of the analysis of the mtDNA data used in this study.

Thus, we formally resurrect *Phrynoglossus* from the synonymy of *Occidozyga* and define the two genera as follows (data also from Ohler and Dubois 1999):

Occidozyga Kuhl & van Hasselt, 1822

Type species. *Rana lima* Gravenhorst, 1829.

Diagnosis. A genus of Asian frogs of the subfamily Occidozyginae Fei, Ye, and Huang, 1990 of the family Dicroglossidae Anderson, 1871, that differs from all other genera of its subfamily by having the following combination of characters: (1); tongue slender, worm-like; (2) vomerine teeth absent; (3) tips of fingers and toes pointed; (4) tympanum hidden; (5) skin not covered by extensive mucous, feels dry to touch in life frogs; (6) throat lining...
whitish with longitudinal brown stripe; (7) life style fully aquatic; (8) amplexus axillary.

Content. *Occidozyga lima* (Gravenhorst, 1829)

Phrynoglossus Peters, 1867

Type species. *Phrynoglossus martensii* Peters, 1867

Diagnosis. A genus of Asian frogs of the subfamily Occidozyginae Fei, Ye, and Huang, 1990 of the family Dicroglossidae Anderson, 1871, that differs from all other genera of its subfamily by having the following combination of characters: (1) tongue fleshy, swollen; (2) vomerine teeth absent; (3) tips of fingers and toes slightly swollen; (4) tympanum moderately distinct; (5) skin covered by extensive mucous, feels slimy to touch in life frogs; (6) throat lining uniformly grey; (7) life style semiaquatic; (8) amplexus inguinial.

Content. *Phrynoglossus baluensis* (Boulenger, 1896), *Phrynoglossus celebensis* (Smith, 1927), *Phrynoglossus diminutivus* (Taylor, 1922), *Phrynoglossus floresianus* (Mertens, 1927), *Phrynoglossus laevis* (Günther, 1859), *Phrynoglossus magnapustulosus* (Taylor and Elbel, 1922).
Table 1. Uncorrected pairwise distances for the Occidozyginae plus Limnonectes (outgroup) included in this study. For details see text.

Taxon ID	Call duration (sec)	Dom. Freq (Hz)	Gap duration (sec)	Freq 5% (Hz)	Freq 95% (Hz)	
GK-7475_0544 (n=23 calls) Roi Et Prov., Thailand	magnapustulosus	0.243–0.354 (0.291±0.024)	3187–3682 (3447±175)	2.25–4.28 (3.15±0.58)	1680–1938 (1790±74)	4199–5383 (4823±388)
GK-7465_0543 (n=15 calls) Roi Et Prov., Thailand	magnapustulosus	0.322–0.437 (0.387±0.031)	3725–3790 (3761±20)	2.67–5.31 (3.92±0.67)	1744–2131 (1894±94)	4091–4177 (4150±29)
GK-7476_0546 (n=9 calls) Roi Et Prov., Thailand	magnapustulosus	0.262–0.287 (0.277±0.008)	3750–3750 (3750±0)	2.53–3.20 (2.77±0.19)	1640–1734 (1708±32)	4406–4453 (4427±23)
GK-6727_0183 (n=7 calls) EYU, Myanmar	n. sp. “Myanmar”	0.085–0.114 (0.104±0.009)	2454–2476 (2467±11)	2.34–2.90 (2.66±0.23)	1357–1809 (1529±156)	2820–2863 (2839±18)
GK-6926_0008 (n=21 calls) EYU, Myanmar	n. sp. “Myanmar”	0.079–0.109 (0.098±0.008)	2756–2885 (2839±41)	2.47–4.78 (3.31±0.67)	1766–2347 (2119±168)	3187–3316 (3265±37)
Not collected (n=26 calls) Thanlyn, Myanmar	n. sp. “Myanmar”	0.082–0.102 (0.090±0.005)	2541–2584 (2566±18)	1.84–2.80 (2.18±0.32)	1357–2110 (1831±238)	2929–3015 (2975±26)
Goutte_9357 (n=24 calls) Taiwan	cf. martensii	0.041–0.051 (0.046±0.000)	3876–3941 (3914±17)	1.22–2.99 (3.29±0.32)	2304–3488 (3027±414)	4264–4737 (4493±128)
Goutte_9358 (n=28 calls) Taiwan	cf. martensii	0.038–0.052 (0.043±0.001)	3919–3962 (3935±15)	1.94–2.78 (2.37±0.65)	2864–3553 (3356±414)	4264–4371 (4300±24)
Ziegler TZ-473 (n=24 calls) Vietnam	cf. martensii	0.032–0.046 (0.037±0.004)	3338–3553 (3444±70)	0.53–0.90 (0.62±0.09)	1873–3144 (2874±275)	3725–4027 (3830±76)
Chiang Mai (n=10 calls) Thailand	cf. martensii	0.033–0.043 (0.037±0.002)	3660–3704 (3689±14)	1.91–2.56 (2.19±0.20)	2670–3165 (2922±130)	4134–4435 (4254±111)
Bangkok (n=14 calls) Thailand	martensii	0.040–0.048 (0.043±0.002)	3467–3596 (3544±37)	2.80–3.86 (3.42±0.34)	2261–3165 (2689±257)	3919–4155 (4028±69)

Table 2. Selected bioacoustic parameters of the species related to Phrynoglossus martensii. Range is followed by mean value and standard deviation in parentheses. Dom. Freq. = dominant frequency; Freq. = frequency.

Taxon ID	Call duration (sec)	Gap duration (sec)	Freq 5% (Hz)	Freq 95% (Hz)
GK-6727_0183 (n=7 calls) EYU, Myanmar	magnapustulosus			
GK-6926_0008 (n=21 calls) EYU, Myanmar	n. sp. “Myanmar”			
Not collected (n=26 calls) Thanlyn, Myanmar	n. sp. “Myanmar”			
Goutte_9357 (n=24 calls) Taiwan	cf. martensii			
Goutte_9358 (n=28 calls) Taiwan	cf. martensii			
Ziegler TZ-473 (n=24 calls) Vietnam	cf. martensii			
Chiang Mai (n=10 calls) Thailand	cf. martensii			
Bangkok (n=14 calls) Thailand	martensii			

Table 3. Selected measurements and proportions of the species of Phrynoglossus. Range is followed by mean value and standard deviation in parentheses. For abbreviations see text.
Table 3 continued.

	P. martensii		**P. magnapustulosus**		**P. myanhessei**	
	♂ 7	♀ 8	♂ 8	♀ 12	♂ 9	♀ 6
TYD / SVL						
males	0.042–0.068 (0.052±0.010)	0.055–0.099 (0.082±0.014)	0.029–0.066 (0.050±0.012)			
females	0.035–0.052 (0.043±0.006)	0.062–0.102 (0.080±0.012)	0.034–0.064 (0.051±0.010)			
EYD / SVL						
males	0.109–0.138 (0.122±0.010)	0.091–0.143 (0.116±0.017)	0.094–0.140 (0.112±0.015)			
females	0.095–0.119 (0.104±0.008)	0.082–0.118 (0.100±0.012)	0.077–0.132 (0.096±0.019)			
NED / SVL						
males	0.056–0.071 (0.064±0.006)	0.064–0.123 (0.086±0.018)	0.061–0.101 (0.083±0.016)			
females	0.055–0.066 (0.060±0.004)	0.058–0.086 (0.074±0.009)	0.060–0.145 (0.099±0.033)			
TYD / EYD						
males	0.357–0.512 (0.425±0.063)	0.482–0.920 (0.722±0.147)	0.291–0.653 (0.460±0.146)			
females	0.328–0.515 (0.411±0.060)	0.591–0.962 (0.807±0.120)	0.385–0.727 (0.550±0.143)			

Figure 4. Advertisement calls of male *Phrynoglossus*. (A) *P. magnapustulosus*, GK-7395; (B) *P. myanhessei* n. sp., SMF 103799; (C) *P. martensii*, PT-2634 (Bangkok); (D) *P. martensii*, PT-2076 (Chiang Mai).
Gunther Köhler et al.: A taxonomic revision of the genus *Phrynoglossus* in Indochina

1958), *Phrynoglossus martensii* Peters, 1867, *Phrynoglossus semipalmatus* (Smith, 1927), *Phrynoglossus sumatranus* (Peters, 1877), *Phrynoglossus tompotika* (Iskandar, Arifin, and Rachmanasah, 2011).

This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the International Commission on Zoological Nomenclature (ICZN). The ZooBank LSIDs (Life Science
Identifiers) can be resolved and the associated information can be viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org. The LSID for this publication is as follows: urn:lsid:zoobank.org:pub:A978D105-6D7F-4858-BA27-8639B76A6039. The LSID registration and any associated information can be viewed in a web browser by adding the LSID to the prefix “http://zoobank.org.”

Figure 5 – part 2. Scatter plots illustrating morphological variation in the species of *Phrynoglossus* magnap. = *P. magnapustulosus*; m = male; f = female. For abbreviations of morphological characters see text. Abbreviations of taxon names as in Fig. 1.
Figure 6. Frogs of *Phrynoglossus* and *Occidozyga* in amplexus. (A) *P. myanhessei* n. sp., SMF 103797–98; (B) *P. magnapustulosus*, not collected; (C) *O. lima*, not collected (Magwe State, Myanmar); (D) *O. lima*, not collected (Roi Et province, Thailand). Photos by G.K.

Figure 7. Morphological differences between *Phrynoglossus* and *Occidozyga*. Tongue morphology in (A) *P. myanhessei* n. sp., SMF 103353; (B) *O. lima*, GK-7076; dorsal skin texture in (C) *P. myanhessei* n. sp., SMF 103353; (D) *O. lima*, GK-7076. Photos by G.K.
Phrynoglossus myanhessei Köhler, Vargas, Than & Thammachoti sp. nov.

http://zoobank.org/4D51EF6E-E61D-4A91-90EC-56B160400126

Figs. 8–10

Holotype. SMF 103841, an adult male collected at East Yangon University (16.77737, 96.24065; 17 m a.s.l.), Thanlyin, Yangon, Myanmar, collected 6 July 2017 by Gunther Köhler and Ni Lar Than. Field tag number GK-6728.

Paratypes. SMF 103840, same collecting data as holotype; SMF 103797–99, same locality data and collectors as holotype but collected 15 June 2018. All paratypes are adult males except for SMF 103798 which is an adult female.

Diagnosis. A species of the genus Phrynoglossus as defined above that differs from all mainland Southeast Asian congeners by having (1) a large body size (males 22.0–27.4 mm; females 28.4–31.3 mm); (2) relatively small tympanum (ratio TYD/SVL 0.48–0.92); and (3) call duration of male advertisement call 85–114 ms. Phrynoglossus myanhessei differs from its congeners in Indochina (i.e., Ph. martensii and Ph. magnapustulosus) in the male advertisement call, most obvious in call duration (85–114 ms in Ph. myanhessei, 32–52 ms in Ph. martensii, 243–437 ms in Ph. magnapustulosus) and dominant frequency (2454–2885 Hz in Ph. myanhessei, 3338–3962 Hz in Ph. martensii, 3187–3790 Hz in Ph. magnapustulosus).

Comparisons. Phrynoglossus myanhessei differs from its congeners as follows (condition for Ph. myanhessei in parentheses). Phrynoglossus floresianus, Ph. semi-palmatus, and Ph. tompotika all have distinctly enlarged flattened toe and finger disks (tips of toes rounded, only slightly expanded into discs, not distinctly flattened); Ph. floresianus and Ph. laevis are much larger frogs, 35–37 mm in males, 40–51 mm in adult females in Ph. floresianus, 26–42 mm in males, 35–62 mm in females in Ph. laevis (males 22.0–27.4 mm; females 28.4–31.3 mm); furthermore, the eyes are directed dorsolaterally in Ph. laevis and Ph. celebensis (laterally); Ph. baluensis usually has a large inverted U-shaped ridge on the dorsum (no such ridge present) and reduced toe webbing with at least two phalanges free of webbing along fourth toe (feet almost fully webbed, less than one phalange free of webbing along fourth toe); Ph. sumatr anus has a dark brown band on each side of the cloaca (such band absent), diamond shaped pupil (ovoid), and its eyes are oriented dorsolaterally (laterally); Ph. diminutivus has reduced toe webbing with two phalanges free of webbing along fourth toe (feet almost fully webbed, less than one phalange free of webbing along fourth toe); Ph. martensii and Ph. magnapustulosus are smaller frogs, 20–23 mm in males, 26–30 mm in adult females in Ph. martensii, 17–20 mm in males, 17–24 mm in females in Ph. magnapustulosus (males 22.0–27.4 mm; females 28.4–31.3 mm); furthermore, Ph. magnapustulosus has a relatively larger tympanum, ratio tympanum/SVL 0.055–0.099, mean 0.082 (0.029–0.066, mean 0.050). Also, Ph. martensii has a relatively broader head, ratio HW/SVL 0.336–0.401, mean 0.357 in males, 0.338–0.388, mean 0.351 in females (0.286–0.369, mean 0.338 in males, 0.283–0.354, mean 0.312 in females).

Description of the holotype (Figs. 8 and 9). Adult male, as indicated by dark colored throat region and presence of vocal slits; SVL 23.56 mm; habitus robust; head broad, about as wide as long, ratio HL/HW 1.06; snout nearly rounded in dorsal view, projecting beyond lower jaw, rounded in profile; nostril dorsolateral, closer to tip of snout than eye; canthus rounded; ratio EYD/SVL 0.12; IO (2.12) greater than width of upper eyelid (1.94); tympanum concealed, slightly depressed relative to skin of temporal region, tympanic rim weakly elevated relative to tympanum; ratio TYD/EYD 0.42; vomerine teeth absent; tongue fleshy, rounded, without notch; tips of all four fingers rounded, not expanded into discs; relative finger lengths III>IV>II; no webbing; distinct subarticular tubercles, palmar tubercle distinct, bifid; thenar tubercle large, about twice the size of palmar tubercle; tips of toes rounded, slightly expanded into discs; relative toe lengths IV>III>V>II; feet almost fully webbed, webbing formula I 0.8–0.8 II 0.8–0.8 III 0.8–0.9 IV 0.9–0.8 V; a well-developed flap of skin on postaxial side of Toe V from level of outer metatarsal tubercle to distal subarticular tubercle; strong fold on distal one-half of tarsus; large, flap-like inner metatarsal tubercle; outer metatarsal tubercle not differentiated, but rather two tiny tubercles present in that area; skin on top of head and on dorsum and flank smooth; skin on throat and venter shagreen; skin on upper surface of forelimbs and thigh with low, rounded tubercles, that of dorsal surface of shank with scattered keratinized pointed tubercles; indistinct, glandular supratympanic fold from posterior edge of upper eyelid along upper margin of tympanum and then obliquely down to shoulder; no dorsolateral fold. Measurements (mm) of holotype: SVL 23.56; HL 8.91; HW 8.44; SL 3.60; EYD 2.81; IO 2.12; TYD 1.17; TED 0.67; SHL 12.51; THL 12.52; HNL 6.04; FL 12.22; NED 2.37; IND 1.92.

Coloration in life was recorded as follows (Fig. 10): Dorsal and lateral ground color of head and body Drab-Gray (256) with indistinct Raw Umber (280) blotches and mottling; dorsal surfaces of forelimbs True Cinna mon (260) with Raw Umber (280) speckles; dorsal surfaces of hind limbs Drab-Gray (256) with Raw Umber (280) transverse broken bars; a Drab-Gray (256) oblique bar from anterior corner of eye to snout; throat region heavily suffused with Vandyke Brown (282); venter Pale Neutral Gray (296) with Smoky White (261) stipples; ventral surfaces of forelimbs Medium Fawn Color (257); ventral surfaces of hind limbs Cream White (52); iris Olive Brown (278) with a suffusion of Orange-Rufous (56) above and whitish below.

Coloration after about three years preservation in 70% ethanol was recorded as follows: Dorsal and lateral ground color of head and body Glaucous (272) with indistinct Sepia (279) blotches and mottling; dorsal surfaces of hind limbs Glaucous (272) with Sepia (279) transverse
broken bars; a Drab-Gray (256) oblique bar from anterior
corner of eye to snout; supraocular region Dusky Brown
(285); throat region Glaucoous (289) with Pale Buff (1)
stipples; venter Pale Buff (1) with Smoky White (261)
stipples; ventral surfaces of forelimbs Glaucoous (289);
ventral surfaces of hind limbs Light Buff (2).

Variation. The paratypes agree well with the holotype in
general appearance; morphometrics and coloration (see
Table 3).

Etymology. “Myan” is Myanmar’s abbreviated name and
was chosen because this species is endemic to Myanmar
as far as we know. “hessei” was chosen in recognition of
the long-term support and funding of Senckenberg by the
German State of Hesse. In combination, the species name
myanhessei reflects the long-term productive collaboration
of researchers from Hesse and Myanmar in the field
of herpetology.

Natural history notes. At the type locality, the speci-
mens were collected at night in a patch of muddy grass
area, partly open, partly covered by bushes and low trees.
The frogs were sitting at the edge of small shallow tem-
porary water bodies.

Geographic Distribution and Conservation. As cur-
cently known, Phrynoglossus myanhessei is restricted to
central and lower Myanmar (Fig. 11). This species was
abundant wherever we found it. Thus, we classify it as
Least Concern according to the IUCN categories (IUCN,
2012).
Genomic characterization. Whole genome sequencing and assembly: Illumina sequencing yielded 616,151,068 short-reads with a data amount of 92.4 Gb. K-mer analysis estimated the genome size to 2.6 Gb and heterozygosity 0.9%. The mitochondrial genome was assembled into one circular sequence with a length of 18,348 bp (accession number MW405414). All expected 13 protein coding genes, 2 rRNAs, 23 tRNAs, one D-loop region and the origin of replication could be annotated on the mitochondrial genome sequence. A pairwise alignment to the complete mitochondrial genome of *Phrynoglossus marnetensii* (GU177877) shows 77.1% pairwise identity. The final nuclear genome assembly contains 1,446,664 contigs with a total length of 1,829,122,027, an N50 of 1,468 and a GC of 41.07%. The backmapping rate is as high as 98.9% and after filtering, the genome sequence coverage of the holotype specimen is uniformly distributed at 25×. The BUSCO search resulted in 20.8% present BUSCOs (C:8.5%,S:8.4%,D:0.1%,F:12.3%,M:79.2%,n:5310) and no contamination could be identified by interpreting the blobplot. Raw reads and the draft-genome assemblies can be found within the BioProject PRJNA687006. For further details see Appendix 3.

Discussion

Our study provides support for the general assumption that most geographically wide-spread species contain cryptic diversity with one or more unrecognized species “hiding” behind another taxon name due to its similarity in external morphology (Hasan et al. 2012; Köhler et al.)
Typically, these anuran species differ from one another in bioacoustics, i.e., in the male advertisement call. Often these species are poorly differentiated in external morphology which was the reason for lumping them before in the first place. The reason for the poor degree of morphological differentiation is possibly the lack of ecological differentiation of the members of such a cluster of frogs. In the case of the *Phrynoglossus* studied here, it is most likely that they went through the process of speciation in allopatry as indicated by their present distribution pattern. A single prezygotal isolating mechanism is enough to finalize the speciation process no matter how similar the diverging populations are in other characters such as external morphology or ecological traits, e.g., habitat preference, diet, or activity patterns (Wilson, 2001). In anurans the male advertisement call serves as a very effective isolating mechanism to avoid hybridization among similar species under natural conditions (Köhler et al. 2017). Thus, the discovery that there are three distinct male advertisement calls among the species referred to as *P. martensii* in mainland Southeast Asia is strong evidence for the presence of three distinct species that are not compatible reproductively. In this sense it could be expected that the variation in mtDNA data would be congruent with the results of the bioacoustical analyses. The mtDNA data found a fourth clade of frogs (our Clade 2 with specimens from northern Thailand, southern China, Vietnam, Laos, and Cambodia) that differed from the other three clades by a mean genetic distance of 16S of 3.5–5.1% and therefore qualifies as candidate species (sensu Fouquet et al. 2007). However, since we did not find additional support for the recognition of this clade as a distinct evolutionary species, we tentatively assigned it to the species it is genetically most closely related too (i.e., *P. martensii*). Additional research including nuclear genetic data is needed to evaluate these northeastern populations.

In previous publications, the geographic distribution of *Phrynoglossus magnapustulosus* was given as “Nakhon Phanon, Ubon, Loei, and Chiang Mai provinces, Thailand” (e.g., Taylor 1962; Frost 2020) or “northern and northeastern Thailand” (Khonsue and Thirakhupt 2001). According to our molecular genetic data and also based upon our field observations in Chiang Mai, this statement is erroneous and probably based on misleading characters of external morphology that were considered to be diagnostic for this species such as the presence of “pearly tubercles” on the dorsum (Taylor 1962). In our series of toptype specimens of *P. magnapustulosus* we found that dorsal skin texture varies considerably. Some specimens virtually have only a few low tubercles on the dorsum whereas other have distinct ones, pearl-tipped or not (see Fig. 12). A similar degree of variation in dorsal skin texture was observed in individuals of *P. martensii* (Fig. 13). Thus, we dismiss this character as useful for distinguishing among species of *Phrynoglossus*. As far as known, *P. magnapustulosus* is restricted to the Khorat Plateau. Other herpetofaunal species endemic to the Khorat Plateau include *Enhydris subtaeniata* and *Malayemys khoratensis* (Murphy and Voris 2014; Ihlow et al. 2016).
Figure 11. Map indicating collecting localities of the *Phrynoglossus* species occurring in Indochina. Each symbol can represent one or more adjacent localities. Black squares: *P. myanhessei* n. sp.; black circles: *P. martensii*; green pentagons: *P. cf. martensii*; black triangles: *P. magnapustulosus*; white circles: additional specimens of *Phrynoglossus* from the FMNH, not examined by authors.

Figure 12. *Phrynoglossus magnapustulosus* in life. (A) GK-7855; (B) GK-7853; (C) GK-7877; (D) GK-7880. Photos by G.K.
The species of *Phrynoglossus* (or *Occidozyga*) that are supposedly endemic to the islands of the Sunda Archipelago and the Philippines were beyond the scope of this study. Future studies need to address the phylogenetic relationships and verify their generic assignment as proposed here. The integrative taxonomic approach including also bioacoustic and genetic data along with a thorough analysis of the geographic variation of external morphology will be useful in order to clarify the taxonomic status of these populations.

The evidence for recognizing *Phrynoglossus* and *Occidozyga* as distinct evolutionary units at genus level is supported by the monophyly of the two taxa based on the analyses of mtDNA in this study. Furthermore, there are several diagnostic morphological characters that define each genus, some of which may turn out to be apomorphic for one or the other genus. The conspicuous skin morphology of *Occidozyga* as well as its unique tongue shape are such candidates. Regarding the documented mode of amplexus, finding two different modes in these supposedly closely related genera is interesting. The inguinal amplexus mode that we documented in *P. magnapustulosus* and *P. myanhessei* is supported as an autapomorphy of the genus *Phrynoglossus* by the observation of an inguinal amplexus mode also in *P. sumatranus* by Eto and Matsui (2012). According to a large-scale analysis of the amplexus mode across all groups of anuran amphibians, reveal the inguinal amplexus as the basal state to all Anura (Carvajal-Castro et al. 2020). However, the latter authors gave the axillary amplexus as the only mode found within the family Dicroglossidae obviously not being aware of the inguinal amplexus mode in *Phrynoglossus*. Given the phylogenetic position of *Phrynoglossus* in the amphibian tree of life (Pyron and Wiens 2011), we interpret the amplexus mode in this genus as a reversal from the axillary mode, and thus as an autapomorphy of this genus.

With this description of a new species we provide the complete, annotated mitochondrial genome, a draft genome and 25× coverage of short-read genome resources of the holotype. This fundamental genomic characterization of the species based on the name-bearing specimen will be an invaluable genomic resource for future taxonomic and evolutionary studies. The quality of the nuclear genome assembly provided for the holotype of *Phrynoglossus myanhessei* is sufficient to genetically characterize the new species on the basis of the name-bearing specimen. The genome data describe the entire genetic variation, including heterozygosity of the holotype individual and make it possible to extract any genetic locus for future taxonomic or phylogenetic studies specifically of occidozygine frogs and frogs in general.

Following the first example from Köhler et al. (2021) we reiterate our proposition that wherever feasible, descriptions of new species should be accompanied by genomic data and a draft genome assembly from the respective holotype as an important resource to future biodiversity research. The investment in a draft genome of newly described holotypes ensures that the genetic fingerprint of newly described species is captured and preserved long-term based on the name-bearing specimen. Furthermore, Köhler et al. (2021) suggest to balance between quality and investment regarding draft genome quality.
Therefore the quality of the nuclear genome assembly from 25× coverage is not very high by purpose and still provides a basis for further studies. In addition the complete mitochondrial genome is a valuable resource e.g., for further phylogenetic studies. In the near future, adding genomic data to traditional phenotypic studies will likely become a standard, as costs and efforts to produce them drop dramatically. And the time to start is now.

Acknowledgments

We would like to express our gratitude to Dr. Nyi Nyi Kyaw, Director General, Forest Department, Ministry of Natural Resources and Environmental Conservation, Myanmar, for issuing our collecting permits, U Hla Maung Thein, Director General, Environmental Conservation Department, Ministry of Natural Resources and Environmental Conservation, Myanmar, for issuing our permission to access the genetic resources as in compliance with the Nagoya Protocol, and to Dr. Naing Zaw Htun, Director, Nature and Wildlife Conservation Division, Ministry of Natural Resources and Environmental Conservation, Myanmar, for issuing the exportation permits. Our special thanks are due to Dr. Kyaw Kyaw Khaung, Rector, East Yangon University, Thanlyin, for supporting us to obtain all necessary permissions from the Ministry of Natural Resources and Environmental Conservation, Myanmar. We thank Linda Mogk, Senckenberg Research Institute, Frankfurt, for doing molecular lab work that resulted in some of the new DNA sequences included in this contribution. We are grateful to the following colleagues who provided audio files with recordings of *Phrynoglossus*: Sandra Goutte, Taiwan; Thomas Ziegler, Köln. The audio files were made available to us via the Fonoteca Zoológica, Museo Nacional de Ciencias Naturales, Madrid, Spain. Melanie Müller and Jakob Adam helped with several tasks in the preparation of data and images for this study. This research is funded partly by Chulalongkorn University: U_GL 63_66_23_10 and also partially financially supported by the Sci-Super VI fund from Faculty of Science, Chulalongkorn University. We thank Noppadon Kitana, Wichase Khonsue and Chatchawan Chaisuekul, Department of Biology, Faculty of Science, Chulalongkorn University, for assisting PT and GK on field work in Thailand. And we are thankful to Andreas Schmitz and Thomas Ziegler for helpful comments on an earlier version of the manuscript.

References

Anderson J (1871) A list of the reptilian accession to the Indian Museum, Calcutta from 1865 to 1870, with a description of some new species. Journal of the Asiatic Society of Bengal 40: 12–39.

Bioacoustics Research Program (2011) Raven Pro: Interactive Sound Analysis Software (Version 1.4). The Cornell Lab of Ornithology, Ithaca, NY, available from http://www.birds.cornell.edu/raven

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120.

Bouckaert R, Heled J (2014) DensiTree 2: Seeing trees through the forest. https://doi.org/10.1101/012401

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchene S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu C-H, Xie D, Zhang C, Stadler T, Drummond AJ (2018) BEAST 2.5: An Advanced Software Platform for Bayesian Evolutionary Analysis. https://doi.org/10.1101/474296

Boulenger GA (1896) Descriptions of new batrachians in the British Museum. Annals and Magazine of Natural History, Series 6, 17: 401–406.

Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach. Springer-Verlag New York Inc, New York.

Carvajal-Castro JD, López-Aguirre Y, Osypina-L AM, Santos JC, Rojas B, Vargas-Salinas F (2020) Much more than a clasp: evolutionary patterns of amplexus diversity in anurans. Biological Journal of the Linnean Society 129(3): 652–663. https://doi.org/10.1093/biolinnean/blaa009

Chikhi R, Medvedev P (2014) Informed and automated k-mer size selection for genome assembly. Bioinformatics 30(1): 31–37.

Corlett RT (2014) The ecology of tropical East Asia (2. ed.). Oxford University Press, Oxford

Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45(4): e18-e18

Donath A, Jühling FJ, Al-Arab M, Bernhart SH, Reinhardt F, Stadler PF, Middendorf M, Bernt M (2019) Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Research 47: 10543–10552.

Dubois A (1981) Liste des genres et sous-genres nominaux de Ranaeidae (Amphibiens Anoure) du monde, avec identification de leurs espèces types; consequences nomenclaturelles. Monitore Zoologico Italiano. Nuova Serie, Supplemento. Firenze 15: 225–284.

Dubois A (1987) Miscellanea taxinomica batrachologica (I). Alytes 5: 7–95.

Duellman WE, Trueb L (1994) Biology of Amphibians. 2nd edition. New McGraw-Hill, Baltimore and London.

Edgar RC (2004) Muscle: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 1–19. https://doi.org/10.1186/1471-2105-5-113

Eto K, Matsui M (2012) Field observation of egglaying behavior of a Paddle Frog *Ocycloarya sumatrana* from Bali, Indonesia (Anura: Dicroglossidae). Current Herpetology 31(2): 121–124.

Fei L, Ye C-y, Huang Y-z (1990) [Key to Chinese Amphibians]. Publishing House for Scientific and Technological Literature, Chongqing.

Foquet A, Gilles A, Vences M, Marty C, Blanc M, Gemmell NJ (2007) Underestimation of species richness in neotropical frogs revealed by mtDNA analyses. PloS One 2(10) e1109. https://doi.org/10.1371/journal.pone.0001109

Frost DR (2020) Amphibian Species of the World: an Online Reference. Version 6.0. http://research.amnh.org/herpetology/amphibia/index.html

Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Statistical Science 7(4): 457–472. https://doi.org/10.1214/ss/1177011136

Gély–Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D (2010) Alter: Program-oriented conversion of DNA and protein alignments. Nucleic Acids Research 38 (Web Server issue): 14–18. https://doi.org/10.1093/nar/gkq321
Appendix 1

Comparative Specimens Examined

Occidozyga lima—*China*: Guangdong: no further data: SMF 6571–72; Lo-fou-shan Mountains: SMF 6573; Hainan: SMF 6570. *Indonesien*: Java: no further data: SMF 6574–75; Weltevreden: SMF 23436. *Myanmar*: Bago: Bago Yoma, 125 m: SMF 74075–77; Ko Pya Gyi, 55 m: SMF 74072; Naypyidaw: near Yamethin, 206 m: SMF 103817–19; Yangon: East Yangon University, 65 m: GK-7057, 7733; near Taw Hlan village: 1: SMF 103815–16. *Thailand*: Nakhon Phanom: Ban Kan Luang, 173 m: GK-7881–82; Nakhon Ratchasima: near Lake Resort Khorat, 142 m: GK-7917, 7920; Rayong: near Rayong, 110 m: GK-7721; Roi Et: near Ban Sa At Na Di, 160 m: GK-7409–10, 7415–17, 7451–52, 7477–79, 7538–40; near Selaphum, 130 m: GK-7794; Sakon Nakhon: Ban Phaeng Yai: 155: GK-7526. *Thailand*: Yasothon: 13 km NE Ban Sa At Na Di: 202: GK-7469.

Phrynoglossus floresianus—*Indonesia*: Flores: Nusa Tenggara Barat, Rana Mese: SMF 23438–45.

Phrynoglossus laevis—*Philippines*: Laguna: Mt. Makiling, Los Banos: SMF 74674; Leyte: no further data: SMF 6591; Mt. Balocuae, Baybay: SMF 74614; Luzon: Manila: SMF 6578–80, 6587; Central Luzon: SMF 6581–86; Masbate: Panal: SMF 74317–30; Negros Oriental: Lake Balinsasaya: SMF 75006; Palawan: Calauit Island, northwestern peak of the Busunga: SMF 74134, 74437; Tarusan: SMF 74421–33; Quirino: Sierra Madre: SMF 74637–39; Samar: Hinabangian: SMF 75202–04.

Phrynoglossus myanhessei—*Myanmar*: Bago: Bago Yoma, 425 m: GK-7104–05, 7139; Mount Bago, 50 m: SMF 103835–37; Rakhaing: Ngapali Mountains, 50 m: SMF 23438–45; Ngapali, Dam Lake, 10 m: SMF 103842; Yangon: East Yangon University, 17 m: SMF 103840–41, 103797–99.
Phrynoglossus magnapustulosus—Thailand: Nakhon Phanom: Ban Kan Luang, 173 m: GK-7853, 7855, 7876–80, 7887; Nakhon Ratchasima: near Lake Resort Khorat, 142 m: GK-7915–16; Roi Et: near Ban Sa At Na Di, 145 m: GK-7361, 7465, 7496–503, 7805–06, 7395–96, 7412–14, 7475–76, 7509, 7513–16, 7537; Sakon Nakhon: Ban Phaeng Yai, 155 m: GK-7532–34; Yasothon: 13 km NE Ban Sa At Na Di, 202 m: GK-747071.

Phrynoglossus martensi—Thailand: Bangkok: Bangkok, 3 m: PT-2634; Chiang Mai: Huai Hong Khrai Royal Development Study Centre, 430 m: GK-7234–35, 7237–38, 7249, PT-1543–441771, 2076; Chaiyaphume: Ban Na Si Nuan, 205: PT-0167–68; Chonburi: Ya Teng Homestay, 30 m: GK-7349–50; Kanchanaburi: Klon Do, Dan Makham Tia District, 33 m: PT-2644–45; Nakornratchasima: Wang Nham Khiau, 515 m: PT-0033–36, 0038–39; Nan: near Klang Wiang, 257 m: PT-2669–70, 2672–73; Prachuap Khiri Khan: Ko Thalu, 8 m: PT-0535; Ratchaburi: Damnoen Saduak, 5 m: GK-7365; Trat: Ko Kut Resort, 35 m: GK-7713–14, PT-1025; Trat, 5 m: GK-7695–701; Songkhla: Wang Pha, 98 m: PT-2754–59.

Phrynoglossus sumatranus—Indonesia: Bali: Batoeriti: SMF 23454–55; Gitgit: SMF 23447–53; Java: Jawa Barat: Bogor: SMF 6576–77, 23437, 31165–68; Jawa Tengah: Wonosobo: SMF 31229; Jawa Timur: Punten: SMF 31230–34; Bujutan at Ardjasa, northwestern coast of P. Kangean, Kangean Islands: SMF 55307–08; Sulawesi: no further data: SMF 6600; Sulawesi Utara: Minahasa: SMF 6598–99; Satun: Ngam Chang, 102 m: PT-2852–53; Songkhla: Wang Pha, 98 m: PT-2754–59.

Appendix 2

Genbank accession numbers for the 16S sequences used in this study

Species	Specimen number	GenBank number
Ingerana tenasserimensis	USNM 586923	MG935841
Ingerana tenasserimensis	USNM 587300	MG935839
Ingerana tenasserimensis	USNM 587302	MG935840
Ingerana tenasserimensis	USNMFS35684	MG935838
Limnonectes limborgi	GK_7110	MW217495
Occiodyga lima	GK_7409	MW217509
Occiodyga lima	GK_7451	MW217508
Occiodyga lima	GK_7452	MW217507
Occiodyga lima	GK_7721	MW217498
Occiodyga lima	GK_7733	MW217497
Occiodyga lima	GK_7794	MW217496
Occiodyga lima	GK_7924	MW217506
Occiodyga lima	ROM 25003	AF206497
Occiodyga lima	SMF 103815	MW217492
Occiodyga lima	SMF 103817	MW217494
Occiodyga lima	SMF 103818	MW217493
Occiodyga lima	KR827958	
Occiodyga lima	KR827959	
Occiodyga lima	KR827960	
Phrynoglossus myanhessei	SMF 103797	MW217501
Phrynoglossus myanhessei	SMF 103798	MW217502
Phrynoglossus myanhessei	SMF 103800	MW217503
Phrynoglossus myanhessei	SMF 103840	MW217499
Phrynoglossus myanhessei	SMF 103841	MW217500
Phrynoglossus myanhessei	USNM 587105	MG935916
Phrynoglossus myanhessei	USNM 587107	MG935920
Phrynoglossus myanhessei	USNM 587395	MG935918
Phrynoglossus myanhessei	USNM 587402	MG935917
Phrynoglossus magnapustulosus	SMF 103797	MW217501
Phrynoglossus magnapustulosus	GK_7395	MW217488
Phrynoglossus magnapustulosus	GK_7396	MW217487
Phrynoglossus magnapustulosus	GK_7532	MW217486
Phrynoglossus magnapustulosus	GK_7533	MW217485
Phrynoglossus magnapustulosus	GK_7855	MW217490
Phrynoglossus magnapustulosus	GK_7916	MW217489
Appendix 2 continued.

Species	Specimen number	GenBank number
Phrynoglossus martensi	AF285214	
Phrynoglossus martensi	GU177877	
Phrynoglossus martensi	KP318725	
Phrynoglossus martensi	KR827982	
Phrynoglossus martensi	KR827984	
Phrynoglossus martensi	KR827985	
Phrynoglossus martensi	AM07357	NC_014685
Phrynoglossus martensi	AMNH161171	DQ283357
Phrynoglossus martensi	GKN 7349	MW217491
Phrynoglossus martensi	GKN 7695	MW217504
Phrynoglossus martensi	GKN 7713	MW217505
Phrynoglossus martensi	PT_0167	MW217484
Phrynoglossus martensi	PT_0942	MW217480
Phrynoglossus martensi	PT_0943	MW217479
Phrynoglossus martensi	PT_1172	MW217478
Phrynoglossus martensi	PT_1543	MW217477
Phrynoglossus martensi	PT_1544	MW217476
Phrynoglossus martensi	PT_2634	MW217475
Phrynoglossus martensi	PT_2754	MW217483
Phrynoglossus martensi	PT_2755	MW217482
Phrynoglossus martensi	ROM 22222	AF206467
Phrynoglossus martensi	SCUM0437980	DQ458254
Phrynoglossus martensi	SCUM0437983	DQ458255
Phrynoglossus martensi	SCUMH020	DQ458256
Phrynoglossus martensi	TAD P324	KR827986
Phrynoglossus martensi	USNM 586940	MG935942
Phrynoglossus martensi	USNM 586941	MG935942
Phrynoglossus martensi	USNM 586942	MG935942
Phrynoglossus martensi	USNM 586943	MG935940

Appendix 3

Genomics

Material and Methods. Default parameters are applied, if not stated otherwise.

Raw data and preprocessing. A k-mer profile was created from the raw data using Jellyfish 2.3.0 (Marçais & Kingsford, 2011) including the parameters “-F 2 -C -m 21 -s 1000000000 -t 96” for count and “-t 96” for histo. The resulting histogram was uploaded to the GenomeScope webserver (Vurture et al., 2017) to retrieve certain statistics of the genome.

Low quality bases and adapter sequences were trimmed from the raw reads using Trimmomatic’s 0.39 (Bolger et al., 2014) paired end mode along with the options to create a summary and “-threads 96”. For adapter trimming all adapter sequences provided within Trimmomatic were used. The following trimmers were set: “ILLUMINA-CLIP:<adapter_all.fa>:2:30:10:8:true SLIDINGWINDOW:4:20 MINLEN:50 TOPHRED33”.

To filter out reads originating from possible contamination, Kraken 2.0.9 (Wood et al., 2019) was run with a standard database built on March 18th, 2020 (including “complete genomes in RefSeq for the bacterial, archael, and viral domains, along with the human genome and a collection of known vectors (UniVec_Core)”) and the paired and unpaired trimmed reads as input. For both runs the options “--threads 96 --unclassified-out <out-file(s)>” were set and for the paired run the option “--paired”.

Nuclear genome assembly and quality control. To estimate the best length of k for genome assembly, KmerGe- nie 1.7051 (Chikhi & Medvedev 2014) was applied, using the raw data as input and the options “--threads 96 --diploid -s 11 -k 141 -t 60”.

The unclassified paired and unpaired reads were assembled using Velvet 1.2.10 (Zerbino & Birney 2008) by
first running **velveth** for a k-mer length of 61 and second running **velvet** with the options “-c cov_cutoff auto -ins_length 350 -min_contig_lenth 500”.

The quality of the resulting scaffolds was tested by a) mapping the reads used for assembly back to the assembly, b) checking for possible contamination and c) searching for expected orthologous genes. Backmapping was performed with backmap.pl 0.3 (https://github.com/schellt/backmap), which utilized bwa mem 0.7.17-r1188 (Li, 2013), samtools 1.10 (Li et al., 2009), Qualimap 2.2.1 (Okonechnikov et al., 2016), bedtools 2.28.0 (Quinlan & Hall, 2010) and R 4.0.2 (R Core Team, 2020). Contamination screening on the assembly level was performed with bloottools 1.1.1 (Laetsch & Blaxter, 2017). The bam file resulting from the above mentioned backmapping was covert to a bloottools readable cov file by first indexing the bam file with samtool index and index exchanging with bloottools map2cov. To assign Taxonomy IDs blastn 2.10.0+ (Camacho et al., 2009) was used to align the scaffolds against the complete nt database (‐task mega-blast ‐outfmt ‘6 qseqid staxids bitscore’ ‐evalue 1e-25 ‐num_threads 96). From the cov and hits file a blobDB was created and plotted. Completeness in terms of core orthologs was screened with BUSCO 4.1.4 (Simão et al., 2019) along with the tetrapoda_odb10 set and the options “‐c 8 ‐o GK_6728_velvet ‐m geno ‐long ‐offline”.

Mitochondrial genome assembly and annotation. NOVOplasty 4.2 (Dierckxsens et al., 2017) was used along with the longest annotated gene (ND5; ACZ02636.1) from *Occidozyga martensis* (GU177877.1) as seed. The config file was changed to be included to the included one for the options “Max memory = 100; Read Length = 150; Insert size = 300” and the options “Reference sequence, Chloroplast sequence” were left blank. As input reads the untrimmed raw data was used as recommended. The mt genome assembly was checked for consistency by alignment against the closest available mt genome of *Occidozyga martensis* (GU177877.1). This was computed with clustalo 1.2.3 (Sievers et al., 2011) in Geneious Prime 2020.2.3 (https://www.geneious.com) using Java 11.0.6+10 (clustalo-1.2.3-Ubuntu-x86_64-i input. fasta -o clustal.aln -v – outfut=clustal –outorder=tree-order –iter=0 –cluster-size=100 + DNA). The assembled mt genome sequence was manually cut based on the alignment to fit to the cut site of the reference. The cut mt genome sequence was submitted to two mt genome assembly webservers: GeSeq (Tillich et al., 2017) and MITOS2 (Donath et al., 2019). For GeSeq the options circular and mitochondrial were chosen as well as tRNAscan-SE 2.0.6 (Chan & Lowe 2019; Chan et al., 2019) was enabled with sequence source as “vertebrate mitochondrial tRNAs”. Furthermore the above mentioned mt reference Sequence (GU177877.1) was used as BLAT reference sequence. The MITOS2 settings can be found in Table A1. The annotations of GeSeq and MITOS2 were manually merged and curated in Geneious.

Assembly finalization. The final mt genome assembly from NOVOplasty was blasted against the assembly from Velvet to remove contigs representing the mt genome with blastn 2.10.0 and the options “‐num_threads 32 ‐outfmt ‘6 std slen’”. Blast reported multiple hits for 3 contigs. Either the single hit of one contig or the longest hit of one contig align completely to the NOVOplasty assembly. The only exception is one contig aligning with 43% of its 609bp length. Finally, all contigs producing blast hits were considered as mitochondrial origin and removed.

Results

Raw data and preprocessing. Illumina NovaSeq 6000 sequencing yielded 616,151,068 reads with a data amount of 92.4Gb. The GenomeScope results are accessible via the permalink http://genomescope.org/analysis. php?code=uOlM17rRo9kkBpguBh0f. The genome size was estimated as 2.6Gb and heterozygosity to 0.9% (See Figure A1).

Raw read trimming was survived by 93.23% of the read pairs, 3.12% reverse only, 2.17% reverse only and 1.49% reads were dropped. Of the trimmed paired reads 3.43% and 2.89% of the trimmed unpaired reads were classified via Kraken2.

Nuclear genome assembly and quality control. The Velvet assembly resulted in 1,446,672 contigs with a total length of 1,829,139,474 and an N50 of 1,468. The GC is at 41.07% and uniformly distributed. Of all assembled reads 98.9% could be mapped back to the assembly with a uniform distribution at 25× (Figure A2). No clear cluster representing contamination could be identified in the blotplot (Figure A3). Since the assembly is quite frag-

Property	Value
Reference	RefSeq 63 Metazoa
Genetic Code	2
Proteins	TRUE
tRNAs	TRUE
rRNAs	TRUE
OH	TRUE
OL	TRUE
Circular	TRUE
Use Al Arab et al.	FALSE
E-value Exponent	2.0
Final Maximum Overlap	50nt
Fragment Quality Factor	100.0
Standard Code	FALSE
Cutoff	50.0%
Clipping Factor	10.0
Fragment Overlap	20.0%
Local only	TRUE
Sensitive only	FALSE
ncRNA overlap	50 mt

Table A1. Settings used for MITOS2.
Figure A1. K-mer profile analysis and estimates of genome metrics of GenomeScope.

Figure A2. Coverage distribution of the assembly. A genome size estimation based on mapped nucleotides and coverage (Schell et al., 2017) with backmap.pl results in 2.83Gb, which is in line with the k-mer based result of 2.56Gb.

Figure A3. Blobplot of the assembly.
mented, there are no clear distinguishable clusters. Blast hits other than Chordata might arise from false positive hits and do not show enough evidence for contamination – especially because non-Chordata hits are sparse and coverage and GC of non-Chordata hits is similar to the rest. The BUSCO search resulted in C:8.5%, S:8.4%, D:0.1%, F:12.3%, M:79.2%, n:5310.

Mitochondrial genome assembly and annotation. The NOVOplasty assembly resulted in 2 contigs which could be circularized in one way. After the clustal alignment was performed and manually adjusted by cutting the NOVOplasty assembly at the same site as the reference mt genome from Occidozyga martensii (GU177877.1). Since this alignment showed no huge structural differences, the assembly was used for annotation. The GeSeq annotation could not find the two rRNAs, the D-loop region and the origin of replication. The 13 protein coding genes were automatically found but with wrong reading frame and partially unlikely start and end points. In total 40 tRNAs were annotated because GeSeq does not merge the annotation from different evidences (here BLAT of reference tRNAs and tRNAscan). MITOS2 automatically annotated the two rRNAs, 13 protein coding genes, 23 tRNAs, the D-loop region in two fragments and the origin of replication. Manual curation mainly comprises taking and adjusting the rRNA, origin of replication and D-loop region annotations from MITOS2. The both fragments of the D-loop region were merged into one. Annotations of protein coding genes were adjusted from GeSeq and tRNA annotations were taken from tRNAscan.

Assembly finalization. Of all contigs 8 were identified as mitochondrial origin, of which 1 has smaller identity than 90% (minimum 87.5%) to the NOVOplasty mt genome assembly. The removed 8 contigs cover 94.9% of all positions of the NOVOplasty mt genome assembly. After removing contigs of mitochondrial origin, the final assembly contains 1,446,664 contigs with a total length of 1,829,122,027bp, an N50 of 1,468 and an GC of 41.07%.

References

Marçais G, Kingsford C (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–770.

Vutrure GW, Sedlacek FJ, N attestad M, Underwood CJ, Fang H et al. (2017). GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics, 33(14):2202–2204.

Bolger AM, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15):2114–2120.

Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome biology, 20(1), 257.

Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v2

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.