On Two Diophantine Inequalities Over Primes

Min Zhang∗ & Jinjiang Li†
Department of Mathematics, China University of Mining and Technology∗†
Beijing 100083, P. R. China

Abstract: Let \(1 < c < 37/18 \), \(c \neq 2 \) and \(N \) be a sufficiently large real number. In this paper, we prove that, for almost all \(R \in (N, 2N) \), the Diophantine inequality \(|p_1^c + p_2^c + p_3^c - R| < \log^{-1} N \) is solvable in primes \(p_1, p_2, p_3 \). Moreover, we also investigate the problem of six primes and prove that the Diophantine inequality \(|p_1^c + p_2^c + p_3^c + p_4^c + p_5^c + p_6^c - N| < \log^{-1} N \) is solvable in primes \(p_1, p_2, p_3, p_4, p_5, p_6 \) for sufficiently large real number \(N \).

Keywords: Diophantine inequality; Waring-Goldbach problem; prime number; exponential sum

MR(2010) Subject Classification: 11L20, 11P05, 11P55

1 Introduction and main result

In 1952, Piatetski-Shapiro [13] considered the following analogue of the Waring-Goldbach problem. Assume that \(c > 1 \) is not an integer and let \(\varepsilon > 0 \). If \(r \) is a sufficiently large integer (depending only on \(c \)), then the inequality

\[
|p_1^c + p_2^c + \cdots + p_r^c - N| < \varepsilon
\] \hspace{1cm} (1.1)

has a solution in prime numbers \(p_1, p_2, \cdots, p_r \) for sufficiently large \(N \). More precisely, if the least \(r \) such that (1.1) has a solution in prime numbers for every \(\varepsilon > 0 \) and \(N > N_0(c, \varepsilon) \) is denoted by \(H(c) \), then it is proved in [13] that

\[
\limsup_{c \to \infty} \frac{H(c)}{c \log c} \leq 4.
\]

In [13], Piatetski-Shapiro also proved that if \(1 < c < 3/2 \), then \(H(c) \leq 5 \). The upper bound \(3/2 \) for \(c \) was improved successively to

\[
\frac{14142}{8923} = 1.5848 \cdots, \quad \frac{1 + \sqrt{5}}{2} = 1.6180 \cdots, \quad \frac{81}{40} = 2.025, \quad \frac{108}{53} = 2.0377 \cdots, \quad 2.041
\]

†Corresponding author.

E-mail addresses: min.zhang.math@gmail.com (M. Zhang), jinjiang.li.math@gmail.com (J. Li).
by Zhai and Cao [20], Garaev [7], Zhai and Cao [22], Shi and Liu [16], Baker and Weingartner [1], respectively.

On the other hand, the Vinogradov-Goldbach theorem [19] suggests that at least for c close to 1, one should expect $H(c) \leq 3$. The first result in this direction was obtained by D. I. Tolev [18], who showed that the inequality

$$|p_1^c + p_2^c + p_3^c - N| < \varepsilon$$

(1.2)

with $\varepsilon = N^{-(1/c)(15/14 - c)} \log^9 N$ is solvable in primes p_1, p_2, p_3, provided that $1 < c < 15/14$ and N is sufficiently large. Later, Tolev’s range was enlarged to $1 < c < 13/12$ in Cai [3], $1 < c < 11/10$ in Cai [4] and Kumchev-Nedeva [11] independently, $1 < c < 237/214$ in Cao and Zhai [5], $1 < c < 61/55$ in Kumchev [10], $1 < c < 10/9$ in Baker and Weingartner [2].

Laporta [12] studied the corresponding binary problem, which can be viewed as an inequality analogue of the Goldbach’s conjecture for even numbers. Suppose $1 < c < 15/14$ fixed, N a large real number and $\varepsilon = N^{1-15/(14c)} \log^8 N$. Then Laporta proved that the inequality

$$|p_1^c + p_2^c - R| < \varepsilon$$

(1.3)

is solvable for all $R \in (N, 2N] \setminus \mathcal{A}$ with $|\mathcal{A}| \ll N \exp \left(-\frac{1}{3} \left(\frac{\log N}{c} \right)^{1/5} \right)$. Zhai and Cao [21] improved Laporta’s [12] result and proved for $1 < c < 43/36$ fixed and for all $R \in (N, 2N] \setminus \mathcal{A}$ with $|\mathcal{A}| \ll N \exp \left(-\frac{1}{3} \left(\frac{\log N}{c} \right)^{1/5} \right)$, the inequality (1.3) is solvable with primes $p_1, p_2 \leq N^{1/c}$ and $\varepsilon = N^{1-43/(36c)}$.

In this paper we shall prove the following two Theorems.

Theorem 1.1 Let $1 < c < 37/18$, $c \neq 2$ and N be a sufficiently large real number. Then for all $R \in (N, 2N] \setminus \mathcal{A}$ with

$$|\mathcal{A}| \ll N \exp \left(-\frac{2}{15} \left(\frac{1}{c} \log \frac{2N}{3} \right)^{1/5} \right),$$

the inequality

$$|p_1^c + p_2^c + p_3^c - R| < \log^{-1} N$$

(1.4)

is solvable in three prime variables p_1, p_2, p_3, where η is sufficiently small positive number.

Remark. The best result up to date for $H(c) \leq 3$ was obtained by Baker and Weingartner [2], who prove that $1 < c < 10/9$. From Theorem 1.1, one can expect that the range of c for $H(c) \leq 3$ should be improved to $1 < c < 37/18$, $c \neq 2$. Moreover, it is
conjectured that the range of c, which holds for $H(c) \leq 3$, is $1 < c < 3$, $c \neq 2$. Therefore, the range of c for $H(c) \leq 3$ has huge space to improve, though such a strong conjecture is out of reach at present.

Theorem 1.2 Suppose that $1 < c < 37/18$, $c \neq 2$, then there exists a number $N_0(c)$ such that for each real number $N > N_0(c)$ the inequality

$$|p_1^c + p_2^c + p_3^c + p_4^c + p_5^c + p_6^c - N| < \log^{-1} N$$

is solvable in six prime variables $p_1, p_2, p_3, p_4, p_5, p_6$.

Notation. Throughout this paper, N always denotes a sufficiently large real number; η always denotes an arbitrary small positive constant, which may not be the same at different occurrences; p always denotes a prime number; $n \sim N$ means $N < n \leq 2N$; $X \asymp N^{1/c}$, which is determined during each proof of the Theorems; $\tau = X^{1-c-\eta}, \varepsilon = \log^{-2} X, K = \log^5 X, \Lambda(n)$ denotes von Mangold’s function; $\mu(n)$ denotes Möbius function; $e(x) = e^{2\pi ix}$; $\mathcal{L} = \log X, E = \exp(-\mathcal{L}^{1/5})$,

$$P = \left(\frac{2}{E^2}\right)^{1/3} \mathcal{L}, \quad S(x) = \sum_{X/2 < p \leq X} \log p \cdot e(p^c x), \quad I(x) = \int_X^X e(t^c x) dt.$$

2 Preliminary Lemmas

Lemma 2.1 Let a, b be real numbers, $0 < b < a/4$, and let k be a positive integer. There exists a function $\varphi(y)$ which is k times continuously differentiable and such that

$$\begin{cases}
\varphi(y) = 1, & \text{for } |y| \leq a - b, \\
0 < \varphi(y) < 1, & \text{for } a - b < |y| < a + b, \\
\varphi(y) = 0, & \text{for } |y| \geq a + b,
\end{cases}$$

and its Fourier transform

$$\Phi(x) = \int_{-\infty}^{+\infty} e(-xy)\varphi(y)dy$$

satisfies the inequality

$$|\Phi(x)| \leq \min \left(2a, \frac{1}{\pi|x|}, \frac{1}{\pi|x|} \left(\frac{k}{2\pi|x|b}\right)^k\right). \quad (2.1)$$

Proof. See Piatetski-Shapiro [13] or Segal [15].
Lemma 2.2 Let \(G, F \) be twice differentiable on \([A, B]\), \(|G(x)| \leq H, G/F' \) monotonic. If \(F' \geq K > 0 \) on \([A, B]\), then
\[
\int_A^B \frac{G(x)e(F(x))}{x} \, dx \ll HK^{-1}.
\]

Proof. See Titchmarsh [17], Lemma 4.3. ■

Lemma 2.3 Suppose \(M > 1, c > 1, \gamma > 0 \). Let \(\mathcal{A}(M; c, \gamma) \) denote the number of solutions of the inequality
\[
|n_1^c + n_2^c - n_3^c - n_4^c| < \gamma, \quad M \leq n_1, n_2, n_3, n_4 \leq 2M,
\]
then
\[
\mathcal{A}(M; c, \gamma) \ll (\gamma M^{4-c} + M^2) M^n.
\]

Proof. See Robert and Sargos [14], Theorem 2. ■

Lemma 2.4 For \(1 < c < 3, c \neq 2 \), we have
\[
\int_{-\infty}^{+\infty} I^6(x)e(-xN)\Phi(x)dx \gg \varepsilon X^{6-c}.
\]

Proof. Denote the above integral by \(\mathcal{H} \). We have
\[
\mathcal{H} := \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} e\left((t_1^c + t_2^c + \cdots + t_6^c - N)x\right)\Phi(x)dxdt_1 \cdots dt_6.
\]
The change of the order of integration is legitimate because of the absolute convergence of the integral. From Lemma 2.1 with \(a = 9\varepsilon/10, b = \varepsilon/10 \), by using the Fourier inversion formula we get
\[
\mathcal{H} = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \varphi(t_1^c + t_2^c + \cdots + t_6^c - N)dt_1 \cdots dt_6.
\]
By the definition of \(\varphi(y) \) we get
\[
\mathcal{H} \gg \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \frac{dt_1 \cdots dt_6}{|t_1^c + \cdots + t_6^c - N|^{4/\varepsilon}} \geq \int_{\lambda X}^{\mu X} \cdots \int_{\lambda X}^{\mu X} \left(\int_{\frac{a}{2\varepsilon}}^{\frac{b}{2\varepsilon}} dt_6 \right) dt_1 \cdots dt_5,
\]
where \(\lambda \) and \(\mu \) are real numbers such that
\[
\frac{1}{2} < \left(\frac{4}{5}\right)^{1/c} \leq \lambda < \mu < \left(1 - \frac{1}{5} \cdot \frac{1}{2^c}\right)^{1/c} < 1
\]
\[\mathcal{N} = \left[\frac{X}{2}, X \right] \cap \left[\left(N + \frac{4c}{5} - t^c_1 - \cdots - t^c_5 \right)^{1/c}, \left(N - \frac{4c}{5} - t^c_1 - \cdots - t^c_5 \right)^{1/c} \right] \]

Thus by the mean-value theorem we have
\[H \gg \varepsilon \int_{\mathcal{M}} \cdots \int_{\mathcal{N}} (\xi t_1,t_2,t_3,t_4,t_5)^{1/c-1} dt_1 \cdots dt_5, \]
where \(\xi t_1,t_2,t_3,t_4,t_5 \approx X^c \). Therefore, \(H \gg \varepsilon X^{6-c} \), which proves the lemma. \(\square \)

Lemma 2.5 We have
\[A = \max_{R' \in (N,2N)} \int_N^{2N} \left| \int_{|x|<K} e((R-R')x) \, dx \right| \, dR \ll \mathcal{L}. \]

Proof. See Laporta \cite{12}, Lemma 1. \(\square \)

Let \(\Omega_1 \) and \(\Omega_2 \) be measurable subsets of \(\mathbb{R}^n \). Let
\[\|f\|_j = \left(\int_{\Omega_j} |f(y)|^2 \, dy \right)^{1/2}, \quad \langle f, g \rangle_j = \int_{\Omega_j} f(y) \overline{g(y)} \, dy \quad (j = 1, 2), \]
be the usual norm and inner product in \(L^2(\Omega_j, \mathbb{C}) \), respectively.

Lemma 2.6 Let \(c \in L^2(\Omega_1, \mathbb{C}) \), \(\xi \in L^2(\Omega_2, \mathbb{C}) \), and let \(\omega \) be a measurable complex valued function on \(\Omega_1 \times \Omega_2 \) such that
\[\sup_{x \in \Omega_1} \int_{\Omega_2} |\omega(x,y)| \, dy < +\infty, \quad \sup_{y \in \Omega_2} \int_{\Omega_1} |\omega(x,y)| \, dx < +\infty. \]
Then we have
\[\int_{\Omega_1} c(x) \langle \xi, \omega(x,\cdot) \rangle_2 \, dx \leq \|\xi\|_2 \|c\|_1 \left(\sup_{x' \in \Omega_1} \int_{\Omega_1} |\langle \omega(x,\cdot), \omega(x',\cdot) \rangle_2| \, dx \right)^{1/2}. \]

Proof. See Laporta \cite{12}, Lemma 2. \(\square \)

Lemma 2.7 For \(1 < c < 37/18 \), \(c \not= 2 \), we have
\[\int_{-\tau}^{\tau} |S(x)|^2 \, dx \ll X^{2-c} \log^3 X, \quad (2.2) \]
\[\int_{-\tau}^{\tau} |I(x)|^2 \, dx \ll X^{2-c} \log X. \quad (2.3) \]
Proof. See Tolev [18], Lemma 7. Although in Tolev’s paper, c is in the range $(1, 15/14)$, it can be easily seen that his lemma is true for $c \in (1, 2) \cup (2, 3)$, and so do his Lemmas 11 – 14. In fact, the proofs of Lemma 7 and Lemmas 11 – 14 in [18] have nothing to do with the range of c.

Lemma 2.8 For $1 < c < 37/18$, $c \neq 2$, $|x| \leq \tau$, then

$$S(x) = I(x) + O \left(X e^{- (\log X)^{1/5}} \right).$$

Proof. See Tolev [18], Lemma 14.

Lemma 2.9 For $1 < c < 37/18$, $c \neq 2$, we have

$$\int_{-\tau}^{\tau} |S(x)|^4 \, dx \ll X^{4-c} \log^5 X,$$
(2.4)

$$\int_{-\tau}^{\tau} |I(x)|^4 \, dx \ll X^{4-c} \log^5 X.$$
(2.5)

Proof. We only prove (2.4). Inequality (2.5) can be proved likewise.

We have

$$\int_{-\tau}^{\tau} |S(x)|^4 \, dx = \sum_{\frac{\tau}{X} < p_1, p_2, p_3, p_4 \leq X} (\log p_1) \cdots (\log p_4) \int_{-\tau}^{\tau} e \left((p_1^c + p_2^c - p_3^c - p_4^c)x \right) \, dx$$

$$\ll \sum_{\frac{\tau}{X} < p_1, p_2, p_3, p_4 \leq X} (\log p_1) \cdots (\log p_4) \cdot \min \left(\tau, \frac{1}{|p_1^c + p_2^c - p_3^c - p_4^c|} \right)$$

$$\ll U \tau \log^4 X + V \log^4 X,$$
(2.6)

where

$$U = \sum_{\frac{\tau}{X} < n_1, n_2, n_3, n_4 \leq X} 1, \quad V = \sum_{\frac{\tau}{X} < n_1, n_2, n_3, n_4 \leq X} \frac{1}{|n_1^c + n_2^c - n_3^c + n_4^c|}.$$

We have

$$U \ll \sum_{\frac{\tau}{X} < n_1 \leq X} \sum_{\frac{\tau}{X} < n_2 \leq X} \sum_{\frac{\tau}{X} < n_3 \leq X} \sum_{\frac{\tau}{X} < n_4 \leq X} 1$$

$$\ll \sum_{\frac{\tau}{X} < n_1, n_2, n_3, n_4 \leq X} \frac{1}{|n_1^c + n_2^c - n_3^c - n_4^c|} \ll 1$$

$$\ll \sum_{\frac{\tau}{X} < n_1, n_2, n_3 \leq X} \frac{1}{n_1^c + n_2^c - n_3^c + X^c}$$

and by the mean-value theorem

$$U \ll X^3 + \frac{1}{\tau} X^{4-c}.$$
(2.7)
Obviously, $V \leq \sum_{\ell} V_{\ell}$, where

$$V_{\ell} = \sum_{\substack{\ell < n_1, n_2, n_3, n_4 \leq X \\ \ell < n_1 + n_2 - n_3 - n_4 \leq 2\ell}} \frac{1}{|n_1^c + n_2^c - n_3^c - n_4^c|} \quad (2.8)$$

and ℓ takes the values $\frac{2k}{\tau}$, $k = 0, 1, 2, \cdots$, with $\ell \ll X^c$. Then, we have

$$V_{\ell} \ll \frac{1}{\ell} \sum_{\substack{\ell < n_1, n_2, n_3 \leq X \\ n_1^c + n_2^c - n_3^c \leq X^c}} \left(\frac{1}{(n_1^c + n_2^c + 2\ell)^{1/c}} - \frac{1}{(n_1^c + n_2^c - n_3^c + \ell)^{1/c}} \right) \ll X^{1-c} \quad (2.9)$$

by the mean-value theorem.

The conclusion follows from formulas (2.6)-(2.9).

Lemma 2.10 If $1 < c < 2$, $\tau \leq |x| \leq K$, then we have

$$S(x) \ll X^{\frac{3}{4}+\eta} + X^{\frac{1}{4}+\eta}.$$

Proof. See Zhai and Cao [20], Lemma 7.

Lemma 2.11 Let $N, Q \geq 1$ and $z_n \in \mathbb{C}$. Then

$$\left| \sum_{n=1}^{N} z_n \right|^2 \leq \left(2 + \frac{N}{Q}\right) \sum_{|q| < Q} \left(1 - \frac{|q|}{Q}\right) \sum_{N < n+q, n-q \leq 2N} \overline{z_{n+q}} z_{n-q}.$$

Proof. See Fouvry and Iwaniec [6], Lemma 2.

Lemma 2.12 Suppose that

$$L(H) = \sum_{i=1}^{m} A_i H^{a_i} + \sum_{j=1}^{n} B_j H^{-b_j},$$

where A_i, B_j, a_i, and b_j are positive. Assume that $H_1 \leq H_2$. Then there is some H' with $H_1 \leq H' \leq H_2$ and

$$L(H') \ll \sum_{i=1}^{m} A_i H_1^{a_i} + \sum_{j=1}^{n} B_j H_2^{-b_j} + \sum_{i=1}^{m} \sum_{j=1}^{n} (A_i^{b_j} B_j^{a_i})^{1/(a_i+b_j)}.$$

The implied constant depends only on m and n.

7
Proof. See Graham and Kolesnik [8], Lemma 2.4. ■

For the sum of the form

$$\sum_{M < m \leq M_1} \sum_{N < n \leq N_1} a_m b_n e(xm^n c)$$

with

$$MN \sim X, M < M_1 \leq 2M, N < N_1 \leq 2N, a_m \ll X^{\eta}, b_n \ll X^{\eta}$$

for every fixed η, it is usually called a “Type I” sum, denoted by $S_I(M,N)$, if $b_n = 1$ or $b_n = \log n$; otherwise it is called a “Type II” sum, denoted by $S_{II}(M,N)$.

Lemma 2.13 Let $\alpha, \beta \in \mathbb{R}$, $\alpha \neq 0, 1, 2$, $\beta \neq 0, 1, 2, 3$. For $F \gg MN^2$ and $N \geq M \geq 1$, we have

$$S_{II}(M, N) = \sum_{m \sim M} \sum_{n \sim N} a_m b_n e\left(F x^m n^\beta\right) \ll \frac{X^{1-\delta}}{F^{1/16}} + \frac{X^{725/72}}{F^{1/128}} + X^{1/2} F^{\kappa}.$$

Proof. See Baker and Weingartner [1], Theorem 1. ■

In the rest of this section, we always suppose $2 < c < 33/16$, $\delta = c/2 - 1 + \eta$, $F = |x| X^c$, $\tau \leq |x| \leq K$. Obviously, we have $X^{1-\eta} \ll F \ll KX^c$.

Lemma 2.14 Suppose $2 < c < 37/18$, $b_n \ll 1$. If there holds $M \gg X^{1-725/7}$, then we have

$$S_I(M, N) = \sum_{m \sim M} \sum_{n \sim N} b_n e(xm^n c) \ll X^{1-\delta}.$$

Proof. Let $f(m) = xm^n c$. Then we have $|f^{(j)}(m)| \asymp (FM^{-1})^{1-j}$ for $j = 1, \ldots, 6$. By the method of exponent pairs, we get

$$S_I \ll \sum_{n \sim N} \left| \sum_{m \sim M} e(xm^n c) \right| \ll N(MF^{-1} + (FM^{-1})^\kappa M^\lambda) \ll XF^{-1} + X^{\eta} + X^{\kappa} X^{\lambda-\kappa} N^{1+\kappa-\lambda} \ll (\log X)^{3\kappa} X^{\kappa+\lambda-\kappa+1+\kappa-\lambda/3}.$$

The last step is due to the fact that $N \asymp XM^{-1} \ll X^{725/7} \ll X^{1/3}$. Taking the exponent pair $(\kappa, \lambda) = A^3(1/2, 1/2) = (1/30, 26/30)$, then we obtain

$$S_I(M, N) \ll X^{1-\delta}$$

by noting that $2 < c < 37/18$. ■
Lemma 2.15 Suppose \(2 < c < 37/18\), \(a_m \ll 1\), \(b_n \ll 1\). If there holds \(X^{725/7} \ll M \ll X^{1/2}\), then we have

\[S_{II}(M, N) = \sum_{m \sim M} \sum_{n \sim N} a_m b_n e(xm^cn^c) \ll X^{-\delta}. \]

Proof. Take a suitable \(F_0 \geq MN^2\), whose value will be determined later during the following discussion. If \(F \geq F_0\), according to Theorem 1 of Baker and Weingartner [1], we obtain

\[X^{-\eta} \cdot S_{II}(M, N) \ll M^{7/8}N^{13/16}F^{1/16} + M^{93/104}N^{23/26}F^{1/26} + M^{467/512}N^{65/64}F^{-1/128} + M^{65/72}N \]

\[=: \mathcal{I}_1 + \mathcal{I}_2 + \mathcal{I}_3 + \mathcal{I}_4. \]

Noting that if there holds \(X^{725/7} \ll M \ll X^{1/2}\), we obtain

\[\mathcal{I}_1 \ll X^{1-\delta}, \quad \mathcal{I}_2 \ll X^{1-\delta}, \quad \mathcal{I}_4 \ll X^{1-\delta}. \]

Therefore, for the case \(F \gg F_0 \gg MN^2\), we get

\[S_{II}(M, N) \ll X^{1-\delta} + M^{467/512}N^{65/64}F_0^{-1/128}. \quad (2.10) \]

Next, we consider the case \(X^{1-\eta} \ll F \ll F_0\).

Take \(Q\) satisfying \(1 \ll Q \ll M\). By Cauchy’s inequality and Lemma 2.11, we have

\[|S_{II}|^2 \ll \left(\sum_{n \sim N} |b_n|^2 \right) \left(\sum_{n \sim N} \left| \sum_{m \sim M} a_m e(xm^cn^c) \right|^2 \right). \]

\[\ll N \sum_{n \sim N} \frac{M}{Q} \sum_{|q| < Q} \left(1 - \frac{|q|}{Q} \right) \sum_{M < m + q, m - q \ll 2M} a_m a_{m+q} e(xm^c\Delta_c(m, q)) \]

\[\ll \frac{M^2N^2}{Q} + \frac{MN}{Q} \sum_{1 \leq q < Q} \sum_{m \sim M} \left| \sum_{n \sim N} e(xn^c\Delta_c(m, q)) \right|, \]

where \(\Delta_c(m, q) = (m+q)^c - (m-q)^c\). Thus, it is sufficient to estimate the following sum

\[S_0 := \sum_{n \sim N} e(xn^c\Delta_c(m, q)). \]

By the method of exponent pairs, we get

\[S_0 \ll \frac{MN}{Fq} + \left(\frac{Fq}{MN} \right)^\kappa N^\lambda, \]

9
where \((\kappa, \lambda)\) is an arbitrary exponent pair. Therefore, we have

\[
|S_{II}|^2 \ll \frac{M^2 N^2}{Q} + \frac{M N}{Q} \sum_{1 \leq q < Q \atop m \sim M} \left(\frac{M N}{F q} + \left(\frac{F q}{M N} \right)^\kappa N^\lambda \right) \\
\ll \frac{M^2 N^2}{Q} + \frac{M^3 N^2}{Q F} \log Q + Q^\kappa F^\kappa M^{2-\kappa} N^{1+\lambda-\kappa} \\
\ll \frac{M^2 N^2}{Q} + Q^\kappa F^\kappa M^{2-\kappa} N^{1+\lambda-\kappa} \\
\ll \frac{M^2 N^2}{Q} + Q^\kappa F_0^\kappa M^{2-\kappa} N^{1+\lambda-\kappa}.
\]

Set

\[Q_0 = F_0^{-\kappa/(1+\kappa)} M^{\kappa/(1+\kappa)} N^{(1+\kappa-\lambda)/(1+\kappa)}. \]

Next, we will discuss three cases of the selection of \(Q\).

Case 1 If \(Q_0 < 5\), then we take \(Q = 5\) and obtain

\[|S_{II}|^2 \ll F_0^{\kappa} M^{2-\kappa} N^{1+\lambda-\kappa}. \]

Case 2 If \(5 \leq Q_0 \leq M/2\), then we take \(Q = Q_0\), and obtain

\[|S_{II}|^2 \ll F_0^{\kappa/(1+\kappa)} M^{2-\kappa/(1+\kappa)} N^{2-(1+\kappa-\lambda)/(1+\kappa)}. \]

Case 3 If \(Q_0 > M/2\), then we take \(Q = M/2\), and obtain

\[|S_{II}|^2 \ll MN^2. \]

Based on the above three cases, we have

\[
S_{II} \ll M^{1/2} N + F_0^{\kappa/2} M^{1-\kappa/2} N^{(1+\lambda-\kappa)/2} + F_0^{\kappa/(2+2\kappa)} M^{1-\kappa/(2+2\kappa)} N^{1-(1+\kappa-\lambda)/(2+2\kappa)}.
\]

(2.11)

According to (2.10) and (2.11) and noting that \(M^{1/2} N \asymp XM^{-1/2} \ll X^{1-365/7} \ll X^{1-\delta}\), we get

\[
S_{II} \ll X^{1-\delta} + F_0^{\kappa/(2+2\kappa)} M^{1-\kappa/(2+2\kappa)} N^{1-(1+\kappa-\lambda)/(2+2\kappa)} + F_0^{\kappa/2} M^{1-\kappa/2} N^{(1+\lambda-\kappa)/2} + M^{467/512} N^{65/64} F_0^{-1/128}.
\]

According to Lemma 2.12, there exists an \(F_0\) satisfying \(MN^2 \ll F_0 \ll KN^c\) such that

\[
S_{II} \ll X^{1-\delta} + M^{467/512} N^{65/64} X^{-c/128} + \left(MN^2 \right)^{\kappa/2} M^{1-\kappa/2} N^{(1+\lambda-\kappa)/2} + \left((M^{1-\kappa/2} N^{1+\lambda-\kappa}/2) \right)^{1/128} \left(M^{467/512} N^{65/64} \right)^{\delta/2} \ll X^{1-\delta}.
\]
\[
+ \left((M^{1-\kappa/(2+2\kappa)} N^{1-(1+\kappa-\lambda)/(2+2\kappa)})^{1/128}
\times (M^{467/512} N^{65/64})^{\kappa/(2+2\kappa)})^{1/(1/128+\kappa/(2+2\kappa))} \right)
\]
=: \[X^{1-\delta} + J_1 + J_2 + J_3 + J_4 + J_5. \]

Taking \((\kappa, \lambda) = ABABA^2 B(0, 1) = (1/11, 3/4),\) then under the condition \(X^{726/7} \ll M \ll X^{1/2},\) we obtain
\[J_i \ll X^{1-\delta}, \quad i = 1, 2, 3, 4, 5. \]

Therefore, we have
\[S_{II} \ll X^{1-\delta}. \]

This completes the proof of Lemma 2.15.

Lemma 2.16 Suppose \(2 < c < 37/18,\) then for \(\tau \leq |x| \leq K\) we have
\[S(x) \ll X^{1-\delta}. \]

Proof. First, we have
\[S(x) = U(x) + O(x^{1/2}), \]
where
\[U(x) = \sum_{X/2 < n \leq X} \Lambda(n) e(xn^c). \]

By Heath-Brown identity [9] with \(k = 3,\) it is easy to see that \(U(x)\) can be written as \(O(\log^6 X)\) sums of the form
\[U^*(x) = \sum_{n_1 \sim N_1} \cdots \sum_{n_6 \sim N_6} \log n_1 \cdot \mu(n_1) \mu(n_3) \mu(n_6) e(x(n_1 \cdots n_6)^c), \]

where \(N_1, \cdots, N_6 \geq 1, N_1 \cdots N_6 \asymp X, n_4, n_5, n_6 \leq (2X)^{1/3}\) and some \(n_i\) may only take value 1.

Let \(F = |x| X^c.\) For \(2 < c < 37/18,\) we shall prove that for each \(U^*(x)\) one has
\[U^*(x) \ll X^{1-\delta}. \]

Case 1 If there exists an \(N_j\) such that \(N_j \geq X^{1-726/7} > X^{1/2},\) then we must have \(j \leq 3.\) Take \(m = n_j, n = \prod_{i \neq j} n_i, M = N_j, N = \prod_{i \neq j} N_i.\) In this case, we can see that \(U^*(x)\) can be written as
\[U^*(x) = \sum_{m \sim M} \sum_{n \sim N} a_m b_n e(xm^c n^c), \]

where \(|a_m| \leq \log m, |b_n| \leq d_5(n).\) Then \(U^*(x)\) is a sum of Type I. By Lemma 2.14, the result follows.
Case 2 If there exists an N_j such that $X^{726/7} \leq N_j \leq X^{1-726/7}$, then we take $m = n_j$, $n = \prod_{i \neq j} n_i$, $M^* = N_j$, $N^* = \prod_{i \neq j} N_i$. In this case, we can see that $U^*(x)$ can be written as

$$U^*(x) = \sum_{m \sim M^*} \sum_{n \sim N^*} a_m b_n e(xm^n/n),$$

where $|a_m| \leq \log m$, $|b_n| \leq d_5(n) \log n$. If $X^{726/7} \leq M^* \leq X^{1/2}$, then $N^* \gg X^{1/2}$ and we take $(M, N) = (M^*, N^*)$. If $X^{726/7} \leq N^* \leq X^{1/2}$, then $M^* \gg X^{1/2}$ and we take $(M, N) = (N^*, M^*)$. Then $U^*(x)$ is a sum of Type II. By Lemma 2.15, the result follows.

Case 3 If $N_j < X^{726/7}$ ($j = 1, 2, 3, 4, 5, 6$), without loss of generality, we assume that $N_1 \geq N_2 \geq \cdots \geq N_6$. Let ℓ denote the smallest natural number j such that

$$N_1 N_2 \cdots N_{\ell-1} < X^{726/7}, \quad N_1 \cdots N_\ell \geq X^{726/7},$$

then $2 \leq \ell \leq 5$. Noting that $\delta < 1/36 < 7/216$, we obtain

$$X^{726/7} \leq N_1 \cdots N_{\ell-1} \cdot N_\ell < X^{266/7}. \quad X^{726/7} < X^{1-726/7}.$$

Let $m = \prod_{i=1}^{\ell} n_i$, $n = \prod_{i=\ell+1}^{6} n_i$, $M^* = \prod_{i=1}^{\ell} N_i$, $N^* = \prod_{i=\ell+1}^{6} N_i$. At this time, we can follow the discussion of Case 2 exactly and get the result by Lemma 2.15. This completes the proof of Lemma 2.16. \[\qed\]

3 Proof of Theorem 1.1

Let us denote

$$H(R) = \int_{-\infty}^{\infty} I^3(x)e(-Rx)\Phi(x)dx, \quad H_1(R) = \int_{-\tau}^{\tau} I^3(x)e(-Rx)\Phi(x)dx,$$

$$B_1(R) = \int_{-\infty}^{\infty} S^3(x)e(-Rx)\Phi(x)dx, \quad D_1(R) = \int_{-\tau}^{\tau} S^3(x)e(-Rx)\Phi(x)dx,$$

$$D_2(R) = \int_{\tau < |x| < K} S^3(x)e(-Rx)\Phi(x)dx, \quad D_3(R) = \int_{|x| \geq K} S^3(x)e(-Rx)\Phi(x)dx.$$

In order to prove Theorem 1.1, it is sufficient to prove the following proposition.

Proposition 3.1 Let $1 < c < 37/18$, $c \neq 2$. Then for any sufficiently large real number N, we have

$$\int_N^{2N} |B_1(R) - H(R)|^2 dR \ll \varepsilon^2 N^{6/c-1} \exp \left(-\frac{1}{3} \left(\frac{1}{c \log \frac{2N}{3}} \right)^{1/5} \right). \quad (3.1)$$

12
3.1 Proof of Proposition 3.1

Throughout the proof of Proposition 3.1, we always set \(X = (2N/3)^{1/\epsilon} \) and denote the function \(\Phi(x) \) which is from Lemma 2.1 with parameters

\[
a = \frac{9\epsilon}{10}, \quad b = \frac{\epsilon}{10}, \quad k = \lfloor \log X \rfloor.
\]

We have

\[
\int_N^{2N} |B_1(R) - H(R)|^2 dR \\
= \int_N^{2N} |(D_1 - H_1) + D_2 + D_3 - (H - H_1)|^2 dR \\
\ll \int_N^{2N} |D_1 - H_1|^2 dR + \int_N^{2N} |D_2|^2 dR + \int_N^{2N} |D_3|^2 dR + \int_N^{2N} |H - H_1|^2 dR. \quad (3.2)
\]

By Lemma 2.2, we get \(I(x) \ll X^{1-c}|x|^{-1} \). By Lemma 2.1, we have

\[
\int_N^{2N} |H - H_1|^2 dR \\
\ll \int_N^{2N} \left(\int_{|x| > \tau} |I(x)|^3 |\Phi(x)| dx \right)^2 dR \\
\ll \varepsilon^2 \left(N \int_{|x| > \tau} |I(x)|^3 dx \right)^2 \\
\ll \varepsilon^2 N X^{6-6\epsilon} \left(\int_{\tau}^{\infty} \frac{dx}{x^2} \right)^2 \ll \varepsilon^2 N \frac{X^{6-6\epsilon}}{\tau^2}. \quad (3.3)
\]

For the third term on the right hand in (3.2), we have

\[
\int_N^{2N} |D_3|^2 dR \\
\ll \int_N^{2N} \left(\int_K^{+\infty} |S(x)|^3 |\Phi(x)| dx \right)^2 dR \\
\ll \left(\int_K^{+\infty} |S(x)|^3 |\Phi(x)| dx \right)^2 \\
\ll N X^6 \left(\frac{5k}{\pi K \varepsilon} \right)^{2k} \ll N X^{6+2\log(5/\pi)} X^{-4 \log A} \ll N. \quad (3.4)
\]

Take \(\Omega_1 = \{ R : N < R \leq 2N \} \), \(\Omega_2 = \{ x : \tau < |x| < K \} \), \(\xi = S^3(x) \Phi(x) \), \(\omega(x, R) = e(Rx) \), \(c(R) = \frac{D_2(R)}{D_2(R)} \). Then from Lemma 2.5 and Lemma 2.6, we obtain

\[
\int_N^{2N} |D_2(R)|^2 dR \ll 2A \int_{\tau}^{K} |S(x)|^6 |\Phi(x)|^2 dx \\
\ll \mathcal{L} \cdot \max_{\tau \leq x \leq K} |S(x)|^2 \times \int_{\tau}^{K} |S(x)|^4 |\Phi(x)|^2 dx. \quad (3.5)
\]
By the first derivative test, we have

\[\int_\tau |S(x)|^4 |\Phi(x)|^2 \ dx \ll \varepsilon^2 \int_\tau |S(x)|^4 \ dx \]

\[= \varepsilon^2 \sum_{\frac{X}{2} < p_1, p_2, p_3, p_4 \leq X} \prod (\log p_1) \cdot \cdots \cdot (\log p_4) \int_\tau e \left((p_1^c + p_2^c - p_3^c - p_4^c) x \right) \ dx \]

\[\ll \varepsilon^2 \log^4 X \sum_{\frac{X}{2} < p_1, p_2, p_3, p_4 \leq X} \min \left(K, \frac{1}{|p_1^c + p_2^c - p_3^c - p_4^c|} \right) \]

\[\ll \sum_{\frac{X}{2} < n_1, n_2, n_3, n_4 \leq X} \min \left(K, \frac{1}{|n_1^c + n_2^c - n_3^c - n_4^c|} \right). \quad (3.6) \]

Let \(u = n_1^c + n_2^c - n_3^c - n_4^c \). By Lemma 2.3, the contribution of \(K \) is (notice \(|u| \leq K^{-1} \))

\[\ll K \cdot \mathcal{A}(X/2; c, K^{-1}) \ll (X^{4-c} + X^2)^X. \quad (3.7) \]

By a dyadic argument, the contribution from \(n_1, n_2, n_3, n_4 \) with \(|u| > K^{-1} \) is bounded by

\[\ll \log X \times \max_{K^{-1} \leq U \leq X^c} \sum_{\frac{X}{2} < n_1, n_2, n_3, n_4 \leq X} \frac{1}{|u|} \]

\[\ll \log X \times \max_{K^{-1} \leq U \leq X^c} U^{-1} \cdot \mathcal{A}(X/2; c, 2U) \]

\[\ll \log X \times \max_{K^{-1} \leq U \leq X^c} (X^{4-c} + X^2 U^{-1})^X \]

\[\ll (X^{4-c} + X^2)^X. \quad (3.8) \]

Combining (3.7) and (3.8), we have

\[\int_\tau |S(x)|^4 |\Phi(x)|^2 \ dx \ll (X^{4-c} + X^2)^X. \quad (3.9) \]

If \(1 < c < 2 \), then from Lemma 2.10 we get

\[\int_{N}^{2N} |D_2(R)|^2 \ dx \ll \mathcal{L} \cdot \left(X^{(6+c)/4+\eta} + X^{28/15+\eta} \right) (X^{4-c} + X^2)^X \]

\[\ll \left(X^{(6+c)/4+\eta} + X^{28/15+\eta} \right) X^{4-c+\eta} \]

\[\ll X^{11/2-3c/4+\eta} + X^{88/15-c+\eta} \]

\[\ll N^{11/(2c)-3/4+\eta} + N^{88/(15c)-1+\eta} \]

\[\ll \varepsilon^2 N^{6/c-1-\eta} \ll \varepsilon^2 N^{6/c-1} \mathcal{L}^6 E^{2/3}. \quad (3.10) \]

If \(2 < c < 37/18 \), then from Lemma 2.16 we get

\[\int_{N}^{2N} |D_2(R)|^2 \ dx \ll \mathcal{L} \cdot X^{4-c-2\eta} (X^{4-c} + X^2)^X \]

\[\ll \mathcal{L} \cdot X^{4-c-2\eta} \cdot X^{2+\eta} \ll X^{6-c-\eta} \]

\[\ll N^{6/c-1-\eta} \ll \varepsilon^2 N^{6/c-1} \mathcal{L}^6 E^{2/3}. \quad (3.11) \]
Combining (3.10) and (3.11), for $1 < c < 37/18$, $c \neq 2$, we obtain that
\[
\int_{N}^{2N} |D_2(R)|^2 dR \ll \varepsilon^2 N^{6/c-1} \mathcal{L}^6 E^{2/3}.
\]
(3.12)

Next, we consider the first term on the right hand in (3.2). First of all, one has
\[
|D_1(R) - H_1(R)|^2 \leq \int_{-	au}^{\tau} \left(S(x)^3 - I(x)^3 \right) e(Rx) \Phi(x) dx \times \int_{-	au}^{\tau} \left(S^3(y) - I^3(y) \right) e(-Ry) \Phi(y) dy
\]
\[
= \int_{-	au}^{\tau} \left(S(x)^3 - I(x)^3 \right) \Phi(x) \left(\int_{-	au}^{\tau} (S^3(y) - I^3(y)) e(R(x-y)) \Phi(y) dy \right) dx.
\]

Therefore, we have
\[
\int_{N}^{2N} |D_1(R) - H_1(R)|^2 dR
\]
\[
= \int_{N}^{2N} \left[\int_{-	au}^{\tau} \left(S(x)^3 - I(x)^3 \right) \Phi(x) \right. \\
\times \left(\int_{-	au}^{\tau} (S^3(y) - I^3(y)) e(R(x-y)) \Phi(y) dy \right) dx \] dR
\]
\[
= \int_{-	au}^{\tau} \left(S(x)^3 - I(x)^3 \right) \Phi(x) \left[\int_{-	au}^{\tau} (S^3(y) - I^3(y)) \left(\int_{N}^{2N} e(R(x-y)) dR \right) \Phi(y) dy \right] dx
\]
\[
\ll \int_{-	au}^{\tau} |S^3(x) - I^3(x)||\Phi(x)|
\]
\[
\times \left(\int_{-	au}^{\tau} |S^3(y) - I^3(y)||\Phi(y)| \min \left(N, \frac{1}{|x-y|}\right) dy \right) dx.
\]
(3.13)

Applying Cauchy’s inequality to the inner integral and combining Lemma 2.9, one has
\[
\int_{-	au}^{\tau} |S^3(y) - I^3(y)||\Phi(y)| \min \left(N, \frac{1}{|x-y|}\right) dy
\]
\[
\ll \varepsilon \int_{-	au}^{\tau} |S(y) - I(y)||S^2(y) + S(y)I(y) + I^2(y)| \min \left(N, \frac{1}{|x-y|}\right) dy
\]
\[
\ll \varepsilon \left(\int_{-	au}^{\tau} |S^2(y) + S(y)I(y) + I^2(y)|^2 dy \right)^{1/2}
\]
\[
\times \left(\int_{-	au}^{\tau} |S(y) - I(y)|^2 \min \left(N, \frac{1}{|x-y|}\right)^2 dy \right)^{1/2}
\]
\[
\ll \varepsilon \left(\int_{-	au}^{\tau} |S(y)|^4 dy + \int_{-	au}^{\tau} |I(y)|^4 dy \right)^{1/2}
\]
\[
\times \left(\int_{-	au}^{\tau} |S(y) - I(y)|^2 \min \left(N, \frac{1}{|x-y|}\right)^2 dy \right)^{1/2}
\]
\[
\ll \varepsilon X^{2-c/2} \mathcal{L}^{5/2} \left(\int_{-	au}^{\tau} |S(y) - I(y)|^2 \min \left(N, \frac{1}{|x-y|}\right)^2 dy \right)^{1/2}.
\]
(3.14)
Put (3.14) into (3.13) and we get
\[
\int_{N}^{2N} |D_1(R) - H_1(R)|^2 dR
\leq \varepsilon^{3/2} X^{2-c/2} L^{5/2} \int \left| S^3(x) - I^3(x) \right| \Phi(x)^{1/2} dx
\]
\[
\times \left(\int \left| S(y) - I(y) \right|^2 \min \left(N, \frac{1}{|x-y|} \right)^2 d\frac{1}{|x-y|} \right)^{1/2} dx
\]
\[
\leq \varepsilon^{3/2} X^{2-c/2} L^{5/2} \sup_{|x| \leq \tau} \left(\int \left| S(y) - I(y) \right|^2 \min \left(N, \frac{1}{|x-y|} \right)^2 \Phi(x) dy \right)^{1/2}
\]
\[
\times \int_{-\tau}^{\tau} \left| S^3(x) - I^3(x) \right| dx. \tag{3.15}
\]

On one hand, by Lemma 2.7, we have
\[
\int_{-\tau}^{\tau} \left| S^3(x) - I^3(x) \right| dx \leq \int_{-\tau}^{\tau} \left| S(x) \right|^3 dx + \int_{-\tau}^{\tau} \left| I(x) \right|^3 dx
\]
\[
\leq X \int_{-\tau}^{\tau} \left| S(x) \right|^2 dx + X \int_{-\tau}^{\tau} \left| I(x) \right|^2 dx
\]
\[
\leq X^{3-c/2} L^3. \tag{3.16}
\]

On the other hand, by Lemma 2.8, we have
\[
\int_{-\tau}^{\tau} \left| S(y) - I(y) \right|^2 \min \left(N, \frac{1}{|x-y|} \right)^2 \Phi(x) dy
\]
\[
\leq \varepsilon^2 \int_{y \in (x-\frac{X}{2}, x+\frac{X}{2}) \cap [-\tau, \tau]} \left| S(y) - I(y) \right|^2 dy + \varepsilon^2 \frac{N^2}{p^2} \int_{-\tau}^{\tau} \left| S(y) - I(y) \right|^2 dy
\]
\[
\leq \varepsilon^2 X^{2-c} P E^2 + \varepsilon^2 \frac{N^2}{p^2} X^{2-c} L^3
\]
\[
\leq \varepsilon^2 X^{2-c} E^{1/3} L^3. \tag{3.17}
\]

Combining (3.15), (3.16) and (3.17) we obtain
\[
\int_{N}^{2N} |D_1(R) - H_1(R)|^2 dR \ll \varepsilon^2 N^{6/c-1} L^7 E^{2/3}. \tag{3.18}
\]

From (3.2), (3.3), (3.4), (3.12) and (3.18), we know that the conclusion of Proposition 3.1 follows.

3.2 Proof of Theorem 1.1

For \(R \in (N, 2N) \), we set
\[
B := B(R) = \sum_{\frac{X}{2} < p_1, p_2, p_3 \leq X \atop \frac{1}{|p_1 p_2 p_3|} \leq \epsilon} (\log p_1)(\log p_2)(\log p_3).
\]
From Proposition 3.1, we can claim that if $1 < c < 37/18$, $c \neq 2$, there exists a set $\mathcal{P} \subset (N, 2N]$ satisfying

$$|\mathcal{P}| \ll N \exp \left(-\frac{2}{15} \left(\frac{1}{c} \log \frac{2N}{3} \right)^{1/5} \right),$$

(3.19)

such that

$$B_1(R) = H(R) + O\left(\varepsilon N^{\frac{2}{c} - 1} \exp \left(-\frac{1}{10} \left(\frac{1}{c} \log \frac{2N}{3} \right)^{1/5} \right) \right)$$

for all $R \in (N, 2N] \setminus \mathcal{P}$.

Actually, from Proposition 3.1, for $R \in \mathcal{P}$, we have

$$B_1(R) - H(R) \gg \varepsilon N^{\frac{2}{c} - 1} \exp \left(-\frac{1}{10} \left(\frac{1}{c} \log \frac{2N}{3} \right)^{1/5} \right).$$

(3.20)

Therefore, we get

$$\varepsilon^2 N^{6/c - 1} \exp \left(-\frac{1}{3} \left(\frac{1}{c} \log \frac{2N}{3} \right)^{1/5} \right)$$

$$\gg \int_N^{2N} |B_1(R) - H(R)|^2 dR$$

$$\gg \int_{\mathcal{P}} |B_1(R) - H(R)|^2 dR$$

$$\gg |\mathcal{P}| \cdot \varepsilon^2 N^{6/c - 2} \exp \left(-\frac{1}{5} \left(\frac{1}{c} \log \frac{2N}{3} \right)^{1/5} \right),$$

and (3.19) follows.

As in [18], by the Fourier transformation formula, we have

$$B_1(R) = \sum_{\frac{1}{c} < p_1, p_2, p_3 \leq X} \log p_1 \cdot \log p_2 \cdot \log p_3 \cdot \int_{-\infty}^{\infty} e((p_1^c + p_2^c + p_3^c - R)x) \Phi(x) dx$$

$$= \sum_{\frac{1}{c} < p_1, p_2, p_3 \leq X} \log p_1 \cdot \log p_2 \cdot \log p_3 \cdot \varphi (p_1^c + p_2^c + p_3^c - R) \leq B(R).$$

Hence Theorem 1.1 follows from the inequality

$$H(R) \gg \varepsilon R^{4/c - 1},$$

which can be proved proceeding as in [18], Lemma 6. This completes the proof of Theorem 1.1.

17
4 Proof of Theorem 1.2

Throughout the proof of Theorem 1.2, we always set $X = (N/5)^{1/c}$ and denote the function $\varphi(y)$ which is from Lemma 2.1 with parameters

\[a = \frac{9\varepsilon}{10}, \quad b = \frac{\varepsilon}{10}, \quad k = \lfloor \log X \rfloor. \]

Let

\[\mathcal{B} = \sum_{\frac{N}{5} < p_1, \ldots, p_6 \leq X} (\log p_1)(\log p_2) \cdots (\log p_6). \]

Set

\[\mathcal{B}_1 = \sum_{\frac{N}{5} < p_1, p_2, \ldots, p_6 \leq X} (\log p_1)(\log p_2) \cdots (\log p_6) \cdot \varphi(p_1^e + \cdots + p_6^e - N). \]

By the definition of φ, we have

\[\mathcal{B} \geq \mathcal{B}_1. \tag{4.1} \]

The Fourier transformation formula gives

\[\mathcal{B}_1 = \int_{-\infty}^{+\infty} S_6(x) e(-Nx) \Phi(x) \, dx =: D_1 + D_2 + D_3, \tag{4.2} \]

where

\[D_1 = \int_{-\tau}^{\tau} S_6(x) e(-Nx) \Phi(x) \, dx, \]

\[D_2 = \int_{\tau < |x| < K} S_6(x) e(-Nx) \Phi(x) \, dx, \]

\[D_3 = \int_{|x| \geq K} S_6(x) e(-Nx) \Phi(x) \, dx. \]

By Lemma 2.1, we have

\[D_3 \ll \int_{K}^{+\infty} |S(x)|^6 |\Phi(x)| \, dx \ll X^6 \int_{K}^{+\infty} \frac{1}{x} \left(\frac{5k}{\pi x \varepsilon} \right)^k \, dx \ll 1. \tag{4.3} \]

Let

\[\mathcal{H}_1 = \int_{-\tau}^{\tau} I_6(x) e(-Nx) \Phi(x) \, dx \]

and

\[\mathcal{H} = \int_{-\infty}^{+\infty} I_6(x) e(-Nx) \Phi(x) \, dx, \]

then

\[D_1 = \mathcal{H} + (\mathcal{H}_1 - \mathcal{H}) + (D_1 - \mathcal{H}_1). \tag{4.4} \]
By Lemma 2.2, we get $I(x) \ll X^{1-c}|x|^{-1}$. By Lemma 2.1, we have

$$
\mathcal{H}_1 - \mathcal{H} \ll \int_{\tau}^{+\infty} |I(x)|^6 |\Phi(x)| dx \\
\ll X^{6-6c} \int_{\tau}^{+\infty} \frac{dx}{x^7} \\
\ll X^{6-6c}r^{-6} \ll X^{6\eta}.
$$

(4.5)

According to Lemma 2.1, Lemma 2.7 and Lemma 2.8, we have

$$
D_1 - H_1 \ll \int_{-\tau}^{\tau} \left| S^6(x) - I^6(x) \right| |\Phi(x)| dx \\
\ll \varepsilon \max_{|x| \leq \tau} \left| S(x) - I(x) \right| \times \int_{-\tau}^{\tau} \left(|S(x)|^5 + |I(x)|^5 \right) dx \\
\ll \varepsilon X^3 \max_{|x| \leq \tau} \left| S(x) - I(x) \right| \times \int_{-\tau}^{\tau} \left(|S(x)|^2 + |I(x)|^2 \right) dx \\
\ll \varepsilon X^{5-c} \log^3 X \times \max_{|x| \leq \tau} |S(x) - I(x)| \\
\ll \varepsilon X^{6-c} e^{-\frac{1}{2} \log X^{1/5}}.
$$

(4.6)

So Lemma 2.4 combining (4.4), (4.5) and (4.6) yields

$$
D_1 \gg \varepsilon X^{6-c}.
$$

(4.7)

For D_2, we have

$$
D_2 \ll \max_{\tau < |x| < K} |S(x)|^2 \times \int_{\tau < |x| < K} |S(x)|^4 |\Phi(x)| dx.
$$

(4.8)

For the integral on the right hand in (4.8), we can exactly follow the process of (3.9) and obtain

$$
\int_{\tau < |x| < K} |S(x)|^4 |\Phi(x)| dx \ll (X^{4-c} + X^2) X^{3\eta}.
$$

(4.9)

If $1 < c < 2$, then from (4.8), Lemma 2.10 and (4.9) we get

$$
D_2 \ll (X^{6+c}/4 + X^{28/15 + \eta})(X^{4-c} + X^2) X^{\eta} \ll X^{6-c-\eta}.
$$

(4.10)

If $2 < c < 37/18$, then from (4.8), Lemma 2.16 and (4.9) we get

$$
D_2 \ll X^{2-2\delta}(X^{4-c} + X^2) X^{\eta} \ll X^{2-2\delta} \cdot X^{2+\eta} \ll X^{6-c-\eta}.
$$

(4.11)

From (4.1), (4.2), (4.3), (4.7), (4.10) and (4.11) we get

$$
\mathcal{B} \geq \mathcal{B}_1 = D_1 + D_2 + D_3 \gg \varepsilon X^{6-c},
$$

which completes the proof of Theorem 1.2.

Acknowledgement

The authors would like to express the most and the greatest sincere gratitude to Professor Wenguang Zhai for his valuable advice and constant encouragement.
References

[1] R. Baker and A. Weingartner, *Some applications of the double large sieve*, Monatsh. Math., **170** (3/4) (2013), 261–304.

[2] R. Baker and A. Weingartner, *A ternary Diophantine inequality over primes*, Acta Arith., **162** (2014), 159–196.

[3] Y. C. Cai, *On a Diophantine inequality involving prime numbers*, Acta Math. Sinica, **39** (1996), 733–742 (in Chinese).

[4] Y. C. Cai, *On a Diophantine inequality involving prime numbers (II)*, Acta Math. Sinica, **15** (1999), 387–394.

[5] X. D. Cao and W. G. Zhai, *A Diophantine Inequality with Prime Numbers*, Acta Math. Sinica, **45** (2) (2002), 361–370 (in Chinese).

[6] E. Fouvry and H. Iwaniec, *Exponential sums with monomials*, J. Number Theory, **33** (1989), 311–333.

[7] M. Z. Garaev, *On the Waring-Goldbach problem with small non-integer exponent*, Acta Arith., **108** (2003), 297–302.

[8] S. W. Graham and G. Kolesnik, *Van der Corput’s Method of Exponential Sums*. Cambridge University Press (1991).

[9] D. R. Heath-Brown, *Prime numbers in short intervals and a generalized Vaughan identity*, Canad. J. Math., **34** (1982), 1365–1377.

[10] A. Kumchev, *A Diophantine inequality involving prime powers*, Acta Arith., **89** (1999), 311–330.

[11] A. Kumchev and T. Nedeva, *On an equation with prime numbers*, Acta Arith., **83** (1998), 117–126.

[12] M. B. S. Laporta, *On a binary diophantine inequality involving prime numbers*, Acta Mathematica Hungarica., **83** (3) (1999), 179–187.

[13] I. I. Piatetski-Shapiro, *On a variant of Waring-Goldbachs problem*, Mat. Sb., **30** (72) (1) (1952), 105–120 (in Russian).

[14] O. Robert and P. Sargos, *Three-dimensional exponential sums with monomials*, J. Reine Angew. Math., **591** (2006), 1–20.
[15] B. I. Segal, *On a theorem analogous to Warings theorem*, Dokl. Akad. Nauk SSSR (N. S.), 2 (1933), 47–49 (in Russian).

[16] S. Y. Shi and L. Liu, *On a Diophantine inequality involving prime powers*, Monatsh. Math., 169 (3/4) (2013), 423–440.

[17] E.C. Titchmarsh, *The Theory of the Riemann Zeta-Function*. 2nd edn. Oxford University Press (1986).

[18] D. I. Tolev, *On a Diophantine inequality involving prime numbers*, Acta Arith., 61 (1992), 289–306.

[19] I. M. Vinogradov, *Representation of an odd number as the sum of three primes*, Dokl. Akad. Nauk SSSR, 15 (1937), 291–294 (in Russian).

[20] W. G. Zhai and X. D. Cao, *On a Diophantine inequality over primes*, Adv. Math. (China), 32 (1) (2003), 63–73.

[21] W. G. Zhai and X. D. Cao, *On a binary Diophantine Inequality*, Adv. Math. (China), 6 (2003), 706–721.

[22] W. G. Zhai and X. D. Cao, *On a Diophantine inequality over primes (II)*, Monatsh. Math., 150 (2) (2007), 173–179.