Dysregulated microRNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Potential as Biomarkers and Therapeutic Targets

Jinghang Xu1,2†, Ping An2*†, Cheryl A. Winkler2 and Yanyan Yu1*

1 Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China, 2 Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States

MicroRNAs (miRNAs) are non-coding small RNAs that can function as gene regulators and are involved in tumorigenesis. We review the commonly dysregulated miRNAs in liver tumor tissues and plasma/serum of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients. The frequently reported up-regulated miRNAs in liver tumor tissues include miR-18a, miR-21, miR-221, miR-222, and miR-224, whereas down-regulated miRNAs include miR-26a, miR-101, miR-122, miR-125b, miR-145, miR-199a, miR-199b, miR-200a, and miR-223. For a subset of these miRNAs (up-regulated miR-222 and miR-224, down-regulated miR-26a and miR-125b), the pattern of dysregulated circulating miRNAs in plasma/serum is mirrored in tumor tissue based on multiple independent studies. Dysregulated miRNAs target oncogenes or tumor suppressor genes involved in hepatocarcinogenesis. Normalization of dysregulated miRNAs by up- or down-regulation has been shown to inhibit HCC cell proliferation or sensitize liver cancer cells to chemotherapeutic treatment. miRNAs hold as yet unrealized potential as biomarkers for early detection of HCC and as precision therapeutic targets, but further studies in diverse populations and across all stages of HCC are needed.

Keywords: biomarkers, hepatitis B virus, hepatocellular carcinoma, microRNA, gene expression, early diagnosis, prognosis

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers in the world (1, 2). Major risk factors for HCC are chronic infection by hepatitis B virus (HBV) or hepatitis C virus (HCV) (3). HCC is usually diagnosed at the late stages, due to the low sensitivity of the current diagnostic methods, which include imaging and quantification of alpha-fetoprotein (AFP) levels. Although recent advances in genomic technology have identified a variety of genetic alterations in HCC tissues, convenient biomarkers with sufficient sensitivity and specificity for early diagnosis of HCC are still lacking.

Detection of microRNAs (miRNAs) has recently gained increasing attention for their potential utility in the early diagnosis of HCC. miRNAs are one of the major post-transcriptional regulators of gene expression. As non-coding small endogenous RNAs with ~22 nucleotides, miRNAs silence genes by binding to the 3’ untranslated region (3’ UTR) of messenger RNAs (mRNAs)
and triggering mRNA degradation or translational repression (4–6). To date, more than 2,600 mature human miRNAs have been listed on the miRBase database (http://www.mirbase.org). Each miRNA can target multiple mRNAs with varying effects and a single mRNA may be targeted by multiple miRNAs. miRNAs modulate various biological molecular pathways and cellular processes, including cell proliferation, differentiation, development, apoptosis, angiogenesis, metabolism, and immune responses (7–10). Dysregulated miRNAs have been implicated in the development of a variety of tumors, including HCC, and may serve as robust biomarkers for cancer diagnosis and prognosis (11–14).

Given that miRNAs expression levels might differ among HCC patients with different etiological factors (15) and that HBV is the predominant risk factor for HCC (16), the present review focuses on miRNAs involved with HBV-related HCC.

DYSREGULATED miRNAs IN HBV-HCC

Comparisons of HBV-HCC tumor tissue to either matched non-tumor tissue or liver tissue from healthy controls indicate that a subset of miRNAs is differentially expressed between healthy and tumor tissues. In Table 1, we list miRNAs that have been replicated in at least two HBV-HCC studies. Commonly reported up-regulated miRNAs include miR-18a, miR-21, miR-221, miR-222, and miR-224, whereas down-regulated miRNAs include miR-26a, miR-101, miR-122, miR-125b, miR-145, miR-199a, miR-199b, miR-200a, and miR-223 (17–36).

Due to limited liver tissue accessibility and the invasive nature of biopsy, studies assessing circulating miRNAs in plasma or serum from patients with HBV-HCC have increased dramatically in recent years. Cellular miRNAs from tumors leak into the circulation system following cell injury, apoptosis, and necrosis or by secretion through cell-derived exosomes and shedding vesicles (37). Circulating miRNAs in serum or plasma are stable (38), suggesting that circulating miRNAs may be accessible and quantifiable cancer diagnostic or prognostic biomarkers. Commonly reported dysregulated circulating miRNAs from patients with HBV-HCC include miR-21, miR-26, miR-122, miR-125b, miR-192, miR-206, miR-222, miR-223, and miR-224 (28, 29, 39–46) (Table 2).

For a subset of the miRNAs [e.g., up-regulated miR-18a, miR-221, miR-222, and miR-224, and down-regulated miR-26a and miR-125b (Table 3)], dysregulated patterns were consistent among multiple independent studies and between tumor tissue and serum/plasma. These microRNAs may be of more translational (HBV-HCC). We have assessed patterns of reported dysregulated miRNAs in the HBV-HCC patients and present the mechanisms and potential applications of miRNAs in the diagnosis, prognosis, and treatment of HBV-HCC (Figure 1).

![Common Dysregulated miRNAs in HBV-HCC](image-url)

FIGURE 1 | Commonly dysregulated microRNAs in HBV-related HCC. Several miRNAs are up- or down-regulated in liver tumor tissues or in plasma/serum, some of which showed promise for early diagnosis and survival prognosis of HCC, and can be manipulated for treatment.

Frontiers in Oncology | www.frontiersin.org 2 July 2020 | Volume 10 | Article 1271
miRNAs	Dysregulation type	Fold change	Case vs. control	Samples details	Underlying cirrhosis % (n)	References
miR-18a	Up-regulated	0.585^a	HCC vs. ANT	78 HCC (62 HBV)	51% (40/78)	(17)
	Up-regulated	3.223^b	HCC vs. ANT	22 HCC (20 HBV)	NA	(18)
miR-21	Up-regulated	2.29^a	HCC vs. ANT	100 HCC (58 HBV, 8 HCV, 27 NBNC, 27 Unknown)	46% (46/100)	(19)
	Up-regulated	3.67^b	HCC vs. ANT	115 HCC (101 HBV)	51% (59/115)	(20)
	Up-regulated	NA	HCC vs. ANT	148 HCC (82 HBV)	41% (54/133)	(21)
	Up-regulated	NA	HCC vs. ANT	31 HBV-HCC	NA	(22)
	Up-regulated	NA	HCC vs. ANT	24 HBV-DNs, 29 small HBV-HCC nodules, 38 HBV-ANTs	92% (22/24) in DNs 93% (27/29) in HCC	(23)
miR-221	Up-regulated	1.51^a	HCC vs. ANT	100 HCC (58 HBV, 8 HCV, 27 NBNC, 27 Unknown)	46% (46/100)	(19)
	Up-regulated	NA	HCC vs. ANT	135 HCC (96 HBV)	95% (128/135)	(25)
	Up-regulated	4.00^b	HCC vs. ANT	115 HCC (101 HBV)	51% (59/115)	(20)
	Up-regulated	NA	HCC vs. ANT	31 HBV-HCC	NA	(22)
	Up-regulated	NA	HCC vs. ANT	24 HBV-DNs, 29 small HBV-HCC nodules, 38 HBV-ANTs	92% (22/24) in DNs 93% (27/29) in HCC	(23)
miR-222	Up-regulated	1.57^a	HCC vs. ANT	78 HCC (62 HBV)	51% (40/78)	(17)
	Up-regulated	1.41^a	HCC vs. ANT	78 HCC (62 HBV)	51% (40/78)	(17)
	Up-regulated	4.44^b	HCC vs. ANT	115 HCC (101 HBV)	51% (59/115)	(20)
	Up-regulated	4.964^b	HCC vs. ANT	22 HCC (20 HBV)	NA	(18)
	Up-regulated	NA	HCC vs. ANT	42 HBV (33 HBV, 6 HCV, 3 NBNC-HCC)	85% (28/33)	(26)
miR-224	Up-regulated	27.231^b	HCC vs. ANT	24 HBV-DNs, 29 small HBV-HCC nodules, 38 HBV-ANTs	92% (22/24) in DNs 93% (27/29) in HCC	(23)
	Up-regulated	0.903^a	HCC vs. ANT	78 HCC (62 HBV)	51% (40/78)	(17)
miR-26a	Down-regulated	0.37^b	HCC vs. ANT	455 HCC (412 HBV)	88% (400/455)	(27)
miR-101	Down-regulated	−1.59^a	HCC vs. ANT	100 HCC (58 HBV, 8 HCV, 27 NBNC, 27 Unknown)	46% (46/100)	(19)
	Down-regulated	NA	HCC vs. HC	25 HCC (20 HBV) , 20 HC (HBV-negative)	72% (18/25)	(28)
	Down-regulated	NA	HCC vs. CHB	67 HBV-HCC, 61 HBV-LC, 79 CHB, 30 Normal control	NA	(29)
	Down-regulated	NA	HCC vs. LC	22 HCC (20 HBV)	NA	(18)
miR-122	Down-regulated	−0.958^a	HCC vs. ANT	78 HCC (62 HBV)	51% (40/78)	(17)
	Down-regulated	−1.67^a	HCC vs. ANT	100 HCC (58 HBV, 8 HCV, 27 NBNC, 27 Unknown)	46% (46/100)	(19)
	Down-regulated	NA	HCC vs. ANT, HBV-HCC vs. non-HBV-HCC	97 HCC (84 HBV)	NA	(30)
	Down-regulated	NA	HCC vs. ANT	142 HCC (103 HBV)	58% (82/142)	(31)
	Down-regulated	NA	HCC vs. ANT, HBV-HCC vs. non-HBV-HCC	24 HBV-DNs, 29 small HBV-HCC nodules, 38 HBV-ANTs	92% (22/24) in DNs 93% (27/29) in HCC	(23)
miR-125b	Down-regulated	0.60^b	Venous metastases vs. solitary tumors	214 HBV-HCC	93% (199/214)	(32)
	Down-regulated	−0.893^a	HCC vs. ANT	78 HCC (62 HBV)	51% (40/78)	(17)
	Down-regulated	NA	HCC vs. ANT	97 HCC (84 HBV)	NA	(30)
	Down-regulated	0.58^b	Venous metastases vs. solitary tumors	214 HBV-HCC	93% (199/214)	(32)

(Continued)
TABLE 1 | Continued

miRNAs	Dysregulation type	Fold change	Case vs. control	Samples details	Underlying cirrhosis % (n)	References
miR-145	Down-regulated	NA	HCC vs. ANT	24 HBV-DNs, 29 small HBV-HCC Nodules, 38 HBV-ANTs	92% (22/24) in DNs 93% (27/29) in HCC	(23)
		0.28b	HGDN vs. ANT			
		–2.39b	HDGN vs. ANT			
miR-145-5P	Down-regulated		HCC vs. ANT	42 HBV-HCC	NA	(24)
miR-199a	Down-regulated	0.149b	HCC vs. ANT	100 HCC (58 HBV, 8 HCV, 27 NBNC, 27 Unknown)	48% (46/100)	(19)
		–4.51b	HCC vs. ANT	97 HCC (84 HBV)	NA	(30)
miR-199a-5P	Down-regulated		HCC vs. ANT	100 HCC (58 HBV, 8 HCV, 27 NBNC, 27 Unknown)	48% (46/100)	(19)
miR-199b	Down-regulated	–2.78b	HCC vs. ANT	100 HCC (58 HBV, 8 HCV, 27 NBNC, 27 Unknown)	48% (46/100)	(19)
miR-200a	Down-regulated	NA	HCC vs. ANT	24 HBV-DNs, 29 small HBV-HCC Nodules, 38 HBV-ANTs	92% (22/24) in DNs 93% (27/29) in HCC	(23)
		0.421b	HGDN vs. ANT			
		0.522b	HGDN vs. ANT			
miR-223	Down-regulated	–1.92b	HCC vs. ANT	120 HCC (97 HBV)	78% (83/120)	(33)
		0.267b	HCC vs. ANT	101 HCC (71 HBV)	NA	(34)
		0.20b	HCC vs. ANT	95 HCC (78 HBV)	47% (45/95)	(35)
		–2.78b	HCC vs. ANT	100 HCC (58 HBV)	46% (46/100)	(19)
		0.267b	HCC vs. ANT	22 HCC (20 HBV)	NA	(18)
		0.20b	HCC vs. ANT	42 HCC (33 HBV), 6 HCV, 3 NBNC-HCC	85% (28/33)	(26)

Fold changes were based on the original report; *Log2* fold change.

1. ANT, adjacent non-cancerous tissue; CHB, chronic hepatitis B; DN, dysplastic nodule; HBV, hepatitis B virus; HC, healthy control; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HGDN, high-grade dysplastic nodule; LC, liver cirrhosis; LGDN, low-grade dysplastic nodule; NA, not available; NBNC, non-HBV non-HCV.

value in the diagnosis, differential diagnosis or even therapy for HBV-HCC. However, other miRNAs showed inconsistent or contrasting profiles of dysregulation among studies or between tumor tissue and serum/plasma (Tables 1, 2). For example, downregulation of miR-122 was common in HCC tissue (19, 23, 32), but circulating miRNA levels were upregulated in some studies (39, 42, 43) and downregulated in others (45). Based on the observation that increased serum miR-122 is presented in both HCC patients and chronic hepatitis patients, some researchers speculate that higher levels of miR-122 in serum may result from liver injury rather than HCC itself (42, 43). It is also likely that factors governing the expression of miRNAs in the tissues and sera of HCC patients might differ. Additional factors that may contribute to discordant findings among these results include differences in patient selection, tumor stage, biological sample handling, and storage, miRNA probes employed, sample size, or genetic background of study populations (49).

MECHANISM OF miRNA DYSREGULATION IN HCC

It’s not fully understood if miRNA dysregulation in HCC is the cause, consequence of HCC development or both. Accumulating evidence indicates that some dysregulated miRNAs are active players in tumor initiation and progression. The direct targets of miRNAs may be protein-coding genes involved in any or all pathophysiological mechanisms of cancer development, including cell growth, apoptosis, invasion, and metastasis. miRNAs may function as either tumor promoters or tumor suppressors depending on their target genes (50). miRNAs in HCC that target and suppress oncogenes may be down-regulated, while miRNAs that target suppressor genes may be up-regulated during tumor development (Figure 2). The miR-122 expression is largely liver-specific and under transcriptional control by the liver-enriched transcription factors HNF1A, HNF3A, and HNF3B (51). miR-122 can function as a tumor suppressor by suppressing HCC growth, invasion, migration, angiogenesis and by increasing HCC apoptosis and cell cycle arrest (52). miRNA-122 targets multiple genes, including BCL9, Bcl-w, NDRG3, cyclin G1, ADAM17, ADAM10, G6PD, and pituitary tumor-transforming gene 1 (PTTG1) binding factor (PBF), all of which have been implicated in tumor development (53–60). Other miRNAs such as miRNA-21 function as oncogenes by stimulating HCC growth, invasion, and migration (23, 61, 62). The inhibition of miR-21 suppresses HCC tumor growth (63).

Dysregulated miRNAs affect key cellular pathways that play a role in the pathogenesis of HBV-HCC (Figure 2). The commonly targeted pathways by dysregulated miRNAs in HBV-HCC include the Janus kinase/signal transducer (JAK/STAT),...
TABLE 2 | Dysregulated microRNAs in the plasma/serum of patients with HBV-related HCC.

miRNAs	Dysregulation type	Fold change	Case vs. control	Samples details	References
miR-18a	Up-regulated	NA	HCC vs. HC, HCC vs. (CHB + LC)	101 HBV-HCC, 30 CHB or HBV-LC, 80 HC	(44)
miR-192	Up-regulated	1.4±	HCC vs. (LC+CHB+HC)	457 HBV-HCC, 141 HBV-LC, 169 CHB, 167 HC	(45)
miR-206	Up-regulated	9.94±	HCC vs. HC	261 HBV-HCC, 173 HC	(46)
		3.5±	HCC vs. LC	261 HBV-HCC, 233 HBV-LC	(46)
		2.98 ± 3.94±	HCC vs. matched control	55 HBV-HCC, 50 age and gender-matched control	(39)
miR-221	Up-regulated	4.83±	HCC vs. HC	46 HCC (30 HBV), 20 HC	(41)
miR-222	Up-regulated	NA	HCC vs. HC	70 HBV-HCC, 48 CHB, 34 HC	(43)
miR-224	Up-regulated	3.01±	HCC vs. HC	46 HCC (30 HBV), 20 HC	(41)
miR-21	Up-regulated	1.8±	HCC vs. HC	46 HCC (30 HBV), 20 HC	(41)
miR-122	Up-regulated	4.09± 5.38±	HCC vs. HBV (ASC +CHB)	65 HBV-HCC, 160 controls	(39)
miR-192-5p	Up-regulated	0.7±	HCC vs. (LC+CHB+HC)	457 HBV-HCC, 141 HBV-LC, 169 CHB, 167 HC	(45)
miR-223	Up-regulated	NA	HCC vs. HC	101 HCC (76 HBV), 48 CHB, 89 HC	(42)
miR-26a	Down-regulated	2.97 ± 1.67±	HCC vs. HC	65 HBV-HCC, 160 controls	(39)
miR-26a-5p	Down-regulated	0.3±	HCC vs. (LC+CHB+HC)	457 HBV-HCC, 141 HBV-LC, 169 CHB, 167 HC	(45)
miR-26a	Down-regulated	0.2±	HCC vs. HBV (ASC +CHB)	65 HBV-HCC, 135 HBV (55 ASC+ 80 CHB)	(39)
miR-26a-5p	Down-regulated	0.6±	HCC vs. HC	261 HBV-HCC, 173 HC	(46)
miR-122-5p	Down-regulated	0.54±	HCC vs. LC	261 HBV-HCC, 233 HBV-LC	(46)
miR-26a	Down-regulated	0.27±	HCC vs. HC	261 HBV-HCC, 173 HC	(46)
miR-125b	Down-regulated	0.26 ± 0.46±	HCC vs. HBV (ASC +CHB)	65 HBV-HCC, 135 HBV (55 ASC+ 80 CHB)	(39)
miR-199a-5p	Down-regulated	0.58±	HCC vs. HC	30 HCC (28 HBV), 30 LC (27 HBV)	(43)
miR-199a-5p	Down-regulated	0.87±	HCC vs. LC	30 HCC (28 HBV), 30 CHB	(43)

Fold changes were based on the original report; *Log2 fold change.

miR-122, miR-21, miR-26a, and miR-26a-5p were selected for qRT-PCR validation.

miR-122 Fold change: NA HCC vs. CHB 30 HCC (28 HBV), 30 CHB, 89 HC (42)
miR-21 Fold change: NA HCC vs. HC 101 HCC (76 HBV), 48 CHB, 89 HC (42)
miR-26a Fold change: NA HCC vs. HC 101 HCC (76 HBV), 48 CHB, 89 HC (42)
miR-26a-5p Fold change: NA HCC vs. CHB 30 HCC (28 HBV), 30 CHB, 89 HC (42)

phosphoinositide 3-kinase/mitogen-activated protein kinase (PI3K)/AKT and MAPK, Wingless-related integration site/beta-catenin (WNT/β-Catenin) and TP-53 pathways (40, 64–73).

Interaction of miRNAs and HBV in HBV-HCC

HBV can directly regulate cellular miRNAs levels, miR-122 is targeted and inhibited by HBV mRNA, which harbors a miR-122 complementary site, leading to the upregulation of the PTTG1-binding protein and promotion of HCC tumor growth and cell invasion (57). Down-regulation of miR-122 occurs mainly in HBV-HCCs but not in HCV-infected HCCs (74). HBV downregulates miR-101 expression by directly inhibiting its promoter activity (75). Hepatitis B X antigen (HBx) increases the expression of miR-21 and subsequently promotes the progression of HCC by targeting PTEN and the tumor suppressor PDCD4 (61). HBx suppresses p53-mediated activation of miR-148a thereby promoting tumor growth and metastasis; expression of miR-148a reduced tumor growth and invasion. In patients with HBV-HCC, miR-148a was down-regulated. These results suggest...
that activation of miRNA-148a or down-regulation of its targeted pathways may have a role in HCC treatment (76).

In contrast, cellular miRNAs, including miR-122, and miR-125 and miR-199 family members, affect HBV replication (77). miR-125a-5p, markedly downregulated in HCC, inhibits HBsAg expression and secretion (78).

Using RNA deep sequencing and northern blotting, HBV-encoded miRNAs were recently identified. HBV-miR-3 was shown to restrict HBV replication, by targeting the region of HBV 3.5-kb mRNA encoding HBV core antigen (HBc) (79). Another HBV-encoded miRNA, HBV-miR-2, can promote the oncogenic activity of liver cancer cells (80). HBV-encoded miRNAs likely contribute to HBV-specific HCC development.

TABLE 3

Dysregulation type	miRNAs	Publication numbers* (in tissue)	Publication numbers* (in serum/plasma)
Up-regulated	miR-18a, miR-221, miR-222, miR-224	2, 6, 4, 3	1, 1, 2, 1
Down-regulated	miR-26a, miR-125b	2, 3	1, 3

*Publications cited in Table 1 and Table 2. Results in tissue and serum/plasma don’t necessarily origin from the same study.

The complex interactions and molecular interactions among cellular miRNAs and HBV have been reviewed in (73, 81–83).

Dysregulated miRNAs in Liver Cancer Stem Cells (LCSCs)

Cancer stem cells are small subpopulations of tumor-initiating cells within tumors that capable of self-renewal, differentiation, and proliferation. LCSCs can be identified by several highly expressed stem cell surface markers including epithelial cell adhesion molecule (EpCAM), CD90, CD44, CD133, and CD13 (84). Another reported LCSC surface markers include OV6, DLK1, ABCG2, ALDH, and CD24 (84–87). LCSCs are responsible for tumor initiation, metastasis, relapse, and chemotherapeutic resistance in liver cancer (87). The specific influence of HBV on LCSCs remains largely unknown. Liver inflammatory damage induced by chronic HBV and HCV infection and liver toxins can induce somatic mutations, genomic instability, and epigenetic perturbations, resulting in the deregulation of self-renewal and differentiation signaling pathways of activated liver progenitor cells, which promotes the transformation of liver progenitor cells into LCSCs (84). It has been reported that HBx promotes the stem-like properties of OV6-SCs in HBV-related HCC via MDM2 independent of p53 (88). Concomitant elevated expression of HBx and OV6 predicts a poor prognosis for patients with HBV-HCC (88).

Multiple miRNAs have been reported to regulate a variety of biological behaviors of LCSCs, including let-7, miR-200, miR-122, miR-181, miR-1246, miR-152, miR-145, miR-217, miR-500a-3p, and miR-148 (87). miRNAs affect the CSC phenotype by regulating the expression of oncogenes and stem cell/progenitor genes.
cell-related genes (85). These miRNAs target key molecules in the following pathways involved in carcinogenesis: Wnt/beta-catenin signaling, TGF-beta signaling, JAK/STAT signaling, epithelial-mesenchymal transition (EMT) in LCSCs (87). miRNA profiling comparisons between CSC+ and CSC− HCCs, as separated by hepatic CSC biomarkers (EpCAM, CD133, CD90, CD44, and CD24), identified aberrant downregulation of liver-specific miR-192-5p in HCC cells, which correlated with increased CSC populations with stemness features and shorter survival in HCC patients (89). Over-expression of miR-192-5p inhibited the stemness features of human liver cancer cell lines, with decreased spheroid formation, decreased CSC number and decreased expression of CSC biomarkers and increased expression of genes related to hepatocyte metabolism (89). Hepatitis B virus X protein (HBx) induces expression of EpCAM by upregulating miR-181 to promote stemness in hepatocarcinogenesis (90, 91). The knockdown of miR-181 significantly reduces the EpCAM+ LCSCs and tumor-initiating ability (92).

Targeting the regulation of these miRNAs or their pathways may serve as a potential therapeutic strategy to inhibit or eradicate LCSCs (87). Restoring of miR-122 has been demonstrated to suppresses stem-like HCC cells (93). It would be interesting to explore the clinical utility of restoring the miR-192-5p for riding of LCSCs (89).

Epigenetic Alterations and miRNAs in HCC

Epigenetic alterations such as DNA methylation and histone modification are essential for chromatin remodeling and regulation of both coding genes and miRNAs. Abnormal DNA methylation patterns of a number of miRNAs in HCC have been reported for hypermethylation of miR-1, miR-9, miR-10a, miR-10b, miR-124, miR-125b, miR-132, miR-148a, miR-195, miR-196b, miR-203, miR-320, miR-375, miR-378, miR-497, miR-596, miR-663, and miR-1247, and for hypomethylation of these miRNAs, only miR-125b presents consistent dysregulation pattern of expression, and was down-regulated both in tissue (17, 30, 32) and serum (39, 40), disruption of CTCF binding might modulate HCC development.

Circular RNAs (circRNAs) are a class of highly conserved, stable and abundant non-coding RNAs (ncRNAs) that can regulate gene expression at transcriptional or post-transcriptional levels. The majority of circRNAs function as sponges of miRNAs (101) and deregulation of a number of circRNAs have been reported in HCC. For example, circHIPK3 can sponge 9 miRNAs with 18 potential binding sites, including directly binding to the well-known tumor suppressor miR-124, reducing its activity (102). circTRIM33–12 acts as the sponge of miR-191 to suppress HCC (103). Artificial circRNAs which bind and sponge specific miRNAs can be constructed to achieve better inhibitory effects on oncogenic or pathogenic miRNAs, indicating a promising strategy to treat HCC.

REGULATING miRNA AS A THERAPEUTIC APPROACH FOR HCC

Normalization of dysregulated miRNAs in patients with HBV-HCC, by either up- or down-regulation of dysregulated miRNAs, is a plausible therapeutic approach in treating HCC.

Preliminary studies suggest that reestablishing the expression of down-regulated miRNAs might restore the tumor-suppressing function of miRNAs. In a first-in-human Phase 1 trial of a miRNA therapy using a liposomal miR-34a mimic in patients with advanced solid tumors including HBV-HCC, the miR-34a mimic showed antitumor activity (104). In another study upregulation of miR-122, which is frequently down-regulated in HCC patients, suppressed the proliferation and invasion capability of HCC-derived cells and increased sensitivity to chemotherapy (31, 105–107). Restoring miR-122 in stem-like HCC cells was shown to decrease cell proliferation and reduce tumor size in a mouse model (93). Besides miR-122, other miRNAs may have value in treating HCC. A recent study showed that injection of exosomal miR-335-5p, a tumor suppressor, can inhibit HCC cell proliferation and invasion as well as result in slower cancer growth (108). On the other hand, suppression of miR-21, which is frequently up-regulated in patients with HCC, leads to increased sensitivity to chemotherapeutic drugs (21).
In addition to direct targeting of miRNA, modulating the upstream genes that control miRNA expression is another therapeutic strategy. Upregulation of miR-122 by activating the farnesoid X receptor transcription factor (FXR), suppressed the proliferation of HCC cells in vitro and reduced the growth of HCC xenografts in vivo (109).

The crosstalk between epigenetics and miRNA related to HCC provides new opportunities for the development of more effective therapy for HCC by targeting epigenetic modulation of miRNAs as discussed above. Restoring the expression of tumor suppressor miRNA by inhibitors of DNA methylation and histone deacetylase, and inhibiting the expression of oncopigenes by artificial circRNAs sponging specific miRNAs may be promising therapeutic strategies for HCC.

Regulating miRNA-mediated immune response in HCC may prove to be a promising therapeutic strategy. Most recently, Tian’s group demonstrated that HBV mediates PD-L1-induced T cell immune exhaustion through the interaction of the oncotelic gene SALL4 and miR-200c (110). They showed that miR-200c controls PD-L1 expression by directly targeting the 3′-UTR of PD-L1 and that overexpression of miR-200c antagonizes HBV-mediated PD-L1 expression and reverses antiviral CD8+ T cell exhaustion.

A group of miRNAs are involved either directly or indirectly in drug resistance and either suppressing or activating miRNAs may reduce drug resistance. For example, a recent study reported that some miRNAs contribute to drug resistance to sorafenib. Targeting these miRNAs by the artificial long non-coding RNA improved treatment response in patients with HCC (111). Other studies found that restoration of miR-122 can sensitize HCC cancer cells to adriamycin and vincristine (112) as well as reverse doxorubicin-resistance in HCC cells (113). MiR-101 was shown to sensitize liver cancer cells to chemotherapeutic treatment (114).

The risk of undesirable effects of miRNA targeting, due in large part to off-target binding, is challenging. Adverse events were common in the miR-34a mimic trial, the first clinical trial for the treatment of HBV-HCC (104) and the trial was recently terminated due to immune-related serious adverse events (115). Of the clinical trials using miRNAs that are dysregulated in HBV-HCC, one phase II trial of miR-122 as a treatment modality for HCV has been completed and a miR-21 phase II trial for Alports syndrome was suspended (115). The application of miRNA-targeting therapy has strong potential in personalized medicine, although off-target effects remains a significant hurdle.

miRNAs as Diagnostic Biomarkers in HBV-HCC

Potential single miRNAs and miRNA panels that have been proposed as early diagnostic biomarkers for HBV-HCC are summarized in Table 4. Circulating miRNAs, including miR-13a, miR-13a, miR-143, miR-145, miR-192, and miR-505 had significantly higher sensitivity than AFP to discriminate between HCC and healthy controls, inactive HBsAg carriers, CHB patients, and HBV-cirrhosis patients. Critically this miRNA classifier was the first biomarker to diagnosis preclinical HCC, which was detected in eight of 27 HBV infected individuals 12 months before clinical diagnosis of HCC. This miRNA classifier holds promise for improving clinical outcomes by early HCC detection and curative treatment (117).

Among these miRNAs and miRNA panels, miR-122 is the most replicated miRNA biomarker in HCC, which has a sensitivity ranging from 71 to 81%, specificity from 59 to 83%, and an AUC from 0.63 to 0.87 to distinguish HBV-HCC from controls (42, 43). miR-122 is also included in two miRNA panels for HBV-HCC (45, 46). However, the diagnostic utility of miR-122 in HBV-HCC also extends to other HCCs (119).

Multiple approaches may be taken to improve the diagnostic performance of miRNA biomarkers in HBV-HCC. The type of biological sample is one of the key factors influencing sensitivity and specificity.

Exosomes are secreted by most cell types including cancer cells. Serum exosomes are highly enriched in miRNAs and exosomes can transfer miRNAs between cells, thus affecting HCC cancer proliferation, migration, metastasis, drug resistance (120). A meta-analysis published in 2019 suggested that exosomal miRNAs have superior diagnostic value in prostate cancer patients (121). With regard to diagnosis of HBV-HCC, recent studies indicate that exosomal miRNAs might also be a better choice than miRNAs from whole serum or plasma for early diagnosis. Wang et al. found that the detection of exosomal miR-21, which is enriched in exomes, had improved sensitivity over the whole serum (122). Similarly, miR-125b levels in exosomes were significantly lower than in serum from patients with HBV-HCC when compared to patients with CHB or LC, which explains, at least in part, why miR-125b levels in exosomes, but not in serum, independently predict HCC progression (40). Another study comparing HBV-HCC to CHB or LC, found a greater difference in
TABLE 4 | Diagnostic value of miRNAs in HBV-related HCC.

miRNA	Sample type	Size of case	Underlying cirrhosis, %	Control	Specificity (%)	Sensitivity (%)	AUC	CI of AUC	References	
miR-18a	S	101 HBV-HCC	NA	60 HC	75.0	86.1	0.881	0.829-0.933	(44)	
		101 HBV-HCC	NA	30 CHB or LC	70.0	77.2	0.775	0.681-0.869	(44)	
miR-21	S	101 HCC (76 HBV)	NA	89 HC	73.5	84	0.87	0.81-0.93	(42)	
		57 HBV-HCC	NA	30 HC + 29 HBV	71.2	89.5	0.865	NA	(116)	
miR-101	S	67 HBV-HCC	NA	30 HC	70.0	76.1	0.788	0.692-0.865	(29)	
		67 HBV-HCC	NA	79 CHB	62.0	88.1	0.777	0.701-0.842	(29)	
miR-122	S	70 HBV-HCC	75% (51/68)	34 HC	83.3	81.6	0.869	0.786-0.952	(43)	
		70 HBV-HCC	75% (51/68)	48 HB	57.8	77.6	0.63	0.516-0.743	(43)	
miR-139	P	31 HBV-HCC	NA	31 CHB	58.1	80.6	0.761	0.643-0.878	(22)	
miR-223	S	101 HCC (76 HBV)	NA	89 HC	80	76.5	0.86	0.80-0.92	(42)	
miR-15b and miR-130b	S	57 HBV-HCC	NA	30 HC + 29 HBV	91.5	98.3	0.981	NA	(116)	
miR-27b-3p, miR-192-5p	S	212 HBV-HCC	NA	110 HC + 106 HBV-LC	91.2	68.6	0.836	0.783-0.880	(48)	
miR-29a, miR-29c, miR-133a, miR-143, miR-145, miR-192, miR-505	S	153 HBV-HCC	NA	60 HC + 68 CHB + 71 HBV-LC	110 HC	95.2	68.5	0.823	0.748-0.866	(117)
		106 HBV-LC	NA	79.3	78.5	0.859	0.804-0.906	(117)		
miR-122, miR-192, miR-21, miR-223, miR-26a, miR-27a, miR-801	P	457 HBV-HCC	NA	141 HBV-LC + 169 CHB + 167 HC	88.9	74.5	0.817	0.769-0.885	(45)	
		167 HC	NA	93.9	83.2	0.941	0.905-0.966	(46)		
miR-20a-5p, miR-25-3p, miR-30a-5p, miR-92a-3p, miR-132-3p, miR-185-5p, miR-320a, miR-324-3p	P	67 HBV-HCC	NA	82 HBV	64.6	86.6	0.802	NA	(118)	

When data from training set and validation set are available, only the latter is presented. AUC, area under the curve; CHB, chronic hepatitis B; CI, confidence interval; HBV, Hepatitis B virus; HC, healthy control; HCC, hepatocellular carcinoma; LC, liver cirrhosis; NA, not available; P, plasma; S, serum.

miRNA levels in exosomes compared to whole serum (123). Combinations of miRNAs with other classic serum markers, i.e., AFP, is another approach to increase sensitivity and specificity of blood-based early detection of HBV-HCC (117, 118), especially for atypical HCC cases with lower serum AFP levels. The better performance of this add-on strategy was demonstrated in HCC cases caused by non-HBV factors as well (124).
miRNAs as Biomarkers for HBV-HCC Prognosis

Expression levels of several miRNAs in liver tissue or circulation were correlated with disease severity and survival of HBV-HCC patients. Commonly reported single miRNAs and miRNA biomarker panels in predicting the survival of HBV-HCC are summarized in Table 5. Single miRNAs and miRNA panels associated with shorter survival include miR-21, miR-221, and two 20-mer miRNA signature profiles (20, 21, 25, 32, 47, 128, 129); miR-26a, miR-26b, miR-122, miR-125b, and miR-203 were associated with longer survival (27, 31, 40, 130). Among these miRNAs, miR-21 was the most replicated with a hazard ratio (HR) ranging from 1.4 to 2.2 in predicting the long-term progression of HBV-HCC (Table 5); miR-21 was also associated with HCCs (131). Given the enrichment of miRNAs in serum exosomes, detection of serum exosomal miRNAs can be used to predict prognosis of HCC patients (40).

It should also be noted that other studies found no significant associations with survival between HBV-HCC patients with high or low levels of miRNAs, (i.e., miR-21, miR-122, and miR-125b) (126, 132, 133). These disparate results may be due to differences in study design, analyses, and participant characteristics. For example, the cut-off value used to divide high and low miRNA-expressed population varies among studies and can be quite arbitrary [e.g., using a fixed value or average value or optimal cut-off value from Youden index analysis, or a ratio comparison to adjacent non-tumor tissue] (40). The outcome events also varied, including overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), and liver transplantation (LT)-free survival. These differences among studies make comparison challenging. These limitations will need to be addressed to establish reliable diagnostic and prognostic miRNA biomarker panels for HBV-HCC.

DYSREGULATED miRNAs in HCV-HCC

Since effective HCV-curative, direct-acting antiviral agents (DAA) are widely used worldwide in recent years (134, 135), fewer cases of HCC will be caused by HCV infection in the future. Subsequently, HBV infection will likely be the predominant cause
of HCC worldwide. The pattern of dysregulated miRNAs in HCV-HCC, nevertheless, may still shed insights on the HBV-HCC pathogenesis as the comparison may reveal pathogen-specific and pathogen-independent tumorigenic pathways.

Several miRNAs showed similar dysregulation patterns in HCV- HCC and HBV-HCC (Table 6), including up-regulation of miR-18a (136), miR-221 (137) and miR-224 (15, 138, 139), and down-regulation of miR-199a-5p (136). These miRNAs may be involved in key cancer pathways that are shared by HBV- and HCV-HCC, including the WNT/β-Catenin and TP53 pathways. These miRNA and pathways may, therefore, be putative common targets for diagnostic, prognostic, and therapeutic interventions. Direct comparisons of miRNAs in HBV- and HCV-HCCs are lacking. In a small study comparing HBV-HCC and HCV-HCC tumor samples, the abundance of miR-122 was significantly reduced in HBV-HCC but not HCV-HCC, providing evidence of pathogen-specific dysregulation of miRNAs (74).

CHALLENGES AND FUTURE DIRECTIONS

Accumulating evidence indicates that miRNAs, which function as gene regulators at the post-transcriptional level, are involved in the development of HBV-HCC. The expression levels of some single miRNAs or miRNA panels have the specificity and sensitivity to diagnose HCC and to predict survival; therefore, miRNA profiling panels are promising biomarkers for early diagnosis and survival prediction of HCC (Figure 1). Clinical trials to establish the utility of these panels in clinical practice are warranted.

However, there are several limitations and knowledge gaps in the current literature. In HBV-HCC, most HCC arise from cirrhotic tissues, thus miRNA changes may originate from either or both HCC and cirrhotic tissues. Underlying cirrhosis was present in 45–95% of HCC cases among studies that reported this information (Table 1), other studies did not report cirrhosis status. How miRNA profiles differ between cirrhotic and non-cirrhotic HBV-HCC remains largely unexplored (140).

The heterogeneity of methodologies in control selection, miRNA detecting technologies, case and control characteristics, and biostatistical analyses in studies also contribute to different results among studies. Failure to replicate findings may be due to small sample size affecting power leading to type 1 and type 2 errors. A major confounder among the studies is the selection of control tissue or sample. For example, comparisons may be made between tumor and non-tumor tissues from the same patients or different individuals. qRT-PCR quantification methods and platforms for miRNAs vary in their sensitivity and breadth. Technical replication to control for between and within-sample variation was lacking in some studies (42). Although most studies use internal controls to normalize miRNA expression levels of target genes (e.g., U6 SnRNA, GAPDH, miR-16, RNU43, cel-miRNA-39, or synthetic cel-miR-67), no universal internal references are used making comparisons among studies challenging (32, 36, 42, 47, 117, 122, 141, 142). Reviewers and journals are aware that a lack of replication in clinical research is a growing area of concern. A common set of internal controls would facilitate the replication and validation of informative miRNAs. Another source of failure to replicate is that the coverage of the miRNA arrays varies by more than 2-fold (308 to 829 miRNAs) (17–19, 32, 45). Definitions of differential expression vary from >2-fold change to <1.5 change in others. Over conservative cut-offs tend to lead to type 2 errors while less conservative cut-offs tend to increase type 1 errors. Next-generation sequencing is particularly prone to mis-annotations of microRNAs, which may lead to false-positive (143) or false-negative findings (144).

Before miRNAs can be used in a clinical setting, standardized methods for sample collection and handling should be implemented. Clinical trials will need to be conducted to assess the performance of miRNA biomarkers in addition to or in place of current diagnostic methods before their acceptance into surveillance or screening programs or for clinical management of HCC. We consider design issues and knowledge gaps that warrant attention in future investigations.

1. **Sample size:** is a major factor affecting power and validity. Since most miRNA have a moderate (~3-fold) difference between cases and controls and both large intra-individual and inter-individual variation, large sample sizes are required for sufficient power to minimize type 1 and II errors. Replication using public datasets [e.g., the Cancer Genome Atlas (TCGA) database] may provide additional supporting evidence (145, 146).

2. **Validation for circulating miRNAs:** To develop liquid biopsies for detection, diagnosis, and prognosis, miRNAs identified from serum/plasma should be validated to miRNAs obtained from tumor tissue before clinical evaluation as biomarkers. Non-specific circulating miRNAs may originate from other high blood-flow organs and tissue (147).

3. **Clinical trials:** Promising miRNAs markers must be tested for efficacy vs. standard of care (imaging and AFP levels) in randomized clinical trials before entering clinical practice.

4. **HCC early detection:** Since HCC is usually diagnosed mid to late-stage HCC, early HCC is rarely studied for miRNAs. Data comparing miRNAs expression levels in LC and early HCC groups is scarce and is urgently needed, as most HBV-HCCs develop from cirrhotic liver tissue. Clinical trials for miRNA early-diagnosis should focus on patients with HBV, HCV, or liver cirrhosis at high risk for HCC.

5. **miRNA profiling for HBV-HCC:** Evaluation of differences and commonalities of miRNA profiles in HCCs arising from HBV and other underlying liver diseases.

6. **Personalized medicine:** Basic and clinical investigations for the clinical utility of precision miRNA-targeting therapies.

TABLE 6 | Common microRNAs dysregulated consistently in HBV-HCC and HCV-HCC

Dysregulation type	miRNAs	Publications in HBV-HCC	Publications in HCV-HCC
Up-regulated	miR-18a	(17, 18, 44)	(136)
	miR-221	(17, 19, 20, 22, 23, 25, 41)	(137)
	miR-224	(17, 18, 23, 41)	(15, 138, 139)
Down-regulated	miR-199a-5p	(19)	(136)
Diversity of miRNA investigations: Most HBV-HCC studies have enrolled Asian patients because of their high carrier rate for HBV. However, it is unknown if miRNA results are similar across diverse populations, particularly in Africa where HBV prevalence is also high (73). The generalizability of findings in Asians needs to be tested in other global populations.

Taken together, the recent studies in miRNAs provide encouraging evidence that miRNAs detection may aid in the diagnosis, survival prediction, and treatment of HBV-HCC. More well-designed and well-powered case-control or longitudinal studies in diverse populations are critically needed to validate the utility of miRNAs in HCC and translate miRNA into clinical use.

AUTHOR CONTRIBUTIONS

JX and PA conceived idea, prepared the tables, and wrote the manuscript. YY and CW revised the manuscript. All authors read and approved the final manuscript.

REFERENCES

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics. 2012. CA Cancer J Clin. (2015) 65:87–108. doi: 10.3323/caac.21262
2. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. (2011) 365:1118–27. doi: 10.1056/NEJMra1001685
3. Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular Carcinoma. Gastroenterology. (2016) 150:835–53. doi: 10.1053/j.gastro.2015.12.041
4. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. (2009) 136:215–33. doi: 10.1016/j.cell.2009.01.002
5. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. (1993) 75:843–54. doi: 10.1016/0092-8674(93)90529-Y
6. Iwakawa HO, Tomari Y. The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol. (2015) 25:651–65. doi: 10.1016/j.tcb.2015.07.011
7. Shi Y, Jin Y. MicroRNA in cell differentiation and development. Sci China C Life Sci. (2009) 52:205–11. doi: 10.1007/s11427-009-0040-5
8. Mehta A, Baltimore D. MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol. (2016) 16:279–94. doi: 10.1038/nri.2016.40
9. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget. (2015) 6:8474–90. doi: 10.18632/oncotarget.3525
10. Landskroner-Eiger S, Moncke I, Sessa WC. miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med. (2013) 3:a006643. doi: 10.1101/cshperspect.a006643
11. Wang S, Claret FX, Wu W. MicroRNAs as therapeutic targets in nasopharyngeal carcinoma. Front Oncol. (2019) 9:756. doi: 10.3389/fonc.2019.00756
12. Bandini E, Fanini F. MicroRNAs and androgen receptor: emerging players in breast cancer. Front Genet. (2019) 10:203. doi: 10.3389/fgen.2019.00203
13. Fortunato O, Gasparini P, Boeri M, Sozzi G. Exo-miRNAs as a new tool for liquid biopsy in lung cancer. Cancers. (2019) 11:888. doi: 10.3390/cancers11060888
14. Sasaki R, Osaki M, Okada F. MicroRNA-based diagnosis and treatment of metastatic human osteosarcoma. Cancers. (2019) 11:553. doi: 10.3390/cancers11040553
15. Ladeiro Y, Couchy G, Balabaud C, Bouilac-Sage P, Pelletier L, Rebouissou S, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. (2008) 47:1955–63. doi: 10.1002/hep.22256
16. WHO. Global Hepatitis Report 2017. Geneva: World Health Organization (2017). Available online at: http://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/ (accessed July 22, 2017).
17. Li W, Xie L, He X, Li J, Tu K, Wei L, et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int J Cancer. (2008) 123:1616–22. doi: 10.1002/ijc.23693
18. Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. (2009) 69:1135–42. doi: 10.1158/0008-5472.CAN-08-2886
19. Thurnherr T, Mah WC, Lei Z, Jin Y, Rozen SG, Lee CG. Differentially expressed miRNAs in hepatocellular carcinoma target genes in the genetic information processing and metabolism pathways. Sci Rep. (2016) 6:20065. doi: 10.1038/srep20065
20. Yoon SO, Chun SM, Han EH, Choi J, Jang SJ, Koh SA, et al. Deregulated expression of microRNA-221 with the potential for prognostic biomarkers in surgically resected hepatocellular carcinoma. Hum Pathol. (2011) 42:1391–400. doi: 10.1016/j.humpath.2010.12.010
21. Xu H, Li J, Guo W, Liu W, Yu J, Song W, et al. Targeting the microRNA-21/1/A1 axis by 5-fluorouracil and pirarubicin in human hepatocellular carcinoma. Oncotarget. (2015) 6:2302–14. doi: 10.18632/oncotarget.2955
22. Li T, Yin J, Yuan L, Wang S, Yang L, Du X, et al. Downregulation of microRNA-139 is associated with hepatocellular carcinoma risk and short-term survival. Oncol Rep. (2014) 31:699–706. doi: 10.3892/ior.2014.3032
23. Gao P, Wong CC, Tung EK, Lee JM, Wong CM, Ng IO. Deregulation of microRNA expression occurs early and accumulates in early stages of HBV-associated multistep hepatocarcinogenesis. J Hepatol. (2011) 54:1177–84. doi: 10.1016/j.jhep.2010.09.023
24. Dundar HZ, Aksoy F, Aksoy SA, Tasar P, Ugras N, Tunca B, et al. Overexpression of miR-21 is associated with recurrence in patients with Hepatitis B virus-mediated hepatocellular carcinoma undergoing liver transplantation. Transplant Proc. (2019) 51:1157–61. doi: 10.1016/j.transproceed.2019.01.089
25. Chen F, Li XF, Fu DS, Huang JG, Yang SE. Clinical potential of miRNA-221 as a novel prognostic biomarker for hepatocellular carcinoma. Cancer Biomark. (2017) 18:209–14. doi: 10.3332/cbm.161671
26. Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF, et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and

FUNDING

This project has been funded in whole or in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under contract HHSN261200800001E. This research was supported in part by the Intramural Research Program of NIH, Frederick National Lab, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government. This research was supported in part by the China 13th 5-years science and technology major project on the prevention and treatment of major infectious diseases (2017ZX10020202).

ACKNOWLEDGMENTS

We thank Brean Derrett, an NIH CTRA Postbaccalaureate Fellow, for technical assistance.
potentiates expression of Stathmin1. Gastroenterology. (2008) 135:257–69. doi: 10.1053/j.gastro.2008.04.003
21. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. (2009) 361:1437–47. doi: 10.1056/NEJMoa0901282
22. Fu Y, Wei X, Tang C, Li J, Liu R, Shen A, et al. Circulating microRNA-101 as a potential biomarker for hepatitis B virus-related hepatocellular carcinoma. Oncol Lett. (2013) 6:1811–15. doi: 10.3892/ol.2013.1638
23. Xie Y, Yao Q, Butt AM, Guo J, Tian Z, Bao X, et al. Expression profiling of serum microRNA-101 in HBV-associated chronic hepatitis, liver cirrhosis, hepatocellular carcinoma. Cancer Biol Ther. (2014) 15:1248–55. doi: 10.4161/cbt.29688
24. Burchard J, Zhang C, Liu AM, Poon RT, Lee NP, Wong KF, et al. microRNA-28. Fu Y, Wei X, Tang C, Li J, Liu R, Shen A, et al. Circulating microRNA-101 as a potential biomarker for hepatitis B virus-related hepatocellular carcinoma. Oncol Lett. (2013) 6:1811–15. doi: 10.3892/ol.2013.1638
25. Li L, Guo Z, Wang J, Mao Y, Gao Q, et al. Serum miR-18a: a potential marker for hepatitis B virus-related hepatocellular carcinoma screening. Dig Dis Sci. (2012) 57:2910–6. doi: 10.1007/s10602-012-2317-y
26. Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol. (2011) 29:4781–8. doi: 10.1200/JCO.2011.38.2697
27. Tan Y, Ge G, Pan T, Wen D, Chen L, Yu X, et al. A serum microRNA panel as potential biomarkers for hepatocellular carcinoma related with hepatitis B virus. PLoS ONE. (2014) 9:e107986. doi: 10.1371/journal.pone.0107986
28. Wang X, Zhang J, Zhou L, Lu P, Zheng ZG, Sun W, et al. Significance of serum microRNA-21 in diagnosis of hepatocellular carcinoma (HCC): clinical analyses of patients and an HCC rat model. Int J Clin Exp Pathol. (2015) 8:1466–78. Available online at: http://www.ijcep.com/files/ijcep0004608.pdf
29. Zhu HT, Liu RB, Liang YY, Hasan AME, Wang HY, Shao Q, et al. Serum microRNA profiles as diagnostic biomarkers for HBV-positive hepatocellular carcinoma. Liver Int. (2017) 37:888–96. doi: 10.1111/liv.13356
30. Fornari F, Ferracin M, Trere D, Milazzo M, Marinelli S, Galassi M, et al. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, identify cirrhotic patients with HCC. PLoS ONE. (2015) 10:e0141448. doi: 10.1371/journal.pone.0141448
31. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. (2016) 1:15004. doi: 10.1038/sigtrans.2015.4
32. Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. (2009) 28:3526–36. doi: 10.1038/onc.2009.211
33. Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122–a key factor and therapeutic target in liver disease. J Hepatol. (2015) 62:448–57. doi: 10.1016/j.jhep.2014.10.004
34. Fan CG, Wang CM, Tian C, Wang Y, Li L, Sun WS, et al. miR-122 inhibits viral replication and cell proliferation in hepatitis B virus-related hepatocellular carcinoma and targets NDRG3. Oncol Rep. (2011) 26:1281–6. doi: 10.3892/or.2011.1375
35. Wang S, Qiu L, Yan X, Jin W, Wang Y, Chen L, et al. Loss of microRNA 122 expression in patients with hepatitis B virus enhances hepatitis B virus replication through cyclin G1-modulated P53 activity. Hepatology. (2012) 55:730–41. doi: 10.1002/hep.24809
36. Tsai WC, Hsu PW, Lai TC, Chau KY, Lin CW, Chen CM, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. (2009) 49:1571–82. doi: 10.1002/hep.22806
37. Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. (2009) 284:32015–27. doi: 10.1074/jbc.M109.016774
38. Li C, Wang Y, Wang S, Wu B, Hao J, Fan H, et al. Hepatitis B virus RNA-mediated miR-122 inhibition upregulates PTTG1-binding protein, which promotes hepatocellular carcinoma tumor growth and cell invasion. J Virol. (2013) 87:2193–205. doi: 10.1128/JVI.02831-12
39. Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. (2008) 357:315–20. doi: 10.1016/j.bbrc.2008.07.154
40. Luna JM, Barajas JM, Peng Y, Sun HL, Moore MJ, Rice CM, et al. Argonaute CLIP defines a deregulated miR-122-bound transcriptome that correlates with patient survival in human liver cancer. Mol Cell. (2017) 67:400–10.e7. doi: 10.1016/j.molcel.2017.06.025
41. Barajas JM, Reyes R, Guerrero MJ, Jacob ST, Motiwala T, Ghoshal K. The role of miR-122 in the dysregulation of glucose-6-phosphate dehydrogenase (G6PD) expression in hepatocellular cancer. Sci Rep. (2018) 8:9105. doi: 10.1038/s41598-018-27358-5
42. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel R. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular carcinoma. Gastroenterology. (2013) 145:647–58. doi: 10.1053/j.gastro.2007.05.022
43. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor PDCD4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. (2008) 27:2128–36. doi: 10.1038/onc.2011.586
44. Ewing T, Zabludoff S, Ahn SM, Allerson C, Arlt H, Baffa R, et al. Anti-miR-21 suppresses hepatocellular carcinoma growth via broad
transcriptional network deregulation. *Mol Cancer Res.* (2015) 13:1009–21. doi: 10.1158/1541-7786.MCR-14-0703

64. Liu WH, Yeh SH, Lu CC, Yu SL, Chen HY, Lin CY, et al. MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells. *Gastroenterology.* (2009) 136:683–93. doi: 10.1053/j.gastro.2008.10.029

65. Liu X, Zhang Y, Wang P, Wang H, Su H, Zhou X, et al. HBX protein-induced downregulation of microRNA-18a is responsible for upregulation of connective tissue growth factor in hbv infection-associated hepatocarcinoma. *Med Sci Monit.* (2016) 22:2492–500. doi: 10.12659/MSM.895943

66. Bandopadhyay M, Banerjee A, Sarkar N, Panigrahi R, Datta S, Pal A, et al. Tumor suppressor micro RNA miR-145 and onco micro RNAs miR-21 and miR-222 expressions are differentially modulated by hepatitis B virus X protein in malignant hepatocytes. *BMJ Cancer.* (2014) 14:721. doi: 10.1186/1471-2407-14-721

67. Rong M, Chen G, Dang Y. Increased miR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro. *BMJ Cancer.* (2013) 13:21. doi: 10.1186/1471-2407-13-21

68. Huang S, Zhou D, Li YX, Li KZ, Wu GR, et al. In vivo and in vitro effects of micro RNA-221 on hepatocellular carcinoma development and progression through the JAK-STAT3 signaling pathway by targeting SOCS3. *J Cell Physiol.* (2019) 234:3500–14. doi: 10.1002/jcp.26863

69. Wang G, Ching AK, Chan AW, Choy KW, To KF, Lai PB, et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. *Clin Cancer Res.* (2010) 16:867–75. doi: 10.1158/1078-0432.CCR-09-1984

70. Yang YF, Wang F, Xiao JI, Song Y, Zhao YY, Cao Y, et al. MiR-222 overexpression promotes proliferation of human hepatocellular carcinoma HepG2 cells by downregulating p27. *Int J Clin Exp Med.* (2014) 7:893–902. Available online at: http://www.ijcem.com/files/ijcem00009099.pdf

71. Wong QW, Ching AK, Chan AW, Choy KW, To KF, Lai PB, et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. *Clin Cancer Res.* (2010) 16:867–75. doi: 10.1158/1078-0432.CCR-09-1984

72. Yi H, Yeh SH, Chen PJ, Iloeje UH, Jen CL, Su J, et al. Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. *J Natl Cancer Inst.* (2008) 100:1134–43. doi: 10.1093/jnci/djn243

73. Sartorius K, Sartorius B, Kramvis A, Singh E, Turchinovich A, Burwinkel B, et al. Circulating microRNAs as a diagnostic tool for hepatocellular carcinoma in a hyper endemic HIV setting, KwaZulu-natal, South Africa: a case control study protocol focusing on viral etiology. *BMC Cancer.* (2015) 15:161. doi: 10.1186/1471-2407-15-161

74. Spaenli C, Honda M, Selitsky SR, Yamane D, Shimakami T, Kaneko S, et al. microRNA-122 abundance in hepatocellular carcinoma and non-tumor liver tissue from Japanese patients with persistent HCV versus HBV associated diseases. *World J Gastroenterol.* (2011) 17:3071–8. doi: 10.3748/wjg.v17.i24.3071

75. Wang C, Wang MD, Cheng P, Huang H, Dong W, Zhang WW, et al. Hepatitis B virus X protein promotes the stem-like properties of OV6(+) cancer cells in hepatocellular carcinoma. *Cell Death Dis.* (2017) 8:2560. doi: 10.1038/cddis.2016.493

76. Gu Y, Wei X, Sun Y, Gao H, Zheng X, Wong LL, et al. miR-192-5p silencing by genetic aberrations is a key event in hepatocellular carcinomas with cancer stem cell features. *Cancer Res.* (2019) 79:941–53. doi: 10.1158/0008-5472.CAN-18-1675

77. Feitelson MA. Does the hepatitis B antigen HBx promote replication and pathogenesis of hepatitis B virus-related chronic liver diseases and hepatocellular carcinoma. *World J Hepatol.* (2018) 10:558–70. doi: 10.4245/wjh.v10.i9.558

78. Zhou G, Wilson G, George J, Qiao L. Targeting cancer stem cells as a therapeutic approach in liver cancer. *Carr Gene Ther.* (2015) 15:161–70. doi: 10.2174/15665523146661422095938

79. Qiu L, Li H, Fu S, Chen X, Lu L. Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC. *Oncot Lett.* (2018) 15:2039–48. doi: 10.3892/ol.2017.7568

80. Ma S, Chen KW, Hu L, Lee TK, Wo JY, Ng IO, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. *Gastroenterology.* (2007) 132:2542–56. doi: 10.1053/j.gastro.2007.04.025

81. Lou W, Liu J, Gao Y, Zhong G, Ding B, Xu L, et al. MicroRNA regulation of liver cancer stem cells. *Am J Cancer Res.* (2018) 8:1126–41. Available online at: http://www.airc.org/files/airc007937.pdf

82. Wang G, Wang MD, Cheng P, Huang H, Dong W, Zhang WW, et al. Hepatitis B virus X protein promotes the stem-like properties of OV6(+) cancer cells in hepatocellular carcinoma. *Cell Death Dis.* (2017) 8:2560. doi: 10.1038/cddis.2016.493

83. Ji J, Zheng X, Forgues M, Yamashita T, Wauthier EL, Reid LM, et al. Identification of microRNAs specific for epithelial cell adhesion molecule positive tumor cells in hepatocellular carcinoma. *Hepatology.* (2015) 62:829–40. doi: 10.1002/hep.27886

84. Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. *Hepatology.* (2009) 50:472–80. doi: 10.1002/hep.22989

85. Boix L, Lopez-Obila M, Rhodes AC, Bruix J. Restoring miR122 in human stem-like hepatocarcinoma cells, prompts tumor dormancy through Smad-independent TGF-beta pathway. Oncotarget. (2016) 7:1309–29. doi: 10.18632/oncotarget.11885

86. Nasr MA, Salah RA, Abd Elkodous M, Elshenawy SE, El-Badri N. Dysregulated microRNA fingerprints and methylation patterns in hepatocellular carcinoma, cancer stem cells, and mesenchymal stem cells. *Front Cell Dev Biol.* (2019) 7:229. doi: 10.3389/fcell.2019.00229

87. Alpini G, Glaser SS, Zhang JP, Francis H, Han Y, Gong J, et al. Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer. *J Hepatol.* (2011) 55:1339–45. doi: 10.1016/j.jhep.2011.04.015

88. Buurman R, Gurlevik E, Schaffer V, Eilers M, Sandbothe M, Kreipe H, et al. Histone deacetylases activate hepatocyte growth factor signaling by repressing microRNA-449 in hepatocellular carcinoma cells. *Front Genet.* (2012) 3:186. doi: 10.3389/fgene.2012.00186

89. Kim HS, Shen Q, Nan SW. Histone deacetylases and their regulatory microRNAs in hepatocarcinogenesis. *J Korean Med Sci.* (2015) 30:1375–80. doi: 10.3346/jkms.2015.30.13.1375

90. Saito Y, Saito H. Role of CTCF in the regulation of microRNA expression. *Front Genet.* (2012) 3:186. doi: 10.3389/fgene.2012.00186

91. Xu X et al. miRNA Biomarkers in Hepatocellular Carcinoma
100. Soto-Reyes E, Gonzalez-Barrios R, Cisneros-Soberanis E, Herrera-Goepfert R, Perez V, Cantu D, et al. Disruption of CTCF at the miR-125b1 locus in gynecological cancers. BMC Cancer. (2012) 12:40. doi: 10.1186/1471-2407-12-40

101. Liu Q, Xu H, Ji M, Shang D, Lu Z, Wu Y, et al. Circular RNAs in hepatocellular carcinoma: biomarkers and mechanisms. Life Sci. (2019) 231:116660. doi: 10.1016/j.lfs.2019.116660

102. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. (2016) 7:11215. doi: 10.1038/ncomms11215

103. Zhang PF, Wei CY, Huang XY, Peng R, Yang X, Lu JC, et al. Circular RNA circTRIM33-12 acts as the sponge of microRNA-191 to suppress hepatocellular carcinoma progression. Mol Cancer. (2019) 18:105. doi: 10.1186/s12952-019-1031-1

104. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, et al. MiR-203 expression predicts outcome after liver transplantation for hepatocellular carcinoma. J Gastroenterol Hepatol. (2017) 32:199–207. doi: 10.1111/jgh.13448

105. Jin Y, Wang J, Han J, Luo D, Sun Z. MiR-122 inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting Snail1 and Snail2 and suppressing WNT/beta-cadherin signaling pathway. Exp Cell Res. (2017) 360:210–7. doi: 10.1016/j.yexcr.2017.09.010

106. Formari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. (2009) 69:5761–7. doi: 10.1158/0008-5472.CAN-08-4797

107. Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a biomarker of cancer: a meta-analysis. Clin Lab. (2019) 65:181011. doi: 10.7758/clinlab.2018.181011

108. Xu X, Tao Y, Shan L, Chen R, Jiang S, Qian Z, et al. Oncofetal miRNAs as biomarkers of cancer: a multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study. Lancet Oncol. (2015) 16:804–15. doi: 10.1016/S1470-2045(15)00084-0

109. Huang JT, Liu SM, Ma H, Yang Z, Zhang X, Sun H, et al. Systematic review and meta-analysis: circulating miRNAs for diagnosis of hepatocellular carcinoma. J Cell Physiol. (2016) 231:328–35. doi: 10.1002/jcp.25135

110. Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a biomarker of cancer: a meta-analysis. Clin Lab. (2019) 65:181011. doi: 10.7758/clinlab.2018.181011

111. Tomimaru Y, Eguchi H, Nagano H, Wada H, Kobayashi S, Marubushi S, et al. Circulating miR-122 as a biomarker for hepatocellular carcinoma. J Hepatol. (2012) 56:167–75. doi: 10.1016/j.jhep.2011.04.026

112. Liu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 sensitizes HCC to 2-deoxy-D-glucose and downregulates the expression of pyruvate dehydrogenase kinase 1, and increased cytostatic drug sensitivity. Invest New Drugs. (2017) 35:180–8. doi: 10.1007/s10637-016-0407-y

113. Xu Q, Zhang M, Tu J, Pang L, Cai W, Liu X. MicroRNA-122 affects cell aggressiveness and apoptosis by targeting PKM2 in human hepatocellular carcinoma. Oncol Rep. (2015) 34:2054–64. doi: 10.3892/or.2015.4175

114. He J, Zhao K, Zheng L, Xu Z, Gong W, Chen S, et al. Upregulation of microRNA-122 by farnesoid X receptor suppresses the growth of hepatocellular carcinoma cells. Mol Cancer. (2015) 14:163. doi: 10.1186/s12943-015-0427-9

115. Sun C, Lan P, Han Q, Huang M, Zhang Z, Xu G, et al. Oncofetal gene SALL4 reactivation by hepatitis B virus counteracts miR-200c in PD-L1-induced T cell exhaustion. Nat Commun. (2018) 9:1241. doi: 10.1038/s41467-018-03584-3

116. Wei R, Huang GL, Zhang MY, Li BK, Zhang HZ, Shi M, et al. Artificial lncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma. Exp Mol Med. (2017) 50140. doi: 10.1186/1471-2407-12-40

117. Sall4 gene SALL4 reactivation by hepatitis B virus counteracts miR-200c in PD-L1-induced T cell exhaustion. Nat Commun. (2018) 9:1241. doi: 10.1038/s41467-018-03584-3

118. Wan Y, Han J, Chen J, Dong J, Xia Y, Liu J, et al. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int J Cancer. (2015) 137:1679–90. doi: 10.1002/ijc.29544

119. Wu G, Li S, Su Y, Zhang Y, Zhang X, Sun H, et al. miRNAs and “sponge” functions and mechanisms. Life Sci. (2019) 231:116660. doi: 10.1016/j.lfs.2019.116660

120. Tomimaru Y, Eguchi H, Nagano H, Wada H, Kobayashi S, Marubushi S, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. (2009) 69:5761–7. doi: 10.1158/0008-5472.CAN-08-4797

121. Tang S, Tan G, Jiang X, Han P, Zhai B, Dong X, et al. An artificial IncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget. (2016) 7:72357–69. doi: 10.18632/oncotarget.12304

122. Xu X, Xia F, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett. (2011) 310:160–9. doi: 10.1016/j.canlet.2011.06.027

123. Pan C, Wang X, Shi K, Zheng Y, Li J, Chen Y, et al. MiR-122 reverses the doxorubicin-resistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PLoS ONE. (2016) 11:e0152090. doi: 10.1371/journal.pone.0152090

124. Xu L, Beckebaum S, Jacobi S, Wu G, Kaiser GM, Radtke A, et al. MicroRNA-101 inhibits human hepatocellular carcinoma progression through EZH2 downregulation and increased cytostatic drug sensitivity. J Hepatol. (2014) 60:590–9. doi: 10.1016/j.jhep.2013.10.028

125. Gupta S, Hussain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. (2019) 10:478. doi: 10.3389/fgene.2019.00478

126. Liu AM, Yao TJ, Wang W, Wong KM, Lee NP, Fan ST, et al. Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open. (2012) 2:e000825. doi: 10.1136/bmjopen-2012-000825

127. Liu AM, Yao TJ, Wang W, Wong KM, Lee NP, Fan ST, et al. Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open. (2012) 2:e000825. doi: 10.1136/bmjopen-2012-000825

128. Lin XJ, Chong Y, Gao ZW, Xie C, Yang XJ, Zhang Q, et al. A serum microRNA classifier for early detection of hepatocellular carcinoma: a multicentre, retrospective, longitudinal biomarker
136. Morita K, Shirabe K, Taketomi A, Soejima Y, Yoshizumi T, Uchiyama H, et al. Relevance of microRNA-18a and microRNA-199a-5p to hepatocellular carcinoma recurrence after living donor liver transplantation. *Liver Transpl.* (2016) 22:665–76. doi: 10.1002/lt.24400

137. El-Garem H, Ammer A, Shehab H, Shaker O, Anwer M, El-Akel W, et al. Circulating microRNA, miR-122 and miR-221 signature in Egyptian patients with chronic hepatitis C related hepatocellular carcinoma. *World J Hepatol.* (2014) 6:818–24. doi: 10.4254/wjh.v6.i11.818

138. Diaz G, Melis M, Tice A, Kleiner DE, Mishra L, Zamboni F, et al. Identification of microRNAs specifically expressed in hepatitis C virus-associated hepatocellular carcinoma. *Int J Cancer.* (2013) 133:816–24. doi: 10.1002/ijc.28073

139. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. *Oncogene.* (2006) 25:2537–45. doi: 10.1038/sj.onc.1209283

140. Fittipaldi S, Vasuri F, Bonora S, Degiovanni A, Santandrea G, Cucchetti A, et al. miRNA signature of hepatocellular carcinoma vascularization: how the controls can influence the signature. *Dig Dis Sci.* (2017) 62:2397–407. doi: 10.1007/s10620-017-4654-3

141. Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Pymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. *Mol Carcinog.* (2013) 52:297–303. doi: 10.1002/mc.21864

142. Wang G, Dong F, Xu Z, Sharma S, Hu X, Chen D, et al. MicroRNA profile in HBV-induced infection and hepatocellular carcinoma. *BMC Cancer.* (2017) 17:805. doi: 10.1186/s12885-017-3816-1

143. Schopman NC, Heynen S, Haasnoot J, Berkhout B. A miRNA-tRNA mix-up: tRNA origin of proposed miRNA. *RNA Biol.* (2010) 7:573–6. doi: 10.4161/rrna.7.5.13141

144. Hansen TB, Bramsen JB, Kjems J. Re-inspection of small RNA sequence datasets reveals several novel human miRNA genes. *PLoS ONE.* (2010) 5:e10961. doi: 10.1371/journal.pone.0010961

145. Zhen Y, Xinghui Z, Chao W, Yi Z, Jinwen C, Ruifang G, et al. Several microRNAs could predict survival in patients with hepatitis B-related liver cancer. *Sci Rep.* (2017) 7:45195. doi: 10.1038/srep45195

146. Mei Y, You Y, Xia J, Gong JP, Wang YB. Identifying differentially expressed microRNAs between cirrhotic and non-cirrhotic hepatocellular carcinoma and exploring their functions using bioinformatic analysis. *Cell Physiol Biochem.* (2018) 48:1443–56. doi: 10.1159/000492254

147. Zhang YC, Xu Z, Zhang TF, Wang YL. Circulating microRNAs as diagnostic and prognostic tools for hepatocellular carcinoma. *World J Gastroenterol.* (2015) 21:9853–62. doi: 10.3748/wjg.v21.i34.9853

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Xu, An, Winkler and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.