On restricted edge-connectivity of half-transitive multigraphs *

Yingzhi Tian † Jixiang Meng

College of Mathematics and System Sciences, Xinjiang University,
Urumqi, Xinjiang, 830046, Peoples Republic of China.

Abstract Let $G = (V, E)$ be a multigraph (it has multiple edges, but no loops). We call G maximally edge-connected if $\lambda(G) = \delta(G)$, and G super edge-connected if every minimum edge-cut is a set of edges incident with some vertex. The restricted edge-connectivity $\lambda'(G)$ of G is the minimum number of edges whose removal disconnects G into non-trivial components. If $\lambda'(G)$ achieves the upper bound of restricted edge-connectivity, then G is said to be λ'-optimal. A bipartite multigraph is said to be half-transitive if its automorphism group is transitive on the sets of its bipartition. In this paper, we will characterize maximally edge-connected half-transitive multigraphs, super edge-connected half-transitive multigraphs, and λ'-optimal half-transitive multigraphs.

Keywords: Multigraphs; Half-transitive multigraphs; Maximally edge-connected; Super edge-connected; Restricted edge-connectivity.

1 Introduction

A graph G consists of vertex set V and edge set E, where E is a multiset of unordered pairs of (not necessarily distinct) vertices. A loop is an edge whose endpoints are the same vertex. An edge is multiple if there is another edge with the same endvertices; otherwise it is simple. The multiplicity of an edge e, denoted by $\mu(e)$, is the number of multiple edges sharing the same endvertices; the multiplicity of a graph G, denoted by $\mu(G)$, is the maximum multiplicity of its edges. A graph is a simple graph if it has no multiple edges or loops, a multigraph if it has multiple edges, but no loops, and a pseudograph if it contains both multiple edges and loops. The underlying graph of a multigraph G,
denoted by $U(G)$, is a simple graph obtained from G by destroying all multiple edges. It is clear that $\mu(G) = 1$ if the graph G is simple.

Let $G = (V, E)$ be a multigraph. Denote by $\lambda(G)$ the edge-connectivity of G. For $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G, a multigraph G with $\lambda(G) = \delta(G)$ is naturally said to be maximally edge-connected, or λ-optimal for simplicity. A multigraph G is said to be vertex-transitive if for any two vertices u and v in G, there is an automorphism α of G such that $v = \alpha(u)$, that is, $Aut(G)$ acts transitively on V. A bipartite multigraph G with bipartition $V_1 \cup V_2$ is called half-transitive if $Aut(G)$ acts transitively both on V_1 and V_2. Mader [9] proved the following well-known result.

Theorem 1.1. [9] Every connected vertex-transitive simple graph G is λ-optimal.

If G is a vertex-transitive multigraph, then G is not always maximally edge-connected. A simple example is the multigraph obtained from a 4-cycle C_4 by replacing each edge belongs to a pair of opposite edges in C_4 with m ($m \geq 2$) multiple edges.

For half-transitive simple graphs, Liang and Meng [8] proved the following result:

Theorem 1.2. [8] Every connected half-transitive simple graph G is λ-optimal.

The problem of exploring edge-connected properties stronger than the maximally edge-connectivity for simple graphs has been the theme of many research. The first candidate may be the so-called super edge-connectivity. We can generalize this definition to multigraphs. A multigraph G is said to be super edge-connected, in short, super-λ, if each of its minimum edge-cut sets isolates a vertex, that is, every minimum edge-cut is a set of edges incident with a certain vertex in G. By the definitions, a super-λ multigraph must be a λ-optimal multigraph. However, the converse is not true. For example, $K_m \times K_2$ is λ-optimal but not super-λ since the set of edges between the two copies of K_m is a minimum edge-cut which does not isolate any vertex.

The concept of super-λ was originally introduced by Bauer et al. see [1], where combinatorial optimization problems in design of reliable probabilistic simple graphs were investigated. The following theorem is a nice result of Tindell [15], which characterized super edge-connected vertex-transitive simple graphs.

Theorem 1.3. [15] A connected vertex-transitive simple graph G which is neither a cycle nor a complete graph is super-λ if and only if it contains no clique K_k where k is the degree of G.

For further study, Esfahanian and Hakimi [4] introduced the concept of restricted edge-connectivity for simple graphs. The concept of restricted edge-connectivity is one kind of conditional edge-connectivity proposed by Harary in [5], and has been successfully applied in the further study of tolerance and reliability of networks, see [2,3,7,11,12,18,20-22]. Let F be a set of edges in G. Call F a restricted edge-cut if $G - F$ is disconnected and contains no isolated vertices. The minimum cardinality over all restricted edge-cuts
is called *restricted edge-connectivity* of G, and denoted by $\lambda'(G)$. It is shown by Wang and Li [17] that the larger $\lambda'(X)$ is, the more reliable the network is. In [4], it is proved that if a connected simple graph G of order $|V(G)| \geq 4$ is not a star $K_{1,n-1}$, then $\lambda'(G)$ is well-defined and $\lambda'(G) \leq \xi(G)$, where $\xi(G) = \min \{d(u) + d(v) - 2 : uv \in E(G)\}$ is the minimum edge degree of G. A simple graph G with $\lambda'(G) = \xi(G)$ is called a λ'-optimal graph. It should be pointed out that if $\delta(G) \geq 3$, then a λ'-optimal simple graph must be super-λ. In fact, a graph G is super-λ if and only if $\lambda(G) < \lambda'(G)$, see [6]. Thus, the concepts of λ-optimal graphs, super-λ graphs and λ'-optimal graphs describe reliable interconnection structures for graphs at different levels.

In [10], Meng studied the parameter λ' for connected vertex-transitive simple graphs. The main result may be restate as follows:

Theorem 1.4. [10] Let G be a k-regular connected vertex-transitive simple graph which is neither a cycle nor a complete graph. Then G is not λ'-optimal if and only if it contains a $(k-1)$-regular subgraph H satisfying $k \leq |V(H)| \leq 2k - 3$.

The authors in [13] proved the following result.

Theorem 1.5. [13] Let $G = (V_1 \cup V_2, E)$ be a connected half-transitive simple graph with $n = |V(G)| \geq 4$ and $G \not\cong K_{1,n-1}$. Then G is λ'-optimal.

Since a graph G is super-λ if and only if $\lambda(G) < \lambda'(G)$, Theorem 1.5 implies the following corollary.

Corollary 1.6. The only connected half-transitive simple graphs which are not super-λ are cycles $C_n (n \geq 4)$.

We can naturally generalize the concept of restricted edge-connectivity to multigraphs. The restricted edge-connectivity $\lambda'(G)$ of a multigraph G is the minimum number of edges whose removal disconnects G into non-trivial components. Similarly, define the minimum edge degree of G as $\xi(G) = \min \{\xi(e) = d(u) + d(v) - 2\mu(e) : e = uv \in E(G)\}$, where $\xi(e) = d(u) + d(v) - 2\mu(e)$ is the edge degree of the edge $e = uv$ in G. By using a similar argument as in [4], we can prove that the restricted edge-connectivity of a connected multigraph G is well-defined if $|V(G)| \geq 4$ and $U(G) \not\cong K_{1,n-1}$, but the inequality $\lambda'(G) \leq \xi(G)$ is not always correct. For example, the restricted edge-connectivity of the multigraph G in Fig.1 is 6, but $\xi(G) = 4$.

![Fig.1](image-url)
In [14], we gave sufficient and necessary conditions for vertex-transitive multigraphs to be maximally edge-connected, super edge-connected and \(\lambda \)-optimal. In the following, we will study maximally edge-connected half-transitive multigraphs, super edge-connected half-transitive multigraphs, and \(\lambda' \)-optimal half-transitive multigraphs.

\section{Preliminary}

Let \(G = (V, E) \) be a multigraph. For two disjoint non-empty subsets \(A \) and \(B \) of \(V \), let \([A, B] = \{ e = uv \in E : u \in A \text{ and } v \in B \} \). For the sake of convenience, we write \(u \) for the single vertex set \(\{ u \} \). If \(A = V \setminus A \), then we write \(N(A) \) for \([A, \overline{A}] \) and \(d(A) \) for \(|N(A)| \). Thus \(d(u) \) is just the degree of \(u \) in \(G \). Denote by \(G[A] \) the subgraph of \(G \) induced by \(A \).

An edge-cut \(F \) of \(G \) is called a \(\lambda \)-cut if \(|F| = \lambda(G) \). It is easy to see that for any \(\lambda \)-cut \(F \), \(G - F \) has exactly two components. If \(N(A) \) is a \(\lambda \)-cut of \(G \), then \(A \) is called a \(\lambda \)-fragment of \(G \). It is clear that if \(A \) is a \(\lambda \)-fragment of \(G \), then so is \(\overline{A} \). Let \(r(G) = \min\{|A| : A \text{ is a } \lambda \text{-fragment of } G\} \). Obviously, \(1 \leq r(G) \leq \frac{1}{2} |V| \). A \(\lambda \)-fragment \(B \) is called a \(\lambda \)-atom of \(G \) if \(|B| = r(G) \). A \(\lambda \)-fragment \(C \) is called a strict \(\lambda \)-fragment if \(2 \leq |C| \leq |V(G)| - 2 \). If \(G \) contains strict \(\lambda \)-fragments, then the ones with smallest cardinality are called \(\lambda \)-superatoms.

Similarly, we can give the definition of \(\lambda' \)-atom. A restricted edge-cut \(F \) of \(G \) is called a \(\lambda' \)-cut if \(|F| = \lambda'(G) \). For any \(\lambda' \)-cut \(F \), \(G - F \) has exactly two components. Let \(A \) be a proper subset of \(V \). If \(N(A) \) is a \(\lambda' \)-cut of \(G \), then \(A \) is called a \(\lambda' \)-fragment of \(G \). It is clear that if \(A \) is a \(\lambda' \)-fragment of \(G \), then so is \(\overline{A} \). Let \(r'(G) = \min\{|A| : A \text{ is a } \lambda' \text{-fragment of } G\} \). Obviously, \(2 \leq r'(G) \leq \frac{1}{2} |V| \). A \(\lambda' \)-fragment \(B \) is called a \(\lambda' \)-atom of \(G \) if \(|B| = r'(G) \).

For a multigraph \(G \), the inequality \(\lambda(G) \leq \xi(G) \) is not always correct. But if \(G \) is a \(k \)-regular multigraph, we proved the following result.

\begin{lemma} \cite{14} \label{lem21}
Let \(G \) be a connected \(k \)-regular multigraph. Then \(\lambda'(G) \) is well-defined and \(\lambda'(G) \leq \xi(G) \) if \(|V(G)| \geq 4 \).
\end{lemma}

We call a bipartite multigraph \(G \) with bipartition \(V_1 \cup V_2 \) semi-regular if each vertex in \(V_1 \) has the same degree \(d_1 \) and each vertex in \(V_2 \) has the same degree \(d_2 \). For semi-regular bipartite multigraphs, a similar result can be obtained.

\begin{lemma} \label{lem22}
Let \(G \) be a connected semi-regular bipartite multigraph with bipartition \(V_1 \cup V_2 \). Then \(\lambda'(G) \) is well-defined and \(\lambda'(G) \leq \xi(G) \) if \(|V(G)| \geq 4 \) and \(U(G) \not\cong K_{1,n-1} \).
\end{lemma}

\textbf{Proof.} Assume each vertex in \(V_1 \) has degree \(d_1 \) and each vertex in \(V_2 \) has degree \(d_2 \). Assume, without loss of generality, that \(d_1 \leq d_2 \). Let \(e = uv \) be an edge such that \(\xi(e) = \xi(G) \), where \(u \in V_1 \) and \(v \in V_2 \). If \(G - \{u, v\} \) contains a non-trivial component, say \(C \), then \(N(V(C)) \) is a restricted edge-cut and \(|N(V(C))| = |N(\{u, v\})| = \xi(e) = \xi(G) \).
Thus assume that \(G - \{u, v\} \) only contains isolated vertices. If there is a vertex \(w \) other than \(v \) in \(V_2 \), then \(d_1 + d_2 \leq |N(V \setminus \{u, v\})| = |N(\{u, v\})| = \xi(e) = d_1 + d_2 - \mu(e) < d_1 + d_2 \) by \(|V(G)| \geq 4 \), a contradiction. Thus \(V_2 = \{v\} \) and \(U(G) \cong K_{1,n-1} \), also a contradiction. □

Because of Lemma 2.1 and Lemma 2.2, we call a regular multigraph (or a semi-regular bipartite multigraph) \(G \) \(\lambda \)-optimal if \(\lambda'(G) = \xi(G) \). Since each vertex-transitive multigraph is regular and each half-transitive multigraph is semi-regular, thus a vertex-transitive multigraph (or a half-transitive multigraph) \(G \) is \(\lambda \)-optimal if \(\lambda'(G) = \xi(G) \).

Recall that an imprimitive block for a permutation group \(\Phi \) on a set \(T \) is a proper, non-trivial subset \(A \) of \(T \) such that for every \(\varphi \in \Phi \) either \(\varphi(A) = A \) or \(\varphi(A) \cap A = \emptyset \). A subset \(A \) of \(V(G) \) is called an imprimitive block for \(G \) if it is an imprimitive block for the automorphism group \(Aut(G) \) on \(V(G) \). The following theorem shows the importance of imprimitive blocks:

Theorem 2.3. [16] Let \(G = (V, E) \) be a connected simple graph and \(A \) be an imprimitive block for \(G \). If \(G \) is vertex-transitive, then \(G[A] \) is also vertex-transitive.

By a similar argument as Theorem 2.3, we can obtain the following result for half-transitive multigraphs.

Lemma 2.4. Let \(G \) be a connected bipartite multigraph with bipartition \(V_1 \cup V_2 \). Assume \(A \) is an imprimitive block for \(G \) such that \(A \cap V_1 \neq \emptyset \) and \(A \cap V_2 \neq \emptyset \). If \(G \) is half-transitive, then \(G[A] \) is also half-transitive.

Proof. Since \(G \) is half-transitive, for any two vertices \(u, v \in A \cap V_i \) (\(i \in \{1, 2\} \)), there is \(\alpha \in Aut(G) \) such that \(\alpha(u) = v \). Because \(\alpha(A) \cap A \neq \emptyset \), we have \(\alpha(A) = A \) by \(A \) is an imprimitive block for \(G \). Thus the restriction of \(\alpha \) to \(A \) is an automorphism of \(G[A] \), which maps \(u \) to \(v \). It follows \(G[A] \) is a half-transitive multigraph.

3 Maximally edge-connected half-transitive multigraphs

In [9], Mader proved that any two distinct \(\lambda \)-atoms of a simple graph are disjoint. For multigraphs, this property still holds.

Lemma 3.1. Let \(G \) be a connected multigraph. Then any two distinct \(\lambda \)-atoms of \(G \) are disjoint.

Proof. Suppose to the contrary that there are two distinct \(\lambda \)-atoms \(A \) and \(B \) with \(A \cap B \neq \emptyset \). We have \(V(G) \setminus (A \cup B) \neq \emptyset \) by \(|A| \leq |V(G)|/2 \) and \(|B| \leq |V(G)|/2 \). Then \(N(A \cap B) \) and \(N(A \cup B) \) are edge-cuts of \(G \), thus \(d(A \cap B) = |N(A \cap B)| \geq \lambda(G) \) and \(d(A \cup B) = |N(A \cup B)| \geq \lambda(G) \). From the following well-known submodular inequality (see [16]),

\[
2\lambda(G) \leq d(A \cup B) + d(A \cap B) \leq d(A) + d(B) = 2\lambda(G),
\]
we conclude that both \(|d(A \cap B)| = \lambda(G)\) and \(|d(A \cup B)| = \lambda(G)\) hold. Thus \(A \cap B\) is a \(\lambda\)-fragment with \(|A \cap B| < |A|\), which contradicts to \(A\) is a \(\lambda\)-atom of \(G\). \(\Box\)

Theorem 3.2. Let \(G\) be a connected half-transitive multigraph with bipartition \(V_1 \cup V_2\). Assume each vertex in \(V_1\) has degree \(d_1\) and each vertex in \(V_2\) has degree \(d_2\). Then \(G\) is not maximally edge-connected if and only if there is a proper induced connected half-transitive multi-subgraph \(H\) of \(G\) such that

\[|A_1|(d_1 - d'_1) + |A_2|(d_2 - d'_2) \leq \min\{d_1, d_2\} - 1,\]

where \(A_1 = V_1 \cap V(H), A_2 = V_2 \cap V(H), d'_1\) is the degree of each vertex of \(A_1\) in \(H\) and \(d'_2\) is the degree of each vertex of \(A_2\) in \(H\).

Proof. Assume, without loss of generality, that \(d_1 \leq d_2\). If \(G\) is not maximally edge-connected, then \(\lambda(G) \leq d_1 - 1\). Let \(A\) be a \(\lambda\)-atom of \(G\) and \(H = G[A]\). By Lemma 3.1, we know \(A\) is an imprimitive block for \(G\). Thus \(H\) is a connected half-transitive multigraph by Lemma 2.4. Assume each vertex in \(A \cap V_1\) has degree \(d'_1\) in \(H\) and each vertex in \(A \cap V_2\) has degree \(d'_2\) in \(H\). Then \(|A \cap V_1|(d_1 - d'_1) + |A \cap V_2|(d_2 - d'_2) = d(A) = \lambda(G) \leq d_1 - 1\).

Now we prove the sufficiency. Assume \(G\) contains a proper induced connected half-transitive multi-subgraph \(H\) such that \(|A_1|(d_1 - d'_1) + |A_2|(d_2 - d'_2) \leq \min\{d_1, d_2\} - 1\), then \(\lambda(G) \leq d(V(H)) = |A_1|(d_1 - d'_1) + |A_2|(d_2 - d'_2) \leq \min\{d_1, d_2\} - 1\), that is, \(G\) is not maximally edge-connected. \(\Box\)

4 Super edge-connected half-transitive multigraphs

In [10], Tindell studied the intersection property of \(\lambda\)-superatoms of vertex-transitive simple graphs. For half-transitive multigraphs, we have the following lemma.

Lemma 4.1. Let \(G\) be a connected half-transitive multigraph with bipartition \(V_1 \cup V_2\). Assume \(G\) is not super edge-connected, \(A\) and \(B\) are two distinct \(\lambda\)-superatoms. If \(|A| = |B| \geq 3\), then \(A \cap B = \emptyset\).

Proof. Assume each vertex in \(V_1\) has degree \(d_1\) and each vertex in \(V_2\) has degree \(d_2\). Without loss of generality, assume that \(d_1 \leq d_2\). If \(A \cap B \neq \emptyset\), then by a similar argument as the proof of Lemma 3.1, we can conclude that \(|d(A \cap B)| = |d(A \cup B)| = \lambda(G)|. We claim that \(|A \cap B| = 1\). Otherwise, if \(|A \cap B| \geq 2\), then \(|V(G) \setminus (A \cup B)| \geq |A \cap B| \geq 2\). Since \(G[A], G[V \setminus A], G[B]\) and \(G[V \setminus B]\) are connected, we have \(G[A \cup B]\) and \(G[V \setminus (A \cap B)]\) are connected. If \(G[A \cap B]\) is not connected, then we have \(d(A \cap B) \geq 2\lambda(G)\), a contradiction. If \(G[A \cap B]\) is connected, then \(A \cap B\) is a strict \(\lambda\)-fragment with \(|A \cap B| < |A|\), which contradicts to \(A\) is a \(\lambda\)-superatom. Hence \(|A \cap B| = 1\).

Let \(C = V(G) \setminus B\). Then \(|A \cap C| = |A \setminus (A \cap B)| \geq 2\), and \(A, V(G) \setminus A, C\) and \(V(G) \setminus C\) are all strict \(\lambda\)-fragments. By a similar argument as above we can deduce that \(A \cap C\) is a strict \(\lambda\)-fragment with \(|A \cap C| < |A|\), which is impossible. \(\Box\)
\textbf{Theorem 4.2.} Let G be a connected half-transitive multigraph with bipartition $V_1 \cup V_2$. Assume each vertex in V_1 has degree d_1, each vertex in V_2 has degree d_2 and $|V(G)| \geq 2 \min\{d_1, d_2\} + 2$. Then G is not super edge-connected if and only if there is a proper induced connected half-transitive multi-subgraph H of G such that

$$|A_1|(d_1 - d'_1) + |A_2|(d_2 - d'_2) \leq \min\{d_1, d_2\},$$

where $A_1 = V_1 \cap V(H)$, $A_2 = V_2 \cap V(H)$, d'_1 is the degree of each vertex of A_1 in H and d'_2 is the degree of each vertex of A_2 in H.

\textbf{Proof.} Assume, without loss of generality, that $d_1 \leq d_2$. If G is not super edge-connected, then G contains λ-superatoms. Let A be a λ-superatom of G and $H = G[A]$. If $|A| = 2$, then H is isomorphic to a multigraph which contains two vertices and t edges between these two vertices. Thus H is an induced t-regular connected half-transitive multi-subgraph of G. Therefore $|A \cap V_1|(d_1 - t) + |A \cap V_2|(d_2 - t) = d(A) = \lambda(G) \leq d_1$.

In the following, we assume that $|A| \geq 3$.

By Lemma 4.1, we know A is an imprimitive block for G. Thus H is a connected half-transitive multigraph by Lemma 2.4. Assume each vertex in $A \cap V_1$ has degree d'_1 in H and each vertex in $A \cap V_2$ has degree d'_2 in H. Thus $|A \cap V_1|(d_1 - d'_1) + |A \cap V_2|(d_2 - d'_2) = d(A) = \lambda(G) \leq d_1$.

Now we prove the sufficiency. Assume G contains a proper induced connected half-transitive multi-subgraph H such that $|A_1|(d_1 - d'_1) + |A_2|(d_2 - d'_2) \leq \min\{d_1, d_2\}$, then $d(V(H)) = |A_1|(d_1 - d'_1) + |A_2|(d_2 - d'_2) \leq \min\{d_1, d_2\}$. If $G - V(H)$ contains no isolated vertices, then $V(H)$ is a strict λ-fragment. Thus G is not super edge-connected. Assume $G - V(H)$ contains an isolated vertex w, then $N(w) = N(V(H))$. Since $|A_1| \leq \min\{d_1, d_2\}$ and $|A_2| \leq \min\{d_1, d_2\}$ by $|A_1|(d_1 - d'_1) + |A_2|(d_2 - d'_2) \leq \min\{d_1, d_2\}$, we see that G is not connected by $|V(G)| \geq 2 \min\{d_1, d_2\} + 2$, a contradiction. \square

5 \textbf{λ'-optimal half-transitive multigraphs}

In [19], the authors proved the following fundamental result for studying the restricted edge-connectivity of simple graphs.

\textbf{Theorem 5.1.} [19] Let $G = (V, E)$ be a connected simple graph with at least four vertices and $G \not\cong K_{1,n-1}$. If G is not λ'-optimal, then any two distinct λ'-atoms of G are disjoint.

For multigraphs, we cannot obtain a similar result as in Theorem 5.1. But for half-transitive multigraphs, the similar result holds.

\textbf{Lemma 5.2.} Let G be a connected multigraph with $\delta(G) \geq 2\mu(G)$. If G contains a λ'-atom A with $|A| \geq 3$, then each vertex in A has at least two neighbors in A.

7
Proof. By contradiction, assume there is a vertex $u \in A$ such that u contains only one neighbor in A. Let v be the only neighbor of u in A. Set $A' = A\{u\}$. Then both $G[A']$ and $G[A\bar{A}]$ are connected. We have $|A'| \geq 2$ by $|A| \geq 3$. Clearly, $|\bar{A}| = |A| + 1 \geq 4$. Thus $[A', \bar{A}]$ is a restricted edge-cut. Since $\delta(G) \geq 2\mu(G)$, we have

$$\lambda'(G) \leq ||A', \bar{A}|| = ||A, \bar{A}|| + \mu(uv) - (d(u) - \mu(uv)) \leq ||A, \bar{A}|| = \lambda'(G).$$

It follows that A' is a λ'-fragment with $|A'| < |A|$, which contradicts to A is a λ'-atom. \square

Lemma 5.3. Let G be a connected half-transitive multigraph with bipartition $V_1 \cup V_2$ and $\delta(G) \geq 2\mu(G)$. Assume G is not λ'-optimal, A and B are two distinct λ'-atoms. Then $|A| = |B| \geq 3$ and $A \cap B = \emptyset$.

Proof. Assume each vertex in V_1 has degree d_1 and each vertex in V_2 has degree d_2. Without loss of generality, assume that $d_1 \leq d_2$.

If $|A| = 2$, then $\lambda'(G) = d(A) = d_1 + d_2 - 2\mu(uv) \geq \xi(G)$ (where $A = \{u, v\}$), which contradicts that G is not λ'-optimal. Thus $|A| \geq 3$.

Suppose to the contrary that $A \cap B \neq \emptyset$. Set $C = A \cap B$, $A_1 = A \cap \bar{B}$, $B_1 = B \cap \bar{A}$ and $D = \bar{A} \cap \bar{B} = \bar{A} \cup B$. In the following, we will derive a contradiction by a series of claims.

Clearly, one of the following two inequalities must holds:

$$||[A_1, C]) \leq ||[C, B_1]] + ||[C, D]],$$

$$||[B_1, C]| \leq ||[C, A_1]] + ||[C, D]].$$

In the following, we always assume, without loss of generality, that inequality (1) holds.

Claim 1. A_1 satisfies one of the following two conditions: (i) $A_1 = \{v_{21}\}(v_{21} \in V_2)$ and $d_1 > 2\mu(G)$, or (ii) $A_1 = \{v_{11}, \cdots, v_{1m}\}(v_{1i} \in V_1$ for $1 \leq i \leq m)$ and $d_2 > (m - 1)d_1 + 2\mu(G)$.

It follows from inequality (1) that

$$d(A_1) = ||[A_1, D]] + ||[A_1, C]] + ||[A_1, B_1]] \leq d(A) = \lambda'(X).$$

Assume $G[A_1]$ has a component \bar{G} with $|V(\bar{G})| \geq 2$. Set $F = V(\bar{G})$. Since $G[B]$ and $G[\bar{A}]$ are both connected, and $B \cap \bar{A} \neq \emptyset$, we see that $G[\bar{A}]$ is connected. Furthermore, since G is connected, every component of $G[A_1]$ is joined to $G[\bar{A}]$, and thus $G[F]$ is connected. So $[F, \bar{F}]$ is a restricted edge-cut with $|d(F)| \leq \lambda'(G)$. Because A is a λ'-atom and F is a proper subset of A, we obtain $d(F) > d(A) = \lambda'(G)$, it is a contradiction. Thus, each component in $G[A_1]$ is an isolated vertex. By $d(A_1) \leq \lambda'(G) < d_1 + d_2 - 2\mu(G)$, we can derive that A_1 satisfies one of the following two conditions: (i) $A_1 = \{v_{21}\}(v_{21} \in V_2)$ and $d_1 > 2\mu(G)$, or (ii) $A_1 = \{v_{11}, \cdots, v_{1m}\}(v_{1i} \in V_1$ for $1 \leq i \leq m)$ and $d_2 > (m - 1)d_1 + 2\mu(G)$.

8
Claim 2. $C \not\subseteq V_1$ and $C \not\subseteq V_2$.

By contradiction. Suppose $C \subseteq V_1$. Then $G[C]$ is an independent set. Since we have assumed that $|[A_1, C]| \leq |[C, B_1]| + |[C, D]|$, there exists a vertex v in C such that

$$|[v, A_1]| \leq |[v, D]| + |[v, B_1]|. \quad (3)$$

Set $F = A \setminus \{v\}$, then

$$d(F) = d(A) - |[v, D]| - |[v, B_1]| + |[v, A_1]| \leq d(A) = \lambda'(X).$$

Since $G[A]$ is connected and C is an independent set, we have $|[v, A_1]| \geq 1$. It follows from inequality (3) that $|[v, A_1]| \leq 1$. So, $G[F]$ is connected. We claim that each component in $G[F]$ has at least 2 vertices. In fact, if there is an isolated vertex u in $G[F]$, then u is the only vertex adjacent to u in $G[A]$, which contradicts to Lemma 5.2. Now, similarly as in the proof of Claim 1, a contradiction arises, since F contains a smaller λ'-fragment than A. $C \not\subseteq V_2$ can be proved similarly.

Claim 3. $d(D) < \lambda'(G)$ and D is an independent set contained in V_1.

By Claim 2, $|C| \geq 2$. We claim that $d(C) > \lambda'(G)$. In fact, if $G[C]$ contains a component of order at least 2, then similar to the proof of Claim 1, we can show that $[C, C] \subseteq C$ contains a restricted edge-cut, and thus $d(C) > \lambda'(G)$. Otherwise, we assume that each component in $G[C]$ is an isolated vertex. Since not all vertices in C are from the same bipartition, there must be at least one vertex in V_2. From $|C| \geq 2$, we have $d(C) \geq d_2 + d_1 > \xi(G) \geq \lambda'(X)$. Thus, we have that $d(C) > \lambda'(G)$.

From the well-known submodular inequality (see [16]), we have

$$d(C) + d(D) \leq d(A) + d(B) = 2\lambda'(G). \quad (4)$$

By (4) and $d(C) > \lambda'(G)$, we obtain $d(D) < \lambda'(G)$. Applying a similar argument as above, we can show that D is an independent set contained in V_1.

Let $s = |D|$. Then $s \geq 2$ and

$$d(D) = sd_1. \quad (5)$$

Denote by e_1 the number of edges in $G[\overline{C}]$. Clearly,

$$d(C) = d(\overline{C}) = \sum_{v \in \overline{C}} d(v) - 2e_1. \quad (6)$$

Since $G[\overline{B}]$ is connected and D is an independent set contained in V_1, Claim 1 (ii) can not hold, Thus, Claim 1 (i) is true. Since G is a bipartite multigraph, we have

$$e_1 \leq 2s\mu(G). \quad (7)$$

Combining this with (4), (5) and (6), we see that

$$2d_1 + 2d_2 - 4\mu(G) - sd_1 > 2\lambda'(G) - d(D) \geq d(C) \geq sd_1 + 2d_2 - 4s\mu(G).$$

This implies $d_1 < 2\mu(G)$, contradicting to the assumption that $d_1 \geq 2\mu(G)$. \square
Theorem 5.4. Let G be a connected half-transitive multigraph with bipartition $V_1 \cup V_2$ and $\delta(G) \geq 2\mu(G)$. Assume each vertex in V_1 has degree d_1, each vertex in V_2 has degree d_2, $|V_1| \geq \xi(G)$ and $|V_2| \geq \xi(G)$. Then G is not λ'-optimal if and only if there is a proper induced connected half-transitive multi-subgraph H of G such that

$$|A_1|(d_1 - d'_1) + |A_2|(d_2 - d'_2) \leq \xi(G) - 1,$$

where $A_1 = V_1 \cap V(H)$, $A_2 = V_2 \cap V(H)$, d'_1 is the degree of each vertex of A_1 in H and d'_2 is the degree of each vertex of A_2 in H.

Proof. Assume, without loss of generality, that $d_1 \leq d_2$. If G is not λ'-optimal, then G contains λ'-atoms. Let A be a λ'-atom of G and $H = G[A]$. By Lemma 5.3, we have $|A| \geq 3$ and A is an imprimitive block for G. Thus H is a connected half-transitive multigraph by Lemma 2.4. Assume each vertex in $A \cap V_1$ has degree d'_1 in H and each vertex in $A \cap V_2$ has degree d'_2 in H. Thus $|A \cap V_1|(d_1 - d'_1) + |A \cap V_2|(d_2 - d'_2) = d(A) = \lambda'(G) \leq \xi(G) - 1$.

Now we prove the sufficiency. Assume G contains a proper induced connected half-transitive multi-subgraph H such that $|A_1|(d_1 - d'_1) + |A_2|(d_2 - d'_2) \leq \xi(G) - 1$, then $d(V(H)) = |A_1|(d_1 - d'_1) + |A_2|(d_2 - d'_2) \leq \xi(G) - 1, |A_1| \leq \xi(G) - 1$ and $|A_2| \leq \xi(G) - 1$. If $G - V(H)$ contains a non-trivial component, say B, then $[B, \overline{B}]$ is a restricted edge-cut and $d(B) \leq d(V(H)) \leq \xi(G) - 1$. Thus G is not λ'-optimal. Now we assume that each component of $G - V(H)$ is an isolated vertex, then $|N(V(G) \setminus V(H))| \geq d_1 + d_2 > \xi(G)$ by $|V_1| \geq \xi(G)$ and $|V_2| \geq \xi(G)$. On the other hand, $|N(V(G) \setminus V(H))| = |N(V(H))| \leq \xi(G) - 1$, it is a contradiction. \(\square\)

References

[1] Bauer D., Boesch F., Suffel C., Tindell R.: Combinatorial optimization problems in the analysis and design of probabilistic networks. Networks 15, 257–271 (1985)

[2] Boesch F., Tindell R.: Circulants and their connectivities. J. Graph Theory 8, 487–499 (1984)

[3] Esfahanian A. H.: Generalized measures of fault tolerance with application to n-cube Networks. IEEE Trans. Comput. 38 (11), 1586–1591 (1989)

[4] Esfahanian A. H., Hakimi S. L.: On computing a conditional edge-connectivity of a graph. Infor. Process. Lett. 27, 195–199 (1988)

[5] Harary F.: Conditional connectivity. Networks 13, 347–357 (1983)

[6] Li Q. L., Li Q.: Reliability analysis of circulants. Networks 31, 61–65 (1998)

[7] Li Q. L., Li Q.: Super edge connectivity of connected edge symmetric graphs. Networks 33, 157–159 (1999)
[8] Liang X. D., Meng J. X.: Connectivity of Connected Bipartite Graphs with Two Orbits. Lecture notes in computer science, Springer, Heidelberg, 4489, 334–337 (2007)

[9] Mader W.: Minimale n-fach kanten zusammenhängenden Graphen. Math. Ann. 191, 21–28 (1971)

[10] Meng J. X.: Optimally super-edge-connected transitive graphs. Discrete Math. 260, 239–248 (2003)

[11] Meng J. X., Ji Y. H.: On a kind of restricted edge connectivity of graphs. Discrete Appl. Math. 117, 183–193 (2002)

[12] Tian Y. Z., Meng J. X.: On super restricted edge-connectivity of edge-transitive graphs. Discrete Math. 310, 2273–2279 (2010)

[13] Tian Y. Z., Meng J. X., and Liang X. D.: On super restricted edge connectivity of half vertex transitive graphs. Graphs and Combinatorics 28, 287–296 (2012)

[14] Tian Y. Z., Meng J. X.: On restricted edge-connectivity of vertex-transitive multigraphs. International Journal of Computer Mathematics, DOI: 10.1080/00207160.2013.856419

[15] Tindell R.: Edge connectivity properties of symmetric graphs. Preprint, Stevens Institute of Technology, Hoboken, NJ, (1982)

[16] Tindell R.: Connectivity of Cayley digraphs. in: D.Z. Du, D.F. Hsu (Eds.), Combinatorial Network Theory, Klumer, Dordrecht, pp. 41–46 (1996)

[17] Wang M., Li Q.: Conditional edge connectivity properties, reliability comparison and transitivity of graphs. Discrete Math. 258, 205–214 (2002)

[18] Wang Y. Q.: Super restricted edge-connectivity of vertex-transitive graphs. Discrete Math. 289, 199–205 (2004)

[19] Xu J. M., Xu K. L.: On restricted edge connectivity of graphs. Discrete Math. 243, 291–298 (2002)

[20] Yang W. H., Zhang Z., Qin C. F., Guo X. F.: On super 2-restricted and 3-restricted edge-connected vertex transitive graphs. Discrete Math. 311, 2683–2689 (2011)

[21] Zhang Z., Meng J. X.: Restricted edge connectivity of edge transitive graphs. Ars Combin. 78, 297–308 (2006)

[22] Zhang Z.: Sufficient conditions for restricted-edge-connectivity to be optimal. Discrete Math. 307, 2891–2899 (2007)