Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

Baoping Zeng1, Chao Wang2, Yu Zhang1, Yajun Gong1, Sanbao Hu2,*

1 201 Research Group, Wuhan 2nd Ship Research & Design Institute, Wuhan, 430064, China;
2 School of Vehicle Engineering, Wuhan University of Technology, Wuhan, 430070, China.

*Corresponding Author: 14093070@qq.com.

Abstract. Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound – impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings and controlling manufacturing process parameters for the opening mechanism. Several optimization objectives such as x/y/z accelerations for various measuring points and dynamic reaction forces of mounting brackets, and a few constraints including manufacturing process were taken into account in the optimization models, which were solved by utilizing the multi-objective genetic algorithm (NSGA-II). The vibration characteristics of the optimized opening
mechanism are superior to those of the original design. In addition, the numerical forecast results are in good agreement with the test results of the prototype.

1. Introduction
Mechanical vibration characteristics are one of the most important influencing factors for the operating performances of the system so that how to reduce to the greatest extent its negative impact to the system shall be a huge challenge for designers. The system intrinsic properties (mass, stiffness and damping), dynamic driving characteristics (such as load stiffness and speed) and joint clearances may influence importantly its vibration characteristics. Along with the development and maturity of the linear and nonlinear dynamics theories, higher accuracy simulation and analysis may be carried out to effects of intrinsic properties and dynamic driving characteristics to the system vibration characteristics by utilizing the multi-object dynamics method, and the corresponding mechanical vibration issues may also be solved systematically.

However, analysis of vibration characteristics of mechanisms including clearances is still a challenging tasks by far. By taking a clearance hinge as an example, its shaft and bearing may collide to result in the impact contact force as shown in Figure 1, which includes the normal contact force and the tangential coulomb friction force while this mechanism works; and this mechanism may starts its contact impact stage under the impact force constraint from the free movement state so that its topology structure may also changes. In general, the constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound – impact relief - idle stroke movement - contact-impact).

Strong nonlinear dynamic characteristics of joint clearances also depend on this effect. Thus, the dynamic equations of any mechanism with clearance are often a set of strong coupling, high dimensional and complex time-varying nonlinear differential equations which are very difficult to solve; moreover, its clearance impact and vibration include complex chaotic motions very sensitive to initial values so that high precision simulation and prediction to its dynamic behavior shall be very difficult.

![Figure 1. Clearance hinge impact force model](image)
2. Description of the mechanism model

2.1. Mechanism operating principle
As shown in Figure 3, this underwater mechanism is primarily made up of 4 parts (Cover Plate 1, Linkage 2, Rubbish Bin 3 and Base 4). While compressed solid wastes are put into the rubbish bin, the linkage is driven by the system to extend and open the cover plate; thus, solid wastes may be thrown away.

Figure 3. Schematic diagram of the underwater mechanism structure
2.2. Mechanism FEM model
For real simulation of dynamic performances of the underwater mechanism, the FEM method was utilized here to establish a real contact impact joint and complex mechanical processes of joints through the impact relations. Its FEM model of the overall underwater mechanism assembly and the corresponding clearance dynamic model are shown in Figures 4 and 5, respectively, where 3 contact pairs are used to simulate the axial and radial clearances at the both sides.

![Underwater mechanism assembly diagram](image1)

Figure 4. Underwater mechanism assembly diagram

Contact Joint 1 with lateral clearance Contact Joint 3 with lateral clearance Contact Joint 2 with lateral clearance

![Clearance dynamic model](image2)

Figure 5. Clearance dynamic model

3. Optimization processes

3.1. Determination of design variables
Based on significant effects of the system nonlinear vibration characteristics by clearances, the lateral and axial clearances and the clearance friction coefficient are selected as optimization parameters. By taking the actual processing conditions into account, the upper and lower limits of each parameter are shown in Table 1.
Table 1. Design variables

Optimization parameter	Lower limit	Upper limit
Lateral clearance (mm)	0.05	2.5
Radial clearance (mm)	0	0.35
Friction coefficient	0.01	0.2

3.2. Selection of response variables

Frequency response analysis was carried out to the system. The unit harmonic excitation acts as the input to solve responses of some important output points of the system. The boundary conditions and output locations of the frequency response analysis are shown in Figure 6.

![Figure 6. Schematic diagram of boundary conditions and output locations of the frequency response analysis.](image)

The simulation data were processed to obtain the output parameters shown in Table 2.

Table 2 Simulation output parameters

Name	Type	Symbol
Barrel Acceleration	RMS	a_{R1}
	Amplitude	a_{a1}
Cover plate Acceleration	RMS	a_{R2}
	Amplitude	a_{a2}
Base Exciting force	RMS	F_{RMS}
	Amplitude	F_{amp}
Base Exciting torque	RMS	M_{RMS}
	Amplitude	M_{amp}

For decreasing optimization and analysis difficulties and the number of response variables, the linear weighting method was utilized to construct a unified objective function for the cover plate and barrel accelerations and the corresponding weighting coefficients were given according to the importance of the cover plate and barrel vibrations. Because the cover plate vibration is directly transferred outwards by the sea water, the mechanism operating performances may be influenced more directly; thus, the
weighted factors for the cover plate and barrel accelerations are 0.6 and 0.4, respectively; and they are expressed as:

\[a_R = 0.4a_{R1} + 0.6a_{R2} \]
\[a_a = 0.4a_{a1} + 0.6a_{a2} \] (1)

Where: \(a_R\) and \(a_a\) represent the response RMS and amplitude values of the weighted accelerations, respectively.

3.3. Multi-response robust optimal mathematical model

By taking those issues such as actual processing conditions and operating wearing into account, the clearance size and friction coefficient may difficultly be controlled as a some certain constant value. These parameters always vary slightly near their setting values; at the same time, their corresponding response values may also change. Thus, optimization shall be necessarily carried out to not only design parameters but also the robustness of the clearance sizes and friction coefficient.

The so-called robustness is essentially the response value is not sensitive to any small change of a parameter and it changes slightly if the controllable factors slightly fluctuates in a certain range; and it may be regarded as that this point is stable. Thus, the tiny range of a response value near some certain point may be utilized to measure its robustness. A certain number of sample points are evenly generated by Latin hypercube sampling within a tiny range of each design point, the difference between whose response maximum value (\(\hat{y}_{\text{max}}\)) and minimum value (\(\hat{y}_{\text{min}}\)) may be used to approximately represent the response range (\(R\)), namely:

\[R = (\max \hat{y}) - (\min \hat{y}) \] (2)

The desirability function method is a traditional method to solve the multi-response issues, which is simple and widely used. For performing optimality design and meeting the robust design requirements, an optimization desirability function for evaluation of optimality design and a robust desirability function for evaluation of robustness design were introduced here, respectively. The former is expressed by:

\[d = \begin{cases} 1 & y \leq T \\ \left(\frac{U - y}{U - T} \right)^T & T < y < U \\ 0 & y \geq U \end{cases} \] (3)

The response variables are in line with the smaller-the-better type characteristic, the better the response value is the smaller it is. \(U\) represents the upper limit of a response variable and \(T\) represents the target value of a response variable in Equation (3). The upper limits and target values of the response variables depend on the operating performance requirements of the mechanism, and the specific parameters are given in Table 3. While \(y\) goes beyond its response upper limit (\(U\)), its satisfaction degree is 0; and while \(y\) is lowered, its satisfaction degree rises; and while \(y\) is less than its target value, its satisfaction degree is 1.
\[
 dr = \begin{cases}
 0 & R \geq U - T \\
 \left(1 - \frac{R}{U - T}\right)^{t} & 0 < R < U - T \\
 1 & R = O
 \end{cases}
\]

(4)

Where \(t \) and \(s \) represent the importance of the response with reference to its target in Equations (3-3) and (3-4); and \(s = t = 1 \) is taken here in accordance with the mechanism operating characteristics.

Table 3. Upper and target values of response variables

Response variable	Upper limit	Target value
\(F_{RMS} / N \)	12	3
\(F_{amp} / N \)	245	32
\(M_{RMS} / N \cdot mm \)	941	239
\(M_{amp} / N \cdot mm \)	18675	3009
\(a_k / mm \cdot s^{-2} \)	377	96
\(a_a / mm \cdot s^{-2} \)	7485	1207

Normally, optimality and robustness often cannot coexist; the robustness of the response point where the optimal solution exists may be poor not to similarly meet the actual demand. An issue on balancing the optimality and robustness design is involved. The geometric weighting method was utilized here to construct the robust optimal desirability function (Equation (5)). The weighting factors of optimality and robustness are set to evaluated the optimization robustness of the design point.

\[
 D = d^\omega_1 d_r^\omega_2
\]

(5)

Where: \(D \) represents the robust optimal satisfaction degree; \(\omega_1 \) and \(\omega_2 \) represent weighting factors of optimality and robustness satisfaction degrees, respectively, which are taken as \(\omega_1 = \omega_2 = 0.5 \) here. \(x_1, x_2 \), and \(x_3 \) are assumed to represent the lateral and radial clearances and the friction coefficient, respectively. The mathematical model for optimization of the multi-response robustness is expressed as:

Design variables
\[
 0.05 mm \leq x_1 \leq 2.5 mm \\
 0 mm \leq x_2 \leq 0.2 mm \\
 0.01 \leq x_3 \leq 0.2
\]

Objective function for maximization

\[
 D_{a_k}, D_{a_a}, D_{F_{RMS}}, D_{F_{amp}}, D_{M_{RMS}}, D_{M_{amp}}
\]

Constraints

\[
 y_i \leq U_i
\]

Where: \(D_{a_k}, D_{a_a}, D_{F_{RMS}}, D_{F_{amp}}, D_{M_{RMS}} \) and \(D_{M_{amp}} \) represent the corresponding robust optimal satisfaction degrees of the response variables \((a_k, a_a, F_{RMS}, F_{amp}, M_{RMS} \text{ and } M_{amp}) \), respectively; and \(y_i \) and \(U_i \) represent each response variable and its corresponding response upper limit, respectively.
3.4. Establishment of the response surface model
The uniform design experiment method put forward by FANG Kaitai and WANG Yuan was utilized hereto generate 100 initial sample points and the corresponding response value of each sample point was calculated through the FEM model of the underwater mechanism. Test data were introduced into the multi-object and multidisciplinary optimization software (ModeFRONTIER) developed by ESTECO Corporation; moreover, various RS algorithms were selected in accordance with the actual situations to construct 6 response surfaces responding to 6 response variables, respectively, which are shown in Figure 7 (the friction coefficient is taken as a constant value (0.1)).

3.5. Verification of the response surface model accuracy
Prior to starting optimization, the accuracy inspection shall be first carried out to fitted response surface model to determine whether the optimization design may be carried out to hinge clearances based on this model.

5 sample points representing inspection points of the fitting model were selected randomly by utilizing RANDOM in DOE design here to compare true values with fitted values and solve their relative errors based on Equation (6); thus, the model accuracy may be verified.
Figure 7. Response variables vs. response surfaces

\[R_{yi} = \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times 100\% \]

(6)

Where: \(R_{yi} \) represents the relative error between the true and fitted values of the ith sample point; \(y_i \) represents the true value of the ith sample point from the FEM model; and \(\hat{y}_i \) represents the fitted value of the ith sample point from the response surface model.

The accuracy inspection was carried out to the response surface model based on Equation (6) and the inspection results are given in Tables 4-6, whose analysis results indicate that the relative errors of \(M_{RMS} \) and \(M_{amp} \) are relatively large for the fitting model and the relative error of \(M_{RMS} \) of Sample Point101 is maximum (4.5%); on the other hand, all relative errors from the fitting and simulation
models are less than 5%; thus, the response surface accuracy meets the requirements and it may replace the simulation model for performance of the multi-response robust optimal design.

Table 4. Relative errors of fitting models for F_{RMS} and F_{amp}

Sample point ID	F_{RMS} / N	F_{amp} / N				
Response variable	True value	Fitted value	Relative error (%)	True value	Fitted value	Relative error (%)
101	3.344	3.215	3.8	48.655	50.117	3.0
102	26.799	26.238	2.1	589.886	574.548	2.5
103	7.574	7.838	3.5	152.072	148.397	2.9
104	16.259	15.971	1.8	324.072	309.816	4.4
105	26.977	28.109	4.2	574.381	561.732	2.9

Table 5. Relative errors of fitting models for M_{RMS} and M_{amp}

Sample point ID	$M_{RMS} / N \cdot mm$	$M_{amp} / N \cdot mm$				
Response variable	True value	Fitted value	Relative error (%)	True value	Fitted value	Relative error (%)
101	255.559	267.069	4.5	3009.132	2879.032	4.3
102	2708.572	2619.207	3.3	59628.377	62057.177	4.1
103	589.728	614.495	4.2	11612.087	11169.62	3.8
104	1074.328	1050.688	2.2	22221.376	22798.746	2.6
105	2859.745	2748.959	3.9	61152.58	58889.376	3.7

Table 6. Relative errors of fitting models for a_R and a_a

Sample point ID	$a_R / mm \cdot s^{-2}$	$a_a / mm \cdot s^{-2}$				
Response variable	True value	Fitted value	Relative error (%)	True value	Fitted value	Relative error (%)
101	102.425	100.224	2.2	1206.572	1250.006	3.6
102	1085.037	1047.035	3.5	23886.744	24841.440	4.0
103	236.346	242.49	2.6	4653.959	4509.689	3.1
104	430.707	412.617	4.2	8907.995	9076.25	1.9
105	1145.286	1114.085	2.7	24495.495	25450.317	3.9

3.6. Establishment of the optimization model
The optimization algorithm is NSGA-II (Non-dominated Sorting Genetic Algorithm II) which is an improved form of the conventional genetic algorithm and where the design operators (such as rapid non-dominated sorting operator, individual crowding distance operator and elite strategy selection operator) are introduced to well solve those issues (such as difficulty selecting parameters and low computational efficiency) for the conventional genetic algorithm and improve the calculation speed and robustness of the algorithm. In accordance with the research situations, 20 generations are selected as the evolution generations and the hybrid rate is assumed as 0.9. The ModeFRONTIER optimization model is shown in Figure 8.

4. Optimization results

4.1. Analysis of optimization results
2000 design points (including 1403 feasible solutions and 55 optimal solutions) are generated in total after 20 evolution generations. Figure 9 shows the multi history chart of each design target, where the design points in lighting green are optimal front points of the optimization results and which indicates that design points are gradually gathered to the optimal front along with performing the optimization iteration.

While there are more than 2 optimization targets, the common optimal front is no longer a curve but it is a 3D or more dimensional surface or hyper-surface. There are 6 optimization targets in total here and the optimal front is a 6D abstract hyper-surface, for whose presentation 6 optimization targets were split here to use a 2D scatter diagram (Figure 10) between D_{aR} and D_{aA}, and a 4D bubble chart (Figure 11) between $D_{F_{RM}}$, $D_{F_{amu}}$ and $D_{M_{amu}}$, $D_{M_{RM}}$ to represent the optimal front of the optimization targets.

Figure 9. Multi history chart
Figure 10. Pareto front between maximizing D_{ag} (on X) and D_{aD} (on Y).

Figure 11. Pareto front between maximizing $D_{F\text{ext}}$ (on X), D_{amp} (on Y) and $D_{M\text{amp}}$ (on color) and $D_{M\text{max}}$ (on diameter).
Figure 12 shows the 3D scatter diagram for all design points in the design space, where the optimal front points are in lighting green and which indicate that a lot of optimal design points are gathered in Region A but only a few optimal design points are scattered in Regions B and C along with performing the optimization iteration. During the design stage of the mechanism, clearance parameters shall be selected as can as possible in Design Spaces A, B and C in accordance with the actual situations.

4.2. Verification of optimization results
For verifying the optimization results, 3 optimal design points were selected in Regions A, B and C, respectively; and the error analysis was carried out by comparison of the fitted response values of response surfaces and simulation values from the FEM model to verify the optimization accuracy. Comparison was carried out to the response simulation values of optimization and initial points from the FEM model to verify the optimization effects.

Sample point ID	Lateral clearance (mm)	Radial clearance (mm)	Friction coefficient
0	2.500	0.500	0.100
1132	1.943	0.173	0.085
1378	1.768	0.036	0.074
1402	0.966	0.341	0.053

Sample point ID	True value	Fitted value	Relative error %	True value	Fitted value	Relative error (%)
1132	0.611	0.594	2.9	15.63	14.97	4.2
1378	1.813	1.731	4.5	16.84	16.268	3.4
1402	0.957	0.923	3.6	11.09	11.61	4.7
Table 9. Relative errors from the fitted models for M_{RMS} and M_{amp}

Sample point ID	$M_{\text{RMS}}/N\cdot\text{mm}$	$M_{\text{amp}}/N\cdot\text{mm}$				
	True value	Fitted value	Relative error (%)	True value	Fitted value	Relative error (%)
1132	1263	1317	4.2	10751	10977	2.1
1378	1996	1934	3.1	7146	6873	3.8
1402	1813	1884	3.9	9287	9607	3.4

Table 10. Relative errors from the fitted models for a_R and a_a

Sample point ID	$a_R/mm\cdot s^{-2}$	$a_a/mm\cdot s^{-2}$				
	True value	Fitted value	Relative error (%)	True value	Fitted value	Relative error (%)
101	50.565	49.959	1.2	1190	1145	3.8
102	59.960	62.533	4.3	3168	3234	2.1
103	49.801	48.606	2.4	1986	1928	2.9

Table 11. Comparison of response variables of initial and optimization points

Design point ID	F_{RMS}/N	F_{amp}/N	$M_{\text{RMS}}/N\cdot\text{mm}$	$M_{\text{amp}}/N\cdot\text{mm}$	$a_R/mm\cdot s^{-2}$	$a_a/mm\cdot s^{-2}$
0	4.074	65.059	3516	60953	300.704	6539
1132	0.611	15.63	1263	10751	50.565	1190
1378	1.813	16.84	1996	7146	59.960	3168
1402	0.957	11.09	1813	9287	49.801	1986

It is known from Tables 7-11 that the relative errors between the fitted values of optimization point response surfaces and the true values from the simulation model are less than 5% so that the optimization results shall be reliable. In comparison with those of the initial design points, the corresponding response values of optimization points are lowered to different extent and the optimized mechanism vibration characteristics are remarkably better than the initial mechanism ones.

5. Conclusion

A kind of multi-response robustness clearance parameter optimization method was put forward based on the response surface method in this study and it was applied to some certain underwater mechanism so that optimization results may indicate its vibration characteristics are improved significantly. Such method may be applied to a relatively complicated mechanical system with clearances and the parameter robustness issue which is difficult to solve for traditional numerical optimization techniques; moreover, the theoretical difficulty for analysis and prediction of a complicated nonlinear vibration system for the traditional dynamics may be avoided. Response surfaces may be constructed to simulate the internal relations between clearance parameters and vibration responses to perform the robustness optimization; thus, such method is of great importance in engineering practice.
References

[1] Flores P, A parametric study on the dynamic response of planar multi-body systems with multiple clearance joints[J]. Nonlinear Dynamics. 2010, 61: 633-653

[2] CHANG Zongyu, WANG Yuxin, ZHANG Ce, et al. Chaotic behavior in linkage with a clearance. Mechanical Science and Technology, 1998, 17(3): 345~350

[3] Liu CS, Zhang K, Yang R, The FEM analysis and approximate model for cylindrical joints with clearances[J]. Mechanism and Machine Theory. 2007, 42: 183-197

[4] Rhee J, Akay A, Dynamic response of a revolute joint with clearance [J], Mechanisms and Machine Theory. 1996, 31(1): 121-134

[5] Feng B, Morita N, Torn T, A new optimization method of dynamic design of planar linkage with clearance at joints-optimizing the mass distribution of links to reduce the change of joint force[J]. Journal of mechanical design. 2002, 124: 68-73

[6] Liu CS, Zhang K, Yang L, Normal Force-Displacement Relationship of Spherical Joints With Clearances[J]. Transactions of the ASME: Journal of Computational and Nonlinear Dynamics. 2006, 1: 160-167.

[7] Mckay, M. D., Beckman, R. J., and Conover, W. J, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code [J]. Technometrics, 2000, 42(1): 55-61.

[8] Valentino Pediroda, Lucia Parussini and Carlo Poloni., Efficient Stochastic Optimization using Chaos Collocation Method with modeFRONTIER[C]. SAE paper 2008-01-1429, 2008

[9] Zhendan Xue, Adarsh Elango and Jian Fang., Multidisciplinary Design Optimization of Vehicle Weight Reduction[C]. SAE paper 2016-01-0301, 2016.

[10] Lin Y. An efficient robust concept exploration method and sequential exploratory experimental design [D]. Atlanta: Mechanical Engineering, Georgia Institute of Technology, 2004

[11] Shah H K, Impact of correlated responses on the desirability function, Arizona: Arizona State University, 2001.

[12] Francesco Maiani, Alessio Sisi, and Walther Leardini. Multi-Objective Optimization of the Timing System on a Small 2-Wheeler Engine (SOHC): Methodology and Case Study[C]. SAE paper 2014-32-0055, 2014.

[13] Walter Zottin, Ana Paula Curty Cuco and Marcus Vinicius F. dos Reis, etc. Application of Optimization Techniques in the Design of Engine Components[C]. SAE paper 2008-01-0219, 2008.

[14] Wang Jing, He Zhen, Oh J H, et al. Multi—response robust optimization using desirability function, IEEE Symposium on Advanced Management of Information for Globalized Enterprises, Tianjin, 2008. 313-315.

[15] Apurva Gokhale, Sumeet Parashar and Saket Kansara, Comparing Robust Design Optimization and Reliability Based Optimization Formulations for Practical Aspects of Industry Problems[C]. SAE paper 2015-01-0471, 2015.

[16] Marco Carriglio, Alberto Clarich, and Rosario Russo, etc. ModeFRONTIER for Virtual Design and Optimization of Compact Heat Exchangers[C]. SAE paper 2014-01-2406, 2014.

[17] Yan Fu, Guosong Li and Ren-Jye Yang, etc. Multi-Objective Optimal Design and Robustness Assessment Framework for Vehicle Side Impact Restraint System Design[C]. SAE paper 2011-01-0107, 2011.