Degenerate Bose-Bose mixture in a three-dimensional optical lattice

J. Catani, L. De Sarlo, G. Barontini, F. Minardi and M. Inguscio

LENS - European Laboratory for Non-Linear Spectroscopy and Dipartimento di Fisica,
Università di Firenze, via N. Carrara 1, I-50019 Sesto Fiorentino - Firenze, Italy
1CNR-INFM, via G. Sansone 1, I-50019 Sesto Fiorentino - Firenze, Italy
2INFN, via G. Sansone 1, I-50019 Sesto Fiorentino - Firenze, Italy

(Dated: February 1, 2008)

PACS numbers: 03.75.-b, 05.30.Jp, 73.43.Nq

We produce a heteronuclear quantum degenerate mixture of two bosonic species, 87Rb and 41K, in a three-dimensional optical lattice. On raising the lattice barriers, we observe the disappearance of the interference pattern of the heavier 87Rb, shifting toward shallower lattice depths in the presence of a minor fraction of 41K. This effect is sizable and requires only a marginal overlap between the two species. We compare our results with similar findings reported for Fermi-Bose mixtures and discuss the interpretation scenarios proposed to date, arguing that the explanation may be linked to the increased effective mass due to the interspecies interactions.

Quantum degenerate gases are formidable systems to shine light on fundamental quantum phenomena occurring at extremely low temperatures, such as superconductivity and superfluidity. In combination with optical lattices and scattering resonances, degenerate gases give rise to strongly correlated systems, enriching even further the breadth of phenomena that can be directly probed. Indeed, the pioneering experiment on the superfluid to Mott-insulator transition [1] has shown how physical models long studied in the field of condensed matter can be realized almost ideally. With two different atomic species, the wealth of quantum phases grows to a daunting complexity [2], only marginally explored by experiments. Actually, experiments with heteronuclear mixtures in three-dimensional (3D) optical lattice have been performed very recently only for Fermi-Bose systems [3, 4], while Fermi-Fermi and Bose-Bose mixtures are yet uncharted territory. The importance of mixtures in optical lattices is hardly overstated: association of dipolar molecules [5], mapping of spin arrays [6], schemes for quantum calculation [7], and implementation of disorder [8] represent only a few major research lines that potentially will greatly benefit from such systems. In particular, Bose-Bose mixtures seem well suited for all these purposes, provided that collisional losses are adequately suppressed.

This work reports the first realization of a degenerate Bose-Bose heteronuclear mixture in a 3D optical lattice. Exploiting the large mass difference, we investigate the regime where one species lies well in the superfluid domain, while the other exhibits the disappearance of the interference pattern usually associated with the transition from a superfluid to a Mott insulator. We focus only on the interference pattern and do not probe the shell structure characteristic of a Mott-insulator for trapped systems [9, 10]. We observe that the presence of the superfluid enhances the loss of phase coherence of the second species occurring for increasing lattice strengths.

Surprisingly enough, we find that the effect is sizable (see Fig. 1), not only for small fractions of the minority species, but even for marginal spatial overlap between the two.

The experimental setup has been described earlier [11, 12]. Here we briefly outline the production of a double Bose-Einstein condensate (BEC), first demonstrated in [13]. We capture 2×10^8 87Rb atoms and a variable number of 41K atoms in the stretched $|F = 2, m_F = 2\rangle$ states in a Ioffe millimetric trap (MMT) [12, 14] and we start evaporation by lowering the MMT depth from 5 to 3.5 mK, with final harmonic frequencies ($\omega_x, \omega_y, \omega_z$) = $2\pi \times (16.8, 202, 202)$ Hz [15]. We then cool 87Rb only by microwave evaporation, while 41K is cooled sympathetically. A single sideband, 10 dB below the carrier, selectively removes 87Rb atoms in the $|F = 2, m_F = 1\rangle$ state, which would quickly deplete the 41K sample. BEC is achieved first for 41K at 250 nK and then for 87Rb: condensates contain typically $4(2) \times 10^4$ 87Rb(41K) atoms, with Thomas-Fermi radii of 2.4(2.2) μm and peak densi-
ties of $1.4(0.9) \times 10^{14}$ cm$^{-3}$.

In the presence of 2×10^3 41K atoms clearly condensed (inverted ellipticity after expansion), since no thermal cloud can be detected, our sensitivity places an upper bound of 50% on the thermal fraction of this species: this sets an upper bound on the temperature of 73 nK. Since the evaporation is stopped at the same level also in the absence of 41K, the same temperature boundary applies also for 87Rb alone. At 73 nK, the peak density of the 41K thermal atoms is lower than 1/60 that of the condensate. For this reason, we will throughout neglect the 41K thermal fraction in the following.

The clouds are only partially overlapped: due to differential gravity sag, the 87Rb condensate lies 3.2 μm below 41K. Also, numerical integration of the 3D Gross-Pitaevskii equation (GPE) shows that both density distributions are deformed and almost completely phase separated, due to the strong K-Rb repulsion [16]. Indeed, the interspecies scattering length $a_{K-Rb} = 163 a_0$ [17] is much larger than both $a_{Rb} = 99 a_0$ [18] and $a_K = 65 a_0$ [19], with a_0 the Bohr radius.

Once double BEC is achieved, we ramp three retroreflected optical lattice beams at $\lambda_L = 1064$ nm, with frequencies differing by tens of megahertz, propagating along the $x, y,$ and z axes and focusing at the center of the MMT with waists equal to $(90,180,160)$ μm. The lattice strength is calibrated by means of Bragg oscillations and Raman-Nath diffraction [20], yielding a systematic uncertainty of 10%, which must be added to the statistic uncertainties quoted hereafter. We choose the duration and time constant of the exponential turn-on profile, 50 and 20 ms, respectively, by maximizing the visibility of the 87Rb interference pattern. We wait for 5 ms with the optical lattice at full power and abruptly switch off the lattice beams (< 1 μs) and the MMT current (~ 100 μs). We image both species after a typical time of flight of 15 to 20 ms with resonant absorption: the interference peaks of 87Rb are progressively smeared as the lattice strength is ramped at higher values.

We measure the width of the central peak and the visibility v of the interference pattern, defined as [22] $v = (N_p - N_d)/(N_p + N_d)$, where N_p and N_d denote, respectively, the summed weights of the first lateral peaks and of equivalent regions at the same distance from the central peak along the diagonals [see Fig. 2(e)]. At our lattice wavelength, the optical potential is the same within 10% for 87Rb and 41K. However, due to the their larger mass and scattering length, 87Rb atoms tunnel less and repel each other more: the combined effect is that 87Rb loses phase coherence at lower lattice power than 41K.

The main experimental result of this work is the observation that the lattice strength at which the 87Rb interference pattern starts washing out is greatly shifted not only by a minor admixture of 41K atoms, but also with a marginal spatial overlap. These findings, displayed in Fig. 4, augment those of similar experiments carried out with the mutually attractive 40K-87Rb Fermi-Bose mixture [21].

To quantify the shift of the transition point, we plot the visibility and the width of the central peak versus the lattice strength in units of the 87Rb recoil energy s [21]. We compare data taken with 41K and when 41K was not even loaded in the MMT (Fig. 2). We fit the visibility with a phenomenological Fermi function $v = v_0/[1+\exp(a(s-s_c))]$, which has the expected flat behavior below the critical lattice strength s_c and decreases exponentially for $s \gg s_c$. From the fit, we find that, for $N_{Rb} = 3 \times 10^4$, the critical s value is $s_c = 16.8 \pm 0.4$ for 87Rb only, while $s_c = 12.4 \pm 0.3$ with $N_K = (2 \pm 1) \times 10^3$.

Using the formula $\eta = 0.696 s^{-0.1} \exp(2.07 \sqrt{s}/a_{\lambda_L})$ [22], we relate s with the ratio of interaction to tunneling matrix elements, $\eta = U/(6J)$, in terms of the lattice wavelength λ_L and the scattering length a. From the fit values, we derive both the critical value η_c and the exponents of the visibility decay for $s \gg s_c$, $v \sim \eta^{-\nu}$: without 41K we find $\eta_c = 12.3^{+5.2}_{-4.3}$ and $\nu = 2.3^{+0.6}_{-0.4}$ but with 41K we have $\eta_c = 3.9^{+1.6}_{-1.2}$ and $\nu = 3.4^{+0.8}_{-0.5}$ (error bars are dominated by the calibration uncertainty of the lattice strength).

The width of the central peak measures the inverse
correlation length: it signals the transition with a stark climb at \(s \approx 10 \) in the presence of \(^{41}\text{K}\) and \(s \approx 14 \) in the absence thereof [see Figs. 2(c) and 2(d)]. After the transition, the width increase is steeper in the presence of \(^{41}\text{K}\) even for null overlap (Fig. 2(d)): this behavior is unexpected and so far unexplained. While the transition points detected by the width and the visibility are different, the shift is the same, \(\Delta s_c \approx 4 \).

Such a shift is surprising, given the little overlap between the two species. Numerical integration of the 3D GPE with an \(s = 11 \) vertical lattice shows that the overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3). Generalizing to a 3D lattice, we expect that overlap is restricted to one lattice site out of 11 (see Fig. 3).

As a further test, we investigate the effect of the lattice turn-on ramps. As mentioned, for \(^{87}\text{Rb}\) alone, the visibility is maximum for a ramp of 50 ms. \textit{A priori}, this ramp duration could be insufficient in the presence of \(^{41}\text{K}\) impurities. Therefore, we monitor the visibility versus the ramp duration. The turn-on profile follows essentially an exponential function with a time constant equal to 0.4 of the total ramp duration, smoothed at the end. We find that the visibility decreases for turn-on times longer than 50 ms also in the presence of \(^{41}\text{K}\) (see Fig. 3) and indeed the visibility difference is roughly constant at 15%. We conclude that, while in principle one could expect that in the presence of \(^{41}\text{K}\) the lattice ramp should be slower, there is no evidence that this is indeed the case, at least as far as the loss of visibility is concerned. Moreover, we do not observe a significant change in the number of atoms with the duration of the ramp; hence three-body losses play a negligible role, consistently with the small overlap of the two clouds.

As mentioned, our experimental findings extend those of Refs. [2, 4] to bosonic impurities and help to shine some light on the induced loss of coherence, whose origin has so far remained unclear, if not controversial. Günter et al. report that the transition point, extracted from the visibility data with a fitting procedure equivalent to ours and expressed in terms of \(\eta_c \), shifts from 6.5 to 2.5 for an 8% admixture. Both values are lower than ours. Ospelkaus et al. instead quantify the shift in terms of \(s_c \), as we do, and fit the visibility with the Fermi function. The reported shift \(\Delta s_c = 3(1.5) \) for a 7\% fraction of impurities agrees with our result. With the same data, but measured from the width of the central peak, the transition point shifts from \(\eta_c = 9 \) to 4.5 [3] and by \(\Delta s_c = 1(1) [4] \).

Several different scenarios have been proposed to explain the impurities-induced loss of coherence. We discuss here the impact of our experiment on these scenarios.

First, we notice that one would naively expect that strongly interacting impurities would locally increase the \(^{87}\text{Rb}\) atom filling factor and hence the chemical potential, by expelling or attracting them. However, increasing the chemical potential leads to an enhancement of the superfluid fraction, which is indeed the result predicted by Ref. [3], but opposite to what we observe. Ospelkaus et al. argue that fermionic atoms act like randomly localized scatterers for the boson order parameter, thereby splitting it into isolated superfluid domains unable to maintain a single coherent phase throughout the sample [4]. The suggested phenomenon, reminiscent of Anderson localization, depends crucially on the fermionic nature of the \(^{40}\text{K}\) impurities, leading to localization. However, bosonic \(^{41}\text{K}\) atoms are expected to localize less, not more, than \(^{87}\text{Rb}\). Therefore, the interpretation based on Andersonlike localization does not hold in our case and might be unnecessary for the Fermi-Bose experiments.

The loss of phase coherence could follow from heating of the two clouds when the lattice ramps up. In addition to technical noise, which plays a role only at longer time scales, we consider the effect of the thermodynamic transformation involved. With two species, the effective masses change at different rates and thermal equilibrium requires an interspecies redistribution of entropy. In our experiment, this increases the entropy of \(^{87}\text{Rb}\) and therefore its thermal component. Quantitatively, due to the small overlap, we neglect the interspecies interaction en-

![FIG. 3: (Color online): density distribution of \(^{87}\text{Rb}\) (red, left) and \(^{41}\text{K}\) (blue, right) atoms, in the plane \(z = 0 \), calculated by numerical integration of the GPE: \(N_{\text{Rb}} = 3 \times 10^5 \), \(N_{\text{K}} = 2 \times 10^3 \), vertical lattice strength \(s = 11 \). Shaded area (green) highlights the overlap, while the inset plot reports density profiles along the vertical line through \(x = 0 \).](image-url)
ergy and calculate the total entropy as the sum of two independent contributions. At $s = 0$, we calculate the contribution of each component from the formula for the total energy: $E/N = 3k_B T c(4t^4/\zeta(3)) + \mu(1-t^4)^2/5(5+16t^8)/T$, with $t = T/T_c$, where T_c and μ denote the critical temperature and the chemical potential [23]. At $s = 20$ the contribution of ^{41}K is given by the above formula (replacing the atomic mass with the effective mass of the lowest energy band), while for the contribution of ^{87}Rb we take that of a deep Mott insulator [21]: $S_{shell}/k_B = 32\pi^3 k_B T \sum_j R_j/(3m_\omega^2 \lambda_j^3)$, where R_j and m indicate the radii of the superfluid layers of the Mott shell structure and the atomic mass. For an initial temperature of 73 nK (^{87}Rb thermal fraction equal to 0.21), the presence of ^{41}K increases the ^{87}Rb entropy and hence its thermal fraction, by 20%. As a consequence, the ^{87}Rb condensate fraction decreases from 79% to 75% and the visibility by approximately the same amount [25]. We conclude that this is a minor effect.

A plausible interpretation of our findings invokes the dressing of ^{87}Rb atoms by ^{41}K: naively, dressed ^{87}Rb atoms weigh more, therefore tunnel less. This argument is made quantitative by Bruderer et al. [26], who analyze the generation of polarons in a Bose-Bose mixture, i.e., quasiparticles composed of localized atoms (^{87}Rb) plus a cloud of superfluid phonons of the other species (^{41}K). The polarons have two different effects: at zero temperature they reduce the tunneling rate of ^{87}Rb atoms according to the picture outlined above; at finite temperature, ^{41}K phonons undergo incoherent scattering, further hampering the hopping of ^{87}Rb. According to Ref. [26], with the parameters of our experiment at $s = 10$, the energy scale relevant for the onset of the incoherent scattering is $E_p/k_B \approx 1$ nK and therefore it is comparable to and lower than the estimated lattice temperature, ranging from 10 to 30 nK, while the tunneling suppression at $T = 0$ appears negligible. The analysis carried out in Ref. [26] relies on suitably weak interspecies interactions. In our experiment the effective interspecies interactions are reduced by the low density of ^{41}K in the overlap region but the approximations of Ref. [26] are only weakly satisfied. The order of magnitude of the above value, however, proves that the inhibition of tunneling due to incoherent scattering of phonons deserves a deeper analysis.

Finally, we address the question of why the shift is substantial even with the small overlap shown by Fig. 3. We conjecture that, owing to the inhomogeneous density, the loss of coherence starts from the borders of the ^{87}Rb condensate where the filling factor is lower; the overlap with ^{41}K, although small, occurs in this critical region. Alternatively, one could call on collisions occurring during the expansion: since we do not observe any degradation of the ^{87}Rb Raman-Nath diffraction pattern caused by the presence of ^{41}K, time-of-flight collisions between the two species seem unable to significantly alter the ^{87}Rb momentum distribution, at least in the superfluid regime.

In summary, we have created a degenerate Bose-Bose mixture in a 3D optical lattice and studied the influence of a minor admixture of superfluid ^{41}K on the loss of ^{87}Rb phase coherence. We find that this loss is furthered in the presence of ^{41}K, even if the two clouds overlap only at their boundaries. Our results agree qualitatively with similar observations carried out with a Fermi-Bose mixture, notwithstanding the different statistics of impurities and the opposite sign of the strong interspecies interactions. Following a recent theoretical analysis, we find that the activation energy of polarons is of the same order as the estimated temperature in our optical lattice. Our degenerate Bose-Bose mixture will also be studied in the double Mott-insulator regime, promising for the formation of stable molecules. To this end, Feshbach resonances predicted at moderate magnetic fields are instrumental to control the interspecies interactions.

This work was supported by Ente CdR in Firenze, INFN through the project SQUAT-Super, and EU under Contracts No. HPRICT1999-00111 and No. MEIFF-CT-2004-009939. We thank P. Maioli, who started this experiment with us, and all the members of the Quantum Degenerate Gas group at LENS for fruitful discussions.

[1] M. Greiner et al., Nature 415, 39 (2002)
[2] E. Altman et al., New J. Phys. 5, 113 (2003); A. Kuklov, N. Prokof’ev, and B. Svistunov, Phys. Rev. Lett. 92, 050402 (2004); A. Isacsson, Min-Chul Cha, K. Sengupta, and S. M. Girvin, Phys. Rev. B 72, 184507 (2005).
[3] K. Günter, T. Stöferle, H. Moritz, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 96, 180402 (2006).
[4] S. Ospelkaus et al., Phys. Rev. Lett. 96, 180403 (2006).
[5] B. Damski et al., Phys. Rev. Lett. 90, 110401 (2003).
[6] A. B. Kuklov and B.V. Svistunov, Phys. Rev. Lett. 90, 100401 (2003).
[7] A. J. Daley, P. O. Fedichev, and P. Zoller, Phys. Rev. A 69, 022306 (2004).
[8] U. Gavish and Y. Castin, Phys. Rev. Lett. 95, 020401 (2005).
[9] S. Fölling, A. Widera, T. Müller, F. Gerbier, and I. Bloch, Phys. Rev. Lett. 97, 060403 (2006).
[10] G. K. Campbell et al., Science 313, 649 (2006).
[11] J. Catani, P. Maioli, L. De Sarlo, F. Minardi, M. Inguscio, Phys. Rev. A 73, 033415 (2006).
[12] L. De Sarlo et al., Phys. Rev. A 75, 022715 (2007).
[13] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002).
[14] R. Wang, M. Liu, F. Minardi, and M. Kasevich, Phys. Rev. A 75, 013610 (2007).
[15] Hereafter we quote frequencies referred to ^{87}Rb; ^{41}K frequencies are higher by a factor of 1.46.
[16] F. Riboli and M. Modugno, Phys. Rev. A 65, 063614 (2002).
[17] F. Ferlaino, C. D’Errico, G. Roati, M. Zaccanti, M. Inguscio, G. Modugno, and A. Simoni, Phys. Rev. A 73, 040702(R) (2006); 74, 039903(E) (2006).
[18] A. Marte et al., Phys. Rev. Lett. 89, 283202 (2002).
[19] H. Wang et al., Phys. Rev. A 62, 052704 (2000).
[20] Y. B. Ovchinnikov et al., Phys. Rev. Lett. 83, 284 (1999); see also O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006) and references therein.
[21] At a given lattice power, the s parameter is a factor of 2.4 lower for ^{41}K.
[22] F. Gerbier et al., Phys. Rev. A 72, 053606 (2005).
[23] S. Giorgini L. P. Pitaevskii, S. Stringari, J. Low Temp. Phys. 109, 309 (1997).
[24] Tin-Lun Ho and Qi Zhou, Phys. Rev. Lett. 99, 120404 (2007).
[25] F. Gerbier et al., e-print arXiv:cond-mat/0701420v1.
[26] M. Bruderer, A. Klein, S. R. Clark, and D. Jaksch, Phys. Rev. A76, 011605(R) (2007).