Nickel(II)-Catalyzed Synthesis of Sulfinates from Aryl and Heteroaryl Boronic Acids and the Sulfur Dioxide Surrogate DABSO

Pui Kin Tony Lo, Yiding Chen, and Michael C. Willis

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom

Supporting Information

Abstract:

We report a redox-neutral Ni(II)-catalyzed sulfination of readily available aryl and heteroaryl boronic acids. Using the combination of commercially available, air-stable NiBr₂·(glyme), a commercially available phenanthroline ligand, and DABSO, boronic acids are efficiently converted to the corresponding sulfinyl-containing products, including sulfones, sulfonylamides, sulfonyl fluorides, and sulfonyl esters. The catalyst loading can be reduced to 2.5 mol % on a gram scale. This practically simple protocol tolerates an unprecedented range of pharmaceutically relevant and electron-poor (hetero)aryl boronic acids, allowing the direct synthesis of active pharmaceutical ingredients.

Keywords: nickel, catalysis, sulfinates, boronic acids, sulfones, sulfonylamides, sulfonyl fluorides, sulfur dioxide

Sulfonyl-containing (−SO₂−) compounds such as sulfones and sulfonylamides have broad applications in fields ranging from synthetic chemistry, pharmaceuticals, and agrochemicals, to materials science (see Figures 1a-c). Conventional approaches to synthesize these valuable functional groups can often require multistep sequences. For example, sulfones are usually synthesized by oxidation of the corresponding sulfides, which, in turn, are commonly prepared from alklylation of thiols. The use of thiols is a limitation because of their often unpleasant odor, and their relatively limited availability from commercial vendors. Aryl sulfonylamides, meanwhile, are most usually available from the combination of sulfonyl chlorides and amines. However, the preparation of the former via the electrophilic aromatic substitution (S₂Ar) of arenes requires harsh acidic reaction conditions, which limits functional group tolerance. In addition, the high levels of regiocontrol often observed in S₂Ar processes makes access to all isomers of these products challenging.

Catalytic methods for the sulfination of abundant feedstocks, such as aryl halides and boronic acids, have had a tremendous impact of the synthesis of sulfonyl-containing molecules. In 2010, our laboratory reported the use of DABCO·(SO₂)₂ (DABSO) as a convenient sulfur dioxide surrogate. This air-stable, easy-to-handle, and now commercially available solid has been employed by us, and others, to access a wide range of sulfonyl-containing products using metal catalysis. Inorganic sulfur dioxide surrogates such as K₂SO₄ and Na₂SO₄ have also been used, as have noncatalytic methods.

The direct palladium-catalyzed synthesis of sulfinylates and sulfonylamides, as well as sulfonates and sulfonamides, can also be employed as reaction partners in desulfonylative cross-coupling processes, and as radical precursors. Later, aryl boronic acids were also employed in place of aryl halides, and these substrates have also been used in combination with Au(I), Pd(II), and Cu(I) catalysts (see Figure 1d). Despite these advances in sulfinylate synthesis, significant challenges remain unsolved. For example, the scope of these processes is generally limited to electron-rich or neutral aryl systems. Electron-poor aryl and heteroaryl boronic acids commonly provide only low yields of products, or fail completely. An exception to this is the palladium-catalyzed system reported by Chen and Tu, in which a bespoke N-heterocyclic carbene ligand enables some success with these substrates for the synthesis of simple sulfone products. However, a general catalytic system that employs commercial reaction components and is able to tolerate a broad range of electronically varied boronic acids is as yet unknown.

In recent years, a focus of both academic and industrial communities has been the use of abundant base-metal catalysts in synthetic chemistry. In particular, the replacement of precious metal catalysts with these lower-cost, more-sustainable metals that are less susceptible to risk of supply, has attracted significant attention. Nickel catalysis features prominently in this field, not only because of its significantly lower cost, relative to palladium, but also because it frequently provides alternative, often complementary, reactivity. For
example, nickel undergoes ready oxidative addition with less-reactive and more-abundant electrophiles such as aryl chlorides, ethers, and carbamates. In addition, it can be used, in combination with photoredox catalysts, to deliver modes of reactivity that are challenging to achieve with palladium systems. Given these advantages, we speculated that nickel catalysis could deliver new reactivities in sulfinate chemistry and address the limitations of earlier catalytic methods (see Figure 1d).

We selected the addition of phenylboronic acid to DABSO as a test platform and evaluated a range of Ni(II) catalysts (see Table 1). We were pleased to find that using 10 mol % of commercially available and air-stable NiBr₂(glyme), in combination with 10 mol % of 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) as ligand, was sufficient to promote the reaction, providing the targeted sulfinate in 91% yield. The reaction used DMI as a solvent at 100 °C and required only 0.6 equiv of DABSO and 1 equiv of LiOr-Bu (Table 1, entry 1). A lower reaction temperature (90 °C), higher loading of ligand, or base, or increasing the concentration, all provided less-efficient reactions (Table 1, entries 2–6). We also found that using a strong base was crucial in this transformation, with LiOr-Bu being optimal; using a weaker base or KOr-Bu resulted in diminished yields (Table 1, entries 7 and 8). Substituting DABSO for an inorganic source of sulfur dioxide (K₂S₂O₅), or replacing phenylboronic acid with potassium phenyltrifluoroborate was unproductive (Table 1, entries 9 and 10). Full details of the reaction optimization are provided in the Supporting Information.

With the optimized conditions in hand, we examined the scope, with respect to boronic acids, by reacting the in situ formed sulfinites with tert-butyl bromoacetate as the electrophile, to prepare the corresponding sulfones in one-pot two-step sequence (see Table 2). Generally, a wide range of aryl boronic acids could be effectively converted to sulfinites and then to sulfones. Boronic acids bearing different electronic substitutions were well-tolerated, with electronically neutral phenyl (2a) and p-trimethylsilyl (2b), and electron-rich p-methoxy (2c) and p-thiophenyl (2d) substituents delivering excellent isolated yields. Previously challenging substrates with electron-withdrawing groups could also be incorporated in the arene unit, including sensitive functional groups such as nitrile (2g), ketone (2i), and ester (2j), as well as the first example of a trifluoromethylated aryl boronic acid being used in catalytic sulfination chemistry (2f). Boronic acids substituted with all four halogens (2k–2o) were well-tolerated under the reaction conditions, with the caveat that using NiI₂ as the catalyst was necessary when p-iodophenyl boronic acid (2o) was the substrate. For this example, using the original NiBr₂(glyme) catalyst resulted in a degree of bromo/iodo substitution in the product. The catalyst loading could be lowered to 2.5 mol %, delivering 70% isolated yield of sulfone (2m) on a 0.2 mmol scale, and a 71% yield when performed on a gram scale (7 mmol) at a slightly elevated temperature (110 °C). Further reducing the catalyst loading to 1 mol % resulted in diminished yields. Methylthio (2d) and methanesulfonyl (2h)-substituted examples showcase the potential utility of this reaction, demonstrating how it is possible to access mixed-oxidation-state S-centers, as well as disparate sulfonyl functional groups.

Table 1. Optimization of Reaction Conditions for the Formation of Sulfinate 1a from Phenylboronic Acid

Entry	Variation	Yield of 1a (%)
1	as above	91
2	90 °C	31
3	20 mol % LiOr-Bu	28
4	1.0 equiv. DABSO	90
5	2.0 equiv. LiOr-Bu	66
6	0.4 M DMI	76
7	0.4 M DMI, Li₂CO₃ instead of LiOr-Bu	33
8	0.4 M DMI, KOOr-Bu instead of LiOr-Bu	64
9	1.0 equiv. K₂S₂O₅ instead of DABSO	0
10	Ph/NiF₂ instead of phenboronic acid	0

Reaction conditions: phenylboronic acid (0.2 mmol, 1.0 equiv), NiBr₂(glyme) (10 mol %), tmphen (10 mol %), DABSO (0.6 equiv). LiOr-Bu (0.2 mmol, 1.0 equiv), DMI (1.0 mL, 0.2 M). Yields were calculated from HPLC analysis using acetophenone as an internal standard.
We were pleased to find that several pharmaceutically relevant boronic acids reacted smoothly under the optimized conditions, delivering the sulfonylarene core of the COX2 inhibitor Celecoxib (2u), antiulcer drug Zolimidine (2v) and CrtN inhibitor NP16 (2w).2b A range of heteroaryl boronic acids were also suitable substrates, including O- (2x, 2y) and S-heterocycles (2z, 2aa), as well as a variety of challenging substituted pyridyl groups (2ab−2af). Imidazopyridine (2ag), indazole (2ah), and azaindole (2ai) groups were also included, delivering the desired sulfones in good yields. It is also worth noting that, in previous reported sulfinations of aryl boronic acids using Au(I),18Pd(II),2c,19,20 or Cu(I)2d catalytic systems, electron-deficient aryl (e.g., nitrile, trifluoromethyl) and pyridine-derived boronic acids generally reacted poorly or failed completely. However, these substrates reacted smoothly under the Ni(II) catalytic systems reported here, highlighting the utility of the present chemistry.

We then explored alternative derivatization processes for the sulinate intermediates. p-Chlorophenylboronic acid was selected as the model substrate. Table 3a outlines the sulfones prepared by combining the sulfinates with a variety of carbon-based electrophiles, including alkyl halides (3a), heteroaryl halides (3b), diaryliodonium salts (3c), and epoxides. The antiulcer drug Zolimidine (3d) was prepared conveniently using methyl iodide as the alkylating agent. In situ alkylation of the sulinate intermediates with allyl bromide afforded allyl sulfones (3e−3h), which are a class of sulfone with established utility in desulfinative cross-coupling and aromatic sulfonylation.

Table 2. Scope of the Boronic Acid Reaction Component

Aryl boronic acids	Heteroaryl boronic acids
![Image of boronic acids](attachment:image.png)	![Image of heteroaryl boronic acids](attachment:image.png)

Reaction conditions: (hetero)aryl boronic acid (0.2 mmol, 1.0 equiv), NiBr₂·(glyme) (10 mol %), tmphen (10 mol %), DABSO (0.12 mmol, 0.6 equiv), LiOr-Bu (0.2 mmol, 1.0 equiv), DMI (1.0 mL, 0.2 M), 100 °C, 16 h, then tert-butyl bromoacetate (2.0 equiv), rt, 1 h. NiI₂ used as catalyst. 120 °C. 110 °C. 6 h for second step. 2 h for second step. 1 h for first step. 1 h for first step.
Epoxide ring opening delivered the corresponding \(\beta \)-hydroxy sulfones in good yields (3i–3m) and allowed the direct synthesis of the antiandrogen pharmaceutical Casodex (3m). The examples in Table 3b show that sulfonamides are accessible if \(N \)-electrophiles are used. Secondary and tertiary sulfonamides are available using an electrophile generated from the combination of an appropriate amine and \(N \)-chlorosuccinimide (NCS). The conditions can tolerate both secondary (4a–4c) and primary (4f) amines, including amino acids (4d) and anilines (4e), as well as other biologically relevant amines (4c, 4g). Different boronic acid reaction partners were also employed, allowing the preparation of an analogue of Celecoxib (4h) and the CrtN inhibitor NP16 (4i). Primary sulfonamides were available by combining the in-situ-generated sulfonates with hydroxylamine-O-sulfonic acid (H\(_2\)NOSO\(_3\)H). Several pyridyl (4k, 4l) examples were prepared in good yield, as was the primary sulfonamide Celecoxib (4m).

Sulfonyl fluorides have recently received increased recognition in the field of chemical biology, because of their unconventional balance between reactivity and stability under physiological conditions. Table 4 shows that, by using \(N \)-fluorobenzenesulfonimide (NFSI) as the electrophilic component, we are able to prepare a selection of sulfonyl fluorides in good to modest yields.

Table 3. Scope of Carbon- and Nitrogen-Based Electrophiles To Form Sulfones and Sulfonamides

a) C-electrophiles	b) N-electrophiles
![Scheme 3a](image)	![Scheme 3b](image)

Reaction conditions for sulfonate derivatization step: E\(^*\) (2 equiv), rt or 100 °C, 1 h. For epoxides: aqueous workup, DIPEA (3 equiv), epoxide (5 equiv), \(H_2O \), 100 °C, 48 h. For sulfonamides: \(R_1R_2NH \) (1.5 equiv), NCS (1.5 equiv), 0 °C to rt, 1 h; H\(_2\)N-OSO\(_3\)H (2 equiv), rt, \(H_2O \), 24 h. For individual variations, see the Supporting Information. For products 3i–3l, dr >20:1.

Table 4. Preparation of Sulfonyl Fluorides, Using NFSI as the Electrophilic Reagent

| a) Reaction conditions for sulfonate derivatization step: aqueous workup, then DIPEA (3 equiv), NFSI (1.5 equiv), rt, 1 h.
| b) NFSI (1 equiv) used.

Scheme 1. Synthesis of a PFP Sulfonate Ester

Pentafluorophenyl (PFP) sulfonate esters are often crystalline and bench-stable replacements for sulfonyl chlorides. Our laboratory has recently reported the preparation of PFP sulfonate esters using copper-catalyzed oxidative coupling of sulfonates and pentafluorophenol. Here, we show that the copper-catalyzed PFP sulfonate ester synthesis can be combined with nickel-catalyzed sulfonation. Accordingly, PFP-ester 6 was prepared in 52% yield from the corresponding boronic acid (see Scheme 1).

In conclusion, we have developed the first examples of nickel-catalyzed sulfonation. The developed chemistry is redox-neutral and combines (hetero)aryl boronic acids and DABSO.
as the source of sulfur dioxide. A broad range of boronic acids was tolerated, including electron-deficient and heterocyclic, including pyridyl, systems. Significantly, these types of boronic acids delivered only low yields or failed completely with prior methods, which were based predominantly on precious-metal catalysts, and often required custom ligands. The developed protocol can be scaled up to a preparative gram scale using 2.5 mol% catalyst. The in-situ-formed sulfonates were elaborated efficiently to sulfones, sulfonamides, sulfonyl fluoride, and PFP sulfonate esters. The procedure was applicable to the direct synthesis of several active pharmaceutical ingredients, providing a good demonstration of the functional group compatibility of the system. Given the increasing attention on nickel as a sustainable and inexpensive base-metal catalyst, and the importance of sulfonyl-containing compounds in both pharmaceuticals and agrochemicals, we anticipate wide uptake of the reported methods.

ASSOCIATED CONTENT

3 Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.9b04363.

Experimental procedures and supporting characterization data and spectra (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: michael.willis@chem.ox.ac.uk.

ORCID
Michael C. Willis: 0000-0002-0636-6471

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the EPSRC (EP/K024205/1) for support of this study.

REFERENCES

(1) (a) Julia, M.; Paris, J.-M. Syntheses a l’aide de Sulfo nes v(+)-Methode de Synthese Generale de Doubles Liaisons. *Tetrahedron Lett.* 1973, 14, 4833–4836. (b) Blakemore, P. R.; Cole, W. J.; Kociejelski, P. J.; Morley, A. A Stereoselective Synthesis of trans-1,2-Disubstituted Alkenes Based on the Condensation of Aldehydes with Metallated 1-Phenyl-1H-tetrazol-5-yl Sulfoxides. *Synlett* 1998, 1998, 26–28.

(2) (a) Emmett, E. J.; Willis, M. C. The Development and Application of Sulfur Dioxide Surrogates in Synthetic Organic Chemistry. *Asian J. Org. Chem.* 2015, 4, 602–611. (b) Gao, P.; Davies, J.; Kao, R. Y. T. Dehydroquinone Desaturase as a Novel Target for Anti-Virulence Therapy against *Staphylococcus aureus*. *mBio* 2017, 8, DOI: 10.1128/mBio.01224-17. (c) Taylor, R. J. K.; Casy, G.; Davies, A. T.; Murray, P. R. D.; Davies, A. T.; Willis, M. C. Direct Copper-Catalyzed Three-Component Synthesis of Sulfonamides. *J. Am. Chem. Soc.* 2018, 140, 8781–8787.

(3) (a) Ye, S.; Wu, J. A Palladium-Catalyzed Reaction of Aryl Halides, Potassium Metabisulfite, and Hydrazines. *Chem. Comm.* 2012, 48, 10037–10039. (b) Wang, X.; Zhao, J.; Jiang, X. Aryl Methyl Sulfone Conjugate from Eco-Friendly Inorganic Sulfur Dioxide and Methyl Reagents. *ChemSusChem* 2019, 12, 3064–3068. (c) Wang, M.; Fan, Q.; Jiang, X. Metal-Free Construction of Primary Sulfonamides Through Three Different Salts. *Green Chem.* 2018, 20, 5469–5473.

(4) (a) Schmitt, A.-M. D.; Schmitt, D. C., Synthesis of Sulfonamides. In *Synthetic Methods in Drug Discovery*; Blakemore, D. C., Doyle, P. M., Fabian, Y. M., Eds.; Royal Society of Chemistry: Cambridge, 2016; Vol. 2, pp 123–138.

(5) (a) Ye, S.; Wu, J. Palladium(II)-Catalyzed Three-Component Reaction of Triethoxysilanes, Sulfur Dioxide, and Hydrazines. *Org. Lett.* 2014, 16, 4056–4058. (b) Zheng, D.; Mao, R.; Li, Z.; Wu, J. A Copper(I)-Catalyzed Three-Component Reaction of Triethoxysilanes, Sulfur Dioxide, and Alkyl Halides. *Org. Chem. Front.* 2016, 3, 359–363. (c) Mao, R.; Zheng, D.; Xia, H.; Wu, J. Copper(I)-Catalyzed Sulfonilation of (2-Alkynyl)aryl Boronic Acids With DABSO. *Org. Chem. Front.* 2016, 3, 693–696. (c) Wang, K.; Wang, G.; Duan, G.; Xia, C. Cobalt(I)-Catalyzed Remote CS-Selective C-H Sulfonation of Quinolines via Insertion of Sulfur Dioxide. *RSC Adv.* 2017, 7, s1313–s1317.

(6) (a) Zhu, H.; Shen, Y.; Deng, Q.; Huang, C.; Tu, T. One-Pot Bimetallic Pd/Cu-Catalyzed Synthesis of Sulfonamides from Boronic Acids, DABSO and O-Benzoyl Hydroxylamines. *Org. Lett.* 2016, 18, 611. (b) Wang, X.; Xue, L.; Wang, Z. A Copper-Catalyzed Three-Component Reaction of Triethoxysilanes, Sulfur Dioxide, and Hydrazines. *Org. Lett.* 2014, 16, 4056–4058. (c) Zheng, D.; Mao, R.; Li, Z.; Wu, J. A Copper(I)-Catalyzed Three-Component Reaction of Triethoxysilanes, Sulfur Dioxide, and Alkyl Halides. *Org. Chem. Front.* 2016, 3, 359–363. (d) Mao, R.; Zheng, D.; Xia, H.; Wu, J. Copper(I)-Catalyzed Sulfonilation of (2-Alkynyl)aryl Boronic Acids With DABSO. *Org. Chem. Front.* 2016, 3, 693–696. (c) Wang, K.; Wang, G.; Duan, G.; Xia, C. Cobalt(I)-Catalyzed Remote CS-Selective C-H Sulfonation of Quinolines via Insertion of Sulfur Dioxide. *RSC Adv.* 2017, 7, s1313–s1317.

(7) (a) Ye, S.; Wu, J. A Palladium-Catalyzed Reaction of Aryl Halides, Potassium Metabisulfite, and Hydrazines. *Chem. Comm.* 2012, 48, 10037–10039. (b) Wang, M.; Zhao, J.; Jiang, X. Aryl Methyl Sulfone Conjugate from Eco-Friendly Inorganic Sulfur Dioxide and Methyl Reagents. *ChemSusChem* 2019, 12, 3064–3068. (c) Wang, M.; Fan, Q.; Jiang, X. Metal-Free Construction of Primary Sulfonamides Through Three Different Salts. *Green Chem.* 2018, 20, 5469–5473.

(8) (a) Schmitt, A.-M. D.; Schmitt, D. C., Synthesis of Sulfonamides. In *Synthetic Methods in Drug Discovery*; Blakemore, D. C., Doyle, P. M., Fabian, Y. M., Eds.; Royal Society of Chemistry: Cambridge, 2016; Vol. 2, pp 123–138.

(9) (a) Zhu, H.; Shen, Y.; Deng, Q.; Huang, C.; Tu, T. One-Pot Bimetallic Pd/Cu-Catalyzed Synthesis of Sulfonamides from Boronic Acids, DABSO and O-Benzoyl Hydroxylamines. *Org. Lett.* 2016, 18, 611. (b) Wang, X.; Xue, L.; Wang, Z. A Copper-Catalyzed Three-Component Reaction of Triethoxysilanes, Sulfur Dioxide, and Hydrazines. *Org. Lett.* 2014, 16, 4056–4058. (c) Zheng, D.; Mao, R.; Li, Z.; Wu, J. A Copper(I)-Catalyzed Three-Component Reaction of Triethoxysilanes, Sulfur Dioxide, and Alkyl Halides. *Org. Chem. Front.* 2016, 3, 359–363. (d) Mao, R.; Zheng, D.; Xia, H.; Wu, J. Copper(I)-Catalyzed Sulfonilation of (2-Alkynyl)aryl Boronic Acids With DABSO. *Org. Chem. Front.* 2016, 3, 693–696. (c) Wang, K.; Wang, G.; Duan, G.; Xia, C. Cobalt(I)-Catalyzed Remote CS-Selective C-H Sulfonation of Quinolines via Insertion of Sulfur Dioxide. *RSC Adv.* 2017, 7, s1313–s1317.

(10) (a) Ye, S.; Wu, J. A Palladium-Catalyzed Reaction of Aryl Halides, Potassium Metabisulfite, and Hydrazines. *Chem. Comm.* 2012, 48, 10037–10039. (b) Wang, M.; Zhao, J.; Jiang, X. Aryl Methyl Sulfone Conjugate from Eco-Friendly Inorganic Sulfur Dioxide and Methyl Reagents. *ChemSusChem* 2019, 12, 3064–3068. (c) Wang, M.; Fan, Q.; Jiang, X. Metal-Free Construction of Primary Sulfonamides Through Three Different Salts. *Green Chem.* 2018, 20, 5469–5473.
Organometallic Reagents, the Sulfur Dioxide Surrogate DABSO, and Amines: A One-Pot Preparation of Sulfonamides, Amenable to Array Synthesis. *Angew. Chem., Int. Ed.* 2015, 54, 1168–1171.

(12) Shavnya, A.; Coffey, S. B.; Smith, A. C.; Mascitti, V. Palladium-Catalyzed Synthesis of Aryl and Heteroaryl Halides: Direct Access to Sulfoxides and Sulfonamides. *Org. Lett.* 2013, 15, 6226–6229.

(13) (a) Deeming, A. S.; Russell, C. J.; Hennessy, A. J.; Willis, M. C. DABSO-Based, Three-Component, One-Pot Sulfone Synthesis. *Org. Lett.* 2014, 16, 150–153. (b) Rocke, B. N.; Bahnck, K. B.; Herr, M.; Lavergne, S.; Mascitti, V.; Perreault, C.; Polivkova, J.; Shavnya, A. A Synthesis of Sulfones from Organocatalysts, DABSO, and Alkyl Halides. *Org. Lett.* 2014, 16, 154–157.

(14) (a) Pandya, R.; Murashima, T.; Tedeschi, L.; Barrett, A. G. M. Facile One-Pot Synthesis of Aromatic and Heteroaromatic Sulfonamides. *J. Org. Chem.* 2003, 68, 8274–8276. (b) Shavnya, A.; Hesp, K. D.; Tsai, A. S. A Versatile Reagent and Method for Direct Aliphatic Sulfonylation. *Adv. Synth. Catal.* 2018, 360, 1768–1774.

(15) Tribby, A. L.; Rodriguez, I.; Shariffuddin, S.; Ball, N. P. D. Palladium-Catalyzed Conversion of Aryl Iodides to Sulfonyl Fluorides Using SO₃. *Org. Lett.* 2016, 18, 2269–2272.

(16) (a) Ortgies, D. H.; Hassanpour, A.; Chen, F.; Woo, S.; Forgione, P. Desulfurization as an Emerging Strategy in Palladium-Catalyzed C-C Coupling Reactions. *Eur. J. Org. Chem.* 2016, 2016, 408–425. (b) Markovic, T.; Rocke, B. N.; Blakemore, D. C.; Mascitti, V.; Willis, M. C. Pyridine Sulfonates as General Nucleophilic Coupling Partners in Palladium-Catalyzed Cross-Coupling Reactions with Aryl Halides. *Chem. Sci.* 2017, 8, 4437–4442. (c) Markovic, T.; Rocke, B. N.; Blakemore, D. C.; Mascitti, V.; Willis, M. C. Palladium Catalysis Facilitates the Use of Heterocyclic Sulfonates as General Nucleophilic Coupling Partners in Palladium-Catalyzed Cross-Coupling Reactions. *Org. Lett.* 2017, 19, 6033–6035. (d) Markovic, T.; Murray, P. R. D.; Rocke, B. N.; Shavnya, A.; Blakemore, D. C.; Willis, M. C. Heterocyclic Alkylsulfonates as Latent Heteroaryl Nucleophiles in Palladium-Catalyzed Cross-Coupling Reactions. *J. Am. Chem. Soc.* 2018, 140, 15916–15923.

(17) Smith, J. M.; Dixon, J. A.; de Gruijter, J. N.; Baran, P. S. Alkyl Sulfonates: Radical Precursors Enabling Drug Discovery. *J. Med. Chem.* 2019, 62, 2256–2264.

(18) (a) Johnson, M. W.; Bagley, S. W.; Mankad, N. P.; Bergman, R. G.; Mascitti, V.; Toste, F. D. Application of Fundamental Organometallic Chemistry to the Development of a Gold-Catalyzed Synthesis of Sulfinate Derivatives. *Angew. Chem., Int. Ed.* 2014, 53, 4404–4407.

(b) Zhu, H.; Shen, Y.; Deng, Q.; Chen, J.; Tu, T. Acenaphthoimidazolylidene Gold Complex-Catalyzed Alkylation of Boronic Acids by Potassium Metabisulphite and Alkyl Halides: A Direct and Robust Protocol To Access Sulfoxones. *Org. Chem. Lett.* 2017, 7, 4655–4659.

(c) Zhu, H.; Shen, Y.; Wen, D.; Le, Z. G.; Tu, T. Selective Synthesis of ortho-Substituted Diarylsulfones by Using NHCl-Au Catalysts under Mild Conditions. *Org. Lett.* 2019, 21, 974–979.

(19) (a) Shavnya, A.; Hesp, K. D.; Mascitti, V.; Smith, A. C. Palladium-Catalyzed Synthesis of (Hetero)Aryl Alkyl Sulfones from (Hetero)Aryl Boronic Acids, Unactivated Alkyl Halides, and Potassium Metabisulphite. *Angew. Chem., Int. Ed.* 2015, 54, 13571–13575. (b) Zhu, H.; Shen, Y.; Deng, Q.; Chen, J.; Tu, T. Pd(NHCl)-Catalyzed Alkylation of Boronic Acids: A General and Efficient Approach for Sulfone Synthesis. *Chem. Commun.* 2017, 53, 12473–12476.

(20) Ye, S.; Wu, J. A Palladium-Catalyzed Three-Component Coupling of Arylboronic Acids, Sulfur Dioxide and Hydrazines. *Chem. Commun.* 2012, 48, 7753–7755.

(21) (a) Su, B.; Cao, Z. C.; Shi, Z. J. Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations. *Acc. Chem. Res.* 2015, 48, 886–896.

(b) Maes, J.; Mitchell, E. A.; Maes, B. U. W. Base Metals in Catalysis: From Zero to Hero. In *Green and Sustainable Medicinal Chemistry: Methods, Tools and Strategies for the 21st Century Pharmaceutical Industry*; Summerton, L., Sneddon, H. F., Jones, L. C., Clark, J. H., Eds.; The Royal Society of Chemistry: Cambridge, 2016; pp 192–202.