The primacy of cognition in the manifestations of substance use disorders

Jean Lud Cadet1* and Veronica Bisango2

1 NIDA Intramural Program, Molecular Neuropsychiatry Research Branch, Baltimore, MD, USA
2 Instituto de Investigaciones Farmacológicas (INIFAP-UBA-CONICET), Buenos Aires, Argentina
*Correspondence: jcadet@intra.nida.nih.gov

INTRODUCTION
Drug addiction is a serious public health problem that consists of a compulsive drive to take drugs despite repeated severe adverse consequences (1). Factors that influence the development and maintenance of addiction include access to drugs, social environment, genetic predisposition, and psychiatric comorbidities (2). Even in the absence of specific psychiatric diagnoses, certain psychological vulnerabilities may serve as substrates compounding the initiation of drug use and the development of substance use disorders. For example, individual who are sensation-seekers, impulsive, or behavioral disinhibited appear more prone to develop addiction to both licit and illicit substances (3–6). In this context, it is to be noted that not all individuals who try these drugs become addicted as about only 20% of people who have tried drugs become addicts (7). It is also worth mentioning that repeated exposure to moderate to large doses of some of these illicit drugs may be associated with well-known neuropathological consequences (8, 9) that might not be either necessary or sufficient for the development and the maintenance of addicted states.

The accumulated evidence supports the view that a large number of substance users suffer from significant neuropsychological impairments (10). Neuroimaging studies in drug-dependent individuals have also documented significant functional and structural alterations in several brain regions (1). These regions include mesocortical, mesolimbic, and mesostriatal brain regions that are known to be impacted by administration of licit and illicit drugs in both clinical and preclinical studies (2). In what follows, we discuss the potential impact of illicit drugs on these brain regions and the associated cognitive consequences of these drugs. We then suggest that these cognitive consequences play primary roles in the maintenance of addiction across several classes of abused substances.

PRE-EXISTING COGNITIVE DEFICITS IN SUBSTANCE USE DISORDERS
Before elaborating the idea of drug-induced cognitive changes in patients addicted to illicit drugs, it is important to briefly discuss the influence of potential premorbid deficits on the cognitive performance of some drugs abusers (11). For example, Ersche et al. (12) suggested that cognitive dysfunctions and impulsive personality traits are endophenotypes for drug dependence. Drug-dependent individuals were significantly impaired on all the tests used in their study and some of these cognitive deficits were also found to exist in first-degree relatives in the absence of drug use (12). Levels of impulsivity were also higher in drug-dependent individuals than in their siblings, indicating that chronic drug abuse further increases both anxiety and impulsive traits. Smith et al. (13) also reported that impairments in hemispheric lateralization during task performance were apparent in both drug-using subjects and their control siblings, with the siblings decreasing but the drug users increasing activity in relevant brain regions.

ADDITION AS A HYPERCONNECTION SYNDROME
The prefrontal cortex (PFC) and the striatum participate in integrated functions that are modulated by glutamate (12) and dopamine (DA) (14). These functions include decision making (15), salience attribution and goal-directed behaviors (16), and inhibitory control of behaviors (17) that are subserved by specific cortical subregions. Under normal circumstances, organisms consider many salient behaviors but must choose to perform one or the other by performing specific very fast calculations of cost/benefit ratios (18). These activities, including selection of actions based on their valuation, are thought to depend on the PFC (18). Nevertheless, successful completion of goal-directed behaviors such as searching for food or drugs must require more complex and extended sequences of actions that must be maintained despite obstacles and distractions. In people addicted to drugs, there seems to be a narrowing of goal selection, with substances of abuse becoming more salient than other choices (19). This narrowing might be dependent on abnormal dynamics of DA release in the PFC with subsequent effects on corticostriatal glutamate projections to the dorsal striatum that might be intimately involved in the compulsive manifestations of drug-taking behaviors (20, 21). In other words, although the initial effects of drugs might be to enhance DA release in various brain regions (22), repeated exposure to these drugs might lead to subsequent weaker DA release, tolerance to drug effects, followed by increased drug taking to recalibrate the functional interactions of the corticostriatal loops.

Pathological changes in the orbitofrontal cortex (OFC) might also
be involved in the manifestation of addiction-related behaviors because it is relevant to outcomes related to primary reinforcers (23). OFC neurons encode details concerning the sensory properties of rewards, the size, and timing of past or future rewards (23). Impairments in the OFC result in compulsive behaviors and impulsivity (24). A potential role of the OFC in the maintenance of addiction is supported by the observation of loss of prefrontal gray matter in individuals with a long history of drug abuse (25). This discussion is also supported by the report of decreased striatal D2R availability, known to be located on the indirect striatal projecting neurons, in the striatum of cocaine and methamphetamine addicts (26, 27). It is thus not farfetched to suggest that unopposed actions of D1-like DA receptors through the direct basal ganglia pathway may promote states of hyperconnections within basal ganglionic/cortical functional and structural loops. These hypothesized hyperconnections might be responsible for several cognitive manifestations of addictive states.

MANIFESTATIONS OF THE HYPERCONNECTION SYNDROME

IMPULSIVITY

Impaired self-control plays a fundamental role in drug-taking behaviors in addictive states (11). Impulsivity is often referred by the term “disinhibition,” referring to the idea of top-down control mechanisms that suppress automatic or reward-driven responses (28). The early stages of recreational drug taking are thought to be due to personality characteristics that influence whether or not the individual will try a rewarding substance. As mentioned earlier, only a minority of these individuals become addicted (7). This fact implies that the rewarding effect of drugs is not the main factor in the development and maintenance of addiction (29). These data also suggest that other important factors might drive the impetus to continue to use or increase the quantity of drugs used by those who become addicted. These factors might include specific pre-existing subclinical or clinical cognitive dysfunctions that might have interfered with an individual’s ability to resist drug-taking behaviors that are known to contribute to adverse life consequences.

The available evidence does support the thesis that impulsivity is a vulnerability marker for substance abuse (11, 12). Several studies have demonstrated that children of drug-using parents have elevated impulsivity before drug exposure and that impulsivity indices are strong and reliable predictors of drug initiation and drug-associated problems (11). Importantly, during the interval of drug taking while the addiction threshold might be broadened, taking of substantial amounts of drugs might have produced additional changes in the brains of susceptible individuals, with resulting further progression of cognitive impairments that are well documented in several reports (11, 30–33). Of importance to this thesis, cognitive impairments have been shown to be greater in drug-dependent individuals compared with their siblings (12). The proposed drug-induced pathological and/or functional damage might be responsible for the perseverative aspects of drug-taking behaviors that are somewhat akin to the perseveration observed in patients with severe head trauma (34) or in patients with some demented states (35). This similarity might explain, in part, the perseverative taking of drugs when they are no longer reinforcing and/or when drug-taking behaviors are accompanied by severe psychosocial and medical consequences (23).

Interestingly, abnormalities have been identified in frontal networks that subsume poor self-regulation and impulse control in cocaine dependency. Specifically, cocaine users were reported to show stronger connectivity within the perigenual anterior cingulate cortex (ACC) social processing/“mentalizing” network (36). This study is compatible with previous findings of abnormal inhibitory control in cocaine users (37, 38). Of etiological significance, Kelly et al. (39) found increased but lower resting connectivity between the ACC and dorsolateral prefrontal cortex (DLPFC) in children and adolescents, respectively. This relationship was almost non-existent in adults (39). These observations suggest that the connectivity within these regions might be “pruned” with brain maturation during the aging process and that cocaine users might suffer from a regression of these maturational processes because of plastic effects of the drug. This is important because an efficient interaction of ACC and DLPFC is needed for appropriate behavioral control (40). Therefore, the cognitive impulse control disorder observed in addicted patients might be secondary to drug-induced activation of developmental genes that regulate connectivity between various brain regions (41).

ATTENTION

Attention represents a number of intimate mechanisms that facilitate the filtering, selection, and processing of information (42). In substance users, there is substantial attentional bias toward substance-related cues (43). Attentional bias exists to a greater extent in people with highly compulsive patterns of drug taking (43). Demonstrations of attentional bias for substance-related stimuli among experienced substance users are consistent with the view that classical conditioning is involved in their development because substance-related cues are, by nature, associated with the effects of substances (44). Other studies have also documented drug-related deficits in attentional tests in cocaine addicts (32, 45, 46). Methamphetamine addicts also showed deficits on measures of sustained (47) and spatial (48) attention, with these deficits having been linked to methamphetamine-associated damage to the ACC and insular cortices (47). Thus, damage to these brain regions might play an important role in causing dysfunctions in attentional circuits that are critical to learning and memory processes that are important to remember specific therapeutic interventions, thereby increasing the rate of recidivism in addicted patients.

DECISION MAKING

Poor cognitive performance in areas of risk-taking and decision making may influence the degree to which illicit drug users engage in risky behaviors with consequent negative health consequences. Deficits in tests of decision making have been found in patients who suffer from marijuana (49, 50), cocaine (51), MDMA (52), and methamphetamine (53, 54) addiction. These deficits might be related to altered connectivity of the right insula to the dorsomedial PFC, inferior frontal gyrus, and DLPFC in cocaine-dependent subjects (55). Methamphetamine-dependent individuals also showed disrupted risk-related processing in the ACC and insula.
In summary, drug addiction is marked by mild, yet pervasive, cognitive disruptions that may cause the negative progression of the clinical course, threaten sustained abstinence (57), or increase recidivism (58, 59) associated with addiction to licit and illicit substances. Importantly, the existence of cognitive deficits identified in drug-dependent individuals suggests that cognitive disturbances might be predisposing risk factors for the development of drug dependence (12). Repeated exposure to various drugs of abuse might exacerbate some of these subclinical abnormalities by producing pathological changes in various brain regions including the PFC (2). Interestingly, recent neuroimaging studies have also documented cortical abnormalities in patients addicted to various classes of illicit substances (60). These cortical abnormalities, by causing disinhibition of various cortico-cortical, subcortico-midbrain, or subcortico-cortical pathways, might engender the formation of hyperconnected subcortical loops that might serve as substrates for the varied clinical manifestations of addiction. Better understanding of these neural connection-induced cognitive deficits should help to develop better pharmacological and behavioral approaches for the treatment of substance use disorders.

ACKNOWLEDGMENTS

This paper is supported by the Intramural Research Program of the National Institute on Drug Abuse (NIDA), NIH, and DHHS. Veronica Bisagno is supported by grants PIP11420100100072 and PICT 2012-0924, Argentina.

REFERENCES

1. Volkow N, Li T-K. The neuroscience of addiction. Nat Neurosci (2005) 11:1429–30. doi:10.1038/nn1142-9
2. Volkow ND, Wang G-J, Fowler JS, Tomasi D. Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol (2012) 52:321–36. doi:10.1146/annurev-pharmaco-010611-134625
3. Sher KJ, Bartholow BD, Wood MD. Personality and substance use disorders: a prospec- tive study. J Consult Clin Psychol (2000) 68(5):818–29. doi:10.1037/ 0022-006X.68.5.818
4. Perugi G, Toni C, Frare F, Travieso MC, Han- touce E, Akikus H. Obsessive-compulsive bipolar comorbidty: a systematic exploration of clinical features and treatment outcome. J Clin Psychiatry (2002) 63:1129–34. doi:10.4088/JCP. v63n1207
5. de Wit H. Impulsivity as a determinant and con- sequence of drug use: a review of underlying processes. Addict Biol (2009) 14:22–31. doi:10.1111/j.1369-1600.2008.00129.x
6. Ersche KD, Turton AJ, Pradhan S, Bullmore ET, Robbins TW. Drug addiction endopheno- types: impulsive versus sensation-seeking person- ality traits. Biol Psychiatry (2010) 67:770–3. doi:10.1016/j.biopsych.2010.06.015
7. Anthony JC, Warner LA, Kessler RC. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic find- ings from the National Comorbidity Survey. Exp Clin Psychopharmacol (1994) 2(3):244–68. doi:10.1097/00048670701689444
8. Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. Brain Res Rev (2009) 59:379–407. doi:10.1016/j.brainresrev.2009.03.002
9. Wilson JM, Kalaisinisky KS, Levey AJ, Berg- eron C, Reiber G,Anthony RW, et al. Strialal dopamin nerve terminal markers in human, chronic methamphetamine users. Nat Med (1996) 2:791–793. doi:10.1038/nm0969-699
10. Yucel M, Lubman DJ, Solowij N, Brewer WP. Understanding drug addiction: a neuropsycho- logical perspective. Auest N Z J Psychiatry (2007) 12:457–68. doi:10.1080/00048670701689444
11. Verdejo-Garcia A, Lawrence AJ, Clark L. Impulsiv- ity as a vulnerability marker for substance-use dis- orders: review of findings from high-risk research, problem gamblers and genetic association studies. Neuropsychobiology (2008) 6:777–810. doi:10.1097/NPB.0b013e31814a5a94
12. Ersche KD, Turton AJ, Chamberlain SR, Muller U, Bullmore ET, Robbins TW. Cognitive dys- function and anxious-impulsive personality traits are endophenotypes for drug dependence. Am J Psychiatry (2012) 9:8256–36. doi:10.1176/ajp.ajp.2012
13. Smith DG, Jones PS, Bullmore ET, Robbins TW, Ersche KD. Cognitive control dysfunction and abnormal frontal cortex activation in stimulant drug users and their biological siblings. Transl Psy- chiatry (2013) 3:257. doi:10.1038/tp.2013.32
14. Jocham C, Klein TA, Ulisperger M. Dopamine-mediated reinforcement learning signals in the striatum and ventro- medial prefrontal cortex underlie value- based choices. J Neurosci (2011) 31:1606–13. doi:10.1523/JNEUROSCI.3904-10.2011
15. Brass M, Ulisperger M, Knoesche TR, von Cra- mon DT, Phillips NA. Who comes first? The role of the prefrontal and parietal cortex in cogni- tive control. J Cogn Neurosci (2005) 9:167–75. doi:10.1162/0898929054938500
16. Cardinal RN, Parkinson JA, Hall I, Evertt BJ. Emotion and motivation: the role of the amygd- ala, ventral striatum, and prefrontal cortex. Ne- urosci Biobehav Rev (2002) 3:321–32. doi:10.1016/ S0149-7634(02)00007-6
17. Shimamura AP. Toward a cognitive neuroscience of metacognition. Conscious Cogn (2000) 9(2 Pt 1):313–23. doi:10.1006/coco.2000.0450 discussion 324–6.
18. Matsumoto K, Suzuki W, Tanaka K. Neuronal cor- relates of goal-based motor selection in the pre- frontal cortex. Science (2003) 303:229–32. doi:10.1126/science.1084204
19. Berde JH, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neu- ron (2000) 28:151–52. doi:10.1016/S0896-6273(00) 81056-9
20. Belin D, Evertt BJ. Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neu- ron (2008) 3:422–41. doi:10.1162/neuron.2007. 12.019
21. Krasnova IN, Chilfiykan M, Justonina Z, McCoy MT, Ladenheim B, Jayanthi S, et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurol Res (2013) 35:132–43. doi:10.1179/13550226.2013.05.009
22. Volkow ND, Tomasi D, Wang G-J, Fowler JS, Telang F, Goldstein RZ, et al. Reduced metabolism in brain “control networks” following cocaine-euse ex- pose in female cocaine abusers. PLoS One (2011) 2:e16573. doi:10.1371/journal.pone.0016573
23. Lucantonio F, Stalnaker TA, Shaham Y, Niv Y, Schoenbaum G. The impact of orbitofrontal dysfunction on cocaine addiction. Nat Neurosci (2012) 3:358–66. doi:10.1038/nn3014
24. Volkow ND, Fowler JS. Addiction, a disease of com- pulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex (2000) 3:318–25. doi:10.1093/cercor.10.3.318
25. Matoshiki JA, London ED, Eldreth DA, Cadet JL, Bolla KI. Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage (2003) 3:1095–102. doi:10.1016/S1053-8119(03)00244-1
26. Volkow ND, Wang G-J, Fowler JS, Tomasi D, Telang F. Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci U S A (2011) 108:1537–42. doi:10.1073/pnas.1016510
27. Martinez D, Sliedstein M, Narendran D, Foltin RW, Broft A, Hwang D-R, et al. Dopamine D1 receptors in cocaine dependence measured with PET and the choice to self-administer cocaine. Neurology (2003) 3:1095–102. doi:10.1212/01.WNL.0000119335.0000001
28. Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V. Converging evi- dence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci (2007) 44:11860–4. doi:10.1523/ JNEUROSCI.6644-07.2007
31. Bolla KI, Cadet JL, Brown K, Eldreth D, Tate K, Cadet JL. Cadet and Bisagno Addiction, cognition and subcortical hyperconnection.

30. Bolla KI, Cadet JL, London ED. The neuropsychiatric theory of transition to addiction.

35. Thompson JC, Stopford CL, Snowden JS, Neary D, Contoreggi C, et al. Prefrontal cortical dysfunction in abstinent cocaine abusers. J Neuropsychiatry Clin Neurosci (2004) 16:456–64. doi:10.1176/appi.neuropsych.16.4.456

33. Cadet JL, Bolla KI. Chronic cocaine use as a model of drug addiction: a review of experimental and clinical studies. Neuropharmacology (2002) 43:1337–43. doi:10.10121/01, WNL_00003122.6464.49

32. Bolla K, Ernst M, Kiehl K, Mouratidis M, Eldreth D, Contoreggi C, et al. Prefrontal cortical dysfunction in abstinent cocaine abusers. J Neuropsychiatry Clin Neurosci (2004) 16:456–64. doi:10.1176/appi.neuropsych.16.4.456

31. Cadet JL, Bolla KI. Chronic cocaine use as a neuropsychiatric syndrome: a model for debate. Synapse (1999) 31:28–34. doi:10.1002/(SICI)1098-2366(19990522):2<28::AID-SYN>3.0.CO;2-K

30. Coetzee R, Stein DJ, Toit PL. Executive function in traumatic brain injury and obsessive-compulsive disorder: an overlap? Psychiatry Clin Neurosci (2001) 55:283–7. doi:10.1046/j.1440-1811.2001.00792.x

28. Thompson JC, Stopford CL, Snowdon JS, Neary D. Qualitative neuropsychological performance characteristics in frontotemporal dementia and Alzheimer’s disease. J Neurol Neurosurg Psychiatry (2005) 79:20–7. doi:10.1136/jnnp.2003.037379

27. Camchong J, MacDonald AW, Nelson B, Bell C, Mueller BA, Specker S, et al. Frontal hyperconnectivity related to discounting and reversal learning in cocaine subjects. Biol Psychiatry (2011) 69:1117–23. doi:10.1016/j.biopsych.2011.01.008

26. Kirby KN, Petry NM. Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction (2004) 94:461–71. doi:10.1111/j.1600-0443.2003.00669.x

25. Heil SH, Johnson MW, Higgins ST, Bickel WK. Delay discounting in currently using and currently abstinent cocaine-dependent outpatients and non-drug-using matched controls. Addict Behav (2006) 31:729–4. doi:10.1016/j.addbeh.2005.09.005

24. Kelly AMC, Di Martino A, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, et al. Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex (2009) 19:460–57. doi:10.1093/cercor/bhn117

23. Morishima Y, Okuda J, Sakai K. Reactive mechanism of cognitive control system. Cortex (2010) 46:2675–83. doi:10.1093/cercor/bhq153

22. Cadet JL. Amphetamine recapitulates developmental programs in the zebrafish. Genome Biol (2009) 10:7–231. doi:10.1186/gb-2009-10-7-231

21. Adler CM, Sax KW, Holland SK, Schmithorst V, Rosenberg L, Strakowski SM. Changes in neuronal activation with increasing attention demand in healthy volunteers: an fMRI study. Synapse (2001) 42:66–72. doi:10.1002/syn.1112

20. Ersche KD, Bullmore ET, Craig KJ, Shabbir SS, Abbott S, Müller U, et al. Influence of compulsivity of drug abuse on dopaminergic modulation of attentional bias in stimulant dependence. Arch Gen Psychiatry (2010) 67:322–4. doi:10.1001/archgenpsychiatry.2010.60

19. Field M, Cox WM. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug Alcohol Depend (2008) 97:1–20. doi:10.1016/j.drugalcdep.2008.03.030

18. Albein-Urías N, Martínez-González JM, Lozano O, Clark L, Verdejo-García A. Comparison of impulsivity and working memory in cocaine addiction and pathologial gambling: implications for cocaine-induced neurotoxicity. Drug Alcohol Depend (2012) 126(1–2):1–6. doi:10.1016/j.drugalcdep.2012.03.008

17. Bolla KI, Rothman R, Cadet JL. Dose-related neurobehavioral effects of chronic cocaine use. J Neuropsychiatry Clin Neurosci (1999) 11:36–9.

16. London ED, Berman SM, Voytek B, Simon SL, Mandelkern MA, Monterosso J, et al. Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers. Biol Psychiatry (2010) 67:770–8. doi:10.1016/j.biopsych.2009.04.039

15. Salo R, Gabay S, Fasbender C, Henrik A. Distracted attentional deficits in chronic methamphetamine abusers: evidence from the attentional network task (ANT). Brain Cogn (2011) 76:446–52. doi:10.1016/j.bandc.2011.08.012

14. Bolla KI, Eldreth DA, Matochik JA, Cadet JL. Delay discounting in currently using and current non-drug using matched controls. Addiction (2003) 98:207–11. doi:10.1046/j.1360-0443.2003.00092.x

13. Aharonovich E, Nunes E, Hasin D. Cognitive impairment, retention and abstinence among cocaine abusers in cognitive-behavioral treatment. Drug Alcohol Depend (2003) 72:207–11. doi:10.1016/S0376-8716(03)00092-9

12. Aharonovich E, Hasin DS, Brooks AC, Liu X, Bisaga A, Nunes EV. Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug Alcohol Depend (2006) 3:313–22. doi:10.1016/j.drugalcdep.2005.08.003

11. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci (2011) 12:62–69. doi:10.1038/nrn3119

Received: 19 October 2013; accepted: 04 November 2013; published online: 18 November 2013.

Citation: Cadet JL and Bisagno V (2013) The primacy of cognition in the manifestations of substance use disorders. Front. Neurol. 4:189. doi: 10.3389/fneur.2013.00189

This article was submitted to Neurotrauma, a section of the journal Frontiers in Neurology. Copyright © 2013 Cadet and Bisagno. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.