A Note on Rectilinearity and Angular Resolution

Hans L. Bodlaender Gerard Tel
Institute of Information and Computing Sciences
Utrecht University, The Netherlands
http://www.cs.uu.nl/~hansb http://www.cs.uu.nl/~gerard
hansb@cs.uu.nl gerard@cs.uu.nl

Abstract

We connect two aspects of graph drawing, namely angular resolution, and the possibility to draw with all angles an integer multiple of $2\pi/d$. A planar graph with angular resolution at least $\pi/2c$ can be drawn with all angles an integer multiple of $\pi/2$ (rectilinear). For $d \neq 4$, $d > 2$, an angular resolution of $2\pi/d$ does not imply that the graph can be drawn with all angles an integer multiple of $2\pi/d$. We argue that the exceptional situation for $d = 4$ is due to the absence of triangles in the rectangular grid.

Keywords: Rectilinear drawing, plane graph, angular resolution, integer flow.

Partially supported by the Future and Emerging Technologies programme of the EU under contract number IST-1999-14186 (ALCOM-FT).
1 Introduction

Angular resolution and rectilinearity are well-studied aspects of plane graphs. The angular resolution of a (plane) graph is the minimum angle made by line segments at a vertex. A graph is rectilinear if it can be drawn with all angles a multiple of $\pi/2$ radians. In this note we give an easy proof of the “folk conjecture” that graphs with an angular resolution at least $\pi/2$ are rectilinear.

We generalise rectilinearity and call a graph d-linear if it allows a drawing with all edges a multiple of $2\pi/d$ (thus rectilinearity is 4-linearity). Unlike the case $d = 4$, for $d > 4$ it is not the case that an angular resolution of $2\pi/d$ implies d-linearity.

This is the organization of the paper. The remainder of this section introduces some preliminaries, including Tamassia’s flow model for the angles in a drawing, on which our first result is based. Section 2 proves our positive result (for $d = 4$). Section 3 contains the negative result (for $d > 4$). Section 4 lists conclusions.

1.1 Preliminaries

We assume familiarity of the reader with basic graph notions. A plane graph is a planar graph given together with an embedding; this embedding should be respected in a drawing. Given a drawing, its angular resolution is the minimum angle made by line segments at any vertex, and the angular resolution of a plane graph is the maximum angular resolution of any drawing. A drawing is called d-linear if all angles are an integer multiple of $2\pi/d$ radians.

A vertex of degree δ has δ angles: one between each two successive incident edges. For vertex v and face f, let $d(v, f)$ be the number of angles of v that belong to face f (only for a cutvertex v there is an f for which $d(v, f) \geq 2$). For every face f, we let $a(f)$ denote the number of angles that belong to f. In a biconnected graph, $a(f)$ also equals the number of edges at the border of f and it equals the number of vertices on the border of f.

1.2 The Flow Model for Angles

The embedding contained in a plane graph defines the position of the nodes in a qualitative manner, but to convert the embedding into a drawing, in addition two more things need be specified: the angles between the edges at each node, and the lengths of all edges. Tamassia [3] has shown that the angle values in a drawing satisfy the constraints of a suitably chosen multi-source multi-sink flow network. In any drawing, the angles around a node sum up to 2π and if an internal face is drawn as an a-gon its angles sum up to $\pi(a - 2)$ radians. (The angles of the outer face with a edges sum up to $\pi(a + 2)$.)

Because we want rectangular angles to correspond to integers, we shall now express angles in units of $\pi/2$ radians. Thus, with $\alpha_{v,f}$ the angle at node v in face f, the collection of angles in a drawing with angular resolution 1 is a
solution for this set of linear equations:

\[
\begin{align*}
\sum_f \alpha_{v,f} &= 4 & \text{for all nodes } v \\
\sum_v \alpha_{v,f} &= 2(\alpha(f) - 2) & \text{for all internal faces } f \\
\sum_v \alpha_{v,f} &= 2(\alpha(f) + 2) & \text{for outer faces } f \\
\alpha_{v,f} &\geq 1 & \text{for all incident } v \text{ and } f
\end{align*}
\]

We refer to these equations as the network model for \(G \); observe that all constraints are integer numbers. The description of this set of equations as a flow network can be found in \([1, 3]\).

Relations between flows and drawings. The following two results are known.

Theorem 1 If plane graph \(G \) has a drawing with angular resolution at least 1 unit (\(\pi/2 \) radians), then the associated network model has a solution.

Theorem 2 (Tamassia \([3]\)) If the network model associated to plane graph \(G \) has an integer solution, then \(G \) has a rectilinear drawing.

2 Angular Resolution \(\pi/2 \) Implies Rectilinear

Our main result is obtained by combining Theorems 1 and 2 with a result from standard flow theory.

Theorem 3 If a graph has angular resolution at least \(\pi/2 \), then it is rectilinear.

Proof. Assume \(G \) has angular resolution at least \(\pi/2 \) radians. By definition, it has a drawing with angular resolution at least 1 unit, hence by Theorem 1 the associated network model has a solution. It is known from flow theory (see, e.g., \([2, \text{Chapters 10, 11}]\)) that if a flow network with integer constraints admits a flow, then it admits an integer flow. By Theorem 2, we have that \(G \) has a rectilinear drawing.

3 Angular Resolution and \(d \)-Linearity

This section answers the question for what values of \(d \), any plane graph with angular resolution \(2\pi/d \) radians is \(d \)-linear. The cases \(d = 1 \) and \(d = 2 \) are somewhat trivial, as the classes of drawable graphs are collections of isolated edges, or paths, respectively.

The case of odd \(d \) is somewhat degenerate as, while drawings are supposed to be built up of straight lines, a straight angle at a vertex is not allowed. The cycle with \(2d + 1 \) points can be drawn as a regular \((2d + 1) \)-gon, witnessing that its angular resolution is at least \(2\pi/d \). But it does not have a \(d \)-linear drawing, as its angle sum, \((2d - 1) \cdot \pi\), is not an integer multiple of \(2\pi/d \).
In the remainder of this section \(d = 2d' \) is even and larger than 4. Measuring angles in units of \(\pi/d' \) radians, we observe that the angles of any triangle add to exactly \(d' \) units. We introduce rigid triangles as gadgets with a fixed shape. The graph \(T_{d'} \) has a top node \(t \) and base nodes \(b_1 \) and \(b_2 \), forming a cycle. For even \(d' \), \(t \) has a third neighbor \(i \), inserted between \(b_2 \) and \(b_1 \) in the planar embedding. Each base node has \(\left\lfloor \frac{d' - 3}{2} \right\rfloor \) neighbors, also located inside the triangle; see Figure 1. The graph \(T_{d'} \) has an angular resolution of \(2\pi/d \) radians, and in every drawing with that resolution, each segment of each angle measures exactly \(\pi/d' \) radians, that is, the proportions of \(T_{d'} \) are fixed in every drawing. The ratio between height and base length of the rigid triangle in such a drawing, \(b_{d'} \), can be computed as

\[
b_{d'} = \frac{1}{2} \tan\left(\frac{\left\lfloor \frac{d' - 1}{2} \right\rfloor \cdot \left(\frac{\pi}{d'}\right)}{2}\right).
\]

![Figure 1: Rigid Triangles and the Crane \(C_{d',6,2} \)](image)

The crane graph \(C_{d',k,l} \) contains \(1 + 2k + 4l \) copies of \(T_{d'} \) joined together. A central triangle is extended with a leg consisting of \(k \) pairs of triangles on one side, and an arm consisting of \(l \) quartets of triangles on the other side. In any drawing where all internal angles of the triangles satisfy the constraint for angular resolution \(\pi/d' \), the angle \(\alpha \) at the bottom of the drawing satisfies \(\tan \alpha = \frac{2l}{k} b_{d'} \). By choosing \(k \) and \(l \), any angle between \(\pi/d' \) and \(\pi/2 \) radians can be approximated arbitrarily closely, contradicting the possibility to draw any crane with all angles a multiple of \(\pi/d' \) radians.

Theorem 4 For each \(d' > 2, \beta \geq \pi/d', \epsilon > 0 \), there exists a graph \(G = C_{d',k,l} \) such that

1. \(G \) has angular resolution \(\pi/d' \) radians;
2. each drawing of \(G \) with angular resolution \(\pi/d' \) contains an angle \(\alpha \) such that \(|\alpha - \beta| < \epsilon \).

4 Conclusions

Our note compares two types of drawings, namely (1) those where all angles are at least \(2\pi/d \) (angular resolution) and (2) those where all angles are an integer
multiple of $2\pi/d$. The flow model introduced by Tamassia [3] implies that if angles can be assigned satisfying (1), then it is also possible to assign all angles satisfying (2). However, only in the special case $d = 4$ it is also possible to assign edge lengths in such a way that a drawing results.

When drawing graphs in a rectilinear way, the drawing is built up from rectangular elements and in such drawings it is possible to shift parts of the drawing without disrupting angles in other parts; see Figure 2. Indeed, a rectangle can be stretched in one direction while preserving the orthogonality of its angles. In a drawing containing triangles, this is not possible, because stretching a triangle in one direction changes its angles. We therefore conclude that the special position of $d = 4$ in the studied problem is due to the absence of triangles in a rectilinear grid.

![Figure 2: Orthogonal and non-orthogonal movements](image)

The observations in this note can be extended to the situation where the embedding is free; that is, only a (planar) graph is given and the question is, what type of drawings does it admit. For the positive result (for $d = 4$), if the graph has some drawing with angular resolution $\pi/2$, it can be drawn rectilinearly with the same embedding. Our triangles T_d' loose their rigidity if the embedding is free, because one can draw the internal nodes on the outside and then modify the triangle shape. By connecting the internal nodes in a cycle this can be prevented; in fact the triangles are modified to enforce the same embedding.

Acknowledgement: We thank the participants of the Graph Drawing seminar at Utrecht University for discussions.
References

[1] H. L. Bodlaender and G. Tel. Rectilinear graphs and angular resolution. Technical Report UU-CS-2003-033, Institute of Information and Computing Sciences, Utrecht University, 2003.

[2] A. Schrijver. Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin, 2003.

[3] R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Computing, 16:421–444, 1987.