Rivet, Damien

Explicit Rieffel induction module for quantum groups. (English) [Zbl 07597891]

J. Noncommut. Geom. 16, No. 2, 455-488 (2022)

Summary: For \mathbb{G} an algebraic (or more generally, a bornological) quantum group and \mathbb{B} a closed quantum subgroup of \mathbb{G}, we build in this paper an induction module by explicitly defining, on the convolution algebra of \mathbb{G}, an inner product which takes its value in the convolution algebra of \mathbb{B}, as in the original approach of Rieffel. In this context, we study the link with the induction functor defined by Vaes. In the last part, we illustrate our result with parabolic induction of complex semisimple quantum groups. We first show that our induction functor coincides with the one already defined in the case of parabolic induction. Then we use the tools developed in this paper to give a geometric interpretation to the parabolic induction functor, following the approach suggested by Clare in the classical case.

MSC:

20G42 Quantum groups (quantized function algebras) and their representations

16T05 Hopf algebras and their applications

46L65 Quantizations, deformations for selfadjoint operator algebras

46L51 Noncommutative measure and integration

Keywords:

induction; quantum groups; bornological algebras; algebraic quantum groups; locally compact quantum groups; semisimple quantum groups

Full Text: DOI arXiv

References:

[1] Y. Arano, Unitary spherical representations of Drinfeld doubles. J. Reine Angew. Math. 742 (2018), 157-186 Zbl 1396.81117 MR 3849625 - Zbl 1396.81117

[2] P. Clare, Hilbert modules associated to parabolically induced representations. J. Operator Theory 69 (2013), no. 2, 483-509 Zbl 1289.46084 MR 3053531 - Zbl 1289.46084

[3] P. Clare, T. Crisp, and N. Higson, Parabolic induction and restriction via C*-algebras and Hilbert C*-modules. Compos. Math. 152 (2016), no. 6, 1286-1318 Zbl 1346.22005 MR 3518312 - Zbl 1346.22005

[4] M. Daws, P. Kasprzak, A. Skalski, and P. M. Sołtan, Closed quantum subgroups of locally compact quantum groups. Adv. Math. 231 (2012), no. 6, 3473-3501 Zbl 1275.46057 MR 2980506 - Zbl 1275.46057

[5] K. De Commer and A. Van Daele, Multiplier Hopf algebras imbedded in locally compact quantum groups. Rocky Mountain J. Math. 40 (2010), no. 4, 1149-1182 Zbl 1226.16023 MR 3053531 - Zbl 1226.16023

[6] H. Hogbe-Nlend, Bornologies and Functional Analysis: Introductory Course on the Theory of Duality Topology-Bornology and its use in Functional Analysis. North-Holland Math. Stud. 26, North-Holland, Amsterdam, 1977 Zbl 0359.46004 MR 0500064

[7] M. Kalantar, P. Kasprzak, A. Skalski, and P. M. Sołtan, Induction for locally compact quantum groups revisited. Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 1071-1093 Zbl 1446.46050 MR 4080471 - Zbl 1446.46050

[8] J. Kustermans, Induced corepresentations of locally compact quantum groups. J. Funct. Anal. 194 (2002), no. 2, 410-459 Zbl 1034.46057 MR 1934609 - Zbl 1034.46057

[9] J. Kustermans, The analytic structure of algebraic quantum groups. J. Algebra 259 (2003), no. 2, 415-450 Zbl 1034.46064 MR 1955227 - Zbl 1034.46064

[10] J. Kustermans and S. Vaes, Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 6, 837-934 Zbl 1034.46508 MR 1832993

[11] J. Kustermans and A. Van Daele, C*-algebraic quantum groups arising from algebraic quantum groups. Internat. J. Math. 8 (1997), no. 8, 1067-1139 Zbl 1005.46038 MR 1484867 - Zbl 1005.46038

[12] E. C. Lance, Hilbert C*-Modules: A Toolkit for Operator Algebraists. London Math. Soc. Lecture Note Ser. 210, Cambridge University Press, Cambridge, 1995 Zbl 0822.46080 MR 1325694

[13] G. W. Mackey, Induced representations of locally compact groups. I. Ann. of Math. (2) 55 (1952), 101-139 Zbl 0046.11601 MR 44536

[14] R. Meyer, Bornological versus topological analysis in metrizable spaces. In Banach Algebras and their Applications, pp.
249-278. Contemp. Math. 363, Amer. Math. Soc., Providence, RI, 2004 Zbl 1081.46004 MR 2097966

[15] R. Meyer, Smooth group representations on bornological vector spaces. Bull. Sci. Math. 128 (2004), no. 2, 127-166 Zbl 1037.22011 MR 2039113 - Zbl 1037.22011

[16] A. Monk and C. Voigt, Complex quantum groups and a deformation of the Baum-Connes assembly map. Trans. Amer. Math. Soc. 371 (2019), no. 12, 8849-8877 Zbl 1472.46074 MR 3955567 - Zbl 1472.46074

[17] P. Podleś and S. L. Woronowicz, Quantum deformation of Lorentz group. Comm. Math. Phys. 130 (1990), no. 2, 381-431 Zbl 0703.22018 MR 1050324 - Zbl 0703.22018

[18] W. Pusz and S. L. Woronowicz, Representations of quantum Lorentz group on Gelfand spaces. Rev. Math. Phys. 12 (2000), no. 12, 1551-1625 Zbl 1079.81538 MR 1804864 - Zbl 1079.81538

[19] M. A. Rieffel, Induced representations of C*-algebras. Advances in Math. 13 (1974), 176-257 Zbl 0284.46040 MR 353003

[20] D. Rivet and R. Yuncken, Bornological quantum groups as locally compact quantum groups. 2021, arXiv:2106.02386

[21] S. Vaes, A new approach to induction and imprimitivity results. J. Funct. Anal. 229 (2005), no. 2, 317-374 Zbl 1087.22005 MR 2182592 - Zbl 1087.22005

[22] A. Van Daele, An algebraic framework for group duality. Adv. Math. 140 (1998), no. 2, 323-366 Zbl 0933.16043 MR 1658585 - Zbl 0933.16043

[23] C. Voigt, Bornological quantum groups. Pacific J. Math. 235 (2008), no. 1, 93-135 Zbl 1157.46041 MR 2379773 - Zbl 1157.46041

[24] C. Voigt and R. Yuncken, The Plancherel formula for complex semisimple quantum groups. 2019, arXiv:1906.02672

[25] C. Voigt and R. Yuncken, Complex Semisimple Quantum Groups and Representation Theory. Lecture Notes in Math. 2264, Springer, Cham, 2020 Zbl 07243252 MR 4162077

[26] A. Wassermann, Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes réductifs. C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 18, 559-562 Zbl 0615.22011 MR 894996 - Zbl 0615.22011

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.