INTRODUCTION
The ethnomedicinal system and herbal medicine is a healing agent of chief importance in addressing health care problem of traditional communities (Tilahun and Moa, 2018). The therapeutically vital plants are known to be used by folkloric people to treat various diseases such as diabetes, dysentery, fever, headache, rheumatism, snakebite, cough and some as food and food additives (Triputresh et al., 2019). A large helping of the world population, particularly in developing countries, depends on traditional medicine for the treatment of diseases and wounds. The World Health Organization reported that 80% of the world populations trust mainly on indigenous medicine and that the common of traditional therapies involve the use of plant extracts or their dynamic constituents (Fabricant and Farnsworth, 2001).

A tropical country like India having a rich diversity of medicinal plants formally recognizes nearly about 8,000 species with their medicinal value. Globally, about 85% of the traditional medicines used for primary health care are derived from plant parts uses with a great number of tribal people who are living in different geographic locations with various subsistence patterns (Abubacker et al., 2018 and Sathishkumar and Anbarasu, 2019). These tribal groups living in biodiversity-rich areas possess a wealth of knowledge on the utilization of medicinal plants to relive people from various diseases and illness without any side effects. Traditional medicine and ethnomedical information can provide valuable clues for the selection, preparation and indications for the use of herbal formulation in the field of scientific research especially for the discovery of plant-based drugs. This traditional knowledge of...
medicinal plants handed over to generation to generation without any written document and also it has helped them to have a sense of responsibility in judicious utilization of the plant resources and also to conserve (Premkumar and Sundarrajan, 2018).

There is vast information on the use of indigenous medicinal plants in Yercaud over the last periods. In light of this, therefore, there is a high expectation of vast traditional knowledge of medicinal plant species in Yercaud hills due to the use of diverse plant species, variety of cultures, various languages, and views among the different ethnic groups in Yercaud. To our information, there are no data about the traditional medicinal plant knowledge and use by several local communities in Yercaud. Moreover, Yercaud is one of the experiencing dynamic changes in cultural norms and system, which renders the traditional and local knowledge of medicinal plants to be easily forgettable as most of the indigenous traditional knowledge is moved to the local community members orally. Therefore, the current study revealed to assess and document the medicinal plants used among the traditional healers and local community members in and around the Yercaud hills.

MATERIALS AND METHODS

The present investigation was undertaken to collect information from Malayali tribes on the use of medicinal plants from Yercaud Hills, Tamil Nadu. Fieldwork in tribal areas was the most important part of all ethnobotanical research. Before starting with fieldwork, preliminary information about the geographical area of study, its physiographical features, climate etc. were collected. A general idea about the tribal community was acquired from the publication of Malayali tribes. With the help of the Yercaud map (Fig. 1), the tribal hamlets to be visited were located. Means of conveyance and easiest route to each village from the research station were identified, and frequent field surveys were carried out in Yercaud hills in different seasons during 2014-2016. The information was accrued after discussions with sixty-three tribal persons, the village head, elderly persons and other local informants. Ethnobotanical data were collected using semi-structured interviews, group discussion, guided field walks, and observations with participants. Uses of plants as given by them were recorded and voucher specimens were also collected simultaneously, for authentication of information and future record through herbaria. The collected ethnomedicinal information was recorded on field notebooks and plants were identified using the Flora of the Presidency of Madras (Gamble and Fischer 1935) and Flora of Tamil Nadu-Carnatic (Mathew, 1983).

RESULTS AND DISCUSSION

The present exploration revealed that 40 plant species belonging to 38 genera of 25 families were used by Malayali tribes for treating various ailments like a snake bite, earache, chest pain, body pain, lumbago, eczema, haemorrhoids, jaundice, dog bite, sprain,
Botanical Name	Vernacular Name	Family	Sources of Preparation	Route of Administration	Phytochemical compounds
Erythroxylum monogy-	Sembulchaan	Erythroxylaceae	Bark is ground to powder	Powdered bark is administered with a cup of hot water for 4 days for the treatment of beetle bite	Hibaeeneepoxide, Monogynol, Devodarool, Alkaloids, Diterpines such as erythoxydiol, erythroxytriol, Hydrocarbons, primaradies, Isoatisirine, Alisine, Devadorene and erythroxylols Q and P (Dhanunjaya et al., 2019)
num Roxb.					
Clausena dentata	Annaikattipalam	Rutaceae	Roots of Clausena dentata Wildd. are mixed with roots of Calotropsis gigantea R.Br and bark of Cassia fistula L ground to powder and mixed together	A prepared mixture of powder is taken in a cup of hot water and given orally to get rid of snake venom.	Alkaloids, Carbohydrates, flavonoids, phenols, proteins, saponins, steroids and tannins (Prathapa et al., 2016)
Wild.					
Aristolochia bractol-	Aaduthinnapalai	Aristolochiaceae	Mixture of leaves of Aristolochia bractolata Retz with leaves of Hemidesmus indicus R.Br and roots of Tephrosia pumila Baker ground to powder and mixed together	A mixture of powder is taken in a cup of hot water and given orally for 4 days for snake bite	Coumarins, Steroids, Phenols, Terpenoids, Tanmins, Flavonoids, Glycosides and Carbohydrates (Trajee and Latha, 2016)
ata Retz					
Tylophora asthmatica	Pillunangai	Asclepiadaceae	Decoction obtained by adding small pieces of Tylophora asthmatica W. and Leaves with the bark of Cassia fistula L and leaves of Leucas aspera Spreng to boiling water	Decoction of this preparation is taken orally for 7 days for snake bite	
W. and A.					
Arthritis					
Ruta graveolens L	Agaravagaram	Rutaceae	Leaves of Ruta graveolens L and Rhizome of Drynaria quercifolia (L.) Jare ground to powder and mixed together, and the powder is added to the boiling oil	Chrism is applied externally on the painful region for arthritis	Phenols, glycosides, triterpenoids, phenolic compounds, glycolipids and steroids (Teklit and Tanveer, 2015)
Body pain					
Capparis divaricata	Sellapattai	Capparidaceae	Mix bark of Capparis divaricata Hk.f. and T with bark of Dalbergia latifolia Roxb, Gmelina arborea Roxb, Grewia tilaefolia Vahl and Lannea coromandelica (Houtt.). Mert ground to powder and mixed together	A prepared mixture of powder is mixed in a cup of hot water and is given orally for 3-4 days to relieve the body pain	Alkaloids, Carbohydrates, tannins, glycosides, phenolic compounds and flavonoids (Hirave and Kondawar, 2016)
Hk.f. and T					
Cardiospermum heli-	Mudakkathan	Sapindaceae	Decoction prepared by boiling of leaves of Cardiospermum helicacabum L along with roots of Centelia asiatica Urb in water.	A decoction is given orally for 10 days for body pain	Steroids, triterpenoids, sugars, alkaloids, phenols, saponins, amino acids, tannins and anthracene glycosides (Maluventhanviji et al., 2016)
cacabum L					
Condition	Plant Name	Part Used	Preparation/Usage	Active Constituents	
-------------	------------------------------------	------------------------	---	---	
Bone fracture	*Holarrhena pubescens* (Buch. Ham.) Wall.ex.G.Don Kudasapali Apocynaceae	Bark is crushed and a paste is prepared in water	Paste is applied externally for Bone fracture	Flavonoids, cardiac glycosides, saponins, steroids, volatile oil, alkaloids, amino acids, protein and reducing sugar (Turendra and Makeikhawale, 2019)	
Chest pain	*Solanum lycopersicum* Linn Thakalai Solanaceae	Leaves are crushed and soaked in a cup of water	Infusion is given orally for 10 days before breakfast	Reducing sugar, tannins, flavonoids, steroids, saponins and alkaloids (Homaria et al., 2016)	
Chest pain	*Diospyros ebenum* Koen Karugaali Ebenaceae	Mix bark of *Diospyros ebenum* Koen with leaves of *Leucas aspera* Spr and bark of *Hiptage madablotia* Gaertn., *Lannea coromandelica* (Houtt.)Merr., *Randia malabarica* Lam, *Syzigium cumini* (L.) Skeels, *Terminalia chebula* Retz and *Toddalia asiatica* Lam ground to powder and mixed together	Prepared mixture of powder is in a cup of hot water and given orally for chest pain	Triterpenes, carbohydrates, flavonoids and tannins (Khaled Nabilh, 2013)	
Dog bite	*Cassia occidentalis* L Utharam Caesalpinaceae	Leaves are crushed and a paste is prepared in water	The paste is tied over the dog bitten area	Alkaloids, Saponins, Flavonoid, anthraquinones and tannins (Nnama et al., 2018)	
Ear ache	*Leucas aspera* Spr Thumbai Lamiaceae	Juice obtained by crushing and squeezing of leaves	Leaves juice extract is poured into the ear	Terpenes and Terpenoid, steroids and fatty compounds, Glycosides, flavonoid and Lignane compound (Priya et al., 2018)	
Ear ache	*Solanum melongena* L Kathirikai Solanaceae	Juice obtained by crushing and squeezing of leaves	Leaves juice extract is poured into the ear	Tannins, saponins, alkaloids, flavonoids and phenols (Bader Omer Burham et al., 2016)	
Eczema	*Mukia madraspatana* (L.) Roem Musumusukkai Cucurbitaceae	Raw fruits	Raw fruits are scrubbed on the affected part externally to prevent the eczema	Tannins, saponin, flavonoids, steroids, terpenoids and cardiac glycerides (Gomathy et al., 2012)	
Eczema	*Plumeria rubra* L Paalarali Apocynaceae	Raw latex	Fresh latex is applied externally to prevent the eczema	Sterols, Terpenoids, carbohydrates, proteins, Alkaloids, saponins, tannins, muclages and volatile oil (Dhanapal et al., 2018)	
Epididymitis	*Cynodon dactylon* Pers Arugampullu Poaceae	Small sized pills are prepared from whole plant parts of *Cynodon dactylon* Pers and *Mimosa pudica* L	These pills are given orally for 7 days to cure epididymitis	Sterols, terpenoids, carbohydrates, flavonoids, proteins, alkaloids, saponins and tannins (Dhanapal et al., 2018)	
Condition	Plant Name	Family	Part Used	Preparation	Constituents
-------------------	-----------------------------	--------------	-------------------------	---	--
Hemorrhoids	Aloe barbadensis Mill	Liliaceae	Leaves of Aloe barbadensis Mill and Mimosa pudica, Linn crushed and a paste is prepared with water	Paste is mixed with cow milk and given orally for hemorrhoids	Alkaloids, saponins, tannins, sterols, flavanoids and phenol (Darshan et al., 2017)
Jaundice	Cassia auriculata L	Caesalpiniaceae	Raw flowers	Fresh flowers are administered to the patients till cure jaundice	Alkaloids, carbohydrate, fixed oil and fats, Tannins, phenols, gum and Mucilage, flavonoids, saponins and sterols (Devadaskumarasamy et al., 2013)
Lumbago	Asclepias curassavica L	Asclepidaceae	Juice obtained by crushing and squeezing of leaves of Asclepias curassavica L, Canthium parviforum Lam, Indigofera cassioides L and Pergularia daemia (Forsk.) chiov	Leaves juice extract is mixed with milk and is given orally for 2 days to cure lumbago	Steroids, glycosides, phenols, tannins, saponin and proteins and amino acids (Varsha and Meeta, 2019)
Painful menstruation	Azadirachta indica A. Juss	Meliaceae	Bark is added to boiling water	This water is given orally to cure painful menstruation	Alkaloids, flavanoids, glycosides, Reducing sugar, tannins, saponins, polysaccharides, phytosterols and phenols (Priya et al., 2018)
Sprain	Datura metel L	Solanaceae	Leaves are crushed and a paste is prepared in water	Paste is applied externally for sprain	Steroids, alkaloids, flavanoids, saponins, triterpenoids, phenols and glycosides (Vaidyanathan et al., 2014)
beetle bite, epididymitis, bone fracture, arthritis and painful menstruation which are catalogued in Table 1. The traditional healers prepared the herbal formulation by use of vastly tree species. Among the 40 species, tree (13 species), herb (10 species), shrub (9 species), climber (6 species) and undershrub (2 species) were recorded and are represented in Fig. 2. Savinaya et al. (2016) also reported the advantages of different tree species as the dominant herbal medicine source. This was also due to the existence of the evergreen type of forest where the floor is covered maximum with bud-ding forms of evergreen tree species likewise tall trees that form a ceiling from the sun above. This ceiling keeps smaller plants from growing. The most dominant plant parts by Malayali tribes in the study were leaves (16 species) which are commonly used in herbal medicines because they are rich in bioactive secondary metabolites; and also, the leaves are the main photosynthetic organs and act as the storage for exudates which are against lethal entities and also medicinal benefits to the human body (Ahmad et al. 2014) followed by bark (13 species), and root (5 species) other parts with the low number are listed; whole plant parts (2 species) and fruit, flower, rhizome and latex (1 species each) are shown in Fig. 3.

Malayali tribes are used various mode of preparation from medicinally important plants included paste, decoction, powder, juice, infusion, pill, chrism and raw material for curing various ailments. In our study the plant products are consumed raw or in the form of powder (45%), juice (15%), infusion (7.5%), decoction and pill (0.5%) for oral treatment and paste (12.5%) and chrism (0.5%) when applied externally (Fig. 4). The Malayali traditional healers used more than one plant for the preparation of medicine in the treatment of various ailments. The frequent use of multiple plant remedies among the traditional healers could be attributed to the belief of collaborative effect where one plant could have a potentiating effect on the other (Giday et al. 2009). Polyherbal formulations are more effective to treat the diseases as compared to the single plant (Teklehymat et al. 2007).

The medicinal uses of plants gathered in the study were compared with the previously published information from Yercaud hills (Udayan and Satheesh George, 2006, Kadaval and Dixit, 2009, Parhipan et al., 2011 and Senthilkumar et al., 2013) and also from Eastern Ghats of Tamil Nadu (Dhatchanamoorthy et al.2013, Salai Senthilkumar et al., 2014 and Vaidyanathan et al., 2014). The combination of herbs in our observation differed from the reports like Senthilkumar et al. (2013) who recorded that Malayali tribes in Yercaud hills used Calotropis gigantea for swellings, Cassia occidentalis for skin diseases, Cynodon dactylon for kidney disorder Leucas aspera for fever and stomachache, and Ruta graveolens for dysentery. But in our observation, these plants were used for the treatment of snakebite, dog bite, epididymitis, chest pain and arthritis, respectively. Anjalam et al. (2016) reported that Malayali tribes in Kolli hills used Eryxylum monogynum leaves paste which acted as antipetide and in our findings bark of Eryxylum monogynum was used for the antidote for the poisonous bite. Soniya and Raju (2017) documented Azadirachta indica for liver ailments, Cardiosperum helicacabum for rheumatic pains, Cassia auriculata for heart disorder Leucas aspera for fever and stomachache, and Ruta graveolens for dysentery. But in our observation, these plants were used for the treatment of snakebite, dog bite, epididymitis, chest pain and arthritis, respectively. Anjalam et al. (2016) reported that Malayali tribes in Kolli hills used Eryxylum monogynum leaves paste which acted as antipetide and in our findings bark of Eryxylum monogynum was used for the antidote for the poisonous bite. Soniya and Raju (2017) documented Azadirachta indica for liver ailments, Cardiosperum helicacabum for rheumatic pains, Cassia auriculata for heart disorders and Datura metel for chronic ulcer and asthma were similar to our findings. In addition, many of the ethnomedicinal plants reported during the present investigation are scientifically proved for various biological activities (Maluventhanviji et al., 2016; Teklit and Tanveer, 2015; Hirave and Kondawar,2016; Prathapa Reddy et al., 2016; Trayee and Latha, 2016; Dhanunjava et al., 2019; Turendra and Maheshkawale, 2019).
Conclusion

Medicinal plants that were traditionally used for different ailments in Yercaud hills by Malayali tribes in Tamil Nadu as well as all over the world contain a variety of chemical constituents and thus can be more effective and can play a significant role to cure different diseases and disorders. A comprehensive study is required to conserve these wild medicinal and aromatic plant species. Even though there is no existing database to deposit the documented traditional knowledge in the study area, elderly people of the local area were always satisfied with medicinal plants and their healing uses. It is, therefore, proposed that the traditional knowledge from the people should be documented along with quality photography. The documentation of this current study also supports the ethnomedicinal benefits, as stated in earlier studies.

ACKNOWLEDGEMENTS

I extend my special thanks to Mr. N. Thangaraju, I.F.S., District Forest Officer, Salem Division, Salem, to give permission to carry out my research work in Yercaud hills area. I express my gratitude to the local traditional healers in the Yercaud hills for sharing their knowledge of herbal medicines.

Conflict of interests

The authors declare that they have no conflict of interests.

REFERENCES

1. Abubacker, M. N., Gurunathan, G., Ganapathy, G. and Prince, M. (2018). Survey of some ethno medicine used by tribal population in Nilgiri Hills, South India, American Journal of Ethnomedicine, 5(1): 1-7.
2. Ahmad, M., Sultana, S., Fazi-i-Hadi, S., Ben Hadda, T., Rashid, S., Zafar, M., Khan, M.A., Khan, M.P.Z. and Yaseen, G. (2014). An ethnobotanical study of medicinal plants in high mountainous region of chail valley (district Swat-Pakistan), J. Ethnobiol Ethnomed., 10: 36.
3. Anjalam, A., Kalpana, S., Vijay, T. and Premalatha, S. (2016). Documentation of medicinal plants used by mala-yali tribes in Kolli Hills, International Journal of Advanced Research in Biological Science, 3(3): 101 - 107.
4. Bader Omer Burham. (2016). Phytochemical Screening and elemental analysis of Solanum melongena (Peels) from Alba area (KSA), Asian Journal of Biochemical and Pharmaceutical Research, 2(6): 113 – 122.
5. Darshan Dharajiya., Nalin pagi., Hitesh Jasani and Payal Patel. (2017). Antimicrobial activity and phytochemical screening of Aloe vera (Aloe barbadensis Miller), International Journal of Current Microbiology and Applied Science, 6(3): 2152-2162.
6. DevadosKumarasamy Raja., Nattannai Sudararaman Jeganathan and Rajappan Manavalan. (2013). In vitro antimicrobial activity and phytochemical analysis of Cassia auriculata Linn, International Current Pharmaceutical Journal, 2(6): 105-108.
7. Dhanapal Venkatachalam., Samuel Thavamani B and Muddukrishniah. (2018). Pharmacogonostical and phytochemical evaluation of leaf of Plumeria rubra, World Journal of Pharmaceutical Research., 7 (4): 605-616.
8. Dhanapal Venkatachalam., Samuel Thavamani, B., Muddukrishniah, K., Suganyavithian and Vinod, K.R. (2017). Antimicrobial activity and phytochemical analysis of aerial parts of Cynodon ndactylon., International Journal of Academic Research and Development., 3 (3): 116-121.
9. Dhanunjaya Kumar, C., Anitha, S., Varalakshmi, P., Dow-lathabad, and Muralidhara Rao. (2019). Evaluation of Potential phytochemical and phytopharmaceutical activities of Erythroxylum monogynorum Roxb., Biosciences Biotechnology Research Asia, 16 (2): 441-449.
10. Dhatchanamoorthy, N., Ashok kumar, N and Karthik, K. (2013). Ethnomedicinal plants used by Irular tribes in Javadhu hills of Southern Eastern Ghats, Tamil Nadu, India, International Journal of Current Research and Development, 2(1): 31 – 37.
11. Fabricant, DS. and Farnsworth, NR. (2001). The Value of Plants Used in Traditional Medicine for Drug Discovery, Environmental Health Perspectives., 109: 69-75.
12. Gamble, J.S. and Fischer C.E.C. (1935). Flora of Presidency of Madras, London (Issued in II part: 1-7 By Gamble, 8-11 by Fischer). 1-3, Calcutta.
13. Giday, M., Asfaw, Z. and Woldu, Z. (2009). Medicinal plants of the Meinit ethnic group of Ethiopia, An ethnobo- tanical study, J Ethnopharmacol., 124: 513 - 521.
14. Gomathy, G., Vijay, T., Sarumathy, K., Gunasekaran, S. and Palani, S. (2012). Phytochemical screening and GC-MS analysis of Mukia maderaspatana (L.) leaves, Journal of Applied Pharmaceutical Science., 2(2): 104-106.
15. Hirave, R.V. and Kondawar, M.S. (2016). Anticancer activity of Capparis divericata Lam leaves extract, International Research Journal of Pharmacy. 7(8): pp 13-15.
16. Homaira Afreen, Toufiq-Ul Amin Md. Siddiquil Islam, Sal- ma Parvin and Rayhanus. (2016). In vitro phytochemical analysis and cytotoxic assay of leaves of Solanum lycopersicum Linn by brine shrimp bioassay, Journal of Inno- vations in Pharmaceuticals and Biological Sciences., 3 (3): 81-85.
17. Kadavul, K., Dixit,A.K. (2009). Ethnomedicinal studies of the woody species of Kalayaray and Shervaryan hills, Eastern Ghats, Tamil Nadu, India, Journal of Traditional Knowledge., 8 (4): 592-597.
18. Khaled NabilhRashed. (2013). Antioxidant activity from Diospyros ebenum stem extracts and phytochemical profile, Journal of Applied and Industrial Science., 1 (2): 70 - 72.
19. Maluventhanviji, Mani Sathiya and Sangu Murugesan (2016). Phytochemical analysis and antibacterial activity of medicinal plant Cardiospermum helicacabum Linn, Pharmacology online, 2: 445-486.
20. Mathew, K.W. (1983). Flora of Tamil Nadu Carnatic, the Rapinat Herbarium, Trichirapalli, India.
21. NnamaTochukwu., IldibeChigoez., Okeke Somandina., Ikpeze., S.C. and Ozumba, O.G. (2018). Phytochemical and acute toxicity study of Cassia occidentailis leaf extract in Albino Wister Rats, EC Clinica and Experimental Anatomy., 1 (3): 118-123.
22. Parthipan, M., Aravindhan,V. and Rajendran, A. (2011). Medico-botanical study of Yercaud hills in the Eastern Ghats of Tamil Nadu, India, Anc Sci Life.,30(4): 104-109.
23. Prathapa Reddy, M., Rama Rao, V., Shantha, T.R, Kishore kumar, R., Shiddamalaiyaa, N. and Sulochana Bhat. (2016) Phytochemical analysis and thin layer chromato- graphy of Clausens dentate (Wild) Roem, World Journal of Pharmacy and Pharmaceutical Sciences., 5(9):
24. Premkumar and sundarajan. (2018). Medicinal Plants used by the Malayali Tribe of Servarayan Hills, Yercaud, Salem District, Tamil Nadu, India International Journal of Science and Research, 7: 956-961

25. Priya, R., Nirmala, M., Shankar, T. and Malarvizhi, A. (2018). Phytochemical compounds of Leucas aspera L., Pharmacological Benefits of Natural Products., 2: 19-35.

26. Salai Senthilkumar, M.S., Vaidyanathan, D., Sivakumar, D. and Ghouse Basha., M. (2014). Diversity of ethnomedicinal plants used by Malayali tribes in Yelagiri hills of Eastern ghats, Tamil Nadu, India, Asian Journal of Plant Sciences and Research., 4 (1): 69-80.

27. Sathishkumar and Anbarasu. (2019). Ethnomedicinal plants of Gopalswamy Hills, Western Ghats, Coimbatore District, Tamil Nadu, International Journal of Plant, Animal and Environmental Science., 9(1): 6 – 12.

28. Savinaya, M.S., Sangamesh, S., Patil, Narayana, J. and Krishna,V. (2016). Traditional medicine and diversity of medicinal plants in Shararathi valley region of central Western Ghats, International Journal of Herbal Medicine., 4(6): 124-130.

29. Senthilkumar, K., Aravindhan, V., and Rajendran, A. (2013). Ethnobotanical Survey of Medicinal Plants used by Malayali Tribes in Yercaud Hills of Eastern Ghats, India, Journal of Natural Remedies, 13 (2): 118-132.

30. Senthilkumar, K., Aravindhan, V., and Rajendran, A. (2013). Ethnobotanical Survey of Medicinal Plants used by Malayali Tribes in Yercaud Hills of Eastern Ghats, India, Journal of Natural Remedies., 13 (2): 118-132.

31. Soniya, S. and Raju, K. (2017). Traditional herbal remedies the tribes of Malayali in Shervarayan Hills (Yercaud), Salem District, Tamil Nadu, India, Int. Journal of Engineering Research and Application., 7(11): 86-91.

32. Teklehymanot, T., Giday, M., Medhin, G. and Mekonnen, G. (2007). Knowledge and use of medicinal plants by people around Debre Libanos monastery in Ethiopia, J Etho-pharmacol.,111: 271 - 283.

33. Teklit Gebregiorgis Amabye and Tanveer Mahamadai Shahlkh. (2015). Phytochemical Screening and Evaluation of antibacterial activity of Ruta graveolens L. – a medicinal plant around Mekelle, Tigray, Ethiopia, Natural Products and Research, 3 (6): 2-4.

34. Tilahun Tolossa Jimma and Moa Me gersa. (2018). Ethnobotanical studies of medicinal plants used to treat human diseases in Berbere District, Bale zone of Oromia Regional state South East Ethiopia, Evidence based Complementary and Alternative medicine, 1-6.https://doi.org/10.1155/2018/8602945.

35. Trayee Sarar Das, R and Latha Agastian P. (2016). Evaluation of Aristolochia bracteolate Linn for antimicrobial activity, Glucosidase inhibition and its phytochemical constituents, Asian Journal of Pharmaceutical Research, 9(1): 102-107.

36. Tripuresh Dwivedi, Chandra Kanta., Lalit Raj Singh and Ishwar Prakash Sharma. (2019). A list of some important medicinal plants with their medicinal uses from Himalayan State Uttarakhand, India, J MPS, 7(2): 106-116

37. Turendra Lilhare and Mahesh Kawale. (2019). Pharmacognostic and phytochemical studies on Holarrhena antidysenterica (Roth) Wall. Ex. A. Dc. Global Journal of Bio-science and Biotechnology., 8(2): 162-167.

38. Udayan, P.S., Satheesh George, K.V., Tushar and Indira Balachandran. (2006). Medicinal Plants used by the Malayali tribe of Servarayan Hills, Yercaud, Salem district, Tamil Nadu, India, Zoos’ Print Journal., 21(4): 2223-2224.

39. Vaidyanathan, D., Salai Senthilkumar, M.S., Sisubalan, N. and Ghouse Basha, M. (2014). Studies on ethnomedicinal plants used by malayali gounder tribes in Pachamalai of Eastern ghats, Tamil Nadu, India, Advances in Applied Sciences Research., 5 (1): 244 - 253.

40. Varsha shelke and Meeta Bhot. (2019). GC-MS analysis and Bio-active compounds in ethanolic extract of leaf and stem of Asclepias curassavica L. Int. J. Pharm., 9(2): 67-70.