Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation

Junjing Xue a,b, Kolapo M. Ajuwon c, Rejun Fang a, b, *

a College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
b Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
* Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907-2054, United States

ABSTRACT

The intestinal tract is a host to 100 trillion of microbes that have co-evolved with mammals over the millennia. These commensal organisms are critical to the host survival. The roles that symbiotic microorganisms play in the digestion, absorption, and metabolism of nutrients have been clearly demonstrated. Additionally, commensals are indispensable in regulating host immunity. This is evidenced by the poorly developed gut immune system of germ-free mice, which can be corrected by transplantation of specific commensal bacteria. Recent advances in our understanding of the mechanism of host-microbial interaction have provided the basis for this interaction. This paper reviews some of these key studies, with a specific focus on the effect of the microbiome on the immune organ development, nonspecific immunity, specific immunity, and inflammation.

© 2020, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The intestinal tract is a complex microecosystem, which contains around 100 trillion microbes of different classes (Cultrone et al., 2015). The largest population of intestinal microbes is located in the large intestine and the distal small intestine, most especially in the colon where the bacteria population is up to 10^{12} CFU/mL (O’Hara and Shanahan, 2006). The bacterial population is very low in the small intestinal sections, especially in the duodenum and the jejunum (Fu et al., 2018), which is due to the low pH reduced by multiple digestive enzymes and the relatively quick motility. At the phylum level, intestinal microbiota mainly includes Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Verrucomicrobia, Fusobacteria, and Cyanophyta in Homo sapiens, Mus musculus, and Gallus gallus, and Firmicutes and Bacteroidetes account for 90% of all intestinal microbiota (Meng et al., 2018; Moon et al., 2018). Firmicutes mainly include Gram-positive bacteria such as Fusobacterium clostridia and Streptococcus, and Bacteroidetes mainly include Gram-negative bacteria such as Bacteroides thetaiotaomicron and Bacteroides ovatus (Seong et al., 2018; Gibiino et al., 2018). Organisms in the gut include anaerobes, facultative anaerobes, and aerobes. The anaerobes account for 99% of all intestinal microbiota (Sommer and Bäckhed, 2013). Based on their effects on the gut, intestinal microbiota falls into 3 categories (Puckey and Sartor, 2009): 1) physiological bacteria — these are the dominant bacteria communities in the intestinal tract and are mostly anaerobes, mainly including Bifidobacterium, Lactobacillus, and Bacteroides; 2) opportunistic pathogens — these are comprised of mostly facultative aerobes and incorporate Escherichia coli and Klebsiella pneumonia (Cerny et al., 2015); 3) pathogenic bacteria such as Clostridium perfringens (Lin et al., 2017).

The embryo gut is sterile in the utero during pregnancy (Xiao et al., 2017). However, microorganisms immediately populate the gastrointestinal tract after the newborn contacting with the external environment to form a stable gut microbial community (Bäckhed et al., 2015). Bifidobacterium is one of the earliest colonizers of the gut (Freitas and Hill, 2018). The dynamics of gut microbiome colonization is influenced by the mode of delivery of...
the newborn, postnatal diet, gestational age, hygiene level, and medication (Indrio et al., 2017).

The microbiome evolves with animals over several thousands of years and a symbiotic relationship has been established to ensure the survival of both the microbes and the host. Gut microbes are involved in digestion and absorption of nutrients. For example, gut microbes play important roles in the nutrient harvest by increasing the host nutrient digestibility through secreting digestive enzymes and enhancing the enzymatic activity (Adorian et al., 2018). Microbiota can produce short-chain fatty acids (SCFA) through the fermentation of food in the gut to supply extra energy to animals (Wang et al., 2017b). Short-chain fatty acids, such as formic acid, acetic acid, propionic acid, butyric acid, and valeric acid, are the organic fatty acids with the number of carbons from 1 to 5 (Gardana et al., 2017). Gut microbes also synthesize and provide critical vitamins that promote the health and the metabolism of the host (Carrizo et al., 2016). Recent studies showed that the gut microbiota is strongly linked to the regulation of the host immunity and inflammation. For example, dietary probiotics promote immunity and reduce inflammatory responses of the host animals (Guo et al., 2017; Khalova et al., 2016). When germ-free animals and conventional animals are infected with the same virus, the immune response in germ-free animals is significantly reduced, accompanied by severe diseases (Ganal et al., 2012). However, the immune response of germ-free animals is rescued through the transplantation of gut microbiota from conventional animals (Ganal et al., 2012).

The gut is one of the largest immune organs in the body (Desselberger, 2018). The intestinal barrier is a multilayer that comprises microbial, chemical, mechanical, and immune barriers and it protects the host against pathogens (Wang et al., 2015). Gut microbiota constitutes the microbial barrier. It suppresses the growth and reproduction of pathogens by competing with them for nutrients and adhesion sites on the host (Jandhyala et al., 2015; Roselli et al., 2017). Commensal microbes also take part in the constitution of the chemical barrier by secreting various substances, such as the bacteriocin, to inhibit pathogens colonization (Kreth et al., 2009). The mechanical barrier includes mucus, physical absorption, fluid dynamic systems, epithelial cells, and tight junctions. Transmembrane proteins, such as claudins, and cytoplasmic proteins, such as the zonula occludens 1 (ZO-1), ZO-2 and ZO-3, take part in the constitution of tight junction (Kim et al., 2018). The gut-associated lymphoid tissue (GALT) and diffuse immune cells are important components to form the immune barrier. Gut-associated lymphoid tissue maintains the homeostasis of host immunity through its ability to sense and scavenge pathogenic bacteria leading to tolerance and prevention of pathological immune response. The establishment of immune tolerance is related to Toll-like receptors (TLR) and nuclear factor kappa-B (NF-kB) signal pathway (Tostanoski et al., 2019; Riemann et al., 2017). Gut microbiome can restrain NF-kB signal pathway by suppressing the ubiquitination of inhibitor of NF-kB to establish the gut immune tolerance (Neish et al., 2000). Meanwhile, the gut microbiome is an important factor to stimulate the maturation of the immune system (Lee-Sarwar et al., 2018). Gut microbiota can influence specific immunity and nonspecific immunity in different ways (Table). This paper reviews key studies that cover the core mechanisms, such as the impact of the gut microbiome on the development of immune organ, nonspecific immunity, specific immunity, and inflammation. These studies provide a theoretical basis for the understanding of how the gut microbiome regulates immunity and inflammation.

2. Gut microbiome and its effect on immune organ maturation

Immune organs are divided into central and peripheral immune organs. The central immune organs, such as the thymus gland, bone marrow, and bursa of Fabricius (one of immune organs in avian species), are the places for immune cells to develop, differentiate, and mature. The peripheral immune organs are the places that immune cell settles down and immune response happens. The peripheral immune organs incorporate the lymph gland, spleen, and mucosa associated lymphoid tissues, which mainly include the GALT. The peripheral immune organs have important functions to keep the balance between immunity and tolerance, and they also are able to induce tolerance under the certain circumstance.

The gut microbiome has a remarkable effect on the development of immune organs. The weight and development of the thymus in germ-free animals are significantly lower than those in conventional animals (Waaij, 1986). The B cell and T cell regions are shrunken in the spleen of the germ-free mouse compared with the conventional mouse, and there is considerable endothelial microvessel hyperplasia in the germ-free mouse compared to the conventional mouse, an indication of immaturity (Macpherson and Harris, 2004). In addition, the structures of the B cell and T cell regions in the spleen and lymph nodes of the germ-free mice are in disorder (Bveneniste et al., 1971). The volume and number of cells in the mouse spleen germinal center, an area which includes the B cell germinal center, are smaller in germ-free animals than in conventional animals, which indicates the poor differentiation and maturation of the B cells in germ-free animals (Crabbé et al., 1968). Previous evidence showed that microbiome colonization could change the structure of the intestinal villi and crypt to promote the maturation of gut (Sommer and Bäckhed, 2013). The intestinal epithelium of germ-free animals is poorly developed due to the weakness of vascularization (Hall et al., 2008). Additionally, the epithelium of cecum in germ-free animals is less healthy than that in conventional animals including the thinner intestinal walls, the longer villi, and the narrower crypts (Umesaki et al., 1993). Simultaneously, the lymph nodes of germ-free animals are smaller and the numbers of lymphocytes, plasma cells, T cell receptor, CD4+, and CD8+ T lymphocytes are greatly reduced (Bauer et al., 1963). These abnormalities are capable of being reversed after microorganism colonization (Yanagibashi et al., 2013).

The development of GALT is mediated by the gut microbiome, including the Peyer’s patches (PP), the isolated lymphoid follicles (ILF), and the mesenteric lymph nodes (MLN) (Spahn et al., 2015). The PP, the MLN, and the primordial germinal center are smaller in germ-free animals than in conventional animals, and the ILF is immature and the numbers of B and plasma cells are significantly reduced (Macpherson and Harris, 2004; Umesaki et al., 1993). The gut microbiome can promote the growth of the MLN and the PP (Yamashita et al., 2014). Engraftment the gut microbiome from conventional to germ-free animals leads to the recovery of GALT development (Lin and Zhang, 2017). When Bacillus subtilis and Bacillus fragilis are injected into the abdominal lumen of germ-free rabbits, they can facilitate the growth of GALT and induce the proliferation of B cells (Rhee et al., 2004). Previous studies showed that, although lymphoid tissues such as the PP and the MLN could be formed under a sterile environment during fetal growth, the full development of the PP and the MLN was only facilitated through the interaction with the microbiome after birth (Renz et al., 2012), and the microbiome was critically needed for the development of the ILF (Pabst et al., 2006).
Like receptors (NLR) (Corridoni et al., 2018). Pattern recognition complement, lysozyme, and interferon (IFN). The activation of non-
they can devour pathogen. Innate immune molecules include
innate immunocytes, and innate immune molecules. Innate
against antigen. It includes organizational barriers (skin barrier,
3. Gut microbiome regulates non-specific host immunity
Non-specific host immunity system is the first line to resist
against antigen. It includes organizational barriers (skin barrier, mucous membrane barrier, blood–brain barrier, placental barrier), innate immunocytes, and innate immune molecules. Innate immunocytes include macrophages, neutrophils, natural killer cells, eosinophils, basophils, and membranous cells. Especially, macrophages and neutrophils have the phagocytic function and they can devour pathogen. Innate immune molecules include complement, lysozyme, and interferon (IFN). The activation of non-
host immunity relies on pattern recognition receptors, which include TLR, nucleotide binding and oligomerization domain like receptors (NLR) (Corridoni et al., 2018). Pattern recognition receptors can recognize the pathogen-associated molecular pattern and activate dendritic cells, macrophages, mastocytes, and innate lymphoid cells (ILC) (Lee et al., 2019). At least 13 different TLR have been identified in animals (Lee et al., 2017). Toll-like receptor 4 is able to recognize lipopolysaccharide (LPS), which is the composition of Gram-negative bacterial cell wall, and to activate the downstream antibacterial signaling (Nighot et al., 2019). A previous study showed that LPS increased the permeability of intestinal epithelial tight junction, which was related to TLR4 and myeloid differential protein 88 (MyD88) pathways (Lee et al., 2017).

D. Van der Waaij et al. raised a concept of colonization resistance (Waaij et al., 1971) by which some obligate anaerobes can form the microbial barrier on the surface of the intestinal epithelium, compete with pathogenic bacteria for attachment sites and nutrients, and restrain their adhesion and colonization (Wang et al., 2002). Gut microbes produce various metabolites such as bacteriocin, SCFA, hydrogen peroxide, antimicrobial peptides, and lysozyme (Sommer and Backhed, 2013; Quereda et al., 2017; Wen and Wong, 2017). These substances can suppress and kill the pathogenic bacteria (Kreth et al., 2009). Short-chain fatty acids reduce the pH of the gut and suppress the growth of pathogens. Acetic acid and propionic acid are mainly produced by Bacteroidetes, and butyric acid is mainly produced by Firmicutes (Chang et al., 2014). Mucoprotein (MUC) is secreted by goblet cells and forms the inner and outer mucus layers. Symbiotic bacteria reside in the outer mucus layer and they cannot get across the inner mucus layer, so the contact between bacteria and enterocyte is lessened (Johansson et al., 2013; Hadaidi et al., 2017). The MUC2 is the most abundant MUC in the gut tract and exists in the outer mucus layer. It competes with pathogenic bacteria to bind to the surface receptor and inhibits the pathogen colonization. Lactobacillus acidophilus was reported to facilitate the expression of MUC (Oh et al., 2017). Simultaneously, gut microbiome can up-regulate the expression of regenerating islet-derived III protein and enhance the resistance of pathogenic bacteria (Cash et al., 2006).

Gut microbiome can enhance the host non-specific immunity by maintaining and strengthening the intestinal barrier function. B. thetaotaomicron and Faecalibacterium prausnitzii can promote the mucus secretion of intestinal mucosa and facilitate the goblet cell differentiation (Wrzosek et al., 2013). In addition, Streptococcus thermophilus and L. acidophilus can accelerate the phosphorylation of tight junction protein in the gut mucosa (Scaldaferri et al., 2012). Butyric acid can promote epithelial barrier function and the underlying mechanism are as follows: 1) regulating the immunological development of intestinal macrophage by suppressing the expression of histone deacetylases (Koh et al., 2016; Chen and Vitetta, 2018); 2) stimulating the expression of NLR3 through binding G-protein coupled receptor 43 (Cheng et al., 2018); 3) repressing the expression of claudin-2 protein by depending on interleukin (IL) 10 receptor α subunit (Zheng et al., 2017). Gut microbiome secretes muramyl dipeptides, which can help the lysozyme storing of the Paneth cells (Wang et al., 2017a). Gut microbiome also plays a role in regulating the non-specific immune cell function and the cytokine secretion. Dendritic cells recognize symbiotic bacteria and pathogens to trigger the innate immunity (Mason and Hovius, 2018). Probiotics can up-regulate the expression levels of CD80, CD86, CD40, and major histocompatibility complex II and can facilitate the secretion of 5-hydroxytryptamine in the dendritic cells (Drakes et al., 2004). Lactobacillus can strengthen the body antiviral response by enhancing the secretion of tumor necrosis factor α (TNF-α), IFN-γ, and IL-12 in the dendritic cells (Drakes et al., 2004). Gut microbiome increases the development and population of non-specific immune cells. Studies showed that the number of RORγt+ NKp46+ CD127+ NK1.1+ ILC and RORγt+ Table

Gut microbiota	Mechanism	Function
Bacteroides thetaiotaomicron,	Promote mucus secretion	Facilitate goblet cell differentiation
Faecalibacterium prausnitzii	Butyric acid	Promote epithelial barrier function:
		1) regulate the development of intestinal macrophages (Koh et al., 2015); 2) stimulate the expression level of NLR3 (Cheng et al., 2018); 3) repress the claudin-2 protein expression depending on IL-10RA (Zheng et al., 2017)
Lactobacillus	Enhance the secretion of TNF-α and IL-12 in	Strengthen the body antiviral response
	dendritic cells	(Drakes et al., 2004)
Lactobacillus casei, Bifidobacterium	Up regulate the expression level of Foxp3	Enhance the humoral immunity response
		(Helgeland et al., 2010)
Bifidobacterium	Stimulate the secretion of IL-1 and IL-6;	Curtail excessive immune response
	Reduce the contents of lipopolysaccharide and	(Rinaldi et al., 2018)
	proinflammatory factor	
Bacillus subtilis	Regulate the differentiation of Tregs and	Promote the differentiation of Treg cells
	Th17 cells	(Round et al., 2011)
Bacteroides fragilis	Polysaccharide A	Induce the differentiation of Th17 cell
		(Ivanov et al., 2009)
Segmental filamentous bacteria	Induce SAA, TGF-β, IL-6, IL-23 secretion	Induce the proliferation and differentiation
	Stimulate the secretion of TGF-β, and increase	of Tregs (Tinoce-Veras et al., 2017)
	the expression of Foxp3	

NLR3 = nucleotide-binding oligomerization domain-like receptor 3; IL-10RA = interleukin 10 receptor α subunit; TNF-α = tumor necrosis factor α; S IgA = secretory immunoglobulin A; Foxp3 = fork head/winged helix transcription factor p3; Th = T helper; Treg = regulatory T; SAA = serum amyloid protein A; TGF-β = transforming growth factor β.
4. Gut microbiome regulates specific immunity

Specific immunity includes the humoral immunity mediated by B cells and the cell-mediated immunity carried out by T cells. After activation by antigen, B cells can convert to plasma cells and memory B cells, and plasma cells secrete antibodies. Antibodies as an immunoglobulin incorporate IgA, IgD, IgE, IgG and IgM. T cells can be divided into helper T cells (Th cells), regulatory T cells (Treg cells or Tregs), cytotoxic T cells (Tc cells) and memory T cells. Cytotoxic T cells directly attack target cells and induce the apoptosis of target cells. Helper T cells can help Tc and B cells to play the immune response function by secreting multiple cytokines. Treg cells restrain the immune response. The gut microbiome is involved in the regulation of specific immunity through its effect in the regulation of IgA secretion, activation of T cells (Tanoue et al., 2016), and proliferation of lymphocyte. The quantity of thymus lymphocytes is significantly lower in germ-free mice than in specific pathogen free mice.

4.1. Regulation of humoral immunity by the gut microbiome

Gut microbiome promotes the maturation of B cells, which are involved in the antibody production. The human infant gut is rapidly colonized by E. coli and *Bifidobacterium* from 4 to 8 wk after birth, and these microbes significantly increase the number of CD20^+CD27^+ B cells in peripheral blood from 4 to 18 months (Lundell et al., 2012). Gut bacteria also can promote B cell differentiation. Short-chain fatty acids, as the metabolites of gut microbiome, increase the transformation of B cells into antibody-producing cells (Kim et al., 2016). The flagellin of symbiotic strains can induce B cell differentiation through promoting the synthesis of retinoic acid (Mora et al., 2006). Symbiotic strains contact with dendritic cells, activate MyD88 signaling, and promote the differentiation of IgA^+ B cells through the secretion of transforming growth factor β (TGF-β), chemokines chemokine (C-X-C motif) ligand 13 (CCL13), and B cell activating factor (Kunisawa et al., 2013). The gut microbiome also influences the number of B cells. The exposure of germ-free mice to conventional mice results in an increase in the number of pro-B cells in the lamina propria of germ-free mice (Wesemann et al., 2013).

Gut microbiome influences the secretion of immunoglobulins to prevent pathogen colonization and enhance immune response. Membrane IgA and secretory immunoglobulin A (S IgA) are 2 types of immunoglobulin and the S IgA plays an important role in the immunologic function. S IgA prevents pathogen adhesion in the gut and promotes the identification and clearance of pathogen and bacterial toxin by combinations with them. IgA is secreted by B cells and binds with the antigenic regions of pathogens to neutralize them. The production of IgA is impaired in germ-free animals (Shroff et al., 1995), but the production of IgA, IgG, and IgM is restored with microbial colonization (Laycock et al., 2012; Hansson et al., 2011). The type of bacteria can influence the concentration of antibody. The serum concentrations of IgG and IgM are higher in germ-free pigs colonized by enterohemorrhagic *E. coli* than those in the germ-free pigs colonized by non-pathogenic *E. coli* (Butler et al., 2010). Probiotic strains such as *Lactobacillus casei* and *Bifidobacterium* increase the concentration of S IgA in the gut (Helgeland et al., 2010). The *Bifidobacterium* stimulates immune cells to secrete IL-1 and IL-6. Interleukin-1 promotes the antibody production, whereas IL-6 promotes the maturation and differentiation of B lymphocytes (Zhu et al., 2018). Gut microbiome affects the expression of genes related immunity in the spleen and the Peyers patches, and the levels of IgA, IgG, and IgM are significantly elevated in conventional mice than in germ-free mice (Hansson et al., 2011).

Gut microbiome has a remarkable influence on the antibody diversity. The antibody diversity of IgA and IgM in GALT of conventional piglets is higher than that of germ-free counterparts (Kassam et al., 2013). Along with an increase of microorganism species in the gut, the antibody diversity of IgA becomes abundant (Lindner et al., 2015). Symbiotic bacteria induce the secretion of cytokines such as TNF, proliferation-induced ligands and TGF-β in the mononuclear phagocytes, and the intestinal epithelial cells (IEC) to promote the type conversion of IgA (Macpherson et al., 2015). Gut microbiome colonization in the germ-free mouse increases the number of recombination activating gene 2 (RAG2^+^) B cells and the expression levels of RAG1 and RAG2 in the gut lamina propria to influence the V(D)J gene rearrangement, which is the major mechanism of immunoglobulin diversity (De Vos and De Vos, 2012). In addition, the value of IgG/IgA increases significantly in the gut lamina propria, indicating that gut microbiome may be involved in an increase in the diversity of B cell receptor (BCR) (Wesemann et al., 2013).

4.2. Gut microbiome regulates cellular immunity

The gut microbiome also regulates the balance of Th cells and Treg cells (Agace and Mccoy, 2017), which are 2 kinds of T cells involved in cell-mediated immunity. Th17 cells are a special kind of CD4^+ Th cells that regulate the development of autoimmune diseases through the production of inflammatory cytokines such as IL-17A, IL-17F, and IL-22. The microbiome is necessary for the development of Th17 cells and the quantity of Th17 cells is lower in the colon of germ-free animals than in the colon of conventional animals (Ivanov et al., 2008). The gut microbiome regulates the proliferation of Th17 cells through an interaction with TLR (Hall et al., 2008). The maintenance of balance between Th17 cells and Treg cells is very important and this influences the gut immunity and tolerance. *Clostridium* regulates the proliferation and differentiation of Tregs and Th17 cells and increases the quantity of IL-17 secreted by Th17 cells to accelerate the immune response (Molloy et al., 2012). Poly-γ-glutamic acid (γ-PGA) produced by *B. subtilis* can promote the differentiation of Treg cells, but suppress the differentiation of Th17 cells, and also promote the secretion of IL-12 and IL-6 (Lee et al., 2012). *E. coli* colonization in germ-free piglets increases the number of T lymphocytes in the lamina propria (Haverson et al., 2007). The numbers of Th1, Th17, and Treg cells are decreased in mice with enteric dysbacteriosis and accompanies a change in the levels of multiple cytokines such as IL-7, IL-10, IL-22 and IFN-γ (Takiishi et al., 2017). Short-chain fatty acids are produced by gut microbiome can affect the activity of RORγt to maintain the homeostasis of Th cells (Smith et al., 2013). TGF-β, IL-6, IL-21 and IL-23 promote the conversion from Th precursor to Th17 cells. *B. fragilis* accelerates the production of Th cells by promoting the secretion of IL-17 and also influences Th1 immune response by changing the production of bacteria polysaccharide A (Horai et al., 2017). Vitamin D, which is generated by *Bifidobacterium*, can also promote the differentiation of Th cells (Myszka and Klinger, 2014). Studies had also shown that segmented filamentous bacteria (SFB) plays an important role in the Th17 cells development. The number of Th17 cells is lower in the...
5. Gut microbiome and inflammation

An inflammation reaction can lead to a tissue damage which is triggered by multi-factors (Slaper et al., 2018). IL-6, TNF-α and IL-1β belong to the pro-inflammatory cytokine, whereas cell permeability proteins, IL-4, IL-10, IL-13 and TGF, belong to the anti-inflammatory cytokines (Sabitha et al., 2019; Reyes-Díaz et al., 2018). They play an important role in regulating the inflammation reaction.

Inflammation is closely related to gut microbiome. Multiple inflammatory diseases are associated with the alteration of intestinal microbiome. The numbers of Bacteroides, Streptococcus, and Clostridium are increased in the gut of autoimmune pancreatitis patients (Hamada et al., 2018). The numbers of Bacteroides, C. leptum, and Hemophilus are decreased, whereas the number of Lactobacillus salivarius is increased in the gut of rheumatoid arthritis patients (Zhang et al., 2015). Obesity is regarded as a low-grade inflammation. The gut microbiome diversity in the obesity individuals is lower compared with normal ones along with a decrease in Bacteroidetes and an increase in Actinobacteria. Inflammatory bowel diseases (IBD) are a nonspecific inflammation of the gut. They include ulcerative colitis, Crohn’s disease, and indeterminate colitis. Intestinal flora imbalance is identified as the main reason for the IBD (Swidsinski et al., 2010). Lower abundance of Roseburia has been associated with a higher incidence of IBD (Imhann et al., 2018). The quantities of Ruminococcaceae and Rikenellaceae are lower in the gut of IBD patients (Imhann et al., 2018). The transplantation of fecal microbiota from mice with IBD to normal mice can induce the IL-33 secretion from the intestinal mucosa and activate Th2 cells to mediate the immune response which leads to ileitis (Salvo et al., 2016). Presence of E. coli has also been confirmed in the intestinal mucosa of IBD patients (Perla et al., 2004). Toll-like receptors on the surface of epithelial and antigen presenting cells can recognize aforementioned bacteria, activate NF-κB, lead to the transcription of inflammatory gene, and induce the intestinal inflammation (Kinnebrew and Pamer, 2012). However, butyric acid limits the activation of NF-κB and the secretion of IL-12 and TNF-α (Brown et al., 2011; Lewis et al., 2010), an evidence that certain bacteria species producing butyric acid may limit the inflammation in the gut.

Probiotics can prevent IBD. For example, B. fragilis can transfer capsular polysaccharide A to dendritic cells through the outer membrane vesicles, and the dendritic cells are able to induce Tregs to secrete IL-10 to prevent or limit IBD. The capsular polysaccharide A can also directly activate TLR2 signal pathway to restrain the immune response induced by Th17 cells (Chu et al., 2016; Joller et al., 2014). When mice suffering from ulcerative colitis were orally infused with Lactobacillus plantarum and Bifidobacterium, the inflammatory response and the level of TNF-α were decreased, but the levels of superoxide dismutase 1 (SOD1) and SOD2 were increased (Wang et al., 2018). Dietary supplementation of Bifidobacterium can reduce the contents of LPS and proinflammatory factor to alleviate the intestinal inflammation (Yan et al., 2019). The SFB in the gut of mice can induce the expression of SAA. SAA in turn can induce the differentiation of Th17 cells in the lamina propria, increase the expression of IL-17 and IL-22, and lead to suppression of intestinal inflammation induced by the Citrobacter rodentium (Rong et al., 2006; Zheng et al., 2008).

Additionally, the pretreatment of bovine mammary epithelial cells (BMEC) with Lactobacillus rhamnosus can reduce the colonizing of E. coli and Pseudomonas aeruginosa in BMEC. B. fragilis can activate TLR2-MyD88 signaling pathway to accelerate the differentiation of Treg cells (Round et al., 2011).

In conclusion, the gut microbiome plays an important role in regulating the immune response, and the gut microbiota is closely related to the occurrence and development of inflammatory diseases.
can be decreased by commensal bacteria, which limits the inflammatory response induced by Th2 cells (Cahenzli et al., 2013).

6. Conclusions

Gut microbiome can influence the development of immune tissues, nonspecific immunity, specific immunity, and inflammation. B. subtilis and B. fragilis are proved to facilitate the development of immune tissues. L. acidophilus, B. thetaiotaomicron, and F. praunzii are important bacteria to regulate the nonspecific immunity by maintaining and strengthening the organizational barriers, increasing the number of innate immunocytes, and promoting the secretes of innate immune molecule. Bifidobacterium, L. casei, Clostridium, B. subtilis, B. fragilis, and SFB are believed to have closely related to specific immunity through MyD88, TGF-β, IL-1, IL-6, IL-17, IL-22, γ-PGA, and PSA. B. fragilis, L. plantarum, Bifidobacterium, and SFB can regulate the inflammation response by TLR, NF-κB, and MyD88. Although a considerable understanding now exists on the mechanism of gut microbiome—immune interaction, a significant gap still exists. A more systemic study is needed to explore the mechanism of molecular interactions between the immune system and the gut microbiome.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.

Acknowledgements

This research was funded by the National Key Research and Development Program of China (grant number: 2018YFD0501403-2.3 and 2018YFD0500605).

References

Adorjan TJ, Jamali H, Farsanci HG, Darvischi P, Haspanour S, Baghchi T, et al. Effects of probiotic Bacterium bacillus on growth performance, digestive enzyme activity, and hematological parameters of asian sea bass, lateolabrax calcarifer (Bloch). Probiotics Antimicrobiol 2018;11(1):248–55.

Agace WW, McCoy KD. Regionalized development and maintenance of the intestinal adaptive immune landscape. Immunity 2017;4:532–48.

Arpaia N, Campbell C, Fan X, Diky S, Veeken JVD, Deroos P, et al. Metabolites regulating innate immune response of the gut. Nature 2013;497(7448):258–62.

Bauer H, Horowitz RE, Levenson SM, Popper H. The response of the lymphatic tissue to inflammatory bowel disease. Science 2016;352(6289):1116–20.

Clarke C, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Microbiome: the neglected endocrine organ. Mol Endocrinol 2014;28(8):1221–38.

Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging mechanisms of innate immunity and their translational potential in inflammatory bowel disease. Front Immunol 2018;9:532.

Crabbé PA, Bazin H, Eyssen H, Heremans JF. The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut. The germ-free intestinal tract. Int Arch Allergy Immunol 1968;34(4):362–75.

Cultrone A, Tap J, Lapaque N, Dore J, Blottiere HM. Metagenomics of the human intestinal tract: from who is there to what is done there. Curr Opin Food Sci 2015;4:54–8.

Desselberger U. The mammalian intestinal microbiome: composition, interaction with the immune system, significance for vaccine efficacy, and potential for disease therapy. Pathogens 2018;7(3):1–13.

De Vos WM, De Vos EA. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 2012;70(11):545–56.

Draakes M, Blanchard T, Czinn S. Bacterial probiotic modulation of dendritic cells. Infect Immun 2004;72(6):3299–309.

Ferla KL, Seegert D, Schreiber S. Activation of NF-κB in intestinal epithelial cells by E. Coli strains isolated from the colonic mucosa of BD patients. Int J Colorectal Dis 2004;19(4):334–42.

Freitas AC, Hill JE. Bifidobacteria isolated from vaginal and gut microbiomes are indistinguishable by comparative genomics. PLoS One 2013;8(14):e816820.

Guo M, Wu F, Hao G, Qi Q, Li R, Li N, et al. Ionic polyster unsaturated improves immunity and disease resistance in rabbits. Front Microbiol 2018;9:73.

Gardana C, Del BC, Simonetti P. Validation and application of an ultrahigh-performance liquid chromatographic-Orbitrap mass spectrometric method for the simultaneous detection and quantification of volatile and non-volatile organic acids in human fecal samples. J Pharmaceut Biomed 2017;141:46–51.

Gibino G, Iopetou LR, Scaldaferri F, Rizzatti G, Binda C, Gasbarrini A. Exploring Bacteroidetes: metabolic key points and immunological tricks of our gut commensals. Dig Liver Dis 2015;47(10):635–9.

Gostner JM, Becker K, Kobler H, Stasser B, Fuchs D. Tryptophan metabolism in allergic disorders. Int Arch Allergy Immunol 2016;169(4):203–15.

Guo M, Wu F, Hao G, Qi Q, Li R, Li N, et al. Bacillus subtilis improves immunity and disease resistance in rabbits. Front Immunol 2017;8(23):354.

Haller L, Bouladoux N, Sun CM, Wohlfert EA, Blank RR, Zhu Q, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 2008;29(4):637–49.

Hampadha S, Masamune A, Nishieima T, Shimogawara T. Differences in gut microbiota profiles between autoimmune pancreatitis and chronic pancreatitis. Tohoku J Exp Med 2018;244(2):113–7.

Hansson J, Bosco N, Favre L, Raymond F, Oliveira M, Metairon S, et al. The response of the lymphatic tissue to inflammatory bowel disease. Proc Natl Acad Sci U S A 2011;108(1):471–3.

Higashi S, Masamune A, Ihara T, Yamada K, Ito A. The response of the lymphatic tissue to inflammatory bowel disease. Proc Natl Acad Sci U S A 2011;108(1):471–3.
Koh A, Vadder FD, Kovatcheva-Datchary P, B Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Ma YH, Wang QM, Yu K, Fan X, Xiao WD, Cai YJ, et al. 6-Formylindolo(3,2-b)Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and Iwao K, Morita M, Watanabe M, Chatani H, Otake F, et al. Generation of gut-hosting IgA-accepting B cells by intestinal dendritic cells. Science 2006;314(5802):1157–60.
Myszka M, Klinger M. The immunomodulatory role of Vitamin D. Prostaglandins, Leukot Essent Fatty Acids 2015;98:1–14.
Ng SC, Benjamin JL, McCarthy NE, Hedin CRH, Koutsoumpas A, Plamondon S, et al. Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn's disease. Inflamm Bowel Dis 2011;17(10):2027–37.
Nyberg TLP, Fenyvesy F, Remenyik J, Homoki JR, Gogolak P, Bacsik I, et al. Pro-tective effect of pure sour cherry anthocyanin extract on cytokine-induced inflam-matory caco-2 monolayers. Nutrients 2018;10(7):861.
Nighot M, Rawat M, Al-Sadi R, Castillo EF, Nighot P, Ma TA. Lipopolysaccharide-induced increase in intestinal permeability is mediated by TLR-4 activation of IKK-β, IKK-ε and MLCK. Am J Physiol Gastrointest Liver Physiol 2019;316(1):69–77.
O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7(7):588–93.
O'Reilly JV, Lee JM, Lee K, Kim Y. Mulberry leaf extract fermented with Lactobacillus acidophilus A4 ameliorates 5-fluorouracil-induced intestinal mucositis in rats. Lett Appl Microbiol 2017;64(5):459–68.
Oswant S, Rask C, Wold AE, Huikrantz S, Telemo E. Impaired regulatory T cell function in germ-free mice. Eur J Immunol 2010;40(9):2336–46.
Pabst O, Herbrand H, Friedrichsen M, Velaga S, Dorsch M, Berhardt G, et al. Adaptation to soluble intestinal lymphoid tissue in response to microbiota and chemokine receptor CCK7 signaling. J Immunol 2006;177(10):6824–32.
Pacek CD, Sartor RB. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr Opin Infect Dis 2009;22(3):292–301.
Querda JJ, Meza-Torres J, Cossart P, Zierold-Cerda J, Listerioyloso S. A bacteriocin from epidemic Listeria monocytogenes strains that targets the gut microbiota. Gut Microbiol 2017;8(4):384–91.
Renzi H, Brandtzaeg P, Hornef H. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol 2012;12(1):1–19.
Reyes-Diaz A, Mata-Haro V, Hernandez J, Gonzalez-Cordova AF, Hernandez-Mendoza A, Reyes-Diaz R, et al. Milk fermented by Specific Lactobacillus Strains regulates the serum levels of IL-6, TNF-α and IL-10 cytokines in an LPS-Stimulated murine model. Nutrients 2018;10(6):661.
Rhee KJ, Sethupathi P, Draks A, Lanning DN, Knight DK, Driks A, Lanning DK, Knight KL. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol 2004;172(2):1118–24.
Rusnak NA, Andrews FA, MacNeil MF, Clark AJ, Green MR, Weih D, Freytag H, et al. Central immune tolerance depends on crosstalk between the classical and alternative NF-κB pathways in medullary thymic epithelial cells. J Autoimmun 2017;81:89–100.
Rinaldi E, Consonso A, Guidesi E,elli M, Mantegazza R, Baggio F. Gut microbiota and probiotics: novel immune system modulators in myasthenia gravis? Ann NY Acad Sci 2018;1413(1):49–58.
Rong H, Shepard LW Jr, Cao J, Pang Y, Ye RD. Serum amyloid A is an endogenous ligand that differentially induces IL-12 and IL-23. J Immunol 2006;177(6):4072–9.
Rossetti M, Pieler R, Rogel-Gaillard C, Vries HD, Bailey M, Smidt H, et al. Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Anim Feed Sci Technol 2017;233:104–19.
Round JL, Lee SM, Li J, Tran G, Jafari B, Chatila TA, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011;332(6032):974–7.
Sabit RB, Nishi K, Gunasekera K, Gunatilake M, Annamalai G, Agilan B, Ganeshan M. P-Coumaric acid ameliorates ethanol-induced kidney injury by inhibiting inflam-matory cytokine production and NF-κB signaling in rats. Asian Pac J Trop Bio 2019;5(5):12–9.
Sato N, Cha AM, Pastorelli L, Benedetta M, Onenetti S, Buela KA, et al. IL-33 drives eosinophil infiltration and pathogenic type 2 helper T-Cell immune re-gponses leading to chronic experimental ileitis. Am J Pathol 2016;186(4):185–98.
Sato T, Matsumoto N, Voschenrich CAJ, Lesjean-Pottier S, Sawa S, Lopetuso L, Gasbarrini A. The gut barrier: new immunological and therapeutic approaches. J Clin Gastroenterol 2012;46(Suppl 9):S12.
Seong CN, Kang JW, Lee JH, Seo SY, Woon JJ, Park C, et al. Taxonomic hierarchy of the pyloric Firmicutes and novel Firmicutes species originated from various environ-ments in Korea. J Microbiol 2018;56(1):1–10.
Shroff KE, Meslin K, Cebra JJ. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect Immun 1993;61(3):1394–1398.

Skaper SD, Facci L, Zuzzo M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci 2018;12:1–26.

Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlboyl YG, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341(6145):569–573.

Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 2013;11(4):227–236.

Song J, Lu C, Zhao W, Shao X. Melatonin attenuates TNF-α-mediated hepatocytes damage via inhibiting mitochondrial stress and activating the Akt-Sirt3 signaling pathway. J Cell Physiol 2019;169(1):20969–79.

Song ZQ, Ren D, Xu XH, Wang YX. Molecular cross-talk of IL-6 in tumors and new progress in combined therapy. Thorac Cancer 2018;9(6):669–75.

Spahn TD, Fontana A, Faria AM, Slavin AJ, Eugster HP, Zhang X, et al. Induction of oral tolerance to cellular immune responses in the absence of Peyer’s patches. Eur J Immunol 2015;35(1):1278–87.

Swidsinski A, Loeber-Baucke V, Vanechotte M, Doeffel Y. Active Crohn’s disease: beyond the neuron. Front Cell Neurosci 2018;12:1–9.

Wang YY, Guo YL, Chen H, Wei H, Wan CX. Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBN03 in relieving colitis by gut microbiota, immune and anti-oxidative stress. Can J Microbiol 2018;64(5):327–37.

Wen L, Wang FS. Dietary short-chain fatty acids protect against type 1 diabetes. Nat Immunol 2017;18(5):484–6.

Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP, Chuff-Jones K, Magee JM, et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 2013;501(7465):112–5.

Wrzosek L, Miquel S, Noordine M, Bovet S, Chevalier-Curt MJ, Robert V, et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 2013;11(1):61.

Wu Q, Liu MC, Yang J, Wang JF, Zhu YH. Lactobacillus rhamnosus GR-1 Ameliorates Ascherichia coli-induced inflammation and cell damage via attenuation of ASC-independent NLRP3 inflammasome activation. Appl Environ Microbiol 2016;82(4):1173–82.

Xiao L, Ding G, Ding Y, Deng C, Ze X, Chen L, et al. Effect of probiotics on digestibility and immune function in infants. Medicine 2017;96(14):e5955.

Yamashita M, Ukibe K, Uenishi H, Hosoya T, Sakai F, Kadooka Y. Lactobacillus helveticus SBT2171, a cheese starter, regulates proliferation and cytokine production of immune cells. J Dairy Sci 2014;97(8):4772–9.

Yamagishi T, Hosono A, Gyama A, Tsuda M, Suzuki A, Hachimura S, et al. IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA⁺ B cells. Immunobiology 2013;218(4-5):545–51.

Yang XW, Li YH, Zhang H, Zhao YF, Ding ZB, Yu ZJ, et al. Safflower Yellow regulates microbial polarization and inhibits inflammatory response in LPS-stimulated BV2 cells. Int J Immunopathol Pharmacol 2016;29(1):54–64.

Yan S, Yang B, Zhao JC, Zhao JX, Zhang M, Sun J, Chen BD, Zhao YY, Gong H, You Y, et al. Ginkgolide B inhibits neutrophil and monocyte adhesion and promotes IL-10 expression in THF-treated HUVECs under laminar shear stress. BMC Complement Altern Med 2018;18(1):220.

Zhang X, Zhang DY, Jia HJ, Feng Q, Wang DH, Di L, et al. The oral and gut microbiome–host interaction and dysbiosis in preterm infants. J Pediatr Gastroenterol Nutr 2018;66(5):610–617.