RESEARCH ARTICLE

IncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine

Lei Sun1,2*, Hui Liu3, Lin Zhang3, Jia Meng4

1 School of Information Engineering, Yangzhou University, Yangzhou, Jiangsu Province, China, 2 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China, 3 School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu Province, China, 4 Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China

* leisuncumt@yahoo.com

Abstract

Functional long non-coding RNAs (lncRNAs) have been bringing novel insight into biological study, however it is still not trivial to accurately distinguish the lncRNA transcripts (LNCTs) from the protein coding ones (PCTs). As various information and data about lncRNAs are preserved by previous studies, it is appealing to develop novel methods to identify the lncRNAs more accurately. Our method IncRScan-SVM aims at classifying PCTs and LNCTs using support vector machine (SVM). The gold-standard datasets for IncRScan-SVM model training, lncRNA prediction and method comparison were constructed according to the GENCODE gene annotations of human and mouse respectively. By integrating features derived from gene structure, transcript sequence, potential codon sequence and conservation, IncRScan-SVM outperforms other approaches, which is evaluated by several criteria such as sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC) and area under curve (AUC). In addition, several known human lncRNA datasets were assessed using IncRScan-SVM. LncRScan-SVM is an efficient tool for predicting the lncRNAs, and it is quite useful for current lncRNA study.

Introduction

Recently tens of thousands of long non-coding RNAs (lncRNAs) have been discovered in the transcriptome using biotechnology such as cDNA cloning [1, 2], tiling microarray [3–5] and high throughput sequencing [6, 7]. Studies also reveal that the lncRNAs are extensively involved numerous cellular processes, such as embryonic stem cell (ESC) pluripotency, erythropoiesis, cell-cycle regulation and diseases [8–11]. However, current IncRNA function studies can be hampered by lack of complete and high-quality IncRNA gene annotations, especially when conducting analysis on the genome scale. Although there appear several lncRNA data sources, such as IncRNAdb [12], NONCODE [13] and GENCODE [14], they seldom perform
well-matched intersection between each other [15], which implies that the lncRNA catalogue needs to be developed. Meanwhile, with the widespread usage of deep sequencing in life science, more and more novel lncRNAs can be found due to their tissue-specific expression characteristic. The newly-discovered lncRNAs are always compared with previous annotations for guaranteeing the quality of further analysis [8, 9].

Either for lncRNA gene annotation or novel lncRNA discovery, it is crucial to evaluate the protein coding potential of a transcript. As similar as protein-coding genes, lncRNAs are RNA polymerase II products, and can be capped and polyadenylated [16], and also present similar histone-modification profiles, splicing signals and exon/intron lengths [15]. Due to the similarities between mRNAs and lncRNAs, it is challenging to separate the lncRNA transcripts (LNCTs) from the protein coding ones (PCTs) [17].

Thanks to the advance of bioinformatics, discriminating LNCTs from PCTs can be modelled as a binary classification problem, which has been solved by several computational methods, such as CONC [18], CPC [19], CNCI [20], iSeeRNA [21] and RNAcon [22]. CONC integrates various features in its classification model, but it is slow for large datasets and also performs less accurate than other newer methods such as CPC [19]. CPC uses features derived from open reading frame (ORF) and sequence alignment, and the developers also provide users with a web interface. CNCI distinguishes protein-coding and non-coding sequences by profiling adjoining nucleotide triplets, however it cannot work on large datasets. iSeeRNA outperforms previous methods and it also provides users with a program for training a new classification model based on custom dataset. RNAcon applies features of tri-nucleotide composition to the classification, but it does not show better performance than other methods in our experiment. Compared to these support vector machine (SVM) based methods inspecting the entire transcript, a comparative genomics method named PhyloCSF [23] focuses on classifying protein-coding and non-coding regions, and it has been frequently used for lncRNA identification [7, 24]. In addition, CPAT [25] is another tool for assessing coding potential of a transcript using an alignment-free logistic regression model. Based on these computational methods, lncRNA function studies usually build a pipeline to obtain a set of confident lncRNAs [16, 24, 26]. For example, a simple pipeline consisting of length filtering (> 200nt), CPC and BLAST [27] can make a stringent lncRNA dataset. However, it is still not convenient to master such non-standard filtering workflow.

As various information and data about lncRNAs are preserved by previous studies, it is appealing to develop new methods to identify the lncRNAs more accurately. By integrating features derived from gene structure, transcript sequence, potential codon sequence and conservation, a novel computational method is proposed here for solving the problem.

Methods

Gold-standard datasets

Since a reliable dataset is of importance to model training and testing, we adopted the high-quality manually-curated GENCODE gene annotations (version 19/v19 of human and version M2/vM2 of mouse) [14, 15] for constructing the gold-standard datasets, which are composed of gene annotations in Gene Transfer Format (GTF) and corresponding genome sequences in FASTA format for human and mouse respectively. Specifically, the human gene annotation (GENCODEv19) includes 81814 PCTs and 23898 LNCTs, while the counts are 47394 and 6053 respectively for mouse (GENCODEvM2). In addition, the genome sequences of human (GRCh37/hg19) and mouse (GRCm38/mm10) were downloaded from University of California Santa Cruz (UCSC) genome browser respectively [28]. For model training and testing, we created Training-A, Testing-A and Testing-B (S1 Dataset) by splitting the gold-standard datasets...
Table 1. Dataset partition.

	Training-A	Testing set	Remaining	Sum	
	Testing-A	Testing-B			
human PCTs(Positive)	5000	10000	8307	66814	81814
human LNCTs(Negative)	5000	10000	8875	8898	23898
mouse PCTs(Positive)	2500	3500	3130	41394	47394
mouse LNCTs(Negative)	2500	3500	2975	53	6053

The gold-standard datasets were divided for model training and testing. The first two rows show counts of divided human dataset while the other two ones show that of mouse. For human, Training-A includes 5000 PCTs randomly sampled from the totalling 81814 ones, and 5000 LNCTs sampled from the totalling 23898 ones. Human Testing-A was created by sampling another 10000 PCTs and LNCTs respectively, and human Testing-B containing 8307 PCTs and 8875 LNCTs was created by removing transcripts that show similar sequences (cutoff 0.8 of CD-HIT) to that in Training-A from Testing-A. Similarly for mouse, the counts of PCTs and LNCTs in Training-A are both 2500, and the count is 3500 in Testing-A. And counts of Testing-B for mouse PCTs and LNCTs are 3130 and 2975 respectively. Besides, the remaining transcripts (Remaining) were not taken into account in the analysis.

doi:10.1371/journal.pone.0139654.t001

(See Table 1). All transcripts in training and testing sets were randomly sampled from the complete dataset, and there are no overlapping areas between the training and testing sets. Since our prediction model was trained on Training-A, in which a proportion of transcripts may have similar sequences to that in Testing-A, which could lead to an unfair comparison between our method and the others though our method does not only use sequence features. To make a fairer comparison, Testing-B datasets were created by removing similar transcripts from Testing-A using CD-HIT (v4.6.1, cut-off 0.8) [29], compared to Training-A sequences. To alleviate the effect of imbalanced-classes, we constructed the training and testing sets with equal or similar sizes.

Feature selection

Since each feature selected can affect the overall classification performance, we conducted feature selection (FS) (See S1 File) based on a set of candidate features, which were derived from our current knowledge about IncRNAs. The candidate features can be classified into three categories. The first category includes features extracted from nucleotide sequences, and they are 14 tri-nucleotides attributes, namely ACG, CCG, CGA, CGC, CGG, CGT, CTA, GCG, GGG, GTA, TAA, TAC, TAG and TCG [22], and standard deviation of stop codons (TAG, TAA and TGA) between three frames, and GC content. The second category was extracted from the output of a program called txCdsPredict from UCSC, which is used to predict a codon sequence with the most likelihood from an input nucleotide sequence, and it includes features like txCdsPredict score, CDS length and CDS percentage (CDS_length divided by transcript_length) [21]. The third category of features was extracted from gene structure of the transcript, and they are transcript length, exon count and average exon length.

Then six features (See Table 2) were selected from the total candidates by FS. First, transcript length was selected since the length of PCTs and LNCTs can be differentially distributed [7, 15, 24]. Second, with an assumption that a true PCT may have a long ORF in one of the
three frames translated, we presume that the stop codons in the frame where the ORF emerges are fewer than that randomly appear in the other two frames. Therefore, we selected the standard deviation (SCS) of stop codon counts (SCC) between three frames translated as the second feature since the standard deviation of PCT should be smaller than that of LNCT (See Eqs (1) and (2)).

\[
\bar{x} = \frac{1}{3} \sum_{i=0}^{2} SCC_i
\]

(1)

\[
SCS = \sqrt{\frac{1}{3} \sum_{i=0}^{2} (SCC_i - \bar{x})^2}
\]

(2)

where \(\bar{x}\) denotes the mean of stop codon counts of three frames (SCC0, SCC1 and SCC2). Then SCS can be calculated using Eq (2). Similarly, since the PCT may have ORF potentially, we used txCdsPredict to predict the codon sequence (CDS) of the candidate transcript, and the score output by txCdsPredict was selected as the third feature. By analysing the gene structures of transcripts, the exon count and average exon length were selected as features because the lncRNA genes may have fewer exons and be shorter than the protein-coding ones. The last feature we selected is the conservation score calculated by averaging PhastCons scores of the transcript.

Table 2. Selected features.

Feature	Description
transcript length	sum of exon lengths of a transcript
stop codon std	standard deviation of stop codon counts between three translated frames
CDS score	score of txCdsPredict prediction
exon count	exon count of a gene
exon length	average exon length of a gene
convs	average PhastCons scores of a transcript

This table lists features of lncRScan-SVM.

doi:10.1371/journal.pone.0139654.t002

IncRScan-SVM

The six features selected above were fed into the SVM framework to build a tool named IncRScan-SVM (v1.0.0), which also depends on several third-part packages/programs such as BioPython [30], LIBSVM [31] and txCdsPredict. Of the programs packaged by IncRScan-SVM, two scripts can commonly be used. One is *IncRScan-SVM-train.py* for training a SVM model and the other one is *IncRScan-SVM-predict.py* for predicting PCTs/LNCTs (See Fig 1). The IncRScan-SVM package is freely available on http://sourceforge.net/projects/lncrscansvm/?source=directory.

Model training. A SVM model for prediction can be generated using *IncRScan-SVM-train.py* (See Fig 1a). Specifically, the *IncRScan-SVM-train.py* program first extracts nucleotide sequences according to the gene models of training samples. Then a script *extract_features.py* is used to extract transcript features. After transferring features to a standard format of
LIBSVM by `feature2svm.py`, a program `svm-scale` is used to scale the features. Finally, a prediction model can be generated.

IncRNA prediction. Users can use `IncRScan-SVM-predict.py` to predict LNCTs or PCTs (See Fig 1b). Specifically, the main input of `IncRScan-SVM-predict.py` is a GTF file, which lists all transcripts for classification. Then the sequence of the query transcript is extracted using `gffread` [6]. After feature extracting, formatting and scaling, `svm-predict` classifies PCTs and LNCTs using the prediction model trained previously. And the prediction models for hg19 and mm10 have been packaged in `IncRScan-SVM`.

Evaluation

The performance of `IncRScan-SVM` is compared to other methods, such as CPC (v0.9-r2), CPAT (v1.2.2), iSeeRNA (v1.2.1) and RNAcon (v1.0), by several criteria, such as sensitivity (SES) or true positive rate (TPR) or recall, specificity (SPC), accuracy (ACC), Matthews

correlation coefficient (MCC).

\[
\text{SES} = \frac{TP}{P} = \frac{TP}{TP + FN} \tag{3}
\]

\[
\text{SPC} = \frac{TN}{N} = \frac{TN}{TN + FP} \tag{4}
\]

\[
\text{ACC} = \frac{TP + TN}{P + N} \tag{5}
\]

\[
\text{MCC} = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}} \tag{6}
\]

where TP, P, TN, N, FP, FN denote true positive, positive, true negative, negative, false positive and false negative respectively. In this paper, 'positive' and 'negative' correspond to PCT and LNCT respectively. And area under curve (AUC) of receiver operation characteristic (ROC) are also used as another indicator \([32]\). In addition, PhyloCSF is not took into account as it focuses on distinguishing protein-coding regions from non-coding ones, which is slightly different from the objective of the methods for classifying PCTs and LNCTs.

Ethics Statement

N/A

Results and Discussion

Performance of single feature

Since every candidate feature can contribute to the overall classification performance of a predictor, the performance of each feature was evaluated by AUC scores on the hg19 and mm10 Training-A datasets respectively (See Fig 2). As seen from the ranking result, the top eight features are CDS length, consv, CDS score, CDS percentage, exon count, stop codon std, transcript length and CGA, which show slightly different orders between hg19 and mm10. Particularly, five of the six lncRScan-SVM features, namely transcript length, stop codon std, CDS score, exon count and consv, are included in the top eight ranked features, which indicates that most of the lncRScan-SVM features can contribute positively to the predictor. In addition, the features of hg19 and mm10 represent similar performance as seen from the the Pearson correlation coefficient (0.9484604) of the AUC scores, which shows the robustness of classification performance of the candidate features between the species.

Comparison of prediction methods

The prediction performance of lncRScan-SVM was evaluated by comparing to several other methods, such as CPC, CPAT, iSeeRNA and RNAcon, on Testing-A and Testing-B. When testing iSeeRNA, we used two kinds of models. One is the default iSeeRNA prediction model and the other one (iSeeRNA2) is generated by re-training iSeeRNA on Training-A. As a result, lncRScan-SVM outperforms other methods in most aspects, such as SPC, ACC, MCC and AUC (See Tables 3 and 4).

As seen from the testing result on Testing-A for either hg19 or mm10, lncRScan-SVM shows slightly smaller SPC, but higher SES and overall ACC, MCC and AUC scores than CPAT. In contrast, RNAcon presents the worst performance as it obtains the lowest score in
Fig 2. Feature ranking by AUC scores. (a) The candidate features are ranked by AUC scores calculated on hg19 Training-A; (b) The candidate features are ranked by AUC scores calculated on mm10 Training-A. Each feature ID is labelled in brackets.

doi:10.1371/journal.pone.0139654.g002

Table 3. Method comparison on Testing-A and Testing-B of hg19.

Method	Testing-A	Testing-B								
	SES(%)	SPC(%)	ACC(%)	MCC(%)	AUC(%)	SES(%)	SPC(%)	ACC(%)	MCC(%)	AUC(%)
CPC	97.62	67.23	82.425	68.069	94.55	**97.328**	69.262	82.831	68.898	94.78
CPAT	95.28	**94.60**	89.94	80.23	95.17	83.941	**95.223**	89.768	79.896	95.14
iSeeRNA	85.28	94.60	89.94	80.23	95.17	83.941	**95.223**	89.768	79.896	95.14
iSeeRNA2	88.215	94.479	**91.45**	**82.985**	**96.39**	88.215	94.479	**91.45**	**82.985**	**96.39**
RNAcon	87.97	92.32	90.13	80.36	95.33	87.04	92.965	90.082	80.238	95.23
CPC and CPAT										
IncRScan-SVM	89.20	93.88	**91.54**	**83.17**	**96.39**	88.215	94.479	**91.45**	**82.985**	**96.39**
iSeeRNA	87.97	92.32	90.13	80.36	95.33	87.04	92.965	90.082	80.238	95.23
iSeeRNA2	90.02	92.409	91.205	82.44	96.23	89.103	92.885	91.045	82.106	96.18
RNAcon	69.11	84.53	76.82	54.29	86.11	68.039	85.454	77.034	54.475	86.1

CPC and CPAT were run by submitting the GTF files of Testing-A and Testing-B through their web interfaces. The IncRScan-SVM predictor was run after feature scaling. Besides, we tested the default iSeeRNA predictor and iSeeRNA2, an iSeeRNA model re-trained on Training-A, as well as RNAcon with a parameter T equals 0. The biggest value in each column is in bold font while the smallest one is underlined.

doi:10.1371/journal.pone.0139654.t003
most aspects. CPC obtains the highest SES (97.62% for hg19 and 98.371% for mm10), but it shows poor performance in other aspects, e.g. the lowest SPC score (67.23% for hg19 and 75.457% for mm10), which means CPC may ignore a considerable proportion of true lncRNAs. By training on Training-A, iSeeRNA2 shows better performance than the default one, but it is still less accurate than lncRScan-SVM.

Meanwhile, similar performance of these methods can be observed from the testing result on Testing-B of hg19 and mm10, where our lncRScan-SVM predictor consistently shows better performance than other methods. As seen from the result on mm10 Testing-B (Table 4), lncRScan-SVM is ranked the highest in almost all aspects, including SPC, ACC, MCC and AUC. As indicated by SES, CPC still has a bias towards predicting PCTs, but has poor overall performance. Although the re-trained iSeeRNA2 shows similar overall performance to lncRScan-SVM, its SPC scores are much lower than the latter one, which means iSeeRNA2 would perform less accurate for identifying lncRNAs than lncRScan-SVM. In addition, the AUC scores of these methods are visualized by ROC curves (Figs 3, 4, 5 and 6).

In addition to the accuracy evaluation, the computation time of these methods was also compared on the same platform (Linux, Ubuntu 12.04.4 LTS 64bit, 800 MHz × 4 processors and 4GB RAM). As seen from Table 5, lncRScan-SVM shows the longest computation time (Nearly twice slower than iSeeRNA, four times slower than RNAcon and ten times slower than CPAT) when conducting IncRNA prediction on Testing-A of hg19 and mm10 respectively. The computation time difference can be caused by several reasons, such as different algorithms and programming languages. As seen from the table, either of the methods with query file in FASTA, namely CPAT and RNAcon, represents shorter running time than the other ones with GTF is mainly because the latter one needs longer time to extract sequence information according to the gene annotation in GTF. CPAT is faster than RNAcon because the logistic regression model used by the former one could be faster than SVM used by RNAcon. And our lncRScan-SVM is slower than iSeeRNA is mainly because we used Python scripts to implement our method, which can be optimized and accelerated using C programming in the future. Despite of that, the computation time of current lncRScan-SVM could be acceptable since its running time for precessing thousands of transcripts is still limited in several minutes or seconds. It is worth noting that CPC was not taken into account in the comparison because it is quite slow when running on the same platform. For example, it takes about 3 minutes to process only one sequence, which is much slower than the other methods.

Table 4. Method comparison on Testing-A and Testing-B of mm10.

	Testing-A	Testing-B								
	SES(%)	SPC(%)	ACC(%)	MCC(%)	AUC(%)	SES(%)	SPC(%)	ACC(%)	MCC(%)	AUC(%)
CPC	98.371	75.457	86.914	75.847	95.43	98.211	78.42	88.567	78.483	95.75
CPAT	88.171	95.343	91.757	83.73	96.38	87.891	95.966	91.826	83.979	96.46
lncRScan-SVM	89.143	95.286	92.214	84.588	96.62	88.53	96.067	92.203	84.693	96.64
iSeeRNA	85.411	93.126	89.266	78.768	95.26	85.517	93.739	89.521	79.379	95.51
iSeeRNA2	88.426	93.27	90.846	81.79	95.98	87.958	93.807	90.806	81.793	96.04
RNAcon	73.086	79.60	76.343	52.798	84.84	72.62	80.874	76.642	53.604	85.19

The description for mm10 is the same as Table 3.

doi:10.1371/journal.pone.0139654.t004
Prediction on known human lncRNA datasets

In addition to the high-quality GENCODE lncRNA dataset, previous studies have published several other lncRNA datasets, such as the NONCODEv4 dataset containing 92343 human lncRNAs [13] and the Cabili et al. dataset containing 14353 human long intergenic ncRNAs (lincRNAs) [7], which can be evaluated by lncRScan-SVM. Before conducting lncRNA prediction, we checked the overlap between these datasets. As seen from Fig 7 plotted by eulerAPE v3 [33], the human lncRNA annotated by NONCODEv4 contains most of the lncRNAs annotated by Cabili et al. (21106, ~ 88.32%) and GENCODEv19 (13546, ~ 94.38%) due to the fact that NONCODEv4 published on 2014 collects a large number of ncRNAs from various literatures and databases [13]. On the other hand, the overlapping area between Cabili et al. and GENCODEv19 lncRNAs is small (3874, ~ 16.36% of GENCODEv19 or ~ 27.24% of Cabili et al.).
Then we applied lncRScan-SVM to the Cabili et al. and NONCODEv4 datasets respectively, compared with other methods (See Table 6). As a result, lncRScan-SVM successfully identified 14069 (98.52%) of 14281 lincRNAs annotated by Cabili et al., which were generated by a complex filtering pipeline mentioned in their paper [7]. On the NONCODEv4 lncRNA dataset, lncRScan-SVM successfully predicted 77435 (85.63%) of the totalling 90429 lncRNAs, which is much lower than that on the Cabili et al. dataset due to the fact that the lncRScan-SVM prediction model trained on GENCODEv19 that contains 12152 (50.85%) lincRNAs might have a bias towards predicting lincRNAs rather than non-intergenic lncRNAs. To test this hypothesis, we conducted lncRScan-SVM on the 43730 lincRNAs (the lncRNAs located in the intergenic regions of GENCODEv19 protein coding transcripts) extracted from the NONCODEv4 dataset. As a result, 41984 (96.01%) lincRNA were predicted successfully. Similarly, the prediction ratios of the other methods all decline as test sets change from lncRNA to lincRNA, which means they all have a bias towards predicting lincRNAs. In contrast, most of the other tools...
represent lower prediction ratios than lncRScan-SVM on the three datasets except CPAT, which has the highest prediction ratio (90.29%) on NONCODEv4 lncRNA dataset since CPAT has a bias towards predicting the lncRNAs (See previous section). However, CPAT still represents poorer performance on either Cabili et al. or NONCODEv4 lincRNAs. Overall, the prediction of these methods on the general lncRNA datasets is consistent with that on our gold-standard sets.

In addition, the remaining 72 lincRNAs of Cabili et al. dataset and 1964 lncRNAs or 1914 lincRNAs of NONCODEv4 were not took into account analysis because they are not annotated on the main reference chromosomes, such as chr1, chr2 and so on, but are annotated on on the other regions such as patches, scaffolds and haplotypes, and they can not be processed by several methods.

Fig 5. ROC curves of lncRNA prediction on hg19 Testing-B. The description of ROC curves for tests on hg19 Testing-B is the same as Fig 3.

doi:10.1371/journal.pone.0139654.g005
Discussion

The lncRNA prediction problem can be solved by several computational methods mentioned above, especially our lncRScan-SVM performs better than the others in several aspects by integrating information extracted from gene structure, sequence composition and conservation in the SVM framework. However several problems remain to be specified. First, novel features and models can be developed to improve the prediction performance. For example, features can be extracted from secondary structure of RNA since functional lncRNAs may have special patterns in the secondary structure. Second, current lncRNA prediction methods present a bias towards predicting lincRNAs, so new distinguishable features should be extracted for predicting those non-intergenic lncRNAs, thereby helping solve the third problem, that is a more detailed catalogue of lncRNAs needs to be created by classifying the lncRNAs into subclasses corresponding to various functions. Last but not least, it is worth noting that classifying PCTs and LNCTs might be meaningless since some lncRNAs can be bifunctional, that is some non-coding RNAs can be translated into peptides in particular circumstances [16, 34].
Table 5. Computation time comparison on Testing-A of hg19 and mm10.

query file format	hg19 (seconds, s)	mm10 (seconds, s)
lncRScan-SVM GTF	170	86
iSeeRNA GTF	88	59
iSeeRNA2 GTF	81	59
RNAcon FASTA	42	16
CPAT FASTA	19	8

There are 20000 and 7000 samples in the Testing-A of hg19 and mm10 respectively.

doi:10.1371/journal.pone.0139654.t005

Fig 7. Overlap between three human lncRNA datasets. The lncRNA counts of the three human lncRNA datasets are proportional to the area of the ellipses. The largest ellipse denotes NONCODEv4 lncRNAs. The right-down and right-up ones are for GENCODEv19 and Cabili et al. lncRNAs respectively.

doi:10.1371/journal.pone.0139654.g007
Therefore, identifying PCTs or LNCTs is not only a simple classification problem, but also fundamental for further analysis, e.g. lncRNA function study. It is hopeful that various datasets and novel hypothesis can help improve the prediction accuracy and further deepen our understanding of lncRNA functions.

Conclusions

Current lncRNA studies have been accelerated by various datasets and efficient bioinformatic tools. Here we proposed lncRScan-SVM, which performs better than several popular methods in predicting the lncRNAs. lncRScan-SVM is quite useful for lncRNA gene annotation and can be integrated into pipelines of lncRNA study.

Supporting Information

S1 Dataset. A compressed file containing GTF files of Training-A, Testing-A and Testing-B transcripts.

(ZIP)

S1 File. Comparison of three feature selection strategies. To select a set of good features for model training and testing, we compared three feature selection (FS) strategies.

(DOC)

Acknowledgments

The authors would like to acknowledge Dr. Lina Ma from Beijing Institute of Genomics, Chinese Academy of Sciences for helpful suggestions.

Author Contributions

Conceived and designed the experiments: LS. Performed the experiments: LS HL LZ JM. Analyzed the data: LS. Contributed reagents/materials/analysis tools: LS. Wrote the paper: LS.
References

1. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 2002; 420(6915):563–573. doi: 10.1038/nature01266 PMID: 12466851

2. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The Transcriptional Landscape of the Mammalian Genome. Science. 2005; 309(5740):1559–1563. (Genome Network Project Core Group). doi: 10.1126/science.1112014 PMID: 15539566

3. Bortone P, Stoic V, Royce TE, Rozovsky JS, Urban AE, Zhu X, et al. Global Identification of Human Transcribed Sequences with Genome Tiling Arrays. Science. 2004; 306(5705):2242–2246. doi: 10.1126/science.1103388 PMID: 15539566

4. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009; 458(7235):223–227. doi: 10.1038/nature07672 PMID: 19182780

5. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Morales DR, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences. 2009; 106(28):11667–11672. doi: 10.1073/pnas.0904715106

6. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotech. 2010; 28(5):511–515. doi: 10.1038/nbt.1621

7. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes & Development. 2011; 25(18):1915–1927. doi: 10.1101/gad.17446611

8. Alvarez-Dominguez JR, Hu W, Yuan B, Shi J, Park SS, Gromatzky AA, et al. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood. 2013; 123(4):570–581. doi: 10.1182/blood-2013-10-530683 PMID: 24200680

9. Sánchez Y, Segura V, Marin-Béjar O, Athie A, Marchese FP, González J, et al. Genome-wide analysis of the human p53 transcriptional network unveils a IncRNA tumour suppressor signature. Nat Commun. 2014; 5.

10. Loewer S, Cabili MN, Guttmann M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010; 42(12):1113–1117. doi: 10.1038/ng.710 PMID: 21057500

11. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011; 43(7):621–629. doi: 10.1038/ng.848 PMID: 21642992

12. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS. IncRNAdb: a reference database for long non-coding RNAs. Nucleic Acids Research. 2011; 39(suppl 1):D146–D151. doi: 10.1093/nar/gkq1138 PMID: 21112873

13. Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, et al. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Research. 2014; 42(D1):D146–D151. doi: 10.1093/nar/gkt1222 PMID: 24283035

14. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome research. 2012; 22(9):1760–1774. doi: 10.1101/gr.135350.111 PMID: 22955987

15. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome research. 2012; 22(9):1775–1789. doi: 10.1101/gr.132159.111 PMID: 22955988

16. Ullitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013; 154(1):26–46. doi: 10.1016/j.cell.2013.06.020 PMID: 23827673

17. Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, et al. Distinguishing protein-coding and noncoding genes in the human genome. Proceedings of the National Academy of Sciences. 2007; 104(49):19428–19433. doi: 10.1073/pnas.0709013104

18. Liu J, Gough J, Rost B. Distinguishing protein-coding from non-coding RNAs through support vector machines. PLoS genetics. 2006; 2(4):e29. doi: 10.1371/journal.pgen.0020029 PMID: 16683024

19. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research. 2007; 35(suppl 2):W345–W349. doi: 10.1093/nar/gkm391 PMID: 17631615
20. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research. 2013; 41(17):e166–e166. doi: 10.1093/nar/gkt646 PMID: 23892401
21. Sun K, Chen X, Jiang P, Song X, Wang H, Sun H. iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data. BMC genomics. 2013; 14(Suppl 2):S7. doi: 10.1186/1471-2164-14-S2-S7 PMID: 23445546
22. Panwar B, Arora A, Raghava GP. Prediction and classification of ncRNAs using structural information. BMC genomics. 2014; 15(1):127. doi: 10.1186/1471-2164-15-127 PMID: 24521294
23. Lin MF, Jungreis I, Kellis M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics. 2011; 27(13):i275–i282. doi: 10.1093/bioinformatics/btr209 PMID: 21685081
24. Sun L, Zhang Z, Bailey T, Perkins A, Tallack M, Xu Z, et al. Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study. BMC Bioinformatics. 2012; 13(1):331. doi: 10.1186/1471-2105-13-331 PMID: 23335781
25. Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Research. 2013; 41(6):e74. doi: 10.1093/nar/gkt006 PMID: 23335781
26. Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research. 2012; 22(3):577–591. doi: 10.1101/gr.133009.111 PMID: 22110045
27. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 1997; 25(17):3389–3402. doi: 10.1093/nar/25.17.3389 PMID: 9254694
28. UCSC genome browser. Available from: http://genome.ucsc.edu
29. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006; 22(13):1658–1659. doi: 10.1093/bioinformatics/btl158 PMID: 16731699
30. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25(11):1422–1423. doi: 10.1093/bioinformatics/btp163 PMID: 19304878
31. Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology. 2011; 2:27:1–27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm doi: 10.1145/1961189.1961199
32. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011; 12(1):77. doi: 10.1186/1471-2105-12-77 PMID: 21414208
33. Micallef L, Rodgers P. eulerAPE: Drawing Area-proportional 3-Venn Diagrams Using Ellipses. PLoS ONE. 2014; 9(7):e101717. doi: 10.1371/journal.pone.0101717 PMID: 25032825
34. Dinger ME, Pang KC, Mercer TR, Mattick JS. Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities. PLoS Comput Biol. 2008; 4(11):e1000176. doi: 10.1371/journal.pcbi.1000176 PMID: 19043537