Study of Leucorrhoea in Reproductive Age Group in Patients Attending OPDs in Saraswathi Institute of Medical Sciences, Hapur, Uttar Pradesh

Swati1, Sarandeep Singh Puri2, Seema Goel3, Parul Singhal4

1 3rd Year, Post Graduate Student, Pathology, Saraswathi Institute of Medical Sciences, Hapur, Uttar Pradesh, India; 2 Associate Professor, Pathology, Saraswathi Institute of Medical Sciences, Hapur, Uttar Pradesh, India; 3 Professor & HOD, Pathology, Saraswathi Institute of Medical Sciences, Hapur, Uttar Pradesh, India; 4 Professor, Pathology, Saraswathi Institute of Medical Sciences, Hapur, Uttar Pradesh, India.

ABSTRACT

Background: ‘Leucorrhoea’, a fairly common gynaecological issue, is an abnormal vaginal discharge often associated with irritation and is non-hemorrhagic. The objectives to investigate the various causes of leucorrhoea among reproductive-age women. METHODS: The present study was conducted on 250 patients of adult female patients of the reproductive age group (aged 18 years to 45 years), clinically presenting with complaints of leucorrhoea during the period from October 2018 to December 2019 in the OPD Saraswathi Institute of Medical Sciences in Hapur, Uttar Pradesh. The PAP smear findings to establish the profile of the causative organism, presence of microorganisms done by wet mount, Gram staining and KOH mount and identify the bacterial and fungal pathogens of the indicated cases by culture identification.

Results: Age-wise distribution showed most common in the age group of 26-30 years, type of discharge thin mucoid in (72.8%), followed by thick curdy discharge in (16.8%). On PAP smear subjects were Negative for intraepithelial lesion or malignancy (NILM) (88%), a minor proportion of subjects (0.8%) had a high-grade squamous intraepithelial lesion (HSIL), Atypical squamous cells-cannot exclude HSIL (ASC-H) (0.8%), and squamous cell carcinoma (0.8%). The majority of females (34%) were seen to have S. aureus as observed on the bacterial culture of leucorrhoea secretions and fungal culture majority of females (27.2%) were seen to have the presence of C. Albicans.

Conclusion: A significant association of leucorrhoea with socio-demographic factors, clinical features, PAP smear, bacterial as well as fungal culture in the present study emphasizes the need for health education and preventive practices related to personal & menstrual hygiene & family planning practices in females.

Key Words: Leucorrhoea, Menstrual hygiene, Reproductive age

INTRODUCTION

‘Leucorrhoea’, a fairly common gynaecological issue, is an irregular vaginal secretion frequently connected with irritation and is non-hemorrhagic. White, yellow or greenish discharges might be an indication of underlying pelvic pathology. It relates to more than an estimated 1/4th of patients’ visits to the gynaecologist.¹

This may be physiological or pathological. An augment to the normal vaginal discharge develops physiologically at puberty, during pregnancy, at ovulation, sexual arousal and the premenstrual phase of the menstrual cycle. Pathological secretions may be communicable or non-infectious. Infectious secretions may be due to explicit contagion such as Gonorrhoea, Trichomoniasis, Chlamydiiasis, which are sexually passed on, and commotions in the normal vaginal flora cause Moniliasis and Bacterial vaginosis.

It is measured that transformation in the vaginal epithelium; changes in the usual bacterial flora and pH of the vaginal discharge dispose to leucorrhoea. But when it turns into a pathological situation it creates connected troubles like low backache, itching and burning sensation of the vulva, poor appetite, uneasiness, common weakness, pain in both legs etc.

As there are very few similar studies in this region, and none in the Hapur area of Uttar Pradesh, this study was undertaken to investigate the various causes of leucorrhoea among...
reproductive-age women attending OPD of a tertiary hospital (Saraswathi Institute of Medical Sciences) in Hapur, Uttar Pradesh.

The study aims to investigate the causes of Leucorrhoea in reproductive age group women among patients visiting the OPD of a tertiary care hospital (Saraswathi Institute of Medical Sciences) in Hapur, Uttar Pradesh. The objectives of the study are:

1. To study the PAP smear findings in the patients presenting with leucorrhoea to establish the profile of the causative organism such as bacterial, fungal, trichomonal or neoplastic.
2. To study the presence of various micro-organisms in patients resenting with leucorrhoea, identification done by wet mount, Gram staining and KOH mount.
3. To isolate and identify the bacterial and fungal pathogens of the indicated cases by culture identification.

MATERIAL AND METHODS

Study Design

The present study is an Observational, Cross-sectional, and the inferential study conducted in Saraswathi Institute of Medical Sciences, Hapur (Uttar Pradesh).

Study Area:

The study was conducted among OPD patients of SIMS Hapur (UP), India.

Study Period:

The study was conducted from October 2018 to December 2019.

SELECTION OF CASES

Inclusion Criteria:

1. Adult female patients of the reproductive age group (aged 18 years to 45 years).

Exclusion Criteria:

1. All patients below 18 years and above 45 years.

Clinical History and Examination regarding Leucorrhoea:

1. Gynaecological history of the patient, including parity, age at first childbirth, mass per-vaginum, history of any STD.
2. Amount, duration, colour and odour of discharge.
3. Visualization of Cervix: to rule out erosion, hypertrophy, suspicious growth

1. Wet Smear preparation: After a thorough vaginal examination a sample of the discharge was taken. A wet smear was prepared. For wet smear preparation, a drop of normal saline is put on a slide and mix a drop of the vaginal discharge. Placed a cover slip on the drop.
2. Then the smear was examined immediately first under low power, and later under high power for various micro-organisms like T.vaginalis (motile and flagellated), Candida (budding yeasts) along polymorphonuclear leukocytes, bacteria may be identified in wet film preparations. For further identification of various organisms, tests like the Germ Tube test were put along with various biochemicals and cultures were incubated and confirmed in the Department of Microbiology.
3. Simultaneously, the discharge was spread over another few slides for PAP staining (Papanicolau stain). Smears were immediately fixed in absolute alcohol and stained according to the PAP staining method. The cytopathological changes observed in the cervical squamous were graded according to the Bethesda system for reporting cervical cytology.
4. C/S: The PAP smear showing various neutrophils or pus cells were segregated. Discharge of the cases was processed for culture/sensitivity.

Statistical Analysis:

Statistical analysis was performed using SPSS (Statistical Package for the Social Sciences) for Windows (version 24.0).

RESULTS

The age-wise distribution of the study participants (all females) showed that the majority of them was in the age group of 26-30 years shown in Table 1,2,3.

Table 1: Age-wise distribution of study participants (n = 250)

N	Minimum	Maximum	Mean	SD	
Age	250	18	45	30.10	6.209

Table 2: Age-wise categorical distribution of study participants (n = 250)

Age categories	Frequency	Per cent
18-25 yr	68	27.2
26-30 yr	92	36.8
31-35 yr	26	10.4
36-40 yr	53	21.2
41-45 yr	11	4.4
Total	250	100.0
Swati et al: Study of leucorrhoea in reproductive age group in patients attending opds in saraswathi institute of medical sciences

Table 3: Marital status and Chief Complaint of the study participants (n = 250)

Marital Status	Frequency	Percent	
Married	250	100.0	
Chief Complaint	White Discharge	250	100.0

- The type of discharge, majority of women have a thin mucoid type discharge from the vagina (72.8%), followed by less commonly reported thick curdy discharge (16.8%).
- The majority of women had a ‘moderate’ amount of discharge (61.6%), followed by a less commonly ‘minimal’ amount of discharge (23.2%).
- Colour of discharge, majority of women reported a greyish colour (52.8%), followed by less commonly white coloured discharge (39.2%).
- More than three-fourth (76.4%) of women reported having a smell in discharge, while the rest 23.6% did not report any smell in their vaginal discharge (Table 4, 5, 6).

Table 4: Vaginal discharge history (n = 250)

Vaginal Discharge	Frequency	Percent	
Type of Discharge	Frothy	26	10.4
	Thick Curdy	42	16.8
	Thin Mucoid	182	72.8
	Total	250	100.0
Amount of Dis-	Copious	38	15.2
charge	Minimal	58	23.2
	Moderate	154	61.6
	Total	250	100.0
Color of Discharge	Greenish Yellow	20	8.0
	Grey	132	52.8
	White	98	39.2
	Total	250	100.0
Smell of Discharge	Absent	191	76.4
	Present	59	23.6
	Total	250	100.0

Table 5: Duration of Leucorrhoea (n = 250):

N	Minimum	Maximum	Mean	SD
250	1.0	6.0	2.894	1.3216

Table 6: Categorical duration distribution of Leucorrhoea (n = 250):

Duration of leucorrhoea	Frequency	Percent
1 – 2 months	84	33.6
2 – 4 months	137	54.8
4 – 6 months	29	11.6
Total	250	100.0

- Duration of leucorrhoea, majority of women have been experiencing it since 2-4 months(54.8%), a less common reporting was of 1-2 months (33.6%) Table 6.
- Pruritis was ‘absent in most of the females (64.8%) and was ‘present’ only in 35.2% of females.
- Dysuria was ‘absent in 70% of the females and was ‘present’ only in 30%
- Dyspareunia, where it was ‘absent in 80% of the females and was ‘present’ only in 20%.
- The majority of females (88.8%) reported having no relationship of leucorrhoea occurrence with oral contraceptives (OCPs), while 11.2% said that there is a possible association between taking OCPs and occurrence of leucorrhoea.
- More than half of the females were reported to have the relationship of leucorrhoea with intra-uterine devices (IUDs) (51.2%), while 48.8% of females did not have the relationship of leucorrhoea with IUDs.
- Only 25.2% of females face the problem of leucorrhoea who had undergone tubectomy procedures, whereas 74.8% did not have any such problem with tubectomy procedures. (Table 7)

Table 7: Clinical features associated with leucorrhoea (n = 250)

Clinical features associated with leucorrhoea	Frequency	Percent	
Pruritis	Absent	162	64.8
	Present	88	35.2
	Total	250	100.0
Dysuria	Absent	175	70.0
	Present	75	30.0
	Total	250	100.0
Dyspareunia	Absent	200	80.0
	Present	50	20.0
	Total	250	100.0
Relationship with OCPs	Absent	222	88.8
	Present	28	11.2
	Total	250	100.0
IUD	Absent	122	48.8
	Present	128	51.2
	Total	250	100.0
Tubectomy	Absent	187	74.8
	Present	63	25.2
	Total	250	100.0

Table 8: Outcome of PAP smear among study participants (n = 250):

PAP Smear outcome	Frequency	Percent
HSIL	2	.8
ASC-H	2	.8
ASCUS	17	6.8
Table 8: (Continued)

PAP Smear outcome	Frequency	Percent
LSIL	7	2.8
NILM	220	88.0
SCC	2	.8
Total	250	100.0

A majority of subjects were Negative for intraepithelial lesion or malignancy (NILM) (88%), followed by 6.8% subjects having atypical squamous cells of undetermined significance (ASCUS), and low-grade squamous intraepithelial lesion (LSIL) (2.8% subjects). A minor proportion of subjects (0.8%) had a high-grade squamous intraepithelial lesion (HSIL), Atypical squamous cells-cannot exclude HSIL (ASC-H) (0.8%), and squamous cell carcinoma (0.8%) (Table 8).

Table 9: Comparison of PAP smear outcome with Type of Discharge (n = 250):

Type of Discharge	HSIL	ASC-H	ASCUS	LSIL	NILM	SCC	Total
Frothy	N	0	0	0	26	0	26
	%	0.0%	0.0%	0.0%	11.8%	0.0%	10.4%
Thick Curdy	N	0	0	0	42	0	42
	%	0.0%	0.0%	0.0%	19.1%	0.0%	16.8%
Thin Mucoid	N	2	2	17	152	2	182
	%	100.0%	100.0%	100.0%	69.1%	100.0%	72.8%
Total	N	1	2	17	220	2	250

Chi-square = 12.737; p-value = 0.388 (not significant)

This implies that the outcome of the PAP smear had no association with the type of discharge among the study population (p > 0.05).

Table 10: Comparison of PAP smear outcome with Amount of Discharge (n = 250):

Amount of Discharge	HSIL	ASC-H	ASCUS	LSIL	NILM	SCC	Total	
Copious	N	1	0	3	0	34	0	38
	%	50.0%	0.0%	17.6%	0.0%	15.5%	0.0%	15.2%
Minimal	N	1	0	3	1	53	0	58
	%	50.0%	0.0%	17.6%	14.3%	24.1%	0.0%	23.2%
Moderate	N	0	2	11	6	133	2	154
	%	100.0%	100.0%	64.7%	85.7%	60.5%	100.0%	61.6%
Total	N	2	2	17	7	220	2	250

Chi-square = 13.787; p-value = 0.277 (not significant)

This implies that the outcome of the PAP smear had no association with the amount of discharge among the study population (p > 0.05). (Table 9, 10)

Table 11: Comparison of PAP smear outcome with Color of Discharge (n = 250):

Color of Discharge	HSIL	ASC-H	ASCUS	LSIL	NILM	SCC	Total	
Greenish-yellow	N	0	0	0	20	0	20	
	%	0.0%	0.0%	0.0%	9.1%	0.0%	8.0%	
Grey	N	1	0	12	7	110	2	132
	%	50.0%	0.0%	70.6%	100.0%	50.0%	100.0%	52.8%
White	N	1	2	5	0	90	0	98
	%	50.0%	100.0%	29.4%	0.0%	40.9%	0.0%	39.2%
Total	N	2	2	17	7	220	2	250

Chi-square = 17.205; p-value = 0.242 (not significant)
This implies that the outcome of the PAP smear had no association with the colour of discharge among the study population (p > 0.05).

Table 12: Comparison of PAP smear outcome with Smell of Discharge (n = 250):

SOD	HSIL	ASC-H	ASCUS	LSIL	NILM	SCC	Total	
Absent	N	1	1	15	7	166	191	
	%	50.0%	50.0%	88.2%	100.0%	75.5%	50.0%	76.4%
Present	N	1	1	2	0	54	1	59
	%	50.0%	50.0%	11.8%	0.0%	24.5%	50.0%	23.6%
Total	N	2	2	17	7	220	2	250

Chi-square = 8.684; p-value = 0.192 (not significant)

This implies that the outcome of the PAP smear had no association with the smell of discharge among the study population (p > 0.05). (Table 11 and 12)

Table 13: Outcome of Wet Mount for diagnosis of T. vaginalis (n = 228):

Frequency	Per cent	
W.M. for T. vaginalis		
Negative	195	78.0
Positive	33	13.2
Total	228	100.0

The outcome of Wet Mount for diagnosis of T. vaginalis among study participants, only 13.2% of study subjects were positive for T. vaginalis, and 78% of subjects were negative.

Table 14: Potassium Hydroxide (KOH) Mount test for Fungal diagnosis (n = 228):

Frequency	Percent	
KOH.M for fungus		
Negative	144	57.6
Positive	84	33.6
Total	228	100.0

The outcome of Potassium Hydroxide (KOH) Mount for Fungal diagnosis among study participants, only 33.6% of study subjects were positive for fungal infection, and 57.6% of subjects were negative.

Table 15: Gram staining test for bacterial diagnosis (n = 228):

Frequency	Percent	
G.S. for Bacteria		
Gram (+) Cocci	99	39.6
Gram (-) Bacilli	89	35.6
Negative	40	16.0
Total	228	100.0

The outcome of Gram staining for Bacteria (prevalence of gram-positive/negative bacteria) among study participants, nearly 39.6% of study subjects had gram-positive cocci, and 35.6% had gram-negative bacilli, and 16% of subjects had a negative outcome. (Table 13,14,15)

Table 16: Bacterial Culture outcome among study participants (n = 228):

Frequency	Percent	
Culture for Bacteria		
E. coli	72	28.8
Enterococcus	14	5.6
K. oxytoca	11	4.4
S. aureus	85	34.0
P. aeruginosa	6	2.4
Negative	40	16.0
Total	228	100.0

The majority of females (34%) were seen to have S. aureus as observed on the bacterial culture of leucorrhoea secretions; followed by E. coli, which was the second-highest (28.8%) observation among study participants.

A minor proportion of study subjects also presented with Enterococcus (5.6%), K. oxytoca (4.4%), and P. aeruginosa (2.4%). Around 16% of subjects had a negative outcome.

Table 17: Fungi Culture outcome among study participants (n = 228):

Frequency	Percent	
Culture for Fungi		
C. glabrata	8	3.2
C. parapsilosis	5	2.0
C. albicans	68	27.2
C. krusei	3	1.2
Negative	144	57.6
Total	228	100.0

The majority of females (27.2%) were seen to have the presence of C. albicans on the culture of leucorrhoeal secretions; followed by C. glabrata (3.2%), C. parapsilosis (2%), C. krusei (1.2%). Around 57.6% of subjects had no outcome (Table 16,17).
DISCUSSION

The present study revealed that Leucorrhoea is prevalent throughout life i.e. 18-45 years, but was highly prevalent in the 26-30 years age group. The findings are similar to study by Tabassum et al. in 2014 and Rudri et al. in 2017, among women 15-55 years old in Bangalore.\(^2\)\(^3\)

The findings also correlate with the study by Devi U in 2013 in Nellore in which 50% of the women reporting leucorrhoea belonged to the age group of 21-30 years.\(^4\)

Culture for isolation of candida is a superior method in detecting vaginal candidal vaginosis. The incidence of candidiasis and TV reported in the current study were comparable to studies reported elsewhere.\(^5\)\(^6\) Overall prevalence of TV varies from place to place, study to study and ranges from 6-14.9%.\(^5\)

The chief presenting complaint in the present study was white discharge which is characteristic of leucorrhoea.\(^2\) The consistency of discharge in the present study varied from thin mucoid (72.8%) to thick curdy (16.8%) and frothy (10.4%) in the current study. This is consistent with studies conducted in Bangalore\(^3\), Nellore\(^4\) and Goa.\(^7\)

The secretions due to non-infectious causes are non-purulent and non-offensive, non-irritant and never cause itching. Pruritis, dysuria and dyspareunia were present in 35.2%, 30% and 20% of the study participants in the present study. Itching is a common symptom in candidiasis, non-specific vaginitis and trichomoniaisis. The findings correlate with the study done elsewhere.\(^4\)

The mean duration of leucorrhoea in the present study was 2.89±1.32 days (Range: 1-6 days). This is in contrast to the findings reported elsewhere. In a study by Ilankoon et al in 2017 in women living in Colombo District, Sri Lanka, sought treatment at the end because the condition got worse or fear of serious disease consequences.\(^8\)

Many women are not interested to discuss the symptom with their medical practitioner until matters reach such a stage that, despite their efforts at treatment, the persistence of discharge compels them to seek advice. This delay, coupled with the fact that many women regard quite a considerable amount of vaginal discharge as normal, has often the effect of making the complaint one of long duration when advice is first sought.\(^9\)

Evidence indicates the minimal effect of OCP use on the vaginal epithelium and vaginal and cervical discharge, and a small effect on vaginal flora.\(^10\) The findings of our study corroborated this evidence.

The prevalence of leucorrhoea among IUD users and tubectomized women was 51.2% and 25.2% respectively in the present study. This was much higher than reported by Devi in 2013 and Kulkarni et al in 2005 in Nagpur.\(^11\)

The findings corroborated with the study done by Nwankwo et al in 2010 among women of the reproductive age group in Nigeria.\(^12\) The IUCD has been reported to produce inflammation and changes in cervical cytopathology.

In the study done by Ocak et al in 2007 among women in Turkey, 20.7% of IUD users were reported to have leucorrhoea as against 8.8% OCP users.\(^13\) Leucorrhoea among IUD users is most strongly related to the insertion process and the background risk of STI.\(^14\)

The PAP smear findings among patients in our study were similar to those reported by Sujatha et al in 2016, Yogita et al in 2014 and Karuna et al in 2003.\(^15\)\(^17\) Thin mucoid discharge was associated with most PAP smear changes in the present study. This is consistent with findings by Parate et al in 2017.\(^18\) Atypical squamous cells of undetermined significance (ASCUS) was associated with greyish discharge. The findings corroborated with studies done elsewhere.\(^15\)\(^19\)

Patients diagnosed with TV infection reported varied colour discharge (greenish-yellow to white). Usually, TV infection among women results in a clear, white, greenish, yellow discharge with an unusual fishy smell.\(^20\) In the current study too, one-third of the patients reported foul-smelling discharge.

CONCLUSION

The present study revealed that Leucorrhoea is prevalent throughout life i.e. 18-45 years, but was highly prevalent in the 26-30 years age group. Married females are at a greater risk for leucorrhoea as they are exposed to sexual activity and frequent childbearing which may lead to vaginal infections, cervicitis, cervical erosion, pelvic inflammatory disease etc. that could lead to leucorrhoea in these women.

Infection of vaginal mucosa by Trichomonas vaginalis and Candida is the most common cause of leucorrhoea. The most common causes of Leucorrhoea in our study were: Gram-positive cocci (39.6%), Gram-negative bacilli (35.6%), Fungal/candidiasis (33.6%) and Trichomonas vaginalis (TV) (13.2%).

The chief presenting complaint in the present study was white discharge which is characteristic of leucorrhoea. The consistency of discharge in the present study varied from thin mucoid (72.8%) to thick curdy (16.8%) and frothy (10.4%) in the current study.

Pruritis, dysuria and dyspareunia were present in 35.2%, 30% and 20% of the study participants in the present study. Itching is a common symptom in candidiasis, non-specific vaginitis and trichomoniaisis. The mean duration of leucorrhoea in the present study was 2.89±1.32 days (Range: 1-6 days). The prevalence of leucorrhoea among IUD users and
Patients diagnosed with TV infection reported varied colour discharge (greenish-yellow to white). Usually, TV infection among women results in a clear, white, greenish, yellow discharge with an unusual fishy smell. In the current study too, one-third of the patients reported foul-smelling discharge. Patients with fungal infection in the present study reported white and grey discharge. The foul smell was present in 17.9% of the patients with a candida infection.

A significant association of leucorrhoea with socio-demographic factors, clinical features, PAP smear, bacterial as well as fungal culture in the present study emphasizes the need for health education and preventive practices related to personal & menstrual hygiene & family planning practices in females.

Acknowledgement: Nil

Conflict of interest: Nil

Source of funding: Nil

REFERENCES

1. Sabaratnum, Drukumaran, Sivanesa VR, Alokanda C. Textbook of Adolescent gynaecology, a sexually active adolescent. 1999; 46(2):733.
2. Tabassum K, Begum S, Rais N, Zulkifle. Analysis of Leucorrhoea manifestations an observational case study. Int J Herb Med. 2014;2(2):23-26.
3. Rudri Bai IM, Deepthi M, Dharmavijaya MN. Analysis of leucorrhoea in tertiary care hospital in rural Bangalore. Int J Clin Obstet Gynec. 2018;2(4):76-9.
4. Devi SU. A study on the prevalence of leucorrhoea in women attending in OPD of gynaecology and obstetrics department in a tertiary hospital. Int J Res Heal Sci. 2013;1(3):230-4.
5. Lavanya D, Venkatarao B, Kamala P, Sivamma BV, Subhalakshmi N. Microbiological profile of leucorrhoea in reproductive age group. Int J Res Heal Sci. 2014; 3(5):503-09.
6. Rani UY, Sarada D, Varalakshmi D, Rajeshwari MR, Padma Y. Microbiological study of leucorrhoea with special reference to Gardnerella Vaginalis. Int J Adv Res. 2015;3(7):1192-97.
7. Tankasale VS, Sahasrabhojanee, Patel V, Nevekreer P, Menezes S, Mabey D. the reliability of a structured examination protocol and self-administered vaginal swab: a pilot study of gynaecological outpatient in Goa, India. Sex Transm Infect. 2003; 79:251-53.
8. Sharman A. The significance of leucorrhoea. Brit Med J. 1935;12:1199-1200.
9. Ilankoon MPS, Goonewardena GSE, Fernandopulle RS, Perera PPR. Women’s Knowledge and Experience of Abnormal Vaginal Discharge Living in Estates in Colombo District, Sri Lanka. Int J Women’s Health Reprod Sci. 2017;5(2):90-6.
10. Eschenbach DA, Patton DL, Meier A, Thwin SS, Aura J, Stapleton A, Hooton TM. Effects of oral contraceptive pill use on vaginal flora and vaginal epithelium. J Contrac. 2000;62(3):107-12. doi: 10.1016/s0010-7824(00)00155-4. PMID: 11124356.
11. Kulkarni RN, Durge PM. A Study of Leucorrhoea in Reproductive Age Group Women of Nagpur City. Ind J Pub Hea. 2005; 49(4):238-9.
12. Nwankwo EOK, Kandakai Olukemi YT, Shuaibu SA. Aetiology of abnormal vaginal discharge among females of reproductive age in Kano, Nigeria. J Med Biomed Sci. 2010; 12:12-16.
13. Ocak S, Cetin M, Hakverdi S, Dolapcioglu K, Gungoren A, Hakverdi AU. Effects of intrauterine device and oral contraceptive on vaginal flora and epithelium. Saudi Med J 2007;28(5):727-31.
14. Martinez F, Lopez-Arregui E. Infection risk and intrauterine devices. Acta Obstet Gynec. 2009; 88: 246-50.
15. Sujatha P, Indira V, Kumar KM. Study of PAP smear examination in patients complaining of leucorrhoea - A 2 years prospective study in a teaching hospital. Int J Med 2016; 3(5):106-12.
16. Yogita M. Patil, R.N. Consai. Pap smear study of cervical cytology. Int J Scientific Research 2014; 3(11): 425-426
17. Karuna, gaspanal V, Van Dan Brule R. The clinical profile and cervical cytomorphology. Ind J Pathol Microbiol. 2003; 46(2): 78.
18. Parate SN, Gupta A, Wadadekar A. Cytological Pattern of Cervical Smears in Leukorrhoea. Int J Sci Stud 2017;4(10):85-89.
19. Nair RV, Seetha PM, Sowbharnika CP. A study on cervical Pap smears among women with leucorrhoea in a tertiary care centre. Int J Clin Obst Gyn. 2019;3(2):135-37.