Effect of Intraoperative Ventilation Strategies on Postoperative Pulmonary Complications: A Meta-Analysis

Min Lei, Qi Bao, Huanyu Luo, Pengfei Huang and Junran Xie*

Department of Anesthesiology, Sir Run Run Shaw Hospital of School of Medicine, Zhejiang University, Zhejiang, China

Introduction: The role of intraoperative ventilation strategies in subjects undergoing surgery is still contested. This meta-analysis study was performed to assess the relationship between the low tidal volumes strategy and conventional mechanical ventilation in subjects undergoing surgery.

Methods: A systematic literature search up to December 2020 was performed in OVID, Embase, Cochrane Library, PubMed, and Google scholar, and 28 studies including 11,846 subjects undergoing surgery at baseline and reporting a total of 2,638 receiving the low tidal volumes strategy and 3,632 receiving conventional mechanical ventilation, were found recording relationships between low tidal volumes strategy and conventional mechanical ventilation in subjects undergoing surgery. Odds ratio (OR) or mean difference (MD) with 95% confidence intervals (CIs) were calculated between the low tidal volumes strategy vs. conventional mechanical ventilation using dichotomous and continuous methods with a random or fixed-effect model.

Results: The low tidal volumes strategy during surgery was significantly related to a lower rate of postoperative pulmonary complications (OR, 0.60; 95% CI, 0.44–0.83, \(p < 0.001 \)), aspiration pneumonitis (OR, 0.63; 95% CI, 0.46–0.86, \(p < 0.001 \)), and pleural effusion (OR, 0.72; 95% CI, 0.56–0.92, \(p < 0.001 \)) compared to conventional mechanical ventilation. However, the low tidal volumes strategy during surgery was not significantly correlated with length of hospital stay (MD, −0.48; 95% CI, −0.99–0.02, \(p = 0.06 \)), short-term mortality (OR, 0.88; 95% CI, 0.70–1.10, \(p = 0.25 \)), atelectasis (OR, 0.76; 95% CI, 0.57–1.01, \(p = 0.06 \)), acute respiratory distress (OR, 1.06; 95% CI, 0.67–1.66, \(p = 0.81 \)), pneumothorax (OR, 1.37; 95% CI, 0.88–2.15, \(p = 0.17 \)), pulmonary edema (OR, 0.70; 95% CI, 0.38–1.26, \(p = 0.23 \)), and pulmonary embolism (OR, 0.65; 95% CI, 0.26–1.60, \(p = 0.35 \)) compared to conventional mechanical ventilation.

Conclusions: The low tidal volumes strategy during surgery may have an independent relationship with lower postoperative pulmonary complications, aspiration pneumonitis, and pleural effusion compared to conventional mechanical ventilation. This relationship encouraged us to recommend the low tidal volumes strategy during surgery to avoid any possible complications.

Keywords: low tidal volume ventilation, conventional mechanical ventilation, postoperative pulmonary complications, length of hospital stay, atelectasis
WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?

The role of intraoperative ventilation strategies in subjects undergoing surgery is still contested. This meta-analysis study was performed to assess the relationship between the low tidal volumes strategy and conventional mechanical ventilation in subjects undergoing surgery.

WHAT DOES THIS ARTICLE ADD?

The low tidal volumes strategy during surgery may have an independent relationship with lower postoperative pulmonary complications, aspiration pneumonitis, and pleural effusion compared to conventional mechanical ventilation.

This relationship encouraged us to recommend the low tidal volumes strategy during surgery to avoid any possible complications.

INTRODUCTION

The harmful influence of intraoperative mechanical ventilation on subjects undergoing surgery under general anesthesia mainly includes ventilation-induced lung injury and postoperative pulmonary complications. The prevalence of postoperative pulmonary complications, a complex result of minor and major pulmonary complications, can reach up to 33% between the subjects undergoing surgery (1). Postoperative pulmonary complications have been reported to harm postoperative recovery by increasing the length of hospital stay, morbidity, and early mortality (2). The use of protective ventilation with low tidal volumes (4–8 ml/kg), a moderate level of positive end-expiratory pressure, and recruitment maneuvers have been suggested in intensive care unit patients with acute respiratory distress syndrome (3). However, the best intraoperative ventilation approaches for subjects undergoing surgery without severe lung injury remain unknown. Low tidal volume ventilation was related to improved pulmonary function than high tidal volume ventilation (4). However, conventional mechanical ventilation with high tidal volumes (more than 8 ml/kg) and little or no positive end-expiratory pressure (less than or equal to 5 cmH₂O) without recruitment maneuvers is still recommended through general anesthesia (5). The present meta-analysis study aimed to find any possible relationship between the low tidal volume strategy and conventional mechanical ventilation as intraoperative ventilation approaches in subjects undergoing surgery.

METHODS

The study performed here followed the meta-analysis of studies in the epidemiology statement (6), which was conducted following an established protocol.

Study Selection

Included studies were those that reported statistical measures of relationship (odds ratio [OR], incidence rate ratio or relative risk, with 95% confidence intervals [CIs]) between the low tidal volume strategy and conventional mechanical ventilation in subjects undergoing surgery.

Only human studies in any language were considered. Inclusion was not restricted by study size or publication type. Excluded publications were studies that did not provide a measure of a relationship. Figure 1 shows the whole study procedure.

The articles were integrated into the meta-analysis when the following inclusion criteria were met:
1. The study was a randomized control trial or a retrospective study.
2. The target population included subjects undergoing surgery.
3. The intervention program had different intraoperative ventilation approaches.
4. The study included comparisons between the low tidal volumes strategy and conventional mechanical ventilation.

The exclusion criteria for the intervention groups were:
1. Studies that did not determine the effectiveness of intraoperative ventilation approaches in subjects undergoing surgery.
2. Studies that included the low tidal volumes strategy and conventional mechanical ventilation as intraoperative ventilation approaches in subjects undergoing surgery.
3. Studies that did not focus on the effect on comparative results.

Identification

A protocol of search strategies was prepared according to the PICOS principle (7), and we defined it as follows: P (population): subjects undergoing surgery; I (intervention/exposure): intraoperative ventilation approaches; C (comparison): low tidal volumes strategy and conventional mechanical ventilation; O (outcome): postoperative pulmonary complications, length of hospital stay, atelectasis, aspiration pneumonitis, acute respiratory distress, short-term mortality, pneumothorax, pleural effusion, pulmonary edema, and pulmonary embolism; and S (study design): no restriction (8). First, we conducted a systematic search of OVID, Embase, Cochrane Library, PubMed, and Google scholar up to December 2020, using a combination of keywords and similar words for low tidal volume ventilation, conventional mechanical ventilation, postoperative pulmonary complications, length of hospital stay, atelectasis, aspiration pneumonitis, acute respiratory distress, short-term mortality, pneumothorax, pleural effusion, pulmonary edema, and pulmonary embolism as shown in Table 1. All identified studies were combined in an EndNote 16 file, duplicates were discarded, and the title and abstracts were reviewed to exclude studies that did not report a relationship between the low tidal volumes strategy and conventional mechanical ventilation in subjects undergoing surgery, based on the previously mentioned inclusion and exclusion criteria. The remaining articles were examined for correlated information.
Screening
Data were abridged based on study-associated and subject-associated features onto a consistent form: the last name of the primary author, period of study, year of publication, country, region of the studies, and study design; population type, the total number and the number of subjects undergoing surgery, demographic data, and clinical and treatment characteristics; operation type and method of assessment; result assessment; and statistical analysis OR or relative risk, along with 95% CI, of the relationship and its result (9). If a study qualified for inclusion based upon the aforementioned principles, data were extracted independently by two authors. In case of disagreement, the corresponding author provided a final opinion. When the data from a particular study differed based on the assessment of the relationship described above, we extracted the data separately. Individual studies were evaluated using the quality in prognosis studies tool, which evaluates validity and bias in studies of prognostic factors across six domains: participation, attrition, prognostic factor measurement, confounding measurement and account, outcome measurement, and analysis and reporting (10). Any inconsistencies were addressed by a re-evaluation of the original article.

The primary result concentrated on the low tidal volumes strategy and conventional mechanical ventilation in subjects undergoing surgery. A comparison between the low tidal volumes strategy and conventional mechanical ventilation was extracted to form a summary.

Sensitivity and Subgroup Analyses
Sensitivity analyses were limited only to studies reporting the relationship between the low tidal volumes strategy and conventional mechanical ventilation in subjects undergoing surgery. For subgroup and sensitivity analyses, we used comparisons between the low tidal volumes strategy and conventional mechanical ventilation, as reference.

Dichotomous and continuous methods with a random or fixed-effect model were used to calculate the odds ratio (OR) or mean difference (MD) and 95% CI. We calculated the \(I^2 \) index; the \(I^2 \) index is between 0 and 100%. Values of approximately 0, 25, 50, and 75% indicate no, low, moderate, and high heterogeneity, respectively (11). When \(I^2 \) was higher than 50%, we chose the random-effect model; when it was lower than 50%, we used the fixed-effect model. A subgroup analysis was performed by stratifying the original evaluation per outcome categories as described before. In this analysis,
a p-value for differences between subgroups of <0.05 was considered statistically significant. Publication bias was evaluated quantitatively using the Egger regression test (publication bias considered present if \(p \geq 0.05 \), and qualitatively, by visual examination of funnel plots of the logarithm of ORs or MDs vs. their standard error (SE) (7). All p-values were two-tailed. All calculations and graphs were performed using reviewer manager version 5.3 (The Nordic Cochrane Center, The Cochrane Collaboration, Copenhagen, Denmark).

DISCUSSION
This meta-analysis study based on 28 studies included 11,846 subjects undergoing surgery at baseline and reported a total of 2,638 receiving the low tidal volumes strategy and 3,632 receiving conventional mechanical ventilation (4, 12–38).

The low tidal volumes strategy during surgery was significantly related to a lower rate of postoperative pulmonary complications, aspiration pneumonitis, and pleural effusion compared to conventional mechanical ventilation. The low tidal volumes strategy was significantly related to a lower rate of postoperative pulmonary complications (OR, 0.60; 95% CI, 0.44–0.83, \(p < 0.001 \)) with high heterogeneity (\(I^2 = 76\% \)), aspiration pneumonitis (OR, 0.63; 95% CI, 0.46–0.86, \(p < 0.001 \)) with no heterogeneity (\(I^2 = 0\% \)), and pleural effusion (OR, 0.72; 95% CI, 0.56–0.92, \(p < 0.001 \)) with low heterogeneity (\(I^2 = 26\% \)) compared to conventional mechanical ventilation as shown in Figures 2–4.

However, the low tidal volumes strategy during surgery was not significantly correlated with length of hospital stay (MD, \(-0.48; 95\% CI, -0.99–0.02, p = 0.06 \)) with high heterogeneity (\(I^2 = 91\% \)); short-term mortality (OR, 0.88; 95% CI, 0.70–1.10, \(p = 0.25 \)) with no heterogeneity (\(I^2 = 0\% \)); atelectasis (OR, 0.76; 95% CI, 0.57–1.01, \(p = 0.06 \)) with no heterogeneity (\(I^2 = 0\% \)); acute respiratory distress (OR, 1.06; 95% CI, 0.67–1.66, \(p = 0.81 \)) with low heterogeneity (\(I^2 = 44\% \)); pneumothorax (OR, 1.37; 95% CI, 0.88–2.15, \(p = 0.17 \)) with no heterogeneity (\(I^2 = 0\% \)); pulmonary edema (OR, 0.70; 95% CI, 0.38–1.26, \(p = 0.23 \)) with no heterogeneity (\(I^2 = 0\% \)); and pulmonary embolism (OR, 0.65; 95% CI, 0.26–1.60, \(p = 0.35 \)) with no heterogeneity (\(I^2 = 0\% \)) compared to conventional mechanical ventilation as shown in Figures 5–11.

A stratified analysis of studies that did and did not adjust for operation type, subjects’ age, and ethnicities were not performed because not enough studies reported or adjusted for these factors.

Based on the visual inspection of the funnel plot as well as on quantitative measurement using the Egger regression test, there was no evidence of publication bias (\(p = 0.87 \)).
TABLE 2 | Characteristics of the selected studies for the meta-analysis.

Study	Country	Total	Low tidal volume ventilation	Conventional mechanical ventilation
Whalen et al. (12)	USA	20	10	10
Michelet et al. (13)	France	52	26	26
Cai et al. (14)	China	16	8	8
Weingarten et al. (15)	USA	40	20	20
Yang et al. (16)	South Korea	122	61	61
Ahn et al. (17)	South Korea	87	31	31
Treschan et al. (18)	Germany, Canada, and USA	395	50	50
Maslow et al. (19)	USA	34	17	17
Fubier et al. (20)	France	1,803	200	200
Severgnini, et al. (21)	Italy	527	28	27
PROVE Network Investigators et al. (22)	Europe and North and South America	900	453	447
Fernandez-Bustamante et al. (23)	USA	28	14	14
Pi et al. (24)	China	63	20	22
Botzan et al. (25)	Brazil	93	30	31
Park et al. (26)	South Korea	62	31	31
Wei et al. (27)	China	36	12	12
Aretha et al. (28)	Greece	122	45	45
Choi et al. (29)	South Korea	60	30	30
Pereira et al. (30)	Italy	40	20	20
Marret et al. (31)	France	346	172	171
Zhang et al. (32)	China	180	45	45
Soh et al. (33)	South Korea	97	39	39
Bluth et al. (4)	Europe and North and South America	2,013	1,002	1,011
Kim et al. (34)	South Korea	65	20	20
Li et al. (35)	China	472	126	126
Karalipolli et al. (36)	Australia	1,236	614	592
Cheng et al. (37)	Taiwan	68	30	29
Algera et al. (38)	Europe and North and South America	2,869	484	496
Total		**1,184**	**3,638**	**3,632**

FIGURE 2 | Forest plot of the low tidal volumes strategy vs. conventional mechanical ventilation in subjects undergoing surgery on postoperative pulmonary complications.
FIGURE 3 | Forest plot of the low tidal volumes strategy vs. conventional mechanical ventilation in subjects undergoing surgery on length of hospital stay.

FIGURE 4 | Forest plot of the low tidal volumes strategy vs. conventional mechanical ventilation in subjects undergoing surgery on short-term mortality.

FIGURE 5 | Forest plot of the low tidal volumes strategy vs. conventional mechanical ventilation in subjects undergoing surgery on atelectasis.
FIGURE 6 | Forest plot of the low tidal volumes strategy vs. conventional mechanical ventilation in subjects undergoing surgery on aspiration pneumonitis.

FIGURE 7 | Forest plot of the low tidal volumes strategy vs. conventional mechanical ventilation in subjects undergoing surgery on acute respiratory distress.

FIGURE 8 | Forest plot of the low tidal volumes strategy vs. conventional mechanical ventilation in subjects undergoing surgery on pneumothorax.

FIGURE 9 | Forest plot of the low tidal volumes strategy vs. conventional mechanical ventilation in subjects undergoing surgery on pleural effusion.
As shown from our meta-analysis results, low tidal volume is a very important piece of lung-protective ventilation. Though, according to the international expert-panel-based consensus recommendations on lung-protective ventilation for subjects undergoing surgery, not all ventilation approaches based on low tidal volumes result in lung protection (39). This could be because these outcomes are due to less pulmonary atelectasis, and better pulmonary compliance and oxygenation induced by moderate-to-high positive end-expiratory pressure (40, 41). Also, pneumoperitoneum through surgery may result in increased intrathoracic pressure, and decreased lung compliance and functional residual capacity (42). Recruitment maneuvers followed by subsequent moderate-to-high positive end-expiratory pressure are much more effective than positive end-expiratory pressure alone in re-expanding atelectasis and preserving the open dependent lung units (43).

Our finding is similar to that of a previous meta-analysis that reported a relationship between high-driving pressure and a high number of pulmonary complications (44). Atelectasis decreases lung compliance, and increases pulmonary vascular resistance and intrapulmonary shunting, causing the progression of postoperative pulmonary complications. In this study, the combination of low tidal volumes, moderate-to-high positive end-expiratory pressure, and recruitment maneuvers were better than conventional mechanical ventilation in decreasing the risk of atelectasis (44). Moderate to high levels of positive end-expiratory pressure can preserve end-expiratory lung volume, increase compliance, and consequently prevent atelectasis. Also, this influence could be stimulated by recruitment maneuvers, which overcome the opening pressure of the alveoli. A large cohort study even showed that low tidal volumes with minimal positive end-expiratory pressure were related to an increased risk of 30-day mortality (45). The use of high tidal volumes results in volutrauma, which injures the alveolar, the vascular endothelial, the epithelial cells, and the extracellular matrix (46). This could activate an inflammatory response. Numerous randomized controlled trials have recommended that lung-protective ventilation strategies can reduce the release of inflammatory mediators (13, 47, 48). Also, animal studies reported that low tidal volumes ventilation with moderate-to-high positive end-expiratory pressure reduced bacterial growth in an experimental piglet model of pneumonia (49–51).

Two previous meta-analysis studies found a significant difference between protective ventilation and conventional ventilation in acute respiratory distress syndrome (52, 53). However, similar to our results another meta-analysis study did not find any significance in acute respiratory distress syndrome (54). The difference may be because of different methodologies used in those studies.

A stratified analysis of studies that did and did not adjust for operation type, subjects’ age, and ethnicities were not performed because not enough studies reported or adjusted for these factors. However, from the study results presented here, we can recommend a low tidal volumes strategy during surgery to avoid any possible complications.

LIMITATIONS

Some of the included articles were small in sample size, which has a potential risk of biases. There may be selection
bias in this study since so many of the studies found were excluded from the meta-analysis. However, the studies excluded did not satisfy the inclusion criteria of our meta-analysis. A stratified analysis of studies that did and did not adjust for operation type, subjects’ age, and ethnicities were not performed because not enough studies reported or adjusted for these factors. Some of the selected studies were retrospective, which might decrease the strength of fundamental evidence. Also, postoperative pulmonary complications were defined with considerable variation in the selected studies. Efforts at decreasing postoperative pulmonary complications mostly include postoperative ventilation strategies. Though, only a small number of the selected studies reported the ventilation strategies after surgery and the data were inadequate to perform an appropriate meta-analysis. Also, the subjects’ enrollment strategies were not the same in the selected studies regarding inspiratory pressure, duration, and frequency.

CONCLUSIONS

Based on this meta-analysis, the low tidal volumes strategy during surgery may have an independent relationship with lower postoperative pulmonary complications, aspiration pneumonitis, and pleural effusion compared to conventional mechanical ventilation. However, the low tidal volumes strategy during surgery was not significantly correlated with length of hospital stay, short-term mortality, atelectasis, acute respiratory distress, pneumothorax, pulmonary edema, and pulmonary embolism compared to conventional mechanical ventilation. This relationship encouraged us to recommend the low tidal volume strategy during surgery to avoid any possible complications. However, further studies are needed to consolidate the beneficial effects of the ventilation strategy and to simplify the best levels of positive end-expiratory pressure, the best recruitment maneuver strategies, and the influence of postoperative ventilation strategies on clinical results.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

JX: conception and design. ML, QB, HL, and PH: collection and assembly of data. All authors administrative support, provision of study materials or subjects, data analysis, interpretation, articles writing, final approval of manuscript, read, and approved the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fsurg.2021.728056/full#supplementary-material

REFERENCES

1. Fernandez-Bustamante A, Frendl G, Sprung J, Kor DJ, Subramaniam B, Ruiz RM, et al. Postoperative pulmonary complications, early mortality, and hospital stay following noncardiothoracic surgery: a multicenter study by the perioperative research network investigators. JAMA Surg. (2017) 152:157–66. doi: 10.1001/jamasurg.2017.6.065

2. Ball L, Hemmes S, Neto AS, Bluth T, Canet J, Hiesmayr M, et al. Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients. Br J Anaesth. (2018) 121:899–908. doi: 10.1016/j.bja.2018.04.021

3. Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. (2017) 195:1253–63. doi: 10.1164/rcrm.1951.erratum

4. Bluth T, Serpa Neto A, Schultz MJ, Pelosi P, de Abreu MG, Bobek I, et al. Effect of intraoperative high Positive End-Expiratory Pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients: a randomized clinical trial. JAMA. (2019) 322:1829–30. doi: 10.1001/jama.2019.7505

5. Patel JM, Baker R, Yeung I, Small C. Intra-operative adherence to lung-protective ventilation: a prospective observational study. Perioperative Med. (2016) 5:8. doi: 10.1186/s13741-016-0033-4

6. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. (2000) 283:2008–12. doi: 10.1001/jama.283.15.2008

7. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. (2003) 327:557–60. doi: 10.1136/bmj.327.7414.557

8. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. (2009) 62:e1–e34. doi: 10.1016/j.jclinepi.2009.06.006

9. Gupta A, Das A, Majumder K, Arora N, Mayo HG, Singh PP, et al. Obesity is independently associated with increased risk of hepatocellular cancer–related mortality. Am J Clin Oncol. (2018) 41:874–81. doi: 10.1097/COC.0000000000003588

10. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. (2013) 158:280–6. doi: 10.7326/0003-4819-158-4-201302190-00009

11. Sheikhbahaee S, Trahan TJ, Xiao I, Taghipour M, Mena E, Connolly RM, et al. FDG-PET/CT and MRI for evaluation of pathologic response to neoadjuvant chemotherapy in patients with breast cancer: a meta-analysis of diagnostic accuracy studies. Oncologist. (2016) 21:931–9. doi: 10.1634/theoncologist.2015-0353

12. Whalen FX, Gajic O, Thompson GB, Kendrick ML, Que FL, Williams BA, et al. The effects of the alveolar recruitment maneuver and positive end-expiratory pressure on arterial oxygenation during laparoscopic bariatric surgery. Anesthesiology. (2006) 102:298–305. doi: 10.1097/00000385-200601000-00011

13. Michelet P, D’Journo X-B, Roch A, Doddiolo C, Marin V, Papazian L, et al. Protective ventilation influences systemic inflammation after esophagectomya randomized controlled study. Anesthesiology. (2006) 105:911–9. doi: 10.1097/00000542-200611000-00011

14. Cai H, Gong H, Zhang L, Wang Y, Tian Y. Effect of low tidal volume ventilation on atelectasis in patients during general
anesthesia: a computed tomographic scan. J Clin Anesth. (2007) 19:125–9. doi: 10.1016/j.cjane.2006.08.008

15. Weingarten T, Whalen F, Warner DO, Gajic O, Schears G, Snyder M, et al. Comparison of two ventilatory strategies in elderly patients undergoing major abdominal surgery. Br J Anesth. (2010) 104:16–22. doi: 10.1093/bja/aep319

16. Yang M, Ahn HJ, Kim K, Kim JA, Chin AY, Kim MJ. Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery?: a randomized controlled trial. Chest. (2011) 139:530–7. doi: 10.1378/chest.09-2293

17. Ahn H, Kim J, Yang M, Shim W, Park K, Lee J. Comparison between conventional and protective one-lung ventilation for ventilator-assisted thoracic surgery. Anaesth Intensive Care. (2012) 40:780–8. doi: 10.1177/039803091204000405

18. Treschon T, Kaisers W, Schaefer M, Bastin B, Schmalz U, Wanja V, et al. Ventilation with low tidal volumes during upper abdominal surgery does not improve postoperative lung function. Br J Anesth. (2012) 109:263–71. doi: 10.1093/bja/aes140

19. Maslow AD, Stafford TS, Davignon KR, Ng T. A randomized comparison of different ventilator strategies during thoracotomy for pulmonary resection. J Thorac Cardiovasc Surg. (2013) 146:38–44. doi: 10.1016/j.jtcs.2013.01.021

20. Futier E, Constantin J-M, Paugam-Burtz C, Pascal J, Euirin M, Neuschwan A, et al. trial of intraoperative low-tidal-volume ventilation in abdominal surgery. New Engl J Med. (2013) 369:428–37. doi: 10.1056/NEJMoa1301082

21. Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. (2013) 118:1307–21. doi: 10.1097/ALN.0b013e31829102de

22. PROVE Network Investigators. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILLO trial): a multicentre randomised controlled trial. Lancet. (2014) 384:495–503. doi: 10.1016/S0140-6736(14)60416-5

23. Fernandez-Bustamante A, Klavitter J, Repine JE, Agazio A, Janocha AJ, Shah C, et al. Early effect of tidal volume on lung injury biomarkers in surgical patients with healthy lungs. Anesthesiology. (2014) 121:469–81. doi: 10.1097/ALN.0000000000000301

24. Pi X, Cui Y, Wang C, Guo L, Sun B, Shi J, et al. Low tidal volume with PEEP and recruitment expedite the recovery of pulmonary function. Int J Clin Exp Pathol. (2015) 8:14305.

25. Bolzan DW, Trimer R, Begot I, Nasrala ML, Forestieri P, Mendez VM, et al. trial of intraoperative low-tidal-volume ventilation in abdominal surgery. New Engl J Med. (2013) 369:1070–7. doi: 10.1056/NEJMoa1300275

26. Soh S, Shim J-K, Han H, Kwak Y-L. Ventilation with low or high tidal volume with PEEP does not influence lung function after spinal surgery in prone position: a randomized controlled trial. J Neurosurg Anesthesiol. (2018) 30:237–45. doi: 10.1097/ANES.0000000000000428

27. Wei K, Min S, Cao J, Hao X, Deng J. Repeated alveolar recruitment maneuver with protective ventilation on inflammatory responses in video-assisted thorascopic lobectomy: a randomized controlled trial. Surg Endosc. (2019) 33:1403–11. doi: 10.1007/s00464-018-6145-6

28. Li X-F, Jiang D, Jiang Y-L, Yu H, Zhang M-Q, Jiang J-L, et al. Open-lung ventilation improves clinical outcomes in off-pump coronary artery bypass surgery: a randomized controlled trial. J Cardiovasc Surg Anesth. (2013) 67:28–34. doi: 10.1016/j.jcva.2015.08.015

29. Atkinson TM, Giraud GD, Togioka BM, Jones DB, Cigarroa JE. Cardiovascular and ventilatory consequences of recruitment maneuver and positive end-expiratory pressure on respiratory mechanics and systemic stress response during laparoscopic cholecystectomy. Rev Bras Anestesiol. (2017) 67:28–34. doi: 10.1016/j.jbjae.2015.08.015

30. Kim JY, Shin CS, Kim HS, Jung WS, Kwak HJ. Positive end-expiratory pressure in pressure-controlled ventilation improves ventilatory and oxygenation parameters during laparoscopic cholecystectomy. Surg Endosc. (2010) 24:1099–103. doi: 10.1007/s00464-009-7743-6

31. Atkinson TM, Giraud GD, Togioka BM, Jones DB, Cigarroa JE. Cardiovascular and ventilatory consequences of laparoscopic surgery. Circulation. (2013) 135:700–10. doi: 10.1161/CIRCULATIONAHA.112.122265

32. Zhang BJ, Tian H-T, Li H-O, Meng J. The effects of one-lung ventilation mode on lung function in elderly patients undergoing esophageal cancer surgery. Medicine. (2018) 97:e9500. doi: 10.1097/MD.0000000000009500

33. Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anesthesia as a meta-analysis of individual patient data. Lancet Respir Med. (2016) 4:272–80. doi: 10.1016/S2213-2600(16)00567-6

34. Levin M, McCormick P, Lin H, Hosseini L, Fischer G. Low intraoperative tidal volume ventilation with minimal PEEP is associated with increased mortality. Br J Anaesth. (2014) 113:97–108. doi: 10.1093/bja/aet054

35. Elgandy MO, Abdelrahim ME, Eldin RS. Potential benefit of repeated MDI inhalation technique counselling for patients with asthma. Eur J Hosp Pharm. (2015) 22:318–22. doi: 10.1136/ejhpharm-2015-000648

36. Jachaudon M, Blondonnet R, Roszyk L, Bouvier D, Audard J, Clairefond G, et al. Soluble receptor for advanced glycation end-products predicts impaired alveolar fluid clearance in acute respiratory distress syndrome. Am J Respir Crit Care Med. (2015) 192:291–7. doi: 10.1164/rccm.201501-0200OC

37. Zupancich E, Paparella D, Turani F, Munch C, Rossi A, Massaccesi S, et al. Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J Thorac Cardiovasc Surg. (2005) 130:378–83. doi: 10.1016/j.jtcvs.2004.11.061
49. Sperber J, Nyberg A, Lipcsey M, Melhus Å, Larsson A, Sjölin J, et al. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model. *Inten Care Med Exper.* (2017) 5:40. doi: 10.1186/s40635-017-0152-3

50. Lachmann RA, van Kaam AH, Haitsma JJ, Lachmann B. High positive end-expiratory pressure levels promote bacterial translocation in experimental pneumonia. *Intensive Care Med.* (2007) 33:1800–4. doi: 10.1007/s00134-007-0749-1

51. Van Kaam AH, Lachmann RA, Herting E, De Jaegere A, Van Iwaarden F, Noorduyn LA, et al. Reducing atelectasis attenuates bacterial growth and translocation in experimental pneumonia. *Am J Respir Crit Care Med.* (2004) 169:1046–53. doi: 10.1164/rccm.200312-179OC

52. Neto AS, Schultz MJ, de Abreu MG. Intraoperative ventilation strategies to prevent postoperative pulmonary complications: systematic review, meta-analysis, and trial sequential analysis. *Best Pract Res Clin Anaesthesiol.* (2015) 29:331–40. doi: 10.1016/j.bpa.2015.09.002

53. Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Biehl M, Binnekade JM, et al. Protective versus Conventional Ventilation for Surgery: A Systematic Review and Individual Patient Data Meta-analysis. *Anesthesiology.* (2015) 123:66–78. doi: 10.1097/ALN.0000000000000076

54. Deng QW, Tan W-C, Zhao B-C, Wen S-H, Shen J-T, Xu M. Intraoperative ventilation strategies to prevent postoperative pulmonary complications: a network meta-analysis of randomised controlled trials. *Br J Anaesth.* (2020) 124:324–35. doi: 10.1016/j.bja.2019.10.024

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.