Negative-feedback self-regulation contributes to robust and high-fidelity transmembrane signal transduction

M. Ángeles Serrano, Manuel Jurado, and Ramon Reigada

1Departament de Física Fonamental, Universitat de Barcelona,
Martí i Franquès 1, 08028, Barcelona, Spain

2Departament de Química Física, Universitat de Barcelona,
Martí i Franquès 1, 08028, Barcelona, Spain

Abstract

We present a minimal motif model for transmembrane cell signaling. The model assumes signaling events taking place in spatially distributed nanoclusters regulated by a birth/death dynamics. The combination of these spatio-temporal aspects can be modulated to provide a robust and high-fidelity response behavior without invoking sophisticated modeling of the signaling process as a sequence of cascade reactions and fine-tuned parameters. Our results show that the fact that the distributed signaling events take place in nanoclusters with a finite lifetime regulated by local production is sufficient to obtain a robust and high-fidelity response.
I. INTRODUCTION

Transmembrane cellular signaling pathways are responsible for linking external stimuli and internal cellular actions. Typically, signaling molecules activate specific receptor proteins on the cell membrane triggering a cascade of interactions that diffuse messengers inside the cell regulating its activity, growth and development. Signaling pathways not only sense information but integrate and process it into fast (seconds to minutes) and robust high-fidelity responses [1]. The importance of certain ubiquitous motifs in signaling pathways—such as activation cascades and feedback loops—for this processing is well recognized. How spatio-temporal mechanisms influence signal transduction is much less understood.

The interplay between cascades and feedback loops can explain intriguing properties such as opposing cell fate decisions depending on different stimuli provoking different activation amplitudes [2–6]. As a striking example, the mitogen-activated protein kinase (MAPK) pathway governs crucial cellular processes like proliferation and differentiation [7], and its dysfunction has been related with cancer [8]. In short, the pathway consists of the sequential activation of three kinases. The transduction process is initiated by a growth-factor-induced recruitment of the SOS factor to the plasma membrane that links and activates a G-protein. The latter recruits a MAPK kinase kinase (MAPKKK) from the cytosol to the plasma membrane, that double-phosphorylates and activates a MAPK kinase (MAPKK), that in turns, double-phosphorylates and activates a MAPK as a final signaling messenger. The most known example of this MAPK cascade corresponds to the regulation of ERK (MAPK) which features Ras as the G-protein, Raf as the MAPKKK and MEK as the MAPKK [7]. Mathematical models have shown that, in the absence of feedback regulation, the MAPK cascade elicits a steep response to the input signal if successive protein activations are performed in a distributive manner [9], while feedback regulations modulate the overall sensitivity of the pathway [10, 11].

Recently, membrane nanoclusters concentrating signaling proteins have been proposed as a new fundamental mechanism to modulate and increase the efficiency and specificity of the MAPK cascade. The work by Harding and Hancock [12] has revealed that activated receptor proteins aggregate in the membrane forming nanoclusters, that recruit the downstream factors (Raf, MEK and ERK) from the cytosol and perform signal transduction. These signaling platforms (Fig. 1) display two important spatio-temporal characteristics: they
are transient with short lifetimes (typically under 1 s), and dispersed in the cell membrane occupying a small reaction volume (radii ≈ 10 nm) [12]. When the nanocluster spatial organization is combined with the corresponding cascades and feedback loops, in silico and in vivo analyses of MAPK signaling show that the system is able to perform high-fidelity signal transduction. The numerical implementation of the latter proposal by Tian et al. [13], shows that in a range of kinetic parameters, nanoclusters work as switches responding maximally to very low input signals. Since the generation of signaling platforms is proportional to the input stimulus, nanocluster ultrasensitivity results in high-fidelity signal transduction (the global response is proportional to the stimulus). Despite the undeniable relevance of the work of by Tian et al. in Ref. [13], high-fidelity seems to require a precise selection of the kinetic rates of the reactions involved in the proposed signaling process. Actually, modifications of the kinetic model parameters may result in poor signal transmission [13]. Additionally, a critical analysis of the contribution of the spatio-temporal nanocluster dynamics on the signal/response behavior is missing. The intricacy of the signaling cascade and high number of tuned-for-ultrasensitivity parameters in that in silico approach hinders to discriminate the role of the spatio-temporal nanocluster dynamics in signaling output.

In this Letter, we consider a remarkably simple and generic motif model that incorporates the aggregation of signaling proteins into discrete transient domains, but that simplifies the pathway structure to unveil the importance of the spatio-temporal dynamics of membrane nanoclusters. We want to emphasize that nanocluster dynamics may control the general stimulus/response behavior of signaling processes involving dispersed signaling platforms, regardless of the particular architecture of their signaling circuits. Interestingly, we find that complex behaviors attributed to the particular architecture–cascades of distributed activations and feedback loops– of signaling pathways can be also achieved by regulating the spatio-temporal dynamics of nanoclusters encapsulating much simpler signaling motifs. More specifically, ultrasensitivity of signaling platforms leading to high-fidelity transmission, is found to be affected by their lifetime. To explore how cells might have protected the fidelity of signal transduction, two scenarios have been compared: a situation where the nanocluster lifetime is externally regulated, and the case where it is not prefixed but linked to their local activity (see Fig. 1). In the latter case, we report that self-regulation induces robust individual switch-like behavior and high fidelity global responses for a wide range of kinetic parameters.
FIG. 1: Sketch of the Ras-MAPK signaling platform as described in the literature [7, 12]. Negative-feedback regulations with two different origins have been represented in red: the one in solid line corresponds to a external regulation, whereas the one in dashed stands for a internal self-regulation.

FIG. 2: Schematic representation of the two proposed nanocluster (NC) disassembling mechanisms. a) Model A: nanoclusters generate signaling output species that freely diffuse to the cytosol (P_{cyt}). Their life-time is regulated by a frequency determined externally (k_3). b) Model B: signaling output molecules transiently reside close to the nanocluster (P_{nc}) and self-regulate its life-time (k_3P_{nc}). In both panels only two nanoclusters are represented, but the number in our simulations is on order of hundreds.
II. THE MODEL

The description of complex signaling circuits as those for the MAPK pathway is often performed by the combination of transformation reactions modeled as simple enzymatic processes. Therefore, the simplest way to describe the complex features of nanoclusters signal transduction is to model each nanocluster as a minimal signaling motif based on the standard Michaelis-Menten formulation,

\[
NC + S \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} NC - S \overset{k_2}{\rightarrow} P + E
\]

where \(NC\), \(S\), \(NC - S\) and \(P\) stand for the enzyme, substrate, intermediate and product species, respectively, and \(k_1\), \(k_{-1}\) and \(k_2\) are reaction rate constants. The role of the enzyme is assigned here to the nanocluster platform \(NC\) where the activity of the signaling motif takes place. Typically, nanocluster platforms are transient structures assembled by anchored proteins in the inner leaflet of plasma membrane. These can be proteins like GTPase Ras, that become activated by mediation of the cytoplasmatic protein SOS as a catalyst when the external stimulus (f.i., growth factor) binds to membrane receptors. In the context of MAPK signaling the first reversible reaction in Eq. (1) corresponds to the recruiting of Raf protein to immobile Ras nanoclusters and its subsequent activation, which starts the MAPK cascade, whereas the second (catalytic) step comprehends successive phosphorylation and activation of MEK and ERK kinases.

In our model, signaling nanoclusters are assumed to follow a dynamics that controls their number and lifetime. We first consider a birth/death mechanism that does not depend on the spatial distribution or the functioning of nanoclusters, but represents some extrinsic regulation (model A, Fig. 2a). Nanoclusters are dynamically formed in the cell membrane at rate \(k_0\), whereas, independently, a fixed constant rate \(k_3\) determines the frequency of nanocluster disassembling. During their lifetime, signaling nanoclusters can generate product molecules according to the reaction motif in Eq. (1). The external stimulus is represented by parameter \(\alpha\), that is set to unity at maximal stimulus. The role of \(\alpha\) is two-fold. First, in vivo experiments reveal that nanocluster generation is proportional to input growth factor concentration [13], so we consider the frequency of nanocluster formation to be proportional to the stimulus, \(k_0 = \alpha k_0^{(m)}\), where \(k_0^{(m)}\) corresponds to nanocluster generation rate at maximal stimulus. Second, kinase phosphorylation is known to happen in two separated encounters, both promoted by stimulus, instead of occurring sequentially in a single encounter.
Such a distributive mechanism is accounted in our signaling motif by setting $k_2 = \alpha k_2^{(m)}$, with $k_2^{(m)}$ being the catalytic rate at maximal stimulus (see also Refs. 9, 13).

In the numerical simulations, we follow a stochastic approach similar to the Gillespie algorithm 14, 15. All events corresponding to nanocluster birth and death, and to internal molecular transformations, are treated as stochastic events because of the small numbers of proteins involved and the limited lifetime of signaling platforms. In particular, we consider Poissonian processes with a frequency determined by the corresponding rates, that can be found in literature. For the MAPK pathway, cytosolic concentration of Raf is about $10^{-7} M$ 9, whereas Raf activation is of order $\approx 10^6 - 10^8 M^{-1}s^{-1}$ 3, 11, which leads to a forward reaction rate $k_1 \approx 0.1 - 10s^{-1}$. The dissociation reaction is slower, $k_{-1} \approx 10^{-2} s^{-1}$ 3, 11. Catalytic constant rates corresponding to kinase phosphorylation processes are much larger, $k_2 \approx 10 - 100s^{-1}$ 3, 11, 13. Finally, death rate $k_3 = 2s^{-1}$ is tuned to adjust the estimated 0.5s average lifetime of Ras nanoclusters 13. Activation frequency at maximal stimulus, $k_0^{(m)}$, is arbitrarily fixed to 1000s$^{-1}$, so that the average number of simulated nanoclusters is of the order of a few hundreds. This number is well below the typical maximum number of Ras nanocluster in a cell (≈ 50000) 13 but assures a sufficient statistical ensemble for our stochastic simulations in a reasonable computational time.

III. RESULTS

The stimulus/response behavior of the model is evaluated by representing the velocity V_P of P formation normalized with respect to the maximal production (for $\alpha = 1$) as a function of input stimulus α. For model A, individual signaling nanoclusters can generate both graded and switch-like outputs (see. Fig. 3), depending on the relative values of the reaction rates and whenever nanoclusters do not die too fast, $k_1 \lesssim k_3$. If the limiting reaction is the formation of product molecules from the intermediate complex $NC - S$, $k_1 > k_2$, nanoclusters generate a graded signal since the impact of the distributive mechanism in the formation of product P through $k_2 = \alpha k_2^{(m)}$ becomes relevant. In contrast, for $k_1 < k_2$, the limiting reaction is the formation of $NC - S$. In this situation, once the intermediate complex is formed, product molecules are generated very fast, quite independently of the contribution of the stimulus in the catalytic step. Then, a nanocluster responds maximally to very low inputs (ultrasensitivity) and its output is switch-like, presenting a steeper response for greater differences between k_1 and k_2. These behaviors are summarized in Fig. 3b,
FIG. 3: Global response V_p as a function of stimulus α in model A (external lifetime regulation), for $k_1 = 1s^{-1}$. a) Number of nanoclusters fixed and independent of the input stimulus ($k_0 = k_0^{(m)}$). b) Number of nanoclusters regulated by stimulus ($k_0 = \alpha k_0^{(m)}$).

that reports results from simulations run with a fixed number of operating nanoclusters independent of the input stimulus; namely, for a nanocluster generation rate k_0 fixed to $k_0^{(m)}$ in order to average a large ensemble of signaling platforms. The stimulus/response curves are plotted for different values of $k_2^{(m)}$, given $k_1 = 1s^{-1}$. The global response of the system corresponds to the integration of local signaling events taking place in different activated nanoclusters. In the cell membrane, the number of nanoclusters is proportional to stimulus concentration, $k_0 = \alpha k_0^{(m)}$. Figure 3 shows that this global response is nonlinear when the nanoclusters function in the graded regime (low values of $k_2^{(m)}$), while the system generates a graded nearly linear product output in the regime of nanoclusters working as nanoswitches (large values of $k_2^{(m)}$), meaning that in this case the signaling response is directly proportional to input stimulus. The fact that nanoclusters respond
FIG. 4: Global response V_P as a function of stimulus α in model B (lifetime self-regulation), for $k_1 = 1s^{-1}$. a) Number of nanoclusters fixed and independent of the input stimulus ($k_0 = k_0^{(m)}$). b) Number of nanocluster regulated by stimulus ($k_0 = \alpha k_0^{(m)}$).

maximally even at low stimulus results in a global response only dependent on the number of nanoclusters, proportional to stimulus. This implies that the system of ultrasensitive nanoswitches achieves high-fidelity signal transduction by performing an analogue-digital-analogue transmission [13], an obvious advantage that could be one of the reasons for the active compartmentation of cell signaling processes. We note that our results are obtained for the simplest internal structure of the signaling pathway given in Eq. (1), without the recursion to intricate reactions profuse in biological details.

As an alternative to model A, we propose a signaling mechanism where the nanocluster lifetime is self-regulated via the coupling of nanocluster disassembly to its local activity, without the intervention of external factors (model B, Fig. 2b). We assume that product molecules remain transiently accumulated in a local pool that acts as an internal clock
exerting a negative impact in the lifetime of the nanocluster. The more it has produced, the higher its chances to die, as it happens for instance in Ras-MAPK signaling: production of ERK promotes the phosphorylation of the SOS factor, which inhibits the activity of Ras aggregates \[4,7\]. The concept of local pool is acceptable for short nanocluster lifetimes of fractions of second. Then, the restricted diffusive motion of product species does not allow them to travel far from the signaling membrane complex. We model the death rate of a nanocluster as \(k_3 P_{nc,i}(t)\), where \(k_3\) is a constant rate and \(P_{nc,i}(t)\) is the number of signaling product molecules in the local pool generated by the nanocluster \(i\) up to time \(t\).

The latter expression is the simplest dependence for a negative upstream inhibition due to the final product protein and corresponds to the opposite limit to model A. Whereas model A considers that the dynamics of signaling platforms is completely regulated externally, in model B this regulation is absolutely modulated by their local activity.

To investigate the impact of local activity regulating the death of nanoclusters, we study the response of model B for the same parameter values used in the simulations of model A in Figs. 3a and 3b. Lifetime self-regulation enhances nanocluster sensitivity, maintaining the switch-like response for a wider range of values of \(k_2^{(m)}\), see Fig. 4a for a fixed number of signaling platforms independent of stimulus \((k_0 = k_0^{(m)})\). The explanation is related to the fact that in model B nanoclusters can be active for longer periods when the input signal is low. In model A, most nanoclusters are disassembled before producing any \(P\) molecule when working under a low stimulus. In these cases, and in particular when \(k_2^{(m)}\) is small, the effect of the input stimulus in the production of \(P\) becomes critical. Instead, in model B, the death probability of a nanocluster is zero until it has produced at least one \(P\) molecule, so that the second step in Eq. (1) is no longer critical even at low values of \(k_2^{(m)}\). Notice that the lifetimes of nanoclusters are longer in model B at low input stimulus, they approach the lifetime fixed in model A \((k_3^{-1})\) at moderate stimulus, and may become even shorter at maximal stimulus. As a consequence of the gain in nanocluster sensitivity, the global response fidelity is also enhanced in model B, as it is shown in Fig. 4b for simulations using \(k_0 = \alpha k_0^{(m)}\).

We have also performed a systematic study of signal transmission fidelity in both models at different values of the kinetic rates \(k_1\) and \(k_2^{(m)}\). Fidelity of signal transduction is quantified here by parameter \(\phi\), computed as the integral of the global response rescaled by the number of nanoclusters, \(\frac{V_P}{\alpha}(\alpha)\), for the whole range of input stimulus. High-fidelity transduction is
achieved when the system response, \(V_P \), correlates to stimulus, \(\alpha \), so when \(\phi \to 1 \). This requires nanoclusters to work in the range where they behave as ultrasensitive nanoswitches. Figure 5 presents the values of \(\phi \) in the \((k_1,k_2^{(m)})\) parameter space spanning two orders of magnitude for each kinetic rate. Notice that high-fidelity signal transmission is a robust feature for the signaling mechanism involving a self-regulated nanocluster dynamics (model B), whereas for the scheme based on a fixed nanocluster lifetime (model A) such virtue requires a fine tuning of the reaction kinetic parameters.

IV. CONCLUSIONS

Two important conclusions can be derived from our simulations. First, the sensitivity of signaling platforms is found to be modulated by their lifetime, so it is not exclusively determined by the particular architecture of the signaling pathway as suggested so far. Second, comparison of two extreme models for nanocluster disassembly reveals the importance of the physical origin of nanocluster lifetime regulation. As two extreme possibilities, we propose model A where nanoclusters lifetime is externally regulated by a fixed frequency, and model B where individual nanocluster activity fully determines its duration. Most likely, biological cell signaling may be regulated by a mixture of these two extreme situations. Importantly, we have shown that any contribution to nanocluster lifetime regulated by local production promotes robust individual ultrasensitivity outputs and, consequently, high-fidelity global responses for a wider range of reaction kinetic rates as compared to model A. Therefore, it could be conjectured that nanocluster lifetime self-regulation protects the signaling response from variability in the particular architecture of the signaling structure and in the rates of involved reactions. Many modeling approaches have been attempted to describe cell signaling processes but the complexity of the signaling structure and the number of kinetic parameters hide the particular role of nanocluster dynamics. In this Letter, we have proposed a simple and generic signaling motif model that captures essential features of signal transduction, such as ultrasensitiveness and fidelity, and could apply to different types of spatial signaling domains following a temporal birth/death dynamics. Nevertheless, the observed complexity of signaling pathways may entail some biological advantages, such as enabling plasticity to modulate different response amplitudes triggering opposing cell fate decisions within a single cell. In the context of our framework for nanocluster cell signaling, we plan to tackle these questions and others, such as the processing of time dependent stimulus, in future research.
FIG. 5: Signal transmission fidelity ϕ computed at different values of k_1 and $k_2^{(m)}$ for models A (bottom surface) and B (top surface). Simulations using $k_0 = \alpha k_0^{(m)}$.

Acknowledgments

This work was supported by Generalitat de Catalunya grant Ref. 2009SGR1055; the Ramón y Cajal program of MICINN; MICINN Project BFU2010-21847-C02-02.

[1] Bhalla US, Iyengar R. 1999 Emergent properties of networks of biological signaling pathways. *Science* **283**, 381–387.

[2] Brightman FA, Fell DA. 2000 Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signaling in PC12 cells. *FEBS Letters* **482**, 169–174.

[3] Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G. 2002 Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. *Nature Biotechnology* **20**, 370–375.

[4] Shin S-Y et al. 2009 Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. *J. Cell Sci.* **122**, 425–435 (2008). (doi:10.1242/jcs.036319)

[5] de Ronde W, Tostevin F, ten Wolde PR. 2011 Multiplexing Biochemical Signals. *Phys. Rev. Lett.* **107**, 04810. (doi:10.1103/PhysRevLett.107.048101)

[6] P. Andreu-Pérez, et al. 2010 Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. *Science Signaling* **4**, 190 ra58. (doi:10.1126/scisignal.2001936)
[7] Kolch W. 2000 Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. *Biochem. J.* **351**, 289–305.

[8] Dhillon AS, Hagan S, Rath O, Kolch W. 2007 MAP kinase signaling pathways in cancer. *Oncogene* **26**, 3279–3290. (doi:10.1038/sj.onc.1210421)

[9] Huang CY, Ferrell JE. 1996 Ultrasensitivity in the mitogen-activated protein kinase cascade. *Proc. Natl. Acad. Sci. U.S.A.* **93**, 10078–10083.

[10] Kholodenko BN. 2000 Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. *Eur. J. Biochem.* **267**, 1583–1588. (doi:10.1046/j.1432-1327.2000.01197.x)

[11] Sturm OE et al. 2010 The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. *Science Signaling* **3**, ra90. (doi:10.1126/scisignal.2001212)

[12] Harding AS, Hancock JF. 2008 Using plasma membrane nanoclusters to build better signaling circuits. *Trends in Cell Biology* **18**, 364–371. (doi:10.1016/j.tcb.2008.05.006)

[13] Tian T, Harding A, Inder K, Plowman S, Parton RG, Hancock JF. 2007 Plasma membrane nanoswitches generate high-fidelity Ras signal transduction. *Nature Cell Biology* **9**, 905–914. (doi:10.1038/ncb1615)

[14] Gillespie DT. 1976 A general method for numerically simulating the stochastic evolution of coupled chemical reactions. *J. Comput. Phys.* **22**, 403–434.

[15] Gillespie DT. 1977 Exact stochastic simulation of coupled chemical reactions. *J. Phys. Chem.* **81**, 2340–2361.