Research Article

Hermite–Hadamard Inequalities for Harmonic \((s, m)\)-Convex Functions

Jian Zhong Xu, 1 Umar Raza, 2 Muhammad Waqas Javed, 3 and Zaryab Hussain 4, 5

1 Department of Electronics and Information Engineering, Bozhou University, Bozhou 236800, China
2 Department of Mathematics, University of Jhang, Jhang 35200, Pakistan
3 Department of Sciences and Humanities, National University of Computer and Emerging Sciences (FAST), Chiniot 35400, Pakistan
4 Department of Mathematics, Punjab College of Commerce New Campus, Faisalabad 38000, Pakistan
5 Department of Mathematics, Government College University Faisalabad, Faisalabad 38000, Pakistan

Correspondence should be addressed to Zaryab Hussain; zaryabhussain2139@gmail.com

Received 11 July 2020; Accepted 25 August 2020; Published 26 September 2020

Guest Editor: Shaohui Wang

Copyright © 2020 Jian Zhong Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The objective of this article is to establish some Hermite–Hadamard-type inequalities via harmonic \((s, m)\)-convex functions in the framework of conformal fractional integral.

1. Introduction and Preliminaries

Let \(C \subset \mathbb{R}\) be an interval. Then, \(C\) is said to be convex, if
\[
(1 - t)u + tv \in C,
\]
holds \(\forall u, v \in C\) and \(t \in [0, 1]\).

Let \(C \subset \mathbb{R}\) be an interval. Then, a function \(f: C \to \mathbb{R}\) is said to be convex (concave), if
\[
f((1 - t)u + tv) \leq (\geq) (1 - t)f(u) + tf(v),
\]
holds for all \(u, v \in C\) and \(t \in [0, 1]\).

It can be easily seen in [1–7] that the convex (concave) functions have extensive applications in pure and applied mathematics, and in the literature [8–15], many eminent inequalities and other properties can be found in the framework of convexity. One of the renowned inequalities in the literature of Hermite–Hadamard Integral Inequality is given below:
\[
f\left(\frac{u + v}{2}\right) \leq \frac{1}{v - u} \int_{u}^{v} \frac{f(x)}{x} \, dx \leq \frac{f(u) + f(v)}{2}.
\]

These both inequalities hold in reverse if the function is concave. Now, the harmonic convex set is defined as follows.

Definition 1. Let \(C \subset \mathbb{R}\) be an interval. Then, \(C\) is said to be harmonic convex, if
\[
\frac{uv}{(1 - t)u + tv} \in C,
\]
holds \(\forall u, v \in C\) with \((u, v) \neq (0, 0)\) and \(t \in [0, 1]\).

Iscan [8] introduced the concept of harmonic convex function.

Definition 2 (see [8]). Let \(C \subset \mathbb{R}\) be an interval. Then, a function \(f: C \to \mathbb{R}\) is called harmonic convex (concave), if
\[
f\left(\frac{uv}{(1 - t)u + tv}\right) \leq (\geq) tf(u) + (1 - t)f(v),
\]
holds for all \(u, v \in C\) with \((u, v) \neq (0, 0)\) and \(t \in [0, 1]\).

Iscan by using the concept of harmonic convex function gave a new refinement of Hermite–Hadamard inequality as
\begin{align}
f\left(\frac{2uv}{u+v}\right) \leq \frac{uv}{v-u} \int_u^v f(x) \, dx \leq \frac{f(u) + f(v)}{2}, \quad (6)
\end{align}

Definition 3. Let \(\mathbb{C} \subseteq R \) be an interval and \(s, m \in (0, 1) \). Then, a function \(f: \mathbb{C} \rightarrow R \) is called harmonic \((s, m)\)-convex (concave), if
\[
f\left(\frac{muv}{(1-t)u + mtv}\right) \leq (\geq) t^s f(u) + m(1-t)^s f(v), \quad (7)
\]
holds \(\forall u, v \in \mathbb{C} \) with \((u, v) \neq (0, 0) \) and \(t \in [0, 1] \).

If \(s = m = 1 \), then harmonic \((s, m)\)-convex function becomes the classical harmonic convex function. So harmonic convex function is a special case of harmonic \((s, m)\)-convex function.

The main purpose of this article is to establish some conformable fractional estimates of Hermite–Hadamard–convex function. Before going further towards our main results, let us have a brief review of the previously well known concepts and results. These preliminaries will be highly helpful in acquiring the main results.

The eminent gamma and beta functions are defined as
\[
\Gamma(u) = \int_0^\infty e^{-t} t^{u-1} \, dt, \quad \text{for } u > 0,
\]
\[
\beta(u, v) = \int_0^1 t^{u-1} (1-t)^{v-1} \, dt = \frac{\Gamma(u) \Gamma(v)}{\Gamma(u+v)}, \quad \text{for } u, v > 0.
\]

(8)

The integral form of hypergeometric function is defined as
\[
_2F_1(u, v; w; z) = \frac{1}{\beta(v, w-v)} \int_0^1 t^{w-1} (1-t)^{v-1} (1-zt)^{-u} \, dt,
\]
for \(|z| \geq 1 \).

Now, if \(f \in L_1[u, v] \) with \(u \geq 0 \), then Riemann–Liouville integrals \(I_u^a f \) and \(I_v^a f \) of any positive order \(a \) are defined as
\[
I_u^a f(t) = \frac{1}{\Gamma(a)} \int_0^a (a-t)^{a-1} f(t) \, dt, \quad a > u,
\]
\[
I_v^a f(t) = \frac{1}{\Gamma(a)} \int_0^v (t-a)^{a-1} f(t) \, dt, \quad a < v.
\]

(10)

For more details, see [11].

Recently, Abdeljawad [16] introduced the notation of right and left conformable fractional integrals for any positive order \(\alpha \) as follows.

Definition 4. Let \(\alpha \in (n, n+1] \). Then, the left and right conformable fractional integrals starting from \(u \) of any positive order \(\alpha \) is given as
\[
I_u^\alpha f(t) = \frac{1}{n!} \int_u^t (t-a)^{\alpha-n-1} f(a) \, da,
\]
\[
I_v^\alpha f(t) = \frac{1}{n!} \int_t^v (a-t)^{\alpha-n-1} f(a) \, da.
\]

(11)

Lemma 1. Let \(f : \mathbb{C} = [a, b] \subseteq R \setminus \{0\} \rightarrow R \) be a harmonic \((s, m)\)-convex function such that \(f \in L_1[u, v] \) and \(s, m \in (0, 1] \). Then,
\[
\left(\frac{2uv}{u+v}\right) \leq \frac{1}{n!} \int_u^v f(x) \, dx \leq \frac{f(u) + f(v)}{2},
\]
\[
\leq \frac{1}{n!} \left\{ f(x) + m f\left(\frac{x}{m}\right) \right\}.
\]

(12)

2. Main Results

In this section, we will present our main results.

Theorem 1. Let \(f : \mathbb{C} = [a, b] \subseteq R \setminus \{0\} \rightarrow R \) be a harmonic \((s, m)\)-convex function for \(t = 1/2 \), we have
\[
\left(\frac{xy}{x+y}\right) \leq \frac{1}{n!} \left\{ f(x) + m f\left(\frac{y}{m}\right) \right\}.
\]

(14)

Put \(x = uv/\mathbb{t} + (1-t)v \) and \(y = uv/\mathbb{t} + (1-t)v \). Then,
\[
\left(\frac{2uv}{u+v}\right) \leq \frac{1}{n!} \left\{ f\left(\frac{uv}{tu + (1-t)v}\right) + m f\left(\frac{uv}{mtu + (1-t)v}\right) \right\},
\]
\[
\leq \frac{1}{n!} \left\{ \int_0^1 f\left(\frac{uv}{tu + (1-t)v}\right) \, dt + m \int_0^1 f\left(\frac{uv}{mtu + (1-t)v}\right) \, dt \right\}.
\]

(15)

We know that
\[
\int_0^1 \left(\frac{1}{2}\right)^s \left(\frac{uv}{tu + (1-t)v}\right) \, dt = \frac{uv}{v-u} \int_u^v \frac{f(x)}{x^2} \, dx.
\]
\[
\Rightarrow \quad f\left(\frac{2uv}{u+v}\right) \leq \frac{1}{n!} \left\{ \int_0^1 f\left(\frac{x}{u}\right) \, dx + m \int_0^1 f\left(\frac{x}{m}\right) \, dx \right\}.
\]

(16)
Now, consider a function \(f: \mathbb{R} \to \mathbb{R} \) such that \(f(x) = 0 \). Then,
\[
 f \left(\frac{mxy}{mty + (1-t)x} \right) = 0. \tag{17}
\]
Also,
\[
 t'f(x) + m(1-t)'f(y) = 0. \tag{18}
\]
So \(f \) is harmonic \((s, m)\)-convex, and also, we have
\[
 f \left(\frac{2uv}{u+v} \right) = 0, \tag{19}
\]
which implies that the inequality holds. \(\square \)

Theorem 2. Let \(\mathcal{C} = [u, v] \subset \mathbb{R} \setminus \{0\} \to \mathbb{R} \) be a harmonic \((s, m)\)-convex function such that \(f \in L_1[u, v] \), where \(s, m \in (0, 1] \). Then,
\[
 \frac{\Gamma x - n}{\Gamma x + 1} f \left(\frac{2uv}{u+v} \right) \leq \left(\frac{1}{2} \right)^s \left(\frac{uv}{v-u} \right)^a I_{\alpha}^1 (fog) \left(\frac{1}{u} \right) \tag{20}
\]
Here, fog is the composition function.

Proof. From inequality 1, we have
\[
 f \left(\frac{2xy}{x+y} \right) \leq \left(\frac{1}{2} \right)^s \left\{ f(x) + m f \left(\frac{y}{m} \right) \right\}. \tag{21}
\]
Put \(x = uv/2 + (1-t)v \) and \(y = uv/2 + (1-t)u \). Then,
\[
 f \left(\frac{2uv}{u+v} \right) \leq \left(\frac{1}{2} \right)^s \left\{ f(x) + m f \left(\frac{y}{m} \right) \right\} + m I_{\alpha}^1 (fog) \left(\frac{1}{v} \right). \tag{22}
\]
By using change of variable technique of integration, we have
\[
 J_1 = \frac{1}{n!} \int_0^1 t^n (1-t)^{a-n-1} f \left(\frac{uv}{tu + (1-t)v} \right) dt \tag{23}
\]
where \(f(x) = 1/x \), and
\[
 J_2 = \frac{m}{n!} \int_0^1 t^n (1-t)^{a-n-1} f \left(\frac{uv}{mtv + (1-t)u} \right) dt \tag{24}
\]
where \(f(x) = 1/x \), and
\[
 | f(u+v) + f(x) | \leq \frac{uv}{v-u} \int_x^u f(x) dx \leq \frac{uv(v-u)}{2^{1/q} q!} (\Omega_1 | f'(u) |^q + m \Omega_2 | f'(v/m) |^q)^{1/q}, \tag{25}
\]
where
\[\Omega_1 = \int_0^1 \frac{t^s}{(tv + (1 - t)u)^2} \, dt = \frac{u^{-2}}{s + 1} \, F_1(2,s + 1; s + 2; 1 - \frac{v}{u}), \]
\[\Omega_2 = \int_0^1 \frac{(1 - t)^s}{(tv + (1 - t)u)^2} \, dt = \frac{-u^{-2}}{s + 1} \, F_1(2, 1; s + 2; 1 - \frac{v}{u}). \]

Proof. Hölder’s inequality and Lemma 1 implies that
\[|f'(u)|^q \leq \frac{uv(v - u)}{2} \left(\int_0^1 \left(\frac{1}{(tv + (1 - t)u)^2} \right)^{1/q} \, dt \right)^{1 - 1/q} \left(\int_0^1 \left(\frac{1}{(tv + (1 - t)u)^2} \right) \, dt \right)^{1/q}. \]

(29)

Since \(|f'|^q\) is harmonically \((s,m)\)-convex on \([u,v/m]\), we have
\[\frac{uv(v - u)}{2} \left(\int_0^1 \frac{(1 - t)^s}{(tv + (1 - t)u)^2} \, dt \right)^{1/q} \left(\int_0^1 \frac{1}{(tv + (1 - t)u)^2} \, dt \right)^{1 - 1/q} + m v \Omega_1 f' \left(\frac{v}{m} \right)^q \frac{1}{1/q}. \]

(30)

Here,
\[\Omega_1 = \int_0^1 \frac{t^s}{(tv + (1 - t)u)^2} \, dt = \frac{u^{-2}}{s + 1} \, F_1(2,s + 1; s + 2; 1 - v/u), \]
\[\Omega_2 = \int_0^1 \frac{(1 - t)^s}{(tv + (1 - t)u)^2} \, dt = \frac{-u^{-2}}{s + 1} \, F_1(2, 1; s + 2; 1 - v/u). \]

(31)

\[\square \]

Theorem 4. Let \(f : C = [u,v] \subset R \setminus \{0\} \longrightarrow R \) be differentiable on \(C \), \(u, v/m \in C, m \in [0, 1], \) and \(f' \in L[u,v]. \) If \(|f'|^q\) for \(q \geq 1 \) is harmonic \((s,m)\)-convex on \([u,v/m]\), then
\[\frac{uv}{2} \left(\int_u^v \frac{f'(x)}{x^2} \, dx \right) \leq \frac{uv(v - u)}{2} \left(\frac{1}{u^2} \, F_1(2, 1; 2; 1 - \frac{v}{u}) \right)^{1 - 1/q} \left(\frac{uv}{m^2} \, F_1(2, 1; 2; 1 - \frac{v}{u}) \right)^{1/q}. \]

where \(\Psi = s/(s + 1)(s + 2). \)

Proof. Hölder’s inequality and Lemma 1 implies that
\[\frac{f(u) + f(v)}{2} - \frac{uv}{v - u} \int_u^v f(x) \, dx \leq \frac{uv(v - u)}{2} \int_0^1 \frac{1 - 2t}{(tv + (1 - t)u)^2} f' \left(\frac{uv}{tv + (1 - t)u} \right) dt \]

(33)

\[\leq \frac{uv(v - u)}{2} \left(\int_0^1 \frac{dt}{(tv + (1 - t)u)^2} \right)^{1-1/q} \times \left(\int_0^1 (1 - 2t) \left| f' \left(\frac{uv}{tv + (1 - t)u} \right) \right|^q dt \right)^{1/q}. \]

Since \(|f'|^q \) is harmonically \((s,m)\)-convex on \([u,v/m]\), we have

\[\leq \frac{uv(v - u)}{2} u^{-2} F_1 \left(2, 1; 2; 1 - \frac{v}{u} \right)^{1-1/q} \times \left(\int_0^1 (1 - 2t) \left(t^{1/q} |f'(u)|^q + m(1 - t)^q \right)^{1/q} dt \right)^{1/q}, \]

(34)

where \(\Psi = s/(s + 1)(s + 2). \)

Theorem 5. Let \(f : I = [u, v] \subset \mathbb{R} \rightarrow R \) be differentiable on \(\mathbb{C}^n \), \(u, v/m \in \mathbb{C}, m \in [0,1], \) and \(f' \in L[u, v] \). If \(|f'|^q \) for \(q \geq 1 \) is harmonic \((s,m)\)-convex on \([u,v/m]\), then

\[\left| \frac{f(u) + f(v)}{2} - \frac{uv}{v - u} \int_u^v f(x) \, dx \right| \leq \frac{uv(v - u)}{2} \left(\frac{1}{p + 1} \right)^{1/p} \times \left(\Phi_1 |f'(u)|^q + m \Phi_2 |f'(v/m)|^q \right)^{1/q}, \]

(35)

where

\[\Phi_1 = \int_0^1 \frac{t^s}{(tv + (1 - t)u)^2} \, dt = \frac{u^{-2q}}{s + 1} F_1 \left(2q, s + 1; s + 2; 1 - \frac{v}{u} \right), \]

\[\Phi_2 = \int_0^1 \frac{(1 - t)^s}{(tv + (1 - t)u)^2} \, dt = \frac{u^{-2q}}{s + 1} F_1 \left(2q, 1; s + 2; 1 - \frac{v}{u} \right). \]

Proof. Hölder's inequality and Lemma 1 implies that
Acknowledgments

This work was supported by the Key Natural Science Foundation of the Education Department of Anhui Province (KJ2019A1303 and KJ2019A1300); the Key Project for Teaching Research of Bozhou University (2018zdjy01 and 2018zdjy02); and the Key Natural Science Foundation of the Education Department of Bozhou University (BYZ2018B03 and BYZ2019B03). Moreover, the second author wants to acknowledge the efforts of the vice chancellor, University of Jhang, for providing such a good environment for research.

References

[1] T. H. Zhao, Y. M. Chu, and H. Wang, “Logarithmically complete monotonicity properties relating to the gamma function,” Abstract and Applied Analysis, vol. 13, p. 2011, 2011.

[2] Y. Jiang and X. Xu, “A monotone finite volume method for time fractional Fokker-Planck equations,” Science China Mathematics, vol. 62, no. 4, pp. 783–794, 2019.

[3] Z. Cai, J. Huang, and L. Huang, “Periodic orbit analysis for the delayed Filippov system,” Proceedings of the American Mathematical Society, vol. 146, no. 11, pp. 4667–4682, 2018.

[4] Y. Tan, C. Huang, B. Sun, and T. Wang, “Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition,” Journal of Mathematical Analysis and Applications, vol. 458, no. 2, pp. 1115–1130, 2018.

[5] L. Duan, X. Fang, and C. Huang, “Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting,” Mathematical Methods in the Applied Sciences, vol. 41, no. 5, pp. 1954–1965, 2018.

[6] W. Wang and Y. Chen, “Fast numerical valuation of options with jump under Merton’s model,” Journal of Computational and Applied Mathematics, vol. 318, pp. 79–92, 2017.

[7] L. Duan and C. Huang, “Existence and global attractivity of almost periodic solutions for a delayed differential neo-classical growth model,” Mathematical Methods in the Applied Sciences, vol. 40, no. 3, pp. 814–822, 2017.

[8] I. Iscan, “Hermite-Hadamard type inequalities for harmonically convex functions,” Hacettepe Journal of Mathematics and Statistics, vol. 43, no. 6, pp. 935–942, 2014.

[9] M. U. Awan, M. A. Noor, M. V. Mihai, and K. I. Noor, “Inequalities via harmonic convex functions: conformable fractional calculus approach,” Journal of Mathematical Inequalities, vol. 12, no. 1, pp. 143–153, 2018.

[10] M. U. Noor, Y. M. Chu, and K. I. Noor, “Some new refinements of Hermite-Hadamard-type inequalities involving-Riemann-Liouville fractional integrals and applications,” Mathematical Problems in Engineering, vol. 2020, Article ID 3051920, 2020.

[11] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John-Wiley and Sons. Inc., Hoboken, NJ, USA, 1993.

[12] M. A. Noor, K. I. Noor, and M. U. Awan, "Integral inequalities for coordinated harmonically convex functions," Complex Variables and Elliptic Equations, vol. 60, no. 6, pp. 776–786, 2015.

[13] M. Z. Awan, E. Set, H. Yaldiz, and N. Basak, "Hermite-Hadamard’s inequalities for fractional integrals and related
fractional inequalities,” *Mathematical and Computer Modelling*, vol. 57, no. 9-10, pp. 2403–2407, 2013.

[14] S. Talib, M. U. Awan, M. A. Noor, and K. I. Noor, “Approximately h-preinvex functions, associated Hermite-Hadamard-like inequality, new q-identity, and estimation of its bounds with applications,” *AIP Advances*, vol. 10, no. 4, Article ID 045209, 2020.

[15] S. Wu, M. U. Awan, M. V. Mihai, M. A. Noor, and S. Talib, “Estimates of upper bound for a kth order differentiable functions involving Riemann-Liouville integrals via higher order strongly h-preinvex functions,” *Journal of Inequalities and Applications*, vol. 227, no. 1, 2019.

[16] T. Abdeljawad, “On conformable fractional calculus,” *Journal of Computational and Applied Mathematics*, vol. 279, pp. 57–66, 2015.