Summarization and comparison of dermoscopic features on different subtypes of rosacea

Wenmin Fei1,2, Yang Han1,2, Ang Li1,2, Keke Li1,2, Xiaoli Ning1,3, Chengxu Li1, Wenju Wang4, Rusong Meng5, Yong Cui1,2

1Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, China;
2Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China;
3Graduate School of Peking University Health Science Center, Beijing 100191, China;
4Department of Dermatology, Chengdu Second People’s Hospital, Chengdu, Sichuan 610017, China;
5Department of Dermatology, Specialty Medical Center of the Air Force, Chinese People’s Liberation Army, Beijing 100142, China.

Abstract

Background: The dermoscopic features of rosacea have already been reported. However, the current findings are incomplete, and little is known about phymatous rosacea. Hence, this study aimed to summarize and compare the dermoscopic features and patterns of three rosacea subtypes (erythematotelangiectatic [ETR], papulopustular [PPR], and phymatous [PHR]) in the Chinese Han population and to evaluate whether these features differ with patients’ genders, ages, and durations.

Methods: Dermoscopic images of 87 rosacea patients were collected in non-polarized and polarized dermoscopy contact modes at 20-fold magnification. Dermoscopic features, including vessels, scales, follicular findings, and other structures, were summarized and evaluated.

Results: The reticular linear vessels and red diffuse structureless areas of ETR were distinctive. For PPR, red diffuse structureless areas, reticular linear vessels, yellow scales, follicular plugs, and follicular pustules were typical dermoscopic criteria. The common dermoscopic features of PHR were: orange diffuse structureless areas, linear vessels with branches, perifollicular white color, orange focal structureless areas, and white lines. The following features statistically differed among the three rosacea subtypes: reticular linear vessels (P < 0.001), unspecific linear vessels (P = 0.005), linear vessels with branches (P < 0.001), yellow scales (P = 0.001), follicular plugs (P < 0.001), perifollicular white color (P < 0.001), red diffuse structureless areas (P = 0.022), orange diffuse structureless areas (P < 0.001), red focal structureless areas (P = 0.002), orange focal structureless areas (P = 0.003), white lines (P < 0.001), follicular pustules (P < 0.001), and black vellus hairs (P < 0.001).

Conclusions: The dermoscopic patterns of ETR are red diffuse structureless areas and reticular linear vessels. For PPR, the pattern comprehends combinations of red diffuse structureless areas, reticular linear vessels, yellow scales, follicular plugs, and follicular pustules. Meanwhile, PHR is characterized by remarkable orange diffuse structureless areas, linear vessels with branches, perifollicular white color, orange focal structureless areas, and white lines.

Keywords: Rosacea; Dermoscopic features; Patterns; Summarizations; Comparisons

Introduction

Rosacea is a chronic and inflammatory skin disease affecting the central face with common clinical presentations including flushing, erythema, telangiectasia, papules, pustules, rhinophyma, and ocular involvement. The prevalence of rosacea in the general population ranges from <1% to 22%.1,2 In the absence of histological or serological markers, the diagnosis and classification of this disease are mainly established on observable characteristics that are derived from the dermatologists’ experiences. However, the clinical discrimination of non-typical cases from other similar facial diseases, such as acne vulgaris, seborrheic dermatitis, lupus vulgaris, and perioral dermatitis, might be challenging.3

Currently, two classifications systems of rosacea are available. The most updated one is based on patient-tailored analyses of the presented phenotypes and has been extensively used to assess and treat rosacea.4 Nevertheless, guidelines for the management of rosacea produced by the British Association of Dermatologists that recommended the older rosacea classification system, containing erythematotelangiectatic (ETR), papulopustular (PPR), phymatous (PHR), and ocular characterized by clinical signs, should also be taken into account.5 Moreover, in clinical practice guidelines and consensus

Access this article online

Quick Response Code:
Website: www.cmj.org
DOI: 10.1097/CM9.0000000000002151

Correspondence to: Yong Cui, Department of Dermatology, China-Japan Friendship Hospital, No. 2, Yinhua East Street, Beijing 100029, China
E-Mail: wuhucuiyong@vip.163.com

Copyright © 2022 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Chinese Medical Journal 2022;135(12)
Received: 14-11-2021; Online: 15-07-2022 Edited by: Lishao Guo
of several countries, therapeutic regimens are still guided by the four main rosacea subtypes.\cite{3,6,7} Therefore, an appropriate classification is essential to improve the patients’ prognoses. Unfortunately, the classification can be difficult sometimes for the naked eyes, especially for atypical and overlapped cases.

Dermoscopy is a useful non-invasive diagnostic tool for various melanoystic lesions and inflammatory diseases, which can increase diagnostic accuracy.\cite{8-10} Generally, the diagnosis of inflammatory skin diseases depends mainly on clinical appearances. Moreover, in ambiguous cases, dermoscopy can lead to accurate diagnoses and avoid unnecessary biopsy by providing discriminative clues. Recently, the dermoscopic characteristics of ETR and PPR have been investigated, and successful attempts to apply dermoscopy beyond diagnosis have also been reported.\cite{10-13} For example, dermoscopy has been considered an additional assessment tool to record therapeutic effects.\cite{13} However, these reported cases focused only on one rosacea subtype, primarily ETR or PPR, with relatively small numbers of patients. Therefore, the dermoscopic features in these studies are incomplete, and little is known about PHR dermoscopic characteristics.

In the present study, we summarized the dermoscopic features and patterns of three rosacea subtypes (ETR, PPR, and PHR) in the Chinese Han population to improve the diagnostic accuracy, perform reasonable classification, and guide optimal therapeutic schedules. Furthermore, we compared the differences in dermoscopic features among subtypes, gender, ages, and durations.

Methods

Study design

This retrospective morphological study was carried out at the China-Japan Friendship Hospital from August 1st, 2020 to October 31st, 2021. All subjects were diagnosed and classified by two experienced associate chief or chief physicians based on diagnostic criteria developed and published by the National Rosacea Society Expert Committee. If there was any disagreement between the two experts, the case was eliminated. The exclusion criteria were: overlapping cases (hard to fit into a certain category); and individuals who had received rosacea treatment within 3 months before enrollment. This study was approved by the Research Ethics Committee of China-Japan Friendship Hospital (No. 2020-130-K83) and followed the Declaration of Helsinki. Informed consent was obtained from all patients.

Imaging procedure and evaluation

Dermoscopic images were obtained with a digital dermoscopy system (Medcam 800HD, FotoFinder Systems GmbH, Birbach, Germany) at a 20-fold magnification. Both non-polarized and polarized contact modes were utilized for each case. Minimal pressure was applied to acquire better visualization, and ultrasound gel was used to preserve vessels’ morphology when the non-polarized contact mode was employed. Dermoscopic images were taken in areas where lesions were significant and then evaluated by two experienced dermoscopy experts. The two experts were asked to independently complete a pre-designed list with various dermoscopic rosacea features. We developed this list based on a review of the published literature\cite{10-12,14-19} and unified terminology according to an expert consensus announced by the International Dermoscopy Society.\cite{20} If necessary, new findings beyond the list could be included. During this process, any discrepancy between the two experts’ opinions was settled by a consensus meeting with other experts.

Dermoscopic features evaluated

The following dermoscopic features were evaluated in each subject: vessels including reticular linear vessels, unspecific linear vessels, unspecific dotted vessels, and linear vessels with branches; scales (mainly yellow scales); follicular findings such as follicular plugs, follicular red dots, and perifollicular white color; other structures containing red/pink/orange diffuse structureless areas, brown/orange/red focal structureless areas, white lines, follicular pustules, and white/black vellus hairs. The definitions of dermoscopic features were the same as previously described.\cite{10-12,14-20}

Division of age, gender, and duration

General information including age, gender, and duration was also collected for further analyses. According to the latest age classification methods in China and the World Health Organization, we divided the patients into two groups: ≤40 years and >40 years. Moreover, individuals were classified into two groups based on the course of their diseases: ≤24 months and >24 months.

Statistical analyses

Statistical Product and Service Solutions version 21.0 (IBM Corp., Armonk, NY, USA) was used for statistical analyses. The continuous data are expressed as means (M) ± standard deviations (SD), and the categorical data as numbers (N) and percentages (%). Categorical variables were compared using the χ² test. Fisher exact test and continuity correction in the χ² test were also used when appropriate. A two-sided P value < 0.05 was considered statistically significant for the χ² and Fisher exact tests. A Bonferroni correction adjusted P value < 0.0167 was considered statistically significant for multiple statistical tests within three different subtypes.

Results

General information of the studied population

A total of 87 patients, 29 men and 58 women (mean age 40.0 ± 11.9 years, ranging from 21.0 to 65.0 years), contributed to our investigation. The courses of their diseases lasted from 3.0 to 336.0 months, with an average duration of 42.9 ± 61.1 months. The detailed information regarding the demographic and clinical characteristics of patients is presented in [Table 1].
Dermoscopic features of ETR

The most prominent ETR characteristic was reticular linear vessels (frequency of 85.0%), followed by red diffuse structureless areas (n = 24, 60.0%). Unspecific linear vessels were detected in 14 (35.0%) patients and dotted vessels in 10 (25.0%). Yellow scales were observed in 9 (22.5%) cases. Follicular findings included follicular plugs (n = 10, 25.0%), follicular red dots (n = 4, 10.0%), and perifollicular white color (n = 5, 12.5%). Other structures and their frequencies were as follows: pink diffuse structureless areas (n = 8, 20.0%), orange diffuse structureless areas (n = 8, 20.0%), brown focal structureless areas (n = 13, 32.5%), red focal structureless areas (n = 9, 22.5%), orange focal structureless areas (n = 3, 7.5%), white lines (n = 7, 17.5%), follicular pustules (n = 4, 10.0%), white vellus hairs (n = 20, 50.0%), and black vellus hairs (n = 5, 12.5%).

Dermoscopic features of PPR

Regarding PPR, typical reticular linear vessels were identified in 29 (97.7%) subjects, unspecific linear vessels in 3 (10.0%), and dotted vessels in 6 (20.0%). Yellow scales were detected in 19 (63.3%) cases. Follicular findings included follicular plugs (n = 27, 90.0%), follicular red dots (n = 10, 33.3%), and perifollicular white color (n = 10, 33.3%). For other structures, the most common feature was follicular pustules (n = 20, 66.7%). Other features included red diffuse structureless areas (n = 21, 70.0%), pink diffuse structureless areas (n = 5, 16.7%), orange diffuse structureless areas (n = 4, 13.3%), brown focal structureless areas (n = 13, 43.3%), red focal structureless areas (n = 15, 50.0%), orange focal structureless areas (n = 4, 13.3%), white lines (n = 13, 43.3%), white vellus hairs (n = 15, 50.0%), and black vellus hairs (n = 17, 56.7%).

Dermoscopic features of PHR

In the PHR subtype, vessels structures were not primary. In this subtype, the most salient vessel disturbances were linear vessels with branches (n = 10, 10/17), followed by unspecific linear vessels (n = 9, 9/17), reticular linear vessels, and unspecific dotted vessels (both n = 7, 7/17). Yellow scales were detected in 4 (4/17) cases. For follicular findings, both follicular plugs and perifollicular white color were found in 12 (12/17) cases, and follicular red dots in 3 (3/17). The other structures were as follows: red diffuse structureless areas (n = 5, 5/17), orange diffuse structureless areas (n = 12, 12/17), brown focal structureless areas (n = 3, 3/17), red focal structureless areas (n = 1, 1/17), orange focal structureless areas (n = 8, 8/17), white lines (n = 13, 13/17), follicular pustules (n = 3, 3/17), white vellus hairs (n = 8, 8/17), and black vellus hairs (n = 4, 4/17). Typical dermoscopic images are shown in Figures 1–3.
Regarding PHR, the prominent dermoscopic pattern included orange diffuse structureless areas, linear vessels with branches, perifollicular white color, orange focal structureless areas, and white lines [Table 3].

Discussion

Rosacea diagnoses are usually performed by medical history and physical examinations, which might be difficult due to the clinical manifestations’ similarities to several skin conditions. Dermoscopy, a non-invasive technique that allows real-time and in vivo examination of various skin diseases, has been used to distinguish rosacea from its visual analogs.[8-19,13,21,22] Therefore, a comprehensive understanding of the dermoscopic features of rosacea is crucial to guide clinical practice. However, the dermoscopic characteristics of PHR have not been thoroughly investigated. In the present study, we described and compared the dermoscopic findings of rosacea in 87 patients. We observed some new dermoscopic features of rosacea beyond what has been previously reported.

Reticular linear vessels, named vascular polygons and regarded as a specific feature of ETR in previous studies, were the most remarkable dermoscopic finding in our current work. However, its overall incidence was far lower than that of preceding reports.[10] This discrepancy might be due to the presence of some patients at the early stage of rosacea in our study when linear vessels did not arrange in a typically reticular manner. Additionally, this might explain why linear vessels were common in ETR. The morphology of these vessels reflects major pathophysiologic alteration of intense vasodilatation.[21] Besides, the red diffuse structureless areas were equal to former red backgrounds, corresponded to erythema clinically and telangiectasia pathologically, and were more common in ETR and PPR.

Moreover, Lallas[19] believed that PPR has less prominent vascular alterations and more evident follicular disturbances. However, in our present study, reticular linear vessels were the most frequent dermoscopic findings in PPR. This difference might be caused by the sample size. Additionally, follicular findings were more prominent in PPR compared with ETR, consistent with previous
Table 2: Summarization and comparison of dermoscopic features in different rosacea subtypes, genders, ages, and durations.

Demoscopic features	Subtypes	Gender	Age (years)	Duration (months)																
	ETR (N = 40)	PPR (N = 30)	PHR (N = 17)	P value	Male (N = 29)	Female (N = 58)	P value	95% CI	Male (N = 48)	Female (N = 39)	P value	95% CI	Male (N = 49)	Female (N = 38)	P value	95% CI				
Vessels																				
Reticular linear vessels	34 (8.5%)	29 (9.7%)	7 (17%)	<0.001	19 (6.5%)	51 (8.9%)	0.021	0.087-0.848	8 (16.7%)	22 (35.3%)	0.075	0.038-0.162	11 (22.9%)	12 (30.8%)	0.468	0.257-0.794	0	0	0.001	1.122-1.641
Linear vessels with branches	10 (25.0%)	7 (23.3%)	3 (18%)	0.306	11 (37.9%)	12 (23.2%)	0.121	0.877-2.640	3 (6.0%)	7 (17.9%)	0.173	0.073-0.393								
Scales																				
Yellow scales	9 (22.5%)	19 (63.3%)	4 (14/7)	0.001	10 (34.5%)	22 (37.9%)	0.817	0.339-2.186	18 (37.5%)	14 (35.9%)	>0.999	0.446-2.576	16 (32.7%)	14 (41.2%)	0.380	0.277-1.604				
Follicular findings	10 (25.0%)	7 (23.3%)	3 (18%)	0.056	17 (58.6%)	32 (55.2%)	0.821	0.467-2.837	27 (56.3%)	22 (56.4%)	>0.999	0.424-0.329	22 (44.9%)	27 (71.1%)	0.018	0.335-0.186				
Follicular red dots	4 (10.0%)	10 (33.3%)	3 (11%)	0.011	12 (41.4%)	15 (25.9%)	0.219	0.787-5.202	13 (27.1%)	14 (35.9%)	0.999	0.466-2.093								
Perifollicular white color	5 (12.5%)	10 (33.3%)	3 (11%)	0.022	13 (44.8%)	37 (63.8%)	0.111	0.186-1.142	25 (52.1%)	21 (64.1%)	0.284	0.256-1.446	31 (63.3%)	19 (50.0%)	0.275	0.728-4.075				
Other structures																				
Red diffuse structureless areas	24 (60.0%)	21 (70.0%)	5 (17%)	0.13	3 (10.3)	10 (17.2%)	0.51	0.140-2.192	9 (18.8)	4 (10.3)	0.368	0.387-7.141	10 (20.4)	3 (7.9)	0.357	0.761-11.555				
Pink diffuse structureless areas	8 (20.0%)	5 (16.7)	1 (2%)	0.207	11 (37.9)	14 (24.1)	0.213	0.734-5.023	11 (22.9)	14 (35.9)	0.353	0.208-1.357	13 (26.5)	12 (31.6)	0.639	0.309-1.898				
Brown focal structureless areas	13 (32.5)	13 (43.3)	3 (11%)	0.002	16 (55.2)	17 (29.3)	0.034	1.177-4.844	17 (35.4)	16 (41.0)	0.66	0.330-1.882	15 (30.6)	18 (47.4)	0.124	0.203-1.182				
White lines	7 (17.5%)	13 (43.3)	13 (15%)	0.001	16 (55.2)	17 (29.3)	0.034	1.177-4.844	17 (35.4)	16 (41.0)	0.66	0.330-1.882	15 (30.6)	18 (47.4)	0.124	0.203-1.182				
Follicular pustules	4 (10.0%)	20 (66.7%)	3 (11%)	0.003	9 (31.0)	6 (10.3)	0.032	1.229-12.373	5 (10.4)	10 (25.6)	0.087	1.04-1.089	5 (10.2)	10 (26.3)	0.084	0.986-1.029				
White vellus hairs	20 (50.0%)	15 (50.0%)	8 (8/17)	>0.999	11 (37.9)	32 (55.2)	0.173	0.200-1.235	21 (43.8)	22 (56.4)	0.284	0.56-2.949	26 (53.1)	17 (44.7)	0.319	0.356-3.269				
Black vellus hairs	5 (12.5%)	17 (56.7%)	4 (14/7)	>0.999	11 (37.9)	15 (25.9)	0.321	0.676-6.453	13 (27.1)	13 (33.3)	0.659	0.296-1.886	10 (20.4)	16 (42.1)	0.035	0.137-0.909				

- **ETR** = Early Telangiectatic Rosacea
- **PPR** = Persistent Telangiectatic Rosacea
- **PHR** = Postinflammatory Hyperpigmentation

- *P < 0.05 indicates a statistically significant difference.
- †P > 0.05 indicates a non-statistically significant difference.

- **Reported findings:**
 - White vellus hairs were less frequent in PHR compared to ETR and PPR, suggesting a possible correlation with disease progression.
 - Reticular linear vessels and linear vessels were more common in PHR compared to ETR and PPR, indicating a possible correlation with disease progression.
 - Follicular pustules were more common in PHR compared to ETR and PPR, suggesting a possible correlation with disease progression.

- **Conclusions:**
 - The dermoscopic characteristics of PHR were more common in females and the characteristics of PHR in males were more concerning about cosmetic appearance and therefore, those with PHR were more likely to seek medical help.
 - Delayed diagnosis in males was more likely to seek medical help. Delayed diagnosis in females was more likely to seek medical help.
 - Delayed diagnosis in males and females was more likely to seek medical help.
 - Delayed diagnosis in males was more likely to seek medical help.
 - Delayed diagnosis in males was more likely to seek medical help.

- **Further studies:**
 - The dermoscopic characteristics of PHR were more common in females and the characteristics of PHR in males were more concerning about cosmetic appearance and therefore, those with PHR were more likely to seek medical help.
 - Delayed diagnosis in females was more likely to seek medical help. Delayed diagnosis in males was more likely to seek medical help.
 - Delayed diagnosis in males was more likely to seek medical help.
 - Delayed diagnosis in females was more likely to seek medical help.
 - Delayed diagnosis in males was more likely to seek medical help.
features reflect the presence of perifollicular inflammations[20] and were not enough to conclude that dermoscopic alterations differed between young and mid-aged people.

Finally, we summarized recognizable dermoscopic features and patterns of the three rosacea subtypes to achieve early diagnosis and avoid further aggravations, inadequate treatment, greater morbidity, and loss of sight in ocular rosacea. Here, we present the dermoscopic differential diagnosis of rosacea from other clinically confusing facial conditions [Table 3]. All these illnesses are inflammatory skin diseases and have characteristic alterations in vessels morphology and distribution, scale color and distribution, follicular findings, and other structures, including color and morphology, besides some specific clues under dermoscopy.[20] The identification of this crucial dermoscopic information can increase the diagnostic accuracy and confidence level of physicians.[26]

Recently, a new treatment recommendation for rosacea determined that therapeutic regimens should be based on the patient phenotype, such as persistent erythema, telangiectasia, papules, or pustules.[27] Nevertheless, we found follicular pustules in ETR under dermoscopy. Therefore, dermoscopy could highlight the presence of papules and pustules even if they were clinically undetectable. Hence, we suggest that, if possible, treatment selection should be based on dermoscopic features rather than phenotypes derived from the naked eye alone. Furthermore, dermoscopy has been recognized as a promising tool to predict and monitor the therapeutic outcomes of rosacea patients.[27] For example, significant improvements of dermoscopic features, such as scales, vessels, and follicular findings, were detected after a combination of effective systemic and intense pulsed light treatments in a PPR patient,[28,35] and baseline protruding follicular plugs were associated with a better response to topical ivermectin therapy.[28]

Our current study also has some limitations. First, we did not conduct histopathological examinations. Thus, correspondences between dermoscopic findings and histopathological changes remained unclear. Besides, although our sample size was the largest to date, the overall number of cases was still small, especially for PHR. Therefore, a higher number of patients should be recruited in future studies.

Conclusion

Dermoscopy is a non-invasive, applicable, and recipient tool for the diagnosis and classification of rosacea. The main dermoscopic features of ETR are vessels changes with a pattern of red diffuse structureless areas and reticular linear vessels. The dermoscopic features of PPR are combinations of vessels changes and follicular findings with a pattern of red diffuse structureless areas, reticular linear vessels, yellow scales, follicular plugs, and follicular pustules. Meanwhile, PHR is characterized by remarkable orange diffuse structureless areas, linear vessels with branches, perifollicular white color, orange focal structureless areas, and white lines.

Funding

This work was supported by grants from Beijing Municipal Science and Technology Commission Medicine
References

1. Two AM, Wu W, Gallo RL, Hata TR. Rosacea: part I. Introduction, categorization, histology, pathogenesis, and risk factors. J Am Acad Dermatol 2015;72:749–758. doi: 10.1016/j.jaad.2014.08.028.
2. van Zuren EJ, Rosacea. N Engl J Med 2017;318:1754–1764. doi: 10.1056/NEJMcp1506630.
3. van Zuuren EJ. Rosacea. N Engl J Med 2017;376:242–254. doi: 10.1056/NEJMc1512448.
4. Gallo RL, Granstein RD, Kang S, Mannis M, Steinhoff M, Tan J, et al. Dermoscopy of rosacea: a diagnostic clue for demodex species. J Eur Acad Dermatol Venereol 2014;28:609–615. doi: 10.1111/jdv.12146.

How to cite this article: Fei W, Han Y, Li A, Li K, Ning X, Li C, Wang W, Meng R, Cui Y. Summarization and comparison of dermoscopic features on different subtypes of rosacea. Chin Med J 2022;135:1444–1450. doi: 10.1097/CM9.0000000000002135.