Liver dysfunction as a cytokine storm manifestation and prognostic factor for severe COVID-19

Gergana Taneva, Dimitar Dimitrov, Tsvetelina Velikova

ORCID number: Gergana Taneva 0000-0002-8916-6415; Dimitar Dimitrov 0000-0002-72146434; Tsvetelina Velikova 0000-0002-0593-1272.

Author contributions: Taneva G, Dimitrov D, and Velikova T wrote different parts of the paper; and all authors revised and approved the final version of the manuscript.

Conflict-of-interest statement: None disclosed.

Country/Territory of origin: Bulgaria

Specialty type: Gastroenterology and Hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification
Grade A (Excellent): A
Grade B (Very good): 0
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative

Abstract
Liver damage in severe acute respiratory coronavirus 2 infection occurs in patients with or without preexisting liver disorders, posing a significant complication and mortality risk. During coronavirus disease 2019 (COVID-19), abnormal liver function is typically observed. However, liver injury may occur because of the treatment as well. Ischemia, cytokine storm, and hypoxia were identified as the three major factors contributing to liver damage during COVID-19. Indeed, raised liver enzymes during hospitalizations may be attributed to medications used, as well as sepsis and shock. As a result, the proportion of hospitalized patients afflicted with COVID-19 and pathological liver biomarkers varies from 14% to 53%. Aminotransferases and bilirubin are found most often elevated. Usually, increased gamma-glutamyltransferase, alkaline phosphatase, and decreased serum albumin levels are demonstrated. Additionally, although there is no specific treatment for COVID-19, many of the drugs used to treat the infection are hepatotoxic. In this mini-review, we focus on how liver dysfunction can be one of the features associated with the COVID-19 cytokine storm. Furthermore, data show that liver injury can be an independent predictor of severe COVID-19, the need for hospitalization, and death.

Key Words: Liver dysfunction; Liver damage; Cytokine storm; Prognostic factor; COVID-19; Severe COVID-19; SARS-CoV-2; Aspartate aminotransferase; Alanine aminotransferase; Bilirubin; Interleukin-6

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
INTRODUCTION

The newly emerged severe acute respiratory coronavirus 2 (SARS-CoV-2) and the disease that causes coronaviral disease 2019 (COVID-19) are still unclear regarding all virulence factors, immunological effects and deteriorations of human organs during infection[1]. However, it is assumed that the interaction between the SARS-CoV-2 virus and the individual’s immune system substantially influences the disease’s onset and progression and the pathological effects on many organs. Both humoral and cell-mediated immune mechanisms participate in the immune response to a viral infection[2].

However, in some patients, these antiviral immunological mechanisms escape the regulatory control and eventually contribute to the multiorgan failure caused by the virus, including liver failure. Furthermore, an overreaction of the host immune system triggers a systemic inflammatory state that causes significant tissue and organs damage due to high cytokine release. The latter phenomenon is known as cytokine storm, leading to extreme tissue damage[2]. Therefore, the mortality rate and the COVID-19 complications in the elderly and patients with preexisting medical comorbidities, such as diabetes, asthma and cardiovascular disease, are even higher. Furthermore, the risk of severe COVID-19 might be increased by the underlying liver disease. In addition, it can cause direct or indirect damage to the liver by creating a multisystem inflammation[3].

Liver damage in SARS-CoV-2 infection occurring during disease progression in patients with or without preexisting liver diseases is a substantial challenge for clinical practice. Abnormal liver function is expected during COVID-19 infection because of SARS-CoV-2 direct and indirect impact on the liver. Additionally, certain hepatotoxic medications, especially for COVID-19 treatment, are connected with drug-induced liver damage. However, liver injury is defined as any liver damage occurring during disease and treatment. Therefore, hospitalized patients infected with COVID-19 with abnormal liver biomarkers range from 14% to 53%; this is most often observed for aminotransferase and bilirubin[1]. In addition, increased levels of gamma-glutamyl transferase (GGT), alkaline phosphatase, and decreasing serum albumin levels are also observed[4].

As significant liver biomarkers changes are observed in patients with severe COVID-19, more frequent in adults in the intensive care unit, studies documented that elevation of liver enzymes is associated with severity of COVID-19. Additionally, male sex and CRP were demonstrated as independent risk factors of COVID-19 complicated by liver injury[5].

This mini-review discusses how liver dysfunction can be one of the manifestations of the COVID-19-associated cytokine storm. Furthermore, liver damage might be an independent prognostic factor for severe COVID-19 and hospitalization and death.
LIVER DYSFUNCTION AS A MANIFESTATION OF THE CYTOKINE STORM

Cytokine storm syndrome occurring in some of the COVID-19 infected patients involved many organs, such as lungs, kidneys, heart, and liver[2]. COVID-19 may also lead to multiorgan failure and severe consequences owing to systemic inflammatory conditions caused by a cytokine cascade with pulmonary, cardiac, and hepatic involvement, as described above[6].

Three main factors are associated with liver damage during COVID-19: ischemia, cytokine storm, and hypoxia. Other influential contributors are the direct cytopathic effect of the virus on cholangiocytes (via ACE2 receptors), preexisting liver disease (i.e., steatosis, hepatitis, cholangitis, thrombosis, Kupfer cell proliferation, liver impairment), severe inflammatory responses/sepsis[6].

Direct or indirect effects of SARS-CoV-2 on other organs are described beyond the respiratory system. In addition, it was shown that additional receptors might facilitate the virus to enter and infect the human cells via spike protein, including the liver. This suggests that there might be additional receptor pathways for infection with COVID-19 that can be targeted with specific treatment.

SARS-CoV-2 caused dysfunction and inducing a systemic inflammatory response leading to severe liver injury by binding to ACE2 receptors on cholangiocytes. In detail, spike protein binds the asialoglycoprotein receptor located on human hepatocytes. It was recently published that in vitro, SARS-CoV-2 spike protein can bind the asialoglycoprotein receptor 1 Located on primary human hepatocytes and hepatocyte-like cells[7]. In line with this, the serum GGT as a diagnostic marker for cholangiocyte injury has been found at elevated levels in up to 72% of severe COVID-19 patients[8].

Hypoxic liver injury (HLI) is not rare in patients with severe COVID-19 and has a high mortality. Its leading causes are lung and cardiac failure and may be associated with the immune-mediated inflammatory response. Patients with HLI have high mortality as a result of the deterioration of multiple organ failures. Levels of total bilirubin (TBIL), C-reactive protein (CRP), procalcitonin, and interleukin-6 (IL-6) show a statistically significant elevation in HLI cases compared with that in non-HLI cases. Besides, the median survival time of patients with HLI is significantly shorter than that of those not developing HLI[9].

Massive cytokine release causes a cytokine storm (also known as cytokine release syndrome) and is characterized by elevated CRP, IL-6, lactate dehydrogenase (LDH), and ferritin concentrations[10]. Furthermore, the subsequent organ dysfunction (i.e., acute respiratory distress syndrome, progressive liver damage, and liver failure). As a result, systemic pro-inflammatory cytokine release appears to be a driver of disease progression in COVID-19[11-13].

Notably, COVID-19 patients had hepatic lymphocyte infiltration, centrilobular sinusoidal dilation, and patchy necrosis following the SARS-CoV-2 directly binding to ACE2-expressing cholangiocytes. However, the cause of the liver damage is unknown and may be due to systemic inflammation, SARS-CoV-2 infection, or drug administration[14].

Effenberger et al[10] discovered a clear link between systemic inflammation (as measured by IL-6, CRP, and ferritin) and liver damage. IL-6 development can be attributed to immune cells, fibroblasts, endothelial cells, and hepatocytes, orchestrating an acute phase response in the liver. Though IL-6 signaling impacts hepatic regeneration, clinical trials (for example, testing the effect of IL-6 administration in cancer patients) have shown that this pathway is essential in hepatic injury and hepatotoxicity[10]. The authors also found a strong association between acute-phase proteins and IL-6 in the serum of COVID-19 patients with elevated aspartate aminotransferase (AST), which is consistent with the importance of systemic inflammation and, in particular, IL-6 on liver injury.

The main sources of IL-6, which is the chief stimulator of the production of most acute phase proteins, are macrophages and monocytes at inflammatory sites. It has been shown that macrophages and monocytes produce high amounts of IL-6 in response to SARS-CoV-2 proteins[15].

COVID-19 patients with gastrointestinal complaints (nausea, vomiting, diarrhea, etc.) had higher AST and alanine aminotransferase (ALT) levels. Furthermore, there was a significant increase in enzymes among COVID-19 patients, primarily in the intensive care unit (ICU) facilities[16]. A relationship between liver enzyme elevation and disease activity has been also demonstrated[17].

Furthermore, the incidence of elevated AST levels was found to be greater than that of ALT levels and significantly higher in patients with severe COVID-19 (45.5%) relative to non-severe cases (15.0%). Thus, Lei et al[18] established a link between liver
Liver dysfunction in severe COVID-19 following severe SARS-CoV-2 infection. This risk might occur through multiple hepatitis B infections could be reactivated and contribute to high levels of AST/ALT model for end-stage liver disease score. Moreover, autoimmune liver diseases, chronic alcoholic liver disease, cirrhosis - all of them correlate with Child-Pugh class and preexisting liver diseases - obesity with non-alcoholic fatty liver disease (NAFLD), different risk factors can be associated with severe liver injury. Specifically, patients with cirrhosis have a high risk of mortality from respiratory failure following severe SARS-CoV-2 infection. This risk might occur through multiple mechanisms involved in liver injury during COVID-19 infection and cytokine storm are presented on Figure 1.

Liver Failure as a Prognostic Factor in Severe COVID-19 Patients

Different risk factors can be associated with severe liver injury. Specifically, preexisting liver diseases - obesity with non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, cirrhosis - all of them correlate with Child-Pugh class and model for end-stage liver disease score. Moreover, autoimmune liver diseases, chronic hepatitis B infections could be reactivated and contribute to high levels of AST/ALT.

Patients with cirrhosis have a high risk of mortality from respiratory failure following severe SARS-CoV-2 infection. This risk might occur through multiple.
Liver dysfunction in severe COVID-19

Figure 1 Liver dysfunction defined by the negative effects of cytokine storm (severe inflammation, thrombosis, hypoxia, etc.) during coronavirus disease 2019 infection. Other contributing factors for liver injury are also presented – preexisting liver condition, direct cytopathic action of severe acute respiratory coronavirus 2 and treatment with hepatotoxic drugs.

Converging pathways, including contributions from cirrhosis-associated immune dysfunction, acute hepatic decompensation, and systemic inflammatory response. Cirrhosis-associated immune dysfunction could also lead to defective immune responses following future SARS-CoV-2 vaccination[20]. Patient with abnormal liver tests had a higher mortality rate (28.9% vs 9.0%, P < 0.001) and higher chance to develop systemic inflammatory response[30,31].

Interestingly, abnormal liver tests and liver injury can be associated with the progression of severe pneumonia[12]. The abnormalities can be hepatocellular, cholesteric, or mixed. Some clinical research studies show that patients with abnormal liver test results, especially in hepatocyte or mixed type ALT/AST and ALP/GGT at admission or during hospitalization, had significantly higher odds of progressing to severe COVID-19[28].

As we mentioned above, the pattern of liver injury is predominantly hepatocellular rather than cholestatic, although elevations in TBIL and ALT may be more common than reported in earlier studies. Since the ACE2 receptor is predominantly expressed in hepatocytes or mixed type ALT/AST and ALP/GGT at admission or during hospitalization, this association was demonstrated at admission. However, CRP levels were higher in non-ICU patients with liver damage, whereas ALT was higher in ICU COVID-19 patients[33]. IL-6,
ferritin, and CRP correlated directly with AST and ALT levels in non-ICU patients.

Further analysis revealed a direct correlation of IL-6 and acute phase proteins with AST. In severe COVID-19 cases. To sum up, these observations confirm the critical impact of systemic inflammation and specifically IL-6 on liver injury. Furthermore, these observations led to the establishment of abnormal AST and direct bilirubin (DBil) at hospital admission as independent risk factors for increased COVID-19 mortality [33].

We can emphasize that the pathological examination of liver tissues from deceased patients with COVID-19 confirmed that liver involvement of COVID-19 was characterized by microvesicular steatosis, focal necrosis with lymphocytes infiltration, and micro thrombosis in the portal area[34]. Furthermore, pathological levels DBil were often found during the hospitalization of deceased COVID-19 patients. Both baseline and higher AST and DBil levels were independently associated with in-hospital death in patients with COVID-19. While liver anomalies are typical in COVID-19, these findings indicate that the liver is unlikely to be the primary organ driving COVID-19 mortality.

Since the number of people who develop severe and fatal COVID-19 is increased in elderly patients and those with liver failure and NAFLD, it is typically advised that older COVID-9 patients on hepatotoxic medication be closely followed up. Moreover, NAFLD can make the liver more sensitive to the most recommended and widespread antipyretic medication treatment for symptomatic diseases, such as acetaminophen[35, 36]. However, while the association of the COVID-19 with the liver steatosis disease is still unknown, a recent histological study of a COVID-19 patient's liver revealed microvesicular liver steatosis[19,37].

CONCLUSION

We can conclude that the pathological mechanisms of liver damage during COVID-19 confirmed that liver involvement was often observed with an increased risk for complications and death. Furthermore, the incidence of abnormal liver enzymes, significantly elevated AST and ALT levels were observed in patients with severe COVID-19 than non-severe cases. Additionally, a link between liver injury and inpatient mortality in COVID-19 patients was established. Moreover, recent studies confirmed that if liver dysfunction, preexisting or acquired during COVID-19 treatment, is a prognostic factor for severe COVID-19, development of complications and death.

REFERENCES

1. Sun J, Aghemo A, Forner A, Valenti L. COVID-19 and liver disease. *Liver Int* 2020; 40: 1278-1281 [PMID: 32251539 DOI: 10.1111/liv.14470]
2. Velikova TV, Kotsev SV, Georgiev DS, Batselova HM. Immunological aspects of COVID-19: What do we know? *World J Biol Chem* 2020; 11: 14-29 [PMID: 33024515 DOI: 10.4331/wjbc.v11.i2.14]
3. Boeckmans J, Rodrigues RM, Demuyser T, Piérad D, Vanhaecke T, Rogiers V. COVID-19 and drug-induced liver injury: a problem of plenty or a petty point? *Arch Toxicol* 2020; 94: 1367-1369 [PMID: 32266419 DOI: 10.1007/s00204-020-02734-1]
4. Yadav DK, Singh A, Zhang Q, Bai X, Zhang W, Yadav RK, Zhiwei L, Adhikari VP, Liang T. Involvement of liver in COVID-19: systematic review and meta-analysis. *Gut* 2021; 70: 807-809 [PMID: 32669289 DOI: 10.1136/gutjnl-2020-322072]
5. Shen JX, Zhuang ZH, Zhang QX, Huang JF, Chen GP, Fang YY, Cheng AG. Risk Factors and Prognosis in Patients with COVID-19 and Liver Injury: A Retrospective Analysis. *J Multidiscip Healthc* 2021; 14: 629-637 [PMID: 33731999 DOI: 10.2147/JMDH.S329376]
6. Vitiello A, La Porta R, D’Auriro V, Ferrara F. The risks of liver injury in COVID-19 patients and pharmacological management to reduce or prevent the damage induced. *Egypt Liver J* 2021; 11: 11 [DOI: 10.1186/s43066-021-00082-y]
7. Collins DP, Steer CJ. Binding of the SARS-CoV-2 Spike Protein to the Asialoglycoprotein Receptor on Human Primary Hepatocytes and Immortalized Hepatocyte-Like Cells by Confocal Analysis. *Hepat Med* 2021; 13: 37-44 [PMID: 33883951 DOI: 10.2147/HMER.S301979]
8. Lagana SM, Kudose S, Iuga AC, Lee MJ, Fazlollahi L, Remotti HE, Del Portillo A, De Michele S, de Gonzalez AK, Saqi A, Kharirahal P, Chong AM, Park H, Uhlenmann AC, LeKw Ritch JH, Verna EC. Hepatic pathology in patients dying of COVID-19: a series of 40 cases including clinical, histologic, and virologic data. *Mod Pathol* 2020; 33: 2147-2155 [PMID: 32792598 DOI: 10.1038/s41379-020-00649-x]
9. Huang H, Li H, Chen S, Zhou X, Dai X, Wu J, Zhang J, Shao L, Yan R, Wang M, Wang J, Tu Y, Ge...
M. Prevalence and Characteristics of Hypoxic Hepatitis in COVID-19 Patients in the Intensive Care Unit: A First Retrospective Study. *Front Med (Lausanne)* 2020; 7: 607206 [PMID: 33681238 DOI: 10.3389/fmed.2020.607206]

Effenberger M, Grander C, Grabher F, Griesmacher A, Ploner T, Hartig F, Bellmann-Weiler R, Joannidis M, Zoller H, Weiss G, Adolph TE, Tilg H. Systemic inflammation as fuel for acute liver injury in COVID-19. *Dig Liver Dis* 2021; 53: 158-165 [PMID: 32673520 DOI: 10.1016/j.dld.2020.08.004]

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet* 2020; 395: 1033-1034 [PMID: 32192578 DOI: 10.1016/S0140-6736(20)30628-0]

Moore JB, June CH. Cytokine release syndrome in severe COVID-19. *Science* 2020; 368: 473-474 [PMID: 32303591 DOI: 10.1126/science.abb8925]

Giamarellos-Bourboulis EJ, Neta MG, Rovina N, Akinosoglou K, Antoniadiou A, Antonakos N, Damoraki G, Givogrianni T, Adami ME, Katsauonou P, Nakatoou M, Kyriakopoulou M, Dimopoulos G, Koutsosmittropoulos I, Velissaris D, Koufargyris P, Karageorgos A, Katrini K, Lekakis V, Lupshe M, Kotsaki A, Renieris G, Theoouldou D, Panou V, Koukiki E, Koulouris N, Gogos C, Koutsoukou A. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. *Cell Host Microbe* 2020; 27: 992-1000.e3 [PMID: 32320677 DOI: 10.1016/chom.2020.04.009]

Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. *Lancet Gastroenterol Hepatol* 2020; 5: 420-430 [PMID: 32145190 DOI: 10.1016/S2468-1251(20)30057-1]

Karwaciak I, Salkowska A, Karasi K, Dystych J, Ratajezki M. Nucleocapsid and Spike Proteins of the Coronavirus SARS-CoV-2 Induce IL6 in Monocytes and Macrophages-Potential Implications for Cytokine Storm Syndrome. *Vaccines (Basel)* 2021; 9 [PMID: 33467724 DOI: 10.3390/vaccines9100154]

Wijarnpreecha K, Ungransret P, Panjawatanan P, Harnois DM, Zaver BH, Ahmed A, Kim D. COVID-19 and liver injury: a meta-analysis. *Eur J Gastroenterol Hepatol* 2021; 33: 990-995 [PMID: 32693420 DOI: 10.1097/MEG.0000000000001817]

Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, Li J, Zhao D, Xu D, Gong Q, Liao J, Yang H, Hou W, Zhang Y. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. *Lancet* 2020; 395: 809-815 [PMID: 32151335 DOI: 10.1016/S0140-6736(20)30360-3]

Lei F, Liu YM, Zhou F, Qin JJ, Zhang P, Zhu L, Zhang XJ, Cai J, Lin L, Ouyang S, Wang X, Yang C, Cheng X, Liu W, Li H, Xie J, Wu B, Luo H, Xiao F, Chen J, Tao L, Cheng G, She ZG, Zhou J, Wang H, Lin J, Luo P, Fu S, Ye P, Xiao B, Mao W, Liu L, Yan Y, Chen G, Huang X, Zhang BH, Yuan Y. Longitudinal Association Between Markers of Liver Injury and Mortality in COVID-19 in China. *Hepatology* 2020; 72: 389-398 [PMID: 32359177 DOI: 10.1002/hep.31301]

Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Song J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. *Lancet Respir Med* 2020; 8: 420-422 [PMID: 32085846 DOI: 10.1016/S2213-2600(20)30076-X]

Fan Z, Chen L, Li J, Cheng X, Yang J, Tian C, Zhang Y, Huang S, Liu Z, Cheng J. Clinical Features of COVID-19-Related Liver Functional Abnormality. *Clin Gastroenterol Hepatol* 2020; 18: 1561-1566 [PMID: 32283325 DOI: 10.1016/j.cgh.2020.04.002]

Gu J, Han B, Wang J. COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. *Gastroenterology* 2020; 158: 1518-1519 [PMID: 32142785 DOI: 10.1053/j.gastro.2020.02.054]

Triantafyllou E, Woolhard KJ, McPhail MJW, Antoniades CG, Possamai L.A. The Role of Monocytes and Macrophages in Acute and Acute-On-Chronic Liver Failure. *Front Immunol* 2018; 9: 2948 [PMID: 30619308 DOI: 10.3389/fimmu.2018.02948]

Björnsson ES. Hepatotoxicity by Drugs: The Most Common Implicated Agents. *Int J Mol Sci* 2016; 17: 224 [PMID: 26861310 DOI: 10.3390/ijms17020224]

Cascella M, Rajnik M, Cuom, A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In: StatPearls. Treasure Island: StatPearls Publishing, 2020 [PMID: 32105360]

Cao R, Hu Y, Wang Y, Gurley EC, Studer EJ, Wang X, Hylemon PB, Pandak WM, Sanjal AJ, Zhang L, Zhou H. Prevention of HIV protease inhibitor-induced dysregulation of hepatic lipid metabolism by raltegravir via endoplasmic reticulum stress signaling pathways. *J Pharmacol Exp Ther* 2010; 334: 530-539 [PMID: 20472667 DOI: 10.1124/jpet.110.168484]

Olry A, Meunier L, Délimre B, Larrey D, Horsmans Y, Le Louët H. Drug-Induced Liver Injury and COVID-19 Infection: The Rules Remain the Same. *Drug Saf* 2020; 43: 615-617 [PMID: 32514859 DOI: 10.1007/s40262-020-00954-z]

Zhu BS, Wan X, Zhang X, Zha W, Zhou J, Wabitsch M, Wang G, Lyall V, Hylemon PB, Zhou H. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes. *PLoS One* 2013; 8: e95914 [PMID: 23533630 DOI: 10.1371/journal.pone.0095914]

Cai Q, Huang D, Yu H, Zhu Z, Xia Z, Su Y, Li Z, Zhou G, Guo J, Qu J, Sun Y, Liu Y, He Q, Chen J, Liu L, Xu L. COVID-19: Abnormal liver function tests. *J Hepatol* 2020; 73: 566-574 [PMID: 32298767 DOI: 10.1016/j.jhep.2020.04.006]
29. Wu ZH, Yang DL. A meta-analysis of the impact of COVID-19 on liver dysfunction. *Eur J Med Res* 2020; 25: 54 [PMID: 33148326 DOI: 10.1186/s40001-020-00454-x]

30. Marjot T, Webb GJ, Barritt AS 4th, Moon AM, Stamataki Z, Wong VW, Barnes E. COVID-19 and liver disease: mechanistic and clinical perspectives. *Nat Rev Gastroenterol Hepatol* 2021; 18: 348-364 [PMID: 33692570 DOI: 10.1038/s41575-021-00426-4]

31. Chen LY, Chu HK, Bai T, Tu SJ, Wei Y, Li ZL, Hu LL, Zhu R, Zhang L, Han CQ, Xiao L, He Q, Song J, Liu WH, Zhu QJ, Chen H, Yang L, Hou XH. Liver damage at admission is an independent prognostic factor for COVID-19. *J Dig Dis* 2020; 21: 512-518 [PMID: 32713118 DOI: 10.1111/1751-2980.12925]

32. Hundt MA, Deng Y, Ciarleglio MM, Nathanson MH, Lim JK. Abnormal Liver Tests in COVID-19: A Retrospective Observational Cohort Study of 1,827 Patients in a Major U.S. Hospital Network. *Hepatology* 2020; 72: 1169-1176 [PMID: 32725890 DOI: 10.1002/hep.31487]

33. Ding ZY, Li GX, Chen L, Shu C, Song J, Wang W, Wang YW, Chen Q, Jin GN, Liu TT, Liang JN, Zhu P, Zhu W, Li Y, Zhang BH, Feng H, Zhang WG, Yin ZY, Yu WK, Yang Y, Zhang HQ, Tang ZP, Wang H, Hu JB, Liu JH, Yin P, Chen XP, Zhang B; Tongji Multidisciplinary Team for Treating COVID-19 (TTTC). Association of liver abnormalities with in-hospital mortality in patients with COVID-19. *J Hepatol* 2021; 74: 1295-1302 [PMID: 33347952 DOI: 10.1016/j.jhep.2020.12.012]

34. National Health Commission of China. Guidance for COVID-19: Prevention, Control, Diagnosis and Management. Version 7.0. 2020. [accessed 2021 Nov 5]. Available from: https://www.yoifos.com/sites/default/files/covid_19_guideline_cnh.pdf.

35. Massart J, Begriche K, Moreau C, Fromenty B. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity. *J Clin Transl Res* 2017; 3: 212-232 [PMID: 28691103 DOI: 10.18053/jctres.03.2017S1.006]

36. Michaut A, Moreau C, Robin MA, Fromenty B. Acetaminophen-induced liver injury in obesity and nonalcoholic fatty liver disease. *Liver Int* 2014; 34: e171-e179 [PMID: 24573957 DOI: 10.1111/liv.12514]

37. Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. *Liver Int* 2020; 40: 998-1004 [PMID: 32170806 DOI: 10.1111/liv.14435]
