Near Infrared Hydrogen Emission Line Ratios as Diagnostics of the Broad Emission Line Region

Andrea J. Ruff
University of Melbourne, Australia

David J. E. Floyd
Monash University, Australia

Kirk T. Korista
Western Michigan University

Rachel L. Webster
University of Melbourne, Australia

Ryan Lucian Porter
University of Kentucky, rporter@pa.uky.edu

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
Ruff, Andrea J.; Floyd, David J. E.; Korista, Kirk T.; Webster, Rachel L.; Porter, Ryan Lucian; and Ferland, Gary J., "Near Infrared Hydrogen Emission Line Ratios as Diagnostics of the Broad Emission Line Region" (2012). Physics and Astronomy Faculty Publications. 21.
https://uknowledge.uky.edu/physastron_facpub/21

This Conference Proceeding is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Near Infrared Hydrogen Emission Line Ratios as Diagnostics of the Broad Emission Line Region

Digital Object Identifier (DOI)
http://dx.doi.org/10.1088/1742-6596/372/1/012069

Notes/Citation Information
Published in Journal of Physics: Conference Series, v. 372, issue 1, article 012069.

Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Authors
Andrea J. Ruff, David J. E. Floyd, Kirk T. Korista, Rachel L. Webster, Ryan Lucian Porter, and Gary J. Ferland

This conference proceeding is available at UKnowledge: https://uknowledge.uky.edu/physastron_facpub/21
Near infrared hydrogen emission line ratios as diagnostics of the broad emission line region

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2012 J. Phys.: Conf. Ser. 372 012069
(http://iopscience.iop.org/1742-6596/372/1/012069)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 72.5.9.197
This content was downloaded on 19/08/2014 at 13:40

Please note that terms and conditions apply.
Near infrared hydrogen emission line ratios as diagnostics of the broad emission line region

Andrea J. Ruff¹, David J. E. Floyd², Kirk T. Korista³, Rachel L. Webster¹, Ryan L. Porter⁴ and Gary J. Ferland⁴

¹ School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
² School of Physics, Monash University, Clayton, VIC 3800, Australia
³ Department of Physics, Western Michigan University, Kalamazoo, MI 49008, USA
⁴ Department of Physics, University of Kentucky, Lexington, KY 40506, USA

E-mail: aruff@unimelb.edu.au

Abstract.

Broad emission line flux ratios are a powerful diagnostic of the physical conditions of the broad-line region gas in Active Galactic Nuclei. With recent advances in infrared spectroscopy, previously unstudied emission lines provide a new means to investigate the physical nature of the BELR gas. The hydrogen emission lines are particularly sensitive to the upper limits of both the radius from the central ionising source and the number density of the gas. Using an existing subset of near-infrared quasar spectra from the Glikman et al. (2006) sample [1] together with Cloudy photoionization simulations, we confirm the Locally Optimally emitting Cloud (LOC) model’s ability to reproduce observed emission line flux ratios. The model is then used to constrain physical conditions for individual sources. The photoionization models show that high number density, low incident flux gas is required to reproduce observed near-infrared hydrogen emission line ratios. We also find that comparison to individual sources, rather than composites, is vital.

1. Introduction

Broad emission lines are a prominent feature in quasar spectra, yet the physical state of this gas is not well understood. The locally optimally emitting cloud (LOC) model has been successful in reproducing UV and optical emission line ratios [2, 3], but has not been extensively tested on the hydrogen emission lines. The hydrogen emission lines are interesting because the physics is relatively simple, and there is a negligible dependence on several free parameters of the model: metallicity, column density and slope of the ionising continuum.

A subset of quasars from the Glikman et al. (2006) [1] sample was used to compare to photoionization simulations. The subset has a mean redshift of $z = 0.2$. Deconvolution of the broad and narrow components of the emission lines is not necessary, as the narrow contribution is small in quasars. Using existing near-infrared spectra of quasars together with Cloudy simulations of the broad line region, limits on the physical conditions of the hydrogen emission line region have been inferred.
Figure 1. Logarithmic contours of equivalent width in angstroms (referenced to the incident continuum at 1216 Å) in the plane formed by n_{H} (cm^{-3}) and Φ_{H} ($\text{cm}^{-2}\text{s}^{-1}$). Only $W_{1216} \geq 0.1$ Å contours are shown. The solid lines show 1 decade intervals and the dashed lines show 0.2 decade intervals. $W_{1216} = 0.1$ Å is plotted with a very thick solid contour for each transition. For each each transition, the maximum $\log(W_{1216})$ is quoted in the legend.

2. Photoionization simulations

Following the standard LOC approach [2, 4, 3], large grids of photoionization models were computed using the photoionization code, Cloudy v08.00, last described by [5]. Models that predict hydrogen emission line strengths were generated for a range of hydrogen number density (n_{H}) and hydrogen ionizing flux (Φ_{H}) values. The plane formed by these parameters represents the range of cloud densities and distances from the ionizing continuum that are expected to exist within the BELR. For each of these simulations, the output emission is computed as an equivalent width (W_{1216}) in angstroms relative to the incident continuum at 1216 Å. The equivalent width, W_{1216}, describes how efficiently the line is produced from the incident continuum. Full geometric coverage was assumed and a constant column density of 10^{23} cm$^{-2}$ was used. Full detail of these simulations will be given by [6].

Figure 1 shows logarithmic contours of W_{1216} in the density-flux plane for three NIR emission lines: Hα, Pa α and Pa β. Light colours indicate a high reprocessing efficiency, i.e. large W_{1216} values. The hydrogen lines are emitted efficiently over a large range in the density-flux plane, and emit particularly efficiently in the high density, low incident ionising flux regime. However, the entire range of parameter space shown in this plot might not be physical. Although the lower limit on the number density of the broad emission line gas can be inferred from the presence of semi-forbidden and absence forbidden transitions, constraining the upper limit is more difficult. Dust grains will condense at low values of incident ionising flux ($\Phi_{\text{H}} \sim 10^{18}$ cm$^{-2}\text{s}^{-1}$) [7], which will clobber any line emission. The hydrogen emission lines emit strongly near these limits. As the predicted hydrogen emission line ratios are sensitive to the upper n_{H} and lower Φ_{H} limits, they can be used to constrain these limits.

3. Predicting broad emission line ratios

Ratios of hydrogen emission lines are a powerful diagnostic of the physical conditions of the BELR gas, as the strength of emission is very dependent on the incident ionising flux and number density, but not on the covering factor. As show by [2], the line luminosity is given by:

$$L_{\text{line}} \propto \int^{r_{\text{max}}}_{r_{\text{min}}} \int^{n_{\text{max}}}_{n_{\text{min}}} W_{1216}(r, n_{\text{H}}) f(r) g(n_{\text{H}}) dn_{\text{H}} dr,$$ \hspace{1cm} (1)
where $W_{1216}(r, n_H)$ is the equivalent width of a particular line (relative to the continuum at 1216Å) from a single cloud at radius r with number density n_H. The cloud covering fractions as functions of radius from the ionising source and hydrogen number density are given by $f(r)$ and $g(n_H)$, respectively. For a more complete description of the LOC parameters, see [8]. In the simplest LOC integration model, the covering fractions are given by $f(r) \propto r^{-1}$ and $g(n_H) \propto n_H^{-1}$. The line luminosity can then be simplified to:

$$L_{\text{line}} \propto \int_{\log \Phi_{\text{min}}}^{\log \Phi_{\text{max}}} \int_{\log n_{\text{min}}}^{\log n_{\text{max}}} W_{1216}(\Phi, n_H) \, d\log n_H \, d\log \Phi_H,$$

(2)

where the integration limits are free parameters of the model and $\Phi_H \propto r^{-2}$. This is simply a sum over each point in parameter space between the integration limits, as the grid simulations are weighted evenly per decade. Since only three independent ratios were measured, the model can only have two free parameters. The free parameters of the model are n_{max} and Φ_{min}, which the hydrogen ratios are particularly sensitive to. As shown in Figure 1, the hydrogen line emission is only weakly dependent on n_{min} and Φ_{max} (varying these limits causes the predicted hydrogen ratios to change by less than 1%). These parameters are fixed in this model.

4. Data

Very few quasars have been observed in the infrared with high signal-to-noise. Glikman et al. (2006) [1] published a set of 27 quasars, presented as a composite quasar spectrum. Rather than using the measured emission line flux ratios from the composite, individual spectra with the highest signal-to-noise ratios were used. Emission line fluxes were measured for the strongest hydrogen lines. Glikman et al. [1] found the $\text{Pa}_\alpha/\text{Pa}_\beta$ composite ratio to be 0.64 ± 0.01. However, values measured from individual objects are significantly higher and consistently above 1.0. Further detail of the measurements will be given by [9].

5. Fit to data

A set of ‘best fit’ Φ_{min} and n_{max} integration limits was found for each object by comparing simulated and measured flux ratios. The most likely set of Φ_{min} and n_{max} limits was found by minimising χ^2:

$$\chi^2 = \sum_{i=1}^{N} \frac{(R_{\text{obs},i} - R_{\text{model},i})^2}{\sigma_{\text{stat},i}^2 + \sigma_{\text{sys},i}^2},$$

(3)

where R_{obs} and R_{model} are the observed and predicted ratios, and σ_{stat} and σ_{sys} are the statistical and systematic uncertainties on each measured ratio. The sum is over each emission line flux ratio used to find the best model: $\text{Pa}_\alpha/\text{Pa}_\beta$, $\text{Pa}_\gamma/\text{Pa}_\beta$ and $\text{H}\alpha/\text{Pa}_\beta$. R_{model} is the predicted ratio for each combination of Φ_{min} and n_{max} values considered.

Figure 2 shows χ^2 contours for two objects in the Φ_{min}–n_{max} plane. The point where χ^2 is minimised (shown with a red diamond) is at high density and low ionising flux. Results for all measured objects will be presented by [9].

6. Summary

A simple LOC model can reproduce measured near-infrared hydrogen broad emission line ratios. The measured $\text{Pa}_\alpha/\text{Pa}_\beta$ ratio for individual sources was inconsistent with the value presented by [1], which was measured from the composite spectrum.

Limits on the physical conditions of the BELR gas were inferred by comparing measured line ratios to simulations. The predicted outer radius of the BELR is consistent with the radius of dust sublimation calculated by [7]. The predicted upper limit on the gas number density is high compared to previous calculations, however, all predictions stated here should be considered...
Figure 2. Measured ratios are compared to the best fit models for two quasars. Left: Contours of reduced χ^2. The location of the minimum χ^2 in the n_{max}-Φ_{min} plane is shown with a red diamond. Right: The emission line flux ratio plotted as a function of Φ_{min} and n_{max}. The solid, dashed, dot dashed and dotted lines show the simulated $\text{Pa}\alpha/\text{Pa}\beta$, $\text{Pa}\gamma/\text{Pa}\beta$ and $\text{H}\alpha/\text{Pa}\beta$ ratios, respectively. The measured values are shown as a band with 1σ uncertainties in a corresponding colour. The best fit Φ_{min} and n_{max} parameters are given in the legend for each object.

estimates, because of the simplicity of the model and limitations in the quality and number of spectra. This model can be extended to predict other emission line ratios, such as $\text{H}\alpha/\text{H}\beta$. This ratio can also be compared to measured values and can be used to estimate the amount of intrinsic dust.

References
[1] Glikman E, Helfand D and White R 2006 ApJ 640 579
[2] Baldwin J, Ferland G, Korista K and Verner D 1995 ApJL 455
[3] Korista K and Goad M 2000 ApJ 536 284
[4] Korista K, Baldwin J, Ferland G and Verner D 1997 ApJS 108 401
[5] Ferland G, Korista K, Verner D, Ferguson J, Kingdon J and Verner E 1998 PASP 110 761
[6] Ruff A, Korista K, Porter R and Ferland G 2012, in prep
[7] Nenkova M, Sirocky M, Nikutta R, Ivezić Z and Elitzur M 2008 ApJ 685 160
[8] Bottorff M, Baldwin J, Ferland G, Ferguson J and Korista K 2002 ApJ 581 932
[9] Ruff A, Floyd D, Webster R and Korista K 2012, submitted