Functional outcome of limb salvage surgery in giant cell tumour around knee with mega-endoprosthetic reconstruction

Dr. Jalaluddin Akbar KC, Dr. Adarsh Vajrangi, Dr. Abhishek Shetty and Dr. Imthiaz Ahmed

DOI: https://doi.org/10.22271/ortho.2019.v5.i4l.1752

Abstract

Introduction: Giant cell tumors (GCTs) represent 3-4% of all primary tumors of bone [1]. These tumour are locally aggressive and predominantly affect the ends of long bones (usually the distal femur and proximal tibia) in young adults. The ideal aim in the management of GCT is to eradicate the tumor without sacrificing the joint. Wide resection should be the treatment of choice, especially for situations such as recurrences, pathological fractures and tumors which are frankly malignant tumor

Aim: To determine the functional outcome and complications of mega endoprosthesis in treatment of giant cell tumour around knee join

Materials and Methods: Retrospective study conducted from 2010 to 2016 with age ranging from 16 to 30 years with follow up period- 48 months. All patient with primary GCTs around knee who had met with inclusion criteria underwent surgery. All patient underwent definitive wide local resection and Mega-endoprosthetic reconstruction. Functional outcome was scored by musculoskeletal tumour society scoring (MSTS). Complications related to surgery such as Infection, Aseptic loosening, Dislocation, Skin necrosis and Fractures were evaluated. The diagnosis was based on histopathological features noted on a core biopsy. Patients with a high-grade GCT were subjected to computed tomography of the chest and bone scan for metastatic evaluation.

Results: The average MSTS functional score was 75% (Range- 60% to 100%), 4-year survival rate was 100% in our study. Average range of movements at 4 years was 80 (70-90). Among the 8 patients, 2 had complications related to surgery. One had infection which required intravenous antibiotics treatment but infections did not subsided so patient underwent allograft bone transplant with arthrodesis. One had foot drop secondary to common peroneal palsy. Six months post-surgery, he was able to walk with a single crutch and coped well with his foot drop.

Conclusions: Wide resection and endoprosthetic replacement should be considered as a preferred treatment option in treatment of aggressive giant cell tumour around knee joint. Mega-endoprosthetic reconstruction provides good functional outcome in patients with these kind of tumour and can be considered as treatment of choice if and when the limb can be salvageable.

Keywords: Endoprosthesi megaprosthetics, giant cell tumor of bone

Introduction

Giant cell tumors (GCTs) represent 3-4% of all primary tumors of bone [1]. These tumour are locally aggressive and predominantly affect the ends of long bones (usually the distal femur and proximal tibia) in young adults [2]. 1 Oncological and functional results are variable after treatments ranging from extended curettage to wide resection [3]. Distal femur and proximal tibia are the most common sites followed by the distal radius. The ideal aim in the management of GCT is to eradicate the tumor without sacrificing the joint [4]. Current treatment modalities including a meticulous curettage with extension of tumor removal using high speed burrs and adjuvant local therapy [2]. However, with these modalities there is a recurrence rate of 60%. Wide resection should be the treatment of choice, especially for situations such as recurrences, pathological fractures and tumors which are frankly malignant tumors [5,6]. En bloc resection of major joints creates a problem for the reconstruction of large defects. Limb salvage surgery widely accepted alternative to amputation in patients with bone
tumours \[1\]. Success of limb salvage – Understanding of the Biology and Staging of tumour, Reconstructive technique, Effective Adjuvant Chemotherapy \[7, 8\]. Primary goal to restore and maintain stability and ambulation, In addition to the use of biologic solutions, endoprostheses have gained increasing acceptance among orthopaedic oncology surgeons during the last 30 years \[15\]. Last few decades limb salvage surgery gained wide acceptance among orthopaedic oncology surgeons, Modular systems have replaced one-piece prosthesis construction \[15\]. High rate of late complications such as loosening, infection and mechanical failure \[9, 10\].

Objectives

To determine the functional outcome and complications of megaendoprosthesis in treatment of giant cell tumour around knee join.

Materials and Methods

Retrospective study conducted from 2010 to 2016 with age ranging from 16 to 30 years with follow up period- 48 months. All patient with primary GCTs of the around knee were included. Inclusion criteria were: (1) a primary GCT with extensive bone lysis (Campanacci stage III)5 and soft-tissue spill, (2) multiple recurrent lesions following failed curettage (3) patients giving informed consent for a prosthetic replacement. Patients with GCTs in Campanacci stages I and II were excluded. All patient underwent definitive wide local resection and Mega-endoprosthetic reconstruction, Functional outcome was scored by Musculoskeletal tumour society scoring(MSTS) Numerical values from 0 to 5 points were assigned for each of the following 6 categories: pain, function, emotional acceptance, use of supports, walking ability and gait. These values were added, and the functional score was presented as a percentage of the maximum possible score. The results were graded according to the following scale: Excellent – 75% to 100%; good – 70% to 74%; moderate – 60% to 69%; fair – 50% to 59% and poor – <50%. Complications related to surgery such as Infection, Aseptic loosening, Dislocation, Skin necrosis and Fractures were evaluated. Pain was the most common symptom, followed by swelling, routine radiology (chest radiography and magnetic resonance imaging) was performed. The diagnosis was based on histopathological features noted on a core biopsy. Patients with a high-grade GCT were subjected to computed tomography of the chest and bone scan for metastatic evaluation, This study aims to evaluate the functional outcome of 8 patients with aggressive benign bone tumours that necessitated large bone segment resection and mega-endoprosthetic replacement in yenepoya medical college, mangalore between 2010 and 2016.

Table 1: Involvement of site

SITE	N-8
Distal Femur	8
Proximal Tibia	3

Fig 1: Pre-operative

Fig 2: Intra-Operative

Fig 3: Post-operative and follow-up

Fig 4: Patient achieved around 90 degree of painless range of motion
Results
- The average MSTS functional score was 75% (Range-60% to 100%).
- 4-year survival rate was 100% in our study.
- Average range of movements at 4 years was 80 (70-90).

The age of the patients ranged from 10 to 30 years. Eight patients underwent lower limb surgical procedures. Among the 8 patients, 2 had complications related to surgery. One had infection which required intravenous antibiotics treatment but infections did not subsided so prosthesis was removed and external fixator application followed by allograft bone transplant with arthrodesis. None had implant loosening, breakage or periprosthetic fractures. One had foot drop secondary to common peroneal palsy. Six months post-surgery, he was able to walk with a single crutch and coped well with his foot drop.

Table 2: Associated complication in our study

COMPLICATION	NUMBER
Foot drop	1 (Foot drop splint)
Infection	1- Antibiotics
Prosthesis removal
Allograft bone transplant+Arthrodesis |

Discussion
The treatment of GCTs is directed toward local control without sacrificing joint function. This has traditionally been achieved by intralesional curettage with autograft reconstruction by packing the cavity of excised tumor with morselized iliac cortico-cancellous bone. Regardless of how thoroughly performed, intralesional excision leaves microscopic disease in the bone and hence a reported recurrence rate as high as 60%. Use of modern instruments such as high power burr, pulsatile jet lavage system, headlamp and dental mirror combined with multiple angled curettes to identify and access small pockets of residual disease failed to provide 100% results. Recurrence has been reported instead of the use of adjuvants such as phenol and hydrogen peroxide. Cryosurgery using liquid nitrogen is associated with high incidence of local wound and bone complications [9, 10].

Adequate removal of tumor seems to be a more important predictive factor for the outcome of surgery. However, it leaves large bone defects. Methyl methacrylate cement, used to fill the defect is though strong in compression is relatively weak when subjected to shear and torsional forces. Moreover, it can lead to degeneration of articular cartilage in subchondral lesions. Autografts can be used to fill the defect, but its quantity is limited and harvesting autograft causes donor site morbidity. Allograft is expensive and requires a bone bank. Allograft itself can lead to infection, fracture, non-union and joint instability. Bone lengthening is a time-
consuming procedure. Arthrodesis has complications including a high risk of delayed or non-union and fractures. An arthrodesed knee is awkward and causes problems when sitting, particularly in public transport such as buses, trains etc. The cosmetic outcome of rotation plasty is a serious disadvantage [11, 12]. Hence, custom mega prosthetic arthroplasty has become the method of choice after bone tumor resection at the knee. It is the primary modality in the treatment of aggressive bone tumors of lower limb. The use of custom mega prosthesis is a simple and technically superior method of feeling the bone defects in benign aggressive lesions with pathological fractures and where skeletal reconstruction is difficult after intralesional curettage. Limb-sparing surgery has drastically increased in last decade with advantages of Immediate stability, earlier rehabilitation with immediate full weight-bearing. Endo-prosthetic survival improved due to advances in prosthetic design with modular components, manufacturing, surgical techniques. But complication rate is still high (eg. aseptic loosening, stem fracture, infection, and dislocation) and hence Individual approach is essential to Choose the most suitable surgical treatment. Our patients were below 30 years, 2/3rd were below 25 years of age hence limb salvage is preferred over amputation. Oncological reconstruction may appear to have higher complication rates compared with standard total joint arthroplasty due to the extensive nature of the operation, extensive tissue loss, and the compromising effects of associated radiotherapy and chemotherapy. In addition, reconstructions are often done in younger patients who are relatively more active, thus incurring a higher rate of wear.

Limitation
- Retrospective study
- Short follow up period
- Small sample size

Conclusion
- Mega-endoprosthetic reconstruction provides good functional outcome in patients with bone tumours around the knee.
- Can be considered as treatment of choice for bone tumours around the knee if and when the limb can be salvageable.
- Patients have been evaluated and seem to have acceptable functional outcomes in our institution.

References
1. Natarajan MV, Prabhakar R, Mohamed SM, Shashidhar R. Management of juxta articular giant cell tumors around the knee by custom mega prosthetic arthroplasty. Indian J Orthop. 2007; 41:134-8.
2. Goldenberg RR, Campbell CJ, Bonfiglio M. Giant-cell tumor of bone. An analysis of two hundred and eighteen cases. J Bone Joint Surg Am. 1970; 52:619-64.
3. Oda Y, Miura H, Tsuneooshi M et al. Giant cell tumor of bone: oncological and functional results of long-term follow-up. Jpn J Clin Oncol. 1998; 28:323-328.
4. Eckardt JJ, Grogan TJ. Giant cell tumor of bone. Clin Orthop Relat Res. 1986; 204:45-58.
5. Ghert MA, Rizzo M, Harrelson JM, Scully SP. Giant-cell tumor of the appendicular skeleton. Clin Orthop Relat Res. 2002; 400:201-10.
6. Szendröi M. Giant-cell tumour of bone. J Bone Joint Surg Br. 2004; 86:5-12.
7. Harington KD, Sim FH, Enis JE, Johnston JO, Dick HM, Grisina AG. Methylmethacrylate as an adjunct in internal fixation of pathological fractures: experience with three hundred and seventy-five cases. J Bone Joint Surg. 1976; 58A:1047-55.
8. Sim FH, Dougherty TW, Ivins JC. The adjunctive use of methyl methacrylate in fixation of pathological fractures. J Bone Joint Surg. 1974; 56A:40-8.
9. Moore AT, Bohlmam HR. Metal hip joint: a case report. J Bone Joint Surg. 1943; 25:688-92.
10. McGrath PJ. Giant-cell tumour of bone: An analysis of fifty-two cases. J Bone Joint Surg Br. 1972; 54:216-29.
11. Kawai A, Lin PP, Boland PJ, Athanasian EA, Healey JH. Relationship between magnitude of resection, complication, and prosthetic survival after prosthetic knee reconstructions for distal femoral tumors. J Surg Oncol. 1999; 70:109-15.
12. Hillmann A, Hoffmann D, Gohseger G, Krakau H, Winkelmann W. Malignant tumor of the distal part of the femur or the proximal part of the tibia: Endoprosthetic replacement or rotationplasty. Functional outcome and quality-of-life measurements. J Bone Joint Surg Am. 1999; 81:462-8.
13. Natarajan MV, Annamalai K, Williams S, Selvaraj R, Rajagopal TS. Limb salvage in distal tibial osteosarcoma using a custom mega prosthesis. Int Orthop. 2000; 24:282-4.
14. Sweetnam R. Limb preservation in the treatment of bone tumours. Ann R Coll Surg Engl. 1983; 65:3-7.
15. Sim FH, Ivins Je, Pritchard DJ. Surgical treatment of osteogenic sarcoma at the Mayo clinic. Cancer Treat Rep. 1978; 62:205-1.
16. Schindler OS, Cannon SR, Briggs TW, Blunn Gw. Stanmore custommade extendible distal femoral replacements. J Bone Joint Surg Br. 1997; 79:927-37.
17. Wilkins RM, Miller CM. Reoperation after limb preservation surgery for sarcomas of the knee in children. Clin Orthop. 2003; 412:153-61.
18. Cool WP, Carter SR, Grimer RJ, Tillman RM, Walker PS. Growth after extendable endoprosthetic replacement of the distal femur. J Bone Joint Surg Br. 1997; 79:938-42.
19. Schiller C, Windhager R, Fellinger EJ, Salzer-Kuntschik M, Kalder A, Kotz R. Extendable tumour endoprostheses for the leg in children. J Bone Joint Surg Br. 1995; 77:608-14.
20. Cara JA, Canadell J. Limb salvage for malignant bone tumours in young children. J Pediatr Orthop. 1994; 14:112-8.
21. Almon BA, De Bari A, Kraibich JI. Massive allografts in the treatment of osteosarcoma and Ewing sarcoma in children and adolescents. J. Bone Joint Surg Am. 1995; 77:54-4.
22. Hiroyuji F, Takeshi M. Long term follow-up after limb salvage in skeletally immature children with a primary malignant tumour of the distal end of the femur. J Bone Joint Surgery Am. 2006; 88:595-603.
23. Mittermayer F, Krepler P, Dominkus M, Schwameis E, Sluga M, Heinzl H, Kotz R. Long-term followup of uncemented tumor endoprostheses for the lower extremity. Clin Orthop Relat Res. 2001; 388:167-177.
24. Sluga M, Windhager R, Lang S, Heinzl H, Bielack S, Kotz R. Local and systemic control after ablative and limb sparing surgery in patients with osteosarcoma. Clin Orthop Relat Res. 1999; 358:120-127.
25. Wirganowicz PZ, Eckardt JJ, Dorey FJ, Eilber FR, Kabo JM. Etiology and results of tumor endoprosthesis revision surgery in 64 patients. Clin Orthop Relat Res. 1999; 358:64-74, 46.

26. Zeegen EN, Aponte-Tinao LA, Hornicek FJ, Gebhardt MC, Mankin HJ. Survivorship analysis of 141 modular metallic endoprostheses at early followup. Clin Orthop Relat Res. 2004; 420:239-250.