The role of F-actin in the transport and secretion of chromaffin granules: an historic perspective

Luis M. Gutiérrez1 · José Villanueva1

Abstract Actin is one of the most ubiquitous protein playing fundamental roles in a variety of cellular processes. Since early in the 1980s, it was evident that filamentous actin (F-actin) formed a peripheral cortical barrier that prevented vesicles to access secretory sites in chromaffin cells in culture. Later, around 2000, it was described that the F-actin structure accomplishes a dual role serving both vesicle transport and retentive purposes and undergoing dynamic transient changes during cell stimulation. The complex role of the F-actin cytoskeleton in neuroendocrine secretion was further evidenced when it has been proved to participate in the scaffold structure holding together the secretory machinery at active sites and participate in the generation of mechanical forces that drive the opening of the fusion pore, during the first decade of the present century. The complex vision of the multiple roles of F-actin in secretion we have acquired to date comes largely from studies performed on traditional 2D cultures of primary cells; however, recent evidences suggest that these may not accurately mimic the 3D in vivo environment, and thus, more work is now needed on adrenomedullary cells kept in a more “native” configuration to fully understand the role of F-actin in regulating chromaffin granule transport and secretion under physiological conditions.

Keywords Chromaffin granules · F-actin · Myosin II · Myosin V · Neurosecretory cells · Exocytosis

At the beginning of the 1980s, with the generalization in the use of immunofluorescence techniques, several works from different laboratories evidenced that the cytoskeletal protein actin, in its filamentous form (F-actin), localized in the peripheral cortex of cultured bovine chromaffin cells forming a continuous ring [4, 29]. These studies were the base embodying...
the notion of the “barrier” concept for the F-actin cytoskeleton opposing the free access of secretory vesicles to the plasma membrane releasing sites [3, 8, 60] (See Fig. 1). Years later, the use of the quick-freeze, deep-etch technique in electronic microscopy [36] revealed the details of this dense meshwork of filaments and showed that some areas of the cortex presented discontinuities in this “barrier”, as the F-actin fibers where sparse or ran perpendicular to the plasma membrane.

The “barrier” idea was further supported when stimulation of the cells with secretagogues induced the reorganization of a spectrin-like protein, fodrin, forming membrane patches that co-localize with disruption in the cortical F-actin structure [45]. Similarly, cell stimulation with secretagogues induced the fragmentation of the F-actin cortex [11], a process that was associated with the activity of scinderin, a calcium-dependent protein thought to enhance the granules to be release during fast exocytosis [64]. Alternatively, calcium could affect the crosslinking properties of F-actin by protein kinase C (PKC) phosphorylation of myristoylated alanine-rich C kinase substrate (MARKS), causing the partial depolymerisation [50, 57].

In some of these early studies, it was evidenced that the role of F-actin was far more complex than a simple retentive system, as for example, the treatment of PC12 cells with Botulinum toxin C2, an ADP-ribosylating agent inducing F-actin depolymerisation, has a complex effect favoring secretion at low concentrations and inhibiting the secretory process at higher doses [32]. In addition, discrepancies among different groups stressed the complexity of the F-actin role during exocytosis since there were reports of apparent secretory enhancement and inhibition with the use of substances stabilizing (jasplakinolide or phallotoxins) or disrupting F-actin polymerization (cytochalasins, latrunculins, or clostridial C2 toxin) [15, 17, 32].

A “dynamic” view, the dual role as a transport and retentive system

With the development of the total internal reflection fluorescence microscopy (TIRFM) and the end of the 1990s, the “barrier” concept was subjected to an important revision. This technique allowed the visualization of fluorescent-labelled granules located within 300 nm of the cell limits and therefore immersed in the F-actin meshwork [28, 41]. These studies showed that F-actin trails guided the motion of the vesicles within the F-actin-rich cortical region even though they experienced increased restrictions as they reach the immediate proximity of the plasma membrane [25]. Indeed, dynamic confocal microscopy confirmed later that chromaffin vesicles were transported from the inner regions adjacent to the cell nucleus using both microtubules and F-actin fibers and that once the reach the cell cortex, the motion was dependent mostly of the F-actin-myosin system [39, 51].

How can F-actin cortex possibly act as a retentive and also as a transport system? The first vision of the F-actin dynamic changes encompassing secretion was provided by transmitted light scanning combined with fluorescence microscopy using high numerical aperture objectives [19]. In this study, it was revealed that during stimulation, the F-actin structure parallel to the plasma membrane changes transiently to form open spaces and transport tubes allowing access of secretory granules to the secretory sites. These complex reorganizations of F-actin are the basis to understand how the cytoskeletal network can switch from a “retentive” to a “transport” system in a time window of seconds to restore the original disposition.
40–50 s after the initiation of the stimulus and represented a
dynamic alternative to the previous ideas based on the simple
fragmentation of the F-actin “barrier” (Fig. 1, middle row). In
this study, it was observed also the formation of
subplasmalemmal spaces devoid of F-actin during prolonged
(5 min) stimulation [19], also consistent with previous elec-
tron microscopy studies [36].

Dynamic changes required molecular motors

F-actin changes associated with many cellular processes are
driven by molecular motors of the myosin family. Myosin II,
undergoing ATP-dependent conformational changes to regu-
late F-actin dynamics, was proved to be present in the cortical
area of chromaffin cells in 1984 [60] and to be regulated by
calcium-dependent phosphorylation during the secretory cy-
cle [9, 22, 23]. The importance of the activity of such a motor
of myosin II was later demonstrated when the inhibition of the
myosin light chain kinase partially affected secretion [26, 46].

In addition to myosin II, myosin V was also abundant in the
cytosol of chromaffin cells [38, 48] and was found to associate
with chromaffin granules [49]. Importantly, it was proven that
myosin V regulates the association of the vesicles with the
cortical cytoskeleton in PC12 cells [51]. Myosin Va seems to
be essential for the motion of the vesicles in the
subplasmalemmal area, an activity that is mediated by the
small GTPase Rab 27 and the MyRIP protein [12].

More recently, it was shown that myosin VI was able to
recruit vesicles to the cortical zone in a calcium-dependent
process; this depends on the small insert isoform located in
the cargo domain of myosin VI [55]. This mean that conven-
tional myosins V and VI could be playing similar roles oper-
ating in concert to ensure the supply of vesicles during the
exhaustion of vesicular pools driven by prolonged
stimulation.

Taken together, an actual and integrated view of chromaffin
granule transport associated with F-actin depicts two different
mechanisms acting in concert, a processive motion of vesicles
along F-actin trails using conventional myosins V and VI and
a non-processive transport of the granules entrapped in F-actin
cages and controlled by the activity of myosin II.

Not only transport! Actomyosin role in the fusion
event

The study of the fusion kinetics with amperometry at the sin-
gle vesicle fusion level [67] has been instrumental in showing
that myosin motors influence not only vesicle transport but the
very final events of membrane fusion. In 2004, Neco and
colleagues expressed a non-phosphorylatable form of myosin
II in chromaffin cells and found that F-actin and myosin II
influence the kinetics of catecholamine release through the
fusion pore [40], specifically prolonging the open time as
was described later by using the patch amperometry technique
[37]. Similarly, the pharmacological inhibition of F-actin po-
lymerization and myosin II activity slowed release kinetics
without affecting quantal size [6].

Recent works suggest that F-actin-myosin II may exert a
tensational force facilitating neurotransmitter release by acting
either at the plasma membrane-vesicle interface [16] or at the
level of a granule coat [35]. In chromaffin cell, it is likely that
actomyosin forces influence the plasma membrane tension to
drive relaxation after F-actin stabilization [62], decrease mem-
brane tension after myosin inhibition [7], and synchronize
vesicle transport during stimulation [42]. In any case, the
exquisite control of the cytoskeletal actomyosin appears to reg-
ulate even the mode of fusion promoting the “kiss-and-run”
partial release at low-frequency stimulations and enhancing
the full collapse of the granules at higher frequencies by
destabilizing the F-actin structures [13]. Similarly, experi-
ments conducted in PC 12 cells and the expression of vesicu-
lar “cargo” proteins with variable size and, therefore, diffusion
rates through the fusion pore confirmed these results [1].

The interphase between the plasma membrane
and the cytoskeleton

There is no doubt that the F-actin cortical structure is a central
piece of the organization of the secretory machinery, but there
are also many evidences that the polymerization of F-actin “de
novo” is also playing an important role.

In chromaffin cells, a molecular cascade involving small
GTPases, such as Cdc42, triggers the formation of actin fil-
ament in the submembranal area [15], and this increases the
secretory activity. This F-actin recruitment seems to be me-
diated through N-WASP and the Arp2/3 complex, two fac-
tors governing actin nucleation during propulsion of secre-
tory vesicles [54]. These initial studies have been supported
by a recent work probing that glycerophospholipid phos-
phatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) coordi-
nates the translocation of secretory vesicles to their docking
sites on the plasma membrane in a Cdc42-dependent manner
[65, 66]. PtdIns(4,5)P2 forms clusters that, in addition to
nucleating the formation of F-actin, also interact with
SNARE proteins [2] and act as a “beacon” for vesicle guid-
ance to active sites. The ability of F-actin to influence the
modality and localization of the molecular machinery of
exocytosis has recently been evidenced by the demonstration
that PC12 cells emit filopodial extensions in response to
secretagogue stimulation, an effect that is driven by F-actin
trails that are capable of guiding secretory vesicles to newly
uncovered secretory sites [43].
F-actin involvement in the arrangement of secretory sites

Before the 1980s, it was well established that in neurons, exocytosis takes place in specialized spatial areas of the synaptic terminals called “active zones” [10, 27]. Later on, in a seminal paper, Sankaranayanan et al. showed that cortical F-actin plays a scaffold function avoiding diffusion of the molecular players of neurosecretion [52]. Therefore, a key question was if there are similar structures in neuroendocrine models, such chromaffin cells, and if F-actin plays a similar cohesive role.

Again, amperometry was seminal to show that in chromaffin cell local and restricted elevations of calcium, the so called “hot spots,” where coincident with secretory events [47]. This was the first evidence of the localized nature of the secretory response in chromaffin cells, and it was confirmed later when for most granules, calcium signals are originated within 300 nm of its location in the submembranal space [5]. Finally, using immunolocalization techniques, it was shown that a 1/3 of SNARE microdomains co-localized with calcium channel spots and that these zones are the preferential sites for exocytosis [30]. This co-localization occurring between voltage-dependent calcium channels and secretory vesicles were first studied in early “patch clamp” studies and described in classical synapses [53].

The F-actin cytoskeleton appears to be the cohesive factor to hold these “pseudo” active sites since the expression of exogenous SNAP-25 appears to co-localize with calcium channels in the borders of F-actin cortical cytoskeletal cages [61], and this was later confirmed with the “native” proteins using immunocytochemistry [56]. Interestingly, in this study [56], it was proposed, by using mathematical models, that the organization of the secretory machinery in association with the borders of F-actin cortical structures forming cages or cavities in the subplasmalemmal space results in robust calcium confined elevations that accelerate the secretory kinetics when compared with random distributions of this machinery.

The organization of the secretory machinery has been studied in a variety of systems ranging from exocrine to neuroendocrine, and neuronal cells using atomic force and electron microscopy, leading to the description of the “porosome” as permanent cup-shaped structures associating SNARE proteins, NSF ATPase, and calcium channel subunits [24]. Among these constituents, it was described that actin was present together with other cytoskeletal proteins such as vimentin and α-fodrin.

Taking together, the emerging view suggests that the cortical F-actin cytoskeleton is an “integrative” factor associating the molecular components of the secretory machinery to configure a cytoarchitecture favoring the fine tuning of the secretory responses.

Latest discoveries and shadows

In the later years, it has been re-inforce the role of F-actin governing the transport of the organelles, extending this control not only to chromaffin granules but also to other organelles such as mitochondria [63], playing a fundamental role in the generation of subpopulations of cortical and perinuclear organelles. In addition, “new” visions of this transport have been described to include the existence of conveyor belts to drive the displacement of entire cortical cytoplasmic regions toward the plasma membrane during cell stimulation [33]. In the proximity of the membrane, F-actin and myosin II appear to also coordinate the “casting net” system to replenish in the “docking” areas the chromaffin granules that has been released [42] (Fig. 1, lower row). Similarly, the role of F-actin during the fusion process has been sustained recently by articles enclosing new details of the molecular players. For example, the F-actin-binding protein cortactin has been implicated in the regulation of the duration of the fusion pore [20] and annexin A2 promoting F-actin-mediated bundling of the membrane is essential for the docking of the incoming granules [14].

In consequence, during the last 30 years, our vision of the role of the F-actin cytoskeleton in the secretory process in the neuroendocrine model of chromaffin cells has evolved from a simple vision of a retentive system preventing the granules to fuse in the absence of stimulation to a very complex function involving transitory dynamic changes that facilitate multiple roles as a scaffold structure supporting organelle and secretory machinery localization, coordinated organelle transport, and mechanical forces necessary for the correct opening of the fusion pore. In the context of this progress, it is important to notice, however, that most of our knowledge is based in the use of isolated and cultured cells, and recently, it has been demonstrated that the F-actin cytoskeleton of cultured chromaffin cells differs from that present in “native” cells forming part of the adrenal medulla [18]. The F-actin cytoskeleton is a complex network that extends through the whole cytosol in “native” cells, and it is destabilized in isolated cultured cells forming the “characteristic” peripheral cortical structure, and this, in consequence, changes the distribution of organelles and proteins that influence the secretory kinetics. Therefore, to fully understand the role of the F-actin cytoskeleton in “physiological” conditions, it will be necessary to develop techniques involving the use of “native cells” in a 3D in vivo like environment as found in adrenomedullary tissue.

Acknowledgements This work was supported by a grant from the Spanish Ministry of Economy and Competitiveness (MEC, Fondos FEDER: BFU2015-63684-P) to LMG.
References

1. Aoki R, Kitaguchi T, Oya M, Yanagihara Y, Sato M, Miyawaki A, Tsuboi T (2010) Duration of fusion pore opening and the amount of hormone released are regulated by myosin II during kiss-and-run exocytosis. Biochem J 429:497–504

2. Aoyagi K, Sugaya T, Umeda M, Yamamoto S, Terakawa S, Takahashi M (2005) The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J Biol Chem 280:17346–17352

3. Aunis D, Bader MF (1988) The cytoskeleton as a barrier to exocytosis in secretory cells. J Exp Biol 139:253–266

4. Aunis D, Guerold B, Bader MF, Cieselski-Treska J (1980) Immunocytochemical and biochemical demonstration of contractile proteins in chromaffin cells in culture. Neuroscience 5:2261–2277

5. Becherer U, Moser T, Stuhmer W, Oheim M (2003) Calcium regulates exocytosis at the level of single vesicles. Nat Neurosci 6: 846–853

6. Berberian K, Torres AJ, Fang Q, Kisler K, Lindau M (2009) F-actin filaments as a prelude to exocytosis. Biochem J 429:661–665

7. Breton M, Jouannot O, Fanget I, Pierobon P, Larochette N, Gestraud P, Guillou M, Emiliani V, Gasman S, Desnos C, Lennon-Dumenil AM, Darchen F (2014) Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension. Mol Biol Cell 25:3195–3209

8. Burgoyne RD, Cheek TR (1987) Reorganisation of peripheral actin filaments as a prelude to exocytosis. Biosci Rep 7:281–288

9. Cote A, Doucet JP, Trifaro JM (1986) Phosphorylation and dephosphorylation of chromaffin cell proteins in response to stimulation. Neuroscience 19:629–645

10. Couteaux R, Pecot-Dechavassine M (1970) Synaptic vesicles and pouches at the level of “active zones” of the neuro-muscular junction. C R Acad Sci Hebd Seances Acad Sci D 271:2346–2349

11. Cheek TR, Burgoyne RD (1986) Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS Lett 207: 110–114

12. Desnos C, Schonn JS, Huet S, Tran VS, El-Amraoui A, Raposo G, Fanget I, Chapuis C, Menasche G, de Saint BG, Petit C, Cribier S, Henry JP, Darchen F (2003) Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J Cell Biol 163:559–570

13. Doreian BW, Fulop TG, Smith CB (2008) Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. J Neurosci 28:4470–4478

14. Gabel M, Delavoie F, Demais V, Royer C, Baily Y, Vitale N, Bader MF, Chasserot-Golaz S (2015) Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis. J Cell Biol 210:785–800

15. Gasman S, Chasserot-Golaz S, Malacombe M, Way M, Bader MF (2004) Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol Biol Cell 15:520–531

16. Gauthier NC, Masters TA, Sheetz MP (2012) Mechanical feedback between membrane tension and dynamics. Trends Cell Biol 22: 527–535

17. Gil A, Rueda J, Viniegra S, Gutierrez LM (2000) The F-actin cytoskeleton modulates slow secretory components rather than readily releasable vesicle pools in bovine chromaffin cells. Neuroscience 98:605–614

18. Gimenez-Molina Y, Villanueva J, Nanclares C, Lopez-Font I, Viniegra S, Frances MDM, Gandia L, Gil A, Gutierrez LM (2017) The differential organization of F-actin alters the distribution of organelles in cultures when compared to native chromaffin cells. Front Cell Neurosci 11:135

19. Giner D, Neco P, Frances MM, Lopez I, Viniegra S, Gutierrez LM (2005) Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J Cell Sci 118:2871–2880

20. Gonzalez-Janet AM, Guerra MJ, Olivares MJ, Haro-Acuna V, Baez-Matus X, Vasquez-Navarrete J, Montojoise F, Martinez-Quiles N, Cardenas AM (2017) The F-actin binding protein Cortactin regulates the dynamics of the exocytotic fusion pore through its SH3 domain. Front Cell Neurosci 11:130

21. Gutierrez LM (2012) New insights into the role of the cortical cytoskeleton in exocytosis from neuroendocrine cells. Int Rev Cell Mol Biol 295:109–137

22. Gutierrez LM, Ballesta JJ, Hidalgo MJ, Gandia L, Garcia AG, Reig JA (1988) A two-dimensional electrophoresis study of phosphorylation and dephosphorylation of chromaffin cell proteins in response to a secretory stimulus. J Neurochem 51:1023–1030

23. Gutierrez LM, Hidalgo MJ, Palmero M, Ballesta JJ, Reig JA, Garcia AG, Viniegra S (1989) Phosphorylation of myosin light chain from adrenomedullary chromaffin cells in culture. Biochem J 264:589–596

24. Jena BP, Cho SJ, Jeremic A, Stromer MH, and bu-Hamdah R. Structure and composition of the fusion pore. Biophys J 84: 1337–1343, 2003

25. Johns LM, Levitan ES, Shelden EA, Holz RW, Axelrod D (2001) Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J Cell Biol 153:177–190

26. Kumakura K, Sasaki K, Sakurai T, Ohara-Imaizumi M, Misonou H, Nakamura S, Matsuda Y, Nonomura Y (1994) Essential role of myosin light chain kinase in the mechanism for MgATP-dependent priming of exocytosis in adrenal chromaffin cells. J Neurosci 14:7695–7703

27. Landis DM, Hall AK, Weinstein LA, Reese TS (1988) The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1:201–209

28. Lang T, Wacker I, Wunderlich I, Rohrbach A, Giese G, Soldati T, Almers W (2000) Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys J 78: 2863–2877

29. Lee RW, Trifaro JM (1981) Characterization of anti-actin antibodies and their use in immunocytochemical studies on the localization of actin in adrenal chromaffin cells in culture. Neuroscience 6:2087–2108

30. Lopez I, Giner D, Ruiz-Nuno A, Fuentealba J, Viniegra S, Garcia AG, Davletov B, Gutierrez LM (2007) Tight coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells. Cell Calcium 41:547–558

31. Malacombe M, Bader MF, Gasman S (2006) Exocytosis in neuroendocrine cells: new tasks for actin. Biochim Biophys Acta 1763:1183–1194

32. Matter K, Dryer F, Aktories K (1989) Actin involvement in exocytosis from PC12 cells: studies on the influence of botulinum C2 toxin on stimulated noradrenaline release. J Neurochem 52:370–376
33. Mauvrot G, Kasula R, Papadopulos A, Nieminen TA, Rubinsztein-Dunlop H, and Meunier FA. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells. Plos One 9: 2014

34. Meunier FA, Gutierrez LM (2016) Captivating new roles of F-actin cortex in exocytosis and bulk endocytosis in neurosecretory cells. Trends Neurosci 39:605–613

35. Miklavc P, Ehinger K, Sultan A, Felder T, Paul P, Gottschalk KE, Frick M (2015) Actin depolymerisation and crosslinking join forces with myosin II to contract actin coats on fused secretory vesicles. J Cell Sci 128:1193–1203

36. Nakata T, Hirokawa N (1992) Organization of cortical cytoskeleton and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. J Neurosci 12:2186–2197

37. Neoc P, Fernandez-Peruchena C, Navas S, Gutierrez LM, de Toledo GA, Ales E (2008) Myosin II contributes to fusion pore expansion during exocytosis. J Biol Chem 283:10949–10957

38. Neoc P, Gil A, del Mar FM, Viniegra S, Gutierrez LM (2002) The role of myosin in vesicle transport during bovine chromaffin cell secretion. Biochem J 368:405–413

39. Neoc P, Giner D, del Mar FM, Viniegra S, Gutierrez LM (2003) Differential participation of actin- and tubulin-based vesicle transport systems during secretion in bovine chromaffin cells. Eur J Neurosci 18:733–742

40. Neoc P, Giner D, Viniegra S, Borges R, Villanuev A, Gutierrez LM (2004) New roles of myosin II during vesicle transport and fusion in chromaffin cells. J Biol Chem 279:27450–27457

41. Oheim M, Stuhmer W (2000) Tracking chromaffin granules on their way through the actin cortex. Eur Biophys J 29:67–89

42. Papadopulos A, Gomez GA, Martin S, Jackson J, Gormal RS, Keating DJ, Yap AS, and Meunier FA. Activity-driven control of the cortical actomyosin II network synchronizes Munc18-1-dependent neurosecretory vesicle docking. Nature Communications 6: 2015

43. Papadopulos A, Martin S, Tomatis VM, Gormal RS, Meunier FA (2013) Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites. J Neurosci 33:19143–19153

44. Papadopulos A, Tomatis VM, Kasula R, Meunier FA (2013) The cortical acto-myosin network: from diffusion barrier to functional gateway in the transport of neurosecretory vesicles to the plasma membrane. Front Endocrinol (Lausanne) 4:153

45. Perrin D, Aunis D (1985) Reorganization of alpha-fodrin induced by stimulation in secretory cells. Nature 315:589–592

46. Reig JA, Viniegra S, Ballesta JI, Palmero M, Gutierrez LM (1993) Naphthalenesulfonamide derivatives ML9 and W7 inhibit catecholamine secretion in intact and permeabilized chromaffin cells. Neurochem Res 18:317–323

47. Robinson JM, Finnegan JM, Monck JR, Wightman RM, Fernandez JM (1995) Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells. Proc Natl Acad Sci U S A 92: 2474–2478

48. Rose SD, Lejen T, Casalatti L, Larson RE, Pene TD, Trifaro JM (2002) Molecular motors involved in chromaffin cell secretion. Ann N Y Acad Sci 971:222–231

49. Rose SD, Lejen T, Casalatti L, Larson RE, Pene TD, Trifaro JM (2003) Myosins II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion. J Neurochem 85:287–298

50. Rose SD, Lejen T, Zhang L, Trifaro JM (2001) Chromaffin cell F-actin disassembly and potentiation of catecholamine release in response to protein kinase C activation by phosphor esters is mediated through myristoylated alanine-rich C kinase substrate phosphorylation. J Biol Chem 276:36757–36763

51. Rudolf R, Kogel T, Kuznetsov SA, Saltn T, Schlicker O, Hellwig A, Hammer JA III, Gerdes HH (2003) Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 116:1339–1348

52. Sankaranarayanan S, Atluri PP, Ryan TA (2003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci 6:127–135

53. Seward EP, Nowycky MC (1996) Kinetics of stimulus-coupled secretion in dialyzed bovine chromaffin cells in response to trains of depolarizing pulses. J Neurosci 16:553–562

54. Taumon J, Rowning BA, Coughlin ML, Wu M, Moon RT, Mitchison TJ, and Larabell CA. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J Cell Biol 148: 519–530, 2000

55. Tomatis VM, Papadopulos A, Malinant NT, Martin S, Wallis T, Gormal RS, Kendrick-Jones J, Buss F, Meunier FA (2013) Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin. J Cell Biol 200:301–320

56. Torregrosa-Hetland CJ, Villanueva J, Lopez-Font I, Garcia-Martinez V, Gil A, Gonzalez-Velez V, Segura J, Viniegra S, Gutierrez LM (2010) Association of SNAREs and calcium channels with the borders of cytoskeletal cages organizes the secretory machinery in chromaffin cells. Cell Mol Bioiolog 30:1315–1319

57. Trifaro J, Rose SD, Lejen T, Elzaghalaa A (2000) Two pathways control chromaffin cell cortical F-actin dynamics during exocytosis. Biochimie 82:339–352

58. Trifaro JM, Badar MF, Doucet JP (1985) Chromaffin cell cytoskeleton: its possible role in secretion. Can J Biochem Cell Biol 63: 661–679

59. Trifaro JM, Gasman S, Gutierrez LM (2008) Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells. Acta Physiol (Oxf) 192:165–172

60. Trifaro JM, Kenigsberg RL, Cote A, Lee RW, Hikita T (1984) Adrenal paraneurone contractile proteins and stimulus-secretion coupling. Can J Physiol Pharmacol 62:493–501

61. Villanueva J, Torregrosa-Hetland CJ, Gil A, Gonzalez-Velez V, Segura J, Viniegra S, Gutierrez LM (2010) The organization of the secretory machinery in chromaffin cells as a major factor in modeling exocytosis. HFSP J 4:85–92

62. Villanueva J, Torres V, Torregrosa-Hetland CJ, Garcia-Martinez V, Lopez-Font I, Viniegra S, and Gutierrez LM. F-actin-myosin II inhibitors affect chromaffin granule plasma membrane distance and fusion kinetics by retraction of the cytoskeletal cortex. J Mol Neurosci 2012

63. Villanueva J, Viniegra S, Gimenez-Molina Y, Garcia-Martinez V, Exposito-Romero G, Frances MD, Garcia-Sancho J, Gutierrez LM (2014) The position of mitochondria and ER in relation to that of the secretory sites in chromaffin cells. J Cell Sci 127:5105–5114

64. Vitale ML, Seward EP, Trifaro JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353–363

65. Wen PJ, Osborne SL, Meunier FA (2012) Phosphoinositides in neuroexocytosis and neuronal diseases. Phosphoinositides and Disease 362:87–98

66. Wen PJ, Osborne SL, Zanin M, Low PC, Wang HT, Schoenwaelder SM, Jackson SP, Wedlich-Soldner R, Vanhaesebroeck B, Keating DJ, Meunier FA (2011) Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells. Nat Commun 2:491

67. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczysyn DJ, Near JA, Diliberto EJ Jr, Viveros OH (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88:10754–10758