ON THE NEED FOR DEEP-MIXING IN ASYMPTOTIC GIANT BRANCH STARS OF LOW MASS

M. BUSSO1,2, S. PALMERINI1,2, E. MAIORCA1,2, S. CRISTALLO3,4, O. STRANIERO4,5, C. ABE3, R. GALLINO4,6, and M. LA COGNATA7,8

1 Dipartimento di Fisica, Università di Perugia, Italy; maurizio.busso@fisica.unipg.it
2 INFN, Sezione di Perugia, Italy
3 Dipartimento di Fisica Teorica y del Cosmos, Universidad de Granada, Spain
4 INAF, Osservatorio di Teramo, Italy
5 INFN, Sezione di Napoli, Italy
6 Dipartimento di Fisica Generale, Università di Torino, Italy
7 Dipartimento di Metodologie Fisiche e Chimiche per l’Ingegneria, Università di Catania, Italy
8 INFN, Laboratori Nazionali del Sud, Catania, Italy

Received 2010 March 26; accepted 2010 May 12; published 2010 June 15

ABSTRACT

The photospheres of low-mass red giants show CNO isotopic abundances that are not satisfactorily accounted for by canonical stellar models. The same is true for the measurements of these isotopes and of the $^{26}\text{Al}/^{27}\text{Al}$ ratio in presolar grains of circumstellar origin. Non-convective mixing, occurring during both red giant branch (RGB) and asymptotic giant branch (AGB) stages, is the explanation commonly invoked to account for the above evidence. Recently, the need for such mixing phenomena on the AGB was questioned, and chemical anomalies usually attributed to them were suggested to be formed in earlier phases. We have therefore re-calculated extra-mixing effects in low-mass stars for both the RGB and AGB stages, in order to verify the above claims. Our results contradict them; we actually confirm that slow transport below the convective envelope occurs also on the AGB. This is required primarily by the oxygen isotopic mix and the ^{26}Al content of presolar oxide grains. Other pieces of evidence exist, in particular from the isotopic ratios of carbon stars of type N, or C(N), in the Galaxy and in the LMC, as well as of SiC grains of AGB origin. We further show that, when extra-mixing occurs in the RGB phases of Population I stars above about 1.2 M_\odot, this consumes ^3He in the envelope, probably preventing the occurrence of thermohaline diffusion on the AGB. Therefore, we argue that other extra-mixing mechanisms should be active in those final evolutionary phases.

Key words: nuclear reactions, nucleosynthesis, abundances – stars: AGB and post-AGB – stars: carbon – stars: evolution – stars: low-mass

1. INTRODUCTION

Evolved low-mass stars show photospheric CNO isotopic ratios that in many cases are not reproduced by stellar evolutionary codes. In the past years, it was recognized by many authors (Boothroyd et al. 1994; Wasserburg et al. 1995; Charbonnel & Do Nascimento 1998; Boothroyd & Sackmann 1999) that these chemical anomalies derive from transport mechanisms linking the envelope to zones where partial H burning occurs. We call these phenomena “extra-mixing” or “deep-mixing” throughout this Letter. Nollett et al. (2003, hereafter NBW03) presented a parametric study of such mixing episodes, suitable to account for the CNO abundances measured in presolar grains of the asymptotic giant branch (AGB) origin. The adopted formalism was based on two parameters, namely, the rate of mass transport (M) and the temperature (T_P) of the deepest zones reached by the circulation. It was also demonstrated that important composition changes can occur without introducing feedback into the stellar luminosity, provided T_P is kept low enough (typically, $\Delta \log T = \log T_H - \log T_P \gtrsim 0.08-0.1$, where T_H is the temperature at which the maximum energy of the H-burning shell is released).

Subsequently, physical models for extra-mixing have been explored, which avoid the difficulties previously found with rotationally induced mechanisms (Palacios et al. 2006). In particular, hydrodynamical models of diffusive processes induced by variations of the mean molecular weight μ (Stothers & Simon 1969), called thermohaline diffusion (Charbonnel & Zahn 2007), were presented by Eggleton et al. (2006, 2008). They showed that ^3He burning into ^4He and two protons successfully induces the required μ inversion ($\Delta \mu/\mu \simeq 10^{-4}$), thus driving mixing episodes. Complementarily, Busso et al. (2007), Nordhaus et al. (2008), and Denissenkov et al. (2009) suggested that extra-mixing might be driven by magnetic buoyancy in a dynamo process operating below the envelope.

The model by NBW03 referred explicitly to AGB stars, which are known to be the parents of most presolar grains (Zinner 2005). Extra-mixing in these objects was considered as necessary by various authors (Hoppe et al. 1997; Zinner et al. 2006; Heck et al. 2007; Nittler et al. 2008). However, a recent paper (Karaka et al. 2010, hereafter KCS10) sheds doubts on this requirement, suggesting that slow mass circulation on the red giant branch (RGB) might be sufficient. In order to solve the above dilemma, we have to look at the observational data, asking whether there is any clear requirement for extra-mixing on the AGB. Our answer will be that this requirement exists and comes primarily from oxide presolar grains (Nittler et al. 1997; Choi et al. 1998; Clayton & Nittler 2004; Nittler et al. 2008). Then one must look for a similarly clear constraint from stars, and we find it in the carbon isotope ratios of C(N) giants. Other pieces of evidence (from Ba stars, C-enhanced metal-poor stars, etc.), although relevant, will not be addressed here for reasons of space. In order to demonstrate all of this, we generalize the calculations by NBW03, extending them to cover also RGB stages and including two more values of the initial mass. In Section 2, we compare our results for RGB phases with constraints coming from presolar oxide grains of group 2. In Section 3, we integrate this by considering extra-mixing...
also in AGB stages; critical tests come again from presolar oxide grains (of group 2, but also of group 1). The evidence from O-rich AGB stars is also discussed. Finally, in Section 4 we comment on the information coming from C(N) stars and we derive preliminary conclusions, also addressing the physical mechanisms necessary to drive the transport.

2. EXTRA-MIXING IN RGB PHASES

For the sake of comparison with previous works, we perform parametric calculations, using the free parameters \(M \) and \(T_p \), as in NBW03. We adopt the same NACRE compilation for reaction rates and compute our extra-mixing results as post-process calculations, starting from detailed stellar models by Straniero et al. (2003). Masses in the range \(1.2 \leq M / M_\odot \leq 2 \) for \(Z = Z_\odot / 2 \) are considered (only the case of a 1.5 \(M_\odot \) star was analyzed in NBW03). During RGB stages, we introduce extra-mixing after the "bump" of the luminosity function (BLF), when the H-burning shell erases the chemical discontinuity left behind by the first dredge-up (FDU); hence, envelope abundances do not change from FDU to this moment (see, e.g., Charbonnel 1996). Details on the general RGB physics can be found in Charbonnel & Balachandran (2000) and Palacios et al. (2006). Our procedure was illustrated by Palmerini et al. (2009) and is based on the integration of a set of partial differential equations describing the abundance changes due to nucleosynthesis and due to the upward and downward transport across the integration grid. The rate of mass circulation \(M \), defined in NBW03, is assumed as a free parameter. In agreement with the above paper the fractional areas occupied by the upward and downward streams are assumed to be the same.

In the cases discussed here, the results are essentially controlled by the path integral of reaction rates over the trajectory of the transport. They are shown, for the RGB phases of our three model stars, in Figure 1. The left panel shows our predictions for the oxygen isotopic ratios, as compared to the measured values in presolar oxide grains of group 2 (Nittler et al. 1997, 2008). These are the grains whose composition is attributed to extra-mixing phenomena, because of the extensive depletion of \(^{18}\text{O} \). The continuous track in the plot identifies the composition at FDU for various stellar masses. The dotted lines display the isotopic ratios obtained with efficient mixing \((M = 10^{-6} M_\odot \text{ yr}^{-1}) \) continued from the BLF to the RGB tip. Along each line, the displacement from the FDU composition increases for decreasing values of \(\Delta \log T \); the points corresponding to some values of this parameter are shown with labels on the model lines. The results for \(\Delta \log T \geq 0.10 \) and for very low \(17^{\text{O}}/18^{\text{O}} \) lay on an asymptotic trajectory with low slope pointing to a high \(17^{\text{O}}/18^{\text{O}} \) ratio (0.003). This is determined by the equilibrium abundances of oxygen isotopes in CNO cycling: at the low RGB temperatures \((T \lesssim 3.5 \times 10^7 \text{ K}) \) the concentration of \(17^{\text{O}} \) is very high (see NBW03, Figure 8). It is clear that extra-mixing on the RGB alone does not account for the measurements in the most \(^{18}\text{O}-\)poor grains. Indeed, it would require a much higher content of \(^{17}\text{O} \) than observed. The right panel of Figure 1 adds more evidence by including the Al isotopic ratio. The grid of dotted lines refers to extra-mixing calculations on the RGB for a \(2 M_\odot \) model: the results are however typical of the whole range of low-mass stars. The curves roughly going from left to right are for \(M \) values of 0.03, 0.1, 0.3, and 1 in units of \(10^{-6} M_\odot \text{ yr}^{-1} \). The higher the \(M \) value is, the larger the \(^{18}\text{O} \) depletion will be, as indicated by the labels. The almost vertical lines, instead, refer to different values of \(\Delta \log T \) (0.2, 0.15, 0.1, as indicated). It is clear that extra-mixing on the RGB might cover only Al isotopic ratios below \(10^{-3} \); this is an irrelevant contribution, especially when considering that much more \(^{26}\text{Al} \) (up to \(^{26}\text{Al}/^{27}\text{Al} \simeq (5-6) \times 10^{-7} \)) is subsequently dredged up after thermal pulses on the AGB (even in the absence of further extra-mixing episodes on the AGB itself). These simple comparisons make clear that deep-mixing on the RGB alone is inadequate to explain the constraints coming from presolar grains of circumstellar origin.

3. EXTRA-MIXING IN AGB PHASES

In Iben & Renzini (1983) and Busso et al. (1999), one can find generalities for AGB stars. Below their envelopes, conditions of chemical homogeneity are established when the downward envelope expansion called third dredge-up (TDU), which follows the thermal pulses of the He shell, reaches down...
to the H–He discontinuity. Most of the interpulse periods of AGB phases are therefore suitable for the occurrence of extra-mixing, which can therefore operate for a total duration of about \(10^6\) yr. The spread shown by presolar grains and AGB stars in the C, O, and Al isotopic ratios suggests that the details of the transport vary from star to star (NBW03).

Figure 2 (left panel) shows the oxygen isotopic ratios reachable by extra-mixing in the interpulse phases of AGB stars. Dashed lines show the effects of efficient mixing \((M = 5 \times 10^{-6} M_\odot \text{ yr}^{-1})\); again the displacement from the FDU composition grows for increasing depth (hence temperature) reached by the transport \((\Delta \log T \text{ values are indicated on the curves})\). Model predictions converge to \(^{17}\text{O}/^{16}\text{O} \simeq 0.0012\), characteristic of CNO equilibrium at the moderately high temperatures found above the H-burning shell in low-mass AGB stars \((T \simeq (5–6) \times 10^7 \text{ K})\). The grain isotopic ratios cluster around this region and are well reproduced. The right panel of Figure 2 adds the evidence provided by Al isotopes. Dashed lines show the region covered by models of deep-mixing, if it occurs in both the RGB and AGB phases of a \(2 M_\odot\) star with \(Z = Z_\odot/2\). The previous activation of the same phenomenon on the RGB is considered by assuming initial isotopic abundances in the range obtained from the computations of Section 2. Again, the grid of model lines shows cases with various \(M\) values \((0.01, 0.03, 0.1, 0.3, 1, 3,\) and \(5,\) in units of \(10^{-6} M_\odot \text{ yr}^{-1}\), higher \(M\) values corresponding to higher \(^{18}\text{O}\) consumption). The almost vertical lines of the grid refer to \(\Delta \log T = 0.25, 0.22, 0.20, 0.18, 0.15, 0.10,\) and \(0.08\) (see the labels in the plot). The RGB sequences of Figure 1 (right panel) are shown as dotted lines for comparison. The data of group 2 grains are well explained by the models, suggesting that they were formed in stars that experienced extra-mixing in both RGB and AGB phases.

It is well known that another mixing phenomenon occurs on the AGB, for intermediate mass stars (IMS; \(M \geq 4.5–5 M_\odot\)). It is driven by the convective envelope extension down to the H-burning layers, in a process called hot bottom burning (HBB). The isotopic mix of presolar oxide grains cannot however be explained by this mechanism; this was made clear in the works by Boothroyd & Sackmann (1999), Lugaro et al. (2007), and Iliadis et al. (2008). In particular, Iliadis et al. (2008) revised the \(^{10}\text{O}(\gamma,\gamma')\) reaction rate, essentially confirming the NACRE value but reducing the uncertainty. On this basis, they found an equilibrium \(^{17}\text{O}/^{16}\text{O}\) ratio in their IMS model of \(2.52^{+0.88}_{-0.78} \times 10^{-3}\), incompatible with presolar grain data. They concluded that “there is no clear evidence to date for any stellar grain origin from massive AGB stars” (see also Boothroyd & Sackmann 1999, Figure 7). The measurements of Figure 2 cluster around an \(^{17}\text{O}/^{16}\text{O}\) ratio of 0.0012, as typical of the shell H-burning temperatures in AGB stars of masses up to about \(2 M_\odot\). Both lower and higher temperatures (as found in RGB and HBB conditions, respectively) would bring the grid tracks outside the area of the measured data. This fact, when coupled with the abundances of \(^{26}\text{Al}\) in the grains, offers compelling evidence in favor of deep-mixing in the AGB phases of low-mass stars. Our results would not change significantly by adopting the reaction rate for \(^{17}\text{O} + \gamma\) from Chafa et al. (2007), as done by KCS10: the differences in the equilibrium \(^{17}\text{O}/^{16}\text{O}\) values between this choice and the NACRE one amount (at maximum) to 20%.

One may further note that among the eight optically visible, moderately evolved MS and S stars observed by Harris et al. (1985), four (50%) have \(^{18}\text{O}/^{16}\text{O}\) ratios below \(5 \times 10^{-4}\) and two (25%) around \(2 \times 10^{-4}\). Despite the low statistics and large error bars of stellar observations, this compares well with the family of oxide grains requiring extra-mixing. As an example, in the St. Louis database\(^9\) one finds 76 grains of group 1 and 79 grains of group 2 with \(^{18}\text{O}/^{16}\text{O}\) ratios of 2–7% and for 17% it is below \(2 \times 10^{-4}\). Among group 2 grains alone these numbers become 68% and 33%, respectively. A straightforward interpretation is that visible O-rich AGB stars represent an intermediate population, experiencing extra-mixing more effectively than the average of the grains, but less effectively than the extreme (group 2) grains. This is encouraging. For a direct comparison, one would need oxygen isotopic ratios in evolved, extinct AGB stars, which are the parents of most grains. They are however difficult to observe. Conversely, stellar observations show an anticorrelation of \(^{18}\text{O}/^{16}\text{O}\)
with C/O ratios that is reasonable to expect from AGB evolution, but that cannot be verified in oxide grains.

Extra-mixing seems therefore to be a common property of low-mass AGB stars; and it must be a normal occurrence also on the RGB, as revealed by the low carbon isotope ratios of first-ascent red giants (Lambert & Ries 1981; Cottrell & Sneden 1986; Shetrone et al. 1993). Note, instead, that only few evolved stars are Li-rich (Abia et al. 1993). However, producing Li requires mixing at high rates, due to the short 7Be lifetime; such fast mixing episodes might be found only rarely.

4. DISCUSSION AND CONCLUSIONS

Our results indicate that extended mixing on the AGB is required, when considering oxygen isotopes and 26Al/27Al ratios in presolar grains. (In particular, the oxygen isotopes maintain their crucial role in constraining stellar physics, as early noticed by Dearborn 1992.) Stellar evidence also points to the same conclusion. This is so in particular for carbon isotopic ratios in C(N) stars. Indeed, while extra-mixing on the RGB is sufficient to explain such ratios (averaging around 60) in the C(N) star sample by Lambert et al. (1986), this is no longer true for the stars of Abia et al. (2001). These authors agree rather well (on average) with Lambert et al. (1986) for the sources in common; however, they also identified a number of new C(N) stars (25%) with 12C/13C ratios 10–40. Mainstream SiC grains provide the same evidence (for 23% of them, in the St. Louis database, the carbon isotope ratio is below 40, while the average value is around 60, as for C(N) stars). Abia et al. (2001) found that even assuming, at the beginning of the AGB phase, 12C/13C 12, as due to extra-mixing on the RGB, final C iso ratios in excess of 43 were always obtained at C/O = 1, unless new extra-mixing episodes on the AGB were included. Hence, C(N) giants and SiC grains confirm that extra-mixing occurs on the AGB; this is required also by their oxygen isotopes (Harris et al. 1987; Kahane et al. 1992). The requirements from O-rich stars and grains suggest however a more extended processing than for C(N) stars. As these last have, on average, a larger mass than MS–S giants (Guandalini & Busso 2008), the extra-mixing efficiency in Population I seems to decrease with increasing stellar mass. For lower metallicities, extra-mixing effects are known to be enhanced (Charbonnel & Langer 2008). Other mechanisms should therefore be looked for, including magnetic buoyancy (Busso et al. 2007). Note that thermohaline mixing was found to occur on both the RGB and the AGB (first inter pulses) in a low-metallicity 1 M⊙ star (Stancliffe 2010). This is due to the known higher inventory of 3He in very low mass stars (Dearborn et al. 1996).

![Figure 3. Relative variation of the molecular weight (Δμ/μ) for a 1.5 M⊙ star with a metallicity Z = Z⊙/2 in the layers where 3He burns. The inversion, present on the RGB, is reduced or erased on the AGB when 3He has been previously consumed (see labels for consumption factors).](https://example.com/figure3.png)
We acknowledge useful comments from G. J. Wasserburg and from two very constructive referee reports. We are indebted to E. Zinner and coworkers for maintaining the online repository of presolar grain abundances from which we took the measured data (http://presolar.wustl.edu/~pgd/). C.A. acknowledges partial support by the Spanish grant AYA2008-04211-C02-02.

REFERENCES

Abia, C., Boffin, H. M. J., Isern, J., & Rebolo, R. 1993, A&A, 272, 455
Abia, C., Busso, M., Gallino, R., Domínguez, I., Straniero, O., & Isern, J. 2001, ApJ, 559, 1117
Boothroyd, A. I., & Sackmann, I.-J. 1999, ApJ, 510, 232
Boothroyd, A. I., Sackmann, I.-J., & Wasserburg, G. J. 1994, ApJ, 430, L77
Busso, M., Gallino, R., & Wasserburg, G. J. 1999, ARA&A, 37, 239
Busso, M., Wasserburg, G. J., Nollett, K. M., & Calandra, A. 2007, ApJ, 671, 802
Cantiello, M., & Langer, N. 2008, in IAU Symp. 252, The Art of Modeling Stars in the 21st Century, ed. L. Deng & K. L. Chang (Cambridge: Cambridge Univ. Press), 103
Chafa, A., et al. 2007, Phys. Rev. C, 75, 5810
Charbonnel, C. 1996, in ASP Conf. Ser. 109, Cool stars, Stellar Systems, and the Sun, ed. R. Pallavicini & A. K. Dupree (San Francisco, CA: ASP), 677
Charbonnel, C., & Balachandran, S. C. 2000, A&A, 359, 563
Charbonnel, C., Brown, J. A., & Wallerstein, G. 1998, A&A, 332, 204
Charbonnel, C., & Do Nascimento, J. D., Jr. 1998, A&A, 336, 915
Choi, B.-G., Huss, G. R., Wasserburg, G. J., & Gallino, R. 1998, Science, 282, 1284
Clayton, D. D., & Nittler, L. R. 2004, ARA&A, 42, 39
Cottrell, P. L., & Sneden, C. 1986, A&A, 161, 314
Cristallo, S., et al. 2009, ApJ, 696, 797
Dearborn, D. S. P. 1992, Phys. Rep., 210, 367
Dearborn, D. S. P., Steigman, G., & Tosi, M. 1996, ApJ, 465, 887
Denissenkov, P. A., Pinsonneault, M., & MacGregor, K. B. 2009, ApJ, 696, 1823
Eggleton, P. P., Dearborn, D. S. P., & Lattanzio, J. C. 2006, Science, 314, 1580
Gratton, R. G., Carretta, E., Eriksson, K., & Gustafsson, B. 2000, A&A, 354, 169
Guandalini, R., & Busso, M. 2008, A&A, 488, 673
Harris, M. J., Lambert, D. L., Hinkle, K. H., Gustafsson, B., & Eriksson, K. 1987, ApJ, 316, 294
Harris, M. J., Lambert, D. L., & Smith, V. V. 1985, ApJ, 299, 375
Heck, P. R., et al. 2007, ApJ, 656, 1208
Hoppe, P., et al. 1997, ApJ, 487, 101
Iben, I., Jr., & Renzini, A. 1983, ARA&A, 21, 271
Iliadis, C., Angulo, C., Descouvemont, P., Lagaró, M., & Mohr, P. 2008, Phys. Rev. C, 77, 045802
Kahane, C., Cernicharo, J., Gomez-Gonzalez, J., & Guelin, M. 1992, A&A, 256, 235
Karakas, A., Campbell, S. W., & Stancliffe, R. J. 2010, ApJ, 713, 374 (KCS10)
Lambert, D. L., Gustafsson, B., Eriksson, K., & Hinkle, K. H. 1986, ApJS, 62, 373
Lambert, D. L., & Ries, L. M. 1981, ApJ, 248, 228
Lebzelter, T., et al. 2008, A&A, 486, 511
Lederer, M. T., et al. 2009, A&A, 502, 913
Lugaro, M., et al. 2007, A&A, 461, 657
Nittler, L. R., Alexander, C. M., O’D., Gao, X., Walker, R. M., & Zinner, E. 1997, Naucr. Phys. A, 621, 113
Nittler, L. R., et al. 2008, ApJ, 682, 1450
Nollett, K. M., Busso, M., & Wasserburg, G. J. 2003, ApJ, 582, 1036 (NBW03)
Nordhaus, J., Busso, M., Wasserburg, G. J., Blackman, E. G., & Palmerini, S. 2008, ApJ, 684, L29
Palacios, A., Charbonnel, C., Talon, S., & Siess, L. 2006, A&A, 453, 261
Palmerini, S., Busso, M., Maiorca, E., & Guandalini, R. 2009, PASA, 26, 161
Shetrone, M. D., Sneden, C., & Pilachowski, C. A. 1993, PASP, 105, 686
Stancliffe, R. J. 2010, MNras, 403, 505
Stothers, R., & Simon, N. R. 1969, ApJ, 157, 673
Straniero, O., Domínguez, I., Cristallo, S., & Gallino, R. 2003, PASA, 20, 389
Wasserburg, G. J., Boothroyd, A. I., & Sackmann, I.-J. 1995, ApJ, 447, L37
Zinner, E. K. 2005, in Treatise of Geochemistry. I. Meteorites, Comets, and Planets, ed. A. M. Davis, H. D. Holland, & K. K. Turekian (Elsevier: Amsterdam), 17
Zinner, E. K., et al. 2006, ApJ, 650, 350