Distinctive Genes Determine Different Intramuscular Fat and Muscle Fiber Ratios of the *longissimus dorsi* Muscles in Jinhua and Landrace Pigs

Ting Wu1*, Zhenhai Zhang2*, Zhangqin Yuan1, Li Jan Lo1, Jun Chen3, Yizhen Wang1*, Jinrong Peng1*

1 Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China, 2 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America, 3 College of Life Sciences, Zhejiang University, Hangzhou, China

Abstract

Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the *longissimus dorsi* muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (*pFLJ*), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as *pFLJ* and myogenesis inhibitory genes such as *myostatin* in the *longissimus dorsi* muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.

Citation: Wu T, Zhang Z, Yuan Z, Lo LJ, Chen J, et al. (2013) Distinctive Genes Determine Different Intramuscular Fat and Muscle Fiber Ratios of the *longissimus dorsi* Muscles in Jinhua and Landrace Pigs. PLoS ONE 8(1): e53181. doi:10.1371/journal.pone.0053181

Editor: Hongmei Wang, Institute of Zoology, Chinese Academy of Sciences, China

Received August 8, 2012; **Accepted** November 26, 2012; **Published** January 3, 2013

Copyright: © 2013 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported financially by the Special Fund for Cultivation and Breeding of New Transgenic Organism (Grant No. 2009ZX08009-144B) and the Fundamental Research Funds for the Central Universities. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yzwang@zju.edu.cn (YZW); pengjr@zju.edu.cn (JRP)

† These authors contributed equally to this work.

Introduction

The Jinhua pig, named after Jinhua City in Zhejiang Province of eastern China, is a traditional, slow-growing breed with a high IMF content and is popular for its superior quality pork. Jinhua ham, a type of dry-cured ham produced from the meat of Jinhua pigs, is the most famous brand name's in China and Jinhua ham was awarded first prize in the 1915 Panama International Merchandise Exhibition. Jinhua pigs show strong competency of oxidative metabolism and adipogenesis, which are believed to induce more satisfactory features in muscles, such as favorable meat color, marbling and flavor [1,2]. In contrast, Landrace pigs, a commercial breed of Danish origin selected over many generations for rapid growth and enhanced carcass yield, show low activities of oxidative metabolism and adipogenesis which lead to trace amounts of fat depot. As a consequence, Landrace pigs produce comparatively less flavorful pork [3–5]. Thus, these two pig breeds serve as ideal models to study porcine growth performance and meat quality.

Skeletal muscle is the primary abundant porcine tissue that comprises 20% to 50% of total body mass among different pig breeds, and is the main tissue responsible for meat production in pigs. It is also the major metabolic tissue and contributes up to 40% of the resting metabolic rate in adult pigs [6]. Skeletal muscle is a heterogeneous tissue that is composed of four muscle fiber types including oxidative (type I and IIa) and glycolic (type IIb) fibers [7]. Muscle with a higher content of oxidative fibers contains a higher percentage of lipids, capillaries, myoglobin and mitochondria [8]. Favorable meat traits such as color, flavor and tenderness have been found to be closely associated with a higher content of oxidative fibers in muscles [9,10]. In addition, individuals with muscles that are abundant in oxidative fibers are less likely to produce pale, soft, exudative (PSE) meat. Therefore, understanding the molecular processes that govern the development and phenotypic characteristics of skeletal muscle is instrumental in the breeding of pigs with high meat quality.

Microarray technology can simultaneously examine the differential expression of a large number of genes in a given tissue [7,11] and has been widely used to compare gene expression profiles for the identification of candidate genes responsible for relevant phenotypes [12–14]. For example, microarray analysis showed that sexual dimorphism of adipose tissue is determined by differentially regulated sex-specific genes regardless of diet [15]. In contrast,
comparison of global gene expression profiles using Affymetrix Mu11K SubB containing 6516 probe sets revealed only 49 differentially expressed genes in the *quad* (white muscle) and the *soleus* (red muscle) [16]. Based on a home-made porcine cDNA microarray carrying 5,500 cDNA clones, Bai et al. identified 115 differentially expressed genes between the *psoas* (red muscle) and the *longissimus dorsi* (white muscle) of a 22-week-old Berkshire pig [17]. Over the past decade, a tremendous amount of porcine transcriptomics data has been obtained using the pig cDNA microarray [18–20], while the Affymetrix porcine genome array showed particularly superior performance for swine transcriptomics [21,22]. However, reports on the comparison of global gene expression patterns in the skeletal muscles of different pig breeds at different developmental stages are lacking. In this study, a global gene expression profiling investigation was conducted to identify differentially expressed genes in *longissimus dorsi* muscles of Jinhua and Landrace pigs at three developmental stages using the Affymetrix GeneChip® Porcine Genome Array containing oligonucleotides representing approximately 23937 transcripts from 20201 porcine genes. We found that genes involved in adipogenesis and myogenesis were differentially expressed in Jinhua and Landrace pigs. To validate the potential utility of our microarray data, we characterized the expression and function of a novel gene, *pFLJ*, that is one of the genes up-regulated in Jinhua pigs at the age of d90 using both drug and gene-specific small interfering RNA (siRNA) treatment approaches in cultured intramuscular adipocyte precursor cells. Our results showed that knockdown of *pFLJ* expression down-regulated the genes involved in fat biosynthesis and reduced fat deposition, suggesting that *pFLJ* is a novel regulator of adipogenesis in the muscle.

Results and Discussion

Comparison of Carcass Traits and Meat Quality Features between Jinhua and Landrace Pig Breeds

The overall appearance of a typical adult Jinhua pig is very different from that of a Landrace pig (Figure 1A). Growth

![Jinhua pig (d150) and Landrace pig (d150)](image)

Figure 1. The Landrace breed grows faster than does the Jinhua breed. (A) Photographs showing three Jinhua pigs and one Landrace pig at d150. (B) Comparison of the body weight of Jinhua and Landrace pigs at the age of d30, d60, d90, d120 and d150, respectively. Landrace pigs gained weight much faster than Jinhua pigs. Pigs were slaughtered at around the age of d30, d90 and d150 (nine individuals per stage) and d60 and d120 (three individuals per stage) for each breed. Data are presented as means ± standard error. *P*<0.05, **P**<0.01. doi:10.1371/journal.pone.0053181.g001
performance, meat quality and carcass traits in Jinhua and Landrace pigs at the same age (d30, d60, d90, d120, d150, days of age) were compared. Our results showed that from the age of d30 to d150, on average, Jinhua pigs gained approximately 40 kg in weight, while Landrace pigs gained about 70 kg (Figure 1B), demonstrating that the Jinhua were apparently growing more slowly than the Landrace. Analysis of the lean meat ratio (LMR) and loin meat area (LMA) showed that both were significantly lower in Jinhua pigs aged from d30 to d150 (Table 1). In contrast, Jinhua pigs exhibited significantly greater back fat thicknesses (BFT) and fat meat ratios (FMR) (Table 1, P < 0.01). For example at d150, BFT and FMR in Jinhua pigs were about 2- and 2.4-fold higher, respectively (BFT: 23.7 mm in Jinhua versus 12.0 mm in Landrace; FMR: 32.4% in Jinhua versus 13.3% in Landrace) (Table 1).

It was previously reported that the Chinese Dahe pig breed exhibited a lower incidence of PSE meat [24]. We determined the pH45 value at 45 min post mortem [23]. A high pH displayed higher pH values (6.08) than the western crossbred Jinhua Pigs have a High Content of IMF

Analysis of the color parameters showed that there was a significant tendency for the a* value in muscle redness; b*, yellowness) are used as an index of meat quality. Table 1. Determination of carcass traits and meat quality in Jinhua and Landrace pigs at the age stage of 30, 60, 90, 120 and 150 days age.1

Items	30	60	90	120	150
	Jinhua (n = 9)	Landrace (n = 9)	Jinhua (n = 9)	Landrace (n = 9)	Jinhua (n = 9)
BFT (mm)	9.33 ± 1.23a	2.15 ± 0.45a	11.00 ± 1.07a	6.24 ± 0.63a	20.03 ± 0.91
	6.00 ± 0.58b	21.90 ± 0.76	10.33 ± 0.88	23.70 ± 0.92	12.00 ± 1.00a
FMR (%)	14.86 ± 1.03a	6.70 ± 0.94a	15.60 ± 2.37a	7.01 ± 0.24a	26.21 ± 1.13
	7.67 ± 0.54a	29.58 ± 1.30	8.36 ± 0.29a	32.40 ± 1.75	13.26 ± 1.26b
LMR (%)	44.27 ± 0.52a	51.97 ± 2.45a	47.19 ± 1.28	62.01 ± 1.23a	42.73 ± 1.13a
	70.77 ± 1.81a	40.78 ± 0.64	69.59 ± 1.48	41.01 ± 1.48	46.84 ± 2.08b
LMA (cm²)	0.48 ± 0.01	0.87 ± 0.08	1.06 ± 0.10	1.02 ± 0.21	1.47 ± 0.01c
	3.19 ± 0.05	1.72 ± 0.05	4.04 ± 0.06	2.49 ± 0.05	5.40 ± 0.21b
PH45	5.59 ± 0.19	6.12 ± 0.12	6.26 ± 0.25	6.50 ± 0.11	6.31 ± 0.06
	6.52 ± 0.09	6.15 ± 0.02	6.46 ± 0.13	6.39 ± 0.04	6.32 ± 0.36
Color	44.46 ± 0.09a	41.11 ± 0.63a	44.07 ± 0.24	44.54 ± 0.47	44.12 ± 0.93
	43.12 ± 0.28	42.91 ± 1.08	40.77 ± 0.85	44.25 ± 0.96	39.77 ± 0.26c
a*	12.27 ± 0.92	15.17 ± 0.68	9.71 ± 0.31	11.52 ± 0.37	9.96 ± 0.68
	10.02 ± 0.39	10.50 ± 0.39	10.22 ± 0.09	8.52 ± 0.66a	10.33 ± 0.39
b*	11.66 ± 0.71	11.54 ± 0.53	10.28 ± 0.31	10.74 ± 0.12	11.02 ± 0.36
	11.31 ± 0.032	10.86 ± 0.33	8.74 ± 0.14	9.92 ± 0.35	9.45 ± 0.34

1. Results are presented as means ± standard error.
2. BFT = back fat thickness.
3. FMR = fat meat ratio.
4. LMR = lean meat ratio.
5. LMA = longissimus muscle area.
6. PH45 = pH value at 45 min postmortem.
7. Color = meat color. l*, a*, b* represent as lightness, redness and yellowness, respectively.
8. a and AbMeans with different superscripts of capital or lowercase letter at the same row of the same age are significantly different (P < 0.05 or P < 0.01).
Figure 2. The Jinhua breed has a higher IMF content than the Landrace breed. (A) Oil Red O staining of longissimus dorsi muscles in Jinhua and Landrace pigs, respectively. Oil Red O stained IMF displayed a red color. (B) Comparison of IMF contents in longissimus dorsi muscles in Jinhua and Landrace pigs at the age of d30, d60, d90, d120 and d150, respectively. Pigs were slaughtered at around the age of d30, d90 and d150 (nine individuals per stage) and d60 and d120 (three individuals per stage) for each breed. Data are presented as means ± standard error. **P<0.01. Scale bars, 100 µm.
doi:10.1371/journal.pone.0053181.g002

Table 2. Summary of the number of genes up- or down-regulated in longissimus dorsi muscles in Jinhua or Landrace pigs at age of d90 and d150.1

	Jinhua pigs		Landrace pigs	
d90-up	177	d90-down	242	
d150-up	101	d150-down	389	
d90- & d150-up	37	d90- & d150-down	109	
d90-up	106	d90-down	231	
d150-up	93	d150-down	387	
d90- & d150-up	11	d90- & d150-down	64	
d90-up, Jinhua vs Landrace	2	d90-down, Jinhua vs Landrace	8	
d150-up, Jinhua vs Landrace	6	d150-down, Jinhua vs Landrace	57	

1Number of genes was obtained by comparing the expression profiles between d30 and d90 or d30 and d150 in each breed. Details are listed in Tables S2 (d90-up in Jinhua pigs), S3 (d90-down in Jinhua pigs), S4 (d150-up in Jinhua pigs), S5 (d150-down in Jinhua pigs), S6 (d90-up in Landrace pigs), S6 (d90-down in Landrace pigs), S7 (d150-up in Landrace pigs), and S8 (d150-down in Landrace pigs).
doi:10.1371/journal.pone.0053181.t002
at d30, 37 genes were both d90-up and d150-up, 109 genes were d90-down and d150-down, two genes were d90-up but d150-down, and six genes were d30-down but d150-up (Table 2).

In contrast, in *longissimus dorsi* muscles of Landrace pigs, 106 d90-up, 231 d90-down, 93 d150-up, 383 d150-down genes were identified, respectively, when compared with expression at d30 (Table 2; Table S5, S6, S7, S8). Clustering analysis of microarray data showed that, in comparison to expression at d30, 31 genes were both d90-up and d150-up, and 64 genes were d90-down and d150-down. Interestingly, no gene was found to be d90-up but d150-down or d90-down but d150-up (Table 2).

The fact that no or only a limited number of genes belonged to the d90-up/d150-down or d90-down/d150-up categories in both breeds suggests that the transcriptome operates sequentially to support the development of *longissimus dorsi* muscle during the d30 to d150 period. This provides a possible explanation for the continuous gain in muscle mass during this developmental window.

We also compared the d90-up and d90-down genes in Jinhua pigs with those of Landrace pigs. The results showed that only 0.7% of d90-up and 1.7% of d90-down genes were shared in these two breeds (Table 2). For d150-up and d150-down genes, only 3.2% of d150-up and 7.9% of d150-down genes were common to the two breeds (Table 2). These data clearly indicates that different genes are mobilized in these two breeds to govern the development of their respective *longissimus dorsi* muscles.

Table 3. Summary of the number of genes differentially expressed in *longissimus dorsi* muscles in Jinhua and Landrace pigs at age of d30, d90 and d150.1

Age (d)	Jinhua-up	Jinhua-down
30d	176	199
90d	276	155
150d	525	670

1 Number of genes was obtained by comparing the expression profiles between Jinhua and Landrace pigs of the same age. Details are listed in Tables S10 (d30 Jinhua-up), S11 (d90 Jinhua-up), S12 (d150 Jinhua-up), S13 (d30 Jinhua-down), S14 (d90 Jinhua-down), S15 (d150, Jinhua-down).

Identification of Genes Differentially Expressed in Jinhua and Landrace Pigs during Muscle Development

The global expression profiles in *longissimus dorsi* muscles at d30, d90 and d150 in Jinhua pigs were compared with those in Landrace pigs at corresponding stages. A total of 375, 431 and 1195 genes were identified at d30, d90 and d150 age of stage, respectively, with at least 2.0-fold difference (*P* value, 0.05) between two breeds (Table 3). Among these, 176, 276 and 525 genes corresponding to the stages of d30, d90 and d150 were up-regulated in Jinhua pigs (Jinhua-up genes) (Table 3; Table S9, S10, S11), and 199, 155 and 670 genes corresponding to the stages of d30, d90 and d150 were down-regulated (Jinhua-down genes) (Table 3; Table S12, S13, S14).

Among the differentially expressed genes identified by microarray in *longissimus dorsi* muscles of Jinhua and Landrace pigs at d90, 16 Jinhua-up genes (AY589691.1, CO993113, BF712908, CN153105, BF078710, BX924812, CF365450, NM_213785, NM_213938.1, NM_214392, BQ600160, BI399912, U83916.1, CF176622, NM_214294.1, NM_214236.1) were selected for validation by quantitative polymerase chain reaction (qPCR). Our results showed that with the exception of NM_214392 all of the selected genes were confirmed to be Jinhua-up genes (Figure 3).
However, we noticed that, although the patterns of differential expression of the examined genes were qualitatively similar between microarray and qPCR analysis (which shows the reliability of our microarray analysis), the fold changes obtained by the two approaches differed. We reasoned that this may be due to the greater accuracy of quantitation provided by qPCR compared with microarrays or to differences in the scope of magnitude of measurement of the two techniques [32].

Table 4. List of representative genes for adipogenesis and myogenesis differentially expressed in *longissimus dorsi* muscle in Jinhua and Landrace (L) pigs at d30.

Probe ID	Gene ID	Gene name	Gene Symbol	J/L Z score
Adipose metabolism related genes (Jinhua-up)				
Ssc.16159.1.S1_at	NM_213781.1	stearoyl-CoA desaturase	SCD	5.97
Ssc.5538.1.S1_at	CN153105	similar to Carbonic anhydrase 2	LOC100154873	6.60
Ssc.1225.1.S1_at	CK455955	Similar to acetyl-Coenzyme A acyltransferase 1	LOC100152367	3.15
Ssc.17347.1.S1_at	NM_214349.1	pyruvate carboxylase	PC	2.78
Ssc.22959.1.S1_at	BX676168	phosphoenolpyruvate carboxykinase 1	CH242-37G9.2	6.63
Ssc.1147.2.S1_at	BF712908	Lipoprotein lipase	LPL	2.79
Ssc.6784.1.S1_at	AY686758.1	lipase, hormone-sensitive	LIPE	3.08
Ssc.18175.1.A1_at	CN166778	fatty acid synthase	FASN	6.13
Ssc.4360.1.A1_at	CB471223	fatty acid binding protein 3	FABP3	2.61
Ssc.18549.1.S1_at	AYS89691.1	C1Q and collagen domain containing adiponectin	ADIPOQ	3.18
Ssc.11096.1.S1_at	NM_213938.1	3-oxoadic Co transferase 1	OXCT1	2.59
Ssc.4021.1.S1_at	BG608754	1-acylglycerol-3-phosphate O-acyltransferase 1	SBAB-649D6.6	2.24
Adipose metabolism related genes (Jinhua-down)				
Ssc.4292.1.S1_at	BF193243	similar to Peroxisomal biogenesis factor 19	LOC100154884	−2.94
Ssc.8799.1.A1_at	AJ658284	Similar to Apolipoprotein O-like	LOC100153260	−3.11
Ssc.1013.1.A1_at	BIII99912	pyruvate dehydrogenase kinase, isozyme 4	PDK4	−3.65
Ssc.8139.1.S1_at	CB475937	Phytanoyl-CoA 2-hydroxylase	PHYH	−2.12
Ssc.2143.1.A1_s_at	CF789622	phosphoglycerate dehydrogenase	CH242-38B5.2	−2.95
Ssc.1942.1.S1_at	CN166665	lipin 1	LPIN1	−3.12
Ssc.9365.1.S1_at	NM_213883.1	insulin-like growth factor 2	IGF2	−2.65
Ssc.1858.1.S1_at	CN155220	beta glucuronidase	GUSB	−2.42
Ssc.1326.1.S1_at	BX924410	eukaryotic translation initiation factor 4E binding protein 1	EIF4EBP1	−2.90
Ssc.217.1.S1_at	NM_214060.1	esterase D	ESD	−2.39
Muscle development related genes (Jinhua-up)				
Ssc.1025.1.A1_at	BI400362	phosphodiesterase 4B, CAMP-specific	PDE4B	3.72
Ssc.0906.1.S1_at	BF075680	Mdfic family inhibitor domain containing	MDFIC	2.13
Ssc.9984.1.A1_at	BIII99508	Kruppel-like factor 4	KLF4	2.09
Ssc.657.1.A1_at	NM_214214.1	chemokine (C-C motif) ligand 2	CCL2	3.78
Ssc.1901.1.A1_at	CO939491	cardiac muscle alpha actin 1	ACTC1	2.52
Ssc.9013.1.S1_at	NM_213878.1	calponin 1, basic, smooth muscle	CNN1	2.82
Muscle development related genes (Jinhua-down)				
Ssc.12900.1.A1_at	BI404128	similar to Peripheral plasma membrane protein CASK	LOC100153146	−2.32
Ssc.1032.1.A1_at	BI400288	similar to myosin regulatory light chain interacting protein	LOC100155795	−2.12
Ssc.21763.1.A1_at	CK456888	gamma Sarcoglycan	SGC	−4.34
Ssc.715.1.S1_at	NM_214236.1	myoglobin	MB	−2.78
Ssc.16626.1.S1_at	AY188502.1	myogenic factor 6	MEF6	−2.03
Ssc.73.1.S1_at	NM_214014.1	forkhead box O1	FOXO1	−2.06
Ssc.7146.1.A1_at	BII82779	ATP-binding cassette, sub-family A, member 1	ABCA1	−3.57
Ssc.3715.3.A1_at	CA778869	Solute carrier family 7	SLC7A7	−2.19

doi:10.1371/journal.pone.0053181.t004
Adipose Deposition Related Genes are Differentially Activated in Jinhua and Landrace Pigs

A high IMF ratio is considered to be the major factor that contributes to the flavor of Jinhua meat. We noted that the IMF ratio in Jinhua pigs (2.25) was ~76% higher than that in Landrace pigs (1.28%) at d90 (Figure 2B), suggesting that, in addition to muscle development, IMF development program in Jinhua pigs must be activated at this time-point. We analyzed the differentially expressed genes in the two breeds at d30, d90 and d150 to elucidate the relationship between differential gene expression patterns and phenotypic differences in their longissimus dorsi muscles. Table 4, Table 5, and Table 6 (for pigs at d30, d90 and d150, respectively) listed the representative differentially expressed genes known to be related to adipose deposition and muscle development based on the OMIM database of National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/omim/) and relevant publications that described their biological function.

We first examined the genes related to adipose deposition. At d30, genes related to adipose deposition were clearly more active in Jinhua than in Landrace pigs (Jinhua-up genes) (Table 4). These include stearoyl-CoA desaturase (NM_213781.1), acetyl-Coenzyme A acyltransferase 1 (CK453595), lipoprotein lipase (BF712908) [33–35], hormone-sensitive lipase (AY686758.1) [36–38], fatty acid synthase (CN166778) [39–41], fatty acid binding protein 3 (CB471223) [42–44], C1Q and collagen domain containing adiponectin (AY589691.1) [45] and 1-acylglycerol-3-phosphate O-acyltransferase 1 (BG668754) etc. At d90 and d150, more adipose deposition-related genes were classified as Jinhua-up genes, including cavelolin 2 (BF191227) [46–49], C-4 to C-12 straight chain acyl-Coenzyme A dehydrogenase (NM_214039.1) [49,50], lipoprotein lipase (AY666760.1) and 3-oxoacid CoA transferase 1 (NM_213938.1) etc at d90 (Table 5), and solute carrier family 27 member 4 (fatty acid transporter) (CN156506), nitrilase 1 (BX672917) [52], ribosomal protein L32 (NM_001001636.1), ribosomal protein L23 (AP296004) [53], ribosomal protein L12 (BP172489), Claudin 7 (CK450245) and carboxylesterase (NM_214246.1) [54–56] etc at d150 (Table 6). These expression signatures correlate well with the fact that Jinhua pigs have a high IMF content.

In contrast, the longissimus dorsi muscles of Landrace pigs were found to express genes (Jinhua-down) such as insulin-like growth factor 2 (NM_213803.1) [57,58], insulin-like growth factor binding protein 3

Table 5. List of representative genes for adipogenesis and myogenesis differentially expressed in longissimus dorsi muscle in Jinhua and Landrace (L) pigs at d90.
Probe ID
Adipose metabolism related genes (Jinhua-up)
Ssc.1680.1S1_at
Ssc.6238.2S1_at
Ssc.1013.1A1_at
Ssc.16335.1S1_at
Ssc.9637.1S1_at
Ssc.31165.1S1_at
Ssc.1203.1S1_at
Ssc.142.1S1_at
Ssc.777.1S1_at
Adipose metabolism related genes (Jinhua-down)
Ssc.4292.1S1A1 at
Ssc.6779.1A1_at
Ssc.6498.1A1_at
Ssc.15800.1S1_at
Ssc.9365.2S1_at
Muscle development related genes (Jinhua-up)
Ssc.1664.1A1_at
Ssc.9984.1A1_at
Ssc.235.2S1_at
Ssc.335.1S2_at
Muscle development related genes (Jinhua-down)
Ssc.715.1S1_at
Ssc.11858.1S1_at
Ssc.1901.1A1_at
Ssc.1029.1S1_at
Ssc.7538.1S1_at

doi:10.1371/journal.pone.0053181.t005
Table 6. List of representative genes for adipogenesis and myogenesis differentially expressed in *longissimus dorsi* muscle in Jinhua and Landrace (L) pigs at d150.

Probe ID	Gene ID	Gene Name	Gene Symbol	J/L Z score
Adipose metabolism related (Jinhua-up)				
Scs.2430.1.51_at	CN156586	similar to solute carrier family 27	LOC100155567	2.18
Scs.1294.3.51_at	BX672817	similar to nitrilase 1	LOC100155270	2.07
Scs.11142.9.51_at	AW359358	Similar to carbonic anhydrase IX	LOC100152792	2.19
Scs.3284.1.51_at	NM_001001636.1	ribosomal protein L32	RPL32	2.65
Scs.805.1.51_at	AJ296004	ribosomal protein L23	RPL23	2.57
Scs.939.1.51_at	BP172489	ribosomal protein L12	RPL12	2.24
Scs.13910.1.51_at	BX667169	phenylethanolamine N-methyltransferase	PNMT	2.20
Scs.37.1.51_at	NM_214000.1	haptoglobin	HP	3.51
Scs.18918.1.51_at	CF365816	glutathione peroxidase 2	GPX2	4.59
Scs.204.1.51_at	NM_21423.1	cytochrome P450 3A29	CYP3A29	7.95
Scs.825.1.51_at	CK450245	claudin 7	CLDN7	3.10
Scs.19471.1.51_at	CF365558	Carboxylesterase 1 (monocyte/macrophage serine esterase 1)	CES1	2.25
Scs.760.1.51_at	NM_214246.1	carboxylesterase	CES3	2.92
Scs.16162.1.51_at	NM_214224.1	4-hydroxyphenylpyruvate dioxygenase	HPD	2.12
Adipose metabolism related (Jinhua-down)				
Scs.1008.1.51_at	BF703815	wingless-type MMTV integration site family, member 10B	WNT10B	−2.11
Scs.1049.1.51_at	NM_213781.1	stearoyl-CoA desaturase	SCD	−7.06
Scs.11488.1.51_at	BF919324	similar to Peroxisomal biogenesis factor 19	LOCl00154884	−2.43
Scs.15928.1.51_at	CF753539	insulin-like growth factor binding protein 7	IGFBP7	−2.36
Scs.15950.1.51_at	CN163405	insulin-like growth factor binding protein 6	IGFBP6	−3.32
Scs.16169.1.51_x_at	BP152514	insulin-like growth factor 2	IGF2	−3.74
Scs.16473.1.51_at	NM_214281.1	fumarate hydratase	FH	−2.40
Scs.16671.1.51_at	CB285696	fatty acid binding protein 2, intestinal	FABP2	−2.02
Scs.17914.1.51_at	CK461797	Cellular retinoic acid binding protein 1	LOCl00169745	−3.29
Scs.17991.1.51_at	NM_214438.1	caveolin 1	CAV1	−2.00
Scs.18061.1.51_at	CF178743	calstabin 1	LOC733663	−2.14
Scs.18223.1.51_at	BQ599486	C1q and tumor necrosis factor related protein C1QTNF3	3	−3.46
Scs.18206.2.51_a_at	BF080387	ATP citrate lyase	ACL	−2.34
Scs.18318.1.51_at	BI401144	arachidonate 5-lipoxygenase-activating protein	ALOX5AP	−3.42
Muscle development related (Jinhua-up)				
Scs.13859.1.51_at	CN069994	Unc-45 homolog B	UNC45B	2.47
Scs.2464.1.51_at	BI400766	Stanniocalcin 1	STC1	2.53
Scs.18944.2.51_at	CF180682	similar to ankyrin repeat domain 2 (stretch responsive muscle)	LOCl00155185	3.74
Scs.20874.3.51_at	BP165311	similar to Alpha-centractin (Centrosome-associated actin homolog) (ARP1)	LOCl00156619	2.23
Scs.9781.1.51_at	NM_213910.1	serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 1	SERPINE1	2.19
Scs.16060.1.51_at	AF128841.1	sarcolumenin precursor	CBPG	3.24
Scs.21716.1.51_at	BG834768	protein phosphatase 1 catalytic subunit alpha LOC733611 isoform		2.29
Scs.23978.1.51_at	BF80704	phosphatase and actin regulator 3	CH242-60A21.1	2.50
Scs.27601.1.51_at	AY579430.1	paired box 3	PAX3	2.62
Scs.10199.3.51_at	CF364321	dystrobrevin binding protein 1	DTNBP1	2.23
Insulin-like growth factor binding protein 6 (NM_214099.1) [59,60], insulin-like growth factor binding protein 7 (CN163405) [59], lipin 1 (CF175359) [61], and peroxisomal biogenesis factor 19 (BF193243) from d30 to d150 (Table 4, Table 5, Table 6). These genes are known to be involved in regulating fatty acid oxidation [64–66], suggesting that the longissimus dorsi muscles of Landrace pigs have stronger active in fatty acid oxidation than deposition.

Muscle Development Related Genes are Differentially Expressed in Jinhua and Landrace Pigs

In contrast to the strong expression of genes related to adipose deposition, some key genes related to muscle development, including myogenic factor 6 (AY188502.1), forkhead box O1 (NM_214014.1) [67,68], -sarcoglycan (CK456888) [69,70], myosin regulatory light chain interacting protein (BI400288) and peripheral plasma membrane protein CASK (BI404128) [71,72] were expressed at a lower level in Jinhua (Jinhua-down) than in Landrace pigs at d30 (Table 4). In addition, myogenic differentiation 1 (NM_001002824.1) [73,74] was also expressed at a lower level in Jinhua than in Landrace pigs at d150. In fact, Jinhua pigs appeared to express genes that slow down muscle development at d30 and d90. For example, MyoD family inhibitor domain containing factor (BF075680) [75] and myostatin (AF188635.1) [76,77] were expressed at a higher level in Jinhua than in Landrace pigs at d30 and d90, respectively (Table 4 and Table 5). Consequently, many genes encoding muscle components were expressed at a lower level in Jinhua pigs (Jinhua-down) throughout the developmental stages of d30-d150, including myoglobin (NM_214236.1) [78,79], fibromodulin (CN163410) [80], -capping protein (actin filament) muscle Z-line (BX666372) [81,82], cardiac muscle alpha actin 1 (CO939491), and fibrinogen-like 2 (BI402879) (Table 4, Table 5, Table 6). This observation provides an explanation for the slow growth rate of Jinhua pigs.

Interestingly, some other factors which might be related to adipose deposition or muscle development were also found to be Jinhua-up, such as Kruppel-like factor 4 (BI399508) [83,84], smooth muscle calponin 1 (NM_001002824.1) [85,86], and myogenic differentiation 1 (NM_001002824.1) [87,88].

Table 6. Cont.

Probe ID	Gene ID	Gene Name	Gene Symbol	J/L Z score
Ssc.12333.1.A1_at	CF366197	similar to fibronectin type III domain containing 1	LOCL00154276	-3.22
Ssc.15316.1.S1_at	NM_001002824.1	myogenic differentiation 1	MYOD1	-2.41
Ssc.16494.1.A1_at	CB468993	fibronectin	FN1	-4.14
Ssc.16525.1.S1_at	CN163410	fibromodulin	FMD	-5.33
Ssc.16854.1.A1_at	BI402879	fibrinogen-like 2	FGL2	-2.40
Ssc.1664.2.S1_at	NM_001001771.1	fibrillin 1	FBN1	-3.59

Table 7.

Probe ID	Gene ID	Gene Name	Gene Symbol	J/L Z score
Ssc.16679.1.S1_at	BF079341	similar to Bone morphogenetic protein 1 (BMP-1)	LOC100156461	2.44
Ssc.3139.1.A1_at	CK456262	Regulator of G-protein signaling 2, 24kDa	RGS2	2.63
Ssc.11281.1.A1_at	BI181438	proenkephalin	PENK	2.19
Ssc.396.1.S1_a_at	NM_214119.1	diazepam binding inhibitor (GABA receptor modulator, acyl-Coenzyme A binding protein)	DBI	2.59
Ssc.9707.1.A1_at	BX666261	BTG family, member 2	BTG2	2.32
Ssc.2798.2.S1_at	BX916748	Zinc finger, AN1-type domain 5	ZFAND5	-2.06
Ssc.29341.1.A1_at	BQ399924	similar to Zinc finger protein 22	LOC100156567	-2.10
Ssc.29341.1.A1_at	C0954104	similar to F-box and leucine-rich repeat protein 4	LOC100156082	-2.65
Ssc.23226.1.S1_at	CK452343	similar to E2F-associated phosphoprotein	LOC100153549	-2.14
Ssc.10025.3.S1_at	BI181438	similar to CCAAT/enhancer-binding delta protein	LOC100153946	-2.38
Ssc.22985.1.S1_a_at	CK457158	similar to BTB (POZ) domain containing 1	LOC100154013	-2.55
Ssc.3931.1.S1_at	NM_213946.1	four and a half LIM domains 3	FH3	-2.18
Ssc.4368.3.S1_at	BP463181	F-box protein 32	FBXO32	-4.87

This provides an explanation for the slow growth rate of Jinhua pigs.
(NM_213878.1) and chemokine (C-C motif) ligand 2 (NM_214214.1) at d30 (Table 4), Kruppel-like factor 4 (BI339050), Kruppel-like factor 9 (BG3802637) [85] and calpain 1 (M20160.1) [37, 36] at d90 (Table 5), and ankyrin repeat domain 2 (stretch responsive muscle) (CFI79329) [87], stamatin-like 1 (BP141278) [88, 89] and Unc-45 homolog B (CN069994) [90] at d150 (Table 6). It would be of great interest in future studies to determine how these factors contribute to the differences between Jinhua and Landrace pigs in growth rate and meat composition of the longissimus dorsi muscles.

Transcription Factors and Signaling Molecules are Differentially Expressed in the longissimus dorsi Muscles in Jinhua and Landrace Pigs

Further analysis of the differentially expressed genes led us to identify a number of known transcription factors and signaling molecules that have not previously been reported to function in the development of longissimus dorsi muscles. Among these, we found that (bone morphogenetic protein 1 (BMP-1), regulator of G-protein signaling (RGS2) and proenkephalin (PENK) were up-regulated whereas four and a half LIM domains 3 (FHL3), F-box protein 32 (FBXO32) and a gene similar to CCLAT/enhancer-binding delta protein (LOC100153896) were down-regulated in Jinhua pigs at 30d (Table 7). Transcription regulators SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5 (SMARCA5), a gene similar to T-box 3 protein (LOC1001532741) and growth arrest and DNA-damage-inducible alpha (GADD45A) were up-regulated while selenoprotein X 1 (SEPX1), homoeobox protein A10 (HOXD10/4) and DNA-cytosine-5-methyltransferase 3 alpha (DNMT3A) were down-regulated in Jinhua pigs at d90 (Table 8). Interestingly, we noted that BMP2 and BMP receptor type 1B (BMPR1B) which mediate BMP signaling were up-regulated while secreted frizzled-related protein 4 (SFRP4) and dickkopf homolog 3 (DKK3) which mediate Wnt signaling were down-regulated at d150 (Table 9), suggesting that key developmental signaling pathways are differentially mobilized in Jinhua and Landrace pigs. It will be of our great interest in the future to study how these transcription factors and signaling molecules control/regulate the distinct developmental events in Jinhua and Landrace pigs.

pFLJ Encodes a Novel Protein and is Highly Expressed in the longissimus dorsi Muscle of Jinhua Pigs at d90

The microarray data allowed us to search for novel genes involved in the adipogenesis process in muscles. We noted that one unknown gene corresponding to an expressed sequence tag (EST) with accession number BI184304 was expressed at a much higher level in Jinhua than in Landrace at d90. We cloned the full length cDNA corresponding to BI184304 through 5’- and 3’-rapid amplification of cDNA ends (RACE; data not shown) and found that this gene encodes a previously uncharacterized protein named FLJ in humans [91]. A database search revealed that FLJ is highly conserved among different species and pig FLJ (pFLJ) shares 93%, 83%, 92% and 92% homology with human, mouse, chimpanzee and rhesus monkey FLJ, respectively (Figure 4A).

qPCR was performed to examine the expression of pFLJ in different organs/tissues in Jinhua pigs. Our results showed that pFLJ is expressed at high levels in the brain, kidney, longissimus dorsi muscle and subcutaneous fatty tissue (SF) but at a much lower level in the heart, liver, spleen and lung, demonstrating that pFLJ is differentially expressed in pigs (Figure 4B). We then examined the expression of pFLJ in the longissimus dorsi muscles in Jinhua pigs at d30, d60, d90 and d120. Our results showed that the transcript levels of pFLJ sharply increased from d30 to d90, peaked at d90 and then decreased to a lower level at d120 (Figure 4C), thus pFLJ exhibits a dynamic expression pattern during skeletal muscle development.

Table 8. List of genes encoding transcription factors and signaling molecules differentially expressed in longissimus dorsi muscle in Jinhua and Landrace pigs at d90.

Probe ID	Gene ID	Gene Name	J/L Z score
Regulatory factors (Jinhua- up)			
Ssc.1091.1.A1_at	CK464481	TPS3KR binding protein	2.02
Ssc.1287.1.S1_at	CB287966	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5	2.68
Ssc.1913.1.A1_at	CN163609	slowmo homolog	2.40
Ssc.6578.1.S1_at	BI467852	similar to T-box 3 protein	2.11
Ssc.26039.1.S1_at	BX926726	similar to RAR-related orphan receptor A	2.00
Ssc.1303.1.S1_at	CK463456	membrane-associated ring finger (C3HC4) 6	2.45
Ssc.20913.1.S1_at	CN161066	growth arrest and DNA-damage-inducible, alpha	2.37
Ssc.4368.3.S1_at	BP463181	F-box protein 32	2.34
Regulatory factors (Jinhua- down)			
Ssc.15733.1.S1_at	CF176266	similar to Transmembrane emp24 domain-containing protein 3 precursor (Membrane protein p24B)	0.20
Ssc.1300.2.S1_at	CK455870	similar to Leukocyte elastase inhibitor (LEI) (Serpin B1) (LNPI)	0.22
Ssc.5520.1.S1_at	BJ182015	similar to Chromosome 9 open reading frame 16	0.22
Ssc.101.1.A1_at	NM_214023.1	secreted phosphoprotein 1	0.26
Ssc.26254.1.S1_at	BX926970	Homeobox protein A10	0.27
Ssc.1704.1.S1_at	BX915676	alpha DNA (cytosine-5-) -methyltransferase 3	0.05

doi:10.1371/journal.pone.0053181.t008
pFLJ is a Positive Regulator of Fat Deposition in Intramuscular Adipocytes

Because its expression levels and its dynamic expression pattern in the longissimus dorsi muscle differ between Jinhua and Landrace pigs, we wondered whether pFLJ might be involved in the process of adipogenesis. To address this question, we first established a protocol to culture intramuscular adipocyte precursor cells in vitro. These cells could be successfully induced to differentiate into adipocytes at 4 days, as judged easily by Oil Red staining (data not shown). qPCR revealed that pFLJ was expressed at a higher level in the differentiated adipocytes (data not shown). SR141716 (rimonabant, an antagonist of cannabinoid receptor 1 of mammals and commonly used as an inhibitor for fat deposition) was added in the differentiated adipocytes (data not shown). SR141716 significantly down-regulated the transcript levels of pFLJ (Figure 5A) and fat contents were determined at 24- and 48-hour after treatment, respectively. Our data showed that SR141716 significantly down-regulated the transcript levels of pFLJ (Figure 5A) and fat deposition (Figure 5B) 48 hours after treatment.

The above data suggest a probable role of pFLJ in fat deposition. To test this supposition, three siRNAs (fs1, fs2, fs3) were designed to targets the pFLJ transcript specifically. qPCR showed that these three siRNAs efficiently knocked down the transcript levels of pFLJ in cultured intramuscular adipocytes (Figure 6A), with fs1 showing the strongest effect at 36 hours after treatment (Figure 6B). These cultured cells were treated with pFLJ siRNA fs1 and control siRNA NS and the contents of total triglyceride (fat) in the treated cells and free glycerol in the culture medium 36 hours after treatment were measured. We found that the total triglyceride level was significantly down-regulated (Figure 6D), which in turn resulted in an elevation in free glycerol levels in the medium (Figure 6E). We then examined the transcript levels of fatty acid synthesis (FAS), acetyl-CoA carboxylase (ACC), adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) in the siRNA treated cells. FAS and ACC encode two key enzymes for the synthesis of fat while ATGL and HSL gene products are responsible for the hydrolysis of fat. We found that transcript levels of all four genes were significantly down-regulated (Figure 6C). We therefore concluded that pFLJ is a positive regulator of fat deposition in cultured intramuscular adipocytes, probably by regulating the expression of genes that are essential for fat biosynthesis.

Conclusion

In summary, our results revealed that genes that regulate adipogenesis and myogenesis are differentially expressed in Jinhua and Landrace pigs, with Jinhua pigs expressing higher levels of adipogenesis and myogenesis genes. More importantly, from the microarray data, a novel gene, pFLJ, was identified as a positive factor in the regulation of fat deposition in intramuscular adipocytes. pFLJ exhibited dynamic spatial and temporal expression patterns in Jinhua pigs, with high expression in the muscle at d90. Down-regulation of pFLJ by either drug treatment or siRNA-mediated gene knockdown reduced fat deposition concomitantly with the down-regulation of genes responsible for fat biosynthesis. This

Table 9. List of genes encoding transcription factors and signaling molecules differentially expressed in longissimus dorsi muscle in Jinhua and Landrace pigs at d90.

Probe ID	Gene ID	Gene Name	Gene Symbol	J/L Z score
Transcriptors (Jinhua - up)				
Ssc.810.1.S1_at	AY550058.1	scavenger receptor class B member 2	Scarb2	2.52
Ssc.11352.1.A1_at	BI185713	karyopherin alpha 7 (importin alpha 8)	KPNAt7	2.35
Ssc.15865.1.A1_at	AY101066.2	karyopherin alpha 3 (importin alpha 4)	KPNAt3	2.49
Ssc.20913.1.S1_at	CN161066	growth arrest and DNA-damage-inducible, alpha	GADD45A	3.07
Ssc.66.1.S3_at	CO950299	bone morphogenetic protein receptor, type IB	BMP1 RB	2.10
Ssc.4190.1.S1_at	CA779219	bone morphogenetic protein 2	BMP2	2.19
Transcriptors (Jinhua - down)				
Ssc.10160.1.A1_at	BG609515	transcription factor AP-2 gamma (activating enhancer binding protein 2 gamma)	CH242-255C19.1	-2.44
Ssc.1020.1.S1_at	AJ583828.1	toll-like receptor 1	TLR1	-2.04
Ssc.10245.2.A1_a_at	CN163698	tissue factor pathway inhibitor	LOC100155066	-2.57
Ssc.10822.1.S1_at	CK455045	similar to tumor suppressor candidate 3	LOC100156093	-2.68
Ssc.11131.1.S1_at	C7F95993	similar to Sushi repeat-containing protein SRPX	LOC100156108	-3.67
Ssc.11310.2.A1_at	BG600663	similar to pleckstrin 2	LOC100154251	-2.19
Ssc.11559.2.A1_at	CN032097	similar to PDZ and LIM domain 2	LOC100152859	-2.14
Ssc.11618.2.S1_at	BE235724	similar to neunin	LOC100154738	-6.44
Ssc.11862.1.A1_at	BP109598	similar to KLC4 protein	LOC100157157	-2.37
Ssc.12963.1.S2_at	CK457158	similar to BTB (POZ) domain containing 1	LOC100154013	-2.50
Ssc.13079.2.S1_at	CB286263	similar to Baiap2l2 protein	LOC100154063	-2.15
Ssc.140.1.S1_at	BG382598	secreted frizzled-related protein 4	SFRP4	-3.55
Ssc.1714.1.S1_at	CD949346	dickkopf homolog 3	DKK3	-2.15
Ssc.18231.2.S1_at	BI399410	AXL receptor tyrosine kinase	AXL	-2.78
Ssc.1850.1.A1_at	CO938780	angiopoietin-like 2	ANGPTL2	-3.22

Table: List of genes encoding transcription factors and signaling molecules differentially expressed in longissimus dorsi muscle in Jinhua and Landrace pigs at d90.

The above data suggest a probable role of pFLJ in fat deposition. To test this supposition, three siRNAs (fs1, fs2, fs3) were designed to targets the pFLJ transcript specifically. qPCR showed that these three siRNAs efficiently knocked down the transcript levels of pFLJ in cultured intramuscular adipocytes (Figure 6A), with fs1 showing the strongest effect at 36 hours after treatment (Figure 6B). These cultured cells were treated with pFLJ siRNA fs1 and control siRNA NS and the contents of total triglyceride (fat) in the treated cells and free glycerol in the culture medium 36 hours after treatment were measured. We found that the total triglyceride level was significantly down-regulated (Figure 6D), which in turn resulted in an elevation in free glycerol levels in the medium (Figure 6E). We then examined the transcript levels of fatty acid synthesis (FAS), acetyl-CoA carboxylase (ACC), adipose triglyceride lipase (ATGL) and hormone sensitive lipase (HSL) in the siRNA treated cells. FAS and ACC encode two key enzymes for the synthesis of fat while ATGL and HSL gene products are responsible for the hydrolysis of fat. We found that transcript levels of all four genes were significantly down-regulated (Figure 6C). We therefore concluded that pFLJ is a positive regulator of fat deposition in cultured intramuscular adipocytes, probably by regulating the expression of genes that are essential for fat biosynthesis.

Conclusion

In summary, our results revealed that genes that regulate adipogenesis and myogenesis are differentially expressed in Jinhua and Landrace pigs, with Jinhua pigs expressing higher levels of adipogenesis genes and Landrace expressing higher levels of myogenesis genes. More importantly, from the microarray data, a novel gene, pFLJ, was identified as a positive factor in the regulation of fat deposition in intramuscular adipocytes. pFLJ exhibited dynamic spatial and temporal expression patterns in Jinhua pigs, with high expression in the muscle at d90. Down-regulation of pFLJ by either drug treatment or siRNA-mediated gene knockdown reduced fat deposition concomitantly with the down-regulation of genes responsible for fat biosynthesis. This
observation strongly suggests that up-regulation of pFLJ together with other factors (e.g. myostatin, a myogenesis inhibitory gene) in the longissimus dorsi muscles of Jinhua pigs might play a key role in determining their high rate of IMF. Future efforts will be needed to determine the functional mechanism of pFLJ in this process. Therefore, transcriptomes for adipogenesis and myogenesis in the longissimus dorsi muscles are mobilized differentially in Jinhua and Landrace pig to produce meats with different ratios of muscle fiber to intracellular fat.

Materials and Methods

Ethics Statement

This study did not involve non-human primates. All experiments described in the study were performed in full accordance with the guidelines for animal experiments released by the National Institute of Animal Health with a permit (License No: GB/T 14925-94).

Animals

Sixty six castrated Jinhua (Jinhua II breed) and Landrace (Danish breed) pigs were raised and had ad libitum access to commercial diets (nutrients levels according to the NRC) under similar conditions during the whole experimental period. Nine individual pigs from each breed at each stages (d30, d90 and d150) and three individuals per breed at each stages (d60 and d120) were slaughtered. The longissimus dorsi muscles at the last rib were collected after exsanguinations and were subsequently divided into four portions for use in the measurement of intramuscular fat, determination of meat color, determination of pH values, and isolation of total RNA. For RNA extraction, the excised samples were directly frozen in liquid nitrogen and stored at −80°C until use.

Determination of Meat Quality

At each stage (d30, d60, d90, d120 and d150), experimental pigs were individually weighed and average bodyweights of all pigs of each breed at each stage were obtained. The BFT value was averaged from the fat thickness values measured on the first rib, last rib and the last lumbar vertebrae for each individual pig using a sliding caliper (Messschieber 0–150 mm mit Momentfeststellung Nonius 1/20 mm, Wollschlaeger). The FMR or LMR were calculated as the ratio of weight of fat meat or lean meat to the
Figure 5. SR141716 down-regulates pFJ expression and inhibits fat deposition in cultured intramuscular adipocytes. (A and B) qPCR analysis of pFJ expression (A) and measurement of total triglyceride (B) in cultured adipocytes 24 and 48 hours after SR141716 treatment. The qPCR values are shown as expression fold changes after normalization against the control 18s rRNA. Data are presented as means ± standard error. Gene ID was as shown. Cells were stained with Oil-Red O to determine lipid accumulation (total triglyceride), *: P < 0.05, **: P < 0.01. doi:10.1371/journal.pone.0053181.g005

Microarray Hybridization
Total RNA from a total of 34 pigs at d30, d90 and d150 of age stage (nine pigs for each breed at each stage) was extracted. RNA samples from three pigs of the same breed at the same age stage were pooled as one sample for one gene-chip hybridization. Microarray data from three samples for each breed at each stage were obtained for data analysis. A total of 18 microarrays were used in the experiment, corresponding to the 18 pooled RNA samples from longissimus dorsi muscles. The GeneChip Porcine Genome Array (Affymetrix, Santa Clara, CA) contains 23937 probes sets interrogating 23256 transcripts, representing 20201 genes. RNA labeling and Affymetrix Gene Chip microarray hybridization were conducted according to the Affymetrix Expression Analysis Technical Manual. Array scanning and data extraction were carried out following procedures recommended by Affymetrix.

Microarray Data Analysis
To quantify the intensities from the same probe sets on different arrays, these were scaled so that the median intensities for all arrays were the same. We then calculated the average intensity for each probe in all replicate arrays and this mean intensity was used for downstream analysis. When comparing gene expression between different breeds at the same time-point and in the same tissue, Lowess intensity dependent normalization was performed for each array pair. Z-scores were then calculated as described previously [93] and Z-scores ≥2 or ≤-2 was used as the cut-off value for selection of up- or down-regulated genes. Hierarchical and K-means clustering of differentially expressed genes was done using Cluster 2.10 and viewed in TreeView 1.50 from Eisen Lab (http://rana.lbl.gov/EisenSoftware.htm).

qPCR
Primer sequences, melting temperatures and expected product sizes for the genes analyzed are shown in Additional file 1 (Table S1). The sizes of the PCR products were confirmed using agarose gel electrophoresis (1.8%). The specificity of the PCR products was judged based on a single peak observed in dissociation/melting curves. All RNA samples prepared for gene-chip hybridization were also used in qPCR. qPCR was performed using SYBR green I nucleic acid dye on an BIO-RAD CFX96 Real-Time PCR System (BIO-RAD, Foster City, CA, USA) to quantify the target genes expression levels. Data are expressed as the ratio between expression of the target gene and that of the housekeeping gene 18s rRNA. All qPCR reactions followed this thermal profile: after an initial denaturation at 94°C for 2 minutes, amplification was performed with 40 cycles of 94°C for 30s and annealing for 40 s at temperatures specific for each target genes. For each sample, reactions were set up in triplicate to ensure the reproducibility of the results. At the end of the PCR run, melting curves were generated and analyzed to confirm non-specific amplification, and the mean value of each triplicate was used for further calculations. To calculate the mRNA expression of selective genes, the ΔΔCt values was used for detection of their mRNA.
related to internal control 18s rRNA expression using the
2^−ΔΔCt method [94].

Cloning of the pFLJ Gene

To obtain the full-length cDNA sequence of pFLJ, RACE
technology was carried out to clone the 5′-ends of pFLJ by
using the SMARTTM RACE cDNA Amplification Kit and
GeneRacer Kit (Invitrogen Biotechnology Co. Ltd., Shanghai,
China). Briefly, for 5′-RACE, 5′ phosphates and the 5′ cap
structure were removed from the total RNA from porcine
tissues, the GeneRacer RNA Oligo sequence (5′-CGACUG-
GAGCAGGGAGCAUGACAGUAAAGAGAUAGA-
AA-3′) to the 5′ end of the prepared mRNA was ligated and
the 5′ RACE cDNA template was then obtained by reverse-
transcribing the ligated mRNA according to the manufacturer's
instructions. Four steps were required to obtain the full length
of pFLJ36031 cDNA. The first reaction of PCR was performed
using a combination of sm-FLG-R1 (5′-GCCACCAATGAC-
CAAAAGCATTGATGAA-3′) and 10*UPM using the 5′
RACE cDNA template. The PCR condition was as follows:
94°C for 2 min, 5 cycles of 94°C for 30 s and 72°C for 1.5 min, 5
cycles of 94°C for 30 s and 72°C for 1.5 min, 25

Figure 6. pFLJ functions as a positive regulator of fat deposition in intramuscular adipocytes. (A) Cell images to verify transfection
efficiency. Cells were transfected with pSilencer TM 4.1-CMV neo plasmids carrying the sequences fs1, fs2 and fs3. Transfection efficiency was
assessed by expression of the reporter gene EGFP (green color) harbored by the plasmid. (B) qPCR analysis of pFLJ expression in cultured adipocytes
24 hours after siRNA treatment. fs1, fs2 and fs3: pFLJ specific siRNAs; ns: negative control siRNA. (C) qPCR analysis of FAS, ACC, ATGL and HSL in
cultured adipocytes treated with fs1 siRNA. The qPCR values are shown as expression fold changes after normalization against the control 18s rRNA.
Data are presented as means ± standard error. *: P<0.05, **: P<0.01 (C and D) Measurement of total triglyceride (as before) in the cultured
adipocytes or free glycerol (the free glycerol release was normalized to total cellular protein and expressed relative to the control group) in the
culture medium 36 hours after treatment with fs1 siRNA. ab means every two columns with different letters are significantly different (P<0.05).
doi:10.1371/journal.pone.0053181.g006
cycles of 94°C for 30 s, 65°C for 30 s and 68°C 3.0 min. Then the product was further identified using another primer (sm-
FLG-R2:5’-GCCCTGATCAACGATTTCCTGTTGCTCTCA-3’) that is located on the downstream of sm-FLG-R1. The PCR condition used was: 94°C 2 min, 30 cycles: 94°C 30 s 66°C 30 s and 68°C 1.5 min. The gene-specific primer sm-FLG-R1 was designed based on the FLJ EST available in GenBank. The resulting PCR product obtained from this step was isolated, cloned, and sequenced. The three subsequent 5’-RACE products were gel-purified, cloned, and sequenced. By ligation of the four overlapping cDNA fragments, full-length pFLJ cDNA was obtained. Primer pairs used for qPCR were: sense: 5’-aactgtcgctggccgacagca-3’; antisense: 5’-age ctc acc aac ggt tcc ag-3’.

siRNAs Targeting pFLJ
Three potential siRNA target sites in pFLJ (FS1:5’-aactgtcgctggccgacagca-3’; FS2:5’-aactgtcgctggccgacagca-3’. FS3:5’-aactgtcgctggccgacagca-3’) were determined using the Qiagen siRNA design programme, and the sequence was BLAST-confirmed for specificity. Oligonucleotides to produce plasmid-based siRNA were cloned into pSilencerTM 4.1-CMV neo plasmid (Ambion) and all constructs were confirmed by sequencing. For RNA interference experiments, porcine intramuscular adipocytes were transfected with empty plasmid (wt), negative control siRNA (ns), or pFLJ-siRNA (fs1, fs2 and fs3). Transfections were performed using LipofectamineTM 2000 (Invitrogen Life Technologies) according to the manufacturer’s protocol. A final concentration of 2000 ng/ml siRNA was used to treat the cultured intramuscular adipocytes. Negative control siRNA (Neg-siRNA, ns, 5’-aactgtcgctggccgacagca-3’) was supplied by Ambion.

In vitro Culture of Intramuscular Adipocyte Precursor Cells and Induction of Adipocytes
For in vitro culture of intramuscular adipocyte precursor cells, D (Duroc) ×L (Landrace) ×Y (Yorkshire) pigs from d5 to d7 of age were overdosed with sodium thiopental and exsanguinated. The longissimus dorsi muscle was removed and porcine pre-adipocytes were prepared by previously published methods [95,96]. Briefly, longissimus dorsi muscle tissue was cut with scissors into approximately 1 mm sections under sterile condition and digested with collagenase type II for 45 hours, at 37°C in a 120rpm shaking water bath. The digested material collected was first centrifuged at100 g for1 min, and the resulting floating adipocytes were collected in Dulbecco’s Modified Eagle Medium (DMEM) at 37°C. The number of intramuscular pre-adipocytes isolated in suspension was determined as described previously. The pre-adipocytes were seeded on six-well (35-mm) tissue culture plates in complete media (DMEM/F12+10% fetal bovine serum [FBS]+100 Upenicillin+100 Ustreptomycin) and cultured at 37°C under a humidified atmosphere of 95% air and 5% carbon dioxide according to previous study [42]. Intramuscular preadipocytes were induced to differentiate into intramuscular adipocytes when the cells were completely fused and were then treated with a final concentration of 0.5 mmol/L 3-isobutyl-1-methylxanthine (IBMX), 1μmol/L dexamethasone (DEX) and 1.7μmol/L insulin of complete medium. The culture medium was changed to complete medium containing a final concentration of 10 mg/L insulin after 48 hours.

Statistical Analysis
All experimental data of comparisons between two pig breeds were analyzed using one-way analysis of variance (ANOVA, Statistical Product and Service Solutions (SPSS) 16.0). Data are represented as means±standard error; *P<0.05 and **P<0.01 displayed here indicate statistically significant difference.

Supporting Information
Table S1 177 genes upregulated in longissium dorsi muscles of jinhua pig at d90 compared with that at d30 age stage (Jinhua-d90-LD-up vs d30).

Table S2 242 genes downregulated in longissium dorsi muscles of jinhua pig at d90 compared with that at d30 age stage (Jinhua-d90-LD-down vs d30).

Table S3 101 genes upregulated in longissium dorsi muscles of jinhua pig at d150 compared with that at d30 age stage (Jinhua-d150-LD-up vs d30).

Table S4 389 genes downregulated in longissium dorsi muscles of jinhua pig at d150 compared with that at d30 age stage (Jinhua-d150-LD-down vs d30).

Table S5 106 genes upregulated in longissium dorsi muscles of Landrace at d90 compared with that at d30 age stage (Landrace-d90-LD-up vs d30).

Table S6 231 genes downregulated in longissium dorsi muscles of Landrace at d90 compared with that at d30 age stage (Landrace-d90-LD-down vs d30).

Table S7 93 genes upregulated in longissium dorsi muscles of Landrace at d150 compared with that at d30 age stage (Landrace-d150-LD-up vs d30).

Table S8 383 genes downregulated in longissium dorsi muscles of Landrace at d150 compared with that at d30 age stage (Landrace-d150-LD-down vs d30).

Table S9 176 genes upregulated in longissium dorsi muscles of Jinhua pig versus Landrace at d30 of age stage (Jinhua-d30-LD-up).

Table S10 276 genes upregulated in longissium dorsi muscles of Jinhua pig versus Landrace at d90 of age stage (Jinhua-d90-LD-up).

Table S11 525 genes upregulated in longissium dorsi muscles of Jinhua pig versus Landrace at d150 of age stage (Jinhua-d150-LD-up).

Table S12 199 genes downregulated in longissium dorsi muscles of Jinhua pig versus Landrace at d30 of age stage (Jinhua-d30-LD-down).

Table S13 242 genes downregulated in longissium dorsi muscles of Jinhua pig versus Landrace at d150 of age stage (Jinhua-d150-LD-down).
Table S13 155 genes downregulated in longissimus dorsi muscles of Jinhua pig versus Landrace at d90 of age stage (Jinhua-d90-LD-down). (XLS)

Table S14 670 genes downregulated in longissimus dorsi muscles of Jinhua pig versus Landrace at d150 of age stage (Jinhua-d150-LD-down). (XLS)

Table S15 Primer sequences. (XLS)

Author Contributions

Conceived and designed the experiments: JRP ZYW. Performed the experiments: TW ZQY IJL. Analyzed the data: ZHZ JRP ZYW JC. Contributed reagents/materials/analysis tools: ZHZ. Wrote the paper: JRP TW ZHZ YZW.

References

1. Miao ZG, Wang LJ, Xu ZR, Huang JF, Wang YR (2009) Developmental changes of carcass composition, meat quality and organs in the Jinghu pig and Landrace. Animal 3: 463–473.
2. Guo J, Shan T, Wu T, Zhu LN, Ren Y, et al. (2011) Comparisons of different muscle metabolites between muscle and adipose tissue fibers types in Jinhua and Landrace pigs. Journal of Animal Science 89: 185–191.
3. Dai FW, Feng DY, Cao QY, Ye H, Zhang CM, et al. (2009) Developmental differences in carcass, meat quality and muscle fibre characteristics between the microwave and conventional pig. S Afr J Anim Sci 39: 267–273.
4. Cameron ND, Warris PD, Porter PJ, Enser MB (1990) Comparison of Duroc and British Landrace Pigs for Meat and Eating Quality. Meat Sci 27: 227–247.
5. Wood JD, Kempster AJ, David PJ, Bovey M (1987) Observations on Carcass and Meat Quality in Duroc, Landrace and Duroc X Landrace Pigs. Anim Prod 44: 488–488.
6. Matsakas A, Patel K (2009) Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli. Histol Histopathol 24: 611–629.
7. Duggan DJ, Bittner M, Chen YD, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21: 10–14.
8. Guo W, Wang SH, Cao HJ, Xu K, Zhang J, et al. (2008) Gene microarray analysis for porcine adipose tissue: Comparison of gene expression between Chinese and Chinese white Asian Austral. J Anim Genet 39: 185–181.
9. Panier L, Mullem AM, Hamill RM, Stapleton PC,weeney T (2010) Association analysis of single nucleotide polymorphisms in DGAT1, TG and FABP4 genes and intramuscular fat in crossbred Bos taurus cattle. Meat Sci 85: 515–518.
10. Raj S, Skiba G, Wremenko D, Fandrei-Jensen H, Migdal W, et al. (2010) The relationship between the chemical composition of the carcass and the fatty acid composition of intramuscular fat and backfat of several pig breeds slaughtered at different weights. Meat Sci 86: 324–330.
11. Jiang YH, Shang HW, Xu H, Ding XF, Zhao LY, et al. (2010) Detection and genotyping of porcine circovirus in naturally infected pigs by oligo-microarray. Res Vet Sci 89: 133–139.
12. Battai G, Phillips M, Kailasapathy K (2010) Comparison of functional assay and microarray analysis for determination of Lactobacillus acidophilus LFA10 induced gut immune responses in mice. Food Res Int 43: 856–861.
13. Wei L, Liang H, Dan L (2010) Microarray analysis of differentially expressed mRNA profiles induced by UVB irradiated in mouse skin. J Invest Dermatol 130: S76–S76.
14. Serre C, Plaza C, Lebleu A, Plantivaux A, Meyrignac C, et al. (2010) Microarray enabled expression analysis of microRNA profiles induced by UVB irradiated in mice skin. J Invest Dermatol 130: S132–S132.
15. Grove KL, Fried SK, Enser MB, Bovey M (1987) Observations on Carcass and Meat Quality in Duroc, Landrace and Duroc X Landrace Pigs. Anim Prod 44: 488–488.
16. Mostyn A, Williams PJ, Litten JC, Perkins KS, Corson AM, et al. (2007) The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J Appl Genetics 47: 39–48.
45. Ma J, Mollsten A, Fallahmar H, Brianik M, Dalhquist G et al. (2007) Genetic association analysis of the adiponectin polymorphisms in type 1 diabetes with and without diabetic nephropathy. J Diabetes Complicat 21: 28–33.

46. Gomez-Ruiz A, Milagro FI, Cappiello J, Martinez JA, Miguel C (2010) Cavosin Expression and Activation in Retinoporeal and Subcutaneous Adipocytes. Influence of a High-Fat Diet. J Cell Physiol 225: 206–213.

47. Lopera IP, Milagro FI, Marti A, Moreno-Aliaga MJ, Martinez JA, et al. (2005) High-fat feeding period affects gene expression in rat white adipose tissue. Mol Cell Biochem 275: 139–155.

48. Daugher G, Donne N, Klein C, Ferre P, Dugul I (2003) HLD-mediated cholesteroler uptake and targeting to lipid droplets in adipocytes. J Lipid Res 44: 1811–1820.

49. Wang D, Wang N, Li N, Li H (2009) Identification of differentially expressed proteins in adipose tissue of differently selected broilers. Poultry Sci 88: 2283–2292.

50. Schmitt B, Flick M, Deutsch M, Kreis R, Bosch C, et al. (2003) Transcriptional adaptations of lipid metabolism in skeletal muscle of endurance-trained athletes. Physiol Genomics 15: 148–157.

51. Cotter DG, d’Avignon DA, Wenz AE, Weber ML, Crawford PA (2011) Obligate Role for Ketone Body Oxidation in Neonatal Metabolic Homeostasis. J Biol Chem 286: 9692–9690.

52. Bayer S, Birkemeyer C, Ballerschmidt M (2011) A nitrite from a metagenomic library acts regioselectively on aliphatich dinitrates. Appl Microbiol Biot 89: 91–98.

53. Yang HJ, Zhou ZH, Zhang HR, Chen M, Li JY, et al. (2010) Shotgun proteomic analysis of the fat body during metamorphosis of domesticated silkworm (Bombyx mori). Amino Acids 38: 1333–1342.

54. Sonti KG, Lehnard R, Metnikov P, O’Donnell P, Smirch M, et al. (2004) Carboxyesterase 3 (EC 3.1.1.1) is a major adipocyte lipase. J Biol Chem 279: 40685–40689.

55. Kaphalia BS, Ansari GAS (2001) Purification and characterization of rat hepatic proteolytic enzyme 20K with adiponectin. FEBS Lett 501: 80–84.

56. Kaphalia BS, Ansari GAS (1997) Purification and characterization of rat hepatic proteolytic enzyme 20K with adiponectin. FEBS Lett 402–408.

57. Antin A, Robertson WM, Tong AKW (2005) The eating quality of Canadian bronze and commercial broiler breast muscle. J Anim Sci 83: 2264–2268.

58. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Ze score transformation. J Mol Diagn 5: 73–81.

59. Soeno Y, Hayakawa K, Ohinata T (1998) Analysis of exogenous beta-aminocaproic acid-labeled actin filamentous structures in cultured muscle cells. Zool Sci 5: 217–222.

60. Am J Hum Genet 69: 387–403.

61. Fortin A, Robertson WM, Tong AKW (2005) The eating quality of Canadian bronze and commercial broiler breast muscle. J Anim Sci 83: 2264–2268.

62. Gardan D, Louveau L, Gondret F (2007) Adipocyte- and heart-type fatty acid binding protein 5 with adiponectin. Int J Obesity 33: 80–88.

63. Barroso E, Rodriguez-Calvo R, Serrano-Marco L, Astudillo AM, Balsinde J, et al. (2010) Gene expression regulation of AMPK Ca2+ signaling by a High-Fat Diet in Liver and Amplifies the Regulation of AMPK Ca2+ signaling during C2C12 myoblast differentiation. Mol Cell Biochem 348: 77–87.

64. Lopez IP, Milagro FI, Marti A, Moreno-Aliaga MJ, Martinez JA, et al. (2003) Transcriptional adaptations of lipid metabolism in skeletal muscle of endurance-trained athletes. Physiol Genomics 15: 148–157.

65. Femia AP, Luceri C, Ballerschmidt M (2011) A nitrite from a metagenomic library acts regioselectively on aliphatich dinitrates. Appl Microbiol Biot 89: 91–98.

66. Lopez IP, Milagro FI, Marti A, Moreno-Aliaga MJ, Martinez JA, et al. (2003) Transcriptional adaptations of lipid metabolism in skeletal muscle of endurance-trained athletes. Physiol Genomics 15: 148–157.

67. Gardan D, Leon P, Goetz C, Rieu E, Milans C, et al. (2010) Myostatin is a specific expression pattern in pig skeletal and extraskelatal muscles during pre- and postnatal growth. Differentiation 76: 168–181.

68. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Ze score transformation. J Mol Diagn 5: 73–81.

69. Lopez IP, Milagro FI, Marti A, Moreno-Aliaga MJ, Martinez JA, et al. (2003) Transcriptional adaptations of lipid metabolism in skeletal muscle of endurance-trained athletes. Physiol Genomics 15: 148–157.

70. Am J Hum Genet 69: 387–403.