Research Article

The Number of Perfect Matchings in Hexagons on the Torus by Pfaffians

Shouliu Wei, Fuliang Lu, and Xiaoling Ke

1College of Mathematics and Data Science (Software College), Minjiang University, Fuzhou, 350108 Fujian, China
2School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, 363000 Fujian, China

Correspondence should be addressed to Fuliang Lu; flgliu@163.com

Received 12 May 2022; Accepted 31 August 2022; Published 21 September 2022

Academic Editor: Xiaogang Liu

Copyright © 2022 Shouliu Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let G be a (molecular) graph. A perfect matching of G is defined as a set of edges which are independent and cover every vertex of G exactly once. In the article, we present the formula on the number of the perfect matchings of two types of hexagons on the torus by Pfaffians.

1. Introduction

A hexagonal system, or benzenoid system [1], or honeycomb lattice, is a finite connected subgraph of the infinite hexagonal lattice without cut vertices or non-hexagonal interior faces. Hansen and Zheng [2] and Gutman et al. [3] considered the problem about the normal components of benzenoid systems, respectively.

A perfect matching of a (molecular) graph G is defined as a set of edges which are independent and cover every vertex of G exactly once. It is also named as Kekulé structure in organic chemistry and closed-packed dimer in statistical physics, respectively. Denote the number of perfect matchings or Kekulé structures for all kinds of benzenoids. Qian et al. [4] discussed the enumeration of Kekulé structures for all kinds of benzenoids. Qian and Zhang presented the number of Kekulé structures for capped armchair nanotubes and capped zigzag nanotubes by transfer matrix method in [15, 16], respectively. Yan et al. [17] further discussed the problem about the perfect matchings for one type of hexagons on a cylinder (cf. Figure 1(a)). Li and Zhang also obtained the number of perfect matchings for two types of hexagons on the cylinder and the Möbius strip in [18] (cf. Figure 1).

Let $G = (V(G), E(G))$ and $H = (V(H), E(H))$ be two given graphs. Let $G \times H$ denote the Cartesian product of G with H, where $V(G \times H) = V(G) \times V(H)$, $E(G \times H) = \{(u_1, u_2), (v_1, v_2)\} \in E(G)$ and $\{u_2, v_2\} \in E(H)$, or $u_2 = v_2$ and $\{u_1, v_1\} \in E(G)$. A hexagonal cylinder, which is denoted by HS, of length $2m$ and breadth n is a graph obtained from the Cartesian product of a $2m$-cycle $(x_1u_1x_2u_2\cdots x_mu_m)$ and an n-path $(1(\cdots n)$ by deleting the set of edges

\[
\{(x_i, 2s+1), (x_i, 2s+2)\} \bigg| 0 \leq s \leq \left[\frac{n-1}{2}\right], 1 \leq i \leq m \bigg\} \cup
\[
\{((u_i, 2s), (u_{i+1}, 2s+1))\} \bigg| 0 \leq s \leq \left[\frac{n-1}{2}\right], 1 \leq i \leq m \bigg\}.
\]

(1)

Let $x_1u_1x_2u_2\cdots x_mu_m$ and $y_1v_1y_2v_2\cdots y_nv_n$ indicate the vertices of two cycles on the upper and lower boundaries of HS, respectively, where x_i corresponds to y_i and u_i corresponds to v_i ($i = 12, \cdots, m$) (cf. Figure 2).

Without loss of generality, suppose further that both u_i and v_i are the vertices of degree 3. The graphs $H_{2m,n,r}$, $0 \leq r \leq \lfloor m/2 \rfloor$ and $i = 12, \cdots, m$, are from HS by adding
all edges x_iy_{i-r}, where $i-r$ is modulo m (cf. Figure 2). Clearly, $H_{2m,n,r}$ has a natural embedding on a torus.

The enumerations of perfect matchings of $H_{2m,n,r}$ are considered by Wu [19] and Klein [20], where Klein gave the formula of the number of perfect matchings of $H_{2m,n,r}$ by transfer matrix method when both n and r are odd or even. In the present article, we consider further the problem involving perfect matchings of $H_{2m,n,r}$ by crossing orientation given by Tesler and the plane model of a graph.

2. Pfaffian Orientation

Let $G = (V(G), E(G))$ be an undirected graph, where $V(G) = \{1, 2, 3, \ldots, 2p\}$ is the vertex set of G. Let each edge $\{i, j\}$ of a graph G have a weight denoted by ω_{ij}. And the weight $\omega_{ij} = 1$ for all edges in each unweighted graph. Suppose that \overrightarrow{G} is an arbitrary orientation of G. If the direction of an edge $\{i, j\}$ in \overrightarrow{G} is from the vertex i to vertex j, then (i, j) denotes the arc of \overrightarrow{G} and the set of all the arcs of it is denoted by $E(\overrightarrow{G})$. Denote the skew adjacency matrix of \overrightarrow{G} by $A(\overrightarrow{G})$. And it is defined as

$$A(\overrightarrow{G}) = (a_{ij})_{2p \times 2p},$$

where

$$a_{ij} = \begin{cases} \omega_{ij}, & \text{if } (i, j) \in E(\overrightarrow{G}) ; \\ -\omega_{ij}, & \text{if } (j, i) \in E(\overrightarrow{G}) ; \\ 0, & \text{otherwise.} \end{cases}$$

(3)

Suppose that $M = \{(j_1, j'_1), \ldots, (j_p, j'_p)\}$ is a perfect matching. Then the signed weight of the perfect matching M is

$$\omega_M = \text{sgn} \begin{pmatrix} 1 & 2 & \cdots & 2p-1 & 2p \\ j_1 & j'_1 & \cdots & j_p & j'_p \end{pmatrix} \cdot a_{j_1j'_1} \cdots a_{j pj'_p},$$

(4)

where

$$\text{sgn} \begin{pmatrix} 1 & 2 & \cdots & 2p-1 & 2p \\ j_1 & j'_1 & \cdots & j_p & j'_p \end{pmatrix} = \begin{cases} 1, & \text{if the permutation is even} ; \\ -1, & \text{if the permutation is odd.} \end{cases}$$

(5)

One can define the Pfaffian of the matrix A as

$$\text{Pf } A = \sum_M \omega_M,$$

(6)

where M is over all perfect matchings of G.

Figure 1: Two types of hexagons.

Figure 2: Plane spanning subgraphs of $H_{2m,n,r}$: (a) n is even and (b) n is odd.
Theorem 1 ([21]). If $A = (a_{ij})_{2p \times 2p}$ is a skew symmetric matrix, then
\[
\det(A) = (\text{Pf } A)^2.
\] (7)

For the perfect matching M, denote its signed weight by ω_M. One can think the sign of ω_M is just the sign of the perfect matching M. For an orientation \vec{G} of a graph, if the signs of its all perfect matchings are the same, then the orientation is a Pfaffian orientation of G. If a graph has a Pfaffian orientation, then the graph is named to be Pfaffian.

Theorem 2 ([16]). Let a graph G be Pfaffian. If \vec{G} is a Pfaffian orientation of G, then
\[
\Phi(G) = |\text{Pf } A(\vec{G})| = \sqrt{\det(A(\vec{G}))}.
\] (8)

Kasteleyn [22] presented the Pfaffian orientations for planar graphs and also interpreted that the perfect matchings of a graph which is embedded on a surface with genus g can be computed as a linear combination of 4^g Pfaffians of the graph. Galluccio and Loebl [23], and Tesler [24] proved Kasteleyn’s conclusion, independently. There are

Figure 3: $H_{2m,n,r}$ embedded on a torus and a corresponding plane model, where n is odd.
some related results about using Pfaffian to enumerate perfect matchings in the references [17, 25–31].

3. Plane Model on $H_{2m,r,n}$

Let P denote a 4-polygon with four sides p_1, p_2, p_1', p_2'. Suppose that G is a graph embedded on a torus. A drawing of a graph G is defined as a plane model of G, in which if all the edges of the graph G could be divided into E_0, E_1, and E_2, and not only the subgraph induced by E_0 is a spanning plane graph. The spanning plane graph is wholly contained inside P, but also the edges in E_1 and E_2 from the sides p_j to p'_j of P do not cross.

Noting that $H_{2m,r,n}$ is a graph which may be embedded on a torus, now we can give a plane model of $H_{2m,r,n}$ by the definition above-mentioned such that the edges of $H_{2m,r,n}$ are separated into E_0, E_1, and E_2. Moreover, the subgraph induced by E_0 is a spanning plane graph. The spanning plane graph is wholly contained inside P, and its edges in E_1 and E_2 from the sides p_j and p'_j of P do not cross (cf. Figure 2). If n is odd, a plane model of $H_{2m,r,n}$ is shown as in Figure 3(b). If n is even, a plane model of $H_{2m,r,n}$ is shown as in Figure 4(b). It is obvious that every edge in E_1 crosses each every in E_2 exactly once. For simplicity, suppose that $1, 2, \ldots, 2mn$ are $2mn$ vertices of $H_{2m,r,n}$ and $E(H_{2m,r,n})$ denote the edge set. Then E_0, E_1 and E_2 are represented as the followings:

Figure 4: $H_{2m,r,n}$ embedded on a torus and a corresponding plane model, where n is even.
(1) If \(n \) is even, then we have
\[
E_1 = \{(2t+1)n+1,2tn\} | t = 1, \ldots, m \}; \\
E_2 = \{(2t+1)n+1,(2m-2t-2)n+2\} | t = 1, \ldots, r \} \\
\cup\{(h,(2m-1)n+h) | h = 1,2,\ldots, n \}; \\
E_0 = E(H_{2m,n,r})/(E_1 \cup E_2). \\
\tag{9}
\]

(2) If \(n \) is even, then we have
\[
E_1 = \{(2t+1)n+1,2tn\} | t = 1, \ldots, m \}; \\
E_2 = \{(2t+1)n+1,(2m-2t-2)n+2\} | t = 1, \ldots, r \} \\
\cup\{(h,(2m-1)n+h) | h = 1,2,\ldots, n \}; \\
E_0 = E(H_{2m,n,r})/(E_1 \cup E_2) \\
\tag{10}
\]

An orientation of a graph embedded on a torus in a plane model is the crossing orientation if it conforms to the rule of cross orientation in reference [24]. For the graph \(G \) which is embedded on torus, let \(X(x_j,x_j) \) be its skew adjacency matrix, with the edges in \(E_0 \) having weight 1 and the edges in \(E_j \) having weight \(x_j \) \((j = 1,2)\). A formula computing the number for perfect matchings in \(G \) was presented by Tesler [24]:
\[
\Phi(G) = \frac{1}{2} \left[Pf X(1,1) + Pf X(-1,1) + Pf X(1,-1) - Pf X(-1,-1) \right] \\
\tag{11}
\]

Theorem 3 ([24]).

(a) A graph may be oriented such that every perfect matching \(M \) has sign
\[
\omega_M = \omega_0(-1)^{\kappa(M)}, \\
\tag{12}
\]
where the constant \(\omega_0 = \pm 1 \) could be explained as the sign of a perfect matching without crossing edges if the edges exist, and \(\kappa(M) \) denotes the number of times edges in \(M \) cross.

(b) An orientation of a graph satisfies (a) if and only if the orientation is a crossing orientation

According to the crossing orientation by Tesler, one crossing orientation of \(H_{2m,n,r} \) where \(n \) is even or \(n \) is odd is indicated in Figures 5 and 6. Figure 5(a) and Figure 5(b) give an orientations of all the edges \(E_0 \cup E_1 \) and \(E_0 \cup E_2 \) when \(n \) is even, respectively. Figures 6(a) and 6(b) give the orientations of the edges \(E_0 \cup E_1 \) and \(E_0 \cup E_2 \) when \(n \) is odd, respectively.

4. The Sign Weights of Perfect Matchings of \(H_{2m,n,r} \)

Let the weight of edge of \(E_0 \) in \(H_{2m,n,r} \) be 1. Suppose that \(x \) and \(y \) are the weight of edge of \(E_1 \) (Referring to Figures 5(a) and 6(a)) and \(E_2 \) (Referring to Figures 5(b) and 6(b)) in \(H_{2m,n,r} \), respectively. Let \(X(x,y) \) \((x,y = \pm 1)\) be the skew adjacency matrix of \(H_{2m,n,r} \) if \(n \) is even and \(Y(x,y) \) \((x,y = \pm 1)\) the skew adjacency matrix of \(H_{2m,n,r} \) if \(n \) is odd. To determine the sign of Pfaffians Pf \(X(x,y) \) and Pf \(Y(x,y) \), the perfect matchings in \(H_{2m,n,r} \) are distinguished into four classes. The perfect matchings belonging to class 1 are those that have odd number of edges both in \(E_1 \) and in \(E_2 \). The perfect matchings belonging to class 2 have odd number of edges in \(E_1 \) and even number of edges in \(E_2 \). The perfect matchings belonging to class 3 have even number of edges in \(E_1 \) and odd number of edges in \(E_2 \). The perfect matchings belonging to class 4 have even number of edges both in \(E_1 \) and in \(E_2 \). Clearly, \(\kappa(M) \) is always even, where the perfect matching \(M \) lies in three classes other than class 1.

It is convenient to consider the case when \(y = \pm 1 \). For simplicity, let \(x \) and \(x^2 \) denote the odd power and even power, respectively. In light of the method deciding the sign of perfect matchings by Lu, Zhang and Lin [29], we can obtain the signs of all the perfect matchings in \(H_{2m,n,r} \). If \(y = 1 \), the signs of perfect matchings in three classes other than class 1 are always positive by Theorem 3. If \(y = -1 \), the signs of perfect matchings in three classes other than class 3 are always positive by Theorem 3 because that the perfect matching belonging to class 1 contains an odd of number edges in \(E_1 \) and \(\kappa(M) \) is always even. Therefore, we can decide the sign weights of all the perfect matchings of \(H_{2m,n,r} \), shown as in Table 1.

From Table 1, we can observe that the signs of perfect matchings belonging to classes 3 and 4 when \(y = 1 \) are always positive and the signs of perfect matchings in classes 1 and 2 when \(y = 1 \) are always positive. Then by formula (11) we have the following result.

Lemma 4. The number for perfect matchings in \(H_{2m,n,r} \) is equal to the sum of the number for perfect matchings belonging to classes 3 and 4 when \(y = 1 \) and that belonging to classes 1 and 2 when \(y = -1 \).

5. Perfect Matchings of \(H_{2m,n,r} \)

Suppose that \(V \) is a skew block circulant matrix or block circulant matrix as follows:
\[
V = \begin{pmatrix}
V_0 & V_1 & \cdots & V_{m-1} \\
-V_{m-1} & V_0 & \cdots & V_{m-2} \\
\vdots & \ddots & \ddots & \vdots \\
-V_1 & -V_2 & \cdots & V_0
\end{pmatrix} \\
\tag{13}
\]
or

\[V = \begin{pmatrix} V_0 & V_1 & \cdots & V_{m-1} \\ V_{m-1} & V_0 & \cdots & V_{m-2} \\ \vdots & \vdots & \ddots & \vdots \\ V_1 & V_2 & \cdots & V_0 \end{pmatrix}. \]

Then its determinant

\[\det(V) = \prod_{i=0}^{m-1} \det(I_i), \]

where

\[I_i = V_0 + \omega_i V_1 + \omega_i^2 V_2 + \cdots + \omega_i^{m-1} V_{m-1} \]

\[\omega_i = \begin{cases}
\cos \frac{2\pi}{m} + i \sin \frac{2\pi}{m} & \text{if } V \text{ is a block circulant matrix;} \\
\cos \frac{(2i+1)\pi}{m} + i \sin \frac{(2i+1)\pi}{m} & \text{if } V \text{ is a skew block circulant matrix.}
\end{cases} \]

Let \(\overline{H}_{m,2n,r} \) be a crossing orientation of the plane model of \(H_{2m,n,r} \) as shown in Figures 5 and 6. We can obtain the Pfaffian of the matrix corresponding \(\overline{H}_{m,2n,r} \) by formula (11) and Theorem 1. Consequently, an expression

\[(a) \]

\[(b) \]

Figure 5: A crossing orientation of \(H_{2m,n,r} \), where \(n \) is even.
Theorem 5. If n is even, then

$$\Phi(H_{2m,n,r}) = f(x, 1) + f(x,-1),$$

where $f(x, 1)$ and $f(x,-1)$ denote the sum of coefficients of even terms in $Pf X(x, 1) = \sqrt{\det (X(x, 1))}$ and the sum of coefficients of odd terms in $Pf X(x,-1) = \sqrt{\det (X(x,-1))}$, respectively; $\varphi_i = (2t + 1)\pi/m$ and $\theta_i = 2t\pi/m$;

$$\det (X(x, 1)) = \prod_{t=0}^{m-1} (-1)^{n/2} 2^n (\cos \varphi_t - 1)^n - 2^{n/2} \left[-1\right]^{n/2} \left(\cos \varphi_t - 1\right)^{n/2}$$

$$- \left(-1\right)^{n/2} (\cos r\varphi_t + i \sin r\varphi_t) + (\cos r\varphi_t - i \sin r\varphi_t)x + x^2 \right)$$

and

$$\det (X(x,-1)) = \prod_{t=0}^{n-1} (-1)^{n/2} 2^n (\cos \theta_t - 1)^n - 2^{n/2} \left[-1\right]^{n/2} \left(\cos \theta_t - 1\right)^{n/2}$$

$$\left[(-1)^{n/2} (\cos r\theta_t + i \sin r\theta_t) + (\cos r\theta_t - i \sin r\theta_t)x + x^2 \right].$$
Proof. Recall that $\tilde{H}_{m,2n,r}$ is a crossing orientation in the plane model of $H_{2m,n,r}$. Then the elements of $X(\tilde{H}_{m,2n,r})$ which can be read off from Figure 5 have the following form when n is even:

$$X(\tilde{H}_{m,2n,r}) = X(x,y) = (X_{ij}(x,y)),$$ \hspace{1cm} (20)

where $X_{ij}(x,y)$ is the $n \times n$ matrix. If $i \leq j$,

$$X_{ij}(x,y) = \begin{cases} A(x), & \text{if } j = i, i = 1, 2, \ldots, m-1, m; \\ B, & \text{if } j = i+1, i = 1, 2, \ldots, m-2, m-1; \\ C, & \text{if } j = i+r, i = 1, 2, \ldots, m-r-1, m-r; \\ C(y), & \text{if } j = i-m-r, i = 1, 2, \ldots, r-1, r; \\ B(y), & \text{if } i = 1, j = m; \\ 0_{2n}, & \text{others}. \end{cases}$$ \hspace{1cm} (21)

If $i > j$, then $X_{ij} = -X_{ji}^T$ (X_{ji}^T is the transpose of X_{ji}). Let A_i ($i = 1, 2, 3, 4$) be an $n \times n$ matrix as follows:

$$A_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & \ldots & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & \ldots & -1 & 0 \end{pmatrix}, A_4$$

and

$$A_2 = \begin{pmatrix} 0 & 0 & 0 & \ldots & 0 & 0 & x \\ 0 & 0 & 1 & \ldots & 0 & 0 & 0 \\ 0 & -1 & 0 & \ldots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & 0 & 1 & 0 \\ 0 & 0 & 0 & \ldots & -1 & 0 & 0 \\ -x & 0 & 0 & \ldots & 0 & 0 & 0 \\ -1 & 0 & \ldots & 0 & 0 & 0 & 0 \end{pmatrix}, A_3 = -A_2.$$ \hspace{1cm} (22)

Then the matrices $A(x), B, C, B(y)$ and $C(y)$ can be expressed by the following forms:

$$A(x) = \begin{pmatrix} \bar{A}_1 & \bar{A}_2 \\ \bar{A}_3 & \bar{A}_4 \end{pmatrix},$$

and

$$B(y) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \ldots & y \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & -y \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 0 & 0 & 0 & \ldots & 0 \end{pmatrix}.$$ \hspace{1cm} (23)

Let 0_{2n} be a $2n \times 2n$ matrix. If $y = 1$, then the matrix of $\tilde{H}_{m,2n,r} = X(x,y)$ is a skew block circulant matrix, i.e.,

$$X(x,1) = \text{scirc} \left(A(x), B, 0_{2n}, \ldots, 0_{2n}, C, 0_{2n}, \ldots, 0_{2n}, C^T, 0_{2n}, \ldots, 0_{2n}, B^T \right).$$ \hspace{1cm} (25)

If $y = -1$, then the skew adjacency matrix of $\tilde{H}_{m,2n,r} = X(x,y)$ is a block circulant matrix, i.e.,

$$X(x,-1) = \text{scirc} \left(A(x), B, 0_{2n}, \ldots, 0_{2n}, C, 0_{2n}, \ldots, 0_{2n}, C^T, 0_{2n}, \ldots, 0_{2n}, -B^T \right).$$ \hspace{1cm} (26)

Therefore by formula (15) we obtain that

$$\det(B(x,y)) = \prod_{t=0}^{m-1} \det(I_t),$$ \hspace{1cm} (27)
By formula (28), we have

\[
J_i = A(x) + \omega_i B - \omega_i^{-1}B^T + \omega_i C - \omega_i^{-1}C^T \tag{28}
\]

where

\[
\omega_i = \begin{cases}
\cos \frac{2\pi t}{m} + i \sin \frac{2\pi t}{m}, & \text{if } y = -1; \\
\cos \frac{(2t + 1)\pi}{m} + i \sin \frac{(2t + 1)\pi}{m}, & \text{if } y = 1.
\end{cases}
\]

(29)

Now we turn to calculate the determinant \(\det (J_i) \) of \(J_i \). By formula (28), we have

\[
\det (J_i) = \begin{vmatrix} J_1 & J_2 \\ J_3 & J_4 \end{vmatrix}, \tag{30}
\]

where

\[
J_1 = \begin{pmatrix} 0 & \omega_i & 0 & \cdots & 0 & x \\ -\omega_i & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & -1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & -1 & 0 \end{pmatrix}, \\
J_3 = \begin{pmatrix} 0 & \omega_i & 0 & \cdots & 0 & x \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & -1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -x & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \\
J_4 = \begin{pmatrix} -1 + \omega_i & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 - \omega_i & 0 & \cdots & 0 & 0 \\ 0 & 0 & -1 + \omega_i & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 + \omega_i & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 - \omega_i \end{pmatrix}.
\]

(31)

It is convenient to calculate that we adjust appropriately the order of labeling for the vertices of \(H_{2m,n,r} \) such that the determinant \(\det (J_i) \) turn out to be the following:

\[
\det (J_i) = \begin{vmatrix} 0 & \omega_i & -1 + \omega_i \\ -\omega_i & 0 & 1 - \omega_i \\ -1 + \omega_i & 0 & 1 \\ 1 - \omega_i & x & 0 \end{vmatrix}
= -xw_i^r - (1 - \omega_i)w_i^{r2} \left[[\omega_i (1 - \omega_i)]^{r2} \right]
= (-1)^{r2} (\omega_i + \omega_i^{-1} - 2)^{r2} - xw_i^r. \tag{33}
\]

Let \(\varphi_i = (2t + 1)\pi/m \) and \(\theta_i = 2\pi t/m \). Then it is not difficult to obtain the expressions of \(\omega_i, \omega_i^{-1} \) and \(\omega_i + \omega_i^{-1} \) when \(y = 1 \) and \(y = -1 \) by formula (29). Thus we have the determinant \(\det (J_i) \) if \(y = 1 \), i.e.,

\[
\det (J_i) = (-1)^{n2} 2^r (\cos \varphi_i - 1)^y \\
- 2^{n2} [- (1)^{n2} + 1] (\cos \varphi_i - 1)^{n2} \\
[(-1)^{n2} (\cos \varphi_i + i \sin \varphi_i) + (\cos \varphi_i - i \sin \varphi_i)] x + x^2. \tag{34}
\]

If \(y = -1 \), then we have

\[
\det (J_i) = (-1)^{n2} 2^r (\cos \theta_i - 1)^y \\
- 2^{n2} [- (1)^{n2} + 1] (\cos \theta_i - 1)^{n2} \\
[(-1)^{n2} (\cos \varphi_i + i \sin \varphi_i) + (\cos \varphi_i - i \sin \varphi_i)] x + x^2. \tag{35}
\]
Corollary 1. For $x > 0$, let $\Phi_2(x) = \Phi_2(x, \theta)$ be the even coefficients of $\Phi_2(x, \theta)$, and let $\Phi_2(x, -\theta) = \Phi_2(x, \theta)$. Then

\[
\Phi_2(x, \theta) = \Phi_2(x, -\theta) = \frac{\Phi_2(x, \theta)}{\Phi_2(x, -\theta)}.
\]

Proof. Let $Y(x, y) = Y(H_{2m,n,r})$ be the skew adjacent matrix. By the same calculation process in Theorem 1, we have the results as follows:

If $y = 1$, then $\det(J_i)$ is expressed by

\[
\det(J_i) = -2^{n+1/2} \cos(\phi_i - 1) \cdot 2^{n+1/2} + \cos(2 \cos(r - 1) \phi_i) x + x^2.
\]

Consequently, by formula (27) we have

\[
\Phi_2(x, \theta) = \Phi_2(x, -\theta) = \frac{\Phi_2(x, \theta)}{\Phi_2(x, -\theta)}.
\]

Theorem 6. If n is odd, then

\[
\Phi_2(H_{2m,n,r}) = g(x, 1) + g(x, -1),
\]

where $g(x, 1)$ and $g(x, -1)$ denote the sum of coefficients of even terms in $Pf Y(x, 1) = \sqrt{\det(Y(x, 1))}$ and the sum of coefficients of odd terms in $Pf Y(x, -1) = \sqrt{\det(Y(x, -1))}$, respectively; $\phi_i = (2t + 1) \pi/m$ and $\theta_i = 2\pi/m$.

Consequently, by formula (27) we have

\[
\det(Y(x, 1)) = \prod_{t=0}^{m-1} \left\{ -2^{n+1/2} \cos(\phi_i - 1) + (-2)^{n-1/2} \cos(2 \cos(r - 1) \phi_i) x + x^2 \right\}
\]

\[
\det(Y(x, -1)) = \prod_{t=0}^{m-1} \left\{ -2^{n+1/2} \cos(\phi_i - 1) + (-2)^{n-1/2} \cos(2 \cos(r - 1) \phi_i) x + x^2 \right\}.
\]

If $y = -1$, then $\det(J_i)$ is expressed by

\[
\det(J_i) = -2^{n+1/2} \cos(\phi_i - 1) \cdot 2^{n+1/2} + (-1)^{n-1/2} \cos(2 \cos(r - 1) \phi_i) x + x^2.
\]

Consequently, by formula (27) we have

\[
\det(Y(x, 1)) = \prod_{t=0}^{m-1} \det(J_i) = \prod_{t=0}^{m-1} \left\{ -2^{n+1/2} \cos(\phi_i - 1) + (-1)^{n-1/2} \cos(2 \cos(r - 1) \phi_i) x + x^2 \right\}
\]

Note that x and x^2 in Table 1 denote the odd power and even power of x, respectively. Thus the number for perfect matchings in $H_{2m,n,r}$ is equal to the sum of coefficients of odd terms in $Pf Y(x, -1) = \sqrt{\det(Y(x, -1))}$ by Lemma 4 and Theorem 2. Consequently, we get an expression for the number for perfect matchings in $H_{2m,n,r}$ by $\det(Y(x, 1))$, $\det(Y(x, -1))$ and Theorem 1 when n is even.
and

$$\det(Y(x,-1)) = \prod_{j=0}^{n-1} \det(f_j)$$

$$= \prod_{j=0}^{n-1} -2^{1/j2} [\cos \theta_j - 1]^{n-1/2}$$

$$- (-1)^{n+1/2}2^{n-1/2}[\cos \theta_j - 1]^{n-1/2} \cos \theta_j - 2 \cos (r-1)\theta_j|x^2 - 1|.$$ \hspace{1cm} (43)

Thus we get an expression of the number for perfect matchings in $\mathbb{H}_{2m,n,r}$ by $\det(Y(x,1))$, $\det(Y(x,-1))$ and Theorem 1 when n is odd. \hfill \Box

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no potential conflicts of interest.

Acknowledgments

The paper is supported by NSFC (No.201201007) and Natural Science Found of Fujian Province (No.2020 J01844).

References

[1] I. Gutman and S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer, Berlin, 1989.
[2] P. Hansen and M. Zheng, "Normal components of benzenoid systems," Theoretica Chimica Acta, vol. 85, no. 5, pp. 335–344, 1993.
[3] R. Sheng, S. J. Cyvin, and I. Gutman, "Essentially disconnected benzenoids are essentially disconnected," MATCH Communications in Mathematical and in Computer Chemistry, vol. 26, pp. 191–203, 1991.
[4] S. J. Cyvin, J. Brunroll, and B. N. Cyvin, Theory of Coronoid Hydrocarbons, Lecture Notes in Chemistry, Springer, Berlin, 1991.
[5] S. J. Cyvin and I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons, Springer, Berlin, 1988.
[6] L. Lovász and M. D. Plummer, Matching Theory, Elsevier Science, Amsterdam, 1986.
[7] E. Clar, The Aromatic Sextet, Wiley, London, 1972.
[8] G. G. Hall, "A Graphical model of a class of molecules," International Journal of Mathematical Education in Science and Technology, vol. 4, no. 3, pp. 233–240, 1973.
[9] L. Pauling, The Nature of Chemical Bond, Cornell, Univ, Press, New York, 1939.
[10] S. J. Cyvin, "Enumeration of kekulé structures: Chevrons," Journal of Molecular Structure (THEOCHEM), vol. 133, pp. 211–219, 1985.
[11] S. J. Cyvin, "The number of Kekulé structures of hexagon-shaped Benzenoids and members of other related classes," Monatshefte fuer Chemie, vol. 117, no. 1, pp. 33–45, 1986.
[12] S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and I. Gutman, "Kekulé structure counts for some classes of all-Benzenoid and all-coronoid hydrocarbons," Monatshefte fuer Chemie, vol. 122, no. 10, pp. 771–787, 1991.
[13] S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, "Kekule structure counts and multiple coronoid hydrocarbons," Chemical Physics Letters, vol. 156, no. 6, pp. 595–598, 1989.
[14] S. J. Cyvin, J. Brunvoll, and B. N. Cyvin, "Kekule structure counts in coronoid hydrocarbons: a general solution," Structural Chemistry, vol. 1, no. 5, pp. 429–436, 1990.
[15] J. Qian and F. Zhang, "Kekule count in capped armchair nanotubes," Journal of Molecular Structure (THEOCHEM), vol. 725, no. 1-3, pp. 223–230, 2005.
[16] J. Qian and F. Zhang, "On the number of Kekulé structures in capped zigzag nanotubes," Journal of Mathematical Chemistry, vol. 38, no. 2, pp. 233–246, 2005.
[17] W. Yan, Y.-N. Yeh, and F. Zhang, "Dimer problem on the cylinder and torus," Physica A, vol. 387, no. 24, pp. 6069–6078, 2008.
[18] W. Li and H. Zhang, "Dimer statistics of honeycomb lattices on Klein bottle, Mobius strip and cylinder," Physica A: Statistical Mechanics and its Applications, vol. 391, no. 15, pp. 3833–3848, 2012.
[19] F. Wu, "Remarks on the modified potassium dihydrogen phosphate model of a ferroelectric," Physics Review, vol. 168, no. 2, pp. 539–543, 1968.
[20] D. J. Klein and H. Zhu, "Resonance in elemental benzenoids," Discrete Applied Mathematics, vol. 67, no. 1-3, pp. 157–173, 1996.
[21] T. Muir, The Theory of Determinants, MacMillan and Co., London, 1906.
[22] P. M. Kasteleyn, "The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadric lattice," Physica, vol. 27, no. 12, pp. 1209–1225, 1961.
[23] A. Galluccio and M. Ioebl, "On the theory of Pfaffian orientations I: Perfect matchings and permanents," The Electronic Journal of Combinatorics, vol. 6, no. 1, p. R6, 1999.
[24] G. Tesler, "Matchings in graphs on non-orientable surfaces," Journal of Combinatorial Theory, Series B, vol. 78, no. 2, pp. 198–231, 2000.
[25] X. Feng, L. Zhang, and M. Zhang, "Enumeration of perfect matchings of lattice graphs by Pfaffians," Applied Mathematics and Computation, vol. 338, pp. 412–420, 2018.
[26] X. Feng, L. Zhang, and M. Zhang, "Perfect matchings on a type of lattices with toroidal boundary," Applied Mathematics-A Journal of Chinese Universities, vol. 34, no. 1, pp. 33–44, 2019.
[27] F. Lin, L. Zhang, and F. Lu, "The cubic vertices of minimal bricks," Journal of Graph Theory, vol. 76, no. 1, pp. 20–33, 2014.
[28] F. Lin, A. Chen, and J. Lai, "Dimer problem for some three dimensional lattice graphs," Physica A, vol. 443, pp. 347–354, 2016.
[29] F. Lu, L. Zhang, and F. Lin, "Enumeration of perfect matchings of a type of quadratic lattices on the torus," The Electronic Journal of Combinatorics, vol. 17, p. R36., 2010.
[30] W. Yan and F. Zhang, "Enumeration of perfect matchings of graphs with reflective symmetry by Pfaffians," Advances in Applied Mathematics, vol. 32, no. 4, pp. 655–668, 2004.
[31] L. Zhang, S. Wei, and F. Lu, "The number of Kekulé structures of polyominoes on the torus," Journal of Mathematical Chemistry, vol. 51, no. 1, pp. 354–368, 2013.