Phytotoxic Effects of Plant Essential Oils: A Systematic Review and Structure-Activity Relationship Based on Chemometric Analyses

Ahmed M. Abd-ElGawad 1,2,* 1, Abd El-Nasser G. El Gendy 3, Abdulaziz M. Assaeed 1, Saud L. Al-Rowaily 1, Abdullah S. Alharthi 1, Tarik A. Mohamed 4, Mahmoud I. Nassar 5, Yaser H. Dewir 1,6 and Abdelsamed I. Elshamy 5,7

Citation: Abd-ElGawad, A.M.; El Gendy, A.E.-N.G.; Assaeed, A.M.; Al-Rowaily, S.L.; Alharthi, A.S.; Mohamed, T.A.; Nassar, M.I.; Dewir, Y.H.; Elshamy, A.I. Phytotoxic Effects of Plant Essential Oils: A Systematic Review and Structure-Activity Relationship Based on Chemometric Analyses. Plants 2021, 10, 36. https://dx.doi.org/10.3390/plants10010036

Received: 16 November 2020 Accepted: 23 December 2020 Published: 25 December 2020

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract: Herbicides are natural or synthetic chemicals used to control unwanted plants (weeds). To avoid the harmful effects of synthetic herbicides, considerable effort has been devoted to finding alternative products derived from natural sources. Essential oils (EOs) from aromatic plants are auspicious source of bioherbicides. This review discusses phytotoxic EOs and their chemical compositions as reported from 1972 to 2020. Using chemometric analysis, we attempt to build a structure-activity relationship between phytotoxicity and EO chemical composition. Data analysis reveals that oxygenated terpenes, and mono- and sesquiterpenes, in particular, play principal roles in the phytotoxicity of EOs. Pinene, 1,8 cineole, linalool, and carvacrol are the most effective monoterpens, with significant phytotoxicity evident in the EOs of many plants. Caryophyllene and its derivatives, including germacrene, spathulenol, and hexahydrofarnesyl acetone, are the most effective sesquiterpenes. EOs rich in iridoids (non-terpene compounds) also exhibit allelopathic activity. Further studies are recommended to evaluate the phytotoxic activity of these compounds in pure forms, determine their activity in the field, evaluate their safety, and assess their modes of action.

Keywords: allelopathy; bioherbicides; volatile oils; terpenes; aromatic plants

1. Introduction

Humans have been cultivating plants for nearly 10,000 years ago. Today, any plant growing where it is not wanted is defined as a weed. Weeds represent an important constraint to agricultural production [1]. Weeds represent approximately 0.1% of the world’s flora and they evolve with agricultural practices. Weeds can cause declines in crop yields via competition for resources such as light, water, space, and nutrients, and by producing chemical weapons known as allelopathic compounds [2]. Weed management is achieved using several techniques to limit infestation and minimize competition. These techniques evolved to mitigate crop yield losses, but weed control is typically used only after a problem has been identified.
Scientists and researchers address weed control through physical, chemical, and biological methods. Controlling weeds in an environmentally friendly way is often considered a challenge. Natural resources offer new approaches to producing eco-friendly, and safe bioherbicides that are effective against nuisance weeds. Plants produce the essential oils (EOs) in their various organs as a complex mixture of secondary metabolites such as mono-, sesquit-, and di-terpenoids in addition to hydrocarbons [3,4]. In plants, EOs were biosynthesized via different isoprenoid pathways such as methylerythritol phosphate (MEP) pathway and mevalonic acid (MVA) pathway [5]. The EOs have been described as potent biological agents such as phytotoxic [6–9], antimicrobial [10], anti-inflammatory, antipyretic [11], antiulcer [12], and hepatoprotective [13]. The bioactivities potential of EOs are directly correlated with the quality and quantity of their chemical constituents [6]. Many studies have been performed using the extracted EOs from various plants as phytotoxic chemicals (allelochemicals), where the phytotoxicity is usually correlated to the whole EO profile that contained a mixture of compounds. However, the activity of the EO could be ascribed to a specific compound(s) in the EO. Therefore, in the present review, we try to elucidate a framework of the most frequent and major allelochemicals that were identified in the EOs with a substantial phytotoxic activity using chemometric tools. Additionally, the activities of the authentic identified major compounds are discussed.

2. Materials and Methods

This review focuses on reports of EOs from plants that exhibit phytotoxic activity published between 1972 and early 2020, using Google, Sci-finder, Google Scholar, PubMed, Elsevier, and Springer databases. Based on the major compounds (those constituting > 5% of the total mass of the EO), the plants were categorized into three groups; mono-, sesqui-, and non-terpenoid–rich compounds. Firstly, the database of EOs rich in monoterpenes derived from plants comprised 46 species belonging to 12 botanical families, including Lamiaceae (18 species), Myrtaceae (nine species), Asteraceae (eight species), Anacardiaceae (three species), and Cannabaceae, Euphorbiaceae, Monimiaceae, Pinaceae, Poaceae, Verbenaceae, Winteraceae, and Apiaceae (a single species each). Additionally, the EOs of these plants were tested against 49 plant species.

Secondly, the plant EOs rich in sesquiterpenes from 25 plant species belonging to eight botanical families were studied. The most represented botanical families were Lamiaceae and Asteraceae (nine plant species each), while Anacardiaceae, Boraginaceae, Fabaceae, Myrtaceae, Simaroubaceae, Verbenaceae, and Chenopodiaceae were represented by a single species. All the EOs of these plants were investigated against 13 plant species. Thirdly, six plant EOs rich in non-terpenoid compounds were identified belonging to Lamiaceae (three species), Apiaceae (two), and Cucurbitaceae (one), were tested against 17 plants.

To assess the correlation of EOs phytotoxic activity and structural compounds, a data matrix of each group was performed as a spreadsheet in MS-EXCEL. A matrix of 42 major monoterpenes compounds from 45 plant species was assembled, while a matrix of 26 sesquiterpene compounds, identified in the EOs of 22 plant species was prepared. These matrices were subjected to PCA using XLSTAT software version 14 (Addinsoft, New York, NY, USA).

3. Phytotoxic EOs Derived from Plants Rich in Monoterpenes

The EOs from different plant species with monoterpenes as the main compounds that exhibited significant phytotoxic activity against various target plant species are presented in Table 1. Zhang, et al. [14] concluded that monoterpen-rich EOs derived from Eucalyptus salubris, E. dundasii, E. spathulata, and E. brockwayii strongly inhibited germination and seedling growth in Solanum elaeagnifolium relative to commercial Eucalyptus oil and 1,8-cineole. Moreover, the EO of E. salubris was found to be the most powerful inhibitor of germination and roots and shoot growth, while E. spathulata exhibited the lowest effect [14].
Table 1. Monoterpene-rich EOs derived from various reported plants with significant allelopathic activity.

Plant Name	Main Monoterpenoid Compounds	Phytotoxic against	Reference
Euphorbia heterophylla	1,8-cineole, camphor,	Cenchrus echinatus *	[6]
Symphyotrichum squamatum	β-pinene	Bidens pilosa *	[15]
Salvia sclarea	l-linalool, linalyl acetate, α-terpineol, and geraniol	Lactuca sativa, Lepidium sativum, and Portulaca oleracea *	[16]
Schinus terebinthifolius	3-carene, α-pinene, limonene, and β-pinene	Bidens pilosa *	[17]
Cannabis sativa	myrcene, terpinolene, and (E)-β-ocimene	Avena sativa, Zea mays, Brassica oleracea, Avena fatua *,	[18]
		Bromus secalinus *, Echinochloa crus-galli *, Amaranthus	
		retroflextus *, Centaurea cyanus *	
Callistemon viminalis	1,8-cineole a-pinene, and d-limonene	Bidens pilosa * *, Cassia occidentalis *, Echinochloa	[19]
		crus-galli *, and Phalaris minor *	
Cymbopogon citratus	neral, geranial, and α-pinene	Sinapis arvensis *	[20]
Eucalyptus cladocalyx	1.8-cineole, and p-cymene		
Origanum vulgare	carvacrol, γ-terpineol, and p-cymene		
Artemisia absinthium	β-thujone, and linalool		
Cymbopogon citratus	neral, geranial, and β-mycene	Echinochloa crus-galli *	[21]
Origanum acutidens	carvacrol, p-cymene, linalool acetate	Amaranthus retroflextus *, Chenopodium album *, and Rumex	[22]
		crispus *	
Eriocephalus africanus	carvacrol, p-cymene, linalool acetate	Amaranthus hybridus * and Portulaca oleracea *	[23]
Vitex agnus-castus	1,8-cineole, sabinene, and α-pinene	Lactuca sativa and Lepidium sativum	[24]
Thymus daenensis	thymol, carvacrol, and p-cymene	Amaranthus retroflextus *, Avena fatua *, Datura stramonium *, and Lepidium sativum	[25]
Thymbra spicata	carvacrol, γ-terpineol, p-cymene	Triticum aestivum, Zea mays, Lactuca sativa, Lepidium sativum, and Portulaca oleracea *	[27]
Nepeta flavida	linalool, 1,8-cineole, and sabinene	Lepidium sativum, Raphanus sativus, and Erucia sativa	[28]
Heterothalamus psidioides	β-pinene, δ3-carene, and limonene	Lactuca sativa and Allium cepa	[29,30]
Salvia hierosolymitana	α-pinene, myrtenol, and sabinyl acetate	Raphanus sativus and Lepidium sativum	[31]
Artenisia scoparia	p-cymene, β-mycene, and (+)-limonene	Achyranthes aspera, Cassia occidentalis *, Parthenium hysterophorae *, Echinochloa crus-galli *, and Ageratum conyzoides *	[32]
Eucalyptus grandis	α-pinene, γ-terpineol, and p-cymene	Lactuca sativa	[33]
Eucalyptus citriodora	β-citronellal, geraniol, and citronellol	Lactuca sativa and Sorghum bicolor	[34]
Plectranthus amboinicus	carvacrol		
Plant Name	Main Monoterpenoid Compounds	Phytotoxic against	Reference
----------------------------	--	---	-----------
Pinus brutia	α-pinene, and β-pinene	*Lactuca sativa, Lepidium sativum*, and *Portulaca oleracea*	[35]
Pinus pinea	limonene, α-pinene, and β-pinene	*Sinapis arvensis*, *Lolium rigidum*, and *Raphanus raphanistrum*	[36]
Cotinus coggyria Scop.	α-pinene, limonene, and β-myrcene	*Silybum marianum*, and *Portulaca oleracea*	[37]
Zataria multiflora	carvacrol, linalool and p-cymene	*Hordeum spontaneum*, *Secale cereale*, *Amaranthus retroflexus*, and *Cynodon dactylon*	[38]
Mentha × piperita	menthol, mentone, and menthofuran	*Lycopersicon esculentum*, *Raphanus sativus*, *Convolvulus arvensis*, *Portulaca oleracea*, and *Echinochloa colonum*	[39]
Hyssopus officinalis	β-pinene, iso-pinocamphone, and, *trans-pinocamphone*	*Raphanus sativus*, *Lactuca sativa*, and *Lepidium sativum*	[40]
Lavandula angustifolia	β-pinene, iso-pinocamphone, and *trans-pinocamphone*		
Majorana hortensis	1,8-cineole, β-phellandrene, and α-pinene		
Melissa officinalis	(-)-citronellal, carvacrol, and citronellol		
Ocimum basilicum	linalol, and borneol		
Origanum vulgare	*o-cymene, carvacrol, and linalyl acetate		
Salvia officinalis	*trans-thujone, camphor, and borneol		
Thymus vulgaris	*o-cymene, and α-pinene		
Verbena officinalis	isobornyl formate, and (E)-citral		
Shinus molle	β-phellandrene, α-phellandrene, and myrcene	*Triticum aestivum*	[41]
Syzygium aromaticum	eugenol, and eugenol acetate	*Mimosa pudica* *a* and *Senna obtusifolia*	[42]
Peumus boldus	ascaridole, p-cymene and 1,8-cineole	*Amaranthus hybridus* *and* *Portulaca oleracea*	[43]
Drimys winterii	terpinen-4-ol, γ-terpinene, and sabinen		
Agastache rugosa	*d-limonene, and linalool	*Majorana hortensis*, *Trifolium repens*, *Rudbeckia hirta*, *Chrysanthemum zawadskii*, *Melissa officinalis*, *Taraxacum platycarpum*, and *Tagetes patula*	[44]
Eucalyptus lehmanii	1,8-cineole, α-thujene, and α-pinene	*Sinapis arvensis*, *Diplotaxis harra*, *Trifolium campestre*, *Desmazeria rigida*, and *Phalaris canariensis*	[45]
Tanacetum aucheranum	1,8-cineole, camphor, and terpinen-4-ol	*Amaranthus retroflexus*, *Chenopodium album* *and* *Rumex crispus*	[46]
Tanacetum chiliophyllum	camphor, 1,8-cineole and borneol		
Table 1. Cont.

Plant Name	Main Monoterpenoid Compounds	Phytotoxic against	Reference
Heterothalamus psiadioides	β-pinene, δ^3^-carene, and limonene	Lactuca sativa and Allium cepa	[29]
Baccharis patens	linalool		
Senecio amplexicaulis	α-phellandrene, α-cymene and β-o-cimene	Phalaris minor * and Triticum aestivum	[47]
Eucalyptus salubris	1,8-cineole, α-pinene and p-cymene	Solanum elaeagnifolium *	[14]
Eucalyptus dundasii	1,8-cineole, α-pinene and trans-pinocarvool		
Eucalyptus spathulata	1,8-cineole and α-pinene		
Eucalyptus brockwayii	α-pinene, 1,8-cineole and isopentyl isovalerate		
Carum carvi	estragole, limonene, and β-pinene	Raphanus sativus, Lactuca sativa, and Lepidium sativum	[40]

* Reported as a weed.

Hydro-distilled EO from *Senecio amplexicaulis* with a high content of monoterpenes, including α-phellandrene, O-cymene, and β-o-cimene, reportedly exhibited strong allelopathic activity at higher concentrations, with a significant ability to inhibit germination of *Phalaris minor* and *Triticum aestivum* seeds [47]. The EOs of *Heterothalamus psiadioides*, composed mainly of the monoterpenes β-pinene, Δ^3^-carene, and limonene, showed cidal effects against *Lactuca sativa* and *Allium cepa* by inhibiting germination as well as growth of shoots and roots [29]. Moreover, a strong herbicidal activity against *Amaranthus retroflexus*, *Chenopodium album*, and *Rumex crispus* was reported in the EOs of the two *Tanacetum* species (*T. aucheranum* and *T. chiliophyllum*) by completely inhibiting seed germination and seedling growth, an ability that may be attributable to their monoterpene content, including 1,8-cineole, camphor, borneol, and terpinen-4-ol [46]. Significant reduction of seedling emergence and growth of *Sinapis arvensis*, *Diplotaxis harra*, *Trifolium campestre*, *Desmazeria rigida*, and *Phalaris canariensis* were reported via the EO derived from *E. lehmanii* in which monoterpenes represented the major constituents, including 1,8-cineole, α-thujene, and α-pinene [45].

The EOs from *Agastache rugosa* leaves collected over different seasons reportedly achieved partial or complete prevention of germination and growth of hypocotyl and radicles in *Majorana hortensis*, *Trifolium repens*, *Rudbeckia hirta*, *Chrysanthemum zawadskii*, *Melissa officinalis*, *Taraxacum platycarpum*, and *Tagetes patula*. These extracted EOs were described to be rich in the monoterpenes methylchavicol, δ-limonene, and linalool as the main compounds [44]. In the same manner, the chemical profiles of the EOs of Chilean *Peumus boldus* and *Drimys winterii* were reported to be composed primarily of the monoterpenes ascaridole, p-cymene, and 1,8-cineole and γ-eudesmol, elemol, and terpinen-4-ol. These two EOs were found to exhibit inhibitory effects against *Amaranthus hybridus* and *Portulaca oleracea* [43]. The EO of *Peumus boldus* was found to inhibit germination and seedling growth in two weeds at all used concentrations, while *Drimys winterii* EO exhibited inhibitory activity against germination activity in *Portulaca oleracea* only at the highest dose (1 µL mL\(^{-1}\)) [43]. In addition, de Oliveira, et al. [42] reported that different samples of EOs extracted by supercritical CO\(_2\) from *Syzygium aromaticum* at varying temperatures and pressures displayed allelopathic activities by inhibiting germination and radicle elongation in *Mimosa pudica* and *Senna obtusifolia*, with extraction of the EO at 50 °C and 300 bars associated with the most effective activity. The monoterpenes eugenol, eugenol acetate, and (E)-caryophyllene were reported as the main constituents of these samples. The EOs of the leaves and fruits of *Shinus molle* were reported to cause a concentration-dependent decline in the germination and radicle elongation of *Triticum aestivum* with more activity.
seen in leafy samples. Both oils were found to be composed of monoterpenes as the main components, with an abundance of β-phellandrene, α-phellandrene, and myrcene [41].

The chemical components as well as the phytotoxic activities of EOs derived from 12 Mediterranean plants, including *Hyssopus officinalis*, *Lavandula angustifolia*, *Ocimum basilicum*, *Majorana hortensis*, *Origanum vulgare*, *Salvia officinalis*, *Foeniculum vulgare*, *Thymus vulgaris*, *Melissa officinalis*, *Verbena officinalis*, *Pimpinella anisum*, and *Carum carvi*, on germination and radicle growth in *Raphanus sativus*, *Lactuca sativa*, and *Lepidium sativum* seeds have been documented [40]. The EOs reportedly have an inhibitory effect against germination and initial radicle elongation at different doses through different mechanisms, with samples of *Melissa officinalis*, *Thymus vulgaris*, *Verbena officinalis*, and *Carum carvi* demonstrating the strongest effect. Monoterpenes were described as the main components of *Hyssopus officinalis*, *Lavandula angustifolia*, *Majorana hortensis*, *Melissa officinalis*, *Ocimum basilicum*, *Origanum vulgare*, *Salvia officinalis*, *Thymus vulgaris*, *Verbena officinalis*, and *Carum carvi*, while non-terpenoid phenols were the main constituents in *Foeniculum vulgare* and *Pimpinella anisum* [40]. Similarly, peppermint EO is reportedly rich in menthone, menthol, and menthofuran, and has been described as having a potent allelopathic effect on seed germination and seedling growth in *Lycopersicon esculentum*, *Raphanus sativus*, *Convolvulus arvensis*, *Portulaca oleracea*, and *Echinocloa colonum* [39]. In 2010, the main components of *Zataria multiflora* EO were reported as the monoterpenes carvacrol, linalool, and p-cymene, all of which exhibited significant herbicidal activities against *Hordeum spontaneum*, *Secale cereale*, *Amaranthus retroflexus*, and *Cynodon dactylon* [38]. This activity was associated with significant inhibition of the rate of germination, seedling length, root and stem fresh and dry weights at all used concentrations, and 320 and 640 mL L$^{-1}$ in particular [38].

The dose-dependent toxicity of the EOs of *Cotinus coggyria*, which consist mainly of monoterpenes such as limonene, α-pinene, and β-myrcene, against the weeds of *Silybum marianum* and *Portulaca oleracea* reportedly [37] decreased germination in radishes by 83% and 60%, seedling radicle length by 93% and 84%, and plumule length by 84% and 91% at 32 µL mL$^{-1}$. The EOs of *Pinus brutia* and *Pinus pinea* were documented to have monoterpenes as the major components, with a preponderance of α- and β-pinene and caryophyllene [35]. At higher dose, these EOs were found to have a potent inhibitory effect on germination by 53% and 22% of *Lactuca sativa*, 60% and 33% of *Lepidium sativum*, and 13% and 3% of *Portulaca oleracea*, respectively [35]. An evaluation of Tunisian *Pinus pinea* EO, rich in limonene, α- and β-pinene, revealed a dose-related gradual inhibition of *Lolium rigidum*, *Sinapis arvensis*, and *Raphanus raphanistrum*, and seed germination was completely inhibited at low concentrations [36]. The EO of *Plectranthus amboinicus*, which is composed primarily of monoterpenes, and carvacrol in particular (88.61%), was reported to significantly inhibit germination and reduce the growth of *Lactuca sativa* and *Sorghum bicolor* roots and shoots [34]. Another study [33] described the EO chemical composition of two Eucalyptus plants in which monoterpenes, including p-cymene, β-myrcene, and (+)-limonene, were the main components in *Eucalyptus grandis*, and α-pinene, γ-terpinene, and p-cymene in *E. citriodora*. These EOs were found to dose-dependently inhibit germination of *Lactuca sativa*, with a concentration of 0.1 µL mL$^{-1}$ of both oils suppressing germination by 74% and 68%, respectively [35].

With a preponderance of the monoterpenoids p-cymene, β-myrcene, and (+)-limonene, along with acenaphthene, EO extracted from *Artemisia scoparia* was found to have significant phytotoxic activities, primarily against the roots of *Achyranthes aspera*, *Cassia occidentalis*, *Echinocloa crus-galli*, *Agaratum conyzoides*, and *Parthenium hysterophorus* [32] with the latter species suffering the most effects [32]. In the same manner, an artemisia ketone–rich EO derived from *Eucalyptus africanus* reportedly exhibited a potent effect similar to that of *Eucalyptus camaldulensis* on *Amaranthus hybridus*, but without a noticeable effect on *Portulaca oleracea* [23].

The phytotoxic activity of the EO of the Turkish *Origanum acutidens* and its monoterpenoid components (carvacrol, p-cymene, and thymol) were studied by Kordali, et al. [22]. Their results revealed that carvacrol and thymol completely inhibited seed germination
and seedling growth in *Chenopodium album*, *Amaranthus retroflexus*, and *Rumex crispus*, but no effect was observed with *p*-cymene [22]. The EO of *Cymbopogon citratus*, which is composed mostly of the monoterpenes *n*-eral, *γ*-geraniol, and *β*-myrcene, was reported to delay the germination of seeds and inhibit seedling growth in *Echinochloa crus-galli* [21]. In another study, the EOs of the aerial parts of four plants—*Cymbopogon citratus*, *Origanum vulgare*, *Eucalyptus cladocalyx*, and *Artemisia absinthium*—were determined to be potential bioherbicides against the seeds of *Sinapis arvensis*, with the EOs of *Cymbopogon citratus* and *Eucalyptus cladocalyx* [20] exhibiting the most activity. Neral, *γ*-geraniol, and *α*-pinene, along with other monoterpenes, were found to be the main components of *Cymbopogon citratus*. However, the sesquiterpene spathulenol, as well as the monoterpenes *1,8-cineole* and *p*-cymene, were found to be the main components of the EO of *Eucalyptus cladocalyx*. The three monoterpenoids carvacrol, *γ*-terpinene, and *p*-cymene were described as major constituents of the EO of *Origanum vulgare*, while *Artemisia absinthium* EO was reported to be composed largely of monoterpenes, including *β*-thujone, chamazulene, and linalool [20].

Potential herbicidal activity of the EO from *Nepea flavida* was reported against *Raphanus sativus*, *Lepidium sativum*, and *Eruca sativa*, in which it completely inhibited germination at a concentration of 4.0 µL mL⁻¹ [28], an effect that may be attributed to the presence of the monoterpenes linalool, *1,8-cineole*, and sabine [28]. Monoterpenes including carvacrol, *γ*-terpinene, *p*-cymene were found to be the predominant constituents of the EO of *Thymbra spicata* and may be responsible for the strong phytotoxic activity reported against *Zea mays*, *Triticum aestivum*, *Lactuca sativa*, *Lepidium sativum*, and *Portulaca oleracea* [27]. Ulukanli, et al. [26] reported that the EO of *Thymus eigii* exhibited significant toxic effects against *Lepidium sativum*, *Lactuca sativa*, and *P. oleracea*. This oil was found to be rich with monoterpenes, with thymol, carvacrol, and *p*-cymene the major constituents [26]. Moreover, EOs extracted from *Thymus daenensis* collected from four different habitats inhibited germination in *Avena fatua*, *Amaranthus retroflexus*, *Datura stramonium*, and *Lepidium sativum*. These four ecospecies of *Thymus daenensis* were found to be rich with monoterpenoids, including thymol, carvacrol, and *p*-cymene in particular [25].

Foliar volatiles of *Callistemon viminalis* and EOs reportedly reduced seed germination, seedling growth, and accumulation of dry matter in *Bidens pilosa*, *Cassia occidentalis*, *Echinochloa crus-galli*, and *Phalaris minor*, with the greatest sensitivity observed in *B. pilosa* [19]. Monoterpenoids, and *1,8-cineole*, *α*-pinene, and *d*-limonene in particular, have been described as major components in the EO of this plant. Pinheiro, et al. [17] reported an allelopathic effect of the EO extracted from *Cannabis sativa* on germination and seedling growth in *Amaranthus retroflexus*, *Bromus secalinus*, *Avena sativa*, and *Brassica oleracea*. Based on gas chromatography-mass spectroscopy analysis, this oil is rich in monoterpenes, including myrcene, terpinolene, and (E)-*β*-Ocimene [18].

Monoterpane-rich EOs derived from *Schinus terebinthifolius* collected from two different areas of Brazil reportedly produced an inhibitory effect on germination, root and hypocotyl growth, and production of biomass in *Bidens pilosa*. In the Cerrado biome, the EO of *Schinus terebinthifolius* was found to be rich with *trans*-caryophyllene, 3-carene, and germacrene B, while *Schinus terebinthifolius* from the country’s Atlantic forest biome is rich with *α*-pinene, limonene, and *β*-pinene [17]. Additionally, the EO of *Vitex agnus-castus* was reported to be rich with monoterpenes, particularly *1,8-cineole*, sabine, *trans-β*-farnesene, and *α*-pinene. This EO was found to exhibit significant inhibitory activity on *Lactuca sativa* and *Lepidium sativum* [24].

The EO of *Salvia sclarea* was described to have significant phytotoxic effects against *Lepidium sativum*, *Lactuca sativa*, and *Portulaca oleracea* at a concentration of 0.16 mg mL⁻¹, reducing seed germination by 94%, 100%, and 50%, respectively [16]. The main constituent of this EO was reported to be monoterpenes, including *L*-linalool, linalyl acetate, *α*-terpineol, and geranial [16].

The EO from the aerial parts of *Euphorbia heterophylla* reportedly inhibited germination (93.9%), root (84.6%), and shoot growth (57.8%) in *Cenchrus ciliaris* weeds at 100 µL L⁻¹.
The authors described monoterpenes as the major components (69.48%), and 1,8-cineole was the primary monoterpe, representing 32.03% of the total mass [6].

4. Monoterpene-Rich EO-Allelopathy Correlation

Application of a PCA to a dataset of the 46 different plant species with EOs comprised mainly of monoterpenes found allelopathic activity is presented in Figure 1. The results show that that α- and β-pinene, 1,8 cineole, linalool, and carvacrol were the most effective allelopathic monoterpen compounds. They also showed that Eucalyptus africanus, Origanum acutidens, Zataria multiflora, and Plectranthus amboinicus were correlated to each other linalool and carvacrol predominating (Figure 1). Meanwhile, Pinus brutia, Schinus terebinthifolius, Thymus vulgaris, Eucalyptus lehmanii, Eucalyptus lehmanii, Eucalyptus lehmanii, Callistemon viminalis, Majorana hortensis, Vitex agnus-castus, and Eucalyptus brouwayi showed a close correlation with each other with respect to the composition of their EOs; 1,8-cineole and α, and β-pinene were the major monoterpenoid compounds. The analysis found α, and β-pinene and 1,8 cineole in most of the allelopathic plants in which monoterpenes are major EO compounds.

![Figure 1. Principal component analysis of reported plants with essential oils containing monoterpenes as major compounds and showing allelopathic activity.](image)

5. Phytotoxic EOs Derived from Plants Rich in Sesquiterpenes

Sesquiterpene-rich EOs from different plants associated with notable phytotoxic activities are listed in Table 2. The EO of Eupatorium adenophorum was described as being composed primarily of sesquiterpenes, with γ-cadinene, γ-muurolene, and 3-acetoxy-4,7(11)-diene-8-one as the main compounds. This oil reportedly exhibited strong phytotoxic activity against Phalaris minor and Triticum aestivum, with a stronger effect observed against Phalaris minor [48]. Elshamy and his co-workers reported the EO composition and allelopathic activities of three Launaea plants (Launaea mucronata, Launaea nudicaulis, and Launaea spinosa) collected from different habitats. Results showed that these EOs had significant and concentration-dependent effects on Portulaca oleracea weeds. The EOs of two samples of Launaea mucronata collected from the desert and coastal regions were found to have the highest activity, inhibiting germination by 96.1% and 87.9% and radicle growth by 92.6% and 89.7%, respectively, at 250 μL L⁻¹ [6]. The authors found that sesquiterpenes were the main components, and hexahydrofarnesyl acetone the main compound, in Launaea
The EO of *Schinus lentiscifolius* was reported to be associated with a 19.35% reduction in the mitotic index in onions and 25.14% in lettuce, compared with negative control. This EO was found to comprise sesquiterpenoid compounds as the main components, and δ-cadinene in particular [49].

Table 2. Sesquiterpene-rich EOs derived from various plants and exhibiting phytotoxic activity.

Plant Name	Major Sesquiterpenes Compounds	Phytotoxic Against	Reference
Lactuca serriola	isoshyobunone, and alloaromadendrene oxide-1	*Bidens pilosa*	[7]
Launaea mucronata	hexahydrofarnesyl acetone and (-)-spathulenol	*Portulaca oleracea*	[6]
Launaea nudicaulis	hexahydrofarnesyl acetone and γ-gurjunene epoxide (2)		
Launaea spinosa	a-acoreno, trans-longipinocarveol, and γ-eudesmol		
Heliotropium curassavicum	Hexahydrofarnesyl acetone, (-)-caryophyllene oxide, farnesyl acetone	*Chenopodium murale*	[6]
Xanthium strumarium	a-eudesmol, (-)-spathulenol, and ledene alcohol	*Bidens pilosa*	[3]
Cullen plicata	(−)-caryophyllene oxide, δ-nerolidol, tau.cadinol and a-cadinol	*Bidens pilosa* and *Urosernum picroides*	[50]
Scutellaria strigillosa	germacrene D, bicyclogermacrene, and β-caryophyllene	*Amaranthus retroflexus* and *Poa annua*	[51]
Acroptilon repens	caryophyllene oxide, β-cubebe, β-caeophyllen, and a-copaen	*Amaranthus retroflexus* and *Cardaria draba*	[52]
Lantana camara	a-curcumene, β-caryophyllene, and γ-curcumene	*Amaranthus hybridus* and *Portulaca oleracea*	[23]
Eucalyptus caesalpina	spathulenol, and isobicyclogermacrenel		
Eupatorium adenophorum	γ-cadinene, γ-muuroleone, and 3-acetoxymorpha-4,7(11)-diene-8-one	*Phalaris minor* and *Triticum aestivum*	[8]
Baccharis patens	β-caryophyllene, and spathulenol	*Lactuca sativa* and *Allium cepa*	[29]
Salvia multicaulis	a-Copaene, β-caryophyllene, and aromadendrene	*Raphanus sativus* and *Lepidium sativum*	[40]
Teucrium arduini	caryophyllene, caryophyllene oxide, germacrene D, and spathulenol		
Teucrium maghrebinum	germacrene d, δ-cadinene, γ-cadinene, and caryophyllene		
Teucrium polium	caryophyllene, torreyol, and a-cadinol		
Teucrium montbretii	carvacrol, caryophyllene, and caryophyllene oxide		
Nepeta curviflora	β-caryophyllene, caryophyllene oxide, and (E)-β-farnesene		[31]
Nepeta nuda	β-bisabolene		
Ailanthus altissima	β-caryophyllene, (Z)-caryophyllene, and germacrene D,	*Lactuca sativa*	[53]
Schinus lentiscifolius	δ-cadinene, α-cadinol, and β-caryophyllene		[49]
Pulicaria somalensis	Juniper camphor (24.7%), α-sinensal (7.7%), 6-epi-shyobunol (6.6%), and α-zingiberene (5.8%)	*Dactylis tropicaeforme* and *Bidens pilosa*	[4]
Bassia muricata	hexahydrofarnesyl acetone, and α-gurjunene	*Chenopodium murale*	[54]

* Reported as a weed.
A study of the chemical profiles of EOs of Tunisian *Ailanthus altissima* [53] deduced the presence of a high concentration of sesquiterpenes such as \(\beta \)-caryophyllene, (Z)-caryophyllene, germacrene D, and hexahydrofarnesyl acetone. The phytotoxic activities of the EOs (at a concentration of 1 mg mL\(^{-1}\)) of the roots, stems, leaves, flowers, and fruits completely inhibited seed germination in *Lactuca sativa* [53]. *Raphanus sativus* and *Lepidium sativum* root growth was reduced under the effects of the EOs of *Nepeta curviflora* and *Nepeta nuda*. These EOs were found to have sesquiterpenes, and \(\beta \)-caryophyllene, caryophyllene oxide, and \(\beta \)-bisabolene in particular, as the main components. [31]. In addition, the EOs of *Teucrium maghrebinum*, *Teucrium polium*, and *Teucrium montbretii* were reported to be rich sources of sesquiterpenes, including caryophyllene, caryophyllene oxide, and carvacrol in particular. These EOs were found to significantly reduce the radicle growth of *Raphanus sativus* with half-maximal inhibitory concentrations (IC\(_{50}\)) of 2.66, 0.59, and 0.70 mg mL\(^{-1}\) for germination, growth of roots, and growth of shoots, respectively. The EO of *Lactuca serriola* was described to be rich with sesquiterpenes, with isoshyobunone and alloaromadendrene oxide-1 as major components. The EO of the invasive noxious plant *Eucalyptus camaldulensis*, collected from an inland area, demonstrated remarkable phytotoxic activities against *Chenopodium murale*, with IC\(_{50}\) values of 2.66, 0.59, and 0.70 mg mL\(^{-1}\) for germination, growth of roots, and growth of shoots, respectively. A coastal sample of the same species exhibited more allelopathic activity, with IC\(_{50}\) values of 1.58, 0.45, and 0.66 mg mL\(^{-1}\) [7]. Sesquiterpenes were determined to be the major class of EOs of *Heliotropium curassavicum*, and hexahydrofarnesyl acetone, (\(\alpha \)) -caryophyllene oxide, and farnesyl acetone were the major compounds. In 2019, Abd El-Gawad and his co-authors reported that EOs from the leaves of the Egyptian *Xanthium strumarium* exhibited allelopathic effects against *Bidens pilosa*, and a concentration of 1000 \(\mu \)L L\(^{-1}\) inhibited seed, root, and shoot germination growth by 97.34%, 98.45%, and 93.56%, respectively [3]. In the EO of *Xanthium strumarium*, the sesquiterpenoids 1,5-dimethyltetralin, eudesmol, and l-borneol were the major identified compounds. The EO of *Symphyotrichum squamatum* collected from Egypt was analyzed and found to be enriched in sesquiterpenes such as humulene, epoxide, (\(\alpha \)) -spathulenol, and (\(\alpha \)) -caryophyllene oxide [15]. The EO of this plant was reported to have a strong and concentration-dependent allelopathic effect against *Bidens pilosa* weeds. The EO of *Cullen plicata*, rich in sesquiterpenes such as (\(\alpha \)) -caryophylleneoxide, Z-nerolidol, tau cadinol, and \(\alpha \)-cadinol, was reported to completely inhibit germination in *Bidens pilosa* and *Uropedium picroides* at 200 \(\mu \)L L\(^{-1}\) with respective IC\(_{50}\) values of 49.39 and 17.86 \(\mu \)L L\(^{-1}\) [50]. The EO derived from *Scutellaria strigilosa* was found to have significant phytotoxic potential against *Amaranthus retroflexus* and *Poa annua* [51]. These weeds were inhibited by 86.6% and 20.0%, respectively, when treated with 1 \(\mu \)L mL\(^{-1}\) of *Scutellaria strigilosa* EOs. This active EO was found to be rich in sesquiterpenes, and germacrene D, 1-octen-3-ol, bicyclogermacrene, and \(\beta \)-caryophyllene in particular. In another study, the extracted EO of *Acroptilon repes* was examined by Razavi, et al. [52] for its phytotoxic activity against *Amaranthus retroflexus* and *Cardaria draba*. They reported that EOs from *Acroptilon repes* had a significant inhibitory effect on seed germination in *Amaranthus retroflexus*. Sesquiterpenes including caryophyllene oxide, \(\beta \)-cubebene, \(\beta \)-caeyophyllen, and \(\alpha \)-copaen were reported as the main constituents of this EO [52].
Recently, Assaeed et al. reported that sesquiterpene-rich EOs of the aerial parts of *Pulicaria somalensis* had significant phytotoxic effects on the weeds of *Dactylolinetium aegyptium* and *Bidens poliosa*, with an *IC*\(_{50}\) of 0.6 mg mL\(^{-1}\) for root growth in both weeds, and 0.7 and 1.0 mg mL\(^{-1}\) for shoot growth, respectively. Juniper camphor (24.7%), α-sinensal (7.7%), 6-epi-shyobunol (6.6%), and α-zingiberene (5.8%) were reported to be the main chemical constituents of the EO of this plant [54].

Lastly, the EO of aboveground parts of *Bassia muricata* (Chenopodiaceae) was found to have a significant reduction effect on root growth, shoot growth, and germination in *Chenopodium murale* weed, with *IC*\(_{50}\) values of 175.60 μL L\(^{-1}\), 246.65 μL L\(^{-1}\), and 308.33 μL L\(^{-1}\), respectively. Sesquiterpenes were found to be the main constituents of the EO, with an abundance of hexahydrofarnesyl acetone, and α-gurjunene [34].

6. Sesquiterpene-Rich EO-Allelopathy Correlation

The application of PCA to a dataset of 15 different plant species with EOs composed mainly of sesquiterpenoid compounds showed allelopathic activity is presented in Figure 2. Caryophyllene, caryophyllene oxide, germacrene D, spathulenol, and hexahydrofarnesyl acetone were the sesquiterpenoids most associated with allelopathic activity. Most tested plant species were correlated to each other regarding these major EO compounds.

![Graph](image)

Figure 2. Principal component analysis of reported plants with essential oils containing sesquiterpenes as major compounds and showing allelopathic activity.

7. Phytotoxic EOs Derived from Plants Rich in Non-Terpenoids

Phytotoxic EOs with non-terpenoid major compounds are listed in Table 3. The EOs of leaves and fruits of *Ecballium elaterium* reportedly contain phenolics and hydrocarbons, including E-anethol, octyl octanoate, 3-(6,6-dimethyl-5-oxohept-2-enyl)-cyclohexanone, and tetracosane as major components [56]. The EO of the leaves was found to have an allelopathic effect on *Lactuca sativa* that was stronger than that of fruits, with a significant (12%) decrease in seed germination. In another study, Mutlu, et al. [57] found that EO rich in iridoids from *Nepeta meyeri* had a strong inhibitory effect (>50%) on seed germination of
Bromus danthoniae, Bromus intermedius, and Lactuca serriola at a concentration of 0.01% and 0.02%. Kordali, et al. [58] reported that the EO of the Turkish plant Nepeta meyeri contained 4α,α,7α,7α-β-nepetalactone and 4α,α,7α,7α-α-nepetalactone as major compounds. This EO completely inhibited germination of Amaranthus retroflexus, Chenopodium album, Cirsium arvense, and Sinapis arvensis at a concentration of 0.5 mg mL⁻¹. Iridoids, and 4α,α,7α,7α-β-nepetalactone and 4α,α,7α,7α-α-nepetalactone in particular, were determined to be the major compounds of the EO of Nepeta cataria [59]. This EO can reportedly act as an allelochemical agent against Hordeum spontaneum, Taraxacum officinale, Avena fatua, and Lipidium sativum, with dose-dependent suppression of germination [59]. Similarly, Bozok, et al. [60] reported a strong herbicidal activity for the EO of Nepeta nuda on germination and seedling growth in Raphanus sativus, Triticum aestivum, Lactuca sativa, Portulaca oleracea, and Lepidium sativum. This EO was rich in iridoids 4α,α,7α,7α-β-nepetalactone, 2(1H)-naphthalenone, and trans-octahydro-8α-methyl. Finally, Mancini, et al. [31] reported that the EOs of the two Salvia species (Salvia hierosolymitana and Salvia multicaulis) displayed phytotoxic effects on Raphanus sativus by reducing radicle elongation and seed germination. These EOs are characterized by an abundance of carbonylic compounds.

Table 3. Nonterpenoidal-rich EOs derived from plants and with significant phytotoxic activity.

Plant Name	Main Components	Major Compounds	Phytotoxic Against	Reference
Nepeta nuda	Iridoids	4α-a,7α,7α-β-nepetalactone, 2(1H)-naphthalenone, and octahydro-8α-methyl-trans-	Triticum aestivum, Raphanus sativus, Lactuca sativa, Lepidium sativum, and Portulaca oleracea	[60]
Nepeta cataria	Iridoids	4α-a,7α,7α-β-nepetalactone and 4α-a,7α,7α-α-nepetalactone	Hordeum spontaneum *, Taraxacum officinale *, Avena fatua *, and Lipidium sativum	[59]
Nepeta meyeri	Iridoids	4α-a,7α,7α-β-nepetalactone and 4α-a,7α,7α-α-nepetalactone	Amaranthus retroflexus *, Bromus danthoniae *, Bromus intermedius *, Chenopodium album *, Cynodon dactylon *, Lactuca serriola *, Portulaca oleracea *, Cirsium arvense *, and Sinapis arvensis	[57,58]
Ecballium elaterium	Phenolics and hydrocarbons	e-anethol, octyl octanoate, 3-(6,6-dimethyl-5-oxohept-2-enyl)-cyclohexanone, and tetracosane	Lactuca sativa	[56]
Pimpinella anisum	Non-terpenoidal phenols	cis-anethole	Raphanus sativus, Lactuca sativa, and Lepidium sativum	[40]
Foeniculum vulgare	Non-terpenoidal phenols	cis-anethole		

* Reported as a weed.

8. Structure-Activity Relationship Summary

Based on the data presented in Tables 1–3 and correlation analysis between phytotoxic EOs derived from different plants and their major chemical constituents (Figures 1 and 2), we concluded that the phytotoxic activities of EOs increase with terpenoid content, particularly oxygenated terpenoid content. Almost all previous studies found that increasing the oxygenation of terpenoids led to an increase in allopathic activities via inhibition of germination and growth of noxious weeds [6,16,23].
As can be seen in Table 1, oxygenated monoterpenoids are the main components of phytotoxic EOs, and their phytotoxicity was observed to increase with the degree of oxygenation. For example, the mono-oxygenated monoterpenoid 1,8-cineole (eucalyptol, \(C_{10}H_{18}O\)), was to be the main compound in several allopathic EOs derived from plants from different botanical families such as *Euphorbia heterophylla* [6], *Callistemon viminalis* [19], *Eucalyptus cladocalyx* [20], *Nepeta flavida* [28], *Majorana hortensis* [40], *Peumus boldus* [43], *Eucalyptus lehmannii* [45], *Tanacetum aucheranum*, *Tanacetum chiliphylllum* [46], *Eucalyptus salubris*, *Eucalyptus brockwayii*, and *Eucalyptus dundasii* [14].

In addition, linalool and borneol were found to be the major compounds in numerous phytotoxic oils, such as *Salvia sclarea* [16], *Artemisia absinthium* [20], *Origanum acutidens* [22], *Erioccephalus africanus* [23], *Nepeta flavida* [28], *Zataria multiflora* [38], *Agastache rugosa* [44], *Salvia officinalis*, and *Ocimum basilicum* [40], and *Tanacetum chiliophyllum* [46]. It is therefore clear that the oxygenated monoterpenoids 1,8-cineole, linalool, and borneol play significant and effective roles as allopathic agents and more research into their phytotoxic activity and phytotoxic mechanism(s) is recommended.

Similarly, careful analysis of sesquiterpene-rich phytotoxic EOs revealed that an increase in oxygenated sesquiterpene levels can enhance the phytotoxic activity of an EO. The data supplied in Table 2 and PCA analysis suggest the major oxygenated sesquiterpenes caryophyllene and its derivatives, as well as hexahydrofarnesyl acetone, can be potent phytotoxic agents. The phytotoxic EOs derived from *Baccharis patens* [29,30], *Heliotropium curassavicum* [7], *Cullen plicata* [50], *Scutellaria strigillosa* [51], *Acroptilon repens* [52], *Lantana camara* [23], *Teucrium arduini*, *Teucrium magrebimum*, *Teucrium polium*, *Teucrium montbretii* [31], and *Ailanthus altissima* [53] were reported to have all or one of \(\beta\)-caryophyllene, (-)-caryophyllene, and caryophyllene oxide as primary compounds. These reports indicate a strong correlation between the phytotoxic activities of EOs and the presence of these compounds as main components. Hexahydrofarnesyl acetone has been described as an essential compound in the phytotoxic EOs of *Launaea mucronata*, *Launaea nudicaulis* [6], *Heliotropium curassavicum* [7], and *Ailanthus altissima* [53]. The authors of these studies also concluded that compounds with hexahydrofarnesyl acetone as a main constituent can play a major role as phytotoxic mediators.

EOs derived from aromatic plants typically consist of low-molecular-weight terpenoids, including mono, sesqui-, and diterpenoids as well as non-terpenoid components [14]. Two plants belonging to the *Nepeta* genus were reported that containing iridoid-rich EOs such as *Nepeta meyeri* [57,58] and *Nepeta cataria* [59]. The two iridoids 4a-\(\alpha\),7-\(\alpha\),7a-\(\beta\)-nepetalactone and 4a-\(\alpha\),7-\(\beta\),7a-a-nepetalactone were reported to be the main phytotoxic mediators in the EOs of these two species. The two compounds should, therefore, be subjected to further study to evaluate their allopathic abilities against several noxious weeds.

Author Contributions: A.I.E. and A.M.A.-E. contributed to the conceptualization, data collection, analysis of data, visualization, and writing of the first draft of the manuscript. A.I.E., A.M.A.-E., A.E.-N.G.E.G., A.M.A., S.L.A.-R., A.S.A., T.A.M., M.I.N., and Y.H.D. contributed to writing—review and editing of the manuscript. All authors discussed the results, commented on the paper, and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deputyship for Research & Innovation, “Ministry of Education” in Saudi Arabia for funding this research work through the project number IFKSURP-113 and the APC was funded also by the same project.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innovation, “Ministry of Education” in Saudi Arabia for funding this research work through the project number IFKSURP-113. The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

Conflicts of Interest: The authors declare no conflict of interest.
24. Ulukanli, Z.; Çenet, M.; Öztürk, B.; Bozok, F.; Karabörklü, S.; Demirci, S.C. Chemical characterization, phytotoxic, antimicrobial and insecticidal activities of Vitex agnus-castus' essential oil from East Mediterranean Region. J. Essent. Oil Bear. Plants 2015, 18, 1500–1507. [CrossRef]
25. Kaskhooli, A.B.; Saharkhiz, M.J. Essential oil compositions and natural herbicide activity of four Denaei Thyme (Thymus daenensis Celak.) ecotypes. J. Essent. Oil Bear. Plants 2014, 17, 859–874. [CrossRef]
26. Ulukanli, Z.; Çenet, M.; İnce, H.; Yılmaztekin, M. Antimicrobial and herbicidal activities of the essential oil from the Mediterranean Thymus eigii. J. Essent. Oil Bear. Plants 2018, 21, 214–222. [CrossRef]
27. Ulukanli, Z.; Bozok, F.; Çenet, M.; İnce, H.; Demirci, S.C.; Sezer, G. Secondary metabolites and bioactivities of Thymbra spicata var. spicata in Amanos mountains. J. Essent. Oil Bear. Plants 2016, 19, 1754–1761. [CrossRef]
28. Bozok, F. Herbicidal Activity of Nepeta florida Essential Oil. J. Essent. Oil Bear. Plants 2018, 21, 1687–1693. [CrossRef]
29. Silva, E.R.; Overbeck, G.E.; Soares, G.L.G. Phytotoxicity of volatiles from fresh and dry leaves of two Asteraceae shrubs: Evaluation of seasonal effects. S. Afr. J. Bot. 2014, 93, 14–18. [CrossRef]
30. Da Silva, E.R.; Lazarotto, D.C.; Pawlowski, A.; Schwambach, J.; Soares, G.L.G. Antioxidant Evaluation of Cellak.) ecotypes. J. Essent. Oil Bear. Plants 2015, 21, 485–492. [CrossRef]
31. Mancini, E.; Arnold, N.A.; De Martino, L.; De Feo, V.; Formisano, C.; Rigano, D.; Senatore, F. Chemical composition and phytotoxic effects of essential oils of Salvia hierosolymitana Boiss. and Salvia multicaulis Vahl. var. simplicifolia Boiss. growing wild in Lebanon. Molecules 2009, 14, 4725–4736. [CrossRef]
32. Kaur, S.; Singh, H.P.; Mittal, S.; Batish, D.R.; Kohli, R.K. Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Ind. Crop. Prod. 2010, 32, 54–61. [CrossRef]
33. Aragão, F.; Palmieri, M.; Ferreira, A.; Costa, A.; Queiroz, V.; Pinheiro, P.; Andrade-Vieira, L. Phytotoxic and cytotoxic effects of Eucalyptus essential oil on lettuce (Lactuca sativa L.). Allelopath. J. 2015, 35, 259–272.
34. Pinheiro, P.F.; Costa, A.V.; Alves, T.d.A.; Galter, I.N.; Pinheiro, C.A.; Pereira, A.F.; Oliveira, C.M.R.; Fontes, M.M.P. Phytotoxicity and cytotoxicity of essential oil from leaves of Plectranthus amboinicus, carvacrol, and thymol in plant bioassays. J. Agric. Food Chem. 2015, 63, 8981–8990. [CrossRef]
35. Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Burhan, A.; Erdogan, S.; Çenet, M.; KARAASLAN, M.G. Chemical composition, antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia and Pinus pinea resin essential oils. Chin. J. Nat. Med. 2014, 12, 901–910. [CrossRef]
36. Amri, I.; Gargouri, S.; Hamrouni, L.; Hanana, M.; Fezzani, T.; Jamoussi, B. Chemical composition, phytotoxic and antifungal activities of Pinus pinea essential oil. J. Pest. Sci. 2012, 85, 199–207. [CrossRef]
37. Ulukanli, Z.; Karabörklü, S.; Bozok, F.; Çenet, M.; Öztürk, B.; Balcilar, M. Antimicrobial, insecticidal and phytotoxic activities of Coriandrum sativum L. Essential oil. J. Herb. Med. 2016, 2016, 1754–1761. [CrossRef]
38. Saharkhiz, M.J.; Smaeli, S.; Merikhi, M. Essential oil analysis and phytotoxic activity of two ecotypes of Zataria multiflora Boiss. growing in Iran. Nat. Prod. Res. 2010, 24, 1598–1609. [CrossRef]
39. Mahdavikia, F.; Saharkhiz, M.J. Phytotoxic activity of essential oil and water extract of peppermint (Mentha x piperita L. CV. Mitcham). J. Appl. Res. Med. Aromat. Plants 2015, 2, 146–153. [CrossRef]
40. De Almeida, L.F.R.; Frei, F.; Mancini, E.; De Martino, L.; De Feo, V. Phytotoxic activities of Mediterranean essential oils. Molecules 2010, 15, 4309–4323. [CrossRef]
41. Zahed, N.; Hosni, K.; Ben Braham, N.; Kallel, M.; Sebei, H. Allelopathic effect of Schinus molle essential oils on wheat germination. Acta Physiol. Plant. 2010, 32, 1221–1227. [CrossRef]
42. De Oliveira, M.S.; da Costa, W.A.; Pereira, D.S.; Botelho, J.R.S.; de Alencar Menezes, T.O.; de Aguiar Andrade, E.H.; da Silva, S.H.M.; da Silva Sousa Filho, A.P.; de Carvalho Junior, R.N. Chemical composition and phytotoxic activity of clove (Syzygium aromaticum) essential oil obtained with supercritical CO2. J. Supercrit. Fluid. 2013, 72, 146–153. [CrossRef]
43. Verdeguer, M.; Garcia-Rellán, D.; Boira, H.; Pérez, E.; Gandolfo, S.; Blázquez, M.A. Herbicidal activity of Peganum boldus and Drimys winteri essential oils from Chile. Molecules 2011, 16, 403–411. [PubMed]
44. Kim, J. Phytotoxic and antimicrobial activities and chemical analysis of leaf essential oil from Agastache rugosa. J. Plant. Biol. 2008, 51, 276–283. [CrossRef]
45. Grichi, A.; Nasr, Z.; Khouja, M.L. Phytotoxic effects of essential oil from Eucalyptus lehmannii and its possible use as a bioherbicide. Bull. Environ. Pharmacol. Life Sci. 2016, 5, 17–23.
46. Salamci, E.; Kordali, S.; Kotan, R.; Cakir, A.; Kayadibi, Y. Chemical compositions, antimicrobial and herbicidal effects of essential oils isolated from Turkish Tanacetum aucheranum and Tanacetum chiliphylum var. chiliphylum. Biochem. Syst. Ecol. 2007, 35, 569–581. [CrossRef]
47. Singh, R.; Ahluwalia, V.; Singh, P.; Kumar, N.; Prakash Sati, O.; Satì, N. Antifungal and phytotoxic activity of essential oil from root of Senecio amplexicaulis Kunth. (Asteraceae) growing wild in high altitude-Himalayan region. Nat. Prod. Res. 2016, 30, 1875–1879. [CrossRef] [PubMed]
48. Ahluwalia, V.; Sidodia, R.; Walia, S.; Satì, O.P.; Kumar, J.; Kundu, A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J. Pest. Sci. 2014, 87, 341–349. [CrossRef]
49. Pawlowski, A.; Kaltchuk-Santos, E.; Brasil, M.; Caramão, E.; Zini, C.; Soares, G. Chemical composition of Schinus lentiscifolius March. essential oil and its phytotoxic and cytotoxic effects on lettuce and onion. S. Afr. J. Bot. 2013, 88, 198–203. [CrossRef]
50. Abd El-Gawad, A.M. Chemical constituents, antioxidant and potential allelopathic effect of the essential oil from the aerial parts of *Cullen plicata*. *Ind. Crops Prod.* 2016, 80, 36–41. [CrossRef]

51. Zhu, X.; Han, C.; Gao, T.; Shao, H. Chemical composition, phytotoxic and antimicrobial activities of the essential oil of *Scutellaria strigillosa* Hemsley. *J. Essent. Oil Bear. Plants* 2016, 19, 664–670. [CrossRef]

52. Razavi, S.M.; Narouei, M.; Majrohi, A.A.; Chamanabad, H.R.M. Chemical constituents and phytotoxic activity of the essential oil of *Acroptilon repens* (L.) De from Iran. *J. Essent. Oil Bear. Plants* 2012, 15, 943–948. [CrossRef]

53. El Ayeb-Zakhama, A.; Ben Salem, S.; Sakka-Rouis, L.; Flamini, G.; Ben Jannet, H.; Harzallah-Skhiri, F. Chemical composition and phytotoxic effects of essential oils obtained from *Alanthus altissima* (Mill.) swing cultivated in Tunisia. *Chem. Biodivers.* 2014, 11, 1216–1227. [CrossRef] [PubMed]

54. Abd El-Gawad, A.; El Gendy, A.; El-Amier, Y.; Gaara, A.; Omer, S.; Al-Rowaily, S.; Assaeed, A.; Al-Rashed, S.; Elshamy, A. Essential oil of *Bassia muricata*: Chemical characterization, antioxidant activity, and allelopathic effect on the weed *Chenopodium murale*. *Saudi J. Biol. Sci.* 2020, 27, 1900–1906. [CrossRef] [PubMed]

55. Martino, L.D.; Formisano, C.; Mancini, E.; Feo, V.D.; Piozzi, F.; Rigano, D.; Senatore, F. Chemical composition and phytotoxic effects of essential oils from four *Teucrium* species. *Nat. Prod. Commun.* 2010, 5, 1969–1976. [CrossRef] [PubMed]

56. Razavi, S.M.; Nejad-Ebrahimi, S. Phytochemical analysis and allelopathic activity of essential oils of *Echallium elaterium* A. Richard growing in Iran. *Nat. Prod. Res.* 2010, 24, 1704–1709. [CrossRef] [PubMed]

57. Mutlu, S.; Atici, Ö.; Esim, N.; Mete, E. Essential oils of catmint (*Nepeta meyeri* Benth.) induce oxidative stress in early seedlings of various weed species. *Acta Physiol. Plant.* 2011, 33, 943–951. [CrossRef]

58. Kordali, S.; Tazegul, A.; Cakir, A. Phytotoxic effects of *Nepeta meyeri* Benth. extracts and essential oil on seed germinations and seedling growths of four weed species. *Rec. Nat. Prod.* 2015, 9, 404–418.

59. Saharkhiz, M.J.; Zadnour, P.; Kakouei, F. Essential oil analysis and phytotoxic activity of catnip (*Nepeta cataria* L.). *Am. J. Essent. Oils Nat. Prod.* 2016, 4, 40–45.

60. Bozok, F.; Cenet, M.; Sezer, G.; Ulukanli, Z. Essential oil and bioherbicidal potential of the aerial parts of *Nepeta nuda* subsp. *albiflora* (Lamiaceae). *J. Essent. Oil Bear. Plants* 2017, 20, 148–154. [CrossRef]