Coherence degree characteristic of production, industrial and food security of agro-industrial complex subsystems

E A Vysotskaya¹ and L V Briantseva²

¹ Voronezh State Agricultural University, 1, Mitchurina st., Voronezh, 394087, Russia
² Voronezh State Agricultural University, 1, Mitchurina st., Voronezh, 394087, Russia

E-mail: blv2466@mail.ru

Abstract. The article substantiates the urgent need to assess the coherence degree of production, industrial and food security in the framework of the state agricultural development program implementation. The authors combine two approaches to assessing industrial and production security, and also the processes of ensuring industrial security are considered using the example of dairy production. The small-scale coherence degree of the industrial component in ensuring the food security of Russia is shown.

1. Introduction

It is well known that the successful development of the modern Russian agro-industrial complex is possible only taking into account the achievement of national independence, in particular, production and food security issues of the country [1;2;3]. In 2010, the Government approved the Food Security Doctrine, which prescribes the necessary ratio of domestic and imported products in the country, as well as market risk zones. In this regard, indicators for the production of domestic grain (99.4% at a rate of 95%), sugar (95.6% at a rate of 80%), vegetable oil (81.5% at a rate of 80%), as well as meat and meat products (92.8% at a rate of 85%) have been met.

The specialists of the Ministry of Agriculture determined that in recent years Russia has achieved food security values in almost all key areas: grain, vegetable oil, sugar, meat and meat products. The lag in milk production is observed, however, the implementation of state support measures allowed an increase in raw materials production in 2018 by 1.5% compared to 2017 - up to 30.6 million tons. The Government Agency expects that the positive trend will continue in 2019, and the increase in production will be 1.6% - up to 31.1 million tons.

The authors' trends analysis of the main AIC production subsystems functioning notes the need of import-substituting orientation of their development to ensure, first of all, production security (since the imported products intervention is caused not only by food products supply but also resource-technological and technical components for food production, as well as ancillary and supporting types of economic activity) [1 3; 14; 15].

2. Materials and methods

In 2018, the share of Russian milk in the domestic market was 84.2% with a threshold value not less than 90%. The milk-processing production AIC subsystem in Russia is a combination of organizational and economic relations that significantly reduce the food security of Russia. The low
investment attractiveness of dairy cattle at the beginning of the post-sanction period severely limited activity in the industry.

In our opinion, in the milk processing subsystem, it is advisable to create an agri-food formation which will ensure that interrelated interests of its participants are taken into account [4] and achieve the benefits of integration based on such properties as self-determination, self-regulation, self-financing, self-development, etc., in accordance with the emergence law and, as a result, increased integration of economic entities.

In this regard, the authors combined two approaches to the production security assessment:

1) the potential of ensuring industrial and production security by agro-food formation is estimated;

2) after creation of agro-food formation, the results of its activities are evaluated - contribution of the cluster to food security.

To characterize the coherence degree of production, industrial and food security of the formations in the agro-industrial complex, we propose to determine the import intervention levels in tabular form.

Stages of import intervention	Dairy and milk processing production	Coherence degree of security
1-import of sub-sub-raw materials	Purchase of zooveterinary drugs	Production
2-import of sub-raw materials	Purchase of breeding males	Production
3-import of raw materials	Supply of fresh (frozen) meat and milk powder	Industrial and production
4-import of similar finished products	Supply of meat and milk processing products	Food

The first stage of import intervention involves the supply of zooveterinary preparations components, which analogues are not produced by Russian chemical organizations, and currently, the import is the only possible option to comply with technological regulations (that is, an economic assessment of the agri-food formation potential at this level is not advisable). Since the results of the import intervention at this stage primarily affect the competitiveness of domestic cattle breeds, and as a result their use, it seems necessary to determine the domestic breeding potential on two main components: agricultural and production.

The sanctions imposed against Russia by a number of Western countries and the response of the Russian government had a stimulating effect on import substitution in the economy. Import substitution in 2019 is within 30%, which means that all goods, products and services produced in Russia make up only 30%, the rest has to be purchased abroad [5;6;8]. Import substitution is possible under the condition of good production capacities and the creation of competitive enterprises, able to produce quality products at the appropriate prices. Further import decline is possible due to development and stimulation of new technologies and additionally created production.

In response to foreign sanctions, the Russian government has banned some products shipped from the United States and the EU. The list of banned products includes beef and other cattle meat, poultry, pork, fish and some crustaceans, as well as sausages, cheese, vegetables and fruits.

The main directions of import substitution in agriculture are seed production, cows breeding (based on the method of embryo transplantation), fish processing, gardening, and vegetable growing. Small and medium-sized businesses have a chance to realize their potential. In the absence of foreign competition, entrepreneurs have unlimited opportunities [7; 9].
Table 2. Production of the main types of import-substituting food products in the Russian Federation

Product Description	2017	2018	2017 in percentage correlation to 2018
Fresh, chilled or frozen cattle meat (beef and veal), including for baby nutrition	205	227	110.7
Frozen cattle meat (beef and veal), including for baby nutrition	56.7	70.7	124.5
Fresh, chilled or frozen pork, including for baby nutrition	2171	2414	111.2
Meat and poultry by-products, including chilled poultry meat, including for baby nutrition	4839	4877	100.8
Live marine fish, not fish farming products	112	154	138.1
Fresh or chilled marine fish, not fish farming products	855	847	99.1
Fish fillet, other fish meat (including minced meat), fresh or chilled	17.3	17.4	100.5
Frozen fish	3087	3057	99.0
Frozen fish fillet	148	155	104.7
Dried, salted and fresh fish or fish in brine	106	111	105.2
Smoked fish, including fillet	58.4	65.3	111.9
Frozen crustaceans	69.9	82.4	117.9
Frozen vegetables (except potatoes) and mushrooms for short-term storage	63.0	55.7	88.4
Canned vegetables (except potatoes) and mushrooms	34.5	38.3	111.0
Fresh or heat-processed, frozen fruits, berries and nuts	17.3	16.6	95.8
Liquid processed milk, including milk for baby nutrition	5390	5466	101.4
Cream	133	150	113.1
Cottage cheese	486	501	103.2
Butter	270	267	98.7
Cheese	464	467	100.6
Condensed milk products, million standard tins	837	806	96.3
Cultured milk products (except cottage cheese and cottage cheese products)	2896	2820	97.4

3. Discussion of results
Food security is considered one of the main indicators of socio-economic development of the state. At the World Food Summit, it was stated that food security exists when all people, at all times, have physical, social and economic access to sufficient, safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life, therefore, at the top of the rating are those countries in which food is most accessible to the population. According to the Food Security Doctrine food security of the Russian Federation is the state of the country’s economy that ensures food...
independence of the Russian Federation, physical and economic availability of foodstuffs to every citizen that meet the requirements of the laws of the Russian Federation on technical regulation, in quantities no less than the balanced food consumption rates required to support active and healthy lifestyle.

The cumulative value of the industrial and production security degree is determined by the lowest value of agricultural and production components:

$$K_1 = \text{MIN} (K_{1C}, K_{1P}),$$

$$K_1$$ - potential stage of production security, %;

$$K_{1C}$$ - potential stage of agricultural component of production security, %;

$$K_{1P}$$ - potential stage of production component of production security, %;

The agricultural component is the aggregate ability of organizations to provide the necessary amount of domestic pedigree livestock in the country. The choice of these coefficients is due to the negative dynamics of changes in the number of breeding farms throughout the territory of the Russian Federation, including farms specializing dairy cattle breeding.

At the second stage, the main factors of import intervention are the supply of breeding males, as well as agricultural equipment and components:

$$K_2 = \text{MIN} (K_{2C}, K_{2P}),$$

$$K_2$$ - potential stage of production security, %.

At the third stage of the import intervention, the authors identified only one component – industrial, since the intervention is mainly characterized by the import of fresh (frozen) meat and milk powder. Therefore, there is a correlation:

$$K_3 = K_{3II}.$$

In this regard, the level of industrial component is determined as follows:

$$K_{3II} = \frac{\sum M_{\beta_3j}}{O_{\text{cr},\text{neoh}3}} \times \Pi_{\text{cr}3} \times B_{\text{cr}3} \times 100\%,$$

$$K_{3II}$$ - potential level of industrial component, %;

$$M_{\beta_3j}$$ - production capacity of the j-th raw material processing plant (actual), tpd;

$$O_{\text{cr},\text{neoh}3}$$ - the amount of milk necessary to ensure the physiological needs of the population, tons;

$$\Pi_{\text{cr}3}$$ - production season duration of plants (standard), days;

$$B_{\text{cr}3}$$ - finished products output of plants (normative).

Due to expansion of the directions and volumes of state support for the dairy industry, the production of commercial milk is increasing and in 2018 the growth amounted to 0.5 million tons. An increase in demand for Russian dairy products in both domestic and export markets - 76.1% in 2013 to 84.2% in 2018-is also a serious incentive to maintain investment activity [10;11;12].

4. Conclusion

In conclusion, we note that the potential level of ensuring production and, consequently, food security in Russia is characterized by the lowest value of agricultural or industrial components since the level of one determines the effectiveness of the other.
Now the Russian authorities are reviewing the Food Security Doctrine. The new document will take into account economic restrictions, WTO accession, as well as closer interaction of countries within the EAEU. The country’s food independence will be assessed not only in terms of self-sufficiency but also export potential of industries. Physical and economic accessibility of products for citizens will also be analyzed.

References
[1] Altukhov A I 2016 Food Security of the Russian Federation: Assessment Methodology Issues *Economics of Agricultural and Processing Enterprises* 7 2
[2] Ivanov V N and Seregin S N 2015 Agro-industrial policy of the EAEU: ensuring food security *Sugar* 10 14
[3] Ivanov V N, Seregin S N, Greenko V S 2014 Import substitution in the food market of Russia: the main factors limiting the solution of this problem *Sugar* 9 21
[4] Ushachev I G 2016 Import substitution in the agro-industrial complex of Russia: trends, problems, ways of development *Economy of agricultural and processing enterprises* 1 2
[5] Manevich V E 2017 Long-term macroeconomic processes and conditions of Russian economy growth *Voprosy Ekonomiki* 1 40-63
[6] Leonidov A V 2017 On some directions of theoretical economy development *Bulletin of Irkutsk State University. Series Mathematics* 2 (34) 189-192
[7] Tsvetkov V A, Dudin M N, Lyasnikov N V 2019 Analytical approaches to assessment of economic security of the region *Economy of Region* 1 1-12
[8] Mau V A 2018 At the end of the global crisis: economic challenges 2017-2019 *Voprosy Ekonomiki* 1 5-29
[9] Aivazyan S A, Berezniatski A N and Brodsky B E 2017 Macroeconomic modelling of the Russian economy *Applied Econometrics* 3 (47) 5-27
[10] Samygin D Y, Baryshnikov N G and Mizyurkin L A 2017 Project model of agricultural economy development: food aspect *Economy of Region* 2 591-603
[11] Ershov M V 2019 Ten years after the global crisis: risks and prospects *Voprosy Ekonomiki* 1 37-53
[12] Belova T N 2019 Import substitution processes in the agro-food sector *Economy of Region* 1 285-297
[13] Bezrukova T L, Sibiryatkina I V, Ryzhkov A O and Bryantseva L V 2015 Development and approbation of the technique of the assessment of expediency and budgetary productivity of introduction of the tax privilege *Mediterranean Journal of Social Sciences* 36 67-80
[14] Bryantseva L V, Makushnikova E S 2014 Theoretical foundations of effective management of organization development *FES: Finance. Economy* 1 5-9
[15] Bezrukova T L, Bezrukov B A, Bryantseva L V, Orobinskaya I V, Kazmin A G and Pozdeev V L 2017 Conceptual aspects of tax system development in cyclic economy *Contributions to Economics*. № 9783319454610 287-303