Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

ALESSANDRO CIMATTI
FBK-IRST
ALBERTO GRIGGIO and ROBERTO SEBASTIANI
DISI, Università di Trento

The problem of computing Craig Interpolants has recently received a lot of interest. In this paper, we address the problem of efficient generation of interpolants for some important fragments of first order logic, which are amenable for effective decision procedures, called Satisfiability Modulo Theory solvers.

We make the following contributions. First, we provide interpolation procedures for several basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach to interpolate combinations of theories, that applies to the Delayed Theory Combination approach.

Efficiency is ensured by the fact that the proposed interpolation algorithms extend state of the art algorithms for Satisfiability Modulo Theories. Our experimental evaluation shows that the MathSAT SMT solver can produce interpolants with minor overhead in search, and much more efficiently than other competitor solvers.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—Mechanical theorem proving
General Terms: Theory, Algorithms
Additional Key Words and Phrases: Craig Interpolation, Decision Procedures, SMT
Note for reviewers. The table of contents is added only for the sake of reviewer’s convenience, and will be removed in the final version if the paper is accepted.

Contents

1 Introduction 3

2 Background and state-of-the-art 5
 2.1 Satisfiability Modulo Theory – SMT 5
 2.2 Algorithms for SMT .. 6
 2.3 Interpolation in SMT .. 7
 2.3.1 Interpolants for conjunctions of $LA(Q)$-literals 9

3 From SMT($LA(Q)$) solving to SMT($LA(Q)$) interpolation 10
 3.1 Interpolation with non-strict inequalities 11
 3.1.1 The original Dutertre-de Moura algorithm 11
 3.1.2 Our proof-producing variant 12
 3.2 Interpolation with strict inequalities and disequalities 14
 3.3 Obtaining stronger interpolants 17

4 From SMT(DL) solving to SMT(DL) interpolation 18

5 From SMT($UTVPI$) solving to SMT($UTVPI$) interpolation 20
 5.1 Graph-based interpolation for $UTVPI$ on the Rationals 21
 5.2 Graph-based interpolation for $UTVPI$ on the Integers 23

6 Computing interpolants for combined theories via DTC 28
 6.1 Background ... 28
 6.1.1 Resolution proofs with NO vs. resolution proofs with DTC ... 28
 6.1.2 Interpolation with Nelson-Oppen 31
 6.2 From DTC solving to DTC Interpolation 32
 6.2.1 Eliminating AB-mixed equalities by exploiting ie-locality ... 32
 6.2.2 Generating ie-local proofs in DTC 36
 6.3 Discussion ... 39
 6.4 Generating multiple interpolants 40

7 Experimental evaluation 42
 7.1 Description of the benchmark sets 42
 7.2 Comparison with the state-of-the-art tools available 42

8 Conclusions and Future Work 45
1. INTRODUCTION

One of the most successful applications of computational logic is Formal Verification, that aims at proving (or disproving) certain properties of the behaviours of a reactive system. In recent years, also thanks to the impressive improvements of SAT solvers, a wide variety of verification methods based on SAT solving have been proposed. These methods proved effective for discrete state systems, most notably hardware components. The approach is made practical by the fact that SAT solvers, in addition to proving efficiently the satisfiability of huge propositional formulas, provide several functionalities, such as model generation, proof production, extraction of unsatisfiable cores, and generation of Craig interpolants (interpolation). In particular, since the seminal paper of McMillan [McMillan 2003], interpolation has been recognized to be a substantial tool for verification in the case of Boolean systems [Cabodi et al. 2006; Li and Somenzi 2006; Marques-Silva 2007].

One of the main limitations of SAT-based approaches, is in their expressive power. Many systems of practical interest, containing integer or real valued variables, such as software, and timed and hybrid systems, can not be represented directly within propositional logic. This has prompted research in the analysis of fragments of first order logic: given a formula referring to variables, the problem is to find a satisfying assignment in a theory of interest (e.g. linear arithmetic). This field, referred to as Satisfiability Modulo Theory (SMT), has resulted in substantial theoretical results, and in very effective decision procedures, known as SMT solvers. State of the art SMT solvers complement the Boolean SAT algorithms with specialized decision procedures for conjunctions of literals in some given theory (theory solvers). In addition to checking satisfiability, SMT solvers are able to generate models, produce proofs, and extract unsatisfiable cores. This has allowed, to lift many SAT-based verification algorithms to SMT-based verification, as well as to open up the way to abstraction-refinement with SMT.

Quite surprisingly, however, the research on interpolation for SMT has not kept the pace of SMT solving. In fact, the current approaches to producing interpolants for fragments of first order theories [McMillan 2005; Yorsh and Musuvathi 2005; Rybalchenko and Sofronie-Stokkermans 2007; Kroening and Weissenbacher 2007; Kapur et al. 2006; Jain et al. 2008] all suffer from a number of problems. Some of the approaches are severely limited in terms of their expressiveness. For instance, the tool described in [Rybalchenko and Sofronie-Stokkermans 2007] can only deal with conjunctions of literals, whilst the recent work described in [Kroening and Weissenbacher 2007] can not deal with many useful theories. Furthermore, very few tools are available [Rybalchenko and Sofronie-Stokkermans 2007; McMillan 2005], and these tools do not seem to scale particularly well. More than to naïve implementation, this appears to be due to the underlying algorithms, that substantially deviate from or ignore choices common in state-of-the-art SMT. For instance, in the domain of linear arithmetic over the rationals ($\mathcal{LA}(\mathbb{Q})$), strict inequalities are encoded in [McMillan 2005] as the conjunction of a weak inequality and a disequality; although sound, this choice destroys the structure of the constraints, forces reasoning in the combination of theories $\mathcal{LA}(\mathbb{Q}) \cup \mathcal{EUF}$, requires additional splitting, and ultimately results in a larger search space. Similarly, the fragment of Difference Logic ($\mathcal{DL}(\mathbb{Q})$) is dealt with by means of a general-purpose algorithm for full $\mathcal{LA}(\mathbb{Q})$, rather than one of the well-known and much faster specialized algorithms. An even more fundamental example is the fact that state-of-the-art SMT reasoners use dedicated algorithms for Linear Arithmetic [Dutertre and de Moura 2006].
In this paper, we tackle the problem of generating interpolants for SMT problems, fully leveraging the algorithms used in a state of the art SMT solver. In particular, our main contributions are:

1. An interpolation algorithm for \(\mathcal{LA}(\mathbb{Q}) \) that exploits a variant of the algorithm presented in [Dutertre and de Moura 2006], and that is capable of handling the full \(\mathcal{LA}(\mathbb{Q}) \) – including strict inequalities and disequalities – without the need of theory combination;

2. An algorithm for computing interpolants in \(\mathcal{DL} \) – both over the rationals and over the integers – that builds on top of the efficient graph-based decision algorithms given in [Cotton and Maler 2006; Nieuwenhuis and Oliveras 2005], that ensures that the generated interpolants are still in the \(\mathcal{DL} \) fragment of linear arithmetic, and that allows for computing stronger interpolants than the existing algorithms for the full linear arithmetic;

3. An algorithm for computing interpolants in \(\mathcal{UT VPI} \) – both over the rationals and over the integers – that builds on an encoding of \(\mathcal{DL} \). The algorithm ensures that the generated interpolants are still in the \(\mathcal{UT VPI} \) fragment of linear arithmetic, and that allows for computing stronger interpolants than the existing algorithms for the full linear arithmetic;

4. An algorithm for computing interpolants in a combination \(T_1 \cup T_2 \) of theories based on the Delayed Theory Combination (DTC) method [Bozzano et al. 2006; Bruttomesso et al. 2008a] (as an alternative to the traditional Nelson-Oppen method), which does not require ad-hoc interpolant combination methods, but exploits the propositional interpolation algorithm for performing the combination of theories;

5. An efficient implementation of all the proposed techniques within the MATHSAT 4 SMT solver [Bruttomesso et al. 2008b], and an extensive experimental evaluation on a wide range of benchmarks.

This comprehensive approach advances the state of the art in two main directions: on one side, we show how to extend efficient SMT solving techniques to SMT interpolation, for a wide class of important theories, without paying a substantial price in performance; on the other side, we present an interpolating SMT solver that is able to produce interpolants for a much wider class of problems than its competitors, and, on problems that can be dealt with by other tools, shows dramatic improvements in performance, often by orders of magnitude.

Content. The paper is structured as follows. In §2 we present some background on interpolation in SMT. In §3, §4 and §5 we show how to efficiently interpolate \(\mathcal{LA}(\mathbb{Q}), \mathcal{DL} \) and \(\mathcal{UT VPI} \) respectively. In §6 we discuss interpolation for combined theories. The proposed techniques are experimentally evaluated in §7. In §8 we draw some conclusions, and outline directions for future work. The discussion of related work is distributed in the technical sections (§3–§6).

Note to reviewers. Some of the material contained in this paper, in a less detailed form, has been published in two conference papers [Cimatti et al. 2008; 2009].
2. BACKGROUND AND STATE-OF-THE-ART

2.1 Satisfiability Modulo Theory – SMT

Our setting is standard first order logic. A 0-ary function symbol is called a constant. A term is a first-order term built out of function symbols and variables. We write \(t_1 \equiv t_2 \) when the two terms \(t_1 \) and \(t_2 \) are syntactically identical. If \(t_1, \ldots, t_n \) are terms and \(p \) is a predicate symbol, then \(p(t_1, \ldots, t_n) \) is an atom. A literal is either an atom or its negation. A formula \(\phi \) is built in the usual way out of the universal and existential quantifiers, Boolean connectives, and atoms. We call a formula quantifier-free if it does not contain quantifiers, and ground if it does not contain free variables. A clause is a disjunction of literals. A formula is said to be in conjunctive normal form (CNF) if it is a conjunction of clauses. For every non-CNF \(T \)-formula \(\varphi \), an equisatisfiable CNF formula \(\psi \) can be generated in polynomial time [Tseitin 1968].

We also assume the usual first-order notions of interpretation, satisfiability, validity, logical consequence, and theory, as given, e.g., in [Enderton 1972]. A first-order theory, \(T \), is a set of first-order sentences. In this paper, we consider only theories with equality. A structure \(A \) is a model of a theory \(T \) if \(A \) satisfies every sentence in \(T \). A formula is satisfiable in \(T \) (or \(T \)-satisfiable) if it is satisfiable in a model of \(T \).

We call Satisfiability Modulo (the) Theory \(T \), SMT(\(T \)), the problem of deciding the satisfiability of quantifier-free formulas\(^1\) with respect to a background theory \(T \). We denote formulas with \(\phi, \psi, A, B, C, I \), \(T \)-variables with \(x, y, z \), Boolean variables with \(p, q \) and numeric constants with \(a, b, c, l, u \). Given a theory \(T \), we write \(\phi \models_T \psi \) (or simply \(\phi \models \psi \)) to denote that the formula \(\psi \) is a logical consequence of \(\phi \) in the theory \(T \). With \(\phi \not\models \psi \) we denote that all uninterpreted (in \(T \)) symbols of \(\phi \) appear in \(\psi \). If \(C \) is a clause, \(C \not\models C' \) is the clause obtained by removing all the literals whose atoms do not occur in \(B \), and \(C' \not\models B \) that obtained by removing all the literals whose atoms do occur in \(B \). With a little abuse of notation, we might sometimes denote conjunctions of literals \(l_1 \land \ldots \land l_n \) as sets \{\(l_1, \ldots, l_n \)\} and vice versa. If \(\eta \equiv \{l_1, \ldots, l_n\} \), we might write \(\neg \eta \) to mean \(\neg l_1 \lor \ldots \lor \neg l_n \). A theory \(T \) is stably-infinite iff every quantifier-free \(T \)-satisfiable formula is satisfiable in an infinite model of \(T \). A theory \(T \) is convex iff, for every collection \(l_1, \ldots, l_k, e_1, \ldots, e_n \) of literals in \(T \) s.t. \(e_1, \ldots, e_n \) are in the form \((x = y)\), \(x, y \) being variables, we have that \(\{l_1, \ldots, l_k\} \models_T \bigvee_{i=1}^n e_i \) if and only if \(\{l_1, \ldots, l_k\} \models_T e_i \) for some \(1 \leq i \leq n \).

Given a decidable first-order theory \(T \), we call a theory solver for \(T \), \(T \)-solver, any tool able to decide the satisfiability in \(T \) of sets/conjunctions of ground atomic formulas and their negations — theory literals or \(T \)-literals — in the language of \(T \). If \(S \equiv \{l_1, \ldots, l_n\} \) is a set of literals in \(T \), we call \((T)\)-conflict set any subset \(\eta \) of \(S \) which is inconsistent in \(T \).\(^2\) We call \(\neg \eta \) a \(T \)-lemma. (Notice that \(\neg \eta \) is a \(T \)-valid clause.)

Definition 2.1 Resolution proof. Given a set of clauses \(S \equiv \{C_1, \ldots, C_n\} \) and a clause \(C \), we call a resolution proof of the deduction \(\bigwedge_i C_i \models_T C \) a DAG \(\mathcal{P} \) such that:

1. \(C \) is the root of \(\mathcal{P} \);
2. the leaves of \(\mathcal{P} \) are either elements of \(S \) or \(T \)-lemmas;

\(^1\)The general definition of SMT deals also with quantified formulas. Nevertheless, in this paper we restrict our interest to quantifier-free formulas.

\(^2\)In the next sections, as we are in an SMT(\(T \)) context, we often omit specifying “in the theory \(T \)” when speaking of consistency, validity, etc.
(3) each non-leaf node C' has two premises C_{p_1} and C_{p_2} such that $C_{p_1} \equiv p \lor \phi_1$, $C_{p_2} \equiv \neg p \lor \phi_2$, and $C' \equiv \phi_1 \lor \phi_2$. The atom p is called the pivot of C_{p_1} and C_{p_2}.

If C is the empty clause (denoted with \bot), then P is a resolution proof of $(T \cdot)$-unsatisfiability for $\bigwedge_i C_i$.

We consider the SMT(T) problem for some background theory T.

Definition 2.2 Craig Interpolant. Given an ordered pair (A, B) of formulas such that $A \land B \models_T \bot$, a Craig interpolant (simply “interpolant” hereafter) is a formula I s.t.:

(i) $A \models_T I$,

(ii) $I \land B \models_T \bot$,

(iii) $I \leq A$ and $I \leq B$.

2.2 Algorithms for SMT

A standard technique for solving the SMT(T) problem is to integrate a DPLL-based SAT solver and a T-solver in a “lazy” manner. The idea underlying every lazy SMT(T) procedure is that (a complete set of) the truth assignments for the propositional abstraction of ϕ are enumerated and checked for satisfiability in T; the procedure either returns sat if one T-satisfiable truth assignment is found, or it returns unsat otherwise.

Figure 1 presents a simplified schema of a lazy SMT(T) procedure, called the off-line schema. The bijective function $T2P$ (“Theory-to-Boolean”), called Boolean abstraction, maps Boolean atoms into themselves and non-Boolean T-atoms into fresh Boolean atoms — so that two atom instances in ϕ are mapped into the same Boolean atom iff they are syntactically identical — and extends to T-formulas and sets of T-formulas in the obvious way — i.e., $T2P(\neg \phi_1) \equiv \neg T2P(\phi_1)$, $T2P(\phi_1 \land \phi_2) \equiv T2P(\phi_1) \land T2P(\phi_2)$ for each Boolean connective \land, $T2P(\{\phi_i\}) \equiv \{T2P(\phi_i)\}$. The function $P2T$ (“propositional-to-theory”), called refinement, is the inverse of $T2P$. The propositional abstraction ϕ^P of the input formula ϕ is given as input to a SAT solver based on the DPLL algorithm [Davis et al. 1962; Zhang and Malik 2002], which either decides that ϕ^P is unsatisfiable, and hence ϕ is T-unsatisfiable, or returns a satisfying assignment μ^P; in the latter case, $P2T(\mu^P)$ is given as input to T-solver. If $P2T(\mu^P)$ is found T-consistent, then ϕ is T-consistent. If not, T-solver returns the conflict set η which caused the T-inconsistency of $P2T(\mu^P)$; the abstraction of the T-lemma $\neg \eta$, $T2P(\neg \eta)$, is then added as a clause to ϕ^P. Then the DPLL solver is restarted from scratch on the resulting formula.

Practical implementations follow a more elaborated schema, called the on-line schema (see [Sebastiani 2007]). As before, ϕ^P is given as input to a modified version of DPLL, and
when a satisfying assignment μ^p is found, the refinement μ of μ^p is fed to the T-solver; if μ is found T-consistent, then ϕ is T-consistent; otherwise, T-solver returns the conflict set η which caused the T-inconsistency of $P^2 T(\mu^p)$. Then the clause $\neg \eta^p$ is added in conjunction to ϕ^p, either temporarily or permanently (T-learning), and the algorithm backtracks up to the highest point in the search where one of the literals in $\neg \eta^p$ is unassigned (T-backjumping), and therefore its value is (propositionally) implied by the others in $\neg \eta^p$. Another important improvement is early pruning (EP): before every literal selection, intermediate assignments are checked for T-satisfiability and, if not T-satisfiable, they are pruned (since no refinement can be T-satisfiable). Finally, theory propagation can be used to reduce the search space by allowing the T-solvers to explicitly return truth values for unassigned literals, which can be unit-propagated by the SAT solver. The interested reader is pointed to, e.g., [Sebastiani 2007] for details and further references.

With a small modification of the embedded DPLL engine, a lazy SMT solver can also be used to generate a resolution proof of unsatisfiability (see e.g. [van Gelder 2007]).

2.3 Interpolation in SMT

The use of interpolation in formal verification has been introduced by McMillan in [McMillan 2003] for purely-propositional formulas, and it was subsequently extended to handle SMT($\mathcal{EUF} \cup \mathcal{LA}(\mathbb{Q})$) formulas in [McMillan 2005], \mathcal{EUF} being the theory of equality and uninterpreted functions. The technique is based on earlier work by Pudlák [Pudlák 1997], where two interpolant-generation algorithms are described: one for computing interpolants for propositional formulas from resolution proofs of unsatisfiability, and one for generating interpolants for conjunctions of (weak) linear inequalities in $\mathcal{LA}(\mathbb{Q})$. An interpolant for a pair (A, B) of CNF formulas is constructed from a resolution proof of unsatisfiability of $A \land B$, generated as outlined in §2.1. The algorithm works by computing a formula I_C for each clause in the resolution refutation, such that the formula I_\bot associated to the empty root clause is the computed interpolant. The algorithm can be described as follows:

Algorithm 1: Interpolant generation for SMT(T)

1. Generate a resolution proof of unsatisfiability P for $A \land B$.
2. For every T-lemma $\neg \eta$ occurring in P, generate an interpolant $I_{\neg \eta}$ for $(\eta \land B, \eta \downarrow B)$.
3. For every input clause C in P, set $I_C \equiv C \downarrow B$ if $C \in A$, and $I_C \equiv \top$ if $C \in B$.
4. For every inner node C of P obtained by resolution from $C_1 \equiv p \lor \phi_1$ and $C_2 \equiv \neg p \lor \phi_2$, set $I_C \equiv I_C_1 \lor I_C_2$ if p does not occur in B, and $I_C \equiv I_C_1 \land I_C_2$ otherwise.
5. Output I_\bot as an interpolant for (A, B).

Example 2.1

Consider the following two formulas in $\mathcal{LA}(\mathbb{Q})$:

$$A \equiv (p \lor (0 \leq x_1 - 3x_2 + 1)) \land (0 \leq x_1 + x_2) \land (\neg q \lor \neg (0 \leq x_1 + x_2))$$

$$B \equiv (\neg (0 \leq x_3 - 2x_1 - 3) \lor (0 \leq 1 - 2x_3)) \land (\neg p \lor q) \land (p \lor (0 \leq x_3 - 2x_1 - 3))$$

Figure 2(a) shows a resolution proof of unsatisfiability for $A \land B$, in which the clauses from A have been underlined. The proof contains the following $\mathcal{LA}(\mathbb{Q})$-lemma (displayed...
in boldface):

\[\neg(0 \leq x_1 - 3x_2 + 1) \lor \neg(0 \leq x_1 + x_2) \lor \neg(0 \leq x_3 - 2x_1 - 3) \lor \neg(0 \leq 1 - 2x_3). \]

Figure 2(b) shows, for each clause \(\Theta_i \) in the proof, the formula \(I_{\Theta_i} \), generated by Algorithm 1. For the \(\mathcal{L}A(\mathcal{Q}) \)-lemma, it is easy to see that \(0 \leq 4x_1 + 1 \) is an interpolant for \(((0 \leq x_1 - 3x_2 + 1) \land (0 \leq x_1 + x_2), (0 \leq x_3 - 2x_1 - 3) \land (0 \leq 1 - 2x_3)) \) as required by Step 2 of the algorithm. (We will show how to obtain this interpolant in Example 2.2.) Therefore, \(I_1 \equiv (p \lor (0 \leq 4x_1 + 1)) \land \neg q \) is an interpolant for \((A, B) \).

Algorithm 1 can be applied also when \(A \) and \(B \) are not in CNF. In this case, it suffices to pre-convert them into CNF by using disjoint sets of auxiliary Boolean atoms in the usual way [McMillan 2005].

Notice that Step 2. of the algorithm is the only part which depends on the theory \(T \), so that the problem of interpolant generation in SMT(\(T \)) reduces to that of finding interpolants for \(T \)-lemmas. To this extent, in [McMillan 2005] McMillan gives a set of rules for constructing interpolants for \(T \)-lemmas in the theory of \(\mathcal{EUF} \), that of weak linear inequalities \((0 \leq t) \) in \(\mathcal{L}A(\mathcal{Q}) \), and their combination. Linear equalities \((0 = t) \) can be reduced to conjunctions \((0 \leq t) \land (0 \geq -t) \) of inequalities. Thanks to the combination of theories, also strict linear inequalities \((0 < t) \) can be handled in \(\mathcal{EUF} \cup \mathcal{L}A(\mathcal{Q}) \) by replacing them with the conjunction \((0 \leq t) \land (0 \neq t) \), but this solution can be very inefficient.

The combination \(\mathcal{EUF} \cup \mathcal{L}A(\mathcal{Q}) \) can also be used to compute interpolants for other theories, such as those of lists, arrays, sets and multisets [Kapur et al. 2006].

In [McMillan 2005], interpolants in the combined theory \(\mathcal{EUF} \cup \mathcal{L}A(\mathcal{Q}) \) are obtained

\[\text{ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.}\]
by means of ad-hoc combination rules. The work in [Yorsh and Musuvathi 2005], instead, presents a method for generating interpolants for $T_1 \cup T_2$ using the interpolant-generation procedures of T_1 and T_2 as black-boxes, using the Nelson-Oppen approach [Nelson and Oppen 1979].

Also the method of [Rybalchenko and Sofronie-Stokkermans 2007] allows to compute interpolants in $\text{EUF} \cup \mathcal{L}A(\mathbb{Q})$. Its peculiarity is that it is not based on unsatisfiability proofs. Instead, it generates interpolants in $\mathcal{L}A(\mathbb{Q})$ by solving a system of constraints using an off-the-shelf Linear Programming (LP) solver. The method allows both weak and strict inequalities. Extension to uninterpreted functions is achieved by means of reduction to $\mathcal{L}A(\mathbb{Q})$ using a hierarchical calculus [Sofronie-Stokkermans 2006]. The algorithm works only with conjunctions of atoms, although in principle it could be integrated in Algorithm 1 to generate interpolants for T-lemmas in $\mathcal{L}A(\mathbb{Q})$. As an alternative, the authors show in [Rybalchenko and Sofronie-Stokkermans 2007] how to generate interpolants for formulas that are in Disjunctive Normal Form (DNF).

Another different approach is explored in [Kroening and Weissenbacher 2007]. There, the authors use the eager SMT approach to encode the original SMT problem into an equisatisfiable propositional problem, for which a propositional proof of unsatisfiability is generated. This proof is later “lifted” to the original theory, and used to generate an interpolant in a way similar to Algorithm 1. At the moment, the approach is however limited to the theory of equality only (without uninterpreted functions).

All the above techniques construct one interpolant for (A, B). In general, however, interpolants are not unique. In particular, some of them can be better than others, depending on the particular application domain. In [Jhala and McMillan 2005], it is shown how to manipulate proofs in order to obtain stronger interpolants. In [Jhala and McMillan 2006; 2007], instead, a technique to restrict the language used in interpolants is presented and shown to be useful in preventing divergence of techniques based on predicate abstraction.

One of the most important applications of interpolation in Formal Verification is abstraction refinement [Henzinger et al. 2004; McMillan 2006]. In such setting, every input problem ϕ has the form $\phi \equiv \phi_1 \wedge \ldots \wedge \phi_n$, and the interpolating solver is asked to compute several interpolants I_1, \ldots, I_{n-1} corresponding to different partitions of ϕ into A_i and B_i, such that

$$\forall i, \ A_i \equiv \phi_1 \wedge \ldots \wedge \phi_i, \ \text{and} \ B_i \equiv \phi_{i+1} \wedge \ldots \wedge \phi_n.$$ \hspace{1cm} (1)

Moreover, I_1, \ldots, I_{n-1} should be related by the following:

$$I_i \wedge \phi_{i+1} \models I_{i+1}$$ \hspace{1cm} (2)

A sufficient condition for (2) to hold is that all the I_i's are computed from the same proof of unsatisfiability II for ϕ [Henzinger et al. 2004].

2.3.1 **Interpolants for conjunctions of $\mathcal{L}A(\mathbb{Q})$-literals.** We recall the algorithm of [McMillan 2005] for computing interpolants from $\mathcal{L}A(\mathbb{Q})$-proofs of unsatisfiability, for conjunctions of equalities and weak inequalities in $\mathcal{L}A(\mathbb{Q})$.

Fig. 3. $\mathcal{L}A(\mathbb{Q})$-proof rules for a conjunction Γ of equalities and weak inequalities.
An $\mathcal{LA}(\mathbb{Q})$-proof rule R for a conjunction Γ of equalities and weak inequalities is either an element of Γ, or it has the form $\frac{P}{\phi}$, where ϕ is an equality or a weak inequality and P is a sequence of proof rules, called the premises of R. An $\mathcal{LA}(\mathbb{Q})$-proof of unsatisfiability for a conjunction of equalities and weak inequalities Γ is simply a rule in which $\phi \equiv 0 \leq c$ and where c is a negative numerical constant.\(^4\)

Similarly to [McMillan 2005], we use the proof rules of Figure 3: LEQEO for deriving inequalities from equalities, and COMB for performing linear combinations.\(^5\)

Given an $\mathcal{LA}(\mathbb{Q})$-proof of unsatisfiability P for a conjunction Γ of equalities and weak inequalities partitioned into (A, B), an interpolant I can be computed simply by replacing every atom $0 \leq t$ occurring in B (resp. $0 = t$) with $0 \leq 0$ (resp. $0 = 0$) in each leaf sub-rule of P, and propagating the results: the interpolant is then the single weak inequality $0 \leq t$ at the root of P [McMillan 2005].

Example 2.2. Consider the following sets of $\mathcal{LA}(\mathbb{Q})$ atoms:

$$A \overset{\text{def}}{=} \{(0 \leq x_1 - 3x_2 + 1), (0 \leq x_1 + x_2)\}$$

$$B \overset{\text{def}}{=} \{(0 \leq x_3 - 2x_1 - 3), (0 \leq 1 - 2x_3)\}.$$

An $\mathcal{LA}(\mathbb{Q})$-proof of unsatisfiability P for $A \land B$ is the following:

$$\frac{1 \ast (0 \leq x_1 - 3x_2 + 1) \quad 4 \ast (0 \leq x_1 + x_2) \quad 2 \ast (0 \leq x_3 - 2x_1 - 3) \quad 1 \ast (0 \leq 1 - 2x_3)}{1 \ast (0 \leq 4x_1 + 1) \quad 1 \ast (0 \leq -4x_1 - 5)}$$

Thus, the interpolant obtained is $(0 \leq 4x_1 + 1)$.

3. FROM SMT($\mathcal{LA}(\mathbb{Q})$) SOLVING TO SMT($\mathcal{LA}(\mathbb{Q})$) INTERPOLATION

Traditionally, SMT solvers used some kind of incremental simplex algorithm [Vanderbei 2001] as T-solver for the $\mathcal{LA}(\mathbb{Q})$ theory. Recently, Dutertre and de Moura [Dutertre and de Moura 2006] have proposed a new simplex-based algorithm, specifically designed for integration in a lazy SMT solver. The algorithm is extremely suitable for SMT, and SMT solvers embedding it were shown to significantly outperform (often by orders of magnitude) the ones based on other simplex variants. It has now been integrated in several SMT solvers, including ARGOLIB, CVC3, MATHSAT, YICES, and Z3. Remarkably, this algorithm allows for handling also strict inequalities.

In this Section, we show how to exploit this algorithm to efficiently generate interpolants for $\mathcal{LA}(\mathbb{Q})$ formulas. Combined with the interpolation for the SMT(T) problem described in is then obtained by combining the general In §3.1 we begin by considering the case

\(^4\)In the following, we might sometimes write \perp as a synonym of an atom “$0 \leq c$” when c is a negative numerical constant.

\(^5\)In [McMillan 2005] the LEQEO rule is not used in $\mathcal{LA}(\mathbb{Q})$, because the input is assumed to consist only of inequalities.
in which the input atoms are only equalities and non-strict inequalities. In this case, we only need to show how to generate a proof of unsatisfiability, since then we can use the interpolation rules defined in [McMillan 2005]. Then, in §3.2 we show how to generate interpolants for problems containing also strict inequalities and disequalities.

3.1 Interpolation with non-strict inequalities

3.1.1 The original Dutertre-de Moura algorithm. In its original formulation, the Dutertre-de Moura algorithm assumes that the variables x_i are partitioned a priori in two sets, hereafter denoted as \hat{B} (“initially basic” or “dependent”) and \hat{N} (“initially non-basic” or “independent”), and that the algorithm receives as inputs two kinds of atomic formulas: \[\text{a set of equations eq.}, \text{one for each } x_i \in \hat{B}, \text{of the form } \sum_{x_j \in \hat{N}} \hat{a}_{ij} x_j + \hat{a}_{ii} x_i = 0 \text{ s.t. all } \hat{a}_{ij} \text{'s are numerical constants;}
\]

\[\text{elementary atoms of the form } x_j \geq l_j \text{ or } x_j \leq u_j \text{ s.t. } x_j \in \hat{B} \cup \hat{N} \text{ and } l_j, u_j \text{ are numerical constants.}
\]

In order to handle problems that are not in the above form, a satisfiability-preserving preprocessing step is applied upfront, before invoking the algorithm.

The initial equations eq. are then used to build a tableau T:

\[
\{ x_i = \sum_{x_j \in \hat{N}} a_{ij} x_j \mid x_i \in \hat{B} \},
\]

where \hat{B} (“basic” or “dependent”), \hat{N} (“non-basic” or “independent”) and a_{ij} are such that initially $B \equiv \hat{B}, \hat{N} \equiv \hat{N}$ and $a_{ij} \equiv -\hat{a}_{ij}/\hat{a}_{ii}$.

In order to decide the satisfiability of the input problem, the algorithm performs manipulations of the tableau that change the sets B and N and the values of the coefficients a_{ij}, always keeping the tableau T in (3) equivalent to its initial version. In particular, the algorithm maintains a mapping $\beta : B \cup N \rightarrow \mathbb{Q}$ representing a candidate model which, at every step, satisfies the following invariants:

\[
\forall x_j \in N, \quad l_j \leq \beta(x_j) \leq u_j, \quad \forall x_i \in B, \quad \beta(x_i) = \sum_{j \in N} a_{ij} \beta(x_j).
\]

The algorithm tries to adjust the values of β and the sets B and N, and hence the coefficients a_{ij} of the tableau, such that $l_i \leq \beta(x_i) \leq u_i$ holds also for all the x_i’s in B. Inconsistency is detected when this is not possible without violating any constraint in (4): as the bounds on the variables in \hat{N} are always satisfied by β, then there is a variable $x_i \in \hat{B}$ such that the inconsistency is caused either by the elementary atom $x_i \geq l_i$, or by the atom $x_i \leq u_i$ [Dutertre and de Moura 2006]; in the first case, \[\text{a conflict set } \eta \text{ is generated as follows:}
\]

\[
\eta = \{ x_j \leq u_j \mid x_j \in N^+ \} \cup \{ x_j \geq l_j \mid x_j \in N^- \} \cup \{ x_i \geq l_i \},
\]

where \(x_i = \sum_{x_j \in N^+} a_{ij} x_j\) is the row of the current version of the tableau T (3) corresponding to x_i, N^+ is \(\{ x_j \in N \mid a_{ij} > 0 \}\) and N^- is \(\{ x_j \in N \mid a_{ij} < 0 \}\).

Notice that η is a conflict set in the sense that it is made inconsistent by (some of) the equations in the tableau T (3), i.e. $T \cup \eta \not\models_{\mathcal{L}A(\mathbb{Q})} \bot$. In general, however, $\eta \not\models_{\mathcal{L}A(\mathbb{Q})} \bot$.

\[\text{Notationally, we use the hat symbol } \hat{\text{to denote the initial value of the generic symbol.}}
\]

\[\text{Here we do not consider the second case } x_i \leq u_i \text{ as it is analogous to the first one.}\]
3.1.2 Our proof-producing variant. In order to make it suitable for interpolant generation, we have conceived the following variant of the Dutertre-de Moura algorithm.

We take as input an arbitrary set of inequalities \(l_k \leq \sum_h \hat{a}_{kh} y_h \) or \(u_k \geq \sum_h \hat{a}_{kh} y_h \), and apply an internal preprocessing step to obtain a set of equations and a set of elementary bounds. In particular, we introduce a “slack” variable \(s_k \) for each distinct term \(\sum_h \hat{a}_{kh} y_h \) occurring in the input inequalities. Then, we replace such term with \(s_k \) (thus obtaining \(l_k \leq s_k \) or \(u_k \geq s_k \)) and add an equation \(s_k = \sum_h \hat{a}_{kh} y_h \). Notice that we introduce a slack variable even for “elementary” inequalities \((l_k \leq y_k) \). With this transformation, the initial tableau \(T(3) \) is:

\[
\{ s_k = \sum_h \hat{a}_{kh} y_h \}_{k},
\]

s.t. \(\hat{B} \) is made of all the slack variables \(s_k \)'s, \(\hat{N} \) is made of all the original variables \(y_h \)'s, and the elementary atoms contain only slack variables \(s_k \)'s.

Then the algorithm proceeds as described above, producing a set \(\eta(5) \) in case of inconsistency. In our variant of the algorithm, we can use \(\eta \) to generate a conflict set \(\eta' \), thanks to the following theorem.

THEOREM 3.1. *In the set \(\eta \) of (5), \(x_i \) and all the \(x_j \)'s are slack variables introduced by our preprocessing step. Moreover, the set \(\eta' = \eta_{N^+} \cup \eta_{N^-} \cup \eta_h \) is a conflict set, where*

\[
\eta_{N^+} \overset{def}{=} \{ u_k \geq \sum_h \hat{a}_{kh} y_h | s_k \equiv x_j \text{ and } x_j \in \mathcal{N}^+ \}, \\
\eta_{N^-} \overset{def}{=} \{ l_k \leq \sum_h \hat{a}_{kh} y_h | s_k \equiv x_j \text{ and } x_j \in \mathcal{N}^- \}, \\
\eta_h \overset{def}{=} \{ l_k \leq \sum_h \hat{a}_{kh} y_h | s_k \equiv x_i \}.
\]

PROOF. We consider the case in which \(\eta(5) \) is generated from a row \(x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j \) in the tableau \(T(3) \) such that \(\beta(x_i) < l_i \). In [Dutertre and de Moura 2006] it is shown that in this case the following facts hold:

\[
\forall x_j \in \mathcal{N}^+, \beta(x_j) = u_j, \quad \text{and} \quad \forall x_j \in \mathcal{N}^-, \beta(x_j) = l_j.
\]

(We recall that \(\mathcal{N}^+ = \{ x_j \in \mathcal{N} | a_{ij} > 0 \} \) and \(\mathcal{N}^- = \{ x_j \in \mathcal{N} | a_{ij} < 0 \} \).) The bounds \(u_j \) and \(l_j \) can be introduced only by elementary atoms. Since in our variant the elementary atoms contain only slack variables, each \(x_j \) must be a slack variable (namely \(s_k \)). The same holds for \(x_i \) (since its value is bounded by \(l_i \)).

Now consider \(\eta \) again. In [Dutertre and de Moura 2006] it is shown that when a conflict is detected because \(\beta(x_i) < l_i \), then the following fact holds:

\[
\beta(x_i) = \sum_{x_j \in \mathcal{N}^+} a_{ij} u_j + \sum_{x_j \in \mathcal{N}^-} a_{ij} l_j.
\]

(8)

From the \(i \)-th row of the tableau \(T(3) \) we can derive

\[
0 \leq \sum_{x_j \in \mathcal{N}} a_{ij} x_j - x_i.
\]

(9)

If we take each inequality \(0 \leq u_j - x_j \) multiplied by the coefficient \(a_{ij} \) for all \(x_j \in \mathcal{N}^+ \), each inequality \(0 \leq x_j - l_j \) multiplied by coefficient \(-a_{ij} \) for all \(x_j \in \mathcal{N}^- \), and the inequality \(0 \leq x_i - l_i \) multiplied by 1, and we add them to (9), we obtain

\[
0 \leq \sum_{\mathcal{N}^+} a_{ij} u_j + \sum_{\mathcal{N}^-} a_{ij} l_j - l_i,
\]

(10)

which by (8) is equivalent to \(0 \leq \beta(x_i) - l_i \). Thus we have obtained \(0 \leq c \) with \(c \equiv \beta(x_i) - l_i \), which is strictly lower than zero. Therefore, \(\eta \) is inconsistent under the definitions in
To detect the inconsistency, the algorithm performs some pivoting steps, resulting in the following tableau and elementary constraints:

\[\begin{align*}
T &\equiv \begin{cases}
s_1 = x_1 - 3x_2 & -1 \leq s_1 \\
s_2 = x_1 + x_2 & 0 \leq s_2 \\
s_3 = x_3 - 2x_1 & 3 \leq s_3 \\
s_4 = -2x_3 & -1 \leq s_4
\end{cases} \\
\end{align*} \]

To detect the inconsistency, the algorithm performs some pivoting steps, resulting in the final tableau \(T' \):

\[\begin{align*}
T' &\equiv \begin{cases}
x_2 = -\frac{1}{3} s_4 - \frac{1}{9} s_3 - \frac{1}{9} s_1 \\
s_2 = -\frac{1}{3} s_4 - \frac{2}{9} s_3 - \frac{1}{3} s_1 \\
x_1 = -\frac{1}{9} s_4 - \frac{1}{9} s_3 \\
x_3 = -\frac{1}{9} s_4
\end{cases}
\]
The final values of β are as follows:

$\beta(x_1) = \frac{7}{4}$ $\beta(x_2) = -\frac{1}{12}$ $\beta(x_3) = \frac{1}{2}$
$\beta(s_1) = -1$ $\beta(s_2) = -\frac{1}{4}$ $\beta(s_3) = 3$ $\beta(s_4) = -1$

Therefore, the bound $(0 \leq s_2)$ is violated. From the second row of T', the set η and the conflict set η' are computed:

$\eta \overset{def}{=} \emptyset \cup \{(-1 \leq s_4), (3 \leq s_3), (-1 \leq s_1)\} \cup \{(0 \leq s_2)\}$

$\eta' \overset{def}{=} \emptyset \cup \{(0 \leq 1 - 2x_3), (0 \leq x_3 - 2x_1 - 3), (0 \leq x_1 - 3x_2 + 1)\} \cup \{(0 \leq x_1 + x_2)\}$

The generated proof of unsatisfiability P is:

\[
\frac{1}{2} \ast (0 \leq 1 - 2x_3) \quad \frac{1}{2} \ast (0 \leq x_3 - 2x_1 - 3)
\]
\[
1 \ast (0 \leq -\frac{4}{3}x_1 - \frac{4}{3}) \quad \frac{1}{4} \ast (0 \leq x_1 - 3x_2 + 1)
\]
\[
1 \ast (0 \leq -x_1 - x_2 - \frac{1}{4}) \quad 1 \ast (0 \leq x_1 + x_2)
\]
\[
(0 \leq -\frac{4}{3})
\]

After replacing the inequalities of B with $(0 \leq 0)$ in P, the new proof P' is:

\[
\frac{1}{2} \ast (0 \leq 0) \quad \frac{1}{4} \ast (0 \leq 0)
\]
\[
1 \ast (0 \leq 0) \quad \frac{1}{4} \ast (0 \leq x_1 - 3x_2 + 1)
\]
\[
1 \ast (0 \leq \frac{4}{3}x_1 - x_2 + \frac{1}{3}) \quad 1 \ast (0 \leq x_1 + x_2)
\]
\[
(0 \leq \frac{4}{3}x_1 + \frac{1}{3})
\]

Thus the computed interpolant is $(0 \leq \frac{1}{3}x_1 + \frac{1}{3})$ (which is equivalent to that of Example 2.2).

3.2 Interpolation with strict inequalities and disequalities

Another benefit of the Dutertre-de Moura algorithm is that it can handle strict inequalities directly. Its method is based on the following lemma.

Lemma 3.3 Lemma 1 in [Dutertre and de Moura 2006]. A set of linear arithmetic atoms Γ containing strict inequalities $S = \{0 < t_1, \ldots, 0 < t_n\}$ is satisfiable iff there exists a rational number $\varepsilon > 0$ such that $\Gamma_\varepsilon \overset{def}{=} (\Gamma \cup S_\varepsilon) \setminus S$ is satisfiable, where $S_\varepsilon \overset{def}{=} \{\varepsilon \leq t_1, \ldots, \varepsilon \leq t_n\}$.

The idea of [Dutertre and de Moura 2006] is that of treating the infinitesimal parameter ε symbolically instead of explicitly computing its value. Strict bounds $(x < b)$ are replaced with weak ones $(x \leq b - \varepsilon)$, and the operations on bounds are adjusted to take ε into account.

We extend the same idea to the computation of interpolants. We transform every atom $(0 < t_1)$ occurring in the proof of unsatisfiability into $(0 < t_1 - \varepsilon)$. Then we compute an interpolant I_ε in the usual way. As a consequence of the rules of [McMillan 2005], I_ε is always a single atom. As shown by the following lemma, if I_ε contains ε, then it must be in the form $(0 \leq t - c \varepsilon)$ with $c > 0$, and we can rewrite I_ε into $(0 < t)$.

Theorem 3.4 Interpolation with strict inequalities. Let Γ, S, Γ_ε and S_ε be defined as in Lemma 3.3. Let Γ be partitioned into A and B, and let A_ε and B_ε be obtained from A and B by replacing atoms in S with the corresponding ones in S_ε. Let I_ε be an interpolant for $(A_\varepsilon, B_\varepsilon)$. Then:
If $\varepsilon \not\subseteq I_\varepsilon$, then I_ε is an interpolant for (A, B).
If $\varepsilon \subseteq I_\varepsilon$, then $I_\varepsilon \equiv (0 \leq t - c \varepsilon)$ for some $c > 0$, and $I_\varepsilon \models (0 < t)$ is an interpolant for (A, B).

\textbf{Proof.} Since the side condition of the COMB rule ensures that equations are combined only using positive coefficients, and since the atoms introduced in the proof either do not contain ε or contain it with a negative coefficient, if ε appears in I_ε, it must have a negative coefficient.

If ε does not appear in I_ε, then I_ε has been obtained from atoms appearing in A or B, so that I_ε is an interpolant for (A, B).

If ε appears in I_ε, since its value has not been explicitly computed, it can be arbitrarily small, so thanks to Lemma 3.3 we have that $B_\varepsilon \land I_\varepsilon \models_{\mathcal{L}(\mathbb{Q})} \bot$ implies $B \land I \models_{\mathcal{L}(\mathbb{Q})} \bot$.

We can prove that $A \models_{\mathcal{L}(\mathbb{Q})} I$ as follows. We consider some interpretation μ which is a model for A. Since ε does not occur in A, we can extend μ by setting $\mu(\varepsilon) = \delta$ for some $\delta > 0$ such that μ is a model also for A_ε. As $A_\varepsilon \models_{\mathcal{L}(\mathbb{Q})} I_\varepsilon$, μ is also a model for I_ε, and hence μ is also a model for I. Thus, we have that $A \models_{\mathcal{L}(\mathbb{Q})} I$. \qed

Notice that Theorem 3.4 can be extended straightforwardly to the case in which the interpolant is a conjunction of inequalities.

Therefore, we pick one element $(0 \neq t)$ of S^\neq at a time, and check the satisfiability of $S' \cup \{(0 < t)\}$ and $S' \cup \{(0 > t)\}$. If both are inconsistent, from the two proofs we can generate two interpolants I^- and I^+. We combine I^+ and I^- to obtain an interpolant I for (A, B): if $(0 \neq t) \in A$, then I is $I^+ \lor I^-$; if $(0 \neq t) \in B$, then I is $I^+ \land I^-$, as shown by the following lemma.

\textbf{Theorem 3.5 Interpolation for Negated Equalities.} Let A and B two conjunctions of $\mathcal{L}(A)$ atoms, and let $n \equiv (0 \neq t)$ be one such atom. Let $g \equiv (0 < t)$ and $l \equiv (0 > t)$.

If $n \in A$, then let $A^+ \equiv A \setminus \{n\} \cup \{g\}$, $A^- \equiv A \setminus \{n\} \cup \{l\}$, and $B^+ \equiv B \setminus \{n\} \cup \{g\}$, and $B^- \equiv B \setminus \{n\} \cup \{l\}$.

If $n \in B$, then let $A^+ \equiv A \setminus \{n\} \cup \{g\}$, $A^- \equiv A \setminus \{n\} \cup \{l\}$, and $B^+ \equiv B \setminus \{n\} \cup \{g\}$, and $B^- \equiv B \setminus \{n\} \cup \{l\}$.

Assume that $A^+ \land B^+ \models_{\mathcal{L}(A(Q))} \bot$, and that $A^- \land B^- \not\models_{\mathcal{L}(A(Q))} \bot$, and let I^+ and I^- be two interpolants for (A^+, B^+) and (A^-, B^-) respectively, and let

\[I \equiv \begin{cases}
I^+ \lor I^- & \text{if } n \in A \\
I^+ \land I^- & \text{if } n \in B.
\end{cases}\]

Then I is an interpolant for (A, B).

\textbf{Proof.} We have to prove that:

(i) $A \models_{\mathcal{L}(A(Q))} I$
(ii) $B \land I \models_{\mathcal{L}(A(Q))} \bot$
(iii) \(I \subseteq A \) and \(I \subseteq B \).

(i) If \(n \in A \), then \(A \models_{\mathcal{L}(Q)} g \lor l \). By hypothesis, we know that \(A^+ \models_{\mathcal{L}(Q)} I^+ \) and \(A^- \models_{\mathcal{L}(Q)} I^- \). Then trivially \(A \cup \{g\} \models_{\mathcal{L}(Q)} I^+ \) and \(A \cup \{l\} \models_{\mathcal{L}(Q)} I^- \). Therefore \(A \cup \{g\} \models_{\mathcal{L}(Q)} I^+ \lor I^- \) and \(A \cup \{l\} \models_{\mathcal{L}(Q)} I^+ \lor I^+ \), so that \(A \models_{\mathcal{L}(Q)} I \).

If \(n \in B \), then \(A^+ \equiv A \equiv A \). By hypothesis \(A \models_{\mathcal{L}(Q)} I^+ \) and \(A \models_{\mathcal{L}(Q)} I^- \), so that \(A \models_{\mathcal{L}(Q)} I \).

(ii) If \(n \in A \), then \(B^+ \equiv B^- \equiv B \). By hypothesis \(B \land I^+ \models_{\mathcal{L}(Q)} \bot \) and \(B \land I^- \models_{\mathcal{L}(Q)} \bot \).

If \(n \in B \), then \(B \models_{\mathcal{L}(Q)} g \lor l \), so that either \(B \rightarrow g \) or \(B \rightarrow l \) must hold. By hypothesis we have \(B^+ \land I^+ \models_{\mathcal{L}(Q)} \bot \), so that \(B \cup \{g\} \land I^+ \models_{\mathcal{L}(Q)} \bot \). If \(B \rightarrow g \) holds, then \(B \land I^+ \models_{\mathcal{L}(Q)} \bot \), and hence \(B \land I \models_{\mathcal{L}(Q)} \bot \). Similarly, if \(B \rightarrow l \) holds, then \(B \land I^- \models_{\mathcal{L}(Q)} \bot \), and so again \(B \land I \models_{\mathcal{L}(Q)} \bot \).

(iii) By the hypothesis, both \(I^+ \) and \(I^- \) contain only symbols common to \(A \) and \(B \), so that \(I \subseteq A \) and \(I \subseteq B \). □

Example 3.2. Consider the following sets of \(\mathcal{L}(Q) \) atoms:

\[
A \overset{\text{def}}{=} \{(0 \neq x_1 - 3x_2 + 1), (0 = x_1 + x_2)\}
\]

\[
B \overset{\text{def}}{=} \{(0 = x_3 - 2x_1 - 1), (0 = 1 - 2x_3)\}
\]

To compute an interpolant for \((A,B) \), we first split \(n \overset{\text{def}}{=} (0 \neq x_1 - 3x_2 + 1) \) into \(g \overset{\text{def}}{=} (0 < x_1 - 3x_2 + 1) \) and \(l \overset{\text{def}}{=} (0 < -x_1 + 3x_2 - 1) \), thus obtaining \(A^+ \) and \(A^- \) defined as in Theorem 3.5. We then generate two \(\mathcal{L}(Q) \)-proofs of unsatisfiability \(P^+ \) for \(A^+ \land B \) and \(P^- \) for \(A^- \land B \), and replace \(g \) in \(P^+ \) with \(g_{\varepsilon} \overset{\text{def}}{=} (0 \leq x_1 - 3x_2 + 1 - \varepsilon) \) and \(l \) in \(P^- \) with \(l_{\varepsilon} \overset{\text{def}}{=} (0 \leq -x_1 + 3x_2 - 1 - \varepsilon) \), obtaining \(P^+_{\varepsilon} \) and \(P^-_{\varepsilon} \) (we omit the names of the inference rules):

\[
\begin{align*}
P^+_{\varepsilon} \overset{\text{def}}{=} & \quad (0 \leq x_1 + x_2) & (0 \leq x_3 - 2x_1 - 1) & (0 = 1 - 2x_3) \\
(0 \leq 4x_1 + 1 - \varepsilon) & (0 \leq x_1 + x_2) & (0 \leq x_3 - 2x_1 - 1) & (0 \leq 1 - 2x_3)
\end{align*}
\]

\[
\begin{align*}
P^-_{\varepsilon} \overset{\text{def}}{=} & \quad (0 \leq -x_1 + 3x_2 - 1 - \varepsilon) & (0 \leq -x_1 + x_2) & (0 \leq x_3 - 2x_1 - 1) & (0 = 1 - 2x_3) \\
(0 \leq -4x_1 - 1 - \varepsilon) & (0 \leq -x_1 + x_2) & (0 \leq -x_1 + 3x_2 + 1) & (0 \leq -1 + 2x_3)
\end{align*}
\]

We then compute the two interpolants \(I^+_{\varepsilon} \) from \(P^+_{\varepsilon} \) and \(I^-_{\varepsilon} \) from \(P^-_{\varepsilon} \):

\[
I^+_{\varepsilon} \overset{\text{def}}{=} (0 \leq 4x_1 + 1 - \varepsilon) \quad I^-_{\varepsilon} \overset{\text{def}}{=} (0 \leq -4x_1 - 1 - \varepsilon).
\]

Therefore, according to Theorem 3.4 the two interpolants \(I^+ \) for \((A^+, B) \) and \(I^- \) for \((A^-, B) \) are:

\[
I^+ \overset{\text{def}}{=} (0 < 4x_1 + 1) \quad I^- \overset{\text{def}}{=} (0 < -4x_1 - 1).
\]

Finally, since \(n \in B \), according to Theorem 3.5, the interpolant \(I \) for \((A,B) \) is

\[
I \overset{\text{def}}{=} I^+ \lor I^- \equiv (0 < 4x_1 + 1) \lor (0 < -4x_1 - 1).
\]
3.3 Obtaining stronger interpolants

We conclude this Section by illustrating a simple technique for improving the strength of interpolants in $\mathcal{L}(\mathbb{Q})$. The technique is orthogonal to our proof-generation algorithm described in §3.1.2, and it is therefore of independent interest. It is an improvement of the general algorithm of [McMillan 2005] (and outlined in §2.3.1) for generating interpolants from $\mathcal{L}(\mathbb{Q})$-proofs of unsatisfiability.

Definition 3.6. Given two interpolants I_1 and I_2 for the same pair (A, B) of conjunctions of $\mathcal{L}(\mathbb{Q})$-literals, we say that I_1 is stronger than I_2 if and only if $I_1 \models_{\mathcal{L}(\mathbb{Q})} I_2$ but $I_2 \not\models_{\mathcal{L}(\mathbb{Q})} I_1$.

Our technique is based on the simple observation that the only purpose of the summations performed during the traversal of proof trees for computing the interpolant (as described in §2.3.1) is that of eliminating A-local variables. In fact, it is easy to see that the conjunction of the constraints of A occurring as leaves in an $\mathcal{L}(\mathbb{Q})$-proof of unsatisfiability satisfies the first two points of the definition of interpolant (Definition 2.2): if such constraints do not contain A-local variables, therefore, their conjunction is already an interpolant; if not, it suffices to perform only the summations constraints of A that are necessary to eliminate A-local variables. Moreover, such interpolant is stronger than that obtained by performing the summations with the coefficients found in the proof tree, since for any set of constraints $\{\sigma_1, \ldots, \sigma_n\}$ and any set of positive coefficients $\{c_1, \ldots, c_n\}$, $\sigma_1 \land \ldots \land \sigma_n \models_{\mathcal{L}(\mathbb{Q})} \sum_{i=1}^n c_i \ast \sigma_i$ holds.

According to this observation, our proposal can be described as: perform only those summations which are necessary for eliminating A-local variables.

Example 3.3. Consider the following sets of $\mathcal{L}(\mathbb{Q})$-atoms:

\[A \overset{\text{def}}{=} \{ (0 \leq x_1 - 3x_2 + 1), (0 \leq x_2 - \frac{1}{3}x_3), (0 \leq x_4 - \frac{3}{2}x_5 - 1) \} \]
\[B \overset{\text{def}}{=} \{ (0 \leq 3x_5 - x_1), (0 \leq x_3 - 2x_4) \} \]

and the following $\mathcal{L}(\mathbb{Q})$-proof of unsatisfiability of $A \land B$:

\[
\begin{align*}
(0 \leq x_1 - 3x_2 + 1) & \text{ 3} \ast (0 \leq x_2 - \frac{1}{3}x_3) \\
(0 \leq x_1 - x_3 + 1) & \text{ 2} \ast (0 \leq x_4 - \frac{4}{3}x_5 - 1) \\
(0 \leq x_1 - x_3 + 2x_4 - 3x_5 - 1) & \text{ (0 \leq 3x_5 - x_1)} \\
(0 \leq x_1 - x_3 + 2x_4 - 1) & \text{ (0 \leq -x_3 + 2x_4 - 1)} \\
(0 \leq x_3 - 2x_4) & \text{ (0 \leq -1)}
\end{align*}
\]

Here, the variable x_2 is A-local, whereas all the others are AB-common. The interpolant computed with the algorithm of §2.3.1 is

\[(0 \leq x_1 - x_3 + 3x_4 - 3x_5 - 1), \]

which is the result of the linear combination of all the atoms of A in the proof. However, in order to eliminate the A-local variable x_2, it is enough to combine $(0 \leq x_1 - 3x_2 + 1)$ (with coefficient 3) and $(0 \leq x_2 - \frac{1}{3}x_3)$ (with coefficient 1), obtaining $(0 \leq x_1 - x_3 + 1)$. Therefore, a stronger interpolant is

\[(0 \leq x_1 - x_3 + 1) \land (0 \leq x_4 - \frac{3}{2}x_5 - 1). \]
The technique can be implemented with a small modification of the proof-based algorithm described in §2.3.1. We associate with each node in the proof P' (which is obtained from the original proof P by replacing inequalities from B with $(0 \leq 0)$) a list of pairs $\langle\text{coefficient, inequality}\rangle$. For a leaf, this list is a singleton in which the coefficient is 1 and the inequality is the atom in the leaf itself. For an inner node (which corresponds to an application of the COMB rule), the list l is generated from the two lists l_1 and l_2 of the premises as follows:

1. Set l as the concatenation of l_1 and l_2;
2. Let c_1 and c_2 be the coefficients used in the COMB rule. Multiply each coefficient c_i' occurring in a pair $\langle c_i', 0 \leq t_i \rangle$ of l by c_1 if the pair comes from l_1, and by c_2 otherwise;
3. While there is an A-local variable x occurring in more than one pair $\langle c_i', 0 \leq t_i \rangle$ of l:
 a. Collect all the pairs $\langle c_i', 0 \leq t_i \rangle$ in which x occurs;
 b. Generate a new pair $p \equiv (1, 0 \leq \sum_i c_i' \cdot t_i)$;
 c. Add p to l, and remove all the pairs $\langle c_i', 0 \leq t_i \rangle$.

After having applied the above algorithm, we can take the conjunction of the inequalities in the list associated with the root of P' as an interpolant.

Theorem 3.7. Let P be a $\mathcal{LA}(\mathbb{Q})$-proof of unsatisfiability for a conjunction $A \land B$ of inequalities, and P' be obtained from P by replacing each inequality of B with $(0 \leq 0)$. Let $l \equiv (c_1, 0 \leq t_1), \ldots, (c_n, 0 \leq t_n)$ be the list associated with the root of P', computed as described above. Then $I \equiv \bigwedge_{i=1}^{n} (0 \leq t_i)$ is an interpolant for (A, B).

Proof. By induction on the structure of P', it is easy to prove that, for each constraint $(0 \leq t)$ in P' with its associated list $l \equiv (c_1, 0 \leq t_1), \ldots, (c_n, 0 \leq t_n)$:

1. $A \models \bigwedge_{i=1}^{n} (0 \leq t_i)$; and
2. $(0 \leq t) \equiv \sum_{i=1}^{n} c_i \cdot (0 \leq t_i)$

Since the root of P' is an interpolant for (A, B), this immediately proves the theorem. □

4. FROM SMT(\mathcal{DL}) SOLVING TO SMT(\mathcal{DL}) INTERPOLATION

Several interesting verification problems can be encoded using only a subset of \mathcal{LA}, the theory of Difference Logic (\mathcal{DL}), either over the rationals ($\mathcal{DL}(\mathbb{Q})$) or over the integers ($\mathcal{DL}(\mathbb{Z})$). \mathcal{DL} is much simpler than \mathcal{LA}, since in \mathcal{DL} all atoms are inequalities of the form $(0 \leq y - x + c)$, where x and y are variables and c is an integer constant. \(^9\) Equalities can be handled as conjunctions of inequalities. Here we do not consider the case when we also have strict inequalities $(0 < y - x + c)$ and disequalities $(0 \neq y - x + c)$, because in $\mathcal{DL}(\mathbb{Q})$ they can be handled in a way which is similar to that described in §3.2 for $\mathcal{LA}(\mathbb{Q})$, whilst in $\mathcal{DL}(\mathbb{Z})$ a strict inequality $(0 < y - x + c)$ can be rewritten a priori into a weak one $(0 \leq y - x + c - 1)$, and a disequality can be replaced by a disjunction of strict inequalities.

\(^8\)That is, x occurs in t.

\(^9\)Notice that we can assume w.l.o.g. that all constants are in \mathbb{Z} because, if this is not so, then we can rewrite the whole formula into an equivalently-satisfiable one by multiplying all constant symbols occurring in the formula by their greatest common denominator.
Very efficient solving algorithms have been conceived for \mathcal{DL} [Cotton and Maler 2006; Nieuwenhuis and Oliveras 2005]. In this section we present a specialized technique for computing interpolants in \mathcal{DL} which exploits such state-of-the-art decision procedures. Since a set of weak inequalities in \mathcal{DL} is consistent over the rationals if and only if it is consistent over the integers, our algorithm is applicable without any modifications to both $\mathcal{DL}(\mathbb{Q})$ and $\mathcal{DL}(\mathbb{Z})$ (see e.g. [Nieuwenhuis and Oliveras 2005]).

Many SMT solvers use dedicated, graph-based algorithms for checking the consistency of a set of $\mathcal{DL}(\mathbb{Q})$ atoms [Cotton and Maler 2006; Nieuwenhuis and Oliveras 2005]. Intuitively, a set S of $\mathcal{DL}(\mathbb{Q})$ atoms induces a graph whose vertexes are the variables of the atoms, and there exists an edge $x \xrightarrow{c} y$ for every $(0 \leq y - x + c) \in S$. S is inconsistent if and only if the induced graph has a cycle of negative weight.

We now extend the graph-based approach to generate interpolants. Consider the interpolation problem (A, B) where A and B are sets of inequalities as above, and let C be (the set of atoms in) a negative cycle in the graph corresponding to $A \cup B$.

If $C \subseteq A$, then A is inconsistent, in which case the interpolant is \bot. Similarly, when $C \subseteq B$, the interpolant is \top. If neither of these occurs, then the edges in the cycle can be partitioned in subsets of A and B. We call maximal A-paths of C a path $x_1 \xrightarrow{c_1} \ldots \xrightarrow{c_{n-1}} x_n$ such that (i) $x_i \xrightarrow{c_i} x_{i+1} \in A$ for $i \in [1, n-1]$, and (ii) C contains $x' \xrightarrow{c'} x_1$ and $x_n \xrightarrow{c''} x''$ that are in B. Clearly, the end-point variables x_1, x_n of the maximal A-path are such $x_1, x_n \leq A$ and $x_1, x_n \leq B$. Let the summary constraint of a maximal A-path $x_1 \xrightarrow{c_1} \ldots \xrightarrow{c_{n-1}} x_n$ be the inequality $0 \leq x_n - x_1 + \sum_{i=1}^{n-1} c_i$.

THEOREM 4.1. The conjunction of summary constraints of the A-paths of C is an interpolant for (A, B).

PROOF. Using the rules for $\mathcal{LA}(\mathbb{Q})$ of Figure 3, we build a deduction of the summary constraint of an maximal A-path from the conjunction of its corresponding set of constraints $\bigwedge_{i=1}^{n-1} (0 \leq x_{i+1} - x_i + c_i)$:

\[
\begin{align*}
(0 \leq x_2 - x_1 + c_1) & \quad (0 \leq x_3 - x_2 + c_2) \\
(0 \leq x_3 - x_1 + c_1 + c_2) & \quad (0 \leq x_4 - x_3 + c_3) \\
& \quad \ldots \\
(0 \leq x_n - x_{n-1} + c_{n-1})
\end{align*}
\]

Hence, A entails the conjunction of the summary constraints of all maximal A-paths. Then, we notice that the conjunction of the summary constraints is inconsistent with B. In fact, the weight of a maximal A-path and the weight of its summary constraint are the same. Thus the cycle obtained from C by replacing each maximal A-path with the corresponding summary constraint is also a negative cycle. Finally, we notice that every variable x occurring in the conjunction of the summary constraints is an end-point variable, and thus $x \leq A$ and $x \leq B$.

A final remark is in order. In principle, in order to generate a proof of unsatisfiability for a conjunction of $\mathcal{DL}(\mathbb{Q})$ atoms $A \land B$, the same rules used for $\mathcal{LA}(\mathbb{Q})$ [McMillan 2005] could be used. For instance, it is easy to build a proof which repeatedly applies the COMB rule with $c_1 = c_2 = 1$. In general, however, the interpolants generated from such proofs are not $\mathcal{DL}(\mathbb{Q})$ formulas anymore and, if computed starting from the same inconsistent set C, they are either identical or weaker than those generated with our method. In fact, it is easy to see that, unless our technique of §3.3 is adopted, such interpolants are in the
form \((0 \leq \sum_i t_i)\) s.t. \(\bigwedge_i (0 \leq t_i)\) is the corresponding interpolant generated with our graph-based method.

Example 4.1. Consider the following sets of \(\mathcal{DL}(\mathbb{Q})\) atoms:

\[A \triangleq \{(0 \leq x_1 - x_2 + 1), (0 \leq x_2 - x_3), (0 \leq x_4 - x_5 - 1)\}\]

\[B \triangleq \{(0 \leq x_5 - x_1), (0 \leq x_3 - x_4 - 1)\}\]

corresponding to the negative cycle on the right. It is straightforward to see from the graph that the resulting interpolant is \((0 \leq x_1 - x_3 + 1) \land (0 \leq x_4 - x_5 - 1)\), because the first conjunct is the summary constraint of the first two conjuncts in \(A\).

Applying instead the rules of Figure 3 with coefficients 1, the proof of unsatisfiability is:

\[
\frac{(0 \leq x_1 - x_2 + 1) \land (0 \leq x_2 - x_3) \land (0 \leq x_4 - x_5 - 1) \land (0 \leq x_5 - x_1) \land (0 \leq x_3 - x_4 - 1)}{(0 \leq -1)}
\]

By using the interpolation rules for \(\mathcal{LA}(\mathbb{Q})\), the interpolant we obtain is \((0 \leq x_1 - x_3 + x_4 - x_5)\), which is not in \(\mathcal{DL}(\mathbb{Q})\), and is weaker than that computed above:

\[
\frac{(0 \leq x_1 - x_2 + 1) \land (0 \leq x_2 - x_3) \land (0 \leq x_4 - x_5 - 1) \land (0 \leq 0) \land (0 \leq 0)}{(0 \leq x_1 - x_3 + x_4 - x_5)}
\]

Notice that, if instead we apply our technique of §3.3, then the \(\mathcal{LA}(\mathbb{Q})\)-interpolant generated from the above proof is identical to the \(\mathcal{DL}(\mathbb{Q})\) one above.

5. FROM SMT\((\mathcal{UTVPI})\) SOLVING TO SMT\((\mathcal{UTVPI})\) INTERPOLATION

The Unit-Two-Variables-Per-Inequality (\(\mathcal{UTVPI}\)) theory is a subtheory of linear arithmetic, in which all constraints are in the form \((0 \leq ax_1 + bx_2 + k)\), where \(k\) is a numerical constant, \(a, b \in \{-1, 0, 1\}\), and variables \(x_1, x_2\) range either over the rationals (for \(\mathcal{UTVPI}(\mathbb{Q})\)) or over the integers (for \(\mathcal{UTVPI}(\mathbb{Z})\)). Consequently, \(\mathcal{DL}(\mathbb{Q})\) is a subtheory of \(\mathcal{UTVPI}(\mathbb{Q})\), which is itself a subtheory of \(\mathcal{LA}(\mathbb{Q})\), and \(\mathcal{DL}(\mathbb{Z})\) is a subtheory of \(\mathcal{UTVPI}(\mathbb{Z})\), which is itself a subtheory of \(\mathcal{LA}(\mathbb{Z})\).

As for \(\mathcal{DL}\), \(\mathcal{UTVPI}\) can be treated more efficiently than the full \(\mathcal{LA}\), and several specialized algorithms for \(\mathcal{UTVPI}\) have been proposed in the literature. Traditional techniques are based on the iterative computation of the transitive closure of the constraints [Harvey and Stuckey 1997; Jaffar et al. 1994]; more recently [Lahiri and Musuvathi 2005] proposed a novel technique based on a reduction to \(\mathcal{DL}\), so that graph-based techniques can be exploited, resulting into an asymptotically-faster algorithm. We adopt the latter approach and show how the graph-based interpolation technique of §4 can be extended to \(\mathcal{UTVPI}\), for both the rationals (§5.1) and the integers (§5.2).
5.1 Graph-based interpolation for \(UTVP\) on the Rationals

We analyze first the simpler case of \(UTVP\) on the Rationals. Miné [Miné 2001] showed that it is possible to encode a set of \(UTVP\) constraints into a \(DL\) one in a satisfiability-preserving way. The encoding works as follows. We use \(x_i \) to denote variables in the \(UTVP\) domain and \(u, v \) for variables in the \(DL\) domain. For every variable \(x_i \) in \(UTVP\), we introduce two distinct variables \(x^+_i \) and \(x^-_i \) in \(DL\). We introduce a mapping \(\Upsilon \) from \(DL\) variables to \(UTVP\) signed variables, such that \(\Upsilon(x^+_i) = x_i \) and \(\Upsilon(x^-_i) = -x_i \). \(\Upsilon \) extends to (sets of) constraints in the natural way: \(\Upsilon(0 \leq ax_1 + bx_2 + k) = (0 \leq a \Upsilon(x_1) + b \Upsilon(x_2) + c) \), and \(\Upsilon\{c_i\}_{i \in \mathbb{I}} = \{\Upsilon(c_i)\}_{i \in \mathbb{I}} \). We say that \((x_1) = x_i \) and \((x^-_1) = x^+_i \). We say that the constraints \((0 \leq u - v) \) and \((0 \leq (v) - (u)^-\) s.t. \(u, v \in \{x^+_i, x^-_i\}\) are dual. We encode each \(UTVP\) constraint into the conjunction of two dual \(DL\) constraints, as represented in Figure 4. For each \(DL\) constraint \((0 \leq u - v + k), (0 \leq \Upsilon(v) - \Upsilon(u) + k) \) is the corresponding \(UTVP\) constraint.

Notice that the two dual \(DL\) constraints in the right column of Figure 4 are just different representations of the original \(UTVP\) constraint. (The two dual constraints encoding a single-variable constraint are identical, so that their conjunction is collapsed into one constraint only.) The resulting set of constraints is satisfiable in \(DL\) if and only if the original one is satisfiable in \(UTVP\) [Miné 2001; Lahiri and Musuvathi 2005].

Consider the pair \((A, B) \) where \(A \) and \(B \) are sets of \(UTVP\) constraints. We apply the map of Figure 4 and we encode \((A, B) \) into a \(DL\) pair \((A', B') \), and build the constraint graph \(G(A' \land B') \). If \(G(A' \land B') \) has no negative cycle, we can conclude that \(A' \land B' \) is \(DL\)-consistent, and hence that \(A \land B \) is \(UTVP\)-consistent; otherwise, \(A' \land B' \) is \(DL\)-inconsistent, and hence \(A \land B \) is \(UTVP\)-inconsistent [Miné 2001; Lahiri and Musuvathi 2005]. In fact, it is straightforward to observe that for any set of \(DL\) constraints \(\{C_1, \ldots, C_n, C\} \) resulting from the encoding of some \(UTVP\) constraints, if \(\bigwedge_{i=1}^{n} C_i \models_{DL} C \) then \(\bigwedge_{i=1}^{n} \Upsilon(C_i) \models_{UTVP} \Upsilon(C) \).

When \(A \land B \) is inconsistent, we can generate an \(UTVP\)-interpolant by extending the graph-based approach used for \(DL\).

Theorem 5.1. Let \(A \land B \) be an inconsistent conjunction of \(UTVP\), and let \(G(A' \land B') \) be the corresponding graph of \(DL\)-constraints. Let \(I' \) be a \(DL\)-interpolant built from \(G(A' \land B') \) with the technique described in §4. Then \(I \models \Upsilon(I') \) is an interpolant for \((A, B) \).

Proof. (i) \(I' \) is a conjunction of summary constraints, so it is in the form \(\bigwedge_{i} C_i \). Therefore \(A' \models_{DL} C_i \) for all \(i \), and so by the observation above \(A \models_{UTVP} \Upsilon(C_i) \). Hence, \(A \models_{UTVP} I \). (ii) From the \(DL\)-inconsistency of \(I' \land B' \) we immediately derive that \(I \land B \) is \(UTVP\)-inconsistent. (iii) \(I \preceq A \) and \(I \preceq B \) derive from \(I' \preceq A' \).
and \(I' \preceq B' \) by the definitions of \(\Upsilon \) and the map of Figure 4. □

As with the \(\mathcal{DL}(\mathbb{Q}) \) case, in principle, it is possible to generate a proof of unsatisfiability for a conjunction of \(\mathcal{UTVPI}(\mathbb{Q}) \) atoms \(A \land B \) by repeatedly applying the \textsc{Combi} rule for \(\mathcal{LA}(\mathbb{Q}) \) [McMillan 2005] with \(c_1 = c_2 = 1 \). As with \(\mathcal{DL}(\mathbb{Q}) \), however, the interpo
ts generated from such proofs may not be \(\mathcal{UTVPI}(\mathbb{Q}) \) formulas anymore. Moreover, if computed starting from the same inconsistent set \(C \) and unless our technique of §3.3 is adopted, they are either identical or weaker than those generated with our graph-based method, since they are in the form \((0 \leq \sum_i t_i) \) s.t. \(\bigwedge_i (0 \leq t_i) \) is the interpolant generated with our method.

Example 5.1. Consider the following sets of \(\mathcal{UTVPI}(\mathbb{Q}) \) constraints:

\[
A = \{(0 \leq -x_2 - x_1 + 3), (0 \leq x_1 + x_3 + 1), \]
\[
(0 \leq -x_3 - x_4 - 6), (0 \leq x_5 + x_4 + 1)\}
\]
\[
B = \{(0 \leq x_2 + x_3 + 3), (0 \leq x_6 - x_5 - 1), (0 \leq x_4 - x_6 + 4)\}
\]

By the map of Figure 4, they are converted into the following sets of \(\mathcal{DL}(\mathbb{Q}) \) constraints:

\[
A' = \{(0 \leq x_1^+ - x_2^+ + 3), (0 \leq x_3^- + x_4^-), \]
\[
(0 \leq x_3^+ - x_1^- + 1), (0 \leq x_1^+ - x_3^- + 1), \]
\[
(0 \leq x_4^+ - x_3^- - 6), (0 \leq x_3^- - x_4^- - 6), \]
\[
(0 \leq x_4^+ - x_5^- + 1), (0 \leq x_5^- - x_4^+ + 1)\}
\]
\[
B' = \{(0 \leq x_3^+ - x_2^- + 3), (0 \leq x_2^+ - x_3^- + 3), \]
\[
(0 \leq x_6^+ - x_5^- + 1), (0 \leq x_5^- - x_6^- - 1), \]
\[
(0 \leq x_4^+ - x_6^- + 4), (0 \leq x_6^- - x_4^- + 4)\}
\]

whose conjunction corresponds to the constraint graph of Figure 5. This graph has a negative cycle

\[
C' \triangleq x_2^+ \xrightarrow{3} x_1^- \xrightarrow{1} x_3^+ \xrightarrow{-6} x_4^- \xrightarrow{4} x_6^- \xrightarrow{-1} x_5^- \xrightarrow{1} x_4^+ \xrightarrow{-6} x_3^- \xrightarrow{3} x_2^+ .
\]

Thus, \(A \land B \) is inconsistent in \(\mathcal{UTVPI}(\mathbb{Q}) \). From the negative cycle \(C' \) we can extract the set of \(A' \)-paths \(\{x_2^+ \xrightarrow{-2} x_4^-, x_5^- \xrightarrow{-5} x_3^- \} \), corresponding to the formula \(I' \triangleq (0 \leq x_4^- - x_2^- - 2) \land (0 \leq x_3^- - x_5^- - 5) \), which is an interpolant for \((A', B') \). \(I' \) is thus mapped
back into \(I \) if \(\Upsilon(I') \equiv (0 \leq -x_2 - x_4 - 2) \land (0 \leq x_5 - x_3 - 5) \), which is an interpolant for \((A, B)\).

Applying instead the \(\mathcal{L}\mathcal{A}(\mathbb{Q}) \) interpolation technique of [McMillan 2005], we find the interpolant \((0 \leq -x_2 - x_4 + x_3 - x_3 - 7)\), which is not in \(UT\mathcal{V}\mathcal{I}(\mathbb{Q}) \) and is strictly weaker than that computed with our method.

5.2 Graph-based interpolation for \(UT\mathcal{V}\mathcal{I} \) on the Integers

In order to deal with the more complex case of \(UT\mathcal{V}\mathcal{I}(\mathbb{Z}) \), we adopt a layered approach [Sebastiani 2007]. First, we check the consistency in \(UT\mathcal{V}\mathcal{I}(\mathbb{Q}) \) using the technique of [Miné 2001]. If this results in an inconsistency, we compute an \(UT\mathcal{V}\mathcal{I}(\mathbb{Q}) \)-interpolant as described in §5.1. If the \(UT\mathcal{V}\mathcal{I}(\mathbb{Q}) \)-procedure does not detect an inconsistency, we check the consistency in \(UT\mathcal{V}\mathcal{I}(\mathbb{Z}) \) using the algorithm proposed by Lahiri and Musuvathi in [Lahiri and Musuvathi 2005], which extends the ideas of [Miné 2001] to the integer domain. In particular, it gives necessary and sufficient conditions to decide unsatisfiability by detecting particular kinds of zero-weight cycles in the induced \(\mathcal{D}\mathcal{C} \) constraint graph. This procedure works in \(O(n \cdot m) \) time and \(O(n + m) \) space, \(m \) and \(n \) being the number of constraints and variables respectively, which improves the previous \(O(n^2 \cdot m) \) time and \(O(n^2) \) space complexity of the previous procedure of [Jaffar et al. 1994].

We build on top of this algorithm and we extend the graph-based approach of §5.1 for producing interpolants also in \(UT\mathcal{V}\mathcal{I}(\mathbb{Z}) \). In particular, we use the following reformulation of a result of [Lahiri and Musuvathi 2005].

Theorem 5.2. Let \(\phi \) be a conjunction of \(UT\mathcal{V}\mathcal{I}(\mathbb{Z}) \) constraints s.t. \(\phi \) is satisfiable in \(UT\mathcal{V}\mathcal{I}(\mathbb{Q}) \). Then \(\phi \) is unsatisfiable in \(UT\mathcal{V}\mathcal{I}(\mathbb{Z}) \) iff the constraint graph \(G(\phi) \) generated from \(\phi \) has a cycle \(C \) of weight 0 containing two vertices \(x_i^- \) and \(x_i^+ \) s.t. the weight of the path \(x_i^- \leadsto x_i^+ \) along \(C \) is odd.

Proof. The “only if” part is a corollary of lemmas 1, 2 and 4 in [Lahiri and Musuvathi 2005]. The “if” comes straightforwardly from the analysis done in [Lahiri and Musuvathi 2005], whose main intuitions we recall in what follows. Assume the constraint graph \(G(\phi) \) generated from \(\phi \) has one cycle \(C \) of weight 0 containing two vertices \(x_i^- \) and \(x_i^+ \) s.t. the weight of the path \(x_i^- \leadsto x_i^+ \) along \(C \) is \(2k + 1 \) for some integer value \(k \). (Since \(C \) has weight 0, the weight of the other path \(x_i^+ \leadsto x_i^- \) along \(C \) is \(-2k - 1 \).) Then, the paths \(x_i^- \leadsto x_i^+ \) and \(x_i^+ \leadsto x_i^- \) contain at least two constraints, because otherwise their weight would be even (see the last two lines of Figure 4). Then, \(x_i^- \leadsto x_i^+ \) in the form \(x_i^- \leadsto v \stackrel{n}{\rightarrow} x_i^+ \), for some \(v \) and \(n \). From \(x_i^- \leadsto v \), we can derive the summary constraint \((0 \leq v - x_i^- + (2k + 1 - n))\), which corresponds to the \(UT\mathcal{V}\mathcal{I}(\mathbb{Z}) \) constraint \((0 \leq \Upsilon(v) + x_i + (2k + 1 - n))\). (This corresponds to \(l \cdot 2 \) applications of the Transitive rule of [Lahiri and Musuvathi 2005], \(l \) being the number of constraints in \(x_i^- \leadsto x_i^+ \.)

Then, by observing that the \(UT\mathcal{V}\mathcal{I}(\mathbb{Z}) \) constraint corresponding to \(v \stackrel{n}{\rightarrow} x_i^+ \) is \((0 \leq x_i - \Upsilon(v) + n)\), we can apply the Tightening rule of [Lahiri and Musuvathi 2005] to obtain \((0 \leq x_i + (2k + 1 - n + n)/2)\), which is equivalent to \((0 \leq x_i + k)\). Similarly, from \(x_i^+ \leadsto x_i^- \) we can obtain \((0 \leq -x_i - k - 1)\), and thus an inconsistency using the Contradiction rule of [Lahiri and Musuvathi 2005].

Consider a pair \((A, B)\) of \(UT\mathcal{V}\mathcal{I}(\mathbb{Z}) \) constraints such that \(A \land B \) is consistent in \(UT\mathcal{V}\mathcal{I}(\mathbb{Q}) \) but inconsistent in \(UT\mathcal{V}\mathcal{I}(\mathbb{Z}) \). By Theorem 1, the constraint graph \(G(A' \land B') \) has a cycle \(C \) of weight 0 containing two vertices \(x_i^+ \) and \(x_i^- \) s.t. the weight of the
paths $x_i^{-} \sim x_i^+$ and $x_i^{-} \sim x_i^-$ along C are $2k + 1$ and $-2k - 1$ respectively, for some value $k \in \mathbb{Z}$. Our algorithm computes an interpolant for (A, B) from the cycle C. Let C_A and C_B be the subsets of the edges in C corresponding to constraints in A' and B' respectively. We have to distinguish four distinct sub-cases.

Case 1: x_i occurs in B but not in A. Consequently, x_i^+ and x_i^- occur in B' but not in A', and hence they occur in C_B but not in C_A. Let I' be the conjunction of the summary constraints of the maximal C_A-paths, and let I be the conjunction of the corresponding $UTVPI(\mathbb{Z})$ constraints.

Theorem 5.3. I is an interpolant for (A, B).

Proof. (i) By construction, $A \models_{UTVPI(\mathbb{Z})} I$, as in §5.1. (ii) The constraints in I' and C_B form a cycle matching the hypotheses of Theorem 5.2, from which $I \land B$ is $UTVPI(\mathbb{Z})$-inconsistent. (iii) We notice that every variable x_j^+, x_j^- occurring in the conjunction of the summary constraints is an end-point variable, so that $I' \subseteq C_A$ and $I' \subseteq C_B$, and thus $I \not\subseteq A$ and $I \not\subseteq B$. \hfill \square

Example 5.2. Consider the following set of constraints:

$$S = \{(0 \leq x_1 - x_2 + 4), (0 \leq -x_2 - x_3 - 5), (0 \leq x_2 + x_6 - 4), (0 \leq x_5 + x_2 + 3), (0 \leq -x_1 + x_3 + 2), (0 \leq -x_6 - x_4), (0 \leq x_4 - x_5)\},$$

partitioned into A and B as follows:

$$A \begin{cases} (0 \leq x_3 - x_1 + 2) \\ (0 \leq -x_6 - x_4) \\ (0 \leq x_4 - x_5) \end{cases} \quad B \begin{cases} (0 \leq x_1 - x_2 + 4) \\ (0 \leq -x_2 - x_3 - 5) \\ (0 \leq x_2 + x_6 - 4) \\ (0 \leq x_5 + x_2 + 3) \end{cases}$$

Figure 6 shows a zero-weight cycle C in $G(A' \land B')$ such that the paths $x_2^- \sim x_2^+$ and $x_2^- \sim x_2^+$ have an odd weight (-1 and 1 resp.) Therefore, by Theorem 5.2 $A \land B$ is $UTVPI(\mathbb{Z})$-inconsistent. The two summary constraints of the maximal C_A paths are $(0 \leq x_0^- - x_0^+) \land (0 \leq x_3^- - x_3^+ + 2)$. It is easy to see that $I = (0 \leq -x_6 - x_5) \land (0 \leq x_3 - x_1 + 2)$ is an $UTVPI(\mathbb{Z})$-interpolant for (A, B).

Case 2: x_i occurs in both A and B. Consequently, x_i^+ and x_i^- occur in both A' and B'. If neither x_i^+ nor x_i^- is such that both the incoming and outgoing edges belong to C_A, then
the cycle obtained by replacing each maximal \(C_A \)-path with its summary constraint still contains both \(x_i^+ \) and \(x_i^- \), so we can apply the same process of Case 1. Otherwise, if both the incoming and outgoing edges of \(x_i^+ \) belong to \(C_A \), then we split the maximal \(C_A \)-path \(u_1 \xrightarrow{c_1} \ldots \xrightarrow{c_k} x_i^+ \xrightarrow{c_{k+1}} \ldots \xrightarrow{c_n} u_n \) containing \(x_i^+ \) into the two parts which are separated by \(x_i^- \): \(u_1 \xrightarrow{c_1} \ldots \xrightarrow{c_k} x_i^+ \) and \(x_i^+ \xrightarrow{c_{k+1}} \ldots \xrightarrow{c_n} u_n \). We do the same for \(x_i^- \). Let \(I' \) be the conjunction of the resulting summary constraints, and let \(I \) be corresponding set of \(\text{UTVPI}(\mathbb{Z}) \) constraints.

Theorem 5.4. \(I \) is an interpolant for \((A, B) \).

Proof. (i) As with Case 1, again, \(A \models_{\text{UTVPI}(\mathbb{Z})} I \). (ii) Since we split the maximal \(C_A \) paths as described above, the constraints in \(I' \) and \(C_B \) form a cycle matching the hypotheses of Theorem 5.2, from which \(I \land B \) is \(\text{UTVPI}(\mathbb{Z}) \)-inconsistent. (iii) \(x_i^+, x_i^- \) occur in both \(A' \) and \(B' \) by hypothesis, and every other variable \(x_j^+, x_j^- \) occurring in the conjunction of the summary constraints is an end-point variable, so that \(I' \preceq C_A \) and \(I' \preceq C_B \), and thus \(I \preceq A \) and \(I \preceq B \). \(\square \)

Example 5.3. Consider again the set of constraints \(S \) of Example 5.2, partitioned into \(A \) and \(B \) as follows:

\[
A = \begin{cases}
(0 \leq x_3 - x_1 + 2) \\
(0 \leq -x_6 - x_4) \\
(0 \leq x_2 + x_6 - 4) \\
(0 \leq x_1 - x_2 + 4)
\end{cases}
\]

\[
B = \begin{cases}
(0 \leq -x_2 - x_3 - 5) \\
(0 \leq x_5 + x_2 + 3) \\
(0 \leq x_4 - x_5)
\end{cases}
\]

and the zero-weight cycle \(C \) of \(G(A' \land B') \) shown in Figure 7. As in the previous example, there is a path \(x_2 \sim x_3^+ \) of weight \(-1\) and a path \(x_2^+ \sim x_2 \) of weight \(1\). In this case there is only one maximal \(C_A \) path, namely \(x_4^+ \sim x_4^- \). Since the cycle obtained by replacing it with its summary constraint \((0 \leq x_3 + x_4 + 2)\) does not contain \(x_2^+ \), we split \(x_4^+ \sim x_4^- \) into two paths, \(x_4^+ \sim x_3^+ \) and \(x_3^+ \sim x_3^- \), whose summary constraints are \((0 \leq x_2 - x_3 + 4)\) and \((0 \leq x_3 - x_2 + 6)\) respectively. By replacing the two paths above with the two summary constraints, we get a zero-weight cycle which still contains the two odd paths \(x_2 \sim x_3^+ \) and \(x_3^+ \sim x_2^- \). Therefore, \(I \models (0 \leq x_2 - x_4 + 4) \land (0 \leq x_3 - x_2 + 6) \) is an interpolant for \((A, B) \).

Notice that the \(\text{UTVPI}(\mathbb{Z}) \)-formula \(J \equiv (0 \leq x_3 - x_4 + 2) \) corresponding to the summary constraint of the maximal \(C_A \) path \(x_4^+ \sim x_3^- \) is not an interpolant, since \(J \land B \) is not \(\text{UTVPI}(\mathbb{Z}) \)-inconsistent. In fact, if we replace the maximal \(C_A \) path \(x_4^+ \sim x_3^- \) with the summary constraint \(x_4^+ \sim x_3^- \), the cycle we obtain has still weight zero, but it contains no odd path between two variables \(x_i^+ \) and \(x_i^- \).

Case 3: \(x_i \) occurs in \(A \) but not in \(B \), and one of the paths \(x_i^+ \sim x_i^- \) or \(x_i^- \sim x_i^+ \) in \(C \) contains only constraints of \(C_A \). In this case, \(x_i^+ \) and \(x_i^- \) occur in \(A' \) but not in \(B' \). Suppose that \(x_i^- \sim x_i^+ \) consists only of constraints of \(C_A \) (the case \(x_i^+ \sim x_i^- \) is analogous).

Let \(2k + 1 \) be the weight of the path \(x_i^- \sim x_i^+ \) (which is odd by hypothesis), and let \(\overline{C} \) be the cycle obtained by replacing such path with the edge \(x_i^- \xrightarrow{2k} x_i^+ \) in \(C \). In the following, we call such a replacement tightening summarization. Since \(C \) has weight zero, \(\overline{C} \) has negative weight. Let \(C' \) be the set of \(DL \)-constraints in the path \(x_i^- \sim x_i^+ \). Let \(I' \) be the \(DL \)-interpolant computed from \(\overline{C} \) for \((C_A \setminus C') \cup \{(0 \leq x_i^+ - x_i^- + 2k)\}, C_B \)\), and let \(I \) be the corresponding \(\text{UTVPI}(\mathbb{Z}) \) formula.
THEOREM 5.5. I is an interpolant for \((A, B)\).

PROOF. (i) Let \(P\) be the set of \(UTVPI(\mathbb{Z})\) constraints in the path \(x_i^- \sim x_i^+\). Since the weight \(2k + 1\) of such path is odd, we have that \(P \models_{UTVPI(\mathbb{Z})} (0 \leq x_i + k)\) (cf. page 23). Since \(P \subseteq A\), therefore, \(A \models_{UTVPI(\mathbb{Z})} (0 \leq x_i + k)\). By observing that \((0 \leq x_i^+ - x_i^- + 2k)\) is the \(DL\)-constraint corresponding to \((0 \leq x_i + k)\) we conclude that \(C_A \setminus \{x_i^+ - x_i^- + 2k\} \models_{DL} I'\) implies that \(A \cup \{0 \leq x_i + k\} \models_{UTVPI(\mathbb{Z})} I\), and so that \(A \models_{UTVPI(\mathbb{Z})} I\).

(ii) Since all the constraints in \(C_B\) occur in \(\overline{C}\), we have that \(B \land I\) is \(UTVPI(\mathbb{Z})\)-inconsistent.

(iii) Since by hypothesis all the constraints in the path \(x_i^- \sim x_i^+\) occur in \(C_A\), from \(I' \preceq (C_A \setminus \{x_i^+ - x_i^- + 2k\})\) we have that \(I' \preceq A\). Finally, since all the constraints in \(C_B\) occur in \(\overline{C}\), we have that \(I \preceq B\). □

EXAMPLE 5.4. Consider again the set \(S\) of constraints of Example 5.2, this time partitioned into \(A\) and \(B\) as follows:

\[
A = \begin{cases}
(0 \leq x_1 - x_2 + 4) \\
(0 \leq x_3 - x_1 + 2) \\
(0 \leq -x_2 - x_3 - 5) \\
(0 \leq x_2 + x_6 - 4)
\end{cases} \quad B = \begin{cases}
(0 \leq x_5 + x_2 + 3) \\
(0 \leq -x_6 + x_4) \\
(0 \leq x_4 - x_5)
\end{cases}
\]

Figure 8 shows a zero-weight cycle \(C\) of \(G(A' \land B')\). The only maximal \(C_A\) path is \(x_6^- \sim x_2^-\). Since the path \(x_2^+ \sim x_2^-\) has weight 1, we can add the tightening edge \(x_2^+ \xrightarrow{1} x_2^-\) to \(G(A' \land B')\) (shown in dots and dashes in Figure 8), corresponding to the constraint \((0 \leq x_2^+ - x_2^- + 2k)\). Since all constraints in the path \(x_2^+ \sim x_2^-\) belong to \(A'\), \(A' \models (0 \leq x_2^+ - x_2^-)\). Moreover, the cycle obtained by replacing the path \(x_2^+ \sim x_2^-\) with the tightening edge \(x_2^+ \xrightarrow{1} x_2^-\) has a negative weight \((-1)\). Therefore, we can generate a \(DL\)-interpolant \(I' \models (0 \leq x_2^+ - x_6^- - 4)\) from such cycle, which corresponds to the \(UTVPI(\mathbb{Z})\)-interpolant \(I \models (0 \leq -x_2 + x_6 - 4)\).

Notice that, similarly to Example 5.3, also in this case we cannot obtain an interpolant from the summary constraint \((0 \leq x_2^+ - x_6^- - 3)\) of the maximal \(C_A\) path \(x_6^- \sim x_2^-\), as \((0 \leq -x_2 + x_6 - 3)\) and \(B\) is not \(UTVPI(\mathbb{Z})\)-inconsistent.

Case 4: \(x_i\) occurs in \(A\) but not in \(B\), and neither the path \(x_i^+ \sim x_i^-\) nor the path \(x_i^- \sim x_i^+\) in \(C\) consists only of constraints of \(C_A\). As in the previous case, \(x_i^+\) and \(x_i^-\) occur in \(A'\).
but not in B', and hence they occur in C_A but not in C_B. In this case, however, we can apply a tightening summarization neither to $x_i^+ \sim x_i^-$ nor to $x_i^- \sim x_i^+$, since none of the two paths consists only of constraints of C_A. We can, however, perform a conditional tightening summarization as follows. Let C_A^p and C_B^p be the sets of constraints of C_A and C_B respectively occurring in the path $x_i^- \sim x_i^+$, and let $\overline{C_A^p}$ and $\overline{C_B^p}$ be the sets of summary constraints of maximal paths in C_A^p and C_B^p. From $\overline{C_A^p} \cup \overline{C_B^p}$, we can derive $x_i^- \rightarrow x_i^+$ (cf. Case 3), where $2k + 1$ is the weight of the path $x_i^- \sim x_i^+$. Therefore, $\overline{C_A^p} \cup \overline{C_B^p} \models (0 \leq x_i^+ - x_i^- + 2k)$, and thus $\overline{C_A^p} \models \overline{C_B^p} \rightarrow (0 \leq x_i^+ - x_i^- + 2k)$. We say that $(0 \leq x_i^+ - x_i^- + 2k)$ is the summary constraint for $x_i^- \sim x_i^+$ conditioned to $\overline{C_B^p}$.

Using conditional tightening summarization, we generate an interpolant as follows. By replacing the path $x_i^- \sim x_i^+$ with $x_i^- 2k, x_i^+$, we obtain a negative-weight cycle \overline{C}, as in Case 3. Let I' be the DL-interpolant computed from \overline{C} for $(C_A \setminus C_A^p \cup \{(0 \leq x_i^+ - x_i^- + 2k)\}, C_B \setminus C_B^p)$, and let I be the corresponding $UTVPI(\mathbb{Z})$ formula. Finally, let \overline{G}_B be the conjunction of $UTVPI(\mathbb{Z})$ constraints corresponding to $\overline{C_B^p}$.

Theorem 5.6. $(\overline{G}_B \rightarrow I)$ is an interpolant for (A, B).

Proof. (i) We know that $C_A \setminus C_A^p \cup \{(0 \leq x_i^+ - x_i^- + 2k)\} \models I'$, because I' is a DL-interpolant. Moreover, $\overline{C_A^p} \cup \overline{C_B^p} \models (0 \leq x_i^+ - x_i^- + 2k)$, and so $C_A \cup \overline{C_B^p} \models (0 \leq x_i^+ - x_i^- + 2k)$. Therefore, $C_A \cup \overline{C_B^p} \models I'$, and thus $A \models (\overline{G}_B \rightarrow I)$, from which $A \models (\overline{G}_B \rightarrow I)$.

(ii) Since I' is a DL-interpolant for $(C_A \setminus C_A^p \cup \{(0 \leq x_i^+ - x_i^- + 2k)\}, C_B \setminus C_B^p)$, $I' \land (C_B \setminus C_B^p)$ is DL-inconsistent, and thus $I \land B$ is $UTVPI(\mathbb{Z})$-inconsistent. Since by construction $B \models (\overline{G}_B \rightarrow I) \land B$ is $UTVPI(\mathbb{Z})$-inconsistent.

(iii) From $I' \models C_B \setminus C_B^p$ we have that $I \models B$, and from $I' \models C_A \setminus C_A^p \cup \{(0 \leq x_i^+ - x_i^- + 2k)\}$ that $I \models A$. Moreover, all the variables occurring in the constraints in $\overline{C_B^p}$ are end-point variables, so that $\overline{C_B^p} \subseteq C_A$ and $\overline{C_B^p} \subseteq C_B$, and thus $\overline{G}_B \subseteq A$ and $\overline{G}_B \subseteq B$. Therefore, $(\overline{G}_B \rightarrow I) \models A$ and $(\overline{G}_B \rightarrow I) \models B$. □

Example 5.5. We partition the set S of constraints of Example 5.2 into A and B as follows:

\[
A = \begin{cases}
(0 \leq x_1 - x_2 + 4) \\
(0 \leq -x_2 - x_3 - 5) \\
(0 \leq x_5 + x_2 + 3) \\
(0 \leq x_2 + x_4 - 4)
\end{cases}
\]

\[
B = \begin{cases}
(0 \leq x_3 - x_1 + 2) \\
(0 \leq -x_6 - x_4) \\
(0 \leq x_4 - x_5)
\end{cases}
\]

Consider the zero-weight cycle C of $G(A' \land B')$ shown in Figure 9. In this case, neither the path $x_2^+ \sim x_2^-$ nor the path $x_2^- \sim x_2^+$ consists only of constraints of A', and thus we cannot use any of the two tightening edges $x_2^- \rightarrow x_2^+$ and $x_2^+ \rightarrow x_2^-$ directly for computing an interpolant. However, we can compute the summary $x_2^- \rightarrow x_2^+$ conditioned to $x_5^+ \rightarrow x_6$, which is the summary constraint of the B-path $x_5^+ \sim x_6$, and whose corresponding $UTVPI(\mathbb{Z})$ constraint is $(0 \leq -x_6 - x_5)$. By replacing the path $x_2^- \sim x_2^+$ with such summary, we obtain a negative-weight cycle \overline{C}, from which we generate the DL-interpolant $(0 \leq x_1^+ - x_3^+ - 3)$, corresponding to the

\[\mathcal{UTVP}(\mathbb{Z}) \] formula \((0 \leq x_1 - x_3 - 3) \). Therefore, the generated \(\mathcal{UTVP}(\mathbb{Z}) \)-interpolant is \((0 \leq -x_4 - x_5) \rightarrow (0 \leq x_4 - x_3 - 3) \).

As in Example 5.4, notice that we cannot generate an interpolant from the conjunction of summary constraints of maximal \(C_A \) paths, since the formula we obtain (i.e. \((0 \leq x_1 + x_6) \land (0 \leq x_5 - x_3 - 2) \)) is not inconsistent with \(B \).

6. COMPUTING INTERPOLANTS FOR COMBINED THEORIES VIA DTC

In this Section, we consider the problem of generating interpolants for a pair of \(T_1 \cup T_2 \)-formulas \((A, B) \), and propose a method based on the Delayed Theory Combination (DTC) approach [Bozzano et al. 2006]. First, in §6.1 we provide some background on Nelson-Oppen (NO) and DTC combination methods, and recall from [Yorsh and Musuvathi 2005] the basics of interpolation for combined theories using NO; then, we present our novel technique for computing interpolants using DTC (§6.2); in §6.3 we discuss the advantages of the novel method; finally, in §6.4, we show how our novel technique can be used to generate multiple interpolants from the same proof.

6.1 Background

6.1.1 Resolution proofs with NO vs. resolution proofs with DTC. One of the typical approaches to the SMT problem in combined theories, \(\text{SMT}(T_1 \cup T_2) \), is that of combining the solvers for \(T_1 \) and for \(T_2 \) with the Nelson-Oppen (NO) integration schema [Nelson and Oppen 1979]. The NO framework works for combinations of stably-infinite, signature-disjoint theories \(T_i \) with equality. Moreover, it requires the input formula to be pure (i.e., s.t. all the atoms contain only symbols in one theory): if not, a purification step is performed, by recursively labeling terms \(t \) with fresh variables \(v_t \), and by conjoining the definition atom \((v_t = t) \) to the formula. This process is linear in the size of the input formula. \(^{10}\)

For instance, the formula \((f(x + 3y) = g(2x - y)) \) can be purified into \((f(v_{x+3y}) = g(v_{2x-y})) \land (v_{x+3y} = x + 3y) \land (v_{2x-y} = 2x - y)) \).

In the NO setting, the two decision procedures for \(T_1 \) and \(T_2 \) cooperate by deducing and exchanging interface equalities\(^{11}\), that is, equalities between variables appearing in atoms of different theories (interface variables).

With an NO-based SMT solver, resolution proofs for formulas in a combination \(T_1 \cup T_2 \) of theories have the same structure as those for formulas in a single theory \(T \). The only difference is that theory lemmas in this case are the result of the NO-combination of \(T_1 \) and \(T_2 \) (i.e., they are \(T_1 \cup T_2 \)-lemmas) (Figure 10 left). From the point of view of interpolation, the difference with respect to the case of a single theory \(T \) is that the \(T_1 \cup T_2 \)-interpolants for the negations of the \(T_1 \cup T_2 \)-lemmas can be computed with the combination method of [Yorsh and Musuvathi 2005] whenever it applies (see §6.1.2).

Recently, an alternative approach for combining theories in SMT has been proposed, called Delayed Theory Combination (DTC) [Bozzano et al. 2006]. With DTC, the solvers for \(T_1 \) and \(T_2 \) do not communicate directly. The integration is performed by the SAT solver, by augmenting the Boolean search space with up to all the possible interface equalities, so that each truth assignment on both original atoms and interface equalities is checked

\(^{10}\)As shown in [Barrett et al. 2002], the purification step is not strictly necessary. However, in the rest we shall assume that it is performed (as it is traditionally done in papers on combination of theories), since it makes the exposition easier.

\(^{11}\)They deduce and exchange disjunctions of interface equalities if the theory is not convex.
for consistency independently on both theories. DTC has several advantages wrt. NO, in terms of versatility, efficiency, and restrictions imposed to T-solvers [Bozzano et al. 2006; Bruttomesso et al. 2008a], so that many current SMT tools implement variants and evolutions of DTC.

With DTC, resolution proofs are quite different from those obtained with NO. There is no $T_1 \cup T_2$-lemma anymore, because the two T_i-solvers don’t communicate directly. Instead, the proofs contain both T_1-lemmas and T_2-lemmas (Figure 10 right), and – importantly – they contain also interface equalities. (Notice that T_i-lemmas derive either from T_i-conflicts and from T_i-propagation steps.) In this case, the combination of theories is encoded directly in the proofs (thanks to the presence of interface equalities), and not “hidden” in the $T_1 \cup T_2$-lemmas as with NO. This observation is at the heart of our DTC-based interpolant combination method.

Example 6.1. Consider the following formula ϕ:

$$\phi \overset{\triangleleft}{=} (a_1 = f(a_2)) \land (b_1 = f(b_2)) \land (y - a_2 = 1) \land (y - b_2 = 1) \land (a_1 + y = 0) \land (b_1 + y = 1).$$

ϕ is expressed over the combined theory $\text{EUF} \cup \text{LA}(\mathbb{Q})$: the first two atoms belong to EUF, while the last four belong to $\text{LA}(\mathbb{Q})$.

Using the NO combination method, ϕ can be proved unsatisfiable as follows:

1. From the conjunction $(y - a_2 = 1) \land (y - b_2 = 1)$, the $\text{LA}(\mathbb{Q})$-solver deduces the interface equality $(a_2 = b_2)$, which is sent to the EUF-solver;
2. From $(a_2 = b_2)$ and the conjunction $(a_1 = f(a_2)) \land (b_1 = f(b_2))$ the EUF-solver deduces the interface equality $(a_1 = b_1)$, which is sent to the $\text{LA}(\mathbb{Q})$-solver;
3. Together with the conjunction $(a_1 + y = 0) \land (b_1 + y = 1)$, $(a_1 = b_1)$ causes an inconsistency in the $\text{LA}(\mathbb{Q})$-solver;
4. The $\text{EUF} \cup \text{LA}(\mathbb{Q})$ conflict-set generated is $\{(y - a_2 = 1), (y - b_2 = 1), (a_1 = f(a_2)), (b_1 = f(b_2)), (a_1 + y = 0), (b_1 + y = 1)\}$, corresponding to the $\text{EUF} \cup \text{LA}(\mathbb{Q})$-lemma $C \overset{\triangleleft}{=} \neg(y - a_2 = 1) \lor \neg(y - b_2 = 1) \lor \neg(a_1 = f(a_2)) \lor \neg(b_1 = f(b_2)) \lor \neg(a_1 + y = 0) \lor \neg(b_1 + y = 1)$.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
The corresponding NO proof of unsatisfiability for φ is thus:
\[
C \cdot (b_1 + y = 1) \\
\cdots \\
\cdots (a_4 + y = 0) \\
\cdots (y - b_2 = 1) \\
\cdots (y - a_2 = 1) \\
\cdots (b_1 = f(b_2)) \\
\cdots (a_1 = f(a_2)) \\
\bot
\]

With DTC, the Boolean search space is augmented with the set of all possible interface equalities \(Eq \overset{df}{=} \{(a_1 = a_2), (a_1 = b_1), (a_1 = b_2), (a_2 = b_1), (a_2 = b_2), (b_1 = b_2)\} \), so that the DPLL engine can branch on them. If we suppose that the negative branch is explored first (and we assume for simplicity that the \(T \)-solvers do not perform deductions), using the DTC combination method φ can be proved unsatisfiable as follows:

1. Assigning \((a_2 = b_2)\) to false causes an inconsistency in the \(\mathcal{LA}(\mathbb{Q}) \)-solver, which generates the \(\mathcal{LA}(\mathbb{Q})\)-lemma \(C_1 \overset{df}{=} \lnot(y - a_2 = 1) \lor \lnot(y - b_2 = 1) \lor (a_2 = b_2) \). \(C_1 \) is used by the DPLL engine to backjump and unit-propagate \((a_2 = b_2)\);
2. After such propagation, assigning \((a_1 = b_1)\) to false causes an inconsistency in the \(\mathcal{EU}(\mathcal{F})\)-solver, which generates the \(\mathcal{EU}(\mathcal{F})\)-lemma \(C_2 \overset{df}{=} \lnot(a_1 = f(a_2)) \lor \lnot(b_1 = f(b_2)) \lor \lnot(a_2 = b_2) \lor (a_1 = b_1) \). \(C_2 \) is used by the DPLL engine to backjump and unit-propagate \((a_1 = b_1)\);
3. This propagation causes an inconsistency in the \(\mathcal{LA}(\mathbb{Q})\)-solver, which generates the \(\mathcal{LA}(\mathbb{Q})\)-lemma \(C_3 \overset{df}{=} \lnot(y - a_2 = 1) \lor \lnot(y - b_2 = 1) \lor \lnot(a_1 = b_1) \);
4. After learning \(C_3 \), the DPLL engine detects the unsatisfiability of \(\phi \).

The corresponding DTC proof of unsatisfiability for φ is thus:
\[
C_1 \cdot (y - a_2 = 1) \\
\cdots (y - b_2 = 1) \\
\cdots C_2 \\
\cdots (b_1 = f(b_2)) \\
\cdots C_3 \\
\cdots (b_1 + y = 1) \\
\cdots (a_1 + y = 0) \\
\cdots (a_1 = f(a_2)) \\
\bot
\]

An important remark is in order. It is relatively easy to implement DTC in such a way that, if both \(T_1 \) and \(T_2 \) are convex, then all \(T \)-lemmas generated contain at most one positive interface equality. This is due to the fact that for convex theories \(T \) it is possible to implement efficient \(T \)-solvers which generate conflict sets containing at most one negated equality between variables [Bozzano et al. 2005].\(^{12}\) (E.g., this is true for all the \(T \)-solvers on convex theories implemented in MATHSAT.) Thus, since we restrict to convex theories, in the rest of this paper we can assume w.l.o.g. that every \(T \)-lemma occurring as leaf in

\(^{12}\)We recall that, if \(T \) is convex, then \(\mu \land \bigwedge_i \lnot l_i \models_{T} \bot \) iff \(\mu \land \lnot l_i \models_{T} \bot \) for some \(i \), where the \(l_i \)'s are positive literals.
a resolution proof Π of unsatisfiability deriving from DTC contains at most one positive interface equality.

6.1.2 Interpolation with Nelson-Oppen. The work in [Yorsh and Musuvathi 2005] gives a method for generating an interpolant for a pair (A, B) of $T_1 \cup T_2$-formulas s.t. $A \land B \models_{T_1 \cup T_2} \perp$ by means of the NO schema. As in [Yorsh and Musuvathi 2005], we assume that A and B have been purified using disjoint sets of auxiliary variables. We recall from [Yorsh and Musuvathi 2005] a couple of definitions.

Definition 6.1 AB-mixed equality. An equality between variables $(a = b)$ is an AB-mixed equality iff $a \not\preceq B$ and $b \not\preceq A$ (or vice versa).

Definition 6.2 Equality-interpolating theory. A theory T is said to be equality-interpolating iff, for all A and B in T s.t. $A \land B \models_T (a = b)$ and for all AB-mixed equalities $(a = b)$, there exists a term t such that $A \land B \models_T (a = t) \land (t = b)$ and $t \preceq A$ and $t \preceq B$.

The work in [Yorsh and Musuvathi 2005] describes procedures for computing the term t from an AB-mixed interface equality $(a = b)$ for some convex theories of interest, including $\mathsf{ELF, LA(\mathbb{Q})}$, and the theory of lists.

Notationally, with the letters x, x_1, y, y_1, z we denote generic variables, whilst with the letters a, a_i and b, b_i we denote variables s.t. $a_i \not\preceq B$ and $b_i \not\preceq A$; hence, with the letters e_i we denote generic AB-mixed interface equalities in the form $(a_i = b_i)$; with the letters η, η_i we denote conjunctions of literals where no AB-mixed interface equality occurs, and with the letters μ, μ_i we denote conjunctions of literals where AB-mixed interface equalities may occur. If μ_i (resp. η_i) is $\land_i i$, we write $\lnot \mu_i$ (resp. $\lnot \eta_i$) for the clause $\lor_i \lnot i$.

Let $A \land B$ be a $T_1 \cup T_2$-inconsistent conjunction of $T_1 \cup T_2$-literals, such that $A \equiv A_1 \land A_2$ and $B \equiv B_1 \land B_2$ where each A_i and B_i is T_i-pure. The NO-based method of [Yorsh and Musuvathi 2005] computes an interpolant for (A, B) by combining T_i-specific interpolants for subsets of A, B and the set of entailed interface equalities $\{e_j\}$ that are exchanged between the T_i-solvers for deciding the unsatisfiability of $A \land B$. In particular, let $\mathsf{Eq} \equiv \{e_j\}$ be the set of entailed interface equalities. Due to the fact that both T_1 and T_2 are equality-interpolating, it is possible to assume w.l.o.g. that Eq does not contain AB-mixed equalities, because instead of deducing an AB-mixed interface equality $(a = b)$, a T_i-solver can always deduce the two corresponding equalities $(a = t) \land (t = b)$. (Notice that the other T-solver treats the term t as if it were a variable [Yorsh and Musuvathi 2005].) Let $A' \equiv A \cup (\mathsf{Eq} \downarrow A)$ and $B' \equiv B \cup (\mathsf{Eq} \downarrow B)$. Then, T_i-specific partial interpolants are combined according to the following inductive definition:

$$I_{A,B}(e) \equiv \begin{cases} \bot & \text{if } e \in A \\ \top & \text{if } e \in B \\ (I_{A',B'}(e) \lor \bigvee_{e_a \in A'} I_{A',B}(e_a)) \land \bigwedge_{e_b \in B'} I_{A,B}(e_b) & \text{otherwise,} \end{cases} (11)$$

where e is either an entailed interface equality or \bot, and $I_{A',B'}(e)$ is a T_i-interpolant for $(A' \cup \lnot e, B')$ if $e \preceq A$, and for $(A', B' \cup \lnot e)$ otherwise (if $e \preceq B$). The computed interpolant for (A, B) is then $I_{A,B}(\bot)$. We refer the reader to [Yorsh and Musuvathi 2005] for more details.
6.2 From DTC solving to DTC Interpolation

We now discuss how to extend the DTC method to interpolation. As with [Yorsh and Musuvathi 2005], we can handle the case that T_1 and T_2 are convex and equality-interpolating. The approach to generating interpolants for combined theories starts from the proof generated by DTC. Let Eq be the set of all interface equalities occurring in a DTC refutation proof for a $T_1 \cup T_2$-unsatisfiable formula $\phi \equiv A \land B$.

In the case Eq does not contain AB-mixed equalities, that is, Eq can be partitioned into two sets $(Eq \setminus B) \equiv \{(x = y)|(x = y) \leq A \text{ and } (x = y) \not\leq B\}$ and $(Eq \downarrow B) \equiv \{(x = y)|(x = y) \leq B\}$, no interpolant-combination method is needed: the combination is already encoded in the proof of unsatisfiability, and a direct application of Algorithm 1 to such proof yields an interpolant for the combined theory $T_1 \cup T_2$. Notice that this fact holds despite the fact that the interface equalities in Eq occur neither in A nor in B, but might be introduced in the resolution proof Π by T-lemmas. In fact, as observed in [McMillan 2005], as long as for an atom p either $p \leq A$ or $p \leq B$ holds, it is possible to consider it part of A (resp. of B) simply by assuming the tautology clause $p \lor \neg p$ to be part of A (resp. of B). Therefore, we can treat the interface equalities in $(Eq \setminus B)$ as if they appeared in A, and those in $(Eq \downarrow B)$ as if they appeared in B.

When Eq contains AB-mixed equalities, instead, a proof-rewriting step is performed in order to obtain a proof which is free from AB-mixed equalities, that is amenable for interpolation as described above. The idea is similar to that used in [Yorsh and Musuvathi 2005] in the case of NO: using the fact that T_1 and T_2 are equality-interpolating, we reduce this case to the previous one by “splitting” every AB-mixed interface equality $(a_i = b_i)$ into the conjunction of two parts $(a_i = t_i) \land (t_i = b_i)$, such that $(a_i = t_i) \leq A$ and $(t_i = b_i) \leq B$. The main difference is that we do this a posteriori, after the construction of the resolution proof of unsatisfiability Π. In order to do this, we traverse Π and split each AB-mixed equality, performing also the necessary manipulations to ensure that the result is still a resolution proof of unsatisfiability.

We describe this process in two steps. In §6.2.1 we introduce a particular kind of resolution proofs of unsatisfiability, called ie-local, and show how to eliminate AB-mixed interface equalities from ie-local proofs; in §6.2.2 we show how to implement a variant of DTC so that to generate ie-local proofs.

6.2.1 Eliminating AB-mixed equalities by exploiting ie-locality

Definition 6.3 ie-local proof. A resolution proof of unsatisfiability Π is local with respect to interface equalities (ie-local) iff the interface equalities occur only in subproofs Π_{ie}^i of Π, such that within each Π_{ie}^i:

(i) all leaves are T-lemma leaves of Π;
(ii) all the pivots are interface equalities;
(iii) the root contains no interface equality;
(iv) every right premise of an inner node is a leaf T-lemma containing exactly one positive interface equality. 13

As a consequence of this definition, we also have that, within each Π_{ie}^i in Π:

13 We have adopted the graphical convention that at each resolution step in a Π_{ie}^i subproof, if $(a_i = b_i)$ is the pivot, then the premises containing $\neg (a_i = b_i)$ and $(a_i = b_i)$ are the left and right premises respectively.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
all nodes are $T_1 \cup T_2$-valid; (Proof sketch: they result from Boolean resolution steps from T_1-valid and T_2-valid clauses, hence they are $T_1 \cup T_2$-valid.)

(vi) the only leaf T-lemma which is a left premise contains no positive interface equality. (Proof sketch: we notice that, in a resolution step $C_1, C_2 \vdash C_3$, if C_3 contains no positive interface equality, at least one between C_1 and C_2 contains no positive interface equality; since by (iv) the right premise contains one positive interface equality, only the left premise contains no positive interface equality. Thus the leftmost leaf T-lemma of Π^e_\ast contains no positive interface equality.)

(vii) if an interface equality e_j occurs negatively in some T-lemma C_j, then e_j occurs positively in a leaf T-lemma C_k which is the right premise of a resolution step whose left premise derives from C_j and other T-lemmas. (Proof sketch: suppose that $\neg e_j$ occurs in C_j but e_j does not occur in any such C_k. Then e_j cannot be a pivot, hence $\neg e_j$ occurs in the root of Π^e_\ast, thus violating (iii).)

Intuitively, in \ast-local proofs of unsatisfiability all the reasoning on interface equalities is circumscribed within Π^e_\ast subproofs, which are linear sub-proofs involving only T-lemmas as leaves, starting from the one containing no positive interface equality, each time eliminating one negative interface equality by resolving it against the only positive one occurring in another leaf T-lemma.

Example 6.2. Consider the $\mathcal{EUF} \cup \mathcal{LA}(\mathbb{Q})$ formula ϕ of Example 6.1, and the T-lemmas C_1, C_2 and C_3 introduced by DTC to prove its unsatisfiability. The proof Π of Example 6.1 is not \ast-local, because resolution steps involving interface equalities are interleaved with resolution steps involving other atoms. The following proof Π', instead, is \ast-local: all the interface equalities are used as pivots in the Π^e_\ast subproof:

$C_3 \quad C_2 \quad \vdash (a_1 = b_1) \quad \vdash (a_2 = b_2) \quad \vdash (a_2 + z = 1)$

\[
\begin{array}{c}
\vdash (a_1 + z = 0) \\
\vdash (z - x_2 = 1) \\
\vdash (a_1 = f(x_1)) \\
\vdash (a_2 = f(x_2)) \\
\vdash (z - x_1 = 1) \\
\end{array}
\]

\[C_1 \equiv (a_2 = b_2) \lor \neg (y - a_2 = 1) \lor \neg (y - b_2 = 1)\]

\[C_2 \equiv (a_2 = b_2) \lor \neg (b_1 = f(b_2)) \lor \neg (a_1 = f(a_2)) \lor \neg (a_2 = b_2)\]

\[C_3 \equiv \neg (a_1 + y = 0) \lor \neg (b_1 + y = 1) \lor \neg (a_1 = b_1).\]

If Π is an \ast-local proof containing AB-mixed interface equalities, then it is possible to eliminate all of them from Π by applying Algorithm 2 to every Π^e_\ast subproof of Π. In a nutshell, each Π^e_\ast subproof is explored bottom-up, starting from the right premise of the root, each time expanding the rightmost side T-lemma in the form $C_i \equiv (a_i = b_i) \lor \neg \eta_i$ s.t. $(a_i = b_i)$ is AB-mixed into the (implicit) conjunction of two novel T-lemmas $C_i^\text{tr} \equiv (a_i = t_i) \lor \neg \eta_i$ and $C_i^\text{pr} \equiv (t_i = b_i) \lor \neg \eta_i$ (step 4), where t_i is the AB-pure term computed from C_i, as described in §6.1.2. Then the resolution step against C_i is substituted with the concatenation of two resolution steps against C_i^tr and C_i^pr (step 5) and then the substitution $\neg (a_i = b_i) \rightarrow (a_i = t_i) \lor \neg (t_i = b_i)$ is propagated bottom-up along the left subproof.
Algorithm 2: Rewriting of Π^{IE} subproofs

1. Let σ be a mapping from negative AB-mixed interface equalities to a disjunction of two negative interface equalities, such that $\sigma[-(a_i = b_i)] \mapsto -(a_i = t_i) \lor -(t_i = b_i)$ and t_i is an AB-pure term as described in §6.1.2. Initially, σ is empty.

2. Let $C_i \equiv (a_i = b_i) \lor \neg \mu_i$ be the right premise T-lemma of the root of the Π^{IE} subproof.

3. Replace each $-(a_j = b_j)$ in C_i with $\sigma[-(a_j = b_j)]$, to obtain $C_i' \equiv (a_i = b_i) \lor \neg \eta_i$. If $(a_i = b_i)$ is not AB-mixed, then let Π be the subproof rooted in the left premise, and go to step (7).

4. Split C_i' into $C_i' \equiv (a_i = t_i) \lor \neg \eta_i$ and $C_i'' \equiv (t_i = b_i) \lor \neg \eta_i$.

5. Rewrite the subproof

\[
\frac{\cdots}{\neg (a_i = b_i) \lor \neg \mu_k} \quad C_i \quad \frac{\cdots}{\neg (t_i = b_i) \lor \neg \eta_k \lor \neg \eta_i} \quad C_i''
\]

where $\neg \eta_k$ is obtained by $\neg \mu_k$ by substituting each negative AB-mixed interface equality $\neg (a_j = b_j)$ with $\sigma[-(a_j = b_j)]$.

6. Update σ by setting $\sigma[-(a_i = b_i)]$ to $-(a_i = t_i) \lor -(t_i = b_i)$.

7. If Π is of the form \cdots, set C_i to C_j and go to step (3).

8. Otherwise, Π is the leaf $\neg (a_i = t_i) \lor -(t_i = b_i) \lor \neg \eta_k$. In this case, replace each $\neg (a_j = b_j)$ in $\neg \mu_k$ with $\sigma[-(a_j = b_j)]$, and then exit.

Π. Notice that C_i' and C_i'' are still T_r-valid because T_r is Equality-interpolating and η_i does not contain other AB-mixed interfacial equalities.

Example 6.3. Consider the formula ϕ of Example 6.1 and its IE-local proof of unsatisfiability of Example 6.2. Suppose that ϕ is partitioned as follows:

\[
\phi \equiv A \land B
\]

\[
A \equiv (a_1 = f(a_2)) \land (y - a_2 = 1) \land (a_1 + y = 0)
\]

\[
B \equiv (b_1 = f(b_2)) \land (y - b_2 = 1) \land (b_1 + y = 1)
\]

In this case, both interface equalities $(a_1 = b_1)$ and $(a_2 = b_2)$ are AB-mixed. Consider the Π^{IE} subproof of Example 6.2:

\[
C_1 \equiv (a_2 = b_2) \lor -(y - a_2 = 1) \lor -(y - b_2 = 1)
\]

\[
C_2 \equiv (a_1 = b_1) \lor -(b_1 = f(b_2)) \lor -(a_1 = f(a_2)) \lor -(a_2 = b_2)
\]

\[
C_3 \equiv -(a_1 + y = 0) \lor -(b_1 + y = 1) \lor -(a_1 = b_1)
\]

\[
C_4 \equiv -(a_1 + y = 0) \lor -(b_1 + y = 1) \lor -(b_1 = f(b_2)) \lor -(a_1 = f(a_2)) \lor -(a_2 = b_2)
\]

The first T-lemma processed by Algorithm 2 is C_1. Using the technique of [Yorsh and
Then, \(\sigma[\neg(a_2 = b_2)] \) is set to \(\neg(a_2 = y - 1) \lor \neg(y - 1 = b_2) \) (step (6)), and a new iteration of the loop (3)-(7) is performed, this time processing \(C_2 \). First, \(\neg(a_2 = b_2) \) is replaced by \(\neg(a_2 = y - 1) \lor \neg(y - 1 = b_2) \) (step (3)). Then, \((a_1 = b_1) \) can be split into \((a_1 = f(y - 1)) \land (f(y - 1) = b_1) \) (step (4)). After the rewriting of step (5), the proof is:

\[
\begin{array}{c}
C'_2 \\
\Theta_1' \Theta_2' \\
C''_2 \\
\Theta_1'' \Theta_2''
\end{array}
\]

Finally, \(C_3 \) is processed in step (8), \(\neg(a_1 = b_1) \) gets replaced with \(\neg(a_1 = f(y - 1)) \lor \neg(f(y - 1) = b_1) \), and the following final proof \(\Pi^{\text{ref}} \) is generated:

\[
\begin{array}{c}
C'_3 \\
\Theta_1'' \Theta_2'' \\
C''_3 \\
\Theta_1' \Theta_2'
\end{array}
\]

such that \(C'_3 \overset{\text{def}}{=} C_3[\neg(a_1 = b_1) \mapsto \neg(a_1 = f(y - 1)) \lor \neg(f(y - 1) = b_1)] \).

The following theorem states that Algorithm 2 is correct.

Theorem 6.4. Let \(\Pi \) be a \(\Pi^* \) subproof, and let \(\Pi' \) be the result of applying Algorithm 2 to \(\Pi \). Then:

(a) \(\Pi' \) does not contain any \(AB \)-mixed interface equality; and
(b) \(\Pi' \) is a valid subproof with the same root as \(\Pi \).

Proof.

(a) Consider the \(T \)-lemma \(C_1 \) of Step (3). By item (vii) of Definition 6.3, all negative interface equalities occurring in \(C_1 \) occur positively in leaf \(T \)-lemmas that are closer to the root of \(\Pi \). For the same reason, the first \(T \)-lemma \(C_1 \) analyzed in step (2) contains no negative \(AB \)-mixed interface equalities. Therefore, it follows by induction that all negative \(AB \)-mixed interface equalities in \(C_1 \) must have been split in Step (4) of a previous iteration of the loop (3)-(7) of Algorithm 2, and thus they occur in \(\sigma \). The same argument can be used to show also that at steps (5) and (8) every negative \(AB \)-mixed interface equality in \(\neg \mu_k \) occurs in \(\sigma \).
(b) We show that:

(i) Every substep \(\Theta' \rightarrow \Theta'' \) of \(\Pi' \) is a valid resolution step;

(ii) every leaf of \(\Pi' \) is a \(T \)-lemma; and

(iii) the root of \(\Pi' \) is the same as that of \(\Pi \).

(i) The only problematic case is the resolution step

\[
\neg(a_i = t_i) \lor \neg(t_i = b_i) \lor \neg \mu_k \quad C_i'
\]

introduced in step (5) of Algorithm 2. In this case, we have to show that at the end of the algorithm, all the negative \(AB \)-mixed interface equalities in \(\neg \mu_k \) have been replaced such that the result is identical to \(\neg \eta_k \). We already know that all negative \(AB \)-mixed equalities in \(\neg \mu_k \) occur in \(\sigma \), thus we only have to show that \(\sigma[e_j] \) cannot change between the time when \(\neg e_j \) was rewritten to obtain \(\neg \eta_k \) and the time in which it is rewritten in \(\neg \mu_k \). The negative equality \(\neg e_j \) is replaced in \(\neg \mu_k \) at the next iteration of the algorithm (in step (5) for inner nodes, and in step (8) for the final leaf). In the meantime, the only update to \(\sigma \) is performed in step (6), but it involves the negative equality \(\neg(a_i = b_i) \), which does not occur in \(\neg \mu_k \).

(ii) Let \(C_i \) be a \(T \)-lemma in \(\Pi \). First, we observe that if \(C_i \equiv \neg(a_i = b_i) \lor \neg \mu_i \), then for any \(t_i \) also the clause \(C_i^* \equiv \neg(a_i = t_i) \lor \neg(t_i = b_i) \lor \neg \mu_i \) is a \(T \)-lemma, since \((a_i = t_i) \land (t_i = b_i) \models_T (a_i = b_i) \) by transitivity. Therefore, it follows by induction on the number of substitutions that the clauses obtained in steps (3) and (8) of Algorithm 2 are still \(T \)-lemmas. Finally, since we are considering equality-interpolating theories, after step (4) of Algorithm 2 both \(C_i' \) and \(C_i'' \) are \(T \)-lemmas.

(iii) Since the root of \(\Pi \) does not contain any interface equality (item (iii) of Definition 6.3), in step (5) \(\neg \eta_i \equiv \neg \mu_i \) and \(\neg \eta_k \equiv \neg \mu_k \), and therefore the root does not change.

Clearly, Algorithm 2 operates in linear time on the number of \(T \)-lemmas, and thus of \(AB \)-mixed interface equalities. Moreover, every time an interface equality is split, only two new nodes are added to the proof (a right leaf and an inner node), and therefore the size of \(\Pi' \) is linear in that of \(\Pi \).

The advantage of having \(\le \)-local proofs is that they ease significantly the process of eliminating \(AB \)-mixed interface equalities. First, since all the reasoning involving interface equalities is confined in \(\Pi^* \) subproofs, only such subproofs – which typically constitute only a small fraction of the whole proof – need to be traversed and manipulated. Second, the simple structure of \(\Pi^* \) subproofs allows for an efficient application of the rewriting process of steps (5) and (3), preventing any explosion in size of the proof. In fact, e.g., if in step (5) the right premise of the last step were instead the root of some subproof \(\Pi \), with \(C_i \) as a leaf, then two copies of \(\Pi' \) and \(\Pi'' \) would be produced, in which each instance of \((a_i = b_i) \) must be replaced with \((a_i = t_i) \) and \((t_i = b_i) \) respectively.

6.2.2 Generating \(\le \)-local proofs in DTC. In this section we show how to implement a variant of DTC so that to generate \(\le \)-local proofs of unsatisfiability. For the sake of
simplicity, we describe first a simplified algorithm which makes use of two distinct DPLL engines. We then describe how to avoid the need of a second DPLL engine with the use of a particular search strategy for DTC.

The simplified algorithm uses two distinct DPLL engines, a main one and an auxiliary one, which we shall call DPLL-1 and DPLL-2 respectively. Consider Figure 11, left. DPLL-1 receives in input the clauses of the input problem \(\phi \) (which we assume pure and \(T_1 \cup T_2 \)-inconsistent), but no interface equality, which are instead given to DPLL-2. DPLL-1 enumerates total Boolean models \(\mu \) of \(\phi \), and invokes the two \(T_i \)-solvers separately on the subsets \(\mu_{T_1} \) and \(\mu_{T_2} \) of \(\mu \). If one \(T_i \)-solver reports an inconsistency, then DPLL-1 backtracks. Otherwise, both \(\mu_{T_i} \) are \(T_i \)-consistent, and DPLL-2 is invoked on the list of unit clauses composed of the \(T_1 \cup T_2 \)-literals in \(\mu \), to check its \(T_1 \cup T_2 \)-consistency.

DPLL-2 branches only on interface equalities, assigning them always to false first. Some interface equalities \(e_i \), however, may be assigned to true by unit-propagation on previously-learned clauses in the form \(C_i \stackrel{\text{def}}{=} \neg \mu_i \vee e_i \), or by \(T \)-propagation on deduction clauses \(C_i \) in the same form; we call \(C_i \) the antecedent clause of \(e_i \). \(^{14}\) (As in [Bruttomesso et al. 2008a], we assume that when a \(T \)-propagation step \(\mu_i \models \neg e_i \) occurs, \(\mu_i \) being a subset of the current branch, the deduction clause \(C_i \stackrel{\text{def}}{=} \neg \mu_i \vee e_i \) is learned, either temporarily or permanently; if so, we can see this step as a unit-propagation on \(C_i \).) When all the interface equalities have been assigned a truth value, the propositional model \(\mu \equiv \mu_{T_1} \cup \mu_{T_2} \cup \mu_{\emptyset} \) is checked for \(T_1 \cup T_2 \)-consistency by invoking each of the \(T_i \)-solvers.

\(^{14}\)Notationally, \(e_i \) denotes the \(i \)-th most-recently unit-propagated interface equality in the branch in which \(C_i \) is learned, and \(C_i \stackrel{\text{def}}{=} \neg \mu_i \vee e_i \) denotes the antecedent clause of \(e_i \).
As a result, each Π^* is transformed into a Π^e subproof, so that the final proof is Π^e-local.

15 In fact, it is not necessary to wait for all interface equalities to have a value before invoking the T_i-solvers. Rather, the standard early pruning optimization (see §2.2) can be applied.

16 In order to determine the order in which to eliminate the interface equalities, the implication graph of the auxiliary DPLL engine can be used. This is a standard process in the conflict analysis in modern SAT and SMT solvers (see, e.g., [van Gelder 2007; Sebastiani 2007]).
In an actual implementation, there is no need of having two distinct DPLL solvers for constructing \(\mathcal{I} \)-local proofs. In fact, we can obtain the same result by adopting a variant of the DTC Strategy 1 of [Bruttomesso et al. 2008a]. We never select an interface equality for case splitting if there is some other unassigned atom, and we always assign false to interface equalities first. Moreover, we “delay” \(T \)-propagation of interface equalities until all the original atoms have been assigned a truth value. Finally, when splitting on interface equalities, we restrict both the backjumping and the learning procedures of the DPLL engine as follows. Let \(d \) be the depth in the DPLL tree at which the first interface equality is selected for case splitting. If during the exploration of the current DPLL branch we have to backjump above \(d \), then we generate by resolution a conflict clause that does not contain any interface equality, and “deactivate” all the \(T \)-lemmas containing some interface equality — that is, we do not use such \(T \)-lemmas for performing unit propagation — and we re-activate them only when we start splitting on interface equalities again. Using such strategy, we obtain the same effect as in the simple algorithm using two DPLL engines: the search space is partitioned in two distinct subspaces, the one of original atoms and the one of interface equalities, and the generated proof of unsatisfiability reflects such partition.

Finally, we remark that what described above is only one possible strategy for generating \(\mathcal{I} \)-local proofs, and not necessarily the most efficient one. Moreover, that of generating \(\mathcal{I} \)-local proofs is only a sufficient condition to obtain interpolants from DTC avoiding duplications of sub-proofs, and more general strategies may be conceived. The investigation of alternative strategies is part of ongoing and future work.

6.3 Discussion

Our new DTC-based combination method has several advantages over the traditional one of [Yorsh and Musuvathi 2005] based on NO:

1. It inherits all the advantages of DTC over the traditional NO in terms of versatility, efficiency and restrictions imposed to \(T \)-solvers [Bozzano et al. 2006; Bruttomesso et al. 2008a]. Moreover, it allows for using a more modern SMT solver, since many state-of-the-art solvers adopt variants or extensions of DTC instead of NO.

2. Instead of requiring an “ad-hoc” method for performing the combination, it exploits the Boolean interpolation algorithm. In fact, thanks to the fact that interface equalities occur in the proof of unsatisfiability \(\Pi \), once the \(AB \)-mixed terms in \(\Pi \) are split there is no need of any interpolant-combination method at all. In contrast, with the NO-based method of [Yorsh and Musuvathi 2005] interpolants for \(T_1 \cup T_2 \)-lemmas are generated by combining “theory-specific partial interpolants” for the two \(T_i \)’s with an algorithm that essentially duplicates the work that in our case is performed by the Boolean algorithm. This allows also for potentially exploiting optimization techniques for Boolean interpolation which are or will be made available from the literature.

3. By splitting \(AB \)-mixed terms only after the construction of the proof \(\Pi \), it allows for computing several interpolants for several different partitions of the input problem into \((A,B) \) from the same proof \(\Pi \). This is particularly important for applications in abstraction refinement [Henzinger et al. 2004]. (This feature is discussed in \(\S 6.4 \).)

The work of [Yorsh and Musuvathi 2005] can in principle deal with non-convex theories. Our approach is currently limited to the case of convex theories; however, we see no reason that would prevent from it being extensible at least theoretically to the case of nonconvex
6.4 Generating multiple interpolants

In §2.3 we remarked that a sufficient condition for generating multiple interpolants is that all the interpolants I_i's are computed from the same proof of unsatisfiability. When generating interpolants with our DTC-based algorithm, however, we generate a different proof of unsatisfiability Π_i for each partition of the input formula ϕ into A_i and B_i. In particular, every Π_i is obtained from the same “base” proof Π, by splitting all the A_i,B_i-mixed interface equalities with the algorithm described in §6.2. In this section, we show that (2) (at §2.3) holds also when each Π_i is obtained from the same Θ-local proof Π by the rewriting of Algorithm 2 of §6.2.1. In order to do so, we need the following lemma.

Lemma 6.5. Let Θ be a $T_1 \cup T_2$-lemma, and let Π be a Π^e proof for it which does not contain any AB-mixed term. Then the formula I_Θ associated to Θ in Algorithm 1 is an interpolant for $(\neg \Theta \setminus B, \neg \Theta \downarrow B)$.

Proof. By induction on the structure of Π, we have to prove that:

1. $\neg \Theta \setminus B \models I_\Theta$;
2. $I_\Theta \land (\neg \Theta \downarrow B) \models \bot$;
3. I_Θ contains only common symbols.

The base case is when Π is just a single leaf. Then, the lemma trivially holds by definition of I_Θ in this case (see Algorithm 1).

For the inductive step, let $\Theta_1 \equiv (x = y) \lor \phi_1$ and $\Theta_2 \equiv (x = y) \lor \phi_2$ be the antecedents of Θ in Π. (So $\Theta \equiv \phi_1 \lor \phi_2$). Let I_{Θ_1} and I_{Θ_2} be the interpolants for Θ_1 and Θ_2 (by the inductive hypothesis).

If $(x = y) \not\in B$, then $I_\Theta \equiv I_{\Theta_1} \lor I_{\Theta_2}$.

1. By the inductive hypothesis, $(\neg \phi_1 \land \neg (x = y)) \setminus B \equiv (\neg \phi_1 \setminus B) \land \neg (x = y) \models I_{\Theta_1}$, and $(\neg \phi_2 \setminus B) \land (x = y) \models I_{\Theta_2}$. Then by resolution $(\neg \phi_1 \land \neg \phi_2) \setminus B \equiv \neg \Theta \setminus B \models I_\Theta$.

2. By the inductive hypothesis, $I_{\Theta_1} \models \phi_1 \downarrow B$ and $I_{\Theta_2} \models \phi_2 \downarrow B$, so $I_{\Theta_1} \lor I_{\Theta_2} \models (\phi_1 \lor \phi_2) \downarrow B$, that is $I_{\Theta} \land (\neg \Theta \downarrow B) \models \bot$.

3. By the inductive hypothesis both I_{Θ_1} and I_{Θ_2} contain only common symbols, and so also I_{Θ} does.

If $(x = y) \in B$, then $I_\Theta \equiv I_{\Theta_1} \land I_{\Theta_2}$.

1. By the inductive hypothesis, $\neg \phi_1 \setminus B \models I_{\Theta_1}$, and $\neg \phi_2 \setminus B \models I_{\Theta_2}$, so $(\neg \phi_1 \land \neg \phi_2) \setminus B \equiv \neg \Theta \setminus B \models I_\Theta$.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
By observing that the root of

We have to consider three cases:

(1) The first is when \(I_i \)’s are computed from the same \(\Pi \). The proof of it will be useful for showing that (2) holds also if the \(I_i \)’s are computed from \(\Pi_i \)’s obtained from \(\Pi \) by splitting the \(A_iB_i \)-mixed interface equalities.

THEOREM 6.6. Let \(\phi \overset{\text{def}}{=} \phi_1 \land \phi_2 \land \phi_3 \), and let \(\Pi \) be a proof of unsatisfiability for it. Let

\[
A' \overset{\text{def}}{=} \phi_1, \quad B' \overset{\text{def}}{=} \phi_2 \land \phi_3, \quad A'' \overset{\text{def}}{=} \phi_1 \land \phi_2 \land \phi_3, \quad \text{and let } I' \text{ and } I'' \text{ be two interpolants for } (A', B') \text{ and } (A'', B'') \text{ respectively, both computed from } \Pi. \text{ Then}
\]

\[
I' \land \phi_2 \models I''.
\]

PROOF. Let \(\Pi_\Theta \) be a proof whose root is the clause \(\Theta \). We will prove, by induction on the structure of \(\Pi_\Theta \), that

\[
I'_\Theta \land \phi_2 \models I''_\Theta \lor (\Theta \setminus \phi_3),
\]

where \(I_\Theta \) is defined as in Algorithm 1. The validity of the theorem follows immediately, by observing that the root of \(\Pi \) is \(\perp \).

We have to consider three cases:

(1) The first is when \(\Theta \) is an input clause. Then, we have three subcases:

(a) If \(\Theta \in \phi_3 \), then \(I'_\Theta \overset{\text{def}}{=} \top \), \(I''_\Theta \overset{\text{def}}{=} \top \) and \((\Theta \setminus \phi_3) \equiv \bot \), so the theorem holds.

(b) If \(\Theta \in \phi_1 \), then \(I'_\Theta \overset{\text{def}}{=} (\Theta \setminus (\phi_2 \cup \phi_3)) \), \(I''_\Theta \lor (\Theta \setminus \phi_3) \overset{\text{def}}{=} (\Theta \setminus \phi_3) \lor (\Theta \setminus \phi_3) \equiv \Theta \), so the theorem holds also in this case.

(c) If \(\Theta \in \phi_2 \), then \(I'_\Theta \land \phi_2 \equiv \phi_2 \) and \(I''_\Theta \lor (\Theta \setminus \phi_3) \equiv \Theta \), so again the implication holds.

(2) The second is when \(\Theta \) is a \(T \)-lemma. In this case, we have that \(I'_\Theta \) is an interpolant for

\[
(\neg \Theta \setminus (\phi_2 \cup \phi_3), \neg \Theta \downarrow (\phi_2 \cup \phi_3)) \text{ and } I''_\Theta \text{ is an interpolant for } (\neg \Theta \setminus \phi_3, \neg \Theta \downarrow \phi_3).
\]

Therefore, by the definition of interpolant, \((\neg \Theta \setminus (\phi_2 \cup \phi_3)) \models I'_\Theta \text{ and } (\neg \Theta \setminus \phi_3) \models I''_\Theta \). Therefore, \(I'_\Theta \lor (\Theta \setminus (\phi_2 \cup \phi_3)) \) and \(I''_\Theta \lor (\Theta \setminus \phi_3) \) are valid clauses, and so the implication trivially holds.

(3) In this case \(\Theta \) is obtained by resolution from \(\Theta_1 \overset{\text{def}}{=} \phi \lor p \) and \(\Theta_2 \overset{\text{def}}{=} \psi \lor \neg p \). If \(p \in \phi_1 \) or \(p \in \phi_3 \), then by the inductive hypotheses that \(I'_{\Theta_1} \land \phi_2 \models I''_{\Theta_1} \lor (\Theta_1 \setminus \phi_3) \), we have that \(I'_\Theta \land \phi_2 \models I''_\Theta \lor (\Theta \setminus \phi_3) \).

If \(p \in \phi_2 \), then \(I'_\Theta \overset{\text{def}}{=} I'_{\Theta_1} \land I'_{\Theta_2} \) and \(I''_\Theta \overset{\text{def}}{=} I''_{\Theta_1} \lor I''_{\Theta_2} \). Again, by the inductive hypotheses \(I'_\Theta \land \phi_2 \models I''_\Theta \lor (\Theta \setminus \phi_3) \) holds. □

THEOREM 6.7. Let \(\phi \overset{\text{def}}{=} \phi_1 \land \phi_2 \land \phi_3 \). Let \(A' \overset{\text{def}}{=} \phi_1, \quad A'' \overset{\text{def}}{=} \phi_1 \land \phi_2 \land \phi_3, \quad B' \overset{\text{def}}{=} \phi_2 \land \phi_3, \quad \text{and } B'' \overset{\text{def}}{=} \phi_3 \). Let \(\Pi \) be a proof of unsatisfiability for \(\phi \), and let \(\Pi' \) and \(\Pi'' \) be obtained from \(\Pi \) by splitting all the \(A'B' \)-mixed and \(A''B'' \)-mixed interface equalities respectively. Let \(I' \) be an interpolant for \((A', B') \) computed from \(\Pi' \), and \(I'' \) be an interpolant for \((A'', B'') \) computed from \(\Pi'' \). Then

\[
I' \land \phi_2 \models I''.
\]
Proof. We observe that \(\Pi' \) and \(\Pi'' \) are identical except for some \(\Pi'^{ie} \) subproofs that contained some mixed interface equalities. Then, we can proceed as in Theorem 6.6, we just need to consider one more case, namely when \(\Theta \) is a \(T_1 \cup T_2 \)-lemma at the root of a \(\Pi^{ie} \) subproof. In this case, thanks to Lemma 6.5 we have the same situation as in the second case of the proof of Theorem 6.6, and so we can apply the same argument. □

Thus, due to Theorem 6.7, we can use our DTC-based interpolation method in the context of abstraction refinement without any modification: it is enough to remember the original proof \(\Pi \), and compute the interpolant \(I_i \) from the proof \(\Pi_i \) obtained by splitting the \(A_iB_i \)-mixed terms in \(\Pi \), for each partition of the input formula \(\phi \) into \(A_i \) and \(B_i \) as in (1).

7. EXPERIMENTAL EVALUATION

The techniques presented in previous sections have been implemented within MATHSAT 4 [Bruttomesso et al. 2008b] MATHSAT is an SMT solver supporting a wide range of theories and their combinations. In the last SMT solvers competition (SMT-COMP'08), it has proved to be competitive with the other state-of-the-art solvers. In this Section, we experimentally evaluate our approach.

7.1 Description of the benchmark sets

We have performed our experiments on two different sets of benchmarks. The first is obtained by running the BLAST software model checker [Beyer et al. 2007] on some Windows device drivers; these are similar to those used in [Rybalchenko and Sofronie-Stokkermans 2007]. This is one of the most important applications of interpolation in formal verification, namely abstraction refinement in the context of CEGAR. The problem represents an abstract counterexample trace, and consists of a conjunction of atoms. In this setting, the interpolant generator is called very frequently, each time with a relatively simple input problem.

The second set of benchmarks originates from the SMT-LIB [Ranise and Tinelli 2006], and is composed of a subset of the unsatisfiable problems used in recent SMT solvers competitions (http://www.smtcomp.org). The instances have been converted to CNF and then split in two consistent parts of approximately the same size. The set consists of problems of varying difficulty and with a nontrivial Boolean structure.

The experiments have been performed on a 3GHz Intel Xeon machine with 4GB of RAM running Linux. All the tools were run with a timeout of 600 seconds and a memory limit of 900 MB. All the benchmark instances, the MATHSAT executable, and the set of scripts used to perform the experiments are available at http://disi.unitn.it/~griggio/papers/tocl.itp.tar.bz2.

7.2 Comparison with the state-of-the-art tools available

In this section, we compare with the other interpolant generators which are available: FOCI [McMillan 2005; Jhala and McMillan 2006], CLP-PROVER [Rybalchenko and Sofronie-Stokkermans 2007] and CSISAT [Beyer et al. 2008]. Other natural candidates for comparison would have been ZAP [Ball et al. 2005] and LIFTER [Kroening and Weissenbacher 2007]; however, it was not possible to obtain them from the authors. We also remark that no comparison with INT2 [Jain et al. 2008] is possible, since the domains of applications of MATHSAT and INT2 are disjoint: INT2 can handle \(\mathcal{L}(\mathbb{Z}) \) equations/disequations and...
Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

Family	# of problems	MATHSAT	FOCl	CLP-PROVER	CSISAT
kbfiltr.i	64	0.16	0.36	1.47	0.17
diskperf.i	119	0.33	0.78	3.08	0.39
floppy.i	235	0.73	1.64	5.91	0.86
cdaudio.i	130	0.35	1.07	2.98	0.47

Fig. 12. Comparison of execution times of MATHSAT, FOCl, CLP-PROVER and CSISAT on problems generated by BLAST.

Execution Time

Size of the Interpolant

Fig. 13. Comparison of MATHSAT and FOCl on SMT-LIB instances: execution time (left), and size of the interpolant (right). In the left plot, points on the horizontal and vertical lines are timeouts/failures.

Execution Time

Fig. 14. Comparison of MATHSAT and CLP-PROVER on conjunctions of $\mathcal{L}A(\mathbb{Q})$ atoms.

modular equations but only conjunctions of literals, whereas MATHSAT can handle formulas with arbitrary Boolean structure, but does not support $\mathcal{L}A(\mathbb{Z})$ except for its fragments $\mathcal{D}\mathcal{L}(\mathbb{Z})$ and $\mathcal{UTVIP}(\mathbb{Z})$.
The comparison had to be adapted to the limitations of FOCI, CLP-PROVER and CSI SAT. In fact, the current version of FOCI which is publicly available does not handle the full $\mathcal{LA}(\mathbb{Q})$, but only the $\mathcal{DL}(\mathbb{Q})$ fragment17. We also notice that the interpolants it generates are not always $\mathcal{DL}(\mathbb{Q})$ formulas. (See, e.g., Example 4.1 of Section 4.) CLP-PROVER does handle the full $\mathcal{LA}(\mathbb{Q})$, but it accepts only conjunctions of atoms, rather than formulas with arbitrary Boolean structure. CSI SAT, instead, can deal with $\mathcal{EUF} \cup \mathcal{LA}(\mathbb{Q})$ formulas with arbitrary Boolean structure, but it does not support Boolean variables. These limitations made it impossible to compare all the four tools on all the instances of our benchmark sets. Therefore, we perform the following comparisons:

- We compare all the four solvers on the problems generated by BLAST;
- We compare MATH SAT with FOCI on SMT-LIB instances in the theories of \mathcal{EUF}, $\mathcal{DL}(\mathbb{Q})$ and their combination. In this case, we compare both the execution times and the sizes of the generated interpolants (in terms of number of nodes in the DAG representation of the formula). For computing interpolants in \mathcal{EUF}, we apply the algorithm of [McMillan 2005], using an extension of the algorithm of [Nieuwenhuis and Oliveras 2007] to generate \mathcal{EUF} proof trees. The combination $\mathcal{EUF} \cup \mathcal{DL}(\mathbb{Q})$ is handled with the technique described in §6;
- We compare MATH SAT, CLP-PROVER and CSI SAT on $\mathcal{LA}(\mathbb{Q})$ problems consisting of conjunctions of atoms. These problems are single branches of the search trees explored by MATH SAT for some $\mathcal{LA}(\mathbb{Q})$ instances in the SMT-LIB. We have collected several problems that took more than 0.1 seconds to MATH SAT to solve, and then randomly picked 50 of them. In this case, we do not compare the sizes of the interpolants as they are always atomic formulas;
- We compare MATH SAT and CSI SAT on the subset (Consisting of 78 instances of the about 400 collected) of the SMT-LIB instances without Boolean variables.

17For example, it fails to detect the $\mathcal{LA}(\mathbb{Q})$-unsatisfiability of the following problem: $(0 \leq y - x + w) \land (0 \leq x - z - w) \land (0 \leq z - y - 1)$.
The results are collected in Figures 12, 13, 14, 15 and 16. We can observe the following facts:

- Interpolation problems generated by BLAST are trivial for all the tools. In fact, we even had some difficulties in measuring the execution times reliably. Despite this, MATHSAT and CSISAT seem to be a little faster than the others.

- For problems with a nontrivial Boolean structure, MATHSAT outperforms FOCI in terms of execution time. This is true even for problems in the combined theory $\mathcal{EUF} \cup \mathcal{DL}(\mathcal{Q})$, despite the fact that the current implementation is still preliminary. As regards CSISAT, it could solve (within the time and memory limits) only 5 of the 78 instances it could potentially handle, and in all cases MATHSAT outperforms it.

- In terms of size of the generated interpolants, the gap between MATHSAT and FOCI is smaller on average. However, the right plot of Figure 13 (which considers only instances for which both tools were able to generate an interpolant) shows that there are more cases in which MATHSAT produces a smaller interpolant.

- On conjunctions of $\mathcal{LA}(\mathcal{Q})$ atoms, MATHSAT outperforms CLP-PROVER, sometimes by more than two orders of magnitude. The performance of MATHSAT and CSISAT is comparable on such instances, with MATHSAT being slightly faster. However, there are several cases in which CSISAT computes a wrong result, due to the use of floating-point arithmetic instead of infinite-precision arithmetic (which is used by MATHSAT).

8. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how to efficiently build interpolants using state-of-the-art SMT solvers. Our methods encompass a wide range of theories (including \mathcal{EUF}, \mathcal{DL}, \mathcal{UTV}, and \mathcal{LA}), and their combination (based on the Delayed Theory Combination schema). A thorough experimental evaluation shows that the proposed methods retain the efficiency of the solvers, and are vastly superior to the state of the art interpolants, both in terms of expressiveness, and in terms of efficiency.

In the future, we plan to investigate the following issues. First, we will improve the implementation of the interpolation method for combined theories, that is currently rather naïve, and limited to the case of convex theories. Second, we will investigate interpolation with other rules, in particular Ackermann’s expansion. Finally, we will integrate our interpolator within a CEGAR loop based on decision procedures, such as BLAST or the new version of NuSMV. In fact, such an integration raises interesting problems related to controlling the structure of the generated interpolants [Jhala and McMillan 2006; 2007], e.g. in order to limit the number or the size of constants occurring in the proof.

REFERENCES

BALL, T. AND JONES, R. B., Eds. 2006. Computer Aided Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17–20, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4144. Springer.

BALL, T., LAHIRI, S. K., AND MUSUVATHI, M. 2005. Zap: Automated theorem proving for software analysis. In Proc. LPAR, G. Sutcliffe and A. Voronkov, Eds. LNCS, vol. 3835. Springer, 2–22.

BARRETT, C. W., DILL, D. L., AND STUMP, A. 2002. A Generalization of Shostak’s Method for Combining Decision Procedures. In ProCos, A. Armando, Ed. LNCS, vol. 2309. Springer, 132–146.

BEYER, D., HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R. 2007. The software model checker BLAST. STTT 9, 5-6, 505–525.
Beyer, D., Zufferey, D., and Majumdar, R. 2008. CSISAT: Interpolation for LA+EUF. See Gupta and Malik [2008], 304–308.

Bozzano, M., Bruttomess, R., Cimatti, A., Juntilla, T., Rosssum, P., Schulz, S., and Sebastiani, R. 2005. MathSAT: A Tight Integration of SAT and Mathematical Decision Procedure. Journal of Automated Reasoning 35, 1-3 (October).

Bozzano, M., Bruttomess, R., Cimatti, A., Juntilla, T., van Rossum, P., Ranise, S., and Sebastiani, R. 2006. Efficient Theory Combination via Boolean Search. Information and Computation 204, 10 (October), 1411–1596.

Bruttomess, R., Cimatti, A., Franzén, A., Griggio, A., and Sebastiani, R. 2008a. Delayed Theory Combination vs. Nelson-Oppe for Satisfiability Modulo Theories: A Comparative Analysis. Extended version. Annals of Mathematics and Artificial Intelligence. To appear.

Bruttomess, R., Cimatti, A., Franzén, A., Griggio, A., and Sebastiani, R. 2008b. The MathSAT 4 SMT solver. See Gupta and Malik [2008], 299–303.

Cabolet, G., Muciano, M., Nocono, S., and Quer, S. 2006. Stepping forward with interpolants in unbounded model checking. In Proc. ICCAD’06, S. Hassoun, Ed. ACM.

Cimatti, A., Griggio, A., and Sebastiani, R. 2008. Efficient Interpolant Generation in Satisfiability Modulo Theories. In Proc. TACAS. LNCS, vol. 4963. Springer.

Cimatti, A., Griggio, A., and Sebastiani, R. 2009. Interpolant Generation for UTVPI. In Proc. CADE-22. LNCS. Springer. To appear.

Cotten, S. and Maler, O. 2006. Fast and Flexible Difference Constraint Propagation for DPLL(T). In Proc. SAT, A. Biere and C. P. Gomes, Eds. LNCS, vol. 4121. Springer, 170–183.

Davis, M., Logemann, G., and Loveland, D. W. 1962. A machine program for theorem-proving. Commun. ACM 5, 7, 394–397.

Dutertre, B. and de Moura, L. 2006. A Fast Linear-Arithmetic Solver for DPLL(T). See Ball and Jones [2006], 81–94.

Enderton, H. 1972. A Mathematical Introduction to Logic. Academic Press.

Etessami, K. and Rajamani, S. K., Eds. 2005. Computer Aided Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3576. Springer.

Gupta, A. and Malik, S., Eds. 2008. Computer Aided Verification, 20th International Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings. LNCS, vol. 5123. Springer.

Harvey, W. and Stuckey, P. 1997. A unit two variable per inequality integer constraint solver for constraint logic programming. In Australian Computer Science Conference (Australian Computer Science Communications), 102–111.

Henzinger, T. A., Jhala, R., Majumdar, R., and McMillan, K. L. 2004. Abstractions from proofs. In POPL, N. D. Jones and X. Leroy, Eds. ACM, 232–244.

Heremans, H. and Palsberg, J., Eds. 2006. Tools and Algorithms for the Construction and Analysis of Systems, 12th International Conference. TACAS 2006 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006, Proceedings. Lecture Notes in Computer Science, vol. 3920. Springer.

Jaffar, J., Maher, M. J., Stuckey, P. J., and Yap, R. H. C. 1994. Beyond Finite Domains. In PPCP. LNCS, vol. 874. Springer, 86–94.

Jain, H., Clarke, E. M., and Grumberg, O. 2008. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations. See Gupta and Malik [2008], 254–267.

Jhala, R. and McMillan, K. 2005. Interpolant-based transition relation approximation. See Etessami and Rajamani [2005], 39–51.

Jhala, R. and McMillan, K. L. 2006. A Practical and Complete Approach to Predicate Refinement. See Hermanns and Palsberg [2006], 459–473.

Jhala, R. and McMillan, K. L. 2007. Array Abstractions from Proofs. In CAV, W. Damm and H. Hermanns, Eds. LNCS, vol. 4590. Springer, 193–206.

Kapur, D., Majumdar, R., and Zarba, C. G. 2006. Interpolation for data structures. In SIGSOFT FSE, M. Young and P. T. Devanbu, Eds. ACM, 105–116.

ACM Transactions on Computational Logic, Vol. V, No. N. Month 20YY.
Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

KROENING, D. AND WEISENBACHER, G. 2007. Lifting Propositional Interpolants to the Word-Level. In FMCAD. IEEE Computer Society, Los Alamitos, CA, USA, 85–89.

LAHIRI, S. K. AND MUSUVATHI, M. 2005. An Efficient Decision Procedure for UTVPI Constraints. In FroCos, B. Gramlich, Ed. Lecture Notes in Computer Science, vol. 3717. Springer, 168–183.

LI, B. AND SOMENZI, F. 2006. Efficient Abstraction Refinement in Interpolation-Based Unbounded Model Checking. See Hermans and Palsberg [2006], 227–241.

MARQUES-SILVA, J. 2007. Interpolant Learning and Reuse in SAT-Based Model Checking. Electr. Notes Theor. Comput. Sci. 174, 3, 31–43.

McMILLAN, K. L. 2003. Interpolation and SAT-Based Model Checking. In CAV, W. A. H. Jr. and F. Somenzi, Eds. Lecture Notes in Computer Science, vol. 2725. Springer, 1–13.

McMILLAN, K. L. 2005. An interpolating theorem prover. Theor. Comput. Sci. 345, 1, 101–121.

McMILLAN, K. L. 2006. Lazy Abstraction with Interpolants. See Ball and Jones [2006], 123–136.

MINÉ, A. 2001. The Octagon Abstract Domain. In WCRE. 310–.

NELSON, G. AND OPPEN, D. 1979. Simplification by Cooperating Decision Procedures. ACM Trans. on Programming Languages and Systems 1, 2, 245–257.

NIEUWENHUIS, R. AND OLIVERAS, A. 2005. DPLL(T) with Exhaustive Theory Propagation and Its Application to Difference Logic. See Etessami and Rajamani [2005], 321–334.

NIEUWENHUIS, R. AND OLIVERAS, A. 2007. Fast Congruence Closure and Extensions. Inf. Comput. 2005, 4, 557–580.

PUDLÁK, P. 1997. Lower bounds for resolution and cutting planes proofs and monotone computations. J. of Symb. Logic 62, 3.

RANISE, S. AND TINELLI, C. 2006. The Satisfiability Modulo Theories Library (SMT-LIB). www.SMT-LIB.org.

RYBALCHENKO, A. AND SOFRONIE-STOKKERMANS, V. 2007. Constraint Solving for Interpolation. In VMCAI, B. Cook and A. Podelski, Eds. Lecture Notes in Computer Science, vol. 4349. Springer, 346–362.

SEBASTIANI, R. 2007. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean Modeling and Computation, JSAT 3, 3–4, 141–224.

SOFRONIE-STOKKERMANS, V. 2006. Interpolation in Local Theory Extensions. In IJCAR, U. Furbach and N. Shankar, Eds. Lecture Notes in Computer Science, vol. 4130. Springer, 235–250.

TSEITIN, G. S. 1968. On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic, Part 2, 115–125.

VAN GELDER, A. 2007. Verifying Propositional Unsatisfiability: Pitfalls to Avoid. In SAT, J. Marques-Silva and K. A. Sakallah, Eds. Lecture Notes in Computer Science, vol. 4501. Springer, 328–333.

VANDERBEI, R. J. 2001. Linear Programming: Foundations and Extensions. Springer.

YORSH, G. AND MUSUVATHI, M. 2005. A combination method for generating interpolants. In CADE, R. Nieuwenhuis, Ed. LNCS, vol. 3632. Springer.

ZHANG, L. AND MALIK, S. 2002. The quest for efficient boolean satisfiability solvers. In CADE, A. Voronkov, Ed. Lecture Notes in Computer Science, vol. 2392. Springer, 295–313.