THE USE OF RESPONSE SURFACE METHODOLOGY IN OPTIMIZATION PROCESS FOR BACTERIOCIN PRODUCTION

Arokiyamary A*, Sivakumaar P.K

Department of Microbiology, Faculty of science, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, India.

*Corresponding Author: venkimary@yahoo.co.in

This article is available online at www.ssjournals.com

ABSTRACT

The production of bacteriocin from MRS broth medium by Lactobacillus species LBC216 isolated in traditional dairy products was investigated. Response surface methodology was used to evaluate the effects of three main parameters (pH, Temperature, Incubation period) on the concentration of bacteriocin. Results of the statistical analysis showed that the fit of the mode was good in all cases. PH, temperature and Incubation period has a strong linear effect on bacteriocin production. The maximum bacteriocin titer of 11,200AU/mL1 was obtained at the optimization of process variables (pH 7.0, Temperature 37°C, Incubation period 24h). These values were obtained by fitting of the experimental data to the model equation. The response surface methodology was found to be useful in optimizing and determining the interaction among process variables in bacteriocin production using Lactobacillus spp LBC 216.

Keywords: Lactobacillus spp; MRS Medium; central composite design; response surface methodology

1. INTRODUCTION

Bacteriocins of lactic acid bacteria (LAB) are biologically active, ribosomally synthesized peptides that display an antagonistic activity against taxonomically related species and other bacteria of health or spoilage significance1 and pathogenic bacteria such as Bacillus cereus, Staphylococcus aureus2, these biological antimicrobial substances have attached increasing research attention owing to their potential in food preservation as purified metabolites, through the use of their producer strains in starter culture or as adjunct starter culture 3. Therefore there has been a continuous need to define the most appropriate conditions for bacteriocin production in fermentation media and food systems. Optimization of bacteriocin production during fermentation has been the focus of intensive research work in the last decade. In addition to the control of the main fermentation parameters (pH, Temperature and Incubation period). Nonetheless, control of this optimization of the fermentation medium remains the critical factors governing bacteriocin production and stability. The effect of medium composition on bacteriocin production has been extensively studied and there is general agreement the De man/Rogosa sharp (MRS) broth is one of the most suitable media for growth and bacteriocin production by LAB4,5. It is usually produced in liquid substrates. The optimum conditions for bacteriocin production are affected by growth phase of the bacterium, pH of the medium, incubation temperature6. The production is increasing to optimum when pH of the substrate increases, and then decreasing. Mean while, the temperature increases bacteriocin production, but at the same time also kills the LAB7.
Response surface methodology (RSM) is an important statistical technique employed for multiple regression analysis by using quantitative experimental data obtained from properly designed experiments using central composite design (CCD). RSM can identify the various interactions among different parameters and it has been extensively applied for optimization of cultural medium conditions and other process parameters in bio processes. The optimization of bacteriocin production from Lactobacillus curvatus CWBI-B28 using RSM has been described. The production of bacteriocin from MRS medium by Lactobacillus species has been reported.

The present study examined bacteriocin production from MRS broth Medium by Lactobacillus species using RSM. The effects of pH, Temperature, and Incubation period were studied. RSM was used to optimize fermentation parameters to obtain maximum bacteriocin concentration. These parameters are among the most important factors for bacteriocin production. This study seems to work on both optimization and production of bacteriocin from de man rogosa sharpe (MRS) Medium using Lactobacillus species LBC 216.

2. MATERIALS AND METHODS

2.1. Microorganism:
Lactobacillus spp (LBC 216) used in this study was isolated from dairy products collected in the state of Pondicherry. The strain was stored in de man rogosa and sharpe (MRS) broth with 20% (by volume) glycerol at -10°C.

2.2. Optimization of bacteriocin production process:
The process of bacteriocin production consisted of two steps, i.e. Preparing growth curve of the cells and optimization of bacteriocin production process. The first step was done to develop growth curves and to identify growth phases of the cells. The cells was first grown to MRS broth for 24hrs, and the bacterial growth were observed every hour to measure optical densities of the culture using spectrometer with a 620nm wavelength. The changes in pH of the medium were measured. The bacteriocin production was done by growing the Lactobacillus on the MRS broth medium and adjust different pH (5.0 to 9.0), Temperature (20 to 45), incubation period (6 to 72) at a laboratory capacity using a 500ml Erlenmeyer flask with a 50 ml working volume. The bacteriocin harvest was done following the methods of.

2.3. Experimental design and statistical analysis:
The statistical analysis of the data was performed using Minitab Statistical Software (Release 15.00) details of RSM can be found elsewhere. The levels of factors used in the experimental design are listed in Table 1. The data for the factors were chosen after a series of preliminary experiments. Twenty experiments were conducted using a face central composite statistical design for the study of three factors each at three levels (Tables 2). The levels were -1.682, -1, 0, 1, and 1.682, Where 0 corresponded to the central point. The response surface model was fitted to the response variable, namely bacteriocin production (AumL⁻¹).

Y=b_0+b_1X_1+b_2X_2+b_3X_3+b_11X_1^2+b_22X_2^2+b_33X_3^2+b_12X_1X_2+b_13X_1X_2+b_23X_2X_3........1

Where X_1, X_2 and X_3 represent the level of the factors according to Table 1 and b_0, b_1,.....b_23 represent Coefficient estimates with b_0 having the role of a scaling constant.

3. RESULT AND DISCUSSION:
The factors affecting the bacteriocin production from MRS broth Medium using Lactobacillus casei LBC216 isolated from Traditional milk products was studied using CCD experiments. The pH (X_1), The temperature (X_2) and the incubation period (X_3) were chosen as the independent variables, each at three levels and their
interactions on bacteriocin production were determined using a face centered design as shown in Table 1. bacteriocin production was chosen as the dependent output variable. twenty experiments based on the CCD were carried out with different combinations of variables and the results were presented in Table 2. It showed that the regression Coefficients of all the linear term and all Quadratic Coefficients of X1, X2 and X3 were significant at (P>0.001). The individual effect of all the three parameters studied. Interaction effects between the temperature and pH were found to be significant from the response surface plots and contour shown in Figs1, 2 and 3. P value of 0.001, hence an optimum combination of Incubation period and temperature is a must in order to get maximum production of medium to bacteriocin.

The ANOVA results of regression model for Y is described in Table 3. ANOVA of the regression model for Y demonstrated that the model was significant due to an F-value of 3.28 and a very probability value (P<0.001). The P-values are used as a tool to check the significance of each of the Coefficients, which in turn indicate the pattern of the then it was more significant to the corresponding Coefficient. As shown in Table 4, R² is 0.899, which indicates that the model as fitted explained 90% of the variability in bacteriocin production. These results show that the model chosen can satisfactorily explain the effects of optimization pH, Temperature and Incubation period on bacteriocin production by Lactobacillus spp., LBC216 using MRS broth Medium. The following model was fitted for bacteriocin production.

\[
Y = 9888.9 + 616.2X_1 + 1101.9X_2 + 908.3X_3 + 490.5X_1^2 - 313.8X_2^2 - 1672.9X_3^2 + 1893.6X_1X_2 - 1029.6X_1X_3 + 1464.9X_2X_3
\]

(Fig 1, 2, 3 and 4) shows surface plot and contour plot of bacteriocin production for each pair of factors whereas the third factor was kept constant at its middle level. The fitting of the experimental data to eqn (2) allowed to the determination of the concentration of pH (X1 7.0), Temperature (X2 37.0) and Incubation period (X3 24hrs) giving a maximum bacteriocin production of 11.200AU mL⁻¹ using RSM. The above data optimize production of bacteriocin from MRS broth Medium by Lactobacillus spp., (LBC) isolated from Dairy products.

CONCLUSION

In this study, bacteriocin was produced from Lactobacillus spp., LBC by using MRS broth Medium. RSM was used to determine the effects of three important factors (pH, Temperature and Incubation period) on bacteriocin production from broth. Linear, quadratic and interaction effects of these variables on bacteriocin production were determined. The model generated in this study by RSM satisfied all the necessary arguments for its use in optimization. By fitting the experimental data to a second-order polynomial equation, the optimum levels of the above-mentioned variables were determined.

Using the optimum levels of fermentation parameters, a maximum bacteriocin production of 11.200AU mL⁻¹ was obtained. This study indicates that the medium design using statistical technique such as RSM can be very useful in improving the production of bacteriocin by
Lactobacillus spp., LBC and in similar bioprocesses.

REFERENCES
1. Daw MA and Falkiner FR, bacteriocins: nature, function and structure Micron.1996, 27:467-479.
2. Nettles CG, and Barefoot SE, Biochemical and genetic characteristics of bacteriocins of food-associated lactic and bacteria. Journal of Food Protection.1993, 56. 338-356.
3. Chen H and Hoover DG, Bacteriocins and their food applications. Compr Rev Food Sci Foo d Saf.2003, 2: 82-100.
4. Gomez S, Cosson C, Deschamps AM., Evidence for a bacteriocin- like substances produced by a new strain of streptococcus sp, inhibitory to gram-positive food borne pathogens. Res. Microbiol 1997, 148:757-766.
5. Zendo T, Eungruttanagorn N, Fujioka S, Tashiroy, Nomura K, Sera Y,, Identification and production of a bacteriocin from Enterococcus mundtii Qu 2 isolated from soybean. . Appl Microbiol.2005, 99:1181-1190.
6. Kim CH, Ji GE Ahn C. Purification and Molecular characterization of a bacteriocin from pediococcus sp, KCA 1202-10 isolated from fermented fastfish. Food Sci Biotechnol. 2000. 9:270-276.
7. Jaya FP, Pengaruh pH dan suhu pada produksi bacteriocin dan bakteri asam laktat galur M6-15. Skripsi. Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor. 2004.
8. Ratnam BVV, Narasimharao M, Damodararao M, Subbarai MV, Ayyanna C. Optimization of fermentation conditions for production of ethanol from Sago starch using response surface Methodology. J. Microbiol. Biotechnol. 2003. 19,523-526.
9. Li C, Bai J, Cai Z, Ouyang F. Optimization of a cultural Medium for bacteriocin production by Lactococcus lactis using response surface Methodology. J.Biotechnol.2002. 93: 27-34.
10. Hakim G, Noredine B, Dalie DD, Frank D, Philippe T. Comparison of the performances of different fermentation strategies on cell growth and bacteriocin production by Lactobacillus curvatus CWBI- B28. Journal of the Science of food and Agriculture. 2007. 87: 541-549.
11. Usmiati and Tri Marwati. Selection and optimization process of bacteriocin production From Lactobacillus sp. Indonesian Journal of Agriculture 2009 2(2): 82-92.
12. Hadioetomo RS. Mikrobiologi Dasar dalam praktek. 1990. Gramedia, Jakarta.
13. Suarsana T.. Kajian aktivitas hambat bacteriocin dari bakteri asam laktat galur SCG 1223. Skripsi. Faculty fo Agriculture Technology, Bogor Agricultural Univeristy,Bogor. 2001.
14. Ammor S, Tauveron G, Dufour E, Chevallier I..Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolate from the same meat small scale facility: Screening and Characterization of the antibacterial compounds.Food Control. 2006.17: 454-461.
15. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W. Applied Linear Statistical Models, 4th ed.. McGraw-Hill, 1996. Chicago.
Table 1=Codes and actual levels of the independent variables for design of experiment using CCD

Independent variables	-1.682^a	-1	0	1	1.682	
pH	X₁	5.0	6.0	7.0	8.0	9.0
Temperature/°C	X₂	20	30	37	40	45
Incubation period	X₃	6	12	24	48	72

^a= coded levels

Table 2=Three level central composite design and the experimental responses of dependent variables bacteriocin production.

Runs order	pH	Temp (°C)	Incubation period	(bacteriocin production AUmL⁻¹)
1	1	-1	1	5250
2	0	1	0	11190
3	1	-1	-1	8500
4	0	0	-1.682	7800
5	1	1	1	5620
6	-1	1	1	3562
7	-1.682	0	0	6350
8	0	-1.682	0	5200
9	-1	-1	-1	6000
10	1.682	0	0	5420
11	1	1	1	10500
12	0	0	-1	11196
13	0	1	0	11102
14	0	0	0	11200
15	0	1.682	0	7450
16	0	-1.682	-1	8590
17	-1	-1	1	9820
18	0	0	-1.682	11000
19	1	0	0	11191
20	1	1	-1	9682
Table 3 = Analysis of Variance (ANOVA) for Quadratic Model

Source	Sum of Squares	Degrees of Freedom	Mean Square	F-value	P-value
Regression	13460	9	14956	3.28	0.001
Linear	33032	3	11010	3.14	0.010
Square	47233	3	15744	2.90	0.042
Interaction	54334	3	18111	1.33	0.003
Residual Error	27137	10	27137	-	-
Lack of fit	10129	5	20258	0.12	0.438
Pure Error	17008	5	34016	-	-
Total	141738	19	-	-	-

R² = 0.899, adj R² = 0.852

Table 4: Estimated Regression Coefficients for bacteriocin production

Term	Coef	SE Coef	T	P
Constant	9888.9	671.9	12.520	0.001
(b₁) Pʳ	616.2	445.8	1.382	0.017
(b₂) Pᵇ	-1101.9	445.8	1.382	0.014
(b₃) Pᶜ	908.3	445.8	-2.472	0.069
(b₁₁) P*P	490.5	433.9	1.130	0.019
(b₂₂) T*T	-313.8	433.9	-0.723	0.013
(b₃₃) I*I	-1672.9	433.9	-3.855	0.011
(b₁₂) P*T	1893.6	582.4	3.251	0.003
(b₁₃) P*I	-1029.6	582.4	-1.768	0.87
(b₂₃) T*I	1464.9	582.4	2.515	0.013
Fig 1: surface plot of bacteriocin for temperature, pH

Fig 2: surface plot of bacteriocin for Incubation time, pH

Fig 3: surface plot of bacteriocin for Incubation period, Temperature

Fig 4: contour plot for Temperature, pH