Current Status of Very-Large-Basis Hamiltonian Diagonalizations for Nuclear Physics

CALVIN W. JOHNSON

Department of Physics
San Diego State University, 92182-1233, CA, USA

Today there are a plethora of many-body techniques for calculating nuclear wave functions and matrix elements. I review the status of that reliable workhorse, the interacting shell model, a.k.a. configuration-interaction methods, a.k.a. Hamiltonian diagonalization, and survey its advantages and disadvantages. With modern supercomputers one can tackle dimensions up to about 20 billion! I discuss how we got there and where we might go in the near future.

PRESENTED AT

Thirteenth Conference on the Intersections of Particle and Nuclear Physics
Indian Wells, CA, May 28–June 3, 2018

1This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272
1 Introduction and relevance of nuclear structure

Some of my colleagues think nuclear structure theory, in particular the nuclear shell model, is as old-fashioned as the horse-and-buggy. But really it’s is the exact opposite. Nuclear structure theory has lots of exciting developments. These developments push the shell model from phenomenology to rigorous first-principle calculations, driven partly by new ideas but above all by the explosion in computing capabilities. While in the early days solving a 25×25 matrix was the height of computation [Halbert and French, 1957], today we find extremal eigenvalues of matrices exceeding dimensions of 2×10^{10} [Forssén et al., 2018].

Aside from the intrinsic physics interest of nuclei, careful microscopic calculations are needed for many applications. Detection of known and unknown particles, from neutrinos [Suzuki et al., 2006] to dark matter [Anand et al., 2014], as well as experiments testing fundamental symmetries, such as neutrinoless double-β decay [Horoi and Brown, 2013] and nonconservation of parity and time-reversal symmetries [Haxton and Wieman, 2001], often require knowledge of matrix elements in complex nuclei. For such calculations to be reliable and both precise and accurate, they need to be founded on solid microscopic calculations. Fortunately, in many cases modern nuclear structure theory is rising to the challenge.

2 Key ideas in large-basis diagonalization

This paper deals solely with diagonalization of the many-body Hamiltonian in a basis built from shell-model single-particle states, also called the configuration-interaction method or the interacting shell model [Brussard and Glaudemans, 1977, Brown and Wildenthal, 1988, Caurier et al., 2005]. The idea is straightforward: expand a state $|\Psi\rangle$ in a basis \{|$\alpha\rangle$\} (assumed to be orthonormal, $\langle \alpha | \beta \rangle = \delta_{\alpha,\beta}$),

$$|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\alpha\rangle;$$

(1)

minimizing $\langle \Psi | \hat{H} | \Psi \rangle / \langle \Psi | \Psi \rangle$ leads to the eigenvalue equation

$$\sum_{\beta} H_{\alpha,\beta} c_{\beta} = E c_{\alpha},$$

(2)

where $H_{\alpha,\beta} = \langle \alpha | \hat{H} | \beta \rangle$ is the matrix element of the many-body Hamiltonian \hat{H} in this basis. I deal with the question of the choice of basis in section 3.

We can broadly classify configuration-interaction (CI) calculations into two categories, phenomenological and ab initio. Phenomenological calculations are older, and usually assume a fixed cored and a relatively narrow valence space, such as the $1s_{1/2} - 0d_{3/2} - 0d_{5/2}$ space with a fixed 16O core, or the $1p-0f$ space with a fixed 40Ca...
The interactions actually start from some *ab initio* underlying interaction, and then adjusted to many-body spectra in the target space [Brown and Richter, 2006]. Because of this, it is fair to call them *semi*-phenomenological. By *ab initio* I mean a potential fitted to few-body data, such as nucleon-nucleon scattering and the binding energies of the $A = 2, 3$ and other light systems. These interactions are most commonly built from chiral effective field theory [Entem and Machleidt, 2003], but not always [Wiringa et al., 1995, Shirokov et al., 2016]. Despite having essentially the same few-body input, different choices such as cut-off regulators [Dyhdalo et al., 2016] can strongly influence the final many-body energies.

Purely *ab initio* CI calculations are often called *no-core shell model* (NCSM) calculations [Navrátil et al., 2009, Barrett et al., 2013], precisely because there is no core: all particles, in principle, are active, and the standard methodology increases the model space until convergence: see section 4 below.

In between these two are attempts to derive *ab initio* effective interactions, with no adjustable parameters, for phenomenological-like valence spaces for medium and heavy nuclei, via a double projection (Okubo-Lee-Suzuki) method [Dikmen et al., 2015], via coupled clusters [Jansen et al., 2014], and via the in-medium similarity renormalization group [Stroberg et al., 2017].

Because we cast the many-body Schrödinger equation as a matrix equation, the main computational task becomes solving a matrix eigenvalue problem. While some bases are larger than others, as discussed below, almost all CI calculations involve large enough dimensions that it would be foolish to try to find all eigenpairs. Instead, one solves for extremal eigenvalues using Arnoldi-type algorithms, almost always the Lanczos algorithm [Whitehead et al., 1977], although there have been attempts to use other methods [Shao et al., 2018].

3 Basis states for configuration interaction

How to construct the basis set $\{|\alpha\rangle\}$? One choice is to use many simple states. The most common building block are Slater determinants (antisymmetrized products of single-particle states) or more generally the occupation-space representations of Slater determinants using creation and annihilation operators. Furthermore, one often uses an is *M*-scheme basis, where each Slater determinant has the same fixed total M or J_z, that is, the z-component of angular momentum. This is easy because J_z is an additive quantum number. Many CI shell model codes use an *M*-scheme basis, most notably **ANTOINE** [Caurier and Nowacki, 1999], **MFDn** [Sternberg et al., 2008], **BIGSTICK** [Johnson et al., 2013, 2018], and **KSHLL** [Shimizu, 2013]. *M*-scheme bases are simple, amenable to a bit occupation representation ideal for digital computers [Whitehead et al., 1977], and one can compute matrix elements in the basis efficiently.
The drawback is one needs a large number of M-scheme basis states to build up nuclear correlations.

There are more sophisticated bases. J-scheme basis states have fixed total angular momentum J. The most widely used J-scheme codes are OXBASH [Brown et al., 1985] and its successor NuShellX [Brown and Rae, 2014]. As such, the J-scheme basis has smaller dimensions than the M-scheme. One can go even further, to so-called symmetry-adapted bases, based upon groups such as SU(3) [Dytrych et al., 2013] or Sp(3,R) [McCoy et al., 2018]. When judiciously truncated in the choice of irreps (subspaces defined by the Casimir operators of the group), such calculations can be even smaller in dimension.

Dimensions alone do not measure the computational burden. From Eq. (2) the real computational burden is in the nonzero matrix elements of the Hamiltonian. M-scheme bases are very sparse, as small as $\sim 10^{-6}$, while J-scheme bases, smaller in dimensions, can have more nonzero matrix elements, and symmetry-adapted bases yet more [Dytrych et al., 2016]. Furthermore, J-scheme basis states are generally represented as a linear combination of M-scheme states, and symmetry-adapted states are either a linear combination of M-scheme states or require non-trivial recursion algorithms, making calculation of the nonzero matrix elements a significant burden; by contrast, in the M-scheme matrix elements are so simple they can be recomputed efficiently on-the-fly, dramatically reducing the memory load, albeit at a price of a more complicated algorithm [Caurier and Nowacki, 1999, Johnson et al., 2018]. There is no ‘best’ basis, only the recognition of trade-offs.

In addition to the choice of many-body basis states, there is the question of the underlying single-particle basis. Phenomenological calculations either assume a harmonic oscillator basis or a Woods-Saxon like basis, but in general as matrix elements are primarily tuned to spectra, the single-particle basis is ambiguous. More rigorous ab initio calculations such as the no-core shell model (NCSM) do have definite single-particle bases, almost always harmonic oscillator which aids in removing spurious center-of-mass motion. Yet harmonic oscillator wave functions have a steep, unphysical fall off. Hence there have been many efforts to introduce better wave functions [Caprio et al., 2012], a question which has proved challenging. The most promising seem to be natural orbitals [Constantinou et al., 2017], orbitals that diagonalize the ground state one-body density matrix.

4 Convergence and extrapolation

Phenomenological calculations take place in a fixed set of valence orbits (unfortunately common usage often conflates orbits and shells), with interactions tuned to that valence space, such as the $1s$-$0d$ or sd-space [Brown and Richter, 2006]. Ab initio calculations, conversely, imply a result in a unrestricted or infinite space. Because any
actual calculation must be done in a finite space, one must investigate the convergence as the space is increased, and in many cases, extrapolate to the infinite limit.

In default NCSM calculations [Barrett et al., 2013], one defines the model space by two parameters: the harmonic oscillator frequency Ω, or, more often, $\hbar \Omega$, for the single-particle basis states, and N_{max}, the maximum number of oscillator quanta allowed above the lowest configuration; historically this has also been called $N\hbar \Omega$. Typically one wants to extrapolate to infinite N_{max} and $\hbar \Omega$.

One strategy is to use an exponential extrapolation, e.g. fitting energies to a form $a + b \exp(-cN_{\text{max}})$ [Heng et al., 2017]. This is inspired by similar exponential extrapolations in phenomenological shell model calculations where even the finite model space is so large one must truncate and extrapolate [Horoi et al., 1999]. For the NCSM, however, the results are not very robust. Instead, recent work has found more robust extrapolation by combining N_{max} and $\hbar \Omega$ into infrared and ultraviolet parameters, and following the convergence in those parameters [Coon et al., 2012, More et al., 2013, Wendt et al., 2015]. This can also be linked to interpreting N_{max} as a finite ‘wall’ [Furnstahl et al., 2012].

In a way, these extrapolations are brute force, and limited by the capability of modern computers. The basis dimension grows exponentially with the number of orbits / N_{max} and particles, which is why size-extensive methods such as coupled clusters [Hagen et al., 2010] are attractive, but which have their own set of limitations. These limitations inspire alternatives to the standard NCSM prescription: rather than brute force computation in a larger basis, build in smarter bases, such as use of better single orbitals such as natural orbitals [Constantinou et al., 2017], and selected irreducible representations in symmetry-adapted bases which efficiently exploit deformation degrees of freedom [Dytrych et al., 2013, McCoy et al., 2018]. These lose, however, the powerful machinery of extrapolation applied to standard NCSM calculations.

Finally, rather than being ‘smarter’ in our physics, one can ride a current trend and hand over insights to the computer, with novel extrapolations using machine learning [Negoita et al., 2018]. The initial results are impressive, and it remains to see how widespread such techniques can be applied.

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272.

References

E. C. Halbert and J. B. French. Shell model for the positive-parity states of 15N. *Phys. Rev.*, 105:1563–1569, Mar 1957.
C. Forssén, B. D. Carlsson, H. T. Johansson, D. Sääf, A. Bansal, G. Hagen, and T. Papenbrock. Large-scale exact diagonalizations reveal low-momentum scales of nuclei. *Phys. Rev. C*, 97:034328, 2018.

Toshio Suzuki, Satoshi Chiba, Takashi Yoshida, Toshitaka Kajino, and Takaharu Otsuka. Neutrino-nucleus reactions based on new shell model hamiltonians. *Phys. Rev. C*, 74:034307, 2006.

Nikhil Anand, A. Liam Fitzpatrick, and W. C. Haxton. Weakly interacting massive particle-nucleus elastic scattering response. *Phys. Rev. C*, 89:065501, 2014.

M. Horoi and B. A. Brown. Shell-model analysis of the 136Xe double beta decay nuclear matrix elements. *Phys. Rev. Lett.*, 110:222502, May 2013.

WC Haxton and Carl E Wieman. Atomic parity nonconservation and nuclear anapole moments. *Annual Review of Nuclear and Particle Science*, 51(1):261–293, 2001.

P.J. Brussard and P.W.M. Glaudemans. *Shell-model applications in nuclear spectroscopy*. North-Holland Publishing Company, Amsterdam, 1977.

B. A. Brown and B. H. Wildenthal. Status of the nuclear shell model. *Annual Review of Nuclear and Particle Science*, 38:29–66, 1988.

E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker. The shell model as a unified view of nuclear structure. *Reviews of Modern Physics*, 77:427–488, 2005.

B. Alex Brown and W. A. Richter. New “USD” hamiltonians for the sd shell. *Phys. Rev. C*, 74:034315, 2006.

D. R. Entem and R. Machleidt. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. *Phys. Rev. C*, 68:041001, 2003.

Robert B Wiringa, VGJ Stoks, and R Schiavilla. Accurate nucleon-nucleon potential with charge-independence breaking. *Physical Review C*, 51(1):38, 1995.

AM Shirokov, IJ Shin, Y Kim, M Sosonkina, P Maris, and JP Vary. N3LO NN interaction adjusted to light nuclei in ab exitu approach. *Physics Letters B*, 761:87–91, 2016.

A. Dyhdalo, R. J. Furnstahl, K. Hebeler, and I. Tews. Regulator artifacts in uniform matter for chiral interactions. *Phys. Rev. C*, 94:034001, 2016.

Petr Navrátil, Sofia Quaglioni, Ionel Stetcu, and Bruce R Barrett. Recent developments in no-core shell-model calculations. *Journal of Physics G: Nuclear and Particle Physics*, 36(8):083101, 2009.
Bruce R Barrett, Petr Navrátíl, and James P Vary. Ab initio no core shell model. *Progress in Particle and Nuclear Physics*, 69:131–181, 2013.

E. Dikmen, A. F. Lisetskiy, B. R. Barrett, P. Maris, A. M. Shirokov, and J. P. Vary. Ab initio effective interactions for sd-shell valence nucleons. *Phys. Rev. C*, 91:064301, 2015.

G. R. Jansen, J. Engel, G. Hagen, P. Navratil, and A. Signoracci. Ab initio coupled-cluster effective interactions for the shell model: Application to neutron-rich oxygen and carbon isotopes. *Phys. Rev. Lett.*, 113:142502, 2014.

S. R. Stroberg, A. Calci, H. Hergert, J. D. Holt, S. K. Bogner, R. Roth, and A. Schwenk. Nucleus-dependent valence-space approach to nuclear structure. *Phys. Rev. Lett.*, 118:032502, 2017.

R. R. Whitehead, A. Watt, B. J. Cole, and I. Morrison. Computational methods for shell model calculations. *Advances in Nuclear Physics*, 9:123–176, 1977.

Meiyue Shao, H Metin Aktulga, Chao Yang, Esmond G Ng, Pieter Maris, and James P Vary. Accelerating nuclear configuration interaction calculations through a preconditioned block iterative eigensolver. *Computer Physics Communications*, 222:1–13, 2018.

E. Caurier and F Nowacki. Present status of shell model techniques. *Scopus Preview*, 30:705–714, 1999.

P. Sternberg, E. Ng, C. Yang, P. Maris, J.P. Vary, M. Sosonkina, and H. Viet Le. Accelerating configuration interaction calculations for nuclear structure. *The Proceedings of the 2008 ACM/IEEE Conference on Supercomputing*, 2008.

Calvin W. Johnson, W. Erich Ormand, and Plamen G. Krastev. Factorization in large-scale many-body calculations. *Computer Physics Communications*, 184:2761–2774, 2013.

Calvin W Johnson, W Erich Ormand, Kenneth S McElvain, and Hongzhang Shan. Bigstick: A flexible configuration-interaction shell-model code. *arXiv preprint arXiv:1801.08432*, 2018.

Noritaka Shimizu. Nuclear shell-model code for massive parallel computation, KSHELL. *arXiv preprint arXiv:1310.5431*, 2013.

B.A. Brown, A. Etchegoyen, and W.D.M. Rae. Computer code OXBASH: the Oxford University-Buenos Aires-MSU shell model code. *Michigan State University Cyclotron Laboratory Report No. 524*, 1985.
B. A. Brown and W. D. M. Rae. The Shell-Model Code NuShellX@MSU. *Nuclear Data Sheets*, 120:115–118, 2014.

T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr, and M. A. Caprio. Collective modes in light nuclei from first principles. *Phys. Rev. Lett.*, 111:252501, 2013.

Anna E McCoy, Mark A Caprio, and Tomas Dytrych. Symplectic no-core configuration interaction framework for ab initio nuclear structure. *Ann. Acad. Rom. Sci. Ser. Chem. Phys. Sci.*, 3:17, 2018.

Tomás Dytrych, Pieter Maris, Kristina D Launey, Jerry P Draayer, James P Vary, Daniel Langr, Erik Saule, MA Caprio, U Catalyurek, and Masha Sosonkina. Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei. *Computer Physics Communications*, 207:202–210, 2016.

M. A. Caprio, P. Maris, and J. P. Vary. Coulomb-sturmian basis for the nuclear many-body problem. *Phys. Rev. C*, 86:034312, 2012.

Chrysovalantis Constantinou, Mark A Caprio, James P Vary, and Pieter Maris. Natural orbital description of the halo nucleus 6 he. *Nuclear Science and Techniques*, 28(12):179, 2017.

Taihua Heng, James P Vary, and Pieter Maris. Ab initio no-core properties of li 7 and be 7 with the jisp16 and chiral nnlo opt interactions. *Physical Review C*, 95 (1):014306, 2017.

Mihai Horoi, Alexander Volya, and Vladimir Zelevinsky. Chaotic wave functions and exponential convergence of low-lying energy eigenvalues. *Phys. Rev. Lett.*, 82: 2064–2067, 1999.

S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van Kolck, P. Maris, and J. P. Vary. Convergence properties of ab initio calculations of light nuclei in a harmonic oscillator basis. *Phys. Rev. C*, 86:054002, 2012.

S. N. More, A. Ekström, R. J. Furnstahl, G. Hagen, and T. Papenbrock. Universal properties of infrared oscillator basis extrapolations. *Phys. Rev. C*, 87:044326, 2013.

K. A. Wendt, C. Forssén, T. Papenbrock, and D. Sääf. Infrared length scale and extrapolations for the no-core shell model. *Phys. Rev. C*, 91:061301, 2015.

R. J. Furnstahl, G. Hagen, and T. Papenbrock. Corrections to nuclear energies and radii in finite oscillator spaces. *Phys. Rev. C*, 86:031301, 2012.
G Hagen, T Papenbrock, David J Dean, and Morten Hjorth-Jensen. Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions. *Physical Review C*, 82(3):034330, 2010.

Gianina Alina Negoita, Glenn R Luecke, James P Vary, Pieter Maris, Andrey M Shirokov, Ik Jae Shin, Youngman Kim, Esmond G Ng, and Chao Yang. Deep learning: A tool for computational nuclear physics. *arXiv preprint arXiv:1803.03215*, 2018.