Genome-wide characterization and expression analysis suggested diverse functions of the mechanosensitive channel of small conductance-like (MSL) genes in cereal crops

Amandeep Kaur, Mehak Taneja, Shivi Tyagi, Alok Sharma, Kashmir Singh & Santosh Kumar Upadhyay

Mechanosensitive ion channels are pore-forming transmembrane proteins that allow ions to move down their electrochemical gradient in response to mechanical stimuli. They participate in many plant developmental processes including the maintenance of plastid shape, pollen tube growth, etc. Herein, a total of 11, 10, 6, 30, 9, and 8 MSL genes were identified in *Aegilops tauschii*, *Hordeum vulgare*, *Sorghum bicolor*, *Triticum aestivum*, *Triticum urartu*, and *Zea mays*, respectively. These genes were located on various chromosomes of their respective cereal, while MSLs of *T. urartu* were found on scaffolds. The phylogenetic analysis, subcellular localization, and sequence homology suggested clustering of MSLs into two classes. These genes consisted of cis-regulatory elements related to growth and development, responsive to light, hormone, and stress. Differential expression of various MSL genes in tissue developmental stages and stress conditions revealed their precise role in development and stress responses. Altered expression during CaCl₂ stress suggested their role in Ca²⁺ homeostasis and signaling. The co-expression analysis suggested their interactions with other genes involved in growth, defense responses etc. A comparative expression profiling of paralogous genes revealed either retention of function or pseudo-functionalization. The present study unfolded various characteristics of MSLs in cereals, which will facilitate their in-depth functional characterization in future studies.

All organisms including bacteria, plants and animals, receive mechanical signals from both internal (osmotic pressure and plasma membrane distortion) and external environment (gravity, touch, sound)³. They respond to these signals by activating various channel proteins. A special type of channels that open and close in response to mechanical forces are known as mechanosensitive (MS) ion channels or stretch-gated ion channels¹. They are pore-forming transmembrane (TM) proteins, which allow the movement of ions across the plasma membrane down to their electrochemical gradient. However, in plants, MS channels also act in response to signals related to developmental processes, such as cell wall damage, pollen tube growth, plant–pathogen interactions, and lateral root emergence⁴–⁶. Initially, MS channels were recognized during the electrophysiological characterization of the *Escherichia coli* cell envelope⁷–⁹. Based on the ionic conductance, the MS channels were divided into two main groups: mechanosensitive channels of large conductance (MscL) and mechanosensitive channels of small conductance (MscS)⁹. The ionic conductance of MscL and MscS corresponds to about three and one nanosiemens, respectively¹. Previous studies suggested that MscL and MscS have no ion specificity while showing permeability to very small charged molecules such as potassium glutamate, proline¹⁰, etc. During hypo-osmotic...

¹Department of Botany, Panjab University, Chandigarh 160014, India. ²Department of Biotechnology, Panjab University, Chandigarh 160014, India. *email: skupadhyay@pu.ac.in
genes were found on chromosome 5A (Fig. 1D). However, in TaMSL3B, 3D, and 4A. The highest number of
*
O. sativa, P. vulgaris
chromosomes has also been reported in other crops such as
compared to other studied crops, which might be due to its small genome size. We identified a maximum of 30
*S. bicolor
consisted of 11, 10, 6, 9, and 8 genes respectively (Supplementary File S1).

Ae. tauschii, H. vulgare, S. bicolor, T. aestivum, and
role in the regulation of plastid size and Z-rings formation. Besides, AtMSL2 and AtMSL3 play a significant
form mechanosensitive activities in the plasma membrane of root cells. Upon exposure to various stimuli, the
AtMSL9 and AtMSL10 may increase cytosolic Ca²⁺ concentration in a small amount or they may depolarize the
membrane, leading to activation of other Ca²⁺ channels. In addition to it, AtMSL2 and AtMSL3 play a significant
role in the regulation of plastid size and Z-rings formation. Besides, AtMSL8 promotes pollen grain hydration
and germination. The MSL genes have been reported in other crops such as Oryza sativa, Phaseolus vulgaris, Cicer arietinum, etc. Due to their crucial role in plants during stress conditions and developmental stages, it is important to explore this gene family in other crop plants. In the current study, we identified and characterized MSL genes in six cereals such as Aegilops tauschii, Hordeum vulgare, Sorghum bicolor, Triticum aestivum, Triticum urartu and Zea mays. The identified genes and proteins were analyzed for structural configurations, chromosomal and subcellular distribution, cis-regulatory elements, duplication events, and phylogenetic relatedness. The expression profiling of MSL genes was carried out in abiotic and biotic stress conditions and various tissue developmental stages using high throughput RNA sequence data. Further, we performed qRT-PCR for the expression study of a representative TaMSL gene from each phylogenetic group under CaCl₂ stress conditions. Further, we performed qRT-PCR for the expression study of a representative TaMSL gene from each phylogenetic group under CaCl₂ stress conditions. Further, we performed qRT-PCR for the expression study of a representative TaMSL gene from each phylogenetic group under CaCl₂ stress conditions. Further, we performed qRT-PCR for the expression study of a representative TaMSL gene from each phylogenetic group under CaCl₂ stress conditions.

Results and discussion
Identification and chromosomal distribution. A total of 74 putative MSL genes were identified after an extensive search, out of which diploid crops including Ae. tauschii, H. vulgare, S. bicolor, T. urartu, and Z. mays consisted of 11, 10, 6, 9, and 8 genes respectively (Supplementary File S1). S. bicolor have less number of genes as compared to other studied crops, which might be due to its small genome size. We identified a maximum of 30 MSL genes in *T. aestivum* (Supplementary File S1), which could be due to its allohexaploid nature. The previous findings have suggested 10 MSL genes in *A. thaliana*, six in each *O. sativa* and *C. arietinum*, and nine in *P. vulgaris*. Therefore, the number of genes identified in the present study in six cereal plant species showed consistency with previous studies. The chromosomal map of MSL genes indicates their variable distribution on six, five, four, and seven chromosomes of *Ae. tauschii, H. vulgare, S. bicolor*, and *Z. mays*, respectively (Fig. 1A–C,E). The MSL genes of *T. aestivum* were distributed on various chromosomes and subgenomes (A, B, and D) except chromosome 1B, 3A, 3B, 3D, and 4A. The highest number of TaMSL genes were found on chromosome 5A (Fig. 1D). However, in the case of *T. urartu*, scaffold locations of MSL genes were predicted. The distribution of MSL genes on various chromosomes has also been reported in other crops such as *O. sativa, P. vulgaris, C. arietinum*. Prediction of homeologs and duplication events. According to previous studies, each progenitor subgenome (i.e. A, B, and D) has contributed to the formation of a large number of gene families in *T. aesti-
We have identified 10 clusters of homeologous TaMSL genes and found that most of these clusters consisted of at least one gene from each subgenome. However, the homeologous group TaMSL1 was found on only A and D subgenome, while TaMSL9 was located on only A subgenome. The number of homeologous groups of TaMSL genes was found comparable to the number of MSL genes identified in the diploid plant species such as A. thaliana, P. vulgaris, and C. aritimum. The duplication events lead to the origin of paralogous genes during evolution and play a major role in the expansion of gene families. They are essential for genetic variability and in gaining additional roles of genes, which further promote adaptation and speciation. We analyzed duplication events (DEs) to study their contribution in the evolution of the MSL gene family. A total of 16 DEs were identified, out of which two were tandem duplication events (TDEs) and 13 were segmental duplication events (SDEs) (Supplementary File S2). One duplication event (TuMSL4-TuMSL7) found in T. urartu could not be categorized as TDE or SDE due to scaffold location of these genes (Supplementary File S2). Two TDEs (AeMSL1-AeMSL2; AeMSL5-AeMSL6) were found in Ae. tauschii, while one (HvMSL2-HvMSL7), nine (TaMSL3-A-TaMSL6-A; TaMSL3-B-TaMSL6-B; TaMSL3-D-TaMSL6-D, etc.) and three (ZmMSL3-ZmMSL8; ZmMSL4-ZmMSL5; ZmMSL6-ZmMSL7) SDEs were found in H. vulgare, T. aestivum and Z. mays, respectively (Fig. 1A, B, D, E). However, no duplication event was found to occur in the genome of S. bicolor. The DEs in MSL genes were earlier reported in some plants such as O. sativa, P. vulgaris and C. aritimum. The variation in number of duplication events might be due to different genome size and ploidy level. For instance, the complex genome of T. aestivum is responsible for the occurrence of a large number of duplication events. The numerous incidences of SDEs have been attributed to the enlargement of gene families in T. aestivum that also supported the results obtained in the present study.

Gene A	Gene B	Ka	Ks	Ka/Ks	T = Ka/Ks	Selection pressure
AeMSL6	AeMSL5	0.0625	0.2396	0.2608	18.4	Purifying
HvMSL2	HvMSL7	0.0930	0.4718	0.1972	36.3	Purifying
TaMSL3-A	TaMSL6-A	0.1433	1.3404	0.1069	103.1	Purifying
TaMSL3-B	TaMSL6-B	0.1417	1.4309	0.0990	110.1	Purifying
TaMSL3-D	TaMSL6-D	0.1380	1.3358	0.1033	102.8	Purifying
TaMSL4-A	TaMSL7-A	0.0786	0.4318	0.1821	33.2	Purifying
TaMSL4-B	TaMSL7-B	0.0986	0.4010	0.2458	30.8	Purifying
TaMSL4-D	TaMSL7-D	0.0982	0.4136	0.2375	31.8	Purifying
TaMSL5-A	TaMSL10-A	0.1940	0.5637	0.3442	43.4	Purifying
TaMSL5-B	TaMSL10-B	0.1982	0.5867	0.3377	45.1	Purifying
TaMSL5-D	TaMSL10-D	0.2081	0.5810	0.3581	44.6	Purifying
TaMSL4	TaMSL7	0.0816	0.4657	0.1751	35.8	Purifying
ZmMSL3	ZmMSL8	0.0287	0.3195	0.0898	24.6	Purifying
ZmMSL4	ZmMSL5	0.0505	0.2499	0.2022	19.2	Purifying
ZmMSL6	ZmMSL7	0.0421	0.2184	0.1927	16.8	Purifying

Table 1. The Ka/Ks ratio and divergence time of duplicated MSL gene pairs. Ka non-synonymous substitutions per non-synonymous site, Ks synonymous substitutions per synonymous site, T divergence time.

Ka/Ks analysis. We have calculated the values of Ka, Ks and Ka/Ks ratio to know about the evolutionary divergence between the paralogous MSL genes (Table 1). The Ka/Ks ratio of all the duplicated gene pairs was less than one, which suggested negative or purifying selection pressure throughout the evolution. Due to non-availability of complete sequence of AeMSL2, it was not possible to perform Ka/Ks analysis of duplicated gene pair AeMSL1-AeMSL2.

Further, the divergence time of DEs was also calculated and it was predicted to be in the range of 16 to 110 Million years ago (MYA). The maximum and minimum divergent time of DEs were found in T. aestivum and Z. mays, respectively (Table 1). In previous study, it was estimated that main DEs were occurred ~ 67 MYA and ~ 11 MYA in H. vulgare and Zea mays, respectively. The predicted duplications in these plants were in similar range with slight deviation, as it was ~ 36MYA in HvMSLs, and ~ 16–24 MYA in ZmMSLs (Table 1). In case of TaMSL paralogs, the DEs were predicted in the diverse range from ~ 30 to 110 MYA. The results suggested the occurrence of these DEs before the hybridization of A, B and D subgenomes that occurred in the range of ~ 0.5–6 MYA. Moreover, higher rate of sequence divergence among the duplicated gene pairs during evolution could also be the region for the deviation in the years of predicted duplication events, as it was completely based upon sequence analysis.

Phylogenetic analysis. The phylogenetic tree was prepared to study the evolutionary relatedness among the MSL proteins of Ae. tauschii, A. thaliana, H. vulgare, O. sativa, S. bicolor, T. aestivum, T. urartu, and Z. mays using the full length protein sequences. In the phylogenetic tree, MSL proteins were clustered into two main classes i.e. class I and II (Fig. 2A). Similar classification of proteins has also been reported in A. thaliana, O. sativa, P. vulgaris and C. aritimum. The class I and class II consisted of 31 and 59 MSL proteins, respectively. Two MSL proteins of Z. mays, three of each Ae. tauschii, A. thaliana, O. sativa, S. bicolor and T. urartu, four of H.
vulgare, and 10 of T. aestivum were clustered in class I. While, three MSL proteins of each O. sativa and S. bicolor, six of each H. vulgare, T. urartu and Z. mays, seven of A. thaliana, eight of Ae. tauschii, and 20 of T. aestivum showed close relationships and found in class II of phylogenetic tree (Fig. 2A).

Figure 2. Phylogenetic tree, cis-regulatory element analysis, and gene structure (exon–intron organization and intron phases) analysis. (A) Shows a phylogenetic tree constructed by the neighborhood joining method with 1000 bootstraps using MEGA7.0 software. The tree shows two major classes i.e. class I and class II, which further divided into sub-classes highlighted with different colors. (B–G) Show the percentage of Cis-regulatory elements including light-responsive elements, stress-responsive elements, hormone-responsive elements, and growth and development responsive elements of MSL genes of Ae. tauschii (B), H. vulgare (C), S. bicolor (D), T. aestivum (E), T. urartu (F), and Z. mays (G). (H–M) Show the structure of MSL genes of A. tauschii (H), H. vulgare (I), T. aestivum (J), S. bicolor (K), T. urartu (L), and Z. mays (M) prepared by using GSDS 2.0 server.

Promoter analysis. Promoter analysis suggested the occurrence of a large number of cis-regulatory elements in the promoter regions of MSL genes, which were responsive to light, hormone, stress, and growth and development (Fig. 2B–G). Some light-responsive elements including Sp1, G-box, G-Box, ACE, and GT1-motif were identified in most of MSL genes. STRE, as-1, MYB, MYC, WRE3, GC-motif, DRE core, TC-rich repeats,
MYB recognition site, etc. were commonly occurring stress-responsive elements in MSL genes. Hormone-responsive elements such as ABRE, CGTCA-motif, TGACG-motif, ABRE3a, and ABRE4 were most frequently found in MSL genes. Furthermore, the growth and development related cis-regulatory elements including: CAT-box, MYB-binding site, CGGCTCC-box, CGGCTCC-motif, AAGAA-motif was detected in most of the MSL genes. In Ae. tauschii, 37% cis-elements were found to be responsive to stress, 26% to light, 22% to growth and development, and 15% to hormones (Fig. 2B). In H. vulgare, 34% cis-elements were responsive to stress, 28% to light and 23% to growth and development, and 15% to hormone (Fig. 2C). In S. bicolor, 34% of cis-elements were found as light-responsive, 31% as stress-responsive, 21% as hormone-responsive, and 14% as growth and development responsive (Fig. 2D). In T. aestivum, 29% cis-elements were predicted to be involved in growth and development, and 28% respective to light, 25% responsive to stress, 18% to hormone (Fig. 2E). In T. urartu, 31% elements were responsive to stress, 29% to light, 26% to growth and development, and 14% hormone-responsive (Fig. 2F). Similarly, in the case of Z. mays, we found that 32% cis-elements were responsive to stress, 29% to light, 22% to growth and development, and 17% to hormone (Fig. 2G). Besides, we found that the arrangement of cis-regulatory elements varies in each MSL gene. Enrichment of cis-regulatory elements in the MSL gene promoters revealed their numerous functions in each cereal.

Gene structure analysis. The exon/intron organization and intron phases were examined to get information about the structural features of MSL genes. The number of exons ranged from 3 to 12 in Ae. tauschii, 4 to 13 in H. vulgare and T. aestivum, 5 to 13 in S. bicolor and Z. mays, and 5 to 10 in T. urartu. (Supplementary File S3, Fig. 2H–M). The majority of MSL genes carried five exons for each cereal except T. urartu, where six exons were present in the majority of the genes. Further, we found that the class I MSL genes consisted of 6–13 exons, while class II MSL genes consisted of 3 to 10 exons in all the studied crops. The maximum number of introns were present in 0 phase followed by 2 phase and then 1 phase, which indicated the conserved architecture of MSLs.

The predicted average length, molecular weight (MW) and isoelectric point (pI) of MSL proteins from Ae. tauschii, H. vulgare, S. bicolor, T. aestivum, T. urartu and Z. mays ranged from 680 to 782 AA, 73.4 to 90.6 kDa and, 9.1 to 9.7, respectively (Supplementary File S3). These findings were similar to the previous studies regarding gene structure of MSLs in other crops.

Protein characterization. The physicochemical properties of MSL proteins were analyzed using computational approaches. The predicted average length, molecular weight (MW) and isoelectric point (pI) of MSL proteins from Ae. tauschii, H. vulgare, S. bicolor, T. aestivum, T. urartu and Z. mays were 73.4 to 90.6 kDa and, 9.1 to 9.7, respectively (Supplementary File S3). These findings were similar to the previously reported MSL proteins in other plants.

In each cereal crop, class I MSL proteins consisted of five or six TM helices, while class II MSL proteins carried five to eight TM helices (Supplementary File S3). However, AeMSL2 and TuMSL5 protein exhibited the occurrence of only one and two TM helices, respectively, which could be due to the partial sequence of these genes. Previous studies have suggested the presence of five TMs in class I and six TMs in class II MSLs of A. thaliana and O. sativa, which were comparable to our findings.

The subcellular localization prediction of MSL proteins of each cereal suggested that class I MSL proteins were either located on chloroplastic envelop or mitochondrial membrane, while class II proteins were located on the plasma membrane (Supplementary File S3). Similar results have been reported in other crops including A. thaliana, O. sativa, P. vulgaris and C. arietinum.

The functionality of a protein depends upon the characteristic features of its domain. Pfam analysis suggested that the MS-channel domain (PF00924) was present in all MSL proteins of Ae. tauschii, H. vulgare, S. bicolor, T. aestivum, T. urartu and Z. mays (Supplementary File S4). Further, the occurrence of 15 conserved motifs was examined among MSL proteins of each cereal. Motif 3 present in MS channel domain was highly conserved, due to its occurrence in all the MSLs. Motif 10 was also distributed in all proteins except AeMSL2. The majority of identified motifs were present in class II MSL proteins, while motifs 3, 7, 8, 10, and 13 were present in the members of class I MSL (Fig. 3A). Furthermore, protein kinase C phosphorylation site, casein kinase 2 phosphorylation site, tyrosine kinase site could be detected in the motifs 1, 2, 4, 5, 7, 8, and 9. These motifs were predominately found in most of class II proteins and few of class I proteins. These findings suggested that these proteins might also be responsible for phosphorylation. Similar results have been reported in other crops such as O. sativa, P. vulgaris and C. arietinum.

The identified MSL proteins in our present study were aligned along with MSL protein sequences of A. thaliana and O. sativa, to study the conserved residues among them (Fig. 3B). A conserved TM region was found in the C-terminal half of the MSL proteins of both the classes. Further, motifs PF(X12–16)GXV(X20–21)PN(X9) N and F(X3)P(X3)GD(X10–14)V(X20–21)PN(X7)IXNXXR were also found conserved at C-terminus in class I and class II MSL proteins, respectively (Fig. 3B). The C-terminal conserved TM domain of class I MSLs exhibited similarity with TM3 of E. coli MscS and similar findings has also been described in other crops. Moreover, the TM domains of class I MSL proteins consisted of high proportion of glycine and alanine residues, while the class II MSL proteins had large hydrophobic side chains (Fig. 3B). Similar conserved domain and motifs were reported in MSL proteins of A. thaliana, O. sativa, P. vulgaris, and C. arietinum.

Expression analysis in tissue development stages. Expression analysis of MSL genes was carried out to study their involvement in the developmental processes of plants. We performed expression analysis in H. vulgare, S. bicolor, T. aestivum and Z. mays (Supplementary File S5, Fig. 4A–D). We selected those MSL genes for analysis, which showed expression ≥ 2 FPKM in a minimum of one developmental stage (Supplementary File S5). In H. vulgare, most of the HvMSLs exhibited expression in various development stages. HvMSL1, HvMSL8, HvMSL9 and HvMSL10 showed prominent expression in reproductive tissues including in florescence, carpoyis,
germinating embryo that suggested its involvement in the development of reproductive tissues (Supplementary File S5, Fig. 4A). However, higher expression of HvMSL3 in shoot, root and internode indicated their role in vegetative tissue development.

In *S. bicolor*, SbMSL1 exhibited significant expression in shoot, leaf, flower, anther, and emerging inflorescence, which revealed its involvement in the development of both vegetative and reproductive tissues. Moreover, SbMSL3, SbMSL5, and SbMSL6 showed expression in most of the tissues or organs. SbMSL3 and SbMSL6 exhibited elevated expression in the vegetative and floral meristem, while SbMSL3 also exhibited enhanced expression in plant embryo and seed 5 day after pollination (DPA). SbMSL2 showed less expression in almost all the tissues. SbMSL4 was found to be expressed only in anther and flower suggested their participation in the development of reproductive organs (Supplementary File S5, Fig. 4B).

In *T. aestivum*, 16 TaMSL genes showed expression in various tissue developmental stages (Supplementary File S5, Fig. 4C). The majority of TaMSL genes were highly expressed in spike followed by the stem, leaf, grain, and root tissues. Moreover, these TaMSL genes exhibited higher expression in the later stages of tissue development. On the other hand, it was found that TaMSL5-B and TaMSL5-D showed higher expression in all the tissue development stages as compared to the rest of TaMSL genes. TaMSL2 and TaMSL8 group genes exhibited higher expression in all the developmental stages of root tissue, which suggested that they might be preferable involved in absorptive transportation of related ions in root.

In case of *Z. mays*, ZmMSL1, ZmMSL2, ZmMSL5 and ZmMSL8 showed significant expression in all the tissues development stages, which suggested their role throughout the plant development. Moreover, ZmMSL5 exhibited quite higher expression in some tissues like tip of ear primordium, embryo 20 DPA, etc. and ZmMSL7 was highly expressed in various reproductive tissues (Supplementary File S5, Fig. 4D).
The significant expression of the majority of MSL genes in various tissue developmental stages suggested their roles in the growth and development. In the case of both *A. thaliana* and *O. sativa*, the majority of MSL genes were expressing in various tissue/organs throughout the plant life. OsMSL3 specifically shows a characteristically high expression in almost all the tissues and organs of *O. sativa*. In the present study, the orthologous TaMSL5 group genes were also high expressing in one or more stages of the tissue development in leaf, stem, spike, and grain. Furthermore, in the case of *H. vulgare*, SbMSL1, and ZmMSL1 were also high expressing in all the developmental stages. Moreover, the majority of the OsMSL genes of rice are significantly expressing in reproductive stages. In the present study, several MSLs including HvMSL8, SbMSL1, SbMSL4, SbMSL6, ZmMSL7 and TaMSL5 and TaMSL7 group genes were highly expressed in reproductive stages. The putative role of MSL genes in plant development was further reinforced through the occurrence of various growth and development responsive cis-regulatory elements like CCGTCC-box, CCAT-box, etc.

Co-expression analysis. We analyzed the co-expression of MSL genes with other genes of their respective crop in tissue development stages of *H. vulgare, S. bicolor, T. aestivum*, and *Z. mays* (Supplementary File S6, Fig. 4E–H). In *H. vulgare*, three HvMSL genes including HvMSL3, HvMSL10, and HvMSL8 were found to be co-expressed with 65 transcripts. HvMSL8 showed co-expression with the maximum number of transcripts (56) which encoded Histone H4, a serine-threonine kinase, DNA topoisomerase 2, E3 ubiquitin-ligase, etc. (Supplementary File S6, Fig. 4E). In the case of *S. bicolor*, four SbMSL genes revealed their co-expression with a total of 96 transcripts encoding ethylene receptor 2, Zinc-finger homeodomain, subtilisin-like protease, callose synthase 7, etc. (Supplementary File S6, Fig. 4F). In *T. aestivum*, six TaMSL genes showed co-expression with 21 transcripts encoding early nodulin 2, elongation factor 2, dehydration-induced 19, Beta-glucosidase 31, etc. (Supplementary File S6, Fig. 4G). Similarly, in *Z. mays*, four ZmMSL genes were co-expressing with 53 transcripts, among them ZmMSL7 exhibited co-expression with 36 transcripts. These transcripts encoded LRR receptor-like serine-threonine kinase, L-ascorbate oxidase, E3 ubiquitin-ligase, Peroxidase 1, etc. (Supplementary File S6, Fig. 4H). The gene ontology (GO) mapping of co-expressed transcripts of *H. vulgare, S. bicolor, T. aestivum* and *Z. mays*, suggested their involvement in oxidative stress (GO: 0006979), oxidation-reduction process (GO: 0055114), iron ion binding (GO: 0005506), zinc ion binding (GO: 0008270), defense response to fungus (GO: 0006938), voltage-gated ion channel activity (GO: 0008308), catalytic activity (GO: 0008244), response to salicylic acid (GO: 0009751), etc. (Supplementary File S6).
We have concluded that the co-expression of MSLs with other genes involved in numerous biological processes suggested their diverse functions. The GO mapping of co-expressed transcripts suggested the participation of MSL genes in growth and development. For instance, one of MSL gene i.e. HvMSL8 found to be co-expressed with ABC transporter, which was reported to be involved in pollen growth and development. Thus, HvMSL8 can have probable role in pollen growth and development. We analyzed that MSL genes were co-expressed with cellulose synthase, suggested their involvement in cell wall development. Further, the co-expression of MSL genes with transcripts encoding kinases such as serine-threonine kinase, cysteine rich receptor kinase etc. suggested their roles in signaling pathways, and stress responses.

Comparative expression profiling of paralogous genes. The duplication events play a significant contribution to the origin of paralogous genes during evolution. Due to their participation in the formation of similar protein complexes, it is important to coordinate their expression within the cell. Therefore, we performed comparative tissue expression profiling of paralogous MSL gene pairs using available high throughput RNA seq data. The paralogous gene pairs could be divided into three classes; retention of expression, neo-functionalization, and pseudo-functionalization, based on their expression patterns. However, MSL paralogues genes exhibited only pseudo-functionalization and retention of functions, which suggested functional conservation after duplication. The segmentally duplicated gene pair of H. vulgare (HvMSL2 and HvMSL7) exhibited pseudo-functionalization, due to the insignificant expression of one gene (Fig. 5A). However, in the case of Z. mays, three segmentally duplicated gene pairs such as ZmMSL3: ZmMSL8; ZmMSL4: ZmMSL5 and ZmMSL6: ZmMSL7 revealed their existence in class retention of expression due to their comparable expression pattern (Fig. 5K–M).

Expression profiling of TaMSL under biotic and abiotic stresses. Various environmental stresses such as abiotic and biotic stresses affect plant growth and development, which leads to the loss of yield and quality. The expression patterns of TaMSL genes were analyzed to understand their role in biotic and abiotic stress responses.

Two fungal pathogens i.e. Puccinia striiformis f. sp. tritici (Pst) and Blumeria graminis f. sp. tritici (Bgt) were used for expression analysis of MSL genes under biotic stresses using high throughput RNA seq data. The MSL genes, which showed a fold change of ≥ 2, were selected for the study (Supplementary File S7). TaMSL genes were clustered in two groups, based on their relatively similar expression. All TaMSL genes of group I were down regulated after Bgt and Pst infestation except TaMSL1-A which was up-regulated after 24 h of Pst attack. However, in group II, the majority of TaMSL genes were up-regulated after Bgt and down-regulated after Pst infestation. Moreover, TaMSL2-B and TaMSL2-D were down-regulated after 24 h of Bgt infestation and TaMSL2, TaMSL5-D and TaMSL2-D were up-regulated after 24, 48 and 72 h of Pst inoculation, respectively (Supplementary File S7, Fig. 6A).

We also analyzed the expression profiling of TaMSL genes under abiotic stress conditions such as drought stress (DS), heat stress (HS), heat drought (HD), and salt stress by using high throughput RNA seq data. A total of 14 TaMSL genes were differentially expressed (≥ 2) under these stresses (Fig. 6B,C, Supplementary File S7). The majority of TaMSL genes were upregulated at later stages (6 h) of DS, HS, and HD treatment. However, a few genes such as TaMSL7-A, and TaMSL7-B were upregulated at 1 h of DS. TaMSL7-D and TaMSL8-D were upregulated at each hour of DS, HS, and HD treatment. In contrary, TaMSL1-D and TaMSL4-D2 were downregulated in each treatment. Similarly, OsMSL6 and OsMSL3 of O. sativa show significant expression in response to drought stress. Their orthologs, TaMSL8-D, TaMSL5-A and TaMSL5-D were also upregulated in drought stress (Fig. 6B).

Based on the similar expression patterns, TaMSL genes were clustered into two groups under salt stress (Fig. 6C). All TaMSL genes of group I showed upregulation during every hour of salt stress except TaMSL4-A1, which was downregulated at 6 and 12 h. In group II, the majority of TaMSL genes were downregulated, while certain genes such as TaMSL2-A and TaMSL2-B were upregulated at 6 and 12 h of salt stress (Fig. 6C). TaMSL5-B was upregulated at every hour of salt stress treatment similar to its orthologs OsMSL3 of O. sativa, which was also significantly upregulated during salt stress.

The differential expression of TaMSL genes during various biotic and abiotic stresses along with the occurrence of various stress-responsive cis-regulatory elements including as-1, MYB, MYC, WRE3, GC-motif, DRE core etc., suggested their involvement in stress tolerance. All these stresses result in an increase in cytoplasmic Ca²⁺. Since the MSL proteins are also involved in Ca²⁺ transport, the differential expression of TaMSL genes along with their co-expression with various signaling related genes, suggested their roles in Ca²⁺ homeostasis and signaling during these stress conditions.

Expression analysis during CaCl₂ stress. Ca²⁺ is an important secondary messenger involved in signaling. During stress conditions, the cytoplasmic Ca²⁺ concentration elevated by usually tenfolds, resulted in activation of signaling process and activation of various calcium transport elements to restore the cytoplasmic Ca²⁺ concentration by the process called calcium homeostasis. Since the MSL proteins are also associated with the influx of Ca²⁺ and its homeostasis, expression analysis of TaMSL genes was performed under CaCl₂...
stress using qRT-PCR. A total of four \(\text{TaMSL} \) genes (\(\text{TaMSL5-B} \) from class I, and \(\text{TaMSL4-D2}, \text{TaMSL7-D}, \) and \(\text{TaMSL8-D} \) from class II) were selected for qRT-PCR that represented each major phylogenetic group (Fig. 6D–G). The expression pattern of \(\text{TaMSL4-D2}, \text{TaMSL5-B}, \text{TaMSL7-D}, \) and \(\text{TaMSL8-D} \) was similar at every hour of \(\text{CaCl}_2 \) stress. \(\text{TaMSL5-B}, \text{TaMSL7-D}, \) and \(\text{TaMSL8-D} \) were significantly upregulated (> tenfolds) in the initial hours (6 and 12 h) of treatment. However, all these genes get normalized at later stages of treatment (Fig. 6D–G).

The elevated expression of class I \(\text{TaMSL} \) gene; \(\text{TaMSL5-B} \), which was predicted to be localized in chloroplastic membrane, might be associated with the transport of \(\text{Ca}^{2+} \) from this organelle to the cytoplasm and stress signaling, as well. On the other hand, enhanced expression of class II \(\text{TaMSL} \) genes suggested that they might initially be activated and subsequently stimulated other \(\text{Ca}^{2+} \) channels through depolarization of the plasma membrane. These \(\text{Ca}^{2+} \) channels further help in \(\text{Ca}^{2+} \) influx into the cytosol, which in turn activates various signaling pathways for the adaptation of plants under stress conditions. Further, the occurrence of various \(\text{Ca}^{2+} \) and phytohormone

Figure 5. Comparative expression profiling of paralogous genes. (A,B,J,K–M) shows the comparative expression profiling of duplicated genes of \(\text{H. vulgaris}, \text{T. aestivum}, \) and \(\text{Z. mays} \), respectively. Based on expression pattern, duplicated gene pairs have been classified into the retention of expression (B–D,H–J,K–M) and pseudo-functionalization (A,E–G).
responsive cis-regulatory elements such ABRE, DRE, W-box etc. in the promoter region of MSL genes also suggested their involvement in Ca$^{2+}$ homeostasis and signaling.

Conclusions

The present study involved identification, classification and detailed characterization of MSL channels from six cereal crops. The occurrence of cis-regulatory elements in MSLs suggested their roles in the diverse physiological phenomenon. Expression profiling in various tissue developmental stages highlighted the role of MSLs in the growth and development. Co-expression analyses and gene ontology mapping revealed the plausible role of MSLs in signaling, stress responses, etc. Comparative expression profiling of paralogous genes showed either retention of expression or pseudo-functionalization. Abiotic and biotic stress responsive differential expression of TaMSL genes revealed their role in stress response. Enhanced expression of MSLs under CaCl$_2$ stress suggested their...
involvement in Ca$^{2+}$ homeostasis and signaling. However, the specific role of the individual MSL gene should be functionally validated in future studies.

Methods

Identification and nomenclature of MSL genes. To identify the MSL proteins in *Ac. taushii*, *H. vulgare*, *S. bicolor*, *T. aestivum*, *T. urartu* and *Z. mays*, a BLASTp search was performed at Ensembl Plants (plants.ensembl.org/index.html). The MSL protein sequences of *A. thaliana* and *O. sativa* were used as a query against the protein model sequences of these six cereals. Furthermore, the MS-channel (PF00924) domain was confirmed in all the extracted MSL proteins by performing Pfam BLAST search (10$^{-10}$) with Hidden Markov Model (HMM)48. This domain was further ensured within each MSL protein through the SMART49 and the NCBI Conserved Domain Database (CDD) BLAST servers50.

The international guidelines for gene symbolization were followed for the nomenclature of MSL of *T. aestivum* (https://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm). However, in case of *Ac. taushii*, *H. vulgare*, *S. bicolor*, *T. urartu* and *Z. mays* names were given to MSL genes according to their location on respective chromosome.

Chromosomal localization, homeologs and paralogs analysis. Ensembl Plants was used to retrieve the information regarding the chromosomal and genome-wide distribution of MSL genes (https://plants.ensembl.org/Triticum_aestivum/). Chromosomal maps were prepared using MapInspect (http://mapinspect.software.informer.com/), to depict the location of each gene on the respective chromosome. *TaMSL* genes of *T. aestivum* were grouped as homeologs based on their locations on the homoeologous chromosomes and by performing bidirectional BLAST search with ≥90% sequence similarity. The paralogous genes formed at the time of duplication events were identified by using bidirectional blast search (10$^{-10}$) with ≥80% sequence similarity. Based on the distance between the chromosomal localization of paralogous genes, they were considered as either segmentally or tandemly duplicated51.

Ka/Ks calculations. The nucleotide and protein sequences of the duplicated MSL gene pairs were aligned using ClustalOmega server (https://www.ebi.ac.uk/Tools/msa/clustalo). Further, PAL2NAL server was used for the calculation of non-synonymous substitution per non-synonymous site (Ka), synonymous substitution per synonymous site (Ks), and Ka/Ks ratio52. The divergence time of each duplicated MSL gene pair was calculated by applying the formula T = Ks/2r, whereas T indicates the divergence time and r indicates the divergence rate. The value of divergence rate was implicated as 6.3 × 10$^{-9}$ in cereals53.

Multiple sequence alignment and phylogenetic relationship. Full-length amino acid (AA) sequences of each MSL protein were aligned via Multalin and MUSCLE programs54 to predict the conserved residues. The phylogenetic tree was generated by MEGA 7 software using the neighbor-joining method with 1000 bootstrap replicates55.

Promoter analysis. An upstream promoter sequence (~ 1.5 kb) of each MSL was extracted from genomic sequences of all the studied cereal plants. By using the PlantCARE database, cis-regulatory elements were investigated among the extracted promoter sequences56.

Gene structure analysis. The MSL gene structures were constructed by Gene structure display server (GSDS2.0) using genomic and coding sequences (CDS) of each cereal57. The structural features were visualized in form of intron/exon organization and presence of various intron phases.

Protein characterization. Various physicochemical properties of MSL proteins such as MW and pI were calculated using standard parameters by the Expasy MW/pI tool58. Phyre2 tool was used to predict the number of TM regions in MSL proteins59. To determine the subcellular distribution of MSL proteins, the Prot comp 9.0 tool (https://linux1.softberry.com/berry.pthtml) was used. Moreover, the Chlorop v1.1 program was used for the re-confirmation of chloroplastic localization of MSL proteins60. Multiple Expectation Maximization for Motif Elicitation (MEME- suite version 5.0.1), was used for the investigation of conserved motifs within MSL proteins44.

Expression analysis of MSL genes. To study the expression patterns of MSL genes in various tissue development stages of *H. vulgare*, *S. bicolor* and *Z. mays*, the RNA seq data was retrieved from the expression ATLAS database44. However, in the case of *T. aestivum*, the publically available RNA seq data were obtained from NCBI and URGI databases39,40 (wheaturgi.versailles.inra.fr/files/RNASeqWheat/). Then, trinity package was used for the calculation of expression values in the form of FPKM (fragment per kilobase per million reads) in duplicates (n = 2)62.

The expression patterns were analyzed under biotic and abiotic stress conditions in *T. aestivum*. The expression of *TaMSL* genes was studied under biotic stresses by using publically available RNA seq data45 from leaves after 24, 48 and 72 h of fungal infestation of *Blumeria graminis* f. sp. *tritici* (Bgt) and *Puccinia striiformis* f. sp. *tritici* (Pst) in triplicates (n = 3). Expression study under abiotic stresses such as heat (HS), drought (DS), and their combination (HD) was done by using the available RNA seq data generated in duplicates (n = 2) after 1 and 6 h of these stresses from leaves45. Moreover, RNA seq data generated in triplicates (n = 3) by Zhang et al. in 2016, after 6, 12, 24, and 48 h of salt treatment from root tissues were used for expression profiling of *TaMSL* genes under salt stress45. Heat maps were prepared using Hierarchical Clustering Explorer 3.592.
Co-expression analysis and gene ontology mapping. The CoExpress v.1.5. tool was used for the analysis of co-expression of MSL genes of *H. vulgare*, *S. bicolor*, *T. aestivum* and *Z. mays*. The co-expression values were calculated by using the Pearson correlation coefficient with a correlation power 1 and threshold filter ≥ 0.9. Gene ontology (GO) mapping and functional annotation of co-expressed genes were done using the Blast2GO tool. Interaction networks of co-expressed genes were made by the Gephi 0.9.1 tool.

qRT-PCR. Firstly, the surface sterilization of seeds of *T. aestivum* (cv. chinese spring) was done using sodium hypochlorite (1.2%) in 10% ethanol. Then, sterilized seeds were kept overnight at 4 °C for stratification after washing with double autoclaved water. The washing seeds were allowed to germinate at room temperature. After germination, these seedlings were placed in fresh phytoboxes and were grown in the plant growth chamber using autoclaved water. CaCl2 (20 mM) treatment was given to 7-day-old seedlings with growth media i.e. Murashige and Skoog (MS) and then, samples were collected in liquid nitrogen after 6, 12, 24, and 48 h. RNA was extracted using the Spectrum TM Plant Total RNA kit (Sigma, USA) from root tissues. Traces of DNA contamination were removed using the TURBO DNA-free™ Kit (Invitrogen, USA). RNA samples were examined both qualitatively and quantitatively through agarose gel electrophoresis and Nanodrop spectrophotometer, respectively. ADP-ribosylation factor (TaARF1) was used for calculating the expression values. All the experiments were performed in triplicates (n = 3) and represented in term of mean ± standard deviation (SD). After Analysis of Variance, we performed the post hoc Tukey’s test at p-value < 0.05, to analyze the significant mean difference between control and treatments using SPSS 16.0 software.

Received: 8 May 2020; Accepted: 21 September 2020
Published online: 06 October 2020

References

1. Peyronnet, R., Tran, D., Girault, T. & Frachisse, J. M. Mechanosensitive channels: Feeling tension in a world under pressure. *Front. Plant Sci.* 5, 558 (2014).

2. Appel, H. M. & Cocroft, R. B. Plants respond to leaf vibrations caused by insect herbivore chewing. *Oecologia* 175, 1257–1266 (2014).

3. Jayaraman, D., Gilroy, S. & Ane, J. M. Staying in touch: Mechanical signals in plant–microbe interactions. *Curr. Opin. Plant Biol.* 20, 104–109 (2014).

4. Lucas, M. et al. Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. *Proc. Natl. Acad. Sci. USA* 110, 5229–5234 (2013).

5. Martinac, B., Ruechener, M., Delcour, A. H., Adler, I. & Kung, C. Pressure-sensitive ion channel in *Escherichia coli*. *Proc. Natl. Acad. Sci. USA* 84, 2297–2301 (1987).

6. Sukharev, S. I., Martinac, B., Arshavsky, V. Y. & Kung, C. H. Two types of mechanosensitive channels in the *Escherichia coli* envelope: Solubilization and functional reconstitution. *Biophys. J.* 65, 177–183 (1993).

7. Berrier, C., Besnard, M., Ajouz, B., Coulombe, A. & Ghazi, A. Multiple mechanosensitive ion channels from *Escherichia coli*, activated at different thresholds of applied pressure. *J. Membr. Biol.* 151, 175–187 (1996).

8. Edwards, M. D. et al. Characterization of three novel mechanosensitive channel activities in *Escherichia coli* channels 6, 272–281 (2012).

9. Cox, C. D., Nakayama, Y., Nomura, T. & Martinac, B. The evolutionary ‘tinkering’of MscS-like channels: Generation of structural and functional diversity. *PflügersArchiv-Eur. J. Physiol.* 467, 3–13 (2015).

10. Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. *Physiol. Rev.* 81, 685–740 (2001).

11. Levina, N. et al. Protection of *Escherichia coli* cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity. *EMBO J.* 18, 1730–1737 (1999).

12. Booth L.R., Edwards, M.D., Murray E. & Miller, S. The role of bacterial channels in cell physiology. *In Bacterial Ion Channels and Their Eukaryotic Homologs* 291–312 (2005).

13. Pivetti, C. D. et al. Two families of mechanosensitive channel proteins. *Microbiol. Mol. Biol. Rev.* 67, 66–85 (2003).

14. Haswell, E. S. MscS-like proteins in plants. *Curr. Top. Membr.* 58, 329–359 (2007).

15. Haswell, E. S., Peyronnet, R., Barbier-Brygoo, H., Meyrowitz, E. M. & Frachisse, J. M. Two MscS homologs provide mechanosensitive channel activities in the *Arabidopsis* root. *Curr. Biol.* 18, 730–734 (2008).

16. Peyronnet, R., Haswell, E. S., Barbier-Brygoo, H. & Frachisse, J. M. AtMsl9 and AtMsl10: Sensors of plasma membrane tension in *Arabidopsis* roots. *Plant Signal. Behav.* 3, 726–729 (2008).

17. Haswell, E. S. & Meyrowitz, E. M. MscS-like proteins control plastid size and shape in *Arabidopsis thaliana*. *Curr. Biol.* 16, 1–11 (2006).

18. Wilson, M. E., Jensen, G. S. & Haswell, E. S. Two mechanosensitive channel homologs influence division ring placement in *Arabidopsis* chloroplasts. *Plant Cell* 23, 2939–2949 (2011).

19. Hamilton, E. L. et al. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. *Science* 350, 438–441 (2015).

20. Saddfe, A. A. & Kumar, K. In silico identification and expression analysis of MscS like gene family in rice. *Plant Gene* 1, 8–17 (2015).

21. de Souza, S. G. H., da Silva, A. P., Ito, T. M., da Silva, E. G. & Cantí, T. Genome-wide analysis of mechanosensitive channel of small conductance (MscS)-like gene family in common bean. *Afr. J. Biotechnol.* 15, 580–592 (2016).

22. Basumatary, N., Kumari, A. & Sarmah, J. Genome-wide identification of MscS like gene family in *Cicer arietinum*. *Ann. Plant Sci.* 7, 2002–2012 (2018).

23. Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. *Nature* 457, 551–556 (2009).

24. Marcussen, T. et al. Ancient hybridizations among the ancestral genomes of bread wheat. *Science* 345, 1250092–1250092. https://doi.org/10.1126/science.1250092 (2014).
25. Shumayla. et al. Genomic dissection and expression profiling revealed functional divergence in *Triticum aestivum* leucine rich repeat receptor like kinases (TaLRKs). Front. Plant Sci. 7, 1374. https://doi.org/10.3389/fpls.2016.01374 (2016).

26. Shumayla. et al. Molecular characterization and global expression analysis of lectin receptor kinases in bread wheat (*Triticum aestivum*). PLoS ONE 11, e0153925. https://doi.org/10.1371/journal.pone.0153925 (2016).

27. Zeng, L., Deng, R., Guo, Z., Yang, S. & Deng, X. Genomewide identification and characterization of glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (*Triticum aestivum*). BMC Genomics 17, 240. https://doi.org/10.1186/s12864-016-2527-3 (2016).

28. Kondrashov, F. A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. R. Soc. B Biol. Sci. 279, 5048–5057. https://doi.org/10.1098/rspb.2012.1108 (2012).

29. Magadum, S., Banerjee, U., Murugan, P., Gangapur, D. & Ravikesavan, R. Gene duplication as a major force in evolution. J. Genet. 92, 155–161 (2013).

30. Panchy, N., Lehti-Shiu, M. & Shiu, S.-H. Evolution of gene duplication in plants. Plant Physiol. 171, 2294–2316. https://doi.org/10.1104/pp.16.00523 (2016).

31. Daron, J. et al. Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol. 15, 546. https://doi.org/10.1186/s13059-014-0546-4 (2014).

32. Cao, J., Lv, Y., Hou, Z., Li, X. & Ding, L. Expansion and evolution of thaumatin-like protein (TLP) gene family in six plants. Plant Growth Regul. 79, 299–307. https://doi.org/10.1007/s10725-015-9314-y (2015).

33. Appels, R. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191. https://doi.org/10.1126/science.aar7191 (2018).

34. Paterson, A. H., Bowers, J. E. & Chapman, B. A. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. 101, 9903–9908 (2004).

35. Kimbrough, J. M., Salinas-Mondragon, R., Boss, W. F., Brown, C. S. & Sederoff, R. W. The fast and transient transcriptional network of gravity and mechanical stimulation in the *Arabidopsis* root apex. Plant Physiol. 136, 2790–2805 (2004).

36. Ariizumi, T. & Toriyama, K. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu. Rev. Plant Biol. 62, 437–460 (2011).

37. Makova, K. D. & Li, W. H. Divergence in the spatial pattern of gene expression between human duplicate genes. Genome Res. 13, 1638–1645. https://doi.org/10.1101/gr.1133803 (2003).

38. Papatheodorou, I. et al. Expression Atlas: Gene and protein expression across multiple studies and organisms. Nucleic Acids Res. 46, D246–D251. https://doi.org/10.1093/nar/gkx1158 (2018).

39. Pingault, L. et al. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol. 16, 29. https://doi.org/10.1186/s13059-015-0601-9 (2015).

40. Choulet, F. et al. Structural and functional partitioning of bread wheat chromosome 3B. Science 345, 1249721–1249721. https://doi.org/10.1126/science.aag1566 (2014).

41. Prasad, P. V., Pisipati, S. R., Momcilovic, I. & Ristic, Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J. Agron. Crop Sci. 197, 430–441. https://doi.org/10.1111/j.1439-037X.2011.00477.x (2011).

42. Izadi, M. H., Rabbani, J., Emam, Y., Pessarakli, M. & Tahmasebi, A. Effects of salinity stress on physiological performance of various wheat and barley cultivars. J. Plant Nutr. 37, 520–523 (2014).

43. Zhang, H. et al. Large scale transcriptome comparison reveals distinct gene activations in wheat responding to salt stripe and powdery mildew. BMC Genomics 15, 898. https://doi.org/10.1186/1471-2164-898-894 (2014).

44. Liu, Z. et al. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (*Triticum aestivum* L.), BMC Plant Biol. 15, 152. https://doi.org/10.1186/s12870-015-0311-8 (2015).

45. Zhang, Y. et al. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (*Triticum aestivum* L.). Sci. Rep. 6, 21476. https://doi.org/10.1038/srep21476 (2016).

46. Sanders, D., Pelloux, J., Brownlee, C. & Harper, J. F. Calcium at the crossroads of signaling. Plant Cell 14, S401–S417. https://doi.org/10.1105/tpc.002899 (2002).

47. Axelsson, K. B. & Palmgren, M. G. Inventory of the superfamily of P-type ion pumps in *Arabidopsis*. Plant Physiol. 126, 696–706. https://doi.org/10.1104/pp.101.0126.696 (2001).

48. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

49. Letunic, I., Doerks, T. & Bork, P. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Res. 43, D225–D260 (2015).

50. Marchler-Bauer, A. et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45, D200–D203 (2017).
65. Conesa, A. & Götz, S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics https://doi.org/10.1155/2008/619832 (2008).

66. Bastian, M. Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks visualization and exploration of large graphs. In Third international AAAI conference on weblogs and social media. https://doi.org/10.13140/2.1.1341.1520 (2009)

67. Shumayla, Tyagi, S., Sharma, A., Singh, K. & Upadhyay, S. K. Genomic dissection and transcriptional profiling of Cysteine-rich receptor-like kinases in five cereals and functional characterization of TaCRK68-A Int. J. Biol. Macromol. 134, 316–329 (2019).

68. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).

Acknowledgements
Authors are grateful to the Panjab University, Chandigarh, India for research facilities, Ensembl Plants, URGI and NCBI for data availability. SKU are grateful to the Science and Engineering Board (SERB), Government of India for Early Career Research Award (ECR/2016/001270). AK and AS are thankful to CSIR, and MT is thankful to UGC for their research fellowships.

Author contributions
S.K.U. conceived the idea and designed the experiments. A.K., M.T., S.T. and A.S. performed the experiments. S.K.U., K.S. and A.K. analyzed the data. A.K. and S.K.U. wrote the manuscript. A.K. and S.K.U. finalized the manuscript. All authors have read and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-73627-7.

Correspondence and requests for materials should be addressed to S.K.U.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020