Diagnostic Value of 3D FIESTA and 3D COSMIC Sequences in Imaging of Lumbar Radiculopathy

Abubacker Sulaiman F, Amritha A, Farooque MC, Ashraf Ahmed B, Praveen S, Vijay Prabhu R

1Professor, Department of Radiology, Chettinad Hospital & Research Institute, 2Final Year Postgraduate, Department of Radiology, Chettinad Hospital & Research Institute, 3Final Year Postgraduate, Department of Radiology, Chettinad Hospital & Research Institute, 4Associate Professor, Department of Radiology, Chettinad Hospital & Research Institute, 5Senior Resident, Department of Radiology, Chettinad Hospital & Research Institute, 6Senior Resident, Department of Radiology, Chettinad Hospital & Research Institute, Kelambakkam, Tamil Nadu, India

Corresponding author: Dr. Amritha A, Final Year Postgraduate, Department of radiology, Chettinad Hospital & Research Institute, Rajiv Gandhi Salai, Kelambakkam, Chennai, Tamilnadu, India

DOI: http://dx.doi.org/10.21276/ijcmr.2019.4.4.11

How to cite this article: Abubacker Sulaiman F, Amritha A, Farooque MC, Ashraf Ahmed B, Praveen S, Vijay Prabhu R. Diagnostic value of 3D FIESTA and 3D COSMIC sequences in imaging of lumbar radiculopathy. International Journal of Contemporary Medicine Surgery and Radiology. 2019;4(4):D47-D50.

ABSTRACT

Introduction: The diagnosis of nerve root compression and spinal canal stenosis by normal 2D lumbar vertebra MRI can be difficult. Through MRI, the diagnosis of nerve root compression and spinal canal stenosis by normal 2D lumbar vertebra is difficult sometimes. Which becomes challenging to find out the level responsible for certain conditions, such as epidural radiculopathy. Therefore, the aim of the present study was to evaluate whether the 3D sequences had any superiority over conventional 2D sequences in the evaluation of lumbar radiculopathy.

Material and methods: The present research was a cross-sectional prospective study, which was, conducted on two groups of patients who were separately examined and two radiologists did further evaluation. There were 15 control patients and 58 experimental patients. About 58 patients with clinical suspicion of lumbar radiculopathy referred to Department of Radiology for imaging were included in this study. The 3D balanced sequences acquired were FIESTA and COSMIC.

Results: In the present study, it was found that between T2 weighted, 3D Fiesta and 3D Cosmic sequences showed significant statistical difference between these three sequences. Significant difference (p=0.035) between T2 weighted and 3D FIESTA (fast imaging employing steady state acquisition) was noted. Similarly, 3D COSMIC (coherent oscillatory state acquisition for manipulation of image contrast) and T2 weighted sequence shows significant difference at p value 0.001

Conclusion: The findings from the present study suggest that 3D sequences are better than 2D sequences in the imaging of lumbar radiculopathy and also 3D COSMIC definitely has advantages over 3D FIESTA sequence.

Keywords: Magnetic Resonance Imaging; Three-dimensional; Intervertebral Foramen; Lumbar Nerve Root, 3D Fiesta, 3DCosmic

INTRODUCTION

Low-back pain (LBP) has become one of the most common ailments these days. Various causes could lead to low back pain which could further be categorized into mechanical, non-mechanical and visceral causes. Commonly encountered reasons for LBP are degenerative disc disease, spondylosis, spondylolysis, and spinal stenosis. MRI has become the method of choice for radiological evaluation of the spine. MRI has greater sensitivity in detecting various anatomic changes that could lead to radiculopathy. Recent advances like 3D sequences can be used for acquiring further information using thin slices with multi-planar reconstruction. Lumbar radiculopathy (LR) is a pain syndrome caused by the compression or irritation of nerve roots in the lower back. Low back pain (LBP) with a prevalence of up to 84% is the most common musculoskeletal condition affecting the adult population. Many authors suggested the definition of chronic pain as the pain in the lower back (CLBP) which lasts beyond the expected period of healing, avoiding this close time criterion. This definition is very important, as it underlines the concept that chronic pain has well-defined underlying pathological causes and that it is a disease, not a symptom and the pain lasting for at least 12 weeks. CLBP is a major welfare and economic problem which represents the leading cause of disability globally. Given this complexity, the diagnostic evaluation of patients with LBP can be quite challenging and needs proper clinical decision-making. Based on its site of occurrence, lumbar radiculopathy is classified into different zones as lateral recess, intervertebral foramen, and external intervertebral foramen zones. Previous studies regarding diagnostic imaging techniques to locate external intervertebral foramen lesions, which are known as far-out-syndrome, has been reported till now. However, because it can be difficult to diagnose these lesions by conventional magnetic resonance imaging (MRI), a more
specific and accurate imaging technique is the need of the
time.4 The most used common spinal MRI sequences are two
dimensional (2D) i.e. T1- and T2-weighted sagittal followed
by axial planes. With T2-weighted images, cerebrospinal
fluid (CSF) exhibits higher signals, and the intra-dural nerves
exhibit lower signals. To acquire detailed morphologic data
three-dimensional (3D) MRI can be used as the settings can
be adjusted to obtain thin slices with a high signal-to-noise
ratio (SNR), and multiplanar reconstruction (MPR) allows
images to be created from the original plane in either the
coronal, sagittal, or oblique plane.

It therefore enables observations from multiple directions.
Recently, a new technique known as 3D fast-spin echo, has
also been found to be effective for rendering nerve roots
at high resolution, but the long acquisition time required
for the imaging technique is a problem when patients are
experiencing pain.5,6

Furthermore, with multiple echo collection, the gradient-
echo sequence improves the T2 contrast between nerve
roots and intervertebral foraminal stenosis. Over a short
acquisition time, this 3D balanced sequence renders the
lumbar nerve roots with 3D collection performed. Fast
imaging employing steady state acquisition (FIESTA) is a
3D sequence with high fluid sensitivity which enables the
high resolution of small intracranial structures and joints by
providing exquisite contrast ideally equated for visualization
of the internal auditory canal which is ideally suited for T2
imaging through the cervical spine region.7 The aim of the
study was to assess whether the 3D sequences were namely
3D FIESTA and 3D COSMIC had any superiority over
conventional 2D sequences and also to determine the ideal
sequence for the visualization of lumbar spinal root at the
level of intervertebral foramen and also for the study of
traversing and exiting nerve roots.

MATERIAL AND METHODS

The present study was a cross-sectional prospective study
which was conducted at Chettinad Hospital and Research
Institute. The two groups of patients were separately examined
and further evaluation was done by two radiologists. There
were 15 control patients and 58 experimental patients. About
58 patients with clinical suspicion of lumbar radiculopathy
referred to Department of Radiology for imaging were
included in this study. The lumbar spines of 15 healthy
volunteers (7 male and 8 female), in the age group of 24 -
38 years were taken in the present study. The visibility of
structures in lumbar spine was scored using a 5 point
confident scale. The lumbar spines of 58 patients out of
which 28 were males and 30 were female patients, in the age
group of 20 to 58 years were examined to be included in this
study by using simple random sampling technique.

The 3D balanced sequences acquired were FIESTA and
COSMIC. COSMIC can be used with or without fat
suppression (FS). The machine used was a Signa HDxt 1.5T
(GE Healthcare, Milwaukee, WI, USA) with a spine coil.
Ziostation 2 (Ziosoft Inc., Tokyo, Japan) follows the right
L5 nerve root and was used to create a MPR. Through areas
perpendicular to the L5 nerve root in the intervertebral
foramen entrance, intervertebral foramen, and external
zones, the nerve root and surrounding tissue signal intensities
were measured. In the intervertebral foramen entrance zone
followed by the pedicle in the intervertebral foramen zone,
and the fat in the intervertebral foramen external zone, the
tissue or fluid adjacent to the nerve root was found to be CSF
(Figure 1). The results were compared by use of FIESTA,
COSMIC and a T2W FSE sequence in terms of contrast-
to-noise ratio (CNR) with the nerve root was calculated. The
CNR was calculated from the following formula8

$$\text{CNR} = \frac{\text{SI} (\text{root}) - \text{SI} (\text{peripheral})}{\text{SD} (\text{peripheral})}$$

Where SI=Signal intensity; SD= Standard deviation

STATISTICAL ANALYSIS

The data was entered in to the excel sheet and was analyzed
with the help of SPSS software version 22. The data was
presented in the form of tables and graphs. The Wilcoxon
signed ranked test was applied to test the significance between
the two parameters. A p value of 0.05 was considered to be
statistically significant.

RESULTS

The maximum visibility score ranged from 1 to 5 in which
the maximum score was found to be 5 which means excellent
visibility and the minimum was found to be 1 which
means not visible. In the present study, it was found that

Category	Grading
Not visible	1
Barely visible	2
Adequately visible	3
Good visibility	4
Excellent visibility	5

Table-1: Shows the distribution of data based on visibility of structures in lumbar spine among the study subjects

Parameters	T2W FSE	Fiesta	Cosmic
Mode of acquisition	2D	3D	3D
Plane	Sagittal	Coronal	Coronal
FOV (mm)	28	28	30
TR (ms)	4320	4.9	5.1
TE	1.1	1.9	2.5
Matrix	385*256	320*256	320*320
Slice thickness (mm)	3	1	1
Inter-slice spacing (mm)	0.5	-	-
P value	0.086	0.009	0.001

Table-3: Shows the distribution of data based on degree of nerve root involvement among the study subjects
between T2 weighted, 3D Fiesta and 3D Cosmic sequences showed significant statistical difference between these three sequences. Significant difference (p=0.035) between T2 weighted and 3D FIESTA (fast imaging employing steady state acquisition) was noted. Similarly, 3D COSMIC (coherent oscillatory state acquisition for the manipulation of image contrast) and T2 weighted sequence shows significant difference at p value 0.001 and 3D COSMIC and 3D FIESTA shows significant difference at p value 0.009. The FOV (field of view) was found to be increased in cosmic sequence than Fiesta and 2D. Matrix was found to be 320*320 in cosmic sequence whereas in 2D it was about 3. Inter-slice spacing was found to be 0.5 in T2W FSE and none in Fiesta and Cosmic sequences. TR (repetition time) and TE (Echo time) was found to be 5.1 and 2.5 respectively (Table 1, 2 and 3).

There were 15 control patients and 58 experimental patients. About 58 patients with clinical suspicion of lumbar radiculopathy imaging were enrolled in the study. In control group, about 7 males and 8 females were included whereas 28 males and 30 females were included in experimental group (Graph 1 and 2).

DISCUSSION

In our study, we were clearly able to visualize the exit of nerves from the cord and cauda equina at various foramina levels with the addition of 3D FIESTA and 3D COSMIC sequences. Majority of our patients were found to have L5-S1 Diffuse annular disc bulge with impairment on the traversing nerve roots which was clearly depicted by 3D FIESTA and 3D COSMIC sequences. Routine T2 W sequences with their increased slice thickness had good resolution when compared with 3D sequences. However, the probability of missing the findings was increased here. However, 3D FIESTA and 3D COSMIC sequences with their isotropic image resolution and greater degree of contrast had greater sensitivity in the grading of nerve root involvement in cases of lumbar radiculopathy.

The contrast between the nerve roots, surrounding peripheral tissues and adjacent structures was less in 3D FIESTA sequence in comparison with 3D COSMIC sequence. 3D COSMIC sequence shows excellent soft-tissue contrast. Contrast to noise ratio and Signal to noise ratio of lumbar spine tissue was much better in 3D COSMIC sequence. In the present study, it was found that 3D sequences in Magnetic Resonance Imaging gives us very good details about morphology because of the usage of thin sections with higher Signal to noise ratio. Also, multiplanar reconstruction helps in viewing from different directions. 3D sequences with their improved contrast resolution aids in better visualization of nerve roots. 3D COSMIC sequence with its pre steady-state imaging technique delivers ideal visualization of soft tissue structures which are adjacent to bony structures. Also, with the addition of fat saturation to 3D sequences chemical shift artifacts can be overcome.

In a study conducted by Hiroyuki Takashima et al, it was observed that 3D sequences with high Signal to noise ratios (SNRs) are excellent for detecting morphologic changes and
these findings are in concordance with the findings of the present study. Additionally, SNR was found to be equal to the ratio of the average signal intensity over the standard deviation of the noise and an important reference of MRI. Because of the contrast in the FIESTA, water components and blood appear as high signals, but the soft-tissue signals with short T2 values give lower signal intensity.\(^1\)\(^{1,2}\)

In a study conducted by Tanitame K and Zhang Z et al, they suggested that the FIESTA sequence was seen with lower contrast between the peripheral tissues and the nerve root and its structures, such as bone or intervertebral discs, and it was impossible to distinguish the nerve root whereas the COSMIC was performed before echo sampling reached a steady state and exhibits greater soft-tissue contrast. This provided improvement in the CNR and SNR (Signal-to-noise ratio) of cervical–spine tissue including the spinal cord, vertebral discs, and nerve root canal, as well as the contrast between CSF and nerve roots.\(^1\)\(^{3}\)\(^{14}\)

When the comparison of COSMIC and COSMIC-FS (fat-suppression) on the intra- and extra-foramen was done, it was seen that the CNR between the nerve root and peripheral tissue was significantly higher for COSMIC-FS than for COSMIC. To distinguish between the nerve root from the intervertebral foramina, COSMIC-FS leads to better contrast between the nerve root and intervertebral disc and bone with improvement in the intervertebral foramen and external zone where epidural fat is present, due to the concomitant use of fat suppression made the inhibition of chemical shift artifacts possible.\(^1\)\(^9\) The results of our study suggested that either sequence is useful for detecting intradural lesions, and that COSMIC is superior for detecting nerve root lesions that are adjacent to soft-tissue inside and outside the intervertebral foramina, where there is little water. Further research is needed with larger sample size to compare the images obtained with FIESTA, COSMIC and 2D under the same conditions.

CONCLUSION

The higher signal to noise ratio and contrast to noised ratio in 3D COSMIC sequence in comparison with 3D FIESTA and 2D sequences makes it an ideal sequence for detecting even subtle morphologic changes. The higher spatial resolution makes multi planar reconstruction possible without causing much degradation of the image. Hence, 3D sequences are better than 2D sequences in the imaging of lumbar radiculopathy and also 3D COSMIC definitely has advantages over 3D FIESTA sequence.

REFERENCES

1. Lou ZH, Qu JR, Li HL, et al. Optimal technique of three-dimensional MRI of the lumbar nerve root and its radicular vein in normal and lumbar disc herniation patients. Chin Med J (Engl) 2011; 124(1):1802-1806.

2. Bieri O, Scheffler K. Fundamentals of balanced steady state free precession MRI. J Magn Reson Imaging. 2013; 38(5):2-11.

3. Byun WM, Ahn SH, Ahn MW. Value of 3D MR lumbosacral radiculography in the diagnosis of symptomatic chemical radiculitis. AJNR Am J Neuroradiol. 2012; 33(2):529-534.

4. Byun WM, Jang HW, Kim SW. Three-dimensional magnetic resonance rendering imaging of lumbosacral radiculography in the diagnosis of symptomatic extraforaminal disc herniation with or without foraminal extension. Spine (Phila Pa 1976) 2012; 37(4):840-844.

5. Jarvik J, Deyo R. Diagnostic evaluation of low back pain with emphasis on imaging. Ann Intern Med. 2002; 137(6):586-595.

6. Ludwinski FE, Gnanalingham K, Richardson SM, Hoyland JA. Understanding the native nucleus pulposus cell phenotype has important implications for intervertebral disc regeneration strategies. Regen Med 2013; 1(5):75-87.

7. Melhem ER. Technical challenges in MR imaging of the cervical spine and cord. Magn Reson Imaging Cln N Am 2000; 8(4):435-452.

8. Boden SD, Davis DO, Dina TS, et al. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. J Bone Joint Surg Am. 1990; 72(2):403-8.

9. Lichy MP, Wietek BM, Mugler JP 3rd, Horger W, Menzel MI. Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Invest Radiol 2005; 40(6):754-760.

10. Shishido H, Takahama H, Takebayashi T, et al. Visualization of the foram between intervertebral nerve root of cervical spine with 3.0 tesla magnetic resonance imaging: a comparison of three-dimensional acquisition techniques. Nihon Hoshasen Gijutsu Gakkai Zasshi 2014; 70(1):670-5.

11. Hiroyuki Takahama, Tsuneo Takebayashi, Hiroki Shishido, Mitsuori Yoshimoto, Rui Iamamura, Yoshio Akatsuka, Yoshinori Terashima, Hiroyoshi Fujiwara, Masateru Nagae, Toshikazu Kubo and Toshihiko Yamashita. Comparison with Magnetic Resoancne Three-Dimensional Sequence for Lumbar Nerve Root with Intervertebral Foramen. Asian Spine Journal 2016; 1(3):59-64.

12. Shen J, Wang HY, Chen JY, Liang BL. Morphologic analysis of normal human lumbar dorsal root ganglion by 3D MR imaging. AJNR Am J Neuroradiol 2006; 27(5):2099-2013.

13. Tanitame K, Tanitame N, Tani C, et al. Evaluation of lumbar nerve root compression using thin-slice thickness coronal magnetic resonance imaging: three-dimensional fat-suppressed multi-shot balanced non-steady-state free precession versus three-dimensional T1-weighted spoiled gradient-echo recalled echo. Jpn J Radiol. 2011; 29(4):623-629.

14. Zhang Z, Song L, Meng Q, et al. Morphological analysis in patients with sciatica: a magnetic resonance imaging study using three-dimensional high-resolution diffusion-weighted magnetic resonance neurography techniques. Spine (Phila Pa 1976) 2009; 34(2):E245-50.

15. Haacke EM, Wielopolski PA, Tkach JA, Modic MT. Steady-state free precession imaging in the presence of motion: application for improved visualization of the cerebrospinal fluid. Radiology 1990; 175(1):545-52.