Tyrosine 308 Is Necessary for Ligand-directed Gs Protein-biased Signaling of β2-Adrenoceptor*

Anthony Yiu-Ho Woo1,‡,‡‡, Krzysztof Joziw³at†, Lawrence Toll‡‡, Mary J. Tang‡‡, Joseph A. Kozocas‡‡, Lucita Jimenez‡, Ying Huang‡, Ying Song‡, Anita Plazinska†, Karolina Pajak‡, Rajib K. Paul‡‡, Michel Bernier‡‡, Irving W. Wainer†, and Rui-Ping Xiao‡

From the 1Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China, the 2Institute of Molecular Medicine, Centers for Life Sciences, Peking University, Beijing 100871, China, the 3Laboratory of Cardiovascular Science and 55Laboratory of Clinical Investigation, NIA, National Institutes of Health, Baltimore, Maryland 21224, the 6Department of Chemistry, Medical University of Lublin, Lublin, Poland, the 7**Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987, and 8**SRI International, Menlo Park, California 94025

**This work was supported, in whole or in part, by National Institutes of Health Grants GM64712, GM60687, and GM60524; by the National Institutes of Health Grant GM34000; by Sandoz; and by a grant from the National Science Foundation for Young Scientists of China (2011CB706705). E-mail: yiuhowoo@pkusz.edu.cn.

†To whom correspondence may be addressed: School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. Tel.: 86-755-2603-3174; Fax: 86-755-2603-2459; E-mail: yiuhowoo@pkusz.edu.cn.

‡To whom correspondence may be addressed: Institute of Molecular Medicine, Peking University, Beijing 100871, China. Tel.: 86-10-6276-7243; Fax: 86-10-6276-7143; E-mail: xiaor@pku.edu.cn.

Interaction of a given G protein-coupled receptor to multiple different G proteins is a widespread phenomenon. For instance, β2-adrenoceptor (β2-AR) couples dually to Gs and Gi proteins. Previous studies have shown that cAMP-dependent protein kinase (PKA)-mediated phosphorylation of β2-AR causes a switch in receptor coupling from Gs to Gi. More recent studies have demonstrated that phosphorylation of β2-AR by G protein-coupled receptor kinases, particularly GRK2, markedly enhances the Gi coupling. We have previously shown that although most β2-AR agonists cause both Gs and Gi activation, (R,R')-fenoterol preferentially activates β2-AR-Gs signaling. However, the structural basis for this functional selectivity remains elusive. Here, using docking simulation and site-directed mutagenesis, we defined Tyr-308 as the key amino acid residue on β2-AR essential for Gs-biased signaling. Following simulation with a β2-AR-Gs-biased agonist (R,R')-4'-aminofenoterol, the Gi disruptor pertussis toxin produced no effects on the receptor-mediated ERK phosphorylation in HEK293 cells nor on the contractile response in cardiomyocytes expressing the wild-type β2-AR. Interestingly, Y308F substitution on β2-AR enabled (R,R')-4'-aminofenoterol to activate Gi and to produce these responses in a pertussis toxin-sensitive manner without altering Gs activation.

β2-AR phosphorylation by PKA or G protein-coupled receptor kinases. These results indicate that, in addition to the phosphorylation status, the intrinsic structural feature of β2-AR plays a crucial role in the receptor coupling selectivity to G proteins. We conclude that specific interactions between the ligand and the Tyr-308 residue of β2-AR stabilize receptor conformations favoring the receptor-Gs protein coupling and subsequently result in Gs-biased agonism.

Increasing evidence has accumulated over the past decade indicating that a G protein-coupled receptor (GPCR) does not respond similarly to all agonist ligands. Ligands can initiate multiple cascades of intracellular reactions that can be mediated by G proteins or be G protein-independent. The term biased agonism initially referred to the ability of a ligand to selectively activate either a G protein-mediated event, such as stimulation of adenyl cyclase, or activation of the G protein-independent noncanonical β-arrestin-dependent signal transduction pathway (1). The emerging paradigm of biased agonism or functional selectivity suggests that binding of one ligand can stabilize receptor conformation(s) preferentially favoring recognition by a given set of signaling proteins or pathways on the intracellular side, although another ligand stabilizes a receptor state that is preferred by a different set of signaling proteins. In this manner, ligands can trigger qualitatively distinct signaling events in the cell (1–8).

β-Adrenergic receptors (β-AR) are Gs-coupled GPCRs and in fact β2-AR couples only to Gs. For β2-AR, the prototypical member of the GPCR family, studies (9, 10) have shown that

The abbreviations used are: GPCR, G protein-coupled receptor; adeno, adenosine; aminoFen, 4'-aminofenoterol; β-AR, β-adrenoceptor; β-, β-adrenoceptor; β2-AR, β2-adrenoceptor; fen, fenoterol; GRK, G protein-coupled receptor kinase; HB, hydrogen bond; ISO, (-)-isoproterenol; methoxyFen, 4'-methoxyfenoterol; MNFen, 4'-methoxy-1-naphthylfenoterol; PDB, Protein Data Bank; PhFen, phenylfenoterol; PKA, cyclic AMP-dependent protein kinase; PTX, pertussis toxin; TM, transmembrane.
Role of Tyr-308 of β₂-Adrenoceptor on Gₛ-biased Signaling

agonist binding can activate both Gₛ and Gᵢ. Our previous study has shown that fenoterol (Fen) is unique among the β₂-AR agonists in terms of ligand-induced receptor-G protein coupling selectivity (11). Although most β₂-AR agonists produce contractile responses in cardiomyocytes that can be sensitized by the Gₛ disruptor pertussis toxin (PTX), indicating dual Gₛ and Gᵢ coupling, the inotropic effect of Fen is PTX-insensitive, suggesting that Fen preferentially promotes β₂-AR-Gₛ coupling. Fen contains two chiral centers in its molecule and may exist as four stereoisomers (Fig. 1). The stereoisomers of Fen and a series of Fen analogs have been synthesized (12–14). The role of ligand chirality in G protein-coupling selectivity has recently been demonstrated using these Fen derivatives (15). Specifically, we have shown that (R,R')-Fen and (R,S')-4'-methoxyfenotrol ((R,R')-methoxyFen) preferentially activated Gₛ signaling, as evidenced by the lack of PTX sensitivity of their contractile responses in cardiomyocytes and their inability to activate Gᵢ-dependent ERK signaling in HEK-293 cells. In contrast, the corresponding (S,R')-isomers exhibited robust PTX sensitivity in these responses suggesting that they activated both Gₛ and Gᵢ.

The mechanism for the differential G protein coupling of β-ARs has been the major focus of various studies. It has been suggested that phosphorylation of the β₂-AR by cAMP-dependent protein kinase (PKA) or G protein-coupled receptor kinases (GRKs) promotes the receptors to couple to Gₛ proteins (16–20). However, some evidence argues against this perception (21, 22). Thus, the molecular basis for inducing β₂-AR's coupling selectivity to different G proteins remains largely elusive.

Our recent simulation studies employing data obtained with [³H]CGP-12177 as the marker ligand have identified hydrogen bond (HB) formation between the tyrosine 308 residue (Tyr-308 or Y².30 in Ballesteros-Weinstein numbering) in transmembrane (TM) 7 of β₂-AR and a HB acceptor at the 4’-position of (R,R')-Fen and (R,R')-methoxyFen (13, 23). These preliminary results suggest that the Tyr-308 residue is essential for agonist-induced β₂-AR preferential coupling to Gₛ protein. In this study, using site-directed mutagenesis, receptor pharmacology, and cardiomyocyte activation in conjunction with computer simulation, we demonstrated that (R,R')-4’-aminofenotrol ((R,R')-aminoFen) (Fig. 1) targets the WT β₂-AR but not the mutant receptor, β₂-AR Y308F, to Gₛ-biased signaling. These results experimentally verify our computation-based predictions, and here we present the first evidence that interactions with an individual residue in a conformation of the β₂-AR can induce or stabilize a conformation that leads to selective coupling to a G protein subunit.

EXPERIMENTAL PROCEDURES

β₂-AR Model Construction and Docking Methodology—Docking of ligands to β₂-AR models was performed as recently described (23). In brief, a crystallographic model of the β₂-AR co-crystallized with an inverse agonist carazolol (PDB entry 2RH1) was used as a docking target in simulations. The model was modified by swapping the tyrosine 308 residue into phenylalanine using Yasara to obtain the model representing the Y308F mutant. Molegro Virtual Docker software (MVD version 2010.4.0.0, Aarhus, Denmark) was used for docking simulations within the binding cavity of the target model using MolDock SE algorithm as a search engine.

Compounds and Reagents—Fen analogs used in this study (Fig. 1) were synthesized as described previously (13, 14). Cell culture reagents were purchased from Invitrogen. Zinterol was obtained from Tocris Bioscience (Bristol, UK). Forskolin, ICI-118,551, 3-isobutyl-1-methylxanthine, (−)-isoproterenol (ISO), PTX, and other reagents were purchased from Sigma.

Animals—Male Sprague-Dawley rats (200–250 g) were purchased from Charles River. β₂-AR knock-out mice were generous gifts from Dr. Brian Kobilka (Stanford University Medical Center, Palo Alto, CA). Animals were housed and studied in accordance with the “Guide for the Care and Use of Laboratory Animals, Eighth Edition” from the National Institutes of Health (NOT-OD-12–020, released 2011), with institutional Animal Care and Use Committee approval.

Generation of Stable Cell Lines and Recombinant Adenoviruses—HEK293A cells were obtained from Invitrogen and maintained in DMEM supplemented with 10% FBS at 37 °C in a humidified 5% CO₂ incubator. The plasmids encoding for the human β₂-AR and β₂-AR Y308F mutant were kindly provided by Dr. Brian Kobilka and Dr. Hitoshi Kurose (Kyushu University, Fukuoka, Japan), respectively. Each of these coding sequences of β₂-AR was subcloned into pcDNA3.1+ vector (Invitrogen). HEK cells were transfected with the resultant plasmids using Lipofectamine 2000 reagent (Invitrogen), and stably transfected clones were selected against G418 (0.8 mg/ml). When stable expression was achieved, the cells were cultured in the presence of 0.3 mg/ml G418. Adenoviruses for human β₂-AR (adeno-β₂-AR) and green fluorescent protein (adeno-GFP) have been described previously (24, 25). Adenoviral expression vector carrying the β₂-AR Y308F coding sequence was generated by subcloning. Viral particles were purified from transfected HEK cells using standard viral amplification and CsCl purification methods. Viral titers were determined in dilution assays by an immunocytochemical technique using an antibody raised against β₂-AR (sc-569, Santa Cruz Biotechnology, Santa Cruz, CA).

Cardiomyocyte Isolation, Adenoviral Gene Transfer, and Contractility Measurement—Cardiomyocytes were isolated from male β₂-AR knock-out mice (2–4 months old) or Sprague-Dawley rats using a standard enzymatic technique (9, 24). Mouse cardiomyocytes were seeded on laminin-coated coverslips and infected with the adenoviruses at a multiplicity of infection of 100 (24). The cells were subsequently cultured for 24 h in minimal essential medium (M1018, Sigma) supplemented with forskolin (1 μM) and 2,3-butanediol monoxime (10 mM). Contractility of single cardiomyocytes was measured as described previously (9). In brief, cardiomyocytes were perfused with a buffer containing (in mM) 137 NaCl, 4.9 KCl, 1.2 MgCl₂, 1 NaH₂PO₄, 1 CaCl₂, 20 glucose, and 20 HEPES (pH 7.4) and electrically paced (0.5 Hz for rat cardiomyocytes or 1 Hz for mouse cardiomyocytes) at ambient temperature on a microscopic stage. Cell length was monitored by an optical edge-tracking method using an instrument setup manufactured by IonOptix (Milton, MA). Measurements were made under steady-state conditions before and after exposure of the myo-
FIGURE 1. **Structures of Fen and its derivatives used in the study.** The following terms are used: fenoterol (Fen), 4'-methoxyfenoterol (methoxyFen); 4'-aminofenoterol (aminoFen); phenylfenoterol (PhFen); 1-naphthylfenoterol (1-NapFen); ethylfenoterol (EtFen); 2-naphthylfenoterol (2-NapFen); and 4'-methoxy-1-naphthylfenoterol (MNFen).
cAMP Accumulation Assay—Cells cultured on poly-D-lysine-coated 12-well plates were treated with PTX (0.3 μg/ml) or vehicle overnight and incubated for 10 min with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (1 mM) in HEPES-buffered Hanks’ balanced salt solution prior to stimulation. Cells were then treated with the agonist or control vehicle for 10 min. Reactions were stopped by the addition of HCl. cAMP contents in the clarified cellular extracts were determined with an enzyme immunoassay kit (Cayman Chemical, Ann Arbor, MI) according to the manufacturer’s protocol. cAMP contents were normalized with total cellular protein. Protein contents were determined by the method of Lowry (Bio-Rad).

Immunoblotting—Whole-cell lysates in lysis buffer (Cell Signaling Technology, Danvers, MA) containing protease inhibitor mixture (Roche Diagnostics) and phosphatase inhibitor mixture (EMD Millipore, Billerica, MA) were centrifuged at 15,000 × g for 10 min. Clarified cell lysates (20 μg) for β2-AR detection were further denatured and treated with 125 units of peptide:N-glycosidase (New England Biolabs) for 2 h at 37 °C. The samples were denatured in Laemmli sample buffer and resolved by SDS-PAGE. Phosphorylation of ERK and β2-AR was detected by immunoblotting using the same antibodies as described previously (15).

Radioligand Binding Assay—Receptor density was determined on membranes derived from HEK stable cell lines expressing WT or mutant forms of β2-AR as described previously (14). The B_max and K_d values were determined by nonlinear regression analysis using Prism 4 (GraphPad Software, San Diego).

Statistical Analysis—Results are expressed as means ± S.E. Unless described otherwise, unpaired Student’s t test was performed to compare the means between two groups and one-way analysis of variance for multiple group comparison followed by post hoc analysis with Bonferroni’s t test. Statistical analysis and curve-fitting of the concentration-response profiles were conducted using Prism 4. The curves of the cAMP assays were fitted to the sigmoid curves by nonlinear regression analysis using the four-parameter logistic model without giving any constraints. Curve-fitting of the cardiomyocyte contractility data was conducted using the same algorithms and constraints laid out in our previous study (15).

RESULTS

Role of the Aminoalkyl Substituent of (R,R)-Fen on Preferential β2-AR-G_i Coupling—To define the structural features of Fen compounds contributing to selective β2-AR-G_i signaling, we have undertaken a structure-activity relationship approach. In this campaign, PTX was used to distinguish the contribution of β2-AR-G_i signaling in the agonist-stimulated inotropic effects of a collection of Fen derivatives (Fig. 1) on a cardiomyocyte contractility model. By inhibiting the G_i signaling with PTX, the regulatory inhibition of adenylyl cyclase on cAMP synthesis would be decreased, and as a result the G_i-stimulated contractile response would be enhanced. Four Fen derivatives ((R,R')-Fen, (R,R')-methoxyFen, (R,R')-aminoFen, and (R,S')-aminoFen) eliciting a G_i-independent activation of β2-AR (thus PTX-insensitive) were identified (Table 1 and Fig. 2B) with (R,R')-aminoFen demonstrating the highest G_i selectivity (as assessed by the small difference between the EC_{50} values of the −PTX and the +PTX groups, Table 1). Their contractility stimulatory effects were mediated through β2-AR because these effects could be antagonized by ICI-118,551, a specific β2-AR antagonist (Fig. 3). (R,R')-AminoFen was subsequently used as the typical G_i-selective β2-AR agonist in the rest of this investigation.

(R,R')-AminoFen Selectively Activates β2-AR-G_i Signaling in Cardiomyocytes Expressing WT β2-AR but Activates Both G_i and G_s in Cardiomyocytes Expressing the β2-AR Y308F Mutant—Cardiomyocytes express both β2-AR and β2-AR, and robust β2-AR-G_i coupling has been demonstrated in freshly isolated...
Role of Tyr-308 of β2-Adrenoceptor on Gs-biased Signaling

adult mouse cardiomyocytes expressing endogenous β2-AR or human β2-AR at 200-fold over basal level (10). Hence, we employed cardiomyocytes from β2-AR knock-out mice transduced with exogenous β2-AR or its mutants as a physiological model to investigate the role of the β2-AR Tyr-308 residue on ligand-directed G protein selectivity. In our recent study, we have shown that β2-AR in adult rodent cardiomyocytes lost its coupling to Gs after overnight culture, and addition of forskolin in the culture medium could maintain functional dual coupling of β2-AR to Gs and Gi proteins (26). In this investigation, we first confirmed the presence of functional β2-AR-Gi coupling in β2-AR knock-out mouse cardiomyocytes reconstituted with human β2-AR using zinterol, a selective β2-AR agonist (Fig. 4). In another control experiment, cultured cardiomyocytes from β2-AR knock-out mice were infected with adeno-GFP and then subjected to (R,R')-aminoFen stimulation to study the effect of this compound on stimulating β2-AR. The results in Fig. 5A show that the β1-AR stimulatory effect of (R,R')-aminoFen was undetectable at 100 nm, was minor at 500 nm (175 ± 26%), and became very substantial (about 350%) at 1 μM. In subsequent contractility studies, we only tested (R,R')-aminoFen up to 500 nm.

Next, we investigated the positive inotropic effects of (R,R')-aminoFen on β2-AR knock-out mouse cardiomyocytes infected with adeno-β2-AR or adeno-β2-AR Y308F and the sensitivities of these responses toward PTX. In cardiomyocytes transduced with the WT β2-AR, the positive inotropic effect of (R,R')-aminoFen was insensitive to PTX treatment (Fig. 5B). Notably, the (R,R')-aminoFen-stimulated positive inotropic effect was markedly enhanced by PTX treatment in cells transduced with the β2-AR Y308F mutant (Fig. 5C).

Residue Tyr-308 of β2-AR Is Necessary for Ligand-directed Gβγ-biased β2-AR Signaling—It has been demonstrated in HEK cells that β2-AR agonists trigger an acute increase in ERK phosphorylation, which peaks at 5 min, and this effect is mediated in part by a Gi-dependent mechanism (16, 27). Furthermore, both Gαs- and Gi-mediated β2-AR activation can lead to ERK phosphorylation (16, 22, 27). Cell lines stably expressing WT β2-AR (HEK-β2-AR cells) and β2-AR Y308F mutant (HEK-β2-AR Y308F cells) were established from HEK293A cells. The levels of β2-AR in these cell lines were 4033 ± 826 and 2300 ± 80 fmol/mg protein, respectively, as assayed by radioligand binding, whereas the level of β2-AR in the parental cells was 30–40 fmol/mg (21). Next, we studied the G protein pathways responsible for phospho-ERK (p-ERK) induction by (R,R')-aminoFen and ISO in these cell lines. The sensitivity of agonist-induced ERK phosphorylation toward PTX was used to indicate Gi activation.

Stimulation with ISO increased p-ERK by about 6-fold in HEK-β2-AR cells (Fig. 6, A and B) and HEK-β2-AR Y308F cells (Fig. 6, C and D). This activation of p-ERK was mediated by a combination of Gαs- and Gi-dependent pathways as demonstrated by the decreases in maximal ERK phosphorylation in the PTX-treated groups. In contrast, in HEK-β2-AR cells, (R,R')-aminoFen induced ERK phosphorylation in a PTX-insensitive manner (Fig. 6, A and B). Importantly, the increase in phosphorylation of ERK in response to (R,R')-aminoFen exhibited a robust PTX sensitivity in HEK-β2-AR Y308F cells, and this Gi-dependent effect appeared to be positively correlated with the concentration of (R,R')-aminoFen (Fig. 6, C and D).

We also measured cAMP accumulation in HEK cells stably expressing β2-AR and its Y308F mutant. Although (R,R')-
Role of Tyr-308 of β2-Adrenoceptor on Gβi-biased Signaling

aminoFen produced a PTX-insensitive cAMP response in HEK-β2-AR cells (Fig. 7A), the concentration-response profile shifted upwards in response to PTX treatment in HEK-β2-AR

Y308F cells (Fig. 7B). Efficacy data (Table 2) show that PTX significantly increased the E_{max} value (from 89 ± 1 to 117 ± 2, $p < 0.01$) without altering the logEC50 value of the cAMP response of (R,R')-aminoFen in HEK-β2-AR Y308F cells (from $-8.05 ± 0.01$ to $-8.03 ± 0.02$, $p = 0.75$). We did not observe sensitivity of cAMP response to PTX when HEK-β2-AR cells were stimulated with ISO (data not shown), thus corroborating a previous experiment (17). This may be due to an inherent limitation of the assay. In contrast, PTX caused an increase in the E_{max} of the ISO-stimulated cAMP response (from 109 ± 4 to 126 ± 5, $p < 0.05$, Table 2) in HEK-β2-AR Y308F cells, mirroring a similar observation in cells expressing the β2-AR D-4 mutant, a receptor phenotype having a reduced Gs-coupling, and an increased Gi-coupling (17). Taken together, these results demonstrate that the β2-AR-Y308 residue is necessary for the Gβi-biased β2-AR signaling and that Y308F mutation fully restored β2-AR-Gi signaling in response to (R,R')-aminoFen, a Gi-selective β2-AR agonist, in cardiomyocytes and in HEK cells.

Effects of Agonist-induced Receptor Phosphorylation on Gβ Subunit-coupling Selectivity of β2-AR—It is well established that agonist stimulation of β2-AR leads to phosphorylation of the receptor by PKA and GRK, with important implications on receptor desensitization (28). In addition, phosphorylation of β2-AR at the GRK or the PKA sites has been suggested to be necessary for β2-AR-Gi protein coupling in naive cells (16, 17), cardiomyocytes (18–20), and in vivo hearts (20). Therefore, we investigated the agonist-stimulated receptor phosphorylation in HEK cells expressing either the WT β2-AR or the β2-AR Y308F mutant using phosphosite-specific antibodies (29). Stimulation with ISO (1 μM) for 5 min, a treatment time period reported to lead to near-maximal receptor phosphorylation responses (30–33), increased the phosphorylation of β2-AR and β2-AR Y308F at Ser-262 (PTX-site) to about 5-fold of basal (Fig. 8, A and B). Similarly, (R,R')-aminoFen (1 μM) produced the same maximal responses in both HEK-β2-AR cells and HEK-β2-AR Y308F cells (Fig. 8, A and B). Treatment with ISO

![Figure 4](image-url)
FIGURE 4. Addition of forskolin reconstitutes functional coupling of β2-AR to Gs protein in cultured β2-AR knock-out mouse cardiomyocytes induced with human β2-AR. Cardiomyocytes from β2-AR knock-out mice were infected with adenovirus (white bars) or adenovirus-β2-AR (black bars) and cultured for 24 h in the presence or absence of forskolin (1 μM) and/or PTX (0.75 μg/ml) as indicated. Cells were transferred to a perfusion chamber, electrically paced, and subjected to stimulation with zinterol (0.2 μM), a concentration without an inotropic effect in freshly isolated cardiomyocytes from WT mice, see Fig. 1A in Ref. 26). Steady-state contractility was measured. Data (mean ± S.E., n = 10–15 cells from 5 to 9 hearts for each data point) are expressed as percentages of the basal contractility. *p < 0.05. Zinterol (0.2 μM) did not increase contractility in cells infected with adenovirus-β2-AR demonstrating no β2-AR stimulatory effect at this concentration. In cells infected with adenovirus-β2-AR and cultured in the absence of forskolin, the inotropic response produced by zinterol stimulation was the result of a pure β2-AR-Gi-mediated effect because β2-AR and Gi proteins were functionally uncoupled. In cells infected with adenovirus-β2-AR in the presence of forskolin, the coupling of β2-AR to Gi protein was reestablished. Therefore, the cardiomyocytes were unresponsive to zinterol as if they were freshly isolated WT β2-AR cells when β2-AR-Gi coupling was intact. In cells infected with adenovirus-β2-AR, the presence of forskolin and PTX, the coupling of β2-AR to Gi protein still occurred, but Gi had lost its function and could no longer negatively regulate β2-AR-Gi activation by zinterol.

![Figure 5](image-url)
FIGURE 5. PTX increases the inotropic effect of (R,R')-aminoFen in cardiomyocytes expressing β2-AR Y308F mutant but not in cardiomyocytes expressing WT human β2-AR. A, (R,R')-aminoFen-stimulated contractile responses in β2-AR knock-out mouse cardiomyocytes adenoviral gene transfer GFP. Cardiomyocytes from β2-AR knock-out mice were infected with adenovirus-GFP and cultured for 24 h. Cells were paced under perfusion and subjected to (R,R')-aminoFen (100, 500, or 1000 nM). Steady-state contractility before and after agonist stimulation was measured. B, (R,R')-aminoFen-stimulated contractile responses in β2-AR knock-out mouse cardiomyocytes adenoviral gene transfer WT β2-AR in the presence or absence of PTX treatment. Cardiomyocytes from β2-AR knock-out mice were infected with adenovirus-β2-AR and cultured with or without PTX (0.75 μg/ml) for 24 h. Cells were paced under perfusion and subjected to (R,R')-aminoFen (10, 500, 1000 nM). C, (R,R')-aminoFen-stimulated contractile responses in β2-AR knock-out mouse cardiomyocyte adenoviral gene transfer β2-AR Y308F in the presence or absence of PTX treatment. Contractile responses are expressed as percentages of the basal contractility (mean ± S.E., n = 9–14 cells from 4 to 8 hearts for each data point). Concentration dependence of the (R,R')-aminoFen-stimulated responses was verified by two-way analysis of variance, $p < 0.0001$ for all datasets. *p < 0.05; ***p < 0.001 versus corresponding −PTX group.
FIGURE 6. Y308F substitution on β₂-AR increases the PTX sensitivity of (R,R’)-aminoFen-induced ERK phosphorylation in HEK stable cell lines. Confluent cultures of HEK-β₂-AR cells and HEK-β₂-AR Y308F cells were deprived of serum overnight. Treatment with PTX (0.3 µg/ml, +) or vehicle (−) was implemented during serum starvation. Cells were then stimulated with ISO (1 µM) or (R,R’)-aminoFen (10⁻⁹ to 10⁻⁶ M) for 5 min at 37 °C as indicated. ERK phosphorylation was determined by immunoblotting. A, immunoblots of p-ERK and total ERK (as protein loading control) in response to agonist stimulation in HEK-β₂-AR cells, and B, averaged data. C, immunoblots of p-ERK and total ERK in response to agonist stimulation in HEK-β₂-AR Y308F cells, and D, averaged data. Data are presented as fold increase over −PTX control (means ± S.E. in 3–4 independent experiments). *, p < 0.05; **, p < 0.01; ***, p < 0.001 versus vehicle controls; #, p < 0.05 versus −PTX group.
also increased the phosphorylation of β2-AR at Ser-355,356 (GRK sites) by about 17-fold in these cell lines (Fig. 8, C and D). Because it has been reported that phosphorylation of the β2-AR mediated by GRK depends on a high concentration of agonists (27–31), we subsequently performed the receptor phosphorylation assay at higher concentrations of (R,R')-aminoFen (namely 100- and 1000-fold of EC50) Concentrations, corresponding to a near-saturating and a saturating concentration of the agonist for receptor stimulation, respectively, refer to Fig. 7, A and B). As shown in Fig. 8, C and D, (R,R')-aminoFen at the 100-fold EC50 concentration (R100) produced a significant increase in the phosphorylation of β2-AR at Ser-355,356 (GRK sites) as compared with the vehicle control in HEK cell lines expressing either the WT β2-AR or the β2-AR Y308F mutant. Treatment with (R,R')-aminoFen at the 1000-fold EC50 concentration (R1000) caused β2-AR-Ser-355,356 phosphorylation in both HEK-β2-AR cells and HEK-β2-AR Y308F cells indistinguishable in magnitude as compared with the stimulation with ISO (1 μM, a saturating concentration, refer to Table 2) (Fig. 8, C and D).

In HEK-β2-AR cells, increased phosphorylation of the β2-AR at the PKA site could be observed 5 min after stimulation with ISO or (R,R')-aminoFen at 1 μM (Fig. 8, A and B). Similarly, (R,R')-aminoFen (0.2 and 2 μM) and ISO (1 μM) also increased the phosphorylation of β2-AR at the GRK sites (Fig. 8, C and D). The same treatment with (R,R')-aminoFen (10−8 to 10−6 M) increased the p-ERK level by about 4-fold via activating Gα and not Gβ (Fig. 6, A and B). Treatment with ISO after disrupting the activity of Gβ with PTX also increased the p-ERK level by about 4-fold, which could be further increased to 6-fold in the absence of PTX (Fig. 6, A and B). Thus, both (R,R')-aminoFen and ISO can induce the phosphorylation of ERK and β2-AR via a Gα-dependent pathway, but only ISO can activate ERK through a β2-AR-Gi signaling pathway. These results clearly demonstrate that (R,R')-aminoFen and ISO produced similar effects in triggering phosphorylation of β2-AR at the PKA sites or the GRK sites, although they exhibited diverse G protein selectivity in HEK stable cell lines expressing the WT β2-AR. In addition, Y308F substitution on the β2-AR caused a qualitative change in the G protein selectivity of (R,R')-aminoFen from being exclusively Gβ2-activating (Fig. 6, A and B) to dually Gα/β2-activating (Fig. 6, C and D) without significantly affecting its activities in eliciting receptor phosphorylation by both PKA and GRKs (p > 0.05, Fig. 8, B and D). Thus, phosphorylation of β2-AR at its PKA or GRK sites is insufficient to trigger the receptor coupling to Gβ2 proteins.

Docking Simulation on β2-AR—To reveal the molecular interactions important for the ligand-directed Gαβ2-biased agonism of β2-AR, a molecular model of (R,R')-aminoFen was docked to the crystal model of the β2-AR-binding site as well as to a model representing the Y308F mutant receptor using the same procedures as described previously (23). As shown in Fig. 9, A and C, the ligand molecule can be fitted reasonably well into the binding sites of both β2-AR conformations (PDB entry 2RH1 for carazolol-bound and PDB entry 3SN6 for BI-167107-and Gβ2 protein-bound, respectively) with the resorcinol ring of the ligand pointed in the direction of S2035.42 and S2075.46, the β-OH and the secondary amine groups interacted with D1133.32 and N3127.39 residues. Notably, a HB interaction between the 4'-amino group of the ligand and the hydroxyl

TABLE 2

Cell lines	(R,R')-AminoFen	ISO
	−PTX	+PTX
	−PTX	+PTX
β2-AR WT	100 ± 3	117 ± 2**
β2-AR Y308F	89 ± 1	117 ± 2**

Emax % and logEC50 values of the (R,R')-aminoFen- and ISO-induced cAMP responses in HEK cell lines stably expressing β2-AR WT or β2-AR Y308F. Calculations of logEC50 and Emax values were based on concentration-response profiles for the compound-stimulated cAMP production. Emax values are expressed as percentages of the Emax response of the β2-AR WT − PTX group. Curve-fitting analysis of the concentration-response curves were conducted using Prism. ***, p < 0.01 versus −PTX group.

FIGURE 7. Y308F substitution on β2-AR increases the PTX sensitivity of (R,R')-aminoFen-stimulated cAMP production in HEK stable cell lines. HEK-β2-AR cells and HEK-β2-AR Y308F cells were cultured in 12-well plates in parallel, and subsets of the cells were treated with PTX (0.3 μg/ml) or vehicle overnight. Agonist stimulation was allowed to proceed for 10 min at 25°C in the presence of 3-isobutyl-1-methylxanthine (1 mM). Cellular cAMP contents were determined by enzyme immunoassay. HEK-β2-AR cells were subjected to (R,R')-aminoFen (10−11 to 10−6 M) (A), and HEK-β2-AR Y308F cells were subjected to (R,R')-aminoFen (B), with (A) and without (C) PTX treatment. Data (means ± S.E. in three independent experiments performed in triplicate) are expressed as percentages of the Emax response of the β2-AR WT − PTX group. Curve-fitting analysis of the concentration-response curves were conducted using Prism. **, p < 0.01 versus −PTX group.
Role of Tyr-308 of \(\beta_2 \)-Adrenoceptor on \(G_\alpha \)-biased Signaling

DISCUSSION

The current data (Figs. 5–8) suggest that the \(G_\alpha \)-selective signaling depends on specific interactions between the agonist and the \(\beta_2 \)-AR-Y308 residue, and induction of receptor phosphorylation alone does not necessarily lead to a switching of the receptor coupling from \(G_\alpha \) to \(G_\beta \) as once proposed (16). These results are consistent with those reported in our previous study on cardiomyocytes (15) in which the stereoisomers of Fen and methoxyFen possess different \(G \)-protein selectivity induced similar phosphorylation of \(\beta_2 \)-AR at the PKA sites. Because \((R,R')\)-Fen, \((R,R')\)-methoxyFen, and \((R,R')\)-aminoFen are full agonists of \(\beta_2 \)-AR capable of inducing receptor phosphorylation just as ISO (Fig. 8) (15), the only explanation for their preferential \(G_\alpha \) selectivity would be their exceptional abilities in stabilizing a receptor conformation favoring receptor-\(G_\alpha \) protein interaction. As the emerging paradigm of functional selectivity suggests, ligands can perturb a GPCR to attain "ensembles" of multiple conformations, and each of these conformations is capable of activating a distinct set of signaling events (1–8). Therefore, one possibility is that the binding of the \(G_\alpha \)-selective agonists causes the \(\beta_2 \)-AR to assume or stabilize conformations leading to \(G_\alpha \) protein coupling. \(\beta_2 \)-AR in such conformation(s) regardless of its phosphorylation status interacts strongly with \(G_\alpha \) protein, prohibiting receptor-\(G_\beta \) protein interaction from taking place. Furthermore, if the \(\beta_2 \)-AR-Y308 residue is mutated, the \(G_\alpha \) selectivity of these agonists will be lost (Figs. 5 and 6), suggesting that mutation of this residue affects the receptor conformations stabilized by these agonists. The latter conformations, possibly resembling the ISO-bound receptor conformations, are \(G_\alpha \) protein-permissive.

\(\beta_2 \)-AR-Y308F was found probable in the carazolol-bound \(\beta_2 \)-AR model (Fig. 9A). When \((R,R')\)-aminoFen was docked to the modified model of the Y308F mutant receptor (Fig. 9B), the position of the molecule within the binding site was very similar, and the above-mentioned interactions still occurred with the exception of the HB created by the 4'-amino moiety. In effect, the 4'-aminobenzyl ring assumed a slightly different position than during docking to the WT receptor model.

Figure 8. \((R,R')\)-aminoFen induces phosphorylation of \(\beta_2 \)-AR and \(\beta_2 \)-AR Y308F mutant at the GRK and the PKA sites in HEK stable cell lines. Confluent cultures of HEK-\(\beta_2 \)-AR cells and HEK-\(\beta_2 \)-AR Y308F cells were incubated in serum-free medium for 3 h and then stimulated with vehicle control (−), ISO (1 \(\mu \)M), or \((R,R')\)-aminoFen (R, 1 \(\mu \)M; R100 for WT, 0.2 \(\mu \)M; R100 for Y308F, 1 \(\mu \)M; R1000 for WT, 2 \(\mu \)M; R1000 for Y308F, 10 \(\mu \)M) for 5 min at 37 °C. Phosphorylated \(\beta_2 \)-AR was detected by phosphosite-specific antibodies against Ser(P)-262 for PKA sites and Ser(P)-355,356 for GRK sites. Total \(\beta_2 \)-AR was detected after stripping and reprobing the membrane with the 193592-AR-CT antibody. A, immunoblots of Ser(P)-262-\(\beta_2 \)-AR and total \(\beta_2 \)-AR in response to agonist stimulation, and B, averaged data (normalized to total \(\beta_2 \)-AR). C, immunoblots of Ser(P)-355,356-\(\beta_2 \)-AR and total \(\beta_2 \)-AR in response to agonist stimulation, and D, averaged data. Data are expressed as fold increase over control (means ± S.E. in at least three independent experiments). *, \(p < 0.05; \) **, \(p < 0.01; \) ***, \(p < 0.001 \) versus vehicle controls (two-way analysis of variance with post hoc t test). No significant differences were found for all within-group comparisons between WT and Y308F, \(p > 0.05.\)
interpreted in the light of the structural insight gained from the human β_2-AR models. As shown in Fig. 2, A, C, and D, and Table 1, the R,R'-isomers of Fen derivatives containing the following substituents on the aminoalkyl portion, phenyl (PhFen), 1-naphthylfenoterol, 2-naphthylfenoterol, ethylfenoterol, and 4'-methoxy-1-naphthyl (MNFen), produced PTX-sensitive contractile responses in cardiomyocytes. These results suggest that these compounds activate both G_s and G_i pathways of β_2-AR. In contrast, the positive inotropic effects of (R,R')-Fen, (R,R')-methoxyFen, (R,R')-aminoFen, and (R,S')-aminoFen were PTX-insensitive (Table 1 and Fig. 2B), indicating that they selectively activate β_2-AR-G_s signaling. Together, these data illustrate the structural features of a Fen compound for ligand-directed selective β_2-AR-G_s signaling as follows: (i) a benzyl rather than a naphthyl moiety on its aminoalkyl substituent; (ii) a 4'-oxygen or a 4'-oxygen moiety on this aromatic substituent; and (iii) a mandatory R-configuration on the chiral center of the β-OH group and a preferred R-configuration on the second chiral center.

The fact that (R,R')-PhFen, but not (R,R')-Fen, (R,R')-methoxyFen, and (R,R')-aminoFen, produced a PTX-sensitive inotropic effect (Fig. 2, A and B, and Table 1) suggests that the 4'-(N/O) moieties in these (R,R')-Fen derivatives are indispensable for agonist-induced preferential G_s activation. If either the phenyl hydroxyl group of Tyr-308 or the 4'-(N/O) moiety is lost, the HB between the ligand and the 7.35 residue (Fig. 9A) will not exist, and promiscuous G_s and G_i dual signaling rather than G_s-biased signaling will be induced (Figs. 5C, 6C, and 7B). This indicates that specific interaction between Tyr-308 and the 4'-(N/O)-benzyl moiety promotes preferential receptor-G_s protein coupling. Our simulation study (23) has also shown that (R,R')-Fen derivatives with naphthyl moieties interact not by hydrogen bonding with Tyr-308 but rather by $\pi-\pi$ interactions with the other aromatic residues in the ligand binding pocket (Fig. 9D). The opposite is true for compounds with 4'-(N/O)-benzyl moieties (23). The dominance of the $\pi-\pi$ interactions with (R,R')-MNFen binding, irrespective of the presence of a potentially hydrogen bonding 4'-methoxy moiety, is associated with dual G_s and G_i protein coupling of β_2-AR (Fig. 2D). These key features in the ligand-receptor interaction make (R,R')-MNFen a superior negative model compound as compared with ISO or the (S,R')-isomers in the study of G_s-biased signaling, and the functional data with (R,R')-MNFen stimulation (Fig. 2D) also point to the same conclusion. Thus, based on our simulated docking study and experimental evidence, we conclude that HB interactions between the 4'-(N/O)-benzyl moiety of the (R,R')-Fen derivatives and the β_2-AR-Y308 residue play an important role on ligand-directed β_2-AR-G_s signaling.

The structural features of Fen derivatives for preferential G_s selectivity and receptor subtype selectivity have both similarities and differences. Our initial studies (13, 14) have shown that both stereochemistry and the aminoalkyl substituent play essential roles on the β_2-AR subtype selectivity of the Fen compounds. Although an R-configuration, hydrogen bonding with Tyr-308, and $\pi-\pi$ interactions with aromatic residues in the ligand binding pocket can all contribute to high ligand binding affinity and increased selectivity to β_2-AR (14), only the R-configuration and hydrogen bonding with Tyr-308 correlate with...
G$_s$ selectivity. The π-π interactions, however, likely have a detrimental effect on G$_s$ selectivity of the Fen derivatives. It is conceivable that the above-mentioned molecular interactions would impact the receptor conformational ensembles stabilized by different β$_2$-AR agonists and subsequently result in the differential G protein-coupling selectivity.

Recent studies have identified H$_{6.55}$ to be a major determinant of ligand-biased signaling in dopaminergic D$_{2L}$ receptors (36). A follow-up study has further characterized the receptor conformations involved in D$_{2L}$ receptor functional selectivity (37). Briefly, a model of functional selectivity for D$_{2L}$ receptor has been proposed in which TM6 represents a rotatory switch in response to the binding of different functionally selective agonists. In this model, if H$_{6.55}$ in TM6 rotates toward S$_{5.43}$ on TM5, the resultant ligand-stimulated receptor conformation will favor the activation of the arachidonic acid pathway. Conversely, if H$_{6.55}$ rotates toward TM7 and interacts with Y$_{7.35}$, the ligand-stimulated receptor conformation will lead to a signaling bias toward cAMP/MAPK activation.

A very similar mechanism occurs in β$_2$-AR. Y$_{308}$ is known to form a HB with a neighboring residue N$_{293}$ in TM6, and this specific interaction (additionally shown on Fig. 9A) remains intact in all reported crystallographic structures of the receptor. Because the 4’-(N/O) moiety of the G$_s$-selective ligand involves the hydroxyl group of Tyr-308 in another HB interaction, a competition occurs between the Tyr-308–Asn-293 interaction and Tyr-308–ligand interaction. It is therefore postulated that the naturally occurring Tyr-308–Asn-293 HB is disrupted when the G$_s$-selective ligand binds to the receptor. The Tyr-308–Asn-293 interaction bridges the upper parts of TM6 and TM7. Breaking this interaction during the receptor conformational transition might be a key phenomenon leading to specific activation of the β$_2$-AR to a form favoring selective G$_s$ protein coupling.

Using acetylcholine M$_2$ receptor as a model, Bock et al. (38) have designed “dualsteric” agonists to study the role of allosteric vestibules on G protein activation. The allosteric vestibule is located at the entrance of the orthosteric binding cavity of many class A GPCRs and has been implicated for ligand binding (39). Acetylcholine is known to activate G$_i$ and G$_s$ signaling of the M$_2$ receptor. The authors have found that dualsteric agonists (such as iper-6-phth and iper-6-naph) exhibited a G$_i$ over G$_s$ signaling bias compared with acetylcholine and their parent compound Iperoxo, an orthosteric muscarinic agonist. Mutagenic studies have identified the M$_2$-W$_{422}$ residue located at the allosteric vestibule to be critical for both G$_i$ and G$_s$ protein activation, with the gain in dualsteric probe efficacy for G$_i$ activation in the allosteric mutant. Interestingly, W$_{422}$ and Y$_{177}$ in extracellular loop 2 of the M$_2$ receptor and the analogous Y$_{308}$ and F$_{193}$ in β$_2$-AR that line the passage to the orthosteric binding cavity have been suggested to undergo a conformational rearrangement during receptor activation (39, 40). The authors implied from their findings that spatial rearrangement of this passage is critical for receptor movements required for appropriate unfolding of the intracellular domain region for G protein coupling.

The two previous studies and this study indicate the important role of the 7.35 residue on GPCR conformational transition leading to G protein activation. Notably, here we provide the direct evidence to pinpoint the role of this residue on functional selectivity and illustrate this point with an “extreme” form of signaling bias (in nominal terms of with or without PTX sensitivity rather than in ratiometric terms of a biased factor) in a physiological context of adult cardiac myocytes. Further studies are needed to determine whether this deduction could be generalized in a broader sense, such as to other class A aminergic GPCRs.

Our study design necessitates the investigation of a single aspect of the β$_2$-AR agonists, specifically their differential selectivity to G$_s$ and G$_i$ proteins. From a chemical biology perspective, however, the β$_2$-AR is only one of the many possible in vivo targets of the Fen compounds. Indeed, in complex biological systems such as the adult cardiac myocytes, a compound is likely to produce its effects via interactions with multiple cellular proteins. Therefore, it is unsurprising to find that high concentrations of (R,R')-aminoFen also stimulate β$_1$-AR (Fig. 5A) given that only one of the 15 amino acids that constitute the ligand binding pocket differs between β$_1$-AR and β$_2$-AR (41). Consistently, our previous binding affinity data (13) have also shown that the subtype selectivity of β$_2$-AR relative to β$_1$-AR in terms of K$_i$/β$_2$-AR/K$_i$/β$_1$-AR ratio was 9 for (R,R')-aminoFen. Interesting, it is the 7.35 residue (β$_2$-AR-Y$_{308}$) that is different, and the corresponding residue is a phenylalanine or Phe-359 in β$_1$-AR, incidentally the same mutation characterized in this study. However, mutation on β$_2$-AR to convert the amino acid residues in its ligand binding pocket to that resembling β$_1$-AR produced a dissimilar function of increased receptor-G$_i$ protein coupling in the β$_2$-AR Y$_{308}$F mutant, yet it is known that β$_1$-AR does not normally couple to G$_i$ (10). Thus, it is not the amino acid residues themselves but rather their different interactions with the ligand and the resultant conformational changes (42) that determine the diverse selectivity of the β-AR subtypes or mutants to different G proteins. As a cautionary note, this interpretation is only confined to the very first step of G protein coupling at the receptor level, without taking into account other intracellular mechanisms such as phosphorylation, internalization, G protein abundance, and subcellular compartmentation.

In addition, cross-talk between different receptor-mediated signaling pathways is very common when a given ligand simultaneously stimulates two or more receptors. We observed this cross-talk of signals between β$_1$-AR and β$_2$-AR in cardiac myocytes stimulated by 500 nM (R,R')-aminoFen as exemplified by a higher contractile response in the β$_2$-AR Y$_{308}$F mutant-expressing cells (Fig. 5C) versus the WT β$_2$-AR-expressing cells (Fig. 5B) in the PTX-treated groups. The detailed mechanism of the cross-talk between the β$_1$- and β$_2$-AR signals is beyond the scope of this study, although an elaborated discussion can be found in Zhang et al. (43). This example illustrates that no single assay or approach can adequately elucidate the complex pharmacology of a compound.

In conclusion, this study has identified an amino acid residue in β$_2$-AR necessary for functional selectivity. Mutation of this residue causes a G$_s$-selective agonist to gain the ability to activate G$_s$ when it binds to the β$_2$-AR. We also provide, for the first time, functional data confirming the identification of the ligand-receptor interactions important for G$_s$-biased signaling in β$_2$-AR. Advances in structural biological techniques (42,
Role of Tyr-308 of β_{2}-Adrenoceptor on G_{s}-biased Signaling

44–48 will ultimately unravel how these interactions during ligand binding translate into receptor conformation(s) for selective coupling to different G proteins. This investigation has elucidated the molecular basis of G_{s}-biased agonism in β_{2}-AR, and this is one step closer to structure-based design of signaling pathway-specific drugs.

Acknowledgments—We thank Dr. Brian Kobilka and Dr. Hitoshi Kurose for providing the plasmids encoding for the human β_{2}-AR and β_{2}-AR Y308F mutant. Special thanks to Dr. Richard B. Clark for providing the anti-Ser(P)-262 and anti-Ser(P)-355,356 antibodies.

REFERENCES

1. Violin, J. D., and Lefkowitz, R. J. (2007) β-Arrestin-biased ligands at seven-transmembrane receptors. *Trends Pharmacol. Sci.* **28**, 416–422
2. Kenakin, T. (2007) Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. *Trends Pharmacol. Sci.* **28**, 407–415
3. Mailman, R. B. (2007)GPCR functional selectivity has therapeutic impact. *Trends Pharmacol. Sci.* **28**, 390–396
4. Urban, J. D., Clarke, W. P., Zastrow, M. V., Nichols, D. E., Kobilka, B., and Weinstein, H. (2007) Functional selectivity and classical concepts of quantitative pharmacology. *Pharmacology* **320**, 1–13
5. Neubig, R. R. (2007) Missing links: mechanisms of protein agonism. *Mol. Pharmacol.* **71**, 1200–1202
6. Seifert, R., and Dove, S. (2009) Functional selectivity of GPCR ligand stereoisomers: new pharmacological opportunities. *Mol. Pharmacol.* **75**, 13–18
7. Evans, B. A., Sato, M., Sarwar, M., Hutchinson, D. S., and Summers, R. J. (2010) Ligand-directed signalling at β-adrenoceptors. *Br. J. Pharmacol.* **159**, 1022–1038
8. Kenakin, T., and Miller, L. J. (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. *Pharmacol. Rev.* **62**, 265–304
9. Xiao, R. P., Xi, X., and Lakatta, E. G. (1995) Functional coupling of the β_{2}-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. *Mol. Pharmacol.* **47**, 322–329
10. Xiao, R. P., Avdonin, P., Zhou, Y. Y., Cheng, H., Akhter, S. A., Eschenhagen, T., Lefkowitz, R. J., Koch, W. J., and Lakatta, E. G. (1999) Coupling of β_{2}-adrenoceptor to G_{s} proteins and its physiological relevance in murine cardiac myocytes. *Circ. Res.* **84**, 43–52
11. Xiao, R. P., Zhang, S. J., Chakir, K., Avdonin, P., Zhu, W. B., Bond, R. A., Balke, C. W., Lakatta, E. G., and Cheng, H. (2003) Enhanced G_{i} signaling selectively negates β_{2}-AR- but not β_{1}-AR-mediated positive inotropic effect in myocytes from failing rat hearts. *Circulation* **108**, 1633–1639
12. Beigi, F., Bertucci, C., Zhu, W., Chakir, K., Wainer, I. W., Xiao, R. P., and Abernethy, D. R. (2006) Enantioselective separation and online affinity mass spectrometry of fenoterol and fenoterol derivatives to the β_{2}-AR. *J. Biol. Chem.* **281**, 2903–2912
13. Plazinska, A., Kolinski, M., Wainer, I. W., and Jozwiak, K. (2013) Molecular interactions between fenoterol stereoisomers and derivatives and the β_{2}-adrenoceptor binding site studied by docking and molecular dynamics simulations. *J. Mol. Model.* **19**, 4919–4930
14. Zhou, Y. Y., Wang, S. Q., Zhu, W. Z., Chruscinski, A., Kobilka, B. K., Ziman, B., Wang, S., Lakatta, E. G., Cheng, H., and Xiao, R. P. (2000) Culture and adenosine infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. *Am. J. Physiol. Heart Circ. Physiol.* **279**, H429–H436
15. Baillie, S. G., Good, A., McPhee, I., Gall, I., Perry, S. J., Lefkowitz, R. J., and Houslay, M. D. (2003) β-Arrestin-mediated PDE4 and phosphodiesterase recruitment in a broad range of G-protein-coupled receptor switching from G_{s} to G_{i}. *Proc. Natl. Acad. Sci. U.S.A.* **100**, 940–945
16. Chakir, K., Zhu, W., Tsang, S., Woo, A. Y., Yang, D., Wang, X., Zeng, X., Rhee, M. H., Mende, U., Koitabashi, N., Takimoto, E., Blumer, K. J., Lakatta, E. G., Kass, D. A., and Xiao, R. P. (2011) RGS2 is a primary regulator of β_{2}-adrenoceptor-mediated G signaling. *J. Mol. Cell. Cardiol.* **50**, 1000–1007
17. Lefkowitz, R. J., Pierce, K. L., and Luttrell, L. M. (2002) Dancing with different partners: protein kinase a phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity. *Mol. Pharmacol.* **62**, 971–974
18. Lefkowitz, R. J. (1998) G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. *J. Biol. Chem.* **273**, 18677–18680
19. Tran, T. M., Friedman, J., Qunaibi, E., Baumeur, F., Moore, R. H., Clark, R. B. (2004) Characterization of agonist stimulation of CAMP-dependent protein kinase G and G protein-coupled receptor kinase phosphorylation of the β_{2}-adrenoceptor using phosphoserine-specific antibodies. *Mol. Pharmacol.* **65**, 196–206
20. January, B., Seibold, A., Whaley, B., Hipkin, R. W., Lin, D., Schonbrunn, A., Barber, R., and Clark, R. B. (1997) β_{2}-Adrenoceptor receptor desensitization, internalization, and phosphorylation in response to full and partial agonists. *J. Biol. Chem.* **272**, 23871–23879
21. Iyer, V., Tran, T. M., Foster, E., Dai, W., Clark, R. B., and Knoll, B. J. (2006) Differential phosphorylation and desphosphorylation of β_{2}-adrenoceptor sites Ser262 and Ser355,356. *Br. J. Pharmacol.* **147**, 249–259
22. Lohse, M. J., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J. (1990) Multiple pathways of rapid β_{2}-adrenoceptor desensitization. Delineation with specific inhibitors. *J. Biol. Chem.* **265**, 3202–3211
23. Hausdorff, W. P., Lohse, M. J., Bouvier, M., Liggett, S. B., Caron, M. G., and Lefkowitz, R. J. (1990) Two kinases mediate agonist-dependent phosphorylation and desensitization of the β_{2}-adrenoceptor. *Symp. Soc. Exp.*
Role of Tyr-308 of β2-Adrenoceptor on Gs-biased Signaling

JULY 11, 2014 • VOLUME 289 • NUMBER 28 • JOURNAL OF BIOLOGICAL CHEMISTRY

19363

34. Isogaya, M., Sugimoto, Y., Tanimura, R., Tanaka, R., Kikkawa, H., Nagao, T., and Kurose, H. (1999) Binding pockets of the β1- and β2-adrenergic receptors for subtype-selective agonists. *Mol. Pharmacol.* 56, 875–885

35. Kim, T. H., Chung, K. Y., Manglik, A., Hansen, A. L., Dror, R. O., Mildorf, T. J., Shaw, D. E., Kolibka, B. K., and Prosser, R. S. (2013) The role of ligands on the equilibria between functional states of a G protein-coupled receptor. *J. Am. Chem. Soc.* 135, 9465–9474

36. Tschammer, N., Bollinger, S., Kenakin, T., and Gmeiner, P. (2011) Histidine 6.55 is a major determinant of ligand-biased signaling in dopamine D2L receptor. *Mol. Pharmacol.* 79, 575–585

37. Fowler, J. C., Bhattacharya, S., Urban, J. D., Vaidehi, N., and Mailman, R. B. (2012) Receptor conformations involved in dopamine D2L receptor functional selectivity induced by selected transmembrane-5 serine mutations. *Mol. Pharmacol.* 81, 820–831

38. Bock, A., Merten, N., Schrage, R., Dallanoce, C., Bätz, J., Klöckner, J., Schmitz, J., Matera, C., Simon, K., Kebig, A., Peters, L., Müller, A., Schrobang-Ley, J., Tränkle, C., Hoffmann, C., De Amici, M., Holzgrabe, U., Kostenis, E., and Mohr, K. (2012) The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. *Nat. Commun.* 3, 1044

39. Dror, R. O., Pan, A. C., Aver, D. H., Borhani, D. W., Karagiannis, P., Shan, Y., Xu, H., and Shaw, D. E. (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. *Proc. Natl. Acad. Sci. U.S.A.* 108, 13118–13123

40. Jäger, D., Schmalenbach, C., Prilla, S., Schrobang, J., Kebig, A., Sennwitz, M., Heller, E., Tränkle, C., Holzgrabe, U., Höltje, H. D., and Mohr, K. (2007) Allosteric small molecules unveil a role of an extracellular E2/transmembrane helix 7 junction for G protein-coupled receptor activation. *J. Biol. Chem.* 282, 34968–34976

41. Kolibka B. K. (2011) Structural insights into adrenergic receptor function and pharmacology. *Trends Pharmacol. Sci.* 32, 213–218

42. Ring, A. M., Manglik, A., Kruse, A. C., Enos, M. D., Weis, W. I., Garcia, K. C., and Kolibka, B. K. (2013) Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. *Nature* 502, 575–579

43. Zhang S. J., Cheng H., Zhou Y. Y., Wang D. I., Zhu W., Ziman B., Spurgoen H., Lefkowitz R. J., Lakatta E. G., Koch W. J., and Xiao R. P. (2000) Inhibition of spontaneous β2-adrenergic activation rescues β1-adrenergic contractile response in cardiomyocytes overexpressing β2-adrenoceptor. *J. Biol. Chem.* 275, 21773–21779

44. Kahsai, A. W., Xiao, K., Rajagopal, S., Ahn, S., Shukla, A. K., Sun, J., Oas, T. G., and Lefkowitz, R. J. (2011) Multiple ligand-specific conformations of the β2-adrenergic receptor. *Nat. Chem. Biol.* 7, 692–700

45. West, G. M., Chien, E. Y., Katritch, V., Gatchalian, J., Chalmers, M. J., Stevens, R. C., and Griffin, P. R. (2011) Ligand-dependent perturbation of the conformational ensemble for the GPCR β2 adrenergic receptor revealed by HDX. *Structure* 19, 1424–1432

46. Liu, J. J., Horst, R., Katritch, V., Stevens, R. C., and Wüthrich, K. (2012) Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. *Science* 335, 1106–1110

47. Nygaard, R., Zou, Y., Dror, R. O., Mildorf, T. J., Aver, D. H., Manglik, A., Pan, A. C., Liu, C. W., Fung, J. J., Bokoch, M. P., Thian, F. S., Kolibka, T. S., Shaw, D. E., Mueller, L., Prosser, R. S., and Kolibka, B. K. (2013) The dynamic process of β2-adrenergic receptor activation. *Cell* 152, 532–542

48. Malik, R. U., Ritt, M., DeVree, B. T., Neubig, R. R., Sunahara, R. K., and Sivaramakrishnan, S. (2013) Detection of G protein-selective G protein-coupled receptor (GPCR) conformations in live cells. *J. Biol. Chem.* 288, 17167–17178