Synthesis and evaluation of antitumor activities of novel chiral 1,2,4-triazole Schiff bases bearing γ-butenolide moiety

Xiang Li1,3, Xue-Qiang Li1*, He-Mei Liu1, Xue-Zhang Zhou2 and Zhi-Hui Shao3*

Abstract
Background: 1,2,4-Triazole derivatives have received much attention due to their versatile biological properties including antibacterial, antifungal, anticonvulsant, antiinflammatory, anticancer, and antiproliferative properties. 1,2,4-Triazole nucleus has been incorporated into a wide variety of therapeutically interesting molecules to transform them into better drugs. Schiff bases of 1,2,4-triazoles have also been found to possess extensive biological activities. On the other hand, γ-substituted butenolide moiety represents a biological important entity that is present in numerous biologically active natural products.

Results: We have described herein the synthesis of 12 hybrid 1,2,4-triazole Schiff bases bearing γ-substituted butenolide moiety. These compounds were synthesized by utilizing the tandem asymmetric Michael addition/elimination reaction as the key step. All the new compounds were evaluated for their in vitro anticancer activity.

Conclusions: Tandem asymmetric Michael addition/elimination approach has offered an easy access to new chiral 1,2,4-triazole compounds 7a-7l. All these chiral 1,2,4-triazole derivatives exhibited good anticancer activities towards Hela. Of all the tested compounds, the chiral compound 7l with an IC50 of 1.8 μM was found to be the most active.

Keywords: 1,2,4-triazole, Schiff base, γ-butenolide, A activity, HeLa cells

Background
Cancer, a diverse group of diseases characterized by the proliferation and spread of abnormal cells, is a major worldwide problem. Therefore, the discovery and development of new potent and selective anticancer drugs are of high importance in modern cancer research.

1,2,4-Triazole derivatives have received much attention due to their versatile biological properties including antibacterial, antifungal, anticonvulsant, antiinflammatory, anticancer, and antiproliferative properties [1-10]. 1,2,4-Triazole nucleus has been incorporated into a wide variety of therapeutically interesting molecules to transform them into better drugs [11-13]. Schiff bases of 1,2,4-triazoles have also been found to possess extensive biological activities [14-18]. On the other hand, γ-substituted butenolide moiety represents a biological important entity that is present in numerous biologically active natural products [19-24].

Recently, we reported on the synthesis of a series of hybrid 1,3,4-thiadiazoles derivatives possessing γ-substituted butenolide moiety, which exhibited good anticancer activities against cervical cancer cells [25]. In continuation of our studies on the identification of potential active antitumor compounds, herein we report the synthesis and evaluation of a new series of hybrid 1,2,4-triazole Schiff bases bearing γ-substituted butenolide moiety as potential anticancer agents (Figure 1). To the best of authors’ knowledge, the synthesis and anticancer activities of this types of compounds have not been reported so far.

Results and discussion
The enantiomerically pure γ-substituted butenolides 1 were synthesized via acetalization of mucobromic acid by employing (−)-menthol and (+)-borneol as a chiral
The 1,2,4-triazole Schiff bases were synthesized by condensation of 4-amino-5-substituted-4H-1,2,4-triazol-3-thiols with aromatic aldehydes in glacial acetic acid (Scheme 1) [14]. The 4-amino-5-substituted-4H-1,2,4-triazol-3-thiols were prepared according to the previous procedure [28,29]. When R^1 is methyl, the compound 5a was prepared by heating a mixture of thiocarbohydrazide with acetic acid [28]. When R^1 are aryl, a different procedure was employed as aromatic carboxylic acids are generally solid, have high melting points, and are difficult to react with thiocarbohydrazide fully [29]. Thus, staring from aromatic carboxylic acid esters 2, the aryl hydrazides 3 were obtained by reaction with hydrazine in EtOH. Treatment of the aryl hydrazides 3 with CS_2 under a basic condition (KOH/EtOH) gave the corresponding potassium aryl dithiocarbazates 4. Then, the resulting compounds 4 were cyclized with hydrazine to provide the compounds 5b–d in good yields.

The target compounds 7a–l were prepared via tandem Michael addition–elimination reaction of γ-substituted butenolides 1 with 5-substituted 1,2,4-triazole Schiff bases 6 under phase-transfer catalysis conditions (Scheme 2).

The structures of these new compounds 7a–l were characterized with IR, 1H, ^{13}C NMR, and LC-MS spectra. In addition, the molecular structure of 7a was unambiguously confirmed through X-ray crystallography (Figure 2).a

All newly synthesized compounds 7a–l were initially evaluated for their in vitro anticancer activities against cervical cancer cell lines (HeLa) using the MTT assay, and the results were summarized in Table 1. All the compounds 7a–l displayed good inhibition activities on HeLa cell lines. Of all the studied compounds, the compound 7l exhibited the best inhibitory activity with an IC_{50} of 1.8 μM.

Then, the growth inhibition rates of HeLa cell lines with compounds 7a–l at different concentrations (0.1–20 μM) were evaluated (Table 2). After being treated with 20 μg/mL compound 7l for 24 h, the growth inhibition rate was the highest (90.0%).

Experimental

All the chemicals were used as-received without further purification unless otherwise stated. IR spectra were
recorded on a FTIR-8400S spectrometer as KBr disks.

1H NMR and 13C NMR spectra were obtained with a Bruker Avance III 400 MHz spectrometer in chloroform-d (CDCl$_3$) and tetramethylsilane was used as an internal standard. Diffraction measurement was made on a Bruker AXS SMART 1000 CCD diffractometer with graphite-monochromatized Mo K$_{\alpha}$ radiation (λ = 0.71073 Å). All the melting points were determined on a WRS-1B digital melting point apparatus and are uncorrected. Thin-layer chromatography (TLC) was carried out on silica GF254 plates (Qingdao Haiyang Chemical Co., Ltd., China).

General procedure for the synthesis of compounds 7

To an aqueous solution of dichloromethane was sequentially added the compounds 1 (1.0 mmol), potassium carbonate (1.0 mmol), 18-crown-6 (0.1 mmol), and the compounds 6 (1.1 mmol). The resulting mixture was stirred at room temperature, and the reaction was monitored by TLC. On completion of the reaction (10–20 h), the mixture was exacted and the organic layer was washed with saturated brine. Then the organic layer was dried over anhydrous MgSO$_4$, filtered, and concentrated in vacuo. The purification of the residue by silica gel column chromatography or crystallizations yielded the desired compounds 7a–l in 65–89% yields (For the characterization of compound 7a–7l, please see the Additional file 1: Supporting Information). Compound 7l: white solid, 76% yield, $[\alpha]_{D}^{20} = -37.2$ (c = 0.5 M, CHCl$_3$), mp 131–132°C. IR (KBr) 3210, 1780, 1603, 1523, 1440, 1421, 1319, 1212, 1134, 993 cm$^{-1}$. 1HNMR (400 MHz, CDCl$_3$) 10.04 (s, 1H), 8.73 (s, 1H), 7.59–7.04 (m, 2H), 7.14–7.06 (m, 2H), 6.20 (s, 1H), 3.81 (m, 1H), 2.59 (s, 3H), 2.25–2.22 (m, 1H), 1.69–1.09 (m, 6H), 0.78–0.74 (m, 6H), 0.53 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) 170.4, 164.0, 160.3, 152.9, 151.0, 138.2, 136.3, 133.7, 120.6, 118.1, 115.4, 112.8, 103.1, 88.8, 49.3, 47.6, 44.7, 36.7, 27.9, 26.5, 19.5, 18.7, 13.3, 11.2. HRMS calcd. for C$_{24}$H$_{27}$BrN$_4$O$_4$S $[M]^{+}$: 546.0936, found 546.0933.

Pharmacology

Cells (1 × 104 in 100 µL) were seeded on 96-well plates in triplicate. Following a 24-h culture at 37°C, the medium was replaced with fresh medium at various concentrations (1.25, 2.5, 5, 10, 20 µg/mL) of compounds 7a–l in a final volume of 110 µL. At the same time, set drug-free medium negative control well, and solvent control well of the same volume of dimethyl sulfoxide (DMSO). Cells were incubated at 37°C for 24 h. Then, 20 µL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (2 mg/mL in a phosphate buffer solution) was added to each well, incubated for an additional 4 h, the plates were centrifuged at 1000 r/min for 10 min, then the medium was removed. MTT formazan precipitates were dissolved in 100 µL of DMSO, shaken mechanically for 10 min and then read immediately at 492 nm in a plate reader (Opsys MR,

![Scheme 2 Synthesis of target compounds 7a–l.](image-url)
Cell inhibition rate = \[
\frac{A_{492}\text{(negative control well)} - A_{492}\text{(dosing well)}}{A_{492}\text{(negative control well)}}\times 100\%.
\]

Conclusions
In summary, a new type of chiral 1,2,4-triazole Schiff bases bearing γ-substituted butenolide moiety have been synthesized and their in vitro anticancer activities against HeLa cell lines have been evaluated. These chiral 1,2,4-triazole derivatives exhibited good anticancer activities towards HeLa. The compound 7l with an IC50 of 1.8 μM was found to be the most active. Further studies of anticancer activities of these compounds are in progress in our group.

Endnote
*The molecular structure of the product 7a was determined by means of X-ray crystallographic studies. CCDC 829447 (7a) contains the supplementary crystallographic data for this article. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Additional file
Additional file 1: Supporting Information Available. Experimental procedures, spectral data of new compounds.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ZS and XL carried out the design of the project, and drafted the manuscript. XL and HL synthesized target compounds. XZ evaluated in vitro anticancer activities against cervical cancer cell lines (HeLa). All authors read and approved the final manuscript.

Supporting information available
Experimental procedures, spectral data of new compounds.

Acknowledgments
We gratefully acknowledge the financial support from the National Natural Science Foundation of China (20962023, 21062014, 21162034), the Major State Basic Research Development Program of China (2007CB21602), the Program for New Century Excellent Talents in University (NCET-10-0907), the Key Project of Chinese Ministry of Education (210237), and the Natural Science Foundation of Ningxia Province of China (N20606).

Table 1 In vitro anticancer activities against HeLa cell lines with compounds 7a–l (n = 3)

Compound	IC50 (μM)	Compound	IC50 (μM)
7a	19.7	7h	7.1
7b	4.4	7i	3.7
7c	11.6	7j	4.5
7d	11.2	7k	6.2
7e	6.8	7l	1.8
7f	5.1	DDP (Cisplatin)	2.6
7g	8.2		

The IC50 values represent the compound concentration (μM) required to inhibit tumor cell proliferation by 50%.

Table 2 Growth inhibition rates of HeLa cell lines with compounds 7a–l at different concentrations

Compounds	Inhibition rates (%)				
	1.25 μM	2.5 μM	5 μM	10 μM	20 μM
7a	1.2	8.7	16.1	30.2	41.9
7b	26.2	30.2	53.8	65.2	85.7
7c	9.4	35.3	21.3	52.3	60.2
7d	17.9	11.0	34.8	47.7	65.5
7e	10.9	11.4	24.3	76.0	85.2
7f	10.3	27.4	56.9	73.4	85.1
7g	18.0	30.9	43.4	49.7	67.1
7h	8.3	14.3	40.7	77.5	71.7
7i	14.3	35.6	67.8	85.4	87.7
7j	24.0	32.5	54.1	67.6	81.2
7k	14.8	36.2	60.0	56.7	67.3
7l	47.5	45.4	74.1	88.6	90.0

Figure 2 ORTEP view of the crystal structure of compound 7a.
Author details
1 Key Laboratory of Energy Sources & Chemical Engineering, Development Center of Natural Products and Medication and School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. 2 Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, Yunnan University, Kunming 650091, China.

Received: 9 November 2011 Accepted: 26 February 2012

References

1. Sz tanke N, Tuzimski T, Ryzymowska J, Pasternak K, Kandefer-Szentsen M (2008) Synthesis of some fused 1,2,4-triazole derivatives. Eur J Med Chem 43:404–419
2. Sadana AK, Mirza Y, Aneja KR, Prakash O (2003) Hypervalent iodine mediated synthesis of 1-aryl(hetaryl)-1,2,4-triazole(4-3-4)pyridines and 1-aryl(hetaryl)methyl-1,2,4-triazole(4-3-4)quinolines as antibacterial agents. Eur J Med Chem 38:533–536
3. Amir M, Kumar H, Javed SA (2008) Condensed bridge head nitrogen heterocyclic system: synthesis and pharmacological activities of 1,2,4-triazole(3,4-b)-1,3,4-thiadiazole derivatives of ibuprofen and biphenyl-4-yl oxacycetacid. Eur Med Chem 43:2056–2066
4. Turan-Zitouni G, Kaplanolo ZA, Yildiz MT, Chevallet P, Kaya D (2005) Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-[1-(phenoxethy)l]-3-(H2-thiazoly)acetamidiothio-4H-1,2,4-triazole derivatives. Eur J Med Chem 40:607–613
5. Mavrova AT, Wesselinova D, Tsenov YA, Denkova P (2009) Synthesis, cytotoxicity and effects of some 1,2,4-triazole and 1,3,4-thiadiazole derivatives on immunocompetent cells. Eur J Med Chem 44:63–69
6. Al-Soud YA, Al-Masoudi NA, Fenwah AE-RS (2003) Synthesis and properties of new substituted 1,2,4-triazoles: potential antitumour agents. Bioorg Med Chem 11:1701–1708
7. Almasirad A, Tabatabai SA, Faizi M, Kebrabazadeh A, Mehrabi N, Dalvandi A, Shahief A (2004) Synthesis and antitumour activity of new 2-substituted-5-[2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorg Med Chem Lett 14:6057–6059
8. Padmavathi V, Thiveni P, Reddy GS, Deepthi D (2008) Synthesis and antimicrobial action of novel sulfone-linked bis heterocyclics. Eur J Med Chem 43:917–924
9. Bhat KS, Poojary B, Prasad DJ, Naik P, Holla BS (2009) Synthesis and antitumor activity studies of some new fused 1,2,4-triazole derivatives carrying 2,4-dichloro-5-fluorophenylimino. Eur J Med Chem 44:5066–5070
10. Romagnoli R, Baisoli PG, Cruz-Lopez O, Cara CL, Cantion MD, Brancalle A, Hamel E, Chen L, Bortolozzi R, Basso G, Viola G (2010) Synthesis and antitumor activity studies of some Mannich bases derived from 1,2,4-triazoles. Eur J Med Chem 38:759–767
11. Baynak H, Demirbas A, Karagul S, Demirbas N (2009) Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur J Med Chem 44:1057–1066
12. Baghiulli GB, Avaji PG, Patil SA, Badamki PS (2008) Synthesis, spectra characterization, in vitro anti bacterial, antifungal and cytotoxic activities of Colli, Noll and Cuill complexes with 1,2,4-triazole Schiff bases. Eur J Med Chem 43:2639–2649
13. Bekiran O, Bekkas H (2006) Synthesis of new bis-1,2,4-triazole derivatives. Molecules 11:469–477
14. Gunasekera SP, McCarthy PJ, Kelly-Borges M, Lobboks V, Clardy J (1996) Dydisulide: a novel protein phosphatase inhibitor from the Caribbean sponge dysidea etherae de bauberlens. J Am Chem Soc 118:8759–8760
15. Acibasi H, Anil H (1987) Four terpenoids from Cedrus libanotica. J Nat Prod 50:286–289
16. Marcois S, Escola MA, Moro RF, Basabe P, Diez D, Sanz F, Molineno F, de la Iglesia-Vicente J, Sierrac BQ, Urones JG (2007) Synthesis of novel antitumour analouges of dysidiolide from ent-halimicid. Bioorg Med Chem 15:5719–5737
17. Takahashi M, Dodo K, Sugimoto A, Aoyagi Y, Yamada Y, Hashimoto Y, Shintai R (2000) Synthesis of the novel analogues of dysidiolide and their structure–activity relationship. Bioorg Med Chem Lett 10:2571–2574
18. Bornh D, Philippo N, Metzger S, Bhanava A, Muller O, Lieb F, Waldmann H (2002) Solid-phase synthesis of dysidiolide-derived protein phosphatase inhibitors. J Am Chem Soc 124:13171–13178
19. Wei M, Feng L, Li X, Zhou X, Zhao Z (2009) Synthesis of new chiral 25-disubstituted 1,3,4-thiadiazoles possessing gamma-butyrolactone moiety and preliminary evaluation of in vitro antitumor activity. Eur J Med Chem 44:3340–3344
20. van Oeveren A, Jansen JFGA, Feiringa BL (1994) Enantioselective synthesis of natural dibenzybutyrolactone lignans (−)-(−)Entero lactone, (−)-(−)Hinokinin, (−)-(−)Pluviatolide, (−)-(−)Entero lactol, and Furofuran lignan (−)(−)Eudesmin via tandem conjugate addition to gamma-alkoxybutenolides. J Org Chem 59:5999–6007
21. Chen Q, Geng Z, Huang B (1995) Synthesis of enantiomerically pure 5-(4-methoxy)-3,4-dibromo-2(5H)-furancarboxyl and its tandem asymmetric Michael addition–elimination reaction. Tetrahedron Asymmetry 6:401–404
22. Smicuis R, Burbulliene MM, Jakubkiene V, Udrwianceva E, Vainiilavicius P (2007) Convenient way to 5-substituted -4-amino-3,2,4-dihydro-4H(1)-1,2,4-triazole-3-thiones. J Heterocyclic Chem 44:279–284
23. Reid JR, Heindel ND (1976) Improved synthesis of 5-substituted -4-amino-3-mercaptoproH(1)-1,2,4-triazoles. J Heterocyclic Chem 13:925–926

Cite this article as: Li et al. Synthesis and evaluation of antitumor activities of novel chiral 1,2,4-triazole Schiff bases bearing γ-butyrolactone moiety. Organic and Medicinal Chemistry Letters 2012 2:26.

doi:10.1186/2191-2858-2-26

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com