Study on the Anti-inflammatory Mechanism of volatile oil of Amydrium sinense based on network pharmacology

Lijuan Lv, Xulong Huang, Xiaofen Li, Rongze Fang, Xiangpei Wang, Ke Zhong, Hongmei Wu

Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou, China

Abstract. Amydrium sinense has been widely used to treat rheumatism are in ethnic areas. The modern studies have shown that rheumatism is closely related to inflammation, and volatile oil of traditional Chinese medicine has anti-inflammatory activity, but the mechanism is not fully elucidated. In this study, the potential mechanism of anti-inflammatory effect of Amydrium sinense was systematically explored by using the network pharmacology. Firstly, the active chemical ingredients of Amydrium sinense were prescreened according to ADME parameters (OB≥30% and DL≥0.18) and the Pharmacological activity. The potential targets were screened with the databases of TCMSP. Then the “component-target-disease” network was constructed using Cytoscape 3.6.1 software. Finally, GO (gene function) enrichment analysis were carried out by biological information annotation database (DAVID), and signal pathway analysis were executed by KEGG Pathway database. The network analysis revealed that 27 compounds were screened as active compounds; 193 targets were searched, of which 38 potential targets the most were closely related to the prevention and treatment of inflammation. In addition, it suggested that 212 biological processes and 79 signalling pathways were screened. Among them, the signalling pathway most closely related to the relevant regulated of NF-kB, TNF, Toll-like receptor signalling pathway, Hepatitis B and Inflammatory response, etc. Its anti-inflammatory mechanism may coordinate with each other through multiple processes to exert anti-inflammatory biological effects. The above results provide strong support for studying the molecular mechanism of Amydrium sinense in the treatment of inflammation.

1. Introduction
The dried rattan cane of Amydrium Haines (Engl.) H. Li. is Amydrium sinense, which is attached to the tree trunk or cliff of broad-leaved evergreen forests. It mainly distributed in the southwest, Hubei, Hunan, Guangxi and in southern Guizhou of China. Amydrium sinense has the effect of soothe the channels and quicken the network vessels, removing blood stasis to kill pain [1]. It is mainly used to treat the disease of fractures, traumatic injury, angina formula, wind-dampness and numbness, etc. The
main chemical components are alkaloids, flavonoids, lactone, coumarin, volatile oil, cardiac glycoside, steroid, etc [2-3]. The drug is also called "rheumatic medicine" and commonly used in ethnic areas of China. Modern studies have shown that rheumatism is closely related to anti-inflammatory [4-5], and the volatile oil of traditional Chinese medicine also has anti-bacterial, anti-inflammatory, anti-oxidative, anti-tumor, and other pharmacological activities [6-7]. However, the medicine is mainly the chemical constituents extract, spectral identification and microscopic identification [8-11], but the anti-inflammatory mechanism is unclear. Therefore, it is helpful to promote the further development of ethnic medicine for revealing the anti-inflammatory mechanism of Amydrium sinense.

In recent years, the rise of network pharmacology has brought new technologies and methods to the study of traditional Chinese medicine. It combines new technologies with multidisciplinary integration that include systems biology, polypharmacology, systems biology, network analysis, proteomics, genomics, metabolomics, etc. This coincides with holistic and systematic characteristics research concepts and the “multi-component, multi-target and multi-pathway” synergistic features of traditional Chinese medicine. Network pharmacology can construct a multi-level network, comprehensively explore the relationship between drugs and diseases, so that traditional Chinese medicine can regulate the body from the overall level to perform treating effect [12-13]. Therefore, in this article, the possible targets, signaling pathways and the mechanism of preventing and treating inflammation were excavation and demonstration in Amydrium sinense, which based on network pharmacology. It provides a reference for the further development and research of the anti-inflammatory mechanism of Amydrium sinense. The technical route is shown in Figure 1.

![Figure 1. The technical route.](image)

2. Method

2.1. Chemical composition database construction
The all volatile oil components were obtained from the relevant literature (CNKI, PubMed). Then, the action chemical constituents were screened by TCMSp database with ADME parameters (OB≥30% and DL≥0.15) and relevant pharmacological activities reported in literature as standard [14-19]. The action constituents corresponding to chemical structural formula was obtained from TCMSp database.
2.2. Molecule structure and target protein prediction
Through TCMSP database and a database of Chinese medicine target database to synthetically analysis by p-value as index. Then, the database of Chinese herbal medicine (HIT, http://lifecenter.sgst.cn/hit/) and the control target database (TTD, http://bidd.nus.edu.sg/group/cjttd/) were used to screen the active constituents. The gene and protein targets for the treatment of inflammation were screened by a comprehensive database of human genes and gene phenotypes (OMIM, http://www.omim.org/). The human target connexins were obtained from an interactive protein database (http://dip.doe-mbi.ucla.edu). Finally, all the selected targets were transformed into UniProt ID format by the UniProt database (https://www.uniprot.org/).

2.3. Network construction and topologic profile analysis
The active constituents, the targets corresponding to the Amydrium sinense, inflammatory targets and relevant protein targets were connected as the “component-target-disease” network. The above network was visually analyzed by using Cytoscape 3.6.1 software, then acquired the topological parameters of Degree, Betweenness and Closeness centrality. They were used to evaluate by CentiScaPe 1.2. In this study, targets with more than three topological parameter values were used as candidate targets.

2.4. Biological progress and pathway enrichment analysis
Interactions between these targets are constructed by STRING (http://string-db.org/). Then, the database DAVID (https://david.ncifcrf.gov/) was carried out to analysis the KEGG pathway and the biological process of GO (Gene Ontology).

3. Result

3.1. These active constituents screened
The total 72 chemical constituents of volatile oil obtained with literature review (CNKI database, bMed database) and TCMSP database. Afterwards, 27 active components were screened by a standard of ADME parameters (OB≥30% and DL≥0.18) and the pharmacodynamics activities, the results are shown in table 1.

Mol ID	Chemical constituents	target	construction
MOL000667	1-hexanol	1	
MOL001335	benzyl alcohol	11	
MOL004582	1-methylnaphthalene	2	
---------------	---------------------	---	
MOL000259	carvacrol	10	
MOL005577	hendecanal	1	
MOL005483	2-methylnaphthalene	1	
MOL003127	germacrene D	4	
MOL001167	β-selinene	11	
MOL003028	eudesmol	6	
MOL004358	linalool	4	
MOL000116	nonanal	4	
-----------	---------	---	
MOL003493	naphthalene	11	
MOL000261	myristicin	29	
MOL00269	elemicin	22	
MOL002504	nerolidol	2	
MOL000875	αcedrol	5	
MOL000879	methyl palmitate	9	
MOL011081	linolenic acid methyl ester	2	
MOL000700	nerol	1	
-----------	-----------	---	
MOL000703	Heptan-2-one	1	
MOL000668	2-n-pentylfuran	2	
MOL001417	Trans-2-octenal	3	
MOL000716	(E)-non-2-enal	6	
MOL001226	Alpha-terpineol	3	
MOL000908	Beta-elemene	24	
MOL000936	Germacrene B	5	
3.2. Network construction

The OMIM database was used as screened out 778 targets of inflammation-related. The anti-inflammatory interactive network was constructed by Cytoscape 3.6.1. A total of 404 interacting proteins were screened. After visualizing with different colors and shapes, the network relationship between active components and disease targets could be directly seen in figure 2.

![Network Diagram](image_url)

Figure 2. “Component-Target-Disease” Interactive Network for Anti-inflammatory Action of Amydrium sinense. (The yellow square and yellow ellipse have 122, while represented the target for drugs and diseases, also represented the significant target for Amydrium sinense to anti-inflammatory; the red triangle has 59 that represented the predicted active chemical components of Amydrium sinense; the blue ellipse have 51 that represented the direct target of active constituents of Amydrium sinense; and the purple ellipse has 678 that represented the interacting protein connected the components of Amydrium sinense with the disease targets.)

3.3. Topological profile analysis

Combined with Cytoscape 3.6.1 interactive network analysis, the protein targets associated with the active components of the drug were screened, and the topological parameters were calculated for these protein targets. Taking all of the median value (Degree, Betweenness centrality and Closeness centrality) in the network as calculation results, while got the three topological parameters are: 4, 0.007 and 0.181. Based on all the values higher than the median value of nodes were the important target proteins, 38 targets were screened by the topological parameters, the results were shown in Table 2. Through the analysis of STRING database, the relationship between the target proteins is shown in Figure 3. The potential targets play an important role in the anti-inflammatory process in the figure, such as Cellular tumor antigen p53, NF-kappa-B essential modulator, TNF receptor-associated factor 6, Transcription factor p65, Nuclear factor NF-kappa-B p105 subunit, Epidermal growth factor receptor, NF-kappa-B inhibitor alpha.
Table 2. Topological parameters related to the Target of Anti-inflammatory effects of active components of Amydrium sinense.

Uniprot ID	Protein names	Gene names	BetweennessCentrality	Closeness Centrality	Degree
P04637	Cellular tumor antigen p53	TP53	0.37817466	0.29023384	61
Q9Y6K9	NF-kappa-B essential modulator	IKBKG	0.05461217	0.24421296	23
Q9Y4K3	TNF receptor-associated factor 6	TRAF6	0.06017649	0.2296807	22
Q04206	Transcription factor p65	RELA	0.06260179	0.23401109	20
P19838	Nuclear factor NF-kappa-B p105 subunit	NFKB1	0.02141255	0.21385135	20
P00533	Epidermal growth factor receptor	EGFR	0.05797635	0.23169839	19
P25963	NF-kappa-B inhibitor alpha	NFKBIA	0.04080834	0.23734533	18
O15111	Inhibitor of nuclear factor kappa-B kinase subunit alpha	CHUK	0.02395997	0.23418424	18
O14920	Inhibitor of nuclear factor kappa-B kinase subunit beta	IKBKB	0.02354588	0.24525378	15
P05412	Transcription factor AP-1	JUN	0.07648752	0.22351695	14
P31749	RAC-alpha serine/threonine-protein kinase	AKT1	0.03796852	0.23453131	13
Q99558	Mitogen-activated protein kinase kinase 14	MAP3K14	0.02240681	0.22860238	13
P35354	Prostaglandin G/H synthase 2	PTGS2	0.06579843	0.22574983	12
Q16665	Hypoxia-inducible factor 1-alpha	HIF1A	0.03191507	0.18678076	12
P25445	Tumor necrosis factor receptor superfamily member 6	FAS	0.1058043	0.21678082	11
P09874	Poly [ADP-ribose] polymerase 1	PARP1	0.04060065	0.22976407	11
P24385	G1/S-specific cyclin-D1	CCND1	0.04395384	0.24123476	10
Q99759	Mitogen-activated protein kinase kinase 3	MAP3K3	0.03079546	0.22009736	10
P19438	Tumor necrosis factor receptor superfamily member 1A	TNFRSF1A	0.02181191	0.20108005	10
P04150	Glucocorticoid receptor	NR3C1	0.03466849	0.21530612	8
P01375	Tumor necrosis factor	TNF	0.03383376	0.19551544	8
P41182	B-cell lymphoma 6 protein	BCL6	0.03137642	0.2249467	8
Q86WV6	Stimulator of interferon genes protein	TME1M73	0.00988679	0.22017391	8
Q13546	Receptor-interacting serine/threonine-protein kinase 1	RIPK1	0.07265818	0.22591006	7
P23219	Prostaglandin G/H synthase 1	PTGS1	0.02723218	0.2169294	7
P37231	Peroxisome proliferator-activated receptor gamma	PPARG	0.0120563	0.1810123	7
Q13158	FAS-associated death domain protein	FADD	0.01029643	0.18959227	7
P05231	Interleukin-6	IL6	0.0157328	0.18476357	6
Q14790	Caspase-8	CASP8	0.01123555	0.19597523	6
P41279	Mitogen-activated protein kinase kinase 8	MAP3K8	1.63E-05	0.19251825	6
Q13651	Interleukin-10 receptor subunit alpha	IL10RA	0.02818105	0.18519602	5
O00482	Nuclear receptor subfamily 5 group A member 2	NR5A2	0.01426064	0.1993073	5
P06396	Gelsolin	GSN	0.01260823	0.20210728	5
Q03164	Histone-lysine N-methyltransferase 2A	KMT2A	0.0103907	0.20571986	5
Q13191	E3 ubiquitin-protein ligase CBL-B	CBLB	0.0094368	0.22048067	5
Q9C000	NACHT, LRR and PYD domains-containing protein 1	NLRP1	0.0464135	0.19664492	4
P10145	Interleukin-8	CXCL8	0.025024	0.1809605	4
Q16236	Nuclear factor erythroid 2-related factor 2	NFE2L2	0.01418379	0.2246274	4
3.4. **Biological function analysis of GO**

![Figure 4. GO of biological function Enrichment Analysis of Anti-inflammatory effect of Amydrium sinense distribution.](image-url)

Figure 3. Protein interaction Diagram of Anti-inflammatory effects of active components of Amydrium sinense.
Mapping 38 potential targets into the David database to enrich biological functions, and systematically analyze their biological processes. 212 biological processes were enriched, of which 33 biologic processes by threshold (P ≤ 0.00001) were shown in Table. Fig. 4. The results were showed that the main biological processes refer to targets include positive regulation of transcription from RNA polymerase II promoter, inflammatory response, positive regulation of I-kappaB kinase/NF-kappaB signaling, I-kappaB kinase/NF-kappaB signaling, cellular response to mechanical stimulus, etc.

Table 3. GO of biological function Enrichment Analysis of Anti-inflammatory effect of Amydrium sinense.

Category	Term	Count	Count%	P-Value
GOTERM_BP_DIRECT	positive regulation of transcription from RNA polymerase II promoter	24	63.2	9.00E-20
GOTERM_BP_DIRECT	inflammatory response	16	42.1	8.80E-16
GOTERM_BP_DIRECT	positive regulation of I-kappaB kinase/NF-kappaB signaling	12	31.6	3.10E-14
GOTERM_BP_DIRECT	I-kappaB kinase/NF-kappaB signaling	9	23.7	5.80E-13
GOTERM_BP_DIRECT	cellular response to mechanical stimulus	9	23.7	2.40E-12
GOTERM_BP_DIRECT	positive regulation of NF-kappaB transcription factor activity	10	26.3	9.60E-12
GOTERM_BP_DIRECT	regulation of tumor necrosis factor-mediated signaling pathway	7	18.4	4.30E-11
GOTERM_BP_DIRECT	death-inducing signaling complex assembly	5	13.2	1.40E-09
GOTERM_BP_DIRECT	apoptotic process	13	34.2	1.70E-09
GOTERM_BP_DIRECT	positive regulation of smooth muscle cell proliferation	7	18.4	3.40E-09
GOTERM_BP_DIRECT	TRIF-dependent toll-like receptor signaling pathway	6	15.8	3.70E-09
GOTERM_BP_DIRECT	positive regulation of apoptotic process	10	26.3	0.00000013
GOTERM_BP_DIRECT	activation of cysteine-type endopeptidase activity involved in apoptotic process	7	18.4	0.00000025
GOTERM_BP_DIRECT	stimulatory C-type lectin receptor signaling pathway	7	18.4	0.00000011
GOTERM_BP_DIRECT	Fc-epsilon receptor signaling pathway	8	21.1	0.00000011
GOTERM_BP_DIRECT	positive regulation of transcription, DNA-templated	11	28.9	0.00000011
GOTERM_BP_DIRECT	stress-activated MAPK cascade	5	13.2	0.00000012
GOTERM_BP_DIRECT	cellular response to tumor necrosis factor	7	18.4	0.00000014
GOTERM_BP_DIRECT	regulation of cell proliferation	8	21.1	0.00000014
GOTERM_BP_DIRECT	necrototic signaling pathway	4	10.5	0.0000002
GOTERM_BP_DIRECT	nucleotide-binding oligomerization domain containing signaling pathway	5	13.2	0.00000024
GOTERM_BP_DIRECT	negative regulation of apoptotic process	10	26.3	0.00000046
GOTERM_BP_DIRECT	T cell receptor signaling pathway	7	18.4	0.00000079
GOTERM_BP_DIRECT	response to lipopolysaccharide	7	18.4	0.00000014
GOTERM_BP_DIRECT	extrinsic apoptotic signaling pathway	5	13.2	0.00000021
GOTERM_BP_DIRECT	positive regulation of nitric oxide biosynthetic process	5	13.2	0.00000023
GOTERM_BP_DIRECT	activation of cysteine-type endopeptidase activity involved in apoptotic signaling pathway	4	10.5	0.00000028
GOTERM_BP_DIRECT	cellular response to lipopolysaccharide	6	15.8	0.00000046
GOTERM_BP_DIRECT	response to muscle stretch	4	10.5	0.00000054
GOTERM_BP_DIRECT	cellular response to DNA damage stimulus	7	18.4	0.00000057
GOTERM_BP_DIRECT	tumor necrosis factor-mediated signaling pathway	6	15.8	0.00000057
GOTERM_BP_DIRECT	regulation of extrinsic apoptotic signaling pathway via death domain receptors	4	10.5	0.00000066
GOTERM_BP_DIRECT	cellular response to organic cyclic compound	5	13.2	0.00000083
3.5. Enrichment Analysis of signalling pathway

38 potential targets were mapped to the DAVID database for KEGG pathway analysis. 79 biological processes were enriched. Among these, 42 pathways were screened ($P \leq 0.00001$), the results were shown in Table 4 and Fig 5. These pathways are closely related to the mechanism of Amydrium sinense, such as TNF signaling pathway, Apoptosis, Chagas disease (American trypanosomiasis), Toll-like receptor signaling pathway, Hepatitis B, etc.

In the KEGG signaling pathway database, using KEGG mapper function to label 38 target protein on the signal pathway. The red marks respresented the anti-inflammatory targets, the green marks respresented pathway targets, the results are shown in figure 6. In the figure, we can found that there are several pathways lead to the active of NF-kappa B. The canonical pathway is induced by tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) or byproducts of bacterial and viral infections, the non-canonical pathway is triggered by particular members of the TNFR superfamily.

Figure 5. KEGG Pathway enrichment Analysis of Anti-inflammatory effect of Amydrium sinense distribution.
Table 4. KEGG Pathway enrichment Analysis of Anti-inflammatory effect of Amydrium sinense.

Category	Term	Count	Count%	P-Value
KEGG_PATHWAY	TNF signaling pathway	18	47.4	5.9E-22
KEGG_PATHWAY	Apoptosis	15	39.5	2.5E-20
KEGG_PATHWAY	Chagas disease (American trypanosomiasis)	16	42.1	1.2E-18
KEGG_PATHWAY	Toll-like receptor signaling pathway	16	42.1	1.6E-18
KEGG_PATHWAY	Hepatitis B	16	42.1	2.1E-16
KEGG_PATHWAY	Pathways in cancer	21	55.3	5.3E-16
KEGG_PATHWAY	RIG-I-like receptor signaling pathway	13	34.2	6.9E-16
KEGG_PATHWAY	NF-kappa B signaling pathway	13	34.2	1.1E-14
KEGG_PATHWAY	Hepatitis C	14	36.8	7E-14
KEGG_PATHWAY	Herpes simplex infection	15	39.5	1.9E-13
KEGG_PATHWAY	MAPK signaling pathway	16	42.1	9.2E-13
KEGG_PATHWAY	Osteoclast differentiation	13	34.2	1.7E-12
KEGG_PATHWAY	Toxoplasmosis	12	28.9	6.4E-12
KEGG_PATHWAY	Small cell lung cancer	11	28.9	1.3E-11
KEGG_PATHWAY	HTLV-I infection	15	39.5	1.8E-11
KEGG_PATHWAY	Epstein-Barr virus infection	12	31.6	2E-11
KEGG_PATHWAY	Epithelial cell signaling in Helicobacter pylori infection	10	26.3	4.5E-11
KEGG_PATHWAY	T cell receptor signaling pathway	11	28.9	6.7E-11
KEGG_PATHWAY	Chronic myeloid leukemia	10	26.3	8.9E-11
KEGG_PATHWAY	Prostate cancer	10	26.3	5.6E-10
KEGG_PATHWAY	Cytosolic DNA-sensing pathway	9	23.7	1.1E-09
KEGG_PATHWAY	Pancreatic cancer	9	23.7	1.3E-09
KEGG_PATHWAY	Adipocytokine signaling pathway	9	23.7	2.3E-09
KEGG_PATHWAY	Non-alcoholic fatty liver disease (NAFLD)	11	28.9	0.0000000004
KEGG_PATHWAY	Influenza A	11	28.9	0.000000016
KEGG_PATHWAY	Measles	10	26.3	0.00000023
KEGG_PATHWAY	B cell receptor signaling pathway	8	21.1	0.00000061
KEGG_PATHWAY	Neurotrophin signaling pathway	9	23.7	0.0000017
KEGG_PATHWAY	Tuberculosis	10	26.3	0.0000027
KEGG_PATHWAY	Legionellosis	7	18.4	0.0000034
KEGG_PATHWAY	Acute myeloid leukemia	7	18.4	0.0000042
KEGG_PATHWAY	Shigellosis	7	18.4	0.0000095
KEGG_PATHWAY	Insulin resistance	8	21.1	0.0000014
KEGG_PATHWAY	Leishmaniasis	7	18.4	0.0000018
KEGG_PATHWAY	Pertussis	7	18.4	0.0000024
KEGG_PATHWAY	Viral carcinogenesis	9	23.7	0.00001
KEGG_PATHWAY	Transcriptional misregulation in cancer	8	21.1	0.000024
KEGG_PATHWAY	Chemokine signaling pathway	8	21.1	0.000049
KEGG_PATHWAY	PI3K-Akt signaling pathway	10	26.3	0.000064
KEGG_PATHWAY	FoxO signaling pathway	7	18.4	0.000069
Figure 6. The mark map of active components targets of Amydrium sinense on NF-kappa B signal pathway.

4. Conclusion
National medicine is similar to traditional Chinese medicine in a narrow sense, it has the characteristics of complex chemical composition, variety of clinical effects, and multi-component, multi-target and multi-channel coordination. The network pharmacology can provide a systematic method for ethnic medicine to discover the leading compounds, identify the targets, indications and analyze the relationship between the proteins. So that understand the mechanism of ethnic medicine more dynamically and holistically, when it used in disease prevention and control [20-21]. As a unique national medicine in China, Amydrium sinense, which explores the mechanism through the method of network pharmacology, it is a great significance for the development and research of national medicine [22]. It was firstly published in the “Outline of Xinhua materia medica”. It has a long history of clinical application and rich resources in China. The drug was widely used to treat rheumatism in ethnic areas of China. However, because the chemical compositions is numerous and complex, there are just few reports about its anti-inflammation. According to the reports, the treatment of rheumatoid arthritis is associated with regulate immune inflammation, and the rheumatoid arthritis is a kind of inflammatory disease. It's the main clinical manifestations are polyarthritis, symmetry and aggressive arthritis [23]. An important link in the pathogenesis of rheumatoid arthritis is due to the activation of T and B lymphocytes, a lot of inflammatory factors and autoantibodies are produced. It causes immune damage to the joints and organs. Inflammation is a preventive response by the occurrence of injury, stimulation or infection by organs and tissues. The specific performance is local red, swelling, heat, pain, functional disorders and often accompanied by pain [24]. It is also closely related to the occurrence and development of a variety of diseases, such as diabetes, heart disease, hypertension and other diseases [25-28]. The anti-inflammatory effect is also associated with the components of volatile
oil [29]. Many studies suggest that the mechanism of anti-inflammatory action may be correlated to the inhibition of early inflammatory telangiectasis and the reduction of capillary permeability [30-31] and the regulation of NF-kappa B signaling pathway [32]. Therefore, its pharmacological effects are mainly a combination of various pharmacological actions, it mainly contains inflammatory factors, inhibition and killing of pathogens, and nerve conduction to inhibit pain, etc.

In this study, the network pharmacology was used to search all the volatile oil components of Amydrium sinense by queried the literature. Selected 27 active chemical components and 404 active compounds corresponding to target points by the criteria with ADME parameters (OB ≥ 30% and DL ≥0.18) and pharmacodynamics activity. Therefore, the “component target disease” interaction network map was constructed. Through network topology parameter analysis, GO enrichment and KEGG pathway annotation analysis, 38 potential targets were screened, and 79 signaling pathways and 212 biological processes were involved in the anti-inflammatory effects of Amydrium sinense. The predicted results has showed that the action mechanism of Amydrium sinense volatile oil, it has a remarkable therapeutic effect on the treatment of inflammation. It is the anti-inflammatory active target distribution in different pathways, multi-component, multi-target coordination.

According to the anti-inflammatory direct-acting of target with topological parameter table, pathway and biological process; it should be emphasized that the anti-inflammatory effect is mostly closely related to the relevant regulated of NF-kB, TNF, Toll-like receptor signaling pathway, Hepatitis B and Inflammatory response, et al. NF-kappa B (NF-KB) is the common name of the recording factor family. It plays a dimer role and regulates the genes of immunity, inflammation and cell survival. It plays an important role in the inflammatory gene expression, which is induced in cellular signaling networks and the occurrence, development, outcome of inflammation [33]. In normal organism, the transcription activity of NF-KB is inhibited by I-kB. When the organism was subjected to strong stimulation, such as injury, infection, shock or poisoning, I-kB is degraded and loses its inhibition effect, and NF-KB was activated in vivo, it enhance NF-KB mediated inflammatory gene mRNA expression. Activation of NF KB signaling pathway by a large number of inflammatory factors. Such repeated circulation leads to tissue damage out of control. Therefore, NF KB is the key to regulate the expression of inflammatory factors [34-35]. In the NF-KB signal pathway diagram (Figure 4), it can be found that the main pathway leading to NF-KB activation is induced by tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), byproducts of bacterial and viral infections. Recent studies have found that [36] inflammatory factors can promote the increase of cyclooxygenase, which is TNFα and IL-1 produced in vivo, and it leads to a series of inflammatory reactions. In addition, COX-2 inhibitors have significant pain relief, it is caused by the relief of fever, headache and rheumatoid arthritis [37]. Modern studies have shown that the levels of NF-kB P65, TNFα, IL-1β and phosphorylated IκB-α in lung tissue of rats with acute lung injury were reduced, and the over-activation of nuclear factor kB/iκB signaling pathway was down-regulated, it was one of the volatile oil main mechanisms of anti-inflammatory effects [38]. This indicates that it may reduce the rheumatoid joint inflammation by down-regulating the NF-kB signaling pathway in inflammatory cells. Moreover, many studies have reported that [39] toll-like receptors play an important role in the initiation of inflammatory response and innate immunity, Hepatitis B indirectly regulates the inflammatory response of the body by inducing the stimulation of auxiliary T cells [40].

In this paper, based on the network pharmacology, the active components, target and mechanism of the volatile oil from Amydrium sinense were screened and analyzed. This study preliminarily revealed the role of the volatile oil from Amydrium sinense in the treatment of inflammation. These results indicate that the anti-inflammatory effect of Amydrium sinense has the characteristics of multi-component, multi-target and multi-channel. It provides theoretical basis for detection of the anti-inflammatory mechanism of Amydrium sinense, and provides a theoretical basis for its subsequent experiments.
Acknowledgments
This work was financially supported by the Guizhou Science and Technology Foundation (Qiankehe J [2011] No. 2306), the Guizhou Province Science and Technology Plan Project (Qiankehe Chinese Medicine Word [2011] LKZ7047), Open Laboratory of Key Laboratory of Miao Medicine in Guizhou, China [Qian Miao medicine K (2017) 026], and the Guizhou domestic first-class construction project [(Chinese Materia Medica) (GNYL [2017] 008)].

References
[1] Institute of Botany, Chinese Academy of Sciences. Flora of China [M]. Science Press, Beijing, 1979,13, pp. 23 - 24.
[2] The Editorial Committee of Chinese Materia Medica, State Administration of Traditional Chinese Medicine. Chinese Materia Medica [M]. Shanghai Science and Technology Press, Shanghai, 1999, 23, pp. 486.
[3] Editorial Committee of flora of Guizhou. Flora of Guizhou [M]. Sichuan Ethnic Publishing House, Chengdu, 1987, 6.
[4] L. M. Wang. Study on the mechanism of minor bupleurum decoction Decoction in the treatment of rheumatoid arthritis based on the theory of “Shaoyang governs the bone” [D]. Liaoning University of traditional Chinese medicine, 2018.
[5] J. C. Guo, J. Liu, J. Wang, et al. Study on the effect of different preparations of Tripterygium wilfordii on anti oxidant immune inflammation index of patients with rheumatoid arthritis based on correlation random model [J]. Journal of Beijing University of traditional Chinese medicine, 2019, (9), pp. 778 - 786.
[6] N. Zeng, J. Wang, H. L. Xia, et al. Research progress of pharmacological action of aroma resuscitation drugs for resuscitation [J]. pharmacology and clinic of traditional Chinese medicine, 2008, 24 (1), pp. 76 - 79.
[7] D. H. Xie, X. B. JIA, B. C.CAI, et al.Experimental study on antiinflammatory and analgesic effects of volatileoil of Bupleurum chinense and B. scorzonerifolium [J]. Pharm Clin Res, 2007, (2), pp. 108 - 110.
[8] X. L. Wu, H. M. Wu, X. P. Wang, et al. Study on the microscopic identification of Amydrium sinense and the adulterants of Amydrium hainanense [J]. Shizhen Guoyi Guoyao, 2014, 25 (10), pp. 2416 - 2417.
[9] X. L. Wu, H. M. Wu, L. Chen, et al. Study on TLC and UV-vis identification of Amydrium sinense and the adulterants of Amydrium hainanense [J]. Shizhen Guoyi Guoyao, 2015, 26 (02), pp. 377 - 378.
[10] X. P. Wang, Y. C. Sun, H. M. Wu, et al. Chemical composition analysis of the volatile oil of Amydrium sinense [J]. Chinese patent medicine, 2009, 31 (08), pp. 1257 - 1259.
[11] L. J. Wu, X. P. Wang, X. L. Wu, et al. Microscopic identification of Amydrium sinense [J]. Journal of Guiyang College of traditional Chinese medicine, 2013, (1), pp. 252 - 253.
[12] J. Jie, S. Gao, L. Li, Y. L. Xu, et al. Research progress and application strategy on network pharmacology in Chinese materia medica [J]. Chinese herbal medicine, 2019, 50 (10), pp. 2257 - 2265.
[13] A. L. Hopkins. Network pharmacology [J]. Nat Blotechnol, 2007, 25 (10), pp. 1110 - 111.
[14] R. Kevin, Ulrich, F. Mark, et al. Inhibition of the entomopathogenic fungusMetarhizium anisopliaesensu lato in vitro by the bed bug defensive secretions (E)-2-hexenal and (E)-2-octenal [J]. Biocontrol, 60(4), pp. 517-526.
[15] Y. R. Miao, P. Zhang. A Review of Medical Application of Carvacrol [J]. Journal of Yichun University, 2019,41 (3), pp. 17 - 20.
[16] C. Ma, S. H. Xian, Y. Xiang, et al. Research progress on pharmacological activities of Myristica fragrans Houtt [J]. Modern Chinese medicine, 2017,19 (8), pp. 1200 - 1206.
[17] J. Shen. Effect and mechanism of cedrol in adjuvant-induced arthritis in rat [D]. Zhejiang University, 2013.
[18] J. H. Shi. Experimental pharmacological study on the volatile oil of Curcuma wenzedoary Study on the antitumor effect of β-elemene [J]. Bulletin of traditional Chinese medicine, 1981, (6), pp. 32 - 33.

[19] I. M. Torequl. Antipyretic effect of phytol, possibly via 5KIR-dependent COX-2 inhibition pathway [J]. Inflammopharmacology, 2019, 27, (4), pp. 857 – 862.

[20] M. R. Jia, Y. Zhang, Z. Y. Yan, et al. Species and Use of Current Chinese Minority Medicine [J]. World science and technology modernization of traditional Chinese medicine, 2015, 17 (7), pp. 1546 - 1550.

[21] S. Li, B. Zhang. Traditional Chinese medicine network pharcology; theory, methodology and application [J]. Chin J Nat Met, 2013, 11 (2), pp. 110.

[22] M. W. Huang, H. J. Yang, X. C. Zhou, et al. Advances on network pharmacology in ethnomedicine research [J]. Chinese Journal of traditional Chinese medicine, 2019, 44 (15), pp. 3187 - 3194.

[23] J. C. Guo, J. Liu, L. Xin, et al. Effect of Chinese Medicine and External Treatment on Immune Inflammation Oxidative Stress in Patients with Damp-Heat Stagnation Type RA Based on Association Rule Mining [J]. Liaoning Journal of traditional Chinese medicine, 2017, 44 (7), pp. 1364 - 1367.

[24] Y. Q. Du, Z. K. Duan, S. H. Dong, et al. Study on the anti-inflammatory mechanism of honeysuckle active ingredients based on network pharmacology [J]. Chinese Journal of pharmaceutical chemistry, 2019, 29 (2), pp. 96 - 102.

[25] A. L. Sun, H. T. Cong, L. Y. Chen, et al. Advances in research on the mechanism of inflammatory response in diabetes and cardiovascular complications [J]. Chinese modern doctor, 2018, 56 (28), pp. 159 - 164.

[26] Y. D. Chen. The correlation research of NLRP3 inflammatory corpuscle and insulin resistance in elderly diabetic patients [J]. Basic medical forum, 2019, 23 (5), pp. 606 - 607.

[27] P. Q. Shi. Correlative Studies on Circadian Rhythm of Blood Pressure, Inflammatory Factors and Vascular Endothelial Function in Hypertensive Patients [J]. Journal of Hubei University of Nationalities (Medical Edition), 2018, 35 (2), pp. 41 - 43.

[28] S. Krishnamoorthi, K. V. Honn. Inflammation and disease progression [J]. Cancer Metastasis Rev, 2006, 25 (3), pp. 481 - 491.

[29] X. Yang , Y. H. Li, L. L. Li, et al. Anti-inflammatory effects of volatile oils of Desmodium styracifolium via regulation of TRP channels [J]. Chinese herbal medicine, 2019, 50 (1), pp. 134 - 141.

[30] D. Y. Shen, Y. S. Chen. Study on Anti-Inflammatory Effects of Volatile Oil from Alpinia Katsumadai Hayata [J]. China pharmaceutical, 2012, 21 (17), pp. 20 - 21.

[31] J. F. Zhou, F. J. Qin, J. Feng , et al. Anti-inflammatory and Analgesic Activities of Essential Oil from the Roots of Zanthoxylum nitidum DC [J]. Shi Zhen Guo Yi Guo Yao, 2012, 23 (1), pp. 19 -20.

[32] Y. Gao, W. Ji, D. Xiao, et al. Mechanism of anti-inflammatory effect for Astragali Complanati Semen based on network pharmacology[J / OL]. Journal of Shandong University (Medical Edition), 2019, pp. 1 - 16.

[33] Y. Feng. A study on NF-kB inflammatory signaling pathways targeted block with double-stranded Oligodeoxynucleotides-decoy in alveolar macrophages [D]. Fourth Military Medical University, 2014.

[34] T. L. Si. Anti inflammatory effects of DHA and quercetin and their role in NFκB and MAPK signaling pathway [D]. School of food science and technology, China Agricultural University, 2015.

[35] Y. Q. Han, M. G. Zhou, Z. Y. Wang, et al. Study on anti-inflammatory components in Rosae Rugosae Flos based on bioactivity-integrated UPLC-Q/TOF method [J]. Chinese herbal medicine, 2014, 45 (19), pp. 2797 - 2802.

[36] Y. Tan, X. J. Yang, X. N. Han, et al. Investigation of Analgesic Mechanisms of Bupleuri Radix
with Network Pharmacology [J]. Chinese Journal of pharmacy, 2019, 54 (2), pp. 98 - 104.

[37] X. C. Pan, X. Z. Zhang. Preparation and quality control of nimesulide suppository [J]. Chinese Journal of pharmacy, 2004, (3), pp. 70.

[38] F. Xu, L. Yang, X. Huang, et al. Lupenone is a good anti-inflammatory compound based on the network pharmacology [J]. Mol Divers, 2019.

[39] X. M. Li. The function and mechanism of Nur77 regulating Toll Like receptor signaling in inflammatory disease [D]. Suzhou University, 2018.

[40] D. W. Wang. Effect of Entecavir Combined with Compound Huanglu Oral Liquid on Chronic Hepatitis B and Its Influence on Immune Cells and Inflammatory Factors [J]. Food and drug, 2019, 21 (4), pp. 317 - 322.