Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Evaluation of three immunoassays for the rapid detection of SARS-CoV-2 antigens

Ilaria Baccani, Fabio Morecchiato, Chiara Chilleri, Chiara Cervini, Emanuele Gori, Daniela Matarrese, Andrea Bassetti, Manuela Bonizzoli, Jessica Mencarini, Alberto Antonelli, Gian Maria Rossolini

Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
Azienda USL Toscana Centro, Prato Hospital, Prato, Italy
Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, Bagno a Ripoli, Italy
Intensive Care Unit and Regional ECMO Referral Center, Neuromusculoskeletal and Sensory Organs Department, Careggi University Hospital of Careggi, Florence, Italy
Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy

ABSTRACT

Three assays for SARS-CoV-2 antigen detection in nasopharyngeal swabs (Lumipulse® G SARS-CoV-2 Ag [LPG], STANDARD™ F COVID-19 Ag FIA [STF] and AFIAS COVID-19 Ag [AFC]) were evaluated. Compared to RT-PCR, LPG, AFC and STF showed a variable sensitivity (87.9%, 37.5%, and 35.7%, respectively) and an overall high specificity (> 95%).

© 2021 Elsevier Inc. All rights reserved.

Keywords:
SARS-CoV-2 antigen
chemiluminescent assay
lateral flow immunofluorescence assay
COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide. Rapid and accurate diagnosis of infected patients is essential for their management and for control of viral spread (Karimi et al., 2020; Li et al., 2020).

To-date, the reference method for diagnosing SARS-CoV-2 infection is based on detection of viral RNA in clinical specimens by nucleic acid amplification technologies, and numerous commercial kits are now available (Van Kasteren, 2020). Those tests, however, require expensive equipment, may take up to several hours, and are relatively expensive.

In this scenario, rapid diagnostic assays for the detection of SARS-CoV-2 antigens in nasopharyngeal (NP) swabs or saliva have been developed as an interesting alternative to current molecular techniques (Liotti et al., 2020; Porte et al., 2020). Among the assays for SARS-CoV-2 antigen detection, some are based on visual reading of lateral flow immunochromatography strips by the operator, while others require instrumental reading. The latter approach facilitates interpretation of results by returning a numerical value rather than a subjective interpretation, although these may require more technical expertise and steps.

In this study we evaluated the performance of three SARS-CoV-2 antigen assays based on instrumental reading, including a chemiluminescent enzyme immunoassay (CLEIA), namely Lumipulse® G SARS-CoV-2 Ag (LPG) (Fujirebio, Tokio, Japan) and two lateral flow fluorescence immunoassays (LIA), namely STANDARD™ F COVID-19 Ag FIA (STF) (SD Biosensor; Suwon-si, South Korea), and AFIAS COVID-19 Ag (AFC) (Menarini; Florence, Italy). All three assays are validated for in vitro diagnostic use. The LPG assay requires a machine (Lumipulse 1200® G system) in which the nasopharyngeal swab eluate, in UTM medium, is directly loaded in random access, after centrifugation at 5000 g for 5 minutes. Results are quantitatively reported in pg/ml in 30 minutes, and the machine can process up to 120 specimens per hour. According to the manufacturer, positivity is considered for an antigen concentration ≥ 1.34 pg/ml, but a grey zone is considered for an antigen concentration between 1 and 10 pg/ml. The STF and AFC assays consist of lateral flow cartridges where the specimens are manually loaded. Results are read after 20 or 12...
Performance of Lumipulse® G SARS-CoV-2 Ag, AFIAS COVID 19 Ag and STANDARD™ F COVID-19 Ag FIA on UTM swabs.

Total sample	Sensitivity (%)	95% CI-Sensitivity	Specificity (%)	95% CI-Specificity	PPV (%)	95% CI-PPV	NPV (%)	95% CI-NPV	
Lumipulse® G SARS-CoV-2 Ag	201	29/33 (87.9)	73.7-95.8	161/168 (95.8)	92-98.1	80.5	65.6-90.9	97	93.7-98.8
AFIAS COVID 19 Ag*	81	9/24 (37.5)	20.4-57.4	57/57 (100)	95.7-100	100	76.2-100	79.2	68.8-87.3
STANDARD™ F COVID-19 Ag FIA	93	10/28 (35.7)	20.1-54.2	65/65 (100)	96.2-100	100	78.3-100	78.3	68.8-86.1

*42 invalid samples were excluded from the analysis.

minutes respectively, with the help of a small portable fluorescence reader. These assays can be run in the diagnostic laboratory but are also amenable to point-of-care testing. For analysis with AFC and STF, the swab eluate in UTM medium (450 µL and 350 µL respectively) was diluted in the extraction buffer provided by the manufacturer and processed with the AFIAS-6 (this procedure is not yet CE-IVD validated) or with the STANDARD F-2400 Analyzer instrument respectively. With both tests the result was interpreted as positive when the cut-off Index (COI) was ≥ 1 and reported qualitatively as detected or not detected.

NP swabs, collected in UTM medium (3 ml, COPAN; Brescia, Italy) were anonymized residual routine diagnostic samples from inpatients in three Tuscan hospitals (Careggi University Hospital and Santa Maria Annunziata Hospital in Florence, and San Giuseppe Hospital in Prato, Italy). All samples were also tested with the Allplex™ SARS-CoV-2 Assay (Seegene; Seoul, Korea). Samples were considered negative when the Ct values were ≥ 40 for all targets.

Percentages with their 95% confidence intervals (CI) were calculated using the “Jeffreys” method (http://www.ausvet.com.au).

A total of 201 NP swabs in UTM were processed with LPG, including 33 from SARS-CoV-2 positive and 168 from SARS-CoV-2 negative patients, as confirmed by molecular testing carried out on the same sample. Results showed a sensitivity of 87.9% (29/33; CI 73.7-95.8) and a specificity of 95.8% (161/168; CI 92-98.1).

A subset of 93 of these NP (including 28 from SARS-CoV-2 positive and 65 from SARS-CoV-2 negative patients) were also analyzed with the AFC and STF systems. With AFC, 12 samples tested invalid and the final number of analyzed samples was therefore 81 (including 24 and 57 SARS-CoV-2 positive and negative, respectively). The STF system yielded no invalid results. The overall sensitivity rates of AFC and STF assays were 37.5% (9/24; CI 20.4-57.4) and 35.7% (10/28; CI 20.1-54.2), respectively, with a 100% specificity in both cases (Table 1).

Positive predictive values (PPV) were 80.5% (CI 65.6-90.9) for LPG and 100% (CI 76.2-100; 78.3-100) for both AFC and STF, while negative predictive values (NPV) were 97% (CI 93.7-98.8), 79.2% (CI 68.8-87.3) and 78.3% (CI 68.8-86.1), for LPG, AFC and STF, respectively (Table 1).

Considering the correlation of antigen detection with estimated viral load measured by Ct positivity for the N gene (used as reference since no significant differences were detected with the Ct values for other genes), the sensitivity was 100% with all systems for samples showing a Ct value ≤ 25. AFC and STF called positive only 4 of 9 and 5 of 9 samples with a Ct value > 25 and ≤ 30, respectively, and none of the samples with a Ct value > 30. On the contrary, LPG called positive almost all samples with a Ct value ≤ 35 (25/27), and 3 of 5 samples with a Ct value > 35 (Fig. 1; Supplementary Fig. 1).

The spread of COVID-19 pandemic is seriously threatening the public health system, and control measures are urgently needed. In this scenario, even though the “gold standard” for the diagnosis of SARS-CoV-2 infection remains viral RNA detection by molecular assays, antigen detection tests could be a valid alternative due to their rapidity, reduced hands-on time, no need for advanced expertise on molecular biology and, with some systems, the possibility of use also as a point of care test (Candel, 2020).

AFC and STF showed an equally high sensitivity (100%) for samples with a high viral load (Ct ≤ 25), but a decreased sensitivity for samples with lower viral loads, as previously reported (Liotti et al., 2020). On the other hand, LPG showed an overall high sensitivity rate (87.8%), being able to detect also several samples with low viral load, in accordance to previous studies (Aoki et al., 2020; Hirotsu et al., 2020). As a trade-off, specificity of LPG was 95.8%. However, most false positive samples showed an antigen concentration between 1.34 and 10 pg/ml. Moreover, according to previous studies, samples positivity between 1 and 100 pg/ml for UTM swabs might be reconfirmed by RT-PCR in order to increase specificity avoiding false positive results (Ogawa T et al., 2020). However, this could lead to a considerable reduction in the sensitivity rate, further studies will be necessary to better set up the positivity cutoff.

In conclusion, AFC and STF are designed to work with simple rapid bench tools and may be easily applied even for point of-care testing, for instance at airports, prisons and schools (WHO, 2020). On the contrary LPG, which showed a higher sensitivity rate, could be a valid implementation in the laboratory diagnostic routine to reduce costs and turnaround time.

A limitation of this study is represented by the relatively low number of positive patients tested. Further testing with a higher number of samples will allow to expand current knowledge on the potential of these assays.

Fig. 1. Number of positive isolates detected by Lumipulse® G SARS-CoV-2 Ag, AFIAS COVID 19 Ag and STANDARD™ F COVID-19 Ag FIA correlated to the N gene Ct value by RT-PCR. Samples with Ct ≥ 40 have been considered as negative.
Author statements

Conceptualization IB, FM, CCh, CCe, AA, GMR
Methodology IB, FM, CCh, CCe
Validation IB, FM, CCh, CCe
Formal analysis IB, FM, CCh, CCe
Investigation IB, FM, CCh, CCe
Resources EG, DM, AB, MB, JM, GMR
Data Curation IB, FM, CCh, CCe
Writing IB, FM, CCh, CCe
Writing - Review & Editing IB, FM, CCh, CCe, AA, GMR, EG, DM, AB, MB, JM
Visualization IB, FM, CCh, CCe, AA
Supervision GMR
Funding acquisition GMR

Acknowledgments

Part of the reagents were kindly provided by Fujirebio (Tokio, Japan), Menarini (Florence, Italy) and STANDARD™ F COVID-19 Ag FIA (STF) (Suwon-si, South Korea).

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi: https://doi.org/10.1016/j.diagmicrobio.2021.115434.

References

Aoki K, Nagasawa T, Ishii Y, Yagi S, Okuma S, Kashiwagi K, et al. Clinical validation of quantitative SARS-CoV-2 antigen assays to estimate SARS-CoV-2 viral loads in nasopharyngeal swabs. J Infect Chemother 2020. doi: 10.1016/j.jiac.2020.11.021.
Candel FJ, Barreiro P, San Román J, Abanades JC, Barba R, Barberán J, et al. Recommendations for use of antigenic tests in the diagnosis of acute SARS-CoV-2 infection in the second pandemic wave: attitude in different clinical settings. Rev Española Quimioter 2020. doi: 10.37201/reg12020 Doi:.
Hirotsu Y, Maehima M, Shibusawa M, Nagakubo Y, Hosaka K, Amemiya K, et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. Int J Infect Dis 2020;99:397–402. doi: 10.1016/j.ijid.2020.08.029.
Karimi S, Arabi A, Shahraiki T, Safi S. Detection of severe acute respiratory syndrome Coronavirus-2 in the tears of patients with Coronavirus disease 2019. Eye 2020;34:1220–3. doi: 10.1038/s41433-020-0965-2.
Li C, Zhao C, Bao J, Tang B, Wang Y, Gu B. Laboratory diagnosis of coronavirus disease-2019 (COVID-19). Clin Chim Acta 2020;510:35–46. doi: 10.1016/j.cca.2020.06.045.
Liotti FM, Menchinielli G, Lalle E, Palucci I, Marchetti S, Colavita F, et al. Performance of a novel diagnostic assay for rapid SARS-CoV-2 antigen detection in nasopharynx samples. Clin Microbiol Infect 2020. doi: 10.1016/j.cmi.2020.09.030.
Ogawa T, Fukumori T, Nishihara Y, Sekine T, Okuda N, Nishimura T, et al. Another false-positive problem for a SARS-CoV-2 antigen test in Japan. J Clin Virol 2020;131:104612. doi: 10.1016/j.jcv.2020.104612.
Porto L, Legarraga P, Vollrath V, Aguilar X, Munita JM, Araos R, et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. Int J Infect Dis 2020;99:328–33. doi: 10.1016/j.ijid.2020.05.098.
Van Kasteren PB, Van der Veer B, Van den Brink S, Wijsman L, de Jonge J, Van den Brandt A, et al. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J Clin Virol 2020;128:104412. doi: 10.1016/j.jcv.2020.104412.
World Health Organization. Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays: interim guidance, 11 September 2020. : World Health Organization; 2020. Available at: https://apps.who.int/iris/handle/10665/334253.