Site preparation, initial growth and soil erosion in *Eucalyptus grandis* plantations on steep terrain

Preparo do solo, crescimento inicial e erosão do solo em plantios de *Eucalyptus grandis* em região montanhosa

Marcos Cesar Passos Wichert¹, Clayton Alcarde Alvare², José Carlos Arthur Junior² and José Luiz Stape³

Resumo

No Brasil, e especialmente na região do Vale do Paraíba, estado de São Paulo, a silvicultura com o cultivo do eucalipto está se expandindo para as áreas decolvidas, ocupadas com pastagens degradadas, devido ao limitado valor agropecuário destas topografias e sua maior aptidão florestal. O presente trabalho teve como objetivo avaliar o efeito de diferentes métodos de preparo de solo sobre as perdas de solo e água, por erosão, e sobre o desenvolvimento inicial de plantio clonal, de *Eucalyptus grandis*, em áreas decolvidas. O ensaio foi instalado num delineamento fatorial 3x2, com três intensidades de preparo (coveamento manual, coveamento mecânico e subsolagem a favor do declive) e dois sistemas de manejo de resíduos de colheita (com e sem resíduos); com 4 repetições, num Argissolo Vermelho-Amarelo Distrófico (textura média/argilosa), com declividade média de 20.3%. A perda de solo e o crescimento da floresta foram avaliados durante um ano, entre março de 2004 e fevereiro de 2005. Em dois tratamentos, o com coveamento manual e manutenção dos resíduos (MAC) e na subsolagem sem resíduos (SUS), a erosão foi medida diretamente através do método da parcela padrão, instaladas em todas as repetições, e com dimensões de 14 x 24 metros. Uma parcela padrão adicional, sem preparo, sem plantas e sem resíduos, foi também instalada como uma parcela controle. As erosões mensuradas foram agrupadas e analisadas em três períodos (0 a 2, 3 a 7, e 8 a 12 meses). Para os demais tratamentos, a erosão foi estimada por modelos (por período e global) gerados por regressões lineares múltiplas entre a erosão observada nas parcelas padrão dos tratamentos MAC e SUS, e variáveis independentes oriundas dos atributos locais de cada parcela e a partir do método de pinos. O crescimento inicial do eucalipto foi determinado através do método da parcela padrão de 14 x 24 metros. Uma parcela padrão adicional, sem preparo, sem plantas e sem resíduos, foi também instalada como uma parcela controle. As erosões mensuradas foram agrupadas e analisadas em três períodos (0 a 2, 3 a 7, e 8 a 12 meses). Para os demais tratamentos, a erosão foi estimada por modelos (por período e global) gerados por regressões lineares múltiplas entre a erosão observada nas parcelas padrão dos tratamentos MAC e SUS, e variáveis independentes oriundas dos atributos locais de cada parcela e a partir do método de pinos. O crescimento inicial do eucalipto foi determinado estimando-se a cobertura do solo e a biomassa da parte aérea aos 3, 6, 9 e 12 meses. Para as parcelas padrão, houve maior erosão no tratamento MAC do que no SUS, com valores médios de 12,96 e 2,4 Mg ha⁻¹ ano⁻¹, respectivamente. Para ambos os tratamentos, a erosão diminuiu com o crescimento da floresta. Quanto ao resíduo, a sua manutenção na área reduziu ligeiramente o crescimento de *E. grandis*. Ponderando-se os ganhos de crescimento inicial e as perdas erosivas esperadas, a manutenção dos resíduos no local e o coveamento mecânico podem ser identificadas como a melhor opção de preparo do solo para essas áreas decolvidas.

Palavras-chave: conservação do solo, preparo do solo, *Eucalyptus*, silvicultura, erosão.

Abstract

In Brazil, and especially in the Paraiba Valley region, Southeastern Brazil, *Eucalyptus* plantations are expanding to high declivity areas formerly occupied by degraded pastures, due to the limited agricultural value of these topographies and their forestry aptitude. The objective of this study was to evaluate the effect of different methods of soil preparation and water loss by erosion, and on the initial development of clonal plantations of *Eucalyptus grandis* in areas of high slope. The experiment was installed in a 3 x 2 factorial design, with three intensities of soil preparation (manual pitting, mechanical pitting and downhill subsouling) and two systems of residue management (with and without harvest residues), with 4 blocks, in a fine, kaolinitic, thermic type Kanhapludults soil, with an average inclination of 20.3%. Soil loss and growth of the forest were measured during one year, between March 2004 and February 2005. In two treatments, namely manual pitting and maintenance of the residues (MAY) and subsouling without residues (SUN); erosion was measured directly through the method of the standard-plots, installed in all the replications, with a dimension of 14 x 24 meters. An additional standard plot without soil preparation, residues and

¹Engenheiro Florestal da Fibria Celulose S/A. Rod. General Euryale Jesus Zerbini, s/n – São Silvestre – 12340-010 – Jacareí, SP, Brasil. E-mail: mcpw@yahoo.com.
²Pesquisador Doutor. IPEF - Instituto de Pesquisas e Estudos Florestais. Via Comendador Pedro Morganti, 3500 – Bairro Monte Alegre – 13.415-000 – Piracicaba, SP, Brasil. E-mail: caalvares@yahoo.com.br, josecarlosarthurjunior@gmail.com.
³Professor Permanente dos Programas de Pós-Graduação em Recursos Florestais. USP – Universidade de São Paulo / ESALQ – Escola Superior de Agricultura “Luiz de Queiroz” e UENSP - Universidade Estadual Paulista “Júlio de Mesquita Filho”. Av. Pádua Dias, 11 – Caixa Postal 09 – 13.418-900 – Piracicaba, SP, Brasil. E-mail: jolstape@yahoo.com.br.
cultivation was also installed as a control plot. Erosion measured was grouped and analyzed for three periods (0 to 2, 3 to 7, and 8 to 12 months). In the other treatments, erosion was estimated using models (per period and joint) from multiple linear regression between the erosion observed in the treatments MAY and SUN and independent variables originated from local attributes of each plot and from the pins method. The initial growth of Eucalyptus was determined by estimating soil cover and aboveground biomass at 3, 6, 9 and 12 months. In the standard-plots, there was more erosion in the treatment SUN than in MAY, with mean values of 12.96 and 2.40 Mg ha\(^{-1}\) year\(^{-1}\), respectively. For both treatments erosion decreased with the growth of the forest. As for the residue, its maintenance in the area slightly reduced the growth of E. grandis. Pondering the gains of initial growth and the expected erosion losses; maintenance of the residues on site and mechanical pitting can be identified as the best soil preparation option for such areas.

Keywords: soil conservation; soil preparation; Eucalyptus; silviculture; erosion.

INTRODUCTION

In recent decades, the Eucalyptus plantations have expanded into steep slope areas in the Paraíba Valley region, São Paulo State, Brazil; typically replacing degraded pastures and providing higher profits for landowners (SILVA et al., 2002; JANOSSELLI et al., 2016). Such practice has also occurred in other regions of southeastern Brazil (SILVA et al., 2007 and GONÇALVES et al., 2013). Paraíba Valley accounts for about 10% of the Eucalyptus planted area in the state of São Paulo, with more than 75,000 ha of Eucalyptus plantations (KRONKA et al., 2002; GONÇALVES et al., 2014). Many of these areas experienced substantial soil loss under prior land uses, and any further soil loss needs to be minimized through careful planning and adequate silviculture practices (LIMA, 1996; GONÇALVES, 2002, SILVA et al., 2011).

Steep areas are in high risk of erosion, especially by heavy machinery use. High costs of alternative manual operations may lower the profitability of plantations (FERNANDES and SOUZA, 2001; SILVA et al., 2002; STAPE et al. 2002). On flat terrain, tree growth generally increases with the volume increment of soil prepared (FINGER et al., 1996; GONÇALVES et al., 2002; PREVEDELLO, et al., 2013; SUJITER FILHO et al. 1980; VARELIDES; KRITIKOS, 1995), but erosion risks on steeper slopes may counter some of the benefits of intensive soil preparation under this condition.

Few studies have been conducted in Brazil in order to better understand the relationship between the intensity of site preparation, erosion and tree growth in steep areas (BAPTISTA; LEVIEN, 2010; LIMA, 1988, 1996), underscoring the need for direct experimentation. The objectives of the study were to test three levels of soil preparation and two levels of residue retention in order to determine the responses on soil erosion and tree growth in the Paraíba Valley, Southeastern Brazil.

MATERIAL AND METHODS

Site description

The experiment was conducted in the municipality of Igaratá, in the Paraíba Valley (23°12'S, 46º09'W) at an altitude of 745 m. The climate is Cfb (Köppen system), namely as subtropical without dry season and with temperate summer (ALVARES et al., 2013a). Average annual temperature is 21.5ºC and with 1265 mm of annual rainfall (ALVARES et al., 2013b). Total rainfall in the driest month is less than 40 mm, and mean monthly temperatures range from 18 to 23°C. The total rainfall during the 12 months of this study (2004-2005) was typical for the region, with 1360 mm at the research site. The distribution of monthly precipitation during the study period was plotted and compared with historical precipitation (Figure 1). On-site rainfall rates were used to calculate the average monthly erosivity index (EI) using the formula proposed by Lombardi Neto and Molendenhauer (1992) which was developed for the region of Campinas, State of São Paulo, 110 km away from Igaratá. Silva (2004) recommended using the same formula for the region of Igaratá. The total annual value of erosivity was estimated to be 6461 MJ ha\(^{-1}\) mm\(^{-1}\) and the rainfall erosivity in this region then classified as average, according to the full distribution of erosivity in Brazil (COGO, 1988).
The terrain in the study area is characterized by 100-300 m hills with slopes of 15 to 30%, with a high density of drainages, valleys, and alluvial plains; being characterized as a common type of landscape for *Eucalyptus* plantations in the coastal region of southeastern Brazil (GONÇALVES et al., 2013). The soil is classified as a Fine, kaolinitic, theric type Kanhapludults (by Brazilian Soil Taxonomy is an Argissolo Vermelho-Amarelo Distrófico textura média/argilosa) which have a water retention capacity that supports good tree growth. The soil (0-0.15 m) averaged 57% sand, 8% silt, and 35% clay, with a bulk density of 1.2 Mg m$^{-3}$, 40 g kg$^{-1}$ of organic matter, and 54% total porosity. Soil pH$_{water}$ averaged 4.0, with 11% base saturation; overall, the soil is considered to have moderate fertility with respect to N, P and K, but low in Ca, according to the interpretation of soil fertility by Gonçalves (2011).

Experimental design

The design was a 3 x 2 factorial with three levels of soil preparation and two levels of residue management, with four replications. The manual soil preparation treatment involved digging holes (0.2 x 0.2 x 0.2 m depth) with a shovel for each seedling (Figure 2a). We used two mechanical soil preparation treatments; one that digged holes (0.3 x 0.3 x 0.5 m depth) for each seedling (Figure 2b) and another using a ripper for subsoiling in furrows (0.6 m depth) in favor of the slope (Figure 2c). A 2-wheel drive tractor with 110 hp nominal power was used for both mechanical soil preparation treatments. Such methods of soil preparation are commonly used on steep areas in the study region. A control plot was established where the soil was not prepared, residues were removed, and no trees were planted, providing no soil cover for the duration of the study.

The trial was monitored from the establishment in March, 2004 to February, 2005. Pre-planting fertilization included 600 kg ha$^{-1}$ of lime, and individual-tree fertilization with 0.11 kg of 4:28:6 NPK per plant (application using lateral pits, half dose in each pit). Three months after planting, an additional 0.1 kg tree$^{-1}$ was added of 20:0:20 NPK (spread around the plant), followed at 9 months with 0.12 kg tree$^{-1}$ of 20:0:25 NPK fertilizer (broadcast application). Glyphosate was used to keep the area free of weeds, and sulfuramid use prevented problems from leaf-cutting ants.

Post-logging residue averaged 53 Mg ha$^{-1}$ across the site (based on four 0.5 x 0.5 m quadrants in each plot), with a range from 38 to 65 Mg ha$^{-1}$ (Figure 2d).

Clonal *Eucalyptus grandis* trees were planted in 3 x 2 m spacing, and each plot of 288 m2 contained 128 trees (4 x 12 rows). These measurement plots were surrounded by 4 additional rows of trees. The planting lines were oriented toward the slope. The total area of the trial was 1.84 hectares.
Soil measurements

The intensity of soil preparation was evaluated according to the volume of mobilized soil (VMS). VMS for subsoiling treatment was calculated based on the methodology used by Sasaki and Gonçalves (2005):

$$VMS = AMS \times \frac{10000}{L}$$ \hspace{1cm} (1)

where VMS is the volume of mobilized soil (m³ ha⁻¹), AMS is the area of mobilized soil (m²), and L = length of the spacing between tree rows (3 m). The AMS was measured by the method of resistance zone (Bentivenha et al., 2003; Staple et al., 2002). The procedure involves making a preliminary evaluation of the penetration resistance of soil (to 60 cm) using an impact penetrometer (Stolf et al., 1983) before soil treatment. The survey was repeated after treatment to determine the area’s extent of soil disturbance. The measurements of soil resistance were taken with three samples per plot, in transects with total length of 120 cm, being 60 cm left and 60 cm right of the planting line. The surveys were made every 15 cm.

VMS for manual and mechanical soil preparation (digging holes) was calculated similarly to subsoiling, but was also considered the planting space used:

$$VMS = AMS \times W \times \frac{10000}{L \times S}$$ \hspace{1cm} (2)

where: VMS = volume of mobilized soil (m³ ha⁻¹), AMS = area of mobilized soil, (m²), W = width of the hole (0.20 m manual and 0.30 m mechanical), L = length of the spacing between tree rows (3 m), and S = plant spacing (2 m). Two approaches were used to estimate soil erosion (Figure 3). Soil loss was estimated in the 9 plots of the extreme treatments: manual soil preparation with residue retained and mechanical soil preparation with subsoiling and residue removed, as well as a single plot in the control treatment (no residue, no soil preparation and no trees).

The pins method was used in all 24 plots, with an adaptation of the method proposed by Verdolin (1980). To calibrate the pins method, we used the method of the standard plot according
to the methodology proposed by Cogo (1978a; 1978). The pins were 12 mm in diameter, buried exactly 50 cm into the ground with 5 cm exposed above the soil surface. Fifteen pins were placed systematically in a 14 x 24 m portion of each plot. The length of the exposed portion of each pin was measured 2, 7 and 12 months after planting.

The second method entailed measuring the mass of soil moved from a standard plot of 14 x 24. The plots were fenced with 0.4-m tall galvanized steel sheets, buried to 20 cm depth. Gutters at the lower end of each plot collected overland flow into collection ponds (Figure 4a). Two 500-L collection tanks collected the runoff and a Geib 15-type splitter was used to divert 1/15th of the runoff into a trap for measurement of sediment content (Figure 4b). Tanks were emptied after each major rain event between March, 2004 and February, 2005. The measured soil and water losses were grouped in the same three periods: the first period from establishment to 2 months, the second period of 3 to 7 months, and the third period of 8 to 12 months.

Based on the pins measurements, four rates of earth movement within each plot were calculated: the first was the earth movement within each plot in each period by the mean pins value (PVAR); the second was the earth movement based on the mean of the pins measures in cm, ignoring the surface change of soil in the plot, using the module values (PABS); the third was the maximum value measured, considering the pins to signal the change of surface, where the positive sign indicates soil loss and the negative signal the soil accumulation (PVAX); and the fourth was the maximum value measured through pins disregarding the surface change, using the module values (PABX).

Figure 3. Experimental plot and location of the pins inside the standard plot.

Figura 3. Parcela experimental e localização dos pinos dentro da parcela padrão.
Stepwise backward multiple regressions were used to relate erosion estimates from the pin measurements to various properties of the plots. The regressions used as the dependent variable (y) was the erosion observed in the standard plot, and as independent variables (x1, x2, ... xn) the indices of the pins measurements in different positions within the plot (PVAR, PABS, PVAX, PABX); and local variables, which are the volume of mobilized soil (VMS), slope, soil physical characteristics (porosity, clay content) and features coverage by Eucalyptus plantations (coverage factor, aboveground biomass per hectare). Measurements of Eucalyptus growth are described in the next topic. Before making the multiple linear regression analysis, Pearson correlation (P<0.05) was performed to assess the degree of collinearity among the variables analyzed, omitting variables with a high degree of correlation.

The multiple linear regressions were implemented in two ways, in order to obtain the soil erosion estimate in the year and in the plots. In the first mode, the equations were established for each of the three periods and 8 observations (disregarding the control plot). In the second mode, we used all 24 observations made during the year to get a single equation for soil erosion. This procedure was adopted due to lack of a strict validation of each of these models separately, assuming that similar trends in erosion estimates would represent greater certainty in interpretation.

Tree measurements

Measurements of total height and canopy diameter in the row and inter-rows were assessed at 3, 6, 9 and 12 months. At 12 months, the diameter at breast height (DBH) was also measured. We used the canopy cover index (ICAP) which represents the stand coverage by young trees (less 1 year). ICAP calculates the tree surface considering it as a cone, being the base diameter equal to the diameter of the tree canopy, and height equal to the tree height (Poggiani and Stape, 2003). We also calculated the mean ground cover (AGC, m² m⁻²), which is the ratio between the sum of crown projections and the plot area.

\[
\text{ICAP} = \frac{D}{2} \sqrt{H^2 + \frac{D^2}{4}}
\]

where ICAP is the canopy cover index (m²); D is the mean diameter (row and inter-rows) of the canopy in m and H is tree height in m.
Aboveground biomass was obtained by the sum of biomass from branch, leaves and wood. The compartments were estimated based on allometric equations obtained from 16 trees at 6 months and 8 trees at 12 months. The trees were felled in the plot boundaries, which had the same mean height of each measurement plot sampled. In the field, the green weight was measured, and a sample was taken to the laboratory for determination of moisture content. These data were used to estimate the total biomass at 3, 6, 9 and 12 months through the equations below. The total biomass per hectare (BLB + BS) was calculated as the sum of each tree in the plot, and subsequent conversion to hectare (Mg ha\(^{-1}\)).

\[
\text{BLB} = \frac{540 \times ICAP^{1.908}}{1000}
\]

where BLB (kg) is the sum of leaf and branch biomass and ICAP is the canopy area index (m\(^2\)). \(n = 24, r^2 = 0.97\)

\[
BS = 0.001 \times e^{[4.3708 + 2.1455 \times \ln(DBH)]}
\]

where BS is the stem biomass (kg tree\(^{-1}\)), DBH is diameter at breast height (cm) at 12 months. \(n = 8, r^2 = 0.70\).

RESULTS AND DISCUSSION

The soil mobilization in the treatment with manually dug holes (0.15 m\(^2\)) was about half that of the mechanical pit treatment (0.29 m\(^2\)) and subsoiling treatment (0.33 m\(^2\); Table 1). Residue retention or removal had no effect on erosion.

Treatments	Soil preparation	Residue	Acronym	Area of mobilized soil (AMS, m\(^2\))	Volume of mobilized soil (VMS, m\(^3\) ha\(^{-1}\))
Manual pitting	Removed	MAN	0.18	59	
	Retained	MAY	0.14	46	
Mechanical pitting	Removed	MEN	0.27	134	
	Retained	MEY	0.30	150	
Subsoiling	Removed	SUN	0.32	1,070	
	Retained	SUY	0.32	1,080	
Manual pitting	All	MA	0.15 b	52 b	
Mechanical pitting	All	ME	0.29 a	142 b	
Subsoiling	All	SU	0.33 a	1,076 a	
All	Retained	Y	0.25 a	426 a	
All	Removed	N	0.26 a	421 a	

Values followed by same letter not statistically different from each other (Tukey test, \(P < 0.05\)).

We found that the variability of the experimental area was too large for the soil loss (Table 2). This is probably due to differences in soil characteristics (total porosity, clay content, soil compaction, and soil bulk density), microrelief and slope that occurred among the experimental plots in the study area. The analysis of variance for the erosion observed between the two treatments (MAY and SUN), when performed separately for each period, and does not identify significant differences. However, when considering the period of replication there is no clear indication of differences between treatments, with the annual erosion superior to SUN (12.96 Mg ha\(^{-1}\) yr\(^{-1}\)) when compared to the MAY (2.4 Mg ha\(^{-1}\) yr\(^{-1}\)).

A study by Bertoni and Lombardi Neto (1999) including 75 profiles of major soil types in São Paulo state showed that soil depth and a selection of soil properties are necessary to establish standardized limits for soil loss tolerances. For a similar soil of our study region, the authors found ranges of tolerance of soil losses ranging from 5.2 to 7.6 Mg ha\(^{-1}\) yr\(^{-1}\). When using as a tolerance pattern of soil losses for the study area the value of 5.0 Mg ha\(^{-1}\) yr\(^{-1}\) (lower limit of Bertoni and Lombardi Neto, 1999); treatments MAY and SUN were contrasting with respect to conservation soil.
Table 2. Sediment and runoff (percent of precipitation) generated by manual holes + residue retention (MAY), subsoiling + residue removed (SUN), and control (CON = no soil preparation, no residue, and no trees) by periods (with accumulated rainfall).

Treatment	Period 1 (306 mm)	Period 2 (300 mm)	Period 3 (754 mm)	Total Year (1360 mm)
	Erosion (Mg ha⁻¹)	Runoff (%)	Erosion (Mg ha⁻¹)	Runoff (%)
MAY	2.29 (2.18)	2.75 (1.91)	0.07 (0.03)	0.92 (0.69)
	0.05 (0.05)	1.16 (1.01)	2.40 (2.25)	1.46 (1.14)
SUN	8.60 (4.88)	2.88 (0.87)	3.57 (1.67)	2.75 (1.17)
	0.80 (0.46)	0.47 (0.21)	12.96 (6.81)	1.52 (0.47)
CON	4.96	9.66	0.42	3.51
	5.5	4.46	10.88	5.44

Means (standard error of the mean)

Soil loss decreased over time in treatments MAY and SUN, even though the precipitation during period 3 was 754 mm. However, CON plot increased in soil loss with increasing precipitation in the third period. This result demonstrates that the highest soil losses occur soon after soil preparation and when the forest is in the early stage of its establishment and before closing the canopy, showing that it is necessary at this time to adopt proper methods of soil preparation. For the runoff, the trend was the same as the soil loss.

The results observed in the standard plot were, on average, similar to the results of Lima (1988) for the first year of *Eucalyptus grandis* in Quartzipsamment soil in São Paulo state. Cardoso (2003), in an Alfisol moderately rocky soil with *Eucalyptus* plantation at two years of age, planted with manual holes in the region of Aracruz (Espírito Santo state), measured erosion with standard plot in an area with 28.8% slope, and noted a soil loss of 2.38 Mg ha⁻¹ yr⁻¹, similar to that observed for MAY treatment in this study (2.4 Mg ha⁻¹ yr⁻¹). Brito (2004) reported a soil loss of 1.77 Mg ha⁻¹ at 14-mo after establishment using the standard plot method in the initial growth phase of a *Eucalyptus* plantation in the Guanhaes region (MS state) on an Oxisol soil, with 17.6% slope, and site prepared with manual holes. This value is lower than the observed for MAY treatment in this study, due to the lower slope of the plot, and the better physical characteristics of the Oxisol with respect to Ultisol in the experimental area. The wide variability of soil loss is inherent to the erosion evaluation method considering the high variation of soils that occurs in the same region, and the characteristics of the microrelief steep areas.

The predictive erosion equation for each period was made using a multiple linear regression, considering in the analysis all eight standard plots of the MAY and SUN treatments. In multiple linear regressions for the first period (0-2 months), period 2 (3-7 months) and period 3 (8-12 months) are shown in equations 6, 7 and 8 below:

\[
y = 24.59 + 5.97x_1 + 2.36x_2
\]

where \(y\) is the Ln of soil erosion (Mg ha⁻¹) estimated in period 1, \(x_1\) is the Ln of average ground cover (AGC, m² m⁻²), \(x_2\) is PVAR (pins average value, cm); \(n = 8, r^2 = 0.70\)

\[
y = -5.46 + 10.49x
\]

where \(y\) is the Ln of soil erosion (Mg ha⁻¹) estimated in period 2, and \(x\) is PVAR (cm); \(n = 8, r^2 = 0.63\)

\[
y = 1.41 - \frac{266.41}{x}
\]

where \(y\) is the Ln of soil erosion (Mg ha⁻¹) estimated in period 3, and \(x\) is VMS (m³ ha⁻¹); \(n = 8, r^2 = 0.5\)

We also performed a multiple linear regression for the first year of the study, without separating the variables into three periods, thus using a joint analysis of 24 observations, as shown in Equation 9:

\[
y = 2.94 - \frac{193.09}{x_1} - 1.39x_2 - 0.19x_3
\]

where \(y\) is the Ln of soil erosion (Mg ha⁻¹) estimated in the total period, \(x_1\) is VMS (m³ ha⁻¹), \(x_2\) is the Ln of average ground cover (AGC, m² m⁻²), and \(x_3\) is the clay content (%); \(n = 24, r^2 = 0.63\).

PVAR was an important variable in the two earlier periods but was not considered in the last period or the joint equation, as there were most important variables of soil preparation, ground cover...
and clay content. The models used tend to underestimate soil erosion, i.e. the models showed soil loss lower than in the standard plot (Table 3). The results of the erosion estimation of pin method in this study were similar to those obtained by Cardoso (2003) in his proposed mathematical model, where the values of soil loss compared with the standard plot were underestimated.

Table 3. Observed erosion and estimated erosion by the period and joint models for the 8 standard plots in all periods, and index values of pins (PVAR) used in the models.

Period	Treatment	Observed erosion Standard plot	Estimated erosion Period model	Estimated erosion Global model
1	MAY	2.29 (2.17)	0.71 (0.31)	0.74 (0.25)
	SUN	8.6 (4.88)	6.87 (4.82)	9.45 (3.35)
2	MAY	0.07 (0.04)	0.08 (0.03)	0.14 (0.06)
	SUN	3.57 (1.67)	3.0 (2.2)	3.07 (1.09)
3	MAY	0.05 (0.05)	0.0 (0.0)	0.01 (0.0)
	SUN	0.8 (0.46)	0.19 (0.0)	0.26 (0.08)
All	MAY	2.4 (2.25)	0.79 (0.31)	0.44 (0.15)
	SUN	12.97 (6.81)	10.06 (4.6)	6.39 (2.21)

Due to the high variability found in the experimental area, no significant difference was found between treatments, for estimated erosion by the period model, and there was no significant difference in the effect of soil preparation factor and the residue factor (Table 4). However, there was a trend with increasing intensity of soil preparation accompanied by higher soil loss. With retained residue there was a decrease in soil loss.

Table 4. Results of the erosion of the year estimated by the period and global models.

Treatments	Soil preparation	Residue	Acronym	Period model	Global model
Manual pitting	Removed	MAN	3.78 a	0.64 b	
	Retained	MAY	0.79 a	0.44 b	
Mechanical pitting	Removed	MEN	3.28 a	2.15 b	
	Retained	MEY	7.20 a	3.07 b	
Subsoiling	Removed	SUN	10.05 a	6.39 ab	
	Retained	SUY	4.26 a	13.60 a	
Manual pitting	All	MA	7.16 a	10.01 a	
Mechanical pitting	All	ME	5.24 a	2.61 b	
Subsoiling	All	SU	2.28 a	0.54 b	
All	Retained	Y	5.71 a	3.06 b	
All	Removed	N	4.08 a	5.72 b	

Values followed by same letter not statistically different from each other (Tukey test, P < 0.05).

For estimated erosion in the joint model, data variability was lower and there were significant differences between treatments. SUY and SUN treatments had higher estimated erosion than the other treatments. There was also a significant difference for the soil preparation factor, where subsoiling was greater compared to the other soil preparation methods. However, there were no effects of the residue factor. The trend of increasing the soil preparation intensity increases the soil erosion was maintained in this estimate.

Comparing the soil erosion estimates with the tolerance of soil losses for the study area, which we assumed to be 5.0 Mg ha⁻¹ yr⁻¹; it is observed that erosion estimation per periods, the treatments SUN and MEY were above the tolerance limit, and in the global model estimation for SUY and SUN treatments were above this limit.
The effect of residue factor for the conditions of the study in the first year after planting was that the plots with retained residue showed the lowest values for the analyzed variables (Table 5). However, these greater differences in the initial period (3 to 6 months) are reduced with time (12 Table 5). Furthermore, several studies have shown that the removal of residue causes a reduction of forest productivity at the end of the cycle or over the rotations (GONÇALVES et al., 2004; 2002; 2000; PAES et al. 2013; ROCHA et al., 2016), because residues work as a source of slow nutrient release to the ecosystem, and increase the organic matter in the topsoil. Thus, the small difference in productivity observed at the end of the first year does not justify the removal of residues in this region.

Table 5. Eucalyptus grandis growth for different treatments during the study period.

Growth	Treatment and factor	Age (month)	3	6	9	12		
	MAN	0.15 ab	0.47	b	3.21	a	7.44	ab
	MAY	0.12 b	0.42	b	3.03	a	7.33	ab
	MEN	0.18 ab	0.52	ab	3.48	a	7.86	ab
	MEY	0.16 ab	0.46	b	3.05	a	7.02	b
	SUN	0.20a	0.63	a	3.73	a	8.00	a
ICAP (m²)	SUY	0.13 ab	0.45	b	3.17	a	7.70	ab
	MA	0.13 a	0.45	b	3.11	a	7.38	a
	ME	0.17 a	0.49ab		3.26	a	7.44	a
	SU	0.17 a	0.54a		3.45	a	7.85	a
	Y	0.14 b	0.44	b	3.07	b	7.35b	
	N	0.18 ab	0.54	a	3.47a		7.77	a
Total biomass (kg ha⁻¹)	MAN	94.72 a	378.67	b	3,631.73		13,678.16	abc
	MAY	74.45 a	327.63	b	3,416.61		13,140.72	bc
	MEN	118.71 a	425.49	ab	3,993.38		14,725.04	ab
	MEY	104.56 a	362.42	b	3,414.13		12,629.11	c
	SUN	138.03 a	526.30	a	4,393.92		15,232.16	a
	SUY	84.70 a	361.05	b	3,572.85		14,149.57	abc
	MA	84.55 a	353.11	b	3,524.12	a	13,409.43	b
	ME	111.60 a	393.89ab		3,703.75	a	13,677.02	b
	SU	111.36 a	443.64a		3,983.42	a	14,690.47	a
	Y	87.9 b	350.4	b	3,467.85	b	13,306.45	b
	N	117.1 a	443.5	a	4,006.43a		14,544.84	a

Values followed by same letter not statistically different from each other (Tukey test, P < 0.05).

Concerning the aboveground biomass of *Eucalyptus* (leaves, branches, wood, and bark) at the ages of 3 and 9 months there was no significant effect of tillage factor in the treatments (Table 5). At 6 and 12 months, there was a difference between the three tillage factors: with increasing tillage intensity, there was an increase in biomass production.

The positive effect of subsoiling is due to the larger volume of mobilized soil (VMS) in this soil preparation method, providing better physical condition for the initial growth of seedling roots, thus corroborating other studies that found the positive effect of tillage on the tree growth (BAPTISTA; LEVIEN, 2010; CAVICHILO, 2005; FINGER et al. 1996; NZILA et al., 1997; PREVEDELLO et al., 2013; SLUITER FILHO et al., 1980; OLIVEIRA et al., 2013; VARELIDES; KRITIKOS, 1995). However, there was no statistical difference between mechanized digging and subsoiling. As for the negative effect of the presence of residue on the growth, this may be occurring as a function of nutrient competition, especially for N and P, which are used by soil microorganisms in the decomposition process of residues which by chance have been incorporated into the soil during the tillage operation, thereby reducing the availability of these elements to the *Eucalyptus*. This process is temporary and its duration is determined by the C/N and C/P ratios from plant material. With confirmation of this assumption, a small increase in base fertilization or covering fertilization could eliminate this effect.

To verify the duality between production and soil conservation, it is necessary to associate the soil loss with the forest growth. For that, we relate the variable total biomass at 12 months of age (productivity), and the obtained erosion estimated by both models (sustainability), periods and
Considering as the tolerance limit of soil loss the value of 5 Mg ha\(^{-1}\) yr\(^{-1}\), and as an appropriate value of initial productivity at 12 months the value of 12 Mg ha\(^{-1}\), and plotting these limits of productivity and soil loss in the graph we obtain four quadrants, where the desired result is that the management result is to obtain more biomass than the stipulated limit (12 Mg ha\(^{-1}\)) and with soil losses below estimated tolerance limit (5 Mg ha\(^{-1}\) yr\(^{-1}\)), which occurs in the upper left quadrant of the graph (Figure 5). This condition is approved for all treatments, except for the subsoiling with no residue (SUN). Moreover, the mechanical digging (MEN), and the subsoiling with no residue (SUN), showed the highest biomass values. This indicates that mechanized digging is an adequate tillage to enable the rapid initial growth of eucalypts, for preparing a soil mobilized area (AMS) similar to the subsoiling area, without preparing a larger volume of mobilized soil (VMS) which is detrimental to soil conservation in steep areas.

![Figure 5](image_url)

Figure 5. Relationship between total shoot biomass at 12 months (productivity) and soil loss estimated by the models per periods and joint (sustainability) for the treatments.

The difference between the biomass of treatment with mechanical digging and, with and with no residue (MEY and MEN), is not due to tilling factor, since the volume of mobilized soil was similar in both systems, but to the waste factor. This effect is probably due to competition for N and P by soil microorganisms, as mentioned earlier in the process of residue decomposition, and could probably be diminished by the uptake of these nutrients through mineral fertilization.

CONCLUSIONS

Soil preparation with subsoiling in favor of the slope in an area without residue (SUN) was more erosive than the manual tillage with residue (MAY).

The variability found within these two treatments (SUN and MAY) was high, indicating the importance of the repetition of erosion studies in sloping areas.

The aboveground biomass increased with the greater volume of prepared soil. However, there was no statistical difference for biomass, at 1 year of age, between mechanical soil preparation by digging holes and subsoiling in furrows dug in favor of the slope.

ACKNOWLEDGMENTS

The authors wish to thank Fibria Celulose S.A. for the financial support and making their area available for the project development. We give thanks to Silviculture and Management Thematic Program (PTSM-IPEF) for the financial support and for field collections. We thank Daniel Santos Keim for support in all field activities. We thank Kevin Hall, Research Associate (NCSU), for carefully reviewing the English language. We are grateful to Itamar Bognola (EMBRAPA) for the translation of soil types between Brazilian and American soil taxonomies. Thanks also to Dan Binkley wich helped to considerably improve the quality of the manuscript.
REFERÊNCIAS BIBLIOGRÁFICAS

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. Modeling monthly mean air temperature for Brazil. *Theoretical and Applied Climatology*, v. 113, n.3-4, p. 407-427, 2013a.

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. *Meteorologische Zeitschrift*, Stuttgart, v. 22, n. 6, p. 711-728, 2013b.

BAPTISTA, J.; LEVIEN, R. Métodos de preparo de solo e sua influência na erosão hídrica e no acúmulo de biomassa da parte aérea de *Eucalyptus saligna* em um Cambissolo Háplico da Depressão Central do RS. *Revista Árvore*, Viçosa, v. 34, n. 4, p. 567-575, 2010.

BENTIVENHA, S. R. P.; GONÇALVES, J. L. M.; SASAKI, C. M. Mobilização do solo e crescimento inicial do eucalipto em função do tipo de haste subsoladora, profundidade de trabalho e características do solo. *Engenharia Agrícola*, Jaboticabal, v. 23, n. 3, p. 588-605, 2003.

BERTONI, J. E.; LOMBARDI NETO, F. *Conservação do solo*. Piracicaba: Livroceres, 1999. 355 p.

BRITO, L. F. Erosão hídrica de latossolo vermelho distrófico típico em área de pós-plantio de eucalipto na região de Guanhães (MG). 2004. 78 p. Dissertação (Mestrado em Ciências Florestais) - Universidade Federal de Lavras, Lavras, 2004.

CARDOSO, D. P. Avaliação da erosão pela mudança na superfície do solo em sistemas florestais. 2003. 123 p. Dissertação (Mestrado em Ciências Florestais) - Universidade Federal de Lavras, Lavras, 2003.

CAVICHIOLO, S. R. Perdas de solo e nutrientes por erosação hídrica em diferentes métodos de preparo do solo em plantio de *Pinus taeda*. 2005. 139 p. Tese (Doutorado em Ciências Florestais) - Universidade Federal do Paraná, Curitiba, 2005.

COGO, N. P. Conceitos e princípios científicos envolvidos no manejo de solo para fins de controle da erosão hídrica. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO. 21., 1988, Campinas. Proceedings... Campinas: Sociedade Brasileira de Ciência do solo, 1988. p. 251-262

COGO, N. P. Uma contribuição à metodologia de estudo das perdas por erosão em condições de chuva natural: I – Sugestões gerais, medição do volume, amostragem e quantificação de solo e água da enxurrada (1ª Aproximação). In: ENCONTRO NACIONAL DE PESQUISA SOBRE CONSERVAÇÃO DO SOLO. 2., 1978, Passo Fundo. Proceedings... Passo Fundo: EMBRAPA-CNPT, 1978a. p. 75-97

COGO, N. P. Uma contribuição à metodologia de estudo das perdas por erosão em condições de chuva natural: II – Alguns conceitos básicos e modelo de uma ficha para registro das características da chuva e perdas de solo e água (1ª Aproximação). In: ENCONTRO NACIONAL DE PESQUISA SOBRE CONSERVAÇÃO DO SOLO. 2., 1978, Passo Fundo. Proceedings... Passo Fundo: EMBRAPA-CNPT, 1978b. p 99-107

FERNANDES, H. C., SOUZA, A.P. Compactação de solos florestais: uma questão para estudo. *Revista Árvore*, v. 25, n. 3, p. 387-392, 2001.

FINGER, C. A. G.; SCHUMACHER M, V.; SCHNEIDER, P. R.; HOPPE, J. M. Influência da camada de impedimento no solo sobre o crescimento de *Eucalyptus grandis* (Hill) ex Maiden. *Ciência Florestal*, Santa Maria, v. 6, n. 1, p. 137-145, 1996.

GONÇALVES, J. L. M. Fertilização de plantação de eucalipto. In: GONÇALVES JLM, PULITO AP, ARTHUR JUNIOR JC, SILVA LD. (Eds.). In: ENCONTRO BRASILEIRO DE SILVICULTURA. 2011, Piracicaba. Proceedings... Piracicaba: IPEF, 2011. p. 85-114.
GONÇALVES, J. L. M. Conservação do solo. In: GONÇALVES, J. L. M.; STAPE, J. L. (Ed.) Conservação e cultivo de solos para plantações florestais. Piracicaba: IPEF, 2002. p 47-129

GONÇALVES, J. L. M.; SILVA, L. D.; BEHLING, M.; ALVARES, C. A. Management of industrial plantations. In: BORGES, J. G., DIAZ-BALTEIRO, L., MCDILL, M. E., RODRIGUEZ, L. C. E. (Eds.). The Management of Industrial Forest Plantations - Theoretical Foundations and Applications. Dordrecht: Springer, 2014. p. 91-119.

GONÇALVES, J. L. M.; ALVARES, C. A; HIGA, A. R; SILVA, L. D; ALFENAS, A. C; STAHJ, J.; FERRAZ, S. F. B; LIMA, W. P.; BRANCAIOLI, P. H.S; HUBNER, A.; BOUILLET, J.P.; LAHLAU, J. P.; NOUVELLO, Y.; EPRON, D. Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. Forest Ecology Management, v. 301, p. 6-27, 2013.

GONÇALVES, J. L. M.; GAVA, J. L.; WICHERT, M. C. P. Sustainability of wood production in eucalypt plantations of Brazil. In: NAMBIAR, E. K. S; RANGER, J.; TIARKS, A.; TOMA, T. (Ed.) WORKSHOP SITE MANAGEMENT AND PRODUCTIVITY IN TROPICAL PLANTATION FORESTS. 2003, Bogor. Proceedings... Bogor: CIFOR, 2004. p 3-14

GONÇALVES, J. L. M.; STAPE, J. L.; BENEDETTI, V.; FESSEL, V. A. G; GAVA, J. L. Reflexos do cultivo mínimo e intensivo do solo em sua fertilidade e na nutrição das árvores. In: GONÇALVES, J. L. M.; BENEDETTI, V. (Ed.). Nutrição e Fertilização Florestal. Piracicaba: IPEF, 2000. p.1-57

JANOSELLI, H. R. D.; HARBS, R.; MENDES, F. L. Viabilidade econômica da produção de eucalipto no interior de São Paulo. Revista iPecege, Piracicaba, v. 2, n. 2, p. 24-45, 2016.

KRONKA, F. J. N; NALON, M. A.; MATSUKUTA, C. K.; PAVÃO, M.; YWANE, M. S.S.; KANASHIRO, M. M.; LIMA, M. P. R.; PIRES, A. S.; SHID, C. N.; FUKUDA, J. C.; GUILLAUMON, J.R. Inventário florestal das áreas reflorestadas no Estado de São Paulo. São Paulo: Instituto Florestal, 2002.

LIMA, W. P. Escoamento superficial, perdas de solo e de nutrientes em microparcelas reflorestadas com eucalipto em solos arenosos no município de São Simão, SP. IPEF, Piracicaba, n. 38, p. 5-16, 1988

LIMA, W. P. Impacto ambiental do eucalipto. São Paulo: Universidade de São Paulo 1996. Disponível em: <http://www.eucalyptus.com.br/artigos/Impacto_ambiental_eucalipto.pdf>. Acesso em 10 jul. 2010.

LOMBARDI NETO, F.; MOLDENHAUER, W. C. Erosividade da chuva: sua distribuição e relação com perdas de solo em Campinas, SP. Bragantia, Campinas, v. 51, n. 2, p. 189-196, 1992.

NZILA, J. D.; BOUILLET, J. P.; HAMEL, O. Influence of litter management and soil preparation on the growth of an Eucalyptus re plantation in the Congo. In: IUFRO CONFERENCE ON SILVICULTURE AND IMPROVEMENT OF EUCALYPTS, Salvador, 1997. Proceedings... Colombo: EMBRAPA/CNPF, 1997. p 246-251.

OLIVEIRA, A. H.; SILVA, M. L. N.; CURI, N.; AVANZI, J. C.; KLINKE NETO, G.; ARÁUJO, E. F. (2013) Water erosion in soils under eucalyptus forest as affected by development stages and management systems. Ciência e Agrotecnologia, v. 37, n. 2, p. 159-169, 2013.

PAES, F. A. S. V.; LIMA, A. M. N.; HAKAMADA, R. E.; BARROS, N. F Impacto do manejo dos resíduos da colheita, do preparo do solo e da adubação na produtividade de eucalipto. Revista Brasileira de Ciência do Solo, v. 37, n. 4, p. 1081-1090, 2013.
Wichert et al. – Site preparation, initial growth and soil erosion in *Eucalyptus grandis* plantations on steep terrain

PREDEDELLO, J.; KAISER, D. R.; REINERT, D. I.; VOGLMANN, E. S.; FONTANELA, E.; REICHERT, J. M. Manejo do solo e crescimento inicial de *Eucalyptus grandis* Hill ex Maiden em Argissolo. Ciência Florestal, Santa Maria, v. 23, n. 1, p.129-138, 2013.

POGGIANI, E.; STAPE, J. L. Uso de biossólidos produzidos nas estações de tratamento de esgoto da região metropolitana de São Paulo em plantações florestais. Piracicaba: USP/ESALQ, 2003

ROCHA, J. H. T.; GONÇALVES, J. L. M.; GAVA, J. L.; GODINHO, T. O.; MELO, E. A.; BAZANI, J. H.; HUBNER, A.; ARTHUR JUNIOR, J. C.; WICHERT, M. P. Forest residue maintenance increased the wood productivity of a *Eucalyptus* plantation over two short rotations. Forest Ecology and Management, Amsterdam, v. 379, 1-10, 2016.

SASAKI, C. M.; GONÇALVES, J. L. M. Desempenho operacional de um subsolador em função da estrutura, do teor de argila e de água em três latossolos. Scientia Forestalis, Piracicaba, n. 69, p. 115-124, 2005.

SILVA, A. M. Rainfall erosivity map for Brazil. Catena, v. 57, n. 3, 2004. p. 251–259.

SILVA, C. R; CAMARGO, F. R. A; JACOB, W. S.; IIJIMA, J. Preparo de solo em áreas acidentadas do vale do Paraíba do Sul – SP. In: GONÇALVES, J. L. M.; STAPE, J. L. (ed.). Conservação e cultivo de solos para plantações florestais. Piracicaba: IPEF, 2012. p 313-350

SILVA, A. M.; ALVARES, C. A.; WATANABE, C. Natural potential for erosion for Brazilian territory. In: GODONE, D.; STANCHI, S. (Eds.). Soil Erosion Studies. Rijeka: In Tech, 2011. p. 1–22.

SILVA, A. M.; NALON, M. A; KRONKA, F. J. N; ALVARESM, C. A; CAMARGO, P.B; MARTINELLI, L. A. Historical land-cover/use in different slope and riparian buffer zones in watersheds of the state of São Paulo. Scientia Agrícola, v. 64, n. 4, p. 325-335, 2007.

STAPE, J. L.; ANDRADE, S.; GOMES, A. N.; KREJCI, L. C.; RIBEIRO, J. A. Definição de métodos de preparo de solo para silvicultura em solos coesos do litoral norte da Bahia. In: GONÇALVES, J. L. M.; STAPE, J. L. (Ed.) Conservação e cultivo de solos para plantações florestais. Piracicaba: IPEF, 2002. p. 259-296.

STOFE, R.; FERNANDES, J.; FURLANI NETO, V. F. Recomendação para uso do penetrômetro de impacto modelo. Piracicaba: IAA/Planalsucar, 1983. 14 p.

SUITER FILHO, W.; REZENDE, G. C.; MENDES, C. J.; CASTRO, P. F. Efeitos de diversos métodos de preparo de solo sobre o desenvolvimento de *Eucalyptus grandis* plantado em solos com camadas de impedimento. Circular Técnica IPEF, Piracicaba, n. 90, p.1-9, 1980.

VARELIDES, C.; KRITIKOS, T. Effect of site preparation intensity and fertilization on *Pinus pinaster* survival and height growth on three sites in northern Greece. Forest Ecology Management, Amsterdam, v. 73, p. 111-115, 1995.

VERDOLIN, H.; PORTO, R. P.; KNAPPER, C. F. U. Medicação direta da erosão laminar em solos agrícolas pelo método de hastes metálicas. Brasília: Ministério da Agricultura, 1980. 18 p.