SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes [version 1; peer review: 2 approved]

Jennifer Wyffels¹, Benjamin L. King², James Vincent³, Chuming Chen¹, Cathy H. Wu¹, Shawn W. Polson¹

¹Department of Computer and Information Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
²Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04672, USA
³Vermont Genetics Network, University of Vermont, Burlington, VT, 05405, USA

Abstract

Chondrichthyan fishes are a diverse class of gnathostomes that provide a valuable perspective on fundamental characteristics shared by all jawed and limbed vertebrates. Studies of phylogeny, species diversity, population structure, conservation, and physiology are accelerated by genomic, transcriptomic and protein sequence data. These data are widely available for many sarcopterygii (coelacanth, lungfish and tetrapods) and actinoptergii (ray-finned fish including teleosts) taxa, but limited for chondrichthyan fishes. In this study, we summarize available data for chondrichthyes and describe resources for one of the largest projects to characterize one of these fish, Leucoraja erinacea, the little skate. SkateBase (http://skatebase.org) serves as the skate genome project portal linking data, research tools, and teaching resources.

This article is included in the Bioinformatics gateway.

This article is included in the Elasmobranch biology & conservation collection.
This article is included in the Phylogenetics collection.

Corresponding author: Jennifer Wyffels (wyffels@udel.edu)

Competing interests: The authors declare to have no competing interests.

Grant information: This work was supported by a re-entry career award to JTW, National Institute of General Medical Sciences (NIGMS) IDeA Networks of Biomedical Research Excellence (INBRE) 3P20GM103446-1251. Skate genome sequencing was funded by National Institutes of Health (NIH) National Center for Research Resources (NCRR) ARRA Supplements to 5P20RR016463-12 (MDIBL), 5P20RR016472-12 (UD), and 5P20RR16462 (UVM). The North East Cyberinfrastructure Consortium (NECC) is funded by NIH NCRR grants 5P20RR016463-12 (MDIBL), 5P20RR016472-12 (UD), 5P20RR16462 (UVM), SP20RR016457-11 (URI), and 5P20RR030360-03 (UNH) and NIH NIGMS grants 8P20GM103423-12 (MDIBL), 8P20GM103446-12 (UD), 8P20GM103449 (UVM), 8P20GM103430-11 (URI), and 8P20GM103506-03 (Dartmouth), and NSF Experimental Program to Stimulate Competitive Research (EPSCoR) grants EPS-0904155 (UM), EPS-081425 (UD), EPS-1101317 (UVM), EPS-1004057 (URI), and EPS-1101245 (UNH).

Copyright: © 2014 Wyffels J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

How to cite this article: Wyffels J, L. King B, Vincent J et al. SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes [version 1; peer review: 2 approved] F1000Research 2014, 3:191 https://doi.org/10.12688/f1000research.4996.1

First published: 12 Aug 2014, 3:191 https://doi.org/10.12688/f1000research.4996.1
Introduction

Chondrichthyan fishes are composed of two subclasses, Holoccephali and Elasmobranchii. Holoccephalans are the more basal of the pair having first appeared more than 400 million years ago and include a single surviving order, Chimaeriformes, the chimaeras, with 39 extant species. Elasmobranchs appeared approximately 350 million years ago and include more than 1000 species of sharks, skates, and rays. Chondrichthyan fishes occupy a pivotal position at the base of the vertebrate phylogenetic tree. For research that includes an evolutionary component, representation of this diverse class affords a valuable perspective to evaluate all vertebrates.

Chondrichthyan fishes are circumglobal in distribution and occupy a wide range of ecological habitats. Their life history parameters are equally disparate but in general chondrichthyan are slow growing and late maturing fishes with an increased risk of extinction. Fecundity is as few as 1 or 2 for viviparous species such as the sand tiger shark, Carcharias taurus and as high as 300 for the whale shark, Rhincodon typus. They are of economic importance for fisheries as well as ecotourism. Management and assessment of stock is essential to ensure both ecotourism interests and food resources remain sustainable. Management of fish populations has increasingly relied on molecular tools to investigate population structure, properly identify species, and compliance with fishing quotas.

Elasmobranchs have been used as a model for biomedical research for more than 100 years. Elasmobranchs, like other cartilaginous fishes, exhibit many fundamental vertebrate characteristics, including a neural crest, jaws and teeth, an adaptive immune system, and a pressurized circulatory system. The skate is a powerful comparative model to study biological processes shared among jawed and limbed vertebrates such as development, renal physiology, immunology, toxicology, neurobiology, and wound healing and regeneration. They are the most ancient vertebrates to possess an adaptive immune system that generates antibodies using a V(D)J combinatorial mechanism. Phylogenetically, cartilaginous fishes are the first vertebrates to possess a thymus, a central lymphoid organ that provides a microenvironment for the development of T cells. The thymus shares a common organization with more derived vertebrates containing cortical and medullary regions.

In addition to shared physiological characteristics, the diversity of specializations between species allows investigations of evolution within a single clade. For example, elasmobranchs use a plethora of reproductive strategies that span the full range of maternal investment from placental viviparity to strict lecitrophic oviparity. Besides sexual reproduction, captive elasmobranchs are capable of asexual parthenogenesis. Of these reproductive mechanisms, the most tractable for research purposes is oviparity. Approximately 45% of chondrichthyan utilize oviparity including all Chimaeriformes, Heterodontiformes (bullhead sharks), Rajiformes (skates) and Scyliorhinidae (catsharks). Many species can be maintained in captivity and will breed and lay eggs throughout an annual season. Artificial insemination has been reported for two oviparous species, the common skate, Raja eglanteria, and the cloudy catshark, Scyliorhinus torazame. Additionally, sperm storage allows wild caught females to lay eggs for several years without requiring males or captive mating events.

Leucoraja erinacea, the little skate, was chosen for a genome sequencing project to represent this clade of fishes because of their use as a biomedical model, experimental tractability, genome size, existing sequence data, and northeast regional distribution. The sequencing project is an ongoing effort of the North East Bioinformatics Collaborative (NEBC) of the North East Cyberinfrastructure Consortium (NECC), composed of the bioinformatics core facilities from Delaware, Maine, New Hampshire, Rhode Island, and Vermont funded by National Institutes of Health (NIH) Institutional Development Awards (IDeA) and/or National Science Foundation (NSF) Experimental Program to Stimulate Competitive Research (EPSCoR) programs.

Existing resources

There is a single order of holoccephalans and 13 orders of elasmobranchs. The distribution of species in orders, families and genera is shown in Figure 1. The batoids are composed of 4 orders, Rajiformes, Myliobatiformes, Torpidiformes, and Rhinopristsiformes, and contain 54% of extant chondrichthyan species. Sharks are broadly divided into two super orders, Galeomorphi and Squalomorphi that together account for 43% of extant chondrichthyan species. The galean sharks include 4 orders: Heterodontiformes, Orectolobiformes, Lamniformes and Carcharhiniformes, and represent 30% of extant chondrichthyan species. Squalean sharks are composed of 4 orders: Squaliformes, Squatiniformes, Pristiphoridae, and Hexanchiformes, comprising 13% of extant chondrichthyan species. Among individual orders, Rajiformes, the skates, have the most species (345) followed by Carcharhiniformes, the ground sharks (283) and Myliobatiformes (226). These ‘big three’ orders contain 854 species, 72% of extant chondrichthyan species.

Chondrichthyan conservation, management, and research all benefit from easily accessible and well-documented molecular resources. The organization of data and metadata in archival databases is critically important for efficient use of large and complex datasets. The International Nucleotide Sequence Database Collaboration (INSDC) is composed of three large public nucleotide repositories, DNA Data Bank of Japan (DDBJ), European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), and GenBank at the National Center for Biotechnology Information (NCBI). Recently, two new NCBI database projects were initiated to collect details of samples, BioSample, and project data, BioProject, and propagate the metadata to all associated database entries in an effort to expand the use of already existing and rapidly expanding molecular resources. Figure 2 illustrates the relationship between BioProject, BioSample and the sequence data for SkateBase. Because the BioProject and BioSample databases were established in 2012, not all existing datasets have metadata or details of the biological source to populate a BioSample and BioProject entry. When available, BioProject and BioSample hyperlinks are included for Sequence Read Archive (SRA), Expresseed Sequence Tag (EST) and Genome Survey Sequence (GSS) datasets in the tables below.

Table 1 is a summary of chondrichthyan sequence data in NCBI databases, UniProtKB, and the Protein Data Bank (PDB) with L. erinacea, Callorhinichus mili and Scyliorhinus canicula, the three species featured at SkateBase listed individually. The distribution of holoccephalans and elasmobranchs in public databases
is illustrated in Figure 3. Despite the majority of species belonging to Elasmobranchi, the GenBank, UniProtKB/TrEMBL, and Gene databases are dominated by chimaera data derived from the genome sequence of the elephant shark, *C. milii*. Elasmobranch data predominates in UniProtKB/Swiss-Prot, PDB, BioProject and BioSample databases as well as the number of whole mitochondrial genomes (WMG) in GenBank. The EST and SRA databases are nearly equally split between the two subclasses.

Chondrichthyan genomes

Currently there are multiple efforts to sequence an elasmobranch genome in various stages of completion (Table 2); however, only

![Figure 1. Species distribution within chondrichthyan orders.](image)

Figure 1. Species distribution within chondrichthyan orders. There is a single order of Holocephalans, Chimaeriformes, and 13 orders of elasmobranchs. The distribution of chondrichthyan species in each of the 14 orders is shown relative to the total number of species, genera and families for the clade. The batoids are composed of 4 orders, Rajiformes, Myliobatiformes, Torpidiformes, and Rhinopristiformes, and contain 54% of extant chondrichthyan species. Sharks are broadly divided into two super orders, Galeomorphii and Squalomorphii that together include the remaining 9 orders and 43% of extant chondrichthyan species.
the skate genome project currently has data publically available. Efforts to sequence the whale shark are underway at the Georgia Aquarium and Emory University (personal communication, Alistair Dove, Georgia Aquarium). Genoscope leads a project to sequence the genome of another oviparous elasmobranch, the catshark, *S. canicula*[^2]. The current assembly is described in Table 2. A second version of the catshark genome with 200x coverage, including mate pair sequencing, is in progress (personal communication, Sylvie Mazan, French National Centre for Scientific Research). Among holocephalans, the genome of the elephant shark, *C. milii*, was described in a 1.4x coverage assembly in 2006[^3]. With continued sequencing the assembly coverage is currently 19.25x and data has been made available through the project website (http://esharkgenome.imcb.a-star.edu.sg/) and Genbank[^4].

A powerful resource for characterizing genomes is large-insert clone libraries where each clone contains a large (~100kb) genomic region. Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) libraries are DNA constructs within a plasmid used to transform bacteria. As the bacteria grow the inserted DNA is amplified and subsequently isolated and sequenced. BACs are beneficial for genome sequencing projects because the insert size can be very large, nearly 350 kb, facilitating assembly post-sequencing. BAC/PAC libraries were built for several chondrichthyan species.

[^2]: Dove, A. (personal communication, 2022). Efforts to sequence the whale shark are underway at the Georgia Aquarium and Emory University. Genoscope leads a project to sequence the genome of another oviparous elasmobranch, the catshark, *S. canicula*. The current assembly is described in Table 2. A second version of the catshark genome with 200x coverage, including mate pair sequencing, is in progress (personal communication, Sylvie Mazan, French National Centre for Scientific Research). Among holocephalans, the genome of the elephant shark, *C. milii*, was described in a 1.4x coverage assembly in 2006[^3]. With continued sequencing the assembly coverage is currently 19.25x and data has been made available through the project website (http://esharkgenome.imcb.a-star.edu.sg/) and Genbank[^4].

[^3]: Mazan, S. (personal communication, 2022). A powerful resource for characterizing genomes is large-insert clone libraries where each clone contains a large (~100kb) genomic region. Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) libraries are DNA constructs within a plasmid used to transform bacteria. As the bacteria grow the inserted DNA is amplified and subsequently isolated and sequenced. BACs are beneficial for genome sequencing projects because the insert size can be very large, nearly 350 kb, facilitating assembly post-sequencing. BAC/PAC libraries were built for several chondrichthyan species.
Table 1. Chondrichthyan molecular sequence data in public databases.

Taxonomy	GenBank WMG	GenBank EST	GenBank EST lib	GenBank GSS	GenBank GSS lib	WGS (Mbp)	GEO	SRA	Swiss-Prot	TrEMBL	PDB						
Chondrichthytes	7777	16	75	21069	55810	72	192948	33	28497	5	2492.3	3	22	276	26485*	178	
Holocephali	7863	3	21	20201	39512	8	109965	6	27944	1	936.9	1	13	12	20170	0	
C. miliaris	7868	3	21	20110	39232	1	109965	6	27944	1	936.9	1	13	3	19989	0	
Elasmobranchii	7778	13	54	868	16273	64	82983	27	553	4	1555.4	2	9	264	6299	178	
L. erinacea	7782	3	7	13	284	1	31167	5	0	0	0	1555.4	1	2	6	123	0
S. canicula	7830	2	8	13	645	1	1600	7	0	0	0	1555.4	1	1	38	283	1

(WMG) whole mitochondrial genome, (EST) Expressed Sequence Tags, (lib) libraries (GSS) Genome Survey Sequences, (GEO) Gene Expression Omnibus, (WGS) Whole Genome Shotgun, (SRA) Sequence Read Archive, (WMG) whole mitochondrial genomes, (PDB) Protein Data Bank. * includes 16 unidentified fin entries.

NCBI databases accessed July 25, 2014, Release 2014_07 of 09-Jul-2014, GEO sample accessions

Table 2. Chondrichthyan genome sequencing projects.

Website	Genome size (Gb)	Coverage	Contigs	N50 (bp)	Platform	Facility	Genbank	BioProject	BioSample	Date
Callorhinus milii	esharkgenome	0.910	19.25x	21,203	Sanger & 454	IMCB	AAVX02000000	PRJNA236996	SAMN000000800	20-Dec-13*
Elasmobranchii										
Leucoraja erinacea	skatebase.org	3.42	26x	2,62,365	Illumina PE	NECC	AESE010000000	PRJNA60893	SAMN00189066	22-Dec-11
Scyliorhinus canicula	-	3.5	32x	3,449,662	Illumina PE	Genopscope-CEA	-	-	-	
Rhinodon typus	-	3.44(est.)	35x	1,292	Illumina PE	Emory University & Georgia Aquarium	-	PRJNA255419	SAMN002918461 & SAMN002918462	16-Jul-14

* (M) Mega or (G) Giga base pairs; (PE) paired end; (est) estimated; (ICMB) Institute of Molecular and Cell Biology, A*STAR, (NECC) North East Cyberinfrastructure Consortium

* replaced original sequence data GenBank AAVX00000000.1 (1.4x coverage) released 20-DEC-2006
The distribution of data for Holocephalii (chimaeras) and elasmobranchii (sharks and rays) subclasses of chondrichthyan fishes does not always reflect their species distribution. The number of species represented in GenBank is representative of the actual species distribution but the amount of data in GenBank is not. Holocephalan data forms the majority of the NCBI Gene, GenBank, Genome Survey Sequence (GSS) and UniProt TrEMBL databases. The number of Short Reach Archive (SRA) experiments and EST sequences in nearly equal for each subclass and the remaining databases are primarily populated by elasmobranch data.

including the nurse shark, *Ginglymostoma cirratum*; elephant shark, *C. milli*; little skate, *L. erinacea*; horn shark, *Heterodontus francisci*; dogfish shark, *Squalus acanthias*; and catshark, *S. canicula*. These libraries were used to successfully characterize a handful of genomic regions such as little skate *HoxA* cluster, *Hox A and D* clusters, catshark *HoxA, B and D* clusters, *C. mili HoxA-D clusters*, immunoglobulin receptor IgW C regions, and neurohypophysial gene loci.

RNA databases

Transcriptome sequencing seeks to characterize all genes expressed in a tissue or set of tissues in a sample. Technologies to identify the complete RNA transcript sequence have developed from studies of a small number of transcripts to comprehensive characterizations. The application of large-scale cDNA cloning of Expressed Sequence Tags (ESTs) gave initial characterizations of 5-prime and/or 3-prime ends of transcripts in several elasmobranchs including *L. erinacea* and *S. acanthias* (Table 3). EST sequence data are available in the EST divisions of the GenBank, EMBL and DDBJ databases that make up the INSDC. cDNA clones and their sequences from these EST projects have enabled the complete characterization of the full-length cDNA sequence of several genes. In the last five years, high-throughput RNA sequencing (RNA-Seq) has been applied to comprehensively examine the complete
sequence of transcripts in tissues of cartilaginous fishes. Among the most valuable RNA-Seq datasets are those from whole late-stage embryos following organogenesis. Our project has generated these datasets for L. erinacea, S. canicula and C. milii⁴³. Public RNA-Seq data sets can be found in the NCBI Gene Expression Omnibus and Short Read Archive (SRA) databases or the EBI ArrayExpress and European Nucleic Acid (ENA) archives (Table 3 and Table 4).

Mitochondrial genomes

Individual mitochondrial genes such as cytochrome c oxidase subunit I (CO1 or COX1) and NADH-ubiquinone oxidoreductase chain 2 (NADH2 or MT-ND2) have been used extensively to construct molecular phylogenies⁴⁴-⁴⁷. The Fish barcode of life (FISH-BOL) a working group of the International Barcode of Life Project (iBOL), has CO1 barcodes for 54% of elasmobranchs and 62% of holocentrodans (http://www.fishbol.org, accessed July 24, 2014). Recently, whole mitochondrial sequences are increasingly popular for their increased granularity when resolving branches of phylogenetic trees⁴⁸. Whole mitochondrial genome sequences currently are available for 72 species of sharks, skates, rays and chimaeras. These sequences are accessible in the GenBank, EMBL and DDBJ databases summarized in Table 5⁴⁹.

Chondrichthyan Tree of Life

Currently, molecular data for cartilaginous fishes is being collected as part of the Chondrichthyan Tree of Life project (http://sharksrays.org). The project website currently includes 5 elements: 1) an interactive phylogenetic tree⁵₀; 2) scientific illustrations of specimens; 3) range information for all extant species; 4) interactive comparative anatomy through segmented CT scan data; and 5) DNA sequence for 1265 single copy orthologous genes⁵₁. Project data will be available in public databases as well as through the project website once collection and analysis is complete (personal communication, Gavin Naylor, Medical University of South Carolina).

Protein databases

Given the improved technologies to characterize full-length transcripts using RNA-Seq, there are increasingly more protein sequence data for chondrichthyan. The UniProt Consortium, consists of groups from the European Bioinformatics Institute (EBI), the Swiss Institute of Bioinformatics (SIB) and the Protein Information Resource (PIR). The consortium maintains the UniProt Knowledgebase (UniProtKB), a comprehensive and standardized catalogue of protein sequences and functional annotation knowledgebase⁵₂. Proteins with UniProtKB accessions are first automatically annotated, unreviewed UniProtKB/TrEMBL entries that progress to UniProtKB/TrEMBL entries following curator review. Among Chondrichthyans, there are 12 UniProtKB/Swiss-Prot and 20,170 UniProtKB/TrEMBL entries for holocentrodans and 264 UniProtKB/Swiss-Prot and 6,299 UniProtKB/TrEMBL entries for elasmobranchs in Release 2014_07 of 09-Jul-2014 of the knowledgebase (Table 1). An unidentified fin sample accounts for 16 UniProtKB/TrEMBL entries that are not included in either Holocentrodan or Elasmobranchii. PDB, an archive of protein macromolecular structural data, has 178 entries for Chondrichthyans, all elasmobranchs⁵³. Of these, 76% are derived from 2 species from a single family, Torpediniformes, the electric rays, and in total only 10 species are represented in PDB.

The distribution of data in NCBI databases, PDB, and UniProtKB for chondrichthyan orders is shown in Figure 4. When order Chimaeriformes is included (Figure 4A) the distributions are disproportionate due to the large volume of annotated sequence data from the elephant shark genome. The distributions are repeated exclusively for elasmobranchs. To understand if the data distribution is representative of the number of species in each order, a species distribution is included in each chart. A cladogram (Figure 4B) is linked to the chart legend and illustrates the phylogeny between chondrichthyan orders.

SkateBase

SkateBase (http://skatebase.org) is the public portal for the little skate genome project and is a valuable collection of data and learning resources. The NEBC little skate genome project team hosted three week-long workshops and a mitochondrial genome annotation jamboree with the goal of using the project data to develop a bioinformatics aware workforce and foster collaborative and distributed big data research. The lecture materials and worked annotation examples are included at SkateBase for educational use (http://skatebase.org/workshops). The project vitae contains an overview and timeline of the genome project effort along with key personnel, project related publications and presentations, the curation team, and citation information for researchers utilizing the resource in their publication. A Gene Table currently represents manually curated genes derived from workshops and curriculum with extensive annotation evidence. The number of gene entries will continue to grow through usage and expansion of the SkateBase educational modules. Plans to update the annotation interface to enable community annotation by domain experts is planned for the future.

SkateBase provides links to web resources with chondrichthyan data including the Chondrichthyan Tree of Life, Elephant Shark Genome Project (http://esharkgenome.imcb.a-star.edu.sg), the first described genome for a chimaera⁵₄, and Vertebrate TimeCapsule, (http://transcriptome.cdb.riken.go.jp/vtcap), a project that aims to develop a gene database to represent evolution and development for vertebrates and currently includes transcriptome data for a hagfish (Eptatretus burgeri), shark (S. torazame) and birchir (Polypterus senegalus)⁵₅. SkateBase data is linked locally as well as from NCBI in the Gene Expression Omnibus (GSE26235), GenBank (AEO010000000) and Sequence Read Archive (SRA026856) to ensure convenient and easy access. A link to the American Elasmobranch Society (http://www.elasmo.org), a non-profit organization with the mission of advancing the scientific study of living and fossil sharks, skates, rays, and chimaeras and promoting education, conservation, and wise utilization of natural resources, connects domain scientists to the little skate genome project.

SkateBase data includes embryonic transcripts for three chondrichthyan species, a chimaera, C. mili, a shark, S. canicula and the little skate, L. erinaceus as well as the first draft of the little skate genome. The assembled skate genome sequence gave a single high-coverage contiguous sequence that represented the entire length of the mitochondrial genome. The mitochondrial genome was subsequently annotated as part of a Jamboree in 2011⁵₆. The annotated sequence is represented by the NCBI Reference Sequence (RefSeq) project, accession NC_016429, and provides extensive information for each gene.
Table 3

BioSample	BioSample Description	Library ID	Organism	Sample age/sex	Sample type	ESTs	Facility	Date	
1006673	Elephant shark full-length cDNA library from gills	1000673	Callorhinchus milii	testis	27944	IMCB	2004		
1006674	Elephant shark full-length cDNA library from intestine	1000674	Callorhinchus milii	testis	29234	IMCB	2012		
1006675	Elephant shark full-length cDNA library from liver	1000675	Callorhinchus milii	testis	16664	IMCB	2012		
1006676	Elephant shark full-length cDNA library from kidney	1000676	Callorhinchus milii	testis	16573	IMCB	2012		
1006677	Elephant shark full-length cDNA library from spleen	1000677	Callorhinchus milii	testis	19246	IMCB	2012		
1006678	Elephant shark full-length cDNA library from intestine	1000678	Callorhinchus milii	testis	12146	IMCB	2012		
158310	Torpedo marmorata electric lobe	158310	Torpedo marmorata	-	8	CNRS	2000		
158311	Torpedo marmorata electric organ	158311	Torpedo marmorata	-	8	CNRS	2000		
159482	Toptedo californica electric organ	159482	Toptedo californica	-	10185	Children's National Medical Center, USA	2006		
154386	Little skate embryo cell line (LEE-1); 5' sequences	154386	Leucoraja erinacea	adult, mixed	5698	MDIBL	2004		
154387	Little skate embryo tissues; 5' sequences	154387	Leucoraja erinacea	embryo, stages 19-24	5600	MDIBL	2006		
222710	Dogfish testis, round spermatids zone (SSH)	222710	Scyliorhinus canicula	adult	79	Genoscope-CEA	2011		
222711	Dogfish testis - spermatogonia zone (SSH)	222711	Scyliorhinus canicula	adult	79	Genoscope-CEA	2011		
222712	Dogfish testis - round spermatids zone (SSH)	222712	Scyliorhinus canicula	adult	79	Genoscope-CEA	2011		
222713	Dogfish testis - spermatogonia zone (SSH)	222713	Scyliorhinus canicula	adult	79	Genoscope-CEA	2011		
222714	Dogfish testis - round spermatids zone (SSH)	222714	Scyliorhinus canicula	adult	79	Genoscope-CEA	2011		
222715	Dogfish testis - spermatogonia zone (SSH)	222715	Scyliorhinus canicula	adult	79	Genoscope-CEA	2011		
BioSample	BioSample Description	Library ID	Sample type	Organism	BioProject	SRA description	SRA	Facility	Date
-------------	--	-------------	-------------	----------	-------------	--	-------	----------	-----------
PRJNA18361	cloudy catshark embryo cDNA library	SAMN0000800	EST: LIBEST	Scyliorhinus torazame	adult	Scyliorhinus torazame embryo with external yolk sac	SRX001870	IMCB	2008
PRJNA135005	shark whole genome shotgun library 2	GSM643959	GSM: LIBGSS	Ginglymostoma cirratum	adult	Ginglymostoma cirratum adult red blood cells	SRX036538	MDIBL	2011
PRJNA168475	shark whole genome shotgun library 1	EST: LIBEST	EST: LIBEST	Chiloscyllium plagiosum	adult	Chiloscyllium plagiosum adult thymus RNA	SRX220387	IMCB	2013
PRJNA184342	shark liver regeneration	EST: LIBEST	EST: LIBEST	Chiloscyllium plagiosum	female	Chiloscyllium plagiosum female liver	SRX001870	IMCB	2008
PRJNA183175	shark liver regeneration	EST: LIBEST	EST: LIBEST	Chiloscyllium plagiosum	female	Chiloscyllium plagiosum female liver	SRX001870	IMCB	2008
PRJNA184343	shark whole genome shotgun library 2	EST: LIBEST	EST: LIBEST	Chiloscyllium plagiosum	female	Chiloscyllium plagiosum female liver	SRX001870	IMCB	2008
PRJNA192740	shark whole genome shotgun library 1	EST: LIBEST	EST: LIBEST	Chiloscyllium plagiosum	female	Chiloscyllium plagiosum female liver	SRX001870	IMCB	2008

Table 4. National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database: Chondrichthyan sequence data. [ssh] suppressive subtractive hybridization; [mixed] liver, kidney, brain, testis, ovary, gill, intestine.
BioSample	SRA	BioProject	SRA description	SRA description	Facility	Date
PRJNA168475	SAMN02699938	SRR154861	Illumina sequencing of elephant shark testis RNA	Callorhinchus milii - testis	IMCB	2013
PRJNA168475	SAMN02699937	SRR154860	Illumina sequencing of elephant shark spleen RNA	Callorhinchus milii - spleen	IMCB	2013
PRJNA168475	SAMN02699936	SRR154859	Illumina sequencing of elephant shark ovary RNA	Callorhinchus milii - ovary	IMCB	2013
PRJNA168475	SAMN02699935	SRR154858	Illumina sequencing of elephant shark liver RNA	Callorhinchus milii - liver	IMCB	2013
PRJNA168475	SAMN02699934	SRR154857	Illumina sequencing of elephant shark muscle RNA	Callorhinchus milii - muscle	IMCB	2013
PRJNA168475	SAMN02699933	SRR154856	Illumina sequencing of elephant shark kidney RNA	Callorhinchus milii - kidney	IMCB	2013
PRJNA168475	SAMN02699932	SRR154855	Illumina sequencing of elephant shark intestine RNA	Callorhinchus milii - intestine	IMCB	2013
PRJNA168475	SAMN02699931	SRR154854	Illumina sequencing of elephant shark heart RNA	Callorhinchus milii - heart	IMCB	2013
PRJNA168475	SAMN02699930	SRR154853	Illumina sequencing of elephant shark brain RNA	Callorhinchus milii - brain	IMCB	2013
SAMN00188953	GSM643957	PRJNA135005	Leucoraja erinacea pooled Stage 20–29 embryos	Leucoraja erinacea - stage 20–29	MDIBL	2011
SAMN00188954	GSM643958	PRJNA135005	Scyliorhinus canicula pooled Stage 24–30 embryos	Scyliorhinus canicula - stage 24–30	MDIBL	2011
DRX000491	DRX000491	PRJDA61447	Torazame EST	Ginglymostoma torazame	RIKEN	2011
SAMN01890966	SRX036534	PRJNA177971	Initial Characterization of Leucoraja erinacea Genome Using 500bp Paired-End Sequencing	Leucoraja erinacea - embryo	NECC	2011
SAMN01890965	SRX036535	PRJNA177971	Initial Characterization of Leucoraja erinacea Genome Using 500bp Paired-End Sequencing	Leucoraja erinacea - stage 32	NECC	2011
SAMN01890964	SRX036536	PRJNA177971	Initial Characterization of Leucoraja erinacea Genome Using 500bp Paired-End Sequencing	Leucoraja erinacea - stage 32	NECC	2011
SRR154861	SRR154860	PRJNA168475	Illumina sequencing of elephant shark testis RNA	Callorhinchus milii - testis	IMCB	2013
SRR154859	SRR154858	PRJNA168475	Illumina sequencing of elephant shark ovary RNA	Callorhinchus milii - ovary	IMCB	2013
SRR154857	SRR154856	PRJNA168475	Illumina sequencing of elephant shark muscle RNA	Callorhinchus milii - muscle	IMCB	2013
SRR154855	SRR154854	PRJNA168475	Illumina sequencing of elephant shark intestine RNA	Callorhinchus milii - intestine	IMCB	2013
SRR154853	SRR154852	PRJNA168475	Illumina sequencing of elephant shark heart RNA	Callorhinchus milii - heart	IMCB	2013
SRR154851	SRR154850	PRJNA168475	Illumina sequencing of elephant shark brain RNA	Callorhinchus milii - brain	IMCB	2013

1. SE: single end or (PE) paired end
2. (M): Mega or (G): Giga base pairs
Table 5. Whole mitochondrial sequences for chondrichthyian fishes.

Accessions	BioProject	NCBI Ref_seq	GenBank	Organism	bp	G+C	Date
Holocephali							
Chimaeriformes							
PRJNA50265	NC_014281.1	HM147135.1	CF1	Callorhinchus callorhinchus	16758	34	21-Oct-10
PRJNA50271	NC_014284.1	HM147136.1	CF1	Callorhinchus capensis	16760	34.1	21-Oct-10
PRJNA50273	NC_014285.1	HM147137.1	CF1	Callorhinchus millii	16769	33.7	21-Oct-10
PRJNA11978	NC_003136.1	AJ310140.1	CF1	Chimaera monstrosa	18580	38.6	14-Nov-06
PRJNA50279	NC_014288.1	HM147138	CF1	Chimaera fulva	21336	38.2	19-Oct-10
PRJNA50287	NC_014292.1	HM147140.1	CF1	Harriotta raleighana	18024	42.5	19-Oct-10
PRJNA50283	NC_014290.1	HM147139.1	CF1	Hydrolagus lemuress	21233	39.4	19-Oct-10
PRJNA50289	NC_014293.1	HM147141.1	CF1	Rhinocimara pacifica	24889	41.6	19-Oct-10
Myliobatiformes							
PRJNA247653	NC_024102.1	KJ617038.1	CF1	Gymnura poecilura	17874	45.1	7-May-14
PRJNA239601	NC_023525.1	KF751650.1	CF1	Himantura granulata	17657	39.1	25-Feb-14
PRJNA229016	NC_022837.1	KF482070.1	CF1	Aetobatus flagellum	20201	40.9	3-Nov-13
PRJNA198706	NC_021132.1	KS526959.1	CF1	Dasyatia akajei	17658	40.4	10-Mar-14
PRJNA190131	NC_020352.2	KC196067.2	CF1	Dasyatia bennetti	17668	40.2	22-Jul-13
PRJNA182669	NC_019634.1	JX524174.1	CF1	Dasyatis zugei	18264	36.6	24-May-13
PRJNA15549	NC_007230.1	AY597334.1	CF1	Plesiobatis davesi	17514	41.9	20-Mar-07
PRJNA212605	NC_021767.1	KS992792.1	CF1	Neotrygon kuhli	16905	39.5	17-Jul-13
PRJNA182647	NC_019641.1	JX827260.1	CF1	Taeniura meyeni	17638	41.6	8-Nov-13
Rajiformes							
PRJNA239623	NC_023505.2	JG763823.1	CF1	Dipturus kwangtungensis	16912	41.6	13-Mar-14
PRJNA81399	NC_016429.1	JQ034406.1	CF1	Leucoraja erinacea	16724	40.3	28-Nov-11
PRJNA13984	NC_007173.1	AY525783.1	CF1	Okamejei kenojei	16972	42.4	15-Jun-05
PRJNA111977	NC_000893.1	AF106038.1	CF1	Amblyraja radiata	16783	40.3	22-Apr-09
PRJNA214404	NC_021946.1	KC914434.1	CF1	Raja rhina	16910	41.4	11-Sep-13
PRJNA214407	NC_021963.1	KC914433.1	CF1	Hongeo koreana	16905	42.2	17-Sep-13
PRJNA244226	NC_023944.1	KF648508.1	CF1	Zearaja chilensis	16990	41.1	1-May-14
Rhinopristiformes							
PRJNA228994	NC_022821.1	KF381507.1	CF1	Pristis clavata	16804	39.8	13-Nov-13
PRJNA229000	NC_022841.1	KF534708.1	CF1	Rhinobatos hynnicephalus	16776	40.3	13-Nov-13
PRJNA244205	NC_023951.1	KJ140136.1	CF1	Rhinobatos schlegeli	16780	39.6	6-Apr-14
Elasmobranchii: Selachii (sharks)							
Carcharhiniformes							
PRJNA246074	NC_024055.1	KJ728380.1	CF1	Carcharhinus acronotus	16719	38.4	29-Apr-14
PRJNA244183	NC_023948.1	KF956523.1	CF1	Carcharhinus amblyrynchoides	16705	38.2	6-Apr-14
PRJNA239607	NC_023522.1	KF646785.1	CF1	Carcharhinus leucas	16704	37.4	25-Feb-14
PRJNA252486	NC_024284.1	KJ720818.1	CF1	Carcharhinus melanosulmus	16706	38.6	7-Jun-14
PRJNA193929	NC_020611.1	KC470543.1	CF1	Carcharhinus obscurus	16706	38.6	8-Nov-13
PRJNA239626	NC_023521.1	KF612341.1	CF1	Carcharhinus sorrah	16707	38.9	25-Feb-14
Accessions	BioProject	NCBI Ref_seq	GenBank	Organism	bp	*G+C	Date
------------	------------	--------------	---------	----------	----	-------	--------
PRJNA217222	NC_022193.1	KF111728.1	Galeocerdo cuvier	16703	36.9	31-Oct-13	
PRJNA236275	NC_023361.1	KF646786.1	Glyphis garricki	16702	39.2	13-Jan-14	
PRJNA212606	NC_021768.2	KF006312.2	Glyphis glyphis	16701	39	25-Jul-14	
PRJNA239588	NC_023527.1	KF899325.1	Mustelus griseus	16754	39	25-Feb-14	
PRJNA11875	NC_000890.1	AB015962.1	Mustelus manazo	16707	38.3	8-Apr-00	
PRJNA228986	NC_022819.1	KF356249.1	Prionace glauca	16705	37.5	13-Nov-13	
PRJNA222618	NC_022735.1	AB560493.1	Pseudotriakis microdon	16700	36.4	29-Oct-13	
PRJNA168394	NC_018052.1	JQ693102.1	Scoliodon macrorhynchos	16693	37	31-Mar-14	
PRJNA11849	NC_001950.1	Y16067.1	Scyllorhinus canicula	16697	38	18-Apr-05	
PRJNA226138	NC_022679.1	JX827259.1	Sphyra lewini	16726	39.5	8-Nov-13	
Orectolobiformes							
PRJNA165947	NC_017882.1	JQ434458.1	Chiloscyllium griseum	16755	36.1	6-Mar-12	
PRJNA37667	NC_012570.1	JX162601.1	Chiloscyllium plagiosum	16725	37.4	25-Jul-12	
PRJNA81281	NC_016686.1	JQ082337.1	Chiloscyllium punctatum	16703	36.8	31-Mar-14	
PRJNA217221	NC_022148.1	KF111729.1	Orectolobus japonicus	16676	37.3	19-Sep-13	
PRJNA238093	NC_023455.1	KF679782.1	Rhinodon typus	16875	37.1	19-Mar-14	
		KC633221	Rhinodon typus	16928	37.1	31-Mar-14	
Lamniformes							
PRJNA239610	NC_023520.1	KF569943.1	Carcharias taurus	16773	39.5	5-Feb-14	
PRJNA221185	NC_024215.1	KC914387.1	Carcharodon carcharias	16744	40.8	31-Oct-13	
PRJNA232870	NC_023266.1	KF597303.1	Cetorhinus maximus	16670	40.6	14-Jan-14	
PRJNA2266140	NC_022691.1	KF361861.1	Isurus oxyrinchus	16701	43.2	28-Sep-13	
PRJNA247657	NC_024101.1	KJ616742.1	Isurus paucus	16704	43.8	7-May-14	
PRJNA252473	NC_024269.1	KF962053.1	Lamna ditropis	16699	41.8	30-May-14	
PRJNA207613	NC_021442.1	KC702506.1	Megachasma pelagios	16694	36.7	13-May-13	
PRJNA33525	NC_011825.1	EU528659.1	Mitsukurina owstoni	17743	38.8	29-Dec-08	
PRJNA228992	NC_022822.1	KF412639.1	Alopias pelagicus	16692	38.6	18-Dec-13	
PRJNA207614	NC_021443.1	KC757415.1	Alopias superciliosus	16719	39.3	26-Jun-13	
Heterodontiformes							
PRJNA111979	NC_003137.1	AJ310141.1	Heterodontus francisci	16708	39.9	14-Nov-06	
PRJNA209901	NC_021615.1	KC845548.1	Heterodontus zebra	16720	40	18-Jun-13	
Squaliformes							
PRJNA246067	NC_024059.1	KJ128289.1	Cirrhitagaleus australis	16543	38.8	29-Apr-14	
PRJNA226141	NC_022734.1	AB560492.1	Somniosus pacificus	16730	39.3	29-Oct-13	
PRJNA11856	NC_002012.1	Y18134.1	Squalus acanthias	16738	38.8	18-Apr-05	
Squatinaformes							
PRJNA252467	NC_024276.1	KJ619663.1	Squatina plana	16689	37.9	4-Jun-14	
Pristiophoriformes							
PRJNA247682	NC_024110.1	AB721306.1	Pristionchus japonicus	18430	44.5	10-May-14	
Hexanchiformes							
PRJNA226134	NC_022732.1	AB560490.1	Hexanchus griseus	17223	36.3	29-Oct-13	
PRJNA226149	NC_022733.1	AB560491.1	Hexanchus nakamura	18605	36.3	29-Oct-13	
PRJNA226155	NC_022730.1	AB560488.1	Heptanchias perlo	18909	35.9	29-Oct-13	
PRJNA226147	NC_022729.1	AB560487.1	Chlamydoselachus anguineus	17314	35	29-Oct-13	
PRJNA226123	NC_022731.1	AB560489.1	Notorynchus cepedianus	16990	38.2	29-Oct-13	

*Metazoan Mitochondrial Genomes Accessible dataset Metamiga (http://amiga.cbmeg.unicamp.br/)
Figure 4. A survey of public data and phylogeny for chondrichthyan orders. A. The 14 orders of chondrichthyan fish and their relative distribution in public nucleotide and protein databases for Chondrichthyes and Elasmobranchii are shown individually. The species distribution for each Order and GenBank are similar indicating sequence data has been collected for a broad range of chondrichthyans. For Chondrichthyes, the elephant shark genome project data contributes the majority of the data in NCBI Gene, GenBank, Genome Survey Sequence (GSS), and the Short Reach Archive (SRA) databases. The NCBI GSS, GSS libraries, and Protein Data Bank (PDB) are the least diverse with representation of 1–6 of the 14 Orders. The color of each Order as represented in the bar chart is included in the cladogram key with left to right in the bar chart corresponding with top to bottom in the cladogram. B. A cladogram of Chondrichthyes illustrates the phylogeny relationship between the 14 Orders. The color code associated with each Order appears consecutively in the bar chart.

Whole embryos were used to build the transcriptome libraries available at SkateBase. Two C. milii embryos, stage 32, were combined and used to build a chimera library. The transcriptome library for S. canicula was assembled from six pooled embryos, stages 24–30. The embryonic skate transcriptome library was assembled using six pooled embryos ranging in stage from 20–29. This combination of stages encompasses a large portion of the developmental period for these fishes and represents a catalog of genes important for organogenesis of all or part of every physiological system. Early developmental events are similar for nearly all elasmobranchs regardless of reproductive mode or adult body form enabling the data to be useful for more than just the specific species from where it was derived. Since all three embryonic transcriptomes contain a similar stage embryo direct comparison for temporal expression patterns is possible. Skatebase includes tools for data investigation, SkateBLAST, a sequence retrieval tool, Skate Contig Lookup, and genome browsers for three skate whole mitochondrial sequences, L. erinacea, the thorny skate, Amblyraja radiata, and, the ocellate spot skate, Okamejei kenojei. Skatebase contains resources that can be used for teaching and research purposes. As an example, two use cases follow, one for sequence or homology based research and the other for education.

SkateBLAST
A common task for researchers is searching for genes of interest in a genome or transcriptome. Knowledge of the gene sequence at the DNA or RNA level is needed for many different studies, including phylogenetic analysis or designing primers for quantitative PCR gene expression studies. Here we describe the major steps necessary to identify relevant sequences for a gene of interest using the BLAST sequence similarity tool at SkateBase. SkateBase features a web interface to BLAST, named SkateBLAST, that builds upon the ViroBLAST package version 2.2, with custom modifications allowing parallel cluster-based execution of queries and enhanced display of results. The overall workflow consists of a) entering a query sequence and selecting the database to search; b) evaluating the alignments returned; c) retrieving the sequence from one of the SkateBLAST databases; and d) checking to make sure that the retrieved sequence aligns best to the query sequence. The following description provides a brief tutorial on the overall workflow while describing tools at SkateBase.

Figure 5 demonstrates the use of SkateBLAST to find expressed sequences for the gene, suppressor of cytokine signaling 6 (SOCS6). SOCS6 is an E3 ubiquitin ligase that interacts with c-KIT to suppress
Detailed Instructions

Step 1: Enter Protein Sequence to Search

1. **Enter Query Parameters**
 - **Query Sequence**: Paste your protein sequence.
 - **Expect**: 10
 - **E Value**: 0.0001

Step 2: Select tblastn as Program

- **Program Selection**
 - Select tblastn from the list of available programs.

Step 3: Select Skate Transcriptome Contigs

- **Subject Database**
 - Choose the database containing Skate transcriptome contigs.

Step 4: Run Search

- **Search Parameters**
 - **Word size**: 11
 - **Max target sequences**: 100
 - **Max hits per target sequence**: 10

- **Click on 'Raw BLAST Output Report' to view alignments**

Example Output

Query	Subject	e-value	Query Cover	Subject Cover
g00138	g00138	1.00E-09	100.00%	100.00%
g00138	g00138	1.00E-09	100.00%	100.00%
g00138	g00138	1.00E-09	100.00%	100.00%
g00138	g00138	1.00E-09	100.00%	100.00%
g00138	g00138	1.00E-09	100.00%	100.00%
g00138	g00138	1.00E-09	100.00%	100.00%
g00138	g00138	1.00E-09	100.00%	100.00%
g00138	g00138	1.00E-09	100.00%	100.00%
g00138	g00138	1.00E-09	100.00%	100.00%
g00138	g00138	1.00E-09	100.00%	100.00%
g00138	g00138	1.00E-09	100.00%	100.00%

Note:
- The above table is an example of search results. Actual results may vary depending on the input sequence and database selection.
- The **e-value** indicates the statistical significance of the alignment.
- **Query Cover** and **Subject Cover** show the percentage of query and subject sequences that are aligned.

F1000Research 2014, 3:191 Last updated: 21 APR 2022
Length of Query Protein is 535 aa

Length of Subject Sequence (bp)

Score, Expect Value and Percent Identity

Alignment Coordinates and Reading Frame

SkateBase Contig Lookup

Enter a transcriptome contig number OR a genome contig number

Little Skate Transcriptome Contig Result
cellular proliferation through its SH2 domain\(^6\). The first step to identify SOCS6 in the skate transcriptome begins with entering the protein sequence for human SOCS6 that was obtained from UniProt and searching this sequence against the skate transcriptome using the tblastn program. The next step is to evaluate the alignments to determine which transcriptome sequences best represent SOCS6. When interpreting the pairwise alignments from SkateBlast as in any BLAST tool, it is important to examine: a) alignment statistics; b) alignment coverage; and c) presence of protein domains that you may expect to be conserved. The alignment statistics are reported to ascertain whether you would expect the given alignment by chance or not. There are three key alignment statistics, the expectation (E)-value, percent identity and alignment length. The E-value represents the probability that you would expect an alignment with that alignment score or better by random chance, thus the lower the E-value, the better the alignment. Conversely, the greater the percent identity (percent identical sequence) and alignment length, the more similar the two sequences are assumed to be. Alignment coverage with respect to the query or subject sequence (alignment length divided by the length of the query or subject sequence) can also be an important consideration, as low coverage suggests that important regions of one or both sequences may not be represented in the alignment. Finally, there may be particular sequence features, such as protein domains, that you would expect to find in the alignment. If those domains are missing, then it suggests that you have a partial or misleading alignment.

Once a transcriptome sequence of interest, such as contig15542, is identified in the SkateBLAST results, you must do a reciprocal search of that sequence against a database of protein sequences to confirm that the sequence aligns best to your gene of interest. You can retrieve the full sequence directly from the BLAST tool or using the Skate Contig Lookup tool (Figure 5D): a) specify the transcriptome that you had originally searched using SkateBLAST; b) enter the sequence identification or contig number is entered into the query box; and c) select the ‘GO’ button. The user can copy the
returned sequence and use it for further exploration of sequence homology at NCBI or similar databases.

SkateBase classroom use case: teach concepts of gene and protein annotation

SkateBase includes valuable teaching resources derived from the project workshops on gene and protein annotation. Infrastructure for sequence annotation was developed and modules for use in teaching are available. Access to the teaching modules is through the Curator Access link from the homepage and permission is granted by request using the email link at the bottom of each page, info@SkateBase.org. Once successfully logged into the site, access to pre-computed blast results, guides and examples, annotation forms, and links to external tools helpful for sequence analysis are available. Gene annotation begins with a transcriptome contig identified through a SkateBlast search as illustrated above. The portion of the transcript that codes for protein is identified using an open reading frame or ORF finder tool. Annotation follows a workflow where complimentary sequences from the transcriptome and genome are aligned allowing annotation of both sequences using Sequence Ontology vocabulary\(^67\). The evidence is recorded in an annotation form that records information about the annotator and sequences and includes a comment box for questions and comments between students and teachers or curators and annotators. The annotation form records the pairwise alignment of the transcriptome and genome contigs, notes concerning mismatches or gaps, as well as output from the ORF tool. The untranslated regions (UTR) at the beginning and end of each sequence, 5'UTR and 3' UTR regions, as well as the intron/exon structure for the genomic contig and CDS for the transcriptomic contig are recorded in the Gene Annotation Form. When completing the Gene Annotation Form, the appropriate activity must be selected and can be customized to specify the user’s course ID, institution or workshop title to track annotation history. Protein annotation uses the rapid annotation interface for proteins, RACE-P, developed by the PIR. A UniProt accession number is required to initiate a new annotation form. The form is composed of 6 blocks of information, protein information, gene information, a bibliography, Gene Ontology (GO), computational analysis using tools such as Pfam\(^68\), TMHMM\(^69\), SignalP\(^70\), COILS\(^71\), NetPhos\(^72\) and EMBOSS\(^73\), and protein family evidence.

Discussion

The volume of data in GenBank continues to grow exponentially, doubling nearly every 18 months. The first sequences for chondrichthyes appeared in 1983 and the overall data trend for chondrichthyan is similar to all of GenBank with three exceptions. First, the rate of increase is less than GenBank. Second, the number of sequences deposited during the first decade of the 21\(^{st}\) century was nearly stagnant in comparison. Third, a large spike is observed in late 2012 attributed to the Elephant Shark Genome Project data (Figure 6). Molecular data is increasingly important for all aspects of research utilizing chondrichthyan fishes\(^74\). It can be a forensic tool to understand species when fins are landed without carcass and ensure protected species and quotas are respected\(^75\)–\(^79\). For migrating species molecular data serves as a surrogate to classical tagging data to understand population structure and range\(^80\)–\(^83\). In studies of evolution, molecular data provides estimates of divergence time and supplements morphological and ecological traits as the basis for a phylogeny. The benefits and uses of molecular data for these fishes are limited

![Figure 6. GenBank and WGS data trends for Chondrichthyes and all taxa.](image-url)
only by the amount of data available. SkateBase provides the only genomic data publically available for an elasmobranch in addition to embryonic transcriptomes, data tools, and educational resources.

Sequencing projects require significant funding and personnel commitments but generate a large amount of information that can be translated to knowledge by domain experts. The efficiency of this process is affected most by allowing the scientific community to access the data. The value of data sharing can be measured by the number of publications that result from its distribution. To date, 19 publications in peer-reviewed journals have used data derived from SkateBase (http://skatebase.org/vitae). Molecular data are the means to investigate genes and develop reagents for gene expression studies by PCR or in situ hybridization. Small scale sequencing efforts that generate limited or fragmented data often get deposited to hard disks and remain ‘buried’ and out of reach. Efforts to deposit this data at public sequence repositories are encouraged to build the foundation of data required to describe this dynamic and ancient clade of fishes. We invite investigators to contact the authors in an effort to survey the volume of private data available for potential distribution through SkateBase.

The transcriptome data at SkateBase serves as a platform to teach molecular techniques, technologies, and bioinformatics in the context of studying elasmobranchs. As next generation sequencing (NGS) technologies evolve it is important for scientists and students to understand how the sequence was generated and caveats of workflow for each data type in order to recognize errors and customize analysis algorithms. The educational materials and infrastructure at SkateBase have been used by University of Delaware, Georgetown University, MDI Biological Laboratory, University of Maine at Machias, University of Rhode Island, and most recently the Virginia Institute of Marine Science to teach gene and protein annotation concepts. We invite and look forward to continued expansion of the SkateBase educational platform as we refine the infrastructure and expand the data available for investigation through continued sequencing efforts.

Author contributions

The little skate genome project is a collaborative effort with participation from all authors. JTW and BLK prepared the first draft of the manuscript. SWP oversaw the design and implementation of the SkateBase web portal and SkateBLAST tool. All authors were involved with the revision of the draft manuscript and have agreed to the final content.

Competing interests

The authors declare to have no competing interests.

Grant information

This work was supported by a re-entry career award to JTW, National Institute of General Medical Sciences (NIGMS) IDA Networks of Biomedical Research Excellence (INBRE) 3P20GM103446-12S1. Skate genome sequencing was funded by National Institutes of Health (NIH) National Center for Research Resources (NCRR) ARRA Supplements to 52P0RR016463-12 (MDIBL), 52P0RR016472-12 (UD), and 52P0RR16462 (UVUM). The North East Cyberinfrastructure Consortium (NECC) is funded by NIH NCRR grants 52P0RR016463-12 (MDIBL), 52P0RR016472-12 (UD), 52 P0 RR16462 (UVUM), 52P0RR016457-11 (URI), and 52P0RR030360-03 (UNH) and NIH NIGMS grants 8 P20 GM103423-12 (MDIBL), 8P20GM103446-12 (UD), 8P20GM103449 (UVUM), 8P20 GM103430-11 (URI), and 8P20GM103506-03 (Dartmouth), and NSF Experimental Program to Stimulate Competitive Research (EPSCoR) grants EPS-0904155 (UM), EPS-081425 (UD), EPS-1101317 (UVUM), EPS-1004057 (URI), and EPS-1101245 (UNH).

Acknowledgements

The authors thank the North East Bioinformatics Collaborative of the North East Cyberinfrastructure Consortium and Karl Steiner and Steven Stanhope of DE-INBRE, Patricia Hand of ME-INBRE, and Judith VanHouten of VT-INBRE. We thank the Delaware Bio-technology Institute (DBI) for hosting the website, database and NECC Shared Data Center. We thank Karol Miaskiewicz for systems administration support and Gang Li and Zhiwen Li for web development. We thank Bruce Kinham and the DBI Sequencing and Genotyping Center. Sylvie Mazan, Alistair Dave, Dove Ebert, Cecelia Arighi, Qinghua Wang, James Sulikowski and Eric Haenni contributed data, samples, artwork or editorial comments. We thank Gavin Naylor and the Chondrichthyan Tree of Life project team including Lindsay Marshall (illustrations), Jason Davies (database, computational work, and visualizations), Will White and Peter Last (maps and taxonomy), Shannon Corrigan and Lei Yang (gene capture data), and Callie Crawford and Thomas Fussell (CT scanning and anatomy) for providing a description of the project scope.

References

1. Inoue JG, Miyas M, Lam K, et al.: Evolutionary origin and phylogeny of the modern holocohpahans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective. Mol Biol Evol. 2010; 27(11): 2576–86. PubMed Abstract | Publisher Full Text
2. Ebert DA, Ho H, White WT, et al.: Introduction to the systematics and biodiversity of sharks, rays, and chimaeras (Chondrichthyes) of Taiwan. 2013; 3752(1): 5–19. Publisher Full Text
3. Stevens J, Bonfil R, Duivy NK, et al.: The effects of fishing on sharks, rays, and chimaeras (chondrichthyes), and the implications for marine ecosystems. ICES J Mar Sci. 2000; 57(3): 476–94. Publisher Full Text
4. Garcia VB, Lucibora LO, Myers RA: The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc Biol Sci. 2008; 275(1630): 83–9. PubMed Abstract | Publisher Full Text | Free Full Text
5. Field IC, Meekan MG, Buckworth RC, et al.: Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction. Adv Mar Biol. 2009; 56: 275–363. PubMed Abstract | Publisher Full Text
6. Springer S: Ovipathous Embryos of the Sand Shark, Carcharias taurus. Copeia. 1948; 1948(3): 153. Publisher Full Text
7. Joung SJ, Chen CT, Clark E, et al.: The whale shark, Rhincodon typus, is a livebearer: 360 embryos found in one ‘megamamma’ supreme. Environ Biol Fishes. 1996; 46(3): 219–23. Publisher Full Text
8. Stevens, J, Bottrell, R, Dulvy, N, et al.: The effects of fishing on sharks, rays, and chimaeras (chondrichthians), and the implications for marine ecosystems. ICES J Mar Sci. 2000; 57(3): 476–94. Publisher Full Text

9. Lutton BV, Callard IP: DNA barcoding of shark meets species composition and CITES-listed species from the markets in Taiwan. PLoS One. 2013; 8(11): e79373. Published Abstract | Publisher Full Text | Free Full Text

10. Dudgeon CL, Blower DC, Broderick D, et al.: A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. J Fish Biol. 2012; 80(5): 1789–94. PubMed Abstract | J Fish Biol. | Publisher Full Text

11. Pinhal D, Shivji MS, Nachtigall PG, et al.: Streamlined DNA tool for global identification of heavily exploited coastal shark species (genus Rhizoprionodon). PLoS One. 2012; 7(4): e34797. PubMed Abstract | PLoS One | Publisher Full Text

12. Baruto, M, Galimberti, A, Feri, E, et al.: DNA barcoding reveals fraudulent substitutions in shark seafood products: The Italian case of “palombo” (Mustelus spp.). Food Res Int. 2010; 43(1): 376–81. Publisher Full Text

13. Feldheim, K, Gruber, S, Dibastita, JD, et al.: Two decades of genetic profiling yields first evidence of natal philopatry and long-term fidelity to parturition sites in sawfish. J Exp Zool. 2014; 32(1): 1–7. PubMed Abstract | Publisher Full Text

14. Schneider I, Areias I, Gehrke AR, et al.: Appendix expression driven by the Hox Global Control Region is an ancient gnathostome feature. Proc Natl Acad Sci U S A. 2011; 108(31): 12762–7. PubMed Abstract | Publisher Full Text | Free Full Text

15. Gillis JA, Dahn RD, Shubin NH: Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. Proc Natl Acad Sci U S A. 2009; 106(14): 5762–4. PubMed Abstract | Publisher Full Text | Free Full Text

16. Gillis JA, Dahn RD, Shubin NH: Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. Proc Natl Acad Sci U S A. 2009; 106(14): 5762–4. PubMed Abstract | Publisher Full Text | Free Full Text

17. Henschel DM, Bonventre Jv: Novel non-rodent models of kidney disease. Curr Mol Med. 2005; 5(3): 337–46. PubMed Abstract | Publisher Full Text

18. Steele SL, Yancey PH, Wright PA: Dogmas and controversies in the handling of nitrogenous wastes: osmoregulation during early embryonic development in the marine little skate, Raja erinacea: response to changes in external salinity. J Exp Biol. 2004; 207(Pt 12): 2021–31. PubMed Abstract | Publisher Full Text

19. Stolte H, Galaske RG, Eisenbach GM, et al.: A brief history of the study of fish osmoregulation: the central role of the vertebrate jaw and gill arch skeleton. Front Physiol. 2012; 3(1): 14: 43.14. PubMed Abstract | Front Physiol

20. Hentschel DM, Bonventre Jv: Novel non-rodent models of kidney disease. Curr Mol Med. 2005; 5(3): 337–46. PubMed Abstract | Publisher Full Text

21. Wyzanski RT, Luer CA, Walsh CJ, et al.: In vivo exposure of closeown skates, Raja eglaeneria, to ionizing X-radiation: acute effects on the peripheral blood, spleen, and epigonal and Leydig organs. Fish Shellfish Immunol. 2007; 23(2): 401–8. PubMed Abstract | Publisher Full Text

22. Wyzanski RT, Luer CA, Walsh CJ, et al.: In vivo exposure of closeown skates, Raja eglaeneria, to ionizing X-radiation: acute effects on the peripheral blood, spleen, and epigonal and Leydig organs. Fish Shellfish Immunol. 2007; 23(2): 401–8. PubMed Abstract | Publisher Full Text

23. Lutton BV, Callard IP: DNA barcoding of shark meets species composition and CITES-listed species from the markets in Taiwan. PLoS One. 2013; 8(11): e79373. Published Abstract | Publisher Full Text | Free Full Text

24. Lutton, BV, Callard, IP, et al.: DNA barcoding of shark meets species composition and CITES-listed species from the markets in Taiwan. PLoS One. 2013; 8(11): e79373. Published Abstract | Publisher Full Text | Free Full Text

25. Anderson MK, Pant R, Miracle AL, et al.: Evolutionary origins of lymphocytes: ensembles of T cell and B cell transcriptional regulators in a cartilaginous fish. J Immunol. 2004; 172(10): 5851–60. PubMed Abstract | Publisher Full Text

26. Cai SY, Soricca CJ, Bellanorti N, et al.: Molecular characterization of a multidrug resistance-associated protein, Mrp2, from the little skate. Am J Physiol Regul Integr Comp Physiol. 2003; 284(1): R125–30. PubMed Abstract | Publisher Full Text

27. Cline W, Spray DC, Bennett MVL: Activation of a voltage-insensitive conductance by inward calcium current. Nature. 1970; 226(5210): 425–7. PubMed Abstract | Publisher Full Text

28. Clinger W, Spray DC, Bennett MVL: Activation of a voltage-insensitive conductance by inward calcium current. Nature. 1970; 226(5210): 425–7. PubMed Abstract | Publisher Full Text

29. Elger M, Hentschel H, Lieter J, et al.: Nephrogenesis is induced by partial nephrectomy in the elasmobranch Leucoraja erinacea. J Am Soc Nephrol. 2003; 14(6): 1506–16. PubMed Abstract | Publisher Full Text

30. Yang C, Du Pasque L, Hsu E: Shank4 W C region diversification through RNA processing and isoform switching. J Immunol. 2013; 191(6): 3410–8. PubMed Abstract | Publisher Full Text | Free Full Text

31. Beard J: The origin and histogenesis of the thymus in Raja batis. Zool Jahrb Abt Anat Ontog Tier. 1920; 17: 403–80. Reference Source

32. Luer CA, Walsh CJ, Bodine AB, et al.: The elasmobranch thymus: Anatomical, histological, and preliminary functional characterization. J Exp Zool. 1995; 278(4): 342–54. Publisher Full Text

33. Wyffels JT, Walsh CJ, Luer CA, et al.: In vivo exposure of closeown skates, Raja eglaeneria, to ionizing X-radiation: acute effects on the thymus. Dev Comp Immunol. 2005; 29(4): 315–31. PubMed Abstract | Publisher Full Text

34. Fieldka IA, Chapman DD, Sweet D, et al.: Shark virgin birth produces multiple, viable offspring. J Hered. 2009; 100(1): 374–7. PubMed Abstract | Publisher Full Text | Free Full Text

35. Chapman DD, Shivji MS, Louis E, et al.: Virgin birth in a hammerhead shark. Biol Lett. 2007; 3(4): 425–7. PubMed Abstract | Publisher Full Text | Free Full Text

36. Robinson DP, Baverstock W, Al-Jarou A, et al.: Annually recurring parthenogenesis in a zebra shark Stegostoma fasciatum. J Fish Biol. 2011; 7(5): 1376–82. PubMed Abstract | Publisher Full Text | Free Full Text

37. Compagno LJ: Alternative life-history styles of cartilaginous fishes in time and space. Environ Biol Fishes. 1990; 28(1–4): 33–75. Publisher Full Text

38. Luer CA, Gilbert PW: Matings and life-history traits in the elasmobranch skate, Raja eglaeneria. J Exp Zool. 1985; 13(3): 161–71. Publisher Full Text

39. Luer CA, Walsh CJ, Bodine AB, et al.: Normal embryonic development in the closeown skate, Raja eglaeneria, with experimental observations on artificial insemination. Environ Biol Fishes. 2007; 80(3): 239–55. Publisher Full Text

40. Masuda M, Iwasa Y, Kametosa A, et al.: Artificial insemination of the cloudy carnivorous shark, Japenese Aspoo Zool Gard Aquarnums. 2003; 44(2): 39–43. Reference Source

41. Castro, J, Bubacs, PM, Overstrom NA, et al.: The Reproductive Biology of the Chain Dogfish, Scyliorhinus canicula. Copeia. 1988(3): 740. Publisher Full Text

42. Barrett T, Clark K, Gevorgyan R, et al.: BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res. 2012; 40(Database issue): D57–63. PubMed Abstract | Publisher Full Text | Free Full Text

43. Venkatesh B, Lee AP, Ravi V, et al.: Elephant shark genome provides unique insights into gnathostome evolution. Nature. 2014; 506(7482): 174–9. PubMed Abstract | Publisher Full Text | Free Full Text

44. Venkatesh B, Kirkness EF, Loh YH, et al.: Characterization of the neurohypophysial hormone gene locii in elephant shark and the Japanese lamprey: origin of the vertebrate neurohypophysial hormone genes. BMC Evol Biol. 2009; 9: 47. PubMed Abstract | Publisher Full Text | Free Full Text

45. Mulley JAN, Zhong YF, Holland PW: Tandem duplication of aryl hydrocarbon receptor (AhR) genes in the genome of the spiny dogfish shark (Squalus acanthias). Biol Med Biol. 2009; 48: 43–4. BioMed Central and BioMed Central Ltd

46. Oulion S, Debais-Thibaud M, d'Aubenton-Cara Y, et al.: Evolution of Hox gene clusters in gnathostomes: insights from a survey of a shark (Scyliorhinus canicula) transcriptome. Mol Biol Evol. 2010; 27(12): 3829–38. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✓ ✓

Version 1

Reviewer Report 01 September 2014

https://doi.org/10.5256/f1000research.5333.r5798

© 2014 Heist E. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ed Heist
Department of Zoology, Southern Illinois University, Carbondale, IL, USA

This manuscript has two components: a description of current genomic, proteomic, and transcriptomic resources for chondrichthyan fishes and a description of the SkateBase project. Of the two, I would rather have seen more emphasis on SkateBase since the rate at which new data are being generated will make the survey data presented in the manuscript increasingly incomplete. Nevertheless I think it is a good paper worthy of publication and SkateBase seems to be a valuable resource.

Specific comments include:

Abstract – capitalize Sarcopterygii, Actinopterygii misspelled. Throughout the manuscript there are numerous inconsistencies in capitalization, e.g. “order Chimaeriformes” and “Fish barcode of life (FISH-BOL) a working group of the International Barcode of Life Project (iBOL)” both on page 8.

Introduction – In the first sentence replace “Chondrichthyan fishes” with “Living chondrichthyan fishes.”

Paragraph 2 – The text implies that the only benefits of chondrichthyans are ecotourism and fisheries. Perhaps a mention of ecological services (e.g. food-web dynamics) or other benefits of chondrichthyan conservation would be appropriate here.

Paragraph 4 – “asexual” parthenogenesis seems redundant.

Paragraph 5 – perhaps some more details on the distribution, life history, reproductive mode, genome size etc. of little skate is in order. Why is the geographic location of the species relevant?

Figure 1 is hard for me to decipher. I can't figure out what the two separate outer rings indicate and why the spacing between them is different for the orders vs. the families, genera, and species. I really think this figure is too complex and tries to cram too much information that is peripheral to the goals of the paper into a single figure. I may be old fashioned, but I think a table that listed...
the numbers of families, genera, and species would have been sufficient. There also needs to be a citation on the source of the information as the taxonomy and number of recognized species of chondrichthyans is changing.

Figure 4B – A citation is needed for the cladogram.

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
Page 8: change “SkateBase data is linked” to “SkateBase data are linked” and “SkateBase data includes” to “SkateBase data include”.

Page 19, 1st column: change “this data” to “these data”.

Figures and Tables:

- In the figure 1 legend — most of this information is stated in the text. I suggest keeping the sentence: “The distribution of chondrichthyan species in each of the 14 orders is shown relative to the total number of species, genera and families for the clade.” I also suggest explaining the figure in a little more detail. What do the numbers mean? Do the colors represent anything?

- Figure 2 legend: “is” should not be italicized.

- Table 1: What do the numbers in the columns mean? Are these numbers of entries?

- Table 2: Contigs for *L. erinacea* is 2,62,265. Also, under N50, change 1466 to 1,466.

- Figure 4: It is difficult to tell apart colors for the following pairs:
 - Squatiniformes and Carcharhiniformes
 - Lamniformes and Myliobatiformes
 - Chimaeriformes and Rajiformes

 This can be rectified by using black, white and yellow for three of the above orders in the figure.

- Figure 5 legend: I suggest changing “Four important fields in the output should be examined carefully to interpret the alignments and determine which returned alignment best represents the skate ortholog to SOCS6. First, the alignment score, E-value, alignment length and percent identity can be used to interpret the overall alignment significance.” to “Four important fields in the output should be examined carefully to interpret the alignments: the alignment score, E-value, alignment length and percent identity.”

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com