SUPPLEMENTAL MATERIAL
Supplemental Methods

Data S1. Validation of Optum physician report of aortic stenosis

To validate Optum physician’s report of aortic stenosis, we leveraged the following approach:

- Among 26,438 patients with symptomatic severe aortic stenosis (ssAS) in the final cohort, we pulled the closest echocardiography readings to severe aortic stenosis (sAS) diagnosis identified by physicians’ notes
 - Echocardiography readings included aortic valve area (AVA), velocity, mean gradient, and left ventricular ejection fraction (LVEF)
 - The closest echocardiography readings in the seven days before sAS diagnosis from physicians’ notes were pulled. The LVEF is included only if it is on the same day of AVA/velocity/mean gradient. The completeness of echocardiography readings is shown in Table S1

- We restricted patients to those with each of three (AVA, velocity, and mean gradient) available measurements and to those who with four (AVA, velocity, mean gradient and LVEF) measurements available. We then compared the difference in sAS diagnoses using physician’s notes to the severity using AS definitions from the 3 or 4 echocardiography parameters. The differences are listed as below.
 o American Heart Association (AHA) guidelines were applied here to define the severity of AS by using AVA, velocity, or mean gradient
 o Echocardiography readings were categorized as mild, moderate or severe based on the 3, or 4, echocardiography parameters and agreement with patients identified as having severe AS with physicians’ notes are compared (see Table S2)

- The severity of AS by echocardiography readings stratified by LVEF level is shown in Table S3.

- The severity of AS by echocardiography readings stratified by left ventricular outflow tract velocity time integral (LVOT VTI) level is shown in Table S4.
Data S2. Sensitivity analysis of the core analysis focusing only on outpatient managing cardiologists

Similar trends were observed when restricting to patients with managing cardiologist classification based on outpatient visits only (n=23,013). In the subset of patients treated by these cardiologists, 36.1% of ssAS patients underwent AVR (13.8% TAVR, 22.3% SAVR). Rates of AVR within a year of diagnosis varied substantially by cardiologist, from 0% in the lowest quartile of treatment rates to 100% in the highest (median 30.0%, 25th–75th 16.7–47.4%). Among outpatient cardiologists, the association between the managing cardiologist and the odds of an alternative treatment strategy was similar to that observed in the overall cohort (adjusted MOR 2.21, 95% CI 2.10–2.33).
Data S3. Sensitivity analysis by using a claims-linked cohort.

1. To internally validate our results, we repeated the core analyses in Optum’s claims-linked patient set. The integrated patient set includes a substantially smaller subset of patients within the EHR who can also be linked to insurance claims via a distinct patient ID. Linkage to insurance claims allows for assessing to lower rates of missing data. After applying our inclusion and exclusion criteria to this cohort, a subset of 926 patients managed by 172 cardiologists were identified.

2. There are 33.4% of ssAS patients (n = 301) undergoing AVR in the first year after diagnosis. The median time between date of ssAS diagnosis and AVR was 48 days (25th-75th percentiles: 18-89 days), which stayed consistent compared to major analysis.

3. Rates of AVR within a year of the first ssAS diagnosis varied significantly by cardiologist from 1% in the lowest quartile of AVR rates to 100% in the highest (median 33.3%, 25th-75th percentiles 3.8-50%).

4. Patients had a 135% chance of receiving a different AVR treatment plan if they had seen a random managing cardiologist for AVR (MOR 2.35, 95% CI 1.72-2.94), which was similar to the pattern in the major set.
Data S4. Subset analysis with lab data available.

A complete case analysis was performed including only patients with available data for ejection fraction, creatinine, and body mass index to evaluate the potential impact of missing data for these variables on the risk-adjusted results.

1. Full multi-level logistic models for the likelihood of AVR (vs. no AVR) and the likelihood of TAVR (vs. SAVR), expressed a Median Odds Ratios (MOR) were conducted. The models included patient-level and clinician-level factors among patients with available values for ejection fraction, creatinine, and body mass index (Table S8). The clinician was one of the strongest determinants of ssAS. Similar patterns were observed when we restricted patients to those with available values for ejection fraction, creatinine, and body mass index.

2. Median odds ratios (MOR) for general cardiologists for the likelihood of AVR when stratified by region and time is shown below. The results stayed consistent compared to those in the main analysis (see Table S9).

 Similar trends were observed when restricting to patients with managing cardiologist classification based only on outpatient visits among complete sub-data set. The association between the managing cardiologist and the odds of an alternative treatment strategy was similar to that observed in the overall cohort (adjusted MOR 2.10, 95% CI 1.97-2.23).

3. Association between clinician 1-year treatment rate and 1-year all-cause mortality with clinician 1-year treatment rate was modeled as a restricted cubic spline with 4 degrees of freedom (See Figure S2). The hazard presented was adjusted for patient factors and demographics and demonstrates that a higher clinician 1-year treatment rate is associated with a significantly reduced 1-year mortality risk. The distribution of cardiologists by 1-year AVR rate is shown below the curve with each strike representing an individual clinician. The analysis is based on patients with the available values for ejection fraction, creatinine, and body mass index.
Data S5. Clinician 3-month AVR rate and 1-year all-cause mortality to evaluate the impact of immortal time bias.

In order to limit the impact of immortal time bias, we shortened the window from ssAS diagnosis to AVR treatment to 3-months.

1. Association between clinician managing cardiologists’ 3-month AVR treatment rate and 1-year all-cause mortality with clinician 3-month treatment rate was modeled as a restricted cubic spline with 4 degrees of freedom (Figure S3). The hazard presented was adjusted for patient factors and demographics and demonstrates that a higher clinician 3-month treatment rate is associated with a significantly reduced 1-year mortality risk. The distribution of cardiologists by 3-month AVR rate is shown below the curve with each strike representing an individual clinician.

2. Survival stratified by managing cardiologist 3-month treatment rate. Kaplan Meier curves for survival when stratified by managing cardiologist AVR treatment rate within a 3-month period (1 represents the lowest quartile of AVR rates, and 4 the highest) (Figure S4). Patients managed by cardiologists with higher AVR rates have a significantly higher survival at one year.

3. After adjusting for differences in patient characteristics, ssAS patients cared for by cardiologists in the lowest quartile of 3-month AVR rates experienced a higher associated risk of mortality than those treated by managing cardiologists in the highest quartile of 3-month AVR rates (adjusted HR 1.11, 95% CI 1.02–1.21). The results stayed consistent compared to that in the primary cohort.
To evaluate the relative impact of cardiologists with high AVR rates on patient mortality, a sensitivity analysis was conducted by removing patients treated by cardiologists with AVR intervention rates greater than 70%. The resulting median odds ratio (MOR) was 1.99 (95% CI: 1.90-2.08). While this value is somewhat lower compared to the full patient cohort (including patients treated by cardiologists with comprehensive AVR treatment rates) (MOR 2.25, 95% CI: 2.14-2.36), restricting the cohort to cardiologists with AVR rates ≤ 70% did not significantly impact our findings.
Data S7. Details on multiple imputation.

Imputation replaced 9%, 6%, 3%, 3%, 0.2%, and 0.2% of missing data for insurance, smoking, income, education, gender, and age, respectively; this rate of missing data is within previously reported ranges.20 Missing data for variables with more than 10% missing, including left ventricular ejection fraction (LVEF) (31%), creatinine (20%), and body mass index (11%) were coded as “unknown.”
Data S8. Sensitivity analysis: Adding the cardiologist case-load (both ssAS patients and AVR volume) to the main model.

To evaluate the impact of cardiologist case load, we conducted a sensitivity analyses by adding both ssAS patient volume and AVR volume to the main model. The median odds ratio of AVR for this model was 1.677 (95% CI 1.614-1.739), P<0.001, after adjustment for ssAS and AVR volume (tertiles). Although the MOR for AVR was lower compared to the model without case-load (MOR 2.25, 95% CI: 2.14–2.36), the results were still significant. Of note, the OR of AVR for provider ssAS volume (highest tertile vs. lowest tertile) 0.175 (0.147-0.210) P<0.001; OR of AVR for provider AVR volume (highest tertile vs lowest tertile) 27.123 (22.242-33.073) P<0.001.
Table S1. Completeness of echocardiography readings.

Patients with available specific echocardiography readings	Completeness of data
AVA	8,032 (30.4%)
Velocity	3,323 (12.6%)
Mean gradient	8,233 (31.1%)
LVEF	9,464 (35.8%)
AVA + Velocity	1,490 (5.6%)
AVA + Velocity + Mean gradient	1,206 (4.6%)
AVA + Velocity + Mean gradient + LVEF	1,057 (4.0%)
Table S2. Echocardiography readings identified as severe AS.

Classification by echocardiography Tests	Classification as severe by physicians' notes	Classification as severe by echocardiography tests
	Patients with all available echocardiography readings for AVA, velocity, and mean gradient	Patients with all available echocardiography readings for AVA, velocity, mean gradient, and LVEF
Mild AS	17 (1.4%)	12 (1.1%)
Moderate AS	259 (21.5%)	192 (18.2%)
Severe AS	930 (7.1%)	853 (0.7%)
Table S3. Severity of AS by echocardiography readings stratified by LVEF.

Level of LVEF	Mild AS	Moderate AS	Severe AS
< 30%	0 (0.0%)	19 (1.8%)	63 (6.0%)
30% - 49%	3 (0.28%)	26 (2.5%)	139 (13.2%)
≥ 50%	9 (0.85%)	147 (13.9%)	651 (61.6%)

Patients with all available echocardiography readings for AVA velocity, mean gradient, and LVEF. Data listed as n (% of whole)
Table S4. Severity of AS by echocardiography readings stratified by left ventricular outflow tract velocity time integral (LVOT VTI) level.

Level of LVOT VTI	Classification by echocardiography Tests		
	Mild AS	Moderate AS	Severe AS
< 18	5 (100.0%)	9 (20.9%)	61 (26.1%)
18 - 22	0 (0.0%)	11 (25.6%)	60 (26.5%)
> 22	0 (0.0%)	23 (53.5%)	109 (47.4%)

Patients with all available echocardiography readings for AVA, velocity, mean gradient, and LVEF. Data listed as n (% of column total).
Table S5. ICD-9-CM and ICD-10-CM procedure and diagnostic codes, and CPT codes.

Condition	ICD-9-CM	ICD-10-CM	CPT
Atrial fibrillation	42731	I480-I484, I489, I4891-I4892	
Cancer	140-172, 174-194, 196-198, 190-1991, 200-208, 1950-1958	C0-C1, C20-C26, C30-C34, C37-C41, C43, C45-C58, C60-C85, C88, C90-C97	
Cardiac conduction disorders	4260, 4261, 42611, 42612, 42613, 4262, 4263, 4264, 42650, 42651, 42652, 42653, 42654, 4266	I440, I441, I442, I443, I4430, I4439, I450, I451, I4510, I4519, I452, I444, I445, I446, I4460, I4469, I447, I453	
COPD	49, 500, 501, 502, 503, 504, 505	I278, I279, J684, J701, J703, J40, J41, J42, J43, J44, J45, J46, J47, J60, J61, J62, J63, J64, J65, J66, J67	
Dementia	290	F051, G311, F00, F01, F02, F03, G30	
Diabetes without complications	2500, 2501, 2502, 2503, 2507	E100, E101, E106, E108, E109, E110, E111, E116, E118, E119, E120, E121, E126, E128, E129, E130, E131, E136, E138, E139, E140, E141, E146, E148, E149	
Diabetes with complications	2504, 2505, 2506	E102, E103, E104, E105, E107, E112, E113, E114, E115, E117, E122, E123, E124, E125, E127, E132, E133, E134, E135, E137, E142, E143, E144, E145, E147	
Prior myocardial infarction	410, 412	I21, I22, I252	
Osteoarthritis (OA)	715	M15-M19	
Peripheral vascular disease (PVD)	4439, 441, 7854, V434	I731, I738, I739, I771, I790, I792, K551, K558, K559, Z958, Z959, I70, I71	
Heart failure (SDS terms)	4282, 42820, 42821, 42822, 42823, 4283, 42830, 42831, 42832, 42833, 4284, 42840, 42841, 42842, 42843	I502, I5020, I5021, I5022, I5023, I503, I5030, I5031, I5032, I504, I5040, I5041, I5042, I5043	
Moderate to severe renal disease	582, 5830, 5831, 5832, 5833, 5834, 5835, 5836, 5837, 585, 586, 588	I120, I131, N032, N033, N034, N035, N036, N037, N052, N053, N054, N055, N056, N057, N250, Z490, Z491, Z492, Z940, Z940, Z992, N18, N19	
Supplemental oxygen use	V462	Z9981	E1390, E1391, E0424, E0439, E1405, E1406, E0431, E0434, E1392, E0433, K0738, E0441, E0442, E0443, E0444, E0425, E0430, E0431,
Procedure Description	Codes	CPT Code(s)	
---	---	------------------------------	
Percutaneous cardiac procedures (including PCI, ablation, and transcatheter mitral)	00.66, 36.06, 36.07, 37.26, 37.27, 37.33, 37.34, 35.97	E0433, E0434, E0435, E0440, E0445, E0446	
Pacemaker/ICD	00.51, 00.54, 37.94, 37.95, 37.96, 37.80, 37.81, 37.82, 37.83	92937, 92941, 92943, 92920, 92924, 92928, 92933, 33418, 33419	
Hemodialysis	39.95, 54.98	90935, 90937, 90945, 90947, 4055F	
Procedure	Codes	Description	
-----------	-------	-------------	
AVR	35.05, 35.06, 35.21, 35.22	02RFxxx	
		3405-6, 33410-13; 33361-33366, 0265T, 0257T, 0318T	
TAVR	35.05, 35.06	02RF37Z, 02RF38Z, 02RF3JZ, X2RF332, 0265T, 0257T, 0318T, 02RF3KZ, 02RF37H, 02RF38H, 02RF3JH, 02RF3KH	
		33361-33366	

COPD, chronic obstructive pulmonary disease; CPT, Current Procedural Terminology; ICD, implantable cardioverter defibrillator; ICD-9-CM, International Classification of Diseases, Ninth Revision, Clinical Modification; ICD-10-CM, International Classification of Diseases, Tenth Revision, Clinical Modification; PCI, percutaneous coronary intervention; SDS, signs, diseases, and symptoms
Table S6. Full, multi-level, logistic models for the likelihood of AVR (vs. no AVR) and the likelihood of TAVR (vs. SAVR) in patients with lab data.

Patient Characteristics	AVR vs non-AVR	TAVR vs SAVR				
	HR (95% CI)	P-value	HR (95% CI)	P-value		
Gender						
Male	Reference	Reference	Reference	Reference		
Female	0.75 (0.71, 0.80)	<.0001	1.46 (1.28, 1.65)	<.0001		
Age						
<65	Reference	Reference	Reference	Reference		
65-79	1.05 (0.95, 1.16)	0.1940	3.90 (3.07, 4.93)	<.0001		
80+	0.56 (0.51, 0.63)	<.0001	20.83 (16.25, 26.69)	<.0001		
Race						
Non-Hispanic white	Reference	Reference	Reference	Reference		
Non-Hispanic black	0.69 (0.58, 0.83)	0.0001	1.06 (0.73, 1.53)	0.7746		
Asian	0.97 (0.63, 1.49)	0.8842	1.12 (0.52, 2.40)	0.7748		
Hispanic	0.91 (0.75, 1.10)	0.3158	0.69 (0.47, 1.03)	0.0630		
Other/unknown	0.79 (0.68, 0.93)	0.0036	1.03 (0.74, 1.43)	0.8624		
Division						
East North Central	Reference	Reference	Reference	Reference		
East South Central	2.20 (1.73, 2.81)	<.0001	1.33 (0.92, 1.92)	0.1286		
Middle Atlantic	1.33 (1.07, 1.66)	0.0105	1.87 (1.33, 2.64)	0.0003		
Mountain	1.95 (1.49, 2.55)	<.0001	0.51 (0.33, 0.79)	0.0025		
New England	0.82 (0.62, 1.09)	0.1715	1.91 (1.16, 3.15)	0.0109		
Pacific	1.18 (0.94, 1.48)	0.1537	1.31 (0.90, 1.89)	0.1594		
South Atlantic/West South Central	1.30 (1.10, 1.53)	0.0020	1.55 (1.17, 2.03)	0.0019		
West North Central	1.26 (1.09, 1.46)	0.0018	0.75 (0.58, 0.96)	0.0236		
Other/unknown	1.11 (0.89, 1.38)	0.3505	0.96 (0.62, 1.49)	0.8472		
Income level (quantiles)						
<20th	Reference	Reference	Reference	Reference		
20th-40th	1.00 (0.88, 1.14)	0.9908	0.96 (0.75, 1.23)	0.7440		
40th-60th	1.04 (0.92, 1.18)	0.5315	1.14 (0.91, 1.43)	0.2437		
60th-80th	1.03 (0.91, 1.17)	0.6700	1.15 (0.91, 1.46)	0.2459		
80th+	1.07 (0.92, 1.24)	0.3681	1.12 (0.85, 1.47)	0.4133		
Education level (quantiles)						
<20th	Reference	Reference	Reference	Reference		
20th-40th	1.04 (0.91, 1.18)	0.5667	0.85 (0.67, 1.09)	0.1979		
40th-60th	0.85 (0.76, 0.96)	0.0066	0.83 (0.66, 1.03)	0.0838		
60th-80th	0.90 (0.80, 1.02)	0.0935	0.84 (0.68, 1.05)	0.1283		
	80th+					
------------------	-----------	----------	----------	----------		
	0.84 (0.74, 0.96)	0.0102	1.01 (0.79, 1.30)	0.9353		
Insurance						
Medicare	Reference	Reference				
Commercial	1.20 (1.09, 1.31)	0.0002	0.77 (0.64, 0.93)	0.0067		
Medicaid	0.93 (0.76, 1.13)	0.4601	1.10 (0.71, 1.72)	0.6588		
Uninsured	1.09 (0.87, 1.38)	0.4591	0.93 (0.59, 1.48)	0.7720		
Other or Unknown	1.21 (1.12, 1.32)	<.0001	0.89 (0.76, 1.04)	0.1328		
Charlson Comorbidity Index						
0	Reference	Reference				
1	1.03 (0.94, 1.12)	0.5566	1.26 (1.06, 1.51)	0.0101		
2	0.98 (0.88, 1.09)	0.6881	1.56 (1.25, 1.94)	<.0001		
3	0.96 (0.84, 1.09)	0.5245	1.97 (1.51, 2.57)	<.0001		
4+	0.82 (0.69, 0.97)	0.0194	2.71 (1.93, 3.80)	<.0001		
Atrial fibrillation	0.75 (0.70, 0.81)	<.0001	1.07 (0.93, 1.24)	0.3271		
Cancer	0.90 (0.81, 1.01)	0.0666	0.85 (0.68, 1.06)	0.1438		
Conduction	0.92 (0.83, 1.03)	0.1488	1.07 (0.87, 1.32)	0.5020		
COPD	0.80 (0.71, 0.9)	0.0001	1.46 (1.16, 1.83)	0.0011		
Dementia	0.32 (0.24, 0.42)	<.0001	1.82 (0.88, 3.75)	0.1068		
Diabetes with complications	1.01 (0.87, 1.16)	0.9316	0.77 (0.59, 1.01)	0.0625		
Diabetes without complications	1.06 (0.98, 1.15)	0.1256	1.01 (0.86, 1.17)	0.9480		
Prior myocardial infarction	1.00 (0.90, 1.12)	0.9673	1.03 (0.83, 1.28)	0.7939		
Osteoarthritis	0.94 (0.86, 1.03)	0.2087	0.99 (0.84, 1.18)	0.9384		
Peripheral vascular disease	0.98 (0.89, 1.07)	0.5856	0.93 (0.78, 1.11)	0.4230		
Heart failure	0.99 (0.90, 1.08)	0.8336	1.33 (1.12, 1.58)	0.0012		
Moderate to severe renal disease	0.92 (0.82, 1.03)	0.1645	0.89 (0.71, 1.12)	0.3158		
Smoking status						
Previous	Reference	Reference				
Current	1.05 (0.95, 1.16)	0.3217	0.80 (0.66, 0.98)	0.0324		
Never	1.02 (0.95, 1.09)	0.6307	0.88 (0.77, 1.00)	0.0536		
Use of supplemental oxygen	0.62 (0.52, 0.74)	<.0001	2.96 (2.00, 4.38)	<.0001		
Percutaneous coronary intervention	1.09 (0.90, 1.32)	0.3945	2.27 (1.57, 3.30)	<.0001		
Pacemaker	0.96 (0.72, 1.27)	0.7686	1.36 (0.74, 2.50)	0.3245		
Hemodialysis	0.84 (0.61, 1.17)	0.3048	0.85 (0.39, 1.84)	0.6715		
Dyspnea	1.65 (1.48, 1.84)	<.0001	1.24 (0.98, 1.58)	0.0759		
Dyspnea on exertion	1.51 (1.39, 1.65)	<.0001	1.03 (0.88, 1.21)	0.7188		
Angina	1.13 (1.06, 1.21)	0.0004	0.95 (0.84, 1.09)	0.4752		
Syncope	0.94 (0.88, 1.01)	0.0724	1.09 (0.96, 1.25)	0.1863		
Ejection fraction						
50+	Reference	Reference				
	Creatinine	BMI	Year of diagnosis	Diagnosed in inpatient	Hospitalized in year prior	Median odds ratio for cardiologist
----------	------------	-------------	-------------------	------------------------	---------------------------	----------------------------------
<34	0.61 (0.54, 0.69)	<.0001	1.50 (1.16, 1.95)	0.0021		
35-49	0.79 (0.71, 0.88)	<.0001	1.44 (1.18, 1.77)	0.0004		
<0.9	Reference					
1.0-1.4	0.93 (0.86, 1.00)	0.0590	Reference			
1.5-1.9	0.69 (0.61, 0.79)	<.0001	2.01 (1.57, 2.59)	<.0001		
2.0+	0.48 (0.41, 0.57)	<.0001	2.72 (1.93, 3.83)	<.0001		
20.1-25.0	Reference	Reference	Reference	Reference	Reference	Reference
<20.0	0.71 (0.59, 0.84)	<.0001	2.11 (1.41, 3.15)	0.0003		
25.1-30.0	1.34 (1.24, 1.46)	<.0001	0.87 (0.74, 1.04)	0.1237		
30.1+	1.54 (1.41, 1.68)	<.0001	0.94 (0.79, 1.11)	0.4553		
2011	Reference	Reference	Reference	Reference	Reference	Reference
2012	1.55 (1.35, 1.77)	<.0001	2.88 (1.87, 4.43)	<.0001		
2013	1.71 (1.50, 1.95)	<.0001	6.51 (4.33, 9.79)	<.0001		
2014	2.17 (1.91, 2.47)	<.0001	10.60 (7.08, 15.88)	<.0001		
2015	2.52 (2.22, 2.86)	<.0001	15.58 (10.45, 23.25)	<.0001		
2016	3.03 (2.66, 3.45)	<.0001	27.96 (18.66, 41.9)	<.0001		
Diagnosed in inpatient	0.67 (0.61, 0.73)	<.0001	1.18 (1.00, 1.39)	0.0541		
Hospitalized in year prior	0.75 (0.68, 0.81)	<.0001	0.89 (0.75, 1.06)	0.2028		
Median odds ratio for cardiologist	2.25 (2.14, 2.36)	<.0001	2.41 (2.21, 2.61)	<.0001		

AVR, aortic valve replacement; BMI, body mass index; CI, confidence interval; COPD, chronic obstructive pulmonary disease; HR, hazard ratio; MOR, median odds ratio; SAVR, surgical aortic valve replacement; ssAS, symptomatic severe aortic stenosis; TAVR, transcatheter aortic valve replacement.
Table S7. Median odds ratios (MOR) for managing cardiologists for the likelihood of AVR when stratified by region and time in patients with lab data.

Stratification	MOR for AVR (95% CI)
Region	**All patients**
New England	2.58 (2.21, 2.96)
Midwest	2.10 (1.96, 2.24)
South	2.24 (2.02, 2.46)
West	2.41 (2.05, 2.76)
Year of diagnosis	
2011-2012	2.28 (2.04, 2.51)
2013-2014	2.30 (2.13, 2.46)
2015-2016	2.29 (2.15, 2.42)

AVR, aortic valve replacement; CI, confidence interval; MOR, median odds ratio
Table S8. Full multi-level logistic models for the likelihood of AVR (vs. no AVR) and the likelihood of TAVR (vs. SAVR).

Patient Characteristics	AVR vs non-AVR	TAVR vs SAVR		
	HR (95% CI)	P-value	HR (95% CI)	P-value
Gender				
Male	Reference	Reference		
Female	0.76 (0.70, 0.83)	<.0001	1.46 (1.28, 1.65)	<.0001
Age				
<65	Reference	Reference		
65-79	1.01 (0.88, 1.17)	0.1940	3.90 (3.07, 4.93)	<.0001
80+	0.52 (0.45, 0.61)	<.0001	20.83 (16.25, 26.69)	<.0001
Race				
Non-Hispanic white	Reference	Reference		
Non-Hispanic black	0.72 (0.57, 0.91)	0.0070	1.06 (0.73, 1.53)	0.7746
Asian	0.66 (0.35, 1.26)	0.2064	1.12 (0.52, 2.40)	0.7748
Hispanic	0.93 (0.71, 1.22)	0.5975	0.69 (0.47, 1.03)	0.0630
Other/unknown	0.86 (0.69, 1.07)	0.1690	1.03 (0.74, 1.43)	0.8624
Division				
East North Central	Reference	Reference		
East South Central	2.01 (1.52, 2.66)	<.0001	1.28 (0.81, 2.02)	0.2933
Middle Atlantic	1.31 (0.99, 1.74)	0.0626	1.74 (1.10, 2.74)	0.0173
Mountain	2.01 (1.47, 2.75)	<.0001	0.53 (0.32, 0.9)	0.0176
New England	0.72 (0.52, 1.01)	0.0575	1.82 (0.96, 3.45)	0.0685
Pacific	0.95 (0.74, 1.24)	0.7266	1.25 (0.80, 1.96)	0.3272
South Atlantic/West South Central	1.24 (1.02, 1.49)	0.0267	1.43 (1.04, 1.97)	0.0298
West North Central	1.19 (1.01, 1.41)	0.0391	0.80 (0.60, 1.08)	0.1395
Other/unknown	1.05 (0.8, 1.39)	0.7221	0.89 (0.51, 1.56)	0.6939
Income level (quantiles)*				
<20th	Reference	Reference		
20th-40th	0.97 (0.82, 1.14)	0.7060	0.99 (0.73, 1.36)	0.9701
40th-60th	1.06 (0.90, 1.24)	0.4766	1.14 (0.86, 1.51)	0.3665
60th-80th	1.02 (0.87, 1.21)	0.7798	1.19 (0.88, 1.62)	0.2662
80th+	1.13 (0.93, 1.36)	0.2191	1.20 (0.84, 1.71)	0.3217
Education level (quantiles)				
<20th	Reference	Reference		
20th-40th	1.10 (0.93, 1.30)	0.2718	0.87 (0.64, 1.19)	0.3910
40th-60th	0.92 (0.79, 1.07)	0.2694	0.76 (0.58, 1.01)	0.0577
60th-80th	0.95 (0.82, 1.10)	0.4815	0.82 (0.62, 1.08)	0.1517
80th+	0.90 (0.76, 1.07)	0.2302	0.95 (0.69, 1.31)	0.7581
Insurance				
Medicare	Reference	Reference		
Commercial	1.24 (1.09, 1.41)	0.0007	0.81 (0.64, 1.03)	0.0911
Medicaid	0.91 (0.71, 1.18)	0.4850	1.32 (0.78, 2.25)	0.3010
-------------------	-------------------	--------	-------------------	--------
Uninsured	1.10 (0.83, 1.46)	0.5212	0.99 (0.57, 1.71)	0.9606
Other or Unknown	1.27 (1.15, 1.42)	<.0001	1.01 (0.83, 1.22)	0.9559
Charlson Comorbidity Index				
0	Reference	Reference	Reference	
1	1.02 (0.90, 1.16)	0.7559	1.26 (0.98, 1.61)	0.0693
2	0.98 (0.85, 1.14)	0.7946	1.65 (1.24, 2.20)	0.0006
3	0.94 (0.79, 1.11)	0.4568	1.84 (1.31, 2.57)	0.0004
4+	0.81 (0.66, 1.00)	0.0463	2.43 (1.61, 3.67)	<.0001
Atrial fibrillation	0.74 (0.68, 0.81)	<.0001	1.02 (0.85, 1.21)	0.8640
Cancer	0.94 (0.82, 1.08)	0.3595	0.97 (0.75, 1.27)	0.8347
Conduction	0.96 (0.85, 1.09)	0.5248	0.98 (0.76, 1.25)	0.8550
COPD	0.82 (0.72, 0.94)	0.0047	1.21 (0.93, 1.59)	0.1608
Dementia	0.33 (0.23, 0.46)	<.0001	1.58 (0.70, 3.57)	0.2686
Diabetes with complications	1.02 (0.87, 1.21)	0.7862	0.87 (0.63, 1.19)	0.3695
Diabetes without complications	1.00 (0.91, 1.11)	0.9602	1.04 (0.86, 1.26)	0.6675
Prior myocardial infarction	0.95 (0.84, 1.08)	0.4717	1.14 (0.88, 1.47)	0.3142
Osteoarthritis	0.99 (0.89, 1.11)	0.9189	0.91 (0.74, 1.12)	0.3742
Peripheral vascular disease	0.94 (0.84, 1.05)	0.2565	0.89 (0.72, 1.10)	0.2676
Heart failure	0.96 (0.86, 1.07)	0.4753	1.35 (1.10, 1.66)	0.0040
Moderate to severe renal disease	0.88 (0.77, 1.01)	0.0754	0.76 (0.58, 1.00)	0.0465
Smoking status				
Previous	Reference	Reference	Reference	
Current	1.05 (0.93, 1.20)	0.4339	0.84 (0.65, 1.09)	0.1990
Never	1.00 (0.92, 1.10)	0.9229	0.85 (0.72, 1.01)	0.0621
Use of supplemental oxygen	0.63 (0.52, 0.77)	<.0001	3.35 (2.14, 5.27)	<.0001
Percutaneous coronary intervention	1.05 (0.85, 1.31)	0.6539	2.28 (1.50, 3.47)	0.0001
Pacemaker	0.98 (0.72, 1.34)	0.8858	1.22 (0.63, 2.38)	0.5566
Hemodialysis	0.81 (0.56, 1.17)	0.2628	0.78 (0.32, 1.88)	0.5742
Dyspnea	1.65 (1.40, 1.94)	<.0001	1.16 (0.83, 1.62)	0.3778
Dyspnea on exertion	1.46 (1.31, 1.63)	<.0001	1.12 (0.92, 1.35)	0.2671
Angina	1.22 (1.12, 1.33)	<.0001	0.89 (0.76, 1.05)	0.1717
Syncope	0.90 (0.82, 0.98)	0.0153	1.13 (0.96, 1.34)	0.1388
Ejection fraction				
50+	Reference	Reference	Reference	
<34	0.66 (0.58, 0.76)	<.0001	1.40 (1.05, 1.86)	0.0213
35-49	0.80 (0.72, 0.90)	0.0002	1.42 (1.13, 1.78)	0.0022
Creatinine				
<0.9	Reference	Reference	Reference	
1.0-1.4	0.95 (0.87, 1.04)	0.2960		
1.5-1.9	0.73 (0.63, 0.84)	<.0001	2.44 (1.81, 3.28)	<.0001
2.0+	0.50 (0.41, 0.60)	<.0001	3.40 (2.28, 5.08)	<.0001
BMI				
Year of diagnosis	Diagnosed in inpatient	Hospitalized in year prior	Median odds ratio for cardiologist	
-------------------	-------------------------	---------------------------	----------------------------------	
2011	Reference	Reference	Reference	
2012	1.61 (1.34, 1.93)	<.0001	3.19 (1.71, 5.98)	.0003
2013	1.98 (1.67, 2.36)	<.0001	8.61 (4.81, 15.44)	<.0001
2014	2.28 (1.92, 2.71)	<.0001	14.36 (8.04, 25.64)	<.0001
2015	2.90 (2.45, 3.43)	<.0001	23.24 (13.06, 41.33)	<.0001
2016	3.52 (2.97, 4.19)	<.0001	39.34 (22.01, 70.32)	<.0001
<20.0	Reference	Reference	Reference	
2011	0.65 (0.52, 0.81)	0.0001	1.99 (1.20, 3.32)	0.0080
2012	1.36 (1.22, 1.51)	<.0001	0.88 (0.71, 1.09)	0.2436
2013	1.52 (1.37, 1.70)	<.0001	0.98 (0.79, 1.22)	0.8903

*Income is available within the dataset at the zip code level, and not at the patient level.

AVR, aortic valve replacement; BMI, body mass index; CI, confidence interval; COPD, chronic obstructive pulmonary disease; HR, hazard ratio; MOR, median odds ratio; SAVR, surgical aortic valve replacement; ssAS, symptomatic severe aortic stenosis; TAVR, transcatheter aortic valve replacement.
Table S9. Median odds ratio (MOR) for general cardiologists for the likelihood of AVR when stratified by region and time.

Stratification	MOR for AVR (95% CI)	Patients with available values for ejection fraction, creatinine, and body mass index
Region		
New England	2.38 (2.13, 2.63)	
Midwest	2.00 (1.84, 2.15)	
South	2.16 (1.89, 2.42)	
West	2.16 (1.76, 2.54)	
Year of diagnosis		
2011-2012	2.16 (1.76, 2.54)	
2013-2014	2.14 (1.94, 2.33)	
2015-2016	2.20 (2.03, 2.36)	

AVR, aortic valve replacement; CI, confidence interval; MOR, median odds ratio
Figure S1. Kaplan-Meier curves for survival when stratified by severity of aortic stenosis.

AS, aortic stenosis
Figure S2. Association between clinician 1-year treatment rate and 1-year all-cause mortality in patients with lab data
The distribution of cardiologists by 1-year AVR rate is shown below the curve with each strike representing an individual clinician.
Figure S3. Histogram showing the AVR intervention rate by cardiologist within 1 year
Figure S4. Cardiologist AVR treatment rate stratified by quartile
Cardiologists were ranked by treatment rate with cardiologist quartiles indicated by color (1 represents the lowest quartile of cardiologists in terms of AVR rate and 4 the highest).
Figure S5. Clinician’s AVR rate compared to TAVR rate for ssAS patients

Scatter plot for a cardiologist’s AVR rate as compared to their TAVR rate for ssAS patients. There was a significant correlation between AVR rate and TAVR rate. The smoothing curve was applied to the data to better visualize trends.
AVR, aortic valve replacement; ssAS, symptomatic severe aortic stenosis; TAVR, transcatheter aortic valve replacement
Figure S6. Association between managing cardiologists’ 3-month AVR treatment rate and 1-year all-cause mortality with clinician 3-month treatment.
Figure S7. Kaplan-Meier curves for survival when stratified by managing cardiologist 3-month AVR treatment rate