Anion Dependent Self-Assembly of Polynuclear Cd-Ln Schiff Base Nanoclusters: NIR Luminescent Sensing of Nitro Explosives

Hongfen Chen¹, Xiaoping Yang*, Weizhong Jiang², Dongmei Jiang¹, Dongliang Shi¹, Bichen Yuan¹, Fei Wang¹, Lijie Zhang¹ and Shaoming Huang¹*

¹ Zhejiang Key Laboratory of Carbon Materials, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China, ² Guangzhou Sysmyk New Material Science & Technology Co., Ltd., Guangzhou, China

Two types of polynuclear Cd-Ln complexes [CdLnL(NO₃)₂(DMF)₂] [Ln = La (1) and Nd (2)] and [Ln₂Cd-L(NO₃)₂(DMF)₂](OH)₂ [Ln = La (3) and Nd (4)] were constructed using a new Schiff base ligand which has a long backbone with two phenyl groups. The Schiff base ligands show a “twist” configuration in 1–4. The crystal structures show that the molecular dimensions of 3 and 4 are about 6 x 10 x 15 Å. The Cd-Nd complexes 2 and 4 exhibit the typical NIR luminescence of Nd³⁺. Interestingly, 4 shows the luminescent sensing of nitro explosives and exhibits a high sensitivity to 2-nitrophenol at the ppm level.

Keywords: self-assembly, schiff base ligand, nanoclusters, NIR lanthanide luminescence, sensing of nitro explosives

INTRODUCTION

Currently, a great deal of attention is being paid to the lanthanide-based fluorescent chemosensors due to their unique optical properties (i.e., long lifetimes, line-like emission bands, and large Stokes' shifts; Jankolovits et al., 2011) and potential application in the detection of various analytes such as metal ions (Chen et al., 2009; Tang et al., 2013), anions (Qiu et al., 2009; Shi et al., 2015), and small molecules (Guo et al., 2011; Liu et al., 2013). Many visible luminescent Eu- and Tb-based frameworks such as Eu- and Tb-MOFs have been designed for this purpose (Chen et al., 2009; Qiu et al., 2009; Guo et al., 2011; Liu et al., 2013; Tang et al., 2013; Shi et al., 2015). In contrast, there are very few reports on the near-infrared (NIR) luminescent probes based on polynuclear lanthanide complexes, for example, Yb(III), Nd(III), and Er(III) complexes (Wu et al., 2018). In fact, NIR luminescent lanthanide complexes have been used as luminescent labels in the study of biological imaging and bioanalytical detection due to their low signal-to-noise ratios in living organisms (Hemmila and Webb, 1997; Stouwdam et al., 2003; Zheng et al., 2014).

It is known that light-absorbing Zn(II) and Cd(II) chromophores can be used as sensitizers for lanthanide emission in d-f complexes (“antenna effect”) (Zheng et al., 2004; Zhu et al., 2006). We recently reported our studies focused on sensing with NIR luminescent Zn-Ln and Cd-Ln clusters formed by flexible salen-type Schiff base ligands, with long carbon-carbon (-CH₂-CH₂-) backbones (Jiang et al., 2018; Wang et al., 2018). The backbones of Schiff base ligands can efficiently affect the structures of d-f complexes. Thus, we present the synthesis and the structural characterization of two types of Cd-Ln complexes, with a specially designed Schiff base ligand 6,6′-(((1Z,1′E)-(((ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol) (H₂L), which has
a long backbone with two phenyl groups (Scheme 1). These new complexes are [CdLnL(NO\textsubscript{3})\textsubscript{2}(DMF)\textsubscript{2}] [Ln = La (1) and Nd (2)] and [Ln\textsubscript{2}CdL\textsubscript{2}(NO\textsubscript{3})\textsubscript{2}(DMF)\textsubscript{2}]OH\textsubscript{2} [Ln = La (3) and Nd (4)]. The length of H\textsubscript{2}L is approximately 20 Å, which helps to form large metal complexes. For example, molecules 3 and 4 are of nanoscale proportions, with the molecular dimensions ∼6 × 10 × 15 Å. The Schiff base ligand H\textsubscript{2}L has four phenyl groups, which is advantageous to the formation of π⋯π electrostatic interactions with added explosives. Of particular note, 4 shows NIR luminescent sensing of nitro explosives, and exhibits high sensitivity to 2-nitrophenol (2-NP).

EXPERIMENTAL SECTION

Materials and Methods

Metal salts and solvents were purchased from Meryer and used directly without further purification. All reactions were performed in dry oxygen-free dinitrogen atmospheres using standard Schlenk techniques. Physical measurements: Powder XRD: D8ADVANCE; IR: Nicolet IS10 spectrometer. Melting points were obtained in sealed glass capillaries under dinitrogen and were uncorrected. Elemental analyses (C, H, N) were carried out on a EURO EA3000 elemental analysis. The thermogravimetric analyses were carried out on a TA Instruments Q600 under flowing N\textsubscript{2} at a heating rate of 10.00 °C/min with a heating rate of 10.00°C/min from ambient temperature to 900 °C. Field emission scanning electron microscopy (FESEM) images and EDX spectra were recorded on a Nova NanoSEM 200 scanning electron microscope.

Preparation of the Schiff Base Ligand H\textsubscript{2}L

2-[2-(2-Aminophenoxy)ethoxy]phenylamine (2.80 mmol, 0.68 g) in 20 mL EtOH was added drop by drop under reflux, to a solution of 2-hydroxy-3-methoxybenzaldehyde (5.60 mmol, 0.852 g) in 10 mL EtOH. The yellow solution was then stirred for 3.5 h under reflux. The resulting yellow solid was filtered off, washed with 5 mL EtOH three times, and air dried. Yield (based on 2-[(2-Aminophenoxy)ethoxy]phenylamine): 1.3911 (97%). m.p. = 194.2 °C. Elemental analysis: Found: C, 70.45; H, 5.62; N, 5.58%. Calc. for C\textsubscript{30}H\textsubscript{28}N\textsubscript{2}O\textsubscript{4}: C, 70.30; H, 5.51; N, 5.47%. IR (cm-1): 3,160 (w), 1,470 (w), 1,348 (w), 1,268 (w), 1,119 (m), 1,059 (m), 950 (w), 855 (m), 799 (w), 746 (s), 673 (s), 658 (s).

1H NMR (DMSO, 500 MHz): δ 13.94 (s, 2H), 8.93 (s, 2H), 7.41 (d, 2H), 7.24 (t, 4H), 7.05 (dd, 6H), 6.80 (t, 2H), 4.25 (s, 4H), 3.79 (d, 6H).

Preparation of [CdLaL(NO\textsubscript{3})\textsubscript{2}(DMF)\textsubscript{2}] (1)

Cds (0.2 mmol, 0.0367 g), La(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O (0.2 mmol, 0.0650 g) and H\textsubscript{2}L (0.2 mmol, 0.1024 g) were dissolved in 5 mL MeOH, 5 mL EtOH and 2 mL DMF at room temperature, respectively, and then mixed together. A solution of NEt\textsubscript{3} in EtOH (0.35 mol/L, 1 mL) was added into the mixture. The yellow solution was stirred for 30 min under reflux and then filtered. The filtrate was transferred into a test tube, and then the test tube was placed in a jar with diethyl ether. The diethyl ether diffused slowly into the filtrate to create a pale yellow crystalline solid. The crystalline product was filtered off and air dried. Yield (based on La(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O): 0.0750 (36%). m.p. > 150.4 °C (dec.)

Experimental analysis: Found: C, 41.50; H, 3.84; N, 6.72 %. MS(ESI): 399.2294 (M++H+), 513 ([H\textsubscript{2}L+H+]), 625 ([CdL+H+]), 648 ([LaL+]+), 771 ([Cd\textsubscript{2}L\textsubscript{2}+]), 1005 ([M-C\textsubscript{2}−]+). IR (cm-1): 1,648 (m), 1,530 (m), 1,384 (w), 1,258 (w), 1,079 (m), 1,009 (m), 917 (m), 839 (m), 738 (s), 678 (s).

[CdNdL(NO\textsubscript{3})\textsubscript{2}(DMF)\textsubscript{2}] (2)

The pale-yellow crystalline product of this complex was obtained using Nd(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O (0.2 mmol, 0.0661 g) by a similar method described for 1. Yield (based on Nd(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O): 0.0711 (34%). m.p. > 133.8 °C (dec.)

Elemental analysis: Found: C, 41.50; H, 3.89; N, 6.82 %. Calc. for NdCdCl\textsubscript{2}·3H\textsubscript{2}O: C, 41.30; H, 3.82; N, 6.69 %. IR (cm-1): 1,636 (m), 1,530 (m), 1,401 (w), 1,275 (w), 1,179 (w), 1,053 (m), 991 (w), 882 (m), 809 (m), 738 (m), 670 (s).

Preparation of [La\textsubscript{2}CdL\textsubscript{2}(NO\textsubscript{3})\textsubscript{2}(DMF)\textsubscript{2}]OH\textsubscript{2} (3)

Cds (0.2 mmol, 0.0617 g), La(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O (0.2 mmol, 0.0650 g) and H\textsubscript{2}L (0.2 mmol, 0.1024 g) were dissolved in 5 mL MeOH, 5 mL EtOH and 5 mL DMF at room temperature, respectively, and then mixed together. A solution of NEt\textsubscript{3} in EtOH (0.35 mol/L, 3 mL) was added into the mixture. The resulting yellow solution was processed in the same way described for 1 to obtain a pale yellow crystalline product of this complex. Yield (based on La(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O): 0.1225 (33%). m.p. > 245.8 °C (dec.)

Experimental analysis: Found: C, 45.35; H, 4.55; N, 6.83%. Calc. for La\textsubscript{2}CdC\textsubscript{2}H\textsubscript{2}O\textsubscript{8}: C, 45.26; H, 4.47; N, 6.79 %. IR (cm-1): 1,633 (w), 1,540 (m), 1,377 (m), 1,232 (w), 1,062 (m), 968 (w), 849 (w), 758 (s), 666 (s).

Preparation of [Nd\textsubscript{2}CdL\textsubscript{2}(NO\textsubscript{3})\textsubscript{2}(DMF)\textsubscript{2}]OH\textsubscript{2} (4)

The pale-yellow crystalline product of this complex was obtained using Nd(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O (0.2 mmol, 0.0661 g) using a similar method described for 3. Yield (based on Nd(NO\textsubscript{3})\textsubscript{3}·6H\textsubscript{2}O): 0.1307 (35%). m.p. > 246.6 °C (dec.)

Experimental analysis: Found: C, 45.10; H, 4.53; N, 6.80 %. Calc. for Nd\textsubscript{2}CdC\textsubscript{2}H\textsubscript{2}O\textsubscript{8}: C, 44.99; H, 4.45; N, 6.75 %. IR (cm-1): 1,596 (m), 1,500 (m),
Crystallography

The diffraction experiments were carried out on a Smart APEX CCD diffractometer in the $\theta-2\theta$ mode with monochromated Mo-Kα radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods (SHELX 97 program) (Sheldrick, 1997). All non-hydrogen atomic coordinates were refined anisotropically. Hydrogen atoms at their calculated positions were included in the structure factor calculation but were not refined. Selected bond lengths (Å) and angles (°) in the structures of 1–4 are shown in Tables S1–S4 (ESI). The CCDC reference numbers for the crystal structures are 1,865,266–1,865,269, respectively.

For 1: $\text{C}_{38}\text{H}_{40}\text{Nd}_{2}\text{O}_{11}\text{Cl}_{2}\text{CdLa}$, monoclinic, space group $P2(1)/n$, $a = 12.177(5)$, $b = 19.331(7)$, $c = 19.141(8)$ Å, $\alpha = 90°$, $\beta = 96.738(7)$°, $\gamma = 90°$, $V = 4.475(3)$ Å3, $Z = 4$, $D_c = 1.545$ g cm$^{-3}$, μ(Mo-Kα) = 1.594 mm$^{-1}$, $F_{(000)} = 2.072$, $T = 190$ K. $R_1 = 0.1013$, $wR_2 = 0.2029$, GOF = 1.115.

For 2: $\text{C}_{35}\text{H}_{40}\text{Nd}_{2}\text{O}_{11}\text{Cl}_{2}\text{CdNd}$, monoclinic, space group $P2(1)/n$, $a = 11.800(5)$, $b = 17.258(7)$, $c = 19.859(8)$ Å, $\alpha = 90°$, $\beta = 93.755(8)$°, $\gamma = 90°$, $V = 4.035(3)$ Å3, $Z = 4$, $D_c = 1.722$ g cm$^{-3}$, μ(Mo-Kα) = 1.995 mm$^{-1}$, $F_{(000)} = 2084$, $T = 190$ K. $R_1 = 0.0554$, $wR_2 = 0.1765$, GOF = 1.016.

For 3: $\text{C}_{70}\text{H}_{83}\text{Nd}_{2}\text{O}_{26}\text{CdLa}_2$, orthorhombic, space group $Pbcn$, $a = 32.423(10)$, $b = 30.831(10)$, $c = 15.887(5)$ Å, $\alpha = 90°$, $\beta =$ 90°, $\gamma = 90°$, $V = 15.882(8)$ Å3, $Z = 8$, $D_c = 1.547$ g cm$^{-3}$, μ(Mo-Kα) = 1.403 mm$^{-1}$, $F_{(000)} = 7.432$, $T = 190$ K. $R_1 = 0.0996$, $wR_2 = 0.2557$, GOF = 1.178.

For 4: $\text{C}_{70}\text{H}_{83}\text{Nd}_{2}\text{O}_{26}\text{CdNd}_2$, orthorhombic, space group $Pbcn$, $a = 32.458(11)$, $b = 30.698(9)$, $c = 15.924(6)$ Å, $\alpha = 90°$, $\beta =$ 90°, $\gamma = 90°$, $V = 15.866(9)$ Å3, $Z = 8$, $D_c = 1.558$ g cm$^{-3}$, μ(Mo-Kα) = 1.636 mm$^{-1}$, $F_{(000)} = 7.480$, $T = 190$ K. $R_1 = 0.0858$, $wR_2 = 0.2489$, GOF = 1.075.

Photophysical Studies

The UV-visible absorption spectra were recorded at RT using an UV-3600 spectrophotometer. The solvent employed was of HPLC grade. Luminescence spectra in the visible and NIR regions were recorded on a FLS 980 fluorimeter. The light source for excitation and emission spectra was a 450 W xenon arc lamp with a continuous spectral distribution from 190 to 2,600 nm. A liquid nitrogen cooled Ge PIN diode detector was used to detect the NIR emissions from 800 nm to 1,700 nm. The temporal decay curves of the fluorescence signals were stored using the attached storage digital oscilloscope. The overall emission quantum yields (Φ_{em}) were obtained using an integrating sphere, according to Equation $\Phi_{\text{em}} = N_{\text{em}}/N_{\text{abs}}$, where N_{em} and N_{abs} are the numbers of emitted and absorbed photons, respectively. The intrinsic quantum yields (Φ_{in}) of Ln$^{3+}$ emission is calculated using $\Phi_{\text{Ln}} = \tau/\tau_0$, where τ and τ_0 are the observed emission lifetime and the natural lifetime of Ln$^{3+}$, respectively. Systematic errors were deducted through the standard instrument corrections. All measurements were carried out at room temperature. For the luminescent response experiment, the lanthanide NIR emissions of 4 were recorded when various concentrations of explosives were added into the solution of the complex with the initial concentration of 15 μM.

RESULTS AND DISCUSSION

Synthesis and Structures

The synthesis of the new Schiff base ligand H$_2$L was accomplished using preparations from literature (Lam et al., 1996), with a yield of 97% (Figure S1, Supporting Information). The Cd-Ln complexes were synthesized from the reactions of H$_2$L with CdCl$_2$ and Ln(NO$_3$)$_3$·6H$_2$O (Ln = La and Nd). The isomorphous 1 and 2 were obtained as pale-yellow crystalline solids. As shown in Figure 1, in 2 the Nd$^{3+}$ and Cd$^{2+}$ ions were bridged by two phenolic oxygen atoms of the Schiff base ligand with a separation of 3.872 Å. The coordination number of Nd$^{3+}$ ion is ten, coordinated with eight O atoms from one L ligand, one NO$_3^-$ anion and two DMF molecules and two N atoms from the L ligand. The Cd$^{2+}$ ion is surrounded by four oxygen atoms from the L ligand and two C$^{2+}$ anions. The Schiff base ligand coordinated with both metal ions through its two N and six O atoms. The bond lengths of Cd-O, Nd-N and Nd-O in 2 are 2.284–2.595, 2.758–2.783, and 2.424–2.740 Å, respectively.
The nature of anions that existed in the reactions appears to have affected the self-assembly process of the clusters. Thus, the reactions of \(H_2L\) with \(\text{Cd(NO}_3\text{)}_2\cdot4\text{H}_2\text{O}\) and \(\text{Ln(NO}_3\text{)}_3\cdot6\text{H}_2\text{O}\) (Ln = La and Nd) under similar experimental conditions produced isomorphous 3 and 4. The crystal structure of 4 is shown in Figure 2. Two \(\text{Nd}^{3+}\) and one \(\text{Cd}^{2+}\) ions are coordinated with two Schiff base ligands. The outer \(\text{Nd}^{3+}\) ion is bound by the \(\text{O}_2\text{N}_2\text{O}_2\) core of one L ligand in addition to four O atoms from two \(\text{NO}_3^-\) anions, resulting in a ten-coordinate geometry. While the center \(\text{Nd}^{3+}\) ion is eight-coordinates and bound by the O_2O_2 cavities of two L ligands. The \(\text{Cd}^{2+}\) ion is surrounded by four O atoms from the L ligand and two DMF molecules and two N atoms from the L ligand. The center \(\text{Nd}^{3+}\) ion is bridged with the outer \(\text{Nd}^{3+}\) and \(\text{Cd}^{2+}\) ions through four phenolic oxygen atoms of the Schiff base ligands. The \(\text{Nd-Nd}\) and \(\text{Nd-Cd}\) distances are 3.823 and 3.719 Å, respectively. In 4, the bond lengths of \(\text{Cd-O}\), \(\text{Nd-N}\), and \(\text{Nd-O}\) are 2.262–2.322, 2.699–2.950, and 2.218–2.888 Å, respectively. The long Schiff base ligands show a “twist” configuration in 1–4, resulting in large molecular dimensions of the complexes. For example, the molecular sizes of 3 and 4 are about 6 × 10 × 15 Å. The panoramic scanning electron microscopy (SEM) image and energy dispersive X-ray spectroscopy (EDX) spectrum of 4 are shown in Figure 3. The molar ratio of \(\text{Cd:Nd}\) in 4 is confirmed to be 1:2 (Figure 3b), which is consonant with the crystal structure. The powder XRD patterns of the 1 and 4 show large background peaks, indicating that they are predominantly amorphous (Figure S2, Supporting Information). Thermogravimetric analyses show that 1–4 lose about 2% of the weight before 100 °C (Figure S3, Supporting Information), due to the escape of uncoordinated solvent molecules such as MeOH and H\(_2\)O.

Melting point measurements indicate that 1–4 begin to decompose from 133 to 246 °C (Experimental Section). Besides the molecular ion peak (m/z = 1,005), the mass spectrum of 1 shows fragments of the free ligand \([H_2L+H]^+\), \([\text{CdL}+H]^+\), \([\text{LaL}]^+\), \([\text{Cd}_2\text{LCl}]^+\) at 513, 625, 648, and 771, respectively (Figure S4, Supporting Information). This indicates that besides the product of 1, other species such as Cd-L, La-L, or Cd-Cd-L complexes may exist in the solution after the reaction.
The products of 1–4 were collected from their solutions as crystalline solids.

Photophysical Properties

The photophysical properties of 1–4 were studied in solution. The UV-vis absorption spectra of the free Schiff base ligand

Clusters	λ_{ex} (nm)/ε ($\times 10^5$ M$^{-1}$ cm$^{-1}$)	λ_{em} (nm)	τ (µs) (NIR/Vis)	Φ_{em} (%) (NIR/Vis)
1	265/0.16, 411/0.11	548	$/10.18$	$/7.16$
2	388/0.21	556, 879, 1,064, 1,338	8.21/7.15	0.39/6.75
3	228/0.74, 334/0.32, 384/0.23	554	$/10.25$	$/15.48$
4	327/0.25, 386/0.25	559, 875, 1,060, 1,331	7.81(6.42a)/6.37	0.78(0.41a)/12.20

*a*The addition of 400 µM 2-NP.

and 1–4 are shown in Figure 4. Compared to the absorption bands of the free ligand H$_2$L, some of 1–4 are red-shifted. It is noticeable that, a broad absorption band at about 400 nm was found for 1–4, which may be from the ligand-to-metal charge transfer (LMCT) transition due to the existence of Cd(II) ions in the complexes (Blasse, 1994). For the Cd-La complexes 1 and 3, excitations of the ligand-centered absorption bands result in broad visible ligand-centered $^1\pi-\pi^*$ emission bands at 548 and 554 nm, respectively (Figure S5, Supporting Information), which are blue-shifted compared to that of the free ligand H$_2$L ($\lambda_{\text{max}} = 602$ nm). While, for the Cd-Nd complexes 2 and 4, besides the visible ligand-centered emission bands, they also show NIR luminescence of Nd$^{3+}$ ($^4F_{3/2} \rightarrow ^4I_{j/2}$ transitions, $j = 9, 11, 13$) (Figures 5, 6). For the NIR luminescence, both 2 and 4 show broad excitation bands (i.e., $\lambda_{\text{ex}} =$ 327 and 386 nm for 4), indicating that the chromogenic Cd/L moieties can act as effective sensors for the luminescence of Nd$^{3+}$ ions (Sabbatini et al., 1993; María et al., 2017). The excitation and emission wavelengths (λ_{ex} and λ_{em}), as well as the absorption of excitation wavelengths (ε), luminescence lifetimes (τ) and overall luminescence quantum yields (Φ_{em}) of 2 and 4 in solution are listed in Table 1.
2 and 4 show typical NIR emission bands of Nd$^{3+}$ from 875 to 1,338 nm (Table 1). The luminescence lifetimes (τ) of 2 and 4 in CH$_3$CN are 8.21 μs and 7.81 μs, respectively (Figure S6, Supporting Information). Therefore, the intrinsic quantum yields (Φ_{em}) of Nd$^{3+}$ in 2 and 4 can be estimated at $\tau/\tau_0 = 3.28$ and 3.12%, respectively, where $\tau_0 = 250$ μs [the natural lifetime of Nd$^{3+}$ (Klink et al., 2000)]. As shown in Table 1, the overall NIR luminescence quantum yields (Φ_{em}) of 2 and 4 are 0.39 and 0.78%, respectively, indicating that 4 shows better luminescence properties than 2. This may be due to their different conformations and cooperative effects. For example, 4 has one more Schiff base ligand than 2 and can absorb and transfer more energy to the lanthanide ions. The efficiency (η_{sens}) of the energy transfer from ligand to La$^{3+}$ can be calculated from $\eta_{sens} = \Phi_{em}/\Phi_{Ln}$ (Bünzli and Piguet, 2005). Thus, the η_{sens} values in 2 and 4 are estimated to be 11.89 and 25.0%, respectively. For 1 and 3, the La$^{3+}$ ion does not have f-f transition energy levels, and therefore cannot accept any energy from the sensitizer. As shown in Table 1, the ligand-centered emission quantum yields of 1 and 3 in visible range are 7.16 and 15.48%, which are higher than those of 2 and 4, respectively, due to no energy transfer to La$^{3+}$ ion.

Luminescent Sensing of Explosives

The NIR luminescent complex 4 has a larger surface area and more phenyl groups than 2, which is favorable to the formation of intermolecular interactions between 4 and guest molecules. Thus, the NIR luminescent response of 4 to nitro explosives such as 2-nitrophenol (2-NP), 2,4,6-trinitrotoluene (TNT), cyclotetramethylene tetranitramine (HMX), 1,4- dinitrobenzene (1,4-DNB), cyclotetramethylene trinitramine (RDX), 1,3- dinitrobenzene (1,3-DNB), 4-nitrobenzene acetonaphone (4-NBAP), nitrobenzene (NB) and 4-nitrotoluene (4-NT) has been studied in CH$_3$CN (Scheme 2). The intensity of the strongest emission peak of 4 at 1,060 nm was recorded with the addition of the explosives. Interestingly, the NIR luminescence intensities of 4 are gradually decreased with the addition of explosives increase (Figure S7, Supporting Information). It is noticeable that the addition of 2-NP leads to much more rapid luminescence quenching than other explosives (Figure 7). For example, the addition of 400 μM 2-NP solution makes the emission intensity at 1,060 nm decrease about 50%.

The Stern-Volmer (SV) equation, $K_{SV} = (I_0/I - 1)/[A]$, can be used to calculate the luminescence enhancement or quenching constants of 4 to the explosives (Xiao et al., 2010). In this equation, I_0 and I are the luminescence intensities before and after the addition of the explosive, respectively, and [A] is the molar concentration of the explosive. The K_{SV} values of 4 to all explosives are shown in Figure 8 (Figure S7, Supporting Information). It was found that 4 shows the highest K_{SV} value to 2-NP (3,020 M$^{-1}$), indicating that 4 is most sensitive to this explosive. The K_{SV} values to other explosives are from 225 to 2,240 M$^{-1}$. The luminescence detection limits of 4 to the explosives can be calculated using the $3\sigma/k_{sv}$ equation, where σ is the standard deviation (Qi et al., 2017). The detection limit of 4 to 2-NP is found to be 14.70 μM, indicating that 4 shows high luminescence sensitivity to this explosive at the ppm level.

The perturbation of the added explosives, to the electronic structure of the ligand, may affect the ligand-to-lanthanide energy transfer process in 4. The luminescent quenching response of lanthanide-based sensors, toward nitroaromatic explosives, can be explained by photoinduced electron transfer (PET) and resonance energy transfer (RET) mechanisms (Li et al., 2013). In both mechanisms, the efficiency of ligand-to-lanthanide energy transfer is an important contributor to the luminescence intensity of the lanthanide complex (Maria et al., 2017). It was found that the intensities of ligand-centered fluorescence at about 559 nm of 4 are gradually increased with the addition of 2- NP (Figure S8, Supporting Information), indicating that more excitation energy of the Schiff base ligand may be consumed by visible emission. When the concentration of added 2-NP is 400 μM, the NIR emission lifetime and quantum yield of 4 is decreased to 6.42 μs and 0.41%, respectively (Table 1).
Thus, the efficiency (η_{em}) of the energy transfer is decreased to 15.95% from 25.0% (without the addition of explosives), demonstrating that the addition of 2-NP may efficiently affect the ligand-to-lanthanide energy transfer process and decreases the luminescence intensity of 4. The reason for the differences in explosive sensing properties of 4 is more difficult to understand since we do not know the precise nature of the interactions between the complex and the explosives that are introduced. A discussion of the precise nature of these kinds of interactions, as well as the difference between the luminescent response behavior of 2 and 4, is too speculative to be included in this paper. Our current studies are focused on attempts to isolate and characterize successfully synthesized using a new Schiff base ligand (H$_2$L), demonstrating that the addition of 2-NP may efficiently affect the luminescence intensity of 4, indicating that 4 has a high sensitivity for this explosive at the ppm level.

AUTHOR CONTRIBUTIONS
XY and SH design the Cd-Ln nanoclusters. HC, WJ, DJ, DS, BY, FW and LZ finish the experiment.

FUNDING
The work was supported by the National Natural Science Foundation of China (No. 21771141 and 51025207).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2019.00139/full#supplementary-material

Supporting Information | Experimental and characterization details, additional figures and tables, and CIF files (CCDC 1865266-1865269 for 1-4).

REFERENCES
Blasse, G. (1994). The luminescence of the Cd(II) ion and of cadmium compounds. J. Alloys Compd. 210, 71–73. doi: 10.1016/0925-8388(94)90117-1
Bünzli, J. C., and Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077. doi: 10.1039/b406082m
Chen, B., Wang, L., Xiao, Y., Froneczek, F. R., Xue, M., Cui, Y., et al. (2009). A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 48, 500–503. doi: 10.1002/anie.200805101
Guo, Z., Xu, H., Su, S., Cai, J., Dang, S., Xiang, S., et al. (2011). A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem. Commun. 47, 5551–5553. doi: 10.1039/c1cc10897b
Hemmilä, I., and Webb, S. (1997). Time-resolved fluorometry: an overview of the labels and core technologies for drug screening applications. Drug Disc. Today 2, 373–381. doi: 10.1016/S1359-6446(97)01080-5
Jankolovits, J., Andolína, C. M., Kampf, J. W., Raymond, K. N., and Pecoraro, V. L. (2011). Assembly of near-infrared luminescent lanthanide host (Host-Guest) complexes with a metalacrown sandwich motif. Angew. Chem. Int. Ed. 50, 9660–9664. doi: 10.1002/anie.201003851
Jiang, D., Yang, X., Zheng, X., Bo, L., Zha, T., Chen, H., et al. (2018). Self-assembly of luminescent 12-metal Zn–Ln planar nanoclusters with sensing properties towards nitro explosives. J. Mater. Chem. C 6, 8513–8521. doi: 10.1039/C8TC02426J
Klink, S. I., Grave, L., Reinhoudt, D. N., and Veggel, F. C. (2000). A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu$^{3+}$, Tb$^{3+}$, Nd$^{3+}$, Yb$^{3+}$, and Er$^{3+}$ complexes. J. Phys. Chem. A 104, 5457–5468. doi: 10.1021/jp994286p
Lam, F., Xu, X. J., and Chan, K. S. (1996). Binucleating ligands: synthesis of acyclic acharil and chiral Schiff base-pyridine and Schiff base-phosphine ligands. J. Org. Chem. 61, 8414–8418. doi: 10.1021/jo961020f
Li, X., Xu, H., Kong, F., and Wang, R. (2013). A cationic metal-organic framework consisting of nanoscale cages: capture, separation, and luminescent probing of CrO$_4^{2-}$ through a single-crystal to single-crystal process. Angew. Chem. Int. Ed. 52, 13769–13773. doi: 10.1002/anie.201307650
Liu, G. L., Qin, Y. J., Jing, L., Wei, G. Y., and Li, H. (2013). Two novel MOF-74 analogs exhibiting unique luminescent selectivity. Chem. Commun. 49, 1699–1701. doi: 10.1039/C2CC37140E
Maria, J. B. L., Plinio, C. L., César, Z., Ana, B. F., Dayán, P. H., and Ramiro, A. P. (2017). Theoretical method for an accurate elucidation of energy transfer pathways in europium(III) complexes with dipyridophenazine (dppz) ligand: one more step in the study of the molecular antenna effect. Inorg. Chem. 56, 9200–9208. doi: 10.1021/acs.inorgchem.7b01221
Qi, X., Jin, Y., Li, N., Wang, Z., Wang, K., and Zhang, Q. (2017). A luminescent heterometallic metal-organic framework for the naked-eye discrimination of nitroaromatic explosives. Chem. Commun. 53, 10318–10321. doi: 10.1039/C7CC05345B
Qiu, Y., Deng, H., Hou, J., Yang, S., Zeller, M., Batten, S. R., et al. (2009). In situ tetrazole ligand synthesis leading to a microporous cadmium-organic framework for selective ion sensing. Chem. Commun. 45, 5415–5417. doi: 10.1039/b907783a
Sabbatini, N., Guardigli, M., and Lehn, J. M. (1993). Luminescent lanthanide complexes as photochemical supramolecular devices. Coord. Chem. Rev. 123, 201–228. doi: 10.1016/0010-8545(93)85056-A
Sheldrick, G. H. (1997). SHELX 97, A Software Package for the Solution and Refinement of X-ray Data. Göttingen: University of Göttingen.
Shi, P. F., Hu, H. C., Zhang, Z. Y., Xiong, G., and Zhao, B. (2015). Heterometal-organic frameworks as highly sensitive and highly selective luminescent probes to detect F$^{-}$ ions in aqueous solutions. Chem. Commun. 51, 3985–3988. doi: 10.1039/C4CC09081K
Stouwdam, J. W., Heebink, G. A., Huskens, J., and van Veggel, F. C. J. M. (2003). Lanthanide-doped nanoparticles with excellent luminescent properties in organic media. Chem. Mater. 15, 4604–4616. doi: 10.1021/cm034495d
Tang, Q., Liu, S., Liu, Y., Miao, J., Li, S., Zhang, L., et al. (2013). Cation sensing by a luminescent metal-organic framework with multiple lewis basic sites. Inorg. Chem. 52, 2799–2801. doi: 10.1021/ic400029p

Wang, C., Yang, X., Wang, S., Zhu, T., Bo, L., Zhang, L., et al. (2018). Anion Dependent Self-assembly of drum-like 30- and 32-metal Cd-Ln Nanoclusters: visible and NIR Luminescent Sensing of Metal Cations. J. Mater. Chem. C. 6, 865–874. doi: 10.1039/C7TC04107B

Wu, D., Chen, L., Lee, W., Ko, G., Yin, J., and Yoon, J. (2018). Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coord. Chem. Rev. 354, 74–97. doi: 10.1016/j.ccr.2017.06.011

Xiao, Y., Cui, Y., Zheng, Q., Xiang, S., Qian, G., and Chen, B. (2010). A microporous luminescent metal-organic framework for highly selective and sensitive sensing for Cu$^{2+}$ in aqueous solution. Chem. Commun. 46, 5503–5505. doi: 10.1039/c0cc00148a

Zheng, S., Chen, R., Liu, Z., Wen, X., Xie, T., Fan, J., et al. (2014). Construction of terpyridine-Ln(III) coordination polymers: structural diversity, visible and NIR luminescence properties and response to nerve-agent mimics. Cryst. Eng. Comm. 16, 2898–2909. doi: 10.1039/c3ce42091d

Zheng, S., Yang, J., Yu, X., Chen, X., and Wong, W. (2004). Syntheses, structures, photoluminescence, and theoretical studies of d10 metal complexes of 2,2’-Dihydroxy-[1,1’]binaphthalenyl-3,3’-dicarboxylate. Inorg. Chem. 43, 830–838. doi: 10.1021/ic034847i

Zhu, H. F., Fan, J., Okamura, T. A., Zhang, Z. H., Liu, G. X., Yu, K. B., et al. (2006). Metal-organic architectures of Silver(I), Cadmium(II), and Copper(II) with a flexible tricarboxylate ligand. Inorg. Chem. 45, 3941–3948. doi: 10.1021/ic051925o

Conflict of Interest Statement: WJ was employed by company Guangzhou Sysmyk New Material Science & Technology Co., Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Chen, Yang, Jiang, Jiang, Shi, Yuan, Wang, Zhang and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.