Histopathological changes in the liver of tree shrew (Tupaia belangeri chinensis) persistently infected with hepatitis B virus

Ping Ruan1,2†, Chun Yang1†, Jianjia Su1, Ji Cao1, Chao Ou1, Chengpiao Luo1, Yanping Tang1, Qi Wang1, Fang Yang1, Junlin Shi1, Xiaoxu Lu1, Linqun Zhu1, Hong Qin1, Wen Sun1, Yuanzhi Lao3* and Yuan Li1*

Abstract

Background: An animal model for HBV that more closely approximates the disease in humans is needed. The tree shrew (Tupaia belangeri) is closely related to primates and susceptible to HBV. We previously established that neonatal tree shrews can be persistently infected with HBV in vivo, and here present a six year follow-up histopathological study of these animals.

Methods: Group A consists of six tree shrews with persistent HBV infection, group B consists of three tree shrews with suspected persistent HBV infection, while group C consists of four tree shrews free of HBV infection. Serum and liver tissues samples were collected periodically from all animals. HBV antigen and HBV antibodies were detected by ELISA and/or TRFIA. HBV DNA in serum and in liver biopsies was measured by FQ-PCR. Liver biopsies were applied for general histopathologic observation and scoring, immunohistochemical detections of HBsAg and HBcAg, and ultrastructural observation with electron microscope technique.

Results: Hydropic, fatty and eosinophilic degeneration of hepatocytes, lymphocytic infiltration and hyperplasia of small bile ducts in the portal area were observed in group A. One animal infected with HBV for over six years showed multiple necrotic areas which had fused to form bridging necrosis and fibrosis, and megalocytosis. The hepatic histopathological scores of group A were higher than those of group B and C. The histopathological score correlated positively with the duration of infection.

Conclusions: Hepatic histopathological changes observed in chronically HBV-infected tree shrews are similar to those observed in HBV-infected humans. The tree shrew may represent a novel animal model for HBV infection.

Keywords: Tree shrew (Tupaia), Hepatitis B virus, Histopathological change

Background

Hepatitis B virus (HBV) infection is a global health problem. At least 2 billion people, one third of the world’s population, are currently infected with HBV worldwide, including 30 million people in China [1,2]. About 6% of the world’s population (378 million) are chronic carriers of HBV, and approximately 1 million people die each year from complications such as cirrhosis and hepatocellular carcinoma (HCC) arising from HBV infection [1]. Although a prophylactic vaccine against HBV is currently available [3], the efficacy is limited within individuals previously infected with HBV. This immunization regimen does not prevent HBV carriers from developing HCC and other end-stage liver diseases. Improvements in our understanding of the mechanisms underlying HBV persistence in vivo may lead to new approaches for treating chronic hepatitis B or preventing infection from progressing to life-threatening lesions. A suitable animal model of persistent HBV-infection, is thus in urgent demand.

HBV infection is almost entirely limited to human and chimpanzee providing an obstacle to the establishment of a suitable animal model for HBV infection.

© 2013 Ruan et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
of an animal model of HBV-infection. Alternative models have been pursued, including woodchuck, ground squirrel or Peking duck hepadnavirus infections; however, the hepatic pathogenesis mediated by these viruses is not equivalent to human infection with HBV [4,5]. The chimpanzee model of HBV infection is useful, but as an experimental subject, it is relatively rare, expensive and inconvenient to manage.

The Tree shrew (Tupaia) is phylogenetically much more closely related to humans [6,7], and is susceptible to a variety of human viruses [8,9]. Walter et al. have successfully infected tree shrew extracorporeal hepatocytes with HBV, and established replication of HBV in these hepatocytes [10-12]. Our previous studies suggested that persistent HBV infection can be established in neonatal tree shrews [13,14]. Continuing observation of those HBV-infected tree shrews for several years may illuminate the nature of the infection. In this study, we focused on hepatic histopathological changes in these experimentally HBV-infected animals.

Results

General information

The criteria based on which “confirmed chronic-infection” and “suspected chronic-infection” were defined have been previously described [14]. “Confirmed chronic infection” indicates infection of animals in which serum HBsAg is detectable throughout the 48 weeks after inoculation, in addition to that HBV DNA tests positive in either serum or liver biopsies. “Suspected chronic infection” indicates infection of animals in which two of the previously described markers are detectable on at least two occasions within the 48 weeks after inoculation.

According to the HBV infection status, the tree shrews were divided into three groups: group A consists of six animals that were confirmed as chronically infected; group B consists of three animals that were suspected to be chronically infected, while group C consists of four normal animals that were not inoculated with HBV. Table 1 describes the general information of the tree shrews used in this study.

Markers of HBV infection in inoculated tree shrews

As described in Table 2, the tree shrews assigned to group A were serum HBsAg-positive until the last inspection (1.7-6.2 years after inoculation). The sera obtained from four of these animals were simultaneously HBeAg and HBcAb positive, and two animals tested HBeAb and HBcAb positive simultaneously. Within group B, the serum of one animal tested weakly positive for HBsAg and two tested positive for HBeAb, while all the three animals in this group were serum HBcAb- and HBsAb-positive simultaneously. All samples from the four animals within group C tested negative for all the HBV-markers mentioned above.

The results of HBV DNA determination in serum and in liver biopsies are shown in Table 3. Among the six animals in group A, the copy number of HBV DNA in serum of five animals was above 10^3. The copy number of HBV DNA in the liver tissues of group A animals were significantly higher than that of group B (P = 0.039) and group C animals (P = 0.011), while the difference in copy number between group B and group C is not statistically significant (P = 0.400).

Immunohistochemical staining of liver biopsies revealed a pattern of sporadically or focally distributed HBSAg-positive hepatocytes within all six animals in group A. HBSAg-positive cells were distributed predominantly around central veins, manifesting as yellowish-brown granules located mainly in the cytoplasm (Figure 1A). In all animals except one (83.3%) we detected HBcAg-positive hepatocytes. The HBCAg-positive hepatocytes contained yellowish-brown granules, mainly located in the nuclei but also observed in the cytoplasm (Figure 1B). All the liver biopsies from animals in group B and group C tested negative for HBsAg and HBCAg staining.

Histopathological examination of the liver

All animals in group A showed liver tissue injury at different degrees, characterized by sporadically or diffusely distributed hepatocellular hydropic degeneration, fatty degeneration and acidophilic degeneration. Hepatocytes undergoing acidophilic degeneration were sporadically distributed, characterized by reduced cell size and concentrated appearance, with strengthened cytoplasmic acidophilia and small and dark nuclei. TUNEL staining

Table 1 Tree shrews assigned to groups based on HBV infection status

Group	Experimental no.	Gender	Age (weeks)	Weeks after inoculation
A (n=6)	A1	♀	324	324
A2	♂	89	89	
A3	♀	275	275	
A4	♂	221	221	
A5	♂	149	149	
A6	♂	218	218	
A7	♀	229	229	
B (n=3)	B1	♂	221	221
B2	♀	171	171	
B3	♀	79	-	
C (n=4)	C1	♂	79	-
C2	♂	64	-	
C3	♀	64	-	
showed that these hepatocytes were apoptotic cells (Figure 2A). Round and red-stained small bodies without nuclei, so called “acidophilic bodies,” were sometimes observed among these cells. The hepatocytes undergoing hydropic degeneration were pale, with enlarged size and sparse cytoplasm containing fine granules. The cytoplasm of the hepatocytes with severe swelling was lighter in color and even almost transparent, termed “balloon-like degeneration” (Figure 2B). In addition we observed scattered or focally distributed ground-glass hepatocytes, the cytoplasm of which contained obviously acidophilic granules, appearing as non-transparent and ground-glass-like (Figure 2C). Serial sections of these samples were stained immunohistochemically, demonstrating that ground-glass hepatocytes were HBsAg-positive (Figure 2D). Additional histopathologic changes were also observed, including focal hepatocellular necrosis, lymphocytic infiltration dominated by CD3-positive (rather than PAX5-positive) T-lymphocytes, with formation of lymphoid follicles and biliary proliferation in portal areas (Figure 2E). Aside from minor degeneration of a minority of hepatocytes, no obvious histopathological changes were observed in the liver biopsies from the animals in both groups B and C (Figure 2F).

Table 2 HBV immunological markers in tree shrew serum samples

Group	Experimental no.	HBsAg	HBsAb	HBeAg	HBeAb	HBcAb	HBsAg (ng/ml)
A (n = 6)	A1	+	-	+	-	+	450.6
	A2	+	-	-	+	+	797.85
	A3	+	-	+	-	+	704.57
	A4	+	-	+	-	+	615.88
	A5	±	-	-	±	+	0.95
	A6	+	-	-	+	+	711.14
B (n = 3)	B1	±	+	-	-	+	0.03
	B2	-	+	-	+	±	0
	B3	-	+	-	+	+	0
C (n = 4)	C1	-	-	-	-	-	0
	C2	-	-	-	-	-	0
	C3	-	-	-	-	-	0
	C4	-	-	-	-	-	0

*The results detected by ELISA were expressed as “+” (positive), “-” (negative) or “±” (between positive and negative), while by TRFIA were expressed as ng/ml.

Table 3 Results of determination on HBV DNA in serum and tissue samples

Group	Experimental no.	HBV DNA in serum (Copies/ml)*	HBV DNA in liver	P-value
		Copies/µg liver DNA**	Copies	
A (n = 6)	A1	2.63 × 10^6	1.83 × 10^6	1.12 ± 0.99 × 10^6
	A2	5.22 × 10^6	1.27 × 10^6	0.4003
	A3	8.74 × 10^6	5.17 × 10^6	
	A4	1.09 × 10^6	2.64 × 10^5	0.0113
	A5*	-	7.61 × 10^4	
	A6	2.42 × 10^5	4.36 × 10^7	
B (n = 3)	B1	-	9.58 × 10^5	3.56 ± 5.22 × 10^5
	B2	-	3.91 × 10^5	0.4004
	B3	-	7.04 × 10^5	
C (n = 4)	C1	-	6.35 × 10^5	5.06 ± 2.18 × 10^4
	C2	-	1.90 × 10^4	0.0004
	C3	-	6.63 × 10^4	
	C4	-	5.34 × 10^4	

* HBV DNA copy number ≥10^5 in serum is defined as a positive; ** HBV DNA copy number ≥10^6 in liver tissue is defined as a positive; *Results are shown as mean ± SD; **Compared with group A; ***Compared with group C.
* This animal had showed 1.1 × 10^7 copies/ml in serum, 3.73 × 10^5 and 1.82 × 10^8 copies/µg in liver at the time points of 60- and 72-Weeks after inoculation.
The most severe histopathological changes in the liver were found in one animal (A1) in group A who survived the longest post-inoculation, for more than 6 years until the end of this study. Under gross examination, the liver of this animal was characterized by an unsmooth surface, granular protuberances, yellow and red patchy lesions on section (Figure 3A). Microscopically, large numbers of hepatocytes exhibited diffuse hydropic or fatty degeneration. Binucleate or even multinucleate hepatocytes were also observed frequently, these cells displayed enlarged size and a normal ratio of nucleus to cytoplasm (Figure 3B), i.e., megalocytosis, similar to “large cell dysplasia” observed in human patients with chronic hepatitis B. Meanwhile, further lessons were also observed such as confluent lytic necrosis inside lobules, piecemeal necrosis in limiting plate areas, and structural damage in limiting plates (Figure 3C). Confluent lytic necrosis of hepatocytes was observed between the portal tract and central vein and between neighboring portal tracts, which formed bridging necrosis and bridging fibrosis (Figure 3D). Reticular fiber staining revealed that the scaffolds of reticular fiber had collapsed, and that the fibers had interwoven and surrounded hepatocytes in the limiting plate area and formed irregular hepatocyte-clusters that were mostly composed of survived or regenerated hepatocytes, and were without normal lobular architecture (Figure 3E). Masson staining revealed notable proliferation of collagenous fiber bundles in portal tracts (Figure 3F).

The Liver histological status was evaluated semiquantitatively, according to the Knodell histology activity index scoring system which grades necroinflammation and fibrosis on a scale of 0 to 22, including 0 to 10 for the periportal and/or bridging necrosis, 0 to 4 for intra-lobular degeneration and focal necrosis, 0 to 4 for portal inflammation, and 0 to 4 for fibrosis [15].

The histopathological scores of the last liver biopsies of the animals in each group are described in Table 4. The average score in group A, B and C was 5.33 ± 3.93, 1 and 0, respectively. The score of group A were significantly higher than those of group B (P = 0.018) and group C (P = 0.008), while the difference between the scores of group B and C was not statistically significant (P = 0.057). As shown in Figure 4, the histopathological score was correlated significantly with the duration of HBV infection (P = 0.000), but not with the titer of HBV DNA in liver tissue (P = 0.159).

Hepatic ultrastructure

Transmission electron microscopy was performed on sections of liver from animal A1 at the end of the study and demonstrated swollen hepatocellular surface microvilli, variable numbers and distribution of glycogen granules in the cytoplasm and variation in size of lipid droplets. Many mitochondria were swollen and enlarged with vague cristae and increased electron density in the matrix (Figure 5A). Highly electron dense rhabdoid crystalline inclusions were observed within the mitochondria (Figure 5B). The endoplasmic reticulum was expanded or formed irregular vesicles with slight degranulation, and part of the expanded endoplasmic reticulum were surrounded by paired membranes forming concentric lamellar bodies (Figure 5C). Suspected HBV granules were distributed as clusters and had a spherical appearance, and clear boundaries were observed in the cytoplasm and dilated endoplasmic reticulum (Figure 5D). The number of lysosomes increased, most of which were secondary lysosomes (Figure 5E), and some of which possessed lamellar residual bodies (myeloid bodies). Some cell nuclei were irregular in shape and chromatin margination was observed (Figure 5F).

Discussion

Several animal models of HBV infection have been established, including the well-tested chimpanzee model and models utilizing alternative hepadnaviruses, but the
hepatic lesions in these animal species are milder than those observed in chronic hepatitis B infection of humans [16-18]. Previously we reported that newborn tree shrews inoculated with HBV can develop chronic HBV-infection, and HBV can persist and replicate in vivo steadily for long time [14]. Subsequently, we have found that persistent HBV infection of tree shrews can induce histopathological changes in their liver that are quite similar to the changes in human cases.

Chronic HBV infection of humans is generally characterized as evolving in three major phases: immune tolerance, immune activation and inactive carrier [19]. During the phase of immune tolerance, the immune system responds weakly against the HBV-infected hepatocytes, which allows HBV to survive and replicate. From this phase, most patients will progress to the phase of immune activation, with an elevated level of HBV DNA detected in the serum and active inflammation in liver tissue. After HBeAg is cleared from the body and anti-HBeAb is developed, most patients will progress to the phase of inactive carrier, characterized mainly by low or undetectable serum HBV DNA and reduced liver inflammation. The immune tolerance phase occurs more frequently in individuals who were infected with HBV.
perinatally. In this population this phase may last for decades, and the hepatic histopathological changes may become more evident as the host ages [20].

Previously we reported that only minimal histopathological lesions were found in the liver biopsies of these persistently HBV-infected tree shrews [14], but we have recently found that during prolonged infection this is not the case. This phenomenon can potentially be explained by the ability of neonatally HBV-infected tree shrews to remain in the immune tolerant phase for longer, without obvious changes in their liver tissues. With a longer period of observation we have found that at least some of these animals evolved into the immune-active phase, as the level of HBV DNA in liver tissue increased along with symptoms of injury in the liver tissues. The histopathological changes observed in the liver of animal A1 six years post-inoculation highlight the fact that conspicuous hepatic lesions can occur in persistently HBV-infected tree shrews.

Acute and chronic HBV-infection observed in the tree shrews in this study followed a similar course to human hepatitis B. Acute HBV infection in human adult is usually self-limiting. Serum HBsAg can be detected for only 4 ~ 10 weeks after infection, then HBsAb is generated and HBsAg disappears. This course of transient acute HBV-infection has also been reported in studies of adult tree shrews [10]. In contrast to adult tree shrews, six tree shrews that were neonatally inoculated with HBV in this study showed positive serum HBsAg over years. Considering the relatively short life span of the tree shrew...
(about 8 years), the duration of the HBV-infection markers in these animals is much longer than the established criteria for diagnosing chronic HBV-infection in human (6 months) [19]. Moreover, serum HBsAb was not detected in the six tree shrews who persistently showed HBsAg and HBV DNA in the serum and in liver, further supporting the diagnosis of chronic HBV infection.

A variety of pathologic changes were observed in each of the six chronically HBV-infected tree shrews, including hepatocellular degeneration and necrosis with mild or moderate perportal inflammation and fibrosis. The severity of these lesions often increased with the duration of infection. For example, significant piecemeal necrosis and bridging fibrosis were observed in animal A1 which was HBV-infected for longer than 6 years. It is generally recognized that piecemeal necrosis is a key milestone in progression of chronic hepatitis, and it can be used to distinguish chronic active hepatitis from chronic persistent hepatitis [21]. Whilst bridging fibrosis usually results from lobular necrosis which is then replaced by inflammatory fibrotic tissue, the latter appears as bridges linking the necrotic areas in portal spaces and/or in centrilobular areas.

Megalocytosis, characterized by large, atypical and multiple nuclei and abundant cytoplasm were also found in animal A1. The occurrence of such cells is believed to correlate with the risk of developing HCC [22,23]. In addition, the majority of chronic HBV-infected tree shrews in this study showed a relatively high level of cell proliferation markers such as Ki67, Cyclin D1 and P53, and HBx protein (a protein that has been associated with HCC in humans and the woodchuck) in liver tissues in comparison to the tree shrews without HBV infection (data not shown). It is reasonable to speculate, therefore, to further observation of these chronically HBV-infected tree shrews may demonstrate that HBV can act as an independent factor for hepatocarcinogenesis. However, compared to the carcinogenic effect of aflatoxin B1 (AFB1) alone or AFB1 plus HBV [24], the ability of HBV to induce HCC may be relatively weak and a longer period of infection may be required.

Additionally so-called “ground-glass” hepatocytes were found in half of the chronic HBV-infected tree shrews (3/6) in this study, and these cells were confirmed to be HBsAg-positive by immunohistochemical staining. The “ground-glass” hepatocytes are generally considered to be those cells containing a high concentration of HBsAg,

Group	Experimental no.	Periportal & bridging necrosis score	Intraprotral degeneration & focal necrosis score	Portal inflammation score	Fibrosis score	Total score	Mean ± SD	P-value
A (n=6)	A1	3	4	3	3	13	5.33 ± 3.93	
	A2	0	1	1	0	2		
	A3	1	2	1	0	4		
	A4	1	2	1	1	5		
	A5	1	1	1	0	3		
	A6	1	2	1	1	5		
	B1	0	1	0	0	1	1.00 ± 0.0	0.018a
	B2	0	1	0	0	1	0	0.057b
B (n=3)	B3	0	1	0	0	1		
	C1	0	0	0	0	0	0	0.008a
C (n=4)	C2	0	0	0	0	0	0	0.00 ± 0.0
	C3	0	0	0	0	0	0	0.00 ± 0.0
	C4	0	0	0	0	0	0	0.00 ± 0.0

aCompared with group A. bCompared with group C.
and the number of such hepatocytes was reported to be inversely related to the activity of hepatitis [21]. With immunohistochemical staining, both HBsAg- and HBeAg-positive hepatocytes were detected in all chronically HBV-infected tree shrews (6/6) in this study. It is believed that the host’s immune response can eliminate antigen-containing cells, for example HBsAg- and HBeAg-positive hepatocytes should not be found in acute hepatitis B [21]. The presence of HBsAg- and HBeAg-positive hepatocytes, therefore, indicates that these tree shrews were in the chronic rather than the acute phase of HBV-infection. Concerning HBeAg, it is believed that its expression in the nucleus of hepatocytes indicates HBV replication [25], while its expression in the cytoplasm of hepatocytes indicated increased disease severity. Chu et al. [26] reported that the patients in whom HBeAg could be detected in both the nucleus and cytoplasm usually experienced more severe hepatocyte damage and higher titers of serum HBV DNA and HBeAg. Interestingly, a similar site of HBeAg expression in hepatocytes was observed in the tree shrews we studied. For example, there was no hepatic HBeAg expression in animal A5, who possessed low levels of HBV DNA in the serum and in liver simultaneously; While HBeAg expression in animal A2 was purely within the nucleus of hepatocytes, and hepatic histopathological

Figure 5 Hepatocyte ultrastructure in persistent HBV infection of tree shrews under TEM. A. Mitochondria were commonly swollen and enlarged, matrix electron density increased, and cristae were vague. M, mitochondria; N, nuclei. Osmic acid staining, 20000×. B. Electron dense rhabdoid crystalline inclusions (arrow) in mitochondria. Osmic acid staining, 30000×. C. Endoplasmic reticulum expanded or formed irregular vesicles with slight degranulation, and the expanded segments were surrounded by paired membranes, forming concentric lamellar bodies. R, reticulum. Osmic acid staining, 60000×. D. Suspected HBV granules in endoplasmic reticulum (arrow). Osmic acid staining, 60000×. E. The number of lysosomes (arrow) increased. Osmic acid staining, 20000×. F. Cell nuclei appeared irregular in shape and chromatin margination was observed. Osmic acid staining, 20000×.
breeding were used in this study. The treatments of offspring resulting from artificial conception (Yunnan, China). Offspring resulting from artificial conception were descended from a population of wild tree shrews (Tupaia belangeri chinensis) originating from the Kunming Institute of Zoology, Chinese Academy of Sciences. The tree shrews used in this study were supplied by Chinese government. The tree shrews used in the guidelines for care and use of laboratory animals is issued by Chinese government, which conforms to the ethical guidelines of the 1975 Declaration of Helsinki.

Animals
Animals were housed at the Laboratory Animal Center of Guangxi Medical University under monitoring of veterinarians.

Materials and methods
The study protocol was approved by the Ethical Committee of Guangxi Tumor Hospital in accordance with the guidelines issued by Chinese government, which conforms to the ethical guidelines of the 1975 Declaration of Helsinki.

Conclusions
In summary, the histopathologic changes in the livers of tree shrews with chronic HBV infection provide further evidence that neonatally HBV-infected tree shrews can progress into chronic hepatitis, and both the clinical course and the hepatic histopathological changes that occur in these animals are fairly similar to those in human patients. The tree shrew model may provide an important tool for studying HBV-related diseases.

Blood and tissue sample collection
Blood samples were collected once every 4–12 weeks. The serum was tested immediately for HBV-infection markers: HBV surface antigen (HBsAg), HBV surface antibody (HBsAb), and HBV e antigen (HBeAg), HBV e antibody (HBeAb) and HBV core antibody (HBcAb), as well as HBV DNA. The remainder was stored at −80°C before use.

Liver biopsies were performed once every 6–12 months, under anesthesia with 1% pentobarbital and ketamine hydrochloride. A portion of each liver biopsy was fixed within 10% (v/v) neutral formalin and then paraffin embedded for routine histopathology observation and immunohistochemistry. When necessary, a portion of the biopsy was also fixed within 2.5% glutaraldehyde at 4°C for observation under transmission electron microscopy (TEM). The remainder of each biopsy sample was frozen immediately by immersion in liquid nitrogen then stored at −80°C before use.

Detection of HBV-directed antibodies in serum
The levels of HBV-directed antibodies present in animal serum samples was established by ELISA (Kehua Bio-engineering, Shanghai, China). HBsAg-positive specimens were then further analyzed quantitatively by time-resolved immunofluorescence analysis (TRFIA) (Xinbo Biotechnology, Suzhou, China). Kits were used according to the manufacturer’s instructions.

Detection of HBV DNA in serum and in liver
The quantity of HBV DNA in serum and in liver samples was assessed by fluorescence quantitative polymerase chain reaction (FQ-PCR) (Kehua Bio-engineering Co, Shanghai, China) according to the manufacturer’s instructions as previously described [14], based on the procedures described by Lu et al. [27], or Cacciola et al. [28] respectively. The number of copies of serum-derived HBV DNA was calculated per ml while the liver-derived HBV DNA was calculated per μg liver DNA, based on the methods described by Cacciola et al. [28]. The threshold applied to classifying a tree shrew serum sample as positive for HBV DNA was identical to that for human samples, i.e. ≥10^5 copies/ml is defined as a positive result by the kit's manufacturer. While since no critical threshold for FQ-PCR measurement of hepatic HBV DNA has been established so far, we employed a cut-off value of ≥10^5 copies/μg total liver DNA, referring
to the results from detecting HBV-infected human (data not shown) and normal tree shrews.

Histopathological and immunohistochemical analysis
Paraffin-embedded liver biopsies were stained with hematoxylin and eosin (H&E), and Gomori’s silver and Masson’s trichrome stains (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were employed to visualize reticular and collagen fibers when necessary. All histological staining was performed in accordance with conventional procedures [29]. Intrahepatic HBsAg, HBeAg, CD3 and PAX5 were examined by immunohistochemical assays, with the monoclonal antibodies of mouse anti-human HBsAg, HBeAg, CD3 or PAX5 respectively (Zhongshan Goldenbridge Biotech, Beijing, China) [13]. Apoptosis in liver tissues was detected by a terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay using an In Situ Cell Death Detection Kit (Roche, Mannheim, Germany) according to the manufacturer’s instruction.

Ultrastructure observation with transmission electron microscopy (TEM)
Transmission electron microscopy (TEM) was applied to observe the hepatic ultrastructure of animal A1 which was persistently infected with HBV for more than 6 years. A sample of its liver tissues obtained at the end of this study was fixed. The tissue was dehydrated with graded ethanol and embedded within epoxy resin (Sinopharm Chemical Reagent Co. Ltd, Shanghai, China). The 75 nm thick ultrathin sections were stained with methanolic uranyl acetate and lead citrate, then visualized by TEM (TECNAIG2, FEI Company, Hillsboro, Oregon, USA).

Statistical analysis
Statistical analysis was conducted with SPSS 17.0 software (IBM, Chicago, USA). Animal groups were compared by non-parametric Mann–Whitney Test. The relationship between histological scores of the animals in group A with the duration of HBV infection, titer of HBV DNA in liver tissue, was analyzed by Spearman’s rank. The bilateral significance level was α = 0.05.

Abbreviations
HBV: Hepatitis B virus; HBsAg: HBV surface antigen; HBeAg: HBV surface antibody; HBeAb: HBV e antibody; HBeAb: HBV e antibody; HBcAb: HBV core antibody; ELISA: Enzyme-linked immunosorbent assay; TRFA: Time-resolved immunofluorescence analysis; FQ-PCR: Fluorescence quantitative polymerase chain reaction; TEM: Transmission electron microscope; HCC: Hepatocellular carcinoma; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick-end labeling.

Competing interests
Authors declare no financial or non-financial competing interests in relation to this manuscript.

Authors’ contributions
PR carried out the pathology and molecular studies, performed the statistical analysis and participated in drafting the manuscript. CY carried out the animal experiments, participated in study design, pathology studies and drafting the manuscript. JJS, JC and CO participated in study design, animal experiments and pathology studies. CPLE, YPT, FY, JLS, XL, LQZ, HQ and WS participated in the animal experiments and molecular studies. YZL made a substantial contribution to interpretation of data and was involved in manuscript revision and gave final approval of the version to be published. YL conceived of the study, designed and carried out animal experiments, and helped to draft the manuscript. All authors read and approved the final manuscript.

Authors’ information
Ping Ruan and Chun Yang: co-first author.

Acknowledgments
This work was supported by the National Natural Science Foundation of China (No. 3066017). We thank Prof. ZS Li at Guangxi Medical University (Nanning, China) for providing constructive suggestions to accomplish this project.

Author details
1. Department of Experimental Pathology, Guangxi Cancer Institute (Guangxi Tumor Hospital), Nanning 530021, China. 2. Graduate School of Guangxi Medical University, Nanning 530021, China. 3. School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Received: 22 August 2013 Accepted: 8 November 2013
Published: 12 November 2013

References
1. WHO: Hepatitis B. Fact sheet. http://www.who.int/mediacentre/factsheets/fs204/en/index.html.
2. Cui Y, Jia J: Update on epidemiology of hepatitis B and C in China. J Gastroenterol Hepatol 2013, 28(1):7–10.
3. Liang X, Bi S, Yang W, Wang L, Cui G, Cui F, Zhang Y, Liu J, Gong X, Chen Y, et al: Epidemiological survey of hepatitis B and C in China—declining HBV prevalence due to hepatitis B vaccination. Vaccine 2009, 27:6550–6557.
4. Menne S, Cote PJ: The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J Gastroenterol 2007, 13:104–124.
5. Zhang YY, Theele DP, Summers J: Age-related differences in amplification of covalently closed circular DNA at early time after hepatitis B virus infection of ducks. J Virol 2005, 79:9896–9903.
6. Novacek MJ: Mammalian phylogeny: shaking the tree. Nature 1992, 356:121–125.
7. Nie W, Fu B, O'Brien PC, Wang J, Su W, Tanontong A, Voleobuev V, Ferguson-Smith MA, Yang F: Flying lemurs—the ‘flying tree shrews?’ Molecular cytogenetic evidence for a Scandinavia-Dermoptera sister clade. BMC Biol 2008, 6:18.
8. Pang QF, Liu JC, Wan XB, Qiu FX, Xu AY: Experimental infection of adult Tupaia belangeri yunalis with human rotavirus. Chin Med J (Engl) 1993, 96:55–94.
9. Darai G, Rosen A, Scholz J, Gelderblom H: Induction of generalized and lethal herpesvirus infection in the tree shrew by intrahepatic transfection of herpes simplex virus DNA. J Virol Methods 1983, 7:305–314.
10. Walter E, Keist R, Niederoest B, Pult I, Blum HE: Hepatitis B virus infection of Tupaia hepatocytes in vitro and in vivo. Hepatology 1996, 24:1–5.
11. Kock J, Nassal M, MacNelly S, Baumber TF, Blum HE, von Weizsacker F: Efficient infection of primary Tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol 2001, 75:5084–5089.
12. Kock J, Baumber TF, Delaney WE, Blum HE, von Weizsacker F: Inhibitory effect of adefovir and lamivudine on the initiation of hepatitis B virus infection in primary Tupaia hepatocytes. Hepatology 2003, 38:140–141.
13. Yang F, Shi J, Zhang J, Wang Q, Su J, Yang C, Ou C, Shi J, Wang DP, Li Y: Long-term observation of hepatitis B virus (HBV) replication in new-born tree shrews inoculated with HBV (in Chinese), Zhonghua Gan Zang Bing Za Zhi 2009, 17:580–584.
14. Wang Q, Schwarzenberger P, Yang F, Zhang J, Su J, Yang C, Cao J, Ou C, Liang L, Shi J, et al: Experimental chronic hepatitis B infection of neonatal
tree shrews (Tupaia belangeri chinensis): a model to study molecular causes for susceptibility and disease progression to chronic hepatitis in humans. Virol J 2012, 9:170.

15. Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N, Kiernan TW, Wollman J: Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology 1981, 1:431–435.

16. Dienstag JL, Popper H, Purcell RH: The pathology of viral hepatitis types A and B in chimpanzees. A comparison. Am J Pathol 1976, 85:131–148.

17. Baker LF, Maynard JE, Purcell RH, Hoofnagle JH, Benquist KR, London WT, Gerety RJ, Krushak DH: Hepatitis B virus infection in chimpanzees: titration of subtypes. J Infect Dis 1975, 132:451–458.

18. Barker LF, Maynard JE, Purcell RH, Hoofnagle JH, Benquist KR, London WT: Viral hepatitis, type B, in experimental animals. Am J Med Sci 1975, 270:189–195.

19. Belongia EA, Costa J, Gareen IF, Grem JL, Inadomi JM, Kern ER, McHugh JA, Petersen GM, Rein MF, Sorrell MF, et al: NIH consensus development statement on management of hepatitis B. NIH Consens State Sci Statements 2008, 25:1–29.

20. McMahon BJ: The natural history of chronic hepatitis B virus infection. Hepatology 2009, 49:545–555.

21. Goodman ZD, Ishak KG, et al: Hepatic Histopathology. In Schiff’s diseases of the liver. Chapter 9. 10th edition. Edited by Schiff ER, Sorrell MF, Maddrey WC. Philadelphia: Lippincott Williams & Wilkins; 2007:246–311.

22. Koo JS, Seong JK, Park C, Yu DY, Oh BK, Oh SH, Park YN: Large liver cell dysplasia in hepatitis B virus x transgenic mouse liver and human chronic hepatitis B virus-infected liver. Intervirology 2005, 48:16–22.

23. Garne-Carrie N, Chastang C, Chapel F, Münz C, Pateron D, Sibony M, Deny P, Trinchet JC, Callard P, Guettier C, Beaugrand M: Predictive score for the development of hepatocellular carcinoma and additional value of liver large cell dysplasia in Western patients with cirrhosis. Hepatology 1996, 23:1112–1118.

24. Li Y, Wan D, Wei W, Su J, Cao J, Qiu X, Ou C, Ban K, Yang C, Yue H: Candidate genes responsible for human hepatocellular carcinoma identified from differentially expressed genes in hepatocarcinogenesis of the tree shrew (Tupaia belangeri chinensis). Hepatol Res 2008, 38:85–95.

25. Chu CM, Yeh CT, Chen RN, Sheen IS, Liaw YF: The degrees of hepatocyte nuclear but not cytoplasmic expression of hepatitis B core antigen reflect the level of viral replication in chronic hepatitis B virus infection. J Clin Microbiol 1997, 35:102–105.

26. Lu YQ, Han JX, Qi P, Xu W, Zhi Y, Zhu B: Rapid quantification of hepatitis B virus DNA by real-time PCR using efficient TaqMan probe and extraction of virus DNA. World J Gastroenterol 2006, 12:365–7370.

27. Chu CM, Shyu WC, Liaw YF: Immunopathology on hepatocyte expression of HBV surface, core, and x antigens in chronic hepatitis B: clinical and virological correlation. Digest Dis Sci 2010, 55:464–465.

28. Armako Y, Tsukiyama-Kohara K, Katsume A, Hirata Y, Sekiguchi S, Tobita Y, Hayashi Y, Hisihma T, Funata N, Yonekawa H, Kohara M: Pathogenesis of hepatitis C virus infection in Tupaia belangeri. J Virol 2010, 84:303–311.

doi:10.1186/1743-422X-10-333