High-Mobility Tri-Gate β-Ga$_2$O$_3$ MESFETs With a Power Figure of Merit Over 0.9 GW/cm2

Arkka Bhattacharyya$^{\text{D}}$, Graduate Student Member, IEEE, Saurav Roy, Praneeth Ranga$^{\text{C}}$, Carl Peterson$^{\text{D}}$, and Sriram Krishnamoorthy$^{\text{D}}$, Member, IEEE

Abstract—In this letter, fin-shape tri-gate β-Ga$_2$O$_3$ lateral MESFETs are demonstrated with a high power figure of merit (PFOM) of 0.95 GW/cm2 — a record high for any β-Ga$_2$O$_3$ transistor to date. A low-temperature un-doped buffer-channel stack design is developed which demonstrates record high Hall and drift electron mobilities in doped β-Ga$_2$O$_3$ channels allowing for low ON resistances (R_{ON}) in β-Ga$_2$O$_3$ MESFETs. Fin-widths (W_{fin}) were 1.2-1.5 μm and there were 25 fins (N_{fin}) per device with a trench depth of \sim 1 μm. A β-Ga$_2$O$_3$ MESFET with a source-drain length of 6.4 μm exhibits a high ON current (187 mA/mm), low R_{ON} (20.5 Ω.mm) and a high average breakdown field (4.2 MV/cm). All devices show very low reverse leakage until catastrophic breakdown for breakdown voltages (V_{BR}) scaling from 1.1kV to \sim3kV. This work demonstrates the potential of channel engineering in improving β-Ga$_2$O$_3$ device performance towards lower conduction losses for low-to-medium voltage applications.

Index Terms—Ga$_2$O$_3$, power device, MESFETs, finFETs, MOVPE, regrown contacts, breakdown, kilovolt, power figure of merit, passivation.

I. INTRODUCTION

ULTRA-WIDE bandgap (UWBG) β-Ga$_2$O$_3$ (E_g = 4.6 - 4.9 eV) material and device technology is maturing rapidly and offers enormous opportunities for next-generation solid-state power switching with improved system-level size, weight, and power (SWaP) efficiency. β-Ga$_2$O$_3$ is the only UWBG semiconductor that offers the advantage of producing large area native bulk substrates from melt-grown techniques – offering potentially lowered costs for large-scale manufacturing at a much higher device yield and uniformity [1], [2]. Thanks to its compatibility with the established WBG process technology and single crystal growth using standard epitaxial techniques, β-Ga$_2$O$_3$ material and device performance has improved rapidly with lateral and vertical β-Ga$_2$O$_3$ devices demonstrating class-leading blocking voltages (up to 8kV) and breakdown field strengths (> 5 MV/cm) [3]–[10].

Manuscript received 13 July 2022; revised 28 July 2022; accepted 31 July 2022. Date of publication 3 August 2022; date of current version 27 September 2022. This work was supported in part by the II-VI Foundation Board Gift Program and in part by the Air Force Office of Scientific Research under Award FA9550-21-0078 (Program Manager: Dr. Al Sayir). The review of this letter was arranged by Editor D. Hisamoto. (Corresponding author: Arkka Bhattacharyya.)

Fig. 1. (a) 3D schematic of the tri-gate β-Ga$_2$O$_3$ MESFETs (with a SiNx wrap-around passivation not shown). (b) 2D cross-section schematic of the channel stack.

Although β-Ga$_2$O$_3$ devices have demonstrated tremendous performance advantages, its performance is still far from its projected intrinsic material limit. β-Ga$_2$O$_3$ transistors with high breakdown voltages and PFOMs have been realized which have focused mainly on electric field management techniques for improving average breakdown fields and device scaling for improving ON resistances [3], [5], [11]–[13]. However, less attention has been paid to doped channel design and engineering for improving electron mobility toward lowered device ON resistance [14]–[16]. In this letter, we demonstrate an improved channel stack design with low-temperature metalorganic vapor phase epitaxy (MOVPE) grown undoped buffer layers with record high Hall and drift electron mobilities in doped β-Ga$_2$O$_3$ channels. By fabricating fin-shape tri-gate β-Ga$_2$O$_3$ MESFETs, PFOM close to 1 GW/cm2 and multi-kV breakdown voltages (over 2kV) are achieved simultaneously.

II. DEVICE GROWTH AND FABRICATION

For the channel design, a hybrid low temperature - high temperature (LT-HT) undoped buffer/doped channel epitaxial stack is grown using MOVPE. The (010) Fe-doped Ga$_2$O$_3$ substrates (NCT, Japan) were cleaned in HF (49%) for 30 mins prior to channel growth [17]. The epitaxial structure was grown using an Agnitron Agilis MOVPE reactor with TEGa, O$_2$ and silane (SiH$_4$) as precursors and argon as carrier gas. An LT (600°C) undoped Ga$_2$O$_3$ buffer (330 nm thick) is grown followed by transition layers to a HT (810°C) Si-doped Ga$_2$O$_3$ channel layers (~200 nm) without growth interruption [18].

Fin-shape MESFETs were fabricated with a channel stack whose Hall mobility, sheet charge (electron density) and R_{sh} were 168 cm2/Vs, 5.8×10^{12} cm$^{-2}$ ($\sim 3 \times 10^{17}$ cm$^{-3}$), and 6.4 kΩ.mm, respectively. The channel stack cross-section schematic is shown in Figure 1(b). Fin-shape channels with length (L_{fin}) that run from the source to the drain ($L_{fin} \sim L_{SD}$) were formed using Ni/SiO$_2$ mask pattern and SF$_5$-Ar ICP-RIE dry etch with trench depths ~ 1 μm (3D schematic shown in Figure 1(a)) [19]. After the dry etching.
step, wet acid treatments using room temperature diluted HCl (20 mins) and diluted HF (10 mins) were used for dry-etch-induced surface damage recovery. Planar LT-MOVPE regrown ohmic contacts were employed [12]. The estimated electron concentration in the regrown contact layer is around $n \sim 1.4 \times 10^{19}$ cm$^{-3}$. Ti/Au/Ni (20/150/50 nm) ohmic metal was evaporated on the regrown contacts and annealed at 450$^\circ$C for 1.5 mins in N$_2$ ambient [12]. Ni/Au/Ni (30/100/30 nm) gates were evaporated to form the Schottky gates. The whole device was passivated using a \sim250 nm PECVD (300$^\circ$C) deposited SiN$_x$ dielectric. Lateral device dimensions were verified by SEM. Fin-widths (W_{fin}) were 1.2-1.5 μm, trench widths were \sim5.3 μm and there were 25 fins (N_{fin}) per device. The L_{GS} and L_{G} were fixed at 2.4 μm and 1.3 μm and the L_{GD} was varied from 2.7 to 16.7 μm on the same wafer. Concentric Schottky gate CV pads (220 μm diameter) and fatFETs structures were also fabricated on the same MESFET sample.

III. RESULTS AND DISCUSSIONS

From room temperature (RT) Hall measurements, this stack design is shown to have an effective RT Hall mobility value in the range 162 – 184 cm2/Vs for doped channel electron densities of 1.5 – 3.5 \times 1017 cm$^{-3}$ measured on multiple samples/substrates. It is hypothesized that the enhanced mobility could be due to lower Fe riding into the channel from the substrate due to the lower growth temperature of the buffer as well as the absence of any low-mobility parasitic channel near the substrate [25], [26]. Further details and characterization of this stack design will be reported elsewhere. These Hall mobility values are record high for any doped Ga$_2$O$_3$ channel to date as it is compared with the state-of-the-art values reported utilizing various growth techniques in Figure 2(a).

Charge profile of the MESFET channel extracted from capacitance-voltage measurement is shown in Figure 2(b). It shows that the buffer is completely depleted and there is no active parasitic channel at the epilayer-substrate interface. These further supports ascribing the measured Hall and drift mobility to only the doped channel layer. The channel mobility of the MESFET was characterized using fatFET devices ($L_G \sim 103$ μm, $L_{\text{GS}}/L_{\text{GD}} \sim 1$ μm) in the linear region of the device operation. Under a low drain bias ($V_{\text{DS}} = 0.1$ V), the field-effect mobility μ_{FE} can be related to the transconductance as, $\mu_{\text{FE}} = (g_m \times L_G)/(C_G \times V_{\text{DS}})$ where g_m, L_G, C_G, V_{DS} are the transconductance, gate length, gate-to-channel capacitance and applied drain bias respectively. Figure 2(c) shows the room-temperature depth profile of the extracted μ_{FE} in the doped channel. The μ_{FE} showed an average value of \sim125 cm2/Vs with a peak value of 132 cm2/Vs which is the highest electron drift mobility value ever reported in a uniformly doped β-Ga$_2$O$_3$ channels.

Figure 3(a) and 3(b) shows the DC output and transfer curves for the fin-shape MESFET with dimensions $L_{\text{GS}}/L_{\text{G}}/L_{\text{GD}} = 2.4/1.3/2.7$ μm. The ON current and resistance were normalized to the device width ($W_{\text{fin}} \times N_{\text{fin}}$). The devices show clear current saturation and low saturation voltages ($V_{\text{DS, Sat}}$). The maximum ON current measured was 187 mA/mm. The ON resistance (R_{ON}) extracted from the linear region of the output curve was found to be 20.5 Ω.mm. From TLM measurements, the total R_C (contact resistance) to the channel was extracted to be 1.0 \pm 0.2 Ω.mm (\leq 5% of the total device R_{ON}). The devices show sharp pinch off with low sub threshold swing (156 mV/dec) and threshold voltage of \sim10 V. From the transfer curves, the devices show low leakage (\sim10$^{-11}$A/mm) and high $I_{\text{ON}}/I_{\text{OFF}}$ ratio \sim104. The transistors also exhibit very low gate leakage and high transconductance peak of 12.6 mS/mm. The hysteresis effects seem to be minimal as shown in Figure 3(c) and 3(d) dual sweep I-V curves. These devices exhibit a negligible hysteresis of $AV \sim 0.06$ V. Dynamic performance characterization is required in the future to ascertain any deleterious effect of low temperature buffers and any resultant charge trapping.

Figure 3(e) shows the three-terminal breakdown characteristics (at $V_{\text{GS}} = –35$V) of the MESFETs with various L_{GD} values. All the breakdown measurements were performed with
the wafer submerged in FC-40 Fluorinert dielectric liquid. The device breakdown was catastrophic (destructive) with negligible reverse leakage until the breakdown occurred. The reverse leakage during the breakdown measurements were limited by the measurement tool (Keysight B1505 with 3kV HV SMU). It is seen in Figure 3(c) that the $V_{BR} = (V_{DS} - V_{GS})$ scaled from 1.1kV to ~3kV as the L_{GD} was scaled from 2.7 to 16.7 μm.

From the cross-section (xz-plane Figure 4(a,b)) of the 3D TCAD simulated structure (with $L_{GD} = 3 \mu m$, and $V_{DS} = 1130V$) at the gate edge towards drain, it is shown that the peak fields are at the center of the top gate and gate metal corners in the etched region. Hence, in the presence of the UID cap layer and deeper trenches, peak fields are present in the UID cap region and the insulating substrate. When this design is compared with a planar gate structure (Figure 4(d)), the tri-gate exhibits lower peak field at the gate edge (without the need for field plates), improving the E_{AVG} values in the drift region dramatically.

Figure 5(a) shows the variation of V_{BR} and the effective average field ($E_{AVG} = V_{BR}/L_{GD}$) as a function of L_{GD}. The maximum E_{AVG} achieved was ~4.2 MV/cm for the smallest device with L_{GD} of 2.7 μm ($V_{BR} = 1.13$ kV). This is the highest reported average breakdown field for $L_{GD} > 2 \mu m$ [3, 27]. The E_{AVG} decreased monotonously as the V_{BR} increased with increasing L_{GD}. For a V_{BR} of ~3 kV and L_{GD} of 16.7 μm, the E_{AVG} is 1.8 MV/cm. Since this is the first report of LT MOVPE-grown buffers in β-Ga$_2$O$_3$ devices, further study combining field plates and buffer breakdown structures will be necessary to elucidate on factors limiting the breakdown performance in these devices, especially at higher L_{GD}. Nevertheless, the high ON currents (low R_{ON}), the high V_{BR}, E_{AVG} and low reverse leakage behavior simultaneously demonstrated in these first-generation LT-buffer devices are a significant improvement over the state-of-the-art β-Ga$_2$O$_3$-based transistors.

Since these devices utilized fin lengths running from source to drain, an effective channel area of $(L_{SD} + 2L_T) \times W_{fin} \times N_{fin}$ was used to normalize the ON resistance. L_T, the transfer length, is extracted from TLM structures to be 0.2 μm. The PFOM values for fin-shape MESFETs are plotted as a function of L_{GD} (Figure 5(b)). The highest PFOM of 0.95 GW/cm2 was calculated for MESFETs with L_{GD} of 2.8 μm and 7.7 μm which had V_{BR} of 1.1 kV and 2.2 kV, respectively. The PFOM of the devices with L_{GD} of 12.2 μm and 16.7 μm were 0.65 GW/cm2 ($V_{BR} = 2.8kV$) and 0.44 GW/cm2 ($V_{BR} = 3kV$). The PFOM of the large L_{GD} devices were a bit lower due to lower E_{AVG} values compared to the small L_{GD} devices, as discussed earlier. Nevertheless, the PFOM reported for >2 kV devices are still the highest reported values. Figure 5(c) benchmarks the PFOM values of the fin-shape MESFETs with the existing literature reports. It is compared with state-of-the-art β-Ga$_2$O$_3$-based transistors that include advanced designs like Ga$_2$O$_3$ MOSFETs, AlGa$_2$O$_3$/Ga$_2$O$_3$ HFETs and p-n hetero-junction β-Ga$_2$O$_3$ FETs. It shows the reported PFOM of 0.95 GW/cm2 is a record high for any β-Ga$_2$O$_3$ transistor to date. Further improvement can be expected by implementing E-field management techniques like field-plates, planar access regions, gate dielectrics with high breakdown field strengths, higher channel charge, higher channel mobility and lowering reverse leakage simultaneously.

IV. Conclusion

We demonstrate over 0.9 GW/cm2 PFOM in multi-kV fin-shape β-Ga$_2$O$_3$ lateral MESFETs – a record high for any β-Ga$_2$O$_3$ transistor to date. An LT-HT buffer-channel stack is demonstrated using MOVPE with record high RT Hall and drift mobilities in doped β-Ga$_2$O$_3$ channels. Using trigates, β-Ga$_2$O$_3$ MESFETs with high ON currents, negligible hysteresis effects and low ON resistances are realized with very low reverse leakage and V_{BR} values of 1.1kV to ~3 kV. These devices show great potential of high-performance β-Ga$_2$O$_3$ FETs for future power device applications in the low to medium voltage range.

REFERENCES

[1] M. Higashiwaki and G. H. Jessen, “Guest editorial: The dawn of gallium oxide microelectronics,” Appl. Phys. Lett., vol. 112, no. 6, Feb. 2018, Art. no. 060401, doi: 10.1063/1.5017845.
[2] S. J. Peart, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and A. M. Mastro, “A review of Ga₂O₃ materials, processing, and devices,” Appl. Phys. Rev., vol. 5, no. 1, Mar. 2018, Art. no. 011301, doi: 10.1063/1.5006941.

[3] N. K. Kalarickal, Z. Xia, H.-L. Huang, W. Moore, Y. Liu, M. Brenner, J. Hwang, and S. Rajan, “β-(Al₀.₁₈Ga₀.₈₂)₂O₃/Ga₂O₃ double heterostructure transistor with average field of 5.5 MV/cm,” IEEE Electron Device Lett., vol. 42, no. 6, pp. 899–902, Jun. 2021, doi: 10.1109/LED.2021.3072052.

[4] A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmischer, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga₂O₃ MOSFETs,” IEEE Electron Device Lett., vol. 37, no. 7, pp. 902–905, Jul. 2016, doi: 10.1109/LED.2016.2568139.

[5] S. Sharma, K. Zeng, S. Sahu, and U. Singisetti, “Field-plated lateral Ga₂O₃ MOSFETs with polymer passivation and 8.03 kV breakdown voltage,” IEEE Electron Device Lett., vol. 41, no. 6, pp. 836–839, Jun. 2020, doi: 10.1109/LED.2020.3007719.

[6] S. Roy, A. Bhattacharyya, P. Ranga, H. Splawn, J. Leach, and S. Krishnamoorthy, “High-k oxide field-plated vertical (001) β-Ga₂O₃ Schottky barrier diode with Baliga’s figure of merit over 1 GW/cm²,” IEEE Electron Device Lett., vol. 42, no. 8, pp. 1140–1143, Aug. 2021, doi: 10.1109/LED.2021.3089945.

[7] Z. Xia, H. Chandrasekar, W. Moore, C. Wang, A. J. Lee, G. Wagner, A. Thies, K. Ickert, H. Gargouri, and J. Wurfl, “Lateral 1.8 kV β-Ga₂O₃ MOSFET with 155 MW/cm² power figure of merit,” IEEE Electron Device Lett., vol. 40, no. 9, pp. 1503–1506, Sep. 2019, doi: 10.1109/LED.2019.2930189.

[8] K. Tetzner, E. Bahat Treidel, O. Hilt, A. Popp, S. Bin Anoosh, G. Wagner, A. Thies, K. Ickert, H. Gargouri, and J. Wurfl, “Lateral 1.8 kV β-Ga₂O₃ MOSFET with 155 MW/cm² power figure of merit,” IEEE Electron Device Lett., vol. 40, no. 9, pp. 1503–1506, Sep. 2019, doi: 10.1109/LED.2019.2930189.

[9] C. Wang, H. Zhou, J. Zhang, W. Mu, J. Wei, Z. Jia, X. Zheng, X. Luo, X. Tao, and Y. Hao, “Hysteresis-free and μs-switching of D/E-modes Ga₂O₃ hetero-junction FETs with the BV²/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC,” IEEE Electron Device Lett., vol. 43, no. 5, pp. 765–768, May 2022, doi: 10.1109/LED.2022.3160366.

[10] K. Tetzner, E. Bahat Treidel, O. Hilt, A. Popp, S. Bin Anoosh, G. Wagner, A. Thies, K. Ickert, H. Gargouri, and J. Wurfl, “Lateral 1.8 kV β-Ga₂O₃ MOSFET with 155 MW/cm² power figure of merit,” IEEE Electron Device Lett., vol. 40, no. 9, pp. 1503–1506, Sep. 2019, doi: 10.1109/LED.2019.2930189.

[11] C. Wang, H. Zhou, J. Zhang, W. Mu, J. Wei, Z. Jia, X. Zheng, X. Luo, X. Tao, and Y. Hao, “Hysteresis-free and μs-switching of D/E-modes Ga₂O₃ hetero-junction FETs with the BV²/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC,” IEEE Electron Device Lett., vol. 43, no. 5, pp. 765–768, May 2022, doi: 10.1109/LED.2022.3160366.

[12] K. Tetzner, E. Bahat Treidel, O. Hilt, A. Popp, S. Bin Anoosh, G. Wagner, A. Thies, K. Ickert, H. Gargouri, and J. Wurfl, “Lateral 1.8 kV β-Ga₂O₃ MOSFET with 155 MW/cm² power figure of merit,” IEEE Electron Device Lett., vol. 40, no. 9, pp. 1503–1506, Sep. 2019, doi: 10.1109/LED.2019.2930189.

[13] C. Wang, H. Zhou, J. Zhang, W. Mu, J. Wei, Z. Jia, X. Zheng, X. Luo, X. Tao, and Y. Hao, “Hysteresis-free and μs-switching of D/E-modes Ga₂O₃ hetero-junction FETs with the BV²/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC,” IEEE Electron Device Lett., vol. 43, no. 5, pp. 765–768, May 2022, doi: 10.1109/LED.2022.3160366.

[14] A. Bhattacharyya, P. Ranga, S. Roy, C. Peterson, F. Alema, G. Seryogin, A. Osinsky, and S. Krishnamoorthy, “4.4 kV β-Ga₂O₃ MOSFETs with power figure of merit exceeding 100 MW/cm²,” Appl. Phys. Exp., vol. 15, no. 6, May 2022, Art. no. 065001, doi: 10.7558/APEX.8.015503.