Clinical Efficacy of Antimicrobial Agents in Combination with Flunixin Meglumine and Phenylbutazone on Acute Phase Response in Respiratory Disease of Calves

Wael M. El-Deeb1,2*, Mohamed A Rizk2, Mahmoud M. Fayez3, Hermine V Mkrtchyan4 and Mahmoud Kandeel5

1Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; 2Department of Veterinary Medicine, Infectious Disease, and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; 3Ministry of Agriculture, Al Ahsa Veterinary Diagnostic Laboratory, Saudi Arabia; 4School of Biomedical Sciences, University of West London, St Mary’s Rd, London, UK, W5 5RF; 5Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia

*Corresponding author: weldeeb@kfu.edu.sa

ARTICLE HISTORY (20-372)
Received: July 14, 2020
Revised: August 31, 2020
Accepted: September 01, 2020
Published online: September 08, 2020

Key words:
Ceftiofur
Cytokines
Florfenicol
Flunixin meglumine
Haptoglobin
Tulathromycin

ABSTRACT

The aim of this study was to correlate the serum levels of acute phase proteins (APPs) and cytokines in response to treatment by various antimicrobial agents in feedlots calves (FL) naturally infected with Mannheimia haemolytica (M. haemolytica) and Histophilus somni (H. somni). 840 feedlot calves in one farm in Al-Kharg region, Saudi Arabia were clinically examined for the presence of respiratory disease manifestations. The infection was confirmed using nasopharyngeal swabs. Blood samples from diseased animals were collected before and after (7 days) treatment for biochemical analysis of serum amyloid A (SAA), haptoglobin (HP) and cytokines tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin-1β (IL-1β), and interleukin-8 (IL-8). FL that were positive for M. haemolytica and/or H. somni (n=69) received treatment with one antibiotic, including tulathromycin (Tula; n=26 cases), florfenicol (FFC; n=19), tilmicosin (Tm; n=13), or ceftiofur (CEF; n=11) and one non-steroidal anti-inflammatory drug (Flunixin meglumine (FM; n=43) or phenylbutazone (PBZ; n= 26). We demonstrated the selective potent inhibitory effect of the administered anti-inflammatory agents either FM or PBZ on the production of APPs and pro-inflammatory cytokines in FL infected with bovine respiratory disease (BRD). Our findings showed the antibacterial efficacy of FFC and Tm for the treatment of infected FL when administrated with either FM or PBZ. However, Tula was preferable to administrate in combination with FM for the treatment of FL with respiratory manifestations. Importantly, monitoring the sera level of Hp, IL-1β, and interleukin-8 (IL-8) in feedlots treated with either FM combined with Tula, FFC, or Tm or PBZ combined with FFC, and Tm has been effective in predicting the disease prognosis.

©2020 PVJ. All rights reserved

To Cite This Article: El-Deeb WM, Rizk MA, Fayez MM, Mkrtchyan HV and Kandeel M, 2021. Clinical efficacy of antimicrobial agents in combination with flunixin meglumine and phenylbutazone on acute phase response in respiratory disease of calves. Pak Vet J, 41(1): 71-77. http://dx.doi.org/10.29261/pakvetj/2020.078

INTRODUCTION

Bovine respiratory disease (BRD) is considered a major health issue and an uninterrupted challenge worldwide causing considerable economic losses among dairy and feedlot calves (FL) (Woolums et al., 2018). The disease is manifested by lethargy, coughing, nasal discharge, dyspnea, tachypnea, septicemia, fever, hypoxia, anorexia and acute phase response (El-Deeb et al., 2020).

The acute phase proteins (APPs) that synthesize in hepatic cells are released into blood circulation in the process of acute phase response (APR) against inflammatory conditions or infections (El-Deeb and Jacob, 2012; El-Deeb et al., 2014; El-Deeb and Buczinski, 2015; El-Deeb and Tharwat 2015; El-Deeb and El-Moslemany, 2016a, 2016b; El-Deeb et al., 2017). The detection of APPs and pro-inflammatory cytokine levels in the blood of diseased calves may possibly be used as a tool for BRD diagnosis and for evaluation of treatment responses (El-Deeb et al., 2020).
Indeed, the early stage of BRD is characterized by a significant inflammatory response in the host, a condition that requires an urgent need for administration of nonsteroidal anti-inflammatory drugs (NSAIDs) (Lekeux, 1996). Subsequently, a combination therapy consisting of anti-inflammatory drugs and antimicrobials have become a preferable field protocol for respiratory disease treatment in cattle (Van de Weerdt and Lekeux, 1997; Rizk et al., 2017). However, there is a paucity on the influence of anti-inflammatory drugs when administrated in combination with other antimicrobial agents to calves either experimentally- or clinically diseased with M. haemolytica and H. somini. In this regard, the efficacy of several antimicrobial agents including enrofloxacin, danofloxacin, oxytetracycline, ceftiofur, amoxicillin/ clavulanic acid, tylosin, tilimicosin, sulfadimethoxine, florfenicol and tulathromycin have been reported for treatment of calves suffering from respiratory diseases (Benchcaoui et al., 2004; Rizk et al., 2017).

The usage of APPs and pro-inflammatory cytokines sera levels for diagnosis of BRD or for monitoring treatment efficacy in pneumonia calves has previously been reported by other authors (Bednarek et al., 2003; Gruys et al., 2005; Rizk et al., 2017; Joshi et al., 2018). However, these studies had limitations of administrating only one or two antimicrobial agents in addition. The identification and isolation of causative agents were not well categorized in these studies. Notably, no study correlated yet the serum amyloid A (SAA), haptoglobin (HP) and cytokines (TNF-α, IFN-γ, IL-8, IL-1β).

Isolation and identification: The external surface of lung specimens was scored by a hot spatula. Following this, a parallel incision was made, and the deep tissues were swabbed.

Nasopharyngeal swabs and lung specimens were inoculated on sheep blood agar containing 0.5% yeast extract (Oxoid Ltd, Basingstoke, UK) and 5 mg/mL of bacitracin and Colombia blood agar (Oxoid Limited, UK) supplemented with 5% sheep blood and selective antibiotics as described previously (Slee and Stephens, 1985). Inoculated plates were incubated in microaerophilic atmosphere containing 5% CO2 for 48 h at 37°C. Presumptive M. haemolytica and H. somini were further identified using the VITEK 2 Compact (BioMérieux, France).

Nucleic Acid extraction: RNA and DNA extractions (nasopharyngeal swabs, lung tissues and bacterial isolates) were prepared as described previously (Klima et al., 2014), using RNeasy Mini Kit and QIAamp DNA mini kits (QIAGEN®, France). Nucleic acid quantification was applied by NanoDrop 3300 (ND-3300, Thermo Scientific™, USA).

Partial 16S rRNA identification: The bacterial isolates were subjected to 16S rRNA gene sequencing using universal primers 27F (5′-AGGTTTGATCMTGGCTCAG) and 1492R (5′-GGTACCCTTGTGTTACGACTT) as described previously (Holman et al., 2015). The purified PCR products were sequenced using Genetic analyzer 3500, (Applied Biosystems, USA). 16S rRNA sequence homology searches were carried out using NCBI Basic Local Alignment Search Tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome).

Detection of viral and bacterial pathogens: The genomic DNA was amplified for detection of suspected bacteria (M. haemolytica and H. somini) and the RNA for viruses (BVDV, BHV-1, BRSV, PI3V) using primers and PCR conditions as described previously (Table 1). (Ange et al., 1998; Ange et al., 2009; Horwood and Mahony, 2011; Klima et al., 2014).

MATERIALS AND METHODS

Study design: 840 feedlot calves (4-12 months old) were examined in one farm in Al-Kharg region, Saudi Arabia between July and August 2016 in response to the complaint of a farm owner for the presence of respiratory disease manifestations and consequently deaths among the farm animals. The farm records revealed that all animals were previously vaccinated against viruses causing bovine BRD. All animals were clinically examined for signs of BRD (fever, nasal discharge, lacrimation, wheezes, crackles, congested mucous membrane, depression, decreased appetite, and difficult respiration). Nasopharyngeal swabs (Culture Swab-Kalayjian, Patterson Veterinary Supply Inc., USA) and blood samples (5ml) were collected from each animal with fever and with one or more other RD signs (n=250) for screening.

Diseased calves that tested positive for H. somini and/or M. haemolytica (n=69) received treatment with one antibiotic (Tula "Draxxin®", n=26 cases, FCC "Nuflor®", n=19, Tm "Pulmotil®", n=13, or CEF "Excenel®", n=11) and one anti-inflammatory drug (FM, n=43 or FBZ, n= 26). Calves that did not respond to the treatment (n=20) were necropsied and pharyngeal swabs, tracheobronchial lavage, heart-blood and lung samples were collected for further bacteriological and virology examinations. The treatment regime and doses for each antibiotic and anti-inflammatory drug were designated according to the manufacture’s recommendations.

Blood samples were taken from diseased cases before and after (7 days) treatment. Recovered serum samples were stored in Eppendorf tubes at -80°C for further detection of biochemical variables including serum amyloid A (SAA), haptoglobin (HP) and cytokines (TNF-α, IFN-γ, IL-8, IL-1β).
Biochemical analysis of selected biomarkers: Proinflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-8) and PCT were analyzed using ELISA test kits (CUSABIO, Wuhan, Hubei, China) and PCT were analyzed using ELISA test kits (CUSABIO, Wuhan, Hubei, China). For both groups the serum Hp levels and SAA were tested using ELISA kits (Phase SAA kit, Tridelta Ltd., Ireland) according to the manufacturer’s instructions.

Statistical analysis: JMP for Windows Version 5.1; SAS Institute, Cary, NC, USA (A statistical software program) was used for analyses of the data. MANOVA repeated measures on treatment and time was used to confirm the treatment efficacy. To assess the interactions and verification of time group interactions within group Wilks’ Lambda test was used. In addition, one-way ANOVA with Tukey-Kramer HSD post-hoc multiple comparison tests were used to distinguish which group was statistically different from the others. The correlation of selected biochemical variables with response to treatment by different combination therapy was determined using Pearson correlation test coefficient.

RESULTS

Clinical appearance: Sixty-nine FL with M. haemolytica and/or H. somni exhibited various clinical signs of BRD (Table 2). FL that were apparently healthy with no isolated pathogenic bacteria or virus (n=20) were used as negative controls. Pneumonic FL have exhibited abnormal lung sound, cough and elevated (P<0.05) clinical parameters (heart rate, respiratory rate and body temperature) when compared with the control group (Table 2). The clinical signs of pneumatic feedlots were evaluated 7- days after treatment protocol with different antibacterial agents combined with non- steroidal anti-inflammatory drugs. According to their response to the treatment, the diseased feedlots were further categorized as i) responsive (n=49) and ii) non-responsive groups (n=20). Within the first 7-days after initiation of the therapy, the mean heart rate, respiratory rate, body temperature and abnormal lung sound were returned to the level compatible of that of the control group (n=49). However, the clinical signs (fever, abnormal lung sounds, cough and nasal discharge;) were still noticeable in 20 FL.

Bacterial and viral pathogen detection: H. somni and M. haemolytica were isolated from 69 nasopharyngeal swabs (27.6%). H. somni was isolated from 49 cases (19.6%) and M. haemolytica from 58 cases (23.2%). Coexistence of both bacteria was found in 38 cases (15.2%).

Variable	Healthy calves (n=20)	Diseased calves (n = 69)
Respiratory rate	0.47±0.87	1.68±0.73
Rectal temperature (°C)	37.0±0.78	37.1±1.03
Cough	1.33±0.49	2.35±1.66
Nasal discharge	0.048	0.083
Eye droop	0.048	0.083

*P<0.05, significant differences between healthy calves and diseased calves. Each value represents (mean±SD).

Cytokines and APPs in sera: In this study, biochemical investigation of selected cytokines and APPs in sera of pneumatic FL revealed higher levels of examined inflammatory cytokines (IL-1β, IL-8, IFN-γ, and TNF-α) and selected APPs (Hp, and SAA) compared to those healthy control animals (Fig. 1, 5 and 6). Substantial reduction (P<0.05, Wilks’ Lambda test for drug x time interaction, P<0.0001) in the serum values was observed for all examined biomarkers in all treated FL after 7 days of treatment (Fig. 1, 5 and 6). Interestingly, the levels of IL-8, IFN-γ and Hp in diseased FL treated with the combination therapy of various antibacterial & non-

Table 1: Primers used in the present study

PCR target	Primer name	PCR primer sequence (5’ to 3’)	Amplicon size(bp)	Annealing temp	Reference(s)
Histophilus somni	HS453_F	5’-GAAGGGCATTAGTTAAAGG-3’	400	55	Angen et al., 1998
M. haemolytica	HS860_R	5’-ITCGGGACCAAACTCTTCC-3’	385	58	Angen et al., 2009
M. haemolytica	MHlkt_int_F	5’-TGCTCTCTGTTTCTATTAAAG-3’	312	58	Klima et al., 2014
M. haemolytica	MHlkt_int_R	5’-CACTGATAATTCTCAAATTAG-3’	460	55	Klima et al., 2014
BVDV	RT_BVDVF	5’-AGCAGAGCCGAAAAGGAC-3’	566	54	Horwood and Mahony, 2011
BHV	RT_BDVR	5’-CATACTTCCGTCACCTACG-3’	422	63	Horwood and Mahony, 2011
PI3V	RT_PI3VF	5’-CTTCACCTAGAATCGAATCC-3’	566	54	Horwood and Mahony, 2011
PI3V	RT_PI3VR	5’-CAACTAAATGACACTTCACAAG-3’	422	63	Horwood and Mahony, 2011
BRV	RT_BRVSR	5’-CATTCTTCATCCCGATAGCTGTTTG-3’	566	54	Horwood and Mahony, 2011

Table 2: The clinical sum scoring associated with M. haemolytica and H. somni infections in 69 feedlot calves compared with 20 healthy calves

Variables	Healthy calves (n=20)	Diseased calves (n = 69)	
HP	0.750	0.002	0.008
SAA	0.333	0.003	0.008
IL-1β	0.7500	0.003	0.008
IL-8	0.333	0.003	0.008

The final obtained data are the P value using Pearson correlation test coefficient. CEF, Ceftiofur Na, Tula, Tulathromycin, FFC, florfenicol, Tm, timicocin. Differences between means at P<0.05 were considered significant.

Table 3: Correlation between responses to the treatment by various antibacterial agents combined with flunixin meglumine in calves naturally infected with M. haemolytica and H. somni infections

Variables	CEF	Tula	FFC	Tm
HP	0.050	0.132	0.048	0.083
SAA	0.225	0.299	0.034	0.750
IL-1β	0.001	0.151	0.048	0.083
IL-8	0.0003	0.132	0.048	0.083

The final obtained data are the P value using Pearson correlation test coefficient. CEF, Ceftiofur Na, Tula, Tulathromycin, FFC, flurofenicol, Tm, timicocin. Differences between means at P<0.05 were considered significant.
steroidal anti-inflammatory agents returned similar to the levels of that of control group (Fig. 1, 4 and 6). Similarly, the levels of IL-1β in FL treated with PBZ returned to normal state (Fig. 3a). In contrast, no such state of returning to normal levels was observed for SAA in all treated FL (Fig. 2). In this study we demonstrate the selective inhibitory effect of administrated non-steroidal anti-inflammatory agents either FM or PBZ on the production of examined cytokines and AAPS in FL with BRD.

Correlation of selected biochemical variables with response to treatment by different combination therapies: In this study, the responses to treatment by FM and PBZ correlated with the production of cytokines in sera & AAPS sera level. FL treated with FM in combination with Tula, FFC, and Tm showed strong significant positive correlations (P<0.05) between the sera levels of Hp, IL-1β, and IL-8 and response to the treatment (Table 3). Moreover, administration of PBZ combined with FFC, and Tm showed a strong significant positive correlation (P<0.05) between the sera levels of Hp, IL-1β, and IL-8 and response to the treatment (Table 4). On contrary, SAA levels in FL treated with either FM or PBZ combined with Tm showed a non-significant positive correlation (P>0.05) in response to the treatment (Tables 3 and 4). In addition, a non-significant positive correlation (P>0.05) was observed between all selected biochemical variables and response to the treatment in FL treated with either FM combined with CEF or PBZ in combination with Tula (Tables 3 and 4). On the other hand, treatment by CEF in combination with PBZ caused a strong significant positive correlation (P<0.05) between the sera levels of IL-1β, and IL-8 and response to the treatment (Table 4). Of note, the only combination therapy that showed a positive correlation (P<0.05) between the sera level of SAA and response to the treatment was the PBZ and FFC combination (Table 4). These results indicated the efficacy of FFC and Tm antimicrobial agents for the treatment of FL with BRD when administrated with either FM or PBZ. However, Tula is preferable to administrate in combination with FM for treatment of FL with RD. In particular, we observed a further decrease in the sera levels of Hp, IL-1β, and IL-8 in FL treated with either FM combined with Tula, FFC, and Tm or PBZ combined with FFC, and Tm, indicating the response to the treatment. Therefore, the sera level of SAA can be used as an indicator to response to the treatment in FL with BRD when FFC is administrated in combination with PBZ.

Fig. 1: Serum concentration of haptoglobin (HP) in feedlot calves naturally infected by M. haemolytica and H. somni and those treated with various antimicrobial agents combined with either flunixin meglumine or Phenylbutazone. (a) Flunixin meglumine. (b) Phenylbutazone. Points with different superscript letters are statistically significantly different (P<0.05). Each value represents (mean±SD). MANOVA fit, P<0.0001. Wilks’ Lambda test for drug x time.

Fig. 2: Serum concentration of serum amyloid A (SAA) in feedlot calves naturally infected by M. haemolytica and H. somni and those treated with different antibacterial agents combined with either flunixin meglumine or Phenylbutazone. (a) Flunixin meglumine. (b) Phenylbutazone. Points with different superscript letters are statistically significantly different (P<0.05). Each value represents (mean±SD). MANOVA fit, P<0.0001. Wilks’ Lambda test for drug x time.
Fig. 3: Serum concentration of interleukin-1 (IL-1β) in feedlot calves naturally infected by *M. haemolytica* and *H. somni* and those treated with different antimicrobial agents combined either with flunixin meglumine or Phenylbutazone. (a) Flunixin meglumine. (b) Phenylbutazone. Points with different superscript letters are statistically significantly different (P<0.05). Each value represents (mean±SD). MANOVA fit, P<0.0001. Wilks’ Lambda test for drug x time interaction, P<0.0001. Tula, tulathromycin; FFC, florfenicol; Tm, tilmicosin; CEF, Ceftiofur.

Fig. 4: Serum concentration of interleukin-8 (IL-8) in feedlot calves naturally infected by *M. haemolytica* and *H. somni* and those treated with different antimicrobial agents combined either with flunixin meglumine or Phenylbutazone. (a) Flunixin meglumine. (b) Phenylbutazone. Points with different superscript letters are statistically significantly different (P<0.05). Each value represents (mean±SD). MANOVA fit, P<0.0001. Wilks’ Lambda test for drug x time interaction, P<0.0001. Tula, tulathromycin; FFC, florfenicol; Tm, tilmicosin; CEF, Ceftiofur.

Fig. 5: Serum concentration of tumor necrosis factor-α (TNF-α) in feedlot calves naturally infected by *M. haemolytica* and *H. somni* and those treated with different antimicrobial agents combined either with flunixin meglumine or Phenylbutazone. (a) Flunixin meglumine. (b) Phenylbutazone. Points with different superscript letters are statistically significantly different (P<0.05). Each value represents (mean±SD). MANOVA fit, P<0.0001. Wilks’ Lambda test for drug x time interaction, P<0.0001. Tula, tulathromycin; FFC, florfenicol; Tm, tilmicosin; CEF, Ceftiofur.
DISCUSSION

To the best of our knowledge, this is the first study to address the correlation between the serum levels of APPs and cytokines in response to treatment by various antimicrobial agents in FL with BRD. Recently, we reported the selective inhibitory effect of tulathromycin when administered in combination with NSADs on the secretion of cytokines in pneumonic calves (Rizk et al., 2017). However, we then did not explore whether such selective inhibitory effect was unique to the NSADs and tulathromycin combination only or to the NSAD combination with other antimicrobial agents. Therefore, in this study this selective effect was examined.

In this study, increased levels of all examined cytokines (TNF-α, IL-1β, IL-8 and IFNγ) and APPs (Hp, and SAA) were detected in FL infected with H. somni and M. haemolytica. In addition, we showed that higher levels of IL1β, IFNy, TNF-α, and Hp were perceived in calves that suffered from respiratory diseases (Rizk et al., 2017). Consistent to our data, others reported similar results for many infections and inflammations in cattle (Gruys et al., 2005) and in boar (Reeth and Nauwynck 2000). Increased serum levels of proinflammatory cytokines have previously been detected in calves or steers experimentally challenged with BVDV and/or M. haemolytica (Burciaga-robles et al., 2010).

Seven days after treatment of the diseased FL by a combination therapy of various antibacterial agents and non-steroidal anti-inflammatory agents, substantial inhibition (P<0.05) in the serum levels of all selected biochemical variables was observed. Similar decrease in the expression of TNF-α was previously observed in macrophages of mice after treatment with aspirin (Shackelford et al., 1997). Others also reported the effect of FM on IL-1 β, TNF-α, and IL-10 on mice with experimentally induced endotoxemia (Yazat et al., 2007). On contrary, no significant alterations were detected in the production of IL-1 &TNF- α in human after NSADs (naproxen and ibuprofen) administration (Hartman et al., 1993). The dissimilar mode of action of diverse NSADs beside the variety in the experimental models and animal species that used in each study may interpret such inconsistencies in the levels of different cytokines in different studies.

It is largely accepted that meloxicam is efficient in standardization of TNF-α levels in both bronchoalveolar lavage and blood of calves with experimentally induced pneumonia (Bednarek et al., 1999). In this study, normalization of the examined cytokines secretion and APPs levels was observed in IL-8 and Hp in all treated feedlot calves and in the IL-1β sera level in feedlots treated with PBZ. Consistent with our findings, treatment of pneumonic buffalo calves with Tula and FM within the same inoculation period had previously returned the serum level of IL-1β to a normal (Rizk et al., 2017). Our findings together with those recently reported (Rizk et al., 2017) indicate that NSADs have selective influence on the APR in pneumonic calves. The obvious inhibition in the secretion of TNF-α without normalization its serum level recorded in this study may be considered beneficial for the pneumonic FL. Another in vitro study has demonstrated the positive impact of M. haemolytica and H. somni in the secretion of TNF-α in the cultures of bovine bronchoalveolar lavage cells (Bienhoff et al., 1992). The stimulation of TNF-α production-causes enhancement in both collagenase activity, and prostaglandin E2 (PGE2) secretion with remodeling of connective tissue during inflammatory conditions (Bienhoff et al., 1992; Bednarek et al., 1999). Therefore, TNF- α has a protective role during bacterial & viral challenges (Vassali, 1992). Consequently, the significant inhibitory effect of the administrated combination therapy on the secretion of TNF-α in the serum of pneumonic feedlots deprived of normalization may well be considered as an additional value to such anti-inflammatory drugs in the treatment protocol of pneumonic FL.

Conclusions: The results of this study demonstrate the selective potent inhibitory influence of administrated non-steroidal anti-inflammatory agents either FM or PBZ on the production of cytokines and APPs (APR) in FL with BRD. Our data showed the efficacy of FFC and Tm antimicrobial agents for the treatment of FL naturally infected with BRD.
when administered with either FM or PBZ. However, we also demonstrated that Tula was preferable for administration in combination with FM for the treatment of FL with RD. More importantly, monitoring the sera levels of Hp, IL-1β, and IL-8 in FL treated with either FM combined with Tula, FFC, and Tm or PBZ combined with FFC, and Tm was effective in predicting the disease prognosis.

Acknowledgments: The authors express their gratitude to the King Faisal University Deanship of Scientific Research for their financial support of this study under the track of research groups (Project No: 1811013).

Authors contribution: We, designed the study, analyzed the sera samples and wrote the manuscript; MR, performed the statistical analysis and wrote the manuscript; MF performed the microbiological work in this study; HM critically reviewed the manuscript and shared in writing the manuscript; MK; shared in interpretation of antibiotic and anti-inflammatory effects. All authors interpreted the data, critically reviewed the manuscript.

REFERENCES

Angen O, Ahrens P and Tegtmeier C, 1998. Development of a PCR test for identification of Haemophilus somnus in pure and mixed cultures. Vet Microbiol 63:39-48.

Angen, Ø, Thomsen J, Larsen LE, et al., 2009 Respiratory disease in calves: microbiological investigations on trans-rachetally aspirated bronchoalveolar fluid and acute phase protein response. Vet Microbiol 137:165-71.

Bednarek D, Szuster-Cieleska A, Zdzisinska B, et al., 1999. The effect of steroidal and non-steroidal anti-inflammatory drugs on the cellular immunity of calves with experimentally induced local lung inflammation Vet Immunol Immunopathol 71:1-15.

Bednarek D, Zdzisinska B, Kondracki M, et al., 2003. Effect of steroidal and non-steroidal anti-inflammatory drugs in combination with long-acting oxytetracycline on non-specific immunity of calves suffering from enzootic bronchopneumonia. Vet Microbiol 96:53-67.

Benchouk HA, Nowakowski M, Sherrington J, et al., 2004. Pharmacokinetics and lung tissue concentrations of tulathromycin in swine. J Vet Pharmacol Ther 27:203-10.

Bienhoff SE, Allen GK and Berg JN, 1992. Release of tumor necrosis factor-alpha from bovine alveolar macrophages stimulated with bovine respiratory viruses and bacterial endotoxins Vet Immunol Immunopathol 30:341-57.

Bucigli-robbel LO, Steep DL, Krehbeil CR, et al., 2010. Effects of exposure to calves persistently infected with bovine viral diarrhea virus type 1b and subsequent infection with Mannheimia haemolytica on clinical signs and immune variables: Model for bovine respiratory diseases via viral and bacterial interaction. J Anim Sci 88:2166-78.

El-Deeb WM and Buczinski S, 2015. The diagnostic and prognostic importance of oxidative stress biomarkers and acute phase proteins in Urinary Tract Infection (UTI) in camels. Peer J 3:e1363; DOI 107717/peerj/e1363.

El-Deeb WM and El-Moslemany A and Salem MAM, 2017. Cardiac troponin I and immune-inflammatory response in horses with strangels. J Equine Vet Sci 51:18-23.

El-Deeb WE, Elsohaby I, Fayez M, et al., 2020. Use of procalcitonin, neopterin, haptoglobin, serum amyloid a and proinflammatory cytokines in diagnosis and prognosis of bovine respiratory disease in feedlot calves under field conditions. Acta Tropica 204:105336. DOI information: 10.1016/j.actatropica.2020.105336.

El-Deeb WM and El-Moslemany AM, 2016a. The diagnostic accuracy of acute phase proteins and proinflammatory cytokines in sheep with pneumonia pasturellosis. J Vet Res 59:2161 doi: 107717/peerj2161 eCollection 2016.

El-Deeb WM and El-Moslemany AM, 2016b. The diagnostic accuracy of acute phase proteins in cases of urinary tract infections in dairy cattle. Japanese J Vet Res 64:57-66.

El-Deeb WM and Jacob O, 2012. Serum acute phase proteins in control and Theliera annulate infected water buffaloes (Bubalus bubalis). Vet Parasitol 23:12-8.

El-Deeb WM and Tharwat MA, 2015. Lipoproteins profile, acute phase proteins, proinflammatory cytokines and oxidative stress biomarkers in sheep with pneumonia pasturellosis. Comp Clin Pathol 24:581-8.

El-Deeb WM, Fouda TA and El-Bahr SM, 2014. Clinicobiological investigations of Parturbation of camels in Saudi Arabia: Proinflammatory cytokines and oxidative stress markers. Pak Vet J 34:484-8.

Gruys E, Toussaint MJM, Niewold TA et al., 2005. Acute phase reaction and acute phase proteins. J Zhejiang Univ 6:1045-56.

Hartman DA, Ochsals SJ and Carlson RP, 1993. The effect of anti-inflammatory and anti-allergic drugs on the release of IL-1 and TNF-α in human whole blood assay Agents Actions 39:C70-2.

Holman DB, Timist E and Alexander TW, 2015. The naspharyngeal microbiota of feedlot cattle. Sci Rep 5:15557.

Horowood PF and Mahony TJ, 2011. Multiplex real-time RT-PCR detection of three viruses associated with the bovine respiratory disease complex. J Virol Methods 171:360-3.

JoshvI, Gupta VK, Bhanuprahak AG et al., 2018. Haptoglobin and serum amyloid A as putative biomarker candidates of naturally occurring bovine respiratory disease in dairy calves. Microb Pathog 116:33-7.

Klima CL, Zaeheer R, Cook SR, et al., 2014. Pathogens of bovine respiratory disease in North American feedlots. J Vet Med A 51:378-96.

Lekeux P, 1996. Use of antiinflammatories drugs in the treatment of bovine respiratory disease complex in Proceedings of the XIX World Bovine Congress, Edinburgh pp:45-9.

Reeth KV and H Nauwynck, 2000 Proinflammatory cytokines and viral respiratory disease in pigs. Vet Res 31:187-213.

Risk MA, Mahmoud ME, El-Sayed SAE et al., 2017. Comparative therapeutic effect of steroidal and non-steroidal anti-inflammatory drugs on pro-inflammatory cytokine production in water buffalo calves (Bubalus bubalis) naturally infected with bronchopneumonia: a randomized clinical trial. Trop Anim Health Prod Dec 49:1723-31.

Shackelford RE, Alford PB, Xue Y, et al., 1997. Aspirin inhibits tumor necrosis factor gene expression in murine tissue macrophages. Mol Pharmacol 52:421-5.

Slee KJ and Stephens LR, 1985. Selective medium for isolation of Haemophilus somnus from cattle and sheep. Vet Rec 213:213-7.

Van de Weerdt ML and Lekeux P, 1997. Modulation of lung inflammation in the control of bovine respiratory disease. Bovine Pract 31:19-30.

Vassali P, 1992. The pathology of tumor necrosis factor. Annu Rev Immunol 10:411-52.

Woolums AR, Karisch BB, Frye JG, et al., 2018. Multidrug resistant Mannheimia haemolytica isolated from high-risk beef stocker cattle after antimicrobial metaphylaxis and treatment for bovine respiratory disease. Vet Microbiol 221:143-52.

Yazar E, Er A, Uney K, et al., 2007. Effect of flunixin meglumine on cytokine levels in experimental endotoxemia in mice. J Vet Med A Physiol Pathol Clin Med 54:352-5.