Psychomotor Skills in Root Canal Treatment: Influence of Preclinical Training Time on Clinical Performance and Confidence Level of Undergraduate Dental Students

Reem Barakat
Clinical Dental Sciences Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh

Manal Matoug-Elwerfelli
Clinical Dental Sciences Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh

Rahaf Almohareb (almohareb.r@hotmail.com)
Clinical Dental Sciences Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh

Hanan Balto
Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh,

Research Article

Keywords: Confidence, Endodontic, Preclinical, Technical Quality, Undergraduate

DOI: https://doi.org/10.21203/rs.3.rs-119282/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Performing root canal treatment is complex and requires the development of psychomotor skills adapted to working without the advantage of vision. Students have allocated special importance to preclinical training in helping them acquire these skills. The aim of this prospective study was to investigate the influence of exposure to additional preclinical training on undergraduate students’ confidence level and clinical performance defined by technical quality and quantity of root canal treatment.

Methods: Clinical root canal treatment performed by a cohort of fifth-year undergraduate dental students was followed after half of them attended an additional (elective) endodontic preclinical course the year before. Root canal treatment was radiographically evaluated according to root canal filling length, density and presence of procedural errors. Technical quality and quantity of root canal treatment performed by students who had attended the elective course (attendees) and non-attendees, were compared. All students were also invited to participate in a survey to rate their undergraduate endodontic training and confidence levels performing root canal treatment. Statistical analysis of data was performed using Person chi-square test, Fisher Freeman Halton exact test, and T-test. A p-value <0.05 was considered statistically significant.

Results: No significant difference between the two groups in overall root canal treatment quality ($p=0.619$) was found. Although elective attendees performed significantly less procedural errors ($p=0.004$), non-attendees completed more root canal treatments ($p=0.012$). Despite, no significant difference in the reported level of confidence between the attendees and the non-attendees, significantly more elective attendees rated their undergraduate endodontic training as adequate ($p=0.002$).

Conclusion: While there was no significant difference in overall technical quality of root canal treatment, nor confidence levels, between both groups, undergraduate students who attended additional preclinical training performed significantly fewer procedural errors. Furthermore, students who attended additional preclinical training were more satisfied with their undergraduate endodontic education.

Background

The dental pulp - a richly neuro vascularized connective tissue located in a complex canal system enclosed within the hard tissues of the tooth crown and root [1]- is subject to painful infection due to dental caries or trauma [2]. This cascades into the periapical tissues, resulting in periapical disease with possible systemic disease associations [3].

Success of treating of pulpal and periapical disease depends on performing non-surgical root canal (endodontic) treatment which aims to remove the entire infected tissue from the root canal system, shaping then sealing it with a three-dimensional filling, that promotes healing of the periapical tissue [4].

Performing root canal treatment is complex and requires the development of cognitive-perceptual ability integrated with fine motor skills otherwise known as psychomotor skills [5], especially since much of the procedure is performed deep within narrow root canals without the advantage of vision.

The desired outcome of an undergraduate dental curriculum is for graduating students to achieve clinical competence in performing root canal treatment of uncomplicated anterior and posterior teeth [6]. More than any other subject, teaching endodontics has challenged those involved in delivering the required knowledge and skills [7]. Most students view this discipline as complex and difficult to master, which in turn reflects on how confident they feel when it comes to performing endodontic treatment, especially on molar teeth [8]. This has been echoed by a high frequency of inadequate root canal fillings and procedural errors [9–12].

Students have allocated special importance to preclinical training in helping them acquire the necessary skills [8]. Limited preclinical and clinical training time were cited as major roadblocks to attaining competency and achieving self-confidence in performing root canal treatment [7, 8, 13, 14]. Despite the expert guidelines specifying the scope of endodontic education [15], preclinical and clinical teaching methodologies on endodontic education, the minimum number of cases required to achieve
competency remain vague [8, 16]. Little is known about the influence of preclinical training time on improving clinical performance of complex psychomotor tasks as that required in root canal treatment. In addition to how this would reflect on students’ confidence level.

The undergraduate curriculum at College of Dentistry, Princess Nourah Bint Abdulrahman University (PNU), Kingdom of Saudi Arabia which offered an extra elective endodontic preclinical course provided a unique opportunity to investigate the influence of exposure to additional preclinical training time on clinical performance, by comparing the technical quality and quantity of root canal treatment performed clinically by fifth-year undergraduate students, who attended and who did not attend the elective course. Their confidence level in performing root canal treatment was also compared. The alternative hypothesis was that students exposed to additional preclinical training would demonstrate higher confidence levels and improved clinical performance.

Methods

This prospective cohort study involved all registered fifth-year (final) undergraduate students (n=46) at PNU, College of Dentistry, during the academic year 2019-2020. Half of these students (n=23) attended an elective endodontic preclinical course during the previous year. The study was exempt from ethical approval by the institutional review board at PNU (IRB#19-0165).

The undergraduate dental curriculum at PNU, College of Dentistry is a five-year program, composed of a mixture of the block (modules) and stream (longitudinal) courses. Undergraduate endodontic teaching starts with a preclinical block course in the third year composed of a theoretical component and hands-on preclinical sessions that run for seven weeks, culminating in a total of ninety contact hours. All preclinical training takes place in a simulated setting, on mannequin heads, on which students are expected to complete root canal treatment for plastic and natural anterior and posterior teeth. Upon passing this preclinical course, students can commence performing non-surgical root canal treatment on patients under close supervision as part of stream comprehensive clinical courses.

An elective advanced preclinical endodontic block course is also offered in the fourth year. This course runs for five weeks (a total of forty-five contact hours) and offers advanced theoretical knowledge along with simulated preclinical training sessions focused on molar teeth.

Case selection

All completed non-surgical root canal treatment cases performed by the fifth-year students during the academic year were evaluated. Students performed root canal treatment at the college of dentistry’s dental clinics under the supervision of endodontic specialists, with an average student to staff ratio of 1:7. An aseptic technique with rubber dam isolation was applied in all cases. Working length was established using electronic apex locator and periapical radiographs. Canal cleaning and shaping was done either using manual 0.02mm taper stainless-steel k-files (Medin, A.S. Czech Republic) with step-back technique or rotary instrumentation using nickel-titanium Protaper Universal files (Dentsply Maillefer, Ballaigues, Switzerland). Canals were irrigated with Sodium hypochlorite 2.25% for chemical disinfection, dried with paper points then filled with gutta-percha cones and AH plus sealer (Dentsply-Sirona, United States) using a lateral condensation technique. On completion, coronal restoration was performed, and a postoperative periapical radiograph was exposed using the paralleling technique.

The academic dental software system, AxiUm (Exan, BC, Canada) - employed at the dental clinics - was used to specify all non-surgical root canal treatment cases completed by fifth-year students from the start of the academic year on the first of September 2019 until work at the dental clinics was abruptly terminated on the eighth of March 2020 due to the COVID 19 pandemic. Retreatment cases were excluded. During evaluation, records with poor quality or missing periapical radiographs were also excluded.

The cases were divided into two groups: Group 1; (attendees), teeth treated by students who had attended both the preclinical endodontic block course in the third-year and the elective preclinical course in the fourth-year. Group 2; (non-attendees), teeth treated by students who had not attended the elective preclinical course.
Assessment of clinical performance

Root canal treatment quality and procedural errors

Clinical performance of the students was assessed by evaluating the technical quality of the performed root canal treatment and the presence of procedural errors. Technical quality was determined based on criteria for adequate root canal filling: distance between the end of the root canal filling and the radiographic apex, filling density and the detection of procedural errors, which had been adopted by Barriesh-Nusaair et al. [10] and Balto et al. [9], and are summarized in Table 1 and Table 2. The tooth was considered as one unit, scored according to the presence of errors, and/or defects in obturation length and density in any of its canals, for clinical failure of one root will eventually lead to failure of the tooth [9].

Table 1: Criteria for evaluation of technical quality of root canal treatment

Criteria	Definition
Length of root canal filling	**Adequate** End of root canal filling is either at or ≤ 2mm from radiographic apex.
	Inadequate Root canal filling is either short more than 2mm from the radiographic apex or extends beyond radiographic apex.
Density of root canal filling	**Adequate** No voids visible within the root canal filling or between the filling and the canal walls.
	Inadequate Voids are visible within the root canal filling or between the filling and the canal walls.
Presence of procedural errors	**Present** One or more procedural errors are detected.
	Non present No procedural errors detected.

Table 2: Criteria for detection of procedural errors.

Procedural Error	Criteria of Diagnosis
Ledge formation	The obturation was at least 1 mm shorter than the working length and deviated from the original canal shape in teeth where root canal curvature occurred.
Apical transportation	In the apical third, the obturation was located on the outside curve of the canal.
Apical perforation	The apical termination of the filled canal was different from the original canal terminus or when the obturation extruded through the apical foramen.
Root perforation	Extrusion of canal obturation in any other area of a root except the furcation area and the inner wall of the root
Strip perforation	Extrusion of canal obturation in the lateral (inner) wall of the root canal
Presence of fractured instrument	A fractured instrument was detected inside a root canal or with its tip extending into the periapical area
Furcation perforation	Extrusion of filling material through the furcation area in multi-rooted teeth

Number of cases performed by each student was also recorded. Two endodontists with a minimum experience of three years,
blinded to the treating students, evaluated independently, the technical quality of canal obturations, and presence of procedural errors by studying the preoperative, working length, and postoperative radiographs. Mesial and distal angulated radiographs were included for multi-rooted teeth. The periapical radiographic images were retrieved from the digital archives, viewed, and analyzed using Mipax (Microtek, Taiwan). All radiographs were examined at 1.5 magnification on the same 21-inch LCD monitor resolution (1920 x 1200 at 60 Hz) in a darkened room, and the same ambient conditions were sustained during all the radiographic evaluation. Each original digital image was manipulated by the investigator to enhance the contrast and brightness of the image to give the subjectively clearest image of the root canal and radiographic apex as recommended by Akdeniz and Soğuon [17].

Prior to the actual study, intra- and inter-examiner reliability was determined by evaluating eighteen endodontically treated teeth randomly selected from AxiUm records, these were not included in the study. These cases were evaluated twice by the same examiners, four weeks apart. Inter- and intra- examiner agreement were measured by Cohen's kappa (κ). Values for inter-examiner agreement for obturation length, density, and procedural errors were $κ=0.702$, $κ=0.667$, and $κ=0.824$ respectively, while intra-examiner reliability ranged from $(κ=0.77 - κ=1)$. This indicated good to excellent agreement [18]. Therefore, as reported by previous studies [19–21], it seemed acceptable to randomly allocate the sample radiographs equally between both endodontists.

Undergraduate students’ confidence survey

All students completing the five-year dental program in 2019-2020 were invited to participate in an online questionnaire survey at the beginning of their internship year in July 2020. Prior to completing the questionnaire, the students were made aware of the objectives of the survey and how the results will be used. They were informed that participation is voluntary, their answers will remain entirely anonymous, and they can withdraw at any time during or after completing the questionnaire.

The questionnaire adapted from Davey et al. [14], and Murray and Chandler [22] contained thirteen multiple-choice format questions and three open-ended questions. The questionnaire indicated students’ attendance of the endodontic elective course, assessed their experiences, perceived competence performing root canal treatments, along with their self-rated levels of the confidence in carrying out various endodontic tasks and their views on their undergraduate endodontic training. Participants were asked to classify their perceived level of confidence over a five-point scale: very confident, confident, neutral, low confidence, or extremely low confidence.

Statistical analysis

Statistical analysis was performed using the Statistical Package for Social Sciences software (SPSS version 27.0 IBM Inc., Chicago; IL, USA), Descriptive data analysis was carried out and Person chi-square test, Fisher Freeman Halton exact test were conducted to analyze the categorical data: root canal filling quality, confidence level and satisfaction. Independent samples T-test was used to compare the number of teeth completed students in each group. A p-value <0.05 was considered statistically significant.

Results

Assessment of endodontic technical quality and procedural errors

One hundred and ninety teeth were evaluated through the AxiUm software system. Thirty-one teeth were excluded either due to missing or unclear radiographs, or records revealing that the treatment was incomplete. Of the remaining one hundred and fifty-nine treated teeth, the majority (95.6%) were posterior teeth: molars (n=69) and premolars (n=83). Root canal fillings were regarded as adequate in 60.38% (n=96) of these cases. Procedural errors were recorded in only thirty teeth (18.8%), of which apical perforation and instrument separation were the most frequent: 50% and 26.6%, respectively.

On assessing root canal treatment quality, 63.5% (n=40) of the teeth were treated by elective course attendees, and 58.33% (n=56) of non-attendee cases were regarded as adequate quality. Table 3 shows distribution of root canal treatment quality...
according to tooth type among students in both groups. Although significantly more teeth treated by attendees were of adequate filling length ($p=0.015$) and lacked procedural errors ($p=0.004$). There was no significant difference between the two groups in overall quality ($p=0.619$). The mean number of teeth treated by students who had attended the elective course (2.74) was significantly lower than that of non-attendees (4.17); ($p=0.012$).

Table 3: Obturation quality of treated teeth according to tooth type among students who attended and did not attend the endodontic elective course.

Tooth type	Molars N=69	Premolars N=83	Anteriors N=7
Attend Elective	Yes N=27	No N=42	Yes N=35
			No N=48
Technical Quality of Obturation			
Obturation length	Adequate 26	25 59.52	33 94.28
	Overfill 0	8 19.04	1 2.85
	Short 1 3.7	6 14.28	1 2.85
Obturation density	Adequate 15	24 57.14	27 77.14
	Inadequate	12 44.44	8 22.85
Procedural errors	No errors 24	24 57.14	33 94.28
	Errors 3 11.11	18 42.85	2 5.71
Overall obturation quality	Adequate 14 51.85	15 35.71	26 74.28
	Inadequate 13 48.14	27 64.28	9 25.71

Undergraduate students’ confidence survey

The questionnaire response rate was very high 97.8%. All students who had attended the elective course participated. When asked about their reason for attending the course, twelve students (52.1%) stated the desire to improve their hand skills and performance, while the remaining eleven students (47.9%) were motivated by their interest in endodontics.

In regards to students’ confidence level in performing different stages of root canal treatment, there was no significant difference in the level of confidence between the attendees and the non-attendees (Table 4). Although more students who attended the elective course perceived themselves competent in treating multi-rooted teeth (Table 5), this was not statistically significant ($p=0.069$). Attending the elective course was also not associated with a significant increase in the perception of competence in treating single-rooted teeth ($p=1.00$). However, the number of treated premolars was significantly associated with a perception of competence in treating multi-rooted teeth ($p=0.043$).

Table 4: Self-evaluated level of confidence in performing different stages of root canal treatment among elective course attendees (A) and non-attendees (NA).
Perceived level of confidence	Very confident	Confident	Neutral	Little confidence	Very little confidence	p-value					
	A	NA									
Endodontic diagnosis	60.8%	63.6%	34.7%	36.3%	4.5%	0%	4.3%	0%	0%	0%	1.00
Patient referral for complicated cases	39.1%	50%	43.4%	45.4%	17.3%	0%	4.3%	4.5%	0%	0%	0.166
Providing adequate anesthesia	39.1%	45.4%	34.7%	45.4%	21.7%	4.5%	0%	4.5%	0%	0%	0.413
Rubber dam placement	60.8%	63.6%	34.7%	31.8%	0%	4.5%	4.3%	0%	0%	0%	1.00
Access cavity preparation	30.4%	45.4%	43.4%	31.8%	17.3%	22.7%	0%	0%	0%	0%	0.627
Finding all canals in multi-rooted teeth	0%	4.5%	47.8%	36.3%	34.7%	22.7%	4.3%	36.3%	0%	0%	0.301
Determining working length	30.4%	27.2%	65.2%	54.5%	4.5%	18.1%	17.3%	0%	0%	0%	0.423
Cleaning and shaping root canal system	26%	50%	56.5%	39.1%	17.3%	9%	0%	0%	0%	0%	0.275
Selecting proper irrigant and irrigation technique	43.4%	45.4%	43.4%	45.4%	13%	9%	8.6%	0%	0%	0%	1.00
Placing an inter-appointment dressing	34.7%	54.5%	52.1%	22.7%	8.6%	13.6%	0%	9%	0%	0%	0.242
Inter-appointment flare-ups management	4.3%	18.1%	39.1%	30.4%	39.1%	27.2%	4.3%	22.7%	0%	0%	0.489
Root canal system obturation	13%	36.3%	73.9%	40.9%	13%	18.1%	17.3%	4.5%	0%	0%	0.094
Taking radiographs	52.1%	59%	34.7%	27.2%	13%	9%	4.3%	4.5%	0%	0%	0.870
Interpreting radiographs	47.8%	54.5%	43.4%	31.8%	8.6%	13.6%	0%	0%	0%	0%	0.693
Giving post-operative instructions	52.1%	72.7%	43.4%	13.6%	4.3%	13.6%	0%	0%	0%	0%	0.066
Assessing quality of a root filling post-operatively	60.8%	68.1%	34.7%	18.1%	4.3%	13.6%	0%	0%	0%	0%	0.299
Determining correct recall Period for patient	39.1%	50%	39.1%	31.8%	13%	13.6%	0%	4.5%	0%	0%	0.903
Performing non-surgical root canal retreatment	39.1%	36.3%	47.8%	40.9%	8.6%	13.6%	0%	4.5%	0%	4.5%	0.935

Table 5: Perceived competence in performing root canal treatment according to tooth type and elective course attendance.
On asking students about their perceived quality of undergraduate education, elective course attendees were more likely to describe all aspects of their undergraduate endodontic training as adequate (Table 6). This proved significant concerning the overall undergraduate training and theory content ($p=0.002$), ($p=0.006$) respectively. Another element associated with having an adequate opinion of undergraduate endodontic training was the student’s perception of being competent in performing endodontic treatment on both single and multi-rooted teeth ($p=0.021$) ($p=0.038$).

Table 6: Students’ perception regarding the quality of their undergraduate endodontic education.

Perceived quality of undergraduate education	Attended elective endodontic course
	Yes (N=23)
	No (N=22)
Training time	N (%)
Lacking	6 (26.1%)
Neutral	4 (17.4%)
Adequate	13 (56.5%)
Lectures	N (%)
Lacking	0 (0%)
Neutral	1 (4.3%)
Adequate	22 (95.7%)
Lab	N (%)
Lacking	6 (26.1%)
Neutral	1 (4.3%)
Adequate	16 (69.6%)
Overall training	N (%)
Lacking	3 (13%)
Neutral	0 (0%)
Adequate	20 (87%)

In regards to the open-ended questions targeting student opinion and feedback on their undergraduate endodontic training: only nineteen students (42%) completed these questions. Students clearly expressed the desire to increase clinical and preclinical endodontic training hours, with a special focus on the use of rotary instrumentation and managing endodontic procedural errors.

Discussion

The issue of time in education is a matter of concern as it incurs greater costs and effort [23]. The undergraduate students in this study were supervised and taught by the same instructors, in relatively equal clinical training conditions [24, 25] only half of them had undergone the extended preclinical training. This permitted investigating the effect of extending preclinical training...
time on undergraduate students’ confidence levels and clinical performance of root canal treatment [24, 25]. Previous studies have examined the effect of certain modifications in preclinical endodontic teaching; for example, training on artificial instead of natural teeth and using the electronic apex locator, by evaluating the technical quality of root canal treatment performed by the undergraduate students in a similar manner [19, 26].

The present findings showed no significant difference between the teeth performed by students who had attended the elective course and those who had not, as far as the overall technical quality of root canal treatment is concerned. At first glance this suggests that preclinical training time did not influence the undergraduate students’ clinical performance of root canal treatment. This can be explained by what Chambers et al. [27] described as the “learning curve” relationship between practice and competence, where a certain point is reached beyond which extra practice no longer lends to the acquisition of skill. A study also looking into the acquisition of medical clinical skills through practice concluded that while the amount of practice time played a role in achieving an “initial mastery” of basic skills, progress beyond that was not achieved through repetition, but by performing tasks that specifically target the areas of performance deficiency [28].

However, students who did not attend the elective preclinical course performed significantly more procedural errors than those who attended. In fact, cases with procedural errors (instrument fracture, ledging, perforation) that required either referral to an endodontic specialist or board residents to complete the treatment or tooth extraction due to non-restorability were by non-attendee students. Overall, the frequency of procedural errors (18.8%) was fairly low which is in accordance with other studies [20, 21, 29, 30].

Adequate root canal treatment was seen in 60.3% of the cases performed by the undergraduate students, in spite of the fact that the majority of the treated teeth were posterior teeth (premolars and molars) which are usually associated with lower frequencies of adequate treatment when performed by undergraduate dental students (49.5% in premolars and 26.3% in molars) [31]. An explanation may have been that the students were constantly supervised by endodontists with a low student to instructor ratio [16, 21]. Another explanation may be the exclusion of root canal filling taper as an evaluation criterion of root canal filling quality in this study [25, 32]. Studies considering taper had reported lower frequencies of adequate root canal treatment [9, 10, 30]. Taper is a subjective matter that cannot be adequately reflected in a two-dimensional radiograph, moreover, it may be influenced by the canal’s original anatomy giving the impression of a large taper irrespective of actual instrumentation [33]. Accordingly, it was excluded as an evaluation criterion in this study [25, 32].

The mean number of teeth completed by non-attendees was significantly higher compared to attendees. One possible explanation is that non-attendees sought out more opportunities to practice through clinical experience. Other factors that could lend an explanation to this result is the fact that the academic year was cut short due to the COVID-19 pandemic, and that retreatment cases performed by the students were not accounted for in the study [34].

Although more attendees 78.3% perceived themselves competent in treating multi-rooted teeth compared to non-attendees 45.4%, survey results showed no significant difference between the two groups in confidence levels whether in performing a particular stage of endodontic treatment or in their self-perception of competence in treating single or multi-rooted teeth. These findings are in line with other studies exploring what was termed self-efficacy - a combination of competence and confidence-of students [32, 34], which found no difference between students who attended different theoretical and clinical modules. Confidence levels in this study were also in close proximity to those reported by similar studies despite the difficulty in drawing conclusions from other studies due to variations in methodologies [14, 22, 35, 36].

The difference between attendees and non-attendees lay in their satisfaction with the quality of their endodontic undergraduate education. When asked about their perception of the overall training quality of endodontic education, 87% (n = 20) of elective course attendees reported adequate training, in contrast to only 45.4% (n = 10) of non-attendees.

Students attribute great importance to preclinical training in helping them acquire the necessary skills in root canal treatment [8], which would explain this significant difference in the level of satisfaction. Sukotjo et al. [37] found that shortening preclinical hours in the undergraduate dental curriculum affected student anxiety and stress levels especially those measured prior to entering the clinics. The replies to the open-ended questions at the end of the questionnaire echoed this desire for more
training time (clinical and preclinical), similar to what has been reported by previous studies when sounding out student perspectives on their undergraduate education [7, 8].

A recent study by Baaij et al. [32] concluded that undergraduate students’ feelings of competence and confidence were influenced by clinical experiences in endodontics, specifically, successful ones. In accordance with this, the findings of the present study show that students’ self-perception of competence was associated with the number of teeth they reportedly treated, in particular: premolars. A reason for that maybe that students were required to pass an endodontic competency assessment, which involved completing root canal treatment on a two-canal upper premolar.

Certain limitations to this study should be kept in mind: a relatively small sample size. Students from only a single academic year were included, as the elective course was unavailable to students from the previous year, and the elective course became mandatory for subsequent fourth-year students. The attendees’ reasons for taking the course were mainly either a desire to increase skill or having an interest in endodontics. However, the reason why non-attendees did not choose to take the elective course was not explored. This could have shed more light on specific characteristics of that group.

Students’ innate cognitive, perceptual and psychomotor abilities related to acquiring competence in psychomotor skills were also not investigated [38]. Studies have shown that these abilities may play a role during the initial stages of skill acquisition and their influence tends to diminish with increased training [38]. However, innate spatial abilities remained of influence regardless of practice, for tasks of an important spatial nature, which could very well apply to procedures in root canal treatment [39].

Case difficulty which has a major part to play in undergraduate root canal treatment performance [29], was not taken into consideration in this study. It was assumed that endodontists supervising the students assess the case and refer moderate to high difficulty cases to post-graduate students or endodontic specialists within the Dental College’s clinics.

Although the overall technical quality of root canal treatment performed by undergraduate students and their confidence levels were not affected by their preclinical training time. Students who attended the elective course performed significantly fewer procedural errors and were more satisfied with their undergraduate endodontic education.

In spite of students’ perspective regarding lack of training time, more focus should be placed on how preclinical endodontics is taught, how to facilitate deliberate practice and not how much, i.e., the quality not the quantity [37]. Further research is required on pinpointing the challenges of acquiring of psychomotor skills required in root canal treatment and introducing novel teaching strategies targeting these unique skills.

Conclusion

Within the limitations of this study, no significant difference was found in overall quality of clinical root canal treatment performed by undergraduate students who attended extended preclinical training compared to those who did not, nor were their confidence levels affected. However, students who attended additional preclinical training performed significantly fewer procedural errors and were more satisfied with their undergraduate endodontic education.

Abbreviations

PNU
Princess Nourah Bint Abdulrahman University.

Declarations

Ethics approval and consent to participate

This study was exempt from requiring ethical approval by the institutional review board at Princess Nourah Bint Abdulrahman University (IRB#19-0165). All methods were performed in accordance to the proposal submitted to the institutional review board.
at Princess Nourah, to which the exemption was granted. All participants gave verbal informed consent to participate upon which the survey link was e-mailed to them.

Consent for publication

Not applicable

Availability of data and materials

The datasets supporting the findings of this article are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This project received no funding.

Authors' contributions

R.B. and R.A. collected the data, R.B. conducted the statistical analysis. All authors interpreted the results, drafted the manuscript and read and approved the final manuscript.

Acknowledgement

This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program.

Author details

1. Clinical Dental Sciences Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

2. Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.

References

1. Demarco FF, Conde MCM, Cavalcanti BN, Casagrande L, Sakai VT, Nör JE. Dental pulp tissue engineering. Braz Dent J. 2011;22:3–13. doi:10.1590/S0103-64402011000100001.

2. Pak JG, White SN. Pain Prevalence and Severity before, during, and after Root Canal Treatment: A Systematic Review. J Endod. 2011;37:429–38. doi:10.1016/j.joen.2010.12.016.

3. Khalighinejad N, Aminoshariae MR, Aminoshariae A, Kulild JC, Mickel A, Fouad AF. Association between Systemic Diseases and Apical Periodontitis. J Endod. 2016;42:1427–34. doi:10.1016/j.joen.2016.07.007.

4. Estrela C, Holland R, Estrela CR de A, Alencar AHG, Sousa-Neto MD, Pécora JD. Characterization of Successful Root Canal Treatment. Braz Dent J. 2014;25:3–11. doi:10.1590/0103-6440201302356.

5. El-Kishawi M. Improving students’ learning and performance in pre-clinical endodontics. University of Adelaide, School of Dentistry; 2016. http://hdl.handle.net/2440/100211.

6. Qualtrough AJE, Whitworth JM, Dummer PMH. Preclinical endodontology: an international comparison. Int Endod J. 1999;32:406–14. doi:10.1046/j.1365-2591.1999.00253.x.

7. Qualtrough AJE. Undergraduate endodontic education: what are the challenges? Br Dent J. 2014;216:361–4. doi:10.1038/sj.bdj.2014.227.
8. Seijo MOS, Ferreira EF, Ribeiro Sobrinho AP, Paiva SM, Martins RC. Learning Experience in Endodontics: Brazilian Students’ Perceptions. J Dent Educ. 2013;77:648–55. doi:10.1002/j.0022-0337.2013.77.5.tb05515.x.

9. Balto H, Al Khalifah S, Al Mugairin S, Al Deeb M, Al-Madi E. Technical quality of root fillings performed by undergraduate students in Saudi Arabia. Int Endod J. 2010;43:292–300. doi:10.1111/j.1365-2591.2009.01679.x.

10. Barrieshi-Nsair K., Al-Omari M., Al-Hiyasat A. Radiographic technical quality of root canal treatment performed by dental students at the Dental Teaching Center in Jordan. J Dent. 2004;32:301–7. doi:10.1016/j.jdent.2004.01.002.

11. Ackerman PL. Determinants of individual differences during skill acquisition: Cognitive abilities and information processing. J Exp Psychol Gen. 1988;117:288–318. doi:10.1037/0096-3445.117.3.288.

12. Al-Anesi MS, AlKhawlani MM, Alkheraif AA, Al-Basmi AA, Alhajj MN. An audit of root canal filling quality performed by undergraduate pre-clinical dental students, Yemen. BMC Med Educ. 2019;19:350. doi:10.1186/s12909-019-1798-1.

13. Luz LB, Grock CH, Oliveira VF, Bizarro L, Ardenghi TM, Ferreira MBC, et al. Self-reported confidence and anxiety over endodontic procedures in undergraduate students—Quantitative and qualitative study. Eur J Dent Educ. 2019;23:482–90. doi:10.1111/eje.12456.

14. Davey J, Bryant ST, Dummer PMH. The confidence of undergraduate dental students when performing root canal treatment and their perception of the quality of endodontic education. Eur J Dent Educ. 2015;19:229–34. doi:10.1111/eje.12130.

15. De Moor R, Hülsmann M, Kirkevang L-L, Tanalp J, Whitworth J. Undergraduate Curriculum Guidelines for Endodontology. Int Endod J. 2013;46:1105–14. doi:10.1111/iej.12186.

16. Al Raisi H, Dummer PMH, Vianna ME. How is Endodontics taught? A survey to evaluate undergraduate endodontic teaching in dental schools within the United Kingdom. Int Endod J. 2019;52:1077–85. doi:10.1111/iej.13089.

17. Akdeniz BG, Sagur E. An ex vivo comparison of conventional and digital radiography for perceived image quality of root fillings. Int Endod J. 2005;38:397–401. doi:10.1111/j.1365-2591.2005.00958.x.

18. Valachovic RW, Douglass CW, Berkey CS, McNeil BJ, Chauncey HH. Examiner Reliability in Dental Radiography. J Dent Res. 1986;65:432–6. doi:10.1177/00220345860650031201.

19. Tchorz JP, Brandl M, Ganter PA, Karygianni L, Polydorou O, Vach K, et al. Pre-clinical endodontic training with artificial instead of extracted human teeth: does the type of exercise have an influence on clinical endodontic outcomes? Int Endod J. 2015;48:888–93. doi:10.1111/iej.12385.

20. Alsulaimani RS, Al-Manei KK, Alsabait S, AAlaqeely RS, A M Al-Shehri S, M Al-Madi E. Effects of Clinical Training and Case Difficulty on the Radiographic Quality of Root Canal Fillings Performed by Dental Students in Saudi Arabia. Iran Endod J. 2015;10:268–73. doi: 10.7508/iej.2015.04.012.

21. Zambon da Silva P, Carlos Ribeiro F, Machado Barroso Xavier J, Pratte-Santos R, Demuner C. Radiographic evaluation of root canal treatment performed by undergraduate students, part I; iatrogenic errors. Iran Endod J. 2018;13:30–6. doi:10.22037/ije.v13i1.16800.

22. Murray CM, Chandler NP. Undergraduate endodontic teaching in New Zealand: Students’ experience, perceptions and self-confidence levels. Aust Endod J. 2014;40:116–22. doi:10.1111/aej.12084.

23. Jones RF, Korn D. On the cost of educating a medical student. Acad Med. 1997;72:200–10. doi:10.1097/00001888-199703000-00015.

24. Ng Y-L, Mann V, Rahbaran S, Lewsey J, Gulabivala K. Outcome of primary root canal treatment: systematic review of the literature – Part 2. Influence of clinical factors. Int Endod J. 2007;41:6–31. doi:10.1111/j.1365-2591.2007.01323.x.

25. Burke Fm, Lynch Cd, Ní Ríordáin R, Hannigan A. Technical quality of root canal fillings performed in a dental school and the associated retention of root-filled teeth: a clinical follow-up study over a 5-year period. J Oral Rehabil. 2009;36:508–15. doi:10.1111/j.1365-2842.2009.01966.x.

26. Tchorz JP, Ganter PA, Woelber JP, Stampf S, Hellwig E, Altenburger MJ. Evaluation of an improved endodontic teaching model: do preclinical exercises have an influence on the technical quality of root canal treatments? Int Endod J. 2014;47:410–5. doi:10.1111/iej.12162.
28. Duvivier RJ, van Dalen J, Muijtjens AM, Moulaert VR, van der Vleuten CP, Scherpbier AJ. The role of deliberate practice in the acquisition of clinical skills. BMC Med Educ. 2011;11:101. doi:10.1186/1472-6920-11-101.

29. Haug SR, Solfjeld AF, Ranheim LE, Bårdesen A. Impact of Case Difficulty on Endodontic Mishaps in an Undergraduate Student Clinic. J Endod. 2018;44:1088–95. doi:10.1016/j.joen.2018.03.012.

30. AlRahabi MK. Evaluation of complications of root canal treatment performed by undergraduate dental students. Libyan J Med. 2017;12. doi:10.1080/19932820.2017.1345582.

31. Ribeiro DM, Réus JC, Felippe WT, Pacheco-Pereira C, Dutra KL, Santos JN, et al. Technical quality of root canal treatment performed by undergraduate students using hand instrumentation: a meta-analysis. Int Endod J. 2018;51:269–83. doi:10.1111/iej.12853.

32. Baaij A, Özok AR. Method of teaching undergraduate students to perform root canal treatment: It's influence on the quality of root fillings. Eur J Dent Educ. 2018;22:e221–7. doi:10.1111/eje.12275.

33. Vantorre T, Bécavin T, Deveaux E, Marchandise P, Chai F, Robberecht L. Are the evaluation criteria used in preclinical endodontic training courses relevant? A preliminary study. Aust Endod J. 2020;:aej.12417. doi:10.1111/aej.12417.

34. Baaij A, Özok AR, Væth M, Musaæus P, Kirkevæng L -L. Self-efficacy of undergraduate dental students in Endodontics within Aarhus and Amsterdam. Int Endod J. 2020;53:276–84. doi:10.1111/iej.13218.

35. Mirza MB. Difficulties Encountered during Transition from Preclinical to Clinical Endodontics among Salman bin Abdul Aziz University Dental Students. J Int Oral Heal JIOH. 2015;7 Suppl 1:22–7.

36. Alqisi AY, Alsalhi IYA, Hussain W, Alwadei A, Alsafi ZA, Alshahrani EA. Confidence Levels of Intern Doctors during Root Canal Treatment Procedures in Saudi Arabia. Egypt J Hosp Med. 2018;71:3148–52. doi: 10.12816/0046617.

37. Sukotjo C, Thammasitboon K, Howell H, Karimbux N. The Impact of Targeted Shortened Preclinical Exercises on Student Perceptions and Outcomes. J Dent Educ. 2007;71:1070–9. doi:10.1002/j.0022-0337.2007.71.8.tb04373.x.

38. Suksudaj N, Townsend GC, Kaidonis J, Lekkas D, Winning TA. Acquiring psychomotor skills in operative dentistry: do innate ability and motivation matter? Eur J Dent Educ. 2012;16:e187–94. doi:10.1111/j.1600-0579.2011.00696.x.

39. Keehner M, Lippa Y, Montello DR, Tendick F, Hegarty M. Learning a spatial skill for surgery: how the contributions of abilities change with practice. Appl Cogn Psychol. 2006;20:487–503. doi:10.1002/acp.1198.