Palmitic acid-coated magnetite nanocubes with high-quality crystallinity and bulk-like magnetic features

J M Orozco-Henao1, D Muraca2, F H Sánchez1 and P Mendoza Zélis1

1 Instituto de Física La Plata (IFLP- CONICET), Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), c.c. 67, 1900 La Plata, Argentina
2 Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brasil
E-mail: pmendoza@fisica.unlp.edu.ar

Received 13 February 2020, revised 5 May 2020
Accepted for publication 12 May 2020
Published 1 July 2020

Abstract
We have demonstrated the synthesis of high-quality monocrystalline magnetite nanocubes through the introduction of palmitic acid as surfactant in a thermal decomposition synthesis of an organic Fe precursor. Unlike the standard thermal decomposition synthesis route, we report the avoid of the reducing agent and a modification in the synthesis heating ramp. Structural and magnetic properties were investigated showing well defined cubic shaped nanoparticles with a ~ 40 nm edge and magnetic features close to bulk magnetite. We associate the bulk-like magnetic performance and properties to the highly crystalline structure of the nanocubes.

In addition, we introduce a facile way to make a ligand exchange of nanocubes initial surfactant to citric acid in order to obtain biocompatible hydrophilic nanocubes. The potential application of the obtained sample in magnetic hyperthermia therapy is shown through calorimetric heating measurements on liquid dispersions of the nanocubes. We compute the Specific Absorption Rate to quantify the heating efficiency of the nanocubes.

Supplementary material for this article is available online

Keywords: magnetite nanoparticles, nanocubes, magnetic anisotropy, palmitic acid

(Some figures may appear in colour only in the online journal)

1. Introduction

Biomedical applications are some of the most promissory uses of magnetic nanoparticles (MNPs) [1–3]. MNPs based therapies require MNPs colloids with good stability, strong magnetic response to an external field, narrow size distribution and high biocompatibility. For example, the oncology therapy known as magnetic hyperthermia (MH) is nowadays a trending research. In this therapy, the MNPs are introduced inside the tumor and the region is exposed to a radio frequency field (RF). These MNPs act as conversion agents of the external electromagnetic field into local heat and then release it to their surroundings inducing the apoptosis of malignant cells [4–6]. The Specific Absorption Rate (SAR), i.e. the amount of power that the particles absorb from the field per unit mass, is an experimental parameter that quantifies this property. The efficiency of the MH treatment depends on the SAR value, which in turn depends on relevant MNPs characteristics: crystallinity, magnetic anisotropy, magnetic moment, size distribution and geometry.

Iron-oxide nanoparticles (IONPs) synthesis methods have been extensively studied in order to improve their functional properties [7–17]. The chosen synthesis route will determine size distribution, crystallinity degree, magnetic properties, and sample reproducibility. As magnetic properties of IONPs are strongly size-dependent, it is desired to obtain a narrow NPs size distribution in order to tune their response and to improve the NPs performance in the desired biomedical application [2, 7, 9, 17–22]. Within the various chemical routes of IONPs synthesis, it is well established that the thermal decomposition
(TD) of organometallic precursors in organic medium allows the production of IONPs with good size control, narrow size distribution, well defined morphology, good crystalline order and relatively easy tunable magnetic features. The main drawbacks of this synthesis method are that some of the reagents commonly used are quite expensive. Also, the obtained NPs are coated with hydrophobic ligands that hinder their biomedical applications. The last issue can be resolved through a ligand exchange process. However, this process could lead to NPs aggregation, NPs surface oxidation and consequently to a lower performance in their application [23].

In this work a new TD type synthesis that produces high-quality single-crystal nanoparticles (IONPs) showing a well defined cubic shape is reported. Typical TD procedure makes use of oleic acid as the fatty acid surfactant and 1,2-hexadecanediol as reducing agent [24, 25]. Nevertheless, there are various reports on avoiding the reducing agent with no significant modifications in the IONPs magnetic and structural properties [26–28]. This new TD synthesis follows a similar idea to that reported by Guardia et al [28], introducing palmitic acid (PA (C₁₅H₃₁O₂)) as the fatty acid surfactant, avoiding the use of 1,2-hexadecanediol as reducing agent and modifying the heating ramp, in order to obtain high-quality monocristalline magnetite nanocubes (IONCs), improving its magnetic properties and lowering the synthesis costs. Although there are (a few) reports on palmitic acid coating in iron oxide nanoparticles, there is no report (as far as we know) of iron oxide nanocubes with structural and magnetic properties as the ones we present here from TD synthesis and PA surfactant. For example, Sawisai et al report the synthesis of iron oxide nanoparticles by co-precipitation and a posterior palmitic acid coating process [29]; Bronstein et al, the production of IONPs from a thermal decomposition synthesis of iron palmitate as precursor [30]; Klekotka et al reports a thermal decomposition synthesis from Fe(III)acac, phenyl ether and 1,2-hexadecanediol [31].

To provide the hydrophilic character we propose and successfully performed a ligand exchange of palmitic acid to citric acid (CA) by means of a mechano-chemical route. Ligand-exchange processes in equivalent situations have been widely reported elsewhere. Nevertheless, the process described here constitutes a facile and effective one-step process to produce iron oxide NCPs, which does not require further use of catalyst reagents. To our knowledge, this synthesis procedure has not been reported before. We have tested if this ligand exchange induces any alteration of the NP properties and on its SAR performance.

The experimental results show that both NCPs samples are high-quality single-crystals and single-domain showing almost bulk magnetic features. From electron microscopy and Mössbauer spectroscopy it was possible to quantify and determine the effective anisotropy constant of the samples. Also, it was corroborated the high magnetic saturation of the NCPs as a consequence of a high quality monocristalline structure. It was confirmed that the ligand exchange process did not modify neither the NCPs structural nor magnetic properties. In addition, the potential application of the obtained system in magnetic hyperthermia treatment was tested through the evaluation of heat dissipation performance under an external RF field for two different dispersion mediums, e.g. distilled water and toluene. Owing to the cubic morphology of the NPs, a tendency to form NCs chains was expected and corroborated by TEM and SAXS experiment. This feature is known that leads to an improvement of the heating dissipation performance [21, 32, 33].

2. Experimental section

2.1. Synthesis

Magnetite nanocubes were synthesized by means of the thermal decomposition of 2 mmol of Fe(III)acac (Sigma Aldrich), 8 mmol of palmitic acid (Merck) and 50 ml of Benzyether (98%, Sigma Aldrich) in a three-neck flask. The mixture was heated, under N₂ atmosphere and vigorous magnetic stirring, from room temperature to reflux at a rate of 3°C/min. The solution was kept under reflux temperature for 30 min and then cooled down to RT. 30 ml of ethanol was added to stabilize the final solution. The product was washed several times with ethanol and centrifuged many times, in order to remove the PA excess. The obtained precipitate was dried in vacuum to obtain the PA coated IONCs powder sample. From now on this sample will be labeled as S_{PA}. Two more samples where obtained following the same synthesis process showing a high reproducibility in structural and magnetic properties (see supplementary information (stacks.iop.org/JPhysD/53/385001/mmedia)).

2.2. Ligand exchange

2 ml of a 10 mg/ml NCPs suspension in toluene were mixed with 200 mg of citric acid monohydrate (Anedra) and 10 ml of distilled water. The solution was put under sonication for 1 h, then placed for 48 h in a Retsch 2000 oscillatory mill under a low energy regime (5 Hz and 8 mm of amplitude). The final product was washed several times with toluene and then centrifuged in order to remove the PA and CA excess. Finally, the black precipitate was vacuum dried. From now on this sample will be labeled as S_W.

2.2.1. HR-TEM images

HR-TEM images of the NCPs were obtained using a TEM-FEG (TALOS F200A) and a TEM-FEG (JEM 2100 F) field-emission gun transmission electron microscopes. First, the particles were dispersed in toluene and sonicated for 15 minutes, then, the samples for microscopy observation were prepared by drying a drop of this suspension during 24 hours at room temperature on a Ted Pella ultrathin copper film on a holey carbon grid. The obtained images were analyzed using Digital Micrograph free version software.¹

2.2.2. SAXS

SAXS measurements were carried out at the Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, ICFM (http://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software).

¹ http://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software.
Aplicadas (INIFTA) facilities in a XENOCS XEUSS 1.0 diffractometer with a beam wavelength of 1.541 Å. The samples were placed in a glass capillary at 2.4 m distance from detector. The results correspond to the SAXS intensity as a function of the scattering vector for each dispersion of 10 mg of the sample in 1 ml of toluene.

2.2.3. Mössbauer spectroscopy. The 14.4 keV (Ig = 1/2; M1; Ie = 3/2) 57Fe Mössbauer spectra were acquired using a 57Co(Rh) source at 295 K in transmission geometry, with a standard spectrometer operating in the constant acceleration regime. The isomer shifts are reported relative to α-Fe. Each sample absorber thickness was 12 μg/cm². The number of channels used for recording transmitted gamma versus source-absorvent velocity was 1024. The spectrometer line width was 0.22 mm/s for a 12 μm-foil α-Fe absorber.

2.2.4. D.C Magnetization measurements. The magnetic properties were studied by means of thermal dependence of magnetization through zero field cooled/field cooled (zfc/fc) and isothermal field dependence of magnetization measurements. zfc/fc experiments were performed in a MPMS XL superconducting quantum interference device (SQUID) from Quantum Design, Inc. In the zfc magnetization measurement, the sample was cooled down to 4 K from RT under no applied field, then a 4 kA/m (50 Oe) field was applied and the temperature was continuously raised at a 5 K/min rate while recording the magnetization. In the fc magnetization measurement, the sample was cooled down to 4 K from RT at a 5 K/min rate under a 4 kA/m (50 Oe) applied field while recording the magnetization. Additional zfc magnetization measurements on sample S_W, using three different applied fields (4 kA/m, 8 kA/m and 40 kA/m), were performed.

Isothermal field dependent magnetization loops were measured in a vibrating sample magnetometer (VSM) at RT within an applied magnetic field strength $\mu_0 H$ range of −2 T to 2 T. All d.c. magnetization measurements were carried out using 5 mg of sample powder compacted in thin gelatin diamagnetic capsules. Magnetizations values are reported in terms of iron-oxide mass determined by thermogravimetry analysis.

2.2.5. Experimental SAR values. The heating performance of both samples was evaluated measuring the Specific Absorption Rate (SAR). This parameter is related to the amount of energy absorbed per time unit and per mass unit of IONPs exposed to a radio frequency field (RF). This energy is then released to their surroundings as heat. For each sample, SAR values were obtained from calorimetric measurements carried out in two colloidal suspensions of 10 mg of NCs sample in 1 ml of toluene and distilled water for samples S_T and S_W, respectively, held in a clear glass Dewar. An external RF of 52 kA/m amplitude and 260 kHz frequency was applied. The field generator (Hüttinger (2.5/300)) consists of a resonant RLC circuit with a water refrigerated 6 turns coil of 2.5 cm inner diameter. The temperature T of each colloid as a function of time t was measured. Temperature was sensed during the experiment with an optical fiber provided with a small semiconducting sensor at one end, which was placed at the sample center. The sensor was connected to a calibrated signal conditioner (Neoptix) having an accuracy of ±0.1°C. The colloidal temperature was kept below 50°C in order to minimize solvent evaporation and prevent its destabilization. Each of the reported values is a 4 measurements mean with an error equal to the standard deviation SD. SAR was calculated as

$$SAR = \frac{\rho c \Delta T}{[C]} \frac{\Delta t}{[W/g]}$$

where ρ is the suspension density taken as the toluene or distilled water density in kg·m⁻³ for S_T and S_W, respectively, c is the dispersive medium heat capacity in J·g⁻¹·K⁻¹, $\Delta T/\Delta t$ is the $T(t)$ slope (at T equals to the lab temperature) and $[C]$ is the colloid weight concentration of iron-oxide mass in kg·m⁻³.

2.2.6. Thermogravimetry analysis. A Thermogravimetry (TG) analysis was used to estimate the iron-oxide fraction mass of the coated NPs. The measurements were carried out on dried powder samples with Shimatzu TG-50 and DTA-50 systems. During the measurements the samples were kept inside platinum crucibles and heated at a 10 K/min constant rate under a 20 ml/min N_2 flux. It was further used to normalize magnetization measurements and to express colloid concentrations as the mass of iron oxide per toluene/distilled water volume. Results are presented in the supplementary information.

3. Results and discussion

3.1. TEM and HR-TEM images

Morphology, particle-size distributions, and crystalline phases were determined by means of electron microscopy experiments. Figure 1 shows representative TEM images and the size distribution obtained from several similar images of samples S_T (a) and (b) and S_W (d) and (e). Well defined cubic shaped particles with mean edge sizes (L_o), $L_{o_{90}} = 39.7$ nm, $L_{o_{90}} = 36.7$ nm, with standard deviations σ_{L_o}, $\sigma_{L_{o_{90}}} = 0.2$, were obtained by counting of more than 300 NPs for each sample. To quantify these statistics estimators, a Log-Normal distribution was fitted to the measured size distribution histograms and is shown for each sample in figures 1(c) and (f).

Figure 2 shows a HR-TEM image of isolated groups of NCs of both samples, the (400) and (220) planes of the FCC structure are highlighted with red/blue and green colors, respectively. To obtain the colorful images, first a fast Fourier transformation (FFT) was applied to the initial HR-TEM image (figures 2(a) and (d)) to obtain a profile of the diffraction patterns (figures 2(b) and (e)) allowing us to identify the NCs crystallographic planes; then a mask was applied to distinguish each plane in the original image and finally an inverse FFT was made over each mask in order to label planes with the colors already mentioned (figures 2(c) and (f)). Identification of crystallographic planes allowed us to obtain a mean lattice parameter of 0.85 Å for both samples. The NCs show a high
that there must be an ordered attachment mechanism in which
domain limit for magnetite with narrow size distribution and are also within the single-crystalline lattice planes on the NCs contribute to an increment on individual surface anisotropy and so to the effective anisotropy of the system [32, 37]. From HR-TEM images and the subsequent FFT analysis it can be concluded that synthesized NCs are single-crystalline with narrow size distribution and are also within the single-domain limit for magnetite [38, 39]. Furthermore, one can see that there must be an ordered attachment mechanism in which the NCs clusters are formed, with a clear trend to a chain like structure.

3.2. SAXS

SAXS measurements over liquid dispersions were measured on both samples in order to obtain information about nanoparticles morphology, agglomeration degree and cluster geometry. SAXS intensity patterns were successfully fitted by considering a cubic form factor along with a Log-Normal size distribution of the NCs edges. Clusters formation due to inter-particle interactions were taken into account by means of a mass fractal structure factor. On the other hand, the scattering intensity contribution from NCs that do not form clusters were modeled by considering local interparticle interactions (excluded volume) in first approximation by a hard spheres interaction potential. Figure 3 shows experimental SAXS patterns and the corresponding fit for both samples. At low scattering vector \((q)\) values, SAXS patterns are consistent with the existence of aggregates of NCs. For \(q\) values near 0.2 nm\(^{-1}\) the patterns show a bump related to the NCs mean size.

To fit the experimental data, the cubic form factor is given by [40, 41]

\[
I(q, R) = \frac{\pi}{2} \int_{0}^{\pi/2} \frac{\rho V}{2q^2} \sin \theta \sin \phi \left(\frac{\sin \left(\frac{qR}{2} \sin \theta \sin \phi \right)}{\frac{qR}{2} \sin \theta \sin \phi} \frac{\sin \left(\frac{qR}{2} \cos \phi \right)}{\frac{qR}{2} \cos \phi} \right)^2 \sin \theta \sin \phi \sin \phi d\phi d\theta
\]

(2)

where \(\rho\) is the scattering contrast of the NPs relative to the medium and \(R\) is the cube edge.

The mass fractal model for NP aggregates follows a power law [42, 43]. Here \(\xi\) stands for the upper cut-off of clusters size.

\[
S_{mf}(q, \xi) = 1 + \frac{1}{(qR)^D} \frac{D(D-1) \sin[(D-1)\arctan(q\xi)]}{(1+(q\xi)^{-2})^2}
\]

(3)

On the other hand, the hard sphere structure factor \(S_{hs}(q, r)\) with the Percus-Yevick closure [44, 45] is given by:

\[
S_{hs}(q, r) = \frac{1}{1 + 24f_p \frac{G(f_p, qr)}{qr}}
\]

(4)

where \(f_p\) is the local volume fraction of particles within the clusters. This allowed us to get information about the probability of finding NCs in the vicinity of each other. Here,

\[
G(f_p, qr) = \alpha \frac{\sin A - A \cos A}{A^2} - \frac{\sin A + (2 - A^2) \cos A - 2}{A^3} + \frac{\gamma - A^4 \cos A + 4[(3A^2 - 6) \cos A + (A^3 - 6A) \sin A + 6]}{A^5}
\]

with \(A = 2qr_r\), \(\alpha = (1 + 2f_p)^2/(1 - 2f_p)^4\), \(\beta = -6f_p(1 + f_p/2)^2/(1 - f_p)^4\) and \(\gamma = \alpha f_p^2/2\). The polidispersity nature of the NCs was modeled by including a Log-Normal distribution function \(L(R, \sigma)\) of

Figure 1. TEM images and size distribution histograms fitted with a Log-Normal function for the studied samples. Sample \(S_T\) (a,c) and sample \(S_W\) (b,d).

Figure 2. (a) and (d): HR-TEM images of nanocubes. (b) and (e): Fourier transform of the initial HR-TEM images. (c) and (f): colored images obtained from an inverse process masking the identified diffraction points.
their edges. The final distributed intensity function takes the form:

$$I(q, R) = N1 \left[\int_0^\infty I(q, R)L(R, \sigma)S_{\text{diff}}(q, R)dR \right] + N2 \left[\int_0^\infty I(q, R)L(R, \sigma)S_{\text{iso}}(q, R)dR \right] + bkg$$ \hspace{1cm} (5)

where $N1$ and $N2$ are the Log-Normal distribution weights and are relative to the NCs number per mass unit for each contribution (mass fractal and hard spheres potential). bkg is a constant added to take into account the incoherent background contribution.

Figure 3 inset shows the excellent agreement between the NCs size distribution obtained from HR-TEM images and the one obtained from SAXS measurements. Table 1 shows the fitting parameters obtained for both studied samples. Both Log-Normal distributions have similar parameters σ and L_0 values. The volume fraction f_p values close to 0.5 indicates that NCs tend to form clusters in both colloids. Cubic nanoparticles in colloids present an extraordinary magnetic self-assembly capability as reported in the works of Singh et al and Mehdizadeh et al. The self-assembly nature of the nanocubes allows the formation of various types of structures. For low concentration colloids, 1-D chain formation is preferred. This chain formation of clusters were observed by TEM images where a low concentration colloidal was used. At higher concentrations, chain-chain association assemblies become more stable leading to the formation of 2D sheets. In this sense, a fractal dimension close to 2 indicates that the cluster structure tends to define a surface, in concordance with the higher concentration used to perform SAXS measurements. Although a direct correspondence between structures and colloid concentrations cannot be stated by SAXS and TEM without the aid of other structural characterization techniques, the structures observed seem to show coherence with the expected results.

The upper cut-off of cluster size ξ was fixed to 114 nm which is the lowest possible value congruent with the lowest q measured value by means of the relation $2\pi/\xi = 0.04$ nm$^{-1}$[46].

We have shown so far the structural properties of IONCs obtained by TD synthesis of an organic precursor of Fe. We also have successfully incorporated palmitic acid as the IONCs surfactant. The synthesis route introduced in this work avoids the use of 1,2-hexadecanediol as reducing agent and incorporates PA as the NCs surfactant. PA is a fatty acid with a 16 carbon atoms chain and a boiling point of $\sim 350^\circ$C with a good solubility in benzyl-ether. These properties are quite similar to those of oleic acid (18 carbon atoms and boiling point of 360$^\circ$C) with the particular difference that PA does not present a double bond in its carbon chain. Owing these similarities between the two fatty acids we can assume that the temperature regimes of nucleation and growing phase during the synthesis [24, 49] are nearly the same in both cases. However, the shape and size of the obtained NPs depends on the fatty acid selected for the synthesis. When oleic acid is used small NPs (5 – 20 nm) with almost spherical shape are obtained [24, 25, 49], whereas when we use palmitic acid, NPs with a well-defined cubic shape (~ 40 nm) are obtained. This fact reveals that nanoparticle formation dynamics is different in both cases.

From the structural properties results it can be concluded that the election of PA as surfactant leads to the production of high-quality monocrystalline NCs by means of a highly reproducible and low cost synthesis route. These structural features are in agreement with the results from the synthesis reported by Guardia et al [28], in which the use of 1,2-hexadecanediol is avoided and decanoic acid (10 single-bonded carbon chain) is chosen as the fatty acid surfactant.

3.3. Mössbauer spectroscopy

The magnetization dynamics and magnetic response of MNPs magnetic moment is given by the Néel and/or Brown relaxation mechanisms. The later is due to the random physical rotation of MNPs in a liquid medium and is absent during Mössbauer measurements of powder samples. The Néel mechanism is due to the rotation of the magnetic moment within the particle. Because of the MNPs magnetic anisotropy, the magnetic moment has equilibrium orientations separated by energy barriers. At finite temperature, there is a finite probability for the magnetic moment to change its direction. The mean time between two direction changes is called the Néel relaxation time τ_N. It depends on the NP energy barriers created by the magnetic anisotropy.

A relation between τ_N and the characteristic time of a magnetic measurement (τ_m) will determine the observed magnetic dynamics of the system. If $\tau_m > \tau_N$ the observed properties will correspond to a superparamagnetic system (thermodynamic equilibrium); if $\tau_m < \tau_N$ the observed properties will correspond to a magnetically ‘blocked’ system. As τ_N depends on temperature, the blocking temperature T_B is defined as the temperature that divides these two observed magnetic regimes. Below T_B the MNPs are magnetically blocked; for temperatures above T_B the MNPs are in thermodynamic equilibrium. Thus, the blocking temperature is related to the time window of the experimental measurement. In particular, for Mössbauer spectroscopy $\tau_m \sim 10^{-8}$ s.

If we consider a particle in its blocked state, its magnetic moment orientation will be confined around one of its equilibrium positions, but fluctuating about an easy magnetization direction. The fluctuation time of the magnetic moment within the equilibrium well is short compared with the Mössbauer spectroscopy time scale, so the hyperfine parameters will be affected by this phenomena. The magnetic splitting of the observed Mössbauer spectra, and so the measured hyperfine

Sample	L_0 (nm)	σ (nm)	f_p	D
S_T	38(3)	0.21(9)	0.52(2)	1.8(2)
S_W	37(2)	0.17(4)	0.50(4)	2.0(2)
Energy is higher than the thermal energy, so one obtains:

\[H_{\text{obs}} = H_0 \int_\Omega P(u_x, u_y) u_x du_x du_y \]

(6)

where \((u_x, u_y, u_z)\) are the direction cosines of the magnetization vector. Here we take \(u_z\) as the easy direction. \(P(u_x, u_y)\) is the orientation probability of the magnetization vector and \(\Omega\) defines the limits of the potential well:

\[P(u_x, u_y) = \frac{\exp[-E(u_x, u_y)/k_B T]}{\int_\Omega \exp[-E(u_x, u_y)/k_B T] du_x du_y} \]

(7)

Here \(k_B\) is the Boltzmann constant and \(T\) the absolute temperature. Integration in equation (6) is solved by taking into account that below \(T_B\) the magnetization vector fluctuates around small values of \(u_x\) and \(u_y\), by considering that the anisotropy energy is higher than the thermal energy, so one obtains:

\[H_{\text{obs}}/H_0 \approx 1 - \frac{1}{2} k_B T \left(\frac{\partial^2 E}{\partial u_x^2} \right)_0 - \left(\frac{\partial^2 E}{\partial u_y^2} \right)_0 \]

(8)

which can be written as

\[H_{\text{obs}}/H_0 \approx 1 - \frac{k_B T}{K_{\text{eff}}} \]

\[K_{\text{eff}} \approx 2 \left(\frac{\partial^2 E}{\partial u_x^2} \right)_0 + \left(\frac{\partial^2 E}{\partial u_y^2} \right)_0 \]

(9)

where \(K_{\text{eff}}\) is the effective anisotropy constant and \(V\) the NP volume [50, 51].

Mössbauer spectrum was analyzed considering two magnetically split sub-spectra, each one consistent of six absorption lines. Figure 4 shows the Mössbauer spectrum of sample \(S_T\) together with the fitted curve and each sub-spectrum. One of the sextets represents the absorption due to \(\text{Fe}^{3+}\) ions in tetrahedral sites \(\text{Fe}^{3+}\). The other sextet accounts for absorption due to \(\text{Fe}^{5+}\) ions in octahedral sites \(\text{Fe}^{5+}\).

The nomenclature \(2.5+\) stands for the fast electron hopping between \(2+\) and \(3+\) ions at octahedral locations [52]. The fitting model allows for deviations from magnetite standard stoichiometry. Distribution of the hyperfine interactions associated with NCs volume distribution was also incorporated in the fitting model. The volume distribution was assumed to be LogNormal. We used equation (9) in order to link both types of distributions. Mean hyperfine parameters obtained from model are summarized in table 2 from which the presence of magnetite can be identified.

Isomer shift and hyperfine field values obtained from fit are in good agreement with those for non-stoichiometric magnetite [53]. Accordingly to Cheng [54] and Ho [34], the outermost layers composed of octahedral sites are relatively more stable than those composed of tetrahedral sites, at the \(\text{Fe}_3\text{O}_4\) \{001\} surface. In this way, the terminated \{001\} planes are mostly composed of octahedral \(\text{Fe}^{2+}, \text{Fe}^{3+}\) and oxygen ions, increasing the \(\text{Fe}^{2+}\)/\(\text{Fe}^{5+}\) ratio.

Additional information about the stoichiometry of the sample is obtained by considering the mean-isomer-shift method [55, 56]: the area-weighted mean-isomer-shift at RT \(\overline{\Delta \nu}_{RT}\) is correlated with the magnetite/maghemite sample composition, and allows to determine the sample stoichiometry. The \(\overline{\Delta \nu}_{RT}\) parameter shows a linear correlation with \(\alpha\), being \(\alpha\) the atomic percentage of \(\text{Fe}\) atoms present in the form of magnetite in the mixture [56]. We have computed the \(\overline{\Delta \nu}_{RT}\) by: a) direct determination \(\overline{\Delta \nu}_{RT} = \Sigma[(\text{Background} - \text{Counts})/\text{Vel}_i-\Sigma[(\text{Background} - \text{Counts})]\) were \(\text{Counts}\) is the number of counts of channel \(i\) and \(\text{Vel}_i\) the source velocity associated to this chanel, b) fit procedure suggested by Fock et al [56], and c) from our fitting model. The \(\overline{\Delta \nu}_{RT}\) value

	\(I_s\) (mm/s)	\(H_T\) (T)	\%I
\(\text{Fe}^{2+}\)	0.343(5)	48.6(1)	66.6(1.7)
\(\text{Fe}^{5+}\)	0.677(9)	45.7(1)	33.4(2.3)

The Mössbauer spectrum of sample \(S_T\) together with the fitted curve and each sub-spectrum. One of the sextets represents the absorption due to \(\text{Fe}^{3+}\) ions in tetrahedral sites \(\text{Fe}^{3+}\). The other sextet accounts for absorption due to \(\text{Fe}^{5+}\) ions in octahedral sites \(\text{Fe}^{5+}\).
From Mössbauer spectrum fit by means of equation (9), parameters of the Log-Normal distribution of NCs volumes are obtained considering a constant K_{eff} in the product $K_{\text{eff}}V$. The comparison with the size distribution obtained from HR-TEM results can be used to determine an effective mean K_{eff} value as the one that maximizes the coincidence between TEM and Mössbauer NCs size distributions. A value of $1.4(1) \times 10^4 \text{ J/m}^3$ leads to a very good correspondence between TEM and Mössbauer data (see figure 4(b)). The measured effective anisotropy must be compared to the theoretical value, calculated with the second expression of (9), which for a cubic system with easy axes in the $\{111\}$ directions equals to $-4/3K_1 - 4/9K_2$. For bulk magnetite at RT $K_1 = -1.2 \times 10^4 \text{ J/m}^3$ and $K_2 = -0.3 \times 10^4 \text{ J/m}^3$, resulting in $K_{\text{eff}} = 1.7 \times 10^4 \text{ J/m}^3$.

The experimental result is 17% smaller than this value, most probably due to the departure from pure magnetite stoichiometry and surface magnetic disorder. Effective anisotropy constant slightly lower than the bulk one was already reported by Ludwing et al [59] ($1.2 \times 10^4 \text{ J/m}^3$) and Bender et al [60] ($1.7 \times 10^4 \text{ J/m}^3$) both for magnetite spheres with 19 nm diameter.

Other anisotropy sources, from surface, shape and dipolar interactions between particles, are involved in the estimation of the effective anisotropy constant. In the special case of NCs, magnetostatic energy is isotropic for an uniformly magnetized cube [61], so it will not modify magnetization anisotropy. On the other hand, no field was applied during Mössbauer experiments, hence non local effects of dipolar interactions can be neglected. It is worth recalling that Mössbauer experiments performed on blocked NPs under no applied field are affected by collective fluctuations of magnetic moments around a local energy minimum. Although these are far from surpassing the anisotropy energy maxima, differences between K_{eff} values determined with this technique and with magnetometry methods can be expected.

It is remarkable how, an appropriate combination of TEM and Mössbauer results, leads to a consistent description of anisotropy and size distribution properties.

3.4. ZFC/FC magnetization curves

Figure 5 shows the zfc/fc magnetization results for both S_T and S_W samples. A qualitative analysis shows that both samples are in average in the blocked regime over the whole range of studied temperatures, no global blocking temperature is observed over this range of temperature. Also, the irreversibility temperature, i.e. the temperature above which the system loses its magnetic memory, is above RT. The fc curve shows an almost constant behavior during all the measurement process unveiling strong interparticle interactions. The zfc curves show distinctive features in the low temperatures range [62]. To highlight these features with more detail, dM/dT was plotted in figure 5 insets. The maximum of dM/dT around 30 K in sample S_T could be due to a surface phenomenon originated by the dislocation of spins laying on the NCs surface [63, 64].

The S_W sample has similar magnetic properties as sample S_T. However, it shows small differences in the magnetization magnitude and its behavior at low temperatures. For example,
Figure 5. Zero field cooled and field cooled magnetization of (a) sample S_T and (b) sample S_W. Inset shows $dM_{zfc}/dT(T)$ as function of temperature.

The fc magnetization is ~ 2 Am2/kg less than that of the S_T sample and the maximum of the $dM_{zfc}/dT(T)$, which appears at around 30 K for S_T is at 15 K for S_W. This is mainly related to the ligand exchange process and to its influence on the atoms at the NCs surface [65–67].

Although presenting similar structural and magnetic properties, sample S_W has a better defined dM_{zfc}/dT profile than sample S_T. Figure 6 shows in detail the behavior of the function dM_{zfc}/dT for three different applied fields on sample S_W. It can be noticed that the temperature at which both maxima occur (15 K and 85 K) does not depend on the intensity of the applied magnetic field. In consequence, these two effects are not thermally activated supporting that the effect that appears at 15 K should be due to surface phenomena. The maximum at 85 K could be attributed to the Verwey transition [68], in agreement with the result reported by Muscas [62]. This transition is expected at 120 K for bulk magnetite. However, lower values have been reported and attributed to size and stoichiometric effects [57, 69–71]. Anyhow, the presence of the Verwey transition, also noticeable after the ligand exchange process, confirms the presence of magnetite with a high crystalline ordering [72].

3.5. Isothermal magnetization curves

Figure 7 shows the field dependent isothermal magnetization loop at RT for both samples; inset shows magnetization behavior in the low field range. S_T and S_W samples showed a coercive field of 6.0(7) kA/m and 5.4(6) kA/m, respectively, revealing that the system is on average in the blocked regime at room temperature. Saturation Magnetization (M_s) was evaluated by fitting the magnetization (high-field region) versus $1/H$ according to the Law of Approach to Saturation [73]. Obtained M_s values were 82(1) Am2/kg and 84(1) Am2/kg for S_T and S_W samples, respectively.

As it was mentioned, from the Mossbauer measurements the magnetite stoichiometry was determined. To study the effects of this deviation from stoichiometry on magnetic properties like the magnetic saturation it is important to know...
both the amount of Fe atoms in tetrahedral and octahedral sites and its oxidation state. In this sense it may be preferable to report the formula unit in a form that highlights the oxidative transformation [55]: \(\text{Fe}^{3+}[\text{Fe}^{3+}_a\text{Fe}^{3+}_b\text{Fe}^{2+}_b\square_{2-2a-b}]\text{O}_4 \), where the square symbol represents the vacancies. In our case, the values obtained from \(a = 0.60 \) and \(b = 0.66 \) [56]. The number of Böhr magnetons \((\mu_B) \) per unit formula can be calculated as \(5(b+a-1) + 4a \), considering the antiparallel arrangement of magnetic moment between tetrahedral and octahedral sites, and that \(\text{Fe}^{2+} \) and \(\text{Fe}^{3+} \) have \(4\mu_B \) and \(5\mu_B \), respectively. The value obtained is \(3.7\mu_B \). This reduction, in comparison to the \(4\mu_B \) expected for pure magnetite, is in very good agreement with the reduction in the saturation magnetization measured in our sample (82 emu/g) in comparison with the expected for pure magnetite (92 emu/g).

The high coercive field at RT may be due to dipolar interactions between particles and/or strong spin interactions given the high crystallinity order of the NCs [39]. It is well known that the NPs structural properties affect the system magnetic properties. In this sense, the high mean magnetic moment and saturation magnetization obtained in our NCs is due to their high crystallinity order of the NCs [72]. As in zfc/afc magnetization curves, the small difference between \(S_T \) and \(S_W \) saturation magnetization values is mostly due to the magnetic disorder created by dislocated surface spins after the ligand exchange process [28, 63, 70, 74].

3.6. Power dissipation

Figure 8 shows the heating curves for samples \(S_T \) and \(S_W \), respectively, under an RF field of amplitude \(H = 52 \text{kA/m} \) and frequency \(f = 260 \text{kHz} \). Power dissipation values of \(324(9) \) W/g and \(304(7) \) W/g were computed from experimental data by means of equation (1). Our SAR results are in good agreement with those reported for IONPs systems with similar structural and magnetic properties [32, 75–77]. The NP cubic morphology plays a key role on magnetic hyperthermia performance due mostly to an increment on individual NP magnetic anisotropy and the ease of the NCs to self-assemble in chains. This feature results in an enhancement of the coercive field due dipolar interactions and thus, a better heating performance [21, 32, 33]. The chain formation degree and so the dissipation capacity can be tailored by controlling the NCs concentration, therefore increasing or reducing the inter-particle interactions as reported by Coral et al [78]. Besides this, magnetic nanoparticles in a colloid may relax by either of two mechanisms being Néel and Brownian relaxation. However, in the actual therapy, the particles end mostly aggregated and fixed into cellular structures; therefore the Brown’s dissipation mechanism is canceled and the SAR value could change. Also, it was suggested that the principal effect of the internalization of MNPs by living cells is due the increase in agglomeration (and in dipolar interactions) rather than immobilization [79, 80].

From the obtained results, it is also clear that the ligand exchange process does not modify the heating performance of the \(S_T \) sample. The slope difference between both measurements lies on differences in medium density and heat capacity.

4. Conclusions

In this work, we described the structural and magnetic properties of a system of cubic IONPs. These IONPs, which have a \(~ 40 \text{ nm edge}) were obtained by thermal decomposition synthesis, and we have introduced palmitic acid as a novel MNPs surfactant. We have developed a synthesis protocol with promising results on fundamental research and magnetohyperthermia application.

The set of structural and magnetic properties determined in this study demonstrates that we have obtained high quality MNPs with well-defined cubic shape and high crystallinity.
degree. The after-synthesis ligand-exchange process described here is an easy way to overcome the hydrophobic character of the synthesized sample. We want to highlight the fact that the structural and magnetic properties of the initial sample were not modified after this procedure.

Due to its heat dissipation capacity, quantitatively characterized by the SAR value, the studied IONCs sample can be considered as a good candidate for magnetic hyperthermia treatment. The obtained SAR and ILP values are comparable with previously reported results on similar IONCs systems. The heating efficiency of the presented system appears to be enhanced by the NPs cubic shape and their capability of forming chain-like clusters, compared with other NPs samples with similar structural properties reported elsewhere.

We want to emphasize that the low-cost synthesis method that we have developed keeps, or even enhances, the desirable system properties for the above-mentioned applications. It is also worth highlighting that the synthesis results are highly reproducible, allowing the preparation of NPs systems with the same specific structural and magnetic properties.

Acknowledgments

We acknowledge CONICET and UNLP of Argentina for financial support through Grant Nos. PIP 0720 and X11/807. We also want to acknowledge YPF Tecnologa (Y-TEC) and Ph.D Alberto Caneiro for HR-TEM images, Instituto de Investigaciones Fisicoquímicas Teoricas y Aplicadas (INIFTA) and Ph.D Lisandro Giovanetti for SAXS measurements. D.M. acknowledges Brazilian Nanotechnology National Laboratory (LNNano) at Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)/MCTI for the use of electron microscopy facility (proj. number 22452, 22424), FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo grant 2017/10581-1), National Council for Scientific and Technological Development (CNPq, 303326/2017-5). We want to thank Ph.D Pablo Tancredi from Universidad de Buenos Aires (UBA) for synthesis process discussions and advice.

ORCID iDs

J M Orozco-Henao 🌐 https://orcid.org/0000-0002-1370-4598

P Mendoza Zélis 🌐 https://orcid.org/0000-0002-7868-8912

References

[1] Neuberger T, Schöpf B, Hofmann H, Hofmann M and Von Rechenberg B 2005 Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system J. Magn. Magn. Mater. 293 483–96

[2] Pankhurst Q A, Than N T K, Jones S K and Dobson J 2009 Progress in applications of magnetic nanoparticles in biomedicine J. Phys. D: Appl. Phys. 42 224001

[3] Tebaldi M L, Oda C M, Monteiro L O, de Barros A L, Santos C J and Soares D C F 2018 Biomedical nanoparticle carriers with combined thermal and magnetic response: Current preclinical investigations J. Magn. Magn. Mater. 461 116–27

[4] Falk M H and Issels R D 2001 Hyperthermia in oncology Int. J. Hyperth. 17 1–18

[5] Rosensweig R E 2002 Heating with magnetic fluid with alternating magnetic field J. Magn. Magn. Mater. 252 370–4

[6] Dutz S and Hergt R 2014 Magnetic particle hyperthermia—A promising tumour therapy? Nanotechnology 25 452001

[7] Lee N and Hyeon T 2012 Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents Chem. Soc. Rev. 41 2575–89

[8] Brollo M, Orozco-Henao J, López-Ruiz R, Muraca D, Díaz C, Pirola K and Knobel M 2015 Magnetic hyperthermia in brick-like Ag@Fe₃O₄ core–shell nanoparticles J. Magn. Magn. Mater. 397 20–7

[9] Gupta A K and Gupta M 2005 Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications Biomaterials 26 3995–4021

[10] Moscoso-Londoño O, Gonzalez J S, Muraca D, Hoppe C E, Alvarez V A, López-Quintela A, Socolovsky L M and Pirola K R 2013 Structural and magnetic behavior of ferrogels obtained by freezing thawing of polyvinyl alcohol/poly(acrylic acid) (PAA)-coated iron oxide nanoparticles Eur. Polym. J 49 279–89

[11] Tancredi P, Botasini S, Moscoso-Londoño O, Méndez E and Socolovsky L 2014 Polymer-assisted size control of water-dispersible iron oxide nanoparticles in range between 15 and 100nm Colloids Surf. A 464 46–51

[12] Lu Y, Yin Y, Mayers B T and Xia Y 2002 Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach Nano Lett. 2 183–6

[13] Mendoza Zélis P, Muraca D, Gonzalez J S, Pasquevich G A, Alvarez V A, Pirola K R and Sánchez F H 2013 Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications J. Nanoparticle Res. 15 1613

[14] Laurent S, Forge D, Port M, Roch a, Robic C, Elst L V and Muller R N 2008 Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications Chem. Rev. 108 2064–110

[15] Ge S, Shi X, Sun K, Li C, Uher C, Baker J R, Banaszak Holl M M and Orr B G 2009 Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties J. Phys. Chem. C 113 15395–9

[16] Mikhaylova M, Kim D K, Bobrysheva N, Osmolowski M, Semenov V, Tsakalakos T and Muhammed M 2004 Superparamagnetism of magnetite nanoparticles: dependence on surface modification Langmuir 20 2472–7

[17] Ferguson R M, Minard K R, Khandhar A P and Krishnan K M 2011 Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging Med. Phys. 38 1619–26

[18] Salas G, Casado C, Teran F J, Miranda R, Serna C J and Morales M P 2012 Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications J. Mater. Chem. 22 21065

[19] Issa B, Obaidat I, Albiss B and Haik Y 2013 Magnetic nanoparticles: Surface effects and properties related to biomedical applications Int. J. Mol. Sci. 14 21266–305

[20] Gutiérrez L et al 2015 Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications Dalt. Trans 44 2943–52
and magnetic properties of highly crystalline Fe₃O₄ nanoparticles. Sci. Rep. 7 9894

[40] Disch S 2010 The spin structure of magnetic nanoparticles and in magnetic nanostructures PhD Thesis University of Aachen, Templergraben, Aachen, Germany

[41] Petukhov A V et al 2015 Particle shape effects in colloidal crystals and colloidal liquid crystals: small-angle x-ray scattering studies with microradian resolution Cur. Opin. Colloid Interface Sci. 20 272

[42] Chen S H and Teixeira J 1986 Structure and fractal dimension of protein-detergent complexes Phys. Rev. Lett. 57 2583–6

[43] Freiloft T, Kjems J K and Sinha S K 1986 Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering Phys. Rev. B 33 269–75

[44] Percus J K and Yevick G J 1958 Analysis of Classical statistical mechanics by means of collective coordinates Phys. Rev. 110 1–13

[45] Kinning D J and Thomas E L 1984 Hard-sphere interactions Macromolecules 17 1712–8

[46] Fernández Van Raap M B, Mendoza Zélis, Coral D F, Torres T E, Marquina C, Goya G F and Sánchez F H 2012 Self organization in oleic acid-coated CoFe₂O₄ colloids: A SAXS study J. Nanoparticle Res. 14 1072

[47] Singh G et al 2014 Self-assembly of magnetite nanocubes into helical superstructures Science 345 1149–53

[48] Meh dizadeh Taheri S et al 2015 Self-assembly of smallest magnetic particles Proc. Natl. Acad. Sci. 112 14484–9

[49] Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X and Li G 2004 Monodisperse MFe₂O₃ (M = Fe, Co, Mn) nanoparticles J. Am. Chem. Soc. 126 273–9

[50] Mørup S 1983 Magnetic hyperfine splitting in Mössbauer spectra of microcrystals J. Magn. Magn. Mater. 37 39–50

[51] Mørup S and Topsøe H 1976 Mössbauer studies of thermal excitations in magnetically ordered microcrystals Appl. Phys. 11 63–6

[52] Vandenberge R E, Barrero C A, daCosta G M, Van San E and Vandenberge R E 1995 Influence of nonstoichiometry and the presence of maghemite on the Mössbauer spectrum of magnetite Clays Clay Miner. 43 656–68

[53] Cheng C 2005 Structure and magnetic properties of the Fe₃O₄(001) surface: Ab initio studies, Phys. Rev. B 71 052401

[54] Da Costa G M et al 2005 Magnetic nanoparticles for in vivo use: a critical assessment of their composition J. Phys. Chem. B 111 11738

[55] Fock J et al 2017 On the ‘centre of gravity’ method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via ⁵⁷Fe Mössbauer spectroscopy J. Phys. D: Appl. Phys. 50 265005

[56] Shepard J P et al 1991 Heat capacity and entropy of nonstoichiometric magnetite Fe₃(1 – δ)O₄; the thermodynamic nature of the Verwey transition Phys. Rev. B. 43 8461

[57] Kakol Z, Sabol J and Honig J M 1991 Magnetic anisotropy of titanomagnetites Fe₃₋δTiO₂, 0 ≤ δ ≤ 0.55 Phys. Rev. B 44 2198–2204

[58] Ludwig P et al 2017 Size analysis of single-core magnetic nanoparticles J. Magn. Magn. Mater. 427 19–24

[59] Bender P et al 2017 Distribution functions of magnetic nanoparticles determined by a numerical inversion method New. J. Phys. 19 073012
[61] Sakurai S, Soda N, Kobayashi M and Rowlands G 2007 Geometries with the demagnetizing energy independent of the direction of magnetization IEEE Trans. Magn. 43 982–91

[62] Muscas G et al 2013 Magnetic properties of small magnetite nanocrystals J. Phys. Chem. C 117 23378–84

[63] Lee K, Jang J-I, Nakano H, Nakagawa S, Paek S H and Bae S 2017 External magnetic field dependent shift of superparamagnetic blocking temperature due to core/surface disordered spin interactions Nanotechnology 28 075710

[64] Lima E, Brandl A L, Arelaro A D and Goya G F 2006 Spin disorder and magnetic anisotropy in Fe$_3$O$_4$ nanoparticles J. Appl. Phys. 99 083908

[65] Lee K, Jang J-t, Nakano H, Nakagawa S, Paek S H and Bae S 2017 External magnetic field dependent shift of superparamagnetic blocking temperature due to core/surface disordered spin interactions Nanotechnology 28 075710

[66] Muscas G et al 2013 Magnetic properties of small magnetite nanocrystals J. Phys. Chem. C 117 23378–84

[67] Lee K, Jang J-t, Nakano H, Nakagawa S, Paek S H and Bae S 2017 External magnetic field dependent shift of superparamagnetic blocking temperature due to core/surface disordered spin interactions Nanotechnology 28 075710

[68] Muscas G et al 2013 Magnetic properties of small magnetite nanocrystals J. Phys. Chem. C 117 23378–84

[69] Muscas G et al 2013 Magnetic properties of small magnetite nanocrystals J. Phys. Chem. C 117 23378–84