The annual total artesian water diversion plan of 300 billion Square meters in the arid desert area of northwest China

Abstract
The water shortage in the arid desert area of northwest China has seriously restricted the healthy, balanced and sustainable development of the national economy. In the arid desert area of northwest China, the total budget of the full artesian water diversion project of 300 billion cubic meters per year is less than 3 trillion yuan, and the construction period is less than 10 years. Hope the central government, Ministry of Water Resources, Ministry of agriculture, Ministry of water and power. And other major national economy and people’s livelihood related departments and many experts and scholars, people with lofty ideals to pay high attention in a timely manner.

Keywords: northwest china, arid desert area, 300 billion cubic meters per year, all their, the diversion planning

Introduction
There are vast land resources in the northwest of China, with sufficient light, but due to drought and water shortage, the ecological environment is poor, the land desertification is serious, and the resources are difficult to develop and use. As long as there is enough water resources, the northwest region will be able to expand about one billion mu of arable land and large grasslands. We will develop modern agriculture and animal husbandry, increase the output of grain, beans, edible oil, feed protein and non-staple food, and absorb and resettle a large number of people. Basically solve the problems of cultivated land, pasture, food, edible oil, protein feed, non-staple food and population security in China and other major national and people’s livelihood problems.

Since the founding of the people’s Republic of China, the central government, many experts and scholars, people with lofty ideals, have put forward the South-to-North Water Diversion plan, the Yarlung Zangbo river closure plan to penetrate the Tibetan plateau and lead to Xinjiang, further discussion on the southwest water diversion project and the Northwest Water Diversion project, the “Hongqi River” project of the northwest water diversion plan, and the introduction of the Bohai Sea water through Inner Mongolia into the “East water and West Water” of Xinjiang Project ideas And so on. After decades of efforts, China has finally completed the east line and middle line of the south to North Water Transfer Project. The situation of water shortage in North China was partially alleviated. However, due to the urgent demand for large-scale water transfer in the arid desert area of Northwest China, in view of the current situation at home and abroad and unreasonable obstruction from India, there is still a lack of economic, effective and practical master plan.

Through the Internet, the author specially looked up the water systems of the Brahmaputra, Nujiang and Lancang rivers flowing out of Southwest China. The downstream flows through India, Bangladesh, Myanmar, Thailand And other countries are located in the tropical rain forest area with the most abundant rainfall in the world. In particular, the barrier of the Himalayas blocks the warm moisture flow in the Indian Ocean and the Pacific Ocean from moving northward and westward. The rainfall and snow melting in the southern part of the whole Himalayas have been increased. It also increases the frequency and harm degree of flood disaster. The closure of the Yarlung Zangbo, Nu and Lancang rivers in China is a feast for the benefit of other countries and the obligation to help them to prevent floods and disasters, so we should try to intercept as many rivers as possible. As for India, it is not necessary to pay any attention to any pretext or reason. Because the South Tibet Mountain Area in the middle reaches of the Yarlung Zangbo River belongs to the territory of China, they have neither the ability nor the courage to build large-scale hydropower stations in the occupied area. The lower reaches flow through Assam and Bangladesh in India and all flow into the Indian Ocean. The whole basin is a flat low-lying plain. Neither hydropower station can be built, but also flood occurs frequently. Obstructing the closure of our country can only expose the face of its rogue. We only need to strengthen the safety guard of the dam area and the surrounding area at the turning of the Yarlung Zangbo River Grand Canyon in advance, especially the safety guard of the two saddles at the elevation of 3680-3700meters at the mout county and the border post and the South Ridge watershed of Milin county. To avoid further disruption events like the confrontation between China and India in 2017. When necessary, we should take decisive military action to recover southern Tibet. The dignity of a great power cannot be maintained only by economic assistance to those white eyed wolves and “villains”, nor can it be allowed to be slaughtered again and again. The most effective way to build a powerful country is to use carrot and stick diplomacy.

Thoughts and working methods of the planning of the total artesian water transfer of 300 billion cubic meters per year in the arid desert area of Northwest China
The author’s design and planning ideas can be summarized as follows:

i. Make full use of the upstream valleys and river beds in the river basins of the major rivers in Southwest China to build super large reservoirs. As long as the altitude of the watershed ridge around the impoundment basin of each major reservoir permits, the...
The annual total artesian water diversion plan of 300 billion Square meters in the arid desert area of northwest China

1. The interval accuracy of contour lines in China’s surrounding countries is up to 200 meters, while that in China is only 100 meters. The author can only use the method of visual estimation and interpolation. Fortunately, with the clear image data captured by modern satellite technology, you can sit in front of your computer at home, and through the Internet, you can have a panoramic view of the topography and geomorphology of mountains and rivers all over the world. In addition, it can switch instantly in the image of map, satellite and terrain, and zoom in and out at will. Before retiring, the author was a senior engineer in geology and mineral exploration. For the clear image data taken by modern satellite technology, from large area to operation point, the landform, mountains, rivers, vegetation distribution the experience ability of analysis and judgment with other characteristics has the innate advantage of decades of field work experience in this major. For the design of water diversion project in this paper, the requirements of accuracy in the planning and design stage are also sufficient.

2. When the kinetic energy loss of the viscous friction resistance equals to the potential energy loss of the flow, the flow can maintain a uniform velocity. Therefore, when the slope ratio is 3/10000, the velocity V of water can be roughly determined by the following formula. Furthermore, the total discharge can be estimated from the tunnel diameter and number.

$$V = \sqrt{2GH} = \sqrt{(2 \times 9.8 \times 3)} = 7.668 \text{ (M/s)}$$

3. Reservoir characteristics of each river system in planning and design

Reservoir characteristics of the Yarlung Zangbo river system

First of all, the urban area of Lhasa is the birthplace of Tibetan Buddhism and a cultural heritage shared by all mankind, which should be preserved as much as possible. Secondly, the elevation of the two saddles in the South Ridge watershed of Milincounty is considered to be 3680-3700m. (on the satellite map, it is a mountain ditch. If the elevation of the bottom of the ditch is lower than 3650m, a dam trap must be built). According to the analysis of the topographic map, the elevation of the urban area of Lhasa is between 3650m and 3700m. Therefore, the highest water level of each reservoir designed in this paper is 3650m.

According to the above design principle of the highest water level first, the closure dam of the YarlungZangbo River system is initially selected in the grand turning Canyon of Linzhi City, which is about 113 kilometers away from the East. The suitable dam site is selected between Gandeng Township and heating SA Township or nearby. The dam bottom elevation is 1000-1200m. The water storage elevation is 3650m. From the bottom of the dam to the water storage elevation, the height difference is about 2600meters, that is to say, the dam designed in this paper has a maximum height of 2600meters! Almost 8.7times the height of the dam which has been built or is under construction in our country!

On the surface, such a height is frightening, but with the existing dam design and construction capacity in China, further analysis is not too difficult. Because the dam site selected in this paper is the “V” type valley which is “deeply cut” by the torrent. The bottom of the valley is at most 100-300meters wide, and the two sides are built along the side of the steep ridge. So the height of the dam to the side becomes shorter. The dam designed in this paper is to maintain the storage elevation of the reservoir permanently. The elevation of the closure dam is only connected with the design building of several meters high and middle spillway auxiliary dam with gap. Flood discharge shall be carried out in time for the water volume exceeding the storage elevation. (the design scheme of other reservoirs and dams is the same as above).

For the reservoirs of Yarlung Zangbo River system, the annual average outbound runoff is up to 150 billion cubic meters. As long as the diameter of the shield tunnel through the reservoir of Nuijiang River system is large enough and the number of tunnels is large enough, (considering that 1/3 of the height above the circular section of the tunnel (diameter) can be used as the navigation channel for the water transport ships of each major reservoir system, the ships flowing down and upstream must be in accordance with the high speed The design and construction of highway tunnels are separated
The annual total artesian water diversion plan of 300 billion Square meters in the arid desert area of northwest China

from each other. As long as the total transportation capacity of the total dredging project is large enough, we can transfer the reservoirs of the Yarlung Zangbo River system with an annual average runoff of up to 150 billion cubic meters of fresh water into the reservoirs of the Nuijiang River system.

Water transfer scheme and reservoir characteristics of Nuijiang river system

Based on the topographic map, this paper makes a comprehensive comparative analysis of the reservoir topography and geomorphology characteristics of the Yarlung Zangbo River and Nuijiang River system. We choose Bomi County, which is 140 kilometers from the northeast of Linzhi city. From Bomi county to the West and then to the north, turn to the branch of bodzangbu, then turn to the branch of Yalong Zangbu for tracing, and then turn to the yadonumba curve with an elevation of 3650 meters in the mountain gully. Mark the location of the shield tunnel mouth, and set it as point a. Searching from point a to the direction of Nuijiang River, we found that Dequ, the nearest tributary of Nuijiang River, Baqu, the tributary of Dequ, and dongsuoqu, the tributary of Baqu. Further enlarged the topographic map, it was found that in the middle of maso and Bami village, the river bottom elevation met the condition of <3650m, and was set as point B. The straight-line distance between points A and B measured on the topographic map is about 43km. According to the agreement that the slope ratio is 0.03million, the reservoir storage elevation of Nuijiang River system should be set as 3650-13=3637(m).

Swim down from Nuijiang River to Bingzhongluo township (Bingzhongluo scenic spot), where the river level is 1600meters. Along the upstream of Bingzhongluo Township, about 20kilometers up the mountain canyon, is a suitable location for the construction of the closure dam. The height of the dam is about 2050meters.

The Nuijiang River mainly originates from the Qinghai Tibet Plateau of China, with an outbound flow of about 70 billion square meters. According to the short section from the Nuijiang River Closure dam to the downstream exit and the extremely narrow drainage area, the reservoir cut-off flow of the Nuijiang River system can reach 60bilion cubic meters.

Follow the Nuijiang River Closure dam upstream for about 30km to Changxi village, turn to the south-east gully, then trace to the north-east direction to shequ River, then turn to the East into the basin of the small valley. The elevation here is 3637m, which is set as point A. At the southeast of point a, which is only about 6.5km away, it is a small tributary of Lancang River - nusongnuq. The elevation here is less than 3637m, which is set as point B. According to the predetermined slope ratio, the reservoir storage elevation of Lancang River system should be set as 3637-2=3635(m).

Water transfer scheme and reservoir characteristics of Lancang river water system

From point B to Yunling Township on the edge of Lancang River, a tour of Yunlingtownship for about 10kilometers is a suitable place to build a closure dam. The dam bottom elevation is less than 2000m, and the design dam height is about 1650m. The designed impounding elevation of Lancang River Closure dam is 3635m.

The average discharge at the Lancang River estuary is 2180m3/s, which is converted to 68.7billion m3 per year. According to the
The annual total artesian water diversion plan of 300 billion square meters in the arid desert area of northwest China

The annual total artesian water diversion plan of 300 billion square meters in the arid desert area of northwest China

Tracing upstream from Yalong river closure dam, along the tributary of Qingda River to Murong Township, seka Township, Bamei town and kezisi. Trace to the place with the elevation of 3613m at the ditch bottom, which is designated as point A. It is determined as point B when the elevation of the tributary of Dadu River system from provincial highway S303 to the valley of Yala snow mountain scenic spot is less than 3613m. A B the straight-line distance between the two points is only 7km.

Water transfer scheme and reservoir characteristics of Dadu river system

Therefore, according to the slope ratio of 7km shield tunnel, 3613-2=3611(m). The design water storage elevation of Dadu River Closure dam is 3611m. The closure dam should be located between suopo Township and gezong Township downstream of Danba county. The river level elevation is less than 1900m, and the designed dam height is about 1750m.

Tracing upstream along the mainstream of Dadu River from Daba to Badi Township, Anning Township, Jinchuan county and Biawan Township, turning into jiaomudu River, a tributary of DaduRiver, tracing upstream to jiaomudu Township, caodeng Township, Nipu Township and maerquu, then continuing to trace to Rong’an township, annudao Township, Zhong’an village and Chali Township, then tracing southward to chalma Township, tracing along Longre road to the place with elevation less than 3611 in zhimiqu and valley, which is designated as point B. A B the straight line distance between the two points is only 3km! It is designed that the exit elevation of the 5km long shield tunnel is 3609meters.

According to the statistics of observation data from the hydrological station in Fulu Town, the lower reaches of Dadu River, the average annual flow is 1510m³/s, and the annual runoff is 47.3 billion m³. According to the location of the closure dam, the abundant annual rainfall in the downstream, the area of the long reach and the tributary catchment, only about 20 billion cubic meters of the closure dam of Dadu River system reservoir is set in this paper.

The total power generation capacity after 300 billion cubic meters of water finally flows into Lijiaxia hydropower station of the yellow river

In this way, about 1500+600+100+400+200+200=3000(billi on square meters) of pure natural fresh water and natural rainwater mainly melted by the snow mountains of Qingchuan and Tibet Plateau, which are collected from the YarlungZangbo River, Nujiang River, Lancang River, Jinsha River, Yalong River and Dadu River system, all of which are from the upstream of Dadu River system, the foot Mudu River and the maenqu River, and then flow into the langmiqiu and Baihe River through Jiangyu township. After Anqu Township, Hongyuancounty and wachi Township, it finally flows into the Yellow River. The elevation of Tangketownship at the confluence is only a little lower than 3500meters.

When the Yellow River flows from Maqu County through the mountain pass between Kesheng Township, Duosong Township and Ruanalashima Township, the elevation is less than 3400meters. When it passes through the town of Raja and qushi’an Town, the elevation is less than 2800meters. When it reaches the old Yangqu of the harvest platform, the elevation is less than 2700meters. Excluding the original flow of the Yellow River water here, only 300 billion cubic meters of water collected and 3400-2800=600(m) elevation difference are added. Assuming the total power generation efficiency of the hydropower station is 50%, only the water volume of 300 billion cubic meters and the elevation difference of 600meters in this section will provide the power generation capacity of 27.94 million kilowatts of pollution-free and renewable energy!

Then, the elevation of the 300 billion cubic meters of water flowing into Longyangxia hydropower station is 2600meters. After Lijiaxia Hydropower Station and Lijiawu hydropower station, the export elevation is reduced to 1700meters. The height difference of 900meters can provide another 41.9 million kilowatts of power generation capacity. The total of the two is 69.84 million kilowatts!

The transportation network of passenger and cargo ships formed by connecting reservoirs with major water systems

i. The reservoir is composed of YarlungZangbo River water system, with water storage elevation of 3650m, and the shipping water surface can reach Lhasa directly. At the same time, it also includes the surrounding counties, towns and villages with an elevation of 3650m.

ii. It is connected with the reservoir of Nuijiang River system through shield tunnel project, with water storage elevation of 3637m (if the draft of passenger ship and cargo ship is less than 5m) Upstream, it can be transported to less than 10 kilometers away from the county seat of Bianba.

iii. The reservoir is composed of Lancang River water system, with water storage elevation of 3635m. You can go upstream by shipping through Changdu, and you can directly reach less than 20 kilometers from Nangqian county.

iv. The reservoir is composed of Jinsha River water system, with water storage elevation of 3632m. Upstream, you can go through Baiyu County, dege county and Yushu Tibetan Autonomous Prefecture.

v. The water system of Yalong River is a reservoir with a water storage elevation of 3613m. Upstream, it can go through Xinlong County, gannu County, Kagang Township and wentuo township. Upstream to the tributary of Xianshui River, you can directly reach Daofu County, Luhuo County, sitongda Township and Duoduo township.

vi. The reservoir is composed of Dadu River system, with water storage elevation of 3611m. From the closure dam upstream, it can be transported through Danba County, Jinchuan County, Aba Tibetan and Qiang Autonomous Prefecture, ABA County, Hongyuan County, Ruoergai County, Diebu County, etc.

In a word, through the closure dam and through tunnel of the six major water systems, the horizontal Lake transportation network composed of the six dendritic water systems and the dendritic reservoir with water storage elevation of 3611-3650 meters is like a mirror. It has truly realized the reality that mountains and valleys become flat lakes and natural moats become smooth roads. Moreover, the cost is far less than railway and road transportation, and the economic and social benefits are far greater than railway and road transportation.

Citation: Huang Z. The annual total artesian water diversion plan of 300 billion square meters in the arid desert area of northwest China. Int J Hydro. 2020;4(2):62–65. DOI: 10.15406/ihj.2020.04.00227
Promoting effect of six reservoirs on agriculture, forestry, animal husbandry and sideline fishery in plain and hilly area with elevation of 3600-4500m

Combining the topographic map with the satellite map, when the water storage elevation of the six major reservoirs is permanently stable at 3611-3650meters, with the priority to solve the energy and traffic problems, the surrounding areas of the six major reservoirs and the vast area from abaqing to Gannan are above the water storage line of 3611meters, 4500meters of glaciers, snow lines and plain and hilly areas below the permafrost line will become productive areas for agriculture, forestry, animal husbandry and freshwater aquaculture. For the vast plain and low-lying area from abaqing to Gannan, the satellite image shows a green, low-lying water and grass land. As long as we dredge the river course, take the value of the curve, and do well in the water conservancy project, the plain and low-lying water grassland in this vast area will soon become a productive farmland. Further, it can be developed into a low, medium and high-end fine processing enterprise group and industrial chain of agricultural, forestry, animal husbandry and sideline fishery products.

Conclusions and supplementary notes

i. The national economic and social benefits of introducing 300billion cubic meters of fresh water into Northwest China every year

In conclusion, it can be concluded that the water shortage in the arid desert area of Northwest China has seriously restricted the healthy, balanced and sustainable development of the national economy; the total budget cost of the project is less than 3trillion yuan (RMB) and the total construction period is less than 10years. Therefore, if it can be completed as soon as possible, it will undoubtedly benefit thousands of people at present. The great cause of autumn; the Northwest China will expand about one billion mu of arable land and vast grasslands, develop modern agriculture and animal husbandry, increase the output of grain, beans, edible oil, feed protein and non-staple food in China, absorb and settle a large number of people; basically solve the problem of arable land, pasture, food, edible oil, protein feed, non-staple food and population security in China. And other major national and people’s livelihood problems.

Central government, Ministry of water resources, Ministry of agriculture, Ministry of water and electricity People’s livelihood related departments, many experts, scholars and people with lofty ideals, etc. in major countries, have given extremely high evaluation to the early South-to-North Water Diversion Project, and even the “hongqihe” project plan of 60billion cubic meters of water diversion every year, which has been heated in recent years. How to evaluate the economy, practicability and feasibility of the whole planning system for the planning draft of the project of 300billion square meters five times of the “Hongqi River” every year? Experts, scholars and people with lofty ideals are welcome to actively participate in the discussion and supplement, so as to make it more perfect, more practical, scientific and feasible. The author only wants to make contribution in the present age and benefit in the future.

Figure 1 schematic diagram of the second half of the total artesian water transfer plan of 300billion cubic meters per year in the arid desert area of Northwest China.
The annual total artesian water diversion plan of 300 billion square meters in the arid desert area of northwestern China

ii. Supplementary notes

Whether the water diversion plan of 300 billion cubic meters of artesian flow per year can be successfully implemented in the arid desert area of northwestern China. The key lies in whether six Super Large closure dams with design building heights of 2600, 2050, 1650, 1550, 900 and 1750 (m) can be successfully built with existing building materials and construction technology. It can not only run safely for hundreds of years, but also cannot break the dam under the influence of non-extreme natural disasters and man-made disasters. Such harsh preconditions will bring unprecedented severe challenges to China and the world dam design and construction industry. For details, please refer to the author’s follow-up paper, design and demonstration of special innovative research on super large long-life and dam break resistant closure dam.

In this paper, the planning of 300 billion cubic meters of total artesian water transfer in northwestern China is discussed only for the planning and design of the water transfer to Liujiaxia hydropower station. For the second half of the water delivery plan after flowing out of Liujiaxia hydropower station, the design line of “Hongqi River” can be used, but the scale of water delivery must be expanded by 5 times. See for details.

Acknowledgments

None.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Funding

None.

References

1. Academic “hongqihe” western water transfer research group. Can the super project of hongqihe reservoir water entering Xinjiang and shaking the world be launched?
2. Xu Mingyi. Discussion on the feasibility and scheme of “east to west water transmission” project. J Soil and water conservation. 2019;7(2):33-41.
3. Chen Changjie. Further discussion on the northwest project of southwest water diversion. People’s Yellow River. 2003;1.

Citation: Huang Z. The annual total artesian water diversion plan of 300 billion square meters in the arid desert area of northwestern China. Int J Hydro. 2020;4(2):62-65. DOI: 10.15406/ijh.2020.04.00227