Computerised Development Control and Approval System for City Hall of Kuala Lumpur

Ahris Yaakup Yazid Abu Bakar Mohd Nuruddin Abdul Kadir Susilawati Sulaiman

ABSTRACT This paper will discuss the computerised development control and approval system being developed for the Planning and Development Control Department, City Hall of Kuala Lumpur, with stress on the GIS architecture developed within the system. The prospects and challenges towards implementation of the system are also discussed.

KEYWORDS GIS architecture; computerised development control and approval system; City Hall of Kuala Lumpur

CLC NUMBER P208; TP18

Introduction

Currently, the employment of Information and Communication Technology (ICT) is seen as an evolving approach to better urban governance. ICT has made it possible for urban authorities to move towards efficient and productive use and reorganization of financial, personnel and information resources for the achievement of good metropolitan development, through the enhancement of planning, coordination and management, promotion of administrative reform and advancement of information systems. This is due to ICT capabilities which include the followings:

- It improves the storage, manipulation and display of spatially referenced data (including land use, linear services and infrastructure, population, etc.)
- Automated data handling (i.e. payroll administration, valuation, billing and collection, storage tracking and retrieve development application)
- It improves the availability and flow of information in and amongst organizations responsible for urban management, with a view to improve and mainly change anticipation of issues and monitoring implementation
- Predictive and prescriptive models of urban interaction facilitated by ICT can be used to forecast the impact of changing land use and transportation infrastructure on the distribution of population and other activities. Increased access to information via increased access to computer and the development of web means that a wide range of people can be informed about planning and management issues.

The potential use of ICT in urban management, however, must be considered in the light of political and administrative realities[12]. First, the introduction of ICT involves not only technological problems but is also a complex process of managing change in environments characterized by both uncertainty, on one hand, and entrench institutional procedures and staff motivation on the other. Second, the collection, processing and dissemination of data reflected social relations and are not politically neutral[23]. Data

Received on December 12, 2003.
Ahris Yaakup, Department of Urban and Regional Planning Faculty of Built Environment, Universiti Teknologi Malaysia.
E-mail: b-haris@utm.my
generated and inequitable access to it may cause problems in democratic context.

1 Development control and approval in Kuala Lumpur

Kuala Lumpur has become the center of economic growth activities for the Klang Valley and the country. The development of Kuala Lumpur has taken the form of a definite concentration of physical and economic activities in the center with ribbon development taking place along the major arterials leading into the city. Development control is considered very important for Kuala Lumpur Metropolitan, especially in the Commercial Central Area which has the highest concentration of development compared with the rest of the city. To date, the area which consists of a mixture of traditional shop houses, office complexes and modern hotel-cum shopping complexes, still receives numerous applications either for new development or redevelopment. The City Hall receives many applications to redevelop the traditional shop houses to be replaced by a more up-beat commercial building. Small-scale development, often carried out by private developers, can be completed in record time but does little to contribute to the aesthetic aspect of the city since it is done in a piecemeal manner. Potential areas being planned for such developments include open spaces, government lands, schools and rivers. Though restrictions are imposed based on the basis of a development plan and planning standards such as plot ratio, density and plinth area applied by the City Hall, these can still be negotiated by compensating with payment of development charges, provision of car parking and other facilities, surrendering land for road widening or providing building setback. The concern is that if the development of the area is not properly and efficiently controlled, it will not only adversely affect the form of the planned growth but that the image and identity of Kuala Lumpur will be eventually lost.

The planning legislation in Kuala Lumpur started in the year 1881[5] whereby an important and critical legislative action was taken after the big fire catastrophe. However, ‘urban planning’ was introduced just in 1921, while legislation that directly regulates town planning activities was later introduced in 1930. Eventually, the sudden need for better planning was realized with the new Kuala Lumpur City Act (Planning) in 1973 (Act 107). It is the first ever legislation meant to control urban planning and development and related activities. When Town and Country Planning Act (Act 172) was introduced in 1976, which incorporates Structure Plan under 20 years strategic plan, it also included Local Plan meant to develop spatial framework for social policies, urban economic activities. Later, a dedicated Act meant only for Kuala Lumpur was passed by the Parliament that incorporates major principles under Act 107 and Act 172.

1.1 Process and procedures

The City Hall of Kuala Lumpur (CHKL) is the largest municipal authority as far as size and functions are concerned. Administration and management of CHKL is undertaken by more than 20 different departments or units including the Master Plan Department, Planning Control Division, Building Control Division, Enforcement Unit, Administrative Division as well as the Secretariat, each having its own head. All these departments are under the supervision of a Director General who is assisted by two Deputy Director Generals. The Mayor appointed by the Prime Minister, heads the entire organization and is an administrator with vast power and authority over decision making as far as development is concerned.

All applications for any development in the city of Kuala Lumpur will have to be submitted to the City Hall for approval. Depending on the type and scale of development, these applications will be processed and considered by either ‘Town Planning Committee I’ or ‘Town Planning Committee II’. Town Planning Committee I chaired by the Mayor looks at proposals for comprehensive and large-scale development, layout plans, change of of land use and increased density, and the application for the use of government
land. This committee comprises the Director General of City Hall, Deputy Secretary to the Minister of Federal Territory, and all the directors of the technical divisions. Before an application is reviewed by this committee, it will have to go through all the technical departments for comments and recommendations, based on which decision is derived whether to approve, approve with conditions or reject the proposed development. Then, Development Order will be issued by the Mayor. Meanwhile, Town Planning Committee II looks into the applications for development of shop houses, detach houses, mosques, industrial building, etc. The procedure adopted by Town Planning Committee II is similar to the former committee, except that Development Order will be issued by the Director General.

1.2 Requirements

The process of development control and approval involves a technique for the systematic compilation of expert quantitative analysis and qualitative assessment of land use and property development viability, including its effect on the surrounding area, and the presentation of results in a way that enables the importance of the predicted results, and the scope of modifying or mitigating them to be properly evaluated by the relevant decision making body before a planning permission is rendered. Development at the local level such as CHKL obviously involves a lot of policies and implementation decisions, which have to consider the cost and benefit to every level of urban dwellers. To plan and control development in such area requires the technology that is capable of not only assisting in day-to-day routines but should also aid in formulating development strategies able to cope with the fast changing scene. Given the wide range of activities over the years, the local authority has amassed a huge amount of information of which a substantial portion is geographical in nature such as layout of housing scheme, road and drainage system, composition and distribution of population, distribution of land use and so forth. Unfortunately, these data are often inaccessible even to the local administrators, the main reason being the database management system which is based on manual filing system, making retrieval of information difficult and time consuming. While previous systems developed help tremendously in information retrieval and analysis, they do not handle spatial data very well. Thus, jobs assigned to the system are quite limited to routine retrieval.

The development control and approval in CHKL, which involves the process of analyzing the appropriateness of planning applications, requires various data from the relevant agencies. A planning application will be assessed in terms of current development situation, land information, planning requirements and planning design. An information system is necessary not only to keep and display data pertaining to planning application for the purpose of administrative functions, but also designed to facilitate planning at strategic level. The system developed for development control and approval, needs to have the following features;

1) Capabilities of analyzing development strategies in terms of the role and function of Kuala Lumpur taking into consideration the policies outlined by the government. This can be done using current data on floor space of the development area as well as the whole planning area. By comparing this information with control figure projected by the Kuala Lumpur Structure Plan, the effectiveness of the development policies can be evaluated;

2) Capabilities of providing information to assess the implication of planning application in terms of the provision of social and community facilities;

3) Capabilities of identifying potential land available for development. This is useful to both the public and private sectors to determine supply of floor space. Land supply is an economically dynamic process and very much dependent on government policies. Such information therefore forms the basis for strategic planning;

4) Capabilities of identifying areas receiving development pressure to facilitate development control and monitoring of the areas;

5) Capabilities of facilitating technical evaluation of planning applications by displaying data on land use, plot ratio, transport system, etc. used by other agencies involved in technical aspects;

6) Capabilities of displaying information on de-
development status, surrounding development, available infrastructures and other planning requirements. This is because information on development and administrative policies formulated by the municipality, which has been translated into spatial entity is important to enable the planners to advice applicants.

The system developed should also allow for integration with other stand-alone databases apart from further enhancement to cope with the fast changing technology.

2 Computerised development control and approval system

The ICT applications in CHKL range from traffic monitoring to development control and preparation of development plans. Various implementations of ICT projects have demonstrated that ICT is an important tool in CHKL. The application of ICT in day-to-day work indicates the assimilation of good governance principles. Nevertheless, a systematic approach is required to ensure a smooth transformation for the staff of CHKL in moving towards e-government as envisioned by the Malaysian Government.

The computerised development control and approval system which will be implemented by the planning and development control department, City Hall of Kuala Lumpur, is one of the ICT applications undertaken to facilitate the procedures to control and monitor the city development. The system being developed integrates several subsystems to execute specific functions. At the same time, the subsystems interact with one another by sharing information sources (Fig. 1).

![Fig. 1 Subsystems interaction](image)

In general, the computerised development control and approval system encompass seven main subsystems, which are: planning authorization subsystem, building control subsystem, enforcement subsystem, information kiosk subsystem, meeting presentation subsystem, documentation processing subsystem, geospatial and planning information subsystem.

2.1 Planning authorization subsystem

The planning authorization subsystem operates to process planning application, beginning from the submission of an application until the policy approval or development order is issued. To support the processes involved in planning authorization, this subsystem was designed to encompass six modules as follows:

- Advisory module
- Registration module
- Task distribution and LPP module
- Agenda module
- Decision documents module
- Monitoring module

This subsystem allows user to observe the re-
lated policies and spatial information while evaluating the planning applications and requirements. Besides saving time and space, it helps to minimize workload and reduce the use of paper. In addition, the data-sharing concept will minimize overlapping of data stored in the database as well as information processing and thus, increase the quality and productivity of work.

2.2 Building control subsystem

The building control subsystem is meant as a support for the building approval process. This subsystem begins from the submission of application for building plan approval through the process of producing Certificate for Occupation. The features are similar to the Planning Authorization Subsystem, which include graphic and interactive interface and enable interaction between subsystems. This subsystem will assist the Building Control Division in managing their activities through the five developed modules:

- Registration module
- Evaluation of application module
- Agenda module
- Decision acknowledgement module
- Monitoring module

2.3 Enforcement subsystem

The enforcement subsystem assists the Planning and Building Control Department in planning and carrying out enforcement actions. These include generating reports on site investigation, issuing warning notices, implementing control activities and reports on certain decision made by the Planning and Building Control Department. This subsystem also helps the public to file complaint and receive feedback from the local authority. It also facilitates the management in acquiring investigation reports faster so as to act in a more effective and timely manner. Four modules were developed for this subsystem, namely:

- Enforcement module
- Planner module
- Building and sanitary module
- Monitoring module

2.4 Geospatial and planning information subsystem

The geospatial and planning information subsystem is developed to provide a complete spatial database along with the attribute data, which recorded the development order approval, building order approval, and building occupation order. The implementation of this subsystem involves the GIS database development, data collection, data conversion and updating of spatial and attribute data. This subsystem also provides support in terms of spatial data for the other subsystems, while at the same time enable other divisions to retrieve the spatial information through the interface programs developed. Users can specify the type of information they want to retrieve using the query functions based on 'parcel', 'road', 'section' or 'county' identifications. This subsystem will help the manager to make decisions more systematically and rationally.

2.5 Information kiosk subsystem

The Information kiosk subsystem is built for internal users as well as the public to gather information through the Planning and Building Control Department's web site. This kiosk provides detail information on Kuala Lumpur, the Planning and Building Control Department as well as development control and enforcement. Through the system, users can retrieve information related to City Hall of Kuala Lumpur apart from obtaining various forms provided. The system also allows the City Hall to announce important issues to the public. In general, this subsystem has following functions:

- Function for enforcement plan approval result
- Function for accessing spatial data (GIS web)
- Function for accessing information on planning and building legislation
- Function for accessing application support documents
2.6 **Meeting presentation subsystem**

The meeting presentation subsystem enables the smooth progress of a meeting through facilities for displaying related information on development application including plans, GIS related data and other associated information being discussed such as documents, maps and so forth. Meetings should be able to run smoothly as location plans, site images, perspective diagrams and proposal plans can be illustrated with a clearer image compared with conventional procedures. Furthermore, the information needed can be retrieved promptly.

2.7 **Documentation processing subsystem**

The documentation processing subsystem is designed to store and retrieve all documents in a more systematic manner. This may solve the problems of storing physical files and locating files. The documents will be transformed from hardcopy to softcopy and stored in the system database. Hence, user can manage the documents more efficiently and simply as and when the document is needed.

3 **GIS for development control and approval**

GIS is seen as the most suitable solution for supporting the handling of spatial information throughout the development control and approval process. The advent of GIS has created a large field of opportunity for the development of new approaches to the computer processing of geographically referenced data obviously needed for supporting decision-making processes. Some of the important functions include the ability to retrieve information rapidly and efficiently, model different scenarios and evaluate alternative solutions generated by various modeling procedures. Hence, a more effective solution to various spatial-related problems including those associated with planning and development matters can be achieved.

3.1 **GIS database design**

The GIS database design was based on the planning and development control process to be implemented. In general, the design of GIS for the purpose of development control and approval is based on the procedures and processes which involve the stages shown in Table 1.

On the basis of GIS application for planning and development control, the database was designed and developed to comprise several elements, each with various data layers meant for analysis and conformed to technical requirements for planning application:

- Base map – plot coordinate, topography, map series, locational relationships and spatial entity at land parcel level with assigned ID

Table 1 Procedures and processes of GIS database design
Stages

Initial discussion
Processing of planning application
Consideration by technical sub committee
Consideration by town planning committee
- Administrative boundary—state, city hall, planning zone
- Built environment—residential, commercial, industrial, institutional, educational, religious, recreational
- Transportation—roads, LRT, railways, transport station, airport
- Planning requirement—development plan, planning policy, land use, plot ratio, development status and land information (parcel no., district, section and status)
- Geosoil—geology, soil
- Hydrography—lake, river, reservoir, drainage
- Relief element—contour, slope
- Vegetation—natural vegetation, cultivated vegetation
- Meteorology—rainfall, humidity, wind
- Utility—electricity (overhead cable and transmission), telecommunication (cable line, public phone and transmitter), water (pipeline and pump station), sewage (sewerage line, sewerage tank and treatment plant)
- Community facilities—religious places, civic halls, health centers, education facilities (kindergarten, primary, secondary and tertiary)
- Imagery

Building—use, condition, height, walkway, plinth area, etc.

GIS for planning and development control will have to be maintained and planning information will have to be updated continuously. Once a decision is made, both the spatial and attribute database should be updated.

The development control and approval system being developed stresses on interaction between the relational database management and geographic data storage. On the basis of the database design, this system takes an object-based approach to storing spatial data information as an integral part of the database. The spatial index key is assigned and stored as an attribute into every object in the relational database. It becomes important properties as interaction reference between object information (tabular data) and spatial data (shapefile). Each row in the table has a particular feature in its shapefile, and the table can be queried to return specific subset of features from the table. Therefore, when a user makes a query on the specific modules in any subsystem developed, spatial index key is first identified to allow user to use it to perform efficient area retrievals from GIS storage. The interaction of the tables is shown in Fig. 2.

![Diagram](image)

Fig. 2 Relationship between object information and spatial data (shapefile) using spatial key index

ArcGIS-ArcInfo is used for updating or modify existing feature based on more recent information. This can include modifying or adding spatial features or changing or adding values in a dataset’s attribute. To provide access to system user, GIS data has been converted into shapefiles to support GIS functions provided in the overall subsystems.
3.2 GIS functions in supporting other subsystems

Basically, the framework for developing the overall subsystem is based on Visual Basic programming except for information kiosk as well as geospatial and planning information subsystems. Visual Basic has provided a powerful set of tools for accessing database by ODBC and to get a user interface up and running as fast as possible. In this case, ArcGIS desktop application is used with Visual Basic for application (VBA), which is embedded within ArcMap. Through VBA, some modules in the subsystems were made to interact with ArcMap interface following a query operation. Using VBA, developer was able to control the application framework that already existed in ArcMap for general data management and map presentation task and extend ArcMap interface with functions like query and searching as well as adding menus and tools according to GIS requirements on this system. Fig. 3 shows the way in which geographic data management can help in the development control and approval process through integration of application using software tool approaches.

![Fig. 3 Extending GIS function on subsystems using software tools](image)

The geospatial and planning information subsystem plays the role as reference centre or spatial data bank for the other subsystems. This subsystem allows spatial data sharing between subsystems via the functions provided for retrieving and data manipulation. In general, the GIS modules developed support the other subsystems as follows (Fig. 4).

![Fig. 4 GIS functions in other subsystems](image)

1) Planning authorization subsystem

In this subsystem, the GIS functions provided support user in making data entry as well as data analysis and manipulation, conducting queries and generating report for planning evaluation report (LPP), generating Site Investigation Report and other planning approval processes.

2) Building control subsystem

GIS functions support the building control subsystem in the displaying of site location and plan proposal for assessment whether they comply with other requirements of building approval. The GIS functions developed has made it easier for user to refer and search the required spatial information base on location, owner information and land use.
3) Enforcement subsystem

The GIS functions developed enable the enforcement officers to monitor land use and building faults by providing site location, site information, planning approval reports and building plan reports.

4) Information kiosk subsystem

The Information Kiosk Subsystem provides the GIS functions through web-based technology for public user to view and retrieve spatial information related to land use and building development using query operation base on lot number, street name, building type and area.

5) Meeting presentation subsystem

In this subsystem, GIS functions support user to display information and query on planning application as well as related policies and development plans such as the local plan, structure plan, micro plan and layout plan that has been approved. This will help decision makers to come up with more rational decisions.

3.3 Web-based GIS in information kiosk subsystem

The state of the art Web-based GIS are built on integration of multi-related technologies that include object-oriented language, GIS package and language, HTML, CGI, ASP and the theories about public participation GIS\(^\text{45}\). The implementation of Web-based GIS is more towards inviting public participation apart from providing information in the form of maps and data for public access, and paving the path for data sharing with agencies having the same interest. The implementation concept base on global data sharing permits users to acquire and implement activities of interest the same way as implementation of application through the local area network.

The information kiosk subsystem provides the GIS functions for public users to retrieve spatial as well as attribute data. These functions operate by linking features in the GIS database to the attribute data in the external database. A layer will be chosen through matching related information found in the SQL server database provided. In this case, the attribute data refers to the same table in the main database that is used by all subsystems in the development control and approval system.

ArcIMS is used in developing the GIS web-base application as it is an Internet Map Server software which provides the components required for web development such as authoring, designing, publishing and administering Internet mapping application. It allows web clients, map server, data server and Web Server to communicate between one another. Through ArcIMS, developers are able to build the web-based GIS faster and manage MapService over the internet.

Within the application, two types of search operation can be performed, which are relational database search and feature search. The relational database search stresses on Active Server Pages framework for creating the application for attribute data search. Web Server acts as the main part to retrieve the requested data by using internet services manager (IIS). To make the database accessible to ASP, an open database connectivity (ODBC) connecting to the SQL Server driver was set up. A query form in ASP was developed to allow users to select data from the database satisfying several criteria in variety of condition like county (mukim) or a section in CHKl area. After the user has set the selection criteria such as parcel, road, building or area, the selection criteria is forwarded to a second ASP page, which formed an SQL query from the selection criteria and sent it to the database via the ODBC connection. The data returned by the ODBC connection was then displayed on the result page in tabular format.

Once the user clicks on an item in the result page, the application performs a feature search to provide a map of the corresponding feature. The feature search is performed through the application connector used as the Java Servlet Connector. Java Servlet operates together with the Web Server to enable the HTTP to be submitted together with the user query to the ArcIMS application server. In this stage, Spatial Server acts as the main part in the client data request
and submission processes as the Spatial Server is the controller to the flow of data from and to the data storage. However, the Spatial Server could not be accessed directly from the application server but rather through the Virtual Server. The Virtual Server can comprise one or more Spatial Server depending on the goal and use of the system. Thus, access can be made through MapService preparation on the Virtual server. In the web system developed, the application of Image Server (Virtual Server) for the MapService used enables the process of image rendering onto the Spatial Server to be done. Subsequently, maps will be generated on the server and returned to client in the JPG format.

Various stages of users will be allowed to access the web page via web browsers such as Microsoft Internet Explorer 4.0 or the latest version. The GIS web page allows user to view and use the information displayed for further processing. The web page was developed with the aim to facilitate users to acquire information in digital form. The web page acts as a source of reference in making evaluation for planning and development purposes especially where public participation is concerned.

4 Prospects and challenges

Since the early 1980’s, there have been major breakthroughs in the cost, speed and data storage capacity of computer hardware and software. With computer cost still dropping, with the emerge of powerful portable machines, and with the possibility of massively increased network bandwidths, enabling a larger and larger segment of Kuala Lumpur city dwellers to connect up, the prospects for new types of computer use in problem solving and policy domains have never been more promising\cite{7}. The application of the computerised development control and approval system will inevitably influence the existing structure and practice of urban planning and management in CHKL.

The implementation of the computerised system provides a good prospect for e-submission of planning application. However, one of the most important requirements is that the system developed should cover all the necessary work process involved in development control and approval. Furthermore, selection of crucial procedures to be computerised will cut cost and time consumed apart from minimizing the process of bureaucracy, while defining of workflow will avoid overlapping of information processing. Other requirements include continuing process of amendment and updating of information, specifying compatible formats allowed for submission of application while ensuring that the system is capable of catering multi-data transfer, legal devices to ensure that all parties are secured of their rights as well as security measures for protecting access of information by unauthorised parties. Establishment of an e-submission monitoring committee should also be considered to help evaluate and validate the integrity and reliability of information submitted. For the time being, stress should be put on the need for submission of digital copy of information regarding each application. In the long run, efforts need to be made to develop the manpower within the organisation as well as educate the public and private entities involved in the requirements for e-submission.

Effective use of ICT such as the system being developed, however, requires the personal commitment of individuals at all levels of the local authority with respect to overall leadership, general awareness and technical capabilities. Successful utilization depends on clear leadership and a commitment from senior staffs aware of the potential opened up for urban planning and management. Training and education is another essential component to ensure the smooth transfer of knowledge. Sophisticated system requires trained and experienced technicians to operate and maintain the system, and, more importantly, sophisticated planners, analysts and managers to determine what type of information should be collected and to interpret and use the information that the system produces.

The implementation of the system, therefore,
involves far more than hardware and software decisions. Effective implementation rests on a thorough and systematic evaluation encompassing planning, operational, organizational, institutional, personnel, financial and technical aspects. More research and attention need to be directed toward the organizational and institutional issues.

5 Conclusions

The quality of urban planning and management can be upgraded when available and valid data are handled in an advanced manner with the aid of computers. With the continuous development of ICT, there is a major opportunity for local authorities to use it to manage the allocation of scarce resources in a rapidly changing environment.

The implementation of the computerised development control and approval system is seen as an important tool in facilitating and accelerating the process of development control and approval in CHKL. Furthermore, many benefits were derived from the GIS applications and new work processes developed including better decision making from shared data, time savings from less manual data gathering, elimination of redundant data entry and maintenance, faster as well as more accurate information for citizens and other agencies apart from reducing the increasing costs of redundant data maintenance activities. The system will be able to support planning and decision-making because it offers relatively quick response on analytical questions and monitoring issues.

However, an important issue not to be overlooked in the implementation of the system is the overall information management strategies, which takes into account the availability of data, computing capabilities and management requirements. Without well-developed strategies, it is likely that major problems will arise in relation to its utilization. There will be mismatches between information needs and data availability as well as between data collection and information processing. Success or failure in the adoption very much depends on a variety of human, organizational and technical factors.

ACKNOWLEDGEMENT

The authors would like to thank the City Hall of Kuala Lumpur and Universiti Teknologi Malaysia for allowing and granting permission to present this paper.

REFERENCES

1. Rakodi C (2002) Politics and performance: the implication of emerging governance for urban management approaches and information systems. The Sixth GISDECO: Governance and the Use of GIS in Developing Country, ITC Enschede, The Netherlands.
2. Hill T R, McConnachie D (2001) The role of geographical information systems in developing planning in South Africa. Third World Planning Review, 23 (3), 289-300
3. Baharom A, Yusof I M (2001) GIS application in development control process; local government in Malaysia. Middle State Division of the Association of American Annual Meeting, Brookville, New York.
4. Yaakup A, Ibrahim M, Johar F (1995) Incorporating GIS into sustainable urban and regional planning; the Malaysian case. The GeoInformatic’ 95 Hong Kong; International Symposium on Remote Sensing, Geographical Information Systems and Global Positioning Systems in Sustainable Development and Environmental Monitoring, Hong Kong.
5. Yaakup A, Johar F, Sulaiman S, et al. (2002) GIS and development control system for local authorities in Malaysia. The Sixth GISDECO: Governance and the Use of GIS in Developing Country, ITC Enschede, The Netherlands.
6. Chang K P (1997) The desining of a web-based geographic information system for community participation:[Master Thesis], Buffalo: The State University of New York.
7. Yaakup A, Johar F, Dahlan N A (1997) GIS and decision support systems for local authorities in Malaysia. In: Timmermans H (ed.) Decision Support System in Urban Planning, London; E & FN SPON. 212-228