Gut Microbiome-Mediated Alteration of Immunity, Inflammation, and Metabolism Involved in the Regulation of Non-alcoholic Fatty Liver Disease

Li-Hong He¹,², Dun-Han Yao², Ling-Yun Wang², Lei Zhang²* and Xue-Li Bai¹*

¹Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, ²The First Clinical Medical College, Lanzhou University, Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China

Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of end-stage liver disease, leading to a rapidly growing global public health burden. The term “gut microbiome (GM)” refers to the approximately 100 trillion microbial cells that inhabit the host’s gastrointestinal tract. There is increasing evidence that GM is involved in the pathogenesis of NAFLD and may be a potential target for intervention. To explore GM-based strategies for precise diagnosis and treatment of NAFLD, great efforts have been made to develop a comprehensive and in-depth understanding of the host–microbe interaction. This review evaluates this interaction critically, mainly considering the intricate regulation of the metabolism, immunity, and inflammatory status during the evolution of the disease pathogenesis, revealing roles for the GM in NAFLD by examining advances in potential mechanisms, diagnostics, and modulation strategies.

Synopsis: Considering the intricate metabolic and immune/inflammatory homeostasis regulation, we evaluate the latest understanding of the host–microbe interaction and reveal roles for the gastrointestinal microbiome in NAFLD. Strategies targeting the gastrointestinal microbiome for the diagnosis and treatment of NAFLD are proposed.

Keywords: gut microbiota, non-alcoholic fatty liver disease, immune, metabolism, gut–liver axis

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) describes a collection of hepatic clinicopathological syndromes that range from simple hepatic steatosis, non-alcoholic steatohepatitis (NASH) to fat-related fibrosis and cirrhosis (Brunt et al., 2015). Characterized by excessive fat accumulation without a definite liver damaging factor, NAFLD is an acquired metabolic stress liver injury closely related to obesity, insulin resistance, and genetic susceptibility (Brunt et al., 2015; Wang and Malhi, 2018). Resulting from continuous damage to hepatocytes, the incidence of hepatocellular carcinoma (HCC) in patients with NAFLD is much higher than that in healthy people (Ipsen et al., 2018; Younossi et al., 2019). In some western countries, NAFLD has
GM and NAFLD

The human gastrointestinal microbiome (GM) refers to the assemblage of microorganisms (e.g., bacteria, fungi, viruses, and protozoans) that inhabit the gastrointestinal tract (Sender et al., 2016). The results of metagenomic sequencing indicated that the GM comprises more than 1,000 kinds of microorganisms, affected by genetics, eating habits, and environmental factors (Zhernakova et al., 2016). A balanced GM plays a beneficial role in the physiological regulation of the host by balancing local and systemic immune responses, maintaining normal gut–liver circulation, and inhibiting pathogen colonization. Dysbacteriosis will lead to various diseases (e.g., metabolic diseases, immune diseases, respiratory diseases, and even tumors; Hand et al., 2016; Gong et al., 2018; Schirmer et al., 2018; Canfora et al., 2019; He et al., 2020). In particular, considerable research has demonstrated that the GM and its metabolites potentially affect the occurrence and progression of NAFLD by participating in the host’s immune and inflammatory responses, and nutrient intake and metabolism (Aron-Wisnewsky et al., 2020; Hu et al., 2020). Similarly, dysbacteriosis and the resulting increased gut inflammation and weakened immune surveillance play pivotal roles in leading to NASH, cirrhosis, and NAFLD-related HCC (Tripathi et al., 2018; Ezzaïdi et al., 2019; Albillos et al., 2020).

In the present review, we dissect the role of the GM and their inflammatory mediators on immune regulation in NAFLD. Specifically, we focus on the characteristic changes of the GM in patients with NAFLD, including diversity and uniformity/homogeneity, and the developed non-invasive diagnostic strategies. In addition, the mechanism by which the GM regulates metabolic and immune homeostasis during the onset and progression of NAFLD and advances in modulating the GM to treat NAFLD are also highlighted.

THE GUT–LIVER AXIS AND THE INTESTINAL BARRIER

Many studies have demonstrated cross-talk between the GM and multiple organs of the host, which affects local and systemic metabolism and immune homeostasis (Hand et al., 2016; Gong et al., 2018; Schirmer et al., 2018; Canfora et al., 2019; He et al., 2020). The interaction among the gut, its contents, and the liver is called the “gut–liver axis,” resulting from the integrated signals generated by genes, diet, and environmental factors (Figure 1A; Tripathi et al., 2018). The portal vein and biliary system are the basis of this bidirectional interaction. On the one hand, the portal vein can transport intestinal origin immune cells, cytokines, and gut-derived products directly to the liver, such as secondary bile acids (BAs), short chain fatty acids (SCFAs), and lipopolysaccharide (LPS). On the other hand, the liver can secrete bile and many bioactive mediators into the intestine through the biliary system (Tripathi et al., 2018; Albillos et al., 2020). The interdependence between the liver and the gut explains why intestinal barrier damage can lead to some components of the microbiota and their metabolites flowing into the liver, leading to or aggravating a series of liver diseases.

The intestinal barrier in the gut–liver axis includes physical, immune, and biochemical components, plays an important role in the gut–liver axis (Peterson and Artis, 2014). The gut vascular and single layer epithelial cells, linked by tight junction proteins, together with the mucus layer and microorganisms, constitute a physical barrier. Molecules with antimicrobial properties, such as BAs and antimicrobial proteins, maintain and mediate biochemical barriers. Secreted immunoglobulin A (S IgA) and lymphoid follicles containing a variety of immune cells are the main parts of the immune barrier. In the normal physiological state, the intestinal barrier constitutes the first line of defense in human immunity, while the liver provides the second line of defense for pathogenic factors that escape from the intestinal mucosal immune defense; the immune tissues in the intestine and liver participate in the immune tolerance to food antigens and the clearance of pathogens (Martens et al., 2018).

Gastrointestinal microbiome dysbiosis can disrupt these barriers, increasing mucosal permeability. Dietary factors can not only alter the intestinal microbiome composition, but also play a vital role in the maintenance of the intestinal barrier. The pathological state of the intestinal barrier induced by a high fat diet (HFD) results in intestinal bacterial translocation and endotoxin entering the portal venous system (De Santis et al., 2015). As feedback, immune cells in the liver are activated by these pathogenic factors, releasing host inflammatory factors, and resulting in tissular damage to the intestinal mucosa, liver, and systemic organs (Szabo, 2015). The GM and its metabolites have a range of effects on the health and disease of liver, and the methods to promote optimum liver health are a major concern.

INTESTINAL MICROECOLOGY DISORDER IN PATIENTS WITH NAFLD

The characteristics of the GM in patients have both homogeneity and heterogeneity (Table 1). Wang et al. (2016) observed a lower diversity and a phylum-level change in the GM in patients with NAFLD. Compared with those in the healthy control group, the patients had 20% more Bacteroidetes and 24% less Firmicutes. Notably, the abundances of four families of Firmicutes were decreased significantly, including Lachnospiraceae, Ruminococcaceae, Lactobacillaceae, and Peptostreptococcaceae, which are SCFA-producing and 7α-dehydroxylating bacteria.

Abbreviations: GM, Gastrointestinal microbiome; NAFLD, Non-alcoholic fatty liver disease; NASH, Non-alcoholic steatohepatitis; HCC, Hepatocellular carcinoma; BAs, bile acids; SCFAs, Short chain fatty acids; LPS, Lipopolysaccharide; HFD, High fat diet; TLRs, Toll-like receptors; NLRP3, NOD-like receptor family, pyrin domain containing 3; GLP, Glucagon-like peptide; TGR5, Takeda G-protein-coupled receptor 5; TMA, Trimethylamine; TMAO, Trimethylamine-N-oxide.
Wang et al., 2016). In a prospective cross-sectional study, the abundances of *Ruminococcus*, *Paucalinbacterium praunitzii*, and *Coprococcus* in patients with NAFLD were lower than those in healthy people; the difference was independent of body mass index and insulin resistance (Da Silva et al., 2018). Interestingly, patients with NAFLD have higher fecal concentrations of propionic acid and isobutyric acid, and higher serum concentrations of 2-hydroxybutyric acid and L-lactic acid, than healthy controls (Da Silva et al., 2018). A cohort study in China showed that 60% of patients with NAFLD had a high abundance of *Klebsiella pneumoniae* (alcohol high-producing; Yuan et al., 2019). In the mouse model, a specific *K. pneumoniae*-rich microbiota isolated from patients with NAFLD and transplanted into healthy mice could aggravate liver inflammation and induce NAFLD (Yuan et al., 2019), which implied endogenous alcohol produced by these bacteria is an important pathogeny of NAFLD.

Most patients with NAFLD are obese but some patients belong to “lean NAFLD,” its pathogenesis remaining unclear. A recent study showed that the lean NAFLD group has a more Dorea and total BAs, but a fewer Marvinbryantia and Christensellenaceae R7, compared with lean healthy control, which provides an insight into microbial drivers of lean NAFLD pathogenesis (Younes and Bugianesi, 2019; Chen et al., 2020). These findings indicated the potential role of specific microbiota and the characteristics of its metabolites in the pathogenesis of NAFLD. Based on these characteristics, the GM might be used as a non-invasive biomarker of NAFLD phenotype and provide prognostic value in the risk of progression to cirrhosis and HCC (Table 2).
TABLE 1 | Research on the changes of GM and metabolites in patients with NAFLD.

Subjects	Disease	Alteration of microbiota and metabolites	References
Mice	NAFLD	Phylum: Bacteroidetes†	Henao-Mejia et al., 2012
		Family: Prevotellaceae†	
		Genus: Lactobacillus†	
		Phylum: Firmicutes†	
		Genus: Allobaculum†, Barnesiella†, Roseburia†	Le Roy et al., 2013
		Species: Bacteroides vulgatus†, Lachnospiraceae bacterium†, Barnesiella intestinihominis†	Zeng et al., 2013
		Family: Enterobacteriaceae†	Cano et al., 2013
		Genus: Bifidobacteriaceae†	
Children	NASH	Phylum: Actinobacteria†, Firmicutes†, Proteobacteria†, Bacteroidetes†	Zhu et al., 2013
		Family: Bifidobacteriaceae†, Rikenellaceae†, Lachnospiraceae†, Ruminococcaceae†, Prevotellaceae†	
		Genus: Bifidobacterium†, Blautia†, Escherichia coli†, Prevotella†	
	NAFLD	Phylum: Gammaproteobacteria†	Michail et al., 2015
		Genus: Prevotella†	
		α-Diversity, 1-pentanol and 2-butanone†	Del Chierico et al., 2017
		Phylum: Actinobacteria†, Bacteriaceae†	
		Family: Rikenellaceae†	
		Genus: Ruminococcus†, Bradyrhizobium†, Oscillospira†	
		Species: Anaerococcus†, Peptoniphilus†, Dorea†, Propionibacterium acnes†	
Adult	NAFLD	Class: Gammaproteobacteria†, Erysipelotrichi †	Spencer et al., 2011
		Phylum: Firmicutes†, Actinobacteria†, Bacteroidetes†	Zhu et al., 2013
		Genus: Blautia†, Faecalibacterium†, Bifidobacterium†, Prevotella†	
		Phylum: Firmicutes†, Lactobacillaceae†, Lachnospiraceae†, Ruminococcaceae†, Veillonellaceae†, Klironellaceae†, Pasturellaceae†, Porphyromonadaceae†	Raman et al., 2013
		Family: Lactobacillaceae†, Lachnospiraceae†, Ruminococcaceae†	Mouzaki et al., 2013
		Genus: Lactobacillus†, Robinseniella†, Roseburia†, Dorea†, Oscillibacter†	
		Genus: Alstipes†, Prevotella†, Escherichia coli†, Odoribacter†, Lactobacillus†, Oscillibacter†, Anaerobacter†, Clostridium XII, Streptococcus, flavonifractor†	Jiang et al., 2015
		Phylum: Firmicutes†, Bacteroidetes†	Wang et al., 2016
		Phylum: Actinobacteri, Bacteroidetes‖	Del Chierico et al., 2017
		Phylum: Firmicutes†, Proteobacteria‖	Loomba et al., 2019
		Species: Escherichia coli†, Bacteroides vulgatus†	Shen et al., 2017
		Phylum: Proteobacteria†, Fusobacteria†	
		Family: Lachnospiraceae†, Enterobacteriaceae†, Erysipelotrichaceae†, Streptococcaceae†	
		Genus: Shigella†, Prevotella†	
		Phylum: Firmicutes†	Li et al., 2018
		Genus: Porphyromonas†, Odoribacter†, Succinivibrio†, Proteus†	Kim et al., 2019
		α-Diversity, primary and secondary BAs†	
		Phylum: Fusobacteria†	
		Family: Ruminococcaceae†	Schwimmer et al., 2019
		Genus: Oscillospira†, Ruminococcus†, Coprococcus†	Tsai et al., 2020
		Species: Prevotella copri†	
		Phylum: Firmicutes†, Bacteroidetes†	
		Class: Clostridia†	
		NASH	Zou et al., 2013
		Phylum: Proteobacteria†	Wong et al., 2013a
		Family: Enterobacteriaceae†	Del Chierico et al., 2017
		Genus: Escherichia†	Ozkul et al., 2017
		Genus: Faecalibacterium†, Anaerospirabacter†, Parabacteroidetes†, Allisonella†	
		Species: Ruminococcus†, Blautia†, Dorea†, Oscillibacter†	
		Family: Enterobacteriaceae†	
		Species: Akkermansia muciniphila†, Bifidobacterium infantis†, Lactobacillus reuteri†	Sobhonslidsuk et al., 2018
		Phylum: Bacteroidetes/Firmicutes ratio†	
		Genus: Prevotella†	Mouzaki et al., 2013
		Phylum: Bacteroidetes‖	Boursier et al., 2016
		Species: Clostridium coccoidei†	
		Family: Bacteroidaceae†, Prevotellaceae†	
		Genus: Bacteroides†, Prevotella†	
POSSIBLE MECHANISM OF GM’S EFFECT ON THE OCCURRENCE AND PROGNOSIS OF NAFLD

The pathogenesis of NAFLD is thought to involve complex interactions among genetic susceptibility, environmental factors, insulin resistance, and changes in the GM. The “multiple-hit” hypothesis is adequate to explain the diverse metabolic and molecular changes observed in the development of NAFLD (Buzzetti et al., 2016; Fang et al., 2018). With the progress of metagenomics and non-targeted metabolomics, the role of the GM in the pathogenesis of NAFLD has attracted the attention of the scientific community. The GM plays an important role in the maintenance of host immune and inflammatory homeostasis, and the balance of nutrient intake and metabolism, thus directly or indirectly affecting the onset and development of NAFLD (Figure 1; Chu et al., 2019; Jennison and Byrne, 2021).

Damage to the Intestinal Barrier and Aggravation of Secondary Inflammation

Emerging evidence shows that an intestinal barrier disorder leads to the translocation of the GM and metabolites, which can reach the liver directly along the gut–liver axis. Patients with NAFLD have decreased expression of junctional adhesion molecule A and zona occludens-1, and increased intestinal permeability, which might be important factors in disease progression (Kolodziejczyk et al., 2019). Compared with simple hepatic steatosis, the correlation of increased intestinal permeability was stronger in patients with NASH, suggesting that inflammatory persistence and exacerbation might be caused by destruction of the intestinal barrier (Luther et al., 2015).

Regulation of SCFAs in Metabolic and Inflammatory Pathways

Human SCFAs (e.g., acetate, propionate, and butyrate) are generated mainly from the fermentation of polysaccharides by the GM, and play a pivotal role in energy metabolism and inflammation regulation (Gomes et al., 2018). The different phenotypes of the GM and different dietary factors will affect the type and quantity of SCFAs synthesized in the gut. A high-fiber or resistant starch diet, the Mediterranean diet, and the enrichment of specific bacteria, such as Akkermansia muciniphila (producing propionate), Ruminococcus, Faecalibacterium, and Eubacterium (producing butyrate), can induce SCFA production (Morrison and Preston, 2016; Gomes et al., 2018).

Many polysaccharides cannot be hydrolyzed by the host, but can be realized by specific microbiota, finally generating SCFAs. If the excess SCFAs are not metabolized by colon cells, they will enter the liver and peripheral circulation through the portal vein, where they can be used as the substrates for fat synthesis and glycogenesis (Rau et al., 2018). This enables the host to obtain excess energy from food more efficiently, and to synthesize and store more fat to the liver (Harris et al., 2020). In a cohort study, with the development of NAFLD, higher abundances of SCFA-producing bacteria and intestinal acetate and propionate levels were observed (Rau et al., 2018). Interestingly, elevated peripheral levels of

TABLE 2	Clinical research on the diagnosis of NAFLD and related diseases by targeting GM.	
Disease	Diagnostic tool and mechanism	References
NAFLD-liver fibrosis	Based on the specific differences in microbiota and BA in both blood and feces that correlate with the presence of liver fibrosis	Lelouvier et al., 2016
NAFLD-liver fibrosis	Based on a Random Forest classifier model containing 40 features (including 37 bacterial species)	Loomba et al., 2017
Hepatic steatosis and fibrosis	Based on the link between the abundance of specific GM and 3-(4-hydroxyphenyl) lactate that shares a gene effect with hepatic steatosis and fibrosis	Cauvy et al., 2018
NAFLD	Based on molecular networks linking the GM and the host molecular phenomics (hepatic transcriptome and plasma and urine metabolomes) to hepatic steatosis.	Hoyles et al., 2018
pro-inflammatory T cells (lower numbers of resting regulatory T-cells and higher numbers of Th17 cells) were observed simultaneously, which suggested that SCFAs are involved in the development of NAFLD, not only by affecting metabolism, but also by influencing immune and inflammatory responses (Rau et al., 2018). NAFLD is most associated with obesity. In mouse models and human studies, obese subjects have more carbohydrate metabolism genes in the intestinal microbiome and a higher concentration of SCFAs in the cecum, indicating that their production is excessive or their absorption is disrupted (Schwiertz et al., 2010). Zhao et al. (2020) indicated that liver lipid synthesis triggered by dietary fructose is dependent on metabolizing fructose to acetic acid and then to Acetyl Coenzyme A through the GM rather than via ATP citrate lyase. The hepatic metabolism of fructose promotes the transcription of genes related to hepatic lipid synthesis, and the metabolite acetate provides the raw material for this process. In addition, SCFAs can induce differentiation of T-cells into Th1 or Th17 cells, depending on the cytokine milieu and the epigenetic activity of histone deacetylases. IL-17 secreted by Th17 cells might play a pro-HCC role by promoting tumor angiogenesis (Liao et al., 2013; Park et al., 2015).

However, emerging evidence suggests the potential protective effect of SCFAs in NAFLD. Sodium butyrate can alleviate HFD-induced intestinal dysbacteriosis and endotoxemia, and thus inhibit NAFLD, by regulating intestinal and liver immune responses (Zhou et al., 2017a). One of the mechanisms is to affect the nutrient intake and metabolism of the host. Butyrate and propionate can activate free fatty acid receptor-3, and thus upregulate the production of the hormones intestine peptide YY and glucagon-like peptide (GLP)-1, which can increase satiety and reduce the intake of energy (Lin et al., 2012). Similarly, activation of GLP-1 has been proven to contribute to the recovery of hepatocyte function, the inhibition of hepatic steatosis and fibrosis, and the prevention of NAFLD developing into NASH (Tang et al., 2015a). SCFAs can also inhibit insulin signal transduction in adipocytes by activating G-protein receptor-43, thereby promoting glucose and unbound lipid metabolism, and inhibiting fat accumulation in liver and adipose tissue (Kimura et al., 2013). Another possible mechanism of SCFAs limiting NAFLD is to maintain a healthy intestinal barrier and to weaken inflammatory signals. SCFAs can prevent intestinal mucosal atrophy mediated by GLP-2 (Cani et al., 2009). Increasing the level of GLP-2 through microbial intervention can reduce the intestinal permeability and the levels of LPS and cytokines, thus reducing oxidative stress and liver inflammation (Cani et al., 2009). SCFA supplementation also showed beneficial effects in several inflammatory diseases (e.g., colitis; Rau et al., 2018). By inhibiting colitis, the intestinal barrier can be improved, thereby reducing the liver damage caused by bacterial translocation and the liver transfer of metabolites.

The effects of SCFAs are diverse and extensive, and different kinds and contents of SCFAs in different hosts show different and even contradictory biological effects; therefore, it is difficult to clarify their overall impact (Harris et al., 2020; Martin-Gallausiaux et al., 2020). In view of the close and complex relationship between SCFAs and host nutrient intake and metabolism, inflammation, and immunity, an in-depth study is needed to determine the specific mechanism by which SCFAs affect the occurrence and development of NAFLD.

Regulation of Abnormal Cholesterol and BA Metabolism Mediated by Diet and the GM

Lipotoxicity promotes the progression of NASH, fibrosis, cirrhosis, and even HCC (Ioannou, 2016). Among liver lipids, cholesterol is the most important lipotoxic molecule in the development of NAFLD (Ioannou, 2016). Abnormal liver cholesterol homeostasis has been confirmed in both animal models and in humans with NASH. Zhang et al. (2021) revealed the GM-mediated mechanism of dietary cholesterol leading to the progression of NASH, that is, long-term high dietary cholesterol can induce an increase in taurocholic acid and the decrease of 3-indolepropionic acid by changing the GM (decreased levels of *Bifidobacterium* and *Bacteroides* and increase levels of *Desulfovibrionaceae Anaerotruncus, Desulfovibrio, and Mucispirillum*), thus promoting liver lipid accumulation and cell proliferation, leading to the occurrence of NAFLD-HCC (Zhang et al., 2021). In a mouse model, anti-cholesterol treatment eliminated completely the onset of NAFLD-HCC induced by dietary cholesterol (Zhang et al., 2021). This suggests that some of the mechanisms remain unknown: how the related pathogenesis inducing factor (e.g., HFD) causes inflammation, and how to accelerate the transformation of simple hepatic steatosis to NASH, which might be explained by the GM and its metabolites.

BAs are synthesized from cholesterol in the liver and play an important role in the digestion, absorption, and metabolism of fat. The GM is involved in the transformation and metabolism of BAs (Sanchez, 2018). The interaction between BAs and the GM plays an important role in the pathogenesis of NAFLD (Chiang and Ferrell, 2020). BAs participate in the pathogenesis of NAFLD through the farnesoid X receptor (FXR). By binding to FXR, BAs increase insulin sensitivity and reduce hepatic gluconeogenesis and triglyceride in the circulation (Chiang and Ferrell, 2020). Under the intervention of an HFD, the GM promotes weight gain and liver steatosis in an FXR-dependent manner, and the improvement of hepatic steatosis associated with antibiotic therapy depends on FXR signal transduction (Jiang et al., 2015; Parseus et al., 2017). In a large cohort of patients with NASH, although *Obecholate* (an FXR agonist) did not improve NASH, it significantly improved liver fibrosis compared with that in the control group (Neuschwander-Tetri et al., 2015). BAs also activate Takeda G-protein-coupled receptor 5 (TGR5) in muscle and adipose tissue, thereby increasing energy expenditure (Pols et al., 2011). In addition, activation of TGR5 in the intestine can promote the release of GLP-1, and then positively regulate the secretion of insulin (Pols et al., 2011; Kumar et al., 2016). TGR5 is also expressed in Kupfer cells, which are involved in the regulation of liver inflammation. Activation of TGR5 seems to induce anti-inflammatory effects by inhibiting the NF-κB signaling pathway and cytokine production (Perino and Schoonjans, 2015). The BA levels in...
liver, serum, and urine were increased in patients with NAFLD (Arab et al., 2017). In a phase II clinical trial in patients with NASH, the BA synthesis inhibitor, Aldafermin, reduced liver inflammation, steatosis, and fibrosis significantly (Harrison et al., 2021). The GM is likely to affect the BA pool, and regulates the metabolism of host cells through the transformation of BAs, including the homeostasis of lipids and glucose; however, its role in the pathogenesis of NAFLD remains controversial, which requires further in-depth study.

Regulation of Choline and Its Derivatives
Choline deficiency is closely related to the induction and promotion of NAFLD, and is often used to construct animal models of NAFLD (Sherriff et al., 2016). Compared with those in the healthy group, patients with NAFLD generally showed lower levels of serum choline and higher levels of trimethylamine (TMA; Sherriff et al., 2016). In the absence of choline in human body (e.g., because of a choline deficient diet or gut dysbiosis), the synthesis of phosphatidylcholine is insufficient and the level of very-low-density lipoprotein is downregulated, which leads to liver lipid transfer disorder, enhanced mitochondrial β-oxidative damage, and oxidative stress in hepatocytes, eventually leading to liver steatosis, and aggravating liver inflammation and fibrosis (Smallwood et al., 2016). Some intestinal bacteria (e.g., Desulfovibrio desulfuricans and Escherichia coli) can convert choline to TMA and then to trimethylamine-N-oxide (TMAO) in the liver, which reduces the bioavailability of choline (Sohlenkamp et al., 2003). In addition, TMAO can promote insulin resistance by destroying blood glucose homeostasis and increasing the level of serum inflammatory cytokine C-C motif chemokine ligand 2 (CCL2), and affect lipid metabolism and BA homeostasis by reducing the conversion of cholesterol to BAs, which suggests that TMAO might affect NAFLD indirectly (Tang et al., 2015b). In fact, strategies to reduce TMA and/or TMAO have been used in the clinical treatment or prevention of NAFLD. For example, 3,3-dimethyl-1-butanol, a structural analog of choline, inhibits TMA and TMAO production by inhibiting microbial TMA lyase. However, based on the different microbial characteristics of individuals, it might only be effective for some patients (Wang et al., 2015). Therefore, additional genotyping of the NAFLD cohort is needed to identify patients that would respond to TMA and/or TMAO inhibitors.

Regulation of Other Metabolites
Endogenous ethanol is produced by some intestinal bacteria via carbohydrate fermentation. Although obese mice with NAFLD did not ingest any alcohol, alcohol could still be detected in their breath (Cope et al., 2000). Compared with healthy individuals or patients with simple hepatic steatosis, the blood ethanol concentration in patients with NASH is higher, which is associated with increased liver inflammation and liver damage (Baker et al., 2010). Recent studies revealed that about 60% of patients with NAFLD have high alcohol producing K. pneumoniae in their intestines and their abundance is related to the severity of the disease (Yuan et al., 2019). The pathogenesis of NAFLD caused by endogenous ethanol is similar to that of alcoholic fatty liver disease (Parlesak et al., 2000; Seitz et al., 2018; Jennison and Byrne, 2021): (1) the induction of mitochondrial damage and enhanced oxidative stress; (2) destruction of the intestinal barrier and aggravation of liver damage through the gut–liver axis; (3) the induction of cytokines, chemokines, Th17, and other immune cells to intensify liver inflammation; and (4) the induction of liver cell damage through acetaldehyde-mediated cytoxicity, metabolic disorder, and fat accumulation. These findings not only explain many of the similarities of the pathological features between the two diseases, but also provide a feasible method for clinical diagnosis and treatment of fatty liver caused by such bacteria (Brown and Kleiner, 2016).

Phenylacetic acid (PA) is mainly produced by the metabolism of aromatic amino acids (e.g., phenylalanine) by Bacteroides (Cook, 2019). A multi-omics study showed that PA levels were high in the serum of patients with NASH. At the same time, aromatic amino acids and branched chain amino acids increased, and bacterial diversity decreased (Hoynes et al., 2018). These characteristics have great potential as biomarkers for the clinical diagnosis and prediction of this disease.

Indole, one of the products of tryptophan metabolism by the GM, is generally considered to have anti-inflammatory effects (Yang et al., 2020). Clinical sample analysis, and mouse and cell experiments, showed that indole correlated negatively with NAFLD. Indole supplementation could reduce diet-induced NAFLD, liver fat accumulation, and the inflammatory response in mice. This protective effect was mediated by 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a glycolysis regulatory factor of bone marrow cells (Ma et al., 2020). Mimicking or specifically activating PFKFB3 expression in macrophages using indole might be a feasible method to prevent and treat NAFLD and other inflammatory related diseases.

TARGETING THE GM AS A POTENTIAL STRATEGY TO DIAGNOSE AND TREAT NAFLD
At present, no effective or targeted drug for NAFLD has been approved for marketing. Lifestyle change is still the main intervention for NAFLD; however, the effect and patients’ compliance are poor. The close relationship between the GM and NAFLD has been confirmed. Intestinal dysbacteriosis and disturbance of metabolites (type, content, and proportion) and the subsequent metabolic, immune, and inflammatory homeostasis damage might be critical factors for NAFLD development. Thus, targeting the GM is a growing and promising field aiming to slow down and even reverse NAFLD (Sharpton et al., 2021). Moreover, based on the specific changes of the microbiota and metabolites in patients with NAFLD, the GM is also expected to be developed as non-invasive biomarker for the diagnosis, staging, and prognosis of NAFLD (Sharpton et al., 2021). Many studies...
have investigated the feasibility of treating NAFLD by altering the contribution of GM to its pathogenesis, including regulation by fecal microbiota transplantation, probiotics, prebiotics, and synbiotics (Kolodziejczyk et al., 2019). Notably, anti-LPS immunoglobulin, drugs to reverse the BA imbalance in NAFLD (e.g., FXR agonists, peroxisome proliferator activated receptor gamma (PPARγ) agonists, and ursodeoxycholic acid), and drugs to restore intestinal barrier function and inhibit liver inflammation (e.g., butyrate) have shown encouraging therapeutic effects (Adar et al., 2012; Sun et al., 2018; Yu et al., 2018). Despite the exciting results in many animal studies, the results of multicenter human clinical trials with large samples are still needed. Some representative studies are summarized in Tables 2 and 3.

TABLE 3 | Research on the treatment of NAFLD by targeting GM.

Intervention factors	Methods	Treatment results	References	
Probiotics (traditional)	B. longum	Clinical trials	Hepatic steatosis, ALT, AST	Malaguarnera et al., 2012
Probiotics VSL#3	Clinical trials	BM1, hepatic steatosis, liver fibrosis	Alsì et al., 2014	
Lactic acidophilus	Clinical trials	Hepatic triglyceride, AST	Wong et al., 2013b	
Parabacteroides distasonis	Pre-clinical trials	Weight, bile acid, lipid and glucose metabolism homeostasis	Wang et al., 2019	
B. xylanisolvens	Pre-clinical trials	Hepatic butyrate and folate, Fat in liver and blood	Qiao et al., 2020	
L. plantarum NCU116	Pre-clinical trials	ALT, AST, lipogenesis, fatty acid oxidation	Li et al., 2014	
L. acidophilus	Clinical trials	ALT, AST	Abdel Monem, 2017	
L. acidophilus Lc-35, B. lactis Bb12	Clinical trials	ALT, AST, LDL-C	Nabavi et al., 2014	
L. acidophilus, L. rhamnosus, B. lactis, B. bifidum	Clinical trials	Hepatic steatosis, TG, cholesterol	Famouri et al., 2017	
L. acidophilus, L. rhamnosus, L. paracasei, P. pentosaceae, B. lactis, B. breve	Clinical trials	Total body fat, TG, intrahepatic fat	Ahn et al., 2019	
L. bulgaricus, S. thermophilus	Clinical trials	ALT, AST	Aller et al., 2011	
L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. breve, B. longum, S. thermophilus	Clinical trials	Insulin resistance, TNF-α, IL-6	Sepideh et al., 2016	
L. johnsonii BS15	Pre-clinical trials	Hepatic steatosis, ALT, TG, TNF-α	Xin et al., 2014	
L. paracasei	Pre-clinical trials	Hepatic steatosis, ALT, TLR4, TNF-α	Sohn et al., 2015	
L. paracasei N1115	Pre-clinical trials	Hepatic steatosis, TNF-α	Yao et al., 2019	
L. reuteri GMNL-263	Pre-clinical trials	Hepatic steatosis, Liver fibrosis, TGF-β	Ting et al., 2015	
L. rhamnosus GG	Pre-clinical trials	Hepatic fat content, TG, cholesterol	Kim et al., 2016	
Preclinica trials	Clinical trials	TNF-α, LPS	Bajaj et al., 2014	
Probiotics (novel)	L. acidophilus, L. rhamnosus, S. thermophilus	Pre-clinical trials	ALT, AST, cholesterol, TG, BMI	Shavaki et al., 2013
L. johnsonii BS15	Pre-clinical trials	Hepatic inflammation, propionate, acetate, TG, insulin resistance	Liu et al., 2016	
L. casei	Clinical trials	Insulin resistance	Hippe et al., 2016; Bjorkqvist et al., 2019	
L. paracasei N1115	Clinical trials	Propionate, acetate, TG	Louis and Flint, 2009	
L. rhamnosus GG	Clinical trials	Intestinal integrity, hepatic steatosis, hepatic inflammation	Neyrinck et al., 2012	
Probiotics (novel)	L. acidophilus	Clinical trials	Butyrate, insulin resistance	Cani and de Vos, 2017; Moreira et al., 2018
L. reuteri	Clinical trials	Intestinal integrity	Tan et al., 2019	
F. prausnitzii	Clinical trials	Butyrate	Munukka et al., 2017	
Rosaburia	Clinical trials	Butyrate	Hippe et al., 2016; Bjorkqvist et al., 2019	
Prebiotics	Fructooligosaccharide	Clinical trials	Hepatic steatosis	Bohnof et al., 2019
Inulin	Clinical trials	SCFA, pro-inflammatory cytokines	Bindels et al., 2012; Chambers et al., 2019	
Indole	Pre-clinical trials	Hepatic steatosis	Ma et al., 2020	
Symbiotics	Prebiotic 2000 Forte	Clinical trials	LPS, hepatic fibrosis	Cortez-Pinto et al., 2016
L. reuteri and guar gum and inulin	Clinical trials	Hepatic steatosis, BMI	Ferolla et al., 2016	
B. longum and fructooligosaccharide	Clinical trials	Hepatic steatosis, LPS, insulin resistance, pro-inflammatory cytokines	Malaguarnera et al., 2012	
Fecal microbiota transplantation	Standard diet mice to NASH mice	Pre-clinical trials	Hepatic steatosis, LPS, butyrate, Intestinal integrity, α-Diversity	Zhou et al., 2017b
Healthy and lean donors to NAFLD acceptor	Clinical trials	Butyrate, Insulin resistance	Vrieze et al., 2012	

L., Lactobacillus; S., Streptococcus; B., Bifidobacterium; P., Pediococcus; ALT, alanine amino transferase; AST, aspartate aminotransferase; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; TNF, tumor necrosis factor; and BMI, body mass index.
CONCLUSION AND PROSPECTS

Along with the lifestyle changes (excessive energy intake and reduced physical activity), NAFLD and its related diseases have become a global epidemic (Younossi, 2019; Huang et al., 2021). It is estimated that the morbidity of NASH will increase by as much as 56% in the next 10 years, and the incidence of NAFLD-HCC will double by 2030 (Huang et al., 2021). The initiation and progression of NAFLD have been proven to be the liver manifestation of disordered metabolic and immune homeostasis, which may be affected directly or indirectly by GM (Buzzetti et al., 2016; Fang et al., 2018). In recent years, research on the pathogenesis of NAFLD has made breakthroughs; and the advances in GM research have been deepening our understanding of NAFLD, and driving novel diagnostic and therapeutic approaches. However, the complex mechanism of the interaction between the GM and NAFLD has been illusive and limiting clinical progress (Neuschwander-Tetri, 2017; Fang et al., 2018). Whether alterations of the GM and its metabolites are driving factors or a consequence of the development of NAFLD should be further determined in the future.

With the rapid development of next-generation sequencing technology, metagenomics, and non-targeted metabolomics, we have made considerable progress in analyzing the composition and key metabolites of the GM, which has been considered as a potential and valuable non-invasive biomarker to diagnose NAFLD (Ebrahimzadeh Leylabadlo et al., 2020). However, different studies show different and even opposite results (Table 1). In addition, the use of the GM as a biomarker has inherent limitations: it is a highly dynamic aggregate, which is affected, for example, by host genes, living environment, lifestyle, and drugs. Based on massive samples, clinical data, and the results of multi-omics analysis, the combination of dynamic big data and artificial intelligence analysis might produce more reliable information.

The complexity of NAFLD means that there is still no feasible method to reverse the disease process or prevent its occurrence. The clinical significance of specific GMs and metabolite changes associated with NAFLD remains unclear. The strategy of targeting the GM to reverse the adverse changes of NAFLD has several limitations. Each patient might be associated with different diseases, including obesity and diabetes, and might harbor different predisposing factors, such as genes, diet, and metabolic phenotypes (Wang and Malhi, 2018; Younossi, 2019). A key breakthrough in the future will be the systematic integration of the manifestations, gene expression differences, GM, and metabolic differences in patients with different subtypes of NAFLD. Based on different phenotypes and the application of new technologies to precisely intervene with specific microbiota, it will provide new insights and more accurate treatment for NAFLD. Therefore, using probiotics and prebiotics to fight NAFLD blindly is not recommended until the role of the GM in the pathogenesis of NAFLD is further revealed. It is necessary to understand the functional interactions between the whole microbial community and NAFLD, thus further well-designed clinical trials and evidence-based medical data are needed.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

This work was supported by the National Natural Science Foundation of China (31960236 and 31770536). Lanzhou Chengguan District Science and technology planning project (2020SHFZ0029); Lanzhou talent innovation and Entrepreneurship Project (2019-RC-34); Fund of the first hospital of Lanzhou University (ldyyyn2019-75).

ACKNOWLEDGMENTS

We would like to thank Jia-qi Yang and Long-fei Ren for providing critical revisions to the manuscript.
microbiome, metabolism and endotoxemia in patients with cirrhosis. *Aliment. Pharmacol. Ther.* 39, 1113–1125. doi: 10.1111/apt.12695

Baker, S. S., Baker, R. D., Liu, W., Nowak, N. J., and Zhu, L. (2010). Role of alcohol metabolism in non-alcoholic steatohepatitis. *PLoS One* 5:5970. doi: 10.1371/journal.pone.0009570

Bindels, L. B., Porporato, P., Dewulf, E. M., Verraak, J., Neyrinck, A. M., Martin, J. C., et al. (2012). Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. *Br. J. Cancer* 107, 1337–1344. doi: 10.1038/bjc.2012.409

Björkqvist, O., Repsileber, D., Seifert, M., Brislawn, C., Jansson, J., Enstrander, L., et al. (2019). Alterations in the relative abundance of *Faecalibacterium prausnitzii* correlate with changes in fecal calprotectin in patients with ileal Crohn’s disease: a longitudinal study. *Scand. J. Gastroenterol.* 54, 577–585. doi: 10.1080/00365521.2019.1599417

Brown, G. T., and Kleiner, D. E. (2016). Histopathology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. *Metabolism* 65, 1080–1086. doi: 10.1016/j.metabol.2015.11.008

Brunt, E. M., Wong, V. W., Nobili, V., Day, C. P., Sookoian, S., Maher, J. J., et al. (2015). Nonalcoholic fatty liver disease. *Nat. Rev. Dis. Primers* 1:15080. doi: 10.1038/nrdp.2015.80

Buzzeiti, E., Pinzani, M., and Toschatsz, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). *Metabolism* 65, 1038–1048. doi: 10.1016/j.metabol.2015.12.012

Canfora, E. E., Meex, R. C. R., Venema, K., and Blaak, E. E. (2019). Microbiota modulation with synbiotic decreases liver fibrosis in a randomized, double-blind, placebo-controlled trial of patients with non-alcoholic steatohepatitis (NASH). *Gastroenterology* 158, 918–932. doi: 10.1053/j.gastro.2019.06.033

Chu, H. K., Duan, Y., Yang, L., and Schnabl, B. (2019). Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. *Nat. Rev. Gastroenterol. Hepatol.* 16, 372–376. doi: 10.1038/s41575-018-01263-6

Cope, K., Risby, T., and Diehl, A. M. (2000). Increased gastrointestinal ethanol production in obese mice: implications for fatty liver disease pathogenesis. *Gastroenterology* 119, 1340–1347. doi: 10.1053/gast.2000.19267

Cortez-Pinto, H., Borrállo, P., Machado, J., Lopes, M. T., Gato, I. V., Santos, A. M., et al. (2016). Microbiota modulation with symbiotic decreases liver fibrosis in a high fat choline deficient diet mice model of non-alcoholic Steatohepatitis (NASH). *J. Hepatol.* 62, 318, G554–G573. doi: 10.1016/j.jhep.2016.01.004

Del Chierico, E., Nobili, V., Vernocchi, P., Russo, A., De Stefanis, C., Gnani, D., et al. (2017). Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. *Hepatology* 65, 451–464. doi: 10.1002/hep.28572

Ebrahimzadeh Leylabad, H., Ghotasliou, R., Samadi Kafil, H., Feizabadi, M. M., Moaddab, S. Y., Farajnia, S., et al. (2020). Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. *Eur. J. Clin. Microbiol. Infect. Dis.* 39, 613–627. doi: 10.1007/s10099-019-03746-1

Ezzeidi, N., Zhang, X., Coker, O. O., and Yu, J. (2019). New insights and therapeutic implication of gut microbiota in non-alcoholic fatty liver disease and its associated liver cancer. *Cancer Lett.* 459, 186–191. doi: 10.1016/j.canlet.2019.114425

Famourri, F., Shariat, Z., Hashemipour, M., Keikha, M., and Kelishadi, R. (2017). Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. *J. Pediatr. Gastroenterol. Nutr.* 64, 413–417. doi: 10.1097/MPG.0000000000001422

Fang, Y. L., Chen, H., Wang, C. L., and Liang, L. (2018). Pathogenesis of non-alcoholic fatty liver disease in children and adolescents: from “two hit theory” to “multiple hit model”. *World J. Gastroenterol.* 24, 2974–2983. doi: 10.3748/wjg.v24.i27.2974

Ferrola, S. M., Couto, C. A., Costa-Silva, L., Armillato, G. N., Pereira, C. A., Martins, F. S., et al. (2016). Beneficial effect of symbiotic supplementation on hepatic steatosis and anthropometric parameters, but not on gut permeability in a population with nonalcoholic steatohepatitis. *Nutrients* 8:397. doi: 10.3390/nu8070397

Gabele, E., Dostert, K., Hoffmann, C., Wiest, R., Scholmerich, J., Hellerbrand, C., et al. (2011). DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. *J. Hepatol.* 55, 1391–1399. doi: 10.1016/j.jhep.2011.02.035

Gomes, A. C., Hoffmann, C., and Mota, J. F. (2018). The human gut microbiota: microbiology and perspectives in obesity. *Gut Microbes* 9, 308–325. doi: 10.1080/19498596.2018.1465157

Gong, S., Lan, T., Zeng, L., Luo, H., Yang, X., Li, N., et al. (2018). The gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. *J. Hepatol.* 69, 51–59. doi: 10.1016/j.jhep.2018.02.024

Hand, T. W., Vujkovic-Cvijin, I., Radaura, V. K., and Belkaid, Y. (2016). Linking the microbiota, chronic disease, and the immune system. *Trends Endocrinol. Metab.* 27, 831–843. doi: 10.1016/j.tem.2016.08.003

Harris, H. C., Morrison, D. J., and Edwards, C. A. (2020). Impact of the source of fermentable carbohydrate on SCFA production by human gut microbiota in vitro: a systematic scoping review and secondary analysis. *Crit. Rev. Food Sci. Nutr.*, 1–12. doi: 10.1080/10408398.2020.1809991

Harrison, S. A., Neff, G., Guy, C. D., Bashir, M. R., Paredes, A. H., Frias, J. P., et al. (2021). Efficacy and safety of aldeflamerin, an engineered FGF19 analog, in a randomized, double-blind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. *Gastroenterology* 160, 219.e1–231.e1. doi: 10.1053/j.gastro.2020.08.004

He, L. H., Ren, L. F., Li, J. F., Wu, Y. N., Li, X., and Zhang, L. (2020). Intestinal flora as a potential strategy to fight SARS-CoV-2 infection. *Front. Microbiol.* 11:1388. doi: 10.3389/fmicb.2020.01388

Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W. Z., Strowig, T., et al. (2012). Inflammosome-mediated dysbiosis regulates progression of NAFLD and obesity. *Nature* 482, 179–185. doi: 10.1038/nature10809
Hippe, B., Remely, M., Aumueller, E., Pointner, A., Magnet, U., and Haslberger, A. G. (2016). Faecalbacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects. Benefic. Microbes 7, 511–517. doi: 10.3920/ BM20150079

Hoyles, L., Fernandez-Real, J. M., Federici, M., Serino, M., Abbott, J., Charpentier, J., et al. (2018). Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat. Med. 24, 1070–1080. doi: 10.1038/s41591-018-0061-3

Hu, H., Lin, A., Kong, M., Yao, X., Yin, M., Xia, H., et al. (2020). Intestinal microbiome and NAFLD: molecular insights and therapeutic perspectives. J. Gastroenterol. 55, 142–158. doi: 10.1007/s00535-019-01649-8

Huang, D. Q., El-Serag, H. B., and Loomba, R. (2021). Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 18, 223–238. doi: 10.1038/s41575-020-00381-6

Ioannou, G. N. (2016). The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol. Metab. 27, 84–95. doi: 10.1016/j.tendem.2015.11.008

Ipsen, D. H., Lykkefedsfeld, J., and Tveden-Nyborg, P. (2018). Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 75, 3313–3327. doi: 10.1007/s00018-018-2860-6

Jennison, E., and Byrne, C. D. (2021). The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clin. Mol. Hepatol. 27, 22–43. doi: 10.3350/cmh.2020.0129

Jiang, C., Xie, C., Li, F., Zhang, L., Nichols, R. G., Krausz, K. W., et al. (2015). Intestinal farnesoid X receptor signaling promotes non-alcoholic fatty liver disease. J. Clin. Invest. 125, 386–402. doi: 10.1172/JCI76738

Kim, H. N., Joo, E. J., Cheong, H. S., Kim, Y., Kim, H. L., Shin, H., et al. (2019). Gut microbiota and risk of persistent nonalcoholic fatty liver disease. J. Clin. Med. 8:1089. doi: 10.3390/jcm8081089

Kim, B., Park, K. Y., Ji, Y., Park, S., Holzapfel, W., and Hyun, C. K. (2016). Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice. Biochem. Biophys. Res. Commun. 473, 530–536. doi: 10.1016/j.bbrc.2016.03.107

Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., et al. (2013). The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GRPR3. Nat. Commun. 4:1829. doi: 10.1038/ncomms2852

Kolodziejczyk, A. A., Zheng, D., Shibolet, O., and Elinav, E. (2019). The role of the microbiome in NAFLD and NASH. EMBO Mol. Med. 11:e9302. doi: 10.15252/emmm.201809302

Kumar, D. P., Asgharpour, A., Mirshahi, F., Park, S. H., Liu, S., Imai, Y., et al. (2016). Activation of transmembrane bile acid receptor TGR5 modulates pancreatic islet alpha cells to promote glucose homeostasis. J. Biol. Chem. 291, 6626–6640. doi: 10.1074/jbc.M115.699504

Le Roy, T., Llopis, M., Lepage, P., Bruneau, A., Rabot, S., Bevilacqua, C., et al. (2013). Intestinal microbiota promotes development of non-alcoholic fatty liver disease in mice. Gut 62, 1787–1794. doi: 10.1136/gutjnl-2012-303816

Lelouvier, B., Servant, F., Paisse, S., Brunet, A. C., Benyahya, S., Serino, M., et al. (2019). The role of the gut microbiota and their impact on human metabolism. Gut 68, 199–206. doi: 10.1136/gutjnl-2019-315751

Lemar, G. V., Azevedo, F. E., Ribeiro, L. M., Santos, A., Guadagnini, D., Gama, P., et al. (2018). Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. J. Nutr. Biochem. 62, 143–154. doi: 10.1016/j.jnutbio.2018.07.009

Marrin-Gallausiaux, C., Marinielli, L., Blottiere, H. M., Larraufie, P., and Lapaque, N. (2020). SCFA mechanisms and functional importance in the gut. Proc. Nutr. Soc. 80, 37–49. doi: 10.1017/S0029665119000691

Mcllaih, S., Lin, M., Frey, M. R., Fanter, R., Paliy, O., Hibsh, B., et al. (2015). Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiol. Ecol. 91, 1–9. doi: 10.1093/femsec/fiu002

Moreira, G. V., Azevedo, F. E., Ribeiro, L. M., Santos, A., Guadagnini, D., Gama, P., et al. (2018). Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. J. Nutr. Biochem. 62, 143–154. doi: 10.1016/j.jnutbio.2018.07.009

Morrison, D. J., and Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut 65, 189–200. doi: 10.1136/gutjnl-2015-308408

Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., et al. (2019). Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J. Hepatol. 71, 1216–1228. doi: 10.1002/hep.29883

Mouzaki, M., Cornelli, E. M., Arendt, B. M., Bonengel, J., Fung, S. K., Fischer, S. E., et al. (2013). Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58, 120–127. doi: 10.1002/hep.26319

Mridha, A. R., Wree, A., Robertson, A. A. B., Yeh, M. M., Johnson, C. D., Van Rooyen, D. M., et al. (2017). NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037–1046. doi: 10.1016/j.jhep.2017.01.022

Munukka, E., Kaltiala, A., Toivonen, R., Rintala, A., Toivonen, R., Nylund, M., Yang, B., Takanen, A., et al. (2017). Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. Cell Metab. 25, 1054.e1055–1062.e1055. doi: 10.1016/j.cmet.2017.04.001

Neuschwander-Tetri, B. A. (2017). Non-alcoholic fatty liver disease. BMJ Med. 15:45. doi: 10.1136/bmj.l4606-8

Neuschwander-Tetri, B. A., Loomba, R., Sanyal, A. J., Lavine, J. E., Van Natta, M. L., Abdelmalek, M. F., et al. (2015). Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965. doi: 10.1016/S0140-6736(14)61933-4
Neyrinck, A. M., Possemiers, S., Verstraete, W., De Backer, F., Cani, P. D., and Delzenne, N. M. (2012). Dietary modulation of colostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J. Nutr. Biochem. 23, 51–59. doi: 10.1016/j.jnutbio.2011.09.008

Ozkul, C., Yulmey, M., Karakan, T., and Yilmaz, G. (2017). Determination of certain bacterial groups in gut microbiota and endotoxin levels in patients with nonalcoholic steatohepatitis. Turk J Gastroenterol. 28, 361–369. doi: 10.5152/tjg.2017.17033

Park, J., Kim, M., Kang, S. G., Jannasch, A. H., Cooper, B., Patterson, J., et al. (2015). Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the miTOR-S6K pathway. Mucosal Immunol. 8, 80–93. doi: 10.1038/mi.2014.44

Parlesak, A., Schafer, C., Schütz, T., Bode, J. C., and Bode, C. (2000). Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 32, 742–747. doi: 10.1016/s0168-8278(00)00422-1

Parseas, A., Sommer, N., Sommer, F., Caesar, R., Molinari, A., Stahlan, M., et al. (2017). Microbiota-induced obesity requires farnesoid X receptor. Gut. 66, 429–437. doi: 10.1136/gutjnl-2015-310283

Perino, A., and Schoonjans, K. (2015). TGR5 and immunometabolism: insights from physiology and pharmacology. Trends Pharmacol. Sci. 36, 847–857. doi: 10.1016/j.tips.2015.08.002

Peterson, L. W., and Artis, D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153. doi: 10.1038/nri3608

Płoćzeniukowska, A., Hromada-Judycka, A., Borzechka, K., and Kwiatkowska, K. (2015). Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. 72, 557–581. doi: 10.1007/s00018-014-1762-5

Pols, T. W . H., Noriega, L. G., Nomura, M., Auwerx, J., and Schoonjans, K. (2016). Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Cell Mol. Biol. Rep. 2020.108005

Rahman, K., Desai, C., Iyer, S. S., Thorn, N. E., Kumar, P., Liu, Y., et al. (2016). Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 151, 733.e712–746.e712. doi: 10.1016/j.gastro.2016.06.022

Raman, M., Ahmed, I., Gillette, P. M., Probert, C. S., Ratcliffe, N. M., Smith, S., et al. (2013). Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 11, 968.e861–873.e861. doi: 10.1016/j.cgh.2013.02.015

Rau, M., Rehman, A., Dittrich, M., Groen, A. K., Hermanns, H. M., Seyfried, E., et al. (2018). Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and inflammatory indices in patients with nonalcoholic fatty liver disease. J. Hepatol. 69, 448–455. doi: 10.1016/j.jhep.2018.05.029

Sender, R., Fuchs, S., and Milo, R. (2016). Are we really vastly outnumbered? Revisiting the ratio of bacteria to host cells in humans. Cell 164, 337–340. doi: 10.1016/j.cell.2016.01.013

Shavaki, A., Minakari, M., Farouzian, H., Assali, R., Hekmatdoost, A., and Ferns, G. (2013). Effect of a probiotic and metformin on liver aminotransferases in non-alcoholic steatohepatitis: a double blind randomized clinical trial. J. Int. Med. Res. 51, 531–537.

Shen, F., Zheng, R. D., Sun, X. Q., Ding, W. J., Wang, X. Y., and Fan, J. G. (2017). Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 16, 375–381. doi: 10.1016/s1978-3801(17)30009-3
Tsai, M. C., Liu, Y. Y., Lin, C. C., Wang, C. C., Wu, Y. J., Yong, C. C., et al. (2020). Gut microbiota dysbiosis in patients with biopsy-proven nonalcoholic fatty liver disease: a cross-sectional study in Taiwan. *Nutrients* 12, 820. doi: 10.3390/nu12040820

Vrieze, A., Van Nood, E., Hollemann, F., Salojarvi, J., Kootte, R. S., Bartelsman, J. F., et al. (2012). Transfer of intestinal microbiota from lean donores increases insulin sensitivity in individuals with metabolic syndrome. *Gastroenterology* 143, 913.e917–916.e917. doi: 10.1053/j.gastro.2012.06.031

Wang, B., Jiang, X., Cao, M., Ge, J., Bao, Q., Tang, L., et al. (2016). Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. *Sci. Rep.* 6:32002. doi: 10.1038/srep32002

Wang, K., Liao, M., Zhou, N., Bao, L., Ma, K., Zheng, Z., et al. (2019). Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. *Cell Rep.* 26, 222.e225–225.e225. doi: 10.1016/j.celrep.2018.12.028

Wang, X. J., and Malhi, H. (2018). Nonalcoholic fatty liver disease. *Ann. Intern. Med.* 169, ITC65–ITC80. doi: 10.7326/M18-1106

Wang, Z. N., Roberts, A. B., Buffa, J. A., Levison, B. S., Zhu, W. E., Org, E., et al. (2015). Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. *Cell* 163, 1585–1595. doi: 10.1016/j.cell.2015.11.055

Wong, V. W., Tse, C. H., Lam, T. T., Wong, G. L., Chim, A. M., Chu, W. C., et al. (2013a). Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis: a longitudinal study. *PLoS One* 8:e62885. doi: 10.1371/journal.pone.0062885

Wong, V. W., Wong, G. L., Chim, A. M., Chu, W. C., Yeung, D. K., Li, K. C., et al. (2013b). Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. *Ann. Hepatol.* 12, 256–262.

Xin, J., Zeng, D., Wang, H., Ni, X., Yi, D., Pan, K., et al. (2014). Preventing non-alcoholic fatty liver disease through lactobacillus johnsonii B6S5 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. *Appl. Microbiol. Biotechnol.* 98, 6817–6829. doi: 10.1007/s00253-014-5752-1

Yang, J., Chawla, R., Rhee, K. Y., Gupta, R., Manson, M. D., Jayaraman, A., et al. (2020). Biphasic chemotaxis of *Escherichia coli* to the microbiota metabolite indole. *Proc. Natl. Acad. Sci. U. S. A.* 117, 6114–6120. doi: 10.1073/pnas.1906974117

Yao, F., Iia, R., Huang, H., Yu, Y., Mei, L., Bai, L., et al. (2019). Effect of *Lactobacillus paracasei* N1115 and fructooligosaccharides in nonalcoholic fatty liver disease. *Arch. Med. Sci.* 15, 1336–1344. doi: 10.5114/ams.2019.86611

Younes, R., and Bugianesi, E. (2019). NASH in lean individuals. *Semin. Liver Dis.* 39, 86–95. doi: 10.1055/s-0038-1677517

Younossi, Z. M. (2019). Non-alcoholic fatty liver disease: a global public health perspective. *J. Hepatol.* 70, 531–544. doi: 10.1016/j.jhep.2018.10.033

Younossi, Z. M., Koenig, A. B., Abdelatif, D., Fazel, Y., Henry, L., and Wymer, M. (2016). Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology* 64, 73–84. doi: 10.1002/hep.28431

Younossi, Z., Tacke, F., Arrese, M., Chander Sharma, B., Mostafá, L., Bugianesi, E., et al. (2019). Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. *Hepatology* 69, 2672–2682. doi: 10.1002/hep.30251

Yu, Q. W., Jiang, Z. Z., and Zhang, L. Y. (2018). Bile acid regulation: a novel therapeutic strategy in non-alcoholic fatty liver disease. *Pharmacol. Ther.* 190, 81–90. doi: 10.1016/j.pharmthera.2018.04.005

Yuan, J., Chen, C., Cui, J., Lu, J., Yan, C., Wei, X., et al. (2019). Fatty liver disease caused by high-alcohol-producing *Klebsiella pneumoniae*. *Cell Metab.* 30, 675.e677–688.e677. doi: 10.1016/j.cmet.2019.08.018

Zeng, H., Liu, J., Jackson, M. I., Zhao, F. Q., Yan, L., and Combs, G. F. Jr. (2013). Fatty liver accompanies an increase in lactobacillus species in the hind gut of C57BL/6 mice fed a high-fat diet. *J. Nutr.* 143, 627–631. doi: 10.3945/jjn.112.172460

Zhang, X., Coker, O. O., Chu, E. S., Fu, K., Lau, H. C. H., Wang, Y. X., et al. (2021). Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. *Gut* 70, 761–774. doi: 10.1136/gutjnl-2019-319664

Zhao, S., Jiang, C., Liu, J., Uehara, K., Gilbert, M., Izzo, L., et al. (2020). Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. *Nature* 579, 586–591. doi: 10.1038/s41586-020-2101-7

Zhernakova, A., Kurilshikov, A., Bonder, M. J., Tigchelaar, E. F., Schirmer, M., Vatanen, T., et al. (2016). Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. *Science* 352, 565–569. doi: 10.1126/science.aad3369

Zhou, D., Pan, Q., Liu, X. L., Yang, R. X., Chen, Y. W., Liu, C., et al. (2017a). *Clostridium butyricum* B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation. *J. Gastroenterol. Hepatol.* 32, 1640–1648. doi: 10.1111/jgh.13742

Zhou, D., Pan, Q., Shen, F., Cao, H. X., Ding, W. I., Chen, Y. W., et al. (2017b). Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. *Sci. Rep.* 7:1529. doi: 10.1038/s41598-017-01751-y

Zhu, L., Baker, S. S., Gill, C., Liu, W., Alkhouri, R., Baker, R. D., et al. (2013). Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. *Hepatology* 57, 601–609. doi: 10.1002/hep.26093

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 He, Yao, Wang, Zhang and Bai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.