Opa1-mediated mitochondrial dynamics is important for osteoclast differentiation

Keizo Nishikawa\(^1,2,3\), Hina Takegami\(^1\), Hiromi Sesaki\(^4\)
\(^1\)Laboratory of Cell Biology and Metabolic Biochemistry, Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University
\(^2\)Department of Immunology and Cell Biology, WPI-Immunology Frontier Research Center, Osaka University
\(^3\)Graduate School of Medicine/Frontier Biosciences, Osaka University
\(^4\)Department of Cell Biology, Johns Hopkins University School of Medicine
\(^\S\)To whom correspondence should be addressed: kenishik@mail.dhoshisha.ac.jp

Abstract

Opatic atrophy 1 (Opa1) is a mitochondrial GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. Osteoclasts are mitochondrial rich-cells. However, the role of Opa1 in osteoclasts remains unclear. Here, we demonstrate that Opa1-deficient osteoclast precursor cells do not undergo efficient osteoclast differentiation and exhibit abnormal cristae morphology. Thus, Opa1 is a key factor in osteoclast differentiation through regulation of mitochondrial dynamics.

Figure 1. Expression of opatic atrophy 1 (Opa1) and its knockout effect on osteoclastogenesis.
We generated and genotyped $Opa1^{floxflo}x$ and $RANK^{Cre^+}$ mice as previously described (Maeda et al., 2012; Zhang et al., 2011). $Opa1^{+/+}$, $Opa1^{floxflo}$ and $Opa1^{floxflo}$ littermate mice that did not carry the Cre recombinase were used as controls.

Methods

Mice and bone analysis

We generated and genotyped $Opa1^{floxflo}$ and $RANK^{Cre^+}$ mice as previously described (Maeda et al., 2012; Zhang et al., 2011). $Opa1^{+/+}$, $Opa1^{floxflo}$ and $Opa1^{floxflo}$ littermate mice that did not carry the Cre recombinase were used as controls.
Following their birth, all mice were maintained under specific pathogen-free conditions. All animal experiments were approved by the Institutional Animal Care and Use Committee of both Doshisha University and Osaka University. All the strains featured a C57BL/6 background. Two-week-old sex-matched mice were used in the experiments. Animals were randomly included in the experiments based on the genotyping results.

Cell culture

In vitro osteoclast differentiation was performed as previously described (Iwamoto *et al.*, 2016; Nishikawa *et al.*, 2013; Nishikawa *et al.*, 2015). Briefly, bone marrow-derived cells cultured with 10 ng/ml M-CSF (Miltenyi Biotec) for 2 days were used as osteoclast precursor cells and BMMs, and were further cultured with 50 ng/ml RANKL (PeproTech) in the presence of 10 ng/ml M-CSF for 3 days. TRAP-positive MNCs (TRAP+ MNCs) having more than three nuclei were counted.

Transmission electron microscopy

BMMs cultured on Cell Desk polystyrene cover slip (Sumitomo Bakelte Co., Ltd., Japan) were fixed for 24 hrs at 4°C in 2% formaldehyde and 2.5% glutaraldehyde in 0.1M cacodylate buffer (pH7.4) containing 0.01% calcium chloride. Each sample was washed for 5 min in 0.1M cacodylate buffer (pH7.4) containing 7% sucrose for three times. Cells were post-fixed for 1h with 1% osmium tetroxide and 0.5% potassium ferrocyanide in 0.1M cacodylate buffer (pH7.4), dehydrated in a graded ethanol series, and embedded in Epon812 (TAAB Co. Ltd., UK). Ultrathin sections (80 nm) were stained with saturated uranyl acetate and lead citrate solutions. Electron micrographs were obtained using a JEM-1400 plus electron microscope (JEOL, JP) at 80 kV.

Immunoblot analysis

Immunoblot analysis was performed as described previously (Nishikawa *et al.*, 2010b). Briefly, the cell lysates were subjected to immunoblot analysis using antibodies specific for Opa1 (Abcam, ab157457), NFATc1 (Santa Cruz Biotechnology, sc-7294), TRAP (Santa Cruz Biotechnology, sc-30833), Ctsk (Daichi Finechemical, F-95) and Lmnb (Santa Cruz Biotechnology, sc-6217). Whole-cell extracts were prepared by lysis in a radioimmunoprecipitation assay buffer.

Single-cell RNA-sequencing analysis

Gene expression data of scRNA-seq (GSE147174) obtained from NCBI’s Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) were processed and analyzed using the Seurat R package (v.4.0.6) as described previously (Tsukasaki *et al.*, 2020). Briefly, cells expressing less than 200 genes and more than 5% of mitochondrial genes were defined as poor-quality data and excluded. After normalization and scaling, the top 2,000 variable genes were selected by directly modelling the mean-variance relationship inherent in single-cell data. We performed dimensionality reduction using principal-component analysis (PCA) and visualized single cells on a uniform manifold approximation and projection (UMAP) plot according to gene expression.

Acknowledgements: We thank Ms. H. Omori for performing transmission electron microscopy, Mrs. A. Nishikawa-Hirota for technical assistance, and Dr. M. Tsukasaki for supporting the analysis of scRNA-seq data.

References

Friedman JR, Nunnari J. 2014. Mitochondrial form and function. Nature 505: 335-43. PubMed ID: [24429632](https://pubmed.ncbi.nlm.nih.gov/24429632/)

Ishii KA, Fumoto T, Iwai K, Takeshita S, Ito M, Shimohata N, et al., Ikeda K. 2009. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat Med 15: 259-66. PubMed ID: [19252502](https://pubmed.ncbi.nlm.nih.gov/19252502/)

Iwamoto Y, Nishikawa K, Imai R, Furuya M, Uenaka M, Ohta Y, et al., Ishii M. 2016. Intercellular Communication between Keratinocytes and Fibroblasts Induces Local Osteoclast Differentiation: a Mechanism Underlying Cholesteatoma-Induced Bone Destruction. Mol Cell Biol 36: 1610-20. PubMed ID: [27001307](https://pubmed.ncbi.nlm.nih.gov/27001307/)

Jeong S, Seong JH, Kang JH, Lee DS, Yim M. 2021. Dynamin-related protein 1 positively regulates osteoclast differentiation and bone loss. FEBS Lett 595: 58-67. PubMed ID: [33084048](https://pubmed.ncbi.nlm.nih.gov/33084048/)

Kasahara A, Scorrono L. 2014. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol 24: 761-70. PubMed ID: [25189346](https://pubmed.ncbi.nlm.nih.gov/25189346/)

Lemma S, Sboarina M, Porporato PE, Zini N, Sonveaux P, Di Pompo G, Baldini N, Avnet S. 2016. Energy metabolism in osteoclast formation and activity. Int J Biochem Cell Biol 79: 168-180. PubMed ID: [27590854](https://pubmed.ncbi.nlm.nih.gov/27590854/)

MacVicar T, Langer T. 2016. OPA1 processing in cell death and disease - the long and short of it. J Cell Sci 129: 2297-306. PubMed ID: [27189080](https://pubmed.ncbi.nlm.nih.gov/27189080/)
Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, et al., Takahashi N. 2012. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med 18: 405-12. PubMed ID: 22344299

Mills EL, Kelly B, O’Neill LAJ. 2017. Mitochondria are the powerhouses of immunity. Nat Immunol 18: 488-498. PubMed ID: 28418387

Nishikawa K, Iwamoto Y, Ishii M. 2014. Development of an in vitro culture method for stepwise differentiation of mouse embryonic stem cells and induced pluripotent stem cells into mature osteoclasts. J Bone Miner Metab 32: 331-6. PubMed ID: 24366621

Nishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi S, Tsujita T, et al., Ishii M. 2015. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med 21: 281-7. PubMed ID: 25706873

Nishikawa K, Nakashima T, Hayashi M, Fukunaga T, Kato S, Kodama T, et al., Takayanagi H. 2010. Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc Natl Acad Sci U S A 107: 3117-22. PubMed ID: 20133620

Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, Kimura A, et al., Takayanagi H. 2010. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest 120: 3455-65. PubMed ID: 20877012

Nishikawa K, Seno S, Yoshihara T, Narazaki A, Sugiyama Y, Shimizu R, et al., Ishii M. 2021. Osteoclasts adapt to physioxia perturbation through DNA demethylation. EMBO Rep 22: e53035. PubMed ID: 34661337

Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. 2020. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol 30: R575-R588. PubMed ID: 32428499

Roy M, Reddy PH, Iijima M, Sesaki H. 2015. Mitochondrial division and fusion in metabolism. Curr Opin Cell Biol 33: 111-8. PubMed ID: 25703628

Takayanagi H. 2007. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7: 292-304. PubMed ID: 17380158

Tamura Y, Itoh K, Sesaki H. 2011. SnapShot: Mitochondrial dynamics. Cell 145: 1158, 1158.e1. PubMed ID: 21703455

Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. 2017. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 482: 426-431. PubMed ID: 28212726

Zhang Z, Wakabayashi N, Wakabayashi J, Tamura Y, Song WJ, Sereda S, et al., Sesaki H. 2011. The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells. Mol Biol Cell 22: 2235-45. PubMed ID: 21551073

Bui HT, Shaw JM. 2013. Dynamic assembly strategies and adaptor proteins in mitochondrial fission. Curr Biol 23: R891-9. PubMed ID: 24112988

Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al., Pearce EL. 2016. Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming. Cell 166: 63-76.

Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, et al., Scorrano L. 2013. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155: 160-71.

Tsukasaki M, Huyhn NC, Okamoto K, Muro R, Terashima A, Kurikawa Y, et al., Takayanagi H. 2020. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat Metab 2: 1382-1390. PubMed ID: 33288951

Funding: This work was supported by Grants-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (JSPS) (22H02826 to K.N.); Toray Science Foundation (to K.N.); Yamada Science Foundation (to K.N.); The JSBMR Frontier Scientist Grant (to K.N.).

Author Contributions: Keizo Nishikawa: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project, supervision, writing - original draft. Hina Takegami: data curation, investigation. Hiromi Sesaki: methodology.

Reviewed By: Anonymous
