Comparative Study of Phytosterols and Vitamins A and E Composition of Vegetable Oil Brands Consumed in Nigeria

O. B. Ajayi¹ and O. I. Malachi²*

¹Department of Biochemistry, Ekiti State University, Nigeria.
²Department of Chemical Science, Afe Babalola University, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Author OBA designed the study, wrote the protocol and carried out all laboratory works. Author OIM performed the statistical analysis, wrote the first draft of the manuscript, managed the literature searches and edited the manuscript. Both authors read and approved the final manuscript.

ABSTRACT

Since the techniques employed in refining can alter the chemical composition of edible oils, the phytosterol and vitamins A and E composition of branded vegetable oils sold in Nigeria were determined. The result showed that sitosterol, campesterol, stigmasterol and 5-Avenasterol were the major phytosterol present; with much lesser amounts of cholestanol and ergosterol. The cholesterol concentration was less than 10 mg/100 g in all the samples and was thus labeled “no cholesterol” by the manufacturers. Vitamin A supplementation for all the oil brands was about 7.5 mg/100 g for all the samples. A considerably high amount of vitamin E was retained in all the oil brands, Executive Chef Soya bean oil showing the highest concentration of vitamin E. It was thus concluded that the techniques employed in refining the oils retained an acceptable amount of phytosterol and vitamin E in the products.
Keywords: Phytosterol; vitamin A; vitamin E; oil brand; Nigeria; cardiovascular disease.

1. INTRODUCTION

Edible oils are essential nutrient and an important source of energy comprising up to 25% of calorie intake. Edible oils are biological mixtures, usually of plant origin, consisting majorly of esters derived from glycerol with chain of fatty acids [1]. The minor unsaponifiable constituents of edible oils are generally made up of tocopherols, tocotrienols, sterols, ubiquinones and pigments [2]. Tocopherols and tocotrienols are the two forms in which vitamin E exists [3] and are hereinafter referred to as vitamin E. Sterols from plant origin are termed to phytosterols and are predominantly sitosterol, campesterol, stigmasterol and 5-Avenasterol with very little amount of ergosterol and cholestanol [4]. Cholesterol exists in plants but in a relatively small concentration compared to animals [5].

Phytosterols have been extolled for their numerous beneficial health effects. Of these, circulatory cholesterol and triglyceride lowering are the most significant [6,7]. This is because cardiovascular disease, associated with raised levels of circulatory cholesterol and triglyceride [8], is the leading cause of global death [9,10]. Other health benefits of dietary phytosterols include inhibition of lung, stomach, ovarian and breast cancers [11]. While vitamin E supplementations have no positive effect on health [12-17], the supplementation of vitamin A has been shown to reduce mortality by up to 24% [18]. The supplementation of branded oils with vitamin A is therefore increasing among the manufacturers.

Cooking in Nigeria is characterized by the use of the traditionally extracted, unrefined palm oil; called red oil among Nigerians [19]. This is because of the accustomed flavor and the general notion that it is safer for cardiovascular health than the branded vegetable oils which are termed “white oil” in Nigeria [19]. However, the use of refined and branded vegetable oils is increasing among Nigerian urban elites [20]. As a result, Nigerian markets are becoming “flooded” with assorted refined vegetable oils brands from different parts of the world [21]. The Food and Agriculture Organization warned that techniques employed in refining can cause chemical changes to composition of edible oils and thus decreases its nutritional value [22]. This study therefore comparatively examines the contents of phytosterol and vitamins A and E in Nigerian branded oils.

2. MATERIALS AND METHODS

All the oil brands were bought from Ado-Ekiti urban market. The manufacturers of the oil brands are presented in Table 1. All reagents used in this work were of analytical grade.

Oil brands	Manufacturers
Executive chef soya bean oil	JOF industries limited
Mamador vegetable oil	PZ Wilmar Limited
Oki vegetable oil	Oki food industries
Laser (Virgin) olive oil	Sun mark limited
Power vegetable oil	Dufil prima foods Plc

Total lipid extracts were subjected to acid hydrolysis and then alkaline saponification, and free sterols were analyzed as trimethylsilyl derivatives by capillary GC-FID and GC-MS. Vitamin A was determined by HPLC with spectrofluorimetric detection (λ_{ex} 340 nm; λ_{cm} 460 nm). Determination of vitamin was by reversed-phase high-performance liquid chromatography. The results are presented as means of three replicates.

3. RESULTS AND DISCUSSION

As shown in Fig. 1, cholesterol was present in all the oil brand samples; despite the “no cholesterol” tag on the brands’ labels. Cholesterol, despite the fact that it is generally termed an animal sterol, is also found in plants [23]. Although there have been some wrong [24,25] and misleading [26-28] conclusions about the presence of cholesterol in plants, cholesterol occurs as a component of plant membranes and as part of the surface lipids of leaves where it is sometimes the major sterol [23]. Cholesterol therefore exists in plants oils; although in a very small quantities, usually less than 60 mg/kg [5,29]. However, the “no cholesterol” tag can be justified because the cholesterol concentration in all the oil brands is less than 10 mg/100 g and legalities of food labeling allow such small quantities of cholesterol in foods to be labeled zero [30,31].
While the dynamics of cholesterol homeostasis and development of cardiovascular disease is extremely complex and multifactorial [32], researchers maintain that cholesterol intake increases the risks of cardiovascular diseases [33,34]. However, it is now acknowledged that the original studies purporting to show a linear relation between cholesterol intake and cardiovascular disease (CHD) may have contained fundamental study design flaws, including conflated cholesterol and saturated fat consumption rates and inaccurately assessed actual dietary intake of fats by study subjects [32]. It is now known that the degree to which serum cholesterol is increased by dietary cholesterol depends upon whether the individual's cholesterol synthesis is stimulated or down-regulated by such increased intake, and the extent to which each of these phenomena occurs varies from person to person [32].

As presented in Fig. 1, all the vegetable oil brands are rich in phytosterols. As expected of plant oils [4], sitosterol, campesterol, and stigmasterol are the most abundant phytosterols in the oil brand samples. Phytosterols have been applauded for reducing circulatory cholesterol levels [35,36] by competing with cholesterol absorption in the gut via one or several possible mechanisms [37-39]. Vegetable oils are the richest sources of phytosterols. However, the methods employed in refining can significantly reduce the amount of phytosterol in oils [40,41]. As evident in Fig. 1, the refining methods employed in the oil brands retained satisfactory amounts of phytosterols in the oils.

Table 2. Total sterol, vitamin A and vitamin E concentrations of vegetable oil brands consumed in Nigeria

	Vitamin A (mg/100 g)	Vitamin E (mg/100 g)	Total sterol (mg/100 g)
Executive chef soybean oil	7.36±0.12	49.43±0.58	117.38±4.32
Mammador vegetable oil	8.62±0.09	25.89±1.01	132.18±2.90
Oki vegetable oil	8.32±0.05	18.28±0.95	264.13±6.54
Laser olive oil	8.24±0.11	18.00±0.89	302.50±9.76
Lahda soya oil	8.32±0.08	11.05±0.44	309.47±6.81
Power vegetable oil	7.36±0.10	19.00±1.67	304.40±10.02

Values are mean ± standard deviation
As presented in Table 2, all the oil brand samples contain vitamin A and E in amounts much higher than the recommended daily allowances for the vitamins [42-44]. Executive Chef Soya bean oil showed a strikingly high concentration of vitamin E. This can be linked to reduced auto-oxidation of the oil since vitamin E is consumed by auto-oxidation of oils [45]. Vitamin A plays a role in a variety of functions throughout the body. These includes: Vision, gene transcription, Immune function, embryonic development and reproduction, Bone metabolism, Hematopoiesis, Skin and cellular health as well as Antioxidant activity [46-48]. Vitamin E is a renowned lipophilic anti-oxidant [49]. Other known functions of vitamin E include enzymatic activities, gene expression, and neurological function. The most important function of vitamin E has been suggested to be in cell signaling [50,51].

4. CONCLUSION

It can be concluded from the result that the techniques employed in refining the oils retained a substantial amount of phytosterol and vitamin E in the products. The oils are also well supplemented with vitamin A.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Eqbql MAD, Halimah AS, Abdullah MK, Zalifah MK. Fatty acid composition of four different vegetable oils (Red palm olein, corn oil and coconut oil) by gas chromatography. IPCBE. 2011;14:31-34.
2. Sundram K, Sambanthamurthi R, Tan YA. Palm fruit chemistry and nutrition. Asia Pacific J Clin Nutr. 2003;12(3):355-362.
3. Brigelius-Flohé R, Traber MG. Vitamin E: function and metabolism. FASEB J. 1999;13(10):1145–1155. PMID 10385606.
4. Weihrauch JL, Gardner JM. Sterol content of foods of plant origin. Journal of the American Dietetic Association. 1978; 73(1):39–47. PMID 659760.
5. Gurr MI. Role of fats in food and nutrition, 2nd ed.; Elsevier: London; 1992:36.
6. Plat J, Mensink RP. Plant stanol esters lower serum triacylglycerol concentrations via a reduced hepatic VLDL-1 production. Lipids. 2009;44(12):1149-53. DOI: 10.1007/s11745-009-3361-z. PMC 2779439. PMID 19856194.
7. Scholle JM, Baker WL, Talati R, Coleman Cl. The effect of adding plant sterols or stanols to statin therapy in hypercholesterolemic patients: Systematic review and meta-analysis. Journal of the American College of Nutrition. 2009; 28(5):517-24. DOI: 10.1080/07315724.2009.10719784. PMID 20439548.
8. Malloy MJ, Kane JP. A risk factor for atherosclerosis: Triglyceride-rich lipoproteins. Advances in Internal Medicine. 2001;47:111-36. PMID 11795072.
9. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3(11):e442.
10. World Health Organization, Geneva. causes of death; 2008. Available: http://www.who.int/healthinfo/global_burden_disease/cod_2008_sources_methods.pdf.
11. Woyengo TA, Ramprasath VR, Jones PJH. Anticancer effects of phytosterols. European Journal of Clinical Nutrition. 2009;63(7):813-20. DOI: 10.1038/ejcn.2009.29. PMID 19491917.
12. Haber D. Health promotion and aging: Practical applications for health professionals (4th ed.). New York, NY: Springer Pub. 2006:280. ISBN 978-0-8261-8463-4.
13. Abner EL, Schmitt FA, Mendiondo MS, Marcum JL, Kryscio RJ. Vitamin E and all-cause mortality: A meta-analysis. Current aging science. 2011;4(2):158-70. DOI: 10.2174/1874609811104020158. PMC 4030744. PMID 21235492.
14. Miller ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: High-dosage vitamin E supplementation may increase all-cause mortality. Annals of internal medicine 2005;142(1):37-46. DOI:10.7326/0003-4819-142-1-200501040-00110. PMID 15537682.
15. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Bjelakovic, Goran, ed. Antioxidant supplements for prevention of mortality in healthy participants and
16. Bin Q, Hu X, Cao Y, Gao F. The role of vitamin E (tocopherol) supplementation in the prevention of stroke. A meta-analysis of 13 randomized controlled trials. *Thrombosis and haemostasis*. 2011; 105(4):579–85. DOI: 10.1160/TH10-11-0729 PMID 21609225.

17. Olson JH, Erie JC, Bakri SJ. Nutritional supplementation and age-related macular degeneration. *Seminars in Ophthalmology*. 2011; 26(3):131-6. DOI: 10.3109/08820538.2011.577131 PMID 21609225.

18. Mayo-Wilson E, Imdad A, Herzer K, Yakoob MY, Bhutta ZA. Vitamin a supplements for preventing mortality, illness, and blindness in children aged under 5: Systematic review and meta-analysis. *BMJ (Clinical Research Ed.)* 2011;343:d5094. DOI: 10.1136/bmj.d5094 PMC 3162042, PMID 21868478.

19. Malachi OI. Palm oil: An over-acclaimed cooking oil in Nigeria. *Annual Research & Review in Biology*. 2015;7(3):133-143. DOI: 10.9734/ARRB/2015/16212

20. Ajayi OB, Malachi OI. Comparative study of the fatty acid profiles of vegetable oil brands consumed in Nigeria. *JABB*; 2015;2(4):200-207. DOI: 10.9734/JABB/2015/15703

21. Okpuzor J, Okochi VI, Ogbunugafor HA, Ogbonna S, Fagbayi T, Obidiegwu C. Estimation of cholesterol levels in different brands of vegetable oil. *Pakistan Journal of Nutrition*. 2009;8:57-62.

22. Food and Agriculture Organization fats and oils in human nutrition. Chapter 5: Processing and refining edible oils; 1994. ISBN 92-5-103621-7.

23. Behrman EJ, Venkat G. Cholesterol and Plants. *J. Chem. Edu.* 2005:82:1790-1793.

24. Zubay GL, Parson WW, Vance DE. Principles of Biochemistry; Brown WC: Dubuque, IA. 1995:385.

25. Horton HR, Moran LA, Ochs RS, Rawn JD, Scrimgeour KG. Principles of biochemistry, 3rd ed.; Prentice Hall: Upper Saddle River, NJ. 2002:275.

26. Nelson DL, Cox MM. Lehninger principles of biochemistry, 3rd ed.; Worth Publishers: New York. 2000:376.

27. Metzler DE. Biochemistry, 2nd ed.; Academic Press: San Diego. 2001:1392.

28. Berg JM, Tymoczko JL, Stryer L. Biochemistry, 5th ed.; Freeman: New York. 2002:325.

29. Rosell JB. In analysis of oilseeds, fats, and fatty foods; Rosell JB, Pritchard JLR, Eds.; Elsevier: London; Chapter 7, Table 7.11; 1991.

30. Moreau RA, Whitaker BD, Hicks KB. Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. *Prog. Lipid Res.* 2002;41(6):457-500.

31. Title 21 of the code of federal regulations (21 CFR), section 101.62(d). Available: http://vm.cfsan.fda.gov/~lrd/CF101-62.HTML

32. Jones PJ. Dietary cholesterol and risk of cardiovascular disease in patients: A review of harvard egg study and other data. *Int J Clin Pract Suppl.* 2009;163(1-8):28-36. DOI: 10.1111/j.1742-1241.2009.02136.x

33. Goodrow EF, Wilson TA, Houde SC, Vishwanathan R, Scollin PA, Handelman G, Nicolosi RJ. Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations. *J Nutr.* 2006; 136:2519-24.

34. Shrapnel WS, Calvert GD, Nestel PJ, Truswell AS. Diet and coronary heart disease. The national health foundation of Australia. *Med J Aust.* 1992;156Suppl:S9-16.

35. European Food Safety Authority. Blood cholesterol reduction health claims on phytosterols can now be judged against EFSA new scientific advice. Available: http://www.efsa.europa.eu/en/press/news/nda090731.htm

36. European Food Safety Authority. Plant sterols and blood cholesterol - scientific substantiation of a health claim related to plant sterols and lower/reduced blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006[1]. Available: http://www.efsa.europa.eu/en/efsajournal/doc/781.pdf
37. Nguyen TT. The cholesterol-lowering action of plant stanol esters. The Journal of Nutrition (The American Society for Nutritional Sciences). 1999;129(12):2109-2112.

38. De Smet E, Mensink RP, Plat J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: Suggested mechanisms from past to present. Molecular Nutrition & Food Research. 2012;56(7):1058-72. DOI: 10.1002/mnfr.201100722

39. Trautwein EA, Duchateau GSMJE, Lin Y, Mel'nikov SM, Molhuizen HOF, Ntanios FY. Proposed mechanisms of cholesterol-lowering action of plant sterols. European Journal of Lipid Science and Technology. 2003;105(3-4):171-185. DOI: 10.1002/ejlt.200390033

40. Verleyena T, Sosinskaa U, Ioannidoua S, Verthea R, Dewettinckb K, Huyghebaertb A, De Greytc W. Influence of the vegetable oil refining process on free and esterified sterols. JAOCS. 2002;79(10):947-953.

41. Sciancalepore V. The influence of processing on the content and composition of free and esterified sterols in sunflower seed oil. Oli Grassi Deriv. 1981;17:11-12.

42. Dietary Reference Intakes: Vitamins. Available: http://www.iom.edu/Global/News%20Announcements/~media/474B28C39EA34C43A60A6D42CE07427.ashx

43. National Institute of Health. Vitamin E fact sheet: 2009. Available: http://ods.od.nih.gov/factsheets/VitaminE.asp

44. Institute of Medicine. Food and nutrition board. Dietary reference intakes: Applications in Dietary Assessment. Washington, DC: National Academy Press. 2000;289. OCLC 45618946.

45. Ingold KU, Bowry VW, Stocker R, Walling C. Autoxidation of lipids and antioxidation by alpha-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: Unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein. Proc Natl Acad Sci; 1993;90(1):45-49. PMCID: PMC45596.

46. McGuire M, Beerman KA. Nutritional sciences: From fundamentals to food. Belmont, CA: Thomson/Wadsworth; 2007. ISBN 0-534-53717-0.

47. Fuchs E, Green H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell. 1981;25(3):617-25. DOI: 10.1016/0092-8674(81)90169-0 PMID 6169442.

48. Duester G. Retinoic acid synthesis and signaling during early organogenesis. Cell. 2008;134(6):921–31. DOI: 10.1016/j.cell.2008.09.002 PMC 2632951. PMID 18805086.

49. Bell EF. History of vitamin E in infant nutrition. American Journal of Clinical Nutrition. 1987;46(1Suppl):183-186. PMID 3300257.

50. Azzi A. Molecular mechanism of alpha-tocopherol action. Free Radical Biology & Medicine. 2007;43(1):16-21. DOI:10.1016/j.freeradbiomed.2007.03.013 PMID 17561089.

51. Zingg JM, Azzi A. Non-antioxidant activities of vitamin E. Current medicinal chemistry. 2004;11(9):1113-33. DOI: 10.2174/0929867043365330 PMID 15134510.

© 2016 Ajayi and Malachi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/14200