Visceral Leishmaniasis in pregnancy and vertical transmission: A systematic literature review on the therapeutic orphans

Prabin Dahal1,2*, Sauman Singh-Phulgena1,2, Brittany J Maguire1,2, Eli Harriss3, Koert Ritmeijer4, Fabiana Alves5, Philippe J Guerin1,2, Piero L Olliaro2

1Infectious Diseases Data Observatory (IDDO), Oxford, UK
2Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
3The Knowledge Centre, Bodleian Health Care Libraries, University of Oxford, Oxford, UK
4Médecins Sans Frontières, Amsterdam, Netherlands
5Drugs for Neglected Diseases initiative, Geneva, Switzerland

Running title: Visceral Leishmaniasis in pregnancy

Email addresses:
PD prabin.dahal@iddo.org
SSP sauman.singh@iddo.org
BJM brittany.maguire@iddo.org
EH eli.harriss@bodleian.ox.ac.uk
KR koert.ritmeijer@amsterdam.msf.org
FA falves@dndi.org
PJG philippe.guerin@iddo.org
PLO piero.olliaro@ndm.ox.ac.uk

Keywords: Visceral leishmaniasis, pregnancy, vertical transmission, amphotericin B, pentavalent antimony, pharmacovigilance, drug safety, neglected tropical diseases

*Correspondence to:
prabin.dahal@iddo.org

Infectious Diseases Data Observatory (IDDO), Oxford, UK
Abstract

Background: Reports on the occurrence and outcome of Visceral Leishmaniasis (VL) in pregnant women is rare in published literature. The occurrence of VL in pregnancy is not systematically captured and cases are rarely followed-up to detect consequences of infection and treatment on the mother and foetus.

Methods: A review of all published literature was undertaken to identify cases of VL infections during pregnancy by searching the following database: Ovid MEDLINE®; Ovid Embase; Cochrane Database of Systematic Reviews; Cochrane Central Register of Controlled Trials; World Health Organization Global Index Medicus: LILACS (Americas); IMSEAR (South-East Asia); IMEMR (Eastern Mediterranean); WPRIM (Western Pacific); ClinicalTrials.gov; and the WHO International Clinical Trials Registry Platform. Selection criteria included any clinical reports describing the disease in pregnancy or vertical transmission of the disease in humans. Articles meeting pre-specified inclusion criteria and non-primary research articles such as textbook, chapters, letters, retrospective case description, or reports of accidental inclusion in trials were also considered.

Results: We screened 272 publications and identified a total of 70 records (1926–2020) describing 447 VL cases in pregnant women. The disease was detected during pregnancy in 394 (88.1%), retrospectively confirmed after giving birth in 52 (11.6%), and the time of identification was not clear in 1 (0.2%). Of the 394 mothers whose infection was identified during pregnancy, 344 (89.1%) received a treatment, 3 (0.8%) were untreated, and the treatment status was not clear in the remaining 47 (12.2%). Of 344 mothers, Liposomal Amphotericin B (L-AmB) was administered in 202 (58.7%) and pentavalent antimony (PA) in 92 (26.7%). Outcomes were reported in 176 mothers treated L-AmB with 4 (2.3%) reports of maternal deaths, 5 (2.8%) miscarriages, and 2 (1.1%) foetal death/stillbirth. For PA, outcomes were reported in 87 mothers of whom 4 (4.6%) died, 24 (27.6%) had spontaneous abortion, 2 (2.3%) had miscarriages. A total of 26 cases of confirmed, probable or suspected cases of vertical transmission were identified and the median time to detection was 6 months (range: 0–18 months).

Conclusions: Outcomes of VL treatment during pregnancy is rarely reported and under-researched. When it is reported, information is often incomplete and it is difficult to derive generalisable information on outcomes for mothers and babies, although reported data favours the usage of liposomal amphotericin B for the treatment of VL in pregnant women.
Author summary

Visceral Leishmaniasis (VL) is a neglected tropical disease with an estimated incidence of 50,000 to 90,000 cases in 2019. Women who are susceptible to becoming pregnant or those who are pregnant and lactating are regularly excluded from clinical studies of VL. A specific concern of public health relevance is the little knowledge of the consequences of VL and its treatment on the mother and the foetus. We did a systematic review of all published literature with an overarching aim of identifying cases of VL in pregnancy and assess the risk-benefit balance of antileishmanial therapies to the mother and the child. We identified a total of 70 records (1926–2020) describing 447 VL cases in pregnant women. In 394 mothers, infection was identified during pregnancy of whom 202 received Liposomal Amphotericin B (L-AmB) and 92 received pentavalent antimony (PA). Reports of maternal deaths, abortion, and miscarriages were proportionally lower among those who received L-AmB compared to PA regimens. A total of 26 cases of confirmed, probable or suspected cases of vertical transmission were identified and the median time to detection was 6 months (range: 0–18 months). Our review brings together scattered observations of VL in pregnant women in the clinical literature and clearly highlights that the disease in pregnancy is under-reported and under-studied. Our findings indicate that L-AmB should be the preferred treatment for VL during pregnancy.
Introduction

Visceral Leishmaniasis (VL) is a neglected tropical disease caused by *Leishmania* sp. parasites transmitted by female sandflies. The disease is endemic in parts of South Asia, East Africa, South America and the Mediterranean region with an estimated 50,000 to 90,000 cases in 2019 [1]. A specific concern of public health relevance is the little knowledge of the clinical aspects of VL and treatment outcomes in pregnant and lactating women [2].

In pregnancy, VL diagnosis relies essentially on symptoms and serology as parasite detection by splenic aspiration is not recommended because of the risk for the foetus. More severe anaemia and increased requirements for blood transfusion have been reported for pregnant women infected with VL [2]. Case management must take into account the consequences of the disease and the therapeutic intervention on the mother-foetus pair [3]. Of note, except amphotericin B, all other available drugs are either contraindicated or subjected to restricted use in pregnant and lactating women and in women of child-bearing age (Table 1) [4–6]. Further complexities arise from potential vertical transmission of the disease either congenitally (maternal–foetal transmission *in utero*) or through transplacental infection as a result of blood exchange during labour. While vertical transmission of VL is well-studied and established in animal studies, reports in humans are sporadic with observations of clinical manifestation several months post-partum [7–10]. Such vertical transmission can induce *in utero* death or can be potentially deleterious to the foetus and infant [6,9,11].

The regulatory restrictions and limited evidence on safety of antileishmanial chemotherapeutics on the mother-foetus pair meant that historically clinicians had to rely on personal experience or limited published case-reports to make a decision. This led to some clinicians delaying the treatment of pregnant women until after delivery, especially
when the case was detected closer to the due date [12,13]. Others had treated them when
the adjudicated risk of VL to the mother outweighed the risk posed by the drug to the
mother-foetus pair [14]. Similar delays in treatment of pregnant mothers has also been
reported in post kala-azar dermal leishmaniasis (PKDL) [15,16]. Currently liposomal
amphotericin B (L-AmB) remains the preferred regimen for the treatment in pregnancy
(Table 1). However, pregnant and lactating women are regularly excluded from clinical
studies [17] and are considered “therapeutic orphans” [18]. In studies that enrol females of
childbearing age, counselling measures are usually set in place to inform the patients
regarding the potential teratogenic harms of study drugs and either adoption of suitable
contraception methods or observance of abstinence is mandatory (for example in
miltefosine trials) [17]. In regular clinical practice and non-clinical trial settings, pregnancy
tests and counselling however, might not be done routinely. A study conducted in South
Asia found that only one in every six doctors ruled out pregnancy before prescribing
miltefosine [19].

Finally, there is a lack of active pregnancy registries for most of the antileishmanial drugs
expect for miltefosine. In the context of Impavo® (Profounda Inc.), the commercial name of
miltefosine registered to the US medicines regulatory agency (US Food Drug
Administration), a pregnancy registry was established to fulfil post marketing requirements
[20,21]. The recruitment of pregnant women as part of the observational study started in
2015 and the study is expected to be completed in 2026, and is estimated to recruit 0–1
patients per year over the 10 year study period, hence unlikely to generate a large volume
of new safety data [20]. There are no other active pregnancy registries on exposures to VL
treatments from which to derive information on consequences on gestation, mother,
foetus, and the newborn. Therefore, to understand the risks and benefits of treatment to
the mother and the child, one must turn to the published literature.

The most comprehensive reviews on VL in pregnant women were conducted in the mid
2000s [9,22]. We therefore conducted a systematic review of all published literature with an
overarching aim of identifying cases of VL in pregnancy. The specific objectives were to
assess the risk-benefit balance of antileishmanial therapies to the mother and the child and
to identify the cases of vertical transmission. The review was not limited by language or any
interventions.
Table 1: Antileishmanial usage during pregnancy

Drug	Indication	FDA Category (reviewed in [23, 24])
Pentavalent antimonials:		
Pentostam	“Although no effects on the foetus have been reported, Pentostam should be	C
(Sodium Stibogluconate)	withheld during pregnancy unless the potential benefits to the patient	(Risks cannot be ruled out)
	outweigh the possible risk to the foetus. Children should not be breast-fed	
	by mothers receiving Pentostam”	
	– Source: The EMC [25]	
	“Pentavalent antimonials are less safe in pregnancy, as they can result in	
	spontaneous abortion, preterm deliveries and hepatic encephalopathy in	
	the mother and vertical transmission”	
	– Source: WHO-2010 [26]	
Amphotericin B deoxycholate	“Animal reproduction studies have failed to demonstrate a risk to the foetus	B
	and there are no adequate and well-controlled studies in pregnant women.”	(No evidence of risk in studies)
	“Amphotericin B deoxycholate and lipid formulations are the best	
	therapeutic options for visceral leishmaniasis. No abortions or vertical	
	transmission have been reported in mothers treated with liposomal	
	amphotericin”	
	– Source : WHO-2010 [26]	
Liposomal amphotericin B	“Animal studies do not indicate direct or indirect harmful effects with	B
(AmBisome)	respect to reproductive toxicity. The safety of AmBisome in pregnant women	(No evidence of risk in studies)
	has not been established. Systemic fungal infections have been successfully	
	treated in pregnant women with conventional amphotericin B without obvious	
	effect on the foetus, but the number of cases reported is insufficient to	
	draw any conclusions on the safety of AmBisome in pregnancy. AmBisome should	
	be used during pregnancy if the possible benefits to be derived outweigh	
	the potential risks to the mother and foetus. It is unknown whether AmBisome	
	is excreted in human breast milk. A decision on whether to breastfeed while	
	receiving AmBisome should take into account the potential risk to the child	
	as well as the benefit of breast feeding for the child and the benefit of	
	AmBisome therapy for the mother”	
	– Source: The EMC [27]	
	“Amphotericin B deoxycholate and lipid formulations are the best	
	therapeutic options for visceral leishmaniasis. No abortions or vertical	
	transmission have been reported in mothers treated with liposomal	
	amphotericin”	
	– Source : The WHO-2010 [26]	
	This is the first line therapy for treatment against pregnancy in Kenya,	
	Ethiopia, Somalia, Sudan, South Sudan, Uganda, and Brazil	
	– Source : The WHO [28]	
Pentamidine	Contraindicated during the first trimester of pregnancy	C
	– Source : WHO-2010 [26]	(Risks cannot be ruled out)
Drug Name	Note	
---------------------	---	
Miltefosine (Impavid)	Contraindicated in pregnancy: “Impavid may cause foetal harm. Foetal death and teratogenicity occurred in animals administered miltefosine at doses lower than the recommended human dose. Do not administer IMPAVIDO to pregnant women. Obtain a serum or urine pregnancy test in females of reproductive potential prior to prescribing IMPAVIDO. Females of reproductive potential should be advised to use effective contraception during IMPAVIDO therapy and for 5 months after therapy. “	
	– Source: The US FDA Impavid prescribing information [29]	
	“Miltefosine is potentially embryotoxic and teratogenic and should not be used during pregnancy. Women of child-bearing age should be tested for pregnancy before treatment and use effective contraception for 3 months after treatment.”	
	– Source: WHO-2010 [26]	

| Paromomycin (aminosidine) | “Otoxicity in the foetus is the main concern. Insufficient data are available on the use of paromomycin in pregnant women”
| | – Source: WHO-2010 [26]
| | “Paromomycin crosses the placenta and can cause renal and auditory damage in the unborn child. Paromomycin is excreted in breast milk and adverse effects in the breastfed infant cannot be excluded.”
| | – Source: National guidelines of Kenya-2017 [30] |

| Risk Category | D (Positive evidence or risk) | No category assigned |
Material and Methods

Literature search

A review of all published literature was undertaken on 26th of March 2020 to identify records describing VL in pregnant women or any reports of vertical transmission of the disease in humans by searching the following clinical databases: Ovid MEDLINE®; Ovid Embase; Cochrane Database of Systematic Reviews; Cochrane Central Register of Controlled Trials; World Health Organization Global Index Medicus: LILACS (Americas); IMSEAR (South-East Asia); IMEMR (Eastern Mediterranean); WPRIM (Western Pacific); ClinicalTrials.gov; and the WHO International Clinical Trials Registry Platform (ICTRP). The systematic review was conducted in accordance with the Preferred Reporting Items for Systematic-Reviews and Meta-Analyses (PRISMA) guidelines (S1 Text)[31]. In addition, full text screening of the publications indexed in the Infectious Diseases Data Observatory (IDDO) clinical trials library was carried out to identify any description of VL in pregnant women [32]. The references of all included publications were further checked to identify any relevant articles. This review is not registered and the protocol describing the search strategy including database search strings, search dates and eligibility criteria for screening is presented in supplemental file (S2 Text).

Study screening

Study screening was carried out in two stages to identify the studies fulfilling the inclusion and exclusion criteria (S2 Text): title and abstract screening (stage I) and then full-text screening (stage II). As reports on VL in pregnancy are sparse, articles meeting minimal inclusion criteria and non-primary research articles such as opinion pieces, clinical guidelines, textbooks, chapters, correspondences, reports of accidental inclusion in trials, or
case reports of unplanned pregnancies during the study follow-up were also considered for comprehensiveness. No restrictions were applied regarding study design, follow-up duration, sample size, region, or the treatment regimen for eligibility of inclusion in this review. Title and abstracts were screened in the first stage, followed by screening the full-texts. Articles that were not in English language (Spanish, Portuguese, Korean, and German) were evaluated using google translation (https://translate.google.co.uk/).

The articles were screened against eligibility criteria by a single reviewer (PD). A second reviewer was consulted (SSP) when the first reviewer couldn’t reliably assess the eligibility. The first reviewer (PD) extracted data from all the eligible records and it was verified by the second reviewer (SSP) (who was not blinded) on all publications included in the review. Any discrepancy in the extracted information was flagged by the second reviewer and the differences were resolved through consensus. Screening and data extraction was carried out on a prospectively designed Excel database.

Data extraction

The following bibliographic information were extracted: study title, name of the first author, year of publication, name of the study site and country. The following maternal and child characteristics were extracted: age of the mother, period of gestation (or trimester), treatment administered including drug dosage, follow-up duration, the outcome of the treatment for mother (cured, relapsed, death), and foetal outcomes (abortion, stillbirth, premature birth, healthy born, vertical transmission).

Definitions

The records were classified as: case report/case series, prospective cohort or retrospective cohort studies. Records describing one or a small group of patients included as a part of prospective (or retrospective) studies in which VL in pregnancy was not of primary focus.
were considered as case report/case series. Similarly, studies that described a cohort of pregnant women without selection of a non-pregnant comparator group were also considered as case series. Countries were classified into sub-regions according to United Nations designation of geographical regions [33].

Data analysis
Since majority of the studies included were either case reports or case series, analysis of data was restricted to presentation of descriptive statistics and meta-analysis was not carried out. Descriptive summaries were presented for the characteristics of the studies included in the review, maternal characteristics (trimester, gestational age), treatment regimen including dosage and duration, clinical outcomes on the mother and the child. Graphics were generated using R software [34].

Assessment of risk of bias
The risk of bias in case report/case series was assessed using a checklist proposed in Murad-2018 [35]. The following domain were assessed: patient selection, ascertainment of exposure, outcome assessment, adequacy of follow-up, and reporting of results. A single case report was considered to be at a high risk of selection bias whereas a series of cases selected based on an audit of complete records over a study period was considered to be at a low risk of selection bias. Bias in ascertainment of exposure was considered to be high if the diagnosis of VL was based solely on clinical features. For cohort studies (prospective or retrospective), risk of bias was assessed using The Newcastle-Ottawa scale. Two authors (PD, SSP) independently assessed the risk of bias in the studies included.
Results

We identified 395 records from the literature searches up until 26th of March 2020, of which 272 were unique after removing duplicate entries. Of the 272 unique records, 99 were excluded at title and abstract screening stage (Fig 1) leaving 173 records for full-text assessment of which 53 met the eligibility criteria for inclusion in the review (Fig 1). An additional 17 records were identified by searching the references of the eligible records and through personal communication. A total of 70 records published from 1926 through 2020 were included in this review of which were 69 were case-reports or case-series and 1 was a retrospective cohort study with non-pregnant patient as a comparative group (Table 2). Further details on the studies included in this review are presented in supplemental files (S1 Data, S2 Data).

Spatial distribution

A total of 21 (30.0%) records were from Europe, 21 (30.0%) from Southern Asia, 13 (18.6%) from South America, 8 (11.4%) from Northern America, 5 (7.1%) from Eastern Africa, and 1 (1.4%) record each were from Eastern and Western Asia. There were 16 records from India (22.8%), 13 (18.6%) from Brazil, 8 (11.4%) from Sudan, and further breakdown by country is presented in Fig 2 (left panel). There were 62 (88.6%) records in English language, 7 (10.0%) in Portuguese, and 1 (1.4%) in French. The 70 records included in this review described 447 cases of VL in pregnant women, of whom 159 (35.6%) were from Sudan, 113 (25.3%) from...
South Sudan, 80 (17.9%) from India, 23 (5.1%) from Bangladesh, 20 (4.5%) from Brazil, 12
(2.7%) from Italy, 10 (2.2%) from Uganda, and the rest of the breakdown is presented in Fig
2 (right panel).

Fig 2: Number of records and patients by country of origin

Treatment regimens

Of the 447 pregnant mothers identified, the disease was detected during pregnancy in 394
(88.1%), retrospectively confirmed after giving birth in 52 (11.6%), and the time of
identification was not clear in one (0.2%). Ten (2.2%) were suspected of having carried the
infection during their pregnancy, of whom 6 were cases of sub-clinical persistence of the
parasites without the mother ever suffering from the disease previously. One case of
oligosymptomatic mother was identified in Brazil [36] (Table 2). Of the 394 mothers whose
infection was identified during pregnancy, 344 (89.1%) received a treatment, 3 (0.8%) were
untreated, and the treatment status was not clear in the remaining 47 (12.2%) (Table 2).

Description of characteristics and outcomes among 344 mothers who were treated and 3
untreated mothers are presented next.

Liposomal Amphotericin B (n=202)

There were 5 (2.5%) mothers treated in the first trimester, 8 (4.0%) in second trimester, 9
(4.5%) in third trimester, and the time in pregnancy was not clear in 180 (89.1%). Survival
status was not reported or was unclear in 26 (12.9%) mothers and from the remaining 176
mothers, a total of four (2.3%) maternal deaths were reported. There were a total of 5
(2.9%) miscarriages (trimester not clear), 1 (0.6%) foetal death (from a mother in 1st
trimester), 1 (0.6%) stillbirth (trimester not clear), and 1 (0.6%) premature birth (trimester
not clear). Three cases of vertical transmission were identified [37–39]: one was detected immediately after vaginal birth (the baby was treated with L-AmB and recovered successfully), another at 11 months after birth (treatment information not available), and for the third case, vertical transmission was suspected at 8 months after birth (treated with sodium stibogluconate 20 mg/kg IV for 20 days and discharged) (Table 3).

Pentavalent antimony (n=92)

There were 20 (21.7%) mothers in the first trimester, 45 (48.9%) in the second, 22 (23.9%) in the third, and the time in pregnancy was not clear in 5 (5.4%). Survival status was available on 87 (94.6%) mothers of whom 4 (4.6%, 4/87) died due to hepatic encephalopathy [40]. There were 24 (27.6%) abortions (or spontaneous abortions) [13,41], 2 (2.3%) miscarriages, 2 (2.3%) pre-term births [40,42], and 1 (1.1%) mother required splenectomy after delivery due to poor recovery [43]. One of the babies died due to myelomeningocele 3 hours after birth [40], another died one day after being born [44], another died due to VL at 2 months [40], and one was born with Down’s syndrome to a 47 years old mother [40]. There were 3 cases of vertical transmission identified [45–47], detected at 6, 7, and 12 months after birth. All three of them were treated with PA; 1 baby died (who was born with signs of intra-uterine growth retardation and was diagnosed with vertical VL at 7 months) and the other two survived (Table 3).

Amphotericin B deoxycholate (n=20)

Of the 20 mothers treated with amphotericin B deoxycholate, 3 (15.0%) were in their first trimester, 6 (30.0%) in the second, 3 (15.0%) in the third, and the trimester was not clear in 8 (40.0%). There was one (5.0%) maternal death after 7 days of treatment due to haemorrhagic complications occurring after delivery (the mother was in 28.7 ± 7.8 weeks of
pregnancy—exact time not available) [48]. The remaining 19 mothers were discharged alive. The delivery of babies was described as normal for 18 mothers, haemorrhagic complication occurred in a mother after delivery (as described earlier) [48], and the information was not reported on 1. There was no evidence of vertical transmission of the disease in 12 (60.0%) babies in whom the information was reported. Nineteen of the children were alive and the survival status for 1 was missing.

Pentavalent antimony plus paromomycin (aminosidine) (n=11)

Eleven pregnant mothers were treated with sodium stibogluconate plus aminosidine (paromomycin) [14,49]. Information regarding trimester, maternal survival status, or vertical transmission were not available. One spontaneous abortion was reported [49].

Liposomal amphotericin B plus pentavalent antimony (n=4)

Four mothers were treated with the combination regimen [50], of whom two in the second trimester and two in their third. L-AmB was administered at 3–7 mg/kg daily on days 1, 6, 11 and 16 (or on days 1, 2, 3, 4, 10 and 15), followed by 20 mg/kg sodium stibogluconate intramuscularly once daily for 30 days. All four mothers were discharged alive. At discharge, one mother delivered a healthy baby and the remaining three were still pregnant – no follow-up data was available.

Paromomycin (aminosidine) (n=3)

Three pregnant mothers were treated with paromomycin administered by deep gluteal intramuscular injection once daily for 21 consecutive days [51]. The delivery was described as normal for all three with normal healthy babies at birth and all three mothers were alive.
Unclear drug name (n=12)

Two publications described one case each without reporting the name of the drug administered [52,53]. In an article, the number of mothers (n=10) allocated to each drug arm (pentavalent antimony or amphotericin B deoxycholate) was not clear [54]. Two (16.7%) of the mothers were in their third trimester and the status was unknown for the remaining 10 (83.3%). There were two (16.7%) maternal deaths [54] and two cases of vertical transmission [52,53]. The first one was identified at 8 months after birth and another at 6 weeks after birth (the baby died after 3 days). Both babies were administered treatment upon detection of VL.

Untreated (n=3)

Three cases of VL identified during pregnancy were untreated [12,55,56]. Treatment was deferred until after delivery due to safety concerns in one study [12]; there were signs of intra-uterine growth retardation requiring emergency C-section, and both mother and the child were alive. The second mother was not treated due to lack of adequate hospital resources [55]; the baby born to the mother died after 2 months due to malnutrition with no evidence of vertical transmission. In the third case, VL was diagnosed but the mother died after giving birth and before treatment could be administered [56]; the baby also died and foetal part placenta examination revealed presence of Leishman Donovan bodies by PCR indicating vertical transmission.

Confirmed/probable/suspected vertical transmission

We identified a total of 26 cases of confirmed, probable or suspected cases of vertical transmission (Table 3). The median time to detect vertically transmitted VL was 6 months (range: 0–18 months). Eleven children were born to mothers in whom the disease status
was confirmed during their pregnancy (3 were treated with L-AmB, 3 were treated with PA, the drug name was not clear in 2, 1 was untreated and the treatment status was not clear in remaining 2). Histopathological examination of the placenta confirmed the vertical transmission of the disease in two cases [47,56] and this was not reported for the remaining cases. Treatment status was described in 18 children, of whom 11 received pentavalent antimony, 6 received L-AmB and 1 received amphotericin b deoxycholate. Two of the children died (one received pentavalent antimony and the drug name was not clear in the other).

Risk of bias assessment

Of the 69 case reports/case series, 48 (69.6%) were considered to be at a high risk of bias in patient selection, 9 (13.0%) were at high risk of exposure (confirmed VL status) ascertainment bias, 12 (17.4%) were at high risk of outcome ascertainment bias, 13 (18.8%) at high risk of incomplete reporting bias, and 14 (20.3%) studies were at a high risk of bias due to inadequate follow-up (See S1 Table). One retrospective cohort study with a comparative group of non-pregnant patient group was considered of high quality.
Table 2: Description of reported 447 cases of VL in pregnant or lactating women

Author-year	Country	Time of detection/description	Number of mother(s)	Trimester	Description of maternal treatment	Pregnancy outcome
Low and Cooke-1926	UK	During pregnancy	1	3	Urea Stibamine	Normal delivery
Hindle-1928	China	Retrospectively suspected	1	Not applicable (retrospective)	No information	No description
Hindle-1928	China	Retrospectively suspected	1	Not applicable (retrospective)	No information	No description
Banerji-1955	India	During pregnancy	1	2	Treated with 10 IV Urea Stibamine	Remission of fever
el-Saaran-1979	UAE	During pregnancy	1	2	Pentostam: 6 ml IV daily for ten days, at intervals of ten days to a total of 180 ml	Did not recover; Splenectomy performed after birth
Rees-1984	Kenya	During pregnancy	1	No information	Pentostam	No information
Blanc-1984	France	Retrospectively identified	1	Not applicable (retrospective)	Treatment with N-methylgluca mine (antimony) for 10 days	Normal delivery
Badarao-1986	Brazil	During pregnancy	1	3	Untreated (posthumous diagnosis)	Mother died 5 weeks later
Mittal-1987	Indian	During pregnancy	1	3	Drug name not stated	Normal term delivery
Nyakundi-1988	Sudan	During pregnancy	1	Not clear	Unclear	Premature birth at 6 months of gestation
Yadav-1989	India	Retrospectively identified	1	2	Not treated (herbal medicine were given)	Normal and uneventful delivery
Elamin & Omer 1992	Sudan	During pregnancy	1	3	Drug name not stated	Normal delivery
Eltoum-1992	Sudan	During pregnancy	1	2	SSG: 10 mg/kg/daily for 30 days	Normal delivery
Eltoum-1992	Sudan	During pregnancy	1	2	Not clear	Abortion of a female foetus
Seaman-1993	Sudan	During pregnancy	3	Not clear	SSG 20 mg/kg/day for 30 days	No information
Study	Country	Time Period	Duration	Treatment Details	Outcome	
--------------	-----------	-------------	----------	--	------------------	
Seaman-1993[14]	Sudan	During pregnancy	3	Not clear	SSG + Aminosidine (20 mg/kg/day SSG for 17 days + 15 mg/kg of Aminosidine for 17 days)	No information
Thakur-1993 [86]	India	During pregnancy	1	2	Amphotericin B (1 mg/kg body weight daily starting with 0.5 mg/kg body weight till a total dose of 20 mg/kg)	Normal delivery
Thakur-1993 [63]	India	During pregnancy	1	2	Amphotericin B (1 mg/kg body weight daily starting with 0.5 mg/kg body weight till a total dose of 20 mg/kg)	Normal delivery
Thakur-1993 [63]	India	During pregnancy	1	2	Amphotericin B (1 mg/kg body weight daily starting with 0.5 mg/kg body weight till a total dose of 20 mg/kg)	Normal delivery
Thakur-1993 [63]	India	During pregnancy	1	2	Amphotericin B (1 mg/kg body weight daily starting with 0.5 mg/kg body weight till a total dose of 20 mg/kg)	Normal delivery
Giri-1993 [64]	India	During pregnancy	1	2	Amphotericin B	Normal term delivery
Gradoni-1994 [65]	Italy	During pregnancy	1	2	L-Amb total dose of 18 mg/kg	Normal delivery
Gradoni-1994 [65]	Italy	Retrospectively identified (treated after delivery)	1	Not applicable (retrospective)	Untreated (diagnosed after birth); treated with 18 mg/kg/day PA after birth	Normal delivery
Jeronimo-1994 [66]	Brazil	During pregnancy	1	No information	Meglumine antimoniate (20 mg/kg/day for 20 days)	No information
Utili-1995 [8]	Italy	During pregnancy	1	2	Meglumine antimoniate (12 mg/kg for 20 days)	Normal term birth (patient delivered a baby weighing 4.2 kg at 41 weeks of pregnancy)
Sharma-1996 [67]	India	Retrospectively identified	1	Not applicable (retrospective)	Untreated	Normal delivery
Thakur-1998 [91]	India	During pregnancy	1	No information	Amphotericin B deoxycholate (total dose 20 mg/kg)	Normal delivery
Study	Country	Study Phase	Gestational Age	Treatment	Outcome	
---------------	---------	-------------	-----------------	-----------	--------------------------	
Thakur-1998	India	During pregnancy	1	No information	Amphotericin B deoxycholate (total dose 20 mg/kg)	Normal delivery
Thakur-1999	India	During pregnancy	1	No information	Amphotericin B (total dose 20 mg/kg)	Normal delivery
Thakur-1999	India	During pregnancy	1	No information	Amphotericin B (total dose 20 mg/kg)	Normal delivery
Thakur-1999	India	During pregnancy	1	No information	Amphotericin B (total dose 20 mg/kg)	Normal delivery
Meinecke-1999	Germany	Retrospectively identified	1	Not applicable (retrospective)	Untreated (retrospective identification)	Complicated pregnancy with febrile gastroenteritis; birth weight was 3,720 g
Viana-2001	Brazil	Retrospectively identified	2	Not applicable (retrospective)	Untreated (retrospective identification)	One preterm birth
Kumar-2001	India	During pregnancy	1	3	Untreated (treatment deferred until birth)	Intrauterine growth retardation; small for gestational age; Emergency C-section required
Dereeure-2003	France	During pregnancy (routine check-up)	1	2	L-AmB (3 mg/kg daily for five days; a 6th injection 10 days later)	Normal term birth
Caldea-2003	Brazil	During pregnancy	1	1	Amphotericin B (1mg/kg for 14 days)	Normal term birth
Silveria-2003	Brazil	During pregnancy	1	2	Meglumine antimoniate (850mg/day for 20 days)	Premature birth
Pagliano-2003	Italy	During pregnancy	2	No information	L-AmB	Normal delivery
Kumar-2004	Iran	Retrospectively identified (after death of mother-child)	1	3	Untreated (posthumous diagnosis)	Death
Pagliano-2005	Italy	During pregnancy	1	Not clear	L-AmB (3 mg/kg at days 1–5 & 3 mg/kg at day 10)	Healthy term birth
Pagliano-2005	Italy	During pregnancy	1	Not clear	L-AmB (3 mg/kg at days 1–5 & 3 mg/kg at day 10)	Healthy term birth
Pagliano-2005	Italy	During pregnancy	1	Not clear	L-AmB (3 mg/kg at days 1–5 & 3 mg/kg at day 10)	Healthy term birth
Pagliano-2005	Italy	During pregnancy	1	Not clear	L-AmB (3 mg/kg at days 1–5 & 3 mg/kg at day 10)	Healthy term birth
Author	Country	Timeframe	Cases	Details	Outcome	
-----------------	-----------	--------------------	-------	---	---	
Pagliano-2005	Italy	During pregnancy	1	Not clear	L-AmB (3 mg/kg at days 1–5 & 3 mg/kg at day 10)	Healthy term birth
Figueiró Filho-2005	Brazil	During pregnancy	1	3	L-AmB (1 mg/kg/day for 21 days)	Normal birth at 38 weeks with baby weighing 2.995 g
Mueller-2006	Sudan	During pregnancy	23	11 in first; 8 in second; 4 in third	SSG: 20 mg/kg for 30 days	13 spontaneous abortion during days 13 to 30 of SSG; 1 spontaneous abortion prior to treatment; 1 healthy baby born; remaining 8 still pregnant at discharge
Mueller-2006	Sudan	During pregnancy	4	2 in second; and 2 in third	L-AmB + SSG (AmBisome 3–7 mg/kg daily on days 1, 6, 11 and 16 or on days 1,2,3,4,10, and 15), followed by 20 mg/kg SSG IM once daily for 30d	1 healthy baby born; Remaining 3 were still pregnant at discharge
Mueller-2006	Sudan	During pregnancy	12	2 in first; 6 in second; 4 in third	L-AmB (AmBisome 3–7 mg/kg daily on days 1, 6, 11 and 16 (or on days 1,2,3,4,10, and 15)	Premature birth (n=1); Two healthy babies; Remaining 9 still pregnant at discharge
Boehme-2006	Germany	Possibly before pregnancy	1	Not applicable (retrospective)	No treatment given (retrospective speculation)	Spontaneous birth at 39 weeks of gestation and healthy baby delivered
Mueller-2007	Sudan	During pregnancy	5	No information	AmBisome: Six doses of 2.5–8.2 mg/kg on days 1, 2, 3, 5, 10, 15	No information
Viera-2007	Brazil	During pregnancy	1	3	Untreated	Baby died 2 months after birth
Topno-2008	India	During pregnancy	1	2	Amphotericin B (15 infusions of 1 mg/kg)	Normal term birth
Topno-2008	India	During pregnancy	1	2	Amphotericin B (15 infusions of 1 mg/kg)	Normal term birth
Topno-2008	India	During pregnancy	1	3	Amphotericin B (15 infusions of 1 mg/kg)	Normal term birth
Topno-2008	India	During pregnancy	1	3	Amphotericin B (15 infusions of 1 mg/kg)	Normal term birth
Figueiró Filho-2008	Brazil	During pregnancy	1	-	Amphotericin B deoxycholate (1 mg/kg/day for 20 days)	One maternal death after 7 days of treatment due to haemorrhagic complications occurring after delivery
Study	Country	Intervention	Dose and Duration	Outcome		
---------------	------------	---------------------------------------	-------------------	---		
Figueiró Filho-2008 [48]	Brazil	During pregnancy	1	Untreated during pregnancy (Diagnosed after birth and given SSG: 20 mg/kg/day for 20 days) No information		
Figueiró Filho-2008 [48]	Brazil	During pregnancy	1	L-AmB (3 mg/kg/day for 20 days) No information		
Figueiró Filho-2008 [48]	Brazil	Retrospectively confirmed	1	-	No information	
Lorenzi-2008 [80]	UK	Retrospectively identified	1	Miscarriage		
Adam-2009 [40]	Sudan	During pregnancy	42	SSG: 20 mg/kg SSG once daily IM for 30 days	Miscarriage in first trimester (n=2); death due to hepatic encephalopathy (n=4); Preterm birth (n=2)	
Muller-2009 [54]	Uganda	During pregnancy	10	PA or amphotericin B deoxycholate	2 maternal deaths	
Papa-Georgiou-2010 [37]	Greece	Confirmed few days before labour	1	L-AmB (4 mg/kg on 6 consecutive days and repeated doses at days 14 and 21)	No information	
Miah-2010 [13]	Bangladesh	During pregnancy	11	SAG (20 mg/kg for 30 days)	Abortion (n=11)	
Miah-2010 [13]	Bangladesh	During pregnancy	5	SAG (20 mg/kg for 30 days)	Good outcome (n=5)	
Zinchuk and Nadraga-2010 [38]	Ukraine	During pregnancy	1	L-AmB (3 mg/kg days 1–5 followed by a single dose 3 mg/kg on day 10)	Delivery by elective C-section at 38 weeks of gestation; baby Birth weight of 2900g	
Sinha-2010 [81]	India	During pregnancy	3	L-AmB (5 mg/kg on days 0, 1, 4, and 9)	Not described (successful treatment)	
Haque-2010 [82]	Bangladesh	Retrospectively identified	1	-	Vertical transmission identified at 15 days of birth	
Ritmeijer-2011 [83]	Ethiopia	During pregnancy	1	L-AmB (6 infusions of 5 mg/kg)	Good response to treatment	
Ritmeijer-2011 [83]	Ethiopia	During pregnancy	1	L-AmB (6 infusions of 5 mg/kg)	Good response to treatment	
Study	Location	Time of Diagnosis	Incidence	Treatment	Outcome	
---------------	----------	------------------	-----------	---	--	
Sinha-2011	India	During pregnancy	3	Paromomycin (11 mg/kg/day for 21 days)	Normal delivery	
Pilaca-2011	Albania	Retrospectively identified	1	Untreated [After giving birth: Glucantime for 28 days. The baby was not fed by his mother’s breast. PA given as L-AmB was not available]	Preterm birth	
Damodaran-2012	UK	Retrospectively identified	1	Untreated during pregnancy (diagnosed after birth); After diagnosis L-AmB (total dose of 20 mg/kg over 5 days)	Vertical transmission (Suspected) at 15 months	
Lima-2013	Brazil	During pregnancy	1	L-AmB	No information	
Lima-2013	Brazil	Retrospectively identified	1	Untreated (diagnosed after birth); Amphotericin b deoxycholate 1 mg/kg followed by IV L-AmB 3mg/kg/day	Acute foetal distress requiring section delivery; Extremely premature birth (1,170g)	
Mescouto-Borges-2013	Brazil	Retrospectively identified	1	Untreated (diagnosed after birth); IV L-AmB given at 3 mg/kg/day for 7d	Acute foetal distress requiring section delivery; Premature birth	
Milsovic-2013	Serbia	Retrospectively identified	1	Untreated (diagnosed after birth)	Normal vaginal delivery	
Salih-2014	Sudan	During pregnancy	23	L-AmB (30 mg/kg divided into 10 IV infusions of 3 mg/kg)	No information	
Burza-2014	India	During pregnancy	49	Ambisome	No information	
Bode-2014	Germany	Not clear	1	No information	Vertical transmission at 8 months	
Llamazares-2014	Spain	Retrospectively identified	1	-	Normal delivery	
Study Year	Country	Pregnancy Week	Study Design	L-AmB Dose	Prognosis	
------------	---------	----------------	--------------	------------	-----------	
Rahman-2014 [92]	Bangladesh	During pregnancy	1	No information	L-AmB	Stillbirth baby
Colomba-2015 [93]	Italy	Retrospectively identified (After 4 days of giving birth)	1	After delivery	Untreated (treated with L-AmB 3 mg/kg/day on days 1-5 and on day 10)	No information
Pawar-2015 [94]	India	During pregnancy	1	2	Amphotericin B deoxycholate (later switched to liposomal preparation to minimise nephrotoxicity)	Full term normal vaginal delivery at 38 weeks of gestation
Kumar-2015 [95]	India	Retrospectively identified (After 5 months of delivery)	1	3	Untreated	Normal vaginal birth
Almada-silva-2015 [96]	Brazil	During pregnancy	1	1	L-AmB	Foetal death
Basher and Nath-2017 [56]	Bangladesh	During pregnancy	5	No information	One untreated; One was treated with L-AmB	Untreated mother died
Kimutai-2017 [49] (personal communication with Dr Alves)	East Africa	During pregnancy	8	No information	SSG+PM	Spontaneous abortion (n=1)
Panagopoulos-2017 [97]	Greece	During pregnancy	1	3	L-AmB (3 mg/kg/day for 5 days and on days 14 and 21)	Normal term birth
Adam-2018 [98]	Sudan	During pregnancy	45	Mostly 3rd	No information	8 maternal death (6 in prenatal and 2 in postnatal); 37 survived; 30 were full term; 6 pre-term birth; 2 spontaneous abortion; 1 stillbirth
Goyal-2018 [99] (personal communication With Dr Alves)	India	During pregnancy	2	No information	Single dose AmBisome (10 mg/kg)	No complications
Russo-2018 [100]	Italy	Retrospectively identified	1	-	-	Vertical transmission
Cunha-2019 [101]	Brazil	During pregnancy	1	3	L-AmB (3 mg/kg for 7 days)	Normal term birth without complications
Argy-2019 [39]	Brazil	During pregnancy	1	3	L-AmB	Vertical transmission at birth
Parise-2019 [102]	France	Retrospectively identified	1	-	-	Maternal death
Retrospectively identified (two weeks post-partum)	During pregnancy	Identified				
--	-----------------	------------				
L-AmB (30 mg/kg in 6 doses)	L-AmB = Liposomal amphotericin B; PA = pentavalent antimony; SSG = sodium stibogluconate; SAG = Sodium antimonyl glycolate; IV = intravenous; MI = intramuscular;	L-AmB (30 mg/kg in 6 doses)				

PM = Paromomycin
Table 3: Details of 26 reported cases of confirmed, probable, or suspected vertical VL

Study	Location	Case description
Low and Cooke-1926 [45]	UK	A retrospective description of a child born to a mother who contracted the disease during pregnancy while residing in India and had given birth in the UK.
Hindle-1928 [57]	China	A four months' old baby whose spleen puncture confirmed presence of Leishmania parasites. “The main interest of this case lies in the fact that it could not possibly have been exposed to the bites of sandflies, as their season ended approximately two months before the child was born. Although the mother showed no obvious signs of disease it is difficult of explanation except on the hypothesis of congenital transmission. Low and Cooke (1926) recorded a case of Indian Kala Azar in a child born in England, and there can be no doubt that in this patient the infection was derived from the mother who was also infected.”
Hindle-1928 [57]	China	“Dr Marshall Hertig kindly informed me of a similar case at Hsii-Chowfu in which the patient, a five months old child, was successfully treated for Kala Azar at the local mission hospital. This infant also, from the date of its birth, could never have been exposed to the bites of sandflies.”
Banerji-1955 [46]	India	Mother contracted kala-azar in the fifth month of pregnancy and suspected vertical transmission occurred when the child was 6 months old.
Blanc and Robert-1984 [59]	France	Mother with a subclinical infection during pregnancy with the disease detected within a month after delivery. The child had a confirmed VL and was the first case reported in the hospital. The child never left the hospital and never came in contact of dogs thus suggesting that congenital /vertical transmission was the likely mode of transmission.
Mittal-1987 [52]	India	“An 11-month-old male infant admitted with symptoms that were later confirmed as VL. The baby’s mother had also suffered from kala-azar while carrying this child. As the baby and his mother did not leave New Delhi, India, where the case was related, either during or after the delivery and the vector found in New Delhi was not competent to transmit leishmaniasis, the infant could not have been infected by the bite of a sandfly. It therefore seems most likely that he was congenitally exposed to kala-azar.”
Study	Country	Description
---------------------------	---------	---
Nyakundi-1988 [61]	Kenya	“We recently treated a 4 months old male infant born prematurely on 18 June 1986, after 6 months gestation to a then febrile para 6+3 mother diagnosed as having had kala-azar during pregnancy. Mother and infant were admitted to the Clinical Research Centre, Kenya Medical Research Institute, on 20 October-1986; when kala-azar was confirmed in the mother. This infant with congenital kala-azar was only the fourth and youngest patient with this disease ever reported in the world medical literature. The mode of infection in the baby could be (a) direct transmission from mother to offspring, (b) acquired in hospital, (c) acquired at the time of birth from perineal haemorrhages with swallowing of maternal blood or secretions or through the cord or skin abrasions, or (d) acquired congenitally from the mother through the placenta. Only the last of these possible modes of transmission is likely in view of the poor health of the infant from the 6th day of life, the mother’s bad obstetric history, the hospital’s high altitude which makes it unsuitable for sandfly transmission, and because the period that elapsed from birth to the appearance of symptoms was compatible with a congenital infection.”
Yadav-1989 [62]	India	An 11-month male infant was admitted with kala-azar. The mother suffered from the disease during pregnancy. The mother from Bihar migrated to Delhi during first trimester. She showed signs of disease during sixth month of pregnancy. The most likely mode of infection was in utero transmission of the disease.
Eltoum-1992 [47]	Sudan	During an epidemic of visceral leishmaniasis in the Sudan, two cases of congenital kala-azar were seen. The first child, whose mother had contracted kala-azar in southern Sudan, was born in Khartoum, where no transmission of leishmaniasis is currently occurring. At seven months, the child had fever, lymphadenopathy, and hepatosplenomegaly; leishmania parasites were detected in the bone marrow. The child died and an autopsy showed leishmania parasites in all tissues including the lungs, kidneys, and thymus.
Eltoum-1992 [47]	Sudan	In the second case, parasites were found in the placenta of a five-month-old foetus.
Elamin & Omer-1992 [53]	Sudan	A case of visceral leishmaniasis in a 6-week-old infant from southern Sudan who most likely got the infection through transplacental transmission. This is the first reported case of congenital kala-azar in Africa and the seventh in the global medical literature.
Sharma-1996 [67]	India	“Thus, in all possibility, it was a case of congenital kala-azar acquired transplacental by the baby from a mother having subclinical kala-azar.” The infection was possibly active when the child was 4 months of age and it was detected when the child was 18 months.
Meinecke-1999 [70]	Germany	Because the child had never left Germany, nonvector transmission was suspected and household contacts were examined. His mother was the only one who had a positive antibody titre against Leishmania donovani complex. She had travelled several times to endemic Mediterranean areas (Portugal, Malta, and Corse) before giving birth to the boy. But she had never been symptomatic for visceral leishmaniasis. Her bone marrow, spleen, and liver biopsy results...
Boehme-2006 [77] Germany We describe a case of VL in a German infant, who never had been to a VL endemic area. Most likely, the parasite was congenitally transmitted from the asymptomatic mother to her child.

Papageorgiou 2010 [37] Greece We report the first case of congenital disease described in Greece. The mother of the infant was hospitalised a few days before labour because of anaemia and hepatosplenomegaly, and titres for Leishmania antibodies were positive. A bone marrow aspirate showed no evidence of malignancy, except from a slight decrease of myelopoiesis, erythropoiesis and thrombopoiesis. However, the promastigote form of Leishmania was found, and the refore, diagnosis of leishmaniasis was confirmed.

Haque-2010 [82] Bangladesh The first report of vertical transmission of VL in Bangladesh

Zinchuk and Nadraga 2010 [38] Ukraine An 8-month-old boy was diagnosed with visceral leishmaniasis in Ukraine, a non-endemic area. His mother had been treated for visceral leishmaniasis at 28–32 weeks gestation whilst working in Alicante, Spain and delivered her infant at 38 weeks gestation by elective caesarean section in Ukraine. It is presumed that the infant’s infection was as a result of vertical transmission.

Pilaca-2011 [84] Albania Leishmania amastigotes were detected in bone marrow biopsy of the mother. Two days later, premature birth was simulated. After 2-3 months of the birth the baby was not well. After admitted to hospital, baby resulted positive for VL. He was treated with Glucantime and was cured after a scheme of two 14-day cycles with good outcome.

Damodaran-2012 [85] UK “A 15 month-old girl, family from East Timor, referred from primary care with weight-loss and a non-healing skin ulcer. She appeared undernourished with pallor, pyrexia and hepatosplenomegaly. FBC showed pancytopenia. Bone marrow examination confirmed Leishmaniasis. Her mother had inanition Leishmaniasis. The child was born in United Kingdom with no history of foreign travel and responded well to treatment with Ambisome”

Mescouto-Borges-2013 [86] Brazil We report two human cases of congenitally transmitted visceral Leishmaniasis in two patients who developed symptoms during pregnancy. The diagnosis was made by visual examination of Leishmania parasites in bone marrow aspirates of the mothers and by detecting parasite DNA in bone marrow samples of the new-born children using polymerase chain reaction.

Bode-2014 [90] Germany “One infant girl (P8) had only been in an endemic area (Spain) in utero. Vertical transmission resulting in congenital visceral leishmaniasis must be assumed, as the mother, who remained clinically asymptomatic, was serologically positive. Diagnosis of visceral leishmaniasis was delayed for more than 3 weeks”. The girl had never been abroad after birth and the mother had positive Leishmania serology after a trip to Spain during pregnancy.
Author	Country	Details
Kumar-2015	India	It was presumed that the infant's infection was a result of vertical transmission. In our case we can presume that the mother might be having subclinical infection and has transmitted the disease to the offspring.
Basher and Nath-2017	Bangladesh	“One term mother died before starting treatment after the birth of a death baby due to pregnancy & disease complication. Foetal part placenta was collected; found PCR positive for LD body. Kala azar in the mother may have been the cause of the foetal wastage”
Russo-2018	Italy	“Here we present a 6-month-old girl with parents from Southern Italy. Our case of vertically transmitted Leishmaniasis highlights the importance of recognizing infectious etiologies.”
Argy-2019	France	Few intracellular Leishmania amastigotes were found during the microscopic examination of the placenta confirmed by positive PCR results. Sequential PCR follow-up of VL in the HIV-positive pregnant woman and her newborn supports our hypothesis that the transmission of VL in this neonate occurred transplacentally.

338 *An article from Sudan (Adam 2009 [40]) described a case of a 2 months baby with parasites detected in lymph node. The article did not mention whether this could be a case of vertical transmission.*

341 *In Nyakundi-1988[61], three cases of vertically transmitted VL in clinical literature were identified: Low and Cooke-1926[45]; Banerji-1955[46] and Napier-1946[103]. The first two reports are included in this table whereas we have decided not to include the last report as a case of vertical transmission as the original article could not be retrieved and case details couldn’t be verified. The following description appears in Napier-1946 [103]: “Even in India kala-azar occurs among infants; we reported a case of an infant of less than eight months with well-developed kala-azar of about four months’ duration”. While it is clear that VL was identified when the infant was of four months old, there is no further description of the case [103]. The brief description in Napier-1946[103] matches an earlier publication (Napier and Das Gupta-1928 [104]) in which the plausibility of vertical transmission was ruled out: “As the mother showed no sign of the disease at all it is extremely unlikely that the child was suffering from the disease at birth.*
Discussion

The occurrence and effects of VL during pregnancy is under-researched and poorly understood as evidenced by having identified only 70 publications describing a total of 447 cases of VL in pregnancy in the past 90 years.

The small case volume reported in the literature could have several explanations. In the first place, there is an apparent imbalance in caseloads with predominance of the disease among males; ascribed to biological or behavioural causes [3,17,63,105–107]. Pentavalent antimony is contraindicated in pregnancy and was the first line therapy before the development of Liposomal amphotericin B (L-AmB) – this might have traditionally dissuaded physicians from treating VL during pregnancy and leaning towards postponing the treatment until after delivery unless treatment is absolutely warranted [12]. However, this situation might have changed recently as liposomal amphotericin B has no contraindication during pregnancy and is the treatment of choice. It has also been postulated that early pregnancies are missed due to spontaneous abortion caused by VL [63]. Women with childbearing potential or those who are already pregnant are systematically excluded from VL clinical studies and only a third of the patients enrolled in clinical trials are females [17]. For example, of the 158 studies indexed (to date) in the IDDO systematic library of VL clinical trials, 52 studies presented details from screening logs of patients (33,455 patients were screened; 17,572 patients were excluded including 32 pregnant women, and 15,883 included) [See S1 Data] [32]. Assuming all those screened for eligibility indeed had the disease, this would give an estimated 0.096% (likely an underestimate) of the total cases of VL to be pregnant women. If there are 100,000 cases per year, this translates to a minimum of 96 cases of the disease in pregnancy per year. It is clear that the likely size of the problem
is much bigger than what can be estimated from available reports. For example, during Jan
2016–Jul 2019 in Lankien, Jonglei state, South Sudan, out of 4,448 cases of VL diagnosed,
39% occurred in women of childbearing age, and 13% of the women (2.5% of all cases) were
pregnant [2]. It is also likely that the clustering in space and time of reported cases (more
than half of all cases in this review were from studies in Sudan or South Sudan after 2005) is
more a result of local interest into the subject matter than a true reflection of disease
burden.

There was also geographical disparity in the treatment regimens used, reflecting
heterogeneity in treatment practices. Only half of the patients received amphotericin B
regimens in studies conducted in Africa compared to more than two-thirds of the patients
from Asia. There was a total of 11 maternal deaths; four (4.6%, 4/87) occurred in those
treated with pentavalent antimony-based regimens, 4 (4/176; 2.3%) among those treated
with L-AmB, 1 (1/20, 5.0%) with amphotericin b deoxycholate, and the drug name used for
the treatment was not clear in 2 (16.7%, 2/12) cases. Spontaneous abortion following PA
regimen was observed in just over a quarter of the mothers (24/88, 27.3%) while there were
a total of 5 (2.9%) miscarriages and 1 (0.6%) foetal death following L-AmB regimen. Taken
together, these results support the use of liposomal amphotericin B for the treatment of VL
during pregnancy.

Our review identified 26 cases of vertically transmitted VL with a median time of detection
of 6 months (range: 0–18 months). This suggests that children born to mothers with VL
during pregnancy require a longer post-treatment follow-up than the standard 6-months
follow-up duration among non-pregnant patients to monitor the well-being of the maternal-
foetal pair. The underlying mechanism of the onset of clinical leishmaniasis among neonates
and infants born to a successfully-treated mother during pregnancy (2.4% overall) is currently not clear; it has been ascribed to imbalances in immune-mechanism modulated by T cell responses (Th1/Th2) [10] or by parasites entering a state of dormancy in the lymph nodes [72].

Our review has identified limitations in reports of VL in pregnancy. Complete information was often not available on treatment administered and on efficacy and safety outcomes for the mother and baby. For 12% of the mothers, it could not be ascertained whether they had received any treatment or not. Majority of the studies were considered to be a high risk of bias for patient selection while some retrospective studies were at high risk of bias for ascertainment of exposure domain as VL diagnosis was purely based on clinical signs and symptoms or suspicion. This suggests that existing practices for management of VL in pregnancy is guided by limited evidence generated from case reports and small case series. High quality studies (such as Pekelharing-2020 [2]) is warranted for generation of a robust evidence regarding safety and efficacy of antileishmanial agents during pregnancy. There was also a lack of standardised reporting as information was missing on several critical parameters such as trimester status, time on detection of VL, and therapeutic outcomes of the mother and the child. Taken together, these findings highlight the need to improve and harmonise the reporting of VL in pregnant women. We have outlined a minimum checklist of items that might be useful for reporting purposes (Box 1).

As conducting randomised controlled trials during pregnancy poses ethical challenges, it is important to maximise currently available information from observational studies and case reports to gauge the potential safety of the therapies in pregnant women. Data from mothers who become pregnant after completion of therapy but within the follow-up period
enrolled in trials might provide further resource, especially on the reproductive consequences of the treatment (Table 4). The recently proposed safe ethical framework for the recruitment of women susceptible to and becoming pregnant is an important development towards filling the existing knowledge gap [18]. Like for many NTDs, there is currently an absence of a comprehensive pregnancy-specific registry for exposures to antileishmanials, with the exception of the one dedicated for miltefosine [108]. Therefore, creating an open registry where all these cases are indexed and continually updated would help in better characterisation of the safety aspects of the drugs. Finally, the Infectious Diseases Data Observatory (IDDO) data platform, that is currently standardising individual participant data from several VL clinical studies, offers a unique resource to explore host, parasite, and drug dynamics affecting the safety and efficacy in pregnant populations [109].

Conclusions

In conclusion, this review brings together scattered observations on VL in pregnant women and the cases of vertically transmitted VL reported in the clinical literature. Available reports clearly underestimate the scale of the problem. Existing therapeutic guidelines regarding the usage of drugs in pregnancy is guided by limited evidence generated from case reports and small case series. Our review suggests that liposomal amphotericin B should be the preferred treatment for VL during pregnancy.
Table 4: Description of patients enrolled in clinical trials who became pregnant after completion of treatment

Study	Number of patients	Treatment received at enrolment	Pregnancy and outcome description
Bhattacharya-2007 [110]	2	Miltefosine	"Despite extensive counselling for contraception, 2 cases of pregnancy were reported, with the conception date close to the exposure period. One patient became pregnant 2 weeks after the end of treatment, and the other became pregnant at 3 months after the end of the treatment period. Two healthy babies were delivered at gestational weeks of 39 and 40, without any birth anomaly"
Sinha-2011 [51]	1	Paromomycin	One female patient became pregnant more than 1 month after completing treatment. The offspring was born alive and determined to be normal/healthy just after birth.
Mondal-2014 [111]	4	Liposomal Amphotericin B (Single dose)	Four female participants became pregnant within months after treatment and in one the pregnancy was completed with delivery of a term normal birth after 6 months of follow-up. The other three pregnant women were clinically healthy during the last follow-up visit.
Jamil-2015 [112]	1	Paromomycin	Pregnancy was reported in one female during the follow-up period. The offspring was born healthy, and a hearing test conducted on the infant at 1.5 months of age confirmed reaction to sound. An otoscopy and oto-acoustic emission test to determine function of the middle and inner ear was conducted at 3 months of age and confirmed normal hearing function.
Pandey-2016 [113]	15	Miltefosine	All the female patients were suggested not to become pregnant within 6 months of treatment. However, 15 patients became pregnant within 6 months of follow-up (after 2 months of treatment completion). All these patients became pregnant 2 months after end of treatment. All of them were followed up till 1 year and all had full-term normal pregnancy with no congenital anomalies.
Box 1: Proposed minimum variable recording and reporting for studies or case reports for VL in pregnancy

Adapted from Saito-2017 [114]

Domain	Checklist Item
Maternal history	Parity
	Gravidity
	Maternal history of the disease
	History of travelling to endemic regions
	Any previous treatment of the disease
	Comorbidities (HIV, malaria, TB etc.)
Maternal characteristics	Age
	Weight
	Nutritional status
	Trimester
	Gestational age
Maternal clinical signs and symptoms	History of illness (duration of fever)
	Hepatomegaly status
	Splenomegaly
Diagnostics	Diagnostic method used (PCR, ELISA, rk39DAT, IFA)
	Sample analysed (blood, bone marrow aspirates, splenic aspirates etc)
	Method of confirmation of disease status
	Parasite species (L. donovani, L. infantum)
Treatment details	Dose, duration, frequency including mode of administration
	Concomitant medication status (antipyretics, antimalarial etc)
Delivery characteristics	Mode of delivery (C-section, natural)
---------------------------	--------------------------------------
Trauma during delivery	
APGAR score	
Examination of placenta	
Birth status (still birth, abortion, healthy birth)	
Any birth-related complications	
Declarations

Authors’ contributions

- Conceptualization: PD, PJG, PLO
- Data Curation: PD, SSP
- Formal Analysis: PD, SSP, PJG, PLO
- Funding Acquisition: PJG
- Investigation: PD, SSP, PJG, PLO
- Methodology: PD, SSP, EH, BJM
- Project Administration: PD, PLO
- Resources: PJG, PLO
- Software: PD
- Supervision: PJG, PLO
- Validation: PD, SSP, PJG, PLO
- Visualization: PD
- Writing – Original Draft Preparation: PD, PLO
- Writing – Review & Editing: PD, SSP, BJM, EH, KR, FA, PJG, PLO

Availability of data and material

The database(s) supporting the conclusions of this article are available within the tables and figures presented within the manuscript along with the supplemental files (S1 Data, S2 Data).

List of supplemental files

- S1 Text: PRISMA checklist
- S2 Text: Search details
- S1 Data: Screening list
- S2 Data: Study data
- S1 Table: Risk of bias assessment
Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Financial Disclosure Statement

The review was funded by a biomedical resource grant from Wellcome to the Infectious Diseases Data Observatory (Recipient: PJG; ref: 208378/Z/17/Z). The funders had no role in the design and analysis of the research or the decision to publish the work.

Competing interests

None

Acknowledgements

We would like to thank for the Prof. Bernhard Lämmle and his team for helpful responses on queries related to their manuscript.
References

1. WHO. Leishmaniasis: Key facts [Internet]. WHO. 2020 [cited 2020 Jul 5]. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis

2. Pekelharing JE, Gatluak F, Harrison T, Maldonado F, Siddiqui R, Ritmeijer K. Outcomes of visceral leishmaniasis in pregnancy*: A retrospective cohort study from South Sudan. PLoS Negl. Trop. Dis. 2020;14:e0007992.

3. World Health Organization. Control of the leishmaniases. World Heal. Organ. Tech. Rep. Ser. 949. 2010;22–6.

4. Alvar J, Croft S, Olliaro P. Chemotherapy in the Treatment and Control of Leishmaniasis. Adv. Parasitol. 2006;61:223–74.

5. Sundar S, Olliaro PL. Miltefosine in the treatment of leishmaniasis: Clinical evidence for informed clinical risk management. Ther. Clin. Risk Manag. 2007;3:733–40.

6. Boelaert M, Sundar S. Leishmaniasis. In: Farrar J, Hotez PJ, Junghanss T, Kang G, Laloo D, White NJ, editors. Manson’s Trop. Dis. 23rd ed. Elsevier Health Sciences; 2013. p. 631–51.

7. Nuwayri-salti N, Khansa HF. Direct non-insect-vector transmission of leishmania parasites in mice. Int. J. Parasitol. 1985;15:497–500.

8. Utili R, Rambaldi A, Tripodi MF, Andreana A. Visceral leishmaniasis during pregnancy treated with meglumine antimoniate. Infection. 1995;23:182–3.

9. Pagliano P, Carannante N, Rossi M, Gramiccia M, Gradoni L, Faella FS, et al. Visceral leishmaniasis in pregnancy: A case series and a systematic review of the literature. J. Antimicrob. Chemother. 2005;55:229–33.
10. Berger BA, Bartlett AH, Saravia NG, Galindo Sevilla N. Pathophysiology of Leishmania Infection during Pregnancy. Trends Parasitol. 2017;33:935–46.

11. Pagliano P, Ascione T, Di Flumeri G, Boccia G, De Caro F. Visceral leishmaniasis in immunocompromised: Diagnostic and therapeutic approach and evaluation of the recently released IDSA guidelines. Infez. Med. 2016;24:265–71.

12. Kumar A, Mittal M, Prasad S. Treatment of leishmaniasis in pregnancy. Int. J. Gynecol. Obstet. 2001;72:189–90.

13. Miah M, Ayaz F, Maniruzzaman M, Ahasan M, Bari S, Mawla S, et al. Kala azar in pregnancy. Mymensingh Med. J. 2010;Oct; 19:529–32.

14. Seaman J, Pryce D, Sondorp HE, Moody A, Bryce son ADM, Davidson RN. Epidemic Visceral Leishmaniasis in Sudan: A Randomized Trial of Aminosidine plus Sodium Stibogluconate versus Sodium Stibogluconate Alone. J. Infect. Dis. 1993;168:715–20.

15. Kumar D, Ramesh V, Verma S, Ramam M, Salotra P. Post-kala-azar dermal leishmaniasis (PKDL) developing after treatment of visceral leishmaniasis with amphotericin B and miltefosine. Ann. Trop. Med. Parasitol. 2009;103:727–30.

16. Verma P, Grover C, Sharma S. Post-kala-azar dermal leishmaniasis in pregnancy: Hitherto unaccounted. Int. J. Dermatol. 2014;53:1501–4.

17. Dahal P, Singh-Phulgenda S, Olliaro PL, Guerin PJ. Gender disparity in patients enrolled in clinical trials of visceral leishmaniasis: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2021;[In Press].

18. Couderc-Pétry M, Eléfant E, Wasunna M, Mwinga A, Kshirsagar NA, Strub-Wourgaft N.
Inclusion of women susceptible to and becoming pregnant in preregistration clinical trials in low-and middle-income countries: A proposal for neglected tropical diseases. PLoS Negl. Trop. Dis. 2020;14:1–15.

19. Banjara MR, Hirve S, Siddiqui NA, Kumar N, Kansal S, Huda MM, et al. Visceral leishmaniasis clinical management in endemic districts of India, Nepal, and Bangladesh. J. Trop. Med. 2012;2012.

20. Treatment of Leishmaniasis With Impavid o® (Miltefosine): Pregnancy Registry [Internet]. [cited 2021 Feb 9]. Available from: https://clinicaltrials.gov/ct2/show/NCT02427308

21. IMPAVIDO (miltefosine) Pregnancy Registry [Internet]. [cited 2021 Feb 9]. Available from: https://www.impavido.com/about-registry

22. Figueiró-Filho EA, Duarte G, El-Beitune P, Quintana SM, Maia TL. Visceral leishmaniasis (kala-azar) and pregnancy. Infect. Dis. Obstet. Gynecol. 2004;12:31–40.

23. Silva JS e., Galvao TF, Pereira MG, Silva MT. Treatment of American tegumentary leishmaniasis in special populations: A summary of evidence. Rev. Soc. Bras. Med. Trop. 2013;46:669–77.

24. Kip AE, Schellens JHM, Beijnen JH, Dorlo TPC. Clinical Pharmacokinetics of Systemically Administered Antileishmanial Drugs. Clin. Pharmacokinet. 2018;57:151–76.

25. The electronic Medicines Compendium. Pentostam Injection [Internet]. 2019 [cited 2019 Aug 30]. Available from: https://www.medicines.org.uk/emc/product/5466/smpc

26. World Health Organization. WHO Technical Report Series 949: Control of the leishmaniases. 2010.
27. The electronic Medicines Compendium. AmBisome [Internet]. 2019 [cited 2019 Aug 30]. Available from: https://www.medicines.org.uk/emc/product/1022#PREGNANCY

28. WHO. Guidelines for diagnosis, treatment and prevention of visceral leishmaniasis in South Sudan [Internet]. WHO. [cited 2019 Oct 10]. Available from: https://www.who.int/leishmaniasis/burden/Guidelines_for_diagnosis_treatment_and_prevention_of_VL_in_South_Sudan.pdf

29. FDA. IMPAVIDO (miltefosine) prescribing information [Internet]. www.accessdata.fda.gov. [cited 2019 Oct 10]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204684s000lbl.pdf

30. Ministry of Health R of K. Prevention, Diagnosis and Treatment of Visceral Leishmaniasis (Kala-Azar) in Kenya [Internet]. 2017 [cited 2019 Aug 30]. Available from: https://www.who.int/leishmaniasis/burden/Kala_Azar_Kenya_2017.pdf?ua=1

31. Moher D, Liberati A, Tetzlaff J, Altman DG. Reprint—preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

32. Infectious Diseases Data Observatory. VL Surveyor [Internet]. www.iddo.org. 2020 [cited 2020 Sep 17]. Available from: https://www.iddo.org/vlsurveyor/#0

33. United Nations. Standard country or area codes for statistical use [Internet]. [cited 2018 Sep 13]. Available from: https://unstats.un.org/unsd/methodology/m49/overview/

34. R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. 2018.

35. Murad MH, Sultan S, Haffar S, Bazerbachi F. Methodological quality and synthesis of
36. Lima TB. Liver biopsy for visceral leishmaniasis diagnosis in pregnancy: report of 2 cases. World J. Clin. Infect. Dis. 2013;3:20–4.

37. Papageorgiou T, Panaz, Tragiannidis A, Tsotoulidou V, Pratsiou E, Tzouvelekis G, et al. The first case of congenital leishmaniasis in a female infant in Greece. J. Paediatr. Child Health. 2010;46:611–2.

38. Zinchuk A, Nadruga A. Congenital visceral leishmaniasis in Ukraine: case report. Ann. Trop. Paediatr. 2010;30:161–4.

39. Argy N, Lariven S, Rideau A, Lemoine A, Bourgeois Moine A, Allal L, et al. Congenital Leishmaniasis in a Newborn Infant Whose Mother was Coinfected With Leishmaniasis and HIV. J. Pediatr. Infect. Dis. Soc. 2019;07:7.

40. Adam GK, Abdulla MA, Ahmed AA, Adam I. Maternal and perinatal outcomes of visceral leishmaniasis (kala-azar) treated with sodium stibogluconate in eastern Sudan. Int. J. Gynecol. Obstet. 2009;107:208–10.

41. Mueller M, Balasegaram M, Koummuki Y, Ritmeijer K, Santana MR, Davidson R. A comparison of liposomal amphotericin B with sodium stibogluconate for the treatment of visceral leishmaniasis in pregnancy in Sudan. J. Antimicrob. Chemother. 2006;58:811–5.

42. Silveira BP, Araujo Sobrinho J, Leite LF, Sales M, Gouveia Mdo S, Mathias RL, et al. [Premature birth after the use of pentavalent antimonials: case report]. Rev. Soc. Bras. Med. Trop. 2003;36:523–5.

43. El-Saaran AM. Visceral Leishmaniasis in Dubai. Trans R Soc Trop Med Hyg. 1979;73:475.
44. Silveira BP, Sobrinho JA, Leite LF, Andrade Sales M das N, Araújo Gouveia M dos S, Mathias RL, et al. Parto prematuro após uso de antimonial pentavalente: Relato de um caso. Rev. Soc. Bras. Med. Trop. 2003;36:523–5.

45. Low GC, Cooke WE. A congenital case of kala-azar. Lancet. 1926;208:1209–11.

46. Banerji D. Possible congenital infection of kalaazar. J. Indian Med. Assoc. 1955;24.

47. Eltoum IA, Zijlstra EE, Ali MS, Ghalib HW, Satti MMH, Eltoum B, et al. Congenital kala-azar and leishmaniasis in the placenta. Am. J. Trop. Med. Hyg. 1992;46:57–62.

48. Figueiro-Filho EA, El Beiteune P, Queiroz GT, Somensi RS, Morais NO, Dorval ME, et al. Visceral leishmaniasis and pregnancy: analysis of cases reported in a central-western region of Brazil. Arch. Gynecol. Obstet. 2008;278:13–6.

49. Kimutai R, Musa AM, Njoroge S, Omollo R, Alves F, Hailu A, et al. Safety and Effectiveness of Sodium Stibogluconate and Paromomycin Combination for the Treatment of Visceral Leishmaniasis in Eastern Africa: Results from a Pharmacovigilance Programme. Clin. Drug Investig. 2017;37:259–72.

50. Mueller M, Balasegaram M, Koummuki Y, Ritmeijer K, Santana MR, Davidson R. A comparison of liposomal amphotericin B with sodium stibogluconate for the treatment of visceral leishmaniasis in pregnancy in Sudan. J. Antimicrob. Chemother. 2006;58:811–5.

51. Sinha PK, Jha TK, Thakur CP, Nath D, Mukherjee S, Aditya AK, et al. Phase 4 Pharmacovigilance Trial of Paromomycin Injection for the Treatment of Visceral Leishmaniasis in India. J. Trop. Med. 2011;2011:1–7.

52. Mittal V, Sehgal S, Yadav T, Singh VK. Congenital transmission of kala-azar. J Commun
53. Elamin A, Omer MIA. Visceral Leishmaniasis in a 6-Week-Old Infant: Possible Congenital Transmission. Trop. Doct. 1992;22:133–5.

54. Mueller Y, Mbulamberi DB, Odermann A, Loutan L, Chappuis F. Risk factors for in-hospital mortality of visceral leishmaniasis patients in eastern Uganda. Trop. Med. Int. Heal. 2009;14:910–7.

55. Vieira ML, Jacobina RR, Soares NM. Leishmaniose visceral em adolescente gestante. Rev. ciênc. méd. biol. 2007;6:357–61.

56. Basher A, Nath PN. Tranplacental transmission of visceral Leishmaniasis; Looking for the evidence-A case series. Trop. Med. Int. Heal. 2017;22 (Supp):154.

57. Hindle E. Further Observations on Chinese Kala Azar. Proc. R. Soc. B Biol. Sci. 1928;103:599–619.

58. Rees PH, Kager PA, Wellde BT, Hockmeyer WT. The response of Kenyan kala-azar to treatment with sodium stibogluconate. Am. J. Trop. Med. Hyg. 1984;33:357–61.

59. Blanc C, Robert A. [5th case of congenital kala-azar]. Press. Med. 1984;Jul 7:1751.

60. Badaró R, Rocha H, Carvalho EM, Queiroz AC, Jones TC. Leishmania Donovani: an Opportunistic Microbe Associated With Progressive Disease in Three Immunocompromised Patients. Lancet. 1986;327:647–9.

61. Nyakundi PM, Muigai R, Were JBO, Oster CN, Gachihi GS, Kirigi G. Congenital visceral leishmaniasis: Case report. Trans. R. Soc. Trop. Med. Hyg. 1988;82:564.
62. Yadav T, Gupta H, Satteya U, Kumar R, Mittal V. Congenital kala-azar. Ann Trop Med Parasitol. 1989; Oct:535–7.

63. Thakur C, Sinha G, Sharma V, Barat D. The treatment of kala-azar during pregnancy. Natl. Med. J. India. 1993;6:263–5.

64. Giri O. Amphotericin B therapy in kala azar.pdf. J. Indian Med. Assoc. 1993;91:91–3.

65. Gradoni L, Gaeta GB, Pellizzer G, Maisto A, Scalone A. Mediterranean visceral leishmaniasis in pregnancy. Scand. J. Infect. Dis. 1994;26:627–9.

66. Jeronimo SMB, Oliveira RM, Mackay S, Costa RM, Sweet J, Eliana T, et al. An urban outbreak of visceral leishmaniasis in Natal, BRazil. Trans. R. Soc. Trop. Med. Hyg. 1994;88:386–8.

67. Sharma R, Bahl L, Goel A, Upadhaya A, Kaushik S, Sharma R, et al. Congenital kala-azar: a case report. J Commun Dis. 1996;Mar:59–61.

68. Thakur C, Kumar P, Kumar N, Singh G, Singh A, Narain S. A randomised comparision of classific al mode of administration of amphotericin B with its newer modes of administration in kala-azar. J. Assoc. Physicians India. 1998;46:779–83.

69. Thakur CP, Singh RK, Hassan SM, Kumar R, Narain S, Kumar A. Amphotericin B deoxycholate treatment of visceral leishmaniasis with newer modes of administration and precautions: A study of 938 cases. Trans. R. Soc. Trop. Med. Hyg. 1999;93:319–23.

70. Meinecke CK, Schottelius J, Oska m L, Fleischer B. Congenital Transmission of Visceral Leishmaniasis (Kala Azar) From an Asymptomatic Mother to Her Child. Pediatrics. 1999;104:e65–e65.
71. Vianna VL, Takiya CM, de Brito-Gitirana L. Histopathologic analysis of hamster hepatocytes submitted to experimental infection with Leishmania donovani. Parasitol. Res. 2002;88:829–36.

72. Dereure J, Duong Thanh H, Lavabre-Bertrand T, Cartron G, Bastides F, Richard-Lenoble D, et al. Visceral leishmaniasis. Persistence of parasites in lymph nodes after clinical cure. J. Infect. 2003;47:77–81.

73. Caldas AJM, Costa JML, Gama MEA, Ramos EAG, Barral A. Visceral leishmaniasis in pregnancy: A case report. Acta Trop. 2003;88:39–43.

74. Pagliano P, Rossi M, Rescigno C, Altieri S, Coppola MG, Gramiccia M, et al. Mediterranean visceral leishmaniasis in HIV-negative adults: A retrospective analysis of 64 consecutive cases (1995-2001). J. Antimicrob. Chemother. 2003;52:264–8.

75. Kumar PV, Daneshbod Y, Sadeghipoor A. Leishmania in the glomerulus. Arch. Pathol. Lab. Med. 2004;128:935–6.

76. Figueiró Filho EA, Uehara SNO, Senefonte FR de A, Lopes AHA, Duarte G, El Beitune P. Leishmaniose visceral e gestação: relato de caso. Rev. Bras. Ginecol. e Obs. 2005;27:92–7.

77. Boehme C, Hain U, Novosel A, Eichenlaub S, Fleischmann E, Loscher T. Congenital visceral leishmaniasis. Emerg. Infect. Dis. 2006;12:359–3.

78. Mueller M, Ritmeijer K, Balasegaram M, Koummuki Y, Santana MR, Davidson R. Unresponsiveness to AmBisome in some Sudanese patients with kala-azar. Trans. R. Soc. Trop. Med. Hyg. 2007;101:19–24.

79. Topno RK, Pandey K, Das VNR, Kumar N, Bimal S, Verma RB, et al. Visceral leishmaniasis
80. Lorenzi A, Williams C, Griffiths I. Visceral leishmaniasis mimicking disease activity in mixed connective tissue disease. Rheumatology. 2008;47:737–8.

81. Sinha PK, Roddy P, Palma PP, Kociejowski A, Lima MA, Das VNR, et al. Effectiveness and safety of liposomal amphotericin b for visceral leishmaniasis under routine program conditions in Bihar, India. Am. J. Trop. Med. Hyg. 2010;83:357–64.

82. Haque MA, Ekram ARMS, Sharmin LS, Belaluddin M, Salam MA. Congenital visceral leishmaniasis. Pakistan J. Med. Sci. 2010;26:485–7.

83. Ritmeijer K, Ter Horst R, Chane S, Aderie EM, Piening T, Collin SM, et al. Limited effectiveness of high-dose liposomal amphotericin B (AmBisome) for treatment of visceral leishmaniasis in an ethiopian population with high HIV prevalence. Clin. Infect. Dis. 2011;53.

84. Pilaca A, Delia Z, Pepa A, Puca E, Kraja D. Vertical Transmission of the Visceral Leishmaniasis: A Case Report. US-China Med. Sci. 2011;8:642–5.

85. Damodaran S, Erumbala G, Abraham D, Nirmal S. Incidence of leishmaniasis in a district general hospital. Arch. Dis. Child. 2012;97:A253.

86. Mescouto-Borges MRM, Maués É, Costa DL, da Silva Pranchevicius MC, Romero GAS. Congenitally transmitted visceral leishmaniasis: Report of two Brazilian human cases. Brazilian J. Infect. Dis. 2013;17:263–6.

87. Milosevic S, Bogavac M, Malenkovic G, Fabri M, Ruzic M, Dugandzija T. Visceral leishmaniasis as a cause of postpartum pyrexia - Case report. Cent. Eur. J. Med. 2013;8:149–52.
88. Salih NAW, van Griensven J, Chappuis F, Antierens A, Mumina A, Hammam O, et al. Liposomal amphotericin B for complicated visceral leishmaniasis (kala-azar) in eastern Sudan: How effective is treatment for this neglected disease? Trop. Med. Int. Heal. 2014;19:146–52.

89. Burza S, Sinha PK, Mahajan R, Lima MA, Mitra G, Verma N, et al. Five-Year Field Results and Long-Term Effectiveness of 20 mg/kg Liposomal Amphotericin B (Ambisome) for Visceral Leishmaniasis in Bihar, India. PLoS Negl. Trop. Dis. 2014;8:46.

90. Bode SFN, Bogdan C, Beutel K, Behnisch W, Greiner J, Henning S, et al. Hemophagocytic lymphohistiocytosis in imported pediatric visceral leishmaniasis in a nonendemic area. J. Pediatr. 2014;165:147-153.e1.

91. Chiverto Llamazares Y, Cabezas Lopez E, Castro Sanchez M, Iglesias Goy E. Visceral leishmaniasis as a diagnosis of puerperal fever of unknown origin. [Spanish]. Progresos Obstet. y Ginecol. 2014;57:247–50.

92. Rahman KM, Olsen A, Harley D, Butler CD, Mondal D, Luby SP, et al. Kala-azar in Pregnancy in Mymensingh, Bangladesh: A Social Autopsy. PLoS Negl. Trop. Dis. 2014;8:e2710.

93. Colomba C, Adamoli L, Trizzino M, Siracusa L, Bonura S, Tolomeo M, et al. A case of visceral leishmaniasis and pulmonary tuberculosis in a post-partum woman. Int. J. Infect. Dis. International Society for Infectious Diseases; 2015;33:e5–6.

94. Pawar S, Ragesh R, Nischal N, Sharma S, Panda PK, Sharma SK. Unique triad of ‘pregnancy, kala azar and hemophagocytic lymphohistiocytic syndrome from a non-endemic region.’ J. Assoc. Physicians India. 2015;63:65–8.
95. Kumar R, Kumari S, Prakash J, Kumar R. Atypical presentations of visceral leishmaniasis: A case series and review of literature. Trop. J. Med. Res. 2015;18:109–12.

96. Silva Jde A, Araújo Ide M, Pavanetti LC, Okamoto LS, Dias M. [Visceral leishmaniasis and pregnancy in renal transplanted patient: case report]. J. Bras. Nefrol. 2015;37:268–70.

97. Panagopoulos P, Mitsopoulos V, Papadopoulos A, Theodorou S, Christodoulaki C, Aloupogiannis K, et al. Visceral leishmaniasis during pregnancy: A rare case report from Greece. PLoS Negl. Trop. Dis. 2017;11:e0005134.

98. Adam GK, Omar SM, Ahmed MAA, Abdallah TM, Ali AAA. Cross-sectional study of the case–fatality rate among patients with visceral leishmaniasis infections during pregnancy in Sudan. Int. J. Gynecol. Obstet. 2018;140:119–20.

99. Goyal V, Mahajan R, Pandey K, Singh SN, Singh RS, Strub-Wourgaft N, et al. Field safety and effectiveness of new visceral leishmaniasis treatment regimens within public health facilities in Bihar, India. PLoS Negl. Trop. Dis. 2018;12:e0006830.

100. Russo A, Alt F, Neu MA, Eder S, Wingert A, Malki KE, et al. Hemophagocytic lymphohistiocytosis in early infancy–pitfall of differentiation between hereditary and infectious reasons. Blood. Conf. 60th Annu. Meet. Am. Soc. Hematol. ASH. 2018;132.

101. Cunha FT, Lopes IC, Oliveira FCS, Queiroz IT. Visceral leishmaniasis in pregnant women from Rio Grande do Norte, Brazil: A case report and literature review. Rev. Soc. Bras. Med. Trop. 2019;52:10–2.

102. Parise ÉV, Maia FSC, Gomes NSG, Silva ACP da. Óbito por leishmaniose visceral em puérpera no município de Palmas, Tocantins, Brasil. J. Heal. Biol. Sci. 2019;7:312–9.
103. Napier LE. Kala-Azar. Princ. Pract. Trop. Med. New York, USA: The Macmillan Company; 1946. p. 141.

104. Napier LE, Das Gupta CR. Indian Kala-Azar in a newly-born child. Ind. Med. Gaz. 1928;April:199–200.

105. Ahluwalia IB, Bern C, Wagatsuma Y, Costa C, Chowdhury R, Ali M, et al. Visceral Leishmaniasis: Consequences to Women in a Bangladeshi Community. J. Women’s Heal. 2004;13:360–4.

106. Office of the director of Census. Census of India 2011 [Internet]. 2011 [cited 2019 Sep 19]. Available from: http://censusindia.gov.in/2011-prov-results/data_files/bihar/Provisional Population Totals 2011-Bihar.pdf

107. UNESCO. Ethiopia [Internet]. 2017 [cited 2019 Sep 19]. Available from: http://uis.unesco.org/country/ET

108. WHO TDR. Central registry for epidemiological surveillance of drug safety in pregnancy [Internet]. WHO. 2019 [cited 2019 Sep 19]. Available from: https://www.who.int/tdr/research/tb_hiv/drug-safety-pregnancy/en/

109. Infectious Diseases Data Observatory. Visceral Leishmaniasis: Contributing data [Internet]. [cited 2021 Feb 12]. Available from: https://www.iddo.org/vl/data-sharing/contributing-data

110. Bhattacharya SK, Sinha PK, Sundar S, Thakur CP, Jha TK, Pandey K, et al. Phase 4 Trial of Miltefosine for the Treatment of Indian Visceral Leishmaniasis. J. Infect. Dis. 2007;196:591–8.
111. Mondal D, Alvar J, Hasnain MG, Hossain MS, Ghosh D, Huda MM, et al. Efficacy and safety of single-dose liposomal amphotericin B for visceral leishmaniasis in a rural public hospital in Bangladesh: A feasibility study. Lancet Glob. Heal. 2014;2:e51–7.

112. Jamil KM, Haque R, Rahman R, Faiz MA, Bhuiyan ATMRH, Kumar A, et al. Effectiveness Study of Paromomycin IM Injection (PMIM) for the Treatment of Visceral Leishmaniasis (VL) in Bangladesh. PLoS Negl. Trop. Dis. 2015;9:1–11.

113. Pandey K, Ravidas V, Siddiqui NA, Sinha SK, Verma RB, Singh TP, et al. Pharmacovigilance of miltefosine in treatment of visceral leishmaniasis in endemic areas of Bihar, India. Am. J. Trop. Med. Hyg. 2016;95:1100–5.

114. Saito M, Gilder ME, Nosten F, Guérin PJ, McGready R. Methodology of assessment and reporting of safety in anti-malarial treatment efficacy studies of uncomplicated falciparum malaria in pregnancy: A systematic literature review. Malar. J. 2017;16:1–10.
List of Figures

Fig 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of publications screened

Fig 2: Number of records and patients by country of origin

List of Tables

Table 1. Antileishmanial usage during pregnancy
Table 2: Description of reported 447 cases of VL in pregnancy
Table 3: Details of 26 reported cases of confirmed or suspected congenital VL
Table 4: Description of patients enrolled in clinical trials who became pregnant after completion of treatment

List of boxes

Box 1: Proposed minimum variable recording and reporting for studies or case reports for VL in pregnancy
Total number of records identified through database search as of 26th March 2020 (n = 395)

Duplicate records (n = 123)

Exclusion after title and abstract screening (n = 99)
- 40 articles in non-humans
- 32 articles in lab/diagnostics/entomological surveys
- 20 articles not in VL
- 2 articles not found for abstract screening
- 2 review articles with no description of new cases
- 2 articles described qualitative surveys
- 1 article excluded pregnant women

Records eligible for title and abstract screening after deduplication (n = 272)

Exclusion after reviewing full text (n = 120)
- 50 articles not in pregnancy or no description of pregnant women
- 28 full text articles not available
- 29 review articles describing previously published cases
- 4 conference abstracts later fully published
- 2 articles not in non-VL
- 2 articles describing ongoing study
- 1 article not in human
- 1 article excluded pregnant women
- 1 article described immunology
- 1 article from Iran; not able to translate
- 1 article had no clear description

Records eligible for full text screening (n = 173)

Full text articles included (n = 53)

Total number of records included in the final review (n = 70)

Additional articles identified by searching the references of the included articles and from other sources (n = 17)
