Abstract—Using networks as a means of computing can reduce the communication flow or the total number of bits transmitted over the networks. In this paper, we propose to distribute the computation load in stationary networks, and formulate a flow-based delay minimization problem that jointly captures the aspects of communications and computation. We exploit the distributed compression scheme of Slepian-Wolf that is applicable under any protocol information where nodes can do compression independently using different codebooks. We introduce the notion of entropic surjectivity as a measure to determine how sparse the function is and to understand the limits of functional compression for computation. We leverage Little’s Law for stationary systems to provide a connection between surjectivity and the computation processing factor that reflects the proportion of flow that requires communications. This connection gives us an understanding of how much a node (in isolation) should compute to communicate the desired function within the network without putting any assumptions on the topology. Our results suggest that to effectively compute different function classes that have different entropic surjectivities, the networks can be re-structured with the transition probabilities being tailored for functions, i.e., task-based link reservations, which can enable mixing versus separately processing of a diverse function classes. They also imply that most of the available resources are reserved for computing low complexity functions versus fewer resources for processing of high complexity ones. We numerically evaluate our technique for search, MapReduce, and classification functions, and infer how sensitive the processing factor for each computation task to the entropic surjectivity is.

I. INTRODUCTION

Challenges in cloud computing include effectively distribut-
ing computation to handle the large volume of data with growing computational demand, and the limited resources in the air interface. Furthermore, various tasks such as computation, storage, communications are inseparable. In network computation is required for reasons of dimensioning, scaling and security, where data is geographically dispersed. We need to exploit the sparsity of data within and across sources, as well as the additional sparsity inherent to labeling, to provide approximately minimal representations for labeling.

An equivalent notion to that sparsity is that of data redundancy. Data is redundant in the sense that there exists, a possibly latent and ill understood, sparse representation of it that is parsimonious and minimal, and that allows for data reconstruction, possibly in an approximate manner. Redundancy can occur in a single source of data or across multiple sources.

Providing such sparse representation for the reconstruction of data is the topic of compression, or source coding. The Shannon entropy rate of data provides, for a single source, a measure of the minimal representation, in terms of bits per second, required to represent data. This representation is truly minimal, in the sense that it is achievable with arbitrarily small error or distortion, but arbitrarily good fidelity of reconstruction is provably impossible at lower rates.

A. Motivation

As computation becomes increasingly reliant on numerous, possibly geo-dispersed, sources of data, making use of redundancy across multiple sources without the need for onerous coordination across sources becomes increasingly important. The fact that a minimal representation of data can occur across sources without coordination is the topic of distributed compression. The core result is that of Slepian and Wolf [2], who showed that distributed compression without coordination can be as efficient, in terms of asymptotic minimality of representation.

Techniques for achieving compression have traditionally relied on coding techniques. Coding, however, suffers from a considerable cost, as it imputes, beyond sampling and quantization, computation and processing at the source before transmission, then computation and processing at the destination after reception of the transmission. A secondary consideration is that coding techniques, to be efficiently reconstructed at the destination, generally require detailed information about the probabilistic structure of the data being represented. For distributed compression, the difficulty of reconstruction rendered the results in [2] impractical until the 2000s, when channel coding techniques were adapted.

In the case of learning on data, however, it is not the data itself but rather a labeling of it that we seek. That labeling can be viewed as being a function of the original data. The reconstruction of data is in effect a degenerate case where the function is identity. Labeling is generally a highly surjective function and thus induces sparsity, or redundancy, in its output values beyond the sparsity that may be present in the data.

The use of the redundancy in both functions and data to provide sparse representations of functions outputs is the topic of the rather nascent field of functional compression. A centralized communication scheme requires all data to be transmitted to some central unit in order to perform certain computations. However, in many cases such computations can be performed in a distributed manner at different nodes in the network avoiding transmission of unnecessary information in the network. Hence, intermediate computations can significantly reduce the resource usage, and this can help improve the trade-off between communications and computation.

B. Related Work

Distributed compression. Compressed sensing and information theoretic limits of representation provide a solid basis for
function computation in distributed environments. Problem of distributed compression has been considered from different perspectives. For source compression, distributed source coding using syndromes (DISCUS) have been proposed [3], and source-splitting techniques have been discussed [4]. For data compression, there exist some information theoretic limits, such as side information problem [5]. Slepian-Wolf coding or compression for multi-depth trees [2], and general networks via multicast and random linear network coding [6].

Functional compression. In [7] Körner introduced graph entropy to characterize rate bounds in functional compression [8]. For a general function where one source is local and another collocated with the destination, in [9] authors provided a single-letter characterization of the rate-region. In [10], [11] authors investigated graph coloring approaches for tree networks. In [12] authors computed a rate-distortion region for functional compression with side information, and in [13] authors devised polynomial time compression techniques for sparse graphs. A line of work considered in network computation for specific functions. In [14] authors studied computing symmetric Boolean functions in tree networks. In [15], authors analyzed the asymptotic rate in noisy broadcast networks, and in [16] for random geometric graphs. Function computation was studied using multi-commodity flow techniques in [17]. However, there do not exist tractable approaches to perform functional compression that approximate the information theoretic limits unlike the case for compression, where coding and compressed sensing techniques exist.

Computing capacity in networks. Computing capacity of a network code is the maximum number of times the target function can be computed per use of the network [18]. This capacity for special cases such as trees, identity function [19], linear network codes to achieve the multicast capacity have been studied [19], [20]. For scalar linear functions, the computing capacity can be fully characterized by min cut [21]. For vector linear functions over a finite field, necessary and sufficient conditions have been obtained so that linear network codes are sufficient to calculate the function [22]. For general functions and network topologies, upper bounds on the computing capacity based on cut sets have been studied [14]. In [18], authors generalize the equivalence relation for the computing capacity. However, in these works, characterization based on the equivalence relation associated with the target function is only valid for special topologies, e.g., the multi-edge tree. For more general networks, this equivalence relation is not sufficient to explore general computation problems.

Coded computing and cost-performance tradeoffs. Coding for computing was widely studied in the context of compressed coding computing of single-stage functions in networks and multi-stage computations [23] which focused on linear reduce functions. Nodes with heterogeneous processing capabilities were studied in [24]. Coded computing aims to tradeoff communications by injecting computations. While fully distributed algorithms cause a high communication load, fully centralized systems suffer from high computation load. With distributed computing at intermediate nodes by exploiting multicast opportunities, the communication load can be significantly reduced, and made inversely proportional to the computation load [23]. The rate-memory tradeoff for function computation was studied in [25]. Other schemes to improve the recovery threshold are Lagrange codes [26], and polynomial codes for distributed matrix multiplication [27].

Functions with special structures. In functional compression, functions themselves can also be exploited. There exist functions with special structures, such as sparsity promoting functions [28], symmetric functions, type sensitive and threshold functions [29]. One can also exploit a function's surjectivity. There are different notions on how to measure surjectivity, such as deficiency [30], ambiguity [31], and equivalence relationships among function families [32].

Systems perspective. Data parallelism and model parallelism were studied to accelerate the training of convolutional neural networks and multicasting was exploited to reduce communications cost [33]. Layer-wise parallelism instead of a single parallelism strategy was explored [34]. Various scheduling approaches were explored to improve communication efficiency, see e.g., low latency scheduling [35], and task graphs for modeling task dependency [36]. Another line of work focused on effective task scheduling, e.g., scheduling for cloud computing [37], graph partitioning [38] or reinforcement learning to learn efficient assignments on multiple GPUs [39], and placing computation onto a mixture of GPU/CPU devices to reduce the training time by modeling device placement as a Markov decision process [40]. However, [38]–[40] did not explicitly account or optimize communications with respect to the topology. There are also approaches that minimize the node degree while maximizing the number of parallel information exchanges between nodes, such as [41] that considers communications, but in a proportional manner, or prioritization of parameter transfers to improve training time, such as [42].

C. Functional Compression in Networks

In this section, we introduce some concepts from information theory which characterize the minimum communication (in terms of rate) necessary to reliably evaluate a function at a destination. This problem is referred to as distributed functional compression, and has been studied under various forms since the pioneering work of Slepian and Wolf [2].

a) Slepian-Wolf Compression: This is the distributed lossless compression setting where the function \(f(X_1, \ldots, X_n) \) is the identity function. In the case of two random variables \(X_1 \) and \(X_2 \) that are jointly distributed according to \(P_{X_1, X_2} \), the Slepian-Wolf theorem gives a theoretical bound for the lossless coding rate for distributed coding of the two statistically dependent i.i.d. finite alphabet source sequences \(X_1 \) and \(X_2 \) as shown below [2]:

\[
R_{X_1} \geq H(X_1 | X_2), \quad R_{X_2} \geq H(X_2 | X_1),
\]

\[
R_{X_1} + R_{X_2} \geq H(X_1, X_2),
\]

implying that \(X_1 \) can be asymptotically compressed up to the rate \(H(X_1 | X_2) \) when \(X_2 \) is available at the receiver [2]. This theorem states that to jointly recover sources \((X_1, X_2) \) at a receiver with arbitrarily small error probability for long sequences, it is both necessary and sufficient to separately encode \(X_1 \) and \(X_2 \) at rates \((R_{X_1}, R_{X_2})\) satisfying (1).
codebook design is done in a distributed way, i.e., no communication is necessary between the encoders.

One challenge in distributed functional compression is the function f on the data X_i itself. The rate region of this problem depends on the function and the mappings from the source variables X_i to the destinations which challenge the codebook design due to the correlations among X_i and f. To that end, the characteristic graph and its coloring play a critical role in the study of the fundamental limits of functional compression. Each vertex of the characteristic graph represents a possible different sample value, and two vertices are connected if they should be distinguished. More precisely, for a collection of sources $X = \{X_1, \ldots, X_n\}$ each taking values in the same alphabet \mathcal{X}, and a function f, to construct the characteristic graph of f on X_1, i.e., G_{X_1}, we draw an edge between vertices u and v in X if $f(u, x_2, \ldots, x_n) \neq f(v, x_2, \ldots, x_n)$ for any x_2, \ldots, x_n whose joint instance has non-zero measure. Surjectivity of f determines the connectivity and hence coloring of the graph. The entropy rate of the coloring of G_X for the function f on X characterizes the minimal representation needed to reconstruct with fidelity the desired function of the data $f(X)$ \cite{7}. The degenerate case of the identity function corresponds to having a complete characteristic graph.

b) Functional Compression: Given a graph $G_{X_1} = (V_{X_1}, E_{X_1})$ of X_1 with respect to X_2, $p(x_1, x_2)$, and function $f(X_1, X_2)$ the graph entropy is expressed as \cite{7, 8}
\begin{equation}
H_{G_{X_1}}(X_1) = \min_{X_1 \in W_1 \in S(G_{X_1})} I(X_1; W_1),
\end{equation}
where $S(G_{X_1})$ is the set of all maximal independent sets (MISs) of G_{X_1}, where a MIS is not a subset of any other independent set, i.e., a set of vertices in which no two vertices are adjacent \cite{43}, and $X_1 \in W_1 \in S(G_{X_1})$ means that the minimization is over all distributions $p(w_1, x_1)$ such that $p(w_1, x_1) > 0$ implies $x_1 \in w_1$, where w_1 is a MIS of G_{x_1}.

In \cite{11} Theorem 41, authors have characterized the rate region for a distributed functional compression problem with two transmitters and a receiver by the following conditions:
\begin{equation}
R_{11} \geq H_{G_{X_1}}(X_1 | X_2), \quad R_{12} \geq H_{G_{X_2}}(X_2 | X_1),
\end{equation}
\begin{equation}
R_{11} + R_{12} \geq H_{G_{X_1}, G_{X_2}}(X_1, X_2),
\end{equation}
where $H_{G_{X_1}, G_{X_2}}(X_1, X_2)$ is the joint graph entropy. To summarize, the role of functional compression is to reduce the amount of rate needed to recover the function f on data X, and the savings increase along $H(X) \rightarrow H_{G_{X}}(X)$.

In general, finding minimum entropy colorings of characteristic graphs is NP-hard, and the optimal rate region of functional compression remains an open problem \cite{44}. However, in some instances, it is possible to efficiently compute these colorings \cite{10}, \cite{11}. In \cite{11}, the sources compute colorings of high probability subgraphs of their G_X and perform Slepian-Wolf compression on these colorings and send them. Intermediate nodes compute the colorings for their parents’, and by using a look-up table to compute the corresponding functions, they find corresponding source values of received colorings.

In Fig. 1, we illustrate the Slepian-Wolf compression rate region inner bound (IB) in \cite{11} versus the convex outer bound (OB) in \cite{3} determined by the joint graph entropy. The region between two bounds determines the limits of the functional compression and indicates that there could be potentially a lot of benefit in exploiting the compressibility, e.g., via using the deficiency metric in \cite{30}, of the function to reduce communication. The convexity of OB can be used to exploit the tradeoff between communications and computation, which is mainly determined by the network, data, correlations, and functions. While this gives insights on the limits of compression, it is not clear whether operating on the OB jointly optimizes communications and computation. In particular, since the achievable schemes are based on NP-hard concepts, constructing optimal compression codes imposes a significant computational burden on the encoders and decoders. If the cost of computation were insignificant, it would be optimal to operate at OB. When this cost is not negligible, to capture the balance between communications and computation, we will follow a flow-based approach to account for functional compression provided by fundamental entropy limits, which we detail in Sect. \cite{11}.

D. Contributions

In this paper, we provide a fresh look at the distributed function computation problem in a networked context. To the best of our knowledge, there are no constructive approaches to this problem except for special cases as outlined in this section. As a first step to ease this problem, we will provide a utility-based approach for general cost functions. As special cases, we continue with simple examples of point search with running time $O(\log N)$ where N is the input size in bits, then MapReduce with $O(N)$, then the binary classification model with $O(\exp(N))$. Our main contribution is to provide the link between the computation problem and Little’s Law.

We devise a distributed function computation framework for stationary Jackson network topologies as a simple means of exploiting function’s entropic surjectivity – a notion of sparsity inherent to functions, by employing the concepts of graph entropy, to provide approximately minimal representations for
computing. Function outcomes can be viewed as colors on characteristic graph of the function on the data, which is central to functional compression. Our main insight is that, the main characteristics required for operating the distributed computation scheme are those associated with the entropic surjectivity of the functions. Jackson networks allow for the treatment of each node in isolation, independent of the topology. Hence, we do not have to restrict ourselves to cascading operations as in [5] due to the restriction of topology to linear operations. While the performance analysis of the Jackson network is standard by applying Little’s Law and Markov routing policy, and the communication time can be devised easily, to the best of our knowledge, the computing perspective was never integrated to Little’s Law before.

We frame a delay cost optimization problem for a Jackson network topology for the distributed function computation by jointly considering the computation and communication aspects and using a flow-based technique where we use general cost functions for computation. We introduce entropic surjectivity as a measure to determine how surjective a function is. The enabler of our approach is the connection between Little’s Law and proportion of flow that requires communications that is determined by the entropic surjectivity of functions.

The advantages of the proposed approach as follows. It does not put any assumptions on the network topology and characterizes the functions only via their entropic surjectivity. The probabilistic reservation of the bandwidth (i.e., the Markov routing policy) is on the tasks that have different entropies from a functional compression perspective. The distributed data compression scheme of Slepian-Wolf focuses on the source compression and is applicable under any protocol information [46]. Our approach provides insights into how to distribute computation only via the entropic surjectivity of the functions, and how to allocate the resources among different functions when flows are processed separately or mixed. Our results suggest that to effectively compute different function classes, the networks can be restructured with the transition probabilities being tailored for tasks, i.e., task-based or weighted link reservations, which can enable mixing of a diverse classes. They also imply that most of the available resources are reserved for computing low complexity functions versus fewer resources for complex functions.

The organization for the rest of the paper is as follows. In Sect. [II] we detail the computation model, and derive lower bounds on the rate of generated flows (i.e., processing factors) by linking the computation problem to Little’s Law. In Sect. [III] we provide the delay cost models. In Sect. [IV] we analyze the flow, derive load thresholds for computing, and devise cost optimization problems. In Sect. [V] we present numerical results, and in Sect. [VI] discuss possible directions.

II. A NETWORKED COMPUTATION MODEL

In this section, we detail our network model that incorporates communications and computation. We consider a general stationary network topology. Sources can be correlated, and computations are allowed at intermediate nodes, and we are interested in computing a set of deterministic functions. While doing so our goal is to effectively distribute computation. To that end, intermediate nodes need to decide whether to compute or relay.

A product-form multi-class network model. We assume a multiple-class open Jackson network of $|V|$ nodes with computing capabilities, in which packets can enter the system from an external/virtual source s, get processed and leave the system, i.e., are sent to a virtual destination 0. Let $G = (V, E)$ be a graph modeling the communication network where $V = \{v_0 = s, v_1, \ldots, v_{|V|-2}, v_{|V|-1} = 0\}$ represents the collection of all $|V|$ nodes and there is a directed link from $v \in V$ to $w \in V$ if $(v, w) \in E$. We also let $V' = V \setminus \{s, 0\}$. Multi-class networks of queues and their generalizations to quasi-reversible networks, networks in product form, or networks with symmetric queues have been well explored in the literature, see for example [47], [48]. These classes of networks of queues can capture a broad array of queue service disciplines, including FIFO, LIFO, and processor sharing.

A Jackson network exhibits a product-form equilibrium behavior/distribution such that we can consider each node in isolation (i.e., independently) and investigate the steady-state properties of the network. A benefit of this is each node needs to know how much it needs to manage, which is less complicated than when nodes need the topological information to determine how to manage individual computational flows. Similar behavior is observed when a network of queues, such that each individual queue in isolation is quasi-reversible, always has a product from stationary distribution [49]. Different from reversibility, a stronger condition is imposed on arrival rates and a weaker condition is applied on probability fluxes.

In our network setting each node maintains a computation queue and a communications queue.

State of communication / computation queue. We consider a network $\mathcal{N}(\mathcal{M})$ of $v \in V$ quasi-reversible communications (computation) queues. Let $n^c_{v}(m^c_{v})$ be the number of packets of class $c \in C$ at node v requiring communications (compute) service, and $n_v = \sum_{c \in C} n^c_v$ ($m_v = \sum_{c\in C} m^c_v$) be the total number of packets in the communications (compute) queue of v. To model the communication (computation) queue state of v, let $n_v = (c_1, \ldots, c_{n_v})$, $m_v = (c_1, \ldots, c_{m_v})$ where c_i is the class of $i = 1, \ldots, n_v$ ($i = 1, \ldots, m_v$) th packet. A class c packet has an arrival that follows a Poisson process with rate λ^c_v, and requires a compute service. The traffic intensity associated with class c at v is σ^c_v. Hence, the total intensity at node v equals $\sigma_v = \sum_{c \in C} \sigma^c_v$. Utilization is $\sigma^c_v < 1$ to ensure stability of computation. A class c packet has a departure that follows a Poisson process with rate $\gamma^c_v(\lambda^c_v)$ and requires a communication service drawn from an exponential distribution with mean $1/\mu^c_v$ independently. Hence, the traffic intensity associated with class c at v is $\rho^c_v = \gamma^c_v(\lambda^c_v)/\mu^c_v$. Hence, the total intensity at v equals $\rho_v = \sum_{c \in C} \rho^c_v$. The utilization satisfies $\rho^c_v < 1$ for all c, v, which suffices for stability. To ensure quasi-reversibility, we assume a M/M/1 network with $\mu^c_v = \mu_v$ for all c. Then

1A queue with stationary distribution π is quasi-reversible if its state at time t, $x(t)$ is independent of (i) the arrival times for each class of packet subsequent to time t, and (ii) the departure times for each class of packet prior to time t, for all classes of packet [48, Ch. 10.3.7] [47, pp. 66-67].
the steady-state distribution of the queue v has a product form [50] Ch. 9.9.2] given by $\pi_v(n_v) = (1 - \rho_v) \prod_{c \in C} (\rho_v^c)^{n_v}$. The steady-state distribution of the global state of M is $\pi(n) = \prod_{v \in V} \pi_v(n_v)$, where $n = (n_1, n_2, \ldots, n_{|V|})$. The global state of M is $m = (m_1, m_2, \ldots, m_{|V|})$. The stationary distribution of compute queue v can be analyzed in isolation similarly as in communications queue and is $\phi_v(m_v) = (1 - \rho_v^c) \prod_{c \in H} (\sigma_v^c)^{m_v}$. Hence, the stationary distribution of M is given by $\phi(m) = \prod_{v \in V} \phi_v(m_v)$. Global state of the overall network is $[m; m_v] = [m_1; m_{v_1}]_{v \in V} \in \mathbb{R}^{n+m}$ where $n = \sum_{v \in V} n_v$, and $m = \sum_{v \in V} m_v$. For simplicity of notation, we let $m_v^c = \lambda_v^c / \mu_v^c \in [0,1]$, and $\rho = [\rho_v^c]_{v \in C, v \in V}$, $\lambda = [\lambda_v^c]_{v \in C, v \in V}$, $\mu = [\mu_v^c]_{v \in C, v \in V}$, and $\sigma = [\sigma_v^c]_{v \in C, v \in V}$.

Set of computation flows. For a set of functions $f \in F$, we denote the set of computational flows by $C = \{c = (f, X)\}$ which represents the class of functions and $X \in \mathcal{X}$ defined on the probability space $(\mathcal{X}, \mathcal{P})$ where \mathcal{X} is the set of symbols and \mathcal{P} is the data (or source) distribution. Multiple classes represent different types of functions, computation for each class is done in parallel, and the network can do computations and conversions between different classes (which we detail in Sect. [III]). Let $C = |C|$ be the cardinality of all classes, and any function of the same class $c \in C$ has the same complexity. Hence, we denote a function f by f_c to if it belongs to class c. How many classes of functions that the network can handle will be a proxy for the resolution of network’s computation capability, and $|C|$ being sufficiently large means that a wide class of functions can be computed/approximated.

Source data in bits. A stochastic process models a source $X = (X_1, \ldots, X_N)$. Hence, the entropy rate or source information rate is given as $H(X) = \lim_{N \to \infty} H(X) / N$ assuming that the limit exists. We assume that the total arrival rate (flow in bits per second) of X at node v is $\lambda_v^c = H(X)$ and the total incoming traffic intensity associated with class c at node v is λ_v^c, which is always less than the service rate of class c flow at node v given by μ_v^c. Average number of packets at node v due to the processing of class c function is L_v^c.

Definition 1. Processing factor. This is the amount of computational flow rate generated by a node v as a result of computing f_c and is a monotone increasing function of the incoming flow rate λ_v^c. It is smaller than λ_v^c and denoted by $\gamma_f(\lambda_v^c)$.

Computing with Little’s Law. We next introduce a novel relation for computation by building a connection between the limits of functional compression rates and Little’s law in queuing theory. Little’s law states that the long-term average number L of packets in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time T that a packet spends in the system. More formally, it can be expressed as $L = \lambda T$. The result applies to any system that is stable and non-preemptive, and the relationship does not depend on the distribution of the arrival process, the service distribution, and the service order [51].

By Little’s Law, the long-term average number L_v^c of packets in node v for class $c \in C$ functions satisfies

$$L_v^c = \gamma_f(\lambda_v^c) \cdot W_v^c,$$

where W_v^c is delay cost function that has 2 components:

$$W_v^c = W_{v,comp}^c + W_{v,comm}^c$$

that are positive and non-decreasing in the corresponding flows. We aim to infer the value of the computation flow rate generated for the input flow rate λ_v^c for class $c \in C$ functions at v, i.e., $\gamma_f(\lambda_v^c)$, using Little’s Law and the connection between W_v^c and L_v^c for the given network. It is also possible to generalize this to pipelining where the compute and communications tasks progress together. In that case the delay cost function satisfies $W_v^c = \max\{W_{v,comp}^c(n_v^c), W_{v,comm}^c(n_v^c)\}$.

Each node is equipped with a compute queue and communications queue which we will detail in Sect. [III]. Therefore, $L_v^c = m_v^c + n_v^c$, where m_v^c and n_v^c are the long-term average number of packets of class $c \in C$ at node v waiting for computation service and communications service, respectively, and are connected via c. More precisely, the relations among L_v^c, m_v^c, and n_v^c is determined as function of $\gamma_f(\lambda_v^c)$ as follows:

$$m_v^c = L_v^c \cdot \left(1 - \frac{\gamma_f(\lambda_v^c)}{\lambda_v^c}\right), \quad n_v^c = L_v^c \cdot \frac{\gamma_f(\lambda_v^c)}{\lambda_v^c}.$$

We next introduce a novel flow-based notion for computing. **Characterizing the flow of computation.** The best functional compression rate attainable through a network can be given via extending the notion of graph entropy to capture the network’s structure as well as function’s surjectivity. We denote this rate by $H(f_c(X))$ that satisfies $H(f_c(X)) < \gamma_f(\lambda_v^c) \leq \lambda_v^c < \mu_v^c$ where the lower bound is due to the limits of functional compression. To the best of our knowledge, there do not exist algorithms that exploit the theoretical limits provided by coloring characteristic graphs of functions to optimize $\gamma_f(\lambda_v^c)$. To capture the fundamental limits of compression, we next introduce a novel notion.

Definition 2. Entropic surjectivity, Γ_c. Entropic surjectivity of a function is how well the function $f_c : X \rightarrow Y$, $c \in C$ can be compressed with respect to the compression rate of source symbols X. We denote the entropic surjectivity of function f_c with respect to X by

$$\Gamma_c = \frac{H(f_c(X))}{H(X)}.$$

This is a measure of how well a network can compress a function that the destination wants to compute. Since surjective functions have high entropy via compression through a network, a function with high entropy yields a high entropic surjectivity, i.e., is harder to compress.
Flow requirements. Note that Γ_c is maximized when the function f with domain X and codomain Y is surjective, i.e., for every $y \in Y$ there exists at least one $x \in X$ with $f(x) = y$. It is lower bounded by zero which is when the function maps all elements of X to the same element of Y. Therefore, Γ can be used as a measure of how surjective the function f is.

Consider a function associated with class c, i.e., f_c. Total incoming flow rate needed is approximated as $H(X)$. To compute $f_c(X)$, the source needs to transmit a minimum of $H(f_c(X))$ bits/source symbols. In this case, the proportion of flow that requires communications is the proportion of generated flow as a result of computing -- needs to satisfy

$$\Gamma_c \leq \frac{\gamma_f(X_c)}{\lambda_v^c}.$$

Maximum reduction in communications flow, i.e., the flow that vanishes due to computation, is when the above is satisfied with equality, i.e., $\lambda_c^c - \gamma_f(X_c) = \lambda_c^c(1 - \Gamma_c)$ from the flow conservation constraints. In the regime of low compression, the network is communication intensive, i.e., $\gamma_f(X_c)$ is high versus the computation intensive regime where higher compression is possible, i.e., $\gamma_f(X_c)$ is low. In any regime, $\gamma_f(X_c)$ has to be sufficiently large to ensure that the compute task is performed. For example, Search function has time complexity $\log(N)$ for an input size N with rate λ_c^c. The entropy rate of the source satisfies $H(X) = H(X) = \lambda_c^c$ and the entropy rate of the function $H(f_c(X)) \approx \log(\lambda_v^c)$. The Classification function has time complexity $\exp(N)$ and $H(f_c(X)) \approx \exp(\lambda_v^c)$.

We aim to approximate $\gamma_f(X_c)$ using the connection between Little’s law that relates the number of packets L_c^c to function’s entropic surjectivity Γ_c. To that end, we will next characterize the average computing time of different function classes for the proposed network setting. Later in Sect. IV we will characterize the thresholds on $\gamma_f(X_c)$ for successfully performing computations of different classes of functions.

III. COST MODELS

We explore the breakdown for the compute and communications time of a task and the time it spends in the system.

A. Task Completion Time

Functional compression and surjection factor. Immediate computations at each node v provides a compressed or refined representation. The cost of communications equals the average waiting time, i.e., the sum of the average queuing and service times of a packet in sec, and given by the positive and convex function of the departing flow

$$W_{v, \text{comp}}(n_v^c) = \begin{cases} \frac{1}{\mu_v - \gamma_f(X_c)}, & v \in V', \ c \in C, \\ \frac{1}{\mu_v - \sigma_v}, & v = s, \ c \in C, \\ 0, & v = 0, \ c \in C \end{cases}$$

is increasing in $n_v^c = \frac{\gamma_f(X_c)}{\mu_v - \gamma_f(X_c)}$ and upper bounded by $\frac{1}{\mu_v(1 - \rho_v)}$ if $\gamma_f(X_c) = \lambda_v^c$ and $n_v^c = n_v^c = \frac{\rho_v}{\mu_v - \sigma_v}$. It could instead be chosen to model the queue size, utilization, or the queuing probability. Our model does not account for the physical data transmission time, excluding the link layer aspects.

Average-case complexity. We assume an average-case complexity model for computation where the algorithm does the computation in a sorted array (e.g., binary search). Let $d_{f_c}(m_v^c)$ denote the time complexity for computing functions of class $c \in C$ packet at node $v \in V$ in the units of packets or bits. While $d_{f_c}(m_v^c)$ increases in the function’s complexity, its behavior is determined by the function class c. It is given as function of the input size m_v^c, i.e., the number of packets needed to represent the input. Hence, m_v^c denotes the number of packets of class c at v waiting for computation service. Assume that a class c packet has an arrival rate λ_v^c in bits/sec. Hence, the cost of computation is the average running time of packets for realizing the computation task, i.e., processing compute packets, in sec

$$W_{v, \text{comp}}(m_v^c) = \begin{cases} \frac{1}{\lambda_v^c} \cdot d_{f_c}(L_v^c), & v \in V', \ c \in C, \\ 0, & v = \{0, s\}, \ c \in C \end{cases},$$

where we approximate time complexity of a flow of class c at node v as $W_{v, \text{comp}}(m_v^c) \approx \frac{1}{\lambda_v^c} \cdot d_{f_c}(m_v^c)$, $v \in V', \ c \in C$. The approximation is due to flow conservation we will detail later.

Note that from (6) m_v^c increases in λ_v^c because the processing factor increases always at a smaller rate than the incoming flow rate does. This in turn increases $d_{f_c}(m_v^c)$ and $W_{v, \text{comp}}(m_v^c)$. Furthermore, the long-term average L_v^c in [3] increases in λ_v^c (under fixed μ_v). Hence, the behavior of $W_{v, \text{comp}}(n_v^c)$ is determined by [4]. As a result n_v^c increases if the scaling of $\gamma_f(X_c)$ in λ_v^c is linear, versus n_v^c is less sensitive when the scaling is sublinear.

A taxonomy of functions. We consider three function categories and with different time complexities. For Search function that tries to locate an element in a sorted array, an algorithm runs in logarithmic time, which has low complexity. For MapReduce function, since the reduce functions of interest are linear, the algorithm runs in linear time, which is of medium complexity. For Classification function, we consider the set of all decision problems that have exponential runtime, which is of high complexity. The time complexity, i.e., the order of the count of operations, of these functions satisfies:

$$d_{f_c}(m_v^c) = \begin{cases} \log(m_v^c), & \text{Search,} \\ (0), & \text{MapReduce,} \\ \exp(m_v^c), & \text{Classification.} \end{cases}$$

Using the order of the count of operations in (11) and $W_{v, \text{comp}}(m_v^c)$ in (12), we can model the delay cost functions for computations of different classes of functions for $v \in V'$. In Sect. IV we will numerically investigate the behavior of computing cost. Note that when $\gamma_f(X_v^c) = \lambda_v^c$ we have $m_v^c = 0$, $n_v^c = \frac{\mu_v}{\mu_v - \lambda_v^c}$ and $W_{v, \text{comp}}(0) = 0$, $W_{v, \text{comp}}(n_v^c) = \frac{1}{\mu_v - \lambda_v^c}$, i.e., the computation time of the identity function is null.

In the special case when the computation cost is similar as the communication cost model, we assume that an arriving packet requires a compute service which is drawn from an exponential distribution with mean $1/\lambda_v^c$ independently. Hence, the traffic intensity associated with class c at node v is $\sigma_v = \frac{\lambda_v^c - \gamma_f(\lambda_v^c)}{\lambda_v^c} \approx \frac{\sigma_v}{\lambda_v^c}$. Hence, $\sigma_v = \sum_{c \in C} \sigma_v^c$. Under the given assumptions and $m_v^c = \sigma_v^c/(1 - \sigma_v)$, the
compute cost for \(v \in V' \) is given as
\[
W_{v,c}^{\text{comp}}(m^v_c) = \frac{k^v_c}{\lambda^v_c(1 - \sigma^v_c)} = \frac{k^v_c m^v_c}{\lambda^v_c \sigma^v_c} \text{ sec,} \tag{12}
\]
which generalizes the cost of MapReduce in (11) due to the dependence of \(\sigma^v_c \) on \(m^v_c \). This model is yet to account for the routing information that we detail next. To generalize the above special case of convex compute cost in (12) we will focus on a departure-based model (see [13]).

B. Task Load Balancing

In this section, we detail the routing model for different function classes and their conversions.

Causality and function class conversions. In our setting, at each node, computation is followed by computation. The average time a packet spends is given by the sum of the average times required by computation that is followed by communication, while satisfying the stability conditions. In general packets can change their classes when routed from one node to another [48]. Hence, at each node, conversion between classes is allowed. Let \(C^v_{\text{in}} \subseteq C \) and \(C^v_{\text{out}} \) be the set of incoming and outgoing classes at node \(v \in V \). We assume that \(C^v_{\text{out}} \subseteq C^v_{\text{in}} \subseteq C \) as computations on \(C^v_{\text{in}} \) can only reduce the number of function classes in the outgoing link. Each computation transforms a class \(c \in C \) of flow into another class \(c' \in C \) of flow. The transformations among classes will be characterized by a Markov chain, where the rates of transitions among the classes are known [48, Ch. 10.3.8]. We detail a Markov routing policy later in this section. Because \(C^v_{\text{out}} \subseteq C^v_{\text{in}} \), a computation transforms a flow class \(c_i \) into a flow class \(c_j \) if \(j \geq i \). However, vice versa is not possible.

To refine the compute cost in (12) for the networked setting, we allow packets departing from the network after service completion. Let \(p^\text{dep}_v(c) = p^\text{rou}_v(c) \) denote the probability that a class \(c \) packet departs upon completing its service at \(v \), where \(v \in V \) represents a virtual (shared destination) node that denotes the completion of a task. Hence, the departure rate of class \(c \) packets from \(v \) is \(\gamma_f(\lambda_v^c)p^\text{rou}_v(c) \). We let \(p^\text{rou}_v(c, c') \) be the probability that a class \(c \) packet that finishes service at queue \(v \) is routed to queue \(w \) as a class \(c' \) packet, and let \(p^\text{rou}_v(c) = [p^\text{rou}_v(c, c')]_{c' \in C, v \in V} \). We will detail the concept of routing later in this section. Hence, we can refine the positive and non-decreasing compute cost in (12) as
\[
W_{v,c}^{\text{comp}}(m^v_c) = \frac{p^\text{rou}_v(c,m^v_c)}{\lambda^v_c - \gamma_f(\lambda^v_c)} + \sum_{c' \in C} \sum_{w \in V} p^\text{rou}_w(c, c')m^v_c, \tag{13}
\]
where the first term in the RHS captures the wasted computation rate due to departing packets of class \(c \) in queue \(v \) from the network, and the second term represents the cost of additional processing due to the routing of the packets of class \(c \in C \) to other queues after finishing service from queue \(v \) and transforming to any other class \(c' \in C \). It also holds for every packet of a class \(c \) that \(p^\text{rou}_v(c) + \sum_{c' \in C} \sum_{w \in V} p^\text{rou}_w(c, c') = 1 \), i.e., upon leaving the compute queue of \(v \), the packet is either routed to another node (while it might as well change its class) if its service is not completed, or departs the network.

Arrival/Departure/Function class conversion rates. Let the original arrival rate of class \(c \) packets to the network be Poisson with rate \(\beta^c \). Let \(p^\text{arr}_v(c) = p^\text{arr}_v(c) \) be the probability that an arriving class \(c \) packet is routed to queue \(v \), where \(s \) represents a virtual (shared) source node that denotes the origin of a task. Assuming that all arriving packets are assigned to a queue, we have that \(\sum_{v \in V} p^\text{arr}_v(c) = 1 \). We also assume that there is a virtual destination node \(0 \in V \) that indicates the completion of a task. The total departure rate of class \(c \) packets from \(v \) in the forward process is given by \(\lambda^c_v \cdot p^\text{rou}_v(c) \). With the above definitions, the routing probabilities between nodes and function classes have the structure:
\[
p^\text{rou}_v(c) = [p^\text{rou}_v(c)]_{v \in V \setminus \{s\} \in [0, 1]^{(|V|-1) \times 1} \tag{14}
= (p^\text{rou}_v(c), p^\text{rou}_v(c) ... p^\text{rou}_v(c)) \text{ T}
\]
For \(v \in V' \) we have the following matrix:
\[
p^\text{rou}_v(c) = [p^\text{rou}_v(c, c')]_{v \in V \setminus \{s\}, c' \in C \in [0, 1]^{(|V|-1) \times |C|} \tag{15}
= (0 \cdots 0 p^\text{rou}_{v,1}(c) p^\text{rou}_{v,1}(c,c+1) \cdots p^\text{rou}_{v,1}(c,|C|)) \cdots (0 \cdots 0 \cdots 0 \cdots p^\text{rou}_{v,v-1}(c,|C|))
\]
which is an upper-triangular matrix, where we note that \(C^v_{\text{out}} \subseteq C^v_{\text{in}} \subseteq C \) and conversion from \(c \) to \(c-1 \) is not possible because \(c-1 \) has a higher complexity and this violates the purpose of computation, justifying the upper-triangular structure except for the sink nodes.

Routing for computing. The network accommodates different types of state transitions, i.e., arrival, departure, routing, and internal state transitions [48, 10.6.3]. We assume a Markov routing policy [48, Ch. 10.6.2] which can be described as follows. As a result of function computation, packets might have different classes and can change their class when routed from one node to another where routing probabilities depend on a packet’s class. Let \(p^\text{rou}_v(c, c') \) be the probability that a class \(c \) packet that finishes service at node \(v \) is routed to the compute queue of node \(w \) as a class \(c' \) packet. The probability that a class \(c \) packet departs from the network after service completion at queue/node \(v \in V' \) is given by
\[
p^\text{rou}_v(c) = 1 - \sum_{v \in V'} \sum_{c' \in C} p^\text{rou}_v(c, c'), \tag{16}
\]
where the second term on the RHS denotes the total probability that the packets stay in the network. Since it is an open network model, for every class \(c \) there is at least one value of \(v \) so that \(p^\text{rou}_v(c) > 0 \). Thus all packets eventually leave the system.

Flow conservation principles. A node \(v \in V \) can forward the flows it receives through the incoming edges of \(v \), and generate a flow of class \(c \) which is modeled via a self-loop by consuming/terminating equal amounts of incoming flows of class \(c' \in C \). Conversion among classes is also possible. In the stationary regime the total arrival rate of class \(c \in C \) packets to node \(v \) is the lumped sum of the flow of class \(c \) packets through its incoming edges or the flow via the self-loop. The flow that is gone to computation is the difference between the incoming flow and the generated flow, i.e., \(\lambda^c_v - \gamma_f(\lambda^c_v) \). Due
to flow conservation for each class, we have

$$\lambda^c_v = \begin{cases} \beta^c_v, & v = s, \\ \beta^c_v + \sum_{w \in V'} \sum_{c' \in C} \gamma_f(\lambda^c_w) p^\text{rou}(w',c'), & v \in V', \\ \sum_{v \in V'} \gamma_f(\lambda^c_v) p^\text{rou}(0,c), & v = 0, \end{cases}$$

(17)

where $\beta^c_v = \beta^c \cdot p^\text{rou}(c)$ denotes the original arrival rate of class c packets that are assigned to the compute queue of node v, and the second term on the RHS denotes the aggregate arrival rate of packets that are routed to node v as a class c packet after finishing service at other queues $w \in V$ as a class $c' \in C$. Note also that the term $\gamma_f(\lambda^c_v)$ denotes the total departure rate of class c' packets from node w rate of class c' packets to queue w (as a result of computation).

In Fig. 3 we consider a node in isolation to illustrate the computational and communication flows at a typical node $v \in V'$ of the Jackson network. The min-cut that denotes the total arrival rate of computational flow c is λ^c_v. This via (17) captures the rate of original arrivals which is β^c_v, and the arrivals routed from any other node $w \in V'$ in the network. If there is no w such that $p^\text{rou}(w',c') > 0$, then $\lambda^c_v = \beta^c_v$. The cut $\gamma_f(\lambda^c_v)$ denotes the total generated rate (or processing factor) of computational flow c at node v. The processed flow can be routed to any $u \in V'$ in the network if $p^\text{rou}(w',c') > 0$. If there is no such node, then $\gamma_f(\lambda^c_v)$ departs the system.

Higher order properties. The communication network \mathcal{N} under the Markov routing policy can be modeled using a discrete-time Markov chain (DTMC) Y_1, Y_2, Y_3, \ldots. The entropy rate for (Y_k) on a countable number of states is $H(Y) = -\sum_{ij} \pi_iP_{ij} \log P_{ij}$ where π_i is the limiting distribution and (P_{ij}) is the state transition matrix. The rate $H(Y)$ can capture the routing information and characterize the distributions, i.e., the higher order properties, of the costs $W^{c}_{v,\text{comm}}$ and $W^{c}_{v,\text{comp}}$ incurred being in each state of the network. It can also explain the relation between routings and connectivity and how long it will take to compute. To that end, we next associate the states of the DTMC to a slotted computation model.

Characterizing the computing cost on a time-slot basis. At each time slot t, the Markov chain is in state i with probability π_i. We infer the following quantities at t, each indicated by (t) as function of the state i:

1) $n^c_v(t)$ and $\gamma_f(\lambda^c_v(t))$, and $W^{c}_{v,\text{comm}}(n^c_v(t))$ using (9),
2) $m^c_v(t) = n^c_v(t) \left(\lambda^c_v(t) - 1\right)$ using (10), and
3) $W^{c}_{v,\text{comp}}(m^c_v(t))$ using (12), and

4) $W^{c}_{v}(t) = W^{c}_{v,\text{comp}} + W^{c}_{v,\text{comm}}$, and its relation to $\gamma_f(\lambda^c_v(t))$.

A class of function is easy to compute if the generated rate per unit time of computation is high. More precisely, in a DTMC with fixed slot duration T, the generated flow rate across t_{\max} slots is $T \sum_{t=1}^{t_{\max}} \gamma_f(\lambda^c_v(t))$ in bits per second. If this number is large, then f_v is easier to compute for given routings or connectivity. Hence, using this approach we can infer what classes of functions can be computed easily. If on the other hand, to account for the cost of computing more precisely, we assume a continuous-time Markov chain, we can instead consider a DTMC Y_k to describe the k^{th} jump of the process where the variables S_1, S_2, S_3, \ldots describe holding times in each state. In state i, the slot duration $W^{c}_{v}(t)$ (holding time) will be approximated by the average time needed to perform computation on the distribution of classes, $n^c_v(t)$, $c \in C$ in the current state, i.e., $E[W_i]$. Hence, $W^{c}_{v}(t)$ is the realization of the holding time sampled from the exponential distribution with rate parameter $-1/E[W_i]$. Then the total number of bits generated over t_{\max} slots is given by $\sum_{t=1}^{t_{\max}} W^{c}_{v}(t)$, $\gamma_f(\lambda^c_v(t))$ and the total cost is $\sum_{t=1}^{t_{\max}} W^{c}_{v}(t)$.

Routing information $H(Y)$ as a proxy for communication cost. Given routings P_{ij}, the limiting distribution π_i determines the network state $[n_1; n_2; \ldots]$ which provides insights into computing different classes of functions. To that end we seek the relation between $H(Y)$ and $H(f_s(X)) = H(X)$ where $H(X)$ is known. The entropy rate of $\{\gamma_f(\lambda^c_v)\}_{v \in V, c \in C}$ is the same as $H(X)$ because the DTMC (Y_k) fully describes $\gamma_f(\lambda^c_v)$. Thus, $H(Y)$ determines how balanced the flows for the different classes are. If the stochastic process (Y_k) is i.i.d., $H(X) = H(Y_k)$, $k = 1, \ldots, N$, the class distribution across different states is not distinguished, i.e., $\gamma_f(\lambda^c_v)$ is unchanged in $c \in C$. On the other hand, $H(Y)$ is lowered by mixing tasks f_v of different complexities (due to concavity of entropy, i.e., $\sum_i \pi_i P_{ij} \log(\sum_i \pi_i P_{ij})$ where equality is when the process is i.i.d.). In this case the DTMC states are not visited with the same frequency, i.e., π_i is not uniform, as some tasks demand high resources n^c_v and have higher $\gamma_f(\lambda^c_v)$. This may help reduce the use of communication resources. In this case, mixing function classes can provide resource savings in networked environments and help lower $H(Y)$. Hence, in a Jackson network with nodes having similar routing probabilities and each state being visited as often, it might not be possible to effectively compute different function classes versus in a more structured network with transition probabilities being tailored for tasks, i.e., task-based or weighted link reservations, to enable mixing of classes.

In Table III we provide some notation we use in the paper.

IV. COMPUTATION FLOW ANALYSIS

In the previous section, we explored how given routings or connectivity can tell us regarding the class of functions we can compute. In this section we are interested in the reverse question of how to optimize the routings and how the connectivity looks like to compute a class of functions. To that end investigate where to compute and how to compute a function class f_v of known time complexity to optimize the average computation time in the Jackson network.
Computation allocation. Our goal is to understand whether a divide-and-conquer-based approach is more favorable than a centralized approach. In divide-and-conquer a subset of nodes work on the sub-problems of a given task, which are to be combined to compute the target value either at any node, including the destination. In a centralized approach tasks are not split into sub-problems. Instead they are run at once.

Processing of single flow. We first consider the distribution and cost of single flow in the Jackson network and we drop the superscript c due to the single class assumption.

Example 1. Bisection – tree branching over the network. The network computes $f(X) = \min X$ using the bisection method. The arrivals X are uniformly distributed among nodes, i.e., $\beta_v = \beta \forall v$. Node v works on the set $X_v = (X_{v-l,\infty}, \ldots, X_{v,\infty})$ and computes $f(X_v)$ locally, i.e., $p_{v,w}^{-\text{rou}} = \frac{|V|}{N}$.

(i) No intermediate routing is allowed, i.e., $p_{v,0}^{-\text{rou}} = 1$. The computation outcome is directly routed to $0 \in V$ that decides the final outcome $f(X_v) = f(X)$. The computation time complexity of the initial stage per node is $O(\log(N))$ and the routing step is $O(|V|)$. Hence, the total computation complexity is $|V|O(\log(N)) + O(|V|)$. The communications cost is due to the routings $(v,0)$ for $v \in V'$, which in total gives $|V|\exp(1)$ (every node does 1 transmission).

(ii) Intermediate routings are allowed. We pick a subset of nodes $W \subseteq V$ with $|W| = O(\log(|V|))$ to run the bisection algorithm, i.e., $p_{v,w}^{-\text{rou}} = \frac{1}{\log(|V|)}$ when $w \in W$ and $p_{v,w}^{-\text{rou}} = 0$, $w \in V\setminus W$. Hence, the time complexity of the initial stage per node $v \in V\setminus W$ is $O(\log(N))$. Node $w \in W$ then computes $f(X_w) = \min_{v: p_{v,w}^{-\text{rou}} > 0} f(X_v)$, and routes intermediate computation to 0 in V which in turn computes $f(X_w) = f(X)$ that has time complexity $O(\log(|V|))$. The total compute complexity is $(|V| - |W|)O(\log(N)) + |W|O(\log(1 + |V|/|W|)) + |W|\log(|V|/|W|)$. The communications cost is due to the routings (v,w) and $(v,0)$ for $v \in V'$, $w \in W$, which in aggregate gives $(|V| - |W|)\exp(1) + |W|\exp(1) = |V|\exp(1)$.

From (i)-(ii) the total cost is determined by the computation complexity, which can be reduced via intermedia routing. The highest gains are possible when the depth of the network grows like $O(\log(N))$ that favors divide-and-conquer. A similar approach will follow for MapReduce.

We next consider another single flow example.

Example 2. Classification. We consider the classification problem, i.e., the problem of identifying to which of a set of categories an observation X belongs. In linear classification, the predicted category is the one with the highest score, where the score function has the following dot product form $f(X, l) = \text{score}(X, l) = \beta_l \cdot X = \sum_{k=1}^{N} \beta_k X_k$ where β_l is the vector of weights corresponding to category l, and $f(X, l)$ is the score associated with assigning X to l (which represents the utility associated with X being in category l).

(i) If data is not split, then the computation cost is the cost equivalent of N multiplications, i.e., $O(N \log(N))$.

(ii) If data is split between a subset of nodes W such that $X_w = (X_{w-1,\infty}, \ldots, X_{w,\infty})$, then $\{X_k\}_k$ and $\{\beta_k\}_k$ should also be provided for accurately computing the score. This requires a cost equivalent to $O(\frac{N}{|W|} \log N)$ where $\log N$ bits is to quantify the locations of $\{X_k\}_k$ for each w. The compute cost is $O(\frac{N}{|W|} \log(\log(|W|) \log N))$. Coordinating such intermediate computations requires W additions, yielding a total cost of $O(\frac{N}{|W|} \log N \log(\log(|W|) \log N)) + O(|W|)$. To ensure that the computation cost in (ii) is smaller than the one of (i), $|W| \geq \log(N)$. Otherwise, the compute cost will be higher than $O(N \log N)$. The communications cost of forwarding the intermediate results of $w \in W$ is determined by the flow amount which is at least $H(f(X_w, l))$ at $w \in W$. If $|W|$ is small, score estimates are easy to obtain due to the weak law of large numbers (a large ratio $\frac{|W|}{N}$ gives a good estimate of scores $f(X_w, l)$ as the sample average converges in probability to the expected value, yielding a low entropy), but if $|W|$ is large, this might not be possible, causing a high $H(f(X_w, l))$ (e.g., if the classifier is sensitive to β_l or β_l need to be trained, incurring a high cost for task distribution) that in turn requires high communication cost per $w \in W$. As the communication costs accumulate, distributing such flows might not be favorable. However, if the weights β_l for category l are not sensitive to the data coordinates $K = 1, \ldots, N$ of X, i.e., the observations are easy to classify, then the communications overhead can be lowered). Hence, if splitting does not cause jumps in $H(f(X_w, l))$, it might be favorable.

From Examples 1, 2 how to distribute tasks depends on the task complexity and the associated communication resources to leverage the distributed computation. Tasks with high complexity, as long as the compute resources are sufficient, require centralized processing. If one node is not that powerful, then distribute (since $\gamma_l(\lambda_v)$ will be large). It is also intuitive that low complexity tasks, such as Search and MapReduce can be distributed over the network by splitting dataset. However, tasks with high complexity such as Classification might not be feasible in a distributed manner because one needs the whole dataset (as we detailed in Example 2). To understand how $\gamma_f(\lambda_v)$ impacts the processing, we next focus on the simultaneous processing of multiple flows.

Processing of multiple flows. We explore how to allocate the computations to conduct the computation task effectively without requiring the protocol information. To that end we next sketch the behavior of cost of 3 different function classes.

Example 3. Case I. Sublinear surjection factor. We assume
that is that . This implies from that and . Due to the convexity of the communication cost, from is . In this case, the costs corresponding to different classes are

\[
W_{v,\text{comp}}^c(m_v^c) = \begin{cases}
\frac{1}{\lambda_v}O(n_v^c), & \text{Search}, \\
\frac{1}{\lambda_v}O(\exp(n_v^c)), & \text{MapReduce,} \\
\frac{1}{\lambda_v}O(\exp(\exp(n_v^c))), & \text{Classification.}
\end{cases}
\]

Case II. Linear/Proportional surjection factor. We assume that is , implying that and is . From is . In this case, the costs corresponding to different classes can be written as

\[
W_{v,\text{comp}}^c(m_v^c) = \begin{cases}
\frac{1}{\lambda_v}O(\log(n_v^c)), & \text{Search,} \\
\frac{1}{\lambda_v}O(n_v^c), & \text{MapReduce,} \\
\frac{1}{\lambda_v}O(\exp(n_v^c)), & \text{Classification.}
\end{cases}
\]

In Case I, the computation cost is either very high because is high (due to and) or relatively higher than the communication cost. In these regimes, low complexity tasks, such as Search and MapReduce should be done distributedly (because the dynamic range of is smaller), and high complexity tasks can be run centralized provided that compute resources suffice. On the other hand, in Case II, the communication cost dominates the computation cost as is low, leading to a more distributed setting.

We next contrast the costs for Cases I-II. Task distribution suits for noncomplex tasks Search and MapReduce (Case I), low since the maximum that supports, grows with the complexity, allowing parallelized processing of complex tasks, e.g., Classification, as shown in Fig. 4. Classification, as shown in Fig. 4. If dominates the cost (Case II), high is , a divide-and-conquer-based approach is favorable as is low. However, when is relatively negligible, the dynamic range of grows and centralized processing may be feasible. Hence, for low (high) complexity tasks the network may operate in a connected (isolated) fashion. If the task complexity is heterogeneous, task-based link reservations become favorable, and the network may be sparsely connected as starts to dominate. If the routings are symmetric, then the tasks are distributed in which case realizing communication intensive tasks in a distributed fashion may cause high .

Routing schemes. Fig. 4 also provides insights into flow deviation between different tasks, where the application of successive flow deviations leads to local minima as in the gradient method . For example, for given processing capability at , flows of high complexity tasks requiring centralized processing (due to high) versus low complexity tasks running in a distributed manner (due to small) can be traded-off. We observe that Case I is tailored for a hybrid regime, i.e., a mixture of distributed and centralized operation of tasks which can be done via flow deviation between tasks, and Case II enforces distributed computing of the tasks.

Multiple flows and class conversions. For simplicity of the exposition, we next consider a simple topology with nodes with identical processing capabilities, and distribute the different function classes (Search, MapReduce, Classification) on them.

(i) Separating flows. Each node works on a distinct function class independently. Hence, the compute cost is separable and independent from the routings. The communications cost is only between links and and can be computed using where where is , has a high dynamic range. (Right) Superlinear surjection where is steep, leading to distributed computing of functions due to smaller range of and on them.

(ii) Mixing flows. Each class is routed based on , where is a function of . Using , can be determined as function of and is nonzero at each node only for the function class it works on and it satisfies . Hence, total cost is easily determined.

\[
\gamma_{f}(\lambda_v^c) = \frac{1}{\lambda_v^c}O(\log(n_v^c)), \quad \text{Search,} \\
\frac{1}{\lambda_v^c}O(n_v^c), \quad \text{MapReduce,} \\
\frac{1}{\lambda_v^c}O(\exp(n_v^c)), \quad \text{Classification.}
\]

\[
\rho_{\text{th}} = \min_{\rho_v \geq 0} \left[\rho_v \frac{(\rho_v)^2}{1 - \rho_v} < d_f, \frac{(m_v^c)^2}{1 - \rho_v^c} \frac{(m_v^c)^2}{1 - \rho_v^c} \right],
\]

where and increases in .

Proposition 1. A load threshold for distributed computing. A node can do computation of a class in function if the following condition is satisfied:

\[
\rho_{\text{th}} = \min_{\rho_v \geq 0} \left[\rho_v \frac{(\rho_v)^2}{1 - \rho_v} > d_f, \frac{(m_v^c)^2}{1 - \rho_v^c} \frac{(m_v^c)^2}{1 - \rho_v^c} \right],
\]

where and increases in .

Proof. is obtained by comparing the delays with and without computation, on a per node basis. If the delay caused only by communication is higher than the total delay caused by computation followed by communication given by the lump sum of in and in . i.e., the following condition is satisfied at in :
We next provide a necessary condition for stability of the network model for computation.

Proposition 2. The computation network is stable if the computation delay is at least as much as the communications delay, i.e., if the following condition is satisfied:

\[d_{f_v}(m_v^c) \geq n_v^c, \quad c \in C, \quad v \in V. \]

Proof. For stability, the long-term average number of packets in the communications queue of \(v \), i.e., \(n_v^c \), should be upper bounded by the long-term average number of packets in the compute queue of \(v \), i.e., \(m_v^c \). Assume that \(\frac{1}{\mu_v} d_{f_v}(m_v^c) \geq \frac{\lambda_v^c}{\mu_v} \). If this assumption did not hold, we would have \(d_{f_v}(m_v^c) < \frac{\lambda_v^c}{\mu_v} \), and if \(d_{f_v}(m_v^c) < n_v^c \), then we have equivalently the following relation would hold:

\[W_v^{c, \text{comp}}(m_v^c) = \frac{d_{f_v}(m_v^c)}{\lambda_v^c} < W_v^{c, \text{comm}}(n_v^c) = \frac{1}{\mu_v^c - \gamma_f(\lambda_v^c)}. \]

In this case, \(n_v^c \) will accumulate over time, which will violate stability. Hence, delay of computation should be higher. \(\square \)

Proposition 3. An extension of Little’s Law to computing.

The long-term average number \(L_v^c \) of packets in node \(v \) for class \(c \) flow with time complexity \(d_{f_v}(m_v^c) \) is bounded as

\[L_v^c \geq b_v^c^-, \quad \left[d_{f_v}(m_v^c) \right] \frac{1}{\lambda_v^c} + \frac{1}{\mu_v^c - b_v^c^-}, \]

\[L_v^c \leq b_v^c^+ \quad \left[d_{f_v}(m_v^c) \right] \frac{1}{\lambda_v^c} + \frac{1}{\mu_v^c - b_v^c^+}, \]

where \((b_v^c)^\pm\) satisfies \(2(b_v^c)^\pm \leq \lambda_v^c(1 + \frac{1}{d_{f_v}(m_v^c)}) + \mu_v^c \pm \sqrt{(\lambda_v^c(1 + \frac{1}{d_{f_v}(m_v^c)}) + \mu_v^c)^2 - 4\mu_v^c \lambda_v^c}. \)

Proof. Following from Little’s law we have

\[d_{f_v}(m_v^c) \leq L_v^c = \gamma_f(\lambda_v^c) \left[\frac{1}{\lambda_v^c} + \frac{1}{\mu_v^c - \gamma_f(\lambda_v^c)} \right]. \]

Rearranging the above term for \(2a_v^c = \lambda_v^c(1 + 1/d_{f_v}(m_v^c)) + \mu_v^c \) we obtain the following relation: \(\gamma_f(\lambda_v^c) = 2a_v^c \gamma_f(\lambda_v^c) + \lambda_v^c \mu_v^c \leq \sqrt{(a_v^c)^2 + (\lambda_v^c \mu_v^c)^2} \),

\[\text{from which we observe that } \gamma_f(\lambda_v^c) \text{ is sublinear, i.e., } \gamma_f(\lambda_v^c) = o(\lambda_v^c) \text{ which is true if } (a_v^c)^2 > \lambda_v^c \mu_v^c, \text{ and is linear, i.e., } \gamma_f(\lambda_v^c) = O(\lambda_v^c) \text{ which is true if } (a_v^c)^2 \approx \lambda_v^c \mu_v^c. \]

This is also intuitive from the surjection factors (Cases I-II) of Example 3. From (4), (9), and (12), we get the desired result. Furthermore, if \(\gamma_f(\lambda_v^c) \approx a_v^c \), the range provided in (19) is tight and \(L_v^c \approx \frac{\lambda_v^c}{\mu_v^c} d_{f_v}(m_v^c) + \frac{1}{\sqrt{\mu_v^c/\lambda_v^c - 1}} \geq \frac{\lambda_v^c}{\mu_v^c} + \frac{1}{\sqrt{\mu_v^c/\lambda_v^c - 1}}. \) Hence, the best achievable scaling is \(\lambda_v^c L_v^c \approx O(\sqrt{d_{f_v}(m_v^c)}). \)

Remark 1. From Prop. 2, we observe that as \(d_{f_v}(m_v^c) \) increases, \(a_v^c \) decreases and \(\gamma_f(\lambda_v^c) \) concentrates. Ignoring this principle, if the processed flow rate were increased with the time complexity of the function, then the cost for both computation and communications would increase together. However, the processing factor can decrease with the time complexity, and the output rate may not be compressed below \(H(f_v(X)). \) Hence, \(H(f_v(X)) \leq \gamma_f(\lambda_v^c) \leq H(X) \) should be satisfied, where the upper limit is due to the identity function.

We denote by \(M_v^c \) the long-term average number of packets belonging to class \(c \in C \) in \(v \in V \) waiting for communications service in case of no computation, i.e., \(M_v^c = \frac{\lambda_v^c}{\mu_v^c - \gamma_f(\lambda_v^c)}. \) This is an upper bound to \(L_v^c \) since intermediate computations reduce the long term average number of packets in the system. The following gives a characterization of \(L_v^c. \)

Proposition 4. The long-term average number of packets \(L_v^c \) satisfies

\[\frac{H(f_v(X))}{\mu_v - H(f_v(X))} \leq L_v^c \leq M_v^c, \quad v \in V, \quad c \in C. \] (20)

Proof. In the case of no computation, \(m_v^c = 0 \) and \(n_v^c = L_v^c \), and the long-term average number of packets in \(v \) satisfies \(L_v^c = M_v^c \). This gives the upper bound.

When node \(v \) computes it is true that \(m_v^c > 0 \), and from (6)

\[L_v^c = \frac{\lambda_v^c}{\gamma_f(\lambda_v^c)} n_v^c \leq n_v^c = \frac{\gamma_f(\lambda_v^c)}{\mu_v^c - \gamma_f(\lambda_v^c)}. \]

We next provide an upper bound to the above equality where the bound can be approximated as function of \(\Gamma_c \) as follows:

\[L_v^c \leq \frac{\lambda_v^c}{\gamma_f(\lambda_v^c) \lambda_v^c - \gamma_f(\lambda_v^c)} \approx \frac{1}{1 - \Gamma_c} \leq \frac{1}{1 - \frac{H(f_v(X))}{\mu_v - H(f_v(X))}}, \]

(21)

where \(n_v^c \to 0 \) as \(\Gamma_c \to 0 \), i.e., for deterministic functions where the gain of computing is the highest. On the other hand, as \(\Gamma_c \to 1 \), \(n_v^c \to M_v^c \), i.e., the no computation limit.

The lower bound follows from Little’s Law in [4]:

\[L_v^c \geq \frac{\gamma_f(\lambda_v^c)}{\mu_v^c - \gamma_f(\lambda_v^c)} \geq \frac{2}{\mu_v^c - H(f_v(X))}, \]

(22)

where \(a \) is because \(\frac{1}{\lambda_v^c} d_{f_v}(m_v^c) \) is monotonically increasing with \(m_v^c \) and not less than \(\frac{1}{\mu_v^c - \gamma_f(\lambda_v^c)} \) (see Prop. 2), and \((b) \) is due to the minimal rate required for recovering \(f_v(X) \). Manipulating the lower bound, we get \(\gamma_f(\lambda_v^c) \geq \frac{\mu_v^c - H(f_v(X))}{2(\mu_v^c - H(f_v(X)))}. \)

Prop. 4 yields a better IB than that of Slepian and Wolf [2] as the lower bound in (20) is no more than \(H(f_v(X)) \) which we expect due to intermediate compression for computing.

B. Optimizing Average Task Completion Time

This section focuses on generalization to the case where we assume multiple classes of functions and allow conversion among classes, via exploiting the information-theoretic limits of function computation and flow conservation principles.

Processing factor vs arrival rate. The processing factor \(\gamma_f(\lambda_v^c) \) satisfies \(\forall c \in C, \quad v \in V \backslash \{ s \} \)

\[\gamma_f(\lambda_v^c) \geq \lambda_v^c \Gamma_c, \]

(23)

which follows from (5), where \(\lambda_v^c = \beta_v^c + \sum_{w \in V^c} \sum_{c' \in C} \gamma_f(\lambda_v^{c'}) \rho_w^{c',c}(c',c) \) using (17), where \(\rho_v^{c',c}(c',c) \in [0,1]^{(|V^c| - 1) \times |c|} \) in (15) and \(\beta_v^c \) are known a priori. The relation in (23) ensures that the flows routed from other nodes through the incoming edge of \(v \) at least \(\lambda_v^c \Gamma_c \). Letting
We next contrast 2 centralized formulations that optimize the communications cost and is formulated as an optimization problem that relies on communicating the entire function λ^c from (17). From (24), we determine by the function’s surjectivity and its computation over a communications only scheme we will run some experiments in Sect. V both by (i) separating and (ii) mixing different classes of flows (Search, MapReduce, and Classification) without precisely optimizing (26).

Modeling classification via convex flow. Classification function $W_{v,\text{comp}}(m^c_v)$ with a time complexity given in [11] is convex in m^c_v which is linear and decreasing in $\gamma_f(\lambda^c_v)$, and $W_{v,\text{comp}}(m^c_v)$ is convex in $\gamma_f(\lambda^c_v)$. Thus, MinCost is convex in $\gamma_f(\lambda^c_v)$.

The optimal solution satisfies $\frac{\gamma_f(\lambda^c_v)}{\lambda^c_v} = 0, \forall v \in V, \forall c \in C$. In the special case when $W_{v,\text{comp}}$ dominates $W_{v,\text{comp}}$, equality is required in the lower bound of in (24) such that $\gamma_f(\lambda^c_v) = \chi^c_T v_c \Gamma_{c}$ to minimize the convex MinCost. Hence, λ^c_v’s can be extracted by solving the set of $|V| \times |C|$ equalities: $\gamma_f(\lambda^c_v) = \left[\beta^c_v + \sum_{w \in V'} \sum_{c' \in C} \gamma_f(\lambda^c_v) \beta^c_{v,c'} \right] \Gamma_{c}$, which yields $\gamma_f(\lambda^c_v) = (I - \tilde{P}^{\text{f}}(c) \Gamma_{c})^{-1} \beta^c_v, c \in C$.

Local solution of MinCost. To find the local minima of MinCost for general computation cost functions, we can use the Karush-Kuhn-Tucker (KKT) approach in nonlinear programming [53], provided that some regularity conditions are satisfied [54]. Allowing inequality constraints, KKT conditions determine the local optimal solution. However, due to the lack of strong duality results for non-convex problems, MinCost can indeed be NP-hard in some instances [55].

Next in Sect. V we will numerically evaluate the load threshold ρ_{th} in (18) for function classes with time complexities in [11], and the local solution of MinCost in (26).

V. NUMERICAL EVALUATION OF PERFORMANCE

Exploiting the computation network model, the cost model, and the flow analysis detailed in Sects. II, III, and IV, our goal in this section is to explore how to distribute computation in the light of the fundamental limits provided in Sect. I-C.

Traffic intensity threshold ρ_{th} for computing. Leveraging Little’s Law [4] for computation, we numerically evaluate the critical traffic intensity thresholds ρ_{th} in (18) of Prop. I for the set of functions with time complexities $d_f(m^c_v)$ in (11). We contrast and illustrate their thresholds ρ_{th} in Fig. 8 for $\mu = 10, 100$ for different cost models such that $W_{v,\text{comp}}(m^c_v) = k^c_v d_f(m^c_v)$ where $k^c_v > 0$ is a constant proxy for modeling the cost as indicated in the figure. The threshold ρ_{th} gives a range $\rho < \rho_{th}$ where computation is allowed and increases with L^c_v.

Our experiment shows that ρ_{th} is higher for Classification,
implying that a node can only compute if the flow is sufficient, and grows slower for low complexity Search and MapReduce functions, i.e., node computes even for small flow rates. This is because in the regime $\rho < \rho_0$, the growth of $d_f(m_c)$ is much faster than the communication cost of $\gamma_f(X_c)$ for high complexity functions, rendering L^c sufficiently small to ensure a valid threshold for computing. The benefit of computation is higher for MapReduce and even higher for Search. This implies that most of the resources are reserved for running simpler tasks to enable cost effective distributed computation.

Processing factor $\gamma_f(X_c)$ vs entropic surjectivity Γ_c. We next consider the network setting with mixing of flows. We numerically solve MinCost in (26) for some special functions. We assume that $P_{row}(c)$ is a valid stochastic matrix with entries chosen uniformly at random, and that β^c and μ^c are known. Note that the values of Γ_c, X_c, and hence $\gamma_f(X_c)$ are coupled. It is intuitive that $W_{v,comp}(m_c^c)$ increases with $d_f(m_c^c)$ for any function class, and the rate of increase is determined by X_c. As Γ_c increases, the nodes generate a higher $\gamma_f(X_c)$ and $W_{v,comp}(m_c^c)$ becomes higher. However, the exact behavior of MinCost is determined by the complex relationships between the flows. We investigate the behaviors of $\gamma_f(X_c)$ and MinCost versus Γ_c and how they change for different $d_f(m_c^c)$. Note that $\gamma_f(X_c)$ increases in Γ_c from (25) because compression becomes harder as the entropy of the function $H(f_c(X))$ grows. However, the connection between $\gamma_f(X_c)$ and the time complexity $d_f(m_c^c)$ (and hence MinCost) is not immediate. For example, while addition function has low complexity $d_f(m_c^c)$ and high entropy $H(f_c(X))$, multiplication function has high complexity and low entropy.

We compare MinCost of (i) separating and (ii) mixing flows for Cases I and II, in Figs. 6 and 7, respectively, with varying μ_c. As shown in Fig. 6(a), as μ_c (processing power) increases MinCost decreases in Case I. For Case I, MinCost decreases with μ_c. The performance of (i)-(ii) similar when μ_c is very low and mixing flows performs worse. Because $\gamma_f(X_c)$ sublinearly scales, $W_{v,comp}(m_c^c)$ is decreases (convex), and $W_{v,comp}(m_c^c)$ should decrease in μ_c because with increasing processing power X_c also increases and $d_f(m_c^c)$ decays because of Little’s law when v is considered in isolation L^c decays when W^c decays. From Fig. 7(a) for Case II MinCost increases in μ_c. Because $\gamma_f(X_c)$ linearly scales, $W_{v,comp}$ is fixed, and $W_{v,comp}$ increases in μ_c (due to $W_{v,comp}(m_c^c)$ $\geq W_{v,comp}(m_c^c)$ as both n_c^c and m_c^c increase in μ_c). When μ_c is high $W_{v,comp}(m_c^c)$ grows as m_c^c increases. Therefore, if the flows are mixed among V nodes, while it is true that the processed flow per node is higher versus when the flows are separated, the processing resources will be used more effectively instead of being utilized partially only for the assigned tasks. The sublinear surjection factor will help reduce $W_{v,comp}(m_c^c)$. This will ensure at high μ_c that node v can serve a higher L^c without having to sacrifice MinCost. The savings of (ii) in MinCost are more apparent at high L^c which maps to supporting a high intensity heterogeneous computing scenario via mixing rather than separate processing. Figs. 6 and 7(b)-(d) show the behavior of a lower bound on $\gamma_f(X_c)$ in (24) as function of Γ_c, and indicate that the boundary is shifted towards right as μ_c increases, i.e., as the node’s processing capability increases, a higher rate of surjectivity Γ_c is allowed. As the communications delay becomes negligible, intermediate computations can improve MinCost.

The behavior of MinCost is modified by the type and scaling of the computation cost as well as Γ_c. CommsCost in (25) gives an upper bound to MinCost. As the computation becomes more costly, the sources may only be partially compressed in order to optimize MinCost. We also infer that there is no computing beyond some Γ_c because allocating resources to computation no longer incurs less cost than CommsCost.

A node can perform computation and forward (route) the processed data if the range of Γ_c that allows compression is flexible. This is possible when computation is cheap. However, if a node’s compression range is small, i.e., when computation is very expensive, then the node only relays most of the time. While computing at the source and communicating the computation outcome might be feasible for some function classes, it might be very costly for some sets of functions due to the lack of cooperation among multiple sources. By making use of redundancy of data across geographically dispersed sources and the function to be computed, it is possible to decide how to distribute the computation in the network.

VI. CONCLUSIONS

We provided a novel perspective to function computation problem in networks. We introduced the novel notion of entropic surjectivity to assess the functional complexity. Extending Little’s Law to computing, we derived regimes for which intermediate computations can provide significant savings. Our approach can be considered as an initial step towards...
understanding how to distribute computation and balance functional load in networks. Future directions include devising coding techniques for in network functional compression, by using compressed sensing and the compression theorem of Slepian and Wolf, employing the concepts of graph entropy, and exploiting function surjectivity. They also include more general network models beyond stationary and product-form.

REFERENCES

[1] D. Malak, A. Cohen, and M. Médard, “How to distribute computation in networks,” in Proc., IEEE Infocom, Los Angeles, CA, Jul. 2020.

[2] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.

[3] S. S. Pradhan and K. Ramchandran, “Distributed source coding using syndromes (DISCUS): design and construction,” IEEE Trans. Inf. Theory, vol. 49, no. 3, pp. 626–643, Mar. 2003.

[4] T. P. Coleman, A. H. Lee, M. Médard, and M. Effros, “Low-complexity approaches to Slepian-Wolf near-lossless distributed data compression,” IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3546–3561, Aug. 2006.

[5] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.

[6] J. Körner, “Coding of an information source having ambiguous alphabet and the entropy of graphs,” in Proc., Prague Conf. Inf. Theory, 1973.

[7] N. Alon and A. Orlitsky, “Source coding and graph entropies,” in Proc., IEEE Int. Symp. Inf. Theory, 2008, pp. 647–651.

[8] A. Giridhar and P. Kumar, “Computing and communicating functions over sensor networks,” IEEE J. Sel. Areas Commun., vol. 23, 2005.

[9] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[10] A. Giridhar and P. Kumar, “Computing and communicating functions over sensor networks,” IEEE J. Sel. Areas Commun., vol. 23, 2005.

[11] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[12] S. Kamath and D. Manjunath, “On distributed function computation in boolean functions in tree networks,” in Proc., IEEE Allerton Conf. on Communication, Control, and Computing, vol. 56, Aug. 2010.

[13] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[14] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[15] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[16] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[17] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[18] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[19] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[20] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.

[21] S. Fu, X. Feng, Q. Wang, and C. Carlet, “On the derivative imbalance and ambiguity of functions,” IEEE Trans. Inf. Theory, 2019.
[43] J. W. Moon and L. Moser, “On cliques in graphs,” Israel journal of Mathematics, vol. 3, no. 1, pp. 23–28, 1965.
[44] A. E. Gamal and Y. H. Kim, Network Information Theory. Cambridge university press, Dec. Network information theory.
[45] S. Feizi, M. Médard, and M. Effros, “Compressive sensing over networks,” in Proc., IEEE Allerton, Sep. 2010.
[46] T. Cover, “A proof of the data compression theorem of slepian and wolf for ergodic sources (corresp.),” IEEE Trans. Inf. Theory, vol. 21, no. 2, pp. 226–228, 1975.
[47] F. P. Kelly, Reversibility and stochastic networks. Cambridge University Press, 2011.
[48] R. Nelson, Probability, stochastic processes, and queueing theory: The mathematics of computer performance modeling. Springer Science & Business Media, 2013.
[49] J. Walrand, “A probabilistic look at networks of quasi-reversible queues,” IEEE Trans. Info. Theory, vol. 29, no. 6, pp. 825–831, 1983.
[50] R. Srikant and L. Ying, Communication Networks. Cambridge University Press, 2014.
[51] L. Kleinrock, Queueing Systems Vol. I: Theory. New York: Wiley, 1975.
[52] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation method: An approach to store-and-forward communication network design,” Networks, vol. 3, no. 2, pp. 97–133, 1973.
[53] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge university press, 2009.
[54] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[55] P. Manyem, “Duality gap, computational complexity and NP completeness: A survey,” arXiv preprint arXiv:1012.5568, 2010.