Synthetic *in vitro* transcribed lncRNAs (SINEUPs) with chemical modifications enhance target mRNA translation

Naoko Toki1,2, Hazuki Takahashi1,2, Silvia Zucchelli3, Stefano Gustincich4,5 and Piero Carninci1,2

1 Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
2 Functional Genomics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
3 Department of Health Sciences, Center for Autoimmune and Allergic Diseases (CAAD) and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
4 Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy
5 Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy

Correspondence
H. Takahashi and P. Carninci, Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
Tel: +81 45 503 9222
E-mails: hazuki.takahashi@riken.jp (HT) and carinci@riken.jp (PC)

(Received 6 April 2020, revised 24 August 2020, accepted 24 August 2020, available online 4 October 2020)
doi:10.1002/1873-3468.13928
Edited by Nicola Gray

Chemically modified mRNAs are extensively studied with a view toward their clinical application. In particular, long noncoding RNAs (lncRNAs) containing SINE elements, which enhance the translation of their target mRNAs (i.e., SINEUPs), have potential as RNA therapies for various diseases, such as haploinsufficiencies. To establish a SINEUP-based system for efficient protein expression, we directly transfected chemically modified *in vitro* transcribed (mIVT) SINEUP RNAs to examine their effects on target mRNA translation. mIVT SINEUP RNAs enhanced translation of *EGFP* mRNA and endogenous target *Sox9* mRNA in both cultured cells and a cell-free translation system. Our findings reveal the functional role of RNA modifications in SINEUPs and suggest several broad clinical applications of such an RNA regulatory system.

Keywords: enhancement of endogenous target mRNA translation; *in vitro* transcribed RNA; nucleic acid-based therapeutics; RNA modification

The advancement of genomics technologies revealed that an emerging class of long noncoding RNAs (lncRNAs) [1], which constitute the majority of types of transcripts and do not encode proteins [2,3], plays key regulatory roles in the physiology of normal cells, the development of diseases including cancer [4] and neurodegenerative diseases [5]. The discovery of increasing numbers of functional lncRNAs has prompted novel therapeutic applications, including the treatment of human genetic diseases. A functional lncRNA transcribed from the antisense strand of *Uchl1* mRNA contains an inverted SINEB2 element and upregulates the translation of its sense strand *Uchl1/Park5* mRNA in mouse dopaminergic neuronal cells [6]. This lncRNA was the first in a large class of antisense lncRNAs, named ‘SINEUPs’, because they contain an embedded inverted SINEB2 element that acts as an effector domain (ED) to mediate UPRegulation of the translation of the target mRNA; the target specificity is determined by the antisense RNA region, the binding domain (BD) [7].

SINEUP-based upregulation systems occur in various cell types [7] and vertebrates including humans.

Abbreviations
BD, binding domain; ED, effector domain; EGFP, enhanced green fluorescent protein; FISH, fluorescence *in situ* hybridization; IVT RNAs, *in vitro* transcribed RNAs; IVT, *in vitro* transcribed; lncRNA, long noncoding RNA; m, chemically modified; RBP, RNA-binding protein; RRL, rabbit reticulocyte lysate; SINEUP, lncRNA that contains an inverted SINEB2 repeat element and upregulates the translation of a target mRNA; SINEUP-GFP, SINEUP RNA that contains a binding domain designed to target EGFP mRNA; SINEUP-SCR, SINEUP RNA that contains a scrambled, nonbinding domain instead of the EGFP-binding domain; SOX9, sex-determining region Y-box 9.
mice, and fish [8–12]. We have focused on broadening the scope of SINEUP-based upregulation systems so that they can be applied to direct nucleic acid-based therapeutics [5,13,14]. We consider that SINEUPs might be therapeutically useful for various disorders caused by insufficient protein production [10] or haploinsufficiency. At least 300 genes are linked to haploinsufficiencies [15], for which more than 3000 genes are predicted as possible therapeutic candidates [16]. In one SINEUP proof-of-concept study, the target is the medaka cox7B gene; mutations in the human homolog subunit 7B of cytochrome c oxidase (COX7B), the product of which is a component of the mitochondrial respiratory chain, are responsible for the disease microphthalmia with linear skin lesions. To rescue a medaka model of microphthalmia with linear skin lesions, we introduced synthetic in vitro transcribed (IVT) SINEUP-cox7B, designed against endogenous cox7B mRNA. IVT SINEUP-cox7B enhanced COX7B protein production and consequently rescued eye and brain size in cox7B morphants [12]. Whether direct administration of SINEUP RNA effectively enhances protein production in cell types or species other than medaka is unknown. Here, we successfully developed synthetic, chemically modified IVT (mIVT) SINEUPs that upregulated the translation of target enhanced green fluorescent protein (EGFP) mRNA and endogenous target sex-determining region Y (SRY)-box 9 (Sox9) mRNA in cultured cells. In addition, mIVT SINEUP RNA successfully upregulated EGFP production in a HeLa extract cell-free translation system, which contains the SINEUP-specific RNA-binding proteins (RBPs) HNRNPK and PTBP1 [17].

The current study improves our understanding of the system through which mIVT SINEUP RNAs regulate both exogenous and endogenous targets in specific cell types and in a cell-free system. Therefore, our current findings support nucleic acid-based therapeutics as additional tools for gene therapy of human disorders due to insufficient protein production.

Materials and Methods

Cell culture
Human embryonic kidney (HEK 293T/17) cells, human hepatocellular carcinoma (HepG2) cells, and mouse hepatocellular carcinoma (Hepa1-6) cells were obtained from ATCC (Manassas, VA, USA) and cultured in Dulbecco’s modified Eagle’s medium (1 × 10^5 cells per well), followed 24 h later by transfection of plasmid or RNA (IVT, or mIVT). To detect EGFP, 1380 ng SINEUP-GFP plasmid or 720 ng (m) IVT SINEUP-GFP RNA was cotransfected with 300 ng pEGFP-C2 in each well by using Lipofectamine 2000 (Invitrogen, Waltham, MA, USA) with OptiMEM (1 ×) Reduced Serum Medium (Gibco). The cells were harvested at 24 h after transfection. To detect endogenous SOX9, HEK293T/17 cells were

Plasmids and constructs

The pEGFP-C2 plasmid was purchased from Clontech Laboratories (Takara Bio USA, Mountain View, CA, USA). The pCS2+ SINEUP-GFP plasmid was generated in a previous study [17]. The BD of SINEUP targeting GFP, A5′-32 nt, has a deletion of 28 bases from the 5′ end of the original 60 nt SINEUP-GFP and corresponds to the mRNA positions –28 to +4 (see Fig. 1B in [18]). The pcDNA3.1-EGFP plasmid was constructed by cloning a fragment encoding full-length EGFP (–40 bp to the stop codon) from the plasmid pEGFP-C2 into pcDNA3.1(–) (Thermo Fisher Scientific, Waltham, MA, USA). The SINEUP targeting mouse Sox9 (named miniSINEUP-Sox9) contained a BD that overlapped mouse Sox9 mRNA (in antisense orientation) and the control without BD (named miniSINEUP-Random; Rd) contained a random sequence instead of the Sox9-BD, those have an ED containing an inverted SINEB2 sequence from mouse AS-Uchl1 RNA, were cloned into the pCS2+ vector (Fig. S1).

IVT RNAs

SINEUP RNAs were synthesized by using mMESSAGE mMACHINE SP6 Transcription Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions and as modified from a protocol [19] by using the following nucleotide modifications: modified nucleotides (all from TriLink, San Diego, CA, USA; final concentration, 7.5 mM): CTP was replaced with 5-methylcytidine-5′-triphosphate (m5C), and UTP was replaced with pseudouridine-5′-trihosphosphate (Ψ) or N1-methylpseudouridine-5′-triphosphate (N1mΨ). The regents were mixed with 40 ng·µL⁻¹ (final concentration) of linearized SINEUP plasmid. A poly-A tail was added to the IVT RNA (1–10 µg per reaction) by using Escherichia coli polya (poly(A) polymerase (5000 U·mL⁻¹; catalog no. M0276; New England Biolabs, Tokyo, Japan) at 37 °C for 30 min; resulting mIVT RNAs were extracted by using RNasy Mini kit (Qiagen, Tokyo, Japan).

Plasmid and RNA transfection

HEK293T/17 cells were plated into 12-well plates (1 × 10^5 cells per well), followed 24 h later by transfection of plasmid or RNA (IVT, or mIVT). To detect EGFP, 1380 ng SINEUP-GFP plasmid or 720 ng (m) IVT SINEUP-GFP RNA was cotransfected with 300 ng pEGFP-C2 in each well by using Lipofectamine 2000 (Invitrogen, Waltham, MA, USA) with OptiMEM (1 ×) Reduced Serum Medium (Gibco). The cells were harvested at 24 h after transfection. To detect endogenous SOX9, HEK293T/17 cells were
plated into 12-well plates (1 × 10^5 cells), followed 24 h later by transfection of 2 µg miniSINEUP-Sox9 plasmid or 100 ng of mIVT miniSINEUP-Sox9 RNA per well. Cells were harvested at 24 and 48 h after plasmid transfection and at 24 h after mIVT transfection.

Cell-free translation

Rabbit reticulocyte lysate (RRL) was purchased from Promega (Madison, WI, USA) (catalog no. L4610, TNT Coupled Reticulocyte Lysate System), and a lysate of HeLa cells (catalog no. 8881, 1-Step Human Coupled IVT Kit—DNA) was purchased from...
Thermo Fisher Scientific. *In vitro* translation was performed according to the manufacturer’s protocol. Briefly, for each reaction, 400 ng of SINEUP plasmid or 200 ng of (m)IVT SINEUP RNA was mixed with 120 ng pcDNA3.1-EGFP. The mixture was incubated for 90 min at 30 °C. Protein expression was measured by western blotting.

Western blotting

Transfected cells were lysed in Cell Lysis Buffer (Cell Signaling Technology, Danvers, MA, USA) and incubated at 4 °C for 1 h. Cell lysates were loaded on a 10% precast polyacrylamide gel (Bio-Rad, Hercules, CA, USA), separated by SDS/PAGE, and transferred to a nitrocellulose membrane (Amersham, Chicago, IL, USA). All primary and secondary antibodies were used at 1:1000 dilution. To detect EGFP, anti-GFP mouse monoclonal antibody (catalog no. 632380; Clontech, Chicago, IL, USA) in the RRL cell-free system and anti-GFP rabbit polyclonal antibody (catalog no. A-6455; Thermo Fisher Scientific) in a lysate of HeLa cells and in culture cells were used. To detect RBPs, the primary antibodies, anti-hnRNP K mouse monoclonal antibody [SC2]-ChiP Grade (ab39975; Abcam), and anti-PTBP1 mouse monoclonal antibody (32-4800; Thermo Fisher Scientific) were used. To detect endogenous SOX9, anti-Sox9 rabbit antibody (20-5230; Thermo Fisher Scientific) was used. To detect EGFP, anti-GFP rabbit polyclonal antibody (ab185230; Abcam) was used. Bands were visualized by using a ChemiDoc xRS System (Vilber-Lourmat, Osaka, Japan).

The membranes were incubated with primary antibodies at 4 °C overnight, followed by incubation for 45 min at room temperature with secondary anti-mouse IgG, or anti-rabbit IgG conjugated with HRP (Dako, Tokyo, Japan). Bands were visualized by using ECL Detection Reagent (Amersham). As a control, primary mouse anti-β actin monoclonal antibody (Sigma-Aldrich) and secondary HRP-conjugated anti-mouse IgG (Dako) were used. Bands were detected by using the quantification analysis module and chemiluminescence application protocol of the Fusion Solo S System (Vilber-Lourmat, Osaka, Japan).

RNA extraction and quantification

Total RNA was extracted by using RNeasy Mini kit (Qiagen), followed by DNase I treatment (TURBO DNA-free kit; Invitrogen). cDNA was synthesized by using PrimeScript 1st Strand cDNA Synthesis kit (Takara), and quantitative real-time PCR analysis was performed by using SYBR Premix Ex Taq II (Takara) in a model 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). Thermocycling conditions consisted of an initial 30 s at 95 °C, 40 cycles comprising 95 °C for 5 s, and 60 °C for 30 s, followed by melting curve analysis.

RNA fluorescence in situ hybridization

RNA fluorescence *in situ* hybridization (FISH) was performed as previously described [17]. Briefly, cells were fixed in 4% paraformaldehyde (Wako) and permeabilized in 0.5% Triton X-100 (Sigma-Aldrich) at room temperature for 5 min. RNA was hybridized with fluorescently labeled (Quasar 570 for SINEUP RNAs and Quasar 670 for EGFP mRNA) RNA FISH probes designed by using Stellaris RNA FISH Designer (Biosearch Technologies, Novato, CA, USA; Tables S1 and S2) and incubated overnight at 37 °C. Cells were washed and imaged by using a model SP8 (Leica, Wetzlar, Germany) confocal microscope.

Results

IVT SINEUP-GFP RNA failed to increase EGFP synthesis

Previously, we found that colocalization of target mRNA and SINEUP RNA in the cytoplasm is required for upregulation of target mRNA translation [17]. We therefore hypothesized that direct transfection of IVT SINEUP RNA into the cytoplasm would enhance protein production more than transfection of SINEUP plasmid, which requires the export of RNA transcribed in the nuclei. To test the efficiency of translational upregulation by using IVT SINEUPs, we transfected IVT RNA into HEK293T/17 cells, with EGFP plasmid as a target sense transcript. IVT SINEUP-GFP RNA contains a BD designed to target EGFP mRNA (Fig. 1A), whereas IVT SINEUP-SCR RNA was designed as a negative control and contains a scrambled, nonfunctional EGFP BD. Transfection of IVT SINEUP-GFP did not stimulate the translation of EGFP (Fig. 1B), although, consistent with previous studies, EGFP mRNA and SINEUP levels did not differ among the cells (Fig. 1C).

In RNA FISH, most of the IVT SINEUP RNAs aggregated into intense spots within cells, or it was difficult to detect IVT SINEUP RNAs at all (Fig. 1D,e, j). These findings suggested that IVT SINEUP RNAs were partially degraded immediately after transfection and were detected as RNA fragments or were not present in sufficient quantities to adequately colocalize with EGFP mRNA. Consequently, EGFP translation was not upregulated.
Fig. 2. Transfection of IVT SINEUP-GFP RNA containing chemically modified nucleotides into HEK293T/17 cells. (A) Schematic representation of nucleotide-modified SINEUPs. The nucleotide dCTP was replaced with m5C, and dUTP was replaced with either Ψ or N1mΨ. The chemical structure models of modified nucleotides are adapted from reference [26]. (B) Translational upregulation of EGFP by cotransfection of EGFP plasmid and mIVT SINEUPs. The images shown are representative of western blots indicating the effect of mIVT SINEUPs on the EGFP level as detected by using an anti-GFP rabbit polyclonal antibody. Upregulation of EGFP levels was measured in at least three independent experiments. Data are shown as means ± SD. **P < 0.01, *P < 0.05, ns, not significant (two-tailed Student’s t-test). (C) Quantification of EGFP mRNA and mIVT SINEUP RNA levels after cotransfection of EGFP plasmid and mIVT SINEUPs. Data are shown as means ± SD from at least three independent experiments. ns, not significant (two-tailed Student’s t-test). (D) Subcellular distribution of mIVT SINEUPs modified with m5C, Ψ, or N1mΨ after cotransfection with EGFP plasmid. Bar, 5 μm. Figure modified from reference [26].
IVT SINEUP RNAs in cells need to be stabilized through nucleotide modification

Because RNA FISH experiments showed that IVT SINEUPS were likely aggregated after transfection into cells, we hypothesized that stabilization of IVT SINEUP-GFP was needed to enhance EGFP mRNA translation. RNA transcripts can be stabilized by modified nucleotides, such as m^5C [20,21], Ψ [22,23], or N^1mΨ [24–26], and these modifications contribute to efficient translation. We therefore synthesized mIVT SINEUP RNAs in which all C or U were replaced with the modified forms and transfected them, together with EGFP plasmid, directly into HEK293T/17 cells (Fig. 2A). All mIVT SINEUP-GFPs increased EGFP production compared with the control (EGFP alone and mIVT SINEUP-SCRs; Fig. 2B), without affecting EGFP mRNA levels (Figs. 2C, Fig. S2A).

We previously found that SINEUP-GFP RNAs localized in the nucleus as well as in the cytoplasm, regardless of EGFP plasmid and mRNA translation did not significantly affect EGFP mRNA levels (Fig. 2C, Fig. S2A). Notably, the RNA levels of mIVT SINEUP RNAs were more than 1.5-fold greater than those of IVT SINEUP RNAs (Fig. S2B), implying that these modified nucleotides contributed not only to EGFP upregulation but also to the stabilization of SINEUPs in cells.

mIVT SINEUPs contribute to EGFP upregulation with SINEUP-binding proteins

We used cell-free translation systems to observe SINEUP upregulation activity separately from RNA stabilization. None of the SINEUP RNAs tested upregulated EGFP in RRL (Fig. 3A), whereas mIVT SINEUPs with Ψ and N^1mΨ- upregulated EGFP in HeLa cell lysate (Fig. 3B). This result suggests that modified nucleotides contribute to the upregulation of EGFP in cell-free system, implying that the expression of cellular components, including RBPs, is important for SINEUP activity [17]. Indeed, the SINEUP RBPs PTBP1 and HNRNPK were expressed at lower levels, approximately 0.2- and 0.5-fold, respectively, in RRL compared with HEK293T/17 cell lysate, which did not show upregulation of EGFP (Fig. 3C–E). These findings suggest that PTBP1 and HNRNPK may have a role in the SINEUP-based upregulation of translation.

mlVT SINEUPs enhance endogenous SOX9 target protein production

To test whether SINEUPs can increase production of endogenous target proteins, we focused on sex-determining region Y (SRY)-box 9 (SOX9) protein; this transcription factor regulates cell differentiation, development, and gene expression in several tissues and organs in vertebrates [27]. In addition, SOX9-positive cells in adult liver can regenerate as hepatocytes after injury [28,29]. Because SINEUPs ultimately are to be used in therapeutic applications, small but still functional SINEUPs are desirable [7]. We therefore designed the miniSINEUP-Sox9 plasmid, in which the BD (–31/+4) overlapped the mouse Sox9 mRNA and miniSINEUP-Rd plasmid, in which contains a random sequence, nonbinding domain instead of the Sox9-BD, those contained the inverted SINEB2 ED from AS-Uchl1 RNA (Fig. 4A, Fig. S1). We then transfected these plasmids into HepG2 and Hepa 1–6 cells to examine enhancement of SOX9 protein production. Cells transfected with the miniSINEUP-Sox9 plasmid showed an approximately 1.5-fold upregulation of SOX9 protein compared with the control (no SINEUPs) at both 24 and 48 h after transfection in HepG2 cells and at 24 h after transfection in Hepa 1–6 cells (Fig. 4B). In addition, the SINEUP RBPs PTBP1 and HNRNPK were expressed in both HepG2 and Hepa 1–6 cells, at no lower than 0.6 times the level in HEK293T/17 cells (Fig. S4A–C). Consistent with

![Fig. 3.](image-url)
SINEUP activity depends on RNA modifications

A

	EGFP alone	pCS2+	IVT	m^5C	ψ	N^1mψ
EGFP						
β-actin						

EGFP fold change

	EGFP alone	pCS2+	IVT	m^5C	ψ	N^1mψ
EGF P	1.00	0.89	0.89	0.98	0.91	1.04
SINEUP -SCR	0.89					
SINEUP -GFP						

B

	EGFP alone	pCS2+	IVT	m^5C	ψ	N^1mψ
EGFP						
β-actin						

EGFP fold change

	EGFP alone	pCS2+	IVT	m^5C	ψ	N^1mψ
EGF P	1.00	1.08	1.09	1.00	0.97	1.03
SINEUP -SCR	1.00					
SINEUP -GFP						
EGFP study regarding *EGFP* mRNA, endogenous *Sox9* mRNA levels did not change in SINEUP-transfected cells (Fig. 4C). Together, these findings show that miniSINEUP-Sox9 can effectively increase endogenous SOX9 protein levels.

We next tested the efficiency of translational upregulation when mIVT miniSINEUP-Sox9 containing m^5^C, \(\Psi\), or N\(^1\)m\(\Psi\) was used (Fig. 5A) in HepG2 cells. Similar to the miniSINEUP-Sox9 plasmid, mIVT miniSINEUP-Sox9 RNAs with \(\Psi\) and N\(^1\)m\(\Psi\) showed approximately 1.5-fold upregulation of SOX9 protein compared with the control (no mIVT SINEUPs; Fig. 5B). Consistent with the results of plasmid transfection, the endogenous Sox9 mRNA level was not affected by mIVT miniSINEUP RNAs (Fig. 5C). This result implies that nucleotide modifications might contribute to the stabilization of miniSINEUP-Sox9 RNA to enhance the SOX9 protein level in HepG2 cells.

Discussion

Synthetic IVT RNAs have diverse potential applications as a new class of druggable tools based on nucleic acid therapeutics. Here, we demonstrated an efficient approach to enhance target protein production through direct transfection of synthetic chemically modified SINEUP RNAs. In this study, IVT SINEUPs with nucleotide modifications were stabilized in cells and increased the EGFP level both in a cell-free translation system and in cultured cells. Using cell-free systems, we found that mIVT SINEUPs upregulated EGFP in HeLa cell lysate but not in RRL. Future studies are needed to assess whether chemical nucleotide modifications of IVT SINEUPs contribute not only to RNA stabilization but also to the interaction with SINEUP-binding proteins, which might be necessary for enhancing translation of the target mRNAs.

The modified nucleotides that we used in this study were chosen not only for their ability to stabilize the target transcripts but also for their importance in several regulation systems. The modified nucleotide m\(^5\)^C stabilizes tRNA [30], aids accurate processing of ncRNA [31], affects the subcellular localization of transcripts [32], and is involved in the regulatory function of lncRNA [33]. In our current study, although m\(^5\)^C-containing mIVT SINEUPs were more stable than IVT SINEUPs (Fig. S2B), m\(^5\)^C- did not enhance target protein production (Figs 3B and 5B). Given that RNA modifications change the binding affinities of RBPs [32,34], some positions of m\(^5\)^C residues in mIVT SINEUPs likely diminished their binding to RBPs, which is important for the localization and translational regulation by SINEUPs and warrants further study.

The modified uridine residue \(\Psi\) contributes to mRNA stability, intracellular transcript localization [22], and enhancement of mRNA translation through diminishing protein kinase RNA-activated (PKR) activation [23], and is linked to translation accuracy [35].
Fig. 4. miniSINEUP-Sox9 for endogenous target transfected into HepG2 and Hepa 1–6 cells. (A) Schematic representation of the miniSINEUP-Sox9 construct. miniSINEUP-Sox9 contains an overlapping region with Sox9 mRNA as a BD and the inverted SINEB2 motif from AS-Uchl1 RNA as an ED. (B) Translational upregulation of SOX9 protein due to transfection of miniSINEUP-Sox9 or miniSINEUP-Random (Rd), which contains a random sequence instead of the BD in miniSINEUP-Sox9. Image shown is a representative western blot illustrating the effect of SINEUPs on the SOX9 protein level. Quantification of SOX9 levels compared with nontransfected cells (Cont.) is shown as means ± SD of at least 3 independent experiments. *P < 0.05; ns, not significant (two-tailed Student’s t-test). (C) Quantification of Sox9 mRNA and miniSINEUP RNA levels after transfection with SINEUP plasmid. ns, not significant (two-tailed Student’s t-test). Data are shown as means ± SD of at least three independent experiments.
In addition, RNA duplexes are stabilized when U is replaced with Ψ, leading to the formation of stable Ψ-A, Ψ-G, Ψ-U, and Ψ-C pairs [22]. N1mΨ enhances mRNA translation by increasing ribosome density [24] and reduces immunogenicity [25]. Together, these reports suggest that multiple nucleotide modification of RNA has diverse functional possibilities that act through increasing mRNA stability and regulating translation. This knowledge has led to the development of modified mRNA-based approaches for immune cancer therapy and vaccination [36]. In addition to these current nucleic acid-based therapies, SINEUPs have the potential to be used to increase protein production as a biotechnological tool [37], for recombinant antibodies [9,38] and in gene therapy [12], including for diseases that are currently difficult to treat. Adding to current DNA-based gene therapy approaches, RNA-based druggable systems have several advantages, including avoiding the risk of foreign gene integration into the host genome and insertion mutations that may lead to unexpected adverse side effects. In particular, mIVT SINEUP RNAs can be used as an RNA-based drug tool to stimulate only specific target mRNA translation without altering the endogenous mRNA itself, reducing the incidence of unexpected immune responses because of the introduction of modified nucleotides into IVT SINEUPs. Furthermore, mIVT SINEUP RNAs can easily be scaled down to the smallest functional SINEUP RNA, which can then be transported to the target organs with minimal invasive effects to the host. Although how SINEUP RNAs are modified naturally in living cells remains unknown, such modifications, which are missing from IVT transcripts, are likely necessary for SINEUP functions, given that nucleotide modifications can influence protein–RNA interactions and the subcellular distribution of RNAs [39]. The specific modified nucleotides we used in this study are known to alter mRNA secondary structure and thus the half-life and translation efficiency of these transcripts [26]. Ascertaining the importance of the positions of modified nucleotides and improving our understanding of how—and which—modified nucleotides contribute to protein upregulation are crucial goals, and continued research into these modifications of SINEUPs and their application as druggable tools is necessary.

In conclusion, we here showed that synthetic, chemically modified IVT SINEUPs have potential as an efficient, protein-producing tool in nucleic acid-based
therapies and, thus, would benefit patients with diseases that are currently difficult to treat by using conventional treatments including DNA-based gene therapy.

Acknowledgements

This paper is dedicated to the memory of our wonderful colleague, Dr. Silvia Zucchelli, who passed away during this study. We thank Dr. Ana Kozhuharova and Dr. Aimi Abdullah for BD optimization of miniSINEUP-Sox9 and all the members of the Carninci laboratory, Dr. Michael Jones, Dr. Claudio Santoro, and the SINEUP network (International School for Advanced Studies (SISSA), UPO, IIT, and RIKEN) for helpful discussions. Sincere thanks to Matthew Valentine for proofreading this manuscript. This work was partly supported by a Research Grant from the Japanese Ministry of Education Culture, Sports, Science and Technology (MEXT) to the RIKEN Center for Integrative Medical Sciences and by a JSPS KAKENHI grant (JP18K14631 to HT).

Conflicts of interest

SZ, SG, and PC are inventors on patent US9353370B2 and related applications in the European Union and Japan, and HT, SZ, SG, and PC are inventors on patent application IT020180000241 and the related application PCT/IB2019/050914, which is held by SISSA and TranSINE Therapeutics (Cambridge, UK), which was founded by SG and PC and in which HT owns shares. These COIs did not affect the direction and conclusions of this paper.

Author contributions

NT, HT, and PC designed the project with input from SZ and SG; NT performed all experiments and data analysis; and NT, HT, and PC wrote the manuscript with input from SZ and SG.
References

1 Mattick JS and Makunin IV (2006) Non-coding RNA. *Hum Mol Genet* **15**, R17–R29.
2 Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C *et al.* (2005) The transcriptional landscape of the mammalian genome. *Science* **309**, 1559–1563.
3 ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57–74.
4 Slack FJ and Chinnaiyan AM (2019) The role of non-coding RNAs in oncology. *Cell* **179**, 1033–1055.
5 Zucchinelli S, Fedele S, Vatta P, Calligaris R, Heutink P, Rizzu P, Itoh M, Persichetti F, Santoro C, Kawaji H *et al.* (2019) Antisense transcription in loci associated to hereditary neurodegenerative diseases. *Mol Neurobiol* **56**, 5392–5415.
6 Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Zucchelli S, Fasolo F, Russo R, Cimatti L, Patrucco L, Chiesa A, Soluri MF, Fasolo F, Takahashi H *et al.* (2017) The Yin and Yang of nucleic acid-based therapy in the brain. *Prog Neurobiol* **155**, 194–211.
7 Takahashi H and Carninci P (2014) Widespread genome transcription: new possibilities for RNA therapeutics. *Biochem Biophys Res Commun* **452**, 294–301.
8 Takahashi H, Zucchelli S, Gustincich S and Mallamaci A (2017) The 5-methylcytosine and its emerging role as an epitranscriptomic mark. *FEBS Letters* **590**, 2935–2941.
9 Gustincich S, Zucchelli S and Mallamaci A (2017) The Yin and Yang of nucleic acid-based therapy in the brain. *Nat Rev Neurol* **13**, 157–169.
10 Dang VT, Kassahn KS, Marcos AE and Ragan MA (2008) Identification of human haploinsufficient genes and their genomic proximity to segmental duplications. *Ear J Hum Genet* **16**, 1350–1357.
11 Bon C, Luffarelli R, Russo R, Fortuni S, Pierattini B, Indrieri A, Grimaldi C, Zucchelli S, Tammaro R, Gustinich S and Franco B (2016) Synthetic long non-coding RNAs [SINEUPs] rescue defective gene expression in vivo. *Sci Rep* **6**, 27315.
12 Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN and Kitada T (2015) N1-methyl-pseudouridine in mRNA enhances translation through eIF2alpha-dependent translational initiation assembles. *bioRxiv* 664029 [PREPRINT].
13 Boschetti D, Zucchielli S, Fasolo F, Russo R, Cimatti L, Patrucco L, Chiesa A, Soluri MF, Fasolo F, Wang X, Takahashi H *et al.* (2018) Identification of functional features of synthetic SINEUPs, antisense IncRNAs that specifically enhance protein translation. *PLoS One* **13**, e0183229.
14 Mandal PK and Rossi DJ (2013) Reprogramming human fibroblasts to pluripotency using modified mRNA. *Nat Protoc* **8**, 568–582.
15 Amort T, Rieder D, Wille A, Khokhlova-Cubberley D, Rindl L, Trixl L, Jia X-Y, Micura R and Lusser A (2017) Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. *Genome Biol* **18**, 1.
16 Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z and Kierzek R (2014) The contribution of pseudouridine to stabilities and structure of RNAs. *Nucleic Acids Res* **42**, 3492–3501.
17 Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D and Kariko K (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. *Nucleic Acids Res* **38**, 5884–5892.
18 Vaitkus YV, Cheng YM, Chakraborty T, Presnyak V, John M and Sonenberg N (2017) N1-methyl-pseudouridine in mRNA enhances translation through eIF2alpha-dependent and independent mechanisms by increasing ribosome density. *Nucleic Acids Res* **45**, 6023–6036.
19 Nandi S, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN and Kitada T (2015) N1-methyl-pseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. *J Control Release* **217**, 337–344.

FEBS Letters 594 (2020) 4357–4369 © 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies
SINEUP activity depends on RNA modifications

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. (A) Schematic diagram of the multicloning region in pCS2+. (B) miniSINEUP-Sox9 construct. The SINEUP targeting mouse Sox9 consists of a BD that overlaps the Sox9 mRNA sequence and an ED containing an inverted SINEB2 sequence from mouse AS-Uchl1 RNA. The SINEUP was cloned into the XhoI and XbaI sites of pCS2+. (A) Underlining highlights BD of Sox9 mRNA; ED is italicized, and restriction sites are in red (XhoI, CTGGAG; XbaI, TCTAGA).

Fig. S2. (A) Quantification of EGFP mRNA levels after co-transfection of pEGFP-C2 plasmid and each transcribed SINEUP. Data are shown as means ± SD from at least three independent experiments. (B) Quantification of SINEUP RNA levels after co-transfection of pEGFP-C2 plasmid and each transcribed SINEUP. **P < 0.01; *P < 0.05; ns, not significant (two-tailed Student’s t-test). Data are shown as means ± SD from at least three independent experiments.

Fig. S3. (A) Subcellular distribution of mIVT SINEUP RNAs in cells transfected with mIVT SINEUP RNAs alone. Bar, 5 μm. (B) Subcellular distribution of EGFP mRNA in cells transfected with pEGFP-C2 plasmid alone. Bar, 5 μm.

Fig. S4. (A–C) SINEUP RBPs in HepG2, Hepa 1–6, and HEK293T/17 cells. Images shown are representative Western blots of (A) the RBPs in HepG2 and Hepa 1–6 cell lysates compared with HEK293T/17 cell lysate. The protein levels of the SINEUP RBPs (B) PTBP1 and (C) HNRNPK were normalized to that of β-actin. Fold change in the protein levels is shown as means ± SD of at least three independent experiments.

Table S1. FISH probe sequences for SINEUP RNAs.

Table S2. FISH probe sequences for EGFP mRNAs.