Nonlinear Susceptibility: A Direct Test of the Quadrupolar Kondo Effect in UBe_{13}

A.P. Ramirez, P. Chandra, P. Coleman, Z.Fisk, J.L. Smith, and H.R. Ott

1 A.T. & T. Bell Laboratories 600 Mountain Avenue, Murray Hill, NJ 07974.
2 NEC Research Institute, 4 Independence Way, Princeton, NJ 08540.
3 Serin Physics Laboratory, Rutgers University, P.O. Box 849, Piscataway, NJ 08854.
4 Los Alamos National Laboratory, Los Alamos, New Mexico 87545.
5 Eidg. Tech. Hochschule, ETH-Hönggerberg, CH-8093 Zürich, Switzerland

We present the nonlinear susceptibility as a direct test of the quadrupolar Kondo scenario for heavy fermion behavior, and apply it to the case of cubic crystal-field symmetry. Within a single-ion model we compute the nonlinear susceptibility resulting from low-lying $\Gamma_3 (5f^2)$ and Kramers $5f^3$ doublets. We find that nonlinear susceptibility measurements on single-crystal UBe_{13} are inconsistent with a quadrupolar $(5f^2)$ ground-state of the uranium ion; the experimental data indicate that the low-lying magnetic excitations of UBe_{13} are predominantly dipolar in character.

PACS Nos: 75.10.-b, 75.30.Cr, 75.20Hr
There exist several metallic systems whose novel thermodynamic, magnetic and transport properties are not adequately described by conventional Fermi liquid theory; specific examples include the quasi-one dimensional conductors, [1] certain actinide heavy fermion materials [2, 3] and the layered cuprate superconductors. [4, 8] The search and characterization of non-Fermi liquid (NFL) fixed points is thus a topic of active research. [4–8] In this Letter we present an unambiguous experimental test of the quadrupolar Kondo effect, a model proposed by Cox [5] to characterize the NFL behavior observed in the cubic three-dimensional heavy fermion material UBe_{13}. We use the nonlinear susceptibility (χ_3) as a direct probe of low-lying quadrupolar fluctuations, and compute its behavior within a single-ion model for the case of cubic crystal-field symmetry; these predictions are then compared to χ_3 measurements on single-crystal UBe_{13}.

Most heavy fermion metals display a dramatic reduction in resistivity at low temperatures associated with the development of coherent quasiparticle propagation. UBe_{13} is atypical, undergoing a superconducting transition directly from a normal state with a large incoherent resistivity [9] of order 140$\mu\Omega$ cm. The low-temperature dependences of the magnetic susceptibility [9] and the specific heat [9] are logarithmic in the approach to the superconducting transition. Resistance, [10] specific heat, [11], susceptibility [12] and magnetoresistance [13] measurements indicate that Fermi liquid behavior is restored at low temperatures under an applied pressure. Thus UBe_{13} is a metal with a tuneable Fermi temperature (T_F^*) such that $T_F^* < T_c$ at ambient pressure. The microscopic physics underlying this suppressed, pressure-dependent [10, 13] and field-dependent [14] T_F^* is a crucial issue for the characterization of the complex many-body ground-state of UBe_{13}.

Cox [4] has proposed that novel single-ion physics is responsible for the observed NFL behavior in UBe_{13}. The observation of a well-defined Schottky anomaly [15] at $T \sim 180K$ indicates that the uranium ion is in a local-moment rather than an intermediate valence regime; [10] however, it can assume either the U^{4+} ($5f^2$) or the U^{3+} ($5f^3$) nominal valence state, [3, 15] and neither quasi-elastic neutron scattering [17] nor photoemission [18, 19] measurements can unambiguously resolve the crystal-field assignments. In a cubic environment
Cox has identified a non-magnetic quadrupolar (Γ_3) ground-state of the U^{4+} ion. He suggests that fluctuations within this non-Kramers doublet are overscreened by the conduction electrons; this quadrupolar Kondo effect then leads naturally to a non-Fermi liquid ground-state. In an alternate scenario, supported by NMR measurements consistent with a U^{4+} valence state, the low-lying spin excitations are dipolar; the NFL behavior is attributed to the system’s proximity to a $T = 0$ quantum phase transition, analogous to that recently observed in $MnSi$ by Lonzarich and coworkers.

The nonlinear susceptibility (χ_3) is an ideal test of the quadrupolar Kondo effect in UBe_{13}; it can distinguish unambiguously between a low-lying quadrupolar and Kramers crystal-field doublet. In the paramagnetic state, χ_3 measures the leading nonlinearity in the magnetization

$$M = \chi_1 B + \frac{1}{3!} \chi_3 B^3 + \ldots$$

in the direction of the applied field (B); it was originally proposed as a direct probe of order-parameter fluctuations in spin glasses. Morin and Schmitt extended this technique to non-random spin systems, where they used the nonlinear susceptibility to study quadrupolar interactions in rare-earth intermetallic compounds.

The most general form for χ_3 in a cubic environment is

$$\chi_3 = \chi_{311} + \Delta \chi_3 \Phi(\hat{b})$$

where $\Phi(\hat{b})$ is the cubic harmonic

$$\Phi(\hat{b}) = \frac{1}{2} \left[3(b_x^4 + b_y^4 + b_z^4) - 1 \right]$$

and the b_i ($i = 1, 2, 3$) are the direction cosines of the field. The numerical factors in $\Phi(\hat{b})$ are chosen so that $\Delta \chi_3 \equiv \chi_{310} - \chi_{311}$; the “powder-averaged” component of the nonlinear susceptibility is $\bar{\chi}_3 = \chi_{311} + \frac{7}{20} \Delta \chi_3$.

The ratio of the two contributions to χ_3 in (2) is qualitatively different for a quadrupolar and a magnetic ground-state. An isolated Kramers doublet results in a nonlinear
susceptibility $\chi_3 = -\frac{n^4}{3^7}$ that is isotropic, reflecting the negative curvature of the Brillouin function. For an isolated doublet with a quadrupolar moment Q, the field-dependent part of the Hamiltonian is $\hat{H} = \frac{1}{2}B^2 \hat{Q}_{ab} b_a b_b$, where $\hat{Q}_{ab} \propto [\hat{J}_{a}\hat{J}_{b} - \frac{1}{3}\delta_{ab} J(J+1)]$ is the quadrupole operator; \[20\] more explicitly

$$\hat{H} = \frac{QB^2}{2} \begin{bmatrix} q_{zz} & q_{xx} - iq_{yy} \\ q_{xx} + iq_{yy} & -q_{zz} \end{bmatrix}$$

where $q_{aa} = b_a^2 - \frac{1}{3}$ ($a = x, y, z$). Diagonalizing H, we find that the splitting of the quadrupolar doublet is given by

$$E_{T^\pm} = E_T \pm QB^2 \sqrt{\frac{\Phi(b)}{4!}}$$

which yields an anisotropic nonlinear susceptibility $\chi_3(\hat{b}) = \frac{Q^2}{2T} \Phi(b)$. In Cox’s model \[3\] for UBe_{13}, there is partial quenching of Q by the conduction sea and

$$\Delta \chi_3 = \frac{Q^2}{2T} f(T/T_0) = \begin{cases} \frac{Q}{2T} & T >> T_0 \\ \frac{\alpha}{2T_0} \ln(T_0/T) & T << T_0 \end{cases}$$

where T_0 is the “Bethe ansatz” Kondo temperature; \[27\] the exact solution of the two-channel Kondo model \[27–29\] yields an asymptotic form for $f(x)$ with an associated value \[27\] $\alpha = 1/\pi^2 \approx 0.10$. Thus the quadrupolar Kondo hypothesis predicts a $\Delta \chi_3(\hat{b})$ that increases logarithmically with decreasing temperature.

In this idealized discussion we have neglected the Van Vleck contributions to χ_3. In practice, a uranium atom in a magnetic configuration (U^{3+}) with a moment $\mu(H) = \mu_0 + \frac{B^2 A(b)}{3!}$ will exhibit a small $\Delta \chi_3 = \frac{4\mu_0 A(b)}{T}$ due to the nonlinearity in $\mu(H)$. Conversely, χ_3 for a U ion with a low-lying quadrupolar doublet (U^{4+}) will have an isotropic Van Vleck component (χ_3^{VV}) that has a weak temperature dependence. Despite these additional contributions, we expect the anisotropic component of the nonlinear susceptibility

$$\frac{\Delta \chi_3(\hat{b})}{\chi_3} \equiv \frac{(\chi_3(\hat{b}) - \chi_3^{111})}{\chi_3^{111}}$$

to be small and nearly temperature-independent for a uranium atom with a dipolar ground-state; by contrast, $\frac{\Delta \chi_3(\hat{b})}{\chi_3}$ should be large and strongly temperature-dependent if the low-lying fluctuations are quadrupolar in nature.
Single-ion crystal-field calculations allow us to quantify the preceding discussion, and they have been performed for \(J = 4 \) and \(J = \frac{9}{2} \) manifolds of \(f \) orbits in a cubic environment. \[20\] The overall energy scale \((W)\) and the level ordering \((x)\) have been adjusted to fit the total entropy in the observed Schottky anomaly, \([15]\) and the resulting energy schemes are displayed in Figure 1. The associated \(\chi_3(\hat{b}) \) and \(\frac{\Delta \chi_3(\hat{b})}{\chi_3} \) are shown in Figure 2 and 3 respectively, where the moment has been normalized by a fit to the measured high-temperature susceptibility; \([30]\) the numerical solution of the two-channel Kondo model \([27]\) has been used to determine the effects of screening in Figure 3.

In order to test the quadrupolar scenario in \(UBe_{13} \), we measured \(\chi_3 \) along the three principal crystal axes of an oriented single crystal grown from \(Al \) flux. The superconducting transition temperature, a rough measure of the sample quality, was found by specific heat to be \(T_c = 0.75K \) for this crystal. Measurements were also performed on a a polycrystalline sample with \(T_c = 0.96 \). Finally a third sample, an unoriented single crystal with \(T_c = 0.48K \), was studied. For the \(\chi_3 \) measurements on the oriented crystal, the orientation was achieved with a precision of \(\pm 3 \) degrees; the data were taken as \(M \) vs. \(B \) at fixed temperatures up to 4 Tesla in a Quantum Design SQUID magnetometer. The deviation from linearity was only \(\sim 2\% \) at the lowest temperature and the highest field; it was attributed to the leading nonlinear contribution of \(M \) to \(\chi_3 \). The magnetization data were fit to the expression \(M = \chi_0 + \chi_1 B + \frac{1}{3!} \chi_3 B^3 \), where \(\chi_0 \) was included to avoid systematic errors associated with both trapped flux in the superconducting solenoid and a small \(\sim 10 \) ppm), ubiquitous ferromagnetic signal which saturated at \(\sim 1 \) Tesla. The temperature dependence of \(\chi_3 \) is displayed in Figure 4. The data were typically fit over the region \(2 < B < 4 \) Tesla; in this field range, \(M/B - \chi_0 \) was always linear with respect to \(B^2 \). The linear part, \(\chi_1 \) (not shown), agrees well with published values. \([9]\) Figure 4 shows the nonlinear susceptibility measured in the 111, the 110, and the 100 directions. We note that the observed \(\chi_3 \) is both negative and monotonically decreasing with decreasing temperature; its magnitude is significantly greater than that predicted for the quadrupolar scenario (Figure 2a), but comparable in size at \(T \sim 10K \) with that expected from a dense concentration of only partially quenched \(U \).
magnetic doublets.

The observed magnitude and temperature dependence of χ_3 was similar for the other two samples studied. The measurements on the polycrystalline sample (Figure 4) provide a crucial control on our results; here we expect the impurity level to be low given the relatively high observed value of T_c. The polycrystalline sample displays behavior in $\chi_3(T)$ similar to that of the orientation-averaged single-crystal. This result, combined with the large magnitude of χ_3, exclude the possibility that the observed χ_3 is due a residual background of magnetic impurities.

The measured anisotropy in the nonlinear susceptibility (Figure 4 inset) is small ($\Delta\chi_3(b)/\chi_3 \sim 3 \times 10^{-1}$) with a very weak temperature dependence; moreover it appears, at the level of one standard deviation, to have the opposite sign to that expected for the quadrupolar scenario (see Figure 3). These results strongly favor a magnetic model for the uranium ions in UBe_{13} with a low Kondo temperature. One can try to reconcile these results with the quadrupolar scenario by invoking a large Van Vleck contribution (χ_{VV}^3); it would result from virtual spin or valence fluctuations into higher lying multiplets of the U ion. Such a term would scale approximately with $1/\Delta_x$, where Δ_x is the gap to the higher multiplets. In order for $\chi_{VV}^3 \sim \frac{1}{\Delta_x}$ to be much larger than $\Delta\chi_3 \sim \frac{1}{T_0}$ we need $\Delta_x < T_0$, a condition inconsistent with the initial assumption of a well-defined quadrupolar ground-state.

We now return to the possible origins of NFL behavior in UBe_{13}. Though a single-ion mechanism cannot be ruled out,[31] a canonical Kondo model for the magnetic U ion results in a Fermi liquid ground-state. Furthermore one expects a system with a low-lying Kramers doublet to display a reduction in $\gamma \equiv \frac{c}{T}$ when $g\mu_B B \sim T_F^*$, in contrast to that observed[32] for UBe_{13}. Thus we conclude that these results cannot be explained within a single-ion picture and require a more sophisticated approach, possibly one that has an intrinsic pressure- and field-dependent T_F^*. We are tempted to identify the observed NFL behavior as a lattice phenomenon, possibly attributed to the system’s proximity to a $T = 0$ quantum phase transition.[45] Two different types of experiments would clarify this situation. First, thermodynamic and transport studies on $U_xTh_{1-x}Be_{13}$ would probe the behavior of dilute
U atoms in the cubic environments, thereby indicating the importance of lattice effects. Second the nonlinear susceptibility as a function of pressure could be measured; we expect a shoulder in $\chi_3 \sim \frac{1}{T_0}$ that coincides with the observed development of Fermi liquid behavior in the resistance, specific heat, and the magnetoresistance.

In conclusion we have performed a series of nonlinear susceptibility measurements on the cubic heavy fermion system UBe_{13}. We find a small weakly temperature-dependent anisotropy, $\frac{\Delta \chi_3(\hat{b})}{\chi_3}$, in the nonlinear susceptibility that is difficult to reconcile with the quadrupolar Kondo scenario. These results provide strong evidence for a Kramers doublet ground-state in the U^{3+} ions of UBe_{13} and suggest a lattice mechanism for the observed non-Fermi liquid behavior. Further experiments have been proposed to test this conjecture.

We thank D.L. Cox and A.M. Tsvelik for extensive discussions related to this work. P. Coleman is supported by NSF grant DMR-93-12138 and work at Los Alamos was performed under the auspices of the UCDOE.
REFERENCES

[1] D. Jerome and H. Schulz, *Adv. Phys.* **31**, 299 (1982); D. Jerome and C. Bourbonnais in *Les Houches Lecture Notes*, ed. B. Doucot and J. Zinn-Justin, (North-Holland, 1994).

[2] J. Lawrence, *J. Appl. Phys.* **53**, 2117 (1982).

[3] B. Andraka and A.M. Tsvelik, *Phys. Rev. Lett.* **67**, 2886 (1991); C. Seaman, M.B. Maple, B.W. Lee, S. Ghamaty, M.S.Toriachvili, J.-S. Kang, L.Z. Liu, J.W. Allen and D.L. Cox, *Phys. Rev. Lett.* **67**, 2882 (1991).

[4] A. J. Millis, *Phys. Rev. B* **48**, 7183 (1993).

[5] D.L. Cox, *Phys. Rev. Lett.* **59**, 1240 (1987); D.L. Cox, *Physica C**153**, 1642 (1988); D.L. Cox, *J. Mag. Mag. Mat.* **76**, 53 (1988).

[6] A.Tsvelik and M. Reizer, *Phys. Rev. B* **48**, 9887 (1993).

[7] P.W. Anderson, *Phys. Reports* **184**, 2 (1989); *Physica C**185**, 11 (1991); *Phys. Rev. Lett.* , 71 (1220)0, 1993.

[8] C.M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams and A. E. Ruckenstein, *Phys. Rev. Lett.* **63**, 1996 (1989); A. E. Ruckenstein and C. M. Varma, *Physica C**185**, 134 (1991); P.B. Littlewood in *Les Houches Lecture Notes*, ed. B. Doucot and J. Zinn-Justin, (North-Holland, 1994).

[9] H.R. Ott, H. Rudigier, Z. Fisk and J.L. Smith, *Phys. Rev. Lett.* **50**, 1595 (1983); H.R. Ott, *Prog. Low Temp. Phys.* **11**, 215 (1987).

[10] J.D. Thompson, M.W. McElfresh, J.O. Willis, Z.Fisk, J.L. Smith and B. Maple, *Phys. Rev. B* **35**, 48 (1987).

[11] N.E. Phillips, R.A. Fisher, J. Flouquet, A.L. Giorgi, J.A. Olsen and G.R. Stewart, *J. Magn. Magn. Mat.* **63-64**, 332 (1987).
[12] M. McElfresh, M.B. Maple, J.O. Willis, D. Schiferl, J.L. Smith, Z. Fisk and D.L. Cox, *Phys. Rev. B*, 48 (1039)5, 1993.

[13] M.C. Aronson, J.D. Thompson, J.L. Smith, Z. Fisk and M.W. McElfresh, *Phys. Rev. Lett.* 63, 2311 (1989).

[14] B. Batlogg, D.J. Bishop, E. Bücher, B. Golding Jr., A.P. Ramirez, Z. Fisk, J.L. Smith and H.R. Ott, *J. Mag. and Mag. Mat.* 63 & 64, 441 (1987).

[15] R. Felten, F. Steglich, G. Weber, H. Rietschel, F. Gompf and B. Renker, *Europhys. Lett.* 2, 323 (1986).

[16] Typical valence fluctuations on energy scales of order 100 – 1000 meV would broaden the crystal-field levels to an extent such that they would no longer be observable.

[17] A.I. Goldman, S.M. Shapiro, G. Shirane, J.L. Smith and Z. Fisk, *Phys. Rev. B* 33, 1627 (1986); G. Aeppli, private communication.

[18] E. Wuilloud, Y. Baer, H.R. Ott, Z. Fisk and J.L. Smith, *Phys. Rev. B* 29, 5228 (1984).

[19] J.W. Allen, *J. Mag. and Mag. Materials* 76, 324 (1988).

[20] K.R. Lea, M. Leask and W.P. Wolf, *J. Phys. Chem. Sol.* 23, 1381 (1962).

[21] P. Nozières and A. Blandin, *J. Phys. (Paris)* 41, 193 (1980).

[22] W. G. Clark, W. H. Wong, W. A. Hines, M. D. Lan, D. E. MacLaughlin, Z. Fisk, J. L. Smith and H. R. Ott, *J. Appl. Phys* 63, 3890 (1988).

[23] G.G. Lonzarich, *Bull. Amer. Phys. Soc.* 39, 292 (1994).

[24] J. Chalupa, *Sol. Stat. Comm.* 22, 315 (1977); J. Suzuki, *Prog. Theor. Phys.* 58, 1151 (1977).

[25] P. Morin and D. Schmitt, *Phys. Rev. B* 23, 5936 (1981).

[26] H. Jeffreys and B. Jeffreys, *Methods of Mathematical Physics*, Cambridge University
Press (London, 1972).

[27] P. D. Sacramento and P. Schlottmann, *Phys. Lett. A* **142**, 245 (1989).

[28] C. Destri and N. Andrei, *Phys. Rev. Lett.* **52**, 364 (1984).

[29] P. B. Weigmann and A. M. Tsvelik, *Pis’ma Zh. Eksp. Teor Fiz.* **38**, 489 (1983); A. M. Tsvelik and P. B. Weigmann, *Z. Phys.* **54**, 201 (1984).

[30] H. Ott, Susceptibility measurements on UBe_{13} to be supplied.

[31] I. Perakis, C.M. Varma, A.E. Ruckenstein, *Phys. Rev. Lett.* **70**, 3467 (1993); T. Giamarchi, C.M. Varma, A.E. Ruckenstein and P. Nozières, *Phys. Rev. Lett.* **70**, 3967 (1993).

[32] H.M. Mayer, U. Rauchschwalbe, C.D. Bredl, F. Steglich, H. Rietschel, H. Schmidt, H. Wulh and J. Beuers, *Phys. Rev. B* **33**, 3168 (1986).

[33] Measurements on $U_{1-x}M_xBe_{13}$ do exist that suggest the development of Fermi liquid behavior for dilute U ions (J.S. Kim, B. Andraka, C. S. Jee, S.B. Roy and G.R. Stewart, *Phys. Rev. B* **41**, 11073 (1990); however further studies must be performed at more values of (large) x to confirm this conclusion.
Fig. 1. The $J = 4$ quadrupolar and the (b) $J = \frac{9}{2}$ dipolar single-ion energy schemes for UBe_{13} where the overall energy scale and the level ordering are determined by a two-parameter fit to the specific heat measurements of Felten et al. [15]
Fig. 2. The nonlinear susceptibility in the [100], [111] and [110] directions for (a) the $J = 4$ and (b) the $J = \frac{9}{2}$ energy schemes displayed in Figure 1.
Fig. 3. The anisotropic part of the nonlinear susceptibility for the $J = 4$ level scheme of Fig. 1. The low-temperature $\frac{\Delta \chi_3}{\chi_3}$ (dotted line) was determined by normalizing the single-ion anisotropy with the screening function $f(T/T_0)$ from the solution of the two-channel Kondo problem; [27] here the value $T_0 = 1.5K$ was extracted from the observed specific heat [15]. For the $J = \frac{9}{2}$ scheme of Figure 1 $\frac{\Delta \chi_3(b)}{\chi_3} = 0$.
Fig. 4. The measured nonlinear susceptibility ($\chi_3(\hat{b})$) and $\Delta \chi_3(\hat{b}) / \chi_3$ (inset) for single-crystal and polycrystalline UBe_{13}.