Insect galls on Asteraceae in Brazil: richness, geographic distribution, associated fauna, endemism and economic importance

Ismael Cividini Flor1, Alene Ramos Rodrigues1, Sharlene Ascendino Silva1, Barbara Proença1 & Valéria Cid Maia1

1Universidade Federal do Rio de Janeiro Museu Nacional, Rio de Janeiro, RJ, Brasil.

*Corresponding author: ismaelcflor@gmail.com

FLOR, I.C., RODRIGUES, A.R., SILVA, S.A., PROENÇA, B., MAIA, V.C. Insect galls on Asteraceae in Brazil: richness, geographic distribution, associated fauna, endemism and economic importance. Biota Neotropica. 22(1):e20211250. https://doi.org/10.1590/1676-0611-BN-2021-1250

Abstract: An overview of insect galls on Asteraceae in Brazil is presented. We used the Web of Science database to find publications about insect galls from 1988 to 2020. We analyzed 88 publications and collected data from 51 of those. A total of 487 gall morphotypes were counted on 157 plant species of 42 genera. This value singled out Asteraceae as the richest plant family in number of gall morphotypes in Brazil. Most morphotypes were recorded in the Atlantic Forest (41%) and Cerrado (30.5%), the most surveyed biomes in Brazil. Baccharis L. supported the greatest gall richness (43.9%), which could be explained by the hypotheses of geographic area and taxon size. Baccharis concinna G.M. Barroso, B. dracunculifolia DC. and B. platypoda DC. were indicated as superhost species. Most galls were induced on stems (52.2%), a pattern known in Asteraceae for gall-inducing Tephritidae and Chloropidae, and extended in the present study to Cecidomyiidae. Most galls were fusiform (42.5%), which can be related to the highest number of gall on stems. Cecidomyiidae (Diptera) were the most frequent inducers, as observed worldwide. The presence of other dwellers - parasitoids, cecidophages, kleptoparasites, and successors - were reported in 8.8% of the gall morphotypes, being parasitoids the most frequent, as found in other Brazilian publications. Most host plants (58%) are endemic to Brazil, 14% are useful and few are vulnerable or endangered (six and four species, respectively). Due to the high host specificity, the gall-inducers associated with these plants can also be considered either endemic, important, vulnerable and/or endangered, respectively.

Keywords: Gall-inducing insects; insect-plant interaction; Compositae.
Introduction

The Asteraceae family presents the largest number of species recorded in the world, totaling 32,581 species (Willis 2017). This group is found in all continents, except Antarctica, being more common in rural environments than in forests (Anderberg et al. 2007). In Brazil, Asteraceae are the third family in species diversity among Angiosperms and in number of endemics (BFG 2018) with approximately 289 genera and 2,173 species, of which 71 genera and 1,367 species are endemic (Flora do Brasil 2020), occurring preferentially in open environments, such as savannahs and rupetrian fields (Hind & Miranda 2008).

Insect galls are pathological structures that originate new formations in plant tissues, as a result of mechanical and/or chemical stimulation by insects (Bronner 1992). According to Mani (1964), galls are induced in any part of a plant, both in vegetative and reproductive organs, providing food and shelter for the larva until its adult stage. Although the entomogenous galls occur in any part of the plants, they are most common on leaves and branches (Maia & Siqueira 2020).

Several plants of economic interest are vulnerable to damage by gall-inducing insects, including ornamental, edible, medicinal and pesticidal plants, as well as species used in carpentry, cosmetics, cabinet making, and agroforestry (Maia 2018). Most galling pests have been reported from the Old World and North America, whereas few examples are known from South America, especially in plants of the Asteraceae family.

In the last 30 years, several insect gall inventories in different Brazilian phytogeographic regions have been published (Araújo 2018). Most of them comprise galls on Asteraceae and indicate this family as one of the most important in gall richness. Other families are also important, such as Fabaceae (Santos-Silva & Araújo 2020) and Myrtaceae (Maia 2019). As data are scattered in the literature, the number of host plant species and gall-inducing species are unknown, as well as data on their associated fauna, distribution, endemism, and economic importance.

The main goal of this paper is to present a panoramic view of insect galls on Asteraceae in Brazil. The specific objectives are: (1) to inventory the gall-morphotypes on Asteraceae species in Brazil; (2) register the distribution of the galls phytogeographic domains; (3) determine the most frequent morphotype as well as the most attacked plant organ and their distribution area according to Flora do Brasil (2020) (Table 1), showing that there is still no data on galls for Brazil.

Material and Methods

Insect gall scientific articles sampling Brazilian areas published from 1988 until 2020 were analyzed in order to collect information about insect galls on Asteraceae in Web of Science between August, 2020 and October, 2020 (www.periodicos.capes.gov.br). The following descriptors were used: Brazil/Brasil, Galls/Galhas, Insect galls/Galhas de insetos, Gall-inducing insects/Insetos galhadores, Cecidomyiidae, Asteraceae, Compositae. We only considered host plants identified to species level, to avoid overestimating gall morphotypes number.

Botanical names and synonyms were verified in Flora do Brasil (2020), as well as data on plant origin, geographic distribution and conservation categories (EN - endangered, LC - least concern, NE - not evaluated, NT - near threatened, VU - vulnerable) (IUCN 2020). Plant uses were verified using the websites Useful Tropical Plants Database (2014 - http://tropical.theferns.info) and EMBRAPA (https://www.embrapa.br/). The following categories were considered: agroforestry, edible, medicinal and other uses. Phytogeographic domains were retrieved from the original papers or verified in vegetation maps of Brazil (IBGE 2004). Host plants that occur exclusively in one single domain were considered endemic of this domain. The plant species that presented the highest number of galls were considered galls’ super-hosts.

In the present study, all records of Cecidomyiidae (Diptera) as gall-inducer were converted in Cecidomyiinae records, since this is the single subfamily of Cecidomyiidae which includes cecidogenous species (Gagné & Jaschhof 2021). Concerning the associated fauna, records of inquilines were converted in records of cecidophages and kleptoparasites, according to the criteria proposed by Luz & Mendonça-Júnior (2019).

Results

1. Inventory of galls

We found 88 articles reporting insect galls sampled from Brazilian areas: 64 with gall morphotypes on Asteraceae, 51 with identified host plant species and 24 of them without Asteraceae as hosts. Asteraceae species appear as hosts of insect galls in 34 (31%) of these studies, and this family is indicated as one of the super hosts in 21 inventories. They covered five (83%) Brazilian phytogeographic domains, with the Atlantic Forest and Cerrado the most studied, with 33 and 29 inventories, respectively. The surveys totaled 487 insect gall morphotypes in association with 157 species of 42 genera (Figure 1). Baccharis L. and Mikania Willd. showed the highest number of galled species, 42 (26.7%) and 29 (18.5%), and the greatest richness of galls, 218 (43.9%) and 76 (15.6%) morphotypes, respectively. The super-host plant species were: Baccharis concinna G.M.Barroso (n=18 morphotypes; 3.7%), B. dracunculifolia DC. (n=17; 3.5%), B. platypoda DC. (n=17; 3.5%), B. reticularia DC. (n=17; 3.5%), B. retusa DC. (n=16; 3.3%), B. minutiflora Mart. ex Baker. (n=14; 2.9%), Eremanthus erythropappus (DC.) MacLeish (n=12; 2.5%) and Mikania glomerata Spreng. (n=10; 2.1%) (Supplementary Material).

2. Gall richness by phytogeographic domains

The Atlantic Forest was the domain with the highest number of gall morphotypes, 200 (41%), followed by Cerrado with 150 (30.5%), Pampa with five, Pantanal with three and Amazon rainforest with two. Caatinga (dry forest) presented the lowest number of galls, with only one morphotype. Eighty-seven (55%) host plant species were recorded only in the Atlantic Forest, sixty-seven only in the Cerrado (42%), eighty in the Atlantic Forest + Cerrado, one in the Caatinga + Cerrado, and two in the Amazon Forest. Thirty-eight host plant species (24.2%) were more widespread than their galls, 28 were as widespread as their galls and 19 host plant species were reported in phyttogeographic domains outside their distribution area according to Flora do Brasil (2020) (Table 1), showing that there is still no data on galls for Brazil.
3. Gall morphotypes

Thirteen distinct gall shapes were found, the most frequent were fusiform (42.5%) and globoid (35.1%) (Figures 1 and 2). The shape of two gall morphotypes was not informed. The most attacked organs were stems (n=254; 52.2%), leaves (n=165; 33.9%), bud galls (n=92; 14.2%) and flower (n=14; 2.8%) (Table 2). Galls on flowers (1.3%) were found only in Atlantic Forest and Cerrado. The majority of the galls were glabrous (58.4%), except in Pantanal where among the three galls found, two presented trichomes. Data on pubescence in 28.2% of the morphotypes (n=102) were not informed by the authors as well as the phytogeographic domains of 132 gall morphotypes. In addition, some of the galls occurred simultaneously in more than one plant organ so that the results shown in Table 3 have totals higher than the overall number.

4. Gall-inducing insects and associated fauna

The inducers belong to four orders: Diptera (64.7%), Lepidoptera (6%), Hemiptera (3.3%) and Coleoptera (2%). Furthermore, inducers of 117 gall morphotypes (24%) were not determined (Table 3). Two families represented Diptera: Cecidomyiidae (61.8%) and Tephritidae (2.9%). Fifteen genera of gall midges have been recorded, most of

Figure 1. Galls on Asteraceae in Brazil. a) fusiform gall on leaf of Mikania argyreiae DC.; b) fusiform gall on stem of Vernonia beyrichii Less.; c) globoid gall on leaf of Baccharis conyzoides (Less.) DC.; d) cylindrical gall on leaf of Mikania glomerata Spreng.; e) conical gall on stem of Mikania micrantha Kunth; f) lenticular gall on leaf of Baccharis conyzoides (Less.) DC.; g) rosette gall on lateral bud of Grazielia gaudichaudiana (DC.) R.M.King & H.Rob.; h) globoid gall on apical bud of Baccharis dracunculifolia DC.; and i) fusiform gall with pupal exuvia on Flower-head of Porophyllum ruderale (Jacq.) Cass.

Table 1. Number of gall morphotypes by genera and species of Asteraceae, and the average number of gall per host plant species in each phytogeographic domain in Brazil.

Phytogeographic domain	Nº of galled plant genera	Nº of host species	Nº of morphotypes	Average number of gall/host plant species
Atlantic Forest	29	87	200	2.3
Amazon	02	02	02	1.0
Caatinga-Cerrado	01	01	01	1.0
Cerrado	26	67	150	2.2
Pampa	03	04	05	1.25
Pantanal	02	02	03	1.5
No data	05	13	139	-

http://dx.doi.org/10.1590/1676-0611-BN-2021-1250 http://www.scielo.br/bn
Figure 2. Number of gall morphotypes recorded on Asteraceae species in Brazil. Other morphotypes: rosette, marginal roll, amorphous, discoid*, claviform, ovoid*, spherical*, swelling* and not informed (* morphotypes with terminology not updated).

Table 2. Number of gall morphotypes per plant organ of Asteraceae species in each phytogeographic domain in Brazil.

Plant organs	Atlantic Forest	Cerrado	Pantanal	Pampa	Amazon	Caatinga-Cerrado
Stem	92	89	2	3	1	1
Leaf	84	51	1	2	1	-
Bud	35	20	-	-	-	-
Flower	3	2	-	-	-	-

them (n=12) are represented by a single identified species, except *Asphondylia* (n=4 species), *Liodiopsis* (n=3), and *Clinodiplosis* (n=2). Furthermore, nine genera include undetermined species, highlighting *Asphondylia* due to its highest richness. Tephritidae were registered in 14 gall morphotypes, with only one inducer identified in species, *Tomoplagia rudolphi* (Lutz & Lima, 1918) on *Vernonanthura polyanthes* (Sprengel) Vega & Dematteis.

Associated fauna were found in 43 gall morphotypes (8.8%) on 30 plant species of 15 genera (Table 4). *Mikania* and *Baccharis* comprised the highest number of morphotypes with associated fauna (14 and 9, respectively). Four guilds were represented: cecidophages, kleptoparasites, parasitoids, and successors. Among them, parasitoids were the most frequent, found in 29 gall morphotypes on 24 plant species, followed by cecidophages, found in 12 gall morphotypes on 11 plant species, and kleptoparasites in eight morphotypes on three plant species. Successors were the least frequent, being found in six gall morphotypes on six plant species. Parasitoids were represented by Hymenoptera of six families, the most frequent being Eulophidae (n=9) and Eurytomidae (n=4). Multiparasitism was reported in six gall morphotypes. Cecidophages were represented by Diptera, Hemiptera, Coleoptera, Lepidoptera, and Thysanoptera. Diptera were the most frequent being found in seven gall morphotypes followed by Coleoptera (n=4), Lepidoptera (n=3), Hemiptera (n=2), and Thysanoptera (n=2). Kleptoparasites were represented by Cecidomyiidae (Diptera), while successors by Formicidae (Hymenoptera) and Collembola. Spiders were recorded in a single gall morphotype, but the authors did not include these organisms in any guild (Silva et al. 2018).

The four guilds were reported only in Atlantic Forest, while only kleptoparasites were not recorded in the Cerrado. In the Caatinga-Cerrado transition and Amazon Forest only one guild was reported, successors and kleptoparasites, respectively. Thirty gall morphotypes hosted associated fauna in the Atlantic Forest, 11 in the Cerrado, one in Amazon Forest, and one in the Caatinga-Cerrado transition.
Table 3. Richness of gall morphotypes per order and family of inducing insects.

Inducers	Number of gall morphotypes	%
Diptera	301	61.8
Coleoptera	14	2.9
Hemiptera	29	6.0
Not determined	117	24.0

Table 4. Associated fauna of galls on Asteraceae species and their phytogeographic domains of occurrence.

Host plant species	Gall morphotypes	Associated fauna	Phytogeographic domains
Ageratum conyzoides L.	Bud / globoid	Aphidaceae (Hemiptera) (1)	Atlantic Forest
Baccharis bifrons Baker	Leaf / lenticular	Hymenoptera (2)	Atlantic Forest
Baccharis microcephala (Less.) DC.	Bud / globoid	Eulophidae (Hymenoptera) (2)	Atlantic Forest
Baccharis pedunculata (Mill.) Cabrera	Bud and stem / fusiform	Lepidoptera (1)	Atlantic Forest
Baccharis pingraea (Lam.) Pers	Stem and leaf / globoid	Hymenoptera (2)	Cerrado
Baccharis reticularia DC.	Bud and stem / globoid	Sciariidae (Diptera) (1)	Cerrado
Baccharis singularis (Vell.) G. M. Barroso	Leaf vein and stem / fusiform	Thysanoptera (1)	Atlantic Forest
Calea pinnatifida (R. Br.) Less Chromolaena odorata (L.) R.M.King and H.Rob.	Stem / fusiform	Hymenoptera (2)	Amazon Forest
Eremanthus capitatus (Spreng.) MacLeish	Stem / globoid	Thysanoptera (4)	Caatinga-Cerrado
Eremanthus polycephalus (DC.) MacLeish.	Stem / globoid	Formicidae (4)	Atlantic Forest
Graphistylis itatiaiae (Dusén) B.Nord.	Bud / fusiform	Hymenoptera (2)	Atlantic Forest
Grazielia gaudichaudiana (DC.) R.M.King and H.Rob.	Leaf / globoid	Lepidoptera (1)	Atlantic Forest
Lepidaploa rufogrisea	Stem / globoid	Sciaridae (1)	Atlantic Forest
Mikania argyreia DC.	Leaf / globoid	Hymenoptera (2)	Atlantic Forest
Mikania glomerata Spreng.	Stem / conical	Contarinia ubiquita Gagné, 2001 (Cecidomyiidae) (3)	Atlantic Forest
Mikania glomerata Spreng.	Leaf / globoid	Contarinia sp. (Cecidomyiidae) (3)	Atlantic Forest

Continued...
5. Origin, endemism and economical importance

Regarding the origin of the host plant species, 96.8% (n=152) are native to Brazil, among them 58% (n=91) are endemic to Brazil, 25.3% (n=39) being endemic to the Atlantic Forest, 30.8% to Cerrado and 1.1% to Caatinga (Table 5). Chromolaena ivifolia (L.) R.M.King & Lamp; H.Rob. and Mikania lindleyana DC. were recorded in the Amazon rainforest and Aspilia latissima Malme and Vernonanthura brasiliiana (L.) H.Rob. in the Pantanal, species that are native but not endemic. There was no occurrence of Asteraceae in the Caatinga, but one species (L.) H.Rob. in the Pantanal, species that are native but not endemic.

Among the 157 host plants, only 22 (14%) are economically useful, most being medicinal (59%), 36.3% have agroforestry use and only 18.8% are edible. Furthermore, 54.5% have other uses (Table 6). These plants host 98 gall inducing insects, most of them are Cecidomyiinae (65.3%), followed by Tephritidae (7.1%), Hemiptera (5.1%), Lepidoptera (4%) and Coleoptera (2%). In 16.3% the galling insects were not determined. Eighteen inducers were identified at species level and six at genera level.

Discussion

In this study we compiled 487 gall morphotypes on Asteraceae, a higher number than compiled on Fabaceae (n=437) by Santos-Silva & Araújo (2020), showing that Asteraceae are the main insect gall hosts in Brazil. Nevertheless, the number of galled species is higher in Fabaceae (n=437) by Santos-Silva & Araújo (2020), showing that Asteraceae are the main insect gall hosts in Brazil.

Concerning IUNC (2020) conservation categories, plant species were classified into: NE: 79.6% (n=125 plants; 392 morphotypes), LC: 7.6% (n=12; 43), NT: 4.5% (n=7; 13), VU: 3.8% (n=6; 30) and EN: 2.5% (n=4; 6). The Cerrado presented the largest number of threatened species (EN, NT and VU), 13, followed by the Atlantic Forest biomes with four (VU).

Among the 157 host plants, only 22 (14%) are economically useful, most being medicinal (59%), 36.3% have agroforestry use and only 18.8% are edible. Furthermore, 54.5% have other uses (Table 6). These plants host 98 gall inducing insects, most of them are Cecidomyiinae (65.3%), followed by Tephritidae (7.1%), Hemiptera (5.1%), Lepidoptera (4%) and Coleoptera (2%). In 16.3% the galling insects were not determined. Eighteen inducers were identified at species level and six at genera level.

Discussion

In this study we compiled 487 gall morphotypes on Asteraceae, a higher number than compiled on Fabaceae (n=437) by Santos-Silva & Araújo (2020), showing that Asteraceae are the main insect gall hosts in Brazil. Nevertheless, the number of galled species is higher in Fabaceae (n=437) by Santos-Silva & Araújo (2020), showing that Asteraceae are the main insect gall hosts in Brazil.
The genera with the largest number of galled species and gall morphotypes were *Baccharis* and *Mikania*. A large number of galls induced by insects have been studied on many species of *Baccharis* and *Mikania* (Fernandes et al. 2014). Both these genera are widely distributed throughout Brazil and they are the richer in species within the Asteraceae family, favoring their association with gall-inducing insects. The hypothesis of geographic area (Southwood 1960) and hypothesis of taxon size (Fernandes 1992) could perhaps help explain the greater insect galls richness on *Baccharis* and *Mikania*. They predict that taxa with wider geographic distribution and greater species richness have potentially a greater number of associated galling insects than taxa with more restricted distribution and lower species richness. The presence of super-hosts species is common in the Neotropical region; hence contributing to the increase of the local and regional fauna of

Table 5. Origin of Asteraceae host species and number of gall morphotypes in Brazil.

Origin	Number of host plants	Number of galls
Native	152	482
No data	05	05
Total	**157**	**487**
Endemic to Brazil	39	145
Endemic to Atlantic Forest	23	50
Endemic to Cerrado	28	74
Endemic to Caatinga	01	01
Not Endemic	59	205
No data	07	12
Total	**157**	**487**

Table 6. The Asteraceae species hosting insect galls in Brazil, their economic importance, and the number of gall inducer morphospecies by host plant.

Host Plant	Economic Importance	Number of gall inducer morphospecies
Achyrocline satureioides (Lam.) DC	Medicinal Edible uses Agroforestry Other uses	01
Ageratum conyzoides L.	x	-
Aspilia foliosa (Gardner) Benth. & Hook.	x	x
Austroeupatorium inulafolium (Kunth) R.M.King&H.Rob.	-	x
Baccharis dracunculifolia DC.	-	x
Baccharis reticularia DC.	-	x
Chromolaena odorata (L.) R.M.King and H.Rob.	x	x
Conyza canadensis (L.) Cronquist	x	x
Dasyphyllum brasiliense (Spreng.) Cabrera	-	-
Dasyphyllum spinescens (Less.) Cabrera	-	x
Eremanthus erythropappus (DC.) MacLeish	-	x
Lychnophora ericoides Mart.	x	-
Lychnophora pinaster Mart.	x	-
Mikania glomerata Sprech.	x	x
Mikania laevisigata Sch.Bip. ex Baker	x	-
Mikania micrantha Kunth	x	-
Piptocarpha axillaris (Less.) Baker	-	-
Piptocarpha rotundifolia (Less.) Baker	x	x
Porophyllum ruderale (Jack.) Cass.	x	x
Pseudobrickellia brasiliensis (Spreng.) R.M.King	x	-
Vernonanthura brasiliana (L.) H.Rob.	-	x
Vernonanthura polyanthes (Sprengel) Vega & Dematteis	-	x

The genera with the largest number of galled species and gall morphotypes were *Baccharis* and *Mikania*. A large number of galls induced by insects have been studied on many species of *Baccharis* and *Mikania* (Fernandes et al. 2014). Both these genera are widely distributed throughout Brazil and they are the richer in species within the Asteraceae family, favoring their association with gall-inducing insects. The hypothesis of geographic area (Southwood 1960) and hypothesis of taxon size (Fernandes 1992) could perhaps help explain the greater insect galls richness on *Baccharis* and *Mikania*. They predict that taxa with wider geographic distribution and greater species richness have potentially a greater number of associated galling insects than taxa with more restricted distribution and lower species richness. The presence of super-hosts species is common in the Neotropical region; hence contributing to the increase of the local and regional fauna of...
gall-inducers in the communities (Fernandes et al. 2014). *Baccharis dracunculifolia* and *B. concinna* were also reported by Fernandes et al. (1996) as super-hosts, as well as *Mikania glomerata* in different inventories in Brazil (Maia 2013, Maia & Proença 2016).

The highest frequency of the fusiform galls in this study differs from the pattern observed in the Neotropical region where conical galls are the most common (Isaias et al. 2014). Santos-Silva & Araújo (2020) reported a predominance of globoid galls in Fabaceae. The highest number of fusiform galls in our study can be related to the high number of gall on stems. When compared to leaves, stems are less plastic organs, perhaps not allowing many variations in the gall shape (Valladares et al. 2006). The predominance of stem galls differ from the pattern of all zoogeographic regions, where most galls are on leaves (Mani, 1964).

However, the higher number of stem galls in Asteraceae is a pattern already known for some gall-inducing taxa, as Tephritidae (Friedberg 1984), Chloropidae (Foote et al. 1993), and Lepidoptera (Maia 2006). In the present study, the last pattern is suggested for gall midges too.

Cecidomyiidae were the most frequent gall-inducers. In fact, they represent the most diverse gall-inducing family in the world. They comprise about 6,590 species, about 70% of them being gall-inducing (Gagné & Jaschhof 2021). The *Asphondylia* was the most diverse gall-inducing genus in our study. This genus is speciose, cosmopolitan and easily recognizable and these features could explain its richness (Gagné & Jaschhof 2021). Other Diptera families include gall-inducers, as Tephritidae, but in this family, only a small percentage of species (about 10%) exhibits this habit. Nevertheless, most Tephritidae species induce galls on Asteraceae and this is recognised as a worldwide pattern (Freidberg 1984). Most described species of Cecidomyiidae induce galls on Myrtaceae in Brazil (Maia 2019). Galls of Lepidoptera, Coleoptera and Hemiptera are less frequent than those of Cecidomyiidae, nevertheless, these orders are frequently reported (e.g. Gonçalves-Alvim & Fernandes 2001, Maia et al. 2008, Malves & Freire-Costa 2012), but always responsible for few gall morphotypes.

In this study parasitoids were the most frequent guild as in several Brazilian inventories, being represented exclusively by Hymenoptera (e.g. Carvalho & Mota 2018, Silva et al. 2018, Maia & Siqueira 2020). In fact, they are considered the most important natural enemies of the gall-inducing insects, not only in Brazil, but also in the world (Gagné 1994). Eulophidae and Eurytomidae are families usually cited as parasitoids of gall-inducers in Brazil (e.g. Maia 2001, Carvalho-Fernandes et al. 2016, Ribeiro et al. 2019). Cecidophages, kleptoparasites and successors are infrequent in inventories, and the insect taxa included in these guilds have been found in Asteraceae as well as in other plant families (e.g. Maia 2001, Carvalho-Fernandes et al. 2016, Maia & Siqueira 2020).

Few studies refer to the origin, endemism and threat category of host plant species associated with galling insects. Among the 88 scientific publications studied, only three presented this information (Maia & Mascarenhas 2017, Maia & Siqueira 2020, Santos-Silva & Araújo 2020). In our study 50% are endemic and this value is higher when compared to that of Santos-Silva & Araújo (2020) for Fabaceae (29%). Furthermore, 17 botanical species are under a threatened category as useful, vulnerable and/or threatened as well as their host plants. We can conclude that Asteraceae is the main host family of insect galls in Brazil and most morphotypes were reported in the Atlantic Forest and Cerrado. The richest genera in gall morphotypes were also the most widely distributed around Brazil and one of the best represented in number of species. The most attacked plant organ and the most frequent gall morphotype on Asteraceae do not corroborate the pattern observed for the Neotropical region.

The composition of gall inducing insects and fauna associated followed what is already known for the Neotropical region. Due to Cecidomyiidae high level of specificity, they can be considered endemic, useful, vulnerable and/or threatened as well as their host plants.

Finally, this study provides important data on the presence of gall inducing insects in one of the richest families of Angiosperms in Brazil. Such studies are rare in Brazil important to consolidate the current knowledge, and to show the diversity and frequency of these insects in Brazil. They also provide subsidies to other studies such as biogeography and conservation.

Supplementary Material

The following online material is available for this article:

Table - Insect galls on Asteraceae species occurring in Brazil.

Associate Editor

Gustavo Graciolli

Author Contributions

Ismael Cividini Flor: Conceptualization (Equal), Data curation (Equal), Investigation (Equal), Methodology (Equal), Project administration (Equal), Resources (Equal) Supervision (Equal), Writing – original draft (Equal), Writing – review & editing (Equal).

Alene Ramos Rodrigues: Conceptualization (Equal), Data curation (Equal), Investigation (Equal), Methodology (Equal), Writing – original draft (Equal), Writing – review & editing (Equal).

Sharlene Ascendino Silva: Conceptualization (Equal), Data curation (Equal), Investigation (Equal), Methodology (Equal), Writing – original draft (Equal), Writing – review & editing (Equal).

Barbara Proença: Conceptualization (Equal), Data curation (Equal), Investigation (Equal), Methodology (Equal), Writing – original draft (Equal), Writing – review & editing (Equal).
Valéria Cid Maia: Conceptualization (Equal), Data curation (Equal), Investigation (Equal), Methodology (Equal), Supervision (Equal), Writing – original draft (Equal), Writing – review & editing (Equal).

Conflicts of Interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.

References

ANDERBERG, A.A., BALDWIN, B.G., BAYER, R.J., BREITWIESER, J., JEFFREY, C., DILLON, M.O., ELDENÁS, P., FUNK, V.A., GARCIA-JACAS, N., HIND, D.J.N., KARIS, P.O., LACK, H.W., NESOM, G., NORDENSTAM, B., OBERPRIERLE, C., PANERO, J.L., PUTTOCK, C., ROBINSON, H., STUESSY, T.F., SUSANNA, A., URTUBEY, E., VOGT, R., WARD, J. & WATSON, L.E. 2007. Compositae. In The families and genera of vascular plants (J.W. Kadeiret & C. Jeffrey, eds.). Springer. Berlin. p.61-588.

ARAÚJO, W.S. 2018. 30 years of research on insect galls in Brazil: a scientometric review. Pap. Avulsos Zool. 58: e20185834.

ARAÚJO, W.S., FERNANDES, G.W. & SANTOS, J.C. 2019. An overview of inventories of gall inducing insects in Brazil: looking for patterns and identifying knowledge gaps. An. Acad. Bras. Cienc. 91(1): e20180162.

BFG - The Brazil Flora Group. 2018. Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 69:1513-1527.

BRONNER, R. 1992. The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In Biology of insect induced galls (J.D. Shorthouse & O. Rohrfrisch, eds.). Oxford University Press, New York, p.118–140.

CARNEIRO M.A.A., BRANCO C.S.A., BRAGA C.E.D., ALMADA E.D., COSTA M.B.M. & MAIA V.C. 2009. Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev. Bras. Entomol. 53(3):365-378.

CARVALHO-FERNANDES, S.P., ASCENDINO, S., MAIA, V.C. & COURI, M.S. 2016. Diversity of insect galls associated with coastal shrub vegetation in Rio de Janeiro, Brazil. An. Acad. Bras. Ciênc. 88(3):1407-1418.

CARVALHO, A.N. & MOTA, J.S. 2018. Ocorrência e caracterização de galhas entomógenas em um fragmento florestal em estágio de sucessão ecológica na Amazônia. Entomos Trabalho. 11(2):118-123.

EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). 2020. Base de Dados de Pesquisa Agropecuária. https://www.bdpag.caep.embrapa.br/consulta/ (last access in 04/12/2020)

FERNANDES, G.W. 1987. Gall forming insects: their economic importance and control. Rev. Bras. Entomol. 31(3):379-398.

FERNANDES, G.W. 1992. Plant family size and age effects on insular gall-forming species richness. Glob. ecol. biogeogr. lett. 2:71-74

FERNANDES, G.W., CARNEIRO, M.A.A., LARA, A.C.F., ALLAIN, L.A., ANDRADE, G.L., JULIÃO, G., REIS, T.C. & SILVA, I.M. 1996. Gallating insects on neotropical species of Baccharis (Asteraceae). Trop. zool. 9(2):315-332.

FERNANDES, G.W., SILVA, J.O., ESPÍRITO-SANTO, M.M., FAGUNDES, M., OKI, Y. & CARNEIRO, M.A.A. 2014. Baccharis: A Neotropical Model System to Study Insect Plant Interactions. In Neotropical Insect Galls (G.W. Fernandes & J.C. Santos, eds.). Springer-Verlag, London, p.193-219.

FLORA DO BRASIL 2020. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/ (last access in 29/12/2020)

FOOTE, R.H., BLANCH, F.L. & NORRBOOM, A.L. 1993. Handbook of the fruit flies (Diptera: Tephritidae) of America north of Mexico. Comstock Publishing Associates, Ithaca.

FRIEDE BERG, A. 1984. Gall tephritidae. In Biology of gall insects (T.N. Ananthakrishnaned, ed.). Oxford & IBH, New Delhi, p.129-167.

GAGNÉ, R.J. 1994. The Gall Midges of the Neotropical Region. Cornell University Press, Ithaca.
SOUZA, A.L.T., FERNANDES, G.W., FIGUEIRA, I.E.C. & TANAKA, M.O. 1998. Natural history of a gall-inducing weevil Collabismus citellae (Coleoptera: Curculionidae) and some effects on its host plant Solanum lycocarpum (Solanaceae) in southeastern Brazil. Ann. Entomol. Soc. Am. 91:404-409.

SOUTHWOOD, T.R.E. 1960. The abundance of the Hawaiian trees and the number of their associated insect species. Proc. Hawaii Entomol. Soc. 17(2):299-303.

THE TROPICAL PLANTS DATABASE. 2020. http://tropical.theferns.info (last access in 20/03/2020).

VALLADARES, F., SANCHEZ-GOMEZ, D. & ZAVAFA, M.A. 2006. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J. Ecol. 94:1103-1116.

WILLIS, K.J. 2017. State of the world’s plants 2017. Report. Royal Botanic Gardens, Kew. https://stateoftheworldsplants.org/ (last access in 05/01/2021)

Received: 25/06/2021
Accepted: 30/11/2021
Published online: 17/01/2022