The cellular expression and proteolytic processing of the amyloid precursor protein is independent of TDP-43

David A. Hicks*, Alys C. Jones#, Stuart M. Pickering-Brown and Nigel M. Hooper

Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom

Running title: Modulation of APP processing by TDP-43

*To whom correspondence should be addressed:
David A. Hicks, Faculty of Biology, Medicine and Health, AV Hill Building, University of Manchester; david.hicks-2@manchester.ac.uk; Tel +44 (0)161 3060502

Current address: #Manchester University NHS Foundation Trust, Manchester, United Kingdom

Keywords: Alzheimer’s disease, amyloid precursor protein, transactive DNA binding protein, gene regulation, proteolysis

Abstract
Alzheimer’s disease (AD) is a neurodegenerative condition, of which one of the cardinal pathological hallmarks is the extracellular accumulation of amyloid beta (Aβ) peptides. These peptides are generated via proteolysis of the amyloid precursor protein (APP), in a manner dependent on the β-secretase, BACE1 and the multicomponent γ-secretase complex. Recent data also suggest a contributory role in AD of transactive DNA binding protein 43 (TDP-43). There is little insight into a possible mechanism linking TDP-43 and APP processing. To this end, we used cultured human neuronal cells to investigate the ability of TDP-43 to interact with APP and modulate its proteolytic processing. Immunocytochemistry showed TDP-43 to be spatially segregated from both the extra-nuclear APP holoprotein and its nuclear C-terminal fragment. The latter (amyloid precursor protein intracellular domain) was shown to predominantly localise to nucleoli, from which TDP-43 was excluded. Furthermore, neither over-expression of each of the APP isoforms nor siRNA-mediated knockdown of APP had any effect on TDP-43 expression. Doxycycline-stimulated over-expression of TDP-43 was explored in an inducible cell line. Over-expression of TDP-43 had no effect on expression of the APP holoprotein, nor any of the key proteins involved in its proteolysis. Furthermore, increased TDP-43 expression had no effect on BACE1 enzymatic activity or immunoreactivity of Aβ1-40, Aβ1-42 or the Aβ1-40: Aβ1-42 ratio. Also, siRNA-mediated knockdown of TDP-43 had no effect on BACE1 immunoreactivity. Taken together, these data indicate that TDP-43 function and/or dysfunction in AD is likely independent from dysregulation of APP expression and proteolytic processing and Aβ generation.
Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common form of dementia (1). It is traditionally characterised by a bipartite pathology featuring plaques comprised of amyloid beta (Aβ) peptide and neurofibrillary tangles containing the microtubule-associated protein tau (1, 2). The former is produced by sequential proteolytic cleavage of the amyloid precursor protein (APP), of which there are three major isoforms (APP_{695}, APP_{751} and APP_{770}) (3, 4).

There are two predominant proteolytic pathways of APP processing, though other pathways have been identified (5). In neurons, amyloidogenic processing is the minor pathway and involves sequential cleavage by β-secretase, BACE1, and the γ-secretase complex (comprising presenilin 1 or 2, nicastrin, Aph1 and Pen2) (6-8). This ultimately releases Aβ species (Aβ_{1-40} and Aβ_{1-42} are the most significant), which may play a role in the pathogenesis of AD (9). The second, non-amyloidogenic, pathway involves α-secretase cleavage of APP, a function ascribed to the metalloprotease ADAM10 in neurons (10). This cleavage occurs within the Aβ region (11, 12), precluding generation and deposition of Aβ. A large, soluble, N-terminal ectodomain, the neuroprotective sAPPα, is shed from the cell surface as a product of this pathway (13). The most C-terminal region of the APP holoprotein is referred to as the amyloid precursor protein intracellular domain (AICD), through which a number of signalling pathways and transcriptional regulatory events are mediated (14-17).

There is an emerging view that transactive response DNA binding protein 43 (TDP-43) plays a key role in AD pathogenesis. TDP-43 was first linked to neurodegenerative disease through its discovery as a component of classical ubiquitination inclusions in motor neurone disease and frontotemporal dementia (18). Since then, several recent findings have indicated a key role in AD (19-21). TDP-43 is a predominantly nuclear protein, although it does shuttle between the nucleus and cytosol (22). It functions as a nucleic acid binding protein, regulating in excess of 6000 targets. It can modulate all aspects of RNA regulation: processing, splicing, transport and translation, targeting both coding and non-coding RNA (23).

TDP-43 inclusions have been identified in AD brains in the form of high molecular weight (24) and phosphorylated (25) TDP-43 species. This has been subsequently validated by several neuropathological studies and developed into a staging scheme for TDP-43 pathology in AD (26-30). In support for an active role for TDP-43 in AD progression, the presence of TDP-43 inclusions in AD is associated with a higher Braak stage and greater impairment in cognitive performance (20, 21, 31). It is considered unlikely that there are any significant TDP-43 mutations in AD cases (32).

However, despite evidence showing the presence of TDP-43 inclusions in AD cases and an inverse correlation with cognitive performance, mechanistic insight is sparse. It is neither clear why TDP-43 forms inclusions in neurodegenerative disease generally, nor what specific effects this might have in AD. Over-expression of TDP-43 in AD transgenic mice has been shown to reduce Aβ plaque number, through mechanisms unclear (33), although TDP-43 depletion increased Aβ uptake by microglia (34), which corresponds to the decreased plaque formation in a mouse model (35). In addition, TDP-43 regulates tau splicing (36) and suppresses its expression (37). TDP-43 may modulate mitochondrial function (38, 39), as
evidenced by a recent report of small molecule inhibition of TDP-43 localisation to mitochondria having beneficial effects in an AD transgenic mouse (40).

Despite the centrality of APP, its proteolytic processing and metabolites in AD, there has only been one investigation, in mice, of the ability of TDP-43 to modulate APP processing (41). To this end, we sought to elucidate the role of TDP-43 in modulating the expression and proteolytic processing of APP in human cells. The aim of this was to describe, for the first time, the possible dependence of APP processing on TDP-43 and the effects of possible dysfunction of this axis in the context of AD.

Experimental procedures

Materials

All chemicals were purchased from Fisher Scientific (Loughborough, Leicestershire, UK) unless otherwise stated. Actinomycin D was from Sigma-Aldrich (Gillingham, Dorset, UK).

Primary antibodies used were for APP (Y188; Abcam, Cambridge, UK; RRID:AB_2289606 and 22C11; Merck Millipore, Watford, Hertfordshire, UK; AB_94882), TDP-43 (Proteintech, Manchester, UK; AB_2200520), AICD (BioLegend, London, UK; AB_2564761), Tip60 (Novus Biologicals, Abingdon, Oxfordshire, UK; AB_1199339), Fe65 (Novus Biologicals; AB_1199339), PS1 (Abcam; AB_1310605), PS2 (Cell Signaling Technology, Leiden, The Netherlands; AB_10831052), fibrillarin (Abcam; AB_1523617) and GAPDH (Proteintech, AB_2107436).

Methods

Cell culture

SH-SY5Y cells (RRID:CVCL_0019) were cultured in 1:1 Dulbecco’s Modified Eagle’s Medium: Ham’s F12 with UltraGlutamine (DMEM F12, Cat # BE04-687F/ U1, Lonza, Slough, Berkshire, UK), supplemented with 10% foetal bovine serum (FBS) (Life Technologies, Thermo Fisher Scientific, Paisley, UK), 100 U/mL penicillin, 100 µg/mL streptomycin (both Life Technologies) and 1% non-essential amino acids (Sigma-Aldrich). Cells were incubated at 37°C and 5% CO₂ in a humidified atmosphere. For differentiation, cells were seeded and cultured in full growth medium (above) for 24 h, then differentiated for seven days in DMEM F12 supplemented with 1% FBS (Cat #631107, Takara, Saint-Germain-en-Laye, France), 100 U/mL penicillin, 100 µg/mL streptomycin, 1% non-essential amino acids and 1µM retinoic acid. SH-SY5Y cells over-expressing APP isoforms were generated as previously described (42).

The iPSC line, OX1-19 (obtained from S. Cowley, University of Oxford) was maintained on Matrigel (BD Biosciences, Wokingham, Berkshire, UK) in mTeSR1 medium (StemCell Technologies, Cambridge, UK) containing 50 U/mL penicillin and 50 µg/mL streptomycin (Life Technologies) in a humidified incubator at 37°C in a 5% CO₂, 95% air atmosphere. iPSC pluripotency and successful cortical neuron differentiation were confirmed using immunofluorescence microscopy with appropriate markers (43). The iPSCs were differentiated to cortical neurons as described previously (44, 45), using dual-SMAD inhibition by 1 µM dorsomorphin and 10 µM SB431452 (Bio-Techne, Abingdon, Oxfordshire, UK).
Following successful differentiation, neural progenitor cells (NPCs) were re-plated on day 35 post-induction at 300,000 cells/well onto poly-ornithine and laminin-coated (Sigma-Aldrich) 6-well tissue culture plates and cultured until between day 75 and day 90 post-induction with media changes every 2-3 days. Post-induction culture medium was 1:1 DMEM F12:neurobasal medium containing B27 and N2 supplements, 2mM L-glutamine, 100µM 2-mercaptoethanol, 25µM insulin, 100 U/mL penicillin, 100 µg/mL streptomycin (all Life Technologies) and 0.5% non-essential amino acids.

Inducible cell line

For the generation of the inducible cell line, the TRE-x system was used (Thermo Fisher Scientific). Two plasmid vectors were used: the regulatory pcDNA6/TR and pT-Rex-DEST30 (expressing FLAG-TDP-43) (GeneArt, Thermo Fisher Scientific). Both vectors were transfected into SH-SY5Y cells (2µg total DNA, 6:1 ratio) using the Amaxa 4D-Nucleofector on programme CA-137 (Lonza). After 48h, cells stably expressing both plasmids were selected using blasticidin (5µg/mL) and G418 (500µg/mL), selecting for the regulatory and expression vectors, respectively. TDP-43 expression was induced using 500ng/mL doxycycline hyclate (Sigma-Aldrich) for 72h. Expression of FLAG-TDP-43 was verified using immunoblotting.

siRNA knockdown

SH-SY5Y cells were differentiated for seven days as described and then nucleofected with siRNA duplexes targeting either APP (100nM; Ambion Silencer Select, Thermo Fisher Scientific; ID s229520, siRNA #1 or Dharmacon ON-TARGETplus SMARTpool, Horizon Discovery Cambridge, UK; Cat #L-003731-00-005, siRNA #2), TDP-43 (120nM; Ambion Silencer Select, Thermo Fisher Scientific; ID s23879, siRNA #1 or Dharmacon ON-TARGETplus SMARTpool, Horizon Discovery Cambridge, UK; Cat #L-012394-00-005, siRNA #2) or a non-targeting control (Negative Control siRNA; Qiagen, Manchester, UK) according to the manufacturer’s instructions (Amaxa 4D-Nucleofector; programme CA-137). Cells were further cultured for 72h and target knockdown verified using immunoblotting.

Immunocytochemistry

Cells were cultured on gelatin coated glass coverslips (BioReagent, Sigma-Aldrich). After treatment, cells were fixed in 4% paraformaldehyde for 10 min then washed in PBS. Cells were subsequently permeabilised in 0.5% Triton X-100, washed in PBS and incubated with blocking buffer (0.5% fish skin gelatin (FSG, Sigma-Aldrich) in PBS) for 1h. Coverslips were incubated with primary antibody for 1h (in 0.5% FSG, 0.5% Triton X-100 in PBS), washed in PBS and incubated for 1h in secondary antibody (0.5% FSG, 0.5% Triton X-100 in PBS and either Alexa Fluor 488 (Thermo Fisher Scientific; AB_2610666), Alexa Fluor 555 (Abcam; AB_2801638) or CF 647 (Sigma-Aldrich, Cat #SAB4600183). After washing, coverslips were incubated with 1 µg/ml DAPI (emp Biotech, Berlin, Germany) for 5 min and mounted on microscope slides with Prolong Diamond mounting medium (Thermo Fisher Scientific). Images were acquired on an Olympus IX83 inverted microscope using Lumencor LED excitation, a 40x or 60x objective and the Sedat QUAD filter set (Cat #89000, Chroma Technology, Bellows Falls, VT, USA). The images were collected using a Retiga R6 Q-Imaging CCD camera and Metamorph v7.8.4.0 (Molecular Devices, San Jose, CA, USA). Images were then processed and analysed using ImageJ (NIH, USA).

Cell lysis
Cells were washed twice in ice-cold phosphate-buffered saline (PBS) and harvested in PBS. Cells were pelleted at 3000 g for 5 min (4°C) and re-suspended in 6 × volume of lysis buffer (RIPA buffer: 50 mM Tris-HCl (pH 8.0), 150 mM sodium chloride, 1% Igepal CA-630 (Sigma-Aldrich), 0.5% sodium deoxycholate, 0.1% SDS, 1 mM sodium fluoride, 1 mM sodium orthovanadate, and Complete Protease Inhibitor cocktail (Roche Diagnostics, Burgess Hill, West Sussex, UK)). Lysis was performed for 30 min on ice, followed by centrifugation at 3000 g for 5 min (4°C) to yield the RIPA-soluble fraction as the supernatant, which was used for immunoblotting.

Determination of protein concentration

Protein concentration in the RIPA-soluble fraction was determined using the bicinchoninic acid (BCA) method (46), using a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Absorbance at 562 nm was measured using a plate reader (ELx800, BioTek, Swindon, UK). Sample concentration was determined using bovine serum albumin (BSA) as a standard at concentrations from 0–1 mg/mL.

SDS-PAGE and immunoblotting

Protein samples were separated by electrophoresis at 120 V for 90 min on a polyacrylamide gel. After SDS-PAGE, proteins were transferred to polyvinylidene fluoride (PVDF) membranes (Bio-Rad, Hemel Hempstead, Hertfordshire, UK). Blots were incubated for 2 h in blocking solution (5% (w/v) milk power, 2% (w/v) BSA in TBS + 1% (v/v) Tween-20 (TBST)). The blots were then incubated overnight in primary antibody (5% (w/v) milk powder in TBS). Blots were washed 4 × 10 min with TBST before the addition of secondary antibody (HRP-conjugated anti-IgG; 5% (w/v) milk powder in TBST, 1:5000 (Thermo Fisher Scientific)) for 1 h, followed by 4 × 10 min washes with TBST. Protein bands were visualized by chemiluminescence (Clarity Western ECL Blotting Substrate, Bio-Rad) using a G:BOX and GeneTools software (Syngene, Cambridge, UK).

Quantitative PCR (qPCR)

RNA was isolated from differentiated SH-SY5Y cells using the RNeasy Mini Kit according to the manufacturers’ instructions (Qiagen). cDNA was subsequently prepared using the Applied Biosystems High Capacity cDNA Synthesis Kit after which qPCR reactions were prepared as follows (total 20µl): 1µl cDNA, 500nM each of forward and reverse primers with PowerUp SYBR Green Master Mix (Thermo Fisher Scientific). Thermal cycler (QuantStudio 3, Applied Biosystems, Thermo Fisher Scientific) parameters were set as follows: 2 min @ 50°C, 2 min @ 95°C and forty cycles of 15s @ 95°C, 15s @ 53°C and 60s @ 72°C and data analysed using the ΔΔCt method with succinate dehydrogenase complex, subunit A (SDHA) as a reference gene. Primer sequences were as follows: BACE1 (F: GTAAAGCAGACCCACGGTTCC; R: CAATGATCAGCTCCCTCCG) and SDHA (F: CAGCATGCAGAAGTCAATGC; R: ACGTCTTCAGGTGCTTTAGG)

BACE1 activity assay

Differentiated SH-SY5Y cells were lysed in assay buffer (10 mM sodium acetate, 1.5mM NaCl, 0.1% Triton X-100, 0.32M sucrose, pH 5.0) for 30 min on ice, before clarification by centrifugation (5000 g, 5 min) and protein quantitation of the supernatant. Subsequently, 2µl of BACE1 substrate (Abcam) was added to 50µl supernatant (containing 50µg total protein) followed by kinetic output measurement on a fluorescent microplate reader at Ex/Em = 335/495 nm (Synergy HT, Biotek). Rate (ΔRFU) was calculated in the linear reaction phase.
Amyloid-β enzyme-linked immunosorbent assay (ELISA)
Conditioned media samples (48h) were isolated from differentiated SH-SY5Y cells and centrifuged at low speed to remove cell debris (500 g, 5 min). The resultant supernatant was concentrated tenfold using a Vivaspin 2 (2000 MWCO) and the protein concentration assessed. Conditioned media samples were then added to ELISA plates to quantify Aβ1-40 (5µg total protein, Cat #KHB3481) and Aβ1-42 (30µg total protein, Cat #KHB3544) (both Thermo Fisher) ELISAs were performed according to the manufacturer’s instruction, including incubation of condition medium with biotinylated detection antibody, followed by HRP-conjugated secondary antibodies, chromagen and finally the stop solution, resulting in a colorimetric response proportional to target abundance, the absorbance of which was measured on a microplate reader at 450nm (ELx800, Biotek).

Statistical analysis
All experiments are n = 3 unless otherwise indicated, where n indicates independent experiments on independent cell cultures. Statistical tests were either Mann-Whitney U Test, Student’s t-test (ELISA and BACE1 activity data only) or Kruskal-Wallis with Dunn’s post hoc test as indicated; p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), or p < 0.0001 (****). Error bars indicate standard deviation. All statistical analyses were performed using GraphPad Prism 8 (GraphPad Software, Inc., La Jolla, CA, USA).

Results and discussion

APP and TDP-43 have distinct intracellular locations in cultured neuronal cells
In order to investigate a possible direct relationship between APP and TDP-43, putative co-localisation was assessed using immunofluorescence microscopy. Using differentiated SH-SY5Y cells and, separately, OX1-19 iPSC-derived neurons (iPSN), the localization of the APP holoprotein and TDP-43 was investigated. As expected, TDP-43 was localized exclusively in the nucleus, whereas the APP holoprotein was excluded from the nucleus (Fig. 1a). AICD translocates to the nucleus after proteolysis of the APP holoprotein (15, 17). Using an AICD-specific antibody (targeting a neo-epitope) (47), we probed the subcellular localization of AICD in comparison with TDP-43. Though there was some evidence of AICD immunoreactivity throughout the cell, AICD was most strongly localized to the nucleus. More specifically, AICD was present as a component of several large sub-nuclear structures. In contrast, TDP-43 was completely excluded from these structures, seen as voids in the TDP-43 immunostaining. This was recapitulated in SH-SY5Y cells and iPSNs (Fig. 1b).

In order to investigate the identity of these AICD-positive, TDP-43-negative sub-nuclear structures, we assessed whether they represented the AFT (AICD-Fe65-Tip60) transcriptional regulatory complex. However, there was no evidence of Fe65 or Tip60 co-staining with these structures. Moreover, Tip60 immunostaining is absent from these AICD-positive puncta in a similar manner to TDP-43 (Figure 2a). It is unclear exactly how the endogenous AFT complex manifests. Several publications report the use of fluorescently tagged AFT complex components (48-51), but Tip60 in these studies shows a markedly different distribution to those reports using smaller tags, or untagged Tip60 (52-54). Further differences may arise from the use of non-neuronal (51, 52) or neuronal-like (53) cell lines. Altogether, these data give a contradictory picture of the exact nature of the endogenous AFT complex in neurons.
Given the large size of the AICD-positive structures, it was hypothesized that they may represent nucleoli. Indeed, the nucleolar marker fibrillarin showed strong co-localisation with AICD, indicating that AICD may be localized to the nucleolus (Fig. 2b). Localisation of AICD to nucleoli has not previously been reported in the literature. Pharmacological treatment with actinomycin D is known to disrupt nucleoli and treatment of SH-SY5Y cells resulted in a homogenous redistribution of AICD throughout the nucleus (Fig. 2c). Taken together, these data indicate that nuclear AICD may be localized to nucleoli, from which TDP-43 is excluded, potentially suggesting that there is no direct interaction between TDP-43 and APP/ AICD.

Modulation of APP expression does not affect TDP-43 expression
APP has been shown to regulate the expression of numerous genes, both directly through AICD and indirectly via its binding partners (17, 55, 56). In order to assess whether APP could modulate the expression of TDP-43, each APP isoform (695, 751, 770) was expressed separately in SH-SY5Y cells. Individual isoforms were expressed to assess any differential effects of APP, as AICD is preferentially generated from APP695, suggesting isoform-specific processing pathways (42). There were no substantial isoform differences in the level of APP expression, with all isoforms expressed at an approximately eight-fold higher level than in the mock control (Fig. 3a and b). None of the APP isoforms had an effect on TDP-43 immunoreactivity (Fig. 3a and b). Similarly, siRNA-mediated knockdown of APP had no effect on TDP-43 expression (Fig. 3c and d).

Inducible expression of TDP-43 does not affect expression of proteins involved in APP proteolytic processing
An inducible cell line was generated, whereby TDP-43 was only expressed when activated by doxycycline. Incubation of cells with doxycycline resulted in increased expression of TDP-43, combined with FLAG immunoreactivity (Fig. 4a), indicating high expression of FLAG-TDP-43 when induced with doxycycline. Using this cell model, TDP-43 expression was induced and the expression of APP and key APP-related proteins assessed. The protein panel comprised the APP holoprotein, the α-secretase ADAM10, the β-secretase BACE1 and the γ-secretase components (PS1, PS2, nicastrin and Pen2). Overall, the expression of TDP-43 did not have any significant effect on the expression of any of these proteins (Fig. 4a and b). Given a previous report linking TDP-43 to BACE1 (41), we further focused on these proteins. Using siRNA knockdown, we assessed the effect of a reduction in TDP-43 on the expression of BACE1. Despite significant reductions in TDP-43 expression, this did not alter the immunoreactivity of BACE1 (Fig. 4c and d). Our data show a lack of change in BACE1 protein expression in response to TDP-43 over-expression or knockdown. To confirm that TDP-43 did not alter BACE1 protein expression, qPCR was used to measure the level of BACE1 mRNA. After doxycycline-induced expression of TDP-43, there was no significant change in BACE1 mRNA (Fig. 5a). Overall, these data show that TDP-43 does not affect the expression of key proteins involved in APP proteolytic processing.

TDP-43 expression does not alter APP proteolysis or BACE1 activity
APP processing is an enzymatic process and, as such, may be modulated by changes in secretase activity which are independent of protein expression. In order to assess this, β-secretase activity was assessed using a fluorescent substrate. Doxycycline-induced expression of TDP-43 had no effect on β-secretase activity (Fig. 5b). Increased expression of TDP-43 as induced by doxycycline did not have any effect on levels of Aβ1-40 or Aβ1-42, nor did it affect the ratio between the two peptides (Fig. 5c-e). The mean abundance in the absence
of doxycycline treatment was 2.68 pg/µg protein (Aβ1-40) or 0.076 pg/µg protein (Aβ1-42) and in the presence of doxycycline was 2.73 pg/µg protein (Aβ1-40) or 0.073 pg/µg protein (Aβ1-42). In addition, there was no effect on non-amyloidogenic processing of APP, as immunoblotting conditioned medium for sAPPα showed no change upon TDP-43 induction (Fig. 5f and g). Together these data show that TDP-43 does not modulate either amyloidogenic or non-amyloidogenic proteolytic processing of APP. Our data conflicts with Herman et al. who reported TDP-43 mediated upregulation of BACE1 in a mouse model (41). However, their lentiviral overexpression of TDP-43 also caused significant increases in TNFα and IL-6, both of which can increase BACE1 expression and activity (41). Due to the confounding inflammation, it is not possible to determine whether TDP-43 directly increases BACE1 activity or merely promotes an inflammatory phenotype which drives BACE1 activity. However, as we observed no direct effect of TDP-43 on BACE1 activity, it is more likely that the increased BACE1 activity in the mice was due to the inflammation.

Conclusion
In this study, we have focused on the interaction of TDP-43 with APP proteolytic processing. TDP-43 did not influence APP expression, nor did APP modulate TDP-43 expression. TDP-43 had no effect on the non-amyloidogenic cleavage of APP and did not alter the production of either Aβ1-40 or Aβ1-42. In addition, TDP-43 did not directly affect BACE1 activity. Our data strongly suggest that TDP-43 is not directly involved in any AD-linked alterations in APP expression or proteolytic cleavage. Given these findings and the notable regional differences between TDP-43 and Aβ pathology in AD (26), it is highly likely that AD-linked alterations in Aβ are independent of TDP-43 dysfunction.

Acknowledgments
DH is supported by an Alzheimer’s Society fellowship. iPSC culture was funded by grants from the Medical Research Council (MRC) (MR/M024997/1 and MR/N013255/1), and the Donald Dean Fund for Dementia Research to NH.

The Bioimaging Facility microscopes used in this study were purchased with grants from BBSRC, Wellcome and the University of Manchester Strategic Fund. Special thanks goes to Steven Marsden for help with the microscopy.

Declarations/ conflict of interest
The authors have no conflicts of interest to declare

Author contributions
DH, SPB and NH designed the study; DH, SPB and NH acquired funding; DH and AJ performed experiments; DH and AJ analysed data; DH wrote the manuscript; DH and NH edited the manuscript.

References
1. Masters CL, Bateman R, Blennoy K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.
2. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362(4):329-44.
3. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, et al. Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science. 1987;235(4791):880-4.
4. Sandbrink R, Masters CL, Beyreuther K. APP gene family. Alternative splicing generates functionally related isoforms. Ann N Y Acad Sci. 1996;777:281-7.

5. Andrew RJ, Kellett KA, Thinakaran G, Hooper NM. A Greek Tragedy: The Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis. The Journal of biological chemistry. 2016;291(37):19235-44.

6. Anderson JP, Chen Y, Kim KS, Robakis NK. An alternative secretase cleavage produces soluble Alzheimer amyloid precursor protein containing a potentially amyloidogenic sequence. J Neurochem. 1992;59(6):2328-31.

7. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286(5440):735-41.

8. Bergmans BA, De Strooper B. gamma-secretases: from cell biology to therapeutic strategies. Lancet Neurol. 2010;9(2):215-26.

9. Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184-5.

10. Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart JW, et al. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. The EMBO journal. 2010;29(17):3020-32.

11. Allinson TM, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein α-secretases. J Neurosci Res. 2003;74(3):342-52.

12. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, et al. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science. 1990;248(4959):1122-4.

13. Allinson TM, Parkin ET, Condon TP, Schwager SL, Sturrock ED, Turner AJ, et al. The role of ADAM10 and ADAM17 in the ectodomain shedding of angiotensin converting enzyme and the amyloid precursor protein. Eur J Biochem. 2004;271(12):2539-47.

14. Chang KA, Suh YH. Possible roles of amyloid intracellular domain of amyloid precursor protein. BMB Rep. 2010;43(10):651-63.

15. Beckett C, Nalivaeva NN, Belyaev ND, Turner AJ. Nuclear signalling by membrane protein intracellular domains: The AICD enigma. Cell Signal. 2012;24(2):402-9.

16. Pardossi-Piquard R, Checler F. The physiology of the beta-amyloid precursor protein intracellular domain AICD. J Neurochem. 2012;120 Suppl 1:109-24.

17. Leissring MA, Murphy MP, Mead TR, Akbari Y, Sugarman MC, Jannatipour M, et al. A physiologic signaling role for the gamma-secretase-derived intracellular fragment of APP. Proc Natl Acad Sci U S A. 2002;99(7):4697-702.

18. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130-3.

19. Josephs KA, Dickson DW, Tosakulwong N, Weigand SD, Murray ME, Petrucelli L, et al. Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer's disease: a longitudinal retrospective study. The Lancet Neurology. 2017;16(11):917-24.

20. Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR, et al. Staging TDP-43 pathology in Alzheimer’s disease. Acta neuropathologica. 2014;127(3):441-50.

21. Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM, et al. TDP-43 is a key player in the clinical features associated with Alzheimer's disease. Acta neuropathologica. 2014;127(6):811-24.
22. Buratti E, Baralle FE. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. The Journal of biological chemistry. 2001;276(39):36337-43.

23. Sun Y, Chakrabarty T. Phase to Phase with TDP-43. Biochemistry. 2017;56(6):809-23.

24. Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol. 2007;61(5):435-45.

25. Araki T, Mackenzie IR, Hasegawa M, Nonaka T, Niizato K, Tsuchiya K, et al. Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta neuropathologica. 2009;117(2):125-36.

26. Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L, et al. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta neuropathologica. 2016;131(4):571-85.

27. Davidson Y, Kelley T, Mackenzie IR, Pickering-Brown S, Du Plessis D, Neary D, et al. Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta neuropathologica. 2007;113(5):521-33.

28. McAleese KE, Walker L, Erskine D, Thomas AJ, McKeith IG, Attems J. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain pathology (Zurich, Switzerland). 2017;27(4):472-9.

29. Foulds P, McAuley E, Gibbons L, Davidson Y, Pickering-Brown SM, Neary D, et al. TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta neuropathologica. 2008;116(2):141-6.

30. Tremblay C, St-Amour I, Schneider J, Bennett DA, Calon F. Accumulation of transactive response DNA binding protein 43 in mild cognitive impairment and Alzheimer disease. J Neuropathol Exp Neurol. 2011;70(9):788-98.

31. Rohn TT. Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer’s disease. Brain research. 2008;1228:189-98.

32. Ticozzi N, LeClerc AL, van Blitterswijk M, Keagle P, McKenna-Yasek DM, Sapp PC, et al. Mutational analysis of TARDBP in neurodegenerative diseases. Neurobiology of aging. 2011;32(11):2096-9.

33. Davis SA, Gan KA, Dowell JA, Cairns NJ, Gitcho MA. TDP-43 expression influences amyloid-beta plaque deposition and tau aggregation. Neurobiol Dis. 2017;103:154-62.

34. Paolicelli RC, Jawaid A, Henstridge CM, Valeri A, Merlini M, Robinson JL, et al. TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. Neuron. 2017;95(2):297-308 e6.

35. LaClair KD, Donde A, Ling JP, Jeong YH, Chhabra R, Martin LJ, et al. Depletion of TDP-43 decreases fibril and plaque beta-amyloid and exacerbates neurodegeneration in an Alzheimer’s mouse model. Acta neuropathologica. 2016;132(6):859-73.

36. Gu J, Chen F, Iqbal K, Gong CX, Wang X, Liu F. Transactive response DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: Implications for the pathogenesis of tauopathies. The Journal of biological chemistry. 2017;292(25):10600-12.

37. Gu J, Wu F, Xu W, Shi J, Hu W, Jin N, et al. TDP-43 suppresses tau expression via promoting its mRNA instability. Nucleic Acids Res. 2017;45(10):6177-93.

38. Davis SA, Itaman S, Khalid-Janney CM, Sherard JA, Dowell JA, Cairns NJ, et al. TDP-43 interacts with mitochondrial proteins critical for mitophagy and mitochondrial dynamics. Neurosci Lett. 2018;678:8-15.

39. Gao J, Wang L, Yan T, Perry G, Wang X. TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Molecular and cellular neurosciences. 2019;100:103396.
40. Gao J, Wang L, Gao C, Arakawa H, Perry G, Wang X. TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2020;1866(1):165580.

41. Herman AM, Khandelwal PJ, Rebeck GW, Moussa CE. Wild type TDP-43 induces neuro-inflammation and alters APP metabolism in lentiviral gene transfer models. Experimental neurology. 2012;235(1):297-305.

42. Belyaev ND, Kellett KA, Beckett C, Makova NZ, Revett TJ, Nalivaeva NN, et al. The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a (beta)-secretase-dependent pathway. The Journal of biological chemistry. 2010;285(53):41443-54.

43. van Wilgenburg B, Browne C, Vowles J, Cowley SA. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions. PloS one. 2013;8(8):e71098.

44. Shi Y, Kirwan P, Smith J, Robinson HP, Livesey FJ. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nature neuroscience. 2012;15(3):477-86, S1.

45. Jarosz-Griffiths HH, Corbett NJ, Rowland HA, Fisher K, Jones AC, Baron J, et al. Proteolytic shedding of the prion protein via activation of metalloprotease ADAM10 reduces cellular binding and toxicity of amyloid-beta oligomers. The Journal of biological chemistry. 2019;294(17):7085-97.

46. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76-85.

47. Stieren ES, Eli Ayadi A, Xiao Y, Siller E, Landsverk ML, Oberhauser AF, et al. Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein. The Journal of biological chemistry. 2011;286(41):35689-98.

48. Bakshi K, Ranjitha B, Dubey S, Jagannadham J, Jaiswal B, Gupta A. Novel complex of HAT protein TIP60 and nuclear receptor PXR promotes cell migration and adhesion. Sci Rep. 2017;7(1):3635.

49. Liu N, Wang J, Wang J, Wang R, Liu Z, Yu Y, et al. ING5 is a Tip60 cofactor that acetylates p53 in response to DNA damage. Cancer Res. 2013;73(12):3749-60.

50. Gersbacher MT, Goodger ZV, Trutzel A, Bündschuh D, Nitsch RM, Konietzko U. Turnover of amyloid precursor protein family members determines their nuclear signaling capability. PloS one. 2013;8(7):e69363.

51. von Rotz RC, Kohli BM, Bosset J, Meier M, Suzuki T, Nitsch RM, et al. The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J Cell Sci. 2004;117(Pt 19):4435-48.

52. Cao X, Sudhof TC. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science. 2001;293(5527):115-20.

53. Hass MR, Yankner BA. A (gamma)-secretase-independent mechanism of signal transduction by the amyloid precursor protein. The Journal of biological chemistry. 2005;280(44):36895-904.

54. Sun Y, Jiang X, Chen S, Fernandes N, Price BD. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci U S A. 2005;102(37):13182-7.

55. Hicks DA, Makova NZ, Gough M, Parkin ET, Nalivaeva NN, Turner AJ. The amyloid precursor protein represses expression of acetylcholinesterase in neuronal cell lines. The Journal of biological chemistry. 2013;288(36):26039-51.
56. Pierrot N, Tyteca D, D' Auria L, Dewachter I, Gailly P, Hendrickx A, et al. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity. EMBO Mol Med. 2013;5(4):608-25.
Figure legends

Figure 1: TDP-43 does not co-localise with either the APP holoprotein or its intracellular domain
SH-SY5Y or OX1-19 iPSCs were cultured and differentiated as described, followed by fixation and immunocytochemistry using primary antibodies against TDP-43 and (a) APP holoprotein (antibody 22C11) and (b) amyloid precursor protein intracellular domain (AICD). iPSN denotes iPSC-derived neurons.

Figure 2: AICD is present in nucleoli
SH-SY5Y cells were cultured and differentiated as described, followed by fixation and immunocytochemistry using primary antibodies against (a) FE65, AICD and Tip60 (b) AICD and fibrillarin. (c) Cells were treated with actinomycin D (0.02µg/mL, 3h) and immunocytochemistry performed to assess the effect on AICD localisation.

Figure 3: APP over-expression or knockdown does not affect TDP-43 expression
SH-SY5Y cells were cultured as described and (a) stably transfected with each of the three APP isoforms. Expression was confirmed by immunoblot, compared with TDP-43 expression and (b) changes in protein expression quantified. (c) Cells were nucleofected with two independent siRNA targeting APP and protein expression of APP and TDP-43 assessed by immunoblot and (d) quantified. n=4.

Figure 4: inducible TDP-43 over-expression does not affect APP processing
A stable cell line with doxycycline inducible TDP-43 expression (pT-REx-DEST30-TDP-43-FLAG) was generated and (a) TDP-43 overexpression confirmed by immunoblot. APP and its proteolytic enzymes were also probed by immunoblot and (b) changes quantified by densitometry. (c) Cells were nucleofected with two independent siRNA targeting TDP-43 and protein expression of TDP-43 and BACE1 assessed by immunoblot and (d) quantified.

Figure 5: TDP-43 over-expression does not modulate BACE1 mRNA, activity or the generation of Aβ peptides
TDP-43 expression was induced in SH-SY5Y (pT-REx-DEST30-TDP-43-FLAG) cells and cells were analysed for (a) BACE1 mRNA levels, (b) β-secretase activity and culture medium assessed for (c) Aβ species followed by (d) calculation of the Aβ1-40: Aβ1-42 ratio (e) sAPPα immunoreactivity (using antibody 22C11). Total protein was assessed using amido black stain to ensure equal loading and (f) protein changes were quantified by densitometry.
