ON SUBGROUPS OF AN AUTOMORPHISM GROUP OF AN IRREDUCIBLE SYMPLECTIC MANIFOLD

DAISUKE MATSUSHITA

Abstract. Let X be an irreducible symplectic manifold and L a nef line bundle on X which is isotropic with respect to the Beauville-Bogomolov quadratic form. It is known that a subgroup $\text{Aut}(X, L)$ of an automorphism group of X which fix L is almost abelian. We give a formula of the rank of $\text{Aut}(X, L)$ in terms of MBM divisors. We also prove that the nef cone of X cut out MBM classes, which is a generalization of Kovac’s structure theorem of nef cones of $K3$ surfaces.

1. Introduction

We start with recalling definitions of a Neron-Severi group, an ample cone and a nef cone.

Definition 1.1. Let X be a compact Kähler manifold. A Neron-Severi group $\text{NS}(X)$ is a subgroup of $H^2(X, \mathbb{Z})$ defined by

$$\text{NS}(X) := H^{1,1}(X, \mathbb{R}) \cap H^2(X, \mathbb{Z}).$$

We denote by $\text{NS}_\mathbb{R}(X)$ the \mathbb{R}-vector space generated by $\text{NS}(X)$. An ample cone $\text{Amp}(X)$ of X is the cone in $\text{NS}_\mathbb{R}(X)$ defined by

$$\text{Amp}(X) := \text{NS}_\mathbb{R}(X) \cap \mathcal{K}(X),$$

where $\mathcal{K}(X)$ is the Kähler cone of X. The closure of $\text{Amp}(X)$ in $\text{NS}_\mathbb{R}(X)$ is said to be nef cone and denoted by $\text{Nef}(X)$.

We also recall the definition of irreducible symplectic manifolds.

Definition 1.2. A compact Kähler manifold X is said to be irreducible symplectic if X has the following three properties:

1. X is simply connected;
2. X carries a holomorphic symplectic form and;
3. $\dim H^0(X, \Omega^2_X) = 1$.

A $K3$ surface has above three properties and gives a plain example of irreducible symplectic manifolds. It is expected that $K3$ surfaces and irreducible symplectic manifolds share many geometric properties. One of the biggest geometric features of $K3$ surfaces is Global Torelli theorem, which was obtained in [8], [12] and [17].

Theorem 1.1 (Global Torelli Theorem for projective $K3$ surfaces). Let X and X' be projective $K3$ surfaces. Assume that there exists an isometry $\phi : H^2(X', \mathbb{Z}) \to H^2(X, \mathbb{Z})$ with respect to the cup products. If ϕ respects the Hodge structure and $\phi(\text{Amp}(X')) \cap \text{Amp}(X) \neq \emptyset$, there exists an automorphism Φ such that the induced morphism Φ^* on cohomologies coincides with ϕ.

* Partially supported by Grand-in-Aid # 18684001 (Japan Society for Promotion of Sciences).
A higher dimensional analogue of Global Torelli Theorem was obtained by Verbitsky in [21, Theorem 1.18]. After introducing the definition of monodromy groups, we state it in a form suitable for use in this paper according to [13, Theorem 1.3 (2)].

Definition 1.3. Let X be an irreducible symplectic manifold. We denote by q_X the Beauville-Bogomolov quadratic form on $H^2(X, \mathbb{Z})$. Let $O(H^2(X, \mathbb{Z}), q_X)$ be an isometry group with respect to q_X. Let us consider smooth morphisms $\mathcal{X} \to (B, o)$ such that (B, o) is an analytic space with the reference point o and the fibre at o is isomorphic to X. We note that B may have any kind of singularities. For such a smooth morphism, we have a natural representation $\pi_1(B, o) \to O(H^2(X, \mathbb{Z}))$. A subgroup $\text{Mon}(X)$ of $O(H^2(X, \mathbb{Z}), q_X)$ is the subgroup generated by the images of all such representations.

Theorem 1.2 (Global Torelli Theorem for projective irreducible symplectic manifolds). Let X be a projective irreducible symplectic manifold. Assume that there exists an element ϕ of $\text{Mon}(X)$ which respects the Hodge structures and $\phi(\text{Amp}(X)) \cap \text{Amp}(X) \neq \emptyset$. Then there exists an automorphism Φ of X such that the induced automorphism Φ^* on $H^2(X, \mathbb{Z})$ coincides with ϕ.

By the above theorem, we will have automorphisms of projective irreducible symplectic manifolds if we construct elements of $\text{Mon}(X)$ which satisfies the assumptions of Theorem 1.2. In this note, we will construct such elements of $\text{Mon}(X)$ and give three applications. The first application concerns with the structure of nef cones of projective irreducible symplectic manifolds. By [10] and [7], we have the following structure theorem of a Kähler cone of an irreducible symplectic manifold.

Theorem 1.3. Let X be an irreducible symplectic manifold and $\mathcal{N}(X)$ the set of rational curves on X. We define the positive cone $\mathcal{C}(X)$ in $H^{1,1}(X, \mathbb{R})$ by

$$\mathcal{C}(X) := \{ x \in H^{1,1}(X, \mathbb{R}) | q_X(x) > 0, q_X(x, \kappa) > 0 \}$$

where q_X is the Beauville-Bogomolov form and κ is a Kähler class. Then

$$\mathcal{N}(X) = \{ x \in \mathcal{C}(X) | \forall e \in \mathcal{N}(X), x.e > 0 \}$$

We denote by $\mathcal{C}_{\text{NS}}(X)$ the intersection of $\text{NS}_\mathbb{R}(X)$ and $\mathcal{C}(X)$. A nef cone $\text{Nef}(X)$ of an irreducible symplectic manifold X can be described as follows:

$$\text{Nef}(X) = \{ x \in \mathcal{C}_{\text{NS}}(X) | \forall e \in \mathcal{N}(X), x.e \geq 0 \}$$

where $-$ stands for the closure in $\text{NS}_\mathbb{R}(X)$. On the other hand, Kovacs gave a description of an effective cone of a K3 surface in [11], whose dual cone with respect to the cup product is a nef cone.

Theorem 1.4 ([11, Corollary 1]). Let X be a projective K3 surface whose Picard number is greater than two. We denote by $\mathcal{N}(X)$ the set of (-2)-curves on X. If $\mathcal{N}(X) = \emptyset$, then an effective cone $\text{Eff}(X)$ of X coincides with $\mathcal{C}_{\text{NS}}(X)$. If $\mathcal{N}(X) \neq \emptyset$, then

$$\text{Eff}(X) = \sum_{e \in \mathcal{N}(X)} \mathbb{R}_+ e.$$

If we consider the dual statement of the above theorem, we find that $\text{Nef}(X)$ coincides with $\mathcal{C}_{\text{NS}}(X)$ if $\mathcal{N}(X) = \emptyset$. If $\mathcal{N}(X) \neq \emptyset$,

$$\text{Nef}(X) = \{ x \in \text{NS}_\mathbb{R}(X) | \forall e \in \mathcal{N}(X), x.e \geq 0 \}$$
It is a natural question whether a nef cone of an irreducible symplectic manifold has a similar structure. We give a positive answer of this question. To state our result, we recall monodromy birationally minimal classes, which is introduced in [1 Definition 1.13].

Definition 1.4 (Monodromy Birationally Minimal Class). Let X be an irreducible symplectic manifold. A cohomology class e of $H^{1,1}(X, \mathbb{R}) \cap H^2(X, \mathbb{Q})$ is said to be Monodromy birationally minimal if there exists an element γ of $\text{Mon}(X)$ such that $\gamma(e) \perp \varpi(X)$ is an open set of $\gamma(e)^\perp$. We denote by $\text{MBM}(X)$ the set of Monodromy birationally minimal classes of X.

Remark 1.1. If X is a K3 surface, then

$$\text{MBM}(X) = \{ e \in H^{1,1}(X, \mathbb{R}) \cap H^2(X, \mathbb{Z}) | \langle e, e \rangle = -2 \}.$$

By the above remark, we can restate the structure of the nef cone of a K3 surface in the following form. If $\text{MBM}(X) = \emptyset$, then $\text{Nef}(X)$ coincides with $\overline{\mathcal{N}}_{\text{NS}}(X)$. If $\text{MBM}(X) \neq \emptyset$, there exists a subset $\mathcal{N}(X)$ of $\text{MBM}(X)$ such that

$$\text{Nef}(X) = \{ x \in \text{NS}_\mathbb{R}(X) | \forall e \in \mathcal{N}(X), x.e \geq 0 \}$$

Now we state the first application.

Theorem 1.5. Let X be a projective irreducible symplectic manifold whose Picard number is greater than two. If $\text{MBM}(X) = \emptyset$, then $\text{Nef}(X)$ coincides with $\overline{\mathcal{N}}_{\text{NS}}(X)$. If $\text{MBM}(X) \neq \emptyset$, there exists a subset $\mathcal{N}(X)$ of $\text{MBM}(X)$ such that

$$\text{Nef}(X) = \{ x \in \text{NS}_\mathbb{R}(X) | \forall e \in \mathcal{N}(X), q_X(x, e) \geq 0 \}$$

where q_X is the Beauville-Bogomolov quadratic form.

Remark 1.2. If X is a K3 surface, $\mathcal{N}(X)$ coincides with the set of smooth rational curves. In the above theorem, $\mathcal{N}(X)$ seems to coincide with the set of rational cohomology class corresponding to smooth rational curves.

The second application concerns with the rank of a subgroup of an automorphism group of an irreducible symplectic manifold which fixes a line bundle. We recall the definition of an almost abelian group according to [14].

Definition 1.5. A group G is said to be almost abelian of rank r if G has a normal subgroup $G^{(0)}$ such that $|G : G^{(0)}| < \infty$ and $G^{(0)}$ sits in the following exact sequence.

$$1 \to K \to G^{(0)} \to \mathbb{Z}^r \to 0$$

where K is a finite group.

Theorem 1.6. Let X be an irreducible symplectic manifold and L an isotropic nef line bundle with respect to Beauville-Bogomolov quadratic form. We define the subset $\text{MBM}(X)^\circ$ of $\text{MBM}(X)$ by

$$\text{MBM}(X)^\circ := \{ e \in \text{MBM}(X) | e^{\perp} \cap \text{Nef}(X) \text{ is an open set of } e^{\perp} \}.$$

Let $W_\mathbb{R}$ be a sub linear space in generated by $c_1(L)$ and $c_1(L)^\perp \cap \text{MBM}(X)^\circ$. We denote by $\text{Aut}(X, L)$ the subgroup of $\text{Aut}(X)$ defined by

$$\text{Aut}(X, L) := \{ g \in \text{Aut}(X) | g^*L \cong L \}$$

Then $\text{Aut}(X, L)$ is almost abelian of rank $\dim \text{NS}_\mathbb{R}(X) - \dim W_\mathbb{R} - 1$.

Remark 1.3. Let X be a K3 surface. Assume that X admits an elliptic fibration $\pi : X \to \mathbb{P}^1$. We denote by L the pull back of the tautological bundle of \mathbb{P}^1. For a point t of \mathbb{P}^1, we let n_t be the number of irreducible components of the fibre at t. In this case, $c_1(L^\perp) \cap \text{MBM}(X)^{\circ}$ consists of irreducible components of reducible singular fibres of π. Since cohomology classes of irreducible components of a reducible singular fibre has only one relation in $H^2(X, \mathbb{Z})$, $\dim W_{\mathbb{R}} = 1 + \sum_{t \in \mathbb{P}^1}(n_t - 1)$ and Shioda-Tate formula in [18], [20] and [19] asserts that the rank of Mordell-Weil group of π coincides with $\dim \text{NS}_{\mathbb{R}}(X) - \dim W_{\mathbb{R}} - 1$. Since Mordell-Weil group of π can be considered as a subgroup of $\text{Aut}(X, L)$, Theorem 1.6 can be considered as a generalization of Shioda-Tate formula.

By Theorem 1.6 the rank of $\text{Aut}(X, L)$ is less than or equal $\dim H^2(X, \mathbb{R}) - 2$. It is a natural question whether this bound is sharp. The third application is that the bound is attained after deforming the pair (X, L).

Definition 1.6. Let X and X' be compact Kähler manifolds. We also let L and L' be line bundles on X and X', respectively. Two pairs (X, L) and (X', L') are deformation equivalent if there exists a smooth morphism $\pi : \mathcal{X} \to B$ over an analytic space B and a line bundle \mathcal{L} on \mathcal{X} which has the following two properties:

1. There exist two points p and p' of B such that $\iota : \pi^{-1}(p) \cong X$ and $\iota' : \pi^{-1}(p') \cong X'$, respectively.
2. The restriction of \mathcal{L} to $\pi^{-1}(p)$ is isomorphic to L via ι and the restriction of \mathcal{L} to $\pi^{-1}(p')$ is isomorphic to L' via ι'.

Theorem 1.7. Let X be an irreducible symplectic manifold whose second Betti number is greater than five and L an isotropic line bundle with respect to Beauville-Bogomolov quadratic form. Then there exists an irreducible symplectic manifold X' and a line bundle L' on X' such that (X, L) is deformation equivalent to (X', L) in the sense of Definition 1.6 and the rank of $\text{Aut}(X', L')$ is equal to $\dim H^2(X', \mathbb{R}) - 2$.

This note is organized as follows. In section 1, We will construct special elements of $O(H^2(X, \mathbb{Z}))$, which is a key of the proof of Theorems 1.5, 1.6 and 1.7. In sections 2, 3, and 4, we give a proof of Theorem 1.5, 1.6 and 1.7 respectively.

Acknowledgement

The author would like to express his gratitude for Professors Shigeru Mukai, Yoshinori Namikawa, Kieji Oguiso and Hisanori Ohashi.

2. Construction of elements of the monodromy group

We recall a standard properties of isometry group of a lattice due to the step 2 of the proof of [3, Proposition 3.2].

Lemma 2.1. Let Λ be a lattice and Λ' a sublattice of Λ such that $|\Lambda : \Lambda'| < \infty$. We also let $O(\Lambda)$ and $O(\Lambda')$ be isometry groups of Λ and Λ', respectively. The groups $O(\Lambda)$ and $O(\Lambda')$ can be considered as subgroups of $O(\Lambda \otimes \mathbb{Z} \mathbb{Q})$. Moreover

$$|O(\Lambda') : O(\Lambda) \cap O(\Lambda')|$$

is finite.
Proof. Since \(|\Lambda : \Lambda'| < \infty\), there exists a positive integer \(N\) such that \(\Lambda \subset \frac{1}{N}\Lambda'\). Since \(O(\Lambda')\) preserves \(\frac{1}{N}\Lambda'\), \(O(\Lambda')\) acts on \(\frac{1}{N}\Lambda'/\Lambda'\). Then \(O(\Lambda) \cap O(\Lambda')\) is the stabilizer group of \(\Lambda/\Lambda'\). Since \(\Lambda/\Lambda'\) has only finitely many element, we are done. \(\square\)

Proposition 2.1. Let \(\Lambda\) be a lattice of rank \(n\) whose index is \((1, n - 1)\). Assume that \(\Lambda\) contains an isotropic element \(\ell\). Let \(W\) be a negative definite sub lattice contained in \(\ell\). Assume that \(n - \text{rank}(W) > 2\).

1. We define the subgroup \(\tilde{\Gamma}\) of the isometry group \(O(\Lambda)\) of \(\Lambda\) by
 \[\tilde{\Gamma} := \{ g \in O(\Lambda) | g(\ell) = \ell, \forall w \in W, g(w) = w \} \]
 Then \(\tilde{\Gamma}\) contains a subgroup \(\tilde{\Gamma}_0\) which is isomorphic to \(\mathbb{Z}^{n-\text{rank}(W)-2}\) and \(|\tilde{\Gamma} : \tilde{\Gamma}_0| < \infty\).

2. We denote by \(\Lambda_{\mathbb{R}}\) the linear space \(\Lambda \otimes_{\mathbb{Z}} \mathbb{R}\) and define a positive cone \(\mathcal{C}(\Lambda_{\mathbb{R}})\)
 \[\mathcal{C}(\Lambda_{\mathbb{R}}) := \{ x \in \Lambda_{\mathbb{R}} | \langle x, x \rangle > 0 \} \]
 For every element \(g\) of \(\Gamma_0\) and every element \(x\) of \(\mathcal{C}(\Lambda_{\mathbb{R}})\),
 \[\lim_{m \to \infty} g^m x = \ell \quad \text{in} \quad \mathbb{P}(\Lambda_{\mathbb{R}}). \]

Proof. (1) Let \(W^\perp\) be the orthogonal lattice of \(W\). The restriction
 \[\tilde{\Gamma} \ni g \mapsto g|_{W^\perp} \in O(W^\perp) \]
 is injective, because \(g\) acts on \(W\) trivially. We identify \(\tilde{\Gamma}\) and its image. Since the index of \(W^\perp\) is \((1, n - \text{rank}(W) - 1)\), by [14, Proposition 2.9], \(\tilde{\Gamma}\) contains a subgroup \(\tilde{\Gamma}_0\) which is isomorphic to \(\mathbb{Z}^m\), \((0 \leq m \leq n - \text{rank}(W) - 2)\). Moreover \(|\tilde{\Gamma} : \tilde{\Gamma}_0| < \infty\). Let us assume that we have a subgroup \(\tilde{\Gamma}_0\) of \(\tilde{\Gamma}\) which is isomorphic to \(\mathbb{Z}^{n-\text{rank}(W)-2}\). Since \(|\tilde{\Gamma}_0 : \tilde{\Gamma}_0 \cap \tilde{\Gamma}_0'| \leq |\tilde{\Gamma} : \tilde{\Gamma}_0| < \infty\), \(m \geq n - \text{rank}(W) - 2\) and we are done. Hence we will construct a subgroup \(\tilde{\Gamma}_0\) which is isomorphic to \(\mathbb{Z}^{n-\text{rank}(W)-2}\). Let us consider the projection \(r : \ell^\perp \cap \Lambda \to \ell^\perp \cap \Lambda / \mathbb{Z}\ell\). Replacing \(W\) by its saturation in \(\Lambda\), we may assume that \(W\) is primitive. Since \(W\) is negative definite, \(W \cong r(W)\). Moreover, \(r(W)\) is primitive. We choose \(\text{rank}(W)\) elements \(\{u_1, \ldots, u_{\text{rank}(W)}\}\) of \(W\) such that the set of the residue classes \(\{\bar{u}_1, \ldots, \bar{u}_{\text{rank}(W)}\}\) forms a generator of \(r(W)\). Since \(r(W)\) is primitive, we have \(n - \text{rank}(W) - 2\) elements \(\{u_{\text{rank}(W)+1}, \ldots, u_{n-2}\}\) such that the residue classes \(\{\bar{u}_1, \ldots, \bar{u}_{n-2}\}\) forms a generator of \(\ell^\perp / \mathbb{Z}\ell\). Then \(\{\ell, u_1, \ldots, u_{n-2}\}\) forms a generator of \(\ell^\perp\). Since \(\ell^\perp\) is a primitive sub lattice of \(\Lambda\), we have an element \(\ell'\) of \(\Lambda\) such that \(\{\ell, u_1, \ldots, u_{n-2}, \ell'\}\) forms a generator of \(\Lambda\). The gram matrix \(G_{\Lambda}\) of the bilinear form of \(\Lambda\) with respect to the basis \(\{\ell, u_1, \ldots, u_{n-2}, \ell'\}\) can be described as follows;

\[G_{\Lambda} = \begin{pmatrix} 0 & 0 & a \\ 0 & A & b \\ a & b & c \end{pmatrix} \]

where \(A\) is a negative definite symmetric matrix and \(a\) is a nonzero integer. We put \(d = \det A\). For an integer \(i\) with \(\text{rank}(W) + 1 \leq i \leq n - 2\), we define a \(n - 2\) row vector \(\gamma_i\) by

\[(\text{The } j\text{-th column of } \gamma_i) = \begin{cases} d & j = i \\ 0 & j \neq i \end{cases} \]
Let γ be a linear combination of γ_i, $(\text{rank}(W) + 1 \leq i \leq n - 2)$. We define the matrix $T(\gamma)$ by

$$g(\gamma) = \begin{pmatrix} 1 & -2\gamma & -2a\gamma(A^{-1})^t\gamma & -2\gamma b \\ 0 & E & 2a(A^{-1})^t\gamma & 1 \end{pmatrix},$$

where E is the $(n-2) \times (n-2)$ identity matrix. Since $^tT(\gamma)G_\Lambda T(\gamma) = G_\Lambda$, there exists an element $g(\gamma)$ of $O(\Lambda)$ whose matrix of representation with respect to the basis $\{\ell, u_1, \ldots, u_{n-2}, \ell'\}$ coincides with $T(\gamma)$. By definition

1. $g(\gamma)(\ell) = \ell$
2. $g(\gamma)(u_i) = u_i - 2a_i\ell$ $(1 \leq i \leq n - 2)$
3. $g(\gamma)(\ell') = \ell' + 2a\sum_{i=1}^{n-2} b_i u_i - (2a(\gamma(A^{-1})^t\gamma) + 2\gamma b)\ell$

where a_i is the i-th column of γ and b_i is the i-th row of $(A^{-1})^t\gamma$. By definition, $a_i = 0$, $(1 \leq i \leq \text{rank}(W))$. Hence $g(\gamma)$ is an element of Γ. Moreover

$$g(\gamma + \gamma') = g(\gamma)g(\gamma') = g(\gamma')g(\gamma)$$

for all linear combinations γ and γ' of γ_i, $(\text{rank}(W) + 1 \leq i \leq n - 2)$. By definition, $g(\gamma) = E$ if and only if $\gamma = 0$. We define the subgroup $\bar{\Gamma}_0$ of $\bar{\Gamma}$ generated by $g(\gamma_i)$, $(\text{rank}(W) + 1 \leq i \leq n - 2)$. By construction, $\bar{\Gamma}_0$ is isomorphic to $\mathbb{Z}^{n - \text{rank}(W) - 2}$ and we are done.

(2) We will use the same notation as in the proof of part (1). For an element x of $\mathcal{O}(\Lambda_R)$, we have the following expression.

$$x = \alpha_0\ell + \sum_{i=1}^{n-2} \alpha_i u_i + \beta\ell'.$$

By the equations 1, 2 and 3, we have

$$g(m\gamma)(x) = \left(\alpha_0 - \sum_{i=1}^{n-2} 2m\alpha_i a_i - \beta(2am^2(\gamma(A^{-1})^t\gamma) + 2m\gamma b)\right)\ell$$

$$+ \sum_{i=1}^{n-2} (\alpha_i + 2\beta am b_i)u_i$$

$$+ \beta\ell'.$$

Since $\langle x, x \rangle > 0$ and the index of the induced bilinear form on ℓ^\perp is $(0, 0, n - 2)$, $\beta \neq 0$. Hence the order of growth of the coefficient of ℓ is m^2, while the order of growth of other coefficients are at most m. This implies that

$$\lim_{m \to \infty} g(m\gamma)(x) = \ell \text{ in } \mathbb{P}(\Lambda_R)$$

and we are done.

\[\square \]

Corollary 2.1. Let X be a projective symplectic manifold. Assume that there exists an element ℓ of $\text{NS}(X)$ which is isotropic with respect to Beauville-Bogomolov quadratic form. We denote by $\text{Mon}(X)$ the monodromy group of X and by n the Picard number of X. Let W be a negative definite sublattice of $\text{NS}(X)$ which is contained in ℓ^\perp. Assume that $n - \text{rank}(W) > 2$. Then $\text{Mon}(X)$ contains a subgroup Γ which has the following three properties:
(1) Γ is isomorphic to $\mathbb{Z}^{n-\text{rank}W-2}$;

(2) The action of Γ respects the Hodge structure of $H^2(X, \mathbb{Z})$ and Γ acts on the transcendental lattice of $H^2(X, \mathbb{Z})$ trivially;

(3) For every element g of Γ, $g(\ell) = \ell$ and $g(w) = w$ for all elements of W and;

(4) For every element g of Γ and every element x of $\mathcal{C}_{\text{NS}}(X)$,

$$\lim_{m \to \infty} g^m x = \ell \text{ in } \mathbb{P}(\text{NS}_R(X)).$$

Proof. By Proposition 2.1, we have a subgroup $\bar{\Gamma}$ of $O(\text{NS}(X))$ which has the following three properties:

(1) $\bar{\Gamma}$ is isomorphic to $\mathbb{Z}^{n-\text{rank}W-2}$;

(2) For every element g of $\bar{\Gamma}$, $g(\ell) = \ell$ and $g(w) = w$ for all elements of W and;

(3) For every element g of $\bar{\Gamma}$ and every element x of $\mathcal{C}_{\text{NS}}(X)$,

$$\lim_{m \to \infty} g^m x = \ell \text{ in } \mathbb{P}(\text{NS}_R(X)).$$

Let $\text{NS}(X)^\perp$ be the orthogonal lattice of $\text{NS}(X)$ in $H^2(X, \mathbb{Z})$ with respect to Beauville-Bogomolov quadratic form. We recall $\text{NS}(X)^\perp$ is nothing but the transcendental lattice. We define a subgroup Γ' of $O(\text{NS}(X) \oplus \text{NS}(X)^\perp)$ by

$$\Gamma' := \{g + \text{id}_{\text{NS}(X)}: g \in \bar{\Gamma}\}.$$

Since $|H^2(X, \mathbb{Z}) : \text{NS}(X) \oplus \text{NS}(X)^\perp| < \infty$,

$$|O(\text{NS}(X) \oplus \text{NS}(X)^\perp) \cap O(H^2(X, \mathbb{Z}))| < \infty$$

by Lemma 2.1. By the definition, the action of $\Gamma' \cap O(H^2(X, \mathbb{Z}))$ respects the Hodge structure of $H^2(X, \mathbb{Z})$ and $\Gamma' \cap O(H^2(X, \mathbb{Z}))$ acts on the transcendental lattice of $H^2(X, \mathbb{Z})$ trivially. By [21] Theorem 7.2 and [3] Theorem 2.6,

$$|O(H^2(X, \mathbb{Z})) : \text{Mon}(X)| < \infty.$$

Hence $|\Gamma' : \Gamma' \cap \text{Mon}(X)| < \infty$. If we define Γ by $\Gamma' \cap \text{Mon}(X)$, we are done. □

3. Proof of Theorem 1.5

Before starting to prove Theorem 1.5, we prepare Lemma 3.1.

Lemma 3.1. Let X be an irreducible symplectic manifold. Assume that the nef cone $\text{Nef}(X)$ contains an open set U of $\partial\mathcal{C}_{\text{NS}}(X)$ and $\text{MBM}(X) \neq \emptyset$. Then $\partial\mathcal{C}_{\text{NS}}(X) \cap \text{NS}(X) \neq \emptyset$.

Proof. Let e be an element of $\text{MBM}(X)$ such that $e^\perp \cap \text{Nef}(X)$ is an open set of e^\perp. We choose a 2-plane H in $\text{NS}_R(X)$ as H contains e, $H \cap U \neq \emptyset$ and H is defined over $\text{NS}_R(X)$. The restriction $\text{Nef}(X) \cap H$ is generated by two rays ℓ_1 and ℓ_2. Since $H \cap U \neq \emptyset$, we may assume that $q_X(\ell_1) = 0$, where q_X is the Beauville-Bogomolov quadratic form of X. Let $\pi: \mathfrak{X} \to \text{Def}(X)$ be a Kuranishi family of X. We define the subset Ω in $\mathbb{P}(H^2(X, \mathbb{C}))$ by

$$\Omega := \{x \in \mathbb{P}(H^2(X, \mathbb{C})) | q_X(x) = 0, q_X(x + \tilde{x}) > 0\}.$$

By [5] Théorème 5], we have a morphism $p: \text{Def}(X) \to \Omega$, which is locally isomorphic. We choose a point t of $\text{Def}(X)$ such that $(p(t)^\perp \cap H^2(X, \mathbb{Z})) \otimes_\mathbb{Z} \mathbb{R} = H$. Let \mathfrak{X}_t be the fibre of π at t. Then $\text{NS}(\mathfrak{X}_t) = H$. We have an induced diffeomorphism $\iota: \mathfrak{X}_t \cong X$. By [11] Corollary 5.13, $\text{MBM}(\mathfrak{X}_t) = \iota^*(\text{MBM}(X) \cap H)$. Hence $\text{Nef}(\mathfrak{X}_t) \supset \iota^*(\text{Nef}(X) \cap H)$ and $\iota^*(\ell_1)$ is a ray of $\text{Nef}(\mathfrak{X}_t)$. Since $e \in H$,
MBM(\mathcal{H}) \neq \emptyset. By [1] Theorem 1.19, Nef(\mathcal{H}) \neq \overline{\text{NS}}(\mathcal{H}). By [10] Theorem 1.3 (1), two rays of Nef(\mathcal{H}) are rational, especially \nu^*(\ell_1) is rational. Since \nu^* preserves rationalities, we are done.

Proof of Theorem 1.5. If MBM(X) = \emptyset, Nef(X) = \overline{\text{NS}}(X) by [1] Theorem 1.19, and we are done. Assume that MBM(X) \neq \emptyset. We choose a Kähler class \kappa of H^2(X, \mathbb{R}) We define the subset \mathcal{N}(X) of MBM(X) by

\[\mathcal{N}(X) := \{ e \in \text{MBM}(X) | e^\perp \cap \text{Nef}(X) \text{ is an open set of } e^\perp, q_X(e, \kappa) > 0 \}. \]

We also define the cone D in NS_R(X) by

\[D := \{ x \in \text{NS}_R(X) | \forall e \in \mathcal{N}(X), q_X(e, x) \geq 0 \}. \]

If Nef(X) = D, we are done. We derive a contradiction assuming Nef(X) \neq D. By [1] Theorem 1.19, D \cap \overline{\text{NS}}(X) = \text{Nef}(X). Hence D contains an element e of NS_R(X) such that q_X(x) < 0. This implies that Nef(X) \cap \partial \overline{\text{NS}}(X) contains an open set of \partial \overline{\text{NS}}(X). Since MBM(X) \neq \emptyset, \partial \overline{\text{NS}}(X) \cap \text{NS}(X) \neq \emptyset by Proposition 3.1. The boundary \partial \overline{\text{NS}}(X) is defined by a rational quadratic form. Hence \partial \overline{\text{NS}}(X) \cap \text{NS}(X) forms a dense subset of \partial \overline{\text{NS}}(X). The intersection \partial \overline{\text{NS}}(X) \cap Nef(X) contains an open set of \partial \overline{\text{NS}}(X) and we have a nonzero element \ell of \partial \overline{\text{NS}}(X) \cap \text{Nef}(X) \cap \text{NS}(X) such that \[e^\perp \cap \text{MBM}(X) = \emptyset. \]

Let \Gamma be a subgroup of Mon(X) obtained by Corollary 2.1. For an element g of \Gamma, by [1] Theorem 1.19 and [13] Lemma 5.7, g(\text{Amp}(X)) is an connected component of \overline{\text{NS}}(X) \setminus \bigcup_{e \in \text{MBM}(X)} e^\perp. Hence if g(\text{Amp}(X)) \neq \text{Amp}(X), then there exists an element e of MBM(X) such that the hyperplane e^\perp separates Amp(X) and g(\text{Amp}(X)), that is,

\[\text{Amp}(X) \subset e^{>0}, g(\text{Amp}(X)) \subset e^{<0}, \]

where e^{>0} := \{ x \in \text{NS}_R(X) | q_X(x, e) > 0 \}. Since g(\ell) = \ell, e should be an element of \ell^\perp \cap \text{MBM}(X). By the choice of \ell, such a class does not exist and g(\text{Amp}(X)) = \text{Amp}(X). By Theorem 1.2, there exists an automorphism \Phi of X such that \Phi^* = g. By Proposition 2.1 \lim_{m \to \infty} g^m(x) = \ell \in \mathbb{P}(\text{NS}_R(X)) for all \ell \in \mathbb{P}(\text{NS}_R(X)). Hence, for every element x of \overline{\text{NS}}(X), there exists a positive integer N such that (\Phi^N)^* x \in \text{Amp}(X). This implies that Nef(X) = \overline{\text{NS}}(X). By [1] Theorem 1.19, MBM(X) = \emptyset. This contradicts the first assumption that MBM(X) \neq \emptyset. \qed

4. Proof of Theorem 1.6

Proof. First we will prove that Aut(X, L) is an almost abelian group and its rank is at most \text{dim NS}_R(X) - \text{dim } W_R - 1. Let \Gamma be the image of the natural representation \rho : Aut(X, L) \to O(\text{NS}(X)). By [15] Corollary 2.7, the kernel of \rho is finite. Hence it is enough to prove that \Gamma is an almost abelian group of rank at most \text{dim NS}_R(X) - \text{dim } W_R - 1 by [15] Proposition 9.3 (2)]. Let us consider the natural projection

\[r : c_1(L)^\perp \to c_1(L)^\perp / \mathbb{Z}c_1(L). \]

We define the lattice \hat{W} by

\[\hat{W} := r(\text{W}_R) \cap (c_1(L)^\perp \cap \text{NS}(X) / \mathbb{Z}c_1(L)). \]
We choose elements \(\{e_1, \ldots, e_k\} \) of \(c_1(L)^+ \cap \text{MBM}(X)^0 \) as their residue classes give a generator of \(W \). We note that \(k = \text{rank}(W) = \dim W_{\mathbb{R}} - 1 \). Let \(W \) be the sub lattice of \(\text{NS}(X) \) generated by \(\{e_1, \ldots, e_k\} \). Then there exists a natural isomorphism \(W \cong \bar{W} \). Since the induced bilinear form on \(c_1(L)^+ / \mathbb{R}c_1(L) \) is negative definite, \(\bar{W} \) is negative definite and hence \(W \) also is. Let \(W^\perp \) be the orthogonal lattice of \(W \) with respect to the Beauville-Bogomolov quadratic form. Since \(\Gamma \) preserves \(c_1(L) \) and \(c_1(L)^+ \cap \text{MBM}(X)^0 \), \(\Gamma \) preserves \(W \) and \(W^\perp \). We consider the following homomorphism

\[
\mu_1 : \Gamma \ni g \to g|_W \oplus g|_{W^\perp} \in O(W) \oplus O(W^\perp),
\]

and the projection \(\mu_2 : O(W) \oplus O(W^\perp) \to O(W^\perp) \). Since \([\text{NS}(X) : W \oplus W^\perp < \infty] \), \(\mu_1 \) is injective. Since \(W \) is negative definite, \(O(W) \) is finite and the kernel of \(\mu_2 \) is finite. Hence the kernel of \(\Gamma \ni \mu_2 \circ \mu_1(\Gamma) \) is finite. Therefore it is enough to prove that \(\mu_2 \circ \mu_1(\Gamma) \) is almost abelian of rank at most

\[
\dim \text{NS}_{\mathbb{R}}(X) - \dim W_{\mathbb{R}} - 1 = \dim \text{NS}_{\mathbb{R}}(X) - \text{rank}(W) - 2
\]

by \([15] \) Proposition 9.3 (2)]. Since \(W^\perp \) is a lattice whose index is \((1, n - \text{rank}(W) - 1) \) and \(\Gamma \) preserves \(c_1(L) \), \(\mu_2 \circ \mu_1(\Gamma) \) is an almost abelian group whose rank is at most \(n - \text{rank}(W) - 2 \) by \([14] \) Proposition 2.9 and we are done.

Next we will prove that

\[
\text{rank}(\text{Aut}(X, L)) = \dim \text{NS}_{\mathbb{R}}(X) - \text{rank}(W) - 2.
\]

Since \(W \) is negative definite and contained in \(c_1(L)^+ \), we have a subgroup \(\Gamma_0 \) of \(\text{Mon}(X) \) by Corollary 2.1. We note that \(\Gamma_0 \) is isomorphic to \(\mathbb{Z}^{\dim \text{NS}_{\mathbb{R}}(X) - \text{rank}(W) - 2} \). Let \(g \) be an element of \(\Gamma_0 \). By \([1] \) Theorem 1.19 and \([13] \) Lemma 5.17, \(g(\text{Amp}(X)) \) coincides with a connected component of \(\mathbb{C}^{\text{NS}(X)} \setminus \bigcup_{e \in \text{MBM}(X)^0} e^\perp \) whose closure contains \(c_1(L) \). Hence, if \(g(\text{Amp}(X)) \neq \text{Amp}(X) \), there exists an element \(e \) of \(c_1(L)^+ \cap \text{MBM}(X)^0 \) such that \(g(\text{Amp}(X)) \subset e^{>0} \) and \(\text{Amp}(X) \subset e^{<0} \). By the definition of \(W \) and Corollary 2.1, \(g \) fixes \(c_1(L) \) and all elements of \(c_1(L)^+ \cap \text{MBM}(X)^0 \). Hence there are no such elements in \(c_1(L)^+ \cap \text{MBM}(X)^0 \). Therefore \(g(\text{Amp}(X)) = \text{Amp}(X) \) and there exists an element \(\Phi \) of \(\text{Aut}(X, L) \) such that \(\Phi^* = g \) by Theorem 1.2. This implies that \(\Gamma_0 \) is a subgroup of \(\text{Aut}(X, L) \) and the rank of \(\text{Aut}(X, L) \) coincides with \(\dim \text{NS}_{\mathbb{R}}(X) - \text{rank}(W) - 2 \). \(\square \)

5. Proof of Theorem 1.7

Lemma 5.1. Let \(\overline{\Lambda} \) be a lattice whose index is \((2, \text{rank}(\overline{\Lambda}) - 2) \). We fix a positive integer \(N \) and define

\[
\overline{\Lambda}_N := \{x \in \overline{\Lambda} - N < \langle x, x \rangle < 0\}
\]

We denote by \(\text{Gr}^+(2, \overline{\Lambda}_{\mathbb{R}}) \) the open set of Grassmanian \(\text{Gr}(2, \overline{\Lambda}_{\mathbb{R}}) \) which consists of positive 2-planes in \(\overline{\Lambda}_{\mathbb{R}} \). Let \(\text{Gr}^+(2, \overline{\Lambda}_{\mathbb{R}})^0 \) be a subset of \(\text{Gr}^+(2, \overline{\Lambda}_{\mathbb{R}}) \) defined by

\[
\text{Gr}^+(2, \overline{\Lambda}_{\mathbb{R}})^0 := \{\sigma \in \text{Gr}^+(2, \overline{\Lambda}_{\mathbb{R}}) \mid \forall x \in \overline{\Lambda}_N, \sigma^ans not contained in \(\overline{\Lambda}_{\mathbb{R}} \} \}
\]

Then \(\text{Gr}^+(2, \overline{\Lambda}_{\mathbb{R}})^0 \) is open in \(\text{Gr}^+(2, \overline{\Lambda}_{\mathbb{R}}) \).

Proof. Let \(w \) be an element of \(\overline{\Lambda}_{\mathbb{R}} \) such that \(\langle w, w \rangle > 0 \). It is enough to prove that the subset \(V \) of \(w^\perp \) defined by

\[
V := \{v \in w^\perp : \langle v, v \rangle > 0, \forall x \in \overline{\Lambda}_N \cap w^\perp, \langle v, x \rangle \neq 0\}
\]
is open in \(w^\perp \). It is obvious that \(V \neq \emptyset \). We choose an element \(v \) of \(V \). For a positive number \(\epsilon \), we consider the subset of \(w^\perp \) defined by

\[
\{ x \in w^\perp | \langle v, x \rangle \leq \epsilon, -N \leq \langle x, x \rangle \leq 0 \}
\]

Since the signature of the bilinear form on \(w^\perp \) is \((1, \dim w^\perp - 1) \), the above set is compact. Hence the set

\[
\{ x \in \Lambda_N \cap v^\perp | \langle v, x \rangle \leq \epsilon \}
\]

is finite. Therefore

\[
\min_{x \in \Lambda_N \cap w^\perp} |\langle v, x \rangle|
\]

is positive and we are done. \(\square \)

Corollary 5.1. Let \(\Lambda \) be a lattice whose index is \((3, \text{rank}(\Lambda) - 3) \). We fix a positive integer \(N \). Assume that \(\Lambda \) has an isotropic element \(\ell \). Let \(\Lambda_N \) be the subset of \(\Lambda \) defined by

\[
\Lambda_N := \{ x \in \Lambda | -N < \langle x, x \rangle < 0 \}.
\]

We denote by \(\text{Gr}_{++}(2, \ell^\perp) \) the open set of Grassmanian \(\text{Gr}(2, \ell^\perp) \) which consists of positive 2-planes in \(\ell^\perp \). Then the subset \(\text{Gr}_{++}(2, \ell^\perp)^\circ \) defined by

\[
\text{Gr}_{++}(2, \ell^\perp)^\circ := \{ x \in \Lambda_N \cap \ell^\perp, \sigma \nsubseteq \sigma^\perp \}
\]

is open.

Proof. We denote by \(\overline{\Lambda} \) the quotient lattice \(\Lambda \cap \ell^\perp / \mathbb{Z} \). The symbols \(\overline{\Lambda}_R, \overline{\Lambda}_N, \text{Gr}_{++}(2, \overline{\Lambda}_R) \) and \(\text{Gr}_{++}(2, \overline{\Lambda}_N)^\circ \) represent the same objects in Lemma 5.1. Let us consider the projection \(\pi : \ell^\perp \rightarrow \overline{\Lambda}_R = \ell^\perp / \mathbb{R} \). Since \(\pi \) respect the bilinear forms on \(\ell^\perp \) and \(\overline{\Lambda}_R \), we have the induced morphism \(\pi' : \text{Gr}_{++}(2, \ell^\perp) \rightarrow \text{Gr}_{++}(2, \overline{\Lambda}_R) \). By definition, \((\pi')^{-1}(\text{Gr}_{++}(2, \overline{\Lambda}_N)^\circ) = \text{Gr}_{++}(2, \ell^\perp)^\circ \). By Lemma 5.1 \(\text{Gr}_{++}(2, \overline{\Lambda}_N)^\circ \) is open and we are done. \(\square \)

We recall the definition of marked irreducible symplectic manifolds, their moduli and the global period map.

Definition 5.1. Let \(\Lambda \) be a lattice whose index is \((3, \text{rank}(\Lambda) - 3) \). A marked irreducible symplectic manifold \((X, \varphi)\) is a pair of an irreducible symplectic manifold \(X \) and an isometry \(\varphi : H^2(X, \mathbb{Z}) \rightarrow \Lambda \). Two marked irreducible symplectic manifold \((X, \varphi)\) and \((X', \varphi')\) are isomorphic if there exists an isomorphism \(\Phi : X \cong X' \) such that \(\varphi' = \varphi \circ \Phi^* \), where \(\Phi^* \) is the induced isometry \(H^2(X', \mathbb{Z}) \rightarrow H^2(X, \mathbb{Z}) \). A moduli space of marked irreducible symplectic manifold \(\mathfrak{M}_\Lambda \) is the set of isomorphic classes of marked irreducible symplectic manifolds. We define the global period map \(\mathcal{P} : \mathfrak{M}_\Lambda \rightarrow \mathbb{P}(\Lambda_C) \) by

\[
\mathcal{P} : \mathfrak{M}_\Lambda \ni (X, \varphi) \rightarrow \varphi(H^{2,0}(X)) \in \mathbb{P}(\Lambda_C),
\]

where \(\Lambda_C = \Lambda \otimes \mathbb{C} \).

The following lemma is well-known for specialist and we add it for readers convenience.

Lemma 5.2 ([11 (1.18)]). The symbols \((X, \varphi), \Lambda, \mathfrak{M}_\Lambda \) and \(\mathcal{P} \) represent the same objects in Definition 5.1. We define the subset of \(\mathbb{P}(\Lambda) \) by

\[
\Omega_\Lambda := \{ x \in \mathbb{P}(\Lambda_C) | \langle x, x \rangle = 0, \langle x, \bar{x} \rangle > 0 \}
\]

Then \(\mathfrak{M}_\Lambda \) is a complex manifold and \(\mathcal{P} \) is a holomorphic morphism. The image of \(\mathcal{P} \) is contained in an open set of \(\Omega_\Lambda \).
Proof. Let \(\mathcal{X} \to \text{Def}(X) \) be the Kuranishi family of \(X \). By [1 Théorème 5], we have a holomorphic morphism \(p_X : \text{Def}(X) \to \Omega_A \). If \((X', \varphi') \) is another marked irreducible symplectic manifold which is isomorphic to \((X, \varphi) \) in the sense of Definition [5,2] \(p_X : \text{Def}(X') \to \Omega_A \) can be patched \(p_X \) by universality of the Kuranishi space. Hence \(\mathfrak{M}_A \) carries a structure of a complex manifold and \(\mathcal{P} \) is holomorphic. Since \(p_X \) is locally isomorphic, the image of \(\mathcal{P} \) is an open set of \(\Omega_A \). \(\square \)

We prove a property of fibres of the global period map.

Lemma 5.3. The symbols \((X, \varphi), \mathfrak{M}_A, \mathcal{P} \) and \(\Lambda \) represent the same objects in Definition [5.7]. Let \(\mathfrak{M}_A^\Lambda \) be a connected component of \(\mathfrak{M}_A \) which contains \((X, \varphi)\). We denote by \(t \) the point \(\mathcal{P}(X, \varphi) \). Assume that \(\Lambda \cap t^\perp \) has an isotropic element \(\ell \). Then there exists a marked irreducible symplectic manifold \((X', \varphi')\) such that \((X', \varphi') \in \mathfrak{M}_A^\Lambda\), \(X' \) carries a nef line bundle \(L' \) with \(\varphi'(c_1(L')) = \ell \) and \(\mathcal{P}(X', \varphi') = t \).

Proof. Let \(\mathcal{C}(X) \) be the positive cone of \(H^{1,1}(X, \mathbb{R}) \) and \(\text{MBM}(X) \) the set of the Monodromy birationally minimal classes. We choose a connected component \(C \) of \(\mathcal{C}(X) \setminus \bigcup_{e \in \text{MBM}(X)} e^\perp \) such that \(\varphi^{-1}(\ell) \) is contained in \(C \), where \(\overline{C} \) is the closure of \(C \). We define the subgroup \(\text{Mon}^{\text{Hdg}}(X) \) by

\[
\text{Mon}^{\text{Hdg}}(X) := \{ \gamma \in \text{Mon}(X) \mid \gamma(H^{2,0}(X)) = H^{2,0}(X) \}
\]

By [1 Definition 6.1 and Theorem 6.2], there exists an irreducible symplectic manifold \(X' \), a bimeromorphic map \(f : X \to X' \) and an element \(\gamma \) of \(\text{Mon}^{\text{Hdg}}(X) \) such that \(\gamma \circ f^*(\mathcal{K}(X')) = C \), where \(f^* \) is the induced morphism \(H^2(X', \mathbb{R}) \to H^2(X, \mathbb{R}) \) and \(\mathcal{X}(X') \) is the Kähler cone of \(X' \). By definition of \(\text{Mon}(X) \), \((X, \varphi)\) and \((X, \varphi \circ \gamma)\) belong to a same connected component of \(\mathfrak{M}_A \). By [10 Theorem 2.5], \((X', \varphi \circ \gamma)\) and \((X', \varphi \circ \gamma \circ f^*)\) belong to a same connected component of \(\mathfrak{M}_A \). Hence if we define \(\varphi' = \varphi \circ \gamma \circ f^* \), \((X', \varphi')\) belongs to \(\mathfrak{M}_A^{\Lambda} \). Since \(\gamma \circ f^*(H^{2,0}(X')) = H^{2,0}(X) \), \(\mathcal{P}(X', \varphi') = t \).

We finish the proof of Lemma if we have proved that \(X' \) carries a line bundle \(L' \) such that \(L' \) is nef and \(c_1(L') = (\varphi')^{-1}(\ell) \). Since \((\varphi')^{-1}(\ell) \in H^{1,1}(X', \mathbb{R}) \cap H^2(X', \mathbb{Z}) \), there exists a line bundle \(L' \) on \(X' \) such that \(c_1(L') = (\varphi')^{-1}(\ell) \). By definition, \(\varphi^{-1}(\ell) \in \overline{C} \). Thus \((\varphi')^{-1}(\ell) \) is contained in the closure of \(\mathcal{K}(X') \). Hence \(L' \) is nef and we are done. \(\square \)

The following Proposition is the punch line of the proof of Theorem [1.7a]

Proposition 5.1. Let \(X \) be an irreducible symplectic manifold whose Betti number is greater than five and \(L \) a line bundle on \(X \) with \(q_X(c_1(L)) = 0 \), where \(q_X \) is the Beauville-Bogomolov quadratic form. Then there exists an irreducible symplectic manifold \(X' \) and a line bundle \(L' \) which has the following properties:

1. The pairs \((X, L)\) and \((X', L')\) are deformation equivalent in the sense of Definition [1.6];
2. The line bundle \(L' \) is nef;
3. The Picard number of \(X' \) is equal to \(\dim H^2(X', \mathbb{R}) - 2 \); and
4. The intersection \(c_1(L')^\perp \cap \text{MBM}(X') \) is empty.

Proof. Let \(\Lambda \) be a lattice isomorphic to \((H^2(X, \mathbb{Z}), q_X)\), where \(q_X \) is the Beauville-Bogomolov quadratic form. The symbols \(\mathfrak{M}_A \) and \(\mathcal{P} \) represent the same objects in Definition [5.7]. We put \(\ell = \varphi(c_1(L)) \). Let \(\Omega_{A, \ell} \) be a subset of \(\Omega_A \) defined by \(\Omega_{A, \ell} := \{ x \in \Omega_A \mid \langle x, \ell \rangle = 0 \} \).
We will define two subsets of Ω_{Λ,ℓ^+}. The first one is defined by
\[\Omega_{\Lambda,\ell^+}^{\text{max}} := \{ x \in \Omega_{\Lambda,\ell^+} | \text{rank}(x^\perp \cap \Lambda) = \text{rank}(\Lambda) - 2 \} \]

\textbf{Claim 5.1.} The subset $\Omega_{\Lambda,\ell^+}^{\text{max}}$ is dense.

\textbf{Proof.} We choose an element t of Ω_{Λ,ℓ^+}. There exist sequences a_m and b_m in Λ_Q such that
\[\lim_{m \to \infty} a_m = \text{Re}(t), \quad \lim_{m \to \infty} b_m = \text{Im}(t) \]
Since $t \in \Omega_{\Lambda,\ell^+}$, $\langle \text{Re}(t), \text{Im}(t) \rangle > 0$, $\langle \text{Im}(t), \text{Im}(t) \rangle > 0$ and $\langle \text{Re}(t), \text{Im}(t) \rangle = 0$. Hence, we may assume that $\langle a_m, a_m \rangle > 0$ and $\langle b_m, b_m \rangle > 0$ for all m. Moreover, we may assume that $\lim_{m \to \infty} \langle a_m, b_m \rangle = 0$. We define other sequences c_m and d_m in Λ_Q by
\[c_m = b_m - \frac{\langle a_m, b_m \rangle}{\langle a_m, a_m \rangle} a_m \]
\[d_m = \sqrt{\frac{\langle a_m, a_m \rangle}{\langle c_m, c_m \rangle}} c_m \]
Then $a_m + \sqrt{-1}d_m \in \Omega_{\Lambda,\ell^+}^{\text{max}}$. By definition, $\lim_{m \to \infty} a_m + \sqrt{-1}d_m = t$ and we are done. \qed

Let N be a positive integer and Λ_N represents the same object in Corollary 5.1. We define the second subset of Ω_{Λ,ℓ^+} by
\[\Omega_{\Lambda,\ell^+}^\circ := \{ x \in \Omega_{\Lambda,\ell^+} | x^\perp \cap \Lambda_N = \emptyset \} \]

\textbf{Claim 5.2.} The subset $\Omega_{\Lambda,\ell^+}^\circ$ is open and dense.

\textbf{Proof.} For a very general point x of Ω_{Λ,ℓ^+}, $x^\perp \cap \Lambda = \mathbb{Z}\ell$. Hence $x \in \Omega_{\Lambda,\ell^+}^\circ$ and $\Omega_{\Lambda,\ell^+}^\circ$ is dense. We have a natural identification
\[\Omega_{\Lambda,\ell^+} \cong \text{Gr}_{++}(2, \ell^+) \]
where $\text{Gr}_{++}(2, \ell^+)$ is the set of positive 2-planes in ℓ^+. The correspondence is given by
\[\Omega_{\Lambda,\ell^+} \ni t \mapsto (\text{Re}(t), \text{Im}(t)) \in \text{Gr}_{++}(2, \ell^+) \]
where $(\text{Re}(t), \text{Im}(t))$ is the 2-plane spanned by $\text{Re}(t)$ and $\text{Im}(t)$. Under this identification, $\Omega_{\Lambda,\ell^+}^\circ$ corresponds to
\[\text{Gr}_{++}(2, \ell^+) \cap \{ x \in \Lambda_N \cap \ell^+, \sigma \not\subset x^\perp \} \]
By Corollary 5.1, the above set is open in $\text{Gr}_{++}(2, \ell^+)$ and we are done. \qed

Let $\pi : \mathcal{K} \to \text{Def}(X)$ be a Kuranishi family of X. For a point t of $\text{Def}(X)$, π gives a natural marking $\varphi_t : H^2(\mathcal{K}_t, \mathbb{Z}) \to \Lambda$, where \mathcal{K}_t is the fibre at t. We consider the subset of $\text{Def}(X)$ defined by
\[\text{Def}(X, L) := \{ t \in \text{Def}(X) | \mathcal{P}(\mathcal{K}_t, \varphi_t) \in \Omega_{\Lambda,\ell^+} \} \]
and the restriction family $\mathcal{K}_L \to \text{Def}(X, L)$. By [6 Corollaire 1], \mathcal{K}_L carries a line bundle \mathcal{L} such that the restriction of \mathcal{L} to X is isomorphic to L. Since the Betti number is greater than five, by [2 Corollary 1.4], there exists a positive integer N such that $\varphi_t(\text{MBM}(X_t)) \subset \Lambda_N$ for all $t \in \text{Def}(X)$. By Claim 5.1 and Claim 5.2, there exists a point t_0 of $\text{Def}(X)$ such that $\mathcal{P}(\mathcal{K}_{t_0}, \varphi_{t_0}) \in \Omega_{\Lambda,\ell^+}^{\text{max}} \cap \Omega_{\Lambda,\ell^+}^\circ$. By
Lemma 5.3 we have a marked irreducible symplectic manifold \((X', \varphi')\) such that \(X'\) carries a nef line bundle \(L'\) with \(\varphi'(c_1(L')) = \ell\) and \(\mathcal{P}(X', \varphi') = t_0\). Since \(\text{rank}(\mathcal{H}^1_\varphi) = \text{rank}(\mathcal{A}) - 2\), the Picard number of \(X'\) is equal to \(\dim H^2(X', \mathbb{R}) - 2\). Since \(X_0^+ \cap t_0^+ \cap \Lambda_0 = 0\), \(c_1(L')^{+} \cap \text{MBM}(X') = 0\). Thus we are done if we prove that \((X, L)\) and \((X', L')\) are deformation equivalent in the sense of Definition 1.6. Let \(\pi': \mathcal{P}' \to \text{Def}(X')\) be a Kuranishi family of \(X'\). We consider the restriction family \(\mathcal{P}'_t \to \text{Def}(X', L')\) which is obtained by the same manner of \(\mathcal{P}'_t \to \text{Def}(X, L)\). Since \(t_0 \in \mathcal{P}(\text{Def}((X, L))) \cap \mathcal{P}(\text{Def}(X', L'))\), \(\mathcal{P}(\text{Def}((X, L))) \cap \mathcal{P}(\text{Def}(X', L'))\) is a non empty open subset of \(\Omega_{X, L}^{\pm}\). Hence there exists a point \(t_1\) of \(\mathcal{P}(\text{Def}(X, L)) \cap \mathcal{P}(\text{Def}(X', L'))\) such that \(t_1^+ \cap \Lambda = \mathbb{Z}\ell\). Let \(\mathcal{P}'_{t_1}\) be the fibre of \(\mathcal{P}' \to \text{Def}(X, L)\) at \(t_1\) and \(\mathcal{P}'_{t_1}^+\) the fibre of \(\mathcal{P}'_{t_1} \to \text{Def}(X', L')\) at \(t_1\). We denote by \(\varphi'_{t_1}\) the induced marking on \(H^2(\mathcal{P}'_{t_1}, \mathbb{Z})\) and by \(\varphi'_{t_1}\) the induced marking on \(H^2(\mathcal{P}'_{t_1}, \mathbb{Z})\). Then \((\mathcal{P}'_{t_1}, \varphi'_{t_1})\) and \((\mathcal{P}'_{t_1}, \varphi'_{t_1})\) are isomorphic by [13, Theorem 2.2 (5)]). We denote by \(\Phi_t\) an isomorphism between \((\mathcal{P}'_{t_1}, \varphi'_{t_1})\) and \((\mathcal{P}'_{t_1}, \varphi'_{t_1})\). Since \(\varphi'_{t_1}(\ell) = c_1(L'_{t_1})\) and \((\varphi'_{t_1})^{-1}(\ell) = c_1(L'_{t_1})\), \(\Phi^\ast_{t_1} L'_{t_1} \cong L'_{t_1}\). Hence \((X, L)\) and \((X', L')\) are deformation equivalent in the sense of Definition 1.6. \(\square\)

Proof of Theorem 1.7. By Proposition 5.1, we have a pair \((X', L')\) with deformation equivalent to \((X, L)\) such that \(L'\) is nef and \(c_1(L')^{+} \cap \text{MBM}(X') = 0\). By Theorem 1.6, \(\text{Aut}(X', L')\) is almost abelian whose rank is equal to \(\dim H^2(X', \mathbb{R}) - 2\). \(\square\)

References

[1] E. Amerik and M. Verbitsky. Rational curves on hyperkähler manifolds. *International Mathematics Research Notices*, page rnv133, may 2015.

[2] E. Amerik and M. Verbitsky. Collections of parabolic orbits in homogeneous spaces, homogeneous dynamics and hyperkahler geometry. ArXiv e-prints, April 2016.

[3] Ekaterina Amerik and Misha Verbitsky. Construction of automorphisms of hyperkähler manifolds. *Compositio Mathematica*, 153(08):1610–1621, may 2017.

[4] Sasha Anan’in and Misha Verbitsky. Any component of moduli of polarized hyperkähler manifolds is dense in its deformation space. *J. Math. Pures Appl. (9)*, 101(2):188–197, 2014.

[5] Arnaud Beauville. Variétés Kähleriennes dont la première classe de Chern est nulle. *J. Differential Geom.*, 18(4):755–782 (1984), 1983.

[6] Arnaud Beauville. Variétés kähleriennes compactes avec \(c_1 = 0\). *Astérisque*, (126):181–192, 1985. Geometry of K3 surfaces: moduli and periods (Palaiseau, 1981/1982).

[7] Sébastien Boucksom. Le cône kählérien d’une variété hyperkähleriennes. *Comptes Rendus de l’Académie des Sciences - Series I - Mathematics*, 333(10):935–938, nov 2001.

[8] Dan Burns, Jr. and Michael Rapoport. On the Torelli problem for kählerian K3 surfaces. *Ann. Sci. École Norm. Sup. (4)*, 8(2):235–273, 1975.

[9] Daniel Huybrechts. Compact hyper-Kähler manifolds: basic results. *Invent. Math.*, 135(1):63–113, 1999.

[10] Daniel Huybrechts. The Kähler cone of a compact hyperkähler manifold. *Math. Ann.*, 326(3):499–513, 2003.

[11] Sándor J. Kovács. The cone of curves of a K3 surface. *Math. Ann.*, 300(4):681–691, 1994.

[12] Eduard Looijenga and Chris Peters. Torelli theorems for Kähler K3 surfaces. *Compositio Math.*, 42(2):145–186, 1980/81.

[13] Eyal Markman. A survey of torelli and monodromy results for holomorphic-symplectic varieties. In *Complex and Differential Geometry*, pages 257–322. Springer Nature, 2011.

[14] Keiji Oguiso. Automorphisms of hyperkähler manifolds in the view of topological entropy. In *Algebraic geometry*, volume 422 of *Contemp. Math.*, pages 173–185. Amer. Math. Soc., Providence, RI, 2007.

[15] Keiji Oguiso. Bimeromorphic automorphism groups of non-projective hyperkähler manifolds—a note inspired by C. T. McMullen. *J. Differential Geom.*, 78(1):163–191, 2008.

[16] Keiji Oguiso. Automorphism groups of calabi-yau manifolds of picard number 2. *Journal of Algebraic Geometry*, 23(4):775–795, apr 2014.
[17] I. I. Pjatecki˘ı Shapiro and I. R. ´ Safarevi˘ı c. Torelli’s theorem for algebraic surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat., 35:530–572, 1971.
[18] Tetsuji Shioda. On elliptic modular surfaces. J. Math. Soc. Japan, 24:20–59, 1972.
[19] Tetsuji Shioda. On the Mordell-Weil lattices. Comment. Math. Univ. St. Paul., 39(2):211–240, 1990.
[20] Tetsuji Shioda. Mordell-Weil lattices for higher genus fibration. Proc. Japan Acad. Ser. A Math. Sci., 68(9):247–250, 1992.
[21] Misha Verbitsky. Mapping class group and a global Torelli theorem for hyperkähler manifolds. Duke Math. J., 162(15):2929–2986, 2013. Appendix A by Eyal Markman.

Division of Mathematics, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
E-mail address: matusita@math.sci.hokudai.ac.jp