New Southern Galaxies With Active Nuclei. Part II. *

M. A. G. Maia, J. A. Suzuki, L. N. da Costa, C. N. A. Willmer and C. Rité

Abstract. This paper contains a list of new AGN candidates identified from the examination of 3500 optical spectra contained in the database of the Southern Sky Redshift Survey Extension (SSRS2). The classification of galaxies was done using standard diagnostics and a total of (5) Seyfert 1, (12) Seyfert 2 and (10) LINERs were found. We also present a list of 60 galaxies for which we could not secure a definite classification, but which might present some level of nuclear activity.

Key words: galaxies: AGN, LINER, Seyfert, redshifts

1. Introduction

A considerable effort has been undertaken to understand the physical processes generating the phenomena observed in active galactic nuclei (AGN), where a vast amount of energy is produced on short timescales in a small volume of the parent galaxy. In order to understand the underlying physical mechanism responsible for the phenomenon, different observational techniques must be used such as time monitoring and multiwavelength studies. Equally important to explain these phenomena, is the availability of large number of observed objects covering a wide range in redshift, local density regimes and levels of nuclear activity, given the great variety of behavior presented by active galaxies. This fact provides an important motivation for a systematic search for new candidates. In addition to the surveys especially designed to find new AGN candidates, active galaxies can also be identified as a by-product of the various ongoing redshift surveys of galaxies, where several thousands of spectra are accumulated in a systematic fashion following well defined selection criteria. An additional advantage of this procedure is that the relation of the AGNs with their surrounding environment may be established. Because these redshift surveys are directed at studying the properties of galaxies and structures of galaxies on large scales, they should allow us to determine some of the statistical properties of AGNs, as the parent samples are relatively unbiased towards this kind of object.

One of these properties is, for instance, the population density of active galaxies relative to normal ones, which is still not well known, but which might hold some important clues on the evolution of galaxies, their contribution to the X-ray background and to evaluate the possibility of using AGNs as tracers of galaxy distributions (e.g. Huchra and Burg 1992; Osterbrock and Martel 1993).

In this paper we report the results of a search for galaxies which could be hosts of active nuclei, using the database of the Southern Sky Redshift Survey, SSRS (e.g., da Costa et al. 1988, 1991) as well as its extensions (Fairall et al. 1992; Huchra et al. 1993), and SSRS2 (da Costa et al. 1994). The fact that this survey is not specifically aimed at measuring AGNs has the appealing point that it allows an easier detection of low-luminosity AGNs relative to the conventional low-dispersion objective-prism surveys. This paper is a follow up of the work by Maia et al. (1987), where the first SSRS AGN candidates were catalogued, and provides the groundwork for a study of the spatial distribution of active nuclei in the SSRS survey. The data reported here have been collected during the last 6 years and consist mainly of galaxies in both galactic caps in the region $|b| > 30^\circ$ and $\delta < 0^\circ$. We discuss the observational procedures in section 2, and present the results in section 3.
2. Observations

The observations reported here were made at four different sites. The data collected at the 1.5 m telescope of the Laboratório Nacional de Astrofísica (LNA), Brasópolis, Brazil, used the Observatório Nacional intensified photon-counting Reticon detector described by da Costa et al. (1984), who also discuss the reduction procedures. A 6Å mean resolution was obtained for a 4700-7100Å spectral range. This detector was also used on the 2.15 m telescope of the Complejo Astronomico El Leoncito (CASLEO), San Juan, Argentina, but having a slightly larger spectral coverage (4450-7100Å). The remaining data were collected at the Cerro Tololo Interamerican Observatory (CTIO) 1.5m telescope using a CCD with 421 x 576 pixels and the European Southern Observatory (ESO) Spectroscopic 1.52m telescope, with a Ford CCD with 2048 x 2048 pixels. The spectral coverage depends on the epoch, but in general was in the range 3900-7100Å for ESO and 4800-7000Å for CTIO. The CTIO mean resolution was about 8Å, while for ESO data it is $\approx 4Å$.

As the survey was designed to measure redshifts of galaxies, most of the emission-line spectra have a low signal-to-noise ratio in the continuum, particularly in the case of data obtained with the intensified reticon, as it allowed examination of the spectra in real-time during the acquisition process. Nevertheless, for the majority of galaxies the quality of the spectra is suitable for the identification of features characteristic of AGNs. We should also note that because of time constraints spectrophotometric standards where not observed systematically, and, as a result, very few of our spectra can be flux calibrated. This is particularly important for data obtained with the intensified reticon. However, as the aim of this work is to provide a list of AGN candidates for future and more detailed work, these limitations should not be excessively restrictive.

3. Results

About 3500 new spectra in the SSRS database were visually examined and an attempt was made to separate those with emission-lines features typical of HII regions from those with AGN characteristics. We have used for this purpose the diagnostics proposed by Baldwin, Phillips and Terlevich (1981) who use the ratio of forbidden to permitted line intensities to delineate the regions occupied by conventional HII regions; by low-ionization nuclear-emission regions (LINERs, Heckman 1980); or Seyfert-like activity. Although different combinations of line intensities may be used, for our spectra uncalibrated in flux it is convenient to use lines which are close to each other. Therefore AGN candidates were selected primarily on the basis of the ratio between the equivalent widths of the contiguous $\text{[NII]} \lambda 6583$ and H.α.

Spectra with ratio $R_1 \equiv [\text{NII}] \lambda 6583 / \text{H}$.$\alpha > 0.7$ were assumed to be either Seyfert or LINERs. The separation between these two classes was made whenever possible based on the measured ratio $R_2 \equiv [\text{OIII}] \lambda 5007 / \text{H}$.$\beta$ and following the criteria that galaxies with $R_2 < 3$ were LINERs and those with $R_2 > 3$ were Seyferts. The lack of blue sensitivity makes this diagnostic less reliable and sometimes subjective.

Our classification should be regarded as tentative also because no corrections were applied to the spectra due to line blending, interstellar reddening and the underlying stellar absorption. For instance, in some galaxies the presence of strong Balmer absorption will conceal the Hβ emission-line in the spectra, making it difficult to separate a LINER from a Seyfert 2 spectrum. One should also have in mind that the classical definition of LINERs does not immediately imply an AGN-like activity as it has been shown that LINERs with weak [OII] $\lambda 3727$ relative to Hα (< 1/6) can be accounted for by a photoionization model (Filippenko and Terlevich 1992).

Taking into consideration the above remarks we have adopted the following classification scheme: 1) S1 - objects with broad Balmer lines typical of Seyfert 1 galaxies; 2) S2 - galaxies with $R_1 > 0.7$ and $R_2 > 3$; 3) Li - galaxies with $R_1 > 0.7$ and $R_2 < 3$; 4) SL - galaxies with visible [OIII] $\lambda 5007$ lines but undetected Hβ; 5) SL? - galaxies with $R_1 > 0.7$ but no visible [OIII] $\lambda 5007$ and Hβ; 6) L? - galaxies with $R_1 \sim 0.7$ and $R_2 < 3$. To further aid the reader, for each galaxy we point out in the tables the possible presence of Hβ in absorption, the strength of [OII] $\lambda 3727$ line relative to Hα and spectra with poor sky subtraction.

About 2% of the objects examined in the SSRS database presented characteristics of AGN galaxies. After a first selection, the literature was searched for any previous reference of nuclear activity of the candidate galaxies. For this purpose we used the 6th edition of A Catalogue of Quasars and Active Nuclei by Véron-Cetty and Véron (1993), as well as the literature covering the remaining period of the aforementioned catalogue up to December 1994. Finally, the NASA/IPAC Extragalactic Database was searched.

We have also carried out a search of the IRAS Point Source Catalog to find possible infrared (IR) counterparts of the objects in our final list. For those with IR detection, the far-infrared luminosity was calculated. The IRAS counterparts were searched using an adapted version of a program for matches on The Green Bank Sky Maps and Radio Source Catalog CD-ROM, produced by NRAO. All the matches with values of M (maximum normalized position difference) smaller than 3.5 were accepted. The optical size of the galaxies and error ellipses of IRAS sources were taken into account. A significant fraction of the Seyfert galaxies have IR counterparts ($\approx 60\%$). They are not the typical ultraluminous IR
galaxies ($L_{\text{FIR}} \geq 10^{12} L_{\odot}$), being instead low-luminosity IR objects ($L_{\text{FIR}} < 10^{11} L_{\odot}$).

The resulting list of candidates with no previous reference of AGN activity is presented in Table 1 (for CASLEO and LNA observations) and in Table 2 (for ESO and CTIO). The tables contain the following information:

Column (1) – The identification based on 1950.0 equatorial coordinates. For ESO galaxies we used the coordinates given by Lauberts and Valentijn (1989), for the remaining objects the coordinates of the STScI Guide Star Catalog (Lasker et al. 1990) precessed to Epoch 1950.0. Column (2) – Galaxy identification in the ESO, NGC or MCG catalogues if available.

Columns (3) and (4) – Equatorial coordinates for epoch 1950.0 taken from Lauberts and Valentijn (1989), for objects in the ESO catalogue. For the non-stellar objects listed in the STScI Guide Star Catalog that were observed as part of the SSRS2, and which are not contained in the Lauberts and Valentijn (1989) catalogue, the published coordinates were precessed from Epoch 2000.0 to 1950.0. The precision in the coordinates is ≈ 3′ for ESO galaxies (Lauberts 1989) and ≈ 1″ for STScI (Lasker et al. 1990).

Columns (5) and (6) – The apparent B magnitude, m_B, and its reference given by Lauberts and Valentijn (1989) for ESO galaxies (coded as 1), or derived from the STScI instrumental magnitudes to correspond to a blue magnitude measured within B=26 mag/arcsec² isophote according to Alonso et al. (1993), coded as “2” in column 6.

Column (7) – Morphological type quoted by Lauberts and Valentijn (1989) whenever available. For objects indicated with an asterisk, the morphological classification is based on a visual inspection of the field in the CD-ROMs of the STScI Digitized Sky Survey.

Column (8) – Observatory where the spectrum was obtained.

Column (9) – Heliocentric velocity, V_{\odot}, in km/s.

Column (10) – Absolute blue magnitude, M_B, derived from the Hubble distance of the galaxy using the measured redshift and $H_0 = 75$ km s$^{-1}$ Mpc$^{-1}$.

Column (11) – Total far-infrared luminosity between ∼40μm and ∼120μm, L_{FIR}, in L_{\odot}, computed following Lonsdale et al. (1985):

$$L_{\text{FIR}} = 3.95 \times 10^8 (2.58f_{60} + f_{100}) \times d^2,$$

where f_{60} and f_{100} are the 60μm and 100μm infrared flux densities, in Jy, from the IRAS Faint Source Catalog and d, is the distance in Mpc.

Columns (12) and (13) – R_1 and R_2 as defined in the text.

Column (14) – Emission type, where the different symbols used to identify the type of emission are as discussed above.

Column (15) – Comments to the table where (1) indicates evidence of strong $H\beta$ absorption; (2) and (3) indicate the estimated strength of the [OI] λ6300 line relative to Hα with (2) denoting weak [OI] λ6300 line (roughly < 1/6 of the Hα line) and (3) strong [OI] λ6300; (4) poor sky subtraction.

The spectra for galaxies listed in tables 1 and 2 are displayed in figs. 1 and 2 respectively, with fluxes in arbitrary units. For a few spectra it was possible to use a spectrophotometric standard star to remove the detector response. These objects are identified in the figures by an asterisk next to their names. For the remaining galaxies, we tried to remove the instrumental response by fitting the continuum and dividing the spectrum by the fit. The spectra show a large range of signal to noise ratios (S/N).

The modest FIR emission of objects in our catalogue seems to be compatible (at least in the case of Seyferts), with the fact that the nuclear activity is also modest. This may be a consequence of the selection criteria used to generate the sample of objects (diameter or magnitude limited sample), instead of characteristics that are more common to AGNs like bright nucleus, prominent emission in the blue band, among others. So far we have examined about 5000 spectra including the previous work of Maia et al. (1987). The percentage of AGN galaxies in the SSRS sample is approximately 2%, and will be the subject of a study of the AGN phenomena in that sample which we expect to report in the future.

We acknowledge the scientific and technical personnel involved in the SSRS effort for their valuable help, as well as the staff of LNA, CASLEO, CTIO and ESO for their assistance during the observations. We thank the referee, Dr. M.P. Véron-Cetty, whose suggestions have helped to improve this paper. This work was supported in part by CNPq grants 800745/91-4 and 301366/86-1 (MAGM), 104505/92-2 and PIBIC/ON (JAS). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, Caltech, under contract with the National Aeronautics and Space Administration.

References

Alonso, M.V., da Costa, L.-N., Pellegrini, P.S., and Kurtz, M.J. 1993, AJ 106, 676
Baldwin, J., Phillips, M., and Terlevich, R. 1981, PASP 93, 5
da Costa, L.-N., Geller, M.J., Pellegrini, P.S., Latham, D.W., Fairall, A.P., Mazke, R.O., Willmer, C.N.A., Huchra, J.-P., Calderon, J.H., Ramella, M., and Kurtz, M.J., 1994, ApJ 424, L1
da Costa, L.-N., Pellegrini, P.S., Davis, M., Meiksin, A., Sargent, W.L.W., and Tonry, J. 1991, ApJS 76, 935
da Costa, L.-N., Pellegrini, P.S., Nunes, M.-A., Willmer, C., and Latham, D.W. 1984, AJ 89, 1310
da Costa, L.N., Pellegrini, P.S., Sargent, W.L.W., Tonry, J., Davis, M., Meiksin, A., Latham, D.W., Menzies, J.W., and Coulson, I.A. 1988, ApJ 327, 544
Fairall, A., Willmer, C., Calderón, J.H., Latham, D.W., da Costa, L.N., Pellegrini, P.S., Nunes, M.A., Focardi, P., and Vettolani, G. 1992, AJ, 103, 11
Filippenko, A.V., and Terlevich, R. 1992, ApJ 397, L79
Heckman, T.M. 1980, A&A 87, 152
Huchra, J., Latham, D.W., da Costa, L.N., Pellegrini, P.S., and Willmer, C.N.A. 1993, AJ 105, 1637
Huchra, J.P., and Burg, R. 1992, ApJ 393, 90
Lasker, B.M., Sturch, C.R., McLean, B.M., Russel, J.L., Jenker, H., and Shara, M. 1990, AJ 99, 2019
Lauberts, A. 1982, The ESO/Uppsala Survey of the ESO(B) Atlas, (European Southern Observatory, Garching bei München.)
Lauberts, A., and Valentijn, E-A. 1989, The Surface Photometry Catalogue of The ESO-Uppsala Galaxies, (European Southern Observatory, Garching bei München.)
Lonsdale, C.J., Helou, G., Good, J.C., and Rice, W.L. 1985, Cataloged Galaxies and Quasars Observed in the IRAS Survey (Jet Propulsion Laboratory, Pasadena)
Maia, M.A.G., da Costa, L.N., Willmer, C., Pellegrini, P.S., and Rité, C. 1987, AJ 93, 546
Osterbrock, D.E., and Martel, A. 1993, ApJ 414, 552.
Véron-Cetty, M.-P., and Véron P. 1993, A Catalogue of Quasars and Active Nuclei, 6th Edition. (Garching bei München: European Southern Observatory)

Figure Captions

Figure 1. Spectra of AGN candidates observed at CASLEO and LNA. Fluxes are in arbitrary units.

Figure 2. Spectra of AGN candidates observed at CTIO and ESO.

This article was processed by the author using Springer-Verlag TeX A&A macro package 1992.
Table 1. List of AGN candidates observed at LNA and CASLEO.

Catalogue Name	Other Name	RA (1950)	Dec	m_B	ref.	Type	Obs. V_0	M_B	log(L_{IR})	R_1	R_2	Emiss. Type	Comments
00283-0929	MCG-02-02-035	00 28 21.4	-09 29 02	15.28	2	S0 *	cas 5940	-17.9	3.44			SL: 1,2,4	
00539-3531	ESO 351-G23	00 53 57.0	-35 31 00	16.06	1	Sa	cas 14494	-19.1	1.56			SL: 1,2	
00560-3655	ESO 351-G25	00 56 01.0	-36 55 48	15.28	1	Sb	cas 10416	-19.2	1.58			SL: 3	
01169-1557	MCG-03-04-046	01 16 57.6	-15 57 44	15.26	2	SBB *	lna 15234	-20.0	10.21	1.42 12.43	S2	3	
01220-2422	MCG-04-04-007	01 22 01.6	-24 22 25	15.22	2	SBB(s)b	cas 11196	-19.4	10.10	0.84		SL? 2	
01369-0939	NGC 640	01 36 55.7	-09 39 15	15.45	2	S...*	cas 7490	-18.3	9.48 1.27 28.62	S2	2		
02077-0917	ESO 221-G13	02 07 43.5	-09 17 43	15.23	2	S...*	cas 12492	-19.6	9.99 0.93 3.37	S2	2,4		
02406-0859	NGC 1071	02 40 40.8	-08 59 08	15.41	2	SB(rs)a	cas 11303	-19.2	0.90			SL: 2,4	
02568-3508	ESO 356-G23	02 56 48.0	-35 08 54	15.49	1	SB0-a	cas 11010	-19.1	1.89			SL: 2	
03414-3154		03 41 27.1	-31 54 04	14.90	2	S...*	cas 9515	-19.4	9.30 0.76 3.54	S2	3,4		
04119-3207	ESO 420-G13	04 11 54.0	-32 07 54	13.31	1	S0(r)	cas 3618	-18.8	10.26 0.80 3.31	S2	2		
04303-3030	ESO 421-G09	04 30 20.0	-30 30 18	15.28	1	S(r)a	cas 16481	-20.2	10.35 0.63 2.94	Li	3		
04392-3739	ESO 304-G11	04 39 14.1	-37 39 52	15.62	1	Sa	cas 12229	-19.2	0.67 5.76	S2	3,4		
04593-1614	MCG-03-13-051	04 59 21.0	-16 14 00			SB(s)b	lna 6683	9.63	1.42	S2	2		
09400-0328	NGC 2974	09 40 00.0	-03 28 00			E4	cas 1851	8.27	2.86	SL?	1,2,4		
10192-0312	MCG+00-27-002	10 19 12.0	-03 12 00			E *	cas 12245				S1	2,4	
10399-1724	MCG-03-27-026	10 39 51.0	-17 24 35			S0 pec	cas 6192	1.31	28.26	S2	2		
14096-2652	ESO 511-G10	14 09 31.0	-26 52 24	13.53	1	Sb-c	lna 6740	-19.9	9.84 1.20	SL:	2		
20200-3846	ESO 340-G22	20 20 01.0	-38 46 30	15.76	1	SBA	lna 16808	-19.7	9.96 0.79 3.57	S2	2		
20211-2337	ESO 528-G01	20 21 10.0	-23 37 36	16.14	1	Sc	cas 16552	-19.3	0.94 4.65	S2	2		
21063-3825		21 06 18.9	-38 25 23	14.87	2	Sb *	cas 13934	-20.2	9.94 1.27 2.01	Li	2		
22514-3720	ESO 406-G18	22 51 27.0	-37 20 54	15.17	1	S0	cas 17157	-20.4	10.32 0.92 1.14	Li	2		
23413-0818	MCG-01-60-025	23 41 18.0	-08 18 42	15.05	2	SBB	cas 10337	-19.4	1.63	SL?	1,2,4		
Catalogue Name	Other Name	RA \(\text{1950}\)	Dec \(\text{1950}\)	\(m_B\)	ref.	Type	Obs. \(V_0\) \(\text{km/s}\)	\(M_B\)	\(\log(L_{IR})\)	R1	R2	Emiss. Type	Comments
----------------	------------	----------------	----------------	--------	------	------	----------------	--------	----------------	-----	-----	--------------	----------
00108-2652	ESO 472-G21	00 10 48.0	-26 52 18	15.13 1	Double	eso	17122	-20.4	8.27	0.73	SL: 1,2		
00125-2929	ESO 410-G04	00 12 35.0	-29 29 18	14.89 1	Sb	ctio	7399	-18.8	7.56	0.77	SL? 2,4		
00171-1423		00 17 11.6	-14 23 57	15.42 2	Sb(r) *	eso	12622	-19.5	7.93	1.25	SL: 1,2,4		
00564-2834		00 56 27.6	-28 34 23	15.31 2	Sa *	ctio	17709	-20.3	8.18	0.77	SL? 2		
01252-2522		01 25 15.3	-25 22 50	15.35 2	Sa *	ctio	12656	-19.5	0.81	SL? 2			
01284-2737	ESO 413-G08	01 28 29.0	-27 37 18	15.11 1	Sa	ctio	5612	-18.0	9.70	0.79 0.90	Li 2		
01376-2812	ESO 413-G15	01 37 38.0	-28 12 18	15.65 1	Sb	ctio	16825	-19.8	8.46	1.27	SL? 2,4		
01485-2717		01 48 35.0	-27 17 10	15.45 2	Sab *	eso	16835	-20.0	0.83	SL? 1,2			
01491-2015		01 49 07.0	-20 15 26	15.42 2	Sa *	eso	14865	-19.8	7.60	1.02	SL? 1,2,4		
01504-2538		01 50 27.4	-25 38 26	15.17 2	Sa *	ctio	12486	-17.2	0.98	SL? 2			
01525-2823	ESO 414-G09N01 52 32.0	-28 23 38	16.49 1	Double	ctio	16945	-19.0	10.21	0.94	SL? 3,4			
02110-2957	ESO 415-G07	02 11 04.0	-29 57 27	15.04 1	S0	ctio	10368	-19.4	7.58	0.83	SL? 2		
02147-2348	ESO 478-G20	02 14 46.7	-23 48 24	15.73 1	Sa	eso	11403	-18.9	1.00	SL? 1,3,4			
02147-2354		02 14 47.4	-23 54 45	15.24 2	S0-a *	eso	9818	-19.1	1.09	SL? 1,2,4			
02163-2243	ESO 478-G24	02 16 22.0	-22 43 30	15.97 1	S0-a	ctio	9835	-18.4	1.07	SL? 3			
02247-2308		02 24 43.3	-23 08 09	15.02 2	Sa *	ctio	10178	-19.4	1.20	SL? 2			
02260-2621		02 26 00.4	-26 21 18	15.39 2	Sb *	ctio	17483	-20.2	0.89	SL? 2			
02418-2623	ESO 479-G30	02 41 51.0	-26 23 54	15.48 1	S0	ctio	10532	-19.0	7.76	1.46	SL: 1,2		
02425-2443	ESO 479-G31	02 42 34.0	-24 43 30	14.76 1	S0	ctio	7033	-18.9	2.04 1.89	Li 1,3			
02440-2631	ESO 479-G35	02 44 01.0	-26 31 00	14.79 1	S0	ctio	6760	-18.7	9.14	1.72	SL? 2		
02444-2710	ESO 479-G39	02 44 26.0	-27 10 54	14.73 1	Sb	ctio	7109	-18.9	7.89	0.74 1.48	Li 2		
02468-2845	ESO 416-G26	02 46 48.0	-28 45 00	14.58 1	S...	ctio	6838	-18.8	2.18	SL? 1			
02469-3122	ESO 416-G28	02 46 58.0	-31 22 47	14.27 1	Sc	eso	5838	-18.9	9.44	1.66	SL? 2		
02592-1106		02 59 16.8	-11 06 28	15.46 2	Sa-b *	eso	9337	-18.7	9.48	0.93	SL? 1,2,4		
03000-2347		03 00 00.2	-23 47 05	14.93 2	S0-a *	eso	10515	-19.5	9.92	1.11	SL: 3		
Catalogue Name	Other Name	RA (1950)	Dec	m_B	ref.	Type	Obs. V_\odot	M_B	$log(L_{IR})$	R_1	R_2	Emiss. Type	Comments
---------------	------------	-----------	-----	------	-----	------	----------------	------	--------------	-----	-----	-------------	----------
03089-2530 ESO 481-G04	03 08 59.0 -25 30 36	15.26	Sa	cti	11686 -19.4	0.81	SL?	2,4					
03100-2523	03 10 03.6 -25 23 26	15.35	Sa *	cti	6482 -18.1	9.38	0.82	SL?	2,4				
03232-2551 ESO 481-G26	03 23 15.0 -25 51 18	15.57	Sb	cti	12587 -19.3	7.95	0.83	SL?	1,2				
03272-2818 ESO 481-G06	03 27 15.0 -28 18 12	14.83	Sb	cti	11415 -19.8	7.90	0.70	SL?	1,2				
03289-0518	03 28 54.1 -05 18 40	14.65	Sb *	cti	3937 -17.7	1.97	SL?	1,3					
03349-2524 ESO 482-G14	03 34 55.0 -25 24 48	15.54	S(r)a	cti	13103 -19.4	7.73	1.29	3.29	S2	3			
03578-2506	03 57 48.5 -25 06 15	15.47	Sa *	cti	18213 -20.2				SL?	1,2			
03580-0917	03 58 01.2 -09 17 35	15.45	Sb-c *	eso	9654 -18.8	7.69	0.66	1.76	L?	2			
04230-2920	04 23 01.0 -29 20 54	15.39	Sb-c *	eso	22080 -20.7	1.16			SL?	1,2			
04276-2652 ESO 484-G26	04 27 39.0 -26 52 48	14.96	Sa	eso	4099 -17.5	10.97	0.93	SL?	2,4				
10184-0441	10 18 26.0 -04 41 54			Sb *	eso	11890	1.01			SL?	1,2		
10358-0951	10 35 51.0 -09 51 23			SBB *	eso	8710	2.85	S1	2				
10485-1009	10 48 30.0 -10 09 27			SBBa-b *	eso	8245	7.69	0.66	1.76	L?	2		
10582-0618	10 58 14.0 -06 18 35			Sb *	eso	8988	7.59	1.08	3.83	S2	3		
11203-0718	11 20 19.0 -07 18 51			S(r) *	eso	6628	0.77	2.07	Li	3			
12489-1356	12 48 54.0 -13 56 57			Sa *	eso	4298	9.28	1.03	0.85	S1	2		
12540-0632	12 54 00.0 -06 32 51			Sa *	eso	1373	0.84	2.02	Li	3			
13076-0711	13 07 41.0 -07 11 18			S... *	eso	6713	9.56	1.17	21.37	S2	3		
13267-2324 ESO 509-G29	13 26 45.0 -23 24 30	15.39	N	eso	9144	-18.8	8.06	0.89	1.70	Li	2		
13284-2508 ESO 509-G38	13 28 28.0 -25 08 42	14.75	S...	eso	7787	-19.1	9.66			S1	2		
13300-1013	13 30 00.0 -10 13 29			SBB *	eso	6639	0.53	0.32			S1	2	
13477-0812	13 47 42.0 -08 12 29			Sbb-c *	eso	11089	0.91			SL?	1,2		
13586-2219 ESO 578-G15	13 58 38.0 -22 19 48	15.25	Sb	eso	10828	-19.3	0.83			SL?	1,2		
14309-0741	14 30 56.0 -07 41 53			E *	eso	12682	0.75	SL?	1,2,4				
21049-3002	21 04 59.7 -30 02 17	15.10	S0 *	cti	5751	-18.1	7.23	0.99	SL?	2,4			
Catalogue Name	Other Name	RA (1950)	Dec	m_B	ref.	Type	Obs. V_0 (km/s)	M_B	$log(L_{IR})$	R_1	R_2	Emiss. Type	Comments
----------------	------------	-----------	-----	-------	------	------	------------------	-------	---------------	-----	-----	--------------	----------
21108-2724		21 10 50.3	-27 24 30	15.39	2	Sb-c *	ctdio 10878 -19.2	0.70	SL?	2,4			
21112-2616	ESO 530-G25	21 11 14.0	-26 16 06	15.35	1	Sa	ctdio 8051 -18.5	9.72	0.83	SL?	2		
21128-2311		21 12 51.6	-23 11 55	15.41	2	S...*	ctdio 10439 -19.0	1.92	SL?	1			
21154-2733	ESO 464-G31N	21 15 29.0	-27 33 41	1	Sa? pec	ctdio 11084	10.50	0.70	SL?	4			
21313-2723		21 31 23.4	-27 23 29	14.93	2	S...*	ctdio 19695 -20.9	1.02	SL?	2			
21319-2957		21 31 59.6	-29 57 13	14.95	2	S0 *	ctdio 6048 -18.3	9.22	0.73	SL?			
21508-2820		21 59 50.8	-28 20 07	15.18	2	S0 *	ctdio 7211 -18.5	0.99	SL?	3			
22053-2518	ESO 532-G21	22 05 25.0	-25 18 24	14.65	1	Sb	ctdio 5558 -18.4	8.96	0.89	SL?	2		
22055-3421	ESO 404-G32	22 05 33.0	-34 21 06	15.17	1	S...	ctdio 4431 -17.4	9.26	0.79	SL:	4		
22326-2520	ESO 533-G51	22 32 41.0	-25 20 06	14.54	1	Sa	ctdio 10039 -19.8	1.18	SL?	1			
22332-2759		22 33 20.6	-27 59 03	14.98	2	Sa-b *	ctdio 8113 -18.9	9.45	0.93 1.23	Li	2,4		
23394-3929		23 39 26.9	-39 29 37	15.42	2	SBB *	ctdio 12795 -19.5	0.97	S1	2			
23432-2400		23 43 16.7	-24 00 33	15.48	2	Sb-c *	ctdio 9984 -18.9	8.38	0.82	SL?	2		
23440-2121		23 44 03.1	-21 21 17	15.44	2	Sb(r) *	ctdio 18101 -20.2	1.04	SL?	2			
23466-2918	ESO 471-G23	23 46 40.0	-29 18 30	14.97	1	Sa	ctdio 10308 -19.5	9.65	1.02	SL?	2		