AN INTEGRALITY THEOREM OF GROSSHANS
OVER ARBITRARY BASE RING

WILBERD VAN DER KALLEN

Mathematisch Instituut
P.O. Box 80.010
3508 TA Utrecht, The Netherlands
W.vanderKallen@uu.nl

Dedicated to the memory of T. A. Springer

Abstract. We revisit a theorem of Grosshans and show that it holds over arbitrary
commutative base ring k. One considers a split reductive group scheme G acting on a
k-algebra A and leaving invariant a subalgebra R. Let U be the unipotent radical of
a split Borel subgroup scheme. If $R^U = A^U$ then the conclusion is that A is integral
over R.

Introduction

In [G92] Grosshans considered a reductive algebraic group G defined over an
algebraically closed field k acting algebraically on a commutative k-algebra A.
Fix a Borel subgroup B with unipotent radical U. Then Grosshans considered
the smallest G-invariant k-subalgebra $G \cdot A^U$ of A that contains the fixed point
algebra A^U. He showed that A is integral over $G \cdot A^U$. If R is any other G-invariant
k-subalgebra of A that contains A^U it then follows that A is integral over R. One
of the tools used by Grosshans is what is called power reductivity in [FvdK]. As it
is shown in [FvdK] that power reductivity holds over arbitrary commutative base
ring k, we now set out to prove the integrality result of Grosshans in the same
generality. We need a little care, as we are not even assuming that the ground ring
is noetherian.

1. Preliminaries

We use an arbitrary commutative ring k as base ring. Let A be a commutative
k-algebra. We say that an affine algebraic group scheme G acts on A if A is a
G-module [J] and the multiplication map $A \otimes_k A \rightarrow A$ is a G-module map. Then
the coaction $A \rightarrow A \otimes_k k[G]$ is an algebra homomorphism. One also says that G
acts rationally on A by algebra automorphisms. Geometrically it means that G
acts from the right on $\text{Spec } A$.

DOI: 10.1007/s00031-013-9241-x
Received January 24, 2013. Accepted March 23, 2013. Published online August 30, 2013.
Lemma 1. Let G be a smooth affine algebraic group scheme over k. Let G act on the commutative k-algebra A. Then the nilradical of A is a G-submodule.

Proof. (Thanks to Angelo Vistoli http://mathoverflow.net/questions/68366/ for explaining to me that smoothness is the right condition.)

As the base change map $A_{\text{red}} \to A_{\text{red}} \otimes_k k[G]$ is a smooth map, $A_{\text{red}} \otimes_k k[G]$ is reduced, by [EGA4, Prop.(17.5.7)] or by [Stacks, Lemma 033B] with URL http://stacks.math.columbia.edu/tag/033B.

Now let N denote the nilradical of A. The coaction $A \to A \otimes_k k[G]$ sends N to the nilradical $N \otimes_k k[G]$ of $A \otimes_k k[G]$. □

From now on let $G = G_k$, where G_Z is a Chevalley group over \mathbb{Z}. In other words, G is a split reductive group scheme over k under the conventions of [SGA3]. Choose a split maximal torus T, a standard Borel subgroup B and its unipotent radical U.

Lemma 2. The coordinate ring $k[G]$ is a free k-module.

Proof. As $k[G] = \mathbb{Z}[G_Z] \otimes_{\mathbb{Z}} k$, it suffices to treat the case $k = \mathbb{Z}$. Now the coordinate ring of G is a subring of the coordinate ring of the big cell. And the coordinate ring of the big cell is clearly free as a \mathbb{Z}-module. Now use that a submodule of a free \mathbb{Z}-module is free [HS, Chap. I, Thm. 5.1]. □

Lemma 3. If V is a G-module and $v \in V$, then the G-submodule generated by v exists and is finitely generated as a k-module.

Proof. As $k[G]$ is a free k-module, this follows from [SGA3, Exposé VI, Lemme 11.8]. □

See also [S, Prop. 3]. Note that the existence result in the Lemma does not follow from the fact that G is flat over k [SGA3, Exposé VI, Édition 2011, Remarque 11.10.1].

Definition 1. Recall that we call a homomorphism of k-algebras $f : A \to B$ power surjective [FvdK, Def. 2.1] if for every $b \in B$ there is an $n \geq 1$ so that the power b^n is in the image of f.

A flat affine group scheme H over k is called power reductive [FvdK, Def. 2] if the following holds.

Property (Power Reductivity). Let L be a cyclic k-module with trivial H-action. Let M be a rational H-module, and let φ be an H-module map from M onto L. Then there is a positive integer d such that the dth symmetric power of φ induces a surjection:

$$(S^d M)^H \to S^d L.$$

Here $V^H = H^0(H,V)$ denotes the submodule of invariants in an H-module V.

Proposition 4. Let H be a flat affine algebraic group scheme over k. The following are equivalent:

1. H is power reductive,
2. for every power surjective H-homomorphism of commutative k-algebras $f : A \to B$ the map $A^H \to B^H$ is power surjective.