THE ALTERNATING RUN POLYNOMIALS OF PERMUTATIONS

SHI-MEI MA, JUN MA, AND YEONG-NAN YEH

Abstract. In this paper, we first consider a generalization of the David-Barton identity which relate the alternating run polynomials to Eulerian polynomials. By using context-free grammars, we then present a combinatorial interpretation of a family of \(q\)-alternating run polynomials. Furthermore, we introduce the definition of semi-\(\gamma\)-positive polynomial and we show the semi-\(\gamma\)-positivity of the alternating run polynomials of dual Stirling permutations. A connection between the up-down run polynomials of permutations and the alternating run polynomials of dual Stirling permutations is established.

Keywords: Alternating runs; Eulerian polynomials; Semi-\(\gamma\)-positivity; Stirling permutations

1. Introduction

The enumeration of permutations by number of alternating runs was first studied by André [1]. Knuth [19, Section 5.1.3] has discussed this topic in connection to sorting and searching. Over the past few decades, the study of alternating runs of permutations was initiated by David and Barton [12, 157-162].

Let \(\mathfrak{S}_n\) denote the symmetric group of all permutations of \([n] = \{1, 2, \ldots, n\}\). Let \(\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n\). An alternating run of \(\pi\) is a maximal consecutive subsequence that is increasing or decreasing (see [1, 22]). An up-down run of \(\pi\) is an alternating run of \(\pi\) endowed with a 0 in the front (see [13, 22]). Let \(\text{altrun}(\pi)\) (resp. \(\text{udrun}(\pi)\)) be the number of alternating runs (resp. up-down runs) of \(\pi\). For example, if \(\pi = 324156\), then \(\text{altrun}(\pi) = 4\), \(\text{udrun}(\pi) = 5\).

We define

\[
R_{n,k} = \# \{ \pi \in \mathfrak{S}_n : \text{altrun}(\pi) = k \},
\]
\[
T_{n,k} = \# \{ \pi \in \mathfrak{S}_n : \text{udrun}(\pi) = k \}.
\]

It is well known that these numbers satisfy the following recurrence relations

\[
R_{n+1,k} = kR_{n,k} + 2R_{n,k-1} + (n - k + 1)R_{n,k-2},
\]
\[
T_{n+1,k} = kT_{n,k} + T_{n,k-1} + (n - k + 2)T_{n,k-2},
\]

with the initial conditions \(R_{1,0} = 1\) and \(R_{1,k} = 0\) for \(k \geq 1\), \(T_{0,0} = 1\) and \(T_{0,k} = 0\) for \(k \geq 1\) (see [1, 13]). The alternating run polynomial and up-down run polynomial are respectively defined by

\[
R_n(x) = \sum_{k=0}^{n-1} R_{n,k}x^k \quad \text{and} \quad T_n(x) = \sum_{k=0}^{n} T_{n,k}x^k.
\]

A descent of \(\pi \in \mathfrak{S}_n\) is an index \(i \in [n-1]\) such that \(\pi(i) > \pi(i+1)\). Denote by \(\text{des}(\pi)\) the number of descents of \(\pi\). The classical Eulerian polynomial is defined by

\[
A_n(x) = \sum_{\pi \in \mathfrak{S}_n} x^{\text{des}(\pi) + 1}.
\]
By solving a differential equation, David and Barton [12, 157-162] established the identity:

\[R_n(x) = \left(\frac{1 + x}{2}\right)^{n-1} (1 + w)^n A_n \left(\frac{1 - w}{1 + w}\right) \]

(2)

for \(n \geq 2 \), where \(w = \sqrt{\frac{1 - x}{1 + x}} \). Using (2), Bóna proved that the polynomial \(R_n(x) \) has only real zeros (see [4]). Moreover, one can prove that \(R_n(x) \) has the zero \(x = -1 \) with the multiplicity \(\lfloor \frac{n}{2} \rfloor - 1 \) by using (2), which can also be obtained based on the recurrence relation of \(R_n(x) \) (see [25]). Motivated by (2), Zhuang [31] proved several identities expressing polynomials counting permutations by various descent statistics in terms of Eulerian polynomials.

Let us now recall another combinatorial interpretation of \(T_n(x) \). An alternating subsequence of \(\pi \) is a subsequence \(\pi(i_1) \cdots \pi(i_k) \) satisfying

\[\pi(i_1) > \pi(i_2) < \pi(i_3) > \cdots > \pi(i_k), \]

where \(i_1 < i_2 < \cdots < i_k \) (see [28]). Denote by \(\text{as}(\pi) \) the number of terms of the longest alternating subsequence of \(\pi \). By definition, we see that \(\text{as}(\pi) = u\text{drun}(\pi) \). Thus

\[T_n(x) = \sum_{\pi \in S_n} x^{\text{as}(\pi)}. \]

There has been much recent work related to the numbers \(R_{n,k} \) and \(T_{n,k} \). In [3], Bóna and Ehrenborg proved that \(R_{n,k}^2 \geq R_{n,k-1}R_{n,k+1} \). Subsequently, Bóna [4, Section 1.3.2] noted that

\[T_n(x) = \frac{1}{2}(1 + x)R_n(x) \]

(3)

for \(n \geq 2 \). Set \(\rho = \sqrt{1 - x^2} \). Stanley [28, Theorem 2.3] showed that

\[T(x, z) = \sum_{n=0}^{\infty} T_n(x) \frac{z^n}{n!} = (1 - x) \frac{1 + \rho + 2xe^{\rho z} + (1 - \rho)e^{2\rho z}}{1 + \rho - x^2 + (1 - \rho - x^2)e^{2\rho z}}. \]

(4)

By using (3) and (4), Stanley [28] obtained explicit formulas of \(T_{n,k} \) and \(R_{n,k} \). Canfield and Wilf [6] presented an asymptotic formula for \(R_{n,k} \). In [21], another explicit formula of \(R_{n,k} \) was obtained by combining the derivative polynomials of tangent function and the following generating function obtained by Carlitz [7]:

\[\sum_{n=0}^{\infty} \frac{z^n}{n!} \sum_{k=0}^{n} R_{n+1,k} x^{n-k} = \frac{1 - x}{1 + x} \left(\frac{\sqrt{1 - x^2} + \sin(z\sqrt{1 - x^2})}{x - \cos(z\sqrt{1 - x^2})}\right)^2. \]

In [22], several convolution formulas of the polynomials \(R_n(x) \) and \(T_n(x) \) are obtained by using Chen’s grammars. By generalizing a reciprocity formula of Gessel, Zhuang [30] obtained generating function for permutation statistics that are expressible in terms of alternating runs. Very recently, Josuat-Vergès and Pang [18] showed that alternating runs can be used to define subalgebras of Solomon’s descent algebra.

In this paper, we continue the work initiated by David and Barton [12]. In Section 2, we consider a generalization of (2). In Section 3, we present a combinatorial interpretation of a family of \(q \)-alternating run polynomials by using Chen’s grammars. In Section 4, we show the semi-\(\gamma \)-positivity of the alternating run polynomials of dual Stirling permutations.
2. The David-Barton type identity

Let \(f(x) = \sum_{i=0}^{n} f_i x^i \) be a symmetric polynomial, i.e., \(f_i = f_{n-i} \) for any \(0 \leq i \leq n \). Then \(f(x) \) can be expanded uniquely as

\[
f(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \gamma_k x^k (1 + x)^{n-2k},
\]

and it is said to be \(\gamma \)-positive if \(\gamma_k \geq 0 \) for \(0 \leq k \leq \lfloor \frac{n}{2} \rfloor \) (see [15]). The \(\gamma \)-positivity provides an approach to study symmetric and unimodal polynomials and has been extensively studied (see [2, 5, 10, 20] for instance).

The first main result of our paper is the following, which shows that the David-Barton type identities often occur in combinatorics and geometry.

Theorem 1. Let

\[
M_n(x) = \sum_{k=0}^{\lfloor (n+\delta)/2 \rfloor} M(n, k) x^k (1 + x)^{n+\delta-2k}
\]

be a symmetric polynomial, where \(\delta \) is a fixed integer. Set \(w = \sqrt{\frac{1-x}{1+x}} \). Then

\[
N_n(x) = \left(\frac{1+x}{2} \right)^{n-\delta} (1+w)^{n+\delta} M_n \left(\frac{1-w}{1+w} \right)
\]

if and only if

\[
N_n(x) = \sum_{k=0}^{\lfloor (n+\delta)/2 \rfloor} \frac{1}{2^{k-2\delta}} M(n, k) x^k (1 + x)^{n-\delta-k}.
\]

Proof. Set \(\alpha = \frac{1+x}{2} \). Note that

\[
1 - w^2 = \frac{x}{\alpha},
1 - w = \frac{1 - w^2}{(1+w)^2} = \frac{1}{(1+w)^2} \frac{x}{\alpha},
1 + \frac{1 - w}{1+w} = \frac{2}{1+w}.
\]

It follows from (5) that

\[
N_n(x) = \left(\frac{1+x}{2} \right)^{n-\delta} (1+w)^{n+\delta} M_n \left(\frac{1-w}{1+w} \right)
= \alpha^{n-\delta}(1+w)^{n+\delta} \sum_k M(n, k) \frac{1}{(1+w)^{2k}} \frac{x^k}{\alpha^k} \left(\frac{2}{1+w} \right)^{n+\delta-2k}
= \sum_k M(n, k) x^k \alpha^{n-\delta-k} 2^{n+\delta-2k}
= \sum_k M(n, k) x^k \left(\frac{1+x}{2} \right)^{n-\delta-k} 2^{n+\delta-2k}
= \sum_k \frac{1}{2^{k-2\delta}} M(n, k) x^k (1 + x)^{n-\delta-k},
\]

and vice versa. This completes the proof. \(\Box \)
The reader is referred to [2] for a survey of some recent results on γ-positivity. For any γ-positive polynomial $M_n(x)$, we can define an associated polynomial $N_n(x)$ by using (6). And then we get a David-Barton type identity (5). As illustrations, in the rest of this section, we shall present two examples.

For example, Foata and Schützenberger [14] discovered that

$$A_n(x) = \sum_{k=1}^{\lceil (n+1)/2 \rceil} a(n,k) x^k (1+x)^{n+1-2k}$$

for $n \geq 1$, where the numbers $a(n,k)$ satisfy the recurrence relation

$$a(n,k) = ka(n-1,k) + (2n - 4k + 4)a(n-1,k-1),$$

with the initial conditions $a(1,1) = 1$ and $a(1,k) = 0$ for $k \neq 1$ (see [10, 26] for instance). By using the David-Barton identity (2) and Theorem 1, we immediately get the following result.

Proposition 2. For $n \geq 2$, we have

$$R_n(x) = \sum_{k=1}^{\lceil (n+1)/2 \rceil} \frac{1}{2^{n-2}} a(n,k) x^k (1+x)^{n+1-2k-1}.$$

Let $\pm[n] = \{\pm 1, \pm 2, \ldots, \pm n\}$. Let B_n be the hyperoctahedral group of rank n. Elements of B_n are signed permutations of $\pm[n]$ with the property that $\pi(-i) = -\pi(i)$ for all $i \in [n]$. In the sequel, we always assume that signed permutations in B_n are prepended by 0. That is, we identify a signed permutation $\pi = \pi(1) \cdots \pi(n)$ with the word $\pi(0)\pi(1) \cdots \pi(n)$, where $\pi(0) = 0$. A type B descent is an index $i \in \{0, 1, \ldots, n-1\}$ such that $\pi(i) > \pi(i+1)$. Let $\text{des}^B(\pi)$ be the number of type B descents of π. The type B Eulerian polynomials are defined by

$$B_n(x) = \sum_{\pi \in B_n} x^{\text{des}^B(\pi)}.$$

It is well known that

$$B_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} b(n,k) x^k (1+x)^{n-2k},$$

where the numbers $b(n,k)$ satisfy the recurrence relation

$$b(n,k) = (1+2k)b(n-1,k) + 4(n-2k+1)b(n-1,k-1),$$

with the initial conditions $b(1,0) = 1$ and $b(1,k) = 0$ for $k \neq 0$ (see [2, 10, 26]).

Define

$$b_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{1}{2^k} b(n,k) x^k (1+x)^{n-k}.$$

Then by Theorem 1, we get the following result.

Proposition 3. For $n \geq 1$, we have

$$b_n(x) = \left(\frac{1+x}{2}\right)^n (1+w)^n B_n \left(\frac{1-w}{1+w}\right).$$
Combining (7) and (8), we see that the polynomials \(b_n(x) \) satisfy the recurrence relation
\[
 b_{n+1}(x) = (1 + x + 2nx^2)b_n(x) + 2x(1 - x^2)b'_n(x),
\]
with the initial conditions \(b_0(x) = 1, \ b_1(x) = 1 + x \). For \(n \geq 1 \), we define \(b_n(x) = \frac{1 + x}{x}c_n(x) \). It follows from (9) that the polynomials \(c_n(x) \) satisfy the recurrence relation
\[
 c_{n+1}(x) = (2nx^2 + 3x - 1)c_n(x) + 2x(1 - x^2)c'_n(x).
\]
Let \(\hat{B}_n = \{ \pi \in B_n | \pi(1) > 0 \} \). There is a combinatorial interpretation of \(c_n(x) \) (see [11, 29]):
\[
 c_n(x) = \sum_{\pi \in \hat{B}_n} x^{\text{altrun}(\pi)}.
\]

3. The q-alternating runs polynomials

For an alphabet \(A \), let \(\mathbb{Q}[[A]] \) be the rational commutative ring of formal power series in monomials formed from letters in \(A \). A Chen’s grammar (which is known as context-free grammar) over \(A \) is a function \(G : A \rightarrow \mathbb{Q}[[A]] \) that replaces a letter in \(A \) by an element of \(\mathbb{Q}[[A]] \), see [8, 9, 24] for details. The formal derivative \(D := D_G \) is a linear operator defined with respect to a context-free grammar \(G \). Following [9], a grammatical labeling is an assignment of the underlying elements of a combinatorial structure with variables, which is consistent with the substitution rules of a grammar.

Let us now recall two results on context-free grammars.

Proposition 4 ([22, Theorem 6]). If \(G = \{ a \rightarrow ab, \ b \rightarrow bc, \ c \rightarrow b^2 \} \), then
\[
 D^n(a) = a \sum_{k=0}^{n} T_{n,k} b^k c^{n-k}, \quad D^n(a^2) = a^2 \sum_{k=0}^{n} R_{n+1,k} b^k c^{n-k}.
\]

Proposition 5 ([22, Theorem 9]). If \(G = \{ a \rightarrow 2ab, \ b \rightarrow bc, \ c \rightarrow b^2 \} \), then
\[
 D^n(a) = a \sum_{k=0}^{n} R_{n+1,k} b^k c^{n-k}.
\]

Combining Leibniz’s formula and Proposition 4, we see that
\[
 R_{n+1}(x) = \sum_{k=0}^{n} \binom{n}{k} T_k(x) T_{n-k}(x).
\]
Motivated by Propositions 4 and 5 it is natural to consider the grammar
\[
 G_1 = \{ a \rightarrow qab, \ b \rightarrow bc, \ c \rightarrow b^2 \}. \quad (10)
\]

Note that \(D_{G_1}(a) = qab, \ D_{G_1}^2(a) = a(q^2b^2 + qbc) \). By induction, it is easy to verify that
\[
 D_{G_1}^n(a) = a \sum_{k=0}^{n} R_{n,k}(q) b^k c^{n-k}. \quad (11)
\]
It follows from (10) that
\[
D_{G_1}^{n+1}(a) = D_{G_1} \left(a \sum_{k=0}^{n} R_{n,k}(q) b^k c^{n-k} \right) = a \sum_{k} R_{n,k}(q) \left(k b^k c^{n-k+1} + q b^{k+1} c^{n-k} + (n-k)b^{k+2} c^{n-k-1} \right),
\]
which leads to the recurrence relation
\[
R_{n+1,k}(q) = k R_{n,k}(q) + q R_{n,k-1}(q) + (n-k)R_{n,k-2}(q).
\] (12)
The \textit{q-alternating run polynomials} are defined by
\[
R_n(x; q) = \sum_{k=0}^{n} R_{n,k}(q)x^k.
\]
In particular, \(R_n(x; 1) = T_n(x) \), \(R_n(x; 2) = R_{n+1}(x) \). The first few \(R_n(x; q) \) are given as follows:
\[
R_0(x; q) = 1, \quad R_1(x; q) = qx, \quad R_2(x; q) = q(1+qx), \quad R_3(x; q) = qx(1+3qx+x^2+q^2x^2).
\]
We define
\[
R(x, z; q) := \sum_{n=0}^{\infty} R_n(x; q) \frac{z^n}{n!}.
\]

\textbf{Proposition 6.} We have \(R(x, z; q) = T^q(x, z) \), where \(T(x, z) \) is given by (4). Therefore,
\[
\sum_{n=0}^{\infty} D_{G_1}^n(a) \frac{z^n}{n!} = a R \left(\frac{b}{c}, cz; q \right) = aT^q \left(\frac{b}{c}, cz \right).
\] (13)
Moreover, we have \(R_n(x; -q) = R_n(-x; q) \) and \(R_n(-x; -q) = R_n(x; q) \).

\textbf{Proof.} By rewriting (12) in terms of generating function \(R(x, z; q) \), we obtain
\[
(1-x^2z) \frac{\partial}{\partial z} R(x, z; q) = x(1-x^2) \frac{\partial}{\partial x} R(x, z; q) + q x R(x, z; q).
\] (14)
It is routine to check that the generating function \(T^q(x, z) \) satisfies (14). Also, this generating function gives \(T^q(0, z) = T^q(x, 0) = 1 \). Hence \(R(x, z; q) = T^q(x, z) \). It is routine to check that
\[
R(x, z; -q) = R(-x, z; q), \quad R(-x, z; -q) = R(x, z; q)
\]
which leads to the desired result. \(\square \)

We say that \(\pi \in S_n \) is a circular permutation if it has only one cycle. Let \(A = \{x_1, x_2, \ldots, x_k\} \) be a finite set of positive integers, and let \(C_A \) be the set of all circular permutations of \(A \). We will write a permutation \(w \in C_A \) by using its canonical presentation \(w = y_1 y_2 \cdots y_k \), where \(y_1 = \min A, y_i = w^{i-1}(y_1) \) for \(2 \leq i \leq k \) and \(y_1 = w^k(y_1) \). A \textit{cycle peak} (resp. \textit{cycle double ascent, cycle double descent}) of \(w \) is an entry \(y_i, 2 \leq i \leq k \), such that \(y_{i-1} < y_i > y_{i+1} \) (resp. \(y_{i-1} < y_i < y_{i+1}, y_{i-1} > y_i > y_{i+1} \)), where we set \(y_{k+1} = \infty \). Let \(\text{cpk}(w) \) (resp. \(\text{cddasc}(w), \text{cddes}(w), \text{cyc}(w) \)) be the number of cycle peaks (resp. cycle double ascents, cycle double descents, cycles) of \(w \).

\textbf{Definition 7.} A \textit{cycle run} of a circular permutation \(w \) is an alternating run of \(w \) endowed with \(a \infty \) in the end. Let \(\text{crun}(w) \) be the number of cycle runs of \(w \).
It is clear that \(\text{crun}(w) = 2\text{cpk}(w) + 1 \). In the following discussion we always write \(\pi \in \mathfrak{S}_n \) in standard cycle decomposition: \(\pi = w_1 \cdots w_k \), where the cycles are written in increasing order of their smallest entry and each of these cycles is expressed in canonical presentation. We define

\[
\text{crun}(\pi) := \sum_{i=1}^{k} \text{crun}(w_i).
\]

In particular, \(\text{crun}((1)(2)\cdots(n)) = \sum_{i=1}^{n} \text{crun}(i) = \sum_{i=1}^{n} \text{altrun}(i\infty) = n \). We can now present the second main result.

Theorem 8. For \(n \geq 1 \), we have

\[
R_n(x; q) = \sum_{\pi \in \mathfrak{S}_n} x^{\text{crun}(\pi)} q^{\text{cyc}(\pi)}.
\]

Proof. For \(\pi \in \mathfrak{S}_n \), we first put a \(\infty \) in the end of each cycle. We then introduce a grammatical labeling of \(\pi \) as follows:

1. Put a subscript label \(q \) at the end of each cycle of \(\pi \);
2. Put a superscript label \(a \) at the end of \(\pi \);
3. Put a superscript label \(b \) before each \(\infty \);
4. If \(\pi(i) \) is a cycle peak, then put a superscript label \(b \) before \(\pi(i) \) and a superscript label \(b \) right after \(\pi \);
5. If \(\pi(i) \) is a cycle double ascents, then put the superscript label \(c \) before \(\pi(i) \);
6. If \(\pi(i) \) is a cycle double descents, then put the superscript label \(c \) right after \(\pi(i) \).

The weight of \(\pi \) is the product of its labels. When \(n = 1, 2 \), we have

\[
\mathfrak{S}_1 = \{(1^b\infty)^a_q\}, \quad \mathfrak{S}_2 = \{(1^b\infty)_q(2^b\infty)_q^a, (1^c2^b\infty)_q^a\}.
\]

Then the weight of \((1^b)^a_q \) is given by \(D_{\mathfrak{S}_1}(a) \), and the sum of weights of the elements in \(\mathfrak{S}_2 \) is given by \(D_{\mathfrak{S}_1}^2(a) \). Hence the result holds for \(n = 1, 2 \). Let

\[
r_n(i, j) = \{\pi \in \mathfrak{S}_n : \text{crun}(\pi) = i, \ \text{cyc}(\pi) = j\}.
\]

Suppose we get all labeled permutations in \(r_{n-1}(i, j) \), where \(n \geq 3 \). Let \(\pi' \) be obtained from \(\pi \in r_{n-1}(i, j) \) by inserting the entry \(n \). We distinguish the following four cases:

1. If we insert \(n \) as a new cycle, then \(\pi' \in r_{n-1}(i+1, j+1) \). This case corresponds to the substitution rule \(a \to qab \);
2. If we insert \(n \) before a \(\infty \), then \(\pi' \in r_{n-1}(i, j) \). This case corresponds to the substitution rule \(b \to bc \);
3. If we insert \(n \) before or right after a cycle peak, then \(\pi' \in r_{n-1}(i, j) \). This case corresponds to the substitution rule \(b \to bc \);
4. If we insert \(n \) before a cycle double ascents or right after a cycle double descents, \(\pi' \in r_{n-1}(i+2, j) \). This case corresponds to the substitution rule \(c \to b^2 \).

In each case, the insertion of \(n \) corresponds to one substitution rule in the grammar (10). It is easy to check that the action of \(D_{\mathfrak{S}_1} \) on elements of \(\mathfrak{S}_{n-1} \) generates all elements of \(\mathfrak{S}_n \). Using (11) and by induction, we present a constructive proof of (15). This completes the proof.

\(\square \)
We define
\[R_n(x, y; q) = \sum_{\pi \in S_n} x^{\text{crun}(\pi)} y^{\text{fix}(\pi)} q^{\text{cyc}(\pi)}, \]
\[R(x, y, z; q) = \sum_{n=0}^{\infty} R_n(x, y; q) \frac{z^n}{n!}. \]

By using the principle of inclusion-exclusion, it is routine to verify that
\[R_n(x, y; q) = \sum_{i=0}^{n} \binom{n}{i} (qx_y - qx)^i R_{n-i}(x; q). \]

Hence
\[R(x, y, z; q) = e^{xq_y - qx} T(x, z). \]

A permutation \(\pi \in S_n \) is a derangement if \(\pi(i) \neq i \) for any \(i \in [n] \). Let \(D_n \) denote the set of derangements in \(S_n \). Then
\[R_n(x, 0; 1) = \sum_{\pi \in D_n} x^{\text{crun}(\pi)}. \]

Proposition 9. Set \(d_n(x) = R_n(x, 0; 1) \). Then the polynomials \(d_n(x) \) satisfy the recurrence
\[d_{n+1}(x) = nx^2 d_n(x) + x(1 - x^2) d'_n(x) + nxd_{n-1}(x), \]
with the initial conditions \(d_0(x) = 1, \) \(d_1(x) = 0. \) In particular, \(d_n(-1) = -(n - 1) \) for \(n \geq 1 \).

Proof. Let \(d(x, z) = \sum_{n=0}^{\infty} d_n(x) \frac{z^n}{n!} \). It follow from (16) that
\[d(x, z) = e^{-x} T(x, z). \]

By rewriting (14) in terms of generating function \(T(x, z) \), we obtain
\[(1 - x^2) \frac{\partial}{\partial z} T(x, z) = xT(x, z) + x(1 - x^2) \frac{\partial}{\partial x} T(x, z). \]

Hence
\[(1 - x^2) \frac{\partial}{\partial z} d(x, z) = xzd(x, z) + x(1 - x^2) \frac{\partial}{\partial x} d(x, z), \]
which yields the desired recurrence relation. \(\square \)

Let \(d_n(x) = \sum_{k=0}^{n} d_{n,k} x^k \). By using (18), it is not hard to verify that
\[\sum_{n=0}^{\infty} d_{n,n} \frac{z^n}{n!} = \frac{e^{-x}}{\tan x + \sec x}. \]

4. **Semi-\(\gamma \)-positive polynomials**

Let \(g(x) = \sum_{i=0}^{2n} g_i x^i \) be a symmetric polynomial. Note that
\[g(x) = \sum_{i=0}^{n} \gamma_i x^i (1 + x)^{2(n-i)} \]
\[= \sum_{i=0}^{n} \gamma_i x^i (1 + 2x + x^2)^{n-i} \]
\[= \sum_{i=0}^{n} \sum_{\ell=0}^{n-i} \binom{n-i}{\ell} 2^\ell \gamma_i x^i + \ell (1 + x^2)^{n-i-\ell}. \]
Hence \(g(x) \) can be expanded as
\[
g(x) = \sum_{k=0}^{n} \lambda_k x^k (1 + x^2)^{n-k}.
\]

It is clear that if \(\gamma_i \geq 0 \) for all \(0 \leq i \leq n \), then \(\lambda_k \geq 0 \) for all \(0 \leq k \leq n \). Furthermore, we have
\[
g(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} \lambda_{2k} x^{2k} (1 + x^2)^{n-2k} + \sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \lambda_{2k+1} x^{2k+1} (1 + x^2)^{n-2k-1}
\]
\[
= g_1(x^2) + xg_2(x^2).
\]

Similarly, if \(h(x) = \sum_{i=0}^{2n+1} h_i x^i \) a symmetric polynomial, then we have
\[
h(x) = \sum_{i=0}^{n} \beta_i x^i (1 + x)^{2n+1-2i}
\]
\[
= (1 + x) \sum_{i=0}^{n} \sum_{\ell=0}^{n-i} \binom{n-i}{\ell} 2^\ell \beta_i x^{i+\ell} (1 + x^2)^{n-i-\ell}.
\]

Hence \(h(x) \) can be expanded as
\[
h(x) = (1 + x) \sum_{k=0}^{n} \mu_k x^k (1 + x^2)^{n-k}.
\]

Definition 10. If \(f(x) = (1 + x)^\nu \sum_{k=0}^{n} \lambda_k x^k (1 + x^2)^{n-k} \) and \(\lambda_k \geq 0 \) for all \(0 \leq k \leq n \), then we say that \(f(x) \) is semi-\(\gamma \)-positive, where \(\nu = 0 \) or \(\nu = 1 \).

It should be noted that a semi-\(\gamma \)-positive polynomial is not always \(\gamma \)-positive. From the above discussion it follows that we have the following result.

Proposition 11. If \(f(x) = (1 + x)^\nu \left(f_1(x^2) + x f_2(x^2) \right) \) is a semi-\(\gamma \)-positive polynomial, then both \(f_1(x) \) and \(f_2(x) \) are \(\gamma \)-positive.

In the following, we shall show the semi-\(\gamma \)-positivity of the alternating run polynomials of dual Stirling permutations. Following \[16\], a **Stirling permutation** of order \(n \) is a permutation of the multiset \(\{1,1,\ldots,n,n\} \) such that for each \(i \), \(1 \leq i \leq n \), all entries between the two occurrences of \(i \) are larger than \(i \). There has been much recent work on Stirling permutations, see \[17, 24\] and references therein.

Denote by \(\mathcal{Q}_n \) the set of **Stirling permutations** of order \(n \). Let \(\sigma = \sigma_1 \sigma_2 \cdots \sigma_{2n} \in \mathcal{Q}_n \). Let \(\Phi \) be the injection which maps each first occurrence of entry \(j \) in \(\sigma \) to \(2j \) and the second \(j \) to \(2j - 1 \), where \(j \in [n] \). For example, \(\Phi(21331) = 432651 \). Let \(\Phi(\mathcal{Q}_n) = \{ \pi \mid \sigma \in \mathcal{Q}_n, \Phi(\sigma) = \pi \} \) be the set of **dual Stirling permutations** of order \(n \). Clearly, \(\Phi(\mathcal{Q}_n) \) is a subset of \(\mathcal{S}_{2n} \). For \(\pi \in \Phi(\mathcal{Q}_n) \), the entry \(2j \) is to the left of \(2j - 1 \), and all entries in \(\pi \) between \(2j \) and \(2j - 1 \) are larger than \(2j \), where \(1 \leq j \leq n \). Noted that \(\pi \in \Phi(\mathcal{Q}_n) \) always ends with a descending run. The alternating runs polynomials of dual Stirling permutations are defined by
\[
F_n(x) = \sum_{\sigma \in \Phi(\mathcal{Q}_n)} x^{\text{allrun} (\sigma)} = \sum_{k=1}^{2n-1} F_{n,k} x^k.
\]
According to [23], the numbers $F_{n,k}$ satisfy the recurrence relation

$$F_{n+1,k} = k F_{n,k} + F_{n,k-1} + (2n - k + 2) F_{n,k-2},$$ \hspace{1cm} (19)

with the initial conditions $F_{0,0} = 1$, $F_{1,1} = 1$ and $F_{n,0} = 0$ for $n \geq 1$. It follows from (19) that

$$F_{n+1}(x) = (x + 2nx^2) F_n(x) + x(1 - x^2) F'_n(x).$$

The first few $F_n(x)$ are given as follows:

$$F_1(x) = x,$$

$$F_2(x) = x + x^2 + x^3,$$

$$F_3(x) = x + 3x^2 + 7x^3 + 3x^4 + x^5,$$

$$F_4(x) = x + 7x^2 + 29x^3 + 31x^4 + 29x^5 + 7x^6 + x^7.$$

Let

$$r(x) = \frac{\sqrt{1 + x}}{1 - x}.$$

By induction, it is to verify that

$$\left(x \frac{d}{dx} \right)^{2n} r(x) = \frac{r(x) F_{2n}(x)}{(1 - x^2)^{2n}},$$

$$\left(x \frac{d}{dx} \right)^{2n+1} r(x) = \frac{F_{2n+1}(x)}{r(x)(1 - x^2)^{2n+1}}.$$

Lemma 12 ([23]). If

$$G_2 = \{ x \rightarrow xyz, y \rightarrow yz^2, z \rightarrow y^2z \},$$ \hspace{1cm} (20)

then we have

$$D^n_{G_2}(x) = x \sum_{\sigma \in \Phi(\mathcal{Q}_n)} y^{\text{altrun}(\sigma)} z^{2n - \text{altrun}(\sigma)} = x \sum_{k=0}^{2n-1} F_{n,k} y^k z^{2n-k}.$$ \hspace{1cm} (21)

We now recall another combinatorial interpretation of $F_n(x)$. An occurrence of an ascent-plateau of $\sigma \in \mathcal{Q}_n$ is an index i such that $\sigma_{i-1} < \sigma_i = \sigma_{i+1}$, where $i \in \{2, 3, \ldots, 2n - 1\}$. An occurrence of a left ascent-plateau is an index i such that $\sigma_{i-1} < \sigma_i = \sigma_{i+1}$, where $i \in \{1, 2, \ldots, 2n - 1\}$ and $\sigma_0 = 0$. Let $\text{ap}(\sigma)$ and $\text{la}(\sigma)$ be the numbers of ascent-plateaus and left ascent-plateaus of σ, respectively. The number of flag ascent-plateaus of σ is defined by

$$\text{fap}(\sigma) = \begin{cases} 2\text{ap}(\sigma) + 1, & \text{if } \sigma_1 = \sigma_2; \\ 2\text{ap}(\sigma), & \text{otherwise}. \end{cases}$$

Clearly, $\text{fap}(\sigma) = \text{ap}(\sigma) + \text{la}(\sigma)$. Following [24, Section 3], we have

$$D^n_{G_2}(x) = x \sum_{\sigma \in \mathcal{Q}_n} y^{\text{fap}(\sigma)} z^{2n - \text{fap}(\sigma)}.$$

Thus,

$$F_n(x) = \sum_{\sigma \in \mathcal{Q}_n} x^\text{fap}(\sigma).$$

In fact, it is easy to verify that $\text{fap}(\sigma) = \text{altrun}(\Phi(\sigma))$ for any $\sigma \in \mathcal{Q}_n$.

Proposition 13. For $n \geq 1$, we have

$$F_n(x) = \sum_{k=1}^{n} \gamma_{n,k} x^k (1 + x)^{2n-2k},$$

where the numbers $\gamma_{n,k}$ satisfy the recurrence relation

$$\gamma_{n+1,k} = k\gamma_{n,k} + (2n - 4k + 5)\gamma_{n,k-1}, \quad (22)$$

with the initial conditions $\gamma_{1,1} = 1$ and $\gamma_{1,k} = 0$ for $k \neq 1$. In particular,

$$\gamma_{n+1,n+1} = (-1)^n (2n - 1)!! \text{ for } n \geq 1.$$

Proof. We first consider a change of the grammar (20). Set $a = yz$ and $b = y + z$. Then we have $D(x) = xa, D(a) = a(b^2 - 2a), D(b) = ab$. If

$$G_3 = \{ x \to xa, a \to a(b^2 - 2a), b \to ab \},$$

then by induction, we see that there exist integers $\gamma_{n,k}$ such that

$$D^n_{G_3}(x) = x \sum_{k=0}^{n} \gamma_{n,k} a^k b^{2n-2k}. \quad (23)$$

Note that

$$D^{n+1}_{G_3}(x) = D_{G_3} \left(x \sum_{k=1}^{n} \gamma_{n,k} a^k b^{2n-2k} \right) = x \sum_{k} \gamma_{n,k} a^k b^{2n-2k} \left(a + kb^2 - 2ka + (2n - 2k)a \right)$$

By comparing the coefficients of $a^k b^{2n-2k+2}$, we immediately get (22). Moreover, it is clear that $\gamma_{n,0} = 0$ for $n \geq 1$. By using (23), upon taking $a = yz$ and $b = y + z$, we get

$$D^n_{G_2}(x) = x \sum_{k=0}^{n} \gamma_{n,k} (yz)^k (y + z)^{2n-2k}. \quad (24)$$

Then comparing (24) with (21), we see that $F_n(x) = \sum_{k=1}^{n} \gamma_{n,k} x^k (1 + x)^{2n-2k}$ for $n \geq 1$. By using (22), we obtain

$$\gamma_{n+1,n+1} = -(2n - 1)\gamma_{n,n},$$

which yields the desired explicit formula. \[\square\]

For $n \geq 1$, let $\gamma_n(x) = \sum_{k=1}^{n} \gamma_{n,k} x^k$. It follows from (22) that

$$\gamma_{n+1}(x) = (2n + 1)x\gamma_n(x) + x(1 - 4x)\gamma'_n(x).$$

The first few $\gamma_n(x)$ are $\gamma_0(x) = 1, \gamma_1(x) = x, \gamma_2(x) = x - x^2, \gamma_3(x) = x - x^2 + 3x^3$. From Proposition 13 we see that for any positive even integer n, the polynomial $F_n(x)$ is not γ-positive.

We can now present the third main result of this paper.

THE ALTERNATING RUN POLYNOMIALS OF PERMUTATIONS
Theorem 14. The polynomial \(F_n(x) \) is semi-\(\gamma \)-positive. More precisely, we have
\[
F_n(x) = \sum_{k=0}^{n} f_{n,k} x^k (1 + x^2)^{n-k},
\]
where the numbers \(f_{n,k} \) satisfy the recurrence relation
\[
f_{n+1,k} = kf_{n,k} + f_{n,k-1} + 4(n-k+2)f_{n,k-2},
\]
(25)
with the initial conditions \(f_{0,0} = 1 \) and \(f_{n,0} = 0 \) for \(n \geq 1 \). Let \(f_n(x) = \sum_{k=0}^{n} f_{n,k} x^k \). Then
\[
f(x, z) = \sum_{n=0}^{\infty} f_n(x) \frac{z^n}{n!} = \sqrt{T(2x, z)},
\]
(26)
where \(T(x, z) \) is given by (4).

Proof. We first consider the grammar (20). Note that
\[
D(x) = xyz, \quad D(yz) = yz(y^2 + z^2), \quad D(y^2 + z^2) = 4y^2 z^2.
\]
Set \(u = yz \) and \(v = y^2 + z^2 \). Then we have \(D(x) = xu, \ D(u) = uv \) and \(D(v) = 4u^2 \). If
\[
G_4 = \{ x \to xu, \ u \to uv, \ v \to 4u^2 \},
\]
(27)
then by induction we see that there exist nonnegative integers \(f_{n,k} \) such that
\[
D^\circ_{G_4} G_4(x) = x \sum_{k=0}^{n} f_{n,k} u^k v^{n-k}.
\]
(28)
Note that
\[
D^{n+1}_{G_4} = D_{G_4} \left(x \sum_{k=1}^{n} f_{n,k} u^k v^{n-k} \right)
\]
\[= x \sum_{k} f_{n,k} \left(u^{k+1} v^{n-k} + ku^k v^{n-k+1} + 4(n-k)u^{k+2} v^{n-k-1} \right).\]
By comparing the coefficients of \(u^{k+1} v^{n+1-k} \) we get (25). Moreover, it follows from (27) that \(f_{0,0} = 1 \) and \(f_{n,0} = 0 \) for \(n \geq 1 \). By using (28), upon taking \(u = yz \) and \(v = y^2 + z^2 \), we get
\[
D^n_{G_2} G_4(x) = x \sum_{k=0}^{n} f_{n,k} (yz)^k (y^2 + z^2)^{n-k}.
\]
(29)
By comparing (29) with (21), we get
\[
F_n(x) = \sum_{k=0}^{n} f_{n,k} x^k (1 + x^2)^{n-k}.
\]
(30)
We now consider a change of the grammar (10). Set \(q = \frac{1}{2}, \ a = x, \ b = 2u, \ c = v \). Then
\[
D(x) = xu, \ D(u) = uv, \ D(v) = 4u^2,
\]
which are the substitution rules in the grammar (27). Hence it follows from (13) that
\[
\sum_{n=0}^{\infty} D^n_{G_2} G_4(x) \frac{z^n}{n!} = x \sum_{n=0}^{\infty} \sum_{k=0}^{n} f_{n,k} u^k v^{n-k} \frac{z^n}{n!} = x R \left(\frac{2u}{v}, vz; \frac{1}{2} \right),
\]
which leads to \(f(x, z) = R(2x, z; 1/2) = \sqrt{T(2x, z)} \). This completes the proof. \(\square \)
Combining (26) and (30), we immediately get the following result.

Corollary 15. We have

\[F(x, z) = \sum_{n=0}^{\infty} F_n(x) \frac{z^n}{n!} = \sqrt{T \left(\frac{2x}{1 + x^2}, (1 + x^2)z \right)}. \]

It would be interesting to present a combinatorial interpretation of Corollary 15. By using (26), it is not hard to verify that

\[\sum_{n=0}^{\infty} f_{n,n} \frac{x^n}{n!} = \frac{1 + \tan x}{1 - \tan x}. \]

It should be noted that the numbers \(f_{n,n} \) appear as A012259 in [27].

5. **Concluding remarks**

This paper gives a survey of some results related to alternating runs of permutations. We present a method to construct David-Barton type identities, and based on the survey [2], one can derive several David-Barton type identities. Moreover, we introduce the definition of semi-\(\gamma \)-positive polynomial. The \(\gamma \)-positivity of a polynomial \(f(x) \) is a sufficient (not necessary) condition for the semi-\(\gamma \)-positivity of \(f(x) \). In particular, we show that the alternating run polynomials of dual Stirling permutations are semi-\(\gamma \)-positive.

References

[1] D. Andrée, Étude sur les maxima, minima et séquences des permutations, Ann. Sci. École Norm. Sup., 3(1) (1884), 121–135.
[2] C.A. Athanasiadis, Gamma-positivity in combinatorics and geometry, Sém. Lothar. Combin., 77 (2018), Article B77i.
[3] M. Bóna, R. Ehrenborg, A combinatorial proof of the log-concavity of the numbers of permutations with \(k \) runs, J. Combin. Theory Ser. A, 90 (2000), 293–303.
[4] M. Bóna, Combinatorics of Permutations, second ed., CRC Press, Boca Raton, FL, 2012.
[5] P. Brändén, Actions on permutations and unimodality of descent polynomials, European J. Combin., 29 (2008), 514–531.
[6] E.R. Canfield, H. Wilf, Counting permutations by their alternating runs, J. Combin. Theory Ser. A, 115 (2008), 213–225.
[7] L. Carlitz, Enumeration of permutations by sequences, Fibonacci Quart., 16 (3) (1978), 259–268.
[8] W.Y.C. Chen, Context-free grammars, differential operators and formal power series, Theoret. Comput. Sci., 117 (1993), 113–129.
[9] W.Y.C. Chen, A.M. Fu, Context-free grammars for permutations and increasing trees, Adv. in Appl. Math., 82 (2017), 58–82.
[10] C.-O. Chow, On certain combinatorial expansions of the Eulerian polynomials, Adv. in Appl. Math., 41 (2008), 133–157.
[11] C.-O. Chow, S.-M. Ma, Counting signed permutations by their alternating runs, Discrete Math., 323 (2014), 49–57.
[12] F.N. David, D.E. Barton, Combinatorial Chance, Charles Griffin and Company, Ltd., London, UK, 1962.
[13] M.A. Eisenstein-Taylor, Polytopes, permutation shapes and bin packing, Adv. Appl. Math., 30 (2003), 96–109.
[14] D. Foata and M. P. Schützenberger, Théorie géométrique des polynômes euleriens, Lecture Notes in Math. vol. 138, Springer, Berlin, 1970.
[15] S.R. Gal, Real root conjecture fails for five and higher-dimensional spheres, *Discrete Comput. Geom.*, 34 (2005), 269–284.
[16] I. Gessel and R.P. Stanley, Stirling polynomials, *J. Combin. Theory Ser. A*, 24 (1978), 25–33.
[17] J. Haglund, M. Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations, *European J. Combin.*, 33 (2012), 477–487.
[18] M. Josuat-Vergès, C.Y. Amy Pang, Subalgebras of Solomon’s descent algebra based on alternating runs, *J. Combin. Theory Ser. A*, 158 (2018), 36–65.
[19] D.E. Knuth, The art of computer programming, Volume 3, Addison-Wesley, Reading, MA, 1973.
[20] Z. Lin, J. Zeng, The γ-positivity of basic Eulerian polynomials via group actions, *J. Combin. Theory Ser. A*, 135 (2015), 112–129.
[21] S.-M. Ma, An explicit formula for the number of permutations with a given number of alternating runs, *J. Combin. Theory Ser. A*, 119 (2012), 1660–1664.
[22] S.-M. Ma, Enumeration of permutations by number of alternating runs, *Discrete Math.*, 313 (2013), 1816–1822.
[23] S.-M. Ma, H.-N. Wang, Enumeration of a dual set of Stirling permutations by their alternating runs, *Bull. Aust. Math. Soc.*, 94 (2016), 177–186.
[24] S.-M. Ma, J. Ma, Y.-N. Yeh, The ascent-plateau statistics on Stirling permutations, *Electron. J. Combin.*, 26(2) (2019), #P2.5.
[25] S.-M. Ma, Y. Wang, q-Eulerian polynomials and polynomials with only real zeros, *Electron. J. Combin.*, 15 (2008), #R17.
[26] T.K. Petersen, Eulerian Numbers. Birkhäuser/Springer, New York, 2015.
[27] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org 2010.
[28] R.P. Stanley, Longest alternating subsequences of permutations, *Michigan Math. J.*, 57 (2008), 675–687.
[29] A.F.Y. Zhao, The combinatorics on permutations and derangements of type B, Ph.D. dissertation, Nankai University, 2011.
[30] Y. Zhuang, Counting permutations by runs, *J. Combin. Theory Ser. A*, 142 (2016), 147–176.
[31] Y. Zhuang, Eulerian polynomials and descent statistics, *Adv. Appl. Math.*, 90 (2017), 86–144.

School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Hebei 066000, P.R. China

E-mail address: nhimeimapapers@163.com (S.-M. Ma)

Department of mathematics, Shanghai Jiao Tong University, Shanghai, P.R. China

E-mail address: majun904@sjtu.edu.cn (J. Ma)

Institute of Mathematics, Academia Sinica, Taipei, Taiwan

E-mail address: mayeh@math.sinica.edu.tw (Y.-N. Yeh)