Summation formulas involving generalized harmonic numbers

Chuanan Weia,b and Xiaoxia Wangc

aDepartment of Mathematics, Shanghai Normal University, Shanghai, China; bDepartment of Information Technology, Hainan Medical College, Haikou, China; cDepartment of Mathematics, Shanghai University, Shanghai, China

Abstract

By means of the derivative operator and three hypergeometric series identities, several interesting summation formulas involving generalized harmonic numbers are established.

1. Introduction

For a complex number x, define the shifted-factorial to be

$$(x)_0 = 0 \quad \text{and} \quad (x)_n = x(x + 1) \cdots (x + n - 1) \quad \text{when} \quad n \in \mathbb{N}.$$

Following Bailey [4], define the hypergeometric series by

$$
_{1+r}F_s \left[\begin{array}{c} a_0, a_1, \cdots, a_r \\ b_1, \cdots, b_s \end{array} \vline \begin{array}{c} z \\ \end{array} \right] = \sum_{k=0}^{\infty} \frac{(a_0)_k (a_1)_k \cdots (a_r)_k}{(1)_k (b_1)_k \cdots (b_s)_k} z^k,
$$

where $\{a_i\}_{i \geq 0}$ and $\{b_j\}_{j \geq 1}$ are complex parameters such that no zero factors appear in the denominators of the summand on the right hand side. Then Dougall’s $_5F_4(1)$-series formula (cf. [4, p. 27]) can be stated as

$$
{5}F{4} \left[\begin{array}{c} a, 1 + \frac{a}{2}, b, c, d \\ \frac{1}{2}, 1 + a - b, 1 + a - c, 1 + a - d \end{array} \vline \begin{array}{c} 1 \\ \end{array} \right] = \frac{\Gamma(1 + a - b) \Gamma(1 + a - c) \Gamma(1 + a - d) \Gamma(1 + a - b - c - d)}{\Gamma(1 + a) \Gamma(1 + a - b - c) \Gamma(1 + a - b - d) \Gamma(1 + a - c - d)},
$$

(1)
where the parameters satisfy $\text{Re}(1 + a - b - c - d) > 0$ and $\Gamma(x)$ is the well-known gamma function
\[
\Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t} \, dt \quad \text{with} \quad \text{Re}(x) > 0.
\]

When $d = a/2$, it reduces to Dixon’s $3F_2(1)$-series formula (cf. [4, p. 13]):

\[
3F_2 \left[\begin{array}{c} a, b, c \\ 1 + a - b, 1 + a - c \\ \end{array} \right] = \frac{\Gamma(1 + \frac{a}{2}) \Gamma(1 + a - b) \Gamma(1 + a - c) \Gamma(\frac{a}{2} - b - c)}{\Gamma(1 + a) \Gamma(1 + a - b) \Gamma(1 + a - c) \Gamma(1 + a - b - c)}
\]

(2)

provided that $\text{Re}(1 + \frac{a}{2} - b - c) > 0$. A Dixon-like formula that will appear in Section 3 is

\[
3F_2 \left[\begin{array}{c} a, b, c \\ 1 + a - b, a - c \\ \end{array} \right] = \frac{1}{2^{1+c}} \frac{\Gamma(1 + a - b) \Gamma(\frac{1+a}{2} - b - c) \Gamma(\frac{a-c}{2} \Gamma(\frac{1+a-c}{2})}{\Gamma(1 + a - b - c) \Gamma(\frac{1+a-2}{2} - b) \Gamma(\frac{a-c}{2})}
\]

+ \frac{1}{2^{1+c}} \frac{\Gamma(1 + a - b) \Gamma(\frac{2+a}{2} - b - c) \Gamma(\frac{a-c}{2}) \Gamma(\frac{1+a-c}{2})}{\Gamma(1 + a - b - c) \Gamma(\frac{1+a-2}{2} - b) \Gamma(\frac{a-c}{2})}
\]

(3)

provided that $\text{Re}(\frac{1+a}{2} - b - c) > 0$.

For a complex number x and a positive integer ℓ, define generalized harmonic numbers of ℓ-order to be

\[
H_0^{(\ell)}(x) = 0 \quad \text{and} \quad H_n^{(\ell)}(x) = \sum_{k=1}^{n} \frac{1}{(x + k)^{\ell}} \quad \text{with} \quad n \in \mathbb{N}.
\]

When $x = 0$, they become harmonic numbers of ℓ-order

\[
H_0^{(\ell)} = 0 \quad \text{and} \quad H_n^{(\ell)} = \sum_{k=1}^{n} \frac{1}{k^{\ell}} \quad \text{with} \quad n \in \mathbb{N}.
\]

Setting $\ell = 1$ in $H_0^{(\ell)}(x)$ and $H_n^{(\ell)}(x)$, we obtain generalized harmonic numbers

\[
H_0(x) = 0 \quad \text{and} \quad H_n(x) = \sum_{k=1}^{n} \frac{1}{x + k} \quad \text{with} \quad n \in \mathbb{N}.
\]

When $x = 0$, they reduce to classical harmonic numbers

\[
H_0 = 0 \quad \text{and} \quad H_n = \sum_{k=1}^{n} \frac{1}{k} \quad \text{with} \quad n \in \mathbb{N}.
\]

For a differentiable function $f(x)$, define the derivative operator D_x by

\[
D_x f(x) = \frac{d}{dx} f(x).
\]
Then it is not difficult to show that
\[
D_x \left(\begin{array}{c} x + s \\ t \end{array} \right) = \left(\begin{array}{c} x + s \\ t \end{array} \right) \left[H_s(x) - H_{s-t}(x) \right],
\]
\[
D_x H_n^{(\ell)}(x) = -\ell H_n^{(\ell+1)}(x),
\]
where \(s, t \in \mathbb{N}_0 \) with \(t \leq s \).

As pointed out by Richard Askey (cf. [3]), expressing harmonic numbers in accordance with differentiation of binomial coefficients can be traced back to Issac Newton. In 2003, Paule and Schneider [22] computed the family of series:
\[
W_n(\alpha) = \sum_{k=0}^{n} \binom{n}{k} \alpha \left[1 + \alpha(n-2k)H_k \right]
\]
with \(\alpha = 1, 2, 3, 4, 5 \) according to this approach and Zeilberger’s algorithm for definite hypergeometric sums. Subsequently, Chu and Donno [15] verified Paule and Schneider’s results, gave Paule-Schneider type identities with \(\alpha = -2, -1, 6 \) and derived a lot of different conclusions by applying the derivative operator to Gauss’ \(_2F_1(1) \)-series formula, Saalschütz’s \(_3F_2(1) \)-series formula, (1) and Whipple’s transformation between a \(_7F_6(1) \)-series and a \(_4F_3(1) \)-series. General Paule-Schneider type identities with \(\alpha \) being an integer were explored by Krattenthaler et al. [19] and Wei et al. [31] in terms of this way and the hypergeometric form of Andrews’ \(q \)-series transformation. Recently, Wang and Wei [30] got two families of summation formulas involving generalized harmonic numbers by using the derivative operator and Bailey’s \(_2F_1(1/2) \)-series formula. Many results from the higher derivatives of Gauss’ \(_2F_1(1) \)-series formula, (2) and (1) can be seen in the papers [14,16,29,32]. For several conclusions from differentiation of binomial coefficients which are not related to known hypergeometric series, the reader may refer to [24,26,33].

By combining the comparing coefficient method with Gauss’ \(_2F_1(1) \)-series formula, Kummer’s \(_2F_1(-1) \)-series formula, (2), Dixon’s \(_4F_3(-1) \)-series formula and (1), a lot of nice harmonic number identities were established in the papers [5,6,9–11,21,35]. Through an extension of Zeilberger’s algorithm, Chyzak [17] confirmed the identity:
\[
\sum_{k=1}^{n} k^2H_{n+k} = \frac{n(n+1)(2n+1)}{6} \left(2H_{2n} - H_n \right) - \frac{n(n+1)(10n-1)}{36}
\]
which is the bonus problem 69 proposed by Graham et al. [18, Chapter 6]. Schneider [23] also verified it by means of an algorithm built on Karr’s difference field theory. Several years ago, Chen et al. [7] proved this formula and some other concise results in accordance with the Abel-Zeilberger algorithm.

Except for the three approaches just displayed, there exist other ways that are valid to harmonic number identities. According to the WZ method, Ahlgren et al. [1] confirmed the beautiful identity:
\[
\sum_{k=1}^{n} \binom{n}{k}^2 \binom{n+k}{k} \left[1 + 2kH_{n+k} + 2kH_{n-k} - 4kH_k \right] = 0
\]
which implies Beukers’ conjecture on Apéry numbers (cf. [2]). It was also proved by Chu [12] in terms of the partial fraction decomposition approach. Different conclusions from the same way can be found in the papers [13,34]. Cheon et al. [8] and Wang [28] studied harmonic number identities by utilizing Riordan arrays. Kronenburg [20] gained two kinds of formulas by employing the difference operator. Sofo [25] deduced several quadratic alternating harmonic number sums through the integral method. It should be mentioned that Sun [27] showed recently some congruence relations concerning harmonic numbers to us.

Although (1) and (2) have played an important role in the development process of harmonic number identities, new results can be offered when we add clever tricks. With the aid of the reversal techniques and bisection method, we shall establish several interesting summation formulas involving generalized harmonic numbers by applying the derivative operator to (1)–(3). They can produce numerous harmonic number identities when the parameters are specified. For making the reader have a taste, we select, above all, the following two ones:

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \frac{H_k^{(2)}}{k} = \frac{1 + 2n}{2 + 2n} H_n^{(2)},
\]

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} H_k^2 = \frac{1 + 2n}{2 + 2n}\left\{H_n^2 - \frac{H_{1+2n}}{1+n} - H_{1+2n}^{(2)} + H_{1+n}^{(2)}\right\},
\]

where the first equation comes from the case \(p = 0 \) of (7) and the second equation is exactly Proposition 3.

2. Dixon’s identity, reversal techniques and summation formulas involving generalized harmonic numbers

Theorem 1: Let \(x \) and \(y \) be complex numbers. Then

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \frac{(x+k)(y+k)}{(x+2n)_k(y+2n)_k} H_k(x) = \frac{1}{2} \left\{\binom{x+n}{n}\binom{y+n}{n}\binom{1+x+y+2n}{2n} H_n(x) - H_n(1+x+y) + H_{2n}(1+x+y)\right\}.
\]

Proof: Perform the replacements \(a \to -2n, b \to 1+x, c \to 1+y \) in (2) to achieve

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \frac{(x+k)(y+k)}{(x+2n)_k(y+2n)_k} = \frac{(x+n)(y+n)(1+x+y+2n)}{(x+2n)(y+2n)(1+x+y+n)}.
\]

Applying the derivative operator \(D_x \) to both sides of (4), we attain

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \frac{(x+k)(y+k)}{(x+2n)_k(y+2n)_k} \{H_k(x) + H_{2n-k}(x)\}.
\]
Theorem 2: Let x be a complex number. Then
\[
\frac{(x+y_n)(y+n)}{(x+2n)(y+2n)(1+x+y+n)} \{ H_n(x) - H_n(1+x+y) + H_{2n}(1+x+y) \}.
\]

By means of the reversal techniques, it is easy to see that
\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{x+k}{k} H_k(x) = \sum_{k=0}^{2n} (-1)^k \binom{2n}{k} H_{2n-k}(x) \sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{y+k}{k} H_k(x).
\]

Therefore, we derive Theorem 1 to complete the proof.

Taking $x = p, y = q$ with $p, q \in \mathbb{N}_0$ in Theorem 1 and using (4), we have the summation formula on harmonic numbers:
\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{p+k}{k} \binom{q+k}{k} H_{p+k} = \frac{1}{2} \binom{p+n}{2n} \binom{q+n}{2n} \binom{1+p+q+2n}{2n} \{ H_p + H_{p+n} - H_{1+p+q+n} + H_{1+p+q+2n} \}.
\]

Theorem 2: Let x be a complex number. Then
\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{x+k}{k}^2 H_k^{(2)}(x) = \frac{1}{2} \binom{x+n}{2n}^2 \binom{1+2x+2n}{2n} \binom{2n}{H_n^{(2)}(x)}.
\]

Proof: Applying the derivative operator D_y to Theorem 1 and then fixing $y = x$, we obtain
\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{x+k}{k}^2 \{ H_k^2(x) + H_k(x)H_{2n-k}(x) \} = \frac{1}{2} \binom{x+n}{2n}^2 \binom{1+2x+2n}{2n} \binom{2n}{H_n^{(2)}(1+2x) - H_{2n}(1+2x) + [H_n(1+2x) - H_{2n}(1+2x) - H_n(x)]^2}.
\]

Applying the derivative operator D_x to Theorem 1 and then choosing $y = x$, we get
\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{x+k}{k}^2 \{ H_k^2(x) + H_k(x)H_{2n-k}(x) - H_{k}^{(2)}(x) \} = \frac{1}{2} \binom{x+n}{2n}^2 \binom{1+2x+2n}{2n} \binom{2n}{H_n^{(2)}(1+2x) - H_{2n}(1+2x) - H_n^{(2)}(x) + [H_n(1+2x) - H_{2n}(1+2x) - H_n(x)]^2}.
\]

The difference of (6) and the last equation gives Theorem 2.
Setting $x = p$ with $p \in \mathbb{N}_0$ in Theorem 2 and utilizing (4), we gain the summation formula on harmonic numbers:

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{p+k}{k}^2 H^{(2)}_{p+k} = \frac{1}{2} \left(\binom{p+n}{2n} \binom{1+2p+2n}{2n} \right) \{ H^{(2)}_{p+n} + H^{(2)}_p \}. \tag{7}$$

Proposition 3 (Harmonic number identity):

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} H_k^2 = \frac{1+2n}{2+2n} \left\{ H_{1+2n}^2 - \frac{H_{1+2n}}{1+n} - H_{1+2n}^{(2)} + H_{1+n}^{(2)} \right\}.$$

Proof: The case $x = 0$ of (6) reads as

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \{ H_k^2 + H_k H_{2n-k} \} = \frac{1+2n}{2+2n} \left\{ \left(H_{1+2n} + \frac{1}{1+n} \right)^2 - H_{1+2n}^{(2)} + H_{1+n}^{(2)} \right\}. $$

The case $p = n$ of Wei et al. [32, Corollary 21] is

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} H_k H_{2n-k} = \frac{1+2n}{2(1+n)^2} \left\{ \frac{1}{1+n} - H_{1+2n} \right\}.$$

The difference of the last two equations offers Proposition 3. □

3. Dixon-like identity, bisection method and summation formulas involving generalized harmonic numbers

Lemma 4 (Dixon-like identity):

$$\text{3F}_2 \left[\begin{array}{c} a,b,c \\ 1+a-b,a-c \\ 1 \end{array} \right] = \frac{\Gamma(1+a-b)\Gamma \left(\frac{1+a}{2} - b - c \right)\Gamma(\frac{a-c}{2})\Gamma(\frac{1+a-c}{2})}{2^{1+c} \Gamma(1+a-b-c)\Gamma \left(\frac{a}{2} \right)\Gamma \left(\frac{1+a}{2} - b \right)\Gamma \left(\frac{1+a-c}{2} \right)} + \frac{\Gamma(1+a-b)\Gamma \left(\frac{2+a}{2} - b - c \right)\Gamma(\frac{a-c}{2})\Gamma(\frac{1+a-c}{2})}{2^{1+c} \Gamma(1+a-b-c)\Gamma \left(\frac{1+a}{2} \right)\Gamma \left(\frac{2+a}{2} - b \right)\Gamma \left(\frac{a}{2} - c \right)}$$

provided that $\text{Re}(\frac{1+a}{2} - b - c) > 0$.

Proof: Recall Whipple’s 3F_2-series identity (cf. [4, p. 16]):

$$\text{3F}_2 \left[\begin{array}{c} a,1-a,b \\ c,1+2b-c \\ 1 \end{array} \right] = \frac{\pi 2^{1-2b} \Gamma(c)\Gamma(1+2b-c)}{\Gamma(\frac{a+c}{2})\Gamma(\frac{1+a-c}{2} + b)\Gamma(\frac{1-a-c}{2} + b)},$$

where $\text{Re}(b) > 0$. Employ the substitution $a \to 1+a$ in the last equation to achieve

$$\text{3F}_2 \left[\begin{array}{c} 1+a,-a,b \\ c,1+2b-c \\ 1 \end{array} \right] = \frac{\pi 2^{1-2b} \Gamma(c)\Gamma(1+2b-c)}{\Gamma(\frac{1+a+c}{2})\Gamma(\frac{2+a-c}{2} + b)\Gamma(\frac{-a+c}{2})\Gamma(\frac{1-a-c}{2} + b)}.$$
The linear combination of the last two equations produces
\[
\begin{align*}
3F_2 \left[\begin{array}{c}
 a, -a, b \\
 c, 1 + 2b - c \\
 \end{array} \right] 1 & = \frac{1}{2} \frac{\pi 2^{1-2b} \Gamma(c) \Gamma(1 + 2b - c)}{\Gamma\left(\frac{a + c}{2}\right) \Gamma\left(\frac{1 + a - c + b}{2}\right) \Gamma\left(\frac{1 - a - c + b}{2}\right)} \\
& \quad + \frac{1}{2} \frac{\pi 2^{1-2b} \Gamma(c) \Gamma(1 + 2b - c)}{\Gamma\left(\frac{1 + a + c}{2}\right) \Gamma\left(\frac{2 + a - c + b}{2}\right) \Gamma\left(\frac{-a + c}{2} + b\right)} \\
& \quad \times \frac{\pi 2^{1-2b} \Gamma(c) \Gamma(1 + 2b - c)}{\Gamma\left(\frac{1 + a - c}{2}\right) \Gamma\left(\frac{2 + a - c + b}{2}\right) \Gamma\left(\frac{-a + c}{2}\right) + b}.
\end{align*}
\]
(8)

In accordance with Kummer’s transformation formula (cf. [4, p. 98]):
\[
3F_2 \left[\begin{array}{c}
 a, b, c \\
 d, e \\
 \end{array} \right] 1 = \frac{\Gamma(e) \Gamma(1 + a - b - c)}{\Gamma(d) \Gamma(1 + a - b - c)} 3F_2 \left[\begin{array}{c}
 a, d - b, d - c \\
 e, e - b - c \\
 \end{array} \right] 1,
\]
we attain
\[
3F_2 \left[\begin{array}{c}
 c, a, b \\
 a - c, 1 + a - b \\
 \end{array} \right] 1 = \frac{\Gamma(1 + a - b) \Gamma(1 + a - 2b - 2c)}{\Gamma(1 + a - b - c) \Gamma(1 + a - 2b - c)} \times 3F_2 \left[\begin{array}{c}
 c, -c, a - b - c \\
 a - c, 1 + a - 2b - c \\
 \end{array} \right] 1.
\]

Evaluating the series on the right hand side by (8), we obtain Lemma 4 to finish the proof.

\[\square\]

Theorem 5: Let \(x \) be a complex number. Then
\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(2x+k)}{(2x+n+k)} H_k(x) = \frac{4}{n} \left(\frac{x+n}{n} \right) \left(\frac{H_n(x) + H_n - 2H_{2n}}{(2x+2n)(x+n)} \right).
\]

Proof: The case \(c = -n \) of Lemma 4 can be written as
\[
3F_2 \left[\begin{array}{c}
 a, b, -n \\
 1 + a - b, a + n \\
 \end{array} \right] 1 = 2^{n+1} \frac{(\frac{1+n}{2})_n(\frac{2+a}{2} - b)_n}{(a+n)_n(1 + a - b)_n} + 2^{n-1} \frac{(\frac{n}{2})_n(\frac{1+a}{2} - b)_n}{(a+n)_n(1 + a - b)_n}.
\]

Replace respectively \(a \) and \(b \) by \(1 + x \) and \(1 + y \) in the last equation to get
\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(x+k)}{(x+n+k)} \frac{(y+k)}{(y+n+k)} = 2^{n+1} \frac{\binom{\frac{3}{2}+n}{n}(\frac{2}{2} - y+n)}{(x+2n)(x-y+n)} + 2^{n-1} \frac{\binom{\frac{3}{2}+n}{n}(\frac{2}{2} - y+n)}{(x+2n)(x-y+n)}.
\]
(9)
Applying the derivative operator D_y to both sides of (9), we gain

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(x+k)}{x+n+k} \frac{(y+k)}{x-y+k} \left\{ H_k(y) + H_k(x-y) \right\}
\]

\[
= 2^{2n-1} \binom{n}{\frac{x+y}{n}} \frac{n}{x+2n} \frac{y-n}{x-2n} \left\{ H_n(x-y) - H_n(\frac{x}{2} - y) \right\}
\]

\[
+ 2^{2n-1} \binom{n}{\frac{x+y}{n}} \frac{n}{x+2n} \frac{y-n}{x-2n} \left\{ H_n(x-y) - H_n(\frac{x}{2} - y) \right\}
\]

According to the relation

\[
H_n(\frac{x-1}{2} - y) = 2H_n(x - 2y) - H_n(\frac{x}{2} - y),
\]

(10) can be reformulated as

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(x+k)}{x+n+k} \frac{(y+k)}{x-y+k} \left\{ H_k(y) + H_k(x-y) \right\}
\]

\[
= 2^{2n-1} \binom{n}{\frac{x+y}{n}} \frac{n}{x+2n} \frac{y-n}{x-2n} \left\{ H_n(x-y) - H_n(\frac{x}{2} - y) - 2H_2n(x - 2y) \right\}
\]

\[
+ 2^{2n-1} \binom{n}{\frac{x+y}{n}} \frac{n}{x+2n} \frac{y-n}{x-2n} \left\{ H_n(x-y) - H_n(\frac{x}{2} - y) + \frac{2}{x - 2y + 2n} \right\}
\]

\[
- 2^{2n-1} \binom{n}{\frac{x+y}{n}} \frac{n}{x+2n} \frac{y-n}{x-2n} \frac{2}{x - 2y + 2n}.
\]

Substitute respectively x and y by $2x$ and x in the last equation to give Theorem 5.

Taking $x = p$ with $p \in \mathbb{N}_0$ in Theorem 5 and exploiting (9), we achieve the summation formula on harmonic numbers:

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(2p+k)}{2p+n+k} \left\{ H_{p+k} \right\}
\]

\[
= 4^{n-1} \binom{n}{p} \left\{ H_{p+n} + H_p + H_n - 2H_{2n} \right\} - \frac{4^{n-1}}{n} \binom{p+n-1}{2p+2n} \binom{p+n}{p+n}.
\]

(11)
Theorem 6: Let \(x \) be a complex number. Then

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{\left(\frac{5}{2} + k\right) \left(\frac{x - \frac{1}{2} + k}{\frac{5}{2} - k}\right) H_{2k}(x)}{\binom{5}{2} + k \left(\frac{x - \frac{1}{2} + n + k}{\frac{5}{2} - k}\right)} = 4^{n-1} \left(\frac{\frac{5}{2} - \frac{1}{2} + n}{\frac{5}{2} - n}\right) \{H_n(x) + H_n\left(\frac{x - \frac{1}{2}}{2}\right)\}
\]

Proof: Perform the replacements \(x \to x - \frac{1}{2}, y \to \frac{x}{2} \) in (10) to attain

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{\left(\frac{5}{2} + k\right) \left(\frac{x - \frac{1}{2} + k}{\frac{5}{2} - k}\right)}{\binom{5}{2} + k \left(\frac{x - \frac{1}{2} + n + k}{\frac{5}{2} - k}\right)} \{H_k\left(\frac{5}{2}\right) + H_k\left(\frac{x - \frac{1}{2}}{2}\right)\}
\]

\[
= 2^{2n-1} \left(\frac{\frac{5}{2} - \frac{1}{2} + n}{\frac{5}{2} - n}\right) \{H_n(x) + H_n\left(\frac{x - \frac{1}{2}}{2}\right)\}
\]

In terms of the relation

\[
H_k\left(\frac{5}{2}\right) + H_k\left(\frac{x - \frac{1}{2}}{2}\right) = 2H_{2k}(x), \quad (12)
\]

the last equation can be expressed as Theorem 6 to complete the proof. **□**

Fixing \(x = p \) with \(p \in \mathbb{N}_0 \) in Theorem 6 and using (9), we obtain the summation formula on harmonic numbers and generalized harmonic numbers:

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{\left(\frac{p}{2} + k\right) \left(\frac{p - \frac{1}{2} + k}{\frac{p}{2} - k}\right) H_{p+2k}}{\binom{p}{2} + k \left(\frac{p - \frac{1}{2} + n + k}{\frac{p}{2} - k}\right)}
\]

\[
= 4^{n-1} \left(\frac{\frac{p}{2} - \frac{1}{2} + n}{\frac{p}{2} - n}\right) \left(\frac{\frac{3}{2} + n}{\frac{p}{2} - \frac{1}{2} + 2n}\right) \{2H_p + H_n\left(\frac{p - 1}{2}\right)\}
\]

\[
+ 4^{n-1} \left(\frac{\frac{p}{2} - \frac{3}{2} + n}{\frac{p}{2} - n}\right) \left(\frac{\frac{5}{2} + n}{\frac{p}{2} - \frac{1}{2} + 2n}\right) \{2H_p + H_n\left(\frac{p - 1}{2}\right)\}. \quad (13)
\]
4. Dougall’s identity, bisection method and summation formulas involving generalized harmonic numbers

Theorem 7: Let x and y be complex numbers. Then

$$
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(2x+k)(2y+k)}{(2x+n+k)(2x-2y+k)} \frac{1 + 2x + 2k}{1 + 2x + n + k} H_k(x) = \frac{1}{2} \frac{(2x+n)}{(x+y+n)} \left\{ H_n(x) - H_n(x - 2y - 1) \right\}.
$$

Proof: Employ the substitutions $a \rightarrow 1 + x$, $b \rightarrow 1 + y$, $c \rightarrow 1 + z$ in (1) to get

$$
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(x+k)(y+k)(z+k)}{(x+n+k)(x-y+k)(x-z+k)} \frac{1 + x + 2k}{1 + x + n + k} \left\{ H_k(z) + H_k(x - z) \right\} = \frac{(x+n)}{(x-y+n)} \left\{ H_n(x - z) - H_n(x - y - z - 1) \right\}.
$$

Applying the derivative operator D_z to both sides of (14), we gain

$$
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(x+k)(y+k)(z+k)}{(x+n+k)(x-y+k)(x-z+k)} \frac{1 + x + 2k}{1 + x + n + k} \left\{ H_k(z) + H_k(x - z) \right\} = \frac{(x+n)}{(x-y+n)} \left\{ H_n(x - z) - H_n(x - y - z - 1) \right\}.
$$

Replacing respectively x, y and z by $2x$, $2y$ and x in the last equation to offer Theorem 7. □

Choosing $x = p$, $y = \frac{q}{2}$ with $p, q \in \mathbb{N}_0$ in Theorem 7 and utilizing (14), we achieve the summation formula on harmonic numbers:

$$
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(2p+k)(q+k)}{(2p+n+k)(2p-q+k)} \frac{1 + 2p + 2k}{1 + 2p + n + k} H_{p+k} = \frac{1}{2} \frac{(2p+n)}{(p+q+n-1)} \left\{ H_p + H_{p+n} + H_{p-q-1} - H_{p-q+n-1} \right\}.
$$

Theorem 8: Let x and y be complex numbers. Then

$$
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(x+k)(x-\frac{1}{2}+k)(y+k)}{(x-\frac{1}{2}+n+k)(x-y+\frac{1}{2}+k)} \frac{1 + 2x + 4k}{1 + 2x + 2n + 2k} H_{2k}(x) = \frac{1}{2} \frac{(x-\frac{1}{2}+n)}{(x-y-\frac{1}{2}+n)} \left\{ H_n(x-\frac{1}{2}) - H_n(x-\frac{3}{2} - y) \right\}.
$$
Applying the derivative operator \(D \) to both sides of the last equation, we get

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(2x)^k}{(2x)^k} \frac{(2y)^k}{(2y)^k} \frac{1 + 2x + 2k}{1 + 2x + 2n + 2k} H_k^{(2)}(x) \left\{ H_k(x) + H_k(2x - 2y) \right\} = \frac{1}{2(x - 2y + n)} \left\{ (x - 2y) A_n(x, y) - \frac{n B_n(x, y)}{x - 2y + n} - \frac{2n}{(x - 2y + n)^2} \right\},
\]

where the symbols on the right hand side stand for

\[
A_n(x, y) = \left[H_n(x) - H_n(x - 2y) \right] \left[H_n(2x - 2y) - H_n(x - 2y) \right] - H_n^{(2)}(x - 2y),
B_n(x, y) = H_n(x) + H_n(2x - 2y) - 2H_n(x - 2y).
\]
Perform the replacement \(y \rightarrow \frac{x}{2} \) in the last equation to produce Theorem 9.

Taking \(x = p \) with \(p \in \mathbb{N}_0 \) in Theorem 9 and using (14), (16) and the relation

\[
H_k^2(p) = (H_{p+k} - H_p)^2 = H_{p+k}^2 - 2H_pH_{p+k} + H_p^2,
\]

we gain the summation formula on harmonic numbers:

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \left(\frac{2p+k}{k} \right) \frac{1+2p+2k}{1+2p+n+k} H_{p+k}^2
\]

\[
= \frac{1}{2n} \left(\sum_{n} \binom{n}{p} \sum_{m} \binom{m}{n} \right) \left\{ H_{n-1}^2 - H_p - H_{p+n} \right\}.
\]

Theorem 10: Let \(x \) and \(y \) be complex numbers. Then

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \left(\frac{x+1}{k} \right) \frac{1+x+2k}{1+x+n+k} \left(H_k(y) + H_k(x-y) \right) \left(H_k(z) + H_k(x-z) \right)
\]

\[
= \frac{1}{4} \left(\frac{x+y-z+1}{n} \right) \left\{ H_n(x, y) - H_n^{(2)}(x - y - z - 1) \right\},
\]

where \(C_n(x, y) = [H_n(x - y) - H_n(x - y - z - 1)][H_n(x - z) - H_n(x - y - z - 1)].

Employ the substitutions \(x \rightarrow x - \frac{1}{2}, y \rightarrow \frac{x}{2}, z \rightarrow \frac{x}{2} \) in the last equation to attain

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \left(\frac{x+1}{k} \right) \frac{1+2x+4k}{1+2x+2n+2k} \left\{ H_k \left(\frac{x}{2} \right) + H_k \left(\frac{x-1}{2} \right) \right\}^2
\]

\[
= \frac{1}{2n} \left(\sum_{n} \binom{n}{p} \sum_{m} \binom{m}{n} \right) \left\{ H_n \left(\frac{x-1}{2} \right) - H_n \left(-\frac{3}{2} \right) \right\}^2 - H_n^{(2)} \left(-\frac{3}{2} \right).
\]

In accordance with (12), the last equation can be expressed as Theorem 10 to complete the proof.

Fixing \(x = p \) with \(p \in \mathbb{N}_0 \) in Theorem 10 and utilizing (14), (17) and the relation

\[
H_{2k}^2(p) = (H_{p+2k} - H_p)^2 = H_{p+2k}^2 - 2H_pH_{p+2k} + H_p^2,
\]
we deduce the summation formula on harmonic numbers and generalized harmonic numbers:

\[
\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{\left(\frac{p-1}{2}+k\right)^2 \left(p-\frac{1}{2}+k\right) \left(p-\frac{1}{2}+n+k\right)^2}{1 + 2p + 2n + 2k} H_{p+2k}^2
\]

\[
= \frac{1}{4} \frac{(p-\frac{1}{2}+n)^2}{\left(\frac{p-1}{2}+n\right)^2} \left\{ \left[H_n \left(\frac{p-1}{2}\right) - H_n \left(-\frac{3}{2}\right) \right]^2 - H_n^{(2)} \left(-\frac{3}{2}\right) \right\}
\]

\[+ 4H_p \left[H_p + H_n \left(\frac{p-1}{2}\right) - H_n \left(-\frac{3}{2}\right) \right]. \quad (19)\]

With the change of the parameters \(p\) and \(q\), (5), (7), (11), (13) and (16)–(19) can create a lot of concrete harmonic number identities. The corresponding results will not be laid out here.

Acknowledgements

The authors are grateful to the reviewer for helpful comments.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The work is supported by the National Natural Science Foundations of China [grant number 11301120], [grant number 11201291].

References

[1] S. Ahlgren, S.B. Ekhad, K. Ono, and D. Zeilberger, A binomial coefficient identity associated to a conjecture of Beukers, Electron. J. Comb. 5 (1998), #N10.

[2] S. Ahlgren and K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math. 518 (2000), pp. 187–212.

[3] G.E. Andrews and K. Uchimura, Identities in combinatorics IV: Differentiation and harmonic numbers, Util. Math. 28 (1985), pp. 265–269.

[4] W.N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.

[5] X. Chen and W. Chu, The Gauss \(2F_1(1)\)-summation theorem and harmonic number identities, Integral Transforms Spec. Funct. 20 (2009), pp. 925–935.

[6] X. Chen and W. Chu, Dixon’s \(3F_2(1)\)-series and identities involving harmonic numbers and the Riemann zeta function, Discrete Math. 310 (2010), pp. 83–91.

[7] Y. Chen, Q. Hou, and H. Jin, The Abel-Zeilberger algorithm, Electron. J. Comb. 18 (2011), #N17.

[8] G.-S. Cheon and M.E.A. El-Mikkawy, Generalized harmonic numbers with Riordan arrays, J. Number Theory 128 (2008), pp. 413–425.

[9] J. Choi, Certain summation formulas involving harmonic numbers and generalized harmonic numbers, Appl. Math. Comput. 218 (2011), pp. 734–740.
[10] J. Choi and H.M. Srivastava, *Some summation formulas involving harmonic numbers and generalized harmonic numbers*, Math. Comput. Model. 54 (2011), pp. 2220–2234.
[11] W. Chu, *Hypergeometric series and the Riemann zeta function*, Acta Arith. 82 (1997), pp. 103–118.
[12] W. Chu, *A binomial coefficient identity associated with Beukers' conjecture on Apéry numbers*, Electron. J. Comb. 11 (2004), #N15.
[13] W. Chu, *Hypergeometric series identities and Hermite-Padé approximations to the logarithm function*, J. Approx. Theory 137 (2005), pp. 42–56.
[14] W. Chu, *Hypergeometric approach to Weideman's conjecture*, Arch. Math. 87 (2006), pp. 400–406.
[15] W. Chu and L. De Donno, *Hypergeometric series and harmonic number identities*, Adv. Appl. Math. 34 (2005), pp. 123–137.
[16] W. Chu and A.M. Fu, *Dougall-Dixon formula and harmonic number identities*, Ramanujan J. 18 (2009), pp. 11–31.
[17] F. Chyzak, *An extension of Zeilberger's fast algorithm to general holonomic functions*, Discrete Math. 217 (2000), pp. 115–134.
[18] R.L. Graham, D.E. Knuth, and O. Patashnik, *Concrete Mathematics: A Foundation for Computer Science*, 2nd ed., Addison-Wesley, Amsterdam, 1994.
[19] C. Krattenthaler and T. Rivoal, *Hypergéométrie et fonction zêta de Riemann* [Hypergeometry and Riemann Zeta functions], Memoirs of the American Mathematical Society Vol. 186 (875), American Mathematical Society, Providence, RI, 2007.
[20] M.J. Kronenburg, *On two types of harmonic number identities* (2012). Available at arXiv:1202.3981v2 [math.NT].
[21] H. Liu and W. Wang, *Harmonic number identities via hypergeometric series and Bell polynomials*, Integral Transforms Spec. Funct. 23 (2012), pp. 49–68.
[22] P. Paule and C. Schneider, *Computer proofs of a new family of harmonic number identities*, Adv. Appl. Math. 31 (2003), pp. 359–378.
[23] C. Schneider, *Symbolic summation assists combinatorics*, Sém. Lothar. Combin. 56 (2006), p. B56b.
[24] A. Sofo, *Sums of derivatives of binomial coefficients*, Adv. Appl. Math. 42 (2009), pp. 123–134.
[25] A. Sofo, *Quadratic alternating harmonic number sums*, J. Number Theory 154 (2015), pp. 144–159.
[26] A. Sofo and H.M. Srivastava, *Identities for the harmonic numbers and binomial coefficients*, Ramanujan J. 25 (2011), pp. 93–113.
[27] Z. Sun, *Arithmetic theory of harmonic numbers*, Proc. Amer. Math. Soc. 140 (2012), pp. 415–428.
[28] W. Wang, *Riordan arrays and harmonic number identities*, Comput. Math. Appl. 60 (2010), pp. 1494–1509.
[29] W. Wang and C. Jia, *Harmonic number identities via the Newton-Andrews method*, Ramanujan J. 35 (2014), pp. 263–285.
[30] J. Wang and C. Wei, *Derivative operator and summation formulae involving generalized harmonic numbers*, J. Math. Anal. Appl. 434 (2016), pp. 315–341.
[31] C. Wei and D. Gong, *The derivative operator and harmonic number identities*, Ramanujan J. 34 (2014), pp. 361–371.
[32] C. Wei, D. Gong, and Q. Wang, *Chu-Vandermonde convolution and harmonic number identities*, Integral Transforms Spec. Funct. 24 (2013), pp. 324–330.
[33] C. Wei, D. Gong, and Q. Yan, *Telescoping method, derivative operators and harmonic number identities*, Integral Transforms Spec. Funct. 25 (2014), pp. 203–214.
[34] Q. Yan, C. Wei, and X. Fan, *q-Generalization of Mortenson's identities and further identities*, Ramanujan J. 35 (2014), pp. 131–139.
[35] D. Zheng, *Further summation formulae related to generalized harmonic numbers*, J. Math. Anal. Appl. 335 (2007), pp. 692–706.