Microwave surface resistance in superconductors with grain boundaries

Yasunori Mawatari
Energy Technology Research Institute,
National Institute of Advanced Industrial Science and Technology,
Tsukuba, Ibaraki 305–8568, Japan
(Dated: Dec. 28, 2004)

PACS numbers: 74.25.Nf, 74.20.De, 74.50.+r, 74.81.-g

I. INTRODUCTION

High-temperature superconductors contain many grain boundaries (GBs), where the order parameter is locally suppressed due to the short coherence length. GBs have attracted much interest for their basic physics as well as for their applications in superconductors and play a crucial role in microwave response and surface resistance \(R_s \) of high-temperature superconducting films.

Electrodynamics of GB junctions can be described using the Josephson-junction model, and one of the most important parameters that characterize GB junctions is the critical current density \(J_{c2} \) for Josephson tunneling current across GBs. The \(J_{c2} \) strongly depends on the misorientation angle of GBs and \(J_{c2} \) can be enhanced and \(R_s \) reduced by Ca doping. The investigation of the relationship between \(R_s \) and \(J_{c2} \) is needed to understand the behavior of GBs.

In this paper, we present theoretical investigation on the microwave field and dissipation in superconductors with laminar GBs. Theoretical expressions of the surface impedance \(Z_s = R_s + iX_s \) of superconductors with GBs are derived as functions of \(J_{c2} \) at GB junctions.

II. BASIC EQUATIONS

A. Superconductors with grain boundaries

We consider penetration of a microwave field (i.e., magnetic induction \(B = \mu_0 H \), electric field \(E \), and current density \(J \)) into superconductors that occupy a semi-infinite area of \(x > 0 \). We investigate linear response for small microwave power limit, such that the time dependence of the microwave field is expressed by the harmonic factor, \(e^{-i\omega t} \), where \(\omega/2\pi \) is the microwave frequency that is much smaller than the energy-gap frequency of the superconductors. Magnetic induction \(B \) is assumed to be less than the lower critical field, such that no vortices are present in the superconductors. (See Ref. [20] for microwave response of vortices.)

The GBs are modeled to have laminar structures as in Ref. [21] the laminar GBs that are parallel to the \(xz \) plane are situated at \(y = ma \), where \(a \) is the spacing between grains (i.e., effective grain size) and \(m = 0, \pm 1, \pm 2, \cdots, \pm \infty \). The thickness of the barrier of GB junctions, \(d_j \), is much smaller than both \(a \) and the London penetration depth \(\lambda \), and therefore, we investigate the thin-barrier limit of \(d_j \rightarrow 0 \), namely, GB barriers situated at \(ma - 0 < y < ma + 0 \).

B. Two-fluid model for intragrain current

We adopt the standard two-fluid model for current transport in the grain at \(ma + 0 < y < (m + 1)a - 0 \). The intragrain current \(J = J_s + J_n \) is given by the sum of the supercurrent \(J_s = i\sigma_s E \) and the normal current \(J_n = \sigma_n E \), where \(\sigma_s = 1/\omega\mu_0\lambda^2 \) and \(\sigma_n \) is the normal-fluid conductivity in the grains. The displacement current \(J_d = -i\omega\varepsilon E \) with the dielectric constant \(\varepsilon \) can be neglected for a microwave range of \(\omega/2\pi \sim \) GHz. Ampère’s law \(\mu_0^{-1}\nabla \times B = (\sigma_n + i\sigma_s)E \) is thus reduced to

\[
E = -i\omega\Lambda_g^2\nabla \times B, \tag{1}
\]

where \(\Lambda_g \) is the intragrain ac field penetration depth defined by

\[
\Lambda_g^{-2} = \omega\mu_0(\sigma_s - i\sigma_n) = \lambda^{-2} - i\omega\mu_0\sigma_n. \tag{2}
\]

Combining Eq. (1) with Faraday’s law, \(\nabla \times E = i\omega B \), we obtain the London equation for magnetic induction \(B = B_z(x,y)\hat{z} \) for \(y \neq ma \) as

\[
B_z - \Lambda_g^2\nabla^2 B_z = 0. \tag{3}
\]

For ideal homogeneous superconductors without GBs, Eq. (3) is valid for \(-\infty < y < +\infty \) and the solution is simply given by

\[
B_z(x) = \mu_0 H_0 e^{-x/\Lambda_s}, \tag{4}
\]

where type II superconductors with laminar GBs.
the electric field is obtained from Eq. (1) as $E_y(x) = -i\omega\mu_0\lambda_y H_0 e^{-x/\Lambda_s}$. The surface impedance $Z_{s0} = R_{s0} - iX_{s0}$ for homogeneous superconductors is given by $Z_{s0} = E_y(x = 0)/H_0 = -i\omega\mu_0\Lambda_g$. The surface resistance $R_{s0} = \text{Re}(Z_{s0})$ and reactance $X_{s0} = -\text{Im}(Z_{s0})$ of ideal homogeneous superconductors without GBs are given by

$$R_{s0} = \mu_0^2 \omega^2 \lambda^3 \sigma_n/2, \quad (4)$$

$$X_{s0} = \mu_0 \omega \lambda \quad (5)$$

for $\sigma_n/\sigma_s \ll 1$ well below the superconducting transition temperature T_c.

C. Josephson-junction model for intergrain current

We adopt the Josephson-junction model14,15,16 for tunneling current across GBs at $y = ma$. Behavior of the GB junctions is determined by the gauge-invariant phase difference across GBs, $\varphi_j(x)$, and the voltage induced across GB, $V_j(x)$, is given by the Josephson’s relation,

$$\int_{y=ma-0}^{y=ma+0} E_y dy = V_j = \frac{\phi_0}{2\pi} (-i\omega \varphi_j), \quad (6)$$

where ϕ_0 is the flux quantum. The tunneling current parallel to the y axis is given by the sum of the superconducting tunneling current (i.e., Josephson current) $J_{sj} = J_{sj}\sin \varphi_j$ and the normal tunneling current (i.e., quasiparticle tunneling current) $J_{nj} = \gamma_{nj} V_j$. The critical current density J_{cJ} at GB junctions is one of the most important parameters in the present paper, and the resistance-area product of GB junctions corresponds to $1/\gamma_{nj}$. We neglect the displacement current across GBs, $J_{dj} = -i\omega C_j V_j$ where C_j is the capacitance of the GB junctions.

Here we define the Josephson length λ_J and the characteristic current density J_0 as

$$\lambda_J = (\phi_0/4\pi\mu_0 J_{cJ}\lambda)^{1/2}, \quad (7)$$

$$J_0 = \phi_0/4\pi\mu_0 \lambda^3. \quad (8)$$

The ratio $J_{cJ}/J_0 = (\lambda/\lambda_J)^2$ characterizes the coupling strength of GB junctions.22 For weakly coupled GBs, namely, $J_{cJ}/J_0 = (\lambda/\lambda_J)^2 \ll 1$ (e.g., high-angle GBs), electrodynamics of the GB junctions can be well described by the weak-link model.14,15,16 For strongly coupled GBs, namely, $J_{cJ}/J_0 = (\lambda/\lambda_J)^2 \geq 1$ (e.g., low-angle GBs), the Josephson-junction model is still valid but requires appropriate boundary conditions at GBs, as given in Eq. (4) in Ref.22 as pointed out by Gurevich; see also Refs.21 and24.

In the small-microwave-power limit such that $\sin \varphi_j \simeq \varphi_j = 2\pi V_j/(-i\omega \phi_0)$ for $|\varphi_j| \ll 1$, the J_{cJ} is reduced to

$$J_{sj} \simeq J_{cJ}\varphi_j = i\gamma_{sj} V_j, \quad (9)$$

where $\gamma_{sj} = 2\pi J_{cJ}/\phi_0 = 1/2\mu_0 \lambda^2 \gamma_{nj}$. The total tunneling current across GB is thus given by

$$-\frac{1}{\mu_0} \frac{\partial B_z}{\partial x} \bigg|_{y=ma} = J_{sj} + J_{nj} = (i\gamma_{sj} + \gamma_{nj}) V_j. \quad (10)$$

Integration of Faraday’s law, $\partial E_y/\partial x - \partial E_z/\partial y = i\omega B_z$, yields

$$E_z(x, y = ma + 0) - E_z(x, y = ma - 0) = \int_{y=ma-0}^{y=ma+0} dy \left[\frac{\partial E_y(x, y)}{\partial x} - i\omega B_z(x, y) \right] = \frac{\partial V_j(x)}{\partial x} \quad (11)$$

where we used Eq. (10). The static version (i.e., $\omega \to 0$) of Eq. (11) corresponds to Eq. (4) in Ref.22 Substitution of Eqs. (10) and (11) into Eq. (11) yields the boundary condition for B_z at $y = ma$,

$$-\frac{\partial B_z}{\partial y} \bigg|_{y=ma+0} + \frac{\partial B_z}{\partial y} \bigg|_{y=ma-0} = \frac{a\lambda_J^2 \partial^2 B_z}{\Lambda_g^2 \partial x^2} \bigg|_{y=ma}, \quad (12)$$

where Λ_j is the characteristic length for ac field penetration into GBs defined by

$$\Lambda_j^{-2} = \omega \mu_0 a (\gamma_{sj} - i\gamma_{nj}) = \mu_0 a (2\pi J_{cJ}/\phi_0 - i\omega \gamma_{nj}). \quad (13)$$

III. SURFACE IMPEDANCE

A. Microwave field and surface impedance

Equations (3) and (12) are combined into a single equation for $x > 0$ and $-\infty < y < +\infty$ as

$$B_z - \lambda_g^2 \nabla^2 B_z = a\lambda_J^2 \sum_{m=-\infty}^{+\infty} \frac{\partial^2 B_z}{\partial x^2} \delta(y - ma), \quad (14)$$

whose solution is calculated as

$$B_z(x, y) = e^{-x/\Lambda_s} + \frac{2}{\pi} \int_0^\infty dk \frac{\cosh[K(y - a/2)]}{\Lambda_g^2 K^2 \sinh[Ka/2]} \times \frac{k \sin kx}{(2\lambda_g^2/a\lambda_J^2) + k^2 \coth[Ka/2]} \quad (15)$$

for $0 < y < a$, where $K = (k^2 + \lambda_g^{-2})^{1/2}$. The right-hand side of Eq. (15) and the second term of the right-hand side of Eq. (15) reflect the GB effects. See Appendix A for the derivation of Eq. (15) from Eq. (14).

Electric field in the grains is obtained from Eq. (11) as $E_y = i\omega \lambda_g^2 \partial B_z/\partial x$, and voltage induced across GB is obtained from Eq. (11) as $V_j = i\omega \Lambda_J^2 \partial B_z/\partial x \bigg|_{y=0}$. The mean electric field \bar{E}_S at the surface of the superconductor is thus calculated as

$$\bar{E}_S = \frac{1}{a} \int_{-a}^{a} dy E_y(x = 0, y)$$
Substitution of Eq. (14) into Eq. (16) yields the surface impedance \(Z_s = R_s - iX_s = \tilde{E}_s/H_0 \) as
\[
\frac{Z_s}{-i\omega \mu_0 \Lambda_g} = 1 + \frac{2}{\pi} \int_0^\infty \frac{dk}{k^3} \frac{1}{(\Lambda_g^2/k^2) + (k^2\sigma_s/2) \coth(Ka/2)}.
\]
(17)
The surface resistance and reactance are given by \(R_s = \text{Re}(Z_s) \) and \(X_s = -\text{Im}(Z_s) \), respectively.

B. Microwave dissipation and surface resistance

The time-averaged electromagnetic energy passing through the surface of a superconductor at \(x = 0 \) and \(-a < y < a - 0 \) is given by the real part of
\[
\mathcal{E} = \frac{1}{2\mu_0} \int_{-a}^{a} dy \left(E_y B_z \right)_{x=0} = \frac{a}{2} \tilde{E}_s H_0,
\]
(18)
where \(\tilde{E}_s = Z_s H_0 \) is defined by Eq. (10), and \((B_z)_{x=0} = \mu_0 H_0 \). Poynting’s theorem\(^2\) states that \(\mathcal{E} \) is identical to the energy stored and dissipated in the superconductor, thereby
\[
\mathcal{E} = \frac{1}{2} \int_{0}^\infty dx \left[\int_{-a}^{a} \left(\sigma_n - i\sigma_s \right) |E|^2 dy + (\gamma_{nj} - i\gamma_{sj}) |V_j|^2 - \int_{-a}^{a} dy \frac{i\omega}{\mu_0} |B_z|^2 \right].
\]
(19)
The real parts of Eqs. (18) and (19) show that the surface resistance \(R_s = \text{Re}(Z_s) \) is composed of two terms:
\[
R_s = R_{sg} + R_{sj}.
\]
(20)
The intragrain contribution \(R_{sg} \) is from the energy dissipation in the grains, and the intergrain contribution \(R_{sj} \) is from the dissipation at GBs:
\[
R_{sg} = \frac{1}{a|H_0|^2} \int_{0}^\infty dx \int_{-a}^{a} dy \sigma_n |E|^2,
\]
(21)
\[
R_{sj} = \frac{1}{a|H_0|^2} \int_{0}^\infty dx \gamma_{nj} |V_j|^2.
\]
(22)
Both the intragrain current \(|J_g| \) around GBs and the intergrain tunneling current \(|J_f| \) across GBs are suppressed by the GBs, and are increasing functions of \(J_{cj} \). With increasing \(J_{cj} \), the intragrain electric field \(|E| = |J_g/(\sigma_n + i\sigma_s)| \) also increases, whereas the intergrain voltage \(|V_j| = |J_f/(\gamma_{nj} + i\gamma_{sj})| \) decreases because \(\gamma_{nj} \propto J_{cj} \). The dissipation in the grains, \(\sigma_n |E|^2/2 \), and the intragrain contribution to the surface resistance, \(R_{sg} \), therefore, tend to increase with increasing \(J_{cj} \). The dissipation at GBs, \(\gamma_{nj} |V_j|^2/2 \), and the intergrain contribution to the surface resistance, \(R_{sj} \), on the other hand, decrease with increasing \(J_{cj} \).

The surface reactance \(X_s = -\text{Im}(Z_s) \) is also divided into two contributions,
\[
X_s = X_{sg} + X_{sj},
\]
(23)
where the intragrain contribution \(X_{sg} \) and the intergrain contribution \(X_{sj} \) are given by
\[
X_{sg} = \frac{1}{a|H_0|^2} \int_{0}^\infty dx \int_{-a}^{a} dy \left(\sigma_n |E|^2 + \frac{i\omega}{\mu_0} |B_z|^2 \right),
\]
(24)
\[
X_{sj} = \frac{1}{a|H_0|^2} \int_{0}^\infty dx \gamma_{sj} |V_j|^2.
\]
(25)
Both \(X_{sg} \) and \(X_{sj} \) decrease with increasing \(J_{cj} \).

C. Simplified expressions for surface impedance

The following Eqs. (26)–(34) show simplified expressions of the surface impedance \(Z_s \), the surface resistance \(R_s = \text{Re}(Z_s) \), and the surface reactance \(X_s = -\text{Im}(Z_s) \) for certain restricted cases, assuming \(\sigma_n/\sigma_s \ll 1 \) and \(\gamma_{nj}/\gamma_{sj} \ll 1 \) well below the transition temperature.

For small grains of \(a \ll \lambda \) such that \(\coth(Ka/2) \simeq 2/Ka \), Eq. (17) is reduced to
\[
Z_s \simeq -i\omega \mu_0 \left(\Lambda_g^2 + \Lambda_s^2 \right)^{1/2}.
\]
(26) The right-hand side of Eq. (17) is reduced to \(\Lambda_g^2 \partial^2 B_z/\partial x^2 \) for \(a \ll \lambda \), and the effective ac penetration depth is given by \(\Lambda_{\text{eff}} \simeq (\Lambda_g^2 + \Lambda_s^2)^{1/2} \) as in Ref. 21, resulting in the surface impedance given by Eq. (26). The \(R_s \) and \(X_s \) for small grains is obtained as
\[
\frac{R_s}{R_{s0}} \simeq \left(1 + 2\frac{\lambda}{\lambda_{cj}} \right)^{-1/2} \left(1 + 4\frac{\gamma_{nj}}{\sigma_n} \left(\frac{J_0}{\lambda_{cj}} \right)^2 \right),
\]
(27)
\[
\frac{X_s}{X_{s0}} \simeq \left(1 + 2\frac{\lambda}{\lambda_{cj}} \right)^{+1/2},
\]
(28)
where \(R_{s0}, \ X_{s0} \), and \(J_0 \) are defined by Eqs. (14), (5) and (8), respectively. Equation (26) is further simplified when \(a \ll 2\lambda_s^2/\lambda \) for small grain and weakly coupled GBs as
\[
Z_s \simeq -i\omega \mu_0 \Lambda_j,
\]
(29)
and we have

$$\frac{R_s}{R_{s0}} \simeq \frac{2\gamma_{nj}\lambda}{\sigma_n} \left(\frac{2\lambda}{a}\right)^{1/2} \left(\frac{J_0}{J_{cj}}\right)^{3/2},$$

(30)

$$\frac{X_s}{X_{s0}} \simeq \left(\frac{2\lambda}{a}\right)^{1/2} \left(\frac{J_0}{J_{cj}}\right)^{1/2}.$$

(31)

Thus, we obtain the dependence of R_s and X_s on the material parameters as $R_s \propto \gamma_{nj}a^{-1/2}J_{cj}^{-3/2}$ and $X_s \propto a^{-1/2}J_{cj}^{-1/2}$, which are independent of λ. The R_s given by Eq. (30) for the small grain and weakly coupled GBs is mostly caused by intergrain dissipation, $R_s \simeq R_{sj} \gg R_{sg}$. For X_s given by Eq. (31), on the other hand, both intragrain X_{sg} and intergrain X_{sj} contribute to the total $X_s = X_{sg} + X_{sj}$.

For large J_{cj} (i.e., strong-coupling limit) such that $KA_s^2/\Lambda_s^2 \gg (k^2a/2)\coth(Ka/2)$, Eq. (14) for the surface impedance Z_s is simplified as

$$Z_s \simeq -i\omega\mu_0 \left(\Lambda_g + \Lambda_s^2/2\Lambda_g\right),$$

(32)

and we have

$$\frac{R_s}{R_{s0}} \simeq 1 - \frac{\lambda J_0}{\alpha J_{cj}} + 4\frac{\lambda^2\gamma_{nj}}{a\sigma_n} \left(\frac{J_0}{J_{cj}}\right)^2,$$

(33)

$$\frac{X_s}{X_{s0}} \simeq 1 + \frac{\lambda J_0}{\alpha J_{cj}}.$$

(34)

The first and second terms of the right-hand side of Eq. (33) correspond to the intragrain contribution, R_{sj}, whereas the third term corresponds to the intergrain contribution, R_{sj}.

IV. DISCUSSION

Figure 1(a) and (b) shows J_{cj} dependence of R_s. As shown in Fig. 1(a), the intergrain contribution R_{sj} is dominant for weakly coupled GBs (i.e., small J_{cj}/J_0 regime), whereas the intragrain contribution R_{sg} is dominant for strongly coupled GBs (i.e., large J_{cj}/J_0). The R_{sj} decreases with increasing J_{cj} as $R_{sj} \propto J_{cj}^{-1.5}$ [see Eq. (33)], whereas R_{sg} increases with J_{cj}. The resulting surface resistance $R_s = R_{sj} + R_{sg}$ nonmonotonically depends on J_{cj} and has a minimum, because R_s is determined by the competition between R_{sj} and R_{sg}. As shown in Fig. 1(c), on the other hand, X_s monotonically decreases with increasing J_{cj} [i.e., $X_s \propto J_{cj}^{-0.5}$ for weakly coupled GBs as in Eq. (34)].

The nonmonotonic dependence of R_s on the grain size a is also seen in Fig. 1(b). For small J_{cj}/J_0 the R_s decreases with increasing a as $R_s \propto a^{-0.5}$ [see Eq. (34)], whereas R_s increases with a for large J_{cj}/J_0.

The R_s for strongly coupled GBs can be smaller than R_{s0} for ideal homogeneous superconductors without GBs, namely, $R_s/R_{s0} < 1$ for $J_{cj}/J_0 \approx 1$. The minimum surface resistance for $\lambda\gamma_{nj}/\sigma_n = 0.2$ is $R_s/R_{s0} \approx 0.97$ for $a/\lambda = 5$, $R_s/R_{s0} \approx 0.86$ for $a/\lambda = 1$, and $R_s/R_{s0} \approx 0.59$ for $a/\lambda = 0.1$. The minimum R_s/R_{s0} is further reduced when $\lambda\gamma_{nj}/\sigma_n$ is further reduced.

Theoretical results shown above may possibly be observed by measuring R_s, X_s, and J_{cj} in Ca doped YBa$_2$Cu$_3$O$_{7-\delta}$ films. The enhancement of J_{cj} (Ref. 14) and reduction of R_s (Ref. 15) by Ca doping are individ-
ually observed in YBa$_2$Cu$_3$O$_{7-\delta}$, but simultaneous measurements of J_{c2} and R_s are needed to investigate the relationship between R_s and J_{c2}. The nonmonotonic J_{c2} dependence of R_s for strongly coupled GBs may be observed in high quality films with small grains $a < \lambda$ and with large J_{c2} on the order of $J_0 \sim 10^{10}$ A/m2 at low temperatures.

V. CONCLUSION

We have theoretically investigated the microwave-field distribution in superconductors with laminar GBs. The field calculation is based on the two-fluid model for current transport in the grains and on the Josephson-junction model for tunneling current across GBs. Results show that the microwave dissipation at GBs is dominant for weakly coupled GBs of $J_{c2} \ll J_0$, whereas dissipation in the grains is dominant for strongly coupled GBs of $J_{c2} \gg J_0$. The surface resistance R_s nonmonotonically depends on J_{c2}; the R_s decreases with increasing J_{c2} as $R_s \propto J_{c2}^{-1.5}$ for $J_{c2} \ll J_0$, whereas R_s increases with J_{c2} for $J_{c2} \gg J_0$. The intragrain dissipation can be suppressed by GBs, and the surface resistance of superconductors with GBs can be smaller than that of ideal homogeneous superconductors without GBs.

Acknowledgments

I gratefully acknowledge H. Obara, J.C. Nie, A. Sawa, M. Murugesan, H. Yamasaki, and S. Kosaka for stimulating discussions.

APPENDIX A

Equation (15) is derived by solving Eq. (14) with the boundary condition of $B_z = \mu_0 H_0$ at $x = 0$, as follows. We introduce the Fourier transform of $B_z(x, y)$ and

$$B_z(x, ma) = B_z(x, 0)$$

respectively. The Fourier transform of Eq. (14) leads to

$$\hat{b}(k, q) = \int_0^\infty dx \int_{-\infty}^{+\infty} dy B_z(x, y)e^{-iqy} \sin kx, \quad (A1)$$

$$\hat{b}_0(k) = \int_0^\infty dx B_z(x, 0) \sin kx = \int_{-\infty}^{+\infty} dq \frac{\hat{b}(k, q)}{2\pi}, \quad (A2)$$

where $K = (k^2 + \Lambda_0^2)^{1/2}$ and $\alpha = \alpha^0 k^2 / \Lambda_0^2$. Substituting Eq. (A3) into Eq. (A2), we have

$$\hat{b}_0(k) = \frac{k}{\mu_0 H_0} + \alpha k \sum_m \int_{-\infty}^{+\infty} dq \frac{e^{-imq \Lambda_0^2}}{2\pi [K^2 + q^2]}.$$

which is reduced to

$$\frac{\hat{b}_0(k)}{\mu_0 H_0} = \frac{1}{k K \Lambda_0^2} \frac{2}{2K + \alpha k^2 \coth(Ka/2)} \frac{1}{k} \hat{b}_0(k), \quad (A4)$$

$B_z(x, y)$ is calculated from $\hat{b}(k, q)$ given by Eq. (A3) as

$$B_z(x, y) = \frac{2}{\pi} \int_0^\infty dk \int_{-\infty}^{+\infty} dq \frac{\hat{b}(k, q)}{\mu_0 H_0} e^{iqy} \sin kx$$

$$= e^{-x/\Lambda_s} + \frac{2\alpha}{\pi} \int_0^\infty dk k \sin kx \left[1 - \frac{k \hat{b}_0(k)}{\mu_0 H_0} \right]$$

$$\times \sum_m \int_{-\infty}^{+\infty} dq e^{iq(y-ma)} \frac{e^{-imq \Lambda_0^2}}{2\pi [K^2 + q^2]}.$$

Substitution of Eq. (A5) into Eq. (A6) yields Eq. (16).

1. G. Deutscher and K.A. Müller, Phys. Rev. Lett. 59, 1745 (1987).
2. J. Mannhart and H. Hilgenkamp, Physica C 317-318, 383 (1999).
3. D. Larbalestier, A. Gurevich, D.M. Feldmann, and A. Polyanskii, Nature 414, 368 (2001).
4. H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys. 74, 485 (2002).
5. T.L. Hylton, A. Kapitulnik, M.R. Beasley, J.P. Carini, L. Drabeck, and G. Grüner, Appl. Phys. Lett. 53, 1343 (1988).
6. C. Attanasio, L. Maritato, and R. Vaglio, Phys. Rev. B 43, 6128 (1991).
7. J. Halbritter, J. Appl. Phys. 71, 339 (1992).
8. P.P. Nguyen, D.E. Oates, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 48, 6400 (1993).
9. R. Fagerberg, and J.K. Grepstad, J. Appl. Phys. 75, 7408 (1994).
10. M. Mahel, Solid State Commun. 97, 209 (1996).
11. J. McDonald and J.R. Clem, Phys. Rev. B 56, 14 723 (1997).
12. J.C. Gallop, A. Cowie, and L.F. Cohen, Physica C 282-287, 1577 (1997).
13. H. Obara, A. Sawa, H. Yamasaki, and S. Kosaka, Appl. Phys. Lett. 78, 646 (2001).
14. A. Barone and G. Paternò, Physics and Applications of the Josephson Effect (Wiley, New York, 1982).
15. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).
16. T. Van Duzer and C.W. Turner, Principles of Supercon-
ductive Devices and Circuits, 2nd ed. (Prentice Hall, New Jersey, 1999).

17 D. Dimos, P. Chaudhari, J. Mannhart, and F.K. LeGoues, Phys. Rev. Lett. 61, 219 (1988); D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B 41, 4038 (1990).

18 A. Gurevich and E.A. Pashitskii, Phys. Rev. B 57, 13878 (1998).

19 A. Schmehl, B. Goetz, R. R. Schulz, C. W. Schneider, H. Bielefeldt, H. Hilgenkamp, and J. Mannhart, Europhys. Lett. 47, 110 (1999); C.W. Schneider, R.R. Schulz, B. Goetz, A. Schmehl, H. Bielefeldt, H. Hilgenkamp, and J. Mannhart, Appl. Phys. Lett. 75, 850 (1999); G. Hammerl, A. Schmehl, R.R. Schulz, B. Goetz, H. Bielefeldt, C.W. Schneider, H. Hilgenkamp, and J. Mannhart, Nature (London) 407, 162 (2000).

20 M.W. Coffey and J.R. Clem, Phys. Rev. Lett. 67, 386 (1991); E.H. Brandt, ibid. 67, 2219 (1991).

21 T.L. Hylton and M.R. Beasley, Phys. Rev. B 39, 9042 (1989).

22 A. Gurevich, Phys. Rev. B 46, R3187 (1992).

23 Yu.M. Ivanchenko and T.K. Soboleva, Phys. Lett. A 147, 65 (1990); R.G. Mints and I.B. Snapiro, Phys. Rev. B 51, 3054 (1995); V.G. Kogan, V.V. Dobrovitski, J.R. Clem, Y. Mawatari, and R.G. Mints, Phys. Rev. B 63, 144501 (2001).

24 J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).