ON REFLECTIVE-COREFLECTIVE EQUIVALENCE
AND ASSOCIATED PAIRS

ERIK BÉDOS, S. KALISZEWSKI, AND JOHN QUIGG

Abstract. We show that a reflective/coreflective pair of full subcategories satisfies a “maximal-normal”-type equivalence if and only if it is an associated pair in the sense of Kelly and Lawvere.

1. Introduction

In a recent paper [1] we explored a special type of category equivalence between reflective/coreflective pairs of subcategories that we first encountered in the context of crossed-product duality for C^*-algebras. Because our main example of this phenomenon involved categories of maximal and normal C^*-coactions of locally compact groups, we called it a “maximal-normal”-type equivalence.

Since then, F. W. Lawvere has drawn our attention to [3], where G. M. Kelly and he introduced the concept of associated pairs of subcategories. The purpose of this short note is to show that these two notions of equivalence are the same: a reflective/coreflective pair of full subcategories satisfies the “maximal-normal”-type equivalence considered in [1] if and only if it is an associated pair in the sense of [3].

As operator algebraists, we had hoped with [1] to initiate a cross-fertilization between operator algebras and category theory, and we are grateful to Ross Street for the role he has played in helping this happen. Our understanding of the operator-algebraic examples has certainly been deepened by this connection; ideally, the techniques and examples of “maximal-normal”-type equivalence will in turn provide a way of looking at associated pairs that will also be useful to category theorists.

Date: December 20, 2011.

2000 Mathematics Subject Classification. Primary 18A40; Secondary 46L55, 46L89.

Key words and phrases. Reflective and coreflective subcategories, equivalent categories, associated pairs of subcategories.
2. Maximal-normal equivalences and associated pairs

Our conventions regarding category theory follow [4]; see also [1]. Throughout this note, we let \(\mathcal{M} \) and \(\mathcal{N} \) denote full subcategories of a category \(\mathcal{C} \), with \(\mathcal{N} \) reflective and \(\mathcal{M} \) coreflective. The inclusion functors \(I : \mathcal{M} \to \mathcal{C} \) and \(J : \mathcal{N} \to \mathcal{C} \) are then both full and faithful. We also use the following notation:

- \(\mathcal{N} \): \(\mathcal{C} \to \mathcal{N} \) is a reflector and \(\theta : 1 \mathcal{C} \to J \mathcal{N} \) denotes the unit of the adjunction \(\mathcal{N} \dashv J \);
- \(\mathcal{M} \): \(\mathcal{C} \to \mathcal{M} \) is a coreflector and \(\psi : I \mathcal{M} \to 1 \mathcal{C} \) denotes the counit of the adjunction \(I \dashv \mathcal{M} \).

In [1, Corollary 4.4] we showed that the adjunction \(NI \dashv MJ \) is an adjoint equivalence between \(\mathcal{M} \) and \(\mathcal{N} \) if and only if

(I) for each \(y \in \text{Obj } \mathcal{N} \), \((y, \psi_y) \) is an initial object in the comma category \(\mathcal{M}y \downarrow \mathcal{N} \); and

(F) for each \(x \in \text{Obj } \mathcal{M} \), \((x, \theta_x) \) is a final object in the comma category \(\mathcal{M} \downarrow \mathcal{N}x \).

In all our examples in [1], the adjoint equivalence \(NI \dashv MJ \) between \(\mathcal{M} \) and \(\mathcal{N} \) was what we called the “maximal-normal” type (recall that this terminology was motivated by the particular example of maximal and normal coactions on \(C^* \)-algebras; see [1, Corollary 6.16]): in addition to (I) and (F), such an adjunction satisfies

(A) for each \(z \in \text{Obj } \mathcal{C} \), \((Nz, \theta_z \circ \psi_z) \) is an initial object in \(\mathcal{M}z \downarrow \mathcal{N} \).

Equivalently, by [1, Theorem 3.4], (I) and (F) hold, and

(B) for each \(z \in \text{Obj } \mathcal{C} \), \((Mz, \theta_z \circ \psi_z) \) is a final object in \(\mathcal{M} \downarrow \mathcal{N}z \).

In fact, conditions (A) and (B) alone suffice:

Proposition 2.1. The adjunction \(NI \dashv MJ \) between \(\mathcal{M} \) and \(\mathcal{N} \) is a “maximal-normal” adjoint equivalence if and only if (A) and (B) hold.

Proof. By [1, Theorem 4.3], (I) is equivalent to

(I′) for each \(y \in \text{Obj } \mathcal{N} \), \(N \psi_y : NM \mathcal{N} \to \mathcal{N} \) is an isomorphism,

while (F) is equivalent to

(F′) for each \(x \in \text{Obj } \mathcal{M} \), \(M \theta_x : M \mathcal{N}x \to M \mathcal{N} \) is an isomorphism.

On the other hand, by [1, Theorem 3.4], (A) is equivalent to

(A′) for each \(z \in \text{Obj } \mathcal{C} \), \(N \psi_z \) is an isomorphism,

while (B) is equivalent to

(B′) for each \(z \in \text{Obj } \mathcal{C} \), \(M \theta_z \) is an isomorphism.

Now clearly, (A′) implies (I′) and (B′) implies (F′), so (A) implies (I) and (B) implies (F). \(\square \)
We now recall from [2, 3] that a morphism f in $C(x, y)$ and an object z of C are said to be orthogonal when the map $\Phi_{f, z}$ from $C(y, z)$ into $C(x, z)$ given by $\Phi_{f, z}(g) = g \circ f$ is a bijection. The collection of all morphisms in C that are orthogonal to every object of \mathcal{N} is denoted by \mathcal{N}^\perp.

As shown in [3, Proposition 2.1], a morphism $f : x \to y$ in C belongs to \mathcal{N}^\perp if and only if f is inverted by \mathcal{N}, that is, $\mathcal{N}f$ is an isomorphism. (The standing assumption in [3] that \mathcal{N} is replete is not necessary for this fact to be true. To see this, note that $\mathcal{N}f$ is an isomorphism if and only if the map $\Psi_{f, z}$ from $\mathcal{N}(Ny, z)$ into $\mathcal{N}(Nx, z)$ given by $\Psi_{f, z}(h) = h \circ \mathcal{N}f$ is a bijection for each object z of \mathcal{N}. For each such z, the universal properties of θ imply that the map $\tau_{w, z}$ from $\mathcal{N}(Nw, z)$ into $C(w, z)$ given by $\tau_{w, z}(g) = g \circ \theta_w$ is a bijection for each object w of C. Now, as $\theta_y \circ f = \mathcal{N}f \circ \theta_x$, the diagram

$$
\begin{array}{ccc}
\mathcal{N}(Ny, z) & \xrightarrow{\Psi_{f, z}} & \mathcal{N}(Nx, z) \\
\tau_{y, z} & & \tau_{x, z} \\
C(y, z) & \xrightarrow{\phi_{f, z}} & C(x, z)
\end{array}
$$

is readily seen to commute. It follows that $\Psi_{f, z}$ is a bijection if and only if $\Phi_{f, z}$ is a bijection. This shows that $\mathcal{N}f$ is an isomorphism if and only if f is orthogonal to z for each object z of \mathcal{N}, i.e., if and only if f belongs to \mathcal{N}^\perp.)

Similarly, a morphism f in $C(x, y)$ and an object z in C are co-orthogonal when the map $g \to f \circ g$ from $C(z, x)$ into $C(z, y)$ is a bijection. The collection of all morphisms in C that are co-orthogonal to every object in \mathcal{M} is denoted by \mathcal{M}^\top. Equivalently, a morphism $f : x \to y$ in C belongs to \mathcal{M}^\top if and only if f is inverted by \mathcal{M}, that is, if and only if $\mathcal{M}f$ is an isomorphism.

The pair $(\mathcal{N}, \mathcal{M})$ is called an associated pair if $\mathcal{N}^\perp = \mathcal{M}^\top$; equivalently, if for every morphism f in C, \mathcal{N} inverts f if and only if \mathcal{M} does.

We refer to [3, Section 2] for more information concerning this concept (in the case where both \mathcal{M} and \mathcal{N} are also assumed to be replete).

Theorem 2.2. The adjunction $NI \dashv MJ$ is a “maximal-normal” adjoint equivalence if and only if $(\mathcal{N}, \mathcal{M})$ is an associated pair.

Proof. First assume that $(\mathcal{N}, \mathcal{M})$ is an associated pair, and let x be an object in C. As pointed out above, the map $\tau_{x, z}$ is a bijection from $\mathcal{N}(Nx, z)$ into $C(x, z)$ for each object z of \mathcal{N}. But $\Phi_{\theta_x, z} = \tau_{x, z}$, so this means that θ_x lies in \mathcal{N}^\perp, and therefore in \mathcal{M}^\top. As \mathcal{M}^\top consists of the morphisms in C that are inverted by \mathcal{M}, we deduce that $M\theta_x$ is
an isomorphism. This shows that (B') holds, and therefore that (B) holds. The argument that (A) holds is similar, so \(NI \dashv MJ \) is a “maximal-normal” adjoint equivalence by Proposition 2.1.

Now assume that the adjunction \(NI \dashv MJ \) is a “maximal-normal” adjoint equivalence. Then \(N \cong NIM \) by [1, Proposition 5.3], and \(NI \) is an equivalence. So for any morphism \(f \) of \(C \), we have

\[
Nf \text{ is an isomorphism } \iff NIMf \text{ is an isomorphism } \iff Mf \text{ is an isomorphism.}
\]

Thus \((\mathcal{N}, \mathcal{M})\) is an associated pair. \(\square\)

Remark 2.3. In the examples presented in [1, Section 6], the adjunctions \(NI \dashv MJ \) are “maximal-normal” adjoint equivalences, so all the pairs \((\mathcal{N}, \mathcal{M})\) there are associated pairs. Moreover, all these pairs consist of subcategories that are easily seen to be replete. It follows from [3, Theorem 2.4] that \(\mathcal{M} \) and \(\mathcal{N} \) are uniquely determined as subcategories by each other, a fact that is not \textit{a priori} obvious in any of the examples.

References

[1] E. Bédos, S. Kaliszewski and J. Quigg, *Reflective-coreflective equivalence*, Th. Appl. Cat. 25 (2011), 142–179.

[2] C. Cassidy, M. Hébert and G.M. Kelly, *Reflective subcategories, localizations and factorization systems*, J. Austral. Math. Soc. 38 (Séries A) (1985), 287–329.

[3] F.W. Lawvere and G.M. Kelly, *On the Complete Lattice of Essential Localizations*, Bull. Soc. Math. Belg. Sér A 41 (1989), 289–319.

[4] S. Mac Lane, *Categories for the working mathematician*, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.

Institute of Mathematics, University of Oslo, P.B. 1053 Blindern, 0316 Oslo, Norway

E-mail address: bedos@math.uio.no

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287

E-mail address: kaliszewski@asu.edu

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287

E-mail address: quigg@asu.edu