Breastfeeding and the risk of dental caries: a systematic review and meta-analysis

R Tham1, G Bowatte1, SC Dharmage1,2, DJ Tan1,3, MXZ Lau1, X Dai1, KJ Allen2,4, CJ Lodge (clodge@unimelb.edu.au)1,2

1 Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Vic., Australia
2 Murdoch Childrens Research Institute and University of Melbourne Department of Paediatrics, Royal Children’s Hospital, Parkville, Vic., Australia
3 NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, TAS, Australia
4 Institute of Inflammation and Repair, University of Manchester, UK

INTRODUCTION

Dental caries (tooth decay) is a major public health problem affecting 60–90% of school-aged children (1), with increased prevalence in children from lower socio-economic groups (2). It is caused by multi-factorial and complex interactions between cariogenic bacteria in the mouth with dietary carbohydrates that produce acids and demineralise the teeth (2). The pain and infection caused by dental caries can be extremely distressing and can impact on quality of life and ability to function (3), lead to lost productivity and involve high health care costs (4) including general anaesthesia for treatment of severe cases. This accounts for one of the most common causes of child hospitalisation in industrialised countries (5) and is among the most common causes of avoidable child hospitalisations (6). Early loss of deciduous dentition can lead to ongoing dental problems in the permanent dentition.

The evidence concerning infant feeding as a risk factor for dental caries is inconsistent. Dental caries risk is related to the carbohydrate content of breast milk or formula along with factors which determine the length of contact between breast milk or formula and the erupted dentition (i.e. frequency of feeding, and feeding practices which result in pooling of breast milk or formula around the teeth surfaces, such as feeding babies to sleep). The central determinant of caries risk, however, is the age of colonisation and levels of cariogenic bacteria (e.g. Streptococcus mutans) (7) in an infant’s mouth. Earlier and denser oral colonization by cariogenic bacteria are related to increased caries risk (8). Breast milk, in contrast to formula, contains breast-specific...
Lactobacilli and substances, including human casein and secretory IgA, which inhibit the growth and adhesion of cariogenic bacteria, particularly oral Streptococci (9,10). The risk of dental caries is also dependent on the presence of teeth and rises with increasing number of teeth. Risk also changes as the infant’s diet starts to include foods and drinks other than breast milk or formula, depending on the carbohydrate content, acidity and consumption frequency of the introduced diet.

The important aspect of timing of tooth eruption for our systematic review is that the deciduous teeth most at risk of early childhood caries (eight upper and lower central and lateral incisors) start to erupt at 6 months and are fully erupted by 12 months. The next most vulnerable deciduous teeth (four upper and lower first molars) erupt between 13 and 19 months, the remainder are erupted by 33 months (11).

Current WHO breastfeeding guidelines recommend exclusive feeding for the first 6 months of life and complementary breastfeeding up to 2 years (12). Although the UNICEF calculated global prevalence of breastfeeding at 12 months from 62 countries is 74%, this figure hides the underlying heterogeneity between countries (13). As opposed to low income countries, the duration of total breastfeeding in high/middle income countries is shorter with only 21% of US mothers breastfeeding at 12 months (14) and similar rates in the UK (13), Canada (5) and Australia (15). National guidelines in high/middle income countries, where the risk of infant morbidity and mortality from gastrointestinal disease is relatively low, recommend breastfeeding for at least 12 months (16). Thus, investigating windows of exposure before and after 12 months of age is relevant to breastfeeding guidelines and practices as well as timing of tooth eruption.

The relationship between breastfeeding and dental caries has been systematically (17) and narratively reviewed (18–20) with conflicting results between studies. There is controversy about what constitutes the best form of infant feeding to prevent dental caries and promote optimal dental health (21). Consequently no definitive optimal weaning times or breastfeeding practices have been determined to specifically address the risk of dental caries.

AIM

To summarise the current evidence for the association between breastfeeding and dental caries with specific reference to exposure windows and breastfeeding practices.

METHODS

Search strategy

We identified human English language studies through systematically searching electronic databases: PubMed Central, CINAHL and EMBASE from inception to the present. Our exposure of interest was breastfeeding as compared to formula or other feeding. Our outcome of interest was the development of dental caries in deciduous or permanent teeth. An extensive list of search terms was used and is reported in Table 1.

We checked reference lists of all primary studies and review articles for additional references. The titles and abstracts were independently reviewed for initial inclusion by two researchers (RT and GB). Disagreement was resolved by discussion and if consensus could not be reached, a third author (CL) made the final decision.

Table 1	Search terms used for the three databases electronically searched
[PUBMED]	#1 "Breast Feeding"[Mesh]
	#2 "Milk, Human"[Mesh]
	#3 Breast[All Fields] AND Feed*[All Fields]
	#4 Breast-fe*[All Fields]
	#5 Infant fe* [All Fields]
	#6 Infant nutrition* [All Fields]
	#7 #1 OR #2 OR #3 OR #4 OR #5 OR 6
	#8 Dental caries (MeSH)
	#9 Tooth decay
	#10 “Early childhood caries”
	#11 “Nursing bottle caries”
	#12 #8 OR #9 OR #10 OR #11
	#13 animals [mh] NOT humans [mh]
	#14 #7 AND #12
	#15 #14 NOT #13
[EMBASE]	#1 ‘breast feeding’/exp
	#2 ‘breast milk’/exp
	#3 Breast AND Feed*
	#4 Breast-fe*
	#5 Infant fe*
	#6 Infant nutrition*
	#7 #1 OR #2 OR #3 OR #4 OR #5 OR 6
	#8 ‘dental caries’/exp
	#9 Tooth decay
	#10 “Early childhood caries”
	#11 “Nursing bottle caries”
	#12 #8 OR #9 OR #10 OR #11
	#13 [animals]/lim NOT [humans]/lim
	#14 #7 AND #12
	#15 #14 NOT #13
[CINAHL]	#1 “Breast Feeding”
	#2 “Milk, Human”
	#3 Breast AND Feed*
	#4 Breast-fe*
	#5 Infant fe*
	#6 Infant nutrition*
	#7 S1 OR S2 OR S3 OR S4 OR S5 OR S6
	#8 dental caries
	#9 tooth decay
	#10 early childhood caries
	#11 nursing bottle caries
	#12 S8 OR S9 OR S10 OR S11
	#13 S7 AND S12
For #13 limit to ‘Human’	
Eligibility criteria
We included observational and experimental studies published in full text. We included children and adolescents from both general and high-risk populations (e.g. low socio-economic communities). Dental caries as reported by appropriately qualified practitioner/researchers, a parent or through health records databases were included. We excluded participants who were born prematurely (<36 weeks gestation) because these infants are often fed by other sources and can have complicated medical interventions.

Assessment of quality and risk of bias
Two researchers (RT and GB) independently conducted a quality assessment of each study using the Newcastle-Ottawa Scale (NOS) (22). Study quality was graded on a scoring system (see Tables 2–5 for key criteria). Differences in assessment and grading were resolved by discussion with a third researcher (CL).

The assessment of risk of bias was guided by the GRADE system for rating the quality of the evidence of observational studies (23).

Literature review identified key confounders that should be controlled for in breastfeeding and dental caries studies: socio-economic status, age, mother’s educational level, number of teeth, and exposure to sugar in the diet (food or other liquid).

Data extraction
We extracted: study design; study country; age range of children; number of children; exposure and outcome definitions; how the outcome data were measured; effect estimates; confounders included in analysis; sub-group analysis; interactions; and findings.

Assessment for meta-analysis
Exposure and outcome definitions and effect estimates (odds ratios (OR), relative risks, prevalence ratios) with 95% Confidence Interval (95%CI) were abstracted where available for inclusion in a meta-analysis. Given the biological plausibility of the potential associations, we aimed to assess exposure to breastfeeding in two specific time windows: (i) Up to 12 months of age (upper and lower incisors present) and (ii) Beyond 12 months of age (other teeth erupting up to 33 months- increased risk of caries). As there were very few mothers who exclusively breastfed infants until 12 months or beyond, within these time windows we categorized studies into: (i) Never breastfed compared to any breastfeeding and (ii) More versus less breastfeeding. This category was created to include all

Table 2 Newcastle-Ottawa Quality Assessment score for Cohort studies nested in Randomized Controlled Trials
RCT

Feldens et al. (30)
Feldens et al. (27)

Table 3 Newcastle-Ottawa Scale Quality Assessment score for Cohort Studies
Cohort studies

Feldens et al. (25)
Chaffee et al. (26)
Hong et al. (31)
Kramer et al. (29)
Kramer et al. (28)
Ollila (38)
Silver (32)
Tada et al. (33)
Tanaka et al. (34)
Thitasomakul et al. (35)
van Palenstein
Helderman et al. (36)
Yonezu et al. (37)
studies, which compared groups with relatively more (longer duration of breastfeeding) and relatively less breast milk exposure (shorter duration). To choose between multiple reported ORs for a single study we preferentially selected: estimates for exclusive breastfeeding or, if not available, any breastfeeding; then the longest duration compared with the shortest. If there were multiple ages of outcome within the particular group then we chose the oldest age reported.

We performed meta-analysis if there were three or more studies in each time window and category of breastfeeding. Random effects meta-analyses were performed if the heterogeneity (I^2) was $>$25%. Heterogeneity was considered to be high, and results unreliable if I^2 values were $>$75%. We were unable to quantitatively assess for publication bias as no group contained more than 10 studies. Studies not meeting these criteria were qualitatively assessed.

Statistical analysis was performed using Stata IC 15 (StataCorp., LP Texas, USA).

RESULTS

Search results

Electronic literature search (2 October 2014) and manual search found 480 peer-reviewed scientific articles after duplicate papers were removed. Of these, 366 were excluded after abstract review for failing to meet the eligibility criteria. A large number of these papers were not related to breastfeeding or dental caries, were not in English or were not original research. Of the remaining 114 full text articles, 51 were excluded as: (i) they did not assess the relevant exposure (breastfeeding) and outcome (dental caries) or (ii) all feeding types were analysed together or (iii) data were duplicated in more than one paper or (iv) no analysis was reported or studies lacked control or comparator groups [Fig. 1 (24)]. In total 63 papers were included.

Characteristics of included studies

Although the 63 papers did not include randomised controlled trials (RCT) of breastfeeding, six cohort studies (25–30) were nested within RCTs of breastfeeding promotion interventions. There were eight additional cohort studies (31–38) and three case–control studies (39–41). The remaining 46 studies were cross-sectional in design (42–86). The studies were predominantly conducted in high and middle income countries with only eight studies from low income countries (87). All caries outcomes were assessed by dental professionals through oral examination. Key characteristics are summarised in the Appendix.

Quality assessment

Tables 2, 3, 4, and 5 detail the NOS score assigned to each included study. The cohort and cross-sectional studies that were embedded in RCTs of a range of breastfeeding promotion interventions (25–30) scored highly as the study designs overcame many sources of bias and reporting limitations that were apparent in the other cohort, case–control and cross-sectional studies. Other cohort studies were weakened by the method used to ascertain infant feeding practices (self-report) which subjected them to recall bias, recruitment of children through oral health services (selection bias), lack of reporting of the absence of caries at the commencement of the study (ascertainment bias), loss to follow–up and accounting for these participants (attrition bias), and lack of controlling for confounders. Case–control study designs were inherently subject to recall bias when ascertaining infant feeding practices. Furthermore, cases and controls were not representative of the broader population as they were recruited in settings where children were likely to have caries. Selection bias was also a problem as the selection of controls was not clearly described. Cross-sectional studies were the weakest but most common study design. The studies which scored <4 were classified as unsatisfactory due to major limitations in study design and reporting. Studies that scored 4 were classified as satisfactory, however, all of these studies lacked consideration of key confounders. In the higher quality studies (≥5) there were limitations in how exposure was ascertained as many studies used self-report questionnaires (recall bias).

Meta-analysis

We meta-analysed the small number of studies which included statistical effect measures.

Breastfeeding up to 12 months of age

One prospective cohort (34) and four cross-sectional studies (48,52,59,70) reported odds ratios for the association between children who were exposed to more versus less breastfeeding up to 12 months (OR 0.50; 0.25–0.99, I^2 86.8%). (Fig. 2). There were not enough studies to perform metaregression for formal investigation of this heterogeneity. There appeared to be differences, however, based on the comparison groups of the included studies. The two studies

Table 4	Newcastle-Ottawa Scale Quality Assessment score for Case-Control Studies								
Case control	Adequate case definition	Representativeness of cases	Selection of controls	Definition of exposure	Comparability	Ascertainment of exposure	Method of ascertainment	Nonresponse rate	Score/10
Bahuguna et al. (39)	*	*	*	*	*	*	5		
Matee et al. (40)	*	*	*	*	4				
Roberts et al. (41)	*	*	*	*	5				
which compared ever breastfeeding in the first 12 months with never breastfeeding (48,70), both showed a marked protective effect of breastfeeding on dental caries compared with other feeding. Whereas the three studies which compared a longer duration of breastfeeding in the first 12 months to a comparison group which included children who had had some exposure to breastfeeding did not (34,52,59). A meta-analysis on this three study subgroup found an OR of 0.92; 0.69–1.23, I² 0% (Fig. 3).

Breastfeeding after 12 months of age
Two cohort studies (33,34), one case control study (40) and four cross-sectional studies (52,65,75,78) reported odds ratios for the association between more or less breastfeeding after the age of 12 months and dental caries. The comparison groups for these studies included both those who had never been breastfed and those who had been breastfed for shorter durations. The pooled estimate was OR 1.99; 1.35–2.95, I² 69.3% (Fig. 4).

Table 5 Newcastle-Ottawa Scale Quality Assessment score for Cross-sectional Studies

Cross-sectional	Representativeness	Selection of non-exposed cohort	Ascertainment of exposure	Comparability	Assessment of outcome	Score/7
Alaluusua et al. (42)	*	*	*	*	*	3
al-Dashti et al. (43)	*	*	*	*	*	4
Azevedo et al. (44)	*	*	*	**	*	5
Campus et al. (45)	*	*	*	**	*	5
Carino et al. (46)	*	*	*	**	*	3
Dini (47)	*	*	*	*	*	4
Du et al. (48)	*	*	*	**	*	4
Dye et al. (49)	*	*	*	**	*	6
Folayan et al. (50)	*	*	*	*	*	3
Folayan et al. (87)	*	*	*	*	*	3
Forsman et al. (51)	*	*	*	*	*	3
Hallett et al. (52)	*	*	*	**	*	6
Hallonsten et al. (53)	*	*	*	*	*	3
Haq et al. (54)	*	*	*	*	*	2
Hardy (55)	*	*	*	*	*	1
Harrison et al. (56)	*	*	*	**	*	4
Holt et al. (57)	*	*	*	*	*	3
Hong et al. (58)	*	*	*	**	*	5
Iida et al. (59)	*	*	*	*	*	5
Johansson et al. (60)	*	*	*	*	*	3
Livny et al. (61)	*	*	*	*	*	3
Majorana et al. (62)	*	*	*	**	*	4
Masumo et al. (65)	*	*	*	**	*	5
Mattos-Graner et al. (64)	*	*	*	**	*	4
Nobile et al. (65)	*	*	*	*	*	3
Nunes et al. (66)	*	*	*	**	**	5
Perera et al. (67)	*	*	*	*	*	3
Prakash et al. (68)	*	*	*	*	*	4
Prakashia Shrutha et al. (69)	*	*	*	*	*	2
Qadri et al. (70)	*	*	*	*	*	4
Retnakumari (71)	*	*	*	*	*	3
Rosenblatt (72)	*	*	*	*	*	3
Sankeshwari et al. (73)	*	*	*	*	*	3
Santos (74)	*	*	*	*	*	2
Sayegh et al. (75)	*	*	*	**	*	4
Sayegh et al. (76)	*	*	*	**	*	5
Serwint et al. (77)	*	*	*	*	*	3
Slabsinskaene et al. (78)	*	*	*	*	*	3
Songo et al. (79)	*	*	*	*	*	2
Tanaka, (80)	*	*	*	**	*	5
Tiano et al. (81)	*	*	*	*	*	3
Tyagi, (82)	*	*	*	*	*	1
Vachiraropisan et al. (83)	*	*	*	*	*	5
Vazquez-Nava et al. (84)	*	*	*	**	*	5
Wendt (85)	*	*	*	*	*	4
Yonezu et al. (86)	*	*	*	*	*	1
Only two studies (26,80) reported prevalence ratios so these could not be meta-analysed.

Nocturnal breastfeeding in those breastfed longer than 12 months

One cohort (36), one case–control (40) and three cross-sectional studies (67,84,86) reported odds ratios for the association between more versus less nocturnal breastfeeding and the risk of dental caries amongst the subgroup of children breastfed longer than 12 months. The pooled estimate was OR 7.14; 3.14–16.23, I² 77.1% (Fig. 5).

Narrative synthesis

The majority of studies (n = 46) were not included in the meta-analyses due to methodological differences in the measures of exposure and outcomes, or reporting of correlational analyses only.

Studies embedded in randomised controlled trials (RCTs)

It is not ethical to conduct randomized trials assigning participants to breastfeeding and non-breastfeeding groups in order to more definitively assess the association between breastfeeding and dental caries. However, a number of RCTs have been conducted that investigated the impact of breastfeeding promotion programmes (25–30). In a RCT of an intervention that provided monthly advice on healthy feeding practices over 12 months via home visits in Brazil (25,27,30) the intervention group demonstrated a lower incidence of caries at 12 months (OR = 0.52, 0.27–0.97, p = 0.03) and 4 years (RR = 0.78, 0.65–0.93, p = 0.004). Investigating breastfeeding frequency at 12 months, the study also found a doubled risk of caries when feeding frequency was 3–6 times/day (RR = 2.04, 1.22–3.39, p = 0.000) and ≥7 times/day (RR = 1.97, 95%CI 1.45–2.68, p = 0.000) compared to 0–2 times/day. Analyses were adjusted for maternal schooling level, daily meals, bottle use for fruit juice/soft drinks, consumption of high density sugar and number of teeth. Another birth cohort study nested in an intervention conducted through maternal health centres in Brazil (26) found that, in adjusted regression models, as breastfeeding continued beyond 6 months the prevalence ratio of caries in breastfed children increased (compared to breastfeeding <6 months) but was only significant when still breastfeeding at ≥24 months: 6–11 months (PR = 1.45, 95%CI 0.83–2.53); 12–23 months (PR = 1.39, 95%CI 0.73–2.64); ≥24 months (PR = 1.85, 95%CI 1.11–3.08). A birth cohort study nested in a breastfeeding promotion intervention in Belarus found no significant difference in caries incidence or prevalence in the intervention group when children were aged 6.5 years (28,29).

Breastfed versus formula fed

Studies that examined ever versus never breastfed children reported a range of findings. Six cross-sectional studies
reported no significant difference in the prevalence of caries between the two groups (49,61,72–74,83); one cohort and one cross-sectional study reported significantly lower caries in breastfed children (32,57); one cross-sectional study found a lower adjusted caries risk in breastfed versus bottle-fed children (OR = 0.61, 95%CI 0.39–0.97, p = 0.038) (70); one cohort study reported higher caries increment in breastfed children between 12 to 18 months but the association disappeared in the multivariate analysis (35); one cross-sectional study reported an increased risk of dental caries in ever breastfed children of borderline significance (p = 0.08) (77); and one cross-sectional study found a lower adjusted caries risk in breastfed versus bottle-fed children.

Breastfeeding duration

Three of four cohort studies found that breastfeeding beyond 12 months was correlated or associated with increased caries...
prevalence compared with shorter durations of breastfeeding. Chaffee et al. (26) found that the adjusted prevalence ratio of caries in children breastfed ≥24 months was 2.1 (95% CI 1.5–3.25) compared to children breastfed <6 months. Yonezu et al. (37) found significantly more caries in children breastfed >18 months than those weaned <18 months. Feldens et al. (25) found the risk of caries rose in children breastfed beyond 12 months. Ollila et al.’s (38) survival analysis found no difference between children breastfed >12 months and those not. Cross-sectional studies reported variable findings: increased caries prevalence in children breastfed longer than those breastfed for shorter times (44,45,53,54,63,65,71,75,78,81,85); and no difference in caries prevalence between duration groups (66,82).
Breastfeeding on demand and nocturnally

In addition to the meta-analysed studies, a number of cross-sectional studies reported significant correlations between infants/children breastfed during the night (44,67), on demand (68) or sleeping with a nipple in the mouth (60,71,76) and increased prevalence of dental caries. One cohort study found an increased adjusted risk of dental caries with increased daily breastfeeding frequency including nocturnal feeding (25).

DISCUSSION

Qualitative assessment of studies investigating breastfeeding up to 12 months of age suggested that children who were exposed to more breastfeeding (longer duration) compared to less or no breastfeeding were protected from dental caries. Meta-analysis of five studies also found reduced risk of dental caries in children breastfed more versus less up to 12 months, however, the heterogeneity between studies was too high to make the estimate reliable. In contrast, children who were breastfed beyond 12 months had an increased prevalence of dental caries. Amongst those who continued to be breastfed after 12 months, there was a further increased risk of caries in children who were breastfed nocturnally.

Three elements are essential for dental caries to occur: a tooth, cariogenic bacteria (e.g. Streptococcus mutans) and substrate for the bacteria (sugar) (2). The risk of developing dental caries changes as factors associated with each element change. The first tooth usually erupts in an infant’s mouth between 6 and 12 months of age. As each tooth erupts the risk of developing dental caries increases, hence age and number of teeth increases risk. Cariogenic bacteria are transmitted to the child via close contact with the mother’s saliva (88) but their levels and cariogenicity vary between individuals (2) depending on maternal bacterial levels, maternal caries prevalence, oral hygiene practices and exposure to dietary sugars (21). Breast milk is known to contain immunomodulatory factors along with a rich microbiome which is responsible for establishing normal intestinal flora (89). Initial protection from dental caries may be mediated through establishment of a healthy oral microbiome in infants through exposure to breastfeeding and contact with skin and breast milk microbiomes. Additionally, the child’s oral microbiome changes over time with the emergence of new teeth. The essential substrates for cariogenic bacteria are simple carbohydrates (sugars) which can be in a range of forms (e.g. lactose, sucrose, glucose). The longer these sugars are in contact with teeth, the higher the risk of dental caries. The amount of carbohydrate (cariogenicity) contained in the different milks and formulas may also help to explain the different results we found before and after 12 months of age. The cariogenicity of human breast milk has not been extensively examined under in vivo conditions, however animal studies suggest that at high frequency exposures, human breast milk has greater cariogenicity compared to bovine milk but less than infant formula (90,91). Relative cariogenicity of breast milk will also depend on the comparison group. Below 12 months it is usual to feed infants either breast milk or formula which have around the same carbohydrate content. After 12 months, however, children in high income countries are often weaned onto cow’s milk which has half the carbohydrate content of human milk. However, each element is subject to modification by risk factors such as socio-economic status, maternal educational level, maternal oral health, maternal smoking status, position in birth order, sugars in diet, oral hygiene and exposure to fluoride (2).

Breastfeeding duration, frequency of breastfeeding and nocturnal breastfeeding during sleep are most often analysed as separate breastfeeding behaviours, however they are inter-related. Nocturnal breastfeeding is often used to comfort an infant or child who may then fall asleep with the nipple in their mouth. In this position, the tongue fills the mouth and holds the breast milk against the surfaces of the teeth, thereby prolonging the exposure of the substrate to the cariogenic bacteria that are attached to the teeth surfaces and hence increasing the risk of dental caries. It is possible that children breastfed beyond 12 months are also engaging in nocturnal breastfeeding but the modification of dental caries risk by infant feeding practices has not been examined in depth in any of the studies included in this review. In addition, children >12 months are no longer being exclusively breast or bottle fed and the diet is expanding to include other fluids and solids. It has been reported that children who are breastfed for longer durations also have more frequent cariogenic food intakes (25,53,58). Oral hygiene practices to remove bacterial plaque are important as more teeth erupt to reduce the risk of dental caries. Only a few studies included in this review controlled for key confounding factors and this may have resulted in an over-estimation of the role of prolonged, frequent and nocturnal breastfeeding in the development of dental caries. Until the dietary and oral hygiene details of these children are controlled for we cannot be certain whether prolonged, frequent or nocturnal breastfeeding can be principally associated with early childhood caries.

This is the first systematic review of breastfeeding and dental caries that includes critical exposure windows, limited meta-analyses and a range of study types. We provide quantitative evidence that is suggestive of the potentially protective effects of breastfeeding from dental caries up to 12 months, but higher risk of dental caries in children breastfed beyond 12 months, frequently, and/or nocturnally. However, there is high heterogeneity between the studies included in the meta-analyses (possibly due to differing comparison groups) and lack of controlling for key confounders (e.g. other foods/drinks in the diet, oral
hygiene, maternal oral health status) which limits the reliability of the results.

CONCLUSION
Breastfeeding up to 12 months of age is not associated with an increased risk of dental caries and in fact may offer some protection compared with formula. However, children breastfed beyond 12 months, a time during which all deciduous teeth erupt, had an increased risk of dental caries. This may be due to other factors which are linked with prolonged breastfeeding including nocturnal feeding during sleep, cariogenic foods/drinks in the diet, or inadequate oral hygiene practices. Further research with careful control of pertinent confounding factors is needed to elucidate this issue and better inform infant feeding guidelines. As per recommendations from previous reviews (17,19), the introduction of food sources to infants should be low in simple carbohydrates (sugars) and oral hygiene practices should start with the eruption of the first tooth so that bacterial plaque is removed from tooth surfaces to reduce the risk of dental caries.

CONFLICT OF INTEREST STATEMENT
Preparation of the manuscript was assisted by funding from the WHO, which had no part in determining the outcomes or presentation of findings. None of the authors has any conflicts of interest to declare.

References
1. Petersen PE. The World Oral Health Report. In: World Health Organisation, editor. Continuous improvement of oral health in the 21st century – the approach of the WHO Global Oral Health Programme. Geneva: World Health Organisation, 2003.
2. Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet 2007; 369: 51–9.
3. Sheiham A. Dental caries affects body weight, growth and quality of life in pre-school children. Br Dent J 2006; 201: 625–6.
4. Casamassimo PS, Thikkurissy S, Edelstein BL, Maiorini E. Beyond the dmft: the human and economic cost of early childhood caries. J Am Dent Assoc 2009; 140: 650–7.
5. Gionet L. Breastfeeding trends in Canada. Health at a Glance. Canada: Statistics Canada Catalogue no. 82-624-X, 2013.
6. Madan C, Kruger E, Perera I, Tennant M. Trends in demand for general anaesthetic care for paediatric caries in Western Australia: geographic and socio-economic modelling of service utilisation. Int Dent J 2010; 60: 190–6.
7. Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res 2011; 90: 294–303.
8. Tanzer J, Livingston J, Thompson A. The microbiology of primary dental caries in humans. J Dent Educ 2001; 65: 1028–37.
9. Danielsson Niemi L, Hernell O, Johansson J. Human milk compounds inhibiting adhesion of mutants streptococci to host ligand-coated hydroxyapatite in vitro. Caries Res 2009; 43: 171–8.
10. Holgerson PL, Vestman NR, Claesson R, Ohman C, Domellof M, Tanner AC, et al. Oral microbial profile discriminates breast-fed from formula-fed infants. J Pediatr Gastroenterol Nutr 2013; 56: 127–36.
11. The American Dental Association. Tooth eruption: the primary teeth. J Am Dent Assoc 2005; 136: 1619.
12. World Health Organization. Infant and young child feeding. Fact Sheet No 342. Available at: http://www.who.int/mediacentre/factsheets/fs342/en/February 2004. (accessed on 10th April 2015).
13. unicef GLOBAL DATABASES. Infant and young child feeding. In: data.unicef.org. editor. Available at: http://data.unicef.org/nutrition/inycf. (accessed on April 30, 2015) October 2014.
14. Li R, Fein SB, Chen J, Grummer-Strawn LM. Why mothers stop breastfeeding: mothers’ self-reported reasons for stopping during the first year. Pediatrics 2008; 122: (Suppl 2): S69–76.
15. Australian Institute of Health and Welfare. 2010 Australian national infant feeding survey: indicator results. Canberra, Australia: AIHW, 2011.
16. Department of Health. Breastfeeding. Available at: http://www.health.gov.au/breastfeeding: Australian Government Department of Health. (accessed on 11th April 2015).
17. Valaitis R, Hesch R, Passarelli C, Sheehan D, Sinton J. A systematic review of the relationship between breastfeeding and early childhood caries. Can J Public Health 2000; 91: 411–7.
18. Salone LR, Vann WF, Dee DL. Breastfeeding: an overview of oral and general health benefits. J Am Dent Assoc 2013; 144: 143–51.
19. White V. Breastfeeding and the risk of early childhood caries. Evid Based Dent 2008; 9: 86–8.
20. Ribeiro NM, Ribeiro MA. Breastfeeding and early childhood caries: a critical review. J Pediatr 2004; 80: S199–210.
21. Leong PM, Gussy MG, Barrow SY, de Silva-Sanigorski A, Waters E. A systematic review of risk factors during first year of life for early childhood caries. Int J Paediatr Dent 2013; 23: 235–50.
22. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. (accessed on 30th November 2014).
23. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, et al. GRADE guidelines: 4. Rating the quality of evidence—study limitations (risk of bias). J Clin Epidemol 2011; 64: 407–15.
24. PRISMA. PRISMA Statement – preferred reporting items for systematic reviews and meta-analyses. www.prisma-statement.org/. Accessed 30th November 2014
25. Feldens CA, Giugliani ERJ, Vigo A, Vitolo MR. Early feeding practices and severe early childhood caries in four-year-old children from southern Brazil: a birth cohort study. Caries Res 2010; 44: 445–52.
26. Chaffee BW, Feldens CA, Vitolo MR. Association of long-duration breastfeeding and dental caries estimated with marginal structural models. Ann Epidemiol 2014; 24: 448–54.
27. Feldens CA, Giugliani ER, Duncan BB, Drachler Mde L, Vitolo MR. Long-term effectiveness of a nutritional program in reducing early childhood caries: a randomized trial. Community Dent Oral Epidemiol 2010; 38: 524–32.
28. Kramer MS, Matush L, Bogdanovich N, Aboud F, Mazer B, Fombonne E, et al. Health and development outcomes in 6.5-year-old children breastfed exclusively for 3 or 6 mo. Am J Clin Nutr 2009; 90: 1070–4.
29. Kramer MS, Vanilovich I, Matush L, Bogdanovich N, Zhang X, Shishko G, et al. The effect of prolonged and exclusive breastfeeding on dental caries in early school-age children. Caries Res 2007; 41: 484–8.

©2015 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica 2015 104, pp.62–84
30. Feldens CA, Vitolo MR, Drachler Mde L. A randomized trial of the effectiveness of home visits in preventing early childhood caries. Community Dent Oral Epidemiol 2007; 35: 215–23.

31. Hong L, Levy SM, Warren JJ, Broffitt B. Infant breast-feeding and childhood caries: a nine-year study. Pediatr Dent 2014; 36: 342–7.

32. Silver DH. A longitudinal study of infant feeding practice, diet and caries, related to social class in children aged 3 and 8–10 years. Br Dent J 1987; 163: 296–300.

33. Tada A, Ando Y, Hanada N. Caries risk factors among three-year-old children in Chiba, Japan. Asia Pac J Public Health 1999; 11: 109–12.

34. Tanaka K, Miyake Y, Sasaki S, Hirota Y. Infant feeding practices and risk of dental caries in Japan: the Osaka Maternal and Child Health Study. Pediatr Dent 2013; 35: 267–71.

35. Thitasomakul S, Piwat S, Thearmontree A, Chankanka O, Pithornchayakul W, Madysosoh S. Risks for early childhood caries analyzed by negative binomial models. J Dent Res 2009; 88: 137–41.

36. van Palenstein Helderman WH, Soe W, van’t Hof MA. Risk factors of early childhood caries in a Southeast Asian population. J Dent Res 2006; 85: 85–8.

37. Yonezu T, Ushida N, Yakushiji M. Longitudinal study of streptococci in 5-year-old children in relation to duration of breast feeding. J Dent Res 2003; 31: 81–9.

38. Carino KMG, Shinada K, Kawaguchi Y. Early childhood caries in northern Philippines. Community Dent Oral Epidemiol 2003; 31: 81–9.

39. Dini EL, Holt RD, Bedi R. Caries and its association with infant feeding and oral health-related behaviours in 3–4-year-old Brazilian children. Community Dent Oral Epidemiol 2000; 28: 241–8.

40. Matee M, van’t Hof M, Maselle S, Mikx F, van Palenstein Helderman W. Nursing caries, linear hypoplasia, and nursing practices on dental caries. A case control study. Eur J Pediatr Dent 2015; 14: 55–8.

41. Matee M, van’t Hof M, Maselle S, Mikx F, van Palenstein Helderman W. Nursing caries, linear hypoplasia, and nursing and weaning habits in Tanzanian infants. Community Dent Oral Epidemiol 1994; 22: 289–93.

42. Roberts GJ, Cleaton-Jones PE, Fatti LP, Richardson BD, Sinwel RE, Hargreaves JA, et al. Patterns of breast and bottle feeding and their association with dental caries in 1- to 4-year-old South African children. 2. A case control study of children with nursing caries. Community Dent Health 1994; 11: 38–41.

43. Alaluusua S, Myllariemi S, Kallio M, Salmeperra L, Tainio VM. Prevalence of caries and salivary levels of mutants streptococci in 5-year-old children in relation to duration of breast feeding. Scand J Dent Res 1990; 98: 193–6.

44. al-Dashiti AA, Williams SA, Curzon ME. Breastfeeding, bottle feeding and dental caries in Kuwait, a country with low-fluoride levels in the water supply. Community Dent Health 1995; 12: 42–7.

45. Azevedo TD, Bezerra AC, de Toledo OA. Feeding habits and severe early childhood caries in Brazilian preschool children. Pediatr Dent 2005; 27: 28–33.

46. Campus G, Solinas G, Strohmenger L, Cagetti MG, Senna A, Minelli L, et al. National pathfinder survey on children's oral health in Italy: pattern and severity of caries disease in 4-year-olds. Caries Res 2009; 45: 153–62.

47. Carino KMG, Shinada K, Kawaguchi Y. Early childhood caries in northern Philippines. Community Dent Oral Epidemiol 2003; 31: 81–9.

48. Dini EL, Holt RD, Bedi R. Caries and its association with infant feeding and oral health-related behaviours in 3–4-year-old Brazilian children. Community Dent Oral Epidemiol 2000; 28: 241–8.

49. Dye BA, Shenkin JD, Ogden CL, Marshall TA, Levy SM, Kanellis MJ. The relationship between healthful eating practices and dental caries in children aged 2–5 years in the United States, 1988–1994. J Am Dent Assoc 2004; 135: 55–66.

50. Foliyan MO, Sowole CA, Owotade FJ, Sote E. Impact of infant feeding practices on caries experience of preschool children. J Clin Pediatr Dent 2010; 34: 297–301.

51. Forsman B, Ericsson Y. Breastfeeding, formula feeding and dental health in low-fluoride districts in Sweden. Community Dent Oral Epidemiol 1974; 2: 1–6.

52. Hallett KB, O'Rourke PK. Social and behavioural determinants of early childhood caries. Aust Dent J 2003; 48: 27–33.

53. Hallonsten AL, Wendlt HK, Meijare I, Birkhed D, Hakansson C, Lindvall AM, et al. Dental caries and prolonged breast-feeding in 18-month-old Swedish children. Int J Paediatr Dent 1995; 5: 149–55.

54. Haq ME, Begum K, Muttalib MA, Shahidullah M. Prevalence of caries in urban children and its relation to feeding pattern. Bangladesh Med Res Counic Bull 1985; 11: 53–63.

55. Hardy NR. The effect of breast feeding in infancy on the D.M.F. ratio of deciduous canine and molar teeth in children below seven years of age. Apex 1978; 10: 7–8.

56. Harrison R, Wong T, Ewan C, Contreras B, Phung Y. Feeding practices and dental caries in an urban Canadian population of Vietnamese preschool children. ASDC J Dent Child 1997; 64: 112–7.

57. Holt RD, Joels D, Winter GB. Caries in pre-school children. The Camden study. Br Dent J 1982; 153: 107–9.

58. Hong CHL, Bagramian RA, Hashim Nairn SM, Straffon LH, Shen L, Hsu C-Y. High caries prevalence and risk factors among young preschool children in an urban community with water fluoridation. Int J Pediatr Dent 2014; 24: 32–42.

59. Iida H, Auinger P, Billings RJ, Weitzman M. Association between infant breastfeeding and early childhood caries in the United States. Pediatrics 2007; 120: e944–52.

60. Johansson I, Holgerson PL, Kressin NR, Nunn ME, Tanner AC. Snacking habits and caries in young children. Caries Res 2010; 44: 421–30.

61. Livny A, Assali R, Sgan-Cohen HD. Early Childhood Caries among a Bedouin community residing in the eastern outskirts of Jerusalem. BMC Public Health 2007; 7: 167.

62. Marasana A, Cagetti MG, Barbellini E, Amadori F, Conti G, Strohmenger L, et al. Feeding and smoking habits as cumulative risk factors for early childhood caries in toddlers, after adjustment for several behavioral determinants: a retrospective study. BMC Pediatr 2014; 14: 1471–2431.

63. Masumo R, Bardsen A, Mashoto K, Astrom AN. Prevalence and socio-behavioral influence of early childhood caries, ECC, and feeding habits among 6-36 months old children in Uganda and Tanzania. BMC Oral Health 2012; 12: 1472–6831.

64. Mattos-Graner RO, Zelante F, Line R, Mayer MPA. Association between caries prevalence and clinical, microbiological and dietary variables in 1.0 to 2.5-year-old Brazilian children. Caries Res 1998; 32: 319–23.

65. Nobile CG, Fortunato L, Bianco A, Pileggi C, Pavia M. Pattern and severity of early childhood caries in Southern Italy: a preschool-based cross-sectional study. BMC Public Health 2014; 14: 1471–2458.

66. Nunes AMM, Alves CMC, Araújo F, Ortiz TML, Ribeiro MRC, Silva AAMD, et al. Association between prolonged breast-feeding and early childhood caries: a hierarchical approach. Community Dent Oral Epidemiol 2012; 40: 542–9.
67. Perera PJ, Fernando MP, Warnakulasooriya TD, Ranathunga N. Effect of feeding practices on dental caries among preschool children: a hospital based analytical cross sectional study. *Asia Pac J Clin Nutr* 2014; 23: 272–7.

68. Prakash P, Subramaniam P, Durgesh BH, Konde S. Prevalence of early childhood caries and associated risk factors in preschool children of urban Bangalore, India: a cross-sectional study. *Eur J Dent* 2012; 6: 141–52.

69. Prakash Shrutu S, Vinit GB, Giri KY, Alam S. Effect of feeding practices and early childhood caries: a cross-sectional study of preschool children in Kanpur district, India. *ISRN Dent* 2013; 5: 275193. doi: 10.1155/2013/275193. eCollection 2013.

70. Qadri G, Nourallah A, Spieth CH. Early childhood caries and feeding practices in kindergarten children. *Quintessence Int* 2012; 43: 503–10.

71. Rentakumari N, Cyriac G. Childhood caries as influenced by maternal and child characteristics in pre-school children of Kerala – an epidemiological study. *Contemp Clin Dent* 2012; 3: 2–8.

72. Rosenblatt A, Zarzar P. Breast-feeding and early childhood caries: an assessment among Brazilian infants. *Int J Pediatr Dent* 2004; 14: 439–45.

73. Sankeshwari RM, Ankola AV, Tangade PS, Hebbar MI. Feeding habits and oral hygiene practices as determinants of early childhood caries in 3- to 5-year-old children of Belgaum City, India. *Oral Health Prev Dent* 2012; 10: 283–90.

74. Santos AP, Soviero VM. Caries prevalence and risk factors among children aged 0 to 36 months. *Pesqui Odontol Bras* 2002; 16: 203–8.

75. Sayegh A, Dini EL, Holt RD, Bedi R. Caries prevalence and patterns and their relationship to social class, infant feeding and oral hygiene in 4-5-year-old children in Amman, Jordan. *Community Dent Health* 2002; 19: 144–51.

76. Sayegh A, Dini EL, Holt RD, Bedi R. Oral health, sociodemographic factors, dietary and oral hygiene practices in Jordanian children. *J Dent* 2005; 33: 379–88.

77. Serwint JR, Mungo R, Negrete VF, Duggan AK, Korsch BM. Child-rearing practices and nursing caries. *Pediatrics* 1995; 92: 233–7.

78. Slabinskiene E, Milciuviene S, Narbutaitė J, Vasiliauskiene I, Andruskevičienė V, Bendoraitytė EA, et al. Severe early childhood caries and behavioral risk factors among 3-year-old children in Lithuania. *Medicina (Kaunas)* 2010; 46: 135–41.

79. Songo BF, Declerck D, Vinckier F, Mbuyi MD, Pilipili CM, Kayembe KP. Caries experience and related factors in 4–6 year-olds attending dental clinics in Kinshasa, DR of Congo. *Community Dent Health* 2013; 30: 257–62.

80. Tanaka K, Miyake Y. Association between breastfeeding and dental caries in Japanese children. *J Epidemiol* 2012; 22: 72–7.

81. Tiano AV, Moimaz SA, Saliba O, Saliba NA. Dental caries prevalence in children up to 36 months of age attending daycare centers in municipalities with different water fluoride content. *J Appl Oral Sci* 2009; 17: 39–44.

82. Tyagi R. The prevalence of nursing caries in Davangere preschool children and its relationship with feeding practices and socioeconomic status of the family. *J Indian Soc Pedod Prev Dent* 2008; 26: 153–7.

83. Vachirarojpisan T, Shinada K, Kawaguchi Y, Laungwechakan P, Somkote T, Detsomboonrat P. Early childhood caries in children aged 6–19 months. *Community Dent Oral Epidemiol* 2004; 32: 133–42.

84. Vazquez-Nava F, Vazquez RE, Saldivar GA, Beltran GF, Almeida AV, Vazquez RC. Allergic rhinitis, feeding and oral habits, toothbrushing and socioeconomic status. Effects on development of dental caries in primary dentition. *Caries Res* 2008; 42: 141–7.

85. Wendt LK, Birkhed D. Dietary habits related to caries development and immigrant status in infants and toddlers living in Sweden. *Acta Odontol Scand* 1995; 53: 339–44.

86. Yonezu T, Yotsuya K, Yakushiji M. Characteristics of breast-fed children with nursing caries. *Br J Nutr* 2007; 98: 161–5.

87. The World Bank. Available at: http://www.worldbank.org/. (accessed on 20th Feb 2015).

88. Vadiakas G. Case definition, aetiology and risk assessment of early childhood caries (ECC): a revisited review. *Crit Rev Microbiol.* 2015; 41: 275–193. doi: 10.1080/10602285.2013.842802. eCollection 2013.

89. Kerr CA, Grice DM, Tran CD, Bauer DC, Li D, Hendry P, et al. Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. *Crit Rev Microbiol.* 2015; 41: 326–40.

90. Peres RC, Coppi LC, Volpato MC, Groppo FC, Cury JA, Rosalen PL. Cariogenic potential of cows', human and infant formula milks and effect of fluoride supplementation. *Br J Nutr.* 2009; 101: 376–82.

91. Bowen WH, Lawrence RA. Comparison of the cariogenicity of cola, honey, cow milk, human milk, and sucrose. *Pediatrics* 2003; 116: 921–6.
Study characteristics and summary of NOS QA

References [NOS QA score]	Type of study/brief description	Study population/Country	Sample size (gender % given if reported)	Exposure definition	Outcome definition and age	Exposure estimate (95% CI)	Other variables included in the models as confounders	Interactions
Feldens et al. (30) [8* Good]	RCT of an intervention that provided monthly advice on healthy feeding practices (exclusive breastfeeding up to 6 months; <6 months encouraged to continue breastfeeding and introduce foods) up to 12 months via home visits	Mothers who gave birth in public health system; Sao Leopoldo, Brazil; October 2001 – June 2002	N = 500					
Intervention n = 200								
Control n = 300	Intervention group received advice at home	Age: 12 months						
Early Childhood Caries (ECC) – decayed surfaces ≥1 in any primary tooth (decay)	Intervention group risk of caries: OR = 0.52 (0.27–0.97) p = 0.03 of control group	Number of teeth	None reported					
Feldens et al. (27) [8* Good]	As for Feldens et al. (2007)	Mothers who gave birth in public health system; Sao Leopoldo, Brazil; October 2001 – June 2002	N = 340					
Boys = 195 (57.4%)
Intervention n = 141
Control n = 199 | Intervention group received advice at home | Age 4 years
1. ECC – dmfs ≥1 in any primary tooth (decay)
2. Severe ECC (S-ECC) – dmfs ≥5 or one or more cavitated, missing, filled smooth surface of anterior teeth
3. Affected teeth (decayed or cavitated) – dmft | Ref group = control with RR = 1.0
ECC: Interv RR = 0.78 (0.65–0.93) p = 0.004
NNT = 2 (4–20)
S-ECC: Interv RR = 0.68 (0.52–0.92) p = 0.01
NNT = 8 (5–30)
Affected teeth: Mean Interv RR = 2.53 (2.45–2.61) of control with RR = 1.0
NNT = 4.15 (4.15–4.17) p = 0.023 | None reported |
| Cohort | Chaffee et al. (26) [8* Good] | Birth cohort study nested in a cluster RCT of an intervention in maternal health centres, 2008–2011 | Birth to 38 months; Porto Alegre, Brazil; Low income families | 715 pregnant women
Breastfeeding duration:
<6 months
6–11 months
12–23 months
24 months+ | Dental status evaluated at 58 months
Severe ECC – 1 or more affected maxillary teeth or 4 or more decayed, missing due to caries or filled tooth surfaces (dmfs ≥5) | Fully adjusted regression models:
Breastfeeding at stages and S-ECC:
Pseudopressure ratio
<6 = 1
6–11 = 1.45 (0.83–2.55)
12–23 = 1.39 (0.75–2.64)
≥24 = 1.85 (1.11–3.08) | Maternal age; Education; Parity; Pre-pregnancy BMI; Smoking status; Social class; Child age; gender; Time using bottle use; Feeding habits; Length-for-age z scores | High frequency day time breastfeeding Long duration; High frequency |
| Feldens et al. (25) [10* Very good] | Birth cohort study (nested in an RCT of an intervention in a birth cohort) | Cohort of children aged 4 years; Sao Leopoldo, Brazil (baseline = 500); Boys = 195 (57.4%) | 340 children
(baseline = 500);
Boys = 195 (57.4%) | Breastfeeding: Frequency | Age 4 years
Severe ECC
≥1 cavitated, missing or filled smooth surfaces in primary maxillary anterior teeth, or dmfs values ≥5 | Adjusted model:
RR of S-ECC associated with daily breastfeeding frequency at 12 months:
0–2 RR = 1.0
3–6 RR = 2.04 (1.22–3.39)
≥7 RR = 1.97 (1.45–2.68) p = 0.000
Tooth level: Caries in (e) at 5 years
Mean dmft
BF <6 months = 0.55
BF ≥6 months = 0.33 p = 0.02
Person level: caries in (e) at 5 years
Breastfeeding ≤6 months
OR = 15.58 [no 95% CI reported] p = 0.005 | Maternal schooling; Daily meals and snacks; Bottle use for fruit juice/soft drinks at 12 months; High density sugar at 12 months; Teeth at 12 months | None reported |
| Hong et al. (31) [8* Good] | Longitudinal birth cohort study | Iowa, USA | N = 509
Questionnaires: 3–6 months from birth
Dental exams: 5 years and 9 years | Breastfeeding duration
<6 months
≥6 months | Age 5 years and 9 years
Dental caries in:
(a) All primary teeth
(b) 2nd deciduous molars (e) | Gender, hypoplasia, parental education level, family income level, gestational weeks; birth weight; age at time of dental exam; average daily fluoride intake (mg), home tap water fluoride level(ppm), average daily soda pop intake; daily tooth brushing frequency | None reported |
| References (NOS QA score) | Type of study/brief description | Study population/Country | Sample size (gender & given if reported) | Exposure definition | Outcome definition and age | Exposure estimate (95% CI) | Other variables included in the models as confounders or interactions |
|---------------------------|--------------------------------|--------------------------|--|--------------------|--------------------------|---------------------------|--|
| Kramer et al. (29) | Prospective cohort study nested in RCT of BF promotion intervention (PROBIT) | Children aged 6.5 years Belarus | Total n = 13,883 Experimental n = 7,108 Control n = 6,791 | Experimental vs control groups | Age 6.5 years Dental caries DMFT/dmft | The experimental intervention had no significant effect on the DMFT/dmft numbers or proportions (both all teeth and incisors only) | None reported |
| Kramer et al. (28) | Prospective cohort study nested in RCT of BF promotion intervention (PROBIT) | Children aged 6.5 years Belarus | Exclusive BF at 3 months: EBF3 n = 2862 Exclusive BF at 6 months EBF6 n = 621 | Children aged 6.5 years Dental caries drift | No significant difference in dmft in EBF3 and EBF6 groups | None reported |
| Ollila and Larmas (38) | Cohort study | 11 day care centres Oulu, Finland | N = 1,883 (baseline) N = 1,75 (follow up) | Breastfeeding ≥ 12 months ≥ 12 months | Baseline 2.5 years Follow up 9.6 years Restoration due to caries in a primary 2nd molar and first permanent molar on upper right and lower left (teeth id numbers: 55 and 75; 16 and 36) | Prolonged breastfeeding (≥ 12 months) had no effect on caries onset in terms of survival estimates in either the deciduous molars or permanent molars | None reported |
| Silver (32) | Longitudinal cohort study | Town north of London | 3 years olds n = 161 Boys = 84 (52%) 8–10 years olds n = 161 Boys = 85 (53%) | Questionnaire at age 3: Breast fed Bottle fed (unsweetened/sweetened) | 3 years & 8–10 years Dental caries drift | Babies that were breast fed only had significantly lower dmft of children bottle fed, especially those with sweetened bottle content. p < 0.01 | None reported |
| Taada et al. (33) | Cohort study | Infants Chiba city, Japan | N = 392 Boys = 215 (54.8%) | Breastfeeding yes/no | 18 months & 3 years Dental caries drift | Breast feeding at 18 months of age significantly associated with caries increment increase in caries in upper anterior teeth OR = 6.05 (2.89–15.2; p = <0.05) | None reported |
| Tanaka et al. (34) | Prospective cohort study | 5 surveys at baseline, 2–9 months, 16–24 months, 29–39 months, 41–49 months, Dental exam at 41–50 months | N = 3,15 | Breastfeeding duration: <6 months; 6–11 months; 12–17 months; ≥18 months | Aged 4 1–50 months Dental caries drift (missing teeth excluded): Moderate ECC = 1–4 teeth with caries not involving maxillary anterior teeth Severe ECC = ≥5 caries in maxillary anterior teeth or ≥5 caries in all teeth | Adjusted OR Risk of breastfeeding duration and ECC: <6 months OR = 1 6–11 months OR = 0.67 (0.27–1.62) 12–17 months OR = 1.09 (0.45–2.71) ≥18 months OR = 2.47 (0.95–6.59) Quadratic trend p < 0.05 Statistical significance was lost when comparing risk for M-ECC with caries free and S-ECC and caries free – but the trend was towards positive associations with increased BF duration | Adjusted for: Maternal age at baseline; Maternal smoking during pregnancy; Family income; Parental education level; Child's gender; Birth weight; Age at first tooth eruption; Tooth brushing frequency at 4th and 5th surveys; Use of fluoride; Regular dental check-ups; Household smoking at 5th survey; Age at oral examination |
Appendix (Continued)

References [NOS QA score]	Type of study/brief description	Study population/Country	Sample size (gender % given if reported)	Exposure definition	Outcome definition and age	Exposure estimate (95% CI)	Other variables included in the models as confounders	Interactions
Thitasomakul et al. (35)	Longitudinal observational community based study - birth cohort. Follow-up at 9, 12 and 18 months	All women in district who gave birth November 2000 to October 2001 Thapa district Thailand	N = 495 Boys = 254 (51.3%)	Type of milk feeding: Breast feeding; Bottle feeding; Mixed breast- and bottle feeding	Age 9–12 months & 12–18 months Dental caries; Crude caries increment from 9–12 months and 12–18 months; Incidence density = tooth surface developing caries; Incidence density ratio = ratio of incidence density of those exposed to those not exposed to the particular independent variable concerned	Bivariate analysis: crude caries increment between 9–12 months and 12–18 months was significantly higher among children who were breast fed/bottle fed or mixed feeding. Negative binomial analysis – no association between increased incident density and breastfeeding reported.	None reported	
van Palenstein Helderman et al. (36)	Retrospective cohort	Children aged 25–30 months – recruited through immunisation records at health centres Dakl-U, Burma	N = 163 breastfed children (children excluded who consumed 'jaggery; and those who were bottle fed and breastfed from 5 months)	Breastfeeding: Total number Of feeds (low/high) Total exposure time to breastfeeding (low/high) Median value sets low/ high Prolonged breastfeeding beyond 12 months age	Children aged 25–30 months Dental caries ECC – presence of caries in 1st tooth	Significantly associated: >2 nocturnal breastfeeding and ECC OR = 3.5 (p < 0.001) >15 min feeding per night OR = 100 (p < 0.001)	None reported	
Yonezu et al. (37)	Prospective cohort	Infants attending preventive dental care programs at public health centres Japan	N = 922 at 18 months N = 1504 at 24 months N = 1396 at 30 months N = 952 followed longitudinally	Prolonged breastfeeding or bottle feeding at 18 months Aged 18 months, 24 months and 36 months Dental caries dft		Mean dft of children being breastfed at 18 months (0.36) was significantly higher than the control group (0.06) p = 0.001 Mean dft of children being breastfed at 24 months (0.51) was significantly higher than the control group (0.11) p = 0.05	None reported	
Case control	Bahuguna et al. (39)	Outpatient department of paedodontics and preventive dental clinic Lucknow, India	Case n = 400 Control n = 400	Breastfeeding duration ≤6 months > 6 months Bottle feeding (no detail reported)	Children aged 1–18 years Dental caries DMFT/dmft	Significantly higher proportion of case subjects were breastfed for longer than 6 months compared to control (p < 0.001) Significantly higher proportion of cases had been bottle fed (p = 0.017)	None reported	
Mitee et al. (40)	Case control	Children aged 1–4 years attending maternal and child health centres in 9 out of 25 regions in Tanzania	Case n = 116 Control n = 243	Breastfeeding duration Night feeding (duration of nipple in the mouth: 0 h, ½ h, 1 h, >1 h) Bottle feeding and content in bottle	Case mean age = 1.6 years Control mean age = 2.1 years Dental caries Ruptant caries (≥2 caries lesions in maxillary incisors)	Duration of breastfeeding (1 year vs 3 years) OR = 2.4 (0.7–9.1) p = 0.18 Night breast feeding habits OR = 17.8 (6.3–50.3) p < 0.0001 Linear hypoplasia OR = 15.6 (8.0–30.5) p < 0.0001	None reported	
Roberts et al. (41)	Case control	1–4 year old children South Africa	Case n = 109 Control n = 109	Breastfeeding frequency	Aged 1–4 years Dental caries dmft		None reported	
References	Type of study/brief description	Study population/Country	Sample size (gender % given if reported)	Exposure definition	Outcome definition and age	Exposure estimate (95% CI)	Other variables included in the models as confounders	Interactions
------------	--------------------------------	---------------------------	--	--------------------	---------------------------	-----------------------------	---------------------------------	-------------
Tham et al. (42) [5* Good]	Cross-sectional	Children aged 5 who participated in a longitudinal nutrition and health study that promoted breastfeeding up to 12 months; Finland	N = 144 Boys = 59 (41%)	Duration of exclusive breastfeeding: <2 months <2–6 months <6–9 months >9–12 months >12 months	Aged 5 years Dental caries dmfs	Distribution of dmfs among children with longer or shorter duration of breastfeeding was equal	None reported	
Alaluusua et al. (43) [3* Unsatisf]	Cross-sectional	Children aged 18–48 months born and continuously resident in Kuwait, Recruited through hospital and health centre	N = 22.7 Boys = 101 (44.5%)	Infant feeding practices Breast fed Bottle fed Breast and bottle fed	Aged 18–48 years Dental caries – no detail provided re how this is assessed	Children breast fed at birth significantly more likely to be caries-free than those breast and bottle fed or bottle fed only	None reported	
Azevedo et al. (44) [5* Good]	Cross-sectional	Preschool children; aged 36–71 months; Brazil public health centres	N = 369 Boys = 188 (51%)	Infant feeding practices including patterns and duration of bottle feeding and breastfeeding	Age 3.6–7.1 months S-ECC = ≥1 dmfs in primary maxillary anterior teeth	Breastfeeding during night time (mean = 2.65; 72%) – statistically associated with SECC (p = 0.02); Breastfeeding after 12 months of age with SECC; children and 50% of non-SECC children – significant association b/w breastfeeding children >12 months and presence of SECC (p = 0.004)	None reported	None
Campus et al. (45) [5* Good]	National cross-sectional survey; March 2004 – October 2005	4 years old children; Italy	N = 5538 (aged 47.2 months ± 3.5 months) Boys = 2518 (45.5%)	Duration of breastfeeding ≥13 months (≤13 months or >13 months)	Age 4 years Dental caries dmfs	Children BF for >13 months had significantly higher dmfs than those BF ≤13 months (p = 0.03) Association between prolonged BF and dental caries only seen in bivariate analysis and no conclusion about harmful consequences can be drawn from multivariate modelling	Gender; Parent nationality; Parent education; Pregnancy; Birth; Age of tooth eruption; Sedentary lifestyle; Disease or medication during pregnancy	
Carino et al. (46) [3* Unsatisf]	Cross-sectional survey; October 1999 – November 1999	Children aged 2–6 years; Northern Philippines – 3 areas in 2 regions	n = 452 Aged 3–6 years Stratified 3–4 and 5–6 years feeding Breastfed only Mixed breastfed and bottle fed Bottle fed only No answer Weaning age ≤2 years old >2 years Still breast or bottle feeding No answer	Aged 2–6 years Dental caries dmfs or drift	Bivariate analysis No significant difference in associations between breastfeeding, bottle feeding and weaning age and ECC	Child’s primary caregiver; Feeding practices; Snacking habits; Type of snacks eaten; Last dental visit; Reason for last visit		
Diniz et al. (47) [4* Satisf]	Cross-sectional survey; December 1998	Children enrolled in municipal nurseries; 3–4 years; Angra dos Reis, Sao Paolo, Brazil	N = 245 Boys = 137 (56%)	Breastfeeding and/or bottle feeding Duration of breastfeeding: Never ≤24 months >24 months	Aged 3–4 years Dental caries dmfs or drift	Statistically significant: Cases in molars and incisors and children who were never breast fed or those who were breast fed beyond 24 months at age OR = 3.1 (1.1–8.4) p = 0.03	None reported	
Appendix (Continued)

References (NOS QA score)	Type of study/brief description	Study population/Country	Sample size (gender % given if reported)	Exposure definition	Outcome definition and age	Exposure estimate (95% CI)	Other variables included in the models as confounders	Introductions
Du et al. (48) [4* Satisf]	Cross sectional survey	Children in kindergartens; urban Hanchuan, China	N = 426 Boys = 250 (59.6%)	Infant feeding – breast and/or bottle Duration of breast feeding	Aged 24-47 months; Mean age = 40 months Dental caries (dmfs or dmft) Rampant caries = 2 or more teeth with caries affecting palatal and/or labial surfaces of primary incisors	Bottle fed only children had statistically significant higher prevalence of indoor caries (p < 0.05) and rampant caries (p < 0.01) of with partially or fully breast fed children, Children who had been wholly bottle fed had higher risk of caries of children partially or wholly breast fed: rampant caries OR = 5.27 (2.16–12.89) p = 0.003 indoor caries OR = 2.36 (1.03–4.90) p = 0.042	None reported	Stepwise logistic regression: Gender (male/female); Age (24–35 months/36–47 months); Education (low/high); Income (low/high); Feeding (bottle/breast)
Dye et al. (49) [6* Very good]	Cross sectional National Health and Nutrition Examination Survey III – 1988–1994	Children aged 2-5 years; USA	N = 4236 Boys = 2081 (49.1%)	History of breast feeding – yes or no	Aged 2-5 years Dental caries – decayed or filled primary dental surfaces (dfs)	In models adjusted for poverty, education and race/ethnicity the findings indicate that there is no relationship between caries and a history of ever breastfeeding Significant predictors of dmft: Duration of breastfeeding (p = 0.002) & form of breastfeeding (exclusive breastfeeding) (p = 0.03) No significant association b/w form of breast feeding and rampant caries or caries. No sig association b/w duration of breastfeeding and caries or no caries – however significant association between duration of breastfeeding and rampant caries (p = 0.02)	Poverty Education of parent Race/ethnicity Poverty and educational attainment	
Folayan et al. (50) [3* Unsatisf]	Cross-sectional	Children aged 6-71 months; 3 randomly selected LGAs in Lagos State, Nigeria	N = 396 Boys = 217 (54.9%)	Exclusive breastfeeding Almost exclusive: breast milk with water supplement Partial/mixed breastfeeding	Aged 6-71 months dmft Rampant caries = caries affecting 1 or more maxillary or mandibular molars or premolars Caries = caries affecting tooth/teeth exclusive of maxillary anterior tooth/teeth No caries	None reported	None reported	
Folayan et al. (87) [1* Unsatisf]	Cross-sectional	Children attending the Child Dental Health Clinic of 2 hospitals in Nigeria	N = 205 Boys = 108 (52.7%) 1-5 years n = 91 6-10 years n = 88 11-16 years n = 26	Duration of breastfeeding Breastfeeding on demand or leaving the nipple in mouth overnight during night feeding Duration of bottle feeding	Aged 1-16 years Rampant caries	No association found between rampant caries, duration of breast feeding (p = 0.15), form of breastfeeding (p = 0.84) or duration of bottle feeding (p = 0.07) in children aged 1-5 years	None reported	
Forsman et al. (51) [3* Unsatisf]	Cross-sectional study; 2 sites	(1) Vaxjo, Sweden; Children born 1962 and 1963; Data on infant feeding extracted from records in Children's Welfare Centre, Vaxjo (2) Gothenburg, Sweden Children born in 1964 Questionnaire	N = 205 Boys = 108 (52.7%) 1-5 years n = 91 6-10 years n = 88 11-16 years n = 26	Duration of breastfeeding Breastfeeding on demand or leaving the nipple in mouth overnight during night feeding Duration of bottle feeding	Aged 4 years Dental caries defs and dmft	Results reported in frequencies and t-tests No significant differences in caries between the B and F groups in both sites	None reported	

The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica 2015 104, pp. G2-34
References [NOS QA score]	Type of study/brief description	Study population/Country	Sample size (gender % given if reported)	Exposure definition	Outcome definition and age	Exposure estimate (95% CI)	Other variables included in the models as confounders	Interactions
Hallid et al. (52) [☆☆ Very good]	Cross-sectional; Self administered questionnaire	Preschools; North Brisbane, Australia	N = 2515 Boys = 1307 (52%)	Duration of breastfeeding: None; <5 months; 5-6 months; 7-12 months; >13 months	Aged 4-5 years ECC- dmfs and dmft ≥ 1	Multivariate analysis Ref = no breastfeeding <5 months OR = 1.0 (0.7-1.3) (p = 0.9) 3-6 months OR = 0.7 (0.5-1.0) (p = 0.05) 7-12 months OR = 1.0 (0.7-1.4) (p = 0.9) >13 months OR = 1.5 (0.9-2.3) (p = 0.09)	Sleep with bottle (y/n); Sp from bottle (y/n); Ethnicity; Family income	
Hallensten et al. (53) [☆☆☆ Unsatisf]	Cross-sectional survey; 1981-1982 Comparative study of 4 groups (breastfeeding and sibling’s caries)	Child welfare centres (n = 48 centres); 3 counties in Sweden	N = 200	Breastfeeding Duration of breastfeeding	Aged 18 months Dental caries dmfs	No significant difference in defs of children with caries being breastfed and children with caries not being breastfed No analysis of association between defs and breastfeeding duration	None reported	
Haq et al. (54) [☆☆☆ Satisf]	Cross-sectional	Recruited from hospitals, private dental clinics and public dental clinic, Dhaka, Bangladesh	N = 530	Feeding: Breast fed Bottle fed Mixed fed Breastfeeding duration: 6 months – 1 year 1-2 years 2-3 years	Aged 5 months – 6 years Dental caries dmft	No significant difference in caries between those breast fed, bottle fed or mixed fed. Longer duration of feeding (either breast, bottle or mixed fed) significantly associated with prevalence of caries.	Sweet drink intake analysed with each exposure	
Hardy (55) [☆☆☆☆ Unsatisf]	Cross-sectional	Village communities in Greece	N = 225 Wholly breast fed = 159 Wholly bottle fed = 66	Breast fed Bottle fed Mixed fed Breastfeeding duration:	Aged 2-6 years Dental caries dmft	No significant difference in caries between the two groups.	None reported	
Harrison et al. (56) [☆☆☆ Satisf]	Cross-sectional	Vietnamese migrants; Vancouver, Canada	N = 60 Boys = 31 (52%)	Breastfed Breastfeeding duration	Mean age 3.24 months ± 2.13 Dental caries – def’s Nursing caries: (20 maxillary teeth have decay)	Cardiational statistics. No association between dental caries and nursing caries and breastfeeding.	None Reported	
Holt et al. (57) [☆☆☆☆ Unsatisf]	Cross-sectional	Maternal and child welfare centres in Camden and Islington Health Authority, London, UK	N = 555 Boys = 275 (49.5%)	Breast feeding No breastfeeding for >2 weeks = Wholly bottle fed	Aged 12 – 60 months Caries – visible cavity involving dentine Ruptant caries – labial or palatal carious lesions involving ≥2 maxillary incisor teeth	A significantly higher proportion of children wholly breastfed (95%) were caries free compared with the proportion of children wholly bottle fed (82%) (p < 0.01)	None reported	
Hong et al. (58) [☆☆☆☆ Satisf]	Cross-sectional	Singapore	190 children Boys = 98 (51.6%) Chinese = 60% Malay = 32% Other = 7%	Breast feeding till 10 months; > 10 months	Mean age = 36.3 months ± 6.9 Dental caries dmfs/dmft	Presence of dental decay: Adjusted Breastfed <10 months (ref) breastfed >10 months: RR = not significant [Results not shown] Risk for decayed and filled teeth (d) Adjusted Breastfed <10 months (ref) breastfed >10 months: mean ratio = 1.05 (1.12-3.05) p = 0.016 Risk for decayed and filled surfaces	Child racial group, frequency of sweets, importance of baby teeth, plaque on teeth	

References:
- Hallid et al. (52) [☆☆ Very good]
- Hallensten et al. (53) [☆☆☆ Unsatisf]
- Haq et al. (54) [☆☆☆ Satisf]
- Hardy (55) [☆☆☆☆ Unsatisf]
- Harrison et al. (56) [☆☆☆ Satisf]
- Holt et al. (57) [☆☆☆☆ Unsatisf]
- Hong et al. (58) [☆☆☆☆ Satisf]
| References (NOS QA score) | Type of study/brief description | Study population/Country | Sample size (gender % given if reported) | Exposure definition | Outcome definition and age | Exposure estimate (95% CI) | Other variables included in the models as confounders | Interactions |
|--------------------------|--------------------------------|--------------------------|--|--------------------|---------------------------|----------------------------|---------------------------------|-------------|
| Iida et al. (59) [5* Good] | Cross-sectional National Health and Nutrition Examination Survey | Children aged 2–5 years USA | N = 1576 Boys = 793 (50.5%) | History of BF = ever BF; Overall BF duration = age when child completely stopped BF or being fed breast milk; Exclusive BF duration = Age when child was first fed something other than breast milk or water; Full BF duration = Age when child was first fed formula, milk or solid foods on a daily basis | Aged 2–5 years Dental cases ECC = presence of any dfs on any primary tooth S-ECC = presence of any dfs on any maxillary incisor | Adjusted Breastfed < 10 months (ref) breastfed > 10 months: mean ratio = 2.32 (1.44–3.70) p = 0.001 | Birth weight; Age; Gender; Race/ethnicity; Poverty status; Maternal age at child's birth; Maternal history of smoking during pregnancy; History of hospital admission; Time since last dental visit |
| Johansson et al. (60) [3* Unsatisf] | Cross-sectional | Preschool children presenting for well children visits at paediatric clinic in Boston Medical Centre, USA | N = 1206 Boys = 622 (51.6%) | Breastfeeding continues after falling asleep | Aged 6 months – 5 years Dental caries dmft | Children breast fed when sleeping had significantly higher deft (1.48) of children who were not (0.61) p = 0.0003. Those bottle fed in bed or at nap time did not have a significantly higher deft (0.53) those who did not (0.64) p = 0.23 | None reported |
| Livny et al. (61) [3* Unsatisf] | Cross-sectional | Children in Jahalin Bedouin community, Jerusalem | N = 102 Boys = 56 (54.9%) | Breastfeeding only Breastfeeding and bottle feeding Exclusive breastfeeding Moderate high mixed feeding (58–99% breast milk) Low mixed feeding (1–57% breast milk) | Aged 12–36 months Dental cases dmft | Moderate and high caries was not observed in subjects exclusively breast fed, whereas high caries severity level was predominant in children fed with formula OR = 6.75 (6.00–7.58) p < 0.01 | None reported |
| Majorana et al. (62) [4* Satisf] | Cross-sectional Questionnaire | Children aged 24–30 months Brescia, Italy | N = 2450 Males = 1181 (49.3%) | Current breastfeeding (yes/no) Breastfeeding duration | Aged 24–30 months Caries = dmft ICADS score for severity | None reported |
| Masumo et al. (63) [5* Good] | Cross-sectional | Manyara (high fluoride rural area) and Kampala (low fluoride urban area), Uganda | Child-caretaker pairs Manyara n = 1221 Boys = 616 (50.5%) Kampala n = 816 Boys = 414 (50.7%) | Breastfeeding status was not significantly associated with ECC in multiple variable models Manyara: Currently breastfeeding aOR = 0.8 (0.30–2.17) p = NS Kampala Currently breastfeeding aOR = 1.4 (0.70–2.79) p = NS | Aged 6–36 months Dental cases ECC = dmft Decayed (d) – cavitated (c) = absent or present | Age; Plaque score; Enamel hypoplasia; Teeth present; Sugar consumption; Number of teeth present |
| References (NOS QA score) | Type of study/brief description | Study population/Country | Sample size (gender % given if reported) | Exposure definition | Outcome definition and age | Exposure estimate (95% CI) | Other variables included in the models as confounders | Interactions |
|---------------------------|---------------------------------|--------------------------|--|---------------------|---------------------------|--------------------------|---|-------------|
| Mattos-Graner et al. (64) | Cross sectional | Children attending 9 public school nurseries, Sao Paulo, Brazil | N = 142 | Duration of breastfeeding (0–3 months; 3–31 months); Frequency of breast feeding | Aged 1–2.5 years Dental cases (dmft) (no missing or filled teeth were found) | None reported | None reported | None reported |
| Noble et al. (65) | Cross-sectional | Children in kindergartens in Southern Italy | N = 515 Boys = 262 (51%) | Occurrence and duration of breastfeeding: History (yes/no); duration (<6; 5–10; 11–19; ≥20 months); Bottle feeding – sleep with sweetened bottle or pacifier | Aged 36–71 months Dental cases ECC: ≥1 decayed, missing of filled teeth (dmft) S-ECC: in children <3 years = any sign of smooth surface cases; in children aged 3–5 years = 1 or more cavitated, missing or filled smooth surfaces in primary maxillary anterior teeth; or dmft ≥4 at age 3; dmft ≥5 at age 4; dmft ≥6 at age 5 | Prevalence of ECC significantly increased with duration of breastfeeding OR = 1.26 (1.01–1.57) p = 0.039 | Potential confounders included in the models but these are not specified. Possibly: Dental visit in previous year; Age; Mother’s education level; Start using cup; Sleep with bottle or pacifier; Start toothbrushing; Maternal age at delivery; Mother’s age |
| Nunes et al. (66) | Cross-sectional | Preschool children; Low income families, Sao Luis, Brazil | N = 241 Non-exposed n = 192 Exposed n = 49 | None-exposed = those breast fed for <12 months Exposed = those still breastfeeding at time of examination | Aged 18–42 months Mean age = 3.45 months Dental cases ECC: dmft | Prevalence of 5-ECC significantly increased with breastfeeding OR = 2.06 (1.13–3.76) p = 0.019 | None reported | None reported |
| Perera et al. (67) | Cross-sectional | Children aged <60 months in a pediatric ward of a teaching Hospital, Sri Lanka | N = 285 Boys = 138 (48.4%) | Exclusive breastfeeding - breast milk up to 6 months Overnight feeding (bottle or breast) | Aged <60 months Dental cases dmft | No significant difference in the dmft of children exclusively breast fed and those not exclusively breastfed p = 0.28 Children fed overnight with breast milk had caries prevalence of 5.14% of children not fed overnight (29%) OR = 2.54 (1.29–5.01) along with higher mean deft p = 0.001 | None reported | None reported |
| Prakash et al. (68) | Cross-sectional | Playschools and private hospitals Children aged 8-48 months Urban Bangalore, India | N = 1500 | On-demand breastfeeding (not defined) | Age 8-48 months Dental cases | Prevalence of dental caries showed inverse relationship with frequency of breastfeeding but not significant Caries prevalence increased with duration of breastfeeding and p < 0.05 Caries prevalence higher in children who were introduced to the bottle around 2 years of age p < 0.001 | None reported | None reported |
| Prakash Shrihita et al. (69) | Cross-sectional | Children aged 3–5 years - Play homes/preschools in Kanpur District, India | N = 2000 Boys = 974 (48.7%) | Breastfeeding frequency | Age 3–5 years Dental cases dmft | None reported | None reported | None reported |

Note: The table continues with more studies and details on each study, including exposure definition, outcome definition, exposure estimate, and other variables included in the models as confounders. Each study provides a brief description of the population, sample size, and specific exposure and outcome data related to breastfeeding and dental caries.
Breastfeeding and dental caries

Appendix (Continued)

References [NOS QA score]	Type of study/brief description	Study population/Country	Sample size (gender % given if reported)	Exposure definition	Outcome definition and age	Exposure estimate (95% CI)	Other variables included in the models as confounders	Interactions
Qadri et al. (70) [4* Satisf]	Cross-sectional survey	Children aged 3–5 years 20 kindergartens in Syria	N = 460 Boys = 191 (41.9%)	Feeding practices during infancy: predominately breastfed vs bottle fed.	Aged 3–5 years Dental caries dmft ECC	Logistic regression: Fully adjusted dietary practices (bottle vs breastfeeding) and (1) dmft OR = 0.61 (0.39–0.97) p = 0.038 (2) ECC OR = 0.27 (0.18–0.41) p < 0.001 Age was only significant factor associated with dmft and ECC Significant association between caries severity and duration of breastfeeding (analysis not shown); Severity of decay higher in children who fell asleep with nipple in the mouth (OR 2.39, p < 0.05) [95% CI not reported]	Models are adjusted but confounders included are not reported (possibly age, gender and dietary practices are the covariates).	
Ratnakumari et al. (71) [3* Unsatisf]	Cross-sectional	Children attending immunization clinic, day care centres – aged 12–36 months Kerala, India	N = 350 Male = 171 (48.9%)	Duration of breastfeeding: Night feeding only Present now: ≤1 year 1–2 years >2 years Falling asleep with nipple in the mouth	Aged 12–36 months Dental caries defs	No significant association between type of feeding and presence of caries	None reported	
Rosenblatt et al. (72) [3* Unsatisf]	Cross-sectional	Pediatric clinic – two public maternity hospitals Recife, Brazil	N = 468 Boys = 222 (47.4%)	Feeding practices: Breast feeding Bottle feeding Baby bottle sugared milk Baby bottle sugared milk Cup- sugared milk	Aged 12–36 months Dental caries def	No significant associations were found between the prevalence of caries and nocturnal bottle- and breast-feeding	None reported	
Sankeshwari, (73) [3* Unsatisf]	Cross-sectional	Children aged 3–5 years; 20 preschools in Belgaum, India	N = 1250 Boys = 663 (52.4%)	Breastfeeding: History, duration, timing, frequency Bottle feeding: History, duration, timing, frequency, contents	Aged 3–5 years Dental caries – dmft (ECC)	Significant [unadjusted] associations (OR) between lower prevalence of ECC and history of breastfeeding (yes/no: p = 0.02), duration of breastfeeding (6–24 months/≤6 months or >24 months: p = 0.001).	None reported	
Santos, (74) [2* Unsatisf]	Cross-sectional	Outpatients of the Pediatric University Hospital, Brazil	N = 80 Boys = 45 (56.3%)	Breastfeeding	Aged up to 36 months Dental caries	No significant associations were found between the prevalence of caries and nocturnal bottle- and breast-feeding	None reported	
Sayegh et al. (75) [4* Satisf]	Cross-sectional	Kindergartens in Amman, Jordan	N = 1140 Boys = 582 (51.1%)	Infant feeding practice: Breastfeeding Bottle feeding Both Duration Frequency (on demand)	Aged 4–5 years Dental caries dmft Indisc. incisors and canines; molars; incisors, canines and molars	Breast feeding duration >18 months or never (grouped together) – OR caries in any teeth = 1.5 (95% CI 1.1–2.1) p = 0.05 Breast feeding on demand vs not breast feeding on demand OR caries in any teeth = 1.8 (95% CI 1.3–2.5) p = 0.05	Characteristics included in stepwise regression: Age; Social class; Sleep with mother; Bottle feeding time; Use of comforter; Confectionary at bed or night time	
Sayegh et al. (76) [5* Good]	Cross-sectional	Kindergartens in Amman, Jordan	N = 1075 Boys = 553 (51.4%)	Breastfeeding/ Bottle feeding duration: ≤6–18 months >18 months Breastfeeding/ Bottle feeding frequency: Never; Not on demand	Aged 4–5 years Dental caries dmft Caries = dmft ≥1 Severe caries – breast feeding >18 months vs never breastfeeding OR = 2.5 (95% CI 1.4–4.8)	Characteristics included in the stepwise multiple logistic regression model: Dental plaque; Sleeping beside mother; Use of comforters; Confectionary; Marmalade/jam/honey/ honey at breakfast or dinner	None reported	
Appendix (Continued)

References	Type of study/brief description	Study population/Country	Sample size (gender % given if reported)	Exposure definition	Outcome definition and age	Exposure estimate (95% CI)	Other variables included in the models as confounders	Interactions	
Sewint et al. (77)	Cross-sectional	Hospital based pediatric clinic; California, USA	N = 110; Boys = 55 (50%)	Ever breast fed	EVER breast fed and caries OR 2.9 (95% CI 0.9-9.9) p = 0.08 – borderline significance.	Controlled for familial characteristics: Maternal cavities; Mother aims to keep teeth by age 65; Child drank fluoride water; fluoride supplements; Brush child’s teeth	None reported		
Slabinskene et al. (78)	Cross-sectional	Kindergartens in 10 counties in Lithuania	n = 80	Duration of breast feeding: ≤12 months	In children who breastfed beyond 13 months the risk of developing S-ECC was high (OR = 10.0 (95% CI 7.8-12))	None reported			
Songo et al. (79)	Cross-sectional	Dental units of five hospitals or private clinics in Kinshasa, Democratic Republic of Congo	N = 158; Boys = 79 (50%)	Breast feeding: Excl; Mixed with bottle	Children being exclusively breast fed or have both bottle and breast presented with lower caries levels OR = 0.16 (95% CI 0.04-0.66)	Adjusted for: gender; Tooth brushing frequency; Use of fluoride; Regular dental check-ups; Between meal snack frequency; Maternal smoking during pregnancy; Exposure to environmental tobacco smoke at home Parental education levels	None reported		
Tanaka et al. (80)	Cross-sectional	Public health centre, Fukuoka City, Japan	N = 2056; Boys = 1087 (52.9%)	Breastfeeding duration regardless of exclusivity: <6 months	Adjusted Prevalence Ratios (95% CI)	Breathing duration (months)	Children being exclusively breast fed or have both bottle and breast presented with lower caries levels OR = 0.16 (95% CI 0.04-0.66)	Adjusted for: gender; Tooth brushing frequency; Use of fluoride; Regular dental check-ups; Between meal snack frequency; Maternal smoking during pregnancy; Exposure to environmental tobacco smoke at home Parental education levels	None reported
Tiano et al. (81)	Cross-sectional	Public day care centres in 2 municipalities in Brazil	N = 68	Breastfeeding duration ≤12 months	Breastfeeding duration (months)	<6 PR = 1.66 (1.35-2.06)	Significant association between breast feeding and I-ECC prevalence is significantly associated with duration of breastfeeding (p = 0.002)	Multivariate models controlled for: Age; Number of teeth present	
Tyagi (82)	Cross-sectional	Kindergartens in Daangere, Karnataka, India	N = 813; Boys = 395 (48.6%)	Duration of breast feeding: 3-9 months	Mean dfs increases with duration of breast feeding, but not statistically significant		Not reported		
Vachirarojpisan et al. (83)	Cross-sectional	Health centre, U-Thon District in Suphan Buri Province, Thailand	N = 520; Boys = 272 (52.3%)	Method of feeding: Breast feeding	Bivariate analysis of 15-19 month group: Significant association between breastfeeding and ECC (p = 0.018). Significant association lost in multivariate models that include all age groups.		Not reported		
Vazquez-Huau et al. (84)	Cross-sectional study within prospective cohort study 2005	Children aged 4-5 years who had been longitudinally studied since 4 months of age.	N = 1160; Boys = 585 (50.2%)	Breastfeeding	Significant association between breastfeeding beyond 12 months & at night and dental caries OR = 3.6 (2.51-5.16) p < 0.001		Not reported		
Appendix (Continued)

References [NOS QA score]	Type of study/brief description	Study population/Country	Sample size (gender % given if reported)	Exposure definition	Outcome definition and age	Exposure estimate (95% CI)	Other variables included in the models as confounders	Interactions
Wendt & Birkhed (85) [4* Satisf]	Cross-sectional study within prospective longitudinal study 3 time points: 1 year, 2 years, 3 years	Preschool children in Jonkoping, Sweden - comparison of Swedish children and immigrant children	Baseline n = 671 1 year n = 632 1 year caries free n = 629 2 year n = 298 2 years caries free n = 276 3 years n = 270 3 years caries free n = 210	Breast feeding: ≤2 months Still breast fed	Examined at 1 year, 2 years and 3 years of age Dental caries dmfs	Significantly more children with caries than without caries at the age of 3 had either been breast fed for ≤2 months or >12 months		
Yonezu et al. (86) [1* Unsatisf]	Cross-sectional	Infants attending preventive dental care programs at public health centres. Children have been or are being breastfed	N = 105	Bed time breast feeding	Aged 18 months Dental caries dlft	Odds of caries at 24 months was significantly higher OR = 10.66 (2.23–50.96) for bedtime breast fed children than children not breast fed at bedtime (p = 0.05)	None reported	

ECC = Early childhood caries; S-ECC = Severe early childhood caries; dmfs/t = decayed, missing, filled and extracted deciduous surfaces/teeth; defs/t = decayed, extracted due to caries, filled deciduous surfaces/teeth; DMFT = Decayed, Missing, Filled and Extracted permanent surfaces/teeth; ICDAS = International Caries Detection and Assessment System (Reference: ICDAS Foundation. What is ICDAS?. https://www.icdas.org/what-is-icdas, 9 March 2015).