Syntax, Parsing and Production of Natural Language in a Framework of Information Compression by Multiple Alignment, Unification and Search

J Gerard Wolff
(University of Wales, Bangor, UK
gerry@sees.bangor.ac.uk)
February 1, 2008

Abstract

This article introduces the idea that information compression by multiple alignment, unification and search (ICMAUS) provides a framework within which natural language syntax may be represented in a simple format and the parsing and production of natural language may be performed in a transparent manner.

In this context, multiple alignment has a meaning which is similar to its meaning in bio-informatics but with significant differences, while unification means a simple merging of matching patterns, a meaning which is related to but simpler than the meaning of that term in logic. The concept of search in the present context means search for alignments which are ‘good’ in terms of information compression, using heuristic methods or arbitrary constraints (or both) to restrict the size of the search space.

These concepts are embodied in a software model, SP61. The organisation and operation of the model are described and a simple example is presented showing how the model can achieve parsing of natural language.

Notwithstanding the apparent paradox of ‘decompression by compression’, the ICMAUS framework, without any modification, can produce a sentence by decoding a compressed code for the sentence. This is illustrated with output from the SP61 model.

The article includes four other examples - one of the parsing of a sentence in French and three from the domain of English auxiliary verbs. These examples show how the ICMAUS framework and the SP61 model can accommodate ‘context sensitive’ features of syntax in a relatively simple and direct manner.

An important motivation for this research is the possibility of developing the ICMAUS framework as a unifying framework for diverse aspects

*Journal of Universal Computer Science 6(8), 781–829, 2000.
of computing in addition to those described in this article. Other aspects which appear to fall within the scope of the ICMAUS framework but which are outside the scope of this article, include the representation of natural language semantics, best-match pattern recognition and information retrieval, deductive and probabilistic reasoning, planning and problem solving, and unsupervised inductive learning.

Key Words: natural language; syntax; parsing; production; multiple alignment; unification; information compression; MML; MDL.

Category: I.2.7

1 Introduction

This article introduces the idea that information compression (IC) by multiple alignment, unification and search (ICMAUS) provides a framework within which natural language syntax may be represented in a simple format and the parsing and production of natural language may be performed in a transparent manner.

In this context, multiple alignment has a meaning which is similar to its meaning in bio-informatics but with significant differences, while unification means a simple merging of matching patterns, a meaning which is related to but simpler than the meaning of that term in logic. In the present context, search means search for alignments amongst patterns which are ‘good’ in terms of information compression, with constraints to reduce the size of the search space as described in Section 2.

The mechanisms for heuristic search which are incorporated in the ICMAUS framework as it has been developed here allow syntactic knowledge to be expressed as patterns (as described in Section 3.1), a mode of expression which is significantly different from existing formalism. The use of patterns (in the sense of this article), has potential advantages compared with existing formalisms.

These concepts are embodied in a software model, SP61. This article describes the organisation and operation of the model with examples of what the model can do.

1.1 Novelty of proposals

Aspects of these proposals which appear to be novel are described in the following subsections.

1In this research, the term pattern has been adopted as a general term which means an array of symbols of one, two or more dimensions. Notwithstanding the fact that this research has so far been largely restricted to one-dimensional sequences of symbols, the term pattern is generally used in preference to the term sequence as a reminder of the intention, later in the research programme, to generalise the concepts to two or more dimensions. Formal definitions of terms like symbol and pattern as they are used in this research are given in Appendix B.
1.1.1 Parsing (with choices at many levels) as multiple alignment

The most novel feature of the present proposals appears to be the idea that parsing, in the sense understood in theoretical and computational linguistics and natural language processing, may be understood as multiple alignment.

A concept of parsing is already well-established in the literature on data compression (see, for example, [Storer 88]). In that context, it means a process of analysing data into segments, each of which is replaced by a relatively short ‘code’ associated with the given segment in a ‘dictionary’ of segments.

But this kind of parsing is simpler than ‘linguistic’ kinds of parsing. In the first case, although segments may have internal hierarchical structure, alternatives can be chosen only at one level. In the second kind of parsing, which is the focus of interest in this article, there may be alternatives at arbitrarily many levels in the grammar which is used to guide the parsing.

1.1.2 Parsing as information compression

Research on parsing and related topics within computational linguistics and AI does not normally consider these topics in terms of information compression (IC) (but see, for example, [Berger et al. 96, Hu et al. 97]). However, there is a well-developed tradition of parsing and linguistic analysis in terms of probabilities, with associated concepts such as ‘stochastic grammars’, ‘maximum-likelihood’, ‘Bayesian inference’ and ‘statistical analysis’ (see, for example, [Abney 97, Black et al. 93, Dreuth and Ruber 97, Garside et al. 87, Takahashi and Sagayama 97, Wu 97, Lucke 95]) and there is a close connection between probabilities and IC.

1.1.3 Production of language as ICMAUS

Essentially the same points as were made above about parsing apply also to the production of language. It is interesting that the ICMAUS framework, without any modification, lends itself to the production of language as well as it does to parsing (see Section 6).

1.1.4 Representing syntax with patterns

As we shall see, the ICMAUS framework allows natural language syntax to be represented with patterns in a manner which is significantly different from other formalisms.

2 Measures of frequency or probability have a key role in techniques for economical coding such as the Huffman method or the Shannon-Fano-Elias (S-F-E) method (see Cover and Thomas 91). Conversely, measures of compression may be translated into measures of probability (see Wolff 99b).
1.2 Background and context

The proposals in this article have been developed within a programme of research developing the ‘SP’ conjecture that all kinds of computing and formal reasoning may usefully be understood as information compression by pattern matching, unification and search, and developing a ‘new generation’ computing system based on this thinking (Wolf 90 to Wolf 00).

This entire programme of research is based on an earlier programme of research into unsupervised learning of language structures (see Wolf 88, Wolf 82, and earlier articles cited there). That research and the present research are based on principles of Minimum Length Encoding (MLE). Relevant sources are cited in Section 1.3.

The overall aim of this research programme is the integration and simplification of concepts in computing and cognition. Besides the aspects of natural language processing considered in this article, the ICMAUS framework appears to have potential to accommodate several other aspects of computing and cognition, including unsupervised learning (Wolf 90), the representation of non-linguistic ‘semantic’ structures (examples may be found in Wolf 99b, Wolf 98c), mathematics and logic (Wolf 90), probabilistic reasoning (Wolf 99b, Wolf 96), best-match information retrieval (Wolf 94a) and best-match pattern recognition (Wolf 95a). It can be argued (Wolf 99a) that the ICMAUS framework provides an interpretation for the organisation and operation of any Universal Turing Machine (UTM), and equivalent models of ‘computing’ such as the Post Canonical System (PCS).

1.3 Related research

As an attempt to integrate concepts across several areas of computing, the SP programme naturally has many connections with other research in the several areas that it seeks to integrate. Some connections are described in Wolf 91, Wolf 93, Wolf 95b.

In terms of theoretical foundations, the closest links are with work on Algorithmic Information Theory (AIT, see, for example, Li and Vitanyi 93) and Minimum Length Encoding (MLE, see, for example, Solomonoff 64, Wallace and Boulton 68, Rissanen 78, Belloti and Gammerman 96, Gammerman 91) which is itself closely related to Bayesian inference (see, for example, Cheeseman 90, Pednault 91).

1.3.1 Distinctive features of the SP programme compared with MLE and AIT

Although the SP theory is based on MLE principles, there are important differences in objectives and orientation between the SP programme and other
research in MLE and AIT. These differences are described in Section 3.6 of [Wolff 95b] and Sections 7.1 and 7.2 of [Wolff 94b]). In brief, the main differences are:

- The SP programme seeks to integrate all kinds of computing and formal reasoning within a framework of information compression. This goal is broader than it is in other research in AIT or MLE.

- The SP programme is based on the hypothesis that all kinds of information compression may be understood in terms of multiple alignment, unification and search. In essence this means the hypothesis that all kinds of information compression is achieved by the unification of matching patterns. All existing and projected SP models are restricted to ICMAUS mechanisms and avoid ‘arithmetic coding’ and other mathematical techniques which are used for information compression.

The restriction has been imposed in the interests of simplicity in the SP theory. The aim is to build a theoretical framework from a ‘bedrock’ of apparently primitive operations of matching symbols and patterns and unifying symbols and patterns. The theory should avoid including any concepts that cannot be derived from this foundation.

If, as conjectured, arithmetic and, perhaps, mathematics, may be understood in terms of ICMAUS (see [Wolff 00]), then compression techniques that use mathematical concepts may also be understood in terms of ICMAUS. But until this has been demonstrated, the adoption of arithmetic coding or any other mathematical technique would add unwanted complexity to the SP model.

- In the first point above, the phrase “all kinds of computing” includes the concept of ‘computing’ itself in its full depth and generality. Thus the SP programme hypothesises that other models of computing such as the Turing model or the Post Canonical System may be understood in terms of the ICMAUS concepts (see [Wolff 99a]). By contrast, researchers in AIT and MLE accept the Turing model (and equivalent models) as the foundation of concepts in computing.

1.4 Scope of this article

This paper describes new concepts in the representation of syntax and in the parsing and production of language. It does not describe a complete working system, including a complete grammar of one or more languages, and it should not be evaluated as such.

In the space available, it is possible only to present these proposals in outline. It has been necessary to omit many details and there are many associated issues which could not be discussed.

Although integration of concepts right across the field of computing provides the main motivation for this programme of research (as noted in Section 1.2),
topics other than syntax, parsing and production of natural language will not
be considered except briefly where they are relevant.

1.5 Presentation

In what follows, I have tried to bring the important ideas into relief by describing them relatively briefly in the body of the article and moving details into appendices. The main sections after this one are these:

2 introduces multiple alignment problems in general terms and describes how the concept has been generalised in this programme of research.

3 describes the use of patterns (defined in Appendix A) to represent the broad features of the syntax of natural language and describes how the parsing of language may be seen as multiple alignment.

4 describes in outline how an alignment may be evaluated in terms of IC.

5 describes the main features of the SP61 model, a partial realisation of the ICMAUS framework, running on a conventional computer.

6 describes how the production of language may be seen in terms of multiple alignment - between a 'coded' representation of a sentence and rules in a grammar.

7 presents a selection of other examples showing how the ICMAUS framework can accommodate 'context sensitive' features of syntax.

8 discusses briefly some associated issues and makes some concluding remarks.

The appendices are as follows:

A provides formal definitions of the main terms used in this article.

B supplements Section 4 with a more detailed account of the method for evaluating the IC associated with any alignment which is used in the SP61 model.

C describes the organisation of the SP61 model in more detail than Section 5.

Generally speaking, small examples have been used in this article for the sake of clarity and to save space. It should not be assumed that the examples represent the limits of what the system can do (see Section 6.2).
2 Multiple alignment problems

Multiple alignment is a term borrowed from bio-informatics where it means the arrangement of two or more sequences of symbols in horizontal rows one above the other so that, by judicious ‘stretching’ of sequences where necessary, symbols that match each other from one sequence to another can be brought into alignment in vertical columns.

A ‘good’ alignment is, in general, one where there is a relatively large number of hits (positive matches) between symbols and where any gaps (sequences of unmatched symbols) between hits are relatively few and relatively short. The meaning of ‘good’ in this context is described in Section 4 and Appendix B.

Multiple alignments like these are normally used in the computational analysis of (symbolic representations of) sequences of DNA bases or sequences of amino acid residues as part of the process of elucidating the structure, functions or evolution of the corresponding molecules. An example of an alignment of DNA sequences is shown in Figure 1.

```
G G A G C A G G G A G G A T G G G G A
| | | | | | | | | | | | | | | | | |
G G | G C G C C A G G G A G G A | G G C G G G A
| | | | | | | | | | | | | | | | | |
A | G A C T G C C C A G G G | G G | G C T G G A | G A
| | | | | | | | | | | | | | | | | |
G G A A | A G G G A G G A | A G G G G A
| | | | | | | | | | | | | | | | | |
G G C A C A G G G A G C C G G A
```

Figure 1: A ‘good’ alignment amongst five DNA sequences.

2.1 Search and the need for constraints

In this area of research, it is widely recognised that, with the exception of alignments of patterns which are very small and very few, the number of possible alignments of symbols is too large to be searched exhaustively. For any set of patterns of realistic size, a search which has acceptable speed and acceptable scaling properties can only be achieved if some kind of constraint is used:

- Arbitrary parts of the search space may be excluded a priori. For example, in multiple alignment problems, an upper limit may be set to the size of any ‘gap’ between ‘hits’, as described above.

- With ‘heuristic’ techniques, searching is done in stages, with a progressive narrowing of the search space in successive stages using some kind of measure of ‘goodness’ to guide the search. Heuristic techniques include ‘hill climbing’ (sometimes called ‘descent’), ‘beam search’, ‘genetic algorithms’, ‘simulated annealing’, ‘dynamic programming’ and others. These techniques may be described generically as ‘metrics-guided search’.
Either or both of these kinds of constraint may be applied. Given one or both of these kinds of constraint, it is not possible to guarantee that, for any set of patterns, the best possible alignment has been found. For many tasks, this guarantee is not necessary and it is sufficient to find alignments that are “good enough”.

There is now a fairly large literature about methods for finding good alignments amongst two or more sequences of symbols. All of them use constraints of one kind or another and, for that reason, none of them can guarantee that the best possible result is always found. Some of the existing methods are reviewed in [Taylor 88] [Barton 90] [Chan et al. 92] [Day and McMorris 92]. For reasons which will be explained in the next section, none of the current methods seem to be entirely suitable for incorporation in the proposed SP system.

2.2 Development of the concept of multiple alignment in the present research

In this research, concepts associated with multiple alignment and the multiple alignment concept itself have been adapted and developed in the following way:

- One (or more) of the patterns of symbols to be aligned has a special status and is designated as ‘New’. In the context of parsing, this would be the sentence (or other sequence of symbols) which is to be parsed.

- All other patterns are designated as ‘Old’. In the context of parsing, this would be the patterns of symbols which represent grammatical ‘rules’ (more about this in Section 3 below).

- A ‘good’ alignment is one which, through the unification of symbols in New with symbols in Old, and through unifications amongst the symbols in Old, leads to a relatively large amount of compression of New in terms of the sequences in Old. How this may be done is explained in outline in Section 4 and in more detail in Appendix B.

- By contrast with ‘multiple alignment’ as normally understood in bioinformatics, any given sequence in Old may appear two or more times in any one alignment and, in these cases, it is possible for the given sequence to be aligned with itself.

- As noted already, it is envisaged that, at some point in the future, the concept of multiple alignment as it is understood here will be generalised to alignments of patterns with two dimensions or higher (diagrams, pictures and so on).

Notice that two or more appearances of a pattern in an alignment are repeated appearances of a single entity in the alignment - and this is not the same as having two or more copies of a given pattern in an alignment. In the latter case, it is permissible to form a hit between a given symbol in one copy of a pattern and the corresponding symbol in another copy. In the case of two or
more appearances of a pattern in an alignment, it is not permissible to form a hit between a symbol in one appearance and the corresponding symbol in another appearance - because this would mean forming a hit between one symbol and itself.

3 Syntax as ‘patterns’ and parsing as multiple alignment

This section describes how the simpler aspects of syntax may be represented with patterns and how the parsing of a sentence in terms of a grammar may be seen in terms of multiple alignment.

The example considered in this section and again in Section 6 may give the impression that the ICMAUS framework is merely a trivial variation of familiar concepts of context-free phrase-structure grammar (CF-PSG) with their well-known inadequacies for representing and analysing the ‘context sensitive’ structures found in natural languages. The examples presented in Section 7 show that the ICMAUS framework is much more ‘powerful’ than CF-PSGs and can accommodate quite subtle context-sensitive features of natural language syntax in a simple and elegant manner.

3.1 Representing a grammar with patterns of symbols

Figure 2 shows a simple CF-PSG describing a fragment of the syntax of English. This grammar generates sentences like ‘this boy loves that girl’, ‘that boy hates this girl’, and so on. Any of these sentences may be parsed in terms of the grammar giving a labelled bracketing like this:

\[
(S(NP(D\ this)(N\ boy))(V\ loves)(NP(D\ that)(N\ girl)))
\]

or an equivalent representation in the form of a tree.

Figure 3 shows the grammar from Figure 2 expressed as a set of strings, sequences or patterns of symbols (as defined in Appendix A). Each pattern in this ‘grammar’ is like a re-write rule in the CF-PSG notation except that the rewrite arrow has been removed, some other symbols have been introduced (‘0’, ‘1’ and symbols with an initial ‘#’ character) and there is a number to the right of each rule.

The number to the right of each rule in Figure 3 is a frequency of occurrence of the rule in a (‘good’) parsing of a notional sample of the language. These frequencies have a role in determining the IC associated with any alignment but their main significance (considered in Wolff 99b and outside the scope of this article) is in determining probabilities associated with any given alignment.

The reasons for the symbols which have been added to each rule will become clear but a few words of explanation are in order here. The symbols ‘0’ and ‘1’ have been introduced to differentiate the two versions of the ‘D’ patterns, and
likewise for the ‘N’ patterns and ‘V’ patterns. They enter into matching and unification in exactly the same way as other symbols. Although the symbols are the same as are used in other contexts to represent numbers they do not have the meaning of numbers in this grammar.

\[
\begin{align*}
S &\rightarrow NP \ V \ NP \\
NP &\rightarrow D \ N \\
D &\rightarrow this \\
D &\rightarrow that \\
N &\rightarrow girl \\
N &\rightarrow boy \\
V &\rightarrow loves \\
V &\rightarrow hates
\end{align*}
\]

Figure 2: A CF-PSG describing a fragment of English syntax.

The symbols which begin with ‘#’ (e.g., ‘#S’, ‘#NP’) serve as ‘termination markers’ for patterns in the grammar. Although their informal description as ‘termination markers’ suggests that these symbols are meta symbols with special meaning, they have no hidden meaning and they enter into matching and unification like every other symbol.

In general, all the symbols that can be seen in Figure 3 and other examples in this article are simply ‘marks’ that can be discriminated from each other by yes/no matches but otherwise have no intrinsic meaning. Although some of these symbols can be seen to serve a distinctive role, there is no hidden meaning attached to any of them and no formal distinction between upper- and lower-case letters or between digit symbols and alphabetic symbols and so on (see Appendix A).

3.2 Parsing as alignment of a sentence and rules in a grammar

Figure 3 shows how a parsing of the sentence ‘this boy loves that girl’ may be seen as an alignment of patterns which includes the sentence and relevant rules from the grammar shown in Figure 2. The similarity between
this alignment and the conventional parsing may be seen if the symbols in the alignment are 'projected' on to a single sequence, thus:

\begin{verbatim}
S NP D 0 t h i s #D N 1 b o y #D #NP V 0 l o v e s #V
NP D 1 t h a t #D N 0 g i r l #N #NP #S
\end{verbatim}

In this projection, the two instances of ‘NP’ in the second column of the alignment have been merged or ‘unified’ and likewise for the two instances of ‘D’ in the third column and so on wherever there are two or more instances of a symbol in any column.

This projection is the same as the conventional parsing except that ‘0’ and ‘1’ symbols are included, right bracket symbols (‘)’) are replaced by ‘termination markers’ and each of the upper-case symbols is regarded both as a ‘label’ for a structure and as a left bracket for that structure.

Notice that the pattern ‘NP D #D N #N #NP’ appears twice in the alignment in Figure 4, in accordance with what was said in Section 2.2. In general, any pattern in the grammar used for parsing may appear two or more times in an alignment. Other examples will be seen later.

As was noted in Section 2.2, the sentence or other sequence of symbols to be parsed is regarded as New, while the rules in the grammar are regarded as Old. For the sake of readability and ease of interpretation, New is normally placed at the top of each alignment with patterns from Old below it.

For the sake of clarity in Figure 4 and other alignments shown in this article, each appearance of a pattern in any alignment is given a line to itself (so that the two appearances of ‘NP D #D N #N #NP’ in Figure 4 are on two different lines). Apart from the convention that New is always at the top, the order in which patterns appear (from top to bottom of the alignment) is entirely arbitrary. An alignment in which the patterns appear in one order is totally equivalent to an alignment in which they appear in any other order, provided all other aspects of the alignment are the same.

All the examples of parsing by alignment shown in this article are output from the SP61 model and in every case, the alignment shown is the best alignment (in terms of IC) that the model has found with the given sentence in New (in row 0) and the grammar identified in the caption in Old.

4 Multiple alignments and information compression

This section describes in broad terms how alignments are evaluated in terms of IC. A more detailed account of the method of evaluation used in the SP61 model is given in Appendix B.

Although IC and related concepts of probability are well-established in the evaluation of alignments in bio-informatics (see, for example, Reichert et al. 73, Felsenstein 81, Allison et al. 92, Chan et al. 92, Allison and Wallace 94, Wolff 94a), the framework here is different (as
Figure 4: The best alignment found by SP61 with ‘this boy loves that girl’ in New and the grammar from Figure 3 in Old.
described in Section 2.2 which means that existing methods cannot be applied directly.

In the present work, a good alignment is one which allows an economical coding of New in terms of the patterns in Old. The compression method exploits the elementary principle that a (relatively long) sequential pattern which repeats two or more times in a body of information may be replaced by a shorter identifier, ‘tag’ or ‘code’ associated with that pattern in some kind of ‘dictionary’ of patterns. In effect, each instance of the pattern in the data is unified with the same pattern as it appears in the repository of patterns. This is the basis of all standard methods for IC (see [Storer 88]).

In the ICMAUS scheme, this principle can be applied at a single ‘level’, as in the majority of standard compression schemes, but it can also be applied at an arbitrary number of ‘higher’ levels. To see what this means, consider the alignment shown in Figure 4.

At the most basic level, a word like ‘t h i s’ in New (the sentence being parsed) is matched by the pattern ‘D 0 t h i s #D’ in Old (the grammar) which means that the symbols ‘D 0 #D’ can be used as a ‘code’ for the pattern.4 A certain amount of compression can be achieved by encoding the words in the sentence being parsed at a single level. But more compression can be achieved by taking advantage of the fact that the words in the sentence are not a random sequence of words but they conform to grammatical patterns defined in the grammar like ‘NP D #D N #N #NP’ and ‘S NP #NP V #V NP #NP #S’. The details of how this may be done are explained in Appendix B. As indicated above, this kind of encoding at a ‘higher’ level can be applied through arbitrarily many levels, depending on the patterns of redundancy in New and in the language from which it comes.

5 The SP61 model

Given the example sentence discussed earlier (shown at the top of Figure 4) and the grammar in Figure 3, the SP61 model can find the alignment shown in Figure 4 and, in terms of compression, it identifies it as the best alignment amongst the several which it forms for the given sentence and the given grammar. Given relevant sentences and grammars, the model finds all the other alignments shown in this article (they are indeed taken directly from the output of the model). In each case, the alignments shown are the best in terms of IC amongst alternative alignments that the model finds for a given sentence and grammar.

It is interesting to see that, in general, alignments that are good in terms of IC are also ‘correct’ in terms of our linguistic intuitions. This relationship holds true for several other examples of parsing by the model. Space limitations prevents them being shown here but they can be found in [Wolff 98b].

4Although the code ‘D 0 #D’ does not appear to be much smaller than ‘t h i s’ in New, a weighting factor ensures that the number of bits to be encoded is significantly larger than the code, as explained in Appendix B.
5.1 How the model works

The SP61 model works by building alignments in a pairwise fashion selecting the ‘best’ in terms of compression at each stage. The method thus constitutes a fairly straightforward application of ‘metrics-guided’ search: examine large search spaces in stages, narrowing the search progressively at each stage using some kind of ‘search metric’ to guide the search. This accords with the need for constraints in searching what is normally an astronomically large space of possible alignments (Section 2.1).

Alignments can be built up in a pairwise manner because, at every stage, new alignments are accepted only if they can ‘project’ into a one-dimensional pattern as described in Section 3.2. Since any such alignment can be treated as a single sequence of symbols it is possible to match it against any of the original patterns in the grammar or any of the alignments formed at earlier stages.

The program starts by searching for ‘good’ alignments between the sentence to be parsed and patterns in the grammar. For the example in Figure 4, the best alignments found at this stage are between the individual words in the sentence and corresponding patterns in the grammar.

At the next stage, the program looks for ‘good’ alignments between the best of the alignments previously found and patterns in the grammar. The ‘best’ alignments at this stage are ones between the alignments corresponding to the words and ‘higher level’ patterns in the grammar. Thus ‘D 0 t h i s #D’ and ‘N 1 b o y #N’ form an alignment with ‘NP D #D N #N #NP’, giving ‘NP D 0 t h i s #D N 0 b o y #D #NP’; likewise, ‘V 0 l o v e s #V’ forms an alignment with ‘S NP #NP V #V NP #NP #S’ giving ‘S NP #NP V 0 l o v e s #V NP #NP #S’; then ‘D 1 t h a t #D’ and ‘N 0 g i r l #N’ form an alignment with ‘NP D #D N #N #NP’ giving ‘NP D 1 t h a t #D N 0 g i r l #N #NP’.

Finally, ‘NP D 0 t h i s #D N 1 b o y #D #NP’ and ‘NP D 1 t h a t #D N 1 g i r l #N #NP’ are aligned with ‘S NP #NP V 0 l o v e s #V NP #NP #S’ giving the result shown in Figure 4. At each stage, many ‘worse’ alignments are formed which are weeded out by the selection process.

An outline of how the model works is shown as pseudocode in Appendix C together with explanatory text.

5.2 Computational complexity

Given the well-known computational demands of multiple alignment problems, readers may reasonably ask whether the proposed framework for parsing would scale up to handle realistically large grammars and longer sentences.

Estimates of the time complexity and space complexity of the model are given here largely without justification owing to shortage of space. In a serial processing environment, the time complexity of the model has been estimated [Wolff 98c] to be approximately $O(\log_2 n \times nm)$, where n is the length of the sentence (in bits) and m is the sum of the lengths of the patterns in the grammar (in bits). In a parallel processing environment, the time complexity may approach $O(\log_2 n \times n)$, depending on how the parallel processing is applied. In
serial and parallel environments, the space complexity should be $O(m)$.

These estimates are based on the assumption that any given sentence is processed as a single entity. However, the program has been designed so that it is possible to process any given sentence as a succession of ‘windows’ (see Appendix C.4). Since it is possible to discard all but the best intermediate results at the end of each window, the time complexity of the model in a serial environment and operating in ‘windows’ mode appears to be approximately $O(nm)$. The time complexity of the program in ‘windows’ mode in a parallel environment depends on exactly how the parallelism is applied but, in general, it is likely to be better than in a serial environment.

6 Decoding by compression: the production of language

As described in Appendix B, a succinct, coded representation of a sentence may be derived from a ‘good’ alignment amongst a set of sequences which includes the sentence and rules in an appropriate grammar. This section proposes an idea which at first sight may seem contradictory or paradoxical: that the decoding of a coded representation of a sentence may be achieved by precisely the same process of compression (by multiple alignment, unification and search) as was used to achieve the original encoding! Although this may superficially appear to be nonsense, careful reading of this section should convince readers that the proposal is sound and that no laws of logic or mathematics have been violated.

In this reversal of the original process of encoding, a sentence may be created by finding a ‘good’ alignment amongst a set of patterns that includes a pattern that encodes the sentence (in New) together with rules in the grammar which were used to create the encoding (in Old). In both cases (encoding and decoding), alignments may be evaluated in terms of the potential compression of one sequence: the sentence in the first case and the encoded representation of the sentence in the second case.

Figure 5 shows an alignment of this kind produced by the SP61 model. At the top of the figure is the sequence ‘S 0 1 0 1 0 #S’ which is the encoded version of ‘this boy loves girl’, as described in Appendix B. The other sequences in the figure are rules from the grammar shown in Figure 3.

As with parsing (Section 3.2), an alignment may be interpreted by projecting its constituent symbols into a single sequence. In the case of the alignment in Figure 5, the result of this projection is exactly the same as was shown in Section 3.2. Although this sequence contains grammatical symbols other than words, it has the right words in the right order and may thus be regarded as a realisation of the sentence corresponding to the coded sequence ‘S 0 1 0 1 0 #S’.
Figure 5: The best alignment found by SP61 with ‘S 0 1 0 1 0 #S’ in New and the grammar from Figure 3 in Old.
6.1 Decompression by compression

The alignment shown in Figure 5 achieves the paradoxical effect of ‘decompression by compression’ because the ‘input’ (in New) is a compressed code for a sentence and the ‘output’ is an alignment whose unification contains the original uncompressed sentence (together with ‘service’ symbols like ‘S’, ‘NP’ etc).

How can this paradox be resolved and how is it possible to achieve compression with something (the code for the sentence) which is already compressed?

This is not as mysterious as it may at first sight seem. The answer to the riddle is the provision of two distinct sizes for each symbol, as described in Appendices B.1 and B.7. The minimum size (in bits) is the theoretical minimum calculated according to the S-F-E method, while the actual size (in bits), which is the real size of the symbol in a practical system, is larger than the minimum size by some constant factor.

In the calculation of the compression difference (CD) for each alignment (described in Appendix B.7), the actual sizes of symbols are used to compute B_N, the number of bits required to represent, in ‘raw’ form, the symbols from New that enter into the alignment. But the minimum sizes of symbols are used to compute B_E, the number of bits required to encode the alignment. Thus the CD which is derived from B_N and B_E represents the maximum compression which is theoretically possible (with the given alignment within the ICMAUS framework).

Given the distinction between a theoretical minimum size for each symbol and a larger actual size, and given this way of calculating CD, the alignment method that was used for the original parsing can be used, without any modification, to find the best alignment for the code for the sentence (in terms of CD values) and to discriminate it from the many ‘wrong’ alignments that are possible.

The foregoing remarks reflect what appears to be a general truth about IC: if lossless compression of a body of information is required (so that the original form of the information can be reconstituted) then it seems that the encoded form of the information must always contain some residual redundancy. The existence of this residual redundancy may not always be obvious but it seems that decoding is not possible without it.

7 Context sensitive aspects of syntax

The examples considered so far may have given the impression that the ICMAUS framework is merely a trivial variation on CF-PSG. This section presents alignments from two areas of syntax showing how the ICMAUS framework as it is realised in the SP61 model may accommodate ‘context sensitive’ aspects of syntax.
7.1 Syntactic dependencies in French

It often happens in natural languages that there are syntactic dependencies between one part of a sentence and another. For example, there is usually a ‘number’ dependency between the subject of a sentence and the main verb of the sentence: if the subject has a singular form then the main verb must have a singular form and likewise for plural forms of subject and main verb.

A prominent feature of these kinds of dependency is that they are often ‘discontinuous’ in the sense that the elements of the dependency can be separated, one from the next, by arbitrarily large amounts of intervening structure. For example, the subject and main verb of a sentence must have the same number (singular or plural) regardless of the size of qualifying phrases or subordinate clauses that may come between them.

Another interesting feature of syntactic dependencies is that one kind of dependency (e.g., number dependency) can overlap other kinds of dependency (e.g., gender (masculine/feminine) dependency), as can be seen in the following example.

In the French sentence *Les plumes sont vertes* (‘The feathers are green’) there are two sets of overlapping syntactic dependencies like this:

```
| P | P | P | P |
Les plumes sont vertes
```

```
| F | F |
```

In this example, there is a number dependency, which is plural (‘P’) in this case, between the subject of the sentence, the main verb and the following adjective: the subject is expressed with a plural determiner (*Les*) and a noun (*plume*) which is marked as plural with the suffix (*s*); the main verb (*sont*) has a plural form and the following adjective (*vert*) is marked as plural by the suffix (*s*). Cutting right across these number dependencies is the gender dependency, which is feminine (‘F’) in this case, between the feminine noun (*plume*) and the adjective (*vert*) which has a feminine suffix (*e*).

For many years, linguists puzzled how these kinds of syntactic dependency could be represented succinctly in grammars for natural languages. But then elegant solutions were found in Transformational Grammar (TG, Chomsky 57) and, later, in systems like Definite Clause Grammars (DCG, Pereira and Warren 80), based on Prolog.

The solution proposed here is different from any established system and is arguably simpler and more transparent than other systems. It will be described and illustrated with a fragment of the grammar of French which can generate the example sentence just shown. This fragment of French grammar, shown in Figure 6, is expressed with ‘patterns’ in the same manner as the grammar in Figure 3 and others in this article.

Apart from the use of patterns as the medium of expression, this grammar differs from systems like TG or DCGs because the parts of the grammar which express the forms of ‘high level’ structures like sentences, noun phrases and verb
Figure 6: A fragment of French grammar with patterns for number dependencies and gender dependencies.
phrases (represented by the first four patterns in Figure 6) do not contain any reference to number or gender. Instead, the grammar contains patterns like ‘NP SNG SNG #NP’ and ‘N M V A M’ (the last eight patterns in Figure 6). The first of these says, in effect, that between the symbols ‘NP’ and ‘#NP’ there are two structures marked as singular (‘SNG’). In this simple grammar, there is no ambiguity about what those two structures are: they can only be a determiner (‘D’) followed by a noun (‘N’). In a more complex grammar, there would need to be disambiguating context to establish the ‘correct’ alignments of symbols. The second pattern says, in effect, that in a sentence which contains the (discontinuous) sequence of symbols ‘N V A’, the noun (‘N’) is masculine (‘M’) and the adjective (‘A’) is also masculine.

7.1.1 An alignment

The alignment in Figures 7 and 8 shows the best alignment found by SP61 with our example sentence in New and the grammar from Figure 6 in Old. The main constituents of the sentence are marked in an appropriate manner and dependencies for number and gender are marked by patterns appearing in rows 13, 14 and 15 of the alignment.

7.1.2 Discussion

Readers may wonder why, in the example just shown, the pattern ‘NP PL PL #NP’ is separate from the pattern ‘N PL V PL A PL’. Why not simply merge them into something like ‘NP PL N PL #NP V PL A PL’. The reason for separating the number dependencies in noun phrases (‘NP’) from the other number dependencies is that they do no always occur together. For example, noun phrases may be found within one of the two verb-phrase (‘VP’) patterns shown in Figure 6 (the fourth pattern in the grammar) and this context does not contain the ‘N ... V ... A ...’ pattern.

Another question that may come to mind is what happens when there are one or more subordinate clauses between the subject of a sentence and the main verb of the sentence, and when there are verbs in the subordinate clauses. In the case of number dependencies between subject and main verb, how can the system distinguish between the main verb and one of the verbs in the subordinate clauses? There is insufficient space here for a full answer to this question. In brief, it seems that this kind of problem can be overcome by providing disambiguating context in the patterns that express number dependency (see [Wolff 98b]).

By contrast with the alignments shown in Figures 1 and 2, the alignment in Figures 7 and 8 and all subsequent alignments in this article, were originally created with spaces between the letters in every word, as in Figures 1 and 2. However, for the sake of readability (as suggested by one of the referees) and to save space, the alignments have been prepared again with no spaces within words (except where suffixes need to be identified as distinct entities within the grammar).
0	les	plume	s	sont	0
1				1	
2				2	
3				3	
4				V PL	#V 4
5				VP	V 5
6				NS1	PL #NS1
7				N	NR #NR NS1 #NS1 #N
8				NR F	plume #NR
9				D	PL 0 les #D
10				NP	D #D N #N #NP
11				S	NP #NP VP
12					
13				NP	PL #NP
14				N	PL V PL
15				N	F V 15

Figure 7: The best alignment found by SP61 with ‘les plume s sont vert e s’ in New and the grammar from Figure 6 in Old (Part 1).
Figure 8: The best alignment found by SP61 with ‘les plumes sont vertes’ in New and the grammar from Figure 6 in Old (Part 2).
These ideas are still relatively new and there is plenty of scope for further investigation and development.

7.2 Dependencies in the syntax of English auxiliary verbs

This subsection presents a grammar and examples showing how the syntax of English auxiliary verbs may be described in the ICMAUS framework. Before the grammar and examples are presented, the syntax of this part of English is described and alternative formalisms for describing the syntax are briefly discussed.

In English, the syntax for main verbs and the ‘auxiliary’ verbs which may accompany them follows two quasi-independent patterns of constraint which interact in an interesting way.

The *primary pattern of constraint* may be expressed with this sequence of symbols,

\[
M \ H \ B \ B \ V,
\]

which should be interpreted in the following way:

- Each letter represents a category for a single word:
 - ‘M’ stands for ‘modal’ verbs like ‘will’, ‘can’, ‘would’ etc.
 - ‘H’ stands for one of the various forms of the verb ‘to have’.
 - Each of the two instances of ‘B’ stands for one of the various forms of the verb ‘to be’.
 - ‘V’ stands for the main verb which can be any verb except a modal verb (except, arguably, when it occurs by itself).

- The words occur in the order shown but any of the words may be omitted.
- Questions of ‘standard’ form follow exactly the same pattern as statements except that the first verb, whatever it happens to be (‘M’, ‘H’, the first ‘B’, the second ‘B’ or ‘V’), precedes the subject noun phrase instead of following it.

Here are two examples of the primary pattern with all of the words included:

```markdown
It will have been being washed
M H H B V

Will it have been being washed?
M H H B V
```

The *secondary constraints* are these:
• Apart from the modals, which always have the same form, the first verb in the sequence, whatever it happens to be (‘H’, the first ‘B’, the second ‘B’ or ‘V’), always has a ‘finite’ form (the form it would take if it were used by itself with the subject).

• If an ‘M’ auxiliary verb is chosen, then whatever follows it (‘H’, first ‘B’, second ‘B’, or ‘V’) must have an ‘infinitive’ form (i.e., the ‘standard’ form of the verb as it occurs in the context ‘to ...’, but without the word ‘to’).

• If an ‘H’ auxiliary verb is chosen, then whatever follows it (the first ‘B’, the second ‘B’ or ‘V’) must have a past tense form such as ‘been’, ‘seen’, ‘gone’, ‘slept’, ‘wanted’ etc. In Chomsky’s *Syntactic Structures* [Chomsky 57], these forms were characterised as *en* forms and the same convention has been adopted here.

• If the first of the two ‘B’ auxiliary verbs is chosen, then whatever follows it (the second ‘B’ or ‘V’) must have an *ing* form, e.g., ‘singing’, ‘eating’, ‘having’, ‘being’ etc.

• If the second of the two ‘B’ auxiliary verbs is chosen, then whatever follows it (only the main verb is possible now) must have a past tense form (marked with *en* as above).

• The constraints apply to questions in exactly the same way as they do to statements.

Figure 9 shows a selection of examples with the dependencies marked.

7.2.1 Transformational grammar and English auxiliary verbs

In Figure 9 it can be seen that in many cases but not all, the dependencies which have been described may be regarded as discontinuous because they connect one word in the sequence to the suffix of the following word thus bridging the stem of the following word. Three instances of this discontinuous kind of dependency can be seen in the first example in the figure.

In *Syntactic Structures*, [Chomsky 57] showed that this kind of regularity in the syntax of English auxiliary verbs could be described using Transformational Grammar (TG). For each pair of symbols linked by a dependency (‘M inf’, ‘H en’, ‘B1 ing’, ‘B2 en’) the two symbols could be shown together in the ‘deep structure’ of a sentence and then moved into their proper position or modified in form (or both) using ‘transformational rules’.

This elegant demonstration argued persuasively in favour of TG compared with alternatives which were available at that time. However, later research has shown that the same kinds of regularities in the syntax of English auxiliary verbs can be described quite well without recourse to transformational rules, using Definite Clause Grammars (DCGs) or other systems which do not use that type of rule (see, for example, [Pereira and Warren 80] [Gazdar 89]). An example showing how English auxiliary verbs may be described using the DCG formalism may be found in [Wolff 87, pp. 183-184]).
Figure 9: A selection of example sentences in English with markings of dependencies between the verbs. *Key*: M = modal, H = forms of the verb ‘have’, $B1$ = first instance of a form of the verb ‘be’, $B2$ = second instance of a form of the verb ‘be’, V = main verb, fin = a finite form, inf = an infinitive form, en = a past tense form, ing = a verb ending in ‘ing’.
7.2.2 English auxiliary verbs in the ICMAUS framework

Figures 10 and 11 show an ‘ICMAUS’ grammar for English auxiliary verbs which exploits several of the ideas described earlier in this article. Figure 12, Figures 13 and 14, and Figure 15 show the best alignments in terms of IC for three different sentences produced by the SP61 model using this grammar. In the following paragraphs, aspects of the grammar and of the examples are described and discussed.

\begin{verbatim}
S ST NP #NP X1 #X1 XR #S (3000)
S Q X1 #X1 NP #NP XR #S (2000)
NP SNG it #NP (4000)
NP PL they #NP (1000)
X1 0 V M #V #X1 XR XB XB XV #S (1000)
X1 1 XH FIN #XH #X1 XR XB XV #S (900)
X1 2 XB1 FIN #XB1 #X1 XR XB XV #S (1900)
X1 3 V FIN #V #X1 XR #S (900)
XH V H #V #XH XB #S (200)
XB XB1 #XB1 XB #S (300)
XB XB1 #XB1 XV #S (300)
XB1 V B #V #XB1 (500)
XV V #V #S (5000)
M INF (2000)
H EN (2400)
B XB ING (2000)
B XV EN (700)
SNG SNG (2500)
PL PL (2500)
\end{verbatim}

Figure 10: A grammar for the syntax of English auxiliary verbs (Part 1).

7.2.3 The primary constraints

The first line in the grammar is a sentence pattern for a statement (marked with the symbol ‘ST’) and the second line is a sentence pattern for a question (marked with the symbol ‘Q’). Apart from these markers, the only difference between the two patterns is that, in the statement pattern, the symbols ‘X1 #X1’ follow the noun phrase symbols (‘NP #NP’), whereas in the question pattern they precede the noun phrase symbols. As can be seen in the examples in Figure 12, Figures 13 and 14, and Figure 15, the pair of symbols, ‘X1 #X1’, has the effect of selecting the first verb in the sequence of auxiliary verbs and ensuring its correct position with respect to the noun phrase. In Figure 12, it follows the noun phrase, while in Figures 13 and 14, and Figure 15, it precedes the noun phrase.

Each of the next four patterns in the grammar have the form ‘X1 ... #X1 XR ... #$S’. The symbols ‘X1’ and ‘#$X1’ align with the same pair of symbols
Figure 11: A grammar for the syntax of English auxiliary verbs (Part 2).
Figure 12: The best alignment found by SP61 with ‘it is washed’ in New and the grammar from Figures 10 and 11 in Old.
Figure 13: The best alignment found by SP61 with ‘will it have been broken’ in New and the grammar from Figures 10 and 11 in Old (Part 1).
Figure 14: The best alignment found by SP61 with ‘will it have be en brok en’ in New and the grammar from Figures 10 and 11 in Old (Part 2).
Figure 15: The best alignment found by SP61 with ‘are they walking’ in New and the grammar from Figures 10 and 11 in Old.
in the sentence pattern. The symbols ‘XR ... #S’ encode the remainder of the sequence of verbs.

The first ‘X1’ pattern encodes verb sequences which start with a modal verb (‘M’), the second one is for verb sequences beginning with a finite form of the verb ‘have’ (‘H’), the third is for sequences beginning with either of the two ‘B’ verbs in the primary sequence (see below), and the last ‘X1’ pattern is for sentences which contain a main verb without any auxiliaries.

In the first of the ‘X1’ patterns, the subsequence ‘XR ... #S’ encodes the remainder of the sequence of auxiliary verbs using the symbols ‘XH XB XB XV’. In a similar way, the subsequence ‘XR ... #S’ within each of the other ‘X1’ patterns encodes the verbs which follow the first verb in the sequence.

Notice that the pattern ‘X1 2 XB1 FIN #XB1 #X1 XR XB XV #S’ can encode sentences which start with the first ‘B’ verb and also contains the second ‘B’ verb. And it also serves for any sentence which starts with the first or the second ‘B’ verb with the omission of the other ‘B’ verb. In the latter two cases, the ‘slot’ between the symbols ‘XB’ and ‘XV’ is left vacant. Figure 12 illustrates the case where the verb sequence starts with the first ‘B’ verb and with the omission of the second ‘B’ verb. Figure 15 illustrates the case where the verb sequence starts with the second ‘B’ verb (and the first ‘B’ verb has been omitted).

7.2.4 The secondary constraints

The secondary constraints are represented using the patterns ‘M INF’, ‘H EN’, ‘B XB ING’ and ‘B XV EN’. Singular and plural dependencies are marked in a similar way using the patterns ‘SNG SNG’ and ‘PL PL’.

Examples appear in all three alignments in Figure 12, Figures 13 and 14, and Figure 15. In every case except one (row 4 in Figure 12), the patterns representing secondary constraints appear in the bottom rows of the alignment. These examples show how dependencies bridging arbitrarily large amounts of structure, and dependencies that overlap each other, can be represented with simplicity and transparency in the medium of multiple alignments.

Notice, for example, how dependencies between the first and second verb in a sequence of auxiliary verbs are expressed in the same way regardless of whether the two verbs lie side by side (e.g., the statement in Figure 12) or whether they are separated from each other by the subject noun-phrase (e.g., the question in Figures 13 and 14) and the question in Figure 15. Notice, again, how the overlapping dependencies in Figures 13 and 14 and their independence from each other are expressed with simplicity and clarity in the ICMAUS framework.

Readers may wonder why the two patterns representing dependencies between a ‘B’ verb and whatever follows it (‘B XB ING’ and ‘B XV EN’) contain three symbols rather than two. One reason is that, when two (or more) patterns begin with the same symbol (or sequence of symbols), the scoring method for evaluating alignments requires that the two patterns can be distinguished from each other by one (or more) symbols in each pattern. A second reason is that the second symbol in each pattern helps to determine whether the ‘B’ at the start of the pattern
corresponds to the first or the second ‘B’ verb in the primary sequence:

- ‘B XB ING’. The inclusion of ‘XB’ in this pattern means that the ‘B’ verb is the first of the two ‘B’ verbs in the primary sequence and the following verb must be ‘ING’.

- ‘B XV EN’. The inclusion of ‘XV’ in this pattern means that the ‘B’ verb may be the first or the second of the two ‘B’ verbs. However, since the first case is already covered by ‘B XB ING’, this pattern covers the constraint between the second ‘B’ verb and verbs of the category ‘EN’.

8 Discussion and Conclusion

This section considers briefly a selection of topics relating to the development of these ideas.

8.1 Other examples

In the space available, it has not been possible to show more than a small selection of examples. Additional example may be found in [Wolff 98a, Wolff 98b] showing: how the system can find alternative parsings when there are ambiguities in the text being parsed; how recursive structures in syntax can be parsed; how the provision of appropriate context can resolve ambiguities when discontinuous dependencies of one type are nested, one within another; and one possible way in which ‘cross-serial dependencies’ in syntax may be represented and parsed in the ICMAUS framework.

Other examples showing how the system can handle recursive structures in syntax may be found in [Wolff 99a].

8.2 Parsing and learning

As was noted in Section 1.2, much of the thinking in this research programme is based on an earlier programme of research into the unsupervised learning of linguistic structures [Wolff 91, Wolff 88, Wolff 82]. The ICMAUS framework and the SP61 model have been developed with the express intention that they should accommodate inductive learning and integrate it in a seamless manner with other capabilities of the model.

It is envisaged that the framework will be developed so that, when New information is received that cannot be unified fully with patterns in Old, the patterns or parts of patterns in New which do not unify with existing patterns in Old will be simply added to Old with system-generated code symbols where appropriate. By hypothesis in this research programme, the process of adding New knowledge to Old in a manner which minimises redundancy (as far as is practically possible) will capture the essentials of unsupervised inductive learning.
Development of the ICMAUS framework to incorporate inductive learning in this way is currently in progress.

8.3 Potential advantages of using patterns to represent knowledge

In this research, ‘patterns’ have been adopted as the medium for representing knowledge:

- Because they seem to offer a good prospect of providing a ‘universal’ medium for representing diverse kinds of knowledge.
- For similar reasons, ‘patterns’ seem to lend themselves to the representation of knowledge at both ‘concrete’ and ‘abstract’ levels of abstraction.
- For these reasons, the use of patterns may facilitate the seamless integration of diverse kinds of knowledge over a wide range of abstractions.
- Likewise, the use of patterns may facilitate the development of a learning system that can operate freely with diverse kinds of knowledge over a wide range of abstractions.

8.4 Integration and generalisation

If, as suggested in Section 1.2, both linguistic and non-linguistic structures may be accommodated naturally within the ICMAUS framework, then grammars of the kind shown previously may, at some stage, be extended seamlessly to include the ‘meanings’ of syntactic forms. Parsing and production of language as described here should generalise without radical reorganisation to a more rounded model of language understanding and production of language which includes meanings.

In a similar way, the potential of the system noted in Section 1.2 to accommodate other aspects of ‘intelligence’ such as probabilistic and other kinds of reasoning, best-match pattern recognition and inductive learning suggests potential in the system for the eventual integration of natural language processing with non-linguistic ‘intelligence’ of various kinds.

8.5 Conclusion

In this article I have tried to show informally with examples how the representation of natural language syntax and the parsing and production of natural language may be understood as ICMAUS.

A novel feature of these proposals is the superficially paradoxical idea that a single process of information compression by multiple alignment, unification and search may achieve both the encoding and the decoding of information, both the analysis and the production of sentences. This is not simply a gimmick: in practical terms it offers the prospect that one search engine may be used for
both purposes and it offers a theoretical bonus in extending the explanatory range of the model without the need for any ad hoc additions or modifications.

The suggested method of representing the syntax of natural language appears to be simpler and more direct than existing methods. This method may have benefits in the creation of hand-crafted grammars for natural languages. Perhaps more significantly, it may simplify the automatic learning of grammars for natural languages which is envisaged in the further development of these ideas.

In general, an important motivation for further development of these ideas is the potential which they offer for the integration of parsing and production of language with other aspects of computing including unsupervised learning, deductive and probabilistic inference, (fuzzy) pattern recognition, (fuzzy) information retrieval and others. In the broadest terms, the aim of this research programme and a touchstone for its success or failure is the development of a model which exhibits a favourable combination of conceptual simplicity with explanatory or descriptive power.

Acknowledgements

I am grateful to Prof. C. S Wallace of Monash University for discussion of some of the ideas presented in this article, to Dr Chris Mellish of the Department of Artificial Intelligence (Division of Informatics), University of Edinburgh, for useful comments and advice, and to Dr. Tim Porter and Mr. John Hornsby both of the School of Informatics, University of Wales at Bangor, for constructive comments on an earlier version of this article. I am grateful also to James Crook of Dublin for positive comments and constructive suggestions about these ideas.

References

[Abney 97] Abney, S. P.: “Stochastic attribute-value grammars”; Computational Linguistics, 23, 4 (1997) 597-618.

[Allison and Wallace 94] Allison, L. and Wallace, C. S.: “The posterior probability distribution of alignments and its application to parameter estimation of evolutionary trees and to optimization of multiple alignments”; Journal of Molecular Evolution, 39 (1994) 418-430.

[Allison et al. 92] Allison, L, Wallace, C. S. and Yee, C. N.: “Finite-state models in the alignment of macromolecules”; Journal of Molecular Evolution, 35 (1992) 77-89.

[Barton 90] Barton G. J.: “Protein Multiple Sequence Alignment and Flexible Pattern Matching”; Methods in Enzymology, 183 (1990) 403-428.

[Belloti and Gammerman 96] Belloti, T. and Gammerman, A.: “Experiments in solving analogy problems using Minimal Length Encoding”; Presented at
[Berger et al. 96] Berger, A. L., Della Pietra, S. A. and Della Pietra, V. J.: “A maximum entropy approach to natural language processing”; Computational Linguistics, 22, 1 (1996) 39-71.

[Black et al. 93] Black, E., Garside, R. and Leech, G. (Eds.): Statistically-driven computer grammars of English: the IBM/Lancaster approach; Rodopi, Amsterdam (1993).

[Chan et al. 92] Chan, S. C., Wong, A. K. C. and Chiu, D. K. Y. A.: “Survey of Multiple Sequence Comparison Methods”; Bulletin of Mathematical Biology, 54, 4 (1992) 563-598.

[Cheeseman 90] Cheeseman, P.: “On finding the most probable model”. In J. Strager and P. Langley (Eds.) Computational models of scientific discovery and theory formation, Chapter 3, Morgan Kaufmann, San Mateo, California, (1990) 73-95.

[Chomsky 57] Chomsky, N.: Syntactic Structures; Mouton, The Hague (1957).

[Cover and Thomas 91] Cover, T. M. and Thomas, J. A.: Elements of Information Theory; John Wiley, New York (1991).

[Day and McMorris 92] Day, W. H. E. and McMorris, F. R.: “Critical Comparison of Consensus Methods for Molecular Sequences”; Nucleic Acids Research, 20, 5 (1992) 1093-1099.

[Dreuth and Ruber 97] Dreuth, E. W. and Ruber B.: “Context-dependent probability adaptation in speech understanding”; Computer Speech and Language, 11 (1997) 225-252.

[Felsenstein 81] Felsenstein, J.: “Evolutionary trees from DNA sequences: a maximum likelihood approach”; Journal of Molecular Evolution, 17 (1981) 368-376.

[Gammerman 91] Gammerman, A. J.: “The representation and manipulation of the algorithmic probability measure for problem solving”; Annals of Mathematics and Artificial Intelligence, 4 (1991) 281-300.

[Garside et al. 87] Garside, R., Leech, G. and Sampson, G. (Eds.): The Computational Analysis of English: A Corpus-Based Approach; Longman, London (1987).

[Gazdar 89] Gazdar, G. and Mellish, C.: Natural Language Processing in Prolog. Addison-Wesley, Wokingham (1989).
[Hu et al. 97] Hu, J., Turin, W. and Brown, M. K.: “Language modelling using stochastic automata with variable length contexts”; Computer Speech and Language, 11 (1997) 1-6.

[Li and Vitanyi 93] Li, M. and Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer-Verlag, New York (1993).

[Lowry 89] Lowry, R.: The Architecture of Chance; Oxford University Press, Oxford (1989).

[Lucke 95] Lucke, H: “Bayesian belief networks as a tool for stochastic parsing”; Speech Communication, 16 (1995) 89-118.

[Pednault 91] Pednault, E. P. D.: “Minimal-length encoding and inductive inference”. In G. Piatetsky-Shapiro and W. J. Frawley (eds.), Knowledge Discovery in Databases; MIT Press, Cambridge Mass (1991).

[Pereira and Warren 80] Pereira, F. C. N. and Warren, D. H. D.: “Definite Clause Grammars for language analysis - a survey of the formalism and a comparison with augmented transition networks”; Artificial Intelligence, 13 (1980) 231-278.

[Reichert et al. 73] Reichert, T. A., Cohen, D. N. and Wong, A. K. C.: “An application of information theory to genetic mutations and the matching of polypeptide sequences”; Journal of Theoretical Biology, 42 (1973) 245-261.

[Rissanen 78] Rissanen, J.: “Modelling by the shortest data description”; Automatica-J., IFAC 14 (1978) 465-471.

[Solomonoff 64] Solomonoff, R. J.: “A formal theory of inductive inference, parts I and II”; Information and Control, 7 (1964) 1-22 and 224-254.

[Storer 88] Storer, J. A.: Data Compression: Methods and Theory; Computer Science Press, Rockville, Maryland (1988).

[Takahashi and Sagayama 97] Takahashi, J. and Sagayama, S.: “Vector-field smoothed Bayesian learning for fast and incremental speaker/telephone-channel adaptation”; Computer Speech and Language, 11 (1997) 127-146.

[Taylor 88] Taylor, W. R.: “Pattern matching methods in protein sequence comparison and structure prediction”; Protein Engineering, 2, 2 (1988) 77-86.

[Wagner and Fischer 74] Wagner, R. A. and Fischer, M. J.: “The string-to-string correction problem”; Journal of the ACM, 21, 1 (1974) 168-173.

[Wallace and Boulton 68] Wallace, C. S. and Boulton, D. M.: “An information measure for classification”; Computer Journal, 11, 2 (1968) 185-195.
[Wolff 00] Wolff, J. G.: “Mathematics and logic as information compression by multiple alignment, unification and search”; School of Informatics Report, March 2000. A copy may be obtained from http://www.sees.bangor.ac.uk/~gerry/sp_summary.html#maths_logic.

[Wolff 99a] Wolff, J. G.: “‘Computing’ as information compression by multiple alignment, unification and search”; Journal of Universal Computer Science, 5, 11 (1999a) 777-815. A copy may be obtained from http://www.jucs.org/jucs_5_11/computing_as_information_compression.

[Wolff 99b] Wolff, J. G.: “Probabilistic reasoning as information compression by multiple alignment, unification and search: an introduction and overview”; Journal of Universal Computer Science, 5, 7 (1999b) 417-472. A copy may be obtained from http://www.jucs.org/jucs_5_7/probabilistic_reasoning_as_information. The three articles on which this article is based may be obtained from http://www.iicm.edu/wolff/1998a, b, c.

[Wolff 98a] Wolff, J. G.: “Parsing as information compression by multiple alignment, unification and search: SP52”; SEECS Report, February 1998. A copy may be obtained from: http://www.iicm.edu/wolff/1998c.

[Wolff 98b] Wolff, J. G.: “Parsing as information compression by multiple alignment, unification and search: examples”; SEECS Report, February 1998. A copy may be obtained from: http://www.iicm.edu/wolff/1998f.

[Wolff 98c] Wolff, J. G.: “Probabilistic reasoning as information compression by multiple alignment, unification and search”; SEECS Report, December 1998. A copy may be obtained from: http://www.sees.bangor.ac.uk/~gerry/sp_summary.html#PrbRs.

[Wolff 97] Wolff, J. G.: “Causality, statistical learning and multiple alignment”; Paper presented at the UNICOM Seminar and Tutorial on Causal Models and Statistical Learning, London, March 1997.

[Wolff 96] Wolff, J. G.: “Learning and reasoning as information compression by multiple alignment, unification and search”; In: A. Gammerman (ed.), Computational Learning and Probabilistic Reasoning, Wiley, Chichester (1996) 67-83. An earlier version was presented at Applied Decision Technologies ’95, Brunel University, April 1995 (Proceedings of Stream 1, Computational Learning and Probabilistic Reasoning 223-236).

[Wolff 95a] Wolff, J. G.: “Computing as compression: an overview of the SP theory and system”; New Generation Computing, 13 (1995) 187-214.

[Wolff 95b] Wolff, J. G.: “Computing as compression: SP20”; New Generation Computing 13 (1995) 215-241.
A Definitions of terms

A.1 ‘Symbol’

A symbol is some kind of mark which can be compared with any other symbol. In the context of pattern matching, a symbol is the smallest unit which can participate in matching: a symbol can be compared (matched) only with another single symbol and the result of matching is either that the two symbols are the same or that they are different. No other result is permitted.

An important feature of the concept of a symbol, as it is used in this research, is that, with one qualification, it has no hidden meaning. In this research, a symbol is a primitive mark which can be discriminated in a yes/no manner from other symbols. There are no symbols like the symbols in an arithmetic
function (e.g., ‘6’, ‘22’, ‘+’, ‘-‘, ‘×’, ‘/’ etc), each of which has a meaning for the user which is not directly visible.

The one qualification to the slogan “no hidden meaning” is that it seems necessary to allow the system to make a distinction, relative to each pattern, between symbols that are ‘code’ for that pattern and symbols that are ‘data’ or ‘contents’ for the pattern. Labels like ‘code’ or ‘data’ reflect operations of the system itself (or some comparable system in the past) and may therefore be regarded as distinct from ‘user-oriented’ meanings that are intrinsic to the material being processed.

For any given symbol (or group of symbols), it is possible to express meanings of this latter kind but those meanings must take the form of one or more additional symbols which are associated with the given symbol (or group of symbols) and are thus explicit and visible within the structure of symbols and patterns.

A.1.1 ‘Symbol type’ and ‘alphabet’

If two symbols match, we say that they belong to the same symbol type. In any system which contains symbols, we normally recognise an alphabet of symbol types such that every symbol in the system belongs in one and only one of the symbol types in the alphabet, and every symbol type is represented at least once in the system.

A.1.2 ‘Hit’ and ‘gap’

A positive match between two symbols is termed a hit. In any given pattern in an alignment of two more patterns, one or more unmatched symbols between two hits in the pattern or before the first or after the last hit is termed a gap.

A.2 ‘Pattern’

A pattern is an array of symbols in one, two or more dimensions. In this article, one dimensional patterns (sequences or strings of symbols) are the main focus of attention.

The meaning of the term pattern includes the meanings of the terms substring and subsequence, defined next.

A.3 ‘Substring’

A substring is a sequence of symbols of length \(n \) within a sequence of length \(m \), where \(n \leq m \) and where the constituent symbols in the substring are contiguous within the sequence which contains the substring.

A.4 ‘Subsequence’

A subsequence is a sequence of symbols of length \(n \) within a sequence of length \(m \), where \(n \leq m \) and where the constituent symbols in the subsequence may
not be contiguous within the sequence which contains the subsequence. The set of all subsequences of a given sequence includes all the substrings of that sequence.

A.5 ‘Alignment’

In the case of one-dimensional patterns,\(^6\) an alignment is a two-dimensional array of one or more sequences of symbols, each one in a separate row in the array. The alignment shows sets of two or more matching symbols by arranging the symbols in each set in a column of the array.\(^7\) In an alignment, as defined in this research:

- Symbols which are contiguous in a pattern which appears in an alignment, need not occupy contiguous cells in the array.
- Any one pattern may appear zero or more times in an alignment.
- Where a pattern appears two or more times in an alignment, no symbol in one appearance of the pattern should ever be shown as matching the same symbol in another appearance of the pattern.
- Any symbol in one pattern may be placed in the same column as any other symbol from the same pattern or another pattern, providing order constraints are not violated.

For any alignment, order constraints are preserved if the following statement is always true:

For any two rows in the alignment, A and B, and any four symbols, \(A_1\) and \(A_2\) in A, and \(B_1\) and \(B_2\) in B, if \(A_1\) is in the same column as \(B_1\), and if \(A_2\) is in the same column as \(B_2\), and if \(A_2\) in A follows \(A_1\) in A, then \(B_2\) in B must follow \(B_1\) in B.

This condition holds when the two rows contain two different patterns and also when the two rows contain two appearances of one pattern.

A.6 ‘Mismatch’

A mismatch in an alignment occurs when, between two columns in the alignment containing hits, or between one column containing hits and the beginning or end of the alignment, there are no other columns containing hits and there are two more columns containing single symbols from two or more different patterns in Old.

\(^6\)As previously noted, the concept of an alignment may be generalised to patterns of two or more dimensions. But no attempt is made here to provide a formal definition for alignments of patterns of two dimensions or higher.

\(^7\)The fact that, in displaying alignments, it can sometimes be convenient to put non-matching symbols in the same column with lines to mark the symbols that do match (as in Figure 1) is not relevant to the abstract definition of an alignment presented here.
B Evaluation of an alignment in terms of compression

Section 4 described how, in the ICMAUS scheme, an alignment is evaluated in terms of compression. This section provides more detail.

As explained earlier, an alignment and its unification is interpreted as a means of encoding New or part of New in terms of patterns in Old. If New (the sentence to be parsed) or part of New is matched by a pattern in Old (the grammar) then code symbols from that pattern may be used as an abbreviated description of that part of New.

By contrast with standard compression methods, each code serves a dual role: to identify the corresponding pattern uniquely within the grammar, and to mark the left and right ends of the pattern. For present purposes, the second role is required to remove the ambiguity which would otherwise exist about left-to-right sequencing of symbols in alignments.

As noted in Section 4, the coding principle may be applied through two or more ‘levels’ so that the symbols which encode a sequence of two or more patterns at one level may themselves be recognised as an instance of a recurrent pattern which has its own code at the next higher level. Examples will be seen below.

A key point in this connection is that a recurrent pattern may be discontinuous in the sense that the symbols in the pattern are not necessarily contiguous as they appear in any or all of its occurrences. In other words, a recurrent pattern may appear as a subsequence within larger patterns. Thus, for example, a sequence of symbols like ‘A B C D E F’ may be recognised as a recurrent pattern within a set of instances which includes patterns like ‘P A B Q C R D E F S’, ‘A L B C D M N E F O P’, ‘X A B C D Y E F Z’ and so on.

In what follows (Appendices B.1 to B.5), I shall first give an informal explanation of the method of calculating the compression associated with any alignment using the example shown in Figure 4. Then the principles embodied in the method are discussed in Appendix B.6 and a formal summary of the method is presented in Appendix B.7.

B.1 Encoding individual symbols

The simplest way to encode individual symbols in the sentence and the grammar is with a ‘block’ code using a fixed number of bits for each symbol. In the grammar in Figure 3 there are 24 symbol types so the minimum number of bits required for each symbol is $\lceil \log_2 24 \rceil = 5$ bits per symbol.

In fact, the SP61 model (described in Section 5) uses variable-length codes for symbols, assigned in accordance with the Shannon-Fano-Elias (S-F-E) coding scheme (described by Cover and Thomas 91) so that the shortest codes represent the most frequent symbols and vice versa.

Notice that the number of bits required for each symbol is entirely independent of the number of characters in the name of the symbol as it is shown in the
examples. Names of symbols are chosen purely for their mnemonic value and to aid comprehension.

There are many variations and refinements that may be made at this level but, in general, the choice of coding system for individual symbols is not critical for the principles to be described below where the focus of interest is the exploitation of redundancy which may be attributed to sequences of two or more symbols rather than any redundancy attributed to unbalanced frequencies of individual symbols.

For reasons which are given in Section 6.1 connected with the decoding of information, the code for each symbol has two different sizes (in bits): a ‘minimum cost’ which is the theoretical minimum number of bits needed to represent that symbol according to the S-F-E calculations, and an ‘actual cost’ which is the (larger) number of bits that are needed to allow robust decoding of information as well as encoding.

In the following informal description of the encoding principles, the distinction between the ‘minimum cost’ and the ‘actual cost’ of each symbol is not important and will be ignored. For the sake of simplicity in this presentation, it will be assumed that all symbols are encoded with the same number of bits so that ‘one symbol’ can be treated as the minimum unit of information.

B.2 Encoding words

As explained in Section 4, a word like ‘t h i s’ in the grammar shown in Figure 3 may be encoded as ‘D 0 #D’, In a similar way, the word ‘l o v e s’ may be encoded as ‘V 0 #V’ and likewise for the other words. In all cases except ‘b o y’, there is a modest saving of one or two symbols for each word.

B.3 Encoding phrases

Consider the phrase ‘t h i s b o y’. If this were encoded with a code pattern for each word, the result would be ‘D 0 #D N 1 #N’ which is only one symbol smaller than the original. However, we can encode the phrase with fewer symbols by taking advantage of the fact that the sequence ‘D 0 #D N 1 #N’ has a subsequence, ‘D #D N #N’, which is a substring within the pattern ‘NP D #D N #N #NP’ in the grammar. Notice that the sequence ‘D #D N #N’ is discontinuous within the sequence ‘D 0 #D N 1 #N’ in the sense described earlier.

Since the ‘noun phrase’ pattern ‘NP D #D N #N #NP’ is in the grammar, we may replace the substring, ‘D #D N #N’, by the ‘code’ sequence ‘NP #NP’. But then, to encode the two words within the noun phrase (‘t h i s’ and ‘b o y’), we must add the symbols, ‘0’ and ‘1’ from ‘D 0 #D N 1 #N’ so that the final coded sequence is ‘NP 0 1 #NP’.

Notice how the symbols ‘NP’ and ‘#NP’ in the code pattern ‘NP 0 1 #NP’ serve as a disambiguating context so that the symbol ‘0’ identifies the pattern ‘D 0 t h i s #D’ and the symbol ‘1’ identifies the pattern ‘N 1 b o y #N’. The overall cost of the code pattern ‘NP 0 1 #NP’ is 4 symbols compared with the
original 7 symbols in ‘t h i s b o y’ - a saving of 3 symbols. In a similar way, the phrase ‘t h a t g i r l’ may be encoded as ‘NP 1 0 #NP’ which is 4 symbols smaller than the original.

B.4 Encoding the sentence

Given the two noun phrases in their encoded forms (‘NP 0 1 #NP’ for ‘t h i s b o y’ and ‘NP 1 0 #NP’ for ‘t h a t g i r l’) and the encoding of ‘l o v e s’ as ‘V 0 #V’, the whole sentence may be encoded as ‘NP 0 1 #NP V 0 #V NP 1 0 #NP’.

However, this sequence contains the subsequence ‘NP #NP V #V NP #NP’ and this sequence is a substring within the ‘sentence’ pattern ‘S NP #NP V #V NP #NP #S’ - and this pattern is in the grammar. So we may replace the sequence ‘NP #NP V #V NP #NP’ by the ‘code’ sequence ‘S #S’. To discriminate the words in this sentence we must add the symbols ‘0 1 0 1 0’ from the sequence ‘NP 0 1 #NP V 0 #V NP 1 0 #NP’. The overall result is an encoded representation of the sentence as:

$$S 0 1 0 1 0 #S.$$

The 7 symbols in this encoding of the sentence represents a substantial compression compared with the 20 symbols in the unencoded sentence.

B.5 Taking account of the sizes of gaps

The account of pattern matching and coding in Sections B.3 and B.4 illustrates the way in which ‘matching’ in the proposed scheme embraces the matching of subsequences (where the matched symbols need not be contiguous) as well as the more traditional matching of coherent substrings (where the matched symbols are always contiguous, one with the next).

In this connection, most people have a strong intuition that, where there are gaps in matching, small gaps or no gaps are ‘better’ than large ones. It seems that our intuitions in this area can be justified in terms of probability theory. A method, based on probability principles, for making allowances for gaps has been developed and is applied in the SP61 model. A brief outline of the method and how it is applied is presented in Section B.7 below.

B.6 Discussion

Each pattern expresses sequential redundancy in the data to be encoded and this sequential redundancy can be exploited to reduce the number of symbols which need to be written out explicitly. In the grammar shown in Figure 6, each pattern for an individual word expresses the sequential redundancy of the letters within that word; the pattern for a noun phrase expresses the sequential redundancy of ‘determiner’ followed by ‘noun’; and the pattern for a sentence expresses the sequential redundancy of the pattern: ‘noun phrase’ followed by ‘verb’ followed by ‘noun phrase’.

44
Since this principle operates at all levels in the ‘hierarchy’ of patterns, many of the symbols at intermediate levels may be omitted completely. A sentence may be specified with symbols marking the start and end of the sentence pattern together with interpolated symbols which discriminate amongst alternatives at lower levels.

Notice that these ideas are only applicable to alignments which can ‘project’ into a single sequence of symbols, as is the case with the alignment shown in Figure 4. Any alignment like this:

\[
\begin{align*}
axb & \quad abx \\
| & \quad \text{or this} & | \\
ayb & \quad aby
\end{align*}
\]

where there is a ‘mismatch’ of symbols, cannot be evaluated in this way. For present purposes, any such alignment is excluded from consideration. When the SP model is generalised to other areas such as learning, it is intended that alignments like those just shown will be evaluated alongside those which can project without mismatches.

The method that has been described illustrates the role of context in the encoding of information. Any one symbol like ‘0’ or ‘1’ is ambiguous in terms of the patterns in the grammar in Figure 3. But in the context of the pattern ‘S 0 1 0 1 0 #S’ and the same grammar, it is possible to assign each instance of ‘0’ or ‘1’ unambiguously to one of the words in the grammar, giving the sequence of words in the original sentence. It appears that ICMAUS provides a mechanism for ‘decoding’ the encoded form of the sentence, as discussed in Section 6.

B.7 Summary of method for calculating the compression associated with an alignment

The proposed method of calculating the compression difference (CD) associated with an alignment of patterns is summarised in more formal terms here. This is the method embodied in the SP61 model (which is described in Section 5 and Appendix C). The method is designed to calculate the compression of New information or part of it (all or part of the sentence to be parsed) which may be achieved by ‘encoding’ New information in terms of Old information (where Old information is the patterns of symbols representing the grammar used in parsing). This CD is calculated as:

\[
CD = B_N - B_E,
\]

where \(B_N\) is the number of bits required to represent the hit symbols in New without any encoding (except S-F-E coding at the level of single symbols), and \(B_E\) is the number of bits required for the encoding of those same symbols from New in terms of Old information. How these values are calculated is described below.
B.7.1 Information costs of symbols

If a simple block code is used for symbols, then the ‘minimum cost’, M, for each symbol is

$$M = \lceil \log_2 |S| \rceil$$

bits where $|S|$ is the number of symbol types in the alphabet of symbol types (S) used throughout New and Old.

As previously noted, the value of M for each symbol type (and thus each individual symbol) is calculated in SP61 by the S-F-E method. For any one symbol type, the input for this calculation is the frequency of occurrence of the symbol type either measured directly or approximated using this formula:

$$f_{st} = \sum_{i=1}^{P} (f_i \times o_i)$$

where f_i is the (notional) frequency of the ith pattern in the grammar (illustrated by the numbers on the right of Figure 3), o_i is the number of occurrences of the given symbol in the ith pattern and P is the number of patterns in the grammar.

Whichever way the value of M is calculated, the ‘actual cost’, A, of each symbol is:

$$A = M \times c,$$

where c is a factor whose size is not critical except that $c > 1$.

B.7.2 Calculation of E, the minimum number of bits required for the encoding of a given pattern in Old

The calculation of B_E for any alignment requires a value for the ‘encoding cost’, E, for each pattern from Old which appears in the alignment.

Since there is a frequency of occurrence associated with each pattern in any grammar, it is possible to calculate a theoretical minimum for the value of E for each pattern using the S-F-E method. However, there is an alternative method of calculating E which, for present purposes, appears to be more useful and which has been adopted in the SP61 model described in Section 5.

In summary, the alternative method is to calculate E as

$$E = \sum_{i=1}^{n} D_i$$

where D_i is the M value for the ith symbol in a subsequence of n ‘discrimination’ symbols within the given pattern which identifies the pattern uniquely amongst the patterns in the grammar without over-specifying the pattern.
Ideally, the discrimination symbols for a pattern would be whatever sub-sequence of the pattern was most distinctive of the pattern, regardless of the position of the symbols within the pattern. However, in the SP61 model, two constraints have been imposed:

- The simplifying assumption has been made that the discrimination symbols are the smallest substring of one or more symbols starting at the beginning of the pattern which enables the pattern to be identified uniquely within the grammar. For any pattern, it is easy to discover what this substring is by a process of systematic comparison of candidate substrings with corresponding symbols in other patterns in the grammar. Although a constrained subsequence of symbols is used in calculating the value of E for the pattern, this does not mean that a pattern can only ever be recognised by those symbols and no others. In the SP61 model, a pattern can be fully or partially recognised by any subsequence of its symbols.

- Whenever a pattern ends in a ‘termination’ symbol (a symbol whose first character is the hash character (‘#’)), this symbol is added to the set of discrimination symbols for the pattern if it is not otherwise there.

B.7.3 Calculation of B_N (the number of bits required to represent hit symbols from New in ‘raw’ form)

For any one alignment, B_N is calculated as:

$$B_N = \sum_{i=1}^{h} A_i$$

where A_i is the ‘actual cost’ of the symbol corresponding to the ith hit in a sequence of hits, $H_1...H_h$, with an adjustment to be described in the next paragraph. The hit sequence $H_1...H_h$ comprises the hits between symbols in New and symbols in patterns in Old. The symbols from New in this hit sequence are a subsequence of the sequence $N_1...N_n$, which is the pattern in New.

B.7.4 Allowing for gaps

Before the formula, above, is applied, the value of each A_i is adjusted to take account of any ‘gap’ which may exist between the given hit and any previous hits in the sequence of hits between New and patterns in Old. For this purpose, the alignment is treated as if it were two sequences of symbols: the sequence of symbols which is New (the sentence being parsed) and the sequence of symbols which is the projection of the alignment into a single sequence.

As indicated above, there is insufficient space to present fully the method of allowing for gaps. In outline, it is based on an analogy with the rolling of two A-sided dice, where A is the size of the alphabet used in New and Old.
The sequence of rolls of one die corresponds with the sequence of symbols in New and the sequence of rolls of the other die corresponds with the sequence of symbols in the projection. The method is based closely on the method described in \cite{Lowry89} for calculating probabilities of various contingencies in problems of this type.

For the symbol corresponding to the \(i\)th hit in the sequence \(H_1...H_h\), the adjusted value of \(A_i\) is calculated as:

\[
A_i = a_i \times F_s
\]

where \(a_i\) is the actual cost of the symbol corresponding to the \(i\)th hit in \(H_1...H_h\), and \(F_s\) is the \(s\)th entry in a table of ‘scaling factors’ which is calculated at the outset of processing. The value of \(F_1\) is always 1. For each hit in \(H_1...H_h\) after the first, the variable \(s\) (which represents the ‘span’ between the current hit in \(H_1...H_h\) and the preceding hit) is calculated as:

\[
s = (P_i - P_{i-1}) \times (C_i - C_{i-1})
\]

where \(P_i\) is the position in \(N_1...N_n\) of the symbol corresponding to the \(i\)th hit in \(H_1...H_h\), \(P_{i-1}\) is the position in \(N_1...N_n\) of the symbol corresponding to the \((i-1)\)th hit in \(H_1...H_h\). \(C_i\) and \(C_{i-1}\) are the analogous positions in the projection of the alignment into a single sequence - which means that \(C_i\) and \(C_{i-1}\) represent columns in the alignment itself.

\section*{B.7.5 Calculation of \(B_E\) (the number of bits required to encode the hit symbols from New)}

For each new alignment, the value of \(B_E\) is:

\[
B_E = \sum_{i=2}^{r} E_i - S
\]

where \(E_i\) is the ‘encoding cost’ of the Old pattern appearing on one of \(r\) rows of the alignment other than the top line (where New appears) and \(S\) is the saving in encoding costs arising from the fact that some patterns in the alignment convey information about the sequential arrangement of other patterns in the alignment or the selection of other patterns in the alignment where alternatives are possible in a given context.

The ‘encoding cost’ of any pattern is the value of \(E\) for that pattern, calculated as described in Appendix \ref{b72}. Notice that if any pattern appears two or more times in the alignment, its encoding cost is added a corresponding number of times to the sum of encoding costs.

The calculation of \(B_E\) depends on three main ideas:

- As previously noted, a pattern may be fully or partially recognised by any subsequence of the pattern. In other words, it is not necessary to use the specific symbols which were used in calculating the value of \(E\)
for that pattern. As a general rule when the grammar is largely free of redundancy, if the M values of the relevant symbols (adjusted for gaps - see next) add up to the value of E then that subsequence of symbols will identify the pattern uniquely amongst the other patterns in the grammar. Where there is redundancy in the grammar, more bits may be needed to achieve unique identification of a pattern.

- If there are gaps in a sequence of hits, information values must be reduced in accordance with the rules used in calculating the value of B_N (Appendix B.7.4).

- For present purposes, there is nothing to be gained by over-specifying a pattern. If one pattern matches a second pattern by the minimum number of symbols needed to achieve unique identification of that second pattern, then the saving in encoding costs from this source is maximal. Any additional hits between the two patterns do not give any additional saving in encoding costs.

B_E is calculated in the following way:

1. For each row (R) in the alignment corresponding to a pattern from Old, create a variable (V) containing the value of E for the pattern in that row.

2. Traverse the alignment from left to right examining the columns containing two or more symbols (including symbols in New). Any such column is designated a ‘hit’ column (C_H).

3. For each C_H which contains two or more symbols from patterns in Old (which we may designate C_{HO}), examine each row which has a hit symbol from Old in the column (designated R_{HO}). For this symbol, calculate M_A, an ‘adjusted’ value of M for the symbol, taking account of any gap which may exist between the given C_{HO} and any previous C_H. The method of making the adjustment is the same as is used for calculating the value of B_N (Section B.7.4) except that, for each R_{HO}, the gaps (or spans) are measured as if all the rows in the alignment except the given R_{HO} is treated as if it were a single pattern to which the pattern in the given RHO is aligned. As in the calculation of B_N, it is assumed that there is no gap associated with the first C_H for any given pattern.

4. For each C_{HO}, examine each R_{HO} and, amongst these rows, identify the ‘leading’ row, R_{HOL}, whose pattern starts furthest to the left in the alignment (if there is a tie, make an arbitrary choice amongst the ties). For example, in Figure 3 for either of the two columns which contains a hit between ‘D’ in ‘D 0 t h i s #D’ and ‘D’ in ‘NP D #D N #N #NP’, the R_{HOL} is the one containing ‘NP D #D N #N #NP’ (row 7 in the first case and row 2 in the second case); for either of the two columns containing a hit between ‘NP’ in ‘NP D #D N #N #NP’ and ‘NP’ in ‘S NP #NP V #V NP #NP #S’, the R_{HOL} is the row containing ‘S NP #NP V #V NP #NP #S’ (row 5 in both cases).
5. For each C_{HO}, consider, in turn, each R_{HO}, excluding the R_{HOL}. For each row considered, subtract the value of M_A from the value of V for that row. If the new value of V is less than 0, V is set to 0 and no further subtraction from that instance of V is allowed.

6. When all relevant columns have been examined and the values of the V variables have been reduced, calculate

$$B_E = \sum_{i=2}^{r} V_i$$

where r is the number of rows in the alignment and the summation excludes the top line (which contains New).

The rationale for this method of calculating B_E is that it gives us the sum of the E values of the patterns from Old corresponding to each row of the alignment after the first, with a reduction for hits between those patterns (with an adjustment for gaps as outlined above).

The reason for reducing the value of B_E when there are hits between patterns in Old is that any such hit reflects a degree of ‘coverage’ of one pattern from Old by another such pattern. To the extent that one pattern provides information that also exists in another pattern there is a reduced need for the second pattern to be identified in the encoding. In the extreme case, where two patterns are identical, only one of them need be identified in the encoding. As indicated above, any saving in encoding costs resulting from the coverage of one or more patterns by another cannot exceed the E value for each pattern - any additional hits are ‘wasted’. Hence, the V value for any row cannot be reduced below 0.

In the method described above, the ‘leading’ row for any one column (R_{HOL}) is regarded as the row with which the other symbols in the column are unified. Hence, for the given column, this is the row where the V value is not reduced by the value of M_A. Intuitively, the left-to-right bias in the definition of ‘leading row’ is less theoretically ‘clean’ than if all concepts were entirely symmetrical between left and right directions in the alignment. However, the concepts as described are the best to have been found so far and seem to work quite well.

C The organisation and operation of the SP61 model

Figure 16 presents a high level view of the organisation of the SP61 model using pseudocode while Figures 17 and 18 show, with pseudocode, the first and second parts of the `compress()` function within the model. The text below describes how the model works together with details of its organisation that are not included in the pseudocode.
main()
{
 1 Read the rules of the grammar, each one with a frequency of occurrence in a notional sample of the language, and store the patterns with their frequencies in Old.
 2 Read the sentence to be parsed and store it in New.
 3 Derive a frequency for each symbol in the grammar (as described in Appendix B).
 4 Using the frequencies of the symbols with the method, assign to each symbol in New and Old a number of bits representing the 'minimum' information 'cost' of that symbol. Also, calculate an 'actual' information cost for each symbol.
 5 For each pattern in the grammar, calculate E, the minimum number of bits needed to encode that pattern.
 6 Select the sentence to be parsed and add it as the first 'driving pattern' to an otherwise empty list of driving patterns.
 7 while (new alignments are being formed)
 compress ()
 8 Out of all the new alignments which have been formed, print the ones with the best CDs.
}

Figure 16: A high level view of the organisation of the SP61 model.
compress()
{
 1 Clear the 'hit structure' (described in the text).
 2 while (there are driving patterns that have not yet been processed)
 {
 2.1 Select the first or next driving pattern in the set of driving patterns.
 2.2 while (there are more symbols in the current driving pattern)
 {
 2.2.1 Working left to right through the current driving pattern, select the first or next symbol in the pattern.
 2.2.2 'Broadcast' this symbol to make a yes/no match with every symbol in the 'target patterns' in Old.
 2.2.3 Record each positive match (hit) in a 'hit structure' (as described in the text). As more symbols are broadcast, the hit structure builds up a record of sequences of hits between the driving pattern and the several target patterns in Old. As each hit sequence is extended, the compression score of the corresponding alignment is estimated using a 'cheap to compute' method of estimation.
 2.2.4 If the space allocated for the hit structure is filled at any time, the system 'purges' the worst hit sequences from the hit structure to release more space. The selection uses the estimates of compression scores assigned to each hit sequence in Step 2.2.3.
 }
 }
}

Figure 17: First part of the compress() function of the SP61 model.
3 For each hit sequences which has an estimated compression score above some threshold value and which will ‘project’ into a single sequence (as described in the text), convert the hit sequence into the corresponding alignment. Discard this alignment if it is identical with any alignment already in Old. Otherwise, compute the compression score using the method described in Appendix C, print the new alignment and add it to Old. If no new alignments are formed, quit the compress() function.

4 Excluding the original patterns in Old, examine all the alignments that have been added to Old since the beginning of processing and choose a subset of these alignments using the method described in the text. Remove from Old all the alignments which have not been selected. The original patterns are never removed from Old.

5 Clear the list of driving patterns and then, using the same method as is used in 4 but (usually) with a more restrictive parameter, select a subset of the alignments remaining in Old and add references to those alignments to the list of driving patterns (these patterns are not removed from Old and may therefore also be target patterns on the next cycle).

Figure 18: Second part of the compress() function of the SP61 model.
C.1 Preliminary processing

C.1.1 Calculation of the information cost of each symbol

As was described in Section 3.1, each rule in the grammar has an associated frequency of occurrence in (a ‘good’ parsing of) some notional sample of the language. In Step 3 of main() in Figure 16, the model derives the frequency of occurrence of each symbol type as described in Appendix B.7.1. These frequencies are then used (in Step 4 of main()) to calculate the minimum number of bits needed to represent each symbol type using the S-F-E coding scheme (see [Cover and Thomas 91]), as described in Appendix B.7.1. The resulting sizes for each symbol type are then assigned as ‘minimum cost’ sizes to corresponding symbols in New and Old. Each symbol in New and Old is also given an ‘actual cost’ which is the minimum cost increased by an arbitrary factor, rounded up to ensure that the actual cost is at least one bit larger than the minimum cost (see Section B.7.1).

C.1.2 Establishing the encoding cost of each pattern in Old

In Step 5 of main() in Figure 16, each pattern in the grammar is assigned a minimum number of bits required to discriminate the pattern from other patterns in the grammar using frequencies of the patterns with the S-F-E method, as was outlined in Section B.7.2.

C.2 Building the ‘hit structure’ (step 2 of the compress() function in Figure 17)

The compress() function shown in Figures 17 and 18 is the heart of the SP61 model. This subsection and the ones that follow supplement the description in the figure.

As can be seen from the figure and inferred from the outline description in Section 3, the compress() function is applied iteratively. On the first cycle, the ‘driving’ pattern is simply the sentence to be parsed. On subsequent cycles, the list of driving patterns is a subset of the alignments formed in preceding cycles. Iteration stops when no new alignments can be found which satisfy conditions described below.

C.2.1 Fuzzy matching of one pattern with another

Step 2 of the compress() function is based on the central process in SP21 [Wolff 91], a process which is related to dynamic programming (DP, [Wagner and Fischer 74]) and is designed to find ‘fuzzy’ matches which are ‘good’ between one ‘driving’ pattern and one or more ‘target’ patterns. In this context, a ‘fuzzy’ match is one where only a subsequence of the symbols in one pattern need match the symbols in the other pattern and vice versa.

The technique is to ‘broadcast’ each symbol in the driving pattern to make a yes/no match with each symbol in the set of target patterns and to record
sequences of hits in a ‘hits structure’. Each sequence of hits (termed a hit sequence) represents an alignment between the driving pattern and one of the target patterns.

As is described in [Wolf 94a], the hit structure has the form of a list-processing tree with each node representing a hit and each path from the root to a leaf node representing a sequence of hits.

C.2.2 No one instance of a symbol should ever be matched with itself

Since driving patterns can also be target patterns, any one pattern may be aligned with itself. That being so, a check is made to ensure that no instance of a symbol is ever matched against itself (see Section 2.2). Obviously, any such match would be meaningless in terms of the identification of redundancy.

Since any symbol in the driving pattern and any symbol in the target pattern may have been derived by the unification of two or more other symbols, a check is also made to exclude all hits where the set of symbols from which one of the hit symbols was derived has one or more symbols in common with the set of symbols from which the other hit symbol was derived. In short, while any given pattern from the grammar may appear two or more times in one alignment, no symbol in any of the original patterns in Old ever appears in the same column as itself in any alignment.

C.2.3 The order of symbols in New must be preserved

As the matching process has been described so far, it would be entirely possible for the system to align a pattern like ‘NP D 1 t h a t #D N 1 g i r l #N #NP’ in the example considered earlier with the first ‘NP #NP’ in a pattern like ‘NP #NP V 0 l o v e s #V NP #NP #S’ from the same example and to align ‘NP D 0 t h i s #D N 0 b o y #D #NP’ with the second ‘NP #NP’. To avoid the formation of alignments like this which violate the order of the symbols in New, the system makes checks to ensure, at all stages, that the order of the symbols in New is honoured.

C.2.4 Estimation of compression scores

While the hit structure is being built, the compression score for the alignment corresponding to each hit sequence may be calculated at every stage but only at the cost of a lot of processing which would slow the model down. Consequently, a simple method of estimating the compression score is used in Step 2.2.3 of Figure 17 which is computationally ‘cheap’. Although it gives results which do not correspond exactly with the values calculated using the formulae presented in Appendix B, the differences appear not to be critical for the purposes of purging the hit structure (Step 2.2.4 in Figure 17 Appendix C.2.5) or determining the threshold for converting hit sequences into alignments (Step 3 in Figure 16 Appendix C.3).
C.2.5 Purging the hit structure

If the space allocated to the hit structure is exhausted at any time, the hit structure is ‘purged’ or, more literally, ‘pruned’ to remove branches corresponding to the worst 50% of the hit sequences (where the meaning of ‘worst’ is determined using the estimates of compression scores calculated in Step 2.2.3 of the compress() function). In this way, space is released in which new sequences of hits can be stored.

C.2.6 Distinctive features of the technique

The technique of recording hits in a tree using list processing, coupled with the mechanism for purging the hit structure whenever the available space is filled, is probably the most important difference between the SP21 technique for finding partial matches and the more traditional kinds of DP. In the SP21/SP61 technique:

- Both strings being compared can be arbitrarily long.
- The ‘depth’ of searching can be controlled by varying the space available for the hit structure: larger spaces give better results than smaller ones.
- Unlike standard DP algorithms, the system delivers a set of alternative alignments between two sequences rather than a single ‘best’ alignment.

C.3 Building, scoring and selection of alignments

C.3.1 Building alignments and scoring them (step 3 of the compress() function)

When the hit structure for a set of driving patterns has been built, the best hit sequences are converted into the corresponding alignments, excluding all alignments which will not ‘project’ on to a single sequence (as described in Section C.2.2 and Appendix B.6) and excluding alignments as described in C.3.2.

The process of converting a hit sequence into an alignment achieves two things: it creates a one-dimensional sequence of symbols which is a unification of the driving pattern or patterns with the target pattern and it creates a two-dimensional array representing the alignment itself. For each alignment, the array occupies a portion of memory of exactly the right size, allocated dynamically at the time the alignment is formed.

The one-dimensional sequence may enter into matching and unification in later iterations of the compress() function, while the two-dimensional array allows the full structure of the alignment to be seen and can be used in later checks to ensure that no instance of a symbol is ever matched with itself (Section C.2.2) and to ensure that the order of symbols in New is not violated (Section C.2.3).

From time to time, identical alignments are formed via different routes. The program checks each of the newly-formed alignments against alignments already formed. Any alignment which duplicates one already formed is discarded. The
process of comparing alignments is indifferent to the order (from top to bottom) in which patterns appear in the alignment (cf. Section 3.2 above).

Every new alignment which survives the several hurdles is added to Old and its CD is computed using the method and formulae described in Appendix B.

C.3.2 Selection of alignments: a quota for each hit symbol in New

Apart from purging the hit structure when space is exhausted, the main way in which the SP61 model narrows its search space is a two-fold selection of alignments at the end of every cycle of the `compress()` function:

- Excluding all the original patterns in Old, the program examines the alignments which have been added to Old since the start of processing and selects a subset by a method to be described. All the other alignments are removed from Old and discarded.

- Using the same method, the program selects a subset of the alignments which remain in Old to be used as driving patterns on the next cycle. These alignments are not removed from Old so they may also function as target patterns.

At first sight it seems natural to select alignments purely on the basis of their compression scores. However, it can easily happen that, at intermediate stages in processing, the best alignments are trivial variations of each other and involve the same subset of the symbols from New. If selection is made by choosing alignments with a CD above a certain threshold, the alignments which are chosen may all involve the same subset of the symbols in New, while other alignments, containing symbols from other parts of New, may be lost. If this happens, the model cannot ever build an alignment which contains all or most the symbols in New and may thus never find the ‘correct’ answer.

A solution to this problem which seems to work well is to make selections in relation to the symbols in New which appear in the alignments. Each symbol in New is assigned a ‘quota’ (the same for all symbols) and, for each symbol, the best alignments up to the quota are identified. Any alignment which appears in one or more of the quotas is preserved. All other alignments are purged. The merit of this technique is that it can ‘protect’ any alignment which is the best alignment for a given subsequence of the symbols in New (or is second or third best etc) but which may, nevertheless, have a relatively low CD compared with other alignments in Old.

C.4 Processing New in Stages

A feature of the SP61 model that, to avoid clutter, has been omitted from Figure 16 is that New may be divided into ‘windows’ of any fixed size (determined by the user) and the model can be set to process New in stages, one window at a time, from left to right. This feature of the model was introduced for two reasons:
• It seems to bring the model closer to the way people seem to operate, processing sentences stage by stage as they are heard or read, not waiting until the whole of a sentence has been seen before attempting to analyse it.

• Since it is possible to discard all but the best intermediate results at the end of each window, this mode of processing has the advantage of reducing peak demands for storage of information and it also has the effect of reducing the size of the search space.