Study and Analysis of Simple and Precise of Contact Resistance Single-Transistor Extracting Method for Accurate Analytical Modeling of OTFTs Current-Voltage Characteristics: Application to Different Organic Semiconductors

Noweir Ahmad Alghamdi

Department of Physics, Faculty of Science, Al Baha University, Al Baha 65799, Saudi Arabia; naa.alghamdi@bu.edu.sa

Abstract: Contact resistance (R_c) characterizes the interface of source-drain electrodes/organic semiconductors and controls the injection efficiency of carriers in organic thin-film transistors (OTFTs). This research paper presents and assesses two methods for extracting the value of the contact resistance from the measured current-voltage characteristics of OTFTs made with various p-type organic semiconductors as active layers. These two methods are the transition voltage method (TVM) and the transfer line method (TLM). The obtained R_c values by the TVM method are in fair agreement with those obtained by TLM, with a maximum percentage of difference around 10%, demonstrating the accuracy of the used transition-voltage method. An analytical model was employed to calculate output characteristics in the linear regime of OTFTs made with various organic semiconductors using the contact resistance values obtained by the transition voltage method. The calculated results are in reasonably good agreement with the experimental ones of each fabricated device, which affirms the ability of the used model to characterize the charge transport correctly in these types of devices. It can be concluded that the used TVM method is not only an easy and practical method, but also a precise way for extracting R_c in OTFTs produced using different organic semiconductor materials.

Keywords: OTFTs; contact resistance; transition-voltage method; transfer line method; modeling

1. Introduction

During the last few years, the field of microelectronic devices based on organic semiconductors (OSCs), such as organic solar cells, organic memories, organic thin-film transistors (OTFTs) and organic light-emitting diodes (OLEDs), is considered as being a tremendously developed technology in the industrial and scientific communities when compared with its inorganic counterpart [1–12]. In particular, among them, the OTFTs forming the backbone of an important number of microelectronic devices, such as displays, gas sensors, smart cards, and radio-frequency identification tags, smart display screens, and other innovative high-technology where these OTFTs play the role of a vital and indispensable constituent [13–25]. In addition, OTFTs can equally be viewed as a practical technique for investigating charge transport properties in organic semiconductor materials by directly accessing the charge-carrier mobility. Moreover, OTFTs are based on various key sensing parameters, such as the inverse sub-threshold swing (SS), the field-effect mobility (μ_{FE}), the current ratio (I_{on}/I_{off}) and the turn on voltage (V_{on}), and the threshold voltage (V_{th}) [18–21]. In this context, many efforts have been made to improve the above-mentioned electrical parameters of OTFTs using a variety of processing strategies. On the other hand, the efficiency of OTFTs devices depends not only on the properties of the active organic layers, the nature of the insulator material, and the resulting interfaces between them, but also on the quality of the source-drain electrodes/organic semiconductor interface, which is principally characterized by the contact resistance (R_c) [26–32]. As the performance of OTFTs enhances, the limitations due to contact resistance become decisive. The electrical
performances of OTFTs can be dramatically affected by the presence of contact resistances between metal electrodes and active organic layers, which act as an obstacle to carrier injection in OTFTs and impact the operation process. Regarding the current-voltage characteristics of OTFTs, especially output characteristics, i.e., drain current (I_D) as a function of drain voltage (V_D), for various gate voltages (V_G), some behaviors can be observed in the linear and saturation regimes because of the contact resistance. One of these behaviors is the nonlinear behavior of the output characteristic curves in the linear region (low drain voltages), which directly arise due to contact resistance between metal electrodes and active organic layers. Therefore, examining contact resistance is a serious process in order to enhance the OTFTs performance. In this regard, many methods have been proposed to investigate the contact resistance in OTFTs [26–38]. Among them, the transfer line method (TLM) is the most popular extraction method of contact resistance in OTFTs. However, TLM requires various transistors with different channel lengths in order to extract the contact resistance. Accordingly, an uncomplicated method by which R_c can be extracted directly from the measured current-voltage characteristics of single OTFTs is of substantial interest.

Applying the transition-voltage method for contact resistance computation in organic thin-film transistors is so scarce, to the best of our knowledge, only one work was published up to now [31]. In [31], the authors calculated the contact resistance for OTFT devices based on Pentacene. Herein, we have generalized this method for OTFTs based on various types of organic semiconductors. Furthermore, we have modeled the output characteristics using the extracted values of R_c calculated by the TVM method.

In this work, multiples organic thin-film transistors (OTFTs) made with different organic semiconductors were fabricated, characterized, and investigated theoretically. We have applied the transition voltage method (TVM) for R_c extraction. In addition, the obtained values of R_c by the transition voltage method (TVM) are compared with those obtained by the transfer line method (TLM) for OTFTs made with various organic semiconductors as active layers. Finally, to confirm the accuracy of the TVM method, the output characteristics $I_D(V_D)$ in the linear regime for different types of OTFTs have been analytically modeled using the contact resistance values obtained by the TVM method.

2. Experimental Details

Figure 1 displays a cross-sectional schematic of p-type bottom-contact bottom-gate (BC-BG) organic thin-film transistors (OTFTs) studied in this work. All organic semiconductors were purchased from Aldrich chemical (98% purity) and used without any further purification. The device layers deposited on heavily doped n-type bare silicon (n-Si) served as a substrate and common bottom-gate electrode. All of the substrates were purchased from Fraunhofer Institute for Photonic Microsystems IPMS. Prior to any deposition, these substrates were properly washed under the effect of ultrasonic with acetone, deionized water, and isopropyl alcohol for 10 min each, followed by drying at room temperature with blowing nitrogen gas, and no additional surface treatment was applied. Next, 200 nm of silicon dioxide (is thermally grown, which acts as a gate dielectric for OTFTs. Thirdly, for both metal contacts, i.e., source and drain (S-D), twice-layered of Au (30 nm)/ITO (3 nm) was utilized and patterned via the lift-off technique. Finally, for the active organic layer, 50 nm of organic semiconductors were thermally evaporated with an evaporation rate of 2 Ås$^{-1}$ and under a high vacuum of 5×10^{-6} mbar using a preformed mask to complete the structure of the device. Here, OTFTs were fabricated with fixed channel width (W) of 2.0 mm and various channel lengths (L) of 20 µm, 10 µm, 5 µm and 2.5 µm. Electrical measurements of the OTFTs devices were recorded in the dark and vacuum conditions at room temperature using a Keithley Model HP 5156 semiconductor characterization system. The names of the different organic semiconductors and the device abbreviation OTFTs are summarized in Table 1.
Organic semiconductors that were applied as an active layer and the device abbreviation names.

Organic Semiconductors	Device Abbreviation Name
Pentacene	T₁ (Pentacene-TFTs)
Copper phthalocyanine (CuPc)	T₂ (CuPc-TFTs)
Tetraphenyldibenzoperiflanthene (DBP)	T₃ (DBP-TFTs)
Benzanthracene	T₄ (Benzanthracene-TFTs)

3. Results and Discussion

Contact resistance is one of the important factors that affect the linear region (low drain voltages) of the output characteristics of the OTFTs [26–38]. This type of resistance acts as a barrier to the injection of charge carriers in OTFTs, thereby influencing their functionality and performance. Consequently, a simple method by which R_c can be simply determined from the OTFTs current-voltage relationships independently of complicated parameters is requested. In this regard, we have developed the transition voltage method (TVM) for extracting R_c. Initially, within the framework of the conventional crystalline semiconductor MOSFETs theory and the graduated channel approximation (i.e., the electrical field along the channel (x-direction) along with the assumption that E_x is negligible relative to the electrical field along the y-direction (perpendicular to the channel ($E_y \gg E_x$)), the total drain current I_D can be computed by [29–33,39]:

$$I_D = W \mu_{FE} C_i (V_G - V_{th} - V(x)) \frac{dV(x)}{dx}$$

(1)

where W is the width of channel, C_i is the capacitance per unit area of the insulator, V_{th} is the threshold voltage, and μ_{FE} represents the mobility.

Figure 2 gives the basic geometry definition of the simplified structure of OTFTs used in the calculation of the drain current according to Equation (1). Here, $V(x)$ is the potential with respect to the grounded source electrode at the abscissa x, as shown in Figure 2. Firstly, neglecting R_c and integrating Equation (1) from $V(x = 0) = 0 V$ to $V(x = L) = V_D$ leads to the standard-TFTs equations of drain current as a function of V_D and V_G in both saturation and linear regimes, as follows [29–33,39]:

$$I_{D,lin} = \frac{W}{L} C_i \mu_{FE} \left(V_G - V_{th} - \frac{V_D}{2} \right) V_D$$

(2)

$$I_{D,sat} = \frac{W}{2L} C_i \mu_{FE} \left(V_G - V_{th} \right)^2$$

(3)
However, the fundamental OTFTs electrical properties may be generally influenced by the existence of the contact resistance (R_c) between the organic active layer/source-drain (S/D) contacts interface. In this regard, we have included the effect of R_c in the definitions of V_D and V_G. Accordingly, Equations (2) and (3) are modified by accounting for the contact resistance arising from source and drain contacts. For that matter, the integration boundary conditions of Equation (1) become as follow [29–33,39]:

\[
\begin{align*}
V(x = 0) &= I_D R_S \\
V(x = L) &= V_D - I_D R_D
\end{align*}
\]

(4)

where R_c and R_D are the series resistances that are satisfying $R_c = R_S + R_D$, $I_D R_S$ and $I_D R_D$ are voltages that drop through the series resistances R_S and R_D at the S/D contacts. Taking into account the above conditions, Equation (1) can be integrated from $V(x = 0) = I_D R_S$ to $V(x = L) = V_D - I_D R_D$ to obtain:

\[
I_D = \frac{W}{L} C_{\mu FET} \left[(V_G - V_{th})(V_D - I_D R_D - I_D R_S) - \frac{(V_D - I_D R_D)^2}{2} + \frac{(I_D R_S)^2}{2} \right]
\]

(5)

At low drain voltage (linear regime), we have the two approximations:

\[R_D = R_S = \frac{R_c}{2} \quad \text{and} \quad V_G - V_{th} \gg V_D\]

Based on these two approximations, we consequently obtain the simplified equation of I_D in the linear regime as follows:

\[
I_{D,lin} = \frac{W}{L} C_{\mu FET}(V_G - V_{th})(V_D - 2I_{D,lin} R_S)
\]

(6)

Analogously, at high drain voltage (saturation regime), the pinch-off of the conductive channel from the side of drain electrode occurs at $V_D - I_D sat R_D = V_G - V_{th}$, so that the I_D equation in this regime becomes:

\[
I_{D, sat} = \frac{W}{2L} C_{\mu FET}(V_G - V_{th} - I_{D, sat} R_S)^2
\]

(7)

At the transition voltage V_{tr} between the linear and saturation regimes in the output characteristics, we have $V_D = V_{tr}$ and $I_{D,lin} = I_{D, sat}$, as shown Figure 3, in which the abscissa (V_D-axis) is defined as V_{tr} that verifies Equation (6). Consequently, Equation (6) becomes:

\[
I_{D, sat} = \frac{W}{L} C_{\mu FET}(V_G - V_{th})(V_{tr} - 2I_{D, sat} R_S)
\]

(8)
Finally, we equalize Equation (7) to Equation (8), to derive the analytical expression for the contact resistance as follows [27,33]:

\[
R_c = 2R_S = 2\frac{\sqrt{V_G - V_{th}} [\sqrt{2V_{tr} - \sqrt{V_G - V_{th}}]}^2}{I_{D,sat}}
\]

(9)

where \(V_{tr}\) and \(I_{D,sat}\) are directly determined from the output curve for a given \(V_G\). \(V_{tr}\) is the transition voltage, \(I_{D,sat}\) is the saturation drain current for a given \(V_G\), and \(V_{th}\) is the threshold voltage. Figure 3 shows the graphical method to extract the two parameters \(V_{tr}\) and \(I_{D,sat}\) from the intersection of the two slopes in the linear and saturation regimes of the output characteristics. Whereas the linear projection on the \(y\)-axis of the intersection of the two slopes of the current-voltage characteristics in the linear and saturation regimes gives the \(I_{D,sat}\) value, \(V_{tr}\) corresponds to the linear projection on the \(x\)-axis of the intersection of the two slopes. Figure 3 displays some measurements for the device labeled T2 (CuPc-TFTs) as an example for extraction of \(V_{tr}\) and \(I_{D,sat}\).

On the other hand, in the linear regime, the transconductance \((g_m)\) has been extracted for each fabricated device using the transfer characteristics \(I_D(V_G)\). In fact, the transconductance \((g_m)\) describes the response of the drain current to changes of the gate voltage at a constant drain voltage, which is calculated by the following formula [23]:

\[
g_m = \left[\frac{\delta I_D}{\delta V_G} \right]_{V_{D=ct}} = \frac{W}{L} \mu_F E_C V_D
\]

(10)

Interesting now to \(V_{th}\) extraction in the linear regime, which can be determined using the transfer characteristic and the transconductance curves by means of the extrapolation in the linear region (ELR) method [32]. In this method, adjusting a tangent line to the \(I_D(V_G)\) curve, at the voltage \((V_{G,max})\) which confronts \(g_{m,max}\), the corresponding value of \(I_D\) is equivalent to \(I_{D,max}\), the extrapolation of the tangent passing from that point to \(I_D = 0\, \text{A}\) is corresponding to the maximum slope of the \(I_D-V_G\) curve, that is, the conjunction with \(I_{D,max} = g_{m,max} (V_{G,max} - V_{th})\). This leads to

\[
V_{th} = -\frac{I_{D,max}}{g_{m,max}} + V_{G,max}
\]
Figure 4 depicts some measurement for the device T₂ (CuPc-TFTs) as an example of the extraction method of V_{th} by the ELR.

![Image](image.png)

Figure 4. Illustration of the process of extraction of the V_{th} by the linear extrapolation method from transfer characteristics I_D–V_G (left axis) and transconductance g_m (right axis) as a function of V_G in the linear regime (an example of measurement for T₂ (CuPc-TFTs)).

In order to verify the accuracy of TVM, the transfer line method (TLM) was also used to extract the contact resistance of all fabricated OTFTs. In fact, in the frame of the TLM method, the measured total resistance (R_{tot}) of the device can be modeled as the sum of two series resistances as follows [19,22,23]:

$$R_{tot} = R_C + R_{ch}(L) = R_C + \frac{L}{WC_{iFET,jth}(V_G - V_{th})} \quad (11)$$

where $R_C = R_S + R_D$ is the resistance associated with the drain and source contacts, R_{ch} is the channel resistance and R_{tot} is the overall device resistance. Indeed, R_{tot} was extracted from the linear region of the output characteristics ($R_{tot} = \frac{\partial I_D}{\partial V_G} |_{V_G \rightarrow 0}$) at various high gate voltages ($V_G = -30 \text{ V}, -40 \text{ V}, -50 \text{ V} \text{ and } -60 \text{ V}$ for various channel lengths ($L = 2.5, 5, 10 \text{ and } 20 \text{ µm}$). In accordance with TLM, R_C is obtained from the intercept with the y-axis by extrapolating the linear fit of the total resistance curve to zero channel length ($L = 0 \text{ µm}$).

Figure 5 depicts the computed total resistance for T₂ (CuPc-TFTs) device fabricated with different channel lengths as an example.

The obtained values of R_C by the developed TVM (Equation (9)) are compared with those extracted using TLM (Equation (11)) and are shown in Figure 6. Clearly, there is a very good agreement between the two methods in the whole range of gate voltages, with a maximum percentage of difference around 10%. The proposed TVM allows determining the contact resistance as a function of V_G, using only one measured output characteristic of a single transistor. All of the foregoing results clearly demonstrate that the proposed TVM is simple, accurate, of general applicability, and a precise alternative method for extracting R_C in OTFTs.
Comparison of the obtained values by the transition voltage method (circle) and the transfer line method (full square) for different high negative gate voltages. Illustration of the process of extraction of the R_c using TLM.

Figure 5. Total resistance as a function of channel length of the T2 (CuPc-TFTs) for different high negative gate voltages. Illustration of the process of extraction of the R_c using TLM.

Figure 6. Comparison of the obtained values by the transition voltage method (circle) and the transfer line method (full square) of the contact resistance as a function of the V_G of all fabricated OTFTs in linear regime: (a) for T1 (pentacene-TFTs), (b) for T2 (CuPc-TFTs), (c) for T3 (DBP-TFTs) and (d) for T4 (benzanthracene-TFTs).
Table 2 recapitulates the main differences in extraction methods of the contact resistance used in this work. Obviously, the extracted values by both methods revealed a decrease of the contact resistance by increasing the gate voltage in all the fabricated OTFTs, as seen in Figure 6. This behavior is mainly due to the supplemental increase of the free carrier density in the conductive channel near the S/D electrodes.

Method Name	Abbreviation	Number of Transistor	Required Parameters	Required Measurement
Transfer line method	TLM	set of transistors: various channel lengths	Total resistance, Mobility, Threshold voltage	I_D-V_D of multiple OTFTs
Transition voltage method	TVM	Single transistor	Threshold voltage	I_D-V_D of single OTFTs

Finally, in order to well confirm the accuracy of TVM, it is worthy to model the output characteristics in the linear regime, by applying the values of contact resistance that we determined using TVM method. To calculate the output characteristics, we have taken in consideration that the value of V_G is different from the applied voltage and we denoted by V'_G. This difference in the value of V_G arises because the source contact is not grounded and its potential is increased by the amount that equal $R_S I_D$, so that [21,22,28,40–43]:

$$V'_G = V_G - R_S I_D = V_G - \frac{R_C}{2} I_D \quad (12)$$

Similarly, the drain voltage V_D is considered as V'_D, as follows [21,22,28,40–43]:

$$V'_D = V_D - (R_S + R_D) I_D = V_D - R_C I_D \quad (13)$$

Injecting Equations (12) and (13) into Equation (2), the drain current in the linear regime takes the following form:

$$I_D = \frac{W}{L} C_i \mu_{FET} \left(V'_G - V_{th} - \frac{V'_D}{2} \right) V'_D \quad (14)$$

Here, in the mobility dependence on the gate, the voltage was also taken into account which can be written as [21,22,28,40–43]:

$$\mu_{FET} = \mu_0 \left(\frac{V_G - V_{th}}{V_{aa}} \right)^\gamma \quad (15)$$

where γ and V_{aa} are fitting parameters and μ_0 is sometimes used as the band mobility for the material of the OTFTs under testing. Replacing Equations (12), (13) and (15) in Equation (14), the drain current expression in the linear regime finally becomes [21,22,28,40–43]:

$$I_D = \frac{\left(W \left(\frac{\mu_0}{V_G} \right) C_i (V_G - V_{th})^\gamma \right) / L \left(V_D (V_G - V_{th}) - (1/2) V_D^2 \right)} {1 + \left(W \left(\frac{\mu_0}{V_G} \right) C_i (V_G - V_{th})^\gamma \right) / L \left(-V_D R_C / 2 + V_D (V_G - V_{th}) \right)} \quad (16)$$

The output characteristics in the linear regime of four various types of OTFTs were reproduced using Equation (16) of the drain current that includes the contact resistance in the calculation. The set of parameters that gives a good correspondence between computed values by Equation (16) and those measured are listed in Table 3. The measured output characteristics in the linear regime and those computed by Equation (16), which include the contact resistance values according to the transition voltage method for four different types of OTFTs at different high gate voltages, are compared and shown in Figure 7a–d.
The predicted output characteristics by Equation (16) concurrently with including the mobility dependence on the gate voltage, agree well with the output measurements current-voltage characteristics $I_D(V_D)$ in the linear regime for various gate voltages ($V_C = -30 \text{ V}, -40 \text{ V}, -50 \text{ V}$ and -60 V) for four various types of OTFTs (T_1, T_2, T_3 and T_4). Therefore, the model’s ability to describe experimental data and predict the static electrical properties for various types of OTFTs using the contact resistance values according to the transition voltage method confirms the accuracy of TVM. In the light of these results, TVM is an efficient method for contact resistance extracting and can be applied to multiple devices based on different materials.

4. Conclusions

In conclusion, various organic thin-film transistors (OTFTs) made by different organic semiconductors as active layers were fabricated and characterized. A simple and precise transition voltage method (TVM) for R_c extracting was developed and discussed in detail, as well as the obtained values of R_c by the transition voltage method (TVM) were compared

Table 3. Fitting parameters that give a fair agreement between the measured output characteristics in the linear regime and those calculated by Equation (15).

Parameters	Device	V_{sat} (V)	γ	μ_0 (cm² V⁻¹ s⁻¹)	V_{th} (V)
T_1	1.22	1.11	7.7 x 10⁻⁶	-36	
T_2	0.98	1.85	2.6 x 10⁻⁶	-37.75	
T_3	1.74	1.29	7.8 x 10⁻⁷	-42.5	
T_4	1.35	1.03	2.73 x 10⁻⁷	-45.61	

Figure 7. Comparison of the measured (circle) output characteristic curves in the linear regime and the calculated data including the extracted contact resistance using the transition voltage method of OTFTs based on various organic materials: (a) T_1 (pentacene-TFTs), (b) T_2 (CuPc-TFTs), (c) T_3 (DBP-TFTs) and (d) T_4 (benzanthracene-TFTs).
to those obtained by the transfer line method (TLM). The obtained \(R_c \) values by TVM are in fair agreement with those obtained by TLM with a maximum percentage of difference around 10\%, indicating the preciseness of the used transition voltage method. An analytical model was applied to calculate the output characteristics in the linear regime of OTFTs made with various organic semiconductor materials using the contact resistance values obtained by the TVM method. The calculated results in terms of output characteristics in the linear regime are in reasonable agreement with the experimental ones of each fabricated device, which affirms the ability of the used model to describe the charge transport correctly in these types of devices. In the light of these results, TVM only needs single-device characteristics without any complex electrode patterning and can be applied to OTFTs devices produced using various organic structures, generalizing all types of OTFTs. It can be concluded that the used TVM is not only an easy and practical method but also a precise way for extracting \(R_c \) in OTFTs and can be applied to various devices produced using different organic materials as an active layer.

Funding: This research received no external funding.

Data Availability Statement: All data generated or analyzed during this study are included in this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kabe, R.; Adachi, C. Organic long persistent luminescence. *Nature* 2017, 550, 384–387. [CrossRef]
2. Lia, J.H.; Tang, W.; Wang, Q.; Sun, W.J.; Zhang, Q.; Guo, X.J.; Wang, X.B.; Yan, F. Solution-processable organic and hybrid gate dielectrics for printed electronics. *Mater. Sci. Eng. R. Rep.* 2018, 127, 1–36. [CrossRef]
3. Geffroy, B.; le Roy, P.; Prat, C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. *Polym. Int.* 2006, 55, 572–582. [CrossRef]
4. Wageh, S. Light Emitting Devices Based on CdSe Nanoparticles Capped with Mercaptoacetic Acid. *IEEE J. Quantum Electron.* 2014, 50, 741–748. [CrossRef]
5. Eder, F.; Klauck, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Dehm, C. Organic electronics on paper. *Appl. Phys. Lett.* 2004, 84, 2673–2675. [CrossRef]
6. Wageh, S.; Raïssi, M.; Berthelot, T.; Al-Ghamdi, A.A.; Abusorrah, A.M.; Boukhili, W.; Al-Hartomy, O.A. Silver Nanowires Digital Printing for Inverted Flexible Semi-Transparant Solar Cells. *Adv. Eng. Mater.* 2021, 23, 2001305. [CrossRef]
7. Alam, M.W.; Wang, Z.; Naka, S.; Okada, H. Performance Enhancement of Top-Contact Pentacene-Based Organic Thin-Film Transistors with Bilayer WO3/Au Electrodes. *Jpn. J. Appl. Phys.* 2013, 52, 03BB08. [CrossRef]
8. Wageh, S.; Raïssi, M.; Berthelot, T.; Laurent, M.; Rousseau, D.; Abusorrah, A.M.; Al-Hartomy, O.A.; Al-Ghamdi, A.A. Digital printing of a novel electrode for stable flexible organic solar cells with a power conversion efficiency of 8.5%. *Sci. Rep.* 2021, 11, 14212. [CrossRef] [PubMed]
9. Borchart, J.W.; Peng, B.; Letzkus, F.; Burghartz, J.N.; Chan, P.K.L.; Zojer, K.; Ludwigs, S.; Klauck, H. Small contact resistance and high-frequency operation of flexible low-voltage inverted coplanar organic transistors. *Nat. Commun.* 2019, 10, 1119. [CrossRef] [PubMed]
10. Hoth, C.N.; Schilinsky, P.; Choulis, S.A.; Brabec, C.J. Printing Highly Efficient Organic Solar Cells. *Nano Lett.* 2008, 8, 2806–2813. [CrossRef]
11. Alam, M.W.; Wang, S.; Naka, S.; Okada, H. Top Contact Pentacene Based Organic Thin Film Transistor with Bi-layer TiO2 Electrodes. *J. Photopoly. Sci. Technol.* 2012, 26, 659–664. [CrossRef]
12. Kim, K.H.; Kim, K.S.; Ji, Y.J.; Kang, J.E.G.; Yeom, Y. Silicon nitride deposited by laser assisted plasma enhanced chemical vapor deposition for next generation organic electronic device. *Appl. Surf. Sci.* 2021, 541, 148313. [CrossRef]
13. Kelley, T.W.; Baude, P.F.; Gerlach, C.; Ender, D.E.; Muyres, D.; Haase, M.A.; Vogel, D.E.; Theiss, S.D. Recent Progress in Organic Electronics: Materials, Devices, and Processes. *Chem. Mater.* 2014, 16, 4413–4422. [CrossRef]
14. Natali, D. Fundamentals of Organic Electronic Devices, Organic Flexible Electronics Fundamentals, Devices, and Applications Woodhead Publishing Series in Electronic and Optical Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–25.
15. Borchart, J.W.; Weitz, R.T.; Ludwigs, S.; Klauck, H. A Critical Outlook for the Pursuit of Lower Contact Resistance in Organic Transistors. *Adv. Mater.* 2021, 33, 2104075. [CrossRef] [PubMed]
16. Hagen, K.; Jackson, T.N. Pentacene organic thin-film transistors and ICs. *Solid State Technol.* 2000, 43, 63–64.
17. Katz, H.E.; Huang, J. Thin-Film Organic Electronic Devices. *Annu. Rev. Mater. Res.* 2009, 39, 71–92. [CrossRef]
18. Torsi, L.; Dodabalapur, A.; Sabbatini, L.; Zambonin, P.G. Multi-parameter gas sensors based on organic thin-film-transistors. Sens. Actuators B 2000, 67, 312–316. [CrossRef]
19. Boukhili, W.; Mahdouani, M.; Bourguiga, R.; Puigdollers, J. Experimental study and analytical modeling of the channel length influence on the electrical characteristics of small-molecule thin-film transistors. Superlattices Microstruct. 2015, 83, 224–236. [CrossRef]
20. Boukhili, W.; Mahdouani, M.; Erouel, M.; Puigdollers, J.; Bourguiga, R. Reversibility of humidity effects in pentacene based organic thin-film transistor: Experimental data and electrical modeling. Synth. Met. 2015, 199, 303–309. [CrossRef]
21. Boukhili, W.; Mahdouani, M.; Bourguiga, R.; Puigdollers, J. Temperature dependence of the electrical properties of organic thin-film transistors based on tetraphenyldibenzoperiflanthene deposited at different substrate temperatures: Experiment and modeling. Microelectron. Eng. 2016, 150, 47–56. [CrossRef]
22. Mahdouani, M.; Boukhili, W.; Bourguiga, R. Negative output differential resistance effect in organic thin film transistors based on pentacene: Characterization and modeling Mater. Today Commun. 2017, 13, 367–377. [CrossRef]
23. Jung, K.D.; Kim, Y.C.; Park, B.G.; Shin, H.; Lee, J.D. Modeling and parameter extraction for the series resistance in thin-film transistors. IEEE Electron. Dev. Lett. 2010, 31, 1448. [CrossRef]
24. Boukhili, W.; Tozlu, C.; Mahdouani, M.; Erten-Ela, S.; Bourguiga, R. Illumination and dipole layer effects on the density of state distribution in n-type organic thin film phototransistors based on naphthalene bis-benzimidazole: Experiment and modeling. Microelectron. Eng. 2017, 179, 37–47. [CrossRef]
25. Fan, C.L.; Lin, Y.Z.; Lee, W.D.; Wang, S.J.; Huang, C.H. Improved pentacene growth continuity for enhancing the performance of pentacene-based organic thin-film transistors. Org. Electron. 2012, 13, 2924–2928. [CrossRef]
26. Marinkovic, M.; Belaine, D.; Wagner, V.; Knipp, D. On the origin of contact resistances of organic thin film transistors. Adv. Mater. 2012, 24, 4005. [CrossRef]
27. Natali, D.; Caironi, M. Charge Injection in Solution-Processed Organic Field-Effect Transistors: Physics, Models and Characterization Methods. Adv. Mater. 2012, 24, 1357–1387. [CrossRef] [PubMed]
28. Al-Ghamdi, A.; Boukhili, W.; Wageh, S. Contact resistance corrected-electrical characteristics with channel length effects in π-conjugated small-molecule benzanthracene organic thin film transistors. Synth. Met. 2021, 273, 116670. [CrossRef]
29. Natali, D.; Fumagalli, L.; Sampietro, M. Modeling of organic thin film transistors: Effect of contact resistances. J. Appl. Phys. 2007, 101, 014501. [CrossRef]
30. Neamen, D.A. Semiconductor Physics and Devices: Basic Principles, 4th ed.; McGraw-Hill: New York, NY, USA, 2012.
31. Pesavento, P.V.; Chesterfield, R.J.; Newman, C.R.; Frisbie, C.D. Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature. J. Appl. Phys. 2004, 96, 7312. [CrossRef]
32. Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006.
33. Wang, S.D.; Yan, Y.; Tsukagoshi, K. Transition-Voltage Method for Estimating Contact Resistance in Organic Thin-Film Transistors. IEEE Electron. Device Lett. 2010, 31, 509–511. [CrossRef]
34. Al-Ghamdi, A.; Boukhili, W.; Wageh, S. Contact resistance corrected-electrical characteristics with channel length effects in π-conjugated small-molecule benzanthracene organic thin film transistors. Synth. Met. 2021, 273, 116670. [CrossRef]
35. Lai, S.; Cosseddu, P.; Bonfiglio, A. A method for direct contact resistance evaluation in low voltage coplanar organic field-effect transistors. Appl. Phys. Lett. 2017, 110, 153304. [CrossRef]
36. Takagaki, S.; Yamada, H.; Noda, K. Extraction of contact resistance and channel parameters from the electrical characteristics of a single bottom-gate/top-contact organic transistor. Jpn. J. Appl. Phys. 2016, 55, 03DC07. [CrossRef]
37. Torricelli, F.; Ghittorelli, M.; Colalongo, L.; Kovacs-Vajna, Z.M. Single-transistor method for the extraction of the contact and channel resistances in organic field-effect transistors. Appl. Phys. Lett. 2014, 104, 093303. [CrossRef]
38. Necliudov, P.V.; Shur, M.S.; Gundlach, D.J.; Jackson, T.N. Contact resistance extraction in pentacene thin film transistors. Solid-State Electron. 2003, 47, 259–262. [CrossRef]
39. Horowitz, G.; Hjalouati, R.; Fichou, D.; el Kassmi, A. Gate voltage dependent mobility of oligothiophene field-effect transistors. J. Appl. Phys. 1999, 85, 6. [CrossRef]
40. Simonetti, O.; Giraudet, L.; Maurel, T.; Nicolas, J.L.; Belkhir, A. Organic transistor model with nonlinear injection: Effects of uneven source contact on apparent mobility and threshold voltage. Org. Electron. 2010, 11, 1381–1393. [CrossRef]
41. Bolognesi, A.; Berliocchi, M.; Manenti, M.; Carlo, A.D.; Lugli, P.; Lmimouni, K.; Dufour, C. Effects of grain boundaries, field-dependent mobility, and interface trap States on the electrical Characteristics of pentacene TFT. IEEE Trans. Electron. Devices 2004, 51, 1997. [CrossRef]
42. Haddock, J.N.; Zhang, X.; Zheng, S.; Zhang, Q.; Marder, S.R.; Kippelen, B. A comprehensive study of short channel effects in organic field-effect transistors. Org. Electron. 2006, 7, 45–54. [CrossRef]
43. Jung, K.D.; Kim, Y.C.; Park, B.G.; Shin, H.; Lee, J.D. Modeling and parameter extraction for the series resistance in thin-film transistors. IEEE Trans. Electron. Devices 2009, 56, 431–440. [CrossRef]