COEFFICIENTS ASSESSMENT FOR CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS RELATED WITH QUASI-SUBORDINATION

Sibel Yalçın, Waggas Galib Atshan, and Haneen Zaghir Hassan

Abstract. We investigate specific new subclasses of the function class Σ of bi-univalent function defined in the open unit disc, which is connected with quasi-subordination. We find estimates on the Taylor–Maclaurin coefficients $|a_2|$ and $|a_3|$ for functions in these subclasses. Already pointed out are some documented and new implications of those findings.

1. Introduction

Let A denote the analytic function class in the open unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$ which contains the shape

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in D),$$

then let S be the class of all univalent functions from A in D. The Koebe One Quarter Theorem \[7\] states that the image of D beneath every function f from S contains a radius disk of $\frac{1}{4}$. This univalent function, therefore, has an inverse one f^{-1} which satisfies

$$f^{-1}(f(z)) = z, \quad (z \in D) \quad \text{and} \quad f(f^{-1}(w)) = w, \quad (|w| < r_0(f), \quad r_0(f) \geq \frac{1}{4}).$$

In fact the inverse function f^{-1} is given by

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots.$$

A function $f \in A$ is said to be bi-univalent in D if both f and f^{-1} are univalent in D. Let Σ denote the class of bi-univalent functions defined in the unit disc D. Ma–Minda \[11\] introduce the following classes using subordination:

$$S^*(h) = \left\{ f \in A : \frac{zf'(z)}{f(z)} \prec h(z) \right\},$$

2010 Mathematics Subject Classification: 30C45.

Key words and phrases: bi-univalent functions, quasi-subordination, coefficient estimates.

155
where h is an analytic function with positive real part on \mathcal{D} with $h(0) = 1$, $h'(0) > 0$ which maps the unit disc \mathcal{D} on a starlike area with respect to 1 and which is symmetric consider to the real axis. A function $f \in S^*(h)$ is called Ma–Minda starlike. $C(h)$ is a class of convex function $f \in \mathcal{A}$ for which

$$1 + \frac{zf''(z)}{f'(z)} < h(z).$$

The classes $S^*(h)$ and $C(h)$ contain various well-known subcategories of starlike and convex function as private case. The notion of subordination is propagated in 1970 by Robertson [20] through introducing a new notion of quasi-subordination.

For two analytic functions f and h, the function f is quasi subordination to h written as $f(z) \prec h(z) (z \in \mathcal{D})$ in the event of an analytical function ϑ and w, with $|\vartheta(z)| \leq 1$, $w(0) = 0$ and $|w(z)| < 1$ such that $f(z)/\vartheta(z) \prec h(z)$, which is equivalent to $f(z) = \vartheta(z)h(w(z)) (z \in \mathcal{D})$. Note that if $\vartheta(z) = 1$, then $f(z) = h(w(z))$, so that $f(z) \prec h(z)$ in \mathcal{D}, also if $w(z) = z$, then $f(z) = \vartheta(z)h(z)$ and it is said that $f(z)$ is majorized by $h(z)$ and written as $f(z) \ll h(z)$ in \mathcal{D}. Hence it is perceptible that the quasi-subordination is a popularization of the usual subordination as well as majorization. The labor on quasi-subordination is very extensive and that includes some recent investigations [2, 4, 9, 10, 12, 14, 19, 20].

In 1967, Lewin [10] researched the class Σ of bi-univalent functions and gained the limit for the second coefficient a_2. Brannan and Taha [5] examined specific subclasses of bi-univalent functions similar to the common subclasses of univalent functions consisting of strongly starlike, starlike and convex functions. They introduced the bi-starlike function, bi-convex function classes and acquired non-sharp bounds for the first two Taylor–Maclaurin coefficients $|a_2|$ and $|a_3|$. The study and the investigation of various subclasses of the bi-univalent function class Σ was revived in recent years by Srivastava et al. [27] and significantly large number of continuation (see [3, 21, 22, 23, 26, 29, 32]) refer to Srivastava et al. [27]. Recently Ali et al. [1], Deniz [6], Tang et al. [30], Peng et al. [16], Ramachandran et al. [18], Murugusundaramoorthy et al. [13], Srivastava et al. [24, 28], etc., have examined and studied Ma–Minda type subclasses of bi-univalent functions class Σ. Further generalization of Ma–Minda type subclasses of class Σ have been made several authors including [8, 15, 12, 23, 31] using quasi-subordination. Motivated by work in [9, 14] on quasi-subordination, we introduce and investigate here certain new subclasses of class Σ.

Throughout this sheet, it is assumed that $h(z)$ is analytic and univalent with positive real part in \mathcal{D} and let

$$h(z) = 1 + B_1z + B_2z^2 + \cdots, \quad (B_1 \in \mathbb{R}^+),$$

and h maps \mathcal{D} onto a region starlike with respect to 1 and symmetric with respect to the real axis. Also, let $\vartheta(z)$ be an analytic function in \mathcal{D} and

$$\vartheta(z) = A_0 + A_1z + A_2z^2 + \cdots, \quad (|\vartheta(z)| \leq 1, z \in \mathcal{D}).$$
Definition 1.1. For $0 \leq \delta \leq 1$ and $\lambda \geq 0$, a function $f \in \Sigma$ is said to be in the class $H^\delta_\Sigma(\lambda, \delta, \vartheta)$ if the following quasi-subordination hold

$$
\frac{(1 - \delta)f(z) + \delta zf'(z)}{z} + \lambda zf''(z) - 1 \prec_q (\vartheta(z) - 1)
$$

and

$$
\frac{(1 - \delta)g(w) + \delta wg'(w)}{w} + \lambda wg''(w) - 1 \prec_q (\vartheta(w) - 1)
$$

where the function g is the extension of f^{-1} to \mathcal{D}.

Definition 1.2. A function $f \in \Sigma$ is said to be in the class $M^\delta_\Sigma(\beta, \vartheta)$ if the following quasi-subordination hold

$$
\frac{z\Psi'(z)}{\Psi(z)} - 1 \prec_q (\vartheta(z) - 1), \quad \frac{w\Phi'(w)}{\Phi(w)} - 1 \prec_q (\vartheta(w) - 1),
$$

where $\Psi(z)$ and $\Phi(w)$ are as follows:

$$
\frac{1}{\Psi(z)} = \frac{1 - \beta}{f(z)} + \frac{\beta}{zf'(z)} \quad \text{and} \quad \frac{1}{\Phi(w)} = \frac{1 - \beta}{g(w)} + \frac{\beta}{wg'(w)} \quad (\beta \in \mathbb{C}),
$$

and Φ is the extension of Ψ^{-1} to \mathcal{D}.

Lemma 1.1 (See [17]). Let \mathcal{P} be class of all functions p analytic in U for which $\text{Re}(p(z)) > 0$ and have the form $p(z) = 1 + p_1z + p_2z^2 + \cdots$ for $z \in \mathcal{D}$, then $|p_i| \leq 2$ for each $i \in \mathbb{N}$.

2. Main Results

Theorem 2.1. $0 \leq \delta \leq 1$ and $\lambda \geq 0$. If $f \in \Sigma$ of the form [14] belonging to the class $H^\delta_\Sigma(\lambda, \delta, \vartheta)$, then

$$
|a_2| \leq \frac{|A_0|B_1 \sqrt{B_1}}{\sqrt{|(1 + 2\delta + 6\lambda)A_0B_1^2 + (1 + \delta + 2\lambda)^2(B_1 - B_2)|}}
$$

$$
|a_3| \leq \frac{|A_0|^2B_1^2}{(1 + \delta + 2\lambda)^2} + \frac{|A_1|B_1}{1 + 2\delta + 6\lambda} + \frac{|A_0|B_1}{1 + 2\delta + 6\lambda}.
$$

Proof. Let $f \in H^\delta_\Sigma(\lambda, \delta, \vartheta)$. In view of Definition [14] there exist then Schwarz functions $k(z)$, $s(w)$ and an analytic function $\vartheta(z)$ such that

$$
\frac{(1 - \delta)f(z) + \delta zf'(z)}{z} + \lambda zf''(z) - 1 = \vartheta(z)(h(k(z))) - 1,
$$

$$
\frac{(1 - \delta)g(w) + \delta wg'(w)}{w} + \lambda wg''(w) - 1 = \vartheta(w)(h(s(w))) - 1.
$$

Define the functions $p(z)$ and $q(w)$ by

$$
p(z) = \frac{1 + k(z)}{1 - k(z)} = 1 + c_1z + c_2z^2 + \cdots
$$

$$
q(w) = \frac{1 + s(w)}{1 - s(w)} = 1 + b_1w + b_2w^2 + \cdots,
$$

COEFFICIENTS ASSESSMENT FOR CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTION 157
or equivalently,
\[(2.7)\]
\[k(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left(c_1z + \left(c_2 - \frac{1}{2}c_1^2\right)z^2 + \cdots \right),\]
\[(2.8)\]
\[s(w) = \frac{q(w) - 1}{q(w) + 1} = \frac{1}{2} \left(b_1w + \left(b_2 - \frac{1}{2}b_1^2\right)w^2 + \cdots \right).\]

It is clear that \(p(z)\) and \(q(w)\) are analytic and have positive real parts in \(D\). In view of (2.3), (2.4), (2.7) and (2.8) clearly
\[(2.9)\]
\[\frac{(1 - \delta)f(z) + \delta zf'(z)}{z} + \lambda zf''(z) - 1 = \vartheta(z) \left[h \left(\frac{p(z) - 1}{p(z) + 1} \right) - 1 \right],\]
\[(2.10)\]
\[\frac{(1 - \delta)g(w) + \delta wg'(w)}{w} + \lambda wg''(w) - 1 = \vartheta(w) \left[h \left(\frac{q(w) - 1}{q(w) + 1} \right) - 1 \right].\]

The series expansions for \(f(z)\) and \(g(w)\) as given in (1.1) and (1.2) respectively, provide us
\[(2.11)\]
\[\frac{(1 - \delta)f(z) + \delta zf'(z)}{z} + \lambda zf''(z) - 1 = \frac{1}{2} A_0 B_1 c_1 z + \frac{1}{2} A_1 B_1 c_1 + \frac{1}{2} A_0 B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{A_0 B_2 c_1^2}{4} z^2 \cdots .\]
\[(2.12)\]
\[\frac{(1 - \delta)g(w) + \delta wg'(w)}{w} + \lambda wg''(w) - 1 = -(1 + \delta) a_2 w + (1 + 2\delta)(2\alpha_2^2 - a_3) w^2 - 2\lambda a_2 w + 6\lambda(2\alpha_2^2 - a_3) w^2 + \cdots .\]

Using (2.5) and (2.6) together with (1.3) and (1.4)
\[(2.13)\]
\[\vartheta(z) \left[h \left(\frac{p(z) - 1}{p(z) + 1} \right) - 1 \right] = \frac{1}{2} A_0 B_1 c_1 z + \frac{1}{2} A_1 B_1 c_1 + \frac{1}{2} A_0 B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{A_0 B_2 c_1^2}{4} z^2 \cdots \]
\[(2.14)\]
\[\vartheta(z) \left[h \left(\frac{q(w) - 1}{q(w) + 1} \right) - 1 \right] = \frac{1}{2} A_0 B_1 b_1 w + \frac{1}{2} A_1 B_1 b_1 + \frac{1}{2} A_0 B_1 \left(b_2 - \frac{b_1^2}{2} \right) + \frac{A_0 B_2 b_1^2}{4} w^2 \cdots .\]

Now equating (2.11) and (2.13) in view of (2.9) and comparing the coefficients of \(z\) and \(z^2\), we have
\[(2.15)\]
\[(1 + \delta + 2\lambda) a_2 = \frac{1}{2} A_0 B_1 c_1,\]
\[(2.16)\]
\[(1 + 2\delta + 6\lambda) a_3 = \frac{1}{2} A_1 B_1 c_1 + \frac{1}{2} A_0 B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{A_0 B_2 c_1^2}{4} .\]
Similarly, (2.10) given us
\[-(1 + \delta + 2\lambda)a_2 = \frac{1}{2}A_0B_1b_1,\]
\[(2.17) (1 + 2\delta + 6\lambda)(2a_2^2 - a_3) = \frac{1}{2}A_1B_1b_1 + \frac{1}{2}A_0B_1 \left(b_2 - \frac{b_1^2}{2}\right) + \frac{A_0B_2b_1^2}{4}.\]

From (2.15) and (2.17) we find that
\[(2.19) c_1 = -b_1\]
and (2.16), (2.17) and (2.19) yields
\[a_2^2 = \frac{A_0^2B_1^2(b_2 + c_2)}{4(1 + 2\delta + 6\lambda)A_0B_1^2 - 4(1 + \delta + 2\lambda)^2(B_2 - B_1)}.\]

Now further computations (2.16) to (2.18) lead to
\[a_3 = \frac{A_1B_1(c_1 - b_1) + A_0B_1(c_2 - b_2)}{4(1 + 2\delta + 6\lambda)} + \frac{A_0^2B_1^2(c_2^2 + b_2^2)}{8(1 + 2\delta + 2\lambda)^2}.\]

Using the above results and in view of the inequalities \(|c_i| \leq 2\) and \(|b_i| \leq 2\) \((i = 1, 2)\) for functions with positive real part yield the requested estimate in (2.1) and (2.2).

Remark 2.1. For \(\delta = 0\), a function \(f \in \Sigma\) defined in (1.1) is said to be in the class \(H_q\Sigma(\lambda, \vartheta)\) if the following conditions are satisfied
\[\frac{f(z)}{z} + \lambda zf''(z) - 1 \prec q\left(\vartheta(z) - 1\right)\]
and \(g(w) = g(w) - 1 \prec q\left(\vartheta(w) - 1\right)\).

For \(\delta = 0\), we have the class \(H^q\Sigma(\lambda, 0, \vartheta) = H^q\Sigma(\lambda, \vartheta)\).

Corollary 2.1. Let \(f(z)\) given by (1.1) belong to the class \(H^q\Sigma(\lambda, \vartheta)\) then
\[|a_2| \leq \frac{|A_0|B_1\sqrt{B_1}}{\sqrt{|(1 + 6\lambda)A_0B_1^2 + (1 + 2\lambda)^2(B_2 - B_1)|}},\]
\[|a_3| \leq \frac{|A_0|^2B_1^2}{(1 + 2\lambda)^2} + \frac{|A_1|B_1}{1 + 6\lambda} + \frac{|A_0|B_1}{1 + 6\lambda}.\]

By putting \(\delta = 1\) in Theorem 2.1, we have the following corollary.

Corollary 2.2. Let \(f(z)\) given by (1.1) to the class \(H^q\Sigma(\lambda, 1, \vartheta)\) then
\[|a_2| \leq \frac{|A_0|B_1\sqrt{B_1}}{\sqrt{|3(1 + 2\lambda)A_0B_1^2 + 4(1 + \lambda)^2(B_2 - B_1)|}},\]
\[|a_3| \leq \frac{|A_0|^2B_1^2}{4(1 + \lambda)^2} + \frac{|A_1|B_1}{3(1 + 2\lambda)} + \frac{|A_0|B_1}{3(1 + 2\lambda)}.\]
Theorem 2.2. If \(f \in M^3_\Omega(\beta, \vartheta) \), then

\[
|a_2| \leq \frac{|A_0|B_1\sqrt{B_1}}{\sqrt{|(1 + \beta^2)A_0B_2^2 + (1 + \beta)^2(B_1 - B_2)|}}
\]

\[
|a_3| \leq \frac{|A_0|^2B_2^2}{1 + \beta^2} + \frac{|A_1|B_1}{2|1 + 2\beta|} + \frac{|A_0|B_1}{2|1 + 2\beta|}.
\]

Proof. Since \(f \in M^3_\Omega(\beta, \vartheta) \) and \(\Phi = \Psi^{-1} \) then there exist analytic functions \(k, s : \mathcal{D} \to \mathcal{D} \) with \(k(0) = s(0) = 0 \) satisfying

\[
z\frac{\Psi'(z)}{\Psi(z)} - 1 = \vartheta(z) (h(k(z)) - 1),
\]

\[
\frac{w\Phi'(w)}{\Phi(w)} - 1 = \vartheta(w) (h(s(w)) - 1).
\]

For \(p(z) \) and \(q(w) \) as given in (2.5) and (2.6), respectively, in view of (2.20), (2.21), clearly

\[
z\frac{\Psi'(z)}{\Psi(z)} - 1 = (1 + \beta)a_2z + [2(1 + 2\beta)a_3 + (\beta^2 - 4\beta - 1)a_2^2] z^2 + \cdots,
\]

\[
\frac{w\Phi'(w)}{\Phi(w)} - 1 = -(1 + \beta)a_2w + [-2(1 + 2\beta)a_3 + (\beta^2 + 4\beta + 3)a_2^2] w^2 + \cdots.
\]

The right-hand sides of (2.22) and (2.23) are given by (2.13) and (2.14) respectively. Now using (2.13) and (2.14) in (2.24) and comparing the coefficients of \(z \) and \(z^2 \), we get

\[
(1 + \beta)a_2 = \frac{1}{2}A_0B_1c_1
\]

\[
2(1 + 2\beta)a_3 + (\beta^2 - 4\beta - 1)a_2^2 = \frac{1}{2}A_1B_1c_1 + \frac{1}{2}A_0B_1 \left(c_2 - \frac{c_1^2}{2} \right) + \frac{A_0B_2c_1^2}{4}.
\]

Similarly, it follows from (2.14), (2.25) and (2.24) that

\[
(1 + \beta)a_2 = \frac{1}{2}A_0B_1b_1,
\]

\[
-2(1 + 2\beta)a_3 + (\beta^2 + 4\beta + 3)a_2^2 = \frac{1}{2}A_1B_1b_1 + \frac{1}{2}A_0B_1 \left(b_2 - \frac{b_1^2}{2} \right) + \frac{A_0B_2b_1^2}{4}.
\]

From (2.20) and (2.28) it follows that

\[
c_1 = -b_1
\]

and (2.21), (2.24) and (2.25), yield

\[
a_2^2 = \frac{A_0^2B_1^4(b_2 + c_2)}{4[(1 + \beta^2)A_0B_2^2 - (1 + \beta)^2(B_2 - B_1)]}.
\]
Now further computation (2.27) to (2.29) leads to
\[a_3 = \frac{A_1 B_1 (c_2 - b_2)}{8(1 + 2\beta)} + \frac{A_0 B_1 (c_2 - b_2)}{8(1 + 2\beta)}. \]
□

Remark 2.2. Putting \(\vartheta(z) = 1 \) in Theorem 2.2, we get the corresponding result given by Deniz [6], for \(\beta = 0 \) the above Theorem 2.2 reduces to the following corollary.

Corollary 2.3. If \(f \in M_2^q(0, \vartheta) \), then
\[|a_2| \leq \frac{|A_0|B_1 \sqrt{B_1}}{\sqrt{|A_0|B_2^2 + (B_1 - B_2)|}}, \quad \text{and} \quad |a_3| \leq \frac{|A_0|^2 B_1^2 + \frac{|A_1|B_1}{2} + \frac{|A_0|B_1}{2}}{2}. \]

References

1. R. M. Ali, S. K. Lee, V. Ravichandran, S. Subramaniam, *Coefficient estimates for bi-univalent Ma–Minda starlike and convex functions*, Appl. Math. Lett. 25(3) (2012), 344–351.
2. Ş. Altinkaya, S. Yalçın, *Quasi-subordinations for certain subclasses of bi-univalent functions*, Math. Adv. Pure Appl. Sci. 1(2) (2018), 56–64.
3. Ş. Altinkaya, S. Yalçın, S. Çakmak, *A subclass of bi-univalent functions based on the Faber polynomial expansions and the Fibonacci numbers*, Mathematics 7(2)-160 (2019), 1–9.
4. O. Altuntaş, S. Owa, *Majorizations and quasi-subordinations for certain analytic functions*, Proc. Japan Acad., Ser. A 68(7) (1992), 181–185.
5. D. A. Brannan, T. S. Taha, *On some classes of bi-univalent functions*, Stud. Univ. Babeş-Bolyai Math. 31(2) (1986), 70–77.
6. E. Deniz, *Certain subclasses of bi-univalent functions satisfying subordinate conditions*, J. Class. Anal. 2(1) (2013), 49–60.
7. P. L. Duren, *Univalent Functions*, Springer-Verlag, New York, 1983.
8. S. P. Goyal, O. Singh, R. Mukherjee, *Certain results on a subclass of analytic and bi-univalent functions associated with coefficient estimates and quasi-subordination*, Palest. J. Math. 5(1) (2016), 79–85.
9. S. Y. Lee, *Quasi-subordinate functions and coefficient conjectures*, J. Korean Math. Soc. 12(1) (1975), 43–50.
10. M. Lewin, *On a coefficient problem for bi-univalent functions*, Proc. Amer. Math. Soc. 18 (1967), 63–68.
11. W. C. Ma, D. Minda, *A unified treatment of some special classes of univalent functions*, In: Proc. Conf. on complex analysis, (Tianjin,1992), Conference Proceedings Lecturer Notes Analysis, International Press, Cambridge, Mass., USA, vol. 1, 157–169, 1994.
12. N. Magesh, V. K. Balaji, J. Yamini, *Certain subclasses of bi-starlike and bi-convex functions based on quasi-subordination*, Abst. Appl. Anal. 2016, Art.ID 3102960, 6 pages, 2016.
13. G. Murugusundaramoorthy, T. Janani, N. E. Cho, *Bi-univalent functions of complex order based on subordinate conditions involving Hurwitz Lerch Zeta function*, East Asian Math. J. 32(1) (2016), 47–59.
14. T. Panigrahi, R. K. Raina, *Fekete–Szegö coefficient functional for quasi-subordination class*, Afr. Mat. 28(5-6) (2017), 707–716.
15. A. B. Patil, U. H. Naik, *Estimates on initial coefficients of certain subclasses of bi-univalent functions associated with quasi-subordination*, Global J. Math. Anal. 5(1) (2017), 6–10.
16. Z. Peng, G. Murugusundaramoorthy, T. Janani, *Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator*, J. Complex Anal. 2014 Art.ID 693908, 6 pages, 2014.
17. Ch. Pommerenke, *Univalent Functions*, Vandenhoeck and Ruprecht, Gottingen, 1975.
18. C. Ramachandran, R. Ambroseprabhu, N. Magesh, Initial coefficient estimates for certain subclasses of bi-univalent functions of Ma-Minda type, Appl. Math. Sci. 9(47) (2015), 2299–2308.
19. F. Y. Ren, S. Owa, S. Fukui, Some inequalities on quasi-subordinate functions, Bull. Aust. Math. Soc. 43(2) (1991), 317–324.
20. M.S. Robertson, Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc. 76 (1970), 1–9.
21. H.M. Srivastava, Ş. Altıngöz, S. Yalçın, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat 32(2) (2018), 503–516.
22. Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci. 43(4) (2019), 1873–1879.
23. H.M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for an unification of some subclasses of analytic and bi-univalent functions of Ma-Minda type, Acta Univ. Apulensis, Math. Inform. 44 (2015), 75–86.
24. Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma–Minda type, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 112(2018), 1157–1168.
25. H.M. Srivastava, S. Hussain, A. Raza, The Fejér–Szegö functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math. 34(1) (2018), 103–113.
26. H.M. Srivastava, N. Magesh, J. Yaminı, Initial coefficient estimates for bi-convex and bi-starlike functions connected with arithmetic and geometric means, Electron. J. Math. Anal. Appl. 2(2) (2014), 152–162.
27. H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192.
28. H.M. Srivastava, G. Murugusundaramoorthy, K. Vijaya, Coefficient estimates for some families of bi-Bazilevic functions of the Ma-Minda type involving the Hohlov operator, J. Class. Anal. 2(2) (2013), 167–181.
29. H.M. Srivastava, A.K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J. 59 (2019), 493–503.
30. H. Tang, G. Deng, S. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl. 2013 Art. 317, 10 pages, 2013.
31. P.P. Vyas, S. Kant, Certain Subclasses of bi-univalent functions associated with quasi-subordination, J. Rajasthan Acad. Phys. Sci. 15(4) (2016), 315–325.
32. Q.-H. Xu, H.-G. Xiao, H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461–11465.

Department of Mathematics, Faculty of Arts and Sciences
Bursa Uludag University
Bursa, Turkey
syalcin@uludag.edu.tr

Department of Mathematics College of Science
University of Al-Qadisiyyah
Diwaniyah, Iraq
waggashnd@gmail.com
haneenzaghir@gmail.com