Antibacterial activity of essential oils encapsulated in chitosan nanoparticles

Dulce Guadalupe BARRERA-RUIZ, Geovana Carolina CUESTAS-ROSAS, Reyna Isabel SÁNCHEZ-MARIÑEZ, Maritza Lizeth ÁLVAREZ-AINZA, Griselda Macrina MORENO-IBARRA, Ana Karenth LÓPEZ-MENESES, Maribel PLASCENCIA-JATOME, Mario Onofre CORTEZ-ROCHA

Abstract
In this study, cinnamon (Cinnamomum zeylanicum), thyme (Thymus vulgaris) and Schinus molle essential oils (at 125, 250 and 500 µg/mL) were encapsulated in chitosan nanoparticles by ionotropic gelation. Their antimicrobial activity against Staphylococcus aureus ATCC 25923, Enterococcus sp., Escherichia coli ATCC 25922, Klebsiella pneumoniae (BLEE +) and Pseudomonas aeruginosa carbapenemase producer was evaluated. The obtained nanoparticles exhibited a regular distribution and spherical shape with size range of 19.7 to 361 nm as observed by using a laser light scattering equipment. It was found that the studied chitosan nanoparticles with essential oils showed high antimicrobial effect than the chitosan and essential oils alone. Enterococcus sp. was the most sensitive bacteria and S. aureus the most resistant. Chitosan nanoparticles and chitosan nanoparticles with cinnamon and thyme essential oils were capable to inhibit growth of Enterococcus sp. and K. pneumoniae. This study demonstrated that chitosan nanoparticles with essential oils were effective against some foodborne pathogens.

Keywords: viability; Schinus molle; cinnamon; thyme; essential oils.

Practical Application: Use of essential oils in encapsulated in chitosan to avoid microbial growth.

1 Introduction
Microbial pathogens such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and others that can be present in food may cause spoilage and contribute to foodborne disease incidence (Miladi et al., 2016). It has been reported that foodborne illness represents a serious public health threat/risk worldwide, with around 48 million people affected and 3,000 death each year only in the USA (Silva & Domingues, 2016). One of the possible strategies to reduce foodborne infections is the development of effective preservation strategies capable of eradicating microbial contamination of foods. Interest in natural substances has focused attention on plants rich in bioactive compounds some of which are well known for their antimicrobial properties. The composition, structure as well as functional groups of their essential oils (EOs) play an important role in determining their antimicrobial activity. Plant EOs are generally recognized as safe and hence been considered as biodegradable safe natural alternative. Besides antibacterial properties of the EOs and their components, they also have been shown to exhibit antifungal and antiparasitic properties, which are possibly related to the function of these compounds in plants (Elshafee & Abdou, 2013). The antimicrobial activity of several EOs has been attributed to the presence of phenolic compounds such as the thymol, eugenol and carvacrol in thyme, clove and oregano essential oils, respectively (Tsao & Zhou, 2000; Lambert et al., 2001). Encapsulation is an attractive technology for protecting chemical and physical properties of essential oils to avoid unwanted changes and improving food processing. The encapsulating materials can be formed by one or more compounds such as chitosan, maltodextrin, gum arabic, hydroxypropyl methyl cellulose phthalategeatin, starch, among others, which can be used as a blend or alone (Nale et al., 2018; Prasad et al., 2018; Ahn et al., 2019; Perna et al., 2019). Chitosan has also gained interest due to its applications in food and pharmaceutics. Among others, the antimicrobial and antifungal activities of chitosan are some of its most interesting properties to improve food preservation and to reduce the use of chemical preservatives. The antimicrobial activity of chitosan has been considered in a wide variety of fungi and bacteria (Hernández-Lauzardo et al., 2008; Nazzaro et al., 2013; Feyzioglu & Tornuk, 2016; Liu et al., 2017; Abdeltwab et al., 2019). In addition, the antibacterial activity was enhanced when chitosan was dissolved in acetic, formic or lactic acid No et al. (2002). Furthermore, Liu et al. (2006) showed that chitosan in acetic acid solutions over 200 ppm have a marked biocide response to Escherichia coli. This activity of chitosan depends on diverse factors such as the type of chitosan used, its deacetylation degree and molecular weight, the pH of the medium and the temperature, the target organism, etc. Chitosan has been used in combination with essential oils by using nanoencapsulation treatments that may find potential application in the food industries. Due to the fact that EOs are easy to degradation in presence of light, air and high temperatures, nanoencapsulation has been recently developed as an efficient technique to protect them from...
evaporation and oxidation (Beyki et al., 2014). It is practical approach to maintain the EOs chemical properties, therefore, the aim of this study was to determine antimicrobial activity of chitosan nanoparticles loaded with essential oils.

2 Material and Methods

2.1 Bacterial strains

Five different human pathogens were tested, two Gram positive bacteria: Staphylococcus aureus ATCC 25923 and Enterococcus sp. vancomycin resistant, as well as three Gram negative: Escherichia coli ATCC 25922, Klebsiella pneumoniae (BLEE +) and Pseudomonas aeruginosa carbapenemase producer. They were obtained from the Microbiology Laboratory, Department of the Chemical Biologist Sciences at the University of Sonora (Hermosillo, Sonora, México). Bacteria were cultured on blood agar at 37 ºC for 48 h. All cultured were standardized by matching to the McFarland 0.5 turbidity standard using Mueller Hinton broth to produce approx. 1.5 x 10⁸ colony forming units (CFU) per mL (Sánchez-García et al., 2016).

2.2 Raw materials

Chitosan (Cs) from shrimp shells, medium molecular weight (153 kDa) and 78% of degree deacetylation was acquired from Sigma-Aldrich, USA (cat. 448877). Cinnamon (Cinnamomum zeylanicum, catalog w-22921-0) and thyme (Thymus capitatus, catalog w-28281-2) essential oils (CEO and TEO, respectively) were also acquired from Sigma Aldrich® (St. Louis, MO, USA). In the other hand, Schinus molle leaves collected near to Hermosillo, Sonora (Mexico) (28º 96’ 14” N and 111º 04’ 40” W) during the summer of 2019 were shade-dried for two weeks at 25 ºC. To obtain the essential oil (EO) a sample of 100 g of dry leaves were hydro-distilled at 100 ºC for 4 h in a Clevenger apparatus.

2.3 Nanoparticles preparation

The nanoparticles were prepared as described by López-Meneses et al. (2018). A solution of chitosan (Cs, 0.2% w/v) was prepared by constant agitation during 12 h in an aqueous lactic acid solution (1%, v/v). Then, it was then centrifuged for 30 min at 6000 rpm in a Hermle Labnet Z326 K centrifuge and the supernatant filtered through 1.6 μm pore filter. Tween 80 (0.45 g) was added into 40 mL of the Cs solution and stirred at 50 ºC for 2 h. Aliquots of 10 mL was added individually with 0.04g of each essential oil and a fourth without EOs. After that, 3 mL of sodium tripolyphosphate (TPP, 0.02% w/v) was dropped in a 3 mL aliquot of each of the samples with continuous agitation during 15 min to obtain the chitosan nanoparticles, S. molle, thyme, and cinnamon essential oils (NpCs, NpCSEO, NpCCEO, and NpCCEO, respectively. Three concentration of each nanoparticles with EOs were prepared (125, 250 and 500 µg/mL). Finally, they were dialyzed twice with methanol (10% w/v) and twice with deionized water. Particle size or dispersion of size and the zeta potential of nanoparticles was carried out in triplicate using a laser light scattering (MöbiuÇ equipment Wyatt Technology, Santa Barbara, CA, USA) with a laser wavelength of 532 nm and scattering angle of 90º (Luque-Alcaraz et al., 2016).

2.4 Evaluation of the in vitro antimicrobial activity

To evaluate the antibacterial activity of the nanoencapsulated EOs, the cell viability was measured according to Elshikh et al. (2016) using the resazurin dye assay. For this, a 0.02 mg/mL solution of resazurin sodium salt powder (Sigma-Aldrich, USA cat. R7017) was prepared in distilled water, filtered through 1.2 µm porous paper, sterilized and kept at 4 ºC. A volume of 100 µL of each bacteria containing =1.5 x 10⁶ CFU/mL in Mueller Hinton broth were deposited into each well of a flat 96-well microplate (Costar Corning, NY, USA) and incubated at 37ºC for 4 h. Then, 100 µL of different concentration (125, 250 and 500 µg/mL) of each nanoparticles was added into the wells and incubated during another 14 h. Subsequently, 20 µL of resazurin sodium salt were dropped in each well and incubated for 24 h at 24-25 ºC. The plates were read at 570 nm in a plate reader (Multiskan Go ‘Thermo Scientific’). Three controls were used: Gentamicin as positive control, treatments alone, and bacteria + Mueller Hinton broth. The experiments were carried out by triplicate. The inhibition percentage was calculated according to the equation of Lozano & Suárez (2008):

\[
\% \text{ Inhibition} = \frac{(ABT - AM) - (ATB - AB)}{ABT - AB} \times 100
\]

Where ABT is the total bacteria absorbance, AM is the Mueller Hinton broth absorbance; ATB is the absorbance of the treatments with bacteria and AB is the absorbance of treatments without bacteria.

2.5 Statistical analysis

All experiments were performed in triplicate and data expressed as mean ± standard deviation. The values were subjected to a variance analysis (ANOVA). To determine the statistical difference among the mean values of treatments with 95% significance level, Tukey’s multiple range test (p ≤ 0.05) using the statistical program JMP version 5.0 was used.

3 Results and discussion

3.1 Physicochemical characterization of Cs-EO’s nanoparticles

Table 1 shows the average particle size, potential zeta and the polydispersity index of the obtained nanoparticles. The NpCs and NpCsCEO showed irregular shape and had tendency to aggregate. The other nanoparticles showed spherical shape and according to their low polydispersity index (near to zero), they were homogeneous. The potential zeta and average size in the nanoparticles decreased when EOs were added, except for NpCsCEO, which showed an increase in the average size and the polydispersity index.

Treatment	Potential Z (Mv)	Diameter (nm)	PDI
NpCs	+ 43.8 ± 11.25	361.9 ± 31.4	0.35
NpCSEO	+ 40.2 ± 7.5	516.9 ± 45.5	0.74
NpCCEO	+ 22.9 ± 0.3	29.3 ± 0.9	0.3
NpCCTEO	+ 22.7 ± 0.8	19.7 ± 0.9	0.2

NpCs: chitosan nanoparticles, NpCSEO, NpCCEO and NpCCTEO are nanoparticles of chitosan with TEO, SEO and CEO, respectively. Values represent the mean ± standard deviation of three replicates.
PDI. Our results differ from those of Keawchaoon & Yoksan (2011); Woranuch & Yoksan (2013) and Sotelo-Boyás et al. (2017), who found an increase in the average size after loading EOs. The zeta potential of NpCs and NpCsSEO were higher than those from NpCsTEO and NpCsCEO. These high values implies a particle surface positively charged, good stability, in addition to a potential functionality. They can be considered high, which implies a particle surface positively charged, good stability, in addition to a potential functionality. The interactions between the amino groups of the chitosan and the OH groups of the EO could be responsible for the increase of this value.

3.2 Evaluation of the in vitro antimicrobial activity

The resazurin reductive assay was carried out to evaluate the proliferation. This is a cell permeable redox indicator, which is used to monitor viable cell number. The viable cells with active metabolism reduce resazurin into resorufin, which is pink and fluorescent (Riss et al., 2004). The antibacterial response to EOs alone and incorporated in chitosan.

3.3 E. coli ATCC 25922

In the proliferation test for E. coli after 24 h of incubation, statistical differences were found (p < 0.05, Table 2). E. coli was not inhibited in TEO, CEO and chitosan whereas in the other treatments its proliferation was low. The higher concentration of EOs in the nanoparticles caused moderate inhibition 10.0, 11.0, and 26.0% (NpCsCEO, NpCsSEO, and NpCsTEO, respectively), and they were also lower than the obtained with gentamicin (39.3%). The lower CI90 calculated was for the NpCsTEO and NpCsCEO (580 and 683, respectively), which were determined at 95% of confidence intervals using a Probit analysis.

Table 2. Proliferation percentage of human pathogenic bacteria in presence of the individual essential oils (µg/mL) and nanoencapsulated in chitosan.

Treatment	E. coli	K. pneumoniae	P. aeruginosa	Enterococcus sp.	S. aureus
MHB	100±0	100±0	100±0	100±0	100±0
Gentamicin	70.3±2.1d	100±0.0	87.6±0.6c	31.9±0.5c	80.8±12.5f
Chitosan	125	100±0.0±0.9e	93.7±0.8bc	91.9±3.4bc	99.4±0.7b
250	100±5.1±1a	93.7±1.9h	100±2.9a	98.1±2.5b	92.8±1.7hbc
500	100±1.5±h	90.9±6.3id	100±1.9a	80.6±4.2ef	91.4±0.6abc
SEO	125	100±0.0±0.9e	97.7±0.8hbc	90.8±2.9hbc	89.0±1.7bc
250	100±3.0±id	58.7±5.5jd	100±0.7id	75.0±4.8g	100±1.4hbd
500	100±15.5±a	84.8±2.8gdf	100±2.2i	46.7±3.0if	94.2±1.7hbd
CEO	125	100±0.0±0.9e	98.2±5.3abc	99.4±5.9abc	94.5±3.4abc
250	100±5.5±i	81.0±6.3h	100±0.7a	75.8±1.2h	100±1.6h
500	100±5.0±i	75.2±4.2f	100±2.2a	39.7±7.7h	100±3.5i
TEO	125	100±0.0±0.9e	94.7±4.8hbc	95.8±3.2hde	97.2±0.5id
250	100±5.1±i	91.7±3.1i	83.8±1.0ef	71.6±4.7g	94.9±3.6e
500	82.4±6.3bc	86.7±4.3e	62.8±1.0b	81.3±3.1e	96.6±5.3hbc
NpCs	125	95.7±1.3±i	47.6±5.3d	88.5±0.6deid	78.7±4.8f
250	95.5±2.2±i	30.0±2.8a	67.6±4.2d	57.0±1.5h	76.5±5.4f
500	76.8±5.3±i	15.9±4.3d	65.4±0.2h	6.1±3.1e	66.6±1.7d
NpCsSEO	125	99.2±1.4±a	86.0±7.0hbc	95.4±3.5abcde	83.4±3.4b
250	87.4±0.8b	56.9±4.6d	93.3±3.3hict	62.8±9.7h	63.3±4.9h
500	75.9±6.3i	49.2±5.5ui	75.1±3.4f	29.6±8.5h	67.5±3.3h
NpCsCEO	125	100±0.0±0.9e	53.8±4.8h	100±3.2a	60.4±0.5h
250	100±7.1±1a	44.1±3.1j	100±1.0a	52.3±4.7ij	78.1±3.6e
500	77.5±6.3i	20.1±4.1a	100±1.0a	13.7±3.1ia	86.9±5.3h
NpCsTEO	125	100±0.0±0.9e	95.4±2.2abc	100±2.0a	63.0±1.1h
250	82.8±15.7bc	74.6±1.3a	100±1.8a	41.7±2.2a	98.3±1.0abc
500	60.7±3.9	60.2±2.4e	100±2.9a	24.7±0.2i	90.4±6.3h

MHB = Mueller Hinton Broth, SEO = S. molle, TEO = thyme and CEO = Cinnamon essential oils. NpCs: chitosan nanoparticles, NpCsSEO, NpCsCEO and NpCsTEO are nanoparticles of chitosan with TEO, SEO and CEO, respectively. Values represent the mean ± standard deviation of three replicates. Same lowercase letter in the superscript indicate no statistical difference (p <0.05) among treatments for each bacteria.
with NCSS 97 statistical program (NCSS, LLC., Kaysville, UT, USA). This agrees to Chen et al. (2009) findings, because they reported that NpCs grafted with two essential oils components, eugenol or carvacrol, had more antibacterial activity than NpCs against \textit{E. coli}. In addition, they mentioned that modification of chitosan nanoparticles with the essential oil components via the Schiff base reaction involved the amine group of chitosan, and it might be expected that the antibacterial properties of the chitosan will be compromised such as occurred in our study.

A study of Saei-Dehkordi et al. (2010) and Tiwari et al. (2009) reported that among the organisms they evaluated, the Gram negative bacteria were the most resistant and the Gram positive were the most susceptible ones. This does not match totally with our finding, just for \textit{E. coli} and \textit{Enterococcus sp}. It has been reported previously (Sandri et al., 2007) that the resistance of the Gram negative bacteria could be due to the presence of their impermeable outer membrane that provide hydrophilic properties to lipophilic compounds such as the essential oils. In the other hand, the no existence of this barrier in the Gram-positive bacteria favors the contact of the essential oil with the phospholipid bilayer of the cell membrane. Thus might cause an increase in the ion permeability and leakage of intracellular constituents or an impairment of the bacteria enzyme systems (Yi et al., 2014; Nakayama et al., 2013). In addition, the inhibitory effect of phenols could be explained by interactions with the cell membrane of microorganisms and is often correlated with the hydrophobicity of the compounds (Sikkema et al., 1995; Weber & de Bont, 1996). For instance, Lambert et al. (2001) found that oregano essential oil induces permeability alteration in \textit{P. aeruginosa} and \textit{S. aureus} membranes with a consequent leakage of protons, phosphates and potassium.

3.4 \textit{S. aureus} ATCC 25923

From the response of \textit{S. aureus} to the treatments it was found that, there is significant difference among them (p < 0.05). The NpCs (500 μg/mL) and NpCsSEO (250 and 500 μg/mL) reduced the proliferation by 35.0% while gentamicin only caused 19.2%, which indicate that nanoparticles were more effective (Table 2). In addition, our data showed that CEO did not produced any effect in this bacteria, along with TEO (125 and 250 μg/mL) and SEO (125 μg/mL). All the Cl\textsubscript{50} were higher than the obtained with the NpCsSEO (1017 μg/mL). However, according to a study by Keawchoaoon & Yoksan (2011), chitosan nanoparticles with carvacrol exhibited antimicrobial activity against \textit{S. aureus}, \textit{B. cereus}, and \textit{E. coli} compared to chitosan nanoparticles. They also demonstrated that this activity was more effective against Gram positive bacteria which does not match with our results. Thymol, carvacrol, linalool and γ-terpinene are the main components of thyme essential oil (Akrout et al., 2010) and they have shown antimicrobial activity. Those compounds are terpenoids and their antimicrobial activity is related to their functional groups, and the hydroxyl groups on the phenolic terpenoids along with the presence of delocalized electrons (Ben Arfa et al., 2006; Lambert et al., 2001). In addition, Ben Arfa et al. (2006) mentioned that thymol and carvacrol are capable to disintegrating the cell outer membrane.

3.5 \textit{Enterococcus sp. (vancomycin resistant)}

The antimicrobial activity of the treatments against \textit{Enterococcus sp.} is shown in Table 2. It can be seen that they showed inhibitory effect on the proliferation of this microorganism. We found that it was the most sensitive bacteria from all the above tested. The highest antiproliferative activity was obtained with the nanoparticles at 500 μg/mL (NpCs >NpCsCEO>NpCsTEO and NpCsSEO, 6.1, 13.0, 29, 30%, respectively) compared to gentamicin (31.9%) and the EOs alone except for CEO at 500 μg/mL which activity was closer to the gentamicin. The Cl\textsubscript{50} for SEO, CEO, TEO, NpCs, NpCsTEO and NpCsCEO were 414, 472, 233, 317, 195 and 193 μg/mL, respectively. The synergy among chitosan and the components of each EO can be easily observed. Unlu et al. (2010) and Ribeiro-Santos et al. (2017) stated that cinnamaldehyde is the major compound in cinnamon EO which has proven to be effective against some species of both Gram positive and negative bacteria (Friedman et al., 2002; Ooi et al., 2006). Ribeiro-Santos et al. (2017) found that \textit{Cinnamomum cassia} EO exhibited great antimicrobial activity against \textit{E. coli}, \textit{S. aureus} and other microorganisms. Furthermore, cinnamaldehyde and eugenol caused damage to the cell wall of the bacteria (Di Pasqua et al., 2007) and cinnamaldehyde reduces the activity of enzymes causing protein denaturation and increases the cell wall permeability, thereby permitting leakage of cell components resulting in cell death (Tiwari et al., 2009).

3.6 \textit{K. pneumoniae} BLEE

As shown in Table 2, gentamicin and chitosan (125 μg/mL) did not show antiproliferative activity. This could be due to its resistance to extended spectrum β-lactamases antibiotics that \textit{K pneumoniae} possesses. Kader & Kumar (2005) found isolates of \textit{Klebsiella} highly resistant to gentamicin that agrees to our results. Also, Diaz et al. (2004) reported that 65 of 100 strains isolated from several hospitals of different Chilean cities resulted gentamicin resistant. A dose-response was observed in most of the treatments. The highest antiproliferative activity was observed with the NpCs followed by the NpCsCEO and NpCsSEO which inhibition ranged from 50 to 84.8%. The lower Cl\textsubscript{50} were for the NpCs, NpCsCEO, NpCsSEO and NpCsTEO (115, 161, 422 and 610 μg/mL, respectively).

3.7 \textit{P. aeruginosa} carbapenemase producer

As can be seen in Table 2 for \textit{P. aeruginosa} the treatments of SEO, TEO, NpCs, and NpCsSEO at 250 and 500 μg/mL were statistically significant (p < 0.05). Proliferation of this bacteria was high in most of the treatments and to gentamicin. Thyme and \textit{S. melle} EOIs produced similar inhibition in the proliferation followed by NpCs. Martins et al. (2014) and López-Meneses et al. (2018) reported that the main components in the leaves of \textit{S. melle} EO are D-limonene, o-cimene, β-phellandrene, δ-cadinene and caryophyllene. Martins et al. (2014) found that leaf EO was effective against \textit{Staphylococcus epidermidis}, \textit{S. aureus}, \textit{Enterococcus faecalis} while fruit EO was more effective against \textit{S. aureus} and \textit{E. faecalis}. Also, both EOIs were effective against antibiotic-resistant Gram bacteria, \textit{P. aeruginosa} and \textit{Salmonella enteritidis} serovar Typhimurium. Also, Mendoza-Rocha et al. (2012), demonstrated that EO of \textit{S. melle} has high inhibitory effect.
against *S. aureus* ATCC 25923 strain, for *E. coli* ATCC 25922 the inhibitory effect was smaller, however, it was strong when the undiluted crude extract (950 mg/mL) was applied. Also, they found that *P. aeruginosa* ATCC 27853 strain was less sensitive for this oil. These results agree to our findings. The lowest CL₅₀ was for Cs, CEO and NpCsCEO (24, 33 and 690 µg/mL, respectively).

4 Conclusions

In general terms, the chitosan nanoparticles with EOs of cinnamon, thyme and *S. molle* showed the highest antimicrobial effect than the chitosan and EOs alone. Even that chitosan have been reported to exhibit high bactericidal effects against Gram positive, there were no marked trends in inhibitory effects of NpCsEoSs against both types of bacteria. *Enterococcus* sp. was the most sensitive bacteria and *S. aureus* the most resistant. NpCs, NpCsCE and NpCsTEO were capable to inhibit growth of *Enterococcus* sp. and *K. pneumoniae*. This study demonstrated that chitosan nanoparticles with essential oils were effective against some foodborne pathogens and seems to have a beneficial impact on microbial reduction. These finding implied that NpCsEoSs could be used as an antimicrobial agent in the food industry.

Acknowledgements

This work was supported by the project US0313006033 funded by the División de Ciencias Biológicas y de la Salud de la Universidad de Sonora.

References

Abdeltwab, W. M., Abdelaliem, Y. F., Metry, W. A., & Eldgehedy, M. (2019). Antimicrobial effect of chitosan and nano-chitosan against some pathogens and spoilage microorganisms. *Journal of Advanced Laboratory Research in Biology*, 10(1), 8-15.

Ahn, S. I., Kim, A. Y., & Kwak, H. S. (2019). Optimization of the microencapsulation conditions and physicochemical properties of enteric-coated lactase microcapsules. *International Journal of Dairy Technology*, 72(1), 23-35. http://dx.doi.org/10.1111/1471-0307.12556.

Akrout, A., El Jani, H., Amouri, S., & Neffati, M. (2010). Screening of antiradical and antibacterial activities of essential oils of Artemisia campestris L., Artemisia herba alba Asso, and Thymus capitatus Hoff. et Link. growing wild in the Southern of Tunisia. *Recent Research in Science and Technology*, 2(1), 29-39.

Ben Arfa, A., Combes, S., Preziosi-Belloy, L., Gontard, N., & Chalier, P. (2006). Antimicrobial activity of carvacrol related to its chemical structure. *Letters in Applied Microbiology*, 43(2), 149-154. http://dx.doi.org/10.1111/j.1472-765X.2006.01938.x. PMid:16869897.

Beyki, M., Zhaveh, S., Tahere Khalili, S., Rahmani-Cherati, T., Abollahi, A., Bayat, M., Tabatabaeei, M., & Mohsenifar, A. (2014). Encapsulation of *Mentha piperita* essential oils in chitosan–cinnamic acid nanogel. *Industrial Crops and Products*, 54, 310-319. http://dx.doi.org/10.1016/j.indcrop.2014.01.033.

Chen, F., Shi, Z., Neoh, K. G., & Kang, E. T. (2009). Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. *Biotechnology and Bioengineering*, 104(1), 30-39. http://dx.doi.org/10.1002/bit.22236. PMid:19408318.

Di Pasqua, R., Betts, G., Hoskins, N., Edwards, M., Ercolini, D., & Mauriello, G. (2007). Membrane toxicity of antimicrobial compounds from essential oils. *Journal of Agricultural and Food Chemistry*, 55(12), 4863-4870. http://dx.doi.org/10.1021/jf0636465. PMid:17497876.

Díaz, P., Bello, H., Domínguez, M., Trabal, N., Mella, S., Zemelman, R., & González, G. (2004). Resistencia a gentamicina, amikacina y ciprofloxacina en cepas hospitalarias de *Klebsiella pneumoniae* subespecie pneumoniae productoras de β-lactamasas de espectro extendido. *Revista Médica de Chile*, 132(10), 1173-1178. http://dx.doi.org/10.4067/S0034-98872004010000003. PMid:15631204.

Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. *Materials Science and Engineering C*, 33(4), 1819-1841. http://dx.doi.org/10.1016/j.msec.2013.01.010. PMid:23498203.

Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., & Banat, I. M. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. *Biotechnology Letters*, 38(6), 1015-1019. http://dx.doi.org/10.1007/s10529-016-2079-2. PMid:26969604.

Feyzioglu, G. C., & Tornuk, F. (2016). Development of chitosan nanoparticles loaded with summer savory (satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. *Lebensmittel-Wissenschaft + Technologie*, 70, 104-110. http://dx.doi.org/10.1016/j.lwt.2017.02.037.

Friedman, M., Henika, P. R., & Mandrell, R. E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against *Campylobacter jejuni*, *Escherichia coli*, *Listeria monocytogenes* and *Salmonella enterica*. *Journal of Food Protection*, 65(10), 1545-1560. http://dx.doi.org/10.4315/0362-028X-65.10.1545. PMid:12380738.

Hernández-Lauzardo, A. N., Bautista-Baños, S., Velázquez-del Valle, M. G., Méndez-Montealvo, M. G., Sánchez-Rivera, M. M., & Bello-Pérez, L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of *Rhizopus stolonifer* (Ehrenb.: Fr.) Vuill. *Carbohydrate Polymers*, 73(4), 541-547. http://dx.doi.org/10.1016/j.carbpol.2007.12.020. PMid:26048219.

Kader, A. A., & Kumar, A. (2005). Prevalence and antimicrobial susceptibility of extended-spectrum β-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* in a general hospital. *Annals of Saudi Medicine*, 25(3), 239-242. http://dx.doi.org/10.5144/0256-4947.2005.239. PMid:16119526.

Keawchaoon, L., & Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol–loaded chitosan nanoparticles. *Colloids and Surfaces, B, Biointerfaces*, 84(1), 163-171. http://dx.doi.org/10.1016/j.colsurfb.2010.12.031. PMid:21296562.

Lambert, R. J., Skandamis, P. N., Coote, P. J., & Nychas, G. J. (2001). A study of minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. *Journal of Applied Microbiology*, 91(3), 453-462. http://dx.doi.org/10.1046/j.1365-2672.2001.01428.x. PMid:11556910.

Liu, N., Chen, X. G., Park, H. J., Liu, C. G., Liu, C. S., Meng, X. H., & Yu, L. J. (2006). Effect of MW and concentration of chitosan on antibacterial activity of *Escherichia coli*. *Carbohydrate Polymers*, 64(1), 60-65. http://dx.doi.org/10.1016/j.carbpol.2005.10.028.

Liu, Q., Meng, X., Li, Y., Zhao, C. N., Tang, G. Y., & Li, H. B. (2017). Antibacterial and antifungal activities of spices. *International Journal of Molecular Sciences*, 18(6), 283. http://dx.doi.org/10.3390/ijms18061283. PMid:28621716.

López-Meneses, A. K., Plascencia-Jatomea, M., Lizarrí-Mendoza, J., Fernández-Quiroz, D., Rodríguez-Félix, F., Mourirío-Pérez, R. R., & Cortez-Rocha, M. O. (2018). *Schinus molle* L. essential oil-loaded chitosan nanoparticles: Preparation, characterization, antifungal and anti-aflatoxigenic properties. *Lebensmittel-Wissenschaft + Technologie*, 96, 597-603. http://dx.doi.org/10.1016/j.lwt.2018.06.013.
