A RECIPE FOR EXOTIC 2-LINKS IN CLOSED 4-MANIFOLDS WHOSE COMPONENTS ARE TOPOLOGICAL UNKNOTS

VALENTINA BAIS, YOUNES BENYAHIA, OLIVIERO MALECH AND RAFAEL TORRES

Abstract: We describe a construction procedure of infinite sets of 2-links in closed simply connected 4-manifolds that are topologically isotopic, smoothly inequivalent and componentwise topologically unknotted. These 2-links are the first examples of such kind in the literature. The examples provided have surface and free groups as their 2-link groups. We also point out an exotic Brunnian behaviour of such families, which highlights the important role of linking in creating exotic phenomena.

1. Introduction and main results.

All embeddings and manifolds in this paper are smooth unless it is stated otherwise. The main contribution of this paper is to introduce a construction procedure of infinite sets of multiple components 2-links in closed 4-manifolds that are topologically isotopic, yet smoothly inequivalent, and whose components are topologically unknotted. The explicit examples that we produce have the property that the fundamental group of the complement can be chosen to be any free group or a surface group. We begin by making these notions precise in the following definition.

Definition 1. • A k-component 2-link
\[\Gamma = S_1 \sqcup \cdots \sqcup S_k \subset X \]
in a 4-manifold \(X \) is an unordered union of disjointly embedded 2-spheres \(S_i \) with trivial tubular neighborhood \(\nu(S_i) = D^2 \times S^2 \) for \(i = 1, \ldots, k \) and \(k \in \mathbb{N} \). We say that a component \(S_i \) is topologically unknotted if there is a locally flat embedded 3-ball \(D_i \subset X \) such that \(\partial D_i = S_i \).

• The fundamental group \(\pi_1(X \setminus \Gamma) \) of the complement of (1.1) is called the 2-link group.

• A 2-link (1.1) is symmetric if for any permutation \(\sigma \) of \(\{1, \ldots, k\} \) there is a diffeomorphism \(\phi : X \to X \) such that \(\phi(S_i) = S_{\sigma(i)} \) for \(i = 1, \ldots, k \).

• Two \(k \)-component 2-links \(\Gamma \) and \(\Gamma' \) embedded in a 4-manifold \(X \) are smoothly inequivalent if there is no diffeomorphism of pairs
\[(X, \Gamma) \to (X, \Gamma'). \]

• A family of \(k \)-component 2-links is exotic if its elements are topologically isotopic and pairwise smoothly inequivalent.

There has been a flurry of research on exotic embeddings of surfaces in closed 4-manifolds ignited by Fintushel-Stern’s foundational paper [15]. Finding such embeddings of nullhomotopic 2-spheres is particularly difficult: just notice that it is still unknown if there is an exotic \(S^2 \) in \(S^4 \). There is an implicit topologically unknotted 2-sphere that is smoothly knotted in a closed simply connected 4-manifold.

2020 Mathematics Subject Classification. Primary 57K45, 57R55; Secondary 57R40, 57R52.
in work of Fintushel-Stern \[14\] as pointed out by Ray-Ruberman in \[34\], and infinite sets of such embeddings of 2-spheres were constructed by the fourth author of this note in \[39\] Theorem A.

The construction procedure we introduce in this paper extends these results to multiple components 2-links as we now sample with our main result. A closed oriented surface of genus \(g\) is denoted by \(\Sigma_g\), and the free group of \(g\) generators by \(F_g\).

Theorem A. Let \(M\) be an admissible 4-manifold as in Definition \[3\] and fix \(g \in \mathbb{N}\). Let \(G\) be a group isomorphic to either \(\pi_1(\Sigma_g)\) or \(F_g\), and let \(n\) be its rank. Let \(K\) be an infinite family of knots \(K \subset S^3\) with pairwise distinct Alexander polynomials. There is an infinite set of smooth \(n\)-component 2-links

\[
\{\Gamma_K = S_{1,K} \sqcup \cdots \sqcup S_{n,K} \mid K \in K\}
\]

which are smoothly embedded in \(M \# n(S^2 \times S^2)\) and have the following properties.

1. Their 2-link group is \(G\).
2. The 2-links in (1.2) form an exotic family as in Definition \[1\].
3. The components of (1.2) are topologically unknotted.
4. Surgery on the components of (1.2) yields an infinite set of pairwise non-diffeomorphic closed 4-manifolds in a same homeomorphism class with fundamental group \(G\).

Theorem A unveils exotic phenomena of codimension two embeddings that were not previously known to exist. A detailed description of the procedure is given in Section 2.2. Examples of exotic 2-links in closed 4-manifolds with homologically essential components are available. Auckly-Kim-Melvin-Ruberman \[5\] Theorem B] produced infinite sets of exotic 2-links with trivial 2-link group and whose components have self-intersection +1. Hayden-Kjuchukova-Krishna-Miller-Powell-Sumukjian provided pairs of exotic 2-component 2-links in \[25\] Theorem 8.2]; see \[23\] as well.

Much like the examples in \[5\] \[25\], linking is of significant importance in the exotic behaviour of the 2-links of Theorem A. In order to understand this behaviour better, we introduce the following notion.

Definition 2. An exotic pair of smooth \(k\)-component 2-links

\[
\Gamma = S_1 \sqcup \cdots \sqcup S_k \quad \text{and} \quad \Gamma' = S'_1 \sqcup \cdots \sqcup S'_k
\]

in the sense of Definition \[1\] is Brunnianly exotic if the 2-links

\[
\Gamma \setminus S_i \quad \text{and} \quad \Gamma' \setminus S'_j
\]

are smoothly equivalent for any \(i,j = 1, \ldots, k\).

The Brunnianity property of Definition 2 rules out uninteresting constructions of exotic 2-links with free 2-link group as described in Remark 22. Our second main result shows that the examples of Theorem A satisfy this property and that they stabilize by taking the connected sum with a single copy of \(S^2 \times S^2\) at a point away from every element in (1.2).

Theorem B.

- Every 2-link in the infinite set (1.2) of Theorem A with free 2-link group is smoothly symmetric.
• There is an infinite subset of \((1.2)\) made of pairwise Brunnianly exotic 2-links smoothly embedded in \(M \# g(S^2 \times S^2)\). Moreover, elements in this infinite subset are pairwise smoothly equivalent in \((M \# g(S^2 \times S^2)) \# (S^2 \times S^2)\).

Related notions of Brunnianity of 2-links in 4-manifolds are available in the literature, always in analogy with the properties of Brunnian links in \(S^3\) introduced by Brunn in 1892 \cite{10}. The notion of Bruniannity used by Auckly-Kim-Melvin-Ruberman in \cite[Theorem B]{5} is quite similar to ours albeit a bit stronger: their results address smooth isotopy by considering ordered links. We consider only equivalence and not isotopy between our surfaces, but do so irrespectively of their order. A stronger use of the adjective Brunnian is employed by Hayden-Kjuchukova-Krishna-Miller-Powell-Sunukjian in \cite{25}.

We finish the introduction with a pair of questions that arose during the production of this work. The first question concerns a topological property of the 2-links constructed under our procedure. Notice that the 2-links \((1.2)\) of Theorem \(A\) with \(F_g\) as 2-link group are smoothly linked: there are no \(g\) smoothly embedded disjoint 3-balls in \(M \# g(S^2 \times S^2)\) such that each of them bounds a component of \(\Gamma_K\). The locally flat embedded realm immediately comes to mind.

Question C. Are the 2-links of Theorem \(A\) with free 2-link group topologically unlinked? That is, are there locally flat embedded disjoint 3-balls

\[(1.3) \quad \Theta_g = D^3_1 \sqcup \cdots \sqcup D^3_g\]

in \(M \# g(S^2 \times S^2)\) such that \(\partial \Theta_K = \Gamma_k\) for any \(K \in \mathcal{K}\)?

The second question regards a comparison of the Brunnianity property of Definition \(2\) and the Brunnian behaviour of the examples of Hayden-Kjuchukova-Krishna-Miller-Powell-Sunukjian.

Question D. Are the 2-links of Theorem \(A\) with free 2-link group Brunnian in the sense of \(\cite{25}\)? That is, is \(\Gamma_K \setminus S_{i,K}\) smoothly unlinked for every \(i = 1, \ldots, g\)?

The paper is organized as follows. The construction procedure of infinite sets of exotic 2-links is laid down in Section \ref{sec:construction}. A topological restriction on admissible 4-manifolds is given in Section \ref{sec:admissible}. The main building blocks are produced in Section \ref{sec:blocks_1}, Section \ref{sec:blocks_2} and Section \ref{sec:blocks_3}. These sections contain results to pin down the diffeomorphism type of a 4-manifold constructed from surgeries that might be of independent interest, including a handlebody depiction of the Kodaira-Thurston manifold not previously available in the literature to the best of our knowledge. The smooth structures of Theorem \(A\) are constructed in Section \ref{sec:smooth_structures}. The diffeomorphism type of the ambient 4-manifolds are pinned down in Section \ref{sec:ambient}. The 2-links are manufactured in Section \ref{sec:2-links}, where we also show that they are pairwise topologically isotopic. The properties of Definition \(2\) are investigated in Section \ref{sec:properties}.

1.1. **Acknowledgements.** The first author is a member of GNSAGA – Istituto Nazionale di Alta Matematica “Francesco Severi”, Italy.

2. **Recipe for exotic 2-links.**

2.1. **Admissible 4-manifolds of Theorem \(A\) and their size.** The 4-manifolds that are our key raw material of our construction procedure and the hypothesis of Theorem \(A\) are defined as follows.
Definition 3. An admissible 4-manifold M is a 4-manifold that satisfies the following properties.

- There is at least one basic class $k \in H^2(M; \mathbb{Z})$, i.e. the Seiberg-Witten invariant of M satisfies $SW_M(k) \neq 0$.
- There is a pair of embedded disjoint 2-tori $T_1, T_2 \subset M$ such that T_i has self-intersection 0 for $i = 1, 2$, and
 $\pi_1(M) = \{1\} = \pi_1(M \setminus (\nu(T_1) \sqcup \nu(T_2)))$.

There is no shortage of admissible 4-manifolds in the literature [9, 14, 21, 28]. The elliptic surfaces $E(n)$ for $n \geq 2$ are a prototype example, but admissible 4-manifolds with smaller second Betti number are known. In [9, Theorem 18], Baldridge-Kirk construct an admissible 4-manifold that is homeomorphic to $3CP^2 \# 5CP^2$. The presence of the 2-tori T_1 and T_2 of Definition 3 imposes certain restrictions on the second Betti number of an admissible 4-manifold, which are recorded in the following inequality (cf. [18, Lemma 1]).

Lemma 4. If M is an admissible 4-manifold in the sense of Definition 3, then

$$b_2(M) \geq |\sigma(M)| + 4$$

where $b_2(M)$ and $\sigma(M)$ are the second Betti number and the signature of M, respectively. In particular, M has an indefinite intersection form.

Proof. Since the complement $M \setminus (\nu(T_1) \sqcup \nu(T_2))$ is simply connected, each 2-torus T_i has a geometrically dual surface S_i for $i = 1, 2$. We define the linear subspace $S = \langle [T_1], [S_1], [T_2], [S_2] \rangle \subset H_2(M; \mathbb{R})$ and compute the intersection form on its generators to be the matrix

$$\begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & * & 0 & * \\
0 & 0 & 0 & 1 \\
0 & * & 1 & *
\end{bmatrix}.$$

The matrix (2.1) is equivalent to $A = 2 \left(+1 \right) \oplus 2 \left(-1 \right)$ via a real change of basis. We can extend this new basis to a basis for $H_2(M; \mathbb{R})$, so that, after possibly changing again coordinates, the intersection form Q_M over \mathbb{R} becomes

$$Q_M \cong \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}.$$

This yields the desired inequality

$$|\sigma(M)| = |\sigma(Q_M)| = |\sigma(B)| \leq \text{rank}(B) = b_2(M) - 4.$$

□

Remark 5 (Non-empty boundary and the size of admissible 4-manifolds). Hayden-Kjuchukova-Krishna-Miller-Powell-Sunukjian in [25] construct pairs of exotic properly embedded 2-disks in the 4-ball, where the adjective ‘exotic’ in this case means topologically isotopic rel. boundary and pairwise smoothly inequivalent (see [23] too). In order to distinguish the smooth structures of their complements, they make use of Stein structures and a well-known adjunction formula [22, Theorem 11.4.7]; cf. [3, Section 9.1]. In order to be able to distinguish infinite sets and not only pairs
of exotic 2-links, we employ the Seiberg-Witten invariants instead and work with larger ambient 4-manifolds.

2.2. **Strategy to construct exotic 2-links and prove Theorem A**

(a) Start with an admissible 4-manifold of Definition 3 and perform Fintushel-Stern’s knot surgery \[13, 17\] along the 2-torus \(T_1\) to produce an infinite set \(\{M_K \mid K \in \mathcal{K}\}\) of pairwise non-diffeomorphic 4-manifolds that are homeomorphic to \(M\). Notice that each one of these 4-manifolds contains a copy of the 2-torus \(T_2\).

(b) Build the generalized fiber sum \[21\] \(Z_K = M_K \#_{T^2} B_G\) of \(M_K\) and a 4-manifold \(B_G\). For an appropriate choice of the building block \(B_G\), this yields an infinite set of pairwise non-diffeomorphic 4-manifolds in the homeomorphism type of \(Z_K\) with fundamental group \(G\).

(c) Perform surgery along \(n\) loops \(L_G = \{\gamma_1, \ldots, \gamma_n\}\) in \(Z_K\) whose homotopy classes are the generators of the group \(\pi_1(Z_K) = G\), and produce a closed simply connected 4-manifold \(Z_K^*\) that is diffeomorphic to \(M\#n(S^2 \times S^2)\) for every \(K \in \mathcal{K}\). This step can be traced back to Wallace \[40\] and Milnor \[29\].

(d) The belt 2-spheres of the surgeries of Step (c) form a 2-link \(\Gamma_K\) of \(n\) nullhomotopic components smoothly embedded in \(M\#n(S^2 \times S^2)\) whose 2-link group is isomorphic to \(G\). A result of Sunukjian \[36, Theorem 7.2\] implies that each component of \(\Gamma_K\) is topologically unknotted.

(e) Any two 2-links \(\Gamma_K\) and \(\Gamma_K'\) are smoothly inequivalent for any two different knots \(K, K' \in \mathcal{K}\) since their complements

\[
M\#n(S^2 \times S^2) \setminus \nu(\Gamma_K) \quad \text{and} \quad M\#n(S^2 \times S^2) \setminus \nu(\Gamma_K'),
\]

are non-diffeomorphic. This is proven indirectly using gauge theoretical invariants of the closed 4-manifolds \(Z_K\) and \(Z_K'\) of Item (b).

(f) The explicit nature of our constructions yields a homeomorphism of the complements \[2.2\] that extends to a homeomorphism of pairs

\[
(M\#n(S^2 \times S^2), \Gamma_K) \to (M\#n(S^2 \times S^2), \Gamma_K'),
\]

which induces the identity map on homology. Results of Quinn and Perron allows us to conclude that the 2-links \(\{\Gamma_K \mid K \in \mathcal{K}\}\) are topologically isotopic.

(g) Surgery on one loop in \[2.2\] instead of \(n\) loops, is already enough to produce the same diffeomorphism type regardless of the knot \(K\). This is used to show that giving up one component in each 2-link stabilizes the family \[1.2\].

3. **Building blocks and auxiliary results.**

We gather in this section the raw materials that are used in the proof of Theorem A and record several of their topological properties that are useful for our purposes. The following items are fixed in the sequel.

- A natural number \(g \in \mathbb{N}\).
- A group \(G \in \{F_g, \pi_1(\Sigma_g)\}\) of rank \(n\).
- An infinite collection \(\mathcal{K}\) of knots \(K \subset S^3\) with pairwise distinct Alexander polynomials. For simplicity, we assume that the family \(\mathcal{K}\) contains the unknot \(U \subset S^3\).
• An admissible manifold \(M \) as in Definition 3.

3.1. \(T^2 \times S^2 \# 2g(S^2 \times S^2) \) as a result of surgery to \(T^2 \times \Sigma_g \). We begin this section with a description of the building block \(B_{\pi_1(\Sigma_g)} = T^2 \times \Sigma_g \) (see step (b) of Section 2.2), where \(T^2 \) is the 2-torus. To ease notation, we will call such building block \(B_g \).

We pick on the surfaces \(T^2 \) and \(\Sigma_g \) simple closed curves \(x, y \) and \(a_i, b_i \) for \(i = 1, \ldots, g \) as in Figure 1. In particular, writing \(T^2 = S^1 \times S^1 \), the loop \(x \) is \(S^1 \times \{1\} \) and the loop \(y \) is \(\{1\} \times S^1 \). Moreover, we take as a parallel copy of \(x \) the loop \(x' = S^1 \times \{-1\} \). Notice that the loops \(\{a_i, b_i \mid i = 1, \ldots, g\} \) form a symplectic basis for the first homology group \(H_1(\Sigma_g; \mathbb{Z}) \).

On the other hand, the surfaces \(T^2 \times \{p\}, \{p\} \times \Sigma_g \) and the collections of 2-tori

\[
\begin{align*}
(3.1) & \quad \{x \times a_i \mid i = 1, \ldots, g\}, \\
(3.2) & \quad \{x' \times b_i \mid i = 1, \ldots, g\},
\end{align*}
\]

and

\[
\begin{align*}
(3.3) & \quad \{y \times a_i \mid i = 1, \ldots, g\} \text{ and } \{y \times b_i \mid i = 1, \ldots, g\}
\end{align*}
\]

generate the second homology group \(H_2(T^2 \times \Sigma_g; \mathbb{Z}) = \mathbb{Z}^{2+4g} \).

The second building block is a 4-manifold \(B^*_g \) that is obtained from \(T^2 \times \Sigma_g \) by doing loop surgery along the framed components of the 1-dimensional submanifold

\[
(3.4) \quad \mathcal{L}_{\pi_1(\Sigma_g)} = \gamma_1 \sqcup \gamma'_1 \sqcup \ldots \sqcup \gamma_g \sqcup \gamma'_g \subset T^2 \times \Sigma_g
\]

where \(\gamma_i \) is the loop \(\{p\} \times a_i \) and \(\gamma'_i \) is \(\{p'\} \times b_i \) and the framing is the one induced by the product structure of \(T^2 \times \Sigma_g \).

In particular, we get \(B^*_g \) as

\[
(3.5) \quad B^*_g = (T^2 \times \Sigma_g) \setminus \bigcup_{i=1}^g (\nu(\gamma_i) \sqcup \nu(\gamma'_i)) \cup \bigcup_{i=1}^{2g} (D^2 \times S^2).
\]

Notice that doing surgery on the loops \(\mathcal{L}_{\pi_1(\Sigma_g)} \) kills the subgroup

\[
\{1\} \times \pi_1(\Sigma_g) < \pi_1(T^2 \times \Sigma_g) = \pi_1(T^2) \times \pi_1(\Sigma_g).
\]

We also build an auxiliary 4-manifold \(\tilde{B}_g \) as the result of a performing a total of \(2g \) torus surgeries on the framed 2-tori \((3.1)\) and \((3.2)\). More explicitly, this
A 4-manifold is defined as

\[(3.6) \quad \tilde{B}_g = (T^2 \times \Sigma_g) \setminus \left(\bigsqcup_{i=1}^{g} (\nu(x \times a_i) \cup \nu(x' \times b_i)) \cup \phi \right) \]

where \(\phi \) is a gluing diffeomorphism

\[\phi : \bigsqcup_{i=1}^{2g} \partial \nu(x \times a_i) \cup \partial \nu(x' \times b_i) \rightarrow (T^2 \times \partial D^2) \]

that satisfies

\[(\phi|_{\partial \nu(x \times a_i)})^{-1}([\{p\} \times \partial D^2]) = [l_i] \in H_1(\partial \nu(x \times a_i); \mathbb{Z}) \]

and a similar equation for the 2-tori of the form \(x' \times b_i \) for any \(i = 1, \ldots, g \). Here \(l_i \) is a Lagrangian push off of the loop \(\gamma_i \) into \(\partial \nu(x \times a_i) \).

This cut-and-paste construction is known as a multiplicity zero log transform along the loops \(\gamma_i \) and \(\gamma'_i \) \[22, p. 83\]. We now briefly explain a trick due to Moishezon \[30, Lemma 13\], which will play a key role in Lemma 6 and Lemma 10.

In general, the transformation of a \(T^2 \times D^2 \) under a multiplicity zero log transform is depicted in Items (A) and (B) in Figure 2, where we use the dotted circle notation for 1-handles \[1, 11, 12, 22, Section 5.4\]. Item (A) depicts a copy of \(T^2 \times D^2 \) inside a smooth 4-manifold \(X \), where all handles that go through the two dotted circles and the 0-framed circle are ignored. Item (B) depicts what replaces the copy of \(T^2 \times D^2 \) when the zero log transform is performed, yielding the manifold \(\tilde{X} \) \[3, Figure 6.9\], \[22, Figure 8.25\]; all other handles are ignored. Item (C) depicts the same area after performing a loop surgery on \(X \), we call the result \(X^* \). Notice that \(X^* \) can also be obtained by performing a loop surgery on \(\tilde{X} \). The trick is to split a loop surgery into a multiplicity zero log transform followed by a different loop surgery.

![Figure 2](image-url)

Figure 2. A trick due to Moishezon \[30\] as explained by Gompf in \[20, Proof of Lemma 3\]

The 2-torus \(T^2 \times \{p\} \), equipped with the framing induced by the product structure in \(T^2 \times \Sigma_g \), is disjoint from the family of 2-tori \((3.1)\) and \((3.2)\), and it defines a framed 2-torus embedded in \(\tilde{B}_g \) and one in \(B^*_g \). We denote both of them by \(T \).

We now identify the diffeomorphism type of \((3.5)\).
Lemma 6. Let \(\hat{B}_g \) be the 4-manifold in (3.6). There is a diffeomorphism

\[\hat{B}_g \approx T^2 \times S^2. \tag{3.7} \]

Moreover, through this diffeomorphism the framed 2-torus \(T \subset \hat{B}_g \) is mapped to the framed 2-torus \(T^2 \times \{ p \} \subset T^2 \times S^2 \) equipped with its standard product framing.

Let \(B_g^* \) be the 4-manifold defined in (3.7). There is a diffeomorphism

\[B_g^* \approx (T^2 \times S^2)\#2g(S^2 \times S^2). \tag{3.8} \]

Moreover, through this diffeomorphism the framed 2-torus \(T \subset B_g^* \) is mapped to the canonical 2-torus \(T^2 \times \{ p \} \subset (T^2 \times S^2)\#2g(S^2 \times S^2) \) equipped with its product framing.

Proof. We first prove the existence of the diffeomorphism (3.7). Write \(T^2 \times \Sigma_g \) as \(S^1 \times \partial(D^2 \times \Sigma_g) \), where the \(S^1 \) factor corresponds to the loop \(x \). Use this splitting to view each 4-dimensional torus surgery as a \((1 + 3)\)-dimensional surgery. In particular, the resulting manifold is \(\tilde{B}_g = S^1 \times Y \), where the 3-manifold \(Y \) is obtained from \(S^3 \times \Sigma_g \) by performing 0-Dehn surgeries around the 2g loops \(\{1 \} \times a_i \) and \(\{-1\} \times b_i \) for \(i = 1, \ldots, g \). This is equivalent to adding 2g 4-dimensional 2-handles with 0 framing along the same loops in \(D^2 \times \Sigma_g \) to get a 4-manifold \(Z \) bounded by \(Y \) as in Figure 3. From Figure 3, after some handle slides, handle cancellations and isotopies, we conclude that \(Z \) is diffeomorphic to \(D^2 \times S^2 \). In particular, \(Y \) is diffeomorphic to \(S^1 \times S^2 \) and the existence of the diffeomorphism (3.7) follows. The torus \(T \) in \(S^1 \times Y \) is \(S^1 \times l \), where \(l \) is the meridian of the black \(0 \)-framed 2-handle in Figure 3. Notice that the handle slides in Figure 4 do not move the loop \(l \). Under the diffeomorphism \(Y \approx S^1 \times S^2 \), the loop \(l \) corresponds to the loop \(S^1 \times \{ p \} \). Therefore, the 2-torus \(T \) is mapped to \(S^1 \times (S^1 \times \{ p \}) \) and, after checking the framing of \(l \), we conclude that the first part of the lemma holds.

To show the existence of the diffeomorphism (3.8), we use the Moishezon trick, described above, to break down the surgery along the loops \(\gamma_i, \gamma'_i \) by first doing \(2g \) multiplicity zero log transforms along the tori \(x \times a_i \) and \(x' \times b_i \), and then \(2g \) loop surgeries along some framed loops \(c_1, \ldots, c_{2g} \) which are nullhomotopic since \(\pi_1(B_g^*) \cong \pi_1(\tilde{B}_g) \). The manifold \(B_g^* \) is the result of \(2g \) surgeries along the loops \(c_i \) in \(\tilde{B}_g = T^2 \times S^2 \) and it is therefore diffeomorphic to either \(\tilde{B}_g \# 2g(S^2 \times S^2) \) or \(\tilde{B}_g \# 2g((S^2 \times S^2) \setminus \Sigma_g) \) [22, Section 5]. To check that the diffeomorphism type is the former, it is sufficient to see that the intersection form of \(B_g^* \) is isomorphic to the intersection form of \(T^2 \times \Sigma_g \), which is even. To see this, consider a set of \(4g + 2 \) surfaces representing a basis for \(H_2(T^2 \times \Sigma_g; \mathbb{Z}) \) and call \(Q \) the intersection matrix of this basis. Assume, in addition, that these surfaces are away from the loops (3.4), hence surgery on such loops leaves the surfaces intact. This yields a set of \(4g + 2 \) surfaces in \(B_g^* \), whose intersections give the matrix \(Q \), which is unimodular. This, together with the fact that \(b_2(B_g^*) = 4g + 2 \), implies that these surfaces must be a basis for \(H_2(B_g^*; \mathbb{Z}) \), on which the intersection matrix is again \(Q \).

We now argue that the framed 2-torus \(T \subset B_g^* \) is mapped to canonical 2-torus inside \((T^2 \times S^2)\#2g(S^2 \times S^2)\). The diffeomorphism (3.7) maps the framed loops \(c_1, \ldots, c_{2g} \subset \tilde{B}_g \) to framed loops \(\tilde{c}_1 \ldots \tilde{c}_{2g} \subset T^2 \times S^2 \). The loops \(\tilde{c}_i \) are nullhomotopic and disjoint from \(T^2 \times \{ p \} \), since the loops \(c_i \) are already nullhomotopic and disjoint from \(T \) inside \(\tilde{B}_g \). Moreover, the loops \(\tilde{c}_i \) are nullhomotopic also in \(T^2 \times (S^2 \setminus \{ p \}) \), given that the inclusion map \(T^2 \times (S^2 \setminus \{ p \}) \to T^2 \times S^2 \) induces an isomorphism.
between fundamental groups. Therefore, each simple loop c_i bounds a smooth 2-disk disjoint from $T^2 \times \{p\}$. We can write $T^2 \times S^2$ as $(T^2 \times S^2) \# S^4$ and, by a smooth ambient isotopy of $T^2 \times S^2$, we can move one by one all the loops c_i into the S^4 factor keeping fixed a neighborhood of the 2-torus $T^2 \times \{p\}$. In this way the diffeomorphism of tuples

$$(B_g, T, c_1, \ldots, c_{2g}) \approx ((T^2 \times S^2) \# S^4, T^2 \times \{p\}, \bar{c}_1, \ldots, \bar{c}_{2g})$$

is inducing a diffeomorphism of pairs

$$(B_g^*, T) \approx ((T^2 \times S^2) \# (S^4)^*, T^2 \times \{p\})$$

where $(S^4)^*$ is the 4-manifold obtained as the result of $2g$ surgery operations along the framed loops $\bar{c}_1, \ldots, \bar{c}_{2g}$ in S^4. By the previous paragraphs we know that $(S^4)^*$ is diffeomorphic to the connected sum of $2g$ copies of $S^2 \times S^2$, and we can conclude the proof of this lemma by composing the diffeomorphism (3.9) with a last diffeomorphism between $(T^2 \times S^2) \# (S^4)^*$ and $(T^2 \times S^2) \# 2g(S^2 \times S^2)$, which is the identity on a neighborhood of the 2-torus $T^2 \times \{p\}$.

\[\square\]

Figure 3. The 1-handles and the black 0 framed 2-handle represent the disk bundle $D^2 \times \Sigma_g$ over the orientable surface of genus g. The red loops are the loops $\{1\} \times a_i$ and the blue ones are the loops $\{-1\} \times b_i$. The manifold Z is obtained from $D^2 \times \Sigma_g$ by adding the 0 framed blue and red 2-handles. The boundary of the 4-manifold Z is the 3-manifold Y.

3.2. $(T^2 \times S^2) \# (S^2 \times S^2)$ as a result of surgery to the Kodaira-Thurston manifold. We now describe the Kodaira-Thurston manifold N, an essential building block for our constructions in the case $G = F_g$. It is the total space of a T^2-bundle over T^2 [3, Section 2.4], [9, Section 2] which can also be seen as a product $N = S^1 \times Y_{D_a}$ between the 1-sphere S^1 and the mapping torus Y_{D_a} of a Dehn twist $D_a : T^2 \to T^2$ around the loop $a := S^1 \times \{p\} \subset T^2 = S^1 \times S^1$. For convenience, we also define the auxiliary loop $b := \{p'\} \times S^1 \subset T^2$. In particular, the 3-manifold Y_{D_a} is the total space of a T^2-bundle over a circle y and its first homology group
is $H_1(Y_{D_a};\mathbb{Z}) = \mathbb{Z}b \oplus \mathbb{Z}y$. Notice that the loop a is homologically trivial in Y_{D_a}. Moreover, we write the T^2-bundle over T^2 structure of $N = S^1 \times Y_{D_a} = x \times Y_{D_a}$ as
\begin{equation}
(a \times b) \hookrightarrow N \rightarrow x \times y
\end{equation}
where our notation emphasizes the loops contained in the 2-torus fiber and the 2-torus section that generate the first homology group $H_1(N;\mathbb{Z}) = \mathbb{Z}x \oplus \mathbb{Z}y \oplus \mathbb{Z}b$. Note that the fiber 2-torus $a \times b$ is geometrically dual to the 2-torus section $T := x \times y$. Moreover, there is another pair of geometrically dual 2-tori inside N, that we denote by $x \times b$ and $y \times a$ respectively, which are disjoint from both the fiber and the section; see [8, Section 2] for a detailed description of these submanifolds.

We equip N with a symplectic structure as in for which the 2-torus $x \times b \subset N$ is Lagrangian and use the unique Lagrangian framing when we perform surgery along this submanifold; this is explained in detail in [8, Section 2.1], [26]. Let m and l be the Lagrangian pushoffs of x and b, respectively, and let μ be the meridian of $x \times b$, i.e., a curve isotopic to $\{p\} \times \partial D^2 \subset \partial \nu(x \times b)$. The triple $\{m, l, \mu\}$ is a basis for the group $H_1(\partial \nu(x \times b);\mathbb{Z})$; see [8, Section 2.1] for further details. We now define the 4-manifold
\begin{equation}
\widehat{N} = (N \setminus \nu(x \times b)) \cup_{\varphi_0} (T^2 \times D^2),
\end{equation}
by using a diffeomorphism
\begin{equation}
\varphi_0 : \partial \nu(x \times b) \rightarrow T^2 \times \partial D^2
\end{equation}

\textbf{Figure 4.} A handlebody of the manifold Z in the proof of Lemma 4. The dotted arrows indicate the 2-handle slide performed. If we apply g times this sequence of moves to the handlebody depicted in Figure (a) we see that the manifold Z has $2g$ cancelling pairs of 1- and 2-handles, along with a 0 framed unknotted 2-handle. Thus, Z is diffeomorphic to $D^2 \times S^2$.

is $H_1(Y_{D_a};\mathbb{Z}) = \mathbb{Z}b \oplus \mathbb{Z}y$. Notice that the loop a is homologically trivial in Y_{D_a}. Moreover, we write the T^2-bundle over T^2 structure of $N = S^1 \times Y_{D_a} = x \times Y_{D_a}$ as
\begin{equation}
(a \times b) \hookrightarrow N \rightarrow x \times y
\end{equation}
where our notation emphasizes the loops contained in the 2-torus fiber and the 2-torus section that generate the first homology group $H_1(N;\mathbb{Z}) = \mathbb{Z}x \oplus \mathbb{Z}y \oplus \mathbb{Z}b$. Note that the fiber 2-torus $a \times b$ is geometrically dual to the 2-torus section $T := x \times y$. Moreover, there is another pair of geometrically dual 2-tori inside N, that we denote by $x \times b$ and $y \times a$ respectively, which are disjoint from both the fiber and the section; see [8, Section 2] for a detailed description of these submanifolds.

We equip N with a symplectic structure as in for which the 2-torus $x \times b \subset N$ is Lagrangian and use the unique Lagrangian framing when we perform surgery along this submanifold; this is explained in detail in [8, Section 2.1], [26]. Let m and l be the Lagrangian pushoffs of x and b, respectively, and let μ be the meridian of $x \times b$, i.e., a curve isotopic to $\{p\} \times \partial D^2 \subset \partial \nu(x \times b)$. The triple $\{m, l, \mu\}$ is a basis for the group $H_1(\partial \nu(x \times b);\mathbb{Z})$; see [8, Section 2.1] for further details. We now define the 4-manifold
\begin{equation}
\widehat{N} = (N \setminus \nu(x \times b)) \cup_{\varphi_0} (T^2 \times D^2),
\end{equation}
by using a diffeomorphism
\begin{equation}
\varphi_0 : \partial \nu(x \times b) \rightarrow T^2 \times \partial D^2
\end{equation}

\textbf{Figure 4.} A handlebody of the manifold Z in the proof of Lemma 4. The dotted arrows indicate the 2-handle slide performed. If we apply g times this sequence of moves to the handlebody depicted in Figure (a) we see that the manifold Z has $2g$ cancelling pairs of 1- and 2-handles, along with a 0 framed unknotted 2-handle. Thus, Z is diffeomorphic to $D^2 \times S^2$.

is $H_1(Y_{D_a};\mathbb{Z}) = \mathbb{Z}b \oplus \mathbb{Z}y$. Notice that the loop a is homologically trivial in Y_{D_a}. Moreover, we write the T^2-bundle over T^2 structure of $N = S^1 \times Y_{D_a} = x \times Y_{D_a}$ as
\begin{equation}
(a \times b) \hookrightarrow N \rightarrow x \times y
\end{equation}
where our notation emphasizes the loops contained in the 2-torus fiber and the 2-torus section that generate the first homology group $H_1(N;\mathbb{Z}) = \mathbb{Z}x \oplus \mathbb{Z}y \oplus \mathbb{Z}b$. Note that the fiber 2-torus $a \times b$ is geometrically dual to the 2-torus section $T := x \times y$. Moreover, there is another pair of geometrically dual 2-tori inside N, that we denote by $x \times b$ and $y \times a$ respectively, which are disjoint from both the fiber and the section; see [8, Section 2] for a detailed description of these submanifolds.

We equip N with a symplectic structure as in for which the 2-torus $x \times b \subset N$ is Lagrangian and use the unique Lagrangian framing when we perform surgery along this submanifold; this is explained in detail in [8, Section 2.1], [26]. Let m and l be the Lagrangian pushoffs of x and b, respectively, and let μ be the meridian of $x \times b$, i.e., a curve isotopic to $\{p\} \times \partial D^2 \subset \partial \nu(x \times b)$. The triple $\{m, l, \mu\}$ is a basis for the group $H_1(\partial \nu(x \times b);\mathbb{Z})$; see [8, Section 2.1] for further details. We now define the 4-manifold
\begin{equation}
\widehat{N} = (N \setminus \nu(x \times b)) \cup_{\varphi_0} (T^2 \times D^2),
\end{equation}
by using a diffeomorphism
\begin{equation}
\varphi_0 : \partial \nu(x \times b) \rightarrow T^2 \times \partial D^2
\end{equation}

\textbf{Figure 4.} A handlebody of the manifold Z in the proof of Lemma 4. The dotted arrows indicate the 2-handle slide performed. If we apply g times this sequence of moves to the handlebody depicted in Figure (a) we see that the manifold Z has $2g$ cancelling pairs of 1- and 2-handles, along with a 0 framed unknotted 2-handle. Thus, Z is diffeomorphic to $D^2 \times S^2$.

is $H_1(Y_{D_a};\mathbb{Z}) = \mathbb{Z}b \oplus \mathbb{Z}y$. Notice that the loop a is homologically trivial in Y_{D_a}. Moreover, we write the T^2-bundle over T^2 structure of $N = S^1 \times Y_{D_a} = x \times Y_{D_a}$ as
\begin{equation}
(a \times b) \hookrightarrow N \rightarrow x \times y
\end{equation}
where our notation emphasizes the loops contained in the 2-torus fiber and the 2-torus section that generate the first homology group $H_1(N;\mathbb{Z}) = \mathbb{Z}x \oplus \mathbb{Z}y \oplus \mathbb{Z}b$. Note that the fiber 2-torus $a \times b$ is geometrically dual to the 2-torus section $T := x \times y$. Moreover, there is another pair of geometrically dual 2-tori inside N, that we denote by $x \times b$ and $y \times a$ respectively, which are disjoint from both the fiber and the section; see [8, Section 2] for a detailed description of these submanifolds.

We equip N with a symplectic structure as in for which the 2-torus $x \times b \subset N$ is Lagrangian and use the unique Lagrangian framing when we perform surgery along this submanifold; this is explained in detail in [8, Section 2.1], [26]. Let m and l be the Lagrangian pushoffs of x and b, respectively, and let μ be the meridian of $x \times b$, i.e., a curve isotopic to $\{p\} \times \partial D^2 \subset \partial \nu(x \times b)$. The triple $\{m, l, \mu\}$ is a basis for the group $H_1(\partial \nu(x \times b);\mathbb{Z})$; see [8, Section 2.1] for further details. We now define the 4-manifold
\begin{equation}
\widehat{N} = (N \setminus \nu(x \times b)) \cup_{\varphi_0} (T^2 \times D^2),
\end{equation}
by using a diffeomorphism
\begin{equation}
\varphi_0 : \partial \nu(x \times b) \rightarrow T^2 \times \partial D^2
\end{equation}
satisfying the condition $\varphi_0(l)_* = \{p\} \times \partial D^2 \in H_1(T^2 \times \partial D^2; \mathbb{Z})$. In other words, \hat{N} is obtained from N by applying a multiplicity zero log transform.

We identify the diffeomorphism type of \hat{N} and of another useful 4-manifold obtained by the Kodaira-Thurston manifold via loop surgery in the following lemma.

Lemma 7. Let \hat{N} be the 4-manifold in (3.11). There is a diffeomorphism

\[
\hat{N} \cong T^2 \times S^2.
\]

Let N^* be the 4-manifold that is obtained from the Kodaira-Thurston manifold by performing surgery along the based loop b with respect to the framing induced by the Lagrangian framing on $x \times b \subset N$. There is a diffeomorphism

\[
N^* \cong (T^2 \times S^2) \# (S^2 \times S^2).
\]

Moreover, the framed 2-torus $T \subset N$ is disjoint from the loop b, so it defines a framed 2-torus $T \subset N^*$ which is mapped through the diffeomorphism (3.14) to the canonical 2-torus $T^2 \times \{p\} \subset (T^2 \times S^2) \# (S^2 \times S^2)$ equipped with its product framing.

We present two proofs of the lemma for the convenience of the reader.

Proof. Given the relevance of the 4-manifold N^* in the proof of Theorem A, we begin with a proof of the existence of the diffeomorphism (3.14). The handlebody of the 4-manifold N^* is given in Figure 5, where its three 3-handles and its 4-handle are not drawn. The existence of the diffeomorphism (3.14) is seen by first using the 0-framed circle that links once the second dotted circle from left to right in Figure 5 to unlink all other attaching spheres of the 2-handles from this dotted circle. Cancel this 1-handle and 2-handle pair. Straight-forward handle slides unlink the diagram even further, and two more 1- and 2-handle cancellations yield a handlebody of $(T^2 \times S^2) \# (S^2 \times S^2)$.

![Figure 5. Handlebody depiction of the Kodaira-Thurston manifold N and the 4-manifold N^*](image)
In order to draw this handlebody of N^*, we build heavily on work of Akbulut to first draw a Kirby diagram of the Kodaira-Thurston manifold. Equip the 4-torus $T^4 = x \times y \times a \times b$ with the product symplectic form. The Kodaira-Thurston manifold N is obtained from the 4-torus T^4 by applying one Luttinger surgery to the Lagrangian 2-torus $x \times a$ along the Lagrangian pushoff of a \[6\]. We use this description of N in order to draw its handlebody by building on the handlebody of the 4-torus drawn in [3, Figure 4.5] and the depiction of Luttinger surgery [3, Section 6.4]. The handlebody of the Kodaira-Thurston manifold is given in Figure 5 without the 0-framed 2-handle that links the second dotted circle from left to right along with four 3-handles and a 4-handle; cf. [3, Figure 14.35].

The second argument to prove the lemma is as follows. The existence of the diffeomorphism (3.13) follows from a standard argument; see Baldridge-Kirk in [9, Proof Lemma 2]. The 4-manifold \tilde{N} is diffeomorphic to the product $S^1 \times M^3$ of the circle with a 3-manifold M^3 that is obtained from the 3-torus $T^3 = y \times a \times b$ by applying a 1-Dehn surgery along a and a 0-Dehn surgery along b. The resulting 3-manifold M^3 has infinite cyclic fundamental group. By a similar Kirby diagram argument as for the diffeomorphism (3.7), we see that M^3 is diffeomorphic to $S^1 \times S^2$ and we conclude that $\tilde{N} = S^1 \times (S^1 \times S^2) = T^2 \times S^2$.

We now prove the existence of the diffeomorphism (3.14) using the Moishezon trick; it implies that the 4-manifold N^* is obtained by doing surgery along a null-homotopic loop in \tilde{N}. Therefore, N^* is diffeomorphic to either $\tilde{N} \# (S^2 \times S^2)$ or $\tilde{N} \# (S^2 \times S^2)$. To check that the diffeomorphism type is the former, it is sufficient to proceed as in Lemma 6. Using (3.13), we conclude that $N^* \approx (T^2 \times S^2) \# (S^2 \times S^2)$. Moreover, this diffeomorphism can be chosen to send the framed 2-torus T^2 to the canonical 2-torus with its product framing (cf. proof of Lemma 6).

3.3. The 4-manifolds N_g for $g \in \mathbb{N}$. We now generalize the construction of the Kodaira-Thurston manifold N in the previous section to produce a 4-manifold N_g that will be the building block B_{F_g} mentioned in step (b) of the strategy in Section 2 for any natural number g. The symplectic 4-manifold N_g is defined as

$$N_g := S^1 \times Y_g$$

where Y_g is the mapping torus of

$$\varphi_g := D_{a_1} \circ \ldots \circ D_{a_g} : \Sigma_g \to \Sigma_g$$

and D_{a_i} is a Dehn twist around the loop $a_i \subset \Sigma_g$ defined in Figure 1.

Remark 8. It is possible to describe (3.15) as a symplectic sum

$$N_g = N_1 \# T^2 \cdots \# T^2 N_1$$

of g copies of the Kodaira-Thurston manifold $N_1 = N$. As we already saw in Section 3.2, N is obtained by taking the product of S^1 with a mapping torus of a Dehn twist of T^2. This is generalized in the construction (3.13) of N_g given that a surface of genus g can itself be deconstructed as a connected sum

$$\Sigma_g = \underbrace{T^2 \# \ldots \# T^2}_g$$

of g copies of the 2-torus.
The 4-manifold N_g contains a symplectic 2-torus
\begin{equation}
T = x \times y \subset N_1 \setminus \nu(T^2) \subset N_g
\end{equation}
as well as a Lagrangian 2-torus $x \times b$ for each copy of N_1 in (3.16). These 2-tori can also be seen as $x' \times b_i$ where x' is a parallel copy of x and b_i is the inclusion of b in N_g through the i^{th} copy of N_1 in (3.16). Let γ'_i be the framed loops
\begin{equation}
\gamma'_i = \{p'_i\} \times b_i \subset x' \times b_i \subset N_g
\end{equation}
with framing induced by the Lagrangian framing on the 2-torus $x' \times b_i$. We gather together the framed loops (3.18) into a 1-dimensional submanifold
\begin{equation}
L_{F_g} = \gamma'_1 \sqcup \cdots \sqcup \gamma'_g.
\end{equation}
The following homotopical properties of N_g are useful for our purposes.

Lemma 9. Let $g \in \mathbb{N}$.

- The fundamental group of N_g is generated by the inclusion of the fundamental group of the torus $j_\ast \pi_1(T)$ and the loops $\tilde{\gamma}_i$ obtained by connecting the loops γ'_i to a base point.
- There is an isomorphism
\begin{equation}
\frac{\pi_1(N_g)}{\langle j_\ast \pi_1(T) \rangle_N} \cong F_g
\end{equation}
where $\langle j_\ast \pi_1(T) \rangle_N$ is the normal subgroup generated by $j_\ast \pi_1(T)$ and the loops $\tilde{\gamma}_i$ correspond to generators.

Proof. We know that $\pi_1(Y_g)$ is given by an HNN extension, which yields
\begin{equation}
\pi_1(N_g) \cong \langle x, y \mid [y, x] = 1, [y, a_i] = 1, [y, b_i] = 1 \rangle \cong \mathbb{Z} \oplus \mathbb{Z}
\end{equation}
with $j_\ast(\pi_1(T)) = \langle x, y \mid [x, y] \rangle$. We conclude that
\begin{equation}
\frac{\pi_1(N_g)}{\langle j_\ast \pi_1(T) \rangle_N} \cong \langle b_1, b_2, \ldots, b_g \rangle \cong F_g,
\end{equation}
where $x \in \pi_1(T^2 \times \Sigma_g)$ is the homotopy class of the loop $x \times \{p\} \subset T^2 \times \Sigma_g$ connected to a base point, and similarly for y, a_i and b_i for $i = 1, \ldots, g$.

Perform g surgeries to N_g along the framed loops (3.18) to produce a closed 4-manifold
\begin{equation}
N_g^* = N_g \setminus \left(\bigcup_{i=1}^g \nu(\gamma'_i) \cup \bigcup_{i=1}^g (D^2 \times S^2) \right)
\end{equation}
with fundamental group $\pi_1(N_g^*) = \mathbb{Z} \oplus \mathbb{Z}$. The 2-torus T is disjoint from the seam of the surgeries in (3.21) and it defines an embedded framed 2-torus T in N_g^*.

We now identify the diffeomorphism type of the 4-manifold N_g^*.

Lemma 10. Let $g \in \mathbb{N}$ and let N_g^* be the manifold defined in (3.21). There is a diffeomorphism
\begin{equation}
N_g^* \cong (T^2 \times S^2) \# g(S^2 \times S^2).
\end{equation}
Moreover, through this diffeomorphism the framed 2-torus $T \subset N^g$ is mapped to the canonical 2-torus $T^2 \times \{p\} \subset (T^2 \times S^2)^g \# g(S^2 \times S^2)$ equipped with its product framing.

Proof. A proof of Lemma 10 by induction on g is obtained using Lemma 7 and the construction of N^g in terms of a generalized fiber sum of g copies of the Kodaira-Thurston manifold N_1 as it is described in Remark 8. The details are left to the reader. □

3.4. Infinitely many inequivalent smooth structures.

The smooth 4-manifolds of the fourth clause of Theorem A are introduced in the following proposition.

Proposition 11. Let M be an admissible 4-manifold in the sense of Definition 3. Let B_G be the building block in step (b) of Section 2 that was defined in Section 3.1 and Section 3.3 for the groups $G = \pi_1(\Sigma_g)$ and $G = F_g$, respectively.

The generalized fiber sum
\[
M \#_{T^2} B_G = (M \setminus \nu(T_2)) \cup (B_G \setminus \nu(T))
\]
admits infinitely many pairwise inequivalent smooth structures $\{Z_K | K \in \mathcal{K}\}$.

Moreover, the fundamental group of M is isomorphic to G and it is generated by the homotopy classes of the loops obtained by connecting every component of L_G to a common base point.

Proof. For a knot $K \in \mathcal{K}$, perform Fintushel-Stern knot surgery to M along T_1 to obtain the 4-manifold M_K. Notice that we still have an inclusion
\[
T_2 \subset (M \setminus \nu(T_1)) \xrightarrow{i} M_K,
\]
since this cut and paste operation can be performed away from the 2-torus T_2. We abuse notation and denote $i(T_2)$ by T_2, and we make sure that the context resolves any confusion. The intersection forms of M and M_K are isomorphic as computed in [24, V.4.1] [17]. Moreover, there is an isomorphism of the second homology groups sending the homology class $[T_2] \in H_2(M; \mathbb{Z})$ onto $[T_2] \in H_2(M_K; \mathbb{Z})$ [24, Chapter V]. By Freedman’s theorem [19] this isomorphism can be realised by a homeomorphism $f : M \to M_K$ such that the induced map in homology f_\ast sends the homology class $[T_2]$ onto itself
\[
H_2(M; \mathbb{Z}) \xrightarrow{f_\ast} H_2(M_K; \mathbb{Z})
\]
\[
[T_2] \xmapsto{f_\ast} [T_2].
\]

By our hypothesis, the 2-tori $f(T_2), T_2 \subset M_K$ have simply connected complement. A result of Sunukjian [36, Theorem 7.1] implies the existence of a homeomorphism of pairs
\[
g : (M_K, f(T_2)) \to (M_K, T_2)
\]
and we obtain the desired homeomorphism of pairs
\[
g \circ f : (M, T_2) \to (M_K, T_2).
\]

We proceed to fiber sum both M and M_K with B_G. In particular, we perform the generalized fiber sum by identifying the 2-tori T_2 in M and M_K with the framed 2-torus $T \subset B_G$. In order to do so, the 2-torus $T_2 \subset M_K$ is endowed with a framing τ_K that is the restriction of the map $\tau \circ (g \circ f)^{-1}$ to $\nu(T_2)$. We fix any framing...
for the 2-torus \(T_2 \) in \(M \). Notice that \(\tau_K \) is indeed a smooth framing, since we can assume that the map \(g \circ f \) is a smooth diffeomorphism around \(T_2 \). We define the 4-manifolds

\[
Z := M \# T^2 B_G \quad \text{and} \quad Z_K := M_K \# T^2 B_G.
\]

(3.26)

Given our chosen framings, the homeomorphism \((3.25)\) extends via the identity map to a homeomorphism \(F : Z \to Z_K \). The claim regarding the fundamental group \(\pi_1(M \# T^2 B_G) = G \) follows from Lemma [3] and the Seifert-Van Kampen theorem.

To show that the set \(\{ Z_K | K \subset K \} \) consists of pairwise non-diffeomorphic 4-manifolds, we look at the Seiberg-Witten invariant of each of its elements as a Laurent polynomial in the group ring \(\mathbb{Z}[H_2(Z_K; \mathbb{Z})] \) for every \(K \in K \) \([16] \) Lecture 2\).

Recall that the Seiberg-Witten invariants \(\{ \text{SW}_X(k) | k \in H_2(X) \} \) of a 4-manifold \(X \) can be combined into an element of \(\mathbb{Z}[H_2(X; \mathbb{Z})] \) by associating a formal variable \(t_\alpha \) to each homology class \(\alpha \in H_2(X; \mathbb{Z}) \) and by setting

\[
\text{SW}_X = \sum \text{SW}_X(k) \cdot t_k
\]

(3.27)

where the sum is taken over all the basic classes \(k \in H_2(X; \mathbb{Z}) \); see [13] p. 200], [35] for further details. An admissible 4-manifold contains at least one basic class and hence the invariant \((3.27)\) is nonzero, and the same holds for the symplectic 4-manifold \(B_G \) by a result of Taubes [37].

We proceed to set up the use of a gluing formula due to Taubes [38] to compute \((3.27)\) for \(Z_K \); see [3] Section 13.9]. The boundary of \(B_G \setminus \nu(T) \) is diffeomorphic to \(S^1 \times S^1 \times \partial D^2 \) by the diffeomorphism coming from the framing of \(T \subset B_G \) and the rim 2-tori

\[
S^1 \times \{ p \} \times \partial D^2 \quad \text{and} \quad \{ p \} \times S^1 \times \partial D^2
\]

bound 3-manifolds in \(B_G \setminus \nu(T) \). This fact combined with the Mayer-Vietoris sequence for \(Z_K = (M_K \setminus \nu(T_2)) \cup (B_G \setminus \nu(T)) \) implies that the inclusion induced homomorphism

\[
j_* : H_2(B_G \setminus \nu(T); \mathbb{Z}) \to H_2(Z_K; \mathbb{Z})
\]

is injective. The Mayer-Vietoris sequence for \(M_K = (M_K \setminus \nu(T_2)) \cup \nu(T_2) \) yields that the inclusion induced homomorphisms

\[
i_* : H_2(M_K \setminus \nu(T_2); \mathbb{Z}) \to H_2(Z_K; \mathbb{Z})
\]

and

\[
i'_* : H_2(M_K \setminus \nu(T_2); \mathbb{Z}) \to H_2(M_K; \mathbb{Z})
\]

have the same kernel

\[
\ker(i'_*) = \ker(i_*) = \langle [\tau_K^{-1}(\{p\} \times S^1 \times \partial D^2)], [\tau_K^{-1}(S^1 \times \{p\} \times \partial D^2)] \rangle.
\]

On the other hand, \(\text{SW}_{M_K} = \text{SW}_M \cdot \Delta_K(\epsilon^{2[T_1]}) \neq 0 \) by [17] (see [13] p. 201], [3] Proposition 13.21). Taubes’ gluing formula [38] Theorem 1.1] implies that

\[
\text{SW}_{M_K} = i'_*(\text{SW}_{M_K \setminus \nu(T_2)}) \cdot i''_*(\text{SW}_{\nu(T_2)}).
\]

It follows that \(\text{SW}_{M_K \setminus \nu(T_2)} \not\in \ker(i'_*) = \ker(i_*) \).
Moreover, $c := i_*([T'_i]) \neq 0$ where T'_i is a pushoff of T_i inside $M_K \setminus \nu(T_2)$. We apply again Taubes’ gluing formula \cite[Theorem 1.1]{38} and get

$$Z$$

\[(3.28) \]

Proposition 13. \[\hfill \]

for every knot K with non-trivial Alexander polynomial. The SW-invariants, thus, are different\cite{35}, and we conclude that Z and Z_K are non-diffeomorphic. Moreover, for two knots K_1 and K_2 with Alexander polynomials $\Delta_{K_1} \neq \Delta_{K_2}$, we have that the 4-manifolds Z_{K_1} and Z_{K_2} have different SW-invariants and, therefore, they are non-diffeomorphic. This concludes the proof of the proposition.

\[\square \]

It is possible to give a more explicit computation of \eqref{3.27} of Z_K in the proof of Proposition \cite{11} by using other gluing formulas \cite[Section 1]{13}. B. D. Park computed $SW_{T^2 \times \Sigma_g} = (t^{-1} - t)^{2g-2}$ and $SW_{T^2 \times \Sigma_g^0} = (t^{-1} - t)^{2g-1}$ for $t = [T^2 \times \{p\}]$ and $\Sigma_g^0 = \Sigma_g \setminus D^2$ in \cite[Corollary 19]{31}. Since the symplectic 4-manifold N_g is obtained by applying Luttinger surgeries to $T^2 \times \Sigma_g$, the invariants SW_{N_g} and $SW_{N_g \setminus \nu(T)}$ can be computed using B. D. Park’s work.

Remark 12. Notice that the diffeomorphism type of the generalized fiber sum $M \#_T (T^2 \times S^2)$ is the same regardless the choice of framing τ or τ_K for T_2 and the product framing for $T^2 \times \{p\} \subset T^2 \times \Sigma_g$.

3.5. The ambient 4-manifolds of Theorem \cite{A}. We now identify the diffeomorphism types of the ambient 4-manifolds of Theorem \cite{A}. Since the codimension three submanifold $\mathcal{L}_G \subset B_G$ is disjoint from T, it is embedded in the 4-manifold Z_K constructed in \eqref{3.26} and each of its components is framed. We define Z_K^* to be the 4-manifold obtained by doing loop surgery along each component of $\mathcal{L}_G \subset Z_K$. Moreover, we can define Γ to be the 2-link in Z_K^* given by the belt 2-spheres of the surgeries.

Proposition 13. For every knot $K \in \mathcal{K}$, there is a diffeomorphism

$$Z_K^* \approx M \# n(S^2 \times S^2).$$

(3.28)

Proof. We fix a knot $K \in \mathcal{K}$ and take a closer look at the assemblage of Z_K^* to prove the existence of the diffeomorphism \eqref{3.28}. Recall that the manifold Z_K is defined as the generalized fiber sum of M_K and B_G along the 2-tori $T_2 \subset M_K$ with framing τ_K and $T \subset B_G$ with the lagrangian framing. Since $\mathcal{L}_G \subset B_G$ is disjoint from T, the 4-manifold Z_K^* is the generalized fiber sum of M_K and B_G^ϵ along $T_2 \subset M_K$ and $T \subset B_G^\epsilon$. Lemma \cite{6} and Lemma \cite{10} say that there is a diffeomorphism

$$B_G^\epsilon \approx (T^2 \times S^2) \# n(S^2 \times S^2)$$

that sends the framed 2-torus T to the canonical 2-torus

$$T^2 \times \{p\} \subset (T^2 \times S^2) \# n(S^2 \times S^2).$$

(3.29)

Therefore, the 4-manifold Z_K^* is diffeomorphic to the generalized fiber sum of M_K and $(T^2 \times S^2) \# n(S^2 \times S^2)$ along the 2-tori $T_2 \subset M_K$ and \eqref{3.29}. To sum up, using
remark [12] we have
\[Z^*_K = M_K \# T^2 B_G^* \approx M_K \# T^2 (T^2 \times S^2) \# n(S^2 \times S^2) \approx M_K \# n(S^2 \times S^2). \]
A result of Akbulut [2], Auckly [4] or Baykur [7] allows us to conclude that \(Z^*_K \) is diffeomorphic to the connected sum \(M \# n(S^2 \times S^2) \) for any \(K \subset S^3 \).

3.6. The 2-links of Theorem [A] and topological isotopy. In this section, we construct the 2-links of Theorem [A] and show that they are pairwise topologically isotopic and componentwise topologically unknotted.

Proposition 14. For \(G \in \{ F_g, \pi_1(\Sigma_g) \} \) and \(n = \text{rk}(G) \), there is an infinite collection of \(n \)-component 2-links
\[\{ \Gamma_K \mid K \in \mathcal{K} \} \]
smoothly embedded in \(M \# n(S^2 \times S^2) \) that are pairwise topologically isotopic and componentwise topologically unknotted.

The 4-manifold that is obtained from \(M \# n(S^2 \times S^2) \) by doing surgeries along every component of \(\{ \Gamma_K \} \) is diffeomorphic to the 4-manifold \(Z_K \) defined in (3.30) for any knot \(K \in \mathcal{K} \).

Proof. Let \(U \subset S^3 \) be the unknot. For any knot \(K \in \mathcal{K} \), there is a homeomorphism of pairs
\[f_K : (Z_K, L_G) \to (Z_U, L_G) \]
that restricts to the identity in a neighborhood of \(L_G \) by the proof of Proposition [11]. The 4-manifolds \(Z^*_U \) and \(Z^*_K \) are the result of surgeries along the components of the submanifold \(L_G \subset B_G \) and we define \(\Gamma \subset B_G \setminus \nu(T) \) to be the 2-link given by the disjoint union of the belt 2-spheres of such surgeries. In particular, there is an embedding of \(\Gamma \) inside \(Z_K \) for any knot \(K \in \mathcal{K} \), and the number of components of \(\Gamma \) and of \(L_G \) are both equal to \(n \). Moreover, the homeomorphism (3.31) induces a homeomorphism of pairs
\[g_K : (Z^*_K, \Gamma) \to (Z^*_U, \Gamma). \]

Proposition [14] allows us to fix a diffeomorphism \(\phi_U : Z^*_U \to M \# n(S^2 \times S^2) \) and to define \(\Gamma_U \) as \(\phi(U)(\Gamma) \). Notice that we also have a diffeomorphism
\[\phi_K : Z_K \to M \# n(S^2 \times S^2) \]
such that \((\phi_K)_* = (\phi_U \circ g_K)_* \) in homology for every \(K \in \mathcal{K} \). Indeed, any diffeomorphism taken from Proposition [14] can be adjusted at the level of homology by composing it via a self-diffeomorphism of \(M \# n(S^2 \times S^2) \) by a result of Wall [41, Theorem 2] since the intersection form of \(M \) is indefinite; see Lemma [4].

We define the 2-link (3.30) to be the image of \(\Gamma_K \) under the diffeomorphism (3.32), i.e.
\[\Gamma_K := \phi_K(\Gamma). \]

We now argue that the 2-links \(\Gamma_K \) and \(\Gamma_U \) are topologically isotopic for any knot. The map
\[h_K = \phi_U \circ g_K \circ \phi^{-1}_K : (M \# n(S^2 \times S^2), \Gamma_K) \to (M \# n(S^2 \times S^2), \Gamma_U) \]
is a homeomorphism of pairs that induces the identity map in homology. Work of Perron [32] and Quinn [33] guarantees that \(h_K \) is isotopic to the identity map and,
hence, we conclude that the 2-links Γ_K and Γ_U are topologically isotopic for any $K \in \mathcal{K}$. Each component of the 2-link (3.30) is topologically unknotted by either [39, Theorem B] or [36, Theorem 7.2]. This concludes the proof of the first clause of Proposition 14.

The second clause is straightforward from the construction of Z_K and Z_K^*.

\[\square \]

3.7. Smoothly inequivalent 2-links. In this section, we distinguish the smooth embeddings of our 2-links. The key idea is to tell them apart by looking at the smooth structures of their complements and use their Seiberg-Witten invariants indirectly. More precisely, we undo the surgeries and reconstruct Z_K from $M \# n(S^2 \times S^2)$ as

\[Z_K \approx (M \# n(S^2 \times S^2) \setminus \nu(\Gamma_K)) \cup (\nu(\mathcal{L}_G)) \]

and use inequivalent smooth structures constructed in Proposition 11 in order to distinguish our 2-links.

Proposition 15. Let Γ and Γ' be a pair of 2-links that are smoothly embedded in a smooth 4-manifold Z^*. Let Z and Z' be the 4-manifolds that are obtained from Z^* by doing surgery along every component of Γ and Γ', respectively. If there is no diffeomorphism $Z \rightarrow Z'$, then the 2-links Γ and Γ' are smoothly inequivalent.

In particular, the 2-links (3.30) constructed in Proposition 14 are pairwise smoothly inequivalent.

The proof of Proposition 15 is immediate and, hence, omitted. Any distinct pair of 2-links in the collection (3.30) satisfies the assumptions of this proposition by Proposition 11.

3.8. Symmetric and Brunianly exotic 2-links. In this section, we study some properties of the 2-links of Theorem A. We start with the following result regarding their symmetry.

Proposition 16. Suppose $G = F_g$. Every 2-link $\Gamma_K \subset M \# g(S^2 \times S^2)$ belonging to the infinite collection (3.30) is smoothly symmetric.

Proof. For any permutation σ of g elements, there is a self-diffeomorphism

\[f : N_g \rightarrow N_g \]

that is the identity on a neighborhood of the 2-torus (3.17) and such that it maps the framed loops (3.19) to $f(\gamma'_i) = \gamma'_{\sigma(i)}$ for every $i = 1, \ldots, g$. The map (3.35) yields a diffeomorphism of pairs

\[(Z_K, \gamma'_1, \ldots, \gamma'_g) \rightarrow (Z_K, \gamma'_{\sigma(1)}, \ldots, \gamma'_{\sigma(g)}), \]

which allows us to define a diffeomorphism of pairs

\[(Z'_K, S_1, \ldots, S_g) \rightarrow (Z'_K, S_{\sigma(1)}, \ldots, S_{\sigma(g)}). \]

In particular, the 2-link $\Gamma := S_1 \sqcup \cdots \sqcup S_g \subset Z'_K$ is smoothly symmetric and so is the 2-link (3.33) smoothly embedded in $M \# g(S^2 \times S^2)$, given that there is a diffeomorphism of pairs

\[\phi_K : (Z'_K, \Gamma) \rightarrow (M \# g(S^2 \times S^2), \Gamma_K); \]

see (3.32). \[\square \]
We will employ the following two results to address Brunnianity.

Lemma 17. Mandelbaum [27], Gompf [20] Lemma 4. Let X and B be two oriented 4-manifolds (possibly with boundary) and let $T_X \subset X$ and $\alpha_B \times \beta_B = T_B \subset B$ be two smoothly embedded framed 2-tori. Suppose that X, B and $X \setminus \nu(T_X)$ are simply connected and that either X is spin, or $X \setminus \nu(T_X)$ is non-spin. Consider the generalized fiber sum

$$F = X \# T^2 B$$

of X and B along T_X and T_B. Then $F \# S^2 \times S^2$ is diffeomorphic to $X \# B^*$, where B^* is the manifold obtained from B by doing surgery along the push-offs of the loops α_B and β_B. Moreover, we can assume the chosen diffeomorphism to be the identity on $\partial F = \partial X \cup \partial B$ if X or B have non-empty boundary.

Lemma 18. Let M be an admissible 4-manifold. If M is non-spin, then, up to swapping the roles of the 2-tori T_1 and T_2, $M \setminus \nu(T_2)$ is non-spin.

Proof. Since $M \setminus \nu(T_2)$ is simply connected, it is enough to show that there exists an element $\sigma \in H_2(M \setminus \nu(T_2); \mathbb{Z})$ with odd self-intersection. The assumption $\pi_1(M \setminus (\nu(T_1) \cup \nu(T_2))) = \{1\}$ implies the existence of immersed 2-spheres $S_1, S_2 \subset M$ such that $S_i \cdot T_i = 1$ for $i = 1, 2$ and $S_1 \cap T_2 = S_2 \cap T_1 = \emptyset$. If either of them has odd self-intersection, then the complement of one of the 2-tori contains a surface of odd self-intersection and we are done. Suppose that $S_1 \cdot S_1$ and $S_2 \cdot S_2$ are both even. Since M is non-spin, there exists an element $\alpha \in H_2(M; \mathbb{Z})$ with odd self-intersection. Define $\sigma := \alpha - (\alpha \cdot [T_2])[S_2]$ and notice that we have

$$\sigma \cdot \sigma = \alpha \cdot \alpha - 2(\alpha \cdot [T_2])([S_2] \cdot \alpha) + (\alpha \cdot [T_2])^2 \alpha \cdot [T_2] \equiv \alpha \equiv 1 \mod 2$$

and

$$\sigma \cdot [T^2] = \alpha \cdot [T_2] - \alpha \cdot [T_2] = 0.$$

Let $\Sigma \subset M$ be an embedded surface representing the homology class $\sigma \in H_2(M; \mathbb{Z})$. The algebraic intersection of Σ and T_2 is zero. We can eliminate the geometric intersection by tubing Σ in oppositely signed intersection points, obtaining a new surface Σ' in $M \setminus \nu(T_2)$ which has odd self-intersection. \qed

We are now ready to prove the main result of this section.

Proposition 19. For $G = F_g$, consider the family $\{3.36\}$. There exists an infinite subset $\mathcal{K}' \subset \mathcal{K}$ of knots $K \subset S^3$ parametrizing a subfamily

$$\{\Gamma_K \mid K \in \mathcal{K}'\}$$

of pairwise Brunnianly exotic 2-links.

Proof. Let $\Gamma_K = S_{K,1} \sqcup S_{K,2} \sqcup \ldots \sqcup S_{K,g}$ be a g-component 2-link from the family 3.36. Thanks to Proposition 16, in order to prove the theorem it is enough to show that removing the first component from each Γ_K yields a family of 2-links that is no longer exotic. By construction, we have the following diffeomorphism of pairs

$$M \# n(S^2 \times S^2)_{\Gamma_K} \approx (M_K \# T^2_{\Gamma})(N^* \# T_2 \ldots \# T_2 N^*), \Gamma).$$

Here the notation $\# T^2_{\Gamma}$ is used to point out the fact that the framing of that generalized fiber sum depends on the knot K, while $\Gamma = S_1 \sqcup \cdots \sqcup S_g$ is the 2-link made up by the belt spheres of the surgery 3.21 on N_g. Such diffeomorphism can be chosen to send the component $S_{K,1}$ to S_1 for each knot K. In particular, each
one of the components S_i is contained in a $N^* \approx (T^2 \times S^2)\#(S^2 \times S^2)$ block, which is therefore disjoint from the $(n-1)$-component 2-link $\Gamma \setminus S_i$. In the following, we will use the copy of $S^2 \times S^2$ that intersects S_1 to stabilize $\Gamma \setminus S_1$, which is contained in the remaining $N^*\#T_2\ldots \#T_2 N^* \approx N^*_{g-1}$. In particular, we have the following diffeomorphism of couples
\[(M\#g(S^2 \times S^2), \Gamma \setminus S_{K,1}) \approx ((M_K\#T_k^2 N^*)\#T^2 N^*_{g-1}, \Gamma \setminus S_1).\]

To conclude it is enough to show that there exists an infinite subfamily $\mathcal{K}' \subset \mathcal{K}$ such that for any two knots $K, K' \in \mathcal{K}'$ there exists a diffeomorphism between $M_K\#T_k^2 N^*$ and $M_{K'}\#T_k^2 N^*$ relative to $\nu(T')$, where T' is a parallel push-off of T in N^*. In particular, we will see that there are at most four diffeomorphism types of pairs in the family $\{(M_K\#T_k^2 N^*, T') \mid K \subset \mathcal{K}\}$ where T' is framed. By the pigeonhole principle, we can obtain \mathcal{K}'.

We have the following identification by (3.13)
\[M_K\#T_k^2 N^* \approx (M_K\#(S^2 \times S^2))\#T_k^2 (T^2 \times S^2)\]
in which the framed 2-torus T' is sent to the canonically framed 2-torus $T^2 \times \{p\} \subset T^2 \times S^2$.

If M is non-spin, then M_K is non-spin and, by Lemma 18, $M \setminus \nu(T_2)$ is also non-spin, and they are all simply connected. Since M_K is the generalized fiber sum between M and $S^1 \times S^3$, we can apply Lemma 17 to obtain a diffeomorphism ψ between $(M \setminus \nu(T_2))\#(S^2 \times S^2)$ and $(M_K \setminus \nu(T_2))\#(S^2 \times S^2)$ which is the identity on the boundary $\partial \nu(T_2)$, see 7 for more details. We extend ψ by the identity on $(T^2 \times S^2) \setminus \nu(T^2 \times \{p\})$, the result is the map $\tilde{\psi}$
\[(M_K\#(S^2 \times S^2))\#T_k^2 (T^2 \times S^2) \approx (M\#(S^2 \times S^2))\#T_k^2 (T^2 \times S^2).\]

We can apply Lemma 17 a second time as follows. Consider the generalized fiber sum \mathcal{F}_K between M and $(T^2 \times S^2) \setminus \nu(T^2 \times \{p\})$ along T_2, with framing depending on K, and $T^2 \times \{q\}$. Lemma 17 implies that $\mathcal{F}_K\#(S^2 \times S^2)$ is diffeomorphic to $M\#(T^2 \times S^2) \setminus \nu(T^2 \times \{p\})$ by a diffeomorphism φ that keeps the boundary $\partial \nu(T^2 \times \{p\})$ fixed. Here we use the notation X^* to denote the result of two loop surgeries on a 4-manifold X along the loops described by Lemma 17. Hence, we can extend φ via the identity to a map
\[(M\#(S^2 \times S^2))\#T_k^2 (T^2 \times S^2) \approx M\#(T^2 \times S^2)^*\]

We do not need to determine the result of the loop surgeries $(T^2 \times S^2)^*$. Since the loops do not depend on the knot K, but their framings might, there are four possibilities at most for the framed pair $((T^2 \times S^2)^*, \tilde{\varphi}(T^2 \times \{p\}))$.

Remark 20. By taking the connected sum of the ambient manifold with a copy of $S^2 \times S^2$, the same proof of Proposition 13 shows that the 2-links of the family $\{3,36\}$ (instead of their sublinks) become smoothly equivalent in the ambient 4-manifold $(M\#g(S^2 \times S^2))\#(S^2 \times S^2)$.

Remark 21. It is possible to prove that \mathcal{K}' is equal to \mathcal{K}. In particular, it is possible to avoid the use the pigeonhole principle in the preceding proof by taking a closer look at the framing of the loops and our definition of the framing τ_K for the 2-torus T_2 inside M_K.

\[\square\]
Remark 22. From a pair of exotic 2-spheres in a 4-manifold, one easily obtains exotic 2-links with a prescribed number of components and the free group with g generators as 2-link group by adding unknotted 2-spheres. The results in this section prove that this is not the case for the 2-links constructed in Theorem A with 2-link group F_g.

In the case of $G = \pi_1(\Sigma_g)$ and with the same arguments, one can show a weaker property after pairing up the 2-link components, in which disregarding a pair of components from the n-component 2-link yields smoothly equivalent $(n-2)$-component 2-links.

4. Proofs

4.1. Proof of Theorem A. We collect the results of previous sections into a proof of Theorem A. The infinite set (1.2) of 2-links \{$\Gamma_K \mid K \in K$\} smoothly embedded in $M\#n(S^2 \times S^2)$ was constructed in Proposition 14. The 2-link group of Γ_K is isomorphic to the fundamental group of the manifold obtained from $M\#n(S^2 \times S^2)$ by doing surgery on every component of Γ_K. This manifold is Z_K by Proposition 14 and by Proposition 11 we know that its fundamental group $\pi_1(Z_K)$ is isomorphic to G. This settles the first clause of the theorem. The second clause of the theorem is that the collection of 2-links \{$\Gamma_K \mid K \in K$\} is an exotic family. By Proposition 14 elements of this family are pairwise topologically isotopic and by Proposition 15 they are pairwise smoothly inequivalent. The 2-links are componentwise topologically unknotted by Proposition 14 and this establishes the third clause. The infinite set of pairwise non-diffeomorphic closed 4-manifolds of the fourth clause has been described in detail in Section 3.4. □

4.2. Proof of Theorem B. The 2-links of Theorem A with 2-link group F_g are symmetric by Proposition 16. The existence of the infinite subfamily of pairwise Brunnianly exotic 2-links that stabilize after one connected sum with $S^2 \times S^2$ follows from Proposition 19 and Remark 20. □

References

[1] S. Akbulut, On 2-dimensional homology classes of 4-manifolds, Math. Proc. Camb. Phil. Soc. 82 (1977), 99 - 106.
[2] S. Akbulut, Variations on Fintushel-Stern knot surgery on 4-manifolds, Turk. J. Math 26 (2002), 81 - 92.
[3] S. Akbulut, 4-manifolds, Oxford Graduate Texts in Mathematics, 25. Oxford University Press, 2016, vii + 263 pp.
[4] D. Auckly, Families of four-dimensional manifolds that become mutually diffeomorphic after one stabilization, Topol. Appl. 127 (2003), 277 - 298.
[5] D. Auckly, H. J. Kim, P. Melvin and D. Ruberman, Stable isotopy in four dimensions, J. London Math. Soc. 91 (2015), 439 - 463.
[6] D. Auroux, S. K. Donaldson and L. Katzarkov, Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves, Math. Ann. 326 (2003), 185 - 203.
[7] R. I. Baykur, Dissolving knot surgered 4-manifolds by classical cobordism arguments, J. Knot Theory and its Ramifications, Vol. 27, No. 05, 1871001 (2018).
[8] S. Baldridge and P. Kirk, Symplectic 4-manifolds with arbitrary fundamental group near the Bogomolov-Miyaoka-Yau line, J. Symplectic Geom. 4 (2006), 63 - 70.
[9] S. Baldridge and P. Kirk, Constructions of small symplectic 4-manifolds using Luttinger surgery, J. Diff. Geom. 82 (2008), 919 - 940.
[10] H. Brunn, Über verkettung, Bayer. Akad. Wiss. Math. Naturwiss. Abt., 22:77-99, 1892.
[11] E. César de Sá, Automorphisms of 3-manifolds and representations of 4-manifolds, PhD Thesis, Warwick University, 1977.
[12] E. César de Sá, A link calculus for 4-manifolds, Fenn, R. (eds) Topology of Low-Dimensional Manifolds. Lecture Notes in Mathematics, vol 722. Springer, Berlin, Heidelberg.

[13] R. A. Fintushel, Knot surgery revisited, (English summary) Floer homology, gauge theory, and low-dimensional topology, 195 - 224, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006.

[14] R. A. Fintushel and R. J. Stern, A fake 4-manifold with $\pi_1 = \mathbb{Z}$ and $b^+ = 4$, Turk J. Math 18 (1994), 1 - 6.

[15] R. A. Fintushel and R. J. Stern, Surfaces in 4-manifolds, Math. Res. Lett. 4 (1997), 907 - 914.

[16] R. A. Fintushel and R. J. Stern, Six lectures on four 4-manifolds, IAS/Park City Math Ser. 15, Amer. Math. Soc., Providence, RI, 2009, 265–315.

[17] R. A. Fintushel and R. J. Stern, Knots, links, and 4-manifolds, Invent. Math. 134 (1998), 363 - 400.

[18] R. A. Fintushel and R. J. Stern, Surgery on nullhomologous tori, Geom. Topol. Monographs 18 (2012), 61 - 81.

[19] M. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357 - 453.

[20] R. E. Gompf, Sums of elliptic surfaces, J. Differential Geom. 34 (1991), 93 - 114.

[21] R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math. (2) 142 (1995), no. 3, 527-595.

[22] R. E. Gompf and A. I. Stipsicz, 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics, 20. Amer. Math. Soc., Providence, RI, 1999. xv + 557 pp.

[23] K. Hayden, Exotically knotted disks and complex curves, arXiv: 2003.13681v2, 2021.

[24] M. J. D. Hamilton, On symplectic 4-manifolds and contact 5-manifolds, PhD thesis, Ludwig-Maximilians-Universität München, 2008.

[25] K. Hayden, A. Kjuchukova, S. Krishna, M. Miller, M. Powell and N. Sunukjian, Brunnnian exotic surface links in the 4-ball, to appear Mich. Math. J., 2023.

[26] C. I. Ho and T.-J. Li, Luttinger surgery and Kodaira dimension, Asian J. Math. Vol. 16 No. 2 (2012), 299-318.

[27] R. Mandlebaum, Decomposing analytic surfaces, Geometric topology. Academic Press, 1979. 147-217.

[28] J. McCarthy and J. Wolfson, Symplectic normal connect sum, Topology 33 (1994), 729 - 764.

[29] J. Milnor, A procedure for killing homotopy groups of differentiable manifolds, Symposia in pure math, Amer. Math. Soc., Providence, RI, 1961. xv - 55 pp.

[30] B. Moishezon, Complex surfaces and connected sums of complex projective planes, Lecture Notes in Math. 603, Springer-Berlin, 1977.

[31] B. D. Park, A gluing formula for the Seiberg-Witten invariant along T^3, Michigan Math. J. 50 (2002), 593 - 611.

[32] B. Perron, Pseudo-isotopies et isotopies en dimension quatre dans la catégorie topologique, Topology 25 (1986), 381 - 397.

[33] F. Quinn, Isotopy of 4-manifolds, J. Differential Geom. 24 (1986), 343 - 372.

[34] A. Ray and D. Ruberman, Four-dimensional analogues of Dehn’s lemma, J. London. Math. Soc. 96 (2017), 111 - 132.

[35] N. S. Sunukjian, A note on knot surgery, J. Knot theory and its Ramifications 24 (2015), no. 9, 1520003, 5.

[36] N. S. Sunukjian, Surfaces in 4-manifolds: concordance, isotopy, and surgery, Int. Math. Res. Not. 17 (2015), 7950 - 7978.

[37] C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), 809 - 822.

[38] C. H. Taubes, The Seiberg-Witten invariants and 4-manifolds with essential tori, Geom. Topol. 5 (2001), 441 - 519.

[39] R. Torres, Topologically unknotted and smoothly knotted nullhomologous surfaces, to appear Ann. Inst. Fourier.

[40] A. H. Wallace, Modifications and cobounding manifolds, Canadian J. Math. 12 (1960), 503 - 528.

[41] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131 - 140.
Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy

Email address: {vbais, ybenyahi, omalech, rtorres}@sissa.it