Running a typical ROOT HEP analysis on Hadoop/MapReduce

Stefano Alberto Russo – Michele Pinamonti – Marina Cobal

CHEP 2013 – Amsterdam – 14-18/10/2013
Topics

- The Hadoop/MapReduce model
- Hadoop and High Energy Physics
- How to run ROOT on Hadoop
- A real case: a top quark analysis
- Results and conclusions

DISCLAIMER:
This talk is about computing architecture, it is not a not performance study.
“Standard” distributed computing model:
storage and computational resources of a cluster as two independent, well logically-separated components.
Two components:

1. The Hadoop Distributed File System (HDFS)
2. The MapReduce computational model and framework

New idea: overlap storage elements with the computing ones
the computation can be scheduled on the cluster elements
holding a copy of the data to analyze: data locality
On HDFS, files are:

- Stored by slicing them in **chunks** (i.e. 64 MB, 1 GB)
- ..which are **replicated** across the cluster for redundancy and workload distribution.

- No RAID
- Commodity hardware: a disk can (and will) fail, sooner or later
The MapReduce model and framework

The Map() functions are executed in-place on the chunks, on the nodes where data is stored.

FILE

CPUS

Node 1

Chunk 3 → Map(3)
Chunk 1 → Map(1)
Chunk 7 → Map(7)

Node 2

Chunk 2 → Map(2)
Chunk 5 → Map(5)

Node 3

Chunk 4 → Map(4)
Chunk 6 → Map(6)

Reduce(All)

- Example: word count
- You do not ask Hadoop for cpu slots, you ask to analyze a dataset
The MapReduce model and framework

MapReduce requires an *embarrassing parallel* problem.

No communication between Maps...

Another basic assumption: a trivial Reduce phase.

easy to compute and almost I/O free

FILE

- Chunk 3
- Chunk 1
- Chunk 7
- Chunk 2
- Chunk 5
- Chunk 4
- Chunk 6

CPUS

- Map(3)
- Map(1)
- Map(7)
- Map(2)
- Map(5)
- Map(4)
- Map(6)

NOT I/O

OPTIMIZED

Reduce(All)
In High Energy Physics (HEP):

Particle collision events are *independent*: embarrassing parallel problems

Simple merging operations: sum numbers, sum histograms..

Usually, data to analyse accessed *over and over again* to finalize physics results: potential advantage from data locality

(Store once, read many)
“Natural” approach:

- **Map**: processes a chunk of the data set, analysing it *event by event*
- **Reduce**: collect Map's partial result merging them.
“Natural” approach:

- **Map**: processes a chunk of the data set, analysing it *event by event*
- **Reduce**: collect Map's partial result merging them.

Drowbacks:

1) **Events in plain text, CSV style**: lot of unnecessary I/O reads
 (typical HEP analysis requires only a few out of the many variables available)

Ref: Maaike Limper, *An SQL-based approach to Physics Analysis*, CHEP2013
“Natural” approach:

- **Map:** processes a chunk of the data set, analysing it *event by event*
- **Reduce:** collect Map's partial result merging them.

Drowbacks:

1) Events in plain text, CSV style: *lot of unnecessary I/O reads*
 (typical HEP analysis requires only a few out of the many variables available)
 - Ref: Maaike Limper, *An SQL-based approach to Physics Analysis*, CHEP2013

2) Frameworks for HEP developed, maintained and used by large communities over several years (ROOT):
 - porting code could be very *challenging and time consuming*
 - ...and *non-optimised* MapReduce code can easily lead to *waste CPU*
 - Ref: Zbigniew Baranowski, et Al, *Sequential Data access with Oracle and Hadoop: a performance comparison*, CHEP2013
Hadoop and HEP (3)

IDEA:
- run ROOT on Hadoop, and
- use its original data format which provides column-based storage.

GOALS:

1) Transparency for the data:
 let binary datasets be uploaded on HDFS without changing format;

2) Transparency for the code:
 let the original code run without having to modify a single line;

3) Transparency for the user:
 avoid the users to have to learn Hadoop/MapReduce, and let them interact with Hadoop in a classic, batch-fashioned behavior.
The Hadoop/MapReduce framework and its native API are written in the Java programming language.

Support for other programming languages is provided, but: serious limitations on the input/output side when working with binary data sets. (Hadoop was developed with textual analyses in mind)

ROOT data is binary...chunking binary files without corrupting data is NOT possible!
SOLUTIONS: Transparency for the (binary) data

NO chunking:

One Map = One file = one HDFS block (chunk)

(set chunk size \geq file size per file)

- Map tasks will be in charge of analyzing one file, in its entirety
- Corruptions due to chunking binary data are avoided
- Data can be stored on the Hadoop cluster without conversions, in its original format.

Other approaches are possible, but much more effort required
SOLUTIONS: ...and what about parallelism?

Working conditions imposed:

One Map Task = One chunk = one file to analyze

Now the parallelization degree goes with the number of files!
SOLUTIONS: ...and what about parallelism?

HEP datasets are usually composed by several files

I.e. ATLAS D3PD's storage schema:

Object	Order of Magnitude	Type	On Hadoop/Mapreduce
Event	1	ROOT data	Unknown (binary)
File	$10^2 - 10^4$	ROOT file	One chunk
Luminosity block	10^4	Set of Files	Directory
LHC Run	$10^5 - 10^6$	Set of Lum. blocks	Directory
Data set	$10^5 - 10^9$	Set of LHC Runs	Directory (input dataset)

Dataset: $\sim 10^3 - 10^5$ files
1. Java Map and Reduce tasks as *wrappers for ROOT*

2. Let ROOT access the data from a *standard file system*

 For every Map task:

 - **Local replica available:**
 - HDFS file (block) to analyze can be found and therefore accessed on the local, standard file system, i.e. Ext3.

 - **Local replica *not* available:**
 - access the file to analyze via network using Hadoop's file system tools

SOLUTIONS: Transparency for the code

Bottom line: bypass Hadoop
SOLUTIONS: Transparency for the user

Easy to write a Java MapReduce job acting as a wrapper for user's code, i.e RootOnHadoop.java:

```
# hadoop run RootOnHadoop "user Map code" "user Reduce code" "HDFS input dataset" "HDFS output location"
```

• Just few guidelines for the user code to make it work
Under the hood..

```
# hadoop run RootOnHadoop "user Map code" "user Reduce code" "HDFS input dataset" "HDFS output location"
```

Java Map task (wrapper)

Obtain file location and set access method

Hadoop/MapReduce framework
Under the hood..

```bash
# hadoop run RootOnHadoop "user Map code" "user Reduce code" "HDFS input dataset" "HDFS output location"
```
Under the hood..

hadoop run RootOnHadoop "user Map code" "user Reduce code" "HDFS input dataset" "HDFS output location"

Java Map task (wrapper)

User Map code

Hadoop/MapReduce framework
Under the hood..

```
# hadoop run RootOnHadoop "user Map code" "user Reduce code" "HDFS input dataset" "HDFS output location"
```
Under the hood..

```bash
# hadoop run RootOnHadoop "user Map code" "user Reduce code" "HDFS input dataset" "HDFS output location"
```
Under the hood..

```
# hadoop run RootOnHadoop "user Map code" "user Reduce code" "HDFS input dataset" "HDFS output location"
```

Java Map task (wrapper)

- User Map code

Maps Output

Binary output HDFS location

Hadoop/MapReduce framework

Ext3

HDFS

All Maps outputs

Final output

Java Reduce task (wrapper)

- User Reduce code

Binary input Data set

Binary output HDFS location

Hadoop Distributed File System
A real case: a top quark analysis (1)

ROOT on Hadoop has been tested on a real case: the top quark pair production search and cross section measurement analysis performed by the ATLAS collaboration

Basics of the analysis:

- Based on a **cut-and-count** code: every event undergoes a series of selection criteria, and at the end is accepted or not.

- Cross section obtained by **comparing numbers** (number of selected events with the luminosity, the efficiency in the selection of signal events, and the expected background events.)
The dataset, data taking conditions:

Data has been taken with all the subsystems of the ATLAS detector in fully operational mode, with the LHC producing proton-proton collisions corresponding to a centre of mass energy of 7 TeV with stable beams condition during the 2011 run up to August.

The dataset, in numbers:

- **338,6 GB** (only electron channel D3PDs)
- **8830 files**
- average size: ~ 38 MB
- maximum file size: ~ **48 MB**

Every file fits in a default HDFS chunk size of 64 MB!
A real case: a top quark analysis (3)

The test cluster:

- Provided by CERN IT-DSS group
- **10 nodes**, 8 cpus per node
- Max 10 Map tasks per node
- **2 replicas per file**

The top quark analysis code:

- ROOT-based, treated as a black magic box
- Compiled without **any** modification!
- Has been stored on the Hadoop File System as well
Results (1)

Worked as expected:

Kind	% Complete	Num Tasks	Pending	Running	Complete
map	48.33%	8830	4462	100	4268
reduce	16.07%	1	0	1	0

• Data locality ratio: 100% *(every file is read locally)*

Using the *Delayed Fair Scheduler By Facebook*

designed for (and tested to) give data locality ratios close to 100% in the majority of the use-cases.
Data locality 100% and data transfers at runtime:

Data transfers:	Hadoop Computing Model	Standard Computing Model
Code	0.12 GB	0.12 GB
Infrastructure overhead	1.17 GB	-
Input data set	0 GB	336.6 GB
Output events count	-	-
Total:	**1.29 GB**	**336.72 GB**

Performance in terms of time still to be evaluated

...comparison is hard (apples Vs bananas issue)
Conclusions – Pros and Cons

- Typical HEP analyses can be easily ported to a MapReduce model
- In Hadoop network usage for accessing the data reduced by several orders of magnitude thanks to the data locality feature
- Transparency can be achieved quite easily
- Bypassing some Hadoop components permits to:
 - run standard code on standard, local file systems at maximum speed
 - fine tuning (SSD caching, BLAS/LAPACK..)
- ..while:
 - exploiting the innovative features of Hadoop/MapReduce and HDFS
- easy to manage, fault tolerant and scalable infrastructure (plug/unplug)
- open source, widely used and well maintained

...and the method actually works, positive feedback received
i.e. Uni LMU ATLAS group, poster here at CHEP 2013
“Evaluation of Apache Hadoop for parallel data analysis with ROOT”
Conclusions – Pros and Cons

- Java and ROOT overhead to start many jobs

 Performance to be evaluated

 Tuning:
 - JVM reuse, Map startup improvement;
 - Latency (Heartbeat) optimization...

- Bottomline: Hadoop forced to work unnaturally

 bugs when working with blocksize > 2 Gb to be fixed

 (already investigated by the community)

...worth to investigate, spend time for tuning, find a metric to measure performance?
Conclusions – Pros and Cons

- **Typical HEP analyses can be easily ported to a MapReduce model**
- **Network usage** for accessing the data **reduced by several orders of magnitude** thanks to Hadoop's data locality feature. Same data accessed over and over.
- **Transparency** can be achieved quite easily
- Bypassing some Hadoop components permits to:
 - run standard code on standard, local file systems at maximum speed
 - fine tuning (SSD caching, BLAS/LAPACK..)
 ..while:
 - exploiting the innovative features of Hadoop/MapReduce and HDFS
- **easy to manage, fault tolerant and scalable infrastructure**
- ..and is **open source**, widely used and well maintained

- Hadoop and ROOT **overhead** to start many jobs **(Performance to be evaluated)**
- Hadoop forced to work unnaturally bugs when working with blocksize > 2 Gb to be fixed (already investigated)

Thanks for your attention!

Demo code ➔ stefano.alberto.russo@cern.ch

...questions?