The uniqueness of the plant mitochondrial potassium channel

Donato Pastore¹,*, Mario Soccio¹, Maura Nicoletta Laus¹ & Daniela Trono²

¹Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Via Napoli 25-71122 Foggia, Italy,
²Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di Ricerca per la Cerealicoltura, S.S. 16 km 675, 71122 Foggia, Italy

The ATP-inhibited Plant Mitochondrial K+ Channel (PmitoKATP) was discovered about fifteen years ago in Durum Wheat Mitochondria (DWM). PmitoKATP catalyses the electrophoretic K+ uniport through the inner mitochondrial membrane; moreover, the co-operation between PmitoKATP and K+/H+ antiporter allows such a great operation of a K+ cycle to collapse mitochondrial membrane potential (ΔΨ) and ΔpH, thus impairing protonmotive force (Δp). A possible physiological role of such Δp control is the restriction of harmful reactive oxygen species (ROS) production under environmental/oxidative stress conditions. Interestingly, DWM lacking Δp were found to be nevertheless fully coupled and able to regularly accomplish ATP synthesis; this unexpected behaviour makes necessary to recast in some way the classical chemiosmotic model. In the whole, PmitoKATP may oppose to large scale ROS production by lowering ΔΨ under environmental/oxidative stress, but, when stress is moderate, this occurs without impairing ATP synthesis in a crucial moment for cell and mitochondrial bioenergetics. [BMB Reports 2013; 46(8): 391-397]

INTRODUCTION

The existence of an ATP-inhibited mitochondrial potassium channel in plants was firstly shown in Durum Wheat Mitochondria (DWM) (1); it was named Plant mitoKATP (PmitoKATP) in analogy with the possible animal counterpart [mitoKATP (2)]. Although the molecular nature of the channel is yet unknown (see 3 for some hypotheses about this point), we have recently confirmed the existence of a DWM cation channel inhibited by ATP referable to the original PmitoKATP by using patch clamp technique, for the first time successfully applied to plant mitochondria (3). By using swelling technique and/or by following channel-dependent membrane potential changes, other mitochondrial potassium channels were characterization in several plant species such as pea, soybean, three coniferous species, Arum, potato, maize and tomato, while less characterized potassium pathways were reported in mitochondria from bread wheat, spelt, rye, barley, spinach, topinambur, triticate, lentil and Arabidopsis (see 4-6 and refs therein). These channels may display characteristics different from that of the original PmitoKATP, for example, as reported by Kuy et al. (7), in potato, maize and tomato mitochondria, they may show ATP-insensitivity. Moreover, by using electrophysiological measurements in a reconstituted system, three different potassium channels were identified in potato tuber mitochondria: a large conductance Ca2+-activated K+ channel, the mitoBKCa (8), an ATP-sensitive mitoK, and a large-conductance Ca2+-insensitive and iberiotoxin-sensitive channel (9). So, mitochondrial K+ channels are widely present in plants and are characterized by different modulation, specificity, conductance and possible physiological role [for recent reviews see Jarmuszkiewicz et al. (10) and Pastore et al. (11)].

As for DWM, the PmitoKATP displays a conductance of 150 pS in 150 mM K+, a strong voltage dependence, relatively low selectivity and ATP inhibition with an IC50 of 0.5 mM, as calculated by De Marchi et al. (3), or Ki of about 0.3 mM, as obtained by Pastore et al. (1). As for modulators, PmitoKATP activity is mainly increased by superoxide anion, diazoxide and mersalyl, as well as by free fatty acids (FFAs) and their acyl-CoA ester derivatives (12), these latters also modulating the connected activity of the mitochondrial anion channel (13).

THE EFFECT OF PmitoKATP ON THE MITOCONDRIAL PROTONMOTIVE FORCE IN DWM

The PmitoKATP is very active being able to completely collapse electrical membrane potential (ΔΨ) in DWM isolated in vitro in a KC1 medium mimicking cell condition; 25 mM KC1 are often already sufficient to do this in succinate oxidizing DWM (1, 14). Moreover, the channel may act together with the K+/H+ antiporter, very active in plant mitochondria (15), generating a potassium cycle (1) that collapses also ΔpH (6) (Fig. 1).

In this regard, the PmitoKATP is very different from other mitochondrial potassium channels. In a recent study it was reported that the effect of potato mitoKATP on mitochondrial ΔΨ is very limited (up to few mV) (9) with respect to that of durum wheat channel. In heart mitochondria the increased K+ influx associated to potassium channel opening was small and it was...
The plant mitochondrial potassium channel
Donato Pastore, et al.

Fig. 1. Possible mechanism of coupling in the absence of measurable protonmotive force mediated by the plant mitochondrial potassium channel. A simplified picture of a durum wheat mitochondrion is reported, with mitochondrial cristae enlarged to schematize the presence in the inner mitochondrial membrane of respiratory chain, ATP synthase (ATPase), ADP/ATP and K\(^+\)/H\(^+\) antiporters and ATP-inhibited plant mitochondrial potassium channel (PmitoK\(_{ATP}\)) (A) as well as of K\(^+\) ionophore valinomycin (Val), plant uncoupling protein (PUCP) activated by free fatty acids (FFAs) and chemical uncoupler carbonyl cyanide \(p\)-(trifluoromethoxy)phenylhydrazone (FCCP) (B). Partial inhibition of PmitoK\(_{ATP}\) by ATP occurring at the cytosolic face of the channel (1), may control the extent of channel activity. In the presence of high K\(^+\) concentration, the potassium cycle deriving from the cooperation of the PmitoK\(_{ATP}\) (A) or valinomycin (B) with K\(^+\)/H\(^+\) antiporter may partly or fully uncouple mitochondria, respectively. Protons ejected by the respiratory chain in the course of substrate oxidation are reported in blue and in red; the first ones contribute to the measurable bulk phase \(\Delta\Psi\) and \(\Delta\rhoH\), while the second ones are assumed to represent a latent non-classically measurable, localized, protonmotive force. The controlled cooperation of PmitoK\(_{ATP}\) with K\(^+\)/H\(^+\) antiporter may collapse measurable bulk phase \(\Delta\Psi\) and \(\Delta\rhoH\) without excluding the ATP synthase pathway (A). When uncontrolled K\(^+\) uptake by valinomycin bypasses ATP brake, classical uncoupling is observed involving all protons and excluding ATP synthase (B). As expected, uncoupling is also observed when FFAs or FCCP are used (B). The scheme does not consider topology of proteins and interaction sites. For detailed explanation see the text.

In rat liver mitochondria some \(\Delta\rhoH\) decrease was observed depending on KCl concentration (up to about 20 mV at 100 mM KCl), but it was compensated by \(\Delta\rhoH\) increase so that the protonmotive force (\(\Delta\rho\)) remained almost constant (17); in the same mitochondria Devin et al. (18) showed that, for the same respiration rate, \(\Delta\rho\) was lesser in a KCl medium than in sucrose medium, but the ratio between the amount of phosphorylated ADP and oxygen consumed (ADP/O) did not vary. In respiring yeast mitochondria, addition of KCl in the presence of 4-5 mM phosphate generated some potassium cycle through electrophoretic K\(^+\) entry and electroneutral K\(^+\)/H\(^+\) exchange without promoting any uncoupling between respiration and ATP synthesis, but even increasing ATP synthesis on the basis of a compensatory \(\Delta\rhoH\) increase that drives the activation of phosphate/\(H^+\) cotransporter (19, 20). On the other hand, Castrejón et al. (20) and Manon and Guérin (21) showed that at low phosphate concentration (0.4-0.5 mM), mitochondrial uncoupling by KCl occurred with collapse of \(\Delta\rho\) and dramatic reduction of ADP/O and respiratory control (RC) ratios, as well as of ATP synthesis rate (about -65% than in high phosphate).

THE UNEXPECTED EFFECT OF PmitoK\(_{ATP}\) ON THE ATP SYNTHESIS IN DWM

According to Mitchell’s chemiosmotic theory the energy-rich intermediate of mitochondrial oxidative phosphorylation (OXPHOS) is the proton gradient across the inner mitochondrial membrane. Its driving force was defined by Mitchell (22,
23) as the protonmotive force (Δp), consisting of an electrical (∆Ψ) and a chemical (ΔpH) part (24). A major prediction of the chemiosmotic model is that the phosphorylation potential and the rate of ATP synthesis should depend on the magnitude of the bulk Δp. As reported above, OXPHOS-dependent ATP synthesis by mitochondria suspended in a KCl medium is actually related to Δp, but, once again, the effect of PmitoKATP operation is unexpected.

As stated, fully functional DWM that oxidize succinate show negligible bulk phase Δp and ΔpH in high KCl media. Anyway, DWM are equally fully coupled since they preserve ADP/O ratio and are able to regularly accomplish ATP synthesis under conditions that exclude adenylate kinase activity (6). ATP synthesis via OXPHOS has been observed in three different and independent ways, i) by following in continuous ATP synthesis and efflux from mitochondria by using an enzymatic ATP detecting system, ii) by measuring the synthesized ATP at the end of a phosphorylation cycle and iii) by oxygraphic measurements of the RC and ADP/O ratios and of the ATP synthesis rate calculated by multiplying state 3 oxygen uptake rate by ADP/O (6). KCl-treated DWM always showed ATP synthesis statistically equal to control DWM, although showing very low (60-120 mV) ΔΨ and no measurable ΔpH. On the contrary, as expected, classical uncouplers, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), FFAs (activating the plant uncoupling protein, PUCP) and valinomycin plus KCl are able to completely collapse both Δp and ATP synthesis.

The paradoxical behaviour of DWM may be connected with the ATP and, to a lesser extent, ADP sensitivity of the potassium channel, that we hypothesize may induce a “controlled collapse” of Δp. At this regard, it should be underlined a notable quantitative difference between PmitoKATP and its mammalian counterpart mitoKATP regarding ATP inhibition. The mitoKATP is strongly inhibited by very low ATP concentration (K₅₀ = 22-40 μM) and by Mg²⁺ in the presence of ATP (25, 26). Since the physiological ATP concentration in mammalian cells is in the millimolar range, this suggests that ATP can hardly modulate the degree of channel opening in vivo (26). On the contrary, PmitoKATP has lower affinity towards ATP with half inhibition of 0.3-0.5 mM (10- to 15-fold lower than in mitoKATP) and is insensitive to Mg²⁺ (1, 3); these properties may allow DWM channel regulation by ATP in vivo. Indeed, on the basis of NMR analysis, it was reported that in plant cells the nucleotide triphosphate concentration ranged between 0.9 and 1.2 mM (27) with about 70% of this content represented in the plant uncoupling protein, PUCP) and valinomycin plus KCl are able to completely collapse both Δp and ATP synthesis.

The possible physiological role of PmitoKATP

The control of ΔΨ may allow the control of reactive oxygen species (ROS) production (47), so this property of the
PmitoKATP sets out its possible physiological role. Really, opening/closure of the channel in a 100 mM KCl medium may vary up to about 35-fold superoxide anion production (6). It is well known that cellular ROS production can be increased as a result of plant exposure to various environmental stresses, thus inducing oxidative stress (48-50). Mitochondria, in particular, were reported to increase ROS generation under drought and salt stress (51). The deriving hypothesis that PmitoKATP may operate as defense against these stresses in DWM together with alternative oxidase (52) and PUCP (53) was demonstrated: an increase in channel activity up to fourfold in mitochondria purified from osmotic- and salt-stressed durum wheat seedlings and a concurrent decrease (about 60%) of mitochondrial ROS generation was observed (53). Under conditions of hyperosmotic stress an increase of channel activators such as ROS and FFAs/AcylCoA esters (53, 12), the latter deriving from the activation (up to about two times) of a mitochondrial PLA2 (54), is observed. Under moderate hyperosmotic stress conditions inducing a starting cellular oxidative stress, on ATP synthesis and mitochondria intactness (55, 56), activation of the channel may induce ΔΨ decrease and control of ROS production, but, according to the mechanism of Fig. 1A, may preserve ATP synthesis just when the cell has much more need of ATP to overcome the insult (Fig. 2A).

One can argue that ATP synthase cannot work under low force condition. Really, ΔΨ and ΔpH are not kinetically equivalent driving forces for ATP synthase. ΔΨ represents the essential driving force for rotation of the “rotor” γεc, of the synthase; one turn of rotation of the γεc part yields three ATP driven by the translocation of protons through c subunits (57 and refs therein). The ΔΨ required is a function of H+ATP stoichiometry that depends, in turn, on the number of the c subunits in f, rotating ring. For example, in Escherichia coli, and probably in mammalian mitochondria, 100-120 mV are assumed to be necessary for maximal ATP synthesis by the ATP synthase that has probably 9-10 c subunits, so giving calculated H+/ATP equal to 3-3.3; anyway, about 70-80 mV are sufficient to obtain midpoint potential (58). Unfortunately, the number of c subunits of ATP synthase in DWM is so far unknown thus preventing H+/ATP calculation; moreover, possible alternative calculation of thermodynamic H+/ATP stoichiometry as ΔGp/Δp is unlikely due to an unspecified proton leak of the inner membrane typical of mitochondria, preventing a thermodynamic equilibrium (59). However, it should be noted that in plants, for ATP synthesis by chloroplast ATP synthase, saturation is already obtained at only 50-60 mV, this enzyme having 14 c subunits, so giving calculated H+/ATP equal to 4.7 (58). This shows that ATP synthases may be able to synthesize ATP at rather low membrane potential. Consistently, in vivo, low mitochondrial ΔΨ has been often measured. In plant cells, mitochondrial ΔΨ was estimated on the basis of the sub-
cellular ATP/ADP ratio measured by means of rapid subcellular fractionation of barley leaf protoplasts; interestingly, ΔΨs ranging from 70 to 95 mV under different physiological conditions were calculated (60). As for mammalian cells, mitochondrial ΔΨs of about 105 mV in fibroblasts and 81 mV in neuroblastoma cells were measured (61), these results were obtained by applying a novel method using the combination of conventional fluorescence microscopy and three-dimensional deconvolution by exhaustive photon reassignment. ΔΨs ranging from about 100 to 115 mV were measured under different metabolic conditions in perfused rat hearts under high cardiac work (62). Really, in vitro values of ΔΨ measured in DWM under PmitoKATP operation in a KCl medium ranged from 60 to 120 mV in different experiments (14, 6, and unpublished data). These ΔΨ values fit well with the above measurements in vivo, thus suggesting that in DWM under stress, ATP synthesis at suboptimal ΔΨ may be possible by an energetic point of view. This may keep in balance mitochondrial/cellular bioenergetics and ROS control under controlled stress conditions as depicted in Fig. 2A.

On the other hand, if the stress becomes so severe as to induce a drop of substrate oxidation (53, 63) and of ATP synthesis (55) inducing remarkable ATP content decrease (6, 56), a substantial decrease of channel inhibition by ATP may be observed. Under these extreme conditions up to about 25 times increase of FFAs has been also observed (12). So, the decrease of the inhibitor along with the notable increase of an activator may strongly activate the channel and the potassium conductance pathways in plant tuber mitochondria (61), these results were obtained by applying a novel method using the combination of conventional fluorescence microscopy and three-dimensional deconvolution by exhaustive photon reassignment.

In conclusion, the uniqueness of the plant PmitoKATP regarding effects on protonmotive force, ATP synthesis and ROS control may be considered as a complex basic mechanism to adapt mitochondrial and cellular bioenergetics to changing environmental conditions and to oppose oxidative stress.

Acknowledgements
This work was supported by grants from the Italian Ministry of Education, University and Research (MIUR) project ‘AGROGEN’.

REFERENCES

1. Pastore, D., Stoppeili, M. C., Di Fonzo, N. and Passarella, S. (1999) The existence of the K+ channel in plant mitochondria. J. Biol. Chem. 274, 26683-26690.
2. Paucek, P., Mironova, G., Mahdi, F., Beavis, A. D., Woldegiorgis, G. and Garlid, K. D. (1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J. Biol. Chem. 267, 26062-26069.
3. De Marchi, U., Checchetto, V., Zanetti, M., Teardo, E., Soccio, M., Formentin, E., Giacometti, G. M., Pastore, D., Zoratti, M. and Szabó, I. (2010) ATP-sensitive cation-channel in wheat (Triticum durum Desf.): identification and characterization of a plant mitochondrial channel by patch-clamp. Cell. Physiol. Biochem. 26, 975-982.
4. Petruzza, E., Bertolini, A., Krajnaková, J., Casolo, V., Macří, F. and Vianello, A. (2008) Isolation of mitochondria from embryogenic cultures of Picea abies (L.) Karst. and Abies cephalonica Loud.: characterization of a K+ ATP channel. Plant Cell Rep. 27, 137-146.
5. Petruzza, E., Casolo, V., Peresson, C., Krajnaková, J., Macří, F. and Vianello, A. (2008) Activity of a K+ ATP channel in Arum spadix mitochondria during thermogenesis. J. Plant Physiol. 165, 1360-1369.
6. Trono, D., Socco, M., Laus, M. N. and Pastore, D. (2011) Potassium channel-oxidative phosphorylation relationship in durum wheat mitochondria from control and hypersaline-stressed seedlings. Plant Cell Environ. 34, 2093-2108.
7. Ruy, F., Vercesi, A. E., Andrade, P. B. M., Bianconi, M. L., Chaimovich, H. and Kowaltowski, A. J. (2004) A highly active ATP-insensitive K+ import pathway in plant mitochondria. J. Bioenerg. Biomembr. 36, 195-202.
8. Koszela-Piotrowska, I., Matkovic, K., Szewczyk, A. and Jarmuszkiewicz, W. (2009) A large-conductance calcium-activated potassium channel in potato (Solanum tuberosum) tuber mitochondria. Biochem. J. 424, 307-316.
9. Matkovic, K., Koszela-Piotrowska, I., Jarmuszkiewicz, W. and Szewczyk, A. (2011) Ion conductance pathways in potato tuber (Solanum tuberosum) inner mitochondrial membrane. Biochim. Biophy. Acta 1807, 275-285.
10. Jarmuszkiewicz, W., Matkovic, K. and Koszela-Piotrowska, I. (2010) Potassium channels in the mitochondria of unicellular eukaryotes and plants. FEBS Lett. 584, 2057-2062.
11. Pastore, D., Laus, M. N., Soccio, M. (2010) Plant mitochondrial potassium channel or channels? In Mitochondria: Structure, Function and Dysfunction, Nova Science Publishers, Inc., pp. 883-898, Hauppauge, NY.
12. Laus, M. N., Soccio, M., Trono, D., Liberator, M. T. and Pastore, D. (2011) Activation of the plant mitochondrial potassium channel by free fatty acids and acyl-CoA esters: a possible defence mechanism in the response to hyperosmotic stress. J. Exp. Bot. 62, 141-154.
13. Laus, M. N., Soccio, M., Trono, D., Cattivelli, L. and Pastore, D. (2008) Plant Inner Membrane Anion Channel (PIMAC) function in plant mitochondria. Plant Cell Physiol. 49, 1039-1055.
14. Pastore, D., Trono, D., Laus, M. N., Di Fonzo, N. and Flagella, Z. (2007) Possible plant mitochondrial involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J. Exp. Bot. 58, 195-210.
15. Diólez, P. and Moreau, F. (1985) Correlations between ATP synthesis, membrane potential and oxidation rate in plant mitochondria. Biochim. Biophys. Acta 806, 56-63.
16. Kowaltowski, A. J., Seetharama, S., Paucek, P. and Garlid, K. D. (2001) Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria. Ann. J. Physiol. Heart Circ. Physiol. 280, H649-H657.
17. Czyz, A., Szewczyk, A., Nalecz, M. J. and Wójcicka, L. (1995) The role of mitochondrial potassium fluxes in controlling the protonotive force in energized mitochondria. Biochim. Biophys. Res. Co. 210, 98-104.
18. Devan, A., Guérin, B. and Rigoulet, M. (1997) Response of isolated rat liver mitochondria to variation of external osmolarity in KCl medium: regulation of matrix volume and oxidative phosphorylation. J. Bioenerg. Biomembr. 29, 579-590.
19. Manon, S., Roucou, X., Rigoulet, M. and Guérin, M. (1995) Stimulation of oxidative phosphorylation by electrostatic K⁺ entry associated to electroneutral K⁺/H⁺ exchange in yeast mitochondria. Biochim. Biophys. Acta 1231, 282-288.
20. Castrejón, V., Parra, C., Moreno, R., Pena, A. and Uribe, S. (1997) Potassium collapses the ΔP in yeast mitochondria while the rate of ATP synthesis is inhibited only partially: modulation by phosphate. Arch. Biochem. Biophys. 346, 37-44.
21. Manon, S. and Guérin, M. (1997) The ATP-induced K⁺ transport pathway of yeast mitochondria may function as an uncoupling pathway. Biochim. Biophys. Acta 1318, 317-321.
22. Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, 144-148.
23. Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445-502.
24. Nicholls, D. G. and Ferguson, S. J. (1992) The chemiosmotic proton circuit. In Bioenergetics, 2nd ed., pp 82-87. Academic press limited, London.
25. Garlid, K. D. (1996) Cation transport in mitochondria - the potassium cycle. Biochim. Biophys. Acta 1275, 123-126.
26. Garlid, K. D. and Paucek, P. (2003) Mitochondrial potassium transport: the K⁺ cycle. Biochim. Biophys. Acta 1606, 23-41.
27. Gout, E., Bligny, R. and Douce, R. (1992) Regulation of intracellular pH values in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies. J. Biol. Chem. 267, 13903-13909.
28. Roby, C., Martin, J.-B., Bligny, R. and Douce, R. (1987) Biochemical changes during sucrose deprivation in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies. J. Biol. Chem. 262, 5000-5007.
29. Kruwlich, T. A. (1995) Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol. Microbiol. 15, 403-410.
30. Sorgato, M. C., Branca, D. and Ferguson, S. J. (1980) The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the proton motive force. Biochem. J. 188, 945-948.
31. Michel, H. and Oesterhelt, D. (1980) Electrochemical proton gradient across the cell membrane of Halobacterium halobium: Comparison of the light-induced increase with the increase of intracellular adenosine triphosphate under steady-state illumination. Biochemistry 19, 4615-4619.
32. Ort, D. R., Dilley, R. A. and Good, N. E. (1976) Photophosphorylation as a function of illumination time. II. Effects of permeant buffers. Biochim. Biophys. Acta 449, 108-124.
33. Matsuno-Yagi, A. and Hatemi, Y. (1986) Kinetic modalities of ATP synthesis. Regulation by the mitochondrial respiratory chain. J. Biol. Chem. 261, 14031-14038.
34. Hitchens, G. D. and Kell, D. B. (1982) On the extent of localization of the energized membrane state in chromatophores from Rhodopseudomonas capsulata N22. Biochim. J. 206, 351-357.
35. Rottenberg, H. (1983) Uncoupling of oxidative phosphorylation in rat liver mitochondria by general anesthetics. Proc. Natl. Acad. Sci. U.S.A. 80, 3313-3317.
36. Westerhoff, H. V., Melandri, B. A., Venturoli, G., Azzzone, G. F. and Kell, D. B. (1984) A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units. Biochim. Biophys. Acta 768, 257-292.
37. Westerhoff, H. V., Melandri, B. A., Venturoli, G., Azzzone, G. F. and Kell, D. B. (1984) Mosaic protonic coupling hypothesis for free energy transduction. FEBS Lett. 165, 1-5.
38. Qui, Z. H., Yu, L. and Yu, C. A. (1992) Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial cytochrome c oxidase and adenosine triphosphate synthase complex. Biochemistry 31, 3297-3302.
39. Gupte, S. S., Chazotte, B., Leesnitzer, M. A. and Hackenbrock, C. R. (1991) Two-dimensional diffusion of F,F-ATP synthase and ADP/ATP translocator. Testing a hypothesis for ATP synthesis in the mitochondrial inner membrane. Biochim. Biophys. Acta 1069, 131-138.
40. Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. and Dencher, N. A. (1994) Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370, 379-382.
41. Scherrer, P., Alexiev, U., Marti, T., Khorana, H. G. and Heyn, M. P. (1994) Covalently bound pH-indicator dyes at selected extracellular or cytoplasmic sites in bacteriorhodopsin. I. Proton migration along the surface of bacteriorhodopsin micelles and delayed transfer from surface to bulk. Biochemistry 33, 13684-13692.
42. Alexiev, U., Mollaaghababa, R., Scherrer, P., Khorana, H. G. and Heyn, M. P. (1995) Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proc. Natl. Acad. Sci. U.S.A. 92, 372-376.
43. de Grey, A. D. (1999) Incorporation of transmembrane hydroxide transport into the chemiosmotic theory. Bioelectrochem. Bioenerg. 49, 43-50.
44. Georgievskii, Y., Medvedev, E. S. and Stuchebrukhov, A. A. (2002) Proton transport via the membrane surface. Biophys. J. 82, 2833-2846.
45. Serowy, S., Saperov, S. M., Antonenko, Y. N., Kozlovsky, W., Hagen, V. and Pohl, P. (2003) Structural proton diffusion along lipid bilayers. Biophys. J. 84, 1031-1037.
46. Todeschi, H. (2005) Old and new data, new issues: the mitochondrial ΔΨ. Biochim. Biophys. Acta 1709, 195-202.
47. Skulachev, V. P. (1994) The latest news of the sodium world. Biochim. Biophys. Acta 1187, 216-221.
48. Scandalios, J. G. (1993) Oxygen stress and superoxide dismutases. Plant Physiol. 101, 7-12.
49. Foyer, C. H., Lescure, J. C., Lefebvre, C., Morot-Gaudry, J. F., Vincentz, M. and Vaucheret, H. (1994) Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumaginifolia plants to changes in nitrate reductase activity. Plant Physiol. 104, 171-178.
The plant mitochondrial potassium channel
Donato Pastore, et al.

50. Møller, I. M. (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **52**, 561-591.

51. Alschner, R. G., Donahue, J. L. and Cramer, C. L. (1997) Reactive oxygen species and antioxidants: relationships in green cells. *Physiol. Plantarum* **100**, 224-233.

52. Pastore, D., Trono, D., Laus, M. N., Di Fonzo, N. and Passarella, S. (2001) Alternative oxidase in durum wheat mitochondria. Activation by pyruvate, hydroxypyruvate and glyoxylate and physiological role. *Plant Cell Physiol.* **42**, 1373-1382.

53. Trono, D., Flagella, Z., Laus, M. N., Di Fonzo, N. and Pastore, D. (2004) The uncoupling protein and the potassium channel are activated by hyperosmotic stress in mitochondria from durum wheat seedlings. *Plant Cell Environ.* **27**, 437-448.

54. Trono, D., Socco, M., Laus, M. N. and Pastore, D. (2013) The existence of phospholipase A2 activity in plant mitochondria and its activation by hyperosmotic stress in durum wheat (Triticum durum Desf.). *Plant Sci.* **199-200**, 91-102.

55. Flagella, Z., Trono, D., Pompa, M., Di Fonzo, N. and Pastore, D. (2006) Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. *Funct. Plant Biol.* **33**, 357-366.

56. Socco, M., Laus, M. N., Trono, D. and Pastore, D. (2013) A new simple fluorimetric method to assay cytosolic ATP content. Application to durum wheat seedlings to assess modulation of mitochondrial potassium channel and uncoupling protein activity under hyperosmotic stress. *Biol. J.* **68**, 421-432.

57. Dimroth, P., Kaim, G. and Matthey, U. (2000) Crucial role of the membrane potential for ATP synthesis by F_{1}F_{0} ATP synthases. *J. Exp. Biol.* **203**, 51-59.

58. Kaim, G. and Dimroth, P. (1999) ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. *EMBO J.* **18**, 4118-4127.

59. Kadenbach, B. (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. *Biochim. Biophys. Acta* **1604**, 77-94.

60. Igamberdiev, A. U. and Kleczkowski, L. A. (2003) Membrane potential, adenylate levels and Mg^{2+} are interconnected via adenylate kinase equilibrium in plant cells. *Biochim. Biophys. Acta* **1607**, 111-119.

61. Zhang, H., Huang, H. M., Carson, R. C., Mahmood, J., Thomas, H. M. and Gibson, G. E. (2001) Assessment of membrane potentials of mitochondrial populations in living cells. *Anal. Biochem.* **298**, 170-180.

62. Wan, B., Doumen, C., Duszynski, J., Salama, G., Vary, T. C. and LaNoue, K. F. (1993) Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. *Am. J. Physiol.* **265**, H453-H460.

63. Socco, M., Laus, M. N., Spera, G. P., Trono, D., Pompa, M., Flagella, Z. and Pastore, D. (2013) Mitochondrial proline oxidation is affected by hyperosmotic stress in durum wheat seedlings. *Ann. Appl. Biol.* **157**, 1-11.