CHEEGER’S CONSTANT AND THE FIRST EIGENVALUE OF A CLOSED FINSLER MANIFOLD

LIXIA YUAN AND WEI ZHAO

Abstract. In this paper, we consider Cheeger’s constant and the first eigenvalue of the nonlinear Laplacian on a closed Finsler manifold. A Cheeger type inequality and a Buser type inequality are established for closed Finsler manifolds. As an application, we obtain a Finslerian version of Yau’s lower estimate for the first eigenvalue.

1. Introduction

The study of the eigenvalues of Laplacian is a classical and important problem in Riemannian geometry, which highlights the interplay of the geometry-topology of the manifold with the analytic properties of functions. In order to bound below the first eigenvalue \(\lambda_1(M) \) of a closed Riemannian manifold \((M^n, g) \), Cheeger [10] introduced Cheeger’s constant

\[
\mathfrak{h}(M) := \inf_{\Gamma} \frac{A(\Gamma)}{\min\{\text{Vol}(D_1), \text{Vol}(D_2)\}},
\]

where \(\Gamma \) varies over compact \((n-1)\)-dimensional submanifolds of \(M \) which divide \(M \) into disjoint open submanifolds \(D_1, D_2 \) of \(M \) with common boundary \(\partial D_1 = \partial D_2 = \Gamma \), and he proved that

\[
\lambda_1(M) \geq \frac{\mathfrak{h}^2(M)}{4}.
\]

Moreover, even if \(M \) has a boundary, Cheeger’s inequality still holds if \(\lambda_1(M) \) is subject to the Neumann boundary condition or the Dirichlet boundary condition [8, 17]. This inequality has found a number of applications, e.g., [6, 8, 15].

It is an important result due to Buser [7] that \(\mathfrak{h}(M) \) is actually equivalent to \(\lambda_1(M) \), with constants depending only on the dimension and the Ricci curvature of \(M \). More precisely, if \(\text{Ric} \geq -(n-1)\delta^2 \), then

\[
\lambda_1(M) \leq C(n)(\delta \mathfrak{h}(M) + \mathfrak{h}^2(M)).
\]

We refer to [10, 8, 13, 5] for more details of these two inequalities.

Finsler geometry is just Riemannian geometry without quadratic restriction. However, there are many Laplacians on a Finsler manifold, e.g., [3]. Among them, an important one was introduced by Shen [19], which is obtained by a canonical energy functional on the Sobolev space and is exactly the Laplace-Beltrami operator if the Finsler metric is Riemannian. This Laplacian has a close relationship with curvatures and plays a crucial role in establishing the comparison theorems for Finsler geometry.

2010 Mathematics Subject Classification. Primary 53B40, Secondary 47J10.

Key words and phrases. Finsler manifold, Cheeger constant, the first eigenvalue, Cheeger’s inequality, Buser’s inequality.
manifolds\cite{18,20,21,24}, but it is quasilinear and dependent on the measure. While the measure on a Finsler manifold can be defined in various ways and essentially different results may be obtained, e.g.,\cite{1,2}. In general, the eigenfunctions of this Laplacian are not smooth but $C^{1,\alpha}$\cite{14}. Hence, it seems indeed difficult to compute the first eigenvalue even for a the Euclidean sphere S^n equipped with a Randers metric $F = \alpha + \beta$, where α is the canonical Riemannian metric and β is a 1-form on S^n. The purpose of this paper is to investigate the relationship between Cheeger’s constant and the first eigenvalue of such Laplacian.

Let $(M, F, d\mu)$ be a closed Finsler n-manifold, where $d\mu$ be any measure on M. According to\cite{18,19}, the first nontrivial eigenvalue $\lambda_1(M)$ is defined as

$$\lambda_1(M) = \inf_{f \in \mathcal{H}_0(M) \setminus \{0\}} \frac{\int_M F^* (df) d\mu}{\int_M |f|^2 d\mu},$$

where F^* is the dual metric of F and $\mathcal{H}_0(M) := \{ f \in W^1_2(M) : \int_M f d\mu = 0 \}$. It follows from\cite{14,18,19} that $\lambda_1(M)$ is the smallest positive eigenvalue of Shen’s Laplacian. Inspired by\cite{11,18,19}, we define Cheeger’s constant of a closed Finsler manifold as

$$h(M) = \inf_{\Gamma} \frac{\min\{A_+(\Gamma)\}}{\min\{\mu(D_1), \mu(D_2)\}},$$

where Γ varies over compact $(n-1)$-dimensional submanifolds of M which divide M into disjoint open submanifolds D_1, D_2 of M with common boundary $\partial D_1 = \partial D_2 = \Gamma$ and $A_\pm(\Gamma)$ denote the areas of Γ induced by the outward and inward normal vector fields n_\pm. In general, $A_+(\Gamma) \neq A_-(\Gamma)$. In fact, one can construct examples in which the ratio of these two areas can be arbitrarily large (see\cite{11}).

First, we have the following Cheeger type inequality.

Theorem 1.1. Let $(M, F, d\mu)$ be a closed Finsler manifold with the reversibility $\lambda_F \leq \lambda$. Then

$$\lambda_1(M) \geq \frac{h^2(M)}{4\lambda^2}. $$

It should be remarkable that if M has a boundary, Chen\cite{11} proved the above inequality still holds if λ_1 subject to the Dirichlet boundary condition. Recall the uniform constant\cite{12} Λ_F is defined as

$$\Lambda_F := \sup_{X,Y,Z \in TM \setminus \{0\}} \frac{g_z(X,X)}{g_z(Y,Y)}.$$

$\Lambda_F \geq 1$ with equality if and only if F is Riemannian. As an application of Theorem\cite{11}, we obtain the following theorem, which is a Finslerian version of Yau’s lower estimate for the first eigenvalue\cite{22}.

Theorem 1.2. Let $(M, F, d\mu)$ be a closed Finsler manifold, where $d\mu$ is either the Busemann-Hausdorff measure or the Holmes-Thompson measure. Then $\lambda_1(M)$ can be bounded from below in terms of the diameter, volume, uniform constant and a lower bound for the Ricci curvature.

Moreover, we also have a Buser type inequality for Finsler manifolds.
Theorem 1.3. Let \((M, F, d\mu)\) be a closed Finsler \(n\)-manifold with the Ricci curvature \(\text{Ric} \geq -(n-1)\delta^2\) and the uniform constant \(\Lambda_F \leq \Lambda\). Then
\[
\lambda_1(M) \leq C(n, \Lambda) \left(\delta h(M) + h^2(M)\right).
\]

In the Riemannian case, \(\lambda_F = \Lambda_F = 1\). Hence, Theorem 1.1 implies \((1.2)\) while Theorem 1.3 implies \((1.3)\). In particular, for a Randers metric \(F = \alpha + \beta\), the uniform constant \(\Lambda_F = (1+b)^2(1-b)^{-2}\), where \(b := \sup_{x \in M} \|\beta\|_\alpha(x)\) (see Corollary 6.3 below). For the Busemann-Hausdorff measure or the Holmes-Thompson measure, the S-curvature of a Berwald metric always vanishes (see Theorem 6.5 below). Then we have the following corollary.

Corollary 1.4. Let \((M, F, d\mu)\) be a closed Finsler \(n\)-manifold with the Ricci curvature \(\text{Ric} \geq -(n-1)k^2\).

1. If \(F = \alpha + \beta\), then \(\lambda_1(M) \leq C(n, b) \left(\delta h(M) + h^2(M)\right)\).
2. If \(F\) is a Berwald metric, then \(\lambda_1(M) \leq C(n, \lambda_F) \left(\delta h(M) + h^2(M)\right)\).

2. PRELIMINARIES

In this section, we recall some definitions and properties about Finsler manifolds. See \([14, 18]\) for more details.

Let \((M, F)\) be a (connected) Finsler \(n\)-manifold with Finsler metric \(F : TM \to [0, \infty)\). Let \((x, y) = (x', y')\) be local coordinates on \(TM\). Define
\[
g_{ij}(x, y) := \frac{1}{2} \frac{\partial^2 F^2(x, y)}{\partial y^i \partial y^j}, \quad G^i(y) := \frac{1}{4} y^i(y) \left(2 \frac{\partial g_{ij}}{\partial x^k}(y) - \frac{\partial g_{jk}}{\partial x^i}(y)\right) y^j y^k,
\]
where \(G^i\) is the geodesic coefficients. A smooth curve \(\gamma(t)\) in \(M\) is called a (constant speed) geodesic if it satisfies
\[
\frac{d^2 \gamma^i}{dt^2} + 2G^i \left(\frac{d\gamma}{dt}\right) = 0.
\]
Define the Ricci curvature by \(\text{Ric}(y) := \sum_{i=1}^n R^i_{ik}(y)\), where
\[
R^i_{ik}(y) := 2 \frac{\partial G^i}{\partial x^k} - y^j \frac{\partial^2 G^i}{\partial y^j \partial y^k} + 2 G^j \frac{\partial G^i}{\partial y^j} \frac{\partial G^j}{\partial y^k} - \frac{\partial G^i}{\partial y^j} \frac{\partial G^j}{\partial y^k}.
\]
Set \(S_x M := \{y \in T_x M : F(x, y) = 1\}\) and \(SM := \cup_{x \in M} S_x M\). The reversibility \(\lambda_F\) and the uniformity constant \(\Lambda_F\) of \((M, F)\) are defined by
\[
\lambda_F := \sup_{y \in SM} F(-y), \quad \Lambda_F := \sup_{X, Y, Z \in SM} \frac{g_X(Y, Y)}{g_Z(Y, Y)}.
\]
Clearly, \(\Lambda_F \geq \lambda_F^2 \geq 1 \cdot \lambda_F = 1\) if and only if \(F\) is reversible, while \(\Lambda_F = 1\) if and only if \(F\) is Riemannian.

The dual Finsler metric \(F^*\) on \(M\) is defined by
\[
F^*(\eta) := \sup_{X \in T_x M \setminus \{0\}} \frac{\eta(X)}{F(X)}, \quad \forall \eta \in T_x^* M.
\]
The Legendre transformation \(\mathcal{L} : TM \to T^* M\) is defined by
\[
\mathcal{L}(X) := \begin{cases} \quad g_X(X, \cdot) & X \neq 0, \\ 0, & X = 0. \end{cases}
\]
In particular, $F^*(\mathcal{L}(X)) = F(X)$. Now let $f : M \rightarrow \mathbb{R}$ be a smooth function on M. The gradient of f is defined by $\nabla f = \mathcal{L}^{-1}(df)$. Thus we have $d\nabla f = g_{ij}(\nabla f, X_i)$. Let $d\mu$ be a measure on M. In a local coordinate system (x^i), express $d\mu = \sigma(x)dx^1 \wedge \cdots \wedge dx^n$. In particular, the Busemann-Hausdorff measure $d\mu_{BH}$ and the Holmes-Thompson measure $d\mu_{HT}$ are defined by

$$
\frac{\text{Vol}(\mathbb{B}^n)}{\text{Vol}(B_x M)} dx^1 \wedge \cdots \wedge dx^n,
$$

$$
\frac{1}{\text{Vol}(\mathbb{B}^n)} \int_{B_x M} \det g_{ij}(x,y)dy^1 \wedge \cdots \wedge dy^n dx^1 \wedge \cdots \wedge dx^n,
$$

where $B_x M := \{ y \in T_x M : F(x,y) < 1 \}$. For $y \in T_x M \setminus \{0\}$, define the distorsion of $(M,F,d\mu)$ as

$$
\tau(y) := \log \frac{\sqrt{\det g_{ij}(x,y)}}{\sigma(x)}.
$$

And S-curvature S is defined by

$$
S(y) := \frac{d}{dt}[\tau(\gamma(t))]|_{t=0},
$$

where $\gamma(t)$ is the geodesic with $\dot{\gamma}(0) = y$.

3. A Cheeger type inequality for Finsler manifolds

Definition 3.1 (14, 19). Let $(M,F,d\mu)$ be a compact Finsler manifold. Denote $\mathcal{H}_0(M)$ by

$$
\mathcal{H}_0(M) := \left\{ \begin{array}{ll}
\{ f \in W^1_2(M) : \int_M f d\mu = 0 \}, & \partial M = \emptyset, \\
\{ f \in W^1_2(M) : f|_{\partial M} = 0 \}, & \partial M \neq \emptyset.
\end{array} \right.
$$

Define the canonical energy functional E on $\mathcal{H}_0(M) \setminus \{0\}$ by

$$
E(u) := \frac{\int_M F^*(du)^2 d\mu}{\int_M u^2 d\mu}.
$$

λ is an eigenvalue of $(M,F,d\mu)$ if there is a function $u \in \mathcal{H}_0(M) \setminus \{0\}$ such that $d_u E = 0$ with $\lambda = E(u)$. In this case, u is called an eigenfunction corresponding to λ. The first eigenvalue of $(M,F,d\mu)$, $\lambda_1(M)$, is defined by

$$
\lambda_1(M) := \inf_{u \in \mathcal{H}_0(M) \setminus \{0\}} E(u),
$$

which is the smallest positive critical value of E.

Remark 1. It should be noticeable that u is an eigenfunction corresponding to λ if and only if

$$
\Delta u + \lambda u = 0 \text{ (in the weak sense)},
$$

where $\Delta := \text{div} \circ \nabla$ is the Laplacian induced by Shen[14, 18, 19].

Let $i : \Gamma \rightarrow M$ be a smooth hypersurface embedded in M. For each $x \in \Gamma$, there exist two 1-forms $\omega_\pm(x) \in T_x^* M$ satisfying $i^*(\omega_\pm(x)) = 0$ and $F^*(\omega_\pm(x)) = 1$. Then $n_\pm(x) := \mathcal{L}^{-1}(\omega_\pm(x))$ are two unit normal vectors on Γ. In general, $n_- \neq -n_+$ (see [11]). Let $d A_\pm$ denote the (area) measures induced by n_\pm, i.e., $d A_\pm = i^*(n_\pm) d\mu$.
Definition 3.2. Let \((M, F, d\mu)\) be a closed Finsler manifold. Cheeger’s constant \(C(M)\) is defined by

\[
C(M) = \inf \frac{\min\{A\pm(\Gamma)\}}{\min\{\mu(D_1), \mu(D_2)\}},
\]

where \(\Gamma\) varies over compact \((n-1)\)-dimensional submanifolds of \(M\) which divide \(M\) into disjoint open submanifolds \(D_1, D_2\) of \(M\) with common boundary \(\partial D_1 = \partial D_2 = \Gamma\).

To prove Theorem 1.1, we need the following co-area formula.

Theorem 3.3 ([18]). Let \((M, F, d\mu)\) be a Finsler manifold and \(\phi\) is piecewise smooth function with compact support. Then for any continuous function \(f\),

\[
\int_M f d\mu = \int_0^\infty \left[\int_{\phi^{-1}(t)} f \frac{dA_n}{F(\nabla\phi)} \right] dt,
\]

where \(n := \nabla\phi / F(\nabla\phi)\).

Theorem 3.3 then yields the following lemma.

Lemma 3.4. For all positive function \(f \in C^\infty(M)\), we have

1. \(\int_0^\infty \mu(\Omega(t)) dt = \int_M f d\mu\),
2. \(C(M) \int_0^\infty \min\{\mu(\Omega(t)), \mu(M) - \mu(\Omega(t))\} dt \leq \int_M F^*(df) d\mu\),

where \(\Omega(t) := \{x \in M : f(x) \geq t\}\).

Proof. Without loss of generality, we assume that \(f\) is nonconstant. For almost every \(t \in [\min f, \max f]\), \(\Omega(t)\) is a domain in \(M\), with compact closure and smooth boundary. Note that \(n := \nabla\phi / F(\nabla\phi)\) is a unit normal vector field along \(\partial \Omega(t)\).

(1). It follows Theorem 3.3 that

\[
\frac{d}{dt} \mu(\Omega(t)) = - \int_{\phi^{-1}(t)} \frac{dA_n}{F(\nabla\phi)}.
\]

Thus, we have

\[
\int_0^\infty \mu(\Omega(t)) dt = - \int_0^\infty t d\mu(\Omega(t)) = \int_0^\infty t dt \int_{\phi^{-1}(t)} \frac{dA_n}{F(\nabla\phi)} = \int_M f d\mu.
\]

(2). Theorem 3.3 now yields

\[
\int_M F^*(df) d\mu = \int_0^\infty A_n(\partial \Omega(t)) dt \geq C(M) \int_0^\infty \min\{\mu(\Omega(t)), \mu(M) - \mu(\Omega(t))\} dt.
\]

Proof of Theorem 1.1 Given a smooth function \(f\) on \(M\), let \(\alpha\) be a median of \(f\), i.e.,

\[
\mu(\{x : f(x) \geq \alpha\}) \geq \frac{1}{2} \mu(M), \mu(\{x : f(x) \leq \alpha\}) \geq \frac{1}{2} \mu(M).
\]

Set \(f_+ := \max\{f - \alpha, 0\}\) and \(f_- := \min\{f - \alpha, 0\}\). By the definition of median, one can check that for any \(t > 0\),

\[
\mu(\{x : f_+^2(x) \geq t\}) \leq \frac{1}{2} \mu(M), \mu(\{x : f_-^2(x) \geq t\}) \leq \frac{1}{2} \mu(M).
\]
Thus, the above inequalities together with Lemma 3.4 yield
\[
\int_M |f - \alpha|^2 d\mu = \int_M (f_+^2 + f_-^2) d\mu
\]
\[
= \int_M F^*(df_+^2) d\mu + \int_M F^*(df_-^2) d\mu = 2 \int_M f_+ F^*(df_+) + (-f_-) F^*(-df_-) d\mu
\]
\[
\leq 2\lambda \int_M |f - \alpha| F^*(df) d\mu \leq 2\lambda \left(\int_M |f - \alpha|^2 d\mu \right)^{1/2} \left(\int_M F^{*2}(df) d\mu \right)^{1/2}.
\]
Hence,
\[
\int_M F^{*2}(df) d\mu \geq \frac{\lambda^2}{4\lambda^2} \int_M |f - \alpha|^2 d\mu.
\]
Since \(\int_M f d\mu = 0 \),
\[
\inf_{\alpha \in \mathbb{R}} \int_M |f - \alpha|^2 d\mu \geq \int_M f^2 d\mu.
\]
\[\square\]

By a Croke type isoperimetric inequality, one has the following result. Also refer to Theorem 6.2, Proposition 6.4 for a reversible version of the isoperimetric inequality.

Theorem 3.5 ([23, 24]). Let \((M, F, d\mu)\) be a closed Finsler manifold with \(\text{Ric} \geq (n-1)k\), where \(d\mu\) denotes either the Busemann-Hausdorff measure or the Holmes-Thompson measure. Then
\[
\lambda_1(M) \geq \frac{(n-1)\mu(M)}{4 \text{Vol}(\mathbb{S}^{n-2}) \Lambda_{F}^{4n+4} \text{diam}(M) \int_0^{\text{diam}(M)} s_k^{n-1}(t) dt},
\]
where \(\text{diam}(M)\) denotes the diameter of \(M\).

Theorem 3.5 together with Theorem 1.1 now yields a Finslerian version of Yau’s lower estimate for the first eigenvalue [22].

Theorem 3.6. Let \((M, F, d\mu)\) be a closed Finsler manifold with \(\text{Ric} \geq (n-1)k\), where \(d\mu\) denotes either the Busemann-Hausdorff measure or the Holmes-Thompson measure. Then
\[
\lambda_1(M) \geq \left(\frac{(n-1)\mu(M)}{4 \text{Vol}(\mathbb{S}^{n-2}) \Lambda_{F}^{4n+4} \text{diam}(M) \int_0^{\text{diam}(M)} s_k^{n-1}(t) dt} \right)^2.
\]
That is, \(\lambda_1(M)\), of a closed Finsler manifold, can be bounded from below in terms of the diameter, volume, uniform constant and a lower bound for the Ricci curvature.

4. Volume Comparison

In this section, we will study the properties of the polar coordinate system of a Finsler manifold, which is useful to show Theorem 1.3. Refer to [20, 24] for more details.

Let \((M, F, d\mu)\) be a forward complete Finsler \(n\)-manifold. In the rest of this paper, we always assume that \(d\mu\) is either the Busemann-Hausdorff measure or the...
Homles-Thompson measure. Given \(p \in M \), denote by \((r,y) = (r,\theta^n), 1 \leq \alpha \leq n, \) the polar coordinates about \(p \). Express
\[
d\mu = \hat{\sigma}(r,y) dr \wedge dv_p(y),
\]
where \(dv_p \) is the measure on \(S_p M \) induced by \(F \).

Lemma 4.1. Let \((M, F, d\mu)\) be as above. If \(\text{Ric} \geq (n - 1)k \) \((k \leq 0)\) and \(\Lambda_F \leq \Lambda \), then

1. \(\hat{\sigma}(\min\{i_y, r\}, y) \geq \Lambda^{-2n} \frac{A_n,k(r)}{V_n,k(R)} \int_r^R \hat{\sigma}(\min\{i_y, t\}, y) dt, \forall 0 < r \leq R; \)
2. \(\int_{r_0}^{r_1} \hat{\sigma}(\min\{i_y, t\}, y) dt \geq \Lambda^{2n} \frac{V_n,k(r_1) - V_n,k(r_0)}{V_n,k(r_2) - V_n,k(r_1)} \int_{r_1}^{r_2} \hat{\sigma}(\min\{i_y, t\}, y) dt, \forall 0 < r_0 < r_1 < r_2; \)
3. \(\int_0^r \hat{\sigma}(\min\{i_y, t\}, y) dt \geq \Lambda^{-2n} \frac{V_n,k(r)}{V_n,k(R)} \int_0^R \hat{\sigma}(\min\{i_y, t\}, y) dt, \forall 0 < r \leq R. \)

Here, \(V_n,k(r) \) (resp. \(A_n,k(r) \)) is the volume (resp. area) of ball (resp. sphere) with radius \(r \) in the Riemannian space form of constant curvature \(k \), that is,
\[
A_n,k(r) = \text{Vol}(S^{n-1})g^{n-1}_k(r), \quad V_n,k(r) = \text{Vol}(S^n) \int_0^r g^{n-1}_k(t) dt.
\]

Proof. It is easy to check that \(\Lambda^{-n} \leq e^{-\tau(y)} \leq \Lambda^n \), for all \(y \in SM \). By \([20, 24]\), for each \(y \in S_p M \), we have
\[
\frac{\partial}{\partial r} \left(\frac{\hat{\sigma}_p(r,y)}{e^{-\tau(y)} g^{n-1}_k(r)} \right) \leq 0, \quad 0 < r < i_y,
\]
which implies
\[
\frac{\partial}{\partial r} \left(\frac{\hat{\sigma}_p(\min\{r, i_y\}, y)}{e^{-\tau(y)\min\{r, i_y\)} g^{n-1}_k(r)} \right) \leq 0, \text{ a.e. } r > 0.
\]

Hence,
\[
\frac{\hat{\sigma}_p(\min\{r, i_y\}, y)}{\hat{\sigma}_p(\min\{R, i_y\}, y)} \geq \frac{e^{-\tau(y)\min\{r, i_y\)} g^{n-1}_k(r)}{e^{-\tau(y)\min\{R, i_y\)} g^{n-1}_k(r)} \geq \Lambda^{-2n} \frac{g^{n-1}_k(r)}{g^{n-1}_k(R)}, \quad 0 < r \leq R.
\]

Then (1), (2) follows. And (3) follows from Gromov’s lemma\([9, \text{Lemma 3.1}]\). \(\square\)

Note that \(d\mathcal{A}_+(r,y) := \hat{\sigma}(r,y) dv_p(y) \) is the measure on \(S^+_g(r) \) induced by \(\nabla r \). Then we have the following result.

Lemma 4.2. Let \(i : \Gamma \hookrightarrow M \) be a hypersurface. If the reversibility \(\lambda_F \leq \lambda \), then
\[
dA_+(r,y) \geq \lambda^{-1} d\mathcal{A}_+(r,y), \text{ for any point } (r,y) = x \in \Gamma \ (r > 0).
\]

Proof. Let \(n \) denote a unit normal vector field on \(\Gamma \). Thus,
\[
d\mathcal{A}_+ = |i^*(\nabla r) d\mu| = |g_n(n, \nabla r)| dA_n \leq \lambda dA_n.
\]
\(\square\)
5. A Buser type isoperimetric inequality for starlike domains

In this section, we will extend Buser’s isoperimetric inequality[7, Lemma 5.1] to Finsler setting. However, the original method of Buser’s cannot be used directly, since the Finsler metrics considered here can be nonreversible. To overcome this difficulty, we introduce the “reverse” of a Finsler metric. The reverse of a Finsler metric F is defined by $\tilde{F}(y) := F(-y)$.

A direct calculation yields the following two lemmas.

Lemma 5.1. For each $y \neq 0$, we have
\[\tilde{G}^i(y) = G^i(-y), \quad \tilde{\text{Ric}}(y) = \text{Ric}(-y), \]
where \tilde{G}^i (resp. G^i) is the spray of \tilde{F} (resp. F) and $\tilde{\text{Ric}}$ (resp. Ric) is the Ricci curvature of \tilde{F} (resp. F). Hence, if γ is a geodesic of F, then the reverse of γ is a geodesic of \tilde{F}.

Lemma 5.2. Let (M, F) be a Finsler manifold. Then $d\bar{\mu} = d\mu$, where $d\bar{\mu}$ (resp. $d\mu$) denotes the Busemann-Hausdorff measure or the Holmes-Thompson measure of \tilde{F} (resp. F).

Corollary 5.3. Let $(M, F, d\mu)$ be a Finsler manifold and Γ be a smooth hypersurface embedded in M. Thus $\tilde{\Lambda}_\pm(\Gamma) = \Lambda_\mp(\Gamma)$, where $d\bar{\Lambda}$ (resp. $d\Lambda$) denote the induced measure on Γ by $d\bar{\mu}$ (resp. $d\mu$).

Proof. Let n_\pm (resp. \tilde{n}_\pm) be the unit normal vector along Γ in (M, F) (resp. (M, \tilde{F})). It is easy to check that $\tilde{n}_\pm = -n_\mp$. Then we are done by Lemma 5.2. \square

From above, we obtain the following key lemma.

Lemma 5.4. Let D be a star-like domain (with respect to p) in M with $B^+_p(r) \subset D \subset B^+_p(R)$. Let Γ be a smooth hypersurface embedded in D which divides D into disjoint open sets D_1, D_2 in D with common boundary $\partial D_1 = \partial D_2 = \Gamma$. Suppose $\text{Ric} \geq (n-1)(k < 0)$ and $\Lambda F \leq \Lambda$. If $\mu(D_1 \cap B^+_p(r/(2\sqrt{\Lambda}))) \leq \frac{1}{\alpha} \mu(B^+_p(r/(2\sqrt{\Lambda})))$, then
\[
\frac{\tilde{\Lambda}_\pm(\Gamma)}{\mu(D_1)} \geq \max_{0 < \beta < 2\sqrt{\Lambda}} \left\{ A_{n,k}(\beta) \left(\frac{-V_{n,k}(r)}{2\sqrt{\Lambda}} \right) - V_{n,k}(\beta) \right\},
\]

Proof. For convenience, set $B(\rho) := B^+_p(\rho)$, for any $\rho > 0$. Clearly, $\mu(D_1 \cap B(r/(2\sqrt{\Lambda}))) \leq \mu(D_2 \cap B(r/(2\sqrt{\Lambda})))$. Let $\alpha \in (0,1)$ be a constant which will be chosen later.

Step 1: Suppose $\mu(D_1 \cap B(r/(2\sqrt{\Lambda}))) \leq \alpha \mu(D_1)$.

For each $q \in D_1 - \text{Cut}_p$, set q^* is the last point on the minimal geodesic segment γ_{pq} from p to q, where this ray intersects Γ. If the whole segment γ_{pq} is contained in D_1, set $q^* := p$.

Fix a positive number $\beta \in (0, r/(2\sqrt{\Lambda}))$. Let (t, y) denote the polar coordinate system about p. Given a point $q = (\rho, y) \in D_1 - \text{Cut}_p - B(r/(2\sqrt{\Lambda}))$, set
\[
\text{rod}(q) := \{(t, y) : \beta \leq t \leq \rho\}.
\]
Define
\[D_1^1 := \{ q \in D_1 - \text{Cut}_p - B(\rho/(2\sqrt{A})) : q^* \notin B(\beta) \}; \]
\[D_1^2 := \{ q \in D_1 - \text{Cut}_p - B(\rho/(2\sqrt{A})) : \text{rod}(q) \subset D_1 \}; \]
\[D_1^3 := \{ q \in B(\rho/(2\sqrt{A})) - B(\beta) : \exists x \in D_1^2, \text{such that } q \in \text{rod}(x) \}. \]

By Lemma 4.1, we obtain that
\[\frac{\mu(D_1^1)}{\mu(D_1^2)} \geq \Lambda^{-2n} \frac{V_{n,k}(\rho/(2\sqrt{A})) - V_{n,k}(\beta)}{V_{n,k}(\rho/(2\sqrt{A}))} =: \gamma^{-1}. \]

It follows from the assumption that
\[(1 - \alpha)\mu(D_1) \leq \mu(D_1 - B(\rho/(2\sqrt{A}))), \quad \mu(D_1^1) \leq \mu(D_1 \cap B(\rho/(2\sqrt{A}))) \leq \alpha \mu(D_1). \]

Note that \(D_1 - B(\rho/(2\sqrt{A})) \subset D_1^1 \cup D_1^2 \). From above, we have
\[(5.1) \quad (1 - \alpha)\mu(D_1) \leq \mu(D_1^2) + \mu(D_1^1) \leq \gamma \alpha \mu(D_1) + \mu(D_1^1). \]

Set \(\mathcal{C}_0 := \{ y \in S_p M : \exists t > 0, \text{such that } (t, y) \in D_1^1 \} \). Clearly,
\[\mu(D_1^1) = \int_{\mathcal{C}_0} \: d\nu_p(y) \int_{r/(2\sqrt{A})}^{\min\{R, t_r\}} \chi_{D_1^1}(\exp_p(ty)) \cdot \hat{\sigma}(t, y)dt, \]
where
\[\chi_{D_1^1}(x) = \begin{cases} 1, & x \in D_1^1, \\ 0, & x \notin D_1^1. \end{cases} \]

Given \(y \in \mathcal{C}_0 \), we can write
\[\int_{r/(2\sqrt{A})}^{\min\{R, t_r\}} \chi_{D_1^1}(\exp_p(ty)) \cdot \hat{\sigma}(t, y)dt = \sum_{j_y} \int_{a_{j_y}}^{b_{j_y}} \hat{\sigma}(t, y)dt, \]
where \(\exp_p(b_{j_y}) \in \Gamma \) and \(\exp_p(a_{j_y}) \in \Gamma \) if \(a_{j_y} > r/(2\sqrt{A}) \).

Set
\[c_{j_y} := \begin{cases} a_{j_y}, & a_{j_y} > r/(2\sqrt{A}); \\ F\left(\exp_p^{-1}\left(\left(\exp_p \frac{r}{2\sqrt{A}} y\right)^*\right)\right), & a_{j_y} = r/(2\sqrt{A}). \end{cases} \]

Thus, \(\beta \leq c_{j_y} \leq a_{j_y} \) and \(\exp_p(c_{j_y}) \in \Gamma \). Lemma 4.1 then yields
\[\sum_{j_y} \int_{a_{j_y}}^{b_{j_y}} \hat{\sigma}(t, y)dt \leq \sum_{j_y} \int_{c_{j_y}}^{b_{j_y}} \hat{\sigma}(t, y)dt \leq \Lambda^{2n} \sum_{j_y} \frac{V_{n,k}(b_{j_y}) - V_{n,k}(c_{j_y})}{A_{n,k}(c_{j_y})} \hat{\sigma}(c_{j_y}, y) \]
\[\leq \Lambda^{2n} \frac{V_{n,k}(R) - V_{n,k}(\beta)}{A_{n,k}(\beta)} \sum_{j_y} \hat{\sigma}(c_{j_y}, y). \]

The inequality above together with Lemma 4.2 yields
\[\mu(D_1^1) \leq \Lambda^{2n} \frac{V_{n,k}(R) - V_{n,k}(\beta)}{A_{n,k}(\beta)} \int_{\mathcal{C}_0} \: d\nu_p(y) \int_{r/(2\sqrt{A})}^{\min\{R, t_r\}} \chi_{D_1^1}(\exp_p(ty)) \cdot \hat{\sigma}(t, y)dt \]
\[\leq \Lambda^{2n+1} \frac{V_{n,k}(R) - V_{n,k}(\beta)}{A_{n,k}(\beta)} A_\pm(\Gamma). \]
Combining (5.1) and (5.2), we obtain
\[\frac{A_n(\Gamma)}{\mu(D_1)} = \frac{A_n(\Gamma) \mu(D_1)}{\mu(D_1)} \geq \Lambda^{-\left(2n+\frac{1}{2}\right)}(1 - \alpha(1 + \gamma)) \frac{A_n,k(\beta)}{V_{n,k}(R) - V_{n,k}(\beta)}. \]

Step 2: Suppose \(\mu(D_1 \cap B(r/(2\sqrt{\Lambda}))) \geq \alpha \mu(D_1). \)

Then Fubini’s theorem together with [4, Lemma 8.5.4] yields that
\[: \text{Suppose that} \]
\[(q, w, \beta) \in \left(\frac{(q, w, \beta)}{w, \beta} \right) \text{and} \]
\[\text{Hence, for each} \]
\[(q, w, \beta) \in (W_1 \times W_2) \setminus N, \text{there exists a unique minimal geodesic} \]
\[\gamma_{wp} \text{from} \]
\[w \text{to} q \text{with the length} \]
\[L_F(\gamma_{wp}) \leq r. \]

We claim that \(\gamma_{wp} \) is contained in \(B(r). \) In fact, if \(\gamma_{wp} \cap S_p^+(r) = \{ w_1, q_1 \} \) (which may coincide), then
\[d(w_1, q_1) \geq d(p, w_1) - d(p, w) > \left(1 - \frac{1}{2\sqrt{\Lambda}} \right) r, \]
\[d(q_1, q) > \frac{1}{\sqrt{\Lambda}} \left(1 - \frac{1}{2\sqrt{\Lambda}} \right) r. \]

Hence, \(L_F(\gamma_{wp}) \geq d(w_1, q_1) > r, \) which is a contradiction!

Since \(\gamma_{wp} \) is contained in \(B(r), \) it must intersect \(\Gamma. \) Denote by \(q^* \) the last point on \(\gamma_{wp} \) where \(\gamma_{wp} \) intersects \(\Gamma. \)

Define
\[V_1 := \{ (q, w) \in W_1 \times W_2 : d(w, q^*) \geq d(q^*, q) \}, \]
\[V_2 := \{ (q, w) \in W_1 \times W_2 : d(w, q^*) \leq d(q^*, q) \}, \]
where \(q^* \) is defined as above. Since \(\mu_\times(V_1 \cup V_2) = \mu_\times(W_1 \times W_2), \) we have
\[\mu_\times(V_1) \geq \frac{1}{2} \mu_\times(W_1 \times W_2) \text{ or } \mu_\times(V_2) \geq \frac{1}{2} \mu_\times(W_1 \times W_2). \]

Case I: Suppose that \(\mu_\times(V_1) \geq \frac{1}{2} \mu_\times(W_1 \times W_2). \)

Note that
\[\mu_\times(V_1) = \int_{w \in W_2} d\mu \int_{(q \in W_1: d(q^*, q) \geq d(q^*, q)) - \text{Cut}_w} d\mu. \]

Thus, there exist a point \(w_2 \in W_2 \) and a measurable set \(U_1 \subset W_1 \) such that
1. For each \(q \in U_1, \) \(d(w_2, q^*) \geq d(q^*, q) \) and \((q, w_2) \notin N. \)
2. \(\mu(U_1) \geq \frac{1}{2} \mu(W_1): \)

Let \((t, y) \) denote the polar coordinates about \(w_2. \) For \(q = (\rho, y) \in U_1, \) set \(q^* := (\rho^*, y). \) Since \(\rho^* = d(w, q^*) \geq d(q^*, q) = \rho - \rho^*, \rho^* \geq \rho/2. \) Set \(\rho^{**} := \sup \{ s : \exp_{w_2}(ty), t \in [\rho^*, s], \text{is contained in} \ U_1 - \text{Cut}_{w_2} \}. \) Then \(\tilde{q} := (\rho^{**}, y) \in B(r/(2\sqrt{\Lambda})), \) which implies
\[\rho^{**} = d(w_2, \tilde{q}) \leq d(w_2, p) + d(p, \tilde{q}) < \frac{r}{2} + \frac{r}{2\sqrt{\Lambda}} \leq r. \]
Since \((\bar{q})^*=q^*, \rho^*\geq \rho^{**}/2\). Lemma 4.1 then yields
\[
\frac{\hat{\sigma}(\rho^*, y)}{\int_{\rho}^{\rho^*} \hat{\sigma}(t, y) dt} \geq \Lambda^{-2n} \frac{A_{n,k}(\rho^*)}{V_{n,k}(\rho^*) - V_{n,k}(\rho^*)} \geq \Lambda^{-2n} \frac{A_{n,k}(\rho^{**}/2)}{V_{n,k}(\rho^{**}) - V_{n,k}(\rho^{**}/2)}
\]

\[
\geq \Lambda^{-2n} \frac{A_{n,k}(r/2)}{V_{n,k}(r) - V_{n,k}(r/2)}
\]

Lemma 4.2 now yields that
\[
d A_{\pm}(\rho^*, y) \geq \Lambda^{-(2n+\frac{1}{2})} \frac{A_{n,k}(r/2)}{V_{n,k}(r) - V_{n,k}(r/2)} \left(\int_{\rho}^{\rho^*} \hat{\sigma}(t, y) dt\right) d\nu_{w^2}(y).
\]

Hence,
\[
A_{\pm}(\Gamma) \geq A_{\pm}(\Gamma \cap B(r/(2\sqrt{A}))) \geq \Lambda^{-(2n+\frac{1}{2})} \frac{A_{n,k}(r/2)}{V_{n,k}(r) - V_{n,k}(r/2)} \mu(U_1).
\]

By assumption, we have
\[
\alpha \mu(D_1) \leq \mu(D_1 \cap B(r/(2\sqrt{A}))) = \mu(W_1) \leq 2\mu(U_1),
\]
which implies
\[
\frac{A_{\pm}(\Gamma)}{\mu(D_1)} \geq \frac{\alpha}{2\Lambda^{2n+\frac{3}{2}}} \frac{A_{n,k}(r/2)}{V_{n,k}(r) - V_{n,k}(r/2)}.
\]

Case II: Suppose that \(\mu_x(V_2) \geq \frac{1}{2} \mu_x(W_1 \times W_2).

Then Fubini’s theorem yields that there exist a point \(q_1 \in W_1\) and a measurable set \(U_2 \subset W_2\) such that

(1) For each \(w \in U_2\), \(d(w, q_1^*) \leq d(q_1^*, q_1)\) and \((q_1, w) \notin N_2\).

(2) \(\mu(U_2) \geq \frac{1}{2} \mu(W_2)\);

It should be noticeable that \(q_1^*\) is dependent on the choice of \(w\). Let \(w^\sharp\) denote the first point on \(\gamma_{w,q_1}\) where the segment intersects \(\Gamma\). Thus, for each \(w \in U_2\),
\[
d(w, w^\sharp) \leq d(w, q_1^*) \leq d(q_1^*, q_1) \leq d(w^\sharp, q_1).
\]

Let \(\tilde{F}\) denote the reverse of \(F\). It follows from Lemma 5.1 that the reverse of the geodesic \(\tilde{\gamma}_{q_1, w}\) is a minimal geodesic from \(q_1\) to \(w\) in \((M, \tilde{F})\). Note that \(w^\sharp\) is the last point on \(\tilde{\gamma}_{q_1, w}\) where \(\tilde{\gamma}_{q_1, w}\) intersects \(\Gamma\). Let \(\tilde{N}\) be defined as \(N\) in \((M, \tilde{F})\). It is easy to see that \(\tilde{N} = N\). Denote by \(\tilde{d}\) the metric induced by \(\tilde{F}\). Thus, \(U_2 \subset W_2\) satisfies

(1) For each \(w \in U_2\), \(\tilde{d}(q_1, w^\sharp) \geq \tilde{d}(w^\sharp, w)\) and \((q_1, w) \notin \tilde{N}\).

(2) \(\tilde{\mu}(U_2) \geq \frac{1}{2} \tilde{\mu}(W_2)\);

Note that Lemma 5.1 also implies that \(\tilde{\text{Ric}} \geq (n-1)k\). A similar argument to the one in Case I together with Lemma 4.2 and Corollary 5.3 yields that
\[
A_{\pm}(\Gamma) \geq \Lambda^{-(2n+\frac{1}{2})} \frac{A_{n,k}(r/2)}{V_{n,k}(r) - V_{n,k}(r/2)} \mu(U_2).
\]

By assumption, we have
\[
\alpha \mu(D_1) \leq \mu(D_1 \cap B(r/(2\sqrt{A}))) \leq \mu(D_2 \cap B(r/(2\sqrt{A}))) = \mu(W_2) \leq 2\mu(U_2).
\]

Hence,
\[
\frac{A_{\pm}(\Gamma)}{\mu(D_1)} \geq \frac{\alpha}{2\Lambda^{2n+\frac{3}{2}}} \frac{A_{n,k}(r/2)}{V_{n,k}(r) - V_{n,k}(r/2)}.
\]
Step 3: From above, we obtain

\[
\frac{A_\pm(\Gamma)}{\mu(D_1)} \geq \begin{cases}
\frac{1-\alpha(1+\Lambda^{2n}\mathcal{E})}{\Lambda^{2n+\frac{1}{2}}} \mathcal{A}, & \mu(D_1 \cap B(r/(2\sqrt{\Lambda}))) \leq \alpha \mu(D_1); \\
\frac{\alpha}{2\Lambda^{2n+\frac{1}{2}}} \mathcal{B}, & \mu(D_1 \cap B(r/(2\sqrt{\Lambda}))) \geq \alpha \mu(D_1),
\end{cases}
\]

where

\[
\mathcal{A} := \frac{A_{n,k}(\beta)}{V_{n,k}(R) - V_{n,k}(\beta)}, \quad \mathcal{B} := \frac{A_{n,k}(r/2)}{V_{n,k}(r) - V_{n,k}(r/2)},
\]

To obtain the best possible bound, we set

\[
1-\alpha(1+\Lambda^{2n}\mathcal{E}) = \frac{\alpha^2}{2\Lambda^{2n+\frac{1}{2}}} \mathcal{B}.
\]

Thus,

\[
\alpha = \frac{2\mathcal{A}}{\mathcal{B} + 2\mathcal{A}(1+\Lambda^{2n}\mathcal{E})}.
\]

An easy calculation then yields

\[
\frac{A_\pm(\Gamma)}{\mu(D_1)} \geq \frac{A_{n,k}(\beta)}{2\Lambda^{4n+\frac{1}{2}}} \frac{V_{n,k}(\beta)}{V_{n,k}(r/2)} \frac{V_n}{V_{n,k}(R)}.
\]

Since \(\frac{A_\pm(\Gamma)}{\min(\mu(D_1), \mu(D_2))} \geq \frac{A_\pm(\Gamma)}{\mu(D_1)} \), we have the following Finslerian version of Buser’s isoperimetric inequality [9, Theorem 6.8].

Corollary 5.5. Let \(D \) be a star-like domain (with respect to \(p \)) in \(M \) with \(B_p^+(r) \subset D \subset B_p^+(R) \). If \(\text{Ric} \geq (n-1)k \) \((k < 0) \) and \(\Lambda_F \leq \Lambda \), then

\[
h(D) := \inf_{\Gamma} \frac{\min(A_\pm(\Gamma))}{\min(\mu(D_1), \mu(D_2))} \geq \frac{\max_{0 < \beta < \frac{2}{\sqrt{\Lambda}}} \left\{ \frac{A_{n,k}(\beta)}{2\Lambda^{4n+\frac{1}{2}}} \frac{V_{n,k}(\beta)}{V_{n,k}(r/2)} \frac{V_n}{V_{n,k}(R)} \right\}}{\max(\mu(D_1), \mu(D_2))},
\]

where \(\Gamma \) varies over smooth hypersurfaces in \(D \) satisfying

1. \(\Gamma \) is embedded in \(\overline{D} \);
2. \(\Gamma \) divides \(D \) into disjoint open sets \(D_1, D_2 \) in \(D \) with common boundary \(\partial D_1 = \partial D_2 = \Gamma \).

6. **A Buser type inequality for Finsler manifolds**

Let \((\phi, \varphi) := \int_M \phi \varphi d\mu \). Then we have the following minimax principle.

Lemma 6.1. Let \((M, F, d\mu)\) be a closed Finsler manifold with the reversibility \(\lambda_F \) and let \(D_1, D_2 \) be pairwise disjoint normal domains (i.e., with compact closures and nonempty piecewise \(C^\infty \) boundary) in \(M \). Then

\[
\lambda_1(M) \leq \lambda_F^2 \max\{\lambda_1(D_1), \lambda_1(D_2)\}.
\]
Proof. Suppose \(\lambda_1(D_1) \leq \lambda_1(D_2) \). And let \(\psi_i \) be the eigenfunction corresponding to \(\lambda_1(D_i) \), \(i = 1, 2 \). We extend \(\psi_i \) to \(M \) by letting \(\psi_i \equiv 0 \) on \(M \setminus D_i \).

There exists \(\alpha_1, \alpha_2 \), not all equal to zero, satisfying
\[
\alpha_1(\psi_1, \phi) + \alpha_2(\psi_2, \phi) = 0,
\]
where \(\phi \) is a nonzero constant function on \(M \). Set \(f := \alpha_1 \psi_1 + \alpha_2 \psi_2 \). Thus, \((f, \phi) = 0 \) and \(f \in \mathcal{H}_0(M) \). Hence,
\[
\lambda_1(M) \leq \frac{\int_M F_s^2(df) \, d\mu}{\int_M f^2 \, d\mu} \leq \lambda_F^2 \frac{\int_{D_1} \alpha_1^2 F_s^2(d\psi_1) \, d\mu + \int_{D_2} \alpha_2^2 F_s^2(d\psi_2) \, d\mu}{\int_M (\alpha_1^2 \psi_1^2 + \alpha_2^2 \psi_2^2) \, d\mu} \leq \lambda_F^2 \lambda_1(D_2).
\]

The following lemma is clear.

Lemma 6.2. Let \((M, F, du)\) be a closed Finsler manifold. Given a positive constant \(C > 0 \), define a new Finsler metric \(\tilde{F} \) by \(\tilde{F}(y) := C^\frac{1}{2} F(y) \). Then
\[
\tilde{\text{Ric}}(y) = \frac{1}{C} \text{Ric}, \quad \tilde{\lambda}_1(M) = \frac{1}{C} \lambda_1(M), \quad \tilde{h}(M) = \frac{1}{\sqrt{C}} h(M).
\]

Proof of Theorem 1.3 By Lemma 6.2 we can suppose that \(\text{Ric} \geq -(n-1) \), i.e., \(\delta = 1 \). Given any \(\epsilon > 0 \), let \(\Gamma, D_1 \) and \(D_2 \) be as in Definition 3.2 such that
\[
0 \leq \mathcal{F} - h(M) < \epsilon,
\]
where
\[
\mathcal{F} := \min\{A_\pm(\Gamma)\} / \min\{\mu(D_1), \mu(D_2)\}.
\]

Step 1. For \(n \geq 3 \), \(\Gamma \) may satisfy \(\max_{p \in M} d(p, \Gamma) < \rho \), for any \(\rho > 0 \) ("the problem of hair" [5]). Hence, we will find a new set \(\Gamma \) to replace \(\Gamma \).

Let \(\mathcal{P} := \{p_1, \ldots, p_k\} \) be a forward complete \(r \)-package in \(M \), that is
\begin{align*}
(1) & \quad d(p_i, p_j) \geq 2r, \text{ for } i \neq j; \\
(2) & \quad \cup_{1 \leq i \leq k} B^+(p_i, 2r\sqrt{\Lambda}) = M.
\end{align*}

For each \(p_i \in \mathcal{P} \), the Dirichlet region of \(p_i \) is defined by
\[
\mathcal{D}_i := \{q \in M : d(p_i, q) \leq d(p_j, q), \text{ for all } 1 \leq j \leq k\}.
\]

Property (1) and (2) imply that
\[
B_p(r/\sqrt{\Lambda}) \subset \mathcal{D}_i \subset B_p(2r\sqrt{\Lambda}).
\]

Lemma 4.1 yields
\[
\mu(\mathcal{D}_i) \leq \mu(B_{p_i}(2r\sqrt{\Lambda})) \leq \Lambda^{2n} \frac{V_{n-1}(2r\sqrt{\Lambda})}{V_{n-1}(r/(2\Lambda))} \mu(B_{p_i}(r/(2\Lambda))),(1)
\]

Now it follows from Corollary 5.5 that for \(0 < r < \frac{1}{2\sqrt{\Lambda}} \),
\[
\mathcal{H}(\mathcal{D}_i) \geq \frac{A_{n-1}(\frac{r}{\sqrt{\Lambda}}) V_{n-1}(\frac{r}{2\sqrt{\Lambda}})}{4\Lambda^{4n+4} V_{n-1}(\frac{r}{\sqrt{\Lambda}}) V_{n-1}(2r\sqrt{\Lambda})} \geq \frac{1}{C_1(n, \Lambda) r} =: \mathcal{F}(r).
\]

Here, \(C_1(n, \Lambda) \) is a positive constant depending only on \(n \) and \(\Lambda \). One can easily check that
\[
\mathcal{F}(r) \leq \frac{A^{2n} V_{n-1}(4r\sqrt{\Lambda})}{V_{n-1}(r/(2\Lambda))} < \frac{1}{8}.
\]
for

$$0 < r < \min \left\{ \frac{1}{4\sqrt{\Lambda}}, \frac{1}{C_2(n, \Lambda)} \right\}.$$

Claim: For $i \neq j$,

$$\mathcal{D}_i \cap \mathcal{D}_j = \{ q \in M : d(p_i, q) = d(p_j, q) \leq d(p_s, q), \text{ for all } 1 \leq s \leq k \}$$

has measure zero (with respect to $d\mu$).

Note that $d(p_i, \cdot)$ and $d(p_j, \cdot)$ are smooth on $\text{int}(\mathcal{D}_i \cap \mathcal{D}_j) - \text{Cut}_{p_i} \cup \text{Cut}_{p_j}$. If $\nabla(d(p_i, x) - d(p_j, x)) = 0$ for some $x \in \text{int}(\mathcal{D}_i \cap \mathcal{D}_j) - \text{Cut}_{p_i} \cup \text{Cut}_{p_j}$, then $d(d(p_i, x)) - d(d(p_j, x)) = 0$, that is, $d(d(p_i, x)) = d(d(p_j, x))$ and

$$\nabla d(p_i, x) = \nabla d(p_j, x).$$

This implies that the unique minimal geodesic from p_i to x overlaps the unique minimal geodesic from p_j to x. Since $d(p_i, x) = d(p_j, x)$, we have $p_i = p_j$, which is a contradiction! Hence, $d(p_i, x) - d(p_j, x)$ is regular on $\text{int}(\mathcal{D}_i \cap \mathcal{D}_j) - \text{Cut}_{p_i} \cup \text{Cut}_{p_j}$, which implies $\dim(\text{int}(\mathcal{D}_i \cap \mathcal{D}_j) - \text{Cut}_{p_i} \cup \text{Cut}_{p_j}) \leq (n-1)$. Therefore, $\text{int}(\mathcal{D}_i \cap \mathcal{D}_j) = \emptyset$ and $\mathcal{D}_i \cap \mathcal{D}_j$ has measure zero. Thus, (6.4)

$$\mu(\mathcal{D}_i \cup \mathcal{D}_j) = \mu(\mathcal{D}_i) + \mu(\mathcal{D}_j).$$

Enumerate the collection $\{p_i\}_{i=1}^k$ in such way that

$$\mu(D_1 \cap B_{p_i}^+(r/2\Lambda)) \leq \frac{1}{2^i} \mu(B_{p_i}^+(r/2\Lambda)), \text{ for } i = 1, \cdots, m;$$

$$\mu(D_1 \cap B_{p_i}^+(r/2\Lambda)) > \frac{1}{2^i} \mu(B_{p_i}^+(r/2\Lambda)), \text{ for } i = m + 1, \cdots, k.$$

Lemma 5.4 implies that for $i = 1, \cdots, m$,

$$(6.5) \quad A_\pm(\Gamma \cap \text{int}(\mathcal{D}_i)) \geq \mathcal{F}(r) \mu(D_1 \cap \mathcal{D}_i).$$

From (6.1), (6.4) and (6.5), we obtain

$$\sum_{i=1}^m \mu(D_1 \cap \mathcal{D}_i) \leq \frac{1}{\mathcal{F}(r)} A_\pm(\Gamma),$$

which together with (6.3) yields that

$$\sum_{i=1}^m \mu(D_1 \cap \mathcal{D}_i) \leq \frac{1}{\mathcal{F}(r)} \min\{A_\pm(\Gamma)\}$$

which is a contradiction.
Likewise, there also exists a point $p_j \in \mathcal{P}$ such that
\[
\mu(D_2 \cap B_{p_j}^+(r/(2\Lambda))) > \frac{1}{2} \mu(B_{p_j}^+(r/(2\Lambda))).
\]

Thus, the following sets are not empty:
\[
\tilde{D}_1 := \left\{ q \in M : \mu(D_1 \cap B_q^+(r/(2\Lambda))) > \frac{1}{2} \mu(B_q^+(r/(2\Lambda))) \right\};
\]
\[
\tilde{D}_2 := \left\{ q \in M : \mu(D_2 \cap B_q^+(r/(2\Lambda))) > \frac{1}{2} \mu(B_q^+(r/(2\Lambda))) \right\}.
\]

Since the continuity of the map $q \mapsto \mu(D_1 \cap B_q^+(r/(2\Lambda))) - \mu(D_2 \cap B_q^+(r/(2\Lambda)))$, the open submanifolds \tilde{D}_1 and \tilde{D}_2 are separated by the closed subset
\[\tilde{\Gamma} := \{ q \in M : \mu(D_1 \cap B_q^+(r/(2\Lambda))) = \mu(D_2 \cap B_q^+(r/(2\Lambda))) \}.
\]

Step 2. Define
\[\tilde{\Gamma}^t := \{ q \in M : d(\tilde{\Gamma}, q) \leq t \}.
\]

Now choose a new forward complete r-package $\mathcal{Q} = \{q_1, \ldots, q_s\}$ in M such that:
1. $q_1, \ldots, q_s \in \tilde{\Gamma}$ and $\tilde{\Gamma} \subset \bigcup_{1 \leq i \leq s} B_{q_i}^+(2r\sqrt{\Lambda})$;
2. $q_{s+1}, \ldots, q_m \in D_1$ and $q_{m+1}, \ldots, q_l \in D_2$.

Since $\tilde{\Gamma}^t \subset \bigcup_{1 \leq i \leq s} B_{q_i}^+(2r\sqrt{\Lambda} + t)$ and $q_1, \ldots, q_s \in \tilde{\Gamma}$, by (6.7) and Lemma 4.1, we have
\[
\mu(\tilde{\Gamma}^t) \leq \mu\left(\bigcup_{i=1}^s B_{q_i}^+(2r\sqrt{\Lambda} + t) \right) \leq \sum_{i=1}^s \mu(B_{q_i}^+(2r\sqrt{\Lambda} + t))
\]
\[
\leq \Lambda^2 n \frac{v_{n-1}(2r\sqrt{\Lambda} + t)}{V_{n-1}(r/(2\Lambda))} \sum_{i=1}^s \mu(B_{q_i}^+(r/(2\Lambda)))
\]
\[
= 2\Lambda^2 n \frac{v_{n-1}(2r\sqrt{\Lambda} + t)}{V_{n-1}(r/(2\Lambda))} \sum_{i=1}^s \mu(D_1 \cap B_{q_i}^+(r/(2\Lambda))).
\]

It follows from Corollary 5.5 that for $1 \leq i \leq s$,
\[
\frac{A_\pm(D_1 \cap B_{q_i}^+(r/(2\Lambda)))}{\mu(D_1 \cap B_{q_i}^+(r/(2\Lambda)))} \geq h(B_{q_i}^+(r/(2\Lambda))) \geq \mathcal{J}(r/(2\sqrt{\Lambda})) \geq \mathcal{J}(r).
\]

Since $d(q_i, q_j) \geq 2r$, $B_{q_i}^+(r/(2\Lambda)) \cap B_{q_j}^+(r/(2\Lambda)) = \emptyset$. Hence, we have
\[
\mu(\tilde{\Gamma}^t) \leq 2\Lambda^2 n \frac{v_{n-1}(2r\sqrt{\Lambda} + t)}{\mathcal{J}(r) V_{n-1}(r/(2\Lambda))} A_\pm(\Gamma),
\]
which implies
\[
\mu(\tilde{\Gamma}^t) \leq 2\Lambda^2 n \frac{v_{n-1}(2r\sqrt{\Lambda} + t)}{\mathcal{J}(r) V_{n-1}(r/(2\Lambda))} \min\{A_\pm(\Gamma)\}
\]
\[
= 2\Lambda^2 n \frac{\mathcal{J} V_{n-1}(2r\sqrt{\Lambda} + t)}{\mathcal{J}(r) V_{n-1}(r/(2\Lambda))} \min\{\mu(D_1), \mu(D_2)\}
\]
\[
\leq 2\Lambda^2 n \frac{\mathcal{J} V_{n-1}(2r\sqrt{\Lambda} + t)}{\mathcal{J}(r) V_{n-1}(r/(2\Lambda))} \mu(D_1).
\]

Now let $t = 2r\sqrt{\Lambda}$.
Claim: If \(q \in \tilde{D}_2 - \tilde{\Gamma}^{2r\sqrt{\Lambda}} \), then \(q \) must be contained in some Dirichlet region \(\mathcal{D}_i \), \(m + 1 \leq i \leq l \).

Choose a point \(x \in (\tilde{D}_1 \cup \Gamma) \). Suppose that the minimal geodesic from \(x \) to \(q \) intersects \(\Gamma \) at \(y \). Thus,

\[
d(x, q) \geq d(y, q) \geq d(\tilde{\Gamma}, q) > 2r\sqrt{\Lambda},
\]

which implies that \(d(q_i, q) > 2r\sqrt{\Lambda}, 1 \leq i \leq m \). Since \(\cup_{1 \leq i \leq l} B_{q_i}^+ (2r\sqrt{\Lambda}) \supset M \), there exists \(i \in \{m + 1, \ldots, l\} \) such that \(q \in B_{q_i}^+ (2r\sqrt{\Lambda}) \). Choose \(i_0 \in \{m + 1, \ldots, l\} \) such that

\[
d(q_{i_0}, q) = \min_{m+1 \leq i \leq l} d(q_i, q) < 2r\sqrt{\Lambda}.
\]

Then \(q \in \mathcal{D}_{i_0} \). The claim is true. Hence, \(\tilde{D}_2 - \tilde{\Gamma}^{2r\sqrt{\Lambda}} \subset \cup_{m+1 \leq i \leq l} \mathcal{D}_i \).

By (6.6), (6.8) and (6.3), we have

\[
\mu(\tilde{D}_1 - \tilde{\Gamma}^{2r\sqrt{\Lambda}}) \geq \mu(D_1 \cap (\tilde{D}_1 - \tilde{\Gamma}^{2r\sqrt{\Lambda}})) = \mu(D_1) - \mu(D_1 \cap (\tilde{D}_2 - \tilde{\Gamma}^{2r\sqrt{\Lambda}})) - \mu(D_1 \cap \tilde{\Gamma}^{2r\sqrt{\Lambda}}) \\
\geq \mu(D_1) - \sum_{i=m+1}^{l} \mu(D_1 \cap \mathcal{D}_i) - \mu(\tilde{\Gamma}^{2r\sqrt{\Lambda}}) \\
\geq \mu(D_1) - \frac{1}{4} \mu(D_1) - \frac{1}{4} \mu(D_1) = \frac{1}{2} \mu(D_1) > 0.
\]

Lemma 6.1 yields

\[
\lambda_1(M) \leq \Lambda \max \{ \lambda_1(\tilde{D}_1), \lambda(\tilde{D}_2) \}.
\]

Without loss of generality, we suppose that \(\lambda_1(\tilde{D}_1) \geq \lambda_1(\tilde{D}_2) \). Now, we estimate \(\lambda_1(\tilde{D}_1) \). Define a function on \(\tilde{D}_1 \) by

\[
f(q) := \begin{cases}
\frac{d(\tilde{\Gamma}, q)}{2r\sqrt{\Lambda}}, & q \in \tilde{D}_1 \cap \tilde{\Gamma}^{2r\sqrt{\Lambda}} \\
1, & q \in \tilde{D}_1 - \tilde{\Gamma}^{2r\sqrt{\Lambda}}.
\end{cases}
\]

Clearly,

\[
F^{*2}(df(q)) = \begin{cases}
\frac{1}{4r^{2\Lambda}}, & q \in \tilde{D}_1 \cap \tilde{\Gamma}^{2r\sqrt{\Lambda}} \\
0, & q \in \tilde{D}_1 - \tilde{\Gamma}^{2r\sqrt{\Lambda}}.
\end{cases}
\]

(6.8) together with (6.9) yields that

\[
\int_{\tilde{D}_1} F^{*2}(df) d\mu \leq \frac{1}{4r^{2\Lambda}} \mu(\tilde{\Gamma}^{2r\sqrt{\Lambda}}) \leq \Lambda^{2n-1} \frac{\mathscr{F} V_{n-1}(4r\sqrt{\Lambda})}{2r^{2} \mathscr{F}(r) V_{n-1}(r/(2\Lambda))} \mu(D_1),
\]

\[
\int_{\tilde{D}_1} f^2 d\mu \geq \mu(\tilde{\Gamma}^{2r\sqrt{\Lambda}}) \geq \frac{1}{2} \mu(D_1).
\]

Thus, by (6.2), we obtain

\[
\lambda_1(\tilde{D}_1) \leq \frac{\int_{\tilde{D}_1} F^{*2}(df) d\mu}{\int_{\tilde{D}_1} f^2 d\mu} \leq \Lambda^{2n-1} \frac{\mathscr{F} V_{n-1}(4r\sqrt{\Lambda})}{r^{2} \mathscr{F}(r) V_{n-1}(r/(2\Lambda))} \leq \frac{C_3(n, \Lambda) \mathcal{F}}{r},
\]
Choose and speed geodesic with \(\dot{\gamma}(0) = \gamma \).

Proof.

For the Holmes-Thompson measure, the S-curvature of a Berwald manifold always vanishes. Furthermore, we have the following theorem.

Theorem 6.4. Let \((M, \alpha + \beta)\) be a \(n\)-dimensional closed Randers manifold. Then

\[
\Lambda_F = \frac{(1 + b)^2}{(1 - b)^2} = \lambda^2_F,
\]

where \(b := \sup_{x \in M} \|\beta\|_x \). Hence, \(\lambda_1(M) \leq C(n,b) \left(\delta h(M) + h^2(M) \right) \).

Proof. Since \(M \) is closed, there exists a point \(x \in M \), such that \(\|\beta\|_x = b \). Choose \(y, X \in T_x M \) with \(\|X\|_x = \|y\|_x = 1 \). For convenience, we set \(y = s X + X^+_i \) and \(\beta = t X + X^+_i \). Here, we view \(\beta \) as a tangent vector in \((T_x M, \alpha)\) and \((X, X^+_i)\) is a basis of \(T_x M, \alpha \) where \(i = 1, 2 \). By \[18\] (1.6), one has

\[
g_y(X, X) = [1 + \beta(y)](1 - s^2) + (s + t)^2, \quad -1 \leq s \leq 1, \quad -b \leq t \leq b.
\]

Clearly, \((1 - b)^2 \leq g_y(X, X) \), with equality if and only if \(y = \pm X \) and \(\beta = \mp b X \), and \(g_y(X, X) \leq (1 + b)^2 \), with equality if and only if \(y = \pm X \) and \(\beta = \pm b X \). Hence, \(\Lambda_F = (1 + b)^2/(1 - b)^2 \).

Remark 2. Given a Randers metric \(F = \alpha + \beta \), the Holmes-Thompson measure \(d\mu_{HT} = dV_\alpha \), where \(dV_\alpha \) is the Riemannian measure induced by \(\alpha \). By \[18\] Example 3.2.1, one can show

\[
\frac{\lambda_1(M, \alpha)}{(1 + b)^2} \leq \lambda_1(M, F) \leq \frac{\lambda_1(M, \alpha)}{(1 - b)^2},
\]

where \(\lambda_1(M, \alpha) \) (resp. \(\lambda_1(M, F) \)) is the first eigenvalue of \((M, \alpha)\) (resp. \((M, F, d\mu_{HT})\)).

By \[20\] \[24\], we can see that the upper bound for the uniform constant in Lemma \[41\] can be replaced by the lower bound for the S-curvature. Using the similar argument, one can show the following theorem.

Theorem 6.5. Let \((M, F, d\mu)\) be a closed Finsler \(n\)-manifold with the Ricci curvature \(\text{Ric} \geq -(n - 1)\delta^2 \), the S-curvature \(S \geq (n - 1)\eta \) and the reversibility \(\lambda_F \leq \lambda \). Then

\[
\lambda_1(M) \leq C(n, \lambda, \eta) \left(\delta h(M) + h^2(M) \right).
\]

It follows from \[18\] that for the Busemann-Hausdorff measure, the S-curvature of a Berwald manifold always vanishes. Furthermore, we have the following

Theorem 6.6. For the Holmes-Thompson measure, the S-curvature of a Berwald manifold also vanishes.

Proof. Let \((M, F)\) be a \(n\)-dimensional Berwald manifold and let \(\gamma_y(t) \) be a unit speed geodesic with \(\dot{\gamma}_y(0) = y \). Denote by \(P_t \) the parallel transportation along \(\gamma_y(t) \). Choose a basis \(\{e_i\} \) of \(T_{\gamma_y(t)} M \). Then \(E_i(t) := P_t e_i, \ 1 \leq i \leq n, \) is a basis of \(T_{\gamma_y(t)} M \). Let \((y^i) \) (resp. \((z^i) \)) denote the corresponding coordinate system in \(T_{\gamma_y(t)} M \) (resp. \(T_{\gamma_y(t)} M \)). Thus, \(z^i \circ P_t = y^i \).
For any $w \in S_{\gamma_0}(0)M$, we have
\[
\frac{d}{dt}g(\gamma_0(t), P_tw)(E_i(t), E_j(t)) = \frac{2}{F(P_tw)}A(\gamma_0(t), P_tw)(E_i(t), E_j(t), \nabla_{\gamma_0} P_tw) = 0.
\]
Note that $P_t(B_{\gamma_0}(0)M) = B_{\gamma_0}(t)M$, where $B_xM := \{y \in T_xM : F(x, y) < 1\}$. The equation above together with [18] Lemma 5.3.2 yields that
\[
\int_{w \in B_{\gamma_0}(0)M} \det g(\gamma_0(t), v)(E_i(t), E_j(t))dz^1 \wedge \cdots \wedge dz^n
\]
\[
= \int_{w \in B_{\gamma_0}(0)M} \det g(\gamma_0(t), P_tw)(P_t e_i, P_t e_j)P_t^* dz^1 \wedge \cdots \wedge P_t^* dz^n
\]
\[
= \int_{w \in B_{\gamma_0}(0)M} \det g(\gamma_0(0), w)(e_i, e_j)dy^1 \wedge \cdots \wedge dy^n.
\]
Thus, $\tau_{HT}(\gamma_0(t)) = \tau_{HT}(\gamma_0(0))$, which implies that $S_{HT} \equiv 0$.

Theorem 6.4 together with Theorem 6.5 now yields the following

Corollary 6.6. Let $(M, F, d\mu)$ be a n-dimensional closed Berwald manifold with the Ricci curvature $\text{Ric} \geq -(n-1)\delta^2$ and the reversibility $\lambda_F \leq \lambda$. Then we have
\[
\lambda_1(M) \leq C(n, \lambda) \left(\delta h(M) + h^2(M) \right).
\]

REFERENCES

[1] J. Alvarez-Paiva and G. Berck, What is wrong with the Hausdorff measure in Finsler spaces, Adv. in Math., 204 (2006), 647-663.
[2] J. Alvarez-Paiva and A. C. Thompson, Volumes in normed and Finsler spaces, A Sampler of Riemann-Finsler geometry (Cambridge) (D. Bao, R. Bryant, S.S. Chern, and Z. Shen, eds.), Cambridge University Press, 2004, pp. 1-49.
[3] P. Antonelli, B. Lackey (eds.), The Theory of Finslerian Laplacians and Applications, Kluwer Academic Publisher, 1998.
[4] D. Bao, S. S. Chern and Z. Shen, An introduction to Riemannian-Finsler geometry, GTM 200, Springer-Verlag, 2000.
[5] R. Brooks, P. Perry and P. Petersen, On Cheeger inequality, Comment. Math. Helvetici, 68 (1993), 599-621.
[6] P. Buser, On Cheeger’s inequality: $\lambda_1 \geq \frac{1}{4h^2}$, Am. Math. Soc. Proc. Symp. Pure. Math., 36 (1980), 29-77.
[7] P. Buser, A note on the isoperimetric constant, Ann. Sci. Éc. Norm., Sup., 15 (1982), 213-230.
[8] I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, New York, 1984.
[9] I. Chavel, Riemannian Geometry: A modern introduction, Cambridge Univ., 1993.
[10] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis, Symposium in honor of S. Bochner, Princeton Univ. Press, Princeton, NJ, 1970, pp. 195-199.
[11] B. Chen, Some geometric and analysis problems in Finsler geometry, Doctoral thesis, Zhejiang University, 2010.
[12] D. Eglolf, Uniform Finsler Hadamard manifolds, Ann. Inst. Henri Poincaré, 66 (1997), 323-357.
[13] M. Ledoux, A simple analytic proof of an inequality by P. Buser, Proc. Amer. Math. Soc., 121 (1994), 951-959.
[14] Y. Ge and Z. Shen, Eigenvalues and eigenfunctions of metric measure manifolds, Proc. London Math. Soc., (3) 82 (2001), 725-746.
[15] M. Gromov, Paul Levy’s isoperimetric inequality, Preprint, Inst. Hautes Etudes Sci., Publ. Math., 1980.
[16] H. Rademacher, Nonreversible Finsler metrics of positive ag curvature, A sampler of Riemann-Finsler geometry, Cambridge Univ. Press, Cambridge, 2004, 261-302.
[17] R. Schoen and S. T. Yau, *Lectures on Differential Geometry*, Conference Proceedings and Lecture Notes in Geometry and Topology 1, International Press, 1994.

[18] Z. Shen, *Lectures on Finsler geometry*, World Sci., Singapore, 2001.

[19] Z. Shen, *The non-linear Laplacian for Finsler manifolds*, in The theory of Finslerian Laplacians and applications, vol. 459 of Math. Appl., Kluwer Acad. Publ., Dordrecht, 1998, pp. 187-198.

[20] Z. Shen, *Volume comparison and its applications in Riemannian-Finsler geometry*, Adv. in Math., 128(1997), 306-328.

[21] B. Wu and Y. Xin, *Comparison theorems in Finsler geometry and their applications*, Math. Ann., 337(2007), 177-196.

[22] S. T. Yau, *Isoperimetric constants and the first eigenvalue of a compact manifold*, Ann. Sci. Éc. Norm. Sup., 4(1975), 487-507.

[23] W. Zhao and L. Yuan, *A Santaló type formula for Finsler manifolds and its applications*, preprint.

[24] W. Zhao and Y. Shen, *A Universal Volume Comparison Theorem for Finsler Manifolds and Related Results*, Can. J. Math., 65(2013), 1401-1435.

Department of Mathematics, Fudan University, Shanghai, China

E-mail address: yuan_lixia@foxmail.com

Department of Mathematics, East China University of Science and Technology, Shanghai, China

E-mail address: szhao_we@yahoo.com