A NEW CONCEPT AFFECTING RESTORATION OF INFLAMMATION-REACTIVE ASTROCYTES

L. BLOCK, a U. BJÖRKLUND, a A. WESTERLUND, a P. JÖRNEBERG, b B. BIBER a and E. HANSSON a*

a Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE 413 45 Gothenburg, Sweden
b Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, SE 413 45 Gothenburg, Sweden
c Department of Anaesthesiology and Intensive Care Medicine, Division of Pain Management, NU-Hospitals, SE 461 85 Trollhättan, Sweden

Abstract—Long-lasting pain may partly be a consequence of ongoing neuroinflammation, in which astrocytes play a significant role. Following noxious stimuli, increased inflammatory receptor activity, influences in Na⁺/K⁺-ATPase activity and actin filament organization occur within the central nervous system. In astrocytes, the Ca²⁺ signaling system, Na⁺ transportsers, cytoskeleton, and release of pro-inflammatory cytokines change during inflammation. The aim of this study was to restore these cell parameters in inflammation-reactive astrocytes. We found that the combination of (1) endomorphin-1, an opioid agonist that stimulates the G₂₉₆ protein of the µ-opioid receptor; (2) naloxone, an opioid antagonist that inhibits the G₂ protein of the µ-opioid receptor at ultralow concentrations; and (3) levetiracetam, an anti-epileptic agent that counteracts the release of IL-1β, managed to activate the G₂₀ protein and Na⁺/K⁺-ATPase activity, inhibit the G₂ protein, and decrease the release of IL-1β. The cell functions of astrocytes in an inflammatory state were virtually restored to their normal non-inflammatory state and it could be of clinical significance and may be useful for the treatment of long-term pain.

© 2013 The Authors. Published by Elsevier Ltd.
Open access under CC BY license.

Key words: µ-opioid receptor, µ-opioid agonist, µ-opioid antagonist, astrocyte networks, IL-1β release, levetiracetam.

INTRODUCTION

During injury, pain can be dissociated from its normal physiological role and can persist for a long period of time, even after the primary noxious stimulus has passed (McMahon and Malcangio, 2009; Milligan and Watkins, 2009; Gao and Ji, 2010). The mechanisms behind insufficiently healed neuroinflammation and how the neuronal and non-neuronal activities evoked by painful stimuli and inflammation are processed in the brain and throughout the central nervous system (CNS) are not well understood.

Under conditions that lead to neuroinflammation in the nervous system, Ca²⁺ signaling in the astrocyte network is overactivated, which triggers the activation of astrocytes and microglia (Strokin et al., 2011). Several receptors are influenced, and the expression of some receptors, such as Toll-like receptor 4 (TLR4) (Forshammar et al., 2011; Stevens et al., 2013), are increased, whereas the responses of other receptors, such as opioid receptors (El-Hage et al., 2006; Block et al., 2012), are changed. In addition, there is an increased release of glutamate into the neural synapse, where astrocytes are the predominant players in clearing the extracellular space. The astrocyte uptake of excessive extracellular glutamate by membrane-bound glutamate transporters, such as GLAST and GLT-1, play a critical role in preventing glutamate excitotoxicity (Zhao et al., 2012). In addition, metabotropic and ionotropic glutamate receptors will be excited. The astrocyte metabotropic receptor mGlur5 activates Gq protein-coupled receptors, resulting in increased intracellular Ca²⁺ release (Hansson, 1994; Bradley et al., 2009), whereas the N-methyl-D-aspartic acid (NMDA) receptor subunit NR2B is expressed in states of increased neuronal excitability (Krebs et al., 2003) and in inflammation-reactive astrocytes (Lundborg et al., 2011; Gérard and Hansson, 2012). These changes in the glial cells can lead to pathogenic chronic neuroinflammation. Subsequently the neurons change their excitability and signaling.

Endomorphin-1, a selective endogenous µ-opioid receptor agonist, is capable of interacting with the pertussis toxin-sensitive G₂/G₀ protein (Connor and Christie, 1999), and increases the activity of Na⁺/K⁺-ATPase in vitro (Horvath et al., 2003). Similar results have been observed with morphine, which indirectly

0306-4522/13 © 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
http://dx.doi.org/10.1016/j.neuroscience.2013.07.033

536
enhances Na⁺/K⁺-ATPase activity by activating µ-opioid receptors and Gs/G0 protein (Masocha et al., 2002). Naloxone in ultralow picomolar concentrations has potent antagonistic actions on the excitatory µ-opioid receptor Gs protein. Higher concentrations antagonize both excitatory Gs proteins, and inhibitory Gi/G0 proteins. As a consequence ultralow picomolar concentrations of naloxone enhance the analgesic effects of µ-opioid receptor agonists (Crain and Shen, 1995; Wang et al., 2005; Tsai et al., 2009). Naloxone also modulates the Na⁺/K⁺-ATPase activity (Forshammar et al., 2011). Ultralow concentrations of naloxone stimulate the activity of Na⁺/K⁺-ATPase through activation of phospholipase C resulting in increases in intracellular Ca²⁺ release. Higher concentrations have antagonistic effects on the Na⁺/K⁺-ATPase activity (Zhang et al., 2008; Forshammar et al., 2011).

Levetiracetam, an effective anti-epileptic drug, has in inflammation-reactive astrocyte models been shown to restore functional gap junction coupling (Stienen et al., 2010) by increasing the expression of connexin 43, the predominant gap junction protein, and decrease the enhanced IL-1β level (Haghikia et al., 2008).

The aim of this study was to use endomorphin-1, naloxone, and levetiracetam to evaluate if they could counteract the increased astrocyte Ca²⁺ signaling, downregulation of the Na⁺/K⁺-ATPase activity, disorganization of the cytoskeleton, and increased release of IL-1β. These agents might have a potential to restore cell functions that are altered by inflammation in astrocytes back to a normal non-inflammatory level.

EXPERIMENTAL PROCEDURES

In this study, the in vitro model involved astrocytes co-cultured with brain endothelial cells (Hansson et al., 2008). The biological rationale for co-culturing astrocytes with endothelial cells is that astrocytes are affected by substances that are released from the capillary endothelial cells of the BBB (blood–brain barrier) (Huber et al., 2001). These interactions are essential for a functional neurovascular system, where also the neurons take part (Abbott et al., 2006; Willis and Davis, 2008). The endothelial cells are not directly in physical contact with the astrocytes in vitro, and the interaction in the model is induced by the shared medium. The co-cultured astrocytes are morphologically differentiated by long, slender processes, and they exhibit greater Ca²⁺ responses and cytokine release than monocultured astrocytes. The µ-opioid receptor is also better expressed in the co-cultured astrocytes (Hansson et al., 2008), as well as the TLR4 (Forshammar et al., 2011). Furthermore, the cultures have very few microglial cells, visualized with OX42 (Fig. 1A), as well as after treatment with lipopolysaccharide (LPS) for 24 h (Fig. 1B).

Chemicals

All chemicals were obtained from Sigma–Aldrich (St. Louis, MO, USA) unless otherwise stated.

The experimental protocols were approved by the Ethics Committee in Gothenburg for Laboratory Animals (Nos. 205-2010; 211-2010).

Primary astrocyte cultures

The primary astrocyte cultures were prepared from newborn rat cerebral cortices (Charles River, Sulzfeldt, Germany) and cultured on glass coverslips (Nr 1, diameter 20 mm, BergmanLabora, Stockholm, Sweden) as described by Hansson et al. (2008).

Microvascular endothelial primary cultures

Brain capillary fragments were isolated from male Sprague–Dawley rats, cerebral cortices (Charles River, 225–250 g), and the endothelial cells were cultured according to the protocol of Hansson et al. (2008).

Astrocytes co-cultured with adult rat brain microvascular primary cultures

The experimental astrocytes were obtained after co-cultivation with primary brain microvascular endothelial cultures and primary astrocyte cultures. Astrocyte cultures at 6 d in vitro were co-cultured with newly prepared microvascular cultures. The endothelial cells
were grown on inserts above the astrocyte cultures. The cells from the two different cultures were never in contact. The cells were grown together for 9–11 d. At the time of the experiments, the astrocyte cultures were 15–17 d old, including 9–11 d of co-cultivation. The endothelial cells were removed before the experimental procedure (Hansson et al., 2008).

Immunocytochemistry

The cells were fixed with 4% paraformaldehyde (Bie & Berntsen, Herlev, Denmark) for 10 min and washed twice with phosphate-buffered saline (Invitrogen) containing 1% bovine serum albumin (PBS–BSA). The cells were permeabilized with PBS–BSA containing 0.05% saponine (PBS–BSA–Sap) for 20 min. Thereafter the cells were incubated for 1 h with a cocktail of rabbit polyclonal antibody against glial fibrillary acidic protein (GFAP) (Dako, Glostrup, Denmark) and a mouse monoclonal antibody against OX42 (Serotec, Oxford, UK). Both antibodies were diluted 1:100 in PBS–BSA–Sap.

The cells were washed with PBS–BSA–Sap for 3×5 min and then incubated with a mixture of FITC conjugated F(ab)′2 fragment donkey anti-mouse IgG and a Dylight 594 conjugated F(ab)′2 fragment donkey anti-rabbit IgG secondary antibodies (Jackson ImmunoResearch Europe Ltd, Suffolk, UK), both diluted 1:100 in PBS–BSA–Sap. The cells were rinsed with PBS–BSA–Sap for 3×5 min and finally rinsed with PBS. The cover slips were mounted on microscope slides with a fluorescent mounting medium (Dako) and viewed in a Nikon Eclipse 80i microscope. Pictures were taken with a Hamamatsu C5810 color intensified 3CCD camera.

Calcium imaging

The astrocytes were incubated at room temperature with the Ca2+-sensitive fluorophore probe Fura-2/AM (Invitrogen Molecular Probes, Eugene, Oregon, USA) for 20 min (8 μl in 990 μl Hank’s HEPES-buffered saline solution [HHBSS], containing 137 mM NaCl, 5.4 mM KCl, 0.4 mM MgSO4, 0.4 mM MgCl2, 1.26 mM CaCl2, 0.64 mM KH2PO4, 3.0 mM NaHCO3, 5.5 mM glucose, and 20 mM HEPES dissolved in distilled water, pH 7.4). The fluorophore probe was dissolved with 40 μl of dimethyl sulfoxide (DMSO) and 10 μl of pluronic acid (Molecular Probes, Leiden, The Netherlands). After incubation, the cells were rinsed three times with HHBSS before exposure to stimulators for 30 s. The cells were incubated with LPS (10 ng/ml) for 24 h. Naloxone (10−12 M), endomorphin-1 (10−6 M), and levetiracetam (10−4 M) were applied 3.5 min before glutamate (10−4 M). The experiments were performed at room temperature using a Ca2+ imaging system with Simple PCI software (Compix Inc., Imaging Systems, Hamamatsu Photonics Management Corporation, Cranberry Twp, PA, USA) and an inverted epifluorescence microscope (Nikon ECLIPSE TE2000-E) with a 20× (NA 0.45) fluorescence dry lens and a Polychrome V monochromator-based illumination system (TILL Photonics GMBH, Munich, Germany). The various substances were applied using a peristaltic pump (Instech Laboratories, Plymouth Meeting, PA, USA) at an approximate rate of 600 μl/min. One min after the start of the experiment, the stimulating substance was pumped into the pump tubes for 30 s. The substance took approximately 60 s to reach the cells through the tubes. HHBSS continued to flow through the pump tubes and onto the cells throughout the experiment. The images were captured with an ORCA-12AG (C4742-80-12AG) High-Res Digital Cooled CCD Camera (Hamamatsu Photonics Corporation).

The total areas under the curve (AUC), which reflects the amount of Ca2+ released (Berridge, 2007), were analyzed to measure the vigor of the Ca2+ response. The amplitude was expressed as the maximum increase of the 340/380 ratio. The area under the Ca2+ peaks was calculated in Origin (Microcal Software Inc., Northampton, MA, USA). Forty cells were used for each experimental set up, taken from four different coverslips and from two different seeding times.

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and Western blotting

The cells were rinsed twice in PBS and immediately lysed for 20 min on ice in cold radio-immunoprecipitation assay (RIPA) lysis buffer containing 150 mM NaCl, 1% IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, (pH 8.0), supplemented with a protease inhibitor cocktail containing 104 mM AEBSF, 80 μM aprotinin, 4 mM bestatin, 1.4 mM E-64, 2 mM leupeptin, and 1.5 mM pepstatin A. The procedure was performed according to Persson et al. (2005). Separate aliquots were collected to determine the protein concentration. All of the samples were analyzed for the total protein content, and 20 μg of the total protein from each sample was loaded into each lane of the gel. β-Actin was used as control for equal loading.

SDS–PAGE was conducted using the Novex pre-cast gel system (Invitrogen) according to the manufacturer’s recommendations using 4–12% Bis-Tris gels (Invitrogen) at 200 V for 50 min. The separated proteins were transferred at 30 V for 60 min to a nitrocellulose membrane (Invitrogen) using NuPAGE transfer buffer (Invitrogen) supplemented with methanol and NuPAGE antioxidant. The membranes were rinsed twice with distilled water, and the proteins were visualized with Ponceau S solution (Sigma). The proteins were blocked with 5% fat-free skim milk (Semper AB, Sundbyberg, Sweden) in Tris-buffered saline (TBST; 50 mM Tris–HCl, 150 mM NaCl, and 0.05% Tween) for 60 min at room temperature. The membranes were probed with a mouse monoclonal primary antibody against Na+/K+-ATPase (α-subunit) diluted 1:250, washed 4× for 2 min with TBST, followed with the secondary horseradish peroxidase (HRP)-conjugated antibody, donkey anti-mouse F(ab′)2 fragment (Jackson ImmunoResearch) diluted 1:10,000, also washed several times in TBST. All of the primary and secondary antibodies were diluted in 5% fat-free skim milk in TBST. The antibody-bound protein was detected with an enhanced chemiluminescence kit (PerkinElmer Inc., Waltham, MA,
USA) and visualized using Fuji Film LAS-3000 (Tokyo, Japan).

Actin visualization

The astrocyte cytoskeleton was stained with an Alexa488-conjugated phalloidin probe. Some of the cultures were incubated with 10 ng/ml LPS for 24 h. Other cultures were incubated with naloxone (10⁻¹² M), endomorphin-1 (10⁻⁶ M), and/or levetiracetam (10⁻⁴ M) for 30 min before they were incubated with LPS and the proposed combination. The cultures were fixed with 4% paraformaldehyde and made permeable with PBS (Invitrogen) containing 1% BSA and 0.05% saponin followed by an Alexa568-conjugated phalloidin probe (Invitrogen) diluted 1:40 in PBS supplemented with 1% BSA. The coverslips were rinsed three times in PBS and mounted on microscope slides using Dako’s fluorescent mounting medium (Dako) before being viewed with a fluorescence dry-objective lens attached to an inverted Nikon Optiphot-2 microscope.

Cytokine release

The co-cultured astrocytes were stimulated for 24 h with 10 ng/ml LPS diluted in non-supplemented minimum essential medium (MEM) to measure IL-1β release. The inserts with endothelial cells were removed immediately before incubation. The cells were incubated with levetiracetam (10⁻¹²–10⁻⁴ M) or a combination of naloxone (10⁻¹² M), endomorphin-1 (10⁻⁶ M), and levetiracetam (10⁻⁴ M) for 30 min prior to LPS treatment and remained in the medium throughout the experiment. The control (i.e., untreated) cells were maintained in non-supplemented MEM. The supernatants were collected for an enzyme-linked immunosorbent assay (ELISA), and the cells were analyzed for protein concentration.

Rat IL-1β (Nordic Biosite, Täby, Sweden) was used according to the manufacturer’s instructions to measure the amount of cytokine with ELISA. Between every incubation step, several washes were performed. The protein concentration was determined as described below. The amount of IL-1β release was correlated to the amount of protein in each well.

Protein determination

The protein determination assay was performed in accordance with the manufacturer’s instructions using a detergent compatible (DC) Protein Assay (Bio-Rad, Hercules, CA, USA) based on the method used by Lowry et al. (1951) with minor modifications. The standard (0–4 mg/ml BSA) and samples were mixed with the reagents, incubated for 15 min at room temperature, read at 750 nm with a Versa-max microplate reader, and analyzed using SoftMax Pro 4.8 from Molecular Devices (Sunnyvale, CA, USA).

Statistics

Differences across the different treatments were identified using a one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparisons test. The error bars represent the standard error of the mean (SEM).

RESULTS

Glutamate-evoked Ca²⁺ responses were increased with LPS and attenuated by a combination of naloxone, endomorphin-1, and levetiracetam

The astrocytes were stimulated with glutamate (10⁻⁴ M), and Ca²⁺ imaging experiments were performed on 15- to 17-day-old co-cultured astrocytes. The endothelial cell inserts were removed just before the experiments. All of the cells responded, n = 40. The AUCs were calculated, and the number of peaks was counted (Fig. 2A, B).

The astrocytes incubated with LPS (10 ng/ml) for 24 h showed an increase in glutamate-evoked Ca²⁺ signaling. The AUC was significantly increased (P < 0.001) as well as the number of peaks. All cells responded, n = 40 (Fig. 2A, B). Endomorphin-1 attenuated the glutamate signaling (P < 0.05), and all cells responded, n = 40 (Fig. 2A, B). Naloxone (10⁻¹² M) alone or together with endomorphin-1 (10⁻⁶ M) did not attenuate the glutamate-upregulated Ca²⁺ oscillations, n = 40 (Fig. 2A, B). Levetiracetam (10⁻⁴ M) attenuated the glutamate signaling (P < 0.001), and all cells responded (Fig. 2A, B).

The results show that a combination of endomorphin-1, naloxone in ultralow concentration, and levetiracetam fully attenuated the LPS-induced glutamate Ca²⁺ transients.

Na⁺/K⁺-ATPase expression was decreased by LPS and increased by a combination of naloxone, endomorphin-1 and levetiracetam

The expression of Na⁺/K⁺-ATPase for cultures incubated with LPS for 24 h was studied using Western blot analysis. The expression of Na⁺/K⁺-ATPase was decreased (P < 0.05) in the cultured cells and was increased when the cells were incubated with a combination of naloxone, endomorphin-1, and levetiracetam (P < 0.01, n = 6, Fig. 3A). None of these agents alone showed any effect on the expression of Na⁺/K⁺-ATPase (Fig. 3B).

These results show that a combination of endomorphin-1, naloxone in ultralow concentration, and levetiracetam increased the Na⁺/K⁺-ATPase activity.

IL-1β release was decreased by levetiracetam

The cultures were pre-incubated with levetiracetam (10⁻¹²–10⁻⁴ M) 30 min prior to incubation with LPS (10 ng/ml) and levetiracetam for 24 h. Levetiracetam (10⁻⁴ M) reduced the LPS-induced increase in IL-1β (P < 0.05, n = 4, Fig. 4). IL-1β release after LPS stimulation was 4.3 ± 0.5 ng/ml and was set to 100%.

The cultures were pre-incubated with a combination of naloxone (10⁻¹² M), endomorphin-1 (10⁻⁶ M), and
levetiracetam (10⁻⁴ M) 30 min prior to incubation with LPS (10 ng/ml), naloxone, endomorphin-1, and levetiracetam for 24 h. The LPS-induced increase in IL-1β was decreased (P < 0.001, n = 4, Fig. 5). Naloxone alone did not decrease the IL-1β release (Forshammar et al., 2011) nor did endomorphin-1 or a combination of naloxone and endomorphin-1. Data are not shown.

Actin filaments

The astrocytes were stained with an Alexa488-conjugated phalloidin probe. The untreated cultures were dominated by F-actin organized in stress fibers (control). The cultures incubated with LPS (10 ng/ml) for 24 h showed...
a more diffuse organization of the actin filaments, and the ring structures were more pronounced. Naloxone (10^{-12}–10^{-6} M) as well as a combination of naloxone and endomorphin-1 (10^{-6} M) prevented the restructuring of the actin filaments (Fig. 6). The cells were pre-incubated with a combination of LPS (10 ng/ml), naloxone, endomorphin-1, and levetiracetam for 24 h. This combination prevented the restructuring of the actin filaments even more robustly (Fig. 6). Levetiracetam can also prevent the restructuring of actin filaments in the cytoskeleton; however, the combination of the three substances showed the most optimal result.

The results show that the combinations of naloxone and endomorphin-1, as well as naloxone, endomorphin-1 and levetiracetam equally prevented the restructuring of actin filaments.

DISCUSSION

We have identified four parameters, Ca^{2+} signaling in the astrocyte networks, Na^{+}/K^{+}-ATPase activity, IL-1β release, and actin filament organization, which take part in mechanisms underlying or contributing to neuroinflammation. The astrocytes are potential targets during the inflammatory state (Forshammar et al., 2011; Block et al., 2012). To achieve the full protective effects, a combination of treatments is required. It seems important to maintain the extracellular concentration of pro-inflammatory cytokines, such as IL-1β, at a low level, which can be accomplished with levetiracetam. In addition, it seems important to reduce the increased extracellular glutamate concentration, which stimulates an increased propagation of astrocyte intercellular Ca^{2+} waves. This is partly possible with endomorphin-1 and ultralow concentrations of naloxone. The low protein level and activity of Na^{+}/K^{+}-ATPase has to be increased, which can be achieved through a decreased activation of the G_s protein and an increased activation of the G_i/o protein. The actin filaments, which are disorganized, will be restored. However, to achieve these features, a combination of these substances is necessary for the restoration of the cellular parameters disrupted by inflammation.

During inflammation and when cells are induced with inflammatory agents, Ca^{2+} signaling in the astrocyte networks is disturbed. There is an increased release of IL-1β, which results in gap junction inhibition (Kim et al., 2010). There is also an increased release of ATP, which provides a parallel system for intercellular Ca^{2+} communication between astrocytes (Fields and Burnstock, 2006) and triggers the release of glutamate (Domercq et al., 2006).

The inflammatory inducer LPS changed the glutamate-evoked Ca^{2+} transients from single peaks to Ca^{2+} oscillations when the astrocytes were incubated with LPS for a long time. This means that the intracellular Ca^{2+} release from the endoplasmic reticulum increased, which leads to an overstimulation of the G_s mGlu5-dependent astrocyte Ca^{2+} elevations followed by the propagation of intercellular Ca^{2+} waves (Bradley et al., 2009). Another cellular parameter that is altered by LPS is Na^{+}/K^{+}-ATPase, which results in the downregulation and disorganization of actin filaments (Forshammar et al., 2011).

The challenge is to reverse inflammation-induced changes to return cellular homeostasis back to normal physiological levels (Watkins and Maier, 2003; Hansson, 2006, 2010; Zhuo et al., 2011). Several substances have been suggested for this purpose, and a huge
number of experiments have been performed to find an agent that possesses all the properties necessary to restore inflammation-reactive cells (Tchivileva et al., 2009; Nadeau et al., 2011; Wen et al., 2011).

The CNS is sensitive to opiates, and endogenous opioids modulate cellular proliferation. The classical opioid system is best known for its effects on nociception (Fields, 2004); however, it is also important for modulating the immune system and releasing Ca^{2+} from intracellular stores. These effects are mediated by G protein-coupled opioid receptors (Uhl et al., 1994; Hansson et al., 2008), which can be activated by inflammatory stimuli (Chen and Marvizón, 2009; Vanderah, 2010). It is known that μ-opioid receptors preferentially couple to pertussis toxin (PTX)-sensitive G proteins, G_{i/0}, and inhibit the adenylyl cyclase/cAMP pathway (Connor and Christie, 1999). A switch in G protein coupling from G_{i/0} to G_{s} proteins, which activates the adenylyl cyclase/cAMP pathway, has been shown to be elicited by the chronic administration of opioids in dorsal root ganglion neurons in culture (Crain and Shen, 1995) and in vivo in rats (Wang et al., 2005).

The attenuation of G_{i/0} protein coupling is involved in the initiation and/or maintenance of allodynic pain (Womer et al., 1997). Therefore, it seems important to stimulate the G_{i/0} proteins and decrease the G_{s}

![Fig. 6. Actin filaments. The astrocytes were stained with an Alexa488-conjugated phalloidin probe. The untreated culture was dominated by F-actin organized into stress fibers (control). The cultures incubated with LPS (10 ng/ml) for 24 h showed a more diffuse organization of actin filaments, and the ring structures were more pronounced. Naloxone (10^{-12} M) as well as a combination of naloxone and endomorphin-1 (EM-1) (10^{-6} M), or levetiracetam (Lev) (10^{-4} M) prevented the restructuring of actin filaments. Cells pre-incubated with a combination of Nal, EM-1, and Lev for 30 min before they were incubated with a combination of LPS (10 ng/ml), Nal, EM-1, and Lev for 24 h prevented also the restructuring. Scale bar = 50 μm. Representative images are presented from at least three different seedings.](image-url)
protein activities. Naloxone in ultralow concentrations inhibited the μ-opioid receptor/G protein coupling and stimulated the μ-opioid receptor G2/G protein (Tsai et al., 2009). Ultralow doses of naloxone in combination with morphine attenuate chronic morphine-induced G2 protein coupling in rats (Shen and Crain, 1997; Wang et al., 2005), whereas higher concentrations antagonized excitatory and inhibitory opioid receptors (Crain and Shen, 1995). Ultralow concentrations of naloxone also inhibit the disturbed astrocyte activation (Forshammar et al., 2011; Block et al., 2012). These results indicate that ultralow doses of naloxone in combination with a μ-opioid receptor agonist, such as morphine or endomorphin-1, increase G2/G protein coupling and suppress neuroinflammation by reducing the excitatory G2 protein-coupled opioid receptors in rats (Tsai et al., 2009), patients (Maxwell et al., 2005), and astrocyte cultures (Block et al., 2012). This combination switches the μ-opioid receptor coupling from G2 protein to G2/G protein, and ultralow concentration of naloxone prevents the switch back again.

Downregulation of Na+ transporters has been observed in different inflammatory cellular systems, which indicates a dysfunction of Na+/K+-ATPase activity and can lead to increased intracellular Na+ concentrations (Schmidt et al., 2007). Astrocytes have a strong resistance to Na+ influx only when Na+/K+-ATPase activity is maintained (Takahashi et al., 2000).

Na+/K+-ATPase is stimulated by low concentrations of naloxone by the activation of the Scr/epidermal growth factor receptor (EGFR) intracellular pathway, which increases the intracellular Ca2+ concentration through the phospholipase C/inositol 1,4,5-trisphosphate receptor (IP3) pathway (Zhang et al., 2008). Ultralow concentrations of naloxone prevented the inflammation-induced downregulation of Na+/K+-ATPase in astrocytes, and stimulated the intracellular Ca2+ release (Forshammar et al., 2011). Data indicate that endomorphin-1 as well as morphine indirectly stimulates Na+/K+-ATPase activity by activating μ-opioid receptors and G2/G proteins (Masocha et al., 2002; Horvath et al., 2003). This suggests that the combination of ultralow concentrations of naloxone and endomorphin-1 or morphine, stimulates G2/G protein and Na+/K+-ATPase activities.

The involvement of the cytoskeleton in controlling the plasma membrane microdomains and endoplasmic reticulum complex seems to be of importance. The adaptor protein ankyrin B is associated with the Na+ pump and with endoplasmic reticulum proteins, such as the IP3 receptor. The main cytoplasmic matrix of proteins, spectrin and actin, are attached to ankyrin B. An intact cytoskeleton is required for the propagation of astrocyte Ca2+ waves (Cotrina et al., 1998; Forshammar et al., 2011), and disruption abolishes the Ca2+ oscillations by changing the balance between the Ca2+ regulating processes (Sergeeva et al., 2000), which is observed when astrocytes are affected by LPS.

Naloxone at ultralow concentrations prevented the restructuring of the actin filaments in the cytoskeleton of astrocytes (Forshammar et al., 2011). Filamin A, a cross-linking cytoplasmic actin filament, has been found to regulate cell signaling by interacting with several receptors including μ-opioid receptors. Naloxone binds to a pentapeptide segment of filamin A, and in ultralow concentrations naloxone prevents morphine’s coupling to the G2 protein (Wang and Burns, 2009). This shows the importance of a working Na+ pump, which is coupled to the cellular cytoskeleton.

The biosynthesis of IL-1β is complex and regulated at multiple levels. The increased release of IL-1β observed under inflammatory conditions reduces intercellular communication by the passage of IP3 through gap junctions in astrocyte networks (Retamal et al., 2007). Therefore, neuroprotective Ca2+ signaling is inhibited. As a result, the other Ca2+ signaling pathway, the extracellular ATP pathway, increases (Froger et al., 2010).

A substance that has been observed to decrease IL-1β release is the anti-epileptic drug levetiracetam (Keppra). Levetiracetam has anti-inflammatory properties and has been shown to restore functional gap junction coupling in astrocytes under inflammatory conditions (Haghikia et al., 2008). Furthermore, levetiracetam had the ability to decrease the enhanced IL-1β level (Haghikia et al., 2008). Levetiracetam can also normalize the membrane resting potential, and prevent the restructuring of actin filaments in the cytoskeleton (Stienen et al., 2010). We found also a decrease of the enhanced IL-1β level at higher concentrations, and restoration of the actin filaments. Microglia were in fact still minor after treatment with LPS for 24 h, evidenced by a sparse OX42 staining, and the production of IL-1β can be in majority attributed to astrocytes.

Levetiracetam restored the increased Ca2+ oscillations; however, in combination with endomorphin-1 and an ultralow concentration of naloxone, the effect was more pronounced. Similar results were observed regarding Na+/K+-ATPase. Concerning the IL-1β release, naloxone alone (Forshammar et al., 2011) or in combination with endomorphin-1 did not decrease cytokine release. However, levetiracetam had some restoring effects on the actin filaments. In the absence of a working astrocyte network, interactions between neurons, astrocytes, and other cell types will be problematic. The combination of ultralow concentrations of naloxone, endomorphin-1, and levetiracetam, switches the activation of the μ-opioid receptor to G2 protein coupling, which stimulates the Na+/K+-ATPase activity and restores the actin filaments and the intercellular Ca2+ signaling. The extracellular Ca2+ signaling decreases and so does the inflammatory enhanced IL-1β release. These actions will lead to neuroprotective intercellular Ca2+ signaling in the astrocyte networks and will restore cellular homeostasis.

CONCLUDING REMARKS
The present results are based on the findings that the combination of a μ-opioid receptor antagonist at ultralow concentrations, a μ-opioid receptor agonist, and an
agent attenuating IL-1β release can restore the cellular parameters altered by inflammation to the normal, non-inflammatory state. This three-drug composition could be clinically useful for treatment of long-term pain.

CONFLICT OF INTEREST

There is no conflict of interest.

Acknowledgments—This work was supported by the Edit Jacobson’s Foundation, the Lena and Per Sjöberg Foundation, and the Sahlgrenska University Hospital (LUA/ALF GBG-11587), Gothenburg, Sweden.

REFERENCES

Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53.

Berridge MJ (2007) Inositol trisphosphate and calcium oscillations. Biochem Soc Symp 74:1–7.

Block L, Forshammer J, Lundborg C, Biber B, Hansson E (2012) Naloxone in ultra-low concentration restores endorphin-1-evoked Ca2+ signalling in inflammation pre-treated astrocytes. Neuroscience 205:1–9.

Bradley SJ, Watson JM, Challiss RAJ (2009) Effects of positive allosteric modulators on single-cell oscillatory Ca2+ signalling initiated by the type 5 metabotropic glutamate receptor. Mol Pharmacol 76:1302–1313.

Chen W, Marvizon JCG (2009) Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by µ-opioid receptor internalization. Neuroscience 161:157–172.

Connor M, Christie MD (1999) Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol 26:493–499.

Cotrina ML, Lin JH-C, Nedergraad M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signalling. J Neurosci 18:8794–8804.

Crain SM, Shen K-F (1995) Ultra-low concentrations of naloxone selectively antagonize excitatory effects of morphine on sensory neurons, thereby increasing its antinociceptive potency and attenuating tolerance/dependence during chronic cotreatment. Proc Natl Acad Sci USA 92:10540–10544.

Domercq M, Brambilla L, Pilati E, Marchalandon J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes. Control by tumor necrosis factor-α and prostaglandins. J Biol Chem 281:30684–30696.

El-Hage N, Wu G, Wang J, Ambati J, Knapp PE, Reed JL, Bruce-Keller AJ, Hauser KF (2006) HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia 53:132–146.

Fields H (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5:565–575.

Fields RD, Burnstock G (2006) Purinergic signalling in neuron–glia interactions. Nat Rev Neurosci 7:423–436.

Forshammer J, Block L, Lundborg C, Biber B, Hansson E (2011) Naloxone and ouabain in ultra-low concentrations restore Na+/K+-ATPase and cytoskeleton in lipopolysaccharide-treated astrocytes. J Biol Chem 286:31586–31597.

Froger N, Orellana JA, Calvo C-F, Amigou E, Kozoriz MG, Naus CC, Sáez J, Giaume C (2010) Inhibition of cytokine-induced connexin43 hemichannel activity in astrocytes is neuroprotective. Mol Cell Neurosci 45:37–46.

Gao Y-J, Ji R-R (2010) Targeting astrocyte signalling for chronic pain. Am Soc Exp Neurother 7:482–493.

Gérard F, Hansson E (2012) Inflammatory activity enhances NMDA-triggered Ca2+ signaling and IL-1β secretion in primary cultures of rat astrocytes. Brain Res 1473:1–8.

Haghikia A, Ladage K, Hinkerothe D, Vollmar P, Heupel K, Dermietzel R, Faustmann PM (2008) Implications of anti-inflammatory properties of the anticonvulsant drug levetiracetam in astrocytes. J Neurosci Res 86:1781–1788.

Hansson E (1994) Metabotropic glutamate receptor activation induces astroglial swelling. J Biol Chem 269:21955–21961.

Hansson E (2006) Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol 187:321–327.

Hansson E (2010) Long-term pain, neuroinflammation and glial activation. Scand J Pain 1:67–72.

Hansson E, Westerlund A, Björklund U, Olsson T (2008) δ-Opioid agonists restore intracellular Ca2+ responses in inflammatory activated astrocytes co-cultured with brain endothelial cells. Neuroscience 155:1237–1249.

Horvath G, Agil A, Joo G, Dobos I, Benedek G, Baeyens JM (2003) Evaluation of endorphin-1 on the activity of Na+/(K+)? ATPase using in vitro and in vivo studies. Eur J Pharmacol 3:291–297.

Huber JD, Witt KA, Hom S, Egleton RD, Mark S, Davis TP (2001) Inflammatory pain alters blood brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 280:H1241–H1248.

Kim J-E, Choi H-C, Song H-K, Jo S-M, Kim D-S, Choi S-Y, Kim Y-I, Kang T-C (2010) Levetiracetam inhibits interleukin-1β inflammatory responses in the hippocampus and piriform cortex of epileptic rats. Neurosci Lett 471:94–99.

Krebs C, Fernandes HB, Sheldon C, Raymond LA, Baimbridge KG (2003) Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J Neurosci 23:3364–3372.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275.

Lundborg C, Westerlund A, Björklund U, Biber B, Hansson E (2011) Ifenprodil restores GDNF-evoked Ca2+ signalling and Na+/K+? ATPase expression in inflammation-pretreated astrocytes. J Neurochem 119:686–696.

Masocha W, Gonzalez LG, Baeyens JM, Agil A (2002) Mechanisms involved in morphine-induced activation of synaptosomal Na+, K+, ATPase. Brain Res 2:311–319.

Maxwell LG, Kaufmann SC, Bitzer S, Jackson Jr EV, McGrady J, Kost-Beyerl S, Kozlowski L, Rothman SK, Yaster M (2006) The effects of a small-dose naloxone infusion on opioid-induced side effects and analgesia in children and adolescents treated with intravenous patient-controlled analgesia: a double-blind, prospective, randomized, controlled study. Anesth Analg 100:953–958.

McMahon SB, Malcangio M (2009) Current challenges in glia-pain biology. Neuron 64:46–54.

Millisan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10:23–36.

Marden S, Filali M, Zhang J, Kerr BJ, Rivest S, Soulet D, Iwakura Y, Vaccari JP, de R, Keane RW, Lacroix S (2011) Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1β and TNF: implications for neuropathic pain. J Neurosci 31:12533–12542.

Persson M, Branteftord M, Hansson E, Rönnbäck L (2005) Lipopolysaccharide increases microglial GLT-1 expression and glutamate uptake capacity in vitro by a mechanism dependent on TNF-α. Glia 51:111–120.

Perémán MA, Froger N, Palacios-Prado N, Ezan P, Sáez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781–13792.

Schmidt C, Höcherl K, Schweda F, Kurtz A, Bucher M (2007) Regulation of renal sodium transporters during severe inflammation. J Am Soc Nephrol 18:1072–1083.

Sergeeva M, Ubl JI, Reiser G (2000) Disruption of actin cytoskeleton in cultured rat astrocytes suppresses ATP- and bradykinin-
induced $[\text{Ca}^{2+}]_i$ oscillations by reducing the coupling efficiency between Ca^{2+} release, capacitative Ca^{2+} entry, and store refilling. Neuroscience 97:765–769.

Shen K-F, Crain SM (1997) Ultra-low doses of naltrexone or etorphine increase morphine’s antinociceptive potency and attenuate tolerance/dependence in mice. Brain Res 757:176–190.

Stevens CW, Aravind S, Das S, Davis RL (2013) Pharmacological characterization of LPS and opioid interactions at the toll-like receptor 4. Br J Pharmacol 168:1421–1429.

Stienen MN, Haghikia A, Dambach H, Thöne J, Wiemann M, Gold R, Chan A, Dermietzel R, Faustmann PM, Hinkeroh D, Prochnow N (2010) Anti-inflammatory effects of the anticonvulsant drug levetiracetam on electrophysiological properties of astroglia are mediated via TGF-β1 regulation. Br J Pharmacol 162:491–507.

Strokin M, Sergeeva M, Reiser G (2011) Proinflammatory treatment of astrocytes with lipopolysaccharide results in augmented Ca^{2+} signaling through increased expression of VIA phospholipase A2 (iPLA2). Am J Physiol Cell Physiol 300:C542–C549.

Takahashi S, Shibata M, Gotoh J, Fukuuchi Y (2000) Astroglial cell death induced by excessive influx of sodium ions. Eur J Pharmacol 408:127–136.

Tchivileva IE, Nackley AG, Qian L, Wentworth S, Conrad M, Diatchenko LB (2009) Characterization of NF-κB-mediated inhibition of catechol-O-methyltransferase. Mol Pain 5:1–10.

Tsai R-Y, Tai Y-H, Tzeng J-I, Cheng C-H, Yeh C-C, Wong C-S (2009) Ultra-low dose naloxone restores the antinociceptive effect of morphine in pertussis toxin-treated rats by reversing the coupling of μ-opioid receptors from Gs-protein to coupling to Gi-protein. Neuroscience 164:435–443.

Uhl GR, Childers S, Pasternak G (1994) An opiate-receptor gene family reunion. Trends Neurosci 17:89–93.

Vanderah TW (2010) Delta and kappa opioid receptors as suitable drug targets for pain. Clin J Pain 26:S10–S15.

Wang H-Y, Friedman E, Olmstead MC, Burns LH (2005) Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and G$\beta$$\gamma$ signalling. Neuroscience 135:247–261.

Wang H-Y, Burns LH (2009) Naloxone’s pentapeptide binding site on filamin A blocks mu opioid receptor-Gs coupling and CREB activation of acute morphine. PLoS One 4:e4282. www.plosone.org.

Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Disc 2:973–985.

Wen Y-R, Tan P-H, Cheng J-K, Liu Y-C, Ji R-R (2011) Microglia: a promising target for treating neuropathic and postoperative pain, and morphine tolerance. J Formos Med Assoc 110:487–494.

Wills CL, Davis TP (2008) Chronic inflammatory pain and the neurovascular unit: A central role for glia in maintaining BBB integrity? Curr Pharm Des 14:1625–1643.

Womer DE, DeLapp NW, Shannon HE (1997) Intrathecal pertussis toxin produces hyperalgesia and allodynia in mice. Pain 70:223–228.

Zhang L, Zhang Z, Guo H, Wang Y (2008) Na$^+$/K$^+$-ATPase-mediated signal transduction and Na$^+$/K$^+$-ATPase regulation. Fund Clin Pharmacol 22:615–621.

Zhao F, Liao Y, Jin Y, Li G, Lv X, Sun G (2012) Effects of arsenite on glutamate metabolism in primary cultured astrocytes. Toxicol In Vitro 26:24–31.

Zhuo M, Wu G, Wu L-J (2011) Neuronal and microglial mechanisms of neuropathic pain. Mol Brain 4:1–12.

(Accepted 15 July 2013)
(Available online 25 July 2013)