Comet C/2011 J2 (Linear)

Fragmentation and physical properties of the two nuclei

T. Scarmato¹

¹Toni Scarmato’s Observatory, via G. Garibaldi 46, 89817 San Costantino di Briatico, Calabria, Italy
(toniscarmato@hotmail.it; Cellphone: +393479167369; Tel/Fax: +390963392102)

Abstract

Comet C/2011 J2 (Linear), was discovered to the Catalina Sky Survey Observatory, based on University of Arizona. Is an hyperbolic comet passed to the perihelion at T 2013 Dec. 25.4020 TT. The distance q from the Sun is 3.443732 A.U., that mean that don’t never cross the “snow line”. Also, the Sun’s gravitational force is not such to determine a strong stress on the cometary nucleus. A possible fragmentation at that distance from the Sun in general, is unlikely, but on 2014 September 19th, the CBAT 3979 by D. Green of the ICQ, report the discoveries of a fragment companion of the comet’s main body. In the following days others observers confirms the presence of the secondary “body”. (F. Manzini et al. September 2014, CBET 3986, 2014 September 24th)

In the observation of the comet on 2014 September 28, using a 25 cm Newton and CCD with R photometric filter, I detect the secondary “body” and assuming as possible scenario the presence of a solid fragment in the cloud of material of the fragmentation, I measured some physical parameters, the magnitude in R band and Af(rho) value of the two “nuclei”. Here are presented the preliminaries data.

Key words: General: general; comets: C/2011 J2 (Linear), Catalina, comets size, fragmentation, afrho, photometry of aperture, flux, apparent magnitude, absolute magnitude.
Comet C/2011 J2 (Linear)

1) Introduction

In the night on 2014 September 28th, using the following setup, I observed the comet coming from the Oort cloud C/2011 J2 (Linear).

Basic setup used for observations

\[
FOV(') = \frac{3428 \times \text{dim}(\text{mm})}{\text{focal}(\text{mm})}, \text{scale}(\text{arc sec} / \text{pixel}) = \frac{FOV}{\text{dim}(\text{pixels})} \times 60
\]

Toni Scarmato’s Observatory (T. Scarmato Observer)

Parameters ATIK 16IC mono
Area in Pixel array
Pixel size
Full well depth
Dark current
Peak spectral response
Quantum efficiency
A-D converter
Readout noise
Anti-blooming
Cooling
CCD Type
CCD size (dim area sensitive)

Parameters Telescope	Parameters Filter Rc
Aperture	250 mm
Focal Lenght	1200 f/4.8
Scale	1.27 arcsec/pixel
Optic	Newton
Type	Reflector
FOV (Field of View)	14’x11’
Productor	Schuler
Band	Large
Lambda peak	5978 A
FWHM	1297 A
Comet C/2011 J2 (Linear)

After the CBAT 3979 publication I planned an observation of the comet based on the predicted magnitude and position on the sky. The 2014 September 28 night the comet was high in the sky about 75 deg in Andromeda constellation. The sky was clear and transparent with a PSF of about 1.5 arcsec. The magnitude limit on the stacked image was about 20 in R band (See fig. 1). Only 3 images of the series were excluded due to the bad tracking of the telescope. The single exposure was of 240 sec, so we have 7 good images calibrated with darks and flats and stacked using Astrometrica tool to obtained a very good alignment with subpixels precision.

Fig. 1 – Original image obtained stacking 7x240 sec fits images aligned on the stars. Star magnitude limit on the image is about 20 in R band. Is visible the comet track. North is up and Est is to left.
Observation started on 2014 September 28 at 20:31:31 UT and ended to 21:08:14 UT. In total were taken 10 images of which 3 excluded. To calibrate the images were taken 13 flats and 7 darks images. No bias need. The images will then be calibrated with the masterdark, masterflat. The temperature varied during the observation of about 0.2 °C. Time exposure of 240 sec to obtained the better S/N ratio.

The comet was at 3.4924 A.U. from the Earth and to 4.2636 A.U. from the Sun and the phase angle was 9.5 deg. The star used is USNOB1/Tycho2 1343-0518118/3229-01009-1, Rmag=11.421+/−0.037 Bmag=12.652+/−0.042 in the same field of the comet. Using the formula

\[Flux = \frac{Adu_{Comet}}{\sum Adu_{(ref)}} \]

(Eq. 1)

and \(mag_{comet} = -2.5 \times \log(FLUX) + mag_{ref} \) (where \(mag_{ref} \) is the magnitude of the reference star in R band, we have the magnitude of the comet. To compute the error, I used the standard deviation at 1 sigma of precision.

Fig. 2 – Stacked image with Astrometrica tool, 7x240 sec aligned on the comet center. North is up and Est is to left.
To compute the $Af(rho)$ value (A’Hearn 1984) was used the following formula:

$$Af (rho) = (2.467 \times 10^{19}) x \frac{Rs^2xD}{ap} x \frac{FluxComet}{FluxSun}$$ (Eq. 2)

that with simple transformation become,

$$Af (rho) = (2.467 \times 10^{19}) x \frac{Rs^2xD}{ap} x 10^{0.4x(Ms-Mc)}$$ (Eq. 3)

where Rs is the Sun–Comet distance in A.U., D the Earth–Comet distance in A.U, ap is the used aperture in arcsec, $Ms=-27.09$ the magnitude in R band of the Sun and Mc the measured magnitude in R band of the comet. The method to measure the nucleus of a comet also with amateur images at lower resolution, was discussed in Toni Scarmato 2014, http://arxiv.org/abs/1405.3112. Measure the ADU for the nucleus and using the star in the FOV of the images and his R magnitude compute the radius of the comet. The equations are;

$$R_n = \frac{1.496 \times 10^{11}}{\sqrt{p}} x 10^{0.2x(M_s - H)}$$ (Eq. 4)

where

$$H = m - 5x log(R_s)xD - \alpha \beta$$ (Eq. 5)

is the absolute magnitude of the nucleus in R band, and

$$\alpha \beta = -2.5x log[\Phi(\alpha)]$$ (Eq. 6)

where $\Phi(\alpha)$ is the phase function, α is the phase angle, m is the apparent magnitude of the nucleus measured from the observations in R band and β the phase coefficient. We assumed $R_s=1$ A.U., $\beta=0.04$ mag/deg and the albedo $p=0.04$ as standard values.
Also is possible to use a more simple formula (I. Ferrin ““The location of Oort Cloud Comets C/2011 L4 (Panstarrs) and C/2012 S1 (ISON), on a Comets’ Evolutionary Diagram”):

\[R_n = \frac{\sqrt{10^{7.654 - 0.4xH}}}{2} \]
(Eq.7)

3) Image enhancement: 1/rho model background subtraction, Bicubic Interpolation, Convolution and PSF

After having calibrated the original fits images with dark, flat and bias, we applied an algorithm that extracts the pixels value of the coma, subtracts the background value and multiplies for the cometcenter distance to create a new image with the computed values. After this, we used a crop of 40x40 pixels image centered on the nucleus position, to apply the Bicubic Interpolation, Convolution and PSF.

![Fig. 3 – Cropped image that show the main nucleus and the fragment with a clear central condensation. Comet position predicted AR= 23h 16m 33.85s, decl.= +44° 19’ 08.11”](image)

This procedure permits the construction of a finer structure of the coma and to define the values of the sub-pixels around the cometcenter pixel that contain the nucleus. In this manner, we can obtain details of the coma structure and the residuals between the brighter pixel containing the nucleus and the other pixels around containing the nucleus contribution to the brightness of the coma.
4) Discussion of the results

The first step, as mentioned above, was to calibrate and determine the astrometry and photometry in the original fits images stacking all the well resolved and tracked images, using Astrometrica tool. The fig.4 show a magnification of the original image in which is possible to identify the brighter pixel that contain the nucleus and the fainter fragment pointed out from the arrow.

![Fig. 4 – Magnification of the original fits 7x240 sec image in focus stacked with Astrometrica tool, calibrated also astrometrically.](image)

The brighter central pixel of the main component was located at the position

\[AR=23°16'18.981'' \quad \text{decl.}=+44°21'20.78'' \]

and the centre of the fragment at the position

\[AR=23°16'18.534'' \quad \text{decl.}=+44°21'08.36'' \]

So the offsets of the fragment are respectively in AR=0.447 arcsec and in decl.=12.42 arcsec. Using the photometry differential of aperture, as discussed in Toni Scarmato 2014, http://arxiv.org/abs/1409.2693, for ap=7 pixels, equal to 8.9 arcsec, spatial extension of 22500 km of coma, we have the following results:
Comet C/2011 J2 (Linear) and Fragment – Photometry differential of aperture – R band

2014 September 28 – JD 2456929.35523
Aperture 7pixels=8.9arcsec=22500km

Reference star
USNOB1/Tycho2 1343–0518118/3229–01009–1, Rmag=11.421+/-0.037 Bmag=12.652+/-0.042

Component	Magnitude	Afrho cm (dust production)	Qdust (kg/day)
C/2011 J2	13.504 +/- 0.021	10191 +/- 530	8.8*10^8
Fragment	15.015 +/- 0.045	2535 +/- 120	2.2*10^8

Tab. 1 – Photometry differential of aperture and Af(rho) computation based on the formulae discussed above in section 2.

The table above show the strong activity of the two bodies regarding the dust production. Given the low phase angle value of only 9.5 deg, we can assume that the light coming from the Sun is completely reflected from the system nuclei/coma toward the Earth direction. Another night of observation will enable me to compute the relative speed between the two “comets”. For this look interesting the profile shown in the next figure.

Fig. 5 – Astrometric position of the main nucleus and fragment with the profile and the distance in pixels of the two peaks, about 10 pixels, equal to 12.7 arcsec, in perfect agreement with the astrometric reduction of Astrometrica tool.
Assuming a scenario that consider the secondary condensation as a solid body, using the algorithms described in Toni Scarmato 2014, “Sungrazer Comet C/2012 S1 (ISON): Curve of light, nucleus size, rotation and peculiar structures in the coma and tail” http://arxiv.org/abs/1405.3112, I was able to determine the size of the “nuclei”. (See Fig.6)

COMET C/2011 J2 (Linear) - 2014 September 28 - Observer T. Scarmato	Mean Nucleus								
Table 1	**ADU**	**Band R**	**albedo p=0.04**	**1AU=149.577.000 km**	**D (AU)**	**r (AU)**			
axis	residual	magapp	H (absolute)	Rcomet (m)	err +/-	rho^2a	Phase °		
x	789	18.197	17.817	781	138	a=-1	9.5	3.4924	4.2636
y	591	18.523	18.143	672	119	a=-1	9.5	3.4924	4.2636
xy	1270	17.692	17.312	985	174	a=-1	9.5	3.4924	4.2636
yx	1479	17.527	17.147	1063	188	a=-1	9.5	3.4924	4.2636
Average	1032	17.985	17.605	875	154	a=-1	9.5	3.4924	4.2636

COMET C/2011 J2 (Linear) - 2014 September 28 - Observer T. Scarmato	Fragment								
Table 1	**ADU**	**Band R**	**albedo p=0.04**	**1AU=149.577.000 km**	**D (AU)**	**r (AU)**			
axis	residual	magapp	H (absolute)	Rfrag (m)	err +/-	rho^2a	Phase °		
x	251	19.453	19.073	438	77	a=-1	9.5	3.4924	4.2636
y	84	20.641	20.261	253	45	a=-1	9.5	3.4924	4.2636
xy	295	19.277	18.897	475	85	a=-1	9.5	3.4924	4.2636
yx	318	19.196	18.816	493	87	a=-1	9.5	3.4924	4.2636
Average	237	19.642	19.262	415	73	a=-1	9.5	3.4924	4.2636

Fig.6 – The table show the apparent and absolute magnitude of C/2011 J2 main body and the fragment, the size of the nucleus radius, assumig an albedo p=0.04.

How it is possible see in the table above, the comet was at r=4.2636 A.U from the Sun, largest than the “snow line” distance. A fragmentation at that distance is unlikely also if in the last times several comets showed not only a strong activity but also signs of fragmentation at r>6 A.U. (See C/2012 S1 ISON comet). Looking at the size of the two “comets”, the average dimensions of the original body are about 2.5 km in diameter. Not a big comet. Other observations and further analysis of the data will give us more information about the strong event happened on C/2011 J2 (Linear) comet.
References

A'Hearn, M. F., Schleicher, D. G., Feldman, P. D., Millis, R. L., & Thompson, D. T. 1984, AJ, 89, 579
Bonev, T. & Jockers, K. “Spatial distribution of the dust color in comet C/LINEAR (2000 WM1)” (Proceedings of Asteroids, Comets, Meteors – ACM 2002. International Conference, 29 July – 2 August 2002, Berlin, Germany. Ed. Barbara Warmbein. ESA SP-500. Noordwijk, Netherlands: ESA Publications Division, ISBN 92-9092-810-7, 2002, p. 587 – 591)
Budzien, S. A., Festou, M. C., & Feldman, P. D. 1994, Icarus, 107, 164
CBET 3979 di Daniel W. E. Green, 2014
Crovisier, J., Colom, P., Gérard, E., Bockelée-Morvan, D., & Bourgois, G. 2002, A&A, 393, 1053
Feldman, P. D., & Festou, M. C. 1992, IUE observations of periodic comets Tempel-2, Kopff and Tempel-1, in Proc. of Asteroids, Comets, Meteors III, 1991, ed. A. W. Harris, & E. L. G. Bowell, LPI, Houston, TX, 171
Fink, U., & Hicks, M. D. 1996, ApJ, 459, 729
Holtzman, J. A., Burrows, Ch. J., Casertano, S., et al. 1995, PASP, 107, 1065
Ignacio Ferrín, “The location of Oort Cloud Comets C/2011 L4 Panstarrs and C/2012 S1 ISON, on a Comets’ Evolutionary Diagram”. May, 2014. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Manzini Federico et al., 2014, IAU CBET 3986, 2014 September 24th
Jewitt, D. C., & Luu, J. 1989, AJ, 97, 1766
Keller, H. U. 1990, The nucleus, in Physics and Chemistry of Comets, ed. W. F. Huebner (Berlin: Springer-Verlag), 13
Lamy, P. L., & Toth, I. 1995, A&A, 293, L43
Lamy, P. L., & Toth, I. 2009, Icarus, 201, 674
Lamy, P. L., Toth, I., Grün, E., et al. 1996, Icarus, 119, 370
Lamy, P. L., Toth, I., Jorda, L., & Weaver, H. A. 1998a, A&A, 335, L25
Lamy, P. L., Toth, I., & Weaver, H. A. 1998b, A&A, 337, 945
Lamy, P. L., Toth, I., A’Hearn, M. F., & Weaver, H. A. 1999, Icarus, 140, 424
Lamy, P. L., Toth, I., Jorda, L., et al. 2002, Icarus, 156, 442
Lamy, P. L., Toth, I., Fernández, Y.R., &Weaver, H.A. 2004, The sizes, shapes, albedos, and colors of cometary nuclei, in Comets II, ed. M. Festou, H.U. Keller, & H. A. Weaver (Tucson, AZ: University of Arizona Press), 223
Lamy, P. L., Toth, I., Davidsson, B. J. R., et al. 2007, SSRv, 128, 23
Li, J.-Y., A’Hearn, M. F.,McFadden, L. A., & Belton, M. J. S. 2007, Icarus, 188, 195
R. Keys, (1981). “Cubic convolution interpolation for digital image processing”. IEEE Transactions on Signal Processing, Acoustics, Speech, and Signal Processing 29 (6): 1153–1160
Singh, P. D., de Almeida, A. A., & Huebner, W. F. 1992, AJ, 104, 848
Toni Scarmato 2014, “Sungrazer Comet C/2012 S1 (ISON): Curve of light, nucleus size, rotation and peculiar structures in the coma and tail” http://arxiv.org/abs/1405.3112
Toni Scarmato 2014, “Photometry differential of comets”, http://arxiv.org/abs/1409.2693