Holography of Charged Black Holes with RF^2 Corrections

Da-Wei Pang1 2 3

1Center for Quantum Spacetime(CQUeST), Sogang University, Korea
2Institute of Theoretical Physics, Chinese Academy of Sciences
3CENTRA, Lisbon, Portugal

Based on ongoing work.
Talk given at ITP, CAS, 04.06.2011
Outline

1. Introduction
 - Gauge/gravity duality and condensed matter physics
 - A brief review of 1010.0443[hep-th]

2. The perturbative solution
 - The set-up
 - The perturbative solution
 - Thermodynamics

3. DC conductivity
 - The effective action approach
 - Our case

4. Shear viscosity, thermal conductivity and relevant ratios
 - Shear viscosity
 - Thermal conductivity

5. Summary and discussion
What is Gauge/gravity duality?

- A holographic duality between a weakly-coupled theory of gravity in certain spacetime and a strongly-coupled field theory living on the boundary of that spacetime.
- A powerful new tool for investigating dynamics of strongly-coupled field theories in the dual gravity side.
- A new window on understanding real-world physics: QCD, CMT, etc.
- Two complementary approaches: bottom-up and top-down.
Two complementary approaches:

Bottom-up
- Toy-models coming from simple gravity theory;
- Basic ingredients: $g_{\mu\nu}, A_\mu, \psi$ and/or dilaton ϕ;
- Advantage(s): simplicity and universality;
- Disadvantage(s): the dual field theory is unclear.

Top-down
- Configurations originated from string/M theory;
- Exact solutions of SUGRA or Dp/Dq-branes;
- Advantage(s): good understanding on the field theory;
- Disadvantage(s): complexity.
The main results of 1010.0443[hep-th]

By R. C. Myers, S. Sachdev and A. Singh

- Charge transport near 2+1-dim strongly interacting quantum critical points;
- Background: Schwarzschild-AdS$_4$;
- Effective action for A_μ

$$I_{\text{vec}} = \frac{1}{g_4^2} \int d^4 x \sqrt{-g}\left[-\frac{1}{4} F_{ab} F^{ab} + \gamma L^2 C_{abcd} F^{ab} F^{cd}\right], \quad (1)$$

- The DC conductivity

$$\sigma_{\text{DC}} = \frac{1}{g_4^2}(1 + 4\gamma). \quad (2)$$
A brief review of 1010.0443[hep-th]

An alternative form of the corrections

$$I'_{\text{vec}} = \frac{1}{\tilde{g}_4^2} \int d^4x \sqrt{-g} \left[-\frac{1}{4} F_{ab} F^{ab} + \alpha L^2 (R_{abcd} F^{ab} F^{cd}
ight.$$ \begin{align*} &- 4 R_{ab} F^{ac} F^{b}_c + RF^{ab} F_{ab}) \right],
\end{align*} \tag{3}

arising from KK reduction of 5D Gauss-Bonnet gravity.

In neutral background $R_{ab} = -3/L^2 g_{ab}$, using the definition of the Weyl tensor, the action (3) becomes

$$I'_{\text{vec}} = \frac{1 + 8\alpha}{\tilde{g}_4^2} \int d^4x \sqrt{-g} \left[-\frac{1}{4} F_{ab} F^{ab} + \frac{\alpha}{1 + 8\alpha} L^2 C_{abcd} F^{ab} F^{cd} \right]. \tag{4}$$
It is equivalent to (1) with the following identifications

\[g_4^2 = \frac{\tilde{g}_4^2}{1 + 8\alpha}, \quad \gamma = \frac{\alpha}{1 + 8\alpha}. \tag{5} \]

Thus the charge transport properties are identical. In particular,

\[\sigma_{\text{DC}} = \frac{1 + 12\alpha}{\tilde{g}_4^2}. \tag{6} \]

QUESTION: How about the case with a non-vanishing chemical potential?
The set-up

The starting point

Leading order solution: \(RN-AdS_4 \). The action

\[
S_0 = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} [R + \frac{6}{L^2} - \frac{L^2}{g_F^2} F_{ab} F^{ab}]. \tag{7}
\]

The metric

\[
ds_0^2 = \frac{r^2}{L^2} [-f_0(r) dt^2 + dx^2 + dy^2] + \frac{L^2}{r^2} \frac{dr^2}{f_0(r)}, \tag{8}
\]

where

\[
f_0(r) = 1 - \frac{M}{r^3} + \frac{Q^2}{r^4}, \tag{9}
\]
The gauge field

\[A_t^{(0)} = \mu_0 (1 - \frac{r_0}{r}). \] \hspace{1cm} (10)

The horizon \(r_0 \) satisfies \(f_0(r_0) = 0 \), \(\Rightarrow M = r_0^3 + Q^2/r_0 \).

The chemical potential \(\mu_0 \), charge density \(\rho_0 \), energy density \(\epsilon_0 \) and entropy density \(s_0 \)

\[\mu_0 = \frac{g_F Q}{L^2 r_0}, \ \ \rho_0 = \frac{2Q}{\kappa^2 L^2 g_F}, \]
\[\epsilon_0 = \frac{M}{\kappa^2 L^4}, \ \ \ s_0 = \frac{2\pi r_0^2}{\kappa^2 L^2}. \] \hspace{1cm} (11)
The set-up

The starting point Cont’d

The temperature

\[T_0 = \frac{3r_0}{4\pi L^2} \left(1 - \frac{Q^2}{3r_0^4}\right), \] \hspace{1cm} (12)

The extremal limit

\[T_0 = 0, \quad \Rightarrow \quad Q^2 = 3r_0^4. \] \hspace{1cm} (13)

One can verify that the first law of thermodynamics holds

\[d\epsilon_0 = T_0 ds_0 + \mu_0 d\rho_0. \] \hspace{1cm} (14)
The set-up

The equations of motion

The full action including higher order corrections

\[
S \equiv S_0 + S_1 = \frac{1}{2 \kappa^2} \int d^4 x \sqrt{-g} \left[R + \frac{6}{L^2} - \frac{L^2}{g_F^2} F_{ab} F^{ab} \right. \\
\left. + \frac{\alpha L^4}{g_F^2} (R_{abcd} F^{ab} F^{cd} - 4 R_{ab} F^{ac} F^{b}{}_{c} + R F^{ab} F_{ab}) \right].
\] (15)

\(\alpha \) - a dimensionless constant.

The modified Maxwell equation

\[
\nabla_a [F^{ab} - \alpha L^2 (R^{ab}{}_{cd} F^{cd} - 2 R^{ac} F^b{}_{c} + 2 R^{bc} F^a{}_{c} + R F^{ab})] = 0. \] (16)
The set-up

The equations of motion Cont’d

The Einstein equation

\[
R_{ab} - \frac{1}{2} R g_{ab} = \frac{3}{L^2} + \frac{2L^2}{g_F^2} F_{ac} F_b^c - \frac{L^2}{2g_F^2} g_{ab} F^2
\]

\[+ \frac{\alpha L^4}{2g_F^2} \left(\frac{1}{2} g_{ab} R_{cdf} F^{cd} F^{ef} - 2R_{abcdefgh} F^{d} F^{ef} - 2R_{bdeq} F^{d} F^{ef} \right) \]

\[+ 2 \nabla^d \nabla^f F_{da} F_{bf} \right) + \frac{\alpha L^4}{2g_F^2} \left(-2 g_{ab} R_{cd} F^{ce} F^{d} F_{e} - 2 \nabla_d \nabla_a F_{bf} F^{df} \right) \]

\[+ 2 \nabla_d \nabla_b F_{af} F^{df} + 2 \Box F_{af} F^{bf} + 2 g_{ab} \nabla_c \nabla_d F^{cf} F^{df} \]

\[+ 4 R_{ac} F_{bf} F^{cf} + 4 R_{bc} F_{af} F^{cf} + 2 R_{cd} F_{a} F^{d} F_{b} + 2 R_{cd} F^{c} F_{b} F^{d} \]

\[+ \frac{\alpha L^4}{2g_F^2} \left(\frac{1}{2} g_{ab} RF^2 - R_{ab} F^2 + \nabla_a \nabla_b F^2 + g_{ab} \Box F^2 + 2RF_{ac} F_b^c \right). \]
The perturbative solution

The method for obtaining the perturbative solution

The ansatz for the perturbative solution

\[
 ds^2 = \frac{r^2}{L^2}[-f(r)dt^2 + dx^2 + dy^2] + \frac{L^2}{r^2} \frac{dr^2}{g(r)},
\]

\[
 A_t(r) = A_t^{(0)}(r) + H(r),
\]

where

\[
 f(r) = f_0(r)(1 + F(r)), \quad g(r) = f_0(r)(1 + F(r) + G(r)),
\]

The main steps proposed in R. C. Myers, M. F. Paulos and A. Sinha, JHEP 0906, 006 (2009) [arXiv:0903.2834 [hep-th]].
The perturbative solution

The method for obtaining the perturbative solution Cont’d

1. Considering the combination $G_t^t - f/g G_r^r$, where G_{ab} denotes the Einstein tensor, one finds a first-order linear ODE for $G(r)$, which is solvable.

2. Given $G(r)$, the modified Maxwell equation is easily solved.

3. With the above two perturbative solutions, $F(r)$ can be determined by solving the first-order linear ODE coming from the rr-component of the Einstein equation.

Step 1 gives

$$rf_0(r)\partial_r G(r) = 0, \quad \Rightarrow \quad \partial_r G(r) = 0, \quad G(r) = \text{const.} \quad (19)$$
Without loss of generality

\[G(r) = 0, \quad \Rightarrow \quad f(r) = g(r) = f_0(r)(1 + F(r)). \quad (20) \]

Step 2 leads to

\[H(r) = h_0 + \frac{h_1}{r} + \frac{2\alpha\mu_0 r_0}{2r^4} - \frac{\alpha\mu_0 Q^2}{2r^4} + \frac{2\alpha\mu_0 r_0 Q^2}{5r^5}. \quad (21) \]

Step 3 gives

\[Y(r) \equiv f_0(r)F(r) = \frac{y_0}{r^3} - \frac{\alpha Q^2 r_0^3}{2r^7} - \frac{\alpha Q^4}{2r_0 r^7} + \frac{8\alpha Q^4}{5r^8}. \quad (22) \]
The perturbative solution

The explicit form of the perturbative solution Cont’d

Several constraints (following 0903.2834[hep-th])

- $r = r_0$ is still the horizon.

\[Y(r_0) = 0, \quad \Rightarrow \quad y_0 = \frac{\alpha Q^2}{2r_0} - \frac{11\alpha Q^4}{10r_0^5}. \]

(23)

- The charge density remains invariant. Thus the additional terms in the modified Maxwell equation do not contribute

\[\lim_{r \to \infty} \left[\sqrt{-g} \alpha L^2 \left(2 R_{rt} r^t F_{rt} - 2 R^r_r F_{rt} + 2 R^t_t F_{tr} + RF_{rt} \right) \right] = 0, \]

which leads to

\[h_1 = 0. \]

(24)
The perturbative solution

The explicit form of the perturbative solution Cont’d

The gauge potential $A_t(r)$ vanishes at the horizon,

$$ H(r_0) = 0, \quad \Rightarrow \quad h_0 = \frac{\alpha \mu_0 Q^2}{10 r_0^4} - \frac{3}{2} \alpha \mu_0. \quad (25) $$

Thermodynamics:

The temperature

$$ T = \frac{1}{4\pi} \frac{1}{\sqrt{-g_{tt}g_{rr}}} \frac{d}{dr} g_{tt} \bigg|_{r=r_0} $$

$$ = \frac{1}{4\pi L^2 r_0^2} \left[(3M - \frac{4Q^2}{r_0^3}) + \frac{2\alpha Q^2}{r_0^3} (1 - \frac{3Q^2}{r_0^4}) \right]. \quad (26) $$
The chemical potential and the entropy density

The chemical potential

\[\mu = A_t(r \to \infty) = \mu_0 - \alpha \mu_0 \left(\frac{3}{2} - \frac{Q^2}{10r_0^4} \right). \] \hspace{1cm} (27)

The entropy density given by Wald formula

\[s = -2\pi \frac{\partial L}{\partial R_{abcd}} \epsilon_{ab} \epsilon_{cd} = \frac{2\pi r_0^2}{\kappa^2 L^2} + \frac{2\pi \alpha Q^2}{\kappa^2 L^2 r_0^2}. \] \hspace{1cm} (28)

Calculating other thermodynamic quantities: the background subtraction method. Working in the grand canonical ensemble, fixed chemical potential. The reference background: pure AdS$_4$.
The energy density and the charge density

The energy density

\[
\epsilon = \left(\frac{\partial I_E}{\partial \beta} \right)_\mu - \frac{\mu}{\beta} \left(\frac{\partial I_E}{\partial \mu} \right)_\beta = \frac{M}{\kappa^2 L^4} - \alpha \frac{29Q^4 + 5Q^2r_0^4}{5\kappa^2 L^4 r_0^5}. \tag{29}
\]

The charge density

\[
\rho = -\frac{1}{\beta} \left(\frac{\partial I_E}{\partial \mu} \right)_\beta = \frac{2Q}{g_F\kappa^2 L^2} + \frac{2\alpha(-29Q^5 + Q^3r_0^4)}{5g_F\kappa^2 L^2 r_0^4(Q^2 + 3r_0^4)}. \tag{30}
\]

Quantities characterizing the local stability: the specific heat \(C_\mu \) and the electrical permittivity \(\epsilon_T \).
The specific heat and the electrical permittivity

The specific heat

\[
C_\mu = T \left(\frac{\partial s}{\partial T} \right)_\mu \frac{4\pi r_0^2(3r_0^4 - Q^2)}{\kappa^2 L^2(Q^2 + 3r_0^4)} + \alpha \frac{4\pi Q^2(Q^6 - 527Q^4r_0^4 + 567Q^2r_0^8 + 135r_0^{12})}{5\kappa^2 L^2 r_0^2(Q^2 + 3r_0^4)^3}.
\] \(31\)

The electrical permittivity

\[
\epsilon_T = \left(\frac{\partial Q}{\partial \mu} \right)_T = \frac{6r_0(Q^2 + r_0^4)}{g_F^2 \kappa^2(Q^2 + 3r_0^4)} + \alpha \frac{6(-39Q^6 + 247Q^4r_0^4 + 11Q^2r_0^8 + 45r_0^{12})}{10g_F^2 \kappa^2 r_0^3(Q^2 + 3r_0^4)^2}.
\] \(32\)

\[T \geq 0 \rightarrow Q^2 \leq 3r_0^4.\] at leading order \(C_\mu \geq 0, \epsilon_T > 0,\) locally stable. \(\alpha\) corrections. numerical plots.
The Kubo formula

\[G^{R}_{xx}(\omega, \vec{k} = 0) = -i \int dt d\vec{x} e^{i\omega t} \theta(t) \langle [J_{x}(x), J_{x}(0)] \rangle, \tag{33} \]

\(J_{a} \)-CFT current dual to the bulk gauge field \(A_{a} \).

The DC conductivity

\[\sigma_{DC} = - \lim_{\omega \to 0} \frac{1}{\omega} \text{Im} G^{R}_{xx}(\omega, \vec{k} = 0), \tag{34} \]

One subtle point: since \(A_{t} \neq 0 \), the perturbation \(A_{x} \) can couple to the metric perturbations \(h_{xi} \).
Strategy: Gauge invariance imposes a relation between the two sets of perturbations which we use to integrate out the h_{xi} and obtain an action that involves only the A_x fluctuation. Introducing a new radial coordinate $u = r_0/r$, horizon $u = u_0$, the fluctuations of metric components and gauge field

\[
\begin{align*}
 h_t^x &= \int \frac{d^3k}{(2\pi)^3} t_k(u) e^{-i\omega t + iky}, \\
 h_u^x &= \int \frac{d^3k}{(2\pi)^3} h_k(u) e^{-i\omega t + iky}, \\
 A_x &= \int \frac{d^3k}{(2\pi)^3} a_k(u) e^{-i\omega t + iky},
\end{align*}
\] (35)
The effective action approach

The approach

The simplest method: considering the quadratic effective action

\[I_a^{(2)} = \frac{1}{2\kappa^2} \int \frac{d^3k}{(2\pi)^3} du (N(u) a'_k a'_{-k} + M(u) a_k a_{-k}), \]

(36)

where we have eliminated the contributions from \(t_k(u) \) by using the corresponding Einstein equation and imposing \(h_{ux} = 0 \).

The equation of motion

\[\partial_u j_k(u) = \frac{1}{\kappa^2} M(u) a_k(u), \]

(37)

where
The effective action approach

The approach Cont’d

\(j_k(u) \equiv \frac{\delta I_a^{(2)}}{\delta a'_{-k}} = \frac{1}{\kappa^2} N(u) a'_k(u), \quad (38) \)

Requiring regularity at the horizon (N. Iqbal and H. Liu, Phys. Rev. D 79, 025023 (2009) [arXiv:0809.3808 [hep-th]].)

\[j_k(u_0) = -i \omega \lim_{u \to u_0} \frac{N(u)}{\kappa^2} \sqrt{\frac{g_{uu}}{-g_{tt}}} a_k(u) + O(\omega^2), \quad (39) \]

The flux factor

\[2 \mathcal{F}_k = j_k(u) a_{-k}(u), \quad (40) \]
According to (34), the conductivity is given by

$$\sigma = \lim_{u, \omega \to 0} \frac{1}{\omega} \text{Im} \left[\frac{2F_k}{a_k(u) a_{-k}(u)} \right]_{k=0} = \lim_{u, \omega \to 0} \text{Im} \left[\frac{j_k(u) a_{-k}(u)}{\omega a_k(u) a_{-k}(u)} \right]_{k=0},$$

(41)

Note that

$$\frac{d}{du} \text{Im}[j_k(u) a_{-k}(u)] = \text{Im}(f_1(u) a_k(u) a_{-k}(u) + f_2(u) j_k(u) j_{-k}(u)) = 0,$$

(42)

as the two terms are real. Thus it is conserved and can be evaluated at the horizon.
Then the DC conductivity

\[
\sigma_{\text{DC}} = \frac{1}{\kappa^2} K_A^2(u_0) \frac{\mathcal{N}(u_0)}{\mathcal{N}(0)} \bigg|_{k=0},
\]

(43)

where

\[
K_A^2(u) = -N(u) \sqrt{\frac{g_{uu}}{-g_{tt}}}, \quad \mathcal{N}(u) = a_k(u) a_{-k}(u),
\]

(44)

Note that \(\mathcal{N}(u)\) is real and independent of \(\omega\) up to \(O(\omega^2)\). So it is regular at the horizon and is sufficient to set \(\omega = 0\) in the equation of motion for \(a_k\).
For our particular case,

\[ds^2 = -\frac{r_0^2}{L^2 u^2} f(u)dt^2 + \frac{L^2 du^2}{u^2 f(u)} + \frac{r_0^2}{L^2 u^2} (dx^2 + dy^2), \]

(45)

where

\[f(u) = (1 - u)[F(u) + \alpha G(u)], \quad F(u) = 1 + u + u^2 - \frac{Q^2 u^3}{r_0^4}, \]

\[G(u) = \frac{Q^2 u^3}{10r_0^8} [5r_0^4(1 + u + u^2 + u^3) \]

\[- Q^2(11 + 11u + 11u^2 + 11u^3 + 16u^4)], \]

(46)
Consider the leading order solution

\[f(u) = f_0(u) = (1 - u)F(u), \quad (47) \]

according to (34), it is sufficient to set \(k = 0 \).

The constraint for \(t_k \)

\[t'_k = - 4 \frac{L^4 u^2}{g_F^2 r_0^2} A'_t a_k, \quad (48) \]

Therefore

\[N(u) = - \frac{r_0}{g_F^2} f_0(u), \quad M(u) = \frac{L^4 \omega^2}{r_0 g_F^2 f_0(u)} - \frac{4 L^4 u^2}{r_0 g_F^4} A'_t^2, \quad (49) \]
The solution for $a_k(u)$

$$a_k(u) = a_0 \left(1 - \frac{4Q^2}{3(r_0^4 + Q^2)}u\right), \quad (50)$$

The DC conductivity

$$\sigma_{DC} = \frac{L^2}{\kappa^2 g_F^2} \frac{(3r_0^4 - Q^2)^2}{9(r_0^4 + Q^2)^2}, \quad (51)$$

which agrees with previous result (e.g. X. H. Ge, K. Jo and S. J. Sin, [arXiv:1012.2515 [hep-th]].).
Including corrections: the steps are more or less the same, but the equation becomes more complicated. Keeping the solution to first order of α and Q^2,

$$a_k(u) = a_0 + a_1 u + \alpha[(a_2 - 2a_1)u - \frac{1}{4}a_1 u^4$$

$$-\left(\frac{1}{3}a_0 + \frac{1}{4}a_1\right)\frac{Q^2 u^4}{r_0^4}\right], \quad a_1 = -\frac{4a_0 Q^2}{3(r_0^4 + Q^2)},$$

(52)

a_2-integration constant. The conductivity

$$\sigma_{\text{DC}} = \frac{L^2}{\kappa^2 g_F^2} \left[\left(\frac{3r_0^4 - Q^2}{9(r_0^4 + Q^2)}\right)^2 + 2\alpha(a_2 + \frac{8 - 4a_2 Q^2}{3r_0^4})\right],$$

(53)
In the limit of $Q = 0$,

\[
\sigma_{\text{DC}} = \frac{L^2}{\kappa^2 g_F^2} (1 + 2\alpha a_2),
\]

(54)

one can reproduce the result in arXiv: 1010.0443[hep-th] by suitably choosing a_2.

Our case Cont’d
The retarded Green’s function

\[G_{xy,xy}^R(\omega, \vec{k} = 0) = -i \int dt d\vec{x} e^{i\omega t} \theta(t) \langle [T_{xy}(x), T_{xy}(0)] \rangle, \tag{55} \]

The shear viscosity is given by

\[\eta = - \lim_{\omega \to 0} \frac{1}{\omega} \text{Im} G_{xy,xy}^R(\omega, \vec{k} = 0), \tag{56} \]

One can still apply the effective action approach.
Shear viscosity

The approach

Consider the metric perturbation

$$h_{x}^{y}(t, u) = \int \frac{d^{3}k}{(2\pi)^{3}} \phi(u) e^{-i\omega t}, \quad (57)$$

and expand the action to quadratic order in ϕ,

$$I_{\phi}^{(2)} = \frac{1}{2\kappa^{2}} \int \frac{d^{3}k}{(2\pi)^{3}} du [A(u)\phi''\phi + B(u)\phi'\phi' + C(u)\phi'\phi'

+ D(u)\phi\phi + E(u)\phi''\phi'' + F\phi''\phi' + K_{GH}], \quad (58)$$

K_{GH}-contributions from the Gibbons-Hawking terms.
Shear viscosity

The approach Cont’d

After making use of the equation of motion and integrating by parts

\[\tilde{i}^{(2)}_{\phi} = \frac{1}{2\kappa^2} \int \frac{d^3k}{(2\pi)^3} du [(B - A - \frac{F'}{2})\phi'\phi' + E(u)\phi''\phi''] \]

\[+ (D - \frac{(C - A')'}{2})\phi\phi] + \tilde{K}_{GH}. \] (59)

The canonical momentum is given by

\[\Pi(u) \equiv \frac{\delta \tilde{i}^{(2)}_{\phi}}{\delta \phi'} = \frac{1}{\kappa^2} [(B - A - \frac{F'}{2}) - (E(u)\phi'')'] \] (60)
According to arXiv: 0809.3808[hep-th],

\[
\eta = \lim_{u, \omega \to 0} \frac{\Pi(u)}{i \omega \phi(u)}.
\]

(61)

In the low frequency limit $\partial_u \Pi(u) = 0$, so we can evaluate $\Pi(u)$ at the horizon. Imposing the regularity condition,

\[
\eta = \frac{1}{\kappa^2} (K_\phi^2(u_0) + K_\phi^4(u_0)),
\]

(62)

where

\[
K_{\phi}^{(2)}(u) = \sqrt{\frac{g_{uu}}{-g_{tt}}} (A - B + \frac{F'}{2}), \quad K_{\phi}^{(4)}(u) = \left[E(u) \left(\sqrt{\frac{g_{uu}}{-g_{tt}}} \right)' \right]' .
\]

(63)
for our particular background, the nonvanishing functions in $\tilde{I}_\phi^{(2)}$,

$$
A(u) = \frac{2r_0^4 f(u)}{L^4 u^2}, \quad B(u) = \frac{3r_0^3 f(u)}{2L^4 u^2} - \frac{\alpha u^2 Q^2 f(u)}{L^4 r_0}, \\
C(u) = -\frac{6r_0^3 f(u)}{L^4 u^3} + \frac{2r_0^3 f(u)'}{L^4 u^2} - \frac{4\alpha uQ^2 f(u)}{L^4 r_0},
$$

(64)

therefore

$$
K_\phi^2(u) = \frac{r_0^2}{2u^2 L^2} + \frac{\alpha u^2 Q^2}{L^2 r_0^2}, \quad K_\phi^4(u) = 0,
$$

(65)

which leads to

$$
\eta = \frac{1}{\kappa^2} \left(\frac{r_0^2}{2L^2} + \frac{\alpha Q^2}{L^2 r_0^2} \right).
$$

(66)
The thermal conductivity determines the response of the heat flow to temperature gradients, $T^t_i = -\kappa_T \partial_i T$.

The expression (D. T. Son and A. O. Starinets, JHEP 0603, 052 (2006), hep-th/0601157)

$$\kappa_T = \left(\frac{S}{\rho} + \frac{\mu}{T} \right)^2 T \sigma,$$

One can easily obtain κ_T by substituting previous results into this expression.
\(\frac{\eta}{s} \) and \(\frac{\kappa_T \mu^2}{(\eta T)} \)

One interesting ratio \(\frac{\eta}{s} \),

\[
\frac{\eta}{s} = \frac{1}{4\pi} \left(1 + \alpha \frac{Q^2}{r_0^4}\right). \tag{68}
\]

When \(Q = 0 \), it reproduces the well-known bound \(1/4\pi \). It might be violated in the presence of a chemical potential. Another ratio

\[
\frac{\kappa_T \mu^2}{\eta T} = 2\pi^2 g_F^2 + \alpha \pi^2 g_F^2 [(4a_2 - 10) + \frac{422 + 80a_2}{15} \frac{Q^2}{r_0^4}], \tag{69}
\]

The bound in hep-th/0601157: \(8\pi^2 \) can also be violated.
We consider RF^2 corrections to $RN – AdS_4$ black holes.

The perturbative solutions are calculated and the thermodynamic properties are discussed.

The DC conductivity is obtained via the effective action approach, which can reproduce the result in 1010.0443[hep-th] in certain limit.

The shear viscosity and the thermal conductivity are evaluated.

Two interesting ratios η/s and $\kappa T \mu^2 / (\eta T)$ are obtained. The corresponding bounds can be violated.
Hydrodynamic quantities in extremal background, M. F. Paulos, arXiv:0910.4602[hep-th]. In particular, $\sigma \sim \omega^2$.

The full correlation functions in the presence of RF^2 corrections.

Holographic optics(1006.5714[hep-th]).

...
Thank you!