Associations of Single Nucleotide Polymorphisms in IL-18 Gene with *Plasmodium falciparum*-Associated Malaria

Alaa U AlRuwaisan¹, Mashael R Al-Anazi², Mohammed I Shafeai³, Fuad H Rudiny³, Ali M Motaen³, Saad M Bin Dajem⁴, Hani Alothaid⁵, Kareem Morsy⁶,⁷, Saad Alkahtani⁸, Ahmed A Al-Qahtani¹,⁹

¹Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; ²Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; ³Sabya General Hospital, Sabya, Saudi Arabia; ⁴Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; ⁵Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia; ⁶Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt; ⁷Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia

Introduction: Interleukin-18 (IL-18) is a pro-inflammatory cytokine, reported to be involved in the initial immune responses against malaria. Genetic variations in the host are an important factor that influences the etiology of malaria at several disease levels. Polymorphisms within the IL-18 gene are associated with susceptibility and clinical outcome of several diseases.

Methods: We genotyped single nucleotide polymorphisms (SNPs) in IL-18 of patients infected with *Plasmodium falciparum* with varying extent of parasitemia and different age groups.

Results: SNPs rs5744292 (OR = 70.446; 95% CI = 4.318–1149.323; p<0.0001) and rs544354 (OR = 1.498; 95% CI = 1.088–2.063; p=0.013) were found to be significantly associated with parasitemia in *P. falciparum*-infected patients when compared with healthy control subjects. SNP rs5744292 (OR = 7.597; 95% CI = 1.028–56.156; p=0.019) was associated with increased parasite density in infected patients. SNPs rs544354 (OR = 0.407; 95% CI = 0.204–0.812; p = 0.009) and rs360714 (OR of 0.256; 95% CI=0.119–0.554; p = 0.001) were significantly associated with parasite density in an age-dependent manner, with the risk alleles present more frequently among the younger (1–9 years) patients. Several haplotypes were found to have a significant association with parasitemia. In-vitro expression analysis using luciferase reporter assay showed that SNPs rs1946518 and rs187238 in the IL-18 gene, SNPs rs544354 (OR = 1.498; 95% CI = 1.088–2.063; p=0.013) were found to be significantly associated with increased transcriptional activity.

Conclusion: Our results suggest that polymorphisms within the IL-18 gene are associated with the susceptibility to *P. falciparum* infection and related parasitemia among groups with different parasite density and across various age groups.

Keywords: *Plasmodium falciparum*, IL-18 gene, SNPs

Introduction

Malaria is a parasitic disease caused by the unicellular protozoan of the genus *Plasmodium* and is spread mainly through infected female Anopheles mosquitoes. Despite several control programs, malaria continues to be a major health concern worldwide, particularly in low and middle-income countries. The WHO estimates there were 228 million cases of malaria globally resulting in 405,000 deaths in 2018.¹ Malaria is presently widespread along the tropical and sub-tropical belt, in certain areas of the Americas, many parts of Asia, and much of Africa, particularly sub-Saharan Africa.² Malaria has been known to be endemic in the lowlands of ...
Saudi Arabia, and three species of *Anopheles* mosquitoes have been identified in this region, namely *An. arabiensis*, *An. Sergentii* and *An. Gambiae*. Among the different species of *Plasmodium* infecting humans, *Plasmodium falciparum* is the most prevalent in African countries and Saudi Arabia and it is linked to most of the malaria-related deaths worldwide.\(^5,6\)

Large variation has been observed in the clinical presentation of the *P. falciparum* infection, from asymptomatic individuals to patients with severe cerebral malaria and other fatal forms of the infection. The individual variations in the clinical manifestation and progression to severe forms of *P. falciparum* infection have been reported to be influenced by several factors such as age, genetic polymorphisms in the host, genotype of the parasite, and the environmental/social conditions.\(^7,8\) Numerous studies have explored genetic influence in the pathomechanism and identified several host genes that can significantly influence the diverse clinical outcomes of malaria such as hemoglobin variants,\(^9,10\) glucose-6-phosphate dehydrogenase,\(^11\) pyruvate kinase,\(^12\) and haptoglobin.\(^13\)

Cytokines orchestrate the initial immune response against invading malarial parasites. Previous studies have reported an increased concentration of pro-inflammatory cytokines like IL-6 and anti-inflammatory cytokines like IL-10 in *P. falciparum*-infected patients.\(^14\) IL-18 is a pro-inflammatory cytokine encoded by the *IL-18* gene on chromosome 11q23.1 and belongs to the IL-1 superfamily. IL-18 is expressed by a wide range of cells, including macrophages, Kupffer cells, keratinocytes, osteoblasts, astrocytes, and dendritic cells (DCs).\(^15\) IL-18 is synthesized as 24 kD pro-IL-18, a biologically inactive precursor peptide, which is subsequently cleaved by caspase-1 into a biologically active IL-18 cytokine.\(^15\) The most salient biological property of IL-18 that distinguishes it from IL-1 is its ability to induce secretion of high levels of interferon (IFN)-γ in the presence of IL-12.\(^16\) Also, a substantial pool of intracellular IL-18 is present in the cytoplasm and is regulated mainly by caspase-1-mediated pro-IL-18 processing.\(^15\) IL-18 has a wide array of biological functions, many of which are accomplished synergistically with other cytokines, such as IFN-γ, as an early immune response to pathogenic invasions.\(^16\) Several investigations into biological role of IL-18 have shown that IL-18 is a potent inducer of (i) tumor necrosis factor alpha (TNFα), Fas-ligand, and IL-2 from T and NK cells; (ii) IL-1β, IL-8, and macrophage inflammatory protein (MIP)-1α from peripheral blood mononuclear cells; and (iii) cyclooxygenase (COX2), and inducible nitric oxide synthase.\(^17,19\)

The initial immune response to *P. falciparum* infection is mediated by IFN-γ that is induced by the combination of interleukin 12 (IL-12) and 18 (IL-18). This cytokine secretion is crucial for the control of parasitemia and resolution of malarial infection through TNFα induction and enhanced release of reactive nitrogen and oxygen radicals.\(^20\) Torre et al (2001) demonstrated that IL-18 may have a pro-inflammatory role in patients with uncomplicated *P. falciparum* infection.\(^21\) In another study, it was found that IL-18 and IL-12 levels were higher in children with mild malaria than in children with a severe form of the disease.\(^22\) Also, high quantities of both IL-18 and IFN-γ molecules was found to be associated with severe forms of malarial infections.\(^20\) A study in western Kenya investigated the relationship between IL-18 and clinical malaria phenotypes in children, and reported association between higher secretion of IL-18 with severe malarial anemia (SMA).\(^23\) Similarly, a study in adults demonstrated a close association between increased IL-18 levels and severe *falciparum* malaria.\(^24\) Taken together, these findings indicate that IL-18 is an important factor in the pathogenesis of *P. falciparum* induced malaria.

Several polymorphisms within the *IL-18* gene have been reported to play an important role in the etiology of several diseases such as atherosclerosis,\(^25\) rheumatoid arthritis (RA), systemic lupus erythematosus (SLE),\(^26,27\) allergic asthma, and allergic dermatitis,\(^28\) mostly by altering the circulating levels of IL-18. However, very few studies have investigated *IL-18* gene polymorphisms in relation to its role in malaria pathogenesis.

Previously, we have shown that genetic variations in the *IL-22* gene could be correlated with susceptibility to malaria infection.\(^29\) In this study, we investigated whether the single nucleotide polymorphisms (SNPs) spanning the *IL-18* gene were associated with the susceptibility to *P. falciparum* infection and related parasitemia. We also analyzed the influence of patient age and genetic polymorphisms in relation to extent of *P. falciparum* parasitemia.

Materials and Methods

Ethical Considerations

Ethical approval to conduct this study was granted by Ethical Review Board (ERB) of King Fahad Central Hospital (KFCH), Jazan (Registry no. 041). The study followed ethical guidelines set by the Helsinki
Declaration of 1975. Prior to study subject enrolment, informed consent was obtained from each subject; legal guardians provided consent on behalf of children. All patient-related research data including human biological samples were de-identified and secured to preserve the privacy of study participants.

Study Design and Population

This case–control study was conducted and a total of 450 subjects were enrolled. Blood samples were collected from 250 patients diagnosed with *P. falciparum* malaria infection admitted at Malaria Center, Jazan region, situated in the Southwest part of the Saudi Arabia. In addition, 200 healthy controls were recruited as a control cohort. We used WHO manual (“plus system” scale) to identify the parasite density in a thick blood smear from infected individuals. The *P. falciparum* infected malaria subjects were classified into four categories based on the parasite density; 1) *Group I*: presence of 1–10 malarial parasites per 100 thick blood smear fields; 2) *Group II*: presence of 11–100 malarial parasites per 100 thick blood smear fields; 3) *Group III*: presence of 1–10 malarial parasites per single thick blood smear field; and 4) *Group IV*: presence of over 10 malarial parasites per single thick blood smear field. Patients were excluded from the study if they were co-infected with Dengue virus (DENV), Hepatitis C virus (HCV), Hepatitis B virus (HBV) or Human immunodeficiency virus (HIV).

Selection and Genotyping of IL-18 SN Ps

The **IL-18** gene is made up of 20.9 kb and consists of a 5ʹ-untranslated region (UTR) promoter, 6 exons and a 3ʹUTR region. The SNPs were genotyped using the polymerase chain reaction (PCR)-based direct DNA sequencing and SNP-specific TaqMan assays. Ten tag SNPs were identified based on the following criteria: minor allele frequency (MAF) more than 5% and linkage disequilibrium (LD) threshold of $r^2 \geq 0.8$. The 10 identified tag SNPs were: rs11214101, rs544354, rs360729, rs5744260, rs549908, rs360714, rs7106524, rs5744231, rs360718, and rs1293344. In addition, six SNPs, rs187238, rs1946518 and rs1946519 from the promoter region and rs360727, rs5744292 and rs360728 from and 3ʹUTR of the **IL-18** gene were selected. The details of the SNPs are summarized in Figure 1 and Supplementary Table 1.

DNA Extraction and Polymerase Chain Reaction (PCR)

Using the manufacturer’s guide, DNA was extracted via the DNeasy® Blood & Tissue Kit (Qiagen, Hilden, Germany). The PCR was carried out using GoTaq® Master Mixes (Promega Corporation, Madison, WI, USA). Primers were designed through the Primer3 Input version 0.4.0 available at http://bioinfo.ut.ee/primer3-0.4.0/ and they are shown in Supplementary Table 2. All primers were M13-tailed to improve sequencing of the PCR products. The resultant PCR products were run on

Figure 1 Schematic drawing illustrating the positions of IL-18 SNPs investigated in this study.
2% agarose gel electrophoresis to ensure PCR products’ quality. The amplified PCR products underwent direct sequencing by a BigDye™ Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) as per the recommended protocol. Afterward, each of the PCR products was subjected to both reverse and forward sequencing. The final sequences were evaluated and modified using the SeqMan Pro 15 Lasergene (DNASTAR, Inc., Madison, WI, USA).

Transfection and Luciferase Reporter Assay

Several DNA fragments of the *IL-18* promoter and 3’ UTR region were cloned and transfected in HuH7 (obtained from the Japanese Collection of Research Bioresources Cell Bank, catalogue number: JCRB0403) cells and the variations in the luciferase gene activity were monitored. The chromosomal positions of the fragments and the primers used for amplification are shown in Supplementary Tables 3 and 4 for the promoter and 3’ UTR regions, respectively. All of the fragments were cloned in pGL3 Basic Vector (accession number: U47297) (Promega, Madison, WI, USA). HotStar DNA Polymerase (Qiagen, Hilden, Germany) was used for PCR amplification using the guidelines of the manufacturer. For colony selection on ampicillin plates, *Escherichia coli* DH5α competent cells (catalogue number: 18265017) (ThermoFisher Scientific, Sunnyvale, CA, USA) were utilized. Replicates were selected and DNA was extracted through QIAamp DNA Mini Kit (Qiagen, Valencia, CA). Extracted DNA fragments were then transfected into HuH7 cells, which were cultivated and evaluated for luciferase activity after 48 hours.

Statistical Analyses

We used HaploView software version 4.0 (Broad Institute of MIT and Harvard, Cambridge, MA, USA) to analyze SNPs and measure linkage disequilibrium (LD), haplotype frequencies and MAFs. To assess the genotypic association for selected genetic variants, we used the De Finetti program available at http://ihg.gsdf.org/cgi-bin/hw/hwa1.pl. In addition, we conducted analyses to identify for the allelic, recessive and dominant modes of inheritance for each genetic variant. The study findings were presented as odds ratios (OR) with their 95% confidence intervals (CI). The Hardy–Weinberg equilibrium (HWE) was performed to test for deviation; *P* value <0.05 was considered as a statistically significant deviation from HWE. The *P* value <0.05, obtained in a two-tailed test, was set as a threshold for statistically significant association.

Results

Genotype and Allele Frequency Analysis Between *P. falciparum*-Infected Patients and Healthy Control Group

Genotypic distributions of SNPs in the healthy control group and the *P. falciparum*-infected patients are shown in Table 1. We found that SNPs rs5744292 (OR = 70.446; 95% CI= 4.318–1149.323; p<0.0001) and rs544354 (OR = 1.498; 95% CI= 1.088–2.063; *p* = 0.013) were of significantly higher occurrence in *P. falciparum*-infected patients when compared to healthy control group. The rs5744292-G allele (8%) and rs544354-A allele (26%) showed increased frequency among infected patients in comparison with the control group. We also observed that the individuals carrying either the homozygous genotype rs5744292-GG or the heterozygous AG were associated with increased risk of malarial infection with an OR of 13.828 and 48.857, respectively, when compared to homozygous AA carriers. Under a dominant model of inheritance, the rs5744292-G allele was found to be associated with an increased risk of infection (OR = 61.763). Similarly, we found that individuals carrying the homozygous AA genotype with SNP rs544354 had an increased risk of parasitemia (OR = 5.253) when compared to homozygous GG carrying individuals. In addition, the rs544354-A allele was significantly associated with risk of *P. falciparum* infection in both dominant (OR = 1.435) and recessive (OR = 0.209) models. The homozygous SNP rs360714 GG genotype was found to be associated with an increased risk of malaria infection (OR = 1.47) compared to the homozygous AA genotype, whereas the heterozygous rs7106524 AG genotype was associated with an increased risk of the infection (OR = 1.652) compared to the homozygous GG genotype.

Genotype and Allele Frequency Analysis Based on Parasite Density

Patients were divided into 4 groups based on increasing parasite density: Group 1 (lowest density; 14 patients), Group 2 (24 patients), Group 3 (52 patients), and Group 4 (highest density; 160 patients). The 16 selected polymorphisms were further investigated to determine their association with varying levels of parasitemia in the *P.
SNPs	Genotype/ Allele	Controls n=200	Patients n=250	OR (95% C.I.)	χ^2	P-value*
rs1946518	GG	55 (27.5%)	78 (31.2%)	Ref		
	GT	100 (50%)	120 (48%)	0.846 (0.547–1.308)	0.57	0.452
	TT	45 (22.5%)	52 (20.8%)	0.815 (0.481–1.381)	0.58	0.446
	T	210 (52.5%)	276(55.2%)	0.897 (0.689–1.168)	0.65	0.419
	TT+GT vs GG	190 (47.5%)	224(44.8%)	0.836 (0.56–1.26)	0.73	0.393
	TT vs GT+GG		1.105 (0.70–1.73)	0.19		
rs1946519	CC	55 (27.5%)	82 (32.8%)	Ref		
	AC	103 (51.5%)	119 (47.6%)	0.775 (0.503–1.193)	1.34	0.246
	AA	42 (21%)	49 (19.6%)	0.783 (0.458–1.337)	0.81	0.368
	C	213 (53.25%)	283 (56.6%)	0.873 (0.671–1.138)	1.01	0.315
	A	187 (46.75%)	217 (43.4%)	0.777 (0.517–1.168)	1.47	0.225
	AA+AC vs CC		1.090(0.687–1.730)	0.13		
	AA vs AC+CC		0.713			
rs187238	CC	122 (61%)	148 (59.2%)	Ref	1.043	0.838
	CG	64 (32%)	81 (32.4%)	1.236 (0.603–2.534)	0.34	0.561
	GG	14 (7%)	21 (8.4%)	1.092 (0.802–1.488)	0.31	0.576
	C	308 (77%)	377 (75.4%)	1.078 (0.737–1.576)	0.15	0.698
	G	92 (23%)	123 (24.6%)	0.821 (0.406–1.658)	0.3	0.582
	GG+CG vs CC		1.052			
	GG vs CG+CC		0.713			
rs360728	CC	151 (75.5%)	197 (78.8%)	Ref	0.912	0.708
	CG	37 (18.5%)	44 (17.6%)	0.575 (0.236–1.400)	0.14	0.708
	GG	12 (6%)	9 (3.6%)	0.787 (0.538–1.151)	1.52	0.216
	C	339 (84.75%)	438 (87.6%)	0.829 (0.533–1.291)	1.709	0.406
	G	61 (15.25%)	62 (12.4%)	1.709 (0.705–4.142)	1.44	0.230
	GG+CG vs CC		1.092			
	GG vs CG+CC		0.831			

(Continued)
Table 1 (Continued).

SNPs	Genotype/ Allele	Controls n=200	Patients n=250	OR (95% C.I.)	χ^2	P-value*
rs5744292	AA	200 (100%)	217 (86.8%)	Ref	48.857	<0.0001
	AG	0 (0%)	26 (10.4%)	13.828	6.35	0.012
	GG	0 (0%)	7 (2.8%)	70.446	33.49	<0.0001
	A	400 (100%)	460 (92%)	61.763	28.49	<0.0001
	G	0 (0%)	40 (8%)	0.081	5.69	0.017
	GG+AG vs AA	61.763	0.081			
	GG vs AG+AA	0.081				
rs360727	GG	149 (74.5%)	196 (78.4%)	Ref	0.834	0.453
	AG	41 (20.5%)	45 (18%)	0.684	0.65	0.419
	AA	10 (5%)	9 (3.6%)	0.801	1.31	0.252
	G	339 (84.75%)	437 (87.4%)	0.805	0.94	0.331
	A	61 (15.25%)	63 (12.6%)	1.409	0.54	0.463
	AA+AG vs GG	0.805				
	AA vs AG+AA	1.409				
rs549908	TT	120 (60%)	152 (60.8%)	Ref	0.892	0.579
	GT	69 (34.5%)	78 (31.2%)	1.435	0.85	0.357
	GG	11 (5.5%)	20 (8%)	1.049	0.09	0.764
	T	309 (77.25%)	382 (76.4%)	0.967	0.03	0.863
	G	91 (22.75%)	118 (23.6%)	0.669	1.08	0.298
	GG+GT vs TT	0.967				
	GG vs GT+TT	0.669				
rs11214101	TT	200 (100%)	249 (99.6%)	Ref	2.411	0.370
	CT	0 (0%)	1 (0.4%)	0.804	0.80	1.000
	CC	0 (0%)	0 (0%)	2.405	0.80	1.234
	T	400 (100%)	499 (99.8%)	2.411	0.80	0.370
	C	0 (0%)	1 (0.2%)	1.249	Nan	1.000
	CC+CT vs TT	2.411				
	CC vs CT+TT	1.249				
rs544354	GG	127 (63.5%)	137 (54.8%)	Ref (0.860–1.880)	1.45	0.229
AG	70 (35%)	96 (38.4%)	5.253 (1.504–18.351)	8.21	0.004	
AA	3 (1.5%)	17 (6.8%)	1.498 (1.088–2.063)	6.17	0.013	
G	324 (81%)	370 (74%)	1.435 (0.981–2.100)	3.47	0.006	
A	76 (19%)	130 (26%)	0.209 (0.060–0.723)	7.35	0.007	
AA+AG vs GG						
AA vs AG+AA						

rs360729	AA	126 (63%)	152 (60.8%)	Ref (0.705–1.606)	0.09	0.768
AT	60 (30%)	77 (30.8%)	1.243 (0.607–2.545)	0.36	0.550	
TT	14 (7%)	21 (8.4%)	1.107 (0.809–1.515)	0.41	0.524	
T	88 (22%)	119 (238%)	1.098 (0.748–1.610)	0.23	0.633	
TT+AT vs AA						
TT vs AT+AA						

rs5744260	GG	193 (96.5%)	239 (95.6%)	Ref (0.346–2.412)	0.03	0.856
AG	7 (3.5%)	11 (4.4%)	0.582 (0.011–29.518)	N/N	1.000	
AA	0 (0%)	0 (%)	0.916 (0.351–2.389)	0.03	0.857	
G	393 (98.25%)	489 (97.8%)	0.914 (0.346–2.412)	0.03	0.856	
A	7 (1.75%)	11 (2.2%)	1.710 (0.034–86.361)	N/N	1.000	
AA+AG vs GG						
AA vs AG+AA						

rs360714	AA	142 (71%)	193 (77.5%)	Ref (0.504–1.199)	1.30	0.254
AG	53 (26.5%)	56 (22.4%)	0.147 (0.017–1.273)	4.03	0.045	
GG	5 (2.5%)	1 (0.4%)	0.702 (0.478–1.030)	3.29	0.069	
G	337 (84.25%)	442 (88.4%)	0.723 (0.473–1.106)	2.25	0.134	
A	63 (15.75%)	58 (11.6%)	6.385 (0.740–55.097)	3.72	0.054	
GG+AG vs AA						
GG vs AG+AA						

rs7106524	GG	92 (46%)	97 (38.8%)	Ref (1.082–2.522)	5.44	0.019
AG	62 (31%)	108 (43.2%)	0.928 (0.563–1.530)	0.09	0.769	
AA	46 (23%)	45 (18%)	1.047 (0.800–1.371)	0.11	0.737	
G	246 (61.5%)	302 (60.4%)	1.344 (0.922–1.959)	2.36	0.124	
A	154 (38.5%)	198 (39.6%)	1.361 (0.858–2.158)	1.72	0.189	
AA+AG vs GG						
AA vs AG+AA						

(Continued)
SNPs	Genotype/Allele	Controls n=200	Patients n=250	OR (95% C.I.)	χ^2	P-value*
rs5744231	CC	194 (97%)	241 (96.4%)	Ref	0.19	0.661
	CT	5 (2.5%)	8 (3.2%)	1.288 (0.415–4.000)	0.2	0.878
	TT	1 (0.5%)	1 (0.4%)	0.805 (0.050–12.953)	0.02	0.874
	T	393 (98.25%)	490 (98%)	1.146 (0.432–3.038)	0.07	0.874
	TT+CT vs.CC	1 (0.5%)	1 (0.4%)	1.207 (0.422–3.451)	0.12	0.724
	TT vs.CT+CC	0.805 (0.050–12.953)	0.784			
rs360718	AA	121 (60.5%)	146 (58.4%)	Ref	0.01	0.924
	AC	65 (32.5%)	80 (32%)	1.020 (0.679–1.531)	0.07	0.325
	CC	14 (7%)	24 (9.6%)	1.421 (0.704–2.866)	0.66	0.416
	A	307 (76.75%)	372 (74.4%)	1.136 (0.836–1.544)	0.02	0.652
	C	93 (23.25%)	128 (25.6%)	1.091 (0.747–1.594)	0.097	0.324
	CC+AC vs.AA	121 (60.5%)	145 (58%)	Ref	0.01	0.924
	CC vs.AC+AA	0.709 (0.357–1.409)	0.324			
rs1293344	AA	121 (60.5%)	145 (58%)	Ref	0.25	0.618
	AG	64 (32%)	85 (34%)	1.108 (0.740–1.661)	0.09	0.769
	GG	15 (7.5%)	20 (8%)	1.13 (0.546–2.267)	0.27	0.602
	A	306 (76.5%)	375 (75%)	1.085 (0.798–1.475)	0.27	0.602
	G	94 (32.5%)	125 (25%)	1.109 (0.759–1.620)	0.29	0.592
	GG+AG vs.AA	0.932 (0.464–1.872)	0.844			
	GG vs.AG+AA					

Bold indicates significance.
Table 2 Genotype Distribution and Allele Frequency of IL-18 Gene SNPs When Group 1+2 of Parasite Density Was Compared with Group 3+4

SNPs	Genotype/Allele Distribution	Group (1+2) n=38	Group (3+4) n=212	OR (95% C.I.)	χ^2	P-value*		
rs360727								
	GG	27 (71%)	169 (79.7%)	Ref	0.559	0.248–1.259	2.01	0.156
	AG	10 (26.3%)	35 (16.5%)	0.559	0.248–1.259	2.01	0.156	
	AA	1 (2.7%)	8 (3.8%)	1.278	0.154–10.629	0.83	0.362	
	G	64 (84.2%)	373 (87.98%)	0.729	0.369–1.443	0.83	0.362	
	A	12 (15.8%)	51 (12.02%)	0.625	0.287–1.358	0.12	0.232	
	AA+AG vs. GG				0.689	0.084–5.567	1.43	0.232
	AA vs. AG+AA				0.275	0.036–2.14	1.75	0.185
rs549908								
	TT	22 (57.9%)	130 (61.32%)	Ref	0.711	0.345–1.463	0.86	0.325
	GT	15 (39.5%)	63 (29.71%)	3.171	1.049–10.254	1.37	0.241	
	GG	1 (2.6%)	19 (8.97%)	1.085	0.605–1.946	0.08	0.783	
	T	59 (77.6%)	323 (76.18%)	0.867	0.430–1.748	0.16	0.690	
	G	17 (22.4%)	101 (23.82%)	0.275	0.036–2.14	1.75	0.185	
	GG+GT vs. TT							
	GG vs. GT+TT							
rs11214101								
	TT	38 (100%)	211 (99.5%)	Ref	0.546	0.022–13.654	0.18	0.671
	CT	0(0%)	1(0.5%)	0.182	0.004–9.313	0.18	1.014	
	CC	0(0%)	0(0%)	0.542	0.022–13.426	0.18	0.671	
	T	76(100%)	423(99.76%)	0.546	0.022–13.654	0.18	1.014	
	C	0(0%)	1(0.24%)	5.519	0.108–282.36	0.18	0.671	
	CC+CT vs. TT							
	CC vs. CT+TT							
rs544354								
	GG	20(52.6%)	117(55.2%)	Ref	0.923	0.446–1.910	0.05	0.829
	AG	15(39.5%)	81 (38.2%)	0.798	0.210–3.029	0.11	0.739	
	AA	3(7.9%)	14(6.6%)	0.906	0.524–1.568	0.12	0.724	
	G	55(72.4%)	315(74.3%)	0.902	0.452–1.802	0.09	0.770	
	A	21(27.6%)	109(25.7%)	1.212	0.331–4.438	0.08	0.770	
	AA+AG vs. GG							
	AA vs. AG+AA							
(Continued)
Table 2 (Continued).

SNPs	Genotype/Allele Distribution	Group (1+2) n=38	Group (3+4) n=212	OR (95% C.I.)	\(\chi^2 \)	P-value*								
rs360729	AA	21 (55.3%)	131 (61.8%)	Ref	0.611 (0.298–1.253)	1.83	0.176							
	AT	16 (42%)	61 (28.8%)	3.206 (0.408–25.16)	1.36	0.243								
	TT	1 (2.7%)	20 (9.4%)	1.008 (0.567–1.789)	0	0.979								
	A	58 (76.3%)	323 (76.2%)	0.764 (0.380–1.533)	0.58	0.447								
	T	18 (23.7%)	101 (23.8%)	0.259 (0.034–1.993)	1.94	0.163								
	TT+AT vs AA	0.611 (0.298–1.253)	1.83	0.176										
	TT vs AT+AA	3.206 (0.408–25.16)	1.36	0.243										
	AA	58 (76.3%)	323 (76.2%)	0.764 (0.380–1.533)	0.58	0.447								
	A	16 (42%)	61 (28.8%)	3.206 (0.408–25.16)	1.36	0.243								
	T	1 (2.7%)	20 (9.4%)	1.008 (0.567–1.789)	0	0.979								
	TT+AT vs AA	0.611 (0.298–1.253)	1.83	0.176										
	TT vs AT+AA	3.206 (0.408–25.16)	1.36	0.243										
rs574260	GG	35 (92.1%)	204 (96.2%)	Ref	0.458 (0.116–1.809)	1.3	0.254							
	AG	3 (7.9%)	8 (3.8%)	0.174 (0.003–8.891)	Nan	1								
	AA	0 (0%)	0 (0%)	0.468 (0.121–1.805)	1.27	0.225								
	A	73 (96.05%)	416 (98.1%)	0.458 (0.116–1.809)	1.3	0.254								
	AA+AG vs GG	0.458 (0.116–1.809)	1.3	0.254										
	AA vs AG+AA	5.519 (0.108–282.3)	Nan	1										
rs1946518	GG	9 (23.7%)	69 (32.5%)	Ref	0.652 (0.280–1.517)	0.99	0.318							
	GT	20 (52.6%)	100 (47.2%)	0.623 (0.229–1.693)	0.87	0.350								
	TT	9 (23.7%)	43 (20.3%)	0.782 (0.479–1.274)	0.98	0.322								
	G	38 (50%)	238 (56.1%)	0.643 (0.289–1.4333)	1.18	0.277								
	T	38 (50%)	186 (43.9%)	0.643 (0.289–1.4333)	1.18	0.277								
	TT+GT vs GG	0.652 (0.280–1.517)	0.99	0.318										
	TT vs GT+GG	0.623 (0.229–1.693)	0.87	0.350										
rs1946519	CC	12 (31.6%)	70 (33.02%)	Ref	1.104 (0.492–2.475)	0.06	0.810							
	AC	16 (42.1%)	103 (48.58%)	0.669 (0.265–1.688)	0.73	0.392								
	AA	10 (26.3%)	39 (18.4%)	0.828 (0.507–1.350)	0.57	0.448								
	A	40 (52.6%)	243 (57.3%)	0.936 (0.446–1.965)	0.03	0.861								
	AA+AC vs CC	0.936 (0.446–1.965)	0.03	0.861										
	AA vs AC+CC	1.584 (0.711–3.530)	1.28	0.257										
SNP	Allele 1	Allele 2	Allele 3	Allele 4	Allele 5	Allele 6	Allele 7	p Value 1	p Value 2	p Value 3	p Value 4	p Value 5	p Value 6	p Value 7
--------------	---------	---------	---------	---------	---------	---------	---------	----------	----------	----------	----------	----------	----------	----------
rs187238	CC	CG	GG	C	G	Ref		0.452	1.01	0.44	0.568	2.6	0.107	0.163
								(0.222–0.921)	(0.350–21.901)	(0.479–1.438)	(0.284–1.137)	(0.034–1.993)		
								4.93	1.315	0.505	2.6	0.107	0.163	
rs360728	CC	CG	GG	C	G	Ref		0.671	0.89	0.345	3.326	1.54	0.214	0.872
								(0.292–1.542)	(0.188–58.703)	(0.501–2.258)	(0.372–1.913)	(0.016–4.880)		
								0.89	0.345	0.195	0.17	0.684	0.195	
rs5744292	AA	AG	GG	A	G	Ref		5.139	3.07	0.079	3.116	1.43	0.231	0.019
								(0.675–39.122)	(0.174–55.751)	(1.028–56.156)	(0.871–49.662)	(0.020–6.360)		
								3.07	0.079	0.019	1.43	0.231	0.019	
rs360714	AA	AG	GG	A	G	Ref		1.595	0.98	0.321	0.065	0.024	0.750	0.017
								(0.629–4.041)	(0.003–1.623)	1.136 (0.516–2.503)	(0.567–3.293)	(0.68–425.21)		
								0.98	0.321	0.024	0.059	0.484	0.484	0.017
rs7106524	GG	AG	AA	G	A	Ref		1.225	0.27	0.603	1.072	0.02	0.887	0.780
								(0.570–2.631)	(0.407–2.824)	(0.650–1.774)	(0.583–2.371)	(0.424–2.523)		
								0.27	0.603	0.887	0.08	0.649	0.941	

(Continued)
Table 2 (Continued).

SNPs	Genotype/Allele Distribution	Group (1+2) n=38	Group (3+4) n=212	OR (95% C.I.)	χ^2	P-value*
rs5744231						
CC		38 (100%)	203 (95.8%)	Ref	1.49	0.222
CT		0 (0%)	8 (3.7%)	3.216 (0.182–56.889)	0.19	0.665
TT		0 (0%)	1 (0.5%)	3.876 (0.225–66.836)	1.83	0.372
T		76 (100%)	414 (97.6%)			
	TT+CT vs. CC		0 (0%)			
	TT vs. CT+CC		10 (2.4%)			
rs360718						
AA		20 (52.63%)	126 (59.43%)	Ref	0.58	0.444
AC		14 (36.84%)	66 (31.132%)	0.748 (0.355–1.576)	0.15	0.698
CC		4 (10.53%)	20 (9.434%)	0.794 (0.246–2.564)	0.53	0.467
A		54 (71.1%)	318 (75%)			
C		22 (28.9%)	106 (25%)			
	CC+AC vs. AA		0.758 (0.379–1.517)	0.61	0.433	
	CC vs. AC+AA		1.129 (0.363–3.509)	0.04	0.833	
rs1293344						
AA		18(47.37%)	127(59.91%)	Ref	3.92	**0.047**
AG		19(50%)	66(31.13%)	0.492 (0.242–1.001)	0.95	0.330
GG		1(2.63%)	19(9.96%)	2.693 (0.340–21.353)	0.33	0.565
A		55(72.37%)	320(75.47%)	0.851 (0.491–1.474)		
G		21(27.63%)	104(24.53%)	0.602 (0.301–1.205)	2.08	0.149
	GG+AG vs. AA		0.275 (0.036–2.114)	1.75	0.185	
	GG vs. AG+AA					

Note: Bold indicates significance.
falciparum-infected individuals. Allelic and genotypic frequency comparisons were done between the patients in group 1+2 with the patients in group 3+4 (Table 2). We found that SNP rs5744292 (OR = 7.597; 95% CI = 1.028–56.156; p = 0.01967) was associated with increased parasite density in *P. falciparum*-infected patients. Furthermore, the rs5744292-G allele was significantly associated with higher parasitemia levels under the dominant model with an OR of 6.578. We also found heterozygous genotype CG for SNP rs187238 (OR = 0.452) and AG for SNP rs1293344 (OR = 0.492), to be associated with variations in malarial parasitemia, when compared with homozygous genotypes CC and AA, respectively. Under a recessive model of inheritance, rs360714-G allele showed a significant association with increased levels of parasitic density (OR = 17).

We also compared allele frequency for these SNPs in group 1+2+3 against group 4. Under a recessive mode of inheritance, we found that rs549908 G allele (OR = 0.290) and rs360729 T allele (OR = 0.272) were both significantly associated with increased level of parasitemia. No other association was observed between these two groups (Table 3).

Haplotype Association Analysis

Haplotype analysis was done between the healthy control group and *P. falciparum*-infected patients and the result is summarized in Table 4. Out of the three haplotypes identified, the occurrence frequency of two haplotypes, GT and AT were significant between these two groups. GT (rs544354 and rs549908) was found to be more frequent within the healthy controls (f = 0.586), compared to *P. falciparum*-infected patients (f = 0.516), (χ^2 = 4.352; p = 0.037). However, AT (rs544354 and rs49908) was more prevalent among the *P. falciparum*-infected patients (f = 0.248), compared to the healthy controls (f = 0.187), (χ^2 = 4.834; p = 0.028).

Similar haplotype analysis was done between *P. falciparum*-infected patients in group 2+3+4 and group 1 for parasitic density. We observed that the haplotype CAT (rs360728, rs360729 and rs549908) had significantly higher frequency (f=0.821) within the group 1 patients, compared to combined group 2+3+4 patients (f = 0.637), (χ^2 = 3.926; p = 0.048) (Table 5).

Genotype and Allele Frequency Analysis Based on Age

We also examined the relation of the 16 selected SNPs in the IL-18 gene with the age of the *P. falciparum*-infected patients. For this analysis, the 250 patients with parasitemia were divided into different age groups. The genotypic distribution of patients in 1–9 years age group compared to the patient group ≥10 years of age is represented in Table 6. We observed rs544354 (OR = 0.407; 95% CI = 0.204–0.812; p = 0.008) and rs360714 (OR = 0.256; 95% CI = 0.119–0.554; p=0.001) to be significantly associated with age in *P. falciparum*-infected patients. Heterozygous rs544354-AG genotype was present in significantly higher frequency (f = 0.77) in age group 1–9 years, compared to patients in ≥10 years age group (f = 0.35). It was observed that both under dominant (OR = 0.146; 95% CI = 0.041–0.519; p <0.001) and recessive (OR = 0.794; 95% CI = 0.099–6.355; p <0.001) models of inheritance, rs544354-A allele occurrence was associated with the age of the infected patients. Similarly, for SNP rs360714, heterozygous-AG genotype showed a higher incidence (f = 0.61) in *P. falciparum*-infected patients in the 1–9 years age group compared to patients above 10 years of age (f = 0.19). In the dominant model, rs360714-G allele was also significantly associated with patient age (OR = 0.157; 95% CI = 0.058–0.428; p <0.001).

Further analysis was performed between the patient group 1–9 years age group compared to the patient group ≥41 years of age (Table 7). The results showed that rs5744292 A allele (OR = 9.456; 95% CI = 0.546–163.840; p = 0.037), rs544354 AG genotype (OR = 0.080; 95% CI = 0.020–0.330; p=0.0001) and rs360714 AG genotype (OR = 0.163; 95% CI = 0.051–0.517; p=0.001) are significantly associated with age in *P. falciparum*-infected patients. Heterozygous rs544354-AG genotype was present in significantly higher frequency (f = 0.77) in age group 1–9 years, compared to patients in ≥41 years age group (f = 0.22). Also, heterozygous rs360714-AG was present in a significantly higher frequency (f = 0.61) in age group 1–9 years, compared to patients in ≥41 years age group (f = 0.20)

Haplotype Analysis Between Different Age Groups

We performed a haplotype analysis between the different age groups within the *P. falciparum*-infected patients. Haplotype analysis between the different age groups within the *P. falciparum* infected patients identified two haplotypes GG (rs544354 and rs360727) with a significantly higher frequency among ≥10 years age group (f = 0.674) compared to 1–9 years age group (f = 0.491), (χ^2 =
Table 3 Genotype Distribution and Allele Frequency of *IL-18* Gene SNPs When Group 1+2+3 of Parasite Density Was Compared with Group 4

SNPs	Genotype/Allele	Group (1+2+3) n=90	Group (4) n=160	OR (95% C.I.)	χ^2	P-value*
rs1946518						
	GG	26 (28.9%)	52 (32.5%)	Ref		
	GT	46 (51.1%)	74 (46.25%)	0.804 (0.443–1.462)	0.51	0.474
	TT	18 (20%)	34 (21.25%)	0.944 (0.450–1.980)	0.02	0.879
	G	98 (54.4%)	178 (55.6%)	0.953 (0.661–1.376)	0.06	0.798
	T	82 (45.6%)	142 (44.4%)			
	TT+GT vs. GG	0.844 (0.480–1.482)		0.35		0.554
	TT vs. GT+GG					
rs1946519						
	CC	28 (31.1%)	54 (33.75%)	Ref		
	AC	45 (25%)	74 (46.25%)	0.853 (0.474–1.535)	0.28	0.595
	AA	17 (18.9%)	32 (20%)	0.976 (0.464–2.055)	0	0.949
	C	101 (56.1%)	182 (56.9%)	0.969 (0.671–1.401)	0.03	0.868
	A	79 (43.9%)	138 (43.1%)			
	AA+AC vs. CC	0.886 (0.510–1.542)		0.18		0.669
	AA vs. AC+CC	0.932 (0.484–1.793)		0.05		0.831
rs187238						
	CC	50 (55.6%)	98 (61.25%)	Ref		
	CG	36 (40%)	45 (28.1%)	0.638 (0.366–1.111)	2.54	0.111
	GG	4 (44.4%)	14 (8.75%)	1.786 (0.559–5.709)	0.98	0.322
	C	136 (75.6%)	241 (76.7%)	0.936 (0.610–1.438)	0.09	0.763
	G	44 (24.4%)	73 (23.25%)	0.753 (0.445–1.274)	1.12	0.289
	GG+CG vs. CC	0.753 (0.445–1.274)		1.12		0.289
	GG vs. CG+CC					
rs360728						
	CC	69 (76.7%)	128 (80%)	Ref		
	CG	19 (21.1%)	25 (15.6%)	0.709 (0.365–1.378)	1.03	0.309
	GG	2 (22.2%)	7 (4.4%)	1.887 (0.381–9.331)	0.62	0.429
	C	157 (87.2%)	281 (87.81%)	0.947 (0.546–1.644)	0.04	0.847
	G	23 (12.8%)	39 (12.19%)			
	GG+CG vs. CC	0.821 (0.440–1.532)		0.38		0.535
	GG vs. CG+GG	0.497 (0.101–2.444)		0.77		0.380

P-value calculated for group 1+2+3 vs. group 4.
SNP	AA	AG	GG	Ref	137 (85.6%)	17 (10.6%)	6 (3.8%)	29 (9.1%)	1.103 (0.470–2.590)	0.05	0.821
rs5744292	80 (88.9%)	9 (10%)	1 (0.1%)	11 (6.1%)	1.103 (0.470–2.590)	0.05	0.821				
rs360727	68 (75.6%)	19 (21.1%)	3 (3.3%)	25 (13.9%)	1.103 (0.470–2.590)	0.05	0.821				
rs549908	54 (75.6%)	33 (46.7%)	3 (3.3%)	141 (78.3%)	1.103 (0.470–2.590)	0.05	0.821				
rs121410	89 (98.9%)	1 (0.1%)	1 (0.1%)	17 (9.9%)	1.103 (0.470–2.590)	0.05	0.821				
rs543454	46 (61.5%)	40 (44.4%)	4 (4.4%)	132 (73.3%)	1.103 (0.470–2.590)	0.05	0.821				
SNPs	Genotype/Allele	Group (1+2+3) n=90	Group (4) n=160	OR (95% C.I.)	\(\chi^2 \)	P-value*					
----------	-----------------	--------------------	-----------------	---------------	-----------	----------					
rs360729	AA	53 (58.9%)	99 (61.9%)	Ref	1.87	0.171					
	AT	34 (37.8%)	43 (26.9%)	0.677 (0.387–1.185)	3.57	0.058					
	TT	3 (3.3%)	18 (11.2%)	1.147 (0.744–1.770)	0.39	0.534					
	A	140 (77.8%)	241 (75.3%)	0.883 (0.521–1.496)	0.22	0.642					
	T	40 (22.2%)	79 (24.7%)	0.272 (0.078–0.950)	4.69	0.030					
	TT+AT.vs.AA			0.883 (0.521–1.496)	0.22	0.642					
	TT.vs.AT+AA			0.272 (0.078–0.950)	4.69	0.030					
rs5744260	GG	85 (94.4%)	154 (96.25%)	Ref	0.45	0.504					
	AG	5 (5.6%)	6 (3.75%)	0.662 (0.196–2.235)	0.45	0.504					
	AA	0 (0%)	0 (0%)	0.553 (0.011–28.14)	Nan	I					
	G	175 (97.2%)	314 (98.1%)	0.669 (0.201–2.223)	0.44	0.535					
	A	5 (2.8%)	6 (1.9%)	0.662 (0.196–2.235)	0.45	0.505					
	AA+AG.vs.GG			1.773 (0.04–90.14)	Nan	I					
	AA.vs.AG+GG										
rs360714	AA	70 (77.8%)	123 (76.9%)	Ref	0.108	0.747					
	AG	19 (21.1%)	37 (23.1%)	1.108 (0.593–2.073)	1.74	0.186					
	GG	1 (1.1%)	0 (0%)	0.190 (0.008–4.734)	0	0.972					
	A	159 (88.3%)	283 (88.4%)	0.990 (0.560–1.750)	0.03	0.870					
	G	21 (11.7%)	37 (11.6%)	1.053 (0.567–1.953)	0.03	0.870					
	GG+AG.vs.AA										
	GG.vs.AG+AA										
rs7106524	GG	37 (41.1%)	60 (37.5%)	Ref	1.136	0.660					
	AG	38 (42.2%)	70 (43.75%)	1.233 (0.587–2.593)	0.31	0.579					
	AA	15 (16.7%)	30 (13.75%)	1.127 (0.775–1.640)	0.39	0.532					
	G	112 (62.2%)	190 (59.4%)	1.164 (0.686–1.973)	0.32	0.573					
	A	68 (37.8%)	130 (40.6%)	0.857 (0.438–1.714)	0.17	0.680					
	AA+AG.vs.GG										
	AA.vs.AG+AA										
rs5744231											
-----------	---	---	---	---	---	---	---	---	---		
	CC	CT	TT	C	T	TT+CT vs. CC	TT vs. CT+CC	Ref	0.942 (0.220–4.035)		
rs360718											
	AA	AC	CC	A	C	CC+AC vs. AA	CC vs. AC+AA	Ref	0.781 (0.445–1.372)		
rs129344											
	AA	AG	GG	A	G	GG+AG vs. AA	GG vs. AG+AA	Ref	0.716 (0.413–1.242)		
rs5744260											
	GG	AG	AA	G	A	AA+AG vs. GG	AA vs. AG+GG	Ref	0.662 (0.196–2.235)		

Note: *Bold indicates significance.*
Table 4 Haplotype Analysis of IL-18 Gene Polymorphisms Among Plasmodium Infected Patients versus Healthy Control Subjects

Haplotype Block	Freq.	Plasmodium Infected Patients, Healthy Control Ratio Counts	Plasmodium Infected Patients, Healthy Control Frequencies	Chi Square	P value *	
rs544354	rs549908	0.547	0.516	0.586	4.352	0.037
G T		258.1: 241.9, 234.3: 165.7	0.607	0.048		
G G	0.224	0.224, 0.224	0.000	0.990		
A T	0.221	0.248, 0.187	4.834	0.028		

Note: *Bold indicates significance.

Table 5 Haplotype Analysis of IL-18 Gene Polymorphisms in Group 1 versus Group 2+3+4 of Plasmodium Infected Patients

Haplotype Block	Freq.	Group (2+3+4), Group (1) Ratio Counts	Group (2+3+4), Group (1) Frequencies	Chi Square	P value *		
rs360728	rs360729	rs549908	0.647	294.2: 167.8, 23.0: 27.0	0.637, 0.821	3.926	0.048
C A T		89.1: 372.9, 4.0: 24.0	0.193, 0.142	0.509			
C T G	0.19	46.6: 415.4, 1.0: 27.0	0.101, 0.036	0.258			
G A T	0.097	12.8: 449.2, 0.0: 28.0	0.028, 0.000	0.373			
G T G	0.026	10.2: 451.8, 0.0: 28.0	0.002, 0.000	0.436			
C T T	0.021	7.6: 454.4, 0.0: 28.0	0.016, 0.000	0.505			
C A G	0.015						

Note: *Bold indicates significance.

4.93; P = 0.026), and haplotypes AA (rs544354 and rs360727) with a significantly higher frequency among 1–9 years age group (f = 0.130) compared to in patients above 10 years of age (f = 0.045), (χ² = 4.984; P = 0.026) (Table 8).

Haplotype analysis was also done for the IL-18 SNPs between the patients within the age groups 1–9 years and ≥41 years. Two significant haplotypes were identified for these age groups (Table 9). This included haplotype AAG (rs360729, rs360714 and rs7106524), present with increased frequency within the age group ≥41 years (f = 0.375) compared to patients within age group 1–9 years (f = 0.168), (χ² = 4.917; p = 0.027), while haplotype AGG (rs360729, rs360714 and rs7106524) was present with increased frequency within the group 1–9 years (f = 0.278), compared to patients above 41 years of age (f = 0.103), (χ² = 5.687; p = 0.017).

Effect of IL-18 SNPs on Expression Levels in Luciferase Reporter Assay

Luciferase reporter assay was performed to investigate the effect of the SNPs in the promoter region of IL-18 on its expression levels. Several DNA fragments of the IL-18 promoter were cloned and transfected in HuH7 cells and the variations in the luciferase gene activity were monitored. Figure 2 shows the schematic representation of the influence of IL-18 promoter segments, with the corresponding SNPs, on its transcriptional activity. Three different promoter fragments represented as; fragment 1 [from −795 to +28], fragment 2 [from −795 to −523] and fragment 3 [from −182 to +28] were analyzed. We found that fragment 1 exhibited high luciferase activity compared to fragments 2 and 3 (Figure 2A). Fragment 1 includes the two SNPs, rs1946518 and rs187238 that were studied here. As such, we generated three additional fragments that contain different haplotype combinations. Haplotype TG (rs1946518 and rs187238) showed the highest luciferase activity (Figure 2B).

The luciferase reporter assay was also conducted for different DNA segments of the 3'UTR region of the IL-18 gene. Three different fragments of the 3'UTR IL-18 region analyzed were represented as fragment 1 [from +20472 to +20984], fragment 2 [from +20500 to +20984] and fragment 3 [from +20472 to +20733]. Fragment 3 containing 2 SNPs, rs360728 and rs5744292, showed the highest level of luciferase activity (Figure 3A). As it showed the highest luciferase activity, fragment 3 was selected for haplotype expression analysis. Three different allelic combinations for SNPs rs360728 and rs5744292 were tested for their effect on luciferase expression. Haplotype CG (rs360728 and rs5744292) was found to have the highest luciferase activity (Figure 3B).
SNPs	Genotype/Allele	Group (1–9 Years) n=18	Group (10 Years and Above) n=232	OR (95% C.I.)	χ²	P-value*	
rs1946518	GG	3 (16.7%)	75 (32.3%)	Ref	0.360 (0.098–1.320)	2.56	0.109
	GT	12 (66.6%)	108 (46.6%)	0.653 (0.127–3.369)	0.26	0.608	
	TT	3 (16.7%)	49 (21.1%)	0.798 (0.405–1.574)	0.42	0.514	
	G	18 (50%)	258 (55.6%)	0.419 (0.118–1.490)	1.91	0.167	
	T	18 (50%)	206 (44.4%)	0.747 (0.208–2.684)	0.20	0.653	
	TT+GT vs. GG			0.419 (0.118–1.490)	1.91	0.167	
	TT vs. GT+GG			0.747 (0.208–2.684)	0.20	0.653	
rs1946519	CC	3 (16.7%)	79 (34.05%)	Ref	0.339 (0.092–1.240)	2.9	0.088
	AC	12 (66.7%)	107 (46.12%)	0.582 (0.113–3.005)	0.43	0.513	
	AA	3 (16.6%)	46 (19.83%)	0.751 (0.381–1.480)	0.69	0.406	
	C	18 (50%)	265 (57.1%)	0.387 (0.109–1.378)	2.29	0.130	
	A	18 (50%)	199 (42.9%)	0.809 (0.225–2.911)	0.11	0.744	
	AA+AC vs. CC			0.387 (0.109–1.378)	2.29	0.130	
	AA vs. AC+CC			0.809 (0.225–2.911)	0.11	0.744	
rs187238	CC	14(77.8%)	134 (57.75%)	Ref	2.011 (0.639–6.326)	1.48	0.224
	CG	4(22.2%)	77 (33.2%)	4.636 (0.268–80.6)	2.17	0.141	
	GG	0(0%)	21 (9.05%)	2.759 (0.956–7.966)	3.81	0.051	
	C	32(88.9%)	345 (74.4%)	2.560 (0.818–8.014)	2.77	0.095	
	G	4(11.1%)	119 (25.6%)	0.266 (0.015–4.568)	1.78	0.182	
	GG+CG vs. CC			2.560 (0.818–8.014)	2.77	0.095	
	GG vs. CG+CC			0.266 (0.015–4.568)	1.78	0.182	
rs360728	CC	12(66.7%)	185 (79.74%)	Ref	0.506 (0.16–1.5)	1.52	0.216
	CG	5(27.8%)	39 (16.81%)	0.519 (0.06–4.49)	0.37	0.544	
	GG	1(5.5%)	8 (3.45%)	0.557 (0.23–1.33)	1.77	0.189	
	C	29(80.6%)	409 (88.1%)	0.508 (0.18–1.4)	1.71	0.191	
	G	7(19.4%)	55 (11.9%)	1.647 (0.19–13.9)	0.21	0.643	
	GG+CG vs. CC			0.508 (0.18–1.4)	1.71	0.191	
	GG vs. CG+GG			1.647 (0.19–13.9)	0.21	0.643	
SNPs	Genotype/Allele	Group (1–9 Years) n=18	Group (10 Years and Above) n=232	OR (95% C.I.)	χ^2	P-value*	
----------	-----------------	------------------------	-----------------------------------	---------------	---------	----------	
rs5744292	AA	18 (100%)	199 (85.8%)	Ref			
	AG	0 (0%)	26 (11.2%)	4.915 (0.28–83.96)	2.33	0.126	
	GG	0 (0%)	7 (3.0%)	1.391 (0.07–25.33)	0.63	0.426	
	A	36 (100%)	424 (91.4%)	6.965 (0.42–115.6)	3.37	0.101	
	G	0 (0%)	40 (8.6%)	6.213 (0.36–105.5)	2.95	0.085	
	GG+AG vs AA			0.813 (0.04–14.8)	0.56	0.454	
	GG vs AG+AA						
rs360727	GG	12 (66.7%)	184 (79.31%)	Ref			
	AG	5 (27.8%)	40 (17.24%)	0.522 (0.174–1.564)	1.39	0.238	
	AA	1 (5.5%)	8 (3.45%)	0.522 (0.060–4.521)	0.36	0.548	
	G	29 (80.6%)	408 (87.93%)	0.569 (0.238–1.359)	1.65	0.195	
	A	7 (19.4%)	56 (12.07%)	0.522 (0.186–1.462)	1.58	0.209	
	AA+AG vs GG			1.647 (0.194–13.951)	0.21	0.643	
	AA vs AG+AA						
rs549908	TT	13 (72.2%)	139 (59.9%)	Ref			
	GT	5 (27.8%)	73 (31.5%)	1.365 (0.469–3.979)	0.33	0.566	
	GG	0 (0%)	20 (8.6%)	3.968 (0.227–69.317)	1.85	0.173	
	T	31 (86.1%)	351 (75.6%)	1.996 (0.758–5.255)	2.03	0.154	
	G	5 (13.9%)	113 (24.4%)	1.740 (0.600–5.043)	1.06	0.302	
	GG+GT vs TT			0.280 (0.016–4.821)	1.69	0.194	
	GG vs GT+TT						
rs11214101	TT	18 (100%)	231 (99.6%)	Ref			
	CT	0 (0%)	1 (0.4%)	0.240 (0.009–6.094)	0.08	0.780	
	CC	0 (0%)	0 (0%)	0.080 (0.002–4.144)	Nan	1.000	
	T	36 (100%)	463 (99.8%)	0.236 (0.009–5.903)	0.08	1.002	
	C	0 (0%)	1 (0.2%)	0.240 (0.009–6.064)	0.08	0.780	
	CC+CT vs TT			12.568 (0.242–651.669)	Nan	1	
	CC vs CT+TT						
SNP	Ref Allele	Minor Allele	Genotype Distribution	Odds Ratio (95% CI)	p-Value	OR (95% CI)	p-Value
----------	------------	--------------	-----------------------	--------------------	---------	-------------	---------
rs544354	GG	A	3 (16.66%)	0.131 (0.037–0.470)	0.036	1.282	0.001
	AG	G	14 (77.78%)	0.358 (0.035–3.652)	0.008	0.82	0.366
	AA		1 (5.56%)	0.407 (0.204–0.812)	0.008	6.86	0.008
	AA+AG		0.146 (0.041–0.519)	11.39	0.001	0.05	
	AA		0.794 (0.099–6.355)		<0.001		
	AG+AA		0.794 (0.099–6.355)				
rs360729	AA	T	13 (72.2%)	1.707 (0.537–5.422)	0.039	0.84	0.359
	AT	T	4 (22.2%)	1.871 (0.23–15.08)	0.029	1.09	0.296
	TT	T	1 (5.6%)	1.610 (0.63–3.966)	0.056		
	A	T	30 (83.3%)	1.740 (0.60–5.043)	0.039	1.06	0.302
	G	T	1 (25.6%)	0.624 (0.079–4.933)	0.039	0.2	0.651
rs360714	AA	A	7 (38.89%)	0.725 (0.057–0.419)	0.001	1.09	0.302
	AG	G	11 (61.1%)	0.154 (0.005–3.215)	0.001	1.04	0.302
	GG		0 (0%)	0.256 (0.119–0.554)	0.001	1.39	0.296
	A		25 (69.44%)	0.157 (0.058–0.428)	0.001	1.06	0.302
	G		11 (30.56%)	0.171 (0.164–106.0)	0.001	0.2	0.651
rs7106524	GG	A	6 (33.3%)	0.725 (0.248–2.118)	0.035	0.35	0.555
	AG	G	9 (50%)	0.923 (0.220–3.870)	0.014	0.04	0.846
	AA		3 (16.7%)	0.912 (0.458–1.815)	0.070	1.35	0.001
	G		21 (58.3%)	0.775 (0.281–2.137)	0.238	0.24	0.621
	A		15 (41.7%)	0.905 (0.251–3.267)	0.023	0.02	0.878
rs5744231	CC	T	18 (100%)	1.407 (0.078–25.35)	0.035	0.64	0.422
	CT	T	0 (0%)	0.248 (0.010–6.312)	0.070	0.08	0.776
	TT	T	0 (0%)	1.686 (0.097–29.36)	0.79	1.0	1.000
	C		36 (100%)	1.573 (0.09–28.103)	0.269	0.72	0.394
	T		0 (0%)	4.171 (0.16–106.0)	0.035	0.08	0.780

(Continued)
Discussion

IL-18, an important immune response mediator that has been reported to be involved in the course of malarial infection. IL-18 is known as a potent proinflammatory cytokine, and its physiological levels have been reported to increase at different stages of \textit{P. falciparum} infection. Information about the influence of genetic variations within the IL-18 gene on parasitemia caused by \textit{P. falciparum} is scarce. In this study, we examined the plausible role and influence of polymorphisms within the IL-18 gene on parasitemia levels in \textit{P. falciparum}-infected patients. We found SNP rs5744292 to be significantly associated with an increased risk of \textit{P. falciparum} infection when compared to healthy controls. It was observed that the rs5744292-G allele occurred more frequently in infected individuals than in the control group. rs5744292 has been implicated in several diseases such as cardiovascular diseases and coronary atherosclerosis. It has also been reported that a decrease in IL-18 concentration is associated with the G allele of rs5744292. We also identified another SNP, rs544354-A allele, to be significantly associated with an increased risk of parasitemia in infected patients. Further, individuals with homozygous AA genotype were found to have an elevated risk of parasitemia caused by \textit{P. falciparum}. There is very little information available about the clinical impact of the SNP rs544354 which is located in the 3’UTR of the IL-18 gene. Another polymorphism found to be significantly associated with parasitemia in the infected patients was the rs360718-GG homozygote, present in the intron region of the IL-18 gene. However, this result needs to be interpreted with caution as the number of individuals in study population carrying GG genotype at the rs360714 SNP were very few.

SNP rs7106524, also located in the intron region of the IL-18 gene, has been investigated for its role in several clinical conditions such as those involving liver transplant. A previous study by He et al (2010) found an association between polymorphism rs7106524 with IL-18 levels, where the minor allele genotype (AA) was found to be associated with the highest concentration of serum IL-18. We found rs7106524 heterozygous GA genotype to be associated with an increased risk of \textit{P. falciparum} parasitemia in comparison to the other two homozygous genotypes. Possibly, moderate levels of IL-18 linked to rs7106524-GA genotype may have a functional consequence in increasing the risk of malarial

Table 6 (Continued).

Genotype/Allele	Group (1–9 Years) n=18	Group (10 Years and Above) n=232	OR (95% C.I.)	\(\chi^2 \)	P-value*
AA	13 (72.2%)	123 (63.3%)	Ref		
AC	5 (27.8%)	74 (34.0%)			
CC	0 (0%)	10 (5%)			
AC+CC vs. AA	12 (66.7%)	138 (60.0%)	0.83 (0.32–2.14)	0.73	0.39
CC vs. AC+AA	13 (66.7%)	127 (54.4%)	1.00 (0.50–2.00)	0.99	0.32
rs1293344					
AA	12 (66.7%)	185 (79.5%)	Ref		
AG	6 (33.3%)	45 (19.5%)			
GG	0 (0%)	20 (8.6%)			
AG+GG vs. AA	18 (100%)	205 (87.1%)	2.08 (0.90–4.44)	2.4	0.12
GG vs. AG+AA	0 (0%)	10 (4.3%)	0.01 (0.00–0.23)	23.8	<0.001

Note: *Bold indicates significance.
Table 7 Genotype Distribution and Allele Frequency of IL-18 Gene SNPs When Age Group 1–9 Years Was Compared with Group 41 Years and Above

SNPs	Genotype/ Allele Distribution	Group (1–9 Years) n=18	Group(41 Years and Above) n=54	OR (95% C.I.)	χ²	P-value*
rs1946518						
	GG	3 (16.7%)	20 (37.03%)	Ref		
	GT	12 (66.6%)	21 (38.9%)	0.263 (0.064–1.070)	3.76	0.052
	TT	3 (16.7%)	13 (24.07%)	0.650 (0.113–3.726)	0.24	0.627
	G	18 (50%)	61 (56.5%)	0.770 (0.362–1.641)	0.46	0.498
	T	18(50%)	47 (43.5%)	0.340 (0.088–1.321)	2.58	0.108
	TT+GT vs. GG			0.631 (0.157–2.527)	0.43	0.512
	TT vs. GT+GG					
rs1946519						
	CC	3 (16.7%)	18 (33.33%)	Ref		
	AC	12 (66.6%)	22 (40.74%)	0.306 (0.075–1.252)	2.89	0.089
	AA	3 (16.7%)	14 (25.92%)	0.778 (0.136–4.458)	0.08	0.777
	C	18 (50%)	58 (53.7%)	0.862 (0.405–1.834)	0.15	0.699
	A	18(50%)	50 (46.3%)	0.400 (0.102–1.563)	1.82	0.177
	AA+AC vs. CC			0.571 (0.144–2.274)	0.64	0.423
	AA vs. AC+CC					
rs187238						
	CC	14 (77.8%)	37 (68.51%)	Ref		
	CG	4 (22.2%)	13 (24.07%)	1.230 (0.342–4.415)	0.1	0.750
	GG	0 (0%)	4 (7.4%)	3.480 (0.176–68.785)	1.47	0.224
	C	32 (88.9%)	87 (80.6%)	1.931 (0.615–6.059)	1.31	0.252
	G	4 (11.1%)	21 (19.4%)	1.608 (0.460–5.617)	0.56	0.454
	GG+CG vs. CC			0.303 (0.016–5.911)	1.41	0.234
	GG vs. CG+CC					
rs360728						
	CC	12 (66.7%)	42 (77.8%)	Ref		
	CG	5 (27.7%)	10 (18.5%)	0.571 (0.164–1.996)	0.78	0.376
	GG	1 (5.6%)	2 (3.7%)	0.571 (0.048–6.856)	0.2	0.655
	C	29 (80.5%)	94 (87.04%)	0.617 (0.227–1.674)	0.91	0.339
	G	7 (19.4%)	14 (12.96%)	0.571(0.177–1.844)	0.89	0.345
	GG+CG vs. CC			1.529 (0.130–17.939)	0.12	0.733
	GG vs. CG+GG					

(Continued)
SNPs	Genotype/ Allele Distribution	Group (1–9 Years) n=18	Group(41 Years and Above) n=54	OR (95% C.I.)	\(\chi^2 \)	P-value*
rs5744292	AA	18 (100%)	44 (81.5%)			
	AG	0 (0%)	8 (14.8%)			
	GG	0 (0%)	2 (3.7%)			
	A	36 (100%)	96 (88.9%)			
	G	0 (0%)	12 (11.1%)			
	GG+AG vs AA	0 (0%)	8.730 (0.486–156.833)	3.87	0.049	
	GG vs AG+AA	0.568 (0.026–12.377)	0.69	0.407		
rs360727	GG	12 (66.7%)	44 (81.5%)			
	AG	5 (27.7%)	8 (14.8%)			
	AA	1 (5.6%)	2 (3.7%)			
	G	29 (80.5%)	96 (88.9%)			
	A	7 (19.4%)	12 (11.1%)			
	GG+AG vs GG	0.455 (0.137–1.504)	1.71	0.190		
	GG vs GT+TT	1.529 (0.130–17.939)	0.12	0.733		
rs549908	TT	13 (72.2%)	39 (72.2%)			
	GT	5 (27.8%)	10 (18.5%)			
	GG	0 (0%)	5 (9.3%)			
	T	31 (86.1%)	88 (81.5%)			
	G	5 (13.9%)	20 (18.5%)			
	GG+GT vs TT	1.00 (0.304–3.290)	0	1.000		
	GG vs GT+TT	0.243 (0.013–4.619)	1.79	0.180		
rs11214101	TT	18 (100%)	54 (100%)			
	CT	0 (0%)	0 (0%)			
	CC	0 (0%)	0 (0%)			
	T	36 (100%)	108 (100%)			
	C	0 (0%)	0 (0%)			
	CC+CT vs TT	0.339 (0.007–17.722)	0.339	0.790	1.000	
	CC vs CT+TT	2.946 (0.056–153.803)	2.946	1.000		
SNP	Genotype	Ref	Test Stat	P Value		
-----------	----------	-----	-----------	---------		
rs544354	GG	3 (16.7%)	32 (59.3%)	Ref		
	AG	14 (77.8%)	12 (22.2%)	0.080 (0.020–0.330)		
	AA	1 (5.6%)	10 (18.5%)	0.938 (0.087–10.048)		
	G	20 (55.6%)	76 (70.4%)	0.526 (0.242–1.144)		
	A	16 (44.4%)	32 (29.6%)	0.138 (0.036–0.532)		
	AA+AG vs. GG	0.020–0.330	2.67	0.102		
	AA vs. AG+AA	0.087–10.048	0.957			
	G	20 (55.6%)	76 (70.4%)	2.67		
	A	16 (44.4%)	32 (29.6%)	0.102		
rs360729	AA	13 (72.2%)	39 (72.2%)	Ref		
	AT	4 (22.2%)	10 (18.5%)	0.833 (0.223–3.115)		
	TT	1 (5.6%)	5 (9.3%)	1.667 (0.178–15.607)		
	T	30 (83.3%)	88 (81.5%)	1.136 (0.417–3.095)		
	T+AT vs. AA	0.223–3.115	0.07	0.786		
	T vs. AT+AA	0.178–15.607	0.2	0.651		
rs5744260	GG	16 (88.9%)	52 (96.3%)	Ref		
	AG	2 (11.1%)	2 (3.7%)	0.308 (0.040–2.363)		
	AA	0 (0%)	0 (0%)	0.314 (0.006–16.466)		
	G	34 (94.4%)	106 (98.1%)	0.321 (0.044–2.365)		
	A	2 (5.6%)	2 (1.9%)	0.308 (0.040–2.363)		
	AA+AG vs. GG	0.040–2.363	1.41	0.234		
	AA vs. AG+AA	0.006–16.466	1.41	0.260		
	G	21 (58.3%)	69 (63.9%)	2.946 (0.056–153.803)		
	A	15 (41.7%)	39 (36.1%)	0.576 (0.063–5.291)		
rs360714	AA	7 (38.9%)	43 (79.6%)	Ref		
	AG	11 (61.1%)	11 (20.4%)	0.163 (0.051–0.517)		
	GG	0 (0%)	0 (0%)	0.172 (0.003–9.374)		
	G	25 (69.4%)	97 (89.8%)	0.258 (0.100–0.663)		
	A	11 (30.6%)	11 (10.2%)	0.163 (0.051–0.517)		
	GG+AG vs. AA	0.051–0.517	10.56	0.001		
	GG vs. AG+AA	0.003–9.374	10.56	0.001		
rs7106524	GG	6 (33.3%)	23 (42.6%)	Ref		
	AG	9 (50%)	23 (42.6%)	0.667 (0.204–2.178)		
	AA	3 (16.7%)	8 (14.8%)	0.696 (0.140–3.454)		
	G	21 (58.3%)	69 (63.9%)	0.791 (0.366–1.709)		
	A	15 (41.7%)	39 (36.1%)	0.674 (0.220–2.063)		
	AA+AG vs. GG	0.204–2.178	0.45	0.500		
	AA vs. AG+AA	0.140–3.454	0.2	0.565		
	G	21 (58.3%)	69 (63.9%)	0.36	0.550	
	A	15 (41.7%)	39 (36.1%)	0.48	0.487	
	GG+AG vs. AA	0.220–2.063	0.04	0.850		
	GG vs. AG+AA	0.270–4.899	0.04	0.850		

(Continued)
SNPs	Genotype/Allele Distribution	Group (1-9 Years) n=18	Group (41 Years and Above) n=54	OR (95% C.I.)	χ²	P-value*
rs5744231						
CC	18 (100%)	53 (98.1%)	Ref	1.037 (0.040-26.594)	0.34	0.560
CT	0 (0%)	1 (1.9%)	1.019 (0.041-25.559)	0.34	0.560	
TT	0 (0%)	0 (0%)	1.037 (0.040-26.594)	0.34	0.560	
rs360718						
AA	13 (72.2%)	36 (66.7%)	Ref	4.068 (0.210-78.641)	1.75	0.186
AC	5 (27.8%)	1 (0.8%)	1.678 (0.087-4.799)	0.95	0.330	
CC	0 (0%)	23 (41.5%)	1.300 (0.401-4.15)	0.19	0.611	
rs1293344						
AA	12 (66.7%)	37 (68.3%)	Ref	0.959 (0.280-3.151)	0.01	0.918
AG	6 (33.3%)	12 (20.8%)	3.667 (0.189-71.113)	1.57	0.209	
GG	0 (0%)	30 (53.6%)	3.279 (0.473-3.455)	0.24	0.626	
rs3881016						

Note: *Bold indicates significance.

https://doi.org/10.2147/JIR.S314638

DovePress

Journal of Inflammation Research 2021:14

Table 7 (Continued).
Table 8 Haplotype Analysis for IL-18 Gene Polymorphisms Between Group 1 (1–9 Years) Was Compared to 10 Years and Above

Haplotype	Freq.	Case, Control Ratio Counts	Case, Control Frequencies	Chi Square	P-value *	
rs544354	rs360727	0.66	292.5: 141.5, 17.7: 18.3	0.674, 0.491	4.93	0.026
rs360729	rs360714	0.21	87.5: 346.5, 11.3: 24.7	0.202, 0.314	2.53	0.112
rs7106524	rs360714	0.08	34.5: 399.5, 2.3: 33.7	0.080, 0.064	1.11	0.740
rs360729	rs360714	0.05	19.5: 414.5, 4.7: 41.3	0.045, 0.130	4.984	0.026

Note: *Bold indicates significance.

Table 9 Haplotype Analysis for IL-18 Gene Polymorphisms Between Groups (1–9 Years) Was Compared to 41 Years and Above

Haplotype	Freq.	Case, Control Ratio Counts	Case, Control Frequencies	Chi Square	P-value *	
rs360729	rs360714	0.36	27.8: 50.2, 13.9: 22.1	0.356, 0.387	0.105	0.746
G	A	0.31	29.2: 48.8, 6.1: 29.9	0.375, 0.168	4.917	0.027
G	G	0.15	8.0: 70.0, 10.0: 26.0	0.103, 0.278	5.687	0.017
G	A	0.14	11.8: 66.2, 4.9: 31.1	0.151, 0.137	0.036	0.850
G	A	0.01	1.2: 76.8, 0.1: 35.9	0.016, 0.002	0.442	0.506

Note: *Bold indicates significance.
parasitemia and such a conclusion needs to be investigated further.

Haplotype analysis also revealed 2 haplotypes GT and AT (rs544354 and rs549908) that show significant differences between the controls and the infected patients. Haplotype GT was found more frequently in the controls whereas haplotype AT was found more frequently in the infected patient group. Haplotype AT includes rs544354 risk allele A whereas haplotype GT contains rs544354 allele G at the corresponding position. This haplotype analysis confirms the association of polymorphism rs544354 with an increased risk of *P. falciparum* infection. We also analyzed the influence of these SNPs in the *IL-18* gene on the extent of parasitemia among the *P. falciparum*-infected patients and found the rs5744292-G allele to be significantly associated with increased parasite density in patients. Polymorphisms within the cytokine genes have been reported to be associated with various degrees of parasitemia. Sortica et al (2013) identified variations in IL-6 and IL-12B to be associated with the levels of parasitemia in *P. vivax*-infected Brazilian population. Additionally, rs5744292 G-allele has been reported to be associated with downregulation of IL-18 levels. The cellular/molecular mechanism through which rs5744292-G

Figure 2 Luciferase activity assay for the fragments containing *IL-18* promoter. (A) Nested deletions of this region were generated, cloned into pGL3 luciferase vector and transfected in HuH7 cell line for 24 h. (B) As fragment 1 showed the highest luciferase activity, it was further tested to evaluate the effect of the SNPs included in this fragment on the expression activity. Cells were harvested and tested for luciferase activity after normalization using renilla luciferase enzyme. Each experiment was performed in triplicates. Values represent mean ±SD.

https://doi.org/10.2147/JIR.S314638

DovePress

Journal of Inflammation Research 2021:14
allele contributes to an increase in parasitemia in *P. falciparum*-infected patients is unclear and needs further investigation. Three more SNPs, rs187238, rs360714 and rs1293344, were also found to be significantly associated with varying parasitemia levels in our study group. We observed that rs187238-CG, rs360714-GG and rs1293344-AG genotypes were found to be associated with protection from a higher degree of parasitemia. SNP rs187238, located in the promoter region of *IL-18* gene, has been previously associated with hepatitis C and type 1 diabetes. Anyona et al (2011) observed that rs187238-C allele correlated with decreased IL-18 levels. The authors of this study suggested that this G to C substitution destroys a histone 4 transcription factor-1 (H4TF-1) nuclear factor-binding site, resulting in lower promoter activity with subsequent downregulation of IL-18 levels. Based on these results, it can be inferred that the protective effect of rs187238 heterozygote variants CG
may be due to its regulation of IL-18 levels thereby controlling parasitemia.

Balavarca et al (2014) found that polymorphism rs1293344, located in the 5' flanking region of the IL-18 gene, is associated with improved overall survival of colorectal cancer.\(^{42}\) Also, no significant association was found between polymorphism at rs1293344 and the changes in the serum concentration of IL-18.\(^{43}\) In this study, we found rs1293344-AG genotype to be correlated with improved disease outcomes by protecting against increased parasitemia in P. falciparum-infected patients.

Our analysis also identified several haplotypes with differential frequencies among infected patients with varying degrees of parasitemia. A comparison of patients with the lowest degree of parasitemia with those that had a higher degree of parasitemia revealed one significant haplotype. The haplotype CAT exhibited a higher frequency in group 1 parasitemia patients than the combined group 2+3 +4 parasitemia patients. The mechanism through which this haplotype could affect the course of infection and/or expression of IL-18 requires further investigation.

Age is regarded as one of the crucial factors affecting the susceptibility and severity of the malarial infection.\(^{44}\) It has been observed to correlate with protective immunity in malaria-endemic areas.\(^ {45}\) When compared to adolescents and adults, young children have been reported to be more susceptible to malarial infection, usually with severe complications that may be fatal if untreated.\(^ {46,45,46}\) Due to the development of acquired immunity, adults are protected from severe malaria.\(^ {46,47}\) In this study, we investigated the influence of the selected SNPs in the IL-18 gene within the different age groups of the P. falciparum-infected patients. On comparing genotypic distribution among patients in the 1–9 years group with patients in age group ≥10 years, 2 SNPs- rs544354 and rs360714 were found to show a significant association with the latter group. We found that increased frequency of rs544354-A allele was predictive of parasitemia in the P. falciparum-infected patients included in the 1–9 years age group. Additionally, the A allele had a similar association in both dominant and recessive modes of inheritance as well as heterozygotic AG genotype. Similarly, a higher prevalence of the rs360714-G allele was associated with an increased risk of parasitemia in the patients of age group 1–9 years. Our results are consistent with the observation in the Kenyan population, where parasitemia was found to be strongly dependent on the age factor, with children under 5 years exhibiting the highest malarial parasitemia levels.\(^ {8}\) Further, another study has reported overall higher levels of parasitemia in children ≤9 years.\(^ {48}\) IL-18 levels have also been reported to exhibit an age-related pattern in malarial patients.\(^ {49,50}\) The functional mechanism(s) of these IL-18 SNPs must be studied to elucidate the role of these polymorphisms in determining age-related susceptibility to parasitemia.

We also performed a haplotype analysis between different age groups within the P. falciparum-infected patients. Single haplotype CA was found to be differentially distributed between the younger and older age groups. CA occurred more frequently within the 1–5 year age groups than in the older parasitemia patients. SNP rs187238 is positioned in the promoter region of the IL-18 gene and its C allele has been reported to correlate with decreased concentration of IL-18.\(^ {26}\) The haplotype analysis among the parasitemia patients within the age groups 1–9 years and ≥ 41 years revealed the presence of two haplotypes AAG and AGG of SNPs rs360729, 360714 and rs7106524, respectively, which showed differential distribution between these groups. AAG occurred more frequently in older patients whereas haplotype AGG was found to occur at a higher frequency among the 1–9 years age group. Although rs360714 is located in the intron region of IL-18 gene, the two haplotypes, AAG and AGG differ only with regards to rs360714 A or G allele. This suggest that rs360714 does have some functional impact in different age groups, a conclusion that needs further testing to confirm its biological/physiological importance.

The functional activity of the SNPs in the promoter and 3'UTR of the IL-18 gene was analyzed by luciferase reporter assay. Two SNPs, rs1946518 and rs187238, of the promoter region within the IL-18 gene were found to modulate the transcriptional activity in the vector system. Our results are in agreement with the previous studies that have reported an association of promoter polymorphism with IL-18 expression. A study investigating patients with sarcoidosis analyzed the promoter activity by luciferase assay and found polymorphisms rs1946519 and rs1946518 to be significantly associated with serum levels of IL-18.\(^ {51}\) Liang et al (2005) also reported the association of rs187238, among several other SNPs, with the transcriptional activity in the reporter assay system.\(^ {52}\) Another study examining the functional activity of IL-18 promoter region found polymorphisms rs1946518 and rs187238 to be associated with the transcriptional activity.\(^ {53}\) Similarly, the SNPs in the potential regulatory 3'UTR region have been shown to
affect the expression levels of IL-18. Previous studies have reported that the 3’UTR region of the IL-18 gene contains regulatory elements that may be responsible for mRNA stability and translation rate.\(^{41,54}\) Polymorphism rs5744292 has been previously found to influence the IL-18 expression in various clinical conditions such as coronary artery disease patients.\(^{25,32}\) Although not much is known about the polymorphism rs360728 in relation to IL-18 expression, we found rs360728-C/rs5744292-G haplotype to be associated with enhanced luciferase activity. This was in contrast to the previous report that linked rs5744292-G containing haplotypes with decreased transcriptional activity,\(^{54}\) as well as our observation that rs5744292-G allele is linked to upregulation of IL-18 expression. These variations may be attributed to the fact that in-vitro studies using isolated fragments of the regulating regions may not be able to correctly reflect the functional activity in-vivo. Different elements including both cis- and trans-acting can influence the folding of the regulatory regions and subsequently their transcriptional activity. These results need to be confirmed in-vivo to clarify the role of these SNPs in modulating IL-18 expression.

In conclusion, this study has identified several individual polymorphisms and haplotypes within the pro-inflammatory IL-18 gene and revealed their association with the risk and extent of parasitemia in P. falciparum-infected patients. This is the first time such a detailed analysis of IL-18 gene polymorphism concerning malaria has been reported in Saudi Arabia, which in turn provides important insights into the role of population genetics in malaria.

Acknowledgments
The authors extend their appreciation to the Deanship of Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number KKU-420.

Author Contributions
All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis, and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Disclosure
The authors have nothing to declare with respect to the research, authorship, and/or publication of this article.

References
1. World Health Organization. Malaria World Report. World Health Organization; 2019.
2. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis. 2004;4(6):327–336. doi:10.1016/s1473-3099(04)01043-6
3. Coleman M, Al-Zahrani MH, Coleman M, et al. A country on the verge of malaria elimination—the Kingdom of Saudi Arabia. PLoS One. 2014;9(9):e105980. doi:10.1371/journal.pone.0105980
4. Snow RW, Amratia P, Zamani G, et al. The malaria transition on the Arabian Peninsula: progress toward a malaria-free region between 1960–2010. Adv Parasitol. 2013;82:205–251. doi:10.1016/B978-0-12-407706-5.00003-4
5. El Hassan IM, Sahly A, Alzahrani MH, et al. Progress toward malaria elimination in Jazan Province, Kingdom of Saudi Arabia: 2000–2014. Malar J. 2015;14:444. doi:10.1186/s12936-015-0858-1
6. Gething PW, Patil AP, Smith DL, et al. A new world malaria map: plasmodium falciparum endemicity in 2010. Malar J. 2011;10:378. doi:10.1186/1475-2875-10-378
7. Leoatti FM, Farias L, Alves FP, et al. Variants in the toll-like receptor signaling pathway and clinical outcomes of malaria. J Infect Dis. 2008;198(5):772–780. doi:10.1086/590440
8. Idris ZM, Chan CW, Kongere J, et al. High and Heterogeneous Prevalence of Asymptomatic and Sub-microscopic Malaria Infections on Islands in Lake Victoria, Kenya. Sci Rep. 2016;6:36958. doi:10.1038/srep36958
9. de Mendonca VR, Goncalves MS, Barral-Netto M. The host genetic diversity in malaria infection. J Trop Med. 2012;2012:940616. doi:10.1155/2012/940616
10. Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet. 2005;77(2):171–192. doi:10.1086/432519
11. Gilles HM, Fletcher KA, Hendrickse RG, Lindner R, Reddy S, Allan N. Glucose-6-phosphate-dehydrogenase deficiency, sickling, and malaria in African children in South Western Nigeria. Lancet. 1967;1(7482):138–140. doi:10.1016/S0140-6736(67)91037-9
12. Ayi K, Turriani F, Piga A, Arese P. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood. 2004;104(10):3364–3371. doi:10.1182/blood-2003-11-3820
13. Imrie H, Ferguson DJP, Day KP. Human serum haptoglobin is toxic to Plasmodium falciparum in vitro. Mol Biochem Parasitol. 2004;133(1):93–98. doi:10.1016/j.molbiopara.2003.07.007
14. Lyke KE, Burges R, Cissoko Y, et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun. 2004;72(10):5630–5637. doi:10.1128/IAI.72.10.5630-5637.2004
15. Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 2008;223:20–38. doi:10.1111/j.1600-065X.2008.00624.x
16. Dinarello CA, Fantuzzi G. Interleukin-18 and host defense against infection. J Infect Dis. 2003;187(Suppl 2):S370–84. doi:10.1086/374751
17. Dinarello CA. IL-18: a TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol. 1999;103(1 Pt 1):11–24. doi:10.1016/s0091-6750(99)70518-x
18. Dinarello CA. The IL-1 family and inflammatory diseases. Clin Exp Rheumatol. 2002;20(5 Suppl 27):S1–13.
19. Greenlee W, Hageman WK, Plattner JJ, et al. Annual Reports in Medicinal Chemistry. Elsevier Science; 1999.
20. Wroczynska A, Nahorski W, Bakowska A, Pietkiewicz H. Cytokines and clinical manifestations of malaria in adults with severe and uncomplicated disease. Int Marit Health. 2005;56(1–4):103–114.
21. Torre D, Giola M, Speranza F, Matteelli A, Basilio C, Biondi G. Serum levels of interleukin-18 in patients with uncomplicated Plasmodium falciparum malaria. Eur Cytokine Netw. 2001;12(2):361–364.
22. Malaguarnera L, Pignatelli S, Musumeci M, Simporé J, Musumeci S. Plasma levels of interleukin-18 and interleukin-12 in Plasmodium falciparum malaria. Parasite Immunol. 2002;24(9–10):489–492. doi:10.1046/j.1365-3024.2002.00485.x
23. Anyona SB, Kempaiah P, Raballah E, et al. Functional promoter haplotypes of interleukin-18 condition susceptibility to severe malaria anemia and childhood mortality. Infect Immun. 2011;79(12):4923–4932. doi:10.1128/IAI.05601-11
24. Kojima S, Nagamine Y, Hayano M, Looareesuwan S, Nakanishi K. A potential role of interleukin 18 in severe falciparum malaria. Acta Trop. 2004;89(3):279–284. doi:10.1016/j.actatropica.2003.10.005
25. Tirtel L, Godefroy T, Lubos E, et al. Genetic analysis of the interleukin-18 system highlights the role of the interleukin-18 gene in cardiovascular disease. Circulation. 2005;112(5):643–650. doi:10.1161/CIRCULATIONAHA.104.519702
26. Huang XZ, Zhuang JH, Ren YG, Zhou LJ, Zhou Q. Association of interleukin-18 and interleukin-18 gene polymorphism with rheumatoid arthritis in Guangdong Han population. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27(11):1661–1664.
27. Xu Q, Tin SK, Sivalingum SP, Thumboo J, Koh DR, Fong KY. Association of interleukin-18+183 A/G and MMP-9-1562 C/T polymorphisms is associated with hypertension and pre-hospital sudden cardiac death: the Helsinki Sudden Death Study. Eur Heart J. 2009;30(23):2939–2946. doi:10.1093/eurheartj/ehp316
28. Cheng D, Hao Y, Zhou W, Ma Y. The Relationship between Interleukin-18 Polymorphisms and Allergic Disease: a Meta-Analysis. Biomed Res Int. 2014;2014:290687. doi:10.1155/2014/290687
29. Aljaraheh NA, Al-Anazi MR, Shafeai MI, et al. Interleukin-22 Polymorphisms in Plasmodium falciparum-Infected Malaria Patients. Mediators Inflamm. 2020;2020:5193723. doi:10.1155/2020/5193723
30. World Health Organization, Control C.D. Basic Malaria Microscopy: Tutor’s Guide. World Health Organization; 2010.
31. Nagamine Y, Hayano M, Kashiwamura S, et al. Involvement of interleukin-18 in severe Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 2003;97(2):236–241. doi:10.1046/j.1365-3032.2003.01901.x
32. Opstad TB, Pettersen AA, Heggelund K, et al. Contribution of Innate Responses to Plasmodium Falciparum Infections. Tezpur, Assam, India: Tezpur University; 2004.
