Rationale for Lung Adenocarcinoma Prevention and Drug Development Based on Molecular Biology During Carcinogenesis

Hongming Zhang1,*
Liting Guo2,*
Jibei Chen1

1Department of Respiratory Medicine, Yancheng Third People’s Hospital, Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu Province, People’s Republic of China; 2Department of Oncology, Ruijin Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China

*These authors contributed equally to this work

Abstract: Lung adenocarcinoma (LUAD) is the most common and aggressive subtype of lung cancer with the greatest heterogeneity and aggression. Inspite of recent years’ achievements in understanding the pathogenesis of this disease, as well as the development of new therapeutic approaches, our knowledge on crucial early molecular events during its development is still rudimentary. Recent classification and grading of LUAD has postulated that LUAD does not arise spontaneously, but through a stepwise process from lung adenomatous premalignancy atypical adenomatous hyperplasia to adenocarcinoma in situ, minimally invasive adenocarcinoma, and eventually frankly invasive predominant adenocarcinoma. In this review, we discuss the molecular processes that drive the evolutionary process that results in the formation of LUAD. We also describe how to handle lung premalignancy in clinical settings based on the most recent advances in genomic biology and our own understanding of lung cancer prevention.

Keywords: lung adenocarcinoma, molecular biology, pathogenesis, cancer prevention

Introduction

Lung cancer is the predominant cause of cancer deaths worldwide.1,2 Most patients with lung cancer present with advanced-stage disease when diagnosed, and even in patients with early-stage resectable or locally advanced disease receiving definitive chemoradiation therapy, up to 90% of will still inevitably have disease recurrence, with a 5-year survival rate <60%.3,4 Non-small-cell lung cancer (NSCLC) represents 80%–85% of lung cancers, and can be subdivided into adenocarcinoma, squamous-cell carcinoma, and large-cell carcinoma.4 Among all NSCLC subtypes, lung adenocarcinoma (LUAD) is the most heterogeneous and aggressive and has a very high tumor-mutation burden associated with EGFR, KRAS, BRAF, ERBB2, TP53, ALK, STK11, and TTE1 mutations.5–8 Despite advances in chemotherapy, radiation therapy, and targeted therapy in the last decade, prevention and early detection and treatment of lung cancer is still challenging, due to limited awareness of molecular mechanisms mediating early lung carcinogenesis and also the very late diagnosis of the majority of them.9

The intriguing development of next-generation sequencing in recent years has defined a large number of driver mutations of cancer, leading to malignancy-therapy advances.10

The establishment of the Pre-Cancer Genome Atlas, a project for characterization of molecular evolutions from premalignant lesions to invasive carcinoma, as well as corresponding changes in the tumor microenvironment (TME) in 2016, has also helped to...
provide us the insight to consider another direction for cancer treatment, ie, cancer prevention. A complex and stepwise process from the only known type of preneoplasia, atypical adenomatous hyperplasia (AAH), to a more pronounced cellular atypia adenocarcinoma in situ (AIS) to microinvasive lesion minimally invasive adenocarcinoma (MIA), and finally to LUAD involving several genetic and epigenetic alterations has been postulated based on a variety of pathological, molecular, and clinical studies. In this review, we set out an organizing framework for understanding molecular biology in LUAD premalignancy, in order to set out a theoretical background for cancer prevention–drug development. In addition, we highlight possible intervention approaches that might prevent progression of premalignant lesion to LUAD.

Pathological and Molecular Alterations During Lung Carcinogenesis

Our lungs are continuously exposed to the outside environment, and thus harbor a complex network protecting the host from tissue damage and infection. The multistage stepwise fashion of tumor development has been demonstrated in various anatomical organs. Therefore, a paradigm referred to as “field cancerization” has been created for areas of histologically normal-appearing tissue that exhibit molecular abnormalities during early tumorigenesis. Besides cigarette smoking, environmental exposure, such as air pollution and workplace exposure to asbestos, diesel exhaust, or certain chemicals, also creates a field of injury in airway epithelial cells: dysregulated repair by progenitor cells forming a clonal group of indefinitely self-renewing daughter cells in the initial phase, and proliferation and expansion of premalignant cells resulting from genetic and epigenetic alterations gradually displacing the normal epithelium.

AAH and AIS: Field Cancerization

Lung preneoplastic-lesion AAH and preinvasive-lesion AIS present cellular atypia characteristic of field cancerization. As the only known type of preneoplastic lesion, AAH represents the initial step in LUAD pathogenesis. It is a small, atypical proliferation (usually 0.5 cm or less) of type II pneumocytes along preexisting alveolar walls most commonly discovered as an incidental histological finding in 5%–20% of lung cancer specimens after resection. Telomere attrition has been demonstrated to occur as an initiating event in AAH progression to LUAD. An intriguing finding is that shared mutations of two classical genes, KRAS and EGFR, of AAH and LUAD in the same individual have also been detected, though Sakamoto et al showed that harboring a KRAS gene mutation might not ensure AAH’s further progress to LUAD. Other molecular aberrations identified in AAH include FGFR3, BRAF, TP53, STK11, and ERBB2 (HER2) mutations, upregulation of cyclin D1, survivin, paxillin, and Ki67, suppression of TBX2, and loss of heterozygosity in chromosomes 3p, 9p, 9q, 16p, 17p and 17q. Epigenetic modifications including DNA methylation of CDKN2A-Ex2 and PTPR2 have also been reported in AAH. Genes bearing somatic mutations or epigenetic modifications often encode tumor-associated antigens to elicit immunoresponse; therefore, the immune system is capable of recognizing AAH. T-effector and cytotoxic cell infiltration and upregulation of immunoregulatory mediators CTLD1 and CTLA4 in AAH compared to normal lung tissue suggest that the T cells might have already been activated in the AAH stage. Activation of protumor (T1 2; CCR2, CTLA4) and reduction in antitumor (T1 1; IL12A, GZMB, TBX21) immunomodulatory-associated gene sets observed in the development from normal lung to AAH further confirm the involvement of aberrant immunopathways in AAH.

Invasive Lesions: MIA and Adenocarcinoma

Malignant cells become invasive once they leave the epithelium. These invasive lesions generally harbor driver mutations, including EGFR, KRAS, ALK, ERBB2,
BRAF, AKT1, PIK3CA, MAP2K1, and MET mutations; however, few of these have been reported in precursor lesions. A subset of invasive adenomatous lesions appears to arise spontaneously in the absence of any precursor lesions for only around 15% of LUAD-harboring precursor lesions, though it may also be possible that the precursors are no longer detectable at diagnosis.

Substantive changes occur during the evolution to invasive lesions from MIA and adenocarcinoma from preinvasive lesions. In contrast to AAH and AIS, microinvasion is present in MIA, small, solitary, and discrete microinvasive lesions no larger than 3 cm with a predominantly lepidic pattern and invasion <5 mm in any one focus, the majority of which are nonmucinous. Currently, genomic studies into MIA have been limited compared to preneoplastic lesions, though unsurprisingly a higher frequency of KRAS, EGFR, TP53, and NF1 mutations has been found in MIA than AAH and AIS. A recent study by Qian et al also demonstrated an increasing frequency in mutations of KRAS, TP53, and NF1 in MIA than its earlier stage — AIS.

Once the invasive area of MIA extends >5 mm in diameter or meets invasion criteria, the lesion becomes an invasive predominant adenocarcinoma. The mutational landscape of early-stage LUAD has been investigated by multiple studies: EGFR, TP53, KRAS, STK11, and NF1 are substantially mutated in LUAD, and driver mutations in EGFR, BRAF, MET, and TP53 are almost always clonal, with acquired mutations directly linked to patient prognosis. It has also been established that mutations acquired during progression are linked to patient prognosis. With acquisition of more mutations, the immune system also becomes more complicated in early-stage LUAD. An example is that inactivation of STK11 will result in accumulation of immunosuppressive neutrophils and reduced PDL1 expression, as well as fewer tumor-infiltrating lymphocytes.

Rationale for LUAD Prevention: A Clinical Insight

In clinical practice, preinvasive and early invasive LUAD lesions can be detected by computed tomography or during histopathological studies on surgically resected specimens, and present as pulmonary nodules with ground-glass opacity (GGO): circumscribed hazy lesions with preservation of bronchial and vascular margins. Prediction of GGO nodules is difficult, as a considerable proportion will disappear spontaneously; however, approximately 10% will progress to invasive cancer. Therefore, management of incidentally detected GGO nodules is recommended as a follow-up for a minimum 3–4 years. According to the American College of Chest Physicians, increased size or solid-component development, pure GGO nodules >10 mm with confirmed persistence, mixed (GGO >50%) GGO nodules >8 mm with confirmed persistence, or mixed GGO nodules >15 mm without follow-up should be considered for surgery. However, patients may still relapse following resection: according to a report from Cho et al, 5.1% (five of 97) of patients with GGO nodules experienced recurrence after resection, while Nakao et al reported that 8% (four of 50) of patients with GGO nodules recurred after limited section. For patients with early-stage NSCLC following standard treatment surgery, as many as 40% of patients with stage I and 66% of stage II NSCLC are still found to relapse and finally die within 5 years. In addition, surgical resection may not be feasible for patients carrying multiple potentially aggressive transformation nodules. Therefore, drug development for lung cancer prevention and interception becomes our next-step consideration. Gene mutations can lead to activation of specific oncogenic pathways, leading to the occurrence of cancer. Therefore, targeting key molecular events will help in lung cancer interception (Figure 1). Molecular changes also have major effects on the TME, and thus secretion of specific inhibitory cytokines or production of chemokines and other factors related to immunosuppression. A typical example is that early KRAS-mutated pancreatic neoplastic cells can secrete VEGF, GM-CSF, and cytokines to recruit TregS, myeloid-derived suppressor cells, adipocytes, neutrophils, macrophage, and chemokines, leading to a progressively immunosuppressive TME that contributes to immunoresistance. In NSCLC, EGFR and STK11 mutations are more likely to have low levels of PDL1 expression and mutational burden, thus lacking benefit in immunocheckpoint blockadetherapy.

As to the positivity of EGFR T790M, Haratani et al showed that as a result of higher PDL1 expression level in EGFR T790M-negative patients, they are more likely to benefit from nivolumab after EGFR TKI treatment. A recent study by Hastings et al suggested that EGFR-mutant tumors have generally low response to immunocheckpoint inhibitors, but outcomes varied by allele, eg, lung tumors with EGFR L858R alterations harbored a lower tumor-mutation burden compared with EGFR L858R lung tumors. In contrast, TP53 and KRAS mutations and loss of PTEN and STK11 were observed to increase with PDL1 expression and mutational burden, as well as activated T-effector and IFNγ.
signature in LUAD, and thus remarkable clinical benefit to PD1 inhibitors are found in patients with TP53 and KRAS mutations. Therefore, TME interception could also be a potential interception method.

Conclusion
As the most common subtype of lung cancer, LUAD has gained great attention from oncologists. In this review, based on the most recent International Association for the Study of Lung Cancer–American Thoracic Society–European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma, we elaborated a conceptual framework to reveal the stepwise genomic evolution of LUAD from preinvasive AAH and AIS lesions to invasive MIA lesions and adenocarcinoma. We also proposed a scheme for LUAD prevention based on our clinical perspective.

The advent of sequencing technologies has allowed us to understand pathogenesis during LUAD development; however our knowledge of its detailed pathogenesis remains somewhat superficial. Firstly, the current treatment method for pulmonary nodules with GGO in the clinic is observation and a wait-and-see approach once they are detected by computed tomography scan. Associations between antigen expression and the mechanism of cellular transformation are unknown. In addition, how long GGO nodules should be followed up, appropriate timing for surgical resection, and the extent of resection are other questions. Secondly, many risk factors contribute to the development of LUAD, and recognizing these risk factors can be a potential consideration for prevention. As we all know, human papillomavirus vaccination has already been successfully used in cervical cancer. However, many gene-modified autologous vaccines for LUAD have already been tested, but not with the effects we expected. Thirdly, alterations in the TME during carcinogenesis, especially immune effector processes mediating cancer elimination, equilibrium, and escape, need to be elucidated. Potential interception of LUAD development would be enhancing the immune system’s recognition and elimination or weakening immunoevasion of the abnormal preneoplasias, ie, immunoprevention. Therefore, identifying molecular mechanisms and antigen expression in premalignancy responsible for immunoeediting becomes crucial. Last but not least, beyond what we have summarized, other challenges associated need to be addressed, including maintenance of the lung environment, key driving events, and personalized cancer intervention.

Overall, this review serves to enrich our knowledge of molecular aspects of LUAD pathogenesis. A limitation of this review is that we did not explicitly address the concrete genomic evolution during early lung adenomatous progression due to current superficial understanding, but we believe that our viewpoints will help to propel precancer research in the next few years and eventually expand cancer prevention to a greater subset of patients.

Disclosure
The authors have declared that no competing interest exists in this work.

References
1. Tan W-L, Jain A, Takano A, et al. Novel therapeutic targets on the horizon for lung cancer. Lancet Oncol. 2016;17(8):e347–e62. doi:10.1016/S1470-2045(16)30123-1
Sellers TA, Weaver TW, Phillips B, Altmann M, Rich SS. Environmental factors can confound identification of a major gene effect: results from a segregation analysis of a simulated population of lung cancer families. *Genet Epidemiol.* 1998;15(3):251–262. doi:10.1002/(ISSN)1098-2272

Sellers TA, Bailey-Wilson JE, Elston RC, et al. Evidence for mendelian inheritance in the pathogenesis of lung cancer. *J Natl Cancer Inst.* 1990;82(15):1272–1279. doi:10.1093/jnci/82.15.1272

Thorgerisson TE, Geller F, Sulem P, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. *Nat Genet.* 2008;40(5):638–642. doi:10.1038/nature08486

Kantronvitz J, Sinjib A, Xu L, et al. Genome-wide gene expression changes in the normal-appearing airway during the evolution of smoking-associated lung adenocarcinoma. *Cancer Prev Res.* 2018;11(4). doi:10.1158/1940-6207.CAPR-17-0295.

Kadara H, Scheet P, Wistuba II, Spiro AE. Early events in the molecular pathogenesis of lung cancer. *Cancer Prev Res.* 2016;9(7):518–527. doi:10.1158/1940-6207.CAPR-15-0400

Klebe S, Henderson D. Facts and fiction: premalignant lesions of lung tissues. *Pathol J RCPath.* 2013;45(3):305–315.

Katagawa H, Goto A, Nishi K, Hironaka M, Fukayama Y. Lung adenocarcinoma associated with atypical adenomatous hyperplasia. A clinicopathological study with special reference to smoking and cancer multiplicity. *Pathol Int.* 2003;53(12):823–827. doi:10.1096/jj.1440-1827.2003.01570.x

Weichert W, Warth A. Early lung cancer with lepidic pattern: adenocarcinoma in situ, minimally invasive adenocarcinoma, and lepidic predominant adenocarcinoma. *Curr Opin Pulm Med.* 2014;20(4):309–316. doi:10.1097/MCP.0000000000000065

Westra WH. Early glandular neoplasia of the lung. *Respir Res.* 2000;1(3):8. doi:10.1186/rr28

Seki M, Akasaka Y. Multiple lung adenocarcinomas and AAH treated by surgical resection. *Lung Cancer.* 2007;55(2):237–240. doi:10.1016/j.lungcan.2006.10.007

Min JH, Lee HY, Lee KS, et al. Stepwise evolution from a focal pure pulmonary ground-glass opacity nodule into an invasive lung adenocarcinoma: an observation for more than 10 years. *Lung Cancer.* 2010;69(1):123–126. doi:10.1016/j.lungcan.2010.04.022

Lantuejoul S, Raynaud C, Salamere D, et al. Telomere maintenance and DNA damage responses during lung carcinogenesis. *Clin Cancer Res.* 2010;16(11):2979–2988. doi:10.1158/1078-0432.CCR-10-0142

Ikeda K, Nomori H, Ohba Y, et al. Epidermal growth factor receptor gene in atypical adenomatous hyperplasia of the human lung: implications for the pathogenesis of peripheral lung adenocarcinoma. *J Thor Oncol.* 2008;3(5):467–471. doi:10.1097/JTO.0b013e31816b4b14

Westra WH, Baas IO, Hruban RH, et al. K-ras oncogene activation in atypical alveolar hyperplasias of the human lung. *Cancer Res.* 1996;56(9):2224–2228.

Yoshida Y, Shibata T, Kokubu A, et al. Mutations of the epidermal growth factor receptor gene in atypical adenomatous hyperplasia and bronchioalveolar carcinoma of the lung. *Lung Cancer.* 2005;50(1):1–8. doi:10.1016/j.lungcan.2005.04.012

Kitamura H, Kameda Y, Ito T, Hayashi H. Atypical adenomatous hyperplasia of the lung: implications for the pathogenesis of peripheral lung adenocarcinoma. *Am J Clin Pathol.* 1999;111(5):610–622. doi:10.1093/ajcp/111.5.610

Tang X, Shigematsu H, Bekele BN, et al. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients. *Cancer Res.* 2005;65(17):7568–7572. doi:10.1158/0008-5472.CAN-05-1705

Sakamoto H, Shinizu J, Horio Y, et al. Disproportionate representation of KRAS gene mutation in atypical adenomatous hyperplasia, but even distribution of EGFR gene mutation from preinvasive to invasive adenocarcinomas. *J Pathol.* 2007;212(3):287–294. doi:10.1002/(ISSN)1096-9896

Sellers TA, Bailey-Wilson JE, Elston RC, et al. Evidence for mendelian inheritance in the pathogenesis of lung cancer. *J Natl Cancer Inst.* 1990;82(15):1272–1279. doi:10.1093/jnci/82.15.1272
39. Xu X, Li N, Zhao R, Zhu L, Shao J, Zhang J. Targeted next-generation sequencing for analyzing the genetic alterations in atypical adenomatous hyperplasia and adenocarcinoma in situ. J Cancer Res Clin Oncol. 2017;143(12):2447–2453. doi:10.1007/s00432-017-2500-9

40. Sivakumar S, Lucas FA, McDowell TL, et al. Genomic landscape of atypical adenomatous hyperplasia reveals divergent modes to lung adenocarcinoma. Cancer Res. 2017;77(22):6119–6130. doi:10.1158/0008-5472.CAN-17-1605

41. Kohno H, Hiroshima K, Toyozaki T, Fujisawa T, Ohwada H, p53 mutation and allelic loss of chromosome 3p, 9p of preeoplastic lesions in patients with nonsmall cell lung carcinoma. Cancer. 1999;85(2):341–347.

42. Makowski L, Hayes D. Role of LKB1 in lung cancer development. Br J Cancer. 2008;99(5):683. doi:10.1038/sj.bjc.6606451

43. Awaysa H, Takeda H, Fujimura N, Tanimura K, Tanaka H. Expression of cyclin D1, retinoblastoma gene protein, and p16 MTS1 protein in atypical adenomatous hyperplasia and adenocarcinoma of the lung. J Clin Pathol. 2005;58(10):1076–1080. doi:10.1136/jcp.2004.025585

44. Kurasono Y, Ito T, Kameda Y, Nakamura N, Kitamura H. Expression of cyclin D1, retinoblastoma gene protein, and p16 MTS1 protein in atypical adenomatous hyperplasia and adenocarcinoma of the lung. J Clin Pathol. 2003;120(5):712–719. doi:10.1309/GWNT2JTN6K73YDE

45. Mackinnon AC, Tretiakova M, Henderson L, et al. Proliferative activity, mutation and allelic loss of chromosome 3p, 9p of preneoplastic lesions of high-grade atypical adenomatous hyperplasia reveals divergent modes to lung adenocarcinoma. Cancer Res. 2005;65(15):4941–4948. doi:10.1158/0008-5472.CAN-04-3478

46. Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the clonal evolution of lung cancer with intratumoral DNA methylation. Cell. 2017;168(3):624–638. doi:10.1016/j.cell.2017.01.028

47. Sivakumar S, Lucas FA, McDowell TL, et al. Genomic landscape of atypical adenomatous hyperplasia and their progression to lung adenocarcinomas. J Thor Oncol. 2017;12(8):S1546. doi:10.1016/j.jtho.2017.06.061

48. Borzuc A. Assessment of invasion in lung adenocarcinoma classification, including adenocarcinoma in situ and minimally invasive adenocarcinoma. Modern Pathol. 2012;25(S1).

49. Izumchenko E, Chang X, Brait M, et al. Targeted sequencing reveals clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA. Nat Commun. 2015;6(1):8258. doi:10.1038/ncomms9258

50. Tanaka R, Ishiyama T, Uchiyama T, et al. Expression of the Bax inhibitor-1 gene in pulmonary adenocarcinoma. Cancer. 2006;106(3):648–653.

51. Chang JH, Lee HJ, Kim BH, Cho NY, Kang GH. DNA methylation profile during multistage progression of pulmonary adenocarcinomas. Virchows Arch. 2011;459(2):201–211. doi:10.1007/s00428-011-1079-9

52. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2010;11(2):175–180. doi:10.1016/S1470-2648(10)70087-5

53. Kitaguchi S, Takeshima Y, Nishisaka T, Inai K. Proliferative activity, mutation and allelic loss of chromosome 3p, 9p of preneoplastic lesions of high-grade atypical adenomatous hyperplasia and adenocarcinoma in situ. Br J Cancer. 2002;86(13):1717–1721. doi:10.1038/sj.bjc.6601078

54. Koyama S, Akbay EA, Li YY, et al. STK11/LKB1 deficiency promotes the cancerization of driver mutations in tumor specimens from 1000 patients with lung adenocarcinoma: the NCI’s Lung Cancer Mutation Consortium (LCMC). J Clin Oncol. 2011;29(18_suppl):CRA7506–CRA. doi:10.1200/jco.2010.32.15_suppl.cra7506

55. Pompidou C, Tatt U, Lomax A, et al. Expression of the Bax inhibitor-1 gene in pulmonary adenocarcinoma. Cancer. 2006;106(3):648–653.

56. Noguchi M, Shimosato Y. The development and progression of adenocarcinoma of the lung. Lung Cancer. 1994;131–142.

57. Kris M, Johnson B, Kwiatkowski D, et al. Identification of driver mutations in tumor specimens from 1000 patients with lung adenocarcinoma: the NCI’s Lung Cancer Mutation Consortium (LCMC). J Clin Oncol. 2011;29(18_suppl):CRA7506–CRA. doi:10.1200/jco.2010.32.15_suppl.cra7506

58. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12(2):175–180. doi:10.1016/S1470-2648(10)70087-5

59. Chiosea S, Jelezecova E, Chandran U, et al. Genomic landscape of atypical adenomatous hyperplasia and primary lung cancer. Br J Cancer. 2000;83(5):632. doi:10.1054/bjc.2000.1317

60. Volltaggio L, Cimino-Mathews A, Bishop JA, et al. Current concepts of driver mutation and pathologic-radiologic correlation between multiple lung nodules with ground-glass opacity differentiates multicentric origin from intrapulmonary spread. J Thor Oncol. 2009;4(12):1490–1495. doi:10.1177/1940180709348731

61. Qian J, Zhao S, Zou Y, et al. Genomic underpinnings of tumor behavior in situ and early lung adenocarcinoma. Am J Respir Crit Care Med. 2019.

62. Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109–2121. doi:10.1056/NEJMoa1616288

63. Kris M, Johnson B, Kwiatkowski D, et al. Identification of driver mutations in tumor specimens from 1000 patients with lung adenocarcinoma: the NCI’s Lung Cancer Mutation Consortium (LCMC). J Clin Oncol. 2011;29(18_suppl):CRA7506–CRA. doi:10.1200/jco.2010.32.15_suppl.cra7506

64. Qian J, Zhao S, Zou Y, et al. Genomic underpinnings of tumor behavior in situ and early lung adenocarcinoma. Am J Respir Crit Care Med. 2019.

65. Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109–2121. doi:10.1056/NEJMoa1616288

66. Yosamuma S, Akbay EA, Li YY, et al. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T-cell activity in the lung tumor microenvironment. Cancer Res. 2016;76(5):999–1008. doi:10.1158/0008-5472.CAN-15-1439

67. Naidich DP, Bankier AA, MacMahon H, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner society. Radiology. 2013;266(1):304–317. doi:10.1148/radiol.121120628

68. Gulati CM, Schreiner AM, Libby DM, Port JL, Altorki NK, Gelman BD. Outcomes of unrectected ground-glass nodules with cytology suspicious for adenocarcinoma. J Thor Oncol. 2014;9(5):685–691. doi:10.1092/JTO.2014.306

69. Valtaggio L, Cimino-Mathews A, Bishop JA, et al. Current concepts in the diagnosis and pathology of intraepithelial neoplasia: a review by organ system. CA Cancer J Clin. 2016;66(5):408–436. doi:10.3322/caac.21350

70. McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369(10):910–919. doi:10.1056/NEJMoa1214726

71. Lu W, Cham MD, Qi L, et al. The impact of chemotherapy on persistent ground-glass nodules in patients with lung adenocarcinoma. J Thorac Dis. 2017;9(11):4743–4749. doi:10.21037/jtd
