Fluoroquinolone-resistant Salmonella sp. in Carcasses

To the Editor: Fluoroquinolone (FQ)-resistant Salmonella has been isolated from patients in Taiwan (1–7). Recently, a report further indicated that several patients were infected with Salmonella enterica serovar Schwarzengrund with high-level FQ resistance (1). S. Schwarzengrund has never been isolated from food animals in Taiwan.

We report the isolation of FQ-resistant strains from pork and broiler carcasses sampled from 2000 to 2003: 27 in 2000, 3 in 2001, 4 in 2002, and 2 in 2003. These isolates made up 18.85% of the 191 Salmonella strains obtained from pork and broiler carcasses in the study period. Of these isolates, 16 FQ-resistant S. Schwarzengrund strains were further analyzed to elucidate the possible mechanism of FQ resistance. Ciprofloxacin MIC levels in these isolates ranged from 4 to 16 μg/mL, and all had high-level nalidixic acid resistance (≥1,024 μg/mL). All of the 16 investigated strains displayed mutations possibly associated with high-level FQ resistance. The mutation sites included 2 sites (Ser83Phe and Asp87Gly) in the quinolone resistance–determining region (QRDR) of gyrA, 2 sites (Thr57Ser and Ser80Arg) in the QRDR of parC, and 1 site (Ser458Pro) in the QRDR of parE, respectively. Four strains had mutations in the QRDR of gyrA and parC only but not in the QRDR of parE (Table).

In conclusion, high-level FQ resistance was detected in S. Schwarzengrund isolated from pork and chicken in Taiwan. Specific mutation sites of gyrA, parC, and parE were associated with high-level FQ resistance in all the isolates investigated. Our results warrant further investigation of the public health consequences of FQ use in food animals in Taiwan.

Table. Characteristics of ciprofloxacin-resistant Salmonella enterica serovar Schwarzengrund strains from carcasses

Strain no.	Origin	Year isolated	Antimicrobial drug resistance profile	Quinolone MICs (μg/mL)	Substitutions in QRDR
A5	B, M	2000	CmSxtTc	1.024	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A16	P, E	2000	ApCmNSxtTc	2.048	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A17	P, E	2000	ApCmNSxtTc	2.048	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A18	P, E	2000	ApCmNSxtTc	2.048	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A19	P, E	2000	ApCmCnNSxtTc	1.024	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A20	P, E	2000	ApCmNSxtTc	2.048	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A29	B, S	2000	CmNSxtTc	1.024	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A36	B, S	2000	ApCmNSxtTc	1.024	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A41	P, S	2000	ApCmCnNSxtTc	1.024	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A45	P, S	2000	ApCmCnNSxtTc	1.024	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A51	P, S	2000	ApCmCnNSxtTc	1.024	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A56	B, M	2000	ApCmCnNSxtTc	2.048	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A61	P, S	2000	CmSxtTc	1.024	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
A62	P, S	2000	ApCmCnSxtTc	2.048	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
B16	P, E	2001	ApCmCnCroTc	2.048	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro
B73	P, N	2003	ApCmCnNSxtTc	2.048	Ser83Phe; Asp87Gly; Thr57Ser; Ser458Pro

*QRDR, quinolone resistance–determining region; B, broiler; M, middle Taiwan; P, pork; E, east Taiwan; S, southern Taiwan; N, north Taiwan.
†Antimicrobial agents are ampicillin (Ap), chloramphenicol (Cm), ciprofloxacin (CIP), enrofloxacin (ENR), flumequine (FLU), gentamicin (Cn), ceftriaxone (Cro), nalidixic acid (NAL), neomycin (N), trimethoprim/sulfamethoxazole (Sxt), and tetracycline (Tc).
‡No gyrB substitutions were detected.
Yu-Chih Wang,*
Kuang-Sheng Yeh,†
Chao-Chin Chang,*
Shih-Ling Hsuan,*
and Ter-Hsin Chen*

*National Chung Hsing University, Taichung, Taiwan; and †Taipei Medical University, Taipei, Taiwan

References

1. Baucheron S, Chaslus-Dancla E, Cloeckaert A, Chiu CH, Butaye P. High-level resistance to fluoroquinolones linked to mutations in gyrA, parC, and parE in *Salmonella enterica* serovar Schwarzengrund isolates from humans in Taiwan. Antimicrob Agents Chemother. 2005;49:862–3.

2. Chiu CH, Su LH, Hung CC, Chen KL, Chu C. Prevalence and antimicrobial susceptibility of serogroup D nontyphoidal *Salmonella* enterica *serotype Choleraesuis*. N Engl J Med. 2002;346:413–9.

3. Chiu CH, Su LH, Hung CC, Chen KL, Chu C. Prevalence and antimicrobial susceptibility of serogroup D nontyphoidal *Salmonella* enterica *serotype Choleraesuis*. N Engl J Med. 2002;346:413–9.

4. Chiu CH, Wu TL, Su LH, Liu JW, Chu C. Fluoroquinolone resistance in *Salmonella enterica* serotype Choleraesuis. N Engl J Med. 2002;346:413–9.

5. Hsueh PR, Teng LJ, Tseng SP, Chang CF, Ko WC, Yan JJ, et al. Detection of mutations in the *gyrA* gene and *parC* in *Salmonella enterica* isolates from quinolone-resistant *Salmonella enterica* serovar Choleraesuis. N Engl J Med. 2002;346:413–9.

6. Huang TM, Chang YF, Chang CF. Detection of mutations in the *gyrA* gene and class 1 integron from quinolone-resistant *Salmonella enterica* serovar Choleraesuis isolates in Taiwan. Vet Microbiol. 2004;100:247–54.

7. Ko WC, Yan JJ, Yu WL, Lee HC, Lee NY, Wang LR, et al. A new therapeutic challenge for old pathogens: community-acquired invasive infections caused by ceftriaxone- and ciprofloxacin-resistant *Salmonella enterica* serotype Choleraesuis. Clin Infect Dis. 2005;40:315–8.

Cocirculation of Dengue Serotypes, Delhi, India, 2003

To the Editor: Delhi, in the northern part of India, has had outbreaks of dengue caused by various dengue virus types in 1967, 1970, 1982, 1988, and 1996 (1–5). In 1988, for the first time, a few cases of dengue hemorrhagic fever (DHF) were seen (4). Subsequently, we reported the largest outbreak of DHF/dengue shock syndrome (DSS) in Delhi in 1996 and confirmed dengue virus type 2 as the etiologic agent (5).

We report the results of virologic testing of samples received at the All India Institute of Medical Sciences from patients with suspected dengue fever or dengue-like illness from Delhi and its adjoining areas during a 2003 outbreak of dengue. According to the World Health Organization (6), 2,185 laboratory-confirmed cases were reported during this outbreak.

Of the blood samples received by the virology laboratory, 42 were received on ice from patients with acute dengue-like illness. Serum was separated aseptically and stored at −70°C. The standard method of virus cultivation, which used the C6/36 clone of the *Aedes albopictus* cell line, was followed with some modifications (7). On days 5 and 10, harvested cells were stored at −70°C. The 4 dengue virus isolates processed for virus isolation (Table). Of the 8 isolates, two each were identified as dengue virus types 1 and 2, three as type 3, and one as type 4. All but one isolate were from patients with uncomplicated dengue fever. One dengue type 2 isolate was obtained from a 7-year-old boy with secondary dengue infection and DHF/DSS. The ages of culture-positive patients ranged from 5 to 62 years, with a median of 22 years. These patients were equally distributed between children (<12 years) and adults. The male-to-female ratio for these 8 patients was 5:3. The duration of fever at the time of viral isolation was 1–5 days, with a median of 3 days.

All previous outbreaks in Delhi have occurred during the monsoon (rainy) season between August and November and subsided with the onset of winter. We recently reported the results of serologic testing during the 2003 outbreak, which also occurred from September to November, with a peak in mid-October 2003 (8). This outbreak was

Age (y)/sex	Dengue type isolated	Secondary infection (anti-dengue IgG antibodies + by ELISA)	Duration of fever (d)
9/M	DENV-1	Yes	4
25/F	DENV-3	No	4
7/M	DENV-2	Yes	5
7/F	DENV-4	No	1
40/F	DENV-1	Yes	3
62/M	DENV-2	Yes	3
39/M	DENV-3	Yes	2
5/M	DENV-3	No	3

*ELISA, enzyme-linked immunosorbent assay; IgG, immunoglobulin G.