THE HOMOLOGY OF HEISENBERG LIE ALGEBRAS OVER
FIELDS OF CHARACTERISTIC TWO

EMIL SKÖLD BERG

Abstract. The generating function of the Betti numbers of the Heisenberg
Lie algebra over a field of characteristic 2 is calculated using discrete Morse
theory.

The Heisenberg Lie algebra of dimension $2n + 1$, denoted by \mathfrak{h}_n, is the vector
space with basis $B = \{ z, x_1, \ldots, x_n, y_1, \ldots y_n \}$ where the only non-zero Lie products
of basis elements are

$$[x_i, y_i] = -[y_i, x_i] = z.$$

In this paper the Betti numbers of the homology of \mathfrak{h}_n over a field of characteristic 2
is computed with the aid of algebraic discrete Morse theory from [Skö]. The
notation from [Skö] will be freely used.

Theorem 1. The generating function of the Betti numbers of the Heisenberg Lie
algebra over a field of characteristic 2 is

$$\sum_{i \geq 0} \dim_k H_i(\mathfrak{h}_n) t^i = \frac{(1 + t^3)(1 + t)^{2n} + (t + t^2)(2t)^n}{1 + t^2}$$

When the ground field of \mathfrak{h}_n has characteristic 0, Santharoubane [San83] has
shown that

$$\dim_k H_i(\mathfrak{h}_n) = \binom{2n}{i} - \binom{2n}{i - 2},$$

(the need for the ground field to have characteristic 0 is not explicitly mentioned).

Let us first recall the construction of the Chevalley–Eilenberg complex V of \mathfrak{h}_n,
whose homology is the homology of \mathfrak{h}_n: the complex V is given by

$$0 \longrightarrow \bigwedge^{2n+1} \mathfrak{h}_n \longrightarrow \cdots \longrightarrow \bigwedge^i \mathfrak{h}_n \longrightarrow \cdots \longrightarrow \bigwedge^2 \mathfrak{h}_n \longrightarrow \bigwedge \mathfrak{h}_n \longrightarrow 0$$

with the differential

$$\tilde{d}(w_1 \wedge \cdots \wedge w_n) = \sum_{i < j} (-1)^{i+j}[w_i, w_j] \wedge w_1 \wedge \cdots \wedge \hat{w_i} \wedge \cdots \wedge \hat{w_j} \wedge \cdots \wedge w_n$$

for $w_i \in B$.

The p-th homology (with trivial coefficients) of \mathfrak{h}_n, can now be obtained as the p-th homology group of the complex V.

If $I = \{i_1, \ldots, i_s\}$ is a subset of $[n]$, we will use the notation x_I for the element
$x_{i_1} \wedge \cdots \wedge x_{i_s}$, (and similarly for y_I).

Proof. The result is proved by constructing a Morse matching M on the digraph
G_V, and showing that when π is the projection coming from the splitting homotopy
of M, we have that $\pi(V)$ has trivial differential.

Date: 29th March 2022.
2000 Mathematics Subject Classification. Primary 17B56.
The author was supported by Marie Curie fellowship HPMD-CT-2001-00079.
The decomposition of the Chevalley–Eilenberg complex we will use is the obvious; we consider the basis for V given by $\{z \wedge x_I \wedge y_J, x_I \wedge y_J \mid I, J \subseteq [n]\}$.

Let the matching M consist of the following edges in G_V:

$$x_I \wedge y_J \to z \wedge x_{I\setminus\{k\}} \wedge y_{J\setminus\{k\}}$$

whenever $\max(I^c \cap J^c) < \max(I \cap J)$ and $k = \max(I \cap J)$.

There are now two kinds of unmatched elements: first the elements $z \wedge x_I \wedge y_J$, with $\max(I^c \cap J^c) < \max(I \cap J)$, and then the elements $x_I \wedge y_J$, with $\max(I^c \cap J^c) > \max(I \cap J)$.

When $x_I \wedge y_J \in M^+$, there is exactly one element $z \wedge x_I \wedge y_J$ with $x_I \wedge y_J \to z \wedge x_I \wedge y_J$, that is not in M^0, which implies that there can be no directed cycle in the graph G_V. Together with the fact that for all edges in G_V the corresponding component of the differential is an isomorphism, this implies that M is a Morse matching.

We will now see that the differential in $\pi(V)$ is zero. For an element $z \wedge x_I \wedge y_J \in M^0$ it is obvious that $d\pi(z \wedge x_I \wedge y_J) = \pi d(z \wedge x_I \wedge y_J) = 0$. For $x_I \wedge y_J \in M^0$ with $m = \max(I^c \cap J^c)$ we get that

$$\pi(x_I \wedge y_J) = x_I \wedge y_J + \sum_{i \in I \setminus J} x_{I \setminus \{i\}} \wedge y_{J \cup \{i\}},$$

from which it is easily seen that $d\pi(x_I \wedge y_J) = 0$. From [Skö, Theorem 1] now follows that the i-th Betti number is equal to the number of unmatched vertices in homological degree i.

For the computation of the generating function we introduce the elements $u_i = x_i \wedge y_i$, and we begin by counting the critical vertices $z \wedge x_I \wedge y_J \wedge u_K$ and $x_I \wedge y_J \wedge u_K$ when $I \cup J = L$ for a fixed set $L \subseteq [n]$.

If $L = [n]$, the critical vertices are all $z \wedge x_I \wedge y_J$ and $x_I \wedge y_J$ and they contribute with $(1 + t)(2t)^n$ toward the homology.

If $L \neq [n]$, then the critical vertices of the form $z \wedge x_I \wedge y_J \wedge u_K$ are those with $\max([n] \setminus (I \cup J)) \in K$ so they contribute with $t^3(2t)^{|L|}(1 + t^2)^{n-|L|-1}$ toward the homology. The critical vertices of the form $x_I \wedge y_J \wedge u_K$ are those with $\max([n] \setminus (I \cup J)) \notin K$ and thus contribute with $(2t)^{|L|}(1 + t^2)^{n-|L|-1}$ toward the homology.

Summing up we get

$$f(t) = (1 + t)(2t)^n + (1 + t^3) \sum_{L \subseteq [n]} (2t)^{|L|}(1 + t^2)^{n-|L|-1}$$

$$= (1 + t)(2t)^n + (1 + t^3) \sum_{i=0}^{n-1} \binom{n}{i} (2t)^i(1 + t^2)^{n-i-1}$$

$$= (1 + t)(2t)^n + (1 + t^3)(1 + t^2)^{-1}((1 + 2t + t^2)^n - (2t)^n)$$

$$= \frac{(1 + t)(1 + t^2)(2t)^n}{1 + t^2} + \frac{(1 + t^3)(1 + t)^{2n} - (1 + t^3)(2t)^n}{1 + t^2}$$

$$= \frac{(1 + t^3)(1 + t)^{2n} + (t + t^2)(2t)^n}{1 + t^2}$$

\square

References

[San83] L. J. Santharoubane, Cohomology of Heisenberg Lie algebras, Proc. Amer. Math. Soc. 87 (1983), no. 1, 23–28. MR 84b:17010
[Skö] Emil Sköldberg, Combinatorial discrete Morse theory from an algebraic viewpoint, Preprint, Stockholm University.
