Significance of changes of gastrointestinal peptides in blood and ileum of experimental spleen deficiency rats

Li-Sheng Li, Rui-Yao Qu, Wei Wang, Hua Guo

Li-Sheng Li, Rui-Yao Qu, Wei Wang, Hua Guo, Department of Physiology, Capital University of Medical Sciences, 100054, Beijing, China

Supported by the Traditional Chinese Medicine-Drug Science and Technology Development Foundation, Beijing City (1999-2000)

Correspondence to: Li-Sheng Li, Department of Physiology, Capital University of Medical Sciences, 100054, Beijing, China. lis@sohu.com

Telephone: +86-10-63051492

Received: 2002-09-13 Accepted: 2002-10-31

Abstract

AIM: To explore the mechanism of spleen deficiency (SD) by studying the relationship of gastro-intestinal peptides level and ileal electro-mechanical activity of SD rats and cold restrain rats.

METHODS: (1) spleen deficiency (SD) model was established by feeding Houpuo:Zhishi: Dahuang in the ratio of 3:3:2, 3 ml/time, 42 days. (2) The cold restrain stress model: Animals were restrained on grille and placed in a cool water at 18 °C for 3 h. (3) Substance P (SP) and vasoactive intestinal peptide (VIP) levels in all layers of initial part of ileum and blood in rats were measured by radioimmunoassays (RIA) while changes of electric activity and motility in ileum of rats were recorded with electrode and strain gauge.

RESULTS: SP levels in ileum and blood of experimental SD rats were significantly higher than that of the control groups (9.89±5.65 vs 1.22±1.18, P<0.005, in ileum; 22.7±3.95 vs 6.60±1.47, P<0.001, in blood) while the VIP levels of SD rats were significantly lower than that of the controls (9.10±4.91, P<0.05, in ileum; 229.8±62.4 vs 560.4±151.3, P<0.001, in blood). As compared with the controls, the average frequency of slow electric waves (21.3±0.96 vs 18.2±2.28, P<0.05) and motility (21.5±0.58 vs 18±2.65, P<0.005) of SD rats increased obviously and the frequency of fast waves of SD rats also increased. In spontaneous recovery cases, SP levels recovered significantly (compared with the SD groups, 2.99±0.62 vs 9.89±5.65, P<0.001, in ileum; 14.4±2.22 vs 22.7±3.95, P<0.001, in blood) but not drop to normal. After the SD rats treated with Chinese herbs (Jiawei Sijun zi Tang), SP improved (compared with SD cases, 2.2±1.25 vs 9.89±5.65, P<0.001, in ileum; 10.7±1.88 vs 22.7±3.95, P<0.001, in blood) and VIP in blood also improved (compared with SD rats, 485.7±229.0 vs 229.8±62.4, P<0.01) while the amplitude of motility decreased apparently (compared with the SD rats, 0.64±0.096 vs 0.89±0.15, P<0.01). The ileal VIP levels of rats didn’t change while the ileal VIP levels of cool stress became significantly lower than that of the control groups (2.87±0.87 vs 9.10±4.91, P<0.01). The blood VIP levels of SD rats were significantly higher (15.60±1.83 vs 6.60±1.47, P<0.001) whereas the blood VIP levels of cool stress were significantly lower than that of the control group (153.4±70.46 vs 560.4±151.3, P<0.001).

CONCLUSION: Changes of SP and VIP levels in initial part of ileum and blood of SD rats and cool stress rats may be closely related to the gastrointestinal motility disorders presented in SD and cool stress rats. The Chinese herbs (Jiawei Sijunzi Tang) currently used have partially therapeutic effect.

INTRODUCTION

It was well known that Spleen-Stomach theory is an important constituent of the theoretical basis of traditional Chinese Medicine. The spleen here is not synonymous with the spleen in western medicine anatomically, physiologically or pathophysiologically[1-3]. Conceptually, Spleen-Stomach theory is a comprehensive one. It mainly involves the digestive system, its vegetative nervous system, immunologic function, hemopoiesis, muscle metabolism, endocrine function, hepatic metabolic function, protein, nucleotide, energy, water and salt metabolism.

In recent years, the field of gastrointestinal hormones has expanded at a dazzling speed. The successful isolation of some gastrointestinal hormones and development of sensitive assays for their detection have led to many unexpected findings[4-6]. Gastrointestinal hormones as regulatory peptides appear to be major components of bodily integration and have important regulatory actions on physiological function of gastrointestinal tract[7-17]. Some studies indicated that spleen deficiency syndrome (SDS) was closely related with gastrointestinal hormones[16-21].

But up to now, the mechanisms of the relationship between gastrointestinal peptides levels and gastrointestinal functional disorder in SD still remain unclear[22-31]. We tried to explore the relationship between SDS and gastrointestinal hormones by measuring SP and VIP, and by using electrode and highly sensitive strain sensor to record alterations of ileum activity and ileum motility in SD and cool stress rats.

MATERIALS AND METHODS

Experimental animals

Healthy adult male Wistar rats (provided by Experimental Animal center, capital university of medical sciences), weighing 0.12-0.17 kg were used in this study. They were caged in an air conditioned room (23±2 °C).

Sijunzi decoction (SIZD), composed of ginseng. Atractylodes, Poria, Glycyrrhiza, It was prepared by routine method of decocting the crude herbal medicine twice. The filtered decoction was preserved in refrigerator at 4 °C.

Fifty rats were randomly divided into five groups: (1) control group: The rats were fed standard rat chow and water ad libium. (2) experimental SD model group. by feeding Houpuo: Zhishi: Dahuang (3:3:2), 3 ml/time, 42 day. (3) Spontaneous recovery group. (4) SIZD treated group. (5) cold stress group: rats were restrained on grille and placed in cool water at 18 °C for 3 h.
Table 3 Changes of electric-mechanical activity in ileum (*x*/s)

	Control group	SD group	Spontaneous recovery group	Treated group	SD group	Spontaneous recovery group	Treated group
Slow wave (time/min)	17.5±2.05	17.4±0.79	16.8±0.8	13.8±0.92	16.5±2.67	16.5±2.67	
Motility	18.5±1.7	18.0±0.69	16.8±1.3	16.1±0.36	15.7±1.1	15.2±1.01	
Slow wave (time/min)	18.2±2.8	21.3±0.96	20.5±5.5	20.0±0.4	15.2±1.01	16.2±1.7	
Motility	18±2.65	21.5±0.58	19.1±4.85	19.0±0.61	0.27±0.11	0.33±0.12	
Amplitude (time/min)	0.30±0.26	0.31±0.24	0.25±0.103	0.14±0.015	0.27±0.11	0.33±0.12	
Motility	0.43±0.31	0.69±0.15	0.77±0.65	0.64±0.096	0.33±0.12	0.33±0.12	

p < 0.005, vs control group; *p* < 0.05, vs control group; *p* < 0.01, vs SD group.

Measurements

Radioimmunoassay (RIA) of SP and VIP in these samples was conducted with kits purchased from Beijing HaiKerui Biological technique center. The concentrations of SP, VIP were measured with radioimmunoassay kits. Under anesthesia, the abdomen was opened and the samples were taken as follows: (1) Blood samples of 5-6 ml from the heart were collected in tubes, the plasma was immediately separated by centrifugation, then was frozen and stored at -20 °C until analysis. (2) The initial part of ileal tissue were removed, rinsed and weighed, then were put into a tube with boiling water. The tube was plunged into vigorous boiling water for 3 minutes, then it was cooled down and homogenized for 10 minutes. After centrifugation at 3 000 r/min for 5 minutes, the supernatant was collected and stored at -20 °C until assay.

All groups fasted for 18 h before operating, anesthetized by 20 % urethane, the abdomen was opened, then the sliver electrodes and strain gauge were implanted on the initial part of ileum. The changes of electric slow wave and motility of ileum were recorded. Electrode wires were passed through the abdominal muscle and fixed on the skin. All data were handled by a two-channel physiological recorder and a computer.

The cold restraint stress model: Animals were restrained on grille and placed in a cool water at 18 °C for 3 h.

Statistical analysis

Data were expressed as mean ± standard deviation. Experimental results were analyzed by t tests was determined *P*<0.05 was considered statistically significant.

RESULTS

To assess the changes of gut peptides of gastrointestinal functional disorder in SD rats and cold restraint rats, we measured the plasma levels of SP and VIP and those in the initial part of the ileum. SP levels in ileum and blood of experimental SD rats were significantly higher than those of the control groups (*P*<0.05, in ileum; *P*<0.001, in blood) while the VIP levels of the SD rats were significantly lower than that of the controls groups (*P*<0.05 in ileum, *P*<0.001, in blood). In spontaneous recovery cases, SP levels recovered significantly (compared with the SD groups, *P*<0.001) and did not drop to normal. After the SD rats were treated with Chinese herbs (Jiawei Sijun Zi Tang), SP was improved (compared with SD cases, *P*<0.001) and VIP in blood was also improved (compared with SD rats, *P*<0.01). SP levels in ileum of cool stress didn’t change while the VIP levels were significantly lower than that of the controls groups (*P*<0.01). SP levels in blood of cool stress were significantly higher (*P*<0.001) while the VIP levels were significantly lower than that of the control groups (*P*<0.001), Table 1-2.

As compared with the controls, average frequency of slow electric waves (*P*<0.05) and motility (*P*<0.05) of SD rats increased obviously while the amplitude of motility decreased apparently (*P*<0.05), Table 3.

DISCUSSION

Spleen is one of the five solid organs, which in Traditional Chinese Medicine (TCM), does not completely match the organ designated in western medicine from the standpoint of structure, location and function. It has the functions of digesting food, absorbing and transporting nutrients to the body tissues. The spleen also serves to control the blood and to keep the blood circulating within the vessels, and takes part in the regulation of fluid metabolism[32-38]. Spleen-Stomach theory forms the basis of diagnostic approach and treatment of Spleen-Stomach disease. Spleen deficiency syndrome is a multisystem and multiorgan functional impairment, but mainly manifest as digestive tract disturbance. Experimental researches on animal model and clinical studies on spleen deficiency syndrome have yielded fruitful results in this field which lead to a better understanding of its mechanism and help open a new avenue for treatment of diseases relevant to Spleen deficiency[21,39-47]. The Spleen stomach has various physiologic functions. such as: Spleen governs transport and transformation, Spleen-stomach transforms food into nutrients which are the sources of Qi and blood. Stomach governs up-bearing function and spleen governs up-bearing which signify the motility, secretory, assimilative, absorptive and dispersing functions of upper
digestive tract, among which, gut hormones are involved\cite{20,48-50}. Dysfunction of up-and down-bearing function of spleen-stomach can cause gastrointestinal disturbances and various spleen deficiency syndromes\cite{1,2,19,20,51,52}.

SP and VIP are both important gut Peptides, SP and VIP partially distributed in the mucosa of gastric antrum, the mucosa of the jejunum, ileum. And the central nervous system SP has a wide range of biological actions. In the intestine, VIP markedly stimulates intestinal secretion of electrolytes and hence of water. Its other actions include relaxation of intestinal smooth muscle; sphincters; dilatation of peripheral blood vessels; and inhibition of gastric acid secretion.

Our previous studies included: The use of electrode and highly sensitive sensor to record alteration of gut electric activity and motility. To explore the potential role of gut peptides in spleen deficiency (SD), we studied immunoreactive Substance P, VIP, Calcitonin Gene Related Peptide (CGRP) levels in gastric antrum, duodenum and jejunal tissues in experimental SD rats by radioimmunoassays (RIA). The study suggested that motion frequency of several regions in SD rats was lower than that of control and treatment groups, respectively ($P<0.05$). The minimal amplitude of electric activity was also lower than that of control and treatment respectively ($P<0.05$). Correlation between motion frequency and its total amplitude index was different from various regions, the time of MMC was obviously less than that of control, and the amplitude of motility was significantly higher than that of the control. The SP, VIP levels in antrum and small intestine, there was no obvious difference of treatment group ($P<0.05$). But VIP level of treatment group was obviously less than that of the control, whereas, the SP level in duodenum of SD rats was significantly less than that of control, and VIP levels in duodenum of SD rats were obviously higher that of the control ($P<0.05$). The SP, VIP levels in antrum of SD rats were obviously less than that of control and treatment group ($P<0.05$), but VIP level of treatment group was obviously less than that of control, whereas, the SP level in duodenum of SD rats was significantly less than that of control ($P<0.05$), but in jejunum only SP levels increased obviously than that of the control ($P<0.05$). The VIP level in duodenum of SD rats was significantly less than that of treatment group ($P<0.05$), but VIP level of treatment group was higher than that of the control ($P<0.05$). As to CGRP level in antrum and small intestine, there was no obvious difference among the 3 groups.

The present study reveals changes SP and VIP in ileum of SD rats and cool stress rat. All these data imply that changes of SP and VIP levels in the antrum and the small intestine of SD rats may be closely related with the dysmotility of gastrointestinal , malabsorption and diarrhea. The Chinese herb (si junzi Tang) is capable of improving the spleen deficiency significantly and gastrointestinal electro-mechanical activity.

REFERENCES

1. Gao R, Li L, Lu Z. Clinical observation on 300 cases of angina pectoris treated by the spleen-stomach regulating method. J Tradit Chin Med 1999; 18: 87-90.
2. Wu XN. Current concept of Spleen-Stomach theory and Spleen deficiency syndrome in TCM. World J Gastroenterol 1998; 4: 2-6.
3. Strauss E. Gastrointestinal hormones. M.T. Sinai J Med 2000; 67: 54-57.
4. Bierkamp C, Kowalski-Chauve A, Dehez S, Fourny D, Pradayrol L, Seva C. Gastrin mediated cholecystokinin-2 receptor activation induces loss of cell adhesion and scattering in epithelial MDCX cells. Anticancer Res 2002; 22: 7656-7670.
5. Pattens GS, Head RJ. Abeywardena MY, McMurchie EJ. An apparatus to assay opioid activity in the infused lumen of the intact isolated guinea pig ileum. J Pharmacol Toxicol Methds 2001; 45: 39-46.
6. De Man JG, Moreels TG, De Winter BY, Bogers JJ, Van Marck EA, Herman AG, Feldmans PA. Disturbance of the prejunctional modulation of cholinergic neurotransmission during chronic granulomatous inflammation of the mouse ileum. Br J Pharmacol 2001; 133: 695-707.
7. Wise RM, Bass P, Oaks JA. Myoelectric response of the small intestine to the orad presence of the tapeworm Hymenolepis diminuta. J Parasitol 2001; 87: 1255-1259.
8. Stebbing M, Johnson P, Vremec M, Borrstein J. Role of alpha2-adrenoceptors in the sympathetic inhibition of motility reflexes of guinea-pig ileum. J Physiol 2001; 534(Pt 2): 465-478.
9. Shafik A, Al-El-Sbai O, Ahmed A. Study of the mechanism underlying the difference in motility between the large and small intestine the "single" and "multiple" pacemaker theory. Front Biosci 2001; 6: 83-103.
10. Soderholm JD, Perdue MH. Stress and gastrointestinal tract. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 2001; 280: G7-G13.
11. Bayer S, Raul F, Boehm N, Klein A, Angel F. Modulatory effects of polyamines and GABA on rat ileal motility in vitro. Gastroenterol Clin Biol 1999; 23: 824-831.
12. Chang YF, Glasgow NJ, Takayama J, Hiriguchi K, Sanders KM, Ward SM. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J Physiol 2001; 536(Pt 2): 555-569.
13. Shibata C, Murr MM, Balsiger B, Anding WJ, Sarr MG. Contractile activity of circular smooth muscle in rats one year after small bowel transplantation: differing adaptive response of the jejunum and ileum to denervation. J Gastrointest Surg 1998; 2: 463-472.
14. Pfefferkorn MD, Fitzgerlaldf JF, Caffrey HM. Direct measurement of pancreatic enzymes: a comparison of secretagogue. Dig Dis Sci 2002; 47: 2211-2216.
15. Takeuchi T, Fujita A, Rouny M, Zajac JM, Hata F. Effect of 10MeA, a neuropeptideFF analog, on acetylcholine release from myenteric plexus of guinea pig ileum. Jpn J Pharmacol 2001; 86: 417-422.
16. Marinovich M, Viviani B, Capra V, Corsini E, Anselmi L, D'Astorgio G, Di Nucci A, Binaglia M, Tonini M, Galli CI. Facilitation of acetylcholine signaling by the dithiocarbamate fungicide propineb. Chin Res Toxicol 2002; 15: 26-32.
17. Venkova K, Sutkowski-Markmann DM, Greenwood-Van Meerveld B. Peripheral activity of a new NK1 receptor antagonist, TAK-637 in the gastrointestinal tract. J Pharmacol Exp Ther 2002; 300: 1046-1052.
18. Yin G, Zhang W, Li G. Therapeutic effect of weikanglu on gastric precancerosis with spleen deficiency syndrome and its effect of gastric mucosal zinc, copper, cyclic adenosine monophosphate, superoxide dismutase, lipid peroxide and 3H-TdR lymphocyte conversion test. Zhongguo Zhongxiyi Jiehe Zazhi 2000; 20: 176-179.
19. Ren P, Huang X, Zhang L. Effect of sijunzi decoction on gastric emptying rate in rat model of spleen deficiency syndrome. Zhongguo Zhongxiyi Jiehe Zazhi 2000; 20: 596-598.
20. Yin G, Zhang W, Xu F. Effect of Weikanglu granule on ultrastructure of gastric mucosa in patients of precancerosis with spleen deficiency syndrome. Zhongguo Zhongxiyi Jiehe Zazhi 2000; 20: 667-670.
21. Xu L. Twenty-seven cases of spleen-qi deficiency syndrome treated by heat-producing needling at zusani. J Tradit Chin Med 2000; 20: 40-43.
22. Hockerfelt U, Franzen L, Kjorrell U, Forsgren S. Parallel increase in substance P and VIP in rat duodenum in response to irradiation. Peptides 2000; 21: 271-281.
23. Fujimiya M, Inui A. Peptidergic regulation of gastrointestinal motility in rodents. Peptides 2000; 21: 1565-1582.
24. Chang FY, Doong ML, Chen TS, Lee SD, Wang PS. Vasoactive intestinal polypeptide appears to be one of the mediators in misoprostol-enhanced small intestinal transit in rats. J Gastroenterol Hepatol 2000; 15: 1120-1124.
25. Huang X, Ren P, Wen AD, Wang LL, Zhang L, Gao F. Pharmacokinetics of traditional Chinese syndrome and recipe: a hypothesis and its verification (1). World J Gastroenterol 2000; 6: 384-391.
26. Pei WF, Xu GS, Sun Y, Zhu SL, Zhang DQ. Protective effect of electroacupuncture and moxibustion on gastric mucosal damage and its relation with nitric oxide in rats. World J Gastroenterol 2000; 6: 424-427.
27. Zhang XC, Gao RF, Li BQ, Ma LS, Mei LX, Wu YZ, Liu FQ, Liao ZL. Clinical and experimental study of therapeutic effect of Weixiaobionzhu pills on gastric precancerosis lesions. World J Gastroenterol 1998; 4: 24-27.
28. Xu CT, Pan BR. Current status of gene therapy in gastroenterology. World J Gastroenterol 1998; 4: 85-89.
29 Xu CT, Pan BR. Current medical therapy for ulcerative colitis. World J Gastroenterol 1999; 5: 64-72
30 Yuan HY, Li Y, Yang GL, Bei DJ, Wang K. Study on the causes of local recurrence of rectal cancer after curative resection: analysis of 213 cases. World J Gastroenterol 1998; 4: 527-529
31 Yamamoto H, Umeda M, Mizoguchi H, Kato S, Takeuchi K. Protective effect of Irsogladine on monochloramine induced gastric mucosal lesions in rats: a comparative study with rabemipride. World J Gastroenterol 1999; 5: 477-482
32 Yin G, Zhang W, He X. Histocytopathological study on gastric mucosa of spleen deficiency syndrome. Zhongguo Zhongxiyi Jiehe Zazhi 1999; 19: 660-663
33 Zhu L, Yang ZC, Li A, Cheng DC. Reduced gastric acid production in burn shock period and its significance in the prevention and treatment of acute gastric mucosal lesions. World J Gastroenterol 2000; 6: 84-88
34 Zheng TZ, Li W, Qu SY, Ma YM, Ding YH, Wei YL. Effects of Danshen on isolated gastric muscle strips in rats. World J Gastroenterol 1998; 4: 354-356
35 Li W, Zheng TZ, Qu SY. Effect of cholecystokinin and secretin on contractile activity of isolated gastric muscle strips in guinea pigs. World J Gastroenterol 2000; 6: 93-95
36 Shen XZ, Koo MWL, Cho CH. Sleep deprivation increase the expression of inducible heat shock protein 70 in rat gastric mucosa. World J Gastroenterol 2001; 7: 486-489
37 Peng X, Feng JB, Wang SL. Distribution of nitric oxide synthase in stomach wall in rats. World J Gastroenterol 1999; 5: 92
38 Peng X, Feng JB, Yan H, Zhao Y, Wang SL. Distribution of nitric oxide synthase in stomach myenteric plexus of rats. World J Gastroenterol 2001; 7: 852-854
39 Li L, Jin NG, Piao L, Hong MY, Jin ZY, Li Y, Xu WX. Hyp-osmotc membrane stretch potentiated muscarinic receptor agonist-induced depolarization of membrane potential in guinea-pig gastric myocytes. World J Gastroenterol 2002; 8: 724-727
40 Yang WY, Liang R, Che JX. Clinical study on relation between spleen-qí deficiency syndrome and the pancreatic exocrine function. Zhongguo Zhongxiyi Jiehe Zazhi 1996; 16: 414-416
41 Zhang M, Zhang Z, Xia T. Effect of sijunzi decoction on serum soluble intercellular adhesive molecule-1, interleukin-15 and monocyte antibody-dependent cell-mediated cytotoxicity in patients of spleen-deficiency. Zhongguo Zhongxiyi Jiehe Zazhi 1999; 19: 270-272
42 Xu MY, Lu HM, Wang SZ, Shi WY, Wang XC, Yang DX, Yang CX, Yang LZ. Effect of devazepide reversed antagonism of CCK-8 against morphine on electrical and mechanical activities of rat duodenum in vitro. World J Gastroenterol 1998; 4: 524-526
43 Lin Z, Chen JD, Schirmer BD, McCallum RW. Postprandial response of gastric slow waves: correlation of sensory recordings with the electrogastrogram. Dig Dis Sci 2000; 45: 645-651
44 Xu D, Shen Z, Wang W. Immunoregulation of Youqiuinyin, Si-junzi-tang, Taohong Siwu-tang in treating patients with deficiency of kidney, spleen and blood stasis syndrome. Zhongguo Zhongxiyi Jiehe Zazhi 1999; 19: 712-714
45 Wang ZS, Cheung JY, Gao SK, Chen JD. Spati-temporal nonlinear modeling of gastric myoelectrical activity. Methods Inf Med 2000; 39: 185-190
46 Tabor S, Thor PJ, Pitala A, Laskiewicz J. Value of electrogastrographic parameters in evaluation of gastric myoelectrical activity. Folia Med Cracov 1999; 40: 27-42
47 Abo M, Kono T, Wang Z, Chen JD. Impairment of gastric and jejunal myoelectrical activity during rectal distension in dogs. Dig Dis Sci 2000; 45: 1731-1736
48 Lin X, Hayes J, Peters LJ, Chen JD. Entrainment of intestinal slow waves with electrical stimulation using intraluminal electrodes. Ann Biomed Eng 2000; 28: 582-587
49 Lin X, Peters LJ, Hayes J, Chen JD. Entrainment of small intestinal slow waves with electrical stimulation in dogs. Dig Dis Sci 2000; 45: 652-656
50 Abo M, Liang J, Qian L, Chen JD. Distension-induced myoelectrical dysrhythmia and effect of intestinal pacing in dogs. Dig Dis Sci 2000; 45: 129-135
51 Zeng J, Dai X, Yang J. 159 sterility patients of yang-deficiency of spleen and kidney treated by shouwu huanjing capsule. Zhongguo Zhongxiyi Jiehe Zazhi 1998; 18: 477-479
52 Muth ER, Koch KL, Stern RM. Significance of autonomic nervous system activity functional dyspepsia. Dig Dis Sic 2000; 45: 854-863