Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators

Owsianiak, Mikolaj; Brooks, Jennifer; Renz, Michael; Laurent, Alexis

Published in:
Global Change Biology. Bioenergy

Link to article, DOI:
10.1111/gcbb.12484

Publication date:
2018

Document Version
Peer reviewed version

Citation (APA):
Owsianiak, M., Brooks, J., Renz, M., & Laurent, A. (2018). Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators. Global Change Biology. Bioenergy, 10(4), 230-245. DOI: 10.1111/gcbb.12484

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Article type: Original Research

Title: Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators

Running title: Climate change mitigation using hydrochars

Authors: Mikołaj Owsianiak*a, Jennifer Brooksa, Michael Renzb, Alexis Laurenta

a Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, Bygningstorvet, Building 116B, DK-2800 Kgs. Lyngby, Denmark

b Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València- Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain

* corresponding author

tel.: +45 4525 4805
fax.: +45 4593 3435
email: miow@dtu.dk

Keywords: biowaste, climate tipping, GTP, HTC, hydrothermal carbonization, life cycle assessment, waste management

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/gcbb.12484
This article is protected by copyright. All rights reserved.
Abstract

We employed life cycle assessment to evaluate the use of hydrochars, prospective soil conditioners produced from biowaste using hydrothermal carbonization, as an approach to improving agriculture while reusing carbon present in the biowaste. We considered six different crops (barley, wheat, sugar beet, fava bean, onion and lucerne) and two different countries (Spain and Germany), and used three different indicators of climate change: global warming potential (GWP), global temperature change potential (GTP), and climate tipping potential (CTP). We found that although climate change benefits (GWP) from just sequestration and temporary storage of carbon are sufficient to outweigh impacts stemming from hydrochar production and transportation to the field, even greater benefits stem from replacing climate-inefficient biowaste management treatment options, like composting in Spain. By contrast, hydrochar addition to soil is not a good approach to improving agriculture in countries where incineration with energy recovery is the dominant treatment option for biowaste, like in Germany. Relatively small, but statistically significant differences in impact scores were found between crops. Although these conclusions remained the same in our study, potential benefits from replacing composting were smaller in the GTP approach, which due to its long-term perspective gives less weight to short-lived GHGs like methane. Using CTP as indicator we also found that there is a risk of contributing to crossing of a short-term climatic target, the tipping point corresponding to an atmospheric GHG concentration of 450 ppm CO₂ equivalents, unless hydrochar stability in the soil is optimized. Our results highlight the need for considering complementary perspectives that different climate change indicators
offer, and overall provide a foundation for assessing climate change mitigation potential of hydrochars used in agriculture.

Introduction

Hydrochar is a carbonaceous material produced from biomass residues using hydrothermal carbonization, HTC (Berge et al., 2011; Titirici et al., 2014). It is mainly used as solid fuel for domestic heating, but its use in agriculture as soil conditioner with some carbon storage value has recently attracted attention (Reza et al., 2014; Burguete et al., 2016). Hydrochar has similar properties to pyrolytic biochar, although the presence of water and lower process temperature (180-250 °C) (when compared to dry pyrolysis) make hydrochar less stable in the soil compared to pyrolytic biochar. Recent studies investigated various aspects of hydrochar use for crop production, including its influence on seed germination, plant morphology, crop productivity, or nutrient release from the hydrochar to the soil (e.g., Malghani et al., 2014; Reibe et al., 2014; Schimmelpfennig et al., 2015). Because of the yet insufficient amount of data on these aspects, more research was needed to determine effects of hydrochar on crop production and soil processes (Reza et al., 2014).

Assessment of environmental performance of hydrochars, including assessment of their potential contribution to climate change mitigation, can be quantified using life cycle assessment (LCA). In LCA, resource consumption and emissions of pollutants stemming from the extraction of the raw materials (e.g. for HTC plant), their manufacture and use or operations (e.g. for running the plant) up to their end-of-life (e.g. disposal of post-treatment ashes and recycling operations) are inventoried. These life cycle inventories are then translated into impact indicator scores using substance-specific characterization factors for various life cycle impact categories, like climate change (Hauschild, 2005; Hellweg & Mila i...
Canals, 2014). Studies investigating environmental performance of hydrochars using LCA have focused on its use as solid fuel so far (Berge et al., 2015; Benavente et al., 2016; Owsianiak et al., 2016; Liu et al., 2017). These four studies showed how environmental performance of hydrochar used as solid fuel depends on the type of fuel that the hydrochar substitutes and on the incumbent waste management system that HTC replaces.

Global warming potentials (GWP) are usually employed as indicators of climate change in LCA of products and systems (Laurent et al., 2012; Hauschild et al., 2013). In GWP, climate change impacts are expressed in terms of contribution of a GHG to change in radiative forcing (not the actual warming) over a defined time horizon, typically 100 years (Forster & Ramaswamy, 2007). GWP calculated for a 100-year time horizon (referred to as GWP100) is commonly used, standardized approach for assessing climate change impacts in LCA and carbon footprinting (e.g. ISO 14064, ISO 14067) (Laurent & Owsianiak, 2017). In addition to GWP100, the global temperature change potential at 100 years, GTP100, has been proposed (Shine et al., 2007; Levasseur et al., 2017). It uses as an indicator the global average temperature increase of the atmosphere at a future point in time (here, 100 years) that results from the emission (Shine et al., 2007). GTP100 is deemed as the most appropriate indicator to capture climate change impacts from gases with long residence times in the atmosphere, like CO₂. The third complementary indicator of climate change is the climate tipping potential (CTP), developed recently by (Jørgensen et al., 2014a, 2015). The CTP expresses the contribution of a GHG emission to crossing a critical climatic target level (e.g., at 450 ppm CO₂ eq.) and is defined as climate impact relative to remaining capacity of the atmosphere for receiving GHG emissions without exceeding the atmospheric target level.

Compared to GWP100 and GTP100, the CTP is the indicator with the shortest perspective as it addresses impacts occurring within decades, and gives more weight to short-lived GHGs like methane. Because of different perspectives that the three indicators offer, they are
complementary to each other and are considered as different life cycle impact categories in LCA (Jørgensen et al., 2014a; Levasseur et al., 2017). Their use in LCA can potentially offer new insights into the climate change mitigation potential of hydrochars. This has, however, not been studied until now.

The aim of our study is therefore to evaluate the application of hydrochar to agricultural soils as a potential technology for carbon sequestration and temporary storage, using three indicators of climate change (namely: GWP100, GTP100, and CTP), while taking into account uncertainties caused by yet incomplete knowledge about the influence of hydrochar on crop productivity, hydrochar stability in the soils, and emissions of GHGs from the soil as influenced by the hydrochar. Although climate change impacts are the main focus of this paper, we report full life cycle inventory and life cycle impact assessment results presenting impact scores for 17 categories of environmental impacts. We thereby acknowledge that a broad spectrum of potential environmental problems, going beyond just climate change, is relevant for decision-making about hydrochar use in agriculture.

Materials and Methods

In the below, we present the study design and methods used to carry out literature review as basis for defining scenarios and model parameters in our LCA. Details of the LCA methodology are presented thereafter.

Study design

Figure 1 shows major methodological steps. As a starting point, we collected empirical data from a literature review to support defining relevant scenarios and model parameters for the LCA. We systematically reviewed effects of hydrochar on crop productivity, kinetics of evolution of CO₂ derived from mineralization of hydrochar carbon, and effect of hydrochar
on priming of mineralization of native soil organic carbon, CH$_4$ fluxes and N$_2$O fluxes from/into the soil. These reviewed data are used as input for performing inventory modeling and subsequent life cycle impact assessment including quantification of sensitivity and uncertainty. Life cycle impact assessment was done considering all relevant categories of environmental impact, including the three indicators of climate change: global warming, global temperature change, and climate tipping. The results were used to provide recommendations to decision makers about the use of hydrochar in agriculture as a soil conditioner, and recommendations for LCA practitioners and method developers about the application of the three different climate indicators in LCA.

Literature review and data treatment

A comprehensive review of Reza *et al.*, (2014) was taken as starting point to identify papers which might contain relevant data on the effects of hydrochar on crop productivity and soil emissions. To complement their review, additional new data was retrieved from peer-reviewed studies available until March 2017 identified through searching the ISI Web of Knowledge, version 5.7 (Thomson Reuters, New York, NY), using a combination of keywords: (i) soil; and either (a) hydrochar; or (b) hydrothermal. Citation lists of studies that contain potentially relevant data were then consulted to complement the search, and furthermore all retrieved studies were screened in ISI to identify studies which cited them. These steps were iterated until no new studies were found. The data collected in the literature review was critically assessed and used in defining model parameters for modeling life cycle inventories. For this purpose, we quantified medians, geometric means, geometric standard deviations, and ranges of collected values. The collected data are documented and analyzed in detail in the SI, Section S1 (Tables S1-S5). An overview of criteria for inclusion of data into the study is presented below.
Crop productivity. Data on crop productivity were included if two criteria were met: (i) experiments were performed with crops grown in soils (thus, excluding soil-less cultures); and (ii) hydrochar was the sole carbon source (thus, excluding hydrochars mixed with raw feedstock or organic fertilizers like manure). To increase the number of data we had to combine information from experiments performed either with or without addition of inorganic N, P, or K fertilizers. Furthermore we included data from both pot and field experiments. Both plant biomass and grain yield were included as indicators of the effects of hydrochar on crop productivity (Busch et al., 2012; Gajić & Koch, 2012; George et al., 2012; Bargmann et al., 2014a, 2014b, Reibe et al., 2014, 2015; Wagner & Kaupenjohann, 2014).

Mineralization kinetics of hydrochar carbon. Hydrochar contains carbon pools of different stability in soils and the mineralization of hydrochar carbon often follows bi-exponential decay kinetics (e.g. Bai et al., 2013). Thus, data on the content of stable and unstable carbon pools and the respective mineralization kinetic parameters were only included if derived from bi-exponential models. Furthermore, we combined data from studies which quantified amounts of CO₂ using one of the following methods: alkaline solutions used as CO₂ traps combined with titration (Gajić et al., 2012; Qayyum et al., 2012), methods using incubation vessels combined with gas chromatography (Dicke et al., 2014; Schulze et al., 2016), methods using an automated gas analysis systems (Lanza et al., 2015), methods basing on measurements isotope signature of CO₂ (d13C-CO₂) (Naisse et al., 2014; Budai et al., 2016), or methods measuring evolution of 13CO₂ from 13-C labelled carbon (Bai et al., 2013). It was assumed that the evolved CO₂ is solely a result of hydrochar mineralization. We combined data irrespective of duration of the experiment.
Priming effects. To quantify mineralization of native soil organic carbon as influenced by hydrochar (e.g. either positive or negative priming) separately from mineralization of hydrochar C, we used methods based on measurement of isotopic composition of the evolved CO₂ analysis (δ13C analysis (Malghani et al., 2013; Bamminger et al., 2014; Budai et al., 2016). Only isotope-based methods allow distinguishing between CO₂ originating from hydrochar carbon and that from soil organic carbon. We excluded studies which report effects on priming using exogenous carbon sources, like glucose. Again, we combined data irrespective of duration of the experiment.

Emissions of nitrous oxide, methane and ammonia. We combined data from all experiments reporting influence of hydrochar or emissions of N₂O, CH₄ and NH₃, irrespective of experimental techniques used for incubation and measurements, and again, irrespective of the duration of the experiment (Kammann et al., 2012; Malghani et al., 2013; Dicke et al., 2014, 2015; Schimmelpfennig et al., 2014; Subedi et al., 2015).

Fertilizer requirements. Effects of hydrochar on improving soil fertility due to retaining nutrients (Libra et al., 2011; Fang et al., 2015), are difficult, if not impossible, to isolate from other hydrochar-induced effect, for example the improved water retention properties. Thus, this parameter was not quantified, and our assumption about no change in fertilizer requirements tested in sensitivity analysis.

Scenarios and model parameters

Scenarios. An overview of all 36 scenarios is presented in Table 1. Overall, we considered 6 different crops (barley, wheat, sugar beet, fava bean, onion, and lucerne) and two different countries (Spain, Germany). Except onion and fava bean, the crops chosen have been studied
already in a hydrochar context and can be considered as potential crops for hydrochar applications. Spain and Germany were chosen because HTC plants are being developed in these countries (one of the first HTC plants has been erected in Spain) (Hitzl et al., 2015), while European countries like Germany are important potential users of carbonaceous products in Europe (Ruysschaert et al., 2016). Hydrochar-induced emissions of CH₄ and CO₂ into/from the soil (e.g. positive or negative priming of mineralization of native soil organic carbon and methane fluxes) are in current LCA practice not considered man-made and, thus not taken into account, but it could be argued that they are a result of human intervention and thus important for decision making about hydrochar use in agriculture. They were thus also considered in the scenario analysis. In all scenarios we modeled hydrochar production from green waste for full commercial-scale HCT plant configuration with four reactors operating at capacity of 30 tonnes (dry weight) per day), as explained in Owsianiak et al., (2016). Green waste was chosen among other potential feedstock at it is relatively uncontaminated (it has heavy metal content comparable to that of food waste) and is relatively abundant in Europe (Karak et al., 2012).

Model parameters. Based on findings from the literature review we identified model parameters used to construct life cycle inventories (Table 2). Acknowledging that there is large variability and/or uncertainty associated with the estimations of these parameters, we defined baseline parameter values used as default in all scenarios listed in Table 1. We also defined perturbed parameter values representing lower and/or higher ranges of parameters as basis for perturbation analysis carried out to test the influence of a parameter value on the results, and as basis for comprehensive uncertainty analysis. Details of these analyses are presented together with description of LCA methodology in the sections Quantification of sensitivity and Quantification of uncertainty.
Life cycle assessment

The LCA was conducted in accordance with the requirements of the ISO14044 standard and the guidelines of the EU Commission’s ILCD Handbook (ISO, 2006; EC-JRC, 2010)

Functional unit. The primary function of hydrochar in our context is to (temporarily) store carbon when added to agricultural soil. The functional unit, which ensures equivalence between all the compared systems, was therefore defined as “the average application and storage of 1 kg of biogenic HTC carbon to a temperate agricultural soil”. This definition allows for a fair comparison between hydrochars with various stabilities in the soil (e.g. using parameter values reported in Table 2). A secondary function of hydrochar when applied to soil is its (potential) ability to support crop growth, and this property was also investigated by employing parameter values reported in Table 2.

System boundaries of the assessment. Hydrochar application to soil is a prototype technology, while the HTC itself is a relatively immature option for biowaste treatment. Thus, the production and use of hydrochar as soil conditioner are not expected to have large structural changes on the market. Therefore, the current study is considered a micro-level decision support (type-A) situation according to ILCD guidelines, and the assessment applies an attributional approach where average Spanish or German data and energy mixes are used. System boundaries specifying the processes included in the assessment are presented in Fig. 2. Details of the system boundaries with regard to the HTC and the hydrochar are described in Owsianiak et al., (2016). In addition to replaced conventional waste management system (composting or incineration, depending on the country), we also included HTC and production and post-processing of the hydrochar and HTC process water, and transportation of the hydrochar. In cases of processes with recovery of commodities, system expansion was performed, where recycled steel substitutes the production of virgin steel and the HTC process water (concentrated at the HTC plant using reverse osmosis) substitutes the
production of inorganic fertilizers. Likewise, impact offsets (also known as credits) are given to avoided agriculture, and to avoided conventional treatment of biowaste in accordance with the recommendations of the ILCD guidelines for this decision support type.

System modelling. The product systems were modeled in SimaPro, version 8.3.0.0 (PRé Consultants bv, the Netherlands). Data for foreground processes in the HTC system, like types of equipment and material and energy inputs for the plant, are based on primary data measured at a HTC plant at Ingelia S.L. (Valencia region, Spain). Data for generic processes, such as electricity production and waste management processes, are based on those available in the ecoinvent database, version 3.2 (Weidema et al., 2013). Ecoinvent is currently one of the most comprehensive databases of life cycle inventories (i.e. aggregates of resource consumptions and pollutant emissions for specific processes taken in their life cycle perspective). Parameters and data underlying the modeling of HTC plant and post-treatment equipment are documented in Owsianiak et al., (2016) (see Table S3 in their study).

Impact assessment. Environmental impact scores were calculated using the ILCD method for life cycle impact assessment (ILCD 2011 Midpoint+, version 1.05) (Hauschild et al., 2013), as implemented in the LCA modelling software SimaPro, version 8.3.0.0 (PRé Consultants bv, the Netherlands). Apart from ionizing radiation impacts on ecosystems considered not sufficiently representative for this type of impact, all ILCD impact categories were considered: global warming using GWP100 of IPCC (2013), stratospheric ozone depletion, photochemical ozone formation, terrestrial acidification, terrestrial, freshwater and marine eutrophication, toxicity of released chemicals on freshwater ecosystems (termed “freshwater ecotoxicity” in the following) and on human health (termed “human toxicity”, differentiated between cancer and non-cancer effects), particulate matter formation, impacts of radioactive substance on human health (termed “ionizing radiation”), land use, water use, and mineral, metal and fossil resource depletion (Hauschild et al., 2013).
In addition to the use of GWP100, which is the default metric used in the ILCD life cycle impact assessment method, we use two complementary metrics, namely the global temperature change potential (GTP100) and climate tipping potential (CTP). These indicators were chosen among other indicators as: (i) they are relevant to hydrochar systems (due to specific kinetics of CO$_2$ emissions from the hydrochar); (ii) can be used by LCA practitioners with relatively small effort (Levasseur et al., 2017); and (iii) represent wide range of different climate impacts. Other indicators could also be considered (e.g. Levasseur et al., 2010), or existing indicators could be further improved (e.g. to account for dynamics of biomass regrowth; Guest et al., 2013; Cherubini et al., 2016), but their implementation was out of scope of this study. The three chosen indicators have different time perspectives and therefore represent different categories of impacts: from very short, nearly immediate perspective representing impacts stemming from the crossing of climatic tipping points (CTP), through longer but still relatively short/medium term perspective for impacts stemming from increase in radiative forcing over the time horizon of 100 years (GWP100), to long-term impacts associated with increasing in mean surface temperature in 100 years (GTP100). Thus, the results are reported in parallel to the other 14 ILCD impact categories. Major features of the three climate change indicators are synthesized in Table 3. List of all LCIA methods with references is presented in the SI, Section S2.

Quantification of sensitivity

Scenario analysis. Sensitivity of the results to discrete parameters (e.g. crop type, geographic location, and accounting of CO$_2$ and methane emissions) presented in Table 1 was conducted by simply comparing impact scores, without any internal normalization.

Perturbation analysis. For continuous parameters presented in Table 2, sensitivity of impact scores was quantified using perturbation analysis, by varying an input parameter and

This article is protected by copyright. All rights reserved.
observing the resulting change in impact score relative to the result using the nonperturbed input parameter (ref). Sensitivity of impact scores was quantified by computing normalized sensitivity coefficients (eq 1), as done in e.g., Ryberg et al., (2015):

$$X_{IS,k} = \frac{\Delta IS / IS}{\Delta a_k / a_k}$$

Eq 1

where $X_{IS,k}$ is the normalized sensitivity coefficient of impact score (IS) for perturbation of continuous parameter k, a_k is the k^{th} parameter value, Δa_k is the perturbation of parameter a_k, IS is the calculated impact score, and ΔIS is the change of the impact score that resulted from the perturbation of parameter a_k. Note, that Δa_k is chosen based on the realistic ranges of parameter values. A parameter is considered important if $X_{IS,k} \geq 0.5$, corresponding to a large sensitivity (Cohen et al., 2013).

Quantification of uncertainty

We considered uncertainties in the parameters which were found important in the perturbation analysis (that is, $X_{IS,k} \geq 0.5$), namely mineralization rate constants and crop yield. They were assigned geometric standard deviations based on the distribution of measured values retrieved in the literature review, following the method presented in Huijbregts et al., (2003) (SI, Section S4). Uncertainties in the life cycle inventories for the foreground processes (e.g. in material inputs or emissions) were estimated using the Pedigree matrix approach (Ciroth, 2013), as done in Owsianiak et al., (2016), whereas uncertainties in the background processes were based on geometric standard deviations already assigned to flows in the ecoinvent processes that were used to create the background system. Monte Carlo simulations (1000 iterations) were carried out for pairwise comparison between the baseline scenario and other scenarios listed in Table 1 while keeping track of the correlations between
the two systems. Comparisons were considered statistically significant if at least 95% of all 1000 Monte Carlo runs were favorable for one scenario.

Results

Data collected from the literature review are reported in the SI, Section S1. Life cycle inventories are reported in Section S3. Below, we present an overview of life cycle impact assessment results across all scenarios show results for selected scenarios and impact categories. Results for all scenarios and all impact categories are documented in the Section S5.

Table 4 shows results in category-specific units across all 17 impact categories computed for the scenarios of barley agriculture in either Spain or Germany (scenarios 1 and 7 in Table 1, respectively). Fig. 3 shows results for the three indicators of climate change for nine scenarios testing the influence of the type of crop in either Spain or Germany (scenarios 1-12). Overall, four main trends can be observed. First, using hydrochar in agriculture may bring environmental benefits, depending on the impact category. In the baseline scenario of barley agriculture in Spain, environmental benefits are seen in 6 out of 18 impact categories, including climate change (GWP100) and climate tipping, but not global temperature change (GTP100). Second, impact scores are generally higher for Germany as compared to Spain. For barley, statistically significant differences between Spain and Germany were found in 9 impact categories, and Germany performed worse in all categories except freshwater eutrophication (see Tables S12, SI Section S5). Third, although differences in impact scores between crops might appear relatively small, we found statistically significant differences in the majority of impact categories (Tables S13-S14 in the SI, Section S5). The fourth main observation is the important contribution from emissions of methane and CO₂ from
mineralization of native organic carbon if these GHGs are accounted for, with much larger contribution from methane than that of CO₂ (Fig. S3, SI Section S5).

Overall, our results suggest that: (i) hydrochar production and use in agriculture can bring environmental benefits, depending on the country of hydrochar production and use, and category of impact considered; (ii) consideration on the influence of hydrochar on emissions of methane and CO₂ from mineralization of native soil organic carbon is important; and (iii) different indicators of climate change provide compounding insights with regard to climate change mitigation potential of hydrochars.

Discussion

In the below, we explain results and evaluate of hydrochar as a potential carbon sequestration and storage technology. Implications for decision makers, LCA practitioners, and method developers are presented thereafter.

Insights from the three indicators of climate change

To explain differences between countries, a process contribution analysis, that is, identifying processes with the largest environmental burden, was conducted for the scenarios with barley agriculture in Spain and Germany (Scenarios 1 and 7 in Table 1), complementing overall results presented in Table 4 and Fig. 3. As each indicator sheds light on a specific aspect of climate change impacts, results are interpreted per indicator. They are presented in Fig. 4.

Global warming. The process contribution analysis shows that climate change benefits from carbon sequestration and temporary storage, as quantified using the GWP100 approach, are
the same in the two countries (Fig. 4a). Thus, the difference in impact scores between Spain and Germany originates from different processes, in particular the waste management system that is replaced by HTC when green waste is treated hydrothermally. In Spain, HTC replaces composting with fertilizer recovery. Although there are some benefits from using compost as fertilizer (resulting in avoiding production of inorganic fertilizer), overall composting is not beneficial from the global warming perspective due to emissions of methane. Thus, replacing composting with HTC brings benefits to the hydrochar system. Figure 4a shows that these benefits are twice higher than benefits from carbon sequestration and temporary storage in hydrochar (0.3 kg CO$_2$ eq.), and are higher than burdens stemming from transportation of the biowaste (0.2 kg CO$_2$ eq), hydrochar production (0.3 kg CO$_2$ eq), and its application to soil by ploughing (0.05 kg CO$_2$ eq.). By contrast, replacing biowaste incineration with recovery of heat and electricity as primarily done in Germany, does not bring climate benefits to the hydrochar system because the recovery of energy at the incinerator itself avoids emissions of fossil CO$_2$ which is an important contributor to global warming impacts from electricity and heat production in Germany. Although potential environmental benefits from carbon sequestration and temporary storage are not sufficient to outweigh climate burdens in this country, the reader should note that this rebound effect might not occur in countries with a cleaner grid mix.

Global temperature change. Assessment of climate change mitigation potential of hydrochar using GTP100 as an indicator generally shows no mitigation from using hydrochar in agriculture irrespective of the country, except for onion agriculture in Spain where negative scores are calculated (Fig. 4b). Process contribution analysis revealed that this is due to disregarding potential contribution from temporary carbon storage, currently not considered in the GTP100 approach. Potential benefits from replacing composting are smaller than in the
GWP100 approach because GTP for methane is only 11 time larger than that of CO₂ (as compared to its GWP100 equal to 25 kg CO₂ eq.). Indeed, with its long-term perspective, GTP100 gives less weight to short-lived GHGs like methane and this influences the comparison in our case study. Omission of several chlorinated and/or fluorinated methanes and ethanes from our assessment due to missing GTP100 is not expected to influence our conclusions, because their contribution to climate change impacts in the GWP100 approach is very small (ca. 1%), and because they are not important GHGs in a biowaste treatment context.

Climate tipping. Climate tipping impact scores are negative, and equal to -0.5 and -0.2 ppt_{re} for Spain and Germany, respectively. Process contribution analysis revealed that these negative scores are, again, mainly due to replaced composting of biowaste in Spain (Fig. 4 c). These benefits are larger (relative to contribution from other processes) than in the GWP100 approach, however, because climate tipping potential of methane (for an emission occurring in 2017) is 85 times larger than that of CO₂. In the CTP approach, which has the shortest perspective of the three indicators, more weight is given to short-lived GHG like methane. There are also climate tipping benefits from avoided incineration calculated in Germany, which is mainly due to emissions of biogenic CO₂ when biowaste is incinerated. This is different from the GWP100 approach, where neutrality of biogenic carbon sequestered and immediately emitted is assumed, and is different from the GTP100 approach where biogenic CO₂ is not accounted for (as no recommendations exist yet about it; Levasseur et al., 2017). Although sequestration and temporary storage of carbon is included in the CTP approach, climate tipping benefits are only when carbon is stored (sufficiently long), which is not the case for incineration of biowaste where no storage occurs. Temporary carbon storage does occur in case of hydrochar added to soil, but impacts stemming from
hydrochar application to soils due to emissions of biogenic CO$_2$ as hydrochar mineralizes over time are larger than benefits from temporary carbon storage because large part of biogenic CO$_2$ will be emitted shortly before the climatic tipping point, where CTPs are the largest, resulting in climate impact rather than mitigation. Only a small part of hydrochar carbon is stored beyond the target time.

When does hydrochar bring environmental benefits?

Perturbation analysis for parameters presented in Table 2 identified inherent stability of the hydrochar in the soil (that is, mineralization rate constant for the recalcitrant carbon pool) and crop yield as the most influential parameters on environmental performance of hydrochar (see Table S15 of the SI, Section S5). Uncertainty of these parameters was considered in our analysis. Yet, it could be argued that as experience with using hydrochar in agriculture grows and technology matures, both hydrochar stability and crop yield will be optimized. This will reduce the uncertainty while potentially increasing climate change mitigation potential of hydrochar. Increasing yields may also increase other life cycle impacts, beyond climate change. It is therefore useful to investigate whether there are conditions where hydrochar could bring enough benefits to outweigh all the burdens in locations where its use is not yet beneficial, like Germany, or to what extent it can increase climate benefits in locations like Spain.

An important parameter potentially contributing to climate change mitigation is the inherent stability of hydrochar in the soil. The influence of hydrochar stability on short/medium term climate change (GWP100 approach) is illustrated in Fig. 5 a. It shows how changes in contribution from temporary carbon storage to global warming (in terms of contribution to radiative forcing) over the time horizon of 100 years increase with an increase in hydrochar stability. When stability increased, corresponding to mineralization half-life
equal to ca. 15 years (against ca. 5 years as default), benefits from temporary carbon storage are roughly tripled. This increase might seem significant, but it was not sufficient to outweigh global warming impacts stemming from other life cycle processes in Germany. The increase was not that important in Spain where climate benefits (GWP100) were always larger than burdens irrespective of the hydrochar stability in the soil (see Section S5, Table S17). This shows relatively small influence of hydrochar stability on short/medium term climate change in these two countries. Figure 5 b shows the influence of hydrochar stability on climate tipping impacts, which, contrary to the GWP100 approach, is the smallest for least stable hydrochar while differences between the most stable hydrochar and the hydrochars with default stability (equal to median across measured values) are very small. This pattern was not unexpected considering timing of CO₂ emissions and magnitude of climate tipping potentials. The contribution to climate tipping impact is initially smaller for the most stable hydrochar, consistently with the GWP100 approach, because both emissions are relatively small and CTPs are relatively small. Yet, this contribution increases rapidly toward year 2032 because large part of emissions will occur shortly before year 2032, where CTPs are the largest. This explains why contribution to climate change mitigation is largest for the least stable hydrochar despite the fact that most emissions occur shortly (within 2 years) after storage time. These impacts are overall larger than some benefits from temporary carbon storage beyond year 2032. Thus, although from the very short term perspective the use of least stable hydrochar in Germany appear most beneficial, it does come at the expense of increasing short-medium term impact (see Section S5, Table S17. Least-stable hydrochar could be a climate-sound option for use in Spain, as it reduces very short term climate (tipping) impacts, without considerably worsening short/medium term climate impacts (see Section S5, Table S16). Long-term perspective offered by the GTP indicator in its current form is not affected by stability of hydrochar.
The second important parameter is the influence of hydrochar on crop productivity. When this parameter was equal to 105% of control (default value), the lowest impact scores were consistently calculated for onion in both countries, while the highest were for fava bean in Spain and lucerne in Germany (Fig. 3). Although increasing yield to 178% of control, which is in higher range of measured values, increases climate benefits (GWP100) by a factor of 5 to 6 in Germany, these benefits do not outweigh burden as contribution of agriculture to total climate benefits is relatively small. Global warming impacts remain positive for all crops, except onion (see Table S19, Section S5), and the same trend was observed for the GTP100 approach. Relatively large impacts per tonne of onion produced, combined with relatively large inherent yields per hectare in Germany (40 tonnes per ha) result in overall large benefits when productivity increases. Overall, out of all 17 categories of impact considered, the impact scores are negative in 2 (lucerne), 3 (fava bean), 5 (barley, wheat and sugar beet), and 11 (onion) impact categories when yield is equal to 178% of control in Germany (as compared with impact scores being negative in 1 impact category in the scenario with the default value of 105%) (Tables S19). In Spain, where inherent yields are lower, increasing crop productivity in Spain to 178% of system without hydrochar addition would result in scores being negative in 8 (barley, wheat), 7 (sugar beet, fava bean, lucerne), and 10 (onion) impact categories (as compared to 5-7 impact categories when default value was used) (Table S19, Section S5).

Implications for implementation of the technology at field scale

This first life cycle-based evaluation of hydrochar as a potential carbon sequestration and temporary storage technology when used as soil conditioner highlights the key parameters which should be considered when making decisions about potential implementation of the technology at field scale.
We showed that although benefits from temporary storage of carbon are not negligible, they are relatively modest compared to impacts and benefits from replacing inefficient waste treatment options, like composting. Thus, climate change mitigation potential of hydrochars is mainly from replacing climate-inefficient waste management system. Carbon storage benefits from HTC can be either reinforced or counterbalanced by the type of waste management systems that it substitutes. Although the importance of a replaced waste management system has been shown in our earlier study on hydrochar used as solid fuel, here we show that it becomes even more important when hydrochar is used as soil conditioner because there are no benefits from substituting energy sources (Owsianiak et al. 2016). Since solid waste management systems are site- and country-specific, the overall performance of hydrochar systems will be case-specific. Thus, decision makers should carefully consider geographic location of hydrochar production and use, with focus on consideration of conventional biowaste management system within that location that the hydrothermal treatment replaces. Life cycle inventories described in the SI, Section S3, can be readily adapted to determine whether hydrochar production and use in agriculture in other geographic locations is valuable.

When the technology is implemented at field scale, focus will naturally be on ensuring that hydrochar increases crop productivity (for example, through hydrochar washing to remove potentially toxic compounds). We showed that this parameter influences other types of impacts, not just climate change. Thus, all categories of impacts should be considered when supporting decisions about hydrochar use as soil conditioner. Decision makers should also note that although from the climate change perspective increasing yields might not always be sufficient to bring climate change mitigation, there will be environmental benefits in other impact categories, like terrestrial eutrophication and land use. This highlights the potential of hydrochar when its influence on crop productivity is optimized. Crop
productivity will determine the cost and benefits of the technology and, ultimately, its practical implementation, and we showed that it is an important parameter to consider also from the environmental perspective.

Finally, although from a climate-change mitigation perspective the choice of crop was found to be of relatively small importance, results presented in Section S5 of the SI and discussed in the previous paragraph clearly show that the response of hydrochar systems to this parameter is crop-specific. Hydrochar performs best for crops with inherently high yields per hectare (like onion), where benefits from increased productivity are the largest. It also performs well for crops which require relatively large inputs of fertilizer, like cereal crops, despite relatively low yields. By contrast, hydrochar is not expected to perform well for crops with low yields like fava bean or for crops which do not require fertilizer inputs like lucerne. Our results for the scenario with lucerne also suggests that using hydrochar for just temporary carbon storage, e.g. in areas where production of crops is not an important contributor to impact, like grass grown in grazing land, would not be a good idea from an life cycle perspective as benefits will not outweigh impacts even when high increases in productivity are foreseen.

Recommendations to life cycle assessment practitioners and method developers

Using three different indicators of climate change might seem challenging to LCA practitioners who need to calculate impact scores and interpret results. We stress, however, that the three indicators are not alternatives to each other. On the contrary, they complement each other by offering different perspectives to quantifying climate change performance of a product or system. Our case study of hydrochar used as solid conditioner displayed this. Replacing composting with impacts driven by CH$_4$ emissions show different trends between the short/medium-term perspective offered by the GWP100, where benefits due to CH$_4$
avoidance outweighing impacts from CO₂ emissions, and long-term perspective offered by the GTP100 where the opposite was the case. Replacing incineration shows generally no benefits in either short/medium- and long-term perspectives because of the rebound effect on relatively dirty grid mix. Further, climate benefits from temporary storage of carbon also differ between indicators, indicating that there climate change mitigation is more consistently and thoroughly investigated when indicators offering different perspectives are employed. As the perspective can influence the assessment, we thus recommend practitioners quantifying climate change mitigation potential of products which release carbon temporarily, like hydrochars do, using different set of indicators chosen based on their relevance to the studied system. For hydrochar systems, we recommend LCA practitioners using global warming potentials (GWP100) and climate tipping potentials (CTP), both with credits given to temporary carbon storage, as these are particularly relevant to hydrochars which degrade relatively quickly in soils. The use of global temperature change potential indicators (GTP100) is also advocated as it focuses on long-term climate impacts, but it should be used and interpreted with caution when used for systems with temporary carbon as currently this indicator does not allow handling temporary carbon storage. For developers of impact assessment methods, the priority for method developers should be the harmonization of the three indicators used in this study in terms of substance coverage, and proposing recommendations about considering of temporary carbon storage in the GTP approach as recently was tested by others (Cherubini et al., 2016).

Acknowledgements

M.O. and M.R. acknowledge the financial support of the European Commission under the Climate-KIC programme; CHARM. A.L. acknowledges financial support of
Accepted Article

European Commission under the seventh framework program; SME-2013-2:
NEWAPP, grant agreement 605178.

References

Bai M, Wilske B, Buegger F et al. (2013) Degradation kinetics of biochar from pyrolysis and hydrothermal carbonization in temperate soils. *Plant and Soil*, **372**, 375–387.

Bamminger C, Marschner B, Jüschke E (2014) An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils. *European Journal of Soil Science*, **65**, 72–82.

Bargmann I, Rillig MC, Kruse A, Greef JM, Kücke M (2014a) Initial and subsequent effects of hydrochar amendment on germination and nitrogen uptake of spring barley. *Journal of Plant Nutrition and Soil Science*, **177**, 68–74.

Bargmann I, Rillig MC, Kruse A, Greef JM, Kücke M (2014b) Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. *Journal of Plant Nutrition and Soil Science*, **177**, 48–58.

Benavente V, Fullana A, Berge ND (2016) Life cycle analysis of hydrothermal carbonization of olive mill waste: Comparison with current management approaches. *Journal of Cleaner Production*, **142**.

Berge ND, Ro KS, Mao J, Flora JR V, Chappell M a, Bae S (2011) Hydrothermal carbonization of municipal waste streams. *Environmental science & technology*, **45**, 5696–703.

Berge ND, Li L, Flora JRV, Ro KS (2015) Assessing the environmental impact of energy
production from hydrochar generated via hydrothermal carbonization of food wastes.

Waste Management, 43, 203–217.

Budai A, Rasse DP, Lagomarsino A, Lerch TZ, Paruch L (2016) Biochar persistence, priming and microbial responses to pyrolysis temperature series. *Biology and Fertility of Soils, 52,* 749–761.

Burguete P, Corma A, Hitzl M, Modrego R, Ponce E, Renz M (2016) Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization. *Green Chem., 18,* 1051–1060.

Busch D, Kammann C, Grünhage L, Müller C (2012) Simple Biototoxicity Tests for Evaluation of Carbonaceous Soil Additives: Establishment and Reproducibility of Four Test Procedures. *Journal of Environment Quality, 41,* 1023.

Cherubini F, Huijbregts MAJ, Kindermann G, Van Zelm R, Van Der Velde M, Stadler K, Strømman AH (2016) Global spatially explicit CO2 emission metrics for forest bioenergy. *Scientific reports, 6,* 1–12.

Christensen TH, Gentil E, Boldrin A, Larsen AW, Weidema BP, Hauschild M (2009) C balance, carbon dioxide emissions and global warming potentials in LCA-modelling of waste management systems. *Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 27,* 707–15.

Ciroth A (2013) Refining the pedigree matrix approach in ecoinvent: Towards empirical uncertainty factors. *LCA Discussion Forum.*

Cohen J, Cohen P, West SG, Aiken LS (2013) *Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences.* Taylor & Francis.
Commission E (2010) ILCD Handbook: General guide for Life Cycle Assessment - Detailed guidance.

Dicke C, Lanza G, Mumme J, Ellerbrock R, Kern J (2014) Effect of Hydrothermally Carbonized Char Application on Trace Gas Emissions from Two Sandy Soil Horizons. *Journal of Environment Quality*, **43**, 1790.

Dicke C, Andert J, Ammon C, Kern J, Meyer-Aurich A, Kaupenjohann M (2015) Effects of different biochars and digestate on N2O fluxes under field conditions. *Science of The Total Environment*, **524–525**, 310–318.

Fang J, Gao B, Chen J, Zimmerman AR (2015) Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. *Chemical Engineering Journal*, **267**, 253–259.

Forster P, Ramaswamy V (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In: *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*.

Gajić A, Koch H-J (2012) Sugar Beet (L.) Growth Reduction Caused by Hydrochar Is Related to Nitrogen Supply. *Journal of Environment Quality*, **41**, 1067.

Gajić A, Ramke HG, Hendricks A, Koch HJ (2012) Microcosm study on the decomposability of hydrochars in a Cambisol. *Biomass and Bioenergy*, **7**.

George C, Wagner M, Kücke M, Rillig MC (2012) Divergent consequences of hydrochar in the plant-soil system: Arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. *Applied Soil Ecology*, **59**, 68–72.

This article is protected by copyright. All rights reserved.
Guest G, Bright RM, Cherubini F, Strømman AH (2013) Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems. *Environmental Impact Assessment Review*, **43**, 21–30.

Hauschild MZ (2005) Assessing environmental impacts in a life-cycle perspective. *Environmental Science & Technology*, **39**, 81A–88A.

Hauschild MZ, Goedkoop M, Guinee J et al. (2013) Identifying best existing practice for characterization modeling in life cycle impact assessment. *International Journal of Life Cycle Assessment*, **18**, 683–697.

Hellweg S, Mila i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. *Science*, **344**, 1109–1113.

Hitzl M, Corma A, Pomares F, Renz M (2015) The Hydrothermal Carbonization (HTC) plant as a decentral biorefinery for wet biomass. *Catalysis Today*, 154–159.

Huijbregts MAJ, Gilijamse W, Ragas AMJ, Reijnders L (2003) Evaluating Uncertainty in Environmental Life-Cycle Assessment. A Case Study Comparing Two Insulation Options for a Dutch One-Family Dwelling. *Environmental Science & Technology*, **37**, 2600–2608.

ISO (2006) ISO 14044:2006 Environmental management—life cycle assessment—requirements and guidelines. International Standards Organization.

Jørgensen S V., Hauschild MZ, Nielsen PH (2014a) Assessment of urgent impacts of greenhouse gas emissions—the climate tipping potential (CTP). *The International Journal of Life Cycle Assessment*, **19**, 919–930.

Jørgensen S V., Cherubini F, Michelsen O (2014b) Biogenic CO2 fluxes, changes in surface
albedo and biodiversity impacts from establishment of a miscanthus plantation. *Journal of Environmental Management, 146*, 346–354.

Jørgensen S V., Hauschild MZ, Nielsen PH (2015) The potential contribution to climate change mitigation from temporary carbon storage in biomaterials. *The International Journal of Life Cycle Assessment, 20*, 451–462.

Kammann C, Ratering S, Eckhard C, Müller C (2012) Biochar and Hydrochar Effects on Greenhouse Gas (Carbon Dioxide, Nitrous Oxide, and Methane) Fluxes from Soils. *Journal of Environment Quality, 41*, 1052.

Karak T, Bhagat RM, Bhattacharyya P (2012) Municipal Solid Waste Generation, Composition, and Management: The World Scenario. *Critical Reviews in Environmental Science and Technology, 42*, 1509–1630.

Lanza G, Wirth S, Gessler A, Kern J (2015) Short-Term Response of Soil Respiration to Addition of Chars: Impact of Fermentation Post-Processing and Mineral Nitrogen. *Pedosphere, 25*, 761–769.

Laurent A, Owsianiak M (2017) Potentials and limitations of footprints for gauging environmental sustainability. *Current Opinion in Environmental Sustainability, 25*, 20–27.

Laurent A, Olsen SI, Hauschild MZ (2012) Limitations of Carbon Footprint as Indicator of Environmental Sustainability. *Environmental Science & Technology, 46*, 4100–4108.

Levasseur A, Lesage P, Margni M, Deschênes L, Samson R (2010) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. *Environmental science & technology, 44*, 3169–74.
Levasseur A, De Schryver A, Hauschild MZ, Kabe Y, Sahoune A, Tanaka K, Cherubini F (2017) Greenhouse gas emissions and climate change impacts. In: Global Guidance for Life Cycle Impact Assessment Indicators - Volume 1. (eds Frischknecht R, Jolliet O). UNEP/SETAC Life Cycle Initiative.

Libra J a, Ro KS, Kammann C et al. (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2, 71–106.

Liu X, Kent Hoekman S, Farthing W, Felix L (2017) TC2015: Life Cycle Analysis of Co-Formed Coal Fines and Hydrochar Produced in Twin-Screw Extruder (TSE). Environmental Progress and Sustainable Energy, 36, 668–676.

Malghani S, Gleixner G, Trumbore SE (2013) Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biology and Biochemistry, 62, 137–146.

Malghani S, Jüschke E, Baumert J, Thuille A, Antonietti M, Trumbore S, Gleixner G (2014) Carbon sequestration potential of hydrothermal carbonization char (hydrochar) in two contrasting soils; results of a 1-year field study. Biology and Fertility of Soils, 51, 123–134.

Naisse C, Girardin C, Lefevre R, Pozzi A, Maas R, Stark A, Rumpel C (2014) Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil. GCB Bioenergy, 488–496.

Owsianiak M, Ryberg MW, Renz M, Hitzl M, Hauschild MZ (2016) Environmental performance of hydrothermal carbonization of four wet biomass waste streams at industry-relevant scales. ACS Sustainable Chemistry & Engineering, 4, 6783–6791.
Qayyum MF, Steffens D, Reisenauer HP, Schubert S (2012) Kinetics of Carbon Mineralization of Biochars Compared with Wheat Straw in Three Soils. *Journal of Environment Quality*, **41**, 1210.

Reibe K, Götz K-P, Döring TF, Roß C-L, Ellmer F (2014) Impact of hydro-/biochars on root morphology of spring wheat. *Archives of Agronomy and Soil Science*, **61**, 1041–1054.

Reibe K, Roß C-L, Ellmer F (2015) Hydro-/Biochar application to sandy soils: impact on yield components and nutrients of spring wheat in pots. *Archives of Agronomy and Soil Science*, **61**, 1055–1060.

Reza MT, Andert J, Wirth B, Busch D, Pielert J, Lynam JG, Mumme J (2014) Hydrothermal Carbonization of Biomass for Energy and Crop Production. *Applied Bioenergy*, **1**, 11–29.

Ruysschaert G, Nelissen V, Postma R et al. (2016) Field applications of pure biochar in the North Sea region and across Europe. In: *Biochar in European Soils and Agriculture* (eds Shackley S, Ruysschaert G, Zwart K, Glaser B), pp. 99–135. Routledge.

Ryberg MW, Owsianiak M, Laurent A, Hauschild MZ (2015) Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning? *Energy & Environmental Science*, 2435–2447.

Schimmelpfennig S, Müller C, Grünhage L, Koch C, Kammann C (2014) Biochar, hydrochar and uncarbonized feedstock application to permanent grassland-Effects on greenhouse gas emissions and plant growth. *Agriculture, Ecosystems and Environment*, **191**, 39–52.

Schimmelpfennig S, Kammann C, Moser G, Grünhage L, Müller C (2015) Changes in macro- and micronutrient contents of grasses and forbs following Miscanthus x giganteus feedstock, hydrochar and biochar application to temperate grassland. *Grass*
Schulze M, Mumme J, Funke A, Kern J (2016) Effects of selected process conditions on the stability of hydrochar in low-carbon sandy soil. *Geoderma, 267*, 137–145.

Shine KP, Berntsen TK, Fuglestvedt JS, Skeie RB, Stuber N (2007) Comparing the climate effect of emissions of short- and long-lived climate agents. *Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 365*, 1903–1914.

Subedi R, Kammann C, Pelissetti S, Taupe N, Bertora C, Monaco S, Grignani C (2015) Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? *European Journal of Soil Science, 66*, 1044–1053.

Titirici M-M, White RJ, Brun N et al. (2014) Sustainable carbon materials. *Chemical Society reviews, 44*, 250–290.

Wagner a., Kaupenjohann M (2014) Suitability of biochars (pyro- and hydrochars) for metal immobilization on former sewage-field soils. *European Journal of Soil Science, 65*, 139–148.

Weidema BP, Bauer C, Hischier R et al. (2013) *Data quality guidelines for the ecoinvent database version 3: Overview and methodology (final)*, Vol. 10.
Tables

Table 1. Overview of scenarios in the scenario analysis. Section S3 of the SI presents details of the accounting of hydrochar induced CO\textsubscript{2} and CH\textsubscript{4} emissions.

No.	Sensitivity parameter	Country	Crop type	Priming effect	Methane emissions
1	Baseline	ES	barley	not considered	not considered
2-6	Crop type	ES	wheat, sugar beet, fava bean, onion, lucerne	not considered	not considered
7-12	Geographic location of hydrochar production and use	DE	barley, wheat, sugar beet, fava bean, onion, lucerne	not considered	not considered
13-24	Accounting for hydrochar-induced CO\textsubscript{2} emissions from mineralization of native soil organic carbon (positive priming effect)	DE, ES	barley, wheat, sugar beet, fava bean, onion, lucerne	considered (137 % of system without hydrochar)	not considered
25-36	Accounting for hydrochar-induced methane emissions	DE, ES	barley, wheat, sugar beet, fava bean, onion, lucerne	not considered	considered (418 % of system without hydrochar)
Table 2. Model parameters for processes associated with hydrochar application to agricultural soils considered in the LCA model. All values are based on measured values retrieved from literature review (see SI, Section S1). Parameters referred to as default apply to all scenarios listed in Table 1. Perturbation analysis was carried out to test the influence of a parameter value on the results for selected scenarios.

Parameter	Parameter values	Unit	Description
Application rate	5000	kgC/ha	Application rate corresponds to that of 0.6% w/w content of hydrochar incorporated into 15 cm soil depth, and is based on values used in pot experiments. This value is in lower range of values usually tested experimentally in (where up to 10% w/w is used), and is expected to be within the range of values that would render field scale application of hydrochar to soil practically feasible. We also considered two additional options: (i) 2500 kgC/ha; and (ii) 10000 kgC/ha. The former corresponds to nearly the smallest value tested experimentally (0.34% w/w), while the latter is expected to be below or close to the values that would be practically feasible in field scale application (ca. 1% w/w) (Gajić & Koch, 2012)
Crop productivity	1053	% of system	Median productivity increase measured for all crops at relatively medium-low (≤ 4% w/w) application rates. We considered three alternative values: (i) 67% of system without hydrochar, being equal to the 5th percentile of values measured for crops at relatively medium-low (again, ≤ 4% w/w) application rates; and (ii) 178% of system without hydrochar, being equal to the 95th percentile of values reported for all crops at medium-low application rates (again, at < 4% w/w).
Median mineralization rate constant for the labile carbon pool measured across hydrochars in soils. Perturbation included: (i) slow mineralization, with the values equal to the 5th percentile of values measured experimentally for hydrochars in soils (0.012 d-1); and (ii) fast mineralization, with the values equal to 95th percentile of values measured experimentally for hydrochars (0.14 d-1)

Median mineralization rate constant for the recalcitrant carbon pool measured across hydrochars in soils. with the value equal to the 5th percentile of values measured experimentally for hydrochars in soils (0.00014 d-1); and (ii) fast mineralization, with the value equal to the 95th percentile of values measured experimentally for hydrochars (0.0014 d-1)

Average (geometric mean) value measured for hydrochars in soils. We also considered: the 95th percentile of emissions measured experimentally equal to 418\% of system without hydrochar. Emissions of N\textsubscript{2}O were scaled to the N fertilizer input. Emissions of NO\textsubscript{x} are linearly related to emissions of N\textsubscript{2}O in ecoinvent processes, and were thus scaled accordingly.

No influence of hydrochar on fertilizer input was assumed in the baseline as number of studies on the effect of hydrochar on N fertilizer inputs is limited and findings rather inconclusive. We also considered one additional alternative: (i) 50\% of system without hydrochar. Hydrochar produced from green waste materials contains relatively large amounts of N (1.7\%, dry weight, ash-free) which might become a nutrient reservoir for plants.
Thus, the 50% of system without hydrochar is deemed to be within range of realistic values. The ecoinvent processes for crop agriculture had to be modified to scale inputs (ammonium nitrate), emissions to air (dinitrogen monoxide, ammonia, nitrogen oxides) and emissions to water (nitrate) to different N fertilizer inputs.

A fraction of the labile pool was assumed equal to 0.034 kgC/kgC, which is an average (geometric mean) value measured across hydrochars. As the fraction of the labile pool was not found to vary largely across various hydrochars (variance equal to 0.006), this value was used consistently. Fraction of the stable pool was calculated as a difference between total carbon pool and the labile pool.
Table 3. Major features of the three indicators of climate change used in this study. List of all 17 LCIA indicators is presented in the SI, Section S2.

Name and reference	Abbreviation and unit of indicator	Definition	Cause-effect description and time horizon (as used in this study)
Global warming potential (Forster & Ramaswamy, 2007)	GWP (e.g. GWP₁₀₀) in kg CO₂ eq./kg	“integrated radiative forcing of a gas between the time of emission and a chosen time horizon, relative to that of CO<sub>2” (Levasseur et al., 2017)	cumulative radiative forcing over 100 years^a
Global temperature change potential (Shine et al., 2007)	GTP (e.g. GTP₁₀₀) in kg CO₂ eq./kg	“global average temperature increase of the atmosphere at a future point in time that results from the emission determined for a specific time horizon divided by the temperature increase caused by an equivalent amount of CO<sub>2” (Levasseur et al., 2017)	instantaneous temperature at 100 years^b
Climate tipping potential (Jørgensen et al., 2014a, 2015)	CTP (e.g. CTP_{RCP6}) in ppt_{rc}/kg (parts per trillion of remaining capacity of the atmosphere to take up emission)	“absolute impact from a marginal GHG emission based on its share of the total impact that can still take place before a predefined target level is reached” (Jørgensen et al., 2014a)	cumulative impact of a GHG emission relative to the atmospheric capacity for taking up GHG emissions before reaching the target level as it depends on the choice of target level (e.g. 450 ppm eq). and the development

^aFor a cumulative radiative forcing over 100 years, the value is calculated as the integral of the radiative forcing over the period of interest, divided by the radiative forcing of a reference gas (e.g., CO₂).

^bInstantaneous temperature at 100 years refers to the global average temperature change at the end of the time period of interest (100 years in this case).
Time perspective of impact assessment	in atmospheric GHG concentration (e.g. in representative concentration pathway RCP6 scenario)
short/medium term climate change (“rate of climate change, impacts related to the adaptation capacity of humans and ecosystems”) (Levasseur et al., 2017)	very short, nearly immediate perspective representing impacts stemming from the crossing of climatic tipping point at given target level (e.g. atmospheric CO$_2$ concentration of 450 ppm eq.)

Dealing with carbon sequestration and biogenic emissions of CO$_2$	CO$_2$ incorporated in biomass and biogenic emissions of CO$_2$ are assigned GWP100 equal to -1 and 1 kg CO$_2$ eq., respectively
	CO$_2$ incorporated in biomass and biogenic emissions of CO$_2$ are disregarded as no recommendations are made about how to deal with biogenic CO$_2$ (Levasseur et al., 2017)
	uptake of CO$_2$ is treated as negative emissions for storage occurring before target time, but biogenic emissions of CO$_2$ are assigned CTP depending of the timing of emission before the target time

Dealing with temporary carbon storage and delayed emissions	delayed CO$_2$ emissions are given credits following the assumption that storing 1 kg CO$_2$ eq. during 100 years compensates a 1 kg CO$_2$-eq emission		
	disregards any benefits from temporary carbon storage and just uses GTP100-values applied to relevant GHG emissions irrespective of when they occur		
	carbon sequestered from the atmosphere and later stored is given credits only when stored sufficiently long beyond target time		
Substance coverage	vast majority of relevant GHGs including chlorofluorocarbons, hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride	major GHGs only, including CO$_2$, CH$_4$, N$_2$O, HCF-134a, CFC-11, PFC-14, and sulfur hexafluoride	three major GHGs only: CO$_2$, CH$_4$, and N$_2$O
--------------------	--	--	--
Stakeholder acceptance and use	widely accepted and used indicator, employed in LCA and carbon footprinting, although there can be differences in approaches to dealing with biogenic carbon and delayed emissions (Christensen et al., 2009; Laurent & Owsianiak, 2017)	recommended by IPCC and LCA community, although not widely used in LCA studies (Levasseur et al., 2017)	relatively new indicator that has not been widely used, except demonstration case studies (Jørgensen et al., 2014b, 2015)

a GWPs for shorter or longer time horizons, like 20 and 500 years can also be calculated

b GTPs for shorter time horizons, like 20 or 50 years can also be calculated

c CTPs for different concentration pathways like the mitigation scenario RCP3PD or high baseline scenario RCP8.5 can also be calculated
Table 4. Characterized impacts and accompanying 95% probability ranges from Monte Carlo simulations, expressed in category-specific units for hydrochar used in barley agriculture in Spain (baseline, Scenario 1 in Table 1) and in Germany (Scenario 7 in Table 1). The probability ranges represent both parameter and inventory uncertainties, as explained in detail in the SI, Section S4. Results for other scenarios are tabulated in the SI, Section S5 (Tables S9 and S10). Statistical comparison between impact scores taking into account correlations is presented in Table S12 of the SI (Section S5).

Impact category	Impact category	Unit	Impact score (95% probability range)			
			Scenario 1 (barley; Spain)	Scenario 7 (barley; Germany)		
Climate change (GWP100)		kg CO2 eq	-1	(-2.9 – 0.038)	0.73	(-1.1 – 1.2)
Climate change, long-term (GTP100)		kg CO2 eq	-0.0013	(-0.56 – 0.53)	1.1	(-0.073 – 1.5)
Climate tipping (RCP6 2017)		ppt_e	-0.01	(-0.032 – 0.0066)	-0.011	(-0.031 – 0.0057)
Ozone depletion		kg CFC-11 eq	1.1E-07	(8.7E-08 – 1.4E-07)	9.8E-07	(7.8E-07 – 1.4E-06)
Photochemical ozone formation		kg NMVOC eq	-4.4E-04	(-1.3E-03 – 1.2E-03)	2.7E-03	(-5.9E-04 – 7.0E-03)
Acidification		molc H+ eq	-0.007	(-0.014 – -0.0042)	0.0069	(0.0032 – 0.013)
Terrestrial eutrophication		molc N eq	-0.046	(-0.075 – -0.034)	0.0049	(-0.009 – 0.025)
Freshwater eutrophication		kg P eq	0.0017	(0.0015 – 0.0025)	0.0022	(-0.00077 – 0.0025)
Marine eutrophication		kg N eq	-0.0015	(-0.0025 – -0.00052)	9.5E-04	(-5.7E-04 – 3.0E-03)
Freshwater ecotoxicity		CTUe	13	(11 – 16)	21	(-40 – 60)
Human toxicity, cancer effects		CTUh	8.3E-08	(6.5E-08 – 1.3E-07)	2.6E-07	(-2.2E-07 – 4.2E-07)
Human toxicity, non-cancer effects		CTUh	2.2E-06	(1.6E-06 – 5.2E-06)	4.7E-06	(-2.1E-05 – 5.1E-05)
Particulate matter		kg PM2.5 eq	7.4E-04	(4.8E-04 – 1.0E-03)	1.4E-03	(1.0E-03 – 3.2E-03)
Figure captions

Fig. 1. Overview of major methodological steps in the study.

Fig. 2. System boundaries for hydrothermal carbonization of biowaste with hydrochar application to an agricultural soil for carbon sequestration and temporary storage. The functional unit is: “the average application and storage of 1 kg of biogenic HTC carbon to a temperate agricultural soil”. Foreground processes refer to those processes which can be structurally changed by the decision maker, like hydrothermal carbonization and soil conditioning. They were constructed based on findings from literature review (for the soil conditioning) combined with unit processes from earlier study by Owsianiak et al., (2016). Processes in the background system can typically not be structurally changed by the decision-maker, and thus were modelled using generic processes from the ecoinvent database, version 3.2 (Weidema et al., 2013).

Fig. 3. Characterized impact scores in category-specific units for three climate change impact categories for hydrochar use in agriculture of either of six crops (barley, wheat, sugar beet, fava bean, onion, and lucerne) in either Spain or Germany (scenarios 1–12 in Table 1). The scores are for the functional unit defined as: “the average application and storage of 1 kg of

Category	Unit	Impact Score	Lower Bound	Upper Bound	
Ionizing radiation, human health	kBq U235 eq	0.14	(0.13 – 0.15)	0.34	(0.16 – 1.6)
Water resource depletion	m3 water eq	-0.055	(-0.12 – -0.011)	-0.028	(-0.22 – 0.14)
Land use	kg C deficit	7.2	(-35 – 72)	2.9	(-82 – 48)
Mineral, fossil & renewable resource depletion	kg Sb eq	8.1E-05	(6.5E-05 – 1.3E-04)	8.6E-05	(5.6E-05 – 1.3E-04)
biogenic HTC carbon to a temperate agricultural soil”. Absolute uncertainties are too large to be shown, but statistical comparison taking into account correlation between uncertainties revealed significant differences between countries and crops (see the SI, Section S5). Results for scenarios considering priming effects and increase in methane emissions (scenarios 13-24 in Table 1) are presented in the SI, Section S5 (Fig. S3).

Fig. 4. Contribution of life cycle processes to total impacts from hydrochar use in agriculture of barley in either Spain (ES) or Germany (DE) (scenarios 1 and 7 in Table 1) presented for three climate change impact categories expressed in category specific units (a: GWP100; b: GTP100; c: CTP).

Fig. 5. Sensitivity of climate change impact scores to mineralization rate constant of the recalcitrant carbon pool in the hydrochar shown for the GPW100 approach expressed in terms of contribution to radiative forcing (a), and for CTP approach expressed in part per trillion of remaining capacity equivalents (b). The overall impacts represent area below the curves. Baseline value and perturbed values correspond to those presented in Table 2. The values just are for 1 kg of C stored and emitted as CO₂, disregarding other life cycle impacts. GTP indicator is not affected by stability of hydrochar and hence is not displayed.

Supporting information

Results of the literature review, details of LCIA methods, data underlying LCA model, unit processes, LCI results, details of uncertainty analysis, and additional LCIA results.

This article is protected by copyright. All rights reserved.
Collection of empirical data from a literature review
(i) crop productivity; (2) mineralization kinetics of hydrochar carbon; (3) priming effects; (4) emissions of N\textsubscript{2}O, CH\textsubscript{4}, and NH\textsubscript{3}; (5) fertilizer requirements

Defining scenarios and model parameters
- **Scenarios**
 (1) six crop types; (2) two countries; (3) occurrence of priming effects; (4) consideration of hydrochar-induced methane emissions
- **Model parameters**
 (1) hydrochar application rate; (2) crop productivity; (3, 4) hydrochar mineralization rate constants for labile and recalcitrant carbon pools; (5) emissions of NO\textsubscript{x} and N\textsubscript{2}O; (6) input of N fertilizer

Life cycle assessment
- **Life cycle inventory modeling**
 - Inventories for the HTC system and background processes from earlier study and database (Owsianiak et al. 2016; ecoinvent v. 3.2)
 - Inventories for processes associated with hydrochar use in agriculture constructed basing on the literature review

Life cycle impact assessment
- 18 impact categories, including 3 impact categories of climate change: global warming (GWP100), global temperature change (GTP100), and climate tipping (CTP)

Sensitivity analysis
- (1) scenario analysis for 36 pre-defined scenarios; and (2) perturbation analysis for 6 model parameters

Uncertainty analysis
- (1) parameters found important in the perturbation analysis; and (2) uncertainties in life cycle inventories

Interpretation of results
- provision of recommendations for (1) decision makers, (2) LCA practitioners, and (3) method developers

This article is protected by copyright. All rights reserved.
