1. Introduction

Unpredictable falls are one of the most significant factors that prevent elderly people from independent daily activities [1]. The incidence rate of falls tends to increase rapidly with age, with a third of elderly people aged 65 and over [2]. The annual direct cost of fall-related workers’ compensation alone is estimated to be about $6 billion in the US [3]. The slip-related falls (SRFs) are found to be involved in 40–50% of fall-related injuries [3]. The prevention of SRFs is an important solution to prolong healthy life expectancy.

The three types of analysis systems have been developed for clarifying the mechanism of SRFs: force plate systems, video analysis, and sensor-embedded shoe systems. Yamaguchi et al. evaluated the mechanism of SRFs in elderly people during turning steps by analysing the required coefficient of friction utilizing force plates and video [4]. In contrast, sensor-embedded shoe systems play an important role to investigate factors of SRFs in various aspect of daily activities. Capacitive, piezoresistive [5], optical [6], micro-electromechanical systems (MEMS)-based [7], and triboelectric [8] sensors are embedded in shoes and insoles. All of these shoes are designed for gait analysis or detecting falls. Few studies have focused on slip detection for preventing from SRFs [9] but the system includes heavy and complex sensor modules.

The slip detection sensors are broadly classified into three categories; vibration sensors, pressure distribution sensors, and incipient slip detection sensors [10]. Among them, an incipient slip detection sensor is a crucial candidate because the sensor prevents the SRFs in advance. Incipient slip is the partial slip phenomenon that occurs before the global slip. Okatani et al. utilized the phenomenon and expand the detection method to measure the static coefficient of friction (SCOF) using MEMS piezoresistive beams [11]. Then, he integrated a triaxial force sensor or a six-axial force/torque sensor into the SCOF sensor and fabricated a multifunctional slip detection sensor [12, 13]. Merely by pressing the sensor against an object, the sensor detects the strain of the elastomer and estimate SCOF.

Here, the peripheral local slips (PLSs) detection via elastic hemisphere (Figure 1) is focused on because of the similarity of incipient slip. When a normal force is applied to the elastic hemisphere from a flat rigid body and the contact area is sufficiently large [14], the difference in SCOF affects the PLSs on the contact area. When the SCOF is larger (smaller), the contact area becomes smaller (larger) by the PLSs, which causes the larger (smaller) the maximum central pressure (P_{MAX}) of the elastic hemisphere. In short, the change of the SCOF is estimated by measuring P_{MAX} in the elastic hemisphere. In this study, we demonstrate that a one-axis force sensor with an elastic hemisphere for measuring P_{MAX} can detect slip in advance. To investigate the design guidelines of the sensor, we experimentally
evaluated the Young's modulus of the elastic hemisphere and the ratio of the hemisphere diameter to the one-axis force sensor diameter. The sensor must be small enough to fit comfortably for users and measured in the response pressure range (from 10 to 175 kPa) of plantar pressure [15].

The structure of this paper is as follows. First, the experimental configuration that measures P_{MAX} and SCOF is described. Then, the relationship between P_{MAX} and total normal force (F_{TOTAL}) is evaluated using two different Young's modulus elastomers. Next, the F_{TOTAL} dependence of P_{MAX} and SCOF is pointed out and the effect of the different interface conditions on the contact pressure is mentioned. Finally, the diameter of the one-axis force sensor (ϕ_s) is compared with the diameter of the elastic hemisphere (ϕ_e), and the limitation of the ϕ_s/ϕ_e ratio is displayed.

2. Experimental configuration

2.1. Fabrication of elastic hemispheres

In order to investigate the effects of several Young's modulus (E) and radius of curvature, elastic hemispheres were fabricated. Ecoflex (Smooth-on, 00-30A, $E = 45 \pm 11$ kPa) and polydimethylsiloxane (PDMS; TORAY, SILPOT 184, Base : catalyst = 10 : 1, $E = 1.6 \pm 0.4$ MPa) solutions were degassed and poured into hemisphere silicone moulds. The diameters ϕ_e were 12, 18, 24, and 30 mm. The moulds were annealed at 70 °C for 2 h and waited for an hour at room temperature. The elastic hemispheres successfully peeled off the moulds.

To measure the surface roughness of the fabricated elastic hemispheres, the arithmetic mean roughness (R_a) of the Ecoflex at 12, 18, and 30 mm was measured using a 3-D laser confocal microscope (Keyence Corp.). The surface profile after the spherical fitting is shown in Figure 2. The R_a of the Ecoflex at 12, 18, 24 and 30 mm is 0.67, 0.42, 0.66 and 0.34 mm, respectively. Smooth surfaces were successfully fabricated.

2.2. Sensor structure

The fabricated elastic hemispheres were attached on an aluminium plate. The plate was connected to a digital force gauge (ZTA-50N, IMADA Co., Ltd.) through the hole drilled with around 6.1 mm at the centre (Figure 3). The ϕ_e was 6.0 mm and aluminium plate and the end of the force gauge were completely flat to attach the elastic hemispheres seamlessly. Instant adhesive and strong double-sided tapes (No.5000NS, Nitto Denko Corp.) were utilized between aluminium plate and hemisphere.

2.3. P_{MAX} measurement setup

A measurement system for the P_{MAX} of the elastic hemisphere has been constructed (Figures 4 (a) and
Figure 3. The lateral view of the proposed sensor structure.

Figure 4. (a) Front view of measurement system, (b) Top view of measurement system. For \(P_{\text{MAX}} \) measurement, the test gauge pushes up the force gauge in the negative \(z \)-axis direction. For the shear force measurement, automatic motor pushes another force gauge in the \(x \)-axis direction, and the force gauge displaces the acrylic plate.

5 (a)). The force gauge attached to the elastic hemisphere was mounted on the vertical motorized test stand (MX2-500N, IMADA Co., Ltd.). Four stainless steel poles were attached to contact vertically between an acrylic plate and the elastic hemisphere. Low friction pillow blocks (MDBAC10, MISUMI Group Inc.) were set in the steel poles to reduce the effect of friction during weight sweeping. Constant weights were utilized to separate the \(F_{\text{TOTAL}} \) from the effect of the interface phenomena. The motorized test stand was operated in the negative \(z \)-axis direction at a speed of 300 mm/min and lifted the weights and objects. After waiting for 30 s, \(P_{\text{MAX}} \) was measured in different weights (5, 10, 15, 20, 25, 35, 45, 55, and 65 N) and different surface conditions; acrylic plate, polyethylene powder (MIPELON, Mitsui Chemicals, Inc.) and silicone oil (KF-961,000CS, Shin-Etsu Chemical Co., Ltd). The powder and oil were applied from below to the acrylic plate in Figure 5(a).

2.4. Shear force measurement setup

In order to measure the SCOF, we also constructed a shear force measurement system (Figures 4(b) and 5(b)). The pillow blocks were mounted horizontally on the stainless steel pole for fixing the acrylic plate. The acrylic plate is pushed by a force gauge fixed horizontally on an \(x \)-axis movable stage. The force gauge is pushed by an automatic motor (KDS100, kd Scientific) in \(x \)-axis direction at a speed of 12 mm/min. In order to investigate the actual \(x \)-axis displacement of the acrylic plate, we confirmed that the plate was displaced at the same speed as the automatic motor by using a video camera.

In order to investigate the SCOF measurement in the constructed system, a preliminary experiment of shear force was carried out using a 30 mm PDMS hemisphere (Figure 6). As soon as shear force was applied, the first peak of the shear force waveform was observed. This is the system-specific SCOF resulting from the movement of the pillow block referred to in Figure 5 (b). As time passes, the shear force reaches a second peak, and oscillatory behaviour occurs. This behaviour is considered to be due to the stick–slip between the elastic hemisphere and the flat plate. The SCOF is calculated as below;

\[
\text{SCOF} = \frac{F_{X-\text{MAX}} - F_{\text{TOTAL}}}{F_{\text{TOTAL}}}
\] (1)

Figure 5. The schematic illustration of measurement systems about (a) \(P_{\text{MAX}} \) and (b) shear force.

Figure 6. The measured shear force of PDMS hemisphere (30 mm) at \(F_{\text{TOTAL}} = 35N \). Since the pillow block has a slight SCOF, the system itself has a system-specific slip phenomenon.
Where F_{X-MAX} is maximum of shear force. Therefore, the F_{X-MAX} cannot be measured unless it is larger than the first peek.

For an investigation of the SCOF of pillow block on the measurement system, we confirmed the system-specific friction without contact with the hemisphere (Figure 7). In this measurement system, SCOF could be detected quantitatively in the range of $SCOF > 0.1$ and $F_{TOTAL} > 7.5 \text{ N}$. Here, SCOF is the average of five times measurements. The different three types of surface states (acrylic plate, polyethylene powder, silicone oil) were also utilized the same as the P_{MAX} measurement.

3. Experimental results and discussion

3.1. The Young’s modulus comparison on P_{MAX} measurement

P_{MAX} of PDMS hemisphere with 30 mm diameter was measured (Figure 8). The reason why the 30 mm is chosen is that the larger diameter means the more sensitive detection of the P_{MAX}. About a tenth of the weight of F_{TOTAL} is applied to P_{MAX}. Despite the three different interface conditions, the behaviour of P_{MAX} did not change and nearly identical outputs were measured. Next, P_{MAX} of Ecoflex hemisphere with 30 mm diameter was measured (Figure 9). A clear difference is detected in P_{MAX} for the three interface conditions when the F_{TOTAL} is more than 7.5 N. Due to the low Young’s modulus of Ecoflex, the contact area of the Ecoflex hemisphere becomes larger than the PDMS hemisphere. As a result, the P_{MAX} of Ecoflex tends to be lower than the P_{MAX} of PDMS.

To compare with the differences in P_{MAX} response between PDMS and Ecoflex, we checked the deformation of them. As shown in the inset of Figure 8, the PDMS hemisphere deforms a little and is hard to detect the PRSs. On the other hand, the inset of Figure 9 shows that the Ecoflex hemisphere deforms more largely than PDMS one. According to Xydas, when the radius of the contact area surpasses half of the radius curvature of the hemisphere, the interface friction affects P_{MAX} [14]. In other words, large deformation makes the proposed sensor more sensitive to different surface situations. These results insist that the P_{MAX} has an important role to estimate the SCOF.

In the next subsection, we quantitatively and qualitatively investigate the relationship between PDMS and Ecoflex by measuring SCOF.

3.2. The experimental validity of SCOF and P_{MAX}

Figure 10 shows the results of SCOF measurements for PDMS and Ecoflex at three different interface conditions. It is difficult to measure the SCOF of the oil quantitatively because the SCOF of the oil is smaller than the measurement-specific SCOF. At all interfaces, the SCOF decreases with increasing weight. This is typical behaviour for soft matter friction, which no longer obeys Amonton’s law [16]. Furthermore, according to Schallamach [16], the frictional force of rubber depends

Figure 7. The SCOF of pillow blocks for the system-specific limitation. Error bar means the s. d. of 5 times measurements. Tinted area is suitable on this measurement.

Figure 8. The measured P_{MAX} of PDMS hemisphere (30 mm diameter). Error bar means the s. d. of 3 times measurements.

Figure 9. The measured P_{MAX} of Ecoflex hemisphere (30 mm diameter). Error bar means the s. d. of 3 times measurements.
on the true area of contact. Therefore, the Ecoflex hemisphere, which causes larger deformation than PDMS, has a larger contact area and a smaller SCOF.

To understand the relationship between SCOF and P_{MAX}, Figure 10 is compared with Figures 8 and 9. There is no change in P_{MAX} in the PDMS hemisphere case despite the difference in interface conditions. On the other hand, larger P_{MAX} was observed at 15 to 35 N for interface conditions with larger SCOF in case of Ecoflex hemisphere. This result implies that the SCOF can be estimated from the positive correlation between SCOF and P_{MAX} if the F_{TOTAL} is obvious. This is a qualitatively reasonable result with the principle of the proposed sensor. For a quantitative evaluation, it is necessary to examine how this positive correlation is calibrated.

If one-axis force sensor is stacked under the proposed sensor, for example, in a two-stage structure, the normal force component can be measured [12]. Since the positive correlation between P_{MAX} and SCOF at each weight is clear in Figure 10, the estimation of SCOF by the proposed sensor is practically feasible.

In the F_{TOTAL} dependency of P_{MAX} and SCOF, problems remain on the calibration and classification tasks. P_{MAX} of the Ecoflex hemisphere is saturated to F_{TOTAL}. Furthermore, as the F_{TOTAL} increases, the absolute differences of the SCOF decrease opposite to those of the P_{MAX}. In other words, linear fitting is not possible at the time of correction. The challenging points are crucial in the interface condition classification task by SCOF. Further analysis the elastic shape is necessary.

3.3. Effects of P_{MAX} on ϕ_{s}/ϕ_{e} ratio

Finally, the limitation of ϕ_{s}/ϕ_{e} ratio was investigated. Using the Ecoflex hemisphere with 12, 18, 24, 30 mm, we measured the P_{MAX} with ϕ_{s}/ϕ_{e} = 1/2, 1/3, 1/4, and 1/5, respectively (ϕ_{s} = 6.0 mm). Figures 11 and 12 show the relative comparison results of acrylic plate, powder, and oil. The normalized P_{MAX} ratio is calculated below equation.

$$P_{\text{MAX ratio}} = \frac{|P_{\text{MAX acrylic}} - P_{\text{MAX i}}|}{(P_{\text{MAX acrylic}} + P_{\text{MAX i}})/2} \times 100 \quad (2)$$

where i indicates powder or oil. For each sensor size, the results are normalized by the P_{MAX} value of the acrylic plate. The horizontal axis is the input pressure ($P_{\text{IN}} = F_{\text{TOTAL}}/A; A$ is a bottom area of each hemisphere).

As the remarkable results, from 70 to 230 kPa, around 5 to 10% of the powder and around 15 to 25% of the oil difference were detected in ϕ_{s}/ϕ_{e} = 1/3 cases. At the same time, the result of ϕ_{s}/ϕ_{e} = 1/2 shows that the difference between powder and acrylic plate cannot be detected. In addition, as the ϕ_{s}/ϕ_{e} ratio decreases, it shows a high change even at low pressure.

These results indicate that the proposed sensor with ϕ_{s}/ϕ_{e} = 1/3 is the most extensive dynamic pressure range from 70 up to 230 kPa. When it comes to comparing with the ϕ_{s}/ϕ_{e} ratio from 1/5 to 1/3, the smaller ϕ_{s}/ϕ_{e} ratio is, the larger rate of P_{MAX} is in the low input pressure. In other words, the sensitivity is improved.
This tendency is reasonable for the proposed principle. If only the pressure around \(P_{\text{MAX}} \) can be measured, it is in principle the most sensitive to changes the SCOF. The sharp decrease in sensitivity when the \(\phi_s/\phi_c \) ratio is 1/2 can be considered to be due to the dominance of pressure changes at the periphery of the contact area.

To the best of the author’s knowledge, the commercially available one-axis force sensor is available within 2.0 mm, so the proposed sensor can theoretically be designed within 10 mm.

4. Conclusion

In this paper, we propose a simple sensor structure that can estimate the SCOF using a one-axis force sensor with the elastic hemisphere. By comparing two silicone rubber with different Young’s modulus, we indicated that the softer material is important for the detection of SCOF because of the larger deformation. We experimentally compared with \(P_{\text{MAX}} \) by \(\phi_s/\phi_c \) ratio. The limitation of the \(\phi_s/\phi_c \) ratio is 1/2 and 1/3, and the best dynamic range is from 70 to 230 kPa when the \(\phi_s/\phi_c = 1/3 \) is utilized. If the proposed sensor is mounted on the shoes, the system could detect the SRFs, which means that the simple configuration of a one-axis force sensor and an elastic hemisphere makes it possible to prevent SRFs in advance.

As future works, we should measure the low SCOF region qualitatively. The measured data will be compared with the simulated data such as finite element method with nonlinear phenomena of the soft materials and contact. To demonstrate that the sensor prevents the actual SRFs, the proposed sensor will be attached to the outside of the shoes and characterized by using small module.

Funding

This research was supported in part through the Leading Graduates Schools Program, ‘Global Leader Program for Social Design and Management,’ by the Ministry of Education, Culture, Sports, Science and Technology and Ministry of Health, Labour and Welfare, and Japan science and technology agency.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributors

Yusaku Tagawa received the B.S. and M.S. degrees in Department of Electronics Engineering from Kyushu University, Fukuoka, Japan and the University of Tokyo, Tokyo, Japan in 2017 and 2019, respectively. He is currently pursuing the Ph.D. degree with the Electrical Engineering and Information Systems, University of Tokyo, Tokyo, Japan. His research interests include tactile sensor and its wearable application for predictive medicine. He is a student member of SICE.

Taiyu Okatani received his Bachelor’s degree Master’s degree and Ph.D. in Information Science and Technology from The University of Tokyo in 2015, 2017 and 2020, respectively. Since 2020, he has been an assistant professor in Department of Robotics, School of Engineering in Tohoku University. His research interests include Robotics and Micro Electro Mechanical Systems.

Hiroshi Onodera received the MD and PhD degrees in medical science from the Tohoku University School of Medicine, Sendai, Japan in 1985. He has been an associate professor with the Department of Neurology, Tohoku University School of Medicine, since 1998 to 2005. He has been a project professor in the photon science centre and electrical engineering with Graduate School of Engineering, the University of Tokyo, since 2014. His works in the three-dimensional visualization of biological samples and optogenetics produced clinical benefits for cancer diagnosis and rehabilitation fields. Dr. Onodera is a member of The Japanese Society of Internal Medicine, The Japanese Society of Neurology, and The Robotics Society of Japan.

References

[1] Sterling DA, O’Connor JA, Bonadies J. Geriatric falls: injury severity is high and disproportionate to mechanism. J Trauma Acute Care Surg. 2001;50(1):116–119.
[2] Pfortmueller CA, Lindner G, Exadaktylos AK. Reducing fall risk in the elderly: risk factors and fall prevention, a systematic review. Minerva Med. 2014;105(4):274–281.
[3] Courtney TK, Sorock GS, Manning DP, et al. Occupational slip, trip, and fall-related injuries can the contribution of slipperiness be isolated?. Ergonomics. 2001;44(13):1118–1137.
[4] Yamaguchi T, Okamoto R, Hokkirigawa K, et al. Decrease in required coefficient of friction due to smaller lean angle during turning in older adults. J Biomech. 2018;74(6):163–170.
[5] Ramirez-Bautista JA, Huerta-Ruelas JA, Chaparro-Cardenas SL, et al. A review in detection and monitoring gait disorders using in-shoe planar measurement systems. IEEE Rev Biomed Eng. 2017;10:299–309.
[6] Domingues MF, Alberto N, Leitão CSJ, et al. Insole optical fiber sensor architecture for remote gait analysis – an e-health solution. IEEE Internet Things J. 2017;6(1):207–214.
[7] Hori M, Nakai A, Shimoyama I. Three-Axis ground reaction force distribution during straight walking. Sensors. 2017;17(10); Article No. 2431.
[8] Lin Z, Wu Z, Zhang B, et al. A triboelectric nanogenerator–based smart insole for multifunctional gait monitoring. Adv Mater Technol. 2019;4(2): Article No. 1800360.
[9] Trkov M, Chen K, Yi J, et al. Inertial sensor-based slip detection in human walking. IEEE Trans Autom Sci Eng. 2019;16(3):1399–1411.
[10] Chen W, Khamis H, Birznieks I, et al. Tactile sensors for friction estimation and incipient slip detection – toward
Dexterous robotic manipulation: A review. IEEE Sens J. 2018;18(22):9049–9064.

[11] Okatani T, Takahashi H, Noda K, et al. A tactile sensor using piezoresistive beams for detection of the coefficient of static friction. Sens. 2016;16(5):718

[12] Okatani T, Nakai A, Takahata T, et al. A MEMS slip sensor: estimations of triaxial force and coefficient of static friction for prediction of a slip. Proc 19th Int Conf Solid-State Sens, Actuators Microsystems. 2017;75–77.

[13] Okatani T, Shimoyama I. A tactile sensor for simultaneous measurements of 6-axis force/torque and the coefficient of static friction. Sens Actuators A: Phys. 2020;315:112362

[14] Xydas N, Bhagavat M, Kao I. Study of soft-finger contact mechanics using finite elements analysis and experiments. Proc 2000 ICRA Millennium Conf IEEE Int Conf Rob Autom. 2000;2179–2184.

[15] Cavanagh PR, Ulbrecht JS. Clinical plantar pressure measurement in diabetes: rationale and methodology. Foot. 1994;4(3):123–135.

[16] Schallamach A. A friction and abrasion of rubber. Wear. 1957/1958;1(5):384–417.