Online patient simulation training to improve clinical reasoning: A feasibility randomised controlled trial

CURRENT STATUS: UNDER REVIEW

Ruth Plackett
University College London

✉ ruth.plackett.15@ucl.ac.uk Corresponding Author
ORCiD: https://orcid.org/0000-0002-3351-1478

Angelos P Kassianos
University College London Institute of Epidemiology and Health Care

Maria Kambouri
University College London Institute of Education

Natasha Kay
University College London Institute of Epidemiology and Health Care

Sophie Mylan
London School of Hygiene and Tropical Medicine Department of Global Health and Development

Jenny Hopwood
University College London Medical School

Patricia Schartau
University College London Institute of Epidemiology and Health Care

Shani Gray
University College London Institute of Epidemiology and Health Care

Jessica Timmis
University College London Institute of Epidemiology and Health Care

Sarah Bennett
University College London Medical School

Chris Valerio
University College London Medical School
Veena Rodrigues
University of East Anglia Norwich Medical School

Emily Player
University of East Anglia Norwich Medical School

Willie Hamilton
University of Exeter Medical School

Rosalind Raine
University College London Institute of Epidemiology and Health Care

Stephen Duffy
Wolfson Institute of Preventive Medicine

Jessica Sheringham
University College London Institute of Epidemiology and Health Care

DOI:
10.21203/rs.3.rs-20752/v1

SUBJECT AREAS
Scientific Communication

KEYWORDS
Clinical reasoning, simulation, virtual patient, online learning, medical students, medical education, feasibility study
Abstract
Background: Online patient simulations (OPS) are a novel method for teaching clinical reasoning skills to students and could contribute to reducing diagnostic errors. However, little is known about how best to implement and evaluate OPS in medical curricula. The aim of this study was to assess the feasibility, acceptability and potential effects of eCREST — the electronic Clinical Reasoning Educational Simulation Tool.

Methods: A feasibility randomised controlled trial was conducted with final year undergraduate students from three UK medical schools in academic year 2016/2017 (cohort one) and 2017/2018 (cohort two). Student volunteers were recruited in cohort one via email and on teaching days, and in cohort two eCREST was also integrated into a relevant module in the curriculum. The intervention group received three patient cases and the control group received teaching as usual; allocation ratio was 1:1. Researchers were blind to allocation. Clinical reasoning skills were measured using a survey after one week and a patient case after one month.

Results: Across schools, 264 students participated (18.2% of all eligible). Cohort two had greater uptake (183/833, 22%) than cohort one (81/621, 13%). After one week, 99/137 (72%) of the intervention and 86/127 (68%) of the control group remained in the study. eCREST improved students’ ability to gather essential information from patients over controls (OR =1.4; 95% CI 1.1-1.7, n =148). Of the intervention group, most (84/98, 82%) agreed eCREST helped them to learn clinical reasoning skills.

Conclusions: eCREST was highly acceptable and improved data gathering skills that could reduce diagnostic errors. Uptake was low but improved when integrated into course delivery. A summative trial is needed to estimate effectiveness.

Background
Clinical reasoning — the thought processes used by clinicians during consultations to formulate appropriate questions — is essential for timely diagnosis of disease (1-4). Providing training in clinical reasoning as early as possible in medical education could improve reasoning skills in future doctors, as it provides a scaffold for future learning, and retraining reasoning can be challenging (5, 6).
However, in undergraduate medical education, there is a lack of explicit teaching on clinical reasoning and the development and delivery of additional high quality and consistent clinical reasoning teaching potentially increases burden on faculty’s already stretched time and resources (2, 7, 8).

Online patient simulations (OPS) are a specific type of computer-based program that simulates real-life clinical scenarios could support teaching reasoning skills (7, 9). Theories of cognition suggest that exposure to a large number of different clinical cases via simulations could improve reasoning by restructuring and building more complex mental representations (10, 11). Learning by experience also facilitates reflection, which helps students to retain skills (12). OPS can be blended with traditional teaching and offers the opportunity for students to practise data gathering and make diagnoses without burdening patients (9, 13). OPS also have pragmatic benefits; once developed they are lower in cost to deliver, can be distributed widely, completed remotely, tailored to the learner and frequently updated (9, 14). Nevertheless, using technology-enhanced learning (TEL) may have its own limitations, such as the potential for lack of engagement from users and faculty, lack of fidelity with real patient consultations and limited TEL skills of faculty (15, 16).

There is currently little empirical evidence to support the use of OPS for assisting clinical reasoning skills teaching. The few studies conducted were not methodologically robust and difficult to interpret due to the poor validity of clinical reasoning outcome measures (17-20). Furthermore, most previous studies had limited information on the feasibility of introducing a novel tool into a curriculum and evaluating them using a robust research method, such as a randomised controlled trial (RCT) (17, 18). Understanding the feasibility of testing OPS using a RCT study design is necessary before a summative RCT can estimate effectiveness (21, 22).

This research aimed to inform the design of a summative evaluation of an OPS to support teaching of reasoning skills in medical schools. The development of this OPS, the Electronic Clinical Reasoning Educational Simulation Tool (eCREST), is reported elsewhere (23). Briefly, eCREST shows three videos of patients (played by actors) presenting to their primary care physician (PCP) with respiratory problems that could be indicative of serious conditions like lung cancer. The student gathers information from the patient, while continually being prompted to review their differential diagnosis.
After each case they are asked to make a final differential diagnosis and receive feedback.

This study sought to obtain evidence as to the feasibility of a trial through:

1. identifying optimal recruitment strategies, measured by student uptake;
2. testing the acceptability to students via student retention and feedback;
3. testing the validity and measuring the possible effect sizes of two clinical reasoning outcome measures.

Methods

Study design and participants

A multicentre parallel feasibility RCT was conducted across three UK medical schools: A, B and C. We followed the CONSORT statement for reporting pilot or feasibility trials (24). Eligible participants were final year undergraduate medical students. The curricula of the medical schools varied. Schools A and B implemented a traditional integrated/systems-based curriculum. School C followed a problem-based learning (PBL) curriculum. Ethical approval was gained from participating medical schools.

Participants were recruited from March 2017-February 2018 in two cohorts. Cohort one was recruited after final examinations in April-July 2017, through advertisements in faculty newsletters and lecture ‘shout outs’. Cohort two was recruited prior to final examinations in October 2017-February 2018. School C students were only recruited in cohort two. Cohort two were invited to participate through the faculty online learning management platforms (e.g. Moodle), advertisements on social media, faculty newsletters, and lecture ‘shout outs’. As this was a feasibility trial, a sample size calculation was not required.

Outcomes

Feasibility and acceptability

Feasibility was measured by assessing student uptake by school and cohort. Acceptability was measured by retention rates and a survey adapted from previous studies, consisting of six statements on the perceptions of eCREST (25, 26).

Clinical reasoning outcome measures

Clinical reasoning was measured using the Flexibility in Thinking (FIT) scale of the Diagnostic Thinking Inventory (DTI) is a self-reported measure (27). The FIT (21 items) measures thought processes used
in the diagnostic process, including the ability to generate new ideas, understand alternative outcomes and self-reflect. Higher scores on the FIT sub-scale are indicative of better clinical reasoning skills. The sub-scale has demonstrated validity to detect differences between student and professional reasoning. The internal consistency and test re-test reliability are acceptable (27, 28).

Clinical reasoning was also measured using an observed measure of clinical reasoning by using data from an additional eCREST patient case that students received one month after baseline. This measure comprised indicators of three cognitive biases that eCREST sought to influence: the unpacking principle, confirmation bias and anchoring. These were identified by previous clinical reasoning research (29–31). The unpacking principle refers to the tendency to not elicit the necessary information to make an informed judgement. Confirmation bias is when a clinician only seeks information to confirm their hypothesis. Anchoring occurs when clinicians stick to an initial hypothesis despite contradictory information (32). eCREST prompts students to reflect throughout a consultation and provides feedback that enables them to reflect on their performance afterwards (33, 34). By reflecting, students would be more likely to attend to evidence inconsistent with their hypothesis and consider alternatives, thereby reducing the chance of confirmation bias and anchoring. Reflection also encourages students to explore their hypotheses thoroughly, ensuring that they elicit relevant information from patients, reducing the effect of the unpacking principle (33, 35).

The observed measure assessed ‘essential information identified’ by measuring the proportion of essential questions and examinations asked, out of all possible essential examinations and questions identified by experts. This aimed to detect the influence of the unpacking principle on reasoning, as it captured whether the students elicited enough essential information to make an appropriate decision. The ‘relevance of history taking’ was measured by assessing the proportion of all relevant questions and examinations asked, out of the total questions and examinations asked by the student. This aimed to detect susceptibility to confirmation bias by capturing whether they sought relevant information. Finally, it measured ‘flexibility in diagnoses’ by counting the number of times students changed their diagnosis. This reflected how susceptible students were to anchoring, by measuring their willingness to change their initial differential diagnosis. All measures were developed by RP and
three clinicians (PS, SG & JT). The content validity of the observed measure of clinical reasoning was tested with two clinicians (SM, JH).

Diagnostic choice
Diagnostic choice was captured in the additional patient case. Selection of the most important diagnosis that the student should not have missed was used to assess how well the observed measure of reasoning predicted diagnostic choice.

Knowledge
Relevant medical knowledge was measured by 12 single best answer multiple choice questions (MCQs). We hypothesised that greater knowledge is associated with better clinical reasoning skills, consistent with the literature (4, 36). The MCQs were developed by clinicians (NK, SM, JH & PS) in consultation with other clinicians.

Procedure
The trial procedure is outlined in Fig. 1, which shows how and when data from participants were collected. Students who provided written consent online were allocated to intervention or control groups using simple randomisation. Researchers were blind to allocation, completed by a computer algorithm. Randomisation was not precisely 1:1, as five students were mistakenly automatically allocated to the intervention group. The intervention group received three video patient cases in eCREST, all presenting with respiratory or related symptoms to their primary care physician (23). The control group received no additional intervention and received teaching as usual.

Data Analysis
Feasibility and acceptability
Uptake was calculated as the percentage of students who registered out of the total number of eligible students. Retention was calculated as the percentage of students who completed T1 and T2 follow-up assessments out of all registered. Acceptability was measured by calculating the percentage of students who agreed with each statement on the acceptability questionnaire. Uptake, retention and acceptability were compared between schools and cohorts using chi-squared tests.

Clinical reasoning outcomes
Validity and Reliability. Internal consistency of the self-reported clinical reasoning measure was assessed using Cronbach’s alpha. Construct validity of the self-reported and observed clinical
reasoning measures was assessed by correlating the reasoning and knowledge outcomes, using Spearman’s rank correlation coefficient. To estimate the predictive validity of the clinical reasoning measures, the self-reported measure and observed measure of clinical reasoning were correlated with diagnostic choice. The analyses were undertaken for the aggregated dataset then separately for the intervention and control groups.

Effect sizes. Independent t-tests were used to compare mean self-reported clinical reasoning scores between intervention and control groups at T1 and T2. A mixed factorial ANOVA was used to assess change in self-reported clinical reasoning over time, between groups and interaction effects. Logistic regression analyses were conducted to assess the ‘essential information identified’ and the ‘relevance of history taking’. These outcomes were proportional data, so were transformed by calculating the log odds of the outcomes (37, 38). Group allocation was the only predictor variable in each model, as knowledge did not significantly differ between the groups at baseline. A multinomial logistic analysis was carried out to assess ‘Flexibility in diagnoses’. A complete case analysis was undertaken, such that those students who had missing data were excluded from analysis. Analyses were conducted using Stata Version 15, with p ≤ 0.05 considered statistically significant (39).

Results

Feasibility and acceptability

Across the three UK medical schools, 264 students participated (18.2% of all eligible, Fig. 2).

Recruitment was greater for students in cohort two (n = 183/833, 22%) than those in cohort one (n = 81/621, 13%). Uptake was slightly greater at school B (n = 136/610, 22%), followed by A (n = 112/696, 16%) and C (n = 16/148, 11%). Uptake was similar at schools A (n = 44/336, 13%) and B (n = 37/285, 13%) in cohort one. However, uptake was greater at school B (n = 99/325, 31%) than A (n = 68/360, 19%) and C (n = 16/148, 11%) in cohort two. Participant characteristics are shown in Table 1 and no significant differences between the intervention and control group were observed.

Table 1 Participant characteristics at baseline
Age (Years): n (%)	Intervention group	Control group
20-22	4 (2.9)	1 (0.8)
23-24	73 (53.3)	79 (62.2)
25-26	39 (28.5)	29 (22.8)
27-28	11 (8.0)	10 (7.9)
>29	10 (7.3)	8 (6.3)
Total n	137	127

Gender: n (%)	Intervention group	Control group
Female	64 (46.7)	58 (45.7)
Male	73 (53.3)	69 (54.3)
Total n	137	127

Self-reported clinical reasoning skills at baseline: mean (SD)	Intervention group	Control group
Total n	122	118

Knowledge at baseline: mean (SD)	Intervention group	Control group
Total n	125	126

Notes: Baseline n varied for demographics, self-reported clinical reasoning skills and knowledge as some students didn’t complete all information. Results are presented as number and percentage of students or mean and standard deviation for each group. Comparisons were made using t-tests for means and Chi-squared tests for percentages. P Value less than 0.05 was considered significant.

There was no significant difference detected in retention between the intervention and control groups one week after baseline, 72% and 68% respectively ($\chi^2 (1) = 0.65, p = 0.42$), or after one month, 57% and 55% respectively ($\chi^2 (1) = 0.34, p = 0.56$, Fig. 2). There was no significant difference found in the proportion of students at each school who stayed in the study one week after baseline. However, there was significantly poorer retention at school A after one month ($n = 47/112, 42\%$) than at school B ($n = 83/136, 61\%$) and C ($n = 10/16, 63\%$), $\chi^2 (2) = 9.58, p = 0.008$. Those in cohort one were significantly less likely to stay in the study one-week post baseline ($n = 45/81, 56\%$) than those in cohort two ($n = 140/183, 77\%$), $\chi^2 (1) = 11.75, p = 0.001$. This was also observed one-month post baseline ($n = 29/81, 36\%$ and $n = 111/183, 61\%$ respectively), $\chi^2 (1) = 13.92, p = 0.000$.

Most students (> 80%) agreed that eCREST helped them learn clinical reasoning skills and that they would use it again without incentives (Table 2). There were no significant differences detected between the schools. However, those in cohort two were significantly more likely than cohort one to agree that: eCREST helped to improve their clinical reasoning skills (87.7% vs 64.0%), $\chi^2 (2) = 7.5, n = 98, p = .024$; eCREST enhanced their overall learning (93.2% vs 64.0%), $\chi^2 (2) = 13.7, n = 98, p$
= .001) and that they would use eCREST again without an incentive (97.3% vs 52.0%), \(\chi^2 (2) = 31.8, n = 98, p=.000 \).

Table 2 Intervention group medical student responses to the acceptability survey

Statement	Strongly agree/ Agree	Neither
It was easy to navigate through eCREST	96/98 (98)	1/98 (1)
The level of difficulty of the material was appropriate	95/98 (97)	3/98 (3)
eCREST should be used to supplement traditional teaching	88/98 (90)	9/98 (9)
eCREST helped me to learn clinical reasoning skills to apply to clinical work	80/98 (82)	15/98 (15)
Overall, using eCREST enhanced my learning	84/98 (86)	13/98 (13)
I would use eCREST in the future without an incentive	84/98 (86)	10/98 (10)

Notes: results are taken from across all 3 schools. 98 students in the intervention group completed the acceptability survey at Time 1.

Clinical reasoning outcomes
Validity
The internal consistency of the self-reported clinical reasoning measure was adequate (Cronbach’s \(\alpha = 0.66 \)). Correlations between self-reported and observed clinical reasoning outcome measures, and knowledge and clinical outcomes are shown in Table 3. There was a mostly positive but non-significant correlation between the self-reported clinical reasoning measure and the observed clinical reasoning measure. The self-reported clinical reasoning measure had a weak but significant positive correlation with knowledge for aggregated data (\(r_s=0.13, p = 0.037, n = 240 \)). The observed clinical reasoning measure was positively but not significantly correlated with knowledge. The self-reported clinical reasoning measure at baseline and the observed clinical reasoning measure were positively but not significantly correlated with identification of the most serious diagnosis.

Table 3 Mean scores and correlations between measures of clinical reasoning, knowledge and diagnostic choice
Reasoning measure	Group	N	Mean (SD)	Correlation coefficients		
				Self-reported clinical reasoning at baseline	Knowledge baseline	
				ρ	r_s	
Self-reported clinical reasoning skills						
Baseline	I	122	83.1 (9.6)		0.17	
	C	118	83.5 (8.8)		0.10	
	All	240	83.3 (9.2)		0.14	
Time 1	I	99	84.1 (10.3)			
	C	86	82.4 (9.0)			
	All	185	83.3 (9.8)			
Time 2	I	75	84.4 (9.8)			
	C	65	82.0 (9.4)			
	All	140	83.3 (9.7)			
Observed clinical reasoning skills						
Essential information identified	I	78	61.6% (17.6)	-0.01	0.957	0.09
	C	70	53.3% (15.8)	0.03	0.798	0.22
	All	148	57.7% (17.2)	0.01	0.865	0.15
Relevance of history taking	I	78	81.4% (10.5)	0.06	0.578	0.06
	C	70	84.6% (10.6)	0.02	0.893	0.11
	All	148	82.9% (10.6)	0.03	0.704	0.07
Flexibility in diagnoses	I	78	3.2 (1.0)	0.01	0.919	0.17
	C	70	3.0 (1.0)	0.09	0.439	0.04
	All	148	3.1 (1.0)	0.05	0.542	0.11

[a] Intervention (I) and Control group (C).
Measured using the Flexibility in Thinking scale (Bordage et al. 1990).

[c] Measured by 12 multiple choice respiratory medicine questions.

[d] Measured by whether the most important diagnosis was selected for a patient case.

[e] \(r_s \) denotes Spearman’s rank correlation coefficient.

[f] Time 1 = one week after registration.

[g] Time 2 = one month registration.

[h] Measured by performance on a patient case delivered by eCREST to all students.

[i] Percentage of essential information from gathered from patient case out of possible essential information available.

[j] Percentage of relevant information from gathered from patient case out of all information student gathered.

[k] Number of times changed diagnosis.

* indicates \(p \leq 0.05 \).

Effect sizes

The intervention group had non-significantly higher self-reported clinical reasoning skills than the control group at Time 1 (84.1 vs 82.4, \(p = 0.26 \)) and Time 2 (84.4 vs 82.0, \(p = 0.15 \)). There was no significant effect of group allocation, \(F (1) = 0.00, p = 0.97, n = 136 \) time, \(F (2) = 0.01, p = 0.99, n = 136 \) or interaction between group allocation and time, \(F (2) = 0.48, p = 0.62, n = 136 \).

Table 4 shows logistic regression analyses comparing observed clinical reasoning skills between the
intervention and control groups. The intervention group identified significantly more essential information than the control group (62% vs 53%). The control group sought more relevant information than the intervention group (85% vs 81%) but this difference was not significant. Students in both groups changed their diagnoses at least twice. The intervention group changed their diagnoses more often than controls, but the difference was not statistically significant.

Table 4 Logistic regression analyses comparing clinical reasoning skills between intervention and control groups

Observed clinical reasoning skills	Trial group	n	Mean (SD)	Odds Ratio (95% CI)
Essential information identified	Intervention	78	61.6% (17.6)	
	Control	70	53.3% (15.8)	1.40 (1.12, 1.7)
Relevance of history taking	Intervention	78	81.4% (10.5)	
	Control	70	84.6% (10.6)	0.79 (0.62, 1.0)
Flexibility in diagnoses	Intervention	78	3.2 (1.0)	
	Control	70	3.0 (1.0)	
			2 (base)	1.48 (0.68, 3.2)
			3	1.63 (0.68, 3.9)
			4	2.46 (0.55, 11.0)
			5	1.77 (0.07, 20.0)
			6	

[a] Measured by students’ performance on a patient case delivered by eCREST.

[b] Percentage of essential information from gathered from patient case out of possible essential information available.

[c] Percentage of relevant information from gathered from patient case out of all information student gathered.

[d] $x^2 (1) = 3.44.$
Discussion
This feasibility trial of eCREST demonstrated that optimal recruitment and retention was achieved when the tool was integrated into curricula, as seen in the greater uptake for cohort two than cohort one. eCREST was also highly acceptable to students, suggesting it would be feasible to conduct a summative trial to estimate effectiveness of OPS in medical schools, if there was course integration. Uptake, retention and acceptability were higher amongst students in cohort two than cohort one. Providing eCREST to students before exams, and advertising and integrating with students’ online learning management platforms, may have made eCREST more accessible and useful for revision. The low uptake at school C compared to the other sites was possibly due to their different curriculum design. Students at school C may have had more exposure to patient cases than A and B, as part of their PBL designed curriculum, reducing the need for simulated cases (40). In a summative trial, recruitment efforts made for cohort two would likely yield greater uptake but uptake may vary across schools with different curricular approaches. Given the effect sizes observed in this study, we estimate that a sample size of 256 would be sufficient to detect a significant increase in the proportion of essential information identified. However, schools considering implementing OPS should be mindful that the acceptability of OPS to students could be affected by barriers to adoption at faculty level, such as insufficient technological capabilities to adapt and manage OPS and a lack of alignment of OPS content with educators’ needs (41).
A lack of validated measures to assess clinical reasoning skills has been reported in medical education literature (10, 42). This study assessed the suitability of two potential measures. The FIT self-reported measure of clinical reasoning had some construct validity but poor predictive validity. It
also may not capture actual reasoning as it is a self-reported measure. The observed measure of clinical reasoning developed for this study measured real-time thought processes involved in making decisions but had poor construct and predictive validity. Difficulties in establishing the validity of any clinical reasoning measure arise because of the subjective nature and context-dependency of clinical reasoning (10). In future, predictive validity of observed measures may be better established by applying rubrics to several patient cases and correlating with measures of summative performance that require strong clinical reasoning, such as objective structured clinical examination (OSCE) performance on related cases.

The observed clinical reasoning outcomes suggest that eCREST could reduce the effects of the unpacking principle, and confirmation and anchoring biases. eCREST helped students to elicit more information from patients on symptoms indicative of serious diseases and encouraged students to challenge their original hypotheses. Nevertheless, it is also possible that eCREST encouraged students to be less efficient when gathering information, by increasing the number of questions they asked. This may be an unfeasible approach in clinical practice given the significant time pressures clinicians face. However, given medical students’ limited level of experience, and exposure to patients and knowledge, this strategy may be appropriate when managing patients with non-specific symptoms in primary care (13).

Limitations

There was relatively low uptake in the study (18%) but the extensive demands of medical curricula often result in low uptake of additional resources. Uptake was higher in this study than some previous online learning studies that relied on medical student volunteers and the sample size was ample for the purposes of the feasibility RCT (43, 44). This study demonstrated that some integration of eCREST into the curricula in cohort two was possible and led to greater uptake, acceptability and retention. However, as this study relied on volunteers there was a risk of selection bias. Students who took part might have been different than those who did not.

A further limitation of this study is that it was a complete case analysis, which assumes data were missing at random and those who dropped out were similar to those who remained. It was not
possible to follow up those who dropped out to determine whether they had different views of eCREST or different patterns of reasoning. Furthermore, the observed measure of clinical reasoning was only collected at T2 and not at baseline. It is possible that the two groups differed on this measure at baseline. However, no differences in self-reported clinical reasoning were detected between groups at baseline.

Conclusions
This feasibility RCT has illustrated the importance of integration into the course when evaluating OPS in medical education. It would be feasible to conduct a summative trial to assess the effectiveness of eCREST on medical students’ clinical reasoning skills in multiple medical schools, if it were appropriately positioned in a curriculum to benefit student learning. Further testing of the validity of using OPS as an outcome measure is needed. Nevertheless, this study provides evidence that OPS can be used to support face-to-face teaching to reduce cognitive biases, which may help future doctors in achieving timely diagnoses in primary care.

Abbreviations
OPS: Online patient simulations; eCREST: Electronic Clinical Reasoning Educational Simulation Tool;
TEL: Technology-enhanced learning; PCP: Primary care physician; RCT: Randomised controlled trial;
MCQs: Multiple choice questions; FIT: Flexibility in Thinking scale; DTI: Diagnostic Thinking Inventory;
OSCE: Objective Structured Clinical Examination.

Declarations
Acknowledgments:
The authors would like to acknowledge Dason Evans, Lauren Goundry, Victoria Van Hamel Parsons, Alys Burns and Rickard Meakin for assisting in recruitment.

Authors contributions:
RP made substantial contributions to the conception and design of the work, the acquisition of data, analysis, interpretation of data for the work and the drafting of the article. APK and JS made substantial contributions to the conception and design of the work, the acquisition, interpretation of data for the work and the drafting of the article. MK made substantial contributions to the interpretation of data for the work and the drafting of the article. RR & WH made substantial
contributions to the conception and design of the work and the drafting of the article. SD made
substantial contributions to the conception and design of the work, the analysis and the drafting of
the article. NK, SM, JH, PS, SG, JT, SB, CV, VR, EP made substantial contributions to the conception and
design of the work, the acquisition of data and the drafting of the article. All authors read and
approved the final manuscript.

Funding:
This research was funded by the National Institute for Health Research (NIHR) Policy Research
Programme, conducted through the Policy Research Unit in Cancer Awareness, Screening and Early
Diagnosis, 106/0001. The views expressed are those of the author(s) and not necessarily those of the
NIHR or the Department of Health and Social Care. This research was also supported by the National
Institute for Health Research (NIHR) Applied Research Consortium North Thames at Bart’s Health NHS
Trust (NIHR ARC North Thames). The views expressed in this article are those of the author(s) and not
necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. Ruth Plackett’s
PhD was funded by the Health Foundation. The funders had no role in the study design, data
collection, analysis, interpretation of data or in writing the manuscript.

Availability of data and materials:
The datasets used and/or analysed during the current study are available from the corresponding
author on reasonable request.

Ethics approval and consent to participate:
Ethical approval was obtained from University College London Research Ethics Committee (ref:
9605/001; 31st October 2016), Institute of Health Sciences Education Review Committee at Queen
Mary University London (ref: IHSEPRC-41; 31st January 2017) and the Faculty of Medicine and Health
Sciences Research Ethics Committee at the University of East Anglia (ref: 2016/2017 - 99; 21st
October 2017). All participants were informed and provided written consent to participate.

Consent for publication:
Not applicable.
Competing interests:
The authors declare no competing interests.

References
1. Cheraghi-Sohi S, Holland F, Reeves D, Campbell S, Esmail A, Morris R, et al. The incidence of diagnostic errors in UK primary care and implications for health care, research, and medical education: a retrospective record analysis of missed diagnostic opportunities. Br J Gen Pract. 2018;68(suppl 1):bjgp18 × 696857.
2. BH/Elsevier
 Clinical Reasoning in the Health Professions
 Higgs J, Jones MA, Loftus S, Christensen N. Clinical Reasoning in the Health Professions: BH/Elsevier; 2008.
3. Graber ML. The incidence of diagnostic error in medicine. BMJ Quality Safety. 2013;22(Suppl 2):ii21–7.
4. Norman G. Research in clinical reasoning: past history and current trends. Med Educ. 2005;39(4):418–27.
5. IoM. Improving Diagnosis in Health Care. Washington, DC: Institute of Medicine; 2015. Report No.: 978-0-309-37769-04.
6. Audétat M-C, Dory V, Nendaz M, Vanpee D, Pestiaux D, Junod Perron N, et al. What is so difficult about managing clinical reasoning difficulties? Med Educ. 2012;46(2):216–27.
7. Cleland JA, Abe K, Rethans J-J. The use of simulated patients in medical education: AMEE Guide No 42. Med Teach. 2009;31(6):477–86.
8. Schmidt HG, Mamede S. How to improve the teaching of clinical reasoning: A narrative review and a proposal. Med Educ. 2015;49(10):961–73.
9. Issenberg SB, Mcgaghie WC, Petrusa ER, Lee Gordon D, Scalese RJ. Features and uses
of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27(1):10-28.

10. Cook D, Triola M. Virtual patients: a critical literature review and proposed next steps. Med Educ. 2009;43(4):303-11.

11. Eva KW. What every teacher needs to know about clinical reasoning. Med Educ. 2005;39(1):98-106.

12. Kolb DA. Experiential learning: experience as the source of learning and development. London: Prentice Hall; 1984.

13. Ericsson KA. Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med. 2008;15(11):988-94.

14. Vaona A, Rigon G, Banzi R, Kwag KH, Cereda D, Pecoraro V, et al. E-learning for health professionals. The Cochrane Library. 2015.

15. Topol E. The Topol Review. Preparing the Healthcare Workforce to Deliver the Digital Future. Health Education England, editor London, United Kingdom: NHS. 2018:1-48.

16. Greenhalgh T. Computer assisted learning in undergraduate medical education. BMJ. 2001;322(7277):40-4.

17. Consorti F, Mancuso R, Nocioni M, Piccolo A. Efficacy of virtual patients in medical education: A meta-analysis of randomized studies. Comput Educ. 2012;59(3):1001-8.

18. Cook D, Erwin P, Triola M. Computerized virtual patients in health professions education: a systematic review and meta-analysis. Acad Med. 2010;85(10):1589-602.

19. Isaza-Restrepo A, Gomez MT, Cifuentes G, Arguello A. The virtual patient as a learning tool: a mixed quantitative qualitative study. BMC Med Educ. 2018;18(1):297.

20. Middeke A, Anders S, Schuelper M, Raupach T, Schuelper N. Training of clinical reasoning with a Serious Game versus small-group problem-based learning: A prospective study. PLoS ONE [Electronic Resource]. 2018;13(9):e0203851.
21. Campbell M, Fitzpatrick R, Haines A, Kinmonth AL, Sandercock P, Spiegelhalter D, et al. Framework for design and evaluation of complex interventions to improve health. BMJ: British Medical Journal. 2000;321(7262):694.

22. Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. BMJ. 2008;337:a1655.

23. Kassianos A, Plackett R, Schartau P, Valerio C, Hopwood J, Kay N, et al. eCREST: a novel online patient simulation resource to aid better diagnosis through developing clinical reasoning. BMJ Simulation and Technology Enhanced Learning. 2019:bmjstel-2019-000478.

24. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ. 2016;355:i5239.

25. Asarbakhsh M, Sandars J. E-learning: the essential usability perspective. Clin Teach. 2013;10(1):47–50.

26. Kleinert R, Heiermann N, Plum PS, Wahba R, Chang DH, Maus M, et al. Web-based immersive virtual patient simulators: Positive effect on clinical reasoning in medical education. Journal of Medical Internet Research. 2015;17(11).

27. Bordage G, Grant J, Marsden P. Quantitative assessment of diagnostic ability. Med Educ. 1990;24(5):413–25.

28. Round A. Teaching clinical reasoning—a preliminary controlled study. Med Educ. 1999;33(7):480–3.

29. Croskerry P. Achieving quality in clinical decision making: cognitive strategies and detection of bias. Acad Emerg Med. 2002;9(11):1184–204.

30. Kostopoulou O, Russo JE, Keenan G, Delaney BC, Douiri A. Information Distortion in
Physicians’ Diagnostic Judgments. Med Decis Making. 2012;32(6):831–9.

31. Sheringham J, Sequeira R, Myles J, Hamilton W, McDonnell J, Offman J, et al.
Variations in GPs' decisions to investigate suspected lung cancer: a factorial experiment using multimedia vignettes. BMJ Quality & Safety 2016.

32. Croskerry P. A Universal Model of Diagnostic Reasoning. Acad Med. 2009;84(8):1022–8.

33. Croskerry P, Singhal G, Mamede S. Cognitive debiasing 2: impediments to and strategies for change. BMJ Qual Saf. 2013;22(Suppl 2):ii65–72.

34. Croskerry P, Singhal G, Mamede S. Cognitive debiasing 2: impediments to and strategies for change. Bmj Quality Safety. 2013;22:ii65–72.

35. Mamede S, Schmidt HG, Rikers R. Diagnostic errors and reflective practice in medicine. Journal of evaluation in clinical practice. 2007;13(1):138-45.

36. Norman G, Monteiro S, Sherbino J, Ilgen J, Schmidt H, Mamede S. The Causes of Errors in Clinical Reasoning: Cognitive Biases, Knowledge Deficits, and Dual Process Thinking. Academic medicine: journal of the Association of American Medical Colleges; 2016.

37. Dixon P. Models of accuracy in repeated-measures designs. J Mem Lang. 2008;59(4):447-56.

38. Warton DI, Hui FK. The arcsine is asinine: the analysis of proportions in ecology. Ecology. 2011;92(1):3-10.

39. StataCorp. Stata Statistical Software: Release 15. College Station. TX: StataCorp LLC; 2017.

40. Onyon C. Problem-based learning: a review of the educational and psychological theory. Clin Teach. 2012;9(1):22-6.

41. Berman NB, Durning SJ, Fischer MR, Huwendiek S, Triola MM. The Role for Virtual
Patients in the Future of Medical Education. Academic Medicine. 2016.

42. Cook DA, Erwin PJ, Triola MM. Computerized virtual patients in health professions education: A systematic review and meta-analysis. Acad Med. 2010;85(10):1589–602.

43. Sheringham J, Lyon A, Jones A, Strobl J, Barratt H. Increasing medical students' engagement in public health: case studies illustrating the potential role of online learning. J Public Health. 2016;38(3):e316-e24.

44. Lehmann R, Thiessen C, Frick B, Bosse HM, Nikendel C, Hoffmann GF, et al. Improving Pediatric Basic Life Support Performance Through Blended Learning With Web-Based Virtual Patients: Randomized Controlled Trial. Journal of Medical Internet Research. 2015;17(7):e162.

Figures
Figure 1

Flow diagram illustrating study procedure
Assessed for eligibility (n=1,454)

Randomised (n=264)

Allocated to Intervention (n= 137)

Time 1
Completed follow-up at 1 week (n= 99)

Time 2
Completed follow-up at 1 month (n= 78)

Secondary outcomes were analysed (n= 78)

Excluded (n= 1,187)
Did not volunteer

Allocated to control (n= 127)

Time 1
Completed follow-up at 1 week (n= 86)

Time 2
Completed follow-up at 1 month (n= 70)

Secondary outcomes were analysed (n= 70)

Lost to follow-up at 1 week (n= 79)
Intervention group – those who did not complete patient cases and surveys (n= 38)
Control group – those who did not complete surveys (n= 41)

Lost to follow-up at 1 month (n= 116)
Dropped out at Time 1 (n= 79)
Did not complete case 4 and surveys (n= 37)

Figure 2

Flow diagram showing how participants progress through the feasibility RCT

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

CONSORT extension for Pilot and Feasibility Trials Checklist.doc