Adiabatic transport of Cooper pairs in arrays of Josephson junctions

J.P. Pekola, J.J. Toppari, M. Aunola, and M.T. Savolainen

Department of Physics, University of Jyväskylä, P.O. Box 35, 40351 Jyväskylä, Finland

D.V. Averin

Department of Physics, Harvard University, Cambridge, MA 02138; and Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook NY 11794

May 21, 2018

We have developed a quantitative theory of Cooper pair pumping in gated one-dimensional arrays of Josephson junctions. The pumping accuracy is limited by quantum tunneling of Cooper pairs out of the propagating potential well and by direct supercurrent flow through the array. Both corrections decrease exponentially with the number $N$ of junctions in the array, but give a serious limitation of accuracy for any practical array. The supercurrent at resonant gate voltages decreases with $N$ only as $\sin(\varphi/N)/N$, where $\varphi$ is the Josephson phase difference across the array.

PACS numbers: 73.23.Hk, 74.50.+r

When a potential well propagates adiabatically along an electron system that is effectively one-dimensional, it carries with it additional electron density and, in this way, induces a flow of dc electric current through the system. Such a pumping effect is observed in a large variety of mesoscopic systems ranging from small metallic tunnel junctions in the Coulomb blockade regime $[1,2,3]$, to semiconductor quantum dots $[4]$, and to one-dimensional ballistic channels $[5]$. The propagation of potential well in these systems is arranged either directly through the propagation of real acoustoelectric wave $[2,3]$ or by a few (two or more) phase-shifted gate voltages $[1,3,4]$. Particular interest is attracted to the pumping regime when the potential well carries a quantized number $m$ of electrons so that the induced current $I$ is related to the frequency $f$, with which the well crosses the system, by fundamental relation $I = mef$. The quantization of $m$ is caused by the existence of the energy gap in the spectrum of the underlying electron system, which makes it possible for the potential well to be deep enough for precisely $m$ electrons. Such an energy gap can be created either by the Coulomb interaction, as, for instance, in the Coulomb blockade pumps $[1,2,3]$, or can be simply due to the discrete nature of single-particle states inside the well $[4,5]$. In the case of Coulomb blockade pumps, precision of the pumped charge quantization is reaching the level sufficient for metrological applications $[6]$. Different sources of inaccuracy in the pumps have been discussed in $[8,9,10,11,3]$. Until presently, the pumping effect was studied mostly in normal systems, where transport is due to individual electrons. A timely motivation for studying Cooper pair transfer comes from quantum computation, where pumping can play an important role as an essential element of dynamics of quantum logic gates $[12]$. The aim of this work is to develop a quantitative theory of pumping of Cooper pairs in one-dimensional arrays of superconducting tunnel junctions. In particular, we find fundamental corrections to the quantized pumping regime and show that they are unexpectedly large in arrays with a small number of junctions. These large quantum corrections can also explain the fact that the first (and so far the only) experiment with pumping of Cooper pairs $[13]$ has failed to demonstrate accurate pumping.

First we derive the general expression for the charge transferred through an array of $N$ superconducting tunnel junctions in the Coulomb blockade regime by adiabatic pumping of Cooper pairs. In the standard model such arrays are characterized by two energies, their charging energy $H_C$ as a system of capacitors, and their energy associated with tunneling $[14]$. We assume that the characteristic energy
$E_C$ of a Cooper pair in the array and the temperature ($k_B T$) are both much lower than the superconducting energy gap of the electrodes. The first one replaces the usual condition in the normal Coulomb blockade where the junction resistances should be larger than the quantum resistance. With these conditions fulfilled quasiparticle tunneling is exponentially suppressed, while the tunneling energy of Cooper pairs in junction $i$ reduces to a constant tunneling amplitude $E_{ji}/2$ ($E_{ji}$ is also called Josephson coupling energy.) In this work, the bias voltage is set to be zero, and thus a constant Josephson phase difference $\varphi$ is fixed across the array. We can then treat the two external electrodes of the array as one, so that effectively the array forms a loop and $\varphi$ plays the role of external flux threading it. Then, the Hamiltonian of the N-pump is:

$$H = H_C(n-q) \sum_{k=1}^{N} \frac{E_{jk}}{2} \left( \langle n | + \delta_k | e^{i\varphi/N} + h.c. \rangle \right).$$

Here $n = \{n_1, n_2, \ldots, n_{N-1}\}$ and $q = \{q_1, q_2, \ldots, q_{N-1}\}$ represent, respectively, the number $n_i$ of Cooper pairs on each island of the array, and $q_i$, normalized by $2e$, the charge injected to each island by the gate voltage $V_{g_i}$ (Fig. 1). The term $\delta_k$ describes the change of $n$ due to tunneling of one Cooper pair in the $k$th junction. We will also need the operator of the current in the $k$th junction:

$$I_k = \frac{ie E_{jk}}{2\hbar} \left( \langle n | + \delta_k | e^{i\varphi/N} - h.c. \rangle \right).$$

There are two mechanisms of Cooper pair transport in the array. One is the direct supercurrent through the whole array, another is pumping, the charge transfer in response to adiabatic variation of the injected charges $q$. To derive the general expression for the total charge $Q$ transferred during one pumping period, we introduce the basis of instantaneous eigenstates $|m\rangle$ of the array for a given $q$. These are exact eigenstates if $q$ is stationary. When $q$ varies, there is a correction $|\delta m\rangle$ to state $|m\rangle$ of the form:

$$|\delta m\rangle = i\hbar \sum_{l \neq m} \frac{|l\rangle \langle l | \nabla_{\varphi} m}{\varepsilon_l - \varepsilon_m} \delta_l,$$

where $\varepsilon_{l,m}$ are the eigenenergies of states $|l,m\rangle$. Thus the average current $\langle I_k \rangle$ in the $k$th junction is different from the dc supercurrent $\langle m|I_k|m \rangle$ in the state $|m\rangle$, $(I_k) = \langle m|I_k|m \rangle + 2\text{Re} \langle m|I_k|\delta m \rangle$. Integrating over the pumping period $\tau$ we obtain the charge $Q$, in units of $2e$, transported through the array:

$$Q = \frac{1}{\hbar} \frac{\partial}{\partial \varphi} \int_0^\tau dt \varepsilon_m(q(t)) + 2\text{Re} \int \langle m|Q_k|dm \rangle.$$

Diagonal matrix elements of $Q_k$ are not defined by eq. (3), but they do not contribute to $Q$.

Few remarks should be made concerning eq. (4). Since the state of the array at the end of the pumping cycle is exactly the same as in the beginning, charge conservation implies that $Q$ is independent of the index $k$ of the junction which is used in calculating $Q$. It is, however, a function of the array state $|m\rangle$. We did not include energy relaxation in the model and pumping is in principle possible even when $|m\rangle$ is an excited state. Below we consider only a more typical situation when the array is in equilibrium so that at low temperatures $|m\rangle$ can only be a ground state. The last remark is that eq. (4) shows that there is a close connection between the transferred charge $Q$ and quantum mechanical phase of the state $|m\rangle$ accumulated during the cycle. Supercurrent contribution to $Q$ is directly related to the dynamic part of the phase, $\int_0^\tau dt \varepsilon_m(q(t))$$$/\hbar$, while the pumped charge is

![Figure 1](image_url)
associated with the Berry’s phase \( \xi = i \oint \langle m|dm \rangle \) \[1\]. In the following quantitative analysis, the array is assumed to be uniform. The charging energy of the array is then:

\[
H_C = \frac{E_C}{N} \sum_{k=1}^{N-1} k(N-k)u_k^2 + \sum_{l=2}^{N-1} \sum_{k=1}^{l-1} k(N-l)u_ku_l,
\]

where \( E_C \equiv (2e)^2/2C \), \( C \) is the common capacitance of each junction in the array, and \( u_k \equiv n_k - q_k \). In the regime of accurate pumping the main contribution to \( Q \) comes from the second term in \( \langle 1 \rangle \) while the supercurrent gives only small corrections limiting the pumping accuracy. The necessary condition for this regime to exist is \( E_1 \ll E_C \), which we assume from now on. As in the case of Berry’s phase, the second term in eq. \( \langle 2 \rangle \) does not vanish because the integration contour encloses the singularity where the energies of several charge states coincide. This degeneracy occurs when \( q_k = 1/N \) for all \( k \). For such \( q \), the array dynamics reduces to that of a particle on the \( N \) sites with equal energies forming a loop. The \( N \) eigenstates of such a particle are plane waves with energies \( \varepsilon_k = -E_1 \cos[(\varphi - 2\pi k)/N] \), \( k = 0, 1, \ldots, N-1 \), and the equilibrium supercurrent \( I(\varphi) \) through the array is:

\[
I(\varphi) = \frac{I_c}{N} \sin \frac{\varphi}{N}, \quad \varphi \in [-\pi, \pi].
\]

Here \( I_c = 2eE_1/h \) is the critical current of one junction. Relation \( \langle 2 \rangle \) should be continued periodically in \( \varphi \) beyond the interval \([-\pi, \pi]\), and \( I(\varphi) \) exhibits cusps at \( \varphi = \pm \pi \). It also shows that the supercurrent decreases only as \( N^{-2} \) at large \( N \).

Large supercurrent \( \langle 3 \rangle \) at resonant \( q \) means that the trajectory in \( q \)-space for accurate pumping should circle the degeneracy point sufficiently far away from it. It then successively brings in resonance the pairs of states that correspond to a Cooper pair occupying two neighboring islands of the array (as illustrated in Fig. 2 (a) for \( N = 3 \)). If this process is slow, the Cooper pair is transported adiabatically between the islands by the usual two-state level-crossing transitions that shift it along the array following the gate voltages. One Cooper pair is then transported through the array per cycle corresponding to a \( q \)-space trajectory circling once around the degeneracy point. One condition necessary for accurate pumping is that the probability of the Landau-Zener transitions to the excited states is negligible and the array remains in the minimum-energy state throughout the cycle. This condition limits the rate of pumping, \( 1/\tau \), by the Josephson coupling energy, \( \hbar/\tau \ll E_1 \). However, even then, i.e. in the regime of the present work, the pumping is not accurate due to the nonvanishing \( E_1/E_C \).

The gate voltages in an \( N \)-pump are typically \( \langle 4 \rangle \) sequences of triangular pulses shown in Fig. 1 (b). The array is then completely translationally-invariant. The pumping cycle with triangular gates can be divided into \( N \) steps with Cooper pair transported through one junction at each step. Instead of calculating the charge pumped in one junction during the whole cycle, \( Q_P \), we can equivalently sum up the charges \( Q_j \) transferred in all junctions during one step of pumping:

\[
Q_P = 2\text{Re} \oint \langle m|Q_k|dm \rangle = \sum_{j=1}^{N} Q_j.
\]

Introducing variations \( \delta \langle n_j \rangle \) of the average number of Cooper pairs on each island during one step, we can express the charge conservation (which follows from the Hamiltonian \( \langle 5 \rangle \) as \( \delta \langle n_j \rangle = Q_j - Q_{j+1} \)). Translational invariance implies that the distribution \( \langle n_j \rangle \) is just shifted by one island during the step, \( \delta \langle n_j \rangle = \langle n_{j-1} \rangle - \langle n_j \rangle \). For triangular gates we have precisely one Cooper pair in the array, \( \sum_{j=1}^{N} \langle n_j \rangle = 1 \), and we then obtain: \( \sum_{j=1}^{N} Q_j = 1 + N(Q_N - \langle n_N \rangle) \). Here the index \( N \) and the adjacent junction are arbitrary. If we chose \( N \) such that the island is furthest away from the junction where the Cooper pair is tunnelling, we can neglect the occupation of the island in this equation and obtain:

\[
Q_P = 1 + NQ_N.
\]

Now we can use eqs. \( \langle 4 \rangle \) and \( \langle 5 \rangle \) to calculate the charge \( Q_N \) transferred during one pumping step through the junction that is most distant from the tunneling Cooper pair. Because of the energy difference in the denominator of eq. \( \langle 5 \rangle \), the main contribution to \( Q_P \) arises at the resonances when a Cooper pair is transferred between the two islands. In this situation, there are two lowest-energy states with energy separation on the order of \( E_3 \), and we can keep only the matrix elements of current between these two states in eq. \( \langle 5 \rangle \). At the two islands, where the Cooper pair is transferred, the resonant states are given by the usual expressions of the two state systems. To get a non-vanishing matrix element of the current in the \( N \)th junction, we must “extend” the wavefunctions of the resonant states from the two islands occupied by the Cooper pair to this junction. We obtain by perturbation theory in \( E_3 \) and by eqs. \( \langle 4 \rangle \) and \( \langle 5 \rangle \):

\[
Q_P = 1 - \frac{N^{N-1}(N-1)}{(N-2)!} \left( \frac{E_1}{2E_C} \right)^{N-2} \cos \varphi.
\]
Thus the probability of Cooper pair tunneling limiting the pumping accuracy decreases roughly as $(E_J/E_C)^{N-2}$ with increasing $N$. It is physically clear that this conclusion should remain valid for non-uniform arrays also. Results of both numerical (from eqs. (4) and (5)) and perturbative (eq. (10)) calculations are shown in Table I.

Table 1: Comparison between the numerically (top) and perturbatively (bottom) obtained transport inaccuracies ($\varphi = 0$) for uniform Cooper pair pumps with $N = 3, 5,$ or 7 junctions and few values of $E_J/E_C$.

|       | $N = 3$       | $N = 5$       | $N = 7$       |
|-------|---------------|---------------|---------------|
| $E_J/E_C$ |              |               |               |
| 0.01  | 0.0872        | 5.20 $\cdot 10^{-5}$ | 1.84 $\cdot 10^{-8}$ |
| 0.03  | 0.245         | 1.39 $\cdot 10^{-5}$ | 4.40 $\cdot 10^{-6}$ |
| 0.1   | 0.634         | 4.63 $\cdot 10^{-5}$ | 1.60 $\cdot 10^{-5}$ |
| 0.0900| 5.21 $\cdot 10^{-2}$ | 1.84 $\cdot 10^{-3}$ |               |

For $\varphi = 0$ we obtain:

\[
Q_P = 1 - \frac{3}{2} \left( \frac{1}{3\sqrt{2}\delta} + \frac{1}{2 - 3\sqrt{2}\delta} + \frac{3}{\sqrt{8}\delta} + \frac{1}{1 - \sqrt{2}\delta} \right) \frac{E_J}{E_C},
\]

where $\delta = [(q_1 - 1/3)^2 + (q_2 - 1/3)^2]^{1/2}$ is the radius of the trajectory. The results of eqs. (11) and (1) for $N = 3$ almost coincide for the optimum radius of $\delta \approx 0.3$. It should be noted that the quantum inaccuracy in pumping is very significant: it is more than 20% at $E_J/E_C = 0.03$, which is a very small value. (Practically, $E_J$ is limited from below by temperature, while maximum $E_C$ is limited by minimum feature size in fabrication.) The accurate coherent pumping is thus practically impossible in the $N = 3$ pumps. Figure 2 shows $Q_P$ calculated numerically from eq. (4) for $\varphi = 0$ (no direct supercurrent present) as a function of $\delta$. For small radii the charge is quadratic in $\delta$, $Q_P/\pi\delta^2 = (8E_C/27E_J)^2$, as can be derived from eq. (4). At large $\delta$ the pumped charge in Fig. 2 starts to decrease since the trajectory approaches another degeneracy point at $q_1 = q_2 = 2/3$.

Finally, we consider supercurrent in the regime of accurate pumping. In this regime, current is largest during the Cooper pair transition between a pair of islands of the array. The effective tunneling amplitude of this transition consists of two parts: the direct transition between the islands through one junction separating them, and the transition through the rest $N - 1$ junctions. Interference between these two processes determines the phase-dependent part of the Cooper pair energy. We obtain the supercurrent of $(N - 1)$-junction tunneling by standard perturbation theory:

\[
I(\varphi) = I_c \frac{E_J}{(\varepsilon^2 + E_J^2)^{1/2}} \frac{N^{N-2}(N-1)!}{2(N-2)!} \left( \frac{E_J}{2E_C} \right)^{N-2} \sin \varphi,
\]

where $\varepsilon$ is the energy difference between the Cooper pair states on the two islands of resonant transition. Current (12) at resonance scales as $(E_J/E_C)^{N-2}$, but
since the transition region represents only a fraction of the pumping cycle on the order of $E_J/E_C$, the overall supercurrent contribution to the pumped charge scales as $(E_J/E_C)^{N-1}$. This means that the inaccuracy is dominated by quantum tunneling of Cooper pairs (given by eqs. (10) or (11)) even with nonzero $\varphi$ if the pumping is not too slow.

In conclusion, we have developed a quantitative theory of adiabatic Cooper pair transport in one-dimensional arrays of Josephson junctions. The theory predicts, among other things, that the quantum inaccuracy of the Cooper pair pumping in arrays with a small number of junctions is very large, the fact that can explain lack of success of the experimental attempt to pump Cooper pairs.

This work was supported by AFOSR of the U.S. and the Academy of Finland.

References

[1] H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M.H. Devoret, Europhys. Lett. 17, 249 (1992).
[2] J.P. Pekola, A.B. Zorin, and M.A. Paalanen, Phys. Rev. B 50, 11255 (1994).
[3] M.W. Keller, J.M. Martinis, N.N. Zimmerman, A.H. Steinbach, Appl. Phys. Lett. 69, 1804 (1996); M.W. Keller, J.M. Martinis, and R.L. Kautz, Phys. Rev. Lett. 80, 4530 (1998).
[4] L.P. Kouwenhoven, A.T. Johnson, N.C. Van der Vaart, C.J.P.M. Harmans, C.T. Foxon, Phys. Rev. Lett. 67, 1626 (1991).
[5] V.I. Talyanskii, J.M. Shilton, M. Pepper, C.G. Smith, C.J.B. Ford, E.H. Linfield, D.A. Ritchie, G.A.C. Jones, Phys. Rev. B 56, 15180 (1997).
[6] D.J. Thouless, Phys. Rev. B 27, 6083 (1983).
[7] Q. Niu, Phys. Rev. Lett. 64, 1812 (1990).
[8] H.D. Jensen and J.M. Martinis, Phys. Rev. B 46, 13407 (1992).
[9] D.V. Averin, A.A. Odintsov, and S.V. Vyshenskii, J. Appl. Phys. 73, 1297 (1993).
[10] J.M. Martinis, M. Nahum, and H.D. Jensen, Phys. Rev. Lett. 72, 904 (1994).
[11] L. R. C. Fonseca, A. N. Korotkov, and K. K. Likharev, Appl. Phys. Lett. 69, 1858 (1996).
[12] D.V. Averin, Solid State Commun. 105, 659 (1998).
[13] L.J. Geerligs, S.M. Verbrugh, P. Hadley, J.E. Mooij, H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M.H. Devoret, Z. Phys. B 85, 349 (1991).
[14] D.V. Averin and K. K. Likharev, in: Mesoscopic Phenomena in Solids, ed. by B. L. Altshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991).
[15] M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).