Anemia and iron deficiency in gastrointestinal and liver conditions

Jürgen Stein, Susan Connor, Garth Virgin, David Eng Hui Ong, Lisandro Pereyra

Jürgen Stein, Interdisciplinary Crohn Colitis Centre Rhein-Main, Frankfurt am Main, Department of Gastroenterology and Clinical Nutrition, DGD Clinics Sachsenhausen, Frankfurt am Main, 60594 Frankfurt, Germany

Susan Connor, Department of Gastroenterology and Hepatology, Liverpool Hospital, South Western Clinical School, University of New South Wales, Liverpool NSW 2170, Australia

Garth Virgin, Vifor Pharma, Flughofstrasse 61, CH-8152 Zurich, Switzerland

David Eng Hui Ong, Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, Singapore 119074, Singapore

Lisandro Pereyra, Servicio de Gastroenterología y Endoscopia, Hospital Alemán, Buenos Aires C1118AA T, Argentina

Author contributions: All authors contributed equally to the literature search and data interpretation; Stein J prepared the draft manuscript; all authors reviewed and approved the manuscript prior to submission.

Conflict-of-interest statement: No potential conflicts of interest relevant to this article were reported.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Jürgen Stein, MD, PhD, Professor, Interdisciplinary Crohn Colitis Centre Rhein-Main, Frankfurt am Main, Department of Gastroenterology and Clinical Nutrition, DGD Clinics, Schulstrasse 31, Frankfurt am Main, 60594 Frankfurt, Germany. j.stein@em.uni-frankfurt.de

Telephone: +49-69-905597810
Fax: +49-69-905597829
Received: April 6, 2016
Peer-review started: April 6, 2016
First decision: May 12, 2016
Revised: July 18, 2016
Accepted: August 10, 2016
Article in press: August 10, 2016
Published online: September 21, 2016

Abstract

Iron deficiency anemia (IDA) is associated with a number of pathological gastrointestinal conditions other than inflammatory bowel disease, and also with liver disorders. Different factors such as chronic bleeding, malabsorption and inflammation may contribute to IDA. Although patients with symptoms of anemia are frequently referred to gastroenterologists, the approach to diagnosis and selection of treatment as well as follow-up measures is not standardized and suboptimal. Iron deficiency, even without anemia, can substantially impact physical and cognitive function and reduce quality of life. Therefore, regular iron status assessment and awareness of the clinical consequences of impaired iron status are critical. While the range of options for treatment of IDA is increasing due to the availability of effective and well-tolerated parenteral iron preparations, a comprehensive overview of IDA and its therapy in patients with gastrointestinal conditions is currently lacking. Furthermore, definitions and assessment of iron status lack harmonization and there is a paucity of expert guidelines on this topic. This review summarizes current thinking concerning IDA as a common co-morbidity in specific gastrointestinal and liver disorders, and thus encourages a more unified treatment approach to anemia and iron deficiency, while offering gastroenterologists guidance on treatment options for IDA in everyday clinical practice.
Iron deficiency anemia (IDA) frequently originates in the gastrointestinal (GI) tract and is a common cause of patient referral to gastroenterologists. Guidelines for the management of IDA in GI conditions are lacking. Symptoms such as fatigue and impaired exercise capacity should prompt a diagnostic work-up for anemia (hemoglobin), iron status (transferrin saturation, ferritin) and inflammation (C-reactive protein). Treatment of IDA should aim to restore normal hemoglobin levels, red cell indices and iron status. Intravenous administration is the preferred iron treatment in patients with chronic GI bleeding, patients being unresponsive or intolerant to oral iron and patients requiring rapid hemoglobin correction.

Core tip: Iron deficiency anemia (IDA) frequently originates in the gastrointestinal (GI) tract and is a common cause of patient referral to gastroenterologists. Guidelines for the management of IDA in GI conditions are lacking. Symptoms such as fatigue and impaired exercise capacity should prompt a diagnostic work-up for anemia (hemoglobin), iron status (transferrin saturation, ferritin) and inflammation (C-reactive protein). Treatment of IDA should aim to restore normal hemoglobin levels, red cell indices and iron status. Intravenous administration is the preferred iron treatment in patients with chronic GI bleeding, patients being unresponsive or intolerant to oral iron and patients requiring rapid hemoglobin correction.

INTRODUCTION

Iron deficiency anemia (IDA) is a common complication in routine clinical practice that frequently originates in the gastrointestinal (GI) tract[1-3]. Patients with IDA are therefore often referred to gastroenterologists for further examination and/or treatment. IDA associated with GI disorders can substantially reduce quality of life, contribute to fatigue, and may even lead to hospitalization[4,5].

In contrast to the well-documented inflammatory bowel disease (IBD)-associated IDA[6,7], prevalence data for IDA associated with other pathological conditions of the GI tract are sparse (Table 1). Guidelines for the diagnosis and management of anemia and iron deficiency are available for IBD[8], but not for other GI conditions. Overall, there are three main pathological contributors to IDA, namely chronic bleeding, malabsorption and inflammation[9-13]. However, other factors, such as poor or selective diet, as well as iron malabsorption (e.g., due to decreased gastric pH) should not be neglected in patients referred for IDA assessment. This applies particularly to elderly patients[14-18].

Despite the increasing availability of effective and well-tolerated parenteral iron preparations for the treatment of IDA[19,20], a comprehensive overview of treatment approaches of IDA in GI conditions is currently lacking. Furthermore, definitions of IDA are inconsistent across clinical studies and publications, with the terms “iron deficiency”, “iron deficiency anemia” and “anemia” being used almost interchangeably. In addition, the diagnostic markers and cut-off levels used to define iron deficiency vary widely. While anemia is clearly defined according to the World Health Organization as a hemoglobin (Hb) level < 12 g/dL in women (< 11 g/dL in pregnant women) and < 13 g/dL in men, the situation is ambiguous for iron deficiency. Commonly, serum ferritin levels below 15-100 ng/mL (depending on the presence of concomitant inflammation) and transferrin saturation (TSAT) below 16%-20% are considered indicative of iron deficiency[1,7,8].

These aspects complicate the interpretation and comparability of data and highlight the need for standardization of definitions and proper assessment of iron status across different GI and liver diseases. Recently published reviews on IDA discuss IDA in general[21,22] but give only little attention to the fragmented yet consistent evidence that IDA is a common issue in most GI conditions. The aim of this review is therefore to illustrate how IDA represents a common co-morbidity in these disorders, and to encourage a more unified treatment approach to GI condition-associated anemia and iron deficiency (ID).

Relevant articles were identified by screening the PubMed database for articles on IDA or ID in the context of GI or liver disease and associated illnesses. Data reported in abstract form only were identified by manual search through abstracts from major congresses in the field. In addition, the authors’ own literature databases were screened for suitable publications. The results were filtered for articles with information on anemia prevalence and/or anemia management. The last search was conducted in June 2015.

ANEMIA AND ID IN DIFFERENT CONDITIONS

Esophagitis and hiatal hernia

Gastric bleeding from Cameron lesions in large diaphragmatic or hiatal hernia is an established cause of IDA[22,24]. However, axial and paraesophageal hernia without Cameron lesions can also be associated with IDA[25]. The reported incidence of IDA for all types of hernia ranges from 8% to 42%, with an average of 20%-26%.

Hiatal hernia increases the risk of IDA independent of comorbid esophagitis[27]. Suggested causes of hernia-related IDA are mechanical trauma plus esophagitis, erosions or gastro-esophageal acid reflux[25,26].

Notably, the absence of endoscopic evidence of erosions in the majority of patients with hernia-related IDA does not exclude their causal role[26]. Therefore,
even if no lesions are visible during endoscopy, larger hiatal hernia should still be considered as a possible cause of IDA with unexplained etiology.

Surgery in combination with proton pump inhibitor (PPI) therapy is evidently no better than PPI therapy alone in treating and preventing the recurrence of IDA, even in the case of larger hiatal hernia[26].

Table 1 Overview of diseases considered to be associated with iron deficiency/iron deficiency anemia

Conditions	Anemia or IDA prevalence	Predominant pathological contributors to anemia	Association with anemia and ID
Nonvariceal upper GI bleeding[29]	80%	√	> 80% of patients admitted to hospital with nonvariceal AUGIB were anemic at the time of discharge
Celiac disease[27,30]	32%-69%	√ √	Well-established relationship between celiac disease and IDA
Intestinal parasitic infections[31]	33%-61%	√	Most widely cited cause of IDA is abnormal iron absorption, but bleeding and inflammation are also known contributory factors
GI cancers[33,34,35,36,37-39]	50%-60%	√	T. trichiura and hookworm infections are closely associated with IDA
Esophagitis and hiatal hernia[20-26]	8%-42%	√	CRC: IDA associated with greater tumor diameter and with cancers of the right side of the colon
Bariatric surgery[27,30]	10%-40%	√	Poly: IDA much more common with malignant polyps than benign polyps
Intestinal failure[301-400]	30%-37%	√	GIST: Most frequent presentation is GI bleeding, which can result in anemia. In pediatric GIST, anemia is the most frequent clinical finding
Diverticular disease[40]	25%	√	Gastric cancers: 6.8-fold relative risk of gastric cancer in patients with Pernicious anemia Small bowel malignancies: Anemia among most common presenting symptoms
Restorative proctocolectomy[53]	6%-21%	√ √	Esophageal cancers: Patients with Fanconi anemia at increased risk
NSAID-associated fecal blood loss[5]	10%-15%	√	Gastric bleeding from hernia is an established cause of IDA
Angiodysplasia[5]	5%	√	Even in absence of visible lesions, large hernia may be a possible cause of IDA with unexplained etiology
Gastric antral vascular ectasia (GAVE)[5,52,53]	1%-2%	√	ID and anemia are well-known risks after bariatric procedures, but causes are multifactorial and vary depending on exact procedure and patient population
Gastritis[7,44]	NA	√ √	Intestinal failure is associated with ID due to malabsorption, GI blood loss, and multiple surgery
Peptic ulcer[57]	NA	√	One of the most common causes of lower GI bleeding leading to IDA
Chronic hepatitis and liver conditions with GI bleeding[53]	75%	√	Increasing prevalence due to rise in elderly population
Non-alcoholic fatty liver disease (NAFLD)[74]	NA	√	IDA due to mucosal bleeding and impaired iron absorption in patients developing symptomatic or asymptomatic pouchitis

H. pylori infection suggested to play important role in development of IDA

H. pylori: Helicobacter pylori; AUGIB: Acute upper gastrointestinal bleeding; CRC: Colorectal cancer; GI: Gastrointestinal; GIST: Gastrointestinal stromal tumors; ID: Iron deficiency; IDA: Iron deficiency anemia; NA: Not available.

Nonvariceal upper GI bleeding is a common disorder associated with a high mortality rate of 3% to 15%[28-30]. While peri-endoscopic management of AUGIB, including blood transfusions, has been well characterized and standardized[31,32], guidelines for the monitoring and treatment of IDA in
patients after non-variceal AUGIB are still lacking.

Recently, a retrospective study showed that more than 80% of patients admitted to hospital with non-variceal AUGIB were anemic at the time of discharge\(^\text{[33]}\). Of these, only 16% received a recommendation to begin oral iron supplementation while intravenous iron was not even considered, demonstrating that post-discharge anemia is often disregarded.

Studies analyzing the clinical impact and risks associated with anemia after AUGIB are scarce. One study revealed that patients with hemoglobin (Hb) values < 10 g/dL after AUGIB had two-fold greater risks of re-bleeding and mortality than patients with Hb values \(\geq 10\) g/dL\(^\text{[41]}\).

A double-blind, placebo-controlled trial, recently demonstrated that patients with IDA after non-variceal AUGIB clearly benefit from iron supplementation\(^\text{[35]}\). In this study, oral and intravenous iron appeared to be equally effective in raising Hb levels, probably since most patients were not iron deficient at enrolment. However, iron stores (measured as serum ferritin) were replenished most effectively with intravenous iron supplementation.

Regarding the transfusion of red blood cell concentrates (RBC), a recent study in patients with AUGIB (TRIGGER)\(^\text{[33]}\) suggests that the Hb threshold for RBC transfusion can be safely lowered without adversely affecting clinical outcomes. This is in line with results in other indications such as cardiac surgery, critical care and hip surgery. Accordingly, restrictive Hb thresholds (< 8.0 g/dL) should be considered except for patients with ischemic heart disease as pre-existing comorbidity\(^\text{[35,36]}\).

NSAID-associated fecal blood loss

The administration of nonsteroidal anti-inflammatory drugs (NSAIDs) is known for its association with upper and lower GI injury\(^\text{[37-39]}\). This injury can include bleeding\(^\text{[40-42]}\) which may be severe enough to result in hospitalization\(^\text{[43,44]}\). Even low dose aspirin as well as non-aspirin-NSAIDs increase mean fecal blood loss from roughly 0.5 mL/d to 1-2 mL/d (i.e., 0.5-1.0 mg iron loss/d)\(^\text{[42]}\). Among patients treated with aspirin doses \(\geq 1800\) mg/d, 31% had a blood loss of \(\geq 5\) mL/d (i.e., \(\geq 2.5\) mg iron loss/d). Although cyclooxygenase-2 (COX-2) inhibitors are associated with fewer GI injuries than traditional NSAIDs, long-term use of a COX-2 inhibitor may also induce GI injuries and require concomitant medication for associated anemia and small intestinal injuries\(^\text{[43]}\). Notably, routine endoscopic examination may not reveal NSAID-induced GI injuries. Therefore, capsule endoscopy is recommended to screen for GI injuries in patients taking NSAIDs and presenting with unexplained anemia or ID\(^\text{[41,45,46]}\).

Portal hypertensive gastropathy and gastric antral vascular ectasia

Portal hypertensive gastropathy (PHG) and gastric antral vascular ectasia (GAVE), although being distinct entities\(^\text{[37]}\), can cause chronic gastrointestinal blood loss in patients with liver cirrhosis\(^\text{[48,49]}\). Most frequently found in association with liver cirrhosis, PHG can also occur in non-cirrhotic patients (e.g., splanchnic venous thrombosis)\(^\text{[50]}\). The management of PHG is based on reducing hepatic venous pressure gradients and iron replacement therapy and/or blood transfusions. Severe cases may require shunt procedures\(^\text{[51-53]}\).

Autoimmune atrophic gastritis

Autoimmune gastritis (AIG) is implicated in 20%-30% of IDA cases that are refractory to oral iron\(^\text{[57,58]}\). AIG, first described by Faber in 1909 as achlorhydric gastric atrophy, is a chronic progressive inflammatory condition leading to the decrease or disappearance of parietal cells, which results in reduced or absent acid production (hypochlorhydria or achlorhydria)\(^\text{[59]}\). The lack of gastric acidity has only recently been confirmed as key factor for impaired intestinal iron absorption\(^\text{[60]}\). IDA is more often associated with AIG than classical pernicious anemia and frequently precedes vitamin B\(_12\) deficiency (at least in fertile women)\(^\text{[61,62]}\).

Helicobacter pylori gastritis

IDA is a recognized extragastric manifestation of Helicobacter pylori (\(H. pylori\)) infection\(^\text{[63]}\). Over 50% of patients with unexplained refractory IDA have active \(H. pylori\) infection\(^\text{[67,58]}\). Data, showing that \(H. pylori\) eradication reverses IDA, were confirmed by several observational and interventional trials, subsequently summarized in two meta-analyses of randomized controlled trials\(^\text{[57,64-65]}\). Accordingly, the Maastricht IV \(H. pylori\) consensus report\(^\text{[66]}\) and other national and international guidelines\(^\text{[67-69]}\) recommend \(H. pylori\) eradication for the treatment of IDA of unknown origin. Notably, Bismuth-based eradication therapy is more effective in terms of increasing hemoglobin and iron stores than first line PPI-based triple therapy in patients with IDA and \(H. pylori\) infection\(^\text{[63]}\).

Discussed mechanisms underlying the pathogenesis of \(H. pylori\)-related IDA include occult chronic GI bleeding due to gastric mucosal microerosions, competition for dietary iron by the bacteria, reduced...
ascorbic acid concentration in the gastric juice, affecting the absorption of dietary iron and upregulation of proinflammatory cytokines and hepcidin, the key regulator of iron homeostasis (Figure 1)\(^{[57,70-72]}\). In one study, \textit{H. pylori} strains retrieved from patients with IDA exhibited faster, iron-dependent cell growth and an enhanced iron uptake than strains from patients without IDA\(^{[73]}\). Furthermore, \textit{H. pylori} accelerates the development of inflammation, dysplasia and adenocarcinoma (mediated by the \textit{H. pylori} virulence factor cytotoxin-associated gene A [CagA]) in an ID environment\(^{[74-76]}\). CagA also facilitates \textit{H. pylori} colonization through iron acquisition, indicating that CagA provides a survival advantage for \textit{H. pylori} in this setting.

Bariatric surgery

There is growing evidence of potentially severe, occasionally even life-threatening, nutritional and pharmacological consequences of bariatric surgery\(^{[77]}\). ID and IDA after bariatric procedures can result from intestinal bleeding (e.g., from marginal ulcers) or reduced iron absorption due to postoperative intolerance for red meat, diminished gastric acid secretion or exclusion of the duodenum from the alimentary canal\(^{[78,79]}\).

The reported incidence of ID in patients following gastric bypass surgery ranges from 12% to 47%\(^{[77]}\). However, the interpretation of reported incidence rates is complicated by different definitions of ID and IDA, postsurgical follow-up periods, types of interventions and patient populations\(^{[80]}\). In a large, patient record review of 959 patients who underwent laparoscopic Roux-en-Y gastric bypass (RYGB) between 2001 and 2011, 51.3% were iron deficient and 6.7% required intravenous iron therapy\(^{[81]}\). Amongst these patients, the prevalence of ID is significantly higher in premenopausal women than in postmenopausal women and males (72% vs 35% and 20%). Comparing different types of surgery, a cross-sectional pilot study of 95 patients showed no significant difference in ID rates after RYGB or sleeve gastrectomy (30% vs 36.4%)\(^{[82]}\).

Since oral iron substitution has been shown to be relatively ineffective following bariatric surgery, and tolerance to oral iron preparations is often poor; intravenous iron treatment has been put forward as a preferable option\(^{[77]}\). Some authors suggest that repeated doses of intravenous iron may be required over the course of a year\(^{[83]}\).

Ferric carboxymaltose (FCM) showed promise for the treatment of IDA in five phase 3 clinical trials involving 281 patients who had undergone bariatric surgery\(^{[84]}\). FCM exhibited similar or improved efficacy in terms of increasing hemoglobin, ferritin and transferrin saturation (TSAT) values and a favorable safety profile compared with standard medical care (iron sucrose, ferric gluconate, iron dextran or oral...
iron). In addition, FCM offered the possibility for larger single-dose administrations at fewer visits compared to iron sucrose, ferric gluconate and oral iron.

Celiac disease

Celiac disease is one of the most common chronic inflammatory conditions of the GI system, affecting about 1% of the population. There is a well-established relationship between celiac disease and IDA. Anemia is the most common presenting symptom of celiac disease, found in 32%-69% of adult patients. Approximately 80% of anemic patients with celiac disease are also iron-deficient. In 49% of anemic patients with celiac disease, ID was found to be the only detectable abnormality. Conversely, among patients presenting with unexplained IDA, 5% have histologically-confirmed celiac disease.

Impaired iron absorption (due to villous atrophy of the intestinal mucosa) and blood loss are important pathological contributors to anemia in celiac disease. Occult GI bleeding was detected in about half of patients with celiac disease adhering to a gluten-free diet. In some patients, nutritional deficiencies may also be a (contributing) causative factor. Inflammation is a major contributor to IDA, with interleukin (IL)-1, IL-6, IL-10, interferon (IFN)-γ and tumor necrosis factor (TNF)-α as inducers of hepcidin, the main regulator of iron homeostasis. Accordingly, celiac disease-related IDA is refractory to oral iron treatment, and even after switching to a gluten-free diet, it takes 6-12 mo until most patients recover from anemia. Notably, half of patients remain iron-deficient even after 1-2 years on a gluten-free diet. The slow or lacking recovery from ID may be due to the low absorption rate of nutritional iron (1-2 mg/d), which hinders the repletion of severely depleted iron stores, and the potentially low content of dietary iron and other micronutrients in a gluten-free diet.

Therefore, patients with celiac disease clearly benefit from immediate intravenous iron treatment instead of switching to intravenous iron only after (foreseeable) non-response and/or intolerance to oral iron.

Intestinal failure

Intestinal failure (IF) results from obstruction, dysmotility, surgical resection, congenital defect, or disease-associated loss of absorption, and is characterized by the inability to maintain protein-energy, fluid, electrolyte, or micronutrient balance. In patients suffering from IF, total parenteral nutrition (TPN) is a life-saving intervention until full or partial recovery of enteral nutrition (EN). Nevertheless, patients with IF are prone to ID as a result of malabsorption, gastrointestinal blood loss and multiple surgical procedures. Accordingly, ID is the most common micronutrient deficiency during and after transition from TPN to EN, with reported incidences of 60%-80% for ID, and 30%-37% for IDA. A study from the Mayo Clinic, including 185 patients, showed that IDA developed much more rapidly in patients with fistula and bowel obstruction than in those with short bowel syndrome (SBS) and dysmotility. Despite the high prevalence of ID, iron is not routinely added to parenteral nutrition formulations because of the risk of anaphylaxis and concerns about incompatibilities. Although data describing the compatibility of iron supplementation with parenteral formulations are conflicting, iron dextran has been found to be compatible with lipid-free solutions at an amino acid concentration > 2%. A safer approach would prescribe intermittent infusion of therapeutic iron doses.

GI cancers

Anemia and IDA are common in patients with colorectal cancer (CRC), with a prevalence of 50%-60%. Risk factors for anemia in patients with CRC are greater tumor diameter and cancer in the right side of the colon. CRC is a cause of lower GI bleeding in 11% to 14% of cases, and malignant polyps are associated with greater blood loss and more frequent occurrence of IDA than benign polyps.

Anemia has also been described in the context of gastrointestinal stromal tumors (GIST), which are frequently associated with acute or chronic bleeding. In pediatric GIST, anemia is the most frequent clinical finding (86% with symptomatic anemia). Notably, anemia is also one of the most frequent side effects of imatinib, the standard treatment for advanced/metastatic GIST, including small bowel cancers. In addition to IDA, other specific forms of anemia such as pernicious anemia and Fanconi anemia are also increased in patients with gastric cancers (6.8-fold relative risk of pernicious anemia), small bowel malignancies and esophageal cancers.

Notably, ID (with or without anemia) is associated with an increased risk of GI malignancy 2 years after diagnosis of ID. Unexplained IDA is an important measure for detection of GI malignancy. In patients with advanced CRC, Hb levels < 11 g/dL are a poor prognostic factor and prompt referral as well as investigation of IDA are recommended in patients with CRC and cancers in general. However, treatment options for IDA are not discussed, as the guidelines primarily focus on surgical follow-up for CRC.

Since CRC surgery may result in significant blood loss, peroperative allogeneic blood transfusion (ABT) has often been used in CRC patients. However, ABT is associated with certain risks, such as an increased infective complication rate and increased disease recurrence. Furthermore, ABT involves significant cost, and RBCs are an increasingly limited resource. Therefore, alternative options such as perioperative intravenous iron administration have been examined and a multicenter...
randomized controlled trial comparing intravenous ferric carboxymaltose with oral iron as preoperative anemia treatment in colorectal cancer patients is ongoing\(^{[135]}\). One randomized prospective placebo-controlled pilot study showed preoperative intravenous iron sucrose (total iron dose 600 mg) to have no effect on serum Hb concentration or the rate of blood transfusion in 62 patients scheduled for resection of suspected colorectal cancer\(^{[128]}\). However, the trial included only 11 patients with confirmed anemia, while 22 had a normal Hb, and in 29 patients, there was no recent record of anemia status at all. Furthermore, a Hb increase of 0.5 g/dL, defined as the primary endpoint, is clinically insignificant and unlikely to have an impact on perioperative transfusion requirements\(^{[136]}\). In general, a Spanish expert panel on alternatives to allogeneic blood transfusion suggests perioperative intravenous iron administration to anemic patients scheduled for gastrointestinal surgery\(^{[137]}\), yet overall, there are only few high-quality prospective studies of sufficient power\(^{[138]}\).

Diverticular disease

Diverticular disease, one of the most common causes of lower GI bleeding\(^{[113,139]}\), accounts for 30%-50% of massive lower GI bleeding cases\(^{[140]}\). Diverticulitis is a major healthcare problem which often requires surgical management to optimize patient outcomes\(^{[141]}\). Despite reports of IDA associated with clinical cases of diverticulitis\(^{[142,143]}\), information on prevalence is lacking. In a study of 1124 cases of colonic diverticular disease seen at a hospital clinic during a 15-year period, 44 (3.9%) had diverticular hemorrhage and 25% of these patients had anemia (Hb < 12 g/dL)\(^{[144]}\). Anemia was most frequent in elderly patients (60 years and upwards) and those with acute bleeding.

Angiodysplasia

Angiodysplasia is a poorly understood clinical condition involving fragile, thin-walled vascular malformations which are susceptible to rupture, and may thus cause severe GI bleeding\(^{[145]}\). Angiodysplasia accounts for up to 5% of cases of GI bleeding overall and up to 40% of obscure GI bleeding cases\(^{[146,147]}\). Angiodysplasia has been found to be present in 61% of patients over the age of 60, often with co-existing conditions\(^{[148]}\). Chronic angiodysplasia can be difficult to manage due to frequent rebleeding of multiple lesions clustered in different localizations of the GI tract and therefore frequently results in chronic IDA\(^{[149]}\).

In the past, patients with angiodysplasia commonly had numerous and frequent blood transfusions and suffered end-organ damage due to refractory anemia\(^{[149]}\). Modern intravenous iron preparations can be considered a valuable treatment option if blood loss exceeds 10 mL/d (i.e., around 5 mg iron)\(^{[149]}\).

Intestinal parasitic infections

Several studies have shown parasitic infections, especially *T. trichiura* and hookworm infections, to be closely associated with IDA\(^{[150-152]}\). Hookworm infections are associated with mucosal damage and endogenous loss of iron\(^{[151]}\), while *T. trichiura* and *E. histolytica* cause bleeding and dysentery by invading the mucosa of the large intestine. Accordingly, intestinal parasitic infections are recognized as predictors of IDA.

Restorative proctocolectomy

A frequent complication of restorative proctocolectomy is pouchitis, which in turn is associated with IDA (6%-21% of patients with functional pouches) due to mucosal bleeding and impaired iron absorption\(^{[153]}\). Notably, pouchitis can be asymptomatic but still be associated with IDA, as can pouches in the absence of pouchitis. In patients that are intolerant or unresponsive to oral iron, intravenous iron and erythropoiesis-stimulating agent (ESA) treatment can correct the anemia. Another deficiency, vitamin B\(_2\) deficiency, occurs in 25%-53% of pouch recipients (compared to 3%-40% in the general population), being also a frequent cause of anemia. In general, vitamin B\(_2\) deficiency can be resolved with oral cyanocobalamin\(^{[153,154]}\), suggesting a post-procedural change in dietary habit as the main reason for this deficiency.

Chronic hepatitis and liver conditions

Among patients with chronic liver disease, 75% are anemic\(^{[155]}\), mainly due to acute or chronic GI hemorrhage which may lead to iron deficiency as a consequence. Acute gastrointestinal hemorrhage is a potentially serious complication of portal hypertension and the second most common cause of mortality in patients with cirrhosis. The increased risk of bleeding in severe hepatocellular disease can result from impaired blood coagulation due to reduced synthesis of blood coagulation factors by hepatocytes, and lower thrombocyte numbers. Initial treatment aims to correct hypovolemia and restore stable hemodynamic function (e.g., gelatin-based colloids, solutions of human albumin or red blood cell transfusion)\(^{[155]}\). In addition, IDA caused by chronic blood loss may be treated with oral iron or intravenous iron in cases of advanced chronic liver disease.

Notably, anemia is frequently associated with both peginterferon (PEG-IFN) and ribavirin (RBV) in the treatment of chronic hepatitis C virus (HCV) infection, particularly when these drugs are administered in combination\(^{[156-158]}\). According to the WHO guidelines, grade 1 anemia (Hb 10-11 g/dL) has been reported in up to 30% and grade 2 (< 10 g/dL) in 9%-10% of cases. The addition of direct-acting anti-virals (DAAs) such as telaprevir (TVR) or boceprevir (BOC) as part of...
the more effective antiviral triple combination therapy has been shown to increase anemia by up to 20% compared to PEG-IFN/RBV in both treatment-naïve and -non-naïve patients[159-163]. Since this treatment-induced anemia is mainly due to hemolysis, dose reduction of RBV by up to 50% is recommended, followed by administration of recombinant erythropoietin[156,164-166]. Evaluation of inosine triphosphatase polymorphisms may help to predict the risk of anemia and response to treatment[156,167-169]. Second generation DAAAs, including simeprevir (SMV), sofosbuvir (SOF), daclatasvir (DCV), and ledipasvir (LDV), approved in combination (e.g., SOF/SMV) as IFN-free regimens for the treatment of genotype 1 HCV infection, offer significantly greater cure rates and shorter treatment duration, and have been associated with lower incidence rates of anemia, ranging from 5% to 20\%[170].

Non-alcoholic fatty liver disease
Non-alcoholic fatty liver disease (NAFLD) is becoming the most common liver disease worldwide (estimated prevalence of 25%-30\%), with one-third of adult patients being iron deficient (TSAT < 20\%)[171]. ID was significantly associated with female gender, obesity, increased BMI, lower alcohol consumption, non-white race and increased levels of IL-6 and IL-1\beta. In contrast to patients with obesity-related, low-grade inflammation, serum hepcidin levels were low in NAFLD subjects with ID, reflecting an appropriate response of hepcidin signaling to ID. The authors concluded that initially, obesity-induced systemic inflammation may increase hepcidin levels and contribute to ID, but hepcidin is appropriately downregulated after ID is established[172]. Similar results of decreased intestinal iron absorption that are inversely associated with serum and urinary hepcidin levels have been reported in dysmetabolic iron overload syndrome (DIOS)[172] which is associated with half of NAFLD cases. Based on hepatic gene expression studies in pediatric patients with non-alcoholic steatohepatitis (NASH), it is hypothesized that, (1) a decreased level of transferrin receptor I in NASH patients is an indicator of reduced erythropoietic activity in the bone marrow, a typical feature of anemia of chronic inflammation; and (2) that elevated expression of transferrin and transferrin receptor II may result in the upregulation of hepcidin, leading to impaired duodenal iron absorption. In addition, the authors demonstrated that elevated serum ferritin levels do not reflect increased hepatic iron stores in patients with NASH, but are rather a consequence of hepatic and/or obesity-related inflammation[173].

DISCUSSION
While the origin of IDA is often multifactorial, a close relationship with various GI conditions has been established (Table 1)[1,2]. Nevertheless, management of patients with IDA often remains inadequate[1,4]. Even without anemia, ID can have a substantial impact on physical and cognitive function and quality of life (e.g., fatigue)[174-177] (Figure 2). This supports...
the need for regular assessment of iron status and consideration of the clinical consequences of any disturbance of iron status. Patients with typical GI symptoms, such as epigastric pain, change in bowel habit, weight loss, early satiety, or poor appetite, should be assessed for ID and anemia, since these symptoms are often associated with acute or chronic blood loss, malabsorption and/or chronic inflammation. In the planning of treatment for ID/IDA and the selection of the iron administration route, the frequency and magnitude of blood loss as well as the known side effects of oral iron should be considered.

Although chronic GI bleeding and malabsorption in GI conditions are well-recognized causes of ID/IDA, other factors such as age and chronic inflammation that inhibit iron availability via increased hepcidin levels should also be borne in mind. Normal iron homeostasis is based on two pillars: absorption of nutritional iron by enterocytes in the duodenum and upper jejunum (1-2 mg/d), and recycling of iron via phagocytosis of senescent red blood cells (20-25 mg/d). Absorbed or recycled iron is transiently stored in the monocytes/macrophages of the reticuloendothelial system, from which it is released via ferroportin, loaded on transferrin and transported to the bone marrow for erythropoiesis. Hepcidin is a key regulator of iron homeostasis, blocking the ferroportin-mediated release of iron from enterocytes and macrophages, and impairing the utilization of nutritional or supplemental oral iron. In patients with inflammation, iron release from the reticuloendothelial system is reduced to 44% of that measured in normal subjects.

Diagnosis of anemia and ID involves standard laboratory tests (Hb, serum ferritin, TSAT) and blood counts, with low serum Hb or abnormal red blood cell indices usually being the initial finding in a routine complete blood count. In some regions, anemic patients should be tested for hemoglobinopathies to exclude genetic reasons for anemia. Since little consensus exists among guidelines on different GI conditions as to the level of anemia that requires follow-up, it has been recommended that any degree of anemia should be further investigated for the presence of ID (Figure 3).

In clinical practice, iron status is mainly assessed on the basis of serum ferritin levels. Serum ferritin is subject to gender differences and falsely elevated levels in populations with inflammatory reactions since it is also an acute-phase reactant. Therefore, the diagnostic workup of anemic patients (i.e., men with Hb < 13 g/dL or non-pregnant women with Hb < 12 g/dL) should include CRP, to detect underlying inflammatory reactions (suggested cut-off 5 mg/L), and TSAT (suggested cut-off 20%), a marker of low iron availability that is less affected by inflammatory reactions.

Additional markers of ID include the percentage of hypochromic red cells (%HYPO, suggested cut-off 5%) and the hemoglobin content of reticulocytes (CHr, suggested cut-off 29 pg) as well as serum levels of soluble transferrin receptors (sTfR) and zinc protoporphyrin (ZPP). Since sTfR levels reflect the erythropoietic activity rather than the iron status, sTfR

Figure 3 Suggested approach for the assessment and treatment of iron deficiency/iron deficiency anemia in clinical practice. In patients with inflammation, ferritin levels < 100 ng/mL should be considered as iron-deficient; Hb increase < 2 g/dL in 4 wk. Stein et al. CHr: Hemoglobin content of reticulocytes; CRP: C-reactive protein; ESA: Erythropoiesis-stimulating agent; Hb: Hemoglobin; %HYPO: Percent hypochromic red blood cells; ID: Iron deficiency; IDA: Iron deficiency anemia; TSAT: Transferrin saturation.

Stein J et al. IDA in GI and liver conditions

WJG | www.wjgnet.com | September 21, 2016 | Volume 22 | Issue 35 | 7916
has been vastly improved by new, well-tolerated preparations\cite{57,149,187}. A review issued by the United States Food and Drug Administration (FDA) studying serious adverse reactions across different intravenous compounds (iron sucrose, ferric gluconate and low molecular weight iron dextran) showed a cumulative rate of only $< 1:200000$\cite{188,189}. In 2013, the European Medicines Agency (EMA) published an assessment report\cite{190} concluding that the benefits of intravenous iron-containing medicinal products continue to outweigh the risks in the treatment of iron deficiency when the oral route is insufficient or poorly tolerated. Notably, the EMA removed the necessity of a test dose, yet trained staff and resuscitation facilities to manage anaphylactic or anaphylactoid reactions should be available when any intravenous iron product is administered.

Simplified scheme for estimation of total iron requirements\cite{57}.

cannot be used in patients treated with ESAs.

Analogous to patients with IBD, iron replacement should also be initiated in non-IBD patients, once IDA is clearly ascertained or deemed likely based on assessed iron markers. Treatment options for IDA include oral and parenteral iron, erythropoeis-stimulating agents and blood transfusions. There is widespread support for iron supplementation both for the correction of anemia and for replenishment of body iron stores\cite{1}. Currently, the first-line approach for treating IDA is oral iron; usually, 200 mg iron is administered twice daily, but lower doses may be as effective and better tolerated\cite{11}. However, the efficacy of oral iron may be limited when GI uptake is impaired (e.g., due to chronic inflammatory conditions, celiac disease or duodenal resection) or patient compliance is poor (e.g., due to gastrointestinal side effects such as nausea, flatulence and diarrhea\cite{18}). Also large iron deficits that result from chronic or acute GI bleeding or perioperative blood loss cannot be adequately and quickly counteracted with oral iron. Notably, oral iron can exacerbate existing symptoms of GI disease\cite{4,7}, and particularly oral ferrous salts lead to oxidative stress, as evidenced by increased levels of non-transferrin bound iron (NTBI)\cite{183}.

Intravenous iron has proven its efficacy and tolerability in a wide range of therapeutic areas, and is recommended in respective treatment guidelines\cite{1,8,127,184-186}. In particular, parenteral iron is considered advisable for patients with GI conditions who cannot be treated adequately with oral iron supplements due to severe GI side effects, inadequate absorption, or anemia requiring urgent correction. Intravenous iron replacement facilitates faster correction of ID and avoids GI side effects by bypassing the GI tract. Although intravenous iron is more costly than oral treatment, administration by a medical professional ensures compliance and more reliable repletion of iron stores which in turn may prevent anemia recurrence and related treatment costs in the long term.

The underutilization of intravenous iron is largely based on past experience with high molecular weight iron dextran (HMWID) that is associated with anaphylactic reactions and therefore has been removed from the market in the United States and Europe. In recent years, safety of intravenous iron

| Table 2 Estimated total iron deficit (mg elemental iron) based on hemoglobin and body weight |
|--------------------------------------|----------------|----------------|----------------|----------------|----------------|
| Degree of iron deficiency | Hemoglobin level (g/dL) | Iron deficit (mg) | Body weight < 70 kg | Body weight ≥ 70 kg |
|--------------------------------------|----------------|----------------|----------------|----------------|----------------|
| Moderate | 10-12 (women) | 1000 | 1500 |
| 10-13 (men) | 1500 | 2000 |
| Severe | 7-10 | 2000 | 2500 |
| Critical | < 7 | 2500 |
| Simplified scheme for estimation of total iron requirements\cite{57}. |
option and as rescue treatment when faced with a life-threatening situation (e.g., in severe cases of acute bleeding)\(^4_5\). There is a wealth of evidence concerning post-operative mortality and morbidity following blood transfusion, even after transfusion of a single RBC unit\(^193_195\). Consequently, a restrictive approach to blood transfusion is warranted except for patients who present with ischemic heart disease as pre-existing comorbidity\(^193_195\). In patients with GI disease, transfusions should aim to restore Hb to a safe level, but not necessarily up to normal values, and iron supplementation should be given subsequently to replenish stores\(^11\).

CONCLUSION

IDA is a common comorbidity in patients with GI or liver disorders. In general, the origin of IDA can be multifactorial, with bleeding, malabsorption and inflammation playing important roles in the context of different GI conditions. IDA can contribute substantially to the morbidity and mortality of the underlying disorder and even ID without anemia can reduce quality of life, exercise capacity and cognitive function. Therefore, effective treatment of ID and IDA as well as prevention of recurrence are necessary and may provide an important alleviation of the overall disease burden. The lack of guidelines on diagnosis and treatment of IDA in the field of GI disease results in suboptimal assessment and management of IDA.

The standard laboratory approach used to investigate IDA would benefit from inclusion of TSAT assessment, which is less affected by inflammatory reactions than the commonly-used acute-phase protein serum ferritin.

Oral iron, often selected as the initial treatment option, has considerable limitations in GI patients due to severe GI side effects, inadequate absorption and a slow course of action. Furthermore, patient compliance with oral iron therapy is often poor. If oral therapy fails or is inadvisable, intravenous iron replacement is a valuable option. Intravenous iron therapy is more efficient than oral iron, and faster replacement is a valuable option. Intravenous iron therapy should be continued until iron stores are completely replenished. During subsequent follow-up visits for their GI disorder, patients should be routinely monitored for any signs of ID or IDA.

ACKNOWLEDGMENTS

Medical writing support was provided by SFL Regulatory Affairs & Scientific Communication, Switzerland and funded by Vifor Pharma. In addition, the authors thank Janet Collins (ICCC Rhein-Main, Frankfurt, Germany) for fine-tuning and proofreading the manuscript.

REFERENCES

1. Goddard AF, James MW, McIntyre AS, Scott BB. Guidelines for the management of iron deficiency anaemia. Gut 2011; 60: 1309-1316 [PMID: 21561874 DOI: 10.1136/gut.2010.228874]

2. Luman W, Ng KL. Audit of investigations in patients with iron deficiency anaemia. Singapore Med J 2003; 44: 504-510 [PMID: 15024453]

3. Marignani M, Angeletti S, Filippi L, Danieli R, Schillaci O. Occult and obscure bleeding, iron deficiency anaemia and other gastrointestinal stories (Review). Int J Mol Med 2005; 15: 129-135 [PMID: 15583839]

4. Bayraktar UD, Bayraktar S. Treatment of iron deficiency anaemia associated with gastrointestinal tract diseases. World J Gastroenterol 2010; 16: 2720-2725 [PMID: 20533591 DOI: 10.3748/wjg.v16.i22.2720]

5. Zhu A, Kaneshiro M, Kau nitz JD. Evaluation and treatment of iron deficiency anaemia: a gastroenterological perspective. Dig Dis Sci 2010; 55: 548-559 [PMID: 20108038 DOI: 10.1007/s10620-009-1108-6]

6. Stein J, Hartmann F, Dignass AU. Diagnosis and management of iron deficiency anaemia in patients with IBD. Nat Rev Gastroenterol Hepatol 2010; 7: 599-610 [PMID: 20924367 DOI: 10.1038/nrgastro.2010.151]

7. Gasche C, Berstad A, Befrits R, Beglinger C, Dignass A, Erichsen K, Gomollon F, Hjortswang H, Kouroubakis I, Kuligg S, Oldenburg B, Rampton D, Schroeder O, Stein J, Travis S, Van Assche G. Guidelines on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. Inflamm Bowel Dis 2007; 13: 1545-1553 [PMID: 17985376 DOI: 10.1002/ibd.20285]

8. Dignass AU, Gasche C, Bettenworth D, Birgegård J, Danese S, Gisbert JP, Gomollon F, Iqbal T, Katsanos K, Kouroubakis I, Magro F, Savoye G, Stein J, Vavricka SR. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J Crohns Colitis 2015; 9: 211-222 [PMID: 25518052 DOI: 10.1093/ecco-jcc/jju009]

9. Bager P, Dahlerup JF. Randomised clinical trial: oral vs. intravenous iron after upper gastrointestinal haemorrhage—a placebo-controlled study. Aliment Pharmacol Ther 2014; 39: 176-187 [PMID: 24251969 DOI: 10.1111/apt.12556]

10. Fernández-Bañares F, Monzón H, Forné M. A short review of malabsorption and anemia. World J Gastroenterol 2009; 15: 4644-4652 [PMID: 19787827 DOI: 10.3748/wjg.15.4644]

11. Gomollon F, Gisbert JP. Anemia and inflammatory bowel diseases. World J Gastroenterol 2009; 15: 4659-4665 [PMID: 19778829 DOI: 10.3748/wjg.15.4659]

12. Niv E, Elia A, Zissin R, Naftali T, Novis B, Lisher M. Iron deficiency anaemia in patients without gastrointestinal symptoms—a prospective study. Fam Pract 2005; 22: 58-61 [PMID: 15644385 DOI: 10.1093/fampra/cmb705]

13. Patterson RN, Johnston SD. Iron deficiency anaemia: are the British Society of Gastroenterology guidelines being adhered to? Postgrad Med J 2003; 79: 226-228 [PMID: 12743344]

14. Busti F, Camposotrini N, Martinelli N, Girelli D. Iron deficiency in the elderly population, revisited in the hepcidin era. Front Pharmacol 2014; 5: 83 [PMID: 24795637 DOI: 10.3389/fphar.2014.00083]

15. Dharmarajan TS, Bullecer MLF, Pitchumoni CS. Anemia of gastrointestinal origin in the elderly. Pract Gastroenterol 2015; 26: 22-36

16. Ferguson A, Brydon WG, Brian H, Williams A, Mackie MJ. Use of whole gut perfusion to investigate gastrointestinal blood loss in patients with iron deficiency anaemia. Gut 1996; 38: 120-124 [PMID: 8566838]

17. Stein J, Dignass AU. Anaemia in the Elderly IBD Patient. Curr Treat Options Gastroenterol 2015; 13: 308-318 [PMID: 26164616 DOI: 10.1007/s11938-015-0062-y]

18. Geisel T, Martin J, Schulze B, Schaefer R, Bach M, Virgin
Gastrointestinal bleeding: Blood transfusion for acute upper gastrointestinal bleeding. *Nat Rev Gastroenterol Hepatol* 2015; 12: 432-434 [PMID: 26170218 DOI: 10.1038/nrgastro.2015.116]

Fortun PJ, Hawkey CJ. Nonsteroidal antiinflammatory drugs and the small intestine. *Curr Opin Gastroenterol* 2007; 23: 134-141 [PMID: 17268241 DOI: 10.1097/MOG.0b013e3282004a5a]

Hernández-Díaz S, Rodríguez L.A. Association between nonsteroidal anti-inflammatory drugs and upper gastrointestinal tract bleeding/perforation: an overview of epidemiologic studies published in the 1990s. *Arch Intern Med* 2000; 160: 2093-2099 [PMID: 10904541]

Laine L, Smith R, Min K, Chen C, Dubois RW. Systematic review: the lower gastrointestinal adverse effects of non-steroidal anti-inflammatory drugs. *Aliment Pharmacol Ther* 2006; 24: 751-767 [PMID: 16918879 DOI: 10.1111/j.1365-2036.2006.03043.x]

Graham DY, Opekun AR, Willingham FF, Qureshi WA. Visible small-intestinal mucosal injury in chronic NSAID users. *Clin Gastroenterol Hepatol* 2005; 3: 55-59 [PMID: 15645405]

Maiden L, Thjodleifsson B, Theodors A, Gonzalez J, Bjarnason I. A quantitative analysis of NSAID-induced small bowel pathology by capsule enteroscopy. *Gastroenterology* 2005; 128: 1172-1178 [PMID: 15887148]

Moore RA, Derry S, McQuay HJ. Facial blood loss with aspirin, nonsteroidal anti-inflammatory drugs and cyclo-oxygenase-2 selective inhibitors: systematic review of randomized trials using autologous chromium-labelled erythrocytes. *Arthritis Res Ther* 2008; 10: R7 [PMID: 18201374 DOI: 10.1186/ar2355]

Lanas A, García-Rodríguez LA, Arroyo MT, Gomollón F, Feu F, González-Pérez A, Zetea E, Bástida G, Rodrigo L, Santolaria S, Güell M, de Argila CM, Quintero E, Borda F, Piqué JM. Risk of upper gastrointestinal ulcer and small bowel bleeding associated with selective cyclo-oxygenase-2 inhibitors, traditional non-aspirin non-steroidal anti-inflammatory drugs, aspirin and combinations. *Gut* 2006; 55: 1731-1738 [PMID: 16687434 DOI: 10.1136/gut.2005.080754]

Mandamdi M, Rochon PA, Juurlink DN, Kopp A, Anderson GM, Naglie G, Austin PC, Laupacis A. Observational study of upper gastrointestinal haemorrhage in elderly patients given selective cyclo-oxygenase-2 inhibitors or conventional non-steroidal anti-inflammatory drugs. *BMJ* 2002; 325: 624 [PMID: 12242172]

Toyoda H, Tanabe N, Toyoda M, Toyoda N, Takai Y. Effect of the misoprostol-rebamipide combination on iron deficiency anemia in patients under long-term cyclooxygenase-2 selective inhibitor treatment for small bowel ulcers. *Clin J Gastroenterol* 2012; 5: 155-157 [PMID: 26182160 DOI: 10.1007/s12328-012-0286-5]

Goldstein JI, Eisen GM, Lewis B, Gralnek IM, Zlotnick S, Fort JG. Video capsule endoscopy to prospectively assess small bowel injury with celecoxib, naproxen plus omeprazole, and placebo. *Clin Gastroenterol Hepatol* 2005; 3: 133-141 [PMID: 15704047]

Selinger CP, Ang YS. Gastric antral vascular ectasia (GAVE): an update on clinical presentation, pathophysiology and treatment. *Digestion* 2008; 77: 131-137 [PMID: 18391491 DOI: 10.1159/000124339]

Nguyen H, Le C, Nguyen H. Gastric antral vascular ectasia (watermelon stomach)-an enigmatic and often-overlooked cause of gastrointestinal bleeding in the elderly. *Perm J* 2009; 13: 46-49 [PMID: 20740102]

Johnson J, Derk CT. Gastric antral vascular ectasia in systemic sclerosis. *Int J Rheumatol* 2011; 2011: 650238 [PMID: 22212134 DOI: 10.1155/2011/650238]

Schouten JT, Van den Heuvel PC, Verheij J, Seijo S. Idiopathic non-cirrhotic portal hypertension: a review. *Orphanet J Rare Dis* 2015; 10: 67 [PMID: 26025214 DOI: 10.1186/s13023-015-0288-8]

Patwardhan VR, Cardenas A. Review article: the management of portal hypertensive gastropathy and gastric antral vascular ectasia in cirrhosis. *Aliment Pharmacol Ther* 2014; 40: 354-362 [PMID: 24889902 DOI: 10.1111/apt.12824]

Ripoli C, García-Tsao G. Management of gastropathy and gastric

Stein J et al. IDA in GI and liver conditions

WJG | www.wjgnet.com
vascular ectasia in portal hypertension. Clin Liver Dis 2010; 14: 281-295 [PMID: 20682235 DOI: 10.1016/j.cld.2010.03.013]

53 Ripoll C, Garcia-Tao G. The management of portal hypertension: gastropathy and gastric antral vascular ectasia. Dig Liver Dis 2011; 43: 34-39 [PMID: 21095166 DOI: 10.1016/j.dld.2010.10.006]

54 RIDER JA, KLOTZ AP, KIRSNER JB. Gastritis with veno-capillary ectasia as a source of massive gastric hemorrhage. Gastroenterology 1953; 24: 118-123 [PMID: 13052170]

55 Grénnaissia E, Avoauc J, Khanna D, Derk CT, Distler O, Suliman YA, Airo P, Carreira PE, Fofi R, Granel B, Berezne A, Cabane J, Ingegnoli F, Rosato E, Caramusci P, Hesselrander W, Walker UA, Alegre-Sancho JJ, Zarrout W, Agard C, Ricciere V, Schiopu E, Giulide H, Steen VD, Allarone Y. Prevalence, correlates and outcomes of antral vascular ectasia in systemic sclerosis: a EUSTAR case-control study. J Rheumatol 2014; 41: 99-105 [PMID: 24293584 DOI: 10.3899/jrheum.130386]

56 Dulai GS, Jensen DM, Kovacs TO, Gralnek IM, Jutabha R. Endoscopic treatment outcomes in watermelon stomach patients with and without portal hypertension. Endoscopy 2004; 36: 68-72 [PMID: 14722885 DOI: 10.1055/s-2004-814112]

57 Herskio C, Camaschella C. How I treat unexplained refractory iron deficiency anemia. Blood 2014; 123: 326-333 [PMID: 24216304 DOI: 10.1182/blood-2013-10-51264]

58 Dickey W, Kenny BD, Mathiason MA, Kallies KJ, Coss E, Rugge M, Genta RM. Autoimmune gastritis with and without portal hypertension. Gut 2014; 63: 99-105 [PMID: 24090202 DOI: 10.1136/gutjnl-2013-307209]

59 Neumann WL, Coss E, Rugge M, Genta RM. Autoimmune atrophic gastritis—pathogenesis, pathology and management. Nat Rev Gastroenterol Hepatol 2013; 10: 529-541 [PMID: 23774773 DOI: 10.1038/nrgastro.2013.101]

60 Betesh AL, Santa Ana CA, Cole JA, Fordtran J. Is achlorhydria a cause of idiopathic iron deficiency anemia? Am J Clin Nutr 2015; 92: 9-19 [PMID: 25994564 DOI: 10.3945/ajcn.114.107934]

61 Hershko C, Ronson A, Sourioujon M, Maschier I, Heyd J, Patz J. Variable hematologic presentation of autoimmune gastritis: age-related progression from iron deficiency to cobalamin depletion. Blood 2006; 107: 1673-1679 [PMID: 16239424 DOI: 10.1182/blood-2005-09-3534]

62 Hershko C, Ronson A. Iron deficiency, Helicobacter infection and gastritis. Acta Haematom 2009; 122: 97-102 [PMID: 19907146 DOI: 10.1159/000243793]

63 Franceschi F, Zuccaica G, Gocciorina D, Gasbarrini A. Clinical effects of Helicobacter pylori outside the stomach. Nat Rev Gastroenterol Hepatol 2014; 11: 234-242 [PMID: 24345888 DOI: 10.1038/nrheum.2013.243]

64 Muhnsen K, Cohen D. Helicobacter pylori infection and iron stores: a systematic review and meta-analysis. Helicobacter 2008; 13: 323-340 [PMID: 19250507 DOI: 10.1111/j.1537-5388.2008.00617.x]

65 Yuan W, Li Yumin D, Yang L. Iron deficiency anemia in Helicobacter pylori infection: meta-analysis of randomized controlled trials. Scand J Gastroenterol 2010; 45: 665-676 [PMID: 20201716 DOI: 10.3109/00365520103663670]

66 Malfertheiner P, Megraud F, O'Morain CA, Atherton J, Axon AT, Bazzoli F, Ginsini GF, Gisbert JP, Graham DY, Pizarro MB, Friedman DB, Colvin DC, Romero-Gallo J, Suarez G, Slaughter JC, Tan S, Morgan DR, Wilson KT, Bravo LE, Corea P, Cover TL, Amieva MR, Peek RM. Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J Clin Invest 2013; 123: 479-492 [PMID: 23257361 DOI: 10.1172/JCI64373]

67 Noto JM, Lee JY, Gaddy JA, Cover TL, Amieva MR, Peek RM. Regulation of Helicobacter pylori virulence Within the Context of Iron Deficiency. J Infect Dis 2015; 211: 1790-1794 [PMID: 25505301 DOI: 10.1093/infdis/jiu805]

68 Yamazaki Y. Mechanisms of Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol 2010; 7: 629-641 [PMID: 20938460 DOI: 10.1038/nrheum.2010.154]

69 Stein J, Stier C, Raab H, Weiner R. Review article: The nutritional and pharmacological consequences of obesity surgery. Aliment Pharmacol Ther 2014; 40: 582-609 [PMID: 25078533 DOI: 10.1111/apt.12872]

70 Allis L, Blankenship J, Buffington C, Furtado M, Parrott J. ASMSBS Allied Health Nutritional Guidelines for the Surgical Weight Loss Patient. Surg Obes Relat Dis 2008; 4: 573-108 [PMID: 18490202 DOI: 10.1016/j.soard.2008.03.002]

71 Love AI, Billettt HH. Obesity, bariatric surgery, and iron deficiency: true, true, and related. Am J Hematol 2008; 83: 403-409 [PMID: 18061940 DOI: 10.1016/j.ajh.21106]

72 ten Brocke R, Bravenboer B, Smulders FJ. Iron deficiency before and after bariatric surgery: the need for iron supplementation. Neth J Med 2013; 71: 412-417 [PMID: 24127501]

73 Obinwanne KM, Fredrickson KA, Mathiaison MA, Kallies KJ, Farnen JP, Kothari SN. Incidence, treatment, and outcomes of iron deficiency after Roux-en-Y gastric bypass: a 10-year analysis. J Am Coll Surg 2014; 218: 246-252 [PMID: 24315892 DOI: 10.1016/j.jamcollsurg.2013.10.023]

74 Alexandreau A, Armeni E, Kouskouni E, Tsoa D, Diamantis T, Lambroulaidou I. Cross-sectional long-term micronutrient deficiencies after sleeve gastroectomy versus Roux-en-Y gastric bypass: a pilot study. Surg Obes Relat Dis 2014; 10: 262-268 [PMID: 24182446 DOI: 10.1016/j.soard.2013.07.014]
Stein J et al. IDA in GI and liver conditions

Onco 2009; 31: 108-112 [PMID: 19194193 DOI: 10.1097/MOP.0b013e3181923dc8]

118 **Duffaud F**, Even C, Ray-Coquard I, Bompas E, Khos-Huyhn T, Salas S, Cassier P, Dufresne A, Bonvalot S, Ducimetiere F, Le Cesne A, Bay JY. Recombinant erythropoetin for the anaemia of patients with advanced Gastrointestinal Stromal Tumours (GIST) receiving imatinib: an active agent only in non progressive patients. *Clin Sarcoma Res 2012; 2: 11* [PMID: 22950685 DOI: 10.1186/2045-3329-2-11]

119 **Sodergren SC**, White A, Efficace F, Sprangers M, Fitzsimmons D, Bottomley A, Johnson CD. Systematic review of the side effects associated with tyrosine kinase inhibitors used in the treatment of gastrointestinal stromal tumours on behalf of the EORTC Quality of Life Group. *Crt Rev Oncol Hematol 2014; 91: 35-46 [PMID: 24495942 DOI: 10.1016/j.critrevonc.2014.01.002]**

120 **Vannella L**, Lahner E, Osborn J, Annibale B. Systematic review: gastric cancer incidence in pernicious anaemia. *Aliment Pharmacol Ther 2013; 37: 375-382 [PMID: 23216458 DOI: 10.1111/apt.12177]**

121 **Nakatani M**, Fujiiwa Y, Nagami Y, Sugimori S, Kameda N, Machida H, Okazaki H, Yamagami H, Tanigawa T, Watanabe K, Watanabe T, Tominaga K, Noda E, Maeda K, Ohsawa M, Wakasa K, Hirakawa K, Arakawa T. The usefulness of double-balloon enteroscopy in gastrointestinal stromal tumors of the small bowel with obscure gastrointestinal bleeding. *Intern Med 2012; 51: 2675-2682 [PMID: 23037455]**

122 **Rosenberg PS**, Alter BP, Ebell W. Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry. *Haematologica 2008; 93: 511-517 [PMID: 18332251 DOI: 10.3324/haematol.2008.12354]**

123 **Ioannou GN**, Rockey DC, Bryson CL, Weiss NS. Iron deficiency and gastrointestinal malignancy: a population-based cohort study. *Am J Med 2002-299 [PMID: 12361812]**

124 **Schmoll HJ**, Van Cutsem E, Stein A, Valentinii V, Glimebulus B, Haustermans K, Nordlinger B, van de Velde CJ, Balmana J, Regula J, Nagtegaal ID, Heuf G, van van de Velde CJ, van de Watering LM, Hermans J, Topalian S, Cervantes A. ESMO Consensus Guidelines for management of colorectal cancer. Available from: URL: http://www.European-Cancer-Association.org/guides/co**: 375-382 [PMID: 23216458 DOI: 10.1111/j.1537-2995.2009.02518.x]**

125 **Lea-Noval SR**, Muñoz M, Asuero M, Contreras E, García-Erce JA, Llau JV, Moral V, Páramo JA, Quintana M. Spanish Consensus Statement on alternatives to allogeneic blood transfusion: the 2013 update of the “Seville Document”. *Blood Transfus 2013; 11: 585-610 [PMID: 23867181 DOI: 10.2450/2013.0029-13]**

126 **Hallet J**, Hanif A, Callum J, Pronina I, Wallace D, Yohanathan L, McLeod R, Coburn N. The impact of perioperative iron on the use of red blood cell transfusions in gastrointestinal surgery: a systematic review and meta-analysis. *Transfus Med Rev 2014; 28: 205-211 [PMID: 24997001 DOI: 10.1016/j.trer.2014.05.004]**

127 **Azzam N**, Aljibreen AM, Alharbi O, Almadi MA. Prevalence and clinical features of colonic diverticulosis in a Middle Eastern population. *World J Gastrointest Endosc 2013; 5: 391-397 [PMID: 23951394 DOI: 10.4253/wjge.v5.i8.391]**

128 **World Gastroenterology Organisation. World Gastroenterology Organisation Practice Guidelines: Diverticular Disease. Available from: URL: http://www.worldgastroenterology.org/diverticular-disease.html**

129 **Baxter NN. Emergency management of diverticulitis. Clin Colorectal Surg 2004; 17: 177-182 [PMID: 20011273 DOI: 10.1055/s-2004-832699]**

130 **Al-Onaiiz Al-Alawi F, Al-Dawood AL. Iron deficiency anaemia: an unusual complication of Meckel’s diverticulum. *Med Princ Pract 2002; 11: 214-217 [PMID: 12424418]**

131 **Sagar J**, Kumar V, Shah DK. Meckel’s diverticulum: a systematic review. *J R Soc Med 2006; 99: 501-505 [PMID: 17021306 DOI: 10.1258/jrsm.99.10.501]**

132 **Kubo A**, Kagaya T, Nakagawa H. Studies on complications of diverticular disease of the colon. *Jpn J Med 1985; 24: 39-43 [PMID: 3873561]**

133 **Starke RD**, Ferraro F, Paschalak KE, Dryden NH, McKinnon TA, Sutton RE, Payne EM, Haskard DO, Hughes AD, Cutler DF, Laffan MA, Randi AM. Endothelial von Willebrand factor regulates angiogenesis. *Blood 2011; 117: 1071-1080 [PMID: 21048155 DOI: 10.1182/blood-2010-01-264507]**

134 **Holloran G**, Hall B, Hussey M, McNamara D. Small bowel...
angiodyplasia and novel disease associations: a cohort study.
Scand J Gastroenterol 2013; 48: 433-438 [PMID: 23356721 DOI: 10.1080/03005655.2012.763178]

147 Massyn MW, Khan SA. Heyde syndrome: a common diagnosis in older patients with severe aortic stenosis. Age Ageing 2009; 38: 267-70; discussion 251 [PMID: 19276092 DOI: 10.1093/ageing/ afp019]

148 Aktas S, Kiyak M, Ozdil K, Kurtca I, Kibar S, Alhab S, Karadeniz Y, Salter T. Gastrointestinal Tract Hemorrhage due to Angiodyplasia in Hutchinson Gilford Progeria Syndrome. J Med Cases 2013; 4: 576-578

149 Johnson-Wimble TD, Graham DY. Diagnosis and management of iron deficiency anaemia in the 21st century. Therap Adv Gastroenterol 2011; 4: 177-184 [PMID: 21694802 DOI: 10.1177/1756283611398736]

150 Crompton DW, Nesheim MC. Nutritional impact of intestinal helminthiasis during the human life cycle. Annu Rev Nutr 2002; 22: 35-59 [PMID: 12055337]

151 Hesham MS. Edarabia AB, Norhayati M. Intestinal parasitic infections and micronutrient deficiency: a review. Med J Malaysia 2004; 59: 284-293 [PMID: 15559182]

152 Kasseauha NJ, Bertozzi-Villa A, Coggeshall MS, Shackelford KA, Stein J et al. IDA in GI and liver conditions. www.wjgnet.com

153 M’Koma AE, Wise PE, Schwartz DA, Muldoon RL, Herline AJ. Prevalence and outcome of HCV in the role after restorative proctocolectomy: a clinical literature review. Dis Colon Rectum 2009; 52: 726-739 [PMID: 19404082 DOI: 10.1007/DWR.0b013e31819ed571]

154 Coull DB, Tait RC, Anderson JH, McKee RF, Finlay JG. Vitamin B12 deficiency following restorative proctocolectomy. Colorectal Dis 2009; 7: 562-566 [PMID: 17509054]

155 Gonzalez-Casas R, Jones EA, Moreno-Otero R. Spectrum of anemia associated with chronic liver disease. World J Gastroenterol 2009; 15: 4653-4658 [PMID: 19787826 DOI: 10.3748/wjg.v15.i46.4653]

156 Hézode C. Management of anemia and other treatment complications. Dig Liver Dis 2013; 45 Suppl 5: S337-S342 [PMID: 24091113 DOI: 10.1016/j.dld.2013.07.010]

157 Ogawa E, Furuyso N, Nakamuta M, Kajiwara E, Nomura H, Dohmen K, Takahashi K, Satoh T, Azuma K, Kawano A, Tanabe Y, Kotoh K, Shimoda S, Hayashi J. Clinical milestones for the prediction of severe anemia by chronic hepatitis C patients receiving telaprevir-based triple therapy. J Hepatol 2013; 59: 575-84 [PMID: 23770732 DOI: 10.1016/j.jhep.2013.05.017]

158 Zeuzem S. DeMasi R, Baldini A, Coote B, Luo D, Mrus J, Witek J. Risk factors predictive of anemia development during telaprevir plus peginterferon/ribavirin therapy in treatment-experienced patients. J Hepatol 2014; 60: 1112-1117 [PMID: 24488609 DOI: 10.1016/j.jhep.2014.01.013]

159 Bacon BR, Gordon SC, Lawitz E, Marcellin P, Prior M, Vierling JM, Reddy K, Wong HC, Marcellin P, Mugiryo R, Ayutty R, Bacon BR, Focaccia R, Younossi Z, Foster GR, Horban A, Boland C, Afdhal NH, Albrecht JK, Reesink HW, Garg J, Zeuzem S. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 2011; 364: 1207-1217 [PMID: 21449784]

160 Jacobson IM, McHutchison JG, Dusheiko G, Di Biseglie AM, Reddy KR, Bzowej NH, Marcellin P, Mrigui F, Fricke R, George J, Rizzato M, Shouval D, Sola R, Terz GA, Yoshida EM, Adda N, Bengtsson L, Sankoh AJ, Kiefeler TL, George J, Sankoh L, Sausen MS, Kiefeler TL, George J, Saakian D, Zeuzem S. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 2011; 364: 2405-2416 [PMID: 21696307]

161 McHutchison JG, Manns MP, Afdhal NH, Heathcote EJ, Zeuzem S, Reesink HW, Garg J, Behar M, Sausen MS, Kiefeler TL, George J, Saakian D, Zeuzem S. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 2011; 364: 2405-2416 [PMID: 21696307]

162 Saltikov MV, Prokhorov A, Buchegger F, Balfour A, Dinetti A, Robert B, Esteban R, Albrecht JK, Reesink HW, Garg J, Behar M, Sausen MS, Kiefeler TL, George J, Saakian D, Zeuzem S. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 2011; 364: 2405-2416 [PMID: 21696307]

163 Mac Nicholas R, Norris S. Review article: optimizing SVR and management of the haematological side effects of peginterferon/ribavirin antiviral therapy for HCV - the role of epoetin, G-CSF and novel agents. Aliment Pharmacol Ther 2010; 31: 929-937 [PMID: 20175677]

164 Poordad F, Lawitz E, Reddy KR, Afdhal NH, Hézode C, Zeuzem S, Lee SS, Calleja JL, Brown RS, Craxi A, Wedemeyer H, Nyberg L, Nelson DR, Rossaro L, Baltar L, Morgan TR, Bacon BR, Flamm SL, Kowdley KV, Deng W, Koury J, Pedicone LD, Dutko FJ, Burroughs MH, Alves K, Wang J, Brauner B, Afdhal NH, Sings HL, Pedicone LD, Sulkowski MS, Afdhal NH, Heathcote EJ, Zeuzem S, Reesink HW, Garg J, Behar M, Sausen MS, Kiefeler TL, George J, Saakian D, Zeuzem S. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 2011; 364: 1207-1217 [PMID: 21449784]

165 Jacobson IM, McHutchison JG, Dusheiko G, Di Biseglie AM, Reddy KR, Bzowej NH, Marcellin P, Mrigui F, Fricke R, George J, Rizzato M, Shouval D, Sola R, Terz GA, Yoshida EM, Adda N, Bengtsson L, Sankoh AJ, Kiefeler TL, George J, Sankoh L, Sausen MS, Kiefeler TL, George J, Saakian D, Zeuzem S. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 2011; 364: 2405-2416 [PMID: 21696307]

166 Saltikov MV, Prokhorov A, Buchegger F, Balfour A, Dinetti A, Robert B, Esteban R, Albrecht JK, Reesink HW, Garg J, Behar M, Sausen MS, Kiefeler TL, George J, Saakian D, Zeuzem S. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 2011; 364: 2405-2416 [PMID: 21696307]
Sulkowski MS. Effects of ribarvin dose reduction vs erythropoietin for boceprevir-related anaemia in patients with chronic hepatitis C virus genotype 1 infection—a randomized trial. *Gastroenterology* 2013; 145: 1035-1044.e5 [PMID: 23924660]

Boemer F, Gómez M, Berenguer M, Molina E, Calleja JL. Management of anemia induced by triple therapy in patients with chronic hepatitis C: challenges, opportunities and recommendations. *J Hepatol* 2013; 59: 1323-1330 [PMID: 23867320]

Clark PJ, Aghemo A, Degasperi E, Galmozzi E, Urban TJ, Vock DM, Patel K, Thompson AJ, Rumi MG, D’Ambrosio R, Muir AJ, Colombo M. Insosine triphosphatase deficiency helps predict anaemia, anaemia management and response in chronic hepatitis C therapy. *J Viral Hepat* 2013; 20: 858-866 [PMID: 23404455 DOI: 10.1111/j.1365-2893.2012.01497.x]

Jacobson IM, Kowdle KV, Kwo PY. Anemia management in the era of triple combination therapy for chronic HCV. *Gastroenterology Hepat* (N Y) 2012; 8: 1-16 [PMID: 22393572]

Maan R, van der Meer AJ, Brouwer WP, Plompen EP, Sonneveld MJ, Roomer R, van der Eijk AA, Groothuisink LM, Hanssen BE, Veldt BJ, Janssen HL, Boonstra A, de Knejt RJ. FTTP Polymorphisms Are Associated with Hematological Side Effects during Antiviral Therapy for Chronic HCV Infection. *PLoS One* 2015; 10: e0139317 [PMID: 26441325 DOI: 10.1371/journal.pone.0139317]

Suwanwathurkit N, Anothaisintawee T, Soworslidsuk A, Thakkinstian A, Teerawattananon Y. Efficacy of Second Generation Direct-Acting Antiviral Agents for Treatment Naive Hepatitis C Genotype 1: A Systematic Review and Network Meta-Analysis. *PLoS One* 2015; 10: e0145953 [PMID: 26720298]

Siddique A, Nelson JE, Aouizerat B, Yeh MM, Kowdle KV. Iron deficiency in patients with nonalcoholic Fatty liver disease is associated with obesity, female gender, and low serum hepcidin. *Clin Gastroenterol Hepatol* 2014; 12: 1170-1178 [PMID: 24269922 DOI: 10.1016/j.cgh.2013.11.017]

Ruivard M, Lainé F, Ganz T, Olbina G, Westerman M, Nemeth E, Rambeau M, Mazur A, Gerbald L, Tournilhac V, Abergel E, Philippe P, Deugnies Y, Coudray C. Iron absorption in dysmetabolic iron overload syndrome is decreased and correlates with increased plasma hepcidin. *J Hepatol* 2009; 50: 1219-1225 [PMID: 19398238 DOI: 10.1016/j.jhep.2009.01.029]

Moya D, Baker SS, Liu W, Garrick M, Kozelski R, Baker RD, Zhu L. Novel pathway for iron deficiency in pediatric non-alcoholic steatohepatitis. *Clin Nutr* 2015; 34: 549-556 [PMID: 25000850]

Brownlie T, Utermohlen V, Hinton PS, Haas JD. Tissue iron metabolism in humans: abnormal behavior in idiopathic dysmetabolic iron overload syndrome is decreased and correlates with increased plasma hepcidin. *Blood* 2011; 118: 3222-3227 [PMID: 21705493 DOI: 10.1182/ blood-2011-04-346304]

Murray-Kolb LE, Beard JL. Iron treatment normalizes cognitive functioning in young women. *Am J Clin Nutr* 2007; 85: 778-787 [PMID: 17345050 DOI: 10.1093/ajcn/85.5.778]

Jankskaia EA, Von HS, Anker SD, Macdougall IC, Ponikowski P. Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. *Eur Heart J* 2012; 33: 816-829

Evstatiev R, Gasche C. Iron sensing and signalling. *Nat Rev* 2012; 61: 933-952 [PMID: 22001635 DOI: 10.1136/gut.2010.214312]

Fillet G, Beguin Y, Baldelli L. Model of reticuloendothelial iron metabolism in humans: abnormal behavior in idiopathic hemochromatosis and in inflammation. *Blood* 1989; 74: 844-851 [PMID: 25022044]

Wish JB. Assessing iron status: beyond serum ferritin and transferrin saturation. *Clin J Am Soc Nephrol* 2006; 1 Suppl 1: S4-S8 [PMID: 17699374 DOI: 10.2215/CNJ.04.0958]

Beguin P, Befrui Giselle, Gache C, Guedehus M, Lerehous E, Magro F, Mearin F, Mitchell D, Oldenburg B, Danese S. Anaemia management in patients with inflammatory bowel disease: routine practice across nine European countries. *Eur J Gastroenterol Hepatol* 2013; 25: 1456-1463 [PMID: 24100539 DOI: 10.1097/MEG.0b013e32836ca27]

Geisser P, Burkhard S. The pharmacokinetics and pharmacodynamics of iron preparations. *Pharmaceutics* 2011; 3: 12-33 [PMID: 23410424 DOI: 10.3390/pharmaceutics3010012]

Goodnough LT, Maniatis A, Earnshaw P, Benoni G, Beris P, Bisbe E, Ferguson DA, Gombotz H, Habler O, Monk TG, Oziy Y, Slappendel R, Szpalski M. Detection, evaluation, and management of preoperative anaemia in the elective orthopaedic surgical patient: NATA guidelines. *Br J Anaesth* 2011; 106: 13-22 [PMID: 21148637 DOI: 10.1093/bja/aeq361]

Jumaa AK. Kidney disease: Improving global outcomes (KDIGO) anaemia work group. KDIGO clinical practice guideline for anaemia in chronic kidney disease. *Kidney Int* 2012; 8 Suppl 1: 279-335

McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kober L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. *Eur Heart J* 2012; 33: 1787-1847 [PMID: 22611136 DOI: 10.1093/eurheartj/eht104]

Qunibi WY. The efficacy and safety of current intravenous iron preparations for the management of iron-deficiency anaemia: a review. *Arzneimittelforschung* 2010; 60: 399-412 [PMID: 20648931]

Chertow GM, Mason PD, Vaage-Nilsen O, Ahlmén J. Update on adverse drug events associated with parenteral iron. *Nephrol Dial Transplant* 2006; 21: 378-382 [PMID: 16286429 DOI: 10.1093/ndt/gfl525]

Yessayan L, Sandhu A, Besarab A, Yessayan A, Frinak S, Sazawu G, Yee J. Intravenous iron dextran as a component of anemia management in chronic kidney disease: a report of safety and efficacy. *Int J Nephrol* 2013; 2013: 703038 [PMID: 23573422 DOI: 10.1155/2013/703038]

European Medicines Agency (EMA). Assessment report for: Iron containing intravenous (IV) medicinal products. Available from: URL: http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/IV_iron_31/WC500150771.pdf

Kulnigg S, Stoinois S, Simanekov V, Daud LV, Karnfeld W, Garcia LC, Sambuelli AM, D’Haens G, Gasche C. Novel intravenous iron formulation for treatment of anemia in inflammatory bowel disease: the ferric carboxymaltose (FERINJECT) randomized controlled trial. *Am J Gastroenterol* 2008; 103: 1182-1192 [PMID: 18731377 DOI: 10.1111/j.1572-0241.2007.01744.x]

Evstatiev R, Marteau P, Iqbal T, Khalil IL, Stein J, Bokemeyer B, Chopye IV, Gutzwiller FS, Riopel L, Gasche C. FERGiclor, a randomized controlled trial on ferric carboxymaltose for iron deficiency anaemia in inflammatory bowel disease. *Gastroenterology* 2011; 141: 846-853.e1-2 [PMID: 21699794 DOI: 10.1053/j.gastro.2011.06.005]

Murphy GJ, Reese BC, Rogers CA, Rizvi SL, Culliford L, Angelini GD. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. *Circulation* 2007; 116: 2544-2552 [PMID: 17998460 DOI: 10.1161/CIRCULATIONAHA.107.698977]

Spanh DR, Moh H, Hofmann A, Isbister JP. Patient blood management: the pragmatic solution for the problems with
blood transfusions. *Anesthesiology* 2008; 109: 951-953 [PMID: 19034088 DOI: 10.1097/ALN.0b013e31818e3d75]

195 **Taylor RW**, O’Brien J, Trottier SJ, Manganaro L, Cytron M, Lesko MF, Arzen K, Cappadoro C, Fu M, Plisco MS, Sadaka FG, Veremakis C. Red blood cell transfusions and nosocomial infections in critically ill patients. *Crit Care Med* 2006; 34: 2302-238; quiz 2309 [PMID: 16849995 DOI: 10.1097/CCM.0b013e3180a826c3]

196 **Ruz M**, Carrasco F, Rojas P, Codoceo J, Inostroza J, Rebolledo A, Basfì-fer K, Csendes A, Papapietro K, Pizarro F, Olivares M, Sian L, Westcott JL, Hambidge KM, Krebs NF. Iron absorption and iron status are reduced after Roux-en-Y gastric bypass. *Am J Clin Nutr* 2009; 90: 527-532 [PMID: 19625680 DOI: 10.3945/ajcn.2009.27699]

197 **Laursen SB**. Treatment and prognosis in peptic ulcer bleeding. *Dan Med J* 2014; 61: B4797 [PMID: 24495895]

P- Reviewer: Maroni L, Sargsyants N, Strom SC S- Editor: Qi Y L- Editor: A E- Editor: Wang CH
