Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds

Qi-zhuang Lv1,2, Jin-tao Long1, Zi-feng Gong1, Ke-yi Nong1, Xiao-mei Liang1, Ting Qin1, Wei Huang1, and Lei Yang3

Abstract
Quality-of-life improvements have resulted in increasing attention being paid to research on antiaging and antioxidation. Polyphenols are natural antioxidants with excellent biological activities, such as antioxidation and scavenging of free radicals and antiviral activity. Abundant availability and low toxicity of polyphenols have attracted the attention of researchers. In this paper, the antioxidant activities of flavonoids, phenolic acids, stilbenes and lignan polyphenols are analyzed, the corresponding antioxidant mechanisms are investigated, and the antioxidant effects of polyphenols are systematically reviewed. Thus, an effective reference based on the recent literature is compiled for the study of the antioxidant mechanisms of polyphenols that provides a significant theoretical basis for the development of products that are components of polyphenols.

Keywords
polyphenols, flavonoids, phenolic acids, stilbenes, lignans, antioxidation

Received: May 10th, 2021; Accepted: May 25th, 2021.

Polyphenols have polyphenol structure and are the most common secondary metabolites in plants. Polyphenol compounds are ubiquitous in roots, leaves, fruit pulp and peel across the plant kingdom. More than 8,000 polyphenols, mainly plant polyphenols, have been identified and isolated to date.1 Plant polyphenols are secondary metabolites that contain multiple phenolic hydroxyl groups. The ortho phenolic hydroxyl group is most easily oxidized to a quinone.2 Reactive oxygen species (ROS), are oxygen-containing substances with strong reactive activity, mainly hydroxyl radical (\(\cdot{\text{OH}}\)), superoxide anion radical (\(\cdot{\text{O}}_2^-\)), singlet oxygen (\(\text{^1}{\text{O}}_2\)), and hydrogen peroxide (\(\text{H}_2\text{O}_2\)). Studies have strongly correlated the presence of ROS with the occurrence and metastasis of tumors. High ROS levels can arrest the cell cycle, inhibit cell proliferation and even cause cell death, whereas low ROS levels can promote angiogenesis and cell proliferation.3,4 Cazzola et al. reported that multiple phenolic hydroxyl groups of polyphenols can provide active hydrogen and directly scavenge reactive oxygen free radicals, whereas free radicals formed via self-oxidation have higher stability and less toxic effects \textit{in vivo}.5 The long-term use of synthetic antioxidants have toxic and carcinogenic effects on human body, such that the safety of these compounds has been called into question. Therefore, it is particularly important to find safe and efficient antioxidants. Polyphenols are natural antioxidants with high efficacy. The literature on polyphenols is reviewed in this paper, and the antioxidant activity and corresponding mechanism of polyphenols are summarized to provide a reference for the comprehensive development and research of polyphenol-related products.

Classification of Polyphenolic Compounds and an Overview of Their Biological Functions
Since anthocyanins in plants were named in 1835,6 more than 100 years of research has been carried out on the definition, source, structure, classification and function of polyphenols. Many important discoveries have been made, especially

\begin{itemize}
\item 1College of Biology & Pharmacy, Yulin Normal University, PR China
\item 2Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, PR China
\item 3Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi, China
\end{itemize}

Corresponding Authors:
Wei Huang, College of Biology & Pharmacy, Yulin Normal University, Yulin, PR China.
Email: juanliu012@163.com
Lei Yang, Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China.
Email: yangleigeili@163.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
regarding the health effects of polyphenols. Polyphenols comprise a wide variety of complex compounds, which typically include simple phenols, macromolecular polymers and derivatives, or occur in combination with monosaccharides or polysaccharides. Polyphenols can be classified in terms of their plant source into tea polyphenols, apple polyphenols, grape polyphenols and so on. Polyphenols can also be classified in terms of their constituent chemical groups into flavonoids, phenolic acids, stilbenes and lignans. Polyphenolic compounds that be polymerized are categorized as polyphenolic monomers (such as gallic acid, flavonoids, and chlorogenic acid) and tannins (such as gallic tannin).

Recent studies have shown that polyphenols are abundant in phytochemicals consumed by humans, and can improve antimicrobial effects in the human body. Polyphenols can cure cancer by preventing oxidative stress injury and inhibiting the binding of cytokines to cancer cells. In addition, polyphenols enhance antioxidant, antiviral and antitumor effects by lowering blood lipid levels and other actions. Increasing numbers of research studies and reports on the biological functions of polyphenols have caused scholars to extensively investigate the potential application of polyphenols to daily life.

Antioxidant Effects and Mechanism of Action of Polyphenols

Numerous studies have shown that free radicals accumulate in animals with age. Excessive accumulation of free radicals accelerates aging of the body and can also easily lead to cancer, tumors and other diseases. Polyphenols, as important active components of most natural plants, are characterized by low toxicity and broad-spectrum pharmacological activity. Thus, polyphenols are good resources for new drug development. Polyphenols contain many hydroxyl groups and can neutralize free radicals in the body and reduce free radicals into stable materials, thereby effectively preventing free radical chain reactions and delaying or inhibiting many diseases. The synergy between polyphenols and other active substances has motivated an increasing number of scholars to study the antioxidant activity of polyphenols.

Antioxidant Effects of Flavonoids

Flavonoid compounds, also known as flavonoids, are formed by the connection of two benzene rings (A ring and B ring) through three carbon chains. The polyphenolic hydroxyl groups in flavonoid molecules, release active hydrogen atoms, thus blocking the automatic oxidation of lipids. Flavonoids are found in almost all green plants. Over 4,000 flavonoid species have been isolated so far, mainly flavonols, flavanones, isoflavones, flavones, procyano, anthocyanidins, and anthocyanins. The antioxidant activities of flavonols, proanthocyanidins and anthocyanins are presented in this paper.

Flavonols. Flavonols are flavonoids with 2-phenyl chromone as the parent nucleus, among which the most common representatives are quercetin, kaempferol and myricetin derivatives. Studies have shown that quercetin can scavenge free radicals in vitro, inhibit ROS production and alleviate oxidative stress injury in vivo. The main mechanism of action of quercetin occurs via: (1) the direct formation of intramolecular hydrogen bonds by reacting with free radicals; (2) enzyme reaction involving free radicals. Quercetin can also significantly improve oxidative damage of myocardium and inhibit the activation of the NF-κB pathway in vivo and in vitro to protect tissues.

Quercetin has been reported to inhibit the opening of transitional pores for mitochondrial membrane permeability and ROS generation, increase the mitochondrial membrane potential and effectively reduce mitochondrial oxidative damage.

Lin et al. showed that quercetin-3-O-gentiobiose (QG), a novel antioxidant enzyme isolated from the methanol extract of okra, can effectively improve the activity of antioxidant enzymes. For example, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) can reduce the oxidative stress damage from high-intensity exercise.

Tian et al. found that using kaempferol to interfere with MS-1 cells treated with fatty acids increase the SOD activity and nonenzymatic antioxidant glutathione (GSH) content. Under specific conditions, kaempferol significantly antagonized the oxidative stress induced by fatty acids.

Ji et al. reported that kaempferol affected the expression of NADPH oxidase and the NF-κB signaling pathway in mice of different age groups, thus achieving antioxidant effect.

Other studies have shown that kaempferol can also reduce the oxidative stress response by inhibiting the decline in the mitochondrial membrane potential during the early stage of H$_2$O$_2$-induced cardiomyocyte apoptosis.

Proanthocyanidins. Flavanols are formed by the polymerization of many monomers, such as epicatechin and catechin. The polymers and oligomers of flavanols are called proanthocyanidins. Proanthocyanidins are widely found in fruits, vegetables, and other green plants and particularly concentrated in grape seeds. Proanthocyanidins may be monomeric, oligomeric or have high degrees of polymerization. Proanthocyanidins B2 (PCB2) in proanthocyanidin dimers exhibits strong antioxidant activity.

Kim et al. demonstrated that PCB2 in apples could strongly scavenge free radicals while exhibiting strong reducibility.

The mechanism of action of proanthocyanidin antioxidant activity has been reported as the release of H$^+$ through the body, which competitively combines with free radicals to block free radical chain reactions. The generated semiquinone radicals react by nucleophilic addition to form polymers containing catecholic acid groups that retain strong antioxidant effects.

Proanthocyanidins alleviate oxidative stress by regulating oxidative stress signaling pathways. Kim et al. found that proanthocyanidins inhibit ROS production, oxidative stress injury and apoptosis-related pathways by downregulating the activity of the stress-activated MAPK pathway.

Sun et al. found that grape seed proanthocyanidin (GSP) alleviates...
inflammation and oxidative stress damage in rats by promoting ERK phosphorylation and upregulating the expression of the antioxidant genes Nrf2 and HO-1, thereby inhibiting retinal nerve cell apoptosis and protecting against retinal ischemia-reperfusion injury in rats. He et al. showed that GSP can promote the phosphorylation of PI3K and Akt, and protect PC12 cells from H2O2-induced oxidative damage via the PI3K/Akt signaling pathway. Proanthocyanidins prevent lipid peroxidation. Yu et al. showed that lotus oligomeric proanthocyanidins (L-OPC) can compete with oxidative chain reactions and delay autooxidation by acting as a hydrogen donor to inhibit the action of lipid peroxyl radical (ROO·) and by inhibiting lipoxygenase activity and slowing the enzymatic oxidation of lipids. Other studies have shown that proanthocyanidins in the leaves of red bayberry contain epigallocatechin gallate (EGCG) as structural constituent units. EGCG contains a large quantity of phenolic hydroxy groups that can supply electrons to free radicals, thereby interrupting free radical reactions and delaying the oxidation of oils and fats. Proanthocyanidins classified as polymeric polyphenols for which different degrees of polymerization produce different antioxidant effects.

Anthocyanins. Anthocyanins are a class of water-soluble natural pigments within agroup of flavonoids that are abundant in plants. Anthocyanins have good antioxidant activity that depends on the location and quantity of hydroxyl groups, the degree of glycation and electron donors in their structure. Studies have shown that when the planar anthocyanin molecule contains a double bond between the C-2 and C-3 positions that is coupled through the B ring with the A and C rings, saturation of this conjugated double bond and the destruction of coplanarity can inhibit XOD activity. Thus, this structure of anthocyanin hydroxyls results in increased SOD activity of antioxidant enzymes. Therefore, anthocyanins can inhibit the activity of the part of the oxidase that produces ROS to produce an antioxidant effect. Anthocyanins have been shown to enhance the antioxidant activity of ruminants by activating Nrf2 and inhibiting the NF-κB signaling pathway. Anthocyanins can complex with metal ions (Fe2+), thereby reducing the catalytic effect of active metal ions on free radical generation and increasing the antioxidant effect. Anthocyanins can complex with copper to inhibit the oxidation of LDL induced by copper or peroxyl radicals. Anthocyanins have been shown to inhibit the damage of ONOO– to endothelial cells by disrupting the mitochondrial apoptosis pathway and inhibiting Bax nuclear translocation.

Antioxidant Effects of Phenolic Acids

Phenolic acids can be categorized into hydroxybenzoic acid derivatives and more common hydroxycinnamic acid derivatives. The main hydroxycinnamic acid derivatives consist of chlorogenic acid, caffeic acid, coumaric acid, ferulic acid, and sinapic acid. Most studies have been performed on chlorogenic acid. The main hydroxybenzoic acid derivatives are gallic acid, protocatechuic acid, and p-hydroxybenzoic acid, among which gallic acid has been most studied. Phenolic acids have been reported to produce antioxidant effects by directly scavenging free radicals, inactivating enzymes related to ROS production and activating the antioxidant enzyme system to remove and repair ROS-induced damage.

Chlorogenic acid. Chlorogenic acid is a phenylpropanoid produced by plant cells via the shikimic acid pathway during aerobic respiration. Chlorogenic acid is known as “plant gold” and is widely found in dicots, such as sunflower, honeysuckle, *Eucamnia ulmoides* and coffee, and in ferns. Chlorogenic acid is an ester formed by the condensation of quinic acid and trans-cinnamic acid and occurs as a variety of isomers with a conjugated structure. Chlorogenic acid has many biological functions, such as scavenging free radicals; stimulating the central nervous system; producing hypolipidemic, anti-hypertensive, antiseptic and anti-inflammatory effects and tumor inhibition. Chlorogenic acid is an important dietary antioxidant component. The antioxidant activity of chlorogenic acid mainly derives from its ability to scavenge free radicals but is also related to the lipid peroxidation level in the body. Studies have shown that chlorogenic acid can supply hydrogen atoms to free radicals (DPPH·, ABTS·, ·O2, ·OH, and ONOO–) to suppress the occurrence of oxidative damage and is oxidized to a phenoxy radical and subsequently reaches a steady state by resonance. Chlorogenic acid can also chelate with metal ions to reduce the oxidative damage caused by these ions. Yang et al. showed that chlorogenic acid easily chelates with ferrous ions, blocking ·OH production by the Fenton reaction and protecting cells from oxidative damage. Shibata et al. found that chlorogenic acid can prevent NH4Cl-induced plasmid DNA fragmentation in neutrophils, suggesting that chlorogenic acid can inhibit DNA damage caused by redox reaction byproducts. Li et al. found that chlorogenic acid can reduce the expression of FOXO family genes in bone marrow mesenchymal stem cells by activating the phosphorylation of PI3K/Akt, thereby inhibiting oxidative stress-mediated injury. Recent studies have shown that chlorogenic acid protects the body from oxidative-stress-mediated injury by activating Nrf2 transcription and upregulating the expression of cellular antioxidant enzymes (such as NADPH: quinone oxidoreductase 1).

Gallic acid. Gallic acid, also known as 3,4,5-trihydroxybenzoic acid, usually occurs as a hydrate and is ubiquitous in plants such as grapes, tea leaves, flowers of Rhus chinensis, and Caesalpinia spinosa pods. Gallic acid is mainly used in the food, pharmaceutical, and chemical industries. Gallic acid has been reported to reduce the accumulation of active oxygen in tissues by removing ·OH and ·O2 produced by the Fenton reaction, thereby suppressing oxidation mediated by human liver microsome cytochrome P4503A. Another study has shown that gallic acid can inhibit oxidative stress by reducing the accumulation of lipid peroxidation products (MDA and TBARS).
and increasing the activities of antioxidant enzymes (SOD, GSH-Px and CAT). Mohamed et al. found that gallic acid can be used to treat thyroid dysfunction caused by chromium by reducing the expression of proinflammatory cytokines (iNOS, TNF-α, IL-6, COX-2, etc.), reducing lipid peroxidation markers and NO levels and upregulating the mRNA expression levels of SOD and glutathione S-transferases (GST).

Qin et al. found that gallic acid can alleviate oxidative stress by activating the Nrf2/HO-1 pathway. Excellent antioxidant effects make gallic acid a good candidate for use in livestock and poultry production and other related industries. For example, including an appropriate quantity of gallic acid in broiler chicken diets was recently reported to improve the chickens’ plasma antioxidant activity of the chickens. Adding appropriate quantities of gallic acid and oleic acids in a 1:1 molar ratio to the diets of broiler chickens or laying hens was found to increase the chickens’ DPPH· scavenging ability and antioxidant activity in chicken meat and eggs. Other studies have shown that nano-gallic acid is more bioavailable than pure gallic acid and can therefore more effectively alleviate oxidative stress, inflammatory response and mitochondrial dysfunction. The study of nano-gallic acid may become a future research direction.

Antioxidant Effects of Stilbenes

Stilbenes are the basic unit of stilbene compounds, which are low in normal plant tissues. Stilbenes can be classified based on their C = C structures into cis and (more stable) trans structures. Resveratrol and its derivatives and analogs in stilbene have attracted considerable attention because of antioxidant, anti-inflammatory and other biological activities. The antioxidant mechanism of resveratrol has been demonstrated as the activation of silent information regulator 1 (SIRT1). Under specific conditions, the proportion of intracellular NAD+/NADH increases, and the expression of SIRT1 in astrocytes is upregulated. SIRT1 deacetylates FOXO4 and then binds to the promoter sites of SOD and CAT, further enhancing the expression of antioxidant enzymes, inhibiting ROS production and alleviating oxidative stress reactions.

Li et al. found three types of natural resveratrol dimers: parthenocissin A (Par), quadrangularin A (Qua) and pallidol (Pal), could quench DPPH· and selectively scavenge ·O2. These resveratrol dimers have almost no effect on ·OH or O2·, but Pal can activate the Nrf2 pathway, induce the expression of antioxidant enzymes and alleviate oxidative stress in the body. Resveratrol can chelate metals to some extent, and novel resveratrol derivatives synthesized using other substances also exhibit good metal chelating properties.

Antioxidant Effects of Lignans

Lignans function as metabolites downstream of the biological pathway of shikimic acid in plants and are widely distributed in all plant parts and especially in flaxseed. Lignan compounds can be classified as lignans or neolignans according to the intermolecular linkage of phenylpropyl groups. Antioxidant effects have been confirmed for most lignans.

Lignans. Lignans form via the polymerization of two phenylpropyl groups at the β-sites of side chains. Eight types of lignans can be classified according to the carbon chain skeleton, the way oxygen is integrated into the skeleton and the cyclization mode: furan, furofuran, arynaphthalene, aryltetralin, dibenzylbutyrolactol, dibenzylbutyrolactone, dibenzylbutane, and dibenzocyclooctadiene, among which furofuran and dibenzylbutyrolactone exhibit good antioxidant activity. Cao et al. found that furofuran sesamin has an antioxidant effect on fluorine-induced liver oxidative stress by reducing ROS and MDA levels and increasing the antioxidant enzyme activity. Ren et al. found synergistic anti-lipid peroxidation effects for sesamin, VE, EDTA, and citric acid. Sesamin C can chelate Cu2+, thereby inhibiting Cu2+-induced LDL oxidation in human plasma. Other studies have reported antioxidant effects of matairesinol of dibenzylbutyrolactone, although the underlying mechanism has not been elucidated.

Neolignans. Neolignans connect via a side chain of a phenyl propy group to a benzene ring of another molecule or by an oxygen atom between two phenyl propyl group molecules. Magnolol is a typical neolignane that has been reported to scavenge free radicals, enhance the activity of antioxidant enzymes and inhibit lipid peroxidation, thus protecting against oxidative damage in the body. Duan et al. found that magnolol can reduce the MDA content and XOD activity of the lung tissue of rats with sepsis and increase the SOD and GSH-Px activities, thus ameliorating acute lung injury in these rats. Ye et al. performed experiments showing that magnolol inhibited the activation of intracellular caspase-3 and ROS production, thereby protecting against PC12 cell injury induced by 6-OHDA. Li et al. showed that magnolol can inhibit lipid peroxidation and thus exert an antioxidant effect.

Synergistic Antioxidant Effects of Polyphenolic Compounds

Polyphenolic compounds exhibit their respective antioxidant effects (Table 1), but single phenols cannot be easily isolated, and multiple polyphenols often exert synergistic antioxidant effects. Polyphenolic compounds can interact with other substances to produce antioxidant effects that are frequently more potent than those of the individual substances. The main substances that have been found to produce synergistic effects with polyphenolic compounds are active antioxidants, such as polysaccharides, vitamins C/E and carotenoids, and extracts of natural raw materials, such as kelp extract and sweet potato extract. Complex and varied mechanisms of action have been identified for the synergistic antioxidation by polyphenolic compounds and other substances (Table 2). Six mechanisms are generally accepted: (a) enhanced chelation of phenolic compounds with metal ions can induce oxidation, this process...
Table 1. Antioxidation Mechanisms of Various Polyphenolic Compounds.

Species	Representative substance	Sources	The basic structure	Antioxidation mechanisms	References
Flavonoids compound	Flavonols	Citrus fruits, apples fruits, spices, berries etc.	![Flavonol Structure](image)	a. Forming intramolecular hydrogen bonds by reacting with free radicals	
b. Improving the activity of antioxidant enzymes, such as glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD)					
c. Increasing the mitochondrial membrane potential and decreasing the oxidative damage level of mitochondria	20-24				
Procyanidins	Wine, cocoa, tea, nuts, heat fruits, etc.	![Procyanidin Structure](image)		a. As a hydrogen donor, it providing hydrogen atoms to react with free radicals	
b. Chelating with metal ions					
c. Downregulation of stress-activated MAPK pathway activity					
d. Promoting ERK phosphorylation and upregulating the expression of antioxidant genes Nrf2 and HO-1					
e. PC12 cells were protected from H2O2 induced oxidative damage by PI3K/Akt signaling pathway					
f. Inhibits lipid peroxidation activity and slows down the enzymatic oxidation of fat	31-36				
Anthocyanins	Grapes, wine, berries, black beans, etc.	![Anthocyanin Structure](image)		a. Regulating oxidase activity (XOD, SOD)	
b. Activating Nrf2 and inhibiting NF-κB signaling pathway
c. Chelating with metal ions
d. ONOO−was inhibited by destroying mitochondrial apoptosis pathway and inhibiting Bax nuclear translocation | 39-43,111 |

(Continued)
Species	Representative substance	Sources	The basic structure	Antioxidation mechanisms	References
Phenolic acid compounds	Chlorogenic acid	Higher dicotyledonous plants and ferns such as sunflower, honeysuckle, eucommia, and coffee	![Chlorogenic Acid](image)	1. Supplying hydrogen atoms to free radicals	
2. Chelating with metal ions
3. Preventing \(\text{NH}_2\text{Cl} \)-induced plasmid DNA fragmentation
4. Reducing the expression of FOXO family genes by activating the phosphorylation of PI3K/Akt
5. Activating Nrf2 transcription and upregulating the expression of cellular antioxidant enzymes | 46,48-53,56,57 |
| Gallic acid | | Grapes, tea leaves, flowers of *Rhus chinensis*, and Caesalpinia spinosa pods | ![Gallic Acid](image) | 1. Reducing the accumulation of malonaldehyde and NO\(^-\) and enhancing the activities of antioxidant enzymes
2. Clearing radicals (\(\cdot \text{OH} \) and \(\cdot \text{O}_2^- \)) produced by the Fenton reaction
c. Activating Nrf2/HO-1 pathway and reducing oxidative stress | 63,64,68 |
| Stilbenes compounds | Resveratrol | Grape, knotweed, blackcurrant, peanut, blackberry, blueberry, cranberry | ![Resveratrol](image) | a. FOXO4 was deacetylated and then combined with the promoter sites of SOD and CAT to improve the expression of antioxidant enzymes
b. Selectively scavenging \(\cdot \text{O}_2^- \)
c. Activating Nrf2 pathway and inducing the expression of antioxidant enzyme
d. Chelating with metal ions | 75-81 |
| Lignan compounds | Lignans | Sesame, flaxseed, etc. | ![Lignans](image) | a. Reducing ROS and MDA levels, improving antioxidant enzyme activity, and inhibiting liver lipid peroxidation
b. Chelating with metal ions \((\text{Cu}^{2+}) \)
c. Synergistic with VE, EDTA and citric acid | 85-87 |
| Neolignan | The Japanese ghost light | Qing, flower tree, pine resin, etc., magnolia officinalis | ![Neolignan](image) | a. Directly removing \(\cdot \text{OH}, \text{DPPH}^- \) and ABTS\(^-\) and reducing ROS content
b. Decreasing the content of MDA and XOD, and increasing the activities of SOD and GSH-Px
c. Inhibiting lipid peroxidation | 89-92 |
It is seen with acidic substances (tartaric acid and citric acid).104 (b) acting through chain reactions that inhibits lipid peroxidation by capturing peroxyl radicals; this process is seen with VC.105,106 (c) increasing the preservation rate of another oxidative substance; for example, tea polyphenols can increase the preservation rate of β-carotene.107 (d) providing and maintaining the level of reducing agent by means of electronic transfer; for example, ascorbic acid provides a hydrogen atom to the α-tocopherol free radical to regenerate α-tocopherol.108 (e) coupling oxidation based on redox potential difference. Polyphenolic compounds facilitate the direct reaction of both antioxidants by reducing the corresponding potential difference. The coupled antioxidant oil-water distribution coefficient is complementary to each other, which is reasonably distributed in a certain system and gives full play to the function of each antioxidant.109 (f) producing synergistic antioxidant effect of the same antioxidant molecules by the interaction between their structures; for example, a suitable solvent can decrease the enthalpy of dissociation of the hydroxyl O-H bond of ferulic acid glyceryl ester via π-π stacking, thereby reducing the activation energy of the reaction between an antioxidant molecule and DPPH·.110

Table 2. the Mechanisms of Synergistic Antioxidant Effects of Polyphenolic Compounds.

Species of synergy	Mechanisms of synergistic antioxidant effects	References
Tea polyphenols-ganoderma lucidum polysaccharide	Mutual synergy, improving the scavenging activity of DPPH· and ·OH of the compounds and their total reducing power	97
Berry polyphenols-auricularia polysaccharide	Mutual synergy, improving the scavenging activity of DPPH·, ABTS· and ·OH of the compounds and their total reducing power	105
Procyanidins-auricularia polysaccharide	Mutual synergy, improving the scavenging activity of DPPH· and ABTS· of the compounds	112
Tea polyphenols-phospholipid	Improving the lipid solubility of tea polyphenols	113
Tea polyphenols-VC	a. VC reduces phenoxyethylene radical and promotes regeneration of EGCG	
b. VC promotes the redox reaction between tea polyphenols and DPPH·		
c. VC plays its acidic role in passivation of metal ions that promote automatic oxidation		
d. Tea polyphenols have repair effect on VC and can increase VC content in the body	98,103,104,109,114-116	
Tea polyphenols-VE	Tea polyphenols promote regeneration of VE	113
Tea polyphenols-carotenoids	Tea polyphenols can increase the preservation rate of β-carotene	100
Tea polyphenols-kelp extract	Based on the repair mechanism, the phenolic hydroxyl in tea polyphenols can interact with phenolic substances in kelp to form stable chemical structures of intermolecular complexes	101
Tea polyphenols,pueraria flavones-sweet potato extract	Increasing the activity of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and inhibiting the production of malondialdehyde (MDA)	102

Conclusions and Prospects

Polyphenolic compounds have various structures and may be classified in many ways. The antioxidant properties of these substances also vary, and five corresponding mechanisms of action can be categorized (Figure 1): (a) the phenolic hydroxyl groups of polyphenolic compounds act as hydrogen donors to directly react with radicals and reduce the activities of ·O\textsubscript{2}, H\textsubscript{2}O\textsubscript{2}, ·OH, ROO·, O\textsubscript{2}, and other active radicals; (b) polyphenolic compounds reduce the production of radicals by inhibiting the enzyme activities required to produce free radicals; (c) polyphenolic compounds chelate metal ions that induce free radical production, thus reducing the generation of free radicals; (d) polyphenolic compounds inhibit oxidation reactions by increasing the activity of antioxidant enzymes or the expression of antioxidant proteins; and (e) polyphenolic compounds generate synergistic antioxidant effects with other substances. Plant polyphenols are natural antioxidants that exhibit higher antioxidant activity, lower toxicity, and other advantages over traditional synthetic chemical drugs. The antioxidative activities of polyphenolics have been exploited in many fields to date, such as agriculture, food, medicine, nutrition, health care, and...
chemicals used in daily life. In-depth research on the biological functions and action mechanisms of various polyphenolic compounds will make polyphenolic compounds “the seventh major nutrient.”

Acknowledgments
The authors thank PhD Tao Wang (College of Veterinary Medicine, Northwest A&F University) for helping to polish the English language.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by grants from the National Natural Science Foundation of China (No.31860708), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (No.2017GXNSFBA198025).

ORCID IDs
Qi-zhuang Lv https://orcid.org/0000-0002-2943-4406
Lei Yang https://orcid.org/0000-0001-8859-9692

Supplemental Material
Supplemental material for this article is available online.

References
1. Tian X, Xu Z-W, Ye H-J, Wang W, Shen J-L, Liu S-F. Research progress on the types and antioxidant activities of polyphenols in edible flowers. Food Ind. 2021;42(2):231-235. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SPGY202102059&DhName=DKFX2021
2. Zhang J-X. Research progress on synergistic antioxidant activity of polyphenols. Med Age Res. 2020;49(1):117-118+121. doi:10.19704/j.cnki.xdnyyj.2020.01.049
3. Wang J, Zhang H-H, Gao K, Wang T. Study on the correlation between active oxygen metabolism and water transport and fruit hardness during storage of Lingwu long jujube. Food Sci. 2021:1-10. https://kns.cnki.net/kcms/detail/11.2206.ts.20210412.0900.002.html
4. Jin F, Wu Z, Hu X, et al. The PI3K/Akt/GSK-3β/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility. Cancer Biol Med. 2019;16(1):38-54. doi:10.20892/j.issn.2095-3941.2018.0253
5. Cazzola M, Corazzari I, Prevesti E, Bertone E, Vernè E, Ferraris S. Bioactive glass coupling with natural polyphenols: surface modification, bioactivity and anti-oxidant ability. Appl Surf Sci. 2016;367:237-248. doi:10.1016/j.apsusc.2016.01.138
6. Wang H, Zhou L-P, Z-M Y, Lv P, Zhang Y. Advances in the extraction and analysis of anthocyanins. Territ Nat Resour Study. 2018;6:85-88. doi:10.16202/j.cnki.tnrs.2018.06.022

Figure 1. Schematic diagram of antioxidant mechanisms of various polyphenols. (A) Antioxidant mechanisms of flavonoids. (B) Antioxidant mechanisms of phenolic acids. (C) Antioxidant mechanisms of stilbenes.
7. Wu J-H, Wu Z-G, Pei J-G, et al. Research progress of polyphenols. *Mod Chinus Med* 2015;17(6):116-122. doi:10.13313/j.issn.1673-4890.2015.6.025

8. Yang W-W, Deng H, Li J, et al. Research progress on antioxidant damage of plant polyphenols. *Mod Food*. 2020;16:74-78. doi:10.13386/j.issn.1002-0306.2020.070358

9. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. *Ann Clin Nutr*. 2004;79(5):727-747. doi:10.1093/ajcn/79.5.727

10. Oyenibi AB, Smith C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? *J Ethnopharmacol*. 2019;229:54-72. doi:10.1016/j.jep.2018.09.037

11. Yi J, Qu H, Wu W, Wang Z, Wang L. Study on antioxidant, anti-inflammatory and immunoregulatory activities of the purified polyphenols from pinecone of pinus koraiensis on tumor-bearing S180 mice in vivo. *Int J Biol Macromol*. 2017;94(Pr A):735-744. doi:10.1016/j.ijbiomac.2016.10.071

12. Hong X-Y, J-M W, Luo X-Q, Liu K, Zhou W-J, Zhang G-W. Research progress of inhibitory effects of polyphenolic compounds on xanthine oxidase. *Food Mach.* 2021;37(2):1-8. doi:10.13652/j.issn.1003-5788.2021.02.001

13. Qu M, Chen Q, Sun B-Y, Lv M-S, Liu L-L, Zhu X-Q. Advances in studies on the functional properties of polyphenols and their interactions with proteins and polysaccharides. *Sci Technol Food Ind*. 2020:1-13. doi:10.13386/j.issn1002-0306.2020.070358

14. Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress. *Molecules*. 2018;23(4):965-976. doi:10.3390/molecules23040965

15. Ximardan G. Several herbs tooth flavonoid contents determination. *J Xinjiang Norm Univ*. 2009;28(1):73-75+88. doi:10.3969/j.issn.1008-9659.2009.01.017

16. Unten L, Koketsu M, Kim M. Antidiscoloring activity of green tea polyphenols on β-carotene. *J Agric Food Chem*. 1997;45(6):2009-2012. doi:10.1021/jf0607526

17. Wang M-F, Teng J. Changes of chemical and biological activities of polyphenols in food thermal processing and their effects on food quality. *J Chinese Inst Food Sci Technol*. 2017;17(6):1-12. doi:10.16429/j.1000-7848.2017.06.001

18. Lei J-H, Xu A-E. Research progress of antioxidant stress mechanism of Chinesees herbal flavonoids extract on vitiligo. *Chinese J Dermatovenereol Integr Tradit West Med*. 2018;17(3):281-284. https://kns.cnki.net/kcms/detail/detail.aspx?FileNo=ZXYDJ201803030&DbName=CJFQ2018

19. Huang X-Q, Chu Z, Fang Y-M, et al. Research progress on hypoglycemic mechanism of plant polyphenols. *Sci Technol Food Ind*. 2011. doi:10.13386/j.issn1002-0306.2012.090078

20. Zhu X, Li N, Wang Y, et al. Protective effects of quercetin on UVB irradiation-induced cytotoxicity through ROS clearance in keratinocyte cells. *Owulo Rep*. 2017;37(1):209-218. doi:10.3892/or.2016.5217

21. Ye X-L, Zheng Y-Z, Qiu Z-W, et al. The mechanism of quercetin in the treatment of rheumatoid arthritis. *Rheu Arthritis*. 2021;10(2):47-50+54. doi:10.3969/j.issn.2095-4174.2021.02.014

22. Liu X, Yu Z, Huang X, et al. Peroxisome proliferator-activated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway. *Am J Transl Res*. 2016;8(12):5169-5186.

23. Daniel OO, Adeoye AO, Ojojwu J, Olorunsogo OO, Olufunso OO. Inhibition of liver mitochondrial membrane permeability transition pore opening by quercetin and vitamin E in streptozotocin-induced diabetic rats. *Biochem Biophys Res Commun*. 2020;504(2):460-469. doi:10.1016/j.bbrc.2020.08.114

24. Lin Y, Liu H-L, Fang J, Yu C-H, Xiong Y-K, Yuan K. Anti-Fatigue and vasoprotective effects of quercetin-3-O-gentiobiose on oxidative stress and vascular endothelial dysfunction induced by endurance swimming in rats. *Food Chem Toxicol*. 2014;68:290-296. doi:10.1016/j.fct.2014.03.026

25. Tian M, Lei Q, Yan Y-S, Li L. Protective effects of kaempferol against fatty acis-induced islet microvesSEL endothelia function injury and the role of poly (ADP-ribose) polymerases-1. *Aoaal J Second Mil Med Univ*. 2016;37(3):295-301. doi:10.16781/j.0258-8793.2016.03.029

26. Kim JM, Lee EK, Kim DH, Yu BP, Chung HY. Kaempferol modulates pro-inflammatory NF-κappaB activation by suppressing advanced glycation endproducts-induced NADPH oxidase. *Agy.* 2011;32(2):197-208. doi:10.1007/s11357-009-9124-1

27. Zhao C-C, Zhang J, Han W-N, Dong N-W, Liu F-Z. Effect of Kaempferol, Apigenin on injury of mitochondria in H2O2-induced cardiomyocyteapoptosis. *Chinese Pathophysiol*. 2008;24(7):1431-1433. doi:10.3321/j.issn:1000-4718.2008.07.037

28. Bowser SM, Moore WT, McMillan RP, et al. High-Molecular-Weight cocoa proanthocyanidins possess enhanced insulin-enhancing and insulin mimetic activities in human primary skeletal muscle cells compared to smaller proanthocyanidins. *J Nutr Biochem*. 2017;59:48-58. doi:10.1016/j.jnutbio.2016.10.001

29. Tuominen A, Karonen M. Variability between organs of proanthocyanidins in geranium sylvaticum analyzed by off-line 2-dimensional HPLC-MS. *Phytochemistry*. 2018;150:106-117. doi:10.1016/j.phytochem.2018.03.004

30. Kim A-N, Kim H-J, Kerr WL, Choi S-G. The effect of grinding on xanthine oxidase activity of apple. *Food Chem* 2017;216(2):234-242. doi:10.1016/j.foodchem.2016.08.025

31. Fracassetti D, Costa C, Moulay L, Tomás-Barberán FA. Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (*Myrciaria dubia*). *Food Chem*. 2013;139(1-4):578-588. doi:10.1016/j.foodchem.2013.01.121

32. Zhuang H-W, Zhuang Y, Ma C-M. Progress in procyanidins research. *Food Sci*. 2015;36(5):296-304. doi:10.3969/j.issn.1003-5788.2010.04.042

33. Kim H, Kim JY, Song HS, Park KU, Mun K-C, Ha E. Grape seed proanthocyanidin extract inhibits interleukin-17-induced interleukin-6 production via MAPK pathway in human pulmonary epithelial cells. *Naunyn Schmiedebergs Arch Pharmacol*. 2011;383(6):555-562. doi:10.1007/s00210-011-0633-y

34. Sun M, Lei R, Huang C-X. Protective effects of grape seed proanthocyanidins on retinal ischemia-reperfusion injury in rats. *Recent Adv Ophthalmol*. 2020;40(4):313-317+322. doi:CNKI:SUN: XKJZ.0.2020-04-003
35. He X, Guo X, Ma Z, et al. Grape seed proanthocyanidins protect PC12 cells from hydrogen peroxide-induced damage via the PI3K/Akt signaling pathway. *Neurosci Lett*. 2021;750:135793. doi: 10.1016/j.neulet.2021.135793

36. Yu H-J, Xu Z-D, Xie B-J. Antioxidation role of procyanidins from Lotus seedpods in oils. *Agr. Sci. Chin.* 2010;43(10):2132-2140. doi: 10.3864/jissn.0578-1752.2010.10.020

37. Pan J-X, Li X, Chen S-G, Ye X-Q. Antioxidant activities of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves in lard oil. *Sci. Technol. Food Ind.* 2015;36(20):111-115. doi: 10.13386/jissn1002-0306.2015.20.014

38. Fu Y, Qiao L, Cao Y, Zhou X, Liu Y, Ye X. Structural elucidation and antioxidant activities of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves. *PLoS One.* 2014;9(5):e96162. doi: 10.1371/journal.pone.0096162

39. Reis JF, Monteiro VVS, de Souza Gomes R, et al. Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. *J Transl Med.* 2016;14(1):315. doi: 10.1186/s12967-016-1076-5

40. Ruel G, Pomerleau S, Couture P, Lamarche B, Couillard C. Changes in plasma antioxidant capacity and oxidized low-density lipoprotein levels in men after short-term cranberry juice consumption. *Metabolism.* 2005;54(7):856-861. doi: 10.1016/j.metabol.2005.01.031

41. Jeong J-W, Lee WS, Shin SC, Kim G-Y, Choi BT, Choi YH. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-kB and MAPKs signaling pathways. *Int J Mol Sci.* 2013;14(1):1502-1515. doi: 10.3390/ijms14011502

42. Baldus S, Müllerleile K, Chumley P, et al. Inhibition of xanthein oxidase improves myocardial contractility in patients with ischemic cardiomyopathy. *Free Radic Biol Med.* 2006;41(8):1282-1288. doi: 10.1016/j.freeradbiomed.2006.07.010

43. Paixão J, Dinis TCP, Almeida LM. Dietary anthocyanins protect endothelial cells against peroxynitrite-induced mitochondrial apoptosis pathway and Bax nuclear translocation: an *in vitro* approach. *Apoptosis.* 2011;16(10):976-989. doi: 10.1007/s10495-011-0632-y

44. Kilic K, Sakat MS, Akdemir FNE, Yildirim S, Saglam YS, Askin S. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats. *Braz J Otorhinolaryngol.* 2018;85(3):267-274. doi: 10.1016/j.bjorl.2018.03.001

45. Xi L-S, Mu T-H, Sun H-N. Progresses in the research of cocoa polyphenols. *Environ. Pharmacol.* 2014;22(2):292-301. doi: CNKI:SUN:HNXB.0.2014-02-017

46. Wang X-M, Xi Y, Fan X-G, Cao J-K, Jiang W-B. Research progress on bioavailability and antioxidant activity of chlorogenic acid. *J Chinese Inst Food Sci Technol.* 2019;19(1):271-279. doi: 10.1016/j.jcistro.2019.10.035

47. Chen S, Lin R, Lu H, et al. Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in Kandelia obovata under cadmium and zinc stress. *Chemosphere.* 2020;249:126341 doi: 10.1016/j.chemosphere.2020.126341

48. Cha JW, Piao MJ, Kim KC, et al. The polyphenol chlorogenic acid attenuates UVB-mediated oxidative stress in human HaCaT keratinocytes. *Biomol Ther.* 2014;22(2):136-142. doi: 10.4062/biomolther.2014.006

49. Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegba SA. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain- *in vitro*. *Neurochem Res.* 2013;38(2):413-419. doi: 10.1007/s11064-012-0935-6

50. Cheng D, Xi Y, Cao J, Cao D, Ma Y, Jiang W. Protective effect of apple (Ralls) polyphenol extract against aluminum-induced cognitive impairment and oxidative damage in rat. *Neurotoxicology.* 2014;45:111-120. doi: 10.1016/j.neuro.2014.10.006

51. Gordon MH, Wishart K. Effects of chlorogenic acid and bovine serum albumin on the oxidative stability of low density lipoproteins *in vitro*. *J Agric Food Chem.* 2010;58(9):5828-5833. doi: 10.1021/jf100106c

52. Wang X, Fan X, Yuan S, et al. Chlorogenic acid protects against aluminium-induced cytotoxicity through chelation and antioxidant actions in primary hippocampal neuronal cells. *Food Funct.* 2017;8(8):2924-2934. doi: 10.1039/C7FO00659D

53. Wang X, Xi Y, Zeng X, Zhao H, Cao J, Jiang W. Effects of chlorogenic acid against aluminium neurotoxicity in ICR mice through chelation and antioxidant actions. *J Funct Foods.* 2018;40(5):365-376. doi: 10.1016/j.jff.2017.11.013

54. Yang R, Tian J, Liu Y, et al. Interaction mechanism of ferritin protein with chlorogenic acid and iron ion: the structure, iron redox, and polymerization evaluation. *Food Chem.* 2021;349:129144-129144. doi: 10.1016/j.foodchem.2021.129144

55. Shibata H, Sakamoto Y, Oka M, Kono Y. Natural antioxidant, chlorogenic acid, protects against DNA breakage caused by monochloramine. *Biosci Biotechnol Biochem.* 1999;63(7):1295-1297. doi: 10.1271/bbb.63.1295

56. Li S-Y, Bian H, Liu Z, et al. Chlorogenic acid protects MSCs from oxidative stress by altering FOXO family genes and activating intrinsic pathway. *Eur J Pharmacol.* 2012;674(2-3):65-72. doi: 10.1016/j.ejphar.2011.06.033

57. Beck DE, Vetrano AM, Mariano TM, Laskin JD. Uvb light stimulates production of reactive oxygen species: unexpected role for catalase. *J Biol Chem.* 2012;287(2):1074-1081. doi: 10.1016/j.jbc.2011.06.033

58. Qi F-H, Zhan Y-G. Research on increasing productivity of gallic acid produced by one kind of endophytic fungi CP01 strain. *Exp Technol Manag.* 2012;29(6):35-38. doi: 10.16791/j.cnki.sjg.2012.06.010

59. Verdú S, Ruiz-Rico M, Perez AJ, Barat JM, Talens P, Grau R. Toxicological implications of amplifying the antibacterial activity of gallic acid by immobilisation on silica particles: a study on C. elegans. *Environ Toxicol Pharmacol.* 2020;80:103492-103492. doi: 10.1016/j.etap.2020.103492

60. Variya BC, Bakrania AK, Patel SS, Variya Bhavesh C, Patel Snehal S. Antidiabetic potential of gallic acid from Emblica officinalis: improved glucose transporters and insulin sensitivity
through PPAR-γ and Akt signaling. *Phytomedicine*. 2020;73:152906. doi:10.1016/j.phymed.2019.152906

61. Wang D, Bao B. Gallic acid impedes non-small cell lung cancer progression via suppression of EGFR-dependent CARMA-PELP1 complex. *Drug Des Devel Ther*. 2020;14:1583-1592. doi:10.2147/DDDT.S228123

62. Singulani JdeL, Scorzoni L, Gomes PC, et al. Activity of gallic acid and its ester derivatives in *Cannabidiol elegans* and zebrafish (Danio rerio) models. *Future Med Chem*. 2017;9(16):1863-1872. doi:10.4155/fmc-2017-0127

63. Feng L-J, Yin Y-L, Zhao X-Q, Wang C-J. Research progress on 6-hydroxydopa induced parkinson’s disease in rats. *Eur J Med Chem*. 2016;129(3):822-829. doi:10.1016/j.ejmech.2016.12.045

64. Hosseinzadeh A, Houshmand G, Goudarzi M, et al. Ameliorative effect of gallic acid on sodium arsenite-induced spleno-, cardio- and hematotoxicity in rats. *Life Sci*. 2019;217(15):91-100. doi:10.1016/j.lfs.2018.11.050

65. Saidi I, Guesmi F, Kharbech O, Hfaiedh N, Djebali W. Gallic acid improves the antioxidant ability against cadmium toxicity: impact on leaf lipid composition of sunflower (*Helianthus annuus*) seedlings. *Environ Toxicol Saf*. 2021;210:111906. doi:10.1016/j.ecoenv.2021.111906

66. Seyed NF, Solomon H, Di LA, et al. Post-stroke depression and inflammation via upregulation of superoxide dismutase 2 and catalase in astrocytes. *J Neuroinflamm*. 2014;12(1):38-43. doi:10.1016/j.jneuroim.2014.02.001

67. Li C, Xu X, Tao Z, Wang XJ, Pan Y. Resveratrol dimers, nutritional components in grape wine, are selective ROS scavengers and weak Nrf2 activators. *Food Chem*. 2015;173(16):218-223. doi:10.1016/j.foodchem.2014.09.015

68. Li H, Yang L. Molecular regulatory mechanisms of Nrf2 antioxidant and anti-aging genes in immortalized lymphocytes of *Caenorhabditis elegans* and zebrafish (*Danio rerio*) models. *Future Med Chem*. 2017;9(16):1863-1872. doi:10.4155/fmc-2017-0127

69. Samuel KG, Wang J, Yue HY, et al. Effects of dietary gallic acid supplementation on performance, antioxidant status, and jejunal intestinal morphology in broiler chicks. *Poult Sci*. 2017;96(8):2768-2775. doi:10.3382/ps/pex091

70. Lee KH, Jung S, Kim HJ, Kim IS, Lee JH, Jo C. Effect of dietary supplementation of the combination of gallic and linoleic acid in thigh meat of broilers. *Asian-Australas J Anim Sci*. 2012;25(11):1641-1648. doi:10.5713/ajas.2012.122260

71. Jung S, Han BH, Nam K, Ahn DU, Lee JH, Jo C. Effect of dietary supplementation of gallic acid and linoleic acid mixture or their synthetic salt on egg quality. *Food Chem*. 2011;129(3):822-829. doi:10.1016/j.foodchem.2011.05.030

72. Cai L, Li X-L, Jiang X-R. Biological function of gallic acid and its application in livestock and poultry production. *China J Anim Nutr*. 2019;31(1):102-108. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=DWYW201901015&DbName=CJFQ2019

73. Dehghani MA, Shakiba Maram N, Moghimipour F, Khorsandi I, Atefi Khah M, Mahdavinia M. Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. *Biochem Biophys Acta Mol Basis Dis*. 2020;1866(12):165911 doi:10.1016/j.bbadis.2020.165911

74. Zhang H-J, Zhong L-Y, Ma N. Research progress on phenolic compounds from grape leaves and their biological activities. *Food Ferm Ind*. 2018;1-8. doi:10.13995/j.cnki.11-1802/1s.026687

75. Cosín-Tomàs M, Senserrich J, Arumi-Planas M, et al. Role of resveratrol and selenium on oxidative stress and expression of antioxidant and anti-aging genes in immortalized lymphocytes from Alzheimer’s disease patients. *Nutrients*. 2019;11(8):1764. doi:10.3390/nu11081764

76. Quadros B, Bastos J, Rodrigues C, et al. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. *Oxid Med Cell Longev*. 2018;2018:1-15. doi:10.1155/2018/8152373

77. Cheng Y, Takeuchi H, Sonobe Y, et al. Sirtuin 1 attenuates oxidative stress via upregulation of superoxide dismutase 2 and catalase in astrocytes. *J Neuroinflamm*. 2014;11(1):38-43. doi:10.1016/j.jneuroim.2014.02.001

78. Li C, Xu X, Tao Z, Wang XJ, Pan Y. Resveratrol dimers, nutritional components in grape wine, are selective ROS scavengers and weak Nrf2 activators. *Food Chem*. 2015;173(16):218-223. doi:10.1016/j.foodchem.2014.09.015

79. Yang X, Qiang X, Li Y, et al. Pyridoxine-resveratrol hybrids mannnich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. *Bioworg Chem*. 2017;71:305-314. doi:10.1016/j.bioworg.2017.02.016

80. Xu P, Zhang M, Sheng R, Ma Y, Ping X, Rong S. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ1-42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. *Eur J Med Chem*. 2017;127:174-186. doi:10.1016/j.ejmech.2016.12.045

81. Yang X, Qiang X, Li Y, et al. Pyridoxine-resveratrol hybrids mannnich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. *Bioworg Chem*. 2017;71:305-314. doi:10.1016/j.bioworg.2017.02.016

82. Zografos AL. Lignans, lignins, and resveratrols. In: John Wiley & Sons, Inc.; 2016:10.331-379. doi:10.1002/9781118754085.ch10

83. Teponno RB, Kusari S, Spiteller M. Recent advances in research on lignans and neolignans. *Asian-Australas J Anim Sci*. 2016;33(9):1044-1092. doi:10.1039/C6NP00021E

84. Wang L, Wu D, Zhou J-W. Research progress of lignans. *Science China Press*, Inc; 2016:10.331-379. doi:10.1002/9781118754085.ch10

85. Cao J, Feng C, Xie L, et al. Sesamin attenuates histological alterations, oxidative stress and expressions of immune-related genes in liver of zebrafish (Danio rerio) exposed to fluoride. *Fish Shellfish Immunol*. 2020;1866(12):165911 doi:10.1016/j.bbadis.2020.165911

86. Ren Y-Y, Li S-G, Zhang H-Y. Study on antioxidant activities of sesamin in soybean oil. *Food Ind*. 2017;38(12):118-112. doi:10.13995/j.cnki.11-1802/1s.026687

87. Saleem M, Kim HJ, Ali MS, Lee YS. An update on bioactive plant lignans. *Nat Prod Rep*. 2005;22(6):696-716. doi:10.1039/b514045p
88. Yamawaki M, Nishi K, Nishimoto S, et al. Immunomodulatory effect of (-)-matairesinol in vivo and ex vivo. J Agr Chem Soc Jpn. 2011;75(5):859-863. doi:10.1271/bbb.100781

89. Cao R, Xie K, Hou D-X, He X. Research advance on antioxidant function roles and its mechanism of total phenols from Magnolia of fiscinalis. China Anim Husb Vet Med. 2016;43(9):2395-2400. doi:10.16431/j.cnki.1671-7236.2016.09.026

90. Duan J-Q, Lin Y, Zhao Q-F, Xu C-F, Ma L-Q. Protective effect and mechanism of honokiol on acute lung injury in septic rats. Chinese J Gerontol. 2018;38(11):2745-2747. doi:10.3969/j.issn.1005-9202.2018.11.071

91. Ye X-Y, Zhao H, Cheng C-H, Zhang Y-R. Mechanisms of magnolol a gaining 6-OHDA-induced PC12 cell trauma. Chinese Tradit Pat Med. 2009;31(8):1168-1171. doi:10.3969/j.issn.1001-1528.2009.08.008

92. Li H-B, Gao J-M, Ying X-X, Wang S-P, Li J-C. Protective effect of magnolol on THBP-induced injury in H460 cells partially via a p53 dependent mechanism. Arch Pharm Res. 2007;30(7):850-857. doi:10.1007/ BF02978836

93. Jiang C-F. Study of effect of hydrolysis on the antioxidant activity of areca polyphenols and study on the synergistic antioxidant properties of polyphenols. Agr Univ Hunan. 2016. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201702&filename=1017039602.nh

94. Yao L, Jiang A-M, Yang C-P, Li S-H. Synergistic inhibitory effects of oolong polysaccharide and polyphenol on HepG2 cells. Preg Vet Med. 2018;39(7):55-58. doi:10.3969/j.issn.1005-5038.2018.07.012

95. Li R. Synergistic Effect of tea polyphenols and vitamins’ synergistic effect on the antioxidant activity of deible oil. Northwest A & F Univ. 2014. http://cdmd.cnki.com.cn/Article/CDMD-10712-1014430202.htm

96. Bai X-L, Fan Z-L, Li L, Zhang H, Liu Q-R, Fu Y-J. Protection of tea polyphenols on fibroblasts of human vascular endothelial cells in vitro. Sci Technol Food Ind. 2019;40(6):308-311. doi:10.13386/ j.issn1002-0306.2019.06.053

97. Xiao Y-J. Study on separation and purification of JUNCAO polysaccharide and its antioxidant synergistic effect with tea polyphenols. Fujian Agr For Univ. 2013.http://cfpd.cnki.net/Article/CPFDTOTAL-ZGSP201411001267.htm

98. Sun S-L, Liu S-M, Zhao C-Y, et al. Research on the synergistic anti-oxidative effects of tea polyphenols and vitamin C/E. Guangdong Agr Sci. 2013;40(1):96-98. doi:10.3969/j.issn.1004-874x.2013.01.032

99. Dai F, Chen W-F, Zhou B. Antioxidant synergism of green tea polyphenols with alpha-tocopherol and L-ascorbic acid in SDS micelles. Biochimie. 2008;90(10):1499-1505. doi:10.1016/j.biochi.2008.05.007

100. Wang X-Y, Wang W-T. Synergistic antioxidative activity of tea polyphenols and carotenoids. Food Res Dev. 2015;36(17):44-47. doi:10.3969/j.issn.1005-6521.2015.17.011

101. Lin M-R, Liu X-Y, Lin M-G, et al. The synergistic antioxidant activity on tea polyphenols with the extracts of dictyophora indusiata and laminaria japonica. Food Ind. 2015;36(4):181-185. doi:cnki:spgy.0.2015-04-055

102. Liu X-J, He F-L, Zhao L-C, Liu X. Synergistic antioxidant activity of sweet potato extracts combined with tea polyphenols and Pueraria flavonoids on PC12 cells. Mod Food Sci Technol. 2015;31(12):14-18. doi:10.13982/j.mfstr.1673-9078.2015.12.003

103. Tang Y-K, Zuo C-C, Li J-X, Li L, Zhang H-F. Synergism of antioxidant and antibacterial activities between Hanzhongxianhao tea polyphenols and vitamin C. J Food Sci Technol. 2017;35(3):55-60. doi:10.3969/j.issn.2095-6002.2017.03.008

104. Liu X-H, Meng Q, Li W, Yu Y-Y. Research progress on synergism antioxidation mechanism of tea polyphenols and vitamins. Chinese J Trop Crop. 2012;33(12):2305-2310. doi:10.3969/j.issn.1000-2561.2012.12.035

105. Fan Z-L, Liu X-F, Wang Z-Y. Synergistic antioxidative effect of berry polyphenols with auricularia auricular polysaccharides. Mod Food Sci Technol. 2015;31(12):166-171. doi:10.13982/j.mfstr.1673-9078.2015.12.025

106. Choi HY, Kim SW, Kim B, et al. Alpha-fetoprotein, identified as a novel marker for the antioxidant effect of placental extract, exhibits synergistic antioxidant activity in the presence of exodiol. PLoS One. 2014;9(6):1-11. doi:10.1371/journal.pone.0099421

107. Han DH, Lee MJ, Kim JH. Antioxidant and apoptosis-inducing activities of ellagic acid. Anticancer Res. 2006;26(5A):3601-3606. https://ar. iiarjournals. org/content/anticancer/26/5A/3601.full.pdf

108. Chepda T, Cadou M, Lassabliere F, et al. Synergy between ascorbate and alpha-tocopherol on fibroblasts in culture. Life Sci. 2001;69(14):1587-1596. doi:10.1016/S0022-3205(01)02420-1

109. Hu X-F, Mao J-M, Jiang L-P, Yang X-Q. Synergism of tea polyphenols and other antioxidants. J Tea. 2006;26(2):66-69. doi:10.3969/j.issn.0577-8921.2000.02.002

110. Yao T-W, Du L-B, Xu Y-C, Jia H-Y, Liu Y. Studies on intermolecular synergistic antioxidant activity in glyceride Tri-ferulate. Chem J Chinese Univ. 2009;30(7):1431-1433. doi:10.3321/j.issn:0251-0790.2009.07.045

111. Cai S, Huang Y-M, Zhuang Y-H, Cao A-H, Yang F. Physiological activity and antioxidant mechanism of anthocyanins. Shanshi J Agr Sci. 2018;64(12):40-43+58. doi:CNKI: SUN: SNKX.0.2018-12-011

112. Bai H-N, Wang Z-Y, Zhang H, Zhu D-L, Liu R-H. Study on synergistic effect of polyphenols and an Anticancer Res. 2012;2:172-176. doi:10.3321/j.issn:0251-0790.2009.07.045

113. Liu L, Chen F-S, Xue J-Y. Research progress on complex antioxidants. Chinese Food Addit. 2012;2:172-176. doi:10.3969/j.issn.1006-2513.2012.02.021

114. Dai F, Chen W-F, Zhou B. Antioxidant synergism of green tea polyphenols with alpha-tocopherol and L-ascorbic acid in SDS micelles. Biochimie. 2008;90(10):1499-1505. doi:10.1016/j.biochi.2008.05.007
115. Schaich KM, Tian X, Xie J. Hurdles and pitfalls in measuring antioxidant efficacy: a critical evaluation of ABTS, DPPH, and ORAC assays. *J Funct Foods*. 2015;14(1):111-125. doi:10.1016/j.jff.2015.01.043

116. Jiang J-P, Chen H, Zhou X-Y. Study on the extraction of tea by ion precipitation technology and analyses of preservation of chilled pork. *J Hunan Univ Technol*. 2005;19(1):17-19. doi:10.3969/j.issn.1673-9833.2005.01.005