Self-Intersecting Periodic Curves in the Plane

J. Howie & J. F. Toland

Abstract

Suppose a smooth planar curve γ is 2π-periodic in the x direction and the length of one period is ℓ. It is shown that if γ self-intersects, then it has a segment of length $\ell - 2\pi$ on which it self-intersects and somewhere its curvature is at least $2\pi/(\ell - 2\pi)$. The proof involves the projection Γ of γ onto a cylinder. (The complex relation between γ and Γ was recently observed analytically in [1], see also [5, Ch. 10]). When γ is in general position there is a bijection between self-intersection points of γ modulo the periodicity, and self-intersection points of Γ with winding number 0 around the cylinder. However, our proof depends on the observation that a loop in Γ with winding number 1 leads to a self-intersection point of γ.

Mathematics Subject Classification: Primary 53A04, Secondary 55M25

Let a smooth 2π-periodic curve γ in the (x, y)-plane be parametrized by arc-length as follows:

$$\begin{align*}
\gamma &= \{p(s) : s \in \mathbb{R}\}, \\
p(s) &= (u(s), v(s)), \\
\{u(s + \ell) = 2\pi + u(s), \\
v(s + \ell) = v(s), \\
u'(s)^2 + v'(s)^2 = 1,
\end{align*}$$

The length of one period of γ is ℓ and $q \in \gamma$ is called a crossing if $q = p(s_1) = p(s_2)$ and $s_1 \neq s_2$. Note that crossings exist if and only if p is not injective. A crossing q is called simple if there are exactly two real numbers $s_1 \neq s_2$ with $p(s_1) = p(s_2) = q$ and if $p'(s_1) \neq p'(s_2)$ when $p(s_1) = p(s_2)$ and $s_1 \neq s_2$. Note that the smooth curve γ can be approximated arbitrarily closely by smooth curves in general position, that is with all crossings simple. If γ is in general position, then it follows from the smoothness that the set of crossings is discrete, and hence finite by compactness. Let $p'(s) = (\cos \vartheta(s), \sin \vartheta(s)), \ s \in \mathbb{R}$, where ϑ is smooth [3 Prop. 2.2.1]. The goal is to establish the following which is intuitively obvious. (A periodic segment of γ is a segment of the form $\{p(t) : t \in [a, a + \ell]\}$.)

Proposition. Suppose that all crossings of γ are simple.

(a) If p is injective on every interval of length $\ell - 2\pi$, p is injective.

(b) If p is not injective its curvature is somewhere at least $2\pi/(\ell - 2\pi)$.

1
(c) If \(p \) is not injective and \(\vartheta \) is periodic, then \(\gamma \) has a periodic segment which contains two crossings.

The global problem of bounding from below the maximum curvature of a self-intersecting periodic planar curve arose in a study of water waves beneath an elastic sheet. In the model \([6]\), the sheet energy increases with the curvature and, roughly speaking, the conclusion needed was that sheets of certain energies could not self-intersect.

Remark. Periodicity of \(\vartheta \) in the Proposition does not follow from that of \(p \), as the first diagram below shows. Part (c) of the Proposition is illustrated in the second diagram, where \(\vartheta \) is periodic.

\[
x = -\pi \quad x = \pi \quad x = -\pi \quad x = \pi
\]

For a proof, we project \(\gamma \) onto the cylinder \(C = S^1 \times \mathbb{R} \), where \(S^1 = \{ e^{i\phi} : \phi \in \mathbb{R} \} \). Let \(P : \mathbb{R} \to C \) be given by \(P(s) = (e^{i\vartheta(s)}, v(s)) \) and let \(\Gamma = \{ P(s) : s \in [0, \ell] \} \). Thus the projection of the periodic, non-compact curve \(\gamma \) in \(\mathbb{R}^2 \) onto \(C \) is the compact curve \(\Gamma \). Now \(\Gamma \) has a crossing \(Q \) if \(P(s_0) = P(t_0) = Q \) for some \(0 \leq t_0 < s_0 < \ell \) and we note that \(P(s_0) = P(t_0) \) if and only if \(p(s_0) = p(t_0) + k(2\pi, 0) = p(t_0 + k\ell), \quad k \in \mathbb{Z} \),

where \(k = \#(\Gamma_Q) \), the winding number around \(C \) of

\[
\Gamma_Q = \{ P(s) : s \in [t_0, s_0] \},
\]

a loop at \(Q \). Crossings of \(\Gamma \) with winding number \(k \) correspond to the existence of horizontal chords with length \(2|k|\pi \) connecting points of \(\gamma \). Significantly for the Proposition, there is a one-to-one correspondence between crossings of \(\gamma \) and crossings of \(\Gamma \) with winding number zero. Note that \(\#(\Gamma) = 1 \), since \(P(\ell) = P(0) \) and \(p(\ell) = p(0) + (2\pi, 0) \).

Lemma 1. Suppose that \(\#(\Gamma_Q) \in \{0, 1\} \) for a crossing \(Q \) of \(\Gamma \). Then \(p \) is not injective on some interval of length \(\ell \).

Proof. By hypothesis \(\Gamma_Q := \{ P(s) : s \in [t_0, s_0] \}, \ [t_0, s_0] \subset [0, \ell] \) and

\[
u(s_0) = u(t_0) + 2k\pi \text{ for } k \in \{0, 1\}, \quad v(s_0) = v(t_0).
\]
If \(k = 0 \), \(p(s_0) = p(t_0) \) and the conclusion holds. If \(k = 1 \),
\[
p(s_0) = p(t_0 + \ell), \quad 0 < t_0 + \ell - s_0 < \ell,
\]
and again the conclusion holds.

Remark. Note that if \(\#(\Gamma_Q) = -1 \), the proof of Lemma 1 leads only to the conclusion that there is an interval of length \(2\ell \) on which \(p \) is not injective, as illustrated in the example below.

![Diagram](image)

The segment \(1 \to 2 \to 3 \to 4 \), in which arrows denote increasing arc-length, represents one period of \(\gamma \) in \(\mathbb{R}^2 \). The dashed curve \(5 \to 6 \to 7 \to 8 \) represents the next period. The segment numbered 1 contains a sub-loop of \(\Gamma \) on \(C \) with winding number \(-1\) and the construction just described leads to the crossing \(O \) on \(\gamma \). However, the length of the corresponding closed sub-arc of \(1 \to 2 \to 3 \to 4 \to 5 \) in \(\mathbb{R}^2 \) lies between \(\ell \) and \(2\ell \) which does not vindicate the Proposition. However, there is another crossing \(* \) on \(\gamma \), and the closed loop \(4 \to 5 \to 6 \) satisfies the conclusion of the Proposition.

The following is the key.

Lemma 2. Suppose the crossings of \(\Gamma \) are all simple. For any loop at \(\bar{Q} \) of the form \(\Gamma_{\bar{Q}} = \{ P(s) : s \in [a, b] \} \), \(P(a) = P(b) = \bar{Q} \), with \(\#(\Gamma) > 1 \), there exists a sub-loop at \(\bar{Q}_1 \) of the form \(\Gamma_{\bar{Q}_1} := \{ P(s) : s \in [a_1, b_1] \} \), \(P(a_1) = P(b_1) = \bar{Q}_1 \), \(a \leq a_1 < b_1 < b \), with \(\#(\Gamma_{\bar{Q}_1}) = 1 \).

Proof. Since \(\#(\Gamma_{\bar{Q}}) > 1 \) it follows from the topology of the cylinder that \(\Gamma_{\bar{Q}} \) has a crossing. The proof is by induction on the number of crossings.

If \(\Gamma_{\bar{Q}} \) has only one crossing, \(\Gamma_{\bar{Q}} \) is the union of two loops, \(\Gamma_1 \) and \(\Gamma_2 \), based at a point of \(\Gamma_{\bar{Q}} \). Since they have no crossings, each has winding number \(\pm 1 \) or 0. Since the sum of their winding numbers is \(\#(\Gamma_{\bar{Q}}) > 1 \), each has winding number 1 and \(\#(\Gamma_{\bar{Q}}) = 2 \). If \(\bar{Q} \in \Gamma_2 \), then the sub-path \(\Gamma_1 \) satisfies the conclusion of the lemma, and vice versa.

Now we make the inductive hypothesis that the lemma holds for any loop \(\Gamma_{\bar{Q}} \) of the form in the lemma with no more than \(N - 1 \) crossings, \(N \geq 2 \).
Suppose a loop $\Gamma_{\hat{Q}} = \{P(s) : s \in [\hat{a}, \hat{b}]\}$, $P(\hat{a}) = P(\hat{b}) = \hat{Q}$, has N crossings. Choose one of them, $P(s_1) = P(t_1) =: \hat{Q}$, say. This splits $\Gamma_{\hat{Q}}$ into two loops, Γ_1 and Γ_2, based at \hat{Q}. If they both have winding number 1, then the result follows, exactly as in the case $N = 1$ above. Otherwise one of them, Γ_1 say, has winding number at least 2 and no more than $N - 1$ crossings.

Now, momentarily, let \hat{Q} be the origin of arc length so that $\Gamma_1 = \{P(s) : s \in [0, \hat{t}]\}$ where s is arc length measured from \hat{Q} along Γ_1. Then, by induction, there is a loop Γ_{11} in Γ_1, satisfying the conclusion of the lemma with $[0, \hat{t}]$ instead of $[a, b]$, and winding number 1.

If Γ_{11} does not contain \hat{Q}, then Γ_{11} with the original parametrization satisfies the conclusion of the lemma.

If Γ_{11} does contain \hat{Q}, then its complement in $\hat{\Gamma}$ is a sub-path $\Gamma_{12} = \{P(s) : s \in [a', b'] \subset [a, b]\}$ of $\hat{\Gamma}$, with winding number not smaller than 1 and no more than $N - 1$ crossings.

If the winding number of Γ_{12} is 1, then we are done. If it exceeds 1, then the required conclusion follows from the inductive hypothesis.

Lemma 3. If $(\Gamma_Q) > 1$ for a crossing Q of Γ, then p is not injective on some closed interval of length ℓ.

Proof. Assume first that all the crossings of the original curve Γ are simple. Putting $\Gamma = \Gamma_Q$ in Lemma 2 gives the existence of a crossing of Γ with winding number 1. The required result follows by Lemma 1 when all the crossings of Γ are simple. If the crossings of Γ are not all simple, apply the conclusion of Lemma 2 to a uniform periodic approximation γ_1 of γ parametrized by a smooth periodic function p_1 with the property that each crossing of Γ_1 is simple and close to a crossing of Γ. The required result in the general case will follow by a simple limiting argument.

Proof of the Proposition. (a) If p is not injective, Γ has a crossing, Q. Suppose $P(t_0) = P(s_0), 0 \leq t_0 < s_0 < \ell$. Then, in the notation of (11), $\Gamma_Q = \{P(s) : s \in [t_0, s_0]\}$ and there is a minimal sub loop $\Gamma_{Q_1} = \{P(s) : s \in [t_1, s_1]\}$ of Γ_Q (a loop in Γ_Q which has no proper sub loop) $[t_1, s_1] \subset [t_0, s_0], P(s_1) = P(t_1) =: Q_1$. Since Γ_{Q_1} has no crossings, $|\#(\Gamma_{Q_1})| \leq 1$.

Now we observe that if p is not injective, then it is not injective on some interval of length ℓ. If $(\Gamma_{Q_1}) \in \{0, 1\}$, the observation holds by Lemma 1. If $(\Gamma_{Q_1}) = -1$, since $(\Gamma) = 1$, the complement of Γ_{Q_1} in Γ has winding number 2 and the observation holds, by Lemma 3.

Now consider an interval $[a, a + \ell]$ on which p is not injective. Since $p(a + \ell) = p(a) + (2\pi, 0)$, it follows easily (from the diagram below!) that the length of any loop in this periodic segment of γ does not exceed $\ell - 2\pi$. Hence there is an interval of length $\ell - 2\pi$ on which p is not injective.
(b) A classical result [4] in the case of plane curves is the following [2]. Remark on p. 38.

Axel Schur (1921). Suppose that $\mathcal{U}_i = \{v_i(s) : s \in [0, S]\}$, $i = 1, 2$, are two plane curves parametrized by arc length, with the same length S and with curvatures $\kappa_i(s)$ at $v_i(s)$. Suppose that \mathcal{U}_1 has no self-intersections and, along with the chord from $v_1(0)$ to $v_1(S)$, bounds a convex region. Furthermore, suppose that $|\kappa_2| \leq \kappa_1$ on $[0, S]$. Then $|v_2(s) - v_2(0)| \geq |v_1(s) - v_1(0)|$, $s \in [0, S]$.

Let \mathcal{U}_2 be a closed loop in γ with length S no greater than $\ell - 2\pi$ and suppose that at every point its curvature $|\kappa_2| \leq 2\pi(1 - \epsilon)/(\ell - 2\pi)$ for some $\epsilon > 0$. Let \mathcal{U}_1 be the segment of length S of a circle of radius $(\ell - 2\pi)/(2\pi(1 - \epsilon))$. Now $|\kappa_2| \leq \kappa_1$, \mathcal{U}_1 is not closed but \mathcal{U}_2 is closed, which contradicts Schur’s result. Hence no such ϵ exists, which proves (b).

(c) Consider a periodic segment of γ with only one crossing at an angle α, as illustrated by the solid line in the diagram. Now extend this segment as a smooth closed curve of length $\ell + L$ with no further crossings (the extension is the dashed curve $\tilde{\gamma}$).

By the hypothesis of part (c),

$$\int_0^\ell \vartheta'(s) \, ds = 0,$$

and by construction, $\int_{\ell}^{\ell+L} \vartheta'(s) \, ds = -2\pi$.

So, from the hypothesis, the integral of ϑ' around the oriented loop $\gamma \cup \tilde{\gamma}$ is -2π. On the other hand, by the Hopf’s Umlaufsatz for curvilinear polygons [3].
§13.2,\[
\int_{\ell_1}^{\ell_2} \varphi'(s) ds = \pi + \alpha = \int_{\ell_2}^{\ell+L} \varphi'(s) ds + \int_{0}^{\ell_1} \varphi'(s) ds.
\]
This is impossible since $\alpha \notin \{0, \pi\}$, because all crossings are simple. This contradiction completes the proof.

References

[1] T. M. Apostol and M.A. Mnatsakanian, Unwrapping curves from cylinders and cones. *Amer. Math. Monthly.* 114 (2007), 388-416.

[2] S. S. Chern, Curves and surfaces in Euclidean space, in: *Studies in Global Geometry and Analysis*, Studies in Mathematics Volume 4, Math. Asoc. Amer, 1967, pp. 16–56.

[3] A. Pressley, *Elementary Differential Geometry*. Second Edition. Springer Undergraduate Mathematics Series. Springer, London, 2010.

[4] A. Schur. Über die Schwarzsche Extremaleigenschaft des Kreises unter den Kurven konstanter Krümmung. *Mathematische Annalen* 83 (1921), 143-148. http://www.digizeitschriften.de/main/dms/img/?PPN=PPN235181884

[5] H. Steinhaus, *Mathematical Snapshots*. Dover, Mineola NY, 1999.

[6] J. F. Toland, Heavy hydroelastic travelling waves. *Proc. R. Soc. Lond. A* 463 (2007), 2371-2397 (DOI : 10.1098/rspa.2007.1883)

J. Howie
Department of Mathematics and Maxwell Institute for Mathematical Sciences
Heriot-Watt University
Edinburgh EH14 4AS

J. F. Toland
Department of Mathematical Sciences
University of Bath
Bath BA2 7AY