Cavity-free plasmonic nanolasing enabled by dispersionless stopped light

Tim Pickering¹, Joachim M. Hamm¹, A. Freddie Page¹, Sebastian Wuestner¹ & Ortwin Hess¹

When light is brought to a standstill, its interaction with gain media increases dramatically due to a singularity in the density of optical states. Concurrently, stopped light engenders an inherent and cavity-free feedback mechanism, similar in effect to the feedback that has been demonstrated and exploited in large-scale disordered media and random lasers. Here we study the spatial, temporal and spectral signatures of lasing in planar gain-enhanced nanoplasmonic structures at near-infrared frequencies and show that the stopped-light feedback mechanism allows for nanolasing without a cavity. We reveal that in the absence of cavity-induced feedback, the subwavelength lasing mode forms dynamically as a phase-locked superposition of quasi dispersion-free waveguide modes. This mechanism proves remarkably robust against interface roughness and offers a new route towards nanolasing, the experimental realization of ultra-thin surface emitting lasers, and cavity-free active quantum plasmonics.
The lasing principle, one of the key discoveries of quantum-electrodynamics, has had tremendous impact on optics research and technology. In a development not too dissimilar to the revolution in transistor-based digital electronics, lasers have undergone a continuous miniaturization that culminated in the recent experimental demonstration of subwavelength nanolasers. This evolution was achieved through innovative design concepts as well as advancements in fabrication techniques, which together led to breakthroughs in the two key ingredients that make a laser: light amplification and feedback. Low-dimensional semiconductor gain materials such as quantum wells and dots proved as important in shrinking lasers as did microcavity resonator designs, for example, in the form of microdisks, micropillars, defect-mode photonic crystals, and photonic nanowires. Advancing beyond traditional cavity concepts, recent nanolasers employ plasmonic resonances for feedback, allowing them to concentrate light into mode volumes that are no longer limited by diffraction. The use of localized surface plasmon resonances as cold-cavity modes, however, is only one route to lasing on subwavelength scales. Lasing, in fact, does not require modes predefined by geometry but merely a feedback mechanism. To illustrate this point, one may consider the situation in a random laser where feedback arises from multiple random scattering events that lead to the spontaneous formation of closed optical paths within the disordered medium. Here we show that cavity-free lasing is not restricted to micrometre sizes in disordered media (using random feedback) but can even be realized on subwavelength scales using stopped light (SL) to provide local feedback.

The fundamental principle behind SL lasing is to trap and amplify photons in space just at the point of their emission. For this, a slow light regime needs to be entered, which could be achieved, for example, in photonic crystal waveguides via coherent backscattering through symmetry breaking in axially uniform waveguides, or in metamaterials through the plasmonic analogue of electromagnetically induced transparency. Planar plasmonic heterostructures present an even simpler design in which the stopping of light arises from the balancing of opposing energy flows in layers of materials with positive (dielectric) and negative (metal) permittivities. This design approach offers precise control over the group velocity without the need of structuring along the direction of propagation. At the SL point, the overall energy flow effectively cancels, forming a characteristic closed-loop vortex (Fig. 1a), which results in a strong enhancement of the local density of optical states (LDOS) that is only limited by dissipative loss. Combined with gain, this SL feedback mechanism can then lead to coherent amplification of the trapped photons via stimulated emission processes.

Above the threshold, where the gain exceeds the losses, a localized SL lasing mode forms, whose mode volume is only limited by the waveguide dispersion. To enable subwavelength localization of the lasing mode, a broad spectrum of k-modes (k denoting the wavevector) needs to be supported by the gain (Fig. 1c). This can be achieved by introducing two (or more) SL points between which a monotonous behaviour of the dispersion is enforced. Adjusting the layer thicknesses and choice of materials allows us to simultaneously maximize the modal gain and minimize the dispersion (Fig. 1c). Although being conceptually simple, this principle can be applied universally to render the dispersion of the SL laser flat by structural optimization using, for example, genetic algorithms (see Methods).

In the following, we first determine the dispersion properties of an SL lasing system that is based on a leaky-mode metal-dielectric waveguide design. Next, we study the transient SL lasing behaviour when a finite gain section is introduced, observing ultra-fast relaxation dynamics and high-β characteristics that are caused by a bundling of passive k-modes into a single SL lasing mode. For the same structure, we offer numerical evidence that the SL points are retained up to a certain threshold value of the surface roughness, beyond which light increasingly concentrates in plasmonic hotspots on a deep subwavelength scale. Finally, we identify the mode-locking mechanism that leads to the self-localization of light on subwavelength scales and verify its applicability to both the SL nanolaser and an alternative SL spasing design.

Results

Dispersionless SL in metal-dielectric waveguides. We demonstrate SL nanolasing at telecom (near-infrared) wavelengths using the example structure of a planar metal-dielectric-metal stack...
with a top metal layer of thickness $t = 500 \text{ nm}$ and a waveguide core of height $h = 290 \text{ nm}$ on top of a thick metal substrate (Fig. 2a). This is a principle study, but for specificity, the dielectric permittivities of the core and cladding materials are chosen to be characteristic of III–V semiconductors (such as InGaAsP) and transparent conductive oxides (indium tin oxide) (see Methods), respectively. This particular choice can, for example, for a direct comparison with experiment, be adapted, particularly to take advantage of recent advances in improving the properties of plasmonic materials. The choice of structure and materials gives rise to a (weakly) leaky TM$_2$ mode in the dispersion diagram (Fig. 2b) which, by design, features two SL points that lie close in frequency: SL$_1$ at $\omega_1/2\pi = 193.8 \text{ THz}$ ($\lambda_1 = 1,546.9 \text{ nm}$) and $k_1 = 0$, and SL$_2$ at $\omega_2/2\pi = 193.78 \text{ THz}$ ($\lambda_2 = 1,547.06 \text{ nm}$) and $k_2 = 1.42 \mu \text{ m}^{-1}$. With both SL points situated inside the light cone, we expect the SL lasing mode to couple to free-space radiation perpendicular to the plane. The emission of light can then be controlled within limits by adjusting the thickness of the top metal cladding and amounts, for the given geometry, to around 3%–4% of the total energy lost per cycle. We initially focus on this photonic (that is, leaky) design, but will demonstrate later that it is equally possible to realize plasmonic (that is, spasing) designs, where multiple SL points fall onto a bound plasmonic mode.

Having established the dispersionless character of the SL mode using a passive mode theory (Fig. 2b), we proceed to find the threshold conditions for SL lasing by performing a small-signal gain analysis. We assume that the gain medium fills the dielectric core of the structure, except for a 10-nm buffer next to the metal, which is introduced to account for gain quenching in close vicinity to the metal. The analytic dispersion equations are solved for varying levels of inversion (see Supplementary Table 1 for the gain material parameters). As the two SL points retain their positions and effectively pin down the dispersion between them, no significant change of the modal dispersion is observed with increasing inversion (Fig. 2c). In contrast, the modal loss shows a strong dependence on the inversion and changes sign at $\Delta N_{\text{th}} \approx 0.13$ (Fig. 2c, bottom). At this point, the mode becomes undamped and, owing to the flatness of the band, experiences an almost uniform level of gain over a broad range of $k$-values (up to $k \approx 5 \mu \text{ m}^{-1}$ where the dispersion $\omega(k)$ ultimately loses the gain support). As the calculated loss rate includes both dissipative and radiative (leakage through the cladding layer) contributions, we can associate $\Delta N_{\text{th}}$ with the threshold inversion required for lasing.

**Dynamics of cavity-free SL lasing.** To gain insight into the transient dynamics and characteristics of SL lasing on sub-wavelength scales, we perform first-principles time-domain simulations, taking into account the nonlinearity of the gain material as well as the spatio-temporal interplay between light-field and inversion (Fig. 3). The gain material, described by four-level Maxwell-Bloch equations with parameters that match those used in the semi-analytical mode calculations above, is initially confined to a 400-nm-wide section, approximately four times smaller than the vacuum wavelength at the SL points. By design, the gain section can be pumped optically using a propagating waveguide mode at a higher frequency (Supplementary Fig. 1 and Supplementary Table 2). At a pump

---

**Figure 2 | Dispersion and small-signal gain analysis of the planar SL structure.** (a) The metal-dielectric structure with gain section height $h = 290 \text{ nm}$ and top metal layer thickness $t = 500 \text{ nm}$ is designed to support a weakly leaky TM$_2$ mode at a wavelength of 1,547 nm. The layer thickness $t$ can be tuned to control the emission of radiation. (b) Passive case: the (complex frequency) dispersion of the TM$_2$ mode exhibits two SL points (marked with black circles) within the light cone (dashed line) that are lined up with the gain spectrum (in blue). A thin dielectric cover layer pushes the SPP branch, which would otherwise intersect the gain spectrum at higher wavevectors resulting in mode competition, to lower frequencies. (c) When gain is introduced into the core the modal dispersion, group velocity and modal loss (top to bottom) will change depending on the gain coefficient ranging from 0 cm$^{-1}$ (no inversion; dark colour) to 4,180 cm$^{-1}$ (maximum inversion; light colour) as indicated by the arrows. The analysis highlights the robustness of the SL points, leading to a flat dispersion of average velocity $\sim 3 \times 10^{-8} c$ that is practically not affected by the level of inversion. The dashed line in the top panel represents the light line.
level well above threshold, the transient field and inversion dynamics (Fig. 3a) display ultrafast relaxation oscillations with a period of around 10 ps are observed in the temporal evolution of the population inversion and the field energy for a metal-dielectric SL structure with a 400-nm wide gain section. The intensity profile of the steady-state lasing mode has TM$_2$ character and strongly localizes over the gain section (highlighted by the vertical lines). The Poynting vectors (cyan) form a closed-loop energy vortex that provides the feedback mechanism for the SL laser. Stimulated emission into the SL lasing mode takes place in the upper and lower parts of the gain section (top) causing strong spatial hole burning in the inversion. The laser output energy follows an S-shaped input–output curve with a threshold pump rate of $r_p = 1.43$ ps$^{-1}$. A comparison of the amplified spontaneous emission (ASE) spectrum below threshold (left inset) and the lasing spectrum (right inset) indicates spectral narrowing due to the build-up of coherence in the SL mode. Close to its maximum value, the ASE spectrum closely follows the spectral density of states of the TM$_2$ mode at emission (Fig. 3c) above the lasing threshold is due to the build-up of phase coherence in the SL mode. A comparison of the amplified spontaneous emission (ASE) spectrum below threshold (left inset) and the lasing spectrum (right inset) indicates spectral narrowing due to the build-up of coherence in the SL mode. Close to its maximum value, the ASE spectrum closely follows the spectral density of states of the TM$_2$ mode at $k = 0$ (red dashed line, normalized to the ASE and lasing peak values, respectively) and is much narrower than the gain spectrum (blue dashed line). The output energy and its error in c were determined during steady-state emission as the average value and s.d. of the cycle-averaged electromagnetic energy in a fixed time window (53 ps above and 200 ps below threshold).

Resilience to surface roughness. It has been shown that even small structural imperfections can have a significant impact on the propagation characteristics near SL points in slow light devices. The increase of scattering at interfaces not only imposes limitations on the achievable group index but can also result in Anderson localization of light, as has been demonstrated for photonic crystal waveguides. In metal dielectric heterostructures, however, SL arises from negative energy flow inside the metallic cladding and not from backscattering at geometric features. It is therefore important to determine the sensitivity of the SL feedback mechanism to structural imperfections that are likely to be present in any experimental realization.

We study the influence of surface roughness on SL lasing by applying a normally distributed variation of surface roughness.

Figure 3 | Nonlinear lasing dynamics and laser threshold behaviour. (a) Characteristic single-mode relaxation oscillations with a period of around 10 ps are observed in the temporal evolution of the population inversion and the field energy for a metal-dielectric SL structure with a 400-nm wide gain section. (b) The intensity profile of the steady-state lasing mode has TM$_2$ character and strongly localizes over the gain section (highlighted by the vertical lines). The Poynting vectors (cyan) form a closed-loop energy vortex that provides the feedback mechanism for the SL laser. Stimulated emission into the SL lasing mode takes place in the upper and lower parts of the gain section (top) causing strong spatial hole burning in the inversion. The laser output energy follows an S-shaped input–output curve with a threshold pump rate of $r_p = 1.43$ ps$^{-1}$. A comparison of the amplified spontaneous emission (ASE) spectrum below threshold (left inset) and the lasing spectrum (right inset) indicates spectral narrowing due to the build-up of coherence in the SL mode. Close to its maximum value, the ASE spectrum closely follows the spectral density of states of the TM$_2$ mode at $k = 0$ (red dashed line, normalized to the ASE and lasing peak values, respectively) and is much narrower than the gain spectrum (blue dashed line). The output energy and its error in c were determined during steady-state emission as the average value and s.d. of the cycle-averaged electromagnetic energy in a fixed time window (35 ps above and 200 ps below threshold).
the SL lasing mode is characterized by a closed-loop energy vertex (Fig. 3c) and forms dynamically by phase-locking the continuum of k-modes in the vicinity of the SL points. During the transient phase, the lasing mode acquires a spectral composition that maximizes the effective gain $G(\omega) \propto \int dk \mathcal{L}(\omega - \omega_0) \cdot D(\omega, k) \cdot \text{sinc}^2(kw/2) = \int dk \ g(\omega, k)$ by balancing the spatial confinement of the lasing mode to the gain section against its spectral overlap with the gain line $\mathcal{L}(\omega - \omega_0)$. The density of states $D(\omega, k) \propto \gamma(k)/(\gamma(k) - \omega^2 + \gamma^2(k))$ of the $\text{TM}_2$ waveguide mode plays a critical role in this process as it links and controls the spatial and spectral overlap. The close agreement of the analytically predicted frequencies $\omega_{\text{SLL}}$ and k-spectra, $g(\omega_{\text{SLL}}, k)$, with those retrieved from full spatio-temporal simulations (Fig. 5c) confirms this principle: the frequency $\omega_{\text{SLL}}$ of the SL lasing mode is selected by maximization of $G(\omega)$, and its mode shape is determined by $g(\omega_{\text{SLL}}, k)$. The results further suggest that there is no fundamental limit for the spatial compression of the mode, although a higher localization requires an increasingly flat dispersion to maintain a high spectral overlap.

With bound plasmonic modes one can exploit a wider range of wavevectors and achieve considerably smaller effective mode volumes. We optimized the waveguide dispersion (Fig. 6b and Supplementary Fig. 5) to exhibit two SL points in the plasmonic $\text{TM}_1$ mode at $\omega_1/2\pi = 128.14$ THz ($\lambda_1 \approx 2,339.6$ nm) at $k_1 = 7.41 \mu m^{-1}$ and $\omega_2/2\pi = 123.89$ THz ($\lambda_2 \approx 2,419.7$ nm) at $k_2 = 30.34 \mu m^{-1}$. There is no outcoupling to propagating free-space waves and the modal loss is approximately three times larger than the total loss of the $\text{TM}_2$ waveguide mode due to the higher field localization. Figure 6b shows the predicted coupling strength $g(\omega,k)$ for a plasmonic SL lasing structure. We choose to tune the emission line of the gain medium to the frequency of the second SL point $\omega_2$ (Supplementary Table 3) and consequently shift the peak of the the $\text{sinc}^2$-function to $k_2$. The broad spectrum of supported wavevectors allows for localization of the SL lasing mode down to gain sections with a width of $w = 200$ nm. For these small gain sections, the maximum of the field profile aligns over the gain, effectively locking the amplitude and phase of the complementary modes with positive and negative phase velocities in space. As the spectrum of wavevectors is centred at a non-zero wavevector $k_2$, the lasing mode becomes spatially modulated in propagation direction with nodes every $\pi/k_2$. For wider gain sections, the positions of the nodal planes can move in time depending on the contributions to the lasing mode from the counterpropagating waveguide modes. This behaviour is a direct consequence of the cavity-free property of SL lasing, where forward and backward modes become uncoupled due to the absence of backreflections at geometric boundaries (compare with, for example, Fabry–Perot lasers), and will be studied in more detail in a future publication.

In both cases, the SL lasing/spasing mode emerges from the mode locking of passive modes via the gain-coupling factor $g(\omega,k)$. Excellent agreement is observed between the semi-analytical analysis and the numerically extracted spectra for both the lasing frequency and the wavevector spectrum over a range of gain section widths (Fig. 6c). Indeed, the results confirm that SL lasing is enabled by a universal mechanism of SL-assisted mode formation that optimizes the net gain in these structures without being limited by diffraction.

With the planar structure being isotropic in two dimensions, the generalization to three dimensions is straightforward. By introducing a small cylinder of gain material (or, for example, a quantum dot) into the waveguide core layer or by spatially selective excitation of a homogeneous gain layer, one can conceivably construct a ‘photonic-dot’ laser that, evanescently pumped by a near-field tip, would receive feedback by formation of a three-dimensional SL vortex. In the vicinity of the metal...
layer, we observe very high gain coupling factors due to the combined action of a vertical plasmonic confinement and the in-plane stopping of light, which together have an impact on the local density of states. The presented metal-dielectric SL structures are therefore predestined for achieving strong coupling in plasmonic structures, as recently predicted theoretically.\(^{33}\)

Figure 6 | Frequency selection and mode formation in an SL spaser. (a) \(E_y\) field profile of the TM\(_1\) mode along the y direction overlaid on the spatially confined section of inverted gain (blue hatched region). (b) Semi-analytical calculation of the coupling strength \(g(o, k)\) (heat map) as the product of the gain spectrum \(G(o)\) (blue line), the density of optical states \(D(o, k)\) of the TM\(_2\) mode (cyan line) and the sinc\(^2\)(k\(_w\)/2) spectrum of the rectangular gain section (red line). (c) Prediction of the lasing frequency (left column) and the mode profile (right column) for successively smaller gain sections showing the effect of an increasing localization of the SL mode. The results confirm that the SL laser selects a lasing frequency \(o_{SLL}\) (blue diamonds) at which \(G(o) = \int dk g(o, k)\) (red line) peaks. The mode shape (right column) is then determined by \(g(o_{SLL}, k)\) (red line), which is in excellent agreement with the numerically extracted k-spectrum of the mode profile (blue diamonds).

Figure 5 | Frequency selection and mode formation in an SL nanolaser. (a) \(E_y\) field profile of the TM\(_2\) mode along the y direction overlaid on the spatially confined section of inverted gain (blue hatched region). (b) Semi-analytical calculation of the coupling strength \(g(o, k)\) (heat map) as the product of the gain spectrum \(G(o)\) (blue line), the density of optical states \(D(o, k)\) of the TM\(_2\) mode (cyan line) and the sinc\(^2\)(k\(_w\)/2) spectrum of the rectangular gain section (red line). (c) Prediction of the lasing frequency (left column) and the mode profile (right column) for successively smaller gain sections showing the effect of an increasing localization of the SL mode. The results confirm that the SL laser selects a lasing frequency \(o_{SLL}\) (blue diamonds) at which \(G(o) = \int dk g(o, k)\) (red line) peaks. The mode shape (right column) is then determined by \(g(o_{SLL}, k)\) (red line), which is in excellent agreement with the numerically extracted k-spectrum of the mode profile (blue diamonds).
SL lasing may thus open the door to cavity-free nanolasing, ultra-thin lasing surfaces and cavity-free quantum electrodynamic. Through a flexible (multi-point) localization of lossless or amplified surface plasmon polaritons, the SL scheme also provides an entry point to quantum gain in quantum plasmonics and quantum fluids of light.

Methods
Complex-frequency dispersion analysis. The dispersion and loss curves for the transverse magnetic (transverse electric)-polarized modes of the planar waveguide were calculated semi-analytically using a modified transfer matrix method, which allows for extraction of the complex-ω modes that remain valid solutions at the SL points. We consider a planar metal-dielectric stack structure of N layers of thickness \( d_i (i = 1 \ldots N) \) that are stacked up in \( y \) direction and extend infinitely in the \( x \)-plane. For isotropic media, the field component \( \psi_i \) orthogonal to the propagation direction \( x \) can be written as

\[
\psi_i(x,y) = \phi_i \cos(k_i y - y_i) + \phi'_i m \sin(k_i y - y_i - \Theta) ,
\]

where \( m \) is the layer permittivity (permeability) for \( \phi_i = H_i (\phi_i = E_i) \). Momentum conservation dictates that the \( y \)-component of the wavevector \( k_y = k_0^2 - k_x^2 \) depends on the \( x \)-component \( k \) (also called propagation constant). The boundary conditions between individual layers translate into

\[
\begin{align*}
\phi_i(x) &= \tilde{\phi}_{i-1} + M_{t} \tilde{\phi}_{i+1}, \\
\phi'_i(x) &= \tilde{\phi}'_{i-1} + M_{t} \tilde{\phi}'_{i+1},
\end{align*}
\]

where the matrices \( M_t \) are given by

\[
M_{t} = \begin{pmatrix} \cos(k_i d_i) & -\frac{m}{k_0} \sin(k_i d_i) \\ \frac{m}{k_0} \sin(k_i d_i) & \cos(k_i d_i) \end{pmatrix}.
\]

The bound mode profile leads to the initial condition \( \tilde{\phi}_{i-1} = (0, -m^2 k^2 y_i / 2) \) in the superstrate, while in the substrate the condition can be expressed as

\[
F_i(k,\Theta) = \phi_0 - 2\pi k \phi_0 = 0.
\]

Where \( \gamma_1 = \sqrt{k^2 - k_0^2 m^2} \) define the decay constants in the cladding layers. For plasmonic and active layer structures, the characteristic function \( F_i(k,\Theta) \) is a complex-valued function. Its roots lie on a hyperplane and can be found with a discrete spectrum of eigenvalues. In contrast, the radiative continuum is characterized by an infinite set of eigenvalues. The bound modes, characterized by an infinite set of roots, form the complete basis set, whereas the radiative modes accurately capture the changes to the modal dispersion and the additional radiative loss caused by the coupling of the waveguide mode to the continuum of free space modes.

Maxwell-Bloch Langevin time-domain simulations. The time-resolved simulations were performed using the finite-difference time-domain method in combination with auxiliary differential equations that describe the material dispersion of the metal cladding and the nonlinear, spatially resolved polarization response of the gain medium. Using the Maxwell-Bloch formalism we modelled the gain medium as a four-level system with pump (0 \( \rightarrow \) 3) and emission (2 \( \rightarrow \) 1) transitions. We can write the polarization density matrices \( \rho_{a,b} \) (where \( a,b \) = 0, 1, 2, 3) as

\[
\rho_{a,b} = \sigma_{ab} \Delta N \rho_{21} - \sigma_{ba} \Delta N \rho_{12} + \sigma_{aa} \omega_0 \sin(\omega_0 t) + \frac{\partial \rho_{a,b}}{\partial t}.
\]

where the dynamics of the polarization densities can be mapped on a set of differential equations

\[
\frac{\partial \rho_{a,b}}{\partial t} + 2\gamma_a \rho_{a,b} + \sigma_{ab} \Delta N \rho_{21} - \sigma_{ba} \Delta N \rho_{12} + \omega_0 \sin(\omega_0 t) + \frac{\partial \rho_{a,b}}{\partial t}.
\]

which describe the dynamics of light-matter interaction via the dipole coupling of the electric field to the electronic transitions. The resonance frequencies \( \omega_0 \) (and transition linewidths \( \gamma_0 \)) and the spectral half-widths \( \gamma_a \) and \( \gamma_b \) are determined by the choice of gain material.

Structural and material parameters. The planar metal-dielectric stack structures comprises an optically thick metal substrate, a thin dielectric core layer and a second (thin) metal cladding layer. Further control over the modal dispersion is achieved by introducing a dielectric layer on top of the stack structure. For plasmonic and active layer structures, the characteristic function \( F_i(k,\Theta) \) is a complex-valued function. Its roots lie on a hyperplane and can be found with a discrete spectrum of eigenvalues. In contrast, the radiative continuum is characterized by an infinite set of eigenvalues. The bound modes, characterized by an infinite set of roots, form the complete basis set, whereas the radiative modes accurately capture the changes to the modal dispersion and the additional radiative loss caused by the coupling of the waveguide mode to the continuum of free space modes.

Maxwell-Bloch Langevin time-domain simulations. The time-resolved simulations were performed using the finite-difference time-domain method in combination with auxiliary differential equations that describe the material dispersion of the metal cladding and the nonlinear, spatially resolved polarization response of the gain medium. Using the Maxwell-Bloch formalism we modelled the gain medium as a four-level system with pump (0 \( \rightarrow \) 3) and emission (2 \( \rightarrow \) 1) transitions. We can write the polarization density matrices \( \rho_{a,b} \) (where \( a,b \) = 0, 1, 2, 3) as

\[
\rho_{a,b} = \sigma_{ab} \Delta N \rho_{21} - \sigma_{ba} \Delta N \rho_{12} + \sigma_{aa} \omega_0 \sin(\omega_0 t) + \frac{\partial \rho_{a,b}}{\partial t}.
\]

where the dynamics of the polarization densities can be mapped on a set of differential equations

\[
\frac{\partial \rho_{a,b}}{\partial t} + 2\gamma_a \rho_{a,b} + \sigma_{ab} \Delta N \rho_{21} - \sigma_{ba} \Delta N \rho_{12} + \omega_0 \sin(\omega_0 t) + \frac{\partial \rho_{a,b}}{\partial t}.
\]

which describe the dynamics of light-matter interaction via the dipole coupling of the electric field to the electronic transitions. The resonance frequencies \( \omega_0 \) (and transition linewidths \( \gamma_0 \)) and the spectral half-widths \( \gamma_a \) and \( \gamma_b \) are determined by the choice of gain material.
determine the average band velocity and return its reciprocal value

\[ f = \frac{1}{u_w} = \frac{k_z - k_0}{w_1 - w_2}. \] (10)

The structure with the highest value of \( f \) is deemed fittest. It is common to initialize the population with chromosomes representing structures already known to exhibit two SL points, which may in turn be found by optimization using a different, appropriate fitness function.

References

1. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat. Photon. 1, 589–594 (2007).
2. Oulton, R. F. et al. Plasmonic lasers at deep subwavelength scale. Nature 461, 629–632 (2009).
3. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).
4. Ma, R.-M., Oulton, R. F., Soger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater. 10, 110–113 (2011).
5. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).
6. Lu, Y.-J. et al. Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012).
7. Valsala, K. J. Optical microcavities. Nature 424, 839–846 (2003).
8. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).
9. Iga, K., Koyama, F. & Kinoshita, S. Surface emitting semiconductor lasers. IEEE J. Quantum Electron. 24, 1845–1855 (1988).
10. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).
11. Altug, H., Englund, D. & Vuckovic, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).
12. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).
13. Berini, P. & De Leon, I. Surface plasmon-polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2011).
14. Hess, O. et al. Active nanoplasmonic metamaterials. Nat. Mater. 11, 573–584 (2012).
15. Khurgin, J. B. & Sun, G. Comparative analysis of spasers, vertical-cavity surface-emitting lasers and surface-plasmon-emitting diodes. Nat. Photon. 18, 10–14 (2014).
16. Cao, H. Lasing in random media. Wave Random Media 13, R1–R39 (2003).
17. Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008).
18. Hess, O. & Tsakmakidis, K. L. Metamaterials with quantum gain. Science 339, 654–655 (2013).
19. Krauss, T. F. Slow light in photonic crystal waveguides. J. Phys. D Appl. Phys. 40, 2666 (2007).
20. Baba, T. Slow light in photonic crystals. Nat. Photon. 2, 465–473 (2008).
21. Ilanescu, M. et al. Anomalous dispersion relations by symmetry breaking in axially uniform waveguides. Phys. Rev. Lett. 92, 036303 (2004).
22. Ilanescu, M., Johnson, S. G., Roundy, D., Fink, Y. & Joannopoulos, J. D. Microcavity confinement based on an anomalous zero group-velocity waveguide mode. Opt. Lett. 30, 552–555 (2005).
23. Zang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).
24. Boyd, R. W. & Gauthier, D. J. Controlling the velocity of light pulses. Science 326, 1074–1077 (2009).
25. Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).
26. Karalis, A., Joannopoulos, J. & Soljačić, M. Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwavelength light. Phys. Rev. Lett. 103, 043906 (2009).
27. Lu, C.-Y., Chang, S.-W., Chuang, S. L., Germann, T. D. & Rimbberg, D. Metal-cavity surface-emitting microcavity at room temperature. Appl. Phys. Lett. 96, 235101 (2010).
28. Tsakmakidis, K. L., Boardman, A. D. & Hess, O. ‘Trapped’ rainbow’ storage of light in metamaterials. Nature 450, 397–401 (2007).
29. Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).
30. Ma, R.-M., Oulton, R. F., Soger, V. J. & Zhang, X. Plasmon lasers: coherent light source at molecular scales. Laser Photon. Rev. 7, 1–21 (2012).
31. Mookherjea, S., Park, J. S., Yang, S.-H. & Bandaru, P. R. Localization in silicon nanophotonic slow-light waveguides. Nat. Photon. 2, 90–93 (2008).
32. Tsakmakidis, K. L., Pickering, T. W., Hammon, J. M., Page, A. F. & Hess, O. Completely stopped and dispersionless light in plasmonic waveguides. Phys. Rev. Lett. 112, 167401 (2014).
33. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).
34. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
35. Kwon, M.-S. & Shin, S.-Y. Simple and fast numerical analysis of multilayer waveguide modes. Opt. Commun. 233, 119–126 (2004).
36. Kocabas, S. E., Veronis, G., Miller, D. A. B. & Fan, S. Modal analysis and coupling in metal-insulator-metal waveguides. Phys. Rev. B 79, 035120 (2009).
37. Pusch, A., Wuestner, S., Hammon, J. M., Tsakmakidis, K. L. & Hess, O. Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: a Maxwell-Bloch Langevin approach. ACS Nano 6, 2420–2431 (2012).
38. Noginov, M. A. et al. Transparent conductive oxides: Plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 99, 021101 (2011).

Acknowledgements

We thank Kosmas L. Tsakmakidis, Rupert Oulton and Federico Capasso for inspiring discussions. This research was supported by the Leverhulme Trust and the Engineering and Physical Sciences Research Council (EPSRC) UK. This study was partially supported by the Air Force Office of Scientific Research (AFOSR), and the European Office of Aerospace Research and Development (EOARD) is also acknowledged.

Author contributions

T.P., J.M.H. and O.H. developed the concept and conceived the study. T.P. and J.M.H. designed and performed the complex frequency dispersion analysis. T.P., A.F.P. and S.W. performed the Maxwell-Bloch Langevin time-domain simulations. A.F.P. implemented and ran the genetic optimization. O.H. supervised the work. All authors discussed the results and wrote the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Pickering, T. et al. Cavity-free plasmonic nanolasing enabled by dispersionless stopped light. Nat. Commun. 5:4972 doi: 10.1038/ncomms5972 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/