Einstein’s mirror revisited

Aleksandar Gjurchinovski† and Aleksandar Skeparovski‡
Department of Physics, Faculty of Natural Sciences and Mathematics,
Sts. Cyril and Methodius University, P. O. Box 162, 1000 Skopje, Macedonia
(Dated: March 07, 2007)

We describe a simple geometrical derivation of the formula for reflection of light from a uniformly moving plane mirror directly from the postulates of special relativity.

PACS numbers: 03.30.+p

I. INTRODUCTION

Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The reflection formula is usually obtained by referring to the Lorentz transformation to switch from the mirror’s rest frame to the frame where the mirror moves at a constant velocity. The reflection formula also follows from the constancy of the speed of light, by using Huygens’ construction or Fermat’s principle of least time.

In this paper, we introduce a derivation of the reflection formula by comparing the geometry of the problem in the frame where the mirror is moving to the one in the frame where the mirror is stationary. We analyze three distinct cases of the mirror’s motion, when the mirror is moving: a) parallel to its surface; b) perpendicular to its surface; and c) in an arbitrary direction. The derivation requires nothing but a simple plane geometry and an elementary understanding of the postulates of special relativity, and does not use Lorentz transformation or any additional tools of classical wave optics.

II. REFLECTION FROM A PLANE MIRROR MOVING UNIFORMLY PARALLEL TO ITS SURFACE

A plane mirror of length \(2\ell = LR\) is placed horizontally in its rest frame (see Fig. 1). A photon is emitted from a source \(A\) located at a vertical distance \(h\) from the left edge \(L\) of the mirror. The photon bounces off the midpoint \(O\) from the mirror, and it is absorbed by the detector \(B\) located at the same vertical distance \(h\) from the right edge \(R\) of the mirror. Evidently, the angle of incidence and the angle of reflection of the photon are equal.

We now transfer to the frame in which the mirror, the source and the detector are all moving at a constant speed \(v\) to the right (see Fig. 2). Since the point of reflection in the mirror’s rest frame divides its length into two equal halves, it must also divide the mirror in two equal halves with respect to any other inertial frame. By making this claim, we implicitly invoked the principle of relativity, according to which one cannot distinguish one inertial frame from another. Also, at each instant of time, the moving source and the moving detector are located at a vertical distance \(h\) above the left and the right edges of the moving mirror, respectively, as they were in the frame.
where the mirror was stationary. Here, we again appealed to the principle of relativity which directly implies the invariance of the lengths measured perpendicularly to the direction of relative motion between the frames.20

In Fig. 2 we see that the photon was emitted from the moving source at the time when the source was located at \(A_1 \). At this instant, the left edge of the mirror was located at point \(L_1 \) at a vertical distance \(h \) below \(A_1 \), and \(O_1 \) is the location of the midpoint of the mirror. The photon bounces off the midpoint \(O_2 \) at a time \(t_1 \) from its emission at \(A_1 \). During this time \(t_1 \), the photon has traveled the path \(A_1O_2 = ct_1 \), and the mirror, the source and the detector have moved the distance \(vt_1 \) to the right. We have used Einstein’s second postulate that the photon will move at a speed of light \(c \) with respect to every inertial frame of reference.

During the time \(t_2 \) from the reflection, the photon has traversed the path \(O_2B_3 = ct_2 \) being absorbed by the detector at point \(B_3 \). Accordingly, the mirror, the source and the detector have moved the additional distance \(vt_2 \) to the right. At the time of the absorption, the right edge of the mirror was located at point \(R_3 \) at a distance \(h \) vertically below \(B_3 \), and \(O_3 \) is the location of the midpoint of the mirror. If we denote by \(\alpha \) the angle of incidence, and by \(\beta \) the angle of reflection of the photon, and note the triangle similarities in Fig. 2, we may write:

\[
\begin{align*}
\alpha &= \angle A_1O_1O_2 = \angle L_1A_1O_2 \\
\beta &= \angle O_2B_3O_3 = \angle O_2B_3R_3 \\
\end{align*}
\]

(1)

Obviously, \(\triangle A_1L_1O_1 = \triangle B_3R_3O_3 \), and thus:

\[
\angle O_3B_3R_3 = \angle L_1A_1O_1.
\]

(3)

Applying the sine theorem to \(\triangle O_1A_1O_2 \), we obtain:

\[
\sin \angle O_1A_1O_2 = \frac{O_1O_2}{A_1O_2} \sin \angle A_1O_1O_2.
\]

(4)

Since \(\overline{O_1O_2} = vt_1 \) and \(\overline{A_1O_2} = ct_1 \), we get:

\[
\sin \angle O_1A_1O_2 = \frac{v}{c} \sin \angle A_1O_1O_2.
\]

(5)

Analogously, for \(\triangle O_2B_3O_3 \) we obtain:

\[
\sin \angle O_2B_3O_3 = \frac{v}{c} \sin \angle O_2O_3B_3,
\]

(6)

where we have taken into account that \(\overline{O_2O_3} = vt_2 \) and \(\overline{O_2B_3} = ct_2 \). But \(\angle A_1O_1O_2 = \angle O_2O_3B_3 \), which we use into Eqs. (4) and (5) to get:

\[
\angle O_2B_3O_3 = \angle O_1A_1O_2.
\]

(7)

From Eqs. (1), (2), (3) and (7) we deduce \(\alpha = \beta \), that is, the incident angle of the photon equals the reflected angle. Thus, the motion of the mirror in its plane will not affect the reflection of the photon, and the photon will be reflected in accordance with the usual law of reflection as if the mirror were stationary.

III. REFLECTION FROM A PLANE MIRROR MOVING UNIFORMLY PERPENDICULAR TO ITS SURFACE

In this section we consider the reflection of the photon when the velocity of the mirror is normal to its surface. The schematic of the reflection with respect to the mirror’s rest frame is shown in Fig. 3. The photon is emitted from a fixed source at \(A \), bounces off the mirror at its midpoint \(O \), and eventually hits the fixed detector at \(B \). The source \(A \) and the detector \(B \) are located at a vertical line \(ACB \) parallel to the mirror’s surface, being equally distant, but at the opposite sides, from the line \(OC \) normal to the mirror’s surface \((\overline{AC} = \overline{BC} = \ell) \). The source \(A \) is horizontally aligned with the upper edge of the mirror, and the detector \(B \) with its lower edge. A simple trig reveals that the photon will be reflected off the mirror at the same angle at which it was incident.

The situation with respect to the frame where the mirror, the source and the detector are moving at a constant speed \(v \) to the right is shown in Fig. 4. We will apply the same arguments as in the previous section to derive the formula for reflection of the photon in this case.

After being emitted from the moving source at time when the source was located at \(A_1 \), the photon is reflected from the moving mirror off its midpoint \(O_2 \) and then absorbed by the moving detector at the point \(B_3 \). If \(t_1 \) is the photon’s transit time from \(A_1 \) to \(O_2 \), and \(t_2 \) the time from \(O_2 \) to \(B_3 \), we have \(A_1O_2 = ct_1 \) and \(O_2B_3 = ct_2 \), where we have taken into account the constant speed of light postulate. At time when the photon reaches the detector at \(B_3 \), the detector has moved the distance \(B_1B_3 = v(t_1 + t_2) \) to the right from its position \(B_1 \) when the photon was emitted from \(A_1 \). From
\(\triangle A_1C_1O_2 \) and \(\triangle B_3C_3O_2 \) in Fig. 4, we have:

\[
\cos \alpha = \frac{b}{ct_1}, \tag{8}
\]

\[
\cos \beta = \frac{b - v(t_1 + t_2)}{ct_2}, \tag{9}
\]

where \(\alpha \) and \(\beta \) are the incident angle and the reflected angle of the photon, respectively, and \(b = C_1O_2 \). We eliminate \(b \) from Eqs. (8) and (9) to get:

\[
\cos \beta = \left(\cos \alpha - \frac{v}{c} \right) \frac{t_1}{t_2} - \frac{v}{c}. \tag{10}
\]

We apply the Pythagoras theorem to \(\triangle A_1C_1O_2 \) and \(\triangle B_3C_3O_2 \) to obtain:

\[
(ct_1)^2 = \ell^2 + b^2, \tag{11}
\]

\[
(ct_2)^2 = \ell^2 + [b - v(t_1 + t_2)]^2, \tag{12}
\]

where \(\ell = \overline{A_1C_1} = \overline{B_3O_3} \). By subtracting Eq. (12) from Eq. (11) to eliminate \(\ell \), we obtain:

\[
(ct_1)^2 - (ct_2)^2 = b^2 - [b - v(t_1 + t_2)]^2. \tag{13}
\]

The last equation can be factored into the form:

\[
c^2(t_1 - t_2)(t_1 + t_2) = v(t_1 + t_2) [2b - v(t_1 + t_2)], \tag{14}
\]

which upon division by \((t_1 + t_2) \) and using Eq. (8) can be recasted into:

\[
\frac{t_1}{t_2} = \frac{1 - v^2/c^2}{1 - 2(v/c)\cos \alpha + v^2/c^2}. \tag{15}
\]

We substitute the last expression for \(t_1/t_2 \) into Eq. (10) to obtain:

\[
\cos \beta = \frac{-2v/c + (1 + v^2/c^2) \cos \alpha}{1 - 2(v/c) \cos \alpha + v^2/c^2}. \tag{16}
\]

The result gives the angle of reflection \(\beta \) of the photon in terms of the incident angle \(\alpha \) and the speed \(v \) of the mirror when the mirror is moving perpendicularly to its surface. It exactly matches the reflection formula obtained otherwise.4, 12, 16, 17, 18

The behavior of the reflected angle \(\beta \) as a function of \(\alpha \) for different values of the speed \(v \) of the mirror is given in Fig. 5. Note that the negative values of \(v \) correspond to the motion of the mirror in the opposite direction to the one given in Fig. 4. From Fig. 5 it is evident that the reflected photon no longer obeys the usual law of reflection, except when \(v = 0 \) which is the case when the mirror is stationary. It is also evident that \(\beta < \alpha \) when \(v < 0 \), and \(\beta > \alpha \) when \(v > 0 \).

An interesting property of the formula (16) is observed for the case \(v > 0 \). Namely, for a given positive value for the speed \(v \) of the mirror, there exist an interval of values for the incident angle \(\alpha \) of the photon (\(\alpha_c < \alpha < \alpha_{\text{max}} \)), for which the photon is reflected at angles larger than 90°. Hence, the reflected photon, instead of moving away from the mirror, moves in the same general direction as the mirror. The effect is known as "the forward reflection of light".21
reflection begins can be calculated from the formula:

\[\cos \alpha_c = \frac{2v/c}{1 + v^2/c^2}, \] (17)

which follows from Eq. (16) by applying the condition \(\beta = 90^\circ \). The forward reflection stops when the incident angle attains the value \(\alpha_{\text{max}} \), satisfying the formula:

\[\cos \alpha_{\text{max}} = v/c. \] (18)

When \(\alpha = \alpha_{\text{max}} \), the photon’s velocity component along the motion of the mirror \((c \cos \alpha)\) will match the speed \(v \) of the mirror. Hence, the photon will never reach the mirror’s surface, and the reflection will never occur. The conclusion remains the same for incident angles larger than \(\alpha_{\text{max}} \). In this case, the mirror’s velocity exceeds the velocity component of the photon in the mirror’s moving direction. Translating to the frame in which the mirror is at rest, and thus taking into account the aberration phenomenon, the situation corresponds to a photon “incident” on the mirror at angles larger than 90°. The portions of the curves in Fig. 5 corresponding to \(\alpha \geq \alpha_{\text{max}} \) are drawn with dashed lines.

IV. REFLECTION FROM A PLANE MIRROR MOVING IN AN ARBITRARY DIRECTION AT A CONSTANT VELOCITY

We may generalize the above approach to the case when the reflection occurs off the mirror moving at a speed \(v \) directed at an angle \(\varphi \) from its surface normal. Since the motion of the mirror in its plane does not affect the reflection (see Sec. II), the reflection formula in this case follows from Eq. (16) in Sec. III if we simply replace \(v \) by \(v \cos \varphi \), which is the velocity component of the mirror that is normal to its surface:

\[\cos \beta = \frac{-2(v/c) \cos \varphi + [1 + (v^2/c^2) \cos^2 \varphi] \cos \alpha}{1 - 2(v/c) \cos \alpha \cos \varphi + (v^2/c^2) \cos^2 \varphi}. \] (19)

When \(\varphi = 0 \), the motion of the mirror is perpendicular to its surface, and Eq. (19) reduces to Eq. (16). Also, when \(\varphi = 90^\circ \), the mirror moves parallel to its surface, and the reflection formula simplifies to \(\alpha = \beta \).

The detailed analysis of Eq. (19) for different values of \(\varphi \) is left to the student as an exercise.

Acknowledgments

We thank Iacopo Carusotto (University of Trento) for a fruitful discussion on a similar problem that substantially improved the conclusions associated with Fig. 5, and Vase Jovanov (TU Munich) for helping us with the references.

\[\text{† Electronic address: agjurchin@iunona.pmf.ukim.edu.mk} \]
\[\text{‡ Electronic address: skepalek@iunona.pmf.ukim.edu.mk} \]

1. A. A. Michelson and E. W. Morley, “On the relative motion of the Earth and the luminiferous ether,” Am. J. Sci. 34, 333–345 (1887).
2. R. S. Shankland, “Michelson–Morley experiment,” Am. J. Phys. 32, 16–35 (1964).
3. M. Abraham, “Zur theorie der strahlung und des strahlungdruckes,” Ann. Phys. (Leipzig) 14, 236–287 (1904).
4. A. Einstein, “Zur Elektrodynamik bewegter Körper,” Ann. Phys. (Leipzig) 17, 891–921 (1905).
5. Q. Majorana, “On the second postulate of the theory of relativity: An experimental demonstration of the constancy of the velocity of light reflected by a moving mirror,” Phys. Rev. 11, 411–420 (1918).
6. E. H. Kennard and D. E. Richmond, “On reflection from a moving mirror and the Michelson–Morley experiment,” Phys. Rev. 19, 572–577 (1922).
7. R. J. Kennedy, “Another ether-drift experiment,” Phys. Rev. 20, 26–33 (1922).
8. R. J. Kennedy, “Simplified theory of the Michelson–Morley experiment,” Phys. Rev. 47, 965–968 (1935).
9. V. S. Soni, “A note on the ray diagram of the Michelson–Morley experiment,” Am. J. Phys. 56, 178–179 (1988).
10. V. S. Soni, “Michelson–Morley analysis,” Am. J. Phys. 57, 1149–1150 (1989).
11. R. A. Schumacher, “Special relativity and the Michelson–Morley interferometer,” Am. J. Phys. 62, 609–612 (1994).
12. B. M. Bolotovskii and S. N. Stolyarov, “Wave reflection from a moving mirror and related problems,” Usp. Fiz. Nauk 159, 155–180 (1989).
13. H. Stephani, Relativity: An introduction to Special and General Relativity (Cambridge U.P., Cambridge, 2004), 3rd ed., pp. 39–40.
14. W. Pauli, Theory of Relativity (Pergamon, New York, 1958), pp. 94–97.
15. J. L. Synge, Relativity: The Special Theory (North-Holland, Amsterdam, 1965), pp. 137–141.
16. C. Yeh, “Reflection and transmission of electromagnetic waves by a moving dielectric medium,” J. Appl. Phys. 36, 3513–3517 (1965).
17. A. Gjurchinovski, “Reflection of light from a uniformly moving mirror,” Am. J. Phys. 72, 1316–1324 (2004).
18. A. Gjurchinovski, “Einstein’s mirror and Fermat’s principle of least time,” Am. J. Phys. 72, 1325–1327 (2004).
19. A similar argument was used by Mermin to derive the relativistic addition formula for parallel velocities directly from the postulates of special relativity. See N. David Mermin, ”Relativistic addition of velocities directly from the con-
stancy of the velocity of light,” Am. J. Phys. 51, 1131–1132 (1983). See also N. David Mermin, It’s About Time: Understanding Einstein’s Relativity (Princeton U.P., Princeton, 2005).

H. D. Young and R. A. Freedman, University Physics (Addison-Wesley, Reading, 1996), 9th ed., pp. 1204.

B. M. Jaffe, “Forward reflection of light by a moving mirror,” Am. J. Phys. 41, 577-578 (1973).