THE ADVANCED MAXIMUM PRINCIPLE FOR PARABOLIC SYSTEMS ON MANIFOLDS WITH BOUNDARY

HONG HUANG

Abstract. In this short note we extend Chow and Lu’s advanced maximum principles for parabolic systems on closed manifolds to the case of compact manifolds with boundary, which also generalizes a Hopf type theorem of Pulemotov.

1. Introduction

In his important 1982 paper [H1], Hamilton introduced Ricci flow and used it to prove that any closed three-manifolds with positive Ricci curvature is diffeomorphic to a spherical space form. In 1986 Hamilton [H2] introduced an advanced maximum principle for parabolic systems on closed manifolds with evolving metrics, and using it he was able to prove that any closed 4-manifold with positive curvature operator is diffeomorphic to a spherical space form, in addition to giving a simplified proof of his 1982 3-dimensional result.

Later, Hamilton [H3] and Ivey [I] proved independently an important pinching estimate for 3-dimensional Ricci flow using Hamilton’s advanced maximum principle. For recent applications of Hamilton’s advanced maximum principle see for example Böhm and Wilking [BW], Brendle and Schoen [BS].

In [CL] Chow and Lu presented two useful generalizations (see Theorems 3 and 4 in [CL]) of Hamilton’s advanced maximum principle for parabolic systems on closed manifolds. In this short note we extend Chow and Lu’s results to the case of compact manifolds with boundary, which also generalize a Hopf type theorem of Pulemotov (see Theorem 2.1 in [P], which itself is a generalization of Hamilton’s maximum principle in [H2] and Shen’s Hopf type theorem in [S]).

Below we will follow closely the notations in [CL]. Let M be a compact manifold with boundary with a one-parameter family of Riemannian metrics $g_{ij}(t), 0 \leq t \leq T$ with $T < \infty$.

Let $\pi : V \rightarrow M$ be a vector bundle with a fixed (i.e. time-independent) bundle metric h_{ab}. We equip V with a family of time-dependent connections ∇_t compatible with h_{ab}. We define the Laplacian Δ_t acting on a section $\sigma \in \Gamma(V)$ by $\Delta_t \sigma = g^{ij}(x, t)(\nabla_t)_i(\nabla_t)_j \sigma$ as usual.

Let U be an open subset of V, and for each $t \in [0, T]$, let $\mathcal{K}(t) \subset U$ be a closed subset such that in each fiber V_x over $x \in M$ the subset $\mathcal{K}_x(t) = \mathcal{K}(t) \cap V_x$ is nonempty, closed and convex, and $\mathcal{K}(t)$ is invariant under parallel translation.

1991 Mathematics Subject Classification. 53C44, 58J35.
Key words and phrases. advanced maximum principle, parabolic systems, Hopf Lemma, manifolds with boundary.
Partially supported by NSFC no.10671018.
defined by the connection ∇_t. We assume further the space-time track $T = \{(v, t) \in V \times [0, T] | v \in K(t), t \in [0, T]\}$ is closed.

Let $F: U \times [0, T] \to V$ be a fiber preserving map, which may be viewed as a time-dependent vector field on U which is tangent to the fibers. We assume $F(x, \sigma, t)$ is continuous in x, t and Lipschitz continuous in σ in the sense that the inequalities

$$|F(x, \sigma_1, t) - F(x, \sigma_2, t)| \leq C_B |\sigma_1 - \sigma_2|$$

hold true for all $x \in M, t \in [0, T]$ and $|\sigma_1| \leq B, |\sigma_2| \leq B$, where C_B is a constant depending only on B.

We will consider sections of V which satisfy the following

$$\frac{d}{dt}x(t) = \Delta x(t) + u'(x, t)(\nabla_t)^i x(t) + F(x, \sigma(x, t), t),$$

where u' is a time-dependent vector field on M.

For convenience we recall some notions about convex sets. Let J be a closed convex subset of R^n and $v \in \partial J$. We denote by $C_v J$ the tangent cone to J at v, which is the smallest closed convex cone containing J with vertex at v, and by $S_v J$ the set of support functions l for J at v, which are linear functions on R^n satisfying $|l| = 1$ and $l(v) \geq l(w)$ for all $w \in J$.

Now we can state our

Theorem Let $M, V, K(t)$ and F be as above. Assume that for any $x \in M$ and any $t_0 \in [0, T]$, any solution $\rho_x(t)$ of the

$$(\text{ODE}) \quad \frac{d}{dt} x(t) = F(x, \rho_x, t),$$

which starts in $K_\varepsilon(t_0)$ at t_0 will remain in $K_\varepsilon(t)$ for all later times $t \in [t_0, T]$. Moreover, assume that for any $x \in \partial M, t \in (t_0, T)$ (given $t_0 \in [0, T]$) and any $v \in \partial K_\varepsilon(t)$, the solution σ of the (PDE) satisfies $v + (\nabla_t)^i \sigma(x, t) \in C_v K_\varepsilon(t)$, where ν is the unit outward normal vector to ∂M at (x, t). Then the solution σ of the (PDE) will remain in $K(t)$ for all later times $t \in [t_0, T]$ provided it starts in $K(t_0)$ at t_0.

In the following section we will give a proof of our theorem. In forthcoming papers we will generalize the Hamiton-Ivey pinching estimate and Hamilton’s 4-dimensional theorem in [H2] to the case of manifolds with boundary as applications of the various generalized maximum principles.

2. Proof of Theorem

Proof We will adapt Hamilton’s and Chow and Lu’s idea (in [H2] and [CL]) to our case.

We prove by contradiction. Suppose we have a solution σ of the (PDE) which starts in $K(t_0)$ at t_0 but runs out of $K(t_2)$ at some time $t_2 \in (t_0, T]$. Then there exists $t_0 \leq t_1 < t_2$ such that $\sigma(x, t_1) \in K_\varepsilon(t_1)$ for all $x \in M$ but for any $t \in (t_1, t_2]$ there is some $x \in M$ such that $\sigma(x, t) \notin K_\varepsilon(t)$. Let

$$g(x, t) = d(\sigma(x, t), K_\varepsilon(t)) = \inf \{|\sigma(x, t) - w| | w \in K_\varepsilon(t)|$$

for each $x \in M, t \in [t_1, t_2]$, and

$$f(t) = \sup_{x \in M} g(x, t)$$

for each $t \in [t_1, t_2]$, where we define the distance $d(w_1, w_2)$ between $w_1 \in V_x$ and $w_2 \in V_x$ using the metric h_{ab} and denote it by $|w_1 - w_2|$.

By choosing r large enough we may assume that $\sigma(x, t) \in V(r)$ and $d(\sigma(x, t), \partial (V(r) \cap V_x)) > d(\sigma(x, t), K_\varepsilon(t))$ for all $x \in M, t \in [t_1, t_2]$, where $V(r)$ is the (closed) tubular
neighborhood of the zero section in V whose intersection with each fiber V_x is a ball of radius r (measured by the bundle metric h_{ab}) around the origin. Note that

$$f(t) = \sup\{l(\sigma(x, t) - v)|x \in M, v \in (\partial K_x(t)) \cap V(r) \text{ and } l \in S_v K_x(t)\}$$

for each $t \in (t_1, t_2)$.

We will prove by contradiction that $\frac{d^+ f(t)}{dt} \leq Cf(t)$ for any $t \in (t_1, t_2)$, where

$$\frac{d^+ f(t)}{dt} = \limsup_{h \to 0} \frac{f(t+h) - f(t)}{h},$$

and $C = C_\gamma$ is the Lipschitz constant of $F(x, \sigma, t)$ (w.r.t. σ) within $V(r)$. Suppose this is not the case. Then we can find $t_\alpha \in (t_1, t_2)$ such that $\frac{d^+ f(t_\alpha)}{dt} > Cf(t_\alpha)$.

From [CL] and the assumptions of our theorem we know that there exist $x_\infty \in M, v_\infty \in (\partial K_{x_\infty}(t_\alpha)) \cap V(r)$, and $l_\infty \in S_{v_\infty} K_{x_\infty}(t_\alpha)$, such that $f(t_\alpha) = l_\infty(\sigma(x_\infty, t_\alpha) - v_\infty) = |\sigma(x_\infty, t_\alpha) - v_\infty|$ and

$$\frac{d^+ f(t_\alpha)}{dt} \leq l_\infty(|\Delta_{t_\alpha} \sigma(x_\infty, t_\alpha)| + |u^i(x_\infty, t_\alpha)(\nabla_{t_\alpha} i)\sigma(x_\infty, t_\alpha)| + l_\infty(F(x_\infty, \sigma(x_\infty, t_\alpha), t_\alpha) - F(x_\infty, v_\infty, t_\alpha))$$

$$\leq l_\infty(|\Delta_{t_\alpha} \sigma(x_\infty, t_\alpha)| + l_\infty(u^i(x_\infty, t_\alpha)(\nabla_{t_\alpha} i)\sigma(x_\infty, t_\alpha)) + C|\sigma(x_\infty, t_\alpha) - v_\infty|.$$ Then we have

$$\frac{d^+ f(t_\alpha)}{dt} \leq l_\infty(|\Delta_{t_\alpha} \sigma(x_\infty, t_\alpha)| + l_\infty(u^i(x_\infty, t_\alpha)(\nabla_{t_\alpha} i)\sigma(x_\infty, t_\alpha)) > 0.$$ Now we extend v_∞ and l_∞ respectively by parallel translation (defined by the connection ∇_{t_α}) along geodesics (w.r.t. $g_{ij}(t_\alpha)$) emanating radially from x_∞, and we still denote what we get by v_∞ and l_∞ respectively. Then by our assumption on K we still have $v_\infty \in (\partial K_{x_\infty}(t_\alpha)) \cap V(r)$, and $l_\infty \in S_{v_\infty} K_{x_\infty}(t_\alpha)$. It is easy to see that the function $l_\infty(\sigma(x_\infty, t_\alpha) - v_\infty)$ has a local maximum at x_∞.

Then from (*) we have

$$\Delta_{t_\alpha} l_\infty(\sigma(x, t_\alpha) - v_\infty) + u^i(x, t_\alpha)(\nabla_{t_\alpha} i)l_\infty(\sigma(x, t_\alpha) - v_\infty) > 0$$

at x_∞ and hence also in a sufficiently small neighborhood of x_∞. It follows that $x_\infty \in \partial M$, and by Hopf’s lemma we have $\frac{\partial}{\partial x^i} l_\infty(\sigma(x, t_\alpha) - v_\infty) > 0$. But on the other hand, by our assumption we have $v_\infty + (\nabla_{t_\alpha} i)\sigma(x_\infty, t_\alpha) \in C_{v_\infty} K_{x_\infty}(t_\alpha)$ which implies $l_\infty((\nabla_{t_\alpha} i)\sigma(x_\infty, t_\alpha)) \leq 0$, so $\frac{\partial}{\partial x^i} l_\infty(\sigma(x, t_\alpha) - v_\infty) \leq 0$, and we arrive at a contradiction. Then by Lemma 7 and Lemma 12 in [CL] $f(t) = 0$ on (t_1, t_2), which contradicts the choice of σ, and we are done.

Remark Similarly one can also generalize Chow and Lu’s Theorem 4 in [CL].

Reference

[BW] C. Böhm and B. Wilking, Manifolds with positive curvature operators are space forms. arXiv:math/0606187.

[BS] S. Brendle and R. M. Schoen, Manifolds with 1/4-pinched curvature are space forms, arXiv:math/0705.0766.

[CL] B. Chow and P. Lu, The maximum principle for systems of parabolic equations subject to an avoidance set, Pacific J. Math. 214 (2004), 201-222.

[H1] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255-306.

[H2] R. S. Hamilton, Four-manifolds with positive curvature curvature operator, J. Diff. Geom. 24 (1986), 153-179.

[H3] R. S. Hamilton, The formation of singularities in the Ricci flow. Surveys in differential geometry, Vol.II, 7-136, International Press, 1995.
[I] T. Ivey, Ricci solitons on compact three-manifolds, Diff. Geom. Appl. 3 (1993) 301-307.

[P] A. Pulemotov, Hopf boundary point lemma for vector bundle sections, arXiv:math/0608037.

[S] Y. Shen, On Ricci deformation of a Riemannian metric on manifolds with boundary, Pacific J. Math. 173 (1996) 203-221.

School of Mathematics Science, Beijing Normal University, Beijing 100875, P. R. China
E-mail address: hhuang@bnu.edu.cn