Estudo retrospectivo dos achados da ultrassonografia no envolvimento ósseo associado a tendinopatia calcificada do manguito rotador: resultados preliminares de uma série de casos*

Retrospective study of sonographic findings in bone involvement associated with rotator cuff calcific tendinopathy: preliminary results of a case series

Marcello H. Nogueira-Barbosa¹, Everaldo Gregio-Junior², Mario Muller Lorenzato³

Nogueira-Barbosa MH, Gregio-Junior E, Lorenzato MM. Estudo retrospectivo dos achados da ultrassonografia no envolvimento ósseo associado a tendinopatia calcificada do manguito rotador: resultados preliminares de uma série de casos. Radiol Bras. 2015 Nov/Dez;48(6):353–357.

INTRODUÇÃO

A tendinopatia calcificada está associada com a deposi-
ção de hidroxiapatita em tendões, mas a origem desta doença de depósito microcristalina permanece obscura. Calcifica-
ções do manguito rotador ocorrem em aproximadamente 2,5% a 7,5% dos ombros de adultos saudáveis(1). As calcificações

* Trabalho realizado na Divisão de Radiologia da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMFRP-USP), Ribeirão Preto, SP, Brasil.

1. Doutor, Professor Associado de Radiologia da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMFRP-USP), Ribeirão Preto, SP, Brasil.

2. Médico Radiologista Colaborador do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMFRP-USP), Ribeirão Preto, SP, Brasil.

3. Médico Radiologista do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP) e da Radiologia Especi-

alizada Ribeirão Preto, Ribeirão Preto, SP, Brasil.

Endereço para correspondência: Dr. Marcello H. Nogueira-Barbosa, Divisão de Radiologia / CCIFM, FMFRP-USP, Avenida Bandeirantes, 3900, Monte Alegre. Ribeirão Preto, SP, Brasil, 14048-900. E-mail: marcello@fmrp.usp.br.

Keywords: Ultrasonography; Computed tomography; Calcific tendonitis; Rotator cuff; Shoulder.
ficados e pode ocorrer a reabsorção espontânea dos depósitos calcificados\(^{(4)}\). A tendinopatia calcificada sabidamente pode causar reabsorção focal do osso cortical adjacente e pode haver migração intraóssea de material cálcico\(^{(5–9)}\), mas encontramos pouca informação disponível na literatura sobre a possível utilidade da ultrassonografia para detectar estas alterações ósseas associadas a tendinopatia calcificada\(^{(10,11)}\).

O objetivo deste estudo é descrever os achados da ultrassonografia no envolvimento ósseo secundário a tendinopatia calcificada do manguito rotador.

MATERIAIS E MÉTODOS

Estudo retrospectivo de uma série de casos aprovado pelo Comitê de Ética em Pesquisa com seres humanos da instituição. O consentimento informado foi dispensado, em razão da natureza retrospectiva do estudo. Foi realizada pesquisa no banco de dados do sistema informatizado da radiologia em um período de quatro anos, procurando os termos “tendinopatia”, “tendinite”, “calcificada”, “hidroxiapatita” e “cristais” nos relatórios de ultrassonografia, para identificar casos de tendinopatia calcificada.

A ultrassonografia foi realizada como parte da investigação de rotina de dor no ombro em pacientes em nosso hospital universitário. Exames ultrassonográficos foram realizados com equipamento HD 11 (Philips Medical Systems; Bothell, WA, EUA), utilizando transdutor de 3–12 MHz, ou com equipamento Logiq-E (GE Medical Systems; Jiangsu, China) usando transdutor de 5–13 MHz. No protocolo de documentação de imagens da instituição são adquiridas de rotina imagens dos tendões subescapular, supraespinal e infraespinal nos eixos longitudinal e transversal destes tendões, respectivamente. O tendão da cabeça longa do bíceps é documentado de rotina nos eixos longitudinal e transversal nas regiões do intervalo rotador e do sulco intertubercular. Quando alguma anormalidade focal de algum tendão é identificada, ela é documentada em pelo menos dois planos ortogonais. Cortes ultrasonográficos da articulação acromioclavicular, da articulação glenoumeral, da incisura espinhosa foram identificados usando a TC em dois casos e manifestações ósseas em todos estes casos. Três casos que apresentavam achados de envolvimento intraósseo secundário a tendinopatia calcificada na ultrassonografia foram excluídos, em razão de a TC não estar disponível para comparação.

Os tendões com calcificação associada a anormalidades ósseas foram o supraespinal (4/7 casos) e o infraespinal (3/7 casos). O achado mais comum da ultrassonografia em nossa série foi a presença de um foco hiperecogênico intratendino- américo encontrado em um caso. Sombra acústica não foi encontrada em nenhum dos casos de tendinopatia calcificada com envolvimento ósseo. A TC confirmou erosão da cortical adjacente às calcificações do manguito rotador em todos os casos. Cistos ósseos subcorticais foram identificados usando a TC em dois casos e migração intraóssea da calcificação foi confirmada pela TC em três dos nossos casos.

DISCUSSÃO

A migração de depósitos de cristais de cálcio intraósseos associados a tendinopatia calcificada é bem conhecida na literatura\(^{(5–9)}\). Nossos resultados sugerem que a ultrassonografia pode demonstrar envolvimento ósseo secundário a tendinopatia calcificada e identificamos quais foram os achados mais comuns nesta situação usando este exame de imagem. Neste estudo, a apresentação típica pela ultrassonografia da tendinopatia calcificada com envolvimento ósseo foi a presença de foco hiperecogênico sem sombra acústica na inserção do tendão adjacente a uma erosão óssea cortical.

Em todos os nossos casos as calcificações tendíneas associadas com erosão óssea não apresentavam sombra acústica. A ausência de atenuação acústica pode ser considerada uma indicação de que os depósitos calcificados têm consistência líquida ou pastosa\(^{(3)}\). Portanto, nossos resultados preliminares reforçam a hipótese de que a migração de calcifi-
Figura 1. Paciente do sexo masculino, 56 anos de idade. A: Ultrassonografia no eixo longo do tendão infraespinal mostra calcificação intratendínea (setas) associada a erosão óssea focal e migração intraóssea da calcificação (cabeças de setas). B,C: Corte seccional axial e reconstrução coronal oblíqua de TC, respectivamente, confirmam a calcificação do tendão infraespinal na região de transição para o tendão supraespinal (setas) e erosão do osso cortical adjacente (cabeças de setas).

Figura 2. Paciente do sexo masculino, 56 anos de idade. A: Imagem de ultrassonografia no eixo longo dos tendões do manguito rotador apresenta calcificação (setas) na transição do supraespinal e infraespinal. Migração intraósea é aportada pelas cabeças de setas. B: Recons- trução coronal de TC confirma os achados. A seta aponta a calcificação e a cabeça de seta mostra a lesão óssea subcortical cística na inserção do manguito rotador.

Figura 3. Paciente do sexo feminino, 50 anos de idade. A: Imagem de ultrassonografia do ombro no eixo longo do tendão infraespinal identifica calcificações focais amorfas hiperecoicas (setas), com migração intraósea (cabeças de setas) no tendão infraespinal. B: Corte axial de TC mostra que as calcificações (setas) estão na inserção do tendão infraespinal com extensão para o tubérculo maior do úmero. A erosão óssea e migração intraósea (cabeça de seta) são também confirmadas pela tomografia.

cações do tendão para o osso ocorre na fase de reabsorção da doença.

Envolvimento da medula óssea, erosão cortical e edema de partes moles podem ser secundários à tendinopatia calcificada e imitar doenças mais agressivas, como neoplasia ou infecção. A ressonância magnética e a TC são consideradas os melhores métodos para mostrar o envolvimento da medula óssea na tendinopatia calcificada. O envolvimento do osso e a migração intraósea da calcificação podem ocorrer na doença de deposição de hidroxiapatita mesmo em outras regiões anatômicas, como, por exemplo, no disco intervertebral.

Em nossa investigação, a presença de erosão óssea cortical adjacente à calcificação foi o achado mais importante e
consistente na ultrasonografia e foi confirmado em todos os casos incluídos pela investigação posterior com TC. A migração intraósea de calcificações foi inequivocamente demonstrada com imagens de TC em 3/7 casos. Em nosso estudo, a ultrasonografia foi seguida pela investigação complementar da TC em não mais do que 10 dias. Depósitos cálcicos da tendinopatia calcificada podem ser reabsorvidos rapidamente e de forma espontânea).

Alterações císticas subcorticais podem ser identificadas de forma geral na área de inserção do manguito rotador, especialmente na região anterior do supraespinhal e do subescapular(14,15). Por outro lado, alterações císticas também podem estar associadas à migração intraósea na tendinopatia calcificada do manguito rotador, e calcificações focais podem ser observadas dentro do cisto(9,16). Cistos subcorticais foram identificados pela ultrasonografia em dois dos nossos casos, mostrando estreita relação espacial com as calcificações e com a erosão óssea. Os cistos subcorticais foram confirmados nestes dois casos pelas imagens de TC.

A ultrasonografia é um método de imagem eficaz na avaliação de anormalidades do manguito rotador e de outras anormalidades do ombro(17), mas há pouca informação disponível sobre o seu uso na detecção do comprometimento ósseo na tendinopatia calcificada(10,11).

A literatura enfatiza o uso da ultrasonografia em reumatologia para a investigação das artrites(18–20). Mais recentemente, a ultrasonografia foi utilizada para o estudo de doenças de depósito microcristalinas. Ela tem utilidade para identificar o envolvimento por cristais na artéria da gota(21–23) e no estudo do envolvimento de tendões pela gota(24,25). A avaliação da entesopatia em pacientes com fibromialgia também pode ser realizada por ultrasonografia(26). Os resultados do nosso estudo são importantes para alertar a necessidade de incluir doença de deposição de hidroxiapatita no diagnóstico diferencial de outras entesopatias.

A principal limitação do nosso estudo é sua natureza retrospectiva. Houve o viés de seleção dos pacientes submetidos à TC. Apenas os casos suspeitos de envolvimento ósseo na ultrasonografia foram reavaliados pela TC. A TC, obviamente, não é rotineiramente realizada para investigação adicional de tendinopatia calcificada do manguito rotador. Portanto, o desempenho diagnóstico da ultrasonografia não pode ser estimado neste nosso trabalho. Além disso, em função do número restrito de pacientes nesta série de casos, somente foi possível realizar uma análise descritiva dos achados. Estudo com casuística maior e prospectivo precisa ser realizado para melhor avaliação da sensibilidade, da especificidade e da eficácia da ultrasonografia na identificação do envolvimento ósseo secundário a tendinopatia calcificada.

A morfologia dos depósitos cálcicos nas imagens de ultrasonografia apresenta boa correlação com os sintomas clínicos na tendinopatia calcificada(27). No estudo de Chiou et al., as calcificações sem sombra acústica, aquelas das fases de repouso e reabsortiva, foram as que se correlacionaram com sintomas clínicos mais significativos(27). Nosso resultados preliminares sugerem que a migração da calcificação e o envolvimento ósseo podem ser consistentemente identificados por meio da ultrasonografia e reforçam que o envolvimento ósseo ocorre na fase de reabsorção de tendinopatia calcificada. O radiologista precisa identificar os achaques do envolvimento ósseo secundário a tendinopatia calcificada, pela ultrasonografia, em vista do potencial de associação com o quadro doloroso, aspecto reforçado pela nossa série de casos, e também deve reconhecer que eventuais erosões ósseas podem ocorrer na entese como parte da evolução da doença.

Agradecimento
Os autores agradecem à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), pelo suporte financeiro.

REFERÊNCIAS
1. Speed CA, Hazleman BL. Calcific tendinitis of the shoulder. N Engl J Med. 1999;340:1582–4.
2. Farin PU, Jaroma H. Sonographic findings of rotator cuff calcifications. J Ultrasound Med. 1995;14:7–14.
3. Farin PU. Consistency of rotator-cuff calcifications. Observations on plain radiography, sonography, computed tomography, and at needle treatment. Invest Radiol. 1996;31:300–4.
4. Uhtoff HK, Loehr JW. Calcific tendinopathy of the rotator cuff: pathogenesis, diagnosis, and management. J Am Acad Orthop Surg. 1997;5:183–91.
5. Hayes CW, Rosenthal DI, Plata MJ, et al. Calcific tendinitis in unusual sites associated with cortical bone erosion. AJR Am J Roentgenol. 1987;149:967–70.
6. Flemming DJ, Murphey MD, Shekütka KM, et al. Osseous involvement in calcific tendinitis: a retrospective review of 50 cases. AJR Am J Roentgenol. 2003;181:965–72.
7. Chan R, Kim DH, Millett PJ, et al. Calcifying tendinitis of the rotator cuff with cortical bone erosion. Skeletal Radiol. 2004;33:596–9.
8. Porcellini G, Paladin P, Campi F, et al. Osteocytic lesion of greater tuberosity in calcific tendinitis of the shoulder. J Shoulder Elbow Surg. 2009;18:210–5.
9. Sola WC Jr, Drake GN, Ramos CH, et al. Calcific tendinitis of the rotator cuff associated with intraosseous loculation: two case reports. J Shoulder Elbow Surg. 2009;18:6–8.
10. Martinoli C, Bianchi S, Prato N, et al. US of the shoulder: non-calcific rotator cuff disorders. Radiographics. 2003;23:381–401.
11. Bianchi S, Martinoli C. Ultrasound of musculoskeletal system. Berlin-Heidelberg: Springer; 2007.
12. Nogueira-Barbosa MH, da Silva Herrero CF, Pasqualini W, et al. Calcific discitis in an adult patient with intravertebral migration and spontaneous remission. Skeletal Radiol. 2013;42:1161–4.
13. Brower AC. Cortical defect of the humerus at the insertion of the pectoralis major. AJR Am J Roentgenol. 1977;128:677–8.
14. Fritz LB, Ouellette HA, O’Hanley TA, et al. Cystic changes at subspinatus and infraspinatus tendon insertion sites: association with age and rotator cuff disorders in 238 patients. Radiology. 2007;244:239–48.
15. Studler U, Pfirrmann CW, Jost B, et al. Abnormalities of the lesser tuberosity on radiography and MRI: association with subscapularis tendon lesions. AJR Am J Roentgenol. 2008;191:100–6.
16. Martin S, Raripaz JM. Intraosseous calcium migration in calcifying tendinitis: a rare cause of single sclerotic injury to the humeral head. Eur Radiol. 2010;20:1284–6.

Os autores agradecem à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), pelo suporte financeiro.
17. Papatheodorou A, Ellinas P, Takis F, et al. US of the shoulder: rotator cuff and non-rotator cuff disorders. Radiographics. 2006; 26:e23.

18. Østergaard M, Szkudlarek M. Imaging in rheumatoid arthritis – why MRI and ultrasonography can no longer be ignored. Scand J Rheumatol. 2003;32:63–73.

19. da Mota LM, Laurindo IM, dos Santos Neto LL, et al. Imaging diagnosis of early rheumatoid arthritis. Rev Bras Reumatol. 2012;52: 757–66.

20. Arend CF. Ultrasonography in rheumatoid arthritis: what rheumatologists should know. Rev Bras Reumatol. 2013;53:88–100.

21. Russell E, Checa A. Potential pitfalls in the diagnosis of crystal-induced arthritis and in the sonographic measurement of hyaline cartilage due to the presence of joint effusion. J Clin Rheumatol. 2013;19:98–100.

22. Adinolfi A, Picerno V, Di Sabatino V, et al. Inquiry is fatal to certainty – is the ultrasonography double contour sign specific for uric acid-induced arthritis? Arthritis Rheum. 2013;65:1952.

23. Barskova VG, Kudaeva FM, Bozhieva LA, et al. Comparison of three imaging techniques in diagnosis of chondrocalcinosis of the knees in calcium pyrophosphate deposition disease. Rheumatology (Oxford). 2013;52:1090–4.

24. de Ávila Fernandes E, Sandim GB, Mitraud SAV, et al. Sonographic description and classification of tendinous involvement in relation to tophi in chronic tophaceous gout. Insights Imaging. 2010;1:143–8.

25. Rodas G, Pedret C, Català J, et al. Intratendinous gouty tophus mimics patellar tendonitis in an athlete. J Clin Ultrasound. 2013; 41:178–82.

26. Ozkan F, Bakan B, Inci MF, et al. Assessment of enthesopathy in patients with fibromyalgia by using new sonographic enthesitis index. Rev Bras Reumatol. 2013;53:335–40.

27. Chiou HJ, Hung SC, Lin SY, et al. Correlations among mineral components, progressive calcification process and clinical symptoms of calcific tendonitis. Rheumatology (Oxford). 2010;49:548–55.