Priming of Marine Macrophytes for Enhanced Restoration Success and Food Security in Future Oceans

Alexander Jueterbock1*, Antoine J. P. Minne2,3, J. Mark Cock4, Melinda A. Coleman2,3,5, Thomas Wernberg5, Lydia Scheschonk6, Ralf Rautenberger7, Jie Zhang8,9 and Zi-Min Hu10

Marine macrophytes, including seagrasses and macroalgae, form the basis of diverse and productive coastal ecosystems that deliver important ecosystem services. Moreover, western countries increasingly recognize macroalgae, traditionally cultivated in Asia, as targets for a new bio-economy that can be both economically profitable and environmentally sustainable. However, seagrass meadows and macroalgal forests are threatened by a variety of anthropogenic stressors. Most notably, rising temperatures and marine heatwaves are already devastating these ecosystems around the globe, and are likely to compromise profitability and production security of macroalgal farming in the near future. Recent studies show that seagrass and macroalgae can become less susceptible to heat events once they have been primed with heat stress. Priming is a common technique in crop agriculture in which plants acquire a stress memory that enhances performance under a second stress exposure. Molecular mechanisms underlying thermal priming are likely to include epigenetic mechanisms that switch state and permanently trigger stress-preventive genes after the first stress exposure. Priming may have considerable potential for both ecosystem restoration and macroalgal farming to immediately improve performance and stress resistance and, thus, to enhance restoration success and production security under environmental challenges. However, priming methodology cannot be simply transferred from terrestrial crops to marine macrophytes. We present first insights into the formation of stress memories in both seagrasses and macroalgae, and research gaps that need to be filled before priming can be established as new bio-engineering technique in these ecologically and economically important marine primary producers.

Keywords: DNA methylation, plasticity, stress memory, bio-engineering, seagrass, macroalgae farming, kelp restoration, heat hardening
INTRODUCTION

Marine macrophytes, including seagrasses and macroalgae, form the foundational basis of some of the most productive and diverse coastal marine ecosystems on the planet (Larkum et al., 2006; Costanza et al., 2014; Klinger, 2015; Teagle et al., 2017) that provide ecosystem services worth US$ 28.9 ha⁻¹ year⁻¹ (Costanza et al., 2014). Moreover, macroalgae, traditionally cultivated in Asia (Chopin, 2017; Hu et al., 2021) at an annual value of US$ 13.3 billion (FAO, 2020), are increasingly recognized in Europe and America as a target for a new, highly profitable, and environmentally sustainable bioeconomy (Skjermo et al., 2014; Stévant et al., 2017; Grebe et al., 2019; Araújo et al., 2021).

Marine macrophytes are increasingly threatened by a variety of anthropogenic stressors, including coastal development, invasive species, agricultural run-offs, dredging, aquaculture, and rising sea levels (Orth et al., 2006; Krumhansl et al., 2016; Chefaoui et al., 2018; Filbee-Dexter and Wernberg, 2018). Nearly one-third of global seagrass areas have disappeared over the last 100 years (Waycott et al., 2009) and 60% of macroalgal forests have been in decline over the past 2–5 decades (Wernberg et al., 2019).

Above all, temperature is the most important range-limiting factor for marine macrophytes (Jueterbock et al., 2013; Repolho et al., 2017; Assis et al., 2018; Duarte et al., 2018; Martínez et al., 2018). Rising ocean temperatures, interfering with reproduction, development, and growth (Breeman, 1990; Short and Neckles, 1999), are fundamentally altering genetic diversity and adaptability (Coleman et al., 2020; Gurgel et al., 2020), and devastating macroalgal forests and seagrass meadows around the globe (Arias-Ortiz et al., 2018; Filbee-Dexter et al., 2020; Smale, 2020). In response, large-scale restoration efforts aim to avert severe ecological and economic consequences (Eger et al., 2020; Fredriksen et al., 2020; Layton et al., 2020; Tan et al., 2020; Vergés et al., 2020). Modeling studies, based on projected carbon emission scenarios, predict that poleward range shifts will intensify (Jueterbock et al., 2013; Valle et al., 2014; Assis et al., 2016, 2017; Chefaoui et al., 2018; Wilson and Lotze, 2019). Even if rising sea temperatures remain below lethal limits, they reduce macroalgal growth and performance (Nepper-Davidson et al., 2019; Hereward et al., 2020; Smale et al., 2020), increase disease outbreaks and bio fouling (Harley et al., 2012; Nepper-Davidson et al., 2019; Qiu et al., 2019; Smale et al., 2020), and radically alter ecological interactions that determine persistence (Provost et al., 2017; Vergés et al., 2019)—thus compromising future sustainability of natural habitats, and production security of associated industries.

PRIMING POTENTIAL IN MARINE MACROPHYTES

Primming, a Common Technique for Crop Enhancement

In agriculture, primming (Box 1) is a commonly employed technique to enhance crop resistance to environmental challenges, including pathogen infections, hot, cold, dry, or saline conditions (Ibrahim, 2016; Pawar and Laware, 2018; Wojtyla et al., 2020); in some cases even across generations (transgenerational priming, Box 1) (Herman and Sultan, 2011; Lämke and Bäurle, 2017; Benson et al., 2020). For example, reproductive output of F3 Arabidopsis progeny increased fivefold under heat stress (30°C) if the F0 and F1 generations had previously experienced the same stress (Whittle et al., 2009). Seed primming also synchronizes germination and improves vigor, leading to improved crop establishment and yield (Pawar and Laware, 2018). Primming is now considered a promising strategy for crop production in response to future climate (Wang et al., 2017; Mercé et al., 2020), and may have large potential to alleviate negative climate change impacts on marine macrophytes as well as to enhance yield in macroalgae production.

Mechanisms Underlying Primming

Primming relies on the formation of a molecular stress memory (Box 1), a process that can include epigenetic mechanisms such as microRNAs (miRNAs), histone modifications, and DNA methylation (Iwasaki and Paszkowski, 2014; Balmer et al., 2015; Crisp et al., 2016; Hilker et al., 2016; Wojtyla et al., 2016; Gallusci et al., 2017; Lämke and Bäurle, 2017; Bäurle, 2018; Figure 2). Epigenetic mechanisms do not alter the DNA sequence but have the potential to change gene expression (Bossdorf et al., 2008). Stress memory based on non-coding RNA and histone modifications generally lasts no longer than several hours or days (Mathieu et al., 2007; Cedar and Bergman, 2009; Lämke and Bäurle, 2017; Kumar, 2018), with some exceptions (Huang et al., 2013; Bilichak et al., 2015; Morgado et al., 2017). In contrast, DNA methylation is more stable, and can even be heritable across generations (Boyko et al., 2010; Ou et al., 2012; Verhoeven and van Gurp, 2012; Bilichak and Kovalchuk, 2016; González et al., 2017). For example, mediation of transgenerational primming via inherited DNA methylation has been demonstrated in the plant Polygonum persicaria, in which demethylation of offspring with zebularine removed the adaptive effect of parental drought exposure in the form of longer root systems and greater biomass (Herman and Sultan, 2016).

Indications of Primming in Macrophytes

Recent studies show that seagrass can become less susceptible to heat events if it has been primed to stressful temperatures (Figure 1). For example, primed individuals (6 days at 29°C,

Box 1 Glossary of primming-related terms.

Primming—A plant’s ability to acquire a stress memory, enhancing its performance when exposed to a second stress by allowing it to respond faster, stronger, or in response to a lower threshold compared to a naive plant (Figure 1A). Primming is often used synonymously with hardening, conditioning, or acclimation.

Stress memory—A stress-induced alteration in epigenetic state that may last under mitotic cell divisions and results in primming.

Transgenerational primming—Stability of a stress memory under meiotic cell divisions across at least one generation that benefits the progeny of primed parental plants.
Jueterbock et al. Priming in Marine Macrophytes

FIGURE 1 | Concept of priming and potential for its application in macroalgae and seagrass. (A) A primed organism responds faster, earlier, stronger or to a lower threshold of a stressful triggering stimulus as compared with a naïve organism. (B) A naïve organism is primed by building up a memory of a certain stress stimulus. The stress memory is more likely to be heritable across asexually produced generations than across sexually produced generations because of epigenetic reprogramming under gametogenesis (meiosis) and embryogenesis. (C) At which stage priming is best applied depends on the stability/transfer of a priming memory across the life cycle stages of kelp and seagrass. The state of the art, challenges and knowledge gaps to establish priming as a novel bio-engineering technique in marine macrophytes are listed for macroalgae and seagrass, respectively.

Macroalgae
- Thermal priming was shown to...
 - enhance heat tolerance in gametophyte and derived sporophytes
 - alter membrane fatty acids

Challenges
- few assembled genomes
- understudied epigenetic mechanisms
- complex life cycle with understudied small life stages
- methylene different from plants and microalgae

Major knowledge gaps
- stability of priming memories across the life cycle
- which species have DNA methylation as epigenetic mechanism?
- functional role of distinct epigenetic characteristics
- optimal life stage for priming
- cross-priming

Seagrass
- enhance heat resistance
- increase clonal growth
- increase above/below-ground biomass ratio
- have an effect across multiple clonal generations
- activate genes related to histone methylation
- change in DNA methylation of stress relevant genes for a minimum of 5 weeks

Challenges
- few assembled genomes
- understudied epigenetic mechanisms

Major knowledge gaps
- stability of epigenetic priming memory under asexual and clonal reproduction
- collective stress memory in clones?
- optimal life stage for priming
- cross-priming
Environmental stress can alter the phenotype of marine macrophytes by positive selection of pre-adapted genotypes or of new beneficial mutations, resulting in genetic adaptation of the population within several generations. In contrast, epigenetic mechanisms, comprising ncRNAs, DNA methylation, and histone modifications, contribute to phenotypic plasticity by altering the expression patterns of genes within a single generation. The key characteristics with respect to the application potential of genetic and epigenetic mechanisms for farming and restoration of marine macrophytes, are listed at the bottom.

$4^\circ C$ above natural conditions) of the seagrass species *Zostera muelleri* and *Posidonia australis* showed significantly enhanced photosynthetic capacity, leaf growth, and chlorophyll a content after exposure to heat stress ($32^\circ C$ for 9 days) compared with naïve plants (Nguyen et al., 2020). Moreover, previous exposure of *Zostera marina* to simulated warming ($15^\circ C$ for 45 days, $2^\circ C$ above control temperature) resulted in an increase in clonal shoot production and shoot length, as well as a decrease in leaf growth rates and in the ratio of below to above ground biomass (DuBois et al., 2020). Vegetatively grown shoots of primed parental plants could maintain biomass production under a second warming event (ca. $16^\circ C$ for 40 days) but not shoots of naïve parental plants. The changes, which lasted for several years across multiple clonal generations after the stress was removed, would likely be adaptive in a warmer environment by reducing the respiratory burden of non-photosynthetic tissues. As discussed in Nguyen et al. (2020), heat priming may explain why the Mediterranean seagrass *Posidonia oceanica* did not suffer high mortality rates after intense and long-lasting heat-waves in 2012, 2015, and 2017 (Darmaraki et al., 2019),
in contrast to an extensive die-off after the 2006 heatwave (Marbà and Duarte, 2010).

Evidence that epigenetic modifications contribute to form a thermal stress memory in seagrass is suggested by significant stress-induced regulation of methylation-related genes, in particular histone methyltransferases (Nguyen et al., 2020), and a change in DNA-methylation patterns that lasted for at least 5 weeks following exposure to heat stress (Jueterbock et al., 2020). A 5-week heat-stress memory is potentially long enough to heat-harden the same generation of previously exposed shoots. This methylation memory involved CG hyper-methylation and, thus, potentially constitutive upregulation (Zhang et al., 2006; Yang et al., 2014; Dubin et al., 2015; Niederhuth and Schmitz, 2017) of genes involved in the breakdown of heat-denatured proteins (Feder and Hofmann, 2002); which would be expected to provide a faster or stronger protective response upon exposure to a second heat stress.

In fucoid macroalgae, priming was shown to enhance resistance to dry and cold conditions (Schonbeck and Norton, 1979; Collén and Davison, 2001). Moreover, in the kelp Laminaria digitata, gametophyte exposure to low temperatures (5°C versus 15°C) significantly enhanced growth of the derived sporophytes under benign conditions (5 and 15°C) (Liesner et al., 2020). A small number of studies suggest that macroalgal performance under heat stress may be bio-engineered by thermal priming (Figure 1). First, priming the gametophyte generation of the kelp Alaria esculenta for 3 days at 22°C (compared with 12°C) enhanced their survival under increased temperatures, and the growth of the derived sporophyte generation (Quigley et al., 2018). Second, cultivation of Saccharina japonica gametophytes by 22–24°C increased the heat-tolerance of the derived sporophytes by 2°C (Wu and Pang, 1998) in Bricknell et al. (2021). Third, in the fucoid brown alga Fucus vesiculosus, storage of parental tissue at a higher temperature (14°C versus 4°C), or acclimation of embryos to 29°C significantly increased their survival by 30–50% under 33°C (Li and Brawley, 2004). Fourth, individuals of the red alga Bangia fuscorubropurpurea primed for 3 days at 28°C could survive 1 week at 32°C significantly better than naïve individuals (Kishimoto et al., 2019). The priming stress caused an increase in the saturation level of membrane fatty acids, suggesting that altered membrane fluidity is part of the species’ heat stress memory. However, this memory lasted for only 5 days after the primed individuals were returned to benign conditions (15°C).

DISCUSSION – PROSPECTS AND CHALLENGES OF PRIMING IN MARINE MACROPHYTES

Distinguishing Priming From Selection

Just as thermal stress in natural settings can cause mortality and selection (Coleman and Wernberg, 2020; Coleman et al., 2020; Gurgel et al., 2020), priming induced mortality could inadvertently result in selection of pre-adapted genotypes—which may explain the observed transfer of positive effects from the primed gametophyte to the derived sporophyte generation of kelp (Quigley et al., 2018; Liesner et al., 2020). In order not to falsely ascribe improved stress tolerance to the formation of a molecular stress memory, it is critical to distinguish between priming and selection. This could be achieved through establishing correlations between positive priming effects and priming-induced epigenetic shifts that are independent from priming-induced genetic shifts by using partial mantel tests and multivariate redundancy analysis (Foust et al., 2016; Gugger et al., 2016; Herrera et al., 2016; Oksanen et al., 2016; Jueterbock et al., 2020). Moreover, tests for outlier loci that have become dominant allelic variants under positive selection (Narum and Hess, 2011; Günther and Coop, 2013; Ahrens et al., 2018) should be carried out in order to prove that positive priming effects cannot be explained by the survival of adapted genotypes.

Specificities of the Brown Algal Methylome

While the presence of cytosine methylation has been reported for green algae, red algae, dinoflagellates, and diatoms (Maumus et al., 2011; Tirichine and Bowler, 2011; Veluchamy et al., 2013; Bräutigam and Cronk, 2018; Lee J. M. et al., 2018), it is still not clear which brown algae share a lack of DNA methylation with the filamentous brown alga Ectocarpus sp. (Cock et al., 2010), in which epigenetic variation may be instead mediated at the chromatin level by histone modifications (Bourdareau et al., 2020) or via stress responsive miRNAs (Cock et al., 2017). Recently, DNA methylation was detected in the kelp S. japonica (Fan et al., 2019). The kelp methylome has been shown to change between life-cycle stages, to correlate with gene expression, and to differ from that of plants and microalgae. For example, methylation occurs predominately in CHH sequence contexts, which transfer methylation less reliably across mitotic cell divisions than CG sites (Law and Jacobsen, 2010). Moreover, DNA methylation appears to rely on a DNA methyltransferase (DNMT2) that is of low efficiency compared with other DNMTs, belonging to a class that mainly catalyzes tRNA methylation in plants and animals (Fan et al., 2019). How these specificities affect the functional role of the kelp methylome with respect to molecular stress memory remains unexplored.

Integrative Analyses

Parallel recording of epigenetic and transcriptomic priming responses can allow the identification of priming-induced epialles that correlate with gene expression patterns and therefore potentially explain enhanced stress resistance (e.g., heat shock proteins). For example, that heat-induced methylation changes could be involved in stress acclimation of the red alga Pyropia haitanensis, was suggested by their correlation with the expression of stress-responsive genes (Yu et al., 2018). Penalized regression methods present promising integrative multi-locus models to test for statistical relationships between different “omics” data sets as they can overcome the challenge of having a small number of individuals (n) relative to the number of parameters (p) (Pineda et al., 2015; Lien et al., 2018; Zhong et al., 2019). Causal effects of DNA methylation on improved
Phenotypes may be different to model with structural equation modeling (SEM), an established multivariate method that is relatively new to the field of molecular biology (Igolikina and Samsonova, 2018; Fatima et al., 2020). To demonstrate a causal relationship between priming memories and adaptive phenotypic changes requires experimental removal of DNA methylation, e.g., using Zebularine or 5-Azacytidine (Griffin et al., 2016), or targeted modifications of epigenetic markers, e.g., using the CRISPR-Cas system (Xu et al., 2016).

Inferences about the functional effect of molecular priming memories rely on the availability of annotated genomes, which are still scarce for marine macrophytes. Genomes have been published for six brown macroalgae: Ectocarpus sp. (Cock et al., 2010), S. japonica (Ye et al., 2015), Undaria pinnatifida (Shan et al., 2020), Cladosiphon okamuranus (Nishitsuji et al., 2016), Nemacystus decipiens (Nishitsuji et al., 2019), and Sargassum fusiforme (Wang et al., 2020). Published seagrass genomes include Z. marina (Olsen et al., 2016), Z. muelleri (Lee et al., 2016), and Halophila ovalis (Lee H. et al., 2018). Thus, the assembly and annotation of genomes, particularly of species of high ecological or commercial relevance, is a key priority in priming-related research.

Stability and Transfer of the Priming Memory
Multi-generational stability of the priming memory (transgenerational priming) is more important for the application of priming in restoration than in cultivation. Macroalgal cultivation naturally allows for annual re-priming during the few weeks the macroalgae are cultivated under controlled laboratory conditions. For example, for kelps, priming could be annually applied to either the haploid gametophyte cultures or to the young diploid sporophytes before being deployed at sea until harvest. While priming of the gametophytes would require the least resources (i.e., space and water), it is not clear to what extent epigenetic reprogramming during fertilization would affect transmission of a priming memory to the sporophyte generation. To characterize the transfer of priming memories via small life-cycle stages such as meiospores, gametes, and zygotes may become possible with new single-cell 'omics technologies (Wang and Bodovitz, 2010; Zhu et al., 2020) that allow to sequence at DNA quantities which are too low for 'omics technologies (Wang and Bodovitz, 2010; Zhu et al., 2020) that allow to sequence at DNA quantities which are too low for multi-generational priming to be of commercial value to the macroalgae farming industry. In particular, brown and red macroalgae are distantly related to terrestrial plants, and kelps have complex heteromorphic life cycles with free-living gametophyte generations. Thus, in order to identify whether priming can be established as a novel bio-engineering technique for marine macrophytes, we need ambitious fundamental research that uses complex experimental setups combined with multivariate analyses that can integrate multiple high-throughput sequencing datasets to test at which intensity, duration, and life-cycle stage priming has a positive and long-term effect without inducing selection or high mortality. For priming to be of commercial value to the macroalgae farming industry, the next steps require that priming research is further assessed whether the cost factor added to the cultivation process pays off by enhancing yield even in years where the macroalgae are not exposed to stress or by providing cross-protection to other relevant stressors (Hilker et al., 2016). Despite these knowledge gaps, priming should be explored as
a tool to boost resilience of both seagrass and macroalgae to secure their ecological and economic values in future oceans.

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

AJ wrote the first draft of the manuscript. AM created the figures. JC, MC, TW, LS, RR, JZ, and Z-MH contributed to the article by commenting and re-writing sections, and approved the submitted version. All authors contributed to the article and approved the submitted version.

REFERENCES

Ahrens, C. W., Rymer, P. D., Stow, A., Bragg, J., Dillon, S., Umersi, K. D. L., et al. (2018). The search for loci under selection: trends, biases and progress. *Mol. Ecol.*, 27, 1342–1356. doi: 10.1111/mec.14549

Araújo, R., Vázquez Calderón, F., Sánchez López, J., Azevedo, I. C., Bruhn, A., Fluch, S., et al. (2021). Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy. *Front. Mar. Sci.* 7:62689. doi: 10.3389/fmars.2020.62689

Arias-Ortiz, A., Serrano, O., Masqué, P., Laverty, P. S., Mueller, U., Kendrick, G. A., et al. (2018). A marine heatwave drives massive losses from the world's largest seagrass carbon stocks. *Nat. Clim. Chang.* 8, 338–344. doi: 10.1038/s41558-018-0096-y

Assis, J., Araújo, M. B., and Serrão, E. A. (2018). Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. *Glob. Chang. Biol.* 24, e55–e66. doi: 10.1111/gcb.13818

Assis, J., Berecibar, E., Claro, B., Alberto, F., Reed, D., Raimondi, P., et al. (2017). Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. *Sci. Rep.* 7:44348. doi: 10.1038/srep44348

Assis, J., Lucas, A. V., Bárbara, I., and Serrão, E. A. Á (2016). Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp *Laminaria hyperborea*. *Mar. Environ. Res.* 113, 174–182. doi: 10.1016/j.marenvres.2015.11.005

Balmer, A., Pastor, V., Gamir, J., Flors, V., and Mauch-Mani, B. (2015). The “prime-ome”: towards a holistic approach to priming. *Trends Plant Sci.* 20, 443–452. doi: 10.1016/j.tplants.2015.04.002

Bäurle, I. (2018). Can’t remember to forget you: chromatin-based priming of somatic stress responses. *Semin. Cell Dev. Biol.* 83, 133–139. doi: 10.1016/j.semcdb.2017.09.032

Benson, C. W., Mao, Q., and Huff, D. R. (2020). Global DNA methylation predicts epigenetic reprogramming and transgenerational plasticity in *Poa annua* L. *Crop Sci.* 1–12. doi: 10.1002/cs.20337

Bilichak, A., Ilnytskyy, Y., Wóycicki, R., Kepeschukh, N., Fogen, D., and Kovalchuk, I. (2015). The elucidation of stress memory inheritance in *Brassica rapa* plants. *Front. Plant Sci.* 6:5. doi: 10.3389/fpls.2015.00005

Bilichak, A., and Kovalchuk, I. (2016). Transregenerative response to stress in plants and its application for breeding. *Exp. Bot.* 67, 2081–2092. doi: 10.1093/ expbot/erw066

Bossdorf, O., Richards, C. L., and Pigliucci, M. (2008). Epigenetics for ecologists. *Ecol. Lett.* 11, 106–115. doi: 10.1111/j.1461-0248.2007.01130.x

Bourdareau, S., Tirichine, L., Lombard, B., Loew, D., Scornet, D., Coelho, S., et al. (2020). Histone modifications during the life cycle of the brown alga Ectocarpus. *Genome Biol.* 22:12. doi: 10.1186/s13005-020-09807-3

Boyko, A., Blevins, T., Yao, Y., Golubov, A., Bilichak, A., Ilnytskyy, Y., et al. (2010). Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. *PLoS One* 5:e9514. doi: 10.1371/journal.pone.009514

Brätigam, K., and Cronk, Q. (2018). DNA methylation and the evolution of developmental complexity in plants. *Front. Plant Sci.* 9:1447. doi: 10.3389/fpls.2018.01447

Brebman, A. M. (1990). Expected effects of changing seawater temperatures on the geographic distribution of seaweed species. *Expect. Eff. Clim. Chang. Mar. Coast. Ecosyst.* 57, 69–76. doi: 10.1007/978-94-009-2003-3_9

Bricknell, I. R., Birkel, S. D., Brawley, S. H., Van Kirk, T., Hamlin, H., Capistrant-Fossa, K., et al. (2021). Resilience of cold water aquaculture: a review of likely scenarios as climate changes in the Gulf of Maine. *Rev. Aquac.* 13, 460–503. doi: 10.1111/raq.12483

Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. *Nat. Rev. Genet.* 10, 295–304. doi: 10.1038/nrg2540

Chefaoui, R. M., Duarte, C. M., and Serrão, E. A. (2018). Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. *Glob. Chang. Biol.* 24, 4919–4928. doi: 10.1111/gcb.14401

Chopin, T. (2017). Seaweed aquaculture – from the global, mostly Asian, picture to the opportunities and constraints of the Canadian scene. *Bull. Aquacul. Assoc. Canada* 1–8.

Cock, J., Liu, F., Duan, D., Bourdareau, S., Lipinska, A. P., Coelho, S. M., et al. (2017). Rapid evolution of microRNA loci in the brown algae. *Genome Biol.* 9, 740–749. doi: 10.1038/gbe/evx038

Cock, J. M., Sterck, L., Rouzé, P., Scornet, D., Allen, A. E., Amoutzias, G., et al. (2010). The *Ectocarpus* genome and the independent evolution of multicellularity in brown algae. *Nature* 465, 617–621. doi: 10.1038/nature09016

Coleman, M. A., and Godd, H. D. (2019). Harnessing synthetic biology for kelp forest conservation*. J. Physiol.* 751, 745–751. doi: 10.1111/jpy.12888

Coleman, M. A., Minne, A. J. P., Vranken, S., and Wernberg, T. (2020). Genetic tropicalisation following a marine heatwave. *Sci. Rep.* 10:12726. doi: 10.1038/s41598-020-69665-w

Coleman, M. A., and Wernberg, T. (2018). Genetic and morphological diversity in sympatric kelps with contrasting reproductive strategies. *Aquat. Biol.* 27, 65–73. doi: 10.3354/ab00969

Coleman, M. A., and Wernberg, T. (2020). Forum the silver lining of extreme events trends in ecology & evolution. *Trends Ecol. Evol.* 35, 1065–1067. doi: 10.1016/j.tree.2020.08.013

Collén, J., and Davidson, I. R. (2001). Seasonality and thermal acclimation of reactive oxygen metabolism in *Fucus vesiculosus* (Phaeophyceae). *J. Phycol.* 37, 474–481. doi: 10.1046/j.1529-8817.2001.00700447.x

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, L., et al. (2014). Changes in the global value of ecosystem services. *Glob. Environ. Chang.* 26, 152–158. doi: 10.1016/j.gloenvcha.2014.04.002

FUNDING

This work was supported by a personal research talents grant from Nord University to AJ and Norwegian Research Council (project 243916). JC was supported by the Agence Nationale de la Recherche project Epicyle (ANR-19-CE20-0002-01). MC and TW were supported by Australian Research Council Grants DP190100058 and DP200100201. Z-MH was supported by the National Natural Science Foundation of China (31971395). Open access publication fees were covered by Nord University’s Open Access Fund.

ACKNOWLEDGMENTS

We thank the reviewers for their contribution to improve this manuscript.
Kumar, S. (2018). Epigenomics of plant responses to environmental stress. *Epigenomics* 2:6. doi: 10.3390/epigenomics2018006

Lämke, J., and Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. *Genome Biol.* 18:124. doi: 10.1186/s12251-017-1263-8

Larkum, A. W. D., Orth, R. J., and Duarte, C. M. (2006). Seagrasses: biology, ecology, and conservation. *Mar. Ecol. Prog. Ser.* 27, 431–432. doi: 10.3354/meps06985

Latzel, V., Rendina González, A. P., and Rosenthal, J. (2016). Epigenetic memory as a basis for intelligent behavior in clonal plants. *Front. Plant Sci.* 7:1354. doi: 10.3389/fpls.2016.01354

Law, J. A., and Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. *Nat. Rev. Genet.* 11, 204–220. doi: 10.1038/nrg2719

Layton, C., Coleman, M. A., Marzinelli, E. M., Steinberg, P. D., Sawyer, S. E., Vergès, A., et al. (2020). Kelp forest restoration in Australia. *Front. Mar. Sci.* 7:74. doi: 10.3389/fmars.2020.00074

Lee, H., Golicz, A. A., Bayer, P. E., Sevren-Ellis, A. A., Chan, C. K. K., Batley, J., et al. (2018). Genomic comparison of two independent seagrass lineages reveals habitat-driven convergent evolution. *J. Exp. Bot.* 69, 3689–3702. doi: 10.1093/jxb/ery147

Lee, H. T., Golicz, A. A., Bayer, P. E., Jiao, Y., Tang, H., Paterson, A. H., et al. (2016). Analysis of the draft genome of the red seaweed *Gracilaria chorda* provides insights into genome size evolution in rhodophyta. *Mol. Biol. Evol.* 35, 1869–1886. doi: 10.1093/molbev/msy081

Li, R., and Brawley, S. H. (2004). Improved survival under heat stress in intertidal embryos (Fucus spp.) simultaneously exposed to hyperosmality and the effect of parental thermal history. *Mar. Biol.* 144, 205–213. doi: 10.1007/s00227-003-1190-9

Lien, T. G., Borgan, Ø, Reppe, S., Gautvik, K., and Glad, I. K. (2018). *Lee, J. M., Yang, E. C., Graf, L., Yang, J. H., Qiu, H., Zelzion, U., et al.* (2018). Draft genome of the brown alga, *Nemacystus decipiens*, Onna-1 strain: a platform for future studies of ‘mozuiku’ biology. *DNA Res.* 23, 561–570. doi: 10.1093/dnar/dsw039

Lokman, H. E., Blanquet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2016). vegan: Community Ecology Package. *R* Packag. *van. gen*., 10.4139/10.2174/2971874.n145

Morgan, D., Preite, V., Oplaat, C., Anava, S., Ferreira de Carvalho, J., Rechavi, O., et al. (2017). Small RNAs reflect grandparental environments in apomictic dandelion. *bioRxiv* [Preprint] 099572. doi: 10.1101/099572

Narum, S. R., and Hess, J. E. (2011). Comparison of FST outlier tests for SNP loci under selection. *Mol. Ecol. Resour.* 11, 184–194. doi: 10.1111/j.1755-0998.2011.02987.x

Nguyen, H. M., Kim, M., Ralp, P. J., Marin-Guirao, L., Pernice, M., and Procaccini, G. (2020). Stress memory in seagrasses: first insight into the effects of thermal priming and the role of epigenetic modifications. *Front. Plant Sci.* 11:494. doi: 10.3389/FPLS.2020.00494

Niederhuth, C. E., and Schmitz, R. J. (2017). Putting DNA methylation in context: from genomes to gene expression in plants. *Biochim. Biophys. Acta Gen. React. Mech.* 1860, 149–156. doi: 10.1016/j.bgr.2016.08.009

Procaccini, G. (2020). Stress memory in seagrasses: first insight into the effects of parental thermal history. *Mar. Biol.* 11, 184–194. doi: 10.1007/s00227-011-1958-5

Procaccini, G. (2020). Impacts of ocean warming on kelp forest ecosystems. *Aquaculture, 46.*

Quigley, C. T. C., Terry, C., and Quigley, C. (2018). Thermal and Microbial Effects On Brown Macroalgae: Heat Acclimation and the Biodiversity of the Microbiome. *Ph. D. Thesis. The University of Maine, Orono, ME* 10.1111/gcb.13414

Qi, Z., Coleman, M. A., Provost, E., Campbell, A. B., Kelaher, B. P., Dalton, S. J., et al. (2019). Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. *Proc. R. Soc. B Biol. Sci.* 286, 1–10. doi: 10.1098/rspb.2018.1887

Sharma, A. (2015). Transgenerational epigenetic inheritance requires a much deeper analysis. *Trends Mol. Med.* 21, 269–270. doi: 10.1016/j.molmed.2015.02.010

Short, F. T., and Neckles, H. A. (1999). The effects of global climate change on seagrasses. *Aquat. Bot.* 63, 169–196. doi: 10.1016/S0304-3770(98)00117-X

Sharma, A. (2015). Transgenerational epigenetic inheritance requires a much deeper analysis. *Trends Mol. Med.* 21, 269–270. doi: 10.1016/j.molmed.2015.02.010

Skjermo, J., Aasen, I. M., Arff, J., Broch, O. J., Carvajal, A., Forbord, S., et al. (2014). *Report a New Norwegian Bioeconomy Based on Cultivation and Processing of Seaweeds: Opportunities and R&D Needs.* Trondheim: SINTEF Fisheries and Aquaculture, 46.

Smale, D. A. (2020). Impacts of ocean warming on kelp forest ecosystems. *New Phytol.* 225, 1447–1454. doi: 10.1111/nph.16107

Smale, D. A., Pessarrondona, A., King, N., Burrows, M. T., Yunnie, A., Vance, T., et al. (2020). Environmental factors influencing primary productivity of the forest forming kelp *Laminaria hyperborea* in the northeast Atlantic. *Sci. Rep.* 10:12161. doi: 10.1038/s41598-020-69238-x
Stévant, P., Rebours, C., and Chapman, A. (2017). Seaweed aquaculture in Norway: recent industrial developments and future perspectives. Aquac. Int. 25, 1373–1390. doi: 10.1007/s10499-017-0120-7

Szysz, M. (2015). Nongenetic inheritance and transgenerational epigenetics. Trends Mol. Med. 21, 134–144. doi: 10.1016/j.molmed.2014.12.004

Tan, Y. M., Dalby, O., Kendrick, G. A., Statton, J., Sinclair, E. A., Fraser, M. W., et al. (2020). Seagrass restoration is possible: insights and lessons from Australia and New Zealand. Front. Mar. Sci. 7:617. doi: 10.3389/fmars.2020.00617

Teagle, H., Hawkins, S. J., Moore, P. J., and Smale, D. A. (2017). The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Bio. Ecol. 492, 81–98. doi: 10.1016/j.jembe.2017.01.017

Tirichine, L., and Bowler, C. (2011). Decoding algal genomes: tracing back the history of photosynthetic life on Earth. Plant J. 66, 45–57. doi: 10.1111/j.1365-313X.2011.04540.x

Valle, M., Chust, G., del Campo, A., Wiss, M. S., Olsen, S. M., Garmendia, J. M., et al. (2014). Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biol. Conserv. 170, 74–85. doi: 10.1016/j.biocon.2013.12.017

Veluchamy, A., Lin, X., Maumus, F., Rirvalora, M., Bhavsar, J., Creasy, T., et al. (2013). Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nat. Commun. 4:2091. doi: 10.1038/ncomms2091

Vergès, A., Campbell, A. H., Wood, G., Kajlich, L., Eger, A. M., Cruz, D., et al. (2020). Operation crayweed: ecological and sociocultural aspects of restoring Sydney’s underwater forests. Ecol. Manag. Restor. 21, 74–85. doi: 10.1111/emr.12413

Vergès, A., McCosker, E., Mayer-Pinto, M., Coleman, M. A., Wernberg, T., Ainsworth, T., et al. (2019). Tropicalisation of temperate reefs: implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013. doi: 10.1111/1365-2435.13310

Verhoeven, K. I. F., and Preite, V. (2014). Epigenetic variation in sexually reproducing organisms. Evolution 68, 644–655. doi: 10.1111/evol.12320

Verhoeven, K. J. F., and van Gurp, T. P. (2012). Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion. eLife 1:e38605. doi: 10.1371/journal.pone.0038605

Wang, D., and Bodovitz, S. (2010). Single cell analysis: the new frontier in “omics.” Trends Biotechnol. 28, 281–289. doi: 10.1016/j.tibtech.2010.03.002

Wang, S., Lin, L., Shi, Y., Qian, W., Li, N., Yan, X., et al. (2020). First draft genome assembly of the seaweed Sargassum fusiforme. Front. Genet. 11:590065. doi: 10.3389/fgene.2020.590065

Wang, X., Liu, F. I., and Jiang, D. (2017). Priming: a promising strategy for crop production in response to future climate. J. Integr. Agric. 16, 2709–2716. doi: 10.1016/s2095-3119(17)61786-6

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., et al. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. U. S. A. 106, 12377–12381. doi: 10.1073/pnas.0905620106

Wernberg, T., Krumhansl, K., Filibe-K Dexter, K., and Pedersen, M. F. (2019). Status and Trends for the World’s Kelp Forests. 78–79. Available online at: https://forskning.ru.c.dk/en/publications/status-and-trends-for-the-worlds-kelp-forests (accessed November 13, 2020).

Whittle, C. A., Otto, S. P., Johnston, M. O., and Krochko, J. E. (2009). Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliina

Copyright © 2021 Jueterbock, Minne, Cock, Coleman, Wernberg, Scheschkow, Rautenberger, Zhang and Hu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.