A cell–ECM mechanism for connecting the ipsilateral eye to the brain

Jianmin Su, Ubadah Sabbagh, Yanping Liang, Lucie Olejnikova, Karen G. Dixon, Ashley L. Russell, Jiang Chen, Yuchin Albert Pan, Jason W. Triplett, and Michael A. Fox

*Center for Neurobiological Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016; †Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061; ‡Department of Experimental Neurobiology, National Institute of Mental Health, Klecany 250 67, Czech Republic; §Center for Neuroscience Research, Children’s National Medical Center, Washington, DC 20010; ¶Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052; ††Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061; ‡‡Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016; ‡§School of Neuroscience, Virginia Tech, Blacksburg, VA 24061; ‡¶Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061; ‡‖Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA 2016

Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinoreceptive brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nepronectionin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell–extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.

Parallel pathways encode, relay, and process information about distinct stimulus properties in all sensory systems. In the visual system, information about color, contrast, object motion, and light intensity are transmitted from the retina to brain in such parallel channels by retinal ganglion cells (RGCs). Over 40 transcriptionally distinct subtypes of RGCs have been identified (1–5) and most project axons to different brain nuclei or even different regions within the same nuclei (5–10). In brain regions that process image-forming visual information, which in rodents includes the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN), projections from distinct subtypes of RGCs are segregated into discrete sublamina. Despite this segregation being an organizing principle of parallel visual pathways in mammals, we lack an understanding of the molecular mechanisms underlying lamina-specific axon targeting.

To identify mechanisms that drive the laminar targeting of RGC axons, we focus here on the SC, the largest retinoreceptive nucleus in rodents and a region responsible for driving goal-directed eye movements and a subset of innate visual behaviors (11, 12). In rodents, the majority of RGCs project axons to SC, where they arborize into the superficial-most domain in a subtype-specific fashion (5, 8). Transgenic tools labeling individual subtypes of RGCs have been instrumental in identifying lamina-specific projections from distinct RGC subtypes: for example, RGCs that convey information about object movement and direction selectivity project axons to the most superficial sublamina of SC, while α-RGCs project to deeper SC sublamina (9, 13–19). While the development of these transgenic tools has shed light on subtype-specific projection patterns, it has long been appreciated that axons from RGCs in the contralateral eye and ipsilateral eye (contraRGCs and ipsiRGCs, respectively) targeted distinct sublamina of SC (Fig. 1 A and B) (19, 20). This segregation of eye-specific inputs is important for coordinating coherent representations of the visual field from both eyes and is considered an essential building block of binocular vision (21).

While axons from some subtypes of RGCs initially overshoot their targets or transiently innervate inappropriate brain regions during development (22, 23), axons from ipsiRGCs initially target the appropriate sublamina of the SC (24). This suggests a selective developmental mechanism drives the laminar targeting of ipsiRGC axons and generates a segregated, eye-specific parallel pathway. Here, we identified a molecularly specified extracellular matrix (ECM) ligand/cell surface receptor mechanism that patterns ipsiRGC axon targeting to the SC. Spatially restricted expression of the ECM protein Nepronectionin (NPNT) is sufficient to promote the selective outgrowth of ipsiRGC axons in vitro and necessary for ipsiRGC axon targeting of SC in vivo. NPNT signals through RGD-dependent

Significance

Distinct features of the visual world are transmitted from the retina to the brain through anatomically segregated circuits. Despite this being an organizing principle of visual pathways in mammals, we lack an understanding of the signaling mechanisms guiding axons of different types of retinal neurons into segregated layers of brain regions. We explore this question by identifying how axons from the ipsilateral retina innervate a specific lamina of the superior colliculus. Our studies reveal a unique cell–extracellular matrix recognition mechanism that specifies precise targeting of these axons to the superior colliculus. Loss of this mechanism not only resulted in the absence of this eye-specific visual circuit, but it led to an impairment of innate predatory visual behavior as well.

Author contributions: J.S., U.S., Y.A.P., J.W.T., and M.A.F. designed research; J.S., U.S., Y.A.P., J.W.T., and M.A.F. performed research; and J.S., U.S., Y.A.P., J.W.T., and M.A.F. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

*U.S. and Y.L. contributed equally to this work.

2To whom correspondence may be addressed. Email: mafox1@vt.edu.

This article contains supporting information online at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2104343118/-/DCSupplemental.

Published October 15, 2021.
integrins and disrupting integrin signaling in ipsiRGCs (genetically or pharmacologically) impaired ipsiRGC axon growth on NPNT in vitro and impaired ipsiRGC innervation of SC in vivo. Taken together, these results shed light on a molecular matching mechanism that specifies laminar targeting of axons from the ipsilateral retina and establishes an eye-specific, parallel visual pathway.

Results

Ipsilateral-Projecting RGCs Innervate a Distinct Sublamina of Mouse SC. To label eye-specific RGC arbors in the developing SC, we delivered different fluorescently conjugated versions of cholera toxin subunit B (CTB) into each eye. Arbors of ipsiRGCs were confined to the anterior-most half of the SC and were in a deeper sublamina than arbors from contraRGCs (Fig. 1 B). Distinct projection patterns are not the only features that differentiate ipsiRGCs and contraRGCs; in fact, these subsets of RGCs are transcriptionally distinct (25) and can therefore be distinctly labeled transgenically. Here, we show that ipsiRGCs are labeled in the Et33-Cre::Rosa-Stop-tdT mice (26). Not only is tdt+ expression restricted to the ventrotemporal crescent of retina (Fig. 1C) (26–28) but genetically labeled cells coexpress RNA-binding protein with multiple splicing (RBPMS; a marker of RGCs) and lack Brn3a (a marker for contraRGCs) (Fig. 1 D and E) (25, 29, 30). Approximately 2,500 RGCs are labeled in Et33-Cre::Rosa-Stop-tdT mice (2,631.7 ± 319.2 [SD]), equalling roughly 5% of all RGCs (31, 32), although these tdt+ cells occupy space in ~30% of the retina (31% ± 3.3 [SD]; n = 3 retinas from 3 mice; Fig. 1C). tdt+ RGCs expressed molecular markers associated with both α-RGCs (59.3 ± 3.4% [n = 668 RGCs from 3 mice] and 51.8 ± 6.1% [n = 317 RGCs from 3 mice]) of tdt+ RGCs express SMi32 or Spp1, respectively) and intrinsically photosensitive RGCs (ipRGCs; 61.8 ± 3.8% [n = 237 RGCs from 4 mice]) of tdt+ RGCs express Opn4) (Fig. 1 F–H). As expected, central projections of Et33-Cre::Rosa-Stop-tdT–labeled cells targeted brain regions known to be innervated by ipRGCs (as well as α-RGCs and ipRGCs), including the suprachiasmatic nucleus (SCN), ventral LGN, intergeniculate leaflet, dLGN, and SC (Fig. 1I and SI Appendix, Fig. S1). Anterograde labeling of ipRGC projections with CTB in Et33-Cre::Rosa-Stop-tdT mice revealed that all tdt+ RGC projections are confined to the deepest sublamina of retinorecipient SC, the region innervated by ipRGCs. This analysis also revealed a unique distinction in the patterns of retinorecipient innervation by ipRGCs. In the perinatal dLGN, ipRGC axons arborized broadly throughout the dLGN and were later refined to eye-specific domains by eye opening (SI Appendix, Fig. S1) (33). In contrast, ipRGC projections initially target the appropriate SC sublamina, rather than arborizing throughout the entire SC and then being refined into this sublamina (24) (see also Fig. 4E).

Identification of a Spatially Restricted ECM Molecule in Retinorecipient SC. Laminar targeting of axons could result from a specified molecular matching mechanism or from an activity-dependent
NPNT Selectively Promotes the Growth of ipsiRGC Axons. Despite having important roles in kidney development, whether or how NPNT influences neuronal and axonal development remains unexplored. Structurally related extracellular glycoproteins have well-established roles in directing axonal guidance and targeting by their ability to bind and signal through receptors on the cell surface of the axonal growth cone. To test whether NPNT was similarly able to promote the growth of RGC axons, we turned to in vitro assays (Fig. 3 and SI Appendix, Fig. S3). We hypothesized that NPNT may selectively promote the outgrowth of ipsiRGC axons. Therefore, we immunopanned RGCs from neonatal Et33-Cre::Rosa-Stop-tdT mice. This allowed us to generate cultures containing all subtypes of RGCs with ipsiRGCs genetically labeled with tdT (SI Appendix, Fig. S3).

In order to test whether NPNT impacts the outgrowth of RGC axons, immunopanned RGCs were cultured on substratum containing recombinant NPNT (rNPNT) or control protein (bovine serum albumin; BSA). After 5 d, cultures were fixed and immunostained with antibodies against neurofilament (NF) to label the neurites of all RGCs. The length of NF neurites was similar between RGCs grown on rNPNT and control substratum, suggesting NPNT had little impact on most RGC
Et33-Cre
6
data points represent a single
Et33-Cre to the number of NF
and F
or rNPNT. (Fig. 3).

NPNT Is Necessary for ipsiRGC Axon Targeting of SC. To test whether NPNT is required for retinocollicular circuit formation in vivo, we used a conditional allele to delete Npnt (Npnt^{fl/fl}) from select neuronal populations [to avoid its necessity in kidney development (40)]. Based on the expression of Npnt by excitatory neurons in SC, we used two driver lines to delete Npnt expression from SC: Nes-Cre and Vglut2-Cre (SI Appendix, Fig. S4). The resulting mutants were viable and fertile, and the loss of NPNT from Nes⁺ and Vglut2⁺ cells had little impact on gross brain morphology or the cytoarchitecture of the retina or the organization of RGC axons in the optic tract (SI Appendix, Fig. S5).

Fig. 3. NPNT promotes ipsiRGC axon outgrowth. (A) Schematic representation of immunopanning RGCs from neonatal Et33-Cre::Rosa-Stop-tdT mice. (B and C) RGCs from Et33-Cre::Rosa-Stop-tdT mice were cultured for 5 d on recombinant NPNT (rNPNT) or control substrates (BSA). All RGCs were labeled by IHC for NF. ipsiRGCs were identified by tdT expression (Et33-Cre⁺). (D and E) High magnification of single Et33-Cre⁺ RGCs on BSA or rNPNT. (F and G) Neurite outgrowth of all subtypes of RGCs (NF⁺) or ipsiRGCs (Et33-Cre⁺) was quantified measuring the total length of NF⁺ or tdT⁺ neurites per field of view (shown in D and E). Data were normalized to the number of NF⁺ or tdT⁺ RGCs per field of view. Bars represent mean ± SD. Data points represent a single field of view from a total of three experiments. In F, no significant differences were detected between groups by Student’s t test. In G, * indicates P < 0.001 by Student’s t test; n = 30 fields of view in BSA group and 30 fields of view in rNPNT group. (Scale bar, 75 μm for B and C and 50 μm for D and E.)

In contrast, when the length of tdT⁺ ipsiRGC neurites was measured, there was a significant increase in neurite length compared with control conditions (Fig. 3 C, E, and G). This suggests that NPNT specifically promotes ipsiRGC axonal growth.

Integrin Signaling Is Required for ipsiRGC Targeting of SC. What might be the cell surface receptor on ipsiRGC axons that recognizes SC-derived NPNT and regulates the laminar targeting of these axons? Since NPNT was initially identified in a screen for...
NPNT is required for ipsiRGC axon innervation of SC. (A) CTB-labeled contra- and ipsiRGCs projections to SC in P14 control, Npntfl/fl::Nes-Cre (Nes cKO), Npntfl/fl::Vglut2-Cre (Vglut2 cKO), and Npntfl/fl::Gad2-Cre (Gad2 cKO) mice. Images depict sagittal sections of SC. Arrows highlight sublamina of SC targeted by ipsiRGC axons in control and Gad2 cKO mice, which are largely absent from Nes cKO and Vglut2 cKO. Arrowheads highlight ipsiRGC axon targeting of pretectal nuclei. Boxes depict regions of ipsiRGC projections shown in high magnification panels. (B and C) Quantification of the area of SC occupied by contra- (B) and ipsiRGC (C) projections in A compared to three separate age-matched littermate controls for each genotype (represented by the dashed line). Bars represent means ± SD. ** indicates \(P < 0.005 \) and *** indicates \(P < 0.0005 \) when compared to control by Student’s t test (n = 3 mice). (D) Quantification of the area of pretectum occupied by ipsiRGC projections in A compared to separate age-matched littermate controls (represented by the dashed line). Bars represent means ± SD. No significant difference detected between groups by Student’s t test (n = 3 mice per group). (E) CTB-labeled ipsiRGC projections to SC in P3 control and Npntfl/fl::Vglut2-Cre (Vglut2 cKO) mice. Images depict sagittal sections of SC. Boxes depict regions of ipsiRGC projections shown in high magnification panels. (F) Schematic of line scan analysis of spatial distribution of ipsiRGC axons in SC. (G) Line scan analysis of spatial distribution of CTB-labeled ipsiRGC projections to SC in P3 control (black) and Vglut2 cKO mice (red). Solid line represents mean, and shaded area represents SD (n = 3 animals). (H) CTB-labeled contra- and ipsiRGCs projections to visual thalamus (LGN) with CTB in P14 control and Npntfl/fl::Vglut2-Cre (Vglut2 cKO) mice. Dashed lines encircle dLGN and ventral LGN. (I and J) Quantification of the area of LGN occupied by contra- (I) and ipsiRGC (J) projections in E compared to age-matched controls (represented by the dashed line). Bars represent means ± SD. No significant difference detected between groups by Student’s t test (n = 5 mice in control group and 3 mice in Vglut2 cKO group).
ligands of the RGD-binding αdβ1 integrin in the embryonic kidney (35, 42), a selective NPNT-integrin signaling mechanism may underlie axonal outgrowth and targeting of ipsiRGCs. To test this, we took a pharmacological approach to block integrin signaling, and we reassessed the ability of rNPNT to promote ipsiRGC axon outgrowth in vitro. Integrin signaling was blocked by treating immunopanned RGCs with integrin-blocking RGD peptides. Blocking RGD-dependent integrins in these assays reduced the ability of NPNT to induce ipsiRGC axon outgrowth in vitro (Fig. 5 A and B).

Based on the necessity of RGD-dependent integrins for NPNT to promote ipsiRGC axon outgrowth (Fig. 3), we tested whether integrins were required for ipsiRGC innervation of SC in vivo. Function blocking RGD peptides (or control peptides) were injected into the neonatal SC as ipsiRGC axons were invading SC (Fig. 5C). Subsequently, RGC projections from both eyes were labeled with CTB. Neonatal intracollicular delivery of RGD peptides had little to no impact on contralRGC projections (Fig. 5 D and E). In contrast, delivery of RGD peptides led to ipsiRGC axon targeting deficits similar to those observed in Npntfl/fl::Nes-Cre and Npntfl/fl::Vglut2-Cre mutants (Fig. 5 D and F).

These in vitro and in vivo data implicate RGD-dependent integrins in ipsiRGC axon targeting to SC, but which RGC-derived integrins serve as the receptors for NPNT remained unclear. Several transcriptional profiling studies identified distinct integrin subunits expressed in ipsiRGCs (compared to contralRGCs) (2, 25). Thus, we explored whether developing ipsiRGCs generates the β1 integrin subunit—an integrin subunit present in the most well-studied NPNT binding integrin [αdβ1 integrin (35, 42)] and previously shown to play an essential role in retinotectal targeting in Xenopus (43). ISH revealed a regionally restricted expression of Itgb1 (the gene encoding the β1 integrin subunit) in the ganglion cell layer of the developing mouse retina (Fig. 6 A and B). Itgb1 expression colocalized with retrogradely labeled ipsiRGCs in the ventromedial crescent of retina (SI Appendix, Fig. S6). To test whether ipsiRGCs generate Itgb1, we performed ISH in retinas from E13.33-Cre mice. In the ventromedial retina, we observed that 41.7 ± 5.5% of Itgb1+ RGCs were tdT+ ipsiRGCs (n = 84 RGCs from 3 mice; Fig. 6C). Likewise, 82.1 ± 5.0% of RGCs that express Itgb1+ were tdT+ ipsiRGCs (n = 72 RGCs from 3 mice; Fig. 6D). Thus, developing ipsiRGCs generates the NPNT receptor. In contrast, we observed little expression of these integrin subunits in contralaterally projecting oodsRGCs labeled in Thrb-GFP mice (SI Appendix, Fig. S6).

Finally, to test whether RGC-derived β1 integrin is necessary for ipsiRGC axon targeting of SC, we crossed mice with a conditional allele of Itgb1 (Itgb1+/L; to Calb2-Cre mice. Anterogradelabeling with CTB was used to assess ipsiRGC and contralRGC projections to SC. While contraRGC projections in Itgb1+/L;Calb2-Cre resembled those in littermate controls, a dramatic loss of ipsiRGC projections was observed in mutants (Fig. 6 E–G). As described above, conditional deletion of NPNT from this same population of Cre-expressing RGCs in Calb2-Cre mice did not lead to altered ipsiRGC targeting of SC (Fig. 6 E, H, and I). Therefore, taken together, the expression of αdβ1 integrin by ipsiRGCs and the impairment of ipsiRGC axon targeting by pharmacologically and genetically blocking integrin signaling suggest that RGC-derived integrins are the receptors that recognize spatially restricted SC-derived NPNT and regulate the assembly of eye-specific, segregated visual pathways.

Loss of ipsiRGC Input to SC Disrupts Binocular Function and Impairs In innate Visual Behaviors. Although it has long been appreciated that ipsiRGCs and contralRGCs innervate adjacent, nonoverlapping sublaminae of SC, how ipsiRGCs contribute to visual function and behavior is unclear. We sought to answer this question by performing multichannel extracellular recording from neurons in the anterior SC, which receives direct retinal input from both eyes (Fig. 1A). Briefly, anesthetized mice (Npntfl/fl::Vglut2-Cre or controls) were exposed to drifting grating visual stimuli in three ocular conditions: to both eyes simultaneously or with either the ipsilateral or contralateral eye covered (Fig. 7A). In controls, as we recently reported (44), approximately one-third of SC neurons were driven monocularly (with ~64% of these being driven by the contralateral eye). The remaining SC neurons were binocularly modulated...
and could be divided into four distinct response types: those neurons that respond to stimuli present to either eye or both
eyes together (termed simple binocular units [BN-S]), those
that respond only when stimuli were presented simultaneously
to both eyes (termed emergent binocular units [BN-E]), and
those that respond only when stimuli were presented to a single
eye while the other eye is covered (termed simple binocular units
[BN-S]). First, we failed to detect neurons that were monocularly driven by the ipsilateral eye (Fig. 7C). Second, we observed an increase in the proportion of neurons driven binocularly by the contralateral eye compared to the ipsilateral eye; this increase was significant in Npntfl/fl::Vglut2-Cre mutants (and littermate controls) in two well-established visually
guided behavioral tasks: response to a looming spot (45, 46) and
the prey-capture task (47, 48) (Fig. 7 D–E). Mutants lacking
NPNT (and therefore ipsiRGC projections to SC) performed similar
to controls in terms of freezing time, running time, hiding
time, or ambulation time when presented with a dark looming
stimulus (Fig. 7 E–H). In contrast, the ability of these mutants to
capture prey was significantly impaired (Fig. 7 J–M). Compared
to the performance of littermate controls, Npntfl/fl::Vglut2-Cre mutants took longer to
capture prey, traveled farther during prey pursuit, and moved
slower during prey pursuit (Fig. 7 J–M). These data suggest that
direct inputs from the ipsilateral retina are critical for some, but
not all, SC-mediated visual behaviors.

Discussion

Establishing precise and stereotyped cell type–specific circuits is
a major challenge during brain development. Due to its
accessibility, the subcortical visual system has served as a model
for understanding mechanisms that underlie fundamental
 aspects of circuit formation: axon outgrowth and guidance,
target selection, synaptogenesis, and activity-dependent
behaviors? Our anatomical and function studies in Npntfl/fl::Vglut2-Cre mutants led us to ask what role direct ipsiRGC
inervation may have on SC-related innate visual behaviors. To
test this, we assessed the performance of Npntfl/fl::Vglut2-Cre mutants (and littermate controls) in two well-established visually
guided behavioral tasks: response to a looming spot (45, 46) and
the prey-capture task (47, 48). These data suggest that
direct inputs from the ipsilateral retina are critical for some, but
not all, SC-mediated visual behaviors.
refinement. Despite considerable advances in our understanding of many of these processes, what has been lacking is a mechanism that drives individual subtypes of RGCs to project axons to regionally restricted domains of retinorecipient nuclei, which serves to parse different types of visual information into anatomically distinct parallel channels. Here, we identify a specific molecular matching mechanism that drives laminar targeting of ipsiRGC axons and establishes an eye-specific, segregated parallel visual pathway.

Cell–ECM Molecular Matching Mechanisms Underlie Laminar Targeting of RGC Axons. The assembly of cell type–specific circuits between the retina and brain relies on a combination of intrinsic transcriptional codes, cell–cell/cell–ECM interactions, and activity-dependent mechanisms (9, 10, 49–52). Focusing on ipsiRGCs, these steps include the guidance of axons from the ventrotemporal crescent of retina to the optic disk, the divergence of these axons from contraRGC at the optic chiasm and their homophilic fasciculation in the optic tract (27, 31, 54, 56).

Here, we add to this rich literature by revealing that a cell–ECM mechanism drives laminar targeting of ipsiRGC axons in SC. NPNT, a regionally restricted ECM glycoprotein containing epidermal growth factor–like repeats, integrin-binding motifs, and a MAM (meprin-A5 protein-receptor protein phosphatase) domain (35, 36, 42) is generated in the SC...
sublamina innervated by ipsiRGCs. The protein domains of NPNT classify it as a member of an EGF-like family of adhesive glycoproteins (including laminins, thrombospondins, and tenascins). Members of this family of glycoproteins have well-documented roles in tissue development and morphogenesis, including in promoting axonal outgrowth (57, 58). Outside of the brain, NPNT plays critical roles in renal development (55, 40). Studies here now demonstrate roles for this adhesive glycoprotein in the brain, in that NPNT is sufficient to promote ipsiRGC neurite growth in vitro and is necessary for ipsiRGC innervation of SC in vivo. Thus, like has been shown for other vertebrate visual systems (59–61), an ECM glyco-code specifies precise subtype-specific laminar targeting in the mammalian retinocircuicular circuit. Moreover, these results redefine the biological role of NPNT as a brain-derived laminar targeting cue.

Intrinsic differences in ipsiRGCs allow them to uniquely respond to SC-derived NPNT. A number of cell surface receptors, including integrins, are enriched in ipsiRGCs compared to other subtypes of RGCs (2, 25, 26). We now show that developing ipsiRGCs express αβ1 integrin. This integrin heterodimer was initially identified as the NPNT receptor (35) and was shown to promote axon outgrowth in vitro (62). In support of a role for this receptor in retinocircuicular targeting in mice, previous studies showed that blocking β1 containing integrins disrupts retinotectal circuit formation in Xenopus (43). Here, we show that disrupting integrin RG binding with function blocking peptides impairs ipsiRGC axon growth on rNPNT in vitro and disrupts ipsiRGC innervation of SC in vivo. Genetic loss of β1 integrins from RGCs likewise results in a loss of ipsiRGC innervation of rodent SC. Thus, integrins are necessary receptors for the laminar targeting of ipsiRGC axons in mice. This is an important difference from studies in zebrafish, which identified roles for two integrin-binding ECM molecules—CollagenIVα5 and Reelin—in retinotectal targeting (59, 61). Although both CollagenIVα5 and Reelin are capable of signaling through β1 integrins [although not the αβ1 integrin (63, 64)], β1 integrins are not required for the laminar targeting of RGCs in fish (59). While these differences could reflect differences in eye-specific projection patterns in these species, they may simply demonstrate the cellular matching mechanisms necessary to pair axons from the single RGC subtypes to the correct target lamina or cells in the brain.

This raises the question of whether a unique receptor-ligand recognition mechanism is required for the laminar targeting of each RGC subtype. It is certainly possible. Loss of SC-derived NPNT impairs ipsiRGC projections to SC but not those of the oodsRGCs labeled in Thrh-GFP mice [Fig. 4 (15)]. It is also possible that a gradient of ECM molecules (such as NPNT) could be used to pattern the targeting of axons from multiple subtypes of RGCs in the mammalian SC. This is the case in zebrafish tectum where opposing gradients of attractive reelin and repellent Slit2 are thought to convey positional information for invading RGC axons (60, 61). Such a mechanism would greatly reduce the number of receptor-ligand recognition mechanisms to pattern laminar targeting (and similar overlapping gradients drive topographic map formation in mammalian retinotectal sublamina (16, 50). Here, we show that a large subset of ipsiRGCs are α-RGCs based on the expression of Spy1 mRNA or based on their immunoreactivity for Smi-32 (Fig. 1E and F) (2, 65, 66). Contraocular projecting α-RGCs target SC sublamina that are just dorsal to the strata innervated by ipsiRGCs (19), so it is possible that they share some of the machinery to respond to NPNT. While a shared mechanism may drive α-RGC lamina targeting in SC, the same mechanism may not be responsible for cell type–specific circuits in other retinorecipient zones. As an example, NPNT is necessary for ipsiRGC innervation of SC but not in visual thalamus, suggesting unique cell–ECM recognition mechanisms are required in each central target. Similar nuclei-specific difference in targeting mechanisms have been demonstrated for intrinsically photosensitive RGCs (ipRGCs), which require the ECM molecule Reelin to innervate thalamic nuclei but not the SCN (67, 68). For ipsiRGC axons, nuclei-specific roles for the teneurin family of transmembrane glycoproteins have been identified in the targeting of eye-specific domains in dLGN but not SC (69, 70). Of importance to the studies here, loss of teneurin M2 (ten_m2) does result in a reduction of the area of SC innervated by ipsiRGCs (28). Regardless of whether each synaptic lamina in SC contains unique recognition molecules or whether gradients of cues diffuse across mouse SC, it is clear that additional cell–ECM and cell–cell recognition mechanisms remain to be elucidated for a complete understanding of how cell type–specific visual circuits form in the developing mouse brain.

Multiple Pathways Convey Information from the Ipsilateral Eye to the SC. The SC is responsible for driving goal-directed eye movements and an emerging number of innate visual behaviors (45–48, 71, 72). Here, we asked whether direct input from the ipsilateral eye was necessary for these innate behaviors. Information from the ipsilateral eye would likely generate binocular responses in SC and could contribute to depth perception or to saccade-like eye movements to place objects of interest into central areas of the visual field for enhanced feature detection (12, 73), but see ref. 74. Perhaps it is not surprising then that Npnt-deficient mutants exhibit defects in prey capture, an ethologically relevant behavior that requires shifts in gaze to stabilize the visual scene as objects are tracked (75). This is evidence for a behavioral role of direct connections between the SC and ipsilateral eye, although another group recently reported a role for ipsiRGCs more generally in prey-capture behaviors (28). In contrast, behaviors that do not require the same precise orientations of the visual field (such as responses to looming stimulus) do not appear to require ipsiRGC innervation of SC.

While these analyses identified key roles for ipsiRGC innervation of SC in an innate behavior, functional analysis of cells in the SC of Npnt-deficient mice unexpectedly informed us about the circuits underlying binocularly responsive neurons. While such neurons have not been well studied in mammals with laterally oriented eyes (such as rodents), they have been in higher mammals with forward facing eyes, given the role of the SC in orienting head and eye movement in these species (76–78). It was for this reason we were surprised when we discovered that a substantial proportion of cells in the anterior mouse SC were binocularly responsive (44). Four distinct subtypes of binocularly responsive cells were identified (44). Here, we sought to explore how the responses of these cells might change in the Npnt-deficient mice, which lack direct innervation by ipsiRGCs. Not surprisingly, we found no cells in Npntfl/fl::Vglut2 mutants whose responses were driven only by the ipsilateral eye (Fig. 7). We also found a significant decrease in the proportion of binocularly responsive neurons in these mutants. However, a large number of binocularly responsive neurons remained in these mutants despite the apparent lack of ipsiRGC axons. Of course, it is possible that these responses are driven by the few ipsiRGC fibers that do remain in the SC of these mutants. However, in our opinion, the paucity of these fibers makes this seem unlikely. Instead, we interpret these results to suggest that indirect pathways may exist that transmit information from the ipsilateral eye to the SC. Such indirect pathways have been identified in postmetamorphic frogs and zebrafish, both of which lack direct ipRGC-SC circuits (79, 80). Thus, taken together, evidence from our anatomical, functional, and behavior studies in Npnt-deficient mice highlight the necessity of parsing visual information into parallel visual streams for some
behaviors but also highlight that sensory systems are more complex than simple parallel pathways.

Materials and Methods

A complete description of materials and methods is available in SI Appendix.

Mouse Lines and Husbandry. C57BL/6 mice were obtained from Charles River Laboratories. Pvlalb-Cre, Nes-Cre, Gad2-Cre, Calb2-Cre, Vglut2-Cre, Sst-Cre, Rosa-Stop-tdT, and Thy1-stop-YFP mice were obtained from Jackson Labs (stock nos. 008069, 003771, 010802, 010774, 016963, 013044, 007909). Trhr-EGFP mice (stock no. 030036-UCD) were obtained from Mutant Mouse Resource and Research Center (MMRRC). Conditional allele of Npnt (Npntfl/fl) mice were kindly from Dr. Denise K. Mariano (University of Texas Southwestern) (86). A full-length allele of Itgb1 (Itgb1FL)- and Aldh1l1-EGFP mice were provided by Dr. Stefanie Robel (Virginia Tech) (82, 83). Mice were housed in a 12-h dark-light cycle and had ad libitum access to food and water. All experiments were performed in compliance with NIH guidelines and protocols and were approved by the Virginia Polytechnic Institute and State University Institutional Animal Care and Use Committee. Please reference SI Appendix for more details.

Tissue Preparation and Immunohistochemistry. Fluorescent immunohistochemistry (IFC) was performed on 20-μm cryosectioned PFA-fixed brain tissue as described in refs. 67 and 84-87. Primary antibodies were diluted in blocking buffer and incubated on tissue sections overnight at 4 °C. The following antibodies and dilutions were used: mouse anti-Brn3a (diluted 1:1250, Millipore), rabbit anti-RFP (diluted 1:500, Rockland), rabbit anti-anti-RFP (diluted 1:1250, D. C. K. Chen laboratory). Mouse anti-SMI32 (diluted 1:1000, Covance), rabbit anti-RBPM5s (diluted 1:500, PhosphoSolutions), rabbit anti-RFP (diluted 1:250, Invitrogen), mouse anti-NeuN (diluted 1:200, Millipore), rabbit anti-GFAP (1:1000, KGAcytometry), rabbit anti-Iba-1 (1:500, Wako), mouse anti-GAD67 (diluted 1:500, Millipore), rabbit anti-calbindin (diluted 1:2500, Swant), rabbit anti-calretinin (diluted 1:2000, Swant), mouse anti-synaptophysin (diluted 1:500, 595y), and goat anti-NPNT (diluted 1:40, R&D systems). A minimum of three animals (per genotype and age) were compared in all IHC experiments. Please reference SI Appendix for more details.

Riboprobe Making and ISH.ISH was performed on 20-μm sagittal or coronal cryosectioned tissues (67, 85, 86). Antisense riboprobes were generated from full-length Npnt (NM1013-20788550), Syt1 (NM1013-9199901), Itgb1 (NM1013-202859073), and Itg8 (NM1013-20705925) Image Clones (Dharmacon) as described previously (86-88). Antisense riboprobes were generated against a 599-base pair (bp) fragment of Sst (corresponding to nucleotides (nt) 1 to 599 of NM_009215.1), a 625-bp fragment of Vglut2 (corresponding to nt 1 to 599 of NM_009215.1), a 973-bp fragment of Gad2 (corresponding to nt 1 to 973 of NM_009215.1), a 982-bp fragment of Vglut2 (corresponding to nt 1 to 982 of NM_009215.1), and a 982-bp fragment of Gad2 (corresponding to nt 1015 to 1996 of NM_009215.1), which was PCR-cloned into pGEM Easy T vector (Promega). Please reference SI Appendix for more details.

Delivery of Peptides into SC. RGD or RAD peptide injection was performed as follows. P0 mice were anesthetized with isoflurane, and the skin overlying the SC was opened and reflected. A sharp-tipped glass pipette filled with 1 μL of 100 μM RGD or RAD solution was then inserted through the thin skin and into the anterior neonatal SC. Solution within the pipette (i.e., RGD or RAD) was slowly depressed into the SC pneumatically, via a pipospritzer. After 5 d (P5), mice were anesthetized a second time and were injected with the same volume, solution, and SC location. After another 7 d (P12), mice received monocular injection of Alexa Fluor 55 conjugated CTB as described previously. After 2 d, mice were euthanized, and brains were fixed in 4% paraformaldehyde. HCYG projections were analyzed in 100-μm sagittal sections that were cut on a vibratome and mounted as described above.

AAV Injection. Viral tracing was done as described in ref. 38. Briefly, AAV2/1-Hyn-Cre-WPRE-IGH (2.5 × 10^13 GC/mL) here referred to as AAV1-Cre) was used to monosynaptically label retinorecipient neurons in the SC. Briefly, mice were anesthetized with isoflurane, and 1.2 μL AAV-Cre virus was monocularly injected at an approximate 45° angle relative to the optic axis. AAV1-Cre was a gift from James M. Wilson, University of Pennsylvania (Addgene viral prep no. 105553-AAV1; RRID: Addgene_105553). Animals were euthanized and perfused with PFA as described above, 6 to 10 wk after injection.

RGC Immunopanning. We referenced the protocol outlined in ref. 89 in developing our approach to purifying and culturing RGCs. Retinas of Et33-Cre:tdT (P5) were dissected using a dissection microscope and dissociated using papain. We immunopanned RGCs from retinal suspension using Thy1.2 antibody (CD90, 1:800, Bio-RAD) and 0.02% BSA (Sigma-Aldrich) for at least 2 h at room temperature (positive panning dish). Two 15-cm Petri dishes were incubated with BSA-1 (5 μg/mL, Vector Labs) in Dulbecco’s phosphate-buffered saline (DPBS) for at least 2 h at room temperature (negative panning dishes). RGCs were detached from the dish by pipetting prewarmed RGC growth medium directly to the dish. Cells were collected by centrifuging the tube at 200 × g for 12 min at 25 °C. In total, ~70,000 cells/well were seeded in an 8-chamber slide coated with either 10 μg/mL NPNT (R&D systems), 2 μg/mL BSA, or 1X Poly-D-Lysine (Sigma-Aldrich). Chamber-slide wells were coated with NPNT or BSA for 2 h at 37 °C before seeding cells. Medium was changed every other day. For peptide treatment, medium was changed on the second day with RGC growth medium containing either 10 μg/mL GRGDSP or 10 μM GRADSP. After 5 d, cells were fixed for immunocytochemistry. Please reference SI Appendix for more details.

Electrophysiology. Visual response properties were determined as previously described (90), with minor modifications. Briefly, isoflurane-anesthetized adult mice were head fixed, and a 16-channel silicon multielectrode (Neuro-nexus Technologies) was inserted into an angle of 45° to the midline and 45° to the horizontal plane through a craniotomy located −1.5 mm lateral to the lambda. Electrosurgical exposure to laser-like energy (90). Isoflurane was anesthetized. A sharp-tipped glass pipette was inserted at an angle of 45° to the midline and 90° to the horizontal plane through a craniotomy located −1.5 mm lateral to the lambda. Electrosurgical exposure to laser-like energy (90). Isoflurane was anesthetized.

Visual response properties were determined as previously described (90), with minor modifications. Briefly, isoflurane-anesthetized adult mice were head fixed, and a 16-channel silicon multielectrode (Neuro-nexus Technologies) was inserted into an angle of 45° to the midline and 45° to the horizontal plane through a craniotomy located −1.5 mm lateral to the lambda. Electrosurgical exposure to laser-like energy (90). Isoflurane was anesthetized. A sharp-tipped glass pipette was inserted at an angle of 45° to the midline and 90° to the horizontal plane through a craniotomy located −1.5 mm lateral to the lambda. Electrosurgical exposure to laser-like energy (90). Isoflurane was anesthetized. A sharp-tipped glass pipette was inserted at an angle of 45° to the midline and 90° to the horizontal plane through a craniotomy located −1.5 mm lateral to the lambda. Electrosurgical exposure to laser-like energy (90). Isoflurane was anesthetized.

Visual response properties were determined as previously described (90), with minor modifications. Briefly, isoflurane-anesthetized adult mice were head fixed, and a 16-channel silicon multielectrode (Neuro-nexus Technologies) was inserted into an angle of 45° to the midline and 45° to the horizontal plane through a craniotomy located −1.5 mm lateral to the lambda. Electrosurgical exposure to laser-like energy (90). Isoflurane was anesthetized. A sharp-tipped glass pipette was inserted at an angle of 45° to the midline and 90° to the horizontal plane through a craniotomy located −1.5 mm lateral to the lambda. Electrosurgical exposure to laser-like energy (90). Isoflurane was anesthetized. A sharp-tipped glass pipette was inserted at an angle of 45° to the midline and 90° to the horizontal plane through a craniotomy located −1.5 mm lateral to the lambda. Electrosurgical exposure to laser-like energy (90). Isoflurane was anesthetized. A sharp-tipped glass pipette was inserted at an angle of 45° to the midline and 90° to the horizontal plane through a craniotomy located −1.5 mm lateral to the lambda. Electrosurgical exposure to laser-like energy (90). Isoflurane was anesthetized. A sharp-tipped glass pipette was inserted at an angle of 45° to the midline and 90° to the horizontal plane through a craniotomy located −1.5 mm lateral to the lambda. Electrosurgical exposure to laser-like energy (90). Isoflurane was anesthetized.
the arena. If the mouse caught the cricket within these 10 min, the trial was scored as a capture success, and the capture time for that trial was recorded. If a cricket was not captured within 10 min, the mouse was removed from the arena for 1 min and returned into the arena with a new cricket to start the next trial. Mean capture time and average speed during the hunt for each mouse on each day was calculated. All tested animals achieved 100% capture success on testing day. Please reference SI Appendix for more details.

Quantification and Statistical Analysis. To quantify retinal axons in SC, pretectum, and LGN, fluorescent signals in confocal micrographs were binarized using ImageJ, and the brain region was encircled to measure area and quantify the fraction of that area that is occupied by binarized signals. For RGC immunopanning, fluorescent signals (of either Etz2+ or Nf2+ RGC neurites) were binarized in ImageJ, and the fraction of the total area of the field of view that was occupied was quantified. To measure neurite length in RGC immunopanning, we measured the total length of Etz2+ or Nf2+ neurites per field of view in ImageJ before normalizing to number of labeled RGCs in that field of view. When comparing measurements between mutants and controls, we determined statistical significance either by Student’s t test (when comparing means between two groups) or by ANOVA or Mann–Whitney U test (when comparing means between three or more groups) using GraphPad Prism (version 8.0, RBD: SCR 00027850), and we indicate which test was used in the figure legends. Differences were considered significant when P < 0.05, and P values are indicated in the figure legends. No data or animals were excluded from any of the analyses.

To quantify the spatial distribution of ispisRGC axons in the SC, we used a line scan script (khatScan) in ImageJ (34), which overlays the SC with equally spaced lines along the dorsoventral axis. Binarized signals at each corresponding x coordinate of each line were averaged and plotted to show the regional distribution of ispisRGC axons through the depth of the SC. All imaging for quantification was performed on a confocal Zeiss LSM 700 microscope at 20× magnification and 0.5× digital zoom. No data or animals were excluded from any of the analyses.

Data Availability. All study data are included in the article and/or SI Appendix.

ACKNOWLEDGMENTS. We thank Dr. Anthony LaMantia and colleagues at Virginia Tech for valuable comments on this manuscript. This work was supported in part by the following grants from the NIH: EY021222 (M.A.F.), EY030568 (M.A.F.), N510514 (M.A.F.), P5113459 (U.S.), EY025627 (J.W.T.), and EY029874 (J.W.T.). We are grateful to Dr. Denise Marcianò (University of Texas Southwestern) for providing NprnCre mice, Dr. Stefanie Robel (Virginia Tech) for providing Itgb1Cre mice, to Dr. J.M. Wilson for providing AAV1-Cre virus, to Dr. Colenso Speer (University of Maryland) for providing E133-Cre mice, and to Dr. C.K. Chen (Baylor College of Medicine) for providing anti-Opn4 antibodies.

1. N. M. Tran et al., Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Nature 104, 1039–1055.e12 (2019).
2. B. A. Rheaume et al., Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat. Commun. 9, 2759 (2018).
3. T. Baden et al., The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350 (2016).
4. J. R. Sanes, The types of retinal ganglion cells: Current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015).
5. E. M. Marente et al., Diverse central projection patterns of retinal ganglion cells. Cell Rep. 18, 2058–2072 (2017).
6. L. P. Morin, K. M. Studholme, Retinofugal projections in the mouse. J. Comp. Neurol. 522, 3733–3753 (2014).
7. A. Monavarfeshani, U. Sabbagh, M. A. Fox, Not a one-trick pony: Diverse connectivity functions and roles of the lateral geniculate complex. Vis. Neurosci. 34, E012 (2017).
8. Y. K. Hong, C. Chen, Wiring and rewiring of the retinogeniculate synapse. Curr. Opin. Neurobiol. 21, 228–237 (2011).
9. A. D. Huberman, B. M. Fuller, B. Chapman, Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008).
10. C. Zhang, A. L. Koldnik, R. O. Wong, R. E. James, Establishing wiring specificity in visual system circuits: From the retina to the brain. Annu. Rev. Neurosci. 40, 395–424 (2017).
11. M. A. Basso, P. J. May, Circuits for action and cognition: A view from the superior colliculus. Annu. Rev. Vis. Sci. 3, 197–226 (2017).
12. S. Ito, D. A. Feldheim, The mouse superior colliculus: An emerging model for studying circuit formation and function. Front. Neural Circuits 12, 10 (2018).
13. O. S. Dhande, B. K. Stafford, J. A. Lim, A. D. Huberman, Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu. Rev. Vis. Sci. 1, 291–328 (2015).
14. A. D. Huberman et al., Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62, 327–334 (2009).
15. M. Rivlin-Eisen et al., Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J. Neurosci. 31, 8760–8769 (2011).
16. J. W. Tripplett et al., Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits. Neural Dev. 9, 2 (2014).
17. J. N. Kay et al., Retinal ganglion cells with distinct directional preferences differ in resilience to extinction training. J. Neurosci. 38, 661–676 (2008).
18. J. R. Sanes, R. H. Masland, The types of retinal ganglion cells: Current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015).
19. L. A. Quina et al., Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. J. Neurosci. 25, 11955–11964 (2005).
20. T. J. Petros, A. Rebsam, C. A. Mason, Retinal axon growth at the optic chiasm: To cross or not to cross. Annu. Rev. Neurosci. 31, 295–315 (2008).
21. R. W. Williams, R. C. Strom, D. S. Rice, D. Goldman, Genetic and environmental control of variation in retinal ganglion cell number in mice. J. Neurosci. 16, 7193–7205 (1996).
22. L. Jaubert-Miazza et al., Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis. Neurosci. 22, 661–676 (2005).
23. E. S. Len et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 154–167 (2007).
24. R. Brandenberger et al., Identification and characterization of a novel extracellular matrix protein nephrinectin that is associated with integrin alpha1beta1 in the embryonic kidney. J. Cell Biol. 154, 447–458 (2001).
25. N. Morimura et al., Molecular cloning of POEM: A novel adhesion molecule that interacts with alpha1beta1 integrin. J. Biol. Chem. 276, 42172–42181 (2001).
26. B. Zingg et al., AAV-mediated anterograde transsynaptic tagging: Mapping cortical-collateral input defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017).
27. U. Sabbagh et al., Diverse GABAergic neurons organize into subtype-specific sublaminae in the ventral lateral geniculate nucleus. J. Neurochem. 10.1111/jnc.15102 (2020).
28. X. Xu et al., Viral vectors for neural circuit mapping and recent advances in trans-synaptic anterograde tracers. Neuron 107, 1029–1047 (2020).
29. J. M. Linton, G. R. Martin, L. F. Reichardt, The ECM protein nephrinectin promotes kidney development via integrin alpha1beta1-mediated stimulation of Gdnf expression. Development 134, 2501–2509 (2007).
30. A. Kerr et al., Non-cell autonomous roles for CASK in optic nerve hypoplasia. Invest. Ophthalmol. Vis. Sci. 50, 1584–1594 (2009).
31. K. E. Stone, D. S. Sakaguchi, Perturbation of the developing Xenopus retinotectal projections following injections of antibodies against beta1 integrin receptors and N-cadherin. Dev. Biol. 180, 297–310 (1996).
32. A. L. Russell, J. W. Tripplet, Prevalence of multiple subtypes of binocularly-modulated visual neurons in the mouse superior colliculus. bioRxiv [Preprint] (2020). https://doi.org/10.1101/2020.12.14.422574 [Accessed 15 December 2020].
33. M. Yilmaz, M. Meister, Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).
34. P. Wei et al., Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6, 6756 (2015).
