Abiotic Stresses: Alteration of Composition and Grain Quality in Food Legumes

Sumi Sarkar¹, Marium Khatun¹, Farzana Mustafa Era¹, A. K. M. Mominul Islam², Md. Parvez Anwar², Subhan Danish³, Rahul Datta⁴, and A. K. M. Aminul Islam¹

¹ Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; sumisarkarnupur14@gmail.com (S.S.); mariumkhatun6225@gmail.com (M.K.); farzana@bsmrau.edu.bd (F.M.E.)
² Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; akmmominulislam@bau.edu.bd (A.K.M.M.I.); parvezanwar@bau.edu.bd (M.P.A.)
³ Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
⁴ Department of Geology and Pedology, Mendel University, Zemedelska 1, 61300 Brno, Czech Republic

* Correspondence: sd96850@gmail.com (S.D.); rahulmedcure@gmail.com (R.D.); aminulgpb@bsmrau.edu.bd (A.K.M.A.I.); Tel.: +880-1715-401519 (A.K.M.A.I.)

Abstract: Abiotic stresses varyingly affect the grain composition and quality of food legumes. This paper is aimed at discussing the impact of abiotic stresses on the grain composition and quality of food legumes. As protein is the main grain constituent of food legumes for which it is being consumed by humans as a cheap protein source, abiotic stresses such as heat, cold, drought, salinity and heavy metals alter this grain protein content in different dimensions for different food legumes. Moreover, other valuable constituents such as starch, soluble sugar, oil, fatty acid and fiber content are affected differently by the abiotic stresses. The diverse impact of these abiotic stresses ultimately declines the grain quality and yield of food legumes. As food legumes play a vital role in the nutritional diet of millions of people in the world and are occasionally denoted as the meat of poor people, it is important to recognize that the sustainable production of food legumes, even under various environmental stresses, has the potential to ensure protein security for people globally. Therefore, it has become a necessity to improve the productivity and quality of food legumes under abiotic stresses through proper crop management and improved breeding strategies, thus enhancing food and economic security to the farmers, particularly in the developing countries of the world.

Keywords: abiotic stress; heat stress; drought; salinity; heavy metals; legume; food quality

1. Introduction

The increasing population along with global climate change are generating a great influence on the agroecosystem and creating various abiotic stresses that are major threats for global food security. Therefore, one of the major challenges of this era is to maintain a sustainable yield under these stresses and meet the global food demand with nutritional food. Food legumes are one of the major crops that may be included in the cropping system for attaining the nutritional and protein requirements of this growing population, as the protein gap is likely to increase with the increasing population [1].

Food legumes from the second most important plant family Fabaceae, are agriculturally important nourishing crops provided as a low-cost and rich source of protein to human beings. In terms of world production, food legumes rank third after cereals and oilseeds, having a strong impact on the agro-ecosystem and human nutrition [1]. Nearly 27% of global crop production is occupied with food legumes [2]. Food legumes are consumed mostly for edible proteins and oil; those are considered as the major grain quality components of food legumes. Food legumes are grown in variable climates and abiotic stresses
such as temperature, drought, salinity and heavy metals can affect the grain composition and quality of food legumes [3]. Grain starch, protein, oil, fatty acids, amino acids, sugars, dietary fibers, minerals and vitamin contents are considered as the major components of grain composition that help to determine the quality of food legumes [4]. Abiotic stresses disturb and distinctly change these grain components and the quality of food legumes. Heat stress has a damaging effect on the seed yield and the quality of food legumes as the process of entire seed setting such as the development of a male and female gametophyte, fertilization and the development of seed is sensitive to heat stress [5]. Cold stress is one of the limiting factors for the early sowing of food legumes, as it disrupts the membrane stability and whole-grain contents of food legumes [1]. Food legumes are commonly grown in rainfed production systems. As a result, food legumes are more susceptible to drought and the intensity and frequency of drought have been predicted to increase according to global climate models. Drought affects crop growth and becomes more devastating during reproduction and grain filling, thus decreasing grain yield [6]. The productivity of grain legumes is frequently affected by terminal drought.

Food legumes are highly sensitive to salinity stress, particularly at the seedling and developmental stages [7]. Salinity stress declines water potential due to abundance in Na⁺ and Cl⁻ ions in plant tissues resulting in stomatal closure, photosynthesis decline and inhibition of growth those ultimately affect the grain composition, yield and quality of food legumes [8]. Heavy metal is one of the major constraints in food legume production and the maintenance of grain quality. Heavy metals considerably diminish the grain protein content due to a lowered N uptake and supply to the emerging grains [9]. Ultra-structural and anatomical changes in plant cells take place due to the uptake and accumulation of heavy metals at higher concentrations as plant physiological activities such as nutrition distribution, nitrogen fixation, enzymatic activity, photosynthesis, function of pollen and the nutritional quality of seeds are adversely affected by heavy metal stress [10]. Research is needed on the impact of abiotic stresses on food legume grain composition and quality for developing programs to improve the grain quality as well as resistance to abiotic stresses to ensure the adequate global supply of food legumes as the most significant source of vegetable proteins.

2. Food Legumes

Mainly three types of legumes are used, namely forage legumes, food legumes and cover crops, whereas food legumes are mostly used as a rich source of protein [1]. Most of the legume crops are consumed as food in the mature and dry seed form [11]. Food legumes inhabit a minimum part of the cultivable land of the world, which is mostly conquered by major cereal crops (e.g., rice, wheat, maize) [12]. The protein demands of the growing population can be fulfilled by the insertion of food legumes into cropping systems. Food legumes play an important and diverse role as a nutritious staple of poor people around the world as an inexpensive source of protein, complex carbohydrates, vitamins and fiber [13]. Soybeans, peas, peanuts, lentils, different types of beans and chickpeas are commonly used food legumes (Table 1).

Table 1. Different kind of food legumes and their uses in human nutrition.

Sl. No	Picture	Common Name	Scientific Name	Major Use	Sources of Images [Accessed on 22 May 2021]
1.	![Soybean](https://zh-prod-1cc738ca-7d3b-4a72-b792-20bd8d8fa0e9.storage.googleapis.com/s3fs-public/styles/max_650\times650/public/2020-08/soybeans.jpg?itok=DuPlsOBn)	Soybean	Glycine max	Mainly used for soybean oil. Additionally used as food products such as soymilk, soy sauce, some beverages and whipped toppings, soy-fortified pastas, breakfast cereals and bars [14].	https://zh-prod-1cc738ca-7d3b-4a72-b792-20bd8d8fa0e9.storage.googleapis.com/s3fs-public/styles/max_650\times650/public/2020-08/soybeans.jpg?itok=DuPlsOBn
Table 1. Cont.

Sl. No	Picture	Common Name	Scientific Name	Major Use	Sources of Images [Accessed on 22 May 2021]
2.	![Chickpea](https://fgmh.tq.com/2jDB8mU_-S9vxjfebik4O763sg=-/696x/0/filters:no_upscale/1/06a30edc5f9b58b7d0d03627.jpg)	Chickpea	*Cicer arietinum*	Used as a dry pulse and also as a green vegetable [14,15].	https://agtfoods.co.za/wp-content/uploads/2018/06/Desi-Chickpea_600x600_1.jpg (accessed on 22 May 2021)
3.	![Pea](https://www.allergicleiving.com/wp-content/uploads/2019/09/Green-peas.jpg)	Pea	*Pisum sativum*	Used both fresh and dried. Peas are rich in protein, cholesterol-free and have good amounts of dietary fiber [14].	https://www.allergicleiving.com/wp-content/uploads/2019/09/Green-peas.jpg (accessed on 22 May 2021)
4.	![Groundnut](https://www.nutstop.com/how-peanuts-grow/1.jpg)	Groundnut	*Arachis hypogaea*	Groundnuts contain high level of monounsaturated and polyunsaturated fatty acids that may keep the heart healthy by maintaining lower blood cholesterol levels [16].	https://www.nutstop.com/how-peanuts-grow/ (accessed on 22 May 2021)
5.	![Red lentil](https://jiraphaserviceltd.com/wp-content/uploads/2020/10/7RLT1-1.jpg)	Red lentil	*Lens culinaris*	Red lentils contain plenty of protein and fiber; thus, it is called the meat of poor people. It is a healthier choice for the heart instead of processed meat [14].	https://jiraphaserviceltd.com/wp-content/uploads/2020/10/7RLT1-1.jpg (accessed on 22 May 2021)
6.	![Green lentil](https://www.grainstar.com.au/wp-content/uploads/2018/05/richlea-lentils.jpg)	Green lentil	*Lens culinaris*	It is a rich source of protein and a good supplement for meat. It reduces the risk of heart diseases [17].	https://www.grainstar.com.au/wp-content/uploads/2018/05/richlea-lentils.jpg (accessed on 22 May 2021)
7.	![Brown lentil](https://fthmb.tq.com/2jDB8mU_-S9vxjfebik4O763sg=-/696x/0/filters:no_upscale/1/06a30edc5f9b58b7d0d03627.jpg)	Brown lentil	*Lens culinaris*	Brown lentils are a good source of nutrients and its low calorie content and high fiber helps healthy digestion [16].	https://fthmb.tq.com/2jDB8mU_-S9vxjfebik4O763sg=-/696x/0/filters:no_upscale/1/170460595-56a30edc5f9b58b7d0d03627.jpg (accessed on 22 May 2021)
8.	![Black lentil](https://agtfoods.co.za/wp-content/uploads/2018/06/Black-Lentils_3.jpg)	Black lentil	*Lens culinaris*	Black lentils are the most flavorful lentils and are quite different from other lentils, used in salads and soups [17].	https://agtfoods.co.za/wp-content/uploads/2018/06/Black-Lentils_3.jpg (accessed on 22 May 2021)
9.	![Mung bean](https://www.espacoagro.com/AFFAIRE/188567.jpg)	Mung bean	*Vigna radiata*	Contains essential amino acids and antioxidants that help to neutralize free radicals, thus working against chronic inflammation, heart disease, cancers and other diseases [14,18].	https://agtfoods.co.za/wp-content/uploads/2018/05/Black-Lentils_3.jpg (accessed on 22 May 2021)
10.	![Black eyed bean](https://agtfoods.co.za/wp-content/uploads/2018/06/Black-Eyed-Beans_600x600_1.jpg)	Black eyed bean	*Vigna unguiculata*	Improves digestion and its adequate iron content helps to prevent anemia. It is rich in potassium that helps to maintain lower blood pressure [14,19].	https://agtfoods.co.za/wp-content/uploads/2018/06/Black-Eyed-Beans_600x600_1.jpg (accessed on 22 May 2021)
Table 1. Cont.

Sl. No	Picture	Common Name	Scientific Name	Major Use	Sources of Images
11.	![Fayot bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_530x@2x.jpg?v=1578338252)	Fayot bean	*Phaseolus vulgaris*	It is a source of dietary fiber that helps to prevent cholesterol absorption and increase the fat elimination [14].	https://www.onlyfoods.net/different-types-of-beans.html (accessed on 22 May 2021)
12.	![Navy bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_530x@2x.jpg?v=1578338252)	Navy bean	*Phaseolus vulgaris*	This bean has anticancer potential. It also helps to lower diabetes risk and greater gut health [14].	https://www.thedailymeal.com/sites/default/files/slideshows/1670994/2173040/21-navy_beans-ThinkstockPhotos-494876324.jpg (accessed on 22 May 2021)
13.	![Red bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_530x@2x.jpg?v=1578338252)	Red bean	*Vigna umbellata*	Protects the body from free radical damage that helps in controlling blood sugar levels [16].	http://productkg.com/sites/default/files/tomatnaya-fasoltalas_0.jpg (accessed on 22 May 2021)
14.	![Red kidney bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_530x@2x.jpg?v=1578338252)	Red kidney bean	*Phaseolus vulgaris*	Red kidney beans are full of folate (vitamin B9) and fiber, which helps to promote cardiovascular health [18].	https://www.foodsafetynews.com/files/2020/07/dreamstime_red-kidney-bean-lectins.jpg (accessed on 22 May 2021)
15.	![White kidney bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_530x@2x.jpg?v=1578338252)	White kidney bean	*Phaseolus vulgaris*	It helps in blocking the carbs from being absorbed and metabolized in the human body [18].	https://ixivixi.com/wp-content/uploads/2015/07/White-Kidney-Bean-Extract-for-Weight-Loss-1.jpg (accessed on 22 May 2021)
16.	![Pinto bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_530x@2x.jpg?v=1578338252)	Pinto bean	*Phaseolus vulgaris*	Contains a good amount of vitamin B1 that helps to convert food into energy. Additionally, it contains many antioxidants such as polyphenols and flavonoids [16,17].	https://cdn.shopify.com/s/files/1/1834/0943/products/bean-pinto_569fa89-d3d4-41b4-856d-3db099771330_80x.png?v=1505218437 (accessed on 22 May 2021)
17.	![Cranberry bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_530x@2x.jpg?v=1578338252)	Cranberry bean	*Phaseolus vulgaris*	It is good for the heart as it contains various powerful minerals and enzymes that help to lower bad cholesterol [18].	https://www.mexicanplease.com/wp-content/uploads/2017/03/cranberry-beans-spread-onto-cutting-with-solids.jpg (accessed on 22 May 2021)
18.	![Adzuki bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_530x@2x.jpg?v=1578338252)	Adzuki bean	*Vigna angularis*	It helps to balance sugar level and reduces the risk of diabetes. Improves the strength of bones [20].	https://www.suttonshaytrading.com/wp-content/uploads/2013/06/adzuki-beans.jpg (accessed on 22 May 2021)
19.	![Faba bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_530x@2x.jpg?v=1578338252)	Faba bean (Broad bean)	*Vicia faba*	It helps to prevent birth defects as it is incredibly nutritious and an excellent source of soluble fiber, protein, manganese, copper folate and many other micronutrients [16].	http://storage.googleapis.com/powop-assets/kew_profiles/KPPCONT_085134_fullsize.jpg (accessed on 22 May 2021)
20.	![Lima bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_530x@2x.jpg?v=1578338252)	Lima bean	*Phaseolus lunatus*	Helps to prevent chronic disease, diseases associated with digestion and stimulates blood circulation [14].	https://judiesblog.files.wordpress.com/2010/10/img_5993.jpg (accessed on 22 May 2021)
Table 1. Cont.

Sl. No	Picture	Common Name	Scientific Name	Major Use	Sources of Images [Accessed on 22 May 2021]
21.	![Grass pea](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_53bx62x.jpg?v=1578338252)	Grass pea	*Lathyrus sativus*	Grass pea seeds are used as a common staple food in many countries of Asia and Africa [21].	[Link to image](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_53bx62x.jpg?v=1578338252)
22.	![Lupin bean](https://i.pinimg.com/originals/21/29/fa/2129fa4b595f818e23046dd8aae4b290.png)	Lupin bean	*Lupinus albus*	It contains antioxidants that promote proper digestion and keep intestines healthy. Additionally, aids in weight loss, provides essential vitamins and minerals and reduces high blood pressure [18,22].	[Link to image](https://www.firstforwomen.com/wp-content/uploads/sites/2/2019/01/what-are-lupin-beans-benefits.jpg?v=715)
23.	![Common bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_53bx62x.jpg?v=1578338252)	Common bean	*Phaseolus vulgaris*	Beans are an excellent source of protein, lower in calories and saturated fat than some other protein sources such as meat [16,17].	[Link to image](https://www.firstforwomen.com/wp-content/uploads/sites/2/2019/01/what-are-lupin-beans-benefits.jpg?v=715)
24.	![Runner bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_53bx62x.jpg?v=1578338252)	Runner bean	*P. multiflorus*	The dried pods of runner bean have diuretic properties that help to cure urinary tract infections and reduce weight [18,23].	[Link to image](https://www.firstforwomen.com/wp-content/uploads/sites/2/2019/01/what-are-lupin-beans-benefits.jpg?v=715)
25.	![Hyacinthbean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_53bx62x.jpg?v=1578338252)	Hyacinthbean	*Lablab purpureus*	It contains complex carbohydrates and a good amount of zinc, which is useful to lose weight and prevent cancer, respectively, as Zn prevents cells mutating and assists cell division [16,22].	[Link to image](https://www.firstforwomen.com/wp-content/uploads/sites/2/2019/01/what-are-lupin-beans-benefits.jpg?v=715)
26.	![Rice bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_53bx62x.jpg?v=1578338252)	Rice bean	*V. umbellata*	It helps to cure diseases such as edema and increases digestibility [17,23].	[Link to image](https://www.firstforwomen.com/wp-content/uploads/sites/2/2019/01/what-are-lupin-beans-benefits.jpg?v=715)
27.	![Black gram](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_53bx62x.jpg?v=1578338252)	Black gram	*V. mungo*	It helps in boosting energy, protecting cardiovascular health, improving immunity, maintaining skin health, building strong bones, managing diabetes and strengthening the nervous system [16,18].	[Link to image](https://www.firstforwomen.com/wp-content/uploads/sites/2/2019/01/what-are-lupin-beans-benefits.jpg?v=715)
28.	![Pigeon pea](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_53bx62x.jpg?v=1578338252)	Pigeon pea	*Cajanus cajan*	It helps to manage blood pressure, boost heart health and prevent anemia, thus strengthening the immune system [18,20,22].	[Link to image](https://www.firstforwomen.com/wp-content/uploads/sites/2/2019/01/what-are-lupin-beans-benefits.jpg?v=715)
29.	![Velvet bean](https://cdn.shopify.com/s/files/1/2333/6781/products/grass_pea_photo_53bx62x.jpg?v=1578338252)	Velvet bean	*Mucuna pruriens*	Supplies L-Dopa that turns into dopamine, which helps to improve mood, mental clarity, sense of well-being, better sleep and brain function. Additionally, it helps to combat Parkinson’s disease and depression [18].	[Link to image](https://www.firstforwomen.com/wp-content/uploads/sites/2/2019/01/what-are-lupin-beans-benefits.jpg?v=715)
3. Economic Importance of Food Legumes

Food legumes are mainly essential to developing countries, as they offer a source of protein, trace nutrients and calories to people who are not able to afford more pricey nutritional sources [24]. These are perfect crops for accomplishing developmental goals such as improving the health and nutrition of humans, reducing poverty and enhancing the resilience of the ecosystem [25]. Due to the involvement of food legumes such as pulses in nutritional diversity that helps to eliminate hunger and malnutrition, the Food and Agriculture Organization (FAO) of the United Nations stated 2016 as the International Year of Pulses [11]. Food legumes can potentially manage sustainable agriculture through the enhancement of productivity as well as crop diversity and a reduction in the dependency on external inputs, as food legumes have the capabilities of nitrogen (N) fixation by biological means, efficient roles in nutrient and water retention, the ability to increase soil organic matter (SOM) and aid the recovery of soil health by improving soil properties [26]. As one of the most important food legume producing countries, India has started introducing cool-season food legumes that fit the rice-fallow ecology to change the rice-fallow system into a rice-food legume system that will help to not only uplift the socio-economic condition of smallholder rice farmers, ensuring their food and nutritional security, but also to break the pests and diseases cycle of rice and improve the soil’s structure and fertility through the augmentation of the overall sustainable productivity of the rice-fallow system [27].

4. Grain Composition of Food Legumes

The grain of a food legume is composed of protein, dietary fiber, starch or oil in the form of energy, macro and micronutrients, vitamins and several bioactive phytochemicals such as antioxidants [19]. The protein content of food legumes (Table 2) varies from 20–40% [28].

Table 1. Cont.

Sl. No	Picture	Common Name	Scientific Name	Major Use
30.	![Winged bean](https://i.pinimg.com/originals/21/29/fa/2129fa4b595f818e23046dd88ae4b290.png)	Winged bean	*Psophocarpus tetragonolobus*	This bean is rich in vitamin C and vitamin A, which help in strengthening the immune system and supporting the body against any possible infections and diseases [16,22,23].
31.	![Sword bean](https://i.etsystatic.com/7772783/r/il/442d44/1253663464/il_fullxfull.1253663464_bodq.jpg)	Sword bean	*Canavalia gladiata*	It enhances the function of the nervous system, prevents bone resorption and inhibits bone turn over [16–18].
32.	![Jack bean](https://i.etsystatic.com/15567684/r/il/ffddf/2833501891_8key.jpg)	Jack bean	*Canavalia ensiformis*	It is a fiber-rich bean that helps in removing toxins and waste products in the gut. Helps in preventing constipation and abdominal distention. The Vitamin C present in this bean helps in defending the body against disease-causing microorganisms such as bacteria and viruses [23].

Sources of Images

[Accessed on 22 May 2021]
Table 2. Percent protein, carbohydrate and lipid present in different food legumes.

Food Legumes	Protein %	Carbohydrate %	Lipid %
Chickpea	21	62.95	6.04
Groundnut	26	16.13	49.24
Lentil	25	63.35	1.06
Black gram	25	60	1.64
Mung bean	24	62.62	1.15
Soybean	40	6.4	21.3
Pea	25	51.3	1.2
Pigeon pea	22	62.78	1.49
Cowpea	24	35.5	0.91
Faba bean	29	44.7	1.4
White lupin	38	0.0	10.0
Adzuki bean	20	62.90	0.53
Navy bean	22	60.75	1.50
Lima bean	21	63.38	0.69

Source: Jukanti et al. [15,19], Kamboj and Nanda [17], Amarowicz [22], USDA [29], Ge [30].

It also contains oligosaccharides, phytoestrogens, phytohemagglutinins (lectins), saponins and phenolic compounds that play metabolic roles in humans who consume these foods frequently [22]. The primary phenolic compounds found in a legume seed and seed coats are phenolic acids, condensed tannins and flavonoids [19]. The phenolic compounds are varyingly distributed in different legume seeds (Table 3) and colored legumes are found with more phenolic compounds than uncolored legumes [19]. The total phenolic content (TPC) provides a wide variability in various food legumes and the antioxidant activity of these legumes is directly related to their TPC [31].

Table 3. Variable phenolic compounds present in food legumes.

Legume	Phenolic Compounds	Quantity (µg/g)	Found in	References
Lentil	Hydroxybenzoics	5.69	Seed	[18,32,33]
	Dihydroxybenzoic acid	3.68		
	p-hydroxybenzoic acid	1.48		
	Protocatechluic acid	0.36		
	Protocatechluic aldehyde	0.13		
	2,3,4-trihydroxybenzoic acid	16.9–29.2		
	Gallic acid	90.9–136.8		
	Vanillic acid	0.99–3.22		
	Hydroxycinnamianes	3.76		
	Trans-p-coumaroyl malic acid	10.02		
	Trans-p-coumaroyl glycolic acid	2.88		
	Trans-p-coumaric acid	5.74		
	Sinapic acid	1099–2217		
	chlorogenic acid	159–213		
Green lentil	Trans-p-coumaric acid	37.3	Seed	[18,32]
	Trans-p-coumaric acid derivative	6.4		
	Trans-ferulic acid	10.1		
Pinto bean	Hydroxybenzoics,	84.92	Seed	[18,32,33]
	Salicylic acid	44.89		
	Vanillic acid	17.01		
	P-hydroxybenzoic acid	12.20		
	P-hydroxyphenyl acetic acid	8.42		
	Protocatechluic acid	2.40		
	Hydroxycinnamianes	36.31		
	Trans-ferulic acid	11.80		
Table 3. Cont.

Legume	Phenolic Compounds	Quantity (µg/g)	Found in	References
Cannellini	Hydroxybenzoic acids, Vanillic acid	21.66	Seed	[32,33]
bean	P-hydroxyphenyl acetic acid	10.71		
	P-hydroxybenzoic acid	6.92		
	Hydroxycinnamic acids	4.30		
	Trans-ferulic acid	23.52		
		8.95		
Adzuki	Protocatechuic acid	67.6	Crude	[18,20,32]
bean	Protocatechuic aldehyde	7.71		
	Trans-p-coumaric acid	31.3		[18,20,32,33]
	Trans-p-coumaroyl malic acid	4.57		
Cowpea	Gallic	27	Seed coat	[32]
	Protocatechuic	18.9		
	P-hydroxybenzoic	5.81		
	Ferulic	26.25		
	Coumaric acid	1.25		
Cranberry	Protocatechuic acid	217	Seed coat	[32,34]
beans	P-hydroxybenzoic acid	239		
Chickpea	P-hydroxybenzoic acid	19.2 to 60.5	Seed	[18,32,35]
	Syringic acid	45.9		
	Gentisic acid	8.1 to 26.0		
Pea	Protocatechuic acid	12.1 to 163.5	Seed	[32,35]
	P-hydroxybenzoic acid	45.4 to 101.7		
soybean	Benzoic acids	57	Seed	[32,33]
	Protocatechuic acids	44		
	Ferulic acid	95		
kidney	P-hydroxybenzoic acid	10.33	Bean	
		10	Sprout	[32]

5. Nutritional and Health Benefits

Food legumes are essential for the human diet as an important source of nutrients and amino acids, and it has been suggested by the Finnish National Nutrition Council and the Eatwell Guide in the UK to increase the consumption of vegetable protein predominantly from food legumes rather than the consumption of animal protein [35]. Replacing animal protein with vegetable protein has beneficial and significant positive effects on human health such as reducing cholesterol, useful in the diet of diabetics, controlling hypertension, maintaining a healthy weight, improving the health of the cardiovascular system and preventing some cancers [36,37]. The physiological effects of various food legumes differ significantly based on the variability of phytochemicals present in them, as the intake of these phytochemicals may provide various health benefits and protection against several diseases [16]. Food legumes have a comparatively high vitamins and minerals content (Table 4), mainly potassium, calcium, magnesium, zinc, iron and thiamin (vitamin B1) [23]. It has been suggested by several researchers to decrease animal protein consumption and replace it with proteins derived from plants because a positive correlation was found between a high intake of animal protein and a rise in cardiovascular disease, whereas a negative correlation was found between a high intake of plant protein and a reduction in cardiovascular diseases and overall mortality [38].
Table 4. Vitamins and minerals constituent of different food legumes.

Vitamins and Minerals	Soybean (Per 100 g Seed)	Chickpea (Per 100 g Seed)	Pea (Per 100 g Seed)	Grass Pea (Per 100 g Seed)	Cowpea (Per 100 g Seed)	Pigeon Pea (Per 100 g Seed)	Groundnut (Per 100 g Seed)	Lentil (Per 100 g Seed)	Mung Bean (Per 100 g Seed)	Faba Bean (Per 100 g Seed)	Lupin (Per 100 g Seed)
α tocopherol	6.5 mg	2.24 mg	0.11 mg	-	-	-	-	-	-	0.08 mg	1.1 mg
γ tocopherol	23.0 mg	10.68 mg	5.0 mg	-	-	-	-	-	-	-	15.3 mg
Vitamin B1	1.0 mg	0.477 mg	0.7 mg	0.37–0.54 mg	0.345 mg	0.643 mg	0.64 mg	0.87 mg	0.621 mg	0.55 mg	0.32 mg
Vitamin B2	0.46 mg	0.212 mg	0.27 mg	0.18–0.27 mg	0.094 mg	0.187 mg	0.135 mg	0.21 mg	0.233 mg	0.23 mg	0.59 mg
Vitamin B3	-	1.541 mg	-	1.23–2.02 mg	-	2.96 mg	12.06 mg	2.6 mg	2.251 mg	-	-
Vitamin B5	-	1.588 mg	-	1.44–2.24 mg	0.703 mg	1.26 mg	1.76 mg	2.14 mg	-	-	-
Vitamin B6	1.1 mg	0.55 mg	0.12 mg	0.49–0.66 mg	0.171 mg	0.283 mg	0.348 mg	0.5 mg	0.382 mg	0.37 mg	0.4 mg
β-Carotene	-	40.00 mg	-	24.08–41.01 µg	-	-	-	-	68 µg	-	-
Vitamin K	-	9.00 mg	-	-	-	-	-	-	5.0 µg	-	-
Calcium	0.21 g	160 mg	0.05 g	0.97–1.03 g	-	130 mg	92 mg	35 mg	132 mg	0.14 g	0.24 g
Potassium	1.8 g	875.0 mg	1 g	8.75–9.2 g	475 mg	1392 mg	705 mg	677 mg	1246 mg	1.2 g	1.1 g
Magnesium	0.22 g	138 mg	0.12 g	1.14–1.24 g	91 mg	183 mg	168 mg	47 mg	189 mg	0.15 g	0.13 g
Phosphorus	-	366.0 mg	-	4.68–5.13 mg	267 mg	-	376 mg	281 mg	367 mg	-	-
Iron	8.0 mg	5.0 mg	5.2 mg	1.33–1.53 mg	4.29 mg	5.23 mg	4.58 mg	6.51 mg	6.74 mg	6.7 mg	5.4 mg
Copper	1.2 g	0.847 mg	0.66 mg	6.98–7.95 g	0.458 mg	1.057 mg	1.144 mg	0.75 mg	0.941 µg	1.1 mg	0.6 mg
Zinc	4.2 mg	4.1 mg	3.2 mg	4.35 mg	2.21 mg	2.76 mg	3.27 mg	3.27 mg	2.68 mg	4.1 mg	5.1 mg
Selenium	19 µg	-	1.6 µg	-	-	-	-	-	0.1 µg	8.2 µg	2 µg

Source: Jukanti1 et al. [15], Arslan [19,21], Celmeli et al. [14], Mathobo et al. [31], Budhathoki et al. [39–46].
6. Abiotic Stresses

Although food legumes grow in diverse climates, different abiotic stresses such as temperature stress, drought, salinity and heavy metals may hamper the grain quality of food legumes [47]. Food legumes contain essential minerals and nutrients essential for human beings and a deficiency of these elements may lead to malnutrition or other health issues in the human body [48]. These essential elements of food legumes are affected and altered by variable abiotic stresses [49,50].

6.1. Temperature Stress

Food legumes can be alienated into two groups based on different growing seasons, specifically warm- or tropical-season and cool-season food legumes [51]. Common beans, black grams, cowpeas, pigeon peas, mung beans, peanuts and soybeans are mainly grown in hot and humid weather and are known as warm-season food legumes [52]. On the other hand, lentils, peas, chickpeas, grass peas, broad beans and dry beans are known as cool-season food legumes [53]. Food legumes exhibit variable levels of sensitivity to high and low-temperature stresses, which diminishes their performance at different growing stages [54]. Both high and low temperatures may act as abiotic stresses for food legumes if the temperature rises or falls beyond the required temperature level needed for the proper growth and development of the food legumes.

6.1.1. High Temperature

Mainly, cool-season food legumes are more sensitive to a high temperature than warm-season food legumes and if the temperature rises above the threshold temperature (Table 5), it turns into severe heat stress at particular growth stages [55].
Table 5. Effect of heat stress on food legumes at different stages of growth.

Food Legumes	Threshold Temp.	Growth Stage	Heat Stress (Day/Night)	Effects	References
Lentil	15–30	Reproductive stage	38/23	Reduced electron flow during photosynthesis	[56–59]
Peanut	30–35 25	Vegetative development Anthesis Pod and grain yield	38/22	Decreased pollen production, impaired photosystem II	[56,57]
Pea	15–25	Vegetative growth	30/25	Reduced photosynthetic activity; impeded electron donation by OEC (Oxygen-Evolving Center) of PS II; reduced oxygen evolution and photochemical energy storage; shutting of PSI reaction center	[57,59,60]
Chickpea	15–30 25	Growth Reproductive growth	35/16	Impaired RuBisCO and sucrose metabolism in leaves; disrupted PSII; damaged structure and functioning of related enzymes and proteins; decreased stigma receptivity	[56,59]
Pigeon pea	18–30	Flowering	45/40	Damaged PSII	[56,59]
Cowpea	18–28	Flowering	36/27	Tapetal cells degeneration and anther indehiscence	[56,57,59]
Soybean	26 23 30.2 36.1	Reproductive Post-anthesis Pollen germination Pollen tube growth	38/30 35 35 38/30	Abscission of flower, reduced reproductive development; pollen germination, pollen tube growth and yield; shrunk pollen; damaged PSII; reduced chlorophyll content and photosynthesis; decreased Fv/Fm	[56–61]
Common bean	20–24	Flowering	32/27	Carbon assimilation limited and NADPH supply reduced; reduced photosynthetic rate	[59,62]
Mung bean	28–35	Flowering Pod development	>40/25	Efficiency of photosynthesis impaired; reduced sucrose in leaves due to decreased sucrose synthesizing enzymes and RuBisCO activity	[57,59,63]
Broad bean	25–35	Flowering	42	Reduced photosynthesis	[57,59,64]
Black gram	25–35	Flowering	35	Reduced photosynthesis	[65]
Lupin	20–30	Flowering	38	Cytokinin level reduced in seed leading to diminished seed cell numbers and growth rates of seed, reduced seed growth and development processes	[57,59]
Seed filling is intimately associated with the whole-plant senescence process and early senescence takes place by heat stress during the seed filling process that enhances the remobilization of assimilating from the source to sink, thus reducing the seed filling duration [66]. The grain development of food legumes is affected by heat stress because the tapetum layer of the grain is disintegrated by heat stress, which decreases the nutrient supply to the microspores and such an impairment leads to anther dehiscence prematurely, impedes carbohydrate synthesis and distribution to the grain and develops fruited embryos and poor pods, which ultimately reduces the grain yield [59]. Heat stress significantly decreased the yield of lentils by 70% when it was exposed to a heat wave of 35°C for six days, as lentils are a cool seasoned food legume [66]. The grain composition and quality of food legumes is affected by heat stress in many ways, as heat stress mainly affects the reproductive phases (Figure 1).

Figure 1. Effect of heat stress on the reproductive stage of food legumes [64].

Heat stress hampers grain composing elements such as sugar, starch, protein, fatty acids and protein (Table 6). It also alters various components accumulating, primarily, in grain-like starch and proteins by preventing the enzymatic processes required for starch and protein synthesis [67]. The temperature of air and soil increases under heat stress, which adversely affect the grain protein content and quality of food legumes [68]. In most of the food legumes, the grain oil content was found to be increased under heat stress, whereas the protein content was found to be decreased [69,70]. The oil content in the grain was increased under heat stress by 20 and 37% in peanuts and soybeans, respectively [71]. However, in kidney beans, the oil content was found to be declined by 23% under heat stress [72]. The fatty acid composition in the grain of food legumes changes due to heat stress. Heat stress considerably enhanced the oleic acid content, whereas the linoleic acid content was found to be decreased in different food legumes [1]. The N and P content of the soybean grain declined when the temperature rose above 40/30 °C [73]. A decrease in total nonstructural carbohydrates was found with increasing temperatures and the ratio of soluble sugars to starch was also found to be decreased in various food legumes, particularly in soybeans [74]. Sucrose and oligosaccharides such as the raffinose content in grains increases with an increasing temperature and monosaccharides such as glucose and fructose decrease with an eminent temperature [75].
Table 6. Alteration in grain composition of food legumes under heat stress.

Food Legumes	Temperature Control (Day/Night)	Heat Stress (Day/Night)	Grain Composition	Increase % (+) or Decrease % (−) over Control	References
Soybean	15/30 °C	40/30 °C	Oleic acid	+104%	[1,66]
	18/13 °C	33/28 °C	Linolenic acid	−48.6	
	18/13 °C	33/28 °C	Oil content	+37%	
			Sucrose	−56%	
Peanut	20/14 °C	32/26 °C	Total sugars	−24.5%	[1,66]
			Starch	−53%	
			Protein	−19.6%	[1,66]
			Oil content	+20%	
			Oleic acid	+24%	
Chickpea	25 °C	35/16 °C	Soluble proteins	+20%	[1,66,68,76]
Kidney bean	28/18 °C	34/24 °C	Oil content	−22.7%	[1,66,71]

6.1.2. Low Temperature

Low-temperature stress or cold stress can be expressed as a temperature that causes injury or irreversible damage to a crop as it falls under the optimum temperature required for the proper growth and development of the crop. Cold stress not only hampers the vegetative stages of food legumes but also alters reproductive growth and grain compositions (Table 7). During the seed germination of food legumes, cold stress enhances the susceptibility to soil-borne diseases, leading to the poor establishment of crops and even the death of seedlings [54,77].

Table 7. Impact of low temperature on some highly important food legumes.

Food Legumes	Cold Stress	Effects
Soybean	1 °C for 4, 6 and 8 h	Early vegetative phase damage, impaired microsporogenesis and megasporogenesis, loss of pollen germination, inhibition of pollen tube growth, abnormal pod formation and seed filling [54] and alteration in starch, protein, fat and fiber composition [78]
Pea	3 °C	Early vegetative phase damage, reduction in embryogenesis and poor seed quality [54]
Chickpea	<10 °C; −10 °C for 15−30 min	Early vegetative phase damage, impaired microsporogenesis and megasporogenesis, pollen viability loss, loss of pollen germination, stigma receptivity loss, abnormal pod formation [79] and seed filling [54] and alteration in starch, protein, fat and fiber composition [78]
Broad bean	5 °C for 24 h	Early vegetative phase damage and poor seed quality [54]

Food legumes grown in cool seasons are mainly sensitive to cold stress, mostly during the formation of a pod and seed filling [78,80]. Carbohydrate metabolism is impaired by cold stress that may lead to the energy deficiency of different reproductive organs such as style, tapetum and endosperm that ultimately causes the sterility of the gametophyte [81]. In various food legumes, it has been well recognized that phenology and grain filling were damaged by cold stress [82]. The grain filling duration and rate reduce under cold stress as grain filling depends on the source–sink relationship that declines under cold stress. The storage of amino acids, minerals and proteins in the grain of food legumes is inhibited by cold stress. In chickpeas, the sugar concentration in the grain increased, whereas storage amino acids, protein, starch, fat and crude fiber accumulation decreased under cold stress [83].
6.2. Drought

Drought is one of the major constraints that limits food legume production, mainly in the arid and semi-arid tropics and the occurrence of drought during the grain development stages is more critical as it causes a significant yield loss [84]. In food legumes, drought highly affects the composition and quality of the grain (Table 8). Abiotic stress, particularly drought, highly influences the grain protein, fat and carbohydrate contents of food legumes. Although, a mild water scarcity during flowering may prefer an increased grain protein content in some food legumes. However, in maximum food legumes, drought reduces the N, P, Fe and Zn content of the grain that ultimately decreases the total grain protein content [85]. The fatty acid composition of a soybean grain was altered by drought that finally altered the total oil composition, oil stability and oil level in the soybean, especially during grain filling [86].

Table 8. Influences of drought stress on growth stages and grain constituents of food legumes.

Food Legumes	Drought Stress at Growth Stages	Effects	References
Lentil	Pod development and reproductive phase	Yield reduction by 70 and 24%, respectively	[87]
Chickpea	Reproductive phase, anthesis and late ripening	Yield loss by 49–54, 27–40 and 49–54%, respectively Grain protein, sodium, potassium and calcium content reduced by 41, 33, 25 and 7%, respectively	[88,89]
Soybean	Reproductive phase, pod set and Seed filling	Oil content of grain reduced by 3% and protein content increased by 5%	[90–92]
Common bean	Reproductive, flowering and Pod filling stage	Loss of grain yield by 46–71, 45–50 and 42%, respectively Sucrose and starch content reduced in grain by 29–47 and 18–20%	[93]
Mung bean	Reproductive and vegetative stage	Grain protein content increased by 8 and 3%, respectively Yield reduction by 26%	[94]
Faba bean	Grain filling	Carbohydrate, fat and protein content increased by 4, 5 and 3–9%, respectively Grain yield loss by 68%	[83]
Spotted bean	Reproductive stage	Protein content of grain increased by 6%	[87]
Black gram (Mash bean)	Flowering and reproductive	Loss of grain yield by 31–57 and 26%, respectively	[95]
Cowpea	Reproductive and pod filling	Yield loss by 34–66 and 29%, respectively	[92]
Pigeon pea	Reproductive phase and flowering	Grain yield loss by 40–55 and 42–57%	[83]
Lupins	15 days after anthesis	Reduction in soluble sugar, crude fiber and starch in grain by 18, 11 and 43%, respectively	[83]

The oil and oleic acid content in soybeans decrease simultaneously when the grain filling period faces drought [96–98]. The oil content of peanuts is influenced by drought, as drought decreases the digestible carbohydrates such as the sucrose, glucose and fructose concentration affecting the composition of fatty acids in the grain through decreasing the unloading of sugars from the stem to the developing seeds [99,100]. During pod filling, a free amino acid pool increased on cowpea grains but the incorporation of these amino acids into the protein chain was suppressed due to drought, which ultimately reduces the protein-amino acid fraction in the grain [76]. The soluble sugars and starch content decreased in the mature grain of the soybean and the common bean, respectively, under drought [100]. The oil contents of the lupin grain dropped by 50–55% under drought. Drought has a distinct effect on the mineral composition of grains of food legumes. In soybeans, the calcium (Ca), phosphorus (P), copper (Cu), manganese (Mn), molybdenum (Mo) and zinc (Zn) concentrations improved under drought, whereas, the sodium (Na), potassium (K) and calcium (Ca) content reduced but the proline content increased in
chickpeas under drought [1]. Under drought, \(\alpha\)-tocopherol increased in soybean grains by 2–3 fold, which is helpful for preventing the auto-oxidation of a lipid as the tocopherols found in vegetable oils are well-known antioxidants [6]. During the preliminary stage of seed expansion, the seed sink ability reduces due to drought, which results in a decreasing number of endosperm cells and amyloplasts [76]. Acid invertase is a vital enzyme for the seed development of food legumes and its activity decreases due to drought, thus inhibiting sucrose import. As a result, the scarcity of energy sources and prominent levels of abscisic acid (ABA) lead to a poor grain set under drought [101].

6.3. Salinity

Salt stress is one of the major concerns in arid and semi-arid regions, which comprise about 40% of the land area of the earth. It is a significant constraint for food legume production. Salinity stress interrupts grain composition and the quality of food legumes (Table 9) by affecting hormonal interactions, causing a nutritional imbalance, osmotic effects and ionic toxicity [102,103]. Salt stress disturbs the uptake, accumulation and transport of competitive nutrients in food legumes. The nutritional imbalance in legume plants takes place due to the profusion of the sodium (Na\(^+\)) and chloride (Cl\(^-\)) ion concentration at the rhizosphere region because these ions interfere with essential nutrients such as N, P, K, Ca, Zn, boron (B), Mg, Cu and iron (Fe) [104]. Salt stress causes an ionic imbalance mainly of K\(^+\) and Ca\(^{2+}\), creating harmful effects on plants [8]. Ca\(^{2+}\), K\(^+\) and Mg\(^{2+}\) play a vital role in plant photosynthetic activity, but their concentration decreases under higher salt contents due to a competitive uptake of Na\(^+\) and K\(^+\) ion flux, resulting in a deficiency of K\(^+\) and significant yield losses [105]. Salt stress highly affects the oil content and grain protein content because of disturbance in nitrate (NO\(_3^-\)) uptake and N metabolism of food legumes [106]. A reduction in stigma receptivity, pollen viability and photo assimilates supply during grain filling takes place due to salt stress that eventually reduces the grain yield of food legumes [107]. In mung beans, the total amount of amino acids, protein, carbohydrates and polysaccharides in the grain decreased with the increasing salt stress and the reduction in carbohydrate and polysaccharide contents headed to a reduced photosynthesis, a nutritional imbalance, ion toxicity and hyperosmotic stress [108,109], whereas N uptake was reduced due to the decline in the total amino acids in the grain of the mung bean under salt stress [109]. The K and P concentrations also declined in the grain of the mung bean with increasing salt stress; however, the concentrations of Na, Ca, Mg and chloride (Cl) increased [110].

Table 9. Effects of salinity stress on the grain composition and quality of food legumes.

Food Legumes	Concentration of Salt	Impacts
Soybean	NaCl 3, 6 and 9 dS m\(^{-1}\) NaCl 9 dS m\(^{-1}\)	Grain protein reduction by 29, 60 and 79%, respectively
	7 dS m\(^{-1}\) in loam soil and 6.3 dS m\(^{-1}\) clay soil	Oil content of grain reduced by 77%
		Yield loss around 46%
Chickpea	3 and 3.8 dS m\(^{-1}\) 50 and 100 mM	Loss of grain yield by 50 and 69%, respectively
	50 and 100 mM	Sodium increased by 200 and 271%, respectively
	2 and 9 dS m\(^{-1}\) NaCl 40 mM	Potassium decreased by 79.09 and 72.72%, respectively
		Sodium increased by 79.80 and Potassium increased by 0.58%
		Increase in sodium, 51.03%; potassium, 40.31%; and chloride, 58.41%
Lentil (cv. 6796)	3.1 and 2 dS m\(^{-1}\)	Grain yield loss found to be 100 and 14%, respectively
Mung bean	4500 and 6000 ppm	Reduction in grain protein content of 11 and 20%, respectively
	250 mM NaCl	Reduction in total soluble sugars of 29 and 32%, respectively
		Reduction in total amino acids of 19 and 21%, respectively
		Nitrogen content in grain decreased by 37 and 24%, respectively
		Grain phosphorus content decreased by 30 and 20%, respectively
		Reduction in grain potassium content by 13 and 8%, respectively
		≥80–100% yield loss
Table 9. Cont.

Food Legumes	Concentration of Salt	Impacts
Mungbean (cv. Pusavishal)	50 mM NaCl	Yield loss by 41%
Faba bean	6.6 dS m\(^{-1}\) in loam soil	Total yield loss around 50%
	5.6 dS m\(^{-1}\) in clay soil	Yield loss by 52%
	50 and 100 mM	Total carbohydrates of grain reduced by 9.97 and 33.40%, respectively
		Decrease in grain potassium content of 3.30 and 11.57%, respectively
		Increase in sodium content of around 12.5 and 62.5%, respectively
		Magnesium content reduction in grain by 28.57% in both salt concentration
Pinto bean (cv. Talash)	8 and 12 dS m\(^{-1}\)	Reduction in grain yield by 26 and 41%

Source: Farooq et al. [1], Torabian et al. [102], Zhou et al. [105], Ghassemi-Golezani et al. [108], Khan et al. [110], Narula et al. [111].

6.4. Heavy Metals

The accumulation of heavy metals such as mercury (Hg), lead (Pb), cadmium (Cd), chromium (Cr), Cu, Zn, arsenic (As) and nickel (Ni) in the soil is a serious constraint for the crops grown in that soil [112,113]. When these heavy metals are present above the optimum level in the rhizosphere zone, they limit the yield and quality of food legumes (Table 10) as well as cause human health concerns through accumulating in the grains of food legumes [114]. The predominant use of heavy metals leads to a decrease in the yield of food legumes and dangerously affects human health through entering into the food chain [9]. Heavy metal toxicity causes weak plant growth, chlorosis, a yield reduction supplemented by decreased nutrient uptake, plant metabolism disorders and a reduced molecular nitrogen-fixing ability [115]. The uptake of mineral nutrients is altered by heavy metals, which inhibits the opening of the stomata by cooperating with plant water balance, thus disturbing the enzymes of the Calvin cycle, carbohydrate metabolism, photosynthesis and, ultimately, reducing the productivity of food legumes [116]. Cd is a heavy metal highly toxic to plants, humans, animals and causes oxidative stress in plants.
Table 10. Impacts of different level of heavy metals on grain constituents of food legumes.

Heavy Metals	Food Legumes	Level of Metals in Soil or Growth Media	Effects	References
Cadmium (Cd)	Groundnut	-	Xerophytic anatomical features and reduction in grain quality	[1,9,10]
	Common bean	5 µg mL⁻¹	Changes in lipid composition and alteration in the structural component of thylakoid membrane	[117,118]
	Pea	50 µM CdCl₂	Chloroplast damage, reduction in grain filling rate	[119]
	Chickpea	23 mg kg⁻¹	Decrease in starch content of seeds	[1,9,120]
	Green gram	24 mg kg⁻¹	Decrease in grain protein by 22%	[1,9]
	Soybean	0.1, 0.5 and 1.0 mM	Grain protein reduction by 8%	[1,9,97,117]
	Pigeon pea	56 and 112 mg L⁻¹	Reduction in grain oil by 23, 28 and 33%, respectively	[1,9,97,117]
			Reduced photosynthesis up to 50%	[1]
Lead (Pb)	Grass pea	25, 50, 100, 200 and 300 ppm	Chromosomal abnormalities	[1,120]
	Chickpea	195 and 390 mg kg⁻¹	Grain proteins increase by 3 and 6%, respectively	[1,9]
	Soybean	-	Inhibited growth	[98,117]
Chromium (Cr)	Common bean	500 ppm	Reduced seed germination up to 48%	[117]
	Chickpea	67.5 and 135 mg kg⁻¹	Grain protein increased by 3% and decreased by 2%, respectively	[1,9,120]
	Green gram	68 and 136 mg kg⁻¹	Increase in grain protein by 7 and 11%, respectively	[1,9]
Mercury (Hg)	Black gram	20 ppm	Reduced 50% seed germination potential, contamination in the entire food chain	[1]
	Mung bean			[117,120]
	Pea			[1]
	Lentil			[1,120]
	Soybean	0.1, 0.5 and 1.0 mM	Grain oil reduction by 38, 58 and 68%, respectively	[1,9,117]
Copper (Cu)	Pea	(50 and 75 µM)	Changes in the ultra-structure of chloroplasts, swelling of starch grains in the stroma	[1,117,120]
	Chickpea	66.9 and 143.8 mg kg⁻¹	Reduced grain protein of 9 and 18%, respectively	[1,116]
	Cowpea	5 ppm	Adversely affected the germination process	[1,116]
	Green gram	334.5 and 669 mg kg⁻¹	Grain protein reduced by 4 and 5%, respectively	[1]
Nickel (Ni)	Chickpea	50, 100, 200 and 400 ppm	Reduction in seed germination and seedling growth	[1,116]
	Cowpea	290.1 and 580.2 mg kg⁻¹	Reduced grain protein by 2 and 16%, respectively	[1]
	Pigeon pea	5 ppm	adversely influenced the germination process	[1,10]
		1.0 mM	32% reduction in net photosynthesis, decrease enzyme activity	[1,10]
Zinc (Zn)	Cowpea	4890 and 9780 mg kg⁻¹	Adversely influenced the germination process	[1]
	Chickpea	5 ppm	Increased grain protein by 10 and 19%, respectively	[1,116,120]
Arsenic (As)	Peas	12.5–73.3 mg of sodium arsenate kg⁻¹	Caused interference in mineral nutrient balance	[1,114,116]
	Chickpea	5 mg kg⁻¹	Considerable inhibition in seed reserves accumulation such as starch, proteins, sugars and minerals, reduced the quality of seeds	[1,114,1121]
An accumulation of Cd has potential health risks, and it mostly happens due to the consumption of soybeans grown in contaminated areas as soybeans have more potential in absorbing heavy metals compared to other food legumes [119]. However, the detrimental effects on soybean oil content were found to be greater for Hg than Cd. The grain oil content of soybeans was reduced when exposed to higher Cd and Hg concentrations and the oil content reduction rate was higher with an individual metal rather than a combined effort of metals, which emphasizes the antagonistic effect of heavy metals on the grain oil content [1,120]. Heavy metal changes major and minor fatty acids in food legumes; oleic and linoleic acid decreased significantly in soybeans under heavy metal stress, whereas palmitic, linolenic and stearic acid were markedly increased [120]. The starch content of pea seeds decreased when grown in 2.5 mM Cd [121]. Pb is another heavy metal, and its toxic effects mainly depend on how it reacts with functional groups such as carboxyl, sulfhydryl and amine, which results in a reduction in or loss of enzymatic activity vital for cell function. The total soluble sugars, soluble proteins and starch content of the common bean decreased with the increase in the Cd and Pb concentration when extended with different concentrations of Cd and Pb (1.5, 2.0, 2.5, 3.0 g kg\(^{-1}\) for Cd and 2, 4, 6, 8 g kg\(^{-1}\) for Pb) compared to control plants [118]. Pea grains store Fe and Zn, while lentils accumulate low levels of Pb. The grain protein content of maximum food legumes decreased with the increase in Cd, Cr, Ni, Zn, Pb and Cu, except for chickpeas and mung beans. A Zn application in chickpeas decreased the grain protein content [9]. The minerals’ uptake, accumulation and nutritional composition of legume seeds and shoots may be altered by As. The nutrient balance of Zn, Mn and Mg in peas was altered by As when exposed to 12.5 to 73.3 mg of sodium arsenate/kg dry weight of soil [117]. The accumulation of seed reserves such as starch, proteins, sugars and minerals was significantly inhibited in chickpeas when grown in As (5 mg/kg of dry soil) compared to the controls, indicating that As prominently reduced the grain quality of chickpeas [121].

7. Impacts of Abiotic Stresses on Nodulation and Nitrogen Fixation

Abiotic stresses affect the nodulation and nitrogen fixation of legumes. Most importantly, the drought stress because the formation, growth and functioning of nodules are being affected when there is a shortage of water in soil [122]. Under drought stress, different factors interfere with the nitrogenase enzymatic activity such as reducing the stock of ATP, reducing the respiration efficiency, altering the pH gradient across the bacteroid membrane and regulating nitrogenase by substrate or gene expression. A Considerable decrease in nitrogen fixation during soil dehydration has been found in many grain legumes such as chickpeas, peas, cowpeas, faba beans, etc. The stunted growth of a nodule and a partially developed root cortex-embedded organ was found when a nodule was subjected to dry conditions. Nitrogen fixation as well as nodule respiration degrades equivalently to the degree of water insufficiency under drought stress [123]. Nodule oxygen permeability reduces under drought stress. As a result, nodules face a limited ability to carry out oxidative phosphorylation, although maintaining relatively high photosynthesis [124].

On the other hand, salinity is one of the most limiting factors for leguminous nitrogen fixation. Nodule formation significantly decreases under soil salinity, simultaneously reducing the symbiotic nitrogen fixation. Salt stress reduces root hair formation, thus inhibiting infection threads and, ultimately, degrading the number of nodules. This happens because of the deleterious effect of salt stress on the colonization of the legume root, which restricts the Rhizobia bacterial growth [125].

Heavy metals are another constraint for nitrogen fixation by bacteria in a legume plant. Such metals firstly affect the soil microorganisms. The composition and activities of microbes are being changed dramatically by a high concentration of heavy metals in the soil [126]. The morphology, growth and many activities of multiple groups of microorganisms are found to be altered by the heavy metals such as Ni, Cu, Cd, As and Zn [127]. These metals have been found to enhance lipid peroxidation [128], thus creating oxidative stress for both rhizobia and host legumes. The induction of nodal genes was
found to be inhibited by a high concentration of heavy metals, which cause a loss of the N-fixing ability of rhizobia in association with some leguminous hosts [9].

8. Conclusions

The diverse climatic changes are significantly affecting the agroecosystem. Besides abiotic stresses, pandemic situations created by viruses such as COVID-19 have also hampered the economic and agricultural systems globally. Under such a situation, food legumes are the cheapest source of protein acquisition. The consumption of good quality legumes can be a replacement for animal protein. That is why there is considerable scope for exploring these safe protein sources in the cropping pattern. However, grain legumes’ production, grain composition and quality are hindered by several abiotic stresses, as stated in this review. A collection of stress tolerance diverse germplasms, the development of tolerant variety/varieties through plant breeding or advanced biotechnologies and the introduction of suitable agronomic management packages could be helpful to overcome the abiotic stress effects on legumes for their yield and nutritional quality improvement. This review not only provides an overview on the research that has been conducted, but also to identify the areas in which research on grain legumes is still needed in order to mitigate the abiotic stress effects on legumes.

Author Contributions: Conceptualization, S.S. and A.K.M.A.I.; methodology, S.S. and A.K.M.A.I.; validation, S.S. and A.K.M.A.I.; formal analysis, F.M.E. and A.K.M.A.I.; investigation, S.S., F.M.E. and A.K.M.A.I.; resources, S.S., F.M.E. and A.K.M.A.I.; data curation, S.S., F.M.E. and A.K.M.A.I.; writing—original draft preparation, S.S., M.K., F.M.E. and A.K.M.A.I.; writing—review and editing, A.K.M.A.I., M.P.A., S.D., R.D. and A.K.M.M.I.; visualization, S.S., A.K.M.M.I. and A.K.M.A.I.; supervision, A.K.M.A.I.; project administration, A.K.M.A.I.; funding acquisition, A.K.M.A.I., R.D. and S.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge their gratitude towards university authority for the support from Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh through research program of Department of Genetics and Plant Breeding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Farooq, M.; Hussain, M.; Usman, M.; Farooq, S.; Alghamdi, S.S.; Siddique, K.H.M. Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes. *J. Agric. Food Chem.* 2018, 66, 8887–8897. [CrossRef] [PubMed]
2. Ullah, A.; Romdhane, L.; Rehman, A.; Farooq, M. Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. *Plant Physiol. Biochem.* 2019, 143, 11–18. [CrossRef]
3. Global Network against Food Crisis. Global Report on Food Crises. Food Security Information Network. 2020. Available online: https://www.sadc.int/files/8415/8818/9448/GRFC_2020_ONLINE.pdf (accessed on 22 May 2021).
4. Jimenez-Lopez, J.C.; Singh, K.B.; Clemente, A.; Nelson, M.N.; Ochatt, S.; Smith, P.M.C. Editorial: Legumes for Global Food Security. *Front. Plant Sci.* 2020, 11, 926. [CrossRef]
5. Liu, Y.; Li, J.; Zhu, Y.; Jones, A.; Rose, R.J.; Song, Y. Heat Stress in Legume Seed Setting: Effects, Causes, and Future Prospects. *Front. Plant Sci.* 2019, 10, 938. [CrossRef]
6. El Sabagh, A.; Hossain, A.; Barutcular, C.; Gormus, O.; Ahmad, Z.; Hussain, S.; Islam, M.S.; Alharby, H.; Bamagoos, A.; Kumar, N.; et al. Effects of drought stress on the quality of major oilseed crops: Implications and possible mitigation strategies—A review. *Appl. Ecol. Environ. Res.* 2019, 17, 4019–4043. [CrossRef]
7. Sehrawat, N.; Yadav, M.; Bhat, K.; Sairam, R.; Jaiwal, P. Effect of salinity stress on mungbean [*Vigna radiata* (L.) Wilczek] during consecutive summer and spring seasons. *J. Agric. Sci.* 2015, 60, 23–32. [CrossRef]
8. Garg, N.; Bhandari, P. Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of *Cicer arietinum* L. genotypes under salinity stress. *Plant. Growth Regul.* 2016, 78, 371–387. [CrossRef]
9. Lebrazi, S.; Fikri-Benbrahim, K. Rhizobium-Legume symbioses: Heavy metal effects and principal approaches for bioremediation of contaminated soil. In Legumes Soil Health Sustainable Management; Springer: Singapore, 2018; pp. 205–233. [CrossRef]
10. Ali, Q.; Malik, A. Genetic evaluation of legume species under heavy metal and biogas. Biol. Clin. Sci. Res. J. 2021, 2021, 1–6. [CrossRef]
11. Considine, M.J.; Siddique, K.H.M.; Foyer, C.H. Nature’s pulse power: Legumes, food security and climate change. J. Exp. Bot. 2017, 68, 1815–1818. [CrossRef] [PubMed]
12. Siddique, K.H.; Johansen, C.; Turner, N.C.; Jeuffroy, M.H.; Hashem, A.; Sakar, D.; Gan, Y.; Alghamdi, S.S. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 2012, 32, 45–64. [CrossRef]
13. Stagnari, F.; Maggio, A.; Galiani, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 1–13. [CrossRef]
14. Celmeli, T.; Sari, H.; Canci, H.; Sari, D.; Adak, A.; Eker, T.; Toker, C. The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 2018, 8, 166. [CrossRef]
15. Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Chickpea: Nutritional properties and its benefits. Br. J. Nutr. 2012, 108, S11–S26. [CrossRef] [PubMed]
16. Bouchenak, M.; Lamri-Senhadji, M. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. J. Med. Food. 2013, 16, 185–198. [CrossRef]
17. Kamboj, R.; Nanda, V. Proximate composition, nutritional profile and vitamin content of legumes—A review. Legum Res. 2018, 41, 325–332.
18. Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [CrossRef]
19. Cowpea (Black-Eyed Pea) vs Green Bean—In-Depth Nutrition Comparison. Available online: https://foodstruct.com/compareimages/lentil-vs-cowpeas-commonblackeyes-crowder-southern-matureseeds-cooked-boiled-withoutsalt.jpg (accessed on 22 May 2021).
20. Telles, A.C.; Kupski, L.; Furlong, E.B. Phenolic compound in beans as protection against mycotoxins. Food Chem. 2017, 214, 293–299. [CrossRef] [PubMed]
21. Arslan, M. Diversity for vitamin and amino acid content in grass pea (Lathyrus sativus L.). Legume Res. 2017, 40, 803–810. [CrossRef]
22. Amarowicz, R. Legume Seeds as an Important Component of Human Diet. Foods 2020, 9, 1812. [CrossRef]
23. Erbersdobler, H.F.; Barth, C.A.; Jahreis, G. Grain Legumes in the Human Nutrition Nutrient Content and Protein Quality of Pulses. Ernähr. Umw. 2017, 64, M550–M554.
24. Myers, J.R.; Kmiecik, K. Common bean: Economic importance and relevance to biological science research. In The Common Bean Genome; Springer: Cham, Switzerland, 2017; pp. 1–20.
25. Eicher, C.K. The Evolution of Agricultural Education and Training: Global Insights of Relevance for Africa; No. 1099-2016-89233; Michigan State University: East Lansing, MI, USA, 2006.
26. Rani, K.; Sharma, P.; Kumar, S.; Wati, L.; Kumar, R.; Gurjar, D.S.; Kumar, D. Legumes for sustainable soil and crop management. In Sustainable Management of Soil and Environment; Springer: Singapore, 2019; pp. 193–215. [CrossRef]
27. Maji, S.; Das, A.; Nath, R.; Bandopadhyay, P.; Das, R.; Gupta, S. Cool Season Food Legumes in Rice Fallows: An Indian Perspective. In Agronomic Crops; Hasanuzzaman, M., Ed.; Production Technologies [Internet]; Springer: Singapore, 2019; Volume 1, pp. 561–605. [CrossRef]
28. Day, L. Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci. Technol. 2013, 32, 25–42. [CrossRef]
29. USDA. National Nutrient Database for Standard Reference Release 28. 733. 2016. Available online: http://www.ars.usda.gov/Services/docs.htm?docid=8964 (accessed on 1 October 2016).
30. Ge, F.K. Legumes in Cropping Systems. Angew. Chem. Int. Ed. 1967, 6, 951–952.
31. Mathobo, VM.; Silungwe, H.; Ramashia, S.E.; Anyasi, T.A. Effects of heat-moisture treatment on the thermal, functional properties and composition of cereal, legume and tuber starches—A review. J. Food Sci. Technol. 2021, 58, 412–426. [CrossRef]
32. Aguilera, Y.; Estrella, I.; Benitez, V.; Esteban, R.M.; Martin-Cabrejas, M.A. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res. Int. 2011, 44, 774–780. [CrossRef]
33. Gan, R.Y.; Deng, Z.Q.; Yan, A.X.; Shah, N.P.; Lui, W.Y.; Chan, C.L.; Corke, H. Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT-Food Sci. Technol. García-Lafuente 2016, 73, 168–177. [CrossRef]
34. Chen, P.X.; Tang, Y.; Marcone, M.F.; Pauls, P.K.; Zhang, B.; Liu, R.; Tsao, R. Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular-and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chem. 2015, 185, 298–308. [CrossRef]
35. Magalhães, S.C.; Taveira, M.; Cabrita, A.R.; Fonseca, A.J.; Valentinò, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [CrossRef] [PubMed]
36. Public Health England. The Eatwell Guide; Department of Health in Association with the Welsh Assembly Government, the Scottish Government and the Food Standards Agency in Northern Ireland L.; Public Health England: London, UK, 2016.
37. Humer, E.; Schedel, K. Fermentation of food and feed: A technology for efficient utilization of macro and trace elements in monogastrics. J. Trace Elem. Med. Biol. 2016, 37, 69–77. [CrossRef] [PubMed]
An image of a single page from the Agronomy 2021, 11, 2238 document.
65. Shirasath and Bhosal Agro India Ltd. Modern Agrotechniques for Cultivation of Black Gram/Urdbean (Vigna mungo L.); Shirasath and Bhosal Agro India Ltd.: Ahmednagar, India, 2017.

66. Vaz Patto, M.C.; Amarowicz, R.; Aryee, A.N.A.; Boye, J.; Chun, J.; Martin-Cabrejas, M.A.; Domoney, C. Achievements and challenges in improving the nutritional quality of food legumes. Crit. Rev. Plant Sci. 2015, 34, 105–143. [CrossRef]

67. Kaushal, N.; Awasthi, R.; Gupta, K.; Gaur, P.; Siddique, K.H.M.; Nayar, H. Heat stress induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct. Plant Biol. 2013, 40, 1334–1349. [CrossRef][PubMed]

68. Sharma, L.; Priya, M.; Bindumadhava, H.; Nair, R.M.; Nayar, H. Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Sci. Hortic. 2016, 213, 379–391. [CrossRef]

69. Sadeghipour, O. The influence of water stress on biomass and harvest index in three mung 460 bean (Vigna radiata L. Wilczek) cultivars. Asian J. Plant Sci. 2009, 8, 245–249. [CrossRef]

70. Thomas, J.M.G.; Prasad, P.V.V.; Boote, K.J.; Allen, L.H., Jr. Seed composition, seedling emergence and early seedling vigor of red kidney bean seed produced at elevated temperature and carbon dioxide. J. Agron. Crop Sci. 2009, 195, 148–156. [CrossRef]

71. Bhandari, K.; Siddique, K.H.; Turner, N.C.; Kaur, J.; Singh, S.; Agrawal, S.K.; Nayar, H. Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J. Crop Improv. 2016, 30, 118–151. [CrossRef]

72. Awasthi, R.; Kaushal, N.; Vadez, V.; Turner, N.C.; Berger, J.; Siddique, K.H.; Nayar, H. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct. Plant Biol. 2014, 41, 1148–1167. [CrossRef][PubMed]

73. Araújo, S.S.; Beebe, S.; Crespi, M.; Delbreil, B.; González, E.M.; Gruber, V.; Vaz Patto, M.C. Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. Crit. Rev. Plant Sci. 2015, 34, 237–280. [CrossRef]

74. Siddiqui, M.H.; Al-Khaishany, M.Y.; Al-Qutami, M.A.; Al-Whaibi, M.H.; Grover, A.; Ali, H.M.; Al-Wahibi, M.S. Morphological and physiological characterization of different genotypes of fava bean under heat stress. Saudi J. Biol. Sci. 2015, 22, 656–663. [CrossRef]

75. Croser, J.S.; Clarke, H.J.; Siddique, K.H.M.; Khan, T.N. Low temperature stress: Implications for chickpea (Cicer arietinum L.) improvement. Crit. Rev. Plant Sci. 2003, 22, 185–219. [CrossRef]

76. Siddiqui, M.H.; Al-Khaishany, M.Y.; Al-Qutami, M.A.; Al-Whaibi, M.H.; Grover, A.; Ali, H.M.; Al-Wahibi, M.S. Morphological and physiological characteristics of chickpea accessions under low temperature stress. Russ. J. Plant Physiol. 2011, 58, 157–163. [CrossRef]

77. Shunmugam, A.S.K.; Kannan, U.; Jiang, Y.; Daba, K.A.; Gorim, L.Y. Physiology Based Approaches for Breeding of Next-Generation Food Legumes. Plants 2018, 7, 72. [CrossRef]

78. Kumar, S.; Nayar, H.; Bhanwara, R.K.; Upadhyaya, H.D. Chilling Stress Effects on Reproductive Biology of Chickpea. J. Sat. Agric. Res. 2010, 8, 1–14. Available online: http://oar.icrisat.org/id/eprint/5374 (accessed on 22 May 2021).

79. Masbou, A.; Shaﬁq, S.; Lake, L. Radiant frost tolerance in pulse crops—A review. Euphytica 2010, 172, 1–12. [CrossRef]

80. Peix, A.; Ramirez-Bahena, M.H.; Velazquez, E.; Bedmar, E.J. Bacterial associations with legumes. Crit. Rev. Plant Sci. 2015, 34, 17–42. [CrossRef]

81. Farooq, M.; Gogoi, N.; Barthakur, S.; Baroowa, B.; Bharadwaj, N.; Alghamdi, S.S. Drought Stress in Grain Legumes during Different Growth Stages in the HuaiBei Plain, China. Agronomy 2018, 8, 97. [CrossRef]
91. Varshney, R.K.; Thudi, M.; Nayak, S.N.; Gaur, P.M.; Kashiwagi, J.; Krishnamurthy, L.; Jaganathan, D.; Koppolu, J.; Bohra, A.; Tripathi, S. Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2014, 127, 445–462. [CrossRef]

92. Kazai, P.; Noulas, C.; Khah, E.; Vlachostergios, D. Yield and seed quality parameters of common bean cultivars grown under water and heat stress field conditions. AIMS Agric. Food 2019, 4, 285–302. [CrossRef]

93. Khan, R.; Srivastava, R.; Abdin, M.Z.; Manzoor, N.M. Effect of soil contamination with heavy metals on soybean seed oil quality. Eur. Food Res. Technol. 2013, 236, 707–714. [CrossRef]

94. Allahmoradi, P.; Mansourifar, C.; Saiedi, M.; Jalali Honarmand, S. Effect of different water deficiency levels on some antioxidants at di erent growth stages of lentil (Lens culinaris L.). Adv. Environ. Biol. 2013, 7, 535–543.

95. Bellaloui, N.; Mengistu, A.; Kassem, M.A. Effects of genetics and environment on fatty acid stability in soybean seed. Food Nutr. Sci. 2013, 4, 165–175. [CrossRef]

96. Rozrokhi, M.; Rabghour, S.H.; Armin, M.; Asgharipour, M. The effects of drought stress on some biochemical traits in twenty genotypes of chickpea. Eur. J. Exp. Biol. 2012, 2, 1980–1987.

97. Ahmad, A.; Selim, M.M.; Alderfasi, A.A.; Afzal, M. Effect of drought stress on mung bean (Vigna radiata L.) under arid climatic conditions of Saudi Arabia. Ecosyst. Sustain. Dev. 2015, 192, 185–193.

98. Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [CrossRef]

99. El Sayed, H.E.S.A. Influence of NaCl and NaSO4 treatments on growth development of broad bean (Vicia faba L.). Plant J. Life Sci. 2011, 5, 513–523.

100. Farooq, M.; Gogo, N.; Hussain, M.; Barthakur, S.; Paul, S.; Bharadwaj, N.; Migdadi, H.M.; Alghamdi, S.S.; Siddique, K.H. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem. 2017, 118, 199–217. [CrossRef]

101. Talei, D.; Kadir, M.A.; Yusop, M.K.; Abdullah, M.P.; Valdiani, A. Salinity effects on macro and micronutrients uptake in medicinal plant King of Bitters (Andrographis paniculata Nees.). Plant OMICS 2012, 5, 271–278.

102. Torabian, S.; Farhangi-Abriz, S.; Rithjen, J. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mungbean under salt stress. Plant Physiol. Biochem. 2018, 129, 141–149. [CrossRef]

103. Nadeem, M.; Li, J.; Yahya, M.; Wang, M.; Ali, A.; Cheng, A.; Wang, X.; Ma, C. Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. Int. J. Mol. Sci. 2019, 20, 799. [CrossRef] [PubMed]

104. Khan, H.A.; Siddique, K.H.M.; Colmer, T.D. Vegetative and reproductive growth of salt stressed chickpea are carbon-limited: Sucrose infusion at the reproductive stage improves salt tolerance. J. Exp. Bot. 2017, 68, 2001–2011. [CrossRef]

105. Zhou, R.; Hyldgaard, B.; Yu, X.; Rosenqvist, E.; U1, X.; Wu, Z.; Ottosen, C.O.; Zhao, T. Phenotyping of faba beans at di erent growth stages of lentil (Lens culinaris). J. Exp. Bot. 2017, 68, 256–263. [CrossRef] [PubMed]

106. Amira, M.S.; Qados, A. Effect of arginine on growth, nutrient composition, yield and nutritional value of mung bean plants grown under salinity stress. Nat. Sci. 2010, 8, 30–42.

107. Sehrawat, N.; Yadav, M.; Sharma, A.K.; Kumar, V.; Bhat, K.V. Salt stress and mungbean [Vigna radiata (L.) Wilczek]: Effects, physiological perspective and management practices for alleviating salinity. Arch. Agron. Soil Sci. 2019, 65, 1287–1301. [CrossRef]

108. Ghassemi-Golezani, K.; Nikpour-Rashidabad, N.; Zehtab-Salmasi, S. Effect of salinity on yield and yield components of pinto bean cultivars. Int. J. Plant Annuin. Sci. 2012, 2, 47–51.

109. Ahmad, M.; Zahir, Z.A.; Asghar, H.N.; Asghar, M. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1- aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 2011, 57, 578–589. [CrossRef]

110. Khan, M.S.A.; Karim, M.A.; Haque, M.M.; Islam, M.M.; Karim, A.J.M.S.; Mian, M.A.K. Influence of salt and water stress on growth and yield of soybean genotypes. Trop. Agric. Sci. 2016, 39, 167–180.

111. Narula, S.; Anand, R.C.; Dudeja, S.S. Beneficial traits of endophytic bacteria from field pea nodules and plant growth promotion of field pea. J. Food. Legume 2013, 26, 73–79.

112. Hossain, M.A.; Hasanuzzaman, M.; Fujita, M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol. Mol. Biol. Plants 2010, 16, 259–272. [CrossRef] [PubMed]

113. Pokhrel, D.; Bhandari, B.S.; Viraraghavan, T. Arsenic contamination of groundwater in the Terai region of Nepal: An overview of health concerns and treatment options. Int. J. Mol. Sci. 2009, 35, 157–161. [CrossRef]

114. Shi, G.; Liu, C.; Cai, Q.; Liu, Q.; Hou, C. Cadmium Ac- cumulation and Tolerance of Two Safflower Cultivars in Relation to Photosynthesis and Antioxidant Enzymes. Bull. Environ. Contam. Toxicol. 2010, 85, 256–263. [CrossRef] [PubMed]

115. Asati, A.; Pichhode, M.; Nikhil, K. Effect of heavy metals on plants: An overview. Int. J. Appl. Innov. Eng. Manag. 2016, 5, 56–66.

116. Bae, J.; Benoit, D.L.; Watson, A.K. Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environ. Pollut. 2016, 213, 112–118. [CrossRef]

117. Bahnani, R.; Bihamta, M.R.; Habibi, D.; Forozesh, P.; Ahmadvand, S. Effect of cadmium chloride on growth parameters of different bean genotypes (Phaseolus vulgaris L.). ARPN J. Agri. Biol. Sci. 2012, 7, 35–41.

118. Dewan, M.M.; Dingra, H.R. Cadmium partitioning and seed quality in two varieties of pea and their hybrid as influenced by rhizospheric cadmium. Indian J. Plant Physiol. 2004, 9, 15–20.

119. Malik, J.A.; Goel, S.; Sandhir, R.; Nayyar, H. Uptake and distribution of arsenic in chick pea:Effects on seed yield and seed composition. Commun. Soil Sci. Plant Anal. 2011, 42, 1728–1738. [CrossRef]
120. Wei, J.; Cen, K. Contamination and health risk assessment of heavy metals in cereals, legumes, and their products: A case study based on the dietary structure of the residents of Beijing, China. *J. Clean. Prod.* **2020**, *260*, 121001. [CrossRef]

121. Valentine, A.J.; Benedito, V.A.; Kang, Y. Legume nitrogen fixation and soil abiotic stress: From physiology to genomics and beyond. In *Nitrogen Metabolism in Plants in the Post-Genomic Era*; Annual Plant Reviews Book Series; Wiley Online Library: Hoboken, NJ, USA, 2018; Volume 42, pp. 207–248.

122. Kantar, F.; Shivakumar, B.G.; Arrese-Igor, C.; Hafeez, F.Y.; González, E.M.; Imran, A.; Larrainzar, E. Efficient biological nitrogen fixation under warming climates. In *Climate Change and Management of Cool Season Grain Legume Crops*; Springer: Dordrecht, The Netherland, 2010; pp. 283–306.

123. Abdel-Wahab, A.; Abdel-Muhsin, A.M.A.; Ali, E.; Suleiman, S.; Ahmed, S.; Walliker, D.; Babiker, H.A. Dynamics of gametocytes among *Plasmodium falciparum* clones in natural infections in an area of highly seasonal transmission. *J. Infect. Dis.* **2002**, *12**, 1838–1842. [CrossRef] [PubMed]

124. Abd-Alla, M.H.; Nafady, N.A.; Bashandy, S.R.; Hassan, A.A. Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (*Cicer arietinum* L.) by triple microbial inoculation. *Rhizosphere* **2019**, *10*, 100148. [CrossRef]

125. Abd-Alla, M.H.; Issa, A.A.; Ohyama, T. Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. *Adv. Biol. Ecol. Nitrogen Fixat.* **2014**, *9*, 1.

126. Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. *Front. Plant Sci.* **2016**, *6*, 1143. [CrossRef]

127. Wani, P.; Khan, M. Bioremediation of lead by a plant growth promoting *Rhizobium* species RL9. *Bacteriol. J.* **2012**, *2*, 66–78. [CrossRef]

128. Meena, R.S.; Yadav, R.S.; Meena, H.; Kumar, S.; Meena, Y.K.; Singh, A. Towards the current need to enhance legume productivity and soil sustainability worldwide: A book review. *J. Clean. Prod.* **2015**, *104*, S13–S15. [CrossRef]