INTRODUCTION

Sponges are spineless animals belong to phylum, “the pore bearers” (Porifera), serve as most primitive multicelled animals, existing for millions of year ago. Marine sponges are soft bodied, sessile and filter feeders assembling small particles of food from sea water rising through their bodies (Hadas et al., 2009; Ramel, 2010). All over the world, marine sponges are the member of benthic communities of a marine environment, including its biomass as well as its ability to promote pelagic and benthic processes (Maldonado et al., 2005), also provide habitat for other organisms (Hultgren and Duffy, 2010). Marine life is a massive source for the synthesis of novel molecules and it need to be studied. According to evolutionary history, marine microorganisms are more diversified than terrestrial microorganisms. Marine sponges frequently produce bioactive compounds as compared to other living microorganisms. Because sponges cannot move and lack physical defenses, they are highly susceptible to marine predators such as fish, turtles, and invertebrates. Thus, it is not surprising that sponges have developed a wide suite of defensive chemicals to deter predators (Thomas et al., 2010). They also use their defensive chemicals to keep the offspring of small plants and animals (fouling organisms) from settling onto their outer surfaces (Mol et al., 2009; Hertiani et al., 2010). These sessile animals are a prolific source of a huge diversity of secondary metabolites that has been discovered over the past 50 years (Faulkner, 2002; Blunt et al., 2005; Laport et al., 2009; Hertiani et al., 2010; Proksch et al., 2010). The bioactive compounds are very diverse in both structure and bioactivity. The known species of sponges are more than 8000 (Van soest et al., 2014) widely distributed in sea and freshwater environment (Hooper and van Soest, 2002).

In the early 1950s, pharmaceutical interest among sponges have been started and it has started by the investigation of the nucleosides spongouridine and spongothymidine in the marine sponge i.e. Cryptotheca crypta (Bergmann and Feeney, 1950; 1951). These nucleosides were the basic root for the synthesis of ara-A, an antiviral drug and ara-C, the first marine-derived anticancer agent (Proksch et al., 2002). Currently,
ara-C used in the treatment of lymphoma and leukemia, a part of this one of its fluorinated derivative also permitted for the treatment of lung, pancreatic (Momparler, 2013), breast and bladder cancer (Schwartsmann, 2000). On the other hand, it also been revealed that lower invertebrates have more lipid components such as sterols, fatty acids and other unsaponifiable elements as compared to vertebrate animals (Bergmann and Swift, 1951; Piel, 2004). Up till now approximately 20,000 bioactive compounds have been found in marine organisms (Hu et al., 2011). However, most of these biologically active compounds, which are predominantly terpenoids and alkaloids, have been isolated from sponges (Leal et al., 2012).

http://dx.doi.org/10.4062/biomolther.2016.067
Regarding the diversity of marine compounds, sponges are the most important producer. Every year around 5300 different natural products and new compounds have been isolated from marine sponges (Faulkner, 2000; 2001; 2002). Sponges are most abundantly produce novel compounds, including more than 200 novel metabolites, every year (Blunt et al., 2006; Turk et al., 2013). About 300 novel compounds were reported in 2011 from the phylum Porifera (Blunt et al., 2013). Moreover, some of the sponge-derived substances are however in a process of a clinical and pre-clinical trial (e.g., as anti-inflammatory or anticancer agents) in comparison of those substances that derived from different marine phylum (Blunt et al., 2005; Martins et al., 2014).

Sponge-derived or other marine microorganism’s associated bioactive substances have possessed antibacterial, antiviral, antifungal, antimarial, antihelminthic, immunosuppressive, muscle relaxants and anti-inflammatory activities. Sponge substances have remarkable chemical diversity. A part of uncommon nucleosides, marine sponges also able to produce other classes of amino acid derivatives including cyclic peptides, alkaloids, steroids, terpenes, fatty acids, peroxides, etc. (Fig. 1) (Donia and Hamann, 2003; Blunt et al., 2005, 2006; Sipkema et al., 2005; Piel, 2006). Although few representatives from sponges are approved as drugs, hundreds of new compounds with interesting pharmacological activities are discovered from sponges every year. Several sponge-derived compounds are already in clinical trials as agents against cancer, microbial infections, inflammation and other diseases. However, in many cases drug development is severely hampered by the limited supply of the respective compounds, as they are often present only in minute amounts in the sponge tissue. These reasons have moved the pharmaceutical drug discovery programs away from natural products in favor of synthetic approaches. However, the abundance of synthetic compounds with similar chemical functional groups and, therefore, limited chemical diversity has renewed interest in nature as a good resource for finding new fascinating leads to be applied to design the next generation of drugs.

In most cases development and production of sponge-derived drugs is hindered by environmental concerns and technical problems associated with harvesting large amounts of sponges. The presence of possibly producing microbial symbionts is therefore especially intriguing, as a sustainable source of sponge-derived drug candidates could be generated by establishing a symbiont culture or by transferring its biosynthetic genes into culturable bacteria. For example, Manzamine alkaloids, the promising leads for extended preclinical assessment against malaria, tuberculosis and HIV, have been previously isolated from sponge *Acanthostrongyliphora* sp. and have also been isolated from the associated microorganism *Micromonospora* sp. (Hill et al., 2005). A dinoflagellate *Prorocentrum lima* produces okadaic acid (Morton et al., 1998), first isolated from the host sponge *Halichondria okadai* (Kobayashi and Ishibashi, 1993). A *Vibrio* sp. produces peptide, andrimid and brominated biphenyl ethers (Maria et al., 2011) that was purified from the sponge *Hyatella* sp. extract (Oclari et al., 1994) and sponge *Dysidea* sp. (Elyakov et al., 1991). Thus, the microbial association that occurs on or in sponges could be of great interest as a solution of the supply problem of most of pharmaceutical compounds produced by sponges.

Therefore, the main focus of this review is to highlight the survey of discoveries of products derived from marine sponge-
Examples of antibacterial compounds

Table 1.

Substance	Species	Activity Spectrum	MIC Value	References
Discodermins B, C and D	Cyclic peptide	Antibacterial (S. aureus, P. aeruginosa)	3 μg/ml*	Matsunaga et al., 1985
Arenosclerins A-C	Alkyl pepridine alkaloid	Antibacterial (S. aureus, P. aeruginosa)	16 μg/ml*, 30 μg/ml**	et al., 2002
Haliclona cyclamine E	Alkylpiperidine alkaloids	Antibacterial (S. aureus, P. aeruginosa)	8 μg/ml*	Torres et al., 2002
Caminus sphaeroconia E	Alkaloid	Antibacterial (E. coli, S. aureus)	16 μg/ml*	Linington et al., 2006
6-hydroxymanzamine E	Alkaloid	Antibacterial (M. luteus)	0.9 μg/ml**	Rao et al., 2004
Cribrostatin 6	Alkaloid	Antibacterial (M. luteus)	≤2 μg/ml	Pettit et al., 2004
Cribrostatin 3	Alkaloid	Antibacterial (N. gonorrheae)	3 μg/ml*	Petit et al., 2004
Cribrochalina sp.	Terpenoid	Antibacterial (C. varians)	16 μg/ml*	Moura et al., 2006
Cribrochalina sp.	Terpenoid	Antibacterial (C. varians)	16 μg/ml*	Moura et al., 2006
Isoaaptamine	Alkaloid	Antibacterial (S. aureus)	16 μg/ml*	Jang et al., 2006
(–)-Microcionin-1	Meroterpenes	Antibacterial (M. luteus)	7 μg/ml	Gaspar et al., 2008
Cacospongia sp.	Meroterpenes	Antibacterial (S. epidermidis)	20 μg/ml	Rubio et al., 2007
Cribrochalina sp.	Meroterpenes	Antibacterial (C. varians)	3.7 μg/ml	Jang et al., 2007
Faschiocarpus sp.	Meroterpenes	Antibacterial (C. varians)	6 μg/ml	Cortes et al., 2005
Variabilis, was found to be an antibiotic	(Fig. 1) (de Silva and Scheuer, 1980). This is the only example of antibiotic sesterterpenoid discovered so far.			

ANTIVIRAL ACTIVITY

The officially approved antiviral drug armamentarium for clinical use contains approximately 40 substances and most of them were discovered recently. It was reported that half of the recently discovered substances are used for the human immunodeficiency virus (HIV) infection treatment (De Clercq, 2004; Yasuhara-Bell and Lu, 2010). The significance of new antiviral agents development help to increase the number of available drugs becomes clear. It was observed that the adenosine serotype 5 (AdV-5) is much constant in the environment for long time, and connected to respiratory infections with no special cure (Wiedbrauk and Johnston, 1992; Sipkema et al., 2005). There are some viruses such as rotavirus, which are mainly responsible for severe gastroenteritis in human and animals. The treatment of diarrhea is only possible by symptomatic, which may cause the infection of children and immune compromised patients even it can lead to death (White and Fenner, 1986; Grimwood and Lambert, 2009).

Some new approaches being use to introduce new antiviral agents from marine sources and many promising therapeutic leads because sponges are one of the rich source of antiviral property compounds (Table 2). Maximum quantities of HIV-inhibiting compounds were introduced, while they do not reflect greater potential of sponges to fight against AIDS compared with other viral diseases. Researchers use screening techniques for anti-HIV activity has led to introducing of different compounds, although the system of inhibition is still not clear. It has been reported recently by many researchers that HIV-inhibiting compounds were produced by different sponges (Ford et al., 1999; Qureshi and Faulkner, 1999; Yasuhara-Bell and Lu, 2010; Sagar et al., 2010). For instance, avarol is a compound which inhibits the progression of HIV infection up to some extent. The data form in vitro experiment and animal show that avarol combines have very useful properties and increase humoral immune response (Muller et al., 1987; Amigó et al., 2007). HIV inhibits completely by avarol and blocking the production of natural UAG suppressor glutamine transfer tRNA. After viral infection, the production of tRNA is up-regulated, which is necessary for the viral protease and viral proliferation synthesis. The low Concentration of avarol 0.3 and 0.9 μM resulted in 50 and 80% of inhibition of virus released from infected cells (Muller et al., 1987). Moreover, the derivatives of avarol such as 6'- hydroxy avarol and 3'-hydroxy avarone were noted as very strong inhibitors of HIV reverse transcriptase (Fig. 2). Avarol play very important role during the early stages of HIV infection and it also has a specific target for antiviral drugs, while it convert the viral genomic RNA into proviral double-stranded DNA, and later on it integrated into the host chromosomal DNA (Loya and Hizi, 1990). Another important antiviral discovery from marine source reported is the nucleoside ara A (vidarabine) which was isolated from Cryptothetya crypta sponge and was first synthesized in 1960 (Walter, 2005). Ara-A is an arabinosyl nucleosides which inhibits viral DNA synthesis (Bergmann and Swift, 1951; Blunt et al., 2006; Sagar et al., 2010). Research proved that our biological systems can recognize nucleoside base just after sug-
ar moiety modifications, then chemists started to replace the pentoses by acyclic entities or with sugar molecules, it lead to the development of azidothymidine (zidovudine) drug. An examples of semisynthetic arabinosyl nucleosides modifications are Ara-A, acyclovir, ara-C (Fig. 1, 3) and azidothymidine are in clinical use (De Clercq et al., 2002; Sagar et al., 2010).

ANTIFungal ACTIVITY

In the last decades, the fungal infection (especially invasive mycoses) dramatically increased in those individuals suffering from AIDS, immune depressants, hematological malignancies, and transplant recipients, increased the need of new antifungals (García-Ruiz et al., 2004; Pontón et al., 2000). Fungal infection remains a major direct cause of death for those patients who are treated for malignant disease (Sandven, 2000; Ellis et al., 2000). Fungal causing malignant diseases are a major cause of life threatening diseases as well as resistance to them is a major problem (García-Ruiz et al., 2004; Giusiano et al., 2004; Walsh et al., 2004; Giusiano et al., 2005). Immunocompromised patients are mainly infected by Candida, Aspergillus, Cryptococcus and other opportunistic fungi. Currently using fungicides are less diversified than antimicrobial substances and their use is restricted because of biological system toxicity (Rahden-Staron, 2002).

Jaspamide is the first example of cyclodepsipeptide 19-membered macrocyclic depsipeptide (Fig. 1) isolated from the sponges Jaspis sp has a selective in vitro antifungal activity with MIC of 25 μg/ml against C. albicans while in vivo topical activity of a 2% solution against Candida vaginal infection in mice (Zabriskie et al., 1986; Ebada et al., 2009). The other examples of important antifungals examined in vitro with MIC values have been listed (Table 3).

ANTIMALARIAL PROPERTIES

In sub-Saharan Africa, malaria is a predominant disease including that it is also serious public health problem in some areas of South America and Southeast Asia. Most of the malaria related deaths are caused by Plasmodium falciparum parasite (Mishra et al., 1999; Caraballo and King, 2014; WHO, 2015). Recently, most widely disseminated malarial species all over the world is Plasmodium vivax. P. vivax is the predominant specie in the Asia and America, while in Brazil this species represents around 80% of clinical issue annually (Brazilian Health Ministry, 2002). Sub-Saharan Africa carries a disproportionately high share of the global malaria burden. In 2015, the region was home to 88% of malaria cases and 90% of malaria deaths (Baird, 2013; WHO, 2015). During last decades,
some of the antimicrobial compounds have been derived from sponges (Table 4, Fig. 4). Increasing resistance among Plasmodium strains created a need to discover new antimalarial compounds. Plasmadium falciparum has become resistant to chloroquine, pyrimethamine, and sulfadoxine (Bwijo et al., 2002). Manzamine A displayed a potent in vitro antimalarial activity against P. falciparum (D6 clone), with MIC of 0.0045 μg/ml (Sakai et al., 1986; Ashok et al., 2002; Fattorusso and Taglialetela, 2009). According to research antimalarial activity of manzamine A is due to enhancing immune response (Ang et al., 2001).

Table 3. Examples of antiviral compounds

Substances	Chemistry	Species	Action spectrum	MIC value	References
Eurysterols A-B	Sterols	Eurysspongia sp	C. albicans, Amphoterician B-resistant	62.5 μg/ml*, 15.6 μg/ml	Boonlarpreadap and Faulkner, 2007
Naammine D	Imidazole alkaloid	Leucceta cf. chagosensis	C. neoformans	6.25 μg/ml**	Dunbar et al., 2000
Mirabiben B	Tricyclic guanidine	Monanchora unguifera	C. neoformans	7.0 μg/ml**	Hua et al., 2004
Hamacanthin A	Indole alkaloid	Spongosoritites sp.	C. albicans	6.25 μg/ml*	Oh et al., 2006
Macanthins A-B	Indole alkaloid	Spongosoritites sp.	C. albicans, C. neoformans	1.6 μg/ml*, 6.2 μg/ml**	Oh et al., 2006
Agelasines and agelasamines	Purine derivative	Agelas sp.	C. krusei	15.6 μg/ml	Vik et al., 2007

MIC: Minimum Inhibitory Concentration, *C. albicans, **C. neoformans.

Table 4. Examples of anti-malarial compounds

Substances	Chemistry	Species	Action spectrum	IC_{50} value	References
Monamphilectine A	Antimalarial [i]-lactam	Hymeniacidon sp	P. falciparum	0.6 μM***	Avilés and Rodriguez, 2010
Manzamine A	Alkaloids	e.g., Halicoma sp./ Halichondrida	T. gondii, P. berghei, P. falciparum	4.5 ng/ml***	D Ambrosio et al., 1998
Kalihinol A	Isonitril-containing kalinhinane diterpenoid	Acanthella sp./ Halichondrida	P. falciparum	0.0005 μg/ml**	D Ambrosio et al., 1998
Diisocynaoacodine	Tetracyclic diterpenic Macrolides	Cymbastela hooperi	P. falciparum	0.005 μg/ml**	Miyonoka et al., 1998
Siomosceptrelin-B	Noristerpenic acid	Diacarnus erythraeaus	T. gondii, P. falciparum	0.002 μg/ml**	Konig et al., 1996
(E)-Oridin	Alkaloids	Agelas oroides	P. falciparum	0.30 μg/ml**	Yousaf et al., 2002
Plakortin and dihydroplakortin	Cycloprenoxidase	Plakortis simplex	P. falciparum	1263-1117 nM*	Tasdemir et al., 2007

IC_{50}: Inhibitory Concentration, *P. falciparum (D10), **P. falciparum (D6 clone), ***Chloroquine-resistant P. falciparum (W2).

[1] Fattorusso et al., 2002.

Anti-Inflammatory Activity

Body inflammation is caused by physical or chemical damage or due to infection. In this case, blood is oozing out from blood vessels into tissues (Tan et al., 1997; Franceschi and Campisi, 2014). Manolide is the first sesterterpenoids anti-inflammatory drug derived from marine sponges with several other pharmaceutical properties (Mayer and Jacobs, 1998). Its Anti-inflammatory action is basically an irreversible inhibition of the release of arachidonic acid from phospholipid mem-
Fig. 4. Structure of Antimalarial compounds; Manzamine A; Monamphilectine A; Kalihinol A.

Fig. 5. Diagrammatic process of Inflammatory cascade inside the cell. Phospholipase A2 (PLA2) catalyzes the release of membrane-bound arachidonic acid (AA) to free arachidonic acid. Arachidonic acid is then converted to leukotrienes and prostaglandins by lipooxygenase (LOX) and cyclooxygenase-2 (COX-2), respectively. Sponge derived anti-inflammatory substances are mainly inhibitors of PLA2 or LOX, while nonsteroidal anti-inflammatory drugs (NSAID) inhibit COX-2, but also the constitutive COX-1.
Table 5. Examples of anti-tumor compounds

Compound	Chemistry	Species/order	Mode of action	References
Isoaaptamine	Benzonaphthyridine alkaloid	Aaptos aaptos/Hadromerida	Protein kinase C inhibitor	Fedoreev et al., 1988
Debromohymenialdisine	Pyrrole-guanidine alkaloid, prenylhydroquinone derivative	Hymeniacidonella/Halichondrida	Protein kinase C inhibitor	Kitagawa et al., 1983
Adociasulfates	Triterpenoid hydroquinones	Sarcodragna sp./Dicyocteratida	A1, 3-fucosyltransferase inhibitor	Zapolka-Downar et al., 2001
		Haliclona (aka Adocia) sp./Haplosclerida	Kinesin motor protein inhibitors	
Discordemolide	Linear tetraene lactone	Discodermia dissolute/Lithistida	Stabilization of microtubules	Ter Haar et al., 1996
Pelorurside A	Macrocyclic lactone	Mycole hentschelli/Poecilosclerida	Stabilization of microtubules	Hood et al., 2002
Crambesclammins 1-4	Alkylphenol	Leucetta cf. chagosensis	Topoisomerase II inhibitor	Hood et al., 2002
Discorhabdin D	Imidazole alkaloid	Agelas mauniscus/Agelasida	Nitric oxide synthetase inhibitor	Juagdan et al., 1995
Glaciasterols A and B	9,11-Secosterol	Aplysilla glacialis/Dendroceratida	Ca2+/channel blocker	Shimosako, 2002
Durumolides A-C	Terpenoid	Lobophytum durus	Inducible NOS and COX-2 inhibition	Cheng et al., 2008
Plakortide P	Polyketide	Plakortis angulosipilatus	TXB2 inhibition	Kossuga et al., 2008
24-methoxypetrosaonpangia	Sesterterpenes	Hyrtios erectus	Unknown	Elhady et al., 2016

Non-specific inhibitors

- Specific inhibitors are specifically active against the tumor.
- Non-specific inhibitors are important compounds used in treating cancer because of their toxic effects on healthy cells. These proteins are responsible for multidrug resistance in human carcinogen binding in these proteins. Another example is the binding site of each protein group is salicylamide A, which is isolated from Thalassia sp. (Griffith and Gross, 1996).

tumor cell line.

The reason is that it increases the concentration of intracellular enzyme from the binding prevention of carcinosarcoma cells with Endoglycosidase Haticlona sp. Etc (Blackburn et al., 2001) and they are protein inhibitors by binding to microtubule binding sites blocking protein function and by there by blocking cell division.

ANTITUMOR ACTIVITY

The phosphatase A2 (PPA2) is an essential factor that increases the concentration of intracellular enzyme from the binding prevention of carcinosarcoma cells with Endoglycosidase Haticlona sp. Etc (Blackburn et al., 2001) and they are protein inhibitors by binding to microtubule binding sites blocking protein function and by there by blocking cell division.

Inhibitors of a cancer cell of a certain type.

1. Non-specific inhibitors

- There are many other sponge derived compounds having anti-tumor activity which are involved in the inflammatory response (Carroll et al., 2001) (Fig. 5).

2. Specific inhibitors

- There are many other sponge derived compounds having anti-tumor activity which are involved in the inflammatory response (Carroll et al., 2001) (Fig. 5).

3. Specific inhibitors

- There are many other sponge derived compounds having anti-tumor activity which are involved in the inflammatory response (Carroll et al., 2001) (Fig. 5).

4. Specific inhibitors

- There are many other sponge derived compounds having anti-tumor activity which are involved in the inflammatory response (Carroll et al., 2001) (Fig. 5).

5. Specific inhibitors

- There are many other sponge derived compounds having anti-tumor activity which are involved in the inflammatory response (Carroll et al., 2001) (Fig. 5).

6. Specific inhibitors

- There are many other sponge derived compounds having anti-tumor activity which are involved in the inflammatory response (Carroll et al., 2001) (Fig. 5).

7. Specific inhibitors

- There are many other sponge derived compounds having anti-tumor activity which are involved in the inflammatory response (Carroll et al., 2001) (Fig. 5).

8. Specific inhibitors

- There are many other sponge derived compounds having anti-tumor activity which are involved in the inflammatory response (Carroll et al., 2001) (Fig. 5).

9. Specific inhibitors

- There are many other sponge derived compounds having anti-tumor activity which are involved in the inflammatory response (Carroll et al., 2001) (Fig. 5).

10. Specific inhibitors

- There are many other sponge derived compounds having anti-tumor activity which are involved in the inflammatory response (Carroll et al., 2001) (Fig. 5).
IMMUNE SUPPRESSIVE ACTIVITY

Nitric oxide synthetase inhibitors, as anti-cancer agents are also responsible for the immune system suppression by downregulating the T-cells (Griffith and Gross, 1996). The ratio of immune system suppression is very highly desired in case of hypersensitivity to antigens (e.g., allergies) medicines or organ transplantations. The cases in which patients receive any donor organ have to persist on life-long medication to prevent rejection by the body immune system as a foreign agent, and for that reasons, it is very important that these medicines should be specific suppressors. To prevent this autoimmune body defensive response and rejection of the donor organ, therefore, now it is a very crucial need for new specific immunosuppressors. A number of new biomolecules with strong immunosuppressive activities, which interfere at different sites of the immune response system have been discovered in marine sponges.

Dysidea sp. have a large contribution in the portion of biomolecules (Mayer *et al.*, 2000; 2004; 2011). 3 polyoxygenated sterols derived from *Dysidea sp.* in North Australia having a strong selective immunosuppressive capability of blocking the binding of interleukin 8 (IL-8), a cytokine that attracts neutrophil into tissue injury site, to the IL-8 receptor (de Almeida Leone *et al.*, 2000). Thus, these polyoxygenated sterols have a specific selective inhibition on primary immune response
(Fig. 6). Correspondingly, Pateamine A derived from Mycale sp., are the selective inhibitors of the production of interleukin 2 (IL-2). IL-2 helps in activation of B cells and T resting cells leading to cause antigen-antibody reaction and produce Secondary immune response. (Romo et al., 1998; Pattenden et al., 2004). Some examples for these suppressants are mentioned in Table 6, Fig. 6.

CARDIOVASCULAR AGENTS

Some of the very common blood-related diseases like diabetes, thrombosis, atherosclerosis etc. have been treated by some marine sponge’s derived substances (Table 7, Fig. 7). The mechanism of blood coagulation is managed by a complex photolytic cascade that leads to the production of fibrin. Fibrin, a major component responsible for blood coagulation has been generated by the peptide cleaving of fibrinogen by thrombin (Kołodziejczyk and Ponczek, 2013). Cyclotheonamide A, isolated from marine sponges Theonella sp (Maryanoff et al., 1993) is an unusual class of Serine protease (an enzyme responsible for the conversion of fibrinogen into fibrin) inhibitor and is a drug of choice for thrombosis (Maryanoff et al., 1993; Schaschke and Sommerhoff, 2010). Eryloside F derived from Erytus formosus sp. was found to be a potent Thrombin-receptor antagonist (Shuman et al., 1993; Stead et al., 2000; Kalinin et al., 2012). Thrombin receptor plays a central role not only in thrombosis but also the main agent to cause atherosclerosis (Fig. 7) (Chackalamannil, 2001; Ikenaga et al., 2016). Atherosclerosis is a disease in which plaque (fats, cholesterol, and calcium etc.) builds up layer by layer inside the arteries and resulting by narrowing of the arteries, causing a barrier to blood circulation leading to serious problems including heart attack, stroke or maybe death (Zapolska-Downar et al., 2001; Ikenaga et al., 2016).

Table 7. Cardiovascular compound examples

Compounds	Chemistry	Species/ order	Mode of action	References
Cyclotheonamide A	Cyclic pentapeptide	*Theonella* sp./Lithistida	Serine protease inhibitor	Maryanoff et al., 1993
Eryloside F	Penasterol disaccharide	*Erytus formosus*/Astrophorida	Thrombin receptor antagonist	Stead et al., 2000
Halichlorine	Cyclic aza Polyketide	*Halichondria okada*/Halichondria	VCAM 1* inhibitor	Arimoto et al., 1998

*VCAM: vascular cell adhesion molecule.
ANTIHELMINTHIC ACTIVITY

A new macrocyclic polyketide lactam tetramic acid, geodin A Magnesium salt, isolated from the marine sponge Geodia sp. exhibited a remarkable nematocidal activity with (LD99=14 μg/ml) against Haemonchus contortus (Capon et al., 1999). The mode of action of the pure Geodin A is not explored yet. Two more studies contributed to the search of novel anthelminthic marine sponge derived products during 2005-6. Two novel alkaloidal betaines (-)-echinobetaine A (1) and (+)-echinobetaine B (2), isolated from marine sponge Echinodictyum sp proved to be a nematocidal with (LD 99=83 and 8.3 μg/mL, respectively) against commercial livestock parasite Haemonchus contortus (Capon et al., 2005). Unfortunately, the mode of action of these compounds was also undetermined. (+)-echinobetaine B’s nematocidal potency was comparable to that of “two commercially available synthetic anthelminthic, closantel and levamisole” (Capon et al., 2005).

MUSCLE RELAXANT

Continuous muscles activation caused by disturbances in the neuromuscular communication that result in muscular stress (Lundberg et al., 1995; Edgar et al., 2002; Hibbs and Zambon, 2011). Muscle relaxants are divided into two parts; centrally and peripherally active. Centrally active can mediate neuromuscular communication while peripherally relaxants are used for local muscle relaxation like stroke or during surgery (Frakes, 2001; Hibbs and Zambon, 2011) Xestospongin C (Fig. 1) isolated from marine sponge Xestospongia sp is a potent α-receptor’s IP3 (Inositol triphosphate) inhibitor and Ca2+ (calcium channel) blocker (Quinn et al., 1980; Gafni et al., 1997; Miyamoto et al., 2000). IP3 is a secondary messenger molecule used in signal transduction and it diffuses throughout the cell and increases the Ca2+ level and resulting cause’s smooth muscles contraction (Fig. 8) (Quinn et al., 1980; Nausch et al., 2010). S1319 isolated from a Dysidea sp. (Suzuki et al., 1999) is another substance with a remarkable muscle relaxing capability. Its mechanism of action is to agonist the β-Adrenoreceptor. β-Adrenoreceptors are of two types β-1 and β-2. β-1 receptors are available in heart increases heart rate, myocardial contractility and increases conduction velocity while β-2 receptors are available in lungs and uterus responsible for dilation of bronchial smooth muscles, dilation of blood vessels in skeletal smooth muscles and relaxation of uterus muscles (Dennedy et al., 2002; Barrese and Taglialetela, 2013). S1319 have the uterus relaxing capability which can be therapeutically used at infant’s delivery time (Dennedy et al., 2002) and bronchodilation property which can be used as antiasthmatic (Suzuki et al., 1999). However, because of their low selectivity, they have some side effects like activation of β-1 receptors resulting arterial hypertension, tachycardia and coronary heart disease (Borchard, 1998). Therefore, there is a desired continued research in interest to find selective β-agonists.

Fig. 8. The mechanism of adrenergic receptors. A represent α-receptors and trigger the IP3 (Inositol triphosphate) which then increase the Ca2+ level in cytoplasm and causing muscles contraction. B represents β-adrenoreceptors. The I represents Marine compounds. Xestospongin C inhibit the phospholipase enzyme which play a key role in activation of IP3 (Inositol triphosphate) and block Ca2+ channels. S1319 B-2 receptor agonist resulting Bronchodilation and uterus relaxation.
CONCLUSION

Sponge-derived substances span a wide range of chemistry (e.g., alkaloid, peptide, terpenoid and polyketides) with an equally variety of biotechnological properties (e.g., Antibacterial, antifungal, antiviral, immuno-suppressive, cardiovascular and anti-parasitic) (Ang et al., 2001; Torres et al., 2002). The relationship between the chemistry of the secondary metabolites originated from marine sponges and their mode of action on disease in vivo is mostly not obvious (interaction with DNA to combat tumors, or inhibition of α/β receptors to provide muscle relaxation). Moreover, in drug discovery, it is frequently observed that a certain series of compounds that exhibited the most potent inhibitors in vitro turned out not to be the drug of choice in vivo. It is likely that for every compound prior to coming out to the market, its profile should be with a distinct chemistry, improved bioavailability with lesser side effects.

Now, there are some significant reports of activities from a particular class of metabolites, the manzamines from marine sponges as potential drugs that might be effective against HIV (Muller et al., 1987), malaria (Konig et al., 1996), tuberculosis (Schwartmann, 2000) and some other diseases. Other substances with best anti-pathogenic profiles like ara-A, ara-C, acyclovir are in clinical use and are all examples of products originated from marine sponges (Muller et al., 1987).

The potency of sponge-derived medicines lies in the fact that each of these thousands of metabolites and their derivatives has its own specific dose-related efficacy, inhibitory effect, and potential side effects that determine its suitability for medicinal use. Unfortunately, these secondary metabolites are usually present in very trace amounts, and natural stocks are too small which is one of the major obstacles in sustaining the development of widely available medicines. An example is avarol (D. avara sponge), a potent anti-HIV drug (Muller et al., 1987), that was in preclinical assessment. However, further studies on this natural product stopped due to an insufficient amount of sponge for its isolation (Muller et al., 2004). In addition, the active core or skeleton of these compounds may be used as a vehicle to generate derivatives with their own distinct efficacy and side effects. Therefore, the most significant challenge in the transformation of bioactive molecules into medicines is now to screen the drug treasure house of sponges and elect those that illustrate a precise mode of action with the desired characteristics towards a disease. A major question for the future still persists, how to actually prepare the potential novel drugs in a bulk quantity.

REFERENCES

Amade, P., Charronin, G., Baby, C. and Vacelet, J. (1987) Antimicrobial activity of marine sponges of Mediterranean. Sea. Mar. Biol. 94, 271-275.

Amade, P. H., Pesando, D. and Chevolot, L. (1992) Antimicrobial activities of marine from French Polynesia and Brittany. Mar. Biol. 70, 223-228.

Amigó, M., Terencio, M. C., Payá, M., Iodice, C. and De Rosa, S. (2007) Synthesis and evaluation of diverse thio avarol derivatives as potential UVB photoprotective candidates. Bioorg. Med. Chem. Lett. 17, 2561-2565.

Ang, K. K., Holmes, M. J. and Kara, U. A. (2001) Immunemediated parasite clearance in mice infected with Plasmodium berghei following treatment with manzamine A. Parasitol. Res. 87, 715-721.

Arimoto, H., Hayakawa, I., Kuramoto, M. and Uemura, D. (1998) Absolute stereochemistry of halichlorine; a potent inhibitor of VCA-M-1 induction. Tetrahedron Lett. 39, 861-862.

Ashok, P., Ganguly, S. and Murugesan S. (2014) Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies. Drug Discov. Today 19, 1781-1791.

Aviles, E. and Rodriguez, A. D. (2010) Monophosphate A, a Potent Antimalarial β-Lactam from Marine Sponge Hymeniacidon sp: Isolation, Structure, Semisynthesis, and Bioactivity. Org. Lett. 12, 5290-5293.

Baird, J. K. (2013) Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin. Microbiol. Rev. 26, 36-57.

Barrese, V. and Taglialetela, M. (2013) New advances in beta-blocker therapy in heart failure. Front. Physiol. 4, 323.

Bergmann, W. and Feeney, R. J. (1950) The isolation of a new thymine pentoside from sponges. J. Am. Chem. Soc. 72, 2809-2810.

Bergmann, W. and Feeney, R. J. (1951) Contribution to the study of marine products. J. Org. Chem. 16, 981-987.

Bergmann, W. and Swift, A. N. (1951) Contributions to the study of marine products. XXX. Component acids of lips sponges. I. J. Org. Chem. 16, 1206-1221.

Blackburn, C. L., Hopmann, C., Sakowicz, R., Berdelis, M. S., Goldstein, L. S. B. and Faulkner, D. J. (1999) Adocia sulfates 1-6, inhibitors of kinase motor proteins from the sponge Haliclonia (aka Adocia) sp. J. Org. Chem. 64, 5565-5570.

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munroa, M. H. and Prinsep, M. R. (2013) Marine natural products. Nat. Prod. Rep. 30, 237-323.

Blunt, J. W., Copp, B. R., Munro, M. H., Northcote, P. T. and Prinsep, M. R. (2005) Marine natural products. Nat. Prod. Rep. 22, 15-61.

Blunt, J. W., Copp, B. R., Munro, M. H., Northcote, P. T. and Prinsep, M. R. (2006) Marine natural products. Nat. Prod. Rep. 23, 26-78.

Boonlarpaprab, C. and Faulkner, D. J. (2007) Eury steroids A and B, cytotoxic and antifungal steroid sulfates from a marine sponge of the genus Euryaspanga. J. Nat. Prod. 70, 846-848.

Borchard, U. (1998) Pharmacological properties of b-adrenoceptor blocking drugs. J. Clin. Basic Cardiol. 1, 5-9.

Bradshaw, D., Hill, C. H., Nixon, J. S. and Wilkinson, S. E. (1993) Therapeutic potential of protein kinase C inhibitors. Agents Actions 38, 135-147.

Brazilian Health Ministry (2002) Epidemiological survey of malaria in Brazil, Funasa, Brasilia. Available from: http://www.funasa.gov.br/.

Burkholder, P. R. and Rueztler, K. (1969) Antimicrobial activity of some marine sponges. Nature 222, 983-984.

Capon, R. J., Skene, C., Lacey, E., Gill, J. H., Wadsworth, D. and Friel, D. (1999) Geodin A magnesium salt: a novel nematocide from a southern Australian marine sponge, Geodia. J. Nat. Prod. 62, 1256-1259.

Capon, R. J., Vuong, D., McNally, M., Peterle, T., Trotter, N., Lacey, E. and Gill, J. H. (2005) (r)-Echinobetaine B: isolation, structure elucidation, synthesis and preliminary SAR studies on a new nematocidal betaine from a southern Australian marine sponge, Echi-nodicytum sp. Org. Biomol. Chem. 3, 118-122.

Caraballo, H. and King, K. (2014) Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus. Emerg. Med. Pract. 16, 1-23.

Carroll, J., Johnson, E. N., Ebel, R., Hartman, M. S., Holman, T. R. and Crews, P. (2001) Probing sponge-derived terpenoids for human 15-L-lipoxygenase inhibitors. J. Org. Chem. 66, 6847-6851.

Chackalamnill, S. and Xia, Y. (2006) Thrombin receptor (PAR-1) antagonists as novel antithrombotic agents. Expert Opin. Ther. Pat. 16, 493-505.

Cheng, S., Wen, Z., Chiou, S., Hsu, C., Wang, S., Dai, C., Chiang, M. Y. and Duh, C. (2008) Durumolides A-E, anti-inflammatory and antibacterial cembranolides from the soft coral Lobophytum durum. J. Org. Chem. 73, 1-23.

Costantino, V., Fattorussio, E., Mangoni, A., Di Rosa, M. and Ianaro, A. (1999) Glycolipids from sponges, VII: simplexides, novel immuno-suppressive glycolipids from the Caribbean sponge Plakortis simplex. Org. Chem. Lett. 9, 271-276.

Cutignano, A., Bifulco, G., Bruno, I., Casapullo, A., Gomez-Paloma, L. and Riccio, R. (2000) Dragmacidin F: A New Antiviral Bromoindole Alkaloid from the Mediterranean Sponge Hymeniacidon sp. Tetrahe-
Kobayashi, J. and Ishibashi, M. (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem. Rev. 93, 1753-1769.

Konig, G. M., Wright, A. D. and Angerhofer, C. K. (1996) Novel potent tentantimalarial diterpene isocyanates, isothiocyanates, and isonitriles from the tropical marine sponge Cymbastela hooperi. J. Org. Chem. 61, 3259-3267.

Kossuga, M. H., Nascimento, A. M., Reimao, J. Q., Tempone, A. G., Tanikawa, N. V., Veloso, K., Ferreira, A. G., Cavalcanti, B. C., Pessoa, C., Moraes, M. O., Mayer, A. M., Hajdu, E. and Berlinc, R. G. (2008) Antiparasitic, antineuroinflammatory, and cytotoxic polyketides from the marine sponge Plakortis angulospiculatus collected in Brazil. J. Nat. Prod. 71, 334-339.

Kolodziejczyk, J. and Ponczek, M. B. (2013) The role of fibrinogen, fibrin and fibrinogen (o)gen degradation products (FDPs) in tumor progression. Contemp. Oncol. (Pol.) 17, 113-119.

Laport, M. S., Santos, O. C. and Muricy, G. (2009) Marine sponges: potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 10, 86-105.

Leal, M. C., Puga, J., Gomes, N. C. M. and Calado, R. (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades - where and what are we bioprospecting? PLoS ONE 7, e30580.

Linition, R. G., Robertson, M., Gauthier, A., Finlay, B. B., MacMillan, M. C., Puga, J., Serodio, J., Gomes, N. C. M. and Calado, R. (2009) Marine sponges: Kołodziejczyk, J. and Ponczek, M. B. (2013) The role of fibrinogen, fibrin and fibrin (ogen) degradation products (FDPs) in tumor progression. Curr. Pharm. Biotechnol. 10, 86-105.

Leal, M. C., Puga, J., Serodio, J., Gomes, N. C. M. and Calado, R. (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades - where and what are we bioprospecting? PLoS ONE 7, e30580.

Mayer, A. M. S. and Lehmann, V. K. B. (2000) Marine pharmacology in antiviral activities; affecting the cardiovascular, endocrine, immune, and nervous systems; and other miscellaneous mechanisms of action. Pharmacologist 42, 62-69.

McCaffrey, E. J. and Endean, R. (1985) Antimicrobial activity of tropical and subtropical sponges. Mar. Biol. 89, 1-8.

Mishra, S. K., Satpathy, S. K. and Mohanty, S. (1999) Survey of marine fungi: Part II-the benefits. Evid. Based Complement. Alternat. Med. 1, 133-144.

Morton, S. L., Moeller, P. D., Young, K. A. and Lanoue, B. (1999) Oiko-aid production from the marine dinoflagellate Prorocentrum belizeanum Faust isolated from the Belizean coral reef ecosystem. Toxicol. 36, 201-206.

Moura, R. M., Queiroz, A. F., Fook, J. M., Dias, A. S., Monteiro, N. K., Ribeiro, J. K., Moura, G. E., Macedo, L. L., Santos, E. A. and Sales, M. P. (2006) Cv6, a lectin from the marine sponge Cliona varians: Isolation, characterization and its effects on pathogenic bacteria and Leishmania promastigotes. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 145, 517-523.

Muller, W. G., Sobel, C., Diehl-Seifert, B., Maidhof, A. and Schroder, H. C. (1987) Influence of the anti-convulsant and anti-human-immunodeficiency virus agent avaron on selected immune responses in vitro and in vivo. Biochem. Pharmacol. 36, 1489-1494.

Nausch, B., Hepper, T. J. and Nelson, M. T. (2010) Nerve-released acetylcholine contracts urinary bladder smooth muscle by inducing action potentials independently of IP3-mediated calcium release. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R878-R888.

Nautch, P. T., Blunt, J. W. and Munro, M. H. G. (1991) Pateamine: a potent cytotoxin from the New Zealand marine sponge, mycale sp. Tetrahedron Lett. 32, 6411-6414.

Oclari, J. M., Okada, H., Ohta, S., Kaminura, K., Yamaoka, Y., Iizuka, T., Miyashiro, S. and Ikekami, S. (1994) Anti-bacillus substance in the marine sponge, Hyatella exigua (Kirkpatrick). Int. Biodeterior. Biodegrad. 63, 67-72.

Miyamoto, S., Izumi, M., Hori, H., Kobayashi, M., Ozaki, H. and Karaki, H. (2000) Xestospongion C, a selective and membrane-permeable inhibitor of IP3 receptor, attenuates the positive inotropic effect of α-adrenergic stimulation in guinea-pig papillary muscle. Br. J. Pharmacol. 130, 650-654.

Miyaoa, H., Shimomura, M., Kimura, H., Yamada, Y., Kim, H. S. and Wataya, Y. (1998) Antimalarial activity of kalaholin A and new related diterpenoids from the Okinawan sponge, Acanthella sp. Tetraduron 54, 13467-13474.

Mol, V. P. L., Raveendran, T. V. and Parameswaran, P. S. (2009) Antifouling activity exhibited by secondary metabolites of the marine sponge, Halicollina exigua (Kirkpatrick). Int. Biodeterior. Biodegrad. 63, 67-72.

Mompmarer, R. L. (2013) Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia. Exp. Hematol. Oncol. 2, 20.

Moura, R. M., Queiroz, A. F., Fook, J. M., Dias, A. S., Monteiro, N. K., Ribeiro, J. K., Moura, G. E., Macedo, L. L., Santos, E. A. and Sales, M. P. (2006) Cv6, a lectin from the marine sponge Cliona varians: Isolation, characterization and its effects on pathogenic bacteria and Leishmania promastigotes. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 145, 517-523.

Muller, W. E., Schröder, H. C., Wiens, M., Perovic-Ottstadt, S., Batel, R. and Müller, I. M. (2004) Traditional and modern biomedical prospecting: Part II-the benefits. Evid. Based Complement. Alternat. Med. 1, 133-144.

Mutsunaga, S., Fusetani, N. and Konosu, S. (1985) Bioactive marine metabolites, VII: structures of discodermins B, C, and D, antimicrobial peptides from the marine sponge Discodermia kiensis. Tetra- hedron Lett. 26, 855-856.

Mayer, A. M., Rodriguez, A. D., Berlinc, R. G. and Fusetani, N. (2011) Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 153, 191-222.

Mayer, A. M. and Hamann, M. T. (2004) Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar. Biotechnol. 6, 57-52.

Mayer, A. M. and Jacobs, R. S. (1988) Manoolide: an anti-inflammatory and analgesic marine natural product. Mem. Calif. Acad. Sci. 13, 133.

Mayer, A. M. S. and Lehmann, V. K. B. (2000) Marine pharmacology in 1998: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antihelmintic, antiprotease, antiprotozoal, and antiviral activities; with actions on the cardiovascular, endocrine, immune, and nervous systems; and other miscellaneous mechanisms of action. Pharmacologist 42, 62-69.

http://dx.doi.org/10.4062/biomother.2016.067

Biomol Ther 24(4), 347-362 (2016)
Anjum et al. Marine Sponges as a Drug Treasure

Petit, R. K., Fakoury, B. R., Knight, J. C., Weber, C. A., Petit, G. R., Cage, G. D. and Pon, S. (2004) Antibacterial activity of the marine sponge constituent cibrostatin 6. J. Med. Microbiol. 53, 61-65.

Piel, J. (2004) Metabolites from symbiotic bacteria. Nat Prod Rep. 21, 519-538.

Piel, J. (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr. Med. Chem. 13, 39-50.

Pika, J., Tischler, M. and Andersen, R. J. (1992) Glaciasterols A and B, 9,11-secoesteroids from the marine sponge Aplysilla glaciensis. Can. J. Chem. 70, 1506-1510.

Plaza, A., Gustchina, E., Baker, H. L., Kelly, M. and Belayew, C. A. (2007) Mirabamides A-D, depsipeptides from the sponge Siliquaria aspanga mirabilis that inhibit HIV-1 fusion. J. Nat. Prod. 70, 1755-1760.

Pontón, J., Rüchel, R., Clemonds, K. V., Coleman, D. C., Grillot, R., Proksch, P., Edrada, R. A. and Ebel, R. (2002) Drugs from the seas.

Pettit, R. K., Fakoury, B. R., Robinson, P. S., Pike, N. B., Sidebottom, P. J., Roberts, A. D., Taylor, N. L., Wright, A. E., Pomponi, S. A. and Langley, D. (2000) Eryloside F, a novel penasterol disaccharide possessing potent thrombin receptor antagonist activity. Bioorg. Med. Chem. Lett. 10, 661-664.

Suzuki, H., Shindo, K., Ueno, A., Miura, T., Takei, M., Sakakibara, M., Fukamachi, H., Tanaka, J. and Higa. T. (1999) S1319: A novel j2-adrenoceptor agonist from a marine sponge Dysidea sp. Bioorg. Med. Chem. Lett. 9, 1361-1364.

Takei, M., Burgoyne, D. L. and Andersen, R. J. (1994) Effect of conti

Tan, P., Luscinskas, F. W. and Homer-Vanniasinkam, S. (1997) Cellular and molecular mechanisms of inflammation and thrombosis. Eur. J. Vasc. Endovasc. Surg. 17, 373-389.

Tasdemir, D., Topaloglu, B., Perozzo, R., Brun, R., O'Neill, R., Carbal-leira, N. M., Zhang, X., Tonge, P. J., Linden, A. and Rüedi, P. (2007) Marine natural products from the Turkish sponge Agelas oridis that inhibit the enoyl reductases from Plasmodium falciparum. Mycobacterium tuberculosis and Escherichia coli. Bioorg. Med. Chem. 15, 6834-6845.

Ter Haar, E., Kowalski, R. J., Hameil, E., Lin, C. M., Longley, R. E., Gunasekera, S. P., Rosenkranz, H. S. and Day, B. W. (1996) Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 35, 243-250.

Thomas, T. R., Kavlekar, D. P., and LokaBharathi, P. A. (2010) Marine drugs from sponge-microbe association-a review. Mar. Drugs 8, 1417-1468.

Torres, Y. R., Berling, R. G., Nascimento, G. F., Forts, S. C., Pessoa, C. and de Moraes, M. O. (2002) Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Toxicon. 40, 885-891.

Turk, T., Ambrozio Avguštin, J., Batista, U., Strugar, G., Kosmina, R., Čivoš, V., Janusjen, D., Kauerfer, S., Mebs, D. and Sepčič, K. (2013) Biological activities of ethanolic extracts from deep-sea antarctic marine sponges. Mar. Drugs 11, 1126-1139.

Urban, S., De Almeida Leone, P., Carroll, A. R., Fechner, G. A., Smith, J., Hooper, J. N. and Quinn, R. J. (1999) Axinellamines A-D, novel imidazo-azolo-imidazole alkaloids from the australian marine sponge Axinella sp. J. Org. Chem. 64, 6404-6405.

Rahden-Staron, I. (2002) The inhibitory effect of the fungicides captan and captafol on eukaryotic topoisomerases in vitro and lack of recombiganic activity in the wing spot test of Drosophila melanogaster. Mutat. Res. 518, 205-213.

Rame, G. (2000) Phyllum Porifera [cited 2013 Jan]. Available from: http://www.eartihlife.net/inverts/porifera.html.

Rao, V. K., Kasahan, N., Wahyuno, S., Tekwani, B. L., Schinazi, R. F. and Hamann, M. T. (2004) Three new manzamine alkaloids from a common indonesian sponge and their activity against infectious and tropical parasitic diseases. J. Nat. Prod. 67, 1314-1318.

Rice, L. B. (2006) Antimicrobial resistance in gram-positive bacteria. Am. J. Infect. Control 34, S1-S19.

Romo, D., Rass, A. M., Shea, H. A., Park, K., Langenhau, J. M., Sun, L., Akhiezer, A. and Liu, J. O. (1998) Total synthesis and immunosuppressive activity of (−)-pateamine A and related compounds: implementation of a β-lactam-based macrocyclization. J. Am. Chem. Soc. 120, 12237-12254.

Ruby, B. K., van Soest, R. W. and Crews, P. (2007) Extending the record of meroterpenes from Cacospongia marine sponges. J. Nat. Prod. 70, 628-631.

Sagar, S., Kaur, M., Minneman, K. P. (2010) Antiviral lead compounds from marine sponges. Mar. Drugs 8, 2619-2638.

Sakai, R., Higa, T., Jefford, C. W. and Bernardinelli, G. (1986) Manza-marin, A, a novel antitumor alkaloid from a sponge. J. Am. Chem. Soc. 108, 6404-6405.

Sandven, P. (2000) Epidemiology of candidemia. Rev. Iberoam. Micil. 17, 73-81.

Schaschke, N. and Sommerhoff, P. C. (2010) Upgrading a natural product: inhibition of human HIV-1-rt by tetrahydroamidone analogues. Chem. Med. Chem. 5, 367-370.

Schwartzmann, G. (2000) Marine organisms and other novel natural sources of new cancer drugs. Ann. Oncol. 11, 235-243.

Shimosa, A. (2002) Role of NKT cells and α-galactosyl ceramide. Int. J. Hematol. 76, 277-279.

Shuman, R. T., Rothenberger, R. B., Campell, C. S., Smith, G. F., Gifford-Moore, D. S. and Gesellchen, P. D. (1993) Highly selective GABA receptor inhibitors. J. Med. Chem. 36, 314-319.

Sipkema, D., Osinga, R., Schatton, W., Mendola, D., Tramer, J. and Wijffels, R. H. (2005) Large scale production of pharmaceuticals by marine sponges: Sea, cell, or biosynthesis. Biotechnol. Bioeng. 90, 201-222.

Souza, T. M., Abrantes, J. L. de A Epifancio, R., Leite Fontes, C. F. and Fruguheltti, I. C. (2007) The alkaloid 4-methylaaptaamine isolated from the sponge Aaptos aaptos impairs Herpes simplex virus Type 1 penetration and immediate early protein synthesis. Planta Med. 73, 200-205.

Stead, P., Hiscog, S., Robinson, P. S., Pike, N. B., Sidebottom, P. J., Roberts, A. D., Taylor, N. L., Wright, A. E., Pomponi, S. A. and Langley, D. (2000) Eryloside F, a novel penasterol disaccharide possessing potent thrombin receptor antagonist activity. Bioorg. Med. Chem. Lett. 10, 661-664.
Study on bioactivity of extracts from marine sponges in Chinese Sea. *J. Exp. Mar. Biol. Ecol.* **298**, 71-78.

Yasuhara-Bell, J. and Lu, Y. (2010) Marine compounds and their antiviral activities. *Antiviral Res.* **86**, 231-240.

Yousaf, M., El Sayed, K. A., Rao, K. V., Lim, C. W., Hu, J. F., Kelly, M., Franzblau, S. G, Zhang, F., Peraud, O., Hill, R. T. and Hamann, M. T. (2002) 12,34-Oxamanzamines, novel biocatalytic and natural products from manzamine producing Indo-Pacific sponges. *Tetrahedron* **58**, 7397-7402.

Zabriskie, T. M., Klocke, J. A., Ireland, C. M., Marcus, A. H., Molinski, T. F., Faulkner, D. J., Xu, C. and Clardy, J. C. (1986) Jasparamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. *J. Am. Chem. Soc.* **108**, 3123-3124.

Zapolska-Downar, D., Zapolska-Downar, A., Markiewski, M., Ciechanowicz, M., Kaczmarczyk, M. and Naruszewicz, M. (2001) Selective inhibition by procubol of vascular cell adhesion molecule 1 (VCAM-1) expression in human vascular endothelial cells. *Atherosclerosis* **155**, 123-130.