Cytolytic T lymphocytes (CTL) and NK cells are well-characterized effector cells with potent cytolytic activity (1–4). How these killer cells damage their targets has not been resolved. Biochemical analysis performed in the last 3 yr with homogeneous populations of killer lymphocytes has already identified a pore-forming protein (PFP, perforin or cytolsin) (5–8) and several serine esterases (9–13) localized in the cytoplasmic granules of these cell types. More recent studies by Masson and Tschopp (14), and Tschopp and Jongeneel (15) described the identification and partial sequences of six different granule serine esterases (which they call granzymes) found in murine CTL. PFP lyses a variety of target cells, whereas the function of granule serine esterases is still unknown although it has been suggested that these enzymes and PFP may form a novel cytolytic cascade analogous to the humoral complement system (16, 17). Proteolytic enzymes have long been implicated in cytotoxic reactions, as implied from earlier studies with protease inhibitors (18–21). A more detailed structural analysis of serine esterases is clearly warranted to elucidate their functional role in cell-mediated killing.

An alternative strategy to direct purification and characterization of killer cell proteins, which has been used to study cell-mediated killing, has consisted of subtractive cDNA cloning. In this approach CTL-specific cDNA clones are generated first and then probed secondarily for their function. Notably, of the recently isolated CTL-specific cDNA clones, three code for distinct serine proteases, designated H factor (22), CCP1/CTLA1 (23, 24), and CCP2/granzyme C (23, 25). Recently, a modified differential screening procedure was developed in this laboratory to generate a broad representation of T lymphocyte subset-specific cDNA clones (26). Four CTL-specific...
cDNA clones have been identified using this procedure and are shown here to code for serine proteases. One clone is identical to H factor, whereas the other three represent novel transcripts. One of these clones has been expressed as a fusion protein. Antibodies prepared against this fusion protein stain granules of CTL and react with two protein bands derived from granules.

Materials and Methods

Cells and Subcellular Fractionation. Methods for isolating and maintaining the cloned Th L2 and the cloned CTL L3 have been described before (27). L3 cells are Thy-1++, LFA-1++, Lyt-2-, L3T4-, and H-2Ld reactive. L2 cells are Mlsa reactive and are Thy-1++, LFA-1++, Lyt-2-, and L3T4+. To stimulate the cloned T cells, they were resuspended at 10^6-10^7 cells/ml and were cultured with Con A (Pharmacia Fine Chemicals, Piscataway, NJ) either at 10 μg/ml for L2 cells or 2 μg/ml for L3 cells. The specificities of CTLL-A11 and CTLL-R8 have been given elsewhere (28).

EL-4 (mouse thymoma), YAC-1 (mouse leukemia), A20.2j (mouse B cell line), and K46 (mouse B cell line) cells were maintained in RPMI 1640 medium containing 5% FCS. When indicated, EL-4 cells were treated with 12-0-tetradecanoylphorbol-13-acetate (10 ng/ml) for up to 20 h and the stimulation was monitored by IL-2 assay of EL-4 cell supernatant using IL-2-dependent CT6 cells. Murine melanoma cells, Cloudman S-91, were grown in Ham's F-10 medium containing 8% newborn calf serum, 8% NU-serum (Collaborative Research, Lexington, MA), 100 μg/ml penicillin, and 200 U/ml streptomycin.

Large granular lymphocytes (LGL) were obtained from murine spleen cells essentially as described (29). Briefly, splenic mononuclear cells, enriched by Ficoll/Hypaque gradient centrifugation, were subjected to adherence in plastic dishes and passed over nylon wool columns to remove monocytes/macrophages and B cells, respectively. Nylon wool-nonadherent cells were cultured in T flasks at 2 x 10^6 cells/ml in medium containing 1,000 U/ml of rIL-2 (a generous gift of Cetus Corp., Emeryville, CA). After 4 h of incubation at 37°C, adherent cells received separately fresh medium containing 1,000 U/ml of rIL-2. Cells were incubated for 3-5 d, after which they were harvested and used for immunofluorescence or immunoblotting analysis. In a parallel experiment, cells prepared this way were shown to be cytotoxic to YAC-1 targets and were stained positively (>90%) with anti-asialo GM-1 antibodies. The rat LGL used here consisted of RNK cells, kindly provided by Dr. P. Henkart (National Institutes of Health, Bethesda, MD).

MLRs were established by using DBA/2 and C57BL/6 splenocytes as stimulating cells and C57BL/6 and CBA/J spleen cells as responders. Stimulating cells were irradiated with 2,000 rad before mixing with responder cells at a ratio of 1:4. MLRs were carried out for 5-7 d at 10^6 cells/ml, after which cells were harvested and used for immunofluorescence.

Cell rupture was done by nitrogen cavitation as described (28). Nucleus-free cell lysates (2 x 10^7 cell equivalents/ml) were subjected to centrifugation at 15,000 g for 20 min in a Sorvall SS-34 centrifuge. The pellet was resuspended to the same original volume with a high-phosphate extraction buffer (28). Both the supernatant and the resuspended pellet were centrifuged at 350,000 g for 1 h using a table-top ultracentrifuge (model TL100, Beckman Instruments, Inc., Fullerton, CA) to sediment membranes. The supernatants were collected and used for immunoprecipitation. In some experiments, cells were biosynthetically labeled with [35S]methionine at 1 mCi/10^7 cells/50 ml of methionine-free medium for 2 h, followed by incubation with 4% normal medium for an additional 12 h.

Construction of cDNA Libraries of CTLL-A11 and L3 Cells and Isolation of CTL-specific cDNA Clones. Cytoplasmic RNA of CTLL-A11 and Con A-stimulated L3 cells was extracted by a guanidine isothiocyanate-cesium chloride gradient centrifugation method (30). Poly(A)^+ mRNA of the L3 and CTLL-A11 cells was purified by chromatography on oligo-dT-cellulose column. dsDNA was synthesized from the poly(A)^+ mRNA. The cDNA was methylated at EcoRI sites to prevent cleavage, and Eco RI linkers were ligated to cDNA. After Eco RI cleavage, cDNA was enriched for molecules >250 kD by passage over 1 ml of Bio-Gel A-150m columns (Bio-Rad Laboratories, Richmond, CA). The cDNAs were inserted into the unique
Eco RI site of both λgt10 and λgt11 bacteriophage cloning vectors (31). We have previously isolated a group of cDNAs that are specific for T cells in contrast with B cells, using both positive and negative differential screening and RNA blot analysis of various lymphoid cells. The T cell-specific cDNAs were further studied to determine whether they were specific for cloned Th L2 or cloned CTL L3 cells and whether they were inducible by Con A or IL-2. A salient feature of the method was to analyze L2 or L3 cDNA species that failed to hybridize to secDNA probes prepared from closely related cells, and thus allowed us to isolate T cell subset transcripts that exist at a low level (26).

RNA Blot Hybridization. Total cytoplasmic RNA (10 μg) or poly(A)* mRNA (10 μg) were fractionated on 1.2% agarose-formaldehyde gels and transferred to Gene Screen Plus (New England Nuclear, Boston, MA). Gel-purified inserts of cDNA were 32P-labeled by nick translation and used as probes. Filters were prehybridized and hybridized at 42°C in 50% formamide, 5 × SSC (1 × SSC = 150 mM NaCl, 15 mM sodium citrate, pH 7), 0.1% SDS, 250 μg/ml of salmon sperm DNA, and 10% dextran sulfate. Filters were washed at room temperature for 15 min in 2× SSC and 0.1% SDS, and at 42°C for 3 min in 0.1× SSC and 0.1% SDS several times. When a Northern blot was used multiple times for hybridization, the previous probe was removed by treating the membrane in 10 mM Tris-HCl (pH 7.0) and 0.2% SDS at 85°C for 1 h.

Genomic DNA Blot Analysis. High molecular weight DNA of mouse spleens was prepared as described previously (32). Restriction endonuclease digests of DNA were subjected to electrophoresis in 0.8% agarose gel at 4°C. The gel was denatured with 0.5 M NaOH/1 M NaCl and neutralized with 1 M Tris-HCl, pH 8.0, 1 M NaCl. The DNA was transferred to Gene Screen Plus as described by Southern (33). The blot hybridized with 32P-labeled cDNA in a solution composed of 6 × SSC, 5 × Denhardt's solution, 0.5% SDS, and 100 μg/ml denatured salmon sperm DNA at 65°C for 18 h. The filters were then washed three times at room temperature for 10 min each in 2× SSC and 0.1% SDS, and two times at 65°C for 45 min each in 0.1× SSC and 0.1% SDS.

DNA Sequencing DNA restriction fragments, subcloned in M13 vectors (34), were sequenced by the dideoxy chain termination technique (35), with modification made to accommodate 2'-deoxyadenosine 5'-[α-35S]thiotriphosphate (36). A forward primer (New England Biolabs, Beverly, MA) complementary to the lacZ sequence adjacent to the 5' side of the Eco RI site in λgt11 was used for the direct sequencing of cDNA insert end point in λgt11 (37).

Antibody Production, Affinity Purification, Immunofluorescence, and Immunoblotting. The λgt11 cDNA bearing L3-5 was plated onto Escherichia coli Y1089. Lysogens, selected essentially as described (38), were induced with 20 mM isopropyl β-D-thiogalactopyranoside (IPTG) for 3–4 h. After three washes, bacteria were resuspended to OD600 of one in water. NP-40 was added to 1% and the bacterial suspension was lysed by freezing and thawing (3 x) followed by extensive sonication using a probe. After sedimentation of the cell debris in a microfuge (10,000 g, 15 min), the supernatant was diluted threefold in PBS and applied to a Sepharose 4B column coupled with rabbit anti-β-galactosidase IgG (CooperBiomedical, Inc., Malvern, PA) at a load of 106 bacteria equivalents to 1 mg of coupled antibody. The column was washed with two cycles of alternate washes of PBS, PBS/0.4 M NaCl, and PBS/1% NP-40, and finally eluted with 4 M guanidine-Cl (pH 7.0). The enriched fusion protein was further purified on a G4000 column (TSK America Inc., North Bend, WA) and eluted at 0.5 ml/min with 0.1 M sodium phosphate buffer, pH 6.5, containing 0.1% SDS. The eluted protein was boiled and a portion of the antigen was crosslinked with 0.5% glutaraldehyde. These antigens were injected into a rabbit through multiple sites in 0.5-mg doses. Booster injections were given every 3 wk and antiserum was collected 4 d after each booster.

The antiserum obtained this way was extensively preadsorbed on induced λgt11 lysogens (without inserts) immobilized onto nitrocellulose membranes (3 ml antiserum/50,000 plaques per 10-cm filter) to remove nonspecific anti–E. coli and anti-β-galactosidase antibodies. Before this adsorption, nitrocellulose membranes were fixed with 10% acetic acid/15% isopropanol and subsequently blocked with 1% dry milk to saturate nonspecific sites. The preadsorbed antiserum was then further enriched by affinity chromatography by incubating this antiserum with blocked nitrocellulose membranes carrying replicas of induced λgt11 L3-5 lysogens prepared as before. Membranes were washed extensively with alternate washes of PBS, PBS/0.4
M NaCl, PBS/1% NP-40, and the membrane-bound antibodies were eluted with 0.1 M glycine, pH 2.2, and neutralized immediately with 0.1 vol of 1 M Tris-HCl, pH 8.0. After dialysis against PBS, these antibodies were used for immunofluorescence and immunoprecipitation studies.

Indirect immunofluorescence was carried out with cells sedimented onto slides in the cytocentrifuge that were then fixed with 1% paraformaldehyde for 10 min and permeabilized with acetone (−20°C for 3 min). After blocking with 1% goat serum in PBS, slides were stained with specific IgG (50 µg/ml) as the first antibody and visualized with FITC-conjugated goat anti-rabbit IgG (Fab′)2 (Boehringer Mannheim Biochemicals, Indianapolis, IN; 1:100 dilution). Slides were mounted with glycerol and observed under a Nikon fluorescence microscope.

For immunoprecipitation, subcellular fractions of cells were reacted with affinity-purified anti-L3-5 IgG (at 1 mg/10⁸ cells) for 2 h, followed by incubation with protein A-agarose (Boehringer Mannheim Biochemicals) for an additional 2 h and sedimentation in the microfuge. The immunoprecipitate was resuspended in gel sample buffer containing 1% SDS and boiled for 5 min before its use in gel electrophoresis and autoradiography. Gel electrophoresis was performed on 10–20% gradient gels according to Laemmli (39). After being developed at constant current, the gels were soaked in ENHANCE (New England Nuclear) for 1 h, dried under vacuum, and subjected to autoradiography for 5–7 d.

13HJDFP Labeling of Proteins. [13H]diisopropyl fluorophosphate ([13H]DFP) labeling was performed essentially as described before (13). Briefly, to 100–200-μl protein samples, a reaction mixture of 1 M Tris-HCl buffer (pH 7.5), containing 1 mM [13H]DFP (5.1 Ci mmol−1; New England Nuclear) was added to 10% final volume. After 60 min at 37°C, the reaction was terminated by addition of boiling buffer (2 x) containing 2% SDS and 50 mM DTT, followed by additional boiling in Neville's buffer for 5 min. Samples were then applied directly to gel slabs and processed as before.

Results

Isolation of CTL-specific Serine Esterase cDNAs. We have recently isolated T lymphocyte subset-specific cDNAs from Th and CTL by means of a modified differential screening procedure (26). The specific expression of 21 potential CTL-specific cDNAs was further studied by Northern blot analysis of RNA from K46 B cells, unstimulated or TPA-stimulated EL-4 thymoma, unstimulated or Con A-stimulated L2 Th, unstimulated or Con A-stimulated L3 CTL, and rat LGL cells. Of these, eight inserts produced specific hybridization signals with L3 RNA while 13 inserts failed to show hybridization signal with any RNA used. We reasoned that the failure of the 13 inserts to hybridize with any RNA tested was probably due to the low expression of corresponding transcripts. Subsequently, nucleotide sequence analysis revealed that one clone among the eight inserts, L3G10 no. 6, was identical to H factor (22), while one clone among the latter 13 inserts, designated L3-1, represented a novel transcript with ~64% sequence homology to CCP1 (23).

L3G10 no. 6 is expressed in unstimulated and ConA-stimulated L3 cloned CTLs, but not in L2 Th, K46 B cells, EL-4 thymoma cells, or NK-like rat LGL (Fig. 1 A). L3G10 no. 6 is also expressed at a high level in another CTL line, CTLL-All (Fig. 1 B). On the other hand, L3-1 fails to detect mRNA in any of the RNA used in Fig. 1 A but detects 900 base mRNAs in CTLL-All cells (Fig. 1 C). L3-7 probe (Fig. 1 D) is an anonymous cDNA from L3 cDNA library and was used to demonstrate that each lane of the RNA blot used for Fig. 1 B and C contains similar amounts of RNA. For Fig. 1, B–D, the same filter was used successively in that order. These results appear to confirm the CTL specificity of L3-1 cDNA. Its level of expression is undetectable in L3 cells although the clone is originated from these same cells,
FIGURE 1. Specificity of expression of L3G10 no. 6 and MCSP-1. A shows that L3G10 no. 6 detects ~800 bases RNA in CTL clone L3. B shows that L3G10 no. 6 detects homologous transcript in both CTLL-Al1 and L3; and C shows that MCSP-1 (L3-1 probe) detects the homologous transcript only in CTLL-Al1. D shows that each lane of the RNA blot used for B and C contains similar amounts of RNA (L3-7 is an anonymous probe). (B-D) The same RNA blot was used to hybridize successively with L3G10 no. 6, MCSP-1 and L3-7 probes. Poly(A)^+ RNA was prepared from the following cells: K46, unstimulated and TPA-stimulated EL-4, rat LGL, CTLL-Al1 and murine melanoma Cloudman S-91 cells (mel). Total RNA was prepared from unstimulated and Con A-stimulated L2 cells and unstimulated and Con A-stimulated L3 cells. 10 μg of total RNA or poly(A)^+ RNA was fractionated on a formaldehyde/agarose gel, transferred, and hybridized with 32P-labeled L3G10 no. 6, L3-1, or L3-7. MCSP-1 consists of L3-1 and L3-5 cDNA inserts.

an observation that illustrates the usefulness of our differential screening procedure in detecting gene transcripts present in cells at low levels.

L3-1 contained a cDNA insert of 281 bp and was used to screen λgt11 L3 cDNA library to obtain a full-length version of L3-1. We obtained a cDNA clone L3-5 containing a 635-bp cDNA insert excluding the poly(A) tail. L3-1 and L3-5 shared 221 bp.

Fig. 2 A shows the nucleotide sequence and deduced amino acid sequence of the longest open reading frame derived from L3-1 and L3-5 cDNA inserts. The sequence was designated as a mouse CTL serine protease 1 (MCSP-1). Comparison between MCSP-1 and the CCPI/CTLA1 sequences revealed that MCSP-1 potentially did not contain ~30 amino acids equivalent in the 5' coding sequence of the transcript. Therefore, a cDNA library prepared from CTLL-Al1 mRNA was screened using L3-1 probe to obtain a full-length version of L3-1. In this screening, we isolated many cDNA clones that hybridized to L3-1 probe. Partial nucleotide sequencing of the 14 new cDNA inserts revealed that none of the 14 clones was identical to MCSP-1. The data suggest that MCSP-1 expression may also be very low in CTLL-Al1 cells and that the hybridizing band seen in CTLL-Al1 RNA (Fig. 1 C) is due to a cross-hybridization to L3-1-related sequences. Among the 14 clones, five cDNA clones whose insert sizes were >700 bases were analyzed further. The five clones represented two other related sequences, designated as MCSP-2 and MCSP-3.

Nucleotide and Deduced Amino Acid Sequences of the Three New Serine Esterase cDNAs. Fig. 2, A–C shows the nucleotide and deduced amino acid sequences of MCSP-1, MCSP-2, and MCSP-3. The homology of nucleotide sequence among the three cDNAs is ~64% and the nucleotide changes are dispersed along the cDNA sequence. Each open reading frame of MCSP-2 and MCSP-3 code for a potential mature polypeptide of 228 amino acids.
FIGURE 2. Legend appears on opposing page.
The molecular weights corresponding to the mature protein backbones of MCSP-2 and MCSP-3 are 25,477 and 25,360, respectively. There are three potential glycosylation signals in MCSP-1 and MCSP-3, and four in MCSP-2 as underlined in Fig. 2, A–C. The codon specifying COOH-terminal leucine is followed by the translation termination codon TAA in all three sequences. MCSP-1 and MCSP-3 contain a potential polyadenylation signal of AATAAA (boxed nucleotides).

Fig. 3 A shows the optimal alignment of the three peptide sequences. The NH$_2$-terminal amino acids (underlined residues) of MCSP-2 and MCSP-3 proteins are identical to those reported for two granule serine esterases which, according to the nomenclature proposed by Masson and Tschopp (14), would correspond to granzymes E and F, respectively (15). Three residues (His15, Asp20, and Ser16), which are known to form a serine esterase active site (40), are found in the same position in the three proteins. The active site pocket residue positioned six residues before the active-site Ser16 (41, 42) is alanine in MCSP-1, threonine in MCSP-2, and serine in MCSP-3 (Fig. 3 A, asterisk). Thus, MCSP-2 and MCSP-3 may have chymotrypsin-like specificity. The predicted amino acids show 76% homology between MCSP-1 and MCSP-2, 80% homology between MCSP-1 and MCSP-3, and 73% homology between MCSP-2 and MCSP-3.

Since the predicted amino acid sequence for MCSP-1 is substantially different from other reported T cell serine proteases, the amino acid sequence of MCSP-1 was compared with other serine protease-like proteins whose active site pocket residue is alanine. Fig. 3 B shows a comparison of predicted amino acids of MCSP-1 with those of CCP1 (23), granzyme C (25), RMCPII (43, 44) and cathepsin G (45). Approximately 33% of the amino acids are identical in all five proteins (Fig. 3 B, boxed amino acids). The amino acid identity was 56% between MCSP-1 and CCP1, 58% between MCSP-1 and granzyme C, 42% between MCSP-1 and RMCPII, and 46% between MCSP-1 and cathepsin G. The serine protease triads are conserved
MOUSE CYTOLYTIC T LYMPHOCYTE SERINE PROTEASE cDNAs

Figure 3. Legend appears on opposing page.
Figure 3. Alignment of predicted amino acid sequences of T cell serine proteases. Comparisons were made among MCSP-1, MCSP-2, and MCSP-3 deduced amino acid sequences (4), and MCSP-1 amino acids were aligned with four other predicted serine protease whose active site pocket residue is alanine (B). An arrow indicates a putative cleavage site to generate an active enzyme. (A) The "charge-relay" system of the active site of serine proteases; (*) the potential amino acid residue that participates in the primary substrate binding site in serine proteases. The numbering begins at the NH₂ terminus of the predicted active enzyme. Gaps were introduced to optimize the alignment. Amino acids that are identical among the sequences are boxed. Numbers in parentheses indicate the positions of amino acids. (4) The underlined NH₂-terminal amino acids of MCSP-2 and MCSP-3 are identical to those of granzymes E and F, respectively. (B) Positions that the amino acids of MCSP-1 are different from those of other four proteins (+).
in similar space in all five proteins (Fig. 3 B, indicated by Δ). However, ~30% of amino acids of MCSP-1 (60 positions indicated by + in Fig. 3 B) are different from those of the other four proteins. These data may indicate that MCSP-1 is a new member of T cell serine protease family.

Southern Blot Analysis. Southern blot analysis of mouse (C57BL/6) genomic DNA was performed with MCSP-1, MCSP-2, and MCSP-3 clones (Fig. 4, A–C, respectively). All three cDNAs detect the same strongly hybridizing bands but detect weakly hybridizing bands differentially. For example, when the mouse DNA is digested with Bam HI, all three cDNAs detect three strong bands whose sizes are 10.9, 7.4, and 2.5 kb. In addition, there are three weakly hybridizing bands whose sizes are 6.0, 5.0, and 2.6 kb. Of these, three weak bands are detected by MCSP-3 but only two bands each hybridize to MCSP-1 and MCSP-2 with different intensity. A similar phenomenon is observed in Eco RI and Hind III–digested genomic DNA (Fig. 4). These hybridization data and sequence information suggest that there is a family of genetic loci that contains separate genes representing these three cDNAs. Their exon and intron composition must be similar.

Antibodies Derived Against Fusion Protein Carrying MCSP1 React with Granule Proteins. Direct sequence analysis with a λgt11 forward primer revealed that L3-5 cDNA was in frame with the lacZ gene of the λgt11 vector. Thus, the L3-5 clone was used to prepare antibodies against the fusion protein.

Lysogens harboring the L3-5 clone were induced with IPTG. The fusion protein was purified by immunoaffinity chromatography using agarose-bound β-galactosidase-specific mAbs as the immunoadsorbent. Rabbit antiserum raised against this fusion protein was further enriched for MCSP-1-specific antibodies through a differential adsorption method detailed in Materials and Methods. Affinity-purified

Figure 4. Southern blot analysis of mouse DNA. Genomic DNA from C57BL/6 liver was digested with Hind III (H), Bam HI (B), or Eco RI (E), electrophoresed on a 0.8% agarose gel, transferred to Gene Screen Plus, and hybridized to MCSP-1 (A), MCSP-2 (B), and MCSP-3 (C). (M) Molecular size marker in kilobase pairs.
antibodies were then used to stain various cell lines by indirect immunofluorescence. CTLL-All, CTLL-1, and CTLL-R8, but not EL-4 thymoma or YAC-1 leukemia cells, were stained with these antibodies (not shown). Granulated staining patterns were always observed, suggesting the predominant granular localization of the MCSP-1 protease (Fig. 5). In parallel experiments no reactivity was given by the preimmune serum control. To assess the distribution of this antigen in vivo, anti-MCSP-1 antibodies were next used to stain bulk cell populations from murine spleen, liver, and peripheral blood. Staining was persistently negative for all the cell populations examined. However, lymphocyte populations that had been stimulated with IL-2 for 3–7 d displayed weakly positive stain in their granules. Positive staining was associated mainly with a subpopulation of LGL that had been enriched by their selective adherence to plastic dishes (not shown; see Materials and Methods). Nonadherent cells did not show any detectable reactivity. In parallel experiments murine primary CTL (3–5 d old), obtained from bulk spleen lymphocyte populations by MLRs, also displayed faint reactivity to the antibody as determined by immunofluorescence. These results suggest that MCSP-1-related antigens are induced to measurable levels in both alloimmune-stimulated CTL and IL-2-driven LGL/NK cells. Since L3-1 (a murine MCSP-1-related transcript) did not hybridize with the mRNA of rat tumor LGL (Fig. 1A), these results would argue that either there are some significant differences between the mouse and the rat transcripts that would restrict crosshybridiza-

![Figure 5](image-url)

Figure 5. Indirect immunofluorescence using anti-L3-5 fusion protein antibodies. CTLL-All cells, sedimented in the cytocentrifuge, were stained with affinity-purified antibodies prepared against L3-5 β-galactosidase fusion protein. (A) Phase-contrast; (B) same field, fluorescence; x600. The preimmune control serum produced undetectable reactivity (not shown).
MOUSE CYTOLYTIC T LYMPHOCYTE SERINE PROTEASE cDNAs

Figure 6. Immunoprecipitation of CTL proteins with anti-L3-5 fusion protein antibodies and [3H]DFP labeling. (Lanes 1-3) Immunoprecipitation of [35S]methionine-labeled CTLL-All (lanes 1 and 2) and CTLL-R8 cells (lane 3). Lanes 2 and 3 contain proteins from granule-enriched pellet that have been reacted with affinity-purified anti-L3-5 fusion protein IgG (see Materials and Methods). The precipitation profile corresponds to material derived from 10^8 cells. (Lane 1) Precipitation was carried out with granule-depleted cytosol under exact conditions as described above; material also corresponds to 10^8 cell equivalents. The autoradiogram was exposed for 5 d. (Lane 4) [3H]DFP labeling of immunoprecipitated proteins. Immunoprecipitation of CTLL-All granule-enriched proteins was carried out exactly as in lane 2 except that cells were not labeled. The immunoprecipitate was reacted with [3H]DFP as described in Materials and Methods and loaded onto the gel. Note that only the 35-40-kD protein band labels strongly with [3H]DFP. Autoradiography was performed for 3 d.

Discussion

To isolate mRNA species, including rare transcripts specific to a cell type, we developed a protocol for differential screening without prior selection and applied the approach to the analysis of cDNA libraries from Con A-stimulated helper (L2) and CTL (L3) cells. In the above analysis, we could not detect transcripts representing 30-40% of cDNA inserts from L2 and L3 cells. We speculated that those inserts could still be subset specific, but that the L2 and L3 RNA loads used in the RNA blot analysis were not high enough to detect a basal level of these RNA species. In fact, one of the cDNA inserts, L3-1, corresponded to a CTL-specific serine protease.
that was originated from L3 cells but whose RNA expression in these cells was too low to detect. On the other hand, the expression of the MCSP-1-related cDNAs, MCSP-2 and MCSP-3, was very high in another CTL clone, CTLL-A11. Since we could not clone MCSP-1 cDNA from the CTLL-A11 cDNA library, this sequence must not be expressed at high level in the CTLL-A11 either. A 23-mer oligo nucleotide matching the 5' end of L3-1 sequence was used to prime cDNA synthesis on poly (A)+ mRNA from CTLL-A11 cells (data not shown). The primer extension products were undetectable in many repeated experiments, which was another indication that L3-1 mRNA level was low in CTLL-A11 cells. Notably, CTLL-A11 expressed H factor/CTLA 3, MCSP-2, and MCSP-3 at high levels, whereas L3 cells expressed H factor/CTLA 3 only at high level, while MCSP-1, MCSP-2, and MCSP-3 transcripts were expressed at undetectable levels, suggesting marked heterogeneity in the expression of serine esterase messages even among different CTL clones.

Based upon the identity of NH2-terminal amino acids of MCSP-2 and MCSP-3 with the reported partial sequence of the so-called granzymes E and F (15), we assigned MCSP-2 as granzyme E and MCSP-3 as granzyme F. MCSP-1 differs from the published sequences of granzymes A-F (15). Masson and Tschopp (14) observed that granzymes D-F are closely related in that they all react with antibodies to granzyme D and are similar in their degree of glycosylation and the position of at least one tryptophan residue in their polypeptide chains. As shown in Fig. 3 A, there are indeed two tryptophans that appear at the same positions in all three deduced protein sequences presented here. Antibodies raised against L3-5 β-galactosidase fusion proteins react strongly with a 35-40-kD protein, which corresponds to the presumed molecular mass of granzyme D. It should be noted, however, that the number of potential N-glycosylation sites are three for MCSP-1 instead of five for granzyme D and that the active site pocket residue is alanine for MCSP-1 instead of threonine for granzyme D. Therefore, MCSP-1 protein may be a seventh member of murine T cell serine protease family.

With the completion of this work, six closely related serine esterase transcripts (granzymes A, B, C, E, F, and MCSP-1) will have been cloned and sequenced, fully supporting the notion that a family of serine esterases is found in lymphocyte granules. However, the function of these enzymes still remains to be determined (46). The three cDNAs described here were expressed only in CTL in our limited survey (Fig. 1, A and B). These transcripts may not be unique to CTL since at least one of them (MCSP-1 or a closely related product) was also expressed weakly by LGL/NK cells established in primary cultures. Studies with a large number of cell lines and more specific probes will be required to address vigorously the cell and tissue distribution of these cloned transcripts.

Serine esterases may be used as sensitive markers for lymphocytes that have been committed to become killer cells (10, 46). It is intriguing that many of the transcripts that have been cloned so far from subtractive CTL-specific cDNA libraries should turn out to code for serine proteases. T cell subsets may acquire such transcripts only upon activation via IL-2 or allo-immune stimulation. Serine esterase-specific probes could in principle be used to study the role of killer lymphocytes in health and in disease, particularly in the assessment of killer lymphocyte distribution in tissues afflicted with auto-immune disorders. The development of more specific nucleic acid probes and peptide-specific antisera for the various serine esterases should facilitate further studies on their function and expression.
Summary

Three new cDNA clones (designated MCSP-1, MCSP-2, and MCSP-3) encoding mouse serine proteases were isolated from cloned cytolytic T lymphocytes (CTL) by a modified differential screening procedure. The putative mature proteins of MCSP-2 and MCSP-3 are each composed of 228 amino acids with molecular weights of 25,477 and 25,360, respectively. NH$_2$-terminal amino acids of MCSP-2- and MCSP-3-predicted proteins were identical to those reported for granzyme E and F, respectively. The third species, MCSP-1, was closely related to the two other cDNA species but ~30 amino acids equivalents of the NH$_2$-terminal portion of the cDNA were not cloned. The amino acids forming the active sites of serine proteases were well conserved among the three predicted proteins. The active site pocket residue positioned six residues before the active-site Ser$_{184}$ is alanine in MCSP-1, threonine in MCSP-2, and serine in MCSP-3, indicating that both MCSP-2 and MCSP-3 may have chymotrypsin-like specificity. There are three potential asparagine-linked glycosylation sites in MCSP-1 and MCSP-3, and four in MCSP-2-deduced amino acid sequences. Amino acid comparison of MCSP-1 with four other reported serine proteases whose active site pocket residue is alanine revealed that MCSP-1 was substantially different from the other molecules, indicating that MCSP-1 may be a new member of mouse T cell serine protease family. Antibodies made against a MCSP-1 lacZ gene fusion protein stain granules of CTL and react on immunoblots with two distinct granule protein bands of 29 and 35-40 kD. Only the 35-kD species labels with $[^3]$H]DFP. Since a protease cascade may play a key role in cytolytic lymphocyte activation, our isolation of cDNAs representative of unique serine esterases should help to investigate such a cascade process.

The authors wish to thank Drs. Sherman Weissman and Zanvil Cohn for their continued advice and support; Drs. Frank Fitch, David Lancki, and Mike Prystowsky for providing the L2 and L3 cells; Dr. Pierre Henkart for LGL; Dr. John Farrar for EL-4 and CT6 cells; Dr. Charles Janeway for A20.2j and K46 cells; Drs. Zanvil Cohn, Stephen Litwin, Yvon Cayre, and Sanjay Joag for critical reading of this manuscript; Dr. Asifa Haq and Ms. Alex Liddell for excellent technical help; and Mrs. Helen Kelley and Mrs. Elaine Wall for typing.

Received for publication 20 July 1988.

Note added in proof: Jenne et al. (47) reported cDNA sequence for granzyme D, E, and F. Amino acid comparison revealed that MCSP-2 was identical to granzyme E except for four amino acid changes at positions 85 (Ala→Ile), 87 (Phe→Tyr), 112 (Lys→Arg), and 130 (Ser→Pro), and that MCSP-3 was identical to granzyme F at all positions. MCSP-1 was different from granzyme D sequence.

References

1. Herberman, R. B., and J. R. Ortaldo. 1981. Natural killer cells: their role in defenses against disease. *Science (Washington, DC).* 214:24.

2. Berke, G. 1983. Cytotoxic T lymphocytes. How do they function? *Immunol. Rev.* 72:5.

3. Trinchieri, G., and B. Perussia. 1984. Human natural killer cell: biologic and pathologic aspects. *Lab. Invest.* 50:489.

4. Goldfarb, R. H. 1986. Cell-mediated cytotoxic reactions. *Hum. Pathol.* 17:138.

5. Henkart, P. A. 1985. Mechanism of lymphocyte-mediated cytotoxicity. *Annu. Rev. Immunol.* 3:31.
6. Podack, E. R. 1985. Molecular mechanism of lymphocyte-mediated tumor cell lysis. *Immunol. Today.* 6:21.

7. Tschopp, J., and M. Nabholz. 1987. The role of cytoplasmic granule components in cytolytic lymphocyte-mediated cytolysis. *Ann. Inst. Pasteur Immunol.* 138:290.

8. Young, J. D.-E., and Z. A. Cohn. 1987. Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies. *Adv. Immunol.* 41:269.

9. Pasternack, M. S., and H.N. Eisen. 1985. A novel serine esterase expressed by cytotoxic T lymphocytes. *Nature* (Lond.). 314:743.

10. Pasternack, M. S., C. R. Verret, M. A. Liu, and H. N. Eisen. 1986. Serine esterase in cytolytic T lymphocytes. *Nature* (Lond.). 322:740.

11. Masson, D., M. Nabholz, C. Estrade, and J. Tschopp. 1986. Granules of cytolytic T-lymphocytes contain two serine esterases. *EMBO (Eur. Mol. Biol. Organ.) J.* 5:1595.

12. Simon, M. M., H. Hoschutsky, U. Fruth, H.-G. Simon, and M. D. Kramer. 1986. Purification and characterization of a T cell specific serine proteinase (TSP-1) from cloned cytotoxic T lymphocytes. *EMBO (Eur. Mol. Biol. Organ.) J.* 5:3267.

13. Young, J. D.-E., L. G. Leong, C.-C. Liu, A. Damiano, D. A. Wall, and Z. A. Cohn. 1986. Isolation and characterization of a serine esterase from cytolytic T cell granules. *Cell.* 47:183.

14. Masson, D., and J. Tschopp. 1987. A family of serine esterases in lytic granules of cytotytic T lymphocytes. *Cell.* 49:679.

15. Pasternack, J., and C. V. Jongeneel. 1988. Cytotoxic T lymphocyte mediated cytolysis. *Biochemistry.* 27:2641.

16. Reid, K. B. M. 1986. Complement-like cytotoxicity. *Nature* (Lond.). 322:684.

17. Golstein, P. 1987. Cytolytic T-cell melodrama. *Nature* (Lond.). 327:12.

18. Chang, T. W., and H. N. Eisen. 1980. Effects of Na-tosyl-L-lysyl-chloro-methyl-ketone on the activity of cytotoxic T lymphocytes. *J. Immunol.* 124:1028.

19. Redelman, D., and D. Hudig. 1980. The mechanism of cell-mediated cytotoxicity. I. Killing by murine cytotoxic T lymphocytes requires cell surface thiol and activated proteases. *J. Immunol.* 124:870.

20. Redelman, D., and D. Hudig. 1983. The mechanism of cell mediated cytotoxicity. III. Protease-specific inhibitors preferentially block later events in cytotoxic T lymphocyte-mediated lysis than do inhibitors of methylation or thiol-reactive agents. *Cell. Immunol.* 81:1.

21. Goldfarb, R. H. 1985. Role of proteases in NK activity. In *Mechanisms of Cytotoxicity* by NK-cells. R. Herberman, editor. Academic Press, New York. 203–212.

22. Gershengenfeld, H. K., and I. L. Weissman. 1986. Cloning of a cDNA for a T cell-specific serine protease from a cytotoxic T lymphocyte. *Science* (Wash. DC). 232:854.

23. Lobe, C. G., B. B. Finlay, W. Paranchych, V. H. Paetkau, and R. C. Bleackley. 1986. Novel serine proteases encoded by two cytotoxic T lymphocyte-specific genes. *Science* (Wash. DC). 232:858.

24. Brunet, J.-F., M. Dosseto, F. Denizot, M.-G. Mattei, W. R. Clark, T. M. Haqqi, P. Ferrier, M. Nabholz, A-M. Schmitt-Verhulst, M-F. Luciani, and P. Golstein. 1986. The inducible cytotoxic T-lymphocyte-associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. *Nature* (Lond.). 322:268.

25. Jenne, D., C. Rey, D. Masson, K. K. Stanley, J. Jerz, G. Plaetinck, and J. Tschopp. 1988. cDNA cloning of granzyme C, a granule-associated serine protease of cytolytic T lymphocytes. *J. Immunol.* 140:318.

26. Kwon, B. S., G. S. Kim, M. D. Prystowsky, D. W. Lancki, D. E. Sabath, J. Pan, and S. M. Weissman. 1987. Isolation and initial characterization of multiple species of T-lymphocyte subset cDNA clones. *Proc. Natl. Acad. Sci. USA.* 84:2896.

27. Glasebrook, A. L., and F. W. Fitch. 1980. Alloreactive cloned T cell lines. I. Interactions between cloned amplifier and cytotoxic T cell lines. *J. Exp. Med.* 151:876.
28. Young, J. D.-E., H. Hengartner, E. R. Podack, and Z. A. Cohn. 1986. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell. 44:849.

29. Vujanovic, N. L., R. B. Herberman, A. A. Maghazachi, and J. D. Hiserodt. 1988. Lymphokine-activated killer cells in rats. III. A simple method for the purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine-activated killer cells. J. Exp. Med. 167:15.

30. Chirgwin, J. M., A. E. Przybyla, R. J. MacDonald, and W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 18:5294.

31. Young, R. A., and R. W. Davis. 1983. Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA. 80:1194.

32. Grass-Bellard, M., P. Oudet, and P. Chambon. 1973. Isolation of high molecular weight DNA from mammalian cells. Eur. J. Biochem. 36:32.

33. Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503.

34. Messing, J., R. Crea, and P. H. Seeburg. 1981. A system for shotgun DNA sequencing. Nucleic Acids Res. 9:309.

35. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463.

36. Biggin, M., T. Gibson, and G. Hung. 1983. Buffer gradient gels and [35S] label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA. 80:3963.

37. Mehra, V., D. Sweester, and R. A. Young. 1986. Efficient mapping of protein antigenic determinants. Proc. Natl. Acad. Sci. USA. 83:7013.

38. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 545 pp.

39. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.). 227:680.

40. Neurath, H. 1984. Evolution of proteolytic enzymes. Science (Wash. DC). 224:350.

41. Segal, D. M., J. D. Powers, G. H. Cohen, D. R. Davies, and P. E. Wilcox. 1971. Substrate binding site in bovine chymotrypsin A γ. A crystallographic study using peptide chloromethylketones as site-specific inhibitors. Biochemistry. 10:3728.

42. Kraut, J. 1977. Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem. 46:331.

43. Woodbury, R. G., N. Katunuma, K. Kobayashi, K. Titani, and H. Neurath. 1978. Covalent structure of a group-specific protease from rat small intestine. Biochemistry. 17:811.

44. Benfey, P. N., F. H. Yin, and P. Leder. 1987. Cloning of the mast cell protease, RMCPiII. J. Biol. Chem. 262:5377.

45. Salvesen, G., D. Farley, J. Shuman, A. Przybyla, C. Reilly, and J. Travis. 1987. Moleculer cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases. Biochemistry. 26:2289.

46. Kramer, M. D., and M. M. Simon. 1987. Are proteases functional molecules of T lymphocytes? Immunol. Today. 8:140.

47. Jenne, D., C. Rey, J. Haefiger, B. Qiao, P. Groscurth, and J. Tschopp. 1988. Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzyme D, E and F of cytolytic T lymphocytes. Proc. Natl. Acad. Sci. USA. 85:4814.