Myocardial Injury after Noncardiac Surgery and Perioperative Atrial Fibrillation: From Evidence to Clinical Practice

Flavia K. Borges, MD, PhD1,2,3, Sandra Ofori, MD1,4, Maura Marcucci, MD1,2,3,4

1Anesthesia, Perioperative Medicine, and Surgical Research Unit, Population Health Research Institute, Hamilton, Canada; 2Department of Medicine, McMaster University, Hamilton, Canada; 3Division of Perioperative Care, Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada; 4Health Research Methodology, Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada

Address for correspondence: Maura.Marcucci2@phri.ca

Submitted: November 18, 2020. Accepted: 8 January 2021. Published: March 16, 2021. DOI: 1022374/cjgim.v16iSP1.530.

ABSTRACT

One in 60 patients who undergo major noncardiac surgery dies within 30 days following surgery. The most common cause is cardiac complications, of which myocardial injury after noncardiac surgery (MINS) and perioperative atrial fibrillation (POAF) are common, affecting about 18 and 11% of adults, respectively, after noncardiac surgery. Patients who suffer MINS are at a higher risk of death compared to patients without MINS. Similarly, patients who develop POAF are at a higher risk of stroke and death compared to patients who do not. Most patients who suffer MINS are asymptomatic, and its diagnosis is not possible without routine troponin monitoring. Observational studies support the use of statins and aspirin in the management of patients with MINS. The only randomized controlled trial to date that has specifically addressed the management of MINS was the MANAGE trial that demonstrated the efficacy and safety of intermediate dose dabigatran in this population. There are no specific prediction models for POAF and no randomised controlled trial evidence to guide the specific management of POAF. Management guidelines in the acute period follow the management of nonoperative atrial fibrillation. The role of long-term anticoagulation in this population is still uncertain and should be guided by a shared care decision model with the patient, and with consideration of the individual risk for stroke balanced against the risk of bleeding. In this review, we present a case-based approach to the detection, prognosis, and management of MINS and POAF based on the existing evidence.

RÉSUMÉ

Un patient sur 60 qui subit une intervention chirurgicale majeure non cardiaque meurt dans les 30 jours suivant l’opération. La cause la plus fréquente est celle des complications cardiaques, dont les lésions myocardiques après une chirurgie non cardiaque (LMCNC) et la fibrillation auriculaire périopératoire (FAPO) sont courantes et touchent respectivement environ 18 et 11 % des adultes après une chirurgie non cardiaque. Les patients présentant des LMCNC sont exposés à un risque plus élevé de décès que les patients qui ne présentent pas de LMCNC. De même, les patients chez qui on voit apparaître une FAPO ont un risque plus élevé d’accident vasculaire cérébral et de décès que ceux qui ne connaîtront pas cette complication. La plupart des patients atteints de LMCNC sont asymptomatiques, et il est impossible d’établir un diagnostic sans surveiller régulièrement la
Introduction
Globally, over 300 million adults undergo noncardiac surgery every year. Noncardiac surgery can improve patient quality of life and prolong survival. However, perioperative complications are not uncommon. Acute cardiovascular events are among the most frequent complications. They include myocardial injury after noncardiac surgery (MINS) and perioperative atrial fibrillation (POAF). This review offers insights into the management of these complications using a case-based approach.

Myocardial Injury after Noncardiac Surgery: Clinical Scenario
Ms. A.S. is a 77-year-old female who underwent hip fracture surgery. She had no risk factors for, or a previous history of, cardiovascular disease. Preoperatively, she was independent in all activities of daily living. Intraoperatively, she experienced hypotension with a systolic blood pressure (BP) <90 mmHg for 15 min. Routine postoperative monitoring showed high-sensitivity troponin I (hsTnI) at 64 ng/L (upper reference limit [URL] 30 ng/L) on postoperative day 1. She had no chest pain or shortness of breath. Her heart rate was 86 beats/min, BP 134/75 was mmHg, and heart and lung sounds were normal. The electrocardiogram (ECG) was unremarkable. HsTnI peaked at 75 ng/L the next day. She remained asymptomatic. She was discharged home on aspirin and a statin, with a plan to follow-up with her family physician and surgeon.

One month later, she presented to the emergency department with chest pain. Her BP was 138/78 mmHg, and her heart rate was 72 beats/min. The exam was unremarkable. ECG showed a new left bundle branch block (LBBB). Initial HsTnI was 88 ng/L and peaked at 1468 ng/L 12 h later. She underwent urgent cardiac catheterization. Left ventriculogram showed preserved left ventricular ejection fraction with no regional wall motion abnormalities but significant 3-vessel coronary artery disease (CAD). She subsequently underwent triple coronary artery bypass graft surgery. She was discharged home in a stable condition on aspirin, an angiotensin-converting-enzyme (ACE) inhibitor, a beta-blocker, and a high-dose statin.

What Is MINS?
MINS is defined as an acute elevation of troponin due to myocardial ischemia occurring during or within 30 days after noncardiac surgery. MINS includes patients that fulfill the Universal Definition of myocardial infarction (MI), and patients...
with ischemic troponin elevation without any ischemic features (e.g., chest pain or ischemic electrocardiographic findings).

Postoperative troponin elevation due to other nonischemic etiologies (e.g., pulmonary embolism, sepsis) are not considered as MINS.

What Is the Prognostic Impact of MINS?
MINS is the most common cardiovascular complication after noncardiac surgery. Patients with MINS have a higher 30-day mortality and a higher risk of recurrent short- and long-term cardiovascular complications. A recent systematic review (169 studies and >530,000 patients) estimated the incidence of MINS at 18%. Compared to patients without MINS, those with MINS had higher mortality, both in hospital (8.1%, vs 0.4%; relative risk [RR] 8.3, 95% confidence interval [CI], 4.2–16.6) and at 1 year after surgery (20.6% vs 5.1%; RR 4.1, 95% CI, 3.0–5.6).

What Are the Troponin Thresholds for MINS?
The Vascular events In noncardiac Surgery patients cOhort evaluatioN (VISION) study included a representative sample of 40,004 patients undergoing inpatient noncardiac surgery and was the first study to establish prognostically relevant troponin thresholds for MINS independently associated with death at 30 days. A fourth generation nonhigh-sensitivity troponin T (TnT) ≥0.03 ng/mL or a fifth generation high-sensitivity troponin T (hsTnT) of 20 to <65 ng/L with an absolute change of ≥5 ng/L or a hsTnT level ≥65 ng/L were independently associated with 30-day postoperative mortality. VISION substudies have also established optimal hsTnI thresholds for MINS. A hsTnI ≥60 ng/L (ARCHITECT STAT Abbot assay) and a hsTnI ≥75 ng/L (Siemens Healthineers ADVIA Centaur Assay) are associated with major cardiovascular events 30 days after noncardiac surgery. For other troponin assays, physicians should consider any elevation above the 99th percentile URL as the threshold for MINS.

Importantly, the VISION Study demonstrated that the higher the postoperative troponin peak, the higher the 30-day mortality. Patients with a peak postoperative hsTnT levels of 65 to <1000 ng/L had 30-day mortality rates of 9.1%, and patients with hsTnT levels of ≥1000 ng/L had 29.6% 30-day mortality.

What Are the Patients Who Should Be Monitored for MINS?
Patients with MINS are more likely to be older, male, and have cardiovascular risk factors. The Canadian Cardiovascular Society (CCS) Guidelines recommend that patients undergoing noncardiac surgery with a Revised Cardiac Risk Index score (RCRI) ≥1, age ≥65 years or 45–64 years with significant cardiovascular disease, or patients with elevated preoperative N-terminal prohormone brain natriuretic peptide (NT-proBNP) ≥300 ng/L or brain natriuretic peptide (BNP ≥ 92 mg/L) be routinely monitored for MINS. Recent data from the VISION cohort demonstrated that among 10,402 patients, compared with a reference preoperative NT-proBNP <100 pg/mL, adjusted hazard ratios [aHR] for the occurrence of the primary outcome (i.e., vascular death or MINS) within 30 days after noncardiac surgery were 2.27 (95% CI, 1.90 to 2.70) for NT-proBNP of 100 to <200 pg/mL, 3.63 (CI, 3.13 to 4.21) for NT-proBNP of 200 to <1500 pg/mL, and 5.82 (CI, 4.81 to 7.05) for NT-proBNP ≥1500 pg/mL. The associated incidence of the primary outcome was 12.3, 20.8, and 37.5%, respectively.

The European Society of Cardiology (ESC) guidelines suggest biomarker measurements in high-risk patients, including NT-proBNP for prognosis assessment and cardiac troponin both before and 48–72 h after major surgery. The most recent Universal definition of MI statement also recommends perioperative troponin surveillance for high-risk individuals undergoing noncardiac surgery.

In the VISION study, 38.2% of patients who had MINS experienced this on the day of surgery, 39.4% on postoperative day 1, 16.5% on postoperative day 2, and only 5.3% on postoperative day 3. Importantly, in up to 93% of cases, the index MINS event is asymptomatic. After surgery, patients are commonly on analgesics that can mask ischemic symptoms. Compared to patients without MINS, patients who have MINS, without or with ischemic features, have a higher 30-day mortality rate (0.6% vs 2.9% vs 8.5%, respectively), thereby supporting the need for routine perioperative troponin surveillance. The ESC and the CCS guidelines recommend that troponin should be measured daily after surgery, for 48–72 h or until peak, complemented with ECGs to detect ischemia.

What Is the Rationale and Evidence for the Management of Patients with MINS?
Troponin elevation after noncardiac surgery is associated with adverse outcomes. Patients with MINS are also more likely to have known or unknown underlying CAD than patients without MINS. The Coronary CTA VISION Study showed that underlying coronary stenosis was common among patients who had a perioperative MI (4% had normal coronary arteries on Cardiac Computed Tomography Angiography [CTA] and 72% had obstructive CAD). Therefore, it is reasonable to consider close monitoring and follow-up with secondary cardiovascular prevention to reduce the risk of subsequent cardiovascular events. The Management of Myocardial Injury After Noncardiac Surgery (MANAGE) trial was the first randomized controlled trial (RCT) to evaluate treatment strategies in patients with MINS. In MANAGE, 1,754 patients were randomly allocated to receive dabigatran, 110 mg twice-daily, or placebo, from the day of randomization (median of 5 days postoperatively) to the end of
follow-up (16 months). The primary outcome (a composite of vascular mortality and nonfatal MI, nonhaemorrhagic stroke, peripheral arterial thrombosis, amputation, and symptomatic venous thromboembolism) occurred in 97 (11%) of 877 patients in the dabigatran versus 133 (15%) of 877 patients in the placebo group (HR 0.72; 95% CI 0.55–0.93; P = 0.0115), with no significant increase in major bleeding (HR = 0.92; 95% CI: 0.55–1.53). Dabigatran was associated with an increase in minor bleeding (15% with dabigatran vs 10% with placebo; HR 1.64; CI 95% 1.25–2.15). About 60% of patients were on aspirin and only 3% were on dual antiplatelet therapy at the time of randomization. There is no RCT on other medications for secondary cardiovascular prevention after perioperative ischemic events. A multivariable prospective analysis of 415 patients with a perioperative MI demonstrated that the initiation of aspirin and statin was associated with a reduction in 30-day mortality (adjusted odds ratio [aOR] = 0.54; 95% CI: 0.29–0.99, and aOR = 0.26; 95% CI: 0.13–0.54, respectively). A case–control study demonstrated that cardiovascular medication intensification (i.e., the introduction of at least 1 among antiplatelets, statin, beta-blockers, and angiotensin II converting enzyme inhibitors [ACEI]) was associated with a reduction of subsequent cardiovascular events at 1 year for patients who suffered a perioperative MI. The CCS Guidelines recommend long-term aspirin and statin therapy for patients with MINS.

What Is the Approach to Management of MINS?
The patient in the abovementioned scenario illustrates that patients with MINS require close follow-up and that MINS might unmask undiagnosed CAD. The following points and Figure 1 summarize our management approach to patients with MINS.

In-hospital:
1. Assess for high-risk features (persistent chest pain, ST elevation/new LBBB, dynamic ECG changes, or hemodynamic instability). If present, consider inpatient echocardiogram, cardiac catheterization, and cardiology consultation. After the acute phase or among stable patients, further risk stratification with cardiac stress testing can be done while in hospital.
2. Identify nonischemic causes for troponin rise and manage triggers (anemia, tachycardia, hypotension, pulmonary embolism, sepsis, etc.).
3. Implement medications for cardiovascular disease prevention while in hospital including moderate- to-high dose statin and aspirin. Consider adding intermediate dose dabigatran. Timing for the initiation of aspirin and the addition of dabigatran should consider bleeding concerns and be discussed with the surgeon.
4. Discuss with the patient about optimal management of cardiovascular risk factors (i.e., lifestyle modification, smoking cessation, BP, and diabetes control if indicated).

Outpatient:
1. Short-term clinical follow-up within 2–4 weeks whenever possible.
2. Outpatient risk stratification might include noninvasive cardiac testing with stress echocardiography, nuclear stress tests, or coronary CT angiogram. Where available, Positron Emission Tomography scan with flow quantification can be performed, mainly for patients with suspicion of balanced CAD. There are no studies evaluating the benefit of noninvasive stress tests or cardiovascular revascularization in patients with MINS. The clinical expertise of a multidisciplinary team should guide the investigations depending on patients’ clinical presentation and preferences.
3. Periodic follow-up, up to 1 year or longer, should be considered, especially in the presence of high-risk features, given the high-risk of cardiovascular events and mortality in the first year.

Perioperative Atrial Fibrillation: Clinical Scenario
Mrs. M. is a 71-year-old woman undergoing laparotomic resection of a large left ovarian cystic mass (benign pathology). She has hypertension (on amlodipine 10 mg daily), obesity (BMI 38 kg/m²), and obstructive sleep apnea (compliant to CPAP). She does not have any history or symptoms of cardiac disease. Her preoperative NT-proBNP is 550 mg/L. Intraoperatively, her systolic BP was 85 mmHg for 5 min, which improved with intravenous fluids. After surgery, because of the intraoperative hypotension and elevated preoperative NT-proBNP, the anesthetist recommended cardiac monitoring. On postoperative day 1, the monitor shows atrial fibrillation (AF) with a ventricular rate of 130–140 beats/min. She is asymptomatic; her BP and oxygen saturation is normal. She receives one dose of intravenous metoprolol; 5 mg. Rate control is achieved followed by spontaneous conversion to sinus rhythm the next day. She is worked up for persistently high white blood cell count and a urine culture is positive for E. Coli. After treatment of the urinary tract infection and postoperative cardiac monitoring for 5 days, she is discharged with a scheduled follow-up with surgery and perioperative medicine.

What Is POAF and How Frequent Is It done in Noncardiac Surgery?
AF is the most common sustained cardiac arrhythmia in nonsurgical adult populations. POAF comprises AF occurring during an ongoing surgery or in the immediate postoperative
postoperative ECG monitoring is rarely employed. The average incidence in the largest nonselected noncardiac surgery cohorts is 3%. POAF typically occurs during the first 4 postoperative days. However, true incidence and time distribution of POAF is likely underestimated, as continuous monitoring after discharge is not performed. The reported incidence of POAF in noncardiac, nonthoracic surgery ranges between <1 and >20%, with higher estimates in abdominal surgery (>10%) than in total joint replacements (5%). Noncardiac thoracic surgery can also have a high incidence of POAF, up to 30%, depending on the type of, and the reason for, the procedure. Why Does POAF Occur after Noncardiac Surgery? The pathophysiology of POAF has not been fully understood, and multiple mechanisms might play a role, including surgery itself, which is associated with the activation of the sympathetic nervous system. Many events in the perioperative period, such as hypotension, hypoxia, hypovolemia or hypervolemia, anemia, metabolic imbalances, trauma, infection, and pain, can also trigger POAF through sympathetic activation or other mechanisms; these factors are more likely to result in POAF in patients with preexistent cardiac disease. Patient- and surgery-related risk factors that are associated with an increased risk of POAF include older age, male sex, obesity, congestive heart failure, signs of left atrial cardiomyopathy, thoracic surgery, longer procedures, and the use of inotropes.

Figure 1. Algorithm on how to manage patients with myocardial injury after noncardiac surgery (MINS).

- RCRI ≥ 1, Age ≥ 65 or 45-64 years old with significant CV disease, or NT-probnp 200 or greater, or BNP 92 or greater
- ECG in the PACU
 - Troponin measurement daily for 48-72 hours

Postoperative troponin elevation during or within 30 days of noncardiac surgery

Clinical evaluation - rule out non acute ischemic causes (e.g., sepsis, pulmonary embolism, chronic troponin elevation)

Postoperative troponin elevation attributed to ischemia - MINS

- Monitor for ischemic symptoms (e.g. chest pain, shortness of breath)
- Review intraoperative hemodynamics (check for significant hypotension, severe hypertension, persistent tachycardia or bradycardia, intraoperative bleeding)
- Review CV risk factors, previous CV events, previous Echocardiograms, stress tests and coronary angiogram (review anatomy and recent procedures – PCI, CABG)
- Monitor vital signs (BP, HR, oxygen saturation), bleeding and volume status
- Perform Electrocardiogram (ECG) on first assessment. Repeat ECG if chest pain, and at least daily until troponin peak. Consider telemetry.
- Monitor troponin until peak
- Screen for CV risk factors and smoking status - consider Lipid profile, HbA1C

MINS with no high risk features

- Consider outpatient Echocardiogram and/or non-invasive stress test

MINS with high risk features**

- In-patient Echocardiogram
- Consider involving Cardiologist and the surgical team for a multidisciplinary team decision for invasive versus non-invasive inpatient stratification

- If no ongoing major bleeding and hemoglobin stable, consider starting low dose ASA 81 mg PO daily and Dabigatran 110 mg PO twice a day as soon as the surgeon is comfortable from a bleeding point of view
- Consider high dose statin and other therapies including a Beta-blocker if elevated HR, ACE inhibitor if BP stable with no hypotension
- Prescribe and educate on use of nitroglycerin spray PRN if chest pain
- Offer pharmacologic therapy for smoking cessation if needed
- Consider outpatient Echocardiogram and/or non-invasive stress test
- Educate on the need for ER visit if alarm symptoms (e.g., prolonged or rest chest pain, presyncope, syncope, shortness of breath, tachycardia, bradycardia, or severe hypotension)
- Outpatient follow-up in clinic within 2-4 weeks

STEMI
- Follow specific CCS guidelines
- Consider Cardiology consultation and urgent cardiac angiogram

why Does POAF Occur after Noncardiac Surgery? The pathophysiology of POAF has not been fully understood, and multiple mechanisms might play a role, including surgery itself, which is associated with the activation of the sympathetic nervous system. Many events in the perioperative period, such as hypotension, hypoxia, hypovolemia or hypervolemia, anemia, metabolic imbalances, trauma, infection, and pain, can also trigger POAF through sympathetic activation or other mechanisms; these factors are more likely to result in POAF in patients with preexistent cardiac disease. Patient- and surgery-related risk factors that are associated with an increased risk of POAF include older age, male sex, obesity, congestive heart failure, signs of left atrial cardiomyopathy, thoracic surgery, longer procedures, and the use of inotropes. Elevated preoperative BNP or NT-proBNP
been shown to reduce POAF in noncardiac surgery; however, existing evidence on perioperative pharmacological strategies to prevent POAF has been associated with prolonged hospital stay and an increased risk of perioperative complications, including infections, stroke, and in-hospital mortality.

What Is the Clinical Relevance of POAF?

Most patients with POAF convert to sinus rhythm spontaneously and many POAF episodes are asymptomatic and remain undetected. However, POAF can also result in hemodynamic instability that requires immediate intervention. POAF has been associated with long-term impacts.

POAF that occurs after cardiac surgery is associated with a fivefold increased risk for recurrent AF in the next 5–6 years. By comparison, the risk of recurrent AF after noncardiac surgery is lesser studied but is likely to be similar after a long-term follow-up. Patients who develop POAF after noncardiac surgery are at an increased risk for stroke, death, and other cardiovascular events at 1 year after surgery. A post hoc analysis combined data from the PeriOperative Ischemic Evaluation POISE-1 and POISE-2 trials and included 18,117 patients (mean age 69 years, 57.4% male) with, or at risk of, cardiovascular disease who were undergoing noncardiac surgery and were not in AF at the time of study enrollment. Compared to those without POAF, patients with POAF had a higher incidence of stroke 1 year after surgery (5.58 vs. 1.54 per 100 patient years; aHR = 3.43; 95% CI: 2.00–5.90). POAF was associated with increased mortality (incidence 31.4 vs. 9.3; aHR = 2.5; 95% CI: 2.01–3.14) and MI (incidence 26.2 vs. 8.23; aHR = 3.10; 95% CI: 2.00–5.90) at 1 year. The long-term incidences of these adverse events are comparable to those of patients clinically diagnosed with AF in nonsurgical contexts.

It is still to be determined whether POAF of different durations or timing of onset, and POAF clinically diagnosed versus detected by continuous ECG monitoring, have a different prognostic value. However, overall, the existing evidence underlines the clinical significance of POAF as a perioperative event with short- and long-term impacts.

How Can POAF be Prevented?

Existing evidence on perioperative pharmacological strategies to prevent POAF is not definitive. Perioperative beta-blockers have been shown to reduce POAF in noncardiac surgery; however, in the POISE-1 trial, metoprolol increased the incidence of death and stroke 30 days after surgery. Amiodarone has been showed to be effective, with lower cumulative doses likely to have a better profile in terms of side effects. Evidence on perioperative statin and POAF prevention is less robust. Perioperative colchicine to prevent POAF in thoracic surgery is currently under investigation (NCT03310125). Currently, there is no perioperative pharmacological prophylaxis for POAF recommended for every patient undergoing noncardiac surgery; a personalized approach based on a cautious consideration of surgery-related and patient-related risk factors is instead recommended. Overall, it is reasonable to expect that hemodynamics and laboratory monitoring, in order to prevent or detect early and manage possible triggers, will prevent POAF.

How Should POAF be Acutely Managed?

POAF should be acutely managed based on the same principles of acute AF management in other contexts, adapted to patient characteristics, patient preferences, and local protocols. In many cases, the rhythm disturbance will resolve with the resolution of the precipitating trigger(s). In hemodynamically unstable patients, emergency electrical cardioversion is indicated. There are no RCTs done in patients with POAF comparing rate versus rhythm control, or different strategies for rate or rhythm control. Given the high rate of spontaneous conversion to sinus rhythm in POAF, it is reasonable to consider rhythm control only when the patient is symptomatic, and/or when rate control is difficult to achieve. In the case of nonemergency cardioversion, peri-procedural anticoagulation is recommended with the same rules as in AF diagnosed in a nonoperative setting. Rate control (target heart rate <100 beats/min) could be achieved with beta-blockers (preferable in case of known CAD or reduced ejection fraction), nondihydropyridine calcium channel blockers, or digoxin. In patients with preexisting AF, or at high risk of POAF, we suggest telemetry monitoring at least for the first 24–48 h after surgery to detect episodes of AF at risk of hemodynamic compromise and to intervene in a timely fashion (Figure 2).

Should Patients with POAF Receive Long-Term Anticoagulation?

The adoption of long-term oral anticoagulation (OAC) remains controversial. The high long-term risk of stroke after POAF, like that associated with nonoperative AF, suggests that patients with POAF could benefit from long-term OAC. In a large Danish cohort study, long-term benefit of OAC, initiated within 30 days from discharge, was similar between patients with POAF after noncardiac surgery (HR 0.52; 95% CI 0.40–0.67) and matched patients diagnosed with nonoperative AF (HR 0.56; 95% CI 0.51–0.62). OAC therapy during follow-up was also associated with a significantly lower risk of all-cause mortality.
in both patients with POAF and nonoperative AF. Alternatively, another large retrospective cohort study, using data from the Quebec Hospital Discharge Database, did not show similar benefits. Overall, cautious interpretation is needed given the observational nature of this evidence. The ongoing ASPIRE-AF (NCT03968393) randomized trial will inform the long-term benefits and risks of OAC in POAF after noncardiac surgery. In the meantime, current guidelines suggest that long-term OAC therapy should be considered in patients at risk for stroke with POAF after noncardiac surgery, accounting for the anticipated net clinical benefit of OAC therapy and informed patient preferences. Neither CHADS₂ nor the CHA₂DS₂-VASc score (congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, stroke/transient ischemic attack, vascular disease, age 65–75 years, and sex) has been validated in surgical populations, but their use for long-term stroke risk prediction in patients with POAF seems reasonable. We suggest performing an echocardiogram to evaluate the presence of structural or functional abnormalities that could increase the risk of recurrences and/or of cardioembolic events. In most of the cases, the echocardiogram can be performed in the outpatient setting, unless the patient in-hospital course suggests otherwise (e.g., POAF associated with hemodynamic instability, symptoms of congestive heart failure, or significant myocardial ischemia). Knowing that the patient is having arrhythmia recurrences, even if asymptomatic, through extended ECG Holter monitoring (i.e., 14 days), once the patient is discharged, can also help with the decision about OAC. Patient baseline bleeding risk should also play an important role in the decision. Bleeding risk scores (e.g., HAS-BLED) developed in the nonoperative setting have not been specifically validated in the setting of initiating OAC for AF diagnosed in the perioperative setting; however, they can provide a reasonable guidance on the long-term risk of bleeding with OAC. In the specific case of POAF, considerations about the bleeding risk related to the type and reason of the recent surgery should be discussed with the surgeon, in relation to the timing of OAC initiation.

How Do We Manage Our Clinical POAF Case?

Mrs M. is seen by the perioperative medicine service at 1 month after surgery. She reports to be asymptomatic since discharge. In clinic, BP is 165/88 mmHg, heart rate is 88 beats/min (regular), and oxygen saturation is 94% on room air. ECG shows sinus rhythm. Echocardiogram shows mild concentric left ventricular hypertrophy; preserved global and regional left ventricular contractility (ejection fraction 55%); indeterminate diastolic filling pattern; both atria are moderately dilated; and no valve disease is seen. Although ongoing infection and the intraoperative hypotension were possible triggers of the episode of POAF, she presents predisposing clinical characteristics (obesity, hypertension, cardiac remodelling, and enlarged left atrium, which could also increase the risk of AF recurrences. Her CHA₂DS₂-VASc score is 3 (3.2% risk of stroke per year). Long-term OAC is started in agreement with the patient after discussing potential benefits of stroke prevention and bleeding risk (HAS-BLED score 2 points; 1.88–3.2% risk of major bleeding)
per year). Initiation of ACE inhibitor, optimal BP control, and weight reduction is also recommended.

Disclosures
All authors declare no competing interests.

Funding Statement
Dr. Flavia Kessler Borges holds a McMaster University Department of Medicine Career Research Award. Dr Sandra Ofori holds a Michael G. DeGroote Fellowship Award for Clinical Research. Dr. Maura Marcucci holds a McMaster University Department of Medicine Career Research Award and a PSI Foundation Mid-Career Clinical Research Award.

References
1. Weiser TG, Haynes AB, Molina G, et al. Estimate of the global volume of surgery in 2012: An assessment supporting improved health outcomes. Lancet. 2015;385(Suppl 2):S11. http://dx.doi.org/10.1016/S0140-6736(15)60806-6
2. Devereaux PJ, Sessler DI. Cardiac complications in patients undergoing major noncardiac surgery. N Engl J Med. 2015;373:2258–69. http://dx.doi.org/10.1056/NEJMra1502824
3. Devereaux P, Xavier D, Pogue J, et al. Characteristics and short-term prognosis of perioperative myocardial infarction in patients undergoing noncardiac surgery. Ann Intern Med. 2011;154:523–8. http://dx.doi.org/10.7326/0003-4819-154-8-201104190-00003
4. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138:e618–e51. http://dx.doi.org/10.1161/CIR.0000000000006617
5. Botto F, Alonso-Coello P, Chan MT, et al. Myocardial injury after noncardiac surgery: A large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology. 2014;120:564–78. http://dx.doi.org/10.1097/ALN.0000000000000113
6. Puelacher C, Larati Buse G, Seeburger D, et al. Perioperative myocardial injury after non-cardiac surgery: Incidence, mortality, and characterization. Circulation. 2018;137:1221–32. http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030114
7. Smilowitz NR, Redel-Traub G, Hauswarter A, Armanious A, Nicholson J, Puelacher C, et al. Myocardial injury after noncardiac surgery: A systematic review and meta-analysis. Cardiol Rev. 2019;27(6):267–73. http://dx.doi.org/10.1097/CRD.0000000000000254
8. Devereaux PJ, Biccard BM, Sigamany A, et al. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2017;317:1642–51. http://dx.doi.org/10.1001/jama.2017.4360
9. Duceppe E, Borges FK, Tiboni M, Pearse R, Chan MTV, Srinathan S, et al. Association between high-sensitivity troponin I and major cardiovascular events after non-cardiac surgery. J Am Coll Cardiol. 2020 Mar;75(11 Suppl 1):110. http://dx.doi.org/10.1016/j.jacc.2019.10077(20)30737-3
10. Borges FK, Duceppe E, Heels-Ansdell D, Ofori SN, Marcucci M, Kavask PA, et al. High-sensitivity troponin I predicts major cardiovascular events after noncardiac surgery: ESC Congress—The Digital Experience. 2020. http://dx.doi.org/10.1093/ehjci/ehaa46.1675
11. Sheh T, Chan M, Butler C, et al. Prognostic capabilities of coronary computed tomographic angiography before non-cardiac surgery: Perspective cohort study. BMJ (Clinical research ed). 2015;350:h1907. http://dx.doi.org/10.1136/bmj.h1907
12. Gualandro DM, Campos CA, Calderaro D, et al. Coronary plaque rupture in patients with myocardial infarction after noncardiac surgery: Frequent and dangerous. Atherosclerosis. 2012;222:191–5. http://dx.doi.org/10.1016/j.atherosclerosis.2012.02.021
13. Parashar A, Agarwal S, Krishnaswamy A, et al. Percutaneous intervention for myocardial infarction after noncardiac surgery: Patient characteristics and outcomes. J Am Coll Cardiol. 2016;68:329–38. http://dx.doi.org/10.1016/j.jacc.2016.03.062
14. Duceppe E, Parlow J, MacDonald P, et al. Canadian cardiovascular society guidelines on perioperative cardiac risk assessment and management for patients who undergo noncardiac surgery. Can J Cardiol. 2017;33(1):17–32. http://dx.doi.org/10.1016/j.cjca.2016.09.008
15. Lee TH, Marcantionio ER, Mangione CM, et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999 Sep 7;100(10):1043–9. http://dx.doi.org/10.1161/1061.cir.100.10.1043
16. Duceppe E, Patel A, Chan M, et al. Preoperative N-terminal pro-B-type natriuretic peptide and cardiovascular events after noncardiac surgery: A cohort study. Ann Intern Med. 2020;172:96–104. http://dx.doi.org/10.7326/M19-2501
17. The Joint Task Force on non-cardiac surgery: Cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA) 2014 ESC/ESA Guidelines on non-cardiac surgery: Cardiovascular assessment and management. Eur Heart J. 2014;35:2383–411. http://dx.doi.org/10.1093/ehjheart/ehu282
18. De Hert S, Staender S, Fritsch G, et al. Pre-operative evaluation of adults undergoing elective noncardiac surgery. Eur J Anaesthesiol. 2018;35(6):407–65. http://dx.doi.org/10.1016/j.eja.2018.06.008
19. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of MI. JACC. 2018;72(18):2331–64. http://dx.doi.org/10.1016/j.jacc.2018.08.1038
20. Duceppe E, Yusuf S, Tandon V, et al. Design of a randomized placebo-controlled trial to assess dabigatran and omeprozole in patients with myocardial injury after noncardiac surgery (MANAGE). Can J Cardiol. 2018;34:295–302. http://dx.doi.org/10.1016/j.cjca.2018.01.020
21. Devereaux PJ, Duceppe E, Guyatt G, et al. Dabigatran in patients with myocardial injury after non-cardiac surgery (MANAGE): An international, randomised, placebo-controlled trial. Lancet (London, England). 2018;391:2325–34. http://dx.doi.org/10.1016/S0140-6736(18)30832-8
22. Devereaux PJ, Xavier D, Pogue J, et al. Characteristics and short-term prognosis of perioperative myocardial infarction in patients undergoing noncardiac surgery: A cohort study. Ann Intern Med. 2011;155:43–51. http://dx.doi.org/10.1059/CRD.0000000000000254
23. Fourcier A, Rodseth R, Aissaulou M, et al. The long-term impact of early cardiovascular therapy intensification for postoperative troponin elevation after major vascular surgery. Anesth Analg. 2014;119:1053–63. http://dx.doi.org/10.1213/ANE.0000000000000302
24. Echahidi N, Pibarat P, O’Hara G, Mathieu P. Mechanisms, prevention, and treatment of atrial fibrillation after cardiac surgery. J Am Coll Cardiol. 2008;51(8):793–801. http://dx.doi.org/10.1016/j.jacc.2007.10.043
25. Amar D. Prevention and management of perioperative arrhythmias in the thoracic surgical population. Anesthesiol Clin. 2008;26(2):325–35, viii. http://dx.doi.org/10.1016/j.anclin.2008.01.001
26. Joshi KK, Tiar M, Chint T, Fox MT, Stefan MS. Postoperative atrial fibrillation in patients undergoing non-cardiac non-thoracic surgery: A practical approach for the hospitalist. Hosp Pract. 2015;43(4):235–44. http://dx.doi.org/10.1080/21548331.2015.1096181
27. Bhave PD, Goldman LE, Vittinghoff E, Maselli J, Auerbach A. Incidence, predictors, and outcomes associated with postoperative atrial fibrillation after major noncardiac surgery. Am Heart J. 2012;164(6):918–24. http://dx.doi.org/10.1016/j.ahj.2012.09.004
28. Chehboun R, Heywood EG, Drake TM, Wild JRL, Lee J, Wilson M, et al. A systematic review of the incidence of and risk factors for postoperative atrial fibrillation following general surgery. Anaesthesia. 2018;73(4):490–8. http://dx.doi.org/10.1111/anae.14118
29. Brossios A, Khan J, Devereaux PJ, Alvarez-Garcia J, Alonso-Coello P. Postoperative atrial fibrillation in non-cardiac and cardiac surgery: An
Perioperative Medicine Special Issue

overview. J Thromb Haemost. 2015;13(Suppl 1):S304–12. http://dx.doi.org/10.1111/jth.12974

30. Kotecha D, Castella M. Is it time to treat post-operative atrial fibrillation just like regular atrial fibrillation? Eur Heart J. 2020;41(5):652–4a. http://dx.doi.org/10.1093/eurheartj/ehz412

31. Toufektzian L, Ziss C, Balaka C, Roussakis A. Effectiveness of brain natriuretic peptide in predicting postoperative atrial fibrillation in patients undergoing non-cardiac thoracic surgery. Interact Cardiovasc Thorac Surg. 2015;20(5):654–7. http://dx.doi.org/10.1093/icvts/ivu454

32. Simmers D, Potgieter D, Ryan L, Fahren R, Rodseth RN. The use of preoperative B-type natriuretic peptide as a predictor of atrial fibrillation after thoracic surgery: Systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2015;29(2):389–95. http://dx.doi.org/10.1053/j.jvca.2014.05.015

33. Szczeklik W, LeManach Y, Froneczek J, et al. Preoperative levels of natriuretic peptides and the incidence of postoperative atrial fibrillation after noncardiac surgery: A prospective cohort study. CMAJ. 2020;192:E1715–22. http://dx.doi.org/10.1503/cmaj.200840

34. Polanczyk CA, Goldman L, Marcontonio ER, Orav EJ, Lee TH. Supraventricular arrhythmia in patients having noncardiac surgery: Clinical correlates and effect on length of stay. Ann Intern Med. 1998;129(4):279–85. http://dx.doi.org/10.1076/0002-9610(19980815)129:4<279::AID-AI>3.0.CO;2-M

35. Kanji S, Williamson DR, Yaghi BM, Albert M, McIntyre L, Canadian Critical Care Trials Group. Epidemiology and management of atrial fibrillation in medical and noncardiac surgical adult intensive care unit patients. J Crit Care. 2012;27(3):326 e1–8. http://dx.doi.org/10.1016/j.jcc.2011.10.011

36. Christians KK, Wu B, Quibbeeman EJ, Brasel KJ. Postoperative atrial fibrillation in noncardiothoracic surgical patients. Am J Surg. 2001;182(6):713–15. http://dx.doi.org/10.1016/S0002-9610(01)00799-1

37. Konstantino Y, Zelnik Yovel D, Friger MD, Sahar G, Knayzer A, Amit G. Postoperative atrial fibrillation following coronary artery bypass graft surgery predicts long-term atrial fibrillation and stroke. Isr Med Assoc J. 2016;18(12):744–8.

38. Ahlsson A, Fengersud E, Bodin L, Englund A. Postoperative atrial fibrillation in patients undergoing aortocoronary bypass surgery carries an eightfold risk of future atrial fibrillation and a doubled cardiovascular mortality. Eur J Cardiothorac Surg. 2010;37(6):1533–9. http://dx.doi.org/10.1016/j.ejcts.2009.12.033

39. Ayoub K, Habaah F, Almomani A, Xu J, Marji M, Shaw-Devine A, et al. Long-term risk of recurrent atrial fibrillation and ischemic stroke after postoperative atrial fibrillation complicating cardiac and non-cardiac surgeries. J Atr Fibrillation. 2018;10(6):1660. http://dx.doi.org/10.4022/jafib.1660

40. Conen D, Alonso-Coello P, Douketis J, Chan MTV, Kurz A, Sigamani A, et al. Risk of stroke and other adverse outcomes in patients with perioperative atrial fibrillation 1 year after non-cardiac surgery. Eur Heart J. 2020;41(5):645–51. http://dx.doi.org/10.1093/eurheartj/ehz431

41. Gialdini G, Nearing K, Bhave PD, Bonuccelli U, Iademola C, Healey JS, et al. Perioperative atrial fibrillation and the long-term risk of ischemic stroke. JAMA. 2014;312(6):616–22. http://dx.doi.org/10.1001/jama.2014.9143

42. Lin MH, Kamel H, Singer DE, Wu YL, Lee M, Ovbiagele B. Perioperative/postoperative atrial fibrillation and risk of subsequent stroke and/or mortality. Stroke. 2019;50(6):1364–71. http://dx.doi.org/10.1161/STROKEAHA.118.023921

43. AflTurk A, Marafi M, Proietti R, Cardinale D, Blackwell R, Dorian P, et al. Major adverse cardiovascular events associated with postoperative atrial fibrillation after noncardiac surgery: A systematic review and meta-analysis. Circ Arrhythm Electrophysiol. 2020;13(1):e007437. http://dx.doi.org/10.1161/CIRCEP.119.007437

44. Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, Villar JC, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): A randomised controlled trial. Lancet. 2008;371(9627):1839–47. http://dx.doi.org/10.1016/S0140-6736(08)60601-7

45. Devereaux PJ, Mirokobrada M, Sessler DI, Leslie K, Alonso-Coello P, Kurz A, et al. Aspirin in patients undergoing noncardiac surgery. N Engl J Med. 2014;370(16):1494–503. http://dx.doi.org/10.1056/NEJMoa1401105

46. Devereaux PJ, Sessler DI, Leslie K, Kurz A, Mirokobrada M, Alonso-Coello P, et al. Clonidine in patients undergoing noncardiac surgery. N Engl J Med. 2014;370(16):1504–13. http://dx.doi.org/10.1056/NEJMoa1401106

47. Oesterle A, Weber B, Tung R, Choudhry NK, Singh JP, Upadhyay GA. Preventing postoperative atrial fibrillation after noncardiac surgery: A meta-analysis. Am J Med. 2018;131(7):795–804.e5. http://dx.doi.org/10.1016/j.amjmed.2018.01.032

48. Hindricks G, Potpara T, Dagres N, Arbello E, Bas JX, Blomstrom-Landqvist C, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2020.

49. Chopra V, Wesorick DH, Sussman JB, Greene T, Rogers M, Froehlich JB, et al. Effect of perioperative statins on death, myocardial infarction, atrial fibrillation, and length of stay: A systematic review and meta-analysis. Arch Surg. 2012;147(2):181–9. http://dx.doi.org/10.1001/archsurg.2011.897

50. Butt JH, Olsen J, Havers-Bergersen E, Gundlund A, Andersson C, Gislason GH, et al. Risk of thromboembolism associated with atrial fibrillation following noncardiac surgery. J Am Coll Cardiol. 2018;72(17):2027–36. http://dx.doi.org/10.1016/j.jacc.2018.07.088

51. Ref Elharram M, Samuel M, AflTurk A, et al. Anticoagulant use and the risk of thromboembolism and bleeding in post-operative AF following non-cardiac surgery. Can J Cardiol. 2020. http://dx.doi.org/10.1067/j.cjc.2020.08.023

52. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: Results from the National Registry of Atrial Fibrillation. JAMA. 2001;285(22):2864–70. http://dx.doi.org/10.1001/jama.285.22.2864

53. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijsen HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The euro heart survey on atrial fibrillation. Chest. 2010;137(2):629–36. http://dx.doi.org/10.1378/chest.10-1389

54. Danelich IM, Lose JM, Wright SS, Asirvatham SJ, Ballinger BA, Larson DW, et al. Practical management of postoperative atrial fibrillation after noncardiac surgery. J Am Coll Surg. 2014;219(4):831–41. http://dx.doi.org/10.1016/j.jamcollsurg.2014.02.038

55. Zeng J, Yu P, Cui W, Wang X, Ma J, Zeng C. Comparison of HAS-BLED with other risk models for predicting the bleeding risk in anticoagulated patients with atrial fibrillation: A PRISMA-compliant article. Medicine (Baltimore). 2020 Jun 19;99(25):e20782. http://dx.doi.org/10.1097/MD.00000000000020782