Selenophosphate synthetase 1 deficiency exacerbates osteoarthritis by dysregulating redox homeostasis

Donghyun Kang1,2,9, Jeeyeon Lee1,2,9, Jisu Jung2, Bradley A. Carlson3, Moon Jong Chang4, Chong Bum Chang5, Seung-Baik Kang4, Byung Cheon Lee6, Vadim N. Gladyshev7, Dolph L. Hatfield3, Byeong Jae Lee2,8 & Jin-Hong Kim1,2,8

OPEN

Aging and mechanical overload are prominent risk factors for osteoarthritis (OA), which lead to an imbalance in redox homeostasis. The resulting state of oxidative stress drives the pathological transition of chondrocytes during OA development. However, the specific molecular pathways involved in disrupting chondrocyte redox homeostasis remain unclear. Here, we show that selenophosphate synthetase 1 (SEPHS1) expression is downregulated in human and mouse OA cartilage. SEPHS1 downregulation impairs the cellular capacity to synthesize a class of selenoproteins with oxidoreductase functions in chondrocytes, thereby elevating the level of reactive oxygen species (ROS) and facilitating chondrocyte senescence. Cartilage-specific Sephs1 knockout in adult mice causes aging-associated OA, and augments post-traumatic OA, which is rescued by supplementation of N-acetylcysteine (NAC). Selenium-deficient feeding and Sephs1 knockout have synergistic effects in exacerbating OA pathogenesis in mice. Therefore, we propose that SEPHS1 is an essential regulator of selenium metabolism and redox homeostasis, and its dysregulation governs the progression of OA.
Osteoarthritis (OA) is a leading cause of disability, imposing a large socioeconomic burden, the incidence of which increases with age and mechanical joint overload. OA is primarily characterized by cartilage destruction but also involves other pathological changes at the whole-joint level, including synovial inflammation, osteophyte formation, and subchondral bone sclerosis. Cartilage homeostasis is maintained by chondrocytes, a major resident cell type of cartilage. Accumulating evidence indicates that imbalance in redox status resulting in oxidative stress in chondrocytes is a crucial event that disturbs cartilage homeostasis during OA development.

Selenium is an essential nutrient and trace element that is of vital importance to redox homeostasis, which exerts its physiological role through selenoproteins that contain selenocysteine (Sec) at the active site. Selenophosphate is the selenium donor used to synthesize Sec that is co-translationally incorporated into selenoproteins by Sec tRNA1SerSec that decodes an in-frame UGA codon. Two paralogs of selenophosphate synthetases (SEPHSs), SEPHS1 and SEPHS2, have been identified in mammals. SEPHS2 forms a complex with SEPHS1 and Sec synthase (SEPHSs) that, in turn, catalyzes the formation of Sec tRNA1SerSec.

There has been growing interest in the potential significance of the selenium metabolic pathway in the pathogenesis of OA, considering the role of selenoproteins in redox regulation and the detrimental effects of oxidative stress in OA development. The association of selenium metabolism with OA pathogenesis has been generally recognized in the context of the protective role of selenium as a nutritional supplement in various epidemiological studies. In addition, selenoprotein gene polymorphisms are associated with increased susceptibility to OA development. However, the precise mechanism by which the selenium metabolic pathway is dysregulated during OA and its contribution to the pathological transition of chondrocytes has remained elusive to date. Here, we demonstrate that SEPHS1 is an essential regulator of selenium metabolism, whose deficiency limits the synthesis of stress-related selenoproteins and disrupts redox homeostasis in chondrocytes. The dysregulated selenium metabolic pathway triggers oxidative damage and induces chondrocyte senescence, thereby accelerating degenerative processes of the cartilage matrix during OA pathogenesis.

Results

SEPHS1 is downregulated in the osteoarthritic cartilage of human and mice. We sought to identify a regulator of the selenium metabolic pathway in chondrocytes with specifically altered expression in OA conditions. Toward this end, we extensively analyzed the transcriptome data available through the Gene Expression Omnibus (GEO) database, focusing on the components of selenium metabolic pathways (SEPHS1, SEPHS2, SBP2, SEPECS, and EEFSEC), along with selenoproteins (MSRB1, GPX1, SELNOM, SELENON, TXNRD1, TXNRD2, TXNRD3, GPX4, SELENOP, DIO1, DIO2, DIO3, GPX2, GPX3, SELENOF, SELENOM, SELENON, SELENOO, and SELENOS). Among the candidate regulators of selenium metabolic pathways, the expression of SEPHS1 was downregulated in two independent human OA transcriptome datasets (Fig. 1a).

Similarly, SEPHS1 expression was consistently downregulated in IL-1β-treated cartilage explants and chondrocytes (Fig. 1a). Overall, the expression of stress-related selenoproteins (MSRB1, GPX1, SELNOM, and SELENON) was downregulated in these transcriptome datasets. The expression of SEPHS1 protein was also markedly downregulated in human OA cartilage (Fig. 1b, c).

SEPHS1 positivity was robustly expressed in undamaged regions of the arthritic cartilage but was barely detectable in the OA-affected regions of human cartilage (Fig. 1b). The expression of p16INK4a, a biomarker of cellular senescence, was specifically increased in OA-damaged cartilage. Moreover, the SEPHS1 positivity showed a strong negative correlation with OARSI grade based on Spearman’s rank correlation coefficient ($\rho = -0.81$, $P = 6.14 \times 10^{-19}$; Fig. 1c).

Similarly, Sephs1 transcripts were decreased in various animal models of OA, along with reduced expression of stress-related selenoprotein genes (Fig. 1d). The expression of SEPHS1 protein was markedly suppressed in an aged mouse model of knee OA whereas the expression of p16INK4a was increased in the aging-associated OA cartilage (Fig. 1e). We also used the destabilization of the medial meniscus (DMM) surgery as a mouse model of post-traumatic OA. After the surgical induction of OA, SEPHS1 expression was substantially decreased while the expression of MMP13, a key catabolic enzyme involved in osteoarthritic cartilage degradation, was upregulated (Fig. 1f).

SEPHS1 deficiency causes the dysregulation of redox homeostasis and promotes senescence in chondrocytes. The molecular pathogenesis of OA involves attenuated stress response activities in chondrocytes, which ultimately lead to various metabolic stresses, manifested by mitochondrial dysfunction, oxidative stress, and chronic inflammation. Therefore, we further explored how SEPHS1 deficiency affects the expression of stress-related selenoproteins, a subclass of selenoproteins synthesized by the U3m4 isoform of Sec tRNA1SerSec; the non-U3m4 isoform supports the synthesis of a subclass of housekeeping selenoproteins. Because homozygous deletion of Sephs1 in mice (Sephs11/1−) was embryonic lethal, we evaluated the effect of Sephs1 knockout in chondrocytes by establishing cartilage-specific conditional knockout (CKO) mice (Sephs1(fl/fl)). Col2a1-Cre). Sephs1 transcripts (Fig. 2a) and SEPHS1 proteins (Fig. 2b, c) were nearly undetectable in primary cultured chondrocytes isolated from Sephs1-CKO mice. Sephs1 knockout in chondrocytes substantially attenuated the expression of stress-related selenoproteins such as glutathione peroxidase 1 (GPX1), selenoprotein W (SELENOW), and methionine sulfoxide reductase B1 (MSRB1), whereas the expression of housekeeping selenoprotein, thioredoxin reductase 1 (TXNRD1) was unaffected (Fig. 2b, c).

Since the stress-related selenoproteins downregulated by SEPHS1 deficiency have oxidoreductase functions, we next examined the impact of Sephs1 knockout on ROS levels in chondrocytes. Chondrocytes isolated from Sephs1-CKO mice exhibited a significantly elevated level of ROS as determined by two redox-sensitive fluorescent indicators: CM-H2DCFDA and dihydroethidium (DHE) that measure levels of intracellular H$_2$O$_2$ and O$_2$−, respectively (Fig. 2d, e and Supplementary Fig. 1). Similarly, small interfering RNA (siRNA)-mediated knockdown of Sephs1 resulted in significant accumulation of ROS in chondrocytes (Fig. 2f, g). To comprehensively elucidate the effect of SEPHS1 deficiency at the whole-transcriptome level, we performed RNA sequencing for chondrocytes treated with control and Sephs1 siRNAs. Gene ontology (GO) and pathway analysis indicated that the differentially regulated genes by Sephs1 knockdown were mainly associated with functional annotations related to ‘DNA damage response’, ‘cell cycle arrest’, and ‘oxidative stress response’ (Supplementary Figs. 2 and 3). Notably, these annotations are closely related to senescence, cell cycle arrest and oxidative stress-induced senescence were positively enriched in the whole transcriptome obtained from SEPHS1-deficient chondrocytes (Fig. 2h).
To further verify the mechanistic link between SEPHS1 deficiency and cellular senescence, we monitored the accumulation of DNA damage and senescence-associated β-galactosidase (SA-β-gal) activity in response to the loss of SEPHS1. Chondrocytes isolated from conditional *Sephs1* knockout mice exhibited a marked increase in the DNA damage response, as indicated by strong formation of γ-H2AX nuclear foci, and facilitated entry into cellular senescence, as evidenced by increased SA-β-gal activity (Fig. 2i, j). Likewise, chondrocytes treated with *Sephs1* siRNA exhibited substantially higher percentages of γ-H2AX foci and SA-β-gal positivity (Supplementary Fig. 4a, b). We hypothesized that the accumulation of ROS caused by SEPHS1 deficiency is responsible for eliciting persistent DNA damage and cellular senescence in chondrocytes. In support of this hypothesis, treatment of SEPHS1-deficient chondrocytes with NAC, a well-characterized ROS scavenger, abolished the *Sephs1* knockdown-mediated increases in γ-H2AX and SA-β-gal positivity (Fig. 2k, l). Chondrocyte senescence is critically...
Fig. 2 Downregulation of SEPHS1 in OA cartilage leads to oxidative stress-induced cellular senescence in chondrocytes. a Relative mRNA expression level of Sephs1 in primary cultured chondrocytes isolated from Sephs1fl/fl; Col2a1-Cre mice (n = 4). b Western blot analysis of selenoproteins in primary cultured chondrocytes isolated from Sephs1fl/fl; Col2a1-Cre mice (n = 3). c Quantification of protein levels in (b) (n = 4, 3 respectively). d, e Fluorescence-activated cell sorting (FACS) analysis of d CM-H2DCFDA and e DHE fluorescence in primary cultured chondrocytes isolated from Sephs1fl/fl and Sephs1fl/fl; Col2a1-Cre mice. f, g Immunofluorescence staining and quantification of f CM-H2DCFDA and g DHE (n = 4) fluorescence in chondrocytes transfected with negative control siRNA or siRNA targeting Sephs1. h GSEA of ‘Cellular senescence’ and ‘Oxidative stress-induced senescence’ gene sets in chondrocytes transfected with negative control siRNA or siRNA targeting Sephs1. i, j Immunofluorescence staining of γ-H2AX and quantification of γ-H2AX positivity in primary cultured chondrocytes isolated from Sephs1fl/fl and Sephs1fl/fl; Col2a1-Cre mice (n = 4). k SA-β-Gal staining and quantification of SA-β-Gal positivity in primary cultured chondrocytes isolated from Sephs1fl/fl and Sephs1fl/fl; Col2a1-Cre mice (n = 6). l Quantification of k immunofluorescence positivity of γ-H2AX and l SA-β-Gal positivity in primary cultured chondrocytes transfected with negative control siRNA or siRNA targeting Sephs1 followed by NAC treatment at the indicated doses (n = 4). m Relative mRNA expression of SASP factors in chondrocytes transfected with negative control siRNA or siRNA targeting Sephs1 (n = 6). n GSEA of the ‘Upregulated genes in OA’ gene set in chondrocytes transfected with negative control siRNA or siRNA targeting Sephs1. Scale bars: f, j, k 25 μm, j, l 50 μm. a, c, f, g, i–m Data represent means ± s.e.m. P values are from two-tailed t test (a, c, f, g, i–m) or two-way ANOVA followed by Dunnett’s post-hoc test (k, l). For GSEA plots in h, n, enrichment plots are displayed with the determined nominal P value and normalized enrichment score (NES). Unprocessed immunoblot images are provided in Supplementary Fig. 10.
associated with low-grade inflammation and matrix degeneration in OA pathogenesis through secretion of pro-inflammatory cytokines and proteases, which are collectively referred to as senescence-associated secretory phenotype (SASP) factors. SEPHS1 knockdown in chondrocytes promoted the expression of various SASP factors, including matrix proteases responsible for the degeneration of the cartilage matrix (Fig. 2n and Supplementary Fig. 4c). Furthermore, GSEA revealed that OA-associated genes upregulated in patients were overall increased in chondrocytes upon SEPHS1 knockdown (Fig. 2n).

Temporal knockout of SEPHS1 in adult cartilage accelerates aging-associated OA. Collectively, these results indicated that SEPHS1 downregulation impairs the cellular oxidoreductase capacity of chondrocytes, resulting in elevated ROS levels. The resulting state of oxidative stress causes persistent DNA damage, driving chondrocytes into a cellular senescent state, thereby eliciting OA-associated transcription and secretion patterns. To investigate the role of SEPHS1 deficiency in OA development in vivo, we aimed to establish a cartilage-specific SEPHS1 knockout mouse model displaying normal skeletal development. However, the Sephs1−/− mice obtained by crossing Col2a1-Cre mice with Sephs1+/+ mice exhibited growth retardation at postnatal day 5.5 compared to their control littersmates (Supplementary Fig. 5). Therefore, we used a tamoxifen-inducible system to temporally knock out Sephs1 in skeletally mature, adult mice. We verified cartilage-specific Sephs1 deletion in the knee joint of these Sephs1-inducible CKO mice (iCKO) after tamoxifen injection (Fig. 3a–c).

We then examined how the cartilage-specific deletion of Sephs1 in adult mice affects the pathogenesis of aging-associated OA. Aged (18-month-old) Sephs1−/− mice showed decreased levels of stress-related selenoproteins, including GPX1, SELENOW, and MSR1 (Fig. 3d). At the same time, they exhibited an increased level of 4-hydroxynonenal (4-HNE) compared with that of age-matched control mice, indicating dysregulation of redox homeostasis in the articular cartilage (Fig. 3d). The expression of senescence-associated pro-inflammatory cytokines such as IL-6 and GROα was upregulated in Sephs1−/− mice. The expression levels of MMP13 and ADAMTS5, two crucial effectors of OA cartilage destruction, were also increased in the cartilage of Sephs1−/− mice (Fig. 3d), coinciding with the increased production of type II collagen telopeptide CTX-II and the aggrecan neopteptide NITEGE (Fig. 3e). Consistent with these molecular-level changes, aged Sephs1−/− mice exhibited significant spontaneous cartilage destruction compared with age-matched wild-type (WT) mice. Other OA manifestations, including subchondral bone sclerosis, osteophyte development, and synovitis, were augmented in Sephs1−/− mice, indicating accelerated progression of aging-associated OA (Fig. 3f, g). Furthermore, aged Sephs1−/− mice showed an increased response time in hotplate analysis as a behavioral test of sensory dysfunction as compared with control mice (Fig. 3h), demonstrating that SEPHS1 loss exacerbates sensory impairment that is common during OA progression and a main cause of chronic disability in OA patients.

SEPHS1 deficiency aggravates post-traumatic OA development. Genetic deletion of Sephs1 also augmented DMM-induced, post-traumatic OA development based on histological assessment of cartilage destruction, subchondral bone sclerosis, osteophyte maturation, and synovial inflammation (Fig. 4a, b). Microcomputed tomography (μCT) of the subchondral trabecular bone showed remarkable enhancement in OA-associated bone remodeling following DMM surgery in Sephs1−/− mice as compared with that of control mice (Fig. 4c). Synovial ectopic calcifications were not observed in the synovium of DMM-operated WT and Sephs1−/− mice, as verified by the negative staining against type II collagen expression and alkaline phosphatase (ALP) activity (Supplementary Fig. 6a, b). At the molecular level, Sephs1−/− knockout in the knee joints of DMM-operated mice impaired the synthesis of stress-related selenoproteins and caused a marked increase of senescent cell populations based on increased immunostaining of p16INK4a and reduced nuclear HMGB1 (Fig. 4d), resulting in increased expression of SASP factors, including MMP13, IL-6, and GROα (Fig. 4e). Sephs1−/− iCKO mice exhibited substantial weight imbalance between the surgically treated (ipsilateral) and untreated (contralateral) legs, indicating augmented pain development in the ipsilateral knee joint. DMM-operated Sephs1−/− iCKO mice showed a longer response time on the hotplate, demonstrating sensory impairments compared to WT mice (Fig. 4f).

Antioxidant treatment rescues the augmented OA phenotypes in SEPHS1-deficient mice. To further demonstrate whether increased oxidative stress is responsible for the augmented OA phenotypes observed in DMM-operated Sephs1−/− mice, we conducted rescue experiments with supplementation of NAC. In parallel, we tested whether the supplementation of selenate, an inorganic form of selenium that is widely used in a selenium substitution strategy, is sufficient to rescue the genetic deficiency of Sephs1. Sephs1−/− mice were supplemented with NAC, selenate, or vehicle starting at 5 days before DMM surgery; these supplementations did not affect the body weight of the animals as compared with that of vehicle-supplied WT mice over the course of rescue experiments (Fig. 5b). We next examined whether the OA manifestations augmented by Sephs1 loss were alleviated by supplementation of NAC or selenate. The supplementation of NAC effectively reduced the whole-joint OA manifestations observed in Sephs1−/− mice (Fig. 5c, d). Consistently, weight distributions between the surgically treated (DMM) and untreated legs were also restored following NAC supplementation (Fig. 5e). In contrast, selenate supplementation did not rescue the OA phenotypes observed in Sephs1−/− iCKO mice. Taken together, increased oxidative stress is responsible for the exacerbation of OA caused by the genetic deficiency of Sephs1 in mice.

Deficiency of selenium intake and SEPHS1 synergistically exacerbates OA development. Finally, we investigated the effects of selenium deficiency on post-traumatic OA (Fig. 6 and Supplementary Fig. 7). There were no significant differences in OA manifestations observed between selenium-deficient (SeD) and control diet groups after DMM surgery (Fig. 6a–c). Similarly, the selenium dietary condition did not cause significant changes in dynamic weight bearing, suggesting that nutritional restriction of selenium in adults is not sufficient to enhance OA progression (Fig. 6d). However, lack of dietary selenium together with SEPHS1 deficiency synergistically accelerated OA progression in the post-traumatic OA model as cartilage destruction, subchondral bone sclerosis, and synovial inflammation were evident as early as 6 weeks post-DMM (Fig. 6e–g and Supplementary Fig. 8a). Consistent with these results, we found significant loss of stress-related selenoprotein expression and upregulation of SASP factors in mice with the combined deficiency of selenium and SEPHS1 (Supplementary Fig. 9). This effect was further validated in pain measurement based on dynamic weight bearing (Fig. 6h and Supplementary Fig. 8b).
Discussion

The etiology of OA is multifactorial, including mechanical stresses imposed on the joint and predisposition factors such as aging. These OA risk factors have been associated with elevated levels of oxidative stress in the joint tissues. Accumulation of the oxidative burden is considered a hallmark of chondrocytes undergoing osteoarthritic changes. Oxidative stress results from excessive ROS production and the loss of cellular oxidoreductase capacity. Emerging evidence suggests that oxidative stress is mechanistically linked to initiating the progression of OA.

Figure a

- Sephs1^{fl/fl}; Col2a1-CreER²²
- TMX:
 -
 - +
 - +

Figure b

- Sephs1^{fl/fl}; Col2a1-CreER²²
- TMX:
 -
 - +

Figure c

- Body weight (g)
 -
 - +

Figure d

- Spontaneous (18 months);
- TMX injection at 12-month-old
- Sephs1^{fl/fl}; WT
- Sephs1^{fl/fl}; Col2a1-CreER²²

Figure e

- Spontaneous (18 months);
- TMX injection at 12-month-old
- Sephs1^{fl/fl}; WT
- Sephs1^{fl/fl}; Col2a1-CreER²²

Figure f

- Spontaneous (18 months);
- TMX injection at 12-month-old
- Sephs1^{fl/fl}; WT
- Sephs1^{fl/fl}; Col2a1-CreER²²

Figure g

- OA/RS grade (0-6)
- Medial tibial bone score (0-3)
- Osteophyte maturity (0-3)

Figure h

- Synovial inflammation (0-3)
- Time on hotplate (s)
Fig. 3 Chondrocyte-specific Sephs1 knockout in adult mice accelerates aging-associated OA development in knee joints. a PCR verification of Sephs1 inducible conditional knockout (iCKO) after five intraperitoneal injections of tamoxifen (TMX) in 12-week-old Sephs1\(^{fl/fl}\); Col2a1-CreERT2 mice. b Immunostaining of SePHS1 in knee joint sections displaying the articular cartilage (AC) and subchondral bone (SB) of 21-week-old WT and Sephs1-iCKO littermates. c Body weight measurements at 8 weeks after five times injections of vehicle or TMX in 12-week-old Sephs1\(^{fl/fl}\); Col2a1-CreERT2 mice (n = 6). d, e Sephs1\(^{flop}\) or Sephs1\(^{flo}\); Col2a1-CreERT2 mice were injected with TMX at 12 months of age, and the appearance of aging-associated OA phenotypes was analyzed at 18 months. d Stress-related selenoproteins (GPX1, SELENOW, and MSRB1), 4-HNE, SASPs (MMP13, IL-6, and GROx), ADAMT5S, and e cartilage matrix neoepitopes (telopeptides of type II collagen, CTX-II and aggrecan neoepitope, NITEGE) were detected by immunohistochemistry in cartilage sections. f Joint sections were stained with safranin O, fast green, and hematoxylin. The inset in the images is shown as magnified images in the bottom row. g Scores of OA manifestations, including cartilage destruction, subchondral bone sclerosis, osteophyte formation, and synovial inflammation (n = 12 for Sephs1\(^{fl/fl}\); n = 14 for Sephs1\(^{flop}\); Col2a1-CreERT2). h Hotplate pain assay in 18-month-old WT and Sephs1-iCKO mice (n = 4). Scale bars: b, d, e 25 μm, f 500 μm. c, g, h Data represent means ± s.e.m. P values are from two-tailed t test (c, h) or two-tailed Mann-Whitney U test (g). Cohen’s d effect sizes are provided in Supplementary Table 8. Mankin scores and SBP thickness measurements are provided in Supplementary Figs. 11 and 12.

pathological changes in chondrocytes through the acquisition of senescent phenotypes\(^{10}\). Therefore, it is crucial to elucidate the underlying mechanism that disrupts the redox homeostasis in chondrocytes during OA progression.

In this study, we demonstrate that dysregulation of the selenium metabolic pathway underlies a shift in redox homeostasis in chondrocytes (Fig. 7). Among the various regulators of the selenium metabolic pathway, SEPHS1 expression was found to be markedly downregulated in both the human and mouse OA cartilage. Deficiency in SEPHS1 expression was responsible for the decreased expression of stress-related selenoproteins with oxidoreductase activity, including GPX1, SELENOW, and MSRB1, which are known to rank low on the hierarchy of expression during selenium restriction\(^{43,44}\). The reduced oxidoreductase capacity elicited by SEPHS1 deficiency leads to increased intracellular ROS levels and the subsequent onset of cellular senescence in chondrocytes. One of the most distinct features of senescence is the onset of SASPs\(^{45}\). Our results indicate that the senescence induced by SEPHS1 deficiency promotes the expression of SASP factors, which in turn mediates the catabolic degeneration of the cartilage matrix and fosters chronic inflammation in the joint environments.

Pre-clinical animal studies indicated an association of selenium deficiency with abnormal skeletal development and growth retardation. In line with these studies, Col2a1 promoter-driven, chondrocyte-specific deletion of Trsp, which encodes Sec tRNA\[^{Ser(Sec)}\], caused chondronecrosis and immature cartilage development in mice\(^{46}\). Similarly, we observed that chondrocyte-specific knockout of Sephs1 (Sephs1\(^{flop}\); Col2a1-Cre) led to growth retardation, further corroborating the significance of the selenium metabolic pathway in skeletal development. However, OA develops after the skeletal system is fully mature and along with aging. To specifically explore the role of the selenium metabolic pathway in OA development, we temporally knocked out Sephs1 in the cartilage of skeletally mature adult mice. In the pre-clinical settings of aging-associated and post-traumatic OA, we showed that genetic deletion of Sephs1 augmented OA phenotypes in terms of histological, radiological, and pain assessments. Selenium-deficient feeding combined with Sephs1-iCKO further promoted OA pathogenesis in mice. Therefore, our results reveal that the selenium metabolic pathway plays an essential role in maintaining joint tissue homeostasis beyond its role in the developmental process of the musculoskeletal system.

In this study, we observed that selenium-deficient feeding alone was not sufficient to significantly aggravate post-traumatic OA in mice. To our knowledge, there are a few other intervention studies that examined the effect of selenium restriction on musculoskeletal systems in murine models. In these studies, selenium deficiency induced growth retardation in rats\(^{47}\), and caused fibrocartilage formation and ultimate degeneration of the articular cartilage in mice\(^{48}\). However, it should be noted that these previous studies were conducted in the context to examine the developmental defects elicited by selenium deficiency. For this purpose, the animals used in these studies were observed after two generations of selenium-deficient feeding. The aim of our study was to specifically explore the pathological effect of selenium deficiency in adults with relevance to OA pathogenesis. Therefore, the mice were fed the selenium-deficient diet only after they were fully grown to the adult stage so as to exclude the possibility that any developmental abnormalities caused by selenium depletion would affect the pathogenesis of OA in adult mice.

We propose that SEPHS1 is an essential regulator of the selenium metabolic pathway whose dysregulation disrupts redox homeostasis and governs the pathogenesis of OA. Considering the protective effects of selenoproteins with oxidoreductase capacity in maintaining cartilage homeostasis, strategies aimed at sustaining selenium metabolism may be an effective therapeutic and preventive approach for OA.

Methods

Collection of human tissue samples. Human OA cartilage specimens were obtained from OA patients undergoing total knee arthroplasty at SNU Boramae Medical Center. The Institutional Review Board (IRB) of SNU Boramae Medical Center approved the collection of human biological materials (IRB No. 30-2017-48) and the IRB of Seoul National University approved the use of these materials (IRB No. E1803/003-009). Written informed consent was obtained from all subjects before the total knee replacement surgery. Patient information, including sex, age, height, weight, and BMI, is summarized in range in Supplementary Table 1.

Mice. For the establishment of the Sephs1 knockout mice line, boxed Sephs1 (Sephs1\(^{flop}\)) mice were generated\(^{46}\) and crossed with Col2a1-Cre or Col2a1-CreERT2 mice. For the establishment of the aging-associated spontaneous OA model, 12-month-old male Sephs1\(^{flop}\) or Sephs1\(^{flo}\); Col2a1-CreERT2 mice were intraperitoneally injected with 80 μg/g body weight TMX dissolved in corn oil (Sigma Aldrich) daily for five consecutive days. For the establishment of the post-traumatic OA model, 12-week-old male Sephs1\(^{flop}\) or Sephs1\(^{flo}\); Col2a1-CreERT2 mice were injected with 80 μg/g body weight TMX for five consecutive days. Cre-mediated Sephs1 excision activity in the knee joint cartilage of TMX-injected 12-week-old Sephs1\(^{flop}\); Col2a1-CreERT2 (Sephs1-CKO) mice was validated by PCR using genomic DNA as a template. Tissue Genomic DNA extraction SY mini prep kit (MG MED) was used for extraction of genomic DNA from paraffin-embedded chondrocytes in the knee articular cartilage. The PCR primers used for genotyping are listed in Supplementary Table 2. Selectop KO mouse line was obtained from The Jackson Laboratory (#008201).

Selenium-deficient diet in mice. Selenium dietary regimens for the mice were based on those previously described\(^{40,51-53}\). Briefly, 12-week-old male Sephs1\(^{flop}\) or Sephs1\(^{flo}\); Col2a1-CreERT2 mice were injected with 80 μg/g body weight TMX for five consecutive days. Mice were fed an SeD torula yeast-based diet (0.026 μg/g Se) or an adequate selenium control diet (0.4 μg/g Se) beginning 5 days before sham or DMM operation. The mice were fed the same diet for six additional weeks after their surgeries until they were sacrificed.
Fig. 4 Chondrocyte-specific temporal Sephs1 knockout exacerbates post-traumatic OA in mice. a Sephs1fl/fl or Sephs1fl/fl; Col2a1-CreERT2 12-week-old mice were injected with TMX five times and subjected to sham operation or DMM surgery. Joint sections were stained with safranin O, fast green, and hematoxylin. The inset in the images is shown as magnified images in the bottom row. b Cartilage destruction, subchondral bone sclerosis, osteophyte formation, and synovial inflammation determined by safranin O/hematoxylin staining and scored (n = 8 for sham-operated WT; n = 5 for sham-operated Sephs1-iCKO; n = 12 for DMM-operated WT; n = 8 for DMM-operated Sephs1-iCKO). c Representative microcomputed tomography (μCT) images of sham- or DMM-operated WT and Sephs1-iCKO mice. d Stress-related selenoproteins (GPX1, SELENOW, and MSRB1), p16INK4a, HMGB1, and e SASPs (MMP13, IL-6, and GROα) were detected by immunohistochemistry in cartilage sections. f Hotplate pain assays in DMM-operated WT and Sephs1-iCKO mice (left panel, n = 12 for WT; n = 8 for Sephs1-iCKO). The percentage of weight placed on the sham- or DMM-operated limb versus the contralateral limb of WT and Sephs1-iCKO mice (right panel, n = 12 for WT; n = 8 for Sephs1-iCKO). Scale bars: a 200 μm, d 25 μm, b Data represent means ± s.e.m. P values are from Kruskal–Wallis test followed by Mann–Whitney U test (b) or two-tailed t test (f). Cohen’s d effect sizes are provided in Supplementary Table 8. Mankin scores and SBP thickness measurements are provided in Supplementary Figs. 11 and 12.
Fig. 5 NAC treatment rescues the exacerbated OA phenotypes in Sephs1-iCKO mice. a Schematic illustration of NAC or dietary selenate supplementation in the post-traumatic OA model of Sephs1-iCKO mice. b Body weight of 21-week-old DMM-operated mice after completion of the supplementation scheme (n = 10 for DMM-operated WT mice treated with vehicle; n = 6 for DMM-operated Sephs1-iCKO mice treated with vehicle; n = 8 for DMM-operated Sephs1-iCKO mice supplemented with selenate; n = 8 for DMM-operated Sephs1-iCKO mice treated with NAC). c Joint sections were stained with safranin O, fast green, and hematoxylin. The inset in the images is shown as magnified images in the bottom row. d Cartilage destruction, subchondral bone sclerosis, osteophyte formation, and synovial inflammation were assessed by safranin O staining and scored using the OARSI grading system. The degree of cartilage destruction in the knee joints was evaluated by safranin O staining and scored using the OARSI grading system. e Data represent means ± s.e.m. P values are from two-way ANOVA followed by Tukey’s post hoc test (b) or S–R–H test followed by Mann–Whitney U test (d, e). Cohen’s d effect sizes are provided in Supplementary Table 8. Mankin scores and SBP thickness measurements are provided in Supplementary Figs. 11 and 12.

Experimental OA in mice. All animal experiments were approved by the SNU Institutional Animal Care and Use Committee (IACUC No. SNU-151202-6, SNU-190919-6, SNU-190910-1, SNU-191115-3). The study complied with all relevant ethical regulations for animal testing and research. The design, analysis, and reporting of animal experiments were performed following the Animals in Research: Reporting of In Vivo Experiments guidelines (ARRIVE; http://www.nc3rs.org.uk/arrive-guidelines). The mice were housed in a specific pathogen-free animal facility at SNU. Animals were maintained under constant temperature (23–25 °C) and humidity (45–65%) with controlled light-dark cycles (12:12 h). Mice were fed standard laboratory chow or the SeD as indicated above ad libitum. Selenate supplementation or NAC treatment was performed by supplying mice with drinking water dissolved with sodium selenate (1 ppm) or NAC (1 mg/ml). Sephs1-iCKO mice were supplemented with NAC, selenate, or vehicle beginning 5 days before DMM surgery. Spontaneous induction of aging-associated OA in Sephs1-iCKO mice was examined in 18-month-old mice. After five times of intraperitoneal TMX injections in 12-month-old Sephs1fl/fl or Sephs1fl/fl; Col2a1-CreERT2 mice, the mice were sacrificed at 18 months of age. Post-traumatic OA was induced by DMM surgery25 in 12-week-old (WT CS7BL/6) or 13-week-old (Sephs1fl/fl or Sephs1fl/fl; Col2a1-CreERT2) mice; mice operated with sham surgery served as controls. The degree of cartilage destruction in the knee joints was evaluated by safranin O staining and scored using the OARSI grading system.

Histology and immunohistochemistry. Human OA cartilage specimens were cryoembedded in OCT compound and sectioned (7 μm thickness). OA-affected cartilage samples were acquired from the medial side of the tibial plateau and the relatively undamaged regions from the lateral side of the tibial plateau were used as controls. Prior to histological analysis, the cryosections were air-dried for 20 min and fixed in pre-chilled acetone for 10 min. Human OA cartilage sections were stained with Alcian blue or immunohistochemical staining. Knee joint tissues collected from the murine aging-associated OA model, murine post-traumatic OA model, and their respective controls were fixed with 4% paraformaldehyde (PFA), decalcified in 0.5 M EDTA (pH 7.4), processed by dehydration in an increasing concentration gradient of ethanol, and incubated in xylene. The samples were embedded in paraffin and sectioned (5 μm thickness). For histological staining, the sections were deparaffinized in xylene, hydrated in a decreasing concentration gradient of ethanol, and stained with safranin O or immunohistochemical staining. Comprehensive histological evaluation of whole-joint tissues was conducted by two orthopedic pathologists at SNU Boramae Medical Center with extensive experience in evaluating human and mouse OA. Sections were reviewed by two additional orthopedic pathologists at SNU Boramae Medical Center with extensive experience in evaluating human and mouse OA. Sections were reviewed by two additional orthopedic pathologists at SNU Boramae Medical Center with extensive experience in evaluating human and mouse OA.

The observers were blinded to the genotype, feeding, or surgical condition of the mice, and section images were randomized to avoid observer bias. Cartilage destruction was assessed using safranin O staining and scored using the OARSI grading system (0–6)26 and the Mankin scoring system (0–14) (Supplementary Fig. 11)25. The medial tibial bone sclerosis (grade 3 to 5) was scored by assessing the subchondral trabecular bone to bone marrow ratio. Subchondral...
Fig. 6 Dietary selenium deficiency augments the progression of OA in Sephs1-iCKO mice. a Schematic illustration of dietary selenium depletion in the post-traumatic OA model of C57BL/6 mice (top) or Sephs1-iCKO mice (bottom). b Twelve-week-old C57BL/6 mice received sham operation or DMM surgery. Joint sections were stained with safranin O, fast green, and hematoxylin. The inset in the images is shown as magnified images in the bottom row. c Cartilage destruction, subchondral bone sclerosis, osteocyte formation, and synovial inflammation determined by safranin O/hematoxylin staining and scored (n = 7 for sham-operated mice fed with control (C) diet; n = 4 for sham-operated mice fed with selenium-deficient (SeD) diet; n = 7 for DMM-operated mice fed with selenium-deficient diet). d Percentage of weight placed on the sham- or DMM-operated limb versus the contralateral limb over 15 min analyzed using a dynamic weight bearing test (n = 7, 4, 7, 7 respectively). e Twelve-week-old WT and Sephs1-iCKO mice were operated with sham or DMM surgery. Joint sections were stained with safranin O, fast green, and hematoxylin. The inset in the images is shown as magnified images in the bottom row. f Representative μCT images of sham- or DMM-operated WT and Sephs1-iCKO mice fed with the indicated diets. g Cartilage destruction, subchondral bone sclerosis, osteocyte formation, and synovial inflammation determined by safranin O/hematoxylin staining and scored (n = 6 for DMM-operated WT mice fed the control diet; n = 7 for DMM-operated WT mice fed the selenium-deficient diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the control diet; n = 6 for DMM-operated Sephs1-iCKO mice fed the selenium-deficient diet). h Percentage of weight placed on the DMM-operated limb versus the contralateral limb over 15 min analyzed by a dynamic weight bearing test (n = 6, 7, 6, 6 respectively). Scale bars: b, e 200 μm. c, d, g Data represent means ± s.e.m. P values are from Kruskal–Wallis test followed by Mann–Whitney U test (c, d) or 5-R–H test followed by Mann–Whitney U test (g, h). Cohen’s d effect sizes are provided in Supplementary Table 8. Mankin scores and SBP thickness measurements are provided in Supplementary Figs. 11 and 12.
bone plate (SBP) thickness was also measured (Supplementary Fig. 12)39. Osteo-
 phyte maturity (grade 0–3) was scored by examining the anteromedial tibia56.
 Synovial inflammation was scored on an arbitrary scale (0–3) depending on the
 infiltration of inflammatory cells into the synovial membrane57. Primary antibodies
 used for immunohistochemistry were as follows: SEPHS1 (Santa Cruz, sc-365945;
 dilution 1:100), p16INK4a (Proteintech, 10883-1-AP; dilution 1:100), MMP13
 (Abcam, ab51072; dilution 1:100), GPX1 (Abcam, ab22604; dilution 1:100),
 SELENOW (Rockland, 600-401-A29; dilution 1:100), 4-hydroxynonenal (Abcam,
 ab46545; dilution 1:100), IL-6 (Santa Cruz, sc-130326; dilution 1:100), GRO
 (R&D systems, MAB453; dilution 1:100), ADAMTS5 (Abcam, ab41037; dilution
 1:100), CTX-II (C-telopeptide of type II collagen; Novus, NBP2-59386; dilution
 1:100), NITEGE (ADAMTS-cleaved aggrecan neoepitope; MD Bioproducts,
 1042003; dilution 1:100), HMGB1 (Abcam, ab18256; dilution 1:100), and type II
 collagen (Sigma Aldrich, MAB8887; dilution 1:100). A previously developed anti-
 MSRB1 antibody was used in this study58. Secondary antibodies used for immu-
 nohistochemistry were as follows: donkey anti-mouse IgG (H&L) conjugated with
 Biotin-SP (Jackson ImmunoResearch, 715-065-150; dilution 1:200), donkey anti-
 rabbit IgG (H&L) conjugated with Biotin-SP (Jackson ImmunoResearch, 711-065-
 152; dilution 1:200), and goat anti-rat IgG (H&L) conjugated with Biotin (Abcam,
 ab6844; dilution 1:200). ALP activity in knee joints was detected using nitroblue
 tetrazolium chloride (NBT)/5-bromo-4-chloro-3-indolylphosphate (BCIP) Ready-
to-Use Tablets (Roche).

Dynamic weight bearing. As an indicator of OA-associated pain, the weight
 distribution placed on the hindlimbs was measured using a dynamic weight
 bearing system (Bioseb). Animals were placed in a chamber and allowed to move
 freely at least three times before measurement. A sensor array placed on the floor
 of the chamber measured the position, surface area of the footprint, and degree
 of foot pressure, which corresponds to weight. The movement of mice was
 recorded using a camera placed at the top of the chamber. Data obtained from
 the sensor array and video were matched to calculate the weight applied on each
 limb over the dynamic movement for a 15 min period (three times recording for
 5 min each). Data were presented as a percentage of the weight placed on the
 DMM-operated ipsilateral limb versus that on the non-surgical contralateral
 limb. The observers were blinded to the genotype, feeding, or surgical condition
 of the mice.

Static weight bearing. Incapacitance measurements were conducted using the
 Incapacitance Meter for mice/rats (IITC Life Science, 600MR) one day prior to
 sacrifice. Mice were trained to walk into and remain in the chamber at least three
 times before measurement. The adaptation was performed until the mice remained
 still and did not lean toward either side of the chamber. Before measurement, each
 hindlimb was positioned on each recording pad. The weight placed on each
 recording pad was measured over 1 s for at least three independent measurements.
 Data were presented as a percentage of the weight placed on the DMM-operated
 ipsilateral limb versus that on the non-surgical contralateral limb. The observers
 were blinded to the genotype, feeding, or surgical condition of the mice.

Hotplate pain assay. The mice were placed on the hotplate analgesia meter
 (Columbus Instruments) at 55 °C and data were analyzed29,32,33,59. The latency
 period for a hindlimb response such as paw shaking, licking, or jumping behaviors
 was recorded as the response time, one day prior to sacrifice. At least three
 response times were recorded per mouse. The observers were blinded to the
 genotype, feeding, or surgical condition of the mice.

Microcomputed tomography. Anesthetized mice were scanned with an in vivo
 Micro-CT Scanner (Bruker, Skyscan 1278) one day prior to sacrifice. The sham- or

Fig. 7 Schematic diagram representing the molecular pathway by which SEPHS1 deficiency exacerbates OA development. SEPHS1 expression is
downregulated in OA chondrocytes. SEPHS1 deficiency impairs cellular capacity to synthesize stress-related selenoproteins with oxidoreductase functions
in chondrocytes, elevating ROS levels. This event, in turn, enhances DNA damage, cellular senescence, and SASPs expression, causing the catabolic
degeneration of the cartilage matrix by fostering chronic inflammation in the joint environments.
DMM-operated hindlimb was fixed and scanned at a 0.4° angle for a total of 16 h. After incubation, the cells were washed twice with PBS and incubated in fresh medium for 48 h. Transection procedures were conducted twice. Three biological replicates were used for each experimental group. Total RNA was extracted using TRI reagent (Molecular Research Center, Inc.) and processed and aligned to the reference genome using HISAT v2.1.0. TOP enrichment was evaluated using nbinomWaldTest of DESeq2. Differential gene expression between negative control siRNA- and siRNA-treated chondrocytes was determined using a cutoff P value < 0.05.

Bioinformatics analysis of RNA sequencing data and public datasets

Gene ontology analysis of differentially expressed genes was performed using Enrichr (http://amp.pharm.mssm.edu/Enrichr/). Top-ranked terms from WikiPathways, Kyoto Encyclopedia of Genes and Genomes (KEGG), BioCarta, Panther, and GO were analyzed for size distribution, quantification with the ratio of refseq, and annotation data were downloaded from the UCSC genome browser (http://genome.ucsc.edu). Transcript assembly and abundance estimation were performed using StringTie v1.3.4d. The aligned reads were assembled into known, novel, and alternative splicing transcripts, and the relative abundance of each transcript was quantified in read counts using StringTie v1.3.4d. For gene expression analysis, genes were filtered based on their read count value of zero or at least one. The expression levels of genes in the reference sequence of mm10 and annotation data were downloaded from the UCSC database. Transcriptome data from human OA cartilage (GSE64394 and GSE98460), IL-1β-treated cartilage explants (GSE75181, GSE6119, and GSE104793), and cartilage from various OA animal models (DMM surgery: GSE143447; anterior cruciate ligament transection (ACL) surgery: GSE110268, GSE12295, and GSE8077; moniodoacetate (MIA) injection: GSE28958) were analyzed. Gene sets, GSEA was also performed with the list of 752 genes significantly upregulated in OA as a gene set representing ‘upregulated genes in OA’. The genes used for GSEA are listed in Supplementary Tables S5–7. Microarray data for OA were obtained under relevant conditions in various in vivo and in vitro models were obtained from the GEO database. Transcriptomes of human OA cartilage (GSE64394 and GSE98460), IL-1β-treated cartilage explants (GSE100083), IL-1β-treated chondrocytes (GSE75181, GSE66119, and GSE104793), and cartilage from various OA animal models (DMM surgery: GSE13447; anterior cruciate ligament transection (ACL) surgery: GSE110268, GSE12295, and GSE8077; moniodoacetate (MIA) injection: GSE28958) were analyzed. GPX6, SELENOH, and SELENOV were excluded from our transcriptome analysis. The result of GPX6 is not evolutionarily conserved in mice and rats, expression levels of SELENOH and SELENOV were negligible in cartilage (below the cutoff).

Statistical analysis

All experiments were conducted on at least three independent biological replicates, including all histology and immunohistochemistry experiments replicated as microarrays. For difficult-to-repeat experiments in vitro experiments, comparison of gene expression between various in vivo and in vitro models was carried out by a parametric test based on two-tailed Student’s t test, Welch’s t test for non-parametric tests of Mmp14 in Fig. 2m and Igfbp7 in Supplementary Fig. 4c, or two-way analysis of variance (ANOVA) followed by Dunnett’s or Tukey's post hoc test. For in vivo experiments, each independent trial was conducted using an individual mouse. To determine statistically significant differences, a non-parametric test based on Mann–Whitney U test was used. For non-parametric analysis in multigroup comparisons, Kruskal–Wallis test followed by Mann–Whitney U test or Scheirer–Ray–Hare ($S–R–H$) test followed by Mann–Whitney U test was used. Data quantified based on ordinal grading systems including the OARSI grade and the Mankin score and scores for subchondral bone sclerosis, osteochondral defects, and synovial inflammation, whose data points are not continuous and do not follow a normal distribution, were analyzed using non-parametric statistical methods. Separate

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)

Total RNA was isolated using TRI reagent (Molecular Research Center, Inc.) and reverse-transcribed using EasyScript Reverse Transcriptase (TransGen Biotech). To quantitatively analyze mRNA transcript levels, cDNA was amplified by qRT-PCR using Power SYBR Green PCR Master Mix (Thermo Scientific) on StepOnePlus Real-Time PCR System v2.3 (Applied Biosystems). The primers used for qRT-PCR were designed using Primer 3 (http://www.ro理想化:无). Primer sequences are listed in Supplementary Table S1. Total RNA was reversetranscribed into cDNA using M-MLV reverse transcriptase (Promega) and processed for qRT-PCR using SYBR Green master mix (Thermo Scientific) on a StepOnePlus Real-Time PCR System v2.3. Triplicates were performed and analyzed using the 2-ΔΔCt method. PCR efficiencies were determined using the linear regression method, and differences in cDNA levels were calculated using the 2-ΔΔCt method.

ROS detection using DHE and CM-H$_2$DCFDA staining

For DHE staining, primary articular chondrocytes were stained with 1 μM DHE (Thermo Scientific). For CM-H$_2$DCFDA staining, primary culture of mouse chondrocytes was stained with 5 μM CM-H$_2$DCFDA (Thermo Scientific) and analyzed by confocal microscopy. The pixel size of 20 μm. The three-dimensional images were constructed using NRecon software (Bruker).
statistical analyses were performed for sham and DMM groups such that the surgical condition was not considered a variable (as in cases described in refs. 36,47). Correlations between SEPHS1 positivity and OARSI grade in human OA cartilage samples were measured using Spearman’s rank correlation coefficient \(\rho \). The effect sizes of OA histological parameters were calculated using Cohen’s \(d \) (large, \(d \geq 0.8 \); medium, \(d = 0.5-0.79 \); small, \(d = 0.2-0.49 \)) and are provided in Supplementary Table 8. Statistical significance was accepted at \(P < 0.05 \). Statistical analyses were performed using IBM SPSS Statistics 25 or GraphPad Prism 9.0. All the graphs and heatmaps of log(fold change) were plotted using GraphPad Prism 9.0. Cell cultures and animals were randomly assigned to each experimental group and all samples were evaluated in a blinded manner. The sample size \(n \) for each group was determined for equal power, and the power was determined based on a power analysis calculation (Eq. 1) and the design of a previous study39. No exclusion criteria were included in the study. The additional details of statistical analyses for Figs. 2a, k, l, m, 5b and Supplementary Fig. 4c are provided in Supplementary Note 1.

\[
D = \frac{\alpha^2(z_{\alpha/2} + z_{\beta})^2}{\delta^2}
\]

where \(D \) = sample size, \(\alpha = \) standard deviation, \(\beta = \alpha = \) significance level (0.05), and \(1 - \beta = \) power (0.90).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The original RNA-seq data generated in this study have been deposited in the GEO database under accession code GSE143447. Transcriptome data for OA or OA-relevant conditions in various in vivo and in vitro models referenced during the study are available in the GEO database (http://www.ncbi.nlm.nih.gov/geo). Transcriptomes of human OA cartilage (GSE64394 and GSE98460), IL-1β-treated cartilage explants (GSE100883), IL-1β-treated chondrocytes (GSE75181, GSE6619, and GSE104793), and cartilage from various OA animal models (DMM surgery: GSE143447; ACLT surgery: GSE42295, and GSE077) were analyzed. The list of genes significantly upregulated in OA was obtained from previous studies30,31. All other relevant data supporting the findings of this study are available within the article and its Supplementary Information file. Source data are provided with this paper.

Received: 26 March 2020; Accepted: 24 January 2022; Published online: 09 February 2022

References

1. Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: A disease of the joint as an organ. *Arthritis Rheumatism* **64**, 1697–1707 (2012).
2. Brandi, K. D., Radin, E. L., Dieppe, P. A. & van de Putte, L. Yet more evidence that osteoarthritis is not a cartilage disease. *Ann. Rheum. Dis.* **65**, 1261–1264 (2006).
3. Little, C. B. & Hunter, D. J. Post-traumatic osteoarthritis: From mouse models to clinical trials. *Nat. Rev. Rheumatol.* **12**, 412 (2016).
4. Martin, J. A. & Buckwalter, J. A. Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. *Iowa Orthop. J.* **21**, 1–7 (2001).
5. Ruan, M. Z. et al. Proteoglycan 4 expression protects against the development of mechanically induced osteoarthritis and increase the production of reactive oxygen species. *Osteoarthr. Cartil.* **26**, 316–325 (2018).
6. Hooven, L. A., Butler, J., Ream, L. W. & Whanger, P. D. Microarray analysis of the effect of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. *Free Radic. Biol. Med.* **6**, 593–597 (1989).
7. Johnson, K. et al. A stem cell-based approach to cartilage repair. *Science* **336**, 717–721 (2012).
8. Kim, J. H. et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. *Cell* **156**, 730–743 (2014).
9. Yim, S. H., Clish, C. B. & Gladyshev, V. N. Selenium deficiency is associated with pro-longevity mechanisms. *Cell Rep.* **27**, 2785–2797 (2019).
10. Green, D. M., Noble, P. C., Ahuero, J. S. & Birdsall, H. H. Cellular events leading to chondrocyte death after cartilage impact injury. *Arthritis Rheumatism* **54**, 1509–1517 (2006).
11. Tomiyama, T. et al. Cyclic compression loaded on cartilage explants enhances the production of reactive oxygen species. *J. Rheumatol.* **34**, 556–562 (2007).
12. Kim, J. H., Xu, X. M., Gladyshev, V. N. & Hatfield, D. L. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. *J. Biol. Chem.* **280**, 5542–5548 (2005).
44. Sunde, R. A. & Raines, A. M. Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. *Adv. Nutr.* 2, 138–150 (2011).
45. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. *Annu. Rev. Pathol.* 5, 99–110 (2010).
46. Downey, C. M. et al. Osteo-chondroprogenitor-specific deletion of the selenocysteine tRNA gene, Trsp, leads to chondronecrosis and abnormal skeletal mineralization: a putative model for Kashin-Beck disease. *PLoS Genet.* 5, e1000616 (2009).
47. Thompson, K. M., Halliack, H. & Sunde, R. A. Growth and plasma triiodothyronine concentrations are modified by selenium deficiency and repletion in second-generation selenium-deficient rats. *J. Nutr.* 125, 864–873 (1995).
48. Yang, C., Wolf, E., Roser, K., Delling, G. & Muller, P. K. Selenium deficiency and fulvic acid supplementation induces fibrosis of cartilage and disturbs subchondral ossification in knee joints of mice: an animal model study of Kashin-Beck disease. *Virchows Arch. A Pathol. Anat. Histopathol.* 423, 483–491 (1993).
49. Fritzko, K. P. et al. Osteoarthritis cartilage histopathology: Grading and staging. *Osteoarthr. Cartil.* 14, 13–29 (2006).
50. Tebe, R. et al. Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homeostasis in mammals. *Biochem. J.* 473, 2141–2154 (2016).
51. Moustafa, M. E. et al. Selenium and selenoprotein deficiencies induce widespread pyogranuloma formation in mice, while high levels of dietary selenium decrease liver tumor size driven by TGFalpha. *PLoS One* 8, e57389 (2013).
52. Easworthy, R. S., Yang, L., Frankel, P. H. & Chu, F. F. Epithelium-specific glutathione peroxidase, Gpx2, is involved in the prevention of intestinal inflammation in selenium-deficient mice. *J. Nutr.* 135, 740–745 (2005).
53. Moskovitz, J. & Stadtmann, E. R. Selenium-deficient diet enhances protein oxidation and affects methionine sulfoxide reductase (MsrB) protein level in cardiac tissue of murine hearts. *Proc. Natl Acad. Sci. USA* 100, 7486–7490 (2003).
54. Glasson, S. S., Chambers, M. G., Van Den Berg, W. R. & Little, C. B. The OARS histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse. *Osteoarthr. Cartil.* 18(Suppl. 3), S17–S23 (2010).
55. Mankin, H. J., Dorfman, H., Lippello, L. & Zarins, A. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. II. Correlation of morphology with biochemical and metabolic data. *J. Bone Jt. Surg. Am.* 53, 523–537 (1971).
56. Oh, H., Chun, C. H. & Chun, J. S. Dkk1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice. *Arthritis Rheumatism* 64, 2568–2578 (2012).
57. Yang, S. et al. Hypoxia-inducible factor-2alpha is a catabolic regulator of osteoarthritic cartilage destruction. *Nat. Med.* 16, 687–693 (2010).
58. Kim, H. Y. & Gladyshev, V. N. Methionine sulfoxide reduction in mammals: Characterization of methionine-R-sulfoxide reductases. *Mol. Biol. Cell* 15, 1055–1064 (2004).
59. Ruan, M. Z., Patel, R. M., Dawson, B. C., Jiang, M. M. & Lee, B. H. Pain, mor and gait assessment of murine osteoarthritis in a cruciate ligament transection model. *Osteoarthr. Cartil.* 21, 1355–1364 (2013).
60. Gosset, M., Berenbaum, F., Thirion, S. & Jacques, C. Primary culture and phenotyping of murine chondrocytes. *Nat. Protoc.* 3, 1253–1260 (2008).
61. Schneider, C. A., Rasbash, W. S. & Elsneri, K. W. NIH Image to ImageJ: 25 years of image analysis. *Nat. Methods* 9, 671–675 (2012).
62. Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J. & Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-beta-gal) activity, a biomarker of senescent cells in culture and in vivo. *Nat. Protoc.* 4, 1798–1806 (2009).
63. Bolger, A. M., Lohse, M. & Usadel, B. Trimomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* 30, 2114–2120 (2014).
64. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. *Nat. Methods* 12, 357–360 (2015).
65. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat. Biotechnol.* 33, 290–295 (2015).
66. Choi, W. S. et al. The CH25H-CYP7B1-ROR alpha axis of cholesterol metabolism regulates osteoarthritis. *Nature* 566, 254 (2019).
67. Deng, Y. et al. Reciprocal inhibition of YAP/TAZ and NF-kappaB regulates osteoarthritic cartilage degradation. *Nat. Commun.* 9, 4564 (2018).
68. Zhu, X. et al. PPARgamma preservation via promoter demethylation alleviates osteoarthritis in mice. *Ann. Rheum. Dis.* 78, 1420–1429 (2019).

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea (NRF-2015M3A9G6028674, NRF-2016R1A5A1010764, NRF-2017M3AD90864193, NRF-2020R1A2C2012300, NRF-2021R1I1A1A01055626), the Institute for Basic Science from the Ministry of Science, ICT, and Future Planning of Korea (IBS-R008-D1), and Suh Kyungbae Foundation.

Author contributions

D.K., J.L, B.J.L, and J.-H.K. designed the study. D.K and J.L performed the most in vitro and in vivo experiments. J.J. conducted the cell-based assays. M.J.C., C.B.C., and S.-B.K. collected and inspected human patient samples. B.A.C., B.C.L., V.N.G., and D.I.H. contributed materials/analytical tools and provided intellectual input to project design and data interpretation. D.K., J.L, J.I., R.I.L, and J.-H.K. analyzed the data. D.K., J.J., B.J.L, and J.-H.K. wrote the manuscript with input from the other authors. J.-H.K is the lead contact.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-28385-7.

Correspondence and requests for materials should be addressed to Byeong Jae Lee or Jin-Hong Kim.

Peer review information *Nature Communications* thanks Rik Lories and Toshinari Takamura for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022