ABSTRACT

Osteoarticular infections include septic arthritis and osteomyelitis, with Gram-positive microorganisms isolated most frequently. In recent years, there has been an increase in the number of resistant strains in this type of infection, which complicates the treatment. Fosfomycin is active against a large percentage of Gram-positive and Gram-negative pathogens, including multidrug-resistant strains, and its properties include low protein binding, low molecular weight and good bone dissemination. In this article, we discuss fosfomycin’s activity in vitro, its pharmacokinetic and pharmacodynamic parameters of interest in osteoarticular infections, the experimental models of osteomyelitis and foreign body infection and the clinical experience with these types of infections.

Keywords: fosfomycin, arthritis, osteomyelitis

BACKGROUND

Osteoarticular infections include septic arthritis and osteomyelitis. For septic arthritis, we can differentiate between monoarticular (the knee being the most commonly affected joint) and polyarticular forms, the latter of which usually involves small peripheral joints. Osteomyelitis has been classified according to the degree of impairment of the bone’s anatomical structure (medullar, superficial, localized or diffuse) and the pathophysiology of the infection. The latter classification includes the hematogenous infections, which mainly affect the axial skeleton (spine) in adults and long bones in children, which correspond to medullary forms of the anatomical classification. Infections by contiguity include osteomyelitis secondarily to bone exposure due to loss of skin integrity (diabetic foot, pressure ulcer) and initially correspond to superficial anatomical forms, although they can progress to localized or diffuse forms if not treated promptly. Lastly, we have osteomyelitis by direct inoculation of the microorganism, which encompasses infections secondary to open fractures and to contamination during the surgical act. The risk of osteomyelitis after an open fracture depends on the severity of the injury; more than 20% of severe cases are still complicated by osteomyelitis. However, the most common form of osteomyelitis at present is the result of bacterial contamination during surgery to place orthopedic material for fractures or for prosthetic joints to treat osteoarthritis. The etiology of osteoarticular infections is dominated by Gram-positive cocci (GPC), although in recent years Gram-negative bacilli (GNB) are on the increase, particularly in infections related to the placement of orthopedic material [1-3].

Prosthetic joint infections (PJI) occur in 1-3% of cases according to data from the Catalonian Nosocomial Infection Surveillance Program (VINCAT), which included more than 7000 annual procedures performed in various hospitals [4]. The aging of the population, with high indices of comorbidity (diabetes mellitus, obesity), and an increase in resistant microorganisms that could potentially contaminate the surgery leads to the prediction that infection rates will not decrease, which will result in significant economic costs [5]. GPC are still the most commonly isolated pathogens, mainly Staphylococcus aureus and coagulase-negative staphylococci (CNS). Recent data show that methicillin-resistance rates are approximately 20% and >60%, respectively, for S. aureus and CNS; for fluoroquinolones, the resistance rates are >30% in a series in our setting [3, 6]. This fact is important because the best results have been achieved with a combination of levofloxacin and rifampicin, thanks to their increased activity versus bacterial biofilms [7, 8]. An epidemiological study of these infections in 19 Spanish hospitals between 2003 and 2012 showed an increase in GNB and their increased resistance to fluoroquinolones [3].
a relevant finding because, in these cases, the inclusion of a quinolone in the treatment also improves the prognosis, once again thanks to its increased activity versus biofilms [9,10]. The most worrying fact of the study, however, is that 16% of the infections were caused by a multidrug-resistant Gram-positive or Gram-negative microorganism. This situation warrants an analysis of therapeutic alternatives, which include fosfomycin due to its good activity against multidrug-resistant GPC [11] and GNB [12], its good bone dissemination and activity against S. aureus, enterococcus and GNB in various foreign body infection models when fosfomycin is combined with other antibiotics. It is therefore worth reviewing fosfomycin’s characteristics in terms of its in vitro and in vivo activity, as well as the clinical experience in osteoarticular infections with the aim of identifying its indications and forms of administration.

CHARACTERISTICS OF FOSFOMYCIN’S IN VITRO ACTIVITY

Fosfomycin is a broad-spectrum, time-dependent bactericidal antibiotic that acts by inhibiting the synthesis of N-acetylmuramic acid and blocking the synthesis of the bacterial wall [13], although its activity is lower in the presence of a high inoculum (10⁶ colony-forming units/mL), as can be found in some forms of osteomyelitis [14], suggesting the need for employing fosfomycin in combination. The minimum inhibitory concentration required to inhibit the growth of 90% (MIC⁰₉) of staphylococci (regardless of methicillin sensitivity) is <16 mg/L, <8 mg/L against E. coli and ≤32-64 mg/L against 50% of strains of K. pneumoniae, Enterobacter, Serratia and Proteus and 20% of P. aeruginosa strains. One of the peculiarities of fosfomycin’s activity is that it maintains an acidic pH [5-7], even in anaerobiosis. There are numerous mechanisms that determine the bacterial resistance within the biofilm, but one of the characteristics of these structures is that the environment in the deeper strata is acidic and oxygen-poor [15]. These data could explain the good results obtained in vitro with fosfomycin against biofilms of S. aureus and CNS [16, 17]. Although not all of the in vitro models demonstrated the efficacy of fosfomycin against biofilms [18], there is greater unanimity in the synergy between fosfomycin and vancomycin, teicoplanin, linazolid and fusidic acid against biofilms of methicillin-resistant S. aureus (MRSA). A number of the models showed superior results for fosfomycin compared with those obtained with the combination of these antibiotics and rifampicin [19]. There are also data indicating synergy between ciprofloxacin and fosfomycin (both at concentrations 3 times the MIC) against P. aeruginosa biofilms [20]. In the pathogenesis of osteomyelitis, there is increasing evidence of the role of intracellular forms of S. aureus that adapt to this location through the formation of small colony variants that present tolerance to multiple antibiotics [21]. Fosfomycin has shown efficacy against intracellular forms of S. aureus at therapeutic concentrations, although fosfomycin was unable to prevent the selection of small colony variants, unlike ofloxacin and rifampicin, which suggests the need to employ fosfomycin combinations for this type of infection [22]. These results have been transferred to animal models of osteomyelitis and foreign body infection, with good results as we will discuss later.

PHARMACOKINETIC AND PHARMACODYNAMIC PARAMETERS OF FOSFOMYCIN

There are 3 presentations of fosfomycin: the disodium salt for intravenous administration, the calcium salt and trometamol for oral administration. The oral bioavailability of the calcium salt and trometamol is <20% and <40%, respectively. Therefore, only the intravenous presentation is recommended for treating osteoarticular infections. The intravenous administration of 4-8 g achieves a serum concentration of 200-400 mg/mL and an elimination half-life of 3 h. The protein binding is <5%, and the molecular mass is 138 g/mol. The fosfomycin concentration in bone and subcutaneous cell tissue was measured using microdialysis in 9 patients with diabetes and osteomyelitis who were administered a single 100-mg/kg dose. The patients underwent surgery to excise necrotic tissue, leaving the microdialysis needle in the vicinity of the infected bone tissue and subcutaneous cell tissue [23]. The area under the curve (AUC) described by the concentration in the bone and subcutaneous cell tissue was 43% and 76% of the plasma AUC, respectively. The maximum concentration reached in the bone was 96 mg/L, and in all cases the concentration at 6 h remained above 32 mg/L. Considering that the pharmacodynamic parameter that predicts fosfomycin’s efficacy is a time above the MIC ≥50%, these data suggest that the dosage of 100 mg/kg (according to the adjusted weight) every 8 h is appropriate for microorganisms with MICs ≤32 mg/L. In the presence of a suppressive collection, especially if it cannot be drained immediately, the recommendation is a loading dose of 10 g to avoid delays in reaching the desired concentration [24]. These data could partly explain the results of experimental models of osteomyelitis that are described in a subsequent section.

Fosfomycin has been classically assumed to easily select resistant mutations, given that it has been determined in the laboratory that the frequency of these mutations in S. aureus is relatively high (10⁻⁶-10⁻⁹), and the mutant prevention concentration (MPC) is 64 mg/L, which, according to the bone dissemination data, suggests that the risk of selecting mutations is high. However, an in vivo foreign body model that exposed animals to concentrations between the MIC and MPC (mutagenic window) was unable to select resistant mutations [14]. Similarly, mutations were not selected during treatment of infections caused by E. coli [25]. The authors did not identify a loss of competence in the resistant strains, and therefore the reason for this finding should be sought in another characteristic of fosfomycin. It has recently been shown that the bactericidal activity of neutrophils and macrophages is performed not only after phagocytosis in the interior of phagolysosomes through oxidative reactions but also at the extracellular level through the release into the medium of a DNA mesh and molecules with antimicrobial action (elastase, myeloperoxidase) that trap microorganisms and have bactericidal action [26].
Fosfomycin has been shown in vitro to potentiate both bactericidal activity pathways of the immune system [27], which could explain the lack of selection in vivo of resistant mutations, even when the concentration is within the mutagenic window.

EXPERIENCE WITH FOSFOMYCIN IN EXPERIMENTAL MODELS OF OSTEOMYELITIS AND FOREIGN BODY INFECTION

An experimental model of chronic osteomyelitis by MRSA [28] showed that monotherapy with fosfomycin achieves curing rates >90% and was more effective than daptomycin at a dosage corresponding to 6 mg/kg/24 h. Fosfomycin-resistant mutations were not selected in any case. Foreign-body infection models that seek to simulate infection related to orthopedic implants (osteosynthesis material, prosthetic joints) include the model that introduces a titanium needle into the tibia of a rat that was subsequently contaminated with a high bacterial inoculum. A second model, known as the box model, consists of subcutaneously placing a multiperforated Teflon box containing the inoculated study microorganism into the animal. For the first model, there are 2 studies that assessed the efficacy of fosfomycin, vancomycin, daptomycin and the combination of daptomycin and fosfomycin against MRSA [29, 30]. In monotherapy, fosfomycin was significantly more effective than vancomycin and daptomycin, and the combination with daptomycin was synergistic. Fosfomycin-resistant mutations were not selected in any case, and it is worth noting that all models described herein employed fosfomycin dosages that, in the animal, involved levels lower than those that can be achieved in humans with a dosage of 8 g/8 h.

Figure 1 Percentage eradication of an methicillin-resistant *Staphylococcus aureus* biofilm in the animal model of foreign body infection [32-38].

DAP, daptomycin; FOS, fosfomycin; VAN, vancomycin; RIF, rifampicin; LIN, linezolid.

Figure 2 Decrease in bacterial load in the interior of the box of the foreign body animal model by methicillin-resistant *Staphylococcus aureus* [32-38].

CLO, cloxacillin; DAP, daptomycin; FOS, fosfomycin; VAN, vancomycin.
The role of fosfomycin in osteoarticular infection

L. Morata, et al.

Rev Esp Quimioter 2019;32 (Suppl. 1): 30-36

The role of fosfomycin in osteoarticular infection
L. Morata, et al.
Rev Esp Quimioter 2019;32 (Suppl. 1): 30-36

other ESBL/carbapenemase-producing enterobacteria and \(P.\ aeruginosa\), for which in vitro data have shown interesting results with fosfomycin in combination with daptomycin against VRE [41] or with carbapenem against \(P.\ aeruginosa\) [42, 43].

CLINICAL EXPERIENCE IN TREATING OSTEARTICULAR INFECTIONS WITH FOSFOMYCIN

The clinical experience with employing fosfomycin in osteoarticular infections is limited to the small case series listed in table 1. In the first series [44], the authors studied the in vitro bactericidal activity of several cephalosporins in combination with netilmicin, amikacin, vancomycin and fosfomycin in 10 strains of MRSA. The combination of cefotaxime and fosfomycin was the most active and was assessed in 6 patients with osteoarticular infection (4 with septic arthritis and 2 with osteomyelitis) by MRSA. The treatment consisted of 25-mg/kg cefotaxime administered intravenously and 50 mg/kg/6-8 h of fosfomycin for a mean of 15 days. All patients tolerated the treatment well and presented clinical and microbiological cure with no recurrence, although the authors did not specify the duration of the follow-up after completing the antibiotic regimen. The authors confirmed that the combination was synergistic against the strains isolated from the 6 patients. A second study assessed the addition of 5 g of fosfomycin every 8 h intravenously (with an initial bolus of 5 or 10 g) to antibiotic

Author/ year	Study type	No. of patients / Infection type	Isolated microorganism, %	Fosfomycin dosage	Combination	Mean intravenous antibiotic duration, days	Mean follow-up, months	Remission n/total evaluated, %
Portier/ 1985 [38]	Prosp.	6 patients: 4 arthritis 2 OM	MRSA (100)	50 mg/kg, 6-8 h	Cefotaxime	15	-	100
Meissner/ 1989 [39]	Prosp.	60 / chronic OM	S. aureus (56,7) SCN (25) P. aeruginosa (16,7)	5 g / 8 h (loading of 5 or 10 g)	-	13.9	37	73,6
Corti/2003 [40]	Retros.	103 children / acute OM	S. aureus (60,5%) SCN (15,8) S. pyogenes (7,9)	-	3 groups: - fosfomycin (23) - fosfomycin + another antibiotic (47) - nonfosfomycin antibiotic (33)	17.5	21.7	26.6
Luengo/2018 [41]	Retros.	1/ chronic hip prosthesis infection	Multidrug-resistant S. epidermidis	2 g / 6 h daptomycin 700 mg / day	-	42	24	100

Table 1 Summary of the clinical experience with fosfomycin in osteoarticular infections

CNS, coagulase-negative staphylococci; MRSA, methicillin-resistant \(Staphylococcus aureus\); OM, osteomyelitis; Prosp, prospective study; Retrosp, retrospective study.

ªCalculated for 38 patients with a microbiological isolate.

The box model evaluated 2 factors: 1) the reduction of microorganisms inside the box (planktonic population) and 2) the number of sterilized boxes or the number of microorganisms attached to the box, in the event sterilization was not achieved (sessile population). The efficacy of fosfomycin in monotherapy was limited against MRSA, unlike that observed in models of osteomyelitis; however, the combination with daptomycin and rifampicin was highly synergistic, and both combinations were more effective in reducing the planktonic and sessile populations, with box sterilization rates >70% [31, 32]. Figures 1 and 2 summarize the activity of various antibiotics against MRSA described in several studies conducted with the box model [32-38]. Once again, the selection of a resistant mutation was exceptional.

The box model has been employed to study the efficacy of fosfomycin against \(E. faecalis\) and extended-spectrum beta-lactamase (ESBL)-producing \(E. coli\). Against \(E. faecalis\), fosfomycin in monotherapy sterilized 43% of the boxes or the number of microorganisms attached to the box, in the event sterilization was not achieved (sessile population). The efficacy of fosfomycin in monotherapy was limited against MRSA, unlike that observed in models of osteomyelitis; however, the combination with daptomycin and rifampicin was highly synergistic, and both combinations were more effective in reducing the planktonic and sessile populations, with box sterilization rates >70% [31, 32]. Figures 1 and 2 summarize the activity of various antibiotics against MRSA described in several studies conducted with the box model [32-38]. Once again, the selection of a resistant mutation was exceptional.

The box model has been employed to study the efficacy of fosfomycin against \(E. faecalis\) and extended-spectrum beta-lactamase (ESBL)-producing \(E. coli\). Against \(E. faecalis\), fosfomycin in monotherapy sterilized 43% of the boxes or the number of microorganisms attached to the box, in the event sterilization was not achieved (sessile population). The efficacy of fosfomycin in monotherapy was limited against MRSA, unlike that observed in models of osteomyelitis; however, the combination with daptomycin and rifampicin was highly synergistic, and both combinations were more effective in reducing the planktonic and sessile populations, with box sterilization rates >70% [31, 32]. Figures 1 and 2 summarize the activity of various antibiotics against MRSA described in several studies conducted with the box model [32-38]. Once again, the selection of a resistant mutation was exceptional.

The box model has been employed to study the efficacy of fosfomycin against \(E. faecalis\) and extended-spectrum beta-lactamase (ESBL)-producing \(E. coli\). Against \(E. faecalis\), fosfomycin in monotherapy sterilized 43% of the boxes or the number of microorganisms attached to the box, in the event sterilization was not achieved (sessile population). The efficacy of fosfomycin in monotherapy was limited against MRSA, unlike that observed in models of osteomyelitis; however, the combination with daptomycin and rifampicin was highly synergistic, and both combinations were more effective in reducing the planktonic and sessile populations, with box sterilization rates >70% [31, 32]. Figures 1 and 2 summarize the activity of various antibiotics against MRSA described in several studies conducted with the box model [32-38]. Once again, the selection of a resistant mutation was exceptional.
therapy for 60 patients with chronic post-traumatic osteomyelitis [45]. The microorganisms isolated most frequently were S. aureus (56.7%), CNS (25%) and P. aeruginosa (16.7%), all of which were sensitive to fosfomycin. After a mean follow-up of 37 months, 54.7% of the patients had an excellent treatment response, while 26.4% experienced treatment failure. In 19 cases, the fosfomycin concentration could be determined in the bone, and all were higher than the MIC\textsubscript{90} value of the isolated microorganism. Lastly, Corti et al. [46] assessed 103 children between the ages of 1 month and 15 years with acute hematogenous osteomyelitis, caused mainly by S. aureus. The patients who underwent treatment with fosfomycin in monotherapy (n=23) were compared with those treated with fosfomycin in combination with another antibiotic (94% with a beta-lactam) (n=47) and with those who were administered any other regimen without fosfomycin (n=33). The mean intravenous treatment duration was 2.5, 3.1 and 3.8 weeks for the 3 groups, respectively, and only 1 patient in the fosfomycin group required surgical drainage during hospitalization. All patients progressed favorably during the therapy, with C-reactive protein levels normalizing at 2 weeks, except for 1 patient (2%) in the combination group and 1 patient (3%) in the group without fosfomycin who experienced a recurrence.

The clinical experience with the use of fosfomycin in prosthetic joint infections is limited to a single recently reported case of infection by multidrug-resistant S. epidermidis treated with debridement, daptomycin (10 mg/kg) and fosfomycin (2 g every 6 h), whose outcome at 2 years of follow-up was favorable [47].

CONCLUSIONS

Fosfomycin maintains good activity against Gram-positive and Gram-negative microorganisms, even for a large percentage of multidrug-resistant strains. Fosfomycin also has good bone dissemination, and an animal model of foreign body infection and numerous in vitro studies have demonstrated its activity against biofilms. The antibiotic has noteworthy synergistic activity with daptomycin, rifampicin, vancomycin, linezolid and fusidic acid against biofilms of Gram-positive pathogens, as well synergistic activity with colistin and ciprofloxacin against Gram-negative pathogens. Although clinical experience is limited, fosfomycin employed in combination can be effective in treating osteoarticular infections.

REFERENCES

1. Lew DP, Waldvogel FA. Osteomyelitis. Lancet. 2004;364(9431):369-79. doi: 10.1016/S0140-6736(04)16727-5
2. Mathews CJ, Weston VC, Jones A, Field M, Coakley G. Bacterial septic arthritis in adults. Lancet. 2010;375(9717):846-55. doi: 10.1016/S0140-6736(09)61598-3
3. Benito N, Franco M, Riba A, et al. Time trends in the aetiology of prosthetic joint infections: a multicentre cohort study. Clin Microbiol Infect. 2016;22(8):732.e1-8. doi: 10.1016/j.cmi.2016.05.004
4. http://catsalut.gencat.cat/web/content/minisite/vincat/documents/informes/informe-2017.pdf
5. Moore AJ, Blom AW, Whitehouse MR, Gooberman-Hill R. Deep prosthetic joint infection: a qualitative study of the impact on patients and their experiences of revision surgery. BMJ Open. 2015;5(12):e009495. doi: 10.1136/bmjopen-2015-009495
6. Drago I, De Vecchi E, Bortolin M, Zagra L, Romanò CL, Cappelletti L. Epidemiology and Antibiotic Resistance of Late Prosthetic Knee and Hip Infections. J Arthroplasty. 2017;32(8):2496-2500. doi: 10.1016/j.arth.2017.03.005
7. Tornero E, Morata L, Martínez-Pastor JC, Angulo S, Combalia A, Bori G, et al. Importance of selection and duration of antibiotic regimen in prosthetic joint infections treated with debridement and implant retention. J Antimicrob Chemother 2016;71:1395e401. doi: 10.1093/jac/dkv481
8. Senneville E, Jolie D, Legout L, Valette M, Dezeque H, Beltrand E, et al. Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis 2011;53:334e40. doi: 10.1093/cid/cir402
9. Martínez-Pastor JC, Muñoz-Mahamud E, Vilchez F, et al. Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrob Agents Chemother. 2009;53(11):4772-7. doi: 10.1128/AAC.00188-09
10. Rodriguez-Pardo D, Pigrau C, Lora-Tamayo J, et al. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect. 2014;20(11):862-72. doi: 10.1111/1469-0691.12697
11. Falagas ME, Maraki S, Karageorgopoulos DE, Kastoris AC, Kapaskelis A, Samonis G. Antimicrobial susceptibility of Gram-positive non-urinary isolates to fosfomycin. Int J Antimicrob Agents. 2010;35(5):497-9. doi: 10.1016/j.ijantimicag.2010.01.010
12. Tzouvelekis LS, Markogiannakis A, Pipareki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2014;20(9):O911-9. doi: 10.1111/cmi.12649
13. Gobernado M. Fosfomycin. Rev Esp Quimioter. 2003;16(1):15-40. PMID: 12750755
14. Mei Q, Ye Y, Zhu YL et al. Testing the mutant selection window hypothesis in vitro and in vivo with Staphylococcus aureus exposed to fosfomycin. Eur J Clin Microbiol Infect Dis. 2015;34(4):737-44. doi: 10.1007/s10096-014-2285-6
15. Anderl JN, Zahller J, Roe F et al. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2003;47(4):1251-6. PMID: 12654654
16. Monzón M, Oteiza C, Leiva J et al. Biofilm testing of Staphylococcus epidermidis clinical isolates: low performance of vancomycin in relation to other antibiotics. Diagn Microbiol Infect Dis. 2002;44(4):319-24. PMID: 12543335
17. Amorena B, Gracia E, Monzón M et al. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother. 1999;44(1):43-55. PMID: 10459809
The role of fosfomycin in osteoarticular infection

L. Morata, et al.
Rev Esp Quimioter 2019;32 (Suppl. 1): 30-36

18. Presterl E, Hajdu S, Lassnigg AM et al. Effects of azithromycin in combination with vancomycin, daptomycin, fosfomycin, tigecycline, and ceftriaxone on Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 2009;53(8):3205-10. Doi: 10.1128/AAC.01628-08

19. Tang HJ, Chen CC, Cheng KC et al. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother. 2012 Apr;67(4):944-50. Doi: 10.1093/jac/dkr535

20. Kumon H, Noz N, Iida M et al. Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Antimicrob Agents Chemother. 1995;39(5):1038-44. PMID: 7625785

21. Tuchscherr L, Kreis CA, Hoerr V. Staphylococcus aureus develops increased resistance to antibiotics by forming dynamic small colony variants during chronic osteomyelitis. J Antimicrob Chemother. 2016;71(2):438-48. Doi: 10.1093/jac/dkv371

22. Valour F, Trouillet-Assant S, Riffard N et al. Antimicrobial activity against intraosseous Staphylococcus aureus. Antimicrob Agents Chemother. 2015;59(4):2029-36. Doi: 10.1128/AAC.04359-14

23. Schintler MV, Traunmüller F, Metzler J et al. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother. 2009;64(3):574-8. Doi: 10.1093/jac/dkp230

24. Sauermann R, Karch R, Langenberger H et al. Antibiotic abscess penetration: fosfomycin levels measured in pus and simulated concentration-time profiles. Antimicrob Agents Chemother. 2005;49(11):4448-54. Doi: 10.1128/AAC.49.11.4448-4454.2005

25. Karageorghopoulous DE, Wang R, Yu XH et al. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother. 2012;67(2): 255-68. Doi: 10.1093/jac/dkr466

26. Brinkmann V, Reichard U, Goosmann C et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532-5. Doi: 10.1126/science.1092385.

27. Shen F, Tang X, Cheng W et al. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species. Sci Rep. 2016;6:19262. Doi: 10.1038/srep19262.

28. Poeppl W, Tobudic S, Lingscheid T et al. Efficacy of fosfomycin in experimental osteomyelitis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55(2):931-3. Doi: 10.1128/AAC.00881-10.

29. Poeppl WJ, Lingscheid T, Bernitzky D et al. Efficacy of fosfomycin compared to vancomycin in treatment of implant-associated chronic methicillin-resistant Staphylococcus aureus osteomyelitis in rats. Antimicrob Agents Chemother. 2014;58(9):5111-6. Doi: 10.1128/AAC.02720-13.

30. Lingscheid T, Poeppl W, Bernitzky D et al. Daptomycin plus fosfomycin, a synergistic combination in experimental implant-associated osteomyelitis due to methicillin-resistant Staphylococcus aureus in rats. Antimicrob Agents Chemother. 2015;59(2):859-63. Doi: 10.1128/AAC.04246-14.

31. Mihalescu R, Furushand Tafin U, Corvec S et al. High activity of Fosfomycin and Rifampin against methicillin-resistant Staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2014;58(5):2547-53. Doi: 10.1128/AAC.02420-12.

32. Garrigós C, Murillo O, Lora-Tamayo J et al. Fosfomycin-daptomycin and other fosfomycin combinations as alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57(1):606-10. Doi: 10.1128/AAC.01570-12.

33. Murillo O, Domènech A, Garcia A et al. Efficacy of high doses of levofloxacin in experimental foreign-body infection by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50(12):4011-7. PMID: 17015630

34. Murillo O, Domenech A, Euba G et al. Efficacy of linezolid alone and in combination with rifampin in staphylococcal experimental foreign-body infection. J Infect. 2008;57(3):229-35. doi: 10.1016/j.jinf.2008.07.003.

35. Murillo O, Garrigós C, Pachón ME et al. Efficacy of high doses of daptomycin versus alternative therapies against experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(10):4252-7. doi: 10.1128/AAC.00208-09.

36. Garrigós C, Murillo O, Euba G et al. Efficacy of usual and high doses of daptomycin in combination with rifampin versus alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54(12):5251-6. doi: 10.1128/AAC.00226-10.

37. El Haj C, Murillo O, Ribera A et al. Comparative efficacies of cloxacin-daptomycin and the standard cloxacin-rifampin therapies against an experimental foreign-body infection by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2014;58(9):5576-80. doi: 10.1128/AAC.02681-14.

38. El Haj C, Murillo O, Ribera A et al. Daptomycin combinations as alternative therapies in experimental foreign-body infection caused by methicillin-susceptible Staphylococcus aureus. Int J Antimicrob Agents. 2015;46(2):189-95. doi: 10.1016/j.ijantimicag.2015.04.004.

39. Oliva A, Furushand Tafin U, Mäolo EM et al. Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2014;58(3):1284-93. Doi: 10.1128/AAC.02583-12.

40. Corvec S, Furushand Tafin U, Betrisey B et al. Activities of fosfomycin, tigecycline, colistin, and gentamicin against extended-spectrum-β-lactamase-producing Escherichia coli in a foreign-body infection model. Antimicrob Agents Chemother. 2013;57(3):1421-7. Doi: 10.1128/AAC.01718-12.

41. Hall Snyder AD, Werth BJ, Nonejuie P et al. Fosfomycin Enhances the Activity of Daptomycin against Vancomycin-Resistant Enterococci in an In Vitro Pharmacokinetic-Pharmacodynamic Model. Antimicrob Agents Chemother. 2016;60(10):5716-23. Doi: 10.1128/AAC.00687-16.

42. Drusano GL, Neely MN, Yamada WM et al. The Combination of Fos-
The role of fosfomycin in osteoarticular infection

L. Morata, et al.

Rev Esp Quimioter 2019;32 (Suppl. 1): 30-36

43. Hamou-Segarra M, Zamorano L, Vadlamani G et al. Synergistic activity of fosfomycin, β-lactams and peptidoglycan recycling inhibition against Pseudomonas aeruginosa. J Antimicrob Chemother. 2017;72(2):448-454. Doi: 10.1093/jac/dkw456.

44. Portier H, Kazmierczak A, Lucht F et al. Cefotaxime in combination with other antibiotics for the treatment of severe methicillin-resistant staphylococcal infections. Infection. 1985;13 Suppl 1:5123-8. PMID: 3850854

45. Meissner A, Haag R, Rahmanzadeh R. Adjuvant fosfomycin medication in chronic osteomyelitis. Infection. 1989;17(3):146-51. PMID: 2661439

46. Corti N, Sennhauser FH, Stauffer UG et al. Fosfomycin for the initial treatment of acute haematogenous osteomyelitis. Arch Dis Child. 2003;88(6):512-6. PMID: 12765918

47. Luengo G, Lora-Tamayo J, Paredes D et al. Daptomycin Plus Fosfomycin as Salvage Therapy in a Difficult-to-Treat Total Femoral Replacement Infection. J Bone Jt Infect. 2018;3(4):207-211. Doi: 10.7150/jbji.27811