Research Article

α₁-Adrenergic Receptor Blockade by Prazosin Synergistically Stabilizes Rat Peritoneal Mast Cells

Nozomu Abe,¹ Hiroaki Toyama,¹ Yutaka Ejima,¹ Kazutomo Saito,¹ Tsutomu Tamada,² Masanori Yamauchi,¹ and Itsuro Kazama³

¹Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
²Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
³Miyagi University, School of Nursing, Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi, Japan

Correspondence should be addressed to Itsuro Kazama; kazamai@myu.ac.jp

Received 28 February 2020; Revised 3 April 2020; Accepted 17 April 2020; Published 13 May 2020

Guest Editor: Xiaohua Lei

Background. Adrenaline quickly inhibits the release of histamine from mast cells. Besides β₂-adrenergic receptors, several in vitro studies also indicate the involvement of α-adrenergic receptors in the process of exocytosis. Since exocytosis in mast cells can be detected electrophysiologically by the changes in the membrane capacitance (Cm), its continuous monitoring in the presence of drugs would determine their mast cell-stabilizing properties.

Methods. Employing the whole-cell patch-clamp technique in rat peritoneal mast cells, we examined the effects of adrenaline on the degranulation of mast cells and the increase in the Cm during exocytosis. We also examined the degranulation of mast cells in the presence or absence of α-adrenergic receptor agonists or antagonists.

Results. Adrenaline dose-dependently suppressed the GTP-γ-S-induced increase in the Cm and inhibited the degranulation from mast cells, which was almost completely erased in the presence of butoxamine, a β₂-adrenergic receptor antagonist. Among α-adrenergic receptor agonists or antagonists, high-dose prazosin, a selective α₁-adrenergic receptor antagonist, significantly reduced the ratio of degranulating mast cells and suppressed the increase in the Cm. Additionally, prazosin augmented the inhibitory effects of adrenaline on the degranulation of mast cells.

Conclusions. This study provided electrophysiological evidence for the first time that adrenaline dose-dependently inhibited the process of exocytosis, confirming its usefulness as a potent mast cell stabilizer. The pharmacological blockade of α₁-adrenergic receptor by prazosin synergistically potentiated such mast cell-stabilizing property of adrenaline, which is primarily mediated by β₂-adrenergic receptors.

1. Introduction

Anaphylaxis is a severe allergic reaction and a potentially life-threatening acute multisystem syndrome caused by the sudden release of mast cell-derived mediators [1]. In the treatment, adrenaline, a nonspecific adrenergic receptor agonist, is the first-choice drug, since it immediately suppresses further release of chemical mediators from mast cells [2]. Concerning the mechanisms, β₂-adrenergic receptors are considered to be primarily responsible, because the stimulation of these receptors strongly inhibits FcεRI- (high-affinity receptors for IgE-) dependent calcium mobilization in the cells [3]. Previously, several in vitro studies also demonstrated the presence of α-adrenergic receptors in mast cells [4] and indicated their involvement in the activation of the cells [5, 6]. Based on these findings, later in vivo studies actually showed the therapeutic efficacy of prazosin, a specific α₁-adrenergic receptor antagonist, for the histamine-induced bronchoconstriction in patients with asthma [7, 8]. To determine the effects of adrenaline or α-adrenergic receptor agonists/antagonists on the stabilization of mast cells, previous in vitro studies measured the drug-induced changes in histamine release from mast cells [6, 9–11]. However, they were not enough to monitor the whole process of exocytosis, since mast cells also release fibrogenic factors, growth factors and inflammatory cytokines in addition to chemical mediators [12]. In our series of patch-clamp studies, by detecting the changes in whole-cell membrane capacitance (Cm) in mast cells, we provided electrophysiological evidence that antiallergic drugs, antimicrobial drugs, and corticosteroids inhibit
the process of exocytosis and thus exert mast cell-stabilizing properties [13–16]. In the present study, employing the same standard patch-clamp whole-cell recording technique in rat peritoneal mast cells, we examined the effects of adrenaline on the changes in the Cm to quantitatively determine its ability to stabilize mast cells. Additionally, we examined the effects of α-adrenergic receptor agonists or antagonists on the degranulation of mast cells to determine their involvement in the stabilization of mast cells. Here, this study provides electrophysiological evidence for the first time that adrenaline dose-dependently inhibits the process of exocytosis, confirming its usefulness as a potent mast cell stabilizer. This study also shows that the pharmacological blockade of α_{1}-adrenergic receptor by prazosin synergistically potentiates such mast cell-stabilizing property of adrenaline, which is primarily mediated by β_{2}-adrenergic receptors.

2. Materials and Methods

2.1. Cell Sources and Preparation. Male Wistar rats no less than 25 weeks old were purchased from Japan SLC Inc. (Shizuoka, Japan). We profoundly anaesthetized the rats with isoflurane and sacrificed them by cervical dislocation. The protocols for the use of animals were approved by the Animal Care and Use Committee of Tohoku University Graduate School of Medicine and Miyagi University. As previously described [13–17], we washed rat peritoneum using standard external (bathing) solution which consists of (in mM) the following: NaCl, 145; KCl, 4.0; CaCl_{2}, 1.0; MgCl_{2}, 2.0; HEPES, 5.0; bovine serum albumin, 0.01% (pH 7.2 adjusted with NaOH); and isolated mast cells from the peritoneal cavity. We maintained the isolated mast cells at room temperature (22-24°C) to use within 8 hours. The suspension of mast cells was spread on a chamber placed on the headstage of an inverted microscope (Nikon, Tokyo, Japan). Mast cells were easy to distinguish from other cell types since they included characteristic secretory granules within the cells [13–17].

2.2. Quantification of Mast Cell Degranulation. Adrenaline, purchased from Daichi Sankyo, Inc. (Tokyo, Japan); dopamine, from Kyowa Hakko Kirin Co., Ltd. (Tokyo, Japan); phenylephrine hydrochloride, from Wako Pure Chem Ind. (Osaka, Japan); and clonidine and yohimbine, from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan) were separately dissolved in external solutions containing 1 mM adrenaline at the final concentrations of 1, 10, and 100 μM. Prazosin hydrochloride, purchased from Tokyo Chemical Industry Co., Ltd., was dissolved at final concentrations of 0.01, 0.1, and 1 μM. Butoxamine hydrochloride, purchased from Sigma-Aldrich Co. (St. Louis, MO, USA), or prazosin was also dissolved in the external solution containing 1 mM adrenaline at the final concentrations of 1 mM or 1 μM, respectively. After we incubated mast cells in these solutions or a solution without the reagents, exocytosis was externally induced by compound 48/80 (Sigma-Aldrich; final concentration 10 μg/ml) [13–17]. We obtained bright-field images from randomly chosen 0.1-mm² fields of view (10 views from each condition), as we described previously [13–17]. We counted degranulated mast cells (definition; cells surrounded by more than 8 granules outside the cell membrane) and calculated their ratio to all mast cells.

2.3. Electrical Setup and Membrane Capacitance Measurements. As we described in our previous studies [13–17], we employed an EPC-9 patch-clamp amplifier system (HEKA Electronics, Lambrecht, Germany) and conducted standard whole-cell patch-clamp recordings. Briefly, we maintained the patch pipette resistance between 4-6 MΩ when plugged with internal (patch pipette) solution which consists of (in mM) the following: K-glutamate, 145; MgCl_{2}, 2.0; Hepes, 5.0 (pH 7.2 adjusted with KOH). We added 100 μM guanosine 5′-o-(3-thiotriphosphate) (GTP-γ-S) (EMD Bioscience Inc., La Jolla, CA, USA) into the internal solution to endogenously induce exocytosis in mast cells [13–17]. We induced a gigaseal formation on a single mast cell spread in the external solutions containing no drug, different concentrations of adrenaline, or dopamine (1, 10, and 100 μM and 1 mM). Then, we briefly sucked the pipette to rupture the patch membrane and perfused GTP-γ-S into the cells. We maintained the series resistance below 10 MΩ during the whole-cell recordings. To monitor the membrane capacitance of mast cells, we conducted a sine plus DC protocol employing the lock-in amplifier of an EPC-9 Pulse program. We superimposed an 800 Hz sinusoidal command voltage on the holding potential of -80 mV. We continuously monitored the membrane capacitance (Cm), membrane conductance (Gm), and series conductance (Gs) during the whole-cell recording configuration. We performed all experiments at room temperature.

2.4. Statistical Analyses. Data were analyzed using PulseFit software (HEKA Electronics, Lambrecht, Germany) and Microsoft Excel (Microsoft Corporation, Redmond, Wash., USA) and reported as means ± SEM. Statistical significance was assessed by two-way ANOVA. A value of p < 0.05 was considered significant.

3. Results

3.1. Effects of Adrenaline and Dopamine on Degranulation of Rat Peritoneal Mast Cells. Mast cells incubated in the external solution with compound 48/80 (10 μg/ml) showed more wrinkles on their cell surface than those incubated without the compound (Figure 1(a), B vs. A). They released more secretory granules due to exocytosis (Figure 1(a), B). Mast cells that were preincubated with relatively lower doses of adrenaline, a nonselective agonist of adrenergic receptors (1 and 10 μM; Figure 1(a), C and D), showed similar findings to those that were incubated in the external solution alone (Figure 1(a), B). However, mast cells preincubated with relatively higher doses of adrenaline (100 μM, 1 mM; Figure 1(a), E and F) did not show such findings characteristic of exocytosis. On the other hand, almost all mast cells that were preincubated with dopamine, a nonselective agonist of dopamine receptors (1, 10, and 100 μM and 1 mM), showed typical findings of exocytosis regardless of their concentrations (Figure 1(a), G to J).
To quantitatively determine such effects of adrenaline and dopamine on exocytosis, we then counted the numbers of degranulating mast cells and calculated their ratio to all mast cells (Figures 1(b) and 1(c)). In the absence of adrenaline, compound 48/80 caused degranulation in 80.0 ± 1.4% of the entire mast cells (n = 10; Figure 1(b)). Relatively lower concentrations of adrenaline (1 and 10 μM) significantly decreased the number of degranulating mast cells dose-dependently (1 μM, 63.9 ± 2.3%, n = 15, p < 0.05; 10 μM, 56.7 ± 5.4%, n = 14, p < 0.05; Figure 1(b)). Additionally, with higher concentrations (100 μM, 1 mM), adrenaline markedly reduced the numbers of degranulating mast cells (100 μM,
32.9 ± 2.1%, n = 14, p < 0.05; 1 mM, 24.1 ± 2.3%, n = 13, p < 0.05; Figure 1(b)). Differing from adrenaline, dopamine did not significantly affect the numbers of degranulating mast cells regardless of their concentrations (Figure 1(c)). From these results, consistent with the previous findings [9, 10], adrenaline, which suppresses the release of histamine, actually inhibited the degranulation of rat peritoneal mast cells dose-dependently.

3.2. Effects of Adrenaline and Dopamine on Whole-Cell Membrane Capacitance in Rat Peritoneal Mast Cells. In our previous studies, microscopic changes in megakaryocyte or lymphocyte membranes were accurately monitored by measuring the whole-cell membrane capacitance (Cm) [18–26]. Of note, in mast cells, the process of degranulation during exocytosis was successively monitored by the increase in the Cm [13–17, 27, 28]. Hence, in our study, to quantitatively examine the effects of adrenaline or dopamine on the process of exocytosis, we preincubated mast cells in adrenaline- or dopamine-containing external solutions and measured the changes in Cm (Figures 2 and 3). In these figures, we showed the effects of 1, 10, and 100 μM adrenaline (Figure 2) and dopamine (Figure 3) on the Cm, Gs, and Gm. Table 1 summarizes the changes in the Cm. Representing the endogenous induction of exocytosis [13–17, 29, 30], the internal addition of GTP-γ-S into mast cells markedly increased the value of Cm (from 9.29 ± 0.37 to 34.0 ± 2.79 pF, n = 9, p < 0.05; Table 1).

When mast cells were preincubated with lower doses of adrenaline (1 and 10 μM), the addition of GTP-γ-S
tended to increase the Cm similarly to that of mast cells preincubated with the external solution alone (Figures 2(a) and 2(b)). However, compared to the external solution alone, the increase in the Cm (⊿Cm) was significantly suppressed (1 μM, 17.5 ± 6.83 pF, n = 6, p < 0.05; 10 μM, 19.0 ± 2.03 pF, n = 7, p < 0.05; Table 1). With higher doses (100 μM, 1 mM), adrenaline more markedly suppressed the GTP-γ-S-induced increase in the Cm (Figures 2(c) and 2(d); 100 μM, 7.61 ± 2.49 pF, n = 8, p < 0.05; 1 mM, 5.41 ± 2.90 pF, n = 6, p < 0.05; Table 1). In contrast, preincubation with dopamine did not significantly affect the GTP-γ-S-induced increase in the Cm regardless of its concentrations (Figure 3, Table 1). These results provided electrophysiological evidence for the first time that adrenaline inhibits the exocytotic process of mast cells dose-dependently. This strongly supported our findings that were obtained from Figure 1.

3.3. Effects of β2-Adrenergic Receptor Antagonist on Adrenaline-Induced Inhibition of Mast Cell Degranulation. Mast cells express numerous receptors on their cell surface that transduce stimulatory or inhibitory signals for degranulation [31, 32]. Among them, the β2-adrenergic receptor is the major one that transduces inhibitory signals for exocytosis [3]. Since adrenaline is one of the most potent nonspecific stimulators of adrenergic receptors, we examined the involvement of this receptor-mediated pathway in the adrenaline-induced inhibition of exocytosis. Consistent with our findings obtained from Figures 1(a) and 1(b), preincubation with 1 mM adrenaline halted the induction of exocytosis in mast cells (Figures 4(a), B vs. A) by markedly suppressing the numbers of degranulating cells (Figure 4(b)). However, in the presence of 1 mM butoxamine, a specific β2-adrenergic receptor antagonist, such inhibitory effect of adrenaline on exocytosis
was almost completely erased (Figures 4(a), C and 4(b)). These results confirmed the previous findings in rat peritoneal mast cells that the stimulation of βmiş-adrenergic receptors, which is linked to a cyclic AMP-dependent calcium mobilization via the coupling of G-proteins [33], is the major pathway for the adrenaline-induced inhibition of exocytosis [3].

Table 1: Summary of changes in membrane capacitance in external solutions containing adrenaline or dopamine.

Agents	N	Cm before GTP-S internalization (pF)	Cm after GTP-S internalization (pF)	ΔCm (pF)
External solution (control)	9	9.29 ± 0.37	34.0 ± 2.79	24.7 ± 2.64
1 μM adrenaline	6	9.89 ± 0.72	27.4 ± 7.21	17.5 ± 6.83*
10 μM adrenaline	7	9.29 ± 1.07	28.3 ± 2.07	19.0 ± 2.03*
100 μM adrenaline	8	9.73 ± 0.92	17.3 ± 2.49	7.61 ± 2.49*
1 μM adrenaline	6	10.1 ± 0.86	15.5 ± 3.28	5.41 ± 2.90
External solution (control)	5	8.18 ± 0.94	30.8 ± 1.89	22.6 ± 7.21
1 μM adrenaline	8	11.6 ± 1.27	36 ± 2 ± 11.2	24.5 ± 3.70
10 μM adrenaline	5	8.22 ± 0.77	31.8 ± 3.14	23.6 ± 2.94
100 μM adrenaline	6	8.84 ± 1.23	30.2 ± 7.69	21.3 ± 7.13
1 μM adrenaline	8	8.05 ± 0.52	33.4 ± 4.95	25.3 ± 4.77

Values are means ± SEM. Cm: membrane capacitance. *p < 0.05 vs. ΔCm in external solution.

Figure 4: Effects of βmiş-adrenergic receptor antagonist on adrenaline-induced inhibition of mast cell degranulation. (a) Differential-interference contrast (DIC) microscopic images were taken after exocytosis was externally induced by compound 48/80 in mast cells incubated in the external solutions containing no drug (A), 1 mM adrenaline (B), or 1 mM adrenaline in the presence of 1 mM butoxamine (C). (b) After exocytosis was induced in mast cells incubated in the external solutions containing no drug and 1 mM adrenaline with or without the presence of 1 mM butoxamine, the numbers of degranulating mast cells were expressed as percentages of the total cell numbers in selected bright fields. ∗p < 0.05 vs. incubation in the external solution alone. Values are means ± SEM. Differences were analyzed by ANOVA followed by Dunnett’s test.
3.4. Involvement of α-Adrenergic Receptors in Degranulation of Rat Peritoneal Mast Cells. In addition to β₂-adrenergic receptors that transduce inhibitory signals for the degranulation of mast cells (Figure 4), studies revealed the localization of α₁-adrenergic receptors on mast cell membranes [4] and also provided in vivo evidence for the presence of α₂-adrenergic receptors [11, 34]. To reveal the involvement of these adrenergic receptors in the degranulation of mast cells, we examined the effects of the receptor agonists or antagonists.

3.4.1. Effects of α₁- or α₂-Adrenergic Receptor “Agonists” on Degranulation of Rat Peritoneal Mast Cells. Consistent with our results shown in Figures 1(b) and 1(c), compound 48/80 caused degranulation in 80.0 ± 1.4% of the entire mast cells in the external solution alone (n = 10; Figure 5(a)). However, preincubation with 1, 10, and 100 μM and 1 mM phenylephrine, a selective α₁-adrenergic receptor agonist, did not significantly affect the numbers of degranulating mast cells regardless of their concentrations (Figure 5(a)). Similarly, preincubation with different concentrations of clonidine, a selective α₂-adrenergic receptor agonist, did not alter the ratio of degranulating mast cells, either (Figure 5(b)).

3.4.2. Effects of α₁- or α₂-Adrenergic Receptor “Antagonists” on Exocytosis of Rat Peritoneal Mast Cells. Since α₁- and α₂-adrenergic receptor antagonists did not affect the process of exocytosis in mast cells (Figure 5), we then examined the effects of α₁- and α₂-adrenergic receptor antagonists (Figure 6). The physiological concentration of prazosin, a selective α₁-adrenergic receptor antagonist, is as low as between 2.60 and 26.0 nM in humans [35], which is by far lower than that of adrenaline, dopamine, phenylephrine, and clonidine [36]. Additionally, in some in vitro studies, prazosin with concentrations as low as 0.1 μM was enough to exert inhibitory effects on the α₁-adrenergic receptor-mediated proliferation in cultured vascular smooth muscle cells [37]. Therefore, in the present study, we tried doses from as low as 0.01 up to 1 μM (Figure 6(a)). Relatively lower doses, such as 0.01 and 0.1 μM, did not significantly affect the numbers of degranulating mast cells (Figure 6(a), A). However, 1 μM prazosin alone significantly reduced the ratio of degranulating mast cells compared to the external solution (from 84.5 ± 2.1% to 64.7 ± 3.8%, n = 10, p < 0.05). In mast cells, the process of degranulation during exocytosis was monitored by the increase in the Cm [13–17, 27, 28]. Actually, in the present study, the ratio of degranulating mast cells was well correlated with the GTP-γ-S-induced increase in the Cm (ΔCm) (Figures 1 to 3, Table 1). Therefore, we additionally examined the effects of prazosin on the ΔCm (Figure 6(a), B). Similarly to the ratio of degranulating mast cells (Figure 6(a), A), low-dose prazosin did not significantly affect the ΔCm (Figure 6(a), B). However, 1 μM prazosin alone significantly decreased the ΔCm compared to the external solution (from 19.6 ± 2.38 pF to 10.4 ± 1.68 pF, n = 6, p < 0.05; Figure 6(a), B). These results provided electrophysiological evidence that high-dose prazosin can inhibit the process of exocytosis in mast cells. In contrast, however, yohimbine, a selective α₂-adrenergic receptor antagonist, did not affect the ratio of degranulating mast cells (Figure 6(b)). These results suggested that the process of exocytosis in mast cells may be partially mediated by α₁-adrenergic receptors, but not by α₂-adrenergic receptors.

3.5. Effects of Prazosin on Adrenaline-Induced Inhibition of Mast Cell Degranulation. From our results, since 1 μM prazosin inhibited the process of exocytosis in mast cells (Figure 6(a)), we finally examined its effect on the adrenaline-induced inhibition of exocytosis (Figure 7). Consistent with our results shown Figures 1(a) and 1(b), preincubation with 1 mM adrenaline halted the induction of exocytosis (Figure 7(a), B vs. A) and markedly reduced the numbers of degranulating mast cells (Figure 7(b)). In the presence of 1 μM prazosin, such inhibitory effect of adrenaline on exocytosis was augmented (Figure 7(b)) and the induction of exocytosis was almost totally suppressed (Figure 7(a), C). These results suggested that the blockade of α₁-adrenergic receptors.
receptors by prazosin can synergistically potentiate the \(\beta_2 \)-adrenergic receptor-mediated inhibition of exocytosis in mast cells.

4. Discussion

For people experiencing anaphylaxis or those at risks of anaphylactic reaction, intramuscular injection of adrenaline, a nonselective agonist of \(\beta \)-adrenergic receptors, has been the first choice of the treatment [2]. In previous studies, by measuring the amount of histamine released from mast cells, suppressive effects of adrenaline on the activation of mast cells were indirectly monitored [9, 10]. However, to precisely determine the ability of adrenaline on the stabilization of mast cells, the exocytotic process itself needs to be monitored, otherwise the release of all the chemical mediators or the inflammatory substances have to be evaluated. In our previous patch-clamp studies using rat peritoneal mast cells, the degranulating process during exocytosis was successively monitored by the gradual increase in the whole-cell Cm [15–17, 29, 38]. Employing this electrophysiological approach, our recent studies revealed the inhibitory effects of antiallergic drugs, antibiotics, and corticosteroids on the exocytotic process of mast cells [13–16]. In these studies, the mast cell-stabilizing properties of the drugs were quantitatively determined by the suppressed value of Cm which is to be increased by the GTP-\(\gamma \)-S internalization [13, 14]. In the present study, applying the same approach, we provided direct evidence for the first time that adrenaline actually inhibits the process of exocytosis dose-dependently and thus exerts mast cell-stabilizing property.

The physiological concentration of adrenaline in the plasma is usually below 0.1 \(\mu M \) at the basal level [39, 40]. However, it reaches more than 0.3 \(\mu M \) up to 1.5 \(\mu M \) after intramuscular injection in the treatment of anaphylaxis [41, 42]. In the present study, 1 \(\mu M \) adrenaline significantly deceased the number of degranulating mast cells by approximately 20% (Figure 1(b)), which was consistent with the
findings obtained from previous studies [9]. Additionally, we further revealed for the first time that adrenaline with higher doses, such as 10 and 100 μM and 1 mM, more markedly suppressed the degranulation of mast cells dose-dependently (Figure 1(b)). These findings could be clinically applied to the topical use of adrenaline on the nasal mucosa [40], where higher concentrations are locally required before the drug is absorbed into the venous circulation by the transcellular diffusion [43]. In the present study, exocytosis was externally induced by compound 48/80 after pretreating mast cells with adrenaline. Similar to the antigen binding to IgE on mast cells that causes quick anaphylactic reaction, compound 48/80 initiates the degranulation of mast cells as immediately as 10 seconds after its addition [44]. Therefore, it would be difficult to examine the “therapeutic” effects of adrenaline on reversing the ongoing degranulation of mast cells. However, our study clearly demonstrated the “prophylactic” effects of adrenaline on suppressing the further initiation of exocytosis in mast cells. In our whole experiments, we used mast cells isolated from the peritoneal cavity of rats less than 25 weeks old, since mast cells isolated form these relatively younger rats were viable enough to be easily induced exocytosis by the exogenous or endogenous pharmacological stimuli [13–16, 45].

In the present study, butoxamine, a β2-adrenergic receptor antagonist, almost totally restored the adrenaline-induced inhibition of mast cell degranulation (Figure 4). This confirmed the previous findings that the β2-adrenergic pathway is the major pathway in which adrenaline transduces inhibitory signals for the degranulation of mast cells [3, 33]. In addition to β2-adrenergic receptors, previous in vitro studies demonstrated the expression of α1-adrenergic receptors on mast cell membranes [4] or provided in vivo evidence indicating the presence of α2-adrenergic receptors [11, 34]. There are two types of mast cells that exist throughout the body [46]. One is the connective tissue type, which primarily exists in loose connective tissues, such as the peritoneal cavity or skin. The other is the mucosal type, which primarily exists in the airway or gastrointestinal mucosa. In contrast to β2-adrenergic receptors that are expressed in both types of mast cells [47], α1-adrenergic receptors were shown to be expressed in mast cells isolated from heart connective tissue [4]. However, several in vitro studies using α-adrenergic agonists functionally demonstrated the presence of α-adrenergic
receptors in mucosal-type mast cells, such as human lung mast cells [5]. From our results, α1-adrenergic receptors were not likely to be involved in the process of exocytosis in mast cells, since both agonist and antagonist of the receptors did not affect the degranulation of mast cells (Figures 5(b) and 6(b)). On the other hand, we noted for the first time that high-dose prazosin, an α1-adrenergic receptor antagonist, significantly suppressed the degranulation of mast cells (Figure 6(a)) and synergistically potentiated the adrenaline-induced inhibition of exocytosis (Figure 7). In previous in vitro studies using human lung mast cells, stimulation of α1-adrenergic receptors increased the release of chemical mediators [5]. Based on this, later studies further demonstrated in humans that the pharmacological blockade of α1-adrenergic receptors actually ameliorated the airway hyperresponsiveness in patients with asthma [7, 8]. In this context, our results strongly suggested that the blockade of α1-adrenergic receptor by prazosin may also be useful in the treatment of anaphylaxis by potentiating the therapeutic efficacy of adrenaline. However, to exert such effects, prazosin with doses much higher than those of the physiological concentration was required (Figure 6(a)), which can deteriorate hypotension due to the blockade of vascular α1-adrenergic receptors [48]. In such cases, the use of omalizumab or talizumab that directly inhibits the binding of IgE to FcεRI may be considered [49], since these reagents are more selective to immune systems compared to prazosin.

As we have shown in our patch-clamp studies, the elevation of the intracellular Ca2+ concentration ([Ca2+]i) primarily triggers exocytosis in mast cells [14]. According to previous studies using human lung mast cells, the elevation of the [Ca2+]i was primarily ascribable to the activity of Ca2+-activated K+ channels (KCa 3.1), because these channels facilitate the Ca2+ influx through store-operated calcium channels (SOCs) [50]. Upon activation, α1-adrenergic receptors stimulate phospholipase C (PLC) via the coupling of G proteins [51]. This enzymatically cleaves phosphatidylinositol triphosphate (PIP3) into inositol triphosphate (IP3) and diacylglycerol (DAG), which leads to the activation of protein kinase C (PKC) [52]. Since PKC is known to stimulate the activity of KCa 3.1 [53] or SOC, such as transient receptor potential canonical (TRPC) 1 and 6 [54, 55], the upstream blockade of the α1-adrenergic receptor by prazosin may inhibit the activity of these channels. Such induced decrease in [Ca2+]i was thought to be the mechanism by which prazosin exerts mast cell-stabilizing property. Alternatively, as we previously demonstrated in antiallergic drugs or macrolide antibiotics [13, 14, 16], highly lipophilic prazosin [56], which is prone to penetrate into the plasma membrane and accumulate there, may have induced membrane stretch in mast cells. Such mechanical stimuli to the membranes would rearrange the cytoskeletal structures, influencing the activity of the K+ or Ca2+ channels expressed in mast cells. Consequently, such induced changes in the [Ca2+]i, were thought to contribute to the prazosin-induced inhibition of exocytosis.

In summary, this study provided electrophysiological evidence for the first time that adrenaline dose-dependently inhibits the process of exocytosis, confirming its usefulness as a potent mast cell stabilizer. The pharmacological blockade of the α1-adrenergic receptor by prazosin synergistically potentiated such mast cell-stabilizing property of adrenaline, which is primarily mediated by β2-adrenergic receptors.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This work was supported by MEXT KAKENHI Grant No. 16K08484 to IK, No. 16K20079 to KS, and No. 17K11067 to HT; the Salt Science Research Foundation, No. 2028 to IK; the Tojuro Iijima Foundation for Food Science and Technology, 2019-No. 12; and the Cooperative Study Program (19-305) of National Institute for Physiological Sciences to IK.

References

[1] H. A. Sampson, A. Muñoz-Furlong, R. L. Campbell et al., “Second symposium on the definition and management of anaphylaxis: Summary report—Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium,” Journal of Allergy and Clinical Immunology, vol. 117, no. 2, pp. 391–397, 2006.

[2] S. F. Kemp, R. F. Lockey, and F. E. R. Simons, “Epinephrine,” World Allergy Organization Journal, vol. 1, Supplement, pp. S18–S26, 2008.

[3] H. S. Kuehn and A. M. Gilfillan, “G protein-coupled receptors and the modification of FcepsilonRI-mediated mast cell activation,” Immunology Letters, vol. 113, no. 2, pp. 59–69, 2007.

[4] W. Schulze and M. L. Fu, “Localization of alpha 1-adrenoceptors in rat and human hearts by immunocytochemistry,” Molecular and Cellular Biochemistry, vol. 163-164, pp. 159–165, 1996.

[5] M. Kaliner, R. P. Orange, and K. F. Austen, “Immunological release of histamine and slow reacting substance of anaphylaxis from human lung,” The Journal of Experimental Medicine, vol. 136, no. 3, pp. 556–567, 1972.

[6] F. Moroni, R. Fantozzi, E. Masini, and P. F. Manninaioni, “The modulation of histamine release by alpha-adrenoceptors: evidences in murine neoplastic mast cells,” Agents and Actions, vol. 7, no. 1, pp. 57–61, 1977.

[7] P. J. Barnes, N. M. Wilson, and H. Vickers, “Prazosin, an alpha 1-adrenoceptor antagonist, partially inhibits exercise-induced asthma,” The Journal of Allergy and Clinical Immunology, vol. 68, no. 6, pp. 411–415, 1981.

[8] C. Jenkins, A. B. Breslin, and G. E. Marlin, “The role of alpha and beta adrenoceptors in airway hyperresponsiveness to histamine,” The Journal of Allergy and Clinical Immunology, vol. 75, no. 3, pp. 364–372, 1985.

[9] W. H. Ng, R. Polosa, and M. K. Church, “Adenosine bronchoconstriction in asthma: investigations into its possible mechanism of action,” British Journal of Clinical Pharmacology, vol. 30, Suppl 1, pp. 985–985, 1990.
I. Kazama, Y. Maruyama, and S. Nakamichi, "Effects of cold stress and epinephrine on degranulation of peritoneal mast cells in rats," *Bulletin of Experimental Biology and Medicine*, vol. 131, no. 4, pp. 333–335, 2001.

B. R. Lindgren, N. Grundstrom, and R. G. Andersson, "Comparison of the effects of clonidine and guanfacine on the histamine liberation from human mast cells and basophils and on the human bronchial smooth muscle activity," *Arzneimittel-Forschung*, vol. 37, no. 5, pp. 551–553, 1987.

B. L. Gruber, "Mast cells in the pathogenesis of fibrosis," *Current Rheumatology Reports*, vol. 5, no. 2, pp. 147–153, 2003.

A. Baba, M. Tachi, Y. Maruyama, and I. Kazama, "Olopateradine inhibits exocytosis in rat peritoneal mast cells by counteracting membrane surface deformation," *Cellular Physiology and Biochemistry*, vol. 35, no. 1, pp. 386–396, 2015.

A. Baba, M. Tachi, Y. Ejima et al., "Anti-allergic drugs transtilact and ketotifen dose-dependently exert mast cell-stabilizing properties," *Cellular Physiology and Biochemistry*, vol. 38, no. 1, pp. 15–27, 2016.

T. Mori, N. Abe, K. Saito et al., "Hydrocortisone and dexmethasone dose-dependently stabilize mast cells derived from rat peritoneum," *Pharmacological Reports*, vol. 68, no. 6, pp. 1358–1365, 2016.

I. Kazama, K. Saito, A. Baba et al., "Claritromycin dose-dependently stabilizes rat peritoneal mast cells," *Chemotherapy*, vol. 61, no. 6, pp. 295–303, 2016.

I. Kazama, Y. Maruyama, S. Takahashi, and T. Kokumai, "Amphipaths differentially modulate membrane surface deformation in rat peritoneal mast cells during exocytosis," *Cellular Physiology and Biochemistry*, vol. 31, no. 4-5, pp. 592–600, 2013.

I. Kazama, Y. Maruyama, and S. Nakamichi, "Aspirin-induced microscropic surface changes stimulate thrombopoiesis in rat megakaryocytes," *Clinical and Applied Thrombosis/Hemostasis*, vol. 20, no. 3, pp. 318–325, 2014.

I. Kazama, Y. Maruyama, and Y. Murata, "Suppressive effects of nonsteroidal anti-inflammatory drugs diclofenac sodium, salicylate and indomethacin on delayed rectifier K+-channel currents in murine thymocytes," *Immunopharmacology and Immunotoxicology*, vol. 34, no. 5, pp. 874–878, 2012.

I. Kazama, Y. Maruyama, and M. Matsubara, "Benidipine persistently inhibits delayed rectifier K+-channel currents in murine thymocytes," *Immunopharmacology and Immunotoxicology*, vol. 35, no. 1, pp. 28–33, 2013.

I. Kazama and Y. Maruyama, "Differential effects of clarithromycin and azithromycin on delayed rectifier K+-channel currents in murine thymocytes," *Pharmaceutical Biology*, vol. 51, no. 6, pp. 760–765, 2013.

I. Kazama, A. Baba, and Y. Maruyama, "HMG-CoA reductase inhibitors pravastatin, lovastatin and simvastatin suppress delayed rectifier K+-channel currents in murine thymocytes," *Pharmacological Reports*, vol. 66, no. 4, pp. 712–717, 2014.

A. Baba, M. Tachi, Y. Maruyama, and I. Kazama, "Suppressive effects of diltiazem and verapamil on delayed rectifier K+-channel currents in murine thymocytes," *Pharmacological Reports*, vol. 67, no. 5, pp. 959–964, 2015.

I. Kazama, Y. Ejima, Y. Endo et al., "Chlorpromazine-induced changes in membrane micro-architecture inhibit thrombopoiesis in rat megakaryocytes," *Biochimica et Biophysica Acta*, vol. 1848, no. 11, pp. 2805–2812, 2015.

I. Kazama, A. Baba, Y. Endo et al., "Salicylate inhibits thrombopoiesis in rat megakaryocytes by changing the membrane micro-architecture," *Cellular Physiology and Biochemistry*, vol. 35, no. 6, pp. 2371–2382, 2015.

K. Saito, N. Abe, H. Toyama et al., "Second-Generation Histamine H1 Receptor Antagonists Suppress Delayed Rectifier K+-Channel Currents in Murine Thymocytes," *BioMed Research International*, vol. 2019, Article ID 6261951, 12 pages, 2019.

J. M. Fernandez, E. Neher, and B. D. Gomperts, "Capacitance measurements reveal stepwise fusion events in degranulating mast cells," *Nature*, vol. 312, no. 5993, pp. 453–455, 1984.

D. Lorenz, B. Wiesner, J. Zipper et al., "Mechanism of peptide-induced mast cell degranulation. Translocation and patch-clamp studies," *The Journal of General Physiology*, vol. 112, no. 5, pp. 577–591, 1998.

E. Neher, "The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum," *The Journal of Physiology*, vol. 395, pp. 193–214, 1988.

R. Penner and E. Neher, "Secretory responses of rat peritoneal mast cells to high intracellular calcium," *FEBS Letters*, vol. 226, no. 2, pp. 307–313, 1988.

B. D. McNeil, P. Pundir, S. Meeker et al., "Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions," *Nature*, vol. 519, no. 7542, pp. 237–241, 2015.

H. R. Katz, "Inhibitory receptors and allergy," *Current Opinion in Immunology*, vol. 14, no. 6, pp. 698–704, 2002.

L. K. Chong, A. H. Morice, W. W. Yeo, R. P. Schleimer, and P. T. Peachell, "Functional desensitization of beta agonist responses in human lung mast cells," *American Journal of Respiratory Cell and Molecular Biology*, vol. 13, no. 5, pp. 540–546, 1995.

B. Lindgren, A. Brundin, and R. Andersson, "Inhibitory effects of clonidine on the allergen-induced wheal-and-flare reactions in patients with extrinsic asthma," *The Journal of Allergy and Clinical Immunology*, vol. 79, no. 6, pp. 941–946, 1987.

P. C. Rubin, L. Butters, R. A. Low, and J. L. Reid, "Clinical pharmacological studies with prazosin during pregnancy complicated by hypertension," *British Journal of Clinical Pharmacology*, vol. 16, no. 5, pp. 543–547, 1983.

J. Vincent, P. A. Meredith, J. L. Reid, H. L. Elliott, and P. C. Rubin, "Clinical pharmacokinetics of prazosin–1985," *Clinical Pharmacokinetics*, vol. 10, no. 2, pp. 144–154, 1983.

S. M. Yu, S. Y. Tsai, J. H. Guh, F. N. Ko, C. M. Teng, and J. T. Ou, "Mechanism of catecholamine-induced proliferation of vascular smooth muscle cells," *Circulation*, vol. 94, no. 3, pp. 547–554, 1996.

R. Penner, "Multiple signaling pathways control stimulus-secretion coupling in rat peritoneal mast cells," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 85, no. 24, pp. 9856–9860, 1988.

J. J. Body, P. E. Cryer, K. P. Offord, and H. Heath III, "Epinephrine is a hypophosphatemic hormone in man. Physiological effects of circulating epinephrine on plasma calcium, magnesium, phosphorus, parathyroid hormone, and calcitomin," *Journal of Clinical Investigation*, vol. 71, no. 3, pp. 572–578, 1983.

K. M. Sarmento Junior, S. Tomita, and A. O. Kos, "Topical use of adrenaline in different concentrations for endoscopic sinus surgery," *Brazilian Journal of Otorhinolaryngology*, vol. 75, no. 2, pp. 280–289, 2009.
