APPENDIX HÄRMIL ALTHARD TYPE INEQUALITIES FOR APPROXIMATELY CONVEX FUNCTIONS

JUDIT MAKÓ AND ZSOLT PÁLES

ABSTRACT. In this paper, approximate lower and upper Hermite–Hadamard type inequalities are obtained for functions that are approximately convex with respect to a given Chebyshev system.

1. Introduction

Throughout this paper \(\mathbb{R}, \mathbb{R}^+, \mathbb{N} \) and \(\mathbb{Z} \) denote the sets of real, nonnegative real, natural and integer numbers respectively. Given a nonempty open real interval \(I \), denote by \(\Delta(I) \) and \(\Delta^o(I) \) the sets
\[
\{(x, y) \in I \times I \mid x \leq y\} \quad \text{and} \quad \{(x, y) \in I \times I \mid x < y\},
\]
respectively. Given a nonempty open real interval \(I \), denote by \(\Delta(I) \) and \(\Delta^o(I) \) the sets
\[
\{(x, y) \in I \times I \mid x \leq y\} \quad \text{and} \quad \{(x, y) \in I \times I \mid x < y\},
\]
respectively. We say that a pair \((\omega_0, \omega_1)\) is a Chebyshev system over \(I \), if \(\omega_0, \omega_1 : I \to \mathbb{R} \) are continuous functions and
\[
\Omega(x, y) := \begin{vmatrix} \omega_0(x) & \omega_0(y) \\ \omega_1(x) & \omega_1(y) \end{vmatrix} > 0 \quad ((x, y) \in \Delta^o(I)).
\]
One can easily see, that if \(\omega_0 \) is a positive function, then \((1.1)\) holds if and only if \(\omega_1/\omega_0 \) is strictly increasing on \(I \). In this latter case, \((\omega_0, \omega_1)\) will be called a positive Chebyshev system over \(I \). On the other hand, we can always assume that \(\omega_0 \) is a positive function, because for every Chebyshev system \((\omega_0, \omega_1)\), there exists \(\alpha, \beta \in \mathbb{R} \) such that \(\alpha \omega_0 + \beta \omega_1 > 0 \) (cf. [1], [2]). In the sequel, for fixed \(x, y \in I \), the partial functions \(u \mapsto \Omega(u, y) \) and \(u \mapsto \Omega(x, u) \) will be denoted by \(\Omega(\cdot, y) \) and \(\Omega(x, \cdot) \), respectively. An important property of Chebyshev systems is that for every two pairs \((x, \xi), (y, \eta) \in I \times \mathbb{R} \) with \(x \neq y \) the function \(\omega \) defined as
\[
\omega := \frac{\xi \Omega(\cdot, \eta)}{\Omega(x, \eta)} + \frac{\eta \Omega(x, \cdot)}{\Omega(x, \eta)}
\]
is the unique linear combination of \(\omega_0 \) and \(\omega_1 \) such that \(\omega(x) = \xi \) and \(\omega(y) = \eta \) hold.

2010 Mathematics Subject Classification. Primary 39B22, 39B12.
Key words and phrases. convexity, approximate convexity, lower and upper Hermite–Hadamard inequalities.
This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK81402 and by the TÁMOP-4.2.1/B-09/1/KONV-2010-0007, TÁMOP-4.2.2/B-10/1-2010-0024 projects. These projects are co-financed by the European Union and the European Social Fund.
Given a positive Chebyshev system \((\omega_0, \omega_1)\) over \(I\) and a proper subinterval \(J\) of \(I\), a function \(f : J \to \mathbb{R}\) is called \((\omega_0, \omega_1)\)-convex on \(J\) if, for all \(x < u < y\) from \(J\),

\[
(1.2) \quad \begin{vmatrix}
 f(x) & f(u) & f(y) \\
 \omega_0(x) & \omega_0(u) & \omega_0(y) \\
 \omega_1(x) & \omega_1(u) & \omega_1(y)
\end{vmatrix} \geq 0,
\]

or equivalently,

\[
(1.3) \quad f(u) \leq \frac{\Omega(u, y)}{\Omega(x, y)} f(x) + \frac{\Omega(x, u)}{\Omega(x, y)} f(y).
\]

If (1.2) holds with strict inequality sign “>”, then \(f\) is said to be strictly \((\omega_0, \omega_1)\)-convex on \(J\).

The integral average of any standard convex function \(f : I \to \mathbb{R}\) can be estimated from the midpoint and the endpoints of the domain as follows:

\[
(1.4) \quad f \left(\frac{x + y}{2} \right) \leq \int_0^1 f(tx + (1 - t)y) dt \leq \frac{f(x) + f(y)}{2} \quad (x, y \in I).
\]

This is the well known Hermite–Hadamard type inequality. The above implication was discovered by Hadamard [5]. (See also [10], [11], and [12], [13], [14], [15] for a historical account.) In [3] and [1], the authors established the following connections between \((\omega_0, \omega_1)\)-convexity and Hermite–Hadamard type inequality.

Theorem A. Let \((\omega_0, \omega_1)\) be a positive Chebyshev system on an open interval \(I\) and let \(\rho : I \to \mathbb{R}\) be a positive integrable function. Define, for all elements \(x < y\) of \(I\), the functions \(\xi(x, y), c(x, y), c_1(x, y)\) and \(c_2(x, y)\) by the formulas

\[
\xi(x, y) = \left(\frac{\omega_1}{\omega_0} \right)^{-1} \left(\frac{\int_y^x \omega_1 \rho}{\int_x^y \omega_0 \rho} \right) \quad \text{and} \quad c(x, y) = \frac{\int_y^x \omega_0 \rho}{\omega_0(\xi(x, y))};
\]

\[
(1.5) \quad c_1(x, y) = \frac{1}{\Omega(x, y)} \left| \begin{array}{cc}
 \int_y^x \omega_0 \rho & \omega_0(y) \\
 \int_y^x \omega_1 \rho & \omega_1(y)
\end{array} \right| \quad \text{and} \quad c_2(x, y) = \frac{1}{\Omega(x, y)} \left| \begin{array}{cc}
 \omega_0(x) & \int_y^x \omega_0 \rho \\
 \omega_0(y) & \int_y^x \omega_1 \rho
\end{array} \right|.
\]

If a function \(f : I \to \mathbb{R}\) is \((\omega_0, \omega_1)\)-convex, then for all elements \(x < y\) of \(I\), it satisfies the inequality

\[
(1.6) \quad c(x, y) f(\xi(x, y)) \leq \int_x^y f \rho \leq c_1(x, y) f(x) + c_2(x, y) f(y).
\]

In Theorem 2.2 and Theorem 3.12 below, these results will be generalized to the context of approximate \((\omega_0, \omega_1)\)-convex, i.e., to the case when \(f\) satisfies an inequality analogous to (1.3) whose right hand side involves also an error term.

Let \(X\) be a real linear space and \(D \subset X\) be a convex subset. In order to describe the old and new results about the connection of approximate Jensen convexity and the approximate Hermite–Hadamard inequality with variable error terms, we need to introduce the following terminology.

For a function \(f : D \to \mathbb{R}\), we say that \(f\) is hemi-\(P\), if, for all \(x, y \in D\), the mapping

\[
(1.7) \quad t \mapsto f((1 - t)x + ty) \quad (t \in [0, 1])
\]
has property P. For example f is hemiintegrable, if for all $x, y \in D$ the mapping defined by \((1.7)\) is integrable. Analogously, we say that a function $h : (D - D) \to \mathbb{R}$ is radially-P, if for all $u \in D - D$, the mapping $t \mapsto h(tu) \quad (t \in [0, 1])$

has property P on $[0, 1]$.

In \([6]\), Házy and second author of this paper established a connection between an approximate lower Hermite–Hadamard type inequality and an approximate Jensen type inequality by proving the following result.

Theorem B. Let $\alpha : (D - D) \to \mathbb{R}_+$ be a nonnegative radially Lebesgue integrable even function. Assume that $f : D \to \mathbb{R}$ is hemi-Lebesgue integrable and approximately Jensen convex in the sense of

\begin{equation}
(1.8) \quad f\left(\frac{x + y}{2}\right) \leq f(x) + f(y) + \alpha(x-y) \quad (x, y \in D).
\end{equation}

Then f also satisfies the approximate lower Hermite–Hadamard inequality

\begin{equation}
(1.9) \quad f\left(\frac{x + y}{2}\right) \leq \int_0^1 f(tx + (1-t)y) dt + \frac{1}{\alpha(t(x-y))} \quad (x, y \in D).
\end{equation}

In \([8]\) (cf. \([14]\), \([15]\)) the authors established the connections between an approximate upper Hermite–Hadamard type inequality and an approximate Jensen type inequality as stated in the following theorem.

Theorem C. Let $\alpha : (D - D) \to \mathbb{R}_+$ be a nonnegative radially Lebesgue integrable even function and $\rho : [0, 1] \to \mathbb{R}_+$ be a nonnegative Lebesgue integrable function with $\int_0^1 \rho = 1$. Assume that $f : D \to \mathbb{R}$ is hemiintegrable on D and satisfies the approximate Jensen inequality \((1.8)\). Then, for $x, y \in D$, f also satisfies the approximate upper Hermite–Hadamard inequality

\begin{equation}
(1.10) \quad \int_0^1 f(tx + (1-t)y) \rho(t) dt \leq \lambda f(x) + \sum_{n=0}^{\infty} \frac{1}{2^n} \int_0^1 \alpha(2d_\mathbb{Z}(2^n t)(x-y)) \rho(t) dt,
\end{equation}

where $\lambda := \int_0^1 \rho(t) dt$ and, for $s \in \mathbb{R}$, $d_\mathbb{Z}(s) := \text{dist}(s, \mathbb{Z}) = \inf\{|s - k| : k \in \mathbb{Z}\}$.

In Theorem \((2.5)\) and Theorem \((3.14)\) below these results will be generalized and extended to the setting of (ω_0, ω_1)-convexity.

2. **From approximate (ω_0, ω_1)-convexity to approximate lower Hermite–Hadamard inequality**

In this section we will investigate the implication between an (ω_0, ω_1)-convexity type inequality and a lower Hermite–Hadamard inequality. Consider the following basic assumptions.

(A1) (T, \mathcal{A}, μ) is a measure space.

(A2) $\Lambda : T \times \mathcal{D}(I) \to \mathbb{R}_+$ is μ-integrable in its first variable.

(A3) $M : T \times \mathcal{D}(I) \to \mathbb{R}$ is \mathcal{A}-measurable in its first variable and for all $t \in T$, the map $(x, y) \mapsto M(t, x, y)$ is a two-variable mean on I. $M_0 : \mathcal{D}(I) \to I$ is a strict mean such that

\begin{equation}
(2.1) \quad \mu\{t \in T \mid \Lambda(t, x, y) > 0, M(t, x, y) \neq M_0(x, y)\} > 0 \quad \text{if} \quad (x, y) \in \mathcal{D}(I).
\end{equation}
If (A1)–(A4) hold, then for all \(x, y \in \Delta^0(I) \),

\[
(2.2) \quad \omega_i(M_0(x, y)) = \int_T \Lambda(t, x, y)\omega_i(M(t, x, y))d\mu(t) \quad ((x, y) \in \Delta^0(I)).
\]

For all \((x, y) \in \Delta^0(I)\), denote
\[
T'_{x,y} := \{ t \in T \mid \Lambda(t, x, y) > 0, M(t, x, y) < M_0(x, y) \},
\]
\[
T''_{x,y} := \{ t \in T \mid \Lambda(t, x, y) > 0, M(t, x, y) \geq M_0(x, y) \}.
\]

Observe that, for all \((x, y) \in \Delta^0(I)\), \(T'_{x,y} \) and \(T''_{x,y} \) are in \(\mathcal{A} \), moreover, by (2.1), the \(\mu \)-measure of \(T'_{x,y} \cup T''_{x,y} \) is positive. Define, for all \((x, y) \in \Delta^0(I), i \in \{0, 1\}\),

\[
(2.3) \quad S'_i(x, y) = \int_{T'_{x,y}} \Lambda(t, x, y)\omega_i(M(t, x, y))d\mu(t) \quad \text{and} \quad S''_i(x, y) = \int_{T''_{x,y}} \Lambda(t, x, y)\omega_i(M(t, x, y))d\mu(t).
\]

The following proposition describes the properties of these sets and numbers.

Proposition 2.1. If (A1)–(A4) hold, then for all \((x, y) \in \Delta^0(I)\),

\[
(2.4) \quad S'_i(x, y) + S''_i(x, y) = \omega_i(M_0(x, y)) \quad (i \in \{0, 1\}).
\]

Furthermore, the \(\mu \)-measure of the sets \(T'_{x,y} \) and \(T''_{x,y} \) is positive.

Proof. Let \((x, y) \in \Delta^0(I)\). (2.2) implies that

\[
\omega_i(M_0(x, y)) = \int_T \Lambda(t, x, y)\omega_i(M(t, x, y))d\mu(t)
\]

\[
= \int_{\{ t \in T \mid \Lambda(t, x, y) > 0 \}} \Lambda(t, x, y)\omega_i(M(t, x, y))d\mu(t) = S'_i(x, y) + S''_i(x, y),
\]

for \(i \in \{0, 1\} \). Hence (2.3) holds. To prove the positivity of \(\mu(T'_{x,y}) \) and \(\mu(T''_{x,y}) \), assume that \(\mu(T''_{x,y}) = 0 \). Then \(S'_i(x, y) = 0 \) and, in view of (2.1), it follows that \(\mu(T''_{x,y}) > 0 \). Thus, by (2.4), we have that

\[
\omega_i(M_0(x, y)) = S'_i(x, y) + S''_i(x, y) = S''_i(x, y) = \int_{T''_{x,y}} \Lambda(t, x, y)\omega_i(M(t, x, y))d\mu(t)
\]

for \(i \in \{0, 1\} \). Dividing the above identities by each other and using also the positivity of \(\omega_0 \), we get that

\[
\frac{\int_{T'_x,y} \Lambda(t, x, y)\omega_1(M(t, x, y))d\mu(t)}{\int_{T'_x,y} \Lambda(t, x, y)\omega_0(M(t, x, y))d\mu(t)} = \frac{\omega_1(M_0(x, y))}{\omega_0(M_0(x, y))}.
\]

Rearranging this equality, we obtain that

\[
\int_{T'_{x,y}} \Lambda(t, x, y)\Omega(M_0(x, y), M(t, x, y))d\mu(t) = 0.
\]
Hence,
\[
\int_{\{t \in T \mid \Lambda(t, x, y) > 0, M(t, x, y) > M_{0}(x, y)\}} \Lambda(t, x, y)\Omega(M_{0}(x, y), M(t, x, y))d\mu(t) = 0.
\]

On the other hand, for all \(t \in T \) with \(M(t, x, y) > M_{0}(x, y) \), we have that \(\Omega(M_{0}(x, y), M(t, x, y)) > 0 \) and, by (2.5), \(\mu(\{t \in T \mid \Lambda(t, x, y) > 0, M(t, x, y) > M_{0}(x, y)\}) > 0 \). This yields that
\[
\int_{\{t \in T \mid \Lambda(t, x, y) > 0, M(t, x, y) > M_{0}(x, y)\}} \Lambda(t, x, y)\Omega(M_{0}(x, y), M(t, x, y))d\mu(t) > 0,
\]
which is a contradiction.

The proof for the case when \(\mu(T''_{x,y}) = 0 \) is analogous. \(\square \)

One of the main result of this paper is established in the following theorem.

Theorem 2.2. Assume that (A1)–(A4) hold. Let \(f : I \to \mathbb{R} \) be a locally upper bounded Borel measurable solution of the approximate \((\omega_{0}, \omega_{1})\)-convexity type functional inequality
\[
\int f(u) \leq \frac{\Omega(u, y)}{\Omega(x, y)}f(x) + \frac{\Omega(x, u)}{\Omega(x, y)}f(y) + \varepsilon_{x,y}(u) \quad (u \in [x, y]),
\]
where for all \((x, y) \in \Delta^{\varepsilon}(I)\) and \(u \in [x, y] \), the function \((v, w) \mapsto \varepsilon_{v,w}(u) \) is bounded and Borel measurable for \((v, w) \in [x, u] \times [u, y] \). Then \(f \) also satisfies the approximate lower Hermite–Hadamard type inequality
\[
f(M_{0}(x, y)) \leq \int_{I} \Lambda(t, x, y)f(M(t, x, y))d\mu(t) + E(x, y) \quad ((x, y) \in \Delta(I)),
\]
where \(E : \Delta^{\varepsilon}(I) \to \mathbb{R} \) is defined by the following way
\[
E(x, y) = \int_{T'_{x,y}} \int_{T''_{x,y}} \Lambda(t', x, y)\Lambda(t'', x, y)\Omega(M(t', x, y), M(t'', x, y))\varepsilon_{M(t', x, y), M(t'', x, y)}(M_{0}(x, y))d\mu(t'')d\mu(t')
\]
\[
- \int_{T'_{x,y}} \int_{T''_{x,y}} \Lambda(t', x, y)\Lambda(t'', x, y)\Omega(M(t', x, y), M(t'', x, y))d\mu(t'')d\mu(t').
\]

Remark 2.3. In the above theorem, the regularity condition for \(f \) can be relaxed if the error function \(\varepsilon_{x,y} \) enjoys boundedness and continuity properties. For instance, if \(\varepsilon_{x,y} \) is bounded on \([x, y]\) for some \((x, y) \in \Delta^{\varepsilon}(I)\), then (2.5) implies that \(f \) is bounded on \([x, y]\). Similarly, if \(\limsup_{u \to x} \varepsilon_{x,y}(u) = 0 \) for some \((x, y) \in \Delta^{\varepsilon}(I)\), then (2.5) implies that \(f \) is upper semicontinuous at \(x \) from the right.

Proof. Let \((x, y) \in \Delta^{\varepsilon}(I)\). Substituting in (2.5) \(x \) by \(M(t', x, y) \) and \(y \) by \(M(t'', x, y) \), and \(u \) by \(M_{0}(x, y) \), where \(t' \in T'_{x,y} \) and \(t'' \in T''_{x,y} \), we get that
\[
\Omega(M(t', x, y), M(t'', x, y))f(M_{0}(x, y)) \leq \Omega(M_{0}(x, y), M(t', x, y))f(M(t', x, y))
\]
\[
+ \Omega(M(t', x, y), M_{0}(x, y))f(M(t', x, y))
\]
\[
+ \Omega(M(t', x, y), M(t'', x, y))\varepsilon_{M(t', x, y), M(t'', x, y)}(M_{0}(x, y)).
\]
Multiplying this inequality by $\Lambda(t', x, y)\Lambda(t'', x, y)$ and integrating with respect to $\mu \times \mu$ on $T'_{x,y} \times T''_{x,y}$, we get that

\[\int \int_{T'_{x,y} \times T''_{x,y}} \Lambda(t', x, y)\Lambda(t'', x, y)\Omega(M(t', x, y), M(t'', x, y))d\mu(t'')d\mu(t')f(M_0(x, y))\]

(2.8)

\[
\leq \int \int_{T'_{x,y} \times T''_{x,y}} \Lambda(t', x, y)\Lambda(t'', x, y)\Omega(M_0(x, y), M(t'', x, y))f(M(t', x, y))d\mu(t'')d\mu(t') \\
+ \int \int_{T'_{x,y} \times T''_{x,y}} \Lambda(t', x, y)\Lambda(t'', x, y)\Omega(M(t', x, y), M_0(x, y))f(M(t'', x, y))d\mu(t'')d\mu(t') \\
+ \int \int_{T'_{x,y} \times T''_{x,y}} \Lambda(t', x, y)\Lambda(t'', x, y)\Omega(M(t', x, y), M(t'', x, y))\varepsilon_{M(t',x,y),M(t'',x,y)}(M_0(x, y))d\mu(t'')d\mu(t').
\]

Applying Fubini’s theorem and the notation of (2.3), we get that

\[\int \int_{T'_{x,y} \times T''_{x,y}} \Lambda(t', x, y)\Lambda(t'', x, y)\Omega(M(t', x, y), M(t'', x, y))d\mu(t'')d\mu(t')
\]

(2.9)

\[= (S'_0(x, y)S''_1(x, y) - S'_1(x, y)S''_0(x, y)).\]

Observe that $(S'_0(x, y)S''_1(x, y) - S'_1(x, y)S''_0(x, y))$ is positive. Indeed, by the definition of the Chebyshev-system, we have, for all $(t', t'') \in T'_{x,y} \times T''_{x,y}$,

\[\Omega(M(t', x, y), M(t'', x, y)) > 0.\]

By Proposition 2.1, the measure of $T'_{x,y} \times T''_{x,y}$ is positive. Hence the left hand side of (2.9) is positive. Using the identity (2.4), it follows that

(2.10)

\[
\int \int_{T'_{x,y} \times T''_{x,y}} \Lambda(t', x, y)\Lambda(t'', x, y)\Omega(M_0(x, y), M(t'', x, y))f(M(t', x, y))d\mu(t'')d\mu(t') \\
= (\omega_0(M_0(x, y))S''_1(x, y) - \omega_1(M_0(x, y))S''_0(x, y)) \int \Lambda(t', x, y)f(M(t', x, y))d\mu(t') \\
= ((S'_0(x, y) + S''_0(x, y))S''_1(x, y) - (S'_1(x, y) + S''_1(x, y))S''_0(x, y)) \int \Lambda(t', x, y)f(M(t', x, y))d\mu(t') \\
= (S'_0(x, y)S''_1(x, y) - S'_1(x, y)S''_0(x, y)) \int \Lambda(t', x, y)f(M(t', x, y))d\mu(t').
\]
and similarly,

\[
\int_{T_{x,y}}^{1} \int_{T_{x,y}}^{1} \Lambda(t', x, y)\Omega(M(t', x, y), M_{0}(x, y))f(M(t''', x, y))d\mu(t'')d\mu(t')
\]

(2.11)

\[
\int_{T_{x,y}}^{1} \int_{T_{x,y}}^{1} \Lambda(t', x, y)\Omega(M(t', x, y), M_{0}(x, y))f(M(t'', x, y))d\mu(t')d\mu(t'')
\]

Substituting the above formulas (2.9), (2.10), and (2.11) into (2.8) and dividing the inequality so obtained by \((S'_{0}(x, y)S''_{0}(x, y) - S'_{0}(x, y)S'_{0}(x, y))\int_{T_{x,y}}^{1} \Lambda(t', x, y)f(M(t'', x, y))d\mu(t'')\), we get (2.6) with the error function \(E : \Delta^{\circ}(I) \to \mathbb{R}\) defined by (2.7), which completes the proof. \(\square\)

Remark 2.4. A direct corollary of this theorem is the lower Hermite–Hadamard type inequality established by Theorem A. Indeed, suppose that, with the notations introduced in (1.3), the assumptions of Theorem A hold. Then, the \((\omega_0, \omega_2)\)-convexity of \(f\) implies that it is locally bounded and Borel measurable. We show first that the conditions of Theorem 2.2 are also valid. Let \(\mu\) denote the Lebesgue measure on \([0, 1]\) and define, for all \((x, y) \in \Delta^{\circ}(I), t \in [0, 1]\),

\[
M_{0}(x, y) := \xi(x, y), \quad M(t, x, y) := (1 - t)x + ty, \quad \text{and} \quad \Lambda(t, x, y) := \frac{(y - x)\rho((1 - t)x + ty)}{c(x, y)}.
\]

Since \(M(t, x, y) = M_{0}(x, y)\) can hold only for one value of \(t\), hence (2.1) holds trivially. We also have

\[
\int_{0}^{1} \Lambda(t, x, y)\omega_{1}(M(t, x, y))dt = \frac{y - x}{c(x, y)} \int_{0}^{1} \rho((1 - t)x + ty)\omega_{1}((1 - t)x + ty)dt
\]

\[
= \frac{1}{c(x, y)} \int_{x}^{y} \rho\omega_{1} = \omega_{0}(\xi(x, y)) \int_{x}^{y} \frac{\omega_{1}\rho}{\omega_{0}\rho}
\]

\[
= \omega_{0}(\xi(x, y)) \frac{\omega_{1}}{\omega_{0}}(\xi(x, y)) = \omega_{1}(\xi(x, y)) = \omega_{1}(M_{0}(x, y))
\]

and, similarly,

\[
\int_{0}^{1} \Lambda(t, x, y)\omega_{0}(M(t, x, y))dt = \frac{1}{c(x, y)} \int_{x}^{y} \rho\omega_{0} = \omega_{0}(\xi(x, y)),
\]

which proves (2.2). Thus all the assumptions (A1)–A(4) are verified. Therefore, if a function \(f : I \to \mathbb{R}\) is \((\omega_0, \omega_1)\)-convex, i.e., satisfies (2.5) with \(\varepsilon_{x,y} := 0\), then it fulfills (2.6) with \(E := 0\), which, by the obvious identity \(\frac{1}{\varepsilon_{x,y}} \int_{x}^{y} f\rho = \int_{0}^{1} \Lambda(t, x, y)f(M(t, x, y))dt\) is equivalent to the left hand side inequality in (1.6).

The following result could be deduced form Theorem 2.2, however a direct proof is more convenient here. Given a set \(D\), denote \(\{(x, y) \mid x, y \in D, x \neq y\}\) by \(D^{2}\).

Theorem 2.5. Let \(D\) be a convex set of a linear space \(X\). Let \(A\) be a sigma algebra containing the Borel subsets of \([0, 1]\) and \(\mu\) be a probability measure on the measure space \(([0, 1], A)\) such that the support of \(\mu\) is not a singleton. Denote

\[
\mu_{1} := \int_{[0, 1]} td\mu(t) \quad \text{and} \quad S(\mu) := \mu([0, 1]) \int_{[0, 1]} td\mu(t) - \mu([\mu_{1}, 1]) \int_{[0, \mu_{1}]} td\mu(t).
\]
Assume that \(f : D \to \mathbb{R} \) is and hemi-\(\mu \)-integrable solution of the functional inequality
\[
(2.12) \quad f((1 - t)x + ty) \leq (1 - t)f(x) + tf(y) + \eta_{x,y}(t) \quad ((x, y) \in D^{2*}, \ t \in [0, 1])
\]
where, for all \((x, y) \in D^{2*}, \ \eta_{x,y} : [0, 1] \to \mathbb{R} \) is a function such that
\[
I(x, y) := \int_{[\mu_1, 1]} \int_{[0, \mu_1]} (t'' - t')\eta_{(1-t')x+t'y,(1-t')x+t'y}(\frac{\mu_1 - t'}{t'' - t'})d\mu(t')d\mu(t'')
\]
exists in \([-\infty, \infty]\) for all \((x, y) \in D^{2*} \). Then, for all \((x, y) \in D^{2*} \), the function \(f \) also satisfies the lower Hermite–Hadamard type inequality
\[
(2.13) \quad f((1 - \mu_1)x + \mu_1 y) \leq \int_{[0,1]} f((1 - t)x + ty)d\mu(t) + \frac{1}{S(\mu)}I(x, y) \quad ((x, y) \in D^{2*}).
\]

Remark 2.6. In the above theorem, the hemi-\(\mu \)-integrability condition for \(f \) can be relaxed if the error function \(\eta_{x,y} \) enjoys boundedness and continuity properties. For instance, if \(\eta_{x,y} \) is upper bounded on \([x, y]\) for some \((x, y) \in D^{2*} \), then (2.3) implies that \(f((1 - t)x + ty) \) is upper bounded for \(t \in [0, 1] \). Similarly, if \(\limsup_{t \to 0^+} \eta_{x,y}(t) = 0 \) for some \((x, y) \in D^{2*} \), then (2.3) implies that \(f((1 - t)x + ty) \) is an upper semicontinuous function of \(t \) at zero from the right.

Proof. Let \((x, y) \in D^{2*} \). Substituting in (2.12) \(x \) by \((1 - t')x + t'y\), \(y \) by \((1 - t'')x + t''y\) and \(t \) by \(\frac{\mu_1 - t'}{t'' - t'} \), where \(0 \leq t' \leq \mu_1 \) and \(\mu_1 < t'' \leq 1 \), we get that
\[
(2.14) \quad f((1 - \mu_1)x + \mu_1 y) \leq \frac{t'' - \mu_1}{t'' - t'}f((1 - t')x + t'y) + \frac{\mu_1 - t'}{t'' - t'}f((1 - t'')x + t''y) + \eta_{(1-t')x+t'y,(1-t'')x+t''y}(\frac{\mu_1 - t'}{t'' - t'}).
\]
Multiplying (2.14) by \(t'' - t' \) and integrating on \([0, \mu_1] \times]\mu_1, 1]\) with respect to the product measure \(\mu \times \mu \), we obtain
\[
\int_{[\mu_1, 1]} \int_{[0, \mu_1]} (t'' - t')d\mu(t')d\mu(t'')f((1 - \mu_1)x + \mu_1 y)
\]
\[
\leq \int_{[\mu_1, 1]} (t'' - \mu_1)d\mu(t'') \int_{[0, \mu_1]} f((1 - t')x + t'y)d\mu(t')
\]
\[
+ \int_{[0, \mu_1]} (\mu_1 - t')d\mu(t') \int_{[\mu_1, 1]} f((1 - t'')x + t''y)d\mu(t'')
\]
\[
+ \int_{[\mu_1, 1]} \int_{[0, \mu_1]} (t'' - t')\eta_{(1-t')x+t'y,(1-t'')x+t''y}(\frac{\mu_1 - t'}{t'' - t'})d\mu(t')d\mu(t'').
\]
Applying Fubini’s theorem, we get that
\[
(2.16) \quad \int_{[\mu_1, 1]} \int_{[0, \mu_1]} (t'' - t')d\mu(t')d\mu(t'') = \mu([0, \mu_1]) \int_{[\mu_1, 1]} t''d\mu(t'') - \mu([\mu_1, 1]) \int_{[0, \mu_1]} t'd\mu(t') = S(\mu).
\]
Using that the support of μ is not a singleton, we can see that the left hand side of (2.16) is positive and hence so is $S(\mu)$.

Applying also Fubini's theorem, it follows that

\[
\int_{[\mu,1]} (t'' - \mu_1)d\mu(t'') = \mu([0,1]) \int_{[\mu_1,1]} t''d\mu(t'') - \mu([\mu_1,1]) \int_0^1 t d\mu(t) = \left(\mu([0,\mu_1]) + \mu([\mu_1,1]) \right) \int_{[\mu_1,1]} t''d\mu(t'') - \mu([\mu_1,1]) \int_{[\mu_1,1]} t d\mu(t) = S(\mu)
\]

and, similarly,

\[
\int_{[0,\mu_1]} (\mu_1 - t')d\mu(t') = S(\mu).
\]

Substituting the above formulas (2.16), (2.17), and (2.18) into (2.15) and dividing the inequality so obtained by $S(\mu)$, we arrive at (2.13). This completes the proof. \hfill \Box

The following corollary is analogous to the result of [6].

Corollary 2.7. Assume that $f : D \to \mathbb{R}$ a hemi-Lebesgue integrable solution of the functional inequality (2.12), where, for all $(x,y) \in D^{2*}$, $\eta_{x,y} : [0,1] \to \mathbb{R}$ is a function, such that

\[
I(x,y) := \int_0^1 \int_0^1 (t'' - t')\eta_{1-t',1-t''}dt'dt''
\]

exists in $[-\infty, \infty]$ for all $(x,y) \in D^{2*}$. Then, for all $x,y \in D^{2*}$, the function f also satisfies

\[
f\left(\frac{x + y}{2}\right) \leq \int_0^1 f((1-t)x + ty)dt + 8I(x,y).
\]

Proof. We apply Theorem 2.5 when A is the family of Lebesgue measurable subsets of $[0,1]$, μ is the Lebesgue measure. Then $\mu_1 = \frac{1}{2}$ and $S(\mu) = \frac{1}{8}$ and the result directly follows from Theorem 2.5. \hfill \Box

Remark 2.8. In what follows, we deduce the conclusion of Theorem 2.3 from the above corollary under stronger regularity assumption on f. Let $\alpha : (D - D) \to \mathbb{R}_+$ be a nonnegative radially Lebesgue integrable function and assume that $f : D \to \mathbb{R}$ is hemi-upper bounded and approximately Jensen convex in the sense of (1.8). Then, by [9, Thm. 8], f fulfils the following approximate convexity inequality:

\[
f((1-t)x + ty) \leq (1-t)f(x) + tf(y) + \sum_{n=0}^\infty \frac{1}{2^n} \alpha(2d_2(2^n t)(x - y)) \quad ((x,y) \in D^2, t \in [0,1]),
\]

i.e., (2.12) holds with $\eta_{x,y}$ defined as

\[
\eta_{x,y}(t) := \sum_{n=0}^\infty \frac{1}{2^n} \alpha(2d_2(2^n t)(x - y)) \quad ((x,y) \in D^2, t \in [0,1]).
\]
Thus, by Corollary 2.7, the inequality (2.20) holds with

\[
I(x, y) = \int_{\frac{1}{2}}^{\frac{1}{2}} \int_{0}^{1} (t'' - t') \eta_{(1-t')x + t' y} \left(\frac{\frac{1}{2} - t'}{t'' - t'} \right) dt' dt''
\]

\[
= \sum_{n=0}^{\infty} \frac{1}{2^n} \int_{\frac{1}{2}}^{\frac{1}{2}} \int_{0}^{1} (t'' - t') \alpha \left(2dZ \left(\frac{2^n \frac{1}{2} - t'}{t'' - t'} \right) (t'' - t')(x - y) \right) dt' dt''
\]

\[
= \sum_{n=0}^{\infty} \frac{1}{2^n} \int_{0}^{t} (t + s) \alpha \left(2dZ \left(\frac{2^n t}{t + s} \right) (t + s)(x - y) \right) dt ds
\]

\[
= \sum_{n=0}^{\infty} \frac{2}{2^n} \int_{0}^{t} (t + s) \alpha \left(2dZ \left(\frac{2^n t}{t + s} \right) (t + s)(x - y) \right) ds dt.
\]

The last equality above is the consequence of the symmetry of the integrand with respect to the variables \(s, t\). For \(n = 0\),

\[
\frac{2}{2^n} \int_{0}^{t} (t + s) \alpha \left(2dZ \left(\frac{2^n t}{t + s} \right) (t + s)(x - y) \right) ds dt = 2 \int_{0}^{t} (t + s) \alpha (2s(x - y)) ds dt
\]

\[
= 2 \int_{0}^{\frac{1}{2}} (t + s) \alpha (2s(x - y)) dt ds = \int_{0}^{\frac{1}{2}} (1 - 2s) \left(\frac{3}{2}s + \frac{1}{4} \right) \alpha (2s(x - y)) ds
\]

\[
= \frac{1}{8} \int_{0}^{1} (1 - \sigma)(3\sigma + 1) \alpha (\sigma (x - y)) d\sigma.
\]

To compute the the double integral for \(n \geq 1\), we will split its domain according to the position of \(\frac{2^n t}{t + s}\) related to integer numbers. For all \(n \in \mathbb{N}\) and \(0 < s < t \leq \frac{1}{2}\), there exists a unique \(m \in \{2^{n-1}, \ldots, 2^n - 1\}\) (namely \(m := \left[\frac{2^n t}{t + s} \right]\)) such that

\[
\text{either } m \leq \frac{2^n t}{t + s} < m + \frac{1}{2} \quad \text{or} \quad m + \frac{1}{2} \leq \frac{2^n t}{t + s} < m + 1.
\]

This, for all \(m \in \{2^{n-1}, \ldots, 2^n - 1\}\), in terms of \(t\) yields the following inequalities for \(s\):

\[
\frac{2^n - m - \frac{1}{2}}{m + \frac{1}{2}} t < s \leq \frac{2^n - m}{m} t \quad \text{and} \quad \frac{2^n - m - 1}{m + 1} t < s \leq \frac{2^n - m - \frac{1}{2}}{m + \frac{1}{2}} t,
\]

respectively. On these intervals, we have that

\[
dZ \left(\frac{2^n t}{t + s} \right) (t + s) = \begin{cases}
(\frac{2^n t}{t + s} - m)(t + s) = (2^n - m)t - ms, & \text{if } \frac{2^n - m - \frac{1}{2}}{m + \frac{1}{2}} t < s \leq \frac{2^n - m}{m} t, \\
(m + 1 - \frac{2^n t}{t + s})(t + s) = (m + 1 - 2^n)t + (m + 1)s, & \text{if } \frac{2^n - m - 1}{m + 1} t < s \leq \frac{2^n - m - \frac{1}{2}}{m + \frac{1}{2}} t.
\end{cases}
\]
Thus, we get that
\[
\frac{1}{2} \int_0^t \int_0^s (t + s) \alpha \left(2d_x \left(\frac{2^n \cdot t}{t + s} \right) (t + s)(x - y) \right) ds dt
\]
\[
= \sum_{m=2^{n-1}}^{2^n-1} \frac{1}{2n+1} \int_0^{2n+1} \alpha(\sigma(x - y)) \left(\frac{\sigma + 2n+1t}{(2m+2)^2} + \frac{2n+1t - \sigma}{(2m+2)^2} \right) d\sigma dt
\]
\[
= \sum_{m=2^{n-1}}^{2^n-1} \int_0^{2n+1} \alpha(\sigma(x - y)) \left(\frac{\sigma + 2n+1t}{(2m+2)^2} + \frac{2n+1t - \sigma}{(2m+2)^2} \right) d\sigma
\]
\[
= \frac{1}{16} \sum_{m=2^{n-1}}^{2^n-1} \int_0^{2n+1} \alpha(\sigma(x - y)) \left(1 - \frac{2m+1}{2n} \right) \left(\frac{\sigma(2m+3) + 2^n}{(m+1)^2} + \frac{\sigma(2m-1) + 2^n}{m^2} \right) d\sigma
\]
\[
= \frac{1}{16} \sum_{m=2^{n-1}}^{2^n-1} \int_0^{2n+1} \alpha(\sigma(x - y)) \left(1 - \frac{2m+1}{2n} \right) \left(\frac{\sigma(2m+3) + 2^n}{(m+1)^2} + \frac{\sigma(2m-1) + 2^n}{m^2} \right) d\sigma.
\]
(Here \(x^+\) stands for the positive part of \(x\).) Summarizing our computations, for \(8I(x, y)\), we get
\[
8I(x, y) = \int_0^1 \alpha(\sigma(x - y)) \Phi(\sigma) d\sigma,
\]
where
\[
\Phi(\sigma) = (1 - \sigma)(3\sigma + 1) + \sum_{m=2^{n-1}}^{2^n-1} \left(1 - \frac{2m+1}{2^n} \sigma \right) \left(\frac{\sigma(2m+3) + 2^n}{2n(m+1)^2} + \frac{\sigma(2m-1) + 2^n}{2nm^2} \right)
\]
\[
= (1 - \sigma)(3\sigma + 1) + \sum_{m=1}^{\infty} \left(1 - \frac{2m+1}{2^{[\log_2 m]+1}} \sigma \right) \left(\frac{\sigma(2m+3) + 2^{[\log_2 m]+1}}{2^{[\log_2 m]+1}(m+1)^2} + \frac{\sigma(2m-1) + 2^{[\log_2 m]+1}}{2^{[\log_2 m]+1}m^2} \right).
\]
One can easily see that \(\Phi\) is a continuous function over \([0, 1]\) with \(\Phi(t) \geq 1\) for \(0 \leq t \leq \frac{2}{3}\) and \(\Phi(1) = 0\). Hence the error term \(8I(x, y)\) obtained in (2.20) is not comparable with that in (1.9).
In what follows, we examine the case, when X is a normed space and $\eta_{x,y}(t)$ is a linear combination of the products of the powers of $t, 1-t$, and of $\|x-y\|$, i.e., for all $(x, y) \in D^{2*}$ $\eta_{x,y}$ is of the form

$$\eta_{x,y}(t) := \int_{[0,\infty]^2} t^p(1-t)^q \|x-y\|^{p+q-1} d\nu(p, q) \quad ((x, y) \in D^{2*}),$$

where ν is a σ-finite Borel measure on $[0, \infty]^2$. An important particular case is when ν is of the form $\sum_{i=1}^k c_i \delta_{(p_i, q_i)}$, where $c_1, \ldots, c_k > 0$, $(p_1, q_1), \ldots, (p_k, q_k) \in [0, \infty]^2$.

Theorem 2.9. Let \mathcal{A} be a sigma algebra containing the Borel subsets of $[0, 1]$ and μ be a probability measure on the measure space $([0, 1], \mathcal{A})$ such that the support of μ is not a singleton. Let ν be a σ-finite Borel measure on $[0, \infty]^2$ such that, for all $s \in \{\|x-y\| \mid (x, y) \in D^{2*}\}$,

$$J(s) := \int_{[0,\infty]^2} \left(\int_{[0,\mu_1]} (\mu_1 - t')^p d\mu(t') \int_{[\mu_1, 1]} (t'' - \mu_1)^q d\mu(t'') \right) s^{p+q-1} d\nu(p, q)$$

exists in $[-\infty, \infty]$. Assume that $f : D \to \mathbb{R}$ is a hemi-μ-integrable solution of the functional inequality

$$f((1-t)x + ty) \leq (1-t)f(x) + tf(y) + \int_{[0,\infty]^2} t^p(1-t)^q \|x-y\|^{p+q-1} d\nu(p, q)$$

for all $(x, y) \in D^{2*}$ and $t \in [0, 1]$. Then f also fulfills the Hermite–Hadamard type inequality

$$f((1-\mu_1)x + \mu_1 y) \leq \int_{[0,1]} f((1-t)x + ty) d\mu(t) + \frac{1}{S(\mu)} J(\|x-y\|) \quad ((x, y) \in D^{2*}).$$

Remark 2.10. In the above theorem, the hemi-μ-integrability condition for f can be relaxed if the measure ν is finite with compact support contained in $]0, \infty[^2$. Then the function $\eta_{x,y}$ defined by (2.21) is continuous on $[x, y]$ and $\eta_{x,y}(0) = \eta_{x,y}(1) = 0$, hence (2.22) implies that $t \mapsto f((1-t)x + ty)$ is upper bounded on $[0, 1]$ and upper semicontinuous at the endpoint of $[0, 1]$. Thus f is hemi-upper bounded and upper hemicontinuous on D, which yields its hemi-μ-integrability.

Proof. We want to apply Theorem 2.5. Let $(x, y) \in D^{2*}$ be arbitrary. Let $\eta_{x,y} : [0, 1] \to \mathbb{R}$ defined by (2.21). Then, (2.22) is equivalent to (2.12). To deduce (2.23), by Theorem 2.5, we obtain that

$$I(x, y) = \int_{[\mu_1, 1]} \int_{[0,\mu_1]} \int_{[0,\infty]^2} (t'' - t')^p (\frac{t'' - \mu_1}{t'' - t'})^q ||(t'' - t')(x - y)||^{p+q-1} d\nu(p, q) d\mu(t') d\mu(t'')$$

$$= \int_{[0,\infty]^2} \left(\int_{[0,\mu_1]} (\mu_1 - t')^p d\mu(t') \int_{[\mu_1, 1]} (t'' - \mu_1)^q d\mu(t'') \right) ||x - y||^{p+q-1} d\nu(p, q) = J(||x - y||),$$

which proves the statement.
Corollary 2.11. Let \(\nu \) be a \(\sigma \)-finite Borel measure on \([0, \infty]^2\), such that for all \(s \in \{ \| x - y \| : (x, y) \in D^{2*} \} \)
\[
\int_{[0,\infty]^2} \frac{s^{p+q-1}}{2^{p+q-1}(p+1)(q+1)} d\nu(p, q)
\]
exists in \([-\infty, \infty]\). Assume that \(f : D \rightarrow \mathbb{R} \) is a hemi-Lebesgue integrable solution of the functional inequality
\[
(2.24) \quad f((1-t)x + ty) \leq (1-t)f(x) + tf(y) + \int_{[0,\infty]^2} t^p (1-t)^q \| x - y \|^{p+q-1} d\nu(p, q),
\]
where \((x, y) \in D^{2*} \) and \(t \in [0, 1] \). Then, \(f \) also satisfies the Hermite–Hadamard type inequality
\[
(2.25) \quad f\left(\frac{x+y}{2} \right) \leq \int_{[0,1]} f((1-t)x + ty) dt + \int_{[0,\infty]^2} \frac{\| x - y \|^{p+q-1}}{2^{p+q-1}(p+1)(q+1)} d\nu(p, q) \quad ((x, y) \in D^{2*}).
\]

Proof. Observe that (2.24) is equivalent to (2.12), where for all \((x, y) \in D^{2*} \), \(\eta_{x,y} : [0,1] \rightarrow \mathbb{R} \) is defined by (2.21). We have \(S(\mu) = \frac{1}{8} \) and using Theorem 2.9, we obtain that
\[
J(s) = \int_{[0,\infty]^2} \left(\int_0^{\frac{1}{2}} (\frac{1}{2} - t)^p dt \right) \left(\int_{\frac{1}{2}}^1 (t - \frac{1}{2})^q dt \right) s^{p+q-1} d\nu(p, q) = \int_{[0,\infty]^2} \frac{s^{p+q-1}}{2^{p+q+2}(p+1)(q+1)} d\nu(p, q),
\]
which yields (2.25). \(\square \)

3. FROM APPROXIMATE \((\omega_0, \omega_1)\)-CONVEXITY TO APPROXIMATE UPPER HERMITE–HADAMARD INEQUALITY

In the first part of this section we will investigate the implication between the \((\omega_0, \omega_1)\)-convexity type inequality and upper Hermite–Hadamard inequality. Consider the following assumptions.

(B1) \((T, \mathcal{A}, \mu)\) is a measure space.
(B2) \(\Lambda : T \times \Delta^0(I) \rightarrow \mathbb{R}_+ \) is integrable (with respect to \(\mu \)) in its first variable.
(B3) \(M : T \times \Delta^0(I) \rightarrow \mathbb{R} \) is measurable in its first variable and for all \(t \in T \), the map \((x, y) \mapsto M(t, x, y)\) is a two-variable mean on \(I \). \(M_0 : \Delta^0(I) \rightarrow I \) is a strict mean.
(B4) There exist an \((\omega_0, \omega_1)\)-Chebyshev system on \(I \) such that \(\omega_0 \) is positive and \(i \in \{0, 1\} \) \((2.2)\) holds.

Theorem 3.12. Assume that (B1)–(B4) hold. Let \(f : I \rightarrow \mathbb{R} \) be a locally bounded Borel measurable solution of the approximate \((\omega_0, \omega_1)\)-convexity inequality \((2.5)\), where for all \((x, y) \in \Delta^0(I)\), \(\eta_{x,y} : [x, y] \rightarrow \mathbb{R} \) is a bounded and Borel measurable function. Then \(f \) also satisfies the following approximate upper Hermite–Hadamard type inequality
\[
(3.1) \quad \int_T \Lambda(t, x, y) f(M(t, x, y)) d\mu(t) \leq \frac{\Omega(M_0(x, y), y)}{\Omega(x, y)} f(x) + \frac{\Omega(x, M_0(x, y))}{\Omega(x, y)} + E(x, y),
\]
with $E : D^{2*} \to \mathbb{R}$ defined by

$$E(x, y) = \int_T \Lambda(t, x, y)\varepsilon_{x,y}(M(t, x, y))d\mu(t).$$

\textbf{Proof.} Let $(x, y) \in \Delta^o(I)$ be arbitrary. Substituting in (2.5) u by $M(t, x, y)$, we get that

$$f(M(t, x, y)) \leq \frac{\Omega(M(t, x, y))}{\Omega(x, y)} f(x) + \frac{\Omega(x, M(t, x, y))}{\Omega(x, y)} f(y) + \varepsilon_{x,y}(M(t, x, y)) \quad (t \in T).$$

Multiplying this inequality by $\Lambda(t, x, y)$ and integrating with respect to μ on T, we get that

$$\int_T \Lambda(t, x, y) f(M(t, x, y))d\mu(t)$$

$$\leq \left[\int_T \Lambda(t, x, y)\Omega(M(t, x, y), y)d\mu(t) \right] \left[f(x) \right] + \left[\int_T \Lambda(t, x, y)\Omega(x, M(t, x, y))d\mu(t) \right] \left[f(y) \right]$$

$$+ \int_T \Lambda(t, x, y)\varepsilon_{x,y}(M(t, x, y))d\mu(t).$$

Applying (2.2), it follows that

$$\int_T \Lambda(t, x, y)\Omega(M(t, x, y), y)d\mu(t) = \Omega(M_0(x, y), y)$$

and

$$\int_T \Lambda(t, x, y)\Omega(x, M(t, x, y))d\mu(t) = \Omega(x, M_0(x, y)).$$

Substituting (3.4) and (3.5) to (3.3) we have (3.1). \hfill \square

\textbf{Remark 3.13.} An immediate corollary of this theorem is the second inequality of Theorem \blacktriangle. Assume that the assumptions of Theorem \blacktriangle hold. It is easy to see that the conditions of Theorem \blacktriangle are also valid. For all $(x, y) \in \Delta^o(I)$ let $\eta_{x,y}, \mu, M(t, x, y), M_0(x, y)$ and $\Lambda(t, x, y)$ be defined as in Remark 2.4. Then (2.2) holds. Therefore, by (1.5) and using also Remark 2.4

$$c_1(x, y) = \frac{1}{\Omega(x, y)} \left[\int_x^y \omega_0 \rho \omega_0(y) \right] = \frac{1}{\Omega(x, y)} \left[\omega_0(M_0(x, y)) \omega_0(y) \right] = \frac{\Omega(M_0(x, y), y)}{\Omega(x, y)}.$$

Similarly, it can be seen, that $c_2(x, y) = \frac{\Omega(M_0(x, y), y)}{\Omega(x, y)}$. Thus, by Theorem \blacktriangle we get the second inequality in Theorem \blacktriangle.

\textbf{Theorem 3.14.} Let D be a convex set of a linear space X. Let \mathcal{A} be a sigma algebra containing the Borel subsets of $[0, 1]$ and μ be a probability measure on the measure space $([0, 1], \mathcal{A})$. Denote $\mu_1 := \int_{[0, 1]} t\mu(t)$. Assume that $f : D \to \mathbb{R}$ is a hemi-μ-integrable solution of the approximate convexity inequality (2.12), where, for all $(x, y) \in D^{2*}$, $\eta_{x,y} : [0, 1] \to \mathbb{R}$ is a bounded and Borel
measurable function. Then, for all \((x, y) \in D^{2*}\), the function \(f\) also satisfies the approximate upper Hermite–Hadamard inequality

\[
(3.6) \quad \int_{[0,1]} f((1-t)x + ty) d\mu(t) \leq (1 - \mu_1) f(x) + \mu_1 f(y) + \int_{[0,1]} \eta_{x,y}(t) d\mu(t).
\]

Remark 3.15. In the above theorem, the regularity condition for \(f\) can be relaxed if the error function \(\eta_{x,y}\) enjoys boundedness and continuity properties. For instance, if \(\eta_{x,y}\) is upper bounded on \([x, y]\) for some \((x, y) \in D^{2*}\), then (2.5) implies that \(f((1-t)x + ty)\) is upper bounded for \(t \in [0,1]\). Similarly, if \(\limsup_{t \to 0+} \eta_{x,y}(t) = 0\) for some \((x, y) \in D^{2*}\), then (2.5) implies that \(f((1-t)x + ty)\) is an upper semicontinuous function of \(t\) at zero from the right.

Proof. Let \((x, y) \in D^{2*}\) be fixed. Integrating (2.12) with respect to the variable \(t\) and the measure \(\mu\) on \([0,1]\) we get (3.6).

Remark 3.16. Assume that the conditions of Theorem C hold. To prove a similar result as in Theorem C we have to assume that also \(\alpha : (D - D) \to \mathbb{R}\) is radially bounded and radially continuous at 0. By [14] and [2], we can get that \(f\) is approximately convex in the following sense

\[
(3.7) \quad f((1-t)x + ty) \leq (1-t)f(x) + tf(y) + \sum_{n=0}^{\infty} \frac{1}{2^n} \alpha(2d\|2^n t\| x - y)) \quad (x, y \in D, \ t \in [0,1]).
\]

Let \(\eta_{x,y}(t) := \sum_{n=0}^{\infty} \frac{1}{2^n} \alpha(2d\|2^n t\| x - y))\) for \(t \in [0,1]\) and \(x, y \in D\). Let \(\mathcal{A}\) be the class of Lebesgue measurable subsets of \([0,1]\) and let the measure \(\mu\) be defined by \(d\mu(t) = \rho(t)dt\). Then \(\mu_1 = \int_{0}^{1} \rho(t)dt = \lambda\). Thus applying Theorem 3.14 and the Fubini’s theorem, we get (1.10), which completes the proof of Theorem C.

In what follows, we examine the case, when \(X\) is a normed space and \(\eta_{x,y}(t)\) is a linear combination of the products of the powers of \(t, 1-t, \) and of \(\|x - y\|,\) i.e., for all \((x, y) \in D^{2*}\) \(\eta_{x,y}\) is of the form

\[
(3.8) \quad \eta_{x,y}(t) := \int_{[0,\infty]^3} t^p(1-t)^q \|x - y\|^r d\nu(p, q, r) \quad ((x, y) \in D^{2*}),
\]

where \(\nu\) is a \(\sigma\)-finite Borel measure on \([0, \infty]^3\). An important particular case is when \(\nu\) is of the form \(\sum_{i=1}^{k} c_i \delta(p_i, q_i, r_i)\), where \(c_1, \ldots, c_k > 0\) and \((p_1, q_1, r_1), \ldots, (p_k, q_k, r_k) \in [0, \infty]^3\).

Corollary 3.17. Let \(\mu\) be a Borel probability measure on \([0,1]\), denote \(\mu_1 := \int_{[0,1]} t d\mu(t)\). Let \(\nu\) be a \(\sigma\)-finite Borel measure on \([0, \infty]^3\) such that, for all \(s \in \{\|x - y\| \ (x, y) \in D^{2*}\}\),

\[
\int_{[0,\infty]^3} \int_{[0,1]} t^p(1-t)^q s^r d\nu(p, q, r)
\]

exists in \([-\infty, \infty]\). Assume that \(f : D \to \mathbb{R}\) is and hemi-\(\mu\)-integrable solution of the functional inequality

\[
(3.8) \quad f((1-t)x + ty) \leq (1-t)f(x) + tf(y) + \int_{[0,\infty]^3} t^p(1-t)^q \|x - y\|^r d\nu(p, q, r)
\]
for all \((x, y) \in D^{2s}\) and \(t \in [0, 1]\). Then \(f\) also fulfills the following approximate upper Hermite–Hadamard inequality,
\[
(3.9) \quad \int_{[0,1]} f(\{(1-t)x+ty\}d\mu(t) \leq (1 - \mu_1)f(x) + \mu_1 f(y) + \int_{[0,\infty]^3} \int_{[0,1]} t^p(1-t)^q\|x-y\|^rd\mu(t)d\nu(p,q,r).
\]

Proof. We apply Theorem 3.14. For all \((x, y) \in D^{2s}\), let \(\eta_{x,y} : [0, 1] \to \mathbb{R}\) defined by (3.7). Then it is easy to see that (3.8) is equivalent to (2.12). Hence, by Theorem 3.14 we get (3.9). \(\Box\)

Denote by \(B\) the so-called beta-function, defined by
\[
B(p_1, p_2) = \int_0^1 t^{p_1-1}(1-t)^{p_2-1}dt \quad (p_1, p_2 > 0).
\]

Corollary 3.18. Let \(\nu\) be a \(\sigma\)-finite Borel measure on \([0, \infty[^3\) such that, for all \(s \in \{\|x-y\|\mid (x, y) \in D^{2s}\}\),
\[
\int_{[0,\infty]^3} B(p+1, q+1)s^r d\nu(p, q, r)
\]
exists in \([-\infty, \infty]\). Assume that \(f : D \to \mathbb{R}\) is a hemi-Lebesgue integrable solution of the functional inequality
\[
f(\{(1-t)x+ty\} \leq (1 - t)f(x) + tf(y) + \int_{[0,\infty]^3} t^p(1-t)^q\|x-y\|^rd\nu(p,q,r)
\]
for all \((x, y) \in D^{2s}\) and \(t \in [0, 1]\). Then \(f\) also fulfills the approximate upper Hermite–Hadamard inequality
\[
(3.10) \quad f\left(\frac{x+y}{2}\right) \leq \frac{f(x)}{2} + \frac{f(y)}{2} + \int_{[0,\infty]^3} B(p+1, q+1)\|x-y\|^rd\nu(p,q,r) \quad ((x, y) \in D^{2s}).
\]

Proof. We apply Corollary 3.17 when \(\mu\) is the Lebesgue measure. Then, for all \((x, y) \in D^{2s}\),
\[
E(x, y) = \int_{[0,\infty]^3} \int_{[0,1]} t^p(1-t)^q\|x-y\|^rd\mu(t)d\nu(p,q,r) = \int_{[0,\infty]^3} B(p+1, q+1)\|x-y\|^rd\nu(p,q,r).
\]
Thus, the result directly follows from Corollary 3.17. \(\Box\)

References

[1] M. Bessenyei, Hermite–Hadamard-type inequalities for generalized convex functions. J. Inequal. Pure Appl. Math., 9(3):Article 63, pp. 51 (electronic), 2008.
[2] M. Bessenyei and Zs. Páles. Hadamard-type inequalities for generalized convex functions. Math. Inequal. Appl., 6(3):379–392, 2003.
[3] M. Bessenyei and Zs. Páles. Characterizations of convexity via Hadamard’s inequality. Math. Inequal. Appl., 9(1):53–62, 2006.
[4] S. S. Dragomir and C. E. M. Pearce. Selected Topics on Hermite-Hadamard Inequalities. RGMIA Monographs (http://rgmia.vu.edu.au/monographs/hermite_hadamard.html), Victoria University, 2000.
[5] J. Hadamard. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl., 58:171–215, 1893.
[6] A. Házy and Zs. Páles. On a certain stability of the Hermite–Hadamard inequality. *Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.*, 465:571–583, 2009.

[7] M. Kuczma. *An Introduction to the Theory of Functional Equations and Inequalities*, volume 489 of *Prace Naukowe Uniwersytetu Śląskiego w Katowicach*. Państwowe Wydawnictwo Naukowe — Uniwersytet Śląski, Warszawa–Kraków–Katowice, 1985.

[8] J. Makó and Zs. Páles. Implications between approximate convexity properties and approximate Hermite–Hadamard inequalities. *Cent. Eur. J. Math.*, submitted.

[9] J. Makó and Zs. Páles. On \(\varphi \)-convexity. *Publ. Math. Debrecen*, accepted, 2011.

[10] D. S. Mitrinović and I. B. Lacković. Hermite and convexity. *Aequationes Math.*, 28:229–232, 1985.

[11] C. P. Niculescu and L.-E. Persson. Old and new on the Hermite-Hadamard inequality. *Real Anal. Exchange*, 29(2):663–685, 2003/04.

[12] C. P. Niculescu and L.-E. Persson. *Convex Functions and Their Applications*. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23. Springer-Verlag, New York, 2006. A contemporary approach.

[13] K. Nikodem, T. Riedel, and P. K. Sahoo. The stability problem of the Hermite-Hadamard inequality. *Math. Inequal. Appl.*, 10(2):359–363, 2007.

[14] Ja. Tabor and Jó. Tabor. Generalized approximate midconvexity. *Control Cybernet.*, 38(3):655–669, 2009.

[15] Ja. Tabor, Jó. Tabor, and M. Żołdak. Optimality estimations for approximately midconvex functions. *Aequationes Math.*, 80:227–237, 2010.

Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary

E-mail address: {makoj,pales}@science.unideb.hu