Maternal control of gamete choice during fertilization

SREELAJA NAIR*

Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India

ABSTRACT  Sexually reproducing organisms generate male and female haploid gametes, which meet and fuse at fertilization to produce a diploid zygote. The evolutionary process of speciation is achieved and maintained by ensuring that gametes undergo productive fusion only within a species. In animals, hybrids from cross-species fertilization events may develop normally, but are usually sterile (Fitzpatrick, 2004). Metazoan sperm and eggs have several features to ensure that the gametes, which have evolved independently and also in conflict with each other, are competent to undergo fertilization (Firman, 2018). Fertilization is a specific process that is ideally supposed to result in randomized fusion of compatible egg and sperm. Here, I will discuss key processes driven by maternal factors in the egg that dictate earliest stages of gamete recognition, gamete choice and fusion in metazoans.

KEY WORDS: egg, sperm, chemotaxis, rheotaxis, GPI-anchored proteins, meiosis

This review is an attempt to summarize recent studies that have provided exciting fundamental insights into the process of fertilization in metazoans. Textbooks typically describe fertilization as “the fusion of male and female gametes to form a zygote”. This simple sentence encompasses the molecular and physical mechanisms of egg chemotactants, sperm chemotaxis, physical properties of sperm and egg membranes, receptor-ligand interactions that allow egg-sperm fusion and the evolution of these processes. In the following sections, I discuss the diversity of the initial events in animal egg and sperm recognition and fusion that ensure fertilization in sexually reproducing metazoans is successful and yet species specific.

Maternal factors from eggs that guide sperm chemotaxis

The earliest demonstration of maternal control over fertilization in animals emerged when F.R. Lillie showed that eggs release an agglutination and aggregation agent to which the sperm of that species responds (Lillie, 1912; Lillie, 1913). Lillie used seawater in which unfertilized Arbacia punctulata eggs had been incubated and added a few drops of it into a suspension of motile sperm (Lillie, 1912). When A. punctulata egg water was added to motile A. punctulata sperm, the sperm clumped in a couple of minutes, a phenomenon Lillie termed as iso-agglutination. In addition to echinoderms, Lillie demonstrated the same phenomenon in invertebrates and vertebrates. Approximately 70 years after Lillie first posited, Speract/Resact, a short peptide was identified from the external jelly layer of sea urchin eggs and was shown to be the chemoattractant to which sea urchin sperm responded (Hansbrough and Garbers, 1981; Ward et al., 1985). Speract/Resact was shown to bind a Guanylate cyclase receptor on the sperm flagellar membrane and increase intracellular levels of cyclic GMP, which potentiated the movement of the sperm towards the eggs, eventually enabling the acrosome reaction in reis sperm clumped and non-motile, demonstrating cross-species toxicity (Lillie, 1912). This was perhaps the first demonstration of egg defense mechanisms to ensure reproductive isolation in a species. As an aside, Lillie also inferred that the A. punctulata egg water contained an agent to which the A. punctulata sperm were attracted, because a drop of the egg water in the sperm solution resulted in the formation of a ring of clumped sperm at the edge of the egg water drop, followed by a zone of clearance. Thus, the basic principles of how an animal egg might ensure fertilization by the same species sperm were uncovered.

Ironically, the clumping phenomenon that Lillie chose to study was shown to be possible by the high density of sperm used and the hydrodynamic forces generated by the sperm tails during motility (Collins, 1976; Riedel et al., 2005). The chemoattractant hypothesis, which Lillie never pursued, endured the test of time and has been identified as a likely mechanism of species-specific gamete interaction in invertebrates and vertebrates. Approximately 70 years after Lillie first posited, Speract/Resact, a short peptide was identified from the external jelly layer of sea urchin eggs and was shown to be the chemoattractant to which sea urchin sperm responded (Hansbrough and Garbers, 1981; Ward et al., 1985). Speract/Resact was shown to bind a Guanylate cyclase receptor on the sperm flagellar membrane and increase intracellular levels of cyclic GMP, which potentiated the movement of the sperm towards the eggs, eventually enabling the acrosome reaction in

Abbreviations used in this paper: CatSper, cation channels of sperm.

*Address correspondence to: Sreelaja Nair. Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India. E-mail: s.nair@tifr.res.in - https://orcid.org/0000-0001-7309-339X - web: https://www.tifr.res.in/~s.nair/Home.html

Submitted: 1 July, 2019; Accepted: 19 August, 2019.
sperm heads (Suzuki et al., 1984; Singh et al., 1988).

It is intuitive that gametes that encounter each other in open water must have evolved mechanisms to ensure conspecific fertilization by attracting the correct partner gametes and to be doubly sure, eliminate gametes from other species present in the vicinity that may interact with the eggs. However, the ability of maternal peptides to steer sperm to an increasing concentration gradient towards the egg is not restricted to aquatic species that undergo external fertilization but is also found in ascidians and mammals (Yoshida et al., 2002; Spehr et al., 2003; Fukuda et al., 2004; Guidobaldi et al., 2008). Indeed, the molecular repertoire of maternal factors in eggs that trigger sperm chemotaxis include peptides, glycoproteins, fatty acids, hormones and odors (Olson et al., 2001; Riffell et al., 2002; Yoshida et al., 2002; Zatylny et al., 2002; Spehr et al., 2003; Fukuda et al., 2004; Bohmer et al., 2005; Guidobaldi et al., 2008; Yanagimachi et al., 2013; Yoshida et al., 2018) (Table 1). Interestingly, gametes of the same species have not co-evolved co-operative mechanisms for gamete recognition and often have co-evolved antagonistic mechanisms, perhaps to deter polyspermy (Firman, 2018). The molecular diversity of maternally encoded egg chemoattractants and its evolutionary distribution across metazoa conjures an erroneous image that sperm chemotaxis can ensure species-specific gamete fusion as long as the right gametes are attracted. However, there are several examples wherein maternal factors from mammalian eggs can trigger heterospecies sperm chemotaxis (Sun et al., 2003; Teves et al., 2006; Guidobaldi et al., 2008).

Since mammals undergo internal fertilization, the role of sperm chemotaxis, especially because it is not species specific, remains obscure. In mammals, of the ~10^7 sperm deposited in the female, only ~10% are chemotactically responsive (Barratt and Cooke, 1991; Williams et al., 1993; Giojalas and Rovasio, 1998; Oliveira et al., 1999). Sperm must undergo a series of biochemical and physiological changes known as capacitation, to become fertilization competent (Stival et al., 2016). Separation of sperm subpopulations based on chemotaxis revealed that the chemotactically responsive population was enriched with capacitated sperm and the physiological state of capacitated, chemotactic sperm was transient (Cohen-Dayag et al., 1994; Ralt et al., 1994; Cohen-Dayag et al., 1995). In mammals, sperm chemotaxis in response to maternal factors released by the egg is hypothesized to ensure that fertilization competent spermatozoa are available at the time of ovulation. This idea is partially supported by the observation that mammalian sperm chemotactic response can only be elicited from follicular fluids from follicles which contain mature, fertilizable eggs (Ralt et al., 1991). The molecular mechanisms that allow maternal factors to guide sperm chemotaxis is best studied for Speract/Resact and its cognate Guanylate cyclase receptor (Darszon et al., 2008). The phenomena of sperm capacitation, changes in intracellular Ca++ levels, sperm cell membrane depolarization etc that have been experimentally proven in sea urchins hold true across several species, including mammals. Despite successfully executing the

### TABLE 1

| Process | Species | Chemoattractant Identity | Molecular Nature | Source | Chemoattractant receptor | Location |
|---------|---------|--------------------------|------------------|--------|------------------------|----------|
| Sperm chemotaxis towards egg-derived factors | Sepia officinalis | SepSAP (Sepia sperm attracting peptide) | Peptide | Released from egg | Not Known | Not Known |
| Ciona intestinalis | SAAF (sperm activating and attracting factor) | Sulfated Steroid | Released from egg | PMCA (plasma membrane Ca^2+-ATPase) | Spem flagella membrane |
| Xenopus laevis | Alurn | Peptide | Egg jelly layer | Not Known | Not Known |
| Xenopus tropicalis | Alurn | Peptide | Egg jelly layer | Not Known | Not Known |
| Herring, Flounders | SMI (sperm motility initiation factor) | High molecular weight glycoprotein | Chorion membrane near micropyle on egg | MOR23 (odorant receptor) | Spem flagella membrane |
| Mus musculus | Not Known | Not Known | Follicular and Oviduct Fluid, Cumulus cells, eggs | Not Known | Not Known |
| Rabbits | Progesterone | Hormone | Follicular and Oviduct Fluid, Cumulus cells, eggs | Not Known | Not Known |
| Homo sapiens | Not Known | Not Known | Follicular and Oviduct Fluid, Cumulus cells, eggs | hOR17-4 (odorant receptor) | Spem flagella membrane |
| Homo sapiens | Not Known | Not Known | Follicular and Oviduct Fluid, Cumulus cells, eggs | hOR17-2 (odorant receptor) | Spem flagella membrane |
| Danio rerio | Bouncer | GPI-anchored Lyt/urokinase-type plasminogen activated receptor | Egg membrane | Not Known | Not Known |
| Reptiles and Mammals | Not Known | Not Known | Not Known | SPAC44/SAM14 (spermid acrosome membrane-associated protein 4/spermid acrosomal membrane protein 14) | Spem head membrane |
| Mus musculus, Homo sapiens | CD9 | Tetraspanin protein family | Microvillar membrane on egg | Not Known | Not Known |
| Mus musculus, Homo sapiens | Juno | GPI-anchored folate receptor | Egg membrane | Izumo (immunoglobulin protein family) | Spem head membrane |
essential biochemical changes to become fertilization competent and finding the correct egg, fertilization will fail if the sperm cannot bind to the egg and fuse. Thus in organisms such as frogs, fish and mammals the attention has shifted to identifying the cognate egg-sperm proteins that facilitate the actual binding and fusion of the sperm to the egg.

**Physical principles of sperm chemotaxis**

Sperm chemotaxis guided by maternal factors from the egg was discovered over 100 years ago. In species that undergo external fertilization, the phenomenon is easy to track visually and manipulate biologically and has enabled molecular mechanisms of sperm-egg interaction to be elucidated. However, in such experimental conditions, the density of sperm around eggs is in vast excess than would be possible in open water. In species that undergo internal fertilization, though there is evidence of sperm chemotaxis, its actual physiological role remains unclear. In addition to chemical cues, physical principles also facilitate sperm movement to ensure sperm-egg interaction in both internally and externally fertilizing species. Both human and mice sperm demonstrate positive rheotaxis i.e. the ability to orient and swim against fluid flow. Recent *in vivo* studies in mice show that fluid secretion in the oviduct increases upon coitus and both mice and human sperm exhibit rotational movement and positive rheotaxis in the oviduct (Miki and Clapham, 2013). Both capacitated and noncapacitated mammalian sperm exhibit positive rheotaxis, which requires CatSper (Cation Channels of Sperm) activity (Miki and Clapham, 2013). This raises the possibility that positive rheotaxis would enable only the motile sperm to progress through the female reproductive tract, undercapacitation and chemotactically respond to maternal egg factors. Positive rheotaxis microfluidic devices allow selective isolation of motile sperm (Zaferani *et al.*, 2018). Such microfluidic devices may eventually replace techniques such as density gradient centrifugation that are currently used to enrich quality sperm in Assisted Reproductive Technologies.

Interestingly, sea urchin sperm do not demonstrate positive rheotaxis and move similar to mouse sperm lacking CatSper channels (Miki and Clapham, 2013). So, how do sea urchin sperm reach the egg encountering varying levels of maternal egg chemotactants on its way? Recent experiments with photoactivatable caged Resact allows sculpting of defined 3D chemotaxtractant profiles along which sea urchin sperm chemotaxis can be studied. Sea urchin sperm move along a helical axis in response to chemotaxtractants, which allow gradient sensing perpendicular to the axis of movement (Jikeli *et al.*, 2015). The helical navigation results in two distinct steering behaviors: smooth, incremental adjustments to the helical bend over time, which keeps the sperm on course and a second sharp, rapid change in the helical bend, which suddenly aligns an off-course sperm in the right general direction (Jikeli *et al.*, 2015). This second sharp change in the helical bend is interpreted as decision making and in simulation experiments confers an advantage to sperm to bend their helical paths in low signal to noise environments, such as low concentrations of maternal egg factors guiding sperm chemotaxis in open water (Kromer *et al.*, 2018). Thus, sea urchin sperm chemotaxis is emerging as an interesting paradigm to understand how biological systems ensure desired outcomes reliably, despite noisy guidance cues.

**Female meiosis and biased fertilization outcomes**

Employing chemotactic and physical principles discussed above, the general belief is that egg-sperm fusion at fertilization is insensitive to allelic composition in the gametes (Crow, 1991). Yet, from flies to humans, allelic combinations appear in proportions that defy the expected ratios if a particular egg-sperm fusion were a random event (Pimpinelli and Dimitri, 1989; Zollner *et al.*, 2004; Botta *et al.*, 2005; Larracuente and Presgraves, 2012; Didion *et al.*, 2015). Recent evidence indicates that female meiotic drive can bias the outcome of sperm choice and fertilization outcomes. The canonical view of female meiosis involves homologous chromosome separation during meiosis I, followed by sister chromatid separation during meiosis II. Genome-wide SNP mapping of meiotic products after induced ovulation in humans revealed the phenomenon of non-canonical meiosis, wherein the sister chromatid separation had occurred during meiosis I, and homologous chromosomes separated during meiosis II (Ottolini *et al.*, 2015). In this non-canonical mode of female meiosis, the secondary oocyte, which will now undergo meiosis I, is heterozygous. From this heterozygous genome, incoming sperm may preferentially choose one genome, and bias the fertilization outcome. Indeed, in wild mice populations, chromatid segregation in heterozygous female mice depends upon the genotype of the sperm; sperm with normal chromosome 1 favorably bias the outcome of fertilization in comparison to sperm that are abnormal for chromosome 1 (Aguilnik *et al.*, 1993). These results can be explained in light of the recent discovery of reverse meiosis in human females (Ottolini *et al.*, 2015). Additionally, in canonical meiosis events, the sister chromatid which had undergone recombination during meiosis I is preferentially chosen as the oocyte genome over its sister which did not undergo recombination and becomes the second polar body (Ottolini *et al.*, 2015). Molecular mechanisms that govern non-canonical meiosis and the selective choice of recombined sister chromatid as the oocyte genome are not known. Additionally, how these dynamic variables during female meiosis allow oocytes and sperm to bias partner choices at fertilization, based on alleles that the gametes carry, is also unclear.

**Physical interactions between egg and sperm at fertilization**

After the correct sperm and egg encounter each other, the sperm must adhere to the egg and subsequently the egg and sperm cell membranes must fuse for successful entry of the male haploid genome into the female egg. The egg cortex is not homogenous in metazoans. In sea urchins, the surface of fertilization competent eggs is covered with microvilli which participate in fusion with the sperm membrane (Eddy and Shapiro, 1979; Longo *et al.*, 1994). Mammalian egg surface is covered with microvilli except in the region overlying the meiotic spindle, which is known as the amicrovillar region. Electron micrographs show that sperm heads fuse with the tips of the microvilli on the egg surface and sperm-egg fusion does not happen in the amicrovillar region (Yanagimachi, 1978). However, fertilization competent human eggs possess microvilli on their surfaces but do not have amicrovillar regions (Santella *et al.*, 1992). Thus, the role of amicrovillar regions on the mammalian egg membrane remains unclear. In mammals, a
member of the Tetrspanin family of proteins, CD9 localizes to the microvillar membrane on the eggs (Kaji et al., 2000; Runge et al., 2007). In mice, sperm cannot fuse with eggs that lack CD9 and loss of CD9 function in females renders the mice infertile (Kaji et al., 2000; Le Naour et al., 2000; Miyado et al., 2000). Loss of CD9 from mammalian eggs alters the morphology of the microvilli on the egg surface, an effect that is also seen when eggs are exposed to Latrunculin, which inhibits actin (Runge et al., 2007). Thus, it is inferred that microvillar morphology on the mammalian egg surface is critical in mediating fusion with the sperm and that this process relies on the actin cytoskeleton.

Biomembrane force probe experiments have attempted to understand physical properties of the egg membrane, which allow sperm-egg interaction to be maintained even when the sperm flagellum continues to move after binding. Such measurements reveal that the egg membrane of the amicrovillar region is comparatively stiffer than the microvillar region (Jegou et al., 2008). Additionally, the egg membrane in both the microvillar and amicrovillar regions have elastic and viscoelastic properties which enable the extrusion of membrane tethers under forces similar to that exerted by flagellar movement of sperm bound to the egg (Jegou et al., 2008). The viscous drag, combined with elastic deformation of the egg membrane tethers may transiently trap the sperm close to the egg so that downstream molecular events can be initiated.

After the sperm encounters eggs, the initial contact has to be consolidated into fusion of two completely different cellular membranes (Table 1). Izumo, a member of the Immunoglobulin super family is required on the sperm head membrane to fuse with mammalian eggs (Inoue et al., 2005). Sperm from homozygous Izumo mutant male mice bound to the eggs, but could not fuse (Inoue et al., 2005). Interestingly, recombinant Izumo protein binds mammalian eggs lacking CD9, indicating that CD9-Izumo interaction is not the primary determinant of egg-sperm fusion (Inoue et al., 2013). The second strongest candidate on the egg surface that could interact with Izumo were Glycophosphatidylinositol (GPI)-anchored proteins because female mice in which GPI-anchored proteins were removed specifically from the eggs were infertile (Alfieri et al., 2003). These initial observations culminated in the discovery of Juno, a GPI-anchored folate receptor on mammalian egg membranes as the cognate receptor for Izumo on mammalian sperm (Bianchi et al., 2014; Chalbi et al., 2014). Additionally, after egg-sperm fusion, Juno is rapidly lost from the egg membranes as extracellular vesicles in the perivitelline space (Bianchi et al., 2014). The Junoshed from the egg membrane may potentially act as a decoy for additional acrosome-reacted sperm because Juno-Izumo interact with high affinities, providing a potential mechanism to prevent polyspermy in mammals (Aydin et al., 2016). CD9, Izumo and Juno are conserved proteins and studies that elucidated its function in mammalian fertilization have shown cross-species functions. Thus it is unlikely that these three proteins mediate species specificity in mammalian egg-sperm fusion.

In vertebrates, the species specificity of egg-sperm fusion has only been experimentally proven in zebrafish, a fresh water minnow. Zebrafish eggs abundantly express a GPI-anchored Ly6/uorokinase-type plasminogen activated receptor, aptly named as Bouncer (Herberg et al., 2018). Interestingly, Bouncer homologs in external fertilizing species (fish and amphibians) are on the egg, while homologs in internal fertilizing species (reptiles and mammals) are on the sperm (Herberg et al., 2018). Zebrafish females that lack Bouncer produce eggs into which sperm cannot enter but Bouncer function is not required for formation of the micropyle, a specialized structure on teleost eggs that allow sperm entry (Herberg et al., 2018). Thus, Bouncer functions in egg-sperm fusion after the sperm has entered the egg through the single micropyle on the teleost egg surface. Indeed intracytoplasmic injection of sperm into Bouncer deficient eggs resulted in successful fertilization and embryonic development (Herberg et al., 2018). Expression of zebrafish Bouncer on the surface of the Medaka eggs resulted in zebrafish sperm being able to fuse with Medaka eggs, a cross-species fertilization event that otherwise never occurs (Herberg et al., 2018). The species specificity of Bouncer in fertilization suggests that a dedicated partner must exist on teleost sperm, the identity of which is currently not known.

It is interesting that mammals posses highly specific molecular interaction such as Juno-Izumo during fertilization, but the interaction is promiscuous across species. It is tempting to speculate that this may have evolved because in internally fertilizing metazoans it is unlikely that gametes from different species would normally encounter each other. In externally fertilizing species such as fish, sea urchins and amphibians, gametes of different species may naturally encounter each other. In such conditions, proteins such as Bouncer in zebrafish and its homologs in other species ensure species-specific gamete fusion, with the help of a currently unknown sperm partner molecule.

**Perspectives**

Recognition, binding and fusion of egg and sperm of a species are existential requirements for survival of that species. A simplistic logic leads one to assume that when two cells, one of which is motile, needs to find its partner, external chemotactic cues would be advantageous. However, chemotactic behavior between sperm and egg can be promiscuous across species, suggesting that though useful, chemotaxis is unlikely to be the driving force for sperm-egg recognition. Yet, chemotactic behavior is a fundamental feature of egg-sperm interaction in all metazoans. Perhaps, chemotaxis is a valuable bet hedging, to increase the odds of same species gamete finding each other (external fertilization) or to ensure that the fittest sperm reaches the egg (external and internal fertilization). It would be interesting to model or experimentally address gametic bet hedging by providing multiple chemoattractants to eggs and sperm of multiple species simultaneously. This would be insightful in externally fertilizing species, wherein such a scenario may naturally occur, for eg. different sea urchin species spawning in the same aquatic vicinity. A big unknown for most species is also the identity of the molecular partners on the egg and sperm that engage in binding and fusion. A significant advance would be if an egg-sperm membrane engaged in binding and/or fusion could be isolated specifically (for eg. by Click chemistry). Advancements in single cell transcriptome and proteome sequencing techniques could then identify the molecular partners involved in ensuring that gamete recognition culminates in binding/fusion. Finally, an aspect of fertilization that has received little to no attention from the perspectives discussed in this review is reproductive aging, commonly a result of changing hormone levels, especially in females. However, is the egg-sperm interaction itself subject to the influence of age and metabolic disorders? The identification of the molecular partners that ensure robust egg-sperm binding...
and fusion should pave the way for addressing how this interaction changes with the age and metabolic state of the organism to alter the efficiency of fertilization.

Acknowledgements:
Research in our group on early development in zebrafish is supported by the DBT/Wellcome Trust India Alliance Fellowship IA/A/13/2501042 to SN and by the Tata Institute of Fundamental Research, India.

References
AGULNIK SI, SABANTSEV ID, RUVINSKY AO. 1993. Effect of sperm genotype on chromatid segregation in female mice heterozygous for aberrant chromosome 1. Genet Res 61:97-100.
ALFIERI JA, MARTIN AD, TAKEDA J, KONDOH G, MYLES DG, PRIMAKOFF P. 2003. Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. J Cell Sci 116:2149-2155.
AYDIN S, SULTANA A, LI S, THAVALINGAM A, LEE JE. 2016. Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex. Nature 534:562-565.
BARRATT CL, COOKE ID. 1991. Sperm transport in the human female reproductive tract—a dynamic interaction. Int J Androl 14:394-411.
BIAINCHI E, DOEB, GOULDING D, WRIGHT G. 1994. June is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483-487.
BOHMER M, VAN Q, WEYAND I, HAGEN V, BEYERMANN M, MATSUMOTO M, HOSHI M, HILDEBRAND E, KAUPP UB. 2005. Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J 24:2741-2752.
BOTT A, TACCONELLI A, BAGNI I, GIARDINA E, BONIFAZI E, PETRINOLI A, CLEMENTI M, NOVELLI G. 2005. Transmission ratio distortion in the spinal muscular atrophy locus: data from 314 prenatal tests. Neurology 65:1631-1635.
CHALBI M, BARRAUD-LANGE V, RAVAUX B, HOWAN K, RODRIGUEZ N, SOULE T, JR., HARRILL AH, HUNTER K, MCMILLAN L, HOLT M, MILLER DR, O'BRIEN A, CLEMENTI M, NOVELLI G. 2005. Transmission ratio distortion in the spinal muscular atrophy locus: data from 314 prenatal tests. Neurology 65:1631-1635.
DIDION JP, MORGAN AP, CLAYSHULTE AM, MCMULLAN RC, YADGARY L, GUIDOBALDI HA, TEVES ME, UNATES DR, ANASTASIA A, GIOJALAS LC. 2008. Pregesterone from the cumulus cells is the sperm chemothtractant secreted by the rabbit oocyte cumulus complex. PLoS One 3:e30340.
EISENBACH M, VAN Q, WEINSTOCK GM, THREADGILL DW, POMP D, CHURCHILL GA, PARDO-MANUEL DE VILLENA F. 2015. A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2. PLoS Genetics 11:e1005387.
FUKUDA N, YOMOGIDA K, OKABE M, TOHARA K. 2004. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensin and in regulation of sperm motility. J Cell Sci 117:5835-5845.
GUIDOBALDI HA, TEVES ME, UNATES DR, ANASTASIA A, GIOJALAS LC. 2008. Pregesterone from the cumulus cells is the sperm chemothtractant secreted by the rabbit oocyte cumulus complex. PLoS One 3:e30340.
HANSBROUGH JR, GARBERS DL. 1981. Speract. Purification and characterization of a peptide associated with eggs that activates spermatozoa. J Biol Chem 256:1447-1452.
HERBERG S, GERT KR, SCHLEIFFER A, PAULI A. 2018. The Ly/ßPAR protein Bouncer is necessary and sufficient for species-specific fertilization. Science 361:1029-1033.
JOSEPH, HAMADA D, KAMIKUBO H, HIRATA K, TAKAO M, YAMAMOTO M, IKAWA M, OKABE M, HAGIHARA Y. 2013. Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development 140:3221-3229.
JOSEPH, IKAWA M, ISOTANI A, OKABE M. 2005. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234-238.
KAIJ K, OSA D, SHIKANO T, OHNUKI T, UEMATSU Y, SAKAGAMI J, TADA N, MIYAZAKI S, KUDO A. 2000. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24:279-282.
KROMER JA, MARCKER S, LANGE S, BAIER C, FRIEDRICH BM. 2018. Decision making improves sperm chemotaxis in the presence of noise. PLoS Comput Biol 14:e1006109.
LARRACUENTE AM, PRESGRAVES DC. 2012. The selfish Segregation Distorter gene complex of Drosophila melanogaster. Genetics 192:33-53.
LE NAOUR F, RUBINSTEIN E, JASMIN C, PRENANT M, BOUCHEIX C. 2000. Severely reduced female fertility in CD9-deficient mice. Science 287:319-321.
LILLIE FR. 1913. The Mechanism of Fertilization. Science 38:524-528.
LONGO FJ, COOK S, MCCULLOH DH, IVONNET PI, CAMBERLS EL. 1994. Stages leading to and following fusion of sperm and egg plasma membranes. Zygoite 2:317-331.
MIKI K, CLAPHAM DE. 2013. Rheotaxis guides mammalian sperm. Curr Biol 23:443-452.
MIYADO K, YAMADA G, YAMADA S, HASUWA H, NAKAMURA Y, RYU F, SUZUKI K, KOSAI K, INOUE K, OGURA A, OKABE M, MEKADA E. 2000. Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321-324.
ODA S, KOSAI K, INOUE K, OGURA A, OKABE M, MEKADA E. 2000. Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321-324.
OTTOLINI CS, NEWNHAM L, CAPALBO A, NATESAN SA, JOSHI HA, CIMADOMO P, NDZOUDI A, BOUCHEIX C, RUBINSTEIN E, WOLF JP, ZIYYAT A, PEREZ P, ANASTASIA A, GIOJALAS LC. 1999. Increased velocity and induction of chemotactic response in mouse spermatozoa by follicular and oviductal fluids. J Reprod Fertil 115:23-27.
OLSON JH, XIANG X, ZIEGERT T, KITTSELSON A, RAWLS A, BIEBER AL, CLANDER DE. 2001. Allurin, a 21-kDa sperm chemoattractant from Xenopus egg jelly, is related to mammalian sperm-binding proteins. Proc Natl Acad Sci USA 98:11205-11210.
OTTOLINI CS, NEWMAN L, CAPALBO A, NATESAN SA, JOSHI HA, CIMADOMO P, GRIFFIN DK, SAGE K, SUMMERS MC, THORNHILL AR, HOUSWORTH E, FURBERT AD, RIENZI L, UBALDI FM, HANDYSIDE AH, HOFFMANN ER. 2015. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat Genet 47:727-735.
PIMPINELLI S, DIMITRI P. 1989. Cytogenetic analysis of segregation distortion in Drosophila melanogaster. Genetics 121:765-772.
RALT D, GOLDENBERG M, PETTERLOF P, THOMPSON D, DOR J, MASHIACH S, GARBERS DL, EISENBACH M. 1991. Sperm attraction to a follicular factor(s) correlates with human egg fertilizability. Proc Natl Acad Sci USA 88:2840-2844.
S, GARBERS DL, EISENBACH M. 1991. Sperm attraction to a follicular factor(s) correlates with human egg fertilizability. Proc Natl Acad Sci USA 88:2840-2844.
S, GARBERS DL, EISENBACH M. 1991. Sperm attraction to a follicular factor(s) correlates with human egg fertilizability. Proc Natl Acad Sci USA 88:2840-2844.
RIEDEL IH, KRUSE K, HOWARD J. 2005. A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309:300-303.

RIFFELL JA, KRUG PJ, ZIMMER RK. 2002. Fertilization in the sea: the chemical identity of an abalone sperm attractant. J Exp Biol 205:1439-1450.

RUNGE KE, EVANS JE, HE ZY, GUPTA S, MCDONALD KL, STAHLBERG H, PRIMA-KOFF P, MYLES DG. 2007. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 304:317-325.

SANTELLA L, ALIKANI M, TALANSKY BE, COHEN J, DALE B. 1992. Is the human oocyte plasma membrane polarized? Hum Reprod 7:999-1003.

SINGH S, LOWE DG, THORPE DS, RODRIGUEZ H, KUANG WJ, DANGOTT L, CHINKERS M, GOEDDE DL, GARBERS DL. 1988. Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334:708-712.

SPEHR M, GISSELMANN G, POPLAWSKI A, RIFFELL JA, WETZEL CH, ZIMMER RK, HATT H. 2003. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054-2058.

STIVAL C, PUGA MOLINA LDEL C, PAUDEL B, BUFFONE MG, VISCONTI PE, KRAPF D. 2016. Sperm Capacitation and Acrosome Reaction in Mammalian Sperm. Adv Anat Embryol Cell Biol 220:93-106.

SUN F, GIOJALAS LC, ROVASIO RA, TUR-KASPA I, SANCHEZ R, EISENBACH M. 2003. Lack of species-specificity in mammalian sperm chemotaxis. Dev Biol 255:423-427.

SUZUKI N, SHIMOMURA, RADANY EW, RAMARAO CS, WARD GE, BENTLEY JK, GARBERS DL. 1984. A peptide associated with eggs causes a motility shift in a major plasma membrane protein of spermatozoa. J Biol Chem 259:14874-14879.

TEVESME, BARBANO F, GUIDOBALDI HA, SANCHEZ R, MISKAW, GIOJALAS LC. 2006. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil Steril 86:745-749.

WARD GE, BROKAW CJ, GARBERS DL, VACQUIER VD. 1985. Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer. J Cell Biol 101:2324-2329.

WILLIAMS M, HILL CJ, SCUDAMORE I, DUNPHY B, COOKE ID, BARRATT CL. 1993. Sperm numbers and distribution within the human fallopian tube around ovulation. Hum Reprod 8:2019-2026.

YANAGIMACHI R. 1978. Sperm-egg association in animals. Curr Top Dev Biol 12:83-105.

YANAGIMACHI R, CHER R, MATSUBARA T, ANDOH T, HARUMI T, VINES C, PILLAI M, GRIFFIN F, MATSUBARA H, WEATHERBY T, KANESHIRO K. 2013. Sperm attractant in the micropyle region of fish and insect eggs. Biol Reprod 88:47.

YOSHIDA K, SHIBA K, SAKAMOTO A, IKENAGA J, MATSUNAGA S, INABA, YOSHIDA M. 2018. Ca(2+)+ efflux via plasma membrane Ca(2+)-ATPase mediates chemotaxis in ascidian sperm. Sci Rep 8:16622.

ZAFFERANI M, CHEONG SH, ABBASPOURRAD A. 2018. Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. Proc Natl Acad Sci USA 115:8272-8277.

ZATYLNY C, MARVIN J, GAGNON J, HENRY J. 2002. Fertilization in Sepia officinalis: the first mollusk sperm-attracting peptide. Biochem Biophys Res Commun 296:1186-1193.

ZOLLNER S, WEN X, HANCHARD NA, HERBERT MA, OBER C, PRITCHARD JK. 2004. Evidence for extensive transmission distortion in the human genome. Am J Hum Genet 74:62-72.
Further Related Reading, published previously in the *Int. J. Dev. Biol.*

**Acrosome reaction-inducing substance triggers two different pathways of sperm intracellular signaling in newt fertilization.**
Shinnosuke Kon, Akio Takaku, Fubito Toyama, Eriko Takayama-Watanabe and Akihiko Watanabe.
Int. J. Dev. Biol. 63: 589 - 595 (2019). doi: 10.1387/ijdb.190092aw

**Ion currents involved in gamete physiology**
Alessandra Gallo and Elisabetta Tosti
Int. J. Dev. Biol. (2015) 59: 261-270
doi: 10.1387/ijdb.150202et

**Immunological determinants of implantation success**
Sarah A. Robertson and Lachlan M. Moldenhauer
Int. J. Dev. Biol. (2014) 58: 205-217
https://doi.org/10.1387/ijdb.140096sr

**Epigenetic asymmetry in the zygote and mammalian development**
Robert Feil
Int. J. Dev. Biol. (2009) 53: 191-201
https://doi.org/10.1387/ijdb.082654rf

**Control of reproduction by Polycomb Group complexes in animals and plants**
Anne-Elisabeth Guittion and Frederic Berger
Int. J. Dev. Biol. (2005) 49: 707-716
http://www.intjdevbiol.com/web/paper/051990ag

Fertilization Special Issue of the *Int. J. Dev. Biol.*
Edited by: Paul M. Wassarman and Victor D. Vacquier

http://www.ijdb.ehu.es/web/issues/contents/vol/52/issue/5-6

Preface, Dedication
Introductory articles
Sperm storage and transport
Sperm capacitation and chemotaxis
The sperm’s acrosome
The egg’s extracellular coats
Calcium and ion channels
Self-incompatibility
Egg-sperm interactions
Evolution of gamete proteins