Semiovals in PG(2, 8) and PG(2, 9)

Daniele Bartoli, Stefano Marcugini, Fernanda Pambianco

December 10, 2013

Abstract

The classification of all semiovals and blocking semiovals in PG(2, 8) and in PG(2, 9) of size less than 17 is determined. Also, some information on the stabilizer groups and the intersection sizes with lines is given.

Keywords - Semiovals, Blocking semiovals, Projective planes.

1 Introduction

Let Π_q be a projective plane of order q. A semioval S in Π_q is a non-empty pointset with the property that for every point $P \in S$ there exists a unique line t_P such that $S \cap t_P = \{P\}$ (see for example [7, 14]). This line is called the tangent line to S at P.

The classical examples of semiovals arise from polarities (ovals and unitals), and from the theory of blocking sets (the vertexless triangle). The semiovals are interesting objects in their own right, but the study of semiovals is also motivated by their applications to cryptography. Batten constructed in [3] an effective message sending scenario which uses determining sets. She showed that blocking semiovals are a particular type of determining sets in projective planes.

A blocking semioval (see [3, 9, 10]) is a semioval S such that every line of PG(2, q) contains at least one point of S and at least one point which is not in S. A blocking semioval existing in every projective plane of order $q > 2$ is the vertexless triangle.

In the last years the interest and research on the fundamental problem of determining the spectrum of the values for which there exists a given sub-configuration of points in PG(n, q) have increased considerably (see for example [1, 2, 4, 6, 8, 12, 16, 18–20]).
For $q \leq 9$, q odd, the spectrum of semiovals was determined by Lisonek in [17] by exhaustive computer search.

It is known that if S is a semioval in Π_q then $q+1 \leq |S| \leq q\sqrt{q}+1$ and both bounds are sharp [13, 22]; the extremes occur when S is an oval or a unital.

The non-existence of semiovals of size $q+2$ in $\text{PG}(2,q)$, $q \neq 7$ derives from [5, Theorem 4].

A semioval S is called regular if every non-tangent line of $\text{PG}(2,q)$ intersects S in 0 or in a constant number a of points. Gács in [11] proved that if S is regular then S is a unital ($a = \sqrt{q} + 1$) or an oval ($a = 2$).

In this paper the full classification of semiovals and blocking semiovals in $\text{PG}(2,8)$ and in $\text{PG}(2,9)$ of size less than 17 is given.

2 Algorithm

The algorithm used is a modification of the one presented in [19].

In this case, the algorithm works on admissible sets, that is sets such that each point lies on at least one tangent line, instead of working on partial solutions. In fact, the property of being a semioval is not an hereditary feature, that is a feature conserved by all its subsets, so the weaker hereditary feature of being an admissible set has been used. It is weaker in the sense that it allows to prune few branches of the search space with respect to the cases when considering arcs and 3-arcs. This and the fact that semiovals are in general longer than arcs and 3-arcs make the problem computationally harder than the ones faced in [18, 19].

Note also that, in general, not all the admissible sets can be extended to semiovals.

The exhaustive search has been feasible because projective properties among admissible sets have been exploited to avoid obtaining too many isomorphic copies of the same solution semioval and to avoid searching through parts of the search space isomorphic to previously searched ones.

The algorithm starts constructing a tree structure containing a representative of each class of non-equivalent admissible sets of size less than or equal to a fixed threshold h. If the threshold h were equal to the actual size of the sought semiovals, the algorithm would be orderly, that is capable of constructing each goal configuration exactly once [21].

However, in the present case, the construction of the tree with the threshold h equal to the size of the sought semiovals would have been too space and time consuming. For this reason a hybrid approach has been adopted. The non-equivalent admissible sets of size h obtained have been extended using a
backtracking algorithm, trying to determine semiovals of the desired size. In the backtracking phase, the information obtained during the classification of the admissible sets has been further exploited to prune the search tree. In fact, the points that would have given admissible sets equivalent to the ones already obtained have been excluded from the backtracking steps.

A simple parallelization technique, based on data distribution, has been used to divide the load of the computation in a multiprocessor computer. In the searches, a 3.3 Ghz Intel Exacore with 16 Gb of memory has been used.

3 Semiovals in $\text{PG}(2, 8)$

The spectrum of semiovals in $\text{PG}(2, 8)$ has been determined in \cite{15} Theorem 2.1 by computational methods.

Theorem 1. There exists a semioval of size k in $\text{PG}(2, 8)$ if and only if $k \in \{9, 12 - 23\}$

Tables 1, 2, 3, and 4 summarize the results obtained using the algorithm described in Section 2. For every size, the numbers of non-equivalent semiovals and of blocking semiovals up to collineations in $\text{PG}(3, 8)$ are presented. For each size the spectrum of the possible intersection size with lines is also given: \{a_1, \ldots, a_k\} indicates that there exist i-secants for each $i \in \{a_1, \ldots, a_k\}$ and the exponent indicates the number of non-equivalent examples having a particular spectrum. All the possible spectra of intersection size with lines are listed in detail in the subsequent tables, where ℓ_i indicates the number of i-secants.

3.1 Semiovals in $\text{PG}(2, 9)$ of size less than 17

The spectrum of semiovals in $\text{PG}(2, 9)$ has been determined in \cite{17}.

Theorem 2. There exists a semioval of size k in $\text{PG}(2, 9)$ if and only if $k \in \{10, 12 - 28\}$.

We classified by computer search the semiovals S in $\text{PG}(2, 9)$ of size less than or equal to 16. Tables 5, 7, and 8 summarize the results obtained.
Table 1: Non-equivalent semiovals S in $PG(2, 8)$

Size	Semiovals	Blocking semiovals	Intersection sizes with lines																								
9	2	0	$\{0, 1, 2\}^2$																								
12	4	0	$\{0, 1, 2, 3\}^4$																								
13	2	0	$\{0, 1, 2, 3, 4\}^2$																								
14	6	0	$\{0, 1, 2, 3, 4\}^5, \{0, 1, 2, 7\}^1$																								
15	98	0	$\{0, 1, 2, 3, 4\}^{73}, \{0, 1, 2, 3, 4, 5\}^{22}, \{0, 1, 2, 3, 5\}^{11}$																								
16	435	0	$\{0, 1, 2, 3, 4, 5, 6\}^{8}, \{0, 1, 2, 3, 4, 6\}^7, \{0, 1, 2, 3, 4\}^{133}, \{0, 1, 2, 3, 7\}^1, \{0, 1, 2, 3, 4, 5\}^{236}$																								
17	1064	0	$\{0, 1, 2, 3, 4, 5, 6\}^{23}, \{0, 1, 2, 3, 4, 6\}^3, \{0, 1, 2, 3, 4\}^{226}, \{0, 1, 2, 3, 7\}^2, \{0, 1, 2, 3, 4, 5\}^{810}$																								
18	1171	0	$\{0, 1, 2, 3, 4, 5, 6\}^{69}, \{0, 1, 2, 3, 4, 6\}^5, \{0, 1, 2, 3, 4\}^{77}, \{0, 1, 2, 3, 6\}^1, \{0, 1, 2, 3, 4, 5\}^{1015}, \{0, 1, 2, 3, 5, 6\}^1, \{0, 1, 2, 3, 5\}^1, \{0, 1, 2, 3, 4, 7\}^2$																								
19	884	2	$\{0, 1, 2, 3, 4, 5, 6\}^{111}, \{0, 1, 2, 3, 4, 6\}^4, \{0, 1, 2, 3, 4\}^{14}, \{0, 1, 2, 3, 4, 5\}^{722}, \{0, 1, 2, 3, 5, 7\}^1, \{1, 2, 3, 4, 5, 6\}^2$																								
20	340	27	$\{0, 1, 2, 3, 4, 5, 6\}^{29}, \{0, 1, 2, 3, 6, 7\}^1, \{0, 1, 2, 3, 4\}^{32}, \{0, 1, 2, 3, 4, 5\}^{251}, \{1, 2, 3, 4, 5, 6\}^{11}, \{1, 2, 3, 4, 6, 7\}^3, \{1, 2, 3, 4, 5, 6, 7\}^1, \{1, 2, 3, 4, 5\}^{12}$																								
21	34	21	$\{1, 3, 7\}^1, \{0, 1, 2, 3, 4\}^8, \{0, 1, 2, 3, 4, 5\}^4, \{1, 2, 3, 4, 6\}^1, \{1, 2, 3, 4, 5, 6\}^2, \{0, 1, 1, 3, 4\}^1, \{1, 2, 3, 4, 5\}^{17}$																								
22	1	0	$\{0, 1, 2, 3, 4\}^1$																								
23	1	1	$\{1, 2, 3, 4\}^1$																								
Size	t_0	t_1	t_2	t_3	t_4	t_5	Examples	Size	t_0	t_1	t_2	t_3	t_4	t_5	Examples												
------	-------	-------	-------	-------	-------	-------	----------	------	-------	-------	-------	-------	-------	----------	------	-------	-------	-------	-------	-------	----------	------	-------	-------	-------	-------	-------
9	28	9	36	1	2	2		10	17	22	24	2	2	1													
12	19	12	30	12	1	2	4	10	17	31	9	8	3	1													
13	16	15	30	12	2	2	5	10	17	30	12	5	4	4													
14	14	14	25	18	2	2	5	5	17	29	15	2	5	2													
8	14	9	14	2	1			17	5	17	29	14	5	2													
15	12	15	21	22	9			11	15	26	17	3	1	13													
10	15	33	6	9	3	1		10	15	32	9	6	1	2													
10	15	31	12	3	2	6		10	15	30	15	1	1	6													
9	15	36	7	3	3	1		9	15	34	12	2	1	2													
11	16	12	32	2	1			10	16	18	24	5	20	1													
9	16	24	16	8	157			9	16	23	19	5	1	113													
16	8	16	26	19	2	1	1	4	16	23	18	6	4	85													
7	16	33	9	5	3	1		4	16	33	8	8	1	2													
7	16	32	12	2	4	1		4	16	32	11	5	1	5													
7	16	31	14	2	2	1		4	16	30	16	2	3	3													
6	16	36	9	3	3	1		5	16	36	14	2	1	1													
8	17	16	24	8	59			8	17	27	5	1	10	10													
17	17	22	10	11	165			18	17	22	19	8	1	388													
7	17	19	22	5	2	164		17	17	19	25	2	3	2													
6	17	28	8	14	2			16	17	27	11	11	1	22													
17	17	26	14	8	2	139		15	17	25	18	5	3	71													
17	17	25	16	8	1	7	1	15	17	24	19	5	1	15													
17	17	23	22	2	2	2	2	19	19	9	26	14	1	4													
Table 3: Semiovals S in $PG(2,8)$: intersections with lines (Part 2)

Size	t_0	t_1	t_2	t_3	t_4	t_5	t_6	t_7	Examples
20	5	19	29	11	1	1			1
	2	20	12	24	11	4			24
19	4	19	15	18	17	32			1
	4	19	14	21	14	1	50		1
	4	19	13	23	11	1	49		1
	4	19	12	27	5	3	16		3
	3	19	21	10	20	1	1		19
	3	19	20	13	17	1	5		57
	3	19	19	16	14	2	113		3
	3	19	18	19	11	3	219		51
	3	19	18	18	18	1	2		10
	3	19	17	22	8	4	100		13
	3	19	17	21	11	1	1		9
	3	19	16	25	5	5	10		4
	3	19	16	24	8	2	1		5
	3	19	15	27	5	3	1		1
	2	19	25	8	17	2	1		12
	2	19	24	11	14	3	8		1
	19	2	19	23	14	11	4	63	2
	19	2	19	23	13	14	1	5	1
	19	2	19	22	17	8	5	73	4
	19	2	19	22	16	11	2	31	3
	19	2	19	21	20	5	6	11	6
	19	2	19	21	19	8	3	1	2
	19	2	19	21	18	11	2	2	1
	19	2	19	20	22	5	4	1	1
	19	2	19	20	21	8	1	2	1
	18	1	19	28	9	11	5	1	3
	18	1	19	27	12	8	6	1	1
	1	19	27	11	11	3	1	5	1
	1	19	26	15	5	7	1		8
	1	19	26	14	8	4	1	4	4
	1	19	25	17	5	5	1	2	1
	1	19	25	16	8	2	2	3	1
	1	19	24	19	5	3	2	3	8
	1	19	30	12	5	6	1	2	3
	21	2	20	4	28	17	1	3	5
	21	2	20	10	20	28			1
	20	3	20	8	26	14	2		1
	20	3	20	7	29	11	3	1	1
	20	2	20	16	12	23	1		2
	20	2	20	15	15	20	1	4	24
	20	2	20	14	18	17	2	31	1
	20	2	20	13	21	14	3	40	1
Table 4: Semiovals S in $PG(2,8)$: stabilizer groups

Size	Stabilizer groups
9	G_{168}: 1, G_{1512}: 1
12	Z_3: 2, Z_{12}: 1, G_{36}: 1
13	Z_2: 1, Z_6: 1
14	Z_1: 2, Z_3: 2, Z_6: 1, G_{204}: 1
15	Z_1: 8, Z_2: 8, Z_3: 5, Z_6: 3, S_3: 1
16	Z_1: 412, Z_2: 7, Z_3: 12, Z_6: 1, D_4: 1
	Q_6: 1, Z_{14}: 1
17	Z_1: 1014, Z_2: 25, Z_3: 21, $Z_2 \times Z_2$: 2, Z_{14}: 1
	G_{21}: 1
18	Z_1: 1133, Z_2: 5, Z_3: 26, Z_6: 2, $Z_3 \times Z_3$: 1
	Z_9: 1, Z_{14}: 1, G_{18}: 1, G_{21}: 1
19	Z_1: 851, Z_2: 26, Z_3: 3, Z_6: 3, Z_{14}: 1
20	Z_1: 321, Z_3: 18, G_{12}: 1
21	Z_1: 26, Z_3: 6, G_{63}: 1, G_{88}: 1
22	Z_1: 1
23	G_{21}: 1

Table 5: Semiovals with a 7-secant in $PG(2,8)$

S	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7	G
1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	20	19	19	13	0	1	1	Z_1
0 1 0 1 1 0 0 1 1 3 4 5 5 5 5 5 5 6 7	0	20	19	19	13	0	1	1	Z_1
0 0 1 1 2 3 3 4 2 3 3 3 0 1 2 4 5 7 7 3	0	20	19	19	13	0	1	1	Z_1
1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	20	19	19	13	0	1	1	Z_1
0 1 0 1 1 0 1 1 3 4 5 5 5 5 5 5 6 7	0	20	19	19	13	0	1	1	Z_1
0 0 1 1 2 3 3 2 3 3 3 0 1 2 4 5 7 7 1 3	0	20	19	19	13	0	1	1	Z_1
0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	20	19	19	13	0	1	1	Z_1
0 1 0 1 1 0 0 1 3 4 4 5 5 5 5 5 6 7	0	20	19	19	13	0	1	1	Z_1
0 0 1 1 2 3 3 4 3 3 3 7 0 1 2 4 5 7 7 3	0	20	19	19	13	0	1	1	Z_1
1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	20	19	19	13	0	1	1	Z_1
0 1 0 1 1 0 1 2 3 3 5 5 5 5 5 6 6 7	0	20	19	19	13	0	1	1	Z_1
0 0 1 1 2 3 2 4 3 4 0 1 2 4 5 7 2 7 1 3	0	20	19	19	13	0	1	1	Z_1

Table 6: Non-equivalent semiovals S in $PG(2,9)$, with $|S| \leq 16$

Size	10	12	13	14	15	16
Semiovals	1	1	1	3	26	113
Table 7: Semiovals S in $PG(2, 9)$ with $|S| \leq 16$: intersections with lines

Size	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8	Examples
10	36	10	45							1
12	28	12	48	3						1
13	25	13	44	8	1					1
14	23	14	37	16	1					3
15	21	15	30	25						4
	20	15	36	17	3					18
	19	15	42	9	6					4
16	19	16	24	32						2
	18	16	30	24	3					39
	17	16	36	16	6					51
	17	16	35	19	3	1				8
	16	16	42	8	9					3
	16	16	41	11	6	1				2
	16	16	40	14	3	2				4
	15	16	48	12						2
	15	16	45	8	6	1				1
	9	16	64							2

Table 8: Semiovals S in $PG(2, 9)$ with $|S| \leq 16$: stabilizer groups

Size	G_{1440}: 1	G_{192}: 1	G_{16}: 1	Z_2: 2	$Z_2 \times Z_2$: 1	D_4: 1	Q_6: 1	Z_1: 6	Z_2: 11	Z_3: 2	Z_6: 2	S_3: 2	$Z_2 \times Z_4$: 1	D_4: 1	G_{32}: 1	G_{48}: 1	G_{192}: 1	G_{256}: 1
10																		
12																		
13																		
14																		
15																		
16																		
References

[1] D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini, F. Pambianco, On sizes of complete arcs in PG(2, q), *Discrete Mathematics*, 312 (2012) 680-698.

[2] D. Bartoli, S. Marcugini, F. Pambianco, The non-existence of some NMDS codes and the extremal sizes of complete (n, 3) arcs in PG(2, 16), submitted.

[3] L. M. Batten, Determining sets, *Australas. J. Combin.* 22 (2000), 167–176.

[4] J. Bierbrauer, Y. Edel, 41 is the largest size of a cap in PG(4,4), *Designs Codes and Cryptography*, 16 (1999), 151–160.

[5] A. Blokhuis, Characterization of seminuclear sets in a finite projective plane, *J. Geom.* 40 (1991), 15–19.

[6] K. Coolsaet, H. Sticker, The complete (k,3)-arcs of PG(2,q), q ≤ 13, *Journal of Combinatorial Designs* 20 (2012), 89-111.

[7] B. Csajbók, G. Kiss, Notes on semiarcs, *Mediterr. J. Math.* 9 (2012), 677–692.

[8] A. A. Davydov, G. Faina, S. Marcugini, F. Pambianco, On sizes of complete caps in projective spaces PG(n,q) and arcs in planes PG(2,q), *Journal of Geometry* 94 (2009), 31–58.

[9] J.M. Dover, A lower bound on blocking semiovals, *European J. Combin.* 21 (2000), 571–577.

[10] J.M. Dover, Some new results on small blocking semiovals, *Austral. J. Combin.* 52 (2012), 269–280.

[11] A. Gács, On regular semiovals, *J. Algebraic Combin.* 23 (2006), 71–77.

[12] J.W.P. Hirschfeld, L. Storme, The packing problem in statistics, coding theory, and finite projective spaces, *Proceedings of the Fourth Isle of Thorns Conference*, Eds. A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel and J.A. Thas, *Kluwer*, (2001), 201–246.

[13] X. Hubaut, Limitation du nombre de points d’un (k,n)-arc regulier d’un plan projectif fini, *Atti. Accad. Naz. Lincei Rend.* 8 (1970), 490–493.

[14] G. Kiss, A survey on semiovals, *Contributions to Discrete Mathematics*, 3 (2008), 81–95.
[15] G. Kiss, S. Marcugini, F. Pambianco, Semiovals in projective planes of small order, in: Proceedings of Algebraic and Combinatorial Coding Theory, Eleventh International Workshop, Pamporovo, Bulgaria, (2008), 151–154.

[16] G. Kiss, S. Marcugini, F. Pambianco, On the spectrum of the sizes of semiovals in PG(2, q), q odd, Discrete Mathematics 310 (2010), 3188–3193.

[17] P. Lisonek, Computer-assisted Studies in Algebraic Combinatorics, Ph.D. Thesis, RISC, J. Kepler University Linz, (1994).

[18] S. Marcugini, A. Milani, F. Pambianco, Maximal (n, 3)-arcs in PG(2, 13), Discrete Mathematics 294 (2005), 139–145.

[19] S. Marcugini, A. Milani, F. Pambianco, Complete arcs in PG(2, 25): the spectrum of the sizes and the classification of the smallest complete arcs, Discrete Mathematics 307 (2007), 739–747.

[20] F. Pambianco, L. Storme, Minimal blocking sets in PG(2, 9), Ars Combinatoria 89 (2008), 223–234.

[21] G. F. Royle, An orderly algorithm and some applications to finite geometry, Discrete Mathematics 185 (1998), 105–115.

[22] J. A. Thas, On semiovals and semifields, Geom. Dedicata 3 (1974), 229–231.