Computer-Assisted in Coiled Tubing Perforation Limitations: A Case Study from MA-X Gas Well

Kung Yee Han1, Akhmal Sidek1, Aizuddin Supee2, Radzuan Junin1, Zaidi Jaafar1, Ahmad Nabil Md Nasir3, Zakri Tarmidi4 and Shaziera Omar1

1Petroleum Engineering Department, School of Chemical & Energy Engineering, FE, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
2Energy Engineering Department, School of Chemical & Energy Engineering, FE, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
3Technical & Vocational Department, SOE, FSSH, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
4Geoinformation, FABU, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.

Email: yeehan@graduate.utm.my

Abstract. This paper seeks to determine the optimum operating conditions for deploying casing perforation guns based on CT to target depths in gas well MA-X by utilising Orpheus Model in CERBERUS. Orpheus assisted to solve the complicated scenarios and complex analysis involves mathematical modelling which is necessitates for computer processing powers. This study investigated four different Coiled Tubing (CT) intervention operational variables namely borehole assembly, CT grade outer diameter (OD), well fluid type and fractional reducer application included examined two scenarios which are running tools in (RIH) and pulling out from borehole (POOH). Only CT workstring with outer diameter between 1-1/4 inch and 2-7/8 inch is considered due to the wellbore completion minimum restriction. Constrained by economic and logistical reasons, only fresh water, 2% KCl, 15% HCl, sea water and diesel will be considered for the well bore fluid. Fractional reducer effects was simulated and analysed. Based on simulation results, the CT outer diameter 1-3/4 inch workstring optimized operation, the CT grade is QT1000 increased mechanical properties. A suitable well fluid is sea water with application of friction reducer improve CT perforation performances to achieve maximum target depth.

1. Introduction
The Ma-X gas field with water depth 818 m discovered in Malampaya-Camago area are known as deep-water gas-condensate reservoir, located offshore northwest Palawan, Philippines and geologically part of Palawan-Sabah Trough [1–3]. The well faced several challenges such as small footprint, small time window, cost, live well intervention and deviated well about 49.1° [4]. The challenge in well intervention is flowing immediately post perforation is essential in aiding cleanout of impact after debris generated and reach into desired target depth [5]. These limitations can be addressed through the usage of a CT simulator or by experience and trial error especially in stage of workover, CT perforation operation and wireline as shown in Table 1. The challenge is to optimize the CT approach in order to achieve the main goal of minimum CT runs. Currently in CT operation, there are three individual commercial software are renown for generating excellent simulation outputs namely CERBERUS by National Oil Varco (NOV), COILCade by Schlumberger and CIRCA by Baker Hughes.
Table 1. Perforation method and considerations in CT operations [6,7].

Perforation method	Advantages	Limitations
CT	• Live well intervention	• Largest workstring available off shelf 2-7/8 inch
	• Fast mobilization and rig-up	• Unable to rotate workstring
	• Small footprint	• Unable to reach target depth
	• Ability to circulate	
	• Minimized tripping time	
	• Minimal crew prerequisite	
	• Largest workstring available off shelf 2-7/8 inch	
	• Unable to rotate workstring	
	• Unable to reach target depth	

The CERBERUS simulation offers assistance in a realistic means of accurately gauging downhole CT operations. The simulated scenarios will be optimized and refined finally narrowing down to the final goal of CT runs into the well carrying maximum length of perforation guns. Most important in running tool out and into a well (RIH and POOH) are return back equipment safely to the surface and set foot into target depth inside a well [8]. The CT simulation for perforation analysis in term of force conditions need to follow such as contact fraction, hydrodynamics and buoyancy. In hydrodynamic force condition, it will have affected RIH and POOH [9].

2. Simulation Works

Table 2 shows four variables are selected simulation input to investigate with varying types and dimensions together with purposes. The Orpheus simulation to be set with speed frequency from 0 until 50 ft/min and maximum pump rate is 0.25 bpm (barrel per minute). In addition, the target depth of MA-X well is 12,743 ft, thus simulation ceases to continue when the configuration reaches the depth. Moreover, the calculation RIH and POOH scenarios behind Orpheus in CEREBRUS simulation are based on Equation 1 below.

\[
TD_{\text{max}} = f [W_{\text{od}}, X_i, X_g, X_{fr}] \quad (1)
\]

Where are \(TD_{\text{max}}\) is maximum depth achievable, \(f\) is functional, \(W_{\text{od}}\) is CT outer diameter, \(X_i\) is fluid type, \(X_g\) is workstring grade and \(X_{fr}\) is fraction reducer fluid.

Table 2. CT simulation input variables and parameters in MA-X well study.

Variables	Parameters
BHA tool workstring	OD: 3 inch to 3-3/8 inch, Length: perforation interval
CT Material Grade	OD: 1-1/4 inch to 2-7/8 inch, Grade: QT900 and QT1000
Well fluid types	Diesel (Density-7.115 ppg), Fresh Water (Density-8.33 ppg), 2% KCl (Density- 8.453 ppg), Sea water (Density- 8.536 ppg), 15% HCl (Density-8.943 ppg)
Friction Reducers (FR)	Yes, No

3. Result and Discussion

3.1 Scenario 1: RIH

A simulation barrage by using fixed well diagram, CT parameters with varying CT workstring OD for RIH operation and the results presented in Figure 1 and Figure 2 where the green numbers indicate achieve target depth and red numbers show not achieve target depth. The 1-1/4 inch of OD CT workstring with grade QT900 is unable to RIH until target depth, in all specified fluid systems regardless of fractional reducers. For the same workstring with 1-1/4 inch OD with grade QT1000, it is also unable
to run target depth for non-fractional reduced fluid system. The 1-1/4 inch of OD CT workstring grade QT1000 is able to RIH until target depth but only for fractional reduced fluid systems of fresh water, 2% KCl, sea water and 15% HCl. The 1-1/2 inch OD of CT workstring with grade QT900 is unable to RIH to target depth, in all specified fluid systems except for 15% HCl fluid system. In addition, the 1-1/2 inch OD of CT workstring with grade QT1000 is able to RIH to target depth and only for fractional reduced fluid systems of fresh water, 2% KCl, sea water and 15% HCl. For 2 inch, 2-1/8 inch, 2-3/8 inch and 2-7/8 inch OD of CT workstrings for both grades QT900 and QT1000; all workstring configurations are able to reach target depth for all fluid systems, either with fractional reduced or not. In term of economically in RIH operation, the 1-1/2 inch OD of CT workstring with grade QT1000 and sea water as fractional reducer are more feasible and less time consumption. Based on RIH simulations, it can be suggested that relationship between the CT workstring OD and maximum depth achievable in a well intervention is straight forward and proportionate. Therefore, the bigger the OD of the CT workstring, the maximum depth achievable in the intervention increases as mentioned by Elliot [10] and Satti et al. [11].

Figure 1. Simulation of RIH with maximum depth achieved against CT workstring OD.

CT OD (inches)	CT Grade	Well Fluid Type	Distribution of favorable RIH input to reach target depth
1/4 1-1/2	QT900	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1/4 1-1/2	QT1000	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1 1/4	QT900	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1 1/4	QT1000	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1 1/4	QT900	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1 1/4	QT1000	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1 1/2	QT900	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1 1/2	QT1000	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1 1/2	QT900	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1 1/2	QT1000	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1 3/4	QT900	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
1 3/4	QT1000	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
2	QT900	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
2	QT1000	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
2 1/8	QT900	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
2 1/8	QT1000	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
2 3/8	QT900	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
2 3/8	QT1000	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
2 7/8	QT900	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR
2 7/8	QT1000	Non-FR, FR	FR, Non-FR, FR, Non-FR, FR, Non-FR, FR, Non-FR, FR

Figure 2. Simulation results of RIH parameters.

Apart from that, additional force would be necessary to push the CT workstring into the well fluid to overcome fluid buoyancy. This creates additional burden on the injector head on the surface. It will have
to supply additional force (downward direction) to counter the buoyancy force presented by the well fluid were buoyancy force is directly proportional to the fluid density. Thus, the denser the fluid, the harder it is for CT to RIH from desire target depth.

3.2 Scenario 2: POOH

A summarized finding of all the POOH scenarios enabled to arrive inference in Figure 3 which are green numbers indicate achievable depth and red numbers not achieve depth. It can be seen that the 1-1/4 inch, 1-3/4 inch and 1-1/2 inch OD of CT workstring with grade QT900 and QT1000 is unable to POOH from target depth included all fluid systems when fractional reducers is not used. For all workstring configuration of 1-1/4 inch, 1-1/2 inch, 2 inch, 2-1/8 inch, 2-3/8 inch and 2-7/8 inch OD for both QT900 and QT1000; POOH from target depth is favourable for all fractional reduced fluid systems with the exception of the 1-1/4 inch OD of CT workstring with grade QT900, which is unable to POOH of TD with only when drag reduced diesel is present in the well. The 1-3/4 inch, 2 inch and 2-1/8 inch OD of CT workstring grade with QT900 is unable to POOH from target depth for all fluid systems when fractional reducers is not used. It can be proposed that the 1-3/4 inch OD of CT workstring with sea water fluid system without fractional reducers is more favourable and low cost included to counter logistic issues. This result showed that in POOH scenario, the injector head provides a tensile load effectively pulling the workstring out of the completion into the surface. Contact friction now acts in reverse direction as compared to initial RIH. Additionally, workstring hanging weight now acts in the opposite direction of motion inadvertently increasing the stress in the CT workstring as oppose to initially assisting in the RIH operation. Assisting workstring motion are also the bottom hole pressure and flow friction. Pulled into tension loading, the workstring enters a gravity stabilized profile as suggested by Livescu and Craig [12] Guimaraes et al. [13].

CT OD (inches)	CT Grade	Acidity	Wall Fluid Type	No. of PTs	NW (lbf)	NW (kN)	NW (ton)
1 1/4	QT900	0.457	Diesel(150-180)	404	2.42	1.09	1.09
1 1/2	QT900	0.457	Diesel(180-200)	404	2.42	1.09	1.09
1 3/4	QT900	0.457	Diesel(200-230)	404	2.42	1.09	1.09
2	QT900	0.457	Diesel(230-260)	404	2.42	1.09	1.09
2 1/8	QT900	0.457	Diesel(260-300)	404	2.42	1.09	1.09
2 3/8	QT900	0.457	Diesel(300-350)	404	2.42	1.09	1.09

Figure 3. Simulation results of POOH parameter with gas in CT and fluid in well.

4. Conclusion

A summarized finding of all the RIH & POOH scenarios in gas well MA-X assisted by CERBERUS simulation model for maximum depth achievable with CT workstring OD are following sequence are the 1-1/4 inch, 1-1/2 inch, 1-3/4 inch, 2 inch, 2-1/4 inch 2-3/8 inch and 2-7/8 inch. However, the
optimum OD that suitable for perforation project in this study is 1-3/4 inch. The suitable well fluid type in this perforation project is sea water because economical, logistical friendly and easily procured and requiring no storage tanks to reduce small footprint issues. Application of fraction reduced fluid will lower friction hence assist in RIH and POOH operations.

References
[1] Coletti G, Basso D and Frixa A 2017 *Rhodolith/Maërl Beds: A Global Perspective* Riosmena-Rodriguez R, Nelson W, Aguirre J Springer International Publishing pp 87-101
[2] Lallier F, Caumon G, Borgomano J, Viseur S, Fournier F, Antoine C and Gentilhomme T 2012 *Geological Society of London, Special Publications* 370 pp 265-275
[3] Sidek M A M, Hamzah U and Junin R 2015 *Jurnal Teknologi* 75 pp 115-125
[4] Warrlich G, Taberner C, Asyee W, Stephenson B, Esteban M, Boya-Ferrero M, Dombrowski A and Van Konijnenburg JH 2010 *Cenozoic carbonate systems of Australasia* SEPM (Society for Sedimentary Geology) 95 pp 99-127
[5] Rao K V, Brinsden M S, Gilliat J, Tan K Y, Bhagwat M, Harvey N and Bhushan V 2014 *SPE Asia Pacific Oil & Gas Conference and Exhibition* (Adelaide, Australia) pp 171527
[6] Løge S 2015 *Review of completion technologies* (University of Stavanger Norway)
[7] Bellarby J 2009 *Well completion design* (Elsevier Science)
[8] Imbazi O, Ugoh O, Okloma E, Osuagwu M, Enyioko C, Ighavini E and Uzodinma C, 2019 *SPE Subsea Well Intervention Symposium* (Galveston, Texas) pp 197974
[9] Singh I, Saraf A, Pathak A R, Bandyopadhyay B, Dehingia M, Wijoseno D A, Shaik M and Rao D P 2020 *Offshore Technology Conference* (Houston) pp 30532
[10] Elliott S 2011 *World oil* 232 pp 57-64
[11] Satti R, White R, McClean C, Ochsner D, Zuklic S, Chong J, Bouziane C, Oghittu P and Fager A 2018 *Offshore Technology Conference* (Houston, Texas) pp 28693
[12] Livescu S and Craig S 2015 *SPE J.* 20 pp 396–404.
[13] Guimaraes C, Delgado E, Galvao L, Frotte A, Gouveia M and Borges C 2019 *Offshore Technology Conference Brasil* (Rio de Janeiro, Brazil) pp 29839

Acknowledgement
We would like to thank Mr. Jeff Holbrook from CTES, NOV company to give permission to use in-house CERBERUS simulation suite software for educational purposes and Petroleum Simulation Lab UTM to facilitated computer software.