EXTREMAL RESULTS ON G-FREE COLORINGS OF GRAPHS

YASER ROWSHAN

Abstract. Let $H = (V(H), E(H))$ be a graph. A k-coloring of H is a mapping $\pi : V(H) \rightarrow \{1, 2, \ldots, k\}$ so that each color class induces a K_2-free subgraph. For a graph G of order at least 2, a G-free k-coloring of H is a mapping $\pi : V(H) \rightarrow \{1, 2, \ldots, k\}$ so that the subgraph of H induced by each color class of π is G-free, i.e. contains no copy of G. The G-free chromatic number of H is the minimum number k so that there is a G-free k-coloring of H, denoted by $\chi_G(H)$. A graph H is uniquely k-G-free coloring if $\chi_G(H) = k$ and every k-G-free colouring of H produces the same color classes. A graph H is minimal with respect to G-free, or G-free-minimal, if for every edges of $E(H)$ we have $\chi_G(H \setminus \{e\}) = \chi_G(H) - 1$. In this paper we give some bounds and attribute about uniquely k-G-free colouring and k-G-free-minimal.

1. Introduction

All graphs G considered in this paper are undirected, simple, and finite graphs. For given graphs G, we denote its vertex set, edge set, maximum degree, and minimum degree by $V(G)$, $E(G)$, $\Delta(G)$, and $\delta(G)$, respectively. The number of vertices of G is define by $|V(G)|$. For a vertex $v \in V(G)$, we use $\deg_G(v)$ (deg v) and $N_G(v)$ to denote the degree and neighbors of v in G, respectively.

The join of two graphs G and H, define by $G \oplus H$, is a graph obtained from G and H by joining each vertex of G to all vertices of H. The union of two graphs G and H, define by $G \cup H$, is a graph obtained from G and H, where $V(G \cup H) = V(G) \cup V(H)$ and $E(G \cup H) = E(G) \cup E(H)$. For convenience, we use $[n]$ instead of $\{1, 2, \ldots, n\}$. A k-vertex coloring of H is a partition of $V(H)$ into k color classes such that vertices in the same class are not adjacent. Moreover, H is called uniquely vertex k-colorable if every k-coloring of it induces the same partition on $V(H)$. Also, H is minimal with respect to k-vertex coloring of H, if for every edges of $E(H)$ we have $\chi(H \setminus \{e\}) = \chi(H) - 1$.

Uniquely vertex k-colorable have been studied by Chartrand and Geller [2], Aksionov [1], Harary, Hedetniemi, and Robinson [12], Bollobás [3,4], Borowiecki and Burchardt [5], Alishahi and Taherkhani [2, and Xu [15]. An (n, k)-coloring of a H corresponds to the partition of $V(H)$ into n color classes, so that the induces a subgraph with each color class whose maximum degree does not exceed k. A graph H is uniquely (n, k)-colorable if it is (n, k)-colorable and every (n, k)-coloring of H produces the same color classes. M. Frick and M. A. Henning show that the following results is true.

Theorem 1. [17] Suppose H be a uniquely (n, k)-colorable graph, where $n \geq 2$ and $k \geq 1$. Hence:

$$|V(H)| \geq n(k + 1) - 1.$$

Theorem 2. [14] For each $n \geq 2$ and $k \geq 1$, there exists a uniquely (n, k)-colorable graph with $n(k + 1) - 1$ member.

1.1. G-free coloring. The conditional chromatic number $\chi(H, P)$ of H, is the smallest integer k for which there is a decomposition of $V(H)$ into k color class say V_1, \ldots, V_k, so that $H[V_i]$ satisfies the property P, where P, is a graphical property and $H[V_i]$ is a the induced subgraph on V_i, for each $1 \leq i \leq k$. This extension of graph coloring was presented by Harary in 1985 [11]. Suppose

2010 Mathematics Subject Classification. 05C15, 05C35.
Key words and phrases. Conditional Chromatic number, G-free coloring, uniquely k-G-free, G-free minimal.
that \(\mathcal{G} \) be a families of graphs, when \(P \) is the feature that a subgraph induced by each color class does not contain each copy of members of \(\mathcal{G} \), we write \(\chi^\mathcal{G}(H) \) instead of \(\chi(H, P) \). In this regard, we say a graph \(H \) has a \(\mathcal{G} \)-free \(k \)-coloring if there is a map \(\pi : V(H) \rightarrow \{1, 2, \ldots, k\} \) such that each color class \(V_i = \pi^{-1}(i) \) does not contain any members of \(\mathcal{G} \). For simplicity of notation if \(\mathcal{G} = \{G\} \), then we write \(\chi^\mathcal{G}(H) \) instead of \(\chi^\mathcal{G}(H) \).

An ordinary \(k \)-coloring of \(H \) can be viewed as \(\mathcal{G} \)-free \(k \)-coloring of a graph \(H \) by taking \(\mathcal{G} = \{K_2\} \). It was shown that for each graph \(H \), \(\chi(H) \leq \Delta(H) + 1 \). The well-known Brooks theorem states that for any connected graph \(H \), \(\chi(H) \leq \Delta(H) \) if \(H \) is a connected and is neither an odd \(C_n \) nor a \(K_n \), then \(\chi(H) \leq \Delta \) [6]. One can refer to [2, 7, 8, 13, 14] and it references for further studies.

A graph \(H \) is uniquely \(k \)-G-free colouring if \(\chi^G(H) = k \) and every \(k \)-G-free colouring of \(H \) produces the same color classes, and a graph \(H \) is minimal with respect to \(G \)-free, or \(G \)-free-minimal, if for every edges of \(E(H) \) we have \(\chi^G(H \setminus \{e\}) \leq \chi^G(H) - 1 \).

In this article we investigate some properties of uniquely \(k \)-G-free and \(G \)-free-minimal coloring of graphs as follow:

Theorem 3. Let \(H \) and \(G \) be two graph and \(k \geq 1 \) be a integers. Assume that \(H \) is uniquely \(k \)-G-free colourable graph, hence we have:

\[
|V(H)| \geq k|V(G)| - 1.
\]

Theorem 4. Let \(G \) be a graph with \(m \) vertices and \(k \geq 1 \) be an integers. Then:

I : There exists a \(k \)-G-free colourable graph, with \(km - 1 \) members where \(k - 1 \) class has \(m \) member and one class has a \(m - 1 \) member.

II : If \(m \geq 2\delta(G) - 1 \) and \(\delta(G) = 1 \), then there exists a uniquely \(k \)-G-free colourable graph with \(km - 1 \) members and if \(\delta \geq 2 \) then there exist many \(k \)-G-free colourable of a graph with \(km - 1 \) members.

III : If there exists a uniquely \(k \)-G-free colourable graph with \(km - 1 \) members, then for each \(i \geq 1 \) there exists a uniquely \(k \)-G-free colourable graph with \(km + i - 1 \) members.

Theorem 5. Let \(H \) and \(G \) be two graph and \(k \geq 1 \) be a integers. Assume that \(H \) is uniquely \(k \)-G-free colourable graph, \(|V(G)| = m \), \(\delta(G) = \delta \), \(|E(H)| = e_1 \) and \(|E(G)| = e_2 \), hence:

\[
e_1 \geq k(e_2 - \delta + \frac{k+1}{2}(m\delta)).
\]

Theorem 6. \(H \) is \(k \)-G-free-minimal iff either \(H \) is a graph \(K_{(k-1)(m-1)+1} \) minus the edges of a 1-factor, when \(k \) is even, or \(H \cong H_1 \oplus K_1 \), where \(H_1 \) is a graph \(K_{(k-1)(m-1)} \) minus the edges of a 1-factor, when \(k \) is odd, where \(G \) be a such connected graph with \(m \)-members.

2. **Uniquely \(G \)-Free Graph**

Definition 7. A graph \(H \) is uniquely \(k \)-G-free colouring if \(\chi^G(H) = k \) and every \(k \)-G-free colouring of \(H \) produces the same color classes.

In this section we investigate some properties of uniquely \(k \)-G-free coloring of graphs and give a lower bounds on the vertices of uniquely \(k \)-G-free graphs \(H \). In the following theorem we determine a lower bound for the size of uniquely \(k \)-G-free coloring of \(V(H) \).

Theorem 8. Let \(H \) and \(G \) be two graph and \(k \geq 1 \) be a integers. Assume that \(H \) is uniquely \(k \)-G-free colourable graph (\(u-k-G-f \)), then:

\[
|V(H)| \geq k|V(G)| - 1.
\]

Proof. Assume that \(|V(H)| = n \) and \(|V(G)| = m \) and let \(V_1, V_2, \ldots, V_k \) be a uniquely \(k \)-partition of \(V(H) \) where \(H[V_i] \) is a G-free class. Now, considering the following claim.
Claim 9. $|V_i| \geq m - 1$ for each $i \in [k]$.

Proof. By contrary, suppose that there exist at least one i say $i = 1$, such that, $|V_1| \leq m - 2$. Set $v \in V_2$ and set $V'_1 = V_1 \cup \{v\}$, $V'_2 = V_2 \setminus \{v\}$ and $V'_i = V_i$ for $i \geq 3$, hence we have $H[V'_i]$ is G-free, a contradiction.

Claim 10. For at most one i, we have $|V_i| = m - 1$.

Proof. By contrary, suppose that $|V_1| = |V_2| = m - 1$. In this case set $v_i \in V_i$ for $i = 1, 2$, and set $V'_1 = (V_1 \setminus \{v_1\}) \cup \{v_2\}$, $V'_2 = (V_2 \setminus \{v_2\}) \cup \{v_1\}$ and $V'_i = V_i$ for $i \geq 3$, hence we have $H[V'_i]$ is G-free, a contradiction again.

Now by Claim 1, 2 we have $|V(H)| \geq k|V(G)| - 1$ and the proof is complete.

In the next theorem we establish that the bounds in Theorem 8 is best possible. Also we show that if there exists a uniquely k-G-free colourable graph with $km - 1$ members, then for each $i \geq 1$ there exists a u-k-G-f with $km + i - 1$ members.

Theorem 11. Let G be a graph with m vertices and $k \geq 1$ be an integers. Then:

I : There exists a k-G-free colourable graph, with $km - 1$ members where $k - 1$ class has m member and one class has a $m - 1$ member.

II : If $m \geq 2\delta(G) - 1$ and $\delta(G) = 1$, then there exists a u-k-G-f with $km - 1$ members and if $\delta \geq 2$ then there exist many k-G-free colourable of a graph with $km - 1$ members.

III : If there exists a u-k-G-f with $km - 1$ members, then for each $i \geq 1$ there exists a u-k-G-f with $km + i - 1$ members.

Proof. Suppose that H_i for $i = 1, 2, \ldots, k + 1$ be a graph, where $H_i \cong K_{m-1}$ for each $i = 1, 2, \ldots, k$, and $H_{k+1} \cong K_{k-1}$ where $V(H_{k+1}) = \{v_1, v_2, \ldots, v_{k-1}\}$. For each $i = 1, 2, \ldots, k$ define $H'_i = H_i \cup \{v_i\}$, so that v_i is adjacent to at most $\delta(G) - 1$ vertices of $V(H_i)$, and define $H'_1 = H_k$. Set $H = \bigoplus_{i=1}^{k+1} H'_i$. Hence, we can say that $|V(H)| = km - 1$. Since $|V(H'_i)| = m$ and $|N_{H'_i}(v_i)| \leq \delta - 1$, we can check that for each i, H'_i is G-free, that is $\chi_G(H) \leq k$. Now we have the following claim:

Claim 12. $\chi_G(H) = k$.

Proof. For $k = 1$ its clearly, hence assume that $k \geq 2$. By contradiction assume that $\chi_G(H) \leq k - 1$, and let $V_1, V_2, \ldots, V_{k-1}$ be a $(k - 1)$-partition of $V(H)$ where $H[V_i]$ is a G-free class. Since $H[i \cap \cup_{i=1}^{k} H_i] \cong K_{k(m-1)}$ we have $\omega(H) \geq k(m-1)$, hence for at least one i we have $|V_i \cap \cup_{i=1}^{k} H_i| \geq m$ a contradiction. That is $\chi_G(H) \geq k$ and the proof is complete.

Therefore by Claim 12 and by definition H one can say that the part (I) is true. To prove (II), by Claim 12 assume that V_1, V_2, \ldots, V_k be a k-partition of $V(H)$, where $H[V_i]$ is a G-free for each $i \in [k]$ and H is a graph constructed in part I. Hence, it easy to check that the following claim is true.

Claim 13. $|V_i \cap \cup_{i=1}^{k} H_i| = m - 1$ for each $i \in [k]$.

Therefore, by Claim 13 we have the claims as follow:

Claim 14. $|V_i| \leq m$ for $i = 1, 2, \ldots, k$.

Proof. By contrary, suppose that $|V_i| \geq m + 1$ for at least one i, say $i = 1$, and assume that $\{x_1, x_2, \ldots, x_{m+1}\} \subseteq V_1$. Since $H[V_1]$ is G-free, $\chi_G(H) = k$ and by Claim 13 we have $|V_1 \cap \cup_{i=1}^{k} H_i| = m - 1$. W.l.g let $V_1 \cap \cup_{i=1}^{k} H_i = \{x_1, x_2, \ldots, x_{m-1}\}$, that is $x_m, x_{m+1} \in V(H_{k+1})$. W.l.g suppose that $x_m = v_1$ and $x_{m+1} = v_2$. So, since $H[V_1]$ is G-free, $|N_H(v_1) \cap \{x_1, x_2, \ldots, x_{m-1}\}| \leq \delta - 1$, that is $\{|x_1, x_2, \ldots, x_{m-1}| \cap V(H_i)| \geq m - \delta$ for $i = 1, 2$. As $m \geq 2\delta - 1$ one can say that there exist at least one $i \in [2]$, say $i = 1$ so that $|N_H(v_1) \cap \{x_1, x_2, \ldots, x_{m-1}\}| \geq \delta$, a contradiction to
\[|N_H(v_i) \cap \{x_1, x_2, \ldots, x_{m-1}\}| \leq \delta - 1, \text{ that is the assumption does not hold and the proof of claim is complete.} \]

Now since \(n = km - 1 \) and by Claim 12, 13 and 14 let \(|V_i| = m \) for \(i = 1, 2, \ldots, k-1 \) and \(|V_k| = m - 1 \). So, suppose that \(\delta = 1 \) and consider the following claim:

Claim 15. The coloring provided is unique.

Proof. Consider \(V_{i'} \). Since \(|V_{i'}| = m \) for each \(i' \in [k-1] \) then \(|V_{i'} \cap (\bigcup_{j=1}^{i} H_j)| = m - 1 \) by Claim 13 and \(|V_{i'} \cap V(H_j)| = 1 \) for each \(i' \in [k-1] \), let \(v_{i'} \in V_{i'} \cap V(H_j) \) for each \(i' \in [k-1] \). If there exists \(i, j \in [k] \) where \(|V_{i'} \cap V(H_j)| \neq 1 \), then one can check that \(\deg_{H[H_{i'}]}(v_{i'}) \geq 1 \), therefore \(G \subseteq H[V_{i'}] \), a contradiction. Hence, \(V_{i'} = V(H_j) \) for one \(i \in [k] \), so, w.l.g suppose that \(i' = i \) for each \(i' \in [k-1] \). Now, as \(H[V_{i'}] \) is \(G \)-free and \(\delta = 1 \), we have \(v_{i'} = v_i \), otherwise \(G \subseteq H[V_{i'}] \) a contradiction again. Hence it easy to check that \(V_{i'} = V(H_j') \) for each \(i' \in [k] \) and this coloring is unique.

Therefore by Claim by 15 if \(\delta(G) = 1 \) then the coloring provided is unique. Now, by considering \(\delta(G) \) we have the following claim:

Claim 16. If, \(\delta(G) \geq 2 \), then the coloring provided \(H \) is not unique, where \(H \) is a graph as defined in part I.

Proof. As \(\chi(H, V_i) = k \), suppose that \(V_1, V_2, \ldots, V_k \) be are coloring of \(V(H) \), where, \(V_i = V(H_i) \) for each \(i = 1, 2, \ldots, k \), therefore, \(H[V_i] \) is \(G \)-free. Consider \(V_i \), for \(i = 1, 2 \), as \(v_i \in V_i \) and \(|N(v_i) \cap V_i| = \delta - 1 \) for each \(i \in \{1, 2\} \) and \(\delta \geq 2 \), w.l.g suppose that \(v_1 \in N(v_i) \cap V_i \) for each \(i \in \{1, 2\} \). Now, considering \(V'_1, V'_2, \ldots, V'_k \) be are partition of \(V(H) \), where \(V'_i = V_i \) for each \(i = 3, 4, \ldots, k \), and \(V'_1 = V_1 \setminus \{v'_1\} \cup \{v'_2\} \) and \(V'_2 = V_2 \setminus \{v'_2\} \cup \{v'_1\} \). Therefore, by definition \(H \), one can check that \(v_1v'_2 \in E(H), v_2v'_1 \in E(H), \) and \(|N(v_i) \cap V'_i| = \delta - 1 \) for each \(i \in \{1, 2\} \). Hence, as, \(V_i = V'_i \) for each \(i \geq 3 \), and for \(i = 1, 2, |V'_i| = m \), and \(|N(v_i) \cap V'_i| = \delta - 1 \), we can say that \(H[V'_i] \) is \(G \)-free. Hence, since \(V_i \neq V'_i \) for \(i = 1, 2 \), we have the coloring provided \(H \) is not unique.

Therefore by Claim 16 if \(\delta(G) \geq 2 \) then the coloring provided is not unique and by considering any \(v \in V_i \) and \(v' \in V_j \) for each \(i, j \in [k] \) we can say there exist many \(k \)-G-free colourable of a graphs \(H \) with \(km \) \(m \)-members.

To prove (III), assume that \(H \) be a \(u \)-k-G-f with \(km - 1 \) members. Suppose that \(V_1, V_2, \ldots, V_k \) be the partition of \(V(H) \), so that \(H[V_i] \) is \(G \)-free for each \(i \in [k] \) and suppose that \(|V_k| = m - 1 \). Therefore, since \(H \) be a \(u \)-k-G-f, one can say that \(H[V_i \cup \{v\}] \) contain a copy of \(G \) say \(G_i \) consist of \(v \), for each \(v \in V_k \) and each \(i \leq k - 1 \). W.l.g assume that \(v_1 = N(u) \cap G_i \). Set \(H' = H \cup \{u\} \), where \(u \) is adjacent to all vertices of \(V'_1 \), for each \(i = 1, 2, \ldots, k - 1 \). Now, in \(H' \), for \(i = 1, \ldots, k \) set \(W_i \), so that \(W_i = V_i \) for each \(i \leq k - 1 \) and \(W_k = V_k \cup \{u\} \). As, \(W_i = V_i \) for each \(i \leq k - 1 \), \(N(u) \cup V_k = \emptyset \) and \(H \) be a \(u \)-k-G-f, one can check that, \(H' \) be a \(u \)-k-G-f graph with \(km \) members. By this way it is easy to check that for each \(i \geq 1 \) there exists a uniquely \(k \)-G-free colourable graph with \(km + i - 1 \) members.

Suppose that \(H \) is uniquely \(k \)-G-free graph where \(|E(H)| = e_1 \) and \(|E(G)| = e_2 \), in the following theorem we determine a lower bound for the size of \(E(H) \).

Theorem 17. Let \(H \) and \(G \) be two graph and \(k \geq 1 \) be a integers. Suppose that \(H \) is \(u \)-k-G-f, where \(|V(G)| = m, \delta(G) = \delta, |E(H)| = e_1 \) and \(|E(G)| = e_2 \), then:

\[
e_1 \geq k(e_2 - \delta + \frac{k+1}{2}(m\delta)).
\]

Proof. Suppose that \(|V(H)| = n, |V(G)| = m \) and let \(V_1, V_2, \ldots, V_k \) be a uniquely \(k \)-partition of \(V(H) \) where \(H[V_i] \) is a \(G \)-free class. As \(H \) is \(u \)-k-G-f, one can say that for any \(i \in \{1, 2, \ldots, k\} \)
and each $v \in V_i$, we have $G \subseteq H[V_j \cup \{v\}]$, for each $j \neq i$, that is $|E(H[V_i])| \geq e_2 - \delta$ and $|N_{V_j}(v)| \geq \delta$. Therefore it is easy to check that, $e_1 = \sum_{i=1}^{k} |E(H[V_i])| + \sum_{i=1}^{k-1} e_{ij}$ where $e_{ij} = \sum_{j=i+1}^{k} |E(H[V_i, V_j])|$ for each $i \in \{1, 2, \ldots, k\}$. It is easy to say that $e_{ij} \geq (k - i)m\delta$ for each i. Hence, one can check that:

$$e_1 \geq k(e_2 - \delta) + \frac{k(k+1)}{2}(m\delta) = k(e_2 - \delta + \frac{k+1}{2}(m\delta)).$$

Which means that the proof is complete. ■

In the next results we give some attribute about uniquely k-G-free colouring. It is easy to check that the following results is true.

Corollary 18. Let H and G be two graph and $k \geq 1$ be a integers. Assume that H is u-k-G-f where $|V(G)| = m$, $\delta(G) = \delta$, hence we have:

- For each $t \leq k - 1$, the subgraph induced on the union of any t colour-classes of the unique colouring is an uniquely t-G-free colourable graph.
- Each vertex $v \in V(H)$ is adjacent with at least δ vertex in every colour class other than the colour class containing v, which means that in H, $\delta(H) \geq (k - 1)\delta$.

Theorem 19. Let H and G be two graph and $k \geq 1$ be a integers. Assume that H is u-k-G-f where $|V(G)| = m$, $\delta(G) = \delta$, hence; If for a vertex v of H we have $\deg(v) = (k - 1)\delta$ and the colour class of v contains more than m vertex, then $H \setminus \{v\}$ is also u-k-G-f.

Proof. Suppose that H be a u-k-G-f, and assume that V_1, V_2, \ldots, V_k be the partition of $V(H)$, so that $H[V_i]$ is G-free, $|V_i| = m+1$ and there exist a vertex of V_i say v so that $\deg(v) = (k - 1)\delta$. As H be a u-k-G-f, one can say that $|N(v) \cap V_i| = \delta$ for each $i \in \{2, 3, \ldots, k\}$. Otherwise if there exist at least one i, so that $|N(v) \cap V_i| \leq \delta - 1$, then one can say that $H[V_i \cup \{v\}]$ is a G-class, hence set $V'_i = V_i \setminus \{v\}$, $V'_i = V_i \cup \{v\}$ and $V'_j = V_j$ for each $j \in [k], j \neq 1, i$. Therefore, for each $i \in [k], H[V'_i]$ is G-free, a contradiction. Now considering the following claim:

Claim 20. $H' = H \setminus \{v\}$ is u-k-G-f.

Proof. As $|V_i| \geq m+1$, and H be a u-k-G-f, one can say that $H' = H \setminus \{v\}$ is k-G-f-colourable, by considering $V_1 \setminus \{v\}, V_2, \ldots, V_k$. Now, by contrary suppose that the coloring provided H' is not unique. Therefore as H be a u-k-G-f and the coloring provided H' is not unique, then there exist a vertex u of some $V_i(i \geq 2)$ say $u \in V_i$ so that $V'_i = V_i \setminus \{v\}$, $V'_i = V_i \setminus \{u\}$ and $V'_j = V_j$ for each $j \geq 2$ and $j \neq i$ be a new k-G-f-color class of $V(H')$. W.l.g we may suppose that $i = 2$. As H be a u-k-G-f, one can say that $uvw \in E(H)$. Now as $uw \in E(H)$ and $|N(v) \cap V_i| = \delta$ for each $i \in \{2, 3, \ldots, k\}$, one can check that $V'_i = (V_i \setminus \{u\}) \setminus \{v\}$, $V'_2 = (V_2 \setminus \{u\}) \cup \{v\}$ and $V'_j = V_j$ for each $j \geq 3$ be a new k-G-f-color class of $V(H)$, a contradiction. ■

Hence, by Claim 20 the proof is complete. ■

3. G-free minimal

Definition 21. A graph H is vertex-minimal with respect to G-free, or G-free-vertex-minimal for short, if for every vertex of $V(H)$, $\chi_G(H \setminus \{v\}) \leq \chi_G(H) - 1$.

In this section we investigate some properties of G-free-vertex-minimal (G-f-v-m) coloring of graphs and give some lower bounds on the vertices of G-f-v-m graphs H. The following theorem establishes a lower bound for the size of G-f-v-m coloring of H.
Theorem 22. Let H and G be two graph and $k \geq 1$ be a integers. Assume that H is k-G-f-v-m graphs, then:

$$|V(H)| \geq (k-1)(|V(G)| - 1) + 1.$$

Proof. Suppose that $|V(H)| = n$, $|V(G)| = m$ and let V_1, V_2, \ldots, V_k denote the partite sets of $V(H)$, so that $H[V_i]$ for each $i \in [k]$ is G-free and $H[V_i]$ is a maximal G-free class of $H \setminus \bigcup_{j=1}^{i-1} V_j$ for each $i = i, \ldots, k$. As $\chi_G(H) = k$, we can say that $|V_k| \geq 1$. Assume that $v \in V_k$. Therefore by maximality V_i, one can say that $H[V_i \cup \{v\}]$ for each $i \leq k - 1$, contain a copy of G, that is $|V_i| \geq m - 1$ for each $1 \leq i \leq k - 1$. Hence:

$$|V(H)| \geq (k-1)(|V(G)| - 1) + 1.$$

By Theorem 22, it is easy to say that the following results is true.

Theorem 23. Let H and G be two graph where $|V(H)| = (k-1)(|V(G)| - 1) + 1$ for some $k \geq 2$. If there exist a subsets of $V(H)$ say S, where $|S| \geq |V(G)|$, then:

$$\chi_G(H) \leq k - 1.$$

By Theorem 23, one can say that $K_{(k-1)(|G|-1)+1}$ be a k-G-free graphs, for each G. We shall now construct k-G-f-v-m graphs with order $(k-1)(|V(G)| - 1) + 1$. Suppose that for $i = 1, 2, \ldots k - 1$, H_i denote a $K_{(m-2)}$ and $H_k \cong K_k$, where $k \leq m - 1$. Set $H_1 = \bigoplus_{i=1}^{k-1} H_i \cong K_{(k-1)(m-2)}$ and suppose that $V(H_k) = \{v_1, v_2, \ldots, v_k\}$. Let for each $i \in \{1, 2, \ldots, k - 1\}$ denote a $H_i' = H_i \cup \{v_i\}$, where v_i is adjacent to $m - 3$ vertices of $V(H_i)$ and $H_k' = \{v_k\}$, say $v_i w_{m-2} \not\in E(H')$, where w_{m-2} be a vertex of H_i for each $i \in \{1, 2, \ldots, k - 1\}$. Now, set $H^* = \bigoplus_{i=1}^{k-1} H_i'$. Not that $|V(H^*)| = (k-1)(m-1)+1$ and $\delta(H^*) = (k-1)-(m-1)-1$. Assume that F denote a family of connected subgraph of K_m with m vertices and minus the edges of a tK_2 where $t = \frac{m}{2}$. Now, we have the following theorems:

Theorem 24. For each $G \in F$, H^* is k-G-free vertex-minimal.

Proof. Since $k \leq m - 1$, we can say that H_i is G-free, that is $\chi_G(H) \leq k$. As $H_1 \cong K_{(k-1)(m-2)} \subseteq H^*$, $|\omega(H^*)| \geq (k-1)(m-2)$ and by denote H^*, we can check that $|\omega(H^*)| = (k-1)(m-2)+1$. W.l.g, suppose that $V' = \{x_1, \ldots, x_{(k-1)(m-2)}\} \subseteq V(H^*)$, where $H^*[V'] \cong K_{(k-1)(m-2)}$. Now, we have the claims as follow:

Claim 25. For any S subsets of $V(H^*)$ with m member, $G \subseteq H^*[S]$.

Proof. Suppose that $S = \{s_1, \ldots, s_m\}$. Consider $|S \cap V'| \geq m - 1$, then one can say that $K_m \setminus e \subseteq H^*[S]$, therefore $G \subseteq H^*[S]$. Now, suppose that $|S \cap V'| \leq m - 2$. Assume that $|\omega(H^*[S])| = t$, and w.l.g suppose that $S' = \{s_1, \ldots, s_t\} \subseteq S$, where $H^*[S'] \cong K_t$. Consider $\overline{S'} = S \setminus S'$. As $|\omega(H^*[S])| = t$, we can say that $N_H(s) \cap S' \leq t - 1$ for each $s \in \overline{S'} = \{s_{t+1}, \ldots, s_m\}$. As, $\delta(H^*) = (k-1)(m-1) - 1$ and $H^*[S] \subseteq H^*$, we can say that $N_H(s) \cap S' = t - 1$ for each $s \in S'$ and $H^*[\overline{S'}] \cong K_{m-t}$, otherwise we can find a vertex of S say w, so that $deg_{H^*}(w) \leq (k-1)(m-1)-2$, a contradiction. Since $|\omega(H^*[S])| = t$ and $H^*[\overline{S'}] \cong K_{m-t}$, $t \geq m - t$, that is $m \leq 2t$. Therefore we can check that $H^*[S] \supseteq (K_m \setminus \frac{m-2}{2}K_2)$. Now, as $G \in F$ and $t \geq \frac{m}{2}$, we have $G \subseteq K_m \setminus \frac{m-2}{2}K_2 \subseteq H^*[S]$.

Therefore, as $|V(H^*)| = (k-1)(m-1)+1$ and by Claim 25, we can say that $\chi_G(H) = k$. Assume that v be any vertex of $V(H^*)$, set $H'' = H^* \setminus \{v\}$. As $|V(H'')| = (k-1)(m-1)$, and $|G| = m$, we can decomposition of $V(H'')$ into $k - 1$ class, where each class have $m - 1$ member, that is $\chi_G(H'') \leq k - 1$, which means that, H^* is k-G-f-v-m, and the proof of theorem is complete.

As H^* is k-G-f-v-m, it is easy to say that, for each graphs G with m vertices and each subgraphs H of $K_{(k-1)(m-1)+1}$, such that $H^* \subseteq H$, we have H is k-G-f-v-m.
Definition 26. A graph H is minimal with respect to G-free, or G-free-minimal, if for every edges of $E(H)$ we have $\chi_G(H \setminus \{e\}) = \chi_G(H) - 1$.

In this following results we investigate some properties of G-free-minimal coloring of graphs and give a lower bounds on the vertices of G-free-minimal graphs H. By argument similar to the proof of Theorem 22 in the following theorem establishes a lower bound for the size of G-free-minimal coloring of H.

Theorem 27. Let H and G be two graph and $k \geq 1$ be a integers. Suppose that H is k-G-free-minimal graphs, then:

$$|V(H)| \geq (k - 1)(|V(G)| - 1) + 1.$$

By Theorem 23 one can say that $K_{(k-1)(m-1)+1}$ be a k-G-free-minimal graphs, for $G = K_m$. We shall now construct k-G-free-minimal graphs with order $(k - 1)(|V(G)| - 1) + 1$ for some graph G. Suppose that R denote a subgraphs of $K_{(k-1)(m-1)+1}$ minus the edges of a tK_2, and G denote a subgraphs of K_m minus the edges of a tK_2, where $t \leq \frac{m}{2} - 1$. Now, we have the following theorems:

Theorem 28. R is k-G-free-minimal.

Proof. As $|R| = (k - 1)(m - 1) + 1$, we can say that $\chi_G(R) \leq k$. As, R denote a subgraphs of $K_{(k-1)(m-1)+1}$ minus the edges of tK_2, assume that $V(R) = \{v_1, v_2, \ldots, v_{(k-1)(m-1)+1}\}$ and w.l.g suppose that $E(tK_2) = \{e_1, e_2, \ldots, e_t\}$, where for each $i \in \{1, 2, \ldots, t\}$, $e_i = v_i$ for $i = 1, 2, \ldots, t$. Set $V_1 = \{v_1, \ldots, v_t\}$, $V_2 = \{v_{m+1}, \ldots, v_{m+t}\}$ and $V_3 = V(R) \setminus (V_1 \cup V_2)$. Now, to prove $\chi_G(R) = k$, by Claim 29 we can check that the following claims is true:

Claim 29. For any S subsets of $V(R)$ with m member, $G \subseteq R[S]$.

Therefore, as $|R| = (k - 1)(m - 1) + 1$ by Claim 29 we can say that $\chi_G(R) = k$. Now, as $|V(R)| = (k - 1)(m - 1) + 1$, assume that v be any vertex of $V(R)$, set $R' = R \setminus \{v\}$. As $|V(R')| = (k - 1)(m - 1)$, and $|G| = m$, we can decomposition of $V(R')$ into $k - 1$ class, where each class have $m - 1$ member, that is $\chi_G(R') = k - 1$, which means that, R is k-G-free-vertex-minimal. Hence, to prove R is k-G-free-minimal, we most show that for any edges of $E(R)$, say e, $\chi_G(R \setminus e) = k - 1$. Now, to prove $\chi_G(R \setminus e) = k - 1$, we have the following claim:

Claim 30. For any edges of $E(R)$, say e, $\chi_G(R \setminus e) = k - 1$.

Proof. Suppose that $e = vv' \in E(R)$, now by considering v and v', we have three cases as follow:

Case 1: $v, v' \in V_i$ for some $i, i \in \{1, 2\}$. W.l.g we may suppose that $v, v' \in V_1$. Set $S = V_1 \cup V_2$, one can say that $|S| \geq m$. Now, as $v, v' \in S$ and $vv' \in E(R)$, we can check that $|N(x) \cap S| \leq d - 3$, for each $x \in \{v, v'\}$, therefore $R[S]$ is G-free. Now as, $|V(H)| = (k - 1)(m - 1) + 1$, $|V(G)| = m$ and $|S| \geq m$, one can say that $\chi_G(R \setminus e) = k - 1$.

Case 2: $v \in V_i$ and $v' \in V_j$, where $i \neq j$ and $i, j \in \{1, 2\}$. The proof is same as Case 1.

Case 1: $v, v \in V_3$. Set $S = V_1 \cup V_2 \cup \{v, v'\}$, one can say that $|S| \geq m$. Now, as $v, v' \in S$ and $vv' \in E(R)$, we can check that $R[S] \cong K_m \setminus \frac{m}{2}K_2$, therefore as $t \leq \frac{m}{2} - 1$, $R[S]$ is G-free. Now, as, $|V(H)| = (k - 1)(m - 1) + 1$, $|V(G)| = m$ and $|S| \geq m$, one can say that $\chi_G(R \setminus e) = k - 1$.

Therefore by Cases 1, 2, 3 we have the claim is true, which means that the proof is complete. ■

Suppose that H is a connected subgraphs of $K_{(k-1)(m-1)+1}$, and G denote a subgraphs of K_m minus the edges of a $\frac{m}{2}K_2$, where m is even and $\chi_G(H) = k$. Now, we have the following theorems:

Theorem 31. H is k-G-free-minimal iff either H is a graph $K_{(k-1)(m-1)+1}$ minus the edges of a 1-factor, when k is even, or $H \cong H_1 \oplus K_1$, where H_1 is a graph $K_{(k-1)(m-1)}$ minus the edges of a 1-factor, when k is odd.
Proof. Suppose that, either H is a graph $K_{(k-1)(m-1)+1}$ minus the edges of a 1-factor, when k is even, or $H \cong H_1 \oplus K_1$, where H_1 is a graph $K_{(k-1)(m-1)-1}$ minus the edges of a 1-factor, when k is odd. As $\chi_G(H) = k$, suppose that e be a arbitrary edges of $E(H)$. Therefore, by definition H, one can check that $\delta(H \setminus e) = (k-1)(m-1) - 1$, that is there exists at least one vertex of $V(H)$, say v, so that $\deg(v) = (k-1)(m-1) - 1$, and w.l.g suppose that $v', v'' \notin N(v)$. Now, suppose that S, be a subset of $V(H)$ with m, member, where $v, v', v'' \in S$. As $v, v', v'' \in S$, and G denote a subgraphs of K_m minus the edges of a $\frac{m}{2}$, one can check that $H[S]$ is a G-free. Therefore, since $|V(H)| = (k-1)(m-1) + 1, |V(G)| = m, |S| = m$, and $H[S]$ is a G-free, it is easy to say that $\chi_G(H \setminus e) = k - 1$, which means that H is k-G-free-minimal.

Suppose that H is k-G-free-minimal, and k is even. As H is k-G-free-minimal and m, k is even, one can say that $\delta(H) \geq (k-1)(m-1) - 1$. Therefore, as $|V(H)| = (k-1)(m-1) + 1$ and $\delta(H) \geq (k-1)(m-1) - 1$, one can check that $K_{(k-1)(m-1)+1}$ minus the edges of a 1-factor be a subgraph of H. Now, assume that $H' \subset H$, where H' is a graph $K_{(k-1)(m-1)+1}$ minus the edges of a 1-factor. So there exist at least two vertices of $V(H)$ say v, v', so that $\delta(x) = (k-1)(m-1)$, for each $x \in \{v, v', v''\}$, that is $vv' \in (H)$. Consider $e = vv'$, as $H' \subset H$ and $e \notin E(H')$, we have $H' \subseteq H \setminus e$. Which means that $k = \chi_G(H') \leq \chi_G(H \setminus e) = k - 1$, a contradiction. For the case that k is add, as k is add and m is even, we have $(k-1)(m-1) + 1$ is add. As H is k-G-free-minimal we can say that $\delta(H) \geq (k-1)(m-1) - 1$. Therefore, as, $|V(H)| = (k-1)(m-1) + 1$, $\delta(H) \geq (k-1)(m-1) - 1$ and $(k-1)(m-1) + 1$ is add, one can check that $K_{(k-1)(m-1)+1}$ minus the edges of a tK_2 be a subgraph of H, where $t = \frac{(k-1)(m-1)}{2}$. Hence, there exist a vertex of $V(H)$ say v so that $\deg(v) = (k-1)(m-1)$.

Now, assume that $H' \subset H$, where H' is a graph $K_{(k-1)(m-1)+1}$ minus the edges of $t'K_2$ be a subgraph of H', where $t' = \frac{(k-1)(m-1)}{2} - 1$. So there exist at least three vertices of $V(H)$ say v, v', v'', so that $\delta(x) = (k-1)(m-1)$, for each $x \in \{v, v', v''\}$, that is $vv'' \in (H)$. Consider $e = vv''$, as $H' \subset H$ and $e \notin E(H')$, we have $H' \subseteq H \setminus e$. Which means that $k = \chi_G(H') \leq \chi_G(H \setminus e) = k - 1$, a contradiction to H is k-G-free-minimal.

Therefore in any case if H is k-G-free-minimal then, either H is a graph $K_{(k-1)(m-1)+1}$ minus the edges of a 1-factor, when k is even, or $H \cong H_1 \oplus K_1$, where H_1 is a graph $K_{(k-1)(m-1)-1}$ minus the edges of a 1-factor, when k is odd, which means that the proof is complete.

References

[1] VA Aksionov. On uniquely 3-colorable planar graphs. Discrete Mathematics, 20:209–216, 1977.
[2] Meyeam Alishahi and Ali Taherkhani. Extremal g-free induced subgraphs of kneser graphs. Journal of Combinatorial Theory, Series A, 159:269–282, 2018.
[3] B Bollobas. Extremal graph theory, London math. s oc. monogr. 11, 1978.
[4] Béla Bollobás. Uniquely colorable graphs. Journal of Combinatorial Theory, Series B, 25(1):54–61, 1978.
[5] Mieczyslaw Borowiecki and Ewa Drgas-Burchardt. Classes of chromatically unique graphs. Discrete mathematics, 111(1-3):71–78, 1993.
[6] R. L. Brooks. On colouring the nodes of a network. Proc. Cambridge Philos. Soc., 37:194–197, 1941.
[7] Paul A Catlin and Hong-Jian Lai. Vertex arboricity and maximum degree. Discrete Mathematics, 141(1-3):37–46, 1995.
[8] G Chartrand, DP Geller, and S Hedetniemi. A generalization of the chromatic number. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 64, pages 265–271. Cambridge University Press, 1968.
[9] Gary Chartrand and Dennis P Geller. On uniquely colorable planar graphs. Journal of Combinatorial Theory, 6(3):271–279, 1969.
[10] Marietjie Frick and Michael A Henning. Extremal results on defective colorings of graphs. Discrete mathematics, 126(1-3):151–158, 1994.
[11] Frank Harary. Conditional colorability in graphs. In Graphs and applications (Boulder, Colo., 1982), Wiley-Intersci. Publ., pages 127–136. Wiley, New York, 1985.
Y. Rowshan
Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS),
Zanjan 45137-66731, Iran
Email address: y.rowshan@iasbs.ac.ir