Study on the effect of nanoparticle bimetallic coreshell Au-Ag for sensitivity enhancement of biosensor based on surface plasmon resonance

Widayanti1,2 and Abraha K2

1 Department of Physics, Faculty of Sciences and Technology, UIN Sunan Kalijaga Yogyakarta, Indonesia
2 Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Yogyakarta, Indonesia

E-mail: salma_wida@yahoo.com

Abstract. Bimetallic Au-Ag core-shell, a type of composite spherical nanoparticle consisting of a spherical Au core covered by Ag shell, have been used as active material for biomolecular analyte detection based on surface plasmon resonance (SPR) spectroscopy. SPR technology evolved into a key technology for characterization of biomolecular interaction. In this paper, we want to show the influence of nanoparticle bimetallic Au-Ag coreshell for optic respon of LSPR biosensor through attenuated total reflection (ATR) spectrum. The method consist of several steps begin from make a model LSPR system with Kretschmann configuration, dielectric function determination of composite bimetallic coreshell nanoparticle using effective medium theory approximation and the last is reflectivity calculation for size variation of core and shell bimetallic nanoparticle. Our result show that, by varying the radius of core and shell thickness, the peak of the reflectivity (ATR spectrum) shifted to the different angle of incident light and the addition of coreshell in SPR biosensor leads to enhancement the sensitivity.

1. Introduction

Recently, sensor based on localized surface plasmon resonance (LSPR) have attracted considerable attention because of its revolutionary technology [1]. The advantages brought about by current LSPR technology include label free analysis, monitors the interaction real time, non-destructive technique, large tuneability from the visible into the infrared (IR) spectrum region, high sensitivity and selectivity. LSPR is a kind of electromagnetic resonances that exist when there is an interface between metal and dielectric material and this system have been use for sensing various biomolecules [2, 3]. When the biomolecules comes in contact to the metal film surface, that biomolecules get adsorbed on its surface and increasing the refractive index resulting in the change in the angle resonance. This LSPR properties are very sensitive to size, shape and the surrounding medium refractive index of metal nanoparticle or the medium that kept contact with metal. Tuning of the LSPR spectrum is the key issue in application such as in cancer treatment, bio medical diagnosis, enzyme detection, food safety and cellular imaging [4]. The Au-Ag bimetallic coreshell nanoparticle is one of the metal that have attracted extensive interest due to the addition of a second metal shell, changing the surface plasmon band, and enhancing the stability [5, 6]. The LSPR of Ag nanoparticle is located around 400 nm, whereas the LSPR of Au nanoparticle is located around 520 nm. The combination of that two...
metal is similar to combine the plasmon feature of each metal become the new plasmon feature that depend on the size and shape of core and shell that coreshell. The performance of the biosensor base on the LSPR depends on the adsorption of the biomolecule and enhancement of the field intensity of the excitation light. It has been reported that the addition other medium over metal film improves the sensitivity of the biosensor [5]. In this latter, we have been investigate the ATR spectrum of four and five mutilayer biosensor based on LSPR with Au-Ag coreshell addition and DNA as sensing analyte.

2. Biosensor System base on LSPR

2.1. Kretschmann configuration with 5 layers

In our study, we use the theory and computational approximation to determinate effective permittivity of composite AuAg coreshell and calculate reflectivity in attenuated total reflection (ATR) spectrum. The LSPR system using the Kretschmann configuration [7] with 5 layers, prism/Ag/coreshell/DNA/DNA+water, is shown in figure 1. \(\theta_i \) and \(\theta_r \) are the incident and the reflection angle, \(k_z \) is the wave vector component at z axis, and \(d \) is the thickness of the each layer.

\[
R = \left| r_{ijk} \right|^2 = \frac{r_{ij} + r_{jk} e^{2ik_j d_j}}{1 + r_{ij} r_{jk} e^{2ik_j d_j}} \left(1^{(1)}\right)
\]

with

\[
r_{ij} = \frac{k_i \varepsilon_j - k_j \varepsilon_i}{k_i \varepsilon_j + k_j \varepsilon_i} \left(2\right)
\]

\(r_{ij} \) is the surface reflectivity between medium \(i \) and medium \(j \). \(k_{ij} \) is the wave vector component perpendicular to the surface, \(k_x \) is the wave vector component parallel to the surface, whereas \(d_j \) and \(\varepsilon_i \) are the thickness \(j \)-th layer and the \(i \)-th medium dielectric constant

2.2. A spherical coreshell Au-Ag

We choose a spherical coreshell model like figure 2. The bimetallic composite model consists of a metallic Au core of radius \(a_2 \) coated by a metallic Ag of thickness \(a_1 - a_2 \). The dielectric constant of metallic Au, Ag and the embedding medium are \(\varepsilon_2 \), \(\varepsilon_1 \) and \(\varepsilon_0 \) respectively.
Figure 2. The Au-Ag coreshell model

In this calculation the complex form of ε_1 and ε_2 can be used from Johnson and Cristy literature [8].

2.3 Effective permittivity of coreshell

For calculating the effective permittivity of Au-Ag composite, with neglecting the correlation between the shell and core, can be employ using the Rayleigh mixture formula [11].

$$\frac{\varepsilon_{\text{eff}}-\varepsilon_0}{\varepsilon_{\text{eff}}+2\varepsilon_0} = (f_1 + f_2) \left(\frac{\varepsilon_{\text{incl}}-\varepsilon_0}{\varepsilon_{\text{incl}}+2\varepsilon_0} \right)$$

with

$$\varepsilon_{\text{incl}} = \frac{1 - 2G}{1 + G} \varepsilon_1$$

where

$$G = \frac{\varepsilon_1 - \varepsilon_2}{2\varepsilon_1 + \varepsilon_2} \left(\frac{a_2}{a_1} \right)^3 = \left(\frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + 2\varepsilon_2} \right) \frac{f_2}{f_1 + f_2}$$

ε_{eff} is the effective permittivity of coreshell, ε_0 is the vacuum permittivity, $\varepsilon_{\text{incl}}$ is the inclusion permittivity, ε_1 is the shell permittivity, ε_2 is the core permittivity, f_1 and f_2 are the volume fraction of the core and shell and $\frac{a_2}{a_1}$ is the ratio of core and shell radius.

2.4 Biosensor sensitivity

The calculation of the sensitivity of biosensor base on the LSPR is written [12]

$$S = \frac{\Delta \theta_{SP}}{\Delta n} = \frac{\theta_{SP}(\varepsilon_d+\Delta \varepsilon_d)-\theta_{SP}(\varepsilon_d)}{\Delta n}$$

Where $\Delta \theta_{SP}$ is the difference of the angle of SPR and Δn is the change in refractive index. While, the enhancement sensitivity value of LSPR biosensor with Au-Ag coreshell compare with the conventional SPR is written [13]

$$\Delta S = \frac{S_{\text{graph}} - S_{\text{kon}}}{S_{\text{kon}}} \times 100\%$$

3. Result and discussion

The changes of the radius of core and the thickness of shell, leads to the change of ratio a_2/a_1 of the composite Au-Ag coreshell and then change the effective permittivity of composite. The increasing of effective permittivity of composite Au-Ag coreshell, leads to the enhancement of the
sensitivity of this biosensor. Table 1 shows the effective permittivity of composite core-shell Au Ag that can obtained from equation (4) and depends on the ratio of radius core and shell.

Table 1. The effective permittivity of Au-Ag core-shell for the $\frac{a_2}{a_1}$ variation

$\frac{a_2}{a_1}$	ε_{incl}
0.50	-14.9742 + 1.1041 i
0.90	-11.0608 + 1.1991 i
0.75	-12.9660 + 1.1612 i
1.00	-9.5086 + 1.2183 i
1.20	-5.8433 + 1.2220 i
1.30	-3.8063 + 1.1987 i

The calculated ATR spectra (reflectivity) from biosensor based on LSPR in Kretschmann configuration are shown in figure 3 and figure 4. For the layer consist only the thin film of metal, the peak of reflectivity at the angle 55 deg (blue line). When the core-shell composite was deposited on the surface of the metal thin film, the peak of reflectivity shifted to the large angle. From figure 3, for the $\frac{a_2}{a_1}$ of the composite is fixed at 0.9 and the thicknesses of the composite is varied from 10 nm to 40 nm, the large shift of peak is obtained for thicknesses is 40 nm but the reflectivity is small. The figure shows that at 20 nm is the best performance of the peak. From figure 4, for the thicknesses of the composite is fixed at 20 nm and the $\frac{a_2}{a_1}$ is varied from 0.5 to the 1.3, the peak shifts from the 55 deg to the 66 deg. The large shiftiness is obtained for the $\frac{a_2}{a_1}$ is 1.3 but the reflectivity is smallest from the other. Table 1 shows that for $\frac{a_2}{a_1}$=0.9 resulting the effective permittivity ε_{incl}=-11.0608 + 1.1991 i. Therefore at 20 nm thicknesses and ε_{incl}=-11.0608 + 1.1991 i, the shiftiness of angle is from 55 deg (blue line) to 57 deg (red line), whereas the change the permittivity is from $n=0.13455$; $k=3.98651$ (blue line/Ag thin film) to -11.0608 + 1.1991 i (red line) or $n=0.180012$; $k=3.330616$. Therefore from equation (7) , calculation of the sensitivity resulting the sensitivity increase 3.636% compare with sensitivity of SPR biosensor without Au-Ag core-shell addition.

Figure 3. The reflectivity of ATR spectrum for the $\frac{a_2}{a_1}$ of the composite is fix at 0.9 and the thicknesses is varied from 10 nm to the 40 nm.

Figure 4. The reflectivity of ATR spectrum for the thicknesses of the composite is fixed at 20 nm and the $\frac{a_2}{a_1}$ is varied from 0.5 to the 1.3.
4. Conclusion
The enhancement of sensitivity of biosensor based on LSPR have been studied via the addition
nanoparticle Au-Ag coreshell in LSPR 5 layer system. By varied the radius of core and shell, the
refractive index of coreshell changes and leads to change the position of the peak of reflectivity
spectrum to the large angle. The LSPR dips were shifted when Au-Ag coreshell were deposited on the
surface of metal film (Ag). A large shift in the dip angle by that deposition suggest the potential for
application in highly sensitive biosensor, in this case sensing biomolecules as analyte. The sensitivity
enhancement of biosensor can be obtained from the rasio of the difference of the angle of the SPR
peak with the change in refractive index.

References
[1] Kim D 2010 Optical Guided-wave Chemical and Biosensor I (Berlin: Springer-Verlag)
[2] Stuart D A, Haes A J, Yonson C R, Hicks E M and Van Duyne R P 2005 Biological application
of localised surface plasmonic phenomena IEE Proc-Nanobiotechnol 152(1)
[3] Jain P K, Huang X, El-Sayed I and El-Sayed M 2007 Review of some interesting surface
plasmon resonance-enhanced properties of noble metal nanoparticles and their application to
biosystem Plasmonics 2 pp 107-118
[4] Ligler F S, Taitt C R, Shriver-Lake L C, Sapsford K E, Shub inY and Golden J P 2003 Array
biosensor for detection of toxins Anal. Bioanal. Chem. 377 469–477
[5] Zhu J 2009 Surface Plasmon Resonance from Bimetallic Interface in Au–Ag Core–Shell
Structure Nanowires Nanoscale Res Lett 4 977–981
[6] Som T and Karmakar. B 2009 Coreshell Au-Ag Nanoparticle in Dielectric Nanocomposite with
Plasmon-Enhanced Fluoresence: A New Paradigm in Antimony Glasses Nano Res 2 607-616
[7] Kretschmann E and Raether H 1968 Radiative decay of non-radiative surface plasmons excited
by light Zeitschrift Naturforsch 23 A2135-2136
[8] Johnson P B and Christy R W 1972 Optical constants of the noble metals Phys Rev B 6 No 12
[9] Wu L, Chu H S, Koh W S and Li E P 2010 Highly sensitive graphene biosensors based on
surface plasmon resonance Optics Express 18(14) 14395
[10] Rather H 1986 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag)
[11] Chen L F, Ong C K and Tan B T G 1998 Effective permittivity of layered dielectric Journal of
Material Science 33 5891–94.
[12] Verma R, Gupta B D and Jha R 2011 Sensitivity enhancement of a surface plasmon resonance
based biomolecules sensor using graphene and silicon layers Sensor and Actuators B: Chemical 160 623-631
[13] Adhib M and Abraha K 2011 Enhancement of sensitivity in Surface Plasmon Resonance
Biosensor Using graphene materials: A theoretical prediction Proceeding of the 3rd International Conferences And Workshop On Basic And Applied Sciences Bandung. Preprint