Contextually Mediated Semantic Similarity Graphs for Topic Segmentation

Geetu Ambwani & Tony Davis

StreamSage/Comcast
Outline of talk

- Motivations
- Relevance intervals
- Graphs representing documents
 - Application to segmentation
- Experiments and Evaluation
 - Comparison with other systems
- Conclusions and future work
Topic segmentation

- Topic segmentation defined: dividing a document into topically coherent segments
 - Typically a partition (exhaustive, non-overlapping segments)
 - But could vary (e.g., hierarchical, overlapping, “fuzzy”, etc.)
 - Labeling the segments with good terms is a separate problem

- Advantages of segmenting video (e.g., news broadcasts)
 - Viewers can select only the portions of a program they want to watch
 - They can browse in the order they want
Related Work on Segmentation

Previous work has used several approaches

- Discourse features
 - Some signal a topic shift; others a continuation
 - Highly domain-specific

- Similarity measures between adjacent blocks of text
 - Typical document similarity measures used, as in TextTiling (Hearst, 1994) or Choi’s algorithm (Choi, 2000)
 - Choi measures lexical similarity among neighboring sentences
 - Posit boundaries at points where similarity is low

- Lexical chains: repeated occurrences of a term (or of closely related terms)
 - Again, posit boundaries where cohesion is low (few lexical chains cross the boundary (e.g., Galley, et al., 2003)}
Motivations behind our approach

- Model both the influence of a term beyond the sentence it occurs in and semantic relatedness among terms
 - The range of a term’s influence extends beyond the sentence it occurs in, but how far? (relevance intervals)
 - Semantic relatedness among terms (contextually mediated graphs)
- Apply this model to topic-based segmentation
Relevance Intervals
Relevance Intervals (RIs)

- Each RI is a contiguous segment of audio/video deemed relevant to a term
- Developed originally to improve audio/video search and retrieval
- RI calculation relies on a pointwise mutual information (PMI) model of term co-occurrence (built from 7 years of New York Times text, 325M words)
- Previously evaluated on radio news broadcasts, and currently deployed in Comcast video search

\[PMI(x,y) = \log \frac{P(x,y)}{P(x)P(y)} \]

Anthony Davis, Phil Rennert, Robert Rubinoff, Tim Sibley, and Evelyne Tzoukermann. 2004. Retrieving what’s relevant in audio and video: statistics and linguistics in combination. Proceedings of RIAO 2004, 860-873.
Relevance Intervals (RIs)

- Each RI is a contiguous segment of audio/video deemed relevant to a term
 - RIs are calculated for all content words (after lemmatization) and common multi-word expressions
 - An RI for a term is built outwards, forward and backward from a sentence containing that term, based on:
 - PMI values between pairs of terms across sentences; high PMI values suggest semantic similarity between terms
 - Discourse markers which extend or end an RI
 - Synonym-based query expansion, using information from WordNet
 - Anaphor resolution – roughly based on Kennedy and Boguraev (1996)
 - Nearby RIs for the same term are merged
 - Large-scale vocabulary shifts (as determined by a modified version of Choi (2000) to indicate boundaries)
Index term: **squatter**

among the sentences containing this term are these two, near each other:

Paul Bew is professor of Irish politics at Queens University in Belfast. In South Africa the government is struggling to contain a growing demand for land from its black citizens.

Authorities have vowed to crack down and arrest **squatters** illegally occupying land near Johannesburg.

In a most serious incident today more than 10,000 black South Africans have seized government and privately-owned property. Hundreds were arrested earlier this week and the government hopes to move the rest out in the next two days.

NPR’s Kenneth Walker has a report.

Thousands of **squatters** in a suburb outside Johannesburg cheer loudly as their leaders deliver angry speeches against whites and landlessness in South Africa.

“Must give us a place…”

We build an RI for **squatter** around each of these sentences…
Relevance Intervals: an Example

- Index term: **squatter**
 among the sentences containing this term are these two, near each other:

 Paul Bew is professor of Irish politics at Queens University in Belfast.

 In South Africa the government is struggling to contain a growing demand for land from its black citizens. [PMI-expand]
 Authorities have vowed to crack down and arrest **squatters** illegally occupying land near Johannesburg.
 In a most serious incident today more than 10,000 black South Africans have seized government and privately-owned property. [PMI-expand]
 Hundreds were arrested earlier this week and the government hopes to move the rest out in the next two days.
 NPR’s Kenneth Walker has a report.
 Thousands of **squatters** in a suburb outside Johannesburg cheer loudly as their leaders deliver angry speeches against whites and landlessness in South Africa.

 “Must give us a place…”

- We build an RI for **squatter** around each of these sentences…
Relevance Intervals: an Example

- Index term: **squatter**
 among the sentences containing this term are these two, near each other:

 Paul Bew is professor of Irish politics at Queens University in Belfast.

 In South Africa the government is struggling to contain a growing demand for land from its black citizens. [PMI-expand]
 Authorities have vowed to crack down and arrest *squatters* illegally occupying land near Johannesburg.
 In a most serious incident today more than 10,000 black South Africans have seized government and privately-owned property. [PMI-expand]
 Hundreds were arrested earlier this week and the government hopes to move the rest out in the next two days. [merge nearby intervals]
 NPR’s Kenneth Walker has a report. [merge nearby intervals]
 Thousands of *squatters* in a suburb outside Johannesburg cheer loudly as their leaders deliver angry speeches against whites and landlessness in South Africa.

 [Stop RI Expansion]
 “Must give us a place…”

The two intervals for **squatter** are merged, because they are so close
(S_1) Yesterday, I took my dog to the park.
(S_2) While there, I took him off the leash to get some exercise.
(S_3) After 2 minutes, Spot began chasing a squirrel.
(Topic Shift)
(S_4) Then, I needed to go grocery shopping.
(S_5) So I went later that day to the local store.
(S_6) Unfortunately, they were out of cashews.
RIs \rightarrow Nodes

- Construct a graph in which each node represents a term and a sentence, iff the sentence is contained in an RI for that term.

Relevance Intervals for sample terms in the discourse

Sentence 1: dog, park
Sentence 2: leash, exercise
RIs \rightarrow Nodes

- Construct a graph in which each node represents a term and a sentence, iff the sentence is contained in an RI for that term.

Nodes corresponding to these Relevance Intervals

Sentence 1
- dog
- park

Sentence 2
- dog
- park
- leash
- exercise

Sentence 3
- dog
- park
- leash
- exercise
Connecting the Nodes ...

All edge strengths between a term and itself are initialized to 1.0

Sentence 1

Sentence 2

Sentence 3

(not all edges shown)
Calculating connection strengths for edges

For edges between different terms, initialize their strengths to normalized PMI values: $s(x,y) = 1 - 1/\exp(PMI(x,y))$
Calculating connection strengths for edges

Add $s('park', 'leash), s('leash', 'dog')$ to edge strength between 'park' and 'dog'
Connection strength formula

Connection-strength\((A,B)\) = \[2s(A,B) + s(A,X)s(X,B) + s(B,Y)s(Y,A)\]

and in general, for terms \(a\) and \(b\) in sentences \(i\) and \(i + 1\) respectively:

\[c(a,b) = \sum_{x \in W_i} s(x,a)s(x,b) + \sum_{x \in W_{i+1}} s(y,a)s(y,b)\]
Filtering edges in the graph

- We filter out edges with a connection strength below a set threshold (we’ve tried a couple and usually use 0.5)
Graph Representation of Document

- Lets look at a real example. 1st 8 minutes of an episodes of Bizarre Foods.
- Bizarre_Foods_With_Andrew_Zimmern-Japan.pdf
Segmentation from graphs

- General idea: look for places in the graph where connections are sparse or weak
 - Typically, this will be where relatively few Ris cross a boundary
 - Edges with low connection strengths are unlikely to bear on topical coherence, so it’s best to remove them from the graph

- “Normalized novelty”: on the two sides of a potential boundary, the number of nodes labeled with the same terms, normalized by the total number of terms
Graph representation of documents

Example snippet and graph from t.v. news broadcast

S_190 We’ve got to get this addressed and hold down health care costs.

S_191 Senator ron wyden, the optimist from oregon, we appreciate your time tonight.

S_192 Thank you.

S_193 Coming up, the final day of free health clinic in kansas city, missouri.
Experiments and Evaluation
Evaluation metrics

- How well does the hypothesized set of boundaries match the true (reference) set?
- P_k (Beeferman, et al. 1997) and WindowDiff (Pevzner & Hearst, 2002)
 - Both compare hypothesis to reference segmentation within a sliding window
 - P_k is the proportion of windows in which hypothesis and reference disagree on the number of boundaries
 - WindowDiff tallies the difference in the number of boundaries in each window
 - Both commonly used instead of precision and recall, because they take approximate matching into account
 - They have drawbacks of their own, however

Doug Beeferman, Adam Berger, and John Lafferty. 1997. Text Segmentation Using Exponential Models. Proceedings of EMNLP 2

Lev Pevzner and Marti A. Hearst. 2002. A critique and improvement of an evaluation metric for text segmentation. Computational Linguistics, 28:1
Evaluation metrics

- P_k and WindowDiff: sliding window is half the average reference segment size
Evaluation metrics

- One black mark against the hypothesis segmentation, where it differs from the reference (mistakes closer to reference boundaries appear in fewer windows, and are thus penalized less)
Systems compared

Choi	Implementation from MorphAdorner*
SN	Our system, using a single node for each term occurrence (no extension)
FE	Our system, using an extension of a fixed number of sentences for each term from the sentence it occurs in
SS	Our system, using Ris without “hard” boundaries determined by the modified Choi algorithm
SS+C	Our full segmentation system, incorporating “hard” boundaries determined by the modified Choi algorithm

* morphadorner.northwestern.edu/morphadorner/-textsegmenter
Results on pseudodocuments

185 documents each containing 20 Concatenated *New York Times* articles
Number of boundaries not specified to systems

system	precision	recall	F	Pk	WindowDiff
Choi	0.404	0.569	0.467	0.338	0.360
SN	0.096	0.112	0.099	0.570	0.702
FE	0.265	0.140	0.176	0.478	0.536
SS	0.566	0.383	0.448	0.292	0.317
SS+C	0.578	0.535	0.537	0.262	0.283
Results on TV shows

- Data: Closed captions for 13 tv shows (News, talk shows, documentaries, lifestyle shows)
- 5 annotators manually marked up major and minor boundaries, using 1-5 rating scale
- As expected, IAA is low, so we create a reference annotation
TV show closed-captions: inter-annotator agreement on segmentation

- *Pk values between pairs of annotators: all boundaries and major boundaries*
- Note that matrix is asymmetrical

	A	B	C	D	E	Ref
A	0.36	0.29	0.57	0.36	0.33	0.57
	0.48	0.40	0.48	0.46	0.35	0.39
B	0.29	0.29	0.60	0.41	0.31	0.25
	0.40	0.32	0.44	0.46	0.34	0.35
C	0.30	0.27	0.41	0.27	0.33	0.20
	0.45	0.33	0.20	0.20	0.30	0.17
D	0.27	0.32	0.41	0.30	0.31	0.21
	0.44	0.33	0.20	0.31	0.31	0.22
E	0.42	0.27	0.32	0.32	0.32	0.42
	0.67	0.55	0.61	0.63	0.58	
Ref	0.20	0.20	0.40	0.53	0.25	
TV show closed-captions: segmentation

- Accuracy is low, which is unsurprising given the low IAA

system	precision	recall	F	Pk	WindowDiff
	All topic boundaries				
Choi	0.197	0.186	0.184	0.476	0.507
SS+C	0.315	0.208	0.240	0.421	0.462
	Major topic boundaries only				
Choi	0.170	0.296	0.201	0.637	0.812
SS+C	0.271	0.316	0.271	0.463	0.621
Conclusions and future work
Conclusions and future work

Conclusions
- Graphs constructed from RIs do seem to help segmentation
- Semantic relatedness with reinforcement from neighboring terms
- Works decently on “noisy” material, such as TV shows
- Doesn’t require any training; however, there are lots of parameters to play with (and we have started exploring training to optimize them)

Future work
- Several ways to segment a graph: try community detection or learn boundary detection through various graph features
- Try to use graphs for more complex segmentation tasks, such as hierarchical segmentation; community structure in a graph might reflect hierarchical organization of discourse
- Try to find the most “central” terms in a subgraph, to use as segment labels
We gratefully acknowledge...

Gene Chipman
Oliver Jojic
Akash Nagle
Robert Rubinoff
Hassan Sayyadi

Thank you! Questions?