netrd: A library for network reconstruction and graph distances

Stefan McCabe∗1, Leo Torres1, Timothy LaRock1, Syed Arefinul Haque1, Chia-Hung Yang1, Harrison Hartle1, and Brennan Klein∗1,2

1Network Science Institute, Northeastern University, Boston, USA
2Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern University, Boston, USA

October 29, 2020

1 Summary and package description

Complex systems throughout nature and society are often best represented as networks. Over the last two decades, alongside the increased availability of large network datasets, we have witnessed the rapid rise of network science [1, 2, 3, 4]. This field is built around the idea that an increased understanding of the complex structural properties of a variety systems will allow us to better observe, predict, and even control the behavior of these systems.

However, for many systems, the data we have access to is not a direct description of the underlying network. More and more, we see the drive to study networks that have been inferred or reconstructed from non-network data—in particular, using time series data from the nodes in a system to infer likely connections between them [5, 6]. Selecting the most appropriate technique for this task is a challenging problem in network science. Different reconstruction techniques usually have different assumptions, and their performance varies from system to system in the real world. One way around this problem could be to use several different reconstruction techniques and compare the resulting networks. However, network comparison is also not an easy problem, as it is not obvious how best to quantify the differences between two networks, in part because of the diversity of tools for doing so.

The netrd Python package seeks to address these two parallel problems in network science by providing, to our knowledge, the most extensive collection of both network reconstruction techniques and network comparison techniques (often referred to as graph distances) in a single library (https://github.com/netsiphd/netrd/). In this article, we detail the two

∗mccabe.s@northeastern.edu; klein.br@northeastern.edu
main functionalities of the netrd package. Along the way, we describe some of its other useful features. This package builds on commonly used Python packages (e.g. networkx [7], numpy [8], scipy [9]) and is already a widely used resource for network scientists and other multidisciplinary researchers. With ongoing open-source development, we see this as a tool that will continue to be used by all sorts of researchers to come.

1.1 Network reconstruction from time series data

Given time series data, \(TS \), of the behavior of \(N \) nodes / components / sensors of a system over the course of \(L \) timesteps, and given the assumption that the behavior of every node, \(v_i \), may have been influenced by the past behavior of other nodes, \(v_j \), there are dozens of techniques that can be used to infer which connections, \(e_{ij} \), are likely to exist between the nodes. That is, we can use one of many network reconstruction techniques to create a network representation, \(G_r \), that attempts to best capture the relationships between the time series of every node in \(TS \). netrd is a Python package that lets users perform this network reconstruction task using 17 different techniques, meaning that many different networks can be created from a single time series dataset. For example, in Figure 1 we show the outputs of 15 different reconstruction techniques applied to time series data generated from an example network [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

1.1.1 Simulated network dynamics

Practitioners often apply these network reconstruction algorithms to real time series data. For example, in neuroscience, researchers often try to reconstruct functional networks from time series readouts of neural activity [11]. In economics, researchers can infer networks of influence between companies based on time series of changes in companies’ stock prices [22]. At the same time, it is often quite helpful having the freedom to simulate arbitrary time series dynamics on randomly generated networks. This provides a controlled setting to assess the performance of network reconstruction algorithms. For this reason, the netrd package also includes a number of different techniques for simulating dynamics on networks.

1.2 Comparing networks using graph distances

A common goal when studying networks is to describe and quantify how different two networks are. This is a challenging problem, as there are countless axes upon which two networks can differ; as such, a number of graph distance measures have emerged over the years attempting to address this problem. As is the case for many hard problems in network science, it can be difficult to know which (of many) measures are suited for a given setting. In netrd, we consolidate over 20 different graph distance measures into a single package [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Figure 2 shows an example of just how different these measures can be when comparing two networks, \(G_1 \) and \(G_2 \). This submodule in netrd has already been used in recent work with a novel characterization of the graph distance literature [42].
Figure 1: Example of the network reconstruction pipeline. (Top row) A sample network, its adjacency matrix, and an example time series, TS, of node-level activity simulated on the network. (Bottom rows) The outputs of 15 different network reconstruction algorithms, each using TS to create a new adjacency matrix that captures key structural properties of the original network.

2 Related software packages

In the network reconstruction literature, there are often software repositories that detail a single technique or a few related ones. For example Lizier (2014) implemented a Java package (portable to Python, octave, R, Julia, Clojure, MATLAB) that uses information-theoretic approaches for inferring network structure from time-series data [43]; Runge et al. (2019) created a Python package that combines linear or nonlinear conditional independence tests with a causal discovery algorithm to reconstruct causal networks from large-scale time series datasets [44]. These are two examples of powerful and widely used packages though neither
Figure 2: Example of the graph distance measures in netrd. Here, we measure the graph distance between two networks using 20 different distance measures from netrd.

includes as wide-ranging techniques as netrd (nor were they explicitly designed to). In the graph distance literature, the same trend is broadly true: many one-off software repositories exist for specific measures. However, there are some packages that do include multiple graph distances; for example, Wills (2017) created a NetComp package that includes several variants of a few distance measures included here [45].

Acknowledgements The authors thank Kathryn Coronges, Mark Giannini, and Alessandro Vespignani for contributing to the coordination of the 2019 Network Science Institute “Collabathon”, where much of the development of this package began. The authors acknowledge the support of ten other contributors to this package: Guillaume St-Onge, Andrew Mellor, Charles Murphy, David Saffo, Carolina Mattsson, Ryan Gallagher, Matteo Chinazzi, Jessica Davis, Alexander J. Gates, and Anton Tsitulin. Funding: This research was supported by the Network Science Institute at Northeastern University. B.K. is supported by the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

References

[1] Luís A. Nunes Amaral and J. M. Ottino. “Complex networks”. In: European Physical Journal B - Condensed Matter 38.2 (2004), pp. 147–162. DOI: 10.1140/epjb/e2004-00110-5.

[2] Alessandro Vespignani, Marc Barthélémy, and Alain Barrat. Dynamical Processes on Complex Networks. Cambridge University Press, 2008, p. 367. DOI: 10.1080/00107510903084036.

[3] Mark E. J. Newman. Networks: An Introduction. Second. Oxford University Press, 2018, pp. 1–784. ISBN: 9780191594175. DOI: 10.1093/acprof:oso/9780199206650.001.0001.

[4] Albert-László Barabási. Network Science. Cambridge University Press, 2016. ISBN: 1107076269. DOI: 10.1177/0094306116681814.
[5] Ivan Brugere, Brian Gallagher, and Tanya Y. Berger-Wolf. “Network structure inference, a survey”. In: *ACM Computing Surveys* 51.2 (2018), pp. 1–39. DOI: 10.1145/3154524.

[6] Jakob Runge. “Causal network reconstruction from time series: From theoretical assumptions to practical estimation”. In: *Chaos* 28.7 (2018). DOI: 10.1063/1.5025050.

[7] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring network structure, dynamics, and function using NetworkX”. In: Proceedings of the 7th Python in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod Millman. 2008, pp. 11–15. URL: http://conference.scipy.org/proceedings/SciPy2008/paper_2/.

[8] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. “Array programming with NumPy”. In: *Nature* 585.7825 (2020), pp. 357–362. DOI: 10.1038/s41586-020-2649-2.

[9] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In: *Nature Methods* 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

[10] George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, and Stephan Munch. “Detecting causality in complex ecosystems”. In: *Science* 338 (2012), pp. 496–500. DOI: 10.1126/science.1227079.

[11] Yuriy Mishchenko, Joshua T. Vogelstein, and Liam Paninski. “A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data”. In: *Annals of Applied Statistics* 5.2 B (2011), pp. 1229–1261. DOI: 10.1214/09-AOAS303.

[12] Danh-Tai Hoang, Juyong Song, Vipul Periwal, and Junghyo Jo. “Network inference in stochastic systems from neurons to currencies: Improved performance at small sample size”. In: *Physical Review E* 99 (2019), p. 023311. DOI: 10.1103/PhysRevE.99.023311.

[13] Alireza Sheikhattar, Sina Miran, Ji Liu, Jonathan B. Fritz, Shihab A. Shamma, Patrick O. Kanold, and Behtash Babadi. “Extracting neuronal functional network dynamics via adaptive Granger causality analysis”. In: *Proceedings of the National Academy of Sciences* (2018), p. 201718154. DOI: 10.1073/pnas.1718154115.
14. Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Sparse inverse covariance estimation with the graphical lasso”. In: *Biostatistics* 9.3 (2008), pp. 432–441. DOI: 10.1093/biostatistics/kxm045.

15. Alan Edelman and N. Raj Rao. “Random matrix theory”. In: *Acta Numerica* 14 (2005), pp. 233–297. DOI: 10.1017/S0962492904000236.

16. Hong Li Zeng, Mikko Alava, Erik Aurell, John Hertz, and Yasser Roudi. “Maximum likelihood reconstruction for Ising models with asynchronous updates”. In: *Physical Review Letters* 110.21 (2013), pp. 1–5. DOI: 10.1103/PhysRevLett.110.210601.

17. Jonathan F. Donges, Yong Zou, Norbert Marwan, and Jürgen Kurths. “The backbone of the climate network”. In: *Europhysics Letters* 87.4 (2009). DOI: 10.1209/0295-5075/87/48007.

18. Paolo Barucca. “Localization in covariance matrices of coupled heterogenous Ornstein-Uhlenbeck processes”. In: *Physical Review E* 90.6 (2014), pp. 1–5. DOI: 10.1103/PhysRevE.90.062129.

19. Olivier Ledoit and Michael Wolf. “Honey, I shrunk the sample covariance matrix”. In: *SSRN* (2003), pp. 1–22. DOI: 10.2139/ssrn.438840.

20. Olav Stetter, Demian Battaglia, Jordi Soriano, and Theo Geisel. “Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals”. In: *PLoS Computational Biology* 8.8 (2012). DOI: 10.1371/journal.pcbi.1002653.

21. Tiago P. Peixoto. “Network reconstruction and community detection from dynamics”. In: *Physical Review Letters* 123 (2019), p. 128301. DOI: 10.1103/PhysRevLett.123.128301.

22. Tiziano Squartini, Andrea Gabrielli, Diego Garlaschelli, Tommaso Gili, Angelo Bifone, and Fabio Caccioli. “Complexity in neural and financial systems: From time-series to networks”. In: *Complexity* (2018), pp. 1–2. DOI: 10.1155/2018/3132940.

23. Paul Jaccard. “Etude de la distribution florale dans une portion des Alpes et du Jura”. In: *Bulletin de la Societe Vaudoise des Sciences Naturelles* 37 (1901), pp. 547–579. DOI: 10.5169/seals-266450.

24. Richard W. Hamming. “Error detecting and error correcting codes”. In: *The Bell System Technical Journal* 29.2 (1950), pp. 147–160. DOI: 10.1016/S0016-0032(23)90506-5.

25. Giuseppe Jurman, Roberto Visintainer, Michele Filosi, Samantha Riccadonna, and Cesare Furlanello. “The HIM glocal metric and kernel for network comparison and classification”. In: *Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015* (2015), pp. 1–10. DOI: 10.1109/DSAA.2015.7344816.

26. Gene H. Golub and Charles F. van Loan. *Matrix Computations*. Fourth. Johns Hopkins University Press, 2013. ISBN: 9781421407944. URL: http://www.cs.cornell.edu/cv/GVL4/golubandvanloan.htm.
[27] Claire Donnat and Susan Holmes. “Tracking network dynamics: A survey using graph distances”. In: *Annals of Applied Statistics* 12.2 (2018), pp. 971–1012. DOI: 10.1214/18-AOAS1176.

[28] Laura C. Carpi, Osvaldo A. Rosso, Patricia M. Saco, and Martín Gómez Ravetti. “Analyzing complex networks evolution through Information Theory quantifiers”. In: *Physics Letters A* 375.4 (2011), pp. 801–804. DOI: 10.1016/j.physleta.2010.12.038.

[29] James P. Bagrow and Erik M. Bollt. “An information-theoretic, all-scales approach to comparing networks”. In: *Applied Network Science* 4.45 (2019), pp. 1–15. DOI: 10.1007/s41109-019-0156-x.

[30] Manlio De Domenico and Jacob Biamonte. “Spectral entropies as information-theoretic tools for complex network comparison”. In: *Physical Review X* 6.4 (2016), pp. 34–37. DOI: 10.1103/PhysRevX.6.041062.

[31] Dan Chen, Dan Dan Shi, Mi Qin, Si Meng Xu, and Gui Jun Pan. “Complex network comparison based on communicability sequence entropy”. In: *Physical Review E* 98.1 (2018), pp. 1–8. DOI: 10.1103/PhysRevE.98.012319.

[32] David K. Hammond, Yaniv Gur, and Chris R. Johnson. “Graph diffusion distance: A difference measure for weighted graphs based on the graph Laplacian exponential kernel”. In: *2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings* (2013), pp. 419–422. DOI: 10.1109/GlobalSIP.2013.6736904.

[33] Nathan D. Monnig and François G. Meyer. “The resistance perturbation distance: A metric for the analysis of dynamic networks”. In: *Discrete Applied Mathematics* 236 (2018), pp. 347–386. DOI: 10.1016/j.dam.2017.10.007.

[34] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Emmanuel Müller. “NetLSD: Hearing the shape of a graph”. In: *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining* (2018), pp. 2347–2356. DOI: 10.1145/3219819.3219991.

[35] Giuseppe Jurman, Roberto Visintainer, and Cesare Furlanello. “An introduction to spectral distances in networks”. In: *Neural Nets WIRN10: Proceedings of the 20th Italian Workshop on Neural Nets*. Ed. by Neural Nets WIRN10 B Apolloni et al. Vol. 226. 2011, pp. 227–234. DOI: 10.3233/978-1-60750-692-8-227.

[36] Mads Ipsen and Alexander S. Mikhailov. “Evolutionary reconstruction of networks”. In: *Physical Review E* 66.4 (2002), p. 4. DOI: 10.1103/PhysRevE.66.046109.

[37] Leo Torres, Pablo Suárez-Serrato, and Tina Eliassi-Rad. “Non-backtracking cycles: Length spectrum theory and graph mining applications”. In: *Applied Network Science* 4.1 (2019), p. 41. DOI: 10.1007/s41109-019-0147-y.

[38] Andrew Mellor and Angelica Grusovin. “Graph comparison via the nonbacktracking spectrum”. In: *Physical Review E* 99 (2019), p. 052309. DOI: 10.1103/PhysRevE.99.052309.
[39] Tiago A. Schieber, Laura C. Carpi, Albert Díaz-Guilera, Panos M. Pardalos, Cristina Masoller, and Martín G. Ravetti. “Quantification of network structural dissimilarities”. In: Nature Communications 8.13928 (2017), pp. 1–10. DOI: 10.1038/ncomms13928.

[40] Danai Koutra, Joshua T. Vogelstein, and Christos Faloutsos. “DELTACON: A principled massive-graph similarity function”. In: ACM Transactions on Knowledge Discovery from Data 10.3 (2016), pp. 162–170. DOI: 10.1145/2824443.

[41] Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos. “Netsimile: A scalable approach to size-independent network similarity”. In: arXiv:1209.2684 (2012). URL: https://arxiv.org/abs/1209.2684.

[42] Harrison Hartle, Brennan Klein, Stefan McCabe, Guillaume St-Onge, Charles Murphy, Alexander Daniels, and Laurent Hébert-Dufresne. “Network comparison and the within-ensemble graph distance”. In: Proceedings of the Royal Society A (2020), pp. 1–18. DOI: 10.1098/rspa.2019.0744.

[43] Joseph T. Lizier. “JIDT: An information-theoretic toolkit for studying the dynamics of complex systems”. In: Frontiers in Robotics and AI (2014), pp. 1–11. DOI: 10.3389/frobt.2014.00011.

[44] Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. “Detecting and quantifying causal associations in large nonlinear time series datasets”. In: Science Advances 5.11 (2019), eaau4996. DOI: 10.1126/sciadv.aau4996.

[45] Peter Wills. NetComp. 2017. URL: https://github.com/peterewills/NetComp.