Supplementary Material and Methods

Western blotting - Primary cortical neurons were lysed briefly in homogenizing buffer (1% Triton X-100, 50 mM Tris-HCl, pH 7.5, 0.3 M sucrose, 5 mM EDTA, 2 mM sodium pyrophosphate, 1 mM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride (PMSF), 20 µg/ml leupeptin and 4 µg/ml aprotinin). Equal amount of the samples was loaded per lane. For detection of Sp1, and tubulin, blots were incubated with antibodies against Sp1 (1:5000, Upstate Biotechnology, Lake Placid, NY) or tubulin (1:5000, Santa Cruz Biotech., Santa Cruz, CA). An enhanced chemiluminescence kit was used for detection. Western blotting was developed in the linear range used for densitometry. The density of the immunoblots was determined by an image analysis system installed with BIO-ID software (Vilber Lourmat, France).

Reporter Assays - Firefly luciferase and Renilla luciferase activities were measured in a luminometer (Model TD 20/20; Turner Designs, Mountain View, CA) using the reagents provided with the dual luciferase reporter kit (Promega, Madison, WI). The assay was carried out following the manufacturer’s recommendations. Transfection efficiency and extract preparations were corrected by normalizing the data to the corresponding Renilla luciferase activity for each construct.

35S-Methionine incorporation - At various time points after OGD treatment, cultured cortical neurons with the density of 5 × 10⁵ cells/cm² were washed with PBS and incubated in methionine-free DMEM (Life Technologies-BRL, Rockville, MD), but containing 30 µCi/ml L-35S-methionine (New England Nuclear, Boston, MA) for 1 h.

MTS assay - Primary cortical neurons were plated in 6 × 10⁵ cells/cm² in 24-well plates two days before treatment. Following treatment with shRNA transfection for 30 h, neurons were exposed to OGD challenge. Twenty-four hours later, 20 µl of MTS (5 mg/ml) were added to each well, followed by incubation for an additional 30 min. The media was collected and the absorbance measured at 510 nm using a Rainbow Spectra ELISA microplate reader (TECAN). Cell viability was defined relative to corresponding control cells (i.e. relative cell viability = absorbance of treated sample / absorbance of control sample * 100%).

TUNEL staining - Primary cortical neurons were washed twice in PBS before being fixed 1 hour in 4% paraformaldehyde at 4°C, and permeabilized with 0.1% Triton X-
100 in 1% sodium citrate for 5 min at 4°C. Apoptosis was determined by detecting DNA strand breaks with a TUNEL assay, using the in situ death detection kit (Roche Diagnostics GmbH, Mannheim, Germany).

Construction of plasmids - The fragments of rat Sp1 promoter (-1600 to -251) was amplified from normal rat genomic DNA using primers Sp1-F (5'-GGACACCCAGAACAGGTAGGTCTG-3') and Sp1-BglII-R(5'-AGATCTCTCTCTCTGAGGCGTGTA-3'). These PCR product was cloned into plasmid pGL3 vector (Promega, Madison, WI) using the KpnI and BglII restriction sites. The Sp1 5'-UTR (-250 to -1) fragment was amplified from normal rat genomic DNA using primers Sp1-5'UTR-SpeI-F (5'-ACTAGTAGCGAGTCTTGCCATTGG-3') and Sp1-5'-UTR-EcoRI-R (5'-GGCGCCGGTGAGCTGAGGGGCG-3'). The PCR product was cloned into the pRF or pStemRF vector digested by SpeI and EcoRI restriction sites and named as pRsp1F or pStemRsp1F. Bicistronic reporter plasmids pRF and pStemRF were generous gift of J. T. Tseng (National Cheng-Kung University, Taiwan).

Reverse transcription-PCR and real-time PCR analysis - Primary neurons were mixed with 600 µl of TRI reagent (Invitrogen, Carlsbad, CA) to extract cellular mRNA. Single-strand cDNA was synthesized from the cellular mRNA by adding 1 µl of StrataScript™ reverse transcriptase (200 U/µl, Stratagene, La Jolla, CA), 10 µl of buffer (250 mM Tris-HCl, 375 mM KCl, and 15 mM MgCl₂), 5 µl of DTT (0.1 M), 1 µl of oligo-dT, and 18 µl of mixed dNTPs (2.5 mM). The mixture was incubated for 50 min at 50°C. The reaction was terminated by heating the mixture to 70°C for 10 min and then icing. Amplification was performed on a thermal cycler (PC800; Astec, Fukuoka, Japan) using DNA polymerase (5 U/µl, Yeastern Biotech). One of the primer sets was added to give a final volume of 20 µl. Reactions were run for the optimal cycles under the following conditions: denaturation at 95°C for 15 sec, annealing at 55°C for 15 sec, and extension at 72°C for 30 sec (repeated for a total of 30 cycles). The primers for the detection of Sp1 cDNA were 5'-CTGCAAGGGTCTGATTCTCTA-3’ and 5’-AGCTTGTCACCCTTGAACTA-3’.

The primers for the detection of GAPDH cDNA were 5’-TGACAACTTTTGCCATCGTGGAAGG-3’ and 5’-CAACGGATACATTGGGGGTAGGAAC-3’. After PCR amplification, an 8.5 µl aliquot of reaction product was analyzed by electrophoresis on ethidium bromide-stained
agarose gel (1.5%). Images of the DNA gels after RT-PCR analysis were digitally captured by an image analysis system installed with BIO-ID software (Vilber Lourmat, France). Real-time PCR was carried out with a LightCycler (Roche Diagnostics GmbH, Mannheim, Germany). The primers of HIF-1α, GAPDH and NR1 were shown in Table 1. The reaction mixture (total volume 10 µl) contained 1 µl of LightCycler DNA Master Hybridization Probes reaction mix (Roche Diagnostics GmbH, Mannheim, Germany), 3 mM MgCl₂, 2 µl of cDNA, 250 nM each of the 2 primers, and 125 nmol/µl each of the dual-labeled fluorescent probes. The primers and the thermal profile were used the same as above. At the end of each annealing step, the fluorescent signal of each reaction was measured at a wavelength of 530 nm with the LightCycler fluorimeter.

RNA interference - To suppress the expression of Sp1, 20 nM Sp1 shRNA (Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan) was transfected to cortical neurons with Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Thirty hours after transfection, neurons were subjected to OGD for various periods of time. At appropriate times, the cells were lysed and assayed for viability or Western blot analyses as described below.

Immunohistochemistry - Indirect labeling methods were used to determine the levels of Sp1 protein in brain tissues. Briefly, rat brain was fixed in 4% paraformaldehyde in PBS for 16 h at 4°C. Transverse slices of 20 µm thickness were cut and the appropriate slices placed on a microscope slide. After a subsequent wash in PBS, slices were permeabilized and blocked for 60 min in 0.1% Triton X-100/5% goat serum/PBS, and incubated for 12 h at 4°C. Brain slices were incubated with rabbit anti-Sp1 antibodies (1:200, Upstate Biotechnology, Lake Placid, NY), anti-MAb1 antibodies (1:50, Chemicon Europe, Hampshire, UK) and mouse anti-NeuN antibody (1:50, Chemicon, Littleton, CO) overnight. After three washes with PBS, cells were incubated with Alexa 488-conjugated anti-rabbit IgG antibodies (1:200, Molecular Probes, Eugene, OR), Alexa 568-conjugated anti-mouse antibodies (1:200, Molecular Probes, Eugene, OR) and DAPI. The slides were washed three times with PBS and mounted with glycerol. Images were analyzed under a confocal fluorescence microscope (Olympus FluoView™ FV 1000, Melville, NY). Hypoxyprobe (pimonidazole; Chemicon Europe, Hampshire, UK) was intravenously injected into the rat (60 mg/kg) 30 min before MCAO. Animals were sacrificed 45 min after
MCAO and brain tissue was processed for immunohistochemistry.

Supplementary Legends:

Supplementary Videos 1 and 2. - Rats were injected with either saline (Supplementary video 1) or endothelin-1 (ET-1, 240 pmol in 10 µl of saline over 5 minutes; Supplementary video 2) to the left MCA. Video covers a period of approximately 1 minute.

Supplementary Fig. 1. Immunohistochemistry for the in vivo hypoxia marker pimonidazole - The pitroimidazole was injected intravenously as described in Materials and Methods. A strong signal was shown in the rat ipsilateral brain at 0.45 hr of recovery from MCAO. Contra: Contralateral side; Ipsi: Ipsilateral side.

Supplementary Fig. 2. Genes expression modulated by Sp1 - A, Data obtained from the GEO accession no. GSE63. After filtering, Student’s t test was performed. B, The percentage of genes that contained at least one putative Sp1 binding site. The TF-SEARCH program was used to investigate the potential of Sp1 binding site. C, The 'Core Analysis' function included in IPA (Ingenuity System Inc, USA) was used to interpret the data (32 genes) in the context of biological processes. Significance of the biofunctions was tested by the Fisher Exact test p-value. Top ten Diseases and Disorders significantly altered in core analysis. In brackets, number of genes from the input file implicated in each annotation. Significance at p < 0.05.

Supplementary Fig. 3. Sp1 expression in U87 glioma cells and A549 lung cancer cells - The time course of Sp1 expression after OGD treatment in U87 cells (A) or A549 cells (B) was assessed. Total lysates of U87 or A549 cells were obtained at various time points following OGD challenge. Sp1 expression was detected by performing immunoblotting with anti-Sp1 antibodies, using tubulin as an internal control. All experiments were carried out independently in triplicate and were expressed as a percentage of the levels in the naive-controls. Statistical analysis was carried out using the one-way ANOVA with appropriate post hoc tests.

Supplementary Fig. 4. The 5’-flanking region of Sp1 gene was analyzed with Software to predict the IRES-conserved sequence.
Sup. Fig. 1

Hypoxia marker	Contra	Lpsi
Table A

Gene Symbol	Accession	P-value	Fold change
Bcl2	NM_001026782	2.35E-03	1.50
Slh	NM_0019193	2.59E-02	1.50
Hspd1	NM_00104777	8.48E-04	1.50
Nqo1	NM_000706	3.54E-03	1.51
Litaf	NM_0019880	5.64E-03	1.54
Cd25h	NM_0008980	3.32E-02	1.54
Map2k3	NM_005928	1.48E-02	1.56
Hif1haa	NM_0015348	2.23E-02	1.56
Cort	NM_0007745	4.61E-03	1.56
Drd2b	NM_000289	1.74E-02	1.57
Tnsaip8	NM_0134131	2.07E-02	1.59
Hspa5	NM_0223100	1.29E-02	1.59
Hmcr	NM_002555	1.30E-02	1.62
Btg1	NM_007569	3.51E-03	1.62
Ptn	NM_000973	4.15E-02	1.62
Ep2	NM_0019440	3.75E-03	1.62
Wwtr1	NM_013784	4.14E-03	1.63
Lrcc6	NM_0019457	1.15E-02	1.64
Sirt2	NM_0010426	4.67E-03	1.64
Piga	NM_01081	1.15E-02	1.64
Ldr	NM_010700	2.32E-03	1.66
Golm4	NM_0175193	6.90E-03	1.67
Spol1	NM_002035	3.01E-02	1.69
Slc3a1	NM_000537	1.81E-02	1.75
Met	NM_001085	1.10E-04	1.76
Pym1	NM_0025700	2.86E-02	1.79
Ndel1	NM_023688	7.80E-03	1.79
Fum107b	NM_002626	3.74E-03	1.85
Arhgy2	NM_0019764	1.54E-02	1.86
R2it1	NM_013699	1.14E-02	1.88
Hspb1	NM_013559	2.33E-02	1.88
Thbd	NM_000978	1.00E-02	1.92
Srebp1	NM_00111043	1.19E-02	2.02
Gip2	NM_00125	1.48E-03	2.16
Dapsl1	NM_013664	3.37E-03	2.20
Map2k1	NM_0019454	8.25E-04	2.21
Phf13	NM_172705	9.49E-03	2.21
Lcr4	NM_023662	7.01E-04	2.29
Jun	NM_0020891	8.62E-04	2.38
Procr	NM_011171	9.99E-03	2.61
Hbea1	NM_002818	4.70E-03	2.67
Nflh1z	NM_030612	7.25E-05	3.17
Doci3	NM_007007	6.79E-03	3.35
Nfia1	NM_000444	1.16E-02	3.44
Eg1	NM_007913	1.11E-03	3.68
Gadd45c	NM_011817	1.03E-04	3.97
Tnsaip6	NM_000998	2.31E-03	4.71

Figure B

- **Fold change > 1.5**
 - No Sp1 binding site - 15 genes
 - Containing at least one Sp1 binding site - 32 genes

Figure C

- Log(10) P-value
- **Cancer** (19)
- **Reproductive system Disease** (18)
- **Connective Tissue Disorders** (18)
- **Hematological Disease** (11)
- **Immunological Disease** (10)
- **Cardiovascular Disease** (9)
- **Dermatological Diseases and Conditions** (11)
- **Inflammatory Disease** (11)
- **Respiratory Disease** (9)
- **Skeletal and Muscular Disorders** (11)
Sup. Fig. 3

A. U87 cells

B. A549 cells

% of control

Sp1/tubulin

(h)
Sup. Fig.4

(a).

(b).

Sp1-IRES Sequence

5'-UGGTTGACUCCGGCCCUUUCCGUGCAAGUGCCC
UCCUCUUCACCCUCUUCAUUGUGAAGGGGCAGCAG
AUAAAGGGGCGGAGACUAGGCUGGGCUGUGGGGC
GCUUGCUCUCUCUUCUACCCGCCACCCUCUCUGUCC
GGUCUGCUGUCUCUUGCCUCUCGUCGAGC-3'