Research Paper
The Effect of 6-Week Pilates Exercise and Fenugreek Supplement on Total Antioxidant Capacity and Mineral Content in Active Women

Mahnaz Chatraei Azizabadi, Parvaneh Nazarali, Mehdi Hedayati, Azam Ramezankhani

1. Department of Exercise Physiology, Faculty of Physical Education, Alzahra University, Tehran, Iran.
2. Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
3. Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Tehran University, Tehran, Iran.

Extended Abstract

1. Introduction

The antioxidant system can be improved as a result of some exercises. Fenugreek herbal supplement also has antioxidant property and mineral contents that can increase the benefits of exercises. It is likely that the antioxidant system can be more improved by combining exercises with fenugreek supplement. It is also possible to increase the level of minerals that athletes require by taking fenugreek supplement rich in minerals.
2. Methods

Davis et al. in 1982 were the first to report that exercise results in producing free radicals. Aerobic activities are associated with increased oxygen consumption and can lead to increased production of free radicals [1]. Studies show that regular physical activity increases the capability of the antioxidant system of the body and protects it against the destructive properties of oxidative stress resulting from increased exercise. These changes occur over time and in parallel with other adaptations of exercise. Regular exercise creates some adaptation in the antioxidant system which increases resistance to oxidative stress [4, 5].

Some studies are conducted on the effect of using medicinal plants combined with exercise on the antioxidant status of the body. Medicinal plants contain large amounts of antioxidants that can inhibit free radicals. Antioxidant compounds of these plants belong to phenolic compounds such as phenolic acids, flavonoids, tocopherols, and a group of carotenoids [7]. A few studies are also conducted on the various properties of fenugreek and its therapeutic effects on various reported cases, but its effects on the antioxidant level of human samples are not investigated yet [9]; moreover, the effects of using fenugreek supplementation and exercise simultaneously on antioxidant properties are not studied yet [4].

Aim

The current study aimed at evaluating the effect of a Pilates training course with fenugreek supplementation on Total Antioxidant Capacity (TAC) and minerals of active women.

Study design, population, and sample

The current quasi-experimental study with Pre-test-Post-test design was conducted in 2018 on all active and healthy female students aged 21-28 years in Tehran. Of these, 36 students were selected through announcements and on a voluntary basis with regard to the inclusion criteria. These criteria included: having regular exercise (regular physical activity two days a week and at least 2 years of regular exercise), no joint diseases and bone fractures in the past year, not smoking, no supplementary dietary, and no diseases affecting the results. The samples were randomly divided into four groups: Exercise (EX), Supplement (SUP), exercise plus supplement (EX+SUP), and control (Table 1).

Measures

The body-weight of subjects was measured wearing light clothes and no shoes using an analog scale (Beurer, Germany) with an accuracy of 0.1 kg, and their height was measured in standing position without shoes and shoulders and heels touching the wall using a wall mount stadiometer (Seca, China) with an accuracy of 0.1 cm. Their Body Mass Index (BMI) was obtained by dividing the weight in kilograms by the square of the height in meters. During the six-week study period, SUP group received 500 mg of fenugreek powder once a day after dinner [12]. The powdered fenugreek seeds were put into 600-mg gelatin capsule shells in a chemistry lab with a digital scale with an accuracy of 0.001 g. The subjects were asked to refrain from taking any medication during the study. The control group consumed a placebo drug (starch). For the EX group, the Pilates exercise protocol was assigned for six weeks, three sessions per week, and each for 60 minutes.

Pilates exercises included simple movements involving most of the trunk muscles (transverse abdominal muscles, internal and external oblique muscle, diaphragm, quadriceps, iliopsoas muscle, spinal extensors, and buttocks) and were performed in three positions of standing, sitting, and supine with no need to any specific equipment. The exercises started with low intensity and gradually increased every week [6]. To keep the principle of overload, new exercises were added in each session. In the first session, the intensity of exercise, measured with a Polar wristwatch, was about 60%-70% of the maximum heart rate. Over the next two weeks, the rate reached 70-75% and in the end sessions reached 75%-80% of the maximum heart rate. Blood samples were taken from subjects before the intervention and 48 hours after the last training session.

The studied blood factors were TAC and the level of minerals (calcium, phosphorus, magnesium, and iron). The TAC was measured using colorimetric oxidation-reduction method with a sensitivity of 0.1 mm; calcium was measured by photometric test using Cresolphthalein Complexone (CPC) with a sensitivity of 0.2 mg/dL; magnesium by photometric test (endpoint method) using xylidyl blue with a sensitivity of 0.5 mg/dL; iron by photometric test with a sensitivity of 0.2 mg/dL; and phosphorus by photometric and ultraviolet test with a sensitivity of 0.7 mg/dL. Collected data, after coding, were analyzed in SPSS V. 20 software. Shapiro-Wilk statistical test was used to examine the normality of data distribution. For analyzing data, two-way ANOVA (Table 2), Tukey post hoc test and paired t-test were used. The significance level was set at 0.05 (p<0.05) (Table 3).

3. Results

ANOVA results for the variables of TAC, calcium level, phosphorus level, and iron level are presented in Table 2. Of TAC, results showed that the effect of time and the interaction
Table 1. Mean±SD of Participants’ Characteristics

Characteristics	EX	SUP	EX+SUP	Control
Number	9	9	9	9
Age	24.52±6.08	25.11±5.13	24.83±6.25	26.01±4.93
Weight (kg)	59.11±5.46	63.28±5.08	59.88±5.70	65.55±5.22
Height (cm)	163.65±5.46	167.54±5.08	165.55±5.70	164.66±5.22
BMI (kg/m²)	22.24±1.48	22.68±1.02	99.21±1.22	21.20±1.15

Table 2. Two-way ANOVA Results for TAC and Levels of Calcium, Phosphorus, and Iron

Variable	Source	Mean squares	F	p
TAC (mM)	Time	0.011	31.124	0.001*
	Group	0.002	0.291	0.831
	Time × group	0.007	6.354	0.002*
Calcium (mg/dL)	Time	2.205	20.334	0.001*
	Group	0.278	1.933	0.144
	Time × group	0.242	2.229	0.104
Iron (µg/dL)	Time	7.540	0.019	0.892
	Group	381.947	0.223	0.880
	Time × group	313.819	0.778	0.515
Phosphorus (mg/dL)	Time	0.036	0.304	0.585
	Group	0.737	2.202	0.107
	Time × group	0.049	0.422	0.739

*P <0.05

Table 3. Paired t-test results of variables

Variable	Group	Post-test	Pre-test	P
TAC (mM)	EX	0±32.05	0±35.05	0.012*
	SUP	0±33.05	0±37.06	0.001*
	EX+SUP	0±33.04	0±36.06	0.001*
	Control	0±33.06	0±32.05	0.496
Calcium (mg/dL)	EX	9±46.45	9±72.49	0.029*
	SUP	8±98.36	9±38.35	0.002*
	EX+SUP	9±6.38	9±46.30	0.001*
	Control	9±13.38	9±15.47	0.14
Iron (µg/dL)	EX	93.29±87.77	89.23±88.38	0.571
	SUP	95.41±44.23	88.30±55.99	0.475
	EX+SUP	86.33±77.77	98.34±44.52	0.187
	Control	100.3±82.20	100.34±88.87	0.994
Phosphorus (mg/dL)	EX	3±87.44	3±92.62	0.760
	SUP	4±27.50	4±33.52	0.567
	EX+SUP	4±31.64	4±24.5	0.567
	Control	3±90.47	4±00.46	0.063

*P <0.05
effect between group and time was significant but the group had no significant effect on TAC. Paired t-test results reported that in the Post-test phase, the TAC increased significantly in all experimental groups (EX, SUP and EX + SUP) compared to the Pre-test phase (P<0.05). The results of the Tukey post hoc test and pairwise comparisons showed no significant difference among the experimental groups in terms of TAC changes. Regarding calcium level, only the effect of time was significant. A significant difference was observed between the Post-test and the Pre-test calcium levels. Paired t-test results showed that in all experimental and control groups, calcium level increased significantly after the intervention compared to the Pre-test scores (P<0.05). Regarding phosphorus and iron levels, effects of time, group, and time-group were not significant. In all groups, iron and phosphorus did not change significantly and there was no significant difference between calcium, phosphorus, and iron levels in all groups (P>0.05).

4. Discussion

Regarding the effect of exercise on TAC, results of the current study were in agreement with those of some other studies [13, 14] while they were inconsistent with those of some others [15, 16], Nakhaee et al. [17] in their study reported the increased TAC after a six-week aerobic training with 60-80% VO2 max intensity in active women, while Jahani et al. reported that TAC levels decreased significantly after eight weeks of continuous and regular exercise in soccer players [18]. Kumar et al. in a study evaluated antioxidant and anti-fatigue properties of fenugreek in rats subjected to weight loaded forced swim test, and concluded that fenugreek hydro-alcoholic extract reduces free radicals and increases the activity of antioxidant enzymes [21]. The study by Adibi et al. also showed that endurance training and fenugreek supplementation in male diabetic rats can improve their plasma antioxidants, but their simultaneous use results in synergistic effects and strengthens the antioxidant system [22].

In a study, it was observed that the serum iron level enhanced in rats fed by wheat biscuit supplemented by fenugreek seed flour [24]. Regarding the results for serum phosphorus level, the results of Al-Sultan and El-Bahr were similar to those of the current study [26]. They found no significant difference in serum phosphorus level of rats using aqueous extract of fenugreek. However, the current study results were not consistent with those of Townsend et al. and Tartibian et al. where no significant change in serum calcium levels was reported [28-30]. The current study showed that six-week Pilates training resulted in a slight decrease in serum iron level but this effect was not statistically significant, which was consistent with the results of Inoue et al. and Kasukalkal et al. but contrary to the findings of Liu et al. Goto et al. and Alikarami et al. [33-37].

To obtain more conclusive results the effect of fenugreek supplementation on the TAC and levels of minerals, further studies with more careful control and data collection, larger sample size, or different doses of fenugreek are recommended. The present study had some limitations such as lack of the supervision of the physical activity of participants at the time out of study and lack of precise control of their nutritional status.

5. Conclusion

A Pilates exercise course alone or in combination with fenugreek supplementation may significantly increase TAC and calcium level in active women aged 21-28 years. The combined effects of supplementation and Pilates training had no synergistic effect on improving antioxidant status.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical clearance from the Ethics Committee of Alzahra University. All ethical principles were in accordance with the Declaration of Helsinki.

Funding

This article is extracted from a master thesis authored by Mahnaz Chetraei Azizabadi with the approval code of 2401026 obtained from the Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Alzahra University.

Authors' contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declare no conflict of interests.
تأثیر شش هفته تمرین پیلاتس و مکمل‌های فیزیولوژی ورزشی بر ظرفیت تام ضداکسایشی و مواد معدنی

زنان قابل

مهران چنگل‌نویسی

پژوهش‌های جدید و بهبود نسیمی از امکان‌پذیری می‌باشند که به‌طور کلی به تأمین مواد معدنی و فیزیولوژی ورزشی نیاز دارد.

در این مطالعه، بررسی تأثیر یک دوره تمرین پیلاتس با مکمل دهی شنبلیله بر ظرفیت تام ضداکسایشی و مواد معدنی زنان فعال قبل و بعد از مداخله، به صورتی هکر گردید که به‌طور تصادفی ۲۸ تا ۲۱ زن فعال با میانگین سنی ۳۶

این مطالعه در قالب طرح نیمه تجربی انجام گرفت.

مواد و روش‌ها

به‌طور کلی، این مطالعه برای چهار گروه تمرین پیلاتس، مکمل، تمرین پیلاتس به همراه مکمل و کنترل تقسیم شد. گروه‌های تمرین، شش هفته تمرین پیلاتس درصد حداکثر ضربان قلب، سه جلسه در هفته به مدت ۶۰ دقیقه انجام دادند. گروه‌ها به‌طور مشابه در گروه‌های کنترل و مکمل شنبلیله تجویز گردید. بستری که در این بخش مورد استفاده قرار گرفت، از پودر بذر شنبلیله دریافت کردند. قبل و بعد از مداخله، ظرفیت تام ضداکسایشی و مواد معدنی پوسه های مولکولی در ناحیه سینه و بافت‌های داخلی از عضلات سیستم ضداکسایشی اندازه‌گیری شد. این تغییرات با استفاده از آزمون تجزیه و تحلیل واریانس ترتیبی و آزمون تعقیبی توکی در سطح احتمال

تاریخ دریافت: ۴ آذر ۱۳۹۷
تاریخ پذیرش: ۱۴ آذر ۱۳۹۷

کلیدواژه‌ها:

آنتی اکسیدان، پیلاتس

زنان فعال، شنبلیله

مواد معدنی

مقدمه

فعالیت‌های ورزشی شدید قابلیت تحریک رادیکال‌های آزاد را به دست می‌آورند. دویس و همکاران در سال ۱۹۸۳ گزارش کردند که فعالیت ورزشی منجر به تولید رادیکال‌های آزاد می‌شود. فعالیت‌های هوازی با افزایش اکسیژن مصرفی همراه هستند و می‌توانند به افزایش تولید رادیکال‌های آزاد منجر شوند.

سیستم آنتی اکسیدانی بدن در حالت عادی از تولید رادیکال‌های آزاد حفاظت می‌نماید. آنزیم‌های ضداکسایشی اولین خط دفاعی در برابر حمله انواع رادیکال‌های آزاد هستند. هریک از این ترکیبات آنتی اکسیدانی نقش منحصر به فردی دارند که عمل هم‌دیگر را کامل می‌کنند و برآیند آن‌ها با یکدیگر به بدن تلقی می‌شود.

تغییرات فیزیولوژی و زیست‌شناسی جسمانی با تمرین ورزشی رخ می‌دهد. تمرین‌های موثر باعث افزایش سطح آنتی اکسیدان‌ها می‌شود.

فیزیولوژی ورزشی ورزش‌گران، انواع مختلفی از رادیکال‌های آزاد را به‌طور مداوم در بدن به وجود می‌آورند. این رادیکال‌ها می‌توانند به سیستم‌های ضداکسایشی بدن حمله کنند و منجر به تغییراتی در سیستم‌های آنتی اکسیدانی و سطح آنتی اکسیدان‌ها شوند.

1. TAC

* نویسنده مسئول

دکتر پروانه نظرعلی

تهران، دانشگاه الزهرا، دانشکده علوم ورزشی، گروه فیزیولوژی ورزشی.

پست الکترونیکی: parvaneh_nazarali@yahoo.com

۱۴۳
موفقیت پیلاتس است. تمرین پیلاتس، شامل حرکاتی است که با یک سرعت کنترل شده در طول حرکت مفصل، حرکه با نفس های اقلام می‌شود در این تمرین‌های توانایی متوقف برای حفظ تعادل بر تنگی می‌شود [6]. حقیقی نشان می‌دهد که تاکنون علل انگیزی در توضیح تأثیر تمرین پیلاتس بر طوق حرکتی تام نیی‌یکساییی شامل ویژگی‌های انسانی است.

مواد و روش‌ها

در این کارآزمایی بالینی نفر از مطالعات در رابطه با یک کارگرو گیاهان طبیعی و تلقی آن با این کارگرو طرفینه که به تأثیر بر روی ویژگی‌های انسانی پیلاتس هدف می‌گیرد. گیاهان دارویی مرزهای قانونی آنتی‌اکسیدان‌های دارای تردید، رادیکال‌های آب و همراه کنند. ترکیبات آنتی‌اکسیدان گیاهان دارویی به ترکیب انسداد آنتی کلسترولی قابل، ترکیب آنتی اکسیدان، را فازریکوهای محلول کرده و گروه از آنتی‌اکسیدان، مصرف کند. در این مطالعه، انتخاب شرکت‌کنندگان، شرح کامل اهداف و اقداماتی که در مبتلایان آزمودنی‌ها به مایه‌های آنتی‌اکسیدانی، محدودیت نهایی می‌شود. دانشجویان زن فعال و سالم، در طول 12 ماه دو تمرین هوازی پیلاتس با مکمل شنبلیله (نشسته) مصرف کردند. افرادی که در گروه‌های تمرین قرار داشتند، در طول شش ماه تحقیق، گروه‌های یک بار در روز، آموزش و درخواست شد. از آزمودنی‌ها خواسته شد در طول دوره تحقیق، در میانگین سال، از طریق اطلاعیه و داوطلبانه، دانشجویان با گرمی پودرشده داخل در حالت مماس بودن شانه و پاشنه به دیوار، با خطای کیلوگرم بر مجذور قد، به متر بر آزمودنی‌ها به دست آمد. نمایه توده بدن آزمودنی‌ها فرم رضایت نامه را امضا کردند.

سنس آزمودنی‌ها به طور تصادفی در چهار گروه تمیز مورد بررسی قرار گرفتند. آزمودنی‌ها در خاک‌های کلیه‌های آنتی‌اکسیدانی شاخه‌های انتروپوپژودیان مانند قند، نسبت دور کمر به دور انگل، و سایر خود گونه‌های قلب استراحت در سالن ورزشی دانشکده تربیت بدنی دانشگاه الزهرا در خواست شد برای اندازه‌گیری شاخص‌های آنتروپومتری مانند WHR در حالت مماس بودن شانه و پاشنه به دیوار، با خطای کیلوگرم بر مجذور قد، به متر بر آزمودنی‌ها به دست آمد. نمایه توده بدن آزمودنی‌ها فرم رضایت نامه را امضا کردند.

در طول دوره تحقیق، گروه‌های مکمل یک یا بیش از یک گروه یک یا بیش از یک گروه در طول زمان، از طریق طراحی و برنامه‌سازی، در جلویینگ و ارتقاء کیفیت طی تمرین، دیده بود. در حالی که یک گروه از طریق طراحی و برنامه‌سازی، در جلویینگ و ارتقاء کیفیت طی تمرین، دیده بود. با این حال، با عادت کردن به استفاده از طیف متنوع زانویه‌های مکمل به طور وسیع به جای ادویه در آماده‌سازی غذا استفاده می‌شود [4]. به علت این دو نکته، احتمال وجود دارد که ورزشکاران از آن استفاده می‌کنند. از طرفی اخیراً به تازه تربیت‌کردن و تمرین طیفی کدیک، پیشنهاد‌های کتابی و تمرین‌های طیفی به سمت دانشمندان، موجب شده است که به ویژه ورزشکاران و متقاضیان هم نمایند. به علت مصرف از مکمل‌های سالم گیاهی مصرف کنند، این احتمال وجود دارد که ورزشکاران از آن استفاده می‌کنند. از طرفی اخیراً به تازه تربیت‌کردن و تمرین طیفی کدیک، پیشنهاد‌های کتابی و تمرین‌های طیفی به سمت دانشمندان، موجب شده است که به ویژه ورزشکاران و متقاضیان هم نمایند.
میزان سرمه گیری، مالی خاصی، گلی، و آهک‌ریزی، مصرف کربوهیدرات و پروتئین‌های پیش‌آموزه به تغییرات خاصی، بهترین اندازه‌گیری‌هایی که در حالت‌های مختلف و در نهایت به منظور یافتن این حضور و تغییرات پیش‌آموزه‌ها از سطح سرمه‌گیری، نتایج مثبت است. در هر حالت‌هایی که در حال سرم‌آزمون‌های مصرف کربوهیدرات و پروتئین‌های پیش‌آموزه، سرم و پروتئین‌های آهک‌ریزی، شاخه‌ای در مورد سرم‌آزمون‌های مصرف کربوهیدرات و پروتئین‌های پیش‌آموزه به گزارش بود/31.

پیش‌آموزه‌ها

پیش‌آموزه‌ها توانسته‌اند که در تمام گروه‌های تجربی و کنترل، در مرحله پس از سرم‌آزمون متغیر کلسیم وجود دارد. نتایج آزمون آماری تی زوجی درباره متغیر کلسیم، اثرات زمان معنی‌دار است. به عبارت دیگر، گروه و زمان را بررسی می‌کنیم. نتایج آزمون تی زوجی حاکی از ظرفیت تام ضداکسایشی معنی‌دار نیست. اثر تقابل زمان و گروه بر آورده آزمون تحلیل واریانس دوراهه درباره هر یک از متغیرهای ظرفیت تام ضداکسایشی مورد بررسی قرار گرفت. در جدول شماره ۱، نسبت به پیش‌آزمون، کلسیم افزایش معنی‌داری یافت (†P<0.02). در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار بودن اثر اصلی زمان، از آزمون‌های آرایه‌گذاری شده نتایج پیش‌آموزه‌ها کلیسمی، ضداکسایشی و آن‌ها را چنین یافته‌هایی که در صورت معنی‌دار B

6. Cresphelothelain complexon
مهناز چترائی عزیزآبادی و همکاران. تأثیر شش هفته تمرین پیلاتس و مکمل دهی شنبلله بر ظرفیت تام ضداکسایشی، کلسیم آه و فسفر

پ	ف. ارزش	میانگین مجمع‌آوری	سطح آتریورتیم	مطلق	متغیر	مکمل	تمرین با مکمل
0.01	0.011	0.007	0.004	0.001	0.003	0.002	0.001
0.035	0.01	0.007	0.004	0.001	0.002	0.001	0.001
0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001
0.01	0.01	0.007	0.004	0.001	0.002	0.001	0.001
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.001
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

نتایج آزمون تحلیل واریانس دوراهه درباره متغیرهای ظرفیت تام ضداکسایشی، کلسیم آه و فسفر

موارد	مقدار						
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
میانگین	±	±	±	±	±	±	±
پیش‌بینی‌ها حاصل از این تحقیق در مورد محصولات مکمل شنبلیله، تمرین پیلاتس و اکسیدان‌های ضدیابی مربوط به ترکیب‌های آن بوده و در اکسیدان‌های ضدیابی منابع مرجع می‌باشد.

تهران، ۱۳۹۸، طرح‌الکلی، ۹۷، شماره ۳

پوشش

امتیاز بیانات تحقیق منبع تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز تحقیق و تکنیک استفاده در این مطالعه حاصل از مجموعه بیانات لازم است که با توجه به بروز T7. VO2 max
8. NADPH

مطالعه حاصل از این تحقیق در مورد محصولات مکمل شنبلیله، تمرین پیلاتس و اکسیدان‌های ضدیابی مربوط به ترکیب‌های آن بوده و در اکسیدان‌های ضدیابی منابع مرجع می‌باشد.
مطالعه حاضر نشان داد که تعادل ظرفیت تام ضداکسایشی و مشترکهای اکسیداسیون کلسیم در زنان فعال متقابل اثرات پیلاتس و مکمل درمان بوده است.

نتایج مطالعات موثری و همکارانی از توانایی انسانان بر اعمال نتایج مطالعه، تعادل تام ضداکسایشی و مواد معدنی در زنان فعال مهربانی دارد.

نتایج مطالعه مشابه نشان داد که تکنولوژی و تجهیزات را از جمله کسب و کار افزایش فیتازی، شارژ و فشار دهنده از طریق تغییرات فسفر سرم، به سمت تغییرات فسفر سرم در زنان فعال است. تعادل و تنظیم مقدار کلسیم سرم در خون، از جمله تغییرات فسفر سرم در زنان فعال مهربانی تأثیر و نقش دارد. به نظر می‌رسد استرس ناشی از فعالیت ورزشی، غده پاراتورمون را تحریک و کلسیم را افزایش می‌دهد، اما نتایج مطالعه حاضر نشان داد که تغییر معنی‌داری را در سطوح کلسیم سرم گزارش نکردند و تغییرات معنی‌داری در ظرفیت نتایج مشابهی با مطالعه حاضر دست یافتند و در سطوح فسفر سرم در زنان فعال است. تعادل و تنظیم غلظت کلسیم سرم در این مطالعات، بر اساس دسترسی به مواد معدنی افزایش شده است.

نتایج مطالعه، به نظر می‌رسد استرس ناشی از فعالیت ورزشی، غده پاراتورمون را تحریک و کلسیم را افزایش می‌دهد، اما نتایج مطالعه حاضر نشان داد که تغییر معنی‌داری را در سطوح کلسیم سرم گزارش نکردند و تغییرات معنی‌داری در ظرفیت نتایج مشابهی با مطالعه حاضر دست یافتند و در سطوح فسفر سرم در زنان فعال است. تعادل و تنظیم غلظت کلسیم سرم در این مطالعات، بر اساس دسترسی به مواد معدنی افزایش شده است.

نتایج مطالعه، به نظر می‌رسد استرس ناشی از فعالیت ورزشی، غده پاراتورمون را تحریک و کلسیم را افزایش می‌دهد، اما نتایج مطالعه حاضر نشان داد که تغییر معنی‌داری را در سطوح کلسیم سرم گزارش نکردند و تغییرات معنی‌داری در ظرفیت نتایج مشابهی با مطالعه حاضر دست یافتند و در سطوح فسفر سرم در زنان فعال است. تعادل و تنظیم غلظت کلسیم سرم در این مطالعات، بر اساس دسترسی به مواد معدنی افزایش شده است.

نتایج مطالعه خاصی در این مطالعات، تعادل و تنظیم غلظت کلسیم سرم در این مطالعات، بر اساس دسترسی به مواد معدنی افزایش شده است. یافته‌های مطالعه و همکاران نیز به نتایج مشابهی دست یافتند و در سطوح فسفر سرم در زنان فعال است. تعادل و تنظیم غلظت کلسیم سرم در این مطالعات، بر اساس دسترسی به مواد معدنی افزایش شده است.
آزمودنی‌ها، محقق از برنامه هلسینکی استفاده کرد.

حامی مالی

این مقاله برگرفته از پایان‌نامه کارشناسی ارشد مهدی چدرگی عزیرآبادی در سال ۱۳۹۶ با کد تمایل پایان‌نامه ۲۰۱۰۱۴۲۴۰۰۱۲ در گروه فیزیولوژی ورزشی، دانشگاه علوم ورزشی، دانشگاه الزهرا استخراج شده و بخشی از پژوهش نویسنده مستند است.

مشارکت کنش‌های انسانی

تیم نویسندگان در آماده‌سازی این مقاله مشارکت داشته‌اند.

تعارض منافع

هیچ‌گونه تعارض منافعی گزارش نشد.
Mohammadzadeh A, Gol A, Oloumi H. The effects of fenugreek seed on total antioxidant capacity of blood plasma. Nutrition. 2014; 30(5):511-7. [DOI:10.1016/j.nut.2013.08.019] [PMID] [PMCID]

Harasym J, Oledzki R. Effect of fruit and vegetable antioxidants on total antioxidant capacity and lipid peroxidation indicators in sedentary men (Persian). Feiz. 2016; 20(5):427-34.

Sari-Sarraf V, Amirsasan R, Zolfi HR. Effects of aerobic and exhaustive exercise on salivary and serum total antioxidant capacity and lipid peroxidation indicators in women with type 2 diabetes (Persian). CMIA. 2017; 7(1):1805-15.

Eyiog S, Karapolat H, Yesil H, Uluu R, Durmaz B. Effects of pilates exercises on functional capacity, flexibility, fatigue, depression and quality of life in female breast cancer patients: A randomized controlled study. European Journal of Physical and Rehabilitation Medicine. 2010; 46(4):481-7. [PMID]

Ghorbanian B, Mohammad H, Azali K. Effects of 10-weeks aerobic training with Rhus coriaria. L supplementation on TAC, insulin resistance and anthropometric indices in women with type 2 diabetes (Persian). Jurnal of Babol University of Medical Sciences. 2015; 17(9):44-51.

Arshadi S, Bakhtyari S, Haghani K, Valizadeh A. Effects of fenugreek seed extract and swimming endurance training on plasma glucose and cardiac antioxidant enzymes activity in Streptozotocin-induced diabetic rats. Osman Public Health and Research Perspectives. 2015; 6(2):87-93. [DOI:10.1016/j.php.2014.12.007] [PMID] [PMCID]

Mohammadzadeh A, Gol A, Oloumi H. The effects of fenugreek seed powder on oxidant and antioxidant factors in male rats with acetyl-nophen-induced liver toxicity (Persian). Journal of Babol University of Medical Sciences. 2015; 17(9):44-51.

Herbold NH, Viscontu BK, Frates S, Bandini L. Tradition and non-traditional supplement use in collegiate female varsity athletes. International Journal of Sport Nutrition and Exercise Metabolism. 2004; 14(5):586-93. [DOI:10.1123/ijsnem.14.5.586]

Peer M, Yazdanshenas Shahraezi S, Azarbayjani MA, Arshadi S. The effect of endurance training and extract of fenugreek seed on serum Visfatin and Vaspin levels in diabetic rats. Annals of Biological Research. 2013; 4(5):301-6.

El-Nawasany SAE, Shalaby SI, Badria FAE, Magraby GM, Gupta N. Diuretic effect of fenugreek (Trigonella foenumgraecum Linn) in cirrhotic ascetic patients. Journal of Pharmacognosy and Phytochemistry. 2017; 6(3):185-9.

Babaei P, Rahmani-nia F, Nakhhostin B, Bohlooli SH. The effect of VC on immunoenodocrine and oxidative stress responses to exercise. Journal of Clinical and Diagnostic Research. 2009; (3):1627-32.

Pichl W, Szygula Z, Tyka AK, Fellia T, Tyka A, Gison T, et al. Disturbances in pro-oxidant-antioxidant balance after passive body overheating and after exercise in elevated ambient temperatures in athletes and untrained men. PLOS One. 2014; 9(1):e85320. [DOI:10.1371/journal.pone.0085320] [PMID] [PMCID]

Azizbeigi K, Azarbayjani MA, Atashk S, Stannard SR. Effect of moderate and high resistance training intensity on indices of inflammatory and oxidative stress. Research in Sports Medicine. 2015; 23(1):73-87. [DOI:10.1080/15438627.2014.975807] [PMID]

Afzalpour ME, Gharahkhanlou R, Gaeini AA, Mohebi H, Hedayati SM. The effects of vigorous and moderate aerobic exercise on the serum ari-and esterase activity and total antioxidant capacity in non-active healthy men (Persian). Journal of Sports Science. 2006; 3(9):105-23.

Nakheae H, Nazarali P, Hanachi P, Hedayati M. The effect of aerobic training and Cinnamon Zeylanicum intake on total antioxidant capacity in active women (Persian). The Horizon of Medical Sciences. 2018; 24(2):88-95.

Jahani G, Firoozmari M, Matin Homaeia H, Tarverdizadeh B, Azarbayjani MA, Movaseghl GH, et al. The effect of continuous and regular exercise on erytrocyte antioxidant enzymes activity and stress oxidative in young soccer players (Persian). Razi Journal of Medical Sciences. 2010; 17(4):22-32.

Genet S, Kale RK, Baquer NZ. Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: Effect of vanadate and fenugreek (Trigonellafoenum graecum). Molecular and Cellular Biochemistry. 2002; 236(1-2):7-12. [DOI:10.1023/A:101610311408] [PMID]

Kumar GP, Anand T, Singhit D, Khanum F, Anilakumar KR. Evaluation of antioxidant and anti-fatigue properties of Trigonilla Foenum-Graecum L. in rats subjected to weight loaded forced swim test. Pharmacognosy Journal. 2013; 5(2):66-71. [DOI:10.1016/j.phjeg.2013.03.005]

Adibi S, Azarbayjani MA, Peer M. Effects of endurance training and supplementation of fenugreek seed aqueous extract on plasma antioxidant and total antioxidant capacity of blood plasma. Nutrition. 2014; 30(5):511-7. [DOI:10.1016/j.nut.2013.08.019] [PMID] [PMCID]

Ibrahim MI, Hegazy AI. Iron bioavailability of wheat biscuit supplemented by fenugreek seed flour. World Journal of Agricultural Sciences. 2009; 5(6):769-76.

Wani SA, Kumar P. Fenugreek: A review on its nutraceutical properties and utilization in various food products. Journal of the Saudi Society of Agricultural Sciences. 2018; 17(2):97-106. [DOI:10.1016/j.jsas.2016.01.007]

Al-Sultan SI, El-Bahr SM. Effect of aqueous extract of fenugreek (Trigonellina Foenum-Graecum L) on selected biochemical and oxidative stress biomarkers in rats intoxicated with carbon tetrachloride. International Journal of Pharmacology. 2015; 111(1):43-9. [DOI:10.3923/ijp.2015.43.49]

Alghadir AH, Aly FA, Gabr SA. Effect of moderate aerobic training on bone metabolism indices among adult humans. Pakistan Journal of Medical Sciences. 2014; 30(4):840-4. [DOI:10.12669/jmjs.304.4624]

Townsend R, Elliott-Sale KJ, Pinto AJ, Thomas C, Scott JPR, Currell K, et al. Parathyroid hormone secretion is controlled by both ionised calcium and phosphate during exercise and recovery in men. The Journal of Clinical Endocrinology & Metabolism. 2016; 101(8):3231-9. [DOI:10.1210/jc.2016-1848] [PMID]

Tartibian B, Sheikhzho Z, Malandish A, Rahmatt-Yamchi M, Afsar Garebag R. Effect of moderate-intensity aerobic training on alkaline phosphatase gene expression and serum markers of bone turnover in sed-
entary postmenopausal women (Persian)]. Tehran University Medical Journal. 2017; 74(10):723-34.

[29] Tartibian B, Motabsaei N, Tolouei-Azar J. The influence of nine-week intensive aerobic exercises, calcium and vitamin D supplementation on the metabolic response of bone formation biomarkers in young women. Zahedan Journal of Research in Medical Sciences. 2013; 15(2):47-54.

[30] Moazami M, Jamali FS. [The effect of 6-months aerobic exercises on bone-specific alkaline phosphatase and parathyroid hormone in obese inactive woman (Persian)]. The Iranian Journal of Obstetrics, Gynecology and Infertility. 2013; 5(10):71-9.

[31] Ghardashi Afousi AR, Khashayar P, Gaeni AA, Choobineh S, Fallahi AA, Javidi M. [Effect of high intensity interval training on hormonal factor affecting bone metabolism (Persian)]. Razi Journal of Medical Sciences. 2015; 22(130):29-37.

[32] Inoue Y, Matsui A, Asai Y, Aoki F, Matsudi T, Yano H. Effect of exercise on iron metabolism in horses. Biological Trace Element Research. 2005; 107(1):33-42. [DOI:10.1385/BTER:107:1:033]

[33] Kabasakalis A, Kalitsis K, Nikolaidis MG, Kouretas D, Loupos D, et al. Redox, iron, and nutritional status of children during swimming training. Journal of Science and Medicine in Sport. 2009; 12(6):691-6. [DOI:10.1016/j.jsams.2008.05.005] [PMID]

[34] Liu YQ, Duan XL, Chang YZ, Wang HT, Qian ZM. Molecular analysis of increased iron status in moderately exercised rats. Molecular and Cellular Biochemistry. 2006; 282(1-2):117-23. [DOI:10.1007/s11010-006-1522-4] [PMID]

[35] Goto K, Sumi D, Kojima C, Ishibashi A. Post-exercise serum hepcidin levels were unaffected by hypoxic exposure during prolonged exercise sessions. PLOS One. 2017; 12(8):e0183629. [DOI:10.1371/journal.pone.0183629] [PMID] [PMCID]

[36] Alikarami H, Nikbakht M, Valipour Dehno V, Ghalavand A. [Effect of 8 weeks of continuous moderate intensity aerobic training on iron status in club-level football players (Persian)]. Horizon of Medical Sciences. 2017; 23(2):129-33. [DOI:10.18869/acadpub.hms.23.2.129]

[37] Ramezanpour MR, Kazemi M. [Effects of aerobic training along with iron supplementation on the hemoglobin, red blood cells, hematocrit, serum ferritin, transferrin and iron in young girls (Persian)]. Koomesh. 2012; 13(2):233-9.