Astigmatic transformation of the Bessel beam and the Gauss–Laguerre beam

A V Glazkova¹ and M V Zablovskaya¹

¹Samara National Research University, Moskovskoe shosse 34, Samara, Russia, 443086

e-mail: glazkovaanna96@mail.ru, marusjazablovskaya@mail.ru

Abstract. In studies of the anisotropy may be useful the Bessel beams, which have a high sensitivity to the asymmetry of the wave front. Beams Gauss-Laguerre are capable of maintaining their structure in free space. Gauss-Laguerre modes have found their application in optical manipulation of micro-objects, quantum optics, optical communications. In this paper presents a numerical calculation and analysis of the passage of a Bessel beam of zero order and a Gauss-lager beam through polarization devices. Transverse intensity patterns are obtained for beam propagation after passing through wave plates with different types of polarization. This work provides detailed information on polarization transformations of light beams, which can be useful in acute focusing, with optical manipulation of micro-objects. The study of astigmatic transformations of Bessel beams can be useful in capturing and controlling microparticles.

1. Introduction

Anisotropic materials are widely used in optics [1, 2]. The propagation of laser modes high order in a medium with strong anisotropy leads to complex polarization-mode transformations [3-9].

The most noticeable anisotropic effects are manifested for Bessel beams [10-14] in connection with the special structure of their spatial spectrum. A similar transformation for the Gaussian mode is not so pronounced. For example, it was shown in [3, 15] that only half the energy of the Gaussian beam with circular polarization is transformed into a vortex beam. It was shown in Refs [16, 17] that for high-frequency Gauss-Laguerre modes in a non-paraxial regime we can see behavior close to Bessel modes, but only in the near zone of diffraction. At longer distances, the Gauss-Laguerre beam undergoes astigmatic distortions. A similar difference in the behavior of the Bessel and Gauss-Laguerre modes was noted earlier with a periodic self-reproduction of multimode beams in an isotropic medium [18, 19]. Due to special structure, laser Bessel beams are very sensitive to asymmetry of the wave front, which makes them useful for the study of optical anisotropy and astigmatism [20-27]. Changes in the distribution of intensity during propagation the Bessel beams are much more visible and they occur with smaller phase distortions than for beams with uniform intensity. In particular, a clearly visible visual distortion of the beam intensity structure was observed for Bessel beams propagating perpendicular to the axis of the anisotropic crystal [20-27], and also when passing through a cylindrical lens [25]. Similar, the transformation of the beam structure can be observed with an oblique incidence of a plane wave on axicon [28-31]. Gaussian modes are subjected to astigmatic transformations with the aim of formation of a vortex phase singularity, and also for visualization of the optical vortex order [32-38].

In this paper, we numerically calculate and analyze the propagation of a Bessel beam of zero order and Gauss-Laguerre beams of high radial order through an astigmatic lens. Transverse patterns of
intensity are obtained for propagation of the beams through the astigmatic lens at different distances. Also, the dependence of the polarization of the beam on the slopes of the optical axis is also considered.

2. The modelling for Bessel beam

We consider a paraxial model and use the Fresnel transformation as the propagation operator for the beams:

\[G(u, v, z) = -\frac{ik}{2\pi z} \int_{-R}^{R} \int_{-R}^{R} g(x, y) \exp \left[\frac{ik}{2z} \left((x-u)^2 + (y-v)^2 \right) \right] \, dx \, dy, \] (1)

where \(k = \frac{2\pi}{\lambda} \) is wave number, \(\lambda \) is emission wavelength, \(z \) is the distance from the input plane, \(R \) is the input field size.

There is a zero-order Bessel beam in the input plane:

\[B(x, y) = J_0(k\alpha_0 \sqrt{x^2 + y^2}), \] (2)

where \(\alpha_0 \) is a parameter appropriating to the beam scale.

2.1 The propagation of a Bessel beam in free space

It is known that the beam retains its properties up to \(z_{max} \):

\[z_{max} = \frac{R}{\alpha_0} \] (3)

Calculation parameters are \(\lambda = 0.000633 \, \text{mm}, k = 9926.043 \, \text{mm}^{-1}, \alpha_0 = 0.003, R=1 \, \text{mm} \), \(z_{max} = 330.868 \, \text{mm} \).

Also in the input plane is a cylindrical lens with a transmission function:

\[L(x) = \exp \left\{ -ik \frac{x^2}{2f} \right\} \] (4)

where \(f \) is the focal length of lens.

Thus, the input function in (1) has the following form:

\[g(x, y) = B(x, y) \cdot L(x) \] (5)

The zero-order Bessel function was considered \(J_0(\alpha r) \), where \(r = \sqrt{x^2 + y^2} \), \(\alpha = k\alpha_0 = 29.7 \, \text{mm}^{-1} \), \(x \) and \(y \) change from -1 to 1 in increments, grid spacing is \(\frac{1}{32} \) mm.

The simulation took place in the Matlab R 2014a.

The following distribution is obtained by modeling the zero-order Bessel function \(J_0(\alpha r) \) (figure 1).

Then the Fresnel transformation (1) was performed from the Bessel function (2) in the absence of a cylindrical lens (4).

The output parameters were set: \(u \) and \(v \) also change from -1 to 1 in \(\frac{1}{32} \) increments, \(k = \frac{2\pi}{0.000633} \).

Distance \(z = 200 \, \text{mm} \). In these conditions, the distribution shown in figure 2 is obtained.

A cylindrical lens (4) was used to study the astigmatism of the beam. The focal length \(f = 150 \, \text{mm} \) was chosen for the calculations.

The results of beam propagation with astigmatism are shown in figures 3-5.

The aim of the experiment was to analyze the beam propagation at different distances. At a distance of 150 mm, the picture is shown in figure 3, at 250 mm - in figure 5.

As can be seen from the simulated patterns of intensity distribution of Bessel beams transformed by cylindrical lens, the most severe astigmatic distortions are exposed to the beams formed by the lens, standing at a larger distance. Large distances will guarantee a strong aberration. This indicates a high sensitivity of the beam to increase the distance to the lens.
3. Research of astigmatic transformations of light beams in an anisotropic medium

An experiment was conducted with Gauss-Laguerre modes to study the behavior of the Gauss-Laguerre beam as it passed through various anisotropic materials: a linear polarizer, a quarter-wave plate, and a half-wave plate. For the clarity of the experiment, a Gauss-Laguerre beam 4 of radial order and 2 angular order was chosen. The polarization of the beam depends on the angles θ (the angle at which the fast axis of the plate or the polarizer is oriented) and α (the angle of inclination to the axis O_x). In the experiment, these angles changed in search of a dependence of the type of polarization on these angles.

The input is fed by a beam described by the Gauss-Laguerre function:

$$S_{mn}(r, \theta) = \frac{2\sqrt{\pi(n-m)!}}{\alpha(n!)^3}\left(\frac{r}{a}\right)^m\times\exp\left[-\left(\frac{r}{a}\right)^2/2\right]L_n^m\left(\frac{r}{a}\right)^2\exp[\pm im\theta],$$

where $L_n^m(x) = (-1)^m \frac{d^m}{dx^m}[L_{n+m}(x)]$ - generalized Lagrange polynomial.

The scheme of the experiment is shown in Figure 6:
Figure 6. The scheme of experiment.

Table 1. Polarization of the Gauss-Laguerre beam at an angle θ with $\alpha = 0^\circ$.

θ	Linear polarizer	Quarter-wave plate	Half-wave plate
-30°	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)
30°	![Image](image4.png)	![Image](image5.png)	![Image](image6.png)
45°	![Image](image7.png)	![Image](image8.png)	![Image](image9.png)
60°	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)
90°	![Image](image13.png)	![Image](image14.png)	![Image](image15.png)

Table 2. Polarization of the Gauss-Laguerre beam at an angle θ with $\alpha = 30^\circ$.

θ	Linear polarizer	Quarter-wave plate	Half-wave plate
-30°	![Image](image16.png)	![Image](image17.png)	![Image](image18.png)
30°	![Image](image19.png)	![Image](image20.png)	![Image](image21.png)
45°	![Image](image22.png)	![Image](image23.png)	![Image](image24.png)
60°	![Image](image25.png)	![Image](image26.png)	![Image](image27.png)
90°	![Image](image28.png)	![Image](image29.png)	![Image](image30.png)

At zero angle α, the intensity of the output beam from the linear polarizer decreases with increasing angle θ. As expected, the linear polarizer and the half-wave plate produced linear polarization at the output, the quarter-wave plate gave a circular and elliptical polarization. However, with an increase in the angle α, the quarter-wave plate increasingly gave the beam with linear polarization.

As a result of the experiment, the dependence the direction and type of polarization of the output beam on the angles θ and α was obtained.

In the work, the Gauss-Laguerre beam of the 4 order was modeled with a wavelength of 532 nm, a radius (Waist radius) of 100 μm, passing through a cylindrical lens. For the experiment we use a plane-concave lens measuring 30 mm \times 32 mm, a focus $f = -70$ mm, a radius of curvature of 20 mm, a thickness of 2 mm.
Table 3. Polarization of the Gauss-Laguerre beam at an angle θ with $\alpha = 60^\circ$.

Linear polarizer	$\theta = -30^\circ$	$\theta = 30^\circ$	$\theta = 45^\circ$	$\theta = 60^\circ$	$\theta = 90^\circ$
Linear polarizer	![Image]	![Image]	![Image]	![Image]	![Image]
Quarter-wave plate	![Image]	![Image]	![Image]	![Image]	![Image]
Half-wave plate	![Image]	![Image]	![Image]	![Image]	![Image]

Table 4. Distortions of the Gauss-Laguerre beam as a function of the distance to the detector.

z (mm)	50	100	200
![Image]	![Image]	![Image]	![Image]
![Image]	![Image]	![Image]	![Image]
![Image]	![Image]	![Image]	![Image]

Table 4 shows the distortion of a beam passed through a cylindrical plane-convex lens at various distances z. As you can see, the beam is quite sensitive to increasing the distance to the detector. With increasing distance, the beam sharply changes its scalability. The degree of astigmatism increases in proportion to distance.

4. Conclusion
A simulation of the propagation of a zero-order Bessel beam through a cylindrical lens was carried out. Dependences of the degree of astigmatism of the beam on the distance to the lens are found.

The Gauss-Laguerre modes are modeled through anisotropic media in order to determine the effect of polarization on the degree of anisotropy. The simulation showed that there is a dependence of the degree of astigmatism on the angle θ and α. The effect of anisotropy is also subject to dependence on the magnitudes of these angles.
In this paper, we analyzed the dependence of the propagation of a fourth-order Gauss-Laguerre beam from the distance to the detector. Based on these results, further studies of astigmatism, the behavior of light beams when passing through astigmatic lenses, and also to determine the anisotropy characteristics of crystals can be carried out.

5. References
[1] Agranovich V M 1984 *Crystal Optics with Spatial Dispersion, and Excitons* (Berlin: Springer-Verlag)
[2] Yariv A 2003 *Optical Waves in Crystals* (New York: John Wiley)
[3] Ciattoni A 2003 Circularly polarized beams and vortex generation in uniaxial media *J. Opt. Soc. Am. A* 20(1) 163-171
[4] Marrucci L 2006 Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media *Phys. Rev. Lett.* 96 163905-163908
[5] Fadeyeva T A 2010 Spatially engineered polarization states and optical vortices in uniaxial crystals *Opt. Expr.* 18(10) 10848-10863
[6] Picon A 2011 Spin and orbital angular momentum propagation in anisotropic media: theory *J. Opt.* 13 064019-064025
[7] Khonina S N 2014 Theoretical and an experimental research of polarizing transformations in uniaxial crystals for generation cylindrical vector beams of high orders *Computer Optics* 38(2) 171-180
[8] Khonina S N 2014 Effective transformation of a zero-order Bessel beam into a second-order vortex beam using a uniaxial crystal *Laser Phys.* 24 056101
[9] Khonina S N 2017 Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals *Physics Letters A* 381 2444-2455
[10] Stepanov M A 2002 Transformation of Bessel beams under internal conical refraction *Optics Communications* 212 11-16
[11] Zusin D H 2010 Bessel beam transformation by anisotropic crystals *J. Opt. Soc. Am. A* 27(8) 1828-1833
[12] Khilo N A 2013 Conical diffraction and transformation of Bessel beams in biaxial crystals *Optics Communications* 286 1-5
[13] Paranin V D 2016 Control of the formation of vortex Bessel beams in uniaxial crystals by varying the beam divergence *Quantum Electronics* 46(2) 163-168
[14] Khonina S N 2016 Electro-optical correction of bessel beam conversion along the axis of a barium niobate-strontium crystal *Computer Optics* 40(4) 475-481 DOI: 10.18287/2412-6179-2016-40-4-475-481
[15] Brasselet E 2009 Dynamics of optical spin-orbit coupling in uniaxial crystals *Opt. Lett* 34 1021-1023
[16] Khonina S N 2013 Features of nonparaxial propagation of Gaussian and Bessel beams along the axis of the crystal *Computer Optics* 37(3) 297-306
[17] Khonina S N 2014 Comparative investigation of non-paraxial mode propagation along the axis of uniaxial crystal *Journal of Modern Optics* 62(2) 125-134
[18] Kotlyar V V 1998 Rotation of Gauss-Laguerre multimodal light beams in free space *Technical Physics Letters* 29(3) 657-658
[19] Khonina S N 1999 Generating a couple of rotating nondiffracting beams using a binary-phase DOE *Optics* 110(3) 137-144
[20] Ciattoni A 2003 Nondiffracting beams in uniaxial media propagating orthogonally to the optical axis *Opt. Commun.* 224(4) 175-183
[21] Hacyan S 2009 Evolution of optical phase and polarization vortices in birefringent media *J. Opt. A: Pure Appl. Opt.* 11(8) 085204
[22] Zusin D H 2010 Bessel beam transformation by anisotropic crystals *J. Opt. Soc. Am. A.* 27(8) 1828-1833
[23] Khonina S N 2016 Astigmatic transformation of Bessel beams in a uniaxial crystal *Optica Applicata* **46**(1) 5-18
[24] Khonina S N 2018 Birefringence detection of a gradient-index lens based on astigmatic transformation of a Bessel beam *Optik* **164** 679-685
[25] Anguiano-Morales M 2009 Transformation of Bessel beams by means of a cylindrical lens *Appl. Opt.* **48**(25) 4826-4831
[26] Khonina S N 2012 Nonparaxial propagation of Gaussian beams on the angle to the axis of the anisotropic crystal *Computer Optics* **36**(3) 346-356
[27] Khonina S N 2015 Sharp focusing of laser beams in anisotropic uniaxial crystals *Journal of Optical Technology* **82**(4) 212-219
[28] Bin Z 1998 Diffraction property of an axicon in oblique illumination *Appl. Opt.* **37**(13) 2563-2568
[29] Thaning A 2003 Diffractive axicons in oblique illumination: Analysis and experiments and comparison with elliptical axicons *Appl. Opt.* **42** 9-17
[30] Khonina S N 2004 Astigmatic Bessel laser beams *J. Mod. Opt.* **51**(5) 677-686
[31] Bendersky A 2008 Modification of the structure of Bessel beams under oblique incidence *J. Mod. Opt.* **55**(15) 2449-2456
[32] Abramochkin E 1991 Beams transformations and nontransformed beams *Optics Commun.* **83** 123-135
[33] Beijersbergen M V 1993 Astigmatic laser mode converters and transfer of orbital angular momentum *Optics Commun* **96** 123-132
[34] Courtial J 1999 Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes *Optics Commun.* **159** 13-18
[35] Yoshikawa Y 2002 Versatile generation of optical vortices based on paraxial mode expansion *J. Opt. Soc. Am. A* **10** 2127-2133
[36] Khonina S N 2005 The influence of phase DOE tilt on feature of formed laser beams matched with angular harmonics basis *Optical Memory and Neural Networks (Information Optics)* **14**(4) 191-201
[37] Kotlyar V V 2006 Elliptic Laguerre-Gaussian beams *J. Opt. Soc. Am. A* **23** 43-56
[38] Ohtomo T 2008 Generation of vortex beams from lasers with controlled Hermite and Ince-Gaussian modes *J. Opt. Soc. Am. A* **7** 5082-5094