Tick-Box for 3′-End Formation of Mitochondrial Transcripts in Ixodida, Basal Chelicerates and Drosophila

Matteo Montagna1, Davide Sassera1, Francesca Griggio2, Sara Epis1, Claudio Bandi1, Carmela Gissi2

1 Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli Studi di Milano, Milano, Italy, 2 Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy

Abstract

According to the tRNA punctuation model, the mitochondrial genome (mtDNA) of mammals and arthropods is transcribed as large polycistronic precursors that are maturated by endonucleolytic cleavage at tRNA borders and RNA polyadenylation. Starting from the newly sequenced mtDNA of Ixodes ricinus and using a combination of mitogenomics and transcriptional analyses, we found that in all currently-sequenced tick lineages (Prostriata, Metastriata and Argasidae) the 3′-end of the polyadenylated nad1 and rrnL transcripts does not follow the tRNA punctuation model and is located upstream of a degenerate 17-bp DNA motif. A slightly different motif is also present downstream the 3′-end of rrnL transcripts in the primitive chelicerate Limulus polyphemus and in Drosophila species, indicating the ancient origin and the evolutionary conservation of this motif in arthropods. The transcriptional analyses suggest that this motif directs the 3′-end formation of the nad1/rrnL mature RNAs, likely working as a transcription termination signal or a processing signal of precursor transcripts. Moreover, as most regulatory elements, this motif is characterized by a taxon-specific evolution. Although this signal is not exclusive of ticks, making a play on words it has been named ‘Tick-Box’, since it is a check mark that has to be verified for the 3′-end formation of some mt transcripts, and its consensus sequence has been here carefully characterized in ticks. Indeed, in the whole mtDNA of all ticks, the Tick-Box is always present downstream of nad1 and rrnL, mainly in non-coding regions (NCRs) and occasionally within trnL(CUN). However, some metastriates present a third Tick-Box at an intriguing site - inside the small NCR located at one end of a 3.4 kb translocated region, the other end of which exhibits the nad1 Tick-Box - hinting that this motif could have been involved in metastriate gene order rearrangements.

Introduction

Chelicerates constitute a major lineage within Arthropoda and encompass taxa of evolutionary interest, such as the deep-branching lineage Xiphosura (including the living fossil Lanceolata polyphemus), and species of medical relevance, such as the Arachnida (e.g. ticks, mites, scorpions, spiders). Mitogenomic studies of chelicerates are thus conducted both to elucidate their evolutionary biology and to derive mitochondrial sequences for studies of chelicerates are thus conducted both to elucidate their evolutionary biology and to derive mitochondrial sequences for use in species identification. Ticks (Ixodida) are obligate blood-sucking ectoparasites that originated in early/middle Permian (300-260 million years ago, Mya) [1,2,3] and now parasitize a variety of terrestrial vertebrates [4,5]. The approximately 670 described species of ticks are subdivided into three families: Argasidae, Ixodidae and Nuttalliellidae [6]. Ixodidae (hard ticks) can be divided in two morphological groups: Prostriata, including only the genus Ixodes, and Metastriata, including the remaining 12 genera [7]. Ticks can transmit a variety of pathogenic agents to humans and animals [4]. In particular, the sheep tick Ixodes ricinus (Linnaeus 1758), the most common blood-feeding ectoparasite in Europe, is the vector of Lyme disease and other bacteria, protozoa and viruses [9]. I. ricinus is also of particular interest in that it harbours a symbiont, “Candidatus Midichloria mitochondrii” [9], that resides in the intermembrane space of mitochondria. It can thus be considered a model of a three-levels relationship: the vertebrate host, the tick ectoparasite, and the intra-mitochondrial bacterium “Candidatus M. mitochondrii”.

Currently the complete mitochondrial genome (mtDNA) has been sequenced in 55 chelicerate species, including the living fossil L. polyphemus, whose gene order is considered to be ancestral for all arthropods [10,11]. Chelicerate mitogenomes show several distinctive features compared to other arthropods: bizarre tRNA structures [12,13,14,15]; unusual rRNAs [16,17]; fast nucleotide substitution rate [18]; and extensive gene order rearrangements even between closely related species [17,19,20,21,22,23,24]. Indeed, among the 55 complete mtDNAs of chelicerates, the primitive gene order of L. polyphemus is shared only by two whip spiders from the order Amblypygi (Phrynus sp. and Damon diadema), the mesothelal spider Heptathela hangzhouensis, the scorpion Uroctonus mordax, and several tick species (suborder Ixodida) (see http://www.caspur.it/mitozoa).

Given the general interest in the Ixodida, we sequenced the complete mtDNA of the sheep tick I. ricinus. The comparison to other tick mtDNAs highlighted several oddities in the nad1 and rrnL genes that prompted us to investigate the transcription of these genes in all major tick lineages (Prostriata, Metastriata and...
Argasidac). Therefore, we carried out 3’ RACE experiments in I. ricinus, and mapped the exact 3’-end of these transcripts in several other ticks, using thousands of available tick EST sequences and according to the strategy described in Gissi et al. [25].

In this paper, after a brief summary of the main features of the I. ricinus mtDNA, we describe the identification of a degenerate 17 bp sequence motif directing the 3’-end formation of nad1 and rrnL transcripts in all major tick lineages. This motif represents an exception to the tRNA punctuation model, which predicts that tRNA precursors matured through endonucleolytic cleavages and polyadenylation at sites immediately adjacent to tRNA genes [26,27,28]. Using genomics and transcriptional data, we also demonstrate the presence of a similar sequence motif, playing a similar function, downstream of the only nad1 gene in the basal chelicerate L. polyphemus and in the model hexapod Drosophila melanogaster. Finally, we illustrate a possible evolutionary scenario of this motif from chelicerates to hexapods. Making a play on word, we have named this motif “Tick-Box”, since it is a “check mark” that has to be verified for the 3’-end formation of nad1 and sometimes also rrnL transcripts, and its consensus sequence has been carefully characterized here, for the first time, in the “tick” group.

Methods

I. ricinus mtDNA Annotation and Analyses

The amplification and sequencing of the complete mtDNA of I. ricinus is described in Text S1. The mt sequence was deposited at EMBL database under accession number JN248424.

Protein-coding genes (PCG) of I. ricinus were annotated by sequence similarity to the orthologous PCGs of other ticks. Partial stop codons were assumed only to avoid overlap with a downstream gene located on the same strand, while the 3’-end of nad1 was experimentally identified by 3’ RACE and EST analyses (see below). Overlaps between genes located on the same strand were kept as short as possible. tRNA annotation was performed comparing the predictions of tRNAscan-SE [29] and ARWEN [30] to the tRNAs annotated in other ticks (LocARNA multi-alignment [31]). Small (rrnS) and large (rrnL) ribosomal subunits tRNAs were identified by sequence similarity and their boundaries were settled as adjacent to those of the flanking genes. As an exception, the 3’-end of rrnL was experimentally determined by 3’ RACE and EST analyses (see below).

In the I. ricinus mtDNA analyses, the gene boundaries of the 10 previously published mtDNAs of Ixodida (Table 1) were revised based on sequence multi-alignment, transcriptional data, and the criterion of “minimum gene overlap”. Using this approach, we optimized the annotation of a total of 93 genes (i.e., 60 tRNAs and 33 PCGs) in 10 species, with up to 14 gene boundaries modified in I. hexagonus (data available on request).

Secondary structures of the major non-coding region (the control region; CR) were predicted with Mfold [32].

Direct repeat sequences longer than 9 bp were searched in the mtDNA sequences with RepFind [33], setting the P-value cut-off at 0.01 and with no filter for low-complexity sequences.

The Tick-Box motif was searched in complete and partial mt sequences using PatSearch [34,35]. The Tick-Box consensus sequence (tgyrchywttwggda) was defined as the sequence with the highest sensitivity in PatSearch analyses against all analysed Ixodida species. Tick-Box searches in the whole mtDNA sequences of two Xiphosura and 14 Drosophila species were carried out allowing mismatches and/or indels to the original consensus sequence. Tick-Box sequence logos [36] were generated by WebLogo [37] using all occurrences of the Tick-Box in the analysed species (Table S1). The possible presence of conserved secondary structure around the Tick-Box was verified by LocARNA [31].

Gene order, non-coding regions, and gene sequences of all mtDNAs analysed in this study were retrieved from MitoZoa Rel. 9.1 [38,39] (http://www.caspur.it/mitozoa), a database collecting one representative and manually-curated mtDNA entry for each metazoan species. Therefore, the 474 complete nad1 sequences of arthropods analysed in this study were retrieved from MitoZoa Rel. 9.1.

3’ RACE of rrnL and nad1 Genes

Since both rrnL and nad1 transcripts are polyadenylated in Drosophila melanogaster [26,27,40], the 3’-end of these transcripts was identified by 3’ RACE (Random Amplification of cDNA End) or by identification of the start site of the polyA tail in mitochondrial ESTs, according to the method used in [25]. The 3’ RACE of nad1 and rrnL transcripts of I. ricinus was carried out using gene-specific inner (nad1-620pr and rrnL-1050pr) and outer (nad1-173pr and rrnL-850pr) primers (see Text S1).

One partially engorged adult female of I. ricinus was collected in Monte Bollettone (Como, Italy) and the total RNA was extracted following the total RNA isolation procedure of the mirVanaTM miRNA Isolation Kit (Ambion). RNA was retrotranscribed to cDNA using an adapter-ligated oligo (dT)-primer (FirstChoice RML-RACE Kit, Invitrogen) and the reverse transcriptase of the QuantiTect Reverse Transcription Kit (Qiagen). The first PCR reaction was assembled coupling the 3’ RACE outer adaptor primer (FirstChoice RML-RACE Kit, Invitrogen) with the nad1-173pr or rrnL-850pr primer. The second nested PCR reaction was assembled coupling the 3’ RACE inner adaptor primer (FirstChoice RML-RACE Kit, Invitrogen) with the nad1-620pr or rrnL-1050pr primer. All PCR reactions were performed in a total volume of 25 μl with 1.25 units of GoTaq (Promega), according to the manufacturer’s protocol. A single band of approximately the expected size was observed as product of the inner and outer PCRs in both the nad1 and rrnL 3’ RACE. In order to identify possible alternative polyadenylation sites located few nucleotides apart, nested PCR products were cloned (CloneJET PCR Cloning Kit, Fermentas) and a total of six positive clones were sequenced for each fragment. The partial RNA sequences of the I. ricinus rrnL and nad1 transcripts were deposited at EMBL database under accession numbers HE798553, HE798554 and HE798555.

EST Analyses of rrnL and nad1 Genes

EST sequences highly similar to the rrnL and nad1 genes of a given tick species were identified by Blast search [41] using as a probe the mt gene sequence of the same or of a congenic species. Blast searches were carried out against the “Est_other” database that, at February 2012, included 297,856 ESTs of 20 Ixodida species. ESTs with statistically significant matches were assembled together with the corresponding mitogenomic sequence using Geneious [42]. The polyA start site was identified by visual inspection of the assembly. In particular, “A” or “T” stretches >10 bp located at the end of EST sequences were considered equivalent to the polyA tail of a mature transcript. In some cases, the lack of EST quality data and/or the presence of A stretches on the genomic mtDNA does not allowed mapping this site with single-nucleotide resolution, but only in a range of 2–5 nucleotides. The rrnL polyA site of Boophilus microplus and Dermacentor andersoni, and the nad1 polyA site of L. polyphemus were determined by...
Ixodes ricinus Genome Organization and Phylogeny

Phylogenetic Analyses

Phylogenetic analyses were performed on the 13 PCGs of the 10 complete mtDNA of Ixodida (Table 1), using Argasidae as outgroup species. PCGs were aligned at the amino acid level with Muscle [43], and the equivalent nucleotide alignments were generated by “back-translation”.

Ambiguous alignment regions were trimmed with Gblocks [44] using default parameters. The single PCG alignments were then concatenated with SEAVIEW [42]. A single PCG alignments were then concatenated with SEAVIEW [42].

Bayesian phylogenetic analyses were carried out on both amino acid and nucleotide alignments. The evolutionary models best fitting to the analyzed datasets were selected with ProtTest 1.4 [46] for amino acid, and ModelTest [47] for nucleotide datasets, according to the Akaike Information Criterion (AIC). The selected substitution model was the MtArt [48] with a proportion of invariant sites (I) and a gamma distribution for rate heterogeneity across sites (Γ) for the amino acid dataset, and the GTR+I+Γ for the nucleotide dataset [49]. Bayesian trees were calculated using MrBayes 3.1.2 [50].

Due to the absence of MtArt, the more general GTR and MrRev [51] model were applied in the amino acid analyses. Two different partitions based on the 13 genes and on the 3 codon positions were used in the nucleotide dataset analysis. One partition based on the 13 different proteins was used for the amino acid dataset. Two parallel analyses, each composed of one cold and three incrementally heated chains, were run for 2.5 million generations. Trees were sampled every 100 generations and burn-in fraction was calculated as 25% of total sampled trees, according to lnL stationary analyses.

Results and Discussion

Ixodes ricinus Genome Organization and Phylogeny

The mtDNA of I. ricinus is 14,566 bp long and encodes the 37 mt genes typical of other metazoans. The general features of this genome, together with peculiarities of the protein-coding genes (PCGs), the tRNA genes, the control region, and the small non-coding regions (NCRs) are illustrated in the Text S1, Figure S1 and Figure S2.

Figure 1 compares the genome organization of all available complete mtDNAs of ticks, taking also into account the location of the control region (CR), which contains the regulatory elements of mt transcription and replication. The genome organization of I. ricinus is identical to that found in all other available non-Australasian Ixodes species and in Argasidae (Figure 1). Since it is also shared with L. polyphemus, this organization is considered to be ancestral to all arthropods [10,11,52].

Australasian Ixodes species (I. uriae and I. holocyclus) have a genome organization almost identical to that of other Ixodes and Argasidae, except for the presence of a duplicate control region (CR2) between trnL(CUN) and trnM (Figure 1), suggesting possible differences in mtDNA replication/transcription mechanisms [23]. With respect to the I. ricinus genome organization, the Metastratiota exhibit: (1) the translocation of a large genomic block comprising 7 genes and the CR (yellow block in Figure 1); (2) the translocation plus inversion of trnC (violet blocks in Figure 1); (3) the presence of a duplicate CR2 between trnL(CUN) and trnC (grey blocks in Figure 1) [24,53]. As already observed, the duplicate CR2s of both Metastratiota and Australasian Ixodes exhibit concerted evolution and probably originated, together with the identified genome rearrangements, through two distinct events of tandem duplication and random gene loss [23,53].

All Bayesian phylogenetic analyses of Ixodida, carried out on the 13 PCGs at both nucleotide and amino acid level, give congruent results and support the monophyly of the major Ixodida lineages. In particular, all phylogenetic reconstructions unambiguously identifies I. ricinus as sister taxon to I. persulcatus, with non-Australasian Ixodes positioned in a distinct highly supported clade (see nucleotide Bayesian tree in Figure 2A). This topology is in agreement with previous phylogenies based only on molecular data [2,3,54] or based on both morphological characters and nucleotide sequences (18S and 28S nuclear rRNAs; 16S mt rRNA) [55].

Partial Stop Codons and nad1 Annotation

In the mtDNA, partial stop codons are completed by “back-translation”. Ambiguous alignment regions were trimmed with Gblocks [44] using default parameters. The single PCG alignments were then concatenated with SEAVIEW [42].
between genes encoded by the same strand. In *I. ricinus*, the partial stop codons of five PCGs can be predicted according to the above-described rules (partial "T" stop codon in *cox2*, *cox3*, *nad5*, and *cob*; "TA" in *nad2*). On the contrary, the identification of the correct stop codon of *nad1* is quite tricky because the 3' end of this gene has unique peculiarities that do not fit to the known transcript maturation process and the derived annotation rules. In particular, *nad1* is the only PCG followed by a gene encoded on the opposite strand (Figure 1). Therefore, based on the punctuation model of transcript maturation, the annotation of a partial stop codon is not strictly required in this case, since *nad1* and the downstream gene are transcribed by two different strands. Moreover, the complete stop codon of the *nad1* ORF is surprisingly located well inside the opposite strand-encoded *trnS*(UCN) gene, producing a large gene overlap of 50 bp.

Strikingly, even the 3'-ends of the *nad1* genes/proteins currently annotated in all other ticks present similar unusual features.

Firstly, in almost all published tick mtDNA [23,24,53], the currently annotated 3'-end of *nad1* has a complete stop codon located inside the first or even the second downstream, opposite strand-encoded, gene. This annotation gives rise to a gene overlap whose size is highly variable between species and ranges from 2 to 101 bp (Figure 2B). The most extreme case is in the argasid tick *Ornithodoros porcinus*, where the annotated *nad1* contains the reverse complement of the entire downstream *trnS*(UCN), and the complete *nad1* stop codon is located inside the following *cob* gene. Similarly, the *nad1* ORF of the metastriate *A. triguttatum* contains the entire *trnE* gene. It is noteworthy that the predicted *nad1* overlap size is not related to species phylogeny or gene order around *nad1* (Figure 2), and that the currently annotated *nad1* complete stop codons fall in different regions of the downstream tRNA gene, depending on the species (Figure 2B).

Secondly, assuming the veracity of these complete stop codons, the *nad1* protein of Ixodida should have an extra C-terminal tail compared to the *nad1* of *D. melanogaster*, ranging from 6 to 38 amino acids (20 amino acids in *I. ricinus*). The analysis of a multi-alignment of 474 *nad1* proteins belonging to different arthropod species (see Materials and Methods) shows that this putative C-terminal tail is Ixodida-specific, being absent in all other available chelicerates (45 species) and in 96% of the whole arthropod dataset. Finally, this putative C-terminal tail has a low amino acid sequence similarity even within Ixodida (data not shown).

All these peculiarities prompted us to experimentally determine the actual *nad1* stop codon of Ixodida by: (a) 3' RACE in *I. ricinus*; (b) identification of the polyA start site of *nad1* ESTs in all other tick species for which EST data are available.
In *I. ricinus*, the 3' RACE analysis shows that the *nad1* mRNA ends with a TAA stop codon created by the polyA tail and located exactly at the same position of the complete DNA-encoded stop codon of *D. melanogaster* (Figure 3). *nad1* ESTs confirm this site in *I. ricinus* and in seven additional tick species (*Ixodes scapularis*, three Argasidae and three Metastriata species; see Table 2 and Figure 3). These data unambiguously demonstrate that, in all major Ixodida lineages, the putative C-terminal tail and the gene overlap of *nad1*, predicted in silico, result from the misannotation of the actual *nad1* stop codon. Most importantly, the accurate annotation of the *nad1* 3' end by transcriptional data identifies an unexpected NCR between *nad1* and the downstream tRNA encoded by the opposite J-strand (i.e., *trnS*(UCN) in Argasidae and Prostriata, and *trnE* in Metastriata). This NCR has been identified in all the 11 analysed complete mtDNAs (Figure 2B) and in all the partial mt sequences available for other 17 tick species (Figure 3 and Table S1). We can thus conclude that the NCR downstream of *nad1* is a common and ancestral character of the Ixodida mtDNA.

As shown in Figure 3, this NCR is AT-rich (mean AT% = 76%), ranges from 14 to 30 bp in length, and is characterized by the presence of a degenerate 17 bp motif that includes the two last conserved nucleotides of *nad1*. Moreover, it can be observed that:

1) this degenerate motif is associated with the 3'-end of *nad1* even when *nad1* is translocated in Metastriata (Figure 1);
2) this motif is located at the boundaries between two large blocks of genes encoded by opposing genomic strands (Figure 1);
3) the polyA start site of the *nad1* mRNA does not map at the boundary of the downstream tRNA gene in any analysed tick (Figure 3), thus excluding a *nad1* transcript maturation according to the tRNA punctuation model [27,28];
4) this motif is absent in the *nad1* mature transcript, thus its sequence is either un-transcribed or quickly removed from the *nad1* precursor transcript.

All these data suggest that this motif, that we have named the "Tick-Box", directs the 3'-end formation of the polyadenylated *nad1* transcripts in Ixodida, and likely works as a maturation signal for the cleavage of a large precursor transcript, or as a transcription termination signal.

We need to stress that this motif has been originally included inside the *nad1* gene, and its identification has been made possible starting from the observations of: i) unusual position of the complete stop codon of *nad1*; ii) unusually large overlap between
genes encoded by opposite strand; iii) an extra not-conserved C-terminal tail in the nad1 proteins of ticks. Thus, far from being a simple case of nad1 misannotation, this is an emblematic case that emphasizes how detailed analyses of unusual gene features can help to identify hidden functional elements, and how gene misannotations can hamper the recognition of conserved regulatory elements.

The Tick-Box Downstream of rRN

Sequences similar to the Tick-Box motif were sought along the entire mt sequences of all 11 ticks (Table 1) using pattern matching software, and were found to be present in only two or three fixed genomic positions (red blocks in Figure 1):

1) downstream of nad1;
2) near the 3′-end of rRNA;
3) inside a small NCR located between trnQ and trnF in some Metastriata.

Available partial mt sequences of 41 additional prostriates and metastriates (Table S1) contain Tick-Box motifs only in these genomic positions.

Figure 3. Non-coding region between nad1 and trnS(UCC)/trnE, and the Tick-Box degenerate consensus sequence. Bold face: species listed in Table 2, for which the 3′-end of the nad1 transcript was experimentally determined by ESTs or 3′ RACE. Bold face only for the genus name: when the DNA sequence of a given species was unknown, the 3′-end of nad1 was reconstructed by ESTs was mapped on the sequence of a congeneric species. Bold and underlined genus name: the nad1 3′-end of the argasid Argas monolakensis (Table 2) was mapped on the sequence of the argasid Carios capensis. Red colour: last DNA-encoded nucleotide preceding the nad1 polyA tail. Underlined nucleotides: complete stop codons predicted in silico; bold lower case nucleotides with grey background: differences to the Tick-Box consensus sequence; rpt: presence of a repeated sequence containing the Tick-Box (see main text). Degenerate nucleotide symbols according to the IUPAC code. Analyses species and sequence accession numbers are listed in Table S1. Gene abbreviations as in Figure 1.

doi:10.1371/journal.pone.0047538.g003
Table 2. ESTs matching to the nad1 gene, and nad1 ESTs with a polyA stretch corresponding to the polyA tail of the mature nad1 transcript.

Taxon	Species	Available ESTs	nad1 ESTs	mtDNA	
		total	polyA^b		
Prostriata	Ixodes ricinus	1,969	2	2	This study
Prostriata	Ixodes scapularis	193,773	42	3	congeneric
Argasidae	Ornithodoros coricaceus	923	1	1	congeneric
Argasidae	Ornithodoros parkeri	1,563	1	1	congeneric
Argasidae	Argas monolakensis	2,914	7	6	
Metastriata	Amblyomma rotundatum	1,230	2	1	congeneric
Metastriata	Dermacentor variabilis	2,090	8	7	AY059254
Metastriata	Boophilus microplus	52,901	12	4	AF110621
Xiphosura	Limulus polyphemus	8,488	12	7	NC_003057

^aESTs publicly available at 20 Feb, 2012. ^bESTs with a terminal polyA stretch >10 bp, mapping to the end of nad1. Polyadenylated ESTs mapping well inside the nad1 gene have not been considered, as they are mostly cDNA artefacts originated from the annealing of the oligo-dT primer to an A-rich inner gene region during the cDNA first strand synthesis.

The exact location of Tick-Box motif near the 3’-end of mtDNA depends on the taxa, indeed this Tick-Box falls:

1) in the DHU and anticodon arms of trnL(CUN) in Argasidae and non-Australasian Ixodes lineages (Figures 1);
2) at the end of CR2 in Australasian Ixodes (Figure 1);
3) a few bp upstream of the 3’-end of the currently annotated rnl in Metastriata (Figure 1).

In order to study the potential functional role of the rnl associated Tick-Box, we experimentally determined the 3’-end of rnl transcripts through 3’ RACE in I. ricinus, and by using EST data in 10 other species (Table 3).

In I. ricinus, the rnl polyadenylated transcript ends at two alternative sites, separated by 1 bp and located inside trnL(CUN), immediately before the 5’-end of the Tick-Box motif (red sites in Figure 4). Indeed, most rnl 3’ RACE clones stop 14–19 bp inside trnL(CUN), while only two clones stop 11–12 bp inside trnL(CUN) (the presence of one/multiple “A” nucleotides on the mitogenomic sequence prevents precisely mapping these polyA start sites. Even rnl ESTs of I. ricinus confirm these two alternative 3’-ends of rnl. Moreover, these ESTs do not provide support for the existence of rnl transcripts terminating at the 5’-end of trnL(CUN), as predicted by the tRNA punctuation model.

In I. scapularis, EST data identify the 3’-end of rnl at two sites corresponding exactly to those found in I. ricinus (Table 3 and red sites in Figure 4). In Ornithodoros (Argasidae) and in all analysed metastriates, rnl terminates always at the beginning of the Tick-Box. Moreover, in Ornithodoros an additional rnl 3’-end site is located at the 5’-end of trnL(CUN), and in some metastriate species additional rnl 3’-end sites can be observed very close to the 5’-end of the nearby trnL(UUR) gene, as predicted by the tRNA punctuation model (Table 3, and red sites in Figure 4). However, in each analysed species the majority of ESTs support the positioning of the rnl 3’-end at the beginning of the Tick-Box motif (Table 3), suggesting that this site could be used more frequently than the other (given the different nature of the original cDNA libraries, definitive quantitative data cannot be inferred. Moreover, in some species the lack of EST quality data and/or of the mitogenomic sequence does not allow mapping of the rnl polyA start site at single-nucleotide resolution). The lack of ESTs for Australasian Ixodes precludes validation of the 3’-end of rnl in this lineage. However, based on sequence similarity to other Prostriata and on the lack of a tRNA abutted to rnl, we hypothesize that in Australasian Ixodes species the 3’-end of rnl occurs immediately before the identified Tick-Box motif (Figure 4).

In conclusion, as for nad1, transcriptional data are consistent with a functional role of the Tick-Box sequence in the 3’-end formation of polyadenylated rnl transcripts. Indeed, in all analysed species the rnl polyA tail starts immediately before or within the first 5 nt of the Tick-Box motif, independently of the gene/NCR downstream of rnl. All additional rnl polyadenylated sites, observed mainly in Metastriata, conform to the predictions of the tRNA punctuation model (i.e., they fall at the 5’-end of the downstream tRNA gene, considering the ambiguities due to EST quality) and appear infrequently used, as roughly estimated by the number of supporting ESTs (Table 3).

The presence of a Tick-Box near the 3’-end of rnl is intriguing since a transcription termination signal has been functionally identified downstream of rnl in Mammalia: this signal is a tridecamer sequence entirely contained in the trnL(UUR) gene [56,57] and functions as a binding site for the mitochondrial transcription termination factor (mTERF) [58,59]. Based only on sequence similarity to this mammalian tridecamer sequence, Valverde et al. [60] identified a “TGGCAGA” heptamer conserved downstream of rnl from mammals to insects and protozoans, and hypothesized its function as an “rRNA termination box”. However, later functional studies have not validated the Valverde’s “rRNA termination box” as a binding site to the mTERF homologos of sea urchin and D. melanogaster [61,62,63,64].

We need to stress that our Tick-Box does not coincide with the Valverde’s rRNA termination box either in sequence or exact genomic position. Moreover, unlike the rRNA termination box, our motif has been defined using both sequence similarity and transcriptional data. Finally, it should be noted that in Argasidae and non-Australasian Ixodes the exact location of the rnl Tick-Box generates an overlap between rnl and trnL(CUN) (dashed line in Figure 4). This situation recalls the overlap between rnl and trnL(UUR) found in mammals because of the presence of the rnl transcription termination signal inside trnL(UUR) [65].

As in the case of nad1, the determination of the rnl 3’-end by transcriptional data has allowed the discovery of: i) an unexpected NCR downstream of rnl in Metastriata (11–22 bp long); ii) an overlap between rnl and trnL(CUN) in Argasidae and non-Australasian Ixodes (12–19 bp long; see dashed line in Figure 4); iii) the misannotations of rnl in most ticks (Figure 4). However, we need to emphasize that the determination of the exact boundaries of rnl, only by comparative analyses is complicated by difficulties in the prediction of the rRNA secondary structure and by the low sequence conservation at both ends of this gene.

The Tick-Boxes of Metastriata

As shown in Figure 5, a third Tick-Box motif is located in the NCR between trnQ and trnF in 9 out of 13 analysed metastriates (complete and partial mtDNAs, see Table S1). In the remaining 4 metastriates, the trnQ-trnF NCR is always shorter than 12 bp, and does not contain an even partial Tick-Box sequence.

This third Tick-Box is characterized by several oddities:
Table 3. ESTs matching to the *rrnL* gene, and *rrnL* ESTs with a polyA stretch corresponding to the polyA tail of the mature *rrnL* transcript.

Taxon	Species	Available ESTs	*rrnL* ESTs	polyA ESTs	polyA start at:	mtDNA*
					5'-end of Tick-	
					Box Other	
Prostriata	*Ixodes ricinus*	1,969	23	13	13	0
Prostriata	*Ixodes scapularis*	193,773	33	8	8	0
Argasidae	*Ornithodoros coriaceus*	923	20	5	4	1
Metastriata	*Amblyomma americanum*	6,480	852	30	30	0
Metastriata	*Amblyomma rotundatum*	1,230	18	14	12	2
Metastriata	*Amblyomma tuberculatum*	387	17	2	2	0
Metastriata	*Hyalomma anatolicum*	736	5	5	2	3
Metastriata	*Hyalomma marginatum*	2,110	27	24	18	6
Metastriata	*Dermacentor andersoni*	1,387	67	25	16	9
Metastriata	*Boophilus microplus*	52,901	296	130	115	15
Metastriata	*Rhizophalax sanguineus*	2,899	428	57	50	7
Xiphosura	*Limulus polyphemus*	8,488	2	2	0	2

*ESTs publicly available at 20 Feb, 2012.

1) It is always on the opposite strand compared to the two Tick-Boxes situated downstream of *nad1* and *rrnL* in the same genome (red arrows in Figure 1);

2) It is located in a NCR shared only by Metastriata, since the *trnQ-trnF* gene adjacency is specific of the metastriate gene rearrangement. Thus, if present, this third Tick-Box sequence gives rise to an inverted repeat (21 bp-long) that flanks the large translocated mt region of Metastriata ranging from *nad1* to *trnL* (yellow block in Metastriata of Figure 1). Even more surprisingly, in *B. microplus* [66] this large translocated mt region is preceded by a fivefold tandem repeat (126 bp unit) composed of *trnE*+Tick-Box+3'-end of *nad1*, and is followed by a single inverted copy of the Tick-Box sequence;

3) The phylogenetic distribution of this third Tick-Box is quite erratic, since it is absent in Haemaphysalinae, present in Rhipicephalinae, and present/absent even in congeneric species of Amblyomminae (Figure 5, and Table S1). Thus, it is difficult to discriminate between ancient or recent origins of this third Tick-Box.

As further peculiarity, the Tick-Box sequences present in the same mtDNA of metastriates are almost identical (maximum of 2 nt differences, observed only in one among the 13 analysed species), while the Tick-Boxes present in the same mtDNA of Arugasidae and Prostriata species differ for 3–6 nucleotides. More interestingly, in the three complete mtDNAs of metastriates, the Tick-Boxes downstream of *nad1* and *rrnL* are located inside a perfect direct repeat of 28–30 bp. On the contrary, perfect direct repeats of the same size are absent in Arugasidae and Prostriata. This suggests that the Metastriata Tick-Box motifs likely undergo to concerted evolution, as the duplicated CR2 of these taxa [24,53]. It should be noted that this observation does not hold for Australasian *Ixodes*, where the intra-genome Tick-Boxes differ for 4–5 nucleotides and the identified duplicated CR2s also evolve by concerted evolution [23]. Although we have no convincing explanations for this observation, we hypothesize that the strong intra-genome Tick-Box conservation in Metastriata is related to the peculiar mt gene arrangement of this taxon.

The functional role of this third Tick-Box is enigmatic, and the absence of EST data for the *trnQ-trnF* region complicates the verification of possible functional hypotheses. However, since the sequence of this third Tick-Box is almost identical to that of functional Tick-Boxes identified in the same genome, we suggest that even the third Tick-Box is functional. We could tentatively hypothesize that this third Tick-Box motif plays the role of terminating the transcription of the J-strand, started at the CR, downstream of *trnL*. Indeed, in metastriates the movement of *trnL* far away from the cluster of other J-encoded genes makes J-strand transcription after *trnL* pointless (compare the J-strand gene distribution of Prostriata/Argasidae to Metastriata in Figure 1).

Such a role in the rearranged mtDNAs might have represented a selective constraint for the conservation of the third Tick-Box in Metastriata. Finally, the presence of the Tick-Box motif at both ends of the large translocated mt regions of Metastriata (yellow blocks in Figure 1) might suggest its involvement in recombination events responsible for genome rearrangements. Indeed, signs of recombination have been found in several chelicerates based on the observation of concerted evolution, gene conversion, and translocation of genes to the opposite strand [17,20,23,67].

Origin and Evolution of Tick-Box

Figure 6A shows the consensus sequence of the Tick-Box motif and few rare variants, differing only in 1 or 2 positions. Noteworthy, the Tick-Box consensus sequence is quite degenerate, showing nucleotide ambiguity codes in almost half of the 17 sites (Figure 6A). This relatively high degeneration of the Tick-Box consensus is in accordance with its nature of regulatory element, and can be related to its possible functioning through interactions with one or more nuclear-encoded proteins. Thus, as usual for regulatory elements, the precise sequence of the Tick-Box is quite different from one species to the other, and we expect this element to be subject to a taxon-specific evolution. In this respect, the Tick-
Box shows an evolutionary pattern very similar to the CR, a mt region also known to evolve in a taxon-specific way [68]. Remarkably, in addition to the control region, the Tick-Box is the only NCR conserved in all Ixodida species (Figure 1), while all other NCRs of ticks are unalignable (even those located at the same relative position in different species) and mainly shorter than 9 bp (see Text S1).

The analysis of the single Tick-Box motifs indicates that the Tick-Box does not form a secondary structure, neither alone nor including surrounding sequences. The only exceptions are the few Tick-Boxes located downstream \textit{rrnL} in non-Australasian \textit{Ixodes} and Argasidae, that are characterized by the overlapping with \textit{trnL(CUN)} (Table 3).

In order to define the evolutionary origin of the Tick-Box, we have carefully investigated the presence of the Tick-Box regulatory element (see also below). Therefore, the Tick-Box appears very different from the other hypothesized mt transcript processing sites. Indeed, in some cases, the absence of a tRNA punctuation mark has been supposed to be compensated by stem-loop structures resembling a tRNA portion [28].

Figure 4. The Tick-Box motif located downstream of \textit{rrnL}. Bold face: species listed in Table 3, for which the 3'-end of the \textit{rrnL} transcript was experimentally determined by ESTs or \textit{RACE}. Bold face only for the genus name: when the DNA sequence of a given species was unknown, the 3'-end of \textit{rrnL} reconstructed by ESTs was mapped on the sequence of a congeneric species. The \textit{rrnL} 3'-end of \textit{Hyalomma anatolicum} and \textit{Hyalomma marginatum} (Table 3) were both mapped on the sequence of \textit{Hyalomma aegyptium} (\textit{Hyalomma_ae}). Red colour: last DNA-encoded nucleotide preceding the \textit{rrnL} polyA tail. Dashed line: overlap between \textit{rrnL} and \textit{trnL(CUN)}. Genus names were abbreviated to a single letter for \textit{Ixodes} (I), \textit{Haemaphysalis} (H), \textit{Rhipicephalus} (R) and \textit{Drosophila} (D). Underlined nucleotides: tRNA anticodon; bold lower case nucleotide with grey background: differences to the Tick-Box consensus sequence; blue lines: original annotation of the \textit{rrnL} 3'-end, with a dot indicating the presence of additional nucleotides; "repeat": 71 bp-long inverted repeat located in the CR2 and \textit{rrnL} gene of \textit{I. uriae} (position 12431–12501 and 12606–12676, respectively, of NC_006078). Degenerate nucleotides according to the IUPAC code. Analyses species and sequence accession numbers are listed in Table S1. Gene abbreviations as in Figure 1.
Figure 5. Tick-Box motif located in the NCR between trnQ and trnF of Metastriata. Bold lower case with grey background: differences to the Tick-Box consensus sequence. Analysed species and sequence accession numbers are listed in Table S1.
doi:10.1371/journal.pone.0047538.g005

Figure 6. Tick-Box and Tick-Box-like sequences inside trnL(CUN) of Chelicerata and Drosophila species. (A) Consensus and variants Tick-Box motifs of Ixodida, Xiphosura, and Drosophila species, together with non-functional Tick-Box-like sequences overlapping trnL(CUN). Boxes: positions with nucleotide differences between Tick-Box and Tick-Box-like sequences; grey background: crucial positions discriminating functional Tick-Box from non-functional Tick-Box-like sequences (see main text). In brackets is reported the genomic position of the sequence (i.e., downstream nad1, downstream rrnL, or between trnQ-trnF) and the number of species (sp) showing that sequence. DmTTF: consensus binding sites of DmTTF in Drosophila, considering sequences located downstream nad1 and between trnE-trnF. Analysed species and sequences are listed in Table S1. (B) Sequence logo for: (1) Tick-Box sequences of Ixodida; (2) DmTTF binding site of 14 Drosophila species, including both the sequences downstream of nad1 and between trnE-trnF; (3) Tick-Box-like sequences inside trnL(CUN) of Metastriata and Australasian Ixodes; (4) Tick-Box-like sequences inside trnL(CUN) of 14 Drosophila species. Sequence logos were generated as described in Materials and Methods, using sequences listed in Table S1. (C) Consensus sequence and secondary structure of the trnL(CUN) genes of Argasidae and non-Australasian Ixodes containing a functional Tick-Box. Boxes: positions with nucleotide differences between Tick-Box and Tick-Box-like sequences; yellow background: Tick-Box motif; red colour: polyA starts sites determined by 3' RACE or ESTs in Argasidae and non-Australasian Ixodes; lower case: overlap region between rrnL and trnL(CUN); dot symbol: indels. Degenerate nucleotide symbols according to the IUPAC code. Analysed sequences are listed in Table S1.
doi:10.1371/journal.pone.0047538.g006
transcription of *D. melanogaster* [26,27,40,64,71], and the complete mtDNA is available for 14 congeneric *Drosophila* species (Table S1).

As for Xiphosura, we have considered the horseshoe crabs *L. polyphemus* (for which mtDNA and ESTs are available) and *Tachypleus tridentatus* (for which only the mtDNA is available). Our Xiphosura analyses show that:

1) Both species have a Tick-Box sequence (not perfectly matching to the Ixodida consensus) near the 3'-end of *nad1*. This Tick-Box includes the predicted *nad1* complete stop codon and a short downstream NCR (Figure 3). The ESTs of *L. polyphemus* show that the mRNA of *nad1* terminates immediately upstream of the Tick-Box sequence with a partial stop codon located at the same position of that of Ixodida (Table 2 and Figure 3). Thus, in Xiphosura the existence of a functional Tick-Box motif downstream of *nad1* is supported by both transcriptional and sequence data.

2) A divergent Tick-Box sequence (3 mismatches compared to the Ixodida consensus) can be identified near the 3'-end of *rrnL*, exactly inside *trnL(CUN)*, in both horseshoe crabs (Figure 4). However, ESTs of *L. polyphemus* show that the 3'-end of *rrnL* transcript is not located at the beginning of the Tick-Box sequence but just at the 5'-end of *trnL(CUN)*, i.e., at the site predicted by the tRNA punctuation model (Figure 4 and Table 3). In conclusion, in Xiphosura a functional Tick-Box motif is absent downstream of *rrnL*, and the similar sequence identified inside *trnL(CUN)* probably results from the functional constraints of *trnL(CUN)*.

Based on these data, we suggest that the Tick-Box downstream of *nad1* is an ancient signal that has been functionally conserved, in spite of the sequence changes, at least over the time separating Xiphosura from Ixodida (about 400 million years), while the Tick-Box downstream of *rrnL* is a specific invention of Ixodida (Figure 7). We hypothesize that the Tick-Box downstream of *rrnL* has evolved from a portion of *trnL(CUN)*, through acquisition of a new function related to post-transcriptional regulation (Figure 7). After this gain-of-function, the *trnL(CUN)* and the Tick-Box have become overlapped elements and have coevolved in Ixodida for long time, until genome rearrangement events have disrupted the adjacency *rrnL-trnL(CUN)* (two independent events: one in Metastraits and the other in Australasian *Isodes*). We suggest that in these rearranged mtDNAs, the sequence including the two overlapped Tick-Box and *trnL(CUN)* elements has been duplicated, and then the two copies have started diverging. In particular, due to the need to regulate the *rrnL* 3'-end formation, the Tick-Box function has been preserved at the position immediately downstream of *rrnL*, where the *trnL(CUN)* function has been instead lost. On the contrary, in these rearranged mtDNAs, the Tick-Box function has been disrupted in the position actually preserving the *trnL(CUN)* function (Figure 7). Based on the proposed evolutionary scenario, the Tick-Box sequence downstream of *rrnL* in Metastraits and Australasian *Isodes* should be the only remnant of a duplicated *trnL(CUN)*/Tick-Box sequence that has lost all but the essential *rrnL* post-transcriptional regulatory motif.

As for *Drosophila*, no sequence identical to the Tick-Box consensus motif is present in the whole mtDNA of *D. melanogaster* and congeneric species. However, the *D. melanogaster nad1* gene is followed by a 17 bp-long NCR that is one of the two binding sites of the DmTTF transcription termination factor, the other being an almost identical sequence located between *trnE* and *trnF* [64,71]. The consensus of the DmTTF binding site for the 14 available *Drosophila* species matches to the Tick-Box degenerate consensus of Ixodida in all but 3–4 positions (Figure 6A; logos n° 1 and n° 2 in Figure 6B). Noteworthy, the *D. melanogaster nad1* transcript is not 3’-processed at the site predicted by the tRNA punctuation model [27] but it terminates 16 bp upstream of the 5’-end of *trnS(UCN)* and 1 bp downstream the complete *nad1* stop codon (red colour in Figure 5). It should be also noted that *nad1* ends with a partial stop codon in 6 out of the 13 additional *Drosophila* mtDNAs, and that in all 14 available *Drosophila* species *nad1* is followed by a NCR ranging from 15 to 25 bp [72] and having a 41–65% identity to the *I. ricinus* NCR downstream of *nad1*. We conclude that the *Drosophila* has a Tick-Box signal downstream of *nad1* but this Tick-Box has a sequence quite divergent from the Ixodida consensus (Figure 7). This sequence variability between taxa follows the expected evolutionary pattern for a regulatory element, thus it is likely that the Tick-Box signal downstream of *nad1* is also present in other arthropod lineages with even more divergent sequences. We need also to emphasize that the Tick-Box of *Drosophila* functions as a binding site of DmTTF [64,71].

In *D. melanogaster* the 3’-end of the *rrnL* polyadenylated transcript falls exactly at the site predicted by the tRNA punctuation model [27] (i.e., at the 5’-end of *trnL(CUN)*; see Figure 4), and no DmTTF binding site is present immediately downstream of *rrnL* [64]. However, we identified a sequence similar to the Tick-Box inside the *trnL(CUN)* gene, which is located in all 14 *Drosophila* species just downstream of *rrnL*. This sequence shows 3 mismatches to the Tick-Box consensus sequence of Ixodida (Figure 4, Figure 6A, logo n° 4 of Figure 6B) and 76% identity to the *I. ricinus* Tick-Box inside *trnL(CUN)*. As for horseshoe crabs, we conclude that in *Drosophila* there is no functionalTick-Box downstream of *rrnL* (Figure 7) and that the observed sequence conservation is due to the functional constraints of *trnL(CUN)*. It should be also noted that, in the comparison *D. melanogaster* - *I. ricinus*, the identity percentage is higher in the Tick-Box-like sequences overlapping *trnL(CUN)* than in the functional Tick-Boxes located in the NCR downstream *nad1* (76% and 65%, respectively). This indicates that the overlapping of Tick-Box to *trnL(CUN)*, and the degenerate nature of this Tick-Box regulatory signal can lead to misinterpretation of the Tick-Box presence/absence especially in taxa phylogenetically distant from Ixodida, and especially when only sequence similarity data are taken into account.

Coevolution of Tick-Box and trnL(CUN)

To better investigate the coevolution of Tick-Box and *trnL(CUN)*, we have compared the identified Tick-Box motif to the similar sequences found inside the *trnL(CUN)* genes that lack a functional Tick-Box (Figure 6A). This comparison can assist in the identification of nucleotide positions discriminating functional Tick-Boxes from non-functional Tick-Box-like sequences overlapping *trnL(CUN)*. The Tick-Box-like sequences overlapping *trnL(CUN)* were defined as non-functional based on EST data and mismatches to the Tick-Box consensus, and are present in the *trnL(CUN) of Metastraits, Australasian *Isodes*, Xiphosura, and all *Drosophila* species (see also Figures 3, 4). The logo of the Tick-Box-like sequences located inside *trnL(CUN)* is shown in Figure 6B, separately for ticks (logo n° 3) and *Drosophila* species (logo n° 4). Moreover, Figure 6C illustrates the consensus of functional Tick-Boxes located inside *trnL(CUN)* in non-Australasian *Isodes* and Argasidae: as already discussed, these are the only Tick-Box elements showing a conserved secondary structure, since they are superimposed to a functional tRNA gene (see above).

As shown in Figure 6C (yellow background), the Tick-Box sequence inside *trnL(CUN)* is superimposed to half of the DHU and anticodon stems, plus the entire anticodon loop. According to
the typical tRNA substitution pattern, the nucleotide substitutions observed in the trnL(CUN) with Tick-Box (boxed positions in Figure 6C) are mainly compensatory substitutions falling in the stem regions, while substitutions carefully avoid the anticodon loop. As reported in Figure 6A, the Tick-Box-like sequences inside trnL(CUN) differ in 2–4 positions from the consensus Tick-Box. As an exception, the Tick-Box-like sequence of Australasian Ixodes differs from the consensus Tick-Box only for a single substitution (T→A) at position 1. Among positions with differences, we observe that positions 7 and 9 share the same substitution types in both Tick-Box variants and Tick-Box-like sequences (Figure 6A), thus these positions seem not to be crucial for the Tick-Box functionality. On the contrary, positions 5 and 6 (grey background in Figure 6A) have different substitution types in Tick-Box and Tick-Box-like sequences, indicating that they can be discriminating positions for the Tick-Box functionality. Finally, nucleotide substitutions at the first position of the consensus seem to inactivate the Tick-Box depending on the substitution type, the additional substitutions co-occurring in other positions, and the taxon (i.e., compare Xiphosura and Drosophila Tick-Box and Tick-Box-like sequences in Figure 6A). Thus, from the comparison between functional Tick-Boxes and Tick-Box like sequences, we can conclude that positions 1, 5 and 6 are the most important sites for the functionality of Tick-Box.

Overall, these data further support the hypothesis that Tick-Box is a highly dynamic and degenerate signal whose sequence variability is due to its specific regulatory function (i.e., the possible interaction with regulatory proteins encoded by the nuclear genome) and also to the overlap with coding sequences.

Conclusions

In this study we describe the identification of the Tick-Box, a degenerate 17-bp DNA motif involved in post-transcriptional processes. In particular, Tick-Box directs the 3′-end formation of nad1 and rml transcripts in all Ixodida lineages, as well as the 3′-end formation of the single nad1 transcript in basal chelicerates of the Xiphosura order and in Diptera insects of the Drosophila genus. Although this motif is not restricted to tick species, it has been named “Tick-Box” because its consensus sequence has been here carefully characterized in Ixodida and because it is a “tick box” necessary for the 3′-end formation of some mt transcripts. We have not investigated in details the phylogenetic distribution of this motif in Chelicerata and Arthropoda, however its presence in Drosophila and Limulus suggest that it could be a quite ubiquitous signal, whose existence has been obscured by its taxon-specific evolutionary pattern and by its nature of post-transcriptional regulatory element. Indeed, as most regulatory elements, Tick-Box is a short and degenerate motif, showing a low sequence similarity within Ixodida and even lower sequence conservation in the more distant species of Limulus and Drosophila. Therefore, additional studies combining sequence similarity and transcriptional analyses are needed to define the Tick-Box consensus sequence in other arthropods and to clarify its phylogenetic distribution in the main arthropod groups.

With regard to the exact Tick-Box function, this element is associated to the 3′-end of the nad1 and rml genes independently of the downstream gene/NCR. Moreover, it is absent in the mature transcripts. Therefore, we suggest that Tick-Box is either un-transcribed or quickly removed from the primary precursor transcripts of nad1 and rml. According to this observation, Tick-Box might be one of the few exceptions to the tRNA punctuation model of mt transcript maturation [28] or a transcription termination signal, whose existence was originally hypothesized in D. melanogaster by Berthier [26]. Remarkably, the Tick-Box downstream of nad1 found in D. melanogaster has been functionally described some time ago as one of the two binding sites of the DmTTF transcription termination factor [71]. Far from reducing the novelty of this study, the similarity between the DmTTF binding site of D. melanogaster and the Tick-Box downstream nad1 of Ixodida supports the functional role of Tick-Box as a transcription termination site. Moreover, it testifies the poor link between functional and evolutionary studies on the mtDNA, and the difficulties of mere mt comparative analyses in the detection of regulatory elements. Indeed, to our knowledge, after its functional
characterization, the binding site of DmTTF has not been further investigated at level of taxonomic distribution, consensus sequence or exact mitogenic location(s) within the numerous available mtDNA sequences of arthropods.

The discrimination between the two hypothesized Tick-Box functions, precursor transcript maturation or transcription termination, can be experimentally tested in Prostriata and Metastrata by qualitative and quantitative analyses of the whole mt transcriptome and/or experiments aimed at demonstrating the binding of this motif by mt regulatory proteins, such as members of the MTERF protein family [73,74]. The availability of cell lines for both these tick taxa can also help these analyses [75,76].

Finally, we would like to emphasize that the small Tick-Box and the large mt control region are the only non-coding regions conserved in all mtDNAs of ticks. To our knowledge, there is only one other small NCR conserved in all mtDNAs of a large metazoan group, i.e. the L-strand replication origin (oriL) of vertebrates [77,78]. The oriL is a 20–30 bp sequence embedded in a tRNA cluster and forms a stable stem-loop structure partially overlapped to trnC. On the contrary, the Tick-Box is a degenerate DNA motif that does not show a conserved secondary structure and, like the control region, is characterized by a taxon-specific evolution. Moreover, based on the presence of a third Tick-Box in Metastrata and of a second DmTTF binding site in D. melanogaster, we anticipate the presence of Tick-Box in different mitogenetic positions depending on the overall genome organization and on the details of the transcriptional process (i.e., number and type of transcriptional units).

Supporting Information

Figure S1 Putative secondary structure of the 22 tRNAs of I. ricinus. (PDF)

Figure S2 Conserved motifs and secondary structures of the tick control region, mapped on the I. ricinus sequence. (PDF)

Table S1 Accession numbers of 98 mitochondrial sequences belonging to 68 species analysed in this study. (XLS)

Text S1 Amplification strategy and general features of tRNAs, control region, and small non-coding regions of the I. ricinus mtDNA. (DOC)

Acknowledgments

We thanks Thorsten Burmester, Karen Meusemann, Bernhard Mösle, Francisco J. Alarcón-Cháidez, and Felix D. Guerrero for kindly providing untrimmed EST sequences of several tick species and of Ixodes polyphemus; Adriana Giombo, David S. Horner, Giada Favesi, Grazia Penna, Paola Loguerico-Polosa and Marina Roberti for helpful discussion and comments on the manuscript.

Author Contributions

Conceived and designed the experiments: MM CG CB. Performed the experiments: MM FG SE. Analyzed the data: DS MM CG. Wrote the paper: MM CG.

References

1. Dunlop JA, Selden PA (2009) Calibrating the chelicerate clock: a paleontological reply to Jayaprakash and Hoy. Exp Appl Acarol 48: 183–197.
2. Jayaprakash A, Hoy MA (2009) First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol 47: 1–18.
3. Mans BJ, de Klerk D, Pienaar R, Latif AA (2011) Natallaella namakae: a living fossil and closest relative to the ancestral tick lineage: implications for the evolution of blood-feeding in ticks. PLoS One 6: e23675.
4. Sonenshine DE (1991) Biology of ticks. Vol. 1. New York: Oxford Univ. Press. 447 p.
5. Sonenshine DE (1993) Biology of ticks. Vol. 2 New York: Oxford Univ. Press. 465 p.
6. Horak IG, Camacho JL, Keirans JE (2002) The Argasidae, Ixodidae and Natallidae (Acari: Ixodida): a world list of valid tick names. Exp Appl Acarol 28: 27–54.
7. Nava S, Guglielmone AA, Mangold AJ (2009) An overview of systematics and evolutionary biology of ixodid ticks. Mol Phylogenet Evol 49: 1–15.
8. Keirans JE, Needham GR, Oliver JH (1999) The Ixodes (Ixodes) ricinus complex worldwide: Diagnosis of species in the complex, host and distribution. In: Glen R, Needham, Mitchell R, Horn DJ, Welburn WC, editors. Acarology IX. Columbus, Ohio: The Ohio Biological Survey. 344 p.
9. Sausser D, Beninati F, Bandi C, Bouman EA, Sacchi L, et al. (2006) Candidatus Midichloria mitochondrion, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int J Syst Evol Microbiol 56: 2355–2340.
10. Boore JL, Collins TM, Stanton D, Dahlker LL, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376: 163–165.
11. Boore JL, Lavinov DY, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392: 667–668.
12. Klimov PB, O'Connor BM (2009) Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in arachiniform mites. BMC Genomics 10: 598.
13. Masta SE (2000) Mitochondrial sequence evolution in spiders: intraspecific variation in the TPS1 Arm. Mol Biol Evol 17: 1091–1106.
14. Masta SE, Boore JL (2004) The complete mitochondrial genome sequence of the spider Habronattus moss pigmy reveals rearranged and extremely truncated tRNAs. Mol Biol Evol 21: 803–902.
15. Masta SE, Boore JL (2000) Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol 25: 989–999.
16. Klimov PB, Knowles LL (2011) Repeated parallel evolution of minimal tRNAs revealed from detailed comparative analyses. J Hered 102: 283–293.
17. Masta SE (2010) Mitochondrial tRNA secondary structures and genome rearrangements distinguish chelicerates: comparisons with a harvestman (Arachnida: Opiliones: Phalangium opilio). Genome 49: 9–21.
18. Park SJ, Lee YS, Hwang UW (2007) The complete mitochondrial genome of the sea spider Aeluropoda mikadoi (Pycnogonida, Ammotheidae): arthropod ground pattern of gene arrangement. BMC Genomics 8: 543.
19. Gissi C, Iannelli F, Pesole G (2000) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101: 301–320.
20. Shao R, Barker SC, Mitani H, Takahashi M, Fukunaga M (2006) Molecular mechanisms for the variation of mitochondrial gene content and gene arrangement among chigger mites of the genus Leptotrombidium (Acari: Acariformes). J Mol Evol 63: 251–261.
21. Jones M, Gammènstein B, Fri V, Blaxter M (2007) The effect of model choice on phylogenetic inference using mitochondrial sequence data: lessons from the scorpions. Mol Phylogenet Evol 43: 583–595.
22. Choi EH, Park SJ, Jang KH, Hwang W (2007) Complete mitochondrial genome of a Chinese scorpion Mesobuthus martiensis (Chelicerata, Scorpiones, Buthiidae). DNA Seq 18: 461–473.
23. Shao R, Barker SC, Mitani H, Aoki Y, Fukunaga M (2005) Evolution of duplicate control regions in the mitochondrial genomes of metazoa: a case study with Australasian Ixodes ticks. Mol Biol Evol 22: 620–629.
24. Black WC, Roehrdanz RL (1998) Mitochondrial gene order is not conserved in arthropod prostrate and metastrate tick mitochondrial genomes. Mol Biol Evol 15: 1772–1785.
25. Gissi C, Pesole G (2003) Transcript mapping and genome annotation of ascidian mtDNA using EST data. Genome Res 13: 2203–2212.
26. Berthier F, Renaud M, Aïsari S, Durand R (1998) RNA mapping on Drosophila melanogaster mitochondrial DNA: precursors and template strands. Nucleic Acids Res 14: 4519–4533.
27. Stewart JB, Beckenbach AT (2009) Characterization of mature mitochondrial transcripts in Drosophila, and the implications for the tRNA punctuation model in arthropods. Gene 445: 49–57.
28. Ojda D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290: 470–474.
29. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and tRNADB+ web servers for the detection of tRNAs and snRNAs. Nucleic Acids Res 33: W689–698.
30. Laslett D, Canback B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24: 172–175.
