NOTE

Multi-parametric liver tissue characterization using MR fingerprinting: Simultaneous T_1, T_2, T_2^*, and fat fraction mapping

Olivier Jaubert1 | Cristobal Arrieta2 | Gastão Cruz1 | Aurélien Bustin1
Torben Schneider3 | Georgios Georgiopoulos1 | Pier-Giorgio Masci1
Carlos Sing-Long2,4 | Rene M. Botnar1,5 | Claudia Prieto1,5

1School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
2Biomedical Imaging Center and Millennium Nucleus for Cardiovascular Magnetic Resonance, Pontificia Universidad Católica de Chile, Santiago, Chile
3Philips Healthcare, Guilford, United Kingdom
4Instituto de Ingeniería Matemática y Computacional and Millennium Nucleus for the Discovery of Structures in Complex Data, Pontificia Universidad Católica de Chile, Santiago, Chile
5Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile

Correspondence
Olivier Jaubert, Department School of Biomedical Engineering and Imaging Sciences, Institute King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, United Kingdom.
Email: jaubert.oli@gmail.com

Funding information
BHF programme, Grant/Award Number: RG/20/1/34802; King’s BHF Centre for Research Excellence, Grant/Award Number: RE/18/2/34213; Engineering and Physical Sciences Research Council, Grant/Award Number: EP/L015226/1, EP/P010009/1 and EP/P032311/1; Wellcome EPSRC Centre for Medical Engineering, Grant/Award Number: NS/A000049/1

Purpose: Quantitative T_1, T_2, T_2^*, and fat fraction (FF) maps are promising imaging biomarkers for the assessment of liver disease, however these are usually acquired in sequential scans. Here we propose an extended MR fingerprinting (MRF) framework enabling simultaneous liver T_1, T_2, T_2^*, and FF mapping from a single ~14 s breath-hold scan.

Methods: A gradient echo (GRE) liver MRF sequence with nine readouts per TR, low flip angles (5-15°), varying magnetisation preparation and golden angle radial trajectory is acquired at 1.5T to encode T_1, T_2, T_2^*, and FF simultaneously. The nine-echo time-series are reconstructed using a low-rank tensor constrained reconstruction and used to fit T_2^*, B_0 and to separate the water and fat signals. Water- and fat-specific T_1, T_2, and M_0 are obtained through dictionary matching, whereas FF estimation is extracted from the M_0 maps. The framework was evaluated in a standardized T_1/T_2 phantom, a water-fat phantom, and 12 subjects in comparison to reference methods. Preliminary clinical feasibility is shown in four patients.

Results: The proposed water T_1, water T_2, T_2^*, and FF maps in phantoms showed high coefficients of determination ($r^2 > 0.97$) relative to reference methods. Measured liver MRF values in vivo (mean ± SD) for T_1, T_2, T_2^*, and FF were 671 ± 60 ms, 43.2 ± 6.8 ms, 29 ± 6.6 ms, and 3.2 ± 2.6% with biases of 92 ms, −7.1 ms, −1.4 ms, and 0.63% when compared to conventional methods.

Conclusion: A nine-echo liver MRF sequence allows for quantitative multi-parametric liver tissue characterization in a single breath-hold scan of ~14 s. Future work will aim to validate the proposed approach in patients with liver disease.
1 | INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is highly prevalent worldwide (25%) and is associated with many hepatic and extra-hepatic diseases creating an increasingly large clinical and economic burden.1 In the Western and industrialized countries, NAFLD is one of the main causes of cirrhosis and highly prevalent in patients with hepatocellular carcinoma the main causes of liver-related deaths.2 Pathogenesis of NAFLD can be subdivided into four stages, which are progressively characterized by fat accumulation, inflammation (non-alcoholic steatohepatitis, or NASH), and potentially leading to irreversible fibrosis (cirrhosis), hepatocellular carcinoma, or other life-threatening complications.3 Liver biopsy remains the current reference standard for diagnosing and staging NAFLD; however, they are invasive, costly, and potentially hazardous. Liver biopsies are also prone to sampling errors and suffer from inter-rater variability (with agreement potentially during separate breath-holds,9 thus leading to long scan times, patient fatigue, and potentially mis-registered parameter maps. Joint parameter mapping has been proposed to map liver T2∗ and PDFF simultaneously11 and more recently to map liver T1, T2, and M0,12 with both methods accounting for inter-parametric dependencies. The first method fits multiple echo images to a multi-peak water-fat signal model with T2 decay13,14 while the latter uses MR fingerprinting (MRF)15 to generate multiple parametric maps from a highly undersampled acquisition with dynamically varying contrasts. Recent works combining water-fat imaging and MRF have been proposed to map water-specific T1 and T2 and fat fraction (FF)16,17 simultaneously to further reduce inter-parametric biases and overall scan time.

Here, we propose to jointly map T1, T2, T2∗, and FF for comprehensive liver tissue characterization. This is achieved by extending our previous work on 3-echo Dixon cardiac MRF17 to a 9-echo gradient rewound echo (GRE) acquisition and graphcut method18 for estimation of B0 and T2∗ and water-fat separation. To the best of our knowledge, this is the first time that liver T1, T2, T2∗, and FF are simultaneously quantified in a single acquisition. The proposed framework was evaluated in phantoms against spin echo T1 and T2 and 12-echo GRE (PDFF and T2∗) reference measurements, and in 12 subjects against MOLLI, T2-GRASE, and 12-echo GRE. Preliminary clinical feasibility is shown in four patients.

2 | METHODS

The proposed framework combines (1) a nine-echo GRE acquisition; (2) a B0 and B1 insensitive acquisition scheme using fixed repetition time (TR), gradient spoiling, low flip angles (FA), and magnetization preparations; (3) an undersampled reconstruction with temporal compression and patch-based low-rank tensor regularization; (4) a graphcut based method for estimation of B0, T2 and water-FFs; (5) a dot-product matching step; and (6) an FF estimation step from the relative proton density (M0) images. Details of the framework are described below.

2.1 | Acquisition

The proposed liver MRF acquisition (Figure 1) consists of a nine-echo, golden angle radial (~111°) GRE acquisition with bipolar readouts and varying inversion recovery (IR) and T2 preparation (T2prep) pulses.17 The acquisition scheme includes T2 preps with four adiabatic refoocusing pulses19 and varying durations, noted as T2prepX and hyperbolic hypersecant IR pulses with varying inversion delays, noted as T2prepY, where X and Y are durations in ms. A total of 12 magnetization preparations followed by data acquisition are applied during a single breath-hold scan of 13.9 s with the following pattern: T112, no preparation (noPrep), T2prep40, T2prep80, T2prep160, T2prep300, noPrep, T2prep40, T2prep80, T2prep160, T112, noPrep. The data acquisition block consists of varying low FAs (9 linear ramp-up radiofrequency [RF] pulses from 5° to 15° followed by 26 fixed 15° RF pulses20), 35 TRs, bandwidth 746 Hz/pixel, nine echoes per TR, TR/echo time 1 [TE1]/ΔTE = 20/1.5/2 ms leading to 700 ms data acquisition blocks. Acquisition blocks are spaced regularly every 1.2 s allowing for recovery (varying between ~200–500 ms) before the next magnetization preparation module. A fixed TR, low FAs, and 4π gradient spoiling along slice selection were used to reduce the sensitivity to B0 and B1 inhomogeneities.20-22
2.2 | Image reconstruction

MRF time-series reconstruction was performed using a multi-contrast patch-based high-order low-rank reconstruction (HD-PROST)\(^23\) with temporal dictionary based compression. Temporally compressed singular images \(x_i = U_H R x\)\(^i\) approximating the MRF time-series \(x_i\)\(^\text{uni}2032\).\(^\text{var}\) are reconstructed for each echo \(i\) using HD-PROST, where \(U_R\) are the left singular vectors of the MRF dictionary matrix truncated to rank \(R\). Reconstruction parameters included a rank \(R = 6\) and a sparsity promoting parameter \(\lambda = 10^{-3}\)\(^{17,23}\).

2.3 | \(T_1^*, B_0\), and water-fat separation

Given a water \((W)\) and a set of fat \((F_k)\) compartments time-series,\(^{14,26,27}\) the reconstructed singular images at each echo \(i\), can be written as:

\[
x_i = U_R H x_i = U_R H \left(W + \sum_j F'_j e^{i2\pi \Delta f_{ij}} \right) e^{-\frac{i}{2} + j2\pi \Delta f_{iw} t_i} = (W + F) e^{-\frac{i}{2} + j2\pi \Delta f_{iw} t_i}
\]

where \(W\) and \(F = U_R H \sum_j F'_j e^{i2\pi \Delta f_{ij}}\) are the water and fat (or combined fat compartments) singular images, \(\Delta f_i\) is the known difference in precession frequency between water and fat compartment \(i\), \(\Delta f_{w0}\) is the precession frequency difference induced by \(B_0\) field inhomogeneities and \(t_i\) is the echo time \(i\). A graphcut scheme\(^18\) is used to solve for \(B_0\), \(T_1^*\) and water-fat separation using a pre-defined six-peak fat model.\(^28\) First singular images of all echo times are used for \(B_0\) and \(T_1^*\) estimation. The resulting maps are subsequently used to separate the other singular images by pseudo inverse\(^29\) into water and fat. This model ignores the different \(T_1\) and \(T_2\) values\(^28\) of the fat peaks which can lead to varying signal peak weights during the MRF acquisition. The impact of this simplified model was investigated in simulations.

2.4 | \(T_1\), \(T_2\), and FF maps

The water and fat singular images are then matched (using dot-product) to a previously generated MRF dictionary (with fixed \(TE = 0^+\) ms) to obtain the water- and fat-specific \(T_1\), \(T_2\), and \(M_0\) maps. The dictionary was generated using the extended phase graph formalism,\(^30\) including slice profile\(^31\)
(51 points along the slice profile) and inversion efficiency corrections. The dictionary contained signal evolutions corresponding to combinations of T_1 and T_2 of interest (ie, [50:10:1400, 1430:30:1600, 1700:100:2200, 2400:200:3000] ms for T_1 and [5:2:80, 85:5:150, 160:10:300, 330:30:600] ms for T_2 as well as the standardized T_1/T_2 phantom reference values. The FF map is estimated from the water and fat M_0 and phase images (for noise bias correction).}

2.5 Experiments

Experiments were performed on phantoms and 2 cohorts of subjects. Cohort 1 (12 subjects, 7 females; age: 31 ± 4 years; body mass index (BMI): 23.9 ± 3.5 kg/m2) underwent the proposed liver MRF and conventional techniques. Cohort 2 (four subjects, one female; age: 56 ± 13 years; BMI: 27.9 ± 4.0 kg/m2) underwent only the proposed liver MRF during a clinically referred scan. Cohort 2 had large BMI > 25 kg/m2 or previously diagnosed liver iron overload. All experiments were approved by the Institutional Review Board and written informed consent was given by all participants before scanning. Acquisitions were performed on a 1.5T Ingenia MR scanner (Philips Healthcare, The Netherlands).

Preliminary experiments investigated the number of echoes necessary for T_2^* mapping in phantom (Supporting Information Text S1, which is available online) and the performance of the framework in numerical simulations (Supporting Information Text S2 and Figure S1).

2.6 Phantom study

Acquisitions were performed on a standardized T_1/T_2 phantom (TIMES) with 0% fat and on a water-fat phantom built in-house. The standardized T_1/T_2 phantom was used to validate the water T_1 and T_2 measurements against T_1 inversion recovery spin echo (IRSE) and T_2 multi-echo spin echo (MESE). The reference T_1 and T_2 methods do not consider fat suppression/separation thus only the phantom with 0% fat was used to validate the T_1 and T_2 measurements avoiding biases due to incomplete fat suppression. FF and T_2^* measurements were performed in the standardized phantom and water-fat phantom and validated against a reference 12-echo GRE. The reference PDFF and T_2^* maps were obtained using the same graph cut method, fat model, and noise bias correction as described for the proposed nine-echo liver MRF. Acquisition and mapping parameters for all reference sequences are included in Supporting Information Table S1.

Scan parameters for the proposed liver MRF were described in the Acquisition section, remaining parameters were: field of view (FOV) = 496 × 496 mm2, 2 × 2 mm2 resolution, 8 mm slice thickness.

2.7 In vivo study

The proposed liver MRF T_1, T_2, and T_2^* maps were validated against reference T_1 MOLLI (5(3)3), T_2-GRASE, and 12-echo GRE (T_2^* and PDFF), respectively, in cohort 1. Acquisition parameters for all conventional sequences are included in Supporting Information Table S1. All acquisitions were performed in transversal orientation under breath-hold at end-expiration.

The same liver MRF acquisition was performed on cohort 2 to show preliminary feasibility of the approach in a clinical setting.

2.8 Analysis

Regions of interest (ROIs) were manually drawn in each vial of the phantoms. Coefficients of determination, lines of best fit and biases are reported for each parameter map in comparison to their corresponding reference measurements.

For each subject, CX.Y (cohort X, subject number Y), ROIs were manually drawn in the liver (in four different areas of the liver avoiding blood vessels, the median value is reported), posterior muscle, subcutaneous fat, and the spleen. Mean measurements and range in 11 subjects with no history of liver disease (C1.1-10) or benign hemangioma (C1.11) are reported for all parameters for the proposed liver MRF and the corresponding conventional maps. C1.12 has been previously diagnosed with mild liver steatosis. Mean values, range, mean bias, 95% (±1.96 SD) confidence intervals (CI), and coefficients of determination are used to compare the measurement methods for cohort 1. A paired t-test was performed to test for statistically significant differences ($P < .05$) between the proposed liver MRF and conventional measurements.

3 RESULTS

3.1 Preliminary studies

T_2^* maps of the preliminary phantom acquisition (standardized T_1/T_2 and water/fat phantoms) obtained using the first 3, 6, 9, or 12 echoes for map estimation are shown in Supporting Information Figure S2A. Bland Altman plots (Supporting Information Figure S2B) and maps show large bias of T_2^* estimation when using only the first 3 echoes, and small bias but noisy measurements when using 6 echoes. Maps obtained using the first 9 echoes compare qualitatively and quantitatively well with the ones obtained using all 12 echoes, albeit enabling shorter TR and thus scan time. The T_2^* map obtained using the first 9 echoes of the 12-echo MRF
acquisition presented a mean bias of 1.4 ms when compared to the reference T_2^* map obtained from a conventional 12-echo GRE scan.

Numerical simulations of the proposed framework led to accurate (<1%) liver T_2^* and B_0 estimation and ensuing water T_1, water T_2, and FF estimation despite the simplified model used for water-fat separation (Supporting Information Figure S3), although overestimation of subcutaneous fat T_2^* was observed. Simulated errors in the estimation of B_0 before water-fat separation caused significant errors in FF maps (>9%) and low errors in water T_1 or T_2 maps (<20 ms and <1 ms respectively) (Supporting Information Figures S4 and S5). Errors in T_2^* did not show an effect in the subsequent T_1, T_2, and FF estimation.

3.2 Phantom study

Water T_1, water T_2, FF, and T_2^* maps for the proposed MRF approach (Supporting Information Figure S6) are quantitatively compared to T_1 IRSE, T_2 MESE, and T_2 and FF (12-echo GRE) reference maps (Figure 2A). Correlation plots with lines of best fit show high coefficients of determination for water T_1 and water T_2 (standardized phantom only, 0% fat) ($r^2 > 0.99$) and for FF and T_2^* (standardized and water-fat phantoms) ($r^2 > 0.97$). Biases were measured at -15 ms, -4.7 ms, 1.9 ms, and 0.5 ms for T_1, T_2, T_2^*, and FF respectively. The bias for short T_2 s (0.73 ms) was smaller than for T_2 s outside the range of interest ($T_2 > 80$ ms).

3.3 In vivo study

Water T_1, water T_2, FF, and T_2^* ROI measurements for the proposed liver MRF in subjects C1.1-12 are compared to conventional techniques (Figure 2B) showing high coefficients of determination ($r^2 > 0.93$) for all parameters. Water T_1 and T_2 measurements were not performed in the subcutaneous fat ROI due to its low water content.

Liver values (mean [min, max]) measured in subjects C1.1-11 with the proposed approach were 676 ms [607, 803] ms for water T_1, 43.6 ms [35.9, 57.8] ms for water T_2, 30.1 ms [17.9, 39] ms for T_2^*, and 2.56% [1.2, 5.3]% for FF. Corresponding mean values and range for muscle, spleen,
and subcutaneous fat are reported in Supporting Information Table S2 in comparison to the conventional methods and literature values when available. Fat-specific T1 and T2 are reported for the subcutaneous fat ROI. Boxplots showing T1, T2, FF, and T2* mean, median, interquartile, SD and outliers obtained with the proposed liver MRF and conventional sequences are included in Figure 3 for subjects C1.1-12. Biases and CI (bias [CI]) observed with the proposed liver MRF in comparison to conventional methods for all ROIs combined (excluding subcutaneous fat for water T1 and T2 measurements due to its low water content) were 110 ms [23; 200] ms for water T1, −9.1 ms [−18; −0.19] ms for water T2, 2.1 ms [−8.6; 13] ms for T2*, and 0.32% [−4.4; 5.0]% for FF. For liver measurements alone slightly lower biases and tighter CIs were observed (ie, 92 ms [18; 170] ms, −7.1 ms [−12; −2.2] ms, −1.4 ms [−4.4; 1.5] ms, and 0.63% [−1.4; 2.7]% for T1, T2, T2* and FF respectively) with statistically significant differences for T1, T2, and T2*.

Water T1, water T2, FF, T2*, and B0 maps for the proposed liver MRF are shown for two subjects in comparison to the corresponding conventional mapping techniques (Figure 4). An elevated liver FF was measured in subject C1.12 at 10.3% with the proposed approach and 9.2% with conventional PDFF (Figure 4A). Subject C1.11, with a previously diagnosed benign hemangioma (ie, abnormal mass of small blood vessels), is shown in Figure 4B. Water T1, water T2, T2*, and FF in the hemangioma were measured at 1603 ms, 112 ms, 80 ms, and 1.2% with the proposed liver MRF and 1469 ms, 163 ms, 71 ms, and −0.2% with conventional methods respectively.

Water T1, water T2, FF, T2*, and B0 maps for the proposed liver MRF are shown in Figure 5 for all cohort 2. C2.2-4 presented elevated liver FF (15.25%, 12.45%, and 18%, respectively) with water T1, water T2, and T2 values within the range obtained in cohort 1.1-11 (Supporting Information Table S2) for C2.2 and C2.3 and abnormally low for C2.4 (520 ms, 20.9 ms, 1.95 ms, respectively) consistent with previously diagnosed elevated hepatic iron concentration.

4 DISCUSSION

A nine-echo MRF approach is proposed for multi-parametric and simultaneous T1, T2, T2*, and FF liver tissue characterization in a single 14 s acquisition. The proposed approach relies on the reconstruction of a transient signal sampled for different echo times. The echo sampling allows for T2* and B0 estimation and separation of the transient signal into a water and fat fingerprints. The fingerprints can then be used for MRF dictionary matching to obtain water and fat T1, T2, and relative M0 maps, whereas FF can be estimated from the water and fat M0 maps. Compared to previous water-fat MRF

FIGURE 3 Boxplots showing T1, T2, T2* and FF measurements mean (+), median (−), interquartile range (IQR) (box), Tukey whiskers and remaining outliers (●) obtained in cohort 1 (12 subjects, C1.1-12) for liver, muscle, spleen, and subcutaneous fat for proposed 9-echo liver MRF and conventional (Conv) methods (ie, MOLLI, T2-GRASE, and 12-echo GRE T2* and PDFF). Statistically significant differences (paired t-test) in mean measurements are indicated with * (P < .05) and are shown for each body organ. Please note that water T1 and water T2 are reported for the liver, muscle and spleen ROIs with the proposed MRF approach, whereas fat T1 and fat T2 are reported for subcutaneous fat. Numerical mean and full range values for C1.1-11 (with no history of liver disease) are reported in Supporting Information Table S2.
works using multi-peak fat models.16,17,37 In this work, T_2^* decay is included in the signal model (Equation 1) to improve water and fat separation and additionally map T_2^* for liver iron content assessment. Dictionary-based methods37,38 could be investigated for single step FF, water and fat T_1, T_2, T_2^*, and B_0 estimation; however, this may lead to challenging dictionary sizes while relying on single voxel information. Chemical shift based approaches18,39 usually enforce B_0 field smoothness for robust estimation and water-fat separation. Previously proposed water-fat MRF works have used these approaches16,40,41 but mapped less parameters and required an additional (separately acquired) B_1 map.

Phantom experiments show high coefficients of determination between the proposed approach and reference measurements for the T_1, T_2, T_2^*, and FF ranges of interest. Good agreement of the B_0 maps (Figure 4) and low FF errors compared to those observed in simulations suggest accurate B_0 estimation. Sequence modifications might be necessary if the tissue of interest has long T_2 and T_2^*. Biases with respect to conventional and literature values were observed in vivo. These are expected for a few reasons: (1) Magnetization transfer effects in biological tissues and flow are expected to bias MRF42-44 as well as conventional45 measurements. (2) In vivo conventional mapping present their own biases and are suboptimal references (e.g., MOLLI has a tendency to underestimate $T_1$46,47 and T2-GRASE to overestimate T_2 compared to T2-prep bSSFP48). Moreover, previously proposed MRF approaches17,20,49 have shown overestimation of T_1 when compared to MOLLI and underestimation of T_2 compared to conventional scans in vivo. (3) Acquisitions were performed sequentially during separate breath-holds leading to potentially mis-registered MRF and conventional measurements. (4) Fat model simplifications led to overestimation of T_2^* in subcutaneous fat in simulations and in vivo. Despite these biases, good correlations were obtained in vivo between the proposed approach and conventional techniques. The proposed approach requires shorter scan time and fewer breath-holds while keeping similar resolutions as those proposed in recent multi-parametric50 and NAFLD clinical studies.51-53 Additionally, it provides inherently
co-registered maps ensuring mapping of the same slice of the liver for all parameters and enabling pixel-wise multi-parametric measurements.

Water-fat separation and T_2^* corrections do not correct for the effect of iron content on T_1 and T_2 measurements directly as seen in subject C2.4 (Figure 5); however, additional corrections could be incorporated to better correlate results with biopsy fibrosis scores in the presence of iron overload. This would require simulating multiple compartments and magnetization transfer effects while making strong model assumptions. Further investigation of the precision (reproducibility) and accuracy of this framework in clinical settings is still needed.

5 | CONCLUSION

A multi-echo MRF framework is proposed for fast and simultaneous quantitative multi-parametric liver tissue characterization. Co-registered parametric maps (T_1, water T_2, T_2^*, and FF) are acquired in a single breath-hold (13.9 s). The proposed approach was validated in phantoms showing good correlation with reference measurements. The feasibility of the proposed approach was evaluated in vivo in 16 subjects. Future investigation in patients with liver disease is now warranted.

ACKNOWLEDGMENTS

This work was supported by the following grants: (1) EPSRC EP/P032311/1, EP/P001009/1 and EP/P007619/1, (2) BHF programme grant RG/20/1/34802, (3) King’s BHF Centre for Research Excellence RE/18/2/34213 (4) Wellcome EPSRC Centre for Medical Engineering (NS/A000049/1), and (5) the Department of Health via the National Institute for Health Research (NIHR) Cardiovascular Health Technology Cooperative (HTC) and comprehensive Biomedical Research Centre awarded to King’s College London and King’s College Hospital NHS Foundation Trust. CA and CSL received funding from Millennium Science Initiative of the Ministry of Economy, Development and Tourism, Government of Chile, grant Nucleus for Cardiovascular Magnetic Resonance, and CONICYT PCI-REDES180090. CSL was partially funded by Millennium Science Initiative of the Ministry of Economy, Development and Tourism, Government of Chile, grant Nucleus for Cardiovascular Magnetic Resonance, and CONICYT Fondecyt #11160728. CA was partially funded by CONICYT Fondecyt Postdoctorado 2019 #3190763. GG has been supported by a research fellowship from the European Association of Cardiovascular Imaging. We acknowledge the use of the Fat-Water Toolbox (http://ismrm.org/workshops/FatWater12/data.htm) for some of the results shown in this article.
CONFLICT OF INTEREST
Torben Schneider is employed by Philips Healthcare.

ORCID
Olivier Jaubert https://orcid.org/0000-0002-7854-4150
Gastão Cruz https://orcid.org/0000-0002-7397-9104
Aurélien Bustin https://orcid.org/0000-0002-2845-8617
Claudia Prieto https://orcid.org/0000-0003-4602-2523

TWITTER
Olivier Jaubert @olivier_jaubert

REFERENCES
1. Younossi Z, Tacke F, Arrese M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69:2672-2682.
2. Dowman JK, Tomlinson JW, Newsome PN. Systematic review: The diagnosis and staging of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2011;33:525-540.
3. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313-1321.
4. Meisamy S, Hines CDG, Hamilton G, et al. Quantification of hepatic steatosis with T1-independent, T2*-corrected MR imaging with spectral modeling of fat: Blinded comparison with MR spectroscopy. Radiology. 2011;258:767-775.
5. Reeder SB, Sirlin CB. Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am. 2010;18:337-357.
6. Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassaemia and sickle cell disease patients. Blood. 2005;106:1460-1465.
7. Thomsen C, Christoffersen P, Henriksen O, Juhl E. Prolonged T1 in patients with liver cirrhosis: An in vivo MRI study. Magn Reson Imaging. 1990;8:599-604.
8. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: Technique, analysis, and clinical applications. J Magn Reson Imaging. 2013;37:544-555.
9. Banerjee R, Pavlides M, Tunnilliffe EM, et al. Multimetric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol. 2014;60:69-77.
10. Pavlides M, Banerjee R, Sellwood J, et al. Multimetric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J Hepatol. 2016;64:308-315.
11. Yu H, McKenzie CA, Shimakawa A, et al. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging. 2007;26:1153-1161.
12. Chen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology. 2016;279:278-286.
13. Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): Application with fast spin-echo imaging. Magn Reson Med. 2005;54:636-644.
14. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med. 2008;60:1122-1134.
15. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013;495:187-192.
16. Ostenson J, Damon BM, Welch EB. MR fingerprinting with simultaneous T1, T2, and fat signal fraction estimation with integrated B0 correction reduces bias in water T1 and T2 estimates. Magn Reson Imaging. 2019;60:7-19.
17. Jaubert O, Cruz G, Bustin A, et al. Water–fat Dixon cardiac magnetic resonance fingerprinting. Magn Reson Med. 2020;83:2107-2123.
18. Hernando D, Kellman P, Haldar JP, Liang Z-P. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med. 2010;63:79-90.
19. Nezafat R, Stuber M, Ouwerkerk R, Gharib AM, Desai MY, Pettigrew RJ. B1-insensitiveT2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med. 2006;55:858-864.
20. Hamilton JJ, Jiang Y, Ma D, et al. Investigating and reducing the effects of confounding factors for robust T1 and T2 mapping with cardiac MR fingerprinting. Magn Reson Imaging. 2018;53:40-51.
21. Guzek B, Korzdorfer G, Nittka M, Pfueffer J. Influence of Off-resonance on FISP magnetic resonance fingerprinting (FISP-MRF). Proc Intl Soc Mag Reson Med. Paris, France. 2018;26:4264.
22. Jiang Y, Ma D, Seiberlich N, Gulani V, Grisswohl MA. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn Reson Med. 2015;74:1621-1631.
23. Bustin A, Cruz G, Jaubert O, Karina L, Botnar RM, Prieto C. High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast magnetic resonance imaging. Magn Reson Med. 2019;81:3705-3719.
24. Assländer J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Imaging. 2018;79:83-96.
25. McGivney DF, Pierre E, Ma D, et al. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging. 2014;33:2311-2322.
26. Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189-194.
27. Yeung HN, Kormos DW. Separation of true fat and water images by correcting magnetic field inhomogeneity in situ. Radiology. 1986;159:783-786.
28. Hamilton G, Smith DL, Bydder M, Nayak KS, Hu HH. MR properties of brown and white adipose tissues. J Magn Reson Imaging. 2011;34:468-473.
29. Hernando D, Kellman P, Haldar JP, Liang Z-P. Robust water/fat joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med. 2008;59:571-580.
30. Weigel M. Extended phase graphs: Dephasing, RF pulses, and echoes—Pure and simple. J Magn Reson Imaging. 2015;41:266-295.
31. Ma D, Coppo S, Chen Y, et al. Slice profile and B1 corrections in 2D magnetic resonance fingerprinting. Magn Reson Med. 2017;78:1781-1789.
32. Captur G, Gatehouse P, Kellman P, et al. A T1 and ECV phantom for global T1 mapping quality assurance: The T1 mapping and ECV standardisation in CMR (T1MES) program. J Cardiovasc Magn Reson. 2016;18:W14.
33. Liu C-Y, McKenzie CA, Yu H, Brittain JH, Reeder SB. Fat quantification with IDEAL gradient echo imaging: Correction of bias from T1 and noise. Magn Reson Med. 2007;58:354-364.
34. De Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DCMR. Imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: Preliminary results. *Radiology*. 2004;230:652-659.

35. Schwener NF, Machann J, Haap MM, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects—correlation with age, gender, and serum ferritin. *Invest Radiol*. 2008;43:854-860.

36. Wilman HR, Kelly M, Garratt S, et al. Characterisation of liver fat in the UK Biobank cohort Lu S-N, editor. *PLoS ONE*. 2017;12:e0172921.

37. Marty B, Carlier PG. MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles. *Magn Reson Med*. 2020;83:621-634.

38. Cencini M, Biagi L, Kaggie JD, Schulte RF, Tosetti M, Marty B, Carlier PG. MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles. *Magn Reson Med*. 2020;83:621-634.

39. Berglund J, Johansson L, Ahlström H, Kullberg J. Three-point Dixon method enables whole-body water and fat imaging of obese subjects. *Magn Reson Med*. 2010;63:1659-1668.

40. Koolstra K, Webb AG, Veeger TTJ, Kan HE, Koken P, Börnert P. Water–fat separation in spiral magnetic resonance fingerprinting for high temporal resolution tissue relaxation time quantification in muscle. *Magn Reson Med*. 2020;84:646-662.

41. Noote T, Gross-Weege N, Donova M, et al. Spiral blurring correction with water–fat separation for magnetic resonance fingerprinting in the breast. *Magn Reson Med*. 2020;83:1192-1207.

42. Hilbert T, Xia D, Block KT, et al. Magnetization transfer in magnetic resonance fingerprinting. *Magn Reson Med*. 2020;84:128-141.

43. Flassbeck S, Schmidt S, Bachert P, Ladd ME, Schmitter S. Flow MR fingerprinting. *Magn Reson Med*. 2019;81:2536-2550.

44. Malik SJ, Teixeira RPAG, Hajnal JV. Extended phase formalism for systems with magnetization transfer and exchange. *Magn Reson Med*. 2018;80:767-779.

45. Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T1 measurements in the human myocardium: The effects of magnetization transfer on the SASHA and MOLLI sequences. *Magn Reson Med*. 2013;70:664-670.

46. Roujol S, Weingärtner S, Foppa M, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: A head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. *Radiology*. 2014;272:683-689.

47. Tirkes T, Zhao X, Lin C, et al. Evaluation of variable flip angle, MOLLI, SASHA, and IR-SNAPSHOT pulse sequences for T1 relaxation and extracellular volume imaging of the pancreas and liver. *Magn Reson Mater Phys, Biol Med*. 2019;32:559-566.

48. Baeßler B, Schraarschmidt F, Stehning C, Schnackenburg B, Maintz D, Bunck AC. A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers. *Eur J Radiol*. 2015;84:2161-2170.

49. Hamilton JL, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. *Magn Reson Med*. 2017;77:1446-1458.

50. Bachtar V, Kelly MD, Wilman HR, et al. Repeatability and reproducibility of multiparametric magnetic resonance imaging of the liver. *PLoS ONE*. 2019;14:e0214921.

51. Le T-A, Chen J, Changchien C, et al. Effect of coleselam on liver fat quantified by magnetic resonance in nonalcoholic steatohepatitis: A randomized controlled trial. *Hepatology*. 2012;56:922-932.

52. Middleton MS, Heba ER, Hooker CA, et al. Agreement between magnetic resonance imaging proton density fat fraction measurements and pathologist-assigned steatosis grades of liver biopsies from adults with nonalcoholic steatohepatitis. *Gastroenterology*. 2017;153:753-761.

53. Loomba R, Sirlin CB, Ang B, et al. Ezetimibe for the treatment of nonalcoholic steatohepatitis: Assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). *Hepatology*. 2015;61:1239-1250.

54. Tunnicliffe EM, Banerjee R, Pavlides M, Neubauer S, Robson MD. A model for hepatic fibrosis: The competing effects of cell loss and iron on shortened modified Look-Locker inversion recovery T1 (shMOLLI- T1) in the liver. *J Magn Reson Imaging*. 2017:45:450-462.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section.

FIGURE S1 A, T1, T2, chemical shift (ppm) and peak weight (for each of the 6 peaks considered for fat. B, The six peak and combined fat signal evolutions are simulated using the EPG framework and model parameters provided in (A). C, Example of a simulated signal evolution for a 50-50% mix of liver (water T1 = 650ms, water T2 = 50ms) and fat. D, Within TR signal evolution for pure liver, pure fat and 50-50% mix for the first MRF timepoint

FIGURE S2 A, T2 maps obtained using the proposed MRF framework and the first 3, 6, 9 and 12 echoes of a 12-echo MRF acquisition. B, Corresponding Bland-Altman plots comparing 3, 6, 9 and 12 echoes MRF T2 maps with the reference measurement (12-echo GRE). Please note that the vertical scales change between the plots

FIGURE S3 Numerical simulations from realistic water T1, water T2, FF, T2* and B0 maps (Ground Truth, top row) and resulting maps obtained using the proposed framework (second row). Absolute error in the liver was <1% for all parameters (third row). T2* estimation errors in the subcutaneous fat in simulations suggests that the fixed peak weight model induces T2* overestimation in fat. T2* overestimation in fat was also observed in vivo experiments

FIGURE S4 Numerical simulations with fixed water T1 (650 ms), water T2 (50 ms), FF (20%), B0 (0 Hz) and T2* (30 ms). Errors were introduced to the B0 field (left-right gradient) and T2* (top-down gradient) estimations (Top row) and used instead of the estimated maps before water-fat separation. The resulting absolute errors for water T1, water T2 and FF estimation (second row) and zoom in ([−4:4] for T2* errors and [−20:20 Hz] errors) on the absolute error maps (third row) are shown. The third row exhibited maximum errors of 20 ms, 1 ms and 9.36% errors for water T1, water T2 and FF estimation respectively

FIGURE S5 Numerical simulations from realistic water T1, water T2 and FF maps. Errors were introduced to the B0 field
(left-right gradient) and T_2^* (top-down gradient) estimations and used instead of the normally estimated maps before water-fat separation to generate the resulting water T_1, water T_2 and FF maps (second row) with the proposed MRF approach. Corresponding absolute error maps and reported liver error (white ROI) are shown in the third row

FIGURE S6 Proposed 9-echo MRF phantom T_1, T_2, T_2^* and FF maps acquired in a 13.9s scan

TABLE S1 Acquisition and reconstruction parameters for reference phantom mapping sequences (IRSE, MESE and 12-echo GRE) and conventional in vivo sequences (MOLLI, T2-GRASE, 12-echo GRE)

TABLE S2 Reported average and range of values ([min, max]) observed in 11 subjects (C1.1-11) with no history of liver disease using the proposed 9-echo liver MRF and conventional MOLLI, T2-GRASE and 12-echo GRE (T_2^*/FF) for the liver, muscle, spleen and subcutaneous fat. Literature values when available were reported for T_1, T_2, T_2^* and FF. Please note that MRF water T_1 and MRF water T_2 values are reported for the liver, muscle and spleen and MRF fat T_1 and MRF fat T_2 values for subcutaneous fat

TEXT S1 Number of echoes required for liver MRF T_2^* estimation

TEXT S2 Liver MRF simulations

How to cite this article: Jaubert O, Arrieta C, Cruz G, et al. Multi-parametric liver tissue characterization using MR fingerprinting: Simultaneous T_1, T_2, T_2^*, and fat fraction mapping. *Magn Reson Med.* 2020;84:2625–2635. https://doi.org/10.1002/mrm.28311