Morphology, production, and chemical content performance of black rice Matesih accession with several comparisons

Nandariyah¹, E Purwanto¹ and A N Meidini²

¹Study Program of Agrotechnology, Faculty of Agriculture, Universitas Sebelas Maret (UNS) Surakarta
² Student of Faculty of Agriculture, Universitas Sebelas Maret (UNS) Surakarta
Jl. Ir. Sutami 36A, Surakarta, Central Java, Indonesia 57126

E-mail: nandariyah@staff.uns.ac.id

Abstract. Rice (Oryza sativa L.) is an important food crop in Indonesia. In Matesih area, Karanganyar, recently found new varieties of black rice cultured by local farmers which morphology and chemical content have not yet identified. The purpose of this research was to obtain information of morphology, production, and chemical content of black rice matesih accession and to compare the appearance in order to detect the superiority of black rice matesih accession with the comparison of other accession of black rice. There were four accessions of black rice tested, namely Matesih Accession, Klaten Accession, Toraja, and Cempo. Research data were divided into qualitative data which processed by scoring, and quantitative data are processed with simple descriptive statistic. The kinship test was done by using NTSYSpc program with SIMQual and SIMInt function. The observation of qualitative properties indicates that accession matesih has a form that is relatively similar to other accessions. Qualitatively, accession matesih superior at leaf length, leaf width, plant height and culm diameter. Klaten accession has higher production than accession matesih. Matesih accession has the advantage of having shorter period on heading time and harvest time than other accessions. Matesih accession has the highest amylose content, lower protein content than klaten accession and lower content of anthocyanin than toraja accession. The kinship analysis showed that matesih accession and klaten accession has close kinship.

1. Introduction

Rice (Oryza sativa L.) is an important food commodity in Indonesia, South East Asia and some country. Rice for people need always increase from year to year similar with increasing of people number. There is some kind of rice consumed of people in Indonesia like white rice, red and black rice.

One kind of rice in Indonesia is black rice that has black colour of pericarp. Black rice is a locally variety that has cultured by farmers. Actually, the black colour mean of anthocyan contain in pericarp, aleurome and endosperm that have compound of red-blue and deep of purple colour. [1] reported that anthocyanin has functionally as antioxidiant and catch free radical then secure from aging, cancer and degenerative disease.

Black rice cultivar is less popular than white rice and so not much research about this varieties like identification of morphology and biochemistry aspect. Identification of locally black rice is important in order to know the specific characters need for breeding program later. One location of black rice developing and culturing is Matesih district of Karanganyar resident. Some farmer developing and
culturing the locally black rice but they don’t know about specifically and production potential also where the originally of this rice. Research is important and aim to know about performance of Matesih accession including the morphology and chemical content compared with some local black rice varieties to know but the superiority of Matesih accession has. Identification need to improve the quality of important characters and reduce the lack of characters in order to developing new variety that has a high productivity [2].

2. Methods
Research conducted in March-December 2016 in Ngadiluwih district of Matesih Karanganyar resident Central Java Indonesia. Experiment method in paddy land to know Matesih variety productivity compared with other local varieties of Klaten, boyolali, Toraja and Cempo varieties. From the research can be determined about specific characters of each variety. Analysis of data used simple statistics for quantitative data and descriptive qualitative. There were 43 variables observed for performance, morphology characters, production, chemical contain of grains and taste of rice. Cluster analysis used by SIMQUAL (Similarity Qualitative) and SIMINT (Similarity Interval.).

3. Results and Discussion

3.1. Plant Morphology

3.1.1 Leaf Morphology
Morphology of leaves paddy observed showed that Matesih variety have the longest and widest then other varieties (Table 1). Size of leafs is determining the function for light number, nutrition and water take and growth and development of paddy. physiological process occurred in leaf related with resistance against disease, and response of plant against environment stress and yield depend on leaf size [3]. [4] reported that their positive correlation between leaf measure and paddy grain yield.

Characters	Matesih	Klaten	Toraja	Cempo
Length	45.93 ± 6.66	38.67 ± 4.32	37.06 ± 4.98	37.56 ± 4.67
Width	1.1 ± 0.10	1 ± 0.09	1.07 ± 0.07	1.04 ± 0.06
Angle	Upright	Upright	Upright	Upright
Colour shape	Green	Green	Young green	Young green
Characters	Hairs	Hairs	Hairs	Hairs
Colour of neck	Green	Green	Young green	Young green
Colour of tongue	White	White	White	White
Form of tongue	2-cleft	2-cleft	2-cleft	2-cleft
Colour of ear	White	White	White	White
Leaf blade colour	Green	Green	Green	Green
Flag angle leaf	Straight	Straight	Straight	Straight

Table 1. Morphology of black rice leaf characters
Qualitative character leaf colour of Matesih variety was different with Toraja and Cempo variety but same with Klaten variety. Green colour mean with more chlorophyll content of leaf compared with young green colour. The higher chlorophyll content of Matesih very related with higher rate of photosynthesis because more light quality absorbed [5] higher chlorophyll indicated of higher photosynthesis rate. Other characters same belong of four varieties were leaf angle, hair on leaf shape, colour of neck, colour of tongue, form of tongue, colour of ear leaf, colour of blade, and form of flag leaf angle.

3.1.2. Stem Morphology Matesih variety has plant height and heighest of plant diameter compared by other varieties. [6] said about paddy, decreasing of plant height become semi dwarf is a primary target in order to improve the resistance against plant collapsed, but the result of [7] showed that improving semi dwarf of paddy can limitate of canopy for photosynthesis and number of biomass and then decrease grain yield.

Characters	Matesih	Klaten	Toraja	Cempo
Plant height	136.6 ± 7.02	126.5 ± 6.46	97.2 ± 7.46	118.43 ± 10
Stem Diameters	0.57 ± 0.11	0.57 ± 0.11	0.51 ± 0.08	0.52 ± 0.10
Stem Power	Strong	Strong	Strong	Strong
Stem angle	upright	Upright	Upright	Upright
Colour of stem segment	golden yellow	golden yellow	golden yellow	golden yellow

Matesih Variety has heighest diameter of stem it was same with Klaten variety. Result of research [8] showed that stem diameter is important to measure because it was related with photosynthesis rate and resistance against stem breakness. [5] reported that breakness in paddy devided of two category ie: collapse of root and stem collapse. Root collapse because root not enough to catch to the soil then all stem breaked. Breakness of stem because crooked or cutting of segment based of stem by stress of up stem. Strongness of stem or thickness of bending stem important in supporting resistance against breaked mainly at up of stem part. Qualitative characters of Matesih variety was same with other varieties in thickness, angle and yellow colour of stem segment.

3.1.3 Panicle Morphology Measurement morphology of panicles only for three varieties, that is matesih, klaten and Toraja accessions because one variety cempo was harvesting failure. Some factors according to [9] empty grains cause of not occur fertilization, less of water supply when generative phase, or environment not supported.

Characters	Matesih	Klaten	Toraja	Cempo
Length of panicle	20.30 ± 1.92	20.31 ± 1.31	18.91 ± 1.37	-
Panicle Type	Compact, medium	Compact, medium	Compact, medium	-
Secunder panicle branch	Many	Many	Little	-
Longest of panicle owned by Klaten followed by Matesih. Panicle long take effect to how many grains in panicle, number and density of spikelet, rate of filled grains, and grain size made long of panicle as character that can influence rice yield [10, 11]. Panicle type at three varieties was same that is between compact and medium while panicle branch of Matesih and Klaten have many branch and the smallest is Toraja owned.

3.1.4 Morphology of Grain

Table 4. Morphology of Black Rice Grain

Character	Matesih	Klaten	Toraja	Cempo
Lemma and Palea colour	Brownish brown	Brown spotting	Brownish brown	-
Hair existence at				
Lemma and Palea	Short hairy	Short hairy	Short hairs	-
Grain hair	No hairy	No hairy	No hairy	-
Long Grain	9.74 ± 0.48	9.52 ± 0.56	9.89 ± 0.51	-
Wide Grain	2.97 ± 0.19	3.03 ± 0.14	3.16 ± 0.17	-
Thickness Grain	1.88 ± 0.10	1.78 ± 0.12	1.90 ± 0.08	-

Result of observation in lemma and palea showed the variation between variety. Lema and palea in Matesih and Toraja is brownish brown and Klaten has brown spotting lemma and palea at background of straw. Lemma and palea of three varieties showed short hairs. Unknown function of hair on lemma and palea but in according research result of [12] hairs and bumps at husk shape (lemma dan palea) contain of hight silica. Size of grain in according scale of [13] including very long (> 7.50 mm). Size and form of grain is stabil variety properties. Slim and long grain. Butir ramping usually has many damage of the short and thick grain made the specific tool in processing [14]. According to [15] slim grain usually break at processing.

3.2. Flowering and Harvesting Age

Matesih variety has early in flowering and harvesting age compared with other varieties. According to [16] long harvest age of rice if above 151 days after planting medium if 125 - 150 days after planting and short harvest age if harvest at 105 - 124 days after planting then very short harvest age if 90 - 104 days after planting then ultra short harvest age if below 90 days after planting.

Table 5. Flowering age and harvest age of Black rice

Character	Matesih	Klaten	Toraja	Cempo
Flowering age	52	55	59	98
Harvest age	117	121	126	-

3.3 Production

According to [17] higher number of clumps as characters need in rice production because number of clumps very related with panicle number. According to [14] 1000 grain weight gave information about size and density of grain. Matesih variety has grain weight many than Toraja own but smaller than Klaten.
Table 6. Production of Black rice

Character	Matesih	Klaten	Toraja	Cempo
Total clumps	12.27 ± 2.61	12.50 ± 3.22	11.86 ± 3.70	12.67 ± 3.98
Total productive clumps	10.82 ± 3.25	12.46 ± 2.89	11.25 ± 3.31	-
Weight 1000 seeds (gram)	32	30	28	-
Grain weight per clump (g)	17.01 ± 5.72	21.62 ± 7.50	14.97 ± 7.05	-
Production per Ha (ton)	2.136	2.715	1.88	-

3.4 Chemical Content

According to [18] rice protein more quality because contain of eight of ten amino acid essential compared with other plant own. According to [19] grain with little amilosa gave the sticky and clot if cool. Chemical contain in black rice very important to know is antosianin. Anthocyanin made black rice as healthy food [20] with antioxidant that can inhibit inflammation, anti cancer, increase blood circulation, slow down damage and aging decreasing cholesterol and sugar, and stomach acid [21].

Table 7. Chemical contents of grain

Character	Matesih	Klaten	Toraja	Cempo
Protein (%)	6.38	6.78	6.38	-
Amilosa (%)	23.61	23.44	8.92	-
Antosianin (ppm)	2250.96	1807.77	4347.56	-

3.5 Organoleptic Test

Rice grain colour of three accessions black rice actually purple is blackish. According to [22] colour is form of precipitation of pigment anthocyanin in large quantities on the surface of rice. Organoleptic test of three kind of rice showed difference among varieties. Matesih and Klaten has hard texture while Toraja accession has more lenient related with amilosa content. Fragrances of three accessions rice was same there is a little fragrant.

Table 8. Organoleptic Test of Rice

Character	Matesih	Klaten	Toraja	Cempo
Rice colour	Purple	Purple	Purple	-
Texture	Sticky	Sticky	Thin	-
Aroma	slightly	slightly	slightly	-

3.6 Similarity Analysis

3.6.1 Qualitatif Characters

Table 9. Similarity coefficient of black rice based on qualitative character

	AksesiMatesih	AksesiKlaten	AksesiToraja
Matesih	1.000		
Klaten	0.870	1.000	
Toraja	0.739	0.739	1.000
There is similarity analysis showed that Matesih has similar with Klaten accession 0.87 while Toraja and Klaten has similarity coefficient of 0.74. Even though in breeding selection genetic distance not the only thing to be reckoned but the other interesting characters need to be included. Correlation factor of vegetative and generative important to be calculated so that more focused and effective [23].

3.6.2. Quantitative Character

Table 10. Matrixs of similarity coefficient based on quantitatif characters
Matesih
Klaten
Toraja

Figure 2. Dendogram of morphology based on quantitative characters
Dendogram of morphology characters based on quantitative characters showed that Matesih accession has similarity with Klaten accession compared with Toraja accession. On wide of leaf, stem diameter, long of panicle, number of clump, and amilosa content.

4. Conclusions
From this study it may be concluded that Matesih accession has qualitative characters relatively same among accessions with low variation like long of leaf, wide leaf, plant height, and stem diameter that Matesih has better than comparisons accessions. Klaten accession has more grain yield than Matesih accession. Matesih accession has superiority about early flowering and harvesting age compared with there comparisons. Matesih accession has high amilose content but lower protein content than Klaten accession and lower anthocyanin content than Toraja accession had highest amylose content. Matesih and Klaten accession has similarity coefficient compared with Toraja.

Acknowledgement
Acknowledgment to Mr Asih as chairman of the farmer group in Matesih Karanganyar Central Java who has provided facilities during this research took place.

References
[1] Jusuf M, Rahayuningsih S A, Ginting E 2008 Purple sweet potato Res. Publ.develop. Agric. 30 13-14.
[2] Kristamtini, Taryono M, Bunanda P et al 2014 Genetic variability of local cultivar Black rice J Agrobiogen 10 69-76
[3] Perez-Perez J M, Esteve-Bruna D, Micol J L 2010 QTL analysis of leaf architecture J Plant Res 123 15-23
[4] Alvaro B 1979 Leaf area estimation, growth analysis, and yield evaluation in grain sorghum (Sorghum bicolor L. Moench.) (Iowa States University: Retrospective Theses and Dissertations)
[5] Sterling M, Baker C J, Berry P M et al. 2003 An experimental investigation of the lodging of wheat Agr Meteorol 119 149-165
[6] Khush G S 1999 Green revolution: Preparing for the 21st century Genome 42 646-655 PMID: 10464789
[7] Kuroda E, Ookawa T, Ishihara K 1989 Analysis on difference of dry matter production between rice cultivars with plant height in relation to gas diffusion inside stands Jap J Crop Sci 58 374-382 DOI:10.1626/JCS.58.374
[8] Li-Li W, Zhong-Li L, Jun-Min W et al. 2011 Morphological, anatomical, and physiological characteristics involved in development of the large culm trait in rice Aus J Crop Sci 5 1356-1363.
[9] Polisafaris 2010 The cause of Empty Rice URL: http://polisafaris.blogspot.com/2010/04/penyebab-padi-hampa-gabug.html
[10] Erbao L, Yang L, Guocan W et al. 2016 Identification of candidate gene for panicle length in rice (Oryza sativa L.) via association and linkage analysis Front Plant Sci 7 596
[11] Huang C, Wanneng Y, Lingfeng D et al. 2013 Rice panicle length measuring system based on dual-camera imaging Comput. Electr Agric. 98 158-165
[12] Krishnarao R V, Jagadish K, Jandhyala S 2001 Studies on the formation of black particles in rice husk silica ash J Eur Ceram Soc 21 99-104.
[13] BPS [International Rice Research Institute] 2005 Rice quality training manual (Philippines: International Rice Research Institute)
[14] IRRI [International Rice Research Institute] 2006 Grain quality (Philippines: International Rice Research Institute)
[15] Susan R 2015 Rice Thickness Grading, World-Grain URL: www.world-grain.com/articles/news_home/features/2015/Rice-thickness-Grading
[16] BBPADI [Balai Besar Penelitian Tanaman Padi] 2015 Classification of harvest age of Rice. BBPADI
[17] Miller B C, Hill J E, Roberts S R 1991 Plant population effects on growth and yield in water-seeded rice J Agron 83 291-297
[18] Huebner F R, Bletz J A, Juliano B O 1990 Rice cultivar identification by high-performance liquid chromatography of endosperm proteins Cereal Chem 67 129-135.
[19] Damardjati D S 1995 Characteristical for standardization grain quality as based of development agribusinesses and agroindustry of rice in Indonesia Oration inauguration of Ahli Peneliti Utama (Bogor: Balai Penelitian Bioteknologi Tanaman Pangan)
[20] Chutipajit S, Chaum S, Sompompailin K 2011 High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. Indica In Australian J Crop Sci 5 1191-1198
[21] Ujjjawal K 2016 Black rice: Research, history, and development (Switzerland: Springer International Publishing)
[22] Chaudhary R C 2003 Speciality rices of the world: Effect of WTO and IPR on its production trend and marketing J Food Agric Environ 1 34-41
[23] Maulan Z, Kuswinan T, Sennang S R et al. 2014 Exploration of germ plasm variability local rice origin of Toraja and Enrekang based on morphology characters