Long range forces between polar alkali diatoms aligned by external electric fields

Jason N. Byrd, John A. Montgomery, Jr., and Robin Côté

Department of Physics, University of Connecticut, Storrs, CT 06269

Long range electrostatic, induction and dispersion coefficients including terms of order R^{-8} have been calculated by the sum over states method using time dependent density functional theory. We also computed electrostatic moments and static polarizabilities of the individual diatoms up to the octopole order using coupled cluster and density functional theory. The laboratory-frame transformed electrostatic moments and van der Waals coefficients corresponding to the alignment of the diatomic molecules were found. We use this transformation to obtain the coupling induced by an external DC electric field, and present values for all XY combinations of like polar alkali diatomic molecules with atoms from Li to Cs. Analytic solutions to the dressed-state laboratory-frame electrostatic moments and long range intermolecular potentials are also given for the DC low-field limit.

I. INTRODUCTION

Advances in the formation of ultracold absolute ground state polar alkali diatoms have opened avenues into many branches of the physical sciences. For chemical physics, applications of polar diatoms range from precision spectroscopy and control of cold chemical reactions. Other areas of physics benefit from the use of polar molecules, such as condensed matter physics and phases. Furthermore, dipolar gases have been the subject of much interest from the quantum information community, and ideas of atom optics (e.g. using evanecent wave mirrors) have been generalized to polar molecules. The recent achievements in molecular alignment and control may also allow to take advantage of the unique properties and possible control provided by ultracold polar molecules. In addition, there is growing interest in reactions of alkali diatoms to form tetramer structures with reasonable dipole moments and rich molecular structures, which could offer good candidates for quantum computing with dipoles. In each of these applications it is crucial to accurately describe the inter-molecular interactions, themselves dominated by their long range behavior at the low temperatures found in these systems. Because of the weakness of the long range intermolecular forces as compared to the chemical bond, and the range of nuclear coordinates and phase space involved, it is advantageous to consider alternative methods of modeling the intermolecular potential other than ab initio quantum chemical calculations.

A standard approach to describing the long range interaction potential between two molecules, in the limit that the wavefunction overlap between the molecules is negligible, is to expand the interaction energy into three distinct components,

$$E_{\text{int}} = E_{\text{el}} + E_{\text{ind}} + E_{\text{disp}}.$$

Here E_{el}, E_{ind} and E_{disp} are the permanent electrostatic, induction (permanent-induced electrostatic) and dispersion energies. Each of these terms can be perturbatively expanded in an asymptotic van der Waals series,

$$E_{\text{LR}} = \sum_n C_n R^{-n}. \tag{2}$$

The coefficients C_n are in general angular dependent, and can be computed in several ways. In this work we expand the intermolecular electronic interaction operator in a multipole expansion, and then use first- and second-order perturbation theory to calculate the van der Waals coefficients. Several papers have discussed the isotropic R^{-6} interactions of homonuclear alkali diatoms using both the London approximation and time dependent density functional theory (TD-DFT). The isotropic and anisotropic contributions have been invest-

![Figure 1](image)

FIG. 1. (a) Schematic representation of an aligned diatomic molecule. Classically, the molecule precesses on a cone of angle θ about the electric field \mathbf{F}, with $\langle \cos \theta \rangle$ describing the average orientation of the molecule: its dipole moment D points towards \mathbf{F} for $\langle \cos \theta \rangle > 0$, and in the opposite direction for $\langle \cos \theta \rangle < 0$. The alignment, $\langle \cos^2 \theta \rangle$, describes the tightness of the rotational cone. (b) Lab-fixed frame molecular interaction geometry in the presence of an external field, where θ_F is the angle between the field and the vector \mathbf{R} joining the two molecules.
tigated using configuration interaction \(^3\) and TD-DFT \(^31\) to compute van der Waals coefficients through \(R^{-8}\). However, systematic research on the heteronuclear alkali diatoms is limited to the \(R^{-6}\) isotropic van der Waals coefficients for the LiX (X=Na,K,Rb,Cs) species \(^8\). To date, the only heteronuclear anisotropic van der Waals coefficients available in the literature are for KRb and RbCs \(^32\) and limited to \(R^{-6}\) dispersion forces. In this paper we present a systematic study of the isotropic and anisotropic van der Waals interactions order \(R^{-8}\) of the heteronuclear alkali rigid-rotor diatoms in their absolute ground state as a continuation of our work on the homonuclear species \(^31\). Also included is the transformation of the long range interaction potential from the molecule-fixed (MF) frame to the laboratory-fixed (LF) frame for use in molecular alignment computations. After a brief description of dressed state diatomic molecules in Sec. \(\text{III}\) we review the sum over states method of calculating van der Waals coefficients in Sec. \(\text{IV}\). In Sec. \(\text{V}\) the transformation to, and matrix elements of, the lab-fixed frame van der Waals interaction potential are described. Analytic expressions of the low-field field coupled electrostatic moments and van der Waals coefficients are also provided. The \(ab\ initio\) methodology is outlined in Sec. \(\text{VI}\) and we conclude in Sec. \(\text{VII}\) with a discussion of our numerical results.

II. DRESSED STATE DIATOMIC MOLECULES

The orientation and alignment \((\langle \cos \theta \rangle\) and \(\langle \cos^2 \theta \rangle\) \(^37\) respectively as illustrated in Fig. \(\text{I}(a)\)) of polar molecules can be achieved through several mechanisms, the most direct of which is the coupling of rotational states by a polarizing external DC electric field, \(\mathbf{F}\). Increasing the strength, \(F\), of the external electric field increases the number of rotational states coupled, thus tightening the orientation of the molecule in a cone of angle \(\theta\) about the orientation of the field. To account for this rotational coupling adiabatically, we expand the dressed state rotational wave function of the molecule as a superposition of field-free symmetric top states

\[
|\tilde{J}\tilde{M}\Omega\rangle = \sum_{J,M} a_M^J |JM\Omega\rangle, \tag{3}
\]

where the symmetric top states are given in term of Wigner rotation matrices \(D_{M-\Omega}^J(\alpha,\beta,\gamma)\) \(^38\)

\[
|JM\Omega\rangle = (-1)^{M-\Omega} \left(\frac{2J+1}{8\pi^2} \right) D_{M-\Omega}^J(\alpha,\beta,\gamma), \tag{4}
\]

where \((\alpha,\beta,\gamma)\) are the Euler angles of the molecule, and \(J\) the total angular momentum quantum number with projections \(M\) in the laboratory frame and \(\Omega\) onto the molecular axis. The expansion coefficients \(a_M^J\) dictate the levels of mixing between the different rotational states, and can be solved for by diagonalizing \(\langle J'M'\Omega'|H|JM\Omega\rangle\). Here \(H\) is the symmetric top and dipole-field Hamiltonian

\[
H = B(J^2 + J_z^2) - D\mathbf{F}\cos \theta, \tag{5}
\]

where \(J\) is the angular momentum operator, \(J_z\) is the angular momentum projection on the \(z\) axis, \(B\) is the molecular rotational constant, \(D\) is the dipole moment of the molecule, and \(\theta\) is the angle between the external electric field of magnitude \(F\) and the molecular axis. The coefficients \(a_M^J(F)\) then depend on the strength \(F\) of

System Method	\(r_q\)	\(\langle Q_{10}\rangle\)	\(\langle Q_{20}\rangle\)	\(\langle Q_{30}\rangle\)	\(R_q\)
LiNa \(\text{CCSD(T)}\)	6.45	0.20	10.07	-47.33	95
VCI\(^b\)	5.43	0.22			
CCSDT\(^c\)	5.45	0.21			
LiK \(\text{CCSD(T)}\)	6.27	1.39	6.07	-59.99	15
VCI\(^b\)	6.21	1.39			
CCSDT\(^c\)	6.27	1.38			
LiRb \(\text{CCSD(T)}\)	6.50	1.63	2.76	-62.41	13
VCI\(^b\)	6.48	1.63			
CCSDT\(^c\)	6.50	1.59			
LiCs \(\text{CCSD(T)}\)	6.93	2.15	-2.29	-49.88	10
VCI\(^b\)	6.82	2.17			
CCSDT\(^c\)	6.93	2.11			
NaK \(\text{CCSD(T)}\)	6.61	1.12	10.56	-26.54	19
\(\text{CCSD(T)}\)\(^d\)	6.592	1.156	10.60		
VCI\(^b\)	6.49	1.09			
NaRb \(\text{CCSD(T)}\)	6.88	1.35	6.94	-56.00	16
VCI\(^b\)	6.84	1.30			
NaCs \(\text{CCSD(T)}\)	7.27	1.85	2.49	-60.45	12
VCI\(^b\)	7.20	1.83			
KRB \(\text{CCSD(T)}\)	7.69	0.25	15.14	-69.09	109
VCI\(^b\)	7.64	0.23			
KCs \(\text{CCSD(T)}\)	8.10	0.75	13.00	-105.70	38
VCI\(^b\)	8.02	0.76			
RbCs \(\text{CCSD(T)}\)	8.37	0.49	15.88	-50.28	60
VCI\(^b\)	8.30	0.40			

\(^a\) \(r_q\) values are taken from experimental results where available, see Deiglmayr et al. \(^33\) and references therein.

\(^b\) Ref. \(^34\).

\(^c\) Ref. \(^8\).

\(^d\) Ref. \(^24\).

\(^e\) Ref. \(^35\).

\(^f\) Performed a four component Dirac-Fock valence bond calculation in calculating the dipole moment.
n = 8 of all the ground state alkali diatoms through cesium evaluated at the equilibrium bond lengths r_e listed in Table I. All values are presented in atomic units.

An alternative to simply increasing the static field magnitude is to add a separate polarizing laser field \(^{39}\) that directly couples the rotational states of the molecule. However, to achieve both alignment and orientation control, time-dependent nonadiabatic effects are introduced into the dressed state wavefunction \(^{20}\). For the purposes of this work the investigation and inclusion of these nonadiabatic effects are unimportant as only the final dressed state is of interest. As such we present our alignment in terms of an applied external static field and, where practical, the number of strongly coupled rotational states.

III. Anisotropic Long Range Interactions

Given a linear molecule in the Born-Oppenheimer approximation (no nuclear motion), at any given configuration the orientation of each molecule can be described by the vector $\hat{r}_i = (\theta_i, \phi_i)$ with the relative position between
is the projection angle of \mathbf{R}.

Following the standard approach [26, 31, 41], the first- and second-order interaction energy for two linear molecules can be expressed as

$$E_{\text{int}}(R, \theta_1, \theta_2, \phi) = \sum_{n_{L_1}, L_2, M} \frac{(W_{n_{L_1}L_2M}^{(1)} - W_{n_{L_1}L_2M}^{(2)})}{R^n} \times P_L^M(\cos \theta_1)P_L^M(\cos \theta_2) \cos \phi$$

where $W_{n_{L_1}L_2M}^{(1)} = (-1)^{M-2\delta_n} (L_1 + L_2)! / (L_1 + M)! (L_2 + M)!$ (10) is the first-order electrostatic contribution, where $|0\rangle$ is the electronic ground state of molecule i. In Eq. [40],

$$W_{n_{L_1}L_2M}^{(1)} = W_{n_{L_1}L_2M}^{(2, \text{DIS})} + W_{n_{L_1}L_2M}^{(2, \text{IND})}$$

contains the second-order contributions from dispersion,

$$W_{n_{L_1}L_2M}^{(2, \text{DIS})}(R) = \sum_{\ell_1, \ell_2}^L \sum_{\ell'_1, \ell'_2}^L \delta_{\ell_1 + \ell'_1 + \ell_2 + \ell'_2 + 2n}$$

and induction,

$$W_{n_{L_1}L_2M}^{(2, \text{IND})}(R) = \sum_{\ell_1, \ell_2}^L \sum_{\ell'_1, \ell'_2}^L \delta_{\ell_1 + \ell'_1 + \ell_2 + \ell'_2 + 2n}$$

and induction,

$$W_{n_{L_1}L_2M}^{(2, \text{IND})}(R) = \sum_{\ell_1, \ell_2}^L \sum_{\ell'_1, \ell'_2}^L \delta_{\ell_1 + \ell'_1 + \ell_2 + \ell'_2 + 2n}$$

and induction,

$$W_{n_{L_1}L_2M}^{(2, \text{IND})}(R) = \sum_{\ell_1, \ell_2}^L \sum_{\ell'_1, \ell'_2}^L \delta_{\ell_1 + \ell'_1 + \ell_2 + \ell'_2 + 2n}$$

and induction,

$$W_{n_{L_1}L_2M}^{(2, \text{IND})}(R) = \sum_{\ell_1, \ell_2}^L \sum_{\ell'_1, \ell'_2}^L \delta_{\ell_1 + \ell'_1 + \ell_2 + \ell'_2 + 2n}$$

and induction,

$$W_{n_{L_1}L_2M}^{(2, \text{IND})}(R) = \sum_{\ell_1, \ell_2}^L \sum_{\ell'_1, \ell'_2}^L \delta_{\ell_1 + \ell'_1 + \ell_2 + \ell'_2 + 2n}$$

and induction,

$$W_{n_{L_1}L_2M}^{(2, \text{IND})}(R) = \sum_{\ell_1, \ell_2}^L \sum_{\ell'_1, \ell'_2}^L \delta_{\ell_1 + \ell'_1 + \ell_2 + \ell'_2 + 2n}$$

and induction,

$$W_{n_{L_1}L_2M}^{(2, \text{IND})}(R) = \sum_{\ell_1, \ell_2}^L \sum_{\ell'_1, \ell'_2}^L \delta_{\ell_1 + \ell'_1 + \ell_2 + \ell'_2 + 2n}$$

and induction,
The scalar coupling coefficient $\zeta_{\ell_1,\ell_2,\ell'_1,\ell'_2}^L$ is given \[40\] as
\[
\zeta_{\ell_1,\ell_2,\ell'_1,\ell'_2}^L = (-1)^{\ell_2+\ell'_2} ((2\ell_1+1)(2\ell_2+1))^{1/2} \\
\times \left[(2\ell_1+2\ell_2+1)! (2\ell'_1+2\ell'_2+1)! \right]^{1/2} \sum_L \eta_{L_1,L_2,L}^M \\
\times (\ell_1 + \ell_2; \ell'_1 + \ell'_2; L_0) \left\{ \begin{array}{ccc} \ell_1 & \ell_2 & L_1 \\ \ell'_1 & \ell'_2 & L_2 \end{array} \right\},
\]
the symbol between curly brackets being a Wigner 9-j symbol \[38\], and $T_{\ell_0,k_1}^{\ell_1,k_2}$ is the coupled monomer multipole transition moment defined as
\[
T_{\ell_0,k_1}^{\ell_1,k_2} = \sum_m (0_i|Q_{\ell_0,m}|k_i) (k_i|Q_{\ell_1,m}|0_i) (\ell,m; \ell_1,m) (\ell_0,0),
\]
where the indices k_i go over ground and excited states of the i'th molecules electronic wavefunction $|k_i\rangle$ \[42\]. It is convenient, when discussing molecular properties, to work with the uncoupled dynamic multipole polarizability:
\[
\alpha_{\ell_1,\ell_2}(\omega) = \sum_{k \neq 0} \frac{(\epsilon_k - \epsilon_0) (0_i|Q_{\ell_0,m}|k_i) (k_i|Q_{\ell_1,m}|0_i)}{(\epsilon_k - \epsilon_0)^2 - \omega^2}.
\]

The zero frequency limit of Eq. \[16\] represents the static multipole polarizability.

IV. DRESSED-STATE VAN DER WAALS INTERACTION

A. General Expressions

To consider the interactions between rigid-rotor linear molecules dressed by an external electric field it is necessary to first transform the van der Waals interaction energy from the molecule-fixed frame (MF) to the lab-fixed frame (LF). The lab-fixed frame van der Waals interaction can be generally expressed by referring to Eq. \[10\] and removing the constraint on Eq. \[7\], which specified that R is aligned to the z-axis. The angular basis can then generally be expressed \[41\] as
\[
A_{L_1,L_2,L}(\hat{R},\hat{r}_1,\hat{r}_2) = \sum_{m_{L_1},m_{L_2},m_L} \left(\begin{array}{ccc} L_1 & L_2 & L \\ m_{L_1} & m_{L_2} & m_L \end{array} \right) \\
\times Y_{L_1,m_{L_1}}(\hat{r}_1) Y_{L_2,m_{L_2}}(\hat{r}_2) Y_{L,m_L}(\hat{R}),
\]

where $Y_{\ell m}(\hat{r})$ is a spherical harmonic and (\ldots) is a Wigner 3-j symbol \[38\]. Because of the change in angular basis, it is necessary to recouple the radial $W_{nL_1,L_2,L_M}^{(1,2)}$ functions. This can be done readily by integrating Eq. \[14\] over the angular phase space:
\[
E_{L_1,L_2,L}^{LF}(R) = \frac{1}{\sqrt{8\pi}} \int_0^{2\pi} d\phi \int_0^\pi d\theta_1 \int_0^\pi d\theta_2 \sin(\theta_1) \sin(\theta_2) \\
\times A'_{L_1,L_2,L}(\theta_1,\theta_2,\phi) E_{\text{int}}^{MF}(R,\theta_1,\theta_2,\phi),
\]

where $A'_{L_1,L_2,L}(\theta_1,\theta_2,\phi)$ is Eq. \[17\] projected onto the molecule-fixed frame and is given by \[43\]
\[
E_{L_1,L_2,L}^{LF}(R) = \sum_{m=0}^{\min(L_1,L_2)} \frac{(-1)^m (2 - \delta_{m,0}) (L_1 - m, L_2 - m, L)}{\Theta_{L_1,m}(\theta_1) \Theta_{L_2,m}(\theta_2) \cos[m \phi]},
\]

where $\Theta_{L,m}(\theta)$ are normalized associated Legendre polynomials. The resulting integrand has the solution
\[
E_{L_1,L_2,L}^{LF}(R) = \sum_{M} (-1)^M \left(\begin{array}{ccc} L_1 & L_2 & L \\ M & -M & 0 \end{array} \right) \\
\times \left(\frac{(L_1 + M)! (L_2 + M)!}{(L_1 - M)! (L_2 - M)!} \right)^{1/2} \left(\frac{2L + 1}{(2L_1 + 1)(2L_2 + 1)} \right)^{1/2} \\
\times \sum_n \frac{(W_{nL_1,L_2,L}^{(1)})^2 - W_{nL_1,L_2,L}^{(2)}}{R^n}.
\]

The adiabatic dressed state basis for two molecules at large separation is given in terms of the product of each molecule dressed rotational wave functions
\[
\phi = |\tilde{J}_1 \tilde{M}_1 \Omega_1\rangle \otimes |\tilde{J}_2 \tilde{M}_2 \Omega_2\rangle.
\]

The dressed state (DS) van der Waals interaction $E_{\text{int}}^{DS}(R)$ is calculated from the matrix elements of Eq. \[20\] in the dressed state basis,
TABLE IV. XY (X,Y=Na,K,Rb,Cs) calculated CCSD(T) electrostatic and TD-DFT dispersion+induction van der Waals coefficients, $W_{nL_1L_2M}$, for unique combinations of L_1L_2M. All values are presented in atomic units and calculated at the equilibrium bond length r_e listed in Table II and $[n]$ denotes $\times 10^n$.

n	L_1	L_2	M	NaK	NaRb	NaCs	KRb	KCs	RbCs
3110	-2.470[0]	-3.651[0]	-6.813[0]	-0.125[0]	-1.164[0]	-0.432[0]			
3111	1.235[0]	1.826[0]	3.406[0]	0.063[0]	0.582[0]	0.216[0]			
4210	-3.528[1]	-2.818[1]	-1.377[1]	-1.134[1]	-2.960[1]	-2.221[1]			
4211	1.176[1]	9.393[0]	4.590[0]	3.785[0]	9.867[0]	7.403[0]			
5220	6.717[2]	2.900[2]	3.710[1]	1.375[3]	1.004[3]	1.524[3]			
5221	-1.493[2]	-6.444[1]	-8.245[0]	-3.056[2]	-2.231[2]	-3.386[2]			
5222	9.329[0]	4.028[0]	0.515[0]	1.910[1]	1.395[1]	2.116[1]			
5310	1.175[2]	7.346[1]	5.962[1]	6.909[1]	1.955[2]	1.106[1]			
5311	-2.937[1]	-1.836[1]	-1.490[1]	-1.727[1]	-4.887[1]	-2.764[0]			

Dispersion+Induction: $W^{(2)}_{nL_1L_2M}$

n	L_1	L_2	M	NaK	NaRb	NaCs	KRb	KCs	RbCs
6000	7.777[3]	8.680[3]	1.233[4]	1.354[4]	1.726[4]	1.921[4]			
6200	5.519[2]	7.837[2]	3.327[2]	2.001[3]	2.375[3]	2.909[3]			
6220	9.762[2]	1.223[3]	2.694[3]	1.028[3]	1.826[3]	1.857[3]			
6222	-2.169[2]	-2.717[2]	-5.986[2]	-2.284[2]	-4.059[2]	-4.127[2]			
7100	1.157[4]	2.268[3]	-2.114[4]	6.069[3]	1.457[4]	1.755[4]			
7210	-1.657[1]	-4.434[3]	-2.312[2]	9.292[2]	-8.871[2]	2.795[3]			
7211	2.762[0]	7.391[2]	3.853[3]	-1.655[2]	1.479[2]	-4.658[2]			
7300	9.136[3]	4.795[3]	-1.280[3]	4.176[3]	1.234[3]	1.231[4]			
7320	4.931[3]	1.142[3]	-9.091[3]	2.772[3]	7.134[3]	8.669[3]			
7321	-8.219[2]	-1.903[2]	1.515[3]	-4.621[2]	-1.189[3]	-1.445[3]			
7322	5.870[1]	1.360[1]	-1.082[2]	3.300[1]	8.492[1]	1.032[2]			
8000	1.444[6]	1.928[6]	3.016[6]	3.734[6]	5.391[6]	5.667[6]			
8200	8.920[5]	1.503[6]	2.766[6]	2.606[6]	4.295[6]	3.923[6]			
8220	3.296[5]	6.003[5]	1.466[6]	7.941[5]	1.494[6]	1.296[6]			
8222	-4.768[4]	-8.470[4]	-2.042[5]	-1.162[5]	-2.138[5]	-1.878[5]			
8400	3.368[3]	4.596[3]	9.349[3]	9.098[3]	1.356[4]	1.351[4]			
8420	6.476[4]	6.275[4]	1.107[5]	2.931[5]	3.258[5]	4.238[5]			
8421	5.979[4]	7.214[4]	1.962[5]	2.200[5]	2.678[5]	3.389[5]			
8422	-8.081[3]	-9.702[3]	-2.625[4]	-2.970[4]	-3.612[4]	-4.566[4]			
8423	4.380[2]	5.183[2]	1.380[3]	1.603[3]	1.945[3]	2.453[3]			

\[
E^{DS}_{\text{int}}(R) = \langle \tilde{J}_2 \hat{M}_2 \Omega_2 | E^{DS}_{\text{int}}(\tilde{r}_1, \tilde{r}_2, R) | \tilde{J}_1 \hat{M}_1 \Omega_1 \rangle \langle \tilde{J}_2 \hat{M}_2 \Omega_2 \rangle = \sqrt{4\pi} \sum_{J_1, M_1} \sum_{J_2, M_2} \sum_{L_1, M_{L_1}} \delta_{\Omega_1 \Omega_1'} \delta_{\Omega_2 \Omega_2'} \sum_{L, m_L} \left(\begin{array}{c} J_1' \ L_1 \ J_1 \ \Omega_1 \ 0 \ -\Omega_1 \ \end{array} \right) \left(\begin{array}{c} J_2' \ L_2 \ J_2 \ \Omega_2 \ 0 \ -\Omega_2 \ \end{array} \right) \left(\begin{array}{c} J_2' \ L_2 \ J_2 \ \Omega_2 \ 0 \ -\Omega_2 \ \end{array} \right) \left(\begin{array}{c} J_1' \ L_1 \ J_1 \ \Omega_1 \ 0 \ -\Omega_1 \ \end{array} \right) \left(\begin{array}{c} L_1 \ L_2 \ L \ \end{array} \right) Y_{LmL}^L(\tilde{R}) E^{DS}_{\text{int}}(R, L_1, L_2, L, R),
\]

where

\[
\rho_{M_i, M_i'}(F) = \sigma_{M_i}(F) \sigma_{M_i'}(F)
\]

is the coupled rotational state density of molecule i and $Y_{LmL}(\tilde{r})$ is a spherical harmonic. In addition to the transformation of the van der Waals interaction energy as given by Eq. (22), it is useful to have the dressed static moment, $\langle Q^{DS}_{L0} \rangle$, of a given molecule. For molecule i, this
\[\langle Q_{10}^{\text{DS}} \rangle (\xi) = \langle Q_{10} \rangle \frac{6\xi + 2\xi^3}{8(1 + \xi^2)} ,\]

and

\[\langle Q_{20}^{\text{DS}} \rangle (\xi) = \langle Q_{20} \rangle \frac{2\xi^2}{15(1 + \xi^2)} ,\]

respectively, while the octupole moment has no two state contribution by symmetry. The orientation moment \(\langle \cos^2 \theta \rangle\) is given trivially by

\[\langle \cos^2 \theta \rangle (\xi) = \langle Q_{10}^{\text{DS}} \rangle (\xi) / \langle Q_{10} \rangle ,\]

while alignment \(\langle \cos^2 \theta \rangle\) can be calculated by noting that \(\cos^2 \theta = \frac{1}{7}(1+2C_{1,0}(\theta))\) (where \(C_{r,m}(\hat{r})\) is a Racah spherical harmonic), providing the expression

\[\langle \cos^2 \theta \rangle (\xi) = \frac{15 + 19\xi^2}{45(1 + \xi^2)} .\]

So long as the number of coupled states is dominated by the first two states and \(\xi \leq 1\), these approximate formulae are accurate to a few percent. In Table III we have evaluated \(\xi_0\) for all the heteronuclear alkali diatoms from the spectroscopic data in Table I. It is also possible to evaluate Eqs. (22) and (23) using the two state low-field approximation. Following the prescribed method discussed above, the low field-dressed-state van der Waals potential can be written to leading order as

\[E_{2\text{st}}^{\text{DS}} (\mathbf{R}, \xi) \approx \frac{W_{320}^{(1)}(\theta_F, \xi)}{R^3} + \frac{W_{540}^{(1)}(\theta_F, \xi)}{R^5} \left(\frac{W_{6000}^{(2)}(\xi)}{R^6} - \frac{W_{6000}^{(2)}}{R^8} \right) .\]

Here \(\theta_F\) is the angle between the inter-molecular vector \(\mathbf{R}\) and the field vector as illustrated in Fig. 1b. The dipole-dipole and quadrupole-quadrupole contributions are (up to order \(\xi^3\))

\[\tilde{W}_{320}^{(1)}(\theta_F, \xi) = \langle Q_{10} \rangle^2 \frac{3\sqrt{3}\xi + 6\xi^2 + 4\sqrt{3}\xi^3 + 4\xi^4}{27(1 + \xi^2)^2} \times (1 - 3\cos^2 \theta_F) ,\]

and

\[\tilde{W}_{540}^{(1)}(\theta_F, \xi) = \langle Q_{20} \rangle^2 \frac{\xi^4}{75(1 + \xi^2)^2} \times (3 - 30\cos^2 \theta_F + 35\cos^4 \theta_F) ,\]

respectively (note that there is no dipole-octupole contribution in the two state approximation) while \(W_{6000}^{(2)}\) is the isotropic dispersion+induction coefficient (see Tables III and IV). The anisotropic terms contribute less than a percent to the interaction energy and can be safely neglected.

V. ELECTRONIC STRUCTURE CALCULATIONS

The \textit{ab initio} calculation of van der Waals coefficients, and more generally multipole polarizabilities, requires special care in both the basis set and level of theory used [44–46]. Electrostatic moments similarly require careful consideration of the theoretical method, though the basis set dependence is less severe [47]. For all calculations in this work we use the Karlsruhe def2-QZVPP [48] basis set augmented with two additional even tempered diffuse \textit{spdf} functions designed to accurately describe higher order static polarizabilities [51]. The Karlsruhe def2 basis sets are available for nearly the entire Periodic Table,
FIG. 3. Dressed state electrostatic moments, $\langle Q_{l0}^{DS} \rangle$, of various heteronuclear alkali diatomic molecules as a function of an external DC electric field.

and are known for both their robustness and good cost-to-performance ratio in large molecular Hartree-Fock and density functional theory calculations. As such they remain attractive for use in calculations that involve many different atoms across the period table.

As has been demonstrated previously, the use of time dependent density functional theory \cite{49, 50} is a cost effective and accurate way to calculate multipole transition moments and excitation energies for diatomic molecules. We chose to limit our calculations in this work to only include the PBE0 functional for simplicity, however for various cases it was observed that the B3PW91 functional also provides consistent results. The electrostatic moments were calculated using coupled cluster theory including all singles, doubles and perturbative triples (CCSD(T)) \cite{51} using a two step finite field method (with field spacings of 10^{-6} a.u.). Core-valence and core-core correlation energy was accounted for by including the inner valence s and p electrons in the CCSD(T) calculations, while for the TD-DFT computations all electrons not replaced by an ECP are implicitly correlated. All TD-DFT calculations were done using a locally modified version of the GAMESS \cite{52, 53} suite of programs; the CCSD(T) finite field calculations were done using the MOLPRO \cite{54} quantum chemistry program package. For further details on the methodology used in evaluating the transition dipole moments and excitation energy we refer to our previous paper on homonuclear alkali diatomic molecules \cite{31}.

VI. COMPUTATIONAL RESULTS AND DISCUSSION

The leading order term of the long range expansion Eq. (9), and thus the longest ranged interaction in the series, involve products of the electrostatic moments of each monomer, and for dipolar molecules, it is the dipole-dipole R^{-3} term. The dipole-dipole scattering \cite{55} and applications of dipole-dipole interactions \cite{14} are well studied in the literature, however higher order terms can be necessary for accurately describing intermediate inter-
molecular distances [31] and are often neglected if only for a lack of available data. Inclusion of just the quadrupole-quadrupole interaction to a dipole-dipole model can introduce significant changes in the form of potential energy barriers for collinear geometries ($\theta_1 = \theta_2 = \phi = 0$) at long range [30]. It is possible to estimate whether the inclusion of higher order electrostatic terms could lead to a barrier by introducing the outer zero energy turning point, R_q, which occurs when the R^{-5} repulsion overcomes the attractive R^{-3} dipole-dipole force. Keeping only the two leading terms in Eq. (9) and setting

$$E_{\text{int}}(R_q, 0, 0, 0) = -\frac{(Q_{10})^2}{R_q^3} + \frac{3(Q_{20})^2 - 4(Q_{10})(Q_{30})}{R_q^5} = 0,$$

we obtain

$$R_q = \sqrt[3]{\frac{3(Q_{20})^2 - 4(Q_{10})(Q_{30})}{(Q_{10})}}.$$

When this outer turning point is sufficiently long range ($R_q \gtrsim 20$ a.u.) the introduction of these higher order terms can be important and lead to long range barriers [30], and thus should be examined in further detail. As such, we have calculated the ab initio electrostatic dipole, quadrupole and octupole moments (higher order moments do not contribute up to R^{-5} in the long range expansion; see Sec. [31] for details on the methodology used). In Table II we present our calculated static moments, the outer turning point R_q for each system, as well as various dipole and quadrupole moments found in the literature. Our computed static dipole moments agree closely with both the valence full configuration interaction results of Aymar et al. [34] across all the molecules investigated, and the CCSDT (CCSD with all triples) results of Quémeré et al. [8] for the highly polar LiX (X=Na,K,Rb,Cs) species. Other than the CCSD(T) quadrupole moment of Zemke et al. [27] (with which we compare well), little to no published quadrupole values exist for the heteronuclear alkali diatoms. It has been demonstrated for the homonuclear alkali diatoms that the finite field CCSD(T) higher order static moments compare well with other methods [31, 47]; similar accuracy is anticipated for the heteronuclear species.

Dispersion and induction contributions to the van der Waals series are proportional to products of the dipole, quadrupole and octupole polarizabilities. As such we have calculated and presented in Table II the dipole and quadrupole static polarizabilities with comparisons to some of the existing literature (octupole static polarizabilities are not listed, but are available upon request). As discussed previously [31], the n-aug-def2-QZVPP basis sets are well converged for computation of static polar-
izabilities of homonuclear alkali diatoms up to octupole order, and we find the same is true for the heteronu-
clear species. Density functional methods are known to provide average static polarizabilities to within five to ten percent of experimental or highly correlated results. Furthermore some variance is expected in the parallel (α_{110}) polarizability as all computations are done at the experimental (or theoretical where necessary) equilibrium bond length, and it is well known that the polarizability is sensitive to the internuclear separation in the alkali diatoms. It is expected that the perpendicular polarizability (α_{111}) should agree much more closely with other methods, which we find to be the case as illustrated in Table I.

Van der Waals dispersion and induction coefficients of the heteronuclear alkali diatoms are sparsely given in the literature. Currently only a few values exist and are restricted to isotropic contributions (corresponding to $W^{2,\text{DIS}}_{0000}$). The only systematically calculations are for the LiX species. In Table I we note the reasonable agreement between our reported TD-DFT isotropic $C_0 = W^{2,\text{DIS}}_{0000}$ dispersion coefficients and the Tang-Slater-Kirkwood[3] values from Quéméner et al.[8] for the LiX species. Additionally Kotochigova[32] has calculated, using multi-reference configuration interaction theory, the isotropic and anisotropic dispersion coefficients of order R^{-6} for both KRb and RbCs. However, these values contain non-Born-Oppenheimer contributions and so are not directly comparable to our numbers; because of this we have not included these values in Table I. To determine the accuracy of the van der Waals coefficients calculated here, we have computed $ab\ initio$ curves for LiNa+LiNa at two different geometries using the CCSD(T)-F12a/QZVPP (explicitly correlated CCSD(T)) level of theory[55,66]. These $ab\ initio$ curves are plotted in Fig. 2 along with the electrostatic plus isotropic dispersion approximation and the the van der Waals curves of this work including all anisotropic terms through R^{-8}. As can be seen, the TD-DFT van der Waals curves agree to a few cm$^{-1}$ with the $ab\ initio$ results[61], while the isotropic curves fail completely in the intermediate-range (it should be noted that for the collinear case of LiNa+LiNa the isotropic curves do not turn over at all and predict an infinite repulsive wall). In Tables III and V we have listed the $W_{nL_1L_2M}^{(1,2)}$ coefficients for all of the heteronuclear alkali diatoms, including all terms up through order R^{-8}.

In evaluating the field coupling and alignment of the various alkali diatomic molecules, the rotational wave-
function expansion is greatly simplified by making use of the initial premise that the molecules are in the ro-
vibrational ground state. As such $\Omega = 0$ and $M = 0$ (the use of a DC external field will not mix different M values), reducing both Eqs. (22) and (23) significantly. In Fig. 3 we have plotted the DC field dressed electrostatic moments as a function of the external field strength. While the very high field strengths in Fig. 3 are generally experimentally challenging, it is illustrative to show how difficult it is to obtain both strong orientation ($\langle \cos \theta \rangle > 0.85$) and alignment ($\langle \cos^2 \theta \rangle > 0.85$) in molecules with small rotational constants, regardless of the strength of the dipole moment. It is also instructive to examine the low-field strengths of Fig. 3, where the linear trend of each curve on the log-log scale shows the general scaling of the static moments as a function of the external field as discussed in Sec. V. In Fig. 4 we have evaluated Eq. (22) for KRb (KRb is chosen for its medium strength dipole moment and large rotational constant) at various DC field strengths. The difference between the low and high field strengths is easily identified by the change in behavior from most similar to the field free case (e.g. isotropic contributions become most important) to the regime where the dressed state van der Waals interaction energy more closely resembles the molecule-fixed frame van der Waals potential (e.g. when electrostatic contributions become kkey). This high field strength regime is more quantitatively defined when both $\langle \cos \theta \rangle$ and $\langle \cos^2 \theta \rangle$ is greater than 0.9 (which corresponds to roughly 7 strongly coupled rotational states). Also in Fig. 4 the approximate two-state model of Eq. (23) can be seen to agree very well with the fully coupled equations in the low-field limit. Fully field-coupled potentials for the other heteronuclear molecules listed in this work have been calculated, and are available upon request.

| TABLE V. Tabulated values of the field strength coefficient $\xi_0 = D/2B$ using the spectroscopic and electrostatic constants from Table II. All units are in cm$^{-2}$/kV. |
|---|---|---|---|---|
| Li | Na | K | Rb | Cs |
| 39Na | 0.0114 | 0.116 | 0.159 | 0.246 |
| 23Na | 0.253 | 0.413 | 0.684 |
| 39K | 0.141 | 0.529 |
| 85Rb | 0.635 |

VII. CONCLUSIONS

This work completes our systematic TD-DFT computation of the alkali diatomic species by computing accurate multipole electrostatic moments and anisotropic van der Waals coefficients for the heteronuclear alkali diatomic species. The multipole electrostatic moments were computed using a finite field treatment of the CCSD(T) molecular energy employing the augmented Karlsruhe def2-QZVPP basis set and found to produce excellent agreement with the existing literature. Excitation energies and multipole transition moments were calculated using TD-DFT and the same augmented QZVPP basis set. Static polarizabilities as well as van der Waals induction and dispersion coefficients were evaluated using the sum over states approach and found to be consistent with the existing literature. Using the simple form of Eq. (9) and the values from Tables III and IV, it is possible to completely characterize the long range interaction...
between two heteronuclear alkali diatoms up through order R^{-8}. A sample FORTRAN program for evaluating Eq. (13) is included in the supplemental material of Ref. [31] or upon request to the authors.

The transformation of the van der Waals series for linear molecules from the molecule-fixed frame to the lab-fixed frame was described. This was followed with the computation of the dressed state electrostatic moments as a function of an external DC electric field. It was noted that in the low field limit, the coupling of the molecule to the external field can be approximated by only considering two rotational states. With this in mind, the orientation and alignment of the molecule as a function of the applied field can be approximated using only molecular spectroscopic constants by Eqs. (25)-(28), which are valid for field values $F \leq 2B/D$. We have also illustrated the effects of an external DC electric field on the intermolecular potential by evaluating Eq. (22) for 40K87Rb at a variety of field strengths. It can be seen then that introducing rotational state coupling leads to a richer interaction phase space beyond the usual isotropic approximations. Finally a two-state approximation of the dressed-state long range potential (see Eq. (29)) has been derived and given by Eq. (29) in terms of molecular spectroscopic constants and isotropic van der Waals coefficients.

VIII. ACKNOWLEDGMENTS

J.B. would like to thank the Department of Defense Air Force Office of Scientific Research MURI grant for support, and R.C. the Chemical Science, Geoscience and Bioscience Division of the Office of Basic Energy Science, Office of Science, U.S. Department of Energy.

[1] M. de Miranda, A. Chotia, B. Neyenhuis, D. Wang, G. Quéméné, S. Ospelkaus, J. Bohn, J. Ye, and D. Jin, Nature Physics 7, 502 (2011)
[2] J. Deiglmayr, M. Repp, R. Wester, O. Dulieu, and M. Weidemüller, Phys. Chem. Chem. Phys. 13, 19101 (2011)
[3] D. DeMille, F. Bay, S. Bickman, D. Kawall, D. Krause, S. Maxwell, and L. Hunter, Phys. Rev. A 61, 052507 (2000)
[4] D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, Phys. Rev. Lett. 100, 043202 (2008)
[5] N. Balakrishnan and A. Dalgarno, Chem. Phys. Lett. 341, 652 (2001)
[6] G. Quéméné, N. Balakrishnan, and A. Dalgarno, in Cold Molecules, Theory, Experiment and Applications, edited by R. V. Krems, W. C. Stwalley, and B. Friedrich (CRC Press, Boca Raton, 2009) p. 69
[7] K. Ni, S. Ospelkaus, D. Wang, G. Quéméné, B. Neyenhuis, M. Miranda, J. Bohn, J. Ye, and D. Jin, Nature 464, 1324 (2010)
[8] G. Quéméné, J. Bohn, A. Petrov, and S. Kotochigova, Phys. Rev. A 84, 062703 (2011)
[9] R. V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008)
[10] A. Micheli, G. K. Brennen, and P. Zoller, Nat. Phys. 2, 341 (2006)
[11] L. Santos, G. Shlyapnikov, P. Zoller, and M. Lewenstein, Phys. Rev. Lett. 85, 1791 (2000)
[12] A. Recati, P. Fedichev, W. Zwerger, and P. Zoller, Phys. Rev. Lett. 90, 020401 (2003)
[13] S. F. Yelin, K. Kirby, and R. Côté, Phys. Rev. A 74, 050301 (R) (2006)
[14] S. F. Yelin, D. DeMille, and R. Côté, in Cold Molecules, Theory, Experiment and Applications, edited by R. V. Krems, W. C. Stwalley, and B. Friedrich (CRC Press, Boca Raton, 2009) p. 629
[15] E. Kuznetsova, M. Gacesa, S. F. Yelin, and R. Côté, Phys. Rev. A 81, 030301 (2010)
[16] B. Segev, R. Côté, and M. G. Raizen, Phys. Rev. A 56, R3350 (1997)
[17] K. Shimshon, B. Segev, and R. Côté, Phys. Rev. Lett. 95, 163005 (2005)
[18] K. Shimshon, B. Segev, and R. Côté, Eur. Phys. J. D. 35, 3 (2005)
[19] L. Holmegaard, J. Nielsen, I. Nevo, and H. Stapelfeldt, Phys. Rev. Lett. 102, 023001 (2009)
[20] J. Nielsen, H. Stapelfeldt, J. Küpper, B. Friedrich, J. Omiste, and R. González-Férez, Phys. Rev. Lett. 108, 193001 (2012)
[21] J. N. Byrd, J. A. Montgomery, Jr., and R. Côté, Phys. Rev. A 82, 010502(R) (2010)
[22] P. S. Zuchowski and J. M. Hutson, Phys. Rev. A 81, 060703 (2010)
[23] J. N. Byrd, H. H. Michels, J. A. Montgomery, Jr., R. Côté, and W. C. Stwalley, J. Chem. Phys. 136, 043306 (2012)
[24] Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, J. Chem. Phys. 134, 124107 (2011)
[25] P. F. Weck and N. Balakrishnan, Int. Rev. Phys. Chem. 25, 283 (2006)
[26] A. D. Buckingham, Adv. Chem. Phys. 12, 107 (1967)
[27] W. T. Zemke, J. N. Byrd, H. H. Michels, J. A. Montgomery, Jr., and W. C. Stwalley, J. Chem. Phys. 132, 244305 (2010)
[28] A. Banerjee, A. Chakraborti, and T. K. Ghanty, J. Chem. Phys. 127, 134103 (2007)
[29] A. Banerjee, A. Chakraborti, and T. K. Ghanty, Int. J. Quant. Chem. 109, 1376 (2009)
[30] D. Spelberg, T. Lorenz, and W. Meyer, J. Chem. Phys. 99, 7845 (1993)
[31] J. N. Byrd, R. Côté, and J. A. Montgomery, Jr., J. Chem. Phys. 135, 244307 (2011)
[32] S. Kotochigova, New J. Phys. 12, 073041 (2010)
[33] J. Deiglmayr, A. Grochola, M. Repp, K. Mörlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Phys. Rev. Lett. 101, 133004 (2008)
[34] M. Aymar and O. Dulieu, J. Chem. Phys. 122, 204302 (2005)
[35] S. Kotochigova, P. Julienne, and E. Tiesinga, Phys. Rev. A 68, 022501 (2003)
[36] K. Tang, Phys. Rev. 177, 108 (1969)
The orientation and alignment of a dipole in an external field is given by the dipole-vector and field-vector correlation distribution. Expanding the distribution in terms of Legendre polynomials, the first odd term is \(\cos \theta \) corresponding to the orientation cosine and the first even term is \(\cos^2 \theta \) corresponding to the alignment cosine.

A. R. Edmonds, *Angular Momentum in Quantum Mechanics* (Princeton University Press, Princeton, NJ, 1960)

M. Härtekt and B. Friedrich, J. Chem. Phys. **128**, 224313 (2008)

F. Mulder, A. van der Avoird, and P. E. S. Wormer, Mol. Phys. **37**, 159 (1979)

A. van der Avoird, P. E. S. Wormer, F. Mulder, and R. M. Berns, Top. Curr. Chem. **93**, 1 (1980)

In principle the summation over \(k_i \) in Eqs. 12 and 13 involve an integral-sum over continuum states. In practice we truncate the summation to include all single excitations within the electronic Hilbert space.

T. V. Tscherbul, Y. V. Suleimanov, V. Aquilanti, and R. V. Kremes, New J. Phys. **11**, 055021 (2009)

M. Urban and A. J. Sadlej, J. Chem. Phys. **103**, 9692 (1995)

N. P. Labello, A. M. Ferreira, and H. A. Kurtz, J. Comp. Chem. **26**, 1464 (2005)

N. P. Labello, A. M. Ferreira, and H. A. Kurtz, Int. J. Quant. Chem. **106**, 3140 (2006)

J. Harrison and D. Lawson, Int. J. Quantum Chem. **102**, 1087 (2005)

F. Weigend, F. Furche, and R. Ahlrichs, J. Chem. Phys. **119**, 12753 (2003)

Y. Tawada, T. Tsumeda, S. Yanagisawa, Y. Yanai, and K. Hirao, J. Chem. Phys. **120**, 8425 (2004)

A. Dreuw and M. Head-Gordon, Chem. Rev. **105**, 4009 (2005)

K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. **157**, 479 (1989)

M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, Jr., J. Comput. Chem. **14**, 1347 (1993)

M. S. Gordon and M. W. Schmidt, in *Theory and Applications of Computational Chemistry, the first forty years*, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (Elsevier, Amsterdam, 2005) p. 1167

H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz, P. Celani, G. Knizia, T. Korona, R. Lindh, A. Mittrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Pfüger, R. Pitzer, M. Reiter, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf, “Molpro, version 2010.1, a package of ab initio programs,” (2010), see http://www.molpro.net

P. Julienne, T. Hanna, and Z. Idziaszek, Phys. Chem. Chem. Phys. **13**, 19114 (2011)

J. Byrd, J. A. Montgomery, Jr., and R. Côté (2012), arXiv:1207.2997v1

P. Calaminici, K. Jug, and A. Köster, J. Chem. Phys. **109**, 7756 (1998)

C. Adamo, M. Cossi, G. Scalmani, and V. Barone, Chem. Phys. Lett. **307**, 265 (1999)

T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. **127**, 221106 (2007)

G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. **130**, 054104 (2009)

Even at the highly correlated level of theory used in computing the *ab initio* curves in Fig. 2 there is a several \(\text{cm}^{-1} \) difference in barrier heights between the F12a and F12b explicitly correlated methods demonstrating the difficulty in obtaining reliable results for molecular interaction barriers at long range.