In Vitro and In Silico Antioxidant, Anti-Diabetic, Anti-HIV and Anti-Alzheimer Activity of Endophytic Fungi, Cladosporium uredinicola Phytochemicals

M. Govindappa1,*, Thanuja V1, Tejashree S.1, Soukhy A.C.1, Barge Suresh1, Manojkumar Arthikala2 and Ravishankar Rai V.3

1Department of Biotechnology, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560 078, India
2Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, León, C.P.37684, Mexico
3Department of Studies in Microbiology, University of Mysore, Manasa Gangothri, Mysore-570006, India

*dravidateja07@gmail.com, drgovindappa-bt@dayanandasagar.edu

Keywords: Cladosporium uredinicola; anti-diabetes; anti-oxidant; anti-HIV; anti-cholinesterase

Abstract. The present work was aimed to identify phytochemicals in C. uredinicola methanol extract from qualitative, TLC and GC-MS method and evaluated for antioxidant, anti-HIV, anti-diabetes, anti-cholinesterase activity in vitro and in silico. The C. uredinicola extract showed flavonoids, tannins, alkaloids, glycosides, phenols, terpenoids, and coumarins presence in qualitative method. From GC-MS analysis, identified seven different phytochemicals and out of seven, four (coumarin, coumarilic acid, hymecromone, alloisoimperatorin) are coumarins. The C. uredinicola extract has shown significant antioxidant activity in DPPH (73) and FRAP (1359) method. The HIV-1 RT (83.81 ± 2.14), gp 120 (80.24 ± 2.31), integrase (79.43 ± 3.14) and protease (77.63 ± 2.14), DPPIV, β-glucosidase and acetyl cholinesterase activity was significantly reduced by the extract. The 2-diphenylmethyleneamino methyl ester had shown significant interaction with oxidant and HIV-1 proteins whereas alloisoimperatorin have interacted with diabetes and cholinesterase proteins followed by hymecromone with high binding energy. These three phytochemicals are non-carcinogens, non-toxic, readily degradable and have drug likeliness properties. The C. uredinicola phytochemicals are responsible for management of diabetes, HIV-1 and Alzheimer. Further in vivo work is needed to justify our research.

Introduction

Plant drugs constitute 25% of the total drugs and have no or minimal side effects. If we use these plant-based drugs continuously we need plants in large quantity and they may vanish on the earth in the future. So, to save plants, exploiting the endophytes to obtain plant-based drugs is practicing nowadays. Endophytes are endosymbionts resides in plant tissues, they either bacteria or fungi but they are not causing any diseases to host. The endophytic fungi are able or capable to produce what host is producing, by using these endophytes we can produce large quantity of the drug within short period by applying biotechnological aspects to meet public demand.

Calophyllum tomentosum (Calophyllacace) is endemic plant commonly known as bintangur grows in Sri Lanka and Western Ghats regions of Karnataka, India. In Ayurveda, the extracts are being practiced to treat ulcers, snake bites and eye diseases. Xanthones and triterpenes were identified from bark of C. tomentosum [1] and flavonoids, saponins and terpenoids from leaf part [2] exhibited strong α-glucosidase inhibitory activity. The C. tomentosum shown alkaloid, flavonoid, terpenoid, tannin, glycoside, saponin [3] are responsible for inhibition of α-glucosidase activity. The literature survey indicates that no reports on endophytic fungal species from C. tomentosum plant. In our lab, we have isolated three fungal endophytes from (different parts of C. tomentosum), analysed their phytochemicals through GC-MS and identified by molecular level using 18S rRNA (unpublished data). The present research was aimed to identify phytochemicals using qualitative, TLC, GC-MS
Using methanol solvent extract of *C. uredinicola*, endophyte of *C. tomentosum*. The extracts were used to analyse antioxidant, anti-HIV, anti-diabetes and anti-Alzheimer activity *in vitro* and *in silico* experimental analysis.

Materials and Methods

Collection, identification and mass culture of endophytic fungi, *Cladosporium uredinicola* from *Calophyllum tomentosum*

The Department of Biotechnology of Shridevi Institute of Engineering & Technology, Tumakuru, Karnataka, India had provided the *C. uredinicola* culture and was inoculated in potato dextrose broth to get high mycelia mass at 26±2 °C for a period of 15 days. The *C. uredinicola* was previously isolated from bark part of the *C. tomentosum*.

Extract preparation and phytochemical analysis

Methanol was used for extraction from *C. uredinicola* mycelia using microwave method two cycles of 10 min at 100 °C. The qualitative methods were employed to identify phytochemicals in *C. uredinicola* extract [4-5].

TLC

Chromatography was performed using endophytic fungal extracts [6].

Analysis of GC-MS

Separation of the phytochemicals was observed by employing GC-MS method in *C. uredinicola* extract [7] and identified each separated phytochemicals based on the parameters viz., molecular weight, structures of the component, total ionic chromatograms, retention time and ionization chromatograms.

Assay of antioxidant activity in *C. uredinicola* extract

Antioxidant properties of *C. uredinicola* methanol extract was carried out using “Ferric Ion Reducing Antioxidant Power (FRAP) and 2, 2-Di Phenyl-1-Picryl Hydrazyl (DPPH)” assays.

DPPH activity

The extract of *C. uredinicola* was used for DPPH activity [8]. The freshly prepared samples were dissolved in 24 mg DPPH in 100 ml ethanol and stored at –20 °C. The sample solution of 150 µl (10 µl of sample and 140 µl of distilled water) was mixed with 2850 µl of sample containing 190 µl of reagent and 2660 µl of distilled water and allowed 24 h for reaction each in dark condition. The reaction was measured at 515 nm. The standard ascorbic acid curve was range of 25 to 800 µM used to analyse test sample. To get absorbance of 1.1±0.02 units at 517 nm, the 45 ml of methanol was added to stock solution (10 ml) [9]. Triplicate was maintained to all the experiments. The percent inhibition of DPPH due to sample was measured and used the standard formula for calculation as mentioned below;

\[
\text{Inhibition (%) = } \frac{\text{AC} - \text{AS}}{\text{AC}} \times 100,
\]

where AC- absorbance of DPPH activity with ethanol, AS- absorbance of DPPH activity with sample or absorbance of DPPH activity with standard.

Assay for FRAP

FRAP solution was prepared by mixing 2,4,6-tris-(2-pyridyl)-S-triazine (TPTZ) solution (2.5 ml) (10mM in 40mM–1 HCl), acetate buffer (25ml) (300 mM, pH 3.6) and mixed the 2.5 ml FeCl3 (20mM) water. The *C. uredinicola* (150 µl and 0.5 mg/ml) was mixed with methanol later added 4.5 ml of FRAP, FRAP without sample was used as blank and reaction was observed at 593 nm [10-11]. The sample reaction was compared with standard ascorbic acid.
In vitro anti-diabetic activity of C. uredinicola extract

Activity of inhibition of α-amylase

The working solution contains 250 µL of 2% (w/v) starch (250 µL), α-amylase solution (250 µL of 1 U/mL) and C. uredinicola extract (250 mL of 500 µg/mL) was incubated for 3 min at 20 °C. To stop the reaction, dinitrosalycilic acid (500 µL) was added to the reaction mixer, subjected to boiled water immediately added α-amylase (250 µL) and heated the solution for 15 min. After heating, the reaction mixer was kept at 26±2 °C for 3 min. To get total volume of 6000 µl, 4500 µL of aqua dest was mixed and homogenized the mixer in vortex. At 540 nm, the activity of α-amylase was measured in with sample or standard or without sample with the help of spectrophotometer and triplicate was maintained for each experiment. Inhibition of α-amylase activity was calculated using standard equation [11].

Inhibitory activity of α-glucosidase

The reaction mixer contains phosphate buffer solution (36 µL), C. uredinicola solution (30 mL) at different concentrations of 10, 25, 50, 100 and 150 µg/ml and 4-nitrophenyl--α-D glycopyranoside (PNPG) substrate (17 µl) was allowed to reaction for 5 min at 37 °C. Added the α-glucosidase solution (17 µl of 0.15 U/mL) to each well to get 100 mL of volume after 5 min of incubation. The reaction solution allowed for 15 min and added sodium carbonate (100 µl of 200 mM). The reaction was observed at 405 nm in micro plate reader and repeated the each experiment thrice and calculated the reaction [11].

Inhibitory activity of dipeptidyl peptidase IV

Incubated the reaction mixture of 50 µL dipeptidyl peptidase (DPP-IV) was mixed with 25 µL C. uredinicola extract for 5 min at 37 °C. Added the 100 µL Gly-Pro-P-Nitroanilide (GPPN) (2 mM) to the reaction mixture and enzyme activity allowed for 15 min. The reaction was terminated by adding 25 µL of acetic acid glacial (25%) and reaction activity was measured at 405 nm [11].

In vitro HIV-1 enzymes inhibition of C. uredinicola methanol extract

Inhibition of activity of HIV-1 reverse transcriptase (RT)

Using 5mM MgCl2, 150 mM KCl, 0.05% NP-40, 5mM DTT, 0.5 mM EGTA, 0.3M Glutathione, 2.5 µg/ml BSA, 2.5µg/ml Poly(rA).p(dT), 20 µM dTTP, 0.5µCi (microcurie) of [3H]TTP, 50mM Tris (pH 7.8), the 100 µl of reaction mixture was prepared. To the reaction mixture added the 0.5 units RT enzyme and incubated for 3 h at 37 °C. By adding 0.1M EGTA (25µl) the enzyme activity was terminated later incubated the reaction mixer on ice for chilling. 100 µl of C. uredinicola was spotted on 2.5cm Whatman filter paper (circular) and was incubated for 15 min at 26±2° C to dry. By using 5% aqueous NaHPO4.7H2O, washed the filters four times later two times with double distilled water. The filters were subjected to dry and to scintillation counting. To analysis, used azidothymidine as positive control and without sample considered as negative control. The percentage of inhibition calculated as,

\[
\text{Per cent inhibition} = \frac{\text{Negative control} - \text{Test sample}}{\text{Negative control}} \times 100
\]

Inhibitory activity of HIV-1 gp120 binding

ELISA kit was used to study binding of CD4 with gp120 [12]. We have studied our extract could interfere with biding of gp120 with CD4. The 5mg/ml of extract was added to gp120 (25ng) at 50 µl of equal concentration of 50 µl and was subjected to incubation at 26±2°C. Then transformed the reaction mixture to CD4 ligand containing microtiter plate wells and was subjected to incubation at 26±2 °C incubated for 1h. By using buffer washed the reaction mixer three times. Through detector reagent, analysed the gp120 binding. For positive control, the heparin was considered as standard control and with sample used as negative control.
Calculated the percentage of inhibition as mentioned below,

\[
\text{Inhibition Percentage} = \left(\frac{\text{AC} - \text{AS}}{\text{AC}}\right) \times 100,
\]

A is optical density.

HIV-1 protease inhibition assay

The assay was performed based on standard procedure of Narayan and Rai [13]. Using buffer (50 mM of sodium acetate (pH 5.0), 1 mM ethylenediamine disodium (EDTA.2Na) and 2 mM 2- mercaptoethanol (2-ME), the HIV-1 PR solution was diluted and added the glycerol in the ratio 3:1. The Arg-ValNle-NH2 (substrate peptides) was diluted with 50 mM of sodium acetate (pH 5.0). Two µl of extract, *C. uredinicola* and HIV-1 PR (4µl) was mixed with substrate solution (2µl, 2 mg/ml) and 10 µl of reaction mixture was incubated for 1h at 37°C. Without endophytic extract was used as control and terminated the reaction by keeping the reaction mixture for 1 min at 90 °C. Later, added the 20 µl of sterile water and an aliquot of 10 µl was analyzed by HPLC using RP-18 column (4.6 mm X 150 mm). The reaction mixture of 10 µl was injected to the column and eluted gradient by using 15-40 % of acetonitrile and trifluoroacetic acid (TFA) (0.2%) in water with 1.0 ml/min flow rate. Monitored the elution profile at 280 nm. The HIV-1 PR inhibitory assay was analysed using following formula:

\[
\text{% inhibition} = \left(\frac{\text{AC} - \text{AS}}{\text{AC}}\right) \times 100,
\]

for positive control the acetyl pepstatin was used.

HIV-1 integrase inhibition assay

The biotinylated long term repeat donor DNA (LTR-D) sequence of 3'-GAAAATCAGTCACCTTTAGAGATCGTCA-5' (LTR-D2) and 5'-biotin-ACCCCTTTTAGTAGTGTGGAAATCTCTAGCAGT-3'(LTR-D1) and were unlabelled complements. These targets the digoxigenin-labelled DNA (TS1) and its 3'-labelled component were 5'-TGACCAAGGGCTAATTCACT-digoxigenin-ACTGGTTCCCATTAAGTGA-5' (TS2). 12 µl of integrase buffer containing 25% of glycerol, 500 µg/ml of bovine serum albumin, 5mM of dithiothritol (DTT), 75mM of MnCl2, 150 mM of 3-(N-morpholine) propane sulfonic acid, pH 7.2 (MOPS) and added 1µl of digoxigenin labelled target DNA (5pmol/mol) and sterilized water (32 µl) and these mixture were transferred to each well of a 96 well plate. Added the 1/5 dilution of integrase enzyme (9 µl) and sample solution (6 µl) to the reaction mixture and the reaction plates were subjected to incubation at 37° C for 80 min. Using PBS, washed the wells four times, incubated the reaction mixture at 37° C for 1 h after adding 100 µl of alkaline phosphatase (AP) labelled anti-digoxigenin antibody (500 mU/ml). Using washing buffer, the plates were washed four times. 150 µl of AP buffer [5mM MgCl2, 10mM of p-nitrophenyl phosphate, 100mM of NaCl, 100 mM of Tris-HCl (pH 9.5)] was added to each well containing reaction solution and subjected to incubation at 37°C for 1h. Using microplate reader, the reaction was measured at 405 nm. 50% of DMSO and an integrase containing negative solution was referred as negative, buffer-E containing 20 mM MOPS (7.2), 20% of glycerol, 0.1% of nonidet-P40, 4M of urea without the integrase enzyme, 400 mM of potassium glutamate and 1mM of ethylenediamine tetra acetate disodium salt (EDTA-2Na) was referred as blank. For positive control, the suramin (polyanionic HIV-1 integrase inhibitor) was used.

\[
\text{Inhibition percentage of integrase} = \text{ODcontrol} - \text{ODsample/ ODcontrol X 100}
\]

Inhibition of protease enzyme

In a 500µl of reaction mixture, 800µg haemoglobin, *C. uredinicola* extract and 50µg pepsin was incubated for 20 min at 37° C to allow proper mixing and to stop the reaction added the 5% of TCA. Centrifuged the reaction for 5 min at 14000 g and the supernatant OD was recorded at 280 nm. To compare the reaction effect of our sample, both negative (pepstatin A, a protease inhibitor) and positive controls (enzyme and standard substrate) were used. Triplicate was maintained for each sample.
In vitro anti-Alzheimer activity

Acetyl and butyryl cholinesterase inhibition assay

96-well microplate reader was used to carry out acetylcholinesterase assay. The ChE enzyme (10 mL volume, diluted 100 times in phosphate buffer, pH 7.4) was mixed with DTNB (5,5-dithiobis-(2-nitro-benzoic acid)) (104 M concentration), 70 mM of phosphate buffer (Na2HPO4/NaH2PO4, pH 7.4) and ATCh (1.35 X 10-4 M concentration) in plate wells and allowed for reaction at 37° C and reaction was measured for 5 min at 412 nm. For each experiment, three replicates were maintained. The enzyme inhibition percentage was calculated by comparing with negative and positive control [14].

In silico antioxidant, anti-HIV, anti-diabetic and anti-cholinesterase activity

Selection of proteins/ receptors/ enzymes

The oxidant proteins, 1cb4 (SOD), 1qqw (Catalase), 1spd (SOD), 2cag (Catalase), 2he3 (gpx), 2p31 (Glutathione peroxidase 7), 3mng (human oxidant enzyme), the HIV-1 proteins 1bi4 (integrase), 1c0u (RT), 1dmp (protease), 1eby (protease), 1ex4 (integrase), 1exq (integrase), 1gc1 (gp120), 1rev (RT), 1w5x (protease), 2bvu (capsid), 2m8n (capsid), 2nxy (gp120), 2ny7 (gp120), 3h47 (capsid), 3kk2 (RT), 3ndw (protease), 3p05 (capsid), the diabetic proteins 1ppi (amylase), 1uok (glucosidase), 2g5p (pppiv), 3q6e (human insulin), 3w37 (glucosodase), 4gqr (human pancreatic amylase), 4x9y (amilase) and acetyl and butyryl cholinesterase proteins, 1b41 (AChE), 1gqr (AChE), 1xlw (BChE), 2ace (AChE), 2j4c (BChE), 2x8b (AChE), 4a9q (BChE), 4bds (BChE), 4pqe (AChE) were used for the molecular interaction studies.

Preparation of ligands

All the seven phytochemicals of C. uredinicola structures were obtained from NCBI PubChem database and their canonical smiles were used to generate 3D structure from www.mn-am.com/online_demos/corina_demo. The pharmacokinetic properties such as carcinogenicity, toxicity, inhibitory properties and various other properties were screened using admet-SAR device. Sedate likeliness, Adsorption, Dissolution, Metabolism, Excretion profile, toxicity and adverse factors of the ligand was anticipated. The ADME incorporates rate of retention, metabolism, digestion system and excretion. The admet-SAR employs Caco-2-cell (human epithelial colorectal adenocarcinoma cell lines) and MDCK (Madin-Darby Canine Kidney) cell models for oral medication, retention, skin porousness and human intestinal absorption to demonstrate oral and transdermal medical assimilation. Pre-ADMET predicts poisonous quality in view of the ADMET parameters and Rat acute toxicity [15-16].

Docking studies/Virtual screening

Molecular docking is the study utilized to predict the binding interaction of a molecule (ligands/drug candidates) to target proteins/receptors to discern the fitness of the ligand in the active site of the receptor. Consequently, the knowledge about the affinity and activity of the ligand can be determined. The 3D structure of all the seven ligands obtained from GC-MS study were developed using the CORINA tool (http://mn-am.com/online-demos/corina-demo), by entering the chemical structures as SMILES strings. CORINA is a fast and powerful tool which generates single, high-quality and low energy 3D structures of drug like molecules used for in silico profiling. The receptors were prepared by eliminating the water molecules from the PDB structures. Docking was carried out using iGEMDOCKv2.1. It is a tool used to study the interactions of pharmacologically important drugs. It provides basic idea on interactive or binding sites of receptor or proteins. After docking is completed a protein-ligand complex is generated along with the interaction profile which is used to rank the ligands based on the pharmacological energy. We have used two different methods to evaluate the docking scores, which accounts for biasing by dividing by molecular weight and non-hydrogen atoms [17].
AdmetSAR test

The ADMET (Absorption Distribution Metabolism Excretion Toxicity) profiling describes the disposition of pharmaceutical compound within an organism. The inhibitory properties of phytochemicals were studied through ADMET profile by submitting the canonical smiles downloaded from PubChem in admetSAR (admetSAR@LMMD). Human intestinal absorption, human oral bioavailability, penetration of blood–brain barrier, binding of plasma protein, volume of distribution, cytochrome P450 substrate, inhibitor, inducer, activator, half time (t1/2), renal clearance, drug induced toxicity, genomic toxicity, aquatic and terrestrial toxicity, reproductive toxicity, environmental factor – biodegradability.

Drug-likeliness studies

Drug likeliness properties of each ligand were studied using Molsoft L.L.C. online portal (www.molsoft.com) [18].

Results and Discussion

The methanol extract of *Cladosporium uridinicola* shows important phytochemicals viz., flavonoids, tannins, alkaloids, glycosides, phenols and coumarins but it not shown the saponin, anthraquinones (Table 1). The *Cladosporium uridinicola* reported as endophytic fungi from *Tinospora cordifolia* [19], *Psidium guajava* [20], Guava fruit [21]. Similar kinds of phytochemicals were noticed from endophytic fungi, *Neurospora crassa* [22] and *Penicillium* species [23].

Table 1. Phytoconstituents present in methanol extract of *Cladosporium uridinicola*

Phytochemicals	*Cladosporium uridinicola* extract
Anthraquinones	-
Flavonoids	+
Saponins	-
Tannins	+
Alkaloids	+
Glycosides	+
Phenols	+
Terpenoids	+
Coumarins	+

*Repeated the each experiment thrice, + =Presence and - = Absence

The obtained pure culture (Fig. 1A) was mass cultured in PDB (Fig. 1B) and the TLC have shown well separated many compounds in the extract (Fig. 1C). The GC-MS results have exhibited seven different phytochemicals they are 2H-1-Benzopyran-2-one (1), 3-Benzofurancarboxylic acid (2), Hymecromone (3), 16-Octadecanoic acid, methyl ester (4), 4-Hydroxy-9-(3-methyl-2-butenyl)furo(3,2-g)chromen-7-one (5), Z,E-2-Methyl-3,13-octadecadien-1-ol (6), [Z]-Cinnamic acid, 2-diphenylmethyleneamino-, methyl ester (7) and identified based on retention time using phytochemical library (Fig. 1D and Table 2).
Figure 1. A. Pure culture of *Cladosporium uredinicola* on PDA media, B. *C. uredinicola* grown in liquid media, C. TLC shows separated phytochemicals, and D. methanol extract of *C. uredinicola* showing 7 biologically important phytochemicals in GC-MS. 1-2H-1-Benzopyran-2-one, 2-3-Benzofurancarboxylic acid, 3- Hymecromone, 4-16-Octadecanoic acid, methyl ester, 4-4-Hydroxy-9-(3-methyl-2-butenyl)furo(3,2-g)chromen-7-one, 5-4-Hydroxy-9-(3-methyl-2-butenyl)furo(3,2-g)chromen-7-one, 6- Z,E-2-Methyl-3,13-octadecadien-1-ol, 7-[Z]-Cinnamic acid, 2-diphenylmethyleneamino-, methyl ester

Table 2. Bioactive compounds of methanol fraction of *Cladosporium* species BCt of *Calophyllum tomentosum*

Peak No	RT (min)	Identified compound Name	Structure	Synonyms
1	16.05	2H-1-Benzopyran-2-one	![2H-1-Benzopyran-2-one](image)	1) Coumarin
2) 2H-1-Benzopyran-2-one
3) 2H-Chromen-2-one
4) 2H-Chromen-2-one
5) 2H-Chromen-2-one
6) Chromen-2-one |
| 2 | 17.22 | 3-Benzofurancarboxylic acid | ![3-Benzofurancarboxylic acid](image) | 1) Coumarilic acid,
2) Coumarone-2-carboxylic acid,
3) 2-Benzofurancarboxylic acid
4) 1-benzofuran-3-carboxylic acid |
| 3 | 17.75 | Hymecromone | ![Hymecromone](image) | 1) 2H-1-Benzopyran-2-one, 7-hydroxy-4-methyl-
2) Coumarin, 7-hydroxy-4-methyl-
3) β-Methylumbelliferone
4) Bilcolic |
| No. | Value | Chemical Name | Formula |
|-----|--------|--|--|
| 4 | 18.93 | 16-Octadecanoic acid, methyl ester | 1) 16-Octadecenoic acid, methyl ester |
| | | | 2) Methyl (E)-octadec-16-enoate |
| 5 | 21.12 | 4-Hydroxy-9-(3-methyl-2-butenyl)furo(3,2-g)chromen-7-one | 1) 4-Hydroxy-9-(3-methyl-2-butenyl)-7H-furo[3,2-g]chromen-7-one, |
| | | | 2) 4-Hydroxy-9-(3-methyl-2-butenyl)furo(3,2-g)chromen-7-one, |
| | | | 3) 4-hydroxy-9-(3-methylbut-2-enyl)furo(3,2-g)chromen-7-one, |
| | | | 4) Alloisoimperatorin |
| 6 | 25.47 | Z,E-2-Methyl-3,13-octadecadien-1-ol | 1) 3E,13E)-2-Methyl-3,13-octade dién-1-ol |
| | | | 2) 3,13-Octadecadien-1-ol, 2-methyl-, (3E,13E) |
| 7 | 27.95 | [Z]-Cinnamic acid, 2-diphenylmethylene amino-, methyl ester | 1) (E)-Cinnamic acid-alpha-diphenylmethylene amino-, methyl ester |
| | | | 2) Methyl (2Z) -2- [(diphenyl methylene) amino]-3-phenyl-2-propenoate |
| | | | 3) methyl (Z)-2- di (phenyl) methylidene amino -3-phenylprop-2-enoate |
| | | | 4) (Z)-2- di (phenyl) methylene amino] -3-phenyl- acrylic acid methyl ester |

The similar types of phytochemicals were also observed from different endophytes 2H-1-Benzopyran-2-one [24], 3-Benzo[turan]carboxylic acid [25], Hymecromone [26], 16-Octadecanoic acid, methyl ester [27], alloisoimperatorin [28], Z,E-2-Methyl-3,13-octadecadien-1-ol [29], [Z]-Cinnamic acid, 2-diphenylmethylene amino-, methyl ester [30].
These endophytic fungal phytochemicals are responsible for *in vitro* antioxidant activity [31-32]. The *in vitro* antioxidant method, DPPH is universally considered to screen the antioxidant compounds and it is causing any effect on enzyme inhibition and metal [33]. The methanol extract of *C. uredinicola* was studied free radical scavenging activity using DPPH method and standard ascorbic acid was used. The *C. uredinicola* extract had shown significant antioxidant activity and it was concentration dependent. Fig. 2 represents the antioxidant activity of endophytic activity was compared with ascorbic acid. The phytochemicals present in extract of *C. uredinicola* are responsible for antioxidant properties. The endophytic fungal phytochemicals donate electrons to DPPH and they are responsible for reduction of purple coloured DPPH to colourless solution [34]. Our findings are agreement with results of Manjunath et al. [35], Hulikere et al. [31]. The methanol extract of *C. uredinicola* phytochemicals reduced the Fe3+ TPTZ complex to Fe2+- tripyridytriazine (blue coloured complex) by donating electron at low pH and the reaction was observed and measured in absorbance at 593 nm. The *C. uredinicola* phytochemicals are acts strong as antioxidants agents in reducing power potential (Fig. 3) [36-38].

Figure 2. DPPH scavenging activities of *Cladosporium uredinicola* methanol extract compared the values with standard ascorbic acid

Figure 3. Total antioxidant activity of *Cladosporium uredinicola* methanol extract compared with standard ascorbic acid
The *C. uredinicola* methanol extract significantly reduced the activity of α-amylase, α-glucosidase and dipeptidyl peptidase IV activity *in vitro* condition (Fig. 4). The result confirms that inhibitory activities of diabetic enzymes are dependent on concentration of the sample. The *C. uredinicola* phytochemicals strongly inhibited the activity of α-amylase and it was significant when compared to positive control standard drug acarbose. Our results are confirmation with the findings of endophytic fungal α-glucosidase inhibitory activity [39-40]. The *C. uredinicola* extract inhibited the α-glucosidase activity at maximum level. The activity of DPP-IV significantly inhibited by *C. uredinicola* extract and it was compared with standard drug diprotin. The literature survey indicates that no results were found in dipeptidyl peptidase IV inhibitory activity using fungal extracts. The obtained results proving significant inhibition of dipeptidyl peptidase IV by *C. uredinicola* extract and are confirmation with the results of Kumar et al. [41]. The plant extracts also exhibited the dipeptidyl peptidase IV inhibitory activity [41-42].

![Figure 4. Per cent inhibition of diabetic enzymes by *C. uredinicola* phytochemicals](image)

The *C. uredinicola* extract had shown inhibition of HIV-1 proteins viz., protease, RT, protease and gp120. The *C. uredinicola* was inhibited RT activity strongly (83.81±2.14) and it was high compared to standard AZT (74.36±1.89) (Table 3) [27, 43]. Similarly, the gp120 (80.24±2.4) (Table 4), protease (77.63±2.14) (Table 5), integrase (79.43±2.14) (Table 6) proteins activity was decreased due to *C. uredinicola* extract. The HIV-1 proteins activity was inhibited due to potent phytochemicals of *C. uredinicola* and the activity may in combination of all the phytochemicals or any single potent phytochemical [41-42].

Table 3. Per cent inhibition of RT by *Cladosporium uredinicola* methanol extract compared with respective standard drugs

Treated agents	Per cent inhibition of RT (mean ± SD)
Cladosporium uredinicola extract	83.81±2.14
AZT (0.0016 mg/ml)	74.36±1.89

Note: inhibition ≥ 50% is considered as significant

Table 4. Inhibition percentage of gp120 by *Cladosporium uredinicola* methanol extract compared with respective standard drugs

Treated agents	Per cent inhibition of gp120 (mean ± SD)
Cladosporium uredinicola extract	80.24±2.31
Heparin (12.5 units)	76.48±1.69

Note: inhibition ≥ 50% is considered as significant
Table 5. Inhibition percentage of protease by *Cladosporium uredinicola* methanol extract compared with respective standard drugs

Treating agents	IC₅₀ (µg/ml)±SD
Cladosporium uredinicola extract	77.63±2.14
Acetyl pepstatin (positive control for protease)	82.91±2.14

Table 6. Inhibition percentage of integrase by *Cladosporium uredinicola* methanol extract compared with respective standard drugs

Treating agents	IC₅₀ (µg/ml)±SD
Cladosporium uredinicola extract	79.43±2.14
Suramin (positive control for integrase)	81.97±2.14

The *C. uredinicola* methanol extract significantly inhibited the AChE and BChE activity *in vitro*. The study explains that AChE (33.47±2.8) was strongly inhibited due to the endophytic fungi extract compared with BChE (56.52±2.8) and these results were compared with standard drug Galantamine (Table 7). The inhibition of these enzymes may be due to the *C. uredinicola* phytochemicals may adsorbed or interact with AChE or BChE protein [44-45].

Table 7. Anticholinesterase activity of *Cladosporium uredinicola* methanol extract compared with respective standard drugs

Samples	AChE assay IC₅₀ (mg/ml)	BChE assay IC₅₀ (mg/ml)
Cladosporium uredinicola extract	33.47±2.8	56.52±1.08
Galantamine	39.81±2.8	2.6±1.1

IC₅₀ values represent the means ± standard deviation of three parallel measurements

The molecular interaction studies were carried out between *C. uredinicola* phytochemicals with oxidant, HIV-1, diabetes and acetyl-cholinesterase proteins. The seven different phytochemicals have shown different binding energy with different oxidant proteins. The [Z]-Cinnamic acid, 2-diphenylmethyleneamino methyl ester had shown highest interaction with all the oxidant proteins followed by alloisoimperatorin and hymecromone. The 2-diphenylmethyleneamino methyl ester have interacted with val165 of 2p31 of 2p31 (-97.3) followed by 2cag (-96.14), 2he2 (-90.02), 1cb4 (-88.38), 1qqw (-88.25). The alloisoimperatorin ester had shown highest interaction with 2cag proteins (-97.56) at ser336, tyr337 followed by 1spd (-86.41), 3mng (-84.75), 1qqw (-83.18) (Fig. 5) (Table 8). No reports on 2-diphenylmethyleneamino methyl ester antioxidant activity but alloisoimperatorin [46] and hymecromone [47] had shown strong antioxidant activity *in vitro* condition but no reports on *in silico* antioxidant activity.
The diphenylmethyleneamino methyl ester had shown strong interaction with HIV-1 protease (1w5x: -103.41; 1eb: -102.58; 3ndw: -100), HIV-1 gp120 (2ny7: -108.47; 2nxy: -92.57; 1gc1: -84.24), HIV-1 RT (3kk2: -98.69; 1rev: -92.88; 1c0u: -88.41) and HIV-1 integrase (1ex4: -80.66; 1exq: -80.45; 1bi4: -79.23) followed by hymecromone and alloisoimperatorin (Table 9) (Fig. 5) with high binding energy. The diphenylmethyleneamino methyl has exhibited strong in vitro anti-HIV activity [48]. There is no report on in vitro and in silico anti-HIV activity of alloisoimperatorin and hymecromone. The diphenylmethyleneamino methyl ester had ability to interact with HIV-1 integrase, protease, RT, gp120 proteins with high binding energy leads to confirmation changes to inhibit their functions.
Table 9. Molecular interaction study between *C. uredinicola* phytochemicals with HIV-1 proteins

PDB number	Alloisoimperatorin	[Z]-Cinnamic acid, 2-diphenylmethyleneamino methyl ester	Hymecromone
	1	2	3
	1	2	3
HIV-1 integrase			
1bi4	-77.59	-61.05	-16.54
1ex4	-79.08	-69.7	-9.38
1exq	-84.39	-78.92	-5.47
HIV-1 protease			
1dmp	-86.81	-75.21	-11.6
1ebv	-85.19	-72.1	-13.09
1w5x	-85.38	-83.61	-1.77
3dw	-80.74	-62.48	-18.26
HIV-1 gp120			
1gc1	-86.57	-60.57	-26.08
2nxy	-91.24	-75.79	-15.46
2ny7	-105.91	-97.41	-8.49
HIV-1 RT			
1c0u	-77.3	-73.8	-3.5
1rev	-89.9	-86.79	-3.11
3kk2	-94.51	-88.64	-5.87

1- Binding energy (kJ/mol), 2-VDW, 3-H-bond

The alloisoimperatorin was shown to interact highest with all the three diabetic enzymes (α-amylase, β-glucosidase and DPPIV) by showing highest binding energy compared to diphenylmethyleneamino methyl ester and hymecromone (Table 10) (Fig. 6). The alloisoimperatorin have firmly interacted with α-amylase and DPPIV followed by β-glucosidase. The alloisoimperatorin had interacted with val234, glu233 of 4x9y and showed highest binding energy. No reports are available on these compounds as antidiabetic activity from *in vitro* and *in silico* assays.

Table 10. Molecular interaction study between *C. uredinicola* phytochemicals with diabetic proteins

PDB number	Alloisoimperatorin	[Z]-Cinnamic acid, 2-diphenylmethyleneamino methyl ester	Hymecromone
	1	2	3
	1	2	3
α-amylase			
1ppi	-83.35	-65.71	-17.64
4x9y	-98.81	-82.91	-15.89
4gr	-92.71	-76.41	-16.3
β-glucosidase			
1uok	-80.96	-70.93	-10.04
3w37	-80.73	-74.73	-6
DPPIV			
2g5p	-83.58	-68.64	-14.94
3c45	-92.44	-73.55	-18.89

1- Binding energy (kJ/mol), 2-VDW, 3-H-bond
The alloisoimperatorin had shown strong interaction with AChE and BChE proteins with biding energy and results shows that the compounds have firm interaction with AChE. The alloisoimperatorin have ability to bind with tyr124, aer125, thr83, gly82, tyr337 of 4pqe. No reports on in vitro and in silico acetylcholinesterase activity of alloisoimperatorin (Fig. 6) (Table 11). From in silico results, we have discussed only three best phytochemicals possessing antioxidant, anti-diabetic, anti-HIV and anti-acetylcholinesterase activity. Out of seven phytochemicals of C. uredinicola, the diphenylmethyleneamino methyl ester showed strong anti-oxidant and anti-HIV
activity and alloisoimperatorin shows potent anti-diabetic and anti-cholinesterase activity in both in vitro and in silico experimental analysis.

Table 11. Molecular interaction study between *C. uredinicola* phytochemicals with cholinesterase proteins

PDB number	Alloisoimperatorin	[Z]-Cinnamic acid, 2-diphenylmethylenemethyloamino methyl ester	Hymecromone						
	1	2	3	1	2	3	1	2	3
AChE									
1b41	-90.52	-75.54	-14.98	-84.25	-83.06	-1.18	-81.33	-68.44	-12.88
1gqr	-101.5	-92.53	-8.98	-94.87	-92.37	2.5	-84.18	-70.34	-13.83
2ace	-103.69	-97.77	-5.92	-84.73	-84.73	0	-71.08	-52.14	-18.94
2x8b	-99.13	-88.17	-10.97	-94.46	-80.51	-13.94	-82.46	-66.1	-16.36
4pqe	-103.95	-93.87	-10.08	-90.89	-84.77	-6.12	-81.68	-69.69	-11.99
BChE									
1x1w	-92.42	-79.56	-12.86	-87.03	-87.03	0	-72.73	-60.13	-12.6
2j4c	-85.41	-72.21	-13.2	-83.64	-83.64	0	-78.19	-64.88	-13.31
4aqd	-93.6	-75.1	-18.5	-84.69	-82.19	-2.5	-76.46	-72.96	-3.5
4bds	-91.51	-78.23	-13.27	-87.16	-87.16	0	-75.9	-65.42	-10.48

1- Binding energy (kJ/mol), 2-VDW, 3-H-bond

The admet-SAR results confirm that these three promising compounds are non-AMES toxic, non-carcinogens, readily biodegradables (Table 12A-B). They also showed drug likeliness property in Molsoft (Table 13 and Fig. 7). Further, in vivo work will be carried out in future.
Table 12A. ADMET Predicted profile of the potent phytochemicals of *Cladosporium uredinicola* species

Property	Cinnamic acid, 2-diphenylmethene	2H-1 Benzopyran-2-one ND	3-Benzofurancarboxyclic acid ND	4 Hydroxy-9 (3-methyl-2-butenyl)					
	Value	Value	Value	Value					
Blood Brain Barrier	BBB+	BBB+	BBB+	BBB+					
Human intestinal absorption	HIA+	HIA+	HIA+	HIA+					
Caco-2-permeable	CaCo2-	CaCo2+	CaCo2+	CaCo2+					
P-glycoprotein-substrate	Substrate	Non-substrate	Non-substrate	Substrate					
P-glycoprotein-inhibitor I	Non-inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor					
Renal organic transporter	Non-inhibitor	Non-inhibitor	Non-inhibitor	Non-inhibitor					
	Plasma membrane	Plasma membrane	Plasma membrane	Mitochondria					
Metabolism	CYP450 2C9 Substrate	Non-substrate	Non-substrate	Non-substrate					
	CYP450 2D6 Substrate	Non-substrate	Non-substrate	Non-substrate					
	CYP450 3A4 Substrate	Non-substrate	Non-substrate	Non-substrate					
	CYP450 1A2 Substrate	Non-substrate	Non-substrate	Non-substrate					
	CYP450 2C9 Inhibitor	Non-substrate	Non-substrate	Non-substrate					
	CYP450 2D6 Inhibitor	Non-substrate	Non-substrate	Non-substrate					
	CYP450 2C19 Inhibitor	Non-substrate	Non-substrate	Non-substrate					
	CYP450 3A4 Inhibitor	Non-substrate	Non-substrate	Non-substrate					
	CYP Inhibitory Promiscuity	Low CYP inhibitory	Low CYP inhibitory	Low CYP inhibitory					
	Human Ether-ago-Related Gene	Weak inhibitor	Weak inhibitor	Weak inhibitor					
	AMES Test	Non-AMES toxic	Non-AMES toxic	Non-AMES toxic					
	Carcinogens	Non-carcinogens	Non-carcinogens	Non-carcinogens					
	Fish Toxicity	High FHMT	High FHMT	High FHMT					
Property	16-octadecanoic acid, methyl ester	ND	16-hymercromone	ND	Z-3,13-octadecadine-1-01	ND			
--------------------------------	------------------------------------	----	----------------	----	-------------------------	----			
Value	Probability		Value	Probability	Value	Probability			
Blood Brain Barrier	BBB+	0.9848	BBB+	0.9488	BBB+	0.9488			
Human Intestinal absorption	HIA+	0.9881	HIA+	0.9888	HIA+	0.9888			
Caco-2-permeable	CaCo2+	0.8141	CaCo2+	0.8326	CaCo2+	0.8326			
P-glycoprotein-substrate	Non-Substrate	0.7061	Non-substrate	0.6321	Non-substrate	0.6321			
P-glycoprotein-inhibitor I	Non-inhibitor	0.8951	Non-inhibitor	0.9598	Non-inhibitor	0.9598			
Non-Inhibitor	0.7988	Non-inhibitor	0.9277	Non-inhibitor	0.9277				
Renal organic cation transporter	Non-inhibitor	0.8908	Non-inhibitor	0.9266	Non-inhibitor	0.9266			
Subcellular localization	Mitochondria	0.4276	Mitochondria	0.5152	Mitochondria	0.5152			
CYP450 Substrate	2C9	0.8648	Non-substrate	0.8786	Non-substrate	0.7886			
CYP450 Substrate	2D6	0.8885	Non-substrate	0.7886	Non-substrate	0.8956			
CYP450 Substrate	3A4	0.6454	Non-substrate	0.8956	Non-substrate	0.6982			
CYP450 Substrate	1A2	0.5548	Non-inhibitor	0.6982	Non-inhibitor	0.8326			
CYP450 Inhibitor	2C9	0.9329	Non-inhibitor	0.8326	Non-inhibitor	0.8808			
CYP450 Inhibitor	2D6	0.9502	Non-inhibitor	0.8808	Non-inhibitor	0.9554			
CYP450 Inhibitor	2C19	0.9524	Non-inhibitor	0.9554	Non-inhibitor	0.9578			
CYP450 Inhibitor	3A4	0.9773	Non-inhibitor	0.9484	Non-inhibitor	0.9484			
Phytochemicals	MF	MW	HBA	HBD	LogP	LogS	PSA	MV	NSC
--------------------------------------	-------------	------	-----	-----	------	------	------	-----	-----
2H-1-Benzopyran-2-one	C9H6O3	162.03	3	1	2.27	0.320	36.94	141.66	0
3-Benzofurancarboxylic acid	C15H15NO3	257.11	3	1	1.93	-3.09	43.86	262.08	0
Hymecromone	C16H32O2	256.24	2	1	6.65	-5.66	28.89	305.93	0
16-Octadecanoic acid, methyl ester	C19H38O2	298.29	2	0	7.97	-6.78	21.09	364.74	0
4-Hydroxy-9-(3-methyl-2-butenyl)fluoro(3,2-g)chromen-7-one	C16H14O4	270.09	4	1	3.55	-4.93	44.24	296.33	0
Z,E-2-Methyl-3,13-octadecadien-1-ol	C19H38O2	298.29	2	1	7.93	-6.64	28.92	356.87	1
[Z]-Cinnamic acid, 2-diphenylmethyleamino-, methyl ester	C9H8O2	148.05	2	1	2.33	-2.61	28.62	151.60	0

MF: Molecular Formula, MW-Molecular Weight, HBA-Hydrogen Bond Acceptor, HBD-Hydrogen Bond Donor, MolLogP-MolLogS-, MolPSA-, MolVol-, NSC-Number of Stereo Centers

Table 13. Physiochemical properties of *Cladosporium uridinicola* phytochemicals
The C. uredinicola extract biologically phytochemicals are responsible for strong antioxidant, anti-HIV, anti-diabetes and anti-cholinesterase activity. The in silico experiment clearly understands that the three phytochemicals (diphenylmethyleneamino methyl ester, alloisoimperatorin, hymecromone) have the ability to interact with oxidant, HIV-1, diabetic and cholinesterase proteins with highest binding energy. The admetSAR and Molsoft proven that these three compounds are non-toxic, non-carcinogens, easily biodegradable and having drug likeliness properties.

The oxidant proteins SOD, catalase, gp, glutathione peroxidase 7, human oxidant enzyme are inhibited by endophytic fungal extract. All these enzymes break down potentially harmful molecules in cells and these oxygen molecules play a role in disease or cell damage.

The diabetic proteins, α-amylase, β-glucosidase and DPP-IV are strongly inhibited by the C. uredinicola extract. The α-amylase and β-glucosidase are involved in digestion of carbohydrates lead to increase of blood glucose level in diabetes -2. The DPP-IV increases glucagon and blood glucose level. These enzymes play vital role progression of diabetes-2. HIV-1 RT (essential step in retroviral replication), protease (play crucial role HIV life cycle and it cleaves the newly synthesized polyproteins to obtain mature components of protein of an infective HIV), integrase (requires for multidomain enzyme essential for the viral DNA in the host genome), gp120 (essential for virus entry into cells and helps in attachment to specific cell surface receptors) are greatly inhibited by the endophytic fungal extract. The AChE and BChE are pathogenesis of Alzheimer disease and progression.
Conclusion

Based on outcomes of our in vitro and in silico research clearly indicates that the endophytic fungi C. uredinicola have shown biologically important phytochemicals in methanol extract and these are responsible for antioxidant, anti-HIV, anti-diabetes and anticholinesterase activity and suggested their possible role. Further in vivo work is needed to justify our research.

Acknowledgements

Author Dr Govindappa M greatly acknowledges SERB-DST, New Delhi for financial support under Empowerment and Equity (SB/MEO-355/2013 dated 29-10-2013). We thank Dr K. G. Bhat, Taxonomist, Udupi, helping in plant identification and GC-MS unit, SAIF of Indian Institute of Technology, Chennai, Tamil Nadu, India.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] S. Karunanayake et al., Xanthones and triterpenes of Calophyllum tomentosum. Phytochem 20(6) (1981) 1303-1304.
[2] B. Elya, N. Puspitasari, F.H. Maharani, Alpha-glucosidase activity from the most active fraction of Calophyllum tomentosum Wight leaves. Asian J Pharm Clin Res 10(5) (2017)72-75.
[3] B. Elya et al., Screening α-glucosidase inhibitory activity from some plants of apocyanaceae, clusiaceae, euphorbiaceae and rubiaceae. J Biomed Biotech 281078 (2012) 6 pages.
[4] G. Trease, S.M. Evans, Pharmacognosy. 15th ed. London: Bailé Tindal (2002) 23–67.
[5] J.B. Harborne, Phytochemical methods - a guide to modern techniques of plant analysis. 2nd ed. London: Chapman and Hall (1984) 4–16.
[6] T. Umashankar et al., Isolation, purification and in vitro cytotoxicity activities of coumarin isolated from endophytic fungi, Alternaria species of Crotalaria pallida. Indo Amer J Pham Res 5(2) (2015) 926-936.
[7] M. Govindappa et al., In vitro antimitotic, antiproliferative and GC-MS studies of methanol extract of endophytic fungi, Penicillium species of Tabebuia argentea. Revis Farm 65(2) (2017) 301-309.
[8] C.M. Liyana-Pathirana, F. Shahidi, Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J Agri Food Chem 53 (2005) 2433–2440.
[9] V. Katalinic et al., Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem 86 (2004) 593–600.
[10] A. Tomić et al., Antimicrobial and antioxidant properties of methanol extracts of two Athamanta turbit subspecies. Pharm Biol 47(4) (2009) 314–319.
[11] B. Elya et al., Antidiabetic activity and phytochemical screening of extracts from Indonesian plants by inhibition of alpha-amylase, alpha-glucosidase and dipeptidyl peptidase IV. Pakistan J Biol Sci 18 (2015) 279-284.
[12] A.A. Rege, R.Y. Ambaye, R.A. Deshmukh, In vitro testing of anti-HIV activity of some medicinal plants. Indian J Nat Prod Res 1(2) (2010) 193-199.
[13] C.L. Narayan, R.V. Rai, A screening strategy for selection of anti-HIV integrase and anti-HIV protease inhibitors from plant extracts of Indian medicinal plants. Int J Phytom 3 (2011)312-318.
[14] Y. Yuan et al., Potential of endophytic fungi isolated from cotton roots for biological control against *Verticillium* wilt disease. PLoS One 12(1) (2017) e0170557.

[15] A. Seal et al., Docking study of HIV-1 reverse transcriptase with phytochemicals. Bioinform 5(10) (2011) 430-9

[16] F. Cheng et al., admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11) (2012) 3099-3105.

[17] K.G. Byler, Ogungbe IV, Setzer WN, *In silico* screening for anti-Zika virus phytochemicals. J Mol Graph Model 69 (2016) 78-91.

[18] S. Das et al., Prediction of anti-Alzheimer’s activity of flavonoids targeting acetylcholinesterase *in silico*. Phytoch Anal 28 (2017) 324-331.

[19] A. Thakur et al., Insecticidal potential of an endophytic fungus, *Cladosporium uredinicola*, against *Sporodtera litura*. Phytoecparas 41(4) (2013) 373-382.

[20] L.S. De Medeiros et al., Antimicrobial depsides produced by *Cladosporium uredinicola*, an endophytic fungus isolated from *Psidium guajava* fruits. Helvetica 94(6) (2011) 1077-1084.

[21] L.S. Medeiros et al., Evaluation of herbicidal potential ofdepsides from *Cladosporium uredinicola*, an endophytic fungus found in *Guava* fruit. J Braz Chem Soc 23(8) (2012) 1551-1557.

[22] C. Sasikumar, S.J. Mohana, S. Yashodha, Scrutiny of antagonistic microbial and cytotoxic promises of fungal endophyte secluded from *Pisonia grandis* R. Br. Res J Pharma Tech 10(3) (2017) 647-662.

[23] N.N. Devi, J.J. Prabhakaran, F. Wahab, Phytochemical analysis and enzyme analysis of endophytic fungi from *Centella asiatica*. Asian Pacific J Trop Biomed (2015) S1280-S1284.

[24] H.X. Liu et al., Two new metabolites from *Daldinia eschscholtzii*, an endophytic fungi derived from *Pogostemon cablin*. J Asian Nat Prod Res 24 (2017) 1-7.

[25] B.S. Siddique et al., Isolation and structure determination of a benzofuran and a bis-nor-isoprenoid from *Aspergillus niger* grown on the water soluble fraction of *Morinda citrifolia* Linn leaves. Nat Prod Res 17(5) (2013) 355-360.

[26] F. Xu et al., Benzofuran derivatives from the mangrove endophytic fungus *Xylaria* sp.(2508). J Nat Prod 71(7) (2008) 1251-1253.

[27] M. Govindappa et al., *In vitro* anti-HIV activity of partially purified coumarin(s) isolated from fungal endophyte, *Alternaria* species of *Calophyllum inophyllum*. Pharm Pharma 6 (2015) 321-328.

[28] Z. Huang et al., A new furanocoumarin from the mangrove endophytic fungus *Penicillium* sp. (ZH16). Nat Prod Res 26(14) (2012) 1291-1295.

[29] K. Gopalakrishnan, R. Udaykumar, GC-MS analysis of phytocompounds of lead and stem of *Marsilea quadrifolia* (L.). Inter J Biochem Res 4(6) (2014) 517-526.

[30] Z. Deng et al., A new cinnamic acid derivative from plant derived endophytic fungus *Pyronema* sp. Nat Pro Res 31(2) (2017) 2413-2419.

[31] M.M. Hulikere et al., Antiangiogenic and antioxidant activity of endophytic fungus isolated from seaweed (*Sargassum wightii*). Asian J Bio 11 (2016) 168-176.

[32] M. Yadav, A. Yadav, J.P. Yadav, *In vitro* antioxidant activity and total phenolic content of endophytic fungi isolated from *Eugenia jambolina* Lam. Asian Pac J Trop Med 7S1 (2014) S256-261.
[33] A.A. Zanwar, M.V. Hegde, S.L. Bodhankar, *In vitro* antioxidant activity of ethanolic extract of *Linum usitatissimum*. Pharmacol Online 1 (2010) 683-696.

[34] W. Brand-Williams, M.E. Cuvelier, C. Berset, Use of a free radical method to evaluate antioxidant activity. Lwt Food Sci Technol 28 (1995) 25–30.

[35] H.M. Manjunath et al., Antiangiogenic and antioxidant activity of endophytic fungus isolated from seaweed (*Sargassum wightii*). Asian J Biochem 11(4) (2016) 168-176.

[36] G. Abirami, M. Boominathan, Antioxidant activity of endophytic fungi isolated from *Hugonia mystax*. L. J Acad Ind Res 5(1) (2016) 10-13.

[37] D.S. Arora, P. Chandra, Antioxidant activity of *Aspergillus fumigatus*. ISRN Pharm (2011) 619395.

[38] T. Umashankar, M. Govindappa, Y.L. Ramachandra, *In vitro* antioxidant and antimicrobial activity of partially purified coumarins from fungal endophytes of *Crotalaria pallida*. Inter J Cur Microb Appl Sci 3(8) (2014) 58-72.

[39] P. Tiwari, B. Nathiya, G. Mahalingam, Antidiabetic activity of endophytic fungi isolated from *Ficus religiosa*. Asian J Pharm Clin Res 10 (2017) 59-61.

[40] D.R. Wulan, E.P. Utomo, C. Mahdi, Antidiabetic activity of *Ruellia tuberosa* L., role of α-amylase inhibitor: *in silico*, *in vitro* and *in vivo* approaches. Biochem Res Int (2015) 349261.

[41] K.M. Kumar et al., Anti-diabetic activity of endophytic fungi, *Penicillium* species of *Tabebuia argentea*: an *in silico* and experimental analysis. Res J Phytochem 11(2) (2017) 90-110.

[42] S. Yogisha, K.A. Raveesha, Dipeptidyl peptidase activity of *Mangifera indica*. J Nat Prod 3 (2010) 76-79.

[43] B.P. Wellensiek et al., Inhibition of HIV-1 replication by secondary metabolites from endophytic fungi of desert plants. The Open Vir J 7 (2013) 72-80.

[44] B. Singh et al., Cholinesterase inhibitory potential of different *Alternaria* spp. and their phylogenetic relationships. Biologia 69(1) (2014) 10-14.

[45] G. Rajakumar et al., Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of synthesized silver nanoparticles using from *Mellettia pinnata* flower extract. Microb Pathog 103 (2017) 123-128.

[46] X.L. Piao et al., Antioxidant activity of furanocoumarins isolated from *Angelicae dahuricae*. J Ethnopharm 93(2-3) (2004) 243-246.

[47] K. Al-Majedy et al., Antioxidant activities of 4-methylumbelliferone derivatives. PLOS One 11(5) (2016) e0156625.

[48] J. Kossakowski, A. Wojciechowska, A.E. Koziol, Synthesis of amino acid derivatives of 10-(diphenylmethylene)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione as potential psychotropic and / anti-HIV agents. Acta Polon Pharm 63(4) (2006) 261-264.