Atrial fibrillation (AF) is the most common arrhythmia in clinical practise and its prevalence is increasing. Over the last 25 years, flecainide has been used extensively worldwide, and its capacity to reduce AF symptoms and provide long-term restoration of sinus rhythm (SR) has been well documented. The increased mortality seen in patients treated with flecainide in the Cardiac Arrhythmia Suppression Trial (CAST) study, published in 1991, still deters many clinicians from using flecainide, denying many new AF patients a valuable treatment option. There is now a body of evidence that clearly demonstrates that flecainide has a favourable safety profile in AF patients without significant left ventricular disease or coronary heart disease. As a result of this evidence, flecainide is now recommended as one of the first-line treatment options for restoring and maintaining SR in patients with AF under current treatment guidelines. The objective of this article is to review the literature pertaining to the pharmacological characteristics, safety and efficacy of flecainide, and to place this drug in the context of current therapeutic management strategies for AF.

**Keywords**

Atrial fibrillation • Flecainide • Sinus rhythm maintenance • Remodelling • Safety • Cardioversion

**Introduction**

Atrial fibrillation (AF)—a supraventricular tachycardia with rapid uncoordinated atrial activation and a beat-to-beat irregular, frequently rapid ventricular rate—is on the increase, to an extent that cannot be fully accounted for by factors such as an ageing population or an increasing prevalence of cardiovascular disease.1,2

Current guidelines for the treatment and management of AF recommend heart rate or rhythm control, plus concomitant antithrombotic therapy.3,4 The decision regarding which strategy to pursue is dependent on several factors, including the pattern of presentation and the presence, or lack of, underlying conditions. The latest algorithms recommend initially controlling the ventricular rate—based primarily on results of randomized trials that found no mortality or morbidity advantage of either strategy.5 The same guidelines, however, direct that prior to choosing long-term rate control, the future effects of permanent AF should be considered.

It is important to ensure that a window of opportunity to maintain sinus rhythm (SR) is not overlooked early in the course of AF management.3 In a recent position paper it was proposed that certain patients with AF, in whom SR maintenance strategy is selected, may benefit from earlier cardioversion.6 This was prompted by the growing recognition of the importance of structural changes that precede the first-documented AF episode. Only further studies will provide the solid data needed to test this hypothesis.

**The burden of atrial fibrillation**

The prevalence of AF increases with age; it is estimated that 70% of AF patients are between 65 and 85 years old (median: 75 years).3 The impact of AF on morbidity and mortality has been thoroughly documented. The Euro Heart Survey 1 year follow-up data for 80% of the 5333 participants found that, in patients with permanent AF, the mortality rate was 8.2%. Furthermore, the mortality rate in
patients with first-detected AF was 5.7%. A strong association (P < 0.0001) between the maintenance of SR and overall survival was shown in a sub-analysis of the AFFIRM study. The burden of AF also negatively impacts patients’ quality of life (QOL); for example, patients can experience palpitations both during exercise and at rest, and have reduced physical ability, forcing them to restrict their lifestyles.

Untreated and/or previously undetected episodes of AF induce electrophysiological and structural changes to the cardiac muscle, making SR restoration increasingly difficult. This vicious cycle that contributes to the AF continuum is now described as ‘AF begets AF’. In long-term follow-up studies significant proportions of patients with paroxysmal (intermittent) AF progressed to persistent (chronic) AF. Hobbs et al. showed that electrical remodelling in AF can be reversed in some patients if SR is maintained from an early stage, suggesting that prompt recognition and management of AF is critical.

### Objectives of this review

Flecainide has been available in Europe since 1982. The Cardiac Arrhythmia Suppression Trial (CAST) results, published in 1991, showed increased mortality in patients surviving myocardial infarction (MI), and caused sales of class IC antiarrhythmic drugs (AADs) to fall dramatically (by 75%) and there has been a considerable decrease since 1995 in the prescribing of class I AADs in favour of class III AADs. However, the use of flecainide is supported by results from many randomized clinical trials, and the drug is recommended as a first-line treatment option for pharmacological cardioversion and maintenance of SR in the American College of Cardiology/American Heart Association/European Society of Cardiology (ACC/AHA/ESC) 2006 guidelines as well as in the 2010 update of the ESC’s European guidelines. This review aims to examine the 27 years of accumulated data on flecainide’s safety and efficacy, and place the drug in its therapeutic context. It also discusses the pharmacological characteristics of flecainide that are thought to prevent long-term structural and electrophysiological remodelling, as well as maintaining SR (Data on File. 11th Flecainide PSUR: Meda Pharma GmbH & Co KG, 19 August 2008).

### Management of atrial fibrillation

#### Therapeutic options

##### Rhythm versus rate control

The options of either restoring and maintaining SR, or controlling the ventricular rate while allowing AF to persist, are not mutually exclusive. In the AFFIRM study, a rhythm-control strategy did not show improved survival over a rate-control strategy in patients with AF, although long-term SR control and anticoagulation therapy were associated with a lower risk of death. Several studies, including the large, randomized controlled, PIAF, STAF, RACE, AF-CHF, HOT café, and AFFIRM trials, have shown that in elderly patients with minimal symptoms, rhythm control using AADs is not associated with improved mortality, morbidity, or QOL scores, compared with rate control. Indeed, data from the AFFIRM study suggest that, in elderly patients with coexisting heart disease, the adverse effects of AADs may outweigh the benefits of SR restoration. A meta-analysis of the RACE, STAF, PIAF, HOT CAFÉ, and AFFIRM trials confirmed that in patients with persistent AF or AF that is likely to be recurrent, ventricular rate control with anticoagulation therapy was equivalent to a rhythm-control strategy in preventing clinical outcomes.

Over time, structural and electrophysiological remodelling induced by AF may lead to heart failure and intractable AF. The increasing prevalence of AF in an ageing population, in conjunction with slowly progressing conditions such as hypertension, coronary artery disease (CAD), obesity and heart failure, suggests that AF itself may be the culmination of a protracted process. From this perspective, the first-detected episode of AF is an important opportunity to prevent disease progression.

### Evidence-based treatment guidelines

The 2006 ACC/AHA/ESC guidelines on AF shown in Figure 1 comprehensively outline treatment consensus, clearly delineating the appropriate options available for each of the different groups of AF patients encountered. The availability of new data from recent clinical trials prompted an update of the ESC European guidelines to include dronedarone as a recommended first-line treatment option for maintenance of SR in patients with paroxysmal and persistent AF, except those patients with congestive heart failure New York Heart Association (NYHA) class III/IV or unstable congestive heart failure NYHA class II.

### Focus on flecainide

#### Pharmacology of flecainide

Flecainide has local anaesthetic effects and belongs to the class 1C AADs that block sodium channels, thereby slowing conduction through the heart. It selectively increases anterograde and retrograde accessory pathway refractoriness. The action of flecainide in the heart prolongs the PR interval and widens the QRS complex. The effect on the JT interval is insignificant as flecainide does not lengthen ventricular repolarization.

#### Pharmacokinetics of flecainide

Oral administration of flecainide results in extensive absorption (bioavailability: 90–95%). Flecainide does not appear to undergo significant hepatic first-pass metabolism; a 200–500 mg daily dose produced plasma concentrations within the therapeutic range of 200–1000 μg/L (the maximum daily dose is 300 mg). The elimination half-life is 12–27 h. Flecainide undergoes extensive hepatic biotransformation via cytochrome P450 CYP2D6; inactive metabolites are excreted mostly (85%) in urine.

#### Antiarrhythmic effect

At similar concentrations (half maximal inhibitory concentration (IC₅₀): 1–2 μM), flecainide blocks the cardiac fast inward Na⁺ current (I₅Na) and the rapid component of the delayed rectifier K⁺ current (IKᵣ). At higher concentrations (IC₅₀: 19 μM), flecainide also inhibits the late Na⁺ current and other cardiac K⁺
Flecainide has a high affinity for the open-state Na\(^+\) channels and markedly slows the recovery time constant of Na\(^+\) channels during diastole (\(t > 10\) s). It has thus been classified as a class 1C AAD.\(^{32,33,35,37–39}\)

Flecainide prolongs the action potential duration (APD) in ventricular and atrial muscle fibres, but shortens the APD in Purkinje fibres—an effect consistent with Na\(^+\) channel blockade.\(^{32,37}\)

In human atria, flecainide only increases APD and refractoriness in
cells with a long plateau preceded by a notch. Nevertheless, because flecainide exhibits very slow unbinding kinetics from the Na\(^+\) channels during diastole, it prolongs the refractoriness to a greater extent than the APD (i.e. post-repolarization refractoriness), decreases excitability and slows intracardiac conduction, even at normal heart rates, in all cardiac tissues. Clinically, this effect seems most important at the atrial level. At the ventricular level it may cause an increase of the stimulation threshold in patients with an artificial pacemaker.

**Mechanism of atrial fibrillation conversion**

In superfused atrial preparations from multiple species, including dogs and humans driven at fast rates, flecainide reduces the shortening of the APD, producing tachycardia-dependent prolongation of atrial refractoriness. Flecainide also suppresses atrial APD accommodation to heart rate changes in anaesthetized dogs, leading to rate-dependent prolongation of atrial refractoriness, which may be important in suppressing AF. In an experimental canine models of AF, flecainide terminates AF by causing a tachycardia-dependent increase in atrial effective refractory period and wavelength, reducing the number of re-entrant circuits, so that the arrhythmia can no longer sustain itself. However, in goats instrumented with multiple atrial electrodes, cardioversion of sustained AF induced by flecainide could not be attributed to a prolongation of atrial wavelength but to a progressive widening in the temporal excitable gap during AF.

**Effects on remodelling**

Atrial fibrillation is known to induce significant electrophysiological alterations in atrial myocytes and causes significant structural changes (structural remodelling) in atrial tissue. Several AF-related molecular alterations at the cellular and subcellular level are due to the activation of different signal transduction systems. These molecular pathways are involved in the regulation of gene expression, cell proliferation, hypertrophy, fibrosis, and cell death. Histologically, fibrillating tissue shows signs of hibernating myocardium, with evidence of ischaemic or metabolic injury of the tissue, for example, disintegration of contractile filaments (myolysis), accumulation of glycogen, and mitochondrial swelling. Studies have clearly demonstrated the importance of oxidative stress for the occurrence of such changes in AF. The increased frequency of depolarization during an AF episode causes a transient rise in Na\(^+\) entry into atrial myocytes. Cytosolic Na\(^+\) accumulation is believed to worsen myocardial injury, mainly as a result of increased Ca\(^{2+}\) entry through the sarcolemmal Na\(^+\)–Ca\(^{2+}\) exchanger. Interestingly, Iwai et al. reported that cytosolic Na\(^+\) overload may directly alter mitochondrial function by depolarizing its inner membrane and reducing the rate of oxidative phosphorylation. Thus, inhibition of Na\(^+\) channels by flecainide during rapid atrial activation should attenuate the excess cellular Ca\(^{2+}\) accumulation and reduce oxidative stress (Figure 2). Importantly, Na\(^+\) enters via the fast inward Na\(^+\) current and not the slowly inactivating component of the Na\(^+\) current, known as the late \(I_{NaL}\), which flows during the plateau of the cardiac action potential and prolongs the QT interval. \(I_{NaL}\) is more sensitive to flecainide than \(I_{Na}\), such that abnormal Na\(^+\) entry via \(I_{NaL}\) can be inhibited at drug concentrations that have almost no effect on peak \(I_{Na}\).

Preliminary observations support the beneficial effect of flecainide in fibrillating human atrial tissue. In an organotypic human atrial tissue model, flecainide attenuated pacing-induced oxidative stress markers and abolished the expression of hypertrophic kinases and inflammatory adhesion molecules. Thus, flecainide appears to be beneficial for ameliorating AF-induced myocardial injury and atrial dysfunction.

**Figure 2** Inhibition of Na\(^+\) channels by flecainide during rapid atrial activation attenuates excess cellular Ca\(^{2+}\) accumulation and reduces oxidative stress. \(I_{CaL}\), L-type calcium current; ROS, reactive oxygen species; NFκB, nuclear factor-κB.
Electrophysiological properties
Electrophysiological studies in patients with cardiac arrhythmias demonstrate that flecainide prolongs right atrial (PA interval), atrioventricular (AV) nodal (AH interval), and His–Purkinje (HV interval) conduction times.32,33 In patients with dual AV nodal pathways, flecainide selectively prolongs retrograde refractoriness of the fast pathway,60,61 In patients with accessory AV pathways, flecainide slows conduction and increases anterograde and retrograde pathway refractoriness, but its effects are more pronounced on the retrograde pathway, often causing complete retrograde pathway block in patients with basal refractoriness greater than 270 ms.60–63

Flecainide produces a dose-dependent decrease in intracardiac conduction, but its effects on intra-atrial and AV nodal conduction are less pronounced than those on His–Purkinje conduction and ventricular activation.32,33,60,61,64–67 It prolongs the PR (17–29%) and QT (4–11%) intervals and the QRS complex (11–27%). Most of the QT prolongation is due to a widening of the QRS complex,32,65 so that the JT interval and the rate-corrected QT interval (QTc) remain unchanged or slightly increase (3–8%).32,33,60,61,64–70 Flecainide also prolongs atrial, AV nodal and ventricular refractoriness, but its effects on refractoriness are less pronounced than its effects on intracardiac conduction.32,60,61,64–68,70 Flecainide also increases the endocardial pacing threshold.61 It may therefore be necessary for pacemaker-dependent patients to reprogramme their pacemaker.

Flecainide does not affect sinus rate, although bradycardia and tachycardia have been occasionally reported.32,33 Flecainide increases the corrected sinus node recovery time and the sinoatrial (SA) conduction time in patients with sinus node dysfunction.61,67

Potential for proarrhythmic effects
Class 1C AADs, including flecainide, may cause supraventricular proarrhythmia during AF through a regulatory effect on atrial fibrillatory activity, leading to slow atrial flutter typically at a rate of 200 bpm (1C flutter).71 Flecainide does not slow AV conduction and, as a result, a 1:1 ratio of AV conduction to high ventricular rate may occur. This is associated with aberrant conduction and a bizarre QRS morphology caused by exaggerated intraventricular conduction delays.72 Atrioventricular nodal blocking drugs could be used to prevent 1:1 conduction and patients should be instructed to halt exercise when AF recurs.34 Atrial fibrillation conversion to flutter is considered proarrhythmia. This effect can be useful since ablation of 1C flutter while continuing flecainide invariably leads to control of AF symptoms.73 In addition, the danger of this type of proarrhythmia is abolished after effective right atrial isthmus ablation.

Class 1C ventricular proarrhythmia manifests as monomorphic sinusoidal wide QRS tachycardia or as polymorphic ventricular tachycardia or fibrillation. Factors associated with ventricular proarrhythmia risk include decreased left ventricular (LV) function, ventricular scar tissue, too high a dose and/or rapid dose increases. Premortory signs on the surface electrocardiogram (ECG) include excessive increases in QRS duration.74–76

Late proarrhythmia is the most important threat to patients treated with AADs, especially those with supervening ischaemia or electrolyte disturbances. For class 1C drugs, CAST77 has shown that proarrhythmia does not exclusively occur early after initiation of therapy, but may be ongoing throughout follow-up. Which factors are involved in late, out-of-hospital proarrhythmia or sudden death during 1C drug therapy is not clear. Several factors were implicated in CAST: late development of ischaemia, congestive heart failure and accumulation of the drug to toxic levels.78 All these conditions dynamically promote Na\(^{+}\) channel blockade by class I drugs. Increases in the heart rate, occurring during daily life, may set the stage for late proarrhythmia. For example, in patients with diminished LV function, during exercise there may be (sub)acute worsening of congestive heart failure, possibly due to use dependence of class I drugs.

CAST18,77,79 results have associated flecainide with debilitating side effects and increased mortality compared with other treatment options. It is highly likely, however, that the increased mortality observed was due to a greater incidence of ventricular fibrillation in this population (the so-called proarrhythmic effect).79 As a result, flecainide is not recommended for use in patients with CAD and/or depressed ventricular function.

Potential for haemodynamic effects
Flecainide exerts a negative inotropic effect that may relate to reduced Na\(^{+}\) entry with subsequent reduced Ca\(^{2+}\) entry into the myocardiocytes. In addition, it blocks the intracellular interaction between Ca\(^{2+}\) and the ryanodine receptor; new data presents flecainide as a novel strategy in preventing diastolic Ca\(^{2+}\) waves that result in triggered arrhythmias.80 In ventricular myocytes isolated from a catecholaminergic polymorphic ventricular tachycardia mouse model, flecainide inhibited cardiac ryanodine receptor channels by open-state blockade, significantly reducing the spark Ca\(^{2+}\) mass without causing any compensatory increases in the sarcoplasmic reticulum Ca\(^{2+}\) content. Intravenous (iv) flecainide transiently reduces cardiac output and stroke volume.81 During chronic oral therapy, flecainide has minimal effects on blood pressure,32,40,64,69,82–84 and the LV ejection fraction (LVEF) remains unchanged, or slightly decreases, in patients with normal, or nearly normal, ventricular function.64,68,69,85,86 However, flecainide significantly reduces stroke volume index and LVEF and increases right atrial and pulmonary capillary wedge pressures in patients with coronary heart disease.64,68,69,84–86 acute MI,85,87 or LV dysfunction.84,86,88

Initiating flecainide treatment
According to the present guidelines flecainide is indicated in patients with normal heart, hypertension, minor heart disease, and good LV function, this likely applied to some 80% of the patients with paroxysmal AF (PAF) and some 50% of the patients with persistent AF.3,4 Overall, the ‘real-life’ use of flecainide is low: the Euro Heart Survey on AF indicates that around 17 and 13% of paroxysmal and persistent AF patients are treated with class IC agents including flecainide or propafenone, respectively.89 Prior to initiating flecainide treatment, patients should be checked for contraindications including structural heart disease, second- or third-degree AV block, left bundle branch block, right bundle branch block (when associated with left hemiblock), asymptomatic non-sustained ventricular tachycardia, cardiogenic shock, reduced cardiac output (LVEF < 35%), post-MI, and significant renal or hepatic impairment. Electrocardiogram parameters determined
should include PR, QT, and QRS interval prolongation (≤ 120 ms). In addition, the presence of ischaemia and tolerance to exercise should be determined. After initiation of flecainide, use-dependent QRS widening may be assessed during a formal exercise test. During treatment, the QRS interval should be regularly monitored. In AF, oral flecainide should be administered in a hospital setting with rhythm monitoring, starting at 50 mg BID and increased by 50 mg BID every 4 days until efficacy is achieved. After administration of flecainide heart rhythm should be monitored for at least 8 h but physicians should check their local guidance for mandatory hospitalization during titration. The maximum recommended oral dose is 300 mg/day. For patients who are not able to receive high doses of standard oral flecainide and those with renal failure, a sustained-release capsule can be used. To achieve control of class IC atrial flutter, some physicians routinely use digoxin or a beta-blocker in addition to flecainide.

To achieve a more rapid effect in an emergency, a bolus dose of flecainide can be administered as a slow injection of 1–2 mg/kg over 10 min, or in divided doses, up to a maximum of 150 mg, while monitoring blood pressure. If these are not effective, a continued infusion of flecainide can be given at 1.2–1.5 mg/kg/h during the first hour and 0.12–0.25 mg/kg/h during subsequent hours for no longer than 24 h. During the acute phase the QRS is usually continuously monitored but also measured with a 12-lead ECG performed at the end of bolus and at 15 min, 30 min, 1, 2, and 3 h intervals. In patients receiving higher doses, ECG and plasma-level monitoring are strongly recommended. The maximum cumulative dose over the first 24 h should not exceed 600 mg. Flecainide can also be used for hospital outpatients and in the elderly, although plasma clearance is slower than in younger individuals.

**Clinical efficacy**

**Cardioversion**

Flecainide is highly effective in the acute setting for cardioversion of AF. In haemodynamically stable patients with acute-onset AF (<48 h duration) and preserved LV function, flecainide restores SR in up to 95% of patients within 1 h from the start of the infusion. A pooled analysis of eight randomized controlled trials by the US Agency for Healthcare Research and Quality (AHRQ) showed that acute treatment with flecainide was associated with conversion rates of between 52 and 95% (Figure 3). A further single-blind, randomized, comparative study showed that SR was achieved in 90% of patients treated with flecainide (2 mg/kg bolus, plus second bolus of 1 mg/kg if the first dose did not convert), compared with 72% of patients treated with propafenone and 64% of patients treated with amiodarone (P = 0.008). Although patients may also spontaneously convert to SR, this

![Figure 3](https://academic.oup.com/europace/article-abstract/13/2/161/519048/ by guest on 28 July 2018)

**Figure 3** Proportion of subjects with successful pharmacological conversion (adapted from McNamara et al.92). * Control treatment includes groups receiving placebo, Verapamil, diltiazem, or digoxin; ** Vertical lines represent 95% confidence intervals for the proportion of subjects with successful pharmacological conversion; +, n equals the number of trials evaluating each comparison.
usually takes much longer than with active iv drug. Indeed, fleca
dine significantly shortens conversion to SR. Both iv and oral
flecainide can, therefore, play important roles in shortening the
periods of symptomatic AF, thereby limiting complaints.94

Flecainide is also a safe and effective agent for termination of AF
in patients with Wolff–Parkinson–White (WPW) syndrome. Clas-
sically, iv procainamide is suggested as the first-line drug,1 but this is
less effective in terminating AF. By reducing the safety of conduc-
tion over the accessory pathway, flecainide blocks conduction and
slows the ventricular rate. Flecainide infusions in AF in WPW
patients is therefore extremely safe. In addition to rate slowing, fle-
cainide eventually converts AF to SR.95

The efficacy and safety of oral (up to 300 mg in a unique loading
dose) and iv (up to 150 mg in 10 min) regimens of flecainide
acetate have been clearly demonstrated (Table 1). In current guide-
lines, flecainide (oral or iv) has received a class I, level A rating for
conversion of AF in AF.3 Approximately half of the responding patients
convert within 3 h of the oral dose or within 1 h of the initial infu-
tion time.94,96–98 The single loading oral dose of flecainide has a
conversion rate of 50–60% at 3 h and 75–85% at 6–8 h.96,97,99
A loading oral dose (600 mg) of propafenone has also been
shown to be effective for cardioversion of AF, with conversion
rates around 72–76% at 6–8 h, although taking longer, especially
in the iv infusion (3–6 h average).99,100

No serious adverse events were reported with regimens used
when patients were ECG monitored and in a resting condition.
Atrial flutter with 1:1 conduction (producing fast ventricular
rates) can occur immediately before conversion with a rate of
0.2%, particularly during exercise. A long asystolic pause may
also occur at the time of conversion. These constitute the main
reasons for administering the first loading oral dose under strict
ECG and clinical control in a hospital setting.3,29,100

Thereafter, a single bolus dose may be considered in an outpa-
tient setting, after treatment has been considered safe, as a con-
venient method to cardiovert patients at home. This, so-called,
‘pill-in-the-pocket’ approach has become a means of treating patients with paroxysmal or persistent symptomatic AF with an
average ventricular rate of 70/min or greater.98 However, this
strategy is only suitable for selected patients; the episode has to
be of recent onset (within 48 h) in a patient with normal QRS dur-
ation and of good LV function, without SA or AV nodal dysfunc-
tion, bundle branch block, structural cardiomyopathy or Brugada
syndrome. The advantage of the pill-in-the-pocket approach,
despite the normally high rate of spontaneous conversion, is
mainly related to the shorter time scale for conversion associated
with flecainide, which may equate to a better QOL although more
evidence is required.101

Maintenance of sinus rhythm
In PAF, flecainide has been shown to significantly reduce the
number of AF recurrences, and lengthen the time between epi-
isodes.102–107 A meta-analysis of 60 studies with flecainide
showed that 65% of patients were responsive to treatment in the
short-term, and 49% in the long-term, indicating that the clin-
ical benefit of flecainide for maintaining SR is sustained.105 A litera-
ture analysis suggests that flecainide may be more effective than
several other AADs for maintaining SR following cardioversion
(Table 2), although direct head-to-head comparisons are not avail-
able and these rates, taken with 12-lead ECGs may be higher than
those seen under current monitoring guidelines.108

Flecainide also reduces the symptoms associated with AF; signifi-
cantly more patients receiving flecainide reported suppression of
palpitations ($P < 0.001$), tachycardia ($P = 0.027$), and chest pain
($P = 0.023$), compared with those receiving placebo.102 Moreover,
one out of three patients (31%) in the flecainide group reported
‘complete freedom from symptoms’, compared with only 9% in
the placebo group.

Clinical safety
In general, class 1C AADs are associated with specific risk factors
for proarrhythmic events (Table 3). The use-dependent electroph-
armacological effects are enhanced at higher heart rates; there-
fore, the electrophysiological effects are most marked in the atria
during AF because the intrinsic atrial rate is so high. Hence, dele-
terious effects (e.g. ventricular proarrrhythmia, negative inotropy,
and AV block) are less of a risk at the doses used to stop AF.
The potential downside of use dependence is that, during SR,
atrial (and ventricular) effects are minor, reducing the preventative
effects. However, class 1C AADs suppress premature beats, sug-
uggesting that other mechanisms, such as suppression of (abnor-
mal) automaticity, may play a role.3,23

The results of CAST raised important issues regarding the safety
of AADs to suppress arrhythmias or prevent arrhythmia recur-
rences.18,77,79 The results of CAST deterred physicians from
using flecainide, even in patients without any demonstrable cardio-
vascular disease. One of the most difficult issues is that patients
may develop coronary disease, ischaemia and/or structural heart
disease while receiving chronic flecainide. Patients who are effec-
tively treated but who have, for example, non-significant CAD as
detected by CT angiogram, may continue flecainide but should
be instructed about warning symptoms, including unexplained
fatigue, new or increased chest pain, or syncope. Physicians
should perform an exercise test and regular ECGs, and patients
should monitor their symptoms and report any problems.109
Most importantly, background diseases such as hypertension and
coronary disease should be addressed aggressively with preventa-
tive therapy once detected. Patients successfully treated with fle-
cainide but who develop vascular disease may continue flecainide
treatment if these precautions are followed.

When used in appropriately selected patients, flecainide has
shown a good safety profile, as demonstrated by more than 25
years’ of cumulative experience with the drug throughout the
Europe and the USA. A recent systematic review determined the
incidence of ventricular arrhythmias in flecainide-treated patients
to be <3%.110 A meta-analysis of 122 flecainide studies included
4811 patients with supraventricular arrhythmias but no significant
signs of ventricular damage, with a mean exposure time of
241 ± 224 days. Compared with controls, flecainide was associ-
ated with a lower incidence of proarrrhythmic episodes (2.7 vs.
4.8%), angina symptoms (1 vs. 1.3%), hypotension (0.8 vs. 1.3%),
diarrhoea (0.7 vs. 2.8%), headache (2.0 vs. 2.9%), and nausea
(1.6 vs. 1.8%).111

The strengths of this meta-analysis are its comprehensiveness
and that all included studies were prospective; however, the
| Study                | Patient group                                                                 | Study type (level of evidence) | Outcomes               | Key results       | Study weaknesses                                      |
|---------------------|-------------------------------------------------------------------------------|--------------------------------|------------------------|-------------------|-------------------------------------------------------|
| Capucci et al.⁹⁷    | 62 patients with recent onset AF (≤7 days), placebo versus amiodarone iv bolus followed by infusion or flecainide po | Randomized single blind trial  | Conversion to SR       | As a percentage  | Small numbers; Placebo group discontinued monitoring after 8 h |
| Donovan et al.⁹⁸    | 98 patients with acute onset AF (≤72 h), placebo vs. amiodarone iv or flecainide iv | Randomized controlled trial   | Conversion to SR       | As a percentage  | Small numbers; Power not shown                        |
| Boriani et al.⁹⁶    | 417 patients with recent onset AF (≤7 days), placebo versus amiodarone iv, flecainide po, propafenone iv or propafenone po | Cohort                         | Conversion to SR       | As a percentage  |                                                        |
| Martinez-Marcos et al.⁵³ | 150 patients with acute onset AF (≤48 h), Amiodarone iv versus flecainide iv or propafenone iv | Randomized single-blind trial  | Conversion to SR       | As a percentage  |                                                        |

AF, atrial fibrillation; SR, sinus rhythm; iv, intravenous; po, per os.
quality of the studies differed markedly, and follow-up was mostly relatively short. Despite this, the conclusions are still valid; flecainide appears to be safe for patients with supraventricular arrhythmias without detectable heart disease, and it may contribute to suppression of AF- or SVT-related symptoms. The author concluded that the recommendation to perform intensive diagnostic tests to exclude associated cardiovascular disease, before initiating and during flecainide treatment, is valid.111

Mortality attributable to flecainide in the meta-analysis was lower than expected in the general population (total mortality: 0.166%; mortality rate per 100 person-years: 0.397). Compared with historical controls, the patient population of an AF study at the University of Southern California (13.2%; n = 17/129) and ventricular extrasystoles (10.6%; n = 11/104) were the most frequently identified proarrhythmic effects. Atroventricular block (4.0%; n = 9/227), supraventricular tachycardia (2.2%; n = 5/227), bundle branch block (1.8%; n = 4/227), and AF (1.3%; n = 3/227) were the most frequent drug-related cardiac adverse events.114 In this study, however, there was no comparison with controls. It was concluded that the cardiac adverse event rate was ‘consistent with data from the literature for patients with supraventricular tachyarrhythmia’. The observation that QRS widening is the main cause of flecainide-related adverse effects suggests that controlled-release formulations may be safer than standard preparations.

The place of flecainide in atrial fibrillation

Flecainide is one of the first-line treatment recommendations for maintaining SR following cardioversion in the current guidelines.3,4 These guidelines advise that patients with recurrent PAF may benefit from rhythm control with flecainide, particularly younger age groups with normal cardiac function. In the acute setting, flecainide is recommended for pharmacological cardioversion of PAF of no more than 7 days’ duration, and there is also strong evidence supporting the use of flecainide prior to electrical cardioversion. One study found pre-cardioversion flecainide use resulted in more successful first shocks in comparison with placebo (65 vs. 30%, respectively; P = 0.04).115 Another study concluded that ‘Intravenous flecainide reduces atrial defibrillation threshold in patients treated with low-energy internal atrial cardioversion which results in lower shock-induced discomfort. Additionally, flecainide may increase the procedure success rate in patients with chronic persistent atrial fibrillation’.116

The case for early treatment

It is easy to underestimate the impact of AF. By the time AF is confirmed, remodelling will already be underway; the first-documented episode may be only one of a series of unrecognized episodes.10,14,17 If left untreated, the condition will become chronic through its own self-perpetuating mechanism.15 Clinicians who see many AF patients are more aware of the impact of AF on patients’ wellbeing; frequently AF patients do not fully appreciate the extent to which their QOL has been diminished until SR has been restored.

Atrial fibrillation is widely accepted as a condition of the elderly; however, around half of patients presenting with PAF are <60 years old. Nevertheless, current treatment guidelines are based on large randomized controlled clinical trials, such as the AFFIRM,

### Table 2 Relapse rates for different antiarrhythmic drugs reported in the literature

| Drug     | Mean relapse rate (range) | Studies (n) |
|----------|---------------------------|-------------|
| No drug  | 69% (44–85)               | 10          |
| Quinidine| 59% (46–89)               | 11          |
| Disopyramide| 51% (46–56)            | 3           |
| Propafenone| 61% (54–70)            | 3           |
| Flecainide| 38% (19–51)             | 3           |
| Sotalol  | 58% (51–63)               | 3           |
| Amiodarone| 47% (17–64)             | 4           |

*Minimum 6-months follow-up.
Adapted from Levy et al.108

### Table 3 Ventricular proarrhythmia risk factors for class 1C antiarrhythmic drugs

| Risk factors                           |
|----------------------------------------|
| Wide QRS (>120 ms), Brugada ECG sign  |
| Low LVEF, CHF                          |
| Structural heart disease, CAD          |
| High rate (use-dependent effect)       |
| High dose                              |
| Hypokalaemia                           |
| Severe renal failure (creatinine clearance ≤ 35 mL/min/1.73 m²) |
| Excessive QRS increase (>150% from baseline) |

CAD, coronary artery disease; CHF, chronic heart failure; LVEF, left ventricular ejection fraction; ECG, electrocardiogram.
RACE, and STAF studies, which had mean patient ages of 70, 68, and 66 years, respectively. In these studies, patients also had established persistent AF at inclusion and most had other cardiovascular risk factors, restricting the choice of therapy. There is an increasing view among clinicians that younger, healthier patients should be restored to and maintained in SR through aggressive treatment at the very first sign of the illness. In this population, maintaining SR is vital so as to interrupt the process of atrial remodelling, and to improve QoL and long-term survival. A recent position paper proposed a tightening of the treatment guidelines for newly discovered AF to recommend early treatment with AAD therapy to restore the patient to SR.

When selecting the appropriate AAD, the treatment should be tailored to each patient; the often complex presentation of AF makes this a challenging task. Flecainide has been on the market for 27 years, and its capacity to reduce AF symptoms and provide long-term restoration of SR has been well documented. However, the increased mortality reported in CAST still deters many clinicians from using a class 1C AAD. This denies many new AF patients a valuable treatment option. The increased mortality seen in patients treated with flecainide in CAST is now viewed as having been caused by proarrhythmic events in elderly patients with significant pre-existing cardiovascular comorbidity.

Important treatment decisions should not be based on this single study; there is now a body of evidence supporting the use of flecainide, clearly demonstrating that in AF patients without significant LV disease or CAD, the drug has a favourable safety profile with a low incidence of proarrhythmic and other cardiac and non-cardiac adverse events. As a result of this evidence, flecainide is now recommended as one of the first-line treatment options for restoring and maintaining SR in patients with AF under the current ACC/AHA/ESC guidelines and the updated ESC guidelines.

Conclusions

Atrial fibrillation is a ‘ticking bomb’. The increasing prevalence of AF may result in an epidemic of associated heart disease with a major impact on patients’ QOL. Early detection and aggressive treatment can help break the vicious circle where ‘AF begets AF’.

Over the last 25 years, flecainide has been used extensively worldwide. The abundance of experience and knowledge gathered during this period supports flecainide as a safe and effective option for achieving and maintaining SR in younger patients without co-existing structural heart disease. Furthermore, our increased understanding of the pathophysiological mechanisms underlying AF provides a strong rationale for early treatment with flecainide to prevent long-term complications.

Acknowledgement

The assistance of Patrick Wong in editing this paper has been appreciated.

Conflicts of interest: E.A. reports having received consultant fees from Meda Pharmaceuticals, Sanofi-Aventis, Pfizer and Bristol-Myers Squibb. H.J.C. reports having received research funding and limited speaker fees from Meda Pharmaceuticals.

A.G. reports having received speaker fees from 3M Pharmaceuticals.

Funding

This review was supported by an educational grant from Meda Pharmaceuticals. Representatives of Meda Pharmaceuticals had no role in gathering, analysing, or interpreting the information presented. Funding to pay the Open Access publication charges for this article was provided by Meda Pharmaceuticals.

References

1. Padanilam BJ, Prystowsky EN. Epidemiology of atrial fibrillation. The rising prevalence. In: Natale A, Jaffe J (eds). Atrial Fibrillation: From Bench to Bedside. Totowa, NJ, USA: Humana Press; 2008. p.3–13.
2. Wolf PA, Benjamin EJ, Belanger AJ, Kannel WB, Levy D. D’Agostino RB. Secular trends in the prevalence of atrial fibrillation: the Framingham Study. Am Heart J 1996;131:790–5.
3. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: full text: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 guidelines for the management of patients with atrial fibrillation) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Eur Heart J 2006;27:651–745.
4. Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S et al. Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J 2010;31:2369–2429.
5. Wijeysinghe DL. Rate control vs rhythm control strategies in atrial fibrillation. Prog Cardiovasc Dis 2008;50:125–38.
6. Caso FG, Aiolli E, Basso GL, Heidbuchel H, Geller CJ. Kirchhof P et al. Delayed rhythm control of atrial fibrillation may be a cause of failure to prevent recurrences: reasons for change to active antiarrhythmic treatment at the time of the first detected episode. Europace 2008;10:21–7.
7. Nieuwlaat R, Prins MH, Le Heuzey JY, Vardas PE, Aiolli E, Santini M et al. Prognosis, disease progression, and treatment of atrial fibrillation patients during 1 year: follow-up of the Euro Heart Survey on atrial fibrillation. Eur Heart J 2008;29:1581–9.
8. Corley SD, Epstein AE, DiMarco JP, Domanski MJ, Geller N, Greene H et al. Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) Study. Circulation 2004;109:1509–13.
9. Hansson A, Madsen-Hardig B, Olsson SB. Arrhythmia-provoking factors and symptoms at the onset of paroxysmal atrial fibrillation: a study based on interviews with 100 patients seeking hospital assistance. BMC Cardiovasc Disord 2004;4:13.
10. Allessie MA. Atrial electrophysiological remodeling another vicious circle? J Cardiovasc Electrophysiol 1998;9:1378–93.
11. Goette A, Honeycutt C, Langberg JJ. Electrical remodeling in atrial fibrillation. Time course and mechanisms. Circulation 1996;94:2968–74.
12. Hansson A, Abascal VM, Sheehan M, Oertel LB, Harrigan P, Hughes RA et al. Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 1990;82:792–7.
13. Van Gelder IC, Crijns HJ, Van Gilst WH, Hamer HP, Lie KI. Decrease of right and left atrial sizes after direct-current electrical cardioversion in chronic atrial fibrillation. Am J Cardiol 1991;67:93–5.
14. Pijls NJ, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 1995;92:1954–68.
15. Kato T, Yamashita T, Sagara K, Iinuma H, Fu LT. Progressive nature of paroxysmal atrial fibrillation. Observations from a 14-year follow-up study. Circ J 2004;68:588–72.
16. de Vos CB, Pisters R, Nieuwlaat R, Prins MH, Tieleman RG, Coelen RJ et al. Atrial fibrillation begets paroxysmal atrial fibrillation: long-term clinical correlation and prognosis. J Am Coll Cardiol 2010;55:725–31.
17. Hobbs WJ, Fynn S, Todd DM, Wolpoff P, Galloway M, Garratt CJ. Reversal of atrial electrical remodeling after cardioversion of persistent atrial fibrillation in humans. Circulation 2000;101:1145–51.
18. Echt DS, Liebson PR, Mitchell LB, Peters RW, Olmsted-M'Maroni D, Barker AH et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 1991;324:781–8.
25 years—a review of flecainide

19. Anderson J, Pratt CM, Waldo AL, Karagounis LA. Impact of the Food and Drug Administration approval of flecainide and encainide on coronary artery disease mortality: putting ‘Deadly Medicine’ to the test. Am J Cardiol 1997;79:43–7.

20. Al-Khatib SM, LaPointe NM, Curtis LH, Kramer JM, Swann JH, Hong P et al. Outpatient prescribing of antiarrhythmic drugs from 1995 to 2000. Am J Cardiol 2003;91:91–4.

21. Wyse DG, Waldo AL, DeMarco JP, Domanski MJ, Rosenberg Y, Schron EB et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 2002;347:1825–33.

22. Carlsson J, Miettik S, Windell J, Cuneo A, Haun S, Micus S et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation: the Strategies of Treatment of Atrial Fibrillation (STAF) study. J Am Coll Cardiol 2003;41:1690–6.

23. Hagens VE, Vermeulen KM, Ten Vergert EM, Van Veldhuisen DJ, Bosker HA, Kamp O et al. Rate control is more cost-effective than rhythm control for patients with persistent atrial fibrillation—results from the Rate Control versus Electrical cardioversion (RACE) study. Eur Heart J 2004;25:1542–9.

24. Hohnloser SH, Kuck KH, Lilienthal J. Rhythm or rate control in atrial fibrillation—Pharmacological Intervention in Atrial Fibrillation (RAAF): a randomised trial. Lancet 2003;361:1789–94.

25. Marshall DA, Levy AR, Vidaillet H, Fenwick E, Slee A, Blackhouse G et al. Randomised comparison of rate with rhythm control in patients with nonvalvular persistent atrial fibrillation: the results of the Polish How to Treat Chronic Atrial Fibrillation (PHOTOCAFE) Study. Circulation 2004;111:476–81.

26. van Gelder IC, Hagens VE, Bosker HA, Kingma JH, Kamp O, Kingma T et al. Comparison of rate and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med 2002;347:1834–40.

27. Alboni P, Botto GL, Baid N, Luzi M, Russo V, Gianfranchi L et al. Outpatient treatment of paroxysmalDONE atrial fibrillation with the ‘pill-in-the-pocket’ approach. N Engl J Med 2004;351:2384–91.

28. Steinberg JS, Sadanantiz A, Kron J, Krahn A, Denny DM, Daubert J et al. Analysis of cause-specific mortality in the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Circulation 2004;109:1973–80.

29. de Densu S, Sanoski CA, Carlsson J, Opolski G, Spinder SA. Rate or rhythm control in patients with atrial fibrillation: a meta-analysis. Arch Intern Med 2005;165:238–62.

30. Holmes B, Heel RC. Flecainide. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy. Drugs 1985;29:1–33.

31. Roden DM, Woosley RL. Drug therapy: flecainide. N Engl J Med 1986;315:36–41.

32. Anno T, Hondeghem LM. Interactions of flecainide with guinea pig cardiac sodium channels. Importance of activation unblocking to the voltage dependence of atrial refractoriness, atrial repolarization and atrioventricular node conduction in anesthetized dogs. J Am Coll Cardiol 1992;19:1335–42.

33. Wyse DG, Pelletier LC, Talajic M, Nattel S. Effects of flecainide on the rate dependence of atrial refractoriness, atrial repolarization and atrioventricular node conduction in anesthetized dogs. J Am Coll Cardiol 1992;19:1335–42.

34. Wang Z, Page P, Nattel S. Mechanism of flecainide’s antiarrhythmic action in experimental atrial fibrillation. Circ Res 1992;71:271–87.

35. Follmer CH, Colatsky TJ. Block of delayed rectifier potassium current, IK, by flecainide and E-4031 in cat ventricular myocytes. Cardiovasc Res 1981;15:2B–5B.

36. Alboni P, Botto GL, Baid N, Luzi M, Russo V, Gianfranchi L et al. Outpatient treatment of paroxysmalDONE atrial fibrillation with the ‘pill-in-the-pocket’ approach. N Engl J Med 2004;351:2384–91.

37. Steinberg JS, Sadanantiz A, Kron J, Krahn A, Denny DM, Daubert J et al. Analysis of cause-specific mortality in the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Circulation 2004;109:1973–80.

38. de Densu S, Sanoski CA, Carlsson J, Opolski G, Spinder SA. Rate or rhythm control in patients with atrial fibrillation: a meta-analysis. Arch Intern Med 2005;165:238–62.

39. Holmes B, Heel RC. Flecainide. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy. Drugs 1985;29:1–33.

40. Roden DM, Woosley RL. Drug therapy: flecainide. N Engl J Med 1986;315:36–41.

41. Anno T, Hondeghem LM. Interactions of flecainide with guinea pig cardiac sodium channels. Importance of activation unblocking to the voltage dependence of atrial refractoriness, atrial repolarization and atrioventricular node conduction in anesthetized dogs. J Am Coll Cardiol 1992;19:1335–42.

42. Wang Z, Page P, Nattel S. Mechanism of flecainide’s antiarrhythmic action in experimental atrial fibrillation. Circ Res 1992;71:271–87.
86. Serruys PW, Vanhalemeyck G, Van Den Brand M, Verdouw P, Lubsen J, Cohen AA, Daru V, Covelli G, Gonzalez M, Villamayor R, Tronge JE. Hemodynamic effects of intravenous flecainide in acute noncomplicated myocardial infarction. Eur Heart J 1995;16:1371–21.

87. Donovan KD, Power BM, Hockings BE, Dobbl GJ, Lee KY. Intravenous flecainide versus amiodarone for recent-onset atrial fibrillation. Am J Cardiol 1995;75:693–7.

88. Serruys PW, Vanhalemeyck G, Van Den Brand M, Verdouw P, Lubsen J, Cohen AA, Daru V, Covelli G, Gonzalez M, Villamayor R, Tronge JE. Hemodynamic effects of intravenous flecainide in patients with and without beta-blocker therapy. Br Heart J 1995;73:41–5.

89. Munschauer FE 3rd, Sohocki D, Smith Carrow S, Priore RL. A community education study of flecainide and placebo with transtelephonic monitoring. Flecainide Supraventricular Tachycardia Study Group. Circulation 1998;98:578–84.

90. Levy S, Breithardt G, Campbell RW, Camm AJ, Daubert JC, Allessie M. Interaction of ischaemia and encainide/flecainide treatment: a proposed mechanism. J Mol Cell Cardiol 2010;49:108–13.

91. Mary-Rabine L, Telerman M. Long term evaluation of flecainide acetate in supraventricular tachycardia. Acta Cardiol 1989;43:631–5.

92. Plati IA, Estes M, Heine DL, Griffith LS, Garan H, Ruskin JN et al. Flecainide: electrophysiologic and antiarrhythmic properties in refractory ventricular tachycardia. Am J Cardiol 1985;55:956–62.

93. Crijns HJ, van Wijk LM, van Gilst WH, Kourag HA, van Gelder IC, Lie Kl. Acute conversion of atrial fibrillation to sinus rhythm: clinical efficacy of flecainide acetate. Comparison of two regimens. Eur Heart J 1988;9:634–8.

94. Crijns HJ, den Heijer P, van Wijk LM, Lie Kl. Successful use of flecainide in atrial fibrillation with rapid ventricular rate in the Wolff–Parkinson–White syndrome. Am Heart J 1988;115:1317–21.

95. Bozani G, Biffi M, Capuano A, Botto GL, Broffoni T, Ongari M et al. Conversion of recent-onset atrial fibrillation to sinus rhythm: effects of different drug protocols. Paed Clin Electrophysiol 1998;21:2470–4.

96. Cappucci A, Lenzi T, Bozani G, Trisolino G, Bini M, Cava M et al. Effective use of loading oral flecainide for converting recent-onset atrial fibrillation to sinus rhythm in patients without organic heart disease or with only systemic hypertension. Am J Cardiol 1993;70:69–72.

97. Naccarelli GV, Wolbrette DL, Luck JC. Proarrhythmia. Ann Intern Med 1997;126:621–5.

98. Guedon-Moreau L, Capucci A, Denjoy I, Morgan CC, Perier A, Legle A et al. Impact of the control of symptomatic paroxysmal atrial fibrillation on health-related quality of life. Eurotox 2010;12:634–42.

99. Capucci A, Botto GL, Lenzi T, Rubino I, Falcone C et al. Conversion of recent-onset atrial fibrillation by a single oral loading dose of propafenone or flecainide. Am J Cardiol 1994;74:503–5.

100. Boriani G, Biffi M, Botto GL, Broffoni T, Rubino I et al. Oral propafenone to convert recent-onset atrial fibrillation in patients with and without underlying heart disease. A randomized, controlled trial. Ann Intern Med 1997;126:621–5.

101. Plati IA, Estes M, Heine DL, Griffith LS, Garan H, Ruskin JN et al. Flecainide: electrophysiologic and antiarrhythmic properties in refractory ventricular tachycardia. Am J Cardiol 1985;55:956–62.

102. Anderson JL, Gilbert EM, Alpert BL, Henthorn RW, Waldo AL, Bhandari AK et al. Prevention of symptomatic recurrence of paroxysmal atrial fibrillation in patients initially tolerating antiarrhythmic therapy. A multicenter, double-blind, crossover study of flecainide and placebo with transtelephonic monitoring. Flecainide Supraventricular Tachycardia Study Group. Circulation 1989;80:1557–70.

103. Anderson JL, Platt ML, Guarnieri T, Fox TL, Maser MJ, Pritchett EL. Flecainide acetate for paroxysmal supraventricular tachyarrhythmias. The Flecainide Supraventricular Tachycardia Study Group. Am J Cardiol 1994;74:578–84.

104. Clementy J, Dulhoorne PN, Laiter C, Denjoy I, Dos Santos P. Flecainide acetate in the prevention of paroxysmal atrial fibrillation: a nine-month follow-up of more than 500 patients. Am J Cardiol 1992;70:44A–9A.

105. Hohnloser SH, Zabel M. Short- and long-term efficacy and safety of flecainide acetate for supraventricular arrhythmias. Am J Cardiol 1999;84:A3–9A. discussion A10A.

106. Mary-Rabine L, Telerman M. Long term evaluation of flecainide acetate in supraventricular tachyarrhythmias. Acta Cardiol 1988;43:37–48.

107. Pietersen AH, Hellemann H. Usefulness of flecainide for prevention of paroxysmal atrial fibrillation and flutter. Danish–Norwegian Flecainide Multicenter Study Group. Am J Cardiol 1991;67:713–7.

108. Levy S, Breithardt G, Campbell RW, Camm AJ, Daubert JC, Allessie M et al. Atrial fibrillation: current knowledge and recommendations for management. Working Group on Arrhythmias of the European Society of Cardiology. Eur Heart J 1998;19:1294–320.

109. Munschauer FE 3rd, Sohocki D, Smith Carrow S, Priore RL. A community education program on atrial fibrillation: implications of pulse self-examination on awareness and behavior. J Stroke Cerebrovasc Dis 2004;13:208–13.

110. McNama RL, Tamariz LJ, Segal JB, Bass EB. Management of atrial fibrillation: review of the evidence for the role of pharmacologic therapy, electrical cardioversion, and echocardiography. Ann Intern Med 2003;139:1018–33.

111. Wehling M. Meta-analysis of flecainide safety in patients with supraventricular arrhythmias. Arzneimittelforschung 2002;52:507–14.

112. Pritchett EL, Wilkinson WE. Mortality in patients treated with flecainide and encainide for supraventricular arrhythmias. Am J Cardiol 1991;67:976–80.

113. Andersen SS, Hansen ML, Gislason GH, Schramm TK, Folk F, Fosbol E et al. Antiarrhythmic therapy and risk of death in patients with atrial fibrillation: a nationwide study. Euro J 2003;11:896–916.

114. Aliot E, De Roy L, Capucci A, Denjoy I, Lupoglazoff JM et al. Safety of a controlled-release flecainide acetate formulation in the prevention of paroxysmal atrial fibrillation in outpatients. Am J Cardiol 2003;90:208–13.
117. Schotten U, Duytschaever M, Ausma J, Eijisbouts S, Neuberger HR, Allessie M. Electrical and contractile remodeling during the first days of atrial fibrillation go hand in hand. *Circulation* 2003;107:1433–9.

118. Singh SN, Tang XC, Singh BN, Dorian P, Reda DJ, Harris CL et al. Quality of life and exercise performance in patients in sinus rhythm versus persistent atrial fibrillation: a Veterans Affairs Cooperative Studies Program Substudy. *J Am Coll Cardiol* 2006;48:721–30.

119. Hamer ME, Blumenthal JA, McCarthy EA, Phillips BG, Pritchett EL. Quality-of-life assessment in patients with paroxysmal atrial fibrillation or paroxysmal supraventricular tachycardia. *Am J Cardiol* 1994;74:826–9.