Mutational Analysis of TCOF1, GSC, and HOXA2 in Patients With Treacher Collins Syndrome

Shaojuan Hao, MD,1 Lei Jin,1 Huijun Wang, PhD,1 Chenlong Li,1 Fengyun Zheng,1 Duan Ma, PhD,1,2 and Tianyu Zhang, MD,3

Abstract: Treacher Collins syndrome is an autosomal dominant craniofacial malformation mainly caused by mutations in the TCOF1 gene. Few cases have been observed in the Chinese population. Herein, the authors report the mutational analysis of TCOF1, GSC, and HOXA2 to determine the mutational features of the 3 genes in Chinese patients with Treacher Collins syndrome. Genomic DNA of the patients and their parents was extracted from peripheral blood following a standard protocol. DNA sequencing analysis was performed on all exons and the exon-intron borders of TCOF1, GSC, and HOXA2 in addition to the 1200-bp upstream of TCOF1. Four novel single nucleotide polymorphisms were detected in TCOF1, one of which was in the promoter region. Mutations in GSC and HOXA2 were not found in the 3 patients. Our results suggest the possibility of genetic heterogeneity or different mechanisms leading to the disease. Further functional study of the alteration is necessary to obtain more definitive information.

From the *Department of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, †Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Henan; ‡Birth Defect & Pathology Research Center, Institutes of Biomedical Sciences, Fudan University; and §Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China.

Received March 16, 2016. Accepted for publication May 16, 2016.

Key Words: Chinese, single nucleotide polymorphisms, TCOF1 gene, Treacher Collins syndrome

T raecher Collins syndrome (TCS, OMIM 154500) is a craniofacial development disorder. Although an autosomal recessive form of the syndrome has been reported,1,2 most cases are inherited as an autosomal dominant trait. High intra- and interfamilial phenotypic variations have been identified, and no genotype-phenotype correlation in the syndrome has been found based on the evaluation of the clinical variability in TCS.3-5 Anticipation is often observed in TCS families due to ascertainment bias.6,7 TCS is likely in patients who are symmetrically affected, usually characterized by downward slanting palpebral fissures with lower eyelid coloboma, hypoplasia of the mandible and zygomatic, malformed ears, and conductive hearing loss due to atresia of the external ear canal.

The gene associated with the syndrome is TCOF1, which is located in 5q32-q33.1.8 The gene contains 28 exons and several alternative splice sites.9-11 To date, >150 different pathogenic mutations have been reported in the coding region of TCOF1, most of which are novel deletions or duplications leading to a premature stop codon.8 Mutations in the promoter region have been proven to be functional,9 representing a different mechanism causing the syndrome. In mice, haploinsufficiency of TCOF1 results in the depletion of neural crest cell precursors as the result of high levels of cell death in the neuroepithelium, which can lead to a reduced number of neural crest cells migrating into the developing craniofacial complex.10 Recent research on TCOF1, demonstrated that effective cavitation of the middle ear is intimately linked to the growth of the auditory bulla, a neural crest cell-derived structure that encapsulates all middle ear components, and that defects in those processes have a profoundly detrimental effect on hearing.11

TCS is thought to represent defective structures derived from the embryonic first and second branchial arches, which are involved in a number of syndromic microtia,12 including Goldenhar syndrome, Nager syndrome, and Miller syndrome. The overlap of patients with these syndromes may suggest a common genetic cause. Among the genes implicated in these syndromic microtia are GSC and HOXA2. A missense mutation in HOXA2 has been shown to cause autosomal recessive microtia with cleft palate.13 Similarly, a same-sense mutation and a missense mutation have been documented in 8 patients with isolated microtia.14 14 We therefore report a mutational analysis of TCOF1, GSC, and HOXA2 in 3 Chinese patients with TCS.

PATIENTS AND METHODS

Subjects

All patients with a clinical diagnosis of TCS were recruited through the Eye and ENT Hospital of Fudan University in China. The study protocols were previously approved by the Ethics Committee of the hospital, and blood samples were collected after informed consent was obtained from patients and their legal guardians. The parents also provided written permission to publish the family photos shown in Figure 1. The parents of these patients were all nonconsanguineous, and none of the patients had any family history of TCS.

Patient 1

The patient was a 10-year-old boy. His mother became pregnant at 19 years of age, and the pregnancy was complicated by trauma at day 40, which was treated with antibiotics. After birth,
Patient 1
This patient was a 14-year-old girl born to a healthy mother without remarkable pregnancy history. She had slanting palpebral fissures, coloboma of the eyelid, bilateral microtia, atresia of the external ear canal, and stenosis of both forearm. Objective audiometry confirmed bilateral conductive hearing loss with a hearing threshold of approximately 70 dB; there were no further abnormal clinical findings (Fig. 1).

Patient 2
This patient was an 11-year-old boy, and there was no history of exposure to teratogenic substances or the presence of illness of the mother. He was born with slanting palpebral fissures, coloboma of the lid, hypoplastic zygomatic arches, mild deformity of the left ear, atresia of the left external ear canal, and stenosis of the right external ear canal. His hearing loss of approximately 50 dB was successfully treated by surgery, and no further physical abnormalities were apparent (Fig. 2).

Patient 3
Patient 3 was a 14-year-old girl born to a healthy mother without remarkable pregnancy history. She had slanting palpebral fissures, coloboma of the eyelid, hypoplastic zygomatic arches, mild deformity of the left ear, atresia of the left external ear canal, and stenosis of the right external ear canal. Her hearing loss of approximately 55 dB (Fig. 3).

DNA Sequencing
Genomic DNA of the patients and their parents was extracted from peripheral blood following a standard protocol. All exons and the exon-intron borders of TCOF1, GSC, and HOXA2 were amplified by PCR under optimal conditions using specific primers (Table 1); the 1200-bp upstream of TCOF1 were also amplified.

Mixtures with a total volume of 20 μL were prepared for each reaction including 1× HotStarTaq buffer, 2.0 mM Mg²⁺, 0.2 μM of each primer, 1 U HotStarTaq polymerase (Qiagen Inc), and 1 μL template DNA. The cycling program was 95°C for 15 minutes; 11 cycles of 94°C for 15 seconds, 62°C to 0.5°C per cycle for 40 seconds, and 72°C for 1 minute; 24 cycles of 94°C for 15 seconds, 54°C to 58°C for 30 seconds, and 72°C for 1 minute; and 72°C for 2 minutes. The PCR products were purified using SAP and Exon. A mixture of 1 U SAP, 6 U Exon, and 8 μL PCR products was incubated at 37°C for 60 minutes, followed by incubation at 70°C for 10 minutes. The reaction mixture included 2 μL BigDye 3.1 mix, 2 μL sequencing primer (0.4 μM), and 1 to 2 μL purified PCR product. The cycling program was 96°C for 1 minute followed by 28 cycles of 96°C for 10 seconds, 50°C for 5 seconds, and 60°C for 4 minutes.

TABLE 1. PCR Primers for the Amplification of TCOF1, GSC, and HOXA2

PCR ID	Forward Primer	Reverse Primer
TCOF1-Promotor1	gagggtgctgctggtgctggtgctggtgctg	tgggtggtggtggtggtggtggtggtggtg
TCOF1-Promotor2	gagggtgctgctggtgctggtggtggtgctg	tgggtggtggtggtggtggtggtggtggtg
TCOF1-exon2	gagggtgctgctggtgctggtggtggtgctg	tgggtggtggtggtggtggtggtggtggtg
TCOF1-exon3	gagggtgctgctggtgctggtggtggtgctg	tgggtggtggtggtggtggtggtggtggtg
TCOF1-exon4	gagggtgctgctggtgctggtggtggtgctg	tgggtggtggtggtggtggtggtggtggtg
TCOF1-exon5	gagggtgctgctggtgctggtggtggtgctg	tgggtggtggtggtggtggtggtggtggtg
TCOF1-exon6	gagggtgctgctggtgctggtggtggtgctg	tgggtggtggtggtggtggtggtggtggtg
TCOF1-exon7	gagggtgctgctggtgctggtggtggtgctg	tgggtggtggtggtggtggtggtggtggtg
TCOF1-exon8	gagggtgctgctggtgctggtggtggtgctg	tgggtggtggtggtggtggtggtggtggtg
TCOF1-exon9	gagggtgctgctggtgctggtggtggtgctg	tgggtggtggtggtggtggtggtggtggtg

PCR, polymerase chain reaction.
The final products were then analyzed using a capillary sequencer (ABI Prism 3730xl sequencing).

RESULTS

We identified 12 different variations in TCOFI, 1 previously reported SNP in GSC, and no alterations in HOXA2. Among the 12 variations in TCOFI, −26T>A, 17693G>A, 21761–21765delICTCTC and 21968G>T have not been previously reported as a TCOFI mutation or polymorphism and were not in the dbSNP. All the 4 variations were also identified in healthy unaffected controls in the form of compound heterozygosity.

Analysis of patients’ normal parents showed that there was no parental origin of the −26T>A or 17693G>A mutations. Interestingly, only the father of patient 1 and mother of patient 2 possessed the 21968G>T alteration in the homozygous form, explaining the heterozygous genotype of their children. Analysis of patient 2’s normal parents showed that the father possessed the 5-bp deletion, whereas his mother did not, indicating that the 5-bp deletion was inherited from the father. All of the alterations found within our subjects are described in Table 2.

DISCUSSION

The molecular mechanism responsible for TCS is still not defined; however, there has been remarkable work done in this area. First, haploinsufficiency has been proposed as one of the molecular mechanism underlying the disorder because deletion or insertion mutations in TCOFI were the most likely to result in the creation of a premature termination codon and a truncated protein. Second, as mutations that do not alter canonical splice signals but influence splicing have been recognized as a novel form of mutation, synonymous alterations in TCOFI should be further investigated with functional assays before excluding pathogenicity. And last, mutations in the promoter region of TCOFI could impair the DNA-binding to the YY1 transcription factor. It suggests a possibility that changes outside of the coding region might alter expression level of functionally normal protein.

As previous studies mainly focused on the coding region of TCOFI, the current study detected all the exons and the exon-intron borders of TCOFI in addition to the 1200-bp upstream of TCOFI. We identified 1 novel SNP −26T>A in the promoter region of TCOFI; however, functional study of this abnormality is necessary to obtain more definitive information. It is interesting to note that only the father of patient 1 and mother of patient 2 possessed the 21968G>T alteration in the homozygous form, explaining the heterozygous genotype of their children. Also interestingly, patient 2’s father possessed the 5-bp deletion, whereas his mother did not, indicating that the 5-bp deletion was inherited from the father. All of the novel variations could also be found in the control samples. Therefore, no pathogenic mutations were identified in our patients. A lack of mutations in TCOFI suggests that other novel genes or complex changes in gene regulatory networks might be responsible for TCS in the subjects analyzed.

Mutations in TCOFI seem to be extremely variable, and TCS demonstrates great phenotypic variability. Due to the clinical overlap, TCOFI was analyzed and excluded in patients with Gold-enhar, Nager, and Miller syndromes. Therefore, it is meaningful to clarify whether the patients with TCS have alterations in these genes related with other syndromes. HoxA2 is a key transcription factor during development of the second branchial arch that has a main contribution in development of the external and middle ear in mouse. GSC is a transcription factor that plays an essential role during the process of gastrulation in early embryonic development. Mice with a homozgyous disruption of gsc revealed multiple defects containing the lower mandible as well as components of the inner ear and the external auditory meatus. Both of the genes have been identified responsible for the syndromic microtia. We therefore sequenced all the exons of GSC and HOXA2; however, we did not find any mutations in these genes, except one previously reported SNP 1244G>T in GSC. Although these syndromes all derived from first and second branchial arches in embryonic period, they might be altered by different genes and regulated by complex gene networks.

In the present study, we performed TCOFI, GSC, and HOXA2 mutation analysis in 3 Chinese patients with TCS. We detected 12 polymorphic changes in TCOFI, 4 of which were novel. And we also excluded mutations of GSC and HOXA2 in the 3 patients. Mutations in the TCOFI gene are not always found in patients with TCS. These results suggest the possibility of genetic heterogeneity or the existence of different mechanisms leading to the syndrome. We hypothesized several possibilities to explain the undetected TCOFI mutations in these TCS patients. First, there may be another gene that might be located near TCOFI that is responsible for TCS. Second, nonsequential factors that can modulate the expression of TCOFI, for instance, the methylation of the gene or the mi-RNA regulation, may be involved. Further study is needed to explore the potential mechanism of these alterations in the occurrence of TCS.

Gene Tested	Exon or Intron	Patient	Position in Coded Sequence	SNP Property	Functional Change	dbSNP Identifier
TCOFI	5'UTR	1, 2, 3	−89T>G	None	Unknown	rs6565199
	5'UTR	3	−26T>A	None	Unknown	Unknown
	Intron6	3	14036G>A	None	Unknown	rs255796
	Exon11	2	17681C>T	Synonymous	Pro526Pro	rs2071238
	Exon11	3	17693G>A	Synonymous	Gly530Gly	Unknown
	Exon12	2	18111A>G	Synonymous	Ser614Ser	rs2071239
	Exon13	2	18434G>C	Missense	Ala665Pro	rs2071240
	Intron16	2	21761-21765delCTCTC	None	Unknown	Unknown
	Exon17	2	21786T>C	Missense	Val887Ala	rs7713638
	Intron17	1, 2	21968G>T	Missense	Ala948Ser	Unknown
	Exon24	3	38922C>T	Missense	Ala1390Val	rs15251
	Intron25	3	41054G>C	None	Unknown	rs2569062
	Exon2	1	1244G>T	None	Unknown	rs3905049

SNP, single nucleotide polymorphism.
REFERENCES

1. Lowry RB, Morgan K, Holmes TM, et al. Mandibulofacial dysostosis in Hattertse sibs: a possible recessive trait. Am J Med Genet 1985;22:501–512.

2. Richter CA, Bortolozo MA, Lauris JR, et al. Mandibulofacial dysostosis: report on two Brazilian families suggesting autosomal recessive inheritance. Am J Med Genet 1993;46:659–664.

3. Edwards SJ, Gladwin AI, Dixon MI. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon. Am J Hum Genet 1997;60:515–524.

4. Splendore A, Silva EO, Alonzo LG, et al. High mutation detection rate in TCOF1 among Treacher Collins syndrome patients reveals clustering of mutations and 16 novel pathogenic changes. Hum Mutat 2000;16:315–322.

5. Teber OA, Gillesen-Kaesbach G, Fischer S, et al. Genotyping in 46 patients with tentative diagnosis of Treacher Collins syndrome revealed unexpected phenotypic variation. Eur J Hum Genet 2004;12:879–890.

6. The Treacher Collins Collaborative Group. Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nat Genet 1996;12:130–136.

7. So RB, Gonzales B, Henning D, et al. Another face of the Treacher Collins syndrome (TCOF1) gene: identification of additional exons. Gene 2004;328:49–57.

8. Splendore A, Masotti C, et al. TCOF1 mutation database: novel mutation in the alternatively spliced exon 6A and update in mutation nomenclature. Hum Mutat 2005;25:429–434.

9. Masotti C, Armelin-Correa LM, Splendore A, et al. A functional SNP in the promoter region of TCOF1 is associated with reduced gene expression and YY1 DNA-protein interaction. Gene 2005;359:44–52.

10. Dixon J, Jones NC, Sandell LL, et al. TCOF1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci U S A 2006;103:13403–13408.

11. Richter CA, Amin S, Linden J, et al. Defects in middle ear cavitation cause conductive hearing loss in the Tcof1 mutant mouse. Hum Mol Genet 2010;19:1551–1560.

12. Poswillo D. The pathogenesis of the Treacher Collins syndrome (mandibulofacial dysostosis). Br J Oral Surg 1975;13:1–26.

13. Alasti F, Sadeghi A, Sanati MH, et al. A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family. Am J Hum Genet 2008;82:982–991.

14. Zhang QG, Zhang J, Yu P, et al. Environmental and genetic factors associated with congenital microtia: a case-control study in Jiangsu, China, 2004 to 2007. Plast Reconstr Surg 2009;124:1157–1164.

15. Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002;3:285–298.

16. Heder P, Torriello HV, Petty EM. Novel autosomal dominant mandibulofacial dysostosis with ptosis: clinical description and exclusion of TCOF1. J Med Genet 2002;39:484–488.

17. Splendore A, Passos-Bueno MR, Jabs EW, et al. TCOF1 mutations involved from a role in other first and second branchial arch-related disorders. Am J Med Genet 2002;111:324–327.

18. Zelinka DC, Shah SK, Sanger WR, et al. Functional analysis of HOXA2 and SIX2 in a bronchus with isolated microtia. Int J Pediatr Otorhinolaryngol 2010;74:878–882.

19. Coldy G, Grapin-Botton A, Coltey P, et al. Determination of the identity of the derivatives of the cephalic neural crest: incompatibility between Hox gene expression and lower jaw development. Development 1998;125:3454–3459.

20. Rivera-Perez JA, Wakamiya M, Behringer RR. Goosecoid acts cell autonomously in mesenchyme-derived tissues during craniofacial development. Development 1999;126:3811–3821.

21. Yamada G, Mansour M, Torres M, et al. Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development 1995;121:2917–2922.

22. Isaac C, Marsh KL, Pazeas WA, et al. Characterization of the neural crest gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell 2000;11:3061–3071.

Successful Treatment of Silent Sinus Syndrome With Combined Endoscopic Sinus Surgery and Blepharoplasty Without Orbital Floor Reconstruction

Se-Hyung Kim, MD, PhD

Abstract: Silent sinus syndrome (SSS) is a rare clinical syndrome associated with characteristic spontaneous and gradual downward bowing of the orbital floor caused by impaired sinus ventilation. The author experienced a rare case of SSS in a 35-year-old woman patient. She was referred for evaluation of a spontaneous orbital asymmetry with right enophthalmos and hypoglobus. She underwent functional endoscopic sinus surgery to open obstructed maxillary sinus ostium and aesthetic eyelid surgery to enhance the appearance of her orbital asymmetry. These surgical treatments brought about the effect of making her eyes look more symmetric, refreshed, and alert. Here, the author reports a good treatment result of SSS without orbital floor reconstruction along with review of literatures.

Key Words: Blepharoplasty, endoscopic surgery, silent sinus syndrome

Silent sinus syndrome (SSS) is a rare clinical syndrome that can pose a diagnostic challenge. The patient may present with unilateral, painless, and spontaneous enophthalmos and hypoglobus. Its exact pathogenesis is unknown. It is associated with characteristic radiologic features including an opacified maxillary sinus, obstructed natural ostium, and downward bowing of the orbital floor caused by ipsilateral maxillary sinus atelectasis. Given its rarity and peculiar pathogenesis, optimal treatment guidelines have not been clearly established. Thus far, SSS is usually managed in a two-step manner. First, endoscopic sinus surgery (ESS) is favored to resolve the negative antral pressure. The second step, repair of the orbital floor, is required to improve the facial asymmetry. In this clinical report, the author demonstrates a good surgical outcome for SSS after combined ESS and cosmetic eyelid surgery without the need for a two-step surgical approach.

From the Division of Otolaryngology, Department of Otolarinology-Head and Neck Surgery, Jeju National University School of Medicine, Jeju, Republic of Korea.

Received April 6, 2016. Accepted for publication June 5, 2016.

Address correspondence and reprint requests to Se-Hyung Kim, MD, PhD, Assistant Professor, Division of Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, Jeju National University Hospital, Jeju National University School of Medicine, 15, Aran 13-gil, Jeju-si, Jeju-do 63241, Republic of Korea. E-mail: meddoc98@gmail.com

The author reports no conflicts of interest.

Copyright © 2016 by Mutaz B. Habal, MD. Unauthorized reproduction of this article is prohibited.