Error estimates for extrapolations with matrix-product states

C. Hubig, J. Haegeman, and U. Schollwöck

1Department of Physics and Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
2Department of Physics and Astronomy, Ghent University, Krijgslaan 281 S9, B-9000 Ghent, Belgium

(Dated: 4th January 2018)

We introduce a new error measure for matrix-product states without requiring the relatively costly two-site density matrix renormalization group (2DMRG). This error measure is based on an approximation of the full variance \(\langle \psi | (\hat{H} - E)^2 | \psi \rangle \). When applied to a series of matrix-product states at different bond dimensions obtained from a single-site density matrix renormalization group (1DMRG) calculation, it allows for the extrapolation of observables towards the zero-error case representing the exact ground state of the system. The calculation of the error measure is split into a sequential part of cost equivalent to two calculations of \(\langle \psi | \hat{H} | \psi \rangle \) and a trivially parallelized part scaling like a single operator application in 2DMRG. The reliability of the new error measure is demonstrated at four examples: the \(L = 30, S = \frac{1}{2} \) Heisenberg chain, the \(L = 50 \) Hubbard chain, an electronic model with long-range Coulomb-like interactions and the Hubbard model on a cylinder of size 10 \times 4. Extrapolation in the new error measure is shown to be on-par with extrapolation in the 2DMRG truncation error or the full variance \(\langle \psi | (\hat{H} - E)^2 | \psi \rangle \) at a fraction of the computational effort.

I. INTRODUCTION

The density matrix renormalization group (DMRG) method and its underlying matrix-product state (MPS) structure are the method of choice for ground-state search and representation of one-dimensional quantum systems. In the last few years, it has also been applied to wider and wider cylindrical systems. In the one-dimensional physics. Furthermore, methods relying on the precise solution of a small effective system, such as the dynamical mean-field theory (DMFT) (with or without a dynamical cluster approximation) or the density matrix embedding theory (DME) have also started to use DMRG to solve the effective problem resulting from the embedding. Growing computational resources as well as algorithmic improvements made the study of critical systems in one dimension also more feasible.

In those complex systems it is often not possible to increase the precision of the matrix-product state ansatz sufficiently to capture the ground state of the system exactly. Instead, one often measures both the observables of interest, among them the energy, and the truncation error as obtained from a two-site DMRG (2DMRG) calculation during the calculation and at various precisions. One may then extrapolate the measured observables towards zero truncation error to obtain a comparably accurate estimate of the ground-state observable. This truncation error can also be obtained from a traditional environment-site-environment DMRG procedure which is equivalent to the MPS-based 2DMRG method.

Unfortunately, the 2DMRG method is relatively computationally expensive and scales relatively badly in the local physical dimension and it is sometimes slow to pick up long-range correlations. It would hence be preferable to only use single-site DMRG (1DMRG, corresponding to a environment-site-environment setup in the traditional DMRG) for an approximately four-fold computational speed-up in spin and fermionic systems and a much larger speed-up in bosonic systems. The subspace expansion scheme (SES) for 1DMRG does not yield a usable truncation error. The related density matrix perturbation (DMP) again scales relatively badly in the local physical dimension.

Measuring the full variance \(\langle \psi | (\hat{H} - E)^2 | \psi \rangle \) would provide a reliable error measurement for 1DMRG but is computationally very costly and often impossible to evaluate even if expectation value measurements and single-site DMRG calculations are still feasible. This is in particular true for large systems with long-range interactions or an underlying two-dimensional structure. Since such systems typically result in highly entangled ground states and hence require large computational resources per se, minimization of these resources wherever possible is key.

For these reasons, we wish to formulate a method which measures an error quantity \(\text{err} (\langle \psi |, \hat{H} \rangle) \) based only on a matrix-product state \(| \psi \rangle \) (regardless of how it was obtained) and associated Hamiltonian \(\hat{H} \). Measuring this error as well as an observable for different states should allow an extrapolation of the observable towards zero error. Evaluating the error measure should not be much more costly than a 1DMRG calculation. We find that the 2-site variance, an approximation of the full variance, fulfills these requirements and turns 1DMRG into a fast method with a controlled extrapolation scheme even for complex systems.

The rest of the paper is structured as follows: In Sec. IV we briefly review MPS and the related matrix-product operator (MPO) notation. Sec. V discusses the currently available error measures. Sec. VI explains the new approximation of the variance to serve as the new error measure. In Sec. VII we consider four relevant examples to show that the variance itself is an error measure suitable for extrapolations, that the 2-site approximation of
the variance is also a valid extrapolation tool even if it does not coincide with the variance and finally that the 2-site variance is also applicable in two-dimensional systems where evaluation of the full variance is not possible any more. The conclusions in Sec. VI serve as a brief summary.

II. MPS AND MPO NOTATION

Matrix-product states (MPS) describe quantum mechanical states on a separable Hilbert space $\mathcal{H} = \bigotimes_{i=1}^{L} \mathcal{H}_i$, each with a local basis $\{|\sigma_i\rangle\}_{\sigma_i}^{d_i}$. To represent a state $|\psi\rangle$, L rank-3 tensors $M^\sigma_{i:m_i}$ are selected such that

$$|\psi\rangle = \sum_{\sigma_1} \cdots \sum_{\sigma_L} M^\sigma_{1:m_1} \cdots M^\sigma_{L:m_L} |\sigma_L \ldots \sigma_1\rangle .$$

(1)

Here, the \cdot represents a contraction of the tensors over all common indices, i.e.

$$M^\sigma_{1:m_1} \cdot M^\sigma_{2:m_2} = \sum_{m_1} M^\sigma_{1:m_1} M^\sigma_{2:m_2} .$$

(2)

The m_i are called right MPS bond indices, m_{i-1} are the left MPS bond indices and σ_i are the local physical indices. m_0 and m_L are one-dimensional dummy indices inserted for consistency. It is useful to differentiate between incoming (lower, bra) and outgoing (upper, ket) indices in the context of implementing symmetries in the network. An incoming index may only be contracted with an outgoing index and vice-versa. Indices may be left off if they are clear from context, e.g.:

$$M_1 \cdot M_2 = \sum_{m_1} M^\sigma_{1:m_1} M^\sigma_{2:m_1} .$$

(3)

Furthermore, we will write σ to refer to all $\sigma_1, \ldots, \sigma_L$.

Matrix-product state tensors may optionally be left- or right-normalized. ‘A’ instead of ‘M’ will be used for left-normalized tensors which fulfill

$$\sum_{\sigma_{i}, m_{i-1}} A^\sigma_{i:m_i} A^\dagger_{i:m_i} = 1^{m_i} ,$$

(4)

and ‘B’ will be used for right-normalized tensors fulfilling

$$\sum_{\sigma_{i}, m_{i-1}} B^\sigma_{i:m_i} B^\dagger_{i:m_i} = 1^{m_i} .$$

(5)

where \dagger denotes complex conjugation of all entries and reversal of index directions such that $A^\dagger_{i:m_i} = (A^\sigma_{i:m_i})^* = (A^\sigma_{i:m_i})^\dagger$. A matrix-product state is in left-canonical (right-canonical) form if all tensors are left-normalized (right-normalized). A matrix-product state in which all tensors to the left of a specific site k are left-normalized and all tensors to the right of that site k are right-normalized is in mixed-canonical form and site k is its orthogonality center (cf. Fig. 1).

In a similar fashion, operators may be written as matrix-product operators, consisting of L rank-4 tensors $W^\tau_{i:w_i}$, such that:

$$\hat{H} = \sum_{\sigma \tau} W_1 \cdot W_2 \cdots W_L |\tau \rangle \langle \sigma| .$$

(6)

Just like MPS tensors, MPO tensors have a left MPO bond index (w_{i-1}), a right MPO bond index (w_i) as well as an upper and lower physical index (τ_i and σ_i resp.). Multiple methods to construct MPOs from scratch exist.

The following definitions will be useful later (cf. Fig. 2):

$$L_0 = 1^{m_0} ,$$

(7)

$$L_i = L_{i-1} \cdot W_i \cdot A_i \cdot A_i^\dagger ,$$

(8)

$$R_{L+1} = 1^{m_L} ,$$

(9)

$$R_i = R_{i+1} \cdot W_i \cdot B_i \cdot B_i^\dagger .$$

(10)

The L_i and R_i are the usual left and right contractions of the Hamiltonian sandwiched between the state as encountered during standard DMRG, standard TDVR or

![Figure 1](image1.png)

Figure 1. Top: Graphical representation of a MPS in mixed-canonical form with the orthogonality center on site 3 and tensors A_1, A_2, M_3, B_4, B_5. Explicit tensor and tensor leg labels are given here. Bottom: Conditions for left and right-normalized tensors to result in identity matrices upon contraction. Labels are left off to avoid clutter.

![Figure 2](image2.png)

Figure 2. Consecutive left- and right-contractions of the MPO (squares) sandwiched between normalized MPS tensors (triangles). L_0 and R_{L+1} are the dummy tensors inserted for consistency. Connecting any pair $L_i \cdot R_{i+1}$ results in the expectation value of the operator.
expectation value calculations. Hence, we can expect to be able to calculate them efficiently. As a visualization, note that

$$L_i \cdot R_i = \langle \psi | \hat{H} | \psi \rangle \quad \forall i \in [0, L].$$ \hspace{1cm} (11)

Throughout this paper, we will use m, w and d to denote the effective MPS bond dimension, the effective MPO bond dimension and the effective size of the local basis in particular when estimating the computational cost of an operation.

Given an MPS tensor A_i, we can view it as an orthonormal basis transformation and truncation from an effective left basis m_i and local basis σ_i into a new effective right basis (m_i). However, the new right-hand side basis will typically not span the complete space reachable from $m_{i-1} \otimes \sigma_i$, but only a small subset thereof with size m_i. We hence define tensors F_i (and conversely G_i when working with B_i) which reach the additional $(d-1)m$ states with the properties

$$\sum_{\sigma_i, m_i} A^\sigma_{i,m_i} F^\sigma_{i,m_i} = 0 \quad (12)$$

$$\sum_{\sigma_i, m_i} F^\sigma_{i,m_i} = 1 \quad (13)$$

and equivalently for G_i:

$$\sum_{\sigma_i, m_i} B^\sigma_{i,m_i} G^\sigma_{i,m_i} = 0 \quad (14)$$

$$\sum_{\sigma_i, m_i} G^\sigma_{i,m_i} = 1 \quad (15)$$

When interpreting A^σ_{i,m_i} as a rectangular matrix whose row index is obtained from joining the left virtual and physical index (i.e. the two upper indices), it is an isometric matrix in the sense of Eq. (4). Similarly interpreting F^σ_{i,m_i}, it corresponds to the additional columns required to extend the isometric matrix A_i into a square unitary matrix. Put differently, if A_i is obtained from a ‘reduced’ or ‘thin’ QR decomposition, one can similarly obtain F_i by instead requesting a ‘full’ decomposition with a square and unitary Q matrix of size $md \times md$ (assuming that the left bond dimension is m). The first m columns correspond to A^σ_{i,m_i}, whereas the last $m(d-1)$ columns define F^σ_{i,m_i}, with thus $m'_i = 1, \ldots, m(d-1)$.

An analogous construction defines G^σ_{i,m_i}.

III. CURRENT ALTERNATIVES

A. 2DMRG truncation error

The 2DMRG truncation error is readily available from a 2DMRG calculation and has repeatedly been shown to allow a reliably extrapolation of observables obtained during the calculation towards the infinite-precision ground state. In the examples later in the paper, we have taken the largest 2DMRG truncation error and the lowest eigensolver energy encountered during the last half-sweep at a given bond dimension as error measure and expectation value respectively.

However, the 2DMRG method both scales relatively badly in the local physical dimension as $O(m^3d^2w + m^3d^2w^2 + m^3d^3)$ and sometimes – in particular, if no noise terms are used – is slow to pick up long-range correlations. Generally, one can expect a speed-up of approximately four in fermionic or spin systems when switching to a single-site implementation to obtain the same accuracy in energy. Furthermore, the idea of updating two sites at the same time runs somewhat counter to the original aim of matrix-product states, namely reducing the exponential complexity of the Hilbert space as much as possible. Finally, the 2DMRG truncation error is obtained during the 2DMRG calculation and hence applies to the DMRG process itself, not necessarily to the resulting state. If the state is already well-converged at the current bond dimension and hence changes little in subsequent sweeps, the difference will be minimal and the extrapolation can be applied correctly. However, it may be difficult to pinpoint this convergence during a large-scale calculation.

B. The full variance

Evaluation of the full variance $\langle \psi | \hat{H}^2 | \psi \rangle - \langle \psi | \hat{H} | \psi \rangle^2$ directly yields information on the non-eigenstate content of the (assumed normalized) state $| \psi \rangle$: With $E = \langle \psi | \hat{H} | \psi \rangle$, the residuum $| \phi \rangle$ is given as

$$| \phi \rangle = \hat{H} | \psi \rangle - E | \psi \rangle \quad (16)$$

$$\Rightarrow \langle \psi | \phi \rangle = \langle \psi | \hat{H}^2 | \psi \rangle - E^2 \quad (17)$$

The variance of \hat{H} with respect to our current state $| \psi \rangle$ is hence the norm squared of the residuum $| \phi \rangle = \hat{H} | \psi \rangle - E | \psi \rangle$. It is an extremely useful tool to check the convergence of DMRG and – contrary to the 2DMRG truncation error – can not just diagnose insufficient bond dimensions but also other convergence problems. When extrapolating the energy E in the variance ψ, we typically expect a linear behavior, i.e. $E(\psi) = a \cdot \psi + E_0$. For other observables, the exponent may be different from one depending on the system at hand, the observable and how well either 1DMRG or 2DMRG can optimize this observable. In Sec. [V.C] we provide one example to show the different range of exponents potentially encountered in such extrapolations.

Unfortunately, calculation of $\langle \hat{H}^2 \rangle$ is computationally relatively expensive. A naive evaluation scales as $O(m^3dw^2 + m^2d^2w^3)$. First evaluating \hat{H}^2 and applying a MPO compression scheme allows us to reduce this to the calculation of the expectation value of a larger MPO with bond dimension w'. In most cases,
$w' \approx 2w$. While this is unproblematic for simple one-dimensional systems with nearest-neighbor interactions, more complicated systems (e.g. from embedded problems, cylindrical systems or direct application of DMRG to quantum chemistry models) also result in much larger MPO bond dimensions w which make evaluation of the variance unfeasible or at least much more costly than the initial DMRG calculation which lead to the state $|\psi\rangle$. In particular, there is a region (roughly $m \approx 10000$ and $w \approx 50$) where DMRG calculations and evaluation of simple observables are possible, but evaluating $\langle \psi | \hat{H}^2 | \psi \rangle$ or $\hat{H} | \psi \rangle$ is not.

IV. PROPOSED NEW ERROR MEASURE: 2-SITE VARIANCE

The complete Hilbert space \mathcal{H} may not only be decomposed into a product of local Hilbert spaces, but, given a partially span the entirety of \mathcal{H}, also into a direct sum of orthogonal spaces

$$\mathcal{H} = \bigoplus_{l=0}^{L} \mathcal{W}_l$$

(18)

where \mathcal{W}_0 is the one-dimensional space of states parallel to $|\psi\rangle$ and \mathcal{W}_l are the spaces of variations of l continuous sites orthogonal to all $\mathcal{W}_k, k < l$. \mathcal{W}_L could potentially span the entirety of \mathcal{H} due to the completeness of matrix-product states, with only the subspaces already contained in $\mathcal{W}_k, k < L$ removed from it. Depending on the state $|\psi\rangle$, the partition of \mathcal{H} into \mathcal{W}_l changes.

Specifically, \mathcal{W}_1 is spanned by the states

$$|\phi_l^{(1)}(V)\rangle = \sum_{\sigma} \cdots A_{i-1} \cdot F_i \cdot V_i \cdot B_{i+1} \cdots |\sigma\rangle$$

$$\forall i \in [1, L] \quad \forall V_i \in \mathbb{C}_{m_i}^{n_i}$$

(19)

and similarly \mathcal{W}_2 by the states

$$|\phi_l^{(2)}(W)\rangle = \sum_{\sigma} \cdots A_{i-1} \cdot F_i \cdot W_i \cdot G_{i+1} \cdot B_{i+2} \cdots |\sigma\rangle$$

$$\forall i \in [1, L-1] \quad \forall W_i \in \mathbb{C}_{m_i}^{n_i}$$

(20)

The tensors F_i and G_i have the properties as defined in Eqs. (12) through (15). The projector P_l into the space \mathcal{W}_l is given by $\sum |\phi_l^{(1)}(V)_i\rangle \langle \phi_l^{(1)}(V)_i|$ with the matrix V_i left off and the left-hand side legs of B_{i+1} and B_{i+1}^\dagger as well as the right-hand side legs of F_i and F_i^\dagger connected. Similarly, the projector P_2 into the space \mathcal{W}_2 is given by $\sum |\phi_l^{(2)}(W)_{i+1}\rangle \langle \phi_l^{(2)}(W)_{i+1}|$ connected in the same way. Individual terms of these two projectors are illustrated in Fig. 3. The projector P_0 for \mathcal{W}_0 is simply $|\psi\rangle \langle \psi|$.

If we now consider the full variance $\langle \psi | (\hat{H} - E)(\hat{H} - E) | \psi \rangle$ of a normalized state $|\psi\rangle$, we may insert an identity $1 = \sum_{l=0}^{L} P_l$:

$$\langle \psi | (\hat{H} - E)(\hat{H} - E) | \psi \rangle$$

$$\approx \langle \psi | (\hat{H} - E) \left(P_0 + P_1 + P_2 \right) (\hat{H} - E) | \psi \rangle$$

$$\approx \langle \psi | \hat{H} P_1 \hat{H} | \psi \rangle + \langle \psi | \hat{H} P_2 \hat{H} | \psi \rangle$$

(21)

(22)

(23)

(24)

where all other terms of the form $\langle \psi | \hat{H} P_i 2E | \psi \rangle$ are identically zero due to the orthogonality of $P_{1,2} | \phi \rangle$ and $| \psi \rangle$ for all $| \phi \rangle$ and $\langle \psi | (\hat{H} - E)P_0 (\hat{H} - E) | \psi \rangle \equiv 0$ as well.

There are a total of $2L - 1$ terms in Eq. (24), all of which can be written as squared Frobenius norms of rank-2 tensors (cf. Fig. 4).

Note that, if the Hamiltonian is composed of nearest-neighbor interactions only, the approximation in Eq. (23) becomes an equality. In this case, the Hamiltonian is a sum of nearest-neighbor terms $\hat{h}_{i,i+1}$. Applying such a term to the state $|\psi\rangle$ only has to change its MPS tensors on sites i and $i + 1$ (to see this, consider $\hat{h}_{i,i+1}$ as a two-site MPO gate). $\hat{h}_{i,i+1} | \psi \rangle$ is hence contained in $\text{span} \left(|\psi\rangle, |\phi^{(1)}(V)_{i}\rangle, |\phi^{(2)}(W)_{i+1}\rangle \right)$ for suitably-chosen V, W and hence in $\mathcal{W}_0 \oplus \mathcal{W}_1 \oplus \mathcal{W}_2$.

Equally, if we were to include also \hat{P}_3, we could calculate the variance of a three-site operator exactly (albeit at d-times higher computational effort).

In such cases, the 2-site variance proposed here is actually a remarkably stable and numerically precise way to evaluate the variance: the large terms of order E^2 are removed exactly, which would otherwise incur a loss of approximately $\log_{10}(E^2)$ digits of precision when evaluating $(H^2 - \langle E \rangle^2)$ directly. We also avoid the alternative subtraction in $(\langle H - E \rangle^2)$ which still incurs losing approximately $\log_{10}(|E|)$ digits. Instead, only positive, small terms of order $(\langle H - E \rangle^2)/L$ are added together. We are left with the unavoidable loss of precision due
to repeated matrix-matrix products of one or two digits relative to the machine epsilon. This effect is demonstrated in Fig. 5, where four possible approaches to evaluate the variance in a $S = 1$, $L = 200$ Heisenberg chain with open boundary conditions are compared. The 2-site variance is one of the two most precise methods and also the fastest method: for example, the last data points at $m = 340$ in Fig. 5 took 26 s for the 2-site variance, 41 s for $\langle H^2 \rangle - \langle E \rangle^2$, 41 s for $\langle (H - E)^2 \rangle$ and 436 s for $\|H|\psi \rangle - E|\psi \rangle\|^2$ on a two-core Intel i5-6200U CPU. This system is the best-case scenario for calculation of the full variance due to the small original bond dimension of H with just $w = 5$. On more complicated systems, the relative advantage of the 2-site variance will be more pronounced.

Depending on the number of cores available, different procedures yield the fastest wall-clock time and least memory/temporary disk space usage when evaluating the 2-site variance:

If only a single core is available, it is reasonable to first left-normalize $|\psi \rangle$, evaluate L_i and store X_i, F_i^\dagger (cf. Fig. 4) $X_i = L_{i-1} \cdot W_i \cdot A_i$ for all sites. The L_i do not have to be stored. Then, sweeping right-to-left, one first right-normalizes M_{i+1} into B_{i+1} and T. B_{i+1} is used to evaluate $Y_{i+1} = R_{i+2} \cdot W_{i+1} \cdot B_{i+1}$ which is stored temporarily. G_{i+1}^\dagger and T are contracted into Y_{i+1}' and the result is then contracted with the left half to yield the rank-2 tensor depicted in Fig. 4, bottom panel. The squared Frobenius norm of this tensor is taken and added to the accumulator. One then evaluates R_{i+1} by re-using Y_{i+1}', moves T into the next site tensor to the left as well as into the contraction X_i to yield X_i'. X_i' is contracted with R_{i+1} to give the tensor in Fig. 4 upper panel. Its squared Frobenius norm is again added to the accumulator and one moves to the next site.

If, on the other hand, many cores are available, it is reasonable to parallelize the most expensive part, namely the calculation of F_i and G_i as well as the products leading to the tensors in Fig. 4. This can be done by first evaluating X_i and Y_i as well as R_i on all sites by two independent processes acting on two left- and right-normalized copies of $|\psi \rangle$. Once these contractions are available and e.g. stored temporarily on disk, one may start $2L - 1$ processes, each evaluating one of the $2L - 1$ individual terms.

The costs of this procedure are distributed as follows: Left- and right-normalization as well as calculation of X_i, Y_i, R_i and the (temporary) L_i are all scale as $O(m^3dw)$ and are roughly twice as expensive as calculating a single expectation value $\langle \psi | H | \psi \rangle$, but can be parallelized two-fold. The generation of F_i and G_i scales as $O(m^3d(d - 1))$ but can be parallelized $2L - 1$-fold. Contractions $X_i' \cdot F_i^\dagger$ and $Y_{i+1} \cdot G_{i+1}^\dagger$ cost $O(m^3d(d - 1)w)$ each, the contraction $X_i' F_i^\dagger \cdot Y_{i+1} G_{i+1}^\dagger$ costs $O(m^3(d - 1)^2w)$, but these can also be parallelized perfectly.

As such, the serial part of the calculation takes wall-clock time comparable to a single expectation value calculation. The following, $2L - 1$-fold parallelized part scales worse in the local physical dimension than the pure
1DMRG, but already better than 2DMRG. Its primary components, the two full QRs to calculate F_i and G_i, are also much cheaper than the SVD of the two-site tensor in 2DMRG both asymptotically (by a factor of d) and in practical calculations.

V. EXAMPLES

The first two examples are intended to show that the variance itself is a valid extrapolation tool and as useful as the 2DMRG truncation error. This is done at the example of nearest-neighbor interaction chains of Heisenberg spins and Hubbard electrons. Next, we show at the example of long-range Coulomb-like interactions that even if the full variance and two-site variance do not coincide due to long-range interactions, both yield comparable results. Finally, we consider the Hubbard model on a cylinder where it is impractical to calculate the full variance but extrapolation in the two-site variance is as useful as extrapolation in the 2DMRG truncation error.

A. Introductory remarks

In the following Figs. 6 through 11, we show stages of the calculations always as points with select bond dimensions indicated by nearby numbers. The y-axis position of each point is given by the observable expectation value (in Figs. 10 and 11) or the error compared to the true ground state expectation value (in Figs. 6-9) at that particular stage. The x-axis position is given by the error measurement used, i.e. either the 2DMRG truncation error (always in green), the full variance (in red where available) or the 2-site variance (always in blue) as observed at this stage. Errors in energy and error measures smaller than the plot range (typically 10^{-14}) were clipped to that value for illustrative purposes. The error measures were likewise scaled by constant factors to fit into the same plot (this does not affect the extrapolation).

For the energies plotted in Figs. 6, 7 and 9, linear extrapolations towards zero error were attempted over several intervals, each containing a certain number of data points obtained from the calculation. In the plots, the least to most accurate extrapolations are always shown as dotted, dashed, dash-dotted and solid lines respectively. In Fig. 6 the exponent was also selected as a fit parameter and only one extrapolation performed per data set.

Ideally, extrapolations over intervals with smaller bond dimensions are validated by calculations at higher bond dimensions: In Fig. 6 we would like the data points at bond dimension 160 to lie on the line extrapolated from bond dimensions $[2, \ldots, m' \ll 160]$. We can hence also judge the quality of an extrapolation by observing its change when including additional data points.

Furthermore, a correct extrapolation in Figs. 6 through 9 would result in a y-intercept of zero, indicating that the extrapolation produced the exact (error-free) value. Deviations from this ideal case (i.e., non-zero y-intercepts) result in saturated constant extrapolations at small error values. If the extrapolated value is smaller than the true ground-state value, the resulting zero crossing displays as a narrow dip in the extrapolation curve.

In Fig. 10 and 11, no exact reference values are available, making the log-log plot impossible. We hence show in total three different ranges of the calculation with linear scales on both axes.

For the 2DMRG calculations, the energy is measured during the calculation and prior to each local truncation, resulting in a larger effective bond dimension for 2DMRG and a slightly lower energy. This would also be done in actual calculations specifically to exploit this locally larger dimension for more accurate measurements. We hence have not eliminated this advantage by bringing the 2DMRG state into canonical form before evaluating its energy. For the variance measures, 1DMRG with subspace expansion (DMRG3S) is used and the energy is evaluated as the expectation value of the Hamiltonian with respect to the final MPS.

B. Heisenberg spin chain

As the first example, we wish to analyze the convergence behavior of a $L = 30$ Heisenberg spin chain with open boundary conditions. Only the $U(1)$ symmetry is implemented, but the Hamiltonian itself is rotationally invariant:

$$\hat{H} = \sum_{i=1}^{29} \sum_{a=x,y,z} \hat{s}_i^a \hat{s}_{i+1}^a.$$

30 sweeps each are run with bond dimensions $m = 2, 4, 6, 8, \ldots, 160$. For the reference value of the ground-state energy $E_0 = -13.1113557586032048 \pm 5 \times 10^{-14}$, a calculation with $m = 500$ is run. This ground state can be truncated with a truncation error less than 10^{-16} to $m = 160$, giving the upper bound in the above series.

In Fig. 6 we plot the energy differences to the ground state over the three error measures. Three linear extrapolations in the ranges $m \in [2, 12]$, $m \in [14, 36]$ and $m \in [14, 60]$ are done. The first range represents the case of only a bad, low-precision calculation being available, the other ranges showcase the increased precision attainable and – as usually done – exclude the lowest-precision data points.

The first extrapolation provides a much improved extrapolated ground-state energy estimate with 2DMRG as compared to the two methods based on 1DMRG. This is likely due to the increased effective bond dimension in 2DMRG. In later extrapolations, all extrapolated ground-state energies are within an order of magnitude.

To summarize the Heisenberg model, we find mostly identical behavior between an extrapolation in the variance and and the 2DMRG truncation error. The latter
sometimes provides better data, likely due to the larger effective bond dimension. Generally, extrapolation can lower the energy difference $|E - E_0|$ from the true ground state by an order of magnitude.

C. Hubbard chain

As a second system, we consider the Fermi-Hubbard model on a chain of $L = 50$ sites with open boundary conditions. The Hubbard-U parameter is set to 8, $t = 1$:

$$\hat{H} = - \sum_{i=1}^{49} (\hat{c}_i^{\dagger} \hat{c}_{i+1} + \text{h.c.}) + \frac{8}{2} \sum_{i=1}^{50} (\hat{n}_i^2 - \hat{n}_i).$$

Both the $U(1)_N$ and $\text{SU}(2)_S$ symmetries are implemented (leading to two-component spinors \hat{c} and \hat{c}^\dagger). We select the sector $N = 40$, $S = 0$ for the ground-state search. The reference value for the ground-state energy $E_0 = 30.4096693772556 \pm 3 \times 10^{-13}$ is provided by a calculation at $m = 2000$, the test calculations are run at $m = 50$, 100, 150, 200, 250, 300, 400, 500, 600.

Extrapolations over the regions $m \in [50, 150]$, $m \in [200, 300]$ and $m \in [200, 600]$ show that at small accuracies, all extrapolations have roughly equal errors. At higher accuracies, the 2DMRG again benefits from its larger effective bond dimension. As expected, the full variance and two-site variance approximation coincide again, as this Hamiltonian also only has nearest-neighbor interactions. All extrapolations lead to equally valid results and lower the error in energy by approximately an order of magnitude.

In addition to the error in energy, we also consider the observables $\langle \hat{n}_{21} \hat{n}_{23} \rangle$ and $\langle \hat{n}_{21} \rangle$, again compared to a reference value evaluated at $m = 2000$. The following noteworthy observations can be made: first, $\langle \hat{n}_{21} \hat{n}_{23} \rangle$ seems to be accurate down to approx. 10^{-9} with the error saturating there. Second, in the extrapolation of this observable, both 2DMRG and the 2-site variance only lower the measured error by approximately a factor of two. Third, when evaluating $\langle \hat{n}_{21} \rangle$, the 2DMRG results are consistently more accurate than those from 1DMRG, possibly due to the two-site optimization applying better to this observable. Fourth, the optimal coefficients b in a fit of the form $a \cdot \text{err}^b + c$ range from 0.85 to 1.27 in these examples. Overall, while extrapolation of these observables is more difficult, it is still possible to obtain improved estimates for the true value at the ground state.

D. Long-range Coulomb interactions

As an example of long-range Hamiltonians which will lead to a difference between the full variance and the
two-site approximation of the variance, we selected an electronic model with Coulomb-like long-range interactions. The Hamiltonian, again implementing both the U(1)N and SU(2)$_S$ symmetries, is given by

$$\hat{H} = \sum_{i=1}^{19} \hat{c}_i^\dagger \hat{c}_{i+1} + \text{h.c.} + \sum_{i=1}^{20} \sum_{j=i}^{20} \frac{1}{1 + |i - j|} \hat{n}_i \hat{n}_j$$

(27)

$N = 30$ electrons with total spin $S = 0$ were placed in the system. Due to the strong repulsion and relatively small system size, solutions exhaust numerical accuracy around $m \approx 400$ with the reference value $E_0 = 111.43149155591837 \pm 5 \times 10^{-12}$ evaluated at $m = 600$. Test calculations are run at $m = 50, 100, 150, \ldots, 500$ and extrapolations are for $m \in [100, 200]^3$, $m \in [100, 300]$ and $m \in [100, 400]$.

Apart from a minor advantage enjoyed by 2DMRG due to the momentarily larger bond dimensions, the results largely coincide between 2DMRG, the full variance and the 2-site variance. In particular, the extrapolations based on the full variance and the two-site variance mostly coincide very well and lower the error in the energy again by approximately an order of magnitude.

E. Hubbard cylinder

As the final example, we will attempt to calculate the ground-state energy of the Hubbard model on a cylinder of size 10×4. $U(1)_N$ particle number conservation, SU(2)$_S$ total spin symmetry and $Z_{4,k}$ quasi-momentum conservation on the cylinder were implemented. The Hubbard-U parameter is set to 8, $t = 1$:

$$\hat{H} = -\sum_{x=1}^{10} \sum_{\alpha=1}^{4} 2 \cos \left(\frac{2\pi \alpha}{4}\right) \hat{c}_{x,\alpha}^\dagger \cdot \hat{c}_{x,\alpha}$$

$$- \sum_{x=1}^{10} \sum_{\alpha=1}^{4} \hat{c}_{x,\alpha}^\dagger \cdot \hat{c}_{x+1,\alpha} + \text{h.c.}$$

$$+ \sum_{x=1}^{10} \sum_{\alpha=1}^{4} \sum_{\beta\gamma=1}^{4} \frac{4}{4} \hat{c}_{x,\alpha}^\dagger \cdot \hat{c}_{x,\beta} \times \hat{c}_{x,\gamma}^\dagger \cdot \hat{c}_{x,\alpha - \beta + \gamma}$$

$$- \sum_{x=1}^{10} \sum_{\alpha=1}^{4} \hat{c}_{x,\alpha}^\dagger \cdot \hat{c}_{x,\alpha}$$

(28)

$\hat{c}_{x,\alpha}^\dagger$ is the two-component spinor annihilating (creating) an electron on ring x with momentum α. The two last lines implement the real-space on-site interaction which, in momentum space along each ring, becomes long-ranged. $N = 36$ electrons with total spin $S = 0$ and momentum $k = 0$ were placed in the system.

Due to the complicated system, no exact reference calculation was possible. 2DMRG was run at bond dimension $m = 300, 500, 1000, 2000, 3000, 4000$ and 5000. With 1DMRG, increasing m further to $m = 6000, 7000, 8000$ and $m = 9000$ was possible due to lower computational
energy by approximately one order of magnitude from the highest-precision estimate for the ground-state energy of -27.8817508 compared to the highest-precision 2DMRG estimate of -27.8817841 (cf. Tab. I).

The 2-site variance further corrects the estimate upwards for $m \in [4000, 5000]$ and $m \in [4000, 9000]$ resulting in a highest-precision estimate for the ground-state energy.

VI. CONCLUSIONS

We have shown that the variance itself as well as its two-site approximation allow for a reliable extrapolation of observables to the ground state from a series of small-m states. Measuring the two-site approximation of the variance is considerably cheaper than evaluating the full variance and leads to valid extrapolations comparable in quality to those resulting from 2DMRG. It hence allows the use of 1DMRG with its significant speed-up and reduced memory usage over the traditional 2DMRG.

All extrapolations encountered here lower the error in energy by approximately one order of magnitude from the most precise data point available, consistent with previous observations. We must stress, however, that the variational property of DMRG is lost if we use any sort of extrapolation.
ACKNOWLEDGMENTS

We would like to thank T. Köhler, S. Paeckel, L. Schoonderwoerd, E. M. Stoudenmire and S. R. White for very helpful discussions. C. H. acknowledges funding through the ExQM graduate school and the Nanosystems Initiative Munich. J. H. is supported by the European Commission via ERC grant nr. 715861 (ERQUAF).

1 S. R. White, Phys. Rev. Lett. 69, 2863 (1992)
2 U. Schollwöck, Ann. Phys. 326, 96 (2011)
3 S. R. White and D. J. Scalapino, Phys. Rev. B 70, 220506 (2004)
4 S. R. White and D. J. Scalapino, Phys. Rev. B 79, 220504 (2009)
5 S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Phys. Rev. Lett. 109, 067201 (2012)
6 G. Ehlers, S. R. White, and R. M. Noack, Phys. Rev. B 95, 125125 (2017)
7 J. Motruk, M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Phys. Rev. B 93, 155139 (2016).
8 A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
9 M. Karski, C. Raas, and G. S. Uhrig, Phys. Rev. B 77, 075116 (2008).
10 M. Ganahl, M. Aichhorn, H. G. Evertz, P. Thunström, K. Held, and F. Verstraete, Phys. Rev. B 92, 155132 (2015).
11 F. A. Wolf, A. Go, I. P. McCulloch, A. J. Millis, and U. Schollwöck, Phys. Rev. X 5, 041032 (2015).
12 D. Bauernfeind, M. Zingl, R. Triebl, M. Aichhorn, and H. G. Evertz, Phys. Rev. X 7, 031013 (2017).
13 G. Knizia and G. K.-L. Chan, J. Chem. Theory Comput. 9, 1428 (2013), pMID: 26587604, http://dx.doi.org/10.1021/ct301044e
14 S. R. White and I. Affleck, Phys. Rev. B 91, 155115 (2015).
15 Y. Yamashita, N. Shibata, and K. Ueda, Phys. Rev. B 58, 9114 (1998).
16 M. Andersson, M. Boman, and S. Östlund, Phys. Rev. B 59, 10493 (1999).
17 G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).
18 G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
19 P. Chen, Z.-L. Xue, I. P. McCulloch, M.-C. Chung, C.-C. Huang, and S.-K. Yip, Phys. Rev. Lett. 114, 145301 (2015).
20 I. Khait, P. Azaria, C. Hubig, U. Schollwöck, and A. Auerbach, (2017), arXiv:1710.04847 [cond-mat.str-el]
21 O. Legeza and G. Fáthi, Phys. Rev. B 53, 14349 (1996).