Liver involvement in inflammatory bowel disease: What should the clinician know?

Giuseppe Losurdo, Irene Vita Brescia, Chiara Lillo, Martino Mezzapesa, Michele Barone, Mariabeatrice Principi, Enzo Ierardi, Alfredo Di Leo, Maria Rendina

ORCID number: Giuseppe Losurdo 0000-0001-7038-3287; Irene Vita Brescia 0000-0001-6291-7517; Chiara Lillo 0000-0002-4866-2316; Martino Mezzapesa 0000-0003-3917-8300; Michele Barone 0000-0001-8284-5127; Mariabeatrice Principi 0000-0003-0545-5656; Enzo Ierardi 0000-0001-7275-5080; Alfredo Di Leo 0000-0003-2026-1200; Maria Rendina 0000-0003-0077-6629.

Author contributions: Losurdo G, Di Leo A and Rendina M planned the study; Brescia IV, Losurdo G, Lillo C and Mezzapesa M wrote the text; Principi M, Barone M and Rendina M critically revised the article; all the authors read and approved the final version of the manuscript.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

Country/Territory of origin: Italy

Specialty type: Gastroenterology and hepatology

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review report’s scientific quality classification
Grade A (Excellent): A
Grade B (Very good): B, B

Abstract
Inflammatory bowel disease (IBD) may show a wide range of extraintestinal manifestations. In this context, liver involvement is a focal point for both an adequate management of the disease and its prognosis, due to possible serious comorbidity. The association between IBD and primary sclerosing cholangitis is the most known example. This association is relevant because it implies an increased risk of both colorectal cancer and cholangiocarcinoma. Additionally, drugs such as thiopurines or biologic agents can cause drug-induced liver damage; therefore, this event should be considered when planning IBD treatment. Additionally, particular consideration should be given to the evidence that IBD patients may have concomitant chronic viral hepatitis, such as hepatitis B and hepatitis C. Chronic immunosuppressive regimens may cause a hepatitis flare or reactivation of a healthy carrier state, therefore careful monitoring of these patients is necessary. Finally, the spread of obesity has involved even IBD patients, thus increasing the risk of non-alcoholic fatty liver disease, which has already proven to be more common in IBD patients than in the non-IBD population. This phenomenon is considered an emerging issue, as it will become the leading cause of liver cirrhosis.

Key Words: Inflammatory bowel disease; Liver; Primary sclerosing cholangitis; Viral hepatitis; Immunosuppression; Non-alcoholic fatty liver disease

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In the present article, several aspects of liver involvement of inflammatory bowel disease (IBD) have been highlighted. Co-occurrence of primary sclerosing
IBD and PSC are two pathologic entities that can occur alone or in combination. In this case they create a phenotypically different disease known as PSC-IBD. PSC-IBD prevalence is uncertain and differs in several studies, but it is agreed that it is very low (0.024%-0.041%). PSC and IBD may occur simultaneously or sequentially. Indeed, PSC patients develop IBD in 20%-70% of cases, with a stronger association with UC (80%) than with CD (10%) and indeterminate colitis (IC) (10%). Conversely only 5% of patients with UC show concomitant PSC.

Primary Sclerosing Cholangitis and Ulcerative Colitis

UC represents the underlying IBD in most cases of PSC-IBD. In patients with PSC and UC (PSC-UC), UC characteristically tends to be mild, quiescent and may even appear endoscopically normal (in this case, the diagnosis is based simply on histological analysis). Therefore, random biopsies during the first colonoscopy should always be performed to reveal an underlying UC in patients with PSC. Similarly, PSC may be underdiagnosed in patients with UC, as it can be asymptomatic. Thus, liver function tests, including cholestatic and hepatocellular damage markers, should always be recommended in the follow-up of UC. If a patient with UC is found to have hepato-cellular injury or a cholestatic pattern, magnetic resonance cholangiopancreatography is recommended in the follow-up of UC.
Table 1 Main liver comorbidities associated with inflammatory bowel disease

Associated diseases	Prevalence in IBD (%)	Notes
PSC	0.024-0.041	Higher risk of cholangiocarcinoma and colorectal cancer; IBD shows less severe lesions than IBD alone
NAFLD	20-30	Associated with the use of corticosteroids, long disease duration, severe disease course; Associated with metabolic syndrome
Viral hepatitis	1-9	More common in the elderly; Association with advanced liver fibrosis; Need for anti-viral treatment before starting immunosuppressive drugs; HBV vaccine recommended

HBV: Hepatitis B virus; NAFLD: Non-alcoholic fatty liver disease; PSC: Primary sclerosing cholangitis; IBD: Inflammatory bowel disease.

(MRCP) should be performed to confirm the diagnosis[9]. The onset of the two disorders may vary. Typically, UC occurs first, with a median time interval of 10 years [10]. Nevertheless, in a minority of cases, UC may appear some years after the diagnosis of PSC, even after orthotopic liver transplantation[11]. The degree and the extension of colorectal inflammation in PSC-UC differ from UC alone. Indeed, the incidence of pancolitis appears increased in PSC-UC patients when compared with UC-only patients, as shown by Boonstra et al[12]. In their series, PSC-UC patients were affected by pancolitis in 94% of cases, while pancolitis was demonstrated only in 62% of patients affected by UC alone. Patients with PSC-UC usually have a greater prevalence of backwash ileitis and rectal sparing (51% and 52%, respectively) than controls with UC alone (7% and 6%, respectively)[13]. However, the mild degree of colitis and the low rate of endoscopically visible inflammation may overestimate rectal sparing, when random biopsies are not performed[12,14]. Even though, the extension of colitis tends to be more diffuse, and in PSC-UC the severity of the mucosal inflammation seems less pronounced. Patients with PSC-UC have less significant bowel symptoms, a lower need for steroids and undergo fewer hospitalizations than patients with UC alone[15].

Primary Sclerosing Cholangitis and Crohn’s Disease

Similar to patients affected by PSC-UC, patients with PSC and CD (PSC-CD) have a phenotypical and clinical pattern that sharply differs from patients with CD alone. Indeed, isolated ileal involvement, which occurs in about 30% of patients affected with CD, is rare in patients with PSC-CD (2%-5%)[12,16]. As shown with PSC-UC, the degree of endoscopically visible inflammation is milder in patient with PSC-CD than in those affected by UC. Likewise, the incidence of CD complications seems low in PSC-CD[12,16,17].

Main characteristics of PSC in IBD

While IBD in PSC-IBD has specific phenotypical patterns as listed above, PSC does not show significant differences in terms of histologic findings such as periductal fibrosis, inflammation and portal edema or fibrosis[18]. From a clinical point of view, according to Yanai et al[19] PSC outcomes, including cirrhosis incidence and transplant-free survival, did not differ in PSC-IBD compared with PSC alone patients. Conversely, Favery et al[20] reported higher rates of liver-related death and malignancies in patients with PSC-UC when compared to patients with PSC-CD. Interestingly, Nordenvall et al[21] found that patients with PSC-UC who underwent colectomy, seemed to have a lower risk of mortality, morbidity and the need for liver transplantation.

Risk of colorectal cancer (CRC) and hepatobiliary carcinomas in PSC-IBD

Although both PSC and IBD patients do not have a general higher risk of malignancies than the general population, patients with PSC-IBD show a significantly more marked risk of developing colorectal carcinoma (CRC) and cholangiocarcinoma (CCA), and hepatocellular carcinoma (HCC). In a meta-analysis, Zengh et al[22] found that patients with PSC-IBD have a strikingly higher risk for the development of CRC than patients with IBD alone. In detail, the stratification by IBD type showed a three-fold increased risk for the development of CRC and colorectal dysplasia in patients with PSC-UC compared to those with UC alone. A non-significant increase in the risk of neoplasia was shown in patients with PSC-CD, in contrast to that found in patients with CD alone. For these reasons, patients with PSC-IBD (especially those with PSC-
UC) require close colorectal neoplasia endoscopic surveillance. Major American and European Societies recommend that annual CRC screening should be started at the time of PSC-IBD diagnosis. In PSC-IBD patients an increased risk of hepatobiliary malignancies such as CCA, gallbladder carcinoma (GBC), and HCC has been demonstrated. Gulamhusein et al. [23] demonstrated that prolonged duration of IBD is associated with an increased risk of CCA in patients with PSC-IBD. They also observed that the risk of CCA was not modified after colectomy, thus suggesting that colonic resection itself does not reduce the risk of CCA. European and American Societies recommend that CA 19-9 and biliary imaging should be completed every year for these patients [24, 25]. IBD could be an additional risk factor that further increases the hazard of CCA in PSC. In particular, a long duration of IBD is associated with CCA with a hazard ratio of 1.37 [23].

There are no studies demonstrating an increased risk of GBC in PSC-IBD patients, even if this risk is demonstrated in PSC-alone patients [26]. Said et al. [27] found in their cohort of patients affected with PSC, that 6% had gallbladder masses, of which 56% were malignant. The American Association for the Study of Liver Disease (AASLD) guidelines support cholecystectomy for polyps of any size in these patients, given the high likelihood of malignancy [28]. HCC seems to be a rare malignancy in PSC-IBD. Zanouzi et al. [29] analyzed a cohort of PSC-cirrhosis patients and found no cases of HCC. However, in the same cohort of patients, IBD was found in 65%.

As both CCA and CRC are likely to occur in PSC-IBD patients, a chemopreventive strategy could be proposed. A meta-analysis [30] showed that low dose ursodeoxycholic acid may have a protective effect on both CRC and colonic dysplastic lesions, with an odds ratio of 0.19. However, the studies were performed on small populations in tertiary centers, and were often retrospective, therefore the strength of evidence is not high [31]. Even mesalazine has demonstrated, in vitro and in animal models, an anti-proliferative effect as well as the ability to inhibit the Wnt/β-Catenin pathway and epithelial growth factor receptor activation; therefore, it may be a promising agent for CRC prevention, despite the chemopreventive effect of mesalazine only being documented for patients with UC alone so far [32]. Unfortunately, no effective approach for CCA chemoprevention has emerged, therefore surveillance remains the mainstay for early CCA detection in PSC patients.

Therapeutic perspectives

The pathogenetic mechanisms underlying PSC-IBD remain unknown, even though many hypotheses have been proposed. Understanding the basis of the disease could lead to the identification of a new targeted therapy. One of the most interesting assumptions suggests that intestinal mucosal lymphocytes may migrate to the liver following activation in the bowel of IBD patients, thus promoting liver inflammation [33]. It has been shown that adhesion molecules and chemokine receptors normally expressed only in the gut can be aberrantly expressed within the liver to promote the homing of gut-associated lymphocytes. One of these adhesion molecules is α4β7 integrin. A monoclonal antibody directed against α4β7, vedolizumab, has been approved for the treatment of IBD. It was hypothesized that vedolizumab could provide hepatic anti-inflammatory benefits. Nevertheless, Christensen et al. found that, after treatment with vedolizumab, symptoms and intestinal clinical activity were significantly decreased, but the Mayo PSC Risk Score and liver damage biomarkers were only slightly improved [34].

Aberrant microbiota epitope recognition and gut dysbiosis seem to have a role in the pathogenesis of PSC-IBD, while genetics, gut mucosal permeability and autoimmune mechanisms have a controversial role [35]. Further studies are needed to improve our knowledge on the pathogenesis of PSC-IBD in order to provide new and efficient therapeutic strategies.

When PSC causes end-stage liver disease, liver transplantation is the only curative treatment. Regarding this point, some studies found that IBD does not worsen survival in patients who undergo liver transplantation for PSC. Only exposure to azathioprine seems to increase post-transplant mortality, while IBD per se increases the risk of cytomegalovirus infection [36].

PRIMARY BILIARY CHOLANGITIS AND AUTOIMMUNE HEPATITIS IN IBD

PBC is an autoimmune liver disease characterized by inflammatory cell infiltration of intralobular biliary ducts, with consequent biliary duct damage, which can progress towards fibrosis. Currently, there is no solid link between IBD and PBC, as only a few
case reports have been published. The most consistent case series involving six PBC patients in a cohort of IBD subjects during the period 2006-2016 (3 CD and 3 UC), who were diagnosed with PBC by liver biopsy responded to ursodeoxycholic acid therapy [37]. In a genetic association study, it was found that TNFSF15 and ICOSLG-CXCR5 might be a shared pathogenic pathway in the development of PBC and CD[38].

Similarly, only some case reports on the association between IBD and autoimmune hepatitis (AIH) have been published. A systematic review found approximately 109 cases, which were mostly overlap syndrome with PBC. The authors reported that jaundice was the most common onset sign and that response to steroids was good, with a low mortality rate[39]. Interestingly, a case report of AIH onset after starting adalimumab has been described, which underlines the possibility that an immunogenic drug may alter an equilibrium in the immune system[40].

HEPATIC STEATOSIS IN IBD

Hepatic steatosis is defined as intrahepatic fat accumulation of at least 5% of liver weight. Prolonged hepatic lipid storage may lead to liver metabolic dysfunction, inflammation, and advanced forms of NAFLD. Non-alcoholic hepatic steatosis is associated with obesity, type 2 diabetes and dyslipidemia. Several mechanisms are involved in the accumulation of intrahepatic fat, including increased flux of fatty acids to the liver, increased de novo lipogenesis, and/or reduced clearance through β-oxidation or very-low-density lipoprotein secretion[41,42] in the absence of secondary causes of lipid overload such as significant alcohol intake.

A link between hepatic steatosis and IBD has been studied since 1873, when Thomas [43] described for the first time the association between “ulceration of the colon” and a “much enlarged fatty liver”. In recent years, due to the spread of obesity in the context of IBD[44], fatty liver disease has been increasingly recognized in IBD. The intestinal inflammatory state and gut barrier perturbation secondary to IBD might increase toxin and bacterial constituents translocation from the gut to the portal vein; this event has been recognized as a possible pathophysiologic mechanism underlying NAFLD[45].

Moreover, diets poor in high fiber foods, such as fruits and vegetables, frequently consumed by IBD subjects to avoid intestinal symptoms, could lead to a great prevalence of NAFLD[46]. Moreover, food components and alimentary habits with high proteins and fats, excessive sugar intake and less vegetables and fiber can influence the composition of the intestinal microbiome, and play a role in driving IBD pathogenesis and fat metabolism leading to NAFLD onset[47].

A recent meta-analysis showed that the overall pooled prevalence of NAFLD in IBD patients was 27.5%[48]. NAFLD, in particular, was more common among patients with features of severe IBD, such as longer disease duration or a history of abdominal surgery.

Another study by Bessisow et al[49] showed a frequency of NAFLD in IBD of 33.6% and demonstrated that disease activity, duration of IBD and prior surgery were predictors of NAFLD development.

Conversely, in a Japanese study[50], the ultrasonographic prevalence of NAFLD in CD was 21.8% and this was the only study in which NAFLD was identified as an independent predictor of a negative C-reactive protein level and higher rate of remission, so NAFLD might offer a protective effect in patients with CD.

Nevertheless, most studies did not include non-IBD patients as a control group. Glassner et al[51] examined 3 groups of patients: IBD + NAFLD, IBD alone, and NAFLD alone. A total of 168 patients were evaluated, 56 patients in each group. They found an overall NAFLD prevalence of 13.3% in IBD patients. IBD patients with NAFLD had longer IBD disease duration and developed NAFLD even in the absence of metabolic risk factors when compared to patients with NAFLD alone.

A study performed in 2018 by Principi et al[52] included 465 IBD patients and 223 non-IBD patients. The prevalence of NAFLD was higher in IBD than in non-IBD patients (28.0% vs 20.1% respectively, P = 0.04); furthermore, younger age was observed in NAFLD-IBD than in non-IBD individuals, whereas no other differences were found between these two subgroups. Regarding risk factors, diabetes and fasting blood glucose were associated with development of NAFLD in IBD, without any difference in the populations without IBD, with only a higher waist circumference in IBD compared to non-IBD patients. No IBD-related variable was associated with NAFLD.

There are no studies on the progression of NASH in IBD. However, since IBD may induce gut barrier perturbation and an increase in toxin and bacterial translocation, it
is possible that in patients with NAFLD, the coexistence of IBD can trigger the progression from simple steatosis to NASH. A single study, on the other hand, has shown that progression of fibrosis, estimated by the NAFLD fibrosis score, is quite rare in IBD[53].

In conclusion, NAFLD is common in patients with IBD. Screening, prevention, and early treatment of NAFLD might be recommended in IBD patients. However, a better understanding of the underlying mechanism of the coexistence of IBD and NAFLD is necessary to improve management. The treatment of NAFLD in IBD does not differ from other cases. In particular, so far only diet and physical exercise have been proved to be effective[54].

CHRONIC VIRAL HEPATITIS IN IBD

Chronic viral hepatitis, in particular HBV and HCV-related, is a very common infection and a worldwide health issue. It is estimated that over 350 million people in the world have chronic HBV infection and over 250 million people have chronic HCV infection, with a mean prevalence of 5% and 2% for HBV and HCV, respectively[55, 56].

With regard to the prevalence of chronic hepatitis B (CHB) and chronic hepatitis C (CHC) in IBD, recent evidence[57-61] shows that it was comparable to a control population, ranging from 1% to 9%. A recent Italian study by Losurdo et al[62] on 807 IBD patients and 189 controls, found a prevalence of 3.4% for CHC and 0.9% for CHB, a result which agrees with recent literature reports[57,58,61]. This analysis demonstrated that advanced age was independently associated with increased risk of CHB/CHC. It is possible that surgery performed before the diffusion of presurgical hepatitis screening could explain this result, also taking into account that CHC was more common in patients operated before 1990. Indeed, the introduction of the HBV vaccine and HCV routine detection led to an improvement in the prevention measures against viral hepatitis transmission during surgery or blood donation, thus reducing the risk of infection in young generations[62].

As the treatment of IBD is based in selected cases on immunosuppressive agents (thiopurines and biologic drugs such as monoclonal antibodies), an accurate clinical and laboratory assessment is preliminarily required to look for chronic infections that may have a severe flare under biologic drugs[57,63]. Among these, chronic viral hepatitis and in particular CHB and CHC, are advised to be investigated by the guidelines before starting immunosuppressive treatment[64].

According to the guidelines, all IBD patients should be tested for HBV (HBsAg, anti-HBs, anti-HBc) at diagnosis of IBD to determine HBV status. In patients with positive HBsAg, viremia (HBV-DNA) should also be quantified. Moreover, HBV vaccination is recommended in all HBV anti-HBc seronegative patients with IBD. All HBsAg positive subjects should start anti-viral agents before undergoing biologic treatment to prevent potentially serious hepatitis B flares[64,65]. A number of case series and study cohorts suggest that nucleotide/nucleoside analogues are safe and effective in IBD patients on immunomodulator treatment[66]. Entecavir and tenofovir are preferred for IBD patients due to their rapid onset of action, high anti-viral potency and low incidence of resistance. On the other hand, patients with HBsAg positive (chronic HBV infection) should receive anti-viral agents before, during and for at least 12 mo after immunomodulator treatment has ceased[64]. Additionally, HBV vaccination is strongly advised by the guidelines, possibly before starting any immunosuppressive treatment and preferably at the moment of diagnosis, if anti-HBs level is not protective. This approach should be followed in any region, irrespective of HBV prevalence.

With regard to CHC, present knowledge shows in some cases mild liver dysfunction and an amplified detrimental effect by the simultaneous presence of other viruses (HBV/HIV) in relation to immunomodulator assumption[67,68]; therefore, HCV antibody testing and HCV-RNA should be investigated. Immunomodulators are not contraindicated but should be used with caution. The decision depends on the severity of IBD and the stage of liver disease. In the past years, an interferon-based treatment for HCV infection in CD has generally not been recommended, as it could worsened the intestinal disorder; however, this aspect remains controversial[69]. Conversely, in UC, interferon therapy did not appear to have an adverse effect[70]. In addition, the administration of ribavirin plus interferon or triple anti-viral therapy (interferon, ribavirin and protease inhibitors) could have increased the toxicity of drugs used for IBD maintenance (for example azathioprine, methotrexate)[64]. Therefore, the risk that anti-viral therapy or drug interactions with IBD therapy might
exacerbate IBD should assessed cautiously when considering the need for HCV treatment[64]. However, over the last years, concomitant IBD and HCV infection management has completely changed due to the recent introduction of direct-acting anti-virals (DAAs). Recently published data on DAAs are very encouraging also in IBD patients[71]. There are three possible timing strategies for administration in patients requiring biological therapies: (1) Sequential strategy, meaning the choice of treating firstly the active IBD with biologics and then, once the acute phase has been controlled, treating the HCV infection; (2) Concomitant strategy, that is the contemporaneous initiation of DAAs and biologic drug administration; and (3) Inverted sequential strategy, i.e., the administration of anti-viral therapy before biologics. The timing strategy could depend on several factors, including IBD activity and patient comorbidity. This means that a case-by-case decision could be the best choice[72]. The opportunity to eradicate HCV should always be taken into account, as it has demonstrated that a sustained viral response may reduce liver stiffness in these patients[73].

IBD AND DRUG-INDUCED LIVER INJURY

In the last decade, treatment options for IBD have included new molecules acting at different target levels. Usually, as new drugs are introduced, their side effects should also be considered, and liver toxicity is one of the most meaningful among these.

Drug-induced liver injury (DILI) caused by these drugs can be classified into three forms: hepatocellular, cholestatic or a mixed pattern. Moreover, some forms of drug-induced AIH should also be considered. This issue leads to a schedule of specific screening before starting therapy for IBD, and a follow-up to monitor liver enzymes is necessary[74,75].

In Table 2, we summarize the main knowledge on DILI in IBD patients.

Thiopurines

Thiopurines, in particular azathioprine (AZA) and 6-mercaptopurine (6-MP) are used for induction and maintenance of remission in IBD. Studies have shown that AZA/6-MP as add-on to infliximab can reduce the development of antibodies against infliximab. Thiopurines act as DNA synthesis inhibitors by incorporating purine analogues into DNA with cytotoxic and immunosuppressive effects. AZA is metabolized in the liver to 6-MP, which is metabolized by three enzymes, including thiopurine S-methyltransferase (TMPT) to 6-methylmercaptopurine (6-MMP). AZA and 6-MP are prodrugs of 6-thioguanine (6-TGN), the real effective metabolite. Some studies have suggested that some TMPT polymorphisms could cause a rise in 6-MMP level, thereby amplifying hepatotoxicity. In a cohort study of 270 patients treated with 6-MP, 47 patients showed evidence of altered liver function tests (LFT) in the first 20 weeks of treatment and > 80% of these patients had elevated levels of 6-MMP in the first week[76]. Another study proved that patients with high concentrations of 6-MMP had not only a strong risk of side effects but also a reduction in therapeutic response[77]. Conversely, Dong et al[78] found that the presence of TMPT polymorphisms increased bone marrow toxicity but not hepatotoxicity. A recent meta-analysis of 10 studies (recruiting 1875 patients) proved that TMPT polymorphisms were not linked with liver injury. The physiopathology of liver injury due to thiopurine is still unclear.

The prevalence of thiopurine-induced liver toxicity can vary between 0% and 17%. In a systematic review of 34 studies with 3485 patients, the prevalence of hepatotoxicity induced by AZA/6-MP was 3.4% with no differences between the two drugs[79]. Additionally, Chapparro et al[80] in a study of 3931 patients with IBD treated with thiopurine reported that hepatotoxicity was one of the most common side effects, with a prevalence of 4%. CD, smoking and preexisting NAFLD seemed to be risk factors, while the prevalence was lower in females. In a study by Shroder, who analyzed 259 patients undergoing immunosuppressive treatment with AZA, 6MP and MTX, liver steatosis was found in 28.2% of them, and patients with steatosis also had a higher risk of having elevated alanine transaminase (ALT) blood levels[81].

On the other hand, dose independent, idiosyncratic liver reactions have been described for thiopurines. Acute dose-independent toxicity is caused by an idiosyncratic cholestatic reaction accompanied by fever, rash, lymphadenopathy and hepatomegaly with increased alkaline phosphatase level. The median onset time of hepatotoxicity is 110 days, and in most cases is self-limiting with a good prognosis.

Another atypical, long-term liver injury caused by thiopurines is characterized by vascular endothelial lesions. Nodular regenerative hyperplasia (NRH), is the most
Table 2 Main features of drug-induced liver injury in inflammatory bowel disease

Drug	Characteristics of drug induced liver injury
Aminosalicylates	Increases in LFT; Cholestatic pattern; Rarely eosinophilia
Thiopurines	Influenced by TMPT polymorphisms > increase in 6-MMP, the hepatotoxic molecule; Increases in LFT; Idiosyncratic cholestatic reaction; Fever, rash, lymphadenopathy and hepatomegaly; Nodular regenerative hyperplasia
Anti-TNF	Idiosyncratic reaction > dose-dependent mechanism; Hepatocellular injury > cholestasis; Autoimmune phenomena
Anti-integrins	Rare; Asymptomatic LFT increase
Anti IL12/23	Mild LFT increase

LFT: Liver function test; TMPT: Thiopurine S-methyltransferase; TNF: Tumor necrosis factor.

frequent of these lesions, while peliosis hepatitis and sinusoidal obstruction syndrome (SOS) are less common. NRH is frequently asymptomatic. The mechanism underlying NRH is still unknown, it is possible that hepatocyte atrophy and portal venules destruction could be involved; risk factors seem to be male sex, CD with stricturing behavior and previous small bowel resection. In a large French study, NRH was found in 37 cases, with a cumulative risk of 0.5% at five years and a median onset time of 48 mo[82]. A recent study observed a similar prevalence of NRH between patients treated with thiopurines and patients thiopurine-naive[83]. On the other hand, it was found that thiopurines are associated with NRH when the dose is high (tioguanine > 40 mg/day) or in male patients with small bowel resection > 50 cm[84,85]. The evolution of NRH after stopping thiopurine therapy is still unclear.

There is no agreement on thiopurine toxicity management. In a large study with a long-term follow-up only 3.6% of patients needed to discontinue therapy[86]. In another study, 90% of patients had normalization of LFT by reducing thiopurine doses [87]. It is unclear whether the frequency of hepatotoxicity is the same for AZA and 6-MP treatment: a study of 135 patients reported that 6-MP was well tolerated in 71% patients who had shown liver toxicity with AZA[88]. Coadministration of allopurinol (a xanthine-oxidase inhibitor) seems to reduce 6-MMP levels as it leads to a higher concentration of 6-MMP converted to 6-TGN. However, since allopurinol is a xanthine-oxidase inhibitor, the AZA dose should be reduced. A retrospective cohort study of 105 patients reported that coadministration of allopurinol allowed long-lasting therapy and transaminase normalization[89]. Also, in another study by Krejineof, among 211 patients with liver toxicity, 86% experienced an improvement by lowering the dose of thiopurines in association with allopurinol[90]. A larger study by Vasuvedan analyzed 767 patients on thiopurine therapy and demonstrated that allopurinol should be started to reduce side effects, as 94% of patients who had hepatotoxicity achieved resolution by changing to co-therapy[91]. As TMPT polymorphisms are likely to be involved in hepatotoxicity, some authors have proposed that these polymorphisms should be identified before starting therapy, but a review by the American Gastroenterological Association Institute stated that the benefits of these tests were low[92]. On the contrary, a consensus guideline by the British Society of Gastroenterology focused on TMPT activity and recommended the administration of a half-dose of thiopurines to patients with low TMPT activity[93].

LFT should be monitored routinely, but there is no agreement on their timing. Mottet et al[93] recommended LFT every wk for the first mo, then twice a mo during the second mo and then once every 3 mo.

Sulfasalazine and mesalamine
Sulfasalazine is used for mild UC. It has been associated with acute hepatitis, cholestatic hepatitis, granulomatous hepatitis and rarely with acute liver failure[84]. The incidence of hepatotoxicity is low: A review by Ransford et al who analyzed 4.7 million prescriptions in the period from 1991 and 1998, reported only 9 cases of hepatitis caused by sulfasalazine[95].

Mesalamine (oral and rectal) is approved for mild UC. Authors in the last three years have demonstrated that the prevalence of liver toxicity caused by mesalamine is low, between 0% and 4%. The use of mesalamine may be associated with asymptomatic elevations in LFT, hepatitis and cholestatic hepatitis[96]. A recent review reported that LFT should be monitored every year and therapy should be stopped in the case of abnormal increases, while treatment with corticosteroids should be considered if fever, rash, or eosinophilia are observed. The same review
demonstrated that most cases of hepatotoxicity quickly reversed with drug withdrawal[97].

Methotrexate

Low doses of methotrexate (MTX) are used for mild CD, and it is widely used for rheumatologic disease; therefore, in this field its hepatotoxicity has been more extensively studied. The underlying mechanism is still not clear; several polymorphisms of enzymes involved in folic acid metabolism are thought to be involved. Two systematic reviews on this topic reported opposite results: the first review found an association between MTX hepatotoxicity and C677T polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene, while the second review did not confirm this result[98,99]. MTX can cause different histological liver findings according to the Roenigk’s classification including: (1) Normal; (2) Mild fatty infiltration, nuclear alterations or portal inflammation; (3) Moderate to severe fatty infiltration, nuclear alterations, or portal infiltration and mild fibrosis; (4) Moderate to severe fibrosis; and (5) cirrhosis[100].

Some studies reported that the prevalence of abnormal LFT in these patients ranged from 15 to 50%, while most recent evidence demonstrated a lower prevalence. A meta-analysis of patients with IBD treated with MTX reported a rate of abnormal LFT (defined as ALT higher than normal values but less than x2 upper normal limit (ULN)) of 1.4 per 100 person-month and a rate of hepatotoxicity (defined as ALT higher than two times normal values) of 0.9 per 100 person-month[101]. It should be noted that, in CD, methotrexate is given i.m., with a dose of 25 mg/wk at induction and 15 mg/wk for maintaining remission. Considering that this dose is higher than in rheumatologic patients, this could explain the more frequent liver adverse events.

Before starting MTX treatment, patients should be screened for preexisting medical conditions, such as alcohol intake, viral hepatitis, steatosis and family history of liver disease. Rheumatological consensus guidelines recommend monitoring LFT every two wk for the first 2 mo, then every 2 or 3 mo[102]. Liver biopsy should be considered in some cases, such as when liver laboratory tests remain abnormal despite dose reduction or when there are high blood levels of drug in patients with known risk factors for hepatotoxicity. Treatment should be stopped in the case of severe fibrosis or cirrhosis and daily doses should be reduced in the case of LFT elevation. Co-administration with folic acid or folinic acid seems to reduce the frequency of serum transaminase elevation[103]. Elastography (Fibroscan) and laboratory tests are emerging tools to diagnose fibrosis as reported by Labadie et al[104]. Furthermore, in a case control study of 518 patients treated with MTX, 8.5% showed Fibroscan and FibroTest abnormalities, i.e., severe fibrosis[105]. A multivariate analysis reported that elastography should be used mainly in patients with an alcohol habit or obesity, or affected by NAFLD. Similar results were reported in a study by Herfath et al[106].

Tumor necrosis factor alpha inhibiting agents

Currently several molecules belonging to this class have been approved to treat IBD: infliximab (IFX), adalimumab (ADA), golimumab and certolizumab pegol. Few data are available on the hepatotoxicity of golimumab and certolizumab, while most of the literature reports DILI by IFX and ADA.

The Food and Drug Administration (FDA) in 2004 after 130 cases of liver injury in patients treated with IFX and etanercept (which has no indication in IBD), issued an alarm statement of severe hepatic adverse reactions, including acute liver failure, autoimmune hepatitis (AIH) and cholestatic hepatitis during IFX therapy[107]. In an Icelandic study by Björnsson that included patients with IBD, rheumatological and dermatological disorders, the occurrence of DILI in patients treated with IFX or ADA was 1:120 and 1:270, respectively[108]. Shelton et al[109] in a retrospective study analyzed 1753 patients under anti-TNF therapy (1170 IFX, 575 ADA, 8 certolizumab), and found that 102 patients had high blood levels of ALT, but in 54 of these patients, additional risk factors for liver injury were found and, of the remaining 48 patients (45 IFX, 3 ADA), only 4 were considered to be affected by anti-TNF induced liver injury. Koller et al[110] in a recent observational study of 251 patients with IBD, monitored liver injury in 163 receiving IFX. Twenty-six patients (16%) showed a grade 1 liver injury (ALT < x3 ULN), 4 patients (2.5%) a grade 2 (ALT > x3 ULN); grade 1 alkaline phosphatase elevation was seen in 11 patients (6.7%) and grade 2 alkaline phosphatase elevation (> x2.5 ULN) in none. Liver injury in these patients was associated with high BMI, hepatic steatosis and longer duration of IBD[110]. In an Australian retrospective cohort study of adult patients with IBD treated with IFX (IDLE STUDY), out of 175 patients (149 with CD and 26 with UC), 57 showed abnormal liver laboratory tests. In this study, the authors used the Roussel Uclaf Causality Assessment Method
 Nevertheless, the use of natalizumab is quite rare in IBD due to possible severe monitoring LFT before starting the treatment and then every 3 or 6 mo (autoantibodies positive) have also been described.

Pattern and can be associated with jaundice. Some cases with autoimmune features enzymes elevation and it can manifest with both the hepatocellular and cholestatic cases of significant DILI associated with natalizumab were reported to the FDA.

IBD. Both drugs have shown a good safety profile, but in the post-marketing phase, 6 Natalizumab and vedolizumab were approved some years ago for the treatment of Anti-Integrins presence of asymptomatic anti-nucleus positivity developing drug-induced AIH and that anti-TNF therapy could be continued in the is debated: several studies demonstrated that this practice does not predict the risk of Also, the necessity to obtain an autoimmune panel before starting anti-TNF treatment be considered. If a DILI is documented, anti-TNF withdrawal is still controversial.

elevated > x3 ULN or in the case of jaundice, corticosteroids and liver biopsy should remains < x3 ULN, anti-TNF can be continued until resolution; if ALT is persistently elevated > x3 ULN or in the case of jaundice, corticosteroids and liver biopsy should be considered. If a DILI is documented, anti-TNF withdrawal is still controversial.

Another hypothesis is that anti-TNF drugs inhibit T-lymphocytes activity, thus suppressing auto-reactive B cells; this may lead to increased humoral autoimmunity. However, there are several cases without evidence of autoimmunity, in which direct liver injury is involved.

DILI caused by anti-TNF agents can show different patterns: Hepatocellular injury in 75% cases, but also a mixed pattern, most rarely with cholestasis, while few cases of acute liver failure have been described. Colina et al reported histological necroinflammation caused by IFX, with bridging and massive necrosis in the most severe cases and some features of autoimmune injury with piecemeal necrosis in the periportal interface and prominent plasma cells infiltration. Liver injury caused by anti-TNF drugs is associated with the presence of autoimmunity markers in some patients: anti-nucleus, anti-DsDNA and anti-smooth muscle actin positivity and/or histologic features of AIH are described for IFX, ADA and etanercept. In a study analyzing 34 patients undergoing anti-TNF treatment with DILI, 22 were positive for such antibodies and showed higher levels of ALT than seronegative patients. Fifteen out of 22 subjects underwent liver biopsy that revealed clear features of autoimmunity. Indeed, it is difficult to distinguish between AIH and drug-induced AIH, since these conditions may have similar clinical, biochemical, serological and histological features. Actually, IFX-induced AIH is rare in IBD patients and is described more often in rheumatology patients. In several studies, autoimmunity features were treated with corticosteroids, achieving in some cases a reduction or disappearance of autoantibodies titer; this suggests an immune-mediated DILI rather than an anti-TNF induced AIH. Ierardi et al reported a case of acute liver injury after a single IFX administration. Analogously, Adar et al described the first case of AIH caused by ADA that resolved after treatment cessation and corticosteroid therapy.

There is still a lack of consensus on the management of DILI induced by anti-TNF agents. The prognosis is usually favorable with normalization of LFT without cessation of anti-TNF therapy. Liver enzymes should be monitored before starting treatment and then monitored periodically, especially during the first 3 mo. If ALT remains < x3 ULN, anti-TNF can be continued until resolution; if ALT is persistently elevated > x3 ULN or in the case of jaundice, corticosteroids and liver biopsy should be considered. If a DILI is documented, anti-TNF withdrawal is still controversial. Also, the necessity to obtain an autoimmune panel before starting anti-TNF treatment is debated: several studies demonstrated that this practice does not predict the risk of developing drug-induced AIH and that anti-TNF therapy could be continued in the presence of asymptomatic anti-nucleus positivity.

Anti-Integrins

Natalizumab and vedolizumab were approved some years ago for the treatment of IBD. Both drugs have shown a good safety profile, but in the post-marketing phase, 6 cases of significant DILI associated with natalizumab were reported to the FDA.

Liver injury caused by natalizumab is rare with a 5% rate of asymptomatic liver enzymes elevation and it can manifest with both the hepatocellular and cholestatic pattern and can be associated with jaundice. Some cases with autoimmune features (autoantibodies positive) have also been described. The guidelines recommend monitoring LFT before starting the treatment and then every 3 or 6 mo. Nevertheless, the use of natalizumab is quite rare in IBD due to possible severe...
neurologic complications such as progressive multifocal leukoencephalopathy[122].

Similar to natalizumab, liver injury associated with vedolizumab is rare, less than 2% in clinical trials, with both the hepatocellular or cholestatic pattern[123]. Similar to natalizumab, the guidelines recommend monitoring liver enzymes every 3-6 mo.

Anti IL12/23

Ustekinumab was approved for CD treatment in 2016 and UC treatment in 2019. Most of the data regarding hepatotoxicity induced by ustekinumab comes from dermatologic studies. In PHOENIX 1 and 2, both studies evaluated the efficacy and safety of ustekinumab in patients with psoriasis, and the rate of liver enzymes abnormalities was low (between 0.5% and 2%) and similar between the case and control group[124,125]. A small retrospective study including 44 patients with psoriasis treated with ustekinumab described cases of mild elevation of liver enzymes and no cases of severe DILI[126]. Some case reports described spontaneous regression of liver injury after ustekinumab withdrawal[127].

Small molecules

Tofacitinib was approved for UC treatment in 2018. Liver enzymes elevation with a hepatocellular pattern has been rarely described[128]. One case of possible AIH was reported, but liver injury due to other drugs could not be excluded[129]. Monitoring liver enzymes periodically during tofacitinib treatment is recommended.

Ozanimod is a new molecule introduced for IBD treatment. Aspartate transaminase increases 32 wk after drug exposure were described in 2% and 1% of patients treated with 0.5 mg and 1 mg of ozanimod, respectively. Preliminary data suggest a low rate of hepatotoxicity associated with these new therapeutic approaches[102].

PORTAL VEIN THROMBOSIS

Portal vein thrombosis (PVT) is a common event in IBD. Indeed, IBD patients have a high risk of thromboembolism due to systemic inflammation and alterations in the concentrations of some coagulation factors, such as high factor V and VIII or low antithrombin III[130].

In a retrospective study, the incidence of thromboembolic events in patients with IBD rose from 5.65% in 2000 to 7.17% by 2009[131]. In particular, the prevalence of PVT in IBD has been estimated to be about 0.17%[132]. There are several causes of PVT, including inflammation, immobilization, major extent of colon disease, disease severity, surgery, use of corticosteroids and smoking. For that reason, the guidelines recommend starting heparin when facing an acute flare of UC, for PVT prophylaxis[133].

After the onset of PVT, complications such as portal hypertension, bleeding or even death are not common, but early anticoagulation is safe and associated with a better outcome, and the use of novel direct oral anticoagulants was associated with particularly favorable outcomes in this setting[134].

CONCLUSIONS

In conclusion, the scenario of liver involvement of IBD patients is quite extensive. The relationship between IBD and PSC is the most studied. PSC is a disease that currently has no effective medical therapy; therefore, research on drugs that may be effective for both hepatic and intestinal disorders is required. Moreover, the strategies for early neoplasia screening (both CCA and CCR) in these patients are not sufficiently efficient at present, and this is a pitfall that needs to be resolved.

NAFLD in IBD is another focal issue, as this novel comorbidity may complicate the management of IBD patients due to its multifaceted aspects.

As viral hepatitis may soon become a thing of the past, due to the advent of drugs with very high success rates, some patients will still require careful monitoring, especially when immunosuppression for IBD is required.

Among the drugs currently in use to treat IBD, thiopurines, mesalazine derivatives and methotrexate are the most studied, and periodic assessment of LFT is still required. However, the field of DILI is expected to expand quickly, as several novel molecules for the treatment of IBD (tyrosine kinase inhibitors, small molecules and others) have been developed, and their possible hepatotoxicity will be a matter of
debate.

REFERENCES

1. Jairath V, Feagan BG. Global burden of inflammatory bowel disease. *Lancet Gastroenterol Hepatol* 2020; 5: 2-3 [PMID: 31648974 DOI: 10.1016/s2468-1253(19)30358-9]

2. Bibbò S, Janiro G, Dore MP, Simonelli C, Newton EE, Cammarota G. Gut Microbiota as a Driver of Inflammation in Nonalcoholic Fatty Liver Disease. *Mediators Inflamm* 2018; 2018: 9321643 [PMID: 29563854 DOI: 10.1155/2018/9321643]

3. Fousekis FS, Theopistou VI, Katsanos KH, Tsianos EV, Christodoulou DK. Hepatobiliary Manifestations and Complications in Inflammatory Bowel Disease: A Review. *Gastroenterology Res* 2018; 11: 83-94 [PMID: 29707074 DOI: 10.14740/gr.2016.06.021]

4. Lunder AK, Hov JR, Borthorne A, Gleditsch J, Johanesen G, Tveit K, Viktil E, Henriksen M, Hovde O, Huppertz-Hauss G, Heie O, Høvik ML, Monstad I, Solberg IC, Jahnson J, Karlsen TH, Mourn B, Vatn M, Negårå A. Prevalence of Sclerosing Cholangitis Detected by Magnetic Resonance Cholangiography in Patients With Long-Term Inflammatory Bowel Disease. *Gastroenterology* 2016; 151: 660-669.e4 [PMID: 27342213 DOI: 10.1053/j.gastro.2016.06.021]

5. Lakatos L, Kiss LS, David G, Pandur T, Erdelyi M, Balogh M, Szipocs I, Molnar C, Komaromi E, Lakatos PL. Incidence, disease phenotype at diagnosis, and early disease course in inflammatory bowel diseases in Western Hungary, 2002-2006. *Inflamm Bowel Dis* 2011; 17: 2558-2565 [PMID: 22072315 DOI: 10.1002/ibd.21607]

6. Burisch J, Jess T, Martinato M, Lakatos PL, Ecco -Epicom. The burden of inflammatory bowel disease in Europe. *J Crohns Colitis* 2013; 7: 322-337 [PMID: 23395397 DOI: 10.1016/j.crohns.2013.01.010]

7. Loftus EV Jr, Warewood GC, Loftus CG, Tremaine WJ, Harmsen WS, Zinsmeister AR, Jewell DA, Sandborn WJ. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. *Gut* 2005; 54: 91-96 [PMID: 15591151 DOI: 10.1136/gut.2004.046615]

8. de Vries AB, Janse M, Blokzijl H, Weersma RK. Distinctive inflammatory bowel disease phenotype in primary sclerosing cholangitis. *World J Gastroenterol* 2015; 21: 1956-1971 [PMID: 25684965 DOI: 10.3748/wjg.v21.i6.1956]

9. Dave M, Elmunzer BJ, Dwamena BA, Higgins PD. Primary sclerosing cholangitis: meta-analysis of diagnostic performance of MR cholangiopancreatography. *Radiology* 2010; 256: 387-396 [PMID: 20656832 DOI: 10.1148/radiol.10091953]

10. Sørensen JO, Nielsen OH, Andersson M, Ainsworth MA, Yting H, Bèlard E, Jess T. Inflammatory bowel disease with primary sclerosing cholangitis: A Danish population-based cohort study 1977-2011. *Liber Int* 2018; 30: 532-541 [PMID: 28796371 DOI: 10.1111/liv.13548]

11. Riley TR, Schoen RE, Lee RG, Rakela J. A case series of transplant recipients who despite immunosuppression developed inflammatory bowel disease. *Am J Gastroenterol* 1997; 92: 279-282 [PMID: 9040206]

12. Boonstra K, van Erpecum KJ, van Nieuwkerk KM, Drenth JP, Poon AC, Witteman BJ, Tuyman HA, Beuers U, Ponsioen CY. Primary sclerosing cholangitis is associated with a distinct phenotype of inflammatory bowel disease. *Inflamm Bowel Dis* 2012; 18: 2270-2276 [PMID: 22407885 DOI: 10.1002/ibd.22293]

13. Fousekis FS, Theopistou VI, Mitselos IV, Skamnelos A, Kavvadias A, Katsanos KH, Christodoulou DK. Specific Features of Patients With Inflammatory Bowel Disease and Primary Sclerosing Cholangitis. *J Clin Med Res* 2019; 11: 81-88 [PMID: 30700999 DOI: 10.14740/jcmr.3680]

14. Ricciuto A, Fish J, Carman N, Walters TD, Church PC, Hansen BE, Siddiqui I, Nguyen GC, Kamath BM, Griffiths AM. Symptoms Do Not Correlate With Findings From Colonoscopy in Children With Inflammatory Bowel Disease and Primary Sclerosing Cholangitis. *Clin Gastroenterol Hepatol* 2018; 16: 1098-1105.e1 [PMID: 29378308 DOI: 10.1016/j.ch他会.2018.01.020]

15. Sano H, Nakazawa T, Ando T, Hayashi K, Naitoh I, Miyabe K, Yoshida M, Takahashi S, Ohara H, Joh T. Clinical characteristics of inflammatory bowel disease associated with primary sclerosing cholangitis. *J Hepatobiliary Pancreat Sci* 2011; 18: 154-161 [PMID: 20740366 DOI: 10.1007/s00534-010-0319-8]

16. Halliday JS, Djordjevic J, Lust M, Culver EL, Braden B, Travis SP, Chapman RW. A unique clinical phenotype of primary sclerosing cholangitis associated with Crohn's disease. *J Crohns Colitis* 2012; 6: 174-181 [PMID: 22325171 DOI: 10.1016/j.crohns.2011.07.015]

17. Lindström L, Lapidas A, Ost A, Bergquist A. Increased risk of colorectal cancer and dysplasia in patients with Crohn's colitis and primary sclerosing cholangitis. *Dis Colon Rectum* 2011; 54: 1392-1397 [PMID: 21979184 DOI: 10.1097/DCR.0b013e3182287b1c1]

18. Rabinovitz M, Gavaler JS, Schade RR, Dindzans VJ, Chien MC, Van Thiël DH. Does primary sclerosing cholangitis occurring in association with inflammatory bowel disease differ from that occurring in the absence of inflammatory bowel disease? *Hepatology* 1990; 11: 7-11 [PMID: 2295474 DOI: 10.1002/hep.1840110103]

19. Yanai H, Matalon S, Rosenblatt A, Awadie H, Berdichevski T, Snir Y, Kopylov U, Katz L, Stein A, Mlynarsky L, Tulchinsky H, Konikoff FM, Horin SB, Braun M, Ben-Ari Z, Chowers Y, Baruch Y, Shibolet O, Dotan I. Prognosis of primary sclerosing cholangitis in israel is independent of...
Losurdo G et al. IBD and the liver

coeexisting inflammatory bowel disease. J Crohns Colitis 2015; 9: 177-184 [PMID: 25318055 DOI: 10.1093/ecco-jcc/jju013]

20 Favery J, Van Steenbergen W, Van Pelt J, Lalener W, Hoffman I, Geboes K, Vermeire S, Nevens F. Patients with large-duct primary sclerosing cholangitis and Crohn's disease have a better outcome than those with ulcerative colitis, or without IBD. Aliment Pharmacol Ther 2016; 43: 612-620 [PMID: 26748470 DOI: 10.1111/apt.13516]

21 Nordenwall C, Olén O, Nilsson PJ, von Seth E, Ekborn A, Bottai M, Myrelid P, Bergequist A. Coleectomy prior to diagnosis of primary sclerosing cholangitis is associated with improved prognosis in a nationwide cohort study of 2594 PSC-IBD patients. Aliment Pharmacol Ther 2018; 47: 238-245 [PMID: 29064110 DOI: 10.1111/apt.14393]

22 Zheng HH, Jiang XL. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a meta-analysis of 16 observational studies. Eur J Gastroenterol Hepatol 2016; 28: 383-390 [PMID: 26938805 DOI: 10.1097/MEG.0000000000000576]

23 Gulamhusein AF, Eaton JE, Tabibian JH, Atkinson EJ, Juran BD, Lazaridis KN. Duration of Inflammatory Bowel Disease Is Associated With Increased Risk of Cholangiocarcinoma in Patients With Primary Sclerosing Cholangitis and IBD. Am J Gastroenterol 2016; 111: 705-711 [PMID: 27002801 DOI: 10.1038/ajg.2015.65]

24 Lindor KD, Kowdley KV, Harrison ME; American College of Gastroenterology. ACG Clinical Guideline: Primary Sclerosing Cholangitis. Am J Gastroenterol 2015; 110: 646-59, quiz 660 [PMID: 25680391 DOI: 10.1038/ajg.2015.112]

25 Harbord M, Amnee V, Vavricka SR, Allee M, Barreiro-de Acosta M, Boberg KM, Burisch J, De Vos M, De Vries AM, Dick AD, Juilleret P, Karlsten TH, Koutroubakis I, Lakatos PL, Orchard T, Papy P, Raine T, Reinschagen M, Thaci D, Tilg H, Carbonnel F; European Crohn's and Colitis Organisation. The First European Evidence-based Consensus on Extra-intestinal Manifestations in Inflammatory Bowel Disease. J Crohns Colitis 2016; 10: 239-254 [PMID: 26614685 DOI: 10.1093/ecco-jcc/jvx213]

26 Lewis JT, Talwalkar JA, Rosen CB, Smyrk TC, Abraham SC. Prevalence and risk factors for gallbladder neoplasia in patients with primary sclerosing cholangitis: evidence for a metaplasia-dysplasia-carcinoma sequence. Am J Surg Pathol 2007; 31: 907-913 [PMID: 17527079 DOI: 10.1097/01.pas.0000213435.99492.8a]

27 Said K, Glaumann H, Bergquist A. Gallbladder disease in patients with primary sclerosing cholangitis. J Hepatol 2008; 48: 598-605 [PMID: 18222013 DOI: 10.1016/j.jhep.2007.11.019]

28 Chapman R, Favery J, Kalloo A, Nagorney DM, Boberg KM, Shneider B, Gores GJ; American Association for the Study of Liver Diseases. Diagnosis and management of primary sclerosing cholangitis. Hepatology 2010; 51: 660-678 [PMID: 20101749 DOI: 10.1002/hep.23294]

29 Zenouzi R, Weismüller TJ, Hübener P, Schulze K, Bubenheim M, Pannicke N, Weiler-Normann C, Lenzen H, Mans MP, Lohe AW, Schramm C. Low risk of hepatocellular carcinoma in patients with primary sclerosing cholangitis with cirrhosis. Clin Gastroenterol Hepatol 2014; 12: 1733-1738 [PMID: 24530461 DOI: 10.1016/j.cgh.2014.02.008]

30 Singh S, Khanna S, Pardi DS, Loftus EV Jr, Talwalkar JA. Effect of ursodeoxycholic acid use on the risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis 2013; 19: 1631-1638 [PMID: 23665966 DOI: 10.1097/MIB.0b013e318286fa61]

31 Carey EJ, Lindor KD. Chemoprevention of colorectal cancer with ursodeoxycholic acid: cons. Clin Res Hepatol Gastroenterol 2012; 36 Suppl 1: S61-S64 [PMID: 23141896 DOI: 10.1016/S2210-7401(12)70023-2]

32 Stolfi C, Pallone F, Monteleone G. Colorectal cancer chemoprevention by mesalazine and its derivatives. J Biomed Biotechnol 2012; 2012: 980458 [PMID: 22701310 DOI: 10.1155/2015/980458]

33 Tsaitas C, Semertzidou A, Sinakos E. Update on inflammatory bowel disease in patients with primary sclerosing cholangitis. World J Hepatol 2014; 6: 178-187 [PMID: 24799866 DOI: 10.4254/wjh.v6.i4.178]

34 Christensen B, Micic D, Gibson PR, Yarur A, Bellaguarda E, Corsello P, Gaetano JN, Kinnucan J, Erichsen LM, Laurent C, Laharie D, De Lédinghen V. Impact of Preexisting Inflammatory Bowel Disease on the Outcome of Liver Transplantation for Primary Sclerosing Cholangitis. Liver Transpl 2020; 26: 1477-1491 [PMID: 32603007 DOI: 10.1002/hep.25838]

35 Liberal R, Gaspar R, Lopes S, Macedo G. Primary biliary cholangitis in patients with inflammatory bowel disease. Clin Res Hepatol Gastroenterol 2020; 44: e5-e9 [PMID: 31171469 DOI: 10.1016/j.clinre.2019.05.002]

36 Aiba Y, Yamazaki K, Nishiha N, Kawashima M, Hitomi Y, Nakamura H, Komori A, Fuyuno Y,
Takahashi A, Kawaguchi T, Takazoe M, Suzuki Y, Motoya S, Matsui T, Isaki M, Matsumoto T, Kubo M, Tokunaga K, Nakamura M. Disease susceptibility genes shared by primary biliary cirrhosis and Crohn's disease in the Japanese population. *J Hum Genet* 2015; 60: 525-531 [PMID: 26084578 DOI: 10.1038/jhg.2015.59]

Ballotín VR, Bigarrella LG, Riva F, Onzi G, Balbinot RA, Balbinot SS, Soldera J. Primary sclerosing cholangitis and autoimmune hepatitis overlap syndrome associated with inflammatory bowel disease: A case report and systematic review. *World J Clin Cases* 2020; 8: 4075-4093 [PMID: 33024765 DOI: 10.12998/wjcc.v8.i18.4075]

Miranda-Bautista J, Menchén L. Adalimumab-induced autoimmune hepatitis in a patient with Crohn's disease. *Gastroenterol Hepatol Prevention and Hepatic Steatosis. Gastroenterol Hepatol (N Y)* 2015; 11: 167-175 [PMID: 27099587]

Sunny NE, Parks EJ, Browning JD, Burgess SC. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. *Cell Metab* 2011; 14: 804-810 [PMID: 22152305 DOI: 10.1016/j.cmet.2011.11.004]

C. Ulceration of the colon with a much enlarged fatty liver. *Trans Pathol Soc Philadelphia* 1873; 4: 87-88 [DOI: 10.1056/nejm18730110881506]

Losurdo G, La Forteza RF, Iannone A, Contaldo A, Barone M, Ierardi E, Di Leo A, Principe M. Prevalence and associated factors of obesity in inflammatory bowel disease: A case-control study. *World J Gastroenterol* 2020; 26: 5728-5737 [PMID: 33384552 DOI: 10.3748/wjg.v26.i47.5728]

Miele L, Valenza V, La Torre G, Montalto M, Cammarata G, Ricci R, Mascianici R, Forgione A, Gabrielli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grecco A. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. *Hepatology* 2009; 49: 1877-1887 [DOI: 10.1002/hep.22645]

Principe M, Losurdo G, Iannone A, Contaldo A, DeFlorio V, Ranaldo N, Pisani A, Ierardi E, Di Leo A, Barone M. Differences in dietary habits between patients with inflammatory bowel disease in clinical remission and a healthy population. *Ann Gastroenterol* 2018; 31: 469-473 [PMID: 29991892 DOI: 10.20524/aog.2018.0273]

Rueemmele FM. Role of Diet in Inflammatory Bowel Disease. *Ann Nutr Metab* 2016; 68 Suppl 1: 33-41 [DOI: 10.1159/000445392]

Zou ZY, Shen B, Fan JG. Systematic Review With Meta-analysis: Epidemiology of Nonalcoholic Fatty Liver Disease in Patients With Inflammatory Bowel Disease. *Inflamm Bowel Dis* 2019; 25: 1764-1772 [PMID: 30918952 DOI: 10.1093/ibd/izy043]

Bessiswos T, Le NH, Rollet K, Afif W, Bitton A, Sebastiani G. Incidence and Predictors of Nonalcoholic Fatty Liver Disease by Serum Biomarkers in Patients with Inflammatory Bowel Disease. *Inflamm Bowel Dis* 2016; 22: 1937-1944 [PMID: 27379445 DOI: 10.1097/MIB.0000000000000832]

Sagami S, Ueno Y, Tanaka S, Fujita A, Hayashi R, Oka S, Hyogo H, Chayama K. Significance of non-alcoholic fatty liver disease in Crohn's disease: A retrospective cohort study. *Hepatol Res* 2017; 47: 872-881 [PMID: 27337408 DOI: 10.1111/hepr.12828]

Glassner K, Malay HM, Abrahm BP. Epidemiology and Risk Factors of Nonalcoholic Fatty Liver Disease Among Patients with Inflammatory Bowel Disease. *Inflamm Bowel Dis* 2017; 23: 998-1003 [PMID: 28511199 DOI: 10.1097/MIB.0000000000001085]

Principe M, Iannone A, Losurdo G, Mangia M, Shahini E, Albano F, Rizzi SF, La Forteza RF, Lovero R, Contaldo A, Barone M, Leandro G, Ierardi E, Di Leo A. Nonalcoholic Fatty Liver Disease in Inflammatory Bowel Disease: Prevalence and Risk Factors. *Inflamm Bowel Dis* 2018; 24: 1589-1596 [PMID: 29688336 DOI: 10.1093/ibd/izy051]

Ritaccio G, Stolera G, Abutaleb A, Cross RK, Shetty K, Sakiani S, Wong U. Nonalcoholic Fatty Liver Disease Is Common in IBD Patients However Progression to Hepatic Fibrosis by Noninvasive Markers Is Rare. *Dig Dis Sci* 2020 [DOI: 10.1007/s10620-020-06858-6]

Franco I, Bianco A, MirizzI A, Campanella A, Bonfiglio C, Sorino P, Notarnicola M, Tutino V, Cozzolongo R, Giannuzzi V, Aballay LR, Buongiorno C, Bruno I, Osella AR. Physical Activity and Low Glycemic Index Mediterranean Diet: Main and Modification Effects on NAFLD Score. Results from a Randomized Clinical Trial. *Nutrients* 2020; 13 [PMID: 33379253 DOI: 10.3390/nu131010066]

Hou JK, Velayos F, Terrault N, Mahadevan U. Viral hepatitis and inflammatory bowel disease. *Inflamm Bowel Dis* 2010; 16: 925-932 [PMID: 20480515 DOI: 10.1002.ibd.21284]

Basmablye SK, Easterbrook PJ. Wide variation in estimates of global prevalence and burden of chronic hepatitis B and C infection cited in published literature. *J Viral Hepat* 2016; 23: 545-559 [PMID: 27028545 DOI: 10.1111/jvh.12519]

Sansone S, Guarino M, Castiglione F, Rispo A, Aurienma F, Loperto I, Rea M, Caporaso N, Morisco F. Hepatitis B and C virus reactivation in immunosuppressed patients with inflammatory bowel disease. *World J Gastroenterol* 2014; 20: 3516-3524 [DOI: 10.3748/wjg.v20.i13.3516]

Loras C, Soro C, Gonzalez-Huix F, Minguéz M, Merino O, Gisbert JP, Barrio J, Bernal A, Gutiérrez A, Piqueras M, Calvet X, Andreu M, Abad A, Ginard D, Bujanda L, Panés J, Torres M, Fernández- Bañares F, Viver JM, Esteve M; GETECu (Grupo Español de Enfermedades de Crohn y Colitis Ulcerosa). Prevalence and factors related to hepatitis B and C in inflammatory bowel disease patients

Losurdo G et al. IBD and the liver
Losurdo G et al. IBD and the liver

in Spain: a nationwide, multicenter study. Am J Gastroenterol 2009; 104: 57-63 [PMID: 19098850 DOI: 10.1038/ajg.2008.4]

Chevaux JB, Bigard MA, Bensenene M, Oussalah A, Jarlot S, Belle A, Nani A, Bronnowicki JP, Peyrin-Biroulet L. Inflammatory bowel disease and hepatitis B and C. Gastroenterol Clin Biol 2009; 33: 1082-1093 [PMID: 19896313 DOI: 10.1016/j.gcb.2009.03.021]

Morisco F, Castiglione F, Rispo A, Stroffolini T, Sansone S, Vitale R, Guarino M, Biancone L, Caruso A, D’Inca R, Manno R, Orlando A, Riegler G, Donnarumma L, Camera S, Zorzi F, Renna S, Bove V, Tontini G, Vecchi M, Caparoso N. Effect of immunosuppressive therapy on patients with inflammatory bowel diseases and hepatitis B or C virus infection. J Viral Hepat 2013; 20: 200-208 [PMID: 23383659 DOI: 10.1111/j.1365-2893.2012.01643.x]

Papa A, Felice C, Marzo M, Andrisani G, Armuzzi A, Covino M, Mocci G, Pugliese D, De Vitis I, Gasbarrini A, Rapaccini GL, Guidi G. Prevalence and natural history of hepatitis B and C infections in a large population of IBT patients treated with anti-tumor necrosis factor-α agents. J Crohns Colitis 2013; 7: 113-119 [PMID: 22464811 DOI: 10.1016/j.crohns.2012.03.001]

Losurdo G, Iannone A, Contaldo A, Barone M, Ierardi E, Di Leo A, Principi M. Chronic Viral Hepatitis in a Cohort of Inflammatory Bowel Disease Patients from Southern Italy: A Case-Control Study. Pathogens 2020; 9 [PMID: 33113974 DOI: 10.3390/pathogens91011870]

Borman ZA, Côté-Daigneault J, Colombel JF. The risk for opportunistic infections in inflammatory bowel disease with biologics: an update. Expert Rev Gastroenterol Hepatol 2018; 12: 1101-1108 [PMID: 30277409 DOI: 10.1080/17474124.2018.1530983]

Rahier JF, Magro F, Abreu C, Armuzzi A, Ben-Horin S, Chowers Y, Cottone M, de Ridder L, Doherty G, Ehehalt R, Esteve M, Katsanos K, Lees CW, Macmahon E, Moreels T, Reinsch W, Tilg H, Tremblay L, Veereman-Wauters G, Vignet N, Yazdanpanah Y, Eiuikin R, Colombel JF; European Crohn's and Colitis Organisation (ECCO). Second European evidence-based consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease. J Crohns Colitis 2014; 8: 443-469 [PMID: 24613021 DOI: 10.1016/j.crohns.2013.12.013]

Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology 2007; 45: 507-530 [PMID: 17256718 DOI: 10.1002/hep.21513]

Katsanos KH, Tsiason VE, Zois CD, Zigaia H, Vagias I, Zervou E, Christodoulou DK, Tsiason EV; Northwest Greece IBD Study Group. Inflammatory bowel disease and hepatitis B and C in Western Balkans: a referral centre study and review of the literature. J Crohns Colitis 2010; 4: 450-465 [PMID: 21122543 DOI: 10.1016/j.crohns.2010.03.001]

Magro F, Gionchetti P, Eliaikim R, Ardizzone S, Armuzzi A, Barreiro-de Acosta M, Burisch J, Geuse KB, Hart AL, Hindryckx P, Langner C, Limdi JK, Pellino G, Zagórowicz E, Raine T, Harbord M, Rieder F, European Crohn’s and Colitis Organisation (ECCO). Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. J Crohns Colitis 2017; 11: 649-670 [PMID: 28158501 DOI: 10.1093/ecco-jcc/jox069]

Brunasso AM, Puntoni M, Gulia A, Massone C. Safety of anti-tumour necrosis factor factor agents in patients with chronic hepatitis C infection: a systematic review. Rheumatology (Oxford) 2011; 50: 1700-1711 [PMID: 21690185 DOI: 10.1093/rheumatology/ker190]

Scherzer TM, Staufer K, Novacek G, Steindl-Munda P, Schumacher S, Hoffer H, Ferenci P, Vogelsang H. Efficacy and safety of antiviral therapy in patients with Crohn's disease and chronic hepatitis C. Aliment Pharmacol Ther 2008; 28: 742-748 [PMID: 19145730 DOI: 10.1111/j.1365-2036.2008.07379.x]

Tilg H, Vogelsang H, Ludwiczek O, Lochs H, Kaser A, Colombel JF, Ulmer H, Rutgeerts P, Kruiger S, Cortot A, D‘Haens G, Harrer M, Gascche C, Wrb f, Kuhn I, Reinsch W. A randomised placebo controlled trial of pegylated interferon alpha in active ulcerative colitis. Gut 2003; 52: 1728-1733 [PMID: 14639951 DOI: 10.1136/gut.52.12.1728]

Koff RS. Review article: the efficacy and safety of sofosbuvir, a novel, oral nucleotide NS5B polymerase inhibitor, in the treatment of chronic hepatitis C virus infection. Aliment Pharmacol Ther 2014; 39: 478-487 [PMID: 24387618 DOI: 10.1111/apt.12601]

Imperatore N, Castiglione F, Rispo A, Sessa A, Caparoso N, Morisco F. Timing Strategies of Direct-Acting Antivirals and Biologics Administration in HCV-Infected Subjects with Inflammatory Bowel Diseases. Front Pharmacol 2017; 8: 867 [PMID: 29209223 DOI: 10.3389/fphar.2017.00867]

Losurdo G, Iannone A, Contaldo A, Barone M, Ierardi E, Di Leo A, Principi M. Trends of Liver Inflammation in the Structured Inflammatory Bowel Disease with biologics: a 2008-2019 period study of a referral centre in Rome. J Viral Hepat 2019; 75: 22464811 DOI: 10.1002/hep.21513]

Andrade RJ, Chalasani N, Björnsson ES, Suzuki A, Kullak-Ublick GA, Watkins PB, Devahrabi H, Merz M, Lucena MI, Kaplowment N, Aithal GP. Drug-induced liver injury. Nat Rev Dis Primers 2019; 5: 58 [PMID: 31439850 DOI: 10.1038/s41572-019-0105-0]

Yaccob A, Mari A. Practical clinical approach to the evaluation of hepatobiliary disorders in inflammatory bowel disease. Frontline Gastroenterol 2019; 10: 309-315 [PMID: 31281626 DOI: 10.1016/flgastro-2018-101037]

Wong DR, Coenen MJ, Derjks LJ, Vermeulen SH, van Marrewijk CJ, Klungel OH, Scheffer H, Franke B, Guclucaia LJ, de Jong DJ, Engels LG, Verbeek AL, Hooymans PM; TOPIC Recruitment Team. Early prediction of thiopurine-induced hepatotoxicity in inflammatory bowel disease. Aliment Pathogens 2020; 9 [PMID: 33113974 DOI: 10.3390/pathogens91011870]
Marinaki AM, Arenas-Hernandez M. Reducing risk in thiopurine therapy. Xenobiotica 2020; 50: 101-109 [PMID: 3168252 DOI: 10.1080/00902056.2019.1688424]

Dong X, Zheng Q, Zhu M, Tong JL, Ran ZH. Thiopurine Smethyltransferase polymorphisms and thiopurine toxicity in treatment of inflammatory bowel disease. World J Gastroenterol 2010; 16: 3187-3195 [DOI: 10.3748/wjg.v16.i25.3187]

Gisbert JP, Gonzalez-Llama Y, Maté J. Thiopurine-induced liver injury in patients with inflammatory bowel disease: a systematic review. Am J Gastroenterol 2007; 102: 1518-1527 [PMID: 17391318 DOI: 10.1111/j.1572-0241.2007.01187.x]

Chaparro M, Ordás I, Cabrén E, García-Sanchez V, Bastida G, Peñalva M, Gomollón F, García-Planella E, Merino O, Gutiérrez A, Esteve M, Márquez L, Garcia-Sepulcre M, Hinojosa J, Vera I, Muñoz F, Mendoza JL, Cabrera JL, Montoro MA, Barreiro-de Acosta M, Cela G, Soro C, Aldegue X, Barrio J, Maté J, Gisbert JP. Safety of thiopurine therapy in inflammatory bowel disease: long-term follow-up study of 3931 patients. Inflamm Bowel Dis 2013; 19: 1404-1410 [PMID: 23665964 DOI: 10.1097/MIB.0b013e318281f28f]

Schröder T, Schmidt KJ, Olsen V, Möller S, Mackenroth T, Sina C, Lehner H, Fellermann K, Büning J. Liver steatosis is a risk factor for hepatotoxicity in patients with inflammatory bowel disease under immunosuppressive treatment. Eur J Gastroenterol Hepatol 2015; 27: 698-704 [PMID: 25923946 DOI: 10.1097/MEG.0000000000000350]

Romagnuolo J, Sadowski DC, Lalor E, Jewell L, Thomson AB. Cholestatic hepatocellular injury with azathioprine: a case report and review of the mechanisms of hepatotoxicity. Can J Gastroenterol 1998; 12: 479-483 [PMID: 9812167 DOI: 10.1155/1998/294752]

Seinen ML, van Asseldonk DP, de Boer NK, Bouma G, van Nieuwerkerk CM, Mulder CJ, Bloemen E, van Bodegraven AA. Nodular Regenerative Hyperplasia of the Liver in Patients with IBD Treated with Allopurinol-Thiopurine Combination Therapy. Inflamm Bowel Dis 2017; 23: 448-452 [PMID: 28151736 DOI: 10.1097/MIB.0000000000001036]

Musumba CO. Review article: the association between nodular regenerative hyperplasia, inflammatory bowel disease and thiopurine therapy. Aliment Pharmacol Ther 2013; 38: 1025-1037 [PMID: 24099468 DOI: 10.1111/apt.12490]

Seksik P, Mary JY, Beaugerie L, Lémann M, Colombel JF, Vernier-Massouille G, Colombel JF. Incidence of nodular regenerative hyperplasia in inflammatory bowel disease patients treated with azathioprine. Inflamm Bowel Dis 2011; 17: 565-572 [PMID: 20848502 DOI: 10.1002/ibd.21330]

Gisbert JP, Luna M, González-Lama Y, Pousa ID, Velasco M, Moreno-Otero R, Maté J. Liver injury in inflammatory bowel disease: long-term follow-up study of 786 patients. Inflamm Bowel Dis 2007; 13: 1106-1114 [PMID: 17455203 DOI: 10.1002/ibd.20160]

Shaye OA, Yadegari M, Abreu MT, Poordad F, Simon K, Martin P, Papadakis KA, Ippoliti A, Vassilakouva E, Tran TT. Hepatotoxicity of 6-mercaptopurine (6-MP) and Azathioprine (AZA) in adult IBD patients. Am J Gastroenterol 2007; 102: 2488-2494 [PMID: 17764490 DOI: 10.1111/j.1572-0241.2007.01515.x]

Hindorf U, Johansson M, Eriksson A, Kvifors E, Almer SH. Mercaptopurine treatment should be considered in azathioprine intolerant patients with inflammatory bowel disease. Aliment Pharmacol Ther 2009; 29: 654-661 [PMID: 19183142 DOI: 10.1111/j.1365-2036.2008.03923.x]

Meijer B, Seinen ML, van Egmond R, Bouma G, Mulder CJ, van Bodegraven AA, de Boer NKH. Optimizing Thiopurine Therapy in Inflammatory Bowel Disease Among 2 Real-life Intercept Cohorts: Effect of Allopurinol Comedication? Inflamm Bowel Dis 2017; 23: 2011-2017 [PMID: 28617756 DOI: 10.1097/MIB.0000000000001168]

Kreijne JF, de Veer RC, de Boer NK, Dijkstra G, West R, Moorsel SAW, de Jong DJ, van der Woude CJ, de Vries AC; of the Dutch Initiative on Crohn, Colitis (ICC). Real-life study of safety of thiopurine-allopurinol combination therapy in inflammatory bowel disease: myelotoxicity and hepatotoxicity rarely affect maintenance treatment. Aliment Pharmacol Ther 2019; 50: 407-415 [PMID: 31359480 DOI: 10.1111/apt.15402]

Vasudevan A, Beswick L, Friedman AB, Moltzen A, Haridy J, Ragunath A, Sparrow M, van Langenberd D. Low-dose thiopurine with allopurinol co-therapy overcomes thiopurine intolerance and allows thiopurine continuation in inflammatory bowel disease. Dig Liver Dis 2018; 50: 682-688 [PMID: 29252182 DOI: 10.1016/j.dld.2018.02.001]

Vande Casteele N, Herfarth H, Katz J, Falck-Ytter Y, Singh S. American Gastroenterological Association Institute Technical Review on the Role of Therapeutic Drug Monitoring in the Management of Inflammatory Bowel Diseases. Gastroenterology 2017; 153: 835-857.e6 [PMID: 28774547 DOI: 10.1053/j.gastro.2017.07.031]

Mottet C, Schöepfer AM, Julialet P, Cosnes J, Schmitz D, Rocchi E, Giel F, Hübner A, Fassini M, Seibold F, Rogler G, Vavricka SR, Michetti P. Experts Opinion on the Practical Use of Azathioprine and 6-Mercaptopurine in Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22: 2733-2747 [PMID: 2776078 DOI: 10.1097/MIB.0000000000000923]

Khourkhar OS, Lewis JH. Hepatotoxicity of agents used in the management of inflammatory bowel disease. Dig Dis 2010; 28: 508-518 [PMID: 20926880 DOI: 10.1159/000320410]

Ransford RA, Langman MJ. Sulphasalazine and mesalazine: serious adverse reactions re-evaluated on the basis of suspected adverse reaction reports to the Committee on Safety of Medicines. Gut 2002; 51: S36-S39 [PMID: 12235076 DOI: 10.1136/gut.51.4.536]

Sehgal P, Colombel JF, Aboubakr A, Narula N. Systematic review: safety of mesalazine in inflammatory bowel disease.
ulcerative colitis. *Aliment Pharmacol Ther* 2018; 47: 1597-1609 [PMID: 29722441] DOI: 10.1111/apt.14688

97 **Food and Drug Administration.** Highlights of prescribing information: Delzicol. 2015. [cited 20 February 2021]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015204412s006lbl.pdf

98 **Fisher MC, Cronstein BN.** Metaanalysis of methylentetrahydrofolate reductase (MTHFR) polymorphisms affecting methotrexate toxicity. *J Rheumatol* 2009; 36: 539-545 [PMID: 19208607 DOI: 10.3899/jrheum.080576]

99 **Cáliz R, del Amo J, Balsa A, Blanco F, Silva L, Sanmarti R, Martínez FG, Collado MD, Ramírez Mdel C, Tejedor D, Artieda M, Pascual-Sálecedo D, Oreo N, Andreu JL, Graell E, Simon L, Martínez A, Mulero J.** The C677T polymorphism in the MTHFR gene is associated with the toxicity of methotrexate in a Spanish rheumatoid arthritis patient population. *Scand J Rheumatol* 2012; 41: 10-14 [PMID: 22044028 DOI: 10.1080/03009742.2011.613712]

100 **Berends MA, van Oijen MG, Snoek J, van de Kerkhof PC, Drenth JP, Han van Krieken J, de Jong EM.** Reliability of the Roenigk classification of liver damage after methotrexate treatment for psoriasis: a clinicopathologic study of 160 liver biopsy specimens. *Arch Dermatol* 2007; 143: 1515-1519 [PMID: 18087000 DOI: 10.1001/archderm.143.12.1515]

101 **Khan N, Abbas AM, Whang N, Balart LA, Bazzano LA, Kelly TN.** Incidence of liver toxicity in inflammatory bowel disease patients treated with methotrexate: a meta-analysis of clinical trials. *Inflamm Bowel Dis* 2012; 18: 359-367 [PMID: 21751301 DOI: 10.1002/ibd.21820]

102 **Tran-Minh ML,** Soupa P, Maillet M, Allez M, Gornet JM. Hepatic complications induced by immunosuppressants and biologics in inflammatory bowel disease. *World J Hepatol* 2017; 9: 613-626 [PMID: 28539989 DOI: 10.4254/wjh.v9.i13.613]

103 **Saibeni S,** Bollani S, Loco A, Michielan A, Sostegni R, Devani M, Luponacci G, Pirola L, Cucino C, Meucci G, Basilisco G, D'Incà R, Bruno S. The use of methotrexate for treatment of inflammatory bowel disease in clinical practice. *Dig Liver Dis* 2012; 44: 123-127 [PMID: 22053123 DOI: 10.1016/j.dld.2011.09.015]

104 **Labadie JG,** Jain M. Noninvasive Tests to Monitor Methotrexate-Induced Liver Injury. *Clin Liver Dis (Hoboken)* 2019; 13: 67-71 [PMID: 30988939 DOI: 10.1002/cld.765]

105 **Laharie D, Seneschal J, Schaeverbeke T, Doutre MS, Longy-Boursier M, Pellegrin JL, Chabrun E, Villars S, Zerbib F, de Lédignen V.** Assessment of liver fibrosis with transient elastography and FibroTest in patients treated with methotrexate for chronic inflammatory diseases: a case-control study. *J Hepatol* 2010; 53: 1035-1040 [PMID: 20801541 DOI: 10.1016/j.jhep.2010.04.043]

106 **Herfath HH, Kappelmann MD, Long MD, Isaacs KL.** Use of Methotrexate in the Treatment of Inflammatory Bowel Diseases. *Inflamm Bowel Dis* 2016; 22: 224-233 [PMID: 26457382 DOI: 10.1097/MIB.0000000000000589]

107 **Food and Drug Administration.** Approved Drug Products. [cited 20 February 2021]. Available from: from: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Label_ApprovalHistory#apphist

108 **Björnsson ES, Gunnarsson BI, Gröndal G, Jonasson GG, Einarsdottir R, Ludviksson BR, Gudbjörnsson B, Olafsson S.** Risk of drug-induced liver injury from tumor necrosis factor antagonists. *Clin Gastroenterol Hepatol* 2015; 13: 602-608 [PMID: 25131534 DOI: 10.1016/j.cgh.2014.07.062]

109 **Shelton E, Chaudrey K, Saux J, Khaliili H, Masia R, Nguyen DD, Yajnik V, Ananthakrishnan AN.** New onset idiosyncratic liver enzyme elevations with biological therapy in inflammatory bowel disease. *Aliment Pharmacol Ther* 2015; 41: 972-979 [PMID: 25756190 DOI: 10.1111/apt.13159]

110 **Koller T, Galamovskya M, Filakovich S, Kubincova M, Hlavaty T, Toth J, Krajcovicova A, Payer J.** Drug-induced liver injury in inflammatory bowel disease: 1-year prospective observational study. *World J Gastroenterol* 2017; 23: 4102-4111 [PMID: 28652663 DOI: 10.3748/wjg.v23.i22.4102]

111 **Wolrand T,** Chin KL, van Langenberg D, Garg M, Nicoll A. Retrospective study of idiosyncratic drug-induced liver injury from infliximab in an inflammatory bowel disease cohort: the IDEY study. *Ann Gastroenterol* 2020; 33: 162-169 [PMID: 32127737 DOI: 10.20524/wjg.v23.i22.4102]

112 **Van den Brande JM, Braat H, van den Brink GR, Versteeg HH, Bauer CA, Hoedemaeker I, van Montfrans C, Hommes DW, Peppelenbosch MP, van Deventer SJ.** Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn's disease. *Gastroenterology* 2003; 124: 1774-1785 [PMID: 1280661 DOI: 10.1016/s0016-5085(03)00382-2]

113 **Cantaert T, De Rycke L, Mavragani CP, Wijbrandts CA, Niewold TB, Niers T, Vandooren B, Veys EM, Richel D, Tak PP, Crow MK, Baeten D.** Exposure to nuclear antigens contributes to the induction of humoral autoimmunity during tumour necrosis factor alpha blockade. *Ann Rheum Dis* 2009; 68: 1022-1029 [PMID: 18625621 DOI: 10.1136/ard.2008.093724]

114 **Gershov D, Kim S, Brot N, Elkon KB.** C-Reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an inflammatory innate immune response: implications for systemic autoimmunity. *J Exp Med* 2000; 192: 1353-1364 [PMID: 11067883 DOI: 10.1084/jem.192.9.1353]

115 **Collina F, Molero A, Cassis B, Martinez-Montiel P.** Infliximab-related hepaticitis: a case study and literature review. *Dig Dis Sci* 2013; 58: 3362-3367 [PMID: 23645381 DOI: 10.1007/s10620-013-2698-6]

116 **Ghabril M, Bonkovsky HL, Kum C, Davern T, Hayashi PH, Kleiner DE, Serrano J, Rochon J, Fontana RJ, Bonacini M.** US Drug-Induced Liver Injury Network. Liver injury from tumor necrosis
factor-α antagonists: analysis of thirty-four cases. Clin Gastroenterol Hepatol 2013; 11: 558-564.e3 [PMID: 2333219 DOI: 10.1016/j.cgh.2012.12.025]

117 Ierardi E, Della Valie N, Nacchiero MC, De Francesco V, Stoppino G, Panella C. Infliximab single administration followed by acute liver injury. Inflamm Bowel Dis 2006; 12: 1089-1091 [PMID: 17053552 DOI: 10.1097/01.mib.0000246783.75753.9f]

118 Adar T, Mizrahi M, Pappo O, Scheiman-Elzayry A, Shibolet O. Adalimumab-induced autoimmune hepatitis. J Clin Gastroenterol 2010; 44: e20-e22 [PMID: 19959165 DOI: 10.1097/MCG.0b013e3181e75c57]

119 Bezaheb S, Flowers CM, Kortepeter C, Avigan M. Clinically significant liver injury in patients treated with natalizumab. Aliment Pharmacol Ther 2010; 31: 1028-1035 [PMID: 20163378 DOI: 10.1111/j.1365-2036.2010.04262.x]

120 Lisotti A, Azzaroli F, Brilliante S, Mazzella G. Severe acute autoimmune hepatitis after natalizumab treatment. Dig Liver Dis 2012; 44: 356-357 [PMID: 22154948 DOI: 10.1016/j.dld.2011.11.003]

121 Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, Hayee B, Lomer MCE, Parkes GC, Selinger C, Barrett KJ, Davies RJ, Bennett C, Gittens S, Dunlop MG, Faiz O, Fraser A, Garrick V, Johnston PD, Parkes M, Sanderson J, Terry H; IBD guidelines Delphi consensus group, Gaya DR, Iqbal TH, Taylor SA, Smith M, Brookes M, Hansen R, Hawthorne AB. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019; 68: s1-s106 [PMID: 31562236 DOI: 10.1136/gutjnl-2019-318484]

122 Bellizzi A, Baruca V, Fioriti D, Colosimo MT, Mischitelli M, Anzivino E, Chiarini F, Pietropaolo V. Early years of biological agents therapy in Crohn's disease and risk of the human polyomavirus JC reactivation. J Cell Physiol 2010; 224: 316-326 [PMID: 20432445 DOI: 10.1002/jcp.22146]

123 Food and Drug Administration. Highlights of prescribing information: Entyvio (Vedolizumab). 2014. [cited 20 February 2021]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125476s000lbl.pdf

124 Leonardo CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, Li S, Dooley LT, Gordon KB; PHOENIX 1 study investigators. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-wk results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008; 371: 1675-1684 [PMID: 18486739 DOI: 10.1016/S0140-6736(08)60725-4]

125 Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary GP, Yeilding N, Guzzo C, Hsu MC, Wang Y, Li S, Dooley LT, Reich K; PHOENIX 2 study investigators. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-wk results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008; 371: 1675-1684 [PMID: 18486740 DOI: 10.1016/S0140-6736(08)60726-6]

126 Llamas-Velasco M, Concha-Garzón MJ, García-Diez A, Daudén E. Liver Injury in Psoriasis Patients Receiving Ustekinumab: A Retrospective Study of 44 Patients Treated in the Clinical Practice Setting. Actas Dermosifiliogr 2015; 106: 470-476 [PMID: 25912374 DOI: 10.1016/j.ad.2015.02.002]

127 Lovero R, Losurdo G, Mastromauro M, Castellaneta NM, Mongelli A, Gentile A, Di Leo A, Principi M. A Case of Severe Transaminitis Elevation Following a Single Ustekinumab Dose with Remission After Drug Withdrawal. Curr Drug Saf 2018; 13: 221-223 [PMID: 30027852 DOI: 10.2174/1574886313666180719165212]

128 Valenzuela F, Kornman NJ, Bissomette R, Bakos N, Tsai TF, Harper MK, Ports WC, Tan H, Tallman A, Valdez H, Gardner AC. Tofacitinib in patients with moderate-to-severe chronic plaque psoriasis: long-term safety and efficacy in an open-label extension study. Br J Dermatol 2018; 179: 853-862 [PMID: 29782642 DOI: 10.1111/bjd.16798]

129 Wollenhaupt J, Silverfield J, Lee EB, Curtis JR, Wood SP, Soma K, Nduaka CI, Benda B, Gruben D, Nakamura H, Komuro Y, Zwillich SH, Wang L, Riese RJ. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J Rheumatol 2014; 41: 837-852 [PMID: 24692527 DOI: 10.3899/jrheum.1306683]

130 Rojas-Feria M, Castro M, Suárez E, Ampuero J, Romero-Gómez M. Hepatobiliary manifestations in inflammatory bowel disease: the gut, the drugs and the liver. World J Gastroenterol 2013; 19: 7327-7340 [PMID: 24259964 DOI: 10.3748/wjg.v19.i42.7327]

131 Kuy S, Dua A, Chappidi R, Seebrock G, Brown KR, Lewis B, Rossi PJ, Lee C. The increasing incidence of thromboembolic events among hospitalized patients with inflammatory bowel disease. Vascular 2015; 23: 260-264 [PMID: 24986868 DOI: 10.1177/1708538114541799]

132 Maconi G, Bolzacchini E, Dell’Era A, Russo U, Ardzzone S, de Franchis R. Portal vein thrombosis in inflammatory bowel diseases: a single-center case series. J Crohns Colitis 2012; 6: 362-367 [PMID: 22405175 DOI: 10.1016/j.crohns.2011.10.003]

133 Zezos P, Kouklakis G, Saibii F. Inflammatory bowel disease and thromboembolism. World J Gastroenterol 2014; 20: 13863-13878 [PMID: 25320522 DOI: 10.3748/wjg.v20.i38.13863]

134 Naymagon L, Tremblay D, Zubizarreta N, Moshier E, Naymagon S, Mascarenhas J, Schiano T. The Natural History, Treatments, and Outcomes of Portal Vein Thrombosis in Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27: 215-223 [PMID: 32185400 DOI: 10.1093/ibd/izua053]
