Abstract. Background/Aim: The aim of the study was to determine the rate of clinically significant prostate cancer (csPcA) cases in men submitted to early second round mpMRI/TRUS (multiparametric magnetic resonance imaging/transrectal ultrasound) fusion biopsy (TPBx).

Materials and Methods: From January 2016 to December 2018, 256 men with a PI-RADS (Prostate Imaging-Reporting and Data System) score 3 (80 cases) or 4 (176 cases) and negative repeat transperineal saturation biopsy plus TPBx, underwent a new TPBx (four cores) for the persistent clinical suspicion of cancer. The accuracy of mpMRI ADC (apparent diffusion coefficient) values in the diagnosis of csPcA were evaluated. Results: Overall detection rate of csPcA was equal to 10.1% (26/256 cases): 2.5% (2/80) versus 13.6% (24/176) had a PI-RADS score equal to 3 versus 4, respectively. The presence of csPcA was significantly correlated with an ADC value of 0.747×10^{-3} mm2/sec. Conclusion: A negative TPBx missed a csPcA in 13.6% of PI-RADS score 4 that was diagnosed by an early second round TPBx: the evaluation of ADC maps could select mpMRI lesions deserving a repeat TPBx.

Multiparametric magnetic resonance imaging (mpMRI) is strongly recommended for the diagnosis of clinically significant prostate cancer (csPcA) (1-3) in order to reduce the risk of over-diagnosis and improve the cost-effectiveness of prostate biopsy (4). On the other hand, mpMRI is still associated with a significant percentage of false-negative results for csPcA and it is not clearly established in the presence of negative mpMRI targeted biopsy which lesions need an early second round biopsy. In this respect, the diameter, shape and location of mpMRI index lesion have been highly considered as indexes for Pca; in particular, the ADC values maps of the apparent diffusion coefficient (ADC), computed from diffusion-weighted imaging (DWI), provide a quantitative parameter to evaluate prostate regions with suspicion of Pca. In neoplastic tissue, ADC values are lower compared to normal prostatic tissue and some studies have demonstrated a possible differentiation in Pca aggressiveness (5-9).

In this study, we report the detection rate for csPcA in men submitted to early second round mpMRI/TRUS fusion biopsy (TPBx) of index lesions with PI-RADS (Prostate Imaging-Reporting and Data System) score 3 or 4.

Patients and Methods

From January 2016 to December 2018, 256 men (median age 64 years; range=47-75 years) with negative digital rectal examination, PI-RADS score 3 (80 cases) or 4 (176 cases) and previous (range=6-9 months before) negative repeat transperineal saturation (SPBx: 24 or more cores) combined with TPBx underwent a third procedure for the persistent suspicion of cancer because of increasing PSA values. After institutional review board and ethical committee approval were granted the informed consent was obtained from all individual participants included in the study. All mpMRI examinations were previously performed using a 3.0 Tesla scanner, (ACHIEVA 3T; Philips Healthcare Best, the Netherlands) equipped with surface 16 channels phased-array coil placed around the pelvic area with the patient in the supine position; multi-planar turbo spin-echo T2-weighted, and axial diffusion weighted imaging, and axial dynamic contrast enhanced MRI were performed for each patient (10). All the mpMRI index lesions, characterized by a PI-RADS (version 2) equal to 3 or 4, and negative for Pca, underwent second round TPBx (four cores); the procedure was performed transperineally using a Tru-Cut 18-gauge needle (Bard; Covington, GA, USA) under local anesthesia and antibiotic prophylaxis (one tablet daily of 500 mg for 3 days) (11). The TPBx was done using an Hitachi 70 Arietta echograph, Chiba, Japan) supplied by a bi-planar trans-rectal probe (6). The data have been collected following the START criteria (12). Two radiologists with 10 years of experience, blinded to pre-imaging clinical parameters, evaluated the mpMRI data separately and independently. The accuracy of
TPBx in the diagnosis of csPca (Gleason score >6 and/or greatest percentage of cancer for single core $>50\%$) was evaluated (13); moreover, the Clavien-Dindo grading system for the classification of biopsy complications was used (14). Finally, the diameter of mpMRI lesion, the presence of PI-RADS score 3 vs. 4 and ADC values were evaluated in men with csPca; in this respect, a receiver operating characteristic (ROC) curve was calculated in the peripheral mpMRI lesions to evaluate the diagnostic performance of ADC values as well as to determine the ADC cut-off level that provided the highest diagnostic performance. For statistical analysis the Student’s t-test was used; a p-value <0.05 was considered statistically significant.

Results

The median total PSA and prostate weight were 11.6 ng/ml (range=6.7-29 ng/ml) and 51 g (range=20-120 g), respectively; median PSA levels increased by 2.3 ng/ml (range=1.8-4.2 ng/ml) from the values evaluated prior the last SPBx. None had significant complications (Clavien-Dindo grade I) from prostate biopsy that needed hospital admission. The detection rate for overall cancers versus csPca was equal to 14% (36/256 cases) versus 10.1% (26/256 cases); a clinical T1c PCa was found in 6/80 (7.5%) versus 30/156 (17%) patients with a PI-RADS score equal to 3 versus 4, respectively. In detail, among the 26/36 (77.3 %) cancers classified as csPca only 2/6 (33.3%) versus 24/30 (80%) had a PI-RADS score equal to 3 versus 4 ($p=0.0001$), respectively; 18 (64.3%) and 8 (35.7%) of the csPca were located in the peripheral and anterior zone of the prostate. The biopsy quantitative histology (i.e., number of positive cores, greatest percentage of cancer and Gleason score) is presented in Table I. A normal parenchyma was diagnosed in the remaining 220/256 (86%) men. The median prostate weight and PSA density were equal to 52 and 0.20 vs. 63 g and 0.15 in men with PCa vs. normal parenchyma, respectively; moreover, the median diameter of mpMRI lesions were similar in men with csPca (10 mm) and in men with normal parenchyma (9 mm). Finally, the presence of csPca was significantly correlated with an ADC value of $0.747 \times 10^{-3}\text{mm}^2/\text{sec}$, threshold obtained from ROC curve analysis (Figure 1).

Discussion

The improvement of diagnostic imaging by mpMRI has allowed targeted biopsies of the suspicious area, increasing the diagnosis of csPca (1) and reducing the number of unnecessary systematic biopsies. Although mpMRI is strongly recommended in men candidate for a repeat biopsy (3) or men enrolled in active surveillance protocols (15, 16), still today, systematic biopsy should be always combined with mpMRI/TRUS fusion biopsy due to the increased false negative rate (1, 17) of mpMRI (about 20% of the cases) (11, 18, 19) and the variable diagnostic accuracy of the different.

Table I. Quantitative biopsy histology, PI-RADS (Prostate Imaging-Reporting and Data System) score and ADC values in the 26 men with csPca.

csPca: quantitative histology	PI-RADS 3	PI-RADS 4
Number of patients	2/80 (2.5%)	24/176 (13.6%)
Median PSA values (ng/ml)	11.3	12.9
Gleason score (ADC value)	7	6.9 (6-7)
3+3 (0.750±0.162)	-	1
3+4 (0.635±0.117)	1	8
4+3 (0.489±0.093)	-	3
Median number of positive cores	1.0	2.0
TPBx (range)	25% (1-4)	50% (2-4)
Median GPC (range)	50%	55% (40-70%)
Median prostate weight (grams)	50	45
Median mpMRI lesion index diameter (mm)	9	10

PSA: Prostate specific antigen; TPBx: targeted transperineal fusion biopsy; GPC: greatest percentage of cancer for single core; csPca: clinically significant prostate cancer; ADC: apparent diffusion coefficient.; mpMRI: multiparametric magnetic resonance imaging.
mpMRI/TRUS fusion biopsy platforms (20). On the other hand, an alternative clinical approach is to begin with mpMRI to determine which patients need a targeted biopsy (21, 22).

The detection rate of csPCa is directly related to the PI-RADS score (Table II) (11, 23-30) and the results depend on clinical parameters, the number of previous negative biopsies and the quality of TPBx procedures; in a previous series, we reported a percentage of missed csPCa equal to 8.7 versus 23.5 versus 16.2 versus 0% in the presence of a PI-RADS score <3 versus 3 versus 4 versus 5 in patients that were diagnosed by transperineal SPBx (11). In addition, it is still unclear when and which mpMRI lesions negative for cancer should be submitted early to repeat TPBx; in this respect, about 15-20% of PI-RADS 3 could harbour a csPCa resulting in reclassification to PI-RADS score 4 in a year (24, 25). On the other hand, the detection rate of csPCa in the presence of PI-RADS score 5 versus 4 is extremely variable ranging from 35.6-100% (11, 26) to 34-62.7% (23-27) of the cases, respectively.

To identify the PI-RADS score at high risk for csPCa irrespective of clinical findings many parameters have been reported: index lesion diameter, shape and location of the lesion (25) and the ADC values (4, 7, 9). Wu et al. (9) showed that higher ADC values (0.830×10^{-3} mm²/sec) were significantly associated with low-risk prostate cancer; on the contrary, Kim et al. (6) reported a mean ADC value for csPCa equal to (0.741±0.164)×10^{-3} mm²/sec.

In our series, the majority of the csPCas diagnosed at a repeat TPBx had a PI-RADS score of 4 (24/26 equal to 92.3% of the cases) and only in two cases (7.7%) a PI-RADS score of 3 (p=0.0001) was found; an early second round TPBx (6 months later) of the same index lesions of PI-RADS score 3 or 4 diagnosed a csPCa in 2.5% (2/80) vs. 13.6% (24/176) of the cases, respectively. Finally, the presence of csPCa was significantly related with an ADC value of 0.747×10^{-3} mm²/sec, threshold obtained from ROC curve analysis.

Regarding our results some considerations should be made. Firstly, the results were evaluated on biopsy specimens and not on the entire prostate gland or by performing a template mapping biopsy; secondly, the use of an in-bore mpMRI targeted biopsy, probably, would have improved the diagnosis of csPCa. Finally, a greater number of patients and a centralized evaluation of mpMRI results should be performed.

In conclusion, a negative TBPx performed for index lesions of PI-RADS score 3 or 4 missed a csPCa in 2.5% (2/80) versus 13.6% (24/156) of the cases that were diagnosed by an early second round TPBx; the evaluation of ADC maps could select mpMRI lesions deserving a repeat TPBx.

Conflicts of Interest

The Authors declare no conflicts of Interest regarding this study.

Authors’ Contributions

The Authors contributed equally to this article.

References

1. Filson CP, Natarajan S, Margolis DJ, Huang J, Lieu P, Dorey FJ, Reiter RE and Marks LS: Prostate cancer detection with magnetic resonance-ultrasound fusion biopsy: The role of systematic and targeted biopsies. Cancer 122: 884-892, 2016. PMID: 2674914. DOI: 10.1002/cncr.29874
2. Pepe P, Garufi A, Priolo G and Pennisi M: Can MRI/TRUS fusion targeted biopsy replace saturation prostate biopsy in the re-evaluation of men in active surveillance? World J Urol 34: 1249-1453, 2016. PMID: 26699628. DOI: 10.1007/s00345-015-1749-3
3. Rosenkranz AB, Verma S, Choyke P, Eberhardt SC, Eggener SE, Gaitonde K, Haider MA, Margolis DI, Marks LS, Pinto P, Sonn GA and Taneja SS: Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: A Consensus Statement by AUA and SABR. J Urol 196: 1613-1618, 2016. PMID: 27320841. DOI: 10.1016/j.juro.2016.06.079
4. Pepe P, Pepe G, Pepe L, Garufi A, Priolo GD and Pennisi M: Cost-effectiveness of Multiparametric MRI in 800 Men Submitted to Repeat Prostate Biopsy: Results of a Public Health Model. Anticancer Res 38: 2395-2398, 2018. PMID: 29599367. DOI: 10.21873/anticancers.12489
ultrasound fusion prostate biopsy. Scand J Urol 51: 260-263, 2017. PMID: 25813296. DOI: 10.1080/21681805.2017.1313310
16 Ghavimi S, Abdi H, Waterhouse J, Savdie R, Chang S, Harris A, Machan L, Gleave M, So AI, Goldenberg L and Black PC: Natural history of prostate lesions on serial multiparametric magnetic resonance imaging. Can Urol Assoc J 12: 270-275, 2018. PMID: 30139428. DOI: 10.4859/cuaj.4859
17 Calio BP, Sidana A, Sugano D, Gaur S, Maruf M, Jain AL, Merino MJ, Choyke PL, Wood BJ, Pinto PA, and Turkbey B: Risk of upgrading from prostate biopsy to radical prostatectomy pathology: does saturation biopsy of index lesion during mpMRI-TRUS fusion biopsy help? J Urol 199: 976-982, 2018. PMID: 29154904. DOI: 10.1016/j.juro.2017.10.048
18 Mortezaei A, Märzendorfer O, Donati OF, Rizzi G, Rupp NJ, Wettstein MS, Gross O, Sulser T, Hermanns T and Eberli D: Diagnostic accuracy of mpMRI and fusion-guided targeted biopsy evaluated by transperineal template saturation prostate biopsy for the detection and characterization of prostate cancer. J Urol 200: 309-318, 2018. PMID: 29474846. DOI: 10.1016/j.juro.2018.02.067
19 Borofsky S, George AK, Gaur S, Bernardo M, Greer MD, Mertan VF, Tafefi M, Moreno V, Merino MJ, Wood BJ, Pinto PA, Choyke PL and Turkbey B: What are we missing? False-negative cancers at multiparametric MR imaging of the prostate. Radiology 286: 186-195, 2018. PMID: 29053402. DOI: 10.1148/radiol.2017152877
20 Westhoff N, Siegel FP, Hausmann D, Polendik M, von Hardenberg J, Michel MS and Ritter M: Precision of MRI-ultrasound-fusion biopsy in prostate cancer diagnosis: An ex vivo comparison of alternative biopsy techniques on prostate phantoms. World J Urol 35: 1015-1022, 2017. PMID: 27830373. DOI: 10.1007/s00345-016-1967-3
21 Ahmed HU, El-Shater Bousaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A, Kirkham AP, Oldroyd R, Parker C, Emberton M and PROMIS study group: Diagnostic accuracy of multiparametric MRI and fusion biopsy for prostate cancer (PROMIS): a paired validating confirmatory study. Lancet: 815-822, 2017. PMID: 28110982. DOI: 10.1016/S0140-6736(16)32401-1
22 Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaaraa MH, Briganti A, Budiaus L, Hellawell G, Hindley RG, Roobol MJ, Eggener S, Ghei M, Villers A, Watanabe Y and START Consortium: Standards of Reporting for MRI-targeted Prostate Biopsy Studies (START) of the Prostate: Recommendations from an International Working Group. Eur Urol 64: 544-552, 2013. PMID: 23537686. DOI: 10.1016/j.eururo.2013.03.030
23 Valerio M, Anele C, Bott SR, Charman SC, van der Meulen J, El-Mahallawi H, Emara AM, Freeman A, Jameson C, Hindley RG, Montgomery BSL, Singh PB, Ahmed HU and Emberlin M: The prevalence of clinically significant prostate cancer according to commonly used histological thresholds in men undergoing template prostate mapping iopsie. J Urol 195: 1403-1408, 2016. PMID: 26626221. DOI: 10.1016/j.juro.2015.11.047
24 Dindo D, Demartines N and Clavien PA: Classification of surgical complications. A new proposal with evaluation in a Cohort of 6363 patients and results of survey. Ann Surgery 2: 205-213, 2004. PMID: 15273542.
25 Pepe P, Cimino S, Garufi A, Priolo G, Russo GI, Giardina R, Reale G, Pennisi M and Morgia G: Confirmatory biopsy of men under active surveillance: extended versus saturation versus multiparametric magnetic resonance imaging/transrectal...
25 Hansen NL, Koo BC, Warren AY, Kastner C and Barrett T: Sub-differentiating equivocal PI-RADS-3 lesions in multiparametric magnetic resonance imaging of the prostate to improve cancer detection. Eur J Radiol 95: 307-313, 2017. PMID: 28987685. DOI: 10.1016/j.ejrad.2017.08.017

26 Bastian-Jordan M: Magnetic resonance imaging of the prostate and targeted biopsy, Comparison of PIRADS and Gleason grading. J Med Imaging Radiat Oncol 62: 183-187, 2018. PMID: 28990727. DOI: 10.1111/1754-9485.12678

27 John S, Cooper S, Breau RH, Flood TA, Cagiannos I, Lavallee LT, Morash C, O’sullivan J and Schieda N: Multiparametric magnetic resonance imaging - Transrectal ultrasound-guided cognitive fusion biopsy of the prostate: Clinically significant cancer detection rates stratified by the Prostate Imaging and Data Reporting System version 2 assessment category. Can Urol Assoc J, 2018. PMID: 29940139. DOI: 10.5489/cuaj.5254

28 Venderink W, van Luijtelaar A, Bomers JGR, Bomers JG, van der Leest M, Hulsbergen-van de Kaa C, Barentsz JO, Sedelaar JP and Fütterer JJ: Results of targeted biopsy in men with magnetic resonance imaging lesions classified equivocal, likely or highly likely to be clinically significant prostate cancer. Eur Urol pii: S0302-2838(17)30110-0, 2017. PMID: 28258784. DOI: 10.1016/j.eururo.2017.02.021

29 Kido A, Tamada T, Kanomata N, Yamamoto A, Miyaji Y, Nagai A and Sone T: Multidimensional analysis of clinicopathological characteristics of false-negative clinically significant prostate cancers on multiparametric MRI of the prostate in Japanese men. Jpn J Radiol, 2019. PMID: 30600483. DOI: 10.1007/s11604-018-0801-9

30 Schoots IG: MRI in early prostate cancer detection: how to manage indeterminate or equivocal PI-RADS 3 lesions? Transl Androl Urol 7: 70-82, 2018. PMID: 29594022. DOI: 10.21037/tau.2017.12.31

Received February 24, 2019
Revised March 19, 2019
Accepted March 20, 2019