Modelling and Prediction of Road Transportation Noise Pollution in Some Capital Cities in Eastern Nigeria by Use of Artificial Neural Network

Effiong O. Obisung*1 Aniefiok O. Akpan2 Ubon E. Asuquo1
1. Department of Physics, University of Calabar, Calabar, Nigeria
2. Department of Physics, Akwa Ibom State University, Ikot Akpanden, Mkpat Enin, Akwa Ibom State, Nigeria

Abstract
The study attempts to model and predict road transportation noise pollution in five capital cities in Eastern Nigeria. The capital cities are Calabar, Uyo, Umuahia, Owerri and Port Harcourt. Feed-forward neural network (FNN) with negative back-propagation algorithm was used to do this. The software used was NeuroXL. The ability of this software to handle multiple non-linear relationships makes it ideally suited for this work. The input data used were total road traffic volume, road traffic mix, road traffic noise pollution response data, and distances from road centre-line to measurement points. The output data used was A-weighted energy mean sound level (L_{Aeq}). Models based on this negative back-propagation neural network were trained, validated and tested using data collected. The performance of the model was tested by an error measure, root mean square error (RMSE). RMSE is low as expected, ranges from 1.007 - 1.814, showing that the model is good for the prediction of road traffic noise data. The correlation between observed and predicted noise levels (L_{Aeq}) was also obtained, and ranges between +0.757 to +0.974, showing that there is no significant difference between observed and predicted noise levels, thereby, proving the model accurate and reliable.

Keywords: Artificial neural network, back-propagation, road traffic noise modeling, road traffic noise prediction, NeuroXL software

DOI: 10.7176/JEES/11-10-06
Publication date: October 31st 2021

1.0 Introduction
Nigerian urban dwellers are excessively exposed to severe environmental/city noise pollution. The most disturbing city noise source, as generally established in the developing and developed urban communities being road transportation, as noise from it causes a lot of socio-psychological and physiological problems such as annoyance, sleeplessness, hearing loss, communication disturbances, speech intelligibility, cardiovascular disorders and other health problems [1 - 9]. The heterogeneous nature of urban environments, coupled with the characteristics of road transportation noise, their spatial, temporal and spectral variability, makes the matter of modeling and prediction of road transportation pollution a very complex and non-linear problem, to which the application of artificial neural networks becomes imperative. Artificial neural networks (ANNs) are widely used in road transportation noise modeling and prediction as a preference to more conventional statistical techniques, because ANNs are non-linear, relatively insensitive to noise data, perform reasonably well when limited data are available, and provide flexibility, accuracy and fault tolerance in changing environments [9-17].

2.0 Materials and methods
2.1 Measurement sites
One hundred (100) measurement sites were randomly selected from the five (5) Nigerian capital cities surveyed. Fifty (50) sites were chosen from road transportation high noise pollution zones, where heavy road transportation volume and dense traffic mix (composition) are experienced, on daily basis to serve as study group, while 50 sites were from low noise zones to serve as control group.

Fig. 1 shows map of Nigeria indicating the surveyed capital cities, while tables 1 - 5 show the description of the measurement sites.

2.2 Materials for data collection
2.2.1 Materials for acoustic data collection
A precision sound level meter, Bruek and Kjaer (B & K), type 732 was used to assess road transportation noise levels at each measurement sites. Other materials used included measuring tape (to measure distance from the road centre line to the measurement points); stop watch/clock (to take sampling/measurement times); tally sheets (to record motor vehicle volume and motor vehicle mix during measurement/sampling times); and tripod stand (to support the sound level meter).
2.3 Methods of data collection

2.3.1 Methods for acoustical data collection

A precision sound level meter was used to collect the road transportation noise levels in line with ISO 1996 - 1 and ISO 1996 - 2 standards [19, 20]. All measurements were done when motor vehicles (motorcycles/tricycles, cars/jeep, buses and trucks/trailers, etc) were moving past the measurement points. Readings of noise levels, background noise levels (BNLs) and A-weighted energy mean noise levels (L_{Aeq}) at each measurement point were taken every fifteen (15) minutes (sampling time or time rate) for a period of about 15 hours (7am - 10pm) daytime period, and 9 hours (10pm - 7am) nighttime period. Sound level meter (SLM) was held on a tripod stand with a microphone directly pointing toward noise source about 1.5 - 2.0m high from the ground, and 3.5m from reflecting surfaces. The distance between measurement point and road Centre line was 10 - 15m. Measurement sites were randomly selected to reflect roads with high and low transportation noise pollution levels, also away from airports, factories, construction sites and any other sources of heavy and intense noise other than motor vehicles. This was to prevent or reduce undue influence of these sources to road transportation noise levels. Total road traffic volume and road traffic mix (composition) were also recorded at each measurement sites. Tables 6-10 show observed and predicted L_{Aeq} data and mean road transportation volume per hour during recording time at daytime and nighttime periods in the surveyed capital cities.

2.3.2 Methods for Psycho-social data collection

Subjective (Psycho-social) responses of respondents exposed to intense road transportation noise were obtained by use of road transportation noise pollution survey questionnaire (RTNPSQ) and analysed and evaluated. Persons who have literacy skills (reading and writing skills in English), who reside at the place for at least three (3) years as at the time the survey took place, and who were up to 15 years and above by age, were given copies of the questionnaire to complete objectively and return to the researcher. These precautions were taken to help reduce information bias on the part of the respondents. Two thousand and five hundred (2,500) persons were given copies of the questionnaire at road transportation high noise pollution sites, to serve as experimental group, while another 2,500 persons were given some copies of questionnaire at low noise pollution sites, to serve as control group. In all, the response rates at high and low noise pollution sites were 93.5% and 94.8% respectively.

2.3.3 Artificial neural network training process

Every neural network has input, hidden and output layers (nodes). Feed-forward neural network (FNN) and many other networks learn using back-propagation algorithm. The input data used in this study include total road traffic volume, road traffic composition (mix), distance from measurement point to road centre-line; and respondents’ road traffic noise pollution-induced response data. The input data were divided into two sets – training (learning) data set and checking (testing) data set. Data points for road traffic high noise pollution sites were 486, 472, 454, 464 and 461 in Calabar, Uyo, Oumuaia, Owerri and Port Harcourt cities respectively, while for road transportation low noise sites were 465, 480, 478, 476 and 471 in Calabar, Uyo, Oumuaia, Owerri and Port Harcourt cities respectively. Table 11 shows summary of ANN training and checking data used for the study. Data points used for training ANN at high noise sites in Calabar, Uyo, Oumuaia, Owerri and Port Harcourt cities were 301, 295, 297, 295 and 284 respectively, while at low noise sites were 296, 304, 295, 299 and 288 respectively. Also data points used for checking the validation of ANN at high noise sites in Calabar, Uyo, Oumuaia, Owerri and Port Harcourt cities were 185, 177, 157, 169 and 177 respectively, while at low noise sites were 169, 176, 183, 177 and 183 respectively. With back-propagation, the input data were fed into the input layer to the hidden layer. Within the hidden layer they got summed, then processed by a non-linear function (usually either zero-based log sigmoid function or the hyperbolic tangent). The data were then finally multiplied by interconnection weights, then processed within the output layer to produce the neural network output. The output of the neural network was compared to the desired output, and the model error was computed. This error was then fed back (back-propagated)
to the neural network and used to adjust the weights such that the model error decreased with each iteration, and the neural model got closer and closer in accuracy until the desired output was obtained, when the network no longer seemed to be learning, or an acceptable model error was reached. Fig. 2 shows a diagram demonstrating ANN training process [21], while table 12 shows summary of initial ANN training parameters. Table 13 shows the validation parameters of the ANN model.

2.4 Data analysis/reductions

The following noise measure or descriptor was used:

Energy mean A-weighted sound pressure level (LAeq): This is mathematically expressed in Eqn. 1.

\[L_{Aeq, 1hr} = 10 \log_{10} \left(\sum_{i=1}^{N} f_i \times 10^{L_i/10} \right) \text{dB(A)} \]

(1)

Where \(L_i \) = sound pressure level (in dB(A))

\(f_i \) = fraction of observation time that \(L_i \) is present (in seconds)

\(\Sigma \) = summation symbol

The energy mean A-weighted sound pressure level, LAeq is the energy average sound level occurring at a particular location over a given time interval. It is the most widely used measure to assess and regulate road and other transportation noise pollution because it correlates well with psycho-social responses of noise as well as its simplicity of use [22, 23]

Root mean square error (RMSE): This is expressed in Eqn. 2

\[\text{RMSE} = \sqrt{\frac{\sum(Y_i - \bar{Y})^2}{N}} \]

(2)

Correlation coefficient (r): This is expressed as in Eqn. 3

\[r = \frac{\sum XY - \bar{X} \cdot \bar{Y}}{\sigma_X \cdot \sigma_Y} \]

where \(Y_i \) = predicted values

\(X_i \) = observed values

\(N \) = Number of data point.

\(\bar{X} \) = mean of observed data

\(\bar{Y} \) = mean of predicted data

\(\sigma_X \) = standard deviation for observed data

\(\sigma_Y \) = standard deviation for predicted data

3.0 Results

The findings of this study are summarized in tables 6 – 10, 13 and Figs. 3 – 7. Tables 6 – 10 show observed (measured) and predicted (calculated) noise levels (LAeq) and mean road traffic volume and traffic mix at daytime and nighttime periods in the surveyed Nigerian cities. Table 13 shows the calculated validation parameters of the ANN model. Figs. 3a – 7a show correlation curves and R²-values between observed and predicted LAeq, while Figs. 3b – 7b show ANN performance curves for checking (testing) data for road traffic high and low noise pollution sites, indicating respondents’ noise reactions against observed and predicted LAeq at surveyed Nigerian cities.

4.0 Discussion of Results

From Tables 6 – 10 the observed and predicted LAeq appear to be correlating well. They are found to be high, beyond the recommended World Health Organization’s standard [24]. The LAeq ranged from 87.1 – 98.5 dB(A) (observed) in Calabar city high noise sites. Similar trends were observed in other surveyed cities. Such levels of noise are high enough to cause human annoyance, discomfort, sleeplessness, hearing loss, communication disturbances, among other physiological and psycho-social health disorders [9]. The mean road traffic volume per hour (VPH) is much as observed in tables 6 – 10 at high noise sites. It was shown that noise level is a function of traffic volume. Percentage of heavy duty vehicles ranged from 9.1 – 20.3%. This magnitude of motor vehicles is alarming [9, 24]. Table 13 shows the calculated parameters for ANN model validation. The root mean square is the ANN error measure used in validating the network. From table 13 RMSE is quite low, within the theoretical values acceptable for ANN model to be acceptable and accurate [25]. RMSE is a measure of the spread of observed values about the predicted values. A large RMSE means a poor model because of a large variance [25] while a small RMSE means a good ANN model. In this study the RMSE values range from 1.007 – 1.814, a reasonably low error values, proving that the ANN model is accurate. The correlation values between observed and predicted LAeq from table 13, range from +0.592 to +0.950 showing that there is no significant difference between observed and predicted LAeq, further proving that the ANN model is accurate [9].

In order to certify the good results obtained with the developed ANN based prediction model, correlation
values between observed and predicted L_{Aeq} are shown in Figs. 3a – 7a while Figs. 3b – 7b display the ANN model performance curves of observed and predicted values of the output variables (L_{Aeq}) for all data used for the checking (testing) phase based on noise impact responses from respondents. From the results obtained, the proposed ANN based model has achieved prediction with a reasonably low RMSE, and has shown a great capacity for generalization. The neural network is capable of predicting, with considerable precision and accuracy, the sound pressure level (L_{Aeq}) and even temporal and spectral composition of the different types of situations presented to the network [26].

5.0 Conclusion

Due to their well-known characteristics, the use of artificial neural networks to approach a complex problem of modelling and prediction of urban noise seemed highly recommended [9, 17]. Based on the results discussed in this paper this hypothesis is certified. The developed ANN based prediction model is capable of predicting, with great accuracy, road traffic noise levels as well as their temporal and spectral compositions in cities. In this study, the model developed is not only able to learn and predict those data presented during the training phase, but also is able, with great success, to predict noise data used for the testing phase, which inform about its great capacity of generalization. This goes to show that the model will not only be very useful for cities surveyed under this study, but also for other cities which have similar noise situations and characteristics [9, 26].

6.0 Acknowledgements

The authors are very grateful to all those who helped in data collection/collation.

REFERENCES

1. N. L. Carter. Transportation noise, sleep, and possible after-effects. Environmental International, 22. 105 – 116.
2. World Health Organization – WHO. Burden of disease from environmental noise. Geneva, 2011a.
3. A. S. Stansfeld and M. P. Matheson. Noise pollution auditory effects on health. Oxford Journals, British Medical Bulletin, 68, 243 – 257, 2012.
4. D. R. Nandawar, D. K. Parbat, and S. K. Deshmukh. Study on residents perception and attitudes towards urban traffic noise in Nagpur city. 2nd International Conference on emerging trends in engineering and technology. Naspur ICETET, 585 – 588, 2009.
5. M. U. Onuu. Road traffic noise in Nigeria: Measurement, analysis and evaluation of nuisance.
6. M. U. Onuu. Noise pollution in the urban environment: assessment of objectionable qualities of road traffic noise. Nigerian Journal of Physics, 12, 68 – 71; 2000a.
7. M. U. Onuu, and A. I. Menkiti. Analysis of Nigerian community response to road traffic noise. Journal of Science, Engineering and Technology, 3, 536 – 547; 1996.
8. E. O. Obisung, M. U. Onuu and A. I. Menkiti. Levels and spectra of aircraft noise and people’s reactions in some Nigerian cities. Nigerian Journal of Physics 19 (2), 223 – 226, 2007.
9. E. O. Obisung. Acoustical investigation and prediction of road transportation noise pollution in some urban communities in Eastern Nigeria: A Ph. D Dissertation (Engineering Physics), Department of Physics, University of Calabar, Calabar, Nigeria, 2012.
10. M. Smith. Neural networks for statistical modelling. Van Nostrand Reinhold, ISBN 0-442- 01310-8, 1993.
11. J. Lawrence. Introduction to neural networks. California Scientific Software Press. ISBN 1 – 883157 00 -5, 1994.
12. S. Haykin. Neural networks: a comprehensive foundation. Prentice Hall, ISBN 0 – 13 – 27 – 3350 – 1, 1999.
13. A. I. El – Mallawary, M. I. Abdallah and M. A. El – Gawad. Modeling of traffic noise pollution with neural networks. Journal of the Acoustic Society of America, 05 (2); 1335 – 1338, 1999.
14. A. Calixto, F. B. Diniz and P. H. T. Zammin. The statistical modelling of road traffic noise in urban setting. Cities 20 (1):23 – 29, 2003.
15. D. K. Parbat and P. B. Nagarnaik. Artificial neural network modelling of road transport noise descriptors. In preceedings of the 1st International Conference on trends in engineering and Technology, ICETET’ 08. IEEE Computer Society, Washington, D. C, USA, pp 1017 – 1024; 2008. Journal of Sound and Vibration, 233(3), 391 – 405, 2000b.
16. K. Kumar, M. Parida, V. K. Katiya. Prediction of urban traffic noise using artificial neural network approach. Environmental Engineering and Management Journal, Gheorghe Asachi Technical University of Lasi, Romania, 2012.
17. H. R. Maier and G. C. Dandy. The effect of internal parameters and geometry on the performance of backpropagation neural networks: an empirical study. Environmental Modeling and Software, Vol. 13, No. 2, 193 – 209, 1998.
18. J. M. Fields. Effects of personal and situational variables upon noise annoyance in residential areas. Journal
of the Acoustical Soc. Of Am; 93, 2753 – 2763; 1993.
19. ISO 1996 – 1. Acoustics-description, measurement and assessment of environmental basic quantities and assessment noise procedures.
20. ISO 1996 – 2. Acoustics-description, measurement and assessment of environmental noise-Determination of environmental noise levels.
21. M. Smith. Neural networks for statistical modelling. Van Nostrand Reinhold, ISBN 0 – 442 – 01310 – 8, 1993.
22. F. J. Langdon. Noise nuisance caused by road traffic noise in residential areas. Part 1. Journal of Sound and Vibration, 47, 265 – 282; 1976a.
23. D. Gottlob. Regulations for community noise. Noise/News International. Vol. 3, (4), 223 – 236; 1995.
24. WHO – World Health Organization. Guidelines for community noise: A complete, authoritative guide on effects of noise pollution on health. Switzerland, 1999.
25. R. Hyndman, J. Koehler and B. Anne. Another look at measures of forecast accuracy. International Journal of forecasting, 679 – 688; 2006.
26. A. J. Torijia, D. P. Ruiz and A. Ramos-Ridao. Developing an artificial neural network for modelling and prediction of temporal structure and spectral composition of environmental noise in cities. University of Granada, Spain. www.intechopen.com, Retrieved 10th April, 2013.

Table 1: Codes, measurement sites and GPS readings for Calabar study area.

Road transportation high noise pollution sites (HNPS)	Codes	Measurement sites	GPS
HCA 1 Mbukpa Road	LCA 1 New Airport Road		
HCA 2 Mene Avenue	LCA 2 Anambra Road		
HCA 3 Calabar Road	LCA 3 Ediba-Ediba Road		
HCA 4 Mount Zion Road	LCA 4 Jeds Road		
HCA 5 Ekpo Abasi Street	LCA 5 Iman Street		
HCA 6 Etta Agbo Road	LCA 6 MCC Road		
HCA 7 IBB Way	LCA 7 Otop Abasi Street		
HCA 8 Atimbo Road	LCA 8 Atekong drive		
HCA 9 Ndidek Unam IsaacRoad	LCA 9 Diamond Hill		
HCA 10 Murtala Mohammed Highway	LCA 10 Old Odukpon Road		

Road transportation low noise pollution sites	Codes	Measurement sites	GPS
GPS			

Fig. 1: Map of Nigeria showing study areas.
Table 2: Codes, measurement sites and GPS readings for Uyo study area.

Codes	Measurement sites	GPS	Codes	Measurement sites	GPS
HUY 1	Ikpa Road	4°30'N, 7°25'E	LUY 1	IBB Road	4°41'N, 7°40'E
HUY 2	Ibon Plaza	4°45'N, 7°20'E	LUY 2	Uruan Road	4°50'N, 7°36'E
HUY 3	Oron Road	4°40'N, 7°30'E	LUY 3	Nasarawa Road	4°51'N, 7°43'E
HUY 4	Urua Ekaa Road	5°15'N, 7°20'E	LUY 4	Nkemba Street	4°45'N, 7°25'E
HUY 5	Akwa Road	4°30'N, 7°42'E	LUY 5	Barracks Road	4°30'N, 8°05'E
HUY 6	Ikot Ekpeno Road	5°15'N, 7°36'E	LUY 6	Ikoko Street	5°15'N, 7°17'E
HUY 7	Abak Way	5°06'N, 7°02'E	LUY 7	Esuene Street	4°50'N, 7°40'E
HUY 8	Nwanza Iba Road	5°15'N, 7°20'E	LUY 8	Brook Street	5°06'N, 7°48'E
HUY 9	Akwa Etinn Road	4°45'N, 7°38'E	LUY 9	Umoh Road	4°45'N, 7°51'E
HUY 10	Uka Oftoo Road	4°29'N, 7°47'E	LUY 10	Udo Udoma Street	4°55'N, 7°38'E

Table 3: Codes, measurement sites and GPS readings for Umahia study area.

Codes	Measurement sites	GPS	Codes	Measurement	GPS
HUM 1	Umuya Road	5°20'N, 7°15'E	LUM 1	Niger Road	5°30'N, 7°20'E
HUM 2	Oweri Road	5°24'N, 7°20'E	LUM 2	Ibedu Road	5°20'N, 7°25'E
HUM 3	Aba Road	5°30'N, 7°25'E	LUM 3	Calabar Road	5°22'N, 7°22'E
HUM 4	Bende Road	5°28'N, 7°21'E	LUM 4	Warri Street	5°28'N, 7°23'E
HUM 5	Okwu Row	5°26'N, 7°20'E	LUM 5	Kaduna Street	5°21'N, 7°27'E
HUM 6	Umahia Road	5°21'N, 7°30'E	LUM 6	Akanu Ibiarn Road	5°23'N, 7°24'E
HUM 7	School Road	5°20'N, 7°23'E	LUM 7	Azikiwe Road	5°25'N, 7°03'E
HUM 8	Bank Road	5°22'N, 7°25'E	LUM 8	Afora Road	5°24'N, 7°20'E
HUM 9	Amakara Road	5°26'N, 7°27'E	LUM 9	Okiwe Road	5°31'N, 7°21'E
HUM 10	Usukalik Road	5°23'N, 7°21'E	LUM 10	Finbar Road	5°28'N, 7°26'E

Table 4: Codes, measurement sites and GPS readings for Oweri study area.

Codes	Measurement sites	GPS	Codes	Measurement	GPS
HOW 1	Amaleke Road	5°25'N, 6°55'E	LOW 1	School Road	6°23'N, 7°50'E
HOW 2	MCC Road	6°20'N, 7°15'E	LOW 2	World Bank Road	6°25'N, 6°45'E
HOW 3	Douglas Road	6°15'N, 7°20'E	LOW 3	Tella Road	6°52'N, 6°95'E
HOW 4	Ozu Road	5°50'N, 6°45'E	LOW 4	Dike Road	7°40'N, 6°10'E
HOW 5	Isu Road	5°40'N, 6°50'E	LOW 5	West End Road	7°36'N, 6°15'E
HOW 6	Fire Service Road	5°25'N, 6°47'E	LOW 6	Ikennobi Road	6°40'N, 6°25'E
HOW 7	Mboisi Road	6°50'N, 7°15'E	LOW 7	Prisons Road	6°50'N, 6°30'E
HOW 8	Nkene Road	7°10'N, 7°20'E	LOW 8	Asunoma Road	6°51'N, 6°20'E
HOW 9	Westhall Road	5°25'N, 6°50'E	LOW 9	Mbami Road	7°20'N, 7°30'E
HOW 10	Okiwe Road	6°26'N, 7°20'E	LOW 10	Lagos Street	6°41'N, 7°05'E

Table 5: Codes, measurement sites, and GPS readings for Port Harcourt study area.

Codes	Measurement sites	GPS	Codes	Measurement sites	GPS
HPF 1	Rumola Road	4°30'N, 6°25'E	LPH 1	Abak Road	4°25'N, 6°50'E
HPF 2	Choba Road	4°20'N, 6°15'E	LPH 2	Shell Gate Road	4°30'N, 6°45'E
HPF 3	NTA Road	4°20'N, 6°30'E	LPH 3	Mile 1 Market Road	4°32'N, 6°30'E
HPF 4	Ah shops Road	4°35'N, 6°21'E	LPH 4	Refinery Way	4°40'N, 6°55'E
HPF 5	Rumokoko Road	4°35'N, 6°40'E	LPH 5	Borokiri	4°49'N, 6°36'E
HPF 6	Boat camp Road	4°40'N, 6°30'E	LPH 6	Airport Road	4°35'N, 6°30'E
HPF 7	Slab road	4°25'N, 6°30'E	LPH 7	Garrison Road	4°30'N, 6°52'E
HPF 8	Eleme Road	4°30'N, 6°26'E	LPH 8	Oronworo Street	4°46'N, 6°45'E
HPF 9	Water Line	4°50'N, 6°55'E	LPH 9	Port Harcourt Road	4°35'N, 6°25'E
HPF 10	Ada George Road	4°56'N, 6°35'E	LPH 10	Bulletin Street	4°50'N, 6°48'E
Table 6: Statistics of measured (observed) and calculated (predicted) road transportation noise levels/indices obtained at both road transportation high and low noise pollution sites and corresponding road traffic volume per hour (VPH) during recording time at daytime and nighttime periods, under free flow conditions, in Calabar city.

Sites	Measured (observed) noise levels (±0.6dB(A))	Calculated (predicted) noise levels/indices (dB(A))	Mean road traffic volume per hour (VPH)										
	L_{Aeq} (SPL)	Day	L_{Aeq}	Trucks	Bikes	Cars	Motorcycle	Total	Trucks	Bikes	Cars	Motorcycle	Total
Road transportation noise levels/indices and traffic volume per hour at road transportation high noise pollution sites													
HCA 1	48.2	50.0	90.4	327	289	447	538	1601	286	193	317	415	1211
HCA 2	46.6	50.0	97.2	481	507	615	549	2352	150	270	283	361	1059
HCA 3	41.3	87.0	97.1	416	503	613	432	1964	109	182	314	307	912
HCA 4	45.2	94.0	95.8	294	476	588	469	1827	87	219	496	211	1013
HCA 5	50.4	99.0	97.0	313	394	601	456	1764	255	237	504	315	1391
HCA 6	51.2	100.0	98.5	489	610	829	441	2369	189	223	461	239	1082
HCA 7	43.1	89.0	88.2	391	533	565	602	2091	273	486	514	356	1629
HCA 8	40.4	92.0	90.0	503	642	471	459	3075	197	318	472	291	1278
HCA 9	41.7	97.0	98.0	457	640	396	373	1596	255	401	519	306	1491
HCA 10	43.3	100.0	98.4	412	593	617	408	2139	214	396	502	179	1291
Total	3993	5017	5932	4727	19659	1975	3030	4382	2590	12337			
%	20.3	25.5	20.2	24.0	100.0	16.0	24.6	35.5	23.9	100.0			

Road transportation noise levels/indices and traffic volume per hour at road transportation low noise pollution sites

LCA 1	35.5	70.0	70.4	81	176	223	230	710	34	51	113	15	213
LCA 2	40.7	72.0	73.2	179	217	317	236	951	100	67	161	24	352
LCA 3	44.4	79.0	78.5	153	291	306	221	971	89	82	185	17	373
LCA 4	43.3	76.0	74.6	102	283	291	347	923	91	69	87	30	277
LCA 5	42.4	74.0	72.2	89	106	204	233	632	65	53	92	11	221
LCA 6	45.6	100.0	80.0	106	214	301	325	1204	68	97	153	8	366
LCA 7	54.7	81.0	80.2	106	215	199	362	882	72	103	78	23	276
LCA 8	48.7	79.0	80.1	211	277	218	268	974	79	92	107	18	296
LCA 9	46.1	78.0	77.9	67	185	173	315	743	34	223	86	10	240
LCA 10	57.2	73.0	72.0	228	239	247	290	909	46	89	114	39	288
Total	1285	2204	2481	2728	8698	678	807	1216	201	2902			
%	14.8	25.3	28.5	31.4	100.0	23.4	27.9	41.9	6.9	100.0			
Table 7: Statistics of measured (observed) and calculated (predicted) road transportation noise levels/indices obtained at both road transportation high and low noise pollution sites and corresponding road traffic volume per hour (VPH) during recording time at daytime and nighttime periods, under free flow conditions, in Uyo city.

Sites	Measured (observed) noise levels (dB(A))	Calculated (predicted) noise levels/indices (dB(A))											
	蘭 (SPL)	Day	蘭 (SPL)	Night									
	L_{Aeq}		L_{Aeq}										
INL	(%)	(%)	(%)	(%)									
	Tracks	Bus	Cars	Motorcycle	Total vol.	Tracks	Bus	Cars	Motorcycle	Total vol.			
HLYY1	40.2	65.0	83.7	211	602	1054	619	2596	215	368	634	207	1506
HLYY2	41.3	65.0	85.0	211	602	1054	619	2596	215	368	634	207	1506
HLYY3	53.3	105.0	100.2	209	811	979	543	2544	157	209	530	191	1075
HLYY4	42.5	68.0	98.0	318	570	3844	827	3228	101	211	473	86	391
HLYY5	23.5	68.0	97.4	253	561	3844	827	3228	101	211	473	86	391
HLYY6	33.0	102.0	101.8	264	531	3844	827	3228	101	211	473	86	391
HLYY7	51.0	100.0	101.0	315	552	1900	742	3660	159	231	841	97	1508
HLYY8	50.5	100.0	102.0	315	552	1900	742	3660	159	231	841	97	1508
HLYY9	50.2	101.0	98.5	385	566	1811	759	3937	104	186	554	94	928
HLYY10	54.4	100.0	98.0	493	598	2009	965	4369	98	269	518	113	998

| % | 3255 | 8.48 | 71.47 | 7333 | 36601 | 2694 | 2702 | 6517 | 1366 | 13187 |

Road transportation noise levels/indices and traffic volume per hour at road transportation high noise pollution sites
L_{Aeq} (SPL)
L_{Aeq} (%)
HLYY1
HLYY2
HLYY3
HLYY4
HLYY5
HLYY6
HLYY7
HLYY8
HLYY9
HLYY10

| % | 3255 | 8.48 | 71.47 | 7333 | 36601 | 2694 | 2702 | 6517 | 1366 | 13187 |

| % | 28.7 | 21.9 | 45.3 | 2.1 | 100.0 | 15.8 | 26.7 | 46.2 | 13.3 | 100.0 |
Table 8: Statistics of measured (observed) and calculated (predicted) road transportation noise levels/indices obtained at both road transportation high and low noise pollution sites and corresponding road traffic volume per hour (VPH) during recording time at daytime and nighttime periods, under free flow conditions, in Umaula city.

Sites	Measured (observed) noise levels (≤5.0dB(A))	Calculated (predicted) noise levels/indices (dB(A))	Mean road traffic volume per hour (VPH)											
	BNL	Day L_{Aeq} (SPL)	Trucks	Bus	Cars	Motorcycle	Total vol.	Trucks	Bus	Cars	Motorcycle	Total vol.		
HUM 1	42.2	202.0	100.0	519	716	318	2726	374	467	315	429	1085		
HUM 2	37.3	180.0	99.0	536	812	351	267	412	311	495	227	336	1297	
HUM 3	40.3	200.0	97.8	551	728	380	271	307	292	491	369	372	1074	
HUM 4	38.5	170.0	98.0	462	903	390	209	402	397	253	366	471	416	1506
HUM 5	36.6	200.0	92.0	415	907	218	513	393	316	289	392	290	1297	
HUM 6	42.5	100.0	100.1	397	1079	221	576	426	208	313	518	415	1449	
HUM 7	41.5	100.0	98.6	394	881	150	491	378	329	217	358	261	915	
HUM 8	36.1	140.0	93.7	528	1018	819	1037	419	286	190	262	376	1022	
HUM 9	38.2	200.0	100.0	642	1703	921	966	422	204	152	488	499	1137	
HUM 10	40.3	100.0	100.0	436	960	2073	323	3154	261	337	369	272	1219	
Total	41.7	27.8	44.7	515	1043	1053	1040	3408	3752	2484	3125	3914	8600	13213
%	13.7	22.7	44.1	14.4	100.0	104.0	104.0	28.8	24.0	29.6	27.3	100.0		

Road transportation noise levels/indices and traffic volume per hour at road transportation high noise pollution sites
BNL
HUM 1
HUM 2
HUM 3
HUM 4
HUM 5
HUM 6
HUM 7
HUM 8
HUM 9
HUM 10
Total
%
Table 9: Statistics of measured (observed) and calculated (predicted) road transportation noise levels/indices obtained at both road transportation high and low noise pollution sites and corresponding road traffic volume per hour (VPH) during recording time at daytime and nighttime periods, under free flow conditions, in Owerri city.

Sites	Measured (observed) noise levels (≥5.0dB(A))	Calculated (predicted) noise levels/indices (dB(A))	Mean road traffic volume per hour (VPH)											
	LAeq (SPL)	BNL	Day	LAeq	Trucks	Bus	Cars	Motorcycle	Total vol.	Trucks	Bus	Cars	Motorcycle	Total vol.
HOW 1	46.1	100.0	98.8	623	815	1311	257	3006	409	426	618	372	1823	
HOW 2	46.3	99.0	100.0	487	736	645	375	2248	281	253	425	189	1148	
HOW 3	40.2	96.0	95.0	401	779	718	407	2311	372	460	417	156	1405	
HOW 4	51.5	102.0	100.0	551	913	1607	252	3326	490	511	690	233	1964	
HOW 5	48.5	100.0	98.0	630	817	1312	1314	4073	461	527	589	467	2044	
HOW 6	49.7	100.0	100.0	393	569	2613	18.9	5384	312	296	637	519	1764	
HOW 7	39.6	98.0	97.0	458	912	964	417	2751	419	458	484	266	1624	
HOW 8	40.2	100.0	101.5	505	911	888	484	2879	416	429	316	375	1556	
HOW 9	41.3	96.0	94.0	617	817	2183	191	3982	498	367	993	153	2211	
HOW 10	48.4	102.0	98.0	492	936	2627	557	4581	356	476	978	221	2032	
Total	5194	8331	14486	6212	34346	4214	4190	6088	2951	17443				

Road transportation noise levels/indices and traffic volume per hour at road transportation high noise pollution sites
BNL
HOW 1
HOW 2
HOW 3
HOW 4
HOW 5
HOW 6
HOW 7
HOW 8
HOW 9
HOW 10
Total
%
Table 10: Statistics of measured (observed) and calculated (predicted) road transportation noise levels/indices obtained at both road transportation high and low noise pollution sites and corresponding road traffic volume per hour (VPH) during recording time at daytime and nighttime periods, under free flow conditions, in Port Harcourt city.

Sites	Measured (observed) noise levels (≤50dB(A))	Calculated (predicted) noise levels/indices (dB(A))	Mean road traffic volume per hour (VPH)											
	LAeq (SPL)	Daytime	Nighttime		Trucks	Bus	Cars	Motorcycle	Total vol.	Trucks	Bus	Cars	Motorcycle	Total vol.
BNL	49.7	100.0	99.0	576	615	2413	557	4161	263	376	615	258	1542	
HPH 1	49.7	100.0	99.0	576	615	2413	557	4161	263	376	615	258	1542	
HPH 2	38.6	98.0	96.0	533	528	3116	583	4940	326	204	437	203	130	
HPH 3	32.2	98.0	97.0	581	744	1969	674	4008	334	469	618	217	168	
HPH 4	39.2	99.0	100.0	494	626	2337	465	3912	276	231	613	278	1078	
HPH 5	48.5	100.0	100.3	587	529	918	452	2296	329	415	406	216	1346	
HPH 6	40.5	101.0	98.8	392	557	876	613	2488	107	372	235	448	1157	
HPH 7	48.5	100.0	98.6	618	479	1779	488	3358	269	253	365	338	1225	
HPH 8	45.8	96.0	95.0	621	496	2275	426	4191	281	365	338	175	1159	
HPH 9	49.2	100.0	98.0	593	739	1866	591	3769	296	274	249	490	1309	
HPH 10	48.2	100.0	98.5	477	624	2913	604	4730	263	387	496	344	1978	
Total	45.6	75.0	76.6	388	376	1553	366	2561	153	89	615	178	1045	

Table 11: Summary of ANN training and checking data used for the study

Data	Calabar	Uyo	Umuaahia	Owerri	Port	HCA	LCA	HPH
CA	486	465	472	480	454	478	464	476
Training	301	296	295	304	297	295	295	299
Checking	185	169	177	176	183	157	169	177

Table 13: Statistics for validation of the ANN model

Statistics	Calabar	Uyo	Umuaahia	Owerri	Port	HPH
calculated values	HPH	HPH	HPH	HPH	HPH	HPH
Mean root square error (RMSE)	1.316	1.097	1.385	1.119	1.155	1.814
Mean observed data (O)	94.400	76.500	98.900	78.900	98.000	77.000
Mean predicted data (P)	93.980	75.970	98.460	78.510	97.830	76.737
Standard deviation for Observed data (SŶ)	4.459	2.890	3.073	2.164	4.243	2.000
Standard deviation for predicted data (SŶ)	4.310	3.720	5.221	3.398	3.365	4.555
Correlation between observed and predicted data (r)	0.213	0.138	0.552	0.126	0.320	0.146

(critical r = 2.101 for α = 0.025, α = 0.05, and critical r = 2.326 for α = 0.01, degree of freedom df = 18)
Table 12: Summary of initial ANN training parameters.

S/N	Parameters	Values
1	Initial weight	0.3
2	Learning rate	0.3
3	Momentum	0.6
4	Activation function	Zero-based log sigmoid function
5	Maximum number of epochs	3000
6	Minimum weight	Range of 0.001 and 0.0001
7	Number of neurons in the hidden layer	0 or 1

Fig. 2: Multilayer Perceptron (MLP) – type of supervised neural network demonstrating neural network training (learning) process.
Fig. 3a: Correlation curves of observed LAeq versus predicted LAeq for study Calabar high and low study areas
Fig. 4a: Correlation curves of observed L_{Aeq} versus predicted L_{Aeq} for study Uyo high and low study areas.
Fig. 5a: Correlation curves of observed L_Aeq versus predicted L_Aeq for study Umuahia high and low study areas.
Fig. 6a: Correlation curves of observed L.Aeq versus predicted L.Aeq for study Owerri high and low study areas.
Fig. 7a: Correlation curves of observed LAeq versus predicted LAeq for study Port Harcourt high and low study areas.
Fig. 3b: Artificial neural network (ANN) model performance curve for checking data for Calabar high and low road traffic noise pollution sites showing respondents' noise reactions against observed and predicted noise levels.
Fig. 4b: Artificial neural network (ANN) model performance curve for checking data for Uyo high and low road traffic noise pollution sites showing respondents’ noise reactions against observed and predicted noise levels.
Fig. Six: Artificial neural network (ANN) model performance curve for checking data for Umunkhu high and low road traffic noise pollution sites showing respondents' noise reactions against observed and predicted noise levels.
Fig. 6b: Artificial neural network (ANN) model performance curve for checking data for Owerri high and low road traffic noise pollution sites showing respondents’ noise reactions against observed and predicted noise levels.
Fig. 7b: Artificial neural network (ANN) model performance curve for checking data for Port Harcourt high and low road traffic noise pollution sites showing respondents’ noise reactions against observed and predicted noise levels.