Chemical Composition and In Vitro Antimicrobial Efficacy of Sixteen Essential Oils against Escherichia coli and Aspergillus fumigatus Isolated from Poultry

Valentina Virginia Ebani 1,2,* Basma Najar 3, Fabrizio Bertelloni 1, Luisa Pistelli 2,3, Francesca Mancianti 1,2 and Simona Nardoni 1,2

1 Department of Veterinary Science, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy; fabrizio.bertelloni@vet.unipi.it (F.B.); francesca.mancianti@unipi.it (F.M.); simona.nardoni@unipi.it (S.N.)
2 Centro Interdipartimentale di Ricerca “Nutraceutica e Alimentazione per la Salute”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; luisa.pistelli@unipi.it
3 Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; basmanajar@hotmail.fr

* Correspondence: valentina.virginia.ebani@unipi.it; Tel.: +39-050-2216968

Received: 14 May 2018; Accepted: 21 June 2018; Published: 25 June 2018

Abstract: Escherichia coli and Aspergillus fumigatus are two pathogens largely present among poultry. They can cause mild or severe forms of disease, and are associated with significant economic losses. The aim of the present study was to investigate the chemical composition and the in vitro antimicrobial activity of sixteen essential oils (EOs) and five mixtures against E. coli and A. fumigatus strains previously isolated from poultry. The study was performed with the following EOs: Aloysia tryphilla, Boswellia sacra, Cinnamomum zeylanicum, Citrus aurantium, Citrus bergamia, Citrus limon, Citrus reticulata, Cymbopogon citratus, Eucalyptus globulus, Lavandula hybrida, Litsea cubeba, Ocimum basilicum, Melaleuca alternifolia, Mentha piperita, Pelargonium graveolens, and Syzygium aromaticum. Moreover, the following mixtures were also tested: L. cubeba and C. citratus (M1), L. cubeba and A. triphylla (M2), A. triphylla and C. citratus (M3), A. triphylla, C. citratus and L. cubeba (M4), S. aromaticum and C. zeylanicum (M5). One hundred and ninety-one compounds were identified in the tested EOs and mixtures. MIC determination found good anti-E. coli activity with C. zeylanicum (2.52 mg/mL), C. citratus (1.118 mg/mL), L. cubeba (1.106 mg/mL), M. piperita (1.14 mg/mL) and S. aromaticum (1.318 mg/mL) EOs. Among the mixtures, M5 showed the best result with a MIC value of 2.578 mg/mL. The best antimycotic activity was showed by A. triphylla (0.855 mg/mL), followed by C. citratus (0.895 mg/mL), while C. aurantium, M. piperita, B. sacra and P. graveolens did not yield any antifungal effect at the highest dilution. The mixtures exhibited no antifungal activity at all. This study shows promising results in order to use EOs in the environment for disinfection purposes in poultry farms and/or in hatcheries.

Keywords: antimicrobial activity; Escherichia coli; Aspergillus fumigatus; poultry

1. Introduction

Escherichia coli and Aspergillus fumigatus are two pathogen agents which are largely present in poultry flocks and can cause mild or severe forms of disease associated with economic losses. Improper hygiene conditions and animal immune system deficiencies would influence the severity of the infection outcome. Environmental stressors such as poor ventilation, warm temperature, excessive ammonia and moisture, degraded litters, long-term storage of feed may increase the concentration of fungal spores and bacteria in the farm environment [1–3].

Avian colibacillosis is a systemic disease of poultry caused by avian pathogenic *Escherichia coli* (APEC) strains. This is an enteric bacterium, which infects the animals by an oral-fecal cycle, even though it often affects birds by inhalation of contaminated dust.

The infection usually starts with septicemia followed by localized inflammation in multiple organs or sudden death [4]. Colibacillosis is characterized by variable lesions, among which airsacculitis and polyserositis are the most frequent. Moreover, fecal contamination of the eggs may cause *E. coli* penetration through the shell. This may result both in yolk sac bacterial infection and in spreading to other chickens during hatching, with high mortality rates. Economic losses may be also due to slaughter waste related to necrotic cellulitis [5].

Avian aspergillosis is a fungal disease caused by members of the genus *Aspergillus*, mainly *Aspergillus fumigatus*. The most common forms of avian aspergillosis are represented by lung infections in poultry and other different bird species. Fungal conidia are inhaled and penetrate the respiratory system colonizing the air sacs, and large inoculum of conidia is considered a main causative factor [6]. Infection can occur in hatchery also, due to infected eggs that accidentally open during incubation or hatching, releasing large number of spores in the environment. Furthermore, aspergilli are reported as responsible for brooder pneumonia, when spores penetrate the egg shell. Chicks develop acute respiratory disease that can be lethal in the first 1–3 weeks of age. Chronic aspergillosis is sporadic and usually affects older birds [7].

This mycosis is responsible for economic losses linked to mortality, reduced feed conversion ratio and to carcass condemnation at slaughter inspection due to airsacculitis [8].

Use of antibiotics is necessary to resolve bacterial infections, but their employment has certain disadvantages including: antibiotic residues in meat and eggs and the selection of multi-drug resistant pathogens, that can spread within the farm population such as among other animals. Conversely antimycotic drugs are not allowed in animals intended for human consumption, and the treatment of affected poultry would be too expensive, anyway. Therefore, the prevention of both fungal and bacterial infections appears to be fundamental [3].

The use of compounds derived from plants, such as essential oils (EOs), may be a good alternative to prevent the spreading of microorganisms in the poultry farm environments, mainly hatcheries and cages. However, data about the effectiveness of EOs in improving hygienic conditions are very scant [9]. Data about the effectiveness of air-dispersed EOs in reducing bacterial and fungal burden in nosocomial environment, suggest a possible application of these natural substances vapours to control undesired agents.

The aim of the present study was to investigate the chemical composition and the in vitro antimicrobial activity of sixteen EOs derived from different botanical species, alone or in mixture, against *E. coli* and *A. fumigatus* strains previously isolated from poultry. EOs were chosen on the basis of their commercial availability, odor characters and no toxicity in view of a possible environmental use.

2. Materials and Methods

2.1. Essential Oils

The antimicrobial activity of the following sixteen EOs, kindly provided by the producer (FLORA®, Pisa, Italy), was investigated: lemon verbena (*Aloysia triphylla* (L’Hér.) Britton), incense (*Boswellia sacra* Flueck.), cinnamon (*Cinnamomum zealanicum* J. Presl), bitter orange (*Citrus aurantium* L.), bergamot (*Citrus bergamia* Risso & Poit.), lemon (*Citrus limon* (L.) Osbeck), mandarin (*Citrus reticulata* Blanco), lemon grass (*Cymbopogon citratus* (DC.) Stapf), eucalyptus (*Eucalyptus globulus* Labill.), lavender (*Lavandula hybrida*), litsea (*Litsea cubeba* (Lour.) Pers.), basil (*Ocimum basilicum* L.), tea tree (*Melaleuca alternifolia*), peppermint (*Mentha piperita*), geranium (*Pelargonium graveolens* L’Hér.), clove (*Syzygium aromaticum* (L.) Merr. & L.M. Perry).

After preliminary results about the efficacy of each EO, mixtures have been made with the most active ones. Mixtures were prepared with 1:1 proportion (w/w) of *L. cubeba* and *C. citratus* (M1),
L. cubeba and A. triphylla (M2), A. triphylla and C. citratus (M3), as well as for S. aromaticum and C. zeylanicum (M5) together with a mixture of three EOs (M4) obtained with A. triphylla, C. citratus and L. cubeba (1:1:1). All EOs and mixtures were maintained at 4 °C in dark glass vials until their use. Then they were microbiologically analyzed for quality control before antibacterial and antimycotic activity tests. At this purpose, a loopful of each EO was streaked onto a blood agar plate and the plates were incubated at 37 °C for 48 h.

Fractional Inhibitory Concentration Index (FICI) was calculated as reported by Doern [10] to evaluate the possible synergistic effect in the mixtures. The FICI was interpreted as: a synergistic effect when ≤0.5; an additive effect when >0.5–1; indifferent effect when 1–4 and an antagonistic effect when >4.

2.2. Essential Oils Analysis

All the selected EOs and mixtures were analyzed using Gas Cromatography-Mass Spectrometry (GC-MS) according to the method cited in a previous paper, as well as for the identification of the different compounds [11].

2.3. Statistical Analysis

Regarding the huge variety of the selected EOs, obtained from plants belonging to different orders, families and species, a statistical analysis approach was applied to evaluate the results of their composition. Hierarchical Cluster Analysis (HCA) was performed using Ward’s method and squared Euclidian distances for the measure of similarity. Moreover, the Principal Component Analysis (PCA) was done by ‘Past 3 software package’ version 3.15.

2.4. Antibacterial Activity

2.4.1. Bacterial Strain

An Escherichia coli strain, previously isolated in a case of poultry colibacillosis, was employed in the study. The isolate was typed using the API20E System (BioMérieux, Marcy l’Etoile, France) and stored in glycerol broth at −80 °C until used.

2.4.2. Agar Disc Diffusion Method

Antibacterial activity of each EO and mixture was tested by Kirby-Bauer agar disc diffusion method following the procedures previously described [12]. A 1:10 dilution in dimethyl sulfoxide (DMSO, Oxoid Ltd., Basingstoke, Hampshire, UK) of each EO and mixture was assayed. All tests were performed in triplicate.

The in vitro sensitivity of E. coli strain to amoxycillin-clavulanic acid (30 µg) (Oxoid) was evaluated by Kirby-Bauer method and the results were interpreted as indicated by Clinical and Laboratory Standards Institute [13].

2.4.3. Minimum Inhibitory Concentration

Minimum inhibitory concentration (MIC) was determined for all EOs and mixtures with the broth microdilution method, starting from a dilution of 10% (v/v) and following the guidelines of CLSI [14] and a protocol previously reported [12]. All tests were performed in triplicate. The MIC value was determined as the lowest concentration, expressed in mg/mL, of each EO and mixture at which bacteria show no visible growth.

2.5. Antimycotic Activity

2.5.1. Fungal Strain

An avian clinical isolate of A. fumigatus was employed for testing. The mold was maintained onto malt extract agar (MEA), and identification was accomplished on the basis of macroscopic and
microscopic features on both MEA and Czapeck agar, following the keys provided by Raper and Fennel [15].

2.5.2. Minimum Inhibitory Concentrations

MICs were determined by a microdilution test carried out as reported elsewhere [12], starting from a dilution of 5% (v/v), following the methods described by CLSI [16] for molds. All tests were performed in triplicate and positive controls using a conventional antimycotic drug (voriconazole) were also performed by microdilution test.

3. Results

3.1. Essential Oil and Mixture Composition

One hundred and ninety-one compounds were detected in the tested EOs and mixtures (Table 1). Table 2 shows the percentages of the main class of constituents in each EO tested. HCA showed two main groups (A and B), each of them also divided in two subgroups (Figure 1). The first subgroup (A1) included the following species: *A. triphylla*, *M. alternifolia*, *C. bergamia* and mixtures M2, M3 and M4. It is important to underline that *A. triphylla* EO was one of EOs present in four mixtures. *O. basilicum*, *L. cubeba*, *P. graveolens*, *E. globulus*, *C. citratus*, *L. hybrida*, *M. piperita* together with M1 mixture were inserted in subgroup (A2). M1 mixture consisted of two EOs categorized in the same subgroup (*L. cubeba* and *C. citratus*).

The EOs obtained from the remaining botanical species and mixture M5 belonged to the second group (B), which was divided in two subgroups: (B1) with *S. aromaticum*, *C. zeylanicum* and mixture M5; while the subgroup (B2) gathered four out of the five EOs belonging to the Sapindales Order.

HCA analysis gave only limited information; therefore, a further statistical analysis was important to better understand this partition. PCA plot, where the two first axis explain for more than 98.3% of variability, grouped the EOs species among 3 main quadrants: two lower quadrants characterised by high amount of monoterpene hydrocarbons (MH) on the left and by an important percentage of oxygenated monoterpenes (OM) on the right. The upper left quadrant included two EOs (clove and cinnamon) and their mixture M5, in which the amount of phenylpropanoids (PP) was more than 60% (Figure 2).

In detail, the EOs present in the lower left quadrant all belonged to Sapindales order. Among these species, *C. reticulata*, *C. aurantium*, *C. limon* and *C. bergamia* belonged to the same Rutaceae family. The first three species showed the highest percentage of MH (99.7%, 97.4% and 94.3%, respectively) while *C. bergamia* evidenced an equivalent amount between MH and OM (49.0% and 48.5%, respectively). Bergamot was therefore positioned in the middle between EOs characterised by an important percentage of MH and OM. *B. sacra*, which belongs to the Burseraceae family in the Sapindales order, showed a good percentage of MH (84.3%) and was near the other *Citrus* spp. Regarding Lamiales order, only *L. hybrida* and *M. piperita* were present in the lower right quadrant of PCA, due to the high amount of OM (85.0% and 87.8%, respectively), together with *E. globulus*, *C. citratus* and *P. graveolens* characterized by a similar high percentage of the same constituents (OM: 90.5, 86.3 and 83.4%, respectively). The other two EOs from species belonging to Lamiaceae, showed some distance from each other: in fact, *O. basilicum* presented a lower percentage of OM (56.1%) but also the highest amount of sesquiterpene hydrocarbons (SH) (20.0%) and was positioned in the upper right quadrant, while lemon verbena, which belongs to the Verbenaceae family (Lamiales order), was on the opposite side due to its relevant amount of MH (66.0%).

L. cubeba from Lauraceae family showed high percentage of OM (75.7%) and a good amount of MH (21.3%). This aromatic profile differed from the others in the same quadrant.
Chemical Component	Asterids	Magnoliids	Rosids	Mixture (1:1)									
	Clade	Order	Family	Lamiaceae	Lauraceae	Myrtaceae	Rutaceae	M1	M2	M3	M4	M5	
α-Thujeone	MH 930	L. h	0.2	0.1	0.3	0.9	54.2	0.3	0.4	0.5	0.1	0.2	0.2
α-Pinene	MH 939	M. p	0.8	0.2	0.3	2.0	5.6	0.3	0.2	0.5	0.8	0.8	1.3
Thuja-2,4(10)-diene	MH 960	O. b	0.1	24.0	0.1	0.9	0.4	0.3	1.1	2.3	1.5	0.4	13.7
Sabinene	MH 975	A. t	2.1	0.5	0.2	11.2	6.2	1.1	0.1	5.4	11.9	0.5	0.6
β-Pinene	MH 979	C. c	0.3	0.5	0.2	0.3	5.3	1.8	0.2	0.4	0.3	0.2	0.5
α-Phehlandrene	MH 1003	C. z	1.0	1.0	0.2	24.0	0.1	0.1	0.2	0.4	0.1	0.1	0.5
α-Terpene	MH 1017	L. c	9.1	0.2	1.0	9.2	0.1	0.2	0.1	0.2	0.2	0.2	0.5
p-Cymene	MH 1025	M. g	4.0	0.3	0.1	37.8	6.2	0.3	0.4	0.4	0.3	0.2	0.4
o-Cymene	MH 1026	E. g	0.5	0.1	0.1	0.5	0.5	0.1	0.2	0.1	0.1	0.2	0.5
Limonene	MH 1029	M. a	0.2	0.1	0.1	0.1	0.1	16.9	0.1	6.4	19.2	0.3	0.5
β-Phehlandrene	MH 1030	S. a	0.2	0.1	0.1	0.1	0.1	30.2	0.5	0.4	0.4	0.2	0.5
1,8-Cineole	OM 1031	B. s	0.3	0.3	0.3	0.3	0.3	0.1	0.2	0.1	0.2	0.2	0.5
γ-Terpene	MH 1060	C. a	0.3	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.5
Terpinolene	MH 1089	C. b	0.3	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.5
Linalool	OM 1097	C. l	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.5
Camphor	OM 1146	C. r	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.5
Menthone	OM 1153	M1	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.5
Linalyl acetate	OM 1257	M2	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.5
Geraniol	OM 1253	M3	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.5
Geranyl acetate	OM 1257	M4	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.5
Menthyl acetate	OM 1274	M5	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.5
Eugenol	pp 1359		11.5	3.0	0.7	77.9	51.7	51.7					
Table 1. Cont.

Clade	Asterids	Magnoliids	Rosids	Mixture (1:1)
Family	Lamiaceae	Lauraceae	Myrtaceae	Rutaceae
Order	Lamiales	Poales	Myrtales	Sapindales
		Laurales		

| Chemical Component | LRI \(^a\) | L. h | M. p | O. b | A. t | C. c | C. z | L. c | P. g | E. g | M. a | S. a | B. s | C. a | C. b | C. l | C. r | M1 | M2 | M3 | M4 | M5 |
|-------------------|------------|
| \(\beta\)-Caryophyllene | SH 1419 | 2.2 | 2.8 | 0.3 | 1.3 | 2.3 | 10.3 | 0.8 | 0.7 | 0.8 | 8.9 | 0.2 | 0.7 | 0.4 | 0.1 | 1.6 | 1.2 | 1.6 | 1.5 | 7.6 |
| Germacrene D | SH 1485 | 0.8 | 0.7 | 3.5 | 0.7 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.9 | 0.3 | 0.4 | 0.2 | |
| Eugenyl acetate | PP 1523 | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 12.2 | | | | |
| \(\delta\)-Cadinene | SH 1523 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.7 | 3.1 | 0.2 | 3.1 | 0.2 | 3.1 | 0.2 | 3.1 | 0.2 | 3.1 | 0.2 | 3.1 | 0.2 | |
| \(\tau\)-Cadinol | OS 1640 | 0.2 | 5.8 | 0.1 | 1.0 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | |
| Unknown | | 0.2 | 0.3 | 0.3 | 0.3 | 0.6 | 0.7 | 1.8 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | |
| Total Identified | | 100.0| 99.8 | 99.2 | 99.5 | 99.6 | 99.7 | 99.4 | 99.3 | 100.0| 98.2 | 100.0| 94.9 | 100.0| 100.0| 99.8 | 98.2 | 98.5 | 98.2 | 98.7 | 99.9 |

\(^a\) Linear Retention Index, \(^b\) compounds with percentage less than 3% in at least one of the EOs are not inserted in the table. Legend: L. h: Lavandula hybrida, M. p: Mentha piperita, O. b: Ocimum basilicum, A. t: Aloysia triphilla, C. c: Cymbopogon citratus, C. z: Cinnamomum zeylanicum, L. c: Litsea cubeba, P. g: Pelargonium graveolens, E. g: Eucalyptus globulus, M. a: Melaleuca alternifolia, S. a: Syzygium aromaticum, B. s: Boswellia sacra, C. a: Citrus aurantium, C. b: Citrus bergamia, C. I: Citrus limon, C. r: Citrus reticulata,—M1: Litsea cubeba–Cymbopogon citratus, M2: Aloysia triphilla–Listea cubeba, M3: Aloysia triphilla–Cymbopogon citratus, M4: Aloysia triphilla–Listea cubeba–Cymbopogon citratus, M5: Cinnamomum zeylanicum–Syzygium aromaticum; MH: Monoterpene Hydrocarbons, OM: Oxygenated Monoterpenes, SH: Sesquiterpene Hydrocarbons, OS: Oxygenated Sesquiterpenes, PP: Phenylpropanoides, NT: Non-Terpenes.
Table 2. Main class of constituents present in the essential oils tested (relative abundance expressed in percentage).

Clade	Class of Compounds	L. h	M. p	O. b	A. t	C. c	C. z	L. c	P. g	E. g	M. a	S. a	B. s	C. a	C. b	C. l	C. r	M1	M2	M3	M4	M5
Asterids	Monoterpene Hydrocarbons (MH)	6.4	6.9	2.3	66.0	3.9	15.5	21.3	9.1	41.6	84.3	97.4	49.0	94.3	99.7	12.6	42.3	42.5	36.7	2.2		
Magnoliids	Oxygenated Monoterpenes (OM)	85.0	87.8	56.1	26.4	86.3	7.4	75.7	83.4	90.5	39.1	6.7	1.9	48.5	3.6	80.0	51.2	49.0	56.0	1.9		
Rosids	Sesquiterpene Hydrocarbons (SH)	5.4	4.6	20.0	4.7	4.5	14.7	0.9	7.8	0.3	14.8	9.5	3.7	0.2	2.4	2.0	0.1	3.4	2.9	4.3	3.5	10.1
Mixture (1:1)	Oxygenated Sesquiterpenes (OS)	1.3	0.3	7.9	1.9	0.9	0.8	6.9	0.1	1.8	0.4	0.5	1.2	1.2	0.8	1.2						
	Phenylpropanoïdes (PP)	12.7	2.0	60.3	1.2	90.1	0.2	64.4														
	Non-terpenes (NT)	1.9	0.2	0.2	0.5	2.0	1.0	1.5	0.9	0.5	0.1	0.1	1.7	0.9	1.2	1.7	20.1					

Legend: L. h: Lavandula hybrida, M. p: Mentha piperita, O. b: Ocimum basilicum, A. t: Aloysia triphilla, C. c: Cymbopogon citratus, C. z: Cinnamomum zeylanicum, L. c: Litsea cubeba, P. g: Pelargonium graveolens, E. g: Eucalyptus globulus, M. a: Melaleuca alternifolia, S. a: Syzygium aromaticum, B. s: Boswellia sacra, C. a: Citrus aurantium, C. b: Citrus bergamia, C. l: Citrus limon, C. r: Citrus reticulata, M1: Litsea cubeba–Cymbopogon citratus, M2: Aloysia triphylla–Listea cubeba, M3: Aloysia triphylla–Cymbopogon citratus, M4: Aloysia triphylla–Litsea cubeba–Cymbopogon citratus, M5: Cinnamomum zeylanicum–Syzygium aromaticum; MH: Monoterpene Hydrocarbons, OM: Oxygenated Monoterpenes, SH: Sesquiterpene Hydrocarbons, OS: Oxygenated Sesquiterpenes, PP: Phenylpropanoïdes, NT: Non-Terpenes.
Figure 1. Dendrogram of the Hierarchical Cluster Analysis (HCA) of both essential oils and mixtures. Legend: L. h: Lavandula hybrida, M. p: Mentha piperita, O. b: Ocimum basilicum, A. t: Aloysia triphylla, C. c: Cymbopogon citratus, M. z: Cinnamomum zeylanicum, L. c: Litsea cubeba, P. g: Pelargonium graveolens, E. g: Eucalyptus globulus, M. a: Melaleuca alternifolia, S. a: Syzygium aromaticum, B. s: Boswellia sacra, C. a: Citrus aurantium, C. b: Citrus bergamia, C. l: Citrus limon, C. r: Citrus reticulata, M1: Litsea cubeba–Cymbopogon citratus, M2: Aloysia triphylla–Listea cubeba, M3: Aloysia triphylla–Cymbopogon citratus, M4: Aloysia triphylla–Listea cubeba–Cymbopogon citratus, M5: Cinnamomum zeylanicum–Syzygium aromaticum.

Figure 2. The compound analysis plot (PCA) of the main classes of compounds in the different essential oils and mixtures analyzed. Legend: L. h: Lavandula hybrida, M. p: Mentha piperita, O. b: Ocimum basilicum, A. t: Aloysia triphylla, C. c: Cymbopogon citratus, C. z: Cinnamomum zeylanicum, L. c: Litsea cubeba, P. g: Pelargonium graveolens, E. g: Eucalyptus globulus, M. a: Melaleuca alternifolia, S. a: Syzygium aromaticum, B. s: Boswellia sacra, C. a: Citrus aurantium, C. b: Citrus bergamia, C. l: Citrus limon, C. r: Citrus reticulata, M1: Litsea cubeba–Cymbopogon citratus, M2: Aloysia triphylla–Listea cubeba, M3: Aloysia triphylla–Cymbopogon citratus, M4: Aloysia triphylla–Listea cubeba–Cymbopogon citratus, M5: Cinnamomum zeylanicum–Syzygium aromaticum.
The position of the mixtures in PCA analysis followed the EOs that took part in their composition. In fact, M1 was located in the right lower quadrant as well as L. cubeba and C. citratus with a content of 80.0% of MH. Moreover, M2 was found in the middle between L. cubeba and A. triphylla, while M3 was positioned between A. triphylla and C. citratus. M4, which was obtained mixing three EOs (A. triphylla, C. citratus and L. cubeba, 1:1:1) was shifted on the right quadrant due to the high percentage of OM (56.0%).

3.2. Antibacterial Activity

Agar disc diffusion method revealed growth inhibition zones with the following EOs: C. zeylanicum, C. citratus, L. cubeba, M. piperita, O. basilicum, P. graveolens and S. aromaticum. Antibacterial activity was revealed also testing the five mixtures. No inhibition zone was observed with the remaining oils and the negative control. E. coli tested against amoxycillin-clavulanic acid resulted sensitive with an inhibition zone of 20 mm and a MIC value of 0.008/0.004 mg/mL.

MIC determination found good anti-E. coli activity with C. zeylanicum (2.52 mg/mL), C. citratus (1.118 mg/mL), L. cubeba (1.106 mg/mL), M. piperita (1.14 mg/mL) and S. aromaticum (1.318 mg/mL) EOs, whereas O. basilicum and P. graveolens resulted effective to E. coli, but with higher MIC values (9.15 mg/mL and 17.8 mg/mL) (Table 3).

Essential Oil	Escherichia coli MIC (mg/mL)	Aspergillus fumigatus MIC (mg/mL)
Aloysia triphylla	ne	0.855
Boswellia sacra	ne	>8.50
Cinnamomum zeylanicum	2.52	5.05
Citrus aurantium	ne	>8.50
Citrus bergamia	ne	8.70
Citrus limon	ne	4.25
Citrus reticulata	ne	4.25
Cymbopogon citratus	1.118	0.895
Eucalyptus globulus	ne	4.575
Lavandula hybrida	ne	8.85
Litsea cubeba	1.106	1.770
Ocimum basilicum	9.15	9.15
Melaleuca alternifolia	ne	1.780
Mentha piperita	1.14	9.12
Pelargonium graveolens	17.8	>8.90
Syzygium aromaticum	1.318	8.95
M1	4.449	>17
M2	8.75	>17.5
M3	4.349	>17.4
M4	3.292	>26.35
M5	2.578	>20.65
Amoxycillin-clavulanic acid	0.008/0.004	Voriconazole 1

Legend—MIC: minimum inhibitory concentration; M1: Litsea cubeba–Cymbopogon citratus, M2: Aloysia triphylla–Listea cubeba, M3: Aloysia triphylla–Cymbopogon citratus, M4: Aloysia triphylla–Listea cubeba–Cymbopogon citratus, M5: Cinnamomum zeylanicum–Syzygium aromaticum; ne: no effective.

Among the tested mixtures, M5 showed the best result with a MIC value of 2.578 mg/mL. FICI calculation highlighted an indifferent effect between the two EOs present in M5. The remaining mixtures did not show good antibacterial activity, as also established by FICI that revealed antagonistic effect between the mixtures components.
3.3. Antimycotic Activity

The selected EOs showed different patterns of efficacy. *A. triphylla* appeared to be the most effective (0.855 mg/mL) followed by *C. citratus* (0.895 mg/mL), while *C. aurantium*, *M. piperita*, *B. sacra* and *P. graveolens* did not yield any antifungal effect at the highest dilution. The fungal isolate resulted sensitive to 1 mg/L of voriconazole. The mixtures exhibited no antifungal activity at all, when tested undiluted, as indicated by FICI that showed antagonistic effects among the mixtures components.

4. Discussion

The present study takes into account the efficacy of a conspicuous number of EOs against two phylogenetically distant organisms, both involved in impairing poultry health and breeding hygiene. Wild type bacterial and fungal strains were selected to better resemble field conditions.

Our results showed that selected EOs exhibited different antimicrobial activity against the tested pathogen agents.

Cinnamon and clove EOs evidenced good antibacterial activity, when used alone or in combination (M5). This action may be related to the main compounds present in these EOs, eugenol (77.9%) and its acetate form (12.2%), as suggested in other studies, too [17].

Zhang et al. [18] observed that cinnamon EO induces damage on permeability and integrity of membrane with consequent loss of inner cell materials. Similar effect against *E. coli* was found with clove EO by Rhayour and coworkers [19] who observed a damage as holes in both cell wall and membrane.

L. cubeba EO has a relevant anti-*E. coli* activity, as previously observed by Li et al. [20], who documented holes and gaps on outer and inner membranes of *E. coli* cells treated with this EO, mainly attributed to the presence of aldehydes as geranial (36.4%) and neral (32.5%).

During this investigation *M. piperita* EO showed high activity against *E. coli*. These results are in agreement with Goudjil et al. [21], who tested *M. piperita* EO against some Gram positive and Gram negative bacteria and found the highest antimicrobial activity versus *E. coli*. Other authors verified the antimicrobial properties of peppermint EO and attributed the activity to the major components menthol and its oxidative compound menthone [22,23].

C. citratus revealed a good activity against *E. coli*, as also observed by other researchers who related this activity to the main components geranial and neral [24].

EOs from *O. basilicum* and *P. graveolens* showed moderate anti-bacterial activity corroborating other studies, which found higher effectiveness against Gram positive than Gram negative bacteria [25]. However, the antimicrobial property of basil EO was reported in other studies, in which a good activity against *E. coli* related to a significant amount of linalool was evidenced [26].

A. triphylla, *C. citratus* and *L. cubeba* EOs appeared to be the most active against *A. fumigatus*. These compounds would be of interest in poultry breeding, due to their low toxicity [27–30]. Furthermore, data available on the long lasting persistence of *C. citratus* EO [31] would suggest its feasibility, when used as disinfectant.

A. triphylla EO showed an interesting antifungal activity. Its composition is characterized by a 24% of sabinene, 36.7% of limonene and 12% of citronellal. The antifungal activity is probably due to sabinene, which appeared effective against *A. fumigatus* [32], as well as to citronellal [33]. Moreover, the present data are in full agreement with Correa-Royero et al. [34], who reported effectiveness against *A. fumigatus* at 99.2 µg/mL. *A. triphylla* was successfully assayed against *Candida* spp. both as EO [35,36] and as ethanolic extract [37], while it was not effective against *Trichoderma viride* [36].

In the present study, this EO was active at 0.5% concentration and such dilution appears to be safe for handling, following Tisserand and Young [27], who also recommend a maximum concentration of 0.9% for dermal application, to avoid phototoxic effects.

Lemongrass EO, with its high amount of both citral isomers, appeared to be another promising antifungal phytocomplex. This EO in fact is composed by a mixture of *cis* and *trans*-isomers
of 3,7-dimethyl-2,6-octadiene-1-al (geranial and neral) with a percentage ranging between 38.4% and 35.2%, respectively.

Our result has been corroborated by Inouye et al. [38], who reported irreversible alterations in an in vitro model on apical growth of *A. fumigatus* elicited by *C. citratus* EO. Lemon, lavender and tea tree EOs induced a moderate and reversible inhibition, while cinnamon allowed a partial hyphal regrowth. Lemongrass exerted an antifungal activity against phytopathogenic fungi also at concentration up to 500 ppm [39].

L. cubeba EO showed neral and geranial content very similar to *C. citratus*, even if their MIC values were quite divergent (1.770 and 0.895, respectively), suggesting a different biological activity of phytocomplex.

5. Conclusions

This investigation shows promising results in order to use EOs for disinfection purposes in poultry farms and/or in hatcheries environment. The mixture with *C. zeylanicum* and *S. aromaticum* could be a useful alternative treatment against *E. coli*. Moreover, *C. citratus* used alone could be employed to fight both *E. coli* and *A. fumigatus*, while *A. triphylla* EO would be used to enhance the control of spores’ burden, aiming to reduce the risk of infection for both animals and workers.

Author Contributions: V.V.E., S.N., L.P. and F.M. conceived and designed the experiments; B.N., S.N. and F.B. performed the experiments; V.V.E., S.N., B.N., L.P. and F.M. analyzed the data; V.V.E., S.N., L.P. and F.M. wrote the paper.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tell, L.A. Aspergillosis in mammals and birds: Impact on veterinary medicine. *Med. Mycol.* **2005**, *43* (Suppl. 1), S71–S73. [CrossRef] [PubMed]
2. Beernaert, L.A.; Pasmans, F.; Van Waeyenberghe, L.; Haesebrouck, F.; Martel, A. *Aspergillus* infections in birds: A review. *Avian Pathol.* **2010**, *39*, 325–331. [CrossRef] [PubMed]
3. Arné, P.; Thierry, S.; Wang, D.; Deville, M.; Le Loc’h, G.; Desoutter, A.; Féménia, F.; Nieguitsila, A.; Huang, W.; Chermette, R.; et al. *Aspergillus fumigatus* in poultry. *Int. J. Microbiol.* **2011**, *746356*. [CrossRef]
4. Dziva, F.; Stevens, M.P. Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic *Escherichia coli* in their natural hosts. *Avian Pathol.* **2008**, *37*, 355–366. [CrossRef] [PubMed]
5. Lister, S.A.; Barrow, P. Enterobacteriaceae. In *Poultry Diseases*, 6th ed.; Pattison, M., McMullin, P.F., Bradbury, J.M., Alexander, D.J., Eds.; Saunders Elsevier: Edinburgh, UK, 2008; pp. 110–145. ISBN 978-0-7020-2862-5.
6. Buehler, D.M.; Tieleman, B.I.; Piersma, T. How do migratory species stay healthy over the annual cycle? A conceptual model for immune function and for resistance to disease. *Integr. Comp. Biol.* **2010**, *50*, 346–357. [CrossRef] [PubMed]
7. Seyedmousavi, S.; Guillot, J.; Arné, P.; de Hoog, G.S.; Mouton, J.W.; Melchers, W.J.; Verweij, P.E. Aspergillus and aspergilloses in wild and domestic animals: A global health concern with parallels to human disease. *Med. Mycol.* **2015**, *53*, 765–797. [CrossRef] [PubMed]
8. D’Arc Moretti, L.; Dias, R.A.; Telles, E.O.; Balian Sde, C. Time series evaluation of traumatic lesions and airsacculitis at one poultry abattoir in the state of Sao Paulo, Brazil (1996–2005). *Prev. Vet. Med.* **2010**, *94*, 231–239. [CrossRef] [PubMed]
9. Witkowska, D.; Sowińska, J. The effectiveness of peppermint and thyme essential oil mist in reducing bacterial contamination in broiler houses. *Poult. Sci.* **2013**, *92*, 2834–2843. [CrossRef] [PubMed]
10. Doern, C.D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. *J. Clin. Microbiol.* **2014**, *52*, 4124–4128. [CrossRef] [PubMed]
11. Pistelli, L.; Najar, B.; Giovanelli, S.; Lorenzini, L.; Tavarini, S.; Angelini, L.G. Agronomic and phytochemical evaluation of lavandin and lavender cultivars cultivated in the Tyrrenheian area of Tuscany (Italy). *Ind. Crops Prod.* 2017, 109, 37–44. [CrossRef]

12. Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against pathogenic bacteria and yeasts shed from poultry. *Flavour Fragr. J.* 2016, 31, 302–309. [CrossRef]

13. Clinical and Laboratory Standards Institute (CLSI). *Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard*, 11th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012.

14. National Committee for Clinical Laboratory Standards (CLSI). *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard M7-A2*, 1st ed.; National Committee for Clinical Laboratory Standards: Villanova, PA, USA, 1990.

15. Raper, K.B.; Fennel, D.I. *The Genus Aspergillus*, 1st ed.; Pennsylvania State University: Philadelphia, PA, USA, 1965; ISBN 0882751093.

16. Clinical and Laboratory Standards Institute (CLSI). *Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: Approved Standard*, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.

17. Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. *Crit. Rev. Microbiol.* 2017, 43, 668–689. [CrossRef] [PubMed]

18. Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial activity and mechanism of cinnamon essential oil against *Escherichia coli* and *Staphylococcus aureus*. *Food Control* 2016, 59, 282–289. [CrossRef]

19. Rhayour, K.; Bouchikhi, T.; Tantaoi-Elaraki, A.; Sendide, K.; Remmal, A. The Mechanism of Bactericidal Action of Oregano and Clove Essential Oils and of Their Phenolic Major Components on *Escherichia coli* and *Bacillus subtilis*. *J. Essent. Oils Res.* 2003, 15, 356–362. [CrossRef]

20. Li, W.-R.; Shi, Q.-S.; Liang, Q.; Xie, X.-B.; Huang, X.-M.; Chen, Y.-B. Antibacterial Activity and Kinetics of *Litsea cubeba* Oil on *Escherichia coli*. *PLoS ONE* 2014, 9, e110983. [CrossRef] [PubMed]

21. Goudjil, M.B.; Ladjel, S.; Bencheikh, S.E.; Zighmi, S.; Hamada, D. Chemical composition, antibacterial and antioxidative activities of the essential oil extracted from the *Mentha piperita* of Southern Algeria. *Res. J. Phytochemistry* 2015, 9, 79–87.

22. Iscan, G.; Kirimer, N.; Kurkuçoglu, K.; Baser, K.H.C.; Demirci, F. Antimicrobial screening of Mentha piperita essential oils. *J. Agric. Food Chem.* 2002, 50, 3943–3946. [CrossRef] [PubMed]

23. Rasooli, I.; Gachkar, L.; Yadegarinia, D.; Bagher Rezaei, M.; Alipoor Astaneh, S. Antibacterial and antioxidative characterisation of essential oils from *Mentha piperita* and *Mentha spicata* grown in Iran. *Acta Aliment. Hung.* 2007, 37, 41–52. [CrossRef]

24. Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of *Cymbopogon citratus* stapf (Lemon grass). *J. Adv. Pharm. Technol. Res.* 2011, 2, 3–8. [CrossRef] [PubMed]

25. Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Marshall, V.; Hamidpour, R. Pelargonium graveolens (Rose Geranium)—A novel therapeutic agent for antibacterial, antioxidant, antifungal and diabetics. *Arch. Can. Res.* 2017, 5. [CrossRef]

26. Stefan, M.; Zamfirache, M.M.; Padurariu, C.; Trută, E.; Gostin, I. The composition and antibacterial activity of essential oils in three *Ocimum* species growing in Romania. *Cent. Eur. J. Biol.* 2013, 8, 600–608. [CrossRef]

27. Tisserand, R.; Young, R. *Essential Oil Safety*, 2nd ed.; Churchill Livingstone Elsevier: New York, NY, USA, 2014; pp. 187–189.

28. Paranagama, P.A.; Abeysekera, K.H.; Abeywickrama, K.; Nugaliyadde, L. Fungicidal and anti-aflotoxigenic effects of the essential oil of *Cymbopogon citratus* (DC) Stapf. (Lemon grass) against *Aspergillus flavus* Link. isolated from stored rice. *Lett. Appl. Microbiol.* 2003, 37, 86–90. [CrossRef] [PubMed]

29. Fandohan, P.; Gnonlonfin, B.; Laleye, A.; Gbenou, J.D.; Darboux, R.; Moudachirou, M. Toxicity and gastric tolerance of essential oils from *Cymbopogon citratus*, *Ocimum gratissimum* and *Ocimum basilicum* in Wistar rats. *Food Chem. Toxicol.* 2008, 46, 2493–2497. [CrossRef] [PubMed]

30. Luo, M.; Jiang, L.K.; Zou, G.L. Acute and genetic toxicity of essential oil extracted from *Litsea cubeba* (Lour.). *Pers. J. Food Prot.* 2005, 68, 581–588. [CrossRef] [PubMed]
31. Mishra, A.K.; Dubey, N.K. Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food Commodities. *Appl. Environ. Microbiol.* 1994, 60, 1101–1105. [PubMed]

32. Roh, J.; Shin, S. Antifungal and Antioxidant Activities of the Essential Oil from *Angelica koreana* Nakai. *Evid. Based Complement. Alternat. Med.* 2014, 398503. [CrossRef]

33. Aguiar, R.W.; Ootani, M.A.; Ascencio, S.D.; Ferreira, T.P.; Dos Santos, M.M.; dos Santos, G.R. Fumigant antifungal activity of *Corymbia citriodora* and *Cymbopogon nardus* essential oils and citronellal against three fungal species. *Sci. World J.* 2014, 492138. [CrossRef]

34. Correa-Royero, J.; Tangarife, V.; Duran, C.; Stashenko, E.; Mesa-Arango, A. In vitro antifungal activity and cytotoxic effect of essential oils and extracts of medicinal and aromatic plants against *Candida krusei* and *Aspergillus fumigatus*. *Rev. Bras. Farmacogn.* 2010, 20. [CrossRef]

35. Oliva Mde, L.; Carezzano, M.E.; Gallucci, M.N.; Demo, M.S. Antimycotic effect of the essential oil of *Aloysia triphylla* against *Candida* species obtained from human pathologies. *Nat. Prod. Commun.* 2011, 6, 1039–1043. [PubMed]

36. Ali, H.F.N.; El-Beltagi, H.S.; Nasr, F.N. Evaluation of antioxidant and antimicrobial activity of *Aloysia triphylla*. *Agric. Food Chem.* 2011, 10, 2689–2699.

37. Ghasempour, M.; Omran, S.M.; Moghadamnia, A.A.; Shafiee, F. Effect of aqueous and ethanolic extracts of *Lippia citriodora* on *Candida albicans*. *Electron. Phys.* 2016, 8, 2752–2758. [CrossRef] [PubMed]

38. Inouye, S.; Tsuruoka, T.; Watanabe, M.; Takeo, K.; Akao, M.; Nishiyama, Y.; Yamaguchi, H. Inhibitory effect of essential oils on apical growth of *Aspergillus fumigatus* by vapour contact. *Mycoses* 2000, 43, 17–23. [CrossRef] [PubMed]

39. Tsortzakis, N.G.; Economakis, C.D. Antifungal activity of lemongrass (*Cymbopogon citratus* L.) essential oil against key postharvest pathogens. *Innov. Food Sci. Emerg. Technol.* 2007, 8, 253–258. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).