Direct Calculation of Mutual Information of Distant Regions

Noburo Shiba

Abstract: We consider the (Rényi) mutual information, \(I^{(n)}(A,B) = S_A^{(n)} + S_B^{(n)} - S_{A\cup B}^{(n)} \), of distant compact spatial regions A and B in the vacuum state of a free scalar field. The distance \(r \) between A and B is much greater than their sizes \(R_{A,B} \). It is known that \(I^{(n)}(A,B) \sim C_{AB}^{(n)} \langle 0 | \phi(r) \phi(0) | 0 \rangle^2 \). We obtain the direct expression of \(C_{AB}^{(n)} \) for arbitrary regions A and B. We perform the analytical continuation of \(n \) and obtain the mutual information. The direct expression is useful for the numerical computation. By using the direct expression, we can compute directly \(I(A,B) \) without computing \(S_A, S_B \) and \(S_{A\cup B} \) respectively, so it reduces significantly the amount of computation.
1 Introduction

The entanglement entropy in the quantum field theory plays important roles in many fields of physics including the string theory [1–12], condensed matter physics [13–16], lattice gauge theories [17, 18], cosmology [19], and the physics of the black hole [20–25]. The entanglement entropy is a useful quantity which characterizes quantum properties of given states.

For a given density matrix ρ of the total system, the entanglement entropy of the subsystem Ω is defined as

$$S_\Omega = -\text{Tr}_{\Omega^c} \ln \rho_{\Omega},$$

(1.1)

where $\rho_{\Omega} = \text{Tr}_{\Omega^c} \rho$ is the reduced density matrix of the subsystem Ω and Ω^c is the complement of Ω. The Rényi entropy $S^{(n)}_{\Omega}$ is defined as

$$S^{(n)}_{\Omega} = \frac{1}{1-n} \ln \text{Tr} \rho^{n}_{\Omega}.$$

(1.2)

The limit $n \to 1$ coincides with the entanglement entropy $\lim_{n\to1} S^{(n)}_{\Omega} = S_{\Omega}$.

In this paper, we consider the (Rényi) mutual information, $I^{(n)}(A,B) = S^{(n)}_{A} + S^{(n)}_{B} - S^{(n)}_{A\cup B}$, of distant compact spatial regions A and B in the vacuum state of a free scalar field. The distance r between A and B is much greater than their sizes $R_{A,B}$. It is known that [26], when $r \gg R_{A,B}$, the (Rényi) mutual information behaves as

$$I^{(n)}(A,B) \sim C^{(n)}_{AB} \langle 0 | \phi(r) \phi(0) | 0 \rangle^2,$$

(1.3)
where \(C_{AB}^{(n)} \) depends on the shapes of the regions A and B. When both A and B are the spheres and the scalar field is massless, the coefficient \(C_{AB}^{(n)} \) was calculated analytically by Cardy [26]. However, it is difficult to calculate \(C_{AB}^{(n)} \) analytically when both A and B are not the spheres or the scalar field is not massless. In this paper, we obtain the direct expression of \(C_{AB}^{(n)} \) for arbitrary regions A and B in the vacuum state of a scalar field which has a general dispersion relation. We perform the analytical continuation of \(n \) and obtain the mutual information \(I(A, B) = \lim_{n \to 1} I(n)(A, B) \). The direct expression is useful for the numerical computation. By using the direct expression, we can compute directly \(I(A, B) \) without computing \(S_A, S_B \) and \(S_{A\cup B} \) respectively, so it reduces significantly the amount of computation.

We comment on the advantages of this direct expression over the conventional numerical computation by the real time formalism. Entanglement entropy in free scalar fields can be calculated numerically by the real time formalism [20, 21]. In order to calculate the coefficient \(C_{AB}^{(n)} \) by the real time formalism, we have to plot the mutual information \(I(A, B) \) as a function of \(r \) and extract the coefficient [25]. So we have to calculate numerically \(S_{A\cup B} \) many times to plot \(I(A, B) \) as a function of \(r \). On the other hand, in our method, we separate the \(r \) dependence of \(I(A, B) \) analytically and obtain the direct expression of \(C_{AB}^{(n=1)} \). So, it reduces significantly the amount of computation.

To obtain the direct expression of \(C_{AB}^{(n)} \), we use the operator method to compute the Rényi entropy developed in [27]. This operator method is based on the idea that \(\text{Tr} \rho_{\Omega}^{n} \) is written as the expectation value of the local operator at \(\Omega \). This idea was originally used to compute \(I(n)(A, B) \) in the vacuum state by Cardy [26], Calabrese et al. [28] and Headrick [29]. This idea was generalized to an arbitrary density matrix \(\rho \) and the local operator was explicitly constructed in [27].

The present paper is organized as follows. In section 2, we review the operator method to compute the Rényi entropy developed in [27]. In section 3, we expand the glueing operator which plays the important role in the operator method to compute the (Rényi) mutual information. In section 4, we compute the (Rényi) mutual information and obtain the direct expression of \(C_{AB}^{(n)} \).

2 The review of the operator method to compute the Rényi entropy

We review the operator method to compute the Rényi entropy developed in [27]. We consider \(n \) copies of the scalar fields in \((d+1)\) dimensional spacetime and the \(j \)-th copy of the scalar field is denoted by \(\{ \phi^{(j)} \} \). Thus the total Hilbert space, \(H^{(n)} \), is the tensor product of the \(n \) copies of the Hilbert space, \(H^{(n)} = H \otimes H \cdots \otimes H \) where \(H \) is the Hilbert space of one scalar field. We define the density matrix \(\rho(n) \) in \(H^{(n)} \) as

\[
\rho(n) \equiv \rho \otimes \rho \otimes \cdots \otimes \rho
\]

where \(\rho \) is an arbitrary density matrix in \(H \). We can express \(\text{Tr} \rho_{\Omega}^{n} \) as

\[
\text{Tr} \rho_{\Omega}^{n} = \text{Tr}(\rho^{(n)} E_{\Omega}),
\]

- 2 -
where

\[E_\Omega = \int \prod_{j=1}^{n} \prod_{x \in \Omega} D J^{(j)}(x) D K^{(j)}(x) \exp[i \int d^d x \sum_{l=1}^{n} J^{(l+1)}(x) \phi^{(l)}(x)] \times \exp[i \int d^d x \sum_{l=1}^{n} K^{(l)}(x) \pi^{(l)}(x)] \times \exp[-i \int d^d x \sum_{l=1}^{n} J^{(l)} \phi^{(l)}], \]

(2.3)

where \(\pi(x) \) is a conjugate momenta of \(\phi(x) \), \([\phi(x), \pi(y)] = i \delta^d(x - y) \), and \(J^{(j)}(x) \) and \(K^{(j)}(x) \) exist only in \(\Omega \) and \(J^{(n+1)} = J^{(1)} \) and we normalize the measure of the functional integral as \(\int D J^{(j)} \exp[i \int d^d x J^{(j)}(x) f(x)] = \prod_{x \in \Omega} \delta(f(x)) \) where \(f(x) \) is an arbitrary function. Notice that \(\phi \) and \(\pi \) in (2.3) are operators and the ordering is important. This operator \(E_\Omega \) is called as the glueing operator. When \(\rho \) is a pure state, \(\rho = |\Psi\rangle \langle \Psi| \), the equation (2.2) becomes

\[\text{Tr} \rho_\Omega^{(n)} = \langle \Psi^{(n)} | E_\Omega | \Psi^{(n)} \rangle \]

(2.4)

where

\[|\Psi^{(n)} \rangle = |\Psi\rangle |\Psi\rangle \ldots |\Psi\rangle \]

(2.5)

The useful property of the glueing operator for calculating the mutual information is the locality. When \(\Omega = A \cup B \) and \(A \cap B = \emptyset \),

\[E_{A \cup B} = E_A E_B. \]

(2.6)

From the locality (2.6), the mutual Rényi information in the vacuum state can be expressed as the correlation function of the glueing operators,

\[\frac{\text{Tr} \rho_{A \cup B}^{(n)}}{\text{Tr} \rho_A^{(n)} \text{Tr} \rho_B^{(n)}} = \frac{\langle 0^{(n)} | E_A E_B | 0^{(n)} \rangle}{\langle 0^{(n)} | E_A | 0^{(n)} \rangle \langle 0^{(n)} | E_B | 0^{(n)} \rangle}. \]

(2.7)

We consider \((d + 1)\) dimensional free scalar field theory. For free scalar fields, it is useful to represent the glueing operator \(E_\Omega \) in (2.3) as the normal ordered operator. We decompose \(\phi \) and \(\pi \) into the creation and annihilation parts,

\[\phi(x) = \phi^+(x) + \phi^-(x), \quad \pi(x) = \pi^+(x) + \pi^-(x), \]

(2.8)

where

\[\phi^+(x) = \int \frac{d^dp}{(2\pi)^d} \frac{1}{\sqrt{2E_p}} a_p e^{ipx}, \quad \phi^-(x) = (\phi^+(x))^\dagger, \]

\[\pi^+(x) = \int \frac{d^dp}{(2\pi)^d} (-i) \frac{E_p}{2} a_p e^{ipx}, \quad \pi^-(x) = (\pi^+(x))^\dagger, \]

(2.9)

here \(E_p \) is the energy and \([a_p, a_p^\dagger] = (2\pi)^d \delta^d(p - p')\). The commutators of these operators are

\[[\phi^+(x), \phi^-(y)] = \langle 0 | \phi(x) \phi(y) | 0 \rangle = \int \frac{d^dp}{(2\pi)^d} \frac{1}{2E_p} e^{ip(x-y)} = \frac{1}{2} W^{-1}(x, y), \]

\[[\pi^+(x), \pi^-(y)] = \langle 0 | \pi(x) \pi(y) | 0 \rangle = \int \frac{d^dp}{(2\pi)^d} \frac{E_p}{2} e^{ip(x-y)} = \frac{1}{2} W(x, y), \]

(2.10)

\[[\pi^+(x), \phi^-(y)] = [\pi^-(x), \phi^+(y)] = -\frac{i}{2} \delta^d(x - y), \]

\[[\pi^+(x), \phi^+(y)] = [\pi^-(x), \phi^-(y)] = \frac{i}{2} \delta^d(x - y). \]
where we have defined the matrices W and W^{-1} which has continuous indices x, y in (2.10) and W^{-1} is the inverse of W. W and W^{-1} are positive definite symmetric matrices. By using (2.10) and the Baker-Campbell-Hausdorff (BCH) formula $e^X e^Y = e^{[X,Y]} e^X e^Y$, $e^{X+Y} = e^{\frac{1}{2}[X,Y]} e^X e^Y$, for $[[X,Y],X] = [[X,Y],Y] = 0$, we obtain

$$\exp[i \int d^dx J' \phi] \exp[i \int d^dx K \pi] \exp[-i \int d^dx J \phi]$$

$$= \exp[i \int d^dx (K \pi + (J' - J)\phi)] :$$

$$\times \exp[\int d^dx d^dy (-\frac{1}{4} K(x)A(x,y)K(y) - \frac{1}{4}(J' - J)(x)D(x,y)(J' - J)(y))$$

$$- \int d^dx i\frac{1}{2} K(x)(J' + J)(x)],$$

where : O : means the normal ordered operator of O. From (2.11) we can rewrite E_Ω in (2.3) as the normal ordered operator,

$$E_\Omega = \int \prod_{j=1}^{n} \prod_{x \in \Omega} DJ^{(j)}(x)DK^{(j)}(x) : \exp[i \sum_{l=1}^{n} \int d^dx ((J^{(l+1)} - J^{(l)})\phi^{(l)} + K^{(l)}\pi^{(l)})] : \exp[-\tilde{S}],$$

(2.12)

where $J^{(n+1)} = J^{(1)}$ and

$$\tilde{S} = \sum_{l=1}^{n} [\int d^dx d^dy [\frac{1}{4} K^{(l)}(x)W(x,y)K^{(l)}(y) + \frac{1}{4}(J^{(l+1)} - J^{(l)})(x)W^{-1}(x,y)(J^{(l+1)} - J^{(l)})(y)]$$

$$+ \int d^dx K^{(l)}(x)(J^{(l+1)} - J^{(l)})(x)].$$

(2.13)

3 The expansion of the glueing operator

We consider a complex scalar field ϕ because it is useful for later calculation. The mutual information of a real free scalar field can be obtained by dividing the mutual information of the complex free scalar field by 2. Then, the glueing operator becomes

$$E_\Omega = \int \prod_{j=0}^{n-1} \prod_{x \in \Omega} DJ^{(j)}(x)DK^{(j)}(x) : \exp[i \sum_{l=0}^{n-1} \int d^dx ((J^{(l+1)} - J^{(l)})\phi^{(l)*} + K^{(l)}\pi^{(l)*})$$

$$+ (J^{(l+1)*} - J^{(l)*})\phi^{(l)} + K^{(l)*}\pi^{(l)})] : \exp[-\tilde{S}],$$

(3.1)

where

$$\tilde{S} = \sum_{l=1}^{n} [\int d^dx d^dy [\frac{1}{2} K^{(l)}(x)A(x,y)K^{(l)*}(y) + \frac{1}{2}(J^{(l+1)} - J^{(l)})(x)D(x,y)(J^{(l+1)*} - J^{(l)*})(y)]$$

$$+ \int d^dx (K^{(l)}(x)(J^{(l+1)*} - J^{(l)*})(x) + K^{(l)*}(x)(J^{(l+1)} + J^{(l)})(x)].$$

(3.2)
For the free scalar field, it is useful to use the following Fourier transformation,

\[
f^{(l)} = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} e^{2\pi i kl/n} \tilde{f}^{(k)}(k)
\] \tag{3.3}

where \(f^{(l)} \) is an arbitrary \(n \) dimensional vector and \(\tilde{f}^{(k)}(k) \) is its Fourier transformation, i.e. (3.3) is the definition of the Fourier transformation. The Fourier transformation diagonalizes the glueing operator,

\[
E_{\Omega} = \prod_{k=0}^{n-1} E_{\Omega}^{(k)}
\] \tag{3.4}

where

\[
E_{\Omega}^{(k)} = \int \prod_{x \in \Omega} D\tilde{j}^{(k)}(x)D\tilde{K}^{(k)}(x) : \exp[iQ^{(k)}] : \exp[-\tilde{S}^{(k)}]
\] \tag{3.5}

\[
Q^{(k)} \equiv \int d^d x [(e^{2\pi i k / n} - 1)\tilde{j}^{(k)}(x)\tilde{\phi}^{(k)*}(x) + (e^{-2\pi i k / n} - 1)\tilde{j}^{(k)}(x)\tilde{\phi}^{(k)*}(x) + \tilde{K}^{(k)}(x)\tilde{\pi}^{(k)*}(x) + \tilde{K}^{(k)*}(x)\tilde{\pi}^{(k)}(x)]
\] \tag{3.6}

\[
\tilde{S}^{(k)} \equiv \int d^d x d^d y [\frac{1}{2}\tilde{K}^{(k)}(x)A(x, y)\tilde{K}^{(k)*}(y) + \frac{1}{2}(1 - \cos(\frac{2\pi k}{n}))\tilde{j}^{(k)}(x)D(x, y)\tilde{j}^{(k)*}(y)] + \frac{i}{2} \int d^d x [(e^{-2\pi i k / n} + 1)\tilde{K}^{(k)}(x)\tilde{j}^{(k)*}(x) + (e^{2\pi i k / n} + 1)\tilde{K}^{(k)*}(x)\tilde{j}^{(k)}(x)].
\] \tag{3.7}

In order to expand: \(\exp[iQ^{(k)}] : \) in \(E_{\Omega}^{(k)} \), we define \(\langle \ldots \rangle \) as

\[
\langle \ldots \rangle = \frac{\int \prod_{x \in \Omega} D\tilde{j}^{(k)}(x)D\tilde{K}^{(k)}(x) \exp[-\tilde{S}^{(k)}] \ldots}{\int \prod_{x \in \Omega} D\tilde{j}^{(k)}(x)D\tilde{K}^{(k)}(x) \exp[-\tilde{S}^{(k)}]}
\] \tag{3.8}

where \(\ldots \) is an arbitrary function of \(\tilde{j}^{(k)}(x) \) and \(\tilde{K}^{(k)}(x) \). When \(\Omega \) is a compact spatial region, we express \(E_{\Omega}^{(k)} \) as a sum of the local operators at a conventionally chosen point \(x_0 \) inside \(\Omega \). Thus, we expand \(E_{\Omega}^{(k)} \) as

\[
\frac{E_{\Omega}^{(k)}}{\langle 0 | E_{\Omega}^{(k)} | 0 \rangle} = 1 - \frac{1}{2} \langle Q^{(k)} \rangle^2 + \ldots
\]

\[
= 1 - \left(2 - 2 \cos\left(\frac{2\pi k}{n}\right)\right) \int d^d x d^d y \langle \tilde{j}^{(k)}(x)\tilde{j}^{(k)*}(y) \rangle : \tilde{\phi}^{(k)*}(x)\tilde{\phi}^{(k)}(y) : + \ldots
\] \tag{3.9}

\[
= 1 - \langle \tilde{\phi}^{(k)*}(x_0)\tilde{\phi}^{(k)}(x_0) \rangle : \left(2 - 2 \cos\left(\frac{2\pi k}{n}\right)\right) \int d^d x d^d y \langle \tilde{j}^{(k)}(x)\tilde{j}^{(k)*}(y) \rangle + \ldots
\]

In order to represent the Gauss integrals of \(\tilde{K}^{(k)}(x) \) and \(\tilde{j}^{(k)}(x) \), we will use the following matrix notation,

\[
W(x, y) = \begin{pmatrix} W(x_0, y_0) & W(x_0, y_0^c) \\ W(x_0^c, y_0) & W(x_0^c, y_0^c) \end{pmatrix} = \begin{pmatrix} A & B \\ B^T & C \end{pmatrix}
\] \tag{3.10}

\[
W^{-1}(x, y) = \begin{pmatrix} W^{-1}(x_0, y_0) & W^{-1}(x_0, y_0^c) \\ W^{-1}(x_0^c, y_0) & W^{-1}(x_0^c, y_0^c) \end{pmatrix} = \begin{pmatrix} D & E^T \\ E & F \end{pmatrix}
\] \tag{3.11}
where \(x_{\Omega(\Omega^c)} \) and \(y_{\Omega(\Omega^c)} \) are the coordinates in \(\Omega(\Omega^c) \), where \(\Omega^c \) is the complement of \(\Omega \).

In order to calculate \(\langle \tilde{j}^{(k)}(x)\tilde{j}^{(k)*}(y) \rangle \), we perform the \(\tilde{K}^{(k)} \) integral first,

\[
\int \prod_{x \in \Omega} D\tilde{K}^{(k)}(x) \exp[\tilde{S}^{(k)}] = \frac{1}{\det(\frac{A}{2\pi})} \exp[-\int d^dxd^dy\tilde{j}^{(k)*}(x)\left(A^{-1} + D + \cos\left(\frac{2\pi k}{n}\right) (A^{-1} - D)\right)(x,y)\tilde{j}^{(k)}(x)].
\]

(3.12)

From (3.12), we obtain

\[
\langle \tilde{j}^{(k)}(x)\tilde{j}^{(k)*}(y) \rangle = \frac{\int \prod_{x \in \Omega} D\tilde{j}^{(k)}(x)D\tilde{K}^{(k)}(x) \exp[-\tilde{S}^{(k)}] \tilde{j}^{(k)}(x)\tilde{j}^{(k)*}(y)}{\int \prod_{x \in \Omega} D\tilde{j}^{(k)}(x)D\tilde{K}^{(k)}(x) \exp[-\tilde{S}^{(k)}]} = \left(A^{-1} + D + \cos\left(\frac{2\pi k}{n}\right) (A^{-1} - D)\right)^{-1} \langle x,y \rangle.
\]

(3.13)

In order to separate the \(n \) dependence of \(\langle \tilde{j}^{(k)}(x)\tilde{j}^{(k)*}(y) \rangle \), we rewrite it as

\[
\left(A^{-1} + D + \cos\left(\frac{2\pi k}{n}\right) (A^{-1} - D)\right)^{-1} = X \left(1 - \cos\left(\frac{2\pi k}{n}\right) Y\right)^{-1} X
\]

(3.14)

where

\[
X \equiv (A^{-1} + D)^{-1/2}, \quad Y \equiv X(D - A^{-1})X
\]

(3.15)

\[
Y = O^T\Lambda O, \quad \Lambda = \text{diag}(\lambda_i)
\]

(3.16)

Thus we obtain

\[
\left(X \left(1 - \cos\left(\frac{2\pi k}{n}\right) Y\right)^{-1} X\right) = \sum_{i,j} Z_{li} \frac{1}{1 - \lambda_i \cos\left(\frac{2\pi k}{n}\right)} Z_{lj}
\]

(3.17)

where \(Z = OX \) and we discretized the space coordinates in order to regularize the scalar field. In the appendix A, we show that the range of the eigenvalues \(\lambda_i \) is

\[
0 \leq \lambda_i < 1.
\]

(3.18)

Finally, when \(\Omega \) is a compact spatial region, we obtain the expansion of \(E^{(k)}_\Omega \) as

\[
\frac{E^{(k)}_\Omega}{\langle 0| E^{(k)}_\Omega |0 \rangle} = 1 - \tilde{\phi}^{(k)*}(x_0)\tilde{\phi}^{(k)}(x_0) : C^{(k)}_\Omega + \cdots,
\]

(3.19)

where

\[
C^{(k)}_\Omega \equiv \left(2 - 2 \cos\left(\frac{2\pi k}{n}\right)\right) \int d^dxd^dy(\tilde{j}^{(k)}(x)\tilde{j}^{(k)*}(y)) = \left(2 - 2 \cos\left(\frac{2\pi k}{n}\right)\right) \sum_{i,j} \sum_{l} Z_{li} \frac{1}{1 - \lambda_i \cos\left(\frac{2\pi k}{n}\right)} Z_{lj}.
\]

(3.20)
4 The (Rényi) mutual information of distant regions

We apply above results to the mutual Rényi information $I^{(n)}(A, B)$ of disjoint compact spatial regions A and B in the vacuum states of the free scalar field. From (2.7), (3.4) and (3.19), we obtain

$$\frac{\text{Tr} \rho^n_{A \cup B}}{\text{Tr} \rho^n_A \text{Tr} \rho^n_B} = \prod_{k=0}^{n-1} \frac{\langle 0 | E_A^{(k)} E_B^{(k)} | 0 \rangle}{\langle 0 | E_A^{(k)} | 0 \rangle \langle 0 | E_B^{(k)} | 0 \rangle}$$

$$\simeq \prod_{k=0}^{n-1} \langle 0 | (1 - : \tilde{\phi}^{(k)}(x_A) \tilde{\phi}^{(k)}(x_A) : C_A^{(k)}) (1 - : \tilde{\phi}^{(k)*}(x_B) \tilde{\phi}^{(k)}(x_B) : C_B^{(k)}) | 0 \rangle \tag{4.1}$$

$$= \prod_{k=0}^{n-1} (1 + C_A^{(k)} C_B^{(k)} f(r))$$

where x_A and x_B are some conventionally chosen points inside A and B, $r = |x_A - x_B|$, and

$$f(r) \equiv \langle 0 | : \tilde{\phi}^{(k)}(x_A) \tilde{\phi}^{(k)}(x_A) :: \tilde{\phi}^{(k)*}(x_B) \tilde{\phi}^{(k)}(x_B) : | 0 \rangle$$

$$= (\langle 0 | \phi(x_A) \phi^*(x_B) | 0 \rangle)^2 \tag{4.2}$$

From (4.1), we obtain the mutual Rényi information as

$$I^{(n)}(A, B) = \frac{1}{n-1} \ln \frac{\text{Tr} \rho^n_{A \cup B}}{\text{Tr} \rho^n_A \text{Tr} \rho^n_B} \simeq \frac{1}{n-1} \sum_{k=0}^{n-1} \ln \left(1 + C_A^{(k)} C_B^{(k)} f(r)\right) \simeq \frac{f(r)}{n-1} \sum_{k=0}^{n-1} C_A^{(k)} C_B^{(k)} \tag{4.3}$$

We substitute $C^{(k)}_\Omega$ in (3.20) into (4.3) and obtain

$$I^{(n)}(A, B) \simeq C^{(n)}_{AB} f(r), \tag{4.4}$$

$$C^{(n)}_{AB} = \frac{4}{n-1} \sum_{i_A} \sum_{j_A} \sum_{i_B} \sum_{j_B} \sum_{l_A} \sum_{l_B} Z_{l_A i_A}^{(A)} Z_{l_B j_B}^{(A)} Z_{l_B i_B}^{(B)} Z_{l_A j_A}^{(B)} F(n, \lambda_{i_A}^{(A)}, \lambda_{j_B}^{(B)}), \tag{4.5}$$

where

$$F(n, a, b) \equiv \sum_{k=0}^{n-1} \left(1 - \cos \left(\frac{2\pi k}{n}\right)\right)^2 \frac{1}{1 - a \cos \left(\frac{2\pi k}{n}\right)} \frac{1}{1 - b \cos \left(\frac{2\pi k}{n}\right)}. \tag{4.6}$$

We can perform explicitly the summation in (4.6) and obtain (see Appendix B)

$$F(n, a, b) = n \left(\frac{1 + p^2}(1 + q^2)\right) \left[2 - \frac{(1-p)(1+p^n)}{(1+p)(1-p^n)} - \frac{(1-q)(1+q^n)}{(1+q)(1-q^n)}\right]$$

$$+ \frac{2}{(1+p)(1+q)(p-q)(1-pq)} \left\{ \frac{1-p}{1-p^n} \frac{1-q}{1-q^n} \frac{1}{(1+q^n)(1+q^2)(1+q^2)} \right\} \tag{4.7}$$

where

$$p \equiv \rho(a) = \frac{1}{a}(1 - \sqrt{1-a^2}), \quad q \equiv \rho(b) = \frac{1}{b}(1 - \sqrt{1-b^2}). \tag{4.8}$$
From (4.7), for $n = 1, 2, 3$ and 4, we obtain

\begin{align}
F(n = 1, a, b) &= 0 \quad (4.9) \\
F(n = 2, a, b) &= 4 \left(\frac{(1 + p^2)(1 + q^2)}{(1 + p)^2(1 + q)^2} \right) \quad (4.10) \\
F(n = 3, a, b) &= \frac{9}{2} \left(\frac{1 + p^2}{1 + p + p^2} \right) \left(\frac{1 + q^2}{1 + q + q^2} \right) \quad (4.11) \\
F(n = 4, a, b) &= 2 \left[1 + 2 \left(\frac{(1 + p^2)(1 + q^2)}{(1 + p)^2(1 + q)^2} \right) \right]. \quad (4.12)
\end{align}

When $n = 2, 3$, $F(n, a, b)$ is a product of the function of a and b and $C_{AB}^{(n)}$ becomes,

$$C_{AB}^{(n)} = \tilde{C}_A^{(n)} \tilde{C}_B^{(n)} \quad (n = 2, 3) \quad (4.13)$$

where $\tilde{C}_{A(B)}^{(n)}$ is a function which is determined by the shape of A(B). So, when $n = 2, 3$, $C_{AB}^{(n)}$ is not entangled, i.e. it is a simple product of functions each of which is determined by the shape of A(B). In general, $F(n, a, b)$ is not a product of the function of a and b and $C_{AB}^{(n)}$ is entangled.

Because $F(n, a, b)$ is an elementary function of n, its analytical continuation is trivial. So we can take $n \to 1$ limit in $C_{AB}^{(n)}$ in (4.5). From (4.7) and (4.9), we obtain

$$C_{AB}^{(n=1)} = 4 \sum_{i_A} \sum_{j_A} \sum_{i_B} \sum_{j_B} Z_{i_Ai_A}^{(A)} Z_{i_Bj_B}^{(B)} \left(\frac{\partial}{\partial n} F(n, \lambda_i^{(A)} \lambda_i^{(B)}) \right) \bigg|_{n=1}, \quad (4.14)$$

where

$$\left(\frac{\partial}{\partial n} F(n, a, b) \right) \bigg|_{n=1} = \frac{1}{2} \left(\frac{(1 + p^2)(1 + q^2)}{(1 + p)(1 + q)(p - q)(1 - pq)} \right) [(1 - p)(1 + q) \ln p - (1 + p)(1 - q) \ln q]. \quad (4.15)$$

$C_{AB}^{(n=1)}$ is entangled. The calculation of the matrix Z and the eigenvalues λ_i is simple matrix computation. So, we can compute $C_{AB}^{(n=1)}$ numerically.

5 Conclusion and discussions

In this paper, we considered the (Rényi) mutual information, $I^{(n)}(A, B) = S_A^{(n)} + S_B^{(n)} - S_{AB}^{(n)}$, of distant compact spatial regions A and B in the vacuum state of a free scalar field. The distance r between A and B is much greater than their sizes $R_{A,B}$ and the (Rényi) mutual information behaves as $I^{(n)}(A, B) \sim C_{AB}^{(n)} \langle 0 | \phi(r) \phi(0) | 0 \rangle^2$. We obtained the direct expression of $C_{AB}^{(n)}$ for arbitrary regions A and B. We performed the analytical continuation of n and obtain the mutual information $I(A, B) = \lim_{n \to 1} I^{(n)}(A, B)$. When $n = 2, 3$, $C_{AB}^{(n)}$ is not entangled, i.e. it is a simple product of functions each of which is determined by the
shape of $A(B)$. For general n, $C^{(n)}_{AB}$ is not a simple product of functions each of which is determined by the shape of $A(B)$ and $C^{(n)}_{AB}$ is entangled. For example, $C^{(n=1)}_{AB}$ is entangled when $n = 1, 4$.

The direct expression is useful for the numerical computation. By using the direct expression, we can compute directly $I(A, B)$ without computing S_A, S_B and $S_{A∪B}$ respectively, so it reduces significantly the amount of computation.

It is an interesting future problem to apply our direct expression to study the shape dependence of $C^{(n)}_{AB}$. For example, the corner contribution to mutual information in $(2+1)$ dimension is an interesting problem. The corner contributions to entanglement entropy in $(2+1)$ dimension are universal and have important information of the QFT [30–33], however, the corner contribution to mutual information has not been studied well. Our method is useful for studying the corner contributions of mutual information. It is also an interesting future problem to generalize our method to the entanglement negativity [34, 35].

Acknowledgments

I would like to thank Tokiro Numasawa, Sotaro Sugishita, Tadashi Takayanagi, Kotaro Tamaoka, and Kento Watanabe for useful comments and discussions. I also thank the Yukawa Institute for Theoretical Physics at Kyoto University. Discussions during the workshop YITP-T-19-03 "Quantum Information and String Theory 2019" were useful. This work was supported by JSPS KAKENHI Grant Number JP19K14721.

A Derivation of $0 \leq \lambda_i < 1$

We show that the range of the eigenvalues λ_i of Y in (3.16) is $0 \leq \lambda_i < 1$. A and D in (3.10) and (3.11) are positive definite symmetric matrices because W and W^{-1} are positive definite symmetric matrices. So, $X = (A^{-1} + D)^{-1/2}$ in (3.15) is a positive definite symmetric matrix.

In order to show that Y is a positive semidefinite matrix, we use the following identity,

$$
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
=
\begin{pmatrix}
A & B \\
P^T & C
\end{pmatrix}
\begin{pmatrix}
D & E \\
E^T & F
\end{pmatrix}
=
\begin{pmatrix}
AD + BE^T & AE + BF \\
B^T D + CE^T & B^T E + CF
\end{pmatrix}.
$$
(A.1)

From (A.1), we obtain $DA - 1 = -EB^T$ and $B^T = -F^{-1}E^T A$. Thus we rewrite $D - A^{-1}$ in Y as

$$
D - A^{-1} = (DA - 1)A^{-1} = -EB^T A^{-1} = EF^{-1}E^T.
$$
(A.2)

Because F^{-1} is a positive definite matrix and (A.2), $D - A^{-1}$ is a positive semidefinite matrix. Therefore, $Y = X(D - A^{-1})X$ is a positive semidefinite matrix and we obtain $0 \leq \lambda_i$.

Next we consider the upper bound of λ_i. We rewrite $1 - Y$ as

$$
1 - Y = (A^{-1} + D)^{-1/2} [A^{-1} + D - (D - A^{-1})] (A^{-1} + D)^{-1/2}
= (A^{-1} + D)^{-1/2} 2A^{-1}(A^{-1} + D)^{-1/2}.
$$
(A.3)
Because A^{-1} is a positive definite matrix and (A.3), $1-Y$ is a positive definite matrix and we obtain $\lambda_i < 1$. Therefore, we have shown $0 \leq \lambda_i < 1$.

B The calculation of $F(n, a, b)$ in (4.6)

We calculate the summation $F(n, a, b)$ in (4.6) for $0 \leq a < 1$, $0 \leq b < 1$. We expand $(1 - \cos \left(\frac{2\pi k}{n}\right))^2$ in (4.6) and rewrite $F(n, a, b)$ as

$$F(n, a, b) = \frac{n}{ab} + \frac{1}{a} \left(1 - \frac{1}{b}\right) \sum_{k=0}^{n-1} \frac{1}{1 - b \cos \left(\frac{2\pi k}{n}\right)} + \frac{1}{b} \left(1 - \frac{1}{a}\right) \sum_{k=0}^{n-1} \frac{1}{1 - a \cos \left(\frac{2\pi k}{n}\right)}$$

(B.1)

In order to calculate the summations in (B.1), we use the following expansion,

$$\frac{1}{1 - a \cos \theta} = (1 + \rho(a))^2 \frac{1}{1 - \rho(a) e^{i\theta}} \frac{1}{1 - \rho(a) e^{-i\theta}} = (1 + \rho(a)^2) \sum_{p=0}^{\infty} \sum_{p'=0}^{\infty} \rho(a)^{p+p'} e^{i(p-p')\theta}$$

(B.2)

where

$$\rho(a) \equiv \frac{1}{a} (1 - \sqrt{1 - a^2}),$$

(B.3)

here $0 \leq \rho(a) < 1$ for $0 \leq a < 1$, and

$$a = \frac{2\rho(a)}{1 + \rho(a)^2},$$

(B.4)

B.1 The calculation of $\sum_{k=0}^{n-1} \frac{1}{1 - a \cos \left(\frac{2\pi k}{n}\right)}$

By using the expansion in (B.2), we obtain

$$\sum_{k=0}^{n-1} \frac{1}{1 - a \cos \left(\frac{2\pi k}{n}\right)} = (1 + \rho(a)^2) \sum_{p=0}^{\infty} \sum_{p'=0}^{\infty} \rho(a)^{p+p'} \sum_{k=0}^{n-1} e^{i(p-p') \frac{2\pi k}{n}}.$$

(B.5)

We split the p, p' summation into three parts,

$$\sum_{p=0}^{\infty} \sum_{p'=0}^{\infty} = \sum_{p=0}^{\infty} \sum_{p'=0}^{\infty} |_{p=p'+l} + \sum_{p=0}^{\infty} \sum_{p'=0}^{\infty} |_{p'=p+l} - \sum_{p=0}^{\infty} \sum_{p'=0}^{\infty} |_{p'=p},$$

(B.6)
where we subtracted the $p = p'$ part to avoid double counting. From (B.5) and (B.6), we obtain

$$
\sum_{p=0}^{\infty} \sum_{p'=0}^{\infty} \rho(a)^{p+p'} \sum_{k=0}^{n-1} e^{i(p-p') \frac{2\pi k}{n}}
= \sum_{p'=0}^{\infty} \sum_{l=0}^{\infty} \rho(a)^{p'-l} \sum_{k=0}^{n-1} e^{i \frac{2\pi k}{n}} + \sum_{p=0}^{\infty} \sum_{l=0}^{\infty} \rho^2 a^{p+l} \sum_{k=0}^{n-1} e^{-i \frac{2\pi k}{n}} - \sum_{p=0}^{\infty} \rho^2 p \sum_{k=0}^{n-1} 1
\quad \text{(B.7)}
$$

$$
= n \sum_{p'=0}^{\infty} \sum_{j=0}^{\infty} \rho(a)^{p'+nj} + n \sum_{p=0}^{\infty} \sum_{j=0}^{\infty} \rho^{2p+nj} - n \sum_{p=0}^{\infty} \rho^{2p}
\quad \text{(B.8)}
$$

$$
= \frac{2n}{(1 - \rho^2)(1 - \rho^3)} - \frac{n}{1 - \rho^2} = \frac{n(1 + \rho^2)}{1 - \rho^3}
\quad \text{(B.9)}
$$

where we have used

$$
\sum_{k=0}^{n-1} e^{i \frac{2\pi k}{n}} = n \delta_{l,nj} \quad (j = 0, 1, 2, \cdots).
\quad \text{(B.8)}
$$

We substitute (B.7) into (B.5) and obtain

$$
\sum_{p=0}^{\infty} \sum_{p'=0}^{\infty} \rho(a)^{p+p'} e^{i(p-p') \frac{2\pi k}{n}}
= (1 + \rho(a)^2) \frac{n}{1 - \rho(a)^2} \cdot \frac{1 + \rho(a)^n}{1 - \rho(a)^n}.
\quad \text{(B.9)}
$$

B.2 The calculation of

$$
\sum_{k=0}^{n-1} \frac{1}{1 - a \cos \left(\frac{2\pi k}{n} \right)} \frac{1}{1 - b \cos \left(\frac{2\pi k}{n} \right)}
\quad \text{(B.10)}
$$

In the same way as above, by using the expansion in (B.2), we obtain

$$
= (1 + \rho(a)^2)(1 + \rho(b)^2) \sum_{k=0}^{\infty} \sum_{p=0}^{\infty} \sum_{p'=0}^{\infty} \rho(a)^{p+p'} e^{i(p-p') \frac{2\pi k}{n}} \sum_{q=0}^{\infty} \sum_{q'=0}^{\infty} \rho(b)^{q+q'} e^{i(q-q') \frac{2\pi k}{n}}
\quad \text{(B.10)}
$$

From (B.6), we can rewrite the summations in (B.10) as

$$
\sum_{p=0}^{\infty} \sum_{p'=0}^{\infty} \sum_{q=0}^{\infty} \sum_{q'=0}^{\infty}
\quad \text{(B.11)}
$$
We substitute (B.11) into (B.10) and obtain

\[
(1 + \rho(a)^2)(1 + \rho(b)^2) \sum_{k=0}^{n-1} \frac{1}{1 - a \cos \left(\frac{2\pi k}{n}\right)} \frac{1}{1 - b \cos \left(\frac{2\pi k}{n}\right)}
= \sum_{k=0}^{n-1} \left[2 \left(\sum_{p'=0}^{\infty} \sum_{l=0}^{\infty} \sum_{q'=0}^{\infty} \rho(a)^{2p'+l} \rho(b)^{2q'+m} e^{i(l+m)2\pi k/n} \right) \right. \\
+ \sum_{p'=0}^{\infty} \sum_{l=0}^{\infty} \sum_{q=0}^{\infty} \sum_{m=0}^{\infty} \rho(a)^{2p'+l} \rho(b)^{2q+m} e^{i(2q+2m)\pi k/n} \\
- \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \sum_{m=0}^{\infty} \rho(a)^{2p} \rho(b)^{2q} e^{i2\pi k/n} \\
+ \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \rho(a)^{2p} \rho(b)^{2q} \right].
\]

(B.12)

The last term in (B.12) can be evaluated as

\[
\sum_{k=0}^{n-1} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \rho(a)^{2p} \rho(b)^{2q} = n \frac{1}{1 - \rho(a)^2} \frac{1}{1 - \rho(b)^2}.
\]

(B.13)

The third term in (B.12) can be evaluated as

\[
\sum_{k=0}^{n-1} \sum_{p'=0}^{\infty} \sum_{l=0}^{\infty} \sum_{q'=0}^{\infty} \rho(a)^{2p'+l} \rho(b)^{2q'} e^{i2\pi k/n} = n \sum_{p'=0}^{\infty} \sum_{j=0}^{\infty} \sum_{q=0}^{\infty} \rho(a)^{2p'+nj} \rho(b)^{2q} \\
= n \frac{1}{1 - \rho(a)^2} \frac{1}{1 - \rho(a)^n} \frac{1}{1 - \rho(b)^2}.
\]

(B.14)

The fourth term in (B.12) is obtained by interchanging \(a\) and \(b\) in the third term in (B.12).

We perform the \(p'\) and \(q\) summations in the second term in (B.12) and obtain

\[
\sum_{k=0}^{n-1} \sum_{p'=0}^{\infty} \sum_{l=0}^{\infty} \sum_{q'=0}^{\infty} \rho(a)^{2p'+l} \rho(b)^{2q'+m} e^{i(l+m)2\pi k/n} \\
= \frac{1}{1 - \rho(a)^2} \frac{1}{1 - \rho(b)^2} \sum_{k=0}^{n-1} \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \rho(a)^{l} \rho(b)^{m} e^{i(l-m)2\pi k/n}.
\]

(B.15)
By using (B.6), we obtain
\[
\sum_{k=0}^{n-1} \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \rho(a)^l \rho(b)^m e^{i(l-m)2\pi k/n} = \frac{1}{1 - \rho(a)^2} \frac{1}{1 - \rho(b)^2} \frac{n}{1 - \rho(a)\rho(b)} \left[\frac{1}{1 - \rho(a)^n} + \frac{1}{1 - \rho(b)^n} - 1 \right].
\] (B.17)

Thus, we substitute (B.16) into (B.15) and obtain the second term in (B.12)
\[
\sum_{k=0}^{n-1} \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \rho(a)^{2q' + l} \rho(b)^{2q + m} e^{i(l-m)2\pi k/n} = \frac{1}{1 - \rho(a)^2} \frac{1}{1 - \rho(b)^2} \frac{n}{1 - \rho(a)\rho(b)} \left[\frac{1}{1 - \rho(a)^n} + \frac{1}{1 - \rho(b)^n} - 1 \right].
\] (B.18)

We perform the \(p'\) and \(q'\) summations in the first term in (B.12) and obtain
\[
\sum_{k=0}^{n-1} \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \rho(a)^{2q' + l} \rho(b)^{2q + m} e^{i(l-m)2\pi k/n} = \frac{1}{1 - \rho(a)^2} \frac{1}{1 - \rho(b)^2} \frac{n}{1 - \rho(a)\rho(b)} \left[\frac{1}{1 - \rho(a)^n} + \frac{1}{1 - \rho(b)^n} - 1 \right].
\] (B.19)

By using (B.8), we obtain
\[
\sum_{k=0}^{n-1} \sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \rho(a)^{2q' + l} \rho(b)^{2q + m} e^{i(l-m)2\pi k/n} = \frac{1}{1 - \rho(a)^2} \frac{1}{1 - \rho(b)^2} \frac{n}{1 - \rho(a)\rho(b)} \left[\frac{1}{1 - \rho(a)^n} + \frac{1}{1 - \rho(b)^n} - 1 \right].
\] (B.20)
Thus (B.22) is equal to (4.6).

Finally, we substitute (B.13), (B.14), (B.17) and (B.20) into (B.12) and obtain

\[
\frac{1}{(1 + \rho(a)^2)(1 + \rho(b)^2)} \sum_{k=0}^{n-1} \frac{1}{1 - a \cos \left(\frac{2\pi k}{n} \right)} \frac{1}{1 - b \cos \left(\frac{2\pi k}{n} \right)}
\]

\[
= 2 \left[\frac{1}{1 - \rho(a)^2} \frac{1}{1 - \rho(b)^2} \frac{n}{\rho(b) - \rho(a)} \left(\frac{\rho(b)}{1 - \rho(b)^n} - \frac{\rho(a)}{1 - \rho(a)^n} \right) + \frac{1}{1 - \rho(a)^2} \frac{1}{1 - \rho(b)^2} \frac{n}{\rho(a) - \rho(b)} \left(\frac{1}{1 - \rho(a)^n} + \frac{1}{1 - \rho(b)^n} - 1 \right) \right]
\]

\[
= 2n \frac{1}{1 - \rho(a)^2} \frac{1}{1 - \rho(b)^2} \frac{1}{\rho(a) - \rho(b)} \frac{1}{1 - \rho(a)\rho(b)} \times \left[\frac{\rho(a)(1 - \rho(b)^2)}{1 - \rho(a)^n} - \frac{\rho(b)(1 - \rho(a)^2)}{1 - \rho(b)^n} - \frac{1}{2} (\rho(a) - \rho(b))(1 + \rho(a)\rho(b)) \right].
\]

We substitute (B.9) and (B.21) into (B.1) and obtain

\[
F(n, a, b) = n \left(\frac{1 + p^2}{4pq} \right) \left[2 - \frac{(1 - p)(1 + p^n)}{(1 + p)(1 - p^n)} - \frac{(1 - q)(1 + q^n)}{(1 + q)(1 - q^n)} \right]
\]

\[
+ \frac{2}{(1 + p)(1 + q)(p - q)(1 - pq)} \left\{ \frac{1 - p}{1 - p^n} p(1 - q)^2(1 + q) - \frac{1 - q}{1 - q^n} q(1 - p)^2(1 + p) \right\} \]

where \(0 \leq a < 1, \ 0 \leq b < 1\) and

\[
p \equiv \rho(a) = \frac{1}{a} (1 - \sqrt{1 - a^2}), \quad q \equiv \rho(b) = \frac{1}{b} (1 - \sqrt{1 - b^2}).
\]

Thus (B.22) is equal to (4.6).

References

[1] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602; “Aspects of holographic entanglement entropy,” JHEP 0608 (2006) 045.

[2] T. Faulkner, A. Lewkowycz and J. Maldacena, “Quantum corrections to holographic entanglement entropy,” JHEP 1311, 074 (2013) [arXiv:1307.2892].

[3] B. Swingle, "Entanglement Renormalization and Holography," Phys. Rev. D 86, 065007 (2012), arXiv:0905.1317 [cond-mat.str-el].

[4] M. Nozaki, S. Ryu and T. Takayanagi, "Holographic Geometry of Entanglement Renormalization in Quantum Field Theories," JHEP 1210 (2012) 193, arXiv:1208.3469 [hep-th].

[5] M. Miyaji and T. Takayanagi, "Surface/State Correspondence as a Generalized Holography," PTEP 2015 (2015) no.7, 073B03, arXiv:1503.03542[hep-th].
[6] P. Caputa, M. Miyaji, T. Takayanagi, K. Umemoto, "Holographic Entanglement of Purification from Conformal Field Theories," Phys.Rev.Lett. 122 (2019) no.11, 111601, arXiv:1812.05268

[7] N. Shiba, T. Takayanagi, "Volume Law for the Entanglement Entropy in Non-local QFTs," JHEP 1402 (2014) 033, arXiv:1311.1643 [hep-th].

[8] A. Mollabashi, N. Shiba, T. Takayanagi, "Entanglement between Two Interacting CFTs and Generalized Holographic Entanglement Entropy," JHEP 1404 (2014) 185, arXiv:1403.1393 [hep-th].

[9] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, K. Watanabe, "Continuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State Correspondence," Phys.Rev.Lett. 115 (2015) no.17, 171602, arXiv:1506.01353 [hep-th].

[10] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, K. Watanabe, "Distance between Quantum States and Gauge-Gravity Duality," Phys.Rev.Lett. 115 (2015) no.26, 261602, arXiv:1507.07555 [hep-th].

[11] T. Miyagawa, N. Shiba, T. Takayanagi, "Double-Trace Deformations and Entanglement Entropy in AdS," Fortsch.Phys. 64 (2016) 92-105, arXiv:1511.07194 [hep-th].

[12] T. Numasawa, N. Shiba, T. Takayanagi, K. Watanabe, "EPR Pairs, Local Projections and Quantum Teleportation in Holography," JHEP 1608 (2016) 077, arXiv:1604.01772 [hep-th].

[13] M. Levin and X.-G. Wen, "Detecting Topological Order in a Ground State Wave Function," Phys. Rev. Lett. 96, 110405 (2006), arXiv:cond-mat/0510613.

[14] A. Kitaev and J. Preskill, "Topological entanglement entropy," Phys. Rev. Lett. 96, 110404 (2006), arXiv:hep-th/0510092

[15] P. Calabrese and J. Cardy, "Entanglement entropy and quantum field theory," J. Stat. Mech. 0406, P002 (2004), arXiv:hep-th/0405152

[16] N. Shiba, "Aharonov-Bohm effect on entanglement entropy in conformal field theory," Phys.Rev. D96 (2017) 065016, arXiv:1701.00688 [hep-th].

[17] S. Ghosh, R. M. Soni, S. P. Trivedi, "On The Entanglement Entropy For Gauge Theories, " JHEP 1509 (2015) 069 , arXiv:1501.02593 [hep-th].

[18] S. Aoki, T. Iritani, M. Nozaki, T. Numasawa, N. Shiba, H. Tasaki, “ On the definition of entanglement entropy in lattice gauge theories,” JHEP 1506 (2015) 187, arXiv:1502.04267 [hep-th].

[19] Y. Nakai, N. Shiba, M. Yamada, "Entanglement Entropy and Decoupling in the Universe," Phys.Rev. D96 (2017) 123518, arXiv:1709.02390 [hep-th].

[20] L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, “A Quantum Source of Entropy for Black Holes,” Phys. Rev. D 34 (1986) 373.

[21] M. Srednicki, “Entropy and area,” Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048].

[22] L. Susskind and J. Uglum, "Black hole entropy in canonical quantum gravity and superstring theory," Phys. Rev. D 50, 2700 (1994), arXiv:hep-th/9401070.

[23] D. N. Kabat, "Black hole entropy and entropy of entanglement," Nucl. Phys. B 453, 281 (1995), arXiv:hep-th/9503016.

[24] N. Shiba, “Entanglement Entropy of Two Black Holes and Entanglement Entropic Force,” Phys.Rev. D83 (2011) 065002, arXiv:1011.3760 [hep-th].
[25] N. Shiba, “Entanglement Entropy of Two Spheres,” JHEP 1207 (2012) 100, arXiv:1201.4865 [hep-th].

[26] J. Cardy, “Some results on the mutual information of disjoint regions in higher dimensions,” J. Phys. A 46 (2013) 285402 [arXiv:1304.7985]

[27] N. Shiba, “Entanglement Entropy of Disjoint Regions in Excited States : An Operator Method,” JHEP 1412 (2014) 152, arXiv:1408.0637 [hep-th].

[28] P. Calabrese, J. Cardy and E. Tonni, “Entanglement entropy of two disjoint intervals in conformal field theory II,” J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482]

[29] M. Headrick, “Entanglement Renyi entropies in holographic theories,” Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047]

[30] H. Casini and M. Huerta, "Universal terms for the entanglement entropy in 2+1 dimensions," Nucl. Phys. B 764 (2007) 183, [hep-th/0606256].

[31] H. Casini, M. Huerta and L. Leitao, "Entanglement entropy for a Dirac fermion in three dimensions: Vertex contribution," Nucl. Phys. B 814 (2009) 594, [arXiv:0811.1968].

[32] T. Hirata and T. Takayanagi, "AdS/CFT and strong subadditivity of entanglement entropy," JHEP 0702 (2007) 042, [hep-th/0608213].

[33] E. Fradkin and J. E. Moore, "Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum," Phys. Rev. Lett. 97 (2006) 050404, [cond-mat/0605683].

[34] G. Vidal and R. F. Werner, "Computable measure of entanglement," Phys. Rev. A 65, 032314 (2002).

[35] P. Calabrese, J. Cardy and E. Tonni, ‘Entanglement negativity in quantum field theory ,” Phys.Rev.Lett. 109 (2012) 130502 [arXiv:1206.3092]