Entropy generation of MHD flow of sodium alginate (C$_6$H$_9$NAO$_7$) fluid in thermal engineering

T. N. Abdelhameed

In this paper, impacts of magnetic field and porosity on the entropy generation of sodium-alginate (C$_6$H$_9$NaO$_7$) fluid are studied. C$_6$H$_9$NaO$_7$ is taken over a moving and heated vertical wall. Heat transfer is due to free convection. Initially, the problem is formulated in the form of PDEs along with physical conditions and then written in non-dimensional form. Problem is solved via Laplace transform and expression in analytical form is established for temperature and velocity field. The related relations for entropy generation and Bejan number and entropy generation are also examined. Nusselt number and Skin-friction are calculated and plotted in graphs. For numerical computations, a finite difference scheme is used using MATLAB software. The results in tables and graphs are discussed for embedded parameters. It is found that the magnetic field and porosity have strong influence on velocity, entropy generation and Bejan number. For greater Hartman number, entropy generation magnitude is greater compared to the Bejan number, conversely, this variation in Bejan number is more efficient. The porosity effect showed that if the medium is more porous, the entropy generation can decreases 50% when porosity increase from Ka = 1 to Ka = 2, however the Bejan number increases.

Nomenclature

“v” Velocity of the fluid [ms$^{-1}$]
θ Fluid temperature [K]
g Gravitational acceleration [ms$^{-2}$]
c$_p$ Specific heat at a constant pressure [jkg$^{-1}$ K$^{-1}$]
Gr Thermal Grasshof number (= βT$_w$)
k Fluid thermal conductivity [Wm$^{-2}$ K$^{-1}$]
Nu Nusselt number [–]
Pr Prandtle number (= µc$_p$/k)
θ$_\infty$ Fluid temperature distant to the plate [K]
q Laplace transforms parameter
A Random constant [ms$^{-2}$]
Ha Hartmann number
Ka Porosity parameter

Greek symbols

ν Fluid kinematic viscosity [m2 s$^{-1}$]
ρ Fluid density [kg ms$^{-3}$]
µ Dynamic viscosity [kgm$^{-1}$ s$^{-1}$]
βθ The volumetric coefficient of thermal expansion [K$^{-1}$]
β The Casson fluid parameter
B$_γ$ The Brinkman number
Ω The dimensionless temperature function

The study in this article covers many implementations in nanotechnology, electrical and biomedicine, biotechnology, drug distribution, chemotherapy, food manufacturing, and numerous industries. The result of second Law

1Basic Engineering Sciences Department, College of Engineering, Majmaah University, Majmaah 11952, Saudi Arabia. 2Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt. email: t.ahmed@mu.edu.sa
of thermodynamics is entropy generation, which expresses that when the whole system is in the stable situation or under the activity of reversible reactions, at that point the measure of total entropy per severs in reversible (reverse) processes, accordingly, the total entropy constantly surges. The phenomenon of heat transfer through a chemically reacting fluid, friction, and mixing a finite temperature are the factors of irreversibility in a system, which is called entropy generation. Additionally, the (EG) two sections (a) thermal irreversibility and (b) losses due to frictional forces. The idea of (EG) was given by Clausius. Bejan, provided a detailed note on (EG) in fundamental convective heat transfer. After that Bejan investigated (EG) rate of heat transfer using investigation of second law of thermodynamics. Bejan, examined heat transfer and thermal design using second-law analysis. Bejan utilized the strategy for thermodynamic streamlining of limited size systems and limited time processes to investigate the (EG) minimization. In another paper, Revellin et al. elucidated a number of applications of (EG) analysis in saturated two phase flow. Soomro et al. determined the solutions of (EG) where they inspected the influence of magneto-hydrodynamics (MHD) on carbon nanotubes water-based nanofluid. Irreversible phenomenon of the system is due to Ohmic dissipation flow of heat and friction factors are included in the (EG) rate. Salas et al. analyzed MHD (EG) role in the induction devices like pumping phenomenon and electric generator. Rashidi et al. discussed the analysis of (EG) in a study MHD flow through a rotating disk with porous medium using the second law of thermodynamics. They mentioned that MHD flow has numerous applications in MHD energy generators and is also used in the conversion mechanism for space vehicles. Akbar et al. analyzed (EG) for a CNT suspension nanoliquid in vertical channel with peristalsis and the (EG) number. Ishaq et al. examined the unsteady thin film flow over a stretching sheet with (EG). In another paper, Ishaq et al. numerically studied the (EG) for the nanoliquid flow in a tricked trapezoidal cavity with the consideration of MHD. Qing et al. specifically focused on (EG) in MHD flow of Casson nanoliquid upon a porous surface. Mahian et al. reported a comprehensive overview on the (EG) in flow of nanoliquids. Eilahi et al. reported an interesting problem (EG) for Cu–H2O nanofluid with main focus on shape effects of nanosized particles. Sheikholeslami et al. used the Lattice Boltzmann simulation method for the heat transfer enhancement in nanofluid together with entropy generation. Saqib et al. examined an interesting problem of entropy generation where they considered a fractional model of nanofluid in different types of fractionalized nanofluids. They obtained exact solutions for the considered models. M. M. Rashidi et al. simulated energy change of a hybrid Al2O3-Cu-H2O inside a lid-driven heated square cavity, their results display an expansion of heat removal by means of nanoparticles. Khan et al. performed an exact analysis and studied the (EG) in MHD flow over a flat plate such that the plate has wall shear stress. Bhatti et al. studied (EG) on MHD Eyring–Powell nanoliquid over a porous stretching surface. Li et al. provided a suitable investigation on (EG) of nanofluid in a heat exchanger. Abdelhamed et al. obtained exact solutions for velocity and temperature by using the Laplace transform technique. Rashidi et al. investigate the effect of height and roughness geometry on the condensation properties in rough and smooth nanochannels, their results show that when the roughness height increases the flow is more affected by condensation.

To overcome this exertion, entropy generation plays a prominent role in dissecting such situations. Recent developments in modelling of entropy generation for dissipative cross material with a quartic auto catalyst were reported. Entropy generation in the MHD peristalsis nanofluid within a porous medium was studied. Many researches were devoted to examining entropy generation in different non-linear flow and heat transform problems. The literature shows that several problems on entropy generation are done. However, entropy generation for MHD C6H12NO3 fluid over an accelerated vertical plate embedded in a porous medium is not yet done. Being motivated by the above-mentioned discussions, the present work focuses on the entropy generation of MHD non-Newtonian Casson nanofluids in a vertical plate with the presence magnetic fields will be tackled.

Therefore, this article aims to study this aspect of entropy generation. The problem is first modelled and then dimensionless analysis is used to get a transformed system and then to solve it using Laplace transform technique. Equations for Bejan number and entropy generation are first developed in then outcomes are calculated numerically using finite difference scheme and assessed.

Problem descriptions

A Casson fluid with incompressible, unsteady mixed-convection flow next to an infinite vertical plate is considered. For \(\tau \leq 0 \), the fluid and plate are considered to be stationary with surrounding temperature \(\theta_{\infty} \). For \(\tau = 0^+ \), the plate begins to slide with variable motion of \(\nu(0, \tau) = \alpha \tau \) in x-direction and the fluid at the plate raised to \(\theta(0, \tau) = \theta_w \). The mixed convection occurs at this stage due to the change in temperature and velocity of the plate. The governing equations for the present flow regime are given by

\[
\rho \left(\frac{\partial \nu(\eta, \tau)}{\partial \tau} + \nu \frac{\partial \nu(\eta, \tau)}{\partial \eta} \right) = \mu \left(1 + \frac{1}{\beta} \right) \frac{\partial^2 \nu(\eta, \tau)}{\partial \eta^2} + \rho g \beta_\nu (\theta(\eta, \tau) - \theta_{\infty}) - \delta B^2_0 \nu(\eta, \tau) - \frac{\mu \nu}{K_p} \nu(\eta, \tau) \tag{1}
\]
These are related to the subsequent physical initial and boundary conditions.

\[
\begin{align*}
V(\eta, 0) &= 0, \quad \theta(\eta, 0) = \theta_\infty \\
\nu(0, \tau) &= A\tau, \quad \nu(\infty, \tau) = 0 \\
\theta(0, \tau) &= \theta_w, \quad \theta(\infty, \tau) = \theta_\infty
\end{align*}
\]

(3)

where \(\nu, \theta, \mu, \rho, g, \beta_\theta, k \) and \(c_p \) are respectively the velocity, temperature, dynamic viscosity, density, gravitational acceleration, volumetric thermal expansion, thermal conductivity and heat capacitance of the fluid.

For non-dimensionalization, the dimensionless variables are as below:

\[

\begin{align*}
\nu^* &= \frac{\nu}{(vA)^{\frac{1}{3}}} , & \eta^* &= \frac{\eta A^{\frac{1}{3}}}{v^{\frac{1}{3}}} , & \tau^* &= \frac{\tau A^{\frac{2}{3}}}{v^{\frac{2}{3}}} , & \theta^*(\eta, \tau) &= \frac{\theta - \theta_\infty}{\theta_w - \theta_\infty} \\
\end{align*}

\]

where \(\nu \), fluid kinematic viscosity, \(\theta \), fluid temperature and \(\tau \) time.

- The fluid considered incompressible, the flow considered unsteady with mixed-convection as well with an infinite vertical plate.
- Close the plate the fluid is considered to be stationary with surrounding constant temperature.
- The plate begins to slide with variable motion in x-direction.
- The mixed convection occurs at this stage due to the change in temperature and velocity of the plate.

Table 1 shows Sodium Alginate proprieties.

This yields the following form.

\[

\frac{\partial v(\eta, \tau)}{\partial \tau} = \left(1 + \frac{1}{\beta} \right) \frac{\partial^2 v(\eta, \tau)}{\partial \eta^2} + Gr \theta(\eta, \tau) - H_a v(\eta, \tau) - \frac{1}{K_a} \nu(\eta, \tau),
\]

(4)
\[
\text{Entropy generation.} \quad \text{To decrease the energy loss and improve the heat transfer, the relation of entropy generation for Eqs. (4–6) is defined by} \quad E_{\text{gen}} = K \left(\frac{\partial \theta}{\partial \eta} \right)^2 + \frac{\mu}{\theta_\infty} \left(1 + \frac{1}{\beta} \right) \left(\frac{\partial v}{\partial \eta} \right)^2 + \frac{\delta \beta}{\theta_\infty} v^2 + \frac{\mu \phi}{K_p \theta_\infty} v^2.
\]

Using the non-similarity variable, \(\partial \theta / \partial \eta = \Delta \theta A^{1/3} \nu^{2/3} \partial \theta^* / \partial \eta^* \) and \(\partial v / \partial \eta = A^{2/3} \nu^{1/3} \partial v^* / \partial \eta^* \) are introduced and by utilizing into Eq. (7), which yields

\[
N_s = \frac{E_{\text{gen}}}{E_0} = \left[\left(\frac{\partial \theta}{\partial \eta} \right)^2 + B_r \left(1 + \frac{1}{\beta} \right) \left(\frac{\partial v}{\partial \eta} \right)^2 + B_a H v^2 + B_1 \frac{1}{K_a} v^2 \right],
\]

where

\[
B_r = \frac{\mu A^{2/3} \nu^{2/3}}{\Delta \theta K}, \quad B_a = \frac{A^{2/3} \nu^{1/3} \partial v^* / \partial \eta^*}{\Delta \theta \theta_\infty}, \quad \Omega = \frac{\Delta \theta}{\theta_\infty} = \frac{\theta_w - \theta_\infty}{\theta_\infty}.
\]

\[
B_e = \frac{K \left(\frac{\partial \theta}{\partial \eta} \right)^2}{\frac{\mu}{\theta_\infty} \left(1 + \frac{1}{\beta} \right) \left(\frac{\partial v}{\partial \eta} \right)^2 + \frac{\delta \beta}{\theta_\infty} v^2 + \frac{\mu \phi}{K_p \theta_\infty} v^2}.
\]

Exact solutions through Laplace transform scheme

In the previous works, solutions of different mixed convection problems are calculated numerically or analytically and exact or closed form solutions are very limited. The closed form solutions of the present problematic are carried out by applying the Laplace transform method. By applying the Laplace transform to Eqs. (4–6), we get

\[
q \overline{\nu}(\eta, q) = \left(1 + \frac{1}{\beta} \right) \frac{\partial \overline{\nu}(\eta, q)}{\partial \eta^2} + \frac{\Delta \theta}{\theta_\infty} \overline{\theta}(\eta, q) - H_a \overline{\nu}(\eta, q) - \frac{1}{K_a} \overline{\nu}(\eta, q)
\]

\[
\overline{\nu}(0, q) = \frac{1}{q}, \quad \overline{\nu}(\infty, q) = 0
\]
\[
\text{Pr} q \bar{\theta}(\eta, q) = \frac{\partial^2 \bar{\theta}(\eta, q)}{\partial \eta^2}
\]

(13)

\[
\bar{\theta}(0, q) = \frac{1}{q}, \quad \bar{\theta}(\infty, q) = 0
\]

(14)

Using Eq. (14), the solutions of Eq. (13) become:

\[
\bar{\theta}(\eta, q) = e^{-\eta \sqrt{\text{Pr}}} q
\]

(15)

By applying Laplace inverse, Eq. (15) takes the form:

\[
\theta(\eta, \tau) = \text{erfc} \left(\frac{\eta \sqrt{\text{Pr}}}{2 \sqrt{\tau}} \right)
\]

(16)

In the same way, the solution of Eq. (11) becomes

\[
\bar{v}(\eta, q) = \frac{1}{q} e^{-\eta \sqrt{\frac{\text{Pr}}{4M}}} = \frac{a}{q(q + a_0)} e^{-\eta \sqrt{\frac{\text{Pr}}{4M}}} + \frac{a}{q(q + a_0)} e^{-\eta \sqrt{\frac{\text{Pr}}{2}}} q
\]

(17)

where

\[
a = \frac{\nu \text{Gr}}{\nu - \text{Pr}}, \quad a_0 = \frac{M \nu}{\nu - \text{Pr}}, \quad M = \frac{H_a}{K_a}, \quad \nu = 1 + \frac{1}{\beta}
\]

With the inverse Laplace transform,

\[
v(\eta, \tau) = v_1(\eta, \tau) + v_2(\eta, \tau) + v_3(\eta, \tau)
\]

(18)

where

\[
v_1(\eta, \tau) = \frac{1}{2} \left[\left(-\frac{\eta}{2} \sqrt{\frac{\nu}{M}} \right) \text{erfc} \left(\frac{\eta}{2} \sqrt{\frac{\nu}{M}} \right) + \left(\frac{\eta}{M} - \frac{\eta}{2} \sqrt{\frac{\nu}{M}} \right) e^{\frac{\eta}{2} \sqrt{\frac{\nu}{M}}} \text{erfc} \left(\frac{\eta}{2} \sqrt{\frac{\nu}{M}} + \sqrt{\frac{\nu}{M}} \right) \right]
\]

\[
v_2(\eta, \tau) = \frac{a}{a_0} \left[\frac{e^{-a_0 \tau}}{2} \left(\text{erfc} \left(\frac{\eta}{2} \sqrt{\frac{\nu}{M}} \right) \text{erfc} \left(\frac{\eta}{2} \sqrt{\frac{\nu}{M}} + \sqrt{\frac{\nu}{M}} \right) + e^{\frac{\eta}{2} \sqrt{\frac{\nu}{M}}} \text{erfc} \left(\frac{\eta}{2} \sqrt{\frac{\nu}{M}} + \sqrt{\frac{\nu}{M}} \right) \right) \right]
\]

\[
v_3(\eta, \tau) = \frac{a}{a_0} \left[\left(-\frac{\eta}{2} \sqrt{\frac{\nu}{M}} \right) \text{erfc} \left(\frac{\eta}{2} \sqrt{\frac{\nu}{M}} \right) + \left(\frac{\eta}{M} - \frac{\eta}{2} \sqrt{\frac{\nu}{M}} \right) e^{\frac{\eta}{2} \sqrt{\frac{\nu}{M}}} \text{erfc} \left(\frac{\eta}{2} \sqrt{\frac{\nu}{M}} + \sqrt{\frac{\nu}{M}} \right) \right]
\]

(19)

Skin friction. The skin friction for Casson fluid is determined by

\[
c_f = \left(1 + \frac{1}{\beta} \right) \frac{\partial v(\eta, \tau)}{\partial \eta} \bigg|_{\eta=0}
\]

(20)

Nusselt number. Similarly, the Nusselt number which is basically the heat transfer rate can be written as

\[
\text{Nu} = \frac{\partial \theta(\eta, \tau)}{\partial \eta} \bigg|_{\eta=0}
\]

(21)

Numerical solutions via finite difference scheme with results and discussion

In this paper, the analysis of entropy generation (EG) for the flow of Casson fluid was investigated. EG is very valuable in the applications related to heat transfer like analyzing heat exchangers. The exact solutions of the present problem are achieved using Laplace transform and numerically via finite difference scheme. The software used for the computation analysis is MATLAB. The purpose of this part is to show the influence of different parameters which affect the fluid motion. Furthermore, the current section highlights the velocity, temperature, EG, and Bejan number through graphical analysis. Furthermore, we have chosen sodium-alginate as base fluid which is in the class of non-Newtonian fluid like Casson fluid. In all the graphs the Prandtl number (Pr) is considered as 13.09. The value of Pr is fixed and it can be calculated from the expression \(\text{Pr} = \mu c_p / k \), by incorporating the values of \(\mu = 0.002 \); \(k = 0.6376 \) and \(c_p = 4175 \) we get the value of \(\text{Pr} = 13.09 \).

The \(\text{C}_6\text{H}_9\text{NaO}_7 \) parameter \(\beta \) (Casson-parameter) effect is shown in Fig. 2 which shows that the dual behavior is generated. The fluid velocity near to the plate increases while this behavior reverses away from the plate and shows decreasing effect for large values of \(\beta \). The fact is that as increase in \(\beta \) reduces the boundary-layer thickness as a result velocity decreases. Figure 3 illustrates the variation of the velocity profile for different values of \(\text{Gr} \).
From the figure, it is clear that the velocity increases with the increase of the values of Gr. The increasing velocity with the increasing Gr is obvious and it is due to the fact that Gr enhances the buoyancy force, leading to the increase of fluid velocity. Gr is the ratio of buoyancy with viscous force and expresses the thermal effect on the velocity of the fluids. Since we have considered laminar flow, where the range of Gr is taken as $Gr < 10^9$ and for turbulent flow it can be taken as $Gr > 10^9$. In literature, many researchers have even taken $Gr = 0$ which reflects the absence of thermal effect, $Gr < 0$ which corresponds to the heating of the plate and cooling of the fluid and $Gr > 0$ which corresponds to cooling of the plate and heating of the fluid.

Figure 4 displays the behavior of Hartman number on velocity profiles. From this figure, it can be detected that rising the values of Ha leads to a decrease in the velocity profile which is due to the fact that increasing Ha shows the Lorentz forces which are responsible for the fluid motion deceleration leading to the fact that velocity of the fluid is slow down. Figure 5 shows the impact of various values of porosity parameter Ka on velocity profile.
Increasing K_a leads to the increase of the velocity profile. Figure 6 depicts the variation in velocity profile for different values of time t. As we have considered unsteady flow, this behavior can be seen from the graph and the fluid velocity increases when time increases. Actually, the fluid is assumed to be dependent on time, and consequently velocity rises with time. Figure 7 proves the influence of time on temperature profile. Augmenting time t leads to an increase in the temperature of the fluid. For large values of time, the temperature of the fluid becomes at its maximum.

Figure 8 depicts variation in EG (Ns) for various values of Casson-parameter β. From the graph, it can be noticed that the EG decreases for larger values of β. Figure 9 illustrates the variation in EG for different values of porosity parameter K_a. For larger values of K_a, entropy generation is decreased. Figure 10 displays the variation in entropy generation for different values of time t. From the figure, we can see that increasing time increases the entropy generation. It means that entropy generation shows an increasing behavior which is due to the fact that we have considered an unsteady flow. Figure 11 depicts the variation in EG for different values of H_a. From
the graph it can be seen that (EG) is directly proportional to Hartman number Ha. Increasing Ha results to an increase in the (EG). Figure 12 investigates the variation in Bejan number Be for different values of Ha. Increasing Ha leads to a rise in the Bejan number.

Figure 13 shows the variation in Bejan number for different values of porosity parameter Ka. Increasing Ka results to an increase in the Bejan number. The Casson-parameter β variation is shown in Fig. 14 which illustrates that increasing the values of β results to an increase in the Bejan number Be. This variation of Be is initially small but after some time Be shows greater variation for increasing values of β. Figure 15 highlights the influence of Bejan number Be for different values of Gr. From the graph, it is clear that increasing the values of Gr leads to a decrease in Bejan number.

Figure 8. Variation in entropy generation for diverse values of $C_6H_9NaO_7$ parameter β.

Figure 9. Variation in entropy generation for diverse values of porosity parameter Ka.

Figure 10. Variation in entropy generation for diverse values of time t.
The results for skin-friction are plotted in Figs. 16, 17, 18 and 19 for different values of porosity parameter k_a, $C_6H_9NaO_7$ parameter β, Hartman number Ha and Grashof number Gr. Figure 16 shows that with increasing porosity parameter, skin-friction decreases as the values of skin-friction are in negative. This behavior is totally opposite to that of velocity. Increasing the porosity parameter, the pore size in the medium increases and hence the fluid can realize very little friction. Hence, the results are in accordance with the physical scenario. In Fig. 17, the results of skin-friction are plotted for different values of $C_6H_9NaO_7$ parameter β. It is found that with increasing values of β, the skin friction decreases. This behavior is quite opposite to that velocity and is in accordance with physical situation. Figure 18 shows that the absolute value of skin-friction increases with increasing values of Hartmann number Ha. This is due to increasing Lorentz forces. Figure 19 indicates that
with increasing Grashof number, the variation in skin-friction is not very visible, however, with a deep focus we can observe that the skin-friction increases with increasing Gr.

Table 2 shows our obtained solutions using finite difference scheme. The mathematical values assumed in table displays the velocity variation for the fluid entropy generation. These effects show that when growing values of β, velocity of EG decreases. Deviation in the velocity for diverse values of Ha are exposed in Table 3, we can observe that increasing Ha results to a reduction in the velocity magnitude. Table 4 shows variation in the velocity against ka. Increasing porosity results to an increase in the velocity. Physically, it is true since by increasing porosity, there will be an increase in the magnitude of velocity. Table 5 shows the variation of velocity for different values of Gr. Increasing Gr results to an increase in the magnitude of velocity.

Figure 14. Variation in Bejan number for diverse values of $C_6H_2NaO_7$ parameter β.

Figure 15. Variation in Bejan number for diverse values of Gr.

Figure 16. Variation in skin-friction for diverse values of Ka.
Figure 17. Variation in skin-friction for diverse values of $C_6H_5NaO_7$ parameter β.

Figure 18. Skin-friction for different values of Ha.

Figure 19. Skin-friction for different values of Gr.

β	t	Ha	ka	Pr	Gr	η	v
1	2	0.05	0.05	0.05	14	0.5	0.1746
2	2	0.05	0.05	0.05	14	0.5	0.1337
3	2	0.05	0.05	0.05	14	0.5	0.1185
4	2	0.05	0.05	0.05	14	0.5	0.1106
5	2	0.05	0.05	0.05	14	0.5	0.1057

Table 2. Finite difference scheme results of velocity for different values of β.
In this paper, the effects of MHD and porosity are studied on the entropy generation analysis of sodium-alginate (C₆H₉NaO₇) fluid. The fluid motion is taken over a moving vertical plate which is heated from one side so that it causes heat transfer due to convection. The problem in terms of PDEs is formulated with some physical conditions. Exact analysis is then performed to obtain exact solutions using integrals transform method known as Laplace transform method. Outcomes for temperature, velocity, Nusselt number, Bejan number and entropy generation are summarized in tables and various schemes. The subsequent noteworthy remarks are deduced from this study.

- It is found that the magnetic field and porosity parameters have opposed impacts on velocity.
- Bejan number increases with increasing C₆H₉NaO₇ parameter, whereas entropy generation decreases.
- C₆H₉NaO₇ parameter has no effect on temperature and Nusselt number.
- For bigger values of Gr, the effect on Bejan number is more evident when compared to entropy generation.
- For greater Hartman number, the entropy generation magnitude is greater compared to Bejan number, though, Bejan number variation is more efficient.
- Porosity effect showed that if the medium is more porous, the entropy generation decreases but Bejan number increases.
- The Nusselt number for small time is maximum near the plate as we move away from the plate this effect is reverses.

Our future work this investigation will be extended by utilizing variable thermal features, radiative influence and activation energy to enhancement heat and mass transfer mechanism for the same geometrical problem.

Received: 28 October 2021; Accepted: 22 December 2021
Published online: 13 January 2022

References
1. Carnot, S. Reflections on the motive power of fire: and other papers on the second law of thermodynamics. Courier Corporation (2012).
2. Clausius, R. Mechanical theory of heat (Institute of Human Thermodynamics Publishing Ltd, 2006).
3. Bejan, A. A study of entropy generation in fundamental convective heat transfer. (1979).
7. Revellin, R., Lips, S., Khandekar, S. & Bonjour, J. Local entropy generation for saturated two-phase flow. *Eur. Phys. J. Plus* 132(10), 1–12 (2017).

8. Salas, H., Cuevas, S. & de Haro, M. L. Entropy generation analysis of magnetohydrodynamic induction devices. *J. Phys. D Appl. Phys.* 32(20), 2605 (1999).

9. Rashidi, M., Abelman, S. & Mehr, N. F. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. *Int. J. Heat Mass Transf.* 62, 515–525 (2013).

10. Akbar, N. S. Entropy generation analysis for a CNT suspension nanofluid in plumb ducts with peristalsis. *Entropy* 17(3), 1441–1445 (2015).

11. Ishaq, M. M., Sadri, M. & Sheremet, M. A. Numerical simulation of entropy generation in hybrid nanofluid mixed convection in a lid-driven square cavity. *Entropy* 21(10), 2045 (2019).

12. Rashidi, S. & AbolfazliEsfahani, J. Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. *Entropy* 18(2), 52 (2016).

13. Ishaq, M., Ali, G., Shah, Z., Islam, S. & Muhammad, S. Entropy generation on nanofluid thin film flow of Eyring-Powell fluid with thermal radiation and MHD effect on an unsteady porous stretching sheet. *Entropy* 20(6), 412 (2018).

14. Darbari, B., Rashidi, S. & AbolfazliEsfahani, J. Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. *Entropy* 18(2), 52 (2016).

15. Bhatti, M. M., Abbas, T., Rashidi, M. M. & Ali, M. E. S. Numerical simulation of entropy generation with thermal radiation on MHD Carreau nanofluid towards a shrinking sheet. *Entropy* 18(6), 200 (2016).

16. AbdollahzadehJamalabadi, M. Y., Safaei, M. R., Alrashed, A. A., Nguyen, T. K. & BandarraFilho, E. P. Entropy generation in thermal radiation of loading structures with distinct heaters. *Entropy* 19(10), 506 (2017).

17. Saqq, M., Kasim, A. R. M., Mohammad, N. F., Ching, D. L. C. & Shafie, S. Application of fractional derivative without singular and local kernel to enhanced heat transfer inCNTs nanofluid over an inclined plate. *Symmetry* 12(5), 768 (2020).

18. Saqq, M. et al. Multiple fractional solutions for magnetic bio-nanofluid using Oldroyd-B model in a porous medium with ramped wall heating and variable velocity. *Appl. Sci.* 10(11), 3886 (2020).

19. Saqq, M., Khan, I. & Shafie, S. Generalized magnetic blood flow in a cylindrical tube with magnetite dusty particles. *J. Magn. Magn. Mater.* 484, 490–496 (2019).

20. Saqq, M., Shafie, S., Khan, I., Chu, Y. M. & Nisar, K. S. Symmetric MHD channel flow of nonlocal fractional model of BFT containing hybrid nanoparticles. *Symmetry* 12(4), 663 (2020).

21. Abbas, S. Z. et al. Entropy optimized Darcy–Forchheimer nanofluid (silicon dioxide, molybdenum disulphide) subject to temperature dependent viscosity. *Comput. Methods Prog. Biomed.* 190, 363 (2020).

22. Khan, M. I., Qayyum, S., Kadry, S., Khan, W. & Abbas, S. Irreversibility analysis and heat transport in squeezing nanoliquid flow of non-Newtonian (second-grade) fluid between infinite plates with activation energy. *Arab. J. Sci. Eng.* 287, 1–9 (2020).

23. Wang, J., Muhammad, R., Khan, I. M., Khan, W. A. & Abbas, S. Z. Entropy optimized MHD nanomaterial flow subject to variable thickened surface. *Comput. Methods Prog. Biomed.* 189, 311 (2020).

24. Hayat, T. et al. Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thickened surface. *Int. J. Heat Mass Transf.* 99, 702–710 (2016).

25. Khan, M. I., Waqas, M., Hayat, T. & Alsaedi, A. A comparative study of Cassonfluid with homogenous-heterogeneous reactions. *I. Collid. Interface Sci.* 498, 85–90 (2017).

26. Mahian, O., Kianifar, A., Sahin, A. Z. & Wongwises, S. Entropy generation during Al2O3/water nanofluid flow in a solar collector: Effects of tube roughness, nanoparticle size, and different thermophysical models. *Int. J. Heat Mass Transf.* 78, 64–75 (2014).

27. Mahian, O., Mahmud, S. & ZeinaliHeris, S. Effect of uncertainties in physical properties on entropy generation between two rotating cylinders with nanofluids. *J. Heat Transfer* 134(10), (2012).

28. Selimelendugil, F., Öztöp, H. F. & AbuHamdeh, N. Natural convection and entropy generation in nanofluid filled entrapped trapezoidal cavities under the influence of magnetic field. *Entropy* 18(2), 43 (2016).

29. Qing, J., Bhatti, M. M., Abbas, M. A., Rashidi, M. M. & Ali, M. E. S. Entropy generation on MHD Cassonnanofluid flow over a porous stretching/shrinking surface. *Entropy* 18(4), 123 (2016).

30. Mahian, O., Kianifar, A., Kleinstreuer, C. & A.A.N. Mild, I. Pop, A.Z. Sahin, S. Wongwises, A. Review of entropy generation in nanofluid flow. *Int. J. Heat Transfer* 65, 514–532 (2013).

31. Ellahi, R., Hassan, M. & Zeeshan, A. Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. *Int. J. Heat Mass Transf.* 81, 449–456 (2015).

32. Sheikholeslami, M., Ashorynejad, H. & Rana, P. Lattice Boltzmann simulation ofnanofluid heat transfer enhancement and entropy generation. *J. Mol. Liq.* 214, 86–95 (2016).

33. Saqq, M., Ali, F., Khan, I., Sheikh, N. A. & Khan, A. Entropy generation in different types of fractionalized nanofluids. *Arab. J. Sci. Eng.* 44(1), 531–540 (2019).

34. Rashidi, M. M., Sadri, M. & Shermeti, M. A. Numerical simulation of hybrid nanofluid mixed convection in a lid-driven square cavity with magnetic field using high-order compact scheme. *Nanomaterials* 11, 2250. https://doi.org/10.3390/nano11022250 (2021).

35. Khan, A. et al. Entropy Generation in MHD conjugate flow with wall shear stress over an infinite plate: Exact analysis. *Entropy* 21(4), 359 (2019).

36. Bhatti, M. M., Abbas, T., Rashidi, M. M., Ali, M. E. S. & Yang, Z. Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. *Entropy* 18(6), 224 (2016).

37. Li, Z., Sheikholeslami, M., Jafaryar, M., Shafie, A. & Chankha, A. J. Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. *J. Mol. Liq.* 266, 797–805 (2018).

38. Abdelhamied, T. N. Energy generation analysis for MHD flow of water past an accelerated plate. *Sci. Rep.* 11, 1–11 (2021).

39. Khan, I., Abdelhameed, T. N. & Dennis, L. C. C. Heat transfer in eccentric-concentric rotation of a disk and fluid at infinity. *Int. Comput. Theor. Nanosci.* 13, 6482–6487 (2016).

40. Abdelhameed, T. N. & Khan, I. Mixed convection flow of sodium alginate (SA-NaAlg) based molybdenum disulphide (MoS2) nanofluids: Maxwell Garnets and Brinkman models. *Res. Phys.* 8, 752–757 (2018).

41. Abdelhameed, T. N. & Khan, I. Energy generation in C6H9NO3S7 fluid over an accelerated heated. *Front. Phys.* 7, 1–9 (2020).

42. Haq, S. U., Khan, I., Ali, F. & Abdelhameed, A. Influence of slip condition on unsteady free convection flow of viscous fluid with ramped wall temperature. *Abstract Wall Appl. Article. Article ID* 327975, 7 (2015).

43. Rashidi, M. M., Shabnam, G., Davood, T. & Prosun, R. Effect of solid surface structure on the condensation flow of Argon in rough nanochannels with different roughness geometries using molecular dynamics simulation. *Int. Commun. Heat Mass Transf.* 117, 104714. https://doi.org/10.1016/j.ijheatmasstransfer.2020.104714 (2020).

44. Khan, I., Saqq, M. & Ali, F. Application of time-fractional derivatives with non-singular kernel to the generalized convective flow of Casson fluid in a microchannel with constant walls temperature. *Eur. Phys. J. Spec. Top.* 226(16–18), 3791–3802 (2017).
45. Khan, I., Saqib, M. & Alqahtani, A. M. Channel flow of fractionalized H2O-based CNTs nanofluids with Newtonian heating. *Disc. Contin. Dyn. Syst.* **13**(3), 769 (2020).

Acknowledgements
The author would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project number R-2021-324.

Author contributions
Corresponding author did all the work.

Competing interests
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.N.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[Open Access] This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022