Cirrhotic patients and older people

Paul Carrier, Marilyne Debette-Gratien, Jérémie Jacques, Véronique Loustaud-Ratti

Abstract

The global population is aging, and so the number of older cirrhotic patients is increasing. Older patients are characterised by a risk of frailty and comorbidities, and age is a risk factor for mortality in cirrhotic patients. The incidence of non-alcoholic fatty liver disease as an aetiology of cirrhosis is increasing, while that of chronic viral hepatitis is decreasing. Also, cirrhosis is frequently idiopathic. The management of portal hypertension in older cirrhotic patients is similar to that in younger patients, despite the greater risk of treatment-related adverse events of the former. The prevalence of hepatocellular carcinoma increases with age, but its treatment is unaffected. Liver transplantation is generally recommended for patients < 70 years of age. Despite the increasing prevalence of cirrhosis in older people, little data are available and few recommendations have been proposed. This review suggests that comorbidities have a considerable impact on older cirrhotic patients.

Key words: Liver cirrhosis; Portal hypertension; Liver cancer; Liver transplantation; Old age; Elderly
to an intensive care unit should be carefully considered. Finally, older patients require tailored exercise and nutrition programs, and treatment of osteoporosis is crucial.

Citation: Carrier P, Debette-Gratien M, Jacques J, Loustaud-Ratti V. Cirrhotic patients and older people. *World J Hepatol* 2019; 11(9): 663-677

URL: https://www.wjgnet.com/1948-5182/full/v11/i9/663.htm

DOI: https://dx.doi.org/10.4254/wjh.v11.i9.663

INTRODUCTION

The definition of older people varies from ≥ 60 years to ≥ 80 years of age. However, according to the World Health Organisation, the cut-off is 60 years of age, despite the increasing focus on the concept of healthy ageing[1,2]. Patients > 80 years of age are typically defined as being extremely old. Life expectancy has increased recently due to health, social, and economic development. According to the World Health Organisation, the number of people ≥ 65 years of age will increase from an estimated 524 million in 2010 to almost 1500 million in 2050, representing 22% of the global population[3]. Thus, the healthcare of older people is an emerging issue, particularly in Western countries.

The incidence of liver diseases increases with age[4]. Liver cirrhosis is an important health problem globally, and the prevalence of its numerous aetiologies varies geographically. General recommendations for the management of cirrhotic patients have been published, but these are not specific to older people[5]. This review focuses on problems specific to older cirrhotic patients.

PATHOPHYSIOLOGY OF THE AGEING LIVER

The liver undergoes physiological evolution with age, and this process involves several mechanisms. First, liver volume and blood flow decrease[6]. The liver decreases to one-third of its original size, more markedly in women[7], and a one-third decrease in hepatic blood flow has been reported, particularly in subjects over 75-years-old[8,9]. However, these results are controversial, and more data are needed[10]. Scintigraphy has shown that compared to the whole body, the size and functionality of the liver decrease with age[11]. Moreover, endothelial cell fenestration tends to decrease with age[8], the sinusoid vascular system is damaged, and secretion of bile acids is reduced.

Regarding metabolic parameters, glucogenesis decreases with age but physiological lipids accumulate, enhancing steatosis[12]. Also, liver fat composition changes with age[13]; the level of high-density cholesterol and neutral fat is increased by neoglucogenesis. Moreover, older people tend to have higher levels of cholestatic enzymes and bilirubin[14].

Second, the number of hepatocytes and Kupffer cells and sinusoid capillaries decreases[9], and hepatocytes decrease in size with aging. The frequency of hepatic polyplody increases with age and is associated with dysfunction or a decreased number of mitochondria[10]. Autophagy is modulated by accumulation of lipofuscin, a non-degradable aggregate of proteins impacted by reactive oxidative species[11]. Kupffer cells are also involved in ageing[12]. Cellular senescence is linked to chromosome alterations; telomere shortening occurs more frequently in Kupffer cells than in hepatocytes[13]. Apoptosis occurs more frequently in older patients, and senescent cells are resistant to apoptosis[19]. Nevertheless, targeting apoptosis of senescent cells could assist the restoration of liver homeostasis[20].

Third, the risk of fibrosis and steatosis increases with age[3]; for instance, in chronic hepatitis C virus (HCV) infection[22,23]. Fibrosis is a consequence of altered liver regeneration in response to injury. Responses to oxidative stress, cell senescence, and disrupted mitochondrial homeostasis may explain the greater risk of both fibrosis and steatosis in older patients[4]. In mouse models, mitochondria are damaged and the risk of DNA damage is increased by oxidative stress[12,20]. Altered liver regeneration may involve a multiprotein complex comprising CCAAT/enhancer binding protein α. Accumulation of this complex inhibits E2F-dependent promoters[24]. The somatotropic axis is also involved in liver regeneration[25]; however, a full mechanistic understanding remains elusive. The immune system changes with age: Regulatory T cells, peripheral B cells,
monocytes/macrophages, and natural killer cells have reduced functionality, and dendritic cells have defective Ag presentation and T-cell activation\cite{28,29}. The levels of markers of oxidation are not different between younger and older mice with CCl4 injury. However, the number of proinflammatory CD4+ cells, the expression level of T-helper type-2 cytokines by macrophages, and fibrogenesis are greater in older mice\cite{30,31}. Furthermore, suppression of autophagy favours inflammation\cite{32}, and a high-fat diet increases the risk of liver fibrosis in older mice\cite{33}. These factors also increase the risk of infection.

The role of ageing in carcinogenesis is debated—both protective and inductive mechanisms are reported\cite{29,34,35}. The duration of exposure to carcinogens and a history of cirrhosis may promote hepatocellular carcinoma (HCC). Therefore, the aged liver is more sensitive to acute and chronic injury and is at greater risk of severe fibrosis or cirrhosis.

Epidemiology

Cirrhosis may be underdiagnosed in older persons, which is likely to be due to the presence of fewer clinical signs at presentation and less-frequent use of invasive diagnostic modalities\cite{36,37}.

Older patients with cirrhosis have a reduced life expectancy. Among 135 patients ≥ 80 years of age, Hoshida et al\cite{38} showed that HCC, thrombocytopenia, and advanced fibrosis were associated with a low survival rate and that the alpha-fetoprotein and bilirubin levels were associated with hepatic carcinogenesis.

Older people also manifest deterioration in their general health\cite{39}, and cirrhosis may contribute to their frailty. Sarcopenia is frequent in older and in cirrhotic patients and contributes to the frailty of the former\cite{33}. Specific policies to combat this are needed.

Finally, older patients have a higher incidence of complications, to which changes in the liver may contribute. Nevertheless, liver status does not impact the mortality rate of older patients. Effective screening methods and preventive measures are however essential.

Aetiology

The risk of transmission of hepatitis B virus increases with age, and the prevalence varies geographically. Epidemiological studies in the United States reported a higher prevalence among patients > 50 years of age compared to those 20-49 and 6-19 years of age (1.5-2 fold and 15-20-fold, respectively), irrespective of ethnicity\cite{40}. Although vaccination policies have decreased the global prevalence of hepatitis B virus infection, there is no specific prevention strategy for older patients, in whom vaccination shows reduced efficacy\cite{41}.

In Western countries, the so-called baby-boomer generation is aging. The prevalence of HCV infection is high in this population: In the United States, > 75% of patients with HCV belong to this generation, and specific screening policies have been proposed\cite{42}. HCV-related cirrhosis develops on average > 20 years after contact, which explains its incidence in this generation\cite{43}. Nevertheless, the efficacy and tolerability of new direct anti-viral agents (DAA) is likely to decrease the prevalence of HCV infection in these geographical areas. However, many viraemic patients are unaware of their status, e.g., > 100,000 patients in France have not been diagnosed or treated\cite{44-47}. In a large retrospective study conducted in 2006, i.e. prior to the DAA era, Thabut et al\cite{23} showed that patients > 65 years of age had a high prevalence of chronic hepatitis C and 14% had liver cirrhosis; interestingly, patients > 80 years of age had a lower alanine transaminase level than those < 65 years of age. Interferon-based treatments are typically not tolerated by older patients, but new available treatments have fewer side effects in polymedicated older patients, provided that the necessary precautions are taken, particularly in patients with a cardiac history and renal insufficiency, and that drug interactions are evaluated before starting treatment\cite{48-50}. Older patients have been included in therapeutic studies\cite{51}. The available treatments are effective in older patients, and no specific recommendations concern this population, including those with cirrhosis\cite{51}. Decisions regarding the treatment of extremely old patients must take into account the benefit-risk ratio and the public-health perspective.

Metabolic syndrome is emerging globally, especially in Western countries, which have a higher prevalence of metabolic risk factors\cite{52}. However, developing countries, including those in Asia and the Middle East, are also affected\cite{53}. Metabolic syndrome
is common in older people[34], who are at risk of evolution towards cirrhosis[38] and have an increasing prevalence of cirrhosis[38]. Furthermore, > 60-year-old patients with non-alcoholic fatty liver disease are more susceptible to HCC[38]. Treatment is non-specific and based on weight loss[37,38], although vitamin E reportedly impacts life expectancy[39]. However, use of vitamin E in older males is associated with an increased risk of prostate cancer[40]

The prevalence of cryptogenic cirrhosis is high in some countries. For instance, in India[41], patients tend to have or have had metabolic risk factors for cirrhosis, in agreement with Japanese data[42]. Also, older studies indicated an important role for hepatitis C[43]

Alcohol consumption is frequent and more deleterious in older persons[44-46]; indeed, its prevalence in the United States increased between 2001-2002 and 2012-2013[47]. The social problems faced by older persons, such as isolation, widowhood, and chronic illness, can promote alcohol consumption. Alcohol accumulation in the liver impacts survival in patients with liver disease, such as hepatitis C[48]. The prognosis is poor; half of cirrhotic patients die within 1 year of diagnosis[49,50]. Older patients are also impacted by a variety of other alcohol-related complications[51]. From a public-health perspective, alcohol consumption should be assessed using the Alcohol Use Disorder Identification Test-C questionnaire and hepatic risk by performing non-invasive tests for fibrosis[50]. Alcohol withdrawal should be managed by a healthcare professional specialised in addiction with an elder-specific focus[71,72]. Short- and intermediate-acting benzodiazepines are recommended for older patients with alcohol-withdrawal syndrome, particularly those with cirrhosis[73]

Autoimmune hepatitis is also frequent in older patients, especially post-menopausal females[54]. These individuals are more likely to have asymptomatic liver cirrhosis and HLA DR4. Treatment is based on corticosteroids and azathioprine, as in younger patients; however, the risk of relapse after steroid withdrawal is lower[55]. Nevertheless, in older patients with initial mild fibrosis, the benefit-risk ratio of steroid treatment must be discussed due to their lower risk of fibrosis progression and higher risk of side effects, notably osteoporosis, psychiatric conditions, and diabetes, compared to younger patients[56]. That is why budesonide or a minimal corticosteroid regimen is preferred[57]. Furthermore, older patients with autoimmune hepatitis should undergo regular evaluations of bone density.

Primary biliary cholangitis is frequent in older patients, particularly females[73]. Interestingly, ursodeoxycholic acid is more effective in older patients[58]. However, older patients were not specifically analysed in two recent phase-III studies of obeticholic acid and bezafibrate[59,60]

Primary sclerosing cholangitis (PSC) is generally diagnosed in the third to fourth decades of life, but a second peak around 70 years of age was noted in a Japanese population, with no mention of the fibrosis stage[60]. Eaton et al[61] indicated that older patients with PSC have a 10% risk of cirrhosis, similar to that in younger patients, but have a lower prevalence of small-duct PSC. Finally, hepatobiliary malignancy is more frequent in older patients. There are no specific recommendations concerning the treatment and management of complications, including the role of therapeutic endoscopy[62]. McGee et al[63] suggested a link between autoimmune liver disease and liver cancer, i.e. intrahepatic cholangiocarcinoma, extrabhepatic cholangiocarcinoma, gallbladder cancer, and ampulla of Vater cancer, in older patients, particularly those with primary biliary cholangitis.

Other causes, such as alpha-1-anti-trypsin, Wilson disease, and haemochromatosis, particularly haemochromatosis of weak phenotypic penetrance, may be diagnosed late[64-66], especially in post-menopausal women. This means that complications, such as cirrhosis and HCC, are frequently present at the time of diagnosis[67-69]. Alpha-1-anti-trypsin deficiency is typically diagnosed at a late stage unless pulmonary symptoms are evident and early screening for liver disease is performed[70]. Wilson disease is frequently diagnosed early, although a few advanced cases have been reported[61,64]

COMPLICATIONS OF CIRRHOSIS

HCC

HCC is the fifth most prevalent cancer worldwide and the third most important cause of cancer-related mortality[49]. The incidence of HCC increases with age, and the prognosis is poor. However, aggressive treatment of HCC in older (including extremely old) patients with good liver function and a good performance status might improve the survival rate[70]. In an Italian cohort, older patients with HCC had at the time of diagnosis a higher prevalence of comorbidities that negatively impacted the prognosis but a lower HCC stage, and better liver function than younger patients[71].
In another study, survival of elderly HCC patients was associated with liver damage and stage, but not age, with the exception of patients ≥ 80 years of age with a poor performance status\(^9\).

Although HCC is more frequent in males, the proportion of females is higher among extremely old patients. The clinical presentation is typically weakness, nausea, and abdominal pain\(^9\). Ascites and hepatomegaly were frequent complications in a retrospective study\(^9\). Liver cirrhosis is a risk factor for HCC in younger and older patients, for whom the HCC screening recommendations are identical\(^9\).

The therapeutic panel is the same in young and old patients, although decision-making is hampered by comorbidities, performance status, and life expectancy\(^9,12,19\). Specific age-linked scales have been developed\(^9\). The majority of the relevant studies were conducted in Asia. In large retrospective studies, surgery showed a trend towards an increase in the mortality rate with age\(^9,13\). Tumour size may not be a contraindication\(^9,12\), and perioperative management and careful selection are needed\(^10\). Radiofrequency ablation can be effective against small tumours, i.e., radiofrequency ablation was more effective than hepatic resection in older patients with ≤ 3 cm HCC\(^9\). In another study, the global survival rate, but not the incidence of procedure-related adverse events, was comparable in older and younger patients\(^10\). Percutaneous injection of ethanol is effective against < 2 cm tumours\(^9\).

The results of palliative transarterial chemoembolisation for older patients with advanced tumours are heterogeneous\(^9,10\). In a large retrospective trial, the overall survival rate of older patients was increased, but they were treated at an early stage\(^10\). Conversely, age over 60 years was independently associated with a poor prognosis. Interestingly, older patients were at greater risk of peptic ulcer (2.5% vs 0.5%)\(^10\). Although no data are available, radioembolisation is an interesting option for older patients with HCC\(^12\) and is well tolerated by those with unresectable metastatic colon cancer\(^12\).

Sorafenib is the most frequently prescribed chemotherapeutic. A French retrospective study showed that patients > 80 years of age had low tolerance of a fixed dose, and two thirds of them experienced grade IV adverse events\(^14\). Several Japanese studies have reported more hopeful results\(^11,13\). In one, a half dose of sorafenib was useful in the presence of adverse events and was better tolerated\(^10\). Age does not seem to influence the safety and efficacy of levantinib\(^5\). Phase III studies of Regorafenib and Ramucirumab have not specifically addressed older patients\(^12,15\), but second-line cabozantinib increased the overall survival rate of patients > 65 years of age\(^12\). Unfortunately, data on immunotherapies, especially Nivolumab, are sparse.

Portal hypertension

Older people have a lower portal velocity and are not at increased risk of portal hypertension\(^12,12\). The treatment strategy is the same globally\(^9\). Betablockers are permitted despite various contraindications, and complications, such as cardiovascular and pulmonary events and an increased frequency of hospital admission\(^12\). Hyponatremia, hypotension, and renal insufficiency are contraindications for use of beta-blockers in older patients, as in younger patients\(^12,14\).

According to the REPOSI Italian register, liver cirrhosis is the major cause of variceal and non-variceal upper gastrointestinal bleeding in older patients\(^22\). Proton pump inhibitors are associated with an increased risk of infection and encephalopathy in cirrhotic patients, irrespective of age\(^22,26\). In older patients, the therapeutic recommendations must be respected to prevent inappropriate prescriptions.

There is no specific recommendation concerning ascites in older patients. Diuretics should be prescribed with caution because of an increased risk of complications, particularly hyponatremia\(^22\). Older patients are at greater risk of acute renal insufficiency, independently of the aetiology\(^18\). Age does not affect survival in patients with refractory ascites, although terlipressin may be associated with vascular complications\(^13\). Transjugular intrahepatic portosystemic shunt (TIPS) and liver transplantation are interesting therapeutic options but have limitations in older patients, as discussed below.

Encephalopathy

Encephalopathy is a life-threatening complication of cirrhosis to which older people are particularly susceptible\(^9\), and it may be linked to an altered brain-gut axis\(^12\). Infection, myocardial infarction, and central nervous system injury can favour this complication\(^13\). Minimal hepatic encephalopathy is associated with falls\(^14\). Older patients, especially the most fragile, require supervision and care. Their treatment is not different from that of younger patients\(^13\). Preventative therapy is essential in cases of cirrhotic decompensation and constipation must be controlled.
ACUTE ALCOHOLIC HEPATITIS

Acute alcoholic hepatitis is linked to a history of alcohol consumption and typically occurs in patients around 50 years of age[136]; however, older patients predominate in nosocomial studies[136]. Age is predictive of survival and of the presence of liver cirrhosis and is included in the Age, Serum bilirubin, International Normalised Ratio, and Serum creatinine score and the Lille model[137,138]. Although older patients were not included in the largest therapeutic studies, it is a prognostic factor for post-treatment survival[139]. Prednisolone is the only validated medical treatment, but data on its efficacy in older patients are lacking. Furthermore, recent studies of liver transplantation did not include patients > 61 years of age[140].

PULMONARY AND CARDIAC COMPLICATIONS

The definition of hepatopulmonary syndrome differs according to age: An alveolar-arterial gradient of 15 and 20 mmHg in patients < 65 and ≥ 65 years of age, respectively[5,141]. Long-term oxygen therapy is recommended[5]. Liver transplantation is curative, and age does not influence the outcome of patients with hepatopulmonary syndrome[5].

Among other causes of pulmonary hypertension, cirrhosis is one of the most important in older people[143,144]. The presentation can differ with age; older patients are more likely to have oedema and a more severe presentation[145]. Their management does not differ from that of patients in other age groups, and the prognosis is similar[5].

Hydrothorax is also observed in older cirrhotic patients, and its management, despite the lack of data, is identical to that for younger patients. TIPS is a therapeutic solution, but, as in ascites, careful selection of patients is mandatory[146].

Old age is associated with an increased risk of cardiac dysfunction and cirrhotic cardiomyopathy[147]. Because of its frequency and prognostic impact, systematic screening for these conditions among older patients is justified[5].

PATIENTS IN CRITICAL CONDITION

The survival rate of cirrhotic patients in the intensive care unit is 34% to 69%;[148] Age > 75 years impacts the global, but not the intensive care unit, survival rate[149]. Although the severity of cirrhosis is more predictive of survival than age, age is an indication for admission to the intensive care unit[5]. Indeed, age is a parameter of the prognostic Chronic Liver Failure Consortium acute decompensation score and the Chronic Liver Failure Consortium acute on chronic liver failure score[150,151]. Hepatorenal syndrome and spontaneous bacterial peritonitis are associated with a poor prognosis[152].

INFECTIONS

Older cirrhotic patients are at increased risk of infection due to their impaired immunity defences[153]. Spontaneous bacterial peritonitis has a higher mortality rate in older than in younger people[154], and, although the data are sparse, older people are more susceptible to renal failure[155]. In cirrhotic patients, bacterial resistance to antibiotics is promoted by the high frequency of antibiotic use[156]. Age impacts the occurrence and mortality rate of infection with multiresistant bacteria, but not the risk of inappropriate treatment[157].

As mentioned above, the use of proton-pump inhibitors by older patients increases the risk of infection, and their use should be restricted. Of note, vitamin D deficiency, which is more frequent in older cirrhotic patients, is also a risk factor for infection[158]. Thus, screening for and correction of this deficiency is essential in older cirrhotic patients[159].

SPECIFIC MANAGEMENT

Nutrition

Although there are no specific recommendations for older cirrhotic patients, both age and cirrhosis are associated with frailty and malnutrition[160,161]. Sarcopenia is present in 1% to 29% of community-dwelling patients and in 14% to 33% of those in long-term care[162].
In older cirrhotic patients, assessment and correction of sarcopenia are crucial—computed tomography, measurement of the muscle area at L3, dual-energy X-ray absorptiometry, subjective global assessment, and Royal Free Hospital-Global assessment are useful in this regard. Nutritional support can be helpful, particularly for critically ill patients. Exercise and physical activity tailored to the patient’s age and general condition are also required. Furthermore, systematic screening for osteoporosis is advisable in cirrhotic patients and is vital in older cirrhotic patients.

TIPS

Age is a limiting factor for TIPS, independently of the model for end-stage liver disease (MELD) score. This is why cardiac function (diastolic function, pulmonary arterial hypertension) and risk of encephalopathy of older patients must be evaluated. Altered cardiac pressure in the right atrium and in pulmonary vessels is associated with mortality. Correction of the natriuresis balance in older patients is delayed after TIPS insertion. Although they were not included in the largest study, recent retrospective data show that the procedure is beneficial in selected older patients.

LIVER TRANSPLANTATION

Durand et al. reviewed liver transplantation in older patients. In practice, liver transplantation is rarely possible in patients > 70 years of age. However, the proportion of patients > 65 years of age who are candidates for liver transplantation is increasing in the United States and in Europe. Also, the epidemiology is changing: In the United States, the frequency of nonalcoholic steatohepatitis and HCC as indications for liver transplantation is increasing, whereas that of HCV patients is decreasing. The mortality rate among patients on the waiting list is higher in older people, as is the risk of dropping out; the mortality rate is higher in patients with a lower MELD score than in those < 64 years of age.

The 5-year post-transplantation mortality rate increases linearly with age in older recipients. The MELD score is associated with mortality early post-liver transplantation, and older patients have a higher incidence of cardiac, pulmonary, and renal complications as well as of malignancies. Also, post-transplantation renal function is a key prognostic factor in patients transplanted for cirrhosis. Age impacts the occurrence of renal insufficiency (relative risk per 10-year increment, 1.36; \(P < 0.001 \)) as does pre-transplantation acute renal insufficiency, especially when associated with hepatorenal syndrome. However, older patients are at greater risk of chronic renal insufficiency before liver transplantation. So, selection of patients is crucial to prevent post-transplantation complications—such as cancer, metabolic disease, or renal insufficiency—and to improve overall survival. The recently developed Liver Frailty Index may be predictive of survival post-transplantation.

Notably, donor age impacts survival post liver transplantation. The impact of donor age begins at 40 years and increases with age, particularly at > 60 years of age. Moreover, improvements in liver-graft selection have resulted in a 5-year post-transplantation survival rate of > 70% as does pre-transplantation acute renal insufficiency, especially when associated with hepatorenal syndrome. However, older patients are at greater risk of chronic renal insufficiency before liver transplantation. So, selection of patients is crucial to prevent post-transplantation complications—such as cancer, metabolic disease, or renal insufficiency—and to improve overall survival. The recently developed Donor Risk Index are preferentially transplanted into older candidates > 50 years of age with moderate disease severity.

Finally, age matching, although complex, is warranted by a number of policies. A summed recipient and donor age of > 120 years may be prognostic, independently of other factors. Other scores, such as the Survival Outcomes Following Liver Transplantation and Balance of Risk scores, are evaluated in addition to the Donor Risk Index. The mortality rate among people on the waiting list is higher in older patients. However, the proportion of patients > 65 years of age who are candidates for liver transplantation is increasing. In older patients, evaluation of comorbidities, comedinations, and frailty is essential. Relevant scores, such as the Frailty Liver Index, should be considered, and customised exercise and nutrition programs and osteoporosis therapy should be proposed to older cirrhotic patients. Moreover, attention should be paid to the choice of HCC treatment, the indications for TIPS insertion in patients with portal hypertension, and the indications for admission to the intensive care unit. Prevention policies are needed, because the causes of cirrhosis generally begin in the first decades of life. Finally, studies involving older cirrhotic patients, as well as specific...
recommendations, are needed.

REFERENCES

1. World Health Organization. Proposed working definition of an older person in Africa for the MDS Project [Internet]. WHO. 2002; [cited 2019 Jan 29] Available from: http://www.who.int/healthinfo/survey/ageingdefnolder/en/
2. World Health Organization. What is Healthy Ageing? [Internet]. WHO [cited 2019; Jan 29] Available from: http://www.who.int/ageing/healthy-ageing/en/
3. World Health Organization. World Report on Ageing and Health [Internet]. WHO. 2015; [cited 2019 Jan 29] Available from: https://www.who.int/ageing/events/world-report-2015-launch/en/
4. Sheedfar F, Di Biase S, Koonen D, Vinciguerra M. Liver diseases and aging: friends or foes? Aging Cell 2013; 12: 950-954 [PMID: 23815295 DOI: 10.1111/acel.12128]
5. European Association for the Study of the Liver. European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol 2018; 69: 406-460 [PMID: 29653741 DOI: 10.1016/j.jhep.2018.03.024]
6. Jansen PL. Liver disease in the elderly. Best Pract Res Clin Gastroenterol 2002; 16: 149-158 [PMID: 11977934 DOI: 10.1016/S0168-8278(02)00271-X]
7. Wynne HA, Mutch E, James OF, Wright P, Rawlins MD, Woodhouse KW. The effect of age upon the affinity of microsomal mono-oxygenase enzymes for substrate in human liver. Age Ageing 1988; 17: 401-405 [PMID: 3266441 DOI: 10.1093/ageing/17.6.401]
8. Le Couteur DG, Cogger VC, Markus AM, Harvey PJ, Yin ZL, Ansell AD, McLean AJ. Pseudocapillarization and associated energy limitation in the aged rat hepat. Hepatology 2001; 33: 537-543 [PMID: 11230732 DOI: 10.1053/jhep.2001.22574]
9. Zoll M, Magalotti D, Bianchi G, Guel C, Orlandini C, Grimaldi M, Marchesini G. Total and functional hepatic blood flow decrease in parallel with ageing. Age Ageing 1999; 28: 29-33 [PMID: 10202201 DOI: 10.1093/ageing/28.1.29]
10. Schmucker DL. Aging and the liver: an update. J Gerontol A Biol Sci Med Sci 1998; 53: B315-B320 [PMID: 9754128 DOI: 10.1093/gerona/53A.5.B15]
11. Wakabayashi H, Nishiyama Y, Ushiyama T, Maeba T, Maeta H. Evaluation of the effect of age on functioning hepatocyte mass and liver blood flow using liver scintigrapy in preoperative estimations for surgical patients: comparison with CT volumetry. J Surg Res 2002; 106: 246-253 [PMID: 12175974 DOI: 10.1006/jsre.2002.6462]
12. Petersen KF, Belfroy D, Dufour S, Dziri J, Arizyn C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300: 1140-1142 [PMID: 12750520 DOI: 10.1126/science.1082889]
13. Slawik M, Vidal-Puig AJ. Lipotoxicity, overnutrition and metabolism in aging. Aging Res Rev 2006; 5: 144-164 [PMID: 16609720 DOI: 10.1016/j.arr.2005.06.004]
14. Tietz NW, Shuey DF, Wekstein DR. Laboratory values in fit aging individuals--sexagenarians through centenarians. Clin Chem 1992; 38: 1167-1185 [PMID: 1596990]
15. Schmucker DL. Age-related changes in liver structure and function: Implications for disease? Exp Gerontol 2005; 40: 650-659 [PMID: 16102930 DOI: 10.1016/j.exger.2005.06.009]
16. Höhn A, Grune T. Lipofuscin: formation, effects and role of macroautophagy. Redox Biol 2013; 1: 140-144 [PMID: 24024146 DOI: 10.1016/j.redox.2013.01.006]
17. Hilmer SN, Cogger VC, Le Couteur DG. Basal activity of Kupfer cells increases with old age. J Gerontol A Biol Sci Med Sci 2007; 62: 973-978 [PMID: 17895435 DOI: 10.1093/gerona/gao92.973]
18. Verma S, Tachtatzis P, Penrhyn-Lowe S, Scarpini C, Jurk D, Von Zglinicki T, Coleman N, Alexander GJ. Sustained telomere length in hepatocytes and cholangiocytes with increasing age in normal liver. Hepatology 2012; 56: 1510-1520 [PMID: 22504828 DOI: 10.1002/hep.25787]
19. Salminen A, Ojala J, Kaarniranta K. Apoptosis and ageing: increased resistance to apoptosis enhances the aging process. Cell Mol Life Sci 2011; 68: 1021-1031 [PMID: 21116678 DOI: 10.1007/s00018-010-0597-y]
20. Baar MP, Brandt RMC, Putatuv DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijken Y, van Willigenburg H, Feijtel DA, van der Pluijm I, Essers J, van Cappelien WA, van Uckcn WF, Houtsmuller AB, Pothof J, de Bruin RWF, Madl T, Hoeijmakers JHJ, Campisi J, de Keizer PLJ. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell 2017; 169: 132-147.e18 [PMID: 28340339 DOI: 10.1016/j.cell.2017.02.031]
21. Kim H, Kisseleva T, Brenner DA. Aging and liver disease. Curr Opin Gastroenterol 2015; 31: 184-191 [PMID: 2585346 DOI: 10.1097/mog.0000000000000176]
22. Poynard T, Ratziu V, Charlotte F, Goodman Z, McHutchison J, Albrecht J. Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis C. J Hepatol 2001; 34: 730-739 [PMID: 11434620 DOI: 10.1016/S0168-8278(00)00997-2]
23. Thabut D, Le Calvez S, Thibault V, Massard J, Munteanu M, Di Martino V, Ratziu V, Poynard T. HepatostasitCs, Lipid Peroxidation and Affinity of Microsomal Mono-oxidase for Substrate in Human Liver. J Hepatol 1999; 30: 246-253 [PMID: 10157221 DOI: 10.1016/S0168-8278(99)00087-0]
24. Poulose N, Raju R. Aging and injury: alterations in cellular energetics and organ function. Aging Dis 2014; 5: 101-108 [PMID: 24739935 DOI: 10.14336/Ad.2014.050101]
25. López-Diazguerrero NE, Luna-López A, Gutiérrez-Ruiz MC, Zentella A, Königberg M. Susceptibility of DNA to oxidative stressors in young and aging mice. Life Sci 2003; 77: 2840-2854 [PMID: 15979101 DOI: 10.1016/j.lfs.2005.05.034]
26. Timchenko NA. Aging and liver regeneration. Trends Endocrinol Metab 2009; 20: 171-176 [PMID: 19359159 DOI: 10.1016/j.tem.2009.01.005]
27. Zerrad-Saadi A, Lambert-Blot M, Mitchell C, Bretes H, Collin de l'Hortet A, Baud V, Chereau F, Sotropouloos A, Kopchick JJ, Liao, Lu X, Gilgenkrantz H, Guidotti JE. GH receptor plays a major role in liver regeneration through the control of EGF and ERK1/2 activation. Endocrinology 2011; 152: 2731-2741 [PMID: 21540290 DOI: 10.1210/en.2010-1193]
28. Fulop T, Larbi A, Klob R, de Angelis F, Pawelec G. Aging, immunity, and cancer. Disoov Med 2011; 11: 537-550 [PMID: 21712020]
29. Durant F, Levitsky J, Cauchy F, Gilgenkrantz H, Soubraone O, Francoz C. Age and liver transplantation. J Ageing Res Rev
Angulo P, Lonardo A, Mussi C, Baldelli E, Pellegrini E, Ballestri S, Romagnoli D, Loria P, Bertolotti M. Hepatology: 2672-2682 [PMID: 30179269 DOI: 10.1002/hep.30251]

Younossi Z, Gerontology: 607-613 [PMID: 19690397 DOI: 10.1159/000235677]

Cirrhosis - A pooled analysis. J Hepatol, Nelson DR, Feld JJ, Wedemeyer H, Larsen L, Cohen DE, Cohen E, Mobashery N. J Hepatol 2016; 65: 153-194 [PMID: 27667367 DOI: 10.1016/j.jhep.2016.09.001]

Fabrizio C, Tabernilla A, Pedreira JD, Mena A, Poveda E. Real life experience with direct-acting antiviral agents against hepatitis C infection in elderly patients. Hepatol Res 2017; 1036-1042 [PMID: 28651903 DOI: 10.1111/j.1365-2796.2015.00470.x]

M, Angarano G. The elderly and direct antiviral agents: Constraint or challenge? Geriatr Gerontol Int 2008; 8: 198-203 [PMID: 18222004 DOI: 10.1111/j.1447-0594.2008.00470.x]

Graudal N, Leth P, Møhring L, Gallo AM. Characteristics of cirrhosis undiagnosed during life: a comparative analysis of 73 undiagnosed cases and 149 diagnosed cases of cirrhosis, detected in 4929 consecutive autopsies. J Intern Med 1991; 230: 165-171 [PMID: 16508060 DOI: 10.1111/j.1365-2796.1991.tb00435.x]

Hoshida Y, Ikeda K, Kobayashi M, Suzuki Y, Tsutsuta A, Saitoh S, Arase Y, Kobayashi M, Murashima N, Chayama K, Kumada H. Chronic liver disease in the extremely elderly of 80 years or more: clinical characteristics, prognosis and patient survival analysis. J Hepatol 1999; 31: 860-866 [PMID: 10580583 DOI: 10.1016/S0168-8279(99)80028-7]

Rakoski MO, McCammon RJ, Piette JD, Iwashyna TJ, Marrero JA, Lok AS, Langa KM, Volk ML. Burden of cirrhosis on older Americans and their families: analysis of the health and retirement study. Hepatology 2012; 55: 184-191 [PMID: 21858847 DOI: 10.1002/hep.24616]

Wasley A, Kruzon-Moran D, Kuhlert W, Simard EP, Finelli L, McQuillan G, Bell B. The prevalence of hepatitis B virus infection in the United States in the era of vaccination. J Infect Dis 2010; 192: 198-202 [PMID: 19632867 DOI: 10.1086/653622]

Loostveld AM, van der Sandt EM, de Rooij P, van der Palen J, van der Poel S, van der Peijl W, van der Pol B, van der Veer IN. Predicted effects of treatment for HCV infection vary among European countries. Gastroenterology 2012; 143: 974-85.e14 [PMID: 22863764 DOI: 10.1053/j.gastro.2012.05.054]

Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice. Age (Dordr) 2016; 38: 291-302 [PMID: 27578257 DOI: 10.1007/s11357-016-9938-6]

Luo J, Schaffer A, Edwards JR, Longmore G, Faccio R, DeNardo DG, Stewart SA. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun 2016; 7: 11762 [PMID: 27272654 DOI: 10.1038/ncomms11762]

Araújo T. Undiagnosed cirrhosis limits acute toxic liver injury in mice through down regulation of interleukin-1β. J Hepatol 2016; 64: 118-127 [PMID: 26325539 DOI: 10.1016/j.jhep.2015.08.019]

Kim H, Xu J, Liu X, Koyama Y, Ma HY, Diggle K, You YH, Schilling JM, Jeste D, Sharma K, Brenner DA, Kisselova T. Aging increases the susceptibility of hepatic inflammation, liver fibrosis and aging in response to high-fat diet in mice. Age (Dordr) 2016; 38: 291-302 [PMID: 27578257 DOI: 10.1007/s11357-016-9938-6]

Ruhlbrand MK, Loza AJ, Capitio AH, Luo X, Knolhoff BL, Flanagan KC, Belt BA, Als.epach E, Leaky H, Luo J, Schaffer A, Edwards JR, Longmore G, Faccio R, DeNardo DG, Stewart SA. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun 2016; 7: 11762 [PMID: 27272654 DOI: 10.1038/ncomms11762]

Fabrizio C, Tabernilla A, Pedreira JD, Mena A, Poveda E. Real life experience with direct-acting antiviral agents against hepatitis C infection in elderly patients. Hepatol Res 2017; 1036-1042 [PMID: 28651903 DOI: 10.1111/j.1365-2796.2015.00470.x]

Hatzakis A, Rosenberg W, Zeuzem S, Mathurin P. Predicted effects of treatment for HCV infection vary among European countries. Gastroenterology 2012; 143: 974-85.e14 [PMID: 22863764 DOI: 10.1053/j.gastro.2012.05.054]

Araújo T. Undiagnosed cirrhosis limits acute toxic liver injury in mice through down regulation of interleukin-1β. J Hepatol 2016; 64: 118-127 [PMID: 26325539 DOI: 10.1016/j.jhep.2015.08.019]

Weber MO, Greaves G, Sullivan RJ, Mcguirk N, Bell B. Hepatitis B and elders: An underestimated healthcare issue. J Hepatol 2016; 64: 118-127 [PMID: 26325539 DOI: 10.1016/j.jhep.2015.08.019]

Ilyas G, Zhao E, Liu K, Lin Y, Tesf a L, Tanaka KE, Craja MJ. Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-1β. J Hepatol 2016; 64: 118-127 [PMID: 26325539 DOI: 10.1016/j.jhep.2015.08.019]

Kimmis K, Sawabe M, Sasaki M, Kino K, Arai T. Undiagnosed cirrhosis occurs frequently in the elderly and requires periodic follow ups and medical treatments. Geriatr Gerontol Int 2008; 8: 198-203 [PMID: 18222004 DOI: 10.1111/j.1447-0594.2008.00470.x]

Ruhlbrand MK, Loza AJ, Capitio AH, Luo X, Knolhoff BL, Flanagan KC, Belt BA, Als epach E, Leaky H, Luo J, Schaffer A, Edwards JR, Longmore G, Faccio R, DeNardo DG, Stewart SA. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun 2016; 7: 11762 [PMID: 27272654 DOI: 10.1038/ncomms11762]

Araújo T. Undiagnosed cirrhosis limits acute toxic liver injury in mice through down regulation of interleukin-1β. J Hepatol 2016; 64: 118-127 [PMID: 26325539 DOI: 10.1016/j.jhep.2015.08.019]

Kimmis K, Sawabe M, Sasaki M, Kino K, Arai T. Undiagnosed cirrhosis occurs frequently in the elderly and requires periodic follow ups and medical treatments. Geriatr Gerontol Int 2008; 8: 198-203 [PMID: 18222004 DOI: 10.1111/j.1447-0594.2008.00470.x]

Kimmis K, Sawabe M, Sasaki M, Kino K, Arai T. Undiagnosed cirrhosis occurs frequently in the elderly and requires periodic follow ups and medical treatments. Geriatr Gerontol Int 2008; 8: 198-203 [PMID: 18222004 DOI: 10.1111/j.1447-0594.2008.00470.x]
CV-0001-01344

Takahika H. Characteristics of primary sclerosing cholangitis in Japan. Hepatol Res 2007; 37 Suppl 3: S470-S473 [PMID: 17031205 DOI: 10.1111/j.1877-0538.2007.00235.x] [DOI: 10.1016/j.jhep.2007.06.004]

Eaton JE, McCauley BM, Akinson EJ, Jurden BD, Schlicht EM, de Andrade M, Lazaridis KN. Variations in primary sclerosing cholangitis across the age spectrum. J Gastroenterol Hepatol 2013; 32: 1763-1768 [PMID: 28245345 DOI: 10.1111/j.1440-1746.2013.07374.x]

Sirpal S, Chandok N. Primary sclerosing cholangitis: diagnosis and management challenges. Clin Exp Gastroenterol 2017; 10: 265-273 [PMID: 29138587 DOI: 10.1136/cgastroenterology-2017-000872]

McGee EE, Castro PA, Engdahl EA, Freedman ND, Pfeiffer RM, Nogueira L, Solomon R, Studenberg-Stoll R, McGlynn KA, Hennminki K, Koshol J. Associations between autoimmune conditions and hepatobiliary cancer risk among elderly US adults. Int J Cancer 2019; 144: 707-717 [PMID: 30159520 DOI: 10.1002/ijc.31835]

Bardou-Jacquet E, Morot J, Manet G, Lainé F, Perrin M, Jouanolle AM, Guyader D, Moirrand R, Viel JF, Desguigny J. Decreased cardiovascular and extrahepatic cancer-related mortality in treated patients with mild HFE hemochromatosis. J Hepatol 2015; 62: 682-689 [PMID: 25450707 DOI: 10.1016/j.jhep.2014.10.023]

Nowak A, Giger RS, Kräney-Brueh PA. Higher age at diagnosis of hemochromatosis is the strongest predictor of the occurrence of hepatocellular carcinoma in the Swiss hemochromatosis cohort: A prospective longitudinal observational study. Medicine (Baltimore) 2018; 97: e12886 [PMID: 30335010 DOI: 10.1097/MD.0000000000012886]

Roggli VL, Hausner RJ, Akshe JB. Alpha-1-antitrypsin globulins in hepatocytes of elderly persons with liver disease. Am J Clin Pathol 1981; 75: 538-542 [PMID: 7013469 DOI: 10.1093/ajcp/75.5.538]

Kunugi T, Horiike N, Michitaka K, Hasebe A, Kawai K, Tokumoto Y, Nakainishi S, Furukawa S, Hiasa Y, Matsui H, Kurosue K, Matsuura B, Onji M. Recent clinical features of Wilson's disease with hepatic presentation. J Gastroenterol 2004; 39: 1165-1169 [PMID: 15622480 DOI: 10.1007/s00268-004-0472-x]

Poujou F, Woimant F. Wilson's disease: A 2017 update. Clin Res Hepatol Gastroenterol 2018; 42: 512-520 [PMID: 29025923 DOI: 10.1016/j.clress.2018.03.007]

El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557-2576 [PMID: 17570226 DOI: 10.1053/j.gastro.2007.04.061]

Tsuchiya K, Kazuki S, Souhara N, Sato K, Takagi H, Arai H, Abe T, Toyoda M, Katakai K, Kojima A, Yamazaki Y, Osuka T, Matsuoka Y, Makita S, Kanda D, Horiuchi K, Hamada T, Kaneho M, Suzuki H, Mori M. Hepatocellular carcinoma in extremely elderly patients: an analysis of clinical characteristics, prognosis and patient survival. World J Gastroenterol 2006; 12: 48-53 [PMID: 16404816 DOI: 10.3748/wjg.v12.i1.48]

Mirici-Cappa F, Gramenzi A, Santi V, Zambruni A, Di Miccoli A, Frigerio M, Maraldi F, di Nolfo MA, Del Poggio P, Benvenigl L, Rapaccini G, Farinari F, Zoli M, Borzio F, Giampietro EG, Catellani E, Bernardi M, Trevisani F, Italian Liver Cancer Group. Treatments for hepatocellular carcinoma are as effective as in younger patients: a 20-year multicentre experience. Gut 2010; 59: 387-396 [PMID: 20207642 DOI: 10.1136/gut.2009.194217]

Fujii H, Itoh Y, Ohashi N, Nakamoto M, Ohkawara T, Sawa Y, Nishida K, Ohkawara Y, Yamaguchi K, Minami M, Okano T. Factors associated with the overall survival of elderly patients with hepatocellular carcinoma. World J Gastroenterol 2012; 18: 1926-1932 [PMID: 22563173 DOI: 10.3748/wjg.v18.i12.1926]

Collier JD, Curless R, Bassendine MF, James OF. Clinical features and prognosis of hepatocellular carcinoma in Britain in relation to age. Age Ageing 1994; 23: 22-27 [PMID: 8010166 DOI: 10.1093/ageing/23.1.22]

Trevisani F, Cantarini MC, Labate AM, De Notaristis S, Rapaccini G, Farinari F, Del Poggio P, Di Nolfo MA, Benveggl L, Zoli M, Borzio F, Bernardi M; Italian Liver Cancer (ITALICA) group. Surveillance for hepatocellular carcinoma in elderly Italian patients with cirrhosis: effects on cancer staging and patient survival. Am J Gastroenterol 2004; 99: 1470-1476 [PMID: 15307862 DOI: 10.1111/j.1572-0241.2004.30137.x]

Poon RT, Fan ST, Lo CM, Liu CL, Ng IO, Wong J. Hepatocellular carcinoma in the elderly: results of surgical and nonsurgical management. Am J Gastroenterol 1999; 94: 2460-2466 [PMID: 10537862 DOI: 10.1111/j.1572-0241.1999.01376.x]

Wang YE, Chang CW, Liu CY, Chen MJ, Chu CH, Lin SC, Wang HY. Clinical Characteristics of Hepatocellular Carcinoma in Elderly Patients. Int J Gerontol 2013; 7: 85–89 [DOI: 10.1016/j.ijgero.2013.03.003]

Boulahssas R, Gonfrrier S, Champigny N, Lassalle S, Francois E, Hofman P, Guerin O. The Desire to Better Understand Older Adults with Solid Tumors to Improve Management: Assessment and Guided Interventions-The French PACA EST Cohort Experience. Cancers (Basel) 2019; 11 [PMID: 30736406 DOI: 10.3390/cancers111020192]

Yamaga K, Kanematsu T, Takenaka K, Matsumata T, Yoshida Y, Sugimachi K. Hepatic resection for hepatocellular carcinoma in elderly patients. Am J Surg 1988; 155: 238–241 [DOI: 10.1016/S0002-9378(10)80701-7]

Nozawa A, Kubo S, Takemura S, Sakata C, Uraya Y, Nishioh T, Kinoshita M, Hamano G, Uemishi T, Suehiro S. Hepatic resection for hepatocellular carcinoma in super-elderly patients aged 80 years and older in the first decade of the 21st century. Surg Today 2015; 45: 851–857 [PMID: 25111072 DOI: 10.1007/s00595-014-0994-1]

Lee CR, Lim JH, Kim SH, Ahn SH, Park YN, Choi GH, Choi JS, Kim KS. A comparative analysis of hepatocellular carcinoma after hepatic resection in young versus elderly patients. J Gastrointest Surg 2012; 16: 1736–1743 [PMID: 22810298 DOI: 10.1007/s11605-012-1966-7]

Kondo K, Chijiwa K, Funagayama M, Koi M, Otani K, Ohuchida J. Hepatic resection is justified for hepatocellular carcinoma in elderly patients. World J Surg 2008; 32: 2223–2229 [PMID: 18642042 DOI: 10.1007/s00260-008-9688-4]

Yeh CN, Lee WC, Jeng LB, Chen MF. Hepatic resection for hepatocellular carcinoma in elderly patients. Hepatogastroenterology 2004; 51: 219–223 [PMID: 15018861]

Ferrero A, Vignolo L, Polastri R, Ribero D, Lo Tesorieri R, Maturasa A, Capussotti L. Hepatocectomy as treatment of choice for hepatocellular carcinoma in elderly cirrhotic patients. World J Surg 2005; 29: 1101–1105 [PMID: 16088422 DOI: 10.1007/s00260-005-7768-2]

Issue Y, Tanaka R, Fujii K, Kawaguchi N, Ishii M, Masuhashi Y, Yamamoto M, Hirokawa F, Hayashi M, Uchiyama K. Surgical Outcome and Hepatic Regeneration after Hepatic Resection for Hepatocellular Carcinoma.
Carcinoma in Elderly Patients. *Dig Surg* 2019; 36: 289-301 [PMID: 2975861 DOI: 10.1159/000488327]

Peng TZ, Liu FR, Ye S, Xu L, Zhang YJ, Liang HH, Lin XJ, Lau WY, Chen MS. Radiofrequency ablation versus open hepatic resection for elderly patients (≥ 65 years) with very early or early hepatocellular carcinoma. *Cancer* 2013; 119: 3812-3820 [PMID: 23922119 DOI: 10.1002/cncr.28293]

Nishikawa H, Osaki Y, Ichugi E, Takeda H, Ohara Y, Sakamoto A, Hatamuru K, Henni S, Saito S, Nasu A, Kita R, Kimura T. Percutaneous radiofrequency ablation for hepatocellular carcinoma: clinical outcome and safety in elderly patients. *J Gastroenterol Hepatol* 2012; 21: 397-405 [PMID: 23256123]

Teratta T, Ishikawa K, Shihori Y, Shima S, Yoshida H, Inamura M, Ohi S, Saito S, Hamamura K, Omata M. Hepatocellular carcinoma in elderly patients: beneficial therapeutic efficacy using percutaneous ethanol injection therapy. *Cancer* 2002; 95: 816-823 [PMID: 12209726 DOI: 10.1002/cncr.10735]

Sithamparanathan S, Nair A, Thirugnanasothy L, Coghlan JG, Condliffe R, Dimopoulos K, Elliot CA, Fisher AJ, Gaine S, Gibbs JSR, Gatsoulis MA, E Handler C, Howard LS, Johnson M, Kiely DG, Lordan JL, Peacock AJ, Pepke-Zaba J, Schreiber BE, Sheares KK, Worr SJ, Corris PA; National Pulmonary Hypertension Service Research Col. Sorafenib in patients with portal-pulmonary hypertension: Outcomes of the United Kingdom National Pulmonary Arterial Hypertension Registry. *J Heart Lung Transplant* 2017; 36: 770-779 [PMID: 28190786 DOI: 10.1016/j.health.2016.12.014]

Mondazzi L, Bottelli R, Brambilla G, Rampoldi A, Rezzacocki L, Zavaglia C, Alberti A, Ido G. Transarterial oily chemoembolization for the treatment of hepatocellular carcinoma: a multivariate analysis of prognostic factors. *Hepatology* 1994; 19: 1115-123 [PMID: 7513677 DOI: 10.1002/hep.1840190508]

Yau T, Yao TJ, Chan P, Epstein RJ, Ng KK, Chok SH, Cheung TT, Fan ST, Poon RT. The outcomes of elderly patients with hepatocellular carcinoma treated with transarterial chemoembolization. *Cancer* 2009; 115: 5507-5516 [PMID: 19701904 DOI: 10.1002/cncr.24636]

Salem R, Gordon AC, Mouli S, Hickey R, Kallini J, Gabr A, Mulcahy MF, Baker T, Abecasis M, Miller FH, Yaghmai V, Sato K, Desai K, Thorburn B, Benson AB, Rademaker A, Ganger D, Kulik L, Lewandowski RJ. V90 Radioembolization Significantly Prolongs Time to Progression Compared With Chemoembolization in Patients With Hepatocellular Carcinoma. *Gastroenterology* 2016; 151: 1155-1163.e2 [PMID: 27575820 DOI: 10.1053/j.gastro.2016.08.029]

Kennedy AS, Ball DS, Cohen SJ, Cohn M, Coldwell D, Drooz A, Ehrenwald E, Kanani S, Rose SC, Nutting CW, Moselein FM, Savin MA, Schirren S, Putnam SG, Sharma NK, Wang EA; Metastatic Colorectal Cancer Liver Metastases Outcomes After Radioembolization (MORE) Study Investigators. Safety and Efficacy of Radioembolization in Elderly (≥ 70 Years) and Younger Patients With Unresectable Liver-Dominant Colorectal Cancer. *Clin Colorectal Cancer* 2016; 15: 141-151.e1 [PMID: 26541321 DOI: 10.1016/j.ccc.2015.09.001]

Williet N, Clavel L, Bourmaud A, Verot C, Bouraouia N, Roblin X, Merle P, Phelip JM. Tolerance and outcomes of sorafenib in elderly patients treated for advanced hepatocellular carcinoma. *Dig Liver Dis* 2017; 49: 1043-1049 [PMID: 28712600 DOI: 10.1016/j.dld.2017.06.008]

Jo M, Yasui K, Kirishima T, Shima T, Niimi T, Kataya M, Mori T, Funaki J, Sumida Y, Fujii H, Takami S, Kimura H, Mitsumoto Y, Minami M, Yamaguchi K, Yoshinami T, Ohno H. Efficacy and safety of sorafenib in very elderly patients aged 80 years and older with advanced hepatocellular carcinoma. *Hepatol Res* 2014; 44: 1329-1338 [PMID: 24528772 DOI: 10.10111/hep.32885]

Morimoto M, Numata K, Kondo M, Kobayashi O, Okawa H, Hidaka H, Nakazawa T, Okawaki Y, Okuse C, Matsunaga K, Suzuki M, Morita S, Taguri M, Tanaka K. Field practice study of half-dose sorafenib treatment on safety and efficacy for hepatocellular carcinoma: A propensity score analysis. *Hepatol Res* 2015; 45: 279-287 [PMID: 24802232 DOI: 10.1111/hepr.12354]

Hiraoka A, Kumada T, Kariyama K, Takaguchi K, Aikawaka M, Itoyabashi E, Jui K, Tajiri K, Hirao S, Shimada N, Shibata H, Ishikawa T, Ochi H, Tada T, Toyoda H, Nounou K, Tsutsui T, Itokawa N, Imai M, Joko K, Hiasa Y, Michikata K, Real-life Practice Experts for HCC (RELPEC) Study Group, HCC 48 Group (hepatocellular carcinoma experts from 48 clinics in Japan). Clinical features of lenvatinib for unresectable hepatocellular carcinoma in real-world conditions: Multicenter analysis. *Gastroenterology* 2019; 157: 137-146 [PMID: 30575325 DOI: 10.1016/j.gastro.1909]

Bruijs J, Qin S, Merle P, Graziano A, Huang YH, Bodoky G, Pracht M, Yokosuka O, Rosmorduc O, Breder V, Gerolami R, Masi G, Ross PJ, Song T, Bronnwick JP, Ollivier-Hournand I, Kudo M, Cheng AL, Llovet JM, Finn RS, LeBerte MA, Behaamer A, Meinhardt G, Han G; RESORCE Investigators. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet* 2017; 389: 56-66 [PMID: 27932229 DOI: 10.1016/S0140-6736(16)32453-9]

Zhu AX, Kang YK, Yen CJ, Finn RS, Gallé PR, Llovet JM, Assenat E, Brandi G, Pracht M, Lim HY, Rau KM, Motomura K, Ohno I, Merle P, Daniele B, Shin DB, Gerken G, Borg C, Hiriart JB, Okusaka T, Morimoto M, Hsu Y, Abada PB, Kudo M; REACH-2 study investigators. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet Oncol* 2019; 20: 282-296 [PMID: 30665869 DOI: 10.1016/S1470-204X(18)30937-9]

Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, Cincin I, Merle P, Chen Y, Park JW, Blanc JF, Bolondi L, Klippen HM, Chan SL, Zagomir T, Byun HK, Atzori M, Hesse C, Borgen-Hage AE, Schwab G, Kelko RK. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. *N Engl J Med* 2018; 379: 54-63 [PMID: 29972759 DOI: 10.1056/NEJMoa1717002]

Antler AS, Pitchumoni CS, Thomas E, Orangio G, Scanlan BC. Gastrointestinal bleeding in the elderly. Morbidity, mortality and cause. *Am J Surg Pathol* 1981; 14: 271-273 [PMID: 1477291 DOI: 10.1097/00000478-198105000-00001]

Zoli M, Iervese T, Abbati S, Bianchi GP, Marchesini G, Pisi E. Portal blood velocity and flow in aging man. *Gerontology* 1989; 35: 61-65 [PMID: 2792785 DOI: 10.1159/000231300]

Oscanoa TJ, Lizarazo F, Carvajal A. Hospital admissions due to adverse drug reactions in the elderly. A meta-analysis. *Eur J Clin Pharmacol* 2017; 73: 799-770 [PMID: 28521577 DOI: 10.1007/s00228-017-2225-3]

de Franchis R, Baveno VI Faculty. Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension. *J Hepatol* 2015; 63: 743-752 [PMID: 26047908 DOI: 10.1016/j.jhep.2015.05.022]

Lenti MV, Passi L, Cecia S, Cortesi L, Meelli E, Caccia Dominioni C, Pisati M, Mengoli C.
Perticone F, Nobili A, Di Sabatino A, Corazza GR; REPOSI Investigators. Mortality rate and risk factors for gastrointestinal bleeding in elderly patients. *Eur J Intern Med* 2019; 61: 54-61 [PMID: 30527898 DOI: 10.1016/j.ejim.2018.11.007]

Bajaj JS, Rattoff SM, Heuman DM, Lapane KL. Proton pump inhibitors are associated with a high rate of serious infections in veterans with decompensated cirrhosis. *Aliment Pharmacol Ther* 2012; 36: 866-874 [PMID: 22966967 DOI: 10.1111/apt.12045]

Freedberg DE, Kim LS, Yang YX. The Risks and Benefits of Long-term Use of Proton Pump Inhibitors: Expert Review and Best Practice Advice From the American Gastroenterological Association. *Gastroenterology* 2017; 152: 706-715 [PMID: 2855716] DOI: 10.1016/j.gastro.2017.01.031

Tsai CF, Chen MH, Wang YP, Chu CJ, Huang YH, Lin HC, Hou MC, Lee FY, Su TP, Lu CL. Proton Pump Inhibitors Increase Risk for Hepatic Encephalopathy in Patients With Cirrhosis in A Population Study. *Gastroenterology* 2017; 152: 134-141 [PMID: 27639906 DOI: 10.1053/j.gastro.2016.09.007]

Sharabi Y, Illan R, Kamar Y, Cohen H, Nadler M, Messerli FH, Grossman E. Diuretic induced hyponatraemia in elderly hypertensive women. *J Hum Hypertens* 2002; 16: 631-635 [PMID: 12124158 DOI: 10.1038/sj.jhh.1001458]

Heidemann J, Bartels C, Berssenbrügge C, Schmidt H, Meister T. Hepatorenal syndrome: outcome of response to therapy and predictors of survival. *Gastroenterol Res Pract* 2015; 2015: 457613 [PMID: 25883742 DOI: 10.1155/2015/457613]

Cavallini M, Piano S, Romano A, Fasolato S, Frigo AC, Benetti G, Gola E, Morando F, Stano M, Rossi S, Sticca A, Cillo U, Angeli P. Terlipressin given by continuous intravenous infusion versus intravenous boluses in the treatment of hepatorenal syndrome: A randomized controlled study. *Hepatology* 2016; 63: 983-992 [PMID: 26659297 DOI: 10.1002/hep.28296]

Bajaj JS, Ashwalwala V, Steinberg JL, Hobbgood S, Boling PA, Godsalk H, Habib S, White MB, Fagan A, Gavis EA, Ganapathy P, Hylemon PB, Stewart KE, Keradman R, Liu EJ, Wang J, Gillette PM, Sikaroodi M, Moeller FG, Wade JB. Elderly patients have an altered gut-brain axis regardless of the presence of cirrhosis. *Sci Rep* 2016; 6: 38481 [PMID: 27920089 DOI: 10.1038/srep38481]

Akhtar AJ, Alam Y, Yoshikawa TT. Extrahepatic conditions and hepatic encephalopathy in elderly patients. *Am J Med Sci* 2002; 324: 1-4 [PMID: 12089801 DOI: 10.1097/00000441-200207000-00001]

Román E, Córdoba J, Torrellas M, Torras X, Villanueva C, Vargas Y, Quarner C, Soriano G. Minimal hepatic encephalopathy is associated with falls. *Am J Gastroenterol* 2011; 106: 476-482 [PMID: 20978484 DOI: 10.1038/ajg.2010.417]

Vibhurup H, Amadio P, Bajaj J, Cordoba J, Fidler P, Mulliken KD, Weisheim K, Wong P. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. *Hepatology* 2014; 60: 715-735 [PMID: 25042402 DOI: 10.1002/hep.27210]

Naveau S, Giraud V, Ganne N, Perney P, Hastier P, Robin E, Pessonne F, Chossegros P, Lahmek P, Fontaine H, Ribard D, Das T, Filocalo B, El Jamaal G, Seryt JA, Dranard JM, Chatemouse M, Pillegrin B. Patients with alcoholic liver disease hospitalized in gastroenterology. A national multicenter study. *Gastroenterol Clin Biol* 2001; 25: 131-136 [PMID: 11319436]

Domínguez M, Rincón D, Abraldes JG, Miquel R, Colmenero J, Bellot P, García-Pagán JC, Fernández R, Moreno M, Baharés A, Arroyo V, Caballero J, Ginés P, Battraller R. A new scoring system for prognostic stratification of patients with alcoholic hepatitis. *Am J Gastroenterol* 2008; 103: 2747-2756 [PMID: 18712142 DOI: 10.1111/j.1572-0241.2008.02104.x]

Louvet A, Naveau S, Abdellnour M, Ramon MJ, Diaz E, Martoux L, Dhurandy S, Texier F, Hollebecque A, Serfatty L, Bolewalwski E, Deltenre P, Canva V, Pruvot FR, Mathurin P. The Lille model: a new tool for stratification of patients with alcoholic hepatitis. *Am J Gastroenterol* 2008; 103: 1034-1041 [PMID: 18848598 DOI: 10.1111/j.1572-0241.2008.02104.x]

Thursz MR, Richardson P, Allison M, Austin A, Bowers M, Day CP, Downs N, Gleeson D, MacGillchrist A, Grant A, Hood S, Masson S, McCune A, Mellor J, O’Grady J, Patch D, Ratcliffe I, Roderick P, Stanton S, Syed MI, Krowka MJ, Hervé P, Fallon MB; ERS (European Respiratory Society) Task Force-Evidence Based Guidelines for Pulmonary Venous hypertension (PHD) Scientific Committee. Highlights of the ERS Task Force on pulmonary-hepatic vascular disorders. *Respir Med* 2008; 102: 1871-1874 [PMID: 18568789 DOI: 10.1016/j.rmed.2008.07.014]

Poor H. Pulmonary Vascular Diseases in the Elderly. *Clin Geriatr Med* 2017; 33: 553-562 [PMID: 28991650 DOI: 10.1016/j.cger.2017.06.067]

Hoepfer MM, Bogaard HJ, Condiffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F, Wilkins MR, Badesch DB. Definitions and diagnosis of pulmonary hypertension. *J Am Coll Cardiol* 2013; 62: D42-D50 [PMID: 24355641 DOI: 10.1016/j.jacc.2013.01.031]

Ling Y, Johnson MK, Kiedy DG, Condiffe R, Elliot CA, Gibbs JSR, Howard LS, Pepke-Zaba J, Sheares KKK, Corrias PA, Fisher AJ, Lordie JB, Gough C, Coghlan WG, Wor SJ, Waterson MA, Peacock AJ. Changing Demographics, Epidemiology, and Survival of Incident Pulmonary Arterial Hypertension. *Am J Respir Crit Care Med* 2012; 186: 790-8 [DOI: 10.1164/rccm.2012-0383OC]

Sayed MI, Karsan H, Ferral H, Shank A, Waheed U, Akhtar T, Gabbard A, Morar K, Tyrrell R. Prevalence and outcome of diastolic dysfunction in liver transplantation recipients. *Acta Cardiol* 2014; 69: 273-280 [PMID: 25029872 DOI: 10.2143/AC.69.3.3078390]

Saliba F, Ichi P, Levesque E, Samuel D. Cirrhotic patients in the ICU: prognostic markers and outcome. *Curr Opin Crit Care* 2013; 19: 154-160 [PMID: 23426137 DOI: 10.1097/MCC.0b013e3283755e17]

Chen CY, Wu C, Pan CF, Chen HH, Chen YW. Influence of Age on Critically Ill Patients with Cirrhosis. *Inter J Gerontol* 2015; 9: 233–238 [DOI: 10.1016/j.jgero.2014.10.005]

Jalan R, Saliba F, Pavesi M, Amoros A, Moreau R, Ginés P, Levesque E, Durand F, Angeli P, Caraceni P,
Carrier P et al. Cirrhotic patients

Hofc C, Alessandria C, Rodriguez E, Solis-Muñoz P, Lalame W, Trebicka J, Zeuzem S, Gustot T, Mookerjee R, Elkrief L, Soriano G, Cordoba J, Morando F, Gerbes A, Agarwal B, Samuel D, Bernardi M, Arroyo V; CANONIC study investigators of the EASL-CLIF Consortium. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. *J Hepatol* 2014; 61: 1038-1047 [PMID: 24950482 DOI: 10.1016/j.jhep.2014.06.012]

Jalan R, Pavesi M, Saliba F, Amorós A, Fernandez J, Holland-Fischer P, Sawhney R, Mookerjee R, Caraceni P, Moreau R, Ginés P, Durand F, Angeli P, Alessandria C, Lalame W, Trebicka J, Samuel D, Zeuzem S, Gustot T, Gerbes AL, Wendon J, Bernardi M, Arroyo V; CANONIC Study Investigators; EASL-CLIF Consortium. The CLIF-C ADAS for prognosis of hospitalised cirrhotic patients without acute-on-chronic liver failure. *J Hepatol* 2015; 62: 831-840 [PMID: 25465339 DOI: 10.1016/j.jhep.2014.11.012]

Tas A, Akbal E, Beyazi Y, Koçak E. Serum lactate level predict mortality in elderly patients with cirrhosis. *Wien Klin Wochenschr* 2012; 124: 520-525 [PMID: 22810566 DOI: 10.1007/s00508-012-0208-x]

Wiest R, García-Tsao G. Bacterial translocation (BT) in cirrhosis. *Hepatology* 2005; 41: 422-433 [PMID: 15732330 DOI: 10.1002/hep.20632]

Mancinella A, Mancinella M, Marigliano B, Marigliano V. Cirrhotic spontaneous bacterial peritonitis in the elderly. *Recenti Prog Med* 2011; 102: 28-32 [PMID: 21516669]

Terra C, Guevara M, Torre A, Gilabert R, Fernández J, Martin-Llahi M, Baccaro ME, Navasa M, Bru C, Arroyo V, Rodés J, Ginès P. Renal failure in patients with cirrhosis and sepsis unrelated to spontaneous bacterial peritonitis: value of MELD score. *Gastroenterology* 2005; 129: 1994-1953 [PMID: 16344063 DOI: 10.1053/gast.2005.09.024]

Fernández J, Prado V, Trebicka I, Amoros A, Gustot T, Wiest R, Deulofeu C, García E, Azvedo J, Fuhrmann V, Durand F, Sánchez C, Capp M, Caraceni P, Vargas V, Ballares R, Piano S, Janicco M, Albillos A, Alessandria C, Soriano G, Welzel TM, Lalame W, Gerbes A, De Gottardi A, Merli M, Coenraad M, Saliba F, Pavesi M, Jalan R, Ginés P, Angeli P, Arroyo V; European Foundation for the Study of Chronic Liver Failure (EF-CLIF). Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. *J Hepatol* 2019; 70: 398-411 [PMID: 30391380 DOI: 10.1016/j.jhep.2018.10.027]

Friedrich-Rust M, Wang B, Heupel F, Fillmann N, Brodt R, Kempf VA, Kessel J, Wielchhaus TA, Herrmann E, Zeuzem S, Bojunga J. Influence of antibiotic-regimens on intensive-care unit-mortality and liver-cirrhosis as risk factor. *World J Gastroenterol* 2016; 22: 4201-4210 [PMID: 27122670 DOI: 10.3748/wjg.v22.i16.4201]

Ramadan IH, Makhlouf NA, Mahmoud AA, Abd Elhrman M, El-Masya MA. Role of vitamin D deficiency as a risk factor for infections in cirrhotic patients. *Clin Res Hepatol Gastroenterol* 2019; 43: 51-57 [PMID: 30318358 DOI: 10.1016/j.clinre.2018.09.001]

Anty R, Ansee MQ, Gual P, Tran A. Prophyllaxis of bacterial infections in cirrhosis: is an optimal 25-OH vitamin D level required? *J Hepatol* 2014; 61: 965-966 [PMID: 25020157 DOI: 10.1016/j.jhep.2014.06.039]

Cruz-Infante AJ, Landi F, Schneider SM, Zülfiga C, Ariai H, Boirie Y, Chen LK, Fielding RA, Martin FC, Michel JP, Sieber C, Stout JR, Studenski SA, Vellas B, Woo J, Zamboni M, Cederholm T. Prevalence of sarcopenia in the elderly. *Recenti Prog Med* 2013; 102: 28-32 [PMID: 21516669]

Wong F, Shneiderman K, Liu P, Blendis L. The mechanism of the initial natriuresis after transjugular intrahepatic portosystemic shunt. *J Hepatol* 1997; 31: 520-529 [PMID: 9041252 DOI: 10.1016/S0168-8278(97)70142-5]

Su F, Yu L, Berry K, Landis CS, Hayashi SC, Reyes JD, Ioannou GN. Aging of Liver Transplant Registrants and Recipients: Trends and Impact on Waitlist Outcomes, Post-Transplantation Outcomes, and Transplant-Related Survival Benefit. *Gastroenterology* 2016; 150: 441-453.e6; quiz e16 [PMID: 26522262 DOI: 10.1053/j.gastro.2015.10.043]

Sharpton SR, Feng S, Hameed B, Yao F, Lai JC. Combined effects of recipient age and model for end-stage liver disease score on liver transplantation outcomes. *Transplantation* 2014; 98: 557-562 [PMID: 24717221 DOI: 10.1097/TP.0000000000000909]

Ojo AO, Held PJ, Porti FK, Wolfe RA, Leichtman AB, Young EW, Arnsdorf J, Christensen L, Merion RM. Chronic renal failure after transplantation of a nonrenal organ. *N Engl J Med* 2003; 349: 931-940 [PMID: 12954741 DOI: 10.1056/nejmoa021744]

Maurel P, Loubat-Ratti V, Carrier P, Marie E, Rousseau A, Debette-Graten M, Silvain C, Causse X, Barbier L, Prémault A, Salamé E. PS-044 - Effect of longitudinal exposure to tacrolimus on chronic kidney disease occurrence at one year post liver transplantation. *J Hepatol* 2018; 68: S26 [DOI: 10.1016/S0168-8278(18)30269-1]

Lai JC, Segev DL, McCulloch CE, Covinsky KE, Dodge JL, Feng S. Physical frailty after liver transplantation. *Am J Transplant* 2018; 18: 1986-1994 [PMID: 29380529 DOI: 10.1111/ajt.14675]

Feng S, Goodrich NP, Bragg-Gresham JL, Dykstra DM, Punch JD, DeRoy MA, Greenstein SM, Merion RM. Characteristics associated with liver graft failure: the concept of a donor risk index. *Am J Transplant* 2006; 6: 783-790 [PMID: 16539630 DOI: 10.1111/j.1600-6143.2006.01242.x]

Gao Q, Mulvihill MS, Scheuermann U, Davis RP, Yerxa J, Yerokun BA, Hartwig MG, Sultan DL, Knechtle SJ, Barbas AS. Improvement in Liver Transplant Outcomes From Older Donors: A US National Analysis. *Ann Surg* 2018 [PMID: 29958229 DOI: 10.1097/SLA.0000000000002876]

Alosa TA, Knight R, Gaber AO, Ghobrial RM, Goss JA. Analysis of liver transplant outcomes for United Network for Organ Sharing recipients 60 years old or older identifies multiple model for end-stage liver
disease-independent prognostic factors. Liver Transpl 2010; 16: 950-959 [PMID: 20589647 DOI: 10.1002/lt.22098]

173 Rana A, Hardy MA, Halazun KJ, Woodland DC, Ratner LE, Samstein B, Guerrera JV, Brown RS, Emond JC. Survival outcomes following liver transplantation (SOFT) score: a novel method to predict patient survival following liver transplantation. Am J Transplant 2008; 8: 2537-2546 [PMID: 18945283 DOI: 10.1111/j.1600-6143.2008.02400.x]

174 Dutkowski P, Oberkofler CE, Slankamenac K, Puhan MA, Schadde E, Müllhaupt B, Geier A, Clavien PA. Are there better guidelines for allocation in liver transplantation? A novel score targeting justice and utility in the model for end-stage liver disease era. Ann Surg 2011; 254: 745-753; discussion 753 [PMID: 22042468 DOI: 10.1097/SLA.0b013e3182365081]
