Nanosized TiO\textsubscript{2} has attracted increasing attention in the scientific community for its wide applications in photocatalysts, solar cells, gas sensors and optoelectronic devices1-2. In recent years, the excellent photocatalytic property of TiO\textsubscript{2} is due to its wide band gap and the long lifetime of photogenerated holes and electrons3-8. With an appropriate light source, a TiO\textsubscript{2} photocatalyst generates electron/hole pairs to initiate a series of chemical reactions that eventually mineralize the pollutants9,10. Titanium dioxide usually exists in the form of anatase, rutile and brookite. In a photocatalytic study, anatase TiO\textsubscript{2} is generally considered to be more active than rutile crystalline11. The anatase phase is thermodynamically metastable and easily transforms into the stable rutile phase, when TiO\textsubscript{2} is calcined at high temperature. Moreover, anatase TiO\textsubscript{2} with a higher crystallinity means fewer defects for the recombination of photogenerated electrons and holes12. Rutile TiO\textsubscript{2} has been shown to be negligibly photactive for the photo-oxidation of many organic pollutants in aqueous media, but its resistance to disaggregation is higher than that of anatase TiO\textsubscript{2}11,12. It should be considered that photocactivity also strongly depends on bulk and surface physicochemical properties of the photocatalysts, such as the type of phases, the surface hydroxylation, the porosity, the surface area, the adsorption capacity, the distribution of the supported photoactive component and the surface acid-base properties13-15.

The physical, chemical and photochemical properties of TiO\textsubscript{2} nanoparticles are dependent on the manufacturing method. To enhance the application of TiO\textsubscript{2}, several processes have been developed over the last decade and can be classified as liquid process sol-gel26-31, solvothermal22,23, hydrothermal24-26, solid state processing routes (mechanochemical alloying/milling)27-30, thermal hydrolysis31,32 and other routes such as laser evaporation33 and ultrasonic synthesis34. However, TiO\textsubscript{2} particles prepared by these processes are relatively large with inhomogeneous morphologies. The sol-gel process has notable advantages such as high purity, good uniformity of the microstructure, low temperature synthesis, easily controlled reaction conditions and hence has been widely adopted for preparing nanostructured TiO\textsubscript{2} particles.

There are several parameters for controlling the sol-gel process to prepare TiO\textsubscript{2} particles with significant properties. It has been demonstrated that the precursor’s concentration of titanium alkoxide greatly affects the crystallization behaviour and the characteristics of the final particle35,36. The size, stability and morphology of the sol produced from alkoxide is strongly affected by the hydrolysis and pH. The pH of the prepared solution has a great influence on the final size of TiO\textsubscript{2} nanoparticles. The reaction morphology and the effect of the pH on the formation of TiO\textsubscript{2} particles are of great interest, because nanosized particles are formed under these conditions. Therefore, a controlled pH and reaction morphology are required for the optimization of the preparation conditions of
Titanium tetra-isopropoxide [TTIP, Ti(OCH(CH₃))₄] and isopropyl alcohol (IPA, C₃H₈O) were mixed in the molar ratio of 1:10 and stirred for 1 h. Another solution was prepared from a mixture of H₂O and isopropyl alcohol with a molar ratio of 10:1. This solution was then titrated into the TTIP-IPA solution and stirred for 2 h until a uniform colloidal TiO₂ sol was produced. A TiO₂ sol is chemically unstable in the neutral pH range and therefore it easily agglomerates when it transforms into the gel state. However, this instability can be controlled by adding an acid. Solutions with various pH were used as the hydrolysis catalyst. The desired pH value of the solution was adjusted by adding HCl and NH₄OH. The gel preparation process started when both solutions were mixed together under vigorous stirring. After the peptization process, the volume of the solution decreased and a suspension was produced. Depending on the preparation conditions, the resultant suspension was white-blue or opaque with a high viscosity. The viscous solution was dried at 100 ºC in an oven for 24 h. After being washed with ethanol and dried at 100 ºC in an oven for 10 h, a yellow-white powder was obtained. Finally, the prepared powder was heat-treated at temperatures ranging from 200-600 ºC for 3 h.

The crystallization process of the precursor was evaluated by thermogravimetry-differential thermal analysis (TG-DTA, SETRAM, France), using a sample weight of about 24 mg and a heating rate of 10°C/min. The crystalline phases and average crystallite sizes after heat-treatment were identified by powder X-ray diffraction (XRD, CuKα, 40 kV, 30 mA, Rigaku, Japan) with a scan rate of 3 °/min. The particle size and microstructural morphology of the nanocrystalline powders were observed by scanning electron microscopy (SEM, JSM-35CF, JEOL).

RESULTS AND DISCUSSION

The preparation of the TiO₂ colloids in the nanometre range can be effectively conducted through the hydrolysis and condensation of titanium alkoxides in aqueous media. In the presence of water, alkoxides are hydrolyzed and subsequently polymerized to form a three-dimensional oxide network. These reactions can be schematically represented as follows:

\[
\begin{align*}
\text{Ti(OR)}_4 + 4\text{H}_2\text{O} & \rightarrow \text{Ti(OH)}_4 + 4\text{ROH} \quad \text{(hydrolysis)} \\
\text{Ti(OH)}_4 & \rightarrow \text{TiO}_2\cdot x\text{H}_2\text{O} + 2-x\text{H}_2\text{O} \quad \text{(condensation)}
\end{align*}
\]

where R is ethyl, i-propyl, n-butyl, etc.⁴,¹⁵. It is well known that the tetravalent cations are too acidic so that the nucleation of the stable hydroxide Ti(OH)₄ cannot occur. Water molecules formed according to reaction (2) always bear a positive partial charge. Therefore, oxolation and olation can proceed simultaneously during nucleation and growth leading to an amorphous oxide TiO₂·nH₂O where the number of water molecules depends on the experimental conditions. Depending on the experimental procedure, the precipitation of TiO₂ leads to rutile or anatase phases.⁴,¹⁵ The stage of deoxilation prior to olation can be controlled by adjusting the pH and initial water concentration. This control leads to precipitation of anatase nanoparticles of TiO₂ in the experimental procedure.

Table 1 shows the effect of catalysts of NH₄OH/HC1, the molar ratio of catalyst/TTIP and pH on the morphology and crystalline structure of the TiO₂. When the catalyst is NH₄OH or there is none in the solution with the pH level from 10.07 to 5.04, powder forms with amorphous phases were observed. Otherwise, when the catalyst is HCl in the solution with the pH level from 3.96 to 1.90, an agglomerated granular and bulk form with amorphous and anatase phases were observed. Therefore, TiO₂ nanoparticles with various morphologies and crystal structures were synthesized by the hydrolysis reaction of titanium tetra-isopropoxide using the molar ratio of catalyst and TTIP with various pH values in acid and base solutions. The morphology and phase transformation of TiO₂ powder prepared by hydrolysis of titanium tetra-isopropoxide were strongly influenced by the presence of the catalysts HCl and NH₄OH.

![Fig. 1](image-url)

Fig. 1 shows SEM micrographs of the TiO₂ powders dried at 100 ºC with a catalyst of NH₄OH. The TiO₂ powder exhibited a homogeneous spherical morphology and a particle size distribution with sizes of 100-200 nm for pH 10.67 in Fig. 1(a) and 9.45 in Fig. 1(b). The particle morphology and particle size distribution had an inhomogeneous tendency to decrease depending on a relatively lower pH value of 7.77 in Fig. 1(c) and 5.04 in Fig 1(d). On the other hand, Fig. 2 shows SEM micrographs of the TiO₂ powders dried at 100 ºC with a catalyst of HCl. It showed a granular form for pH 3.96 in Fig. 2(a) and a bulk-like form for pH 2.95(b), 2.12(c), 1.92(d).

The effect of pH on the TiO₂ nanopowder after heat-treatment was evaluated for the crystalline phase and size. Fig. 3

Samples	Catalyst	Molar ratio catalyst/TTIP	pH	Morphology	Crystal structure
N 1.0	NH₄OH	1.0	10.07	Powder	Amorphous
N 0.5	NH₄OH	0.5	9.45	Powder	Amorphous
N 0.25	NH₄OH	0.25	7.77	Powder	Amorphous
N 0.0	No catalyst	0.0	5.04	Powder	Amorphous
H 0.05	HCl	0.05	3.96	Agglomerate	Amorphous
H 0.1	HCl	0.1	2.95	Granule	Amorphous
H 0.25	HCl	0.25	2.12	Bulk	Anatase
H 0.5	HCl	0.5	1.90	Bulk	Anatase
Fig. 1. SEM micrographs of the TiO$_2$ powders dried at 100 ºC with a catalyst of NH$_4$OH; (a) pH 10.67, (b) pH 9.45, (c) pH 7.77 and (d) pH 5.04.

Fig. 2. SEM micrographs of the TiO$_2$ powders dried at 100 ºC with a catalyst of HCl; (a) pH 3.96, (b) pH 2.95, (c) pH 2.12 and (d) pH 1.92.

shows XRD patterns of TiO$_2$ powders calcined for 3 h at (a) 200, (b) 300, (c) 400 and (d) 500 ºC with NH$_4$OH as the catalyst; (A) NH$_4$OH/TTIP = 0.5, (B) NH$_4$OH/TTIP = 0.25. The representative (101) plane diffraction peak at 25.3° is used for anatase and (110) peak at 27.5° for rutile. This shows that the anatase phase was observed above 200 ºC, while the rutile phase above 500 ºC. In the case of (A) NH$_4$OH/TTIP = 0.5 (pH 9.45), the rutile phase was increased compared to the case of (B) NH$_4$OH/TTIP = 0.25 (pH 7.77) in Fig. 3. The effect of calcination temperature on the crystallization with HCl as the catalyst was also investigated. Fig. 4 shows XRD patterns of TiO$_2$ powders calcined for 3 h at (a) dried, (b) 200, (c) 300 and (d) 400 and (e) 500 ºC with HCl as the catalyst; (A) HCl/TTIP = 0.25, (B) HCl/TTIP = 0.5 (Fig. 4). It shows that the anatase phase was observed above 100 ºC and the rutile phase was observed above 500 ºC in the case of (A) HCl/TTIP = 0.25 (pH 2.12), while the rutile phase was increased above 400 ºC in the case of (B) HCl/TTIP = 0.5 (pH 1.92) (Fig. 4).

Table-2 shows the formation of various phases for the TiO$_2$ powders as a function of pH and the calcination temperature (Am: amorphous, A: anatase, R: rutile). When the temperature was raised, the anatase phase transformed to the rutile
temperature of the rutile ratio is shifted to a low temperature and pH level. It is assumed that the anatase phase has been eliminated following large rutile particles with poor agglomeration and aggregation takes place during the particle growth process at higher temperatures.

The average crystallite size of the heat-treated powders was calculated using X-ray diffractometry line broadening method through the following Sherrer’s equation:

$$D = \frac{K\lambda}{\beta \cos \theta}$$ \hspace{1cm} (4)

where D is the crystallite size, λ is wavelength of the radiation ($\lambda = 1.5418$ Å), θ is Bragg’s angle, β is the full width at half maximum (radian) and K is constant (0.9-1.4). Fig. 6 shows the average grain size of anatase as a function of calcination temperature. The average sizes of anatase TiO$_2$ nanoparticles were in the range of 10-48 nm at calcination temperatures between 100 and 500 °C. Anatase TiO$_2$ nanoparticles could be obtained above 300 °C in acid (pH 2.12, pH 1.92) with sizes 10-27 nm, while in the base (pH 10.67, pH 1.92) with sizes 16-47 nm. The anatase nanoparticles could be prepared at a lower temperature in the base solution and at above 300 °C in the acid solution with a lower particle size compared to the base solution at the same temperature between 300 and 500 °C. It is considered that the remaining amount of anatase became very small in the acid solution, because the phase transformation from anatase to rutile was significantly activated in the acid solution at an increasing temperature. It is noted that nucleation and growth of the rutile phase have been initiated at temperatures from 400-600 °C. Consequently, the phase transformations of amorphous Ti(OH)$_4$ to anatase TiO$_2$ and anatase to rutile were significantly activated by the HCl catalyst and temperature. On the other hand, the phase transformation and the crystallization of the powders were not activated by the NH$_4$OH catalyst.

Conclusion

Titanium dioxide nanoparticles with a homogeneous particle distribution were successfully prepared using a hydrolysis reaction of titanium tetra-isopropoxide. The micro-

Table 2: Formation of Various Phases for the TiO$_2$ Powders as a Function of pH and Calcination Temperature

Sample	pH	Dried	200 °C	300 °C	400 °C	500 °C
N 1.0	10.07	Am	Am	A	A	A + R
N 0.5	9.45	Am	Am	A	A	A + R
N 0.25	7.77	Am	Am	A	A	A + R
N 0.0	5.04	Am	Am	A	A	A + R
H 0.05	3.96	Am	Am	A	A	A
H 0.1	2.95	Am	Am	A	A	A
H 0.25	2.12	A	A	A	A + R	A + R
H 0.5	1.90	A	A	A + R	A + R	A + R

Am: amorphous, A: anatase, R: rutile.
structural morphology and phase transformation of TiO₂ particles prepared by hydrolysis of titanium tetra-isopropoxide were strongly influenced by the presence of catalysts. In the case of NH₄OH, the morphology of the TiO₂ powder exhibited a powder form. In the case of HCl, it showed a bulk or granular form. The phase transformations of amorphous Ti(OH)₄ to anatase TiO₂ and anatase to rutile were significantly activated by the HCl catalyst. On the other hand, the phase transformation and the crystallization of the particles were not activated by the NH₄OH catalyst.

ACKNOWLEDGEMENTS

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013-054508).

REFERENCES

1. Y. Zhang, J. Wan and Y. Ke, J. Hazard. Mater., 177, 750 (2010).
2. M.I. Mejia, J.M. Marin, G. Restrepo, L.A. Rios, C. Pulgarin and J. Kiwi, App. Catal. B: Environ., 94, 166 (2010).
3. C.J. Barbe, F. Arendse, P. Conte, M. Jirousek and M. Grätzel, J. Am. Ceram. Soc, 80, 3157 (1997).
4. R. Monticone, A.V. Tufeu, E. Kanaev, C. Scolan and C. Sanchez, Appl. Surf. Sci., 162-163, 565 (2000).
5. Y. Li, X. Sun, H. Li, S. Wang and Y. Wei, Powder Technol., 194, 149 (2009).
6. N. Wetchakun and S. Phanichphant, Curr. Appl. Phys., 8, 343 (2008).
7. B.L. Bischoff and M.A. Anderson, Chem. Mater., 7, 1772 (1995).
8. X.-Z. Ding, Z.-Z. Qi and Y.-Z. He, J. Mater. Sci. Lett., 14, 21 (1995).
9. D. Vorkapic and T. Matsoukas, J. Am. Ceram. Soc., 81, 2815 (1998).
10. S. Mahshid, M. Askari and M.S. Ghamsari, J. Mater. Proc. Technol., 189, 296 (2007).
11. A. Amlouk, L. El Mir, S. Kraiem and S. Alaya, J. Phys. Chem. Solids, 67, 1464 (2006).
12. S. Mahshid, M. Askari, M. Sasi, Ghamsari, N. Afshar and S. Lahuti, J. Alloys Comp., 478, 586 (2009).
13. C.-S. Kim, B.K. Moon, J.-H. Park, S.T. Chung and S.-M. Son, J. Cryst. Growth, 254, 405 (2003).
14. C.-S. Kim, B.K. Moon, J.H. Park, B.C. Choi and H.J. Seo, J. Cryst. Growth, 257, 309 (2003).
15. D. Wang, F. Zhou, C. Wang and W. Liu, Micropor. Mesopor. Mater., 116, 658 (2008).
16. J. Beusen, M.K. Van Bael, H. Van den Rul, J. D’Haen and J. Mullens, J. Eur. Ceram. Soc., 27, 4529 (2007).
17. J.K. Oh, J.K. Lee, S.J. Kim and K.W. Park, J. Ind. Eng. Chem., 15, 270 (2009).
18. X. Pan and X. Ma, Mater. Lett., 58, 513 (2004).
19. J.L. Guimaraes, M. Abbate, S.B. Betim and M.C.M. Alves, J. Alloys Comp., 352, 16 (2003).
20. M. Kamei and T. Mitsukishi, Surf. Sci., 463, L609 (2000).
21. S. Cassaignon, M. Koelsch and J.-P. Jolivet, J. Phys. Chem. Solids, 68, 695 (2007).
22. A. Di Paola, G. Cufalo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato and L. Palmisano, Colloids Surf. A, 317, 366 (2008).
23. A.P. Caricato, S. Capone, G. Ciccarella, M. Martin, R. Rella, F. Romano, J. Spadavecchia, A. Taurino, T. Tunno and D. Valerini, Appl. Surf. Sci., 253, 7937 (2007).
24. H. Chang, C.S. Jwo, C.H. Lo, M.J. Kao and S.H. Pai, J. Alloys Comp., 434-435, 668 (2007).
25. B.L. Bischoff and M.A. Anderson, Chem. Mater., 7, 1772 (1995).
26. X.Z. Ding, Z.Z. Qi and Y.Z. He, J. Mater. Sci. Lett., 14, 21 (1995).
27. D. Vorkapic and T. Matsoukas, J. Am. Ceram. Soc., 81, 2815 (1998).
28. J.L. Look and C.F. Zuckoski, J. Am. Ceram. Soc., 75, 1587 (1992).
29. T. Sugimoto, X. Zhou and A. Muramatsu, J. Colloid Interf. Sci., 259, 43 (2003).
30. T. Sugimoto, X. Zhou and A. Muramatsu, J. Colloid Interf. Sci., 259, 53 (2003).
31. J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 18, 259 (1981).
32. H. Shin, H.S. Jung, K.S. Hong and J.-K. Lee, Chem. Lett., 33, 1382 (2004).
33. N. Phonthammachai, T. Chaitharamsuee, E. Gulari, A.M. Jamieson and S. Wongkasemjit, Micropor. Mesopor. Mater., 166, 261 (2003).
34. R.A. Spur and H. Myers, Anal. Chem., 29, 760 (1957).
35. K.N.P. Kumar, K. Keizer and A.J. Bureggraaf, J. Mater. Chem., 3, 1141 (1993).