Secondary metabolite compounds from Sida genus and their bioactivity

N.S. Aminah a,*, E.R. Laili a, M. Rafi b, A. Rochman c, M. Insanud d, K.N.W. Tun e,f

a Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya, 60115, Indonesia
b Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor, Jalan Tanjung Kampus IPB Dramaga, Bogor 16680, Indonesia
c Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
d Department of Pharmaceutical Biology, School of Pharmacy, Institut Teknologi Bandung, Bandung, West Java, Indonesia
e Postdoc Fellow Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya, 60115, Indonesia
f Department of Chemistry, Pathein University, Pathein, Myanmar

ARTICLE INFO

Keywords:
Sida
Alkaloids
Flavonoids
Coumarin
Anticancer
Antidiabetic

ABSTRACT

Plants are the key source for the production of novel therapeutic products for new medicines. The biological properties of the plant species used world wide are mainly accountable for their secondary metabolites obtained from plants. The goal of this analysis is to summarize the chemical composition and biological effects of the genus Sida (Malvaceae) to identify potential research opportunities. This analysis draws on the literature review of scientific journals, and books from libraries, and electronic sources like ScienceDirect, Springer, PubMed, ResearchGate, Google Scholar, and the website. Some groups of secondary metabolite compounds isolated from the genus Sida include alkaloids, flavonoids, coumarin, and others. Pharmacological experiments found that there are a wide variety of biological activities in extracts and compounds isolated from the genus Sida comprising antimalarial, antiplasmodial, antimicrobial, analgesic, antibacterial, antioxidant, vasorelaxant, wound healing, antifungal activities, the inhibition of quinone reductase, and mouse mammary organ culture.

1. Introduction

Metabolites are the transitional products of metabolism and restricted to small molecules. Plant produces a lot of chemicals that can be categorized into primary metabolites and secondary metabolites. Primary metabolites are necessary for cell function and they are omnipresent. Secondary metabolites are useful for human because of their diverse applications (Dufour and Rao, 2011; Olivoto et al., 2017; Yang et al., 2018).

The genus sida has relatively 200 species scattered in every part of tropical and subtropical regions in the world (Mabberley, 1997). The genus sida is originated in Brazil (Bovini, 2015). This plant can be used as traditional medicine, but no reviews have been made on the phytochemical, toxicological and pharmacological properties of the genus Sida.

The main focus of this review is phytochemistry, pharmacological properties, botanical aspects of the herbs, their experimental application and translational investigation of genus sida (see Table 1).

2. Botanical description

2.1. Sida cordifolia

Sida cordifolia is an erect perennial growing up to 50–200 cm high. Leaves are oblong, hair-coated and 3.5 cm long. The trunks are green-yellow, thick, long and short. The cycle of flora and fruit is from October to December (Shetu et al., 2019). Sida cordifolia plants according to Khurana et al. (2016) have the following categorization:

Kingdom	Plantae
Subkingdom	Tracheobionta
Super division	Spermatophyta
Division	Magnoliophyta
Class	Magnoliopsida
Subclass	Dilleniidae
Superorder	Malvaceae
Order	Malvales
Family	Malvaceae
Subfamily	Malvoideae
Tribe	Malveae
Genus	Sida
Species	S. cordifolia
Scientific name	S. cordifolia L.

* Corresponding author.
E-mail address: nanik-s-a@fst.unair.ac.id (N.S. Aminah).

https://doi.org/10.1016/j.heliyon.2021.e06682
Received 17 July 2020; Received in revised form 15 November 2020; Accepted 30 March 2021
2405-8440/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Table 1. Isolated compounds from Genus Sida and their biological activities.

Compound name	Species	Biological activities	References
7α-methoxy-taraxasterone (1)	S. cordifolia	Bioactive	Ghosh and Dutta (1930)
β-phenethylamine (2)	S. cordifolia	Bioactive	Ghosal et al. (1975)
ephedrine (3)	S. cordifolia	Bioactive	Ghosal et al. (1975)
7α-ephephedrine (4),	S. cordifolia	Bioactive	Ghosal et al. (1975)
S-(+)-N8-methyltrypro-phanmethyl ester (5)	S. cordifolia	Bioactive	Ghosal et al. (1975)
hypaphorine (6)	S. cordifolia	Bioactive	Ghosal et al. (1975)
vasicinone (7)	S. cordifolia	Bioactive	Ghosal et al. (1975)
vasiciner(8)	S. cordifolia	Bioactive	Ghosal et al. (1975)
vasicinol (9)	S. cordifolia	Bioactive	Ghosal et al. (1975)
quinidolione (10)	S. acuta	Quinone reductase	Jang et al. (2003)
cryptolepine (11)	S. acuta, S. rhombifolia	Vasorelaxant, Mouse mammary organ culture, Quinone reductase	Jang et al. (2003), Chaves et al. (2013)
11-methoxyquinidoline (12)	S. acuta	Quinone reductase	Jang et al. (2003)
N-trans-feruloylflavine (13)	S. acuta	Mouse mammary organ culture	Jang et al. (2003)
5′-hydroxymethyl-1′(1,2,3,9-tetrahydro-pyrrolo[2,1-b]quinazolin-1-yl)-heptan-1-one (14)	S. cordifolia	Bioactive	Sutradhar et al. (2006)
1,2,3,9-tetrahydro-pyrrolo[2,1-b]quinazolin-3-ylamine (15)	S. cordifolia	Bioactive	Sutradhar et al. (2007)
2′-(1′-amino-butyl) indol-3-one (16)	S. cordifolia	Bioactive	Sutradhar et al. (2007)
2′-(3H-indol-3-ylmethyl) butan-1′-ol (17)	S. cordifolia	Bioactive	Sutradhar et al. (2007)
a salt of cryptolepine (18)	S. cordifolia	Bioactive	Chaves et al. (2013)
11-methoxy-quinidoline (19)	S. cordifolia	Bioactive	Chaves et al. (2013)
quinidoline (20)	S. cordifolia	Bioactive	Chaves et al. (2013)
1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-amine (21)	Sida glutinosa	Bioactive	Das et al. (2011)
3,4,5,6-tetrahydro-3-methyl-β-carboline-5-carboxylic acid (22)	Sida szechuensis	Bioactive	Yao and Xu (2000)
cryptolepine (23)	S. acuta	Antiplasmodial	Banzouzi et al. (2004)
3′-(3′,7′-dimethyl-2′,6′-octadiene)-8-C-β-D-glucosyl-kaempferol 3-O-β-D-glucoside (24)	S. cordifolia	Bioactive	Sutradhar et al. (2007)
3′-(3′,7′-dimethyl-2′,6′-octadiene)-8-C-β-D-glucosyl-kaempferol 3-O-β-D-glucosyl [1→4]-β-D-glucoside (25)	S. cordifolia	Bioactive	Sutradhar et al. (2007)
6-(3′-methyl2′-butene)-3′-methoxyl-8-C-β-D-glucosyl-kaempferol 3-O-β-D-glucosyl[1→4]-β-D-glucosylkaempferol 3-O-β-D-glucoside (26)	S. cordifolia	Bioactive	Sutradhar et al. (2007)
5,7-dihydroxy-3-isoprenylflavone (27)	S. cordifolia	Bioactive	Sutradhar et al., (2008)
5-hydroxy-3-isoprenyl Flavone (28)	S. cordifolia	Bioactive	Sutradhar et al., (2008)
5,7-dihydroxy-4′-methoxyflavone (29)	S. rhombifolia	Bioactive	Chaves et al. (2013)
kaempferol (30)	S. rhombifolia	Bioactive	Chaves et al. (2013)
kaempferol-3-O-β-D-glucosyl-6′-α-D-rhamnose (31)	S. rhombifolia	Bioactive	Chaves et al. (2013)
Glutinoside (32)	S. glutinosus	Bioactive	Das et al. (2012)
Chrysin (33)	S. glutinosus	Bioactive	Das et al. (2012)
scopoletin (34)	S. acuta, S. rhombifolia	Bioactive	Jang et al. (2003)
scoporone (35)	S. rhombifolia	Bioactive	Jang et al. (2003)
20-hydroxy-24-hydroxymethyl ecduysone (36)	S. spinosa	Bioactive	Darwish and Reinecke (2003), Jadhav et al. (2007)
20-hydroxyecdysonc (37)	S. spinosa	Bioactive	Darwish and Reinecke (2003), Jadhav et al. (2007)
turkasterone (38)	S. spinosa	Bioactive	Darwish and Reinecke (2003)
makisterone C (39)	S. spinosa	Bioactive	Darwish and Reinecke (2003)
20-Hydroxyecdysonc-20,22-monoacetone (40)	S. spinosa	Bioactive	Darwish and Reinecke (2003)
24(26)-Dehydromakisterone A (41)	S. glutinosus	Bioactive	Das et al. (2012)
20,21,14α,20,22,24-heptahydroxycholestan-7-en-6-one (42)	S. zechiorhizus	Bioactive	Yao and Xu (2000)
polyposide B (43)	S. zechiorhizus	Bioactive	Yao and Xu (2000)
α-ecdysone (44)	S. zechiorhizus	Bioactive	Yao and Xu (2000)
25-acetoxy-20-hydroxyecdysonc-3-O-β-D-glucopyranoside (45)	S. rhombifolia	Bioactive	Jadhav et al. (2007)
Pierosterone-3-O-β-D-glucopyranoside ecldysteroid (46)	S. rhombifolia	Bioactive	Jadhav et al. (2007)
ecdysone-3-O-β-D-glucopyranoside (47)	S. rhombifolia	Bioactive	Jadhav et al. (2007)
2-deoxy-20-hydroxyecdysonc-3-O-β-D-glucopyranoside (48)	S. rhombifolia	Bioactive	Jadhav et al. (2007)
20-hydroxyecdysonc-3-O-β-D-glucopyranoside (49)	S. rhombifolia	Bioactive	Jadhav et al. (2007)
taraxast-1,20(30)-dien-3-one (50)	S. acuta	Antioxidant	Chen et al. (2007)
taraxasterone (51)	S. acuta	Antioxidant	Chen et al. (2007)
7a-methoxy-α-tocopherol (52)	S. acuta	Antioxidant	Chen et al. (2007)

(continued on next page)
Table 1 (continued)

Compound name	Species	Biological activities	References
γ-tocopherol (53)	S. acuta		Chen et al. (2007)
α-tocopherol (54)	S. acuta		Chen et al. (2007)
α-tocopin B (55)	S. acuta		Jang et al. (2003)
vomifoliol (56)	S. acuta		Jang et al. (2003)
loliloide (57)	S. acuta		Jang et al. (2003)
4-ketopinoresinol (58)	S. acuta		Jang et al. (2003)
evofolin-A (59)	S. acuta		Jang et al. (2003)
evofolin-B (60)	S. acuta		Jang et al. (2003)
glyceryl-1-eicosanoate (61)	S. spinosa		Darwin and Reinecke (2003)
p-hydroxyphenethyl trans-ferulate (62)	S. spinosa		Darwin and Reinecke (2003)
triacanone (63)	S. spinosa		Darwin and Reinecke (2003)
1-eicocene (64)	S. spinosa		Darwin and Reinecke (2003)
9-hydroxy-cis-11-octadecenoic acid (65)	S. spinosa		Darwin and Reinecke (2003)
1-O-β-D-Glucopyranosyl-(2S,3S,4R,8Z)-2-[(2R,3S,4R,8Z,11Z)-25;35,48;8Z]-24-trans-palmityloxy-1,3,4-triol (66)	S. spinosa		Chaves et al. (2013)
phaeophytin A (67)	S. rhombifolia		Chen et al. (2007)
17α-ethoxyphosphorhodborbide A (68)	S. rhombifolia		Chen et al. (2007)
13β-hydroxy phaeophytin B (69)	S. rhombifolia		Chen et al. (2007)
17β-ethoxyphosphorhodborbide B (70)	S. rhombifolia		Chen et al. (2007)

2.2. Sida acuta

There was no literature for plant description of Sida acuta. Sida acuta plants according to Mohideen et al. (2002) have the following categorization:

- **Kingdom**: Plantae
- **Division**: Dicotyledoneae
- **Class**: Malvales
- **Order**: Malvaceae
- **Family**: Sida
- **Species**: S. acuta
- **Scientific name**: Sida acuta Burman f.

2.3. Sida rhombifolia

Sida rhombifolia is a member of the genus *Sida* which belongs to the Malvaceae family. Local names are called guri, sidaguri, saliguri (Sumatra), sadagori, sidagori, otk-otko, taghuri, sidagori (Java), kahindu, mistaken (Nusa Tenggara) and hutugamo, bitumu, digo, sosapu (Maluku) (Dalimartha, 2003). Sidxaguri plants (*Sida rhombifolia* L) according to Sivarajan and Pradeep (1994), have the following classification:

- **Division**: Spermatophyta
- **Class**: Angiospermae
- **Order**: Malvales
- **Family**: Malvaceae
- **Genus**: Sida
- **Species**: S. rhombifolia
- **Scientific name**: Sida rhombifolia L.

2.4. Sida spinosa

Sida spinosa is recognized as Kantakinibala (prickly fanpetals) is an erect perennial shrub. This plant is primarily found in the warmer parts of India at the height of 4400 ft. The plant is stellate, with filiform leaves 30 cm–1 m high, stipules 2–5 mm long, petiole length 2–20 mm, 1–3 spiny tubercles present on the stem at the base of petiolo, lanceolate to ovate, oblong or rather orbicular, round at the base, acute or obtuse at the apex, and serrate at the apex. Moreover, flowers in terminal branches, axillary, solitary or 2–5 in fascicles, 2–5 mm pedicel, 0.2 cm long fruits, attached close to the center or tip. Calyx is 4–5 mm long and the fruits are compressed spherical with pubescent above. Furthermore, the length of the reddish brown glabrous seeds are 1.5 mm (Lin et al., 2010). *Sida spinosa* plants according to Singh and Navneet (2018) have the following classification:

- **Kingdom**: Plantae
- **Division**: Tracheophyta
- **Class**: Magnoliopsida
- **Order**: Malvales
- **Family**: Sida
- **Species**: S. spinosa
- **Scientific name**: Sida spinosa

2.5. Sida tuberculata

In an area of South America, *Sida tuberculata* is mostly grown and is a well-known drink such as infusion or tea. *Sida tuberculata* is an herbaeous or subshrub plant that grows between 40 and 80 cm in length and expands by kernels. Leaf blades elliptic or subrhombic to narrowly linear, upper surface with stellate trichomes; flowers and fruits crowded in subseisile axillary glomerules or, if solitary, the pedicels up to 15 mm long; calyx lobes with stellate trichomes and often with sparse simple trichomes in addition; and mericarps 6–8, muticous to submuticous, indehiscent (Rosa et al., 2015). *Sida tuberculata* plants according to https://www.earth.com/earthpedia/plant/no/sida-tuberculata/ have the following classification:

- **Kingdom**: Plantae
- **Division**: Tracheophyta
- **Class**: Dicotyledoneae
- **Order**: Malvales
- **Family**: Malvaceae
- **Genus**: Sida
- **Species**: S. tuberculata
- **Scientific name**: Sida tuberculata
2.6. *Sida cordata*

Sida cordata (Burm.f.), a medicinal plant, has been used for several illnesses. This plant belongs to the family Malvaceae which commonly grow in India. The plant is 30–80 cm tall. Soft hairy grows in its stems, petioles and pedicels pubescent. The heart-shaped leaves are 1–5.5 cm long and one at every node. The yellow flowers are produced on the axis of the leaf. Furthermore, flowers are axillary, solitary, 8–10 mm in diameter, Calyx 5 × 6 mm across, campanulate, 5-fid, simple and some stellate-hairy outside, glabrous within and around the margin, while the length of petioles is 1.5–30 mm. Moreover, the width of Corolla orange-yellow is 10 mm, the size of petals is 6 × 5 mm, obovate, base ciliolate. There are 4 × 3 mm schizocarps, globose, enclosed in persistent calyx; mericarps 5, awnless. The colour of the seeds is brownish black. The plant is blooming and fruiting throughout the year, but it is mainly produced from September through November. The plant is also best to live in unused lands, damp and cool which needs up to one thousand and five hundred meter of area (Ugborogho, 1980). *Sida cordata* plants according to https://www.gbif.org/species/5406739 have the following classification:

Kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliopsida
Order	Malvales
Family	Malvaceae
Genus	Sida
Species	*S. cordata*
Scientific name	*Sida cordata* (Burm.f)

2.7. *Sida glutinosa*

Sida glutinosa is different from other species. It has a viscid dense stem with glandular and cutaneous hair, sometimes with star hair; leaves 2–4 × 1–3 cm, symmetrical, concolor, heart-shaped oval; solitary interest in axils or in diffuse terminal panicles; calyx 4.5–5.0 mm, unaccented, densely covered by viscid glandular hair and mixed with simple hair and stellate, oblurate sepals; 1–2 cm in diameter; symmetrical petals, retuse, yellow with or without a red center, stamens 12–20, free filaments leading to the apex; and merger 5, apical 2-spined, dense thorn covered with antrorse hair (Baracho and Agra, 2016; Abat et al., 2017). This species can be found in tropical America, from northwestern Mexico and the Caribbean to Argentina and Brazil (Krapovickas, 2006). *Sida glutinosa* plants according to http://plantamor.com/species/info/sida/glutinosa have the following classification:

Kingdom	Plantae
Subkingdom	Tracheobionta
Superdivision	Spermatophyta
Division	Magnoliophyta
Class	Magnoliopsida
Subclass	Dilleniace
Order	Malvales
Family	Malvaceae
Genus	Sida
Species	*S. glutinosa*
Scientific name	*Sida glutinosa* Comm. ex Cav.

2.8. *Sida szechuensis*

Sida szechuensis is a Vietnamese plant. Its main uses are as an herb, the petiole and pedicle have slightly thick hair, penninerved leaves, axillary, solitary or in panicles; calyx campanulate, with 5 triangular lobes; pale yellow or orange crown, with pointed petals, mostly more or less obliquely; staminal column ca. 5 mm long with long hair; ovaries with hair like a star; style more than 7; the outside of the protruding protically veined, short-ten; reniform seeds, dark brown or black, with white hair (Xuyen, 2006). *Sida szechuensis* plants according to https://www.gbif.org/species/119199119 have the following classification:

Kingdom	Plantae
Family	Malvaceae
Genus	Sida
Species	*S. szechuenis*
Scientific name	*S. szechuenis* Matsuda

2.9. Methods

The documentation for this review was compiled from various data sources likes ScienceDirect, Springer, ResearchGate, Google Scholar, and the Website.

3. Chemical constituents

3.1. Alkaloid

Ghosh and Dutt (1930) isolated Ψ-(pseudo)-ephe drine (1) from the *S. cordifolia*. From the roots of *S. cordifolia*, Ghosal et al. (1975), reported β-phenethylamine (2), ephe drine (3), Ψ-ephe drine (4), S(+) N6-methyltryptophanmethyl ester (5), hypaphorine (6), vicainone (7), vasicine (8), and viscinol (9) Jang et al. (2003), isolated quindolinone (10), cryptolepine (11), 11-methoxyquindoline (12), N-trans-feruloyltyr- amine (13) from the whole plants of *S. acuta*. From the aerial parts of *S. cordifolia*, Sutradhar et al. (2006), isolated a new alkaloid, 5’-hydroxy- ymethyl-1‘-(1,2,3,9-tetrahydro- pyrrolo [2,1-b] quinazolin-1-yl)-hepta n-1-one (14). Sutradhar et al. (2007), studied the aerial parts of *S. cordifolia* revealed the presence of four new alkaloids, 1,2,3,9-tetrahyd- ro-pyrrolo (2,1-b) quinazolin-3-ylamine (15), 5’- hydroxymethyl-1-(1,2,3,9-tetrahydro pyrrolo (2,1-b) quinazolin-1-yl)-heptan-1-one (14), 2-(1’-amino-buty1) indol-3-one (16), and 2’-(3H-indol-3-ylmethyl)-butan-1’-ol (17). Chaves et al. (2013), isolated cryptolepine (11) and a salt of cryptolepine (18), from the aerial parts of *S. rhombifolia*. Chaves et al. (2017), reported quindolinone (10), the cryptolepine salt (18), 11-methoxyquindoline (19), and quindoline (20) from the aerial parts of *S. rhombifolia*. Das et al. (2011) isolated 1,2,3,9-tetrahydro pyrrolo[2,1-b] quinazolin-3-amine (21) from the aerial parts of *Sida glutinosa*. Yao and Xu (2000) reported 3,4,5,6-tetrahydro-3-methyl-β-carboline-Scarboxyllic acid was isolated from *Sida szechuenis*. Banzouzi et al. (2004), isolated cryptolepin (23) from the ethanolic extract of *S. acuta*. Alkaloid group compounds in the genus *Sida* are presented in Figure 1.

3.2. Flavonoid

Sutradhar et al., (2007), isolated three new flavonol C-glucosides: 3-(3',7'-dimethyl-2',6'-octadiene)-8-C-β-D-glucosyl-kaempferol 3-O-β-D-glucoside (24), 3-(3',7'-dimethyl-2',6'-octadiene)-8-C-β-D-glucosyl-kaempferol 3-O-β-D-glucosyl (25), and 6-(3'-methyl2'-butene)-3'-methyl-8-C-β-D-glucosyl-kaempferol 3-O-β-D-glu- cosyl [1-→4]-β-D-glucoside (25), and 6-(3'-methyl-2'-butene)-3'-methyl-8-C-β-D-glucosyl-kaempferol 3-O-β-D-glucosyl [1-→4]-β-D-glucoside 3, 3’-(3”,7”-Dimethyl 2”,6”-octadiene)-8-C-β-D-glucosyl-kaempferol 3-O-β-D-glucoside (26) from the aerial parts of *S. cordifolia*. Sutradhar et al., (2008), isolated two new flavones, 5,7-dihydroxy-3-isoprenylflavone (27) and 5-hydroxy-3-isoprenyl Flavone (28) from the chloroform extract of *S. cordifolia*. In 2013, Chaves et al. isolated 5,7-dihydroxy-4’-methoxyflavone (29) from the aerial parts of *S. rhombifolia*. Chaves et al. (2017), also isolated kaempferol (30) and kaempferol-3-O-β-D-glycosyl-6”-α-D-rhamnose (31) from the aerial parts of *S. rhombifolia*. Das et al. (2012) isolated
Glutinoside (32) and Chrysin (33) from the aerial parts of *Sida glutinosa*. Figure 2 presents the reported flavonoid compounds isolated from the genus *Sida*.

3.3. Coumarins

Jang et al. (2003), isolated scopoletin (34) from the whole plants of *S. acuta*. Chaves et al. (2017), reported scopoletin (34) and scoporone (35) from the aerial parts of *S. rhombifolia*. The two structures of coumarin compound are shown in Figure 3.

3.4. Ecdysteroids

From the aerial parts of *S. spinosa*, Darwish and Reinecke (2003), reported five ecdysteroids, 20-hydroxy,24-hydroxymethyl ecdysone (36), 20-hydroxyecdysone (37), turkesterone (38), makisterone C (39), and 20-Hydroxyecdysone-20,22-monoacetone (40). Das et al. (2012) reported 24(28)-Dehydromakisterone A (41) found in dried aerial parts of *Sida glutinosa*. Yao and Xu (2000) isolated 2β,3β,14α,20,21,22R,24-heptahydroxycholest-7-en-6-one (42), poly podine B (43), and α-ecdysone (44) from *Sida szechuensis*. Jadhav et al. (2007) isolated ecdysone (36), 20-hydroxyecdysone (37), 25-acetoxy-20-hydroxyecdysone-3-O-β-D-glucopyranoside (45), Pterosterone-3-O-β-D-glucopyranoside ecdysteroid (46), ecdysone-3-O-β-D-glucopyranoside (47), 2-deoxy-20-hydroxyecdysone-3-O-β-D-glucopyranoside (48), and 20-hydroxyecdysone-3-O-β-D-glucopyranoside from the whole plant of *S. rhombifolia*. Figure 4 shows the molecular structure of the ecdysteroid group of compound of the genus *Sida*.

3.5. Triterpenes

Chen et al. (2007), reported two triterpenes, including a new taraxast-1,20(30)-dien-3-one (50) and taraxasterone (51) from the whole plant of *S. acuta*. The two triterpenes structure can be seen in Figure 5.

3.6. Tocopherols

Chen et al. (2007), reported a new tocopherol derivative, 7α-methoxy-α-tocopherol (52), along with β-tocopherol (53), α-tocopherol (54), and α-tocospio B (55) from the whole plant of *S. acuta*. The structure of the tocopherol's derivatives is shown in Figure 6.

3.7. Other compounds

Jang et al. (2003), isolated vomifoliol (56), Ioliolide (57), 4-ketopinoresinol (58), evofolin-A (59), and evofolin-B (60) from the whole plants of *S. acuta*. Darwish and Reinecke (2003) reported two new compounds, namely glyceryl-1-eicosanoate (61) and p-hydroxyphenethyl trans-ferulate (62), together with four known compounds, triacontane (63), 1-eicosene (64), 9-hydroxy-cis-11-octadecenoic acid (65), and 1-O-β-D-Glucopyranosyl-(2S,3S,4R,8Z)-2-{(2'R)-2'hydroxypalmito-ylamino}-8-octadecene-1,3,4-triol (66), from the aerial parts of *S. spinosa*. Chaves et al. (2013), isolated phaeophytin A (67),
17β-ethoxypheophorbide A (68), 13β-hydroxy phaeophytin B (69), 17β-ethoxypheophorbide B (70), from the aerial parts of S. rhombifolia. The structure of compounds’s 56–70 is presented in Figure 7.

4. Biological activities

4.1. Antimalarial activity

Karou et al. (2003), reported that various fractions of S. acuta showed the antimalarial activity with the IC50 values in the range of 0.05–57.04 μg/mL.

4.2. Antiplasmodial activity

The EtOH roots extract of S. acuta displayed the antiplasmodial activity with the IC50 values in the range of 3.9–5.4 μg/mL. In addition, compound 23 from S. acuta also showed potent antiplasmodial activity (Banzouzi et al., 2004).

4.3. Antimicrobial activity

Momin et al. (2014), evaluated the antimicrobial activity of S. cordifolia EtOH extract using five pathogenic bacteria with standard antibiotic kanamycin. The extract of S. cordifolia has no antimicrobial activity against five selected bacteria.

4.4. Analgesic activity

Momin et al. (2014), evaluated the analgesic activity S. cordifolia EtOH extract using acetic acid-induced writhing reflex model in mice with standard drug diclofenac. The extract displayed a significant (P > 0.001) decrease in the writhing reflex of mice induce acetic acid at a dose of 500 mg/kg. Moreover, the aqueous acetone extract of S. acuta and S. cordifolia was reported to inhibit dose-dependent analgesic activity (Konate et al., 2012).

4.5. Anti-inflammatory activity

Moreover, aqueous leaves extract of S. cordifolia was found to inhibit the carrageenan-induced rat paw edema at a dose of 400 mg/kg administered orally (Franzotti et al., 2000).

4.6. Antibacterial activity

Islam et al. (2003) studied the antibacterial activity of various extracts of S. rhombilolia with Gram-positive and Gram-negative test organisms. The results revealed that all extracts exhibited weak activity. Karou et al. (2005), conducted the antibacterial activity of S. acuta alkaloids fraction using agar-well diffusion assay and broth microdilution assay. The highest zone inhibition diameters were identified by Gram-positive bacteria in accordance with agar-well diffusion assay. From the broth microdilution assay, the MIC and MBC values observed in the range of 16–400 μg/mL and 80–400 μg/mL. In 2007, Oboh et al. evaluated the antibacterial activity of the 90% EtOH extract of S. acuta aerial parts with agar-dilution method. The results of the MIC were found values in the range of 5–10 mg/mL. In other studies, Assam et al. (2010) evaluated antibacterial activity of the aqueous-methanol extract of S. rhombilolia (1:4, v/v) using agar disc diffusion and agar dilution methods. The results found that aqueous-methanol extract of S. rhombilolia displayed moderate activity. Moreover, Halilu et al. (2016) evaluated antibacterial activity of S. cordifolia ethanolic leaves extract using cup plate method against Gram-positive and Gram-negative microorganisms. The results showed that the extract has potent activity on all tested organisms.

4.7. Antioxidant activity

In 2003, Auddy et al. (2003) assessed the antioxidant activity of EtOH extract and water infusions of S. cordifolia with ABTS radical cation decolorization assay and lipid peroxidation. According to the ABTS assay,
the EtOH extract displayed potent activity (IC$_{50}$ 16.07 μg/mL). Chen et al. (2007), studied the antioxidant activity of compounds 52–55 with DPPH assay, and the result showed that compound 52, 53, and 54 displayed significant activities with the EC$_{50}$ values of 86.9, 68.2, and 70.9 μM. Momin et al. (2014), evaluated the antioxidant activity of EtOH extract of S. cordifolia using DPPH assay with standard ascorbic acid. According to the results, the IC$_{50}$ values of the extract and standard ascorbic acid was 50 and 1.16 μg/mL. In addition, Kumar et al. (2019), assessed the antioxidant activity of various extracts of S. cordifolia using DPPH assay with standard ascorbic acid. The results found that various
extracts and standard ascorbic acid displayed concentration-dependent percent inhibition of DPPH radical.

4.8. Vasorelaxant activity

In another study, the vasorelaxant activity was detected in the rodent isolated mesenteric arteries by the compound 11 (Chaves et al., 2013).

4.9. Wound healing activity

Pawar et al. (2013), informed that the EtOH extract of S. cordifolia displayed wound healing activity in rats. Moreover, Francis et al. (2018), also informed that EtOH leaves extract of S. rhombifolia has a prospective advantage in enhancing wound healing. In another study, Kumar et al. (2019), studied wound healing activity of various extract of S. cordifolia against dexamethasone-induced retardation in rats. According to the results, aqueous extract of S. cordifolia displayed significant activity.

4.10. Antifungal activity

Rosa et al. (2015), evaluated the antifungal activity of aqueous infusion from S. tuberculata leaves and roots, using the broth micro-dilution method against 37 clinical isolates of opportunistic yeasts. The MIC (minimal inhibitory concentration) and MFC (minimal fungicidal concentration) were identified toward Candida krusei isolates.

4.11. Antidiabetic activity

Ahmad et al. (2014) documented that the alcoholic extract of S. cordifolia displayed antihyperglycemic action when administered to streptozotocin-induced diabetic rats.

4.12. Toxicity

Islam et al. (2003) evaluated the toxicity of various extracts of S. rhombifolia using brine shrimp bioassay with standard reference gallic acid. According to the results, EtOAc extract of S. rhombifolia exhibited significant cytotoxic activity with LC50 value of 5.41 ppm. In addition, the aqueous extract of S. cordifolia has low acute toxicity in mice (Franzotti et al., 2000).

4.13. Antiarthritic activity

Gupta et al. (2009) assessed the antiarthritic activity of various extracts of S. rhombifolia. According to the results, EtOH and aqueous extracts displayed significant activity.
4.14. Quinone reductase induction assay

Jang et al. (2003), evaluated quinone reductase induction activity of compounds (10–14, 34, and 56–60) with culture mouse Hepa 1c1c7 cell. The results showed that compounds 10–11 have the most potent activity.

4.15. Mouse mammary organ culture assay

Jang et al. (2003), studied the prospective of compounds (10–14, 34, and 56–60) to inhibit the 7,12-dimethylbenzene (DMBA)- induced preneoplastic lesion in a mouse mammary organ culture. According to the results, compounds 11 (83.3%) and 13 (75.0%) displayed the activity to inhibit 7,12-dimethylbenzene (DMBA)- induced preneoplastic lesion at a dose of 10 μg/mL.

5. Conclusion

Eight species of the genus Sida have been explained and discussed in this review article. The eight species produce a variety of secondary metabolite compounds, namely alkaloids, flavonoids, coumarines, ecysteroids, triterpenes, tocopherols, and other compounds. The compounds depicted a variety of interesting biological activities. So they can be used as a reference for the researchers to develop further research or exploration.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and writing of this article.

Funding statement

The work is supported by Universitas Airlangga (UNAIR), IPB, UGM, and ITB through “RISET KOLABORASI INDONESIA-WCU (WORLD CLASS UNIVERSITY)” (252/UN3.14/PT/2020).

Data availability statement

Data included in article supplementary material/referenced in article.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Abat, J.K., Kumar, S., Mohanty, A., 2017. Ethnomedicinal, phytochemical and ethnobotanical aspects of four medicinal plants of malvaceae used in Indian traditional medicine: a review. Medicines 4 (4), 75.

Ahmad, M., Athar, M., Bano, S., 2011. Antihyperglycemic activity of alcoholic extract of Sida cordifolia leaves in streptozotocin-induced diabetes in rats. Pak J. Pharm. Sci. 24, 883–889.

Akinlade, B.A., Bolorunfemi, O., Akinfale, K., 2009. Antioxidant properties of Sida rhombifolia leaf extract. Phytomedicine 16, 446–450.

Akbari, M., 2009. Antimicrobial activity of Sida acuta. Afr. J. Biotechnol. 8, 2399–2403.

Ali, J., Bhuiyan, M.M., 2011. Antimicrobial activity of leaves of Sida rhombifolia Linn on some pathogenic microorganisms. J. Asian Nat. Prod. Res. 13, 965–971.

Ali, K., Nasir, M., Khurshid, M., 2010. Antioxidant and antidiabetic activities of Sida rhombifolia. Pharmacognosy Res. 2, 136–140.

All authors listed have significantly contributed to the writing of this article.

No additional information is available for this paper.
Pawar, R.S., Chaurasiya, P.K., Rajak, H., Singhour, P.K., Toppo, F.A., Jain, A., 2013. Wound healing activity of Sida cordifolia Linn. in rats. Indian J. Pharmacol. 45 (5), 474–478.

Rosa, H.S., Camargo, V.B., Camargo, G., Garcia, C.V., Fuenteferia, A.M., Mendez, A.S., 2015. Ecdysteroids in Sidatuberculata RE Fries (Malvaceae): chemical composition by LC-ESI-MS and selective anti-Candida krusei activity. Food Chem. 182, 193–199.

Shetu, H.J., Durdana, N., Farjana, A., Nuzhat, Z., Pritesh, R.D., 2019. Pharmacological and Phytochemical importance of Sida cordifolia: a Review, pp. 60–73.

Singh, A., Navneet, 2018. Ethnomedicinal, pharmacological properties and phytochemistry of Sida spinosa Linn. A mini review. J. Phytopharm. 7 (1), 88–91.

Sivarajan, V.V., Pradeep, A.K., 1994. Taxonomy of the Sida rhombifolia (Malvaceae) complex in India. Contrib. Bot. 16 (1), 63–78.

Sutradhar, R.K., Rahman, A.K.M.M., Ahmad, M.U., Saha, K., 2007a. Alkaloids of Sida cordifolia L. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 46 (11), 1896–1900.

Sutradhar, R.K., Rahman, A.K.M.M., Ahmad, M.U., 2007b. Three new flavonoid C-glycosides from Sida cordifolia Linn. J. Iran. Chem. Soc. 4, 175–181.

Sutradhar, R.K., Rahman, A.K., Ahmad, M.U., Bachar, S.C., 2008. Bioactive flavones of Sida cordifolia. Phytochem. Lett. 1 (4), 179–182.

Ugborogho, R.E., 1980. The taxonomy of Sida L. (Malvaceae) in Nigeria. Boletin da Sociedade Broteriana Ser 54, 99–119.

Xuyen, D.T., 2006. Sida azechuensis Matuda (Malvaceae), one new species for the flora of Vietnam. Vietnam Acad. J. Biol. 28 (3), 40–42.

Yang, L., Wen, K.S., Ruan, X., Zhao, Y.X., Wei, F., Wang, Q., 2018. Response of plant secondary metabolites to environmental factors. Molecules 23 (4), 762.

Yao, C., Xu, Y., 2000. Phytoecdysone from Sida azechuensis. Yunan Zhiwu Yanjiu 22, 503–506.