Benchmarking the Hooke-Jeeves Method, MTS-LS1, and BSrr on the Large-scale BBOB Function Set

The BBOB-2022 workshop at Boston

Ryoji Tanabe

Yokohama National University
Yokohama, Japan
Separability in black-box numerical optimization

A D-dim. separable function f can be D 1-dim. functions

$$\arg\min_x f(x) = \left(\arg\min_{x_1} f(x_1, \ldots), \ldots, \arg\min_{x_D} f(\ldots, x_D)\right)$$

- Separable functions are easier to solve than nonseparable ones
 - If an optimizer can exploit the separability
 - E.g., Coordinate-wise optimizers

IMHO, a separable real-world problem is very rare

- Some decision variables are likely to depend on each other
- The motivation to study optimizers for separable functions is weak
- Just in case, it is better for an algorithm portfolio to contain an optimizer that can exploit the separability
 - An efficient algorithm selection system is available [Tanabe 22] 😊

Ryoji Tanabe: Benchmarking Feature-based Algorithm Selection Systems for Black-box Numerical Optimization. IEEE Trans. Evol. Comput. in press (2022)
Benchmarking three optimizers for separable functions on \texttt{bbob-largescale}

1. **The Hooke-Jeeves method (HJ) [Hooke 61]**
 - One of the most classical black-box optimizers

2. **Multiple trajectory search local search 1 (MTS-LS1) [Tseng 08]**
 - Designed for the CEC LSGO competition 2008
 - Some winners of the CEC (LSGO) competitions used MTS-LS1
 - Very similar to the Hooke-Jeeves method, but it has been overlooked

3. **Brent-STEP in a round-robin manner (BSrr) [Baudis 15]**
 - State-of-the-art for the five separable \texttt{bbob} functions (f_1, \ldots, f_5)
 - BSrr is a member of a portfolio in recent algorithm selection systems

Robert Hooke, T. A. Jeeves: “Direct Search” Solution of Numerical and Statistical Problems. J. ACM 8(2): 212-229 (1961)

Lin-Yu Tseng, Chun Chen: Multiple trajectory search for Large Scale Global Optimization. IEEE Congress on Evolutionary Computation 2008: 3052-3059

Petr Baudis, Petr Posík: Global Line Search Algorithm Hybridized with Quadratic Interpolation and Its Extension to Separable Functions. GECCO 2015: 257-264
The Hooke-Jeeves method: a pattern move (variable-wise operation)

- HJ iteratively improves a search point $x \in \mathbb{R}^D$ by two moves:
 1. a pattern move (variable-wise operation)
 2. an exploratory move (vector-wise operation)
- In the pattern move, HJ generates a new point x^{new} by perturbing only one variable $x_i \in x$ (from $i = 1$ to D)

 \[
 x_i^{\text{new}} \leftarrow x_i + \sigma(x_{i}^{\text{up}} - x_{i}^{\text{low}}) \quad \text{or} \quad x_i^{\text{new}} \leftarrow x_i - \sigma(x_{i}^{\text{up}} - x_{i}^{\text{low}})
 \]
 - σ: step-size (the initial $\sigma^{\text{init}} = 0.4$)
 - x_{i}^{up} and x_{i}^{low}: the upper and lower bounds for the i-th variable

- When all trials for all variables were unsuccessful, $\sigma \leftarrow c \times \sigma$
 - c: learning rate (typically, $c = 0.5$)
The Hooke-Jeeves method: an exploratory move (vector-wise operation)

- If the pattern move was successful for at least one variable, HJ performs a bonus operation
- HJ generates a new point \(x^{\text{new}} \) by taking the difference from the previous one \(x^{\text{prev}} \) to the current one \(x \)
 - \(x^{\text{new}} \leftarrow x + (x - x^{\text{prev}}) \)
The overall procedure of the Hooke-Jeeves method

1. Initialize $x, \sigma \leftarrow \sigma^{\text{init}}$;
2. while not happy do
 - $x^{\text{prev}} \leftarrow x$;
 - /* The pattern move (variable-wise operation) */
 - for $i \in \{1, \ldots, D\}$ do
 - $x^{\text{new}} \leftarrow x$;
 - $x_i^{\text{new}} \leftarrow x_i + \sigma(x_i^{\text{up}} - x_i^{\text{low}})$;
 - if $f(x^{\text{new}}) < f(x)$ then $x \leftarrow x^{\text{new}}$;
 - else
 - $x^{\text{new}} \leftarrow x$;
 - $x_i^{\text{new}} \leftarrow x_i - \sigma(x_i^{\text{up}} - x_i^{\text{low}})$;
 - if $f(x^{\text{new}}) < f(x)$ then $x \leftarrow x^{\text{new}}$;
 - /* The exploratory move (vector-wise operation) */
 - if $f(x) < f(x^{\text{prev}})$ then
 - $x^{\text{new}} \leftarrow x + (x - x^{\text{prev}})$;
 - if $f(x^{\text{new}}) < f(x)$ then $x \leftarrow x^{\text{new}}$;
 - else $\sigma \leftarrow c \times \sigma$;
Two main differences between MTS-LS1 and the Hooke-Jeeves method

1. MTS-LS1 does not adopt the exploratory move (vector-wise operat.)
2. MTS-LS1 reinitializes the step-size σ when σ is too small
The Hooke-Jeeves method vs. MTS-LS1

The Hooke-Jeeves method

1. Initialize $x, \sigma \leftarrow \sigma_{\text{init}}$;
2. while not happy do
 3. $x_{\text{prev}} \leftarrow x$;
 4. for $i \in \{1, \ldots, D\}$ do
 5. $x_{\text{new}} \leftarrow x$;
 6. $x_{i_{\text{new}}} \leftarrow x_i + \sigma(x_{i_{\text{up}}} - x_{i_{\text{low}}})$;
 7. if $f(x_{\text{new}}) < f(x)$ then
 8. $x \leftarrow x_{\text{new}}$;
 else
 9. $x_{\text{new}} \leftarrow x$;
 10. $x_{i_{\text{new}}} \leftarrow x_i - \sigma(x_{i_{\text{up}}} - x_{i_{\text{low}}})$;
 11. if $f(x_{\text{new}}) < f(x)$ then
 12. $x \leftarrow x_{\text{new}}$;
 else
 13. if $f(x) < f(x_{\text{prev}})$ then
 14. $x_{\text{new}} \leftarrow x + (x - x_{\text{prev}})$;
 15. if $f(x_{\text{new}}) < f(x)$ then
 16. $x \leftarrow x_{\text{new}}$;
 else $\sigma \leftarrow c \times \sigma$;
 else
 17. if $f(x) = f(x_{\text{prev}})$ then
 18. $\sigma \leftarrow c \times \sigma$;
 if $\sigma(x_{i_{\text{up}}} - x_{i_{\text{low}}}) < 10^{-15}$ then
 19. $\sigma \leftarrow \sigma_{\text{init}}$;

MTS-LS1

1. Initialize $x, \sigma \leftarrow \sigma_{\text{init}}$;
2. while not happy do
 3. $x_{\text{prev}} \leftarrow x$;
 4. for $i \in \{1, \ldots, D\}$ do
 5. $x_{\text{new}} \leftarrow x$;
 6. $x_{i_{\text{new}}} \leftarrow x_i - \sigma(x_{i_{\text{up}}} - x_{i_{\text{low}}})$;
 7. if $f(x_{\text{new}}) < f(x)$ then
 8. $x \leftarrow x_{\text{new}}$;
 else
 9. $x_{\text{new}} \leftarrow x$;
 10. $x_{i_{\text{new}}} \leftarrow x_i + 0.5\sigma(x_{i_{\text{up}}} - x_{i_{\text{low}}})$;
 11. if $f(x_{\text{new}}) < f(x)$ then
 12. $x \leftarrow x_{\text{new}}$;
 else
 13. if $f(x) = f(x_{\text{prev}})$ then
 14. $\sigma \leftarrow c \times \sigma$;
 if $\sigma(x_{1_{\text{up}}} - x_{1_{\text{low}}}) < 10^{-15}$ then
 15. $\sigma \leftarrow \sigma_{\text{init}}$;

8 / 17
The Brent-STEP method for 1-dimensional optimization

The Brent method (e.g., fminbnd in Matlab)
- It simultaneously performs the bisection and the secant methods
- **Pros**: It performs very well on unimodal functions
- **Cons**: It performs poorly on multimodal functions

Select The Easiest Point (STEP) [Langerman 94]
- It sequentially selects an interval with the smallest difficulty
- **Pros**: It performs well on multimodal functions
- **Cons**: It generally converges slow

The Brent-STEP method aims to take their pros
- First, it runs the Brent method
- If the search fails (i.e., on multimodal functions), it then runs STEP

Richard Peirce Brent. Algorithms for Minimization without Derivatives. Englewood Cliffs, 1973

Stefan Langerman, Gregory Seront, Hugues Bersini: S.T.E.P.: The Easiest Way to Optimize a Function. International Conference on Evolutionary Computation 1994: 519-524
BSrr: An extension of the Brent-STEP method to D-dimensional opt.

- BSrr applies Brent-STEP to each variable in a round-robin manner
- It is competitive with more sophisticated ones [Posík 15]

1. Initialize x;
2. while not happy do
 3. for $i \in \{1, \ldots, D\}$ do
 4. $x^\text{new} \leftarrow x$;
 5. $x^\text{new}_i \leftarrow \text{Apply a single iteration of } \text{brent_step} \text{ to } x_i$;
 6. if $f(x^\text{new}) < f(x)$ then
 7. $x \leftarrow x^\text{new}$;
 8. Update internal parameters of D \text{brent_step};

Petr Posík, Petr Baudis: Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous Functions. GECCO (Companion) 2015: 1151-1158
The three optimizers are sensitive to the order of variables

Results of MTS-LS1 on Schwefel 1.2

- \(f(x) = \sum_{i=1}^{D} (\sum_{j=1}^{i} x_j)^2 \)
- Similar to LeadingOnes, the first \(i \) variables are dependent
 - lexical: \(x_1, x_2, x_3, x_4, \ldots \)
 - random: \(x_9, x_1, x_8, x_3, \ldots \)
- Max. fevals = \(10^5 \times D \)
- N. runs = 31

- MTS-LS1 perturbs variables in a lexical order (from \(x_1 \) to \(x_D \))
 - It can unintentionally exploit the order of variables
- Their operators are not permutation-invariant [Lehre 12]
- This issue can be very very easily addressed
 - by randomly shuffling the order of perturbations

Per Kristian Lehre, Carsten Witt: Black-Box Search by Unbiased Variation. Algorithmica 64(4): 623-642 (2012)
Experimental setup

- The 24 bbob-largescale functions [Varelas 20]
 - Dimension $D \in \{20, 40, 80, 160, 320, 640\}$
 - The results of L-BFGS were taken from [Varelas 19] as a base line

- The Hooke-Jeeves method and MTS-LS1
 - We implemented them in C (https://github.com/ryojitanabe/largebbob2022)
 - The maximum number of function evaluations: $10^4 \times D$
 - The initial step size $\sigma^{\text{init}} = 0.4$ (is this best for HJ?)
 - The learning rate $c = 0.5$ and 0.9
 - “HJ-5” and “MTS-LS1-5” are HJ and MTS-LS1 with $c = 0.5$
 - “HJ-9” and “MTS-LS1-9” are HJ and MTS-LS1 with $c = 0.9$

- BSrr
 - We used the Python implementation of BSrr (https://github.com/pasky/step)
 - Default setting
 - The maximum number of function evaluations: $10^3 \times D$

Konstantinos Varelas, Ouassim Ait ElHara, Dimo Brockhoff, Nikolaus Hansen, Duc Manh Nguyen, Tea Tušar, Anne Auger: Benchmarking large-scale continuous optimizers: The bbob-largescale testbed, a COCO software guide and beyond. Appl. Soft Comput. 97: 106737 (2020)

Konstantinos Varelas: Benchmarking large scale variants of CMA-ES and L-BFGS-B on the bbob-largescale testbed. GECCO (Companion) 2019: 1937-1945
Aggregated results on the separable function group \((f_1, \ldots, f_5)\) and the moderate conditioning function group \((f_6, \ldots, f_9)\) for \(D = 320\)

BSrr, HJ-9, and MTSLS1-9 outperform L-BFGS on \(f_1, \ldots, f_5\)

- **BSrr** performs the best on \(f_1, \ldots, f_5\) for all \(D\)
- **HJ-5** and **MTSLS1-5** (with the learning rate \(c = 0.5\)) do not work
 - \(c = 0.5\) is recommended for CEC functions, but unsuitable for BBOB?
- They are outperformed by L-BFGS on \(f_6, \ldots, f_9\)
Performance deterioration of BSrr on f_2 and f_4 for $D \geq 320$

BSrr could not reach x^* on f_2 and f_4 for $D \geq 320$

- But, BSrr still performs better than the other optimizers
- The small max. fevals ($10^3 \times D$) may be the reason
Poor performance of MTS-LS1 on f_4

MTS-LS1 works well for f_3, but does not work for f_4

- MTS-LS1 uses (almost) the symmetric operation
- MTS-LS1 can perform poorly on a function with an asymmetric landscape structure, e.g., f_4
Comparison of HJ and MTS-LS1 on f_2 and f_3 for $D = 320$

HJ can outperform MTS-LS1 on unimodal functions, e.g., f_2
- HJ adopts the exploratory move (vector-wise operat.)

MTS-LS1 can outperform HJ on multimodal functions, e.g., f_3
- MTS-LS1 adopts the reinitialization strategy for the step-size σ
- HJ can be improved by a restart strategy or the reinitialization for σ

![Graph showing comparison of HJ and MTS-LS1 on f_2 and f_3 for $D = 320$.](attachment:image.png)
Benchmarking HJ, MTS-LS1, and BSrr on bbob-largescale

- BSrr generally performs the best on f_1, \ldots, f_5
 - BSrr can complement L-BFGS and CMA-ES variants 😊
 - Its performance deterioration was observed on f_2 and f_4
- MTS-LS1 cannot handle the asymmetricity in f_4
 - Due to the symmetric operation
 - The same is true for HJ
- HJ performs better than MTS-LS1 on unimodal functions
 - But, HJ is outperformed by MTS-LS1 on multimodal functions
 - A restart strategy or the reinitialization for σ is needed

Future work

- Benchmarking the winners of the CEC LSGO competitions
 - E.g., MOS, SHADE-ILS, and CC-RDG3
 - Especially, variable-decomposition-based approaches
Computation time of the three optimizers (10^{-5} seconds)

The C code is much faster than the Python code.

Optimizers	Languages	20-D	40-D	80-D	160-D	320-D	640-D
HJ	C	Na	4.2	5.9	11	21	41
MTS-LS1	C	4.1	2.0	5.8	11	21	42
BSrr	Python	13	20	33	62	120	270

- CPU time to run the three optimizers on the 24 bobb-largescale functions for $2D$ function evaluations.
- Computation environment
 - Ubuntu 18.04
 - Intel(R) 52-Core Xeon Platinum 8270 (26-Core×2) 2.7GHz
 - Compile options -O2
- f_{21} for $D = 640$ may be particularly time-consuming
 - f_{21}: the Gallagher’s Gaussian 101-me Peaks function
Unexpected results on f_{19} for any D pointed out by a reviewer (Thanks!)

The initialization method significantly influences the results

- The initial point in HJ-5, HJ-9, MTSLS1-5, and MTSLS1-9
 - The center of the search space $(0, \ldots, 0)$
- The initial point in L-BFGS and BSrr
 - randomly generated in the search space
- The solution at $(0, \ldots, 0)$ may have a good objective value

Known issue? (https://github.com/numbbo/coco/issues/1851)