The $\alpha \rightarrow 1$ Limit of the Sharp Quantum Rényi Divergence

Bjarne Bergh, Robert Salzmann, and Nilanjana Datta

DAMTP, University of Cambridge, United Kingdom

March 9, 2021

Fawzi and Fawzi [1] recently defined the sharp Rényi divergence, $D^#_\alpha$, for $\alpha \in (1, \infty)$, as an additional quantum Rényi divergence with nice mathematical properties and applications in quantum channel discrimination and quantum communication. One of their open questions was the limit $\alpha \rightarrow 1$ of this divergence. By finding a new expression of the sharp divergence in terms of a minimization of the geometric Rényi divergence, we show that this limit is equal to the Belavkin-Staszewski relative entropy. Analogous minimizations of arbitrary generalized divergences lead to a new family of generalized divergences that we call *kringel* divergences, and for which we prove various properties including the data-processing inequality.

1 Geometric and sharp Rényi divergences

Let \mathcal{H} be a complex finite-dimensional Hilbert space, and $\mathcal{B}(\mathcal{H})$ the set of linear operators on \mathcal{H}. We write $\mathcal{P}(\mathcal{H})$ for the set of positive semi-definite operators on \mathcal{H} and $\mathcal{P}_+(\mathcal{H})$ for the set of positive definite operators. Let $\mathcal{D}(\mathcal{H})$ denote the set of density matrices, i.e. the set of positive semi-definite operators with trace 1. For $A, B \in \mathcal{P}(\mathcal{H})$ we further write $A \ll B$ if $\text{supp}(A) \subseteq \text{supp}(B)$.

For $A, B \in \mathcal{P}_+(\mathcal{H})$ and $\alpha \in \mathbb{R}$ the *weighted matrix geometric mean* is defined as

$$A \#_\alpha B := A^{\frac{1}{2}} \left(A^{-\frac{1}{2}}BA^{-\frac{1}{2}} \right)^\alpha A^{\frac{1}{2}}.$$ \hfill (1)

For $\alpha \geq 0$ this definition can be easily extended to more general $A, B \in \mathcal{P}(\mathcal{H})$, $B \ll A$, by restricting the Hilbert space to the support of A (this also corresponds to directly using pseudo-inverses in (1)). For $\alpha \in [0, 1]$ the weighted matrix geometric mean satisfies many desirable properties of a matrix mean [2].

The geometric Rényi divergence (also called the maximal Rényi divergence), first introduced by Matsumoto [3], can be defined in terms of the weighted matrix geometric mean. For $\rho, \sigma \in \mathcal{P}(\mathcal{H})$, $\rho \ll \sigma$ and $\alpha \in (0, \infty)$ define the *geometric trace function* as

$$\tilde{Q}_\alpha(\rho||\sigma) := \text{Tr}(\sigma \#_\alpha \rho) = \text{Tr} \left(\sigma^{\frac{1}{2}}(\sigma^{-\frac{1}{2}}\rho\sigma^{-\frac{1}{2}})^\alpha \rho^{\frac{1}{2}} \right).$$ \hfill (2)

This can be extended to general $\rho, \sigma \in \mathcal{P}(\mathcal{H})$ by setting

$$\tilde{Q}_\alpha(\rho||\sigma) := \lim_{\varepsilon \to 0} \tilde{Q}_\alpha(\rho||\sigma + \varepsilon 1).$$ \hfill (3)
For \(\alpha > 1 \) this limit is equal to \(+\infty\) if \(\rho \not\ll \sigma \), whereas for \(\alpha \in (0, 1] \) the limit is always finite and explicit expressions for it can be found in [3, 4, 5]. For \(\alpha \in (0, 1) \cup (1, \infty) \) one then defines the geometric Rényi divergence as [3, 6, 7, 5]

\[
\widehat{D}_\alpha(\rho\|\sigma) := \frac{1}{\alpha - 1} \log \widehat{Q}_\alpha(\rho\|\sigma).
\]

(4)

It reduces to the classical \(\alpha \)-Rényi divergence for commuting states and satisfies the data-processing inequality for \(\alpha \in (0, 1) \cup (1, 2) \) [3]. Further, it is known [3, 8, 5] that for \(\rho \in \mathcal{D}(\mathcal{H}) \) and \(\sigma \in \mathcal{P}(\mathcal{H}) \)

\[
\lim_{\alpha \to 1} \widehat{D}_\alpha(\rho\|\sigma) = \widehat{D}(\rho\|\sigma) := \text{Tr}\left(\rho \log\left(\frac{\rho}{\sigma}\right)\right),
\]

(5)

the Belavkin-Staszewski relative entropy [9].

In [1], Fawzi and Fazwi defined the sharp trace function for \(\alpha \in (1, \infty) \):

\[
Q^\#_\alpha(\rho\|\sigma) = \min_{A \geq \rho} \left\{ \text{Tr} A \left| \rho \leq \sigma \#_\alpha A \right. \right\}.
\]

(6)

They defined the sharp Rényi divergence of order \(\alpha \) in terms of it as follows:

\[
D^\#_\alpha(\rho\|\sigma) := \frac{1}{\alpha - 1} \log \left(Q^\#_\alpha(\rho\|\sigma) \right),
\]

(7)

and proved that it satisfies the data-processing inequality, and that it also reduces to the classical \(\alpha \)-Rényi divergence for commuting states. Further, they showed that this divergence has several desirable computational properties such as an efficient semidefinite programming representation for states and quantum channels (i.e. linear, completely positive trace-preserving maps), and a crucial chain rule property which can be exploited to obtain important information-theoretic results concerning quantum channel discrimination and quantum channel capacities.

A natural question to ask is: What is \(\lim_{\alpha \to 1} D^\#_\alpha(\rho\|\sigma) \)?

This was left as an open question in [1]. In this paper we answer this question by proving that this limit is given by the Belavkin-Staszewski relative entropy (see Theorem 7 below).

To address the limit of \(\alpha \to 1 \) we want to make use of the following alternative characterization of the sharp trace function and sharp Rényi divergence.

Proposition 1. For \(\alpha \in (1, \infty) \) and \(\rho, \sigma \in \mathcal{P}(\mathcal{H}) \)

\[
Q^\#_\alpha(\rho\|\sigma) = \min_{A \geq \rho} \langle Q_\alpha(\rho\|\sigma)
angle,
\]

(8)

\[
D^\#_\alpha(\rho\|\sigma) = \min_{A \geq \rho} \langle D_\alpha(\rho\|\sigma)
angle.
\]

(9)

Remark 2. Note that the \(A \) in the above expressions are in general unnormalized states and we use the definitions of the geometric trace function and the geometric Rényi divergence as in (2) and (4) without additional normalization factors.

For what is going to follow, we prove a slightly stronger version of the above statement, given by the following lemma.

Lemma 3. For \(\alpha \in (1, a] \), with \(a \in (1, \infty) \), and \(\rho, \sigma \in \mathcal{P}(\mathcal{H}) \),

\[
Q^\#_\alpha(\rho\|\sigma) = \min_{A \geq \rho} \langle Q_\alpha(\rho\|\sigma)
angle,
\]

(10)

and the minimization can be restricted to \(A \in K \) where \(K \) is a compact subset of \{ \(A \in \mathcal{P}(\mathcal{H}) \) \(| \) \(A \ll \sigma \} \) depending only on \(\rho, \sigma, a \), but not on \(\alpha \).
Proof. Recall the definition of $Q^\#_\alpha(\rho||\sigma)$ for $\alpha > 1$ [1]:

$$Q^\#_\alpha(\rho||\sigma) = \min_{A \succeq 0} \left\{ \operatorname{Tr}A \left| \rho \leq \sigma^{\frac{1}{\alpha}}(\sigma^{-\frac{1}{\alpha}}A\sigma^{-\frac{1}{\alpha}})^{\frac{1}{\alpha}} \sigma^{\frac{1}{\alpha}} \right. \right\}. \quad (11)$$

Fawzi and Fawzi [1] showed that the minimization can be further restricted to $0 \leq A \leq c^{\alpha-1} \operatorname{Tr}(\rho)\Pi_\sigma$, where $c = \|\sigma^{-\frac{1}{2}}\rho\sigma^{-\frac{1}{2}}\|$ is the spectral norm, and Π_σ is the projection onto the support of σ. It is easy to see that if $\rho \not\leq \sigma$ the minimization is infeasible, and so $Q^\#_\alpha(\rho||\sigma) = +\infty$. Moreover, if $\rho \leq \sigma$ and $A \preceq \rho$ then also $A \not\leq \sigma$, hence $\min_{A \succeq \rho} Q\alpha(\Pi\sigma) = +\infty$ and the statement holds. Thus, we can assume $\rho \leq \sigma$. Taking $C := \operatorname{Tr}(\rho)\sup_{\alpha \in [1, a]}c^{\alpha-1}$, which is always finite, we get:

$$Q^\#_\alpha(\rho||\sigma) = \min_{A \succeq 0} \left\{ \operatorname{Tr}A \left| \rho \leq \sigma^{\frac{1}{\alpha}}(\sigma^{-\frac{1}{\alpha}}A\sigma^{-\frac{1}{\alpha}})^{\frac{1}{\alpha}} \sigma^{\frac{1}{\alpha}} \leq C\Pi_\sigma \right. \right\} \quad (12)$$

$$= \min_{A \succeq 0} \left\{ \operatorname{Tr}\left(\sigma^{\frac{1}{\alpha}}A^{\frac{1}{\alpha}}\sigma^{\frac{1}{\alpha}}\right) \left| \rho \leq \sigma^{\frac{1}{\alpha}}A^{\frac{1}{\alpha}}\sigma^{\frac{1}{\alpha}} \leq C\|\sigma^{-1}\|\Pi_\sigma \right. \right\} \quad (13)$$

$$= \min_{A \succeq 0} \left\{ \operatorname{Tr}\left(\sigma^{\frac{1}{\alpha}}A^{\alpha}\sigma^{\frac{1}{\alpha}}\right) \left| \rho \leq \sigma^{\frac{1}{\alpha}}A^{\alpha} \sigma^{\frac{1}{\alpha}} \leq C\|\sigma^{-1}\|\Pi_\sigma \right. \right\} \quad (14)$$

where we redefined A multiple times, and understand $\|\sigma^{-1}\|$ as the operator norm of the pseudo-inverse. While for general matrices $A, B \succeq 0$, the statements $A^\alpha \preceq B$ and $A \preceq B^{\frac{1}{\alpha}}$ are not equivalent, they are equivalent in the case in which B is a constant times a projector onto a subspace that includes the support of A. This is because in this case B is diagonal in the same basis in which A (and hence also A^α) is diagonal. Hence, the operator inequality $A^\alpha \preceq B$ turns into a condition only on the eigenvalues of A, which is then equivalent to $A \preceq B^{\frac{1}{\alpha}}$. Thus, we finally get:

$$Q^\#_\alpha(\rho||\sigma) = \min_{A \succeq 0} \left\{ \operatorname{Tr}\left(\sigma^{\frac{1}{\alpha}}A^{\alpha}\sigma^{\frac{1}{\alpha}}\right) \left| \rho \leq \sigma^{\frac{1}{\alpha}}A\sigma^{\frac{1}{\alpha}} \leq (C\|\sigma^{-1}\|)^{\frac{1}{\alpha}}\Pi_\sigma \right. \right\} \quad (15)$$

$$= \min_{A \succeq 0} \left\{ \tilde{Q}_\alpha(A||\sigma) \left| \rho \leq A \leq (C\|\sigma^{-1}\|)^{\frac{1}{\alpha}}\Pi_\sigma \right. \right\} \quad (16)$$

With $\tilde{C} := \sup_{\alpha \in [1, a]}(C\|\sigma^{-1}\|)^{\frac{1}{\alpha}}\|\sigma\|$, which exists, and $K := \{ A \in \mathcal{B}(H) \mid \rho \leq A \leq \tilde{C}\Pi_\sigma \}$, which is compact, we have for all $\alpha \in (1, b]$:

$$Q^\#_\alpha(\rho||\sigma) = \min_{A \in K} \tilde{Q}_\alpha(A||\sigma). \quad (17)$$

Since the logarithm on \mathbb{R} is monotone, Lemma 3 implies that also $D^\#_\alpha(\rho||\sigma) = \min_{A \succeq \rho} \tilde{D}_\alpha(A||\sigma)$ for all $\alpha > 1$. This completes the proof of Proposition 1. Note, that for $\alpha > 2$ the geometric divergence does not satisfy the data-processing inequality, while the sharp divergence does.

2 The $\alpha \to 1$ limit

We show in Theorem 7 at the end of this section that the limit $\alpha \to 1$ of the sharp divergence is the Belavkin-Staszewski relative entropy. The key step in the proof is to show that $\frac{d}{d\alpha} Q^\#_\alpha(\rho||\sigma)_{|\alpha=1}$ exists and is equal to $\frac{d}{d\alpha} \tilde{Q}_\alpha(\rho||\sigma)_{|\alpha=1}$. One way to establish this is to use the following theorem [10, Theorem 2.2.1]:

$$\frac{d}{d\alpha} Q^\#_\alpha(\rho||\sigma)_{|\alpha=1} = \lim_{\alpha \to 1} \frac{d}{d\alpha} Q^\#_\alpha(\rho||\sigma)_{|\alpha}. \quad (18)$$
Then, the corresponding matrix function which can be computed as
\[R(t) = \lim_{t \to 0^+} \frac{g(u + vt) - g(u)}{t} = \min_{k \in R(u)} \langle \nabla_u f(u, k), v \rangle, \] (18)
where \(R(u) = \{ k \in K \mid f(u, k) = g(u) \}. \)

Theorem 4. Let \(U \subset \mathbb{R}^n \) be open, \(K \subset \mathbb{R}^m \) compact, and \(f: U \times K \to \mathbb{R} \) continuous and also that \(\nabla_u f(u, k) \) is (jointly) continuous. Then, the function \(g(u) = \min_{k \in K} f(u, k) \) has for every \(u \in U \) a one-sided directional derivative along every \(v \in \mathbb{R}^n \), which can be computed as
\[\lim_{t \to 0^+} \frac{g(u + vt) - g(u)}{t} = \min_{k \in R(u)} \langle \nabla_u f(u, k), v \rangle, \] (18)
where \(R(u) = \{ k \in K \mid f(u, k) = g(u) \}. \)

The following lemmas establish the properties of \(\hat{Q}_\alpha \) which are necessary in order to apply Theorem 4.

Lemma 5. Let \(\Omega \) be a subset of \(\mathbb{R}^n \) and \(h: \Omega \times [0, \infty) \to [0, \infty) \) be a jointly continuous function. Then, the corresponding matrix function \(h(\alpha, \rho) \) in \(\rho \) follows from the continuity of \(h(\alpha, x) \) in \(x \), for \(x \in [0, \infty) \), by [11, Theorem 6.2.37]. To see joint continuity, let \(\rho_n \to \rho \) be a converging sequence in \(\mathcal{P}(\mathcal{H}) \) and \(\alpha_n \to \alpha \) be a converging sequence in \(\Omega \), as \(n \to \infty \). Then, taking operator norms,
\[\| h(\alpha_n, \rho_n) - h(\alpha, \rho) \| \leq \| h(\alpha_n, \rho_n) - h(\alpha, \rho_n) \| + \| h(\alpha, \rho_n) - h(\alpha, \rho) \|. \] (19)

The second term on the right hand side goes to zero as \(n \to \infty \) by the continuity of \(h(\alpha, \rho) \) in \(\rho \). For the first term, note that \(h(\alpha_n, \rho_n) \) and \(h(\alpha, \rho_n) \) commute and the operator norm can be evaluated as
\[\max_{\lambda \in \text{sp}(\rho_n)} \| h(\alpha_n, \lambda) - h(\alpha, \lambda) \|. \] (20)

Since the limit \(\alpha_n \to \alpha \) exists, \(\alpha_n \) is eventually bounded, so there exists a compact subset \(K \) of \(\Omega \), such that \(\alpha_n \in K \) for all large enough \(n \). Analogously, the limit \(\rho_n \to \rho \) exists, and so the spectrum of \(\rho_n \) is eventually bounded, and hence there exists a compact subset \(K' \) of \([0, \infty) \) such that \(\text{spec}(\rho_n) \subset K' \) for all large enough \(n \). Since \(K \times K' \) is compact, \(h \) is in fact uniformly continuous on \(K \times K' \). Hence, the expression in (20) goes to zero as \(n \to \infty \) uniformly in all elements of the maximum and also uniformly in \(\rho_n \). This shows that
\[\lim_{n \to \infty} \| h(\alpha_n, \rho_n) - h(\alpha, \rho) \| = 0 \] (21)
which completes the proof.

\[\Box \]

Lemma 6. For \(\sigma \in \mathcal{P}(\mathcal{H}) \) fixed, the functions \(f_\rho(\alpha) = f(\alpha, \rho) = \hat{Q}_\alpha(\rho)|\sigma \) and \(f'_\rho(\alpha) = f'(\alpha, \rho) = \frac{d}{d\alpha} \hat{Q}_\alpha(\rho)|\sigma \) are jointly continuous on \((0, \infty) \times \{ A \in \mathcal{P}(\mathcal{H}) \mid A \ll \sigma \} \).

Proof. We have:
\[\hat{Q}_\alpha(\rho)|\sigma = \text{Tr} \left(\sigma^{\alpha} \left(\sigma^{-\frac{1}{2}} \rho \sigma^{-\frac{1}{2}} \right)^{\alpha} \sigma^{\frac{1}{2}} \right) \] (22)
\[\frac{d}{d\alpha} \hat{Q}_\alpha(\rho)|\sigma = \text{Tr} \left(\sigma^{\alpha} \log \left(\sigma^{-\frac{1}{2}} \rho \sigma^{-\frac{1}{2}} \right) \left(\sigma^{-\frac{1}{2}} \rho \sigma^{-\frac{1}{2}} \right)^{\alpha} \sigma^{\frac{1}{2}} \right). \] (23)

In [10] the theorem is phrased with a maximum instead of a minimum, but it is easy to see that this is equivalent upon setting \(f \leftrightarrow -f \).
It is easy to check that the real functions \((\alpha, x) \mapsto x^\alpha\) and \((\alpha, x) \mapsto x^\alpha \log(x)\) are jointly continuous on \((0, \infty) \times [0, \infty)\). Also, for \(A \in \{ A \in \mathcal{P}(\mathcal{H}) \mid A \ll \sigma\}\) the expression \(\sigma^{-\frac{1}{2}} A \sigma^{-\frac{1}{2}}\) is continuous in \(A\) (remember that the inverses are all pseudo-inverses). Hence, the continuity follows from Lemma 5, the continuity of the matrix product and the continuity of the trace. \(\square\)

Theorem 7. For \(\rho \in \mathcal{D}(\mathcal{H})\) and \(\sigma \in \mathcal{P}(\mathcal{H})\):

\[
\lim_{\alpha \to 1} D_\alpha^\#(\rho || \sigma) = \hat{D}(\rho || \sigma) \tag{24}
\]

the Belavkin-Staszewski relative entropy.

Proof. As the sharp Rényi divergence, \(D_\alpha^\#\), is only defined for \(\alpha > 1\), all there is to prove is a limit from above. Let us fix \(\rho \in \mathcal{D}(\mathcal{H})\) and \(\sigma \in \mathcal{P}(\mathcal{H})\). We can restrict our proof to the case \(\rho \ll \sigma\), since otherwise \(D_\alpha^\#(\rho || \sigma) = \hat{D}_\alpha(\rho || \sigma) = \infty\) for all \(\alpha > 1\) and the statement clearly holds. By Lemma 3 there exists a compact set \(K \subseteq \{ A \in \mathcal{P}(\mathcal{H}) \mid A \ll \sigma\}\) such that for \(\alpha \in (1, 2]\),

\[
Q_\alpha^\#(\rho || \sigma) = \min_{A \in K} \hat{Q}_\alpha(A || \sigma). \tag{25}
\]

For \(\alpha \in (0, \infty)\),\(^3\) we define

\[
f(\alpha, A) := \hat{Q}_\alpha(A || \sigma) \tag{26}
\]
\[
g(\alpha) := \min_{A \in K} f(\alpha, A) = \min_{A \in K} \hat{Q}_\alpha(A || \sigma). \tag{27}
\]

By Lemma 6, \(f(\alpha, A)\) is jointly continuous on \((0, \infty) \times K\) and has a jointly continuous derivative in \(\alpha\). Hence by Theorem 4, \(g(\alpha)\) has the the following one-sided derivatives:

\[
\lim_{\alpha \searrow 1} \frac{g(\alpha) - g(1)}{\alpha - 1} = \min_{A \in R(\alpha)} \frac{\text{d}}{\alpha} f(\alpha, A) \tag{28}
\]
\[
\lim_{\alpha \nearrow 1} \frac{g(\alpha) - g(1)}{\alpha - 1} = -\min_{A \in R(\alpha)} \left(-\frac{\text{d}}{\alpha} f(\alpha, A)\right), \tag{29}
\]

where \(R(\alpha) := \{ A \in K \mid f(\alpha, A) = \min_{B \in K} f(\alpha, B)\}\). Recall that the sharp Rényi divergence is only defined for \(\alpha > 1\) and so all we really need here is the limit from above (28). However, establishing that this is also equal to the limit from below makes things slightly simpler, as we are then able to directly use the chain rule later in (32).

For \(\alpha = 1\) the set \(R(\alpha)\) only contains \(\rho\), since

\[
\min_{A \geq \rho} \hat{Q}_1(A || \sigma) = \min_{A \geq \rho} \text{Tr}(A) = \text{Tr}(\rho), \tag{30}
\]

and \(A \geq \rho\), together with \(\text{Tr}(A) = \text{Tr}(\rho)\), imply that \(A = \rho\). Hence, the two one-sided derivatives are equal and

\[
\left.\frac{\text{d}}{\alpha} g(\alpha)\right|_{\alpha = 1} = \left.\frac{\text{d}}{\alpha} f(\alpha, \rho)\right|_{\alpha = 1} = \left.\frac{\text{d}}{\alpha} \hat{Q}_\alpha(\rho || \sigma)\right|_{\alpha = 1}. \tag{31}
\]

\(^3\)\(K\) depends on \(\rho\) and \(\sigma\), but since they are fixed in the entire proof we do not make this dependence explicit.

\(^3\)To apply Theorem 4 we require an open interval in \(\alpha\) which includes 1.
We further have \(g(\alpha) = Q^\#_\alpha(\rho\|\sigma) \) for \(\alpha \in (1, 2] \), and \(g(1) = \text{Tr}(\rho) = 1 \), so
\[
\lim_{\alpha \searrow 1} D^\#_\alpha(\rho\|\sigma) = \lim_{\alpha \searrow 1} \frac{\log Q^\#_\alpha(\rho\|\sigma)}{\alpha - 1} = \lim_{\alpha \searrow 1} \frac{\log g(\alpha) - \log g(1)}{\alpha - 1} = \frac{d}{d\alpha} \log g(\alpha) \bigg|_{\alpha=1} = \frac{d}{d\alpha} g(1) \bigg|_{\alpha=1}.
\]
As the same argument also gives
\[
\lim_{\alpha \to 1} \hat{D}_\alpha(\rho\|\sigma) = \left. \frac{d}{d\alpha} \hat{Q}_\alpha(\rho\|\sigma) \right|_{\alpha=1},
\]
we get by using (31)
\[
\lim_{\alpha \to 1} D^\#_\alpha(\rho\|\sigma) = \lim_{\alpha \to 1} \hat{D}_\alpha(\rho\|\sigma) = \hat{D}(\rho\|\sigma).
\]

3 Kringel divergences and their properties

A key ingredient of our main result, Theorem 7, was Proposition 1, which allowed us to express the sharp divergence as a minimization of the geometric Rényi divergence. Analogous minimizations of arbitrary generalized divergences lead to an interesting new family of generalized divergences which we call kringel divergences\(^4\). We introduce them in this section and prove some of their properties, including the data-processing inequality.

For a function \(D : \mathcal{P}(\mathcal{H}) \times \mathcal{P}(\mathcal{H}) \to \mathbb{R} \cup \{-\infty, \infty\} \) we define for \(\rho, \sigma \in \mathcal{P}(\mathcal{H}) \)
\[
D^\circ(\rho\|\sigma) = \inf_{A \geq \rho} D(A\|\sigma).
\]
Moreover, we say \(D : \mathcal{P}(\mathcal{H}) \times \mathcal{P}(\mathcal{H}) \to \mathbb{R} \cup \{-\infty, \infty\} \) is a generalized divergence if it satisfies the data-processing inequality, i.e. for any \(\rho, \sigma \in \mathcal{P}(\mathcal{H}) \) and any quantum channel \(\mathcal{N} \), we have
\[
D(\mathcal{N}(\rho)\|\mathcal{N}(\sigma)) \leq D(\rho\|\sigma).
\]

Remark 8. Note that the above definition of the generalized divergence is an extension of the standard definition (see e.g. in [12]). In the latter, the generalized divergence is considered as a function \(D : D(\mathcal{H}) \times \mathcal{P}(\mathcal{H}) \to \mathbb{R} \cup \{-\infty, \infty\} \), where \(D(\mathcal{H}) \) denotes the set of density matrices (quantum states) on \(\mathcal{H} \).

The following lemma shows that if \(D \) is a generalized divergence then so is \(D^\circ \). In this case we call \(D^\circ \) the kringel divergence of \(D \).

Lemma 9 (Data-processing inequality). Let \(D \) be a generalized divergence, \(\rho, \sigma \in \mathcal{P}(\mathcal{H}) \) and \(\mathcal{N} \) be a quantum channel. Then
\[
D^\circ(\mathcal{N}(\rho)\|\mathcal{N}(\sigma)) \leq D^\circ(\rho\|\sigma).
\]

\(^4\)Since the symbols \(D, \hat{D}_\alpha, \hat{D}_\alpha, D^\#_\alpha \) and \(D^\#_\alpha \) all refer to existing divergences, and generalized divergences are usually denoted as \(D \), we use the symbol \(D^\circ \) to denote this new family; hence the name kringel divergences (kringel = circle in German).
Proof. We have

\[D^\alpha(\mathcal{N}(\rho)\|\mathcal{N}(\sigma)) = \inf_{A \geq N(\rho)} D(A\|\mathcal{N}(\sigma)) \leq \inf_{N(A) \geq N(\rho)} D(\mathcal{N}(A)\|\mathcal{N}(\sigma)) \]

\[\leq \inf_{N(A) \geq N(\rho)} D(A\|\sigma) \leq \inf_{A \geq \rho} D(A\|\sigma) = D^\alpha(A\|\sigma). \quad (38) \]

Here, for the first inequality we have used the fact that the minimum increases when we only optimise over operators of the form \(N(A) \) and for the second inequality we have used the data-processing inequality for \(D \). For the third inequality we have used the fact that \(A \geq \rho \) implies \(N(A) \geq N(\rho) \), which follows by positivity and linearity of \(N \).

\[\square \]

Remark 10. By Proposition 1 we know that for \(\alpha \in (1, \infty) \) we have

\[\hat{D}_\alpha^\circ = D_\alpha^\# , \quad (39) \]

where the left hand side denotes the kringel divergence corresponding to the geometric Rényi divergence (4). Note that even though the geometric Rényi divergence satisfies the data-processing inequality only for \(\alpha \in (0, 1) \cup (1, 2] \), by [1, Proposition 3.2] its corresponding kringel divergence actually satisfies the data-processing inequality for all \(\alpha \in (0, 1) \cup (1, \infty) \).

Lemma 11. If \(D \) is subadditive then so is \(D^\alpha \), i.e. for all \(\rho_1, \rho_2, \sigma_1, \sigma_2 \in \mathcal{P}(\mathcal{H}) \) we have

\[D^\alpha(\rho_1 \otimes \rho_2\|\sigma_1 \otimes \sigma_2) \leq D^\alpha(\rho_1\|\sigma_1) + D^\alpha(\rho_2\|\sigma_2). \quad (40) \]

Proof. We have

\[D^\alpha(\rho_1 \otimes \rho_2\|\sigma_1 \otimes \sigma_2) = \inf_{A \geq \rho_1 \otimes \rho_2} D(A\|\sigma_1 \otimes \sigma_2) \leq \inf_{A_1 \otimes A_2 \geq \rho_1 \otimes \rho_2} D(A_1 \otimes A_2\|\sigma_1 \otimes \sigma_2) \]

\[\leq \inf_{A_1 \otimes A_2 \geq \rho_1 \otimes \rho_2} \left(D(A_1\|\sigma_1) + D(A_2\|\sigma_2) \right) \]

\[= \inf_{A_1 \geq \rho_1} D(A_1\|\sigma_1) + \inf_{A_2 \geq \rho_2} D(A_2\|\sigma_2) \]

\[= D^\alpha(\rho_1\|\sigma_1) + D^\alpha(\rho_2\|\sigma_2). \quad (41) \]

The third line above follows from the fact that \(A_1 \geq \rho_1 \) and \(A_2 \geq \rho_2 \) implies that \(A_1 \otimes A_2 \geq \rho_1 \otimes \rho_2 \) because \(A_1 \otimes A_2 - \rho_1 \otimes \rho_2 = (A_1 - \rho_1) \otimes A_2 + \rho_1 \otimes (A_2 - \rho_2) \). \[\square \]

3.1 Kringel divergences for \(\alpha \)-Rényi divergences

We say \(D_\alpha : \mathcal{P}(\mathcal{H}) \times \mathcal{P}(\mathcal{H}) \to \mathbb{R} \cup \{ -\infty, \infty \} \) is a quantum generalization of the \(\alpha \)-Rényi divergence if it reduces to the corresponding classical Rényi divergence if both entries commute. That is, if \(\rho, \sigma \in \mathcal{P}(\mathcal{H}) \) are commuting operators then

\[D_\alpha(\rho\|\sigma) = \frac{1}{\alpha - 1} \log \left(\sum_i p_i \rho_i^{\alpha - 1} \right) , \quad (42) \]

where the \(\{ p_i \} \) and \(\{ q_i \} \) are eigenvalues of \(\rho \) and \(\sigma \) respectively with respect to a simultaneous eigenbasis. The following lemma states that, for \(\alpha > 1 \), if \(D_\alpha \) is a quantum generalization of the Rényi relative entropy, then \(D_\alpha^\circ \) too reduces to the classical Rényi divergence in the commuting case, and hence is itself a quantum generalization of the Rényi relative entropy.
Lemma 12. Let $\alpha > 1$ and D_α be a quantum generalization of the α-Rényi divergence satisfying the data-processing inequality (36). Then also $D^\#_\alpha$ is a quantum generalization of the α-Rényi divergence.

Proof. Let $\rho, \sigma \in \mathcal{P}(\mathcal{H})$ such that $|\rho, \sigma| = 0$. Then there exists a simultaneous eigenbasis $\{|i\rangle\}_i$ of ρ and σ such that
\[
\rho = \sum_i p_i |i\rangle\langle i|, \quad \sigma = \sum_i q_i |i\rangle\langle i|.
\] (43)

Clearly,
\[
D^\#_\alpha (\rho \| \sigma) \leq D_\alpha (\rho \| \sigma) = \frac{1}{\alpha - 1} \log \left(\sum_i p_i^\alpha q_i^{1-\alpha} \right).
\] (44)

For the reversed inequality let \mathcal{P} be the pinching map defined as $\mathcal{P}(\cdot) := \sum_i |i\rangle\langle i| \cdot |i\rangle\langle i|$. Hence, denoting for $A \geq \rho$ the diagonal entries by $a_i = \langle i | A | i \rangle \geq p_i$, we see
\[
D^\#_\alpha (\rho \| \sigma) = \inf_{A \geq \rho} D_\alpha (A \| \sigma) \geq \inf_{A \geq \rho} D_\alpha (\mathcal{P}(A) \| \mathcal{P}(\sigma))
\]
\[
= \inf_{A \geq \rho} \frac{1}{\alpha - 1} \log \left(\sum_i a_i^\alpha q_i^{1-\alpha} \right) = \frac{1}{\alpha - 1} \log \left(\sum_i p_i^\alpha q_i^{1-\alpha} \right),
\] (45)

where we have used data-processing inequality for D_α in the first inequality. \square

Remark 13. Note that for $\alpha \in (0, 1)$ and D_α being a quantum generalization of the α-Rényi divergence, one easily sees that
\[
D^\#_\alpha (\rho \| \sigma) = -\infty,
\] (46)

for all $\rho, \sigma \in \mathcal{P}(\mathcal{H})$ with $\sigma \neq 0$, which is why we excluded this range of α in Lemma 12 above and Proposition 14 below.

Important quantum generalizations of the α-Rényi divergence include the geometric- and sharp Rényi divergences, as well as the Petz Rényi divergence (D_α) [13] and the sandwiched Rényi divergence (\tilde{D}_α) [14, 15]. The latter two are defined, respectively, as follows: for $\rho, \sigma \in \mathcal{P}(\mathcal{H})$
\[
D_\alpha (\rho \| \sigma) := \frac{1}{\alpha - 1} \log \text{Tr} \left(\rho^\alpha \sigma^{1-\alpha} \right),
\]
\[
\tilde{D}_\alpha (\rho \| \sigma) := \frac{1}{\alpha - 1} \log \text{Tr} \left(\sigma^{\frac{\alpha}{2\alpha}} \rho^{\frac{1-\alpha}{2\alpha}} \right)^\alpha
\] (47)

if $\alpha \in (0, 1)$, or $\alpha \in (1, \infty)$ and $\rho \ll \sigma$. If $\alpha \in (1, \infty)$ and $\rho \ll \sigma$, then $D_\alpha (\rho \| \sigma) = \tilde{D}_\alpha (\rho \| \sigma) = \infty$. Both the Petz- and the sandwiched Rényi divergences are additive. Moreover, D_α for $\alpha \in (0, 1) \cup (1, 2)$, and \tilde{D}_α for $\alpha \in [1/2, 1) \cup (1, \infty)$, satisfy the data-processing inequality (36), as was shown in [13, 16] and [17], respectively. Therefore, for both of these divergences the following proposition applies in the corresponding ranges of α.

Proposition 14. Let $\alpha > 1$ and D_α be a quantum generalization of the α-Rényi divergence which is subadditive and satisfies the data-processing inequality (36). Then
\[
\tilde{D}_\alpha \leq D^\circ_\alpha \leq D^\#_\alpha.
\] (48)
In particular, this gives for any $\rho, \sigma \in \mathcal{P}(\mathcal{H})$

$$
\lim_{n \to \infty} \frac{1}{n} D_\alpha^n(\rho^\otimes n\|\sigma^\otimes n) = \tilde{D}_\alpha(\rho\|\sigma).
$$

(49)

Moreover, in the case of the sandwiched divergence

$$
\tilde{D}_\alpha = \tilde{D}_\alpha.
$$

(50)

Proof. As D_α satisfies the data-processing inequality, we know that $D_\alpha \leq \tilde{D}_\alpha$; this follows from the argument [8, Section 4.2.3] (also see [3] where the argument originally appeared). This gives

$$
D_\alpha(\rho\|\sigma) = \min_{A \geq \rho} D_\alpha(A\|\sigma) \leq \min_{A \geq \rho} \tilde{D}_\alpha(A\|\rho) = \tilde{D}_\alpha(\rho\|\sigma) = \tilde{D}_\alpha(\rho\|\sigma)
$$

(51)

Moreover, as $\alpha > 1$ and additionally D_α is subadditive, Lemmas 9, 11 and 12 give that also D_α is a subadditive quantum generalization of the α-Rényi divergence satisfying the data-processing inequality. Therefore, by the argument in [8, Section 4.2.2] (note that actually only subadditivity instead of additivity is used there) we have

$$
\tilde{D}_\alpha \leq D_\alpha
$$

(52)

which gives (48). Since, trivially, $\tilde{D}_\alpha \leq \tilde{D}_\alpha$, (50) follows immediately.

Lastly, using $\alpha > 1$ again and [1, Proposition 3.4] gives for any $\rho, \sigma \in \mathcal{P}(\mathcal{H})$

$$
\lim_{n \to \infty} \frac{1}{n} D_\alpha^\#(\rho^\otimes n\|\sigma^\otimes n) = \tilde{D}_\alpha(\rho\|\sigma).
$$

(53)

which together with the additivity of the sandwiched Rényi divergence and (48) gives (49).

Acknowledgements. The authors would like to thank the Institute for Pure and Applied Mathematics (IPAM) at UCLA for hosting a stimulating workshop on *Entropy Inequalities, Quantum Information and Quantum Physics* (February 8-11, 2021). The main question addressed in this paper was also posed as an open question at the workshop. The authors would also like to thank Eric Carlen and Mark M. Wilde for helpful comments on earlier versions of this paper. Bjarne Bergh is supported by the UK Engineering and Physical Sciences Research Council (EPSRC), grant number EP/V52024X/1. Robert Salzmann is supported by the Cambridge Commonwealth, European and International Trust.

Data availability. Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Footnote: Note that in [8, 3] the argument is presented for the case in which ρ and σ are states. However, it can be easily seen that, by a slight modification, the argument also works for the case $\rho, \sigma \in \mathcal{P}(\mathcal{H})$.

4 References

[1] Hamza Fawzi and Omar Fawzi. *Defining Quantum Divergences via Convex Optimization*. Version 1. July 24, 2020. arXiv: 2007.12576.

[2] Fumio Kubo and Tsuyoshi Ando. “Means of Positive Linear Operators.” In: *Mathematische Annalen* 246 (1979), pp. 205–224.

[3] Keiji Matsumoto. *A New Quantum Version of F-Divergence*. Nov. 19, 2013. arXiv: 1311.4722.

[4] Fumio Hiai and Milan Mosonyi. “Different Quantum F-Divergences and the Reversibility of Quantum Operations”. In: *Reviews in Mathematical Physics* 29.07 (Aug. 2017), p. 1750023. DOI: 10.1142/S0129055X17500234. arXiv: 1604.03089.

[5] Vishal Katariya and Mark M. Wilde. *Geometric Distinguishability Measures Limit Quantum Channel Estimation and Discrimination*. Apr. 22, 2020. arXiv: 2004.10708.

[6] Dénes Petz and Mary Beth Ruskai. “Contraction of Generalized Relative Entropy Under Stochastic Mappings on Matrices”. In: *Infinite Dimensional Analysis, Quantum Probability and Related Topics* 01.01 (Jan. 1, 1998), pp. 83–89. DOI: 10.1142/S0219025798000077.

[7] Kun Fang and Hamza Fawzi. *Geometric Rényi Divergence and Its Applications in Quantum Channel Capacities*. Sept. 12, 2019. arXiv: 1909.05758.

[8] Marco Tomamichel. *Quantum Information Processing with Finite Resources*. Vol. 5. SpringerBriefs in Mathematical Physics. Cham: Springer International Publishing, 2016. ISBN: 978-3-319-21891-5. DOI: 10.1007/978-3-319-21891-5.

[9] V. P. Belavkin and P. Staszewski. “C* -algebraic generalization of relative entropy and entropy”. In: *Annales de l'I.H.P. Physique théorique* 37.1 (Feb. 1, 1982), pp. 51–58. DOI: 10.1016/0294-1449(82)90034-9.

[10] V. F. Dem’yanov and V. N. Malozemov. “On the Theory of Non-Linear Minimax Problems”. In: *Russian Mathematical Surveys* 26.3 (June 30, 1971), p. 57. DOI: 10.1070/RM1971v026n03ABEH003834.

[11] Roger A. Horn and Charles R. Johnson. *Topics in Matrix Analysis*. Cambridge: Cambridge University Press, 1991. ISBN: 978-0-521-46713-1. DOI: 10.1017/CBO9780511840371.

[12] Sumeet Khatri and Mark M. Wilde. *Principles of Quantum Communication Theory: A Modern Approach*. Nov. 9, 2020. arXiv: 2011.04672.

[13] Dénes Petz. “Quasi-Entropies for Finite Quantum Systems”. In: *Reports on Mathematical Physics* 23.1 (Feb. 1, 1986), pp. 57–65. DOI: 10.1016/0034-4877(86)90067-4.

[14] Martin Müller-Lennert et al. “On Quantum Rényi Entropies: A New Generalization and Some Properties”. In: *Journal of Mathematical Physics* 54.12 (Dec. 1, 2013), p. 122203. DOI: 10.1063/1.4838856.

[15] Mark M. Wilde, Andreas Winter, and Dong Yang. “Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy”. In: *Communications in Mathematical Physics* 331.2 (Oct. 1, 2014), pp. 593–622. DOI: 10.1007/s00220-014-2122-x.
[16] Marco Tomamichel, Roger Colbeck, and Renato Renner. “A Fully Quantum Asymptotic Equipartition Property”. In: *IEEE Transactions on Information Theory* 55.12 (Dec. 2009), pp. 5840–5847. DOI: [10.1109/TIT.2009.2032797](https://doi.org/10.1109/TIT.2009.2032797). ArXiv: [0811.1221](http://arxiv.org/abs/0811.1221).

[17] Rupert L. Frank and Elliott H. Lieb. “Monotonicity of a Relative Renyi Entropy”. In: *Journal of Mathematical Physics* 54.12 (Dec. 2013), p. 122201. DOI: [10.1063/1.4838835](https://doi.org/10.1063/1.4838835). ArXiv: [1306.5358](http://arxiv.org/abs/1306.5358).