Measuring the Gluon Helicity Difference Distribution Function of the Proton using Photoproduction Processes

S. Keller

Department of Physics, B-159, Florida State University
Tallahassee, Florida 32306, U.S.A

Abstract

Little information is known about the polarization of gluons inside a longitudinally polarized proton. I report on the sensitivity of photoproduction experiments to it. Both jet and heavy quark production are considered.

Introduction

Since the so-called EMC spin crisis has emerged,[1] much experimental and theoretical work has been done.[2] One remaining question is the size of the gluon helicity difference distribution function (Δg). In this contribution, the sensitivity to Δg is studied in photoproduction experiments where both the photon and the proton are longitudinally polarized. The photoproduction of jets and heavy quarks is considered. As is well know, photoproduction processes receive contributions from two classes of subprocesses. In the first

*to appear in the proceedings of the International Europhysics Conference on High Energy Physics, Marseille, July 22–28 1993
class, the photon interacts directly with the constituents of the proton (the “direct” contribution). In the second class, the photon interacts through its distribution functions (the “resolved” contribution). For the unpolarised distribution functions of the proton (photon), the set DO1.1 [5] (D0 [6]) is used. For the helicity difference distribution functions of the proton the three sets (set 1, 2, and 3) developed in Ref. 3 are used. At the initial $Q_0^2 = 4 \text{ GeV}^2$, the three sets have identical quark helicity difference distribution function, but different Δg, see Fig. 1. Clearly, the three sets can be used to study the sensitivity of an observable to Δg. The parametrization of Ref. 4 is used for the helicity difference distribution function of the photon.

Two-jet production

One observable sensitive to Δg is the longitudinal asymmetry, defined as:

$$A_L = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}. \quad (1)$$

where σ^{++} (σ^{+-}) is the cross section for same (opposite) sign helicity of the photon and proton. The asymmetry for the direct contribution is presented in Table I, at $E_\gamma = 200 \text{ GeV}$ and $p_T(jet) \geq 3 \text{ GeV}$, for set 1 and 3 (smallest and largest Δg). $E_\gamma = 200 \text{ GeV}$ corresponds to the average value for E_γ of present unpolarized experiments and $p_T(jet) = 3 \text{ GeV}$ is the lowest value at which jets have been observed in fixed target experiments[7]. Also shown in Table I are the asymmetries for the quark and gluon contributions corresponding to subprocesses involving a quark or a gluon inside the proton, respectively. The quark contribution gives a positive asymmetry and there is no difference between the two sets. The gluon contribution is negative and, as expected, the difference between the two sets is large, of the order of 85%. The cross

	quark	gluon	direct
set 1	25.	-8.3	7.8
set 3	25.	-93.	-36.

Table 1: Asymmetries (%) of the direct contribution for dijet production for set 1 and 3, $E_\gamma = 200 \text{ GeV}$, and $p_T(jet) \geq 3 \text{ GeV}$.
Figure 1: Gluon helicity sum (solid) and helicity difference (dashes) distribution functions of the proton at $Q^2_0 = 4 \text{GeV}^2$ for set 1 (lower), 2 (middle) and 3 (upper).

set 1	diret	res	total
	7.8	2.7	5.3
set 3	-36.	17.	-10.

Table 2: Asymmetries (%) for dijet production for set 1 and 3, $E_\gamma = 200 \text{GeV}$, and $p_T(jet) \geq 3 \text{GeV}$.

section of the quark and gluon contribution are about equal at this energy, such that the difference between the two sets for the direct contribution is about half of the difference for the gluon contribution, $\sim 40\%$. The total asymmetry is presented in Table 2, along with the asymmetry of the direct and resolved contribution. The difference between the two sets in the total asymmetry is only about 15\%. The problem stems from the fact that the gluon contribution is negative in the direct case and positive in the resolved case, such that the two contributions partially cancel each other. An obvious way to improve upon this is to separate the direct and resolved contributions, and then use the direct contribution to measure Δg, as it is the most sensitive contribution. The same techniques developed for the unpolarized case can be implemented to separate the direct and resolved contributions [8].

More detailed information can be obtained by looking at the longitudinal
asymmetry of the differential cross sections. In Fig. 2 the x_p-distribution of the direct contribution is presented as a representative example.

Heavy Quark production

As is well known, the resolved contribution for the photoproduction of heavy quarks for the energy range considered here is of the order of a few percent, and can be neglected. It turns out that the asymmetry is positive in some regions of phase space and negative in others [9]. Therefore, care must be taken when trying to evaluate the sensitivity of heavy quark production to Δg; it is bigger than suggested by the integrated asymmetry.

Conclusions

Considering the total asymmetry, one can show that two jet and heavy quark production have similar sensitivities to Δg. The best way to measure the gluon helicity difference distribution function is by using two jet production at low $p_T(jet)$, with separation of direct and resolved contribution, and then to use the direct contribution which has the biggest sensitivity.
Acknowledgements

The author thanks J. F. Owens for collaboration on this topic [3]. This research was supported in part by the Texas National Research Laboratory Commission and by the U.S. Department of Energy under contract number DE-FG05-87ER40319.

References

[1] J. Ashman et al., EMC collaboration, Phys. Lett. 206B (1988) 364; Nucl. Phys. B328 (1989) 1.

[2] For an overview see S. D. Bass and A. W. Thomas, CAVENDISH–HEP–92–5, ADP–92–1833–T115, SMC–92–25, Aug. 1992, and reference therein.

[3] S. Keller and J. F. Owens, preprint FSU-HEP-930609, to be published in Phys. Rev. D.

[4] J. A. Hassan and D. J. Pilling, Nucl. Phys. B187 (1981) 563.

[5] J. F. Owens, Phys. Lett. 266B (1991) 126.

[6] D. W. Duke and J. F. Owens, Phys. Rev. D30 (1984) 49.

[7] M. Corcoran, private communication.

[8] M. Drees, and R. M. Godbole, Phys. Rev. D39 (1989) 169; R. S. Fletcher, F. Halzen, S. Keller, and W. H. Smith, Phys. Lett. 266B (1991) 183.

[9] see Fig. 8 in Ref. 3.
