2015. Data collection included patient demographics, co-morbidities, transplant data, infection event in 200 days of LT and death. Severe infection was defined as the presence of sepsis, septic shock, or sepsis with multi-organ failure.

Results. A total of 255 patients met inclusion criteria with median follow-up of 690 days (range 1–2095). The mean age was 67.6 years (SD 2.4). Majority were male (67%) and white (85%). Frequent indications of LT were hepatocellular carcinoma (46%) and hepatitis C (32%). The median MELD score at the time of LT was 22 (range 6–47). Only 3% of recipients received thymoglobulin for induction. Acute rejection within 200 days of LT occurred in 31 (12%) graft failure in 8 (3%) and re-transplantation in 5 (2%). One hundred twenty-seven patients (50%) developed 274 infections; 63 (25%) had 1 infection and 64 (25%) had ≥ 2 infections. Median time to first infection after LT was 26 days [IQR 9–72]. Out of 274 infections, 182 (66%) occurred in <90 days. Severe infection occurred in 40/127 (31%). Cystitis (16%), cohnis (12%), and pneumonia (11%) were common. Bacterial, viral, and fungal infections were 63%, 22%, and 7% respectively. Common bacterial pathogens were *Enterococcus* sp. (15%), *Clostidium difficile* (12%) and *E. coli* (8%). Thirty-five (13%) opportunistic infections (OI) occurred due to *Cytomegalovirus* [CMV] (26), *Candida* (4), *Cryptococcus* (3), *HHV-8* (1), and *Aspergillus* (1). Mortality due to infection was 3%, while all-cause mortality was 12%. Frequency of discharge to sub-acute or extended care facility after infection was 23%.

Conclusion. Infections are common in this older LT cohort and occurred mainly in the early post-LT period. OIs were infrequent except for CMV. Despite concerns for immunosuppression and immunosenescence, the outcome of infection within the 200 days of LT was overall favorable.

Disclosures. All authors: No reported disclosures.

132. Solid Organ Transplantation (SOT) and Data Mining: Bloodstream Infections (BSI) Have a Significant Impact on One-Year Survival, and qSOFA ≥ 2 Predicts 30-Day Mortality

Terrence Liu, BS1; Donglu Xie, MS1; Beverley Adams-Huet, MS1; Jade Le, MD2; Christina Yek, MD3; Dipti Ranganathan, MS4; Robert W. Haley, MD, FSHIA1; David Greenberg, MD, FIDSA, Ricardo La Hoz, MD, FACP, FAST2; University of Texas Southwestern Medical Center, Dallas, Texas; Epidemiology, University of Texas Southwestern Medical Center, Dallas, Texas

Session: 41. Infections in Transplantation

Thursday, October 5, 2017: 10:30 AM

Background. We created a retrospective and prospective database of SOT recipients using innovative data mining tools. This study describing the epidemiology of BSI in SOT serves as a proof of concept of such techniques in clinical research.

Methods. The design of the study was a retrospective, single-center, cohort study. Data mining tools were used to extract information from the electronic medical record and merged it with data from the SRTR (Figure 1). First SOT from January 1, 2010 to December 31, 2015 were included. Charts of subjects with positive blood cultures were manually reviewed and adjudicated using CDC/NHSN surveillance criteria. The 1-year cumulative incidence was calculated using the Kaplan–Meier method. Cox proportional hazards models were used to identify risk factors for BSI and 1-year mortality. BSI was analyzed as a time-dependent covariate in the mortality model. Fisher's exact test and chi-square were used to identify risk factors for 30-day mortality and MDRO.

Results. A total of 917 SOT recipients met inclusion criteria. Seventy-five patients experienced at least one BSI. The cumulative incidence was 8.4% (95% CI 6.8–10.4) (Figure 2). The onset of the first BSI episode was: 30 episodes (40%) <1 month, 33 episodes (44%) 1–6 months, and 12 (16%) >6 months. The most common pathogens were *Klebsiella* sp. (16%), *Vancomycin-resistant E. faecium* (12%), *E. coli* (12%), *Klebsiella* (12%), and *Candida* sp. (9.3%). Nineteen isolates (25%) were identified as MDRO; the most common is *Candida* sp. (Figure 3). In multivariable analysis, the risk of BSI was associated with organ type (HR [95% CI] = Multorgan 3.5 [1.1–11.6], liver 2.5 [1.1–5.4], heart 2.4 [1.1–5.1]) and acquisition of a BSI was associated with a higher 1-year mortality (HR = 8.7 [5.1–14.7]). In univariable analysis, a polymicrobial BSI (14.7% vs. 57.1%) P = 0.02, qSOFA ≥ 2 (0.0 vs. 25.5%), P = 0.02 and septic shock (3.9 vs. 52.2%, P < 0.001) were associated with an increased risk of death at 30 days.

Conclusion. A qSOFA significantly affects the 1-year survival of SOT recipients. A qSOFA ≥ 2 can be used to identify patients at risk for death. Additionally, this study illustrates the potential of data mining tools to study infectious complications.

Disclosures. All authors: No reported disclosures.

133. Strongyloides stercoralis Infection Incidence, Risk Factors and Outcomes Among Solid Organ Transplant Candidates and Recipients: a Florida Center Experience

Robert Castro, MD1; Sadaf Aslam, MD2; Christopher Albers, MD1; Louise Gutierrez, MD1; Marjolaine Gonzalez, MD3; Sally Alrabaa, MD3; Infectious Disease and International Medicine, University of South Florida College of Medicine, Tampa, Florida; Division of Infectious Diseases and International Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida; Tampa General Medical Group, Tampa, Florida; Infectious Diseases, University of South Florida, Tampa, Florida; University of South Florida, Tampa, Florida; Infectious Diseases and International Medicine, University of South Florida, Tampa, Florida

Session: 41. Infections in Transplantation

Thursday, October 5, 2017: 10:30 AM

Background. Most infections of *Strongyloides stercoralis* are asymptomatic but can be fulminant in the immunosuppressed. Fatal infections in transplant patients have been reported in United States but incidence estimates are lacking. Our protocol for *Strongyloides* until 2009 screened immigrants and those with travel history to endemic areas. In 2010, we began universal screening of SOT candidates due to a case of disseminated Strongyloidiasis in an unscreened lung transplant recipient with unknown risk factors. We calculated the incidence of *Strongyloides stercoralis* in our SOT candidates and associated risk factors, treatment, and outcomes since protocol change.

Methods. A retrospective review was performed on patients who underwent transplant evaluation from January 2014 to July 2016. Patients positive for *Strongyloides stercoralis* were reviewed for age, sex, ethnicity, place of birth, travel history, occupation, eosinophilia, treatment, and outcome. We report descriptive statistics.

Results. Of a total of 3,353 SOT patients, 116 tested positive (heart 33, lung 24, kidney 26, liver 31, pancreas 2) with an incidence of 4.9%. A total of 113 charts were available for review. The characteristics of the patients are summarized in Table 1. Fifty patients had traditional risk factors (44%) and 63 lacked them (56%). Eosinophilia was present in 15% of cases. Of those transplanted, 87% received prophylaxis and none developed active Strongyloidiasis.

Conclusion. Our results show that *S. stercoralis* infection has a relatively high incidence in SOT patients and universal screening identified a substantial number that otherwise would go undetected, placing the transplant patient at risk of a fatal, yet preventable complication.
Table 1. Characteristics of patients

Patient characteristics	Number	%
Total screened	2365	
Positive Strongyloides	116	4.9
Age group		
60–70 years	36	
50–59 years	20	
40–49 years	19	
<40	24	
Sex		
Male	23	80
Female	90	
Ethnicity		
White	81	72
Hispanic	18	16
African American	14	12
Occupation with soil or water contact	21	19
Total SOT patients	38	87
Treated before SOT	33	97
Ivermectin	32	
Allobendazole	1	
Travel or birth outside United States	35	31
Puerto Rico	12	34
Caribbean and South America	10	29
Middle East	3	8
Africa	2	6
Europe and Australia	3	8
Asia	5	14
Eosinophilia >5%	17	15

Disclosures. All authors: No reported disclosures.

134. Investigation of a Contaminated, Nationally Distributed, Organ Transplant Preservation Solution — United States, 2016–2017

Matthew Stuckey, PhD, MPH;1 Shannon Nosovas, MD, MPH;2 Nancy Wilde, BS;3FCMP;2 Pallavi Annambhotla, DrPH;2 Sridhar Basavaraju, MD, FACEP;2 Heather Moulton-Meissner, PhD;4 Kathy Seiber, MS;5 Joseph Perz, DrPH;5 Patricia Quinlisk, MD, MPH;1 Ann Garvey, DVM, MPH, MA;4 Suzanne Conrad, RN, MS, CPTC;1 Sarah Fowell, RN, BSN, CPTC, CTBS;1 Sam Hill, RN, BSN, CPTC, CTBP;1 Michael Edmond, MD, MPH, MPAn, FIDSA, FSHEA;1 Daniel Diekema, MD, FIDSA, FSHEA;1 Bradley Ford, MD, PhD;2 Alan Reed, MD, MBA, FACS;2 Isaac Benowitz, MD;2 and Maroya Spalding Walters, PhD, ScM;1 Epidemiology Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia;2 Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia;2 Iowa Department of Public Health, Des Moines, Iowa;1 Iowa Donor Network, North Liberty, Iowa;1 University of Iowa Hospitals and Clinics, Iowa City, Iowa

Session: 41. Infections in Transplantation
Thursday, October 5, 2017: 10:30 AM

Background. In December 2016, bacterial contamination of an organ preservation solution (OPS) was reported by Transplant Center A in Iowa. Annually, >20,000 abdominal organs are transplanted in the United States; OPS is used for organ storage. We investigated the scope of OPS contamination and its association with adverse events in patients.

Methods. We assessed infection control practices related to OPS at Transplant Centers A and B in Iowa and the local organ procurement organization (OPO). We issued national notifications about OPS contamination and requested transplant centers to report product-related concerns or potential patient harm. Among transplant recipients at Center A, we compared adverse events (fever, bacteremia, surgical site infection, peritonitis, or pyelonephritis within 14 days of transplantation) during October–December 2015 with October–December 2016, the presumed window of exposure to contaminated OPS. Isolates from OPS were characterized.

Results. No infection control deficiencies were identified at Transplant Centers A, B, or the OPO. In January 2017, contaminated OPS from the same manufacturer was reported by Transplant Center C in Texas. Nationally, there were no reports of patient harm definitively linked to OPS. Post-transplant adverse events at Center A did not increase between fourth quarter 2015 (5/12 [42%]) and 2016 (2/15 [13%]). Organisms recovered from OPS included Pantoea agglomerans and Enterococcus gilainiannus (Center A) and Pseudomonas koreensis (Center C). Five Pantoea isolates from ≥3 opened OPS bags were indistinguishable by pulsed-field gel electrophoresis. The OPS distributor issued recalls and suspended production. The US Food and Drug Administration identified deficiencies in current good manufacturing practices at manufacturing and distribution facilities, including inadequate validation of OPS sterility.

Conclusion. Bacterial contamination of a nationally distributed product was identified by astute clinicians. The investigation found no illnesses were directly linked to the product. Prompt reporting of concerns about potentially contaminated healthcare products, which might put patients at risk, is critical for swift public health action.

Disclosures. All authors: No reported disclosures.