Vascular, inflammatory and metabolic risk factors in relation to dementia in Parkinson’s disease patients with type 2 diabetes mellitus

Ting Wang¹*, Feilan Yuan¹*, Zhenze Chen¹*, Shuzhen Zhu¹*, Zihan Chang¹, Wanlin Yang¹, Bin Deng¹, Rongfang Que¹, Peihua Cao², Yinxia Chao³, Lingling Chan³, Ying Pan⁴, Yanping Wang⁴, Linting Xu⁵, Qiwang Lyu⁶, Piu Chan⁷, Midori A. Yenari⁸, Eng-King Tan³, Qing Wang¹

¹Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
²Clinical Research Center, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
³Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore
⁴Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Guangdong, China
⁵Department of Neurology, Puning People’s Hospital, Puning, Guangdong, China
⁶Department of Neurology, Guiping People’s Hospital, Guangxi, China
⁷Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
⁸Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA

*Equal contribution

Correspondence to: Qing Wang, Eng-King Tan; email: denniswq@yahoo.com, https://orcid.org/0000-0002-3882-6540; tan_eng.king@singhealth.com.sg

Keywords: vascular inflammation, risk factor, dementia, Parkinson's disease, type 2 diabetes mellitus

Received: February 13, 2020 Accepted: July 14, 2020 Published: August 15, 2020

Copyright: Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

There are limited data on vascular, inflammatory, metabolic risk factors of dementia in Parkinson’s disease (PD) with type 2 diabetes mellitus (DM) (PD-DM). In a study of 928 subjects comprising of 215 PD with DM (including 31 PD-DM with dementia, PD-DMD), 341 PD without DM (including 31 PD with dementia, PDD) and 372 DM without PD (including 35 DM with dementia, DMD) patients, we investigated if vascular, inflammatory, metabolic, and magnetic resonance imaging (MRI) markers were associated with dementia in PD-DM. Lower fasting blood glucose (FBG<5mmol/L, OR=4.380; 95%CI: 1.748-10.975; p=0.002), higher homocysteine (HCY>15μmol/L, OR=3.131; 95%CI: 1.243-7.888; p=0.015) and hyperlipidemia (OR=3.075; 95%CI: 1.142-8.277; p=0.026), increased age (OR=1.043; 95%CI: 1.003-1.084; p=0.034) were the most significant risk factors in PDD patients. Lower low-density lipoprotein cholesterol (LDL-C<2mmol/L, OR=4.499; 95%CI: 1.568-12.909; p=0.005) and higher fibrinogen (>4g/L, OR=4.066; 95%CI: 1.467-11.274; p=0.007) were the most significant risk factors in PD-DMD patients. The area under the curve (AUC) for fibrinogen and LDL-C was 0.717 (P=0.001), with a sensitivity of 80.4% for the prediction of PD-DMD.

In summary, we identified several factors including LDL-C and fibrinogen as significant risk factors for PD-DMD and these may have prognostic and treatment implications.
INTRODUCTION

Patients with type 2 diabetes mellitus (DM) may have a higher risk of developing Parkinson’s disease (PD) [1]. Patients with comorbid PD and DM (PD-DM) are commonly encountered in clinical practice. Cognitive dysfunction in this group of patients may contribute to the underlying neurodegenerative process and impact on quality of life [2, 3]. Vascular, inflammatory and metabolic derangements can potentially modulate the underlying pathophysiologic processes in PD [4–7]. In fact, glucose metabolism abnormalities (including insulin resistance) have been observed in 50–80% of patients with PD [8–10]. PD-DM patients have been previously associated with cognitive decline or dementia [11, 12]. The mechanism of dementia in PD-DM (PD-DMD) patients has yet to be elucidated.

Several lines of evidence suggested that altered blood glucose could lead to cognitive impairment in old age [13], and patients with PD-DM are more prone to develop cognitive impairment than patients with PD but without DM [14]. In addition, various vascular, inflammatory [15, 16] and metabolic markers, including cystatin C (Cys C), homocysteine (HCY), low-density lipoprotein (LDL-C), neutrophils, lymphocytes, white matter lesions (WMLs) and subcortical arteriosclerotic encephalopathy (SAE), have been shown to be associated with dementia in PD and DM [12, 17, 18]. It is possible that vascular, inflammatory and metabolic risk factors in PD can modulate underlying neurodegeneration particularly in the presence of diabetes and dementia [19–21]. However, among these risk factors, which risk factors could be mostly associated with dementia and if these risk factors could be potential prognostic clinical variables to facilitate the early prediction of PD-DMD patients have not been reported and need to be further explored.

To address these gaps in knowledge, we conducted a large cohort study to examine the relationship between vascular, inflammatory, metabolic risk factors and dementia in PD-DM patients. We also identified the potential and most significant risk factors for PD-DMD, with the aim of validating the potential prognostic clinical variables to facilitate the early prediction of PD-DMD patients.

RESULTS

Baseline demographics in PD, DM and PD-DM patients

The baseline demographics in PD, DM and PD-DM patients are summarized in Table 1 and Figure 1. A total of 928 patients comprising of 341 PD (31 PD with dementia, PDD), 372 DM (35 DM with dementia, DMD) and 215 PD-DM (31 PD with dementia, PD-DMD) patients were recruited (Fig 1). No significant difference in the proportion of dementia cases among PD, DM and PD-DM patients was noted (Table 1). The numbers of patients with PD-DMD and DMD over 70 years were greater than the number of patients without dementia (Table 1). Among all these patients with dementia, the numbers of PD-DMD patients over 70 years were significantly more than those of PDD and DMD patients (Supplementary Table 2). PD-DMD and PDD patients exhibited higher UPDRS and NMSS scores than patients without dementia; PD-DMD patients exhibited higher H&Y stages and more use of atorvastatin than patients without dementia (Table 1).

Among all of these patients with dementia, PD-DMD patients exhibited higher MDS-UPDRS and NMSS scores than patients with PDD (Figure 2, Supplementary Table 2). PD-DMD and DMD patients exhibited more anxiety and depression than patients without dementia. DMD patients were more often male and exhibited more acarbose use but less insulin use than DM patients without dementia (p<0.05). However, there was no significant difference in the use of metformin between DM and PD-DMD patients or in the use of L-Dopa and PD duration between PD and PD-DMD patients with dementia and those without dementia (Table 1). We found no significant difference in MMSE, MoCA, or H&Y scores, the proportion of males, the presence of anxiety or depression, or the use of insulin and acarbose among the PDD, DMD and PD-DMD patients (Supplementary Table 2).

Vascular and inflammatory risk factors for dementia in PD, DM and PD-DM patients

The potential vascular and inflammatory risk factors for dementia in PD, DM and PD-DM patients are summarized in Table 2A. We found that PD-DMD and DMD patients exhibited higher plasma levels of fibrinogen (>4g/L) and neutrophils, and more brain infarctions, SAE and WMLs (Fazekas 2), but lower levels of LDL-C (<2mmol/L) and lymphocytes, than PD-DM and DM patients without dementia (p<0.05), whereas no significant differences were noted in PD patients. Among all patients with dementia, PD-DMD and DMD patients exhibited more brain infarctions but lower levels of LDL-C (<2mmol/L) than PDD patients; PD-DMD patients exhibited higher levels of neutrophils and fibrinogen (>4g/L) but lower levels of lymphocytes than PDD patients. PD-DMD patients exhibited more SAE than DMD patients; DMD patients exhibited higher levels of hs-CRP (>3mg/L) than PDD patients (p<0.05) (Supplementary Table 2, Figure 2). However, there was no significant difference in blood pressure, BMI, WBC, or the incidence of smoking history,
Clinical variables	PD(n=341)	DM(n=372)	PD-DM(n=215)	p*
Age, years (years)	65.0(56.0,73.0)	68.0(57.0,74.0)	73.0(66.0,80.0)	0.004
<55, n (%)	66(19.35)	3(9.68)	10(3.24)	0.133
55-70, n (%)	156(46.32)	14(40.00)	14(40.00)	0.198
>70, n (%)	94(27.62)	12(35.71)	13(40.00)	0.237
Male, n (%)	175(56.45)	192(56.97)	192(56.97)	0.021
PD duration, month	48(15.84)	60(24.84)	60(24.84)	0.036
Use of drugs, n (%)				
Atorvastatin	67(21.61)	178(52.82)	83(24.51)	0.089
Metformin	-	18(53.71)	74(24.22)	0.273
Insulin	-	8(24.61)	69(21.91)	0.418
Acarbose	-	94(27.89)	78(24.29)	0.104
L-Dopa	252(75.29)	96(28.00)	134(41.90)	0.440
MDS-UPDRS (I)	3(0.08)	0.001	0.001	0.980
MDS-UPDRS (II)	7.0(5.0,8.0)	9.0(7.0,10.0)	10.0(8.0,10.0)	0.001
MDS-UPDRS (III)	17.0(15.0,20.0)	21.0(17.0,20.0)	23.0(17.0,20.0)	0.023
(Total)	25.0(21.0,29.0)	30.0(24.0,38.0)	34.0(28.0,44.0)	0.001
H&Y	3(0.03)	-	3.0(2.5,3.0)	0.008
NMSS	18.0(13.0,25.0)	24.0(18.0,32.0)	24.0(18.0,32.0)	0.001
MMSE	26.0(24.0,28.0)	27.0(24.0,29.0)	26.0(24.0,29.0)	0.001
MoCA	23.0(20.0,25.0)	26.0(24.0,27.0)	22.0(20.0,24.0)	0.001
Anxiety	131(42.26)	52(15.43)	76(24.13)	0.038

All continuous variables are presented as median (interquartile range) and categorical variables are presented as count (proportion). PD- patients with Parkinson disease without type 2 diabetes mellitus; DM- type 2 diabetes mellitus without Parkinson disease; PD-DM- patients with Parkinson disease and type 2 diabetes mellitus; D(-) - without dementia; D(+) - with dementia; L-Dopa- Levodopa and Benserazide; MDS-UPDRS- Movement Disorder Society–Unified Parkinson’s Disease Rating Scale; H&Y- the modified Hoehn and Yahr staging scale; NMSS- Non-Motor Symptoms Scale for Parkinson’s Disease; MMSE- mini mental state examination; MoCA- Montreal Cognitive Assessment; *The statistically significant differences between patients with dementia and patients without dementia in PD, DM, PD-DM groups were assessed by χ2-test or Mann-Whitney U tests; P-values<0.05 were considered statistically significant.

All continuous variables are presented as median (interquartile range) and categorical variables are presented as count (proportion). PD- patients with Parkinson disease without type 2 diabetes mellitus; DM- type 2 diabetes mellitus without Parkinson disease; PD-DM- patients with Parkinson disease and type 2 diabetes mellitus; D(-) - without dementia; D(+) - with dementia; L-Dopa- Levodopa and Benserazide; MDS-UPDRS- Movement Disorder Society–Unified Parkinson’s Disease Rating Scale; H&Y- the modified Hoehn and Yahr staging scale; NMSS- Non-Motor Symptoms Scale for Parkinson’s Disease; MMSE- mini mental state examination; MoCA- Montreal Cognitive Assessment; *The statistically significant differences between patients with dementia and patients without dementia in PD, DM, PD-DM groups were assessed by χ2-test or Mann-Whitney U tests; P-values<0.05 were considered statistically significant.

The metabolic risk factors for dementia in PD, DM and PD-DM patients are summarized in Table 2B. First, we found a higher plasma level of Cys C (>0.95mg/L, p<0.05) in PDD and DMD patients than in PD and DM patients without dementia, whereas no significant differences were observed between PD-DM and PD-DM patients without dementia. Second, higher levels of MCV (>90fL) and HCY (>15μmol/L), more frequent hyperhomocysteinemia, and lower levels of FBG (<5mmol/L) were observed in PD patients than in PD patients without dementia. Third, higher plasma levels of AST (>40IU/L) and albumin (<35g/L) but lower levels of calcium (<2.1mmol/L) and potassium were observed in DMD patients than in DM patients without dementia (Table 2B). Higher levels of MCV (>90fL) but lower levels of FBG (<5mmol/L) were noticed in PDD patients than in patients with PD-DM or DMD (Supplementary Table 2). However, no significant differences in ALT or HbA1c levels were noted between patients (PD, DM and PD-DM patients) with dementia and without dementia. There was no significant difference in AST, albumin, Cys C, HCY, calcium or potassium levels among PDD, DMD and PD-DMD patients.

Multivariable logistic regression analysis of risk factors of dementia in PD and PD-DM patients and the interaction of risk factors with age groups over and less than or equal to 70 years

Our study showed that lower FBG (<5mmol/L, OR=4.380; 95%CI: 1.748-10.975; p=0.002), higher HCY (>15μmol/L, OR=3.131; 95%CI: 1.243-7.888; p=0.015) and hyperlipidemia (OR=3.075; 95%CI: 1.142-8.277; p=0.026) and increased age (OR=1.043;
95% CI: 1.003-1.084; p=0.034) were the most significant risk factors associated with PDD. Elevated level of Cys C (>0.95 mg/L, OR=4.413; 95% CI: 1.606-12.124; p=0.004) and hyperlipidemia (OR=4.030; 95% CI: 1.289-12.605; p=0.017) were significantly associated with dementia in PD patients less than 70 years old, whereas lower FBG (<5 mmol/L, OR=7.375; 95% CI: 1.689-32.198; p=0.008) was significantly associated with dementia in PD patients over 70 years old (Table 3A and Supplementary Table 3).

In addition, a lower LDL-C (<2 mmol/L, OR=4.499; 95% CI: 1.568-12.909; p=0.005) and higher fibrinogen (>4 g/L, OR=4.066; 95% CI: 1.467-11.274; p=0.007)

Figure 1. Flow diagram of patients with dementia diagnosed with PD, DM, or PD-DM and the clinical investigations conducted. PD - patients with Parkinson's disease without type 2 diabetes mellitus; DM - type 2 diabetes mellitus without Parkinson's disease; PD-DM - patients with Parkinson's disease and type 2 diabetes mellitus; MDS-UPDRS - Movement Disorder Society–Unified Parkinson's Disease Rating Scale; H&Y - the modified Hoehn and Yahr staging scale; NMSS - nonmotor symptoms scale for Parkinson's Disease; MMSE - Mini Mental State Examination; MoCA - Montreal Cognitive Assessment; WMLs - White matter lesions.
were the most significant risk factors associated with PD-DMD. Decreased LDL-C (<2mmol/L, OR=9.197; 95%CI: 2.342-36.119; p=0.001) and SAE (OR=5.389; 95%CI: 1.270-22.875; p=0.022) were significantly associated with dementia in PD-DM patients over 70 years old (Table 3B). Those variables that were not significantly associated with PDD and PD-DMD are listed in Table 3A and Table 3B. These risk factors were also found to be associated with MMSE score using the multiple linear regression analysis (Supplementary Table 1 and Supplementary File). However, all of these risk factors did not show significant interactions (p>0.05) with these two age groups except Cys C (>0.95mg/L).

ROC curves of risk factors in PD-DM patients with dementia

ROC curves were constructed to explore which factor could provide useful discrimination between PD-DM patients with dementia and without dementia. ROC curves for disease duration, age and MDS-UPDRS (total) revealed that the AUC was 0.564 (95%CI: 0.458-0.669, p=0.262), 0.664 (95%CI: 0.568-0.760, p=0.004) and 0.710 (95%CI: 0.622-0.798, p<0.001). ROC curves for fibrinogen and LDL-C analysis revealed AUC values of 0.650 (95%CI: 0.537-0.763, p=0.015) and 0.651 (95%CI: 0.534-0.769, p=0.009), respectively. However, the combination of fibrinogen and LDL-C did not show significant interactions (p>0.05) with disease duration, age or MDS-UPDRS (total).

*Figure 2. Comparison of UPDRS score (A) and the percentage of patients with fibrinogen>4 (mmol/L), LDL<2 (mmol/L), SAE, brain infarctions (B) and WMLs with Fazekas scale scores (C) among PDD, DMD and PD-DMD patients. PDD - patients with Parkinson’s disease without type 2 diabetes mellitus; DM - type 2 diabetes mellitus without Parkinson’s disease; PD-DM - patients with Parkinson’s disease and type 2 diabetes mellitus; PDD - patients with Parkinson’s disease with dementia; DMD - type 2 diabetes mellitus with dementia; PD-DMD - patients with Parkinson’s disease and type 2 diabetes mellitus and dementia; D(-) - without dementia; D(+) - with dementia; UPDRS - Unified Parkinson’s Disease Rating Scale; NMSS - nonmotor symptoms scale for Parkinson’s Disease; LDL-C - low-density lipoprotein cholesterol; SAE - subcortical arteriosclerotic encephalopathy; WMLs - white matter lesions; NS - not significant. *p<0.05, **p<0.01, ***p<0.001.
Table 2A. Vascular and inflammatory risk factors for dementia in PD, DM and PD-DM patients.

Vascular and inflammatory risk factors	PD(n=341)	DM(n=372)	PD-DM(n=215)			
SBP (mmHg)	D (-) (n=310)	D (+) (n=31) p*	D (-) (n=337)	D (+) (n=35) p*	D (-) (n=184)	D (+) (n=31) p*
DBP (mmHg)	125.0(120.0,135.0)	120.0(118.0,135.0) 0.104	136.0(124.0,151.0)	146.0(126.0,153.0) 0.104	137.0(125.0,151.0)	132.0(120.0,152.0) 0.333
Smoking history, n (%)	14(4.52)	2(6.45) 0.647	48(14.24)	7(20.00) 0.361	11(5.98)	3(9.68) 0.432
Drinking history, n (%)	10(3.23)	0 0.608	30(8.90)	5(14.29) 0.355	6(3.26)	1(3.23) 1.000
BMI	22.5(21.0,25.0)	23.0(22.0,25.0) 0.064	24.0(22.0,26.0)	24.0(22.0,26.0) 0.823	23(21.26)	24(21.25) 0.710
LDL-C (mmol/L)	2.9(2.3,3.5)	2.5(2.3,3.2) 0.270	3.1(2.4,3.6)	2.7(1.9,3.1) 0.010	2.8(2.1,3.5)	1.9(1.6,3.0) 0.009
LDL-C<2.00 (mmol/L), n (%)	31(10.00)	2(6.45) 0.753	67(19.88)	12(34.29) 0.047	36(19.57)	15(48.39) <0.001
D-Dimer (mg/L), n (%)	0.4(0.3,0.6)	0.6(0.3,1.1) 0.083	0.4(0.3,0.5)	0.4(0.3,0.9) 0.311	0.6(0.4,1.4)	0.6(0.4,1.4) 0.622
Fibrinogen (g/L)	27.8(11.7)	6(19.35) 0.101	12(42.16)	9(25.71) 0.039	45(24.46)	15(48.39) 0.006
WBC (g/L)	6.3(3.7,7.4)	6.1(5.0,7.2) 0.533	6.9(6.0,8.3)	7.3(6.0,9.5) 0.152	7.2(6.1,8.8)	7.4(6.1,9.9) 0.387
Neutrophil (%)	30.4(25.8,35.9)	30.7(24.2,34.8) 0.740	30.9(25.2,37.5)	25.3(18.6,32.1) 0.002	27.3(19.0,32.6)	20.5(12.2,28.0) 0.008
hs-CRP (mg/L), n (%)	5.5(3.0,4.1)	3.3(3.0,4.6) 0.863	3.5(3.0,4.4)	4.1(3.5,5.1) 0.015	3.5(3.0,4.4)	4.1(3.5,5.1) 0.015
Hyperlipidemia, n (%)	33(10.65)	22(72.58) 0.072	61(18.10)	3(8.57) 0.155	24(13.04)	26(45.6) 0.385
Brain infarction, n (%)	90(29.03)	13(41.94) 0.140	128(37.98)	27(77.14) <0.001	86(46.75)	26(83.87) <0.001
SAE, n (%)	70(22.58)	9(29.03) 0.417	13(3.86)	5(14.29) 0.019	48(26.09)	18(58.06) <0.001
WMLs, n (%)	97(31.29)	12(38.71) 0.398	59(17.51)	17(48.57) <0.001	66(35.87)	18(58.06) 0.019
Fazekas 1	45(14.52)	5(16.13) 0.791	11(3.26)	2(5.71) 0.350	4(2.17)	2(6.45) 0.208
Fazekas 2	46(14.84)	7(22.58) 0.295	42(12.46)	12(34.29) <0.001	52(28.26)	15(48.39) 0.025
Fazekas 3	6(19.4)	0 1.000	6(19.4)	3(8.57) 0.043	10(5.43)	1(3.23) 1.000

All continuous variables are presented as median (interquartile range) and categorical variables are presented as count (proportion). PD- patients with Parkinson disease without type 2 diabetes mellitus; DM- type 2 diabetes mellitus without Parkinson disease; PD-DM- patients with Parkinson disease and type 2 diabetes mellitus; D(-) without dementia; D(+) with dementia; SBP- systolic blood pressure; DBP- diastolic blood pressure; BMI- body mass index; LDL-C- low density lipoprotein cholesterol; WBC- White blood cell count; hs-CRP- hypersensitive C-reactive protein; SAE- subcortical arteriosclerotic encephalopathy; WMLs- White matter lesions. *The statistically significant differences between patients with dementia and patients without dementia in PD, DM, PD-DM groups were assessed by χ2-test or Mann-Whitney U tests; P-values<0.05 were considered statistically significant.

Table 2B. Metabolic risk factors for dementia in PD, DM and PD-DM patients.

Metabolic risk factors	PD(n=341)	DM(n=372)	PD-DM(n=215)			
AST>40(IU/L), n (%)	7(2.26)	0 1.000	9(2.67)	5(14.29) 0.006	14(6.47)	3(9.98) 0.019
ALT(IU/L)	14.0(10.0,21.0)	15.0(9.0,22.0) 0.782	18.0(13.0,27.0)	22.0(15.0,28.0) 0.138	15.0(10.0,22.0)	14.0(11.0,30.0) 0.350
Albumin (g/L)	40.5(38.0,43.0)	40.3(38.0,41.8) 0.575	41.4(39.0,43.9)	39.3(36.2,42.9) 0.020	39.8(37.0,42.0)	36.9(36.0,42.1) 0.166
Calcium (mmol/L)	2.3(2.2,2.3)	2.3(2.2,2.4) 0.529	2.3(2.2,2.4)	2.2(2.2,2.3) 0.004	2.3(2.2,2.4)	2.2(2.1,2.3) 0.134
Calcium<2.00 (mmol/L), n (%)	28(9.03)	5(16.13) 0.203	12(3.56)	6(17.14) 0.004	24(13.04)	8(25.81) 0.097
U tests; P-values < 0.05 were considered statistically significant.

Table 3A. Multivariable logistic regression analysis for risk factors of dementia in PD patients and the interaction of risk factors with age groups.

Variables	OR (95%CI)	p	Adjusted OR (95% CI)	p	Interaction
Age≤70 (years)	1.035(1.000,1.071)	0.050	1.043(1.003,1.084)	0.034	-
Age>70 (years)	0.383(0.235,0.624)	<0.001	7.375(1.689,32.198)	0.008	0.204
HCY>15.00 (μmol/L)	2.684(1.156,6.231)	0.022	3.131(1.243,7.888)	0.015	-
Age≤70 (years)	0.468(0.254,0.864)	0.015	2.776(0.751,10.258)	0.126	-
Age>70 (years)	2.135(1.158,3.935)	0.015	4.005(0.977,16.420)	0.054	0.709
Hyperlipidemia	2.448(0.980,6.119)	0.055	3.075(1.142,8.277)	0.026	-
Age≤70 (years)	1.216(0.583,2.536)	0.603	4.030(1.289,12.605)	0.017	-
Age>70 (years)	0.823(0.394,1.716)	0.603	0.957(0.097,9.469)	0.970	-
Cys C>0.95 (mg/L)	2.212(1.008,4.468)	0.048	2.157(0.979,4.752)	0.056	0.271
Age≤70 (years)	0.840(0.517,1.366)	0.483	4.413(1.606,12.124)	0.004	0.048
Age>70 (years)	1.190(0.732,1.934)	0.483	0.710(0.158,3.193)	0.655	-

* We performed the logistic regression models considering (a) all patients, (b) less than or equal to 70 years and (c) patients over 70 years. PD- patients with Parkinson disease without type 2 diabetes mellitus; DM- type 2 diabetes mellitus without Parkinson disease; PD-DM- patients with Parkinson disease and type 2 diabetes mellitus; D(-) without dementia; D(+)- with dementia; AST- Aspartate transaminase; ALT- Alanine transaminase; MCV- mean corpuscular volume; HCY- homocysteine; Cystatin C- Cys C; FBG- Fasting blood glucose; HbA1c- glycated hemoglobin; *The statistically significant differences between patients with dementia and patients without dementia in PD, DM, PD-DM groups were assessed by χ²-test or Mann-Whitney U tests; P-values<0.05 were considered statistically significant.

Table 3B. Multivariable logistic regression analysis for risk factors of dementia in PD-DM patients and the interaction of risk factors with age groups.

Variables	OR (95%CI)	p	Adjusted OR (95% CI)	p	Interaction
Age	1.069(1.022,1.119)	0.004	1.037(0.965,1.114)	0.325	-
Fibrinogen>4.00 (g/L)	2.896(1.327,6.320)	0.008	4.066(1.467,11.274)	0.007	-
Age≤70 (years)	0.609(0.319,1.164)	0.134	4.805(0.397,58.185)	0.217	0.757
increased the AUC to 0.717 (95%CI: 0.606-0.828, p=0.001), with a sensitivity of 80.0% and a specificity of 62.8% at a cutoff value of 0.155 on the predicted risk algorithm (Table 4 and Figure 3).

DISCUSSION

We conducted the first comparative study between PD-DMD and PDD patients. We highlighted that PD-DMD patients exhibited more severe motor and nonmotor symptoms and vascular inflammation derangements than PDD patients. Vascular inflammatory risk factors such as LDL-C and fibrinogen were more prevalent associated with PD-DMD than PDD and might have prognostic and treatment implications (Supplementary Table 5). We identified LDL-C<2.00 (mmol/L) and fibrinogen>4.00 (g/L) as the most significant risk factors for PD-DMD and FBG<5.00 (mmol/L), HCY>15.00 (μmol/L) and hyperlipidemia for PDD patients. Preventing a lower LDL-C<2.00 (mmol/L) and a higher fibrinogen>4.00 (g/L) might be effective to reduce dementia in PD-DM patients.

There are possible explanations for the relative difference in the association of the vascular and inflammatory risk factors between PD-DMD and PD-DM without dementia. PD-DM patients have been shown to be more prone to develop cognitive impairment in the course of their disease than patients with PD but without DM [14]. It is possible that upregulation of vascular inflammatory factors in comorbid PD and DM, exacerbates brain toxicity, leading to the development of dementia [22]. This observation is consistent with emerging evidence that interactions between several vascular inflammatory risk factors are linked to target organ damage [23]. Vascular inflammation may exacerbate the progression of PD-DM patients, including greater fragmentation of capillaries and chronic inflammatory damage to the capillary network in multiple brain regions, particularly in the frontal cortex, hippocampus, temporal lobe and prefrontal lobe. These cognition-related cerebral damages caused by vascular inflammation will lead to more accelerated decline of cognition in PD-DM patients [24–26]. Thus, treatments that regulate vascular inflammation can potentially improve vascular remodeling in the brain and provide a novel target to ameliorate the disease burden in PD-DM patients [11, 27].

A previous study that showed a high level of Cys C and HCY in PD, and their levels were higher in PD patients with dementia than in those without dementia [28]. This is consistent with our findings that high levels of homocysteine (HCY>15 μmol/L) and elevated Cys C (Cys C>0.95 mg/L) are the important risk factors for
Table 4. ROC curves for the traditional diagnostic and novel risk factors in the diagnosis of PD-DM patients with dementia.

Variable	Traditional diagnostic factors	Novel risk factors
	AUC	Fibrinogen (g/L)
	Disease duration	LDL-C (mmol/L)
	Age	Combination (LDL-C & Fibrinogen)
AUC	0.564	0.650
Cut-off value	0.664	0.651
P value	0.710	0.717
95%CI	0.568-0.669	0.534-0.769
Sensitivity	0.622-0.798	0.606-0.828
Specificity	0.537-0.763	0.534-0.769

PD-DM- patients with Parkinson’s disease and type 2 diabetes mellitus; LDL-C- low density lipoprotein cholesterol; AUC- area under the curve; MDS-UPDRS- Movement Disorder Society–Unified Parkinson’s Disease Rating Scale; CI- confidence interval; ROC- receiver operating characteristic.

PD-DMD patients (Table 3A). The dysregulation of iron metabolism associated with cellular damage (MCV of erythrocyte increased) and oxidative stress are common in PDD [29]. Furthermore, hyperlipidemia, especially hypercholesterolemia, is a recognized risk factor in cardiovascular disease, and the total lifelong cholesterol burden contributes to the risk, which might also lead to dementia in PD [22].

Interestingly, we identified more brain infarctions in PD-DMD patients than in PDD patients; SAE was more significantly associated with dementia in PD-DM patients over 70 years old (Figure 2 and Table 3B). This finding is similar to that of previous observations relating such brain imaging changes to cognitive impairment in PD [6, 12, 30, 31]. This finding further indicates that cerebrovascular lesions or degeneration may be more prevalent in PD-DMD patients than in PDD patients and may contribute more to dementia with comorbid DM and PD patients. Thus, treatments that prevent vascular degeneration or ameliorate brain infarctions may improve vascular remodeling in the brain and provide a novel target to ameliorate the cognitive burden in patients with PD-DMD.

Cholesterol is a major component of the brain, and a lower cholesterol level in elderly individuals is associated with cerebral atrophy, a typical anatomic syndrome of dementia [34, 35]. We showed that a low
level of LDL-C (<2 mmol/L, Table 3B) may increase dementia risk, especially in PD-DM patients over 70 years. This could be due to aggravation of cerebral atrophy, malnutrition and the reduction in neuron impairment or facilitation of the compensatory repair of injured neurons.

After selecting the potential risk factors including fibrinogen and LDL for dementia in PD-DM patients using logistic regression, we further explored their utility using ROC analysis to compare the discriminatory ability of predictors of dementia in PD-DM patients. Conventionally, it is accepted that the AUC in ROC analysis should be >0.7 to be of clinical value for screening. During the discovery phase, the AUC for the combination of fibrinogen and LDL-C proved to be better than using either alone (the AUC increasing from 0.650 and 0.651 for either alone to 0.717, with a sensitivity of 80.0% and a specificity of 62.8%) or traditional diagnostic factors (disease duration, age, MDS-UPDRS) in the prediction of dementia.

Our study has some inherent limitations. The hospital-based setting of our study may have resulted in a selection bias for structural brain imaging based on clinical decisions, which is likely to overestimate the general prevalence of cerebrovascular disease in patients with PD and DM. The diagnosis of PD and PD-DM in our cohort was based on clinical diagnostic criteria, with no post mortem confirmation [31]. Our study has certain strengths. We have investigated a large number of patients with comorbid DM and PD. This is the first comparative study on vascular, inflammatory and metabolic risk factors on PDD and PD-DMD, and the inclusion of PD patients without DM and DM patients without PD as control groups is a major strength.

CONCLUSION

PD-DMD patients impose considerable public health burdens and are commonly encountered in clinical practice. The interactions between PD, cognitive dysfunction and diabetes mellitus are likely to be complex. Our study identified controllable clinical factors, including LDL-C and fibrinogen, as the most significant risk factors for PD-DMD patients; they were more prevalently associated with PD-DMD than PDD patients. As these vascular, inflammatory and metabolic risk factors are modifiable, monitoring and corrections of these factors could potentially improve clinical care and provide a new treatment paradigm for PD and PD-DM patients. Furthermore, our findings can also lead to identification of novel therapeutic targets for preventing cognitive impairment in PD and PD-DM patients.

MATERIALS AND METHODS

Population

We recruited a total of 928 patients from outpatient clinics. A total of 215 PD-DM patients (including 31 PD-DM with dementia, PD-DMD), 341 PD patients without DM (including 31 PDD) and 372 DM patients without PD (including 35 DM with dementia, DMD) were included for this comparative study. PD patients without DM and DM patients without PD were set as controls. All PD and PD-DM patients underwent a standardized neurological examination by two movement disorder specialists in a blinded manner. The PD patients recruited in this present study (Figure 1) satisfied the 2015 Movement Disorder Society criteria for the diagnosis of idiopathic PD [36]. The diagnosis of DM was made by 2 physicians according to the following diagnostic criteria: a tested fasting glucose level higher than 7.0 mmol/L, a 2-h postprandial glucose level higher than 11.1 mmol/L, or pre-diagnosed type 2 diabetes [37]. Those who failed to meet the 2015 Movement Disorder Society criteria for PD or the diagnostic criteria for DM or were younger than 18 years (Figure 1) were excluded. Patients with fever (n=163), infection (n=150), severe traumatic brain injury (n=657), sever comorbid illness (n=500), tumor (n=2000) which might significantly impact movement and cognition, other degenerative forms of or drug-induced parkinsonism (n=100) and symmetrical lower body parkinsonism attributable to significant cerebrovascular disease (n=1400) were also excluded. Other information can be found in the Supplementary Files.

Study design and ethics statement

The data were retrospectively collected from patients with PD, DM and PD-DM with or without dementia at Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China over a 6-year period (January 2013 to May 2019). This study was approved by the Human Research Committee at Zhujiang Hospital of Southern Medical University (No: 2019-KY-030-02). Written informed consent was obtained from all participants or their legal guardians.

Experienced neurologists were recruited to perform the evaluations and completed the neurological examinations for all subjects. All subjects completed the following battery of standard assessment measures: a standard demography form, the Movement Disorder Society–Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [38], and the modified Hoehn and Yahr (H&Y) staging scale. The UPDRS (I) ‘mentation’ and UPDRS (II) ‘daily life’ subscales were used to evaluate
psychiatric dysfunction and disease severity. The UPDRS (III) ‘motor’ and H&Y subscales were used to evaluate motor dysfunction and disease severity. The degree of nonmotor symptoms (NMSs) in every patient was measured by the NMS scale (NMSS) [39]. Cognitive abilities were evaluated with the Mini Mental State Examination (MMSE) [40] and the Montreal Cognitive Assessment (MoCA). MoCA scores were adjusted for years of education. Predetermined diagnostic cut-offs were used to categorize cases into dementia (21 or less with functional impairment) to reflect the core criteria for PD dementia (PDD) with or without DM as defined by the Movement Disorder Society Task Force [41, 42]. All scales were available and validated. Patients were considered to present with anxiety or depression, brain infarction, WMLs, SAE or hyperlipidemia if there was a self-reported or doctor-diagnosed history of these conditions or if they were using disease-related medications. When WMLs result from hypoxic-ischemic brain lesions and lead to cognitive impairment, this complex disorder is characterized as SAE [17]. Individuals were considered to have hyperlipidemia at screening if they had a total cholesterol level of more than 6.2 mmol/L (240 mg/dL), serum triglycerides concentrations more than 2.3 mmol/L (200 mg/dL), serum LDL-C concentrations more than 4.1 mmol/L (160 mg/dL) or serum HDL-C concentrations less than 1.0 mmol/L (40 mg/dL) [43–47]. Hypoglycemia was defined in subjects with a plasma glucose of ≤3.9mmol/L and/or self-reported probable hypoglycemic symptoms [48].

In addition, routine examinations and imaging scans during hospitalization were completed. Venous blood samples from all participants were collected into Ethylene Diamine Tetraacetic Acid (EDTA) tubes by trained nurses in the morning. Blood samples were sent to the clinical pathology department immediately. The serum levels of all biochemical factors were measured by clinical pathologists. The serum hsCRP, Cys C and albumin were measured by immunoturbidimetric assay (Orion Diagnostica, Espoo, Finland); serum LDL-C and D-dimer were measured with direct enzymatic methods; serum AST and ALT were measured using the International Federation of Clinical Chemistry (IFCC) method. Serum HCY levels were measured using HCY reagent (Maccura Biotechnology Co., Ltd., Chengdu, China) through enzymatic cycling assay by Hitachi Automatic Analyzer 7600–210 (Hitachi, Tokyo, Japan). Serum fibrinogen levels were examined with commercial kits following the manufacturer's instructions by a coagulometer (SC40 semi-automatic coagulation analyzer, Taizhou Steellex Biotechnology Co., LTD., China). All participants underwent T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) imaging using a 3.0-T MRI scanner (Philips Healthcare, Andover, MA). Two neuroradiologists blinded to the clinical information of patients independently rated periventricular white matter hyperintensities and deep white matter hyperintensities using a modified Fazekas scale to assess the degree of severity of WMLs on T2 MR images [24, 49]. The enrolled patients were divided into 3 groups according to age (Table 1): less than 55, 55 to 70 and more than 70 years old [50–53]. The relative variables [LDL-C, D-Dimer, fibrinogen, hypersensitive C-reactive protein (hs-CRP), aspartate transaminase (AST), albumin, calcium, mean corpuscular volume (MCV), HCY, Cys C, FBG] were categorized according to the normal reference range, and we considered the levels of biochemical indicators as the commonly used thresholds in this study (Supplementary Files).

Statistical analyses

All continuous variables, including age, PD duration, MDS-UPDRS, H&Y, NMSS, MMSE, and MoCA scores; vascular and inflammatory risk factors, including systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), and LDL-C, D-dimer, fibrinogen, WBC, and hs-CRP levels; and metabolic-related risk mediators, including AST, alanine transaminase (ALT), albumin, calcium, potassium, MCV, HCY, Cys C, FBG and glycated hemoglobin (HbA1c) levels, are presented as the median (interquartile range, IQR) as they were not normally distributed. All categorical variables including male gender; smoking history; drinking history; drug use, including atorvastatin, metformin, insulin, acarbose, levodopa and benserazide (L-Dopa); anxiety or depression; vascular and inflammatory risk factors including hyperlipidemia, brain infarction, SAE, WMLs, lymphocytes, and neutrophils; and metabolic risk factors, including hyperhomocysteinemia, are presented as the count (proportion). We selected these most common used lipid-lowering drug (atorvastatin), hypoglycemic drugs (metformin and acarbose) and drug for Parkinson’s disease (L-Dopa) in clinics as covariates to exclude their effects on dementia. The statistically significant differences between patients with dementia and patients without dementia in the PD, DM, and PD-DM groups were assessed by the χ2-test or Mann–Whitney U tests. P-values<0.05 were considered statistically significant, but when multiple testing was performed, the Bonferroni method was used to adjust the significance level. If statistically significant, continuous variables were assessed by Kruskal–Wallis test (nonparametric one-way analysis of variance, ANOVA) followed by post-hoc analysis with Bonferroni adjustment to compare differences among PDD, DMD and PD-DMD groups and were prior adjusted for age using multivariate linear regression.
analyses. Categorical parameters were analyzed using the χ²-test with Bonferroni adjustment for multiple testing. Mann-Whitney U test were used to compare differences between PDD and PD-DMD groups. Binary logistic regression was applied to explore the potential risk factors and in PDD and PD-DMD patients. The presence or absence of dementia was used as a dependent variable. All vascular inflammatory and metabolic risk factors demonstrating significant differences between patients with and without dementia (selection criterion p<0.05) were included in the binary logistic regression analysis with enter selection (Table 3). The results are presented as odds ratios (ORs) and 95% confidence intervals (CIs). Since several lines of evidence showed that age around 70 years would be critical age for dementia in PD and PD-DMD patients[50, 52–54], we performed the logistic regression models considering (a) all patients, (b) less than or equal to 70 years and (c) patients over 70 years. In addition, multiple linear regression (enter method) was also used to investigate whether the MMSE score was associated with the risk factors of dementia. Receiver operating characteristic (ROC) curves of logistic regression prediction models for PD-DMD were used with the risk factors (LDL-C and fibrinogen) in PD-DM patients. We also compared the accuracy, sensitivity and specificity of novel (LDL-C and fibrinogen) and traditional (disease duration, age, MDS-UPDRS) risk factors and used bootstrap validation with 1000 repeats (Supplementary Figure 1). All statistical procedures were conducted using Statistical Package for the Social Sciences (SPSS) version 20.0 and GraphPad Prism 7.0. P-values<0.05 were considered statistically significant.

Abbreviations

AST: Aspartate transaminase; ALT: Alanine transaminase; AUC: area under the curve; BMI: body mass index; BBB: blood brain barrier; Cystatin C: Cys C; CNS: Central Nervous System; CI: confidence interval; DM: type 2 diabetes mellitus without Parkinson disease; DMD: type 2 diabetes mellitus with dementia; DBP: diastolic blood pressure; EDTA: Ethylene Diamine Tetraacetic Acid; FBG: Fasting blood glucose; hs- CRP: hypersensitive C-reactive protein; HCY: homocysteine; HbA1c: glycated hemoglobin; H&Y: the modified Hoehn and Yahr staging scale; IQR: interquartile range; L-Dopa: Levodopa and Benserazide; LDL-C: low density lipoprotein cholesterol; MDS-UPDRS: Movement Disorder Society–Unified Parkinson’s Disease Rating Scale; MCV: mean corpuscular volume; MoCA: Montreal Cognitive Assessment; MMSE: mini mental state examination; MRI: magnetic resonance imaging; NMSS: Non-Motor Symptoms Scale for Parkinson’s Disease; NVU: neurovascular units; OR: odds ratio; PD: patients with Parkinson disease without type 2 diabetes mellitus; PD-DM: patients with Parkinson disease and type 2 diabetes mellitus; PD-DMD: patients with Parkinson disease and type 2 diabetes mellitus and dementia; PSP: progressive superanuclear palsy; ROC: receiver operating characteristic analysis; SBP: systolic blood pressure; SAE: subcortical arteriosclerotic encephalopathy; SPSS: Statistical Package for the Social Sciences; WBC: White blood cell count; WMLs: White matter lesions.

AUTHOR CONTRIBUTIONS

Conceived and designed the study: Q.W. and T.W. Performed the study: T.W., F.-L.Y., Z.-Z.C., Z.-H.C., B.D., R.-F.Q., Y.P., Y.-P.W., L.-T.X., and Q.-R.L. Revised the paper for intellectual content: M.-A.Y., W.-L.Y., -Z.-S.Z., and P.C. Data statistics and analysis: T.W., P.-H.C., Y.-X.C., L.-L.C. Wrote the paper: T.W. E.K.T. and Q.W. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

We thank all of the participants and staff for their valuable contribution to this research and managing the data for this project.

CONFLICTS OF INTEREST

All authors declare that they have no conflicts of interest.

FUNDING

This work was supported by the National Key R&D Program of China (NO: 2017YFC1310200), National Natural Science Foundation of China (NO: 81873777), National Science Foundations of Guangdong of China (NO: 2017A030311010), Leading Talent in Talents Project Guangdong High-level Personnel of Special Support Program, and Scientific Research Foundation of Guangzhou (NO: 201704030080) to Q.W.; Natural Science Foundations of Guangdong of China (NO: 2017A030313672) and China Postdoctoral Science Foundation (NO: F119SF0081) to SZ; and National Medical Research Council (EK-T, LL-C, YH-C).

REFERENCES

1. Pagano G, Polychronis S, Wilson H, Giordano B, Ferrara N, Niccolini F, Politis M. Diabetes mellitus and Parkinson disease. Neurology. 2018; 90:e1654–62. https://doi.org/10.1212/WNL.0000000000005475 PMID:29626177
2. Delenclos M, Jones DR, McLean PJ, Uitti RJ. Biomarkers in Parkinson’s disease: advances and strategies. Parkinsonism Relat Disord. 2016 (Suppl 1); 22:S106–10. https://doi.org/10.1016/j.parkreldis.2015.09.048 PMID:26439946

3. Galtier I, Nieto A, Lorenzo JN, Barroso J. Subjective cognitive decline and progression to dementia in Parkinson’s disease: a long-term follow-up study. J Neurol. 2019; 266:745–54. https://doi.org/10.1007/s00415-019-09197-0 PMID:30635723

4. Kummer BR, Diaz I, Wu X, Aaroe AE, Chen ML, Iadecola C, Kamel H, Navi BB. Associations between cerebrovascular risk factors and Parkinson disease. Ann Neurol. 2019; 86:572–81. https://doi.org/10.1002/ana.25564 PMID:31464350

5. Ou R, Wei Q, Hou Y, Yuan X, Song W, Cao B, Liu H, Zhang L, Chen Y, Shang H. Vascular risk factors and depression in Parkinson’s disease. J Neurol. 2019; 266:745–54. https://doi.org/10.1007/s00415-019-09197-0 PMID:30635723

6. Zou J, Chen Z, Liang C, Fu Y, Wei X, Lu J, Pan M, Guo Y, Liao X, Xie H, Wu D, Li M, Liang L, et al. Trefoil factor 3, cholinesterase and homocysteine: potential predictors for Parkinson’s disease dementia and vascular Parkinsonism dementia in advanced stage. Aging Dis. 2018; 9:51–65. https://doi.org/10.14336/AD.2017.0416 PMID:29392081

7. Chu JS, Liu TH, Wang KL, Han CL, Liu YP, Michitomo S, Zhang JG, Fang T, Meng FG. The metabolic activity of caudate and prefrontal cortex negatively correlates with the severity of idiopathic Parkinson’s disease. Aging Dis. 2019; 10:847–53. https://doi.org/10.14336/AD.2018.0814 PMID:31440389

8. Becker C, Brobert GP, Johansson S, Jick SS, Meier CR. Diabetes in patients with idiopathic Parkinson’s disease. Diabetes Care. 2008; 31:1808–12. https://doi.org/10.2337/dc08-0479 PMID:18559656

9. Sciglino G, Musico M, Soliveri P, Piccolo I, Ronchetti G, Girotto R, Montebugnoli L, Petrini L, Trimarco B, Cavallaro F, et al. The role of the post-stroke syndrome in the pathogenesis of Parkinson’s disease: a review of the literature. Parkinsonism Relat Disord. 2019; 25:637–43. https://doi.org/10.1016/j.parkreldis.2015.09.048 PMID:26439946

10. Stojkovic T, Stefanovic I, Soldatovic I, Markovic V, Zingaj I, Petrovic I, Agosta F, Galantucci S, Filippi M, Kostic V. Exploring the relationship between motor impairment, vascular burden and cognition in Parkinson’s disease. J Neurol. 2018; 265:1320–27. https://doi.org/10.1007/s00415-018-8838-3 PMID:29572571
19. Santiago JA, Potashkin JA. System-based approaches to decode the molecular links in Parkinson’s disease and diabetes. Neurobiol Dis. 2014; 72:84–91.
https://doi.org/10.1016/j.nbd.2014.03.019
PMID:24718034

20. Chen Y, Yin M, Cao X, Hu G, Xiao M. Pro- and anti-inflammatory effects of high cholesterol diet on aged brain. Aging Dis. 2018; 9:374–90.
https://doi.org/10.14336/AD.2017.0706
PMID:29896426

21. Bowman GL, Dayon L, Kirkland R, Wojcik J, Peyratout G, Severin IC, Henry H, Oikonomidi A, Migliavacca E, Bacher M, Popp J. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement. 2018; 14:1640–50.
https://doi.org/10.1016/j.jalz.2018.06.2857
PMID:30120040

22. Holven KB, Ulven SM, Bogsrud MP. Hyperlipidemia and cardiovascular disease with focus on familial hypercholesterolemia. Curr Opin Lipidol. 2017; 28:445–47.
https://doi.org/10.1097/MOL.0000000000000449
PMID:28857860

23. Guan J, Pavlovic D, Dalkie N, Waldvogel HJ, O'Carroll SJ, Green CR, Nicholson LF. Vascular degeneration in Parkinson’s disease. Brain Pathol. 2013; 23:154–64.
https://doi.org/10.1111/j.1750-3639.2012.00628.x
PMID:22897695

24. Zhu S, Wei X, Yang X, Huang Z, Chang Z, Xie F, Yang Q, Ding C, Xiang W, Yang H, Xia Y, Feng ZP, Sun HS, et al. Plasma lipoprotein-associated phospholipase A2 and superoxide dismutase are independent predictors of cognitive impairment in cerebral small vessel disease patients: diagnosis and assessment. Aging Dis. 2019; 10:834–46.
https://doi.org/10.14336/AD.2019.0304
PMID:31440388

25. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci. 2018; 12:488.
https://doi.org/10.3389/fncel.2018.00488
PMID:30618635

26. Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SS, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: implications in brain health and diseases. Prog Neurobiol. 2018; 162:37–69.
https://doi.org/10.1016/j.pneurobio.2017.12.003
PMID:29247683

27. Potashkin J, Huang X, Becker C, Chen H, Foltynie T, Marras C. Understanding the links between cardiovascular disease and Parkinson’s disease. Mov Disord. 2020; 35:55–74.
https://doi.org/10.1002/mds.27836
PMID:31483535

28. Chen WW, Cheng X, Zhang X, Zhang QS, Sun HQ, Huang WJ, Xie YZ. The expression features of serum cystatin C and homocysteine of Parkinson’s disease with mild cognitive dysfunction. Eur Rev Med Pharmacol Sci. 2015; 19:2957–63.
PMID:26367713

29. Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J Neurochem. 2016 (Suppl 1); 139:179–97.
https://doi.org/10.1111/jncc.13425
PMID:26545340

30. Nobili F, Arbizu J, Bouwman F, Drzega A, Agosta F, Nestor P, Walker Z, Boccardi M, and EANM-EAN Task Force for the Prescription of FDG-PET for Dementing Neurodegenerative Disorders. European association of nuclear medicine and European academy of neurology recommendations for the use of brain 18F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: delphi consensus. Eur J Neurol. 2018; 25:1201–17.
https://doi.org/10.1111/ene.13728
PMID:29932266

31. Malek N, Lawton MA, Swallow DM, Grosset KA, Marrinan SL, Bajaj N, Barker RA, Burn DJ, Hardy J, Morris HR, Williams NM, Wood N, Ben-Shlomo Y, Grosset DG, and ProBaND Clinical Consortium. Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson’s disease. Mov Disord. 2016; 31:1518–26.
https://doi.org/10.1002/mds.26698
PMID:27324570

32. Petersen MA, Ryu JK, Akassoglou K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat Rev Neurosci. 2018; 19:283–301.
https://doi.org/10.1038/nrneuro.2018.13
PMID:29618808

33. Jin K. A microcirculatory theory of aging. Aging Dis. 2019; 10:676–83.
https://doi.org/10.14336/AD.2019.0315
PMID:31165010

34. Sterling NW, Lichtenstein M, Lee EY, Lewis MM, Evans A, Eslinger PJ, Du G, Gao X, Chen H, Kong L, Huang X. Higher plasma LDL-cholesterol is associated with preserved executive and fine motor functions in Parkinson’s disease. Aging Dis. 2016; 7:237–45.
https://doi.org/10.14336/AD.2015.1030
PMID:27330838

35. Schultz BG, Patten DK, Berlau DJ. The role of statins in both cognitive impairment and protection against dementia: a tale of two mechanisms. Transl Neurodegener. 2018; 7:5.
36. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015; 30:1591–601. https://doi.org/10.1002/mds.26424 PMID:26474316

37. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017; 389:2239–51. https://doi.org/10.1016/S0140-6736(17)30058-2 PMID:28190580

38. Fahn S. Drug treatment of hyperkinetic movement disorders. Semin Neurol. 1987; 7:192–208. https://doi.org/10.1055/s-2008-1041419 PMID:3332454

39. Chaudhuri KR, Martinez-Martin P, Brown RG, Sethi K, Stocchi F, Odin P, Ondo W, Abe K, Macphee G, Macmahon D, Barone P, Rabey M, Forbes A, et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov Disord. 2007; 22:1901–11. https://doi.org/10.1002/mds.21596 PMID:17674410

40. O’Driscoll C, Shaikh M. Cross-cultural applicability of the montreal cognitive assessment (MoCA): a systematic review. J Alzheimers Dis. 2017; 58:789–801. https://doi.org/10.3233/JAD-161042 PMID:28482634

41. Dubois B, Burn D, Goetz C, Aarsland D, Brown RG, Broe GA, Dickson D, Duyckaerts C, Cummings J, Gauthier S, Korczyn A, Lees A, Levy R, et al. Diagnostic procedures for Parkinson’s disease dementia: recommendations from the movement disorder society task force. Mov Disord. 2007; 22:2314–24. https://doi.org/10.1002/mds.21844 PMID:18098298

42. Dufouil C, Clayton D, Brayne C, Chi LY, Dening TR, Paykel ES, O’Connor DW, Ahmed A, McGee MA, Huppert FA. Population norms for the MMSE in the very old: estimates based on longitudinal data. Mini-mental state examination. Neurology. 2000; 55:1609–13. https://doi.org/10.1212/wnl.55.11.1609 PMID:11113212

43. Koyama AK, Bali V, Yermilov I, Legorreta AP. Identification of undiagnosed hyperlipidemia: do work site screening programs work? Am J Health Promot. 2018; 32:971–78. https://doi.org/10.1177/089017116671537 PMID:27687615

44. Joint Committee for Developing Chinese guidelines on Prevention and Treatment of Dyslipidemia in Adults. [Chinese guidelines on prevention and treatment of dyslipidemia in adults]. Zhonghua Xin Xue Guan Bing Za Zhi. 2007; 35:390–419. PMID:17711682

45. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Failla-Tommassino J, Forman DE, Goldberg R, Heidenreich PA, Hlatky MA, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APha/ASPc/NAcNA guideline on the management of blood cholesterol: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. J Am Coll Cardiol. 2019; 73:e285–350. https://doi.org/10.1016/j.jacc.2018.11.003 PMID:30423393

46. Huang Q, Jiang H, Zhang B, Wang H, Jia X, Huang F, Wang L, Wang Z. Threshold-effect association of dietary cholesterol intake with dyslipidemia in Chinese adults: results from the China health and nutrition survey in 2015. Nutrients. 2019; 11:2885. https://doi.org/10.3390/nu11122885 PMID:31783560

47. Hata Y, Mabuchi H, Saito Y, Itakura H, Egusa G, Ito H, Teramoto T, Tsushima M, Tada N, Oikawa S, Yamada N, Yamashita S, Sakuma N, Sasaki J, and Working Committee on JAS Guideline for Diagnosis and Treatment of Hyperlipidemias. Report of the Japan atheroscler society (JAS) guideline for diagnosis and treatment of hyperlipidemia in Japanese adults. J Atheroscler Thromb. 2002; 9:1–27. https://doi.org/10.5551/jat.9.1 PMID:12238634

48. Ji L, Gao Z, Shi B, Bian R, Yin F, Pang W, Gao H, Cui N. Safety and efficacy of high versus standard starting doses of insulin glargine in overweight and obese Chinese individuals with type 2 diabetes mellitus inadequately controlled on oral antidiabetic medications (beyond VII): study protocol for a randomized controlled trial. Adv Ther. 2018; 35:864–74. https://doi.org/10.1007/s12325-018-0717-x PMID:29873004

49. No HJ, Yi HA, Won KS, Chang HW, Kim HW. Association between white matter lesions and the cerebral glucose metabolism in patients with cognitive impairment. Rev Esp Med Nucl Imagen Mol. 2019; 38:160–66. https://doi.org/10.1016/j.remn.2018.12.001 PMID:31053556

50. Davis G, Baboolal N, Mc Rae A, Stewart R. Dementia prevalence in a population at high vascular risk: the trinidad national survey of ageing and cognition. BMJ Open. 2018; 8:e018288. https://doi.org/10.1136/bmjopen-2017-018288 PMID:29472257

51. Behnke S, Pilotto A, Liepelt-Scarfone I, Yilmaz R, Pausch C, Dieterich S, Bürmann J, Spiegel J, Dillmann U, Unger...
M, Posner I, Berg D. Third ventricular width assessed by transcranial ultrasound correlates with cognitive performance in Parkinson’s disease. Parkinsonism Relat Disord. 2019; 66:68–73. https://doi.org/10.1016/j.parkreldis.2019.07.005 PMID:31324557

52. Liu CC, Sun Y, Lee PC, Li CY, Hu SC. Risk of dementia after Parkinson’s disease in Taiwan: a population-based retrospective cohort study using national health insurance claims. BMJ Open. 2019; 9:e025274. https://doi.org/10.1136/bmjopen-2018-025274 PMID:30833322

53. César KG, Brucki SM, Takada LT, Nascimento LF, Gomes CM, Almeida MC, Oliveira MO, Porto FH, Senaha ML, Bahia VS, Silva TB, Ianof JN, Spíndola L, et al. Prevalence of cognitive impairment without dementia and dementia in tremembé, Brazil. Alzheimer Dis Assoc Disord. 2016; 30:264–71. https://doi.org/10.1097/WAD.0000000000000122 PMID:26629676

54. Hambling CE, Seidu SI, Davies MJ, Khunti K. Older people with type 2 diabetes, including those with chronic kidney disease or dementia, are commonly overtreated with sulfonylurea or insulin therapies. Diabet Med. 2017; 34:1219–27. https://doi.org/10.1111/dme.13380 PMID:28498634
Supplementary Methods

Personal history of smoking behavior was calculated by “pack/years” quantifying the packs smoked per day multiplied by years as a smoker, with the threshold was set to 15. Drinking was defined as an average of alcoholic drink (≥ 50 ml) at least once per week lasting more than half a year. Body-mass index (BMI) was calculated as body weight (kg) divided by heights squared (m²).

The following variables were categorized according to the normal reference range [1–11] and we considered the following levels of biochemical indicators as the commonly used thresholds in this study: the low LDL level as less than 2.00 mmol/L [1], the high level of D-Dimer as more than 0.50mg/L [2], the high level of fibrinogen as more than 4.00g/L [3], the high level of hypersensitive C-reactive protein (hs-CRP) as more than 3.00mg/L [4], the high level of aspartate transaminase (AST) as more than 40IU/L [5], the low level of albumin as less than 35.00g/L [6], the low level of calcium as less than 2.10mmol/L [7], the high level of mean corpuscular volume (MCV), as more than 90.00fL [8], the high level of HCY as more than 15 mmol/L (the cutoff for hyperhomocysteinemia) [9], the high level of Cys C as more than 0.95mg/L [10] and the low level of fasting blood glucose (FBG) as less than 5.00mmol/L [11].

Supplementary Results

Multiple linear regression analysis for the association of risk factors of dementia and MMSE score in PD, DM and PD-DM patients

Using multiple linear regression analysis, we found that a lower FBG (<5.00 mmol/L, B= -1.052, SE=0.433, β= -0.126, p=0.016), higher HCY (>15.00 μmol/L, B= -1.336, SE=0.595, β= -0.115, p=0.026), and Cys C (>0.95 mg/L, B= -0.908, SE=0.452, β= -0.103, p=0.046), and age (B= -0.140, SE=0.019, β= -0.376, p<0.001) were associated with lower MMSE score. No significant association was observed between MMSE score and hyperlipidemia (B= -1.232, SE=0.641, β= -0.098, p=0.056) in PD patients (adjusted R²=0.173, F=14.469, p<0.001). In addition, higher fibrinogen (>4.00 g/L, B= -1.857, SE=0.663, β= -0.174, p=0.006), lower LDL-C (<2.00 mmol/L, B= -1.876, SE=0.674, β= -0.173, p=0.006), age (B= -0.171, SE=0.032, β= -0.342, p<0.001) and SAE (B= -2.196, SE=0.640, β= -0.216, p<0.001) were associated with lower MMSE score in PD-DM patients (adjusted R²=0.275, F=19.383, p<0.001). A higher AST (>40 IU/L, B= -3.278, SE=1.023, β= -0.141, p=0.001) and Cys C (>0.95 mg/L, B= -1.878, SE=0.690, β= -0.119, p=0.007), anxiety or depression (B= -1.579, SE=0.531, β= -0.135, p=0.003), male gender (B= -1.182, SE=0.398, β= -0.131, p=0.003) and age (B= -0.163, SE=0.015, β= -0.481, p<0.001) were associated with lower MMSE score in DM patients (adjusted R²=0.310, F=34.277, p<0.001) (Supplementary Table 1). These observations are consistent with the results of multivariable logistic regression analysis for risk factors in dementia in PD, DM and PD-DM patients (Table 3A, Table 3B, Supplementary Table 4).

Supplementary References

1. Lin Q, Huang WQ, Ma QL, Lu CX, Tong SJ, Ye JH, Lin HN, Gu l, Yi KH, Cai LL, Tzeng CM. Incidence and risk factors of leukoaraiosis from 4683 hospitalized patients: a cross-sectional study. Medicine (Baltimore). 2017; 96:e7682. https://doi.org/10.1097/MD.0000000000007682 PMID:28953609

2. Hiltunen S, Putaala J, Haapaniemi E, Salonen O, Tatl isumak T. D-dimer and clinicoradiologic features in cerebral venous thrombosis. J Neurol Sci. 2013; 327:12–14. https://doi.org/10.1016/j.jns.2013.01.033 PMID:23434247

3. McQuilten ZK, Wood EM, Bailey M, Cameron PA, Cooper DJ. Fibrinogen is an independent predictor of mortality in major trauma patients: a five-year statewide cohort study. Injury. 2017; 48:1074–81. https://doi.org/10.1016/j.injury.2016.11.021 PMID:28190583

4. Fernandes RA, Ritti-Dias RM, Balagopal PB, Conceição RD, Santos RD, Cucato GG, Bittencourt MS. Self-initiated physical activity is associated with high sensitivity c-reactive protein: a longitudinal study in 5,030 adults. Atherosclerosis. 2018; 273:131–35. https://doi.org/10.1016/j.atherosclerosis.2018.02.011 PMID:29544861

5. Larrrieta-Carrasco E, Flores YN, Macías-Kauffer LR, Ramírez-Palacios P, Quiterio M, Ramirez-Salazar EG, León-Mimila P, Rivera-Paredes B, Cabrera-Álvarez G, Canizales-Quinteros S, Zhang ZF, López-Pérez TV, Salmerón J, Velázquez-Cruz R. Genetic variants in COL13A1, ADIPOQ and SAMM50, in addition to the PNPLA3 gene, confer susceptibility to elevated transaminase levels in an admixed mexican population. Exp Mol Pathol. 2018; 104:50–58.
6. Loncar Y, Lefevre T, Nafteux L, Genser L, Manceau G, Lemoine L, Vaillant JC, Eyraud D. Preoperative nutrition for severely malnourished patients in digestive surgery: a retrospective study. J Visc Surg. 2020; 157:107–16. https://doi.org/10.1016/j.jviscsurg.2019.07.007 PMID:31366442

7. Li D, Zhang L, Zuo L, Jin CG, Li WG, Chen JB. Association of CKD-MBD markers with all-cause mortality in prevalent hemodialysis patients: a cohort study in Beijing. PLoS One. 2017; 12:e0168537. https://doi.org/10.1371/journal.pone.0168537 PMID:28045985

8. Papageorgiou A, Ziakas PD, Tzioufas AG, Voulgarelis M. Indications for bone marrow examination in autoimmune disorders with concurrent haematologic alterations. Clin Exp Rheumatol. 2013; 31:76–83. PMID:23010147

9. Licking N, Murchison C, Cholerton B, Zabetian CP, Hu SC, Montine TJ, Peterson-Hiller AL, Chung KA, Edwards K, Leverenz JB, Quinn JF. Homocysteine and cognitive function in Parkinson’s disease. Parkinsonism Relat Disord. 2017; 44:1–5. https://doi.org/10.1016/j.parkreldis.2017.08.005 PMID:28807493

10. García Acuña JM, González-Babarro E, Grigorian Shamagian L, Peña-Gil C, Vidal Pérez R, López-Lago AM, Gutiérrez Feijóo M, González-Juanatey JR. Cystatin C provides more information than other renal function parameters for stratifying risk in patients with acute coronary syndrome. Rev Esp Cardiol. 2009; 62:510–19. https://doi.org/10.1016/s1885-5857(09)71833-x PMID:19406065

11. Xu RB, Kong X, Xu BP, Song Y, Ji M, Zhao M, Huang X, Li P, Cheng X, Chen F, Zhang Y, Tang G, Qin X, et al. Longitudinal association between fasting blood glucose concentrations and first stroke in hypertensive adults in China: effect of folic acid intervention. Am J Clin Nutr. 2017; 105:564–70. https://doi.org/10.3945/ajcn.116.145656 PMID:28122783
Supplementary Figure 1. The AUC distributions of 1000 bootstrap samples. The bias-corrected and accelerated (BCA) bootstrap 95% confidence interval of AUC for Fibrinogen(g/L), LDL-C(mmol/L), and their combination are 0.648 [BCA 95%CI: 0.537~0.756], 0.655 [BCA 95%CI: 0.516~0.760], and 0.716 [BCA 95%CI: 0.595~0.818]. AUC- area under the curve; LDL-C- low density lipoprotein cholesterol.
Supplementary Table 1. Association of the risk factors of dementia and MMSE score in PD, DM and PD-DM patients.

Model	Predictor variables	B	SE	β	p	R²	Adjusted R²	F	p
PD	FBG<5.00 (mmol/L)	-1.052	0.433	-0.126	0.016				
	HCY>15.00 (μmol/L)	-1.336	0.595	-0.115	0.026				
	Age	-0.140	0.019	-0.376	<0.001	0.185	0.173	14.469	<0.001
	Cys C>0.95 (mg/L)	-0.908	0.452	-0.103	0.046				
	Hyperlipidemia	-1.232	0.641	-0.098	0.056				
	Fibrinogen>4.00 (g/L)	-1.857	0.663	-0.174	0.006				
	LDL-C<2.00 (mmol/L)	-1.876	0.674	-0.173	0.006	0.290	0.275	19.383	<0.001
PD-DM	Age	-0.171	0.032	-0.342	<0.001				
	SAE	-2.196	0.640	-0.216	0.001				
DM	AST>40 (IU/L)	-3.278	1.023	-0.141	0.001				
	Cys C>0.95 (mg/L)	-1.878	0.690	-0.119	0.007				
	Anxiety or depression	-1.579	0.531	-0.135	0.003	0.319	0.310	34.277	<0.001
	Male	-1.182	0.398	-0.131	0.003				
	Age	-0.163	0.015	-0.481	<0.001				

B- Unstandardized coefficient; β- Standardized coefficient; R² represents the model explanatory power with according standardized β weights, showing the contribution of each independent variable to the proposed model; SE- Standard Error; MMSE- mini mental state examination; PD- patients with Parkinson disease without type 2 diabetes mellitus; PD-DM-patients with Parkinson disease and type 2 diabetes mellitus; DM- type 2 diabetes mellitus without Parkinson disease; FBG- Fasting blood glucose; HCY- homocysteine; Cystatin C- Cys C; LDL-C- low density lipoprotein cholesterol; SAE- subcortical arteriosclerotic encephalopathy; AST- Aspartate transaminase.

Supplementary Table 2. Differences of risk factors among PDD, DMD and PD-DMD groups.

Clinical variables	PDD (n=31)	DMD (n=35)	PD-DM (n=31)	p*	Multiple comparisons **
Age, years	69.0(59.0,79.0)	68.0(57.0,74.0)	79.0(72.0,84.0)	<0.001	PD-DMD>PDD=DMD
<55, n (%)	3(9.68)	7(20.00)	0	-	-
55–70, n (%)	16(51.61)	14(40.00)	5(16.13)	0.080	-
>70, n (%)	12(38.71)	14(40.00)	26(83.87)	0.006	PD-DMD>PDD=DMD
Male, n (%)	18(58.06)	27(77.14)	16(51.61)	0.055	PD-DMD>PDD=DMD
PD duration, month	60(24.84)	-	36(12.72)	0.001	PD-DMD>PDD=DMD
Dementia, n (%)	31(100.00)	35(100.00)	31(100.00)	0.094	-
Use of drugs, n (%)	6(19.35)	14(40.00)	20(64.52)	0.001	PD-DMD<PDD
Atorvastatin	-	14(40.00)	9(29.03)	-	-
Metformin	-	8(22.86)	14(45.16)	0.055	-
Insulin	-	17(48.57)	18(58.06)	0.441	-
Acarbose	-	-	26(83.87)	-	-
L-Dopa	28(90.32)	-	-	-	-
MDS-UPDRS (I)	3(0.98)	5.0(3.0,6.0)	5.0(3.0,6.0)	0.006	PD-DMD>PDD
MDS-UPDRS (II)	8.0(6.0,11.0)	-	14.0(12.0,18.0)	0.001	PD-DMD<PDD
MDS-UPDRS (III)	17.0(15.0,23.0)	-	23.0(21.0,29.0)	0.001	PD-DMD>PDD
MDS-UPDRS (Total)	26.0(24.0,38.0)	-	44.0(37.0,54.0)	0.001	PD-DMD>PDD
H&Y	3.0(2.0,4.0)	-	3.0(3.0,4.0)	0.002	PD-DMD>PDD
NMSS	26.0(17.0,32.0)	-	32.0(28.0,34.0)	0.033	PD-DMD>PDD
MMSE	15.0(13.0,17.0)	15.0(9.0,19.0)	13.0(11.0,17.0)	0.613	-
MoCA	12.0(9.0,14.0)	12.0(7.0,15.0)	9.0(8.0,13.0)	0.205	-
Anxiety or depression	17(54.84)	13(37.14)	19(61.29)	0.124	-
Vascular and inflammatory risk factors	120.0(118.0,135.0)	146.0(128.0,153.0)	132.0(120.0,152.0)	-	-
DBP mmHg 80.0(78.0,81.0) 85.0(80.0,95.0) 78.0(69.0,87.0) - -
Smoking history, n (%) 2(6.45) 7(20.00) 3(9.68) - -
Drinking history, n (%) 0 5(14.29) 1(3.23) - -
BMI 23.0(22.0,25.0) 24.0(22.0,26.0) 24.0(21.25) - -
LDL-C (mmol/L) 2.5(2.3,3.2) 2.7(1.9,3.1) 1.9(1.6,3.0) 0.094 -
LDL-C<2.00 (mmol/L), n (%) 2(6.45) 12(34.29) 15(48.39) 0.001 PD-DMD=DMD>PDD
D-Dimer (mg/L) 0.6(0.3,1.1) 0.4(0.3,0.9) 0.6(0.4,1.4) - -
Fibrinogen (g/L) 3.5(2.8,4.0) 3.3(3.0,4.6) 4.1(3.5,5.1) 0.012 PD-DMD>PDD
Fibrinogen>4.00 (g/L), n (%) 6(19.35) 9(25.71) 15(48.39) 0.033 PD-DMD>PDD
WBC (g/L) 6.15(0.7,2) 7.3(6.0,9.5) 7.4(6.1,9.9) - -
Lymphocyte (%) 30.7(24.3,34.8) 25.3(18.6,32.1) 20.5(12.2,28.0) 0.001 PD-DMD>PDD
Neutrophil (%) 58.6(52.5,67.5) 64.0(58.3,70.2) 71.5(61.6,82.8) <0.001 PD-DMD>PDD
hs-CRP (mg/L) 0.6(0.6,2.0) 3.6(1.5,7.1) 4.5(0.7,47.1) 0.036 -
hs-CRP>3.00 (mg/L), n (%) 2(6.45) 11(34.3) 8(25.81) 0.039 DMD>PDD
Hyperlipidemia 7(22.58) 3(8.57) 2(6.45) - -
Hyperhomocysteinemia 13(41.94) 27(77.14) 26(83.87) 0.001 PD-DMD>DMD>PDD
SAE 9(29.03) 5(14.29) 18(58.06) 0.001 PD-DMD>DMD>PDD
WMLs, n (%) 12(38.71) 17(48.57) 15(48.39) 0.103 -
Fazekas 1 5(16.13) 2(5.71) 2(6.45) - -
Fazekas 2 7(22.58) 12(34.29) 15(48.39) - -
Fazekas 3 0 3(8.57) 1(3.23) 0.322 -
Metabolic risk factors
AST>40(IU/L), n (%) 0 5(14.29) 3(9.68) 0.091 -
ALT 15.0(9.0,22.0) 22.0(15.0,28.0) 14.0(11.0,30.0) - -
Albumin 40.3(38.0,41.8) 39.3(36.2,42.9) 36.9(36.0,42.1) 0.204 -
Calcium (mmol/L) 2.3(2.2,2.4) 2.2(2.2,2.3) 2.2(2.1,2.3) 0.329 -
Calcium<10 (mmol/L), n (%) 5(16.13) 6(17.14) 8(25.81) 0.569 -
Potassium (mmol/L) 3.8(3.6,4.1) 3.9(3.6,4.0) 3.8(3.4,4.3) 0.911 -
MCV (fL) 92.7(91.1,97.4) 87.2(83.5,93.3) 89.9(88.2,93.2) <0.001 PDD>PDD-DMD=DMD
MCV>90.00 (fL), n (%) 25(80.65) 13(37.14) 14(45.16) 0.001 PDD>DMD>PDD
HbA1c (%) 5.7(5.2,5.9) 7.3(6.3,8.9) 6.4(6.0,7.4) - -

PDD- patients with Parkinson disease with dementia; DMD- type 2 diabetes mellitus with dementia; PD-DMD- patients with Parkinson disease and type 2 diabetes mellitus and dementia; L-Dopa- Levodopa and Benzerazide; MDS-UPDRS- Movement Disorder Society–Unified Parkinson’s Disease Rating Scale; H&Y- the modified Hoehn and Yahr staging scale; NMSS- Non-Motor Symptoms Scale for Parkinson’s Disease; MMSE- mini mental state examination; MoCA- Montreal Cognitive Assessment; SBP- systolic blood pressure; DBP- diastolic blood pressure; BMI- body mass index; LDL-C- low density lipoprotein cholesterol; WBC- White blood cell count; hs- CRP- hypersensitive C-reactive protein; SAE- subcortical arteriosclerotic encephalopathy; WMLs- White matter lesions; AST- Aspartate transaminase; ALT- Alanine transaminase; MCV- mean corpuscular volume; HCY- homocysteine; Cystatin C- Cys C; FBG- Fasting blood glucose; HbAIc- glycated hemoglobin. *The Bonferroni method was used to adjust the significance level to perform multiple testing. **If statistically significant, continuous variables were analyzed by Kruskal-Wallis test followed by post-hoc analysis with Bonferroni adjustment to compare differences among PDD, DMD and PD-DMD groups and were prior adjusted for age using multivariate linear regression. Mann-Whitney U test were used to compare differences between PDD and PD-DMD groups. Categorical parameters were analyzed using χ2-test with Bonferroni adjustment for multiple testing.
Supplementary Table 3. Multivariable logistic regression analysis for risk factors of dementia in PD patients.

Variables	Univariate	Multivariate model		
	OR (95%CI)	p	Adjusted OR (95% CI)	p
FBG<5.00 (mmol/L)	2.704(1.171,6.241)	0.020	4.380(1.748,10.975)	0.002
HCY>15.00 (μmol/L)	2.684(1.156,6.231)	0.022	3.131(1.243,7.888)	0.015
Hyperlipidemia	2.448(0.980,6.119)	0.055	3.075(1.142,8.277)	0.026
Age	1.035(1.000,1.071)	0.050	1.043(1.003,1.084)	0.034
Cys C>0.95 (mg/L)	2.122(1.008,4.468)	0.048	2.157(0.979,4.752)	0.056

(b) Variables

Variables	Univariate	Multivariate model		
HCY>15.00 (μmol/L)	2.684(1.156,6.231)	0.022	2.522(1.042,6.104)	0.040
Hyperlipidemia	2.448(0.980,6.119)	0.055	2.638(1.018,6.840)	0.046
Age	1.035(1.000,1.071)	0.050	1.030(0.992,1.069)	0.124
Cys C>0.95 (mg/L)	2.122(1.008,4.468)	0.048	2.057(0.947,4.464)	0.068
H pylori positive episodes (FBG≤3.9mmol/L)	1.594(0.186,13.690)	0.671	2.949(0.308,28.262)	0.348

PD- patients with Parkinson disease without type 2 diabetes mellitus; OR- odds ratio; CI- confidence interval; FBG- fasting blood glucose; HCY- homocysteine; Cys C- Cystatin C.

Supplementary Table 4. Multivariable logistic regression analysis for risk factors of dementia in DM patients.

Variables	Univariate	Multivariate model		
AST>40(IU/L)	6.074(1.913,19.286)	0.002	6.472(1.147,36.533)	0.034
Cys C>0.95 (mg/L)	3.864(1.584,9.424)	0.003	4.905(1.399,17.206)	0.013
Anxiety or depression	3.239(1.535,6.833)	0.002	3.750(1.220,11.526)	0.021
Male	2.549(1.125,5.775)	0.025	3.480(1.109,10.918)	0.033
Hypoglycaemic episodes (FBG≤3.9mmol/L)	5.062(1.208,21.212)	0.027	7.013(0.903,54.463)	0.063
Neutrophil (%)	1.054(1.017,1.093)	0.004	1.151(0.983,1.348)	0.080
Brain infarction	5.511(2.429,12.500)	<0.001	2.485(0.788,7.834)	0.120
Calcium<2.10(mmol/L)	5.414(1.892,15.490)	0.002	3.464(0.694,17.294)	0.130
Lymphocyte (%)	0.935(0.896,0.974)	0.001	1.144(0.960,1.364)	0.133
Potassium (mmol/L)	0.381(0.149,0.977)	0.045	0.500(0.145,1.725)	0.273
WMLs	4.450(2.166,9.142)	<0.001	2.812(0.439,18.002)	0.275
hs-CRP>3.00 (mg/L)	2.512(1.160,5.439)	0.019	1.850(0.573,5.974)	0.303
LDL-C<2.00(mmol/L)	2.103(0.996,4.440)	0.051	1.712(0.615,4.770)	0.303
SAE	5.421(2.618,11.224)	<0.001	1.460(0.249,8.548)	0.675
D-Dimer>0.50(mg/L)	3.698(1.522,8.986)	0.004	1.309(0.318,5.383)	0.709
Albumin<35.00(g/L)	5.339(1.513,18.846)	0.009	1.207(0.207,7.026)	0.834
Fibrinogen>4.00 (g/L)	2.431(1.066,5.543)	0.035	1.098(0.306,3.947)	0.886
Age	1.033(1.005,1.062)	0.022	0.998(0.957,1.042)	0.931

DM- patients with type 2 diabetes mellitus; OR- odds ratio; CI- confidence interval; AST- Aspartate transaminase; Cystatin C- Cys C; FBG- Fasting blood glucose; WMLs- White matter lesions; hs-CRP- hypersensitive C-reactive protein; LDL-C- low density lipoprotein cholesterol; SAE- subcortical arteriosclerotic encephalopathy.
Supplementary Table 5. Multivariable logistic regression analysis for risk factors of dementia in PD (with and without DM) patients and the interaction of risk factors with the existence of DM.

Variables	Univariate OR (95% CI)	p	Multivariate Model Adjusted OR (95% CI)	p	Interaction p
Fibrinogen>4.00 (g/L)	3.002(1.677,5.374)	<0.001	3.259(1.674-6.345)	0.001	
With DM	3.613(2.266,5.761)	<0.001	3.204(1.247,8.233)	0.016	0.979
Without DM	0.277(0.174,0.441)	<0.001	3.267(1.059,10.082)	0.039	
LDL-C<2.00 (mmol/L)	2.129(1.142,3.969)	0.017	1.544(0.783,3.043)	0.210	
With DM	2.586(1.594,4.197)	<0.001	3.347(1.305,8.585)	0.012	0.022
Without DM	0.387(0.238,0.627)	<0.001	0.384(0.078,1.890)	0.239	
SAE	2.458(1.428,4.231)	0.001	1.566(0.848,2.894)	0.152	
With DM	1.469(1.001,2.156)	0.049	3.952(1.566,9.971)	0.004	0.028
Without DM	0.681(0.464,0.999)	0.049	0.855(0.312,2.343)	0.761	
FBG<5.00 (mmol/L)	1.100(0.638,1.895)	0.732	2.364(1.153,4.848)	0.019	
With DM	0.108(0.067,0.175)	<0.001	0.323(0.036,2.905)	0.313	
Without DM	9.232(5.728,14.880)	<0.001	5.116(1.879,13.931)	0.001	0.025
HCY>15.00 (μmol/L)	1.925(1.005,3.687)	0.048	1.724(0.848,3.503)	0.132	
With DM	0.907(0.554,1.1486)	0.699	0.940(0.283,3.130)	0.920	
Without DM	1.102(0.673,1.804)	0.699	2.828(1.068,7.492)	0.036	0.163
Hyperlipidemia	1.302(0.610,2.780)	0.495	1.391(0.618,3.133)	0.425	
With DM	1.035(0.612,1.752)	0.898	0.717(0.146,3.506)	0.681	
Without DM	0.966(0.571,1.635)	0.898	2.996(1.048,8.561)	0.041	0.141
Diabetes	1.685(0.991,2.863)	0.054	1.168(0.573,2.384)	0.669	
Cys C>0.95 (mg/L)	1.350(0.775,2.353)	0.290	1.267(0.681,2.355)	0.455	
With DM	0.722(0.493,1.057)	0.094	0.467(0.155,1.405)	0.175	
Without DM	1.385(0.946,2.028)	0.094	2.360(1.014,5.495)	0.046	0.022
Age	1.051(1.024,1.078)	<0.001	1.044(1.010,1.078)	0.010	
With DM	1.082(1.062,1.103)	<0.001	1.059(0.999,1.123)	0.055	
Without DM	0.924(0.907,0.942)	<0.001	1.052(1.007,1.099)	0.024	0.854

PD- patients with Parkinson disease without type 2 diabetes mellitus; DM- type 2 diabetes mellitus without Parkinson disease; OR- odds ratio; CI- confidence interval; LDL-C- low density lipoprotein cholesterol; SAE- subcortical arteriosclerotic encephalopathy; FBG- fasting blood glucose; HCY- homocysteine; Cys C- Cystatin C.