LOGARITHMIC CO-HIGGS BUNDLES

EDOARDO BALLICO AND SUKMOON HUH

Abstract. In this article we introduce a notion of logarithmic co-Higgs sheaves associated to a simple normal crossing divisor on a projective manifold, and show their existence with nilpotent co-Higgs fields for fixed ranks and second Chern classes. Then we deal with various moduli problems with logarithmic co-Higgs sheaves involved, such as coherent systems and holomorphic triples, specially over algebraic curves of low genus.

1. Introduction

A co-Higgs sheaf on a complex manifold X is a torsion-free coherent sheaf E on X together with an endomorphism Φ of E, called a co-Higgs field, taking values in the tangent bundle T_X of X, i.e. $\Phi \in H^0(\text{End}(E) \otimes T_X)$, such that the integrability condition $\Phi \wedge \Phi = 0$ is satisfied. When E is locally free, it is a generalized vector bundle on X, considered as a generalized complex manifold and it is introduced and developed by Hitchin and Gualtieri in [16, 13]. A naturally defined stability condition on co-Higgs sheaves allows one to study their moduli spaces and Rayan and Colmenares investigate their geometry over projective spaces and a smooth quadric surface in [21, 22] and [9]. Indeed it is expected that the existence of stable co-Higgs bundles forces the position of X to be located at the lower end of the Kodaira spectrum, and Corrêa shows in [10] that a Kähler compact surface with a nilpotent stable co-Higgs bundle of rank two is uniruled up to finite étale cover. In [4, 5] the authors suggest a simple way of constructing nilpotent co-Higgs sheaves, based on Hartshorne-Serre correspondence, and obtain some (non-)existence results.

In this article we investigate the existence of nilpotent co-Higgs sheaves with a co-Higgs field vanishing in the normal direction to a given divisor of X: for a given arrangement D of smooth irreducible divisors of X with simple normal crossings, the sheaf $T_X(-\log D)$ of logarithmic vector fields along D is locally free and we consider a pair (E, Φ) of a torsion-free coherent sheaf E and a morphism $\Phi : E \to E \otimes T_X(-\log D)$ with the integrability condition satisfied. The pair is called a D-logarithmic co-Higgs sheaf and it is called 2-nilpotent if $\Phi \circ \Phi$ is trivial. Our first result is on the existence of nilpotent D-logarithmic co-Higgs sheaves of rank at least two.

Theorem 1.1 (Propositions 3.1, 3.2 and 3.3). Let X be a projective manifold with $\dim(X) \geq 2$ and $D \subset X$ be a simple normal crossing divisor. For fixed $L \in \text{Pic}(X)$
2 EDOARDO BALLICO AND SUKMOON HUH

and an integer \(r \geq 2 \), there exists a \(2 \)-nilpotent \(D \)-logarithmic co-Higgs sheaf \((E, \Phi)\), where \(\Phi \neq 0 \) and \(E \) is reflexive and indecomposable with \(c_1(E) \cong L \) and \(\text{rank} E = r \).

Indeed, we can strengthen the statement of Theorem 1.1 by requiring \(E \) to be locally free, in cases \(\dim(X) = 2 \) or \(r \geq \dim(X) \), due to the statement of the Hartshorne-Serre correspondence and the dimension of non-locally free locus (see Propositions 3.1 and 3.2). Moreover, in case \(\dim(X) = 2 \), we suggest an explicit number such that a logarithmic co-Higgs bundle exists for each second Chern class at least that number. We notice that the logarithmic co-Higgs sheaves constructed in Theorem 1.1 are highly unstable, which is consistent with the general philosophy on the existence of stable co-Higgs bundles (see [10, Theorem 1.1] for example).

Then we pay our attention to various different types of semistable objects involving logarithmic co-Higgs sheaves. In Section 2 we produce several examples of nilpotent semistable logarithmic co-Higgs sheaves on projective spaces and a smooth quadric surface, using a simple way of constructing in [5]. Since the logarithmic co-Higgs sheaves are co-Higgs sheaves in the usual sense with an additional vanishing condition in the normal direction of divisors, so their moduli space is a closed subvariety of the moduli of the usual co-Higgs sheaves. In Section 3 we describe two moduli spaces of logarithmic co-Higgs bundles of rank two on \(\mathbb{P}^2 \) in two cases.

Then in Section 4 we experiment with extensions of the notion of stability for co-Higgs sheaves and logarithmic co-Higgs sheaves. A key point for the study of moduli spaces was the introduction of parameters for the conditions of stability. We extend two of them, coherent systems and holomorphic triples, to co-Higgs sheaves. Specially in case of holomorphic triples, we show that any holomorphic triple admits the Harder-Narasimhan filtration in Corollary 7.1 and construct the moduli space of \(\nu_\alpha \)-stable \(D \)-logarithmic co-Higgs triples, using Simpson’s idea and quiver interpretation. We always work in cases in which there are non-trivial co-Higgs fields; so in case of dimension one we only consider projective lines and elliptic curves. We call \(\nu_\alpha \)-stability with \(\alpha \in \mathbb{R}_{>0} \), the notion of stability for holomorphic triples. In some cases we prove that the only \(\nu_\alpha \)-stable holomorphic triples are obtained in a standard way from the same holomorphic triple taking the zero co-Higgs field (see Remark 7.23).

It is certain that a logarithmic co-Higgs field is different from a map \(E \to E \otimes T_X(-D) \), unless \(X \) is a curve. We have a glimpse of this map in Section 4 for the cases \(X = \mathbb{P}^2 \) or \(\mathbb{P}^1 \times \mathbb{P}^1 \). On the contrary, in Section 5 we consider a map \(E \to E \otimes T_X(kD) \) with \(k > 0 \), called a meromorphic co-Higgs field, and describe semistable meromorphic co-Higgs bundles on \(\mathbb{P}^1 \).

The second author would like to thank U. Bruzzo, N. Nitsure and L. Brambila-Paz for many suggestions and interesting discussion.

2. Definitions and Examples

Let \(X \) be a smooth complex projective variety of dimension \(n \geq 2 \) with the tangent bundle \(T_X \). For a fixed ample line bundle \(O_X(1) \) and a coherent sheaf \(E \) on \(X \), we denote \(E \otimes O_X(t) \) by \(E(t) \) for \(t \in \mathbb{Z} \). The dimension of cohomology group \(H^i(X, E) \) is denoted by \(h^i(X, E) \) and we will skip \(X \) in the notation, if there is no confusion. For two coherent sheaves \(E \) and \(F \) on \(X \), the dimension of \(\text{Ext}^1_X(E, F) \) is denoted by \(\text{ext}^1_X(E, F) \).
To an arrangement $\mathcal{D} = \{D_1, \ldots, D_m\}$ of smooth irreducible divisors D_i's on X such that $D_i \neq D_j$ for $i \neq j$, we can associate the sheaf $T_X(-\log \mathcal{D})$ of logarithmic vector fields along \mathcal{D}, i.e. it is the subsheaf of the tangent bundle T_X whose section consists of vector fields tangent to \mathcal{D}. We always assume that \mathcal{D} has simple normal crossings and so $T_X(-\log \mathcal{D})$ is locally free. It also fits into the exact sequence $\{1\}$

$$0 \to T_X(-\log \mathcal{D}) \to T_X \to \oplus_{i=1}^m \varepsilon_i \mathcal{O}_{D_i} \to 0,$$

where $\varepsilon_i : D_i \to X$ is the embedding.

Definition 2.1. A \mathcal{D}-logarithmic co-Higgs bundle on X is a pair (\mathcal{E}, Φ) where \mathcal{E} is a holomorphic vector bundle on X and $\Phi : \mathcal{E} \to \mathcal{E} \otimes T_X(-\log \mathcal{D})$ with $\Phi \wedge \Phi = 0$. Here Φ is called the logarithmic co-Higgs field of (\mathcal{E}, Φ) and the condition $\Phi \wedge \Phi = 0$ is called the integrability.

We say that the co-Higgs field Φ is 2-nilpotent if Φ is non-trivial and $\Phi \circ \Phi = 0$. Note that any 2-nilpotent map $\Phi : \mathcal{E} \to \mathcal{E} \otimes T_X(-\log \mathcal{D})$ satisfies $\Phi \wedge \Phi = 0$ and so it is a non-zero co-Higgs structure on \mathcal{E}, i.e. a nilpotent co-Higgs structure.

Note that if \mathcal{D} is empty, then we get a usual notion of co-Higgs bundle. Indeed for each \mathcal{D}-logarithmic co-Higgs bundle we may consider a usual co-Higgs bundle by compositing the injection in $\{1\}$:

$$\mathcal{E} \to \mathcal{E} \otimes T_X(-\log \mathcal{D}) \to \mathcal{E} \otimes T_X.$$

Conversely, for a usual co-Higgs bundle (\mathcal{E}, Φ) we may composite the surjection in $\{1\}$ to have a map $\mathcal{E} \to \bigoplus_{i=1}^m \mathcal{E} \otimes \mathcal{O}_{D_i}$, whose vanishing would produce a logarithmic co-Higgs structure $\mathcal{E} \to \mathcal{E} \otimes T_X(-\log \mathcal{D})$. Thus our notion of logarithmic co-Higgs bundle capture the notion of a co-Higgs field $\Phi : \mathcal{E} \to \mathcal{E} \otimes T_X$ vanishing in the normal direction to the divisors in the support of \mathcal{D}; in general it would not be asking for a map $\varphi : \mathcal{E} \to \mathcal{E} \otimes T_X(-\mathcal{D})$ when $\mathcal{D} = \{D\}$. If $\dim(X) = 1$, then we have $T_X(-\log \mathcal{D}) \cong T_X(-D)$. In Section $\{1\}$ we consider a few cases in which we take $T_X(-\mathcal{D})$ with \mathcal{D} smooth, instead of $T_X(-\log \mathcal{D})$.

Definition 2.2. For a fixed ample line bundle \mathcal{H} on X, a \mathcal{D}-logarithmic co-Higgs bundle (\mathcal{E}, Φ) is \mathcal{H}-semistable (resp. \mathcal{H}-stable) if

$$\mu(\mathcal{F}) \leq (\text{resp.} <) \mu(\mathcal{E})$$

for every coherent subsheaf $0 \subsetneq \mathcal{F} \subsetneq \mathcal{E}$ with $\Phi(\mathcal{F}) \subset \mathcal{F} \otimes T_X(-\log \mathcal{D})$. Recall that the slope $\mu(\mathcal{E})$ of a torsion-free sheaf \mathcal{E} on X is defined to be $\mu(\mathcal{E}) := \deg(\mathcal{E}) / \text{rank} \mathcal{E}$, where $\deg(\mathcal{E}) = c_1(\mathcal{E}) \cdot \mathcal{H}^{n-1}$. In case $\mathcal{H} \cong \mathcal{O}_X(1)$ we simply call it semistable (resp. stable) without specifying \mathcal{H}.

Remark 2.3. Let (\mathcal{E}, Φ) be a semistable \mathcal{D}-logarithmic co-Higgs bundle. For a subsheaf $\mathcal{F} \subset \mathcal{E}$ with $\Phi(\mathcal{F}) \subset \mathcal{F} \otimes T_X$, we have

$$\mathcal{F} \otimes T_X(-\log \mathcal{D}) = (\mathcal{F} \otimes T_X) \cap (\mathcal{E} \otimes T_X(-\log \mathcal{D}))$$

and $\text{Im}(\Phi) \subset \mathcal{E} \otimes T_X(-\log \mathcal{D})$. Thus we get $\Phi(\mathcal{F}) \subset \mathcal{F} \otimes T_X(-\log \mathcal{D})$ and so (\mathcal{E}, Φ) is semistable as a usual co-Higgs bundle.

Let us denote by $\mathbf{M}_{\mathcal{D},X}(\chi(t))$ the moduli space of semistable \mathcal{D}-logarithmic co-Higgs bundles with Hilbert polynomial $\chi(t)$. It exists as a closed subscheme of $\mathbf{M}_X(\chi(t))$ the moduli space of semistable co-Higgs bundles with the same Hilbert polynomial, since the vanishing of co-Higgs fields in the normal direction to \mathcal{D} is a
closed condition. We also denote by $M^p_{D,X}(\chi(t))$ the subscheme consisting of stable ones.

Example 2.4. Let $X = \mathbb{P}^1$ and $D = \{p_1, \ldots, p_m\}$ be a set of m distinct points on X. Then we have $T_{\mathbb{P}^1}(-\log D) \cong \mathcal{O}_{\mathbb{P}^1}(2 - m)$. Let $E \cong \bigoplus_{i=1}^m \mathcal{O}_{\mathbb{P}^1}(a_i)$ be a vector bundle of rank $r \geq 2$ on \mathbb{P}^1 with $a_1 \geq \cdots \geq a_r$ and (E, Φ) be a semistable D-logarithmic co-Higgs bundle, i.e. $\Phi : E \rightarrow E(2 - m)$. If $a_1 = \cdots = a_r$, then the pair (E, Φ) is semistable for any Φ. If $m \geq 3$, then $\mathcal{O}_{\mathbb{P}^1}(a_1)$ would contradict the semistability of (E, Φ), unless $a_1 = \cdots = a_r$ and $m \geq 3$, then we have $\Phi = 0$ and so (E, Φ) is strictly semistable. Assume now that $m \in \{0, 1, 2\}$ and then the corresponding moduli space $M^p_{D, \mathbb{P}^1}(rt + d)$ is projective and $M^p_{D, \mathbb{P}^1}(rt + d)$ is smooth with dimension $(2 - m)r^2 + 1$, where $d = r + \sum_{i=1}^m a_i$ by [17]. The case $m = 0$ is dealt in [21] Theorem 6.1]. Now assume $m = 1$. Adapting the proof of [21] Theorem 6.1], we get Proposition [5.3 which says in the case $\ell = -1$ that the existence of a map Φ with (E, Φ) semistable implies that $a_i = a_{i+1} + 1$ for all i, while conversely, if $a_i \geq a_{i+1} + 1$ for all i, then there is a map Φ with (E, Φ) stable and the set of all such Φ is a non-empty open subset of the vector space $H^0(E_{\text{end}}(E)(1))$.

Now assume that $m = 2$ and so $\Phi \in E_{\text{nd}}(E)$. If $a_1 = \cdots = a_r$, then Φ is given by an $(r \times r)$-matrix of constants. Since the matrix has an eigenvector, the pair (E, Φ) is strictly semistable for any Φ. Now assume $a_1 > a_r$ and let h be the maximal integer i with $a_i = 1$. Write $E \cong F \oplus G$ with $F := \oplus_{i=1}^{h_{a_1}} \mathcal{O}_{\mathbb{P}^1}(a_i)$ and $G := \oplus_{i=h_{a_1}+1}^{a_r} \mathcal{O}_{\mathbb{P}^1}(a_i)$. Since any map $F \rightarrow G$ is the zero map, we have $\Phi(F) \subseteq F$ for any $\Phi : E \rightarrow \mathcal{E}$ and so (E, Φ) is not semistable.

2.1. Projective spaces. In [5] we introduce a simple way of constructing nilpotent co-Higgs sheaves (E, Φ) of rank $r \geq 2$, fitting into the exact sequence

$$0 \rightarrow \mathcal{O}^{\oplus(r-1)}_{\mathbb{X}} \rightarrow E \rightarrow \mathcal{I}_Z \otimes \mathcal{A} \rightarrow 0$$

for a two-codimensional locally complete intersection $Z \subset X$ and $\mathcal{A} \in \text{Pic}(X)$ such that $H^0(T_X \otimes \mathcal{A}^r) \neq 0$. We replace T_X by $T_X(-\log D)$ for a simple normal crossing divisor D in [2] to obtain 2-nilpotent D-logarithmic co-Higgs sheaves.

Example 2.5. Let $X = \mathbb{P}^n$ with $n \geq 2$ and take $D = \{D_1, \ldots, D_m\}$ with $D_i \in |\mathcal{O}_{\mathbb{P}^n}(1)|$. If $1 \leq m \leq n$, we have $T_{\mathbb{P}^n}(-\log D) \cong \mathcal{O}_{\mathbb{P}^n}^{\oplus(m-1)} \oplus \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus(n-m+1)}$ by [12], and in particular we have $h^0(T_{\mathbb{P}^n}(-\log D)(-1)) > 0$. Thus we may apply the proof of [5] Theorem 1.1] to get the following: here the invariant x_E is defined to be the maximal integer x such that $h^0(E(-x)) \neq 0$.

Proposition 2.6. The set of nilpotent maps $\Phi : E \rightarrow E \otimes T_{\mathbb{P}^n}(-\log D)$ on a fixed stable reflexive sheaf E of rank two on \mathbb{P}^n is an $(n - m - 1)$-dimensional vector space only if $c_1(E) + 2x_E = -3$. In the other cases the set is trivial.

Remark 2.7. Consider the case $m = n+1$ in Example [2.5] with $\bigcup_{i=1}^{n+1} D_i = \emptyset$. Then we have $T_{\mathbb{P}^n}(-\log D) \cong \mathcal{O}_{\mathbb{P}^n}^{\oplus n}$. Let E be a reflexive sheaf of rank $r \geq 2$ on \mathbb{P}^n with a semistable (resp. stable) logarithmic co-Higgs structure (E, Φ). Note that if Φ is trivial, the semistability (resp. stability) of (E, Φ) is equivalent to the semistability (resp. stability) of E. Note that if $\Phi \neq 0$, then $T_{\mathbb{P}^n}(-\log D) \cong \mathcal{O}_{\mathbb{P}^n}^{\oplus n}$. This implies that if Φ is not trivial, then E is not stable. We claim that E is semistable. If not, call G the first step of the Harder-Narasimhan filtration of E. By a property of the Harder-Narasimhan filtration there is no non-zero map $G \rightarrow E/G$ and so no non-zero map $G \rightarrow (E/G) \otimes T_{\mathbb{P}^n}(-\log D)$. Thus we get $\Phi(G) \subseteq G \otimes T_{\mathbb{P}^n}(-\log D)$,
Example 2.8. Let $X = \mathbb{P}^2$ and take $\mathcal{D} = \{D\}$ with D a smooth conic. Since $h^0(T_{\mathbb{P}^2}) = 8$ and $h^0(\mathcal{O}_D(D)) = h^0(\mathcal{O}_D(2)) = 5$, we have $h^0(T_{\mathbb{P}^2}(-\log D)) > 0$ from (1). By taking $\mathcal{A} \cong \mathcal{O}_{\mathbb{P}^2}$ in [5] Equation (1) of Condition 2.2, we get a strictly semistable logarithmic co-Higgs bundle (\mathcal{E}, Φ) with a non-zero co-Higgs field Φ, where \mathcal{E} is strictly semistable of any arbitrary rank $r \geq 2$ and any non-negative integer $c_2(\mathcal{E}) = \deg(Z)$. Moreover, for any integer $c_2(\mathcal{E}) \geq r - 1$ we may find an indecomposable one.

Example 2.9. Let $X \subset \mathbb{P}^{n+1}$ be a smooth quadric hypersurface. Let $D \subset X$ be a smooth hyperplane section of X with $H \subset \mathbb{P}^{n+1}$ the hyperplane such that $D = X \cap H$ and take $\mathcal{D} = \{D\}$. If $p \in \mathbb{P}^{n+1}$ is the point associated to H by the isomorphism between \mathbb{P}^{n+1} and its dual induced by an equation of X, then we have $p \notin X$ since X is smooth. Letting $\pi_p : X \rightarrow \mathbb{P}^n$ denote the linear projection from p, we have $T_X(-\log D) \cong \pi_p^*(\Omega^{\log}_D(2))$ by [3] Corollary 4.6. Since $\Omega^{\log}_D(2)$ is globally generated, so is $T_X(-\log D)$ and in particular $H^0(T_X(-\log D)) \neq 0$. By taking $\mathcal{A} \cong \mathcal{O}_X$ in [5] Equation (1) of Condition 2.2, we get a strictly semistable logarithmic co-Higgs bundle (\mathcal{E}, Φ) with a non-zero co-Higgs field Φ, where \mathcal{E} is strictly semistable of any arbitrary rank $r \geq 2$.

2.2. Smooth quadric surfaces. Let $X = \mathbb{P}^1 \times \mathbb{P}^1$ be a smooth quadric surface and we may assume for a vector bundle \mathcal{E} of rank two that

$$\det(\mathcal{E}) \in \{\mathcal{O}_X, \mathcal{O}_X(-1,0), \mathcal{O}_X(0,-1), \mathcal{O}_X(-1,-1)\}.$$

The case of the usual co-Higgs bundle with $\mathcal{D} = \emptyset$ is done in [9] Theorem 4.3. We assume either

(i) $\mathcal{D} \subset \{\mathcal{O}_X(1,0), \mathcal{O}_X(2,0), \mathcal{O}_X(0,1), \mathcal{O}_X(0,2)\}$, or

(ii) $\mathcal{D} = L \cup R$ with $L \in \{\mathcal{O}_X(1,0)\}$ and $R \in \{\mathcal{O}_X(0,1)\}$.

In the latter case $T_X(-\log D)$ fits into the exact sequence

$$(3) \quad 0 \rightarrow T_X(-\log D) \rightarrow \mathcal{O}_X(2,0) \oplus \mathcal{O}_X(0,2) \rightarrow \mathcal{O}_L \oplus \mathcal{O}_R \rightarrow 0,$$

because $\mathcal{O}_L(L) \cong \mathcal{O}_L$, $\mathcal{O}_R(R) \cong \mathcal{O}_R$ and $T_X \cong \mathcal{O}_X(2,0) \oplus \mathcal{O}_X(0,2)$. In particular, we have $h^0(T_X(-\log D)(i,j)) > 0$ for all $(i,j) \in \{(0,0), (0,-1), (1,0), (0,-1)\}$. We may also consider the following cases:

(iii) $\mathcal{D} = L \cup L' \cup R$ with L, R as above and $L \neq L' \in \{\mathcal{O}_X(1,0)\}$; we still have $h^0(T_X(-\log D)(i,j)) > 0$ for $(i,j) \in \{(0,0), (0,-1)\}$.

(iv) $\mathcal{D} = L \cup L' \cup R \cup R'$ with L, L', R as above and $R \neq R' \in \{\mathcal{O}_X(0,1)\}$.

Indeed, if \mathcal{D} consists of a lines in $\{\mathcal{O}_X(1,0)\}$ and b lines in $\{\mathcal{O}_X(0,1)\}$, then we have $T_X(-\log D) \cong \mathcal{O}_X(2-a,0) \oplus \mathcal{O}_X(0,2-b)$ by [3] Proposition 6.2.

Assume that \mathcal{E} fits into the following exact sequence as in [9] Equation (3.1)

$$(4) \quad 0 \rightarrow \mathcal{O}_X(r,d) \rightarrow \mathcal{E} \rightarrow \mathcal{O}_X(r',d') \oplus \mathcal{I}_Z \rightarrow 0,$$

where $Z \subset X$ is a zero-dimensional scheme, $\det(\mathcal{E}) \cong \mathcal{O}_X(r + r', d + d')$ and $c_2(\mathcal{E}) = \deg(Z) + rd' + r'd$. Note that that any logarithmic co-Higgs bundle is co-Higgs in the usual sense and so the set of all (c_1, c_2) allowed for \mathcal{D} is contained in the one allowed for $\mathcal{D} = \emptyset$. In particular, if we are concerned only in $\mathcal{O}_X(1,1)$-semistability, the possible pairs (c_1, c_2) are contained in the one described in [9].
Theorem 4.3]. Moreover, any existence for the case $D = L \cup R$ implies the existence for $D \in \{O_X(1,0), O_X(0,1)\}$.

(a) First assume det$(E) \cong O_X$ and we prove the existence for $c_2 \geq 0$. In this case we take $r = d = r' = d' = 0$ and the 2-nilpotent co-Higgs structure induced by $I_Z \to T_X(-\log D)$, i.e. by a non-zero section of $T_X(-\log D)$. This construction gives (E, Φ) with E strictly semistable for any polarization.

(b) Assume det$(E) \cong O_X(-1,0)$ by symmetry and see the existence for $c_2 \geq 0$. In case $h^0(T_X(-\log D)(-1,0)) > 0$, we take $(r, r', d, d') = (-1,0,0,0)$ and Φ induced by a non-zero map $I_Z \to T_X(-\log D)(-1,0)$. Then E is stable for every polarization, unless $Z = \emptyset$ and E splits, because $Z \neq \emptyset$ would imply $h^0(E) = 0$; even when $Z = \emptyset$ and so $E \cong O_X \oplus O_X(-1,0)$, the pair (E, Φ) is stable for every polarization.

(c) Assume det$(E) \cong O_X(-1,-1)$ and take $(r, d) = (-1,0)$ and $(r', d') = (0, -1)$ with $D \in |O_X(1,0)|$. Then we have $h^0(T_X(-\log D)(-1,1)) > 0$ and $c_2(E) = \text{deg}(Z) + 1$. We get that E is semistable with respect to $O_X(1,1)$.

3. Existence

Proposition 3.1. Assume dim$(X) = 2$ and let $D \subset X$ be a simple normal crossing divisor. For fixed $L \in \text{Pic}(X)$ and an integer $r \geq 2$, there exists an integer $n = n_{X,D}(L,r)$ such that for all integers $c_2 \geq n$ there is a 2-nilpotent D-logarithmic co-Higgs bundle (E, Φ) with $\Phi \neq 0$, where E is an indecomposable vector bundle of rank r with Chern classes $c_1(E) \cong L$ and $c_2(E) = c_2$.

Proof. Fix a very ample $R \in \text{Pic}(X)$ such that

- $h^0(\omega_X \otimes (L^{\otimes (r-1)} \otimes R^\otimes r)^\vee) = 0$;
- $h^0(T_X(-\log D) \otimes L^{\otimes (r-1)} \otimes R^\otimes r) > 0$;
- $L \otimes R$ is spanned.

Set $n = n_{X,D}(r, L) := r - (r-1)(r-2)L^2 - (r-1)^2R^2 - (2r-3)(r-1)L \cdot R$.

For each $c_2 \geq n$, let $S \subset X$ be a union of general $(c_2 + r - n)$ points and consider a general extension

$$0 \to (L \otimes R)^{\oplus (r-1)} \to E \to I_S \otimes (L^{\otimes (r-2)} \otimes R^{\otimes (r-1)})^\vee \to 0.$$

From the choice of R the Cayley-Bacharach condition is satisfied and so E is locally free with $c_1(E) \cong L$ and $c_2(E) = c_2$. Now from a non-zero section in $H^0(T_X(-\log D) \otimes L^{\otimes (r-1)} \otimes R^\otimes r)$ we have a non-zero map $\varphi : I_S \otimes (L^{\otimes (r-2)} \otimes R^{\otimes (r-1)})^\vee \to L \otimes R \otimes T_X(-\log D)$, inducing a non-zero map $\Phi : E \to E \otimes T_X(-\log D)$ that is 2-nilpotent and so integrable.

Thus to complete the proof it is sufficient to prove that E is indecomposable for a suitable R. Assume $E \cong E_1 \oplus \cdots \oplus E_k$ with $k \geq 2$ and each E_i indecomposable and locally free of positive rank. Since R is very ample and $L \otimes R$ is spanned, the image of the evaluation map $H^0(E) \otimes O_X \to E$ is isomorphic to $(L \otimes R)^{\oplus (r-1)}$ and its cokernel is isomorphic to $I_S \otimes (L^{\otimes (r-2)} \otimes R^{\otimes (r-1)})^\vee$. Thus, up to a permutation of the factors, we have $(L \otimes R)^{\oplus (r-1)} \cong E_1 \oplus \cdots \oplus E_{k-1} \oplus F$ with F a vector bundle and $E_i/F \cong I_S \otimes (L^{\otimes (r-2)} \otimes R^{\otimes (r-1)})^\vee$. Since E_1 is indecomposable, we get that $E_1 \cong L \otimes R$. But since $\sharp(S) \geq r$, we have $\text{ext}^1_I(I_S \otimes (L^{\otimes (r-2)} \otimes R^{\otimes (r-1)})^\vee, O_X) \geq r$ and so we may choose E so that $L \otimes R$ is not a factor of E. \hfill \Box
Proposition 3.2. Assume \(n = \dim(X) \geq 3 \) and let \(D \subset X \) be a simple normal crossing divisor. For a fixed \(L \in \text{Pic}(X) \) and an integer \(r \geq n \), there exists a 2-nilpotent \(D \)-logarithmic co-Higgs bundle \((E, \Phi)\), where \(E \) is an indecomposable vector bundle of rank \(r \) on \(X \) with \(\det(E) \cong L \).

Proof. We first assume that \(\mathcal{L}^\vee \) is very ample with

- \(h^1(\mathcal{L}^\vee) = h^2(\mathcal{L}^\vee) = 0 \), where we use the assumption \(n \geq 3 \);
- \(h^0(\mathcal{L}^\vee) \geq r - 1 \) and \(h^0(\mathcal{L}^\vee \otimes T_X(-\log D)) > 0 \).

Fix a very ample line bundle \(H \) on \(X \) such that \(h^0(H^0 \otimes \mathcal{L}^\vee) = h^1((H^0)^{\otimes 2} \otimes \mathcal{L}^\vee) = 0 \), e.g., by taking \(H \cong (\mathcal{L}^\vee)^{\otimes 2} \) and applying Kodaira’s vanishing. Let \(Y \subset X \) be a general complete intersection of two elements of \(|H| \) and then \(Y \) is a non-empty connected manifold of codimension 2 with normal bundle \(N_Y \), isomorphic to \(H^{\otimes 2}_{|Y|} \).

The line bundle \(\mathcal{R} := \wedge^2 N_Y \otimes \mathcal{L}^\vee|_Y \cong (H^{\otimes 2} \otimes \mathcal{L}^\vee)|_Y \) is a very ample line bundle on \(Y \) and we have \(h^0(Y, \mathcal{R}) \geq h^0(Y, (\mathcal{L}^\vee)|_Y) \). From the exact sequence

\[
0 \to (H^0)^{\otimes 2} \to (H^0)^{\otimes 2} \to I_Y \to 0
\]

we get \(h^0(I_Y \otimes \mathcal{L}^\vee) = 0 \) and so \(h^0(Y, \mathcal{R}) \geq h^0(Y, (\mathcal{L}^\vee)|_Y) \geq r - 1 \). Since \(\mathcal{R} \) is spanned and \(\dim(Y) = n - 2 \), a general \((n - 1)\)-dimensional linear subspace \(V \subset H^0(Y, \mathcal{R}) \) spans \(\mathcal{R} \). Hence there are linearly independent sections \(s_1, \ldots, s_{r-1} \) of \(H^0(Y, \mathcal{R}) \) spanning \(\mathcal{R} \). Since \(H^2(\mathcal{L}^\vee) = 0 \), by the Hartshorne-Serre correspondence the sections \(s_1, \ldots, s_{r-1} \) give a vector bundle \(E \) of rank \(r \) fitting into an exact sequence (see [2, Theorem 1.1])

\[
0 \to \mathcal{O}_X^{\oplus (r-1)} \to E \to I_Y \otimes \mathcal{L} \to 0.
\]

In particular we have \(\det(E) \cong \mathcal{L} \). Any non-zero section of \(H^0(\mathcal{L}^\vee \otimes T_X(-\log D)) \) gives a 2-nilpotent logarithmic co-Higgs structures on \(E \) with \(\Phi \neq 0 \). Now it remains to show that \(E \) is indecomposable. Assume \(E \cong G_1 \oplus G_2 \) with \(G_i \) non-zero. Let \(G_i' \) be the image of the evaluation map \(H^0(G_i) \otimes \mathcal{O}_X \to G_i \) for \(i = 1, 2 \). Since \(\mathcal{L}^\vee \) is very ample, we have \(h^0(E) = r - 1 \) and the image of the evaluation map \(H^0(E) \otimes \mathcal{O}_X \to E \) is isomorphic to \(\mathcal{O}_X^{\oplus (r-1)} \) and so \(G_i' \cong G_i' \oplus G_i'' \cong \mathcal{O}_X^{\oplus (r-1)} \). In particular, we have \(G_i \cong G_i' \) for some \(i \) and so at least one of the factors of \(E \) is trivial. Set \(\mathcal{E} \cong \mathcal{O}_X \oplus \mathcal{F} \) with \(\text{rank} (\mathcal{F}) = r - 1 \). By [2, Theorem 1.1] the bundle \(\mathcal{F} \) comes from a subbundle of \(H^0(Y, \mathcal{R}) \) and so \(\mathcal{E} \) is induced by the sections \(u_1, \ldots, u_{r-2}, 0 \). Since \(H^1(\mathcal{L}^\vee) = 0 \), the uniqueness part of [2, Theorem 1.1] gives that \(s_1, \ldots, s_{r-1} \) generate the linear subspace of \(H^0(Y, \mathcal{R}) \) spanned by \(u_1, \ldots, u_{r-2} \) and so they are not linearly independent, a contradiction.

Now we drop any assumption on \(\mathcal{L} \). Take an integer \(m \gg 0 \) and set \(\mathcal{L}' := \mathcal{L} \otimes (\mathcal{H}^\vee)^{\otimes mr} \). Then we get that \((\mathcal{L}')^\vee \) is very ample and \(H^2((\mathcal{L}')^\vee) = 0 \). By the first part there is \((\mathcal{E}', \Phi') \) with \(\det(\mathcal{E}') \cong \mathcal{L}' \). We may take \(\mathcal{E} := \mathcal{E}' \otimes (\mathcal{H}^\vee)^{\otimes m} \) and let \(\Phi : \mathcal{E} \to \mathcal{E} \otimes T_X(-\log D) \) be the non-zero map induced by \(\Phi' \).

Allowing non-locally free sheaves, we may extend Proposition 3.2 to all ranks at least two in the following way.

Proposition 3.3. Under the same assumption as in Proposition 3.2 with \(2 \leq r \leq n - 1 \), there exists a 2-nilpotent \(D \)-logarithmic co-Higgs reflexive sheaf \((E, \Phi)\), where \(E \) is indecomposable of rank \(r \) with \(\det(E) \cong \mathcal{L} \) and non-locally free locus of dimension at most \((n - r - 1) \).
Remark 4.2. (1) It is likely that we may not apply our method of construction of 2-nilpotent co-Higgs structure to the case when $\det(\mathcal{E}) \cong \mathcal{O}_X(-1, -1)$, because it requires a non-zero section in $H^0(T_X(-D)(-1, 0))$, which is trivial.

(2) Take $D = L \cup R$ with $L, R \in |\mathcal{O}_X(1, 0)|$ and $L \neq R$; the case with $L, R \in |\mathcal{O}_X(0, 1)|$ is similar. Then the existence for the case $c_1(\mathcal{E}) = \mathcal{O}_X(0, 0)$ can be done for any $c_2 \geq 0$ as above.

4. VANISHING ALONG DIVISORS

As observed, the notion of logarithmic co-Higgs bundle is not asking for a map $\varphi : \mathcal{E} \to \mathcal{E} \otimes T_X(-D)$ if $\dim(X) \geq 2$. In this section we study vector bundles of rank two on a projective plane and a smooth quadric surface with sections in $H^0(\mathcal{E}^{\text{ad}}(\mathcal{E}) \otimes T_X(-D))$.

4.1. Projective plane. Let $X = \mathbb{P}^2$ and take $D \in |\mathcal{O}(1)|$ a projective line. Then we have $T_{\mathbb{P}^2}(-D) = T_{\mathbb{P}^2}(-1)$ and so $h^0(T_{\mathbb{P}^2}(-D)) = 3$. We may give a 2-nilpotent co-Higgs structure on a vector bundle \mathcal{E} of rank 2 fitting into the exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^2} \to \mathcal{E} \to \mathcal{I}_Z \to 0$$

from a non-zero section in $H^0(T_{\mathbb{P}^2}(-D))$. Thus there exists a strictly semistable co-Higgs bundle of rank two for all $c_2 \geq 0$, which is indecomposable for $c_2 > 0$. Indeed for any such bundles with positive c_2 we have a three-dimensional vector space of 2-nilpotent co-Higgs structures. On the contrary we have some results on non-existence of co-Higgs bundles on projective spaces in [5, Section 3]. Applying the same argument to $T_{\mathbb{P}^n}(-1)$, we get the following, as in Proposition 2.4.

Proposition 4.1. If \mathcal{E} is a stable reflexive sheaf of rank two on \mathbb{P}^n with $n \geq 2$, then any nilpotent map $\Phi : \mathcal{E} \to \mathcal{E} \otimes T_{\mathbb{P}^n}(-1)$ is trivial.

4.2. Quadric surface. Let $X = \mathbb{P}^1 \times \mathbb{P}^1$ and take $D \in |\mathcal{O}_X(1, 0)|$; by symmetry the case $D \in |\mathcal{O}_X(0, 1)|$ is similar. We have $T_X(-D) \cong \mathcal{O}_X(1, 0) \oplus \mathcal{O}_X(-1, 2)$.

(a) In case $\det(\mathcal{E}) \cong \mathcal{O}_X$ we prove the existence for $c_2 \geq 0$. By taking $r = d = r' = d' = 0$, we obtain a 2-nilpotent co-Higgs structure induced by $\mathcal{I}_Z \to T_X(-D)$, i.e. by a non-zero section of $T_X(-D)$. This construction gives (\mathcal{E}, Φ) with \mathcal{E} strictly semistable for any polarization.

(b) In case $\det(\mathcal{E}) \cong \mathcal{O}_X(-1, 0)$ we also see the existence for $c_2 \geq 0$. Since $h^0(T_X(-D)(-1, 0)) > 0$, we take $(r, r', d, d') = (-1, 0, 0, 0)$ and Φ induced by a non-zero map $\mathcal{I}_Z \to T_X(-D)(-1, 0)$. Then \mathcal{E} is stable for every polarization, unless $Z = \emptyset$ and \mathcal{E} splits, because $Z \neq \emptyset$ would imply $h^0(\mathcal{E}) = 0$; even when $Z = \emptyset$ and so $\mathcal{E} \cong \mathcal{O}_X \oplus \mathcal{O}_X(-1, 0)$, the pair (\mathcal{E}, Φ) is stable for every polarization.

(c) Assume $\det(\mathcal{E}) \cong \mathcal{O}_X(-1, -1)$ and take $(r, d) = (-1, 0)$ and $(r', d') = (0, -1)$ with $D \in |\mathcal{O}_X(1, 0)|$. Note that $h^0(T_X(-D)(-1, 1)) > 0$ and $c_2(\mathcal{E}) = \deg(Z) + 1$. Then we get that \mathcal{E} is semistable with respect to $\mathcal{O}_X(1, 1)$.

Remark 4.2. (1) It is likely that we may not apply our method of construction of 2-nilpotent co-Higgs structure to the case when $\det(\mathcal{E}) \cong \mathcal{O}_X(0, -1)$, because it requires a non-zero section in $H^0(T_X(-D)(-1, 0))$, which is trivial.

(2) Take $D = L \cup R$ with $L, R \in |\mathcal{O}_X(1, 0)|$ and $L \neq R$; the case with $L, R \in |\mathcal{O}_X(0, 1)|$ is similar. Then the existence for the case $c_1(\mathcal{E}) = \mathcal{O}_X(0, 0)$ can be done for any $c_2 \geq 0$ as above.
5. Extension of co-Higgs bundles

Fix an ample line bundle \mathcal{H} on X and a vector bundle \mathcal{G}. Then we may define \mathcal{H}-(semi)stability for a pair (\mathcal{E}, Φ) with \mathcal{E} a torsion-free sheaf and $\Phi : \mathcal{E} \to \mathcal{E} \otimes \mathcal{G}$, similarly as in Definition 2.2 with \mathcal{G} instead of $T_X(-\log D)$. Then the definition of (logarithmic) co-Higgs bundle is obtained by taking $\mathcal{G} \in \{ T_X, T_X(-\log D), T_X(-D) \}$ with the integrability condition $\Phi \wedge \Phi = 0$. Note that it is enough to check the integrability condition on a non-empty open subset U of X.

Definition 5.1. Fix an effective divisor $D \subset X$ and a positive integer k, for which we take $\mathcal{G} := T_X(kD)$. A pair (\mathcal{E}, Φ) is called a **meromorphic co-Higgs sheaf** with poles of order at most k contained in D, if it satisfies the integrability condition on $U := X \setminus D$.

Via the inclusion $T_X \hookrightarrow T_X(kD)$ induced by a section of $O_X(kD)$ with kD as its zeros, we see that any co-Higgs sheaf is also a meromorphic co-Higgs for any k and D. A meromorphic co-Higgs sheaf with poles contained in D induces an ordinary co-Higgs sheaf (\mathcal{F}, φ) on the non-compact manifold U and our definition of meromorphic co-Higgs sheaves captures the extension of (\mathcal{F}, φ) to X with at most poles on D of order at most k.

Remark 5.2. We may generalize the definition of a meromorphic co-Higgs sheaf as follows: take $D = \cup_{i=1}^{s} D_i$ with each D_i irreducible and consider $\sum_{i=1}^{s} k_i D_i$, k_i a positive integer, instead of kD. Then we get the co-Higgs sheaves (\mathcal{F}, φ) on $X \setminus D$, which extends meromorphically to X with poles of order at most k on each D_i.

Our method used in constructing 2-nilpotent co-Higgs sheaves (see [5, Condition 2.2]) can be applied to construct 2-nilpotent meromorphic co-Higgs sheaves, if $h^0(T_X(kD)) > 0$; we may easily check when the construction gives locally free ones. In the set-up of Sections 2.2 and 4 we immediately see how to construct examples filling in several Chern classes.

Assume that $\dim(X) = 1$ and let $D = p_1 + \cdots + p_s$ be s distinct points on X. Set $\ell := \deg(\sum_{i=1}^{s} k_i p_i)$ and $r := \text{rank}(\mathcal{E})$. We adapt the proof of [21, Theorem 6.1] with only very minor modifications to prove the following result. To cover the case needed in Example 2.3, we allow as ℓ an integer at least -1.

Proposition 5.3. Let $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^1}(a_r)$ be a vector bundle of rank $r \geq 2$ on \mathbb{P}^1 with $a_1 \geq \cdots \geq a_r$.

(i) If (\mathcal{E}, Φ) is semistable with a map $\Phi : \mathcal{E} \to \mathcal{E}(2 + \ell)$, then we have $a_{i+1} \geq a_i - \ell - 2$ for each $i \leq r - 1$.

(ii) Conversely, if $a_{i+1} \geq a_i - \ell - 2$ for each $i \leq r - 1$, then there is a map $\Phi : \mathcal{E} \to \mathcal{E}(2 + \ell)$ such that no proper subbundle $\mathcal{F} \subset \mathcal{E}$ satisfies $\Phi(\mathcal{F}) \subseteq \mathcal{F}(2 + \ell)$, and in particular (\mathcal{E}, Φ) is stable. The set of all such Φ is non-empty open subset of the vector space $H^0(\text{End}(\mathcal{E})(2 + \ell))$.

Proof. Assume the existence of an integer i such that $a_{i+1} \leq a_i - \ell - 3$ and take $\Phi : \mathcal{E} \to \mathcal{E}(2 + \ell)$. Set $\mathcal{E} = \mathcal{F} \oplus \mathcal{G}$ with $\mathcal{F} := \oplus_{j=1}^{i} \mathcal{O}_{\mathbb{P}^1}(a_j)$ and $\mathcal{G} := \oplus_{j=i+1}^{s} \mathcal{O}_{\mathbb{P}^1}(a_j)$. Since any map $\mathcal{F} \to \mathcal{G}(2 + \ell)$ is the zero map, we have $\Phi(\mathcal{F}) \subseteq \mathcal{F}(2 + \ell)$ and so (\mathcal{E}, Φ) is not semistable.

Now assume $a_{i+1} \geq a_i - \ell - 2$ for all i. Write Φ as an $(r \times r)$-matrix B with entries $b_{i,j} \in \text{Hom}(\mathcal{O}_{\mathbb{P}^1}(a_i), \mathcal{O}_{\mathbb{P}^1}(a_j + 2 + \ell))$. For fixed homogeneous coordinates z_0, z_1 on \mathbb{P}^1 with $\infty = [1 : 0]$ and $0 = [0 : 1]$, see a homogeneous polynomial of
degree d in the variables z_0, z_1 as a polynomial of degree at most d in the variable $z := z_0/z_1$. Take

$$B = \begin{bmatrix} 0 & 1 & 0 & \cdots & z \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

so that $b_{i,j} = 0$ unless either $(i,j) = (1,r)$ or $j = i+1$; we take $b_{i,i+1} = 1$ for all i, i.e. the elements of $\mathbb{C}[z]$ associated to $z_1^{a_i+1-a_i+2+\ell}$, and $b_{1,r} = z$, the element of $\mathbb{C}[z]$ associated to $z_0 z_1^{a_0-a_0+1+\ell}$. Then there is no proper subbundle $F \subseteq E$ with $\Phi(F) \subseteq F(2+\ell)$, because the characteristic polynomial of B is $\det(tI - B) = (-1)^r z + t^r$, which is irreducible in $\mathbb{C}[z,t]$.

\[\square\]

Remark 5.4. Assume the genus g of X is at least 2 and that $2 - 2g + \ell < 0$. Then there exists no semistable meromorphic co-Higgs bundle (E, Φ) with $\Phi \neq 0$. Indeed, for any pair (E, Φ), the map Φ would be a non-zero map between two semistable vector bundles with the target having lower slope.

6. Moduli over projective plane

Let $X = \mathbb{P}^n$ and fix $D = \{D\}$ with $D \in |\mathcal{O}_{\mathbb{P}^n}(1)|$. Then we have $T_{\mathbb{P}^n}(-\log D) \cong \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n}$ and

$$\Phi = (\varphi_1, \ldots, \varphi_n) : E \rightarrow E \otimes T_{\mathbb{P}^n}(-\log D)$$

with $\varphi_i : E \rightarrow \mathcal{O}(1)$ for $i = 1, \ldots, n$. Assume that (E, Φ) is a semistable co-Higgs bundle of rank r along D. If $E \cong \oplus_{i=1}^n \mathcal{O}(a_i)$ is a direct sum of line bundles on \mathbb{P}^n with $a_1 \geq a_i+1$ for all i, then we get $a_i \leq a_{i+1} + 1$ for all i by adapting the proof of [21] Theorem 6.1. Thus in case rank$(E) = r = 2$, by a twist we fall into two cases: $\mathcal{O}_{\mathbb{P}^2}^{\oplus 2}$ or $\mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(-1)$.

We denote by $\text{End}_D(E)$ the kernel of the trace map $\text{End}(E) \rightarrow \mathcal{O}_X$, the trace-free part, and then we have

$$\text{End}(E) \otimes T_X(-\log D) \cong (\text{End}_D(E) \otimes T_X(-\log D)) \oplus T_X(-\log D).$$

Thus any co-Higgs field Φ can be decomposed into $\Phi_1 + \Phi_2$ with $\Phi_1 \in H^0(\text{End}_D(E) \otimes T_X(-\log D))$ and $\Phi_2 \in H^0(T_X(-\log D))$. Note that (E, Φ) is (semi)stable if and only if (E, Φ_1) is (semi)stable. Thus we may pay attention only to trace-free logarithmic co-Higgs bundles. Let us denote by $M_D(c_1, c_2)$ the moduli of semistable trace-free D-logarithmic co-Higgs bundles of rank two on \mathbb{P}^2 with Chern classes (c_1, c_2). In case $D = \emptyset$ we simply denote the moduli space by $M(c_1, c_2)$.

Proposition 6.1. $M_D(-1,0)$ is isomorphic to the total space of $\mathcal{O}_D(-2)^{\oplus 6}$.

Proof. By [14] Lemma 3.2 E is not semistable for $(E, \Phi) \in M_D(-1,0)$ and so we get an exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}^2}(t) \rightarrow E \rightarrow I_Z(-t-1) \rightarrow 0$ with $t \geq 0$. Here $\Phi(\mathcal{O}_{\mathbb{P}^2}(t)) \subset I_Z(-t)$ is a non-trivial subsheaf and so we get $t = 0$ and $Z = \emptyset$. Thus we get $E \cong \mathcal{O}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(-1)$. Then following the proof of [22] Theorem 5.2 verbatim, we see that

$$M_D(-1,0) \cong H^0(\mathcal{O}_{\mathbb{P}^2}(2)) \times (H^0(\mathcal{O}_{\mathbb{P}^2}^{\oplus 2}) \setminus \{0\}) / C^*,$$

where C^* acts on $H^0(\mathcal{O}_{\mathbb{P}^2}(2))$ with weight -2 and on $H^0(\mathcal{O}_{\mathbb{P}^2}^{\oplus 2}) \setminus \{0\}$ with weight 1. Thus we get that $M_D(-1,0)$ is isomorphic to the total space of $\mathcal{O}_{\mathbb{P}^1}(-2)^{\oplus 2}$. Indeed,
from the sequence \((1)\) twisted by \(-1\), we can identify \(PH^0(\mathcal{O}_D^{\oplus 2})\) with \(D\) and so \(M_\alpha(-1,0)\) can be obtained by restricting \(\mathcal{O}_{D_2}(-2)^{\oplus 6}\) to \(D\) as a closed subscheme of \(M(-1,0)\), which is isomorphic to the total space of \(\mathcal{O}_{D_2}(-2)^{\oplus 6}\) (see \cite[Theorem 5.2]{22}).

Recall in \cite[Page 1447]{22} that \(M(0,0)\) is 8-dimensional and non-isomorphic to \(M(-1,0)\), with an explicitly described open dense subset. On the contrary to Proposition \ref{prop:7.1}, we obtain two-codimensional subspace \(M_D(0,0)\) of \(M(0,0)\).

Proposition 6.2. \(M_D(0,0)\) contains the total space of \(\mathcal{O}_{D_2}(-2)\) with the zero section contracted to a point, as an open dense subset.

Proof. Take \((\mathcal{E}, \Phi) \in M_D(0,0)\). From \(c_2 = c_2^2\), we get that \(\mathcal{E}\) is not stable and so it fits into the following exact sequence

\[0 \rightarrow \mathcal{O}_{D_2}(t) \rightarrow \mathcal{E} \rightarrow I_Z(-t) \rightarrow 0\]

with \(t \geq 0\) and \(\deg(Z) = t^2\). First assume \(t > 0\). Since every map \(\mathcal{O}_{D_2}(t) \rightarrow I_Z(-t) \otimes \mathcal{O}_{D_2}(-\log D)\) is the zero-map, we get \(\Phi(\mathcal{O}_{D_2}(t)) \subset \mathcal{O}_{D_2}(t) \otimes \mathcal{O}_{D_2}(-\log D)\), contradicting the semistability of \((\mathcal{E}, \Phi)\). Now assume \(t = 0\) and so we get \(\mathcal{E} \cong \mathcal{O}_{D_2}^{\oplus 2}\).

Then we follow the argument in \cite[Theorem 5.3]{22} to get the assertion. \(\square\)

7. Coherent system and Holomorphic triple

If \(\mathcal{F} \subset \mathcal{E}\) is a non-trivial subsheaf, then its saturation \(\mathcal{F}^\rho\) is defined to be the maximal subsheaf of \(\mathcal{E}\) containing \(\mathcal{F}\) with rank \(\mathcal{F} = \text{rank} \mathcal{F}\); \(\mathcal{F}\) is the only subsheaf of \(\mathcal{E}\) containing \(\mathcal{F}\) with \(\mathcal{E}/\mathcal{F}\) torsion-free.

7.1. Coherent system. Inspired by the theory of coherent systems on smooth algebraic curves in \cite{S}, we consider the following definition. Let \(\mathcal{E}\) be a torsion-free sheaf of rank \(r \geq 2\) on \(X\) and \((\mathcal{E}, \Phi)\) be a \(\mathcal{D}\)-logarithmic co-Higgs structure. Then we define a set

\[S = S(\mathcal{E}, \Phi) := \{(\mathcal{F}, \mathcal{G}) \mid 0 \subseteq \mathcal{F} \subseteq \mathcal{G} \subseteq \mathcal{E} \text{ with } \Phi(\mathcal{F}) \subseteq \mathcal{G} \otimes T_X(-\log D)\}.

For a fixed real number \(\alpha \geq 0\) and \((\mathcal{F}, \mathcal{G}) \in S\), set

\[\mu_\alpha(\mathcal{F}, \mathcal{G}) = \mu(\mathcal{F}) + \alpha \left(\frac{\text{rank} \mathcal{F}}{\text{rank} \mathcal{G}}\right),\]

\[\mu'_\alpha(\mathcal{F}, \mathcal{G}) = \mu(\mathcal{F}) + \alpha \left(\frac{\text{rank} \mathcal{F}}{\text{rank} \mathcal{F} + \text{rank} \mathcal{G}}\right)\]

Note that \(\mu_\alpha(\mathcal{E}, \mathcal{E}) = \mu(\mathcal{E}) + \alpha\) and \(\mu'_\alpha(\mathcal{E}, \mathcal{E}) = \mu(\mathcal{E}) + \alpha/2\). From now on we use \(\mu_\alpha\), but \(\mu'_\alpha\) does the same job. In general, we have \(\mu_\alpha(\mathcal{F}, \mathcal{G}) \leq \mu(\mathcal{F}) + \alpha\) for \((\mathcal{F}, \mathcal{G}) \in S\) and equality holds if and only if rank \(\mathcal{F} = \text{rank} \mathcal{G}\), i.e. \(\mathcal{G}\) is contained in the saturation \(\mathcal{F}^\rho\) of \(\mathcal{F}\) in \(\mathcal{E}\).

Definition 7.1. The pair \((\mathcal{E}, \Phi)\) is said to be \(\mu_\alpha\)-stable (resp. \(\mu_\alpha\)-semistable) if \(\mu_\alpha(\mathcal{F}, \mathcal{G}) < \mu_\alpha(\mathcal{E}, \mathcal{E})\) (resp. \(\mu_\alpha(\mathcal{F}, \mathcal{G}) \leq \mu_\alpha(\mathcal{E}, \mathcal{E})\)) for all \((\mathcal{F}, \mathcal{G}) \in S \setminus \{(\mathcal{E}, \mathcal{E})\}\).

A similar definition is given with \(\mu'_\alpha\).

Note that if \(\mathcal{E}\) is semistable (resp. stable), then a pair \((\mathcal{E}, \Phi)\) is \(\mu_\alpha\)-semistable (resp. \(\mu_\alpha\)-stable) for any \(\alpha\) and \(\Phi\). The converse also holds for \(\Phi = 0\).
Remark 7.2. We have $\Phi(\mathcal{F}) \subseteq \tilde{G} \otimes T_X(-\log D)$ for $(\mathcal{F}, \mathcal{G}) \in \mathcal{S}$ and so to test the μ_α-(semi)stability of (\mathcal{E}, Φ), it is sufficient to test the pairs $(\mathcal{F}, \mathcal{G}) \in \mathcal{S} \setminus \{(\mathcal{E}, \mathcal{E})\}$ with \tilde{G} saturated in \mathcal{E}. Moreover, if \mathcal{G} is saturated in \mathcal{E}, then $\mathcal{G} \otimes T_X(-\log D)$ is saturated in $\mathcal{E} \otimes T_X(-\log D)$. Since $\Phi(\mathcal{F})$ is a subsheaf of $\Phi(\mathcal{F})$ with the same rank we have $\Phi(\mathcal{F}) \subseteq \mathcal{G} \otimes T_X(-\log D)$. So to test the μ_α-(semi)stability of (\mathcal{E}, Φ) it is sufficient to test the pairs $(\mathcal{F}, \mathcal{G}) \in \mathcal{S} \setminus \{(\mathcal{E}, \mathcal{E})\}$ with both \mathcal{F} and \mathcal{G} saturated in \mathcal{E}.

Lemma 7.3. If (\mathcal{E}, Φ) is not semistable (resp. stable), then it is not μ_α-semistable (resp. not μ_α-stable) for any α.

Proof. Take $\mathcal{F} \subset \mathcal{E}$ such that $\Phi(\mathcal{F}) \subset \mathcal{F} \otimes T_X(-\log D)$ and $\mu(\mathcal{F}) > \mu(\mathcal{E})$ (resp. $\mu(\mathcal{F}) \geq \mu(\mathcal{E})$). We have $(\mathcal{F}, \mathcal{F}) \in \mathcal{S}$ and so $\mu_\alpha(\mathcal{F}, \mathcal{F}) = \mu(\mathcal{F}) + \alpha > (\text{resp. } \geq) \mu(\mathcal{E}) + \alpha = \mu_\alpha(\mathcal{E}, \mathcal{E})$, proving the assertion. □

Remark 7.4. Lemma 7.3 shows that μ_α-stability is stronger than the stability of the pairs (\mathcal{E}, Φ) in the sense of [20, 21, 22] and so they form a bounded family if we fix the Chern classes of \mathcal{E}. However, if (\mathcal{E}, Φ) is not μ_α-semistable, a pair $(\mathcal{F}, \mathcal{G}) \in \mathcal{S}$ with $\mu_\alpha(\mathcal{F}, \mathcal{G}) > \mu(\mathcal{E}) + \alpha$ and maximal μ_α-slope may have $\text{rank}(\mathcal{G}) > \text{rank}(\mathcal{F})$, i.e. $\Phi(\mathcal{F}) \not\subseteq \mathcal{F} \otimes T_X(-\log D)$ and so we do not define the Harder-Narasimhan filtration of μ_α-unstable pairs (\mathcal{E}, Φ).

Proposition 7.5. Let (\mathcal{E}, Φ) be a \mathcal{D}-logarithmic co-Higgs bundle on X with \mathcal{E} not semistable. Then there exist two positive real numbers β and γ such that

(i) (\mathcal{E}, Φ) is not μ_α-semistable for all $\alpha < \beta$, and

(ii) if (\mathcal{E}, Φ) is semistable in the sense of Definition 2.2, it is μ_α-semistable for all $\alpha > \gamma$.

Proof. Assume that \mathcal{E} is not semistable and take a subsheaf \mathcal{G} with $\mu(\mathcal{G}) > \mu(\mathcal{E})$. Note that $(\mathcal{G}, \mathcal{E}) \in \mathcal{S}$. Then there exists a real number $\beta > 0$ such that $\mu_\alpha(\mathcal{G}, \mathcal{E}) > \mu(\mathcal{E}) + \alpha = \mu_\alpha(\mathcal{E}, \mathcal{E})$ for all α with $0 < \alpha < \beta$. Thus (\mathcal{E}, Φ) is not μ_α-semistable if $\alpha < \beta$.

Now assume that \mathcal{E} is not semistable, but that (\mathcal{E}, Φ) is semistable. Define

$$\Delta = \{\text{the saturated subsheaves } \mathcal{A} \subset \mathcal{E} \mid \mu(\mathcal{A}) > \mu(\mathcal{E})\}.$$

Let $\mu_{\text{max}}(\mathcal{E})$ be the maximum of the slopes of subsheaves of \mathcal{E}, which exists as a finite real number by the existence of the Harder-Narasimhan filtration of \mathcal{E}. Since \mathcal{E} is not semistable, we have $\mu_{\text{max}}(\mathcal{E}) > \mu(\mathcal{E})$ and set $\gamma := r(\mu_{\text{max}}(\mathcal{E}) - \mu(\mathcal{E})) > 0$. Fix any real number $\alpha \geq \gamma$. Now take $\mathcal{A} \in \Delta$ and set $s := \text{rank} \mathcal{A}$. Since (\mathcal{E}, Φ) is semistable, we get $\text{rank} \mathcal{B} > s$. Thus we have

$$\mu_\alpha(\mathcal{A}, \mathcal{B}) \leq \mu(\mathcal{A}) + \alpha s/(s + 1) \leq \mu(\mathcal{A}) + \alpha(r - 1)/r \leq \mu_\alpha(\mathcal{E}, \mathcal{E}),$$

and so (\mathcal{E}, Φ) is μ_α-semistable for all $\alpha \geq \gamma$. □

Remark 7.6. For $s = 1, \ldots, r - 1$, let Δ_s be the set of all $\mathcal{G} \in \Delta$ with rank s. If $\mu(\mathcal{G}) < \mu_{\text{max}}(\mathcal{E})$ for all $\mathcal{G} \in \Delta_{r-1}$, we may use a lower real number instead of γ in the proof of Proposition 7.3.

Example 7.7. Let $X = \mathbb{P}^1$ and take $\mathcal{D} = \{p\}$ with p a point. Then we have $T_{\mathbb{P}^1}(-\log D) \cong T_{\mathbb{P}^1}(-p) \cong \mathcal{O}_p(1)$. Let (\mathcal{E}, Φ) be a semistable \mathcal{D}-logarithmic co-Higgs bundle of rank $r \geq 2$ on \mathbb{P}^1 with $\mathcal{E} \cong \oplus_{i=1}^r \mathcal{O}_p(a_i)$ with $a_1 \geq \cdots \geq a_r$ and $a_i - a_{i+1} \leq 1$ for all $i = 1, \ldots, r + 1$ as in Example 2.4. We assume that \mathcal{E} is
not semistable, i.e. $a_r < a_1$. The value γ in Proposition 7.3 could depend on Φ, although it is the same for all general Φ. Up to a twist we may assume $a_1 = 0$. We have $\mu(\mathcal{E}) = c_1/r$ with $c_1 = a_1 + \cdots + a_r$. For each $s = 1, \ldots, r - 1$, set $b_s = (a_1 + \cdots + a_s)/s$ and define

$$\gamma_0 := \max_{1 \leq s \leq r - 1} (s + 1)(b_s - c_1/r).$$

We have $\mu(\mathcal{F}) \leq b_s$ for all $\mathcal{F} \in \Delta_s$ and so $\mu_\alpha(\mathcal{F}, \mathcal{G}) \leq \mu_\alpha(\mathcal{E}, \mathcal{E})$ for all $(\mathcal{F}, \mathcal{G})$ with rank $\mathcal{F} = s$ and $\Phi(\mathcal{F}) \not\subseteq \mathcal{F} \otimes T_{\mathbb{P}^1}(-\log \mathcal{D})$. Hence (\mathcal{E}, Φ) is μ_α-semistable for all $\alpha \geq \gamma_0$.

Example 7.8. Similarly as in Example 7.7 we take $X = \mathbb{P}^1$ and $\mathcal{D} = \emptyset$. Then we have $T_{\mathbb{P}^1}(-\log \mathcal{D}) \cong T_{\mathbb{P}^1} \cong \mathcal{O}_{\mathbb{P}^1}(2)$. We argue as in Example 7.7, except that now we only require that $a_i - a_{i+1} \leq 2$ for all $i = 1, \ldots, r - 1$.

Example 7.9. Take $X = \mathbb{P}^n$ with $n \geq 2$ and assume that (\mathcal{E}, Φ) is a semistable logarithmic co-Higgs reflexive sheaf of rank two with \mathcal{E} not semistable. Up to a twist we may assume $c_1(\mathcal{E}) \in \{-1, 0\}$. Set $c_1 := c_1(\mathcal{E})$. Since \mathcal{E} is not semistable, we have an exact sequence

$$(6) \quad 0 \to \mathcal{O}_{\mathbb{P}^n}(t) \to \mathcal{E} \to \mathcal{I}_Z(c_1 - t) \to 0$$

with either $Z = \emptyset$ or $\dim(Z) = n - 2$, and $t \geq 0$ and $t > 0$ if $c_1(\mathcal{E}) = 0$. Since (\mathcal{E}, Φ) is semistable, there is no saturated subsheaf $A \subset \mathcal{E}$ of rank one with $(A, A) \in \mathcal{S}$ and $\mu(A) > -1$. Note that $\mu_\alpha(\mathcal{O}_{\mathbb{P}^n}(t), \mathcal{E}) = t + \alpha/2$ and so (\mathcal{E}, Φ) is μ_α-stable (resp. μ_α-semistable) if and only if $\alpha > 2t - c_1$ (resp. $\alpha \geq 2t - c_1$).

Now we discuss the existence of such a pair (\mathcal{E}, Φ). Since (\mathcal{E}, Φ) is semistable, we should have $\Phi(\mathcal{O}_{\mathbb{P}^n}(t)) \not\subseteq \mathcal{O}_{\mathbb{P}^n}(t) \otimes T_{\mathbb{P}^n}(-\log \mathcal{D})$ and so there is a non-zero map $\mathcal{O}_{\mathbb{P}^n}(t) \to \mathcal{I}_Z(c_1 - t) \otimes T_{\mathbb{P}^n}(-\log \mathcal{D})$. Since $t > c_1 - t$ and $h^0(T_{\mathbb{P}^n}(-2)) = 0$, we get $t = 0$ and $c_1 = -1$. Then we also get $H^0(\mathcal{I}_Z(-1) \otimes T_{\mathbb{P}^n}(-\log \mathcal{D})) \neq 0$, which gives restrictions on the choice of \mathcal{D} and Z. Assume that $\mathcal{D} = \{D\}$ with $D \in |\mathcal{O}_{\mathbb{P}^n}(1)|$ a hyperplane, so that $T_{\mathbb{P}^n}(-\log \mathcal{D}) \cong \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus n}$. In this case we get $Z = \emptyset$ and so $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^n} \oplus \mathcal{O}_{\mathbb{P}^n}(-1)$. See Proposition 6.1 for the associated moduli space in case $n = 2$.

7.2. Holomorphic triple

We may also consider a holomorphic triple of logarithmic co-Higgs bundles and define its semistability as in [7].

Definition 7.10. A holomorphic triple of \mathcal{D}-logarithmic co-Higgs bundles is a triple $((\mathcal{E}_1, \Phi_1), (\mathcal{E}_2, \Phi_2), f)$, where each (\mathcal{E}_i, Φ_i) is a \mathcal{D}-logarithmic co-Higgs sheaf with each \mathcal{E}_i torsion-free on X and $f : \mathcal{E}_1 \to \mathcal{E}_2$ is a map of sheaves such that $\Phi_2 \circ f = f \circ \Phi_1$, where $f : \mathcal{E}_1 \otimes T_X(-\log \mathcal{D}) \to \mathcal{E}_2 \otimes T_X(-\log \mathcal{D})$ is the map induced by f.

For any real number $\alpha \geq 0$, define the ν_α-slope of a triple $\mathcal{A} = ((\mathcal{E}_1, \Phi_1), (\mathcal{E}_2, \Phi_2), f)$ to be the ν_α-slope of the triple $((\mathcal{E}_1, \Phi_1), (\mathcal{E}_2, \Phi_2), f)$ in the sense of [7], i.e.

$$\nu_\alpha((\mathcal{E}_1, \Phi_1), (\mathcal{E}_2, \Phi_2), f) = \deg_\alpha(A) \frac{\deg_{\alpha}(\mathcal{A})}{\deg_{\alpha}(\mathcal{A})}$$

where $\deg_{\alpha}(\mathcal{A}) = \deg(\mathcal{E}_1) + \deg(\mathcal{E}_2) + \alpha \deg \mathcal{E}_1$. A holomorphic subtriple $\mathcal{B} = ((\mathcal{F}_1, \Psi_1), (\mathcal{F}_2, \Psi_2), g)$ of $\mathcal{A} = ((\mathcal{E}_1, \Phi_1), (\mathcal{E}_2, \Phi_2), f)$ is a holomorphic triple with $\mathcal{F}_i \in \mathcal{E}_i, \Psi_i = \Phi_i|\mathcal{F}_i$ and $g = f|\mathcal{F}_1$. Since Φ_i is integrable, so is Ψ_i.

Remark 7.11. As before, we may use the slope ν_α to define the ν_α-(semi)stability for D-logarithmic co-Higgs triples. If $h : A \to B$ is a non-zero map of ν_α-semistable holomorphic triples, then we have $\nu_\alpha(B) \geq \mu_\alpha(A)$. Moreover, if A is ν_α-stable, then either $\nu_\alpha(B) > \nu_\alpha(A)$ or h is injective; in addition, if B is also ν_α-stable, then h is an automorphism.

Remark 7.12. The degenerate holomorphic triple $((E_1, \Phi_1), (E_2, \Phi_2), 0)$ with $f = 0$ is ν_α-semistable if and only if $\alpha = \mu(E_2) - \mu(E_1)$ and both (E_i, Φ_i)’s are semistable as in [6] Lemma 3.5. Moreover such triples are not ν_α-stable (see [6] Corollary 3.6). Note that if $\Phi_1 = \Phi_2 = 0$, then we fall into the usual holomorphic triples. We also have an analogous statement for the case $r_2 = \text{rank} E_2 = 1$ as in [6] Lemma 3.7.

Remark 7.13. For subtriples B and B' of A, we may define their sum and intersection $B + B'$ and $B \cap B'$; let $B = ((F_1, \Psi_1), (F_2, \Psi_2), g)$ and $B' = ((F'_1, \Psi'_1), (F'_2, \Psi'_2), g)$. Then we may use $F_1 + F'_1$ and $F_1 \cap F'_1$ with the restrictions of Φ_i and f to them. Now call \bar{F}_i the saturation of F_i in E_i. Since $\bar{F}_1 \cap T_X(-\log D)$ is saturated in $E_i \cap T_X(-\log D)$, we have $\Phi_i(\bar{F}_i) \subseteq \bar{F}_i \cap T_X(-\log D)$. Since $f(\bar{F}_1) \subseteq \bar{F}_2$, we have $f(\bar{F}_1) \subseteq \bar{F}_2$ and so we may also define the saturation \bar{B} of B with $\nu_\alpha(\bar{B}) = \nu_\alpha(B)$.

Fix $\alpha \in \mathbb{R}_{>0}$ and let $A = ((E_1, \Phi_1), (E_2, \Phi_2), f)$ be a holomorphic triple. We define $\beta(A)$ to be the maximum of the set of the ν_α-slopes of all subtriples of A and let

$$B := \{ B \subseteq A \mid \nu_\alpha(B) = \beta(A) \}.$$

Lemma 7.14. The set of the ν_α-slopes of all subtriples of A is upper bounded and so $\beta(A)$ exists. Moreover, the set B has a unique maximal element.

Proof. The ranks of any non-zero subsheaf of E_i is upper bounded by $r_i := \text{rank} E_i$ and lower bounded by 1. The existence of the Harder-Narasimhan filtration of E_i gives the existence of positive rational numbers γ_i with denominators between 1 and r_i such that $\mu(F_1) \leq \gamma_i$ for all non-zero subsheaves F_1 of E_i. We may use the definition of ν_α-slope to get an upper-bound for the ν_α-slopes of the subtriples of A. There are only finitely many possible ν_α-slopes greater than $\nu_\alpha(A)$, because the ranks are upper and lower bounded and each $\deg(G)$ for a subsheaf G of E_i is an integer, upper bounded by $\text{max}(r_1\mu(E_1), r_2\mu(E_2))$. Thus the set of the ν_α-slopes of all subtriples of A has a maximum $\beta(A)$.

If $\nu_\alpha(A) = \beta(A)$, then A itself is the maximum element of B. Now assume $\nu_\alpha(A) > \beta$ and that there are $B_1, B_2 \in B$ with each B_i maximal and $B_1 \neq B_2$. Since B_i is maximal, it is saturated and so $A_i := A/B_i$ is a holomorphic triple for each i. Since $B_2 \neq B_1$, the inclusion $B_2 \subset A$ induces a non-zero map $u : B_2 \to A/B_1$. Since $\nu_\alpha(\ker(u)) \leq \beta(A)$ if u is not injective, we have $\nu_\alpha(u(A/B_1)) \geq \beta(A)$. Thus we get $\nu_\alpha(B_1 + B_2) \geq \beta(A)$, contradicting the maximality of B_1 and the assumption $B_2 \neq B_1$.

Assume that A is not ν_α-semistable. By Lemma 7.14 there is a subtriple $D(A) = ((F_1, \Psi_1), (F_2, \Psi_2), g) \in B$ such that every $G \in B$ is a subtriple of $D(A)$ and each F_i is saturated in E_i. Note that $D(A)$ is ν_α-semistable. Since F_i is saturated in E_i and $\Psi_i = \Phi_i|_{F_i}$, for each i, Φ_i induces a co-Higgs field $\tau_i : E_i/F_i \to (E_i/F_i) \otimes T_X(-\log D)$. Since Φ_i is integrable, so is τ_i. Since $g = f|_{F_1}$, f induces a map $f' : E_1/F_1 \to E_2/F_2$ such that $A/D(A) := ((E_1/F_1, \tau_1), (E_2/F_2, \tau_2), f')$ is a holomorphic triple. Now we
may check that each subtriple of $\mathcal{A}/D(\mathcal{A})$ has ν_α-slope less than $\beta(\mathcal{A})$ and so $D(\mathcal{A})$ defines the first step of the Harder-Narasimhan filtration of \mathcal{A}. The iteration of this process allows us to have the Harder-Narasimhan filtration of \mathcal{A} with respect to ν_α.

Corollary 7.15. Any holomorphic triple admits the Harder-Narasimhan filtration with respect to ν_α-slope.

Remark 7.16. Let Z denote a projective completion of $T_X(-\log D)$, e.g. $Z = \mathbb{P}(\mathcal{O}_X \oplus T_X(-\log D))$, and call $D_\infty := Z \setminus T_X(-\log D)$ the divisor at infinity. By [24] Lemma 6.8 a co-Higgs sheaf (\mathcal{E}, Φ) on X is the same thing as a coherent sheaf \mathcal{E}_Z with $\text{Supp}(\mathcal{E}_Z) \cap D_\infty = \emptyset$. Due to [24] Corollary 6.9 we may interpret a ν_α-semistable holomorphic triple of logarithmic co-Higgs bundles on X as a ν_α-semistable holomorphic triple of vector bundles on Z with support not intersecting D_∞ as in [7].

Based on Remark 7.16 we may consider a ν_α-semistable triple of D-logarithmic co-Higgs sheaves as a ν_α-semistable quiver sheaf for the quiver $\overset{1}{\Phi} \overset{2}{\delta}$ on Z with empty intersection with D_∞. This interpretation ensures the existence of moduli space of ν_α-stable triples of D-logarithmic co-Higgs sheaves on X, say $\mathcal{M}_{D, \alpha}(r_1, r_2, d_1, d_2)$ with (r_1, d_1) a pair of rank and degree of the ith-factor of the triples; indeed we may consider Gieseker-type semistability of quiver sheaves to ν-semistable holomorphic triple of vector bundles on Z with support not intersecting D_∞ as in [23]. As noticed in [23] Remark in page 17, the ν_α-stability implies the Gieseker-type stability and so $\mathcal{M}_{D, \alpha}(r_1, r_2, d_1, d_2)$ can be considered as a quasi-projective subvariety of the one in [23]. Now let us define

$$\alpha_m := \mu(\mathcal{E}_2) - \mu(\mathcal{E}_1), \quad \alpha_M := \left(1 + \frac{r_1 + r_2}{r_1 - r_2}\right) \left(\mu(\mathcal{E}_2) - \mu(\mathcal{E}_1)\right)$$

for $\mathcal{A} = ((\mathcal{E}_1, \Phi_1), (\mathcal{E}_2, \Phi_2), f)$ as in [19]. Then we have

Proposition 7.17. [7] Proposition 2.2] If $\alpha > \alpha_M$ with rank $\mathcal{E}_1 \neq \text{rank} \mathcal{E}_2$ or $\alpha < \alpha_m$, then there exists no ν_α-semistable triple of D-logarithmic co-Higgs sheaves.

Proof. Due to [24] Corollary 6.9, it is sufficient to check the assertion for ν_α-semistability for a triple of coherent sheaves on Z. While the proof of [7] Proposition 2.2 is for curves, the proof is numerical involving rank and degree with respect to a fixed ample line bundle so that it works also for Z. \hfill \Box

From now on we assume that X is a smooth projective curve of genus g and let $D = \{p_1, \ldots, p_m\}$ be a set of m distinct points on X. Take $g \in \{0, 1\}$ and assume that $T_X(-\log D) \cong \mathcal{O}_X$, i.e. $(g, m) \in \{(0, 2), (1, 0)\}$. For any triple $\mathcal{A} = ((\mathcal{E}_1, \Phi_1), (\mathcal{E}_2, \Phi_2), f)$ and $c \in \mathbb{C}$, set

$$\mathcal{A}_c := ((\mathcal{E}_1, \Phi_1 - c \text{Id}_{\mathcal{E}_1}), (\mathcal{E}_2, \Phi_2 - c \text{Id}_{\mathcal{E}_2}), f)$$

and then \mathcal{A}_c is also a triple. In particular, if $\mathcal{E}_1 \cong \mathcal{E}_2$ and $f \cong c \text{Id}_{\mathcal{E}_1}$, then the study of the ν_α-(semi)stability of \mathcal{A} is reduced to the known case $f = 0$.

Remark 7.18. Assume that f is not injective. Since $\hat{f} \circ \Phi_1 = \Phi_2 \circ f$, we have $\Phi_1(\text{ker}(f)) \subseteq \text{ker}(\hat{f})$ and $\mathcal{B} := ((\text{ker}(f), \Phi_1|_{\text{ker}(f)}), (0, 0), 0)$ is a subtriple of \mathcal{A}. Set $\rho := \text{rank}(\text{ker}(f))$ and $\delta := \text{deg}(\text{ker}(f))$. If we have

$$\nu_\alpha(\mathcal{B}) = \delta/\rho + \alpha > \frac{r_1\alpha + d_1 + d_2}{r_1 + r_2},$$

then \mathcal{A} would not be ν_α-semistable.
Remark 7.19. For any triple $\mathcal{A} = ((\mathcal{E}_1, \Phi_1), (\mathcal{E}_2, \Phi_2), f)$, we get a dual triple $\mathcal{A}^\vee = ((\mathcal{E}_1^\vee, \Phi_1^\vee), (\mathcal{E}_2^\vee, \Phi_2^\vee, f^\vee))$, where Φ_i^\vee and f^\vee are the transpose of Φ_i and f, respectively. Then \mathcal{A} is ν_α-(semi)stable if and only if \mathcal{A}^\vee is ν_α-(semi)stable (see [6 Proposition 3.16]).

Remark 7.20. Assume $(g, m) = (1, 0)$ and take a triple $\mathcal{A} = ((\mathcal{E}_1, \Phi_1), (\mathcal{E}_2, \Phi_2), f)$ with each \mathcal{E}_i simple. By Atiyah’s classification of vector bundles on elliptic curves, the semistability of \mathcal{E}_i is equivalent to its stability and also equivalent to its indecomposability and with degree and rank coprime. Then each Φ_i is the multiplication by a constant, say c_i. We get that the two triples \mathcal{A} and $((\mathcal{E}_1, 0), (\mathcal{E}_2, 0), f)$ share the same subtriples and so these two triples are ν_α-(semi)stable for the same α simultaneously. There is a good description of this case in [18 Section 7].

Now we suggest some general description on ν_α-(semi)stable triples on X in case of $r_1 = r_2 = 2$ from $(a) \sim (c)$ below; we exclude the case described in Remark [9.20] and silently use Remark [7.19] to get a shorter list. In some case we stop after reducing to a case with f not injective, i.e. to a case in which \mathcal{A} is not ν_α-semistable for $\alpha \gg 0$ (see Remark [7.18]).

(a) Assume $r_1 = r_2 = 2$ and that at least one of \mathcal{E}_i is not semistable, say \mathcal{E}_1. Then, due to Segre-Grothendieck theorem and Atiyah’s classification of vector bundles on elliptic curves, we have $\mathcal{E}_1 \cong L_1 \oplus R_1$ with $\deg(L_1) > \deg(R_1)$ and $E_2 \cong L_2 \oplus R_2$ with $\deg(L_2) \geq \deg(R_2)$, or $g = 1$ and \mathcal{E}_2 is a non-zero extension of the line bundle L_2 by itself; in the latter case we put $R_2 := L_2$. If \mathcal{E}_2 is indecomposable, then it has a unique line bundle isomorphic to L_2 and so $F_2(L_2) \subseteq L_2$. We have

$$\nu_\alpha(A) = \alpha/2 + (\deg(L_1) + \deg(L_2) + \deg(R_1) + \deg(R_2))/4.$$

The map $\Phi_i : \mathcal{E}_i \to \mathcal{E}_i$ induces a map $\Phi_i|_{L_i} : L_i \to L_i$, which is induced by the multiplication by a constant, say c_i. Then we get two triples A_i, for $i = 1, 2$. Since $A = (A_1, A_2)$ is a triple, we get $f(L_1) \subseteq L_2$ and so we may define a subtriple $A_1 := ((L_1, \Phi_1|_{L_1}), (L_2, \Phi_2|_{L_2}, f|_{L_1})$ with

$$\nu_\alpha(A_1) = \alpha + (\deg(L_1) + \deg(L_2))/2$$
$$> \alpha/2 + (\deg(L_1) + \deg(L_2) + \deg(R_1) + \deg(R_2))/4 = \nu_\alpha(A),$$

which implies that A is not ν_α-semistable.

(b) Form now we assume that \mathcal{E}_1 and \mathcal{E}_2 are semistable. We also assume that f is non-zero so that $\mu(\mathcal{E}_1) \leq \mu(\mathcal{E}_2)$. We are in a case with $r_1 = r_2 = 2$ and we look at a proper subtriple $B = ((F_1, \Phi_1|_{F_1}), (F_2, \Phi_2|_{F_2}, f|_{F_1})$ with maximal $\nu_\alpha(B)$. In particular, each F_i is saturated in \mathcal{E}_i, i.e. either $F_i = \mathcal{E}_i$ or $F_i = 0$ or \mathcal{E}_i/F_i is a line bundle. Set $s_i := \text{rank}(F_i)$ and then we have $1 \leq s_1 + s_2 \leq 3$. If $s_2 = 2$, i.e. $F_2 = \mathcal{E}_2$, then we have $\nu_\alpha(B) < \nu_\alpha(A)$ for all $\alpha > 0$, because \mathcal{E}_1 is semistable and $\mu(\mathcal{E}_1) \leq \mu(\mathcal{E}_2)$. If $s_2 = 0$, then f is not injective. If $s_1 = 0$ we just exclude the case $\alpha \leq \alpha_m$ with subtriple $((0, 0), (\mathcal{E}_2, \Phi_2), 0)$. In the case $s_1 = s_2 = 1$ we know that $\nu_\alpha(B) \leq \nu_\alpha(A)$ and that equality holds if and only if both \mathcal{E}_1 and \mathcal{E}_2 are strictly semistable and each F_i is a line subbundle of \mathcal{E}_i with maximal degree. Note that the injectivity of f implies $s_1 \leq s_2$. Thus when f is injective, it is sufficient to test the case $s_1 = s_2 = 1$. Then we have the following, when f is injective.

- If $\alpha > \alpha_m$ and at least one of \mathcal{E}_i’s is stable, then A is ν_α-stable.
- If $\alpha \geq \alpha_m$ and \mathcal{E}_1 and \mathcal{E}_2 are semistable, then A is ν_α-semistable.
Lemma 7.21. For a general map \(f : \mathcal{E}_1 \to \mathcal{E}_2 \) with \(\mathcal{E}_i := \mathcal{O}_{\mathbb{P}^1}(a_i)^{\otimes 2} \) and \(a_2 \geq a_1 + 2 \), there exists no subsheaf \(\mathcal{O}_{\mathbb{P}^1}(a_1) \subset \mathcal{E}_1 \) such that the saturation of its image in \(\mathcal{E}_2 \) is a line bundle isomorphic to \(\mathcal{O}_{\mathbb{P}^1}(a_2) \).

Proof. Up to a twist we may assume that \(a_1 = 0 \). If we fix homogeneous coordinates \(x_0, x_1 \) on \(\mathbb{P}^1 \), then the map \(f \) is induced by two forms \(u(x_0, x_1) \) and \(v(x_0, x_1) \) of degree \(a_2 \). Then it is sufficient to prove that there is no point \((a, b) \in \mathbb{C}^2 \setminus \{(0, 0)\} \) with which \(au(x_0, x_1) + bv(x_0, x_1) \) is either identically zero or with a zero of multiplicity \(a_2 \). This is true for general \(u(x_0, x_1) \) and \(v(x_0, x_1) \), e.g. we may take \(u(x_0, x_1) = x_0^{a_2} + x_0x_1^{a_2-1} \) and \(v(x_0, x_1) = x_0x_1^{a_2-1} + x_1^{a_2} \).

The next is an analogue of Lemma 7.21 for elliptic curves.

Lemma 7.22. Let \(X \) be an elliptic curve with two line bundles \(L_i \) for \(i = 1, 2 \) such that \(\deg(L_2) \geq \deg(L_1) + 4 \). For a general map \(f : L_1^{\otimes 2} \to L_2^{\otimes 2} \), there is no subsheaf \(L_1 \subset L_1^{\otimes 2} \) such that the saturation of its image in \(L_2^{\otimes 2} \) is isomorphic to \(L_2 \).

Proof. It is sufficient to find an injective map \(h : L_1^{\otimes 2} \to L_2^{\otimes 2} \) for which no subsheaf \(L_1 \subset L_1^{\otimes 2} \) has its image under \(h \) whose saturation in \(L_2^{\otimes 2} \) is isomorphic to \(L_2 \). Up to a twist we may assume \(L_1 \cong \mathcal{O}_X \) and so \(l := \deg(L_2) \geq 4 \). First assume \(l = 4 \) and write \(L_2 \cong M^{\otimes 2} \) with \(\deg(M) = 2 \). If \(\varphi : X \to \mathbb{P}^1 \) be a morphism of degree two, induced by \(|M| \), then we may set \(h := \varphi^*(h_1) \) for a general \(h_1 : \mathcal{O}_{\mathbb{P}^1}^{\otimes 2} \to \mathcal{O}_{\mathbb{P}^1}(2)^{\otimes 2} \) with Lemma 7.21 applied to \(h_1 \).

Now assume \(l \geq 5 \) and fix an effective divisor \(D \subset X \) of degree \(l - 4 \). Then we may take as \(h \) the composition of a general map \(\mathcal{O}_X^{\otimes 2} \to L_2(-D)^{\otimes 2} \) with the map \(L_2(-D)^{\otimes 2} \to L_2^{\otimes 2} \) obtained by twisting with \(\mathcal{O}_X(D) \).

Remark 7.23. Let \(D \) be an arrangement with \(T_X(-\log D) \cong \mathcal{O}_X \) on \(X \) with arbitrary dimension. For two line bundles \(L_1 \) and \(L_2 \) with \(L_2 \otimes L_1^* \) globally generated, set a triple \(\mathcal{B} = ((\mathcal{E}_1, 0), (\mathcal{E}_2, 0), f) \) with \(\mathcal{E}_i \cong L_i^{\otimes r} \) and \(f \) injective. As in \(\mathcal{B} \) we may generate other triples \(\mathcal{B}_c \) for each \(c \in \mathbb{C} \), but often there are no other \(D \)-logarithmic co-Higgs triples with \(\mathcal{B} \) as the associated triple of vector bundles. For example, assume \(X \) is a smooth projective curve of genus \(g \in \{0, 1\} \). For a fixed co-Higgs field \(\Phi_1 : \mathcal{E}_1 \to \mathcal{E}_1 \) with the associated \((r \times r)\)-matrix \(A_1 \) of constants, we are looking for \(f \) and \(\Phi_2 : \mathcal{E}_2 \to \mathcal{E}_2 \) with the associated matrix \(A_2 \) such that \(A = ((\mathcal{E}_1, \Phi_1), (\mathcal{E}_2, \Phi_2), f) \) is a \(D \)-logarithmic co-Higgs triple. Let \(M \) be the \((r \times r)\)-matrix with coefficient in \(H^0(L_2 \otimes L_1^*) \) associated to \(f \). Then we need \(A_2 \) and \(M \) such that \(A_2 M = M A_1 \). Assume that \(A_1 \) has a unique Jordan block. If \(L_1 \cong L_2 \) and \(M \) is general, then we get a \(D \)-logarithmic co-Higgs triple if and only if \(A_2 \) is a polynomial in \(A_1 \). If \(L_1 \not\cong L_2 \) and \(f \) is general, then there is no such \(A_2 \). We check this for the case \(r = 2 \) and the general case can be shown similarly. With no loss of generality we may assume that the unique eigenvalue of \(A_1 \) is zero. Assume the existence of \(f \) and \(\Phi_2 \) with associated \(M \) and \(A_2 \). We have \(\ker(\Phi_1) \cong L_1 \) and \(f(\ker(\Phi_1)) \subseteq \ker(\Phi_2) \). Thus we get that \(f(L_1) \) has ker(\(\Phi_2 \)) \cong L_2 \) as its saturation, contradicting Lemmas 7.21 and 7.22 for a general \(f \).

Remark 7.24. In the same way as in \(\mathcal{B} \) one can define \(D \)-logarithmic co-Higgs holomorphic chains with parameters, but if the maps are general, then very few logarithmic co-Higgs fields \(\Phi_1 \) are allowed.
References

[1] L. Álvarez-Cónsul, O. García-Prada and A. Schmitt, On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces, Int. Math. Res. Papers, 2006 (2006), Article ID 73597, 82 pages.

[2] E. Arrondo, A home-made Hartshorne-Serre correspondence, Rev. Mat. Complut. 20 (2007), no. 2, 423–443.

[3] E. Ballico, S. Huh and F. Malaspina, A Torelli-type problem for logarithmic bundles over projective varieties, Quart. J. Math. 66 (2015), no. 2, 417–436.

[4] E. Ballico and S. Huh, A note on co-Higgs bundles, preprint, arXiv:1606.01843 [math.AG].

[5] E. Ballico and S. Huh, 2-nilpotent co-Higgs structures, preprint, arXiv:1606.02584 [math.AG].

[6] S. B. Bradlow and O. García-Prada, Stable triples, equivariant bundles and dimensional reduction, Math. Ann. 304 (1996), 225–252.

[7] S. B. Bradlow, O. García-Prada and P. Gothen, Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann. 328 (2004), 299–351.

[8] S. B. Bradlow, O. García-Prada, V. Mercat and V. Munoz, On the geometry of moduli spaces of coherent systems on algebraic curves, Int. J. Math. 18 (2007), no. 4, 411–413.

[9] A. V. Colmenares, Moduli spaces of semistable rank-2 co-Higgs bundles over $\mathbb{P}^1 \times \mathbb{P}^1$, preprint, arXiv:1604.01372 [math.AG].

[10] M. Corrêa, Rank two nilpotent co-Higgs sheaves on complex surface, to appear in Geom. Dedicata, DOI 10.1007/s10711-016-0141-9.

[11] I. Dolgachev, Logarithmic sheaves attached to arrangements of hyperplanes, J. Math. Kyoto Univ. 47 (2007), no. 1, 35–64.

[12] I. Dolgachev and M. Kapranov, Arrangements of hyperplanes and vector bundles on \mathbb{P}^n, Duke Math. J. 71 (1993), no. 3, 633–664.

[13] M. Gualtieri, Generalized complex geometry, Ann. Math. 174 (2011), no. 1, 75–123.

[14] R. Hartshorne, Stable vector bundles of rank 2 on \mathbb{P}^2, Math. Ann. 238 (1978), 229–280.

[15] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176.

[16] N. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281–308.

[17] N. Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), no. 2, 275–300.

[18] S. Pasotti and F. Prantil, Holomorphic triples on elliptic curves, Result. Math. 50 (2007), 227–239.

[19] S. Pasotti and F. Prantil, Holomorphic triples of genus 0, Cent. Eur. J. Math. 6 (2008), no. 4, 120–142.

[20] S. Rayan, Geometry of co-Higgs bundles, Ph. D. thesis, 2011.

[21] S. Rayan, Co-Higgs bundles on \mathbb{P}^1, New York J. Math. 19 (2013), 925–945.

[22] S. Rayan, Constructing co-Higgs bundles on \mathbb{CP}^2, Q. J. Math. 65 (2014), no. 4, 1437–1460.

[23] A. Schmitt, Moduli for decorated tuples of sheaves and representation spaces for quivers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no. 1, 15–49.

[24] C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety, II. Inst. Hautes tudes Sci. Publ. Math. No. 80 (1994), 5–79.

Università di Trento, 38123 Povo (TN), Italy
E-mail address: edoardo.ballico@unitn.it

Sungkyunkwan University, 300 Cheoncheon-dong, Suwon 440-746, Korea
E-mail address: sukmoo@skku.edu