Mast Cells, Neuroinflammation and Pain in Fibromyalgia Syndrome

Theoharis C. Theoharides1,2,3,4,*, Irene Tsilioni1 and Mona Bawazeer1,2,5

1 Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States, 2 Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States, 3 Department of Internal Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States, 4 Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States, 5 Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

Fibromyalgia Syndrome (FMS) is a disorder of chronic, generalized muscular pain, accompanied by sleep disturbances, fatigue and cognitive dysfunction. There is no definitive pathogenesis except for altered central pain pathways. We previously reported increased serum levels of the neuropeptides substance P (SP) and its structural analogue hemokinin-1 (HK-1) together with the pro-inflammatory cytokines IL-6 and TNF in FMS patients as compared to sedentary controls. We hypothesize that thalamic mast cells contribute to inflammation and pain, by releasing neuro-sensitizing molecules that include histamine, IL-1β, IL-6 and TNF, as well as calcitonin-gene related peptide (CGRP), HK-1 and SP. These molecules could either stimulate thalamic nociceptive neurons directly, or via stimulation of microglia in the diencephalon. As a result, inhibiting mast cell stimulation could be used as a novel approach for reducing pain and the symptoms of FMS.

Keywords: mast cells, pain, neuroinflammation, fibromyalgia syndrome, proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6)

INTRODUCTION

Fibromyalgia Syndrome is a disorder of chronic generalized muscular pain, stiffness, generalized fatigue, sleep abnormalities, (Clauw et al., 2011; Schmidt-Wilcke and Clauw, 2011; Clauw, 2014) and cognitive problems (Theoharides et al., 2015b; Hauser et al., 2019) assessed by the FSQ (Ferrari and Russell, 2013), which has about 93% sensitivity and 92% specificity (Clauw, 2014). FMS affects about 5% of adults, primarily women 20–60 years of age (Branco et al., 2010) and belongs to a family of overlapping painful conditions (Table 1) known as CSS (Yunus, 2007; Theoharides, 2013). Central sensitization is recognized as the main mechanism involved (Woodman, 2013) and is characterized by allodynia, pain from an otherwise non-painful stimulus, (Russell and Larson, 2009) and hyperalgesia (Staud et al., 2001) due to an exaggerated response to a painful stimulus.

Abbreviations: ACR, American College of Rheumatology; ASD, autism spectrum disorder; CGRP, calcitonin-gene related peptide; CIRS, chronic inflammatory response syndrome; CRH, corticotropin-releasing hormone; CSF, cerebrospinal fluid; CSS, central sensitivity syndromes; CXCL8, IL-8; FcεRI, high affinity surface receptors; FMS, fibromyalgia syndrome; FSQ, fibromyalgia survey questionnaire; IBS, irritable bowel syndrome; IC/BPS, interstitial cystitis/bladder pain syndrome; IgE, immunoglobulin E; MCP-1/CCL2, monocyte chemoattractant protein-1; ME/CFS, myalgic encephalomyelitis/chronic fatigue syndrome; MRGPRX2, mas-related G-protein coupled receptor member X2; (mt)DNA, mitochondrial; NGF, nerve growth factor; PAF, platelet activating factor; PTSD, post-traumatic stress disorder; SCF, stem cell factor; SP, substance P; TLRs, toll-like receptors; TMD, myogenic temporomandibular disorder.
The pathogenesis of FMS remains unknown and with no objective diagnostic criteria (McBeth and Mulvey, 2012; Wolfe and Walitt, 2013). FMS patients have reduced tolerance to pain, especially extremes of heat and cold (Desmeules et al., 2003). There is considerable evidence of altered circuity of pain networks and (Jensen et al., 2012; Flodin et al., 2014) abnormal pain processing in FMS (Staud, 2011).

The PubMed database was searched between 1960 and 2018 using the terms fatigue, fibromyalgia, hypothalamus, inflammation, mast cells, pain and stress. Only articles in English were included.

Here we discuss how brain mast cell release of neurosensitizing mediators in the thalamus leads to focal inflammation and contribute to the pathogenesis of FMS.

Neurohormonal Triggers of Mast Cells Contribute to Focal Inflammation in the Diencephalon

It was recently proposed that FMS may involve localized inflammation in the hypothalamus (Theoharides et al., 2015c). Elevations in pro-inflammatory chemokines/cytokines could negatively impact symptoms (Bazzichi et al., 2007; Carvalho et al., 2008; Nugraha et al., 2013) leading to sensitization of peripheral and central nociceptors (Uceyler et al., 2011; Behm et al., 2012; Hornig et al., 2015). Increased levels of the pro-inflammatory chemokine IL-8 (CXCL8) have been reported in the serum and CSF in patients with FMS (Ross et al., 2010; Kadetoff et al., 2012; Rodriguez-Pinto et al., 2014). Chemokines facilitate noiception by directly acting on chemokine receptors present along the pain pathway (Abbadi, 2005; Charo and Ransohoff, 2006).

The cytokines TNF and IL-17 greatly contribute to the inflammatory response (Romero-Sanchez et al., 2011; Griffin et al., 2012). Plasma levels of IL-17 were increased and correlated with levels of TNF in patients with FMS (Pernambuco et al., 2013). CSF and serum IL-17 also positively correlated with pain (Meng et al., 2013) and anxiety (Liu et al., 2012). Mast cells, themselves, can secrete IL-17; moreover, IL-6 and TGFβ from mast cells contribute to the development of Th-17 cells (Kenna and Brown, 2013).

TABLE 1 | Pain Syndromes Comorbid with FMS.

- Chronic inflammatory response syndrome (CIRS)
- Functional dyspepsia
- Gulf War Illness (GWI)
- Interstitial cystitis/bladder pain syndrome (IC/BPS)
- Irritable bowel syndrome (IBS)
- Mast cell mediator disorder (MCMD)
- Migraines
- Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
- Myogenic temporomandibular disorder (TMD)
- Myofacial pain syndrome
- Post-traumatic stress disorder (PTSD)
- Restless leg syndrome
- Temporomandibular pain syndrome (TMS)
- Tension headache

Fibromyalgia syndrome worsen by stress, (Geenen et al., 2002) which augments pain responses (Bote et al., 2012, 2013). Plasma concentrations of cortisol are increased in the evening, suggesting disruption of the circadian rhythm (Crofford et al., 2004). Serum levels of CRH, which is secreted under stress, were increased in patients with FMS (Tsilioni et al., 2016). CRH was also increased in the CSF of such patients and correlated with severity of pain (McLean et al., 2006). Physiological stress was reported to be the most common trigger in patients with systemic mastocytosis (SM) (Jennings et al., 2014) who also commonly experience FMS (Theoharides et al., 2015d, 2019). We reported increased levels of CRH in the serum of one patient with indolent systemic mastocytosis (Theoharides et al., 2014). CRH can trigger human mast cells to release VEGF without histamine or tryptase (Cao et al., 2005). CRH also has synergistic action with NT stimulating VEGF release. As a result, there is increased vascular permeability in the skin and the blood-brain barrier (BBB) (Esposito et al., 2002; Donelan et al., 2006; Theoharides and Konstantinidou, 2007). Stress also disrupts the gut-blood barrier (Theoharides et al., 1999; Wallon et al., 2008) allowing for gut microbiome-associated molecules, such as propionate (Minerbi et al., 2019) to enter the brain and contribute to focal inflammation. These results have led to the conclusion that mast cells may serve as “immune gate to the brain” (Theoharides, 1990; Ribatti, 2015).

Levels of the neuropeptide SP (Russell, 1998) and NGF (Giovengo et al., 1999) are elevated in the CSF of FMS patients. NGF has been reported to increase nociception and hyperalgesia (Maren, 2017). The SP receptor NK-1 has been involved in the pathophysiology of pain (Greenwood-Van et al., 2014). We reported increased serum levels of SP, its structural analogue Hemokinin-1 (HK-1) and TNF in patients with FMS (Tsilioni et al., 2016). SP (Theoharides et al., 2010a,b) and NGF (Levi-Montalcini, 1987) can stimulate mast cells. Moreover, SP induced mast cell expression of CRHR-1 (Scholzen et al., 2001). Cerebrovascular mast cells were stimulated by CGRP (Reynier-Rebuffel et al., 1994; Otosson and Edvinsson, 1997) which is now well established to participate in the pathophysiology of headaches (Edvinsson, 2018). In addition to neuropeptides, sex hormones can also affect mast cell reactivity. For instance, estradiol augments immune (Kovats, 2015) and allergic (Hox et al., 2015) processes. In particular, we had reported expression of estrogen receptors on rodent mast cells (Pang et al., 1995). We also reported that 17β-estradiol further increased stimulation of mast cells by SP (Theoharides et al., 1993). Such findings may help explain why FMS is more common in women.

In addition to allergic reactions, mast cells contribute to innate immunity, (Galli et al., 2011) autoimmunity (Rottem and Mekori, 2005) and inflammation (Theoharides et al., 2010a).

Thalamic Mast Cells Secrete Neurosensitizing Mediators

Increasing evidence supports the involvement of mast cells in FMS (Lucas et al., 2006; Pollack, 2014) and comorbid disorders (Theoharides, 2013) as well as other inflammatory (Galli et al., 2008; Theoharides et al., 2010a) and painful conditions, (Heron and Dubayle, 2013; Chatterjea and Martinov, 2014) as well
as neuroimmune interactions (Skaper et al., 2017) (Figure 1). Chronic urticaria, which involves stimulation of skin mast cells is more common in FMS (Torresani et al., 2009). Moreover, mast cells are significantly increased in the papillary dermis of FMS patients (Blanco et al., 2010). The chemokines monocyte chemoattractant protein-1 (MCP-1/CCL2) and eotaxin (CCL-11) are elevated in plasma of FMS patients (Zhang et al., 2008). MCP-1 is a strong mast cell chemoattractant (Conti et al., 1998) and also triggers mast cells in rodents (Conti and Theoharides, 1994). MCP-1 induced prolonged muscle hyperalgesia in rats via activation of its high-affinity receptor, CC Chemokine receptor 2 (CCR2), on the peripheral nerve terminals (Alvarez et al., 2014). Myoblasts treated with MCP-1 secreted significant amounts of the key pro-inflammatory cytokine IL-1β (Zhang et al., 2008).

C-reactive protein (CRP) is now considered a marker of chronic inflammation. CRP may be useful in the diagnostic of FMS (and depression/anxiety that often accompany FMS), even though there is no direct correlation reported (De Berardis et al., 2006, 2017; Orsolini et al., 2018).

Mast cells derive from the bone marrow and mature in response to SCF, which acts via the cell surface tyrosine kinase KIT receptor (Galli et al., 2011). Mast cell progenitors then migrate in all tissues. As a result, mast cell mediators can affect all organs and lead to multiple symptoms. Mast cells are found adjacent to blood vessels and nerve endings; in the brain, mast cells are located in the thalamus, hypothalamus and median eminence (Edvinsson et al., 1976; Lambracht-Hall et al., 1990; Theoharides et al., 2015d).

Mast cells are known to be stimulated by IgE, via activation of its unique surface receptors (FceRI) (Rivera et al., 2008). Mast cells can also be stimulated via TLRs, (Abraham and St John, 2010; Zhang et al., 2010). Stimulated mast cells secrete multiple vasoactive, pro-inflammatory and neuro-sensitizing molecules (Galli and Tsai, 2008; Theoharides et al., 2010a). Stimulation of mast cells can be augmented by the cytokine IL-33, (Fux et al., 2014) which synergizes with SP to induce release of impressive amounts of VEGF, (Theoharides et al., 2010b) TNF (Taracanova et al., 2017) or IL-1β (Taracanova et al., 2018). As a result, mast cells can serve as “sensors of cell danger” (Theoharides, 1996; Enoksson et al., 2011; Theoharides et al., 2015a).

Mast cell secretory granules store many preformed pro-inflammatory and neuro-sensitizing mediators including bradykinin, histamine, TNF and tryptase (Nakae et al., 2005; Olszewski et al., 2007). Mast cells also release de novo synthesized molecules: (a) lipid mediators (leukotrienes, prostaglandins, and PAF), (b) cytokines (IL-6, IL-13, IL-33, TNF) and (c) chemokines (CXCL8, CCL2, CCL5), (Theoharides et al., 2015d; Mukai et al., 2018). Mast cell could often release mediators selectively without histamine or tryptase (Theoharides et al., 2007). Mast cells also release IL-31, which is important in the sensation of itching and pain, in response to IgE and SP, IL-33 and specifically their combination (Petra et al., 2018). We reported that mast cells can release mtDNA, which is mistaken as a pathogen and stimulates inflammatory responses (Zhang B. et al., 2012).

Finally, mast cells can release extracellular vesicles (exosomes) (Skokos et al., 2002, 2003) that could deliver regulatory molecules, including mtDNA and microRNAs (Kawikova and Askenase, 2014). Such microvesicles have been implicated in brain disorders (Tsilioni et al., 2014;
Kawikova and Askenase, 2014) and pain disorders (Rafiee et al., 2018; Silva-Freire et al., 2019). We recently reported that extracellular vesicles are increased in the serum of children with ASD, contained mtDNA and stimulated cultured human microglia to secrete the pro-inflammatory molecules IL-1β and CXCL8 (Tsilioni and Theoharides, 2018).

Mast Cell Interactions With Microglia

Mast cells communicate with microglia (Skaper et al., 2012, 2014b). Mediators secreted from mast cells, (Zhang et al., 2016) such as histamine (Dong et al., 2014) and tryptase, (Zhang S. et al., 2012) can activate microglia leading to secretion of the pro-inflammatory cytokines IL-1β, IL-6 and TNF. Microglia can also be activated by CRH secreted from mast cells (Wang et al., 2002; Kempuraj et al., 2004). Stimulation of brain mast cells in mice led to activation of microglia, which was decreased by administration of a mast cell inhibitor (Dong et al., 2017).

Microglia are involved in synapse plasticity, (Shermer et al., 2015; Wu et al., 2015; Reu et al., 2017) but are responsible for innate immunity of the brain (Ransohoff and Brown, 2012; Aguzzi et al., 2013). Microglia contribute to brain inflammation (Hagberg et al., 2012; Aguzzi et al., 2013; Nakagawa and Chiba, 2016) and the pathogenesis of different brain disorders, (Takeda et al., 2014; Reu et al., 2015; Faden et al., 2016; Garden and Campbell, 2016; Groh and Martini, 2017; Koutsouras et al., 2017; Pennisi et al., 2016; Ji et al., 2018; Thonhoff et al., 2018) especially ASD (Vargas et al., 2005; Morgan et al., 2010; Suzuki et al., 2013; Edmonson et al., 2014; Gupta et al., 2014). Microglia in the thalamus have been discussed in the context of pain, especially maintaining the pain sensation even after the original painful stimulus is not present (Banati, 2002; Hansson, 2010; Saghaei et al., 2013; Blaszczuk et al., 2018).

CONCLUSION

Mast cells have been implicated in headaches (Theoharides, 1983; Theoharides et al., 2005) and pain (Xanthos et al., 2011; Aich et al., 2015; Gupta and Harvima, 2018). Activation of the mast cell-specific receptor, MRGPRX2, (McNeil et al., 2015) and its mouse analogue, Mrgrpbr2, mediated inflammatory mechanical and thermal hyperalgesia (Green et al., 2019). Hence, mast cells are key players of neuroendocrine (Theoharides, 2017) and painful disorders (Theoharides et al., 2019).

REFERENCES

Abbadie, C. (2005). Chemokines, chemokine receptors and pain. Trends Immunol. 26, 529–534. doi: 10.1016/j.it.2005.08.001

Abraham, S. N., and St John, A. L. (2010). Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10, 440–452. doi: 10.1038/nri2782

Aguzzi, A., Barres, B. A., and Bennett, M. L. (2013). Microglia: scapegoat, saboteur, or something else? Science 339, 156–161. doi: 10.1126/science.1227901

Aich, A., Afrin, L. B., and Gupta, K. (2015). Mast cell-mediated mechanisms of nociception. Int. J. Mol. Sci. 16, 29069–29092. doi: 10.3390/ijms16122615

Alvarez, P., Green, P. G., and Levine, J. D. (2014). Role for monocyte chemoattractant protein-1 in the induction of chronic muscle pain in the rat. Pain 155, 1161–1167. doi: 10.1016/j.pain.2014.03.004

In this context, inhibitors of mast cells (Harvima et al., 2014) would be useful in the treatment of FMS. Natural molecules could include the flavonoids, luteolin (Kempuraj et al., 2008; Theoharides et al., 2015c; Ashaari et al., 2018) and tetramethoxy-luteolene, (Theoharides et al., 2017; Theoharides and Tsilioni, 2018) alone or in combination with other substances selected to reduce stress (Theoharides and Kavalioti, 2018). Other natural molecules could include palmitoylethanolamide, (Schweiger et al., 2019) which apparently inhibits neuro-inflammation (Skaper et al., 2013, 2015) and reduces pain (Skaper et al., 2014a; Impellizzeri et al., 2016).

FUTURE DIRECTIONS

Research should focus on identifying in serum of patients with FMS novel molecules that are involved in pain transmission such as bradykinin, CGRP and IL-31. Extracellular vesicles should also be isolated from the serum and CSF of FMS patients, their content identified, and their effect investigated on cultured human mast cells and microglia. Such possible interactions would serve as useful in vitro assays for the screening of potential novel treatment agents. Recent reports have also stressed the possible use of the cytokine IL-37, (Mastrangelo et al., 2018) which is known to have anti-inflammatory actions (Cavalli and Dinarello, 2018). It would be important to explore the possible use of IL-37 isoforms in the treatment of FMS.

AUTHOR CONTRIBUTIONS

TT, IT, and MB participated in searching the literature. TT and IT wrote or contributed to the writing of the manuscript. IT prepared the figure.

FUNDING

Some aspects of our work described were supported in part by the National Institutes of Health (NIH) (Grants NS38326 and AR47652), as well as the Michael and Katherine Johnson Family Fund to TT.
Branco, J. C., Bannwarth, B., Failde, I., Abello, C. J., Blotman, F., Spaeth, M., et al. (2012). Inflammatory/stress feedback dysregulation in women with fibromyalgia. *Neuroimmunomodulation* 19, 343–351. doi: 10.1159/000341664

Bote, M. E., Garcia, J. J., Hinchado, M. D., and Ortega, E. (2012). Mast cells: versatile gatekeepers of pain. *Headache* 58(Suppl. 1), 33–47. doi: 10.1111/head.11305

Edvinsson, L., Owman, C., and Sjöberg, N. O. (1976). Autonomic nerves, mast cells and amine receptors in human brain vessels. A histochemical and pharmacological study. *Brain Res.* 115, 377–393. doi: 10.1016/0006-8993(76)90356-5

Enoksson, M., Lyberg, K., Moller-Westerberg, C., Fallon, P. G., Nilsson, G., and Lundberg-Andersson, C. (2011). Mast cells as sensors of cell injury through IL-33 recognition. *J. Immunol.* 186, 2523–2528. doi: 10.4049/jimmunol.20100383

Esposito, P., Chandler, N., Kandere-Grayowska, K., Basu, S., Jacobson, S., Connolly, R., et al. (2002). Corticotropin-releasing hormone (CRH) and brain mast cells regulate blood-brain-barrier permeability induced by acute stress. *J. Exp. Med.* 193, 1061–1066. doi: 10.1084/jem.20021377

Faden, A. I., Wu, J., Stoica, B. A., and Loane, D. J. (2016). Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. *Br. J. Pharmacol.* 173, 681–691. doi: 10.1111/bph.13179

Ferrari, R., and Russell, A. S. (2013). A questionnaire using the modified 2010 American College of rheumatology criteria for fibromyalgia: specificity and sensitivity in clinical practice. *J. Rheumatol.* 40, 1590–1595. doi: 10.3899/jrheum.130367

Flodin, P. D., Martinsen, S., Lofgren, M., Bileviciute-Lujanar, I., Kosek, E., and Fransson, P. (2014). Fibromyalgia is associated with decreased connectivity between pain- and sensorimotor brain areas. *Brain Connect.* 4, 587–594. doi: 10.1089/brain.2014.0274

Fux, M., Pecaric-Petkovic, T., Odermatt, A., Hausmann, O. V., Lorentz, A., Bischoff, S. C., et al. (2014). IL-33 is a mediator rather than a trigger of the acute allergic response in humans. *Allergy* 69, 216–222. doi: 10.1111/all.12309

Galli, S. J., Borregaard, N., and Wynn, T. A. (2011). Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. *Nat. Immunol.* 12, 1035–1044. doi: 10.1038/ni.2109

Galli, S. J., and Tsai, M. (2008). Mast cells: versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. *J. Dermatol. Sci.* 49, 7–19. doi: 10.1016/j.jdermsci.2007.09.009

Galli, S. J., Tsai, M., and Filipowsky, A. M. (2008). The development of allergic inflammation. *Nature* 454, 445–454. doi: 10.1038/nature07204

Garden, G. A., and Campbell, B. M. (2016). Glial biomarkers in human central nervous system disease. *Glia* 64, 1755–1771. doi: 10.1002/glia.22998

Geenen, R., Jacobs, J. W., and Bijlsma, J. W. (2002). Evaluation and management of inflammatory mediators from microglia. *Mol. Neurobiol.* 29, 1487–1500. doi: 10.1007/s12035-014-8697-6

Dong, H., Zhang, X., Wang, Y., Zhou, X., Qian, Y., and Zhang, S. (2017). Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. *Mol. Neurobiol.* 54, 997–1007. doi: 10.1007/s12035-016-9720-2

Edmonson, C., Ziats, M. N., and Rennert, O. M. (2014). Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. *Mol. Autism* 5:3. doi: 10.1186/2040-2392-5-3

Edvinsson, L. (2018). The CGRP pathway in migraine as a viable target for therapies. *Headache* 58(Suppl. 1), 33–47. doi: 10.1111/head.11305

Charo, I. F., and Ransohoff, R. M. (2006). The many roles of chemokines and immunity by IL-37. *Immunol. Rev.* 210, 48–53. doi: 10.1111/j.0903-1926.2005.00349.x

Desmeules, J. A., Cedraschi, C., Rapiti, E., Baumgartner, E., Finckh, A., Cohen, P., et al. (2003). Neurophysiologic evidence for a central sensitization in patients with fibromyalgia. *Arthritis Rheum.* 48, 1420–1429. doi: 10.1002/art.10893

Donelan, J., Boucher, W., Papadopoulou, N., Lytinas, M., Papaliodis, D., and Theoharides, T. C. (2006). Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. *Proc. Natl. Acad. Sci. U.S.A.* 103, 7759–7764. doi: 10.1073/pnas.0602210103

Dong, H., Zhang, W., Zeng, X., Hu, G., Zhang, H., He, S., et al. (2014). Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. *Mol. Neurobiol.* 49, 1487–1500. doi: 10.1007/s12035-014-8697-6

Griiff, K. G., Newton, G., Tarrlo, M. L., Bu, D. X., Maganto-Garcia, E., Azcutia, V., et al. (2012). IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. *J. Immunol.* 188, 6287–6299. doi: 10.4049/jimmunol.1200385

Groh, J., and Martini, R. (2017). Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous system: understanding pathogenesis and chances for treatment. *Glia* 65, 1407–1422. doi: 10.1002/glia.23162
Kovats, S. (2015). Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol. 294, 63–69. doi: 10.1016/j.cellimm.2015.01.018

Lambracht-Hall, M., Dimitriadou, V., and Theoharides, T. C. (2006). Fibromyalgia—new concepts of pathogenesis and treatment. Int. J. Immunopathol. Pharmacol. 19, 5–10.

Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science 237, 1154–1162. doi: 10.1126/science.3306916

Liu, Y., Hsu, R.-C., and Mak, A. (2012). The role of interleukin (IL)-17 in anxiety and depression of patients with rheumatoid arthritis. Int. J. Rheum. Dis. 15, 183–187. doi: 10.1111/j.1756-185X.2011.01673.x

Lucasa, H. J., Brauch, C. M., Settas, L., and Theoharides, T. C. (2006). Fibromyalgia—new concepts of pathogenesis and treatment. Int. J. Immunopathol. Pharmacol. 19, 5–10.

Maren, S. (2017). Synapse-Specific encoding of fear memory in the amygdala. Neuron 95, 988–990. doi: 10.1016/j.neuron.2017.08.020

Mastrangelo, F., Frydias, I., Ronconi, G., Kritas, S. K., Tettamanti, L., Caraffa, A., et al. (2018). Low-grade chronic inflammation mediated by mast cells in fibromyalgia: role of IL-37. J. Biol. Regul. Homeost Agents 32, 195–198.

McBeth, J., and Mulvey, M. R. (2012). Fibromyalgia: mechanisms and potential impact of the ACR 2010 classification criteria. Nat. Rev. Rheumatol. 8, 108–116. doi: 10.1038/nrrheum.2011.216

McLean, S. A., Williams, D. A., Stein, P. K., Harris, R. E., Lyden, A. K., Whalen, G., et al. (2006). Cerebrospinal fluid corticotropin-releasing factor concentration is associated with pain but not fatigue symptoms in patients with fibromyalgia. Neuropsychopharmacology 31, 2776–2782. doi: 10.1038/sj.npp.1310020

McNeil, B. D., Pundir, P., Meeker, S., Han, L., Undem, B. J., Kulka, M., et al. (2015). Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519, 237–241. doi: 10.1038/nature14022

Meng, X., Zhang, Y., Lao, L., Saito, R., Li, A., Backman, C. M., et al. (2013). Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain 154, 294–305. doi: 10.1016/j.pain.2012.10.022

Minneri, A., Gonzalez, E., Beretton, N. J. B., Anjarkouchian, A., Dewar, K., Fitzcharles, M. A., et al. (2019). Altered microbiome composition in individuals with fibromyalgia. Pain doi: 10.1097/aphb.0000000000001640 [Epub ahead of print].

Morgan, J. T., Chana, G., Pardo, C. A., Achim, C., Semenderefi, K., Buckwalter, J., et al. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68, 368–376. doi: 10.1016/j.biopsych.2010.05.024

Mukai, K., Tsai, M., Saito, H., and Galli, S. J. (2018). Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 282, 121–150. doi: 10.1111/imr.12634

Nakae, S., Suto, H., Nakamura, T., Saito, M., and Galli, S. J. (2005). Mast cells enhance T cell activation: importance of mast cell-derived cytokines, chemokines, and growth factors. J. Immunol. 175, 410–417. doi: 10.4049/jimmunol.175.2.410

Nakagawa, Y., and Chiba, K. (2016). Involvement of neuroinflammation during brain development in social cognitive deficits in autism spectrum disorder and schizophrenia. J. Pharmacol. Exp. Ther. 358, 504–515. doi: 10.1124/jpet.116.244764

Nugraha, B., Korallus, C., Kielstein, H., and Gutenbrunner, C. (2013). CD3+CD56+ natural killer T cells in fibromyalgia syndrome patients: association with the intensity of depression. Clin. Exp. Rheumatol. 31, 59–65.

Olszewski, M. B., Groot, A. J., Dastych, J., and Knol, E. F. (2010). TNF trafficking to human mast cell granules: mature chain-dependent endocytosis. J. Immunol. 187, 5701–5709. doi: 10.4049/jimmunol.187.9.5701

Orsolin, L., Sarchione, F., Vellante, F., Fornaro, M., Matarazzo, J., Martinotti, G., et al. (2018). Protein-C reactive as biomarker predictor of schizophrenia phases of illness? A systematic review. Curr. Neuropharmacol. 16, 583–606. doi: 10.2174/1570159X1666618011944538

Ottosson, A., and Edvinsson, L. (1997). Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17, 166–174. doi: 10.1080/0148070977613445

Pang, X., Cotteau-Bibbo, M. M., Sant, G. R., and Theoharides, T. C. (1995). Bladder mast cell expression of high affinity estrogen receptors in patients with interstitial cystitis. Br. J. Urol. 75, 154–161. doi: 10.1111/j.1464-410x.1995.tb07303.x

Pennisi, M., Crupi, R. D., Pi, P. R., Ontario, M. L., Bella, R., Calabrese, E. J., et al. (2017). Inflammatory, depression, and antidepressant drugs: role in fibromyalgia. J. Neuroimmune Pharmacol. 12, 55–70. doi: 10.1007/s11481-016-9505-9

Theoharides et al. (2018). Mast cell-related interactions contribute to pain and itch. Immunol. Rev. 282, 168–187. doi: 10.1111/imr.12622

Theoharides et al. (2019). Mast cells in fibromyalgia pain: new concepts of pathogenesis and treatment. Int. J. Immunopathol. Pharmacol. 19, 5–10.
of NRLP3 in Alzheimer disease. *J. Neurosci.* 95, 1360–1372. doi: 10.1074/jn.23986

Pernambuco, A. P., Schetino, L. P., Alvim, C. C., Murad, C. M., Viana, R. S., Carvalho, L. S., et al. (2013). Increased levels of IL-17A in patients with fibromyalgia. *Clin. Exp. Rheumatol.* 31, S60–S63.

Petrà, A. I., Tulioni, I., Tarzanova, A., Katsarou-Katsari, A., and Theoharides, T. C. (2018). Interleukin 33 and interleukin 4 regulate interleukin 31 gene expression and secretion from human laboratory of allergic diseases 2 mast cells stimulated by substance P and/or immunoglobulin E. *Allergy Asthma Proc.* 39, 153–160. doi: 10.2500/aap.2018.38.4105

Pollack, S. (2014). Mast cells in fibromyalgia. *Clin. Exp. Rheumatol.* 33(Suppl. 88):S140.

Rafiee, Z. A., Falahatian, M., and Alsahbehfossoul, F. (2018). Serum levels of histamine and diamine oxidase in multiple sclerosis. *Am. J. Clin. Exp. Immunol.* 7, 100–105.

Ransohoff, R. M., and Brown, M. A. (2012). Innate immunity in the central nervous system. *J. Clin. Invest.* 122, 1164–1171. doi: 10.1172/JCI58644

Reu, P., Khosravi, A., Bernard, S., Mold, J. E., Salehpour, M., Alkass, K., et al. (2017). The lifespan and turnover of microglia in the human brain. *Cell Rep.* 20, 779–784. doi: 10.1016/j.celrep.2017.07.004

Reu, G. Z., Fries, G. R., Stertz, L., Badawy, M., Passos, I. C., Barichello, T., et al. (2015). The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. *Neuroscience* 300, 141–154. doi: 10.1016/j.neuroscience.2015.05.018

Reynier-Rebuffel, A.-M., Mathiau, P., Callebert, J., Dimitriadou, V., Farjaudon, R., Reus, G. Z., Fries, G. R., Stertz, L., Badawy, M., et al. (2015). The lifespan and turnover of microglia in the human brain. *Cell Rep.* 20, 779–784. doi: 10.1016/j.celrep.2017.07.004

Rodriguez-Pinto, I., Agmon-Levin, N., Howard, A., and Shoenfeld, Y. (2014). New insights on mast cells and autoimmunity. *Autoimmun. Rev.* 39, 153–160. doi: 10.1016/j.autrev.2004.05.001

Rombaut, D. (2015). The crucial role of mast cells in blood-brain barrier alterations. *Exp. Cell Res.* 338, 119–125. doi: 10.1016/j.yexcr.2015.05.013

Rivera, J., Fierro, N. A., Olivera, A., and Suzuki, R. (2008). New insights on mast cell activation via the high affinity receptor for IgE. *Adv. Immunol.* 98, 85–120. doi: 10.1006/s0065-2776(08)00403-3

Rodriguez-Pinto, I., Agmon-Levin, N., Howard, A., and Shoenfeld, Y. (2014). Fibromyalgia and cytokines. *Immunol. Lett.* 161, 200–203. doi: 10.1016/j.imlet.2014.01.009

Romero-Sanchez, C., Jaimes, D. A., Londono, J., De Avila, J., Castellanos, J. E., Bello, J. M., et al. (2011). Association between Th-17 cytokine profile and clinical features in patients with spondyloarthritids. *Clin. Exp. Rheumatol.* 29, 828–834.

Ross, R. L., Jones, K. D., Bennett, R. M., Ward, R. L., Druker, B. J., and Wood, L. J. (2010). Preliminary evidence of increased pain and elevated cytokines in fibromyalgia patients with depressive growth hormone response to exercise. *Open Immunol. J.* 3, 9–18. doi: 10.2174/187123710003010009

Rottem, M., and Meeker, Y. A. (2005). Mast cells and autoimmunity. *Autoimmun. Rev.* 4, 21–27. doi: 10.1016/j.autrev.2004.05.001

Russell, I. J. (1998). Advances in fibromyalgia: possible role for central neurochemicals. *Am. J. Med. Sci.* 315, 377–384. doi: 10.1097/00000929-199503453-5-6

Russell, I. J., and Larson, A. A. (2009). Neurophysiopathogenesis of fibromyalgia syndrome: a unified hypothesis. *Rheum. Dis. Clin. North Am.* 35, 421–435. doi: 10.1016/j.rdc.2009.06.005

Saghaei, E., Abbaszadeh, F., Naseri, K., Ghorbanpoor, S., Afhami, M., Haeri, A., et al. (2013). Estradiol attenuates spinal cord injury-induced pain by suppressing microglial activation in thalamic VPL nuclei of rats. *Neurosci. Res.* 75, 316–323. doi: 10.1016/j.neures.2013.01.010

Schmidt-Wilcke, T., and Clauw, D. J. (2011). Fibromyalgia: from pathophysiology to therapy. *Nat. Rev. Rheumatol.* 7, 518–527. doi: 10.1038/nrrheum.2011.98

Scholzen, T. E., Steinhoff, M., Bonaccorsi, P., Klein, R., Amadesi, S., Gepetti, P., et al. (2001). Neutral endopeptidase terminates substance P-induced inflammation in allergic contact dermatitis. *J. Immunol.* 166, 1285–1291. doi: 10.4049/jimmunol.166.6.1285

Schweiger, V., Martini, A., Bellamoli, P., Donadello, K., Schieveno, C., Del B, G., et al. (2019). Ultramicronized palmitoylethanolamide (um-PEA) as add-on treatment in fibromyalgia syndrome (FMS): retrospective observational study on 407 patients. *CNS Neurol. Disord. Drug Targets* doi: 10.2174/1871237166619022705359 [Epub ahead of print].
Theoharides, T. C. (2017). Neuroendoecrinology of mast cells: challenges and controversies. Exp. Dermatol. 26, 751–759. doi: 10.1111/exd.13288

Theoharides, T. C., Alysandratos, K. D., Angelidou, A., Delivanis, D. A., Sismanopoulos, N., Zhang, B., et al. (2010a). Mast cells and inflammation. Biochim. Biophys. Acta 1822, 21–33.

Theoharides, T. C., Zhang, B., Kempuraj, D., Tagen, M., Vasiadi, M., Angelidou, A., et al. (2010b). IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc. Natl. Acad. Sci. U.S.A. 107, 4448–4453. doi: 10.1073/pnas.1008031017

Theoharides, T. C., Dimitriadiou, V., Letourneau, R. J., Rozniecki, J. J., Vliagoftis, H., and Boucher, W. S. (1993). Synergistic action of estradiol and myelin basic protein on mast cell secretion and brain demyelination: changes resembling early stages of demyelination. Neuroscience 57, 861–871. doi: 10.1016/0306-4522(93)90030-j

Theoharides, T. C., Donelan, J., Kandere-Grybowska, K., and Konstantinidou, A. (2005). The role of mast cells in migraine pathophysiology. Brain Res. Brain Res. Rev. 49, 65–76. doi: 10.1016/j.brainresrev.2004.11.006

Theoharides, T. C., and Kavalioti, M. (2018). Stress, inflammation and natural treatments. J. Biol. Regul. Homeost Agents 32, 1345–1347.

Theoharides, T. C., Kempuraj, D., Tagen, M., Conti, P., and Kalogeromitros, D. (2007). Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol. Rev. 217, 65–78. doi: 10.1111/j.1600-065X.2007.00519.x

Theoharides, T. C., and Konstantinidou, A. (2007). Corticotropin-releasing hormone and the blood-brain barrier. Front. Biosci. 12i:1615–1628. doi: 10.2741/174

Theoharides, T. C., Letourneau, R., Patra, P., Hesse, L., Pang, X., Boucher, W., et al. (1999). Stress-induced rat intestinal mast cell intragranular activation and inhibitory effect of sulfated glycosaminoglycans. Dig. Dis. Sci. 44, 875–93S.

Theoharides, T. C., Petra, A. I., Stewart, J. M., Tsilioni, I., Panagiotidou, S., and Akin, C. (2014). High serum corticotropin-releasing hormone (CRH) and bone marrow mast cell CRH receptor expression in a mastocytosis patient. J. Allergy Clin. Immunol. 134, 1197–1199. doi: 10.1016/j.jaci.2014.05.023

Theoharides, T. C., Petra, A. I., Taracanova, A., Panagiotidou, S., and Conti, P. (2015a). Targeting IL-33 in autoimmunity and inflammation. J. Pharmacol. Exp. Ther. 354, 24–31. doi: 10.1124/jpet.114.222505

Theoharides, T. C., Stewart, J. M., Hatzigelaki, E., and Kolaitis, G. (2015b). Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders. Brain Res. Brain Res. 152, 180, 287–294. doi: 10.1016/j.brainres.2015.09.030

Wu, Y., Dissing-Olesen, L., MacVicar, B. A., and Stevens, B. (2015). Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36, 605–613. doi: 10.1016/j.it.2015.08.008

Xanthos, D. N., Gaderer, S., Drdla, R., Nuro, E., Abramsa, O., Eillmeier, W., et al. (2011). Central nervous system mast cells in peripheral inflammatory nociception. Mol. Pain 7:42. doi: 10.2340/00015555-0653

Yunus, M. B. (2007). Fibromyalgia and overlapping disorders: the unifying concept of central sensitivity syndromes. Semin. Arthritis Rheum. 36, 339–356. doi: 10.1016/j.semarthrit.2006.12.009

Zhang, B., Asadi, S., Weng, Z., Sismanopoulos, N., and Theoharides, T. C. (2012). Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions. PLoS One 7:e49767. doi: 10.1371/journal.pone.0049767

Zhang, S., Zeng, X., Yang, H., Hu, G., and He, S. (2012). Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol. Biochem. 29, 931–940. doi: 10.1159/000317029

Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., et al. (2010). Circulating mitochondrial DAPs cause inflammatory responses to injury. Nature 464, 104–107. doi: 10.1038/nature08780

Zhang, X., Wang, Y., Dong, H., Xu, Y., and Zhang, S. (2016). Induction of microglial activation by mediators released from mast cells. Cell Physiol. Biochem. 38, 1520–1531. doi: 10.1186/s12974-018-1275-5

Zhang, Z., Cherryholmes, G., Mao, A., Marek, C., Longmate, J., Kalos, M., et al. (2008). High plasma levels of MCP-1 and eotaxin provide evidence for an immunological basis of fibromyalgia. Exp. Biol. Med. 233, 1171–1180. doi: 10.3181/0712-3962

Conflict of Interest Statement: TT is the inventor of US patents No. 7,906,153 and No. 8,268,365 for the treatment of neuroinflammatory conditions.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Theoharides, Tsilioni and Bawazer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.