Medicinal plants for treatment of ulcer: A review

Vaishnavi Burley, Dr. Dinesh Biyani, Dr. Milind Umekar and Nikita Naidu

DOI: https://doi.org/10.22271/plants.2021.v9.i4a.1312

Abstract
A mouth ulcer (also termed an oral ulcer, or a mucosal ulcer) is an ulcer that happens on the membrane of the oral cavity. It is defined as “a break within the mucosal surface of the oral cavity”. Ulcers are an open sore of the skin or mucus membrane characterized by removing of inflamed dead tissue. The mouth ulcer often caused pain and discomfort and can alter the person choice of food while healing occurs. The foremost common oral ulceration is Aphthous stomatitis. This review focuses on the causes of mouth ulcer and factors in charge of the mouth ulcer. There are various synthetic drugs which are available to treat mouth ulcer. As we all know herbal medicine is that the most stay of primary healthcare thanks to better culture acceptability, better computability with natural object and lesser side effects. And the literature also revealed that there are various medicinal plants which can be utilized within the treatment of mouth ulcers. Therefore, this review summarises about the medicinal plants which could be used for the treatment of mouth ulcer as drug.

Keywords: Mouth ulcer, aphthous stomatitis, herbal plants, chemical constituents.

1. Introduction
A mouth ulcer (also termed an oral ulcer, or a mucosal ulcer) is an ulcer that happens on the mucous membrane of the oral cavity [1]. It is defined as “a break within the mucosal surface of the oral cavity” [2]. Ulcers are an open sore of the skin or mucus membrane characterized by removing of inflamed dead tissue [3]. Ulcers are commonest on the skin of the lower extremities and within the alimentary tract, although they will be encountered at almost any site. There are many sorts of ulcer like mouth ulcer, esophagus ulcer, ulcer, and genital ulcer [4]. They are common and can be due to local factors like trauma from dentures or fractured dentition or a limit less number of systemic diseases can manifest as ulcerations within the oral cavity [5]. They are painful round or oval sores that form within the mouth, mainly on the within of the cheeks or lips. As they're quite common, and occur in relation to many diseases and by different mechanisms, but usually there is no serious basic cause [6].

Oral trauma is one of the foremost common causes of recurrent oral ulcers. This results in mechanical, chemical, or thermal irritation of the mucosa. These are generally acute short-lived events producing painful ulcers, which heal easily within some weeks without scar. The ulcers could even be recurrent if the inciting stimulus isn't removed [7]. Mouth ulcer causes pain during eating, drinking and thru brushing teeth [8].

Recurrent Aphthous Stomatitis
Mouth ulcers are also known as “aphthous ulcers” [9]. Recurrent aphthous stomatitis, is additionally observed as aphthous ulcers or canker sores, which is the most typical oral mucosal disease in humans and it typically occurs first in childhood or adolescence [10]. As “Aphthous” comes from the Greek word “aphtha,” which suggests ulcer. But the medical literature continues to refer to these oral lesions as aphthous ulcers [11].

Aphthous stomatitias has been used interchangeably with “aphthous ulcers” and can be more accurate terminology [12]. Aphthous ulcers appears in round or oval shape, with a grayish yellow, which shaped form of a bowl surrounded by inflamed mucosa [13]. The ulcer usually occurs inside the mouth on the non-keratinized oral mucosa, including the lips, the buccal mucosa, the bottom of the mouth, and thus the ventral surface of the tongue. And so the regions of keratinized oral mucosa, just like the surface, the gums, and so the dorsal surface of the tongue, are common location.
Types of Mouth Ulcer

On the basis of ulcer size and number, mouth ulcer can be classified as minor, major and herpetiform [14]. The main types of mouth ulcer are:

- **Minor ulcers**: Minor aphthous ulcers are the foremost common form considering for about 80% of cases. These are around 2-8mm in diameter which they typically clear up in 10 days to 2 weeks. Typically, these ulcers are superficial in nature, small in size, usually but 1 cm in diameter, few in number, occurring singularly or in groups, and heal without scarring [15].

- **Major ulcers**: The second type is major aphthous ulcers, it occurs in about 10% of patients. These are bigger and deeper in shape often over 1 cm in diameter, with a raised or irregular border [16]. And they occur either singly or as multiple lesions. This type of ulcer can take several weeks to heal and can leave a scar within the mouth because of the extent of necrosis [17].

- **Herpetiform ulcers**: The third type is known as herpetiform ulcers, is a descriptor referring to the clustered morphology of lesions [18]. This type of ulcer is a cluster of dozens of smaller sores about the size of pinheads [19]. It is not related to herpesvirus infection. These are large in number, ranging from 10 to 100 at a time and consist of multiple small lesions that basically unite to become confluent into larger plaques. Due to the size and depth of ulcer they may heal with scar in 7 to 30 days [20].

- **Ulcerative Conditions**: Mouth ulcers are very common and are mainly due to trauma such as from ill-fitting dentures, fractured teeth, or fillings. However, biopsy or other investigation should be done for patients with an ulcer of over three week’s duration to exclude malignancy or other serious conditions such as chronic infections [21].

Causes

There is no definite etiology and pathology known for mouth ulcer; although some factors are considered important which include nutritional deficiencies such as iron, vitamins especially B12 and C, poor oral hygiene, infections, stress, indigestion, mechanical injury, skin disease etc. [22] Some other factor include such as:

1. **Genetic factors**: There is a genetic component in patients with aphthous ulcers, with about 30%-40% of patients having a family history [23]. A family history of recurrent aphthous ulcers is obvious in some patients. A familiar connection includes a young age of onset and symptoms of increased severity. Recurrent aphthous ulcers are highly correlated in identical twins [24].

2. **Physical or Psychological Stress**: There is a strong connection of aphthous ulcer occurrences with stressful life [25]. Psychological stress may play a role in the appearance of recurrent aphthous stomatitis as a trigger or a modifying factor. No studies have convincingly proved stress as a causative or precipitating factor for recurrent aphthous stomatitis [26].

3. **Nutritional deficiency**: Various nutritional deficiencies have been implicated in a subset of aphthous ulcer
patients, which involving of iron, folic acid, vitamin B12, B1,B2 and B6. The contribution of nutritional deficiencies to aphthous ulcers are likely to vary across different regions based on diet and food supplementation [27].

4. Trauma: The most likely factors which bring about aphthous ulcers are local trauma and stress. Injury to the oral mucosa may give result from accidental self-biting, dental procedures, tooth brush bristles, and sharp-edged foods (e.g., potato chips), anesthetic injection. Apart from this environmental and emotional stress also result into aphthous ulcer [28].

5. Food allergies: There are various food which is able to cause allergies. Antibodies to cow’s milk and wheat protein (celiac disease) are demonstrated in patients with recurrent aphthous stomatitis. Therefore, many foods that are commonly allergenic (e.g., strawberries, tomatoes, and nuts) haven’t been causally associated with recurrent aphthous stomatitis [29]. Foods like chocolate, coffee, peanuts, cereals, almonds, strawberries, cheese, tomatoes (even the skin of the tomatoes) and flour (containing gluten) could even be implicated in some patients [30].

6. Immune disorders: Aphthous ulcers are more common and more severe in patients with immune disorders, including cyclic neutropenia, inflammatory bowel disease, Behçet’s disease, and HIV disease [31].

7. Tobacco smoking: The patients suffering from recurrent aphthous stomatitis usually are non-smokers, but there is a lower prevalence and severity of recurrent aphthous stomatitis among heavy smokers as critical moderate smokers. Some patients report an onset of recurrent aphthous stomatitis after smoking cessation, while others report control on re-initiation of smoking. The use of smokeless tobacco is expounded to a significantly lower prevalence of recurrent aphthous stomatitis. Nicotine-containing tablets also appear to control the frequency of recurrent aphthous stomatitis [32].

Some other factors which causes mouth ulcers are:

- Toothpastes and mouthwashes that contain sodium lauryl sulfate
- Hormonal changes
- Viral infections
- Allergies and sensitivities
- Infectious agents (both bacterial and viral)
- Medical conditions [33]

Plants are a rich resource used for centuries to cure various diseases. There are many herbal plants which are useful in medicinal purposes. Plants various parts are used for treating various diseases. Therefore there are some plant which will be useful in treating mouth ulcer. Following is the list of all plants which are helpful in treating mouth ulcers

Description of the given plants with their chemical constituents -

1. Adansonia Digitata - is commonly known as “boabab or monkey-bread tree of Africa.” Chemical constituents in this plant are pulp that contains phobaphenes, mucilage and gum, glucose, tartrate and acetate of potash, and other salts. A leaf contains wax, glucose, salts, gum, and albuminoids. Bark contains wax, soluble and insoluble tannin, acid gum, albuminuous carbonate and chloride of sodium and potassium, and a glucoside adansonin [34].

Table 1: List of plants with their parts and vitamin present in it.

Sr.no	Plants	Parts use	Vitamin present
1	Adansonia Digitata	Leaves, bark	Vit C, vit B6
2	Allium Sativa	Bulb	Vit B, vit C
3	Annona Squamosa	Leaves	Vit C
4	Aloe Vera	Whole plant	Vit A, vit C
5	Azadirachta Indica	Bark, leaves, flowers	Vit C
6	Aegle Marmelos	Fruit	Vit C, vit A
7	Berberies Aristata	Root, bark	Vit C
8	Beta Vulgaris	Fruit	Vit C, vit B9
9	Bauhinia Variegiate	Root, bark, leaves	Vit C
10	Carica Papaya	Seed	Vit A, vit B, vit C
11	Chamomile	Flower	Vit C
12	Carcuma Longa	Rhizome	Vit C
13	Hibiscus Rosa Sinesis	Root	Vit C
14	Jasminum grandiflorum linn	Leaves, flowers, roots	Vit C
15	Mangifera Indica	All parts	Vit C, vit A
16	Momordica Charantia	Fruit	Vit C,A,E,B1,B2,B3
17	Moringa Oleifera	Leaves, stem	Vit A,C,B1,B2,B3,B4,B7,D,E
18	Morinda Citrifolia	Leaves	Vit C, vit B
19	OcIMUM Sanctum	Whole plant	Vit A, vit C
20	Psidium Guava	Leaves, bark, root	Vit A,B1,B2,B3
21	Punica Granatum	Fruit	Vit C, vit K
22	Glycyrrhiza Glabra	Stem, root	Vit B, vit E, vit C
23	Terminalia Chebula	Fruit	Vit C
24	Tamarindus Indica	Seed	Vit B1,vit B3
25	Zingiber officinalis	Root	Vit C

http://www.plantsjournal.com
2. **Allium Sativa** - *Allium sativum* belonging to the family Liliaceae is commonly known as “garlic”. Chemical constituents in this plant are an acrid volatile oil which is the active principle, starch, mucilage, albumen, and sugar. Seeds yield aromatic oil and complementary substances containing vitamins [35].

![Fig 1: Adansonia Digitata](image)

3. **Annona Squamosa** - *Annona squamosa* belonging to the family Annonaceae is commonly known as “custard apple.” It is locally called as “sitapalam.” Chemical constituents in this plant are alkaloids, flavonoids, saponins, and tannins. Seeds yield oil and resin; seeds, leaves, and immature fruit contain an acrid principle [36].

![Fig 2: Allium sativum](image)

4. **Aloe Vera** - *Aloe vera* belonging to the family Liliaceae is commonly known as “aloe gel.” Chemical constituents in this plant are aloin, isobarbaloin, and emodin [37].

![Fig 3: Annona squamosa](image)

5. **Azadirachta Indica** - *Azadirachta indica* belonging to the family Meliaceae. It is commonly known as “neem”. Chemical constituents reported in this plant are nimbidin, phenolic compounds, saponin, and flavonoids. It contains a bitter alkaloid named Margosine. Seeds contain about 10–31% of a yellow bitter fixed oil. The oil contains free and volatile fatty acids [38].

![Fig 5: Azadirachta indica](image)

6. **Aegle Marmelos** - *Aegle marmelos* belonging to the family Rutaceae which is commonly known as a “baeltree”. It is locally called as “vilvam.” Chemical constituents in this plant are flavonoids, tannins, and saponins [39].

![Fig 6: Aegle marmelos](image)

7. **Berberis Arista** - *Berberis aristata* belonging to the family Berberidaceae. It is commonly known as “Indian or Nepal barberry” and locally called “kasturimanjal.” Chemical constituents reported in this plant are roots and wood which are rich in a yellow alkaloid “berberine” bitter substance, which dissolves in acids and forms salts of the alkaloid; root contains two more alkaloids [40].

![Fig 7: Berberis aristata](image)

8. **Beta Vulgaris** - *Beta vulgaris* belonging to the family Chenopodiaceae is commonly known as “beetroot.” It is also known as sugar-beet. It is also cultivated in gardens in many parts of India for the sake of its flesh roots and leaves. There are two kinds: white and red. Chemical constituents in this plant are an active principle “betin” [41].
9. *Bauhinia Variegate* - *Bauhinia variegate* belonging to the family *Caesalpiniaceae*. It is commonly known as “orchid tree” and locally called “shemmandarai.” Chemical constituents reported in this plant are quercetin, rutin, apigenin, and apigenin, glucoside. Bark contains tannin (tannic acid), glucose, and a brownish gum [42].

10. *Carica Papaya* - *Carica papaya* belonging to the family *Caricaceae* is commonly known as “papaya.” It is locally called “papali-pazham.” Chemical constituents in this plant are Papain, chymopapain, pectin, carposide, carpaine, carotenoids, and antheraxanthin [43].

11. *Chamomile* - *Chamomile* belonging to the family *Asteraceae* is commonly known as babuna. It contains a large group of therapeutically interesting and active compound classes. Sesquiterpenes, flavonoids, coumarins, and polyacetylenes are considered the most important constituents of the chamomile drug [44].

12. *Curcuma Longa* - *Curcuma Longa* belonging to the family *Zingiberaceae*. Chemical constituents in this plant are Curcumin, demethoxycurcumin and bisdemethoxycurcumin collectively known as curcuminooids (3-6%) are major polyphenolic compounds in turmeric rhizomes. The main colouring principle of turmeric rhizome is known as ‘Curcumin’ [45].

13. *Hibiscus Rosa Sinesis* - *Hibiscus rosa sinensis* belonging to the family *Malvaceae* is commonly known as “changing rose.” Chemical constituents in this plant are flavonoids, anthocyanins, quercetin, cyaniding, kaempferol, and hydrocitric acid [46].

14. *Jasminum Grandiflorum* - *Jasminum grandiflorum linn* belonging to the family *Oleaceae*. Chemical constituents in this plant contain the major compounds identified were benzyl acetate, benzyl benzoate, phytol, linalool, isophytol, geranyl linalool, methyl linoleate and eugenol [47].
15. **Mangifera Indica** - *Mangifera indica* belonging to the family **Anacardiaceae** is commonly known as “mango tree.” It is locally called “mangaai.” Chemical constituents in this plant are alkaloids, sterols, saponins, tannins, and flavonoids [48].

16. **Momordica Charantia** - *Momordica charantia* belonging to the family **Cucurbitaceae** is commonly known as “bitter gourd.” Chemical constituents in this plant are bitter glucoside soluble in water and insoluble in ether, a yellow acid, resin, and ash. Fresh vegetable contains albuminoids, soluble carbohydrates, woody fiber [49].

17. **Moringa Oleifera** - *Moringa oleifera* belonging to the family **Moringaceae** is commonly known as “drumstick, horse radish tree.” It is locally called “murungai.” Chemical constituents in this plant are alkaloids, flavonoids, saponins, tannins, zeatin, quercetin, kaempferom, and terpenoids [50].

18. **Morinda Citrifolia** - *Morinda citrifolia* belonging to family **Rubiaceae**. It is commonly known as “noni fruit”. Chemical constituents in this plant are amino acids, anthraquinones, coumarins, fatty acids, flavonoids, iridoids, lignans and phenolics. Oligo-and polysaccharides, glycosides, alkaloids components, octanoic acid, potassium, vitamin C, terpenoids, carotene, vitamin A, flavones glycosides, linoleic acid, alizarin, amino acids, acubin, L-asperuloside, caproic acid, caprylic acid, ursolic acid, rutin, a putative proxerlonine are also present [51].

19. **Ocimum Sanctum** - *Ocimum sanctum* belonging to the family **Lamiaceae**. It is commonly known as “holy basil.” It is locally called “tulsi.” The name Tulsi means “the incomparable one.” It is one of the sacred herbs for Hindus in the Indian subcontinent. Chemical constituents in this plant are alkaloids, tannins, saponins, flavonoids, and sterols [52].

20. **Psidium Guava** - *Psidium guava* belonging to the family **Myrtaceae**. It is commonly known as “guava.” Chemical constituents in this plant are bark that contains tannin, resin, and crystals of calcium oxalate. Leaves contain resin, fat, cellulose, tannin, volatile oil, chlorophyll, and mineral salt [53].
21. *Punica Granatum* - *Punica granatum* belonging to the family *Punicaceae*. It is commonly known as “pomegranate”. They hold various types of ingredients including flavonoids, ellagitannins and proanthocyanidin. Pomegranate fruit arils contain organic acids, sugars such as glucose, fructose, minerals, vitamins, and polyphenols. It also contain pectin, organic acids including citric, malic, tartaric, succinic, fumaric and ascorbic acid [54].

22. *Glycyrrhiza Glabra* - *Glycyrrhiza glabra* belonging to the family *Fabaceae*. The roots of *Glycyrrhiza glabra* Linn contain glycyrrhizin, which is a saponin that is 60 times sweeter than cane sugar, flavonoid rich fractions include liquiritin, isoliquertin liquiritigenin and rhamnoliquiritin, gluco liquiritin apioside, prenyllicoflavone A, shinflavanone, shinpterocarpin and 1-methoxyphaseolin isolated from dried roots [55].

23. *Terminalia Chebula* - *Terminalia chebula* belonging to family *Combretaceae*. It is commonly known as “myrobalan; Ink-nut; gullnut.” It is locally called “kaduk-kai.” Chemical constituents in this plant are tannin (tannic acid) and a large amount of gallic acid, lucilage [56].

24. *Tamarindus Indica* - *Tamarindus indica* belonging to family *Caesalpinaceae* is commonly known as “tamarind tree.” It is locally called “Imli”. Chemical constituents in this plant are pulp that contains tartaric acid, citric acid, malic and acetic acids, tartaric of potassium, invert sugar, gum and pectin. Seeds contain albuminoids, fat, carbohydrates, fibre, and ash containing phosphorus and nitrogen. Fruit contains traces of oxalic acid [57].

25. *Zingiber Officinalis* - *Zingiber officinalis* belonging to family *Zingiberaceae*. It is commonly known as “Ginger”. Chemical constituents in this rhizome are carbohydrates, lipids, terpenes, and phenolic compounds [58]. Terpene components of ginger include zingiberene, β-bisabolene zingerone while phenolic compounds include gingerol, paradols, and shogaol [58-59].

Conclusion

From this review it's clear that medicinal plants play a significant role within the treatment of mouth ulcer. The anti-ulcer activities probably due to the presence of flavanoids in herbal plants because of their better computability with form and lesser side effects. The herbal medicine is that the most suitable option for the treatment of mouth ulcer due to the presence of chemical constituents which are naturally
Available and with their great uses and healing effects. As Ayurveda is the oldest medicinal system in the world, which provides ends up in finding therapeutically useful compounds from plants. Therefore, ayurvedic knowledge supported by modern science is important to isolate, characterize, and standardize the active constituents from herbal sources for antulcer activity. The combination of traditional and modern knowledge can produce better drugs for the treatment of mouth ulcer with fewer side effects.

References
1. Yogesh S Thorat, Aisha M Sarvagod, Shital V Kulkarni, Avinash H Hosmani. Treatment of Mouth ulcer by Curcumin loaded Thermoreversible Mucoadhesive gel. International Journal of Pharmacy and Pharmaceutical sciences 2015;7(10):399-402.
2. Moses S. Family practice notebook. Family practice notebook 2013. Online notebook available at http://www.fnpnotebook.com/legacy/ (accessed August 2014).
3. Chan FKL, Graham DY. “Review article: prevention of non-steroidal anti-inflammatory drug gastrointestinal complications—review and recommendations based on risk assessment,” Alimentary Pharmacology and Therapeutics 2004;19(10):1051-1061.
4. Debjit B, Chiranjib C, Tripathi KK, Pankaj Sampath Kumar KP. “Recent trends of treatment and medication peptic ulcerative disorder,” International Journal of Pharm Tech Research 2010;2(1):970-980.
5. Scully C, Shotts R. ABC of oral health. Mouth ulcers and other causes of orofacial soreness and pain. BMJ 2000;321:162-165.
6. Divyesh Yogi, Ghanshyam Patel, Bhavin Bhimani, Sunita Chaudhary, Upendra Patel. Formulation and Evaluation of Gel containing Amlexanox for Mouth Ulcer. International Journal of Pharmaceutical Research and Bio-Science 2015;4(2):356-364.
7. Budtz-Jørgensen E. Oral mucosal lesions associated with the wearing of removable dentures. J Oral Pathol 1981;10:65-80.
8. Niyaz Basha, Kalyani Prakasam, Divakar Goli. Formulation and evaluation of Gel containing Fluniconazole- Antifungal Agent. International Journal of Drug Development & Research.2011;3(4):109-12.
9. Mohsin J Jamadar, Rahmahammad Husen Shaikh. Preparation and evaluation of herbal gel formulation. Journal of Pharmaceutical Research and Education. 2017;1(2):201-224.
10. Niyaz Basha B, Kalyani Prakasam, Divakar Goli. Formulation and evaluation of Gel containing Fluniconazole- Antifungal Agent. International Journal of Drug Development & Research 2011;3(4):109-12.
11. Mohsin J Jamadar, Rahmahammad Husen Shaikh. Preparation and evaluation of herbal gel formulation. Journal of Pharmaceutical Research and Education 2017;1(2):201-224.
12. Ship JA, Chavez EM, Doerr PA, Henson BS, Sarmadi M. Recurrent aphthous stomatitis. Quintessence Int. 2000;31:95-112.
13. Jurge S, Kuffer R, Scully C, Porter SR. Mucosal Diseases Series, Number VI Recurrent aphthous stomatitis. Oral Dis 2006;12:1-21.
14. Fischman SL. Oral ulcerations. Semin Dermatol. 1994;13(2):74-7.
15. Woo SB, Sonis ST. Recurrent aphthous ulcers: a review of diagnosis and treatment. J Am Dent Assoc. 1996;127:1202-13.
16. Heidar Khademi, Pedram Iranmanesh, Alimoeini, Atefeh Tavangar. Evaluation of the Effectiveness of the Iralvex gel on the Recurrent Aphthous Stomatitis Management. International Scholarly Research Notices 2014, 1–5.
17. Sumitra Singh, Bhagwati Devi Rohilla. Formulation and evaluation of herbal gel from different parts of Cyamopsis Tetragonoloba (L) TAU. For wound healing. World Journal of Pharmacy and Pharmaceutical Sciences 2015;5(3):740-752.
18. Chun YJ, Ramos-Caro FA, Ford MJ, et al. Recurrent scarring ulcers of the oral mucosa. Arch Dermatol 1997;133:1162-3.
19. Chun-Lei Li, He-Long Huang, Wan-Chun Wang, Hong Hua. Efficacy and safety of topical herbal medicine treatment on recurrent aphthous stomatitis. Dove press journal 2016;10:107-115.
20. Purushotham K. Rao D, Vijaybhaskar S, Pratima. Formulation of topical oral gel for the treatment of oral sub mucous fibrosis. Scholars Research library. 2011;3(1):103-112.
21. Chun YJ, Ramos-Caro FA, Ford MJ et al. Recurrent scarring ulcers of the oral mucosa. Arch Dermatol 1997;133:1162-3.
22. Redman RS. Recurrent oral ulcers. Northwest Dent 1972:51:232-4.
23. Rezvaneinjad R, Navabi N, Khoshroo MR, Torabi N, Atai Z. Herbal Medicine in Treatment of Recurrent Aphthous Stomatitis. Journal of Islamic Dental Association of IRAN 2017;29(3):127-134.
24. Redman RS. Recurrent oral ulcers. Northwest Dent 1972:51:232-4.
25. Abolfazl Aslani, Behzad Zolfaghari, Fatemeh Davoodvandi. Design, Formulation and Evaluation of an oral gel from Punica Granatum Flower extract for the treatment of Recurrent Aphthous Stomatitis. Advanced Pharmaceutical Bulletin 2016;6(3):391-398.
26. Ambikar RB, Phadtare GA, Powar PV, Sharma PH. Formulation and Evaluation of the Herbal oral Dissolving film for treatment of Recurrent Aphthous Stomatitis. International Journal of Phytotherapy Research 2014;4(1):11-18.
27. Niyaz Basha B, Kalyani Prakasam, Divakar Goli. Formulation and evaluation of Gel containing Fluniconazole- Antifungal Agent. International Journal of Drug Development & Research 2011;3(4):109-12.
28. Mohsin J Jamadar, Rahmahammad Husen Shaikh. Preparation and evaluation of herbal gel formulation. Journal of Pharmaceutical Research and Education 2017;1(2):201-224.
29. Abdullah MJ. Prevalence of recurrent aphthous ulceration experience in patients attending Piramid dental speciality in Sulaimani City. J Clin Exp Dent 2013;5:e89e94.
30. Miller MF, Garfunkel AA, Ram C, Ship II. Inheritance patterns in recurrent aphthous ulcers: twin and pedigree data. Oral Surg Med Oral Pathol 1977;43(6):886-91.
31. Huling LB, Baccaglini L, Choquette L, Feinn RS, Lalla RV. Effect of stressful life events on the onset and duration of recurrent aphthous stomatitis. J Oral Pathol Med. 2012;41:149-152.
32. Camila de Barros Gallo, Maria Angela Martins Mimura, Norberto Nobuo Sugaya. Psychological stress and recurrent aphthous stomatitis. Clinics 2009;64(6):645-
33. Volkov I, Rudoy I, Freud T et al. Effectiveness of vitamin B12 in treating recurrent aphthous stomatitis: a randomized, double-blind, placebo-controlled trial. J Am Board Fam Med 2009;22:9-16.

34. Rees TD, Binne WH. Recurrent aphthous stomatitis. Dermatol Clin. 1996;14:243-56.

35. Woo SB, Sonis ST. Recurrent aphthous ulcers: a review of diagnosis and treatment. J Am Dent Assoc 1996;127:1202-13.

36. Zuzanna Ślebioda, Elżbieta Szponar, Anna Kowalska. Recurrent aphthous stomatitis: genetic aspects of etiology. Postępy Dermatologii i Alergologii XXX 2013;2:96-102.

37. Rogers RS. Recurrent aphthous stomatitis: clinical characteristics and evidence for an immunopathogenesis. J Invest Dermatol 1977; 69:499-509.

38. Kamile Marakoğlu, Recep Erol Sezer et al. Recurrent aphthous stomatitis frequency in the smoking cessation people: Clin Oral Invest 2007;11:149-153.

39. Anjali Teresa, Krishna Kumar K, Dinesh Kumar B, Anish John. Herbal Remedies for Mouth Ulcer. Journal of Bio Innovation 2017;6(4):521-527.

40. Dhere MD, Kumbhar RB, Holam MR. Extraction, Phytochemical study, Formulation and Evaluation of Antiulcer activity of Jasminum Grandiflorum L. International Journal for Pharmaceutical Research Scholars 2017;6(2):111-119.

41. Nadkarni’s KM. Indian Materia Medica, Popular Prakashan, Mumbai, India 1976;1:38-39.

42. Nadkarni’s KM. Indian Materia Medica, Popular Prakashan, Mumbai, India, 1976;1:116-117.

43. Nadkarni’s KM. Indian Materia Medica, Popular Prakashan, Mumbai, India 1976;1:764-769.

44. Nadkarni’s KM. Indian Materia Medica, Popular Prakashan, Mumbai, India 1976;1:776-783.

45. Kumari Subitha T, Ayyanar M, Udayakumar M, Sekar T. “Ethnomedicinal plants used by Kani tribals in Pechiparai forests of Southern Western Ghats, Tamil Nadu, India,” International Research Journal Plant Science 2011;2(12):349-354.

46. Grzanna R, Lindmark L, Frondoza CG. “Ginger-an herbal medicinal product with broad anti-inflammatory actions,” Journal of Medicinal Food 2005;8(2):125-132.

47. Langner E, Greifenberg S, Gruenwald J. “Ginger: history and use,” Advances in Therapy 1998;15(1):25-44.

48. Shukla Y, Singh M. “Cancer preventive properties of ginger: a brief review,” Food and Chemical Toxicology 2007;45(5):683-690.