Introduction

The N-end rule pathway is a ubiquitin (Ub)-dependent proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells.
functionally overlapping RING finger E3 ligases with similarity in size (200 kDa), conserved domains, and specificities to N-degrons [6,9,10,16]. Recently, two additional proteins, termed UBR4 and UBR5, were found to bind to certain destabilizing N-terminal residues, yet their physiological substrates remain unknown [9]. Known mammalian N-recognins share a 70-residue zinc-finger domain, called the UBR box, which binds type-1 N-terminal residues with a dissociation constant (K_d) of 1.6-3.4 μM [16–19]. Type-2 residues bind to a distinct domain, termed the N-domain (alternatively called the ClpS-homology domain) [16–19]. Mouse UBR1 and UBR2 can mediate the ubiquitylation of N-end rule substrates in concert with Ub conjugating enzymes HR6B/Ube2b and HR6A/Ube2a sharing 95% identity to each other, two closely related functional homologs of yeast Rad6 and human UbcH2 of the N-end rule pathway [2,3,5]. Mammalian UBR2 is involved in genome-wide monoubiquitylation and polyubiquitylation on meiotic chromosomes of spermatocytes, whose misregulation correlates to defective repair of DSBs and other meiotic processes. In somatic cells, UBR2 is recruited to chromatin during cell cycle and upon DNA damage and contributes to the induction of ubiquitylation of chromatin-associated proteins and to the integrity of chromosomes. We also show that UBR2 acts as a scaffold that can promote E2-mediated ubiquitylation of H2A and H2B and that this function of UBR2 is allosterically activated by dipeptides bearing destabilizing N-terminal residues of the N-end rule pathway.

Results
Chromatin localization of UBR2 correlates to transient induction of ubiquitin conjugates on meiotic chromosomes

To characterize spatiotemporal distributions of Ub conjugates associated with meiotic chromatin, we stained surface-spread meiotic chromosomes from spermatocytes (n = 462, 5 mice) of P16 C57/129 mice using FK2 antibody known to detect both monoubiquitin (monoUb) and polyubiquitin (polyUb) conjugates [39]. The Ub staining was not readily detected at leptotene (n = 18 of 18) (Fig. 1A) through early zygotene (n = 32 of 32) (data not shown). By mid–late zygotene when homologous chromosomes are partially paired, the Ub signal was sharply induced along the unsynapsed axes of autosomes (Fig. 1E). By mid-pachytene when XY pairing has completed, the Ub staining was sharply induced along the unsynapsed axes of autosomes (n = 37 of 62), which are linked to MSUC (Fig. 1B). The Ub staining was deficient in the telomere region, in contrast to the UBR2 staining (Fig. 1F, G). As autosomes complete synapsis, the signal disappeared from autosomal axes and moved to unsynapsed XY axes (n = 24 of 37) (Fig. 1B vs. 1C). By mid-pachytene when XY pairing has completed, the Ub staining in XY axes expanded to the linked chromatin (Fig. 1C vs. 1D). At late pachytene when cells have completed recombination and DNA repair (n = 174 of 344 pachytene spermatocytes), an intense Ub signal was induced in the chromatin domain of autosomes (Fig. 1E).

To determine polyubiquitylation on meiotic chromosomes, surface-spread chromosomes (n = 319, 5 mice) were stained with FK1 antibody which detects polyubiquitylation but not mono-ubiquitylation. In contrast to the FK2 staining that marks unsynapsed autosomal axes at zygotene (Fig. 1), no significant FK1 staining was detected at leptotene (n = 22) through late zygotene (n = 83) (Fig. 2A). At early pachytene, the polyUb staining was induced in the unsynapsed axes of the X and Y chromosomes (n = 5) (Fig. 2B). The polyUb signal was massively induced in the XY body at mid-pachytene (n = 55) (Fig. 2C) and, by mid-late pachytene, in the chromatin of autosomes as well (n = 13) (Fig. 2D).

consistent with a recent study [29], the UBR2 signal was detected at leptotene (data not shown) through early zygotene
Fig. 1A) as foci in the chromatin and as segment-like staining along newly emerging axial elements. At late zygotene through early pachytene, the UBR2 staining significantly colocalized with the FK2 staining along unsynapsed axes which are linked to MSCI and MSUC (Fig. 1B, 1C). At mid-pachytene, UBR2 and FK2 signals became distinct in that the FK2 staining was induced in the XY body, while the UBR2 staining remained to be restricted to the unsynapsed axes of the X and Y chromosomes (Fig. 1D). This axis-to-chromatin spreading of epigenetic modification has been reported with H2AX phosphorylation during MSCI, which is mediated by the BRCA1-ATR pathway [40]. Overall, the chromatin domain outside the XY body showed a minimal level of ubiquitylation until the cells have completed recombination, synapsis and repair. Importantly, when the cells approach late pachytene which involves chromatin condensation prior to metaphase, both UBR2 foci and the Ub staining were induced in the entire chromatin domain (Fig. 1E), suggesting that meiotic chromatin ubiquitylation is linked to pachytene checkpoint.

UBR2 is required for optimal induction of meiotic chromatin-associated ubiquitylation

To determine the role of UBR2 in polyubiquitylation on meiotic chromosomes, surface-spread meiotic chromosomes were coimmunostained with FK1 antibody (red) which specifically recognizes polyubiquitin conjugates (poly-Ub) and an antibody to UBR2 (green). (A) Zygote. (B) Early pachytene. (C) Mid-pachytene. (D) Mid-late pachytene. Different from the FK2 staining, polyubiquitin conjugates are enriched in sex chromosomes until mid-pachytene. At mid-pachytene, both polyubiquitin and UBR2 signals are drastically induced in the majority of chromosomal regions except that the chromatin domain of sex chromosomes is relatively devoid of the UBR2 staining. The spermatocytes were staged based on the localization profile of UBR2 and the topology of the sex chromosomes. Scale bar: 10 µm (A–E), 5 µm (F, G).

doi:10.1371/journal.pone.0037414.g001

(Fig. 1A) as foci in the chromatin and as segment-like staining along newly emerging axial elements. At late zygotene through early pachytene, the UBR2 staining significantly colocalized with the FK2 staining along unsynapsed axes which are linked to MSCI and MSUC (Fig. 1B, 1C). At mid-pachytene, UBR2 and FK2 signals became distinct in that the FK2 staining was induced in the XY body, while the UBR2 staining remained to be restricted to the unsynapsed axes of the X and Y chromosomes (Fig. 1D). This axis-to-chromatin spreading of epigenetic modification has been reported with H2AX phosphorylation during MSCI, which is mediated by the BRCA1-ATR pathway [40]. Overall, the chromatin domain outside the XY body showed a minimal level of ubiquitylation until the cells have completed recombination, synapsis and repair. Importantly, when the cells approach late pachytene which involves chromatin condensation prior to metaphase, both UBR2 foci and the Ub staining were induced in the entire chromatin domain (Fig. 1E), suggesting that meiotic chromatin ubiquitylation is linked to pachytene checkpoint.

UBR2 is required for optimal induction of meiotic chromatin-associated ubiquitylation

To determine the role of UBR2 in polyubiquitylation on meiotic chromosomes, surface-spread meiotic chromosomes from control (n = 319, 5 mice) and UBR2−/− (n = 375, 7 mice) spermatocytes of C57/129 mice at P16 were stained using FK1 antibody. When 73 FK1-positive pachytene chromosomes were analyzed, polyubiquitylation was prominently detected in unsynapsed XY axes at early pachytene (n = 5), the XY body at mid-pachytene (n = 55), and the entire chromatin regions at mid-pachytene (n = 13) (Fig. 3). Strikingly, UBR2−/− spermatocytes (n = 375) showed drastically reduced polyUb signals from leptotene (n = 43) and zygotene (n = 162) through pachytene (n = 170) (Fig. 3). Similar results were obtained in at least two independent experiments with total ~1,000 nuclei observed (data not shown). These results suggest that UBR2 is required to maintain the proper level of polyubiquitin conjugates on meiotic chromosomes at early and mid-pachytene spermatocytes.

doi:10.1371/journal.pone.0037414.g002

Figure 1. The localization of Ub conjugates on meiotic chromosomes in comparison with UBR2. Surface-spread meiotic chromosomes were coimmunostained with FK2 antibody (red) which recognizes both monoubiquitin and polyubiquitin conjugates and an antibody to UBR2 (green). (A) Leptotene. (B) Mid-/late zygotene. (C) Early pachytene. (D) Mid-pachytene. (E) Mid-late pachytene. (F, G) The comparison of FK2 and UBR2 signals near the telomere region. Both Ub and UBR2 signals are enriched in specific regions of meiotic chromosomes until mid-pachytene, with significant colocalization along unsynapsed axial regions. At mid-pachytene, both signals are drastically induced in the majority of chromosomal regions except that the chromatin domain of sex chromosomes is relatively devoid of the UBR2 staining. The spermatocytes were staged based on the localization profile of UBR2 and the topology of the sex chromosomes. Scale bar: 10 µm (A–E), 5 µm (F, G).

doi:10.1371/journal.pone.0037414.g001

Figure 2. The localization of polyubiquitin conjugates on meiotic chromosomes in comparison with UBR2. Surface-spread meiotic chromosomes were coimmunostained with FK1 antibody (red) which specifically recognizes polyubiquitin conjugates (poly-Ub) and an antibody to UBR2 (green). (A) Zygote. (B) Early pachytene. (C) Mid-pachytene. (D) Mid-late pachytene. Different from the FK2 staining, polyubiquitin conjugates are enriched in sex chromosomes until mid-pachytene. At mid-pachytene, both polyubiquitin and UBR2 signals are drastically induced in the majority of chromosomal regions except that the chromatin domain of sex chromosomes is relatively devoid of the UBR2 staining. Scale bar: 10 µm.

doi:10.1371/journal.pone.0037414.g002
H2B showed a higher level of monoubiquitylation and poly-HR6B/Ubc2H-dependent ubiquitylation activities to H2A and samples (E3-Fs), prepared using Phe-peptide, reproducibly showed (not shown) and, thus, used as a negative control. Pulldown a stabilizing N-terminal residue yielded no detectible N-recognins 150 mM) salt concentrations to preserve possible protein-protein residue as an affinity ligand [9], we pulled down endogenous enzymes. Using a 12-mer Phe-peptide bearing a type-2 N-terminal specificities of endogenous N-recognins to histones and E2 an E3 activity for ubiquitylation of H2A [29]. We determined the FK2 Ub signal of

pachytene (Fig. 4A–F). However, we reproducibly observed that polyUb signals. No significant difference was obvious until early somes. Scale bar: 10

polyubiquitin signals are virtually nondetectible in pachytene. Arrowhead indicates the sex chromosome. Note that synaptonemal complex. (A) Zygote. (B) Early pachytene. (C) Mid-pachytene. Figure 3. Genome-wide polyubiquitylation activities on meiotic chromosomes. Surface-spread meiotic chromosomes were communostained with FK1 antibody (red) which specifically recognizes polyubiquitin conjugates and an antibody to SCP3 (green), a component of the synaptonemal complex. (A) Zygote. (B) Early pachytene. (C) Mid-pachytene. Arrowhead indicates the sex chromosome. Note that polyubiquitin signals are virtually nondetectible in UBR2−/− chromosones. Scale bar: 10 µm. doi:10.1371/journal.pone.0037414.g003

Next, we stained control (n = 462) and UBR2−/− (n = 316) spermatocytes with FK2 antibody to detect both monoUb and polyUb signals. No significant difference was obvious until early pachytene (Fig. 4A–F). However, we reproducibly observed that the FK2 Ub signal of UBR2−/− spermatocytes was moderately but significantly reduced in the XY body at mid-pachytene (Fig. 4G, H) and the entire chromatin domain at late pachytene (Fig. 4I, J).

A previous in vitro ubiquitylation assay showed that UBR2 has an E3 activity for ubiquitylation of H2A [29]. We determined the specificities of endogenous N-recognins to histones and E2 enzymes. Using a 12-mer Phe-peptide bearing a type-2 N-terminal residue as an affinity ligand [9], we pulled down endogenous UBR2 (as a mixture of UBR1) from rat or dog testes at low (75–150 mM) salt concentrations to preserve possible protein-protein interactions during purification. In this assay, Val-peptide bearing a stabilizing N-terminal residue yielded no detectible N-recognins (not shown) and, thus, used as a negative control. Pulldown samples (E3-Fs), prepared using Phe-peptide, reproducibly showed HR6B/Ubc2H-dependent ubiquitylation activities to H2A and H2B but not H1, H3, or H4 (Fig. 5A, data not shown). Overall, H2B showed a higher level of monoubiquitylation and poly-

ubiquitylation compared to H2A. Under these conditions, pulldown samples (E3-Vs) prepared using Val-peptide did not show ubiquitylation activities. To verify these results, we determined the interaction of UBR2 with histones. In this assay UBR2 (as a mixture with UBR1) immobilized on Phe-peptide-beads were mixed with a test histone in the presence or absence of E1, GST-HR6B/UbcH2 and Ub activating reagents. Consistent with the results from ubiquitylation assays, H2A and H2B showed specific retention to Phe-peptide but not to Val-peptide (Fig. 5B). Next, to identify E2s that can promote N-recognin-mediated histone ubiquitylation, we determined ubiquitylation of H2A using E3-F and an array of E2s (UbcH1, UbcH2, UbcH3, UbcH6, UbcH5a, UbcH5b, UbcH5c, UbcH7, UbcH8, UbcH9, UbcH10, UbcH12, and UbcH13). Amongst these E2s, only UbcH2 (and GST-UbcH2) and UbcH5b reproducibly promoted E3-F-mediated H2A ubiquitylation (Fig. 5C). These in vitro results, together with the data from spermatocytes, suggest that UBR2 plays a genome-wide role in chromatin-associated ubiquitylation during meiotic prophase I in spermatocytes and that UBR2 may have multiple E2 partners in ubiquitylation of meiotic chromosomes.

UBR2-mediated histone ubiquitylation is accelerated by dipeptides bearing destabilizing N-terminal residues

S. cerevisiae Ubr1, the only N-recognin of the yeast N-end rule pathway, is the homolog of mammalian UBR1 and UBR2 [41]. In addition to type-1 and type-2 substrate binding domains, it has an additional site that recognizes substrates carrying internal degrons (non-N-degrons) [41]. It has been shown that short peptides bearing type-1 and type-2 residues (e.g. Arg-Ala and Trp-Ala) bind to Ubr1 and induces allosteric conformational changes resulting in accelerated ubiquitylation of its substrate bearing an internal degron, Cup9 [41]. To characterize the interaction of UBR2 with HR6B and H2A and to test whether small molecules can allosterically activate the E3 activity of UBR2 in ubiquitylation of substrates carrying internal degrons, we performed in vitro UBR2-mediated ubiquitylation of H2A. UBR2 (as a mixture with UBR1) immobilized to X-peptide-beads was mixed with H2A and/or HR6B in the presence or absence of the type-1 dipeptide Arg-Ala, followed by monitoring the amounts of H2A and HR6B retained by immobilized E3s (Fig. 5D). (Note that UBR2 immobilized by Peptide is already occupied in the type-2 site.) Figure 5D shows that the amount of bound HR6B increases by the addition of H2A (lanes 3 vs. 2), suggesting that the UBR2-HR6B binding is facilitated when HR6B is charged with H2A. Importantly, the amount of bound HR6B was synergistically increased in the presence of both H2A and 2 mM Arg-Ala (lanes 4 vs. 3). Thus, the UBR2-HR6B interaction is accelerated when the UBR box is occupied by its ligand. To further characterize the interaction between HR6B and H2A, we performed the GST-pulldown assay using purified GST-HR6B, H2A, and UBR2 (as a mixture with UBR1). In the absence of Ub-activating reagents, i.e., when HR6B exists as a free form, the HR6B-H2A interaction was promoted by E3 alone (Fig. 5E, lanes 3 vs. 2) and, moreover, synergistically accelerated in the presence of both E3 and its ligand Arg-Ala (lanes 4 vs. 2). In addition, the HR6B-H2A interaction was drastically accelerated in the presence of Ub-activating reagents (Fig. 5E, lanes 5 vs. 2 and 7 vs. 3). Finally, Figure 5F shows that UBR2-dependent ubiquitylation is synergistically activated by both type-1 and type-2 ligands (lanes 1 vs. 2; 1 vs. 4). These results suggest that the E3 activity of UBR2 in histone ubiquitylation can be allosterically activated by small molecules or destabilizing residues of polypeptides or their derivatives.
Loss of UBR2 results in pachytene arrest at stage IV

To determine the role of UBR2-dependent histone ubiquitylation in meiotic processes, we studied testis sections of UBR2-deficient mice at 8 weeks of age. In seminiferous tubules just before they reach epithelial stage IV, a large number of spermatocytes (thick arrows) were present, indicating that the spermatogonial compartment kept forming spermatocytes normally (Fig. 6A). However, in tubules of mutant mice in stage IV a massive apoptosis of spermatocytes was observed (Fig. 6B). The stage IV apoptosis of spermatocytes was not complete as tubules in a later stage than stage IV contained varying numbers of spermatocytes and round spermatids representing cells that survived stage IV. In this respect a variation was seen between individual tubules and animals (Fig. 6A, left vs. right tubules). The majority of mutant tubules (Fig. 6C, left) showed only a few surviving spermatocytes (arrowhead) and round spermatids (thin arrows), yet some mildly affected tubules (Fig. 6C, right) contained a significant number of spermatocytes and round spermatids and, occasionally, even elongated spermatids. In either case, elongated spermatids typically had an abnormal morphology (Fig. 6C). The arrest of mutant spermatocytes at stage IV was already obvious at 2–3 week old tubules (Fig. 6D; data not shown), suggesting that the arrest already affected the earliest spermatocytes reaching stage IV.

To determine the role of UBR2-dependent histone ubiquitylation in chromatin dynamics during meiotic substages, we employed immunofluorescence of SCP3/SYCP3 on spread meiotic chromosomes (n=3,000) from +/+ and UBR2−/− mice at P16–P21 when spermatocytes are in the process of the first meiotic wave. Amongst several independent assays whose results are largely consistent with each other, described here is an assay using 781 control and 691 UBR2−/− spermatocytes at P17. As shown in Figure 6E, UBR2−/− spermatocytes were enriched in leptotene (5.1% in +/+ vs. 10% in −/−) and zygotene population (23% in +/+ vs. 42% in −/−) at the expense of pachytene population (72% in +/+ vs. 48% in −/−) (Fig. 6F). These results together suggest that UBR2-loss causes pachytene arrest at stage IV with a varying degree of leakiness depending on individual tubules and mice.
Loss of UBR2 results in defective DSB repair and other meiotic processes

One prominent phenotype observed in UBR2−/− spermatocytes (n > 1,000) from P17–P21 mice was defective repair of DSBs. The localization of phosphorylated histone H2AX (γH2AX) is a hallmark for formation of DSBs and initiation of repair, and the disappearance of γH2AX is a hallmark for successful DSB repair [42,43]. In +/+ spermatocytes, γH2AX signal appeared as distinct foci at leptotene and became gradually prominent in the XY body at late zygotene, resulting in almost complete disappearance asynapsis. Approximately 26% of pachytene-like spermatocytes (n = 161) showed asynapsis. When +/+ spermatocytes at mid-pachytene were stained for BRCA1 which marks unsynapsed axes, the signal was exclusively detected in unsynapsed axes, the sites where crossing-over occurred. Although statistically not significant, no diplotene-like BRCA1-positive autosomes in asynapsis were segregated to the nuclear periphery, typically near the X-Y pair, perhaps through a common cytoskeleton mechanism.

To determine the effect of UBR2-loss on early meiotic events, we examined the association and dissociation of proteins involved in recombination and DNA repair using +/+ and UBR2−/− spermatocytes at P16–P21. SPO11-induced DSB formation triggers recruitment of recombination and repair proteins, such as RAD51, RPA1, and FANCE22, to DSB sites [43,45,46]. The HR6B-H2A interaction is cooperatively facilitated by UBR2 and Arg-Ala. GST-pulldown assays were done with 200 ng GST-HR6B, 200 ng UBR2, 1 μg H2A, and/or 2 mM Arg-Ala. (F) UBR2-dependent H2A ubiquitylation is synergistically activated by type-1 and type-2 N-end rule ligands.

do:-10.1371/journal.pone.0037414.g005

Figure 5. UBR2 mediates monoubiquitylation and polyubiquitylation of H2A and H2B but not H3 and H4. (A) In vitro ubiquitylation assay (20 μL) with 1 μg of histone H2A, H2B, H1, or H3. The reaction contains 100 ng E3-F (or E3-V) prepared from rat testes, 30 ng UbcH2, and Ub activating reagents, including 1 μg flag-Ub and 100 ng E1. E3-F and E3-V represent protein mixtures that have been captured by Phe-peptide and Val-peptide, respectively. (B) In vitro binding assay in which UBR2 (as a mixture with UBR1) immobilized on Phe-peptide-beads was mixed with histone H2A, H2B, or H3 in the presence of HR6B, E1, and Ub activating reagents, followed by immunoblotting of histones retained by X-peptide (X = Phe or Val). (C) The screening of E2s which can support E3-F-mediated ubiquitylation of H2A. In vitro ubiquitylation assays were performed as (A) with different E2s indicated above. In this screening, UbcH2 and UbcH5b showed reproducibly the E2 activity in H2A ubiquitylation. (D–F) Allotopic modulation, an additional E2, and synthetic ligands for UBR2. (D) The interaction between UBR2 and HR6B is cooperatively accelerated by H2A and Arg-Ala. UBR2 (0.2 μg) from 10 mg rat testes extracts were immobilized with Phe-peptide conjugated with beads. Precipitated E3-peptide beads were mixed with 60 ng HR6B, 1 μg H2A, and/or 2 mM Arg-Ala, followed by immunoblotting analysis. (E) The HR6B-H2A interaction is cooperatively facilitated by UBR2 and Arg-Ala. GST-pulldown assays were done with 200 ng GST-HR6B, 200 ng UBR2, 1 μg H2A, and/or 2 mM Arg-Ala. (F) UBR2-dependent H2A ubiquitylation is synergistically activated by type-1 and type-2 N-end rule ligands.
exchange [47], and RPA1 subsequently stabilizes single-stranded DNA intermediates and thus prevents complementary DNA from re-annealing. The numbers of RAD51 and RPA1 foci in UBR2−/− spermatocytes were normal at leptotene (Figure S2A, B) and moderately reduced (by 25–30%) at late zygotene and early pachytene compared to +/+ cells (data not shown; Figure S2C). In addition, pachytene-like UBR2−/− spermatocytes showed a normal staining pattern for FANCD2 (Figure S3), a component of the Fanconi anemia (FA) complex, whose monoubiquitylation is a hallmark for recruitment of FA components and other repair proteins. These results together suggest that in the absence of UBR2, recombination and repair proteins are normally recruited to SPO11-induced DSB sites, but the repair of DSBs and other meiotic processes, such as synapsis, are impaired, which triggers meiotic arrest via pachytene checkpoint. An alternative, mutually nonexclusive possibility is that defective MSCI in UBR2−/− spermatocytes contributes to the activation of the pachytene checkpoint [48].

UBR2 is a chromatin-associated protein in somatic cells
We tested whether the functions of UBR2 observed in germ cells are conserved in somatic cells as well. Immunofluorescence analyses detected the UBR2 staining prominently in the nucleus of cultured mouse embryonic fibroblasts (MEFs) (Fig. 8A) and HeLa

Figure 6. Pachytene arrest of UBR2−/− spermatocytes at stage IV. (A–D) Testis sections from 8-week (A–C) and 3-week (D) old UBR2−/− tubules. (A) Tubules that did not yet reach epithelial stage IV. A large number of spermatocytes (thick arrow) are present, indicating that the spermatogonial compartment keeps forming spermatocytes. Arrowhead, diplotene spermatocyte; thin arrow, round spermatid. The predecessors of these cells survived the stage IV arrest. (B) Tubules in epithelial stage IV as evidenced by the presence of large, G2 phase intermediate (In) spermatogonia (blue arrow) about to or dividing into B spermatogonia (yellow arrowhead). There is massive apoptosis of spermatocytes (asterisks). (C) Tubules after stage IV. A variable number of spermatocytes survive the passage through stage IV. The left tubule shows only one spermatocyte (arrowhead) and a few round spermatids (thin arrow) that stem from spermatocytes that survived stage IV one epithelial cycle earlier. The tubule on the right shows more spermatocytes (arrowhead) and round spermatids (black arrow) and even a few elongated spermatids (yellow arrow). (D) Stage IV arrest at the age of 3 weeks. The lower tubule shows massive apoptosis (asterisk). The upper tubule is after stage IV and shows two surviving spermatocytes (arrowhead), indicating that the arrest was already present before three weeks. (E) Surface-spread chromosomes of 781 control and 691 UBR2−/− spermatocytes isolated from mice at P17 were stained with SCP3 and staged based on the morphology of SCP3-positive chromosomes. (F) Surface-spread chromosomes of 344 +/+ and 161 UBR2−/− pachytene spermatocytes were substaged.

doi:10.1371/journal.pone.0037414.g006
and U2OS cells (Fig. 9B). In the nucleus, the staining was enriched in lightly packed, transcriptionally active euchromatin as determined by weak DAPI staining (Fig. 8A). When MEFs were fractionated, 20–40% of UBR2 was retrieved from the nucleus, in which the majority was associated with chromatin (Fig. 8B). While fractionating proteins, we noticed that the replication licensing factor CDC6 is sensitive to iodoacetamide (an inhibitor of deubiquitylating enzymes (DUBs)) and, moreover, down-regulated in UBR2+/− MEFs, indicating a possible misregulation in cell cycle (Fig. 8B). To test UBR2-association to chromatin during cell cycle, HeLa cells were synchronized at the G1-S border using the double thymidine block, released from G1-S arrest, and subjected to time-course fractionation (Fig. 8C). Immunoblotting showed that the level of chromatin-bound UBR2 was relatively higher at G2/M phase compared with other stages (Fig. 8C) without a significant change in the amount of UBR2 mRNA (Figure S4A, B). These results suggest that UBR2 recruitment to chromatin is induced at G2/M transition or within M phase when chromosomes undergo transcriptional silencing and condensation.

UBR2 is involved in chromatin-associated ubiquitylation upon DNA damage in somatic cells

The treatment of MEFs with mitomycin C (0.1 μg/ml) or UV irradiation (20 J/m²) for 24 hrs resulted in marked accumulation of mouse UBR2 in the nucleus and, to a less degree, the cytosol (Fig. 9A), without transcriptional induction (Figure S4C). Human UBR2 was also induced in U2OS and HeLa cells treated with mitomycin C (0.1 μg/ml) for 24 hrs (Fig. 9B). Immunoblotting of total extracts confirmed the accumulation of mouse UBR2, but not UBR1, in mitomycin C- or UV-treated MEFs (Fig. 9C). Mouse UBR2, but not UBR1, also accumulated upon proteasomal inhibition by MG132 (Fig. 9C, D). Consistently, the treatment of iodoacetamide down-regulated UBR2, but not UBR1, in the cytosol (Fig. 8B), suggesting that UBR2 may be a target of proteasomal regulation. To determine the role of UBR2 in DNA damage-induced ubiquitylation, cells were treated with mitomycin C (0.1 μg/ml) for 24 hrs and stained for Ub conjugates. UBR2-knockdown U2OS cells failed to induce a normal level of Ub conjugates (Fig. 9E). This effect was not obvious 1 hr post irradiation (data not shown), suggesting that UBR2 may be involved in long-term DNA damage response.

Flow cytometry analysis of double thymidine-blocked HeLa cells showed that UBR2-knockdown HeLa cells were more confluent compared to controls (data not shown). Consistently, two independent UBR2 siRNAs induced hyperproliferation in HeLa cells (Fig. 10A). Hyperproliferation may be caused by defective G2/M arrest which typically results in chromosome instability. When the integrity of metaphase chromosome spreads was examined in +/+ (n = 109) and UBR2−/− (n = 113) MEFs, chromosomes from UBR2−/− MEFs showed an elevated level of abnormalities, including breakage (1.8% in +/+ vs. 13% in −/−).

Figure 7. Defective DSB repair in UBR2−/− spermatocytes. (A) Prolonged retention of the γH2AX staining in pachytene chromosomes of UBR2−/− spermatocytes. Wild type and UBR2−/− spermatocytes were stained with γH2AX (green) and SCP3 (red). Scale bars: 10 μm. (B) The near absence of MLH1 (green) foci in UBR2−/− spermatocytes at pachytene. (C) Asynapsis in UBR2−/− spermatocytes at pachytene as indicated by unpaired autosomes segregated near the X-Y pair. Control and UBR2−/− chromosomes were stained for RNA polymerase II, SCP3, or BRCA1. doi:10.1371/journal.pone.0037414.g007
that induce DNA damage using the MTT assay. Compared with
To test whether UBR2 is required for DNA damage response, we
both in germ cells and somatic cells.

These results reproducibly extended a previous report [49]. These results
iodoacetamide, followed by immunoblotting for proteins indicated. (B)
soluble, and chromatin-bound fractions in the presence or absence of
down-regulation of chromatin-associated cyclin A and CDC6.

Cytometry and based on behaviors of cell cycle regulators, including
synchronized at the G1-S border using the double thymidine block,
Chromatin association of UBR2 is cell cycle-dependent. HeLa cells were
stained for UBR2 without (top) and with a peptide that has been used

Figure 8. UBR2 is associated with chromatin during cell cycle of
somatic cells. (A) UBR2 is enriched in the nucleus of MEFs. MEFs were
stained for UBR2 without (top) and with a peptide that has been used
to raise the antibody. (B) UBR2 is associated with chromatin in MEFs. Control and UBR2−/−
cells were separated into cytosolic, nuclear soluble, and chromatin-bound fractions in the presence or absence of
idoacetamide, followed by immunoblotting for proteins identified. (C) Chromatin association of UBR2 is cell cycle-dependent. HeLa cells were
synchronized at the G1-S border using the double thymidine block,
released from G1-S arrest, and subjected to time-course fractionation and
immunoblotting. Cell cycle stages were verified using flow
cytometry and based on behaviors of cell cycle regulators, including
down-regulation of chromatin-associated cyclin A and CDC6.
doi:10.1371/journal.pone.0037414.g008

and fragmentation (4.6% in +/+ vs. 43% in −/−) (Fig. 10B, C). To test whether UBR2 is required for DNA damage response, we examined the sensitivity of +/+ and UBR2−/−
MEFs to chemicals that induce DNA damage using the MTT assay. Compared with
+/+ cells, UBR2−/−
MEFs showed hypersensitivity to hydroxyurca, and methyl methanesulfonate (Fig. 10D), a finding that
reproduced and extended a previous report [49]. These results
together suggest that UBR2 is involved in DNA damage responses
both in germ cells and somatic cells.

UBR2-deficient neonatal pups enriched in the C57
genetic background die associated with defects in lung
expansion and neural development
To characterize the role of UBR2 in mammalian development
outside infertility, we generated UBR2−/−
, mice enriched in the C57 background by backcrossing UBR2+/
C57BL/6 mice for more than eight
generations. In contrast to 129/C57 UBR2−/−
mice which show
male-specific infertility, as genetic background shifted toward C57
background, UBR2 knockout caused neonatal lethality apparently
in both males and females. During embryogenesis at E15.5–E18.5, the
mutants showed normal Mendelian segregation (5/++, 9 +/+
, and 9 −/−) (Table 1). Upon histological and morphological
analysis, UBR2−/−
embryos at E15–E18.5 showed no severe
developmental arrest, although there was a moderate degree of
growth retardation in some mutants. However, at P0, i.e., at birth,
mutants showed hypersensitivity to hydroxy
2
/2
, UBR2−/−
2
/2
, and 32 −/−) (Table 1). Out of 32 homozygotes retrieved at birth, 10
were found dead, and 3 showed severe suffering (Fig. 11A). By
P20, most UBR2−/−
mice died, leaving only one homozygote out
of 79 mice genotyped (Table 1). When histologically examined,
cross sections of tissues from UBR2−/−
neonates showed no obvious
organisational failure except for specific defects in lung
expansion and neural development. In the lungs, small saccs called
alveoli store oxygen which is diffused from the alveoli into the
bloodstream. In contrast to +/+ neonates, alveoli were not
properly expanded in UBR2−/−
pups (Fig. 11B), suggesting that
one of contributing factors underlying neonatal lethality is
defective breathing. In addition to lung defects, histological
examination of P1 pups showed dilated ventricles in the absence
of UBR2 (Fig. 11D). In situ hybridization of P1 brains revealed
specific expression of UBR2 mRNA in cortex of brain (Fig. 11C).
Immunohistochemical analysis with GFAP (glial fibrillary acidic
protein), a marker of glia, and NeuN (neuronal nuclear) showed
impaired gliogenesis and neuronal differentiation in hippocampus
in UBR2−/−
brains at P1 (Fig. 11E). It is known that when DNA
damage is not repaired, misregulation of the cell cycle associated
with activation of the cell cycle checkpoint system affect
proliferation and survival of nerves cells [50], suggesting that
defective DNA repair may at least partially underlie severe defects
in neurogenesis of UBR1−/−
UBR2−/−
embryos at midgestation.
These results implicate, for the first time, UBR2 in specific
processes at an organ level outside spermatogenesis.

Discussion

UBR2 plays a genome-wide role in chromatin-associated
ubiquitylation during meiotic prophase I in
spermatocytes

Given that more than 500 E3s function in virtually all known
processes, we initially anticipated that meiotic chromosomes would
be ubiquitously associated with a high level of Ub conjugates which
represents various histone species and other chromatin-
associated proteins. However, our results suggest that meiotic
chromosomes are specifically marked by two types of ubiquitylation:
a low-density, constitutive ubiquitylation as part of DNA
homeostasis and a high-density, inducible ubiquitylation which
transiently regulates gene expression and chromatin dynamics
during meiosis. The inducible ubiquitylation can be further
divided into two stages depending on synopsis status. Before
synapsis is completed, Ub is enriched in unsynapsed axes linked to
the chromatin regions subject to MSC1 and MSUC. Once
chromosomes complete several milestones (synapsis, recombin'a-
tion, crossing-over, and DSB repair) and approach a meiotic stage equivalent to chromatin-condensing prometaphase in somatic cells, ubiquitylation is massively induced in the entire nucleus. Given the differences between FK1 and FK2 signals, the axial staining may represent histone monoubiquitylation in the context of chromatin silencing, whereas the intense ubiquitylation induced at pachytene may be relevant to chromatin condensation. Notably, our results show that chromatin localization of UBR2 significantly correlates to the sites of inducible ubiquitylation activities. Moreover, some of these ubiquitylation activities, in particular the polyUb-specific staining, are fundamentally diminished in UBR2−/− spermatocytes. It is unlikely that the defects are solely due to developmental delay as the majority of UBR2−/− spermatocytes reach early or mid-pachytene-like stages (Fig. 6E).

A model that explains how an E2–E3 complex repeats ubiquitylation cycles while scanning through chromatin

Our results indicate mechanistic differences in ubiquitylation of short-lived cytosolic substrates and DNA-bound stable proteins. The paradigm in Lys48-linked polyubiquitylation of short-lived proteins is that E3 interacts with both E2 and substrate (S) through two sites of the E3 surface which are often apart by 50–60 Å. Nonetheless, we do not exclude the possibility that pachytene arrest can delay the ubiquitylation. In the cytoplasm, Lys48-linked polyubiquitylation typically leads to the substrate’s degradation through the 26 S proteasome complex. Therefore, the apparent activity of UBR2 in histone polyubiquitylation raises a question as to whether UBR2-mediated polyubiquitylation would lead to proteasomal degradation or function as a nonproteolytic signal in meiotic pathways, for example, in DSB repair.

Recent studies [33,38] reported that spermatocytes lacking RNF8 at pachytene are impaired in ubiquitylation of H2A but normally contain the ability to induce XY silencing. This suggests that UBR2 may have additional functions outside H2A ubiquitylation, such as H2B ubiquitylation or other nuclear or cytosolic proteins, which together contributes to the function of the X and Y chromosomes. An alternative, mutually nonexclusive possibility is that RNF8 has a relatively limited role in histone ubiquitylation at stages earlier than mid-pachytene.

Figure 9. UBR2 is involved in ubiquitylation of chromatin-associated proteins in DNA-damaged somatic cells. (A) MEFs were treated with 0.1 μg/ml mitomycin C (MMC) or irradiated with UV at 20 J/m². After 24 hrs later, cells were immunostained for UBR2 (red) and γH2AX (green). (B) HeLa and U2OS cells were treated with 0.1 μg/ml mitomycin C for 24 hrs and immunostained for UBR2. (C) Immunoblotting analysis of +/+ and UBR2−/− MEFs treated with mitomycin C, UV, or MG132. (D) UBR2 is enriched in the nucleus of MEFs treated with 5 μM MG132. (E) Control and UBR2 knockdown U2OS cells were treated with 0.1 μg/ml mitomycin C for 24 hrs, followed by immunostaining with FK2 antibody.

doi:10.1371/journal.pone.0037414.g009
chain, a secondary degron for the 26 S proteasome. During this ubiquitylation cycle, E2-S interaction is typically negligible.

Our results do not follow this paradigm but are consistent with a recently proposed model [29] in which UBR2-dependent histone ubiquitylation (in sex chromosomes) involves a long-distance chromatin interaction of UBR2 on unsynapsed XY axes with E2 which can slide along the chromatin loop through the activity of an (unknown) processivity factor. In this model, E3-bound E2~Ub is enzymatically activated and gains high affinity to histone (H) and binds and transfers Ub to H1. During this ubiquitylation cycle, UBR2 promotes the E2~Ub-histone interaction and the transfer of E2’s cargo to histone. Once H1 is ubiquitylated, a free E2 molecule loses its affinity to histone and is dissociated from H1, charged again with Ub by E1, and pushed though chromatin to the position H2 by the action of the processivity factor, where E2~Ub, which regained high affinity to histone, binds H2. The E2~Ub-H2 interaction will temporarily halt the movement, providing enough time for ubiquitylation of H2. It is generally accepted that E2s use overlapping interfaces to bind E1 and E3 so that after every substrate ubiquitylation event, E2 needs to be replaced by a new E2 molecule or roll over on the surface of E3 to be charged with a new Ub molecule [51]. However, given that the UBR2-HR6B interaction is fairly stable [29], the same E2 molecule may undergo multiple cycles of Ub charge and discharge while remaining bound to UBR2.

UBR2 is required for repair of DSBs in spermatocytes

Our results show that the majority of UBR2−/− spermatocytes are arrested at pachytene and eventually eliminated by apoptosis, although there are individual variations (Fig. 6). Overall, the meiotic arrest appears to occur at the later stage compared to spermatocytes lacking SPO11 [43], DMC1 [52], ATM [53], and MSH4 [54], which are typically arrested at zygotene, zygotene, leptotene, and zygotene, respectively. Pachytene arrest of UBR2−/− spermatocytes correlates to defective repair of SPO11-induced DSBs. For example, mutant spermatocytes exhibited prolonged retention of gH2AX foci at DSB sites, which correlates to the lack of MLH1 foci on the homologous chromosomes, a hallmark of crossing-over sites [44,46]. We rule out the possibility that the defects are due to failure to initiate homologous recombination as the numbers of RAD51 and RPA1 foci are comparable in mutant zygotene spermatocytes. The knockout phenotypes of prolonged gH2AX localization at DSB sites have been invariably reported in mice lacking proteins directly involved in DNA repair, such as BRCA1, BRCA2 and RAD51C [55–57]. In contrast to these mutants of DNA repair proteins, it is likely to be insufficient histone ubiquitylation that causes DSB repair defects in UBR2−/− spermatocytes, which in turn trigger pachytene arrest and subsequent germ cell death. Thus, our results provide, for the first time, evidence that histone ubiquitylation is required for optimal repair of DSBs in spermatocytes.

UBR2 is a chromatin-associated protein in somatic cells involved in DNA damage-induced ubiquitylation and repair

Our results (Fig. 8B) show that 20–40% of UBR2 in normally growing somatic cells is associated with chromatin, in particular transcriptionally active euchromatin. Its chromatin association is induced in a specific cell cycle stage and in response to DNA damage. UBR2-knockdown cells fail to induce properly chromatin-associated ubiquitylation 24 hrs after treatments of UV, mitomycin C, or IR (Fig. 9E). UBR2-deficient cells are
hyperproliferative and hypersensitivity to DNA damage and show chromosome instability phenotype (Fig. 10).

That UBR2-deficient cells show hypersensitivity and impaired histone ubiquitylation in response to genotoxic stress implicates UBR2 in DNA damage response (DDR). Given the results from spermatocytes and \textit{in vitro} ubiquitylation assays, it is likely that UBR2 mediates histone ubiquitylation upon DNA damage. We reproducibly obtained these results 24 hrs after initial treatments. However, the results from analogous experiments in a short period of time (e.g., 1 hr) were inconclusive and often variable in individual cells. Therefore, it is still unclear whether UBR2 is recruited directly to sites of DNA damage or participates in a long-term DDR, for example, in controlling the histone code at a specific cell cycle stage after successful DNA repair. Recent studies have shown that the RING finger E3 ligase RNF8 is recruited to DSB sites immediately upon DNA damage by IR and mediates the ubiquitylation of histones H2A and H2AX [58,59]. Overall ubiquitylation induced by IR was drastically impaired with the depletion of RNF8 by siRNA. In contrast to UBR2 which is tightly associated with chromatin at the steady state, the majority of RNF8 molecules were newly recruited to the sites of DNA damage [58]. Since RNF8 is recruited to DSB sites by MDC1 bound to γH2AX, RNF8 knockdown did not interfere with the upstream events in DDR, such as the formation of γH2AX foci and their retention by MDC1 at DSB sites [59]. In contrast to RNF8, UBR2 shows a more complicated behavior in a short-term DDR in that DNA damage-induced formation of γH2AX foci is impaired in only a subset of UBR2-knockdown cells (data not shown). Further investigation towards this direction is needed.

As UBR2 is known to mediate N-degron-dependent degradation of cytosolic proteins, it is counterintuitive that UBR2 is associated to chromatin in both testes and somatic cells. Sequence

Table 1. Genotypes of embryos and neonatal pups from intercrossing between \textit{UBR2}^{+/−} mice enriched in C57 background.

Age	No. litters	Genotype		
		+/+	+/−	−/−
E15.5	1	3	1	5
E17.5	1	1	5	4
E18.5	1	1	3	0
P0	26	67a	78b	32c
−P5	2	3	4	3
−P20	15	49	29	1

aAmong 67 animals, 3 (4.5%) were found dead.

bAmong 78 animals, 2 (2.6%) were found dead.

cAmong 32 animals, 10 (31.3%) were found dead, and 3 (9.4%) were dying.

doi:10.1371/journal.pone.0037414.t001

Figure 11. Neonatal lethality in \textit{UBR2}^{−/−} newborn pups associated with defects in lung expansion and neural development. (A) The majority of \textit{UBR2}^{−/−} mice in the C57 genetic background die neonatally. Shown is gross morphology of neonatal pups enriched in the C57 genetic background at P1. Surviving \textit{UBR2}^{+/−} neonates weighed slightly less than their +/+ and \textit{UBR2}^{+/−} littermates of the same gender. No gross morphological differences were observed between \textit{UBR2}^{+/−} and control mice during embryogenesis and after birth. Arrowheads mark stomachs with or without milk, which indicate the feeding from mother. (B) The lungs of \textit{UBR2}^{−/−} newborn pups are not properly expanded. Shown are H&E-stained cross sections from +/+ and \textit{UBR2}^{−/−} lungs at P0. Arrowheads indicate alveoli. (C) \textit{In situ} hybridization of \textit{UBR2} mRNA on cross sections of +/+ and \textit{UBR2}^{−/−} brains at P1. (D) Dilated ventricles in \textit{UBR2}^{−/−} brain (arrowhead). Shown are Nissl-stained cross sections of +/+ and \textit{UBR2}^{−/−} brains at P1. (E) Defective gliogenesis and neuronal differentiation in hippocampus of \textit{UBR2}^{−/−} brains at P1. Cross sections of a mildly affected \textit{UBR2}^{−/−} brain, together with its littermate control, were subjected to Nissl or DAPI staining, or immunofluorescent staining of GFAP or NeuN.

doi:10.1371/journal.pone.0037414.g011
analysis shows that histones do not contain pro-N-degrons or N-degrons. Why is an N-end rule component required for chromatin dynamics? It has been shown that the E3 activity of *S. cerevisiae* Ubr1 in ubiquitylation of the transcription repressor Cup9 can be activated by type-1 and type-2 dipeptides [41,60]. Through this ligand-mediated feedback loop, yeast cells sense the concentration of extracellular nutrients (e.g., proteins) and avoid the synthesis of unnecessary peptide import machinery, a mechanism that would be critical in a natural environment with the fluctuating availability of nutrients. Collectively, one intriguing possibility is that the function of UBR2 in the nucleus is controlled by small molecule ligands or a destabilizing N-terminal residue of a polypeptide.

Materials and Methods

Ethics Statement

The investigation followed the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH publication no. 85-23, revised in 1996) and all animal studies were in accordance with protocols approved by the Institutional Animal Care and Use Committee at University of Pittsburgh. Euthanization involves inhalant anesthetic, isoflurane, followed by intraperitoneal injection of xylazine (10 mg/kg) and ketamine (100 mg/kg) cocktail.

Immunohistochemistry on germ cell spread

At least two mice for each age group were used for surface-spread of germ cells as previously described [61] with minor modification. Seminiferous tubules were incubated in hypotonic buffer (30 mM Tris-HCl, pH 8.2, 50 mM sucrose, 17 mM trisodium citrate dehydrate, 5 mM EDTA, 0.5 mM DTT, and 0.5 mM PMSF) for 1 hr. Swellen tubules were minced, resuspended in 100 mM sucrose (pH 8.2) solution, and spread to the slides coated with fixing solution (1% paraformaldehyde, 0.15% Triton X-100, and 10 mM sodium borate, pH 9.2). The slides were dried at least 2 h in a humidified chamber, washed for 2 min in 0.4% Photoafflo twice, briefly dried and stored at −80°C. For immunostaining, slides were incubated in blocking solution (10% heat-inactivated goat or donkey serum and 0.1% Triton X-100) for 30 min, followed by a standard procedure with primary and secondary antibodies listed in Table 2. Images were captured using Nikon E600 Epifluorescent microscope and processed using Adobe Photoshop 7.0.

In vitro histone ubiquitylation assay

Endogenous UBR2 was affinity-purified from extracts of rat or dog testes using a 12-mer N-end rule peptide (X-peptide) essentially as described [29]. X-peptide, X-Ile-Phe-Ser-Thr-Ile-Glu-Gly-Arg-Thr-Tyr-Lys in which X is Phe (a type-2 destabilizing residue) or Val (a stabilizing control residue), corresponds to the N-terminal 12 residue of the Sindbis RNA polymerase nsp4, an N-end rule substrate [9]. C-terminally biotinylated X-peptide was immobilized to streptavidin-sepharose beads (GE healthcare) to a ratio of 1–1.5 μmol peptides per 1 ml beads. Bead-conjugated X-peptides were mixed with extracts, and the pulldown analysis was performed as described [29]. Peptide-bound N-recognins were eluted with the dipeptide Trp-Ala at 10 mM. Proteins were separated by SDS-PAGE and subjected to immunoblotting.

Table 2. Antibodies used in immunohistochemistry.

Antibody	Species	Dilution	Reference
Anti-BRCA1	goat	1:100	Santa Cruz, sc-1553
Anti-FANCD2	rabbit	1:500	Novus, NB100-182
Anti-GFAP	rabbit	1:100	Sigma, G9269
Anti-gH2AX	mouse	1:12,000	Millipore, 05-636
Anti-MLH1	mouse	1:100	BD Pharmingen, 551091
Anti-NeuN	mouse	1:100	Chemicon, MA8377
Anti-RADS1	rabbit	1:200	Santa Cruz, sc-8349
Anti-RPA	rabbit	1:100	C. James Ingles, University of Toronto, Canada
Anti-SCP3	mouse	1:2,000	Jibak Lee, Kobe University, Japan
Anti-SCP3	rabbit	1:750	Christa Heyting, Wageningen University, Netherlands
Anti-FK1	mouse	1:2,500	Biomol, PW8805
Anti-FK2	mouse	1:500	Affinity research, PW8810
Anti-UBR2	rabbit	1:500	Kwon et al., 2003; An et all, 2010
Anti-mouse IgG	goat	1:400	Molecular Probes, A11029
Anti-rabbit IgG	goat	1:250	Jackson Immunoresearch, 115-165-146
Anti-rabbit IgG	goat	1:400	Molecular Probes, A11034
Anti-goat IgG	donkey	1:250	Jackson Immunoresearch, 705-165-147

doi:10.1371/journal.pone.0037414.t002
In vitro histone binding assay

Endogenous N-recognins pulled down from dog testes were immobilized on Phε-peptide-beads and mixed with a test histone (H2A, H2B, H3, and H4; BioLabs) in the presence or absence of HR6B (Boston Biochem), E1, and Ub activating reagents, followed by incubation at 37°C for 1 hr. Bound proteins were washed 3 times with washing buffer (20 mM HEPES, pH7.9, 150 mM NaCl, and 0.05% Tween20), separated by 4–20% gradient SDS-PAGE, and subjected to immunoblotting.

Cell lines

Control and UBR2-deficient MEFs are described [11]. HeLa cells and U2OS (human osteosarcoma) cells were obtained from the American Type Culture Collection (ATCC).

Cell fractionation assay

Cells were resuspended in buffer A (10 mM HEPES, pH 7.6, 10 mM KCl, 1.5 mM MgCl2, and 1 mM DTT) containing a protease inhibitor mix (Sigma) and disrupted with Dounce homogenizer (Kontes) on ice, followed by centrifugation at 2000 g for 10 min at 4°C. The supernatant was collected as a cytosol fraction. The pellet was resuspended with buffer B (10 mM HEPES, pH 7.6, 400 mM NaCl, 1 mM MgCl2, 1 mM DTT, 1 mM EDTA, and 10% glycerol) containing the protease inhibitor mix, incubated on ice for 30 min, and precipitated by centrifugation. The supernatant was collected as a nuclear fraction. The pellet was incubated with micrococcal nuclease for 15 min at room temperature and retrieved as a chromatin-bound fraction. Proteins were separated by SDS-PAGE and subjected to immunoblotting using antibodies listed in Table 1.

RNA interference and in situ hybridization

Pre-designed Silence® Select siRNA (Ambion) for UBR2 was used to follow the sequences: 5’- CAACACAGAUC-GAGATT-3’ (sense) and 5’- UCUCGAUCAUCUG-GUUGCA-3’ (antisense). 25 nM of siRNA was transfected using Lipofectamine™ LTX with Plus™ reagent (all Invitrogen) according to manufacturer’s instruction. In situ hybridization was carried out as previously described [11].

Immunostaining of DNA-damaged cells

Mouse embryonic fibroblasts (MEFs), U2OS (human osteosarcoma cell line) and HeLa cells were grown in DMEM (Invitrogen) supplemented with 10% FBS (Hyclone), 2 mM L-glutamine (Invitrogen) and 1% penicillin-streptomycin (Invitrogen). To induce DNA damage, cells were incubated with 0.1 μg/ml mitomycin C (MMC, Sigma) for 24 hrs. Alternatively, cells were irradiated with UV at 20 J/m² in a UV crosslinker (Stratagene) E1, and Ub activating reagents, followed by incubation at 37°C for 1 hr. Bound proteins were washed 3 times with washing buffer (20 mM HEPES, pH7.9, 150 mM NaCl, and 0.05% Tween20), separated by 4–20% gradient SDS-PAGE, and subjected to immunoblotting.

Genotoxic stresses and cell survival assay

To induce genotoxic stress, +/+ and UBR2−/− MEFs were plated and cultured at 1–2×10⁴ cells/well in a 96-well plate for 24 hrs and treated with an increasing dose of hydroxyurea, or methyl methanesulfonate (Sigma) for 3 days. Cell survival assay was performed by treating MTT (3-(4,5-dimethylthiazol-2-yl)2,5- diphenyl tetrazolium bromide; Sigma) at 0.5 mg/ml for 5 hrs. Media was removed and 0.15 ml of DMSO was added to each well, followed by incubation at 37°C for 5 min. The absorbance was measured at 550 nm. All samples were triplicated.

Metaphase chromosome spreads

Log-phase cells were treated with 0.3 μg/ml colcemid (Invitrogen) for 30 min, trypsinized and resuspended in DMEM with 10% fetal bovine serum, pelleted by centrifugation, resuspended in PBS, pelleted by centrifugation, and resuspended in 0.4% KCl for 15 min. A half volume of 3:1 methanol:acetic acid solution was then added one drop at a time to the cell suspension. The cells were pelleted by centrifugation, resuspended in 5 ml 3:1 methanol:acetic acid solution, pelleted again by centrifugation, resuspended in a 200 μl of 3:1 methanol:acetic acid solution, and dropped onto glass slides to obtain spreads. Chromosomes were stained with DAPI.

Supporting Information

Figure S1 The chromosomal localization pattern of UBR2 is not significantly affected in zygotene chromosomes from SPO11−/− spermatocytes. Surface-spread chromosomes from +/+ and SPO11−/− spermatocytes were stained for UBR2 (red) and SCP3 (green).

Figure S2 UBR2 is dispensable for recruitment of RAD51 and RPA1 to meiotic chromosomes. (A, B) Zygotene and pachytene chromosomes from +/+ and UBR2−/− spermatocytes were stained for RAD51 (A) or RPA1 (B). (C) Comparison of the numbers of RPA1 foci on axial elements in control and UBR2−/− spermatocytes.

Figure S3 UBR2 is dispensable for recruitment of FANCD2 to meiotic chromosomes. (A) Pachytcne chromosomes from +/+ and UBR2−/− spermatocytes were stained for FANCD2 (green) and SCP3 (red). (B) Comparison of the numbers of FANCD2 foci on autosomal axes in control and UBR2−/− spermatocytes at pachytene.

Figure S4 The expression analyses of UBR2. (A, B) HeLa cells were synchronized at the G1-S border using the double thymidine block, released from G1-S arrest, and subjected to real-time PCR analysis of UBR2 (A) and cyclin B1 (B). (C) MEFs were treated with 0.1 μg/ml mitomycin C (MMC) or irradiated with UV at 20 J/m². After 24 hrs later, cells were subjected to semi-quantitative real-time PCR. (D) Real-time PCR analysis of U2OS cells treated with control or UBR2 siRNA. (E) Fractionation and immunoblotting analysis of U2OS cells treated with control or UBR2 siRNA. ns, a nonspecific band.

Acknowledgments

We are grateful to Jai Wha Seo for the care and maintenance of mice, James Turner (MRC, National Institute for Medical Research, London, UK) for providing us surface-spread meiotic chromosomes from SPO11-deficient spermatocytes, Gi Gyo Seo, Kang San Lee, Kyoung Tae Seo, and William Kwon for technical assistance, and the Kwon and Kim research team members at University of Pittsburgh, Seoul National University, and Korean Institute of Bioscience and Biotechnology (KRIIB) for helpful discussions.
Author Contributions
Conceived and designed the experiments: JYA EK YJL BYK DGeDR YDY TKY YTK. Performed the experiments: JYA EK AZ MJ DHH MJL DGeDR. Analyzed the data: JYA BYK YJL DGeDR JWS YTK. Contributed reagents/materials/analysis tools: YJL BYK TKY DGeDR. Wrote the paper: JYA DGeDR YTK.

References
1. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234: 179–186.

2. Sriram SM, Kim BY, Kwon YT (2011) The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol 12: 735–747.

3. Tasaki T, Sriram SM, Park KS, Kwon YT (2012) The N-end rule pathway. Annu Rev Biochem. In press.

4. Sriram SM, Kwon YT (2010) The molecular principles of N-end rule recognition. Nat Struct Mol Biol 17: 1164–1165.

5. Tasaki T, Kwon YT (2007) The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem Sci 32: 520–529.

6. Kwon YT, Reiss Y, Fried VA, Hershko A, Yoon JK, et al. (1998) The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc Natl Acad Sci U S A 95: 7898–7901.

7. Kwon YT, Xia Z, Davydov IV, Lechner SH, Varshavsky A (2001) Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3alpha) of the N-end rule pathway. Mol Cell Biol 21: 8007–8021.

8. Kwon YT, Kashina AS, Varshavsky A (1999) Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA protein transferase, a component of the N-end rule pathway. Mol Biol Cell 19: 102–193.

9. Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, et al. (2005) RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci U S A 102: 15503–15508.

10. Kwon YT, Kashina AS, D’Avino CT, Varshavsky A (2004) The mammalian N-end rule pathway. Mol Cell 16: 696–699.

11. Hu RG, Brower CS, Wang H, Davydov IV, Jang J, et al. (2006) Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. J Biol Chem 281: 32535–32573.

12. Kwon YT, Xia Z, An JY, Kwon YT et al. (2002) Essential role of N-terminal arginylation in cardiovascular development. Science 297: 96–99.

13. Kwon YT, Xia Z, An JY, Park KS, Kwon YT, et al. (2003) Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol Cell Biol 23: 8253–8271.

14. Wang H, Piatkov KI, Brower CS, Varshavsky A (2005) Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol Cell 34: 686–695.

15. Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, et al. (2005) The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nat Rev Mol Cell Biol 19: 1884–1895.

16. Kwon YT, Xia Z, An JY, Kwon YT et al. (2002) Essential role of N-terminal arginylation in cardiovascular development. Science 297: 96–99.

17. Hu RG, Brower CS, Wang H, Davydov IV, Jang J, et al. (2006) Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. J Biol Chem 281: 32535–32573.

18. Kwon YT, Xia Z, An JY, Kwon YT et al. (2003) Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol Cell Biol 23: 8253–8271.

19. Wang H, Piatkov KI, Brower CS, Varshavsky A (2005) Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol Cell 34: 686–695.

20. Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, et al. (2005) RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci U S A 102: 15503–15508.

21. Hu RG, Brower CS, Wang H, Davydov IV, Sheng J, et al. (2006) Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. J Biol Chem 281: 32535–32573.

22. Kwon YT, Xia Z, An JY, Kwon YT et al. (2003) Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol Cell Biol 23: 8253–8271.

23. Wang H, Piatkov KI, Brower CS, Varshavsky A (2005) Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol Cell 34: 686–695.

24. Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, et al. (2005) The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nat Rev Mol Cell Biol 19: 1884–1895.

25. Kwon YT, Xia Z, An JY, Kwon YT et al. (2003) Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol Cell Biol 23: 8253–8271.

26. Wang H, Piatkov KI, Brower CS, Varshavsky A (2005) Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol Cell 34: 686–695.

27. Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, et al. (2005) RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci U S A 102: 15503–15508.
55. Kuznetsov S, Pellegrini M, Shuda K, Fernandez-Capetillo O, Liu Y, et al. (2007) RAD51C deficiency in mice results in early prophase I arrest in males and sister chromatid separation at metaphase II in females. J Cell Biol 176: 581–592.

56. Xu X, Aprelikova O, Moens P, Deng CX, Furth PA (2003) Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 130: 2001–2012.

57. Cohen PE, Pollard JW (2001) Regulation of meiotic recombination and prophase I progression in mammals. Bioessays 23: 996–1009.

58. Huen MS, Grant R, Manke I, Minn K, Yu X, et al. (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131: 901–914.

59. Mailand N, Bekker-Jensen S, Fastrup H, Melander F, Bartek J, et al. (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131: 887–900.

60. Byrd C, Turner GC, Varshavsky A (1998) The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J 17: 269–277.

61. Peters AH, Flug AW, van Vugt MJ, de Boer P (1997) A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res 5: 66–68.