A theoretical room-temperature line list for 15NH$_3$

Sergei N. Yurchenko

Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK

Abstract

A new room temperature line list for 15NH$_3$ is presented. This line list comprised of transition frequencies and Einstein coefficients has been generated using the ‘spectroscopic’ potential energy surface NH3-Y2010 and an ab initio dipole moment surface. The 15NH$_3$ line list is based on the same computational procedure used for the line list for 14NH$_3$ BYTe reported recently and should be as accurate. Comparisons with experimental frequencies and intensities are presented. The synthetic spectra show excellent agreement with experimental spectra.

1. Introduction

Although the abundance of 15N is 450 times lower than that of 14N [1], 15NH$_3$ is an important astrophysical molecule. It is a maser source detected in interstellar molecular clouds [2] and is also a tracer of the N15/N14 isotopic ratio in interstellar medium [3–5], planetary [6, 7] and Earth [8] atmospheres, meteorites [9], comets [10], important as a probe of chemical processes in the astrophysical environment, of planetary atmospheric and formation processes etc. Very recently Fletcher et al. [11] used the 14NH$_3$ and 15NH$_3$ spectral features to study the N15/N14 ratio for Jupiter and Saturn.

*Corresponding author. Tel: +442076790172; Fax: +442076797145; E-mail: s.yurchenko@ucl.ac.uk

Preprint submitted to Elsevier March 4, 2022
Experimentally the ro-vibrational spectra of 15NH$_3$ have been studied in a large number of works, including rotation-inversion spectrum [12–17], fundamental bands [18–27], overtone bands [28–33], hot bands [34–37], and intensity measurements [38–41]. Some of these data are now collected in the HITRAN database [42]. The electric dipole moment was experimentally studied by Orr and Oka [43] and Dilonardo et al. [44] using the Stark spectroscopy. The ground state energies were reported by Urban et al. [22]. Very recently a VECSEL laser source study of the 2.3 μm region of 15NH$_3$ was presented by Čermák et al. [45] and a tentative assignment of new 15NH$_3$ lines in the 1.51 μm region was suggested by Földes et al. [46].

Huang et al. [47] presented theoretical ro-vibrational energies of 15NH$_3$ computed variationally using an empirical PES HSL-2 for $J = 0\ldots6$. These energies helped them to reassign and correct a number of transitions in HITRAN. An extensive hot line list BYTe for 14NH$_3$ was recently generated [48] using the TROVE approach [49]. Containing 1.1 billion transitions BYTe was designed to be applicable for temperatures up to 1500 K. It has proven to be useful for astrophysical and spectroscopic applications (see, for example, Refs. [45, 50, 51]). In this work we build a room temperature line list for the N15 isotopologue of ammonia using the same computational approach based on the ‘spectroscopic’ potential energy surface (PES) NH3-Y2010 [52] and the \textit{ab initio} dipole moment surface (DMS) from Ref. [53]. The highest J considered in this work is 18 defining the temperature limit of the current line list to be 300 K. It should be noted that TROVE was also used in the study of the thermal averaging properties of the spin-spin coupling constants of 15NH$_3$ by Yachmenev et al. [54] and a high-temperature partition function for 14NH$_3$ [55].

The paper is structured as follows. In Section 2 we outline the theoretical approach used for the line list production. In Section 3 the structure of the line list and the description of the quantum numbers are presented, where some
comparisons with experimental data are also given and the accuracy of the line list is discussed. In Section 4 some conclusions are offered.

2. Theoretical approach

We use the same computational procedure and the associated program TROVE [49] as was employed to generate the hot ammonia line list BYTe [48], therefore the reader should refer to this paper for a detailed description. Here we present only a short outline of this approach.

In order to obtain energies and associated wavefunctions required for building the line list of 15NH$_3$ we solve the Schrödinger equation for the nuclear motion variationally. Both the kinetic and potential energy terms of the Hamiltonian were expanded to 6th and 8th orders, respectively, in terms of five linearized coordinates around the reference geometry, defined as a non-rigid reference configuration associated with the inversion motion characterized by a relatively low barrier to the planarity. The linearized coordinates are chosen to be close to the three stretching modes associated with the N-H vibrations and two asymmetric bending modes combined from the three bending vibrations of the interbond angles H–N–H. Our vibrational basis set is a product of six one-dimensional (1D) basis functions. The stretching, bending, and inversion 1D basis sets are obtained by solving the corresponding reduced 1D Schrödinger equations using the Numerov-Cooley approach [56, 57] for each degree of freedom independently. This so-called primitive basis set is then improved through a number of pre-diagonalizations and consecutive contractions. The latter is controlled by the polyad number

$$P = 2(v_1 + v_2 + v_3) + v_4 + v_5 + v_6/2,$$

where v_1, v_2, v_3 are the quantum numbers associated with the three stretching modes, v_4, v_5 are associated with the asymmetric bending modes, and v_6 counts
the inversion mode functions. As in Ref. [48], we define the size of the basis
set using the condition $P \leq 14$. We use the so-called $J = 0$ representation,
where the final contracted ro-vibrational basis functions are represented by direct
symmetrized products of the vibrational $J = 0$ eigenfunctions and the rigid rotor
wavefunctions $|J, K, \tau_{\text{rot}}\rangle$, where J is the rotational angular momentum, K is
the projection of the rotational angular momentum to the molecular axis z, and τ_{rot}
is the rotational parity (see [58] for further details). The $J = 0$ eigenfunctions
are the eigensolutions of the pure vibrational problem. The highest rotational
excitation presently considered is $J = 18$. We only compute and store the energy
term values and wavefunctions below $14\,000\,\text{cm}^{-1}$ above the zero point energy
(ZPE) obtained as $7414.08\,\text{cm}^{-1}$. These thresholds are chosen to get a reasonable
population at room temperature according with the Boltzmann distribution.

As in [53] here we employ the EBSC (empirical basis set correction) scheme,
where some of the $J = 0$ band centers are substituted with the corresponding
experimental values, where available. For $^{15}\text{NH}_3$ however there are only very
few band centers known experimentally with high enough accuracy, namely for ν_1, ν_2, ν_3, ν_4, $\nu_1 + \nu_2$, $\nu_1 + \nu_3$, $2\nu_2$, $\nu_2 + \nu_3$, $2\nu_4$, $2\nu_4$, $2\nu_4$, $2\nu_3$, $\nu_3 + 2\nu_4$, as well as the ground state inversion splitting [18–23, 25, 27–
30, 32, 33, 35–37, 45, 53, 60]. Therefore the effect of this otherwise very efficient
procedure is rather limited. With this approach the $J = 0$ energies are reproduced
exactly, while the ro-vibrational coupling leads to a gradual ‘de-focus’ of the
$J > 0$ energies. In Table 1 we compare the original theoretical term values
with the experimental band centres used in our EBSC approach. The Obs.-Calc.
residuals in this table illustrate the deficiency of our model based on the $^{14}\text{NH}_3$
PES applied for the 15th isotopologue. Although the accuracy of these particular
bands is recovered through the EBSC approach, the error of other band centers
can be expected to be as large as up to about $0.2\,\text{cm}^{-1}$ at least, as illustrated in
Table 1.

4
Figure 1: Absorption of $^{15}\text{NH}_3$ at $T = 296$ K (log-scale): The theoretical (BYTe-15 in the upper display) vs. experimental line intensities (bottom) from HITRAN 2012, by Devi et al. [39], and Lins et al. [41]. The experimental data points are repeated in the upper display as crosses for a better illustration of the agreement between theoretical and experimental intensities, where a number of outliers in the HITRAN data set is also clearly visible.

The same PES and DMS as in [48] were used. The potential energy surface NH3-Y2010 was obtained by Yurchenko et al. [52] by fitting to the experimentally derived term values of the main isotopologues only, with $J \leq 8$ covering term values up to $E = 10300$ cm$^{-1}$. Because of the approximations used in the fitting, this ‘spectroscopic’ PES is an effective object. Therefore it does not guarantee, at least in principle, the same accuracy for $^{15}\text{NH}_3$ as was reached for $^{14}\text{NH}_3$. We make a comparison with the experiment in the next section. The ab initio dipole moment surface ATZfc DMS used here was developed by Yurchenko et al. [61] which should be capable of accurate modelling of $^{15}\text{NH}_3$ spectra. For the description of the intensity calculations see Refs. [48, 62].

In Tables 2-5 we compare our theoretical term values of $^{15}\text{NH}_3$ with their ‘experimental’ counterparts for the vibrational ($J = 0$) and pure rotational
Figure 2: Absorption of 15NH$_3$ at $T = 296$ K: The theoretical (BYTE-15) vs. experimental line intensities (bottom) from HITRAN 2012, by Devi et al. [39], and Lins [41]. The intensities of the strong 3 μm band, which is also shown, are not known experimentally.

$(J = 0 \ldots 4)$ states available in the literature (see Introduction). As far as the accuracy of these term values is concerned it is comparable to the accuracy of the vibrational term values for the main isotopologue using the same PES. The pure rotational and rotation-inversional term values also show a very good agreement with experiment. This is reassuring especially if the underlying PES was generated using the main isotopologue only, although the effect from the isotopic substitution 14 → 15 is not expected to be large.
In Table 6 some vibrational term values \((J = 0)\) of \(^{15}\text{NH}_3\) from this work are compared to the theoretical values computed by Huang et al. \[47\] using their empirical PES HSL-II. The agreement at lower energies is very good but deteriorates at about 5000 cm\(^{-1}\). It is difficult to claim the better accuracy for any of these two approaches based on this comparison only. We believe that at least some of our band centers above 6000 cm\(^{-1}\) should be more accurate, see e.g. Table 5. However according to Čermák et al. \[45\] the line positions of \(^{15}\text{NH}_3\) reported by Huang et al. \[47\] are more precise at least for the 2.3 \(\mu\)m region.

We have compared our intensities to the HITRAN data \[42\] as well as to those reported by Devi et al. \[39\] (\(\nu_4\)) and Lins et al. \[41\] (near infrared). In Figs. 1 and 2 we show a generated absorption spectrum of \(^{15}\text{NH}_3\) at \(T = 296\) K compared to the HITRAN intensities. The agreement is similar to that achieved by BYTe for \(^{14}\text{NH}_3\) \[48\]. The \(^{15}\text{NH}_3\) experimental data is rather sparse compared to the data available for the main isotopologue. A number of obvious outliers (5014.4776, 5084.8734, 5104.2963, and possibly 5103.8909 cm\(^{-1}\)) in the experimental spectra indicate problems with the assignment of the \(^{15}\text{NH}_3\) transitions in HITRAN. Similar problems have recently been studied and resolved for the \(^{14}\text{NH}_3\) data \[63\]. Another outlier is at 6586.747 cm\(^{-1}\) from the recent work by Lins et al. \[41\] which also appears to be too strong, see Figs. 1 and 2.

3. The line list

Our room temperature \(^{15}\text{NH}_3\) line list contains \(80\,515\,767\) transitions representing all non-zero \((T = 300\) K\) intensities covering the wavenumber range up to 8000 cm\(^{-1}\) constructed from \(270\,646\) upper state term values below 14 000 cm\(^{-1}\) and \(9772\) lower state term values below 6 000 cm\(^{-1}\) with rotational excitations up to \(J = 18\). Following Refs. \[48, 64\] we use the two-files ExoMol format \[65\] to organize the line list for \(^{15}\text{NH}_3\). The Energy file (see an extract in Table 7) contains the energy term values \(\tilde{E}_i\) (cm\(^{-1}\)), quantum numbers both in the local
and normal mode representations. Each energy record is indexed with a running number \(i\). These indexes are then used in the Transition file (see extract in Table 8) to refer to a pair of states \(i'\) and \(i''\) participating in the transition \(i'' \rightarrow i'\). Apart from these indexes, only the Einstein coefficient \(A(i', i'')\) is needed to complete the transition record. With this format the size of the line list is significantly reduced. The line list can be also found via www.exomol.com as a part of the ExoMol project [66]. We also supply a sample Fortran code to be used together with our line list to simulate intensities or cross sections [67]. In fact the unified ExoMol-format of the present \(^{15}\)NH\(_3\) line list makes this code useful with any line lists stored in this format.

The largest expansion coefficients of the ro-vibrational eigenfunctions were used to assign the corresponding final eigenvalues with the vibrational quantum numbers \(v_1, v_2, v_3, v_4, v_5, v_6\), the rotational quantum numbers \(J\) and \(K\), the total symmetry \(\Gamma_{\text{tot}}\) as well as the symmetry of the \(J = 0\) vibrational basis function \(\Gamma_{\text{vib}}\). Here \(\Gamma_{\text{tot}}\) and \(\Gamma_{\text{vib}}\) are represented by six irreducible representations \(A'_1, A'_2, E', A''_1, A''_2, E''\) in the molecular symmetry group \(D_{3h}(M)\) [68]. In this case our ‘local’ mode basis functions are used as reference and provide approximate labels for the eigenstates. The problem with this approach (as well as many other assigning approaches) is the strong mixing of basis set functions at high excitations which gives rise to the ambiguity in assignment. As a manifestation of the quality of the assignment we also provide values of the corresponding largest expansion coefficients, see the \(|C_i|^2\)-column in Table 7: small numbers (less than 0.5) indicate strong mixing of reference states and show that that the suggested quantum numbers can be ambiguous.

Recognizing the importance of the conventional ‘normal’ mode quantum numbers, we map our ‘local’ modes to the ‘normal’ mode quantum numbers using the same procedure as in Ref. [48]. It should be noted however that there is no direct transformation between these two labelling schemes. Furthermore due to
the approximate nature of the assignment in some cases we obtain ambiguous normal mode quantum numbers, which do not always correspond to the experimental normal mode labels. Again, the value $|C_i|^2$ can be used as measure of this ambiguity.

We follow Ref. [63] and define the normal mode quantum numbers as given by

$$n_1, n_2, n_3, n_4, L_3, L_4, L, \Gamma_{\text{vib}}, J, K, i, \Gamma_{\text{rot}}, \Gamma_{\text{tot}},$$

(2)

where $L_3 = |l_3|, L_4 = |l_4|, L = |l|, K = |k|$. Here $n_i, (i = 1, 2, 3, 4)$ are the vibrational normal mode quantum numbers, l_3, l_4, and l are the vibrational angular momentum labels; J is the total angular momentum quantum number, $k = -J, \ldots, J$ is the projection of the total angular momentum on the molecule fixed axis z; $i = s/a$ is the inversion symmetry of the vibrational motion; and Γ_{vib}, Γ_{rot} and Γ_{tot} are the symmetry species of the rotational, vibrational, and total internal wave-functions in the molecular symmetry group $D_{3h}(M)$, respectively, spanning $A'*1, A''*1, A'*2, A''*2, E', E''$. As was argued by Down et al. [63], the definition of the signs of the vibrational angular momentum quantum numbers l_3, l_4 and l is ambiguous (as ambiguous the sign of k). Therefore we follow the suggestion of Down et al. [63] and use the absolute values $L_i = |l_i| = n_i, n_i - i, \ldots, 0$ (1) instead.

The symmetries of the initial and final states are important for the line intensities, which is manifested by the selection rules and the nuclear statistical weights g_{ns}. Similar to the main isotopologue of ammonia, the ro-vibrational states with the symmetries of A_1' and A_2'' do not exist (i.e. the corresponding $g_{ns} = 0$). The non-zero nuclear statistical weights factors are 8, 4, 8, 4 for A_2', E', A_2'', E'', respectively, which are different from those of 14NH$_3$ owning to the different nuclear spin of 15N, 1 against 1/2 of 14N. The TROVE approach uses the symmetrically adapted basis set, which gives the symmetry labels of the
eigenstates automatically. The selection rules are the following

\[A'_2 \leftrightarrow A''_2, E' \leftrightarrow E'' \]

and

\[\Delta J = J' - J'' = 0, \pm 1, \quad J' + J'' \geq 1. \]

The non-existing pure vibrational \((J = 0)\) \(A'_1\) and \(A''_1\) term values are also included into the line list with the total statistical weight \(g_{\text{tot}} = 0\), which can be useful as band centers.

With our computed energies of \(^{15}\text{NH}_3\) we obtain the partition function of 1165.4 which can be compared to the room-temperature partition function supplied by HITRAN of 1152.7 by Fischer et al. \[69\].

4. Conclusion

In this paper a new synthetic line list for \(^{15}\text{NH}_3\) is presented. This line list should be applicable for describing absorption of this molecule for temperatures up to 300 K. The \(^{15}\text{NH}_3\) line list has already proven useful for analysis of the experimental spectra by Čermák et al. \[45\] where it was applied for assignment of the 2.3 \(\mu\text{m}\) VECSEL spectra of \(^{15}\text{NH}_3\).

Acknowledgements

This work is supported by ERC Advanced Investigator Project 267219. I thank J. Tennyson for helpful discussions and suggestions. I also thank P. Čermák and P. Cacciani for suggestions related to the ammonia line list.

References

[1] M. M. Abbas, A. LeClair, T. Owen, B. J. Conrath, F. M. Flasar, V. G. Kunde, C. A. Nixon, R. K. Achterberg, G. Bjoraker, D. Jennings, G. Orton, P. N. Romani, The nitrogen isotopic ratio in Jupiter’s atmosphere from observations by the Composite Infrared Spectrometer on the Cassini spacecraft, Astrophys. J. 602 (2004) 1063–1074. doi:10.1086/381084
Table 1: Comparison of the theoretical term values (cm\(^{-1}\)) of \(^{15}\text{NH}_3\) before EBSC replacement and experimental ones used in the EBSC approach. See Table 7 for the description of the notations.

\(v_{ij}\)	\(v_1\)	\(v_2\)	\(v_3\)	\(L_3\)	\(L_4\)	\(L_4\)	Obs.	Calc.	Obs.-Calc.	Ref.
\(A''\)	0 0 0 0 0 0 0 0.761 0.758 0.003	[35]								
\(A'\)	1 0 0 0 0 0 0 928.509 928.457 0.052	[35]								
\(A''\)	0 1 0 0 0 0 0 962.912 962.894 0.018	[35]								
\(A'\)	2 0 0 0 0 0 0 1591.236 1591.185 0.051	[28]								
\(E'\)	0 0 0 0 1 1 1 1623.130 1623.149 -0.020	[28]								
\(E''\)	0 0 0 0 1 1 1 1624.190 1624.202 -0.012	[28]								
\(A''\)	2 0 0 0 0 0 0 1870.823 1870.853 -0.030	[30]								
\(A'\)	3 0 0 0 0 0 0 2369.274 2369.314 -0.041	[28]								
\(E'\)	0 1 0 0 1 1 1 2533.382 2533.380 0.002	[28]								
\(E''\)	0 1 0 0 1 1 1 2577.571 2577.590 -0.020	[28]								
\(A''\)	0 3 0 0 0 0 0 3210.614 3210.430 0.184	[27]								
\(A'\)	0 0 0 0 2 0 0 3212.355 3212.120 0.215	[27]								
\(E'\)	0 0 0 0 2 2 2 3234.107 3233.925 0.182	[27]								
\(E''\)	0 0 0 0 2 2 2 3235.504 3235.338 0.165	[27]								
\(A''\)	1 0 0 0 0 0 0 3333.306 3333.220 0.086	[27]								
\(A'\)	1 0 0 0 0 0 0 3334.252 3334.160 0.092	[27]								
\(E'\)	0 0 1 1 0 0 1 3435.167 3435.143 0.024	[27]								
\(E''\)	0 0 1 1 0 0 1 3435.540 3435.475 0.065	[27]								
\(A''\)	1 1 0 0 0 0 0 4288.186 4288.024 0.162	[22]								
\(A'\)	1 1 0 0 0 0 0 4312.345 4312.304 0.041	[22]								
\(E'\)	1 0 0 0 2 2 2 6546.951 6546.987 -0.036	[60]								
\(E''\)	1 0 0 0 2 2 2 6548.560 6548.449 0.111	[60]								
\(E'\)	1 0 1 1 0 0 1 6597.607 6597.498 0.109	[60]								
\(E''\)	1 0 1 1 0 0 1 6664.486 6664.627 -0.141	[60]								
\(E'\)	1 0 1 1 0 0 1 6665.480 6665.303 0.177	[60]								

\(^a\) Estimated from the a \(\rightarrow\) s band centers.

\(^b\) Estimated from the corresponding \(^3P(J = 1, k = 1)\) transition frequencies.
Table 2: Calculated term values (cm\(^{-1}\)) of \(^{15}\)NH\(_3\) compared to the experimental values \(^{22}\):
ground vibrational state. Here \(J\) is the rotational angular momentum, \(K\) is its projection, \(\Gamma_{\text{tot}}\) is the symmetry of the rotational states \(D_{3h}(M)\), and \(s/a\) is the inversion parity.

\(J\)	\(K\)	\(\Gamma_{\text{tot}}\)	\(s/a\)	Obs.	Calc.	Obs.-Calc.
0	0	\(A''\) a	0.7577	0.7577	0.0000	
1	1	\(E''\) s	16.1491	16.1495	-0.0004	
1	0	\(A'_1\) s	19.8413	19.8416	-0.0003	
1	0	\(A''_1\) a	20.5892	20.5895	-0.0003	
2	2	\(E''\) s	44.7490	44.7502	-0.0011	
2	2	\(E''''\) a	45.5046	45.5058	-0.0012	
2	1	\(E''\) s	55.8176	55.8186	-0.0010	
2	0	\(A'_2\) s	59.5035	59.5044	-0.0009	
2	0	\(A''_2\) a	60.2322	60.2332	-0.0010	
3	3	\(A''_1\) s	85.7924	85.7948	-0.0024	
3	2	\(A''_2\) s	85.7924	85.7948	-0.0024	
3	2	\(A'_2\) s	86.5526	86.5550	-0.0025	
3	1	\(E''''\) s	104.2293	104.2314	-0.0021	
3	1	\(E''\) s	115.2695	115.2715	-0.0019	
3	1	\(E''''\) s	115.9768	115.9789	-0.0021	
3	0	\(A'_2\) s	118.9460	118.9479	-0.0019	
3	0	\(A''_2\) s	119.6469	119.6490	-0.0021	
4	4	\(E''\) s	139.2674	139.2715	-0.0041	
4	4	\(E''''\) s	140.0361	140.0403	-0.0042	
4	3	\(A''_2\) s	165.0675	165.0711	-0.0037	
4	3	\(A'_2\) s	165.7832	165.7931	-0.0099	
4	2	\(E''\) s	183.4416	183.4450	-0.0035	
4	2	\(E''''\) s	184.1315	184.1352	-0.0038	
4	1	\(E''\) s	194.4443	194.4477	-0.0034	
4	1	\(E''''\) s	195.1158	195.1196	-0.0037	
4	0	\(A'_2\) s	198.1083	198.1117	-0.0034	
4	0	\(A''_2\) s	198.7738	198.7775	-0.0037	
Table 3: Calculated term values (cm\(^{-1}\)) of \(^{15}\)NH\(_3\) compared to the experimental values\(^{22}\). \(\nu_2\) state. Here \(J\) is the rotational angular momentum, \(K\) is its projection, \(\Gamma_{tot}\) is the total symmetry of the ro-vibrational states \(D_{3h}(M)\), and \(s/a\) is the inversion parity.

\(J\)	\(K\)	\(\Gamma_{tot}\)	State	\(s/a\)	Obs.	Calc.	Obs.-Calc.
0	0	\(A_1^2\)	\(\nu_2\) s	928.457	928.457	0.000	
1	1	\(E^\prime\)	\(\nu_2\) s	944.594	944.590	0.004	
1	0	\(A_2^0\)	\(\nu_2\) s	948.550	948.544	0.006	
0	0	\(A_2^0\)	\(\nu_2\) a	962.894	962.894	0.000	
2	2	\(E^\prime\)	\(\nu_2\) s	972.908	972.898	0.010	
1	1	\(E^\prime\)	\(\nu_2\) a	978.924	978.922	0.003	
2	1	\(E^\prime\)	\(\nu_2\) s	984.763	984.749	0.015	
2	2	\(E^\prime\)	\(\nu_2\) a	1007.269	1007.262	0.007	
3	3	\(A_2^0\)	\(\nu_2\) s	1013.390	1013.371	0.019	
2	1	\(E^\prime\)	\(\nu_2\) a	1018.391	1018.382	0.009	
2	0	\(A_2^0\)	\(\nu_2\) s	1022.096	1022.086	0.010	
3	2	\(E^\prime\)	\(\nu_2\) s	1033.137	1033.111	0.027	
3	1	\(E^\prime\)	\(\nu_2\) s	1044.949	1044.918	0.031	
3	3	\(A_2^0\)	\(\nu_2\) a	1047.921	1047.908	0.013	
3	0	\(A_2^0\)	\(\nu_2\) s	1048.881	1048.848	0.032	
4	4	\(E^\prime\)	\(\nu_2\) s	1066.029	1065.998	0.030	
3	2	\(E^\prime\)	\(\nu_2\) a	1066.450	1066.433	0.017	
3	1	\(E^\prime\)	\(\nu_2\) a	1077.544	1077.531	0.013	
4	3	\(A_2^0\)	\(\nu_2\) s	1093.666	1093.626	0.040	
4	4	\(E^\prime\)	\(\nu_2\) a	1100.870	1100.848	0.022	
4	2	\(E^\prime\)	\(\nu_2\) s	1113.317	1113.270	0.047	
4	1	\(E^\prime\)	\(\nu_2\) s	1125.071	1125.020	0.051	
4	3	\(A_2^0\)	\(\nu_2\) s	1126.801	1126.774	0.026	
4	2	\(E^\prime\)	\(\nu_2\) s	1145.279	1145.249	0.030	
4	1	\(E^\prime\)	\(\nu_2\) s	1156.349	1156.317	0.032	
4	0	\(A_2^0\)	\(\nu_2\) s	1160.036	1160.003	0.032	
Table 4: Calculated term values (cm$^{-1}$) of 15NH$_3$ compared to the experimental values[22].

The $\nu_1 + \nu_2$ band. Here J is the rotational angular momentum, K is its projection, Γ_{tot} is the total symmetry of the ro-vibrational states D_{3h} (M), and s/a is the inversion parity.

J	K	Γ_{tot}	s/a	Obs.	Calc.	Obs.-Calc.
0	1	A_2^0	a	4312.303	4312.304	−0.001
1	1	E^0	a	4328.148	4328.151	−0.003
2	1	A_2^1	a	4370.642	4370.654	−0.012
2	1	E^1	a	4367.042	4367.050	−0.008
2	1	E''	a	4356.231	4356.232	−0.001
3	1	E'	a	4425.344	4425.364	−0.020
3	1	E''	a	4414.552	4414.563	−0.011
3	1	A_2^2	a	4396.541	4396.539	0.001
1	1	E^3	s	4307.725	4307.720	0.006
1	1	E''	s	4303.949	4303.944	0.005
2	1	E''	s	4332.010	4332.002	0.008
3	1	A_2^3	s	4406.116	4406.086	0.029
3	1	E^3	s	4402.357	4402.330	0.028
3	1	E'	s	4391.069	4391.046	0.024
1	1	A_2^4	s	4372.198	4372.192	0.006
1	1	E'	a	4328.149	4328.151	−0.002
2	1	E''	a	4367.042	4367.050	−0.009
2	1	E''	a	4356.230	4356.232	−0.002
3	1	E'	a	4425.347	4425.364	−0.016
3	1	E''	a	4414.552	4414.563	−0.011
3	1	A_2^5	a	4396.543	4396.539	0.003
1	1	E^6	a	4503.017	4503.050	−0.033
1	1	E''	a	4492.247	4492.272	−0.025
1	1	A_2^6	a	4474.275	4474.288	−0.013
1	1	E''	a	4449.066	4449.061	0.005
1	1	E'	s	4303.949	4303.944	0.005
2	1	E''	s	4334.336	4334.320	0.015
2	1	E'	s	4332.010	4332.002	0.007
3	1	E''	a	4402.358	4402.330	0.029
3	1	E'	s	4391.074	4391.046	0.028
3	1	A_2^7	s	4372.207	4372.192	0.015
4	1	E^8	s	4480.955	4480.908	0.047
4	1	E'	s	4469.708	4469.668	0.040
4	1	A_2^9	s	4450.918	4450.890	0.028
3	1	E'	a	4424.519	4425.364	−0.845
2	1	A_2^7	a	4370.642	4370.654	−0.012
2	1	E^7	a	4367.042	4367.050	−0.008
3	1	E''	a	4425.346	4425.364	−0.018
3	1	E'	a	4414.552	4414.563	−0.011
0	0	A_2^0	a	4506.607	4506.966	−0.359
1	1	E^0	a	4503.020	4503.050	−0.030
1	1	E''	a	4492.248	4492.272	−0.024
1	1	A_2^1	a	4474.268	4474.288	−0.020
1	1	A_2^2	a	4307.724	4307.720	0.005
1	1	E^1	a	4367.042	4367.050	−0.008
1	1	E''	s	4406.115	4406.086	0.029
1	1	E'	s	4391.069	4391.046	0.023
4	1	E''	s	4480.955	4480.908	0.048
4	1	E'	s	4469.711	4469.668	0.043
4	1	A_2^5	s	4450.924	4450.890	0.033
Table 5: Calculated term values (cm\(^{-1}\)) of \(^{15}\)NH\(_3\) compared to the experimental values\(^{32,33}\) in the 1.5 \(\mu\)m band. Here \(J\) is the rotational angular momentum, \(K\) is its projection, \(\Gamma_{tot}\) is the total symmetry of the ro-vibrational states \(D_{10}(\text{M})\), and \(s/a\) is the inversion parity.

\(J\)	\(K\)	\(\Gamma_{tot}\)	State	\(s/a\)	Obs.	Calc.	Obs.-Calc.
0	0	\(E'\) \(v_1 + v_3\)	s	6596.605	6596.569	0.036	
0	0	\(E''\) \(v_1 + v_3\)	a	6597.498	6597.607	-0.109	
0	0	\(E''\) \(v_1 + v_3\)	s	6644.627	6664.627	0.000	
1	1	\(E'\) \(v_1 + v_3\)	s	6612.935	6612.745	0.190	
1	1	\(E''\) \(v_1 + v_3\)	s	6613.111	6613.311	-0.200	
1	1	\(E''\) \(v_1 + v_3\)	a	6613.987	6614.222	-0.235	
1	0	\(E'\) \(v_1 + v_3\)	s	6616.563	6616.585	-0.022	
1	0	\(E''\) \(v_1 + v_3\)	a	6617.389	6617.375	0.014	
1	1	\(E''\) \(v_1 + v_3\)	s	6680.448	6680.395	0.053	
1	1	\(E''\) \(v_1 + v_3\)	a	6681.159	6680.969	0.190	
1	0	\(E'\) \(v_1 + v_3\)	s	6684.445	6684.459	-0.014	
1	0	\(E''\) \(v_1 + v_3\)	a	6655.051	6655.062	-0.011	
2	2	\(E''\) \(v_1 + v_3\)	a	6641.024	6640.637	0.387	
2	2	\(A''\) \(v_1 + v_3\)	s	6642.655	6642.223	0.432	
2	1	\(E''\) \(v_1 + v_3\)	s	6651.538	6651.540	-0.002	
2	1	\(E''\) \(v_1 + v_3\)	s	6653.082	6653.098	-0.016	
2	1	\(E''\) \(v_1 + v_3\)	s	6653.864	6653.364	0.500	
2	0	\(E'\) \(v_1 + v_3\)	s	6656.415	6656.516	-0.101	
2	0	\(E''\) \(v_1 + v_3\)	a	6657.122	6657.101	0.021	
2	2	\(A''\) \(v_1 + v_3\)	s	6709.141	6708.980	0.161	
2	2	\(A''\) \(v_1 + v_3\)	s	6709.962	6709.633	0.329	
2	1	\(A''\) \(v_1 + v_3\)	a	6720.105	6720.056	0.049	
2	1	\(E''\) \(v_1 + v_3\)	a	6720.618	6720.493	0.125	
0	0	\(E''\) \(v_1 + v_3\)	s	6724.162	6724.185	-0.023	
0	0	\(E''\) \(v_1 + v_3\)	a	6724.623	6724.659	-0.036	
0	0	\(E''\) \(v_1 + 2v_4\)	s	6546.987	6546.987	0.000	
1	1	\(A''\) \(v_1 + 2v_4\)	a	6548.449	6548.449	0.000	
1	1	\(A''\) \(v_1 + 2v_4\)	a	6559.895	6559.922	-0.027	
1	0	\(E''\) \(v_1 + 2v_4\)	s	6567.492	6567.504	-0.012	
1	0	\(E''\) \(v_1 + 2v_4\)	s	6567.904	6567.960	-0.056	
1	0	\(E''\) \(v_1 + 2v_4\)	s	6568.657	6568.730	-0.073	
1	1	\(E''\) \(v_1 + 2v_4\)	a	6569.257	6569.269	-0.012	
2	2	\(E''\) \(v_1 + 2v_4\)	s	6582.047	6582.056	-0.009	
2	2	\(E''\) \(v_1 + 2v_4\)	a	6583.439	6583.476	-0.037	
2	1	\(A''\) \(v_1 + 2v_4\)	s	6599.495	6599.514	-0.019	
2	1	\(A''\) \(v_1 + 2v_4\)	s	6601.051	6600.952	0.099	
2	2	\(A''\) \(v_1 + 2v_4\)	a	6602.177	6602.120	0.057	
2	0	\(E''\) \(v_1 + 2v_4\)	s	6608.463	6608.506	-0.043	
2	0	\(E''\) \(v_1 + 2v_4\)	a	6609.322	6609.348	-0.026	
2	0	\(E''\) \(v_1 + 2v_4\)	a	6609.323	6609.348	-0.025	
2	1	\(E''\) \(v_1 + 2v_4\)	a	6609.784	6609.876	-0.092	
2	2	\(E''\) \(v_1 + 2v_4\)	a	6640.194	6640.470	-0.276	
2	1	\(E''\) \(v_3 + 2v_4\)	a	6700.714	6699.362	1.352	
2	2	\(E''\) \(v_3 + 2v_4\)	s	6702.047	6703.073	-1.026	
2	1	\(A''\) \(v_3 + 2v_4\)	a	6713.529	6712.830	0.699	
Table 6: Comparison of the theoretical term values (cm$^{-1}$) of 15NH$_3$, from this work (BYTe-15) and computed by Huang et al. [47]. See Table 7 for the description of the notations.

v_{10}	v_1	v_2	v_3	v_4	v_5	$\tau_{0\omega}$	BYTe-15	HSL-2	BYTe-HSL
A'_{20}	0	0	0	0	0	0	0.00	0.00	0.00
A'_{22}	0	0	0	0	0	1	0.76	0.76	0.00
A'_{40}	0	1	0	0	0	0	928.46	928.47	−0.01
A'_{42}	0	1	0	0	0	1	962.89	962.93	−0.04
A'_{44}	0	2	0	0	0	0	1591.18	1591.18	0.00
A'_{50}	0	2	0	0	0	1	1870.85	1870.82	0.03
A'_{60}	0	3	0	0	0	0	2369.31	2369.33	−0.02
A''_{20}	0	0	0	2	0	0	2876.12	2876.12	0.01
A''_{22}	0	0	0	2	0	1	3212.12	3212.08	−0.08
A''_{40}	0	0	0	2	0	0	3212.12	3212.08	0.04
A''_{42}	1	0	0	0	0	0	3333.22	3333.27	−0.05
A''_{44}	1	0	0	0	0	1	3334.16	3334.25	−0.09
A''_{46}	0	4	0	0	0	0	4383.72	4383.70	0.02
A''_{50}	0	4	0	0	0	1	4034.03	4033.67	0.36
A''_{52}	0	1	0	2	0	0	4105.77	4105.95	−0.18
A''_{54}	0	1	0	2	0	1	4161.85	4161.73	0.12
A''_{56}	0	1	0	2	0	0	4383.24	4383.26	−0.01
A''_{60}	1	1	0	0	0	0	4995.22	4992.68	2.54
A''_{62}	1	1	0	0	0	1	4312.30	4312.29	0.01
A''_{64}	0	5	0	0	0	0	4622.71	4622.23	0.48
A''_{66}	0	5	0	0	0	1	4740.39	4743.57	−3.18
A''_{70}	0	0	0	3	0	3	4832.84	4832.55	0.29
A''_{72}	0	0	0	3	0	3	4834.25	4834.26	−0.01
A''_{74}	0	1	2	0	0	0	4973.92	4970.92	3.02
A''_{76}	0	1	2	0	0	1	4995.22	4992.68	2.54
A''_{80}	0	0	1	1	1	1	5058.33	5055.98	2.35
A''_{82}	0	0	1	1	1	1	5058.75	5056.20	2.55
A''_{84}	0	2	0	2	0	0	5074.97	5076.68	−1.71
A''_{86}	1	2	0	2	0	0	5221.82	5220.15	1.67
A''_{90}	0	5	0	0	0	0	5322.90	5322.97	−0.07
A''_{92}	0	3	0	2	0	0	5579.27	5582.89	−3.62
A''_{94}	0	1	0	3	0	3	5704.65	5705.12	−0.47
A''_{96}	1	3	0	0	0	0	5723.13	5721.57	1.56
A''_{100}	0	1	0	3	0	3	5773.60	5774.00	−0.40
A''_{102}	0	6	0	0	0	0	6002.36	6001.83	0.53
A''_{104}	0	1	1	1	1	1	6004.37	6007.44	−3.07
A''_{106}	0	1	1	1	1	1	6030.73	6031.88	−1.15
A''_{110}	0	3	0	2	0	0	6106.56	6109.59	−3.03
A''_{112}	1	3	0	0	0	0	6208.93	6208.84	0.09
A''_{114}	0	2	0	2	0	0	6330.11	6333.51	−3.40
A''_{116}	0	0	0	4	0	0	6346.25	6343.14	3.11
A''_{120}	0	0	0	4	0	1	6350.08	6344.21	5.87
A''_{122}	2	0	0	0	0	0	6506.86	6512.69	−5.83
A''_{124}	2	0	0	0	0	1	6508.66	6514.29	−5.63
A''_{126}	1	0	0	2	0	0	6595.10	6597.04	−1.94
A''_{130}	1	0	0	2	0	1	6595.98	6597.93	−1.95
A''_{132}	1	0	0	2	0	0	6634.75	6637.61	−2.86
A''_{134}	1	0	0	2	0	1	6636.48	6638.79	−2.31
A''_{136}	0	4	0	2	0	0	6680.14	6682.30	−2.16
A''_{140}	0	2	0	3	0	3	6692.05	6694.31	−2.26
Table 7: Extract from the Energy file.

Column Notation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24			
N																											
E																											
g_{rot}																											
J_{rot}																											
n_1 - n_4																											
L_3, L_4																											
Γ_{vib}^a																											
s/a																											
K																											
Γ_{rot}^a																											
$	C_i^2	^2$																									
v_1 - v_6																											

* The symmetry labels (1,2,3,4,5,6) are used for $(A_1', A_2', E', A_1'', A_2'', E'')$, respectively.

1. The symmetry labels (1,2,3,4,5,6) are used for $(A_1', A_2', E', A_1'', A_2'', E'')$, respectively.
Table 8: Extract from the Transition file.

i'	i''	$\lambda_{i'\gamma_{i''}} / \text{s}^{-1}$
623528	445704	1.5466e-08
1737233	1846711	1.1752e-07
1334663	1430969	2.4884e-06
446023	393427	1.1053e-01
623718	688990	9.7052e-08
906264	688810	7.0643e-10
1334663	1430969	2.4884e-06
446023	393427	1.1053e-01
623718	688990	9.7052e-08
906264	688810	7.0643e-10
1334663	1430969	2.4884e-06
446023	393427	1.1053e-01
623718	688990	9.7052e-08
906264	688810	7.0643e-10
1334663	1430969	2.4884e-06
446023	393427	1.1053e-01
623718	688990	9.7052e-08
906264	688810	7.0643e-10
1334663	1430969	2.4884e-06
446023	393427	1.1053e-01
623718	688990	9.7052e-08
906264	688810	7.0643e-10
1334663	1430969	2.4884e-06
446023	393427	1.1053e-01
623718	688990	9.7052e-08
906264	688810	7.0643e-10
1334663	1430969	2.4884e-06
446023	393427	1.1053e-01
623718	688990	9.7052e-08
906264	688810	7.0643e-10
1334663	1430969	2.4884e-06
446023	393427	1.1053e-01
623718	688990	9.7052e-08
906264	688810	7.0643e-10
1334663	1430969	2.4884e-06

[2] P. Schilke, C. M. Walmsley, R. Mauersberger, Peculiar $^{15}\text{NH}_3$ toward NGC-7538-IRS-1, Astron. Astrophys. 247 (1991) 516–524.

[3] S. B. Charnley, S. D. Rodgers, The end of interstellar chemistry as the origin of nitrogen in comets and meteorites, Astrophys. J. 569 (2002) L133–L137. doi:10.1086/340484

[4] D. C. Lis, A. Wootten, M. Gerin, E. Roueff, Nitrogen isotopic fractionation in interstellar ammonia, Astrophys. J. Lett. 710 (2010) L49–L52. doi:10.1088/2041-8205/710/1/L49

[5] M. Gerin, N. Marcelino, N. Biver, E. Roueff, L. H. Coudert, M. Elkeurti, D. C. Lis, D. Bockeele-Morvan, Detection of $^{15}\text{NH}_2\text{D}$ in dense cores: a new tool for measuring the $^{14}\text{N}/^{15}\text{N}$ ratio in the cold ISM, Astron. Astrophys. 498 (2009) L9–L12. doi:10.1051/0004-6361/200911759

[6] T. Fouchet, E. Lellouch, B. Bezard, T. Encrenaz, P. Drossart, H. Feuchtgruber, T. de Graauw, ISO-SWS observations of jupiter: Measurement of the ammonia tropospheric profile and of the $^{15}\text{N}/^{14}\text{N}$ isotopic ratio, Icarus 143 (2000) 223-243. doi:10.1006/icar.1999.6255

[7] T. Fouchet, P. G. J. Irwin, P. Parrish, S. B. Calcutt, F. W. Taylor, C. A. Nixon, T. Owen, Search for spatial variation in the Jovian $^{15}\text{N}/^{14}\text{N}$ ratio from Cassini/CIRS observations, Icarus 172 (2004) 50-58. doi:10.1016/j.icarus.2003.11.011

[8] L. A. Harper, R. R. Sharpe, Atmospheric ammonia: Issues on transport and nitrogen isotope measurement, Atmos. Environ. 32 (1998) 273-277. doi:10.1016/S1352-2310(97)00240-9

[9] S. Pizzarello, L. B. Williams, Ammonia in the early solar system: An account from carbonaceous meteorites, Astrophys. J. 749 (2012) 161. doi:10.1088/0004-637X/749/2/161

[10] M. J. Mumma, S. B. Charnley, The chemical composition of comets-emerging taxonomies and Natal Heritage, in: S. M. Faber, E. Van Dishoeck (Eds.), Annu. Rev. Astron. Astrophys., volume 49 of Annual Review of Astronomy and Astrophysics, 2011, pp. 471-524. doi:10.1146/annurev-astro-081309-130811

[11] L. N. Fletcher, T. Greathouse, G. Orton, P. Irwin, O. Mousis, J. Sinclair, R. Giles, The origin of nitrogen on Jupiter and Saturn from the $^{15}\text{N}/^{14}\text{N}$ ratio, Icarus 238 (2014) 170
R. M. Lees, L. Li, Z. Liu, L.-H. Xu, External cavity tunable diode laser spectrum of the $\nu_1 + \nu_3$ N-H stretching combination band of 14NH$_3$, J. Molec. Struct. (THEOCHEM) 795 (2006) 134–142. doi:10.1016/j.molstruc.2006.02.018

R. M. Lees, L. Li, L.-H. Xu, New VISTA on ammonia in the 1.5 μm region: Assignments for the $\nu_3 + 2\nu_4$ bands of 14NH$_3$ and 15NH$_3$ by isotopic shift labeling, J. Mol. Spectrosc. 251 (2008) 241–251. doi:10.1016/j.jms.2008.03.013

E. N. Karyakin, A. F. Kruptov, D. Papousek, J. M. Shchur in, S. Urban, Sub-millimeter-wave rotation-inversion transition $J = 1 - 0$, $\Delta K = 0$ of 14NH$_3$ and 15NH$_3$ in ν_2 state, J. Mol. Spectrosc. 66 (1977) 171–173. doi:10.1016/0022-2852(77)90332-0

S. Urban, P. Misra, K. N. Rao, The $\nu_1 + \nu_2$ and $\nu_1 + \nu_2 - \nu_3$ bands of 14NH$_3$ and 15NH$_3$, J. Mol. Spectrosc. 114 (1985) 377–394. doi:10.1016/0022-2852(85)90233-4

H. Sasa da, R. H. Schwendeman, High-resolution spectroscopy of the $\nu_2 = 2$ a \leftrightarrow s $\nu_2 = 1$ s band of 15NH$_3$, J. Mol. Spectrosc. 117 (1986) 331–341. doi:10.1016/0022-2852(86)90158-X

R. D'Cunha, The $\alpha_2\nu_2 \leftrightarrow s\nu_2$ bands 14NH$_3$ and 15NH$_3$, J. Mol. Spectrosc. 122 (1987) 130–134. doi:10.1016/0022-2852(87)90223-2

P. Varanasi, P. Wyant, Intensities and line-shapes in the ν_2-fundamentals of 14NH$_3$ and 15NH$_3$, J. Quant. Spectrosc. Radiat. Transf. 25 (1981) 311–317. doi:10.1016/0022-4073(81)90080-7

V. M. Devi, K. N. Rao, Pr. Pracna, S. Urban, Intensities in the ν_1 band of 15NH$_3$, J. Mol. Spectrosc. 143 (1990) 18–24.

K. J. Siems, A. A. Madej, B. G. Whitford, Absolute frequency measurement of the $sp(8,6)$ transition of 15NH$_3$, J. Mol. Spectrosc. 174 (1995) 613–614. doi:10.1006/jmsp.1995.0030

B. Lins, F. Pflaum, R. Engelbrecht, B. Schmauss, Absorption line strengths of 15NH$_3$ in the near infrared spectral region, Appl. Phys. B-Lasers Opt. 102 (2011) 293–301. doi:10.1007/s00340-010-4217-1

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drumlin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perri n, E. R. Polovtseva, M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Orphal, V. Perevalov, A. Perri n, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, T. Tashkin, J. Tennyson, G. C. Toon, V. G. Tyutyurev, G. Wagner, The HITRAN 2012 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf. 130 (2013) 4 – 50. doi:10.1016/j.jqsrt.2013.07.002

B. J. Orr, T. Oka, Determination of electric-dipole moment for ν_2 vibrational-state of 15NH$_3$ by infrared-infrared double resonances, J. Mol. Spectrosc. 66 (1977) 302–313. doi:10.1016/0022-2852(77)90219-3

G. Dilonardo, A. Trombetti, B. Velino, Dipole-moment for the $\nu_2 = 1$ vibrational-state of 15NH$_3$ by saturation laser Stark spectroscopy, Chem. Phys. Lett. 80 (1981) 352–354. doi:10.1016/0009-2614(81)80124-8

P. Čermák, J. Hovorka, P. Veis, P. Cacciani, J. Cosléou, J. E. Romh, M. Khelkhal, Spectroscopy of 14NH$_3$ and 15NH$_3$ in the 2.3 μm spectral range with a new VECSEL laser source, J. Quant. Spectrosc. Radiat. Transf. 137 (2014) 13 – 22. URL: http://www.sciencedirect.com/science/article/pii/S0022240714000089

T. Földes, D. Golebiowski, M. Herman, T. Softley, G. Di Lonardo, L. Fusina, Low-temperature high-resolution absorption spectrum of 14NH$_3$ in the $\nu_1 + \nu_3$ band region (1.51 μm), Mol. Phys. 112 (2014) 2407–2418. doi:10.1080/00268976.2014.904944
X. Huang, D. W. Schwenke, T. J. Lee, Rovibrational spectra of ammonia. II. Detailed analysis, comparison, and prediction of spectroscopic assignments for 14NH$_3$, 15NH$_3$, and 14ND$_3$, J. Chem. Phys. 134 (2011) 044321. doi:10.1063/1.3541352

S. N. Yurchenko, R. J. Barber, J. Tennyson, A variationally computed line list for hot NH$_3$, Mon. Not. R. Astr. Soc. 413 (2011) 1828–1834. doi:10.1111/j.1365-2966.2011.19261.x

S. N. Yurchenko, W. Thiel, P. Jensen, Theoretical ROVibRational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules, J. Mol. Spectrosc. 245 (2007) 126–140. doi:10.1016/j.jms.2007.07.009

J. P. Beaulieu, G. Tinetti, D. M. Kipping, I. Ribas, R. J. Barber, J. Y. K. Cho, I. Polichtchouk, J. Tennyson, S. N. Yurchenko, C. A. Griffith, V. Batista, I. Waldmann, S. Miller, S. Carey, O. Mousis, S. J. Fossey, A. Aylward, Methane in the atmosphere of the transiting hot Neptune GJ 436b?, Astrophys. J. 731 (2011) 16. doi:10.1088/0004-637X/731/1/16

P. W. Lucas, C. G. Tinney, B. Burningham, S. K. Leggett, D. J. Pinfield, R. Smart, H. R. A. Jones, F. Marocco, R. J. Barber, S. N. Yurchenko, J. Tennyson, M. Ishii, M. Tamura, A. C. Day-Jones, A. Adamson, F. Allard, D. Homeier, The discovery of a very cool, very nearby brown dwarf in the Galactic plane, Mon. Not. R. Astr. Soc. 408 (2010) L56–L60. doi:10.1111/j.1745-3933.2010.00927.x

S. N. Yurchenko, R. J. Barber, J. Tennyson, W. Thiel, P. Jensen, Towards efficient refinement of molecular potential energy surfaces: Ammonia as a case study, J. Mol. Spectrosc. 268 (2011) 123–129. doi:10.1016/j.jms.2011.04.005

S. N. Yurchenko, R. J. Barber, A. Yachmenev, W. Thiel, P. Jensen, J. Tennyson, A variationally computed $T=300$ K line list for NH$_3$, J. Phys. Chem. A 113 (2009) 11845–11855. doi:10.1021/jp9029425

A. Yachmenev, S. N. Yurchenko, I. Paidarova, P. Jensen, W. Thiel, S. P. A. Sauer, Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: The importance of the large amplitude inversion mode, J. Chem. Phys. 132 (2010) 114305. doi:10.1063/1.3359959

C. Sousa-Silva, N. Hesketh, S. N. Yurchenko, C. Hill, J. Tennyson, High Temperature partition functions and thermodynamic data for ammonia and phosphine, J. Quant. Spectroc. Radiat. Transf. 120 (2014) 66–74. doi:10.1016/j.jqsrt.2014.03.012

B. Noumeroff, Méthode nouvelle de la determination des orbites et le calcul des éphémérides en tenant compte des perturbations, volume 2, Moscow, Gosudarstvennoe Izdatel' sto, 1923, pp. 188–259.

J. W. Cooley, An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields, Math. Comp. 15 (1961) 363–374. doi:http://dx.doi.org/10.1090/S0025-5718-1961-0129566-X

S. N. Yurchenko, M. Carvajal, P. Jensen, H. Lin, J. J. Zheng, W. Thiel, Rotation-vibration motion of pyramidal XY$_3$ molecules described in the Eckart frame: Theory and application to NH$_3$, Mol. Phys. 103 (2005) 359–378. doi:10.1080/002689705412331517255

P. Shojaaghahervand, R. H. Schwendeman, Infrared microwave 2-photon spectroscopy of the ν_2 band of 15NH$_3$, J. Mol. Spectrosc. 97 (1983) 306–315. doi:10.1016/0022-2852(83)90269-2

L. Li, R. M. Lees, L.-H. Xu, External cavity tunable diode laser spectra of the $v_3 + 2v_4$ stretch-bend combination bands of 14NH$_3$ and 15NH$_3$, J. Mol. Spectrosc. 243 (2007) 219–226. doi:10.1016/j.jms.2007.04.003

S. N. Yurchenko, M. Carvajal, H. Lin, J. J. Zheng, W. Thiel, P. Jensen, Dipole moment and rovibrational intensities in the electronic ground state of NH$_3$: Bridging the gap between ab initio theory and spectroscopic experiment, J. Chem. Phys. 122 (2005) 104317. doi:10.1063/1.1862620

S. N. Yurchenko, W. Thiel, M. Carvajal, H. Lin, P. Jensen, Rotation-vibration
motion of pyramidal XY_3 molecules described in the Eckart frame. The calculation of intensities with application to NH$_3$, Adv. Quant. Chem. 48 (2005) 209–238. doi:10.1016/S0065-3276(05)48014-4

[63] M. J. Down, C. Hill, S. N. Yurchenko, J. Tennyson, L. R. Brown, I. Kleiner, Re-analysis of ammonia spectra: Updating the HITRAN 14NH$_3$ database, J. Quant. Spectrosc. Radiat. Transf. 130 (2013) 260–272. doi:10.1016/j.jqsrt.2013.05.027

[64] R. J. Barber, J. Tennyson, G. J. Harris, R. N. Tolchenov, A high accuracy computed water line list, Mon. Not. R. Astr. Soc. 368 (2006) 1087–1094.

[65] J. Tennyson, C. Hill, S. N. Yurchenko, Data structures for ExoMol: Molecular line lists for exoplanet and other atmospheres, in: J. Gillaspy, W. Wiese, Y. Podpaly (Eds.), Eighth International Conference on Atomic and Molecular Data and Their Applications: ICAMDATA-8, volume 1545 of AIP Conference Proceedings, 2013, pp. 186–195. doi:10.1063/1.4815853

[66] J. Tennyson, S. N. Yurchenko, ExoMol: molecular line lists for exoplanet and other atmospheres, Mon. Not. R. Astr. Soc. 425 (2012) 21–33. doi:10.1111/j.1365-2966.2012.21440.x

[67] C. Hill, S. N. Yurchenko, J. Tennyson, Temperature-dependent molecular absorption cross sections for exoplanets and other atmospheres, Icarus 226 (2013) 1673–1677. doi:10.1016/j.icarus.2012.07.028

[68] P. R. Bunker, P. Jensen, Molecular Symmetry and Spectroscopy, 2 ed., NRC Research Press, Ottawa, 1998.

[69] J. Fischer, R. R. Gamache, A. Goldman, L. S. Rothman, A. Perrin, Total internal partition sums for molecular species in the 2000 edition of the HITRAN database, J. Quant. Spectrosc. Radiat. Transf. 82 (2003) 401–412.