ABSTRACT. We give an operator space characterization of sub-
algebras of $C(\Omega, M_n)$. We also describe injective subspaces of $C(\Omega, M_n)$ and then give applications to sub-TROs of $C(\Omega, M_n)$. Finally, we prove an ‘n-minimal version’ of the Christensen-Effros-
Sinclair representation theorem.

1. INTRODUCTION AND PRELIMINARIES

Let $n \in \mathbb{N}^*$. An operator space X is called n-minimal if there
exists a compact Hausdorff space Ω and a completely isometric map
$i : X \to C(\Omega, M_n)$. The readers are referred to [13] and [7] for details
on operator space theory. Recall that the C^*-algebra $C(\Omega, M_n)$ can
be identified \ast-isomorphically with $C(\Omega) \otimes_{\min} M_n$ or $M_n(C(\Omega))$ (see
[12] Proposition 12.5] for details). Obviously, in the case $n = 1$, we
just deal with the well-known class of minimal operator spaces. Smith
noticed that any linear map into M_n is completely bounded and its cb
norm is achieved at the n^{th} amplification i.e. $\|u\|_{cb} = \|id_{M_n} \otimes u\|$ (see
[12] Proposition 8.11]). Clearly, this property remains true for maps
into $C(\Omega, M_n)$. In fact, Pisier showed that this property characterized
n-minimal operator spaces. More precisely, if X is an operator space
such that any linear map u into X is necessarily completely bounded and $\|u\|_{cb} = \|id_{M_n} \otimes u\|$, then X is n-minimal (see
[14] Theorem 18]).

We now recall a few facts about injectivity (see [7], [12] or [2] for
details). A Banach space X is injective if for any Banach spaces
$Y \subset Z$, each contractive map $u : Y \to X$ has a contractive exten-
sion $\tilde{u} : Z \to X$. Since the 50’s, it is known that a Banach space
is injective if and only if it is isometric to a $C(K)$-space with K a
Stonean space and dual injective Banach spaces are exactly L^∞-spaces
(see [6] for more details). More recently, injectivity has also been stud-
ied in operator spaces category. Analogously, an operator space X is
said to be injective if for any operator spaces $Y \subset Z$, each completely
contractive map $u : Y \to X$ has a completely contractive extension
$\tilde{u} : Z \to X$. Note that a Banach space is injective if and only if it is

1991 Mathematics Subject Classification. 47L30,47L25.
injective as a minimal operator space. Let X be an operator space, (Y, i) is an injective envelope of X if Y is an injective operator space, $i : X \to Y$ is a complete isometry and for any injective operator space Z with $i(X) \subset Z \subset Y$, then $Z = Y$. Sometimes, we may forget the completely isometric embedding. In fact, any operator space admits a unique injective envelope (up to complete isometry) and we write $I(X)$ the injective envelope of X. See [7, Chapter 6] for a proof of this construction.

Obviously, an ℓ^∞-direct sum of n-minimal operator spaces is again n-minimal. In the next proposition, we give some other easy properties of n-minimal operator spaces:

Proposition 1.1. Let X be an n-minimal operator space.

i) Then its bidual X^{**} and its injective envelope $I(X)$ are n-minimal too.

ii) If moreover, X is a dual operator space, then there is a set I and a w^*-continuous complete isometry $i : X \to \ell^\infty I(M_n)$.

Proof. The first assertion of i) follows from $C(\Omega, M_n)^{**} = M_n(C(\Omega))^{**} = M_n(C(\Omega)^{**})$ *-isomorphically. For the second, suppose $X \subset C(\Omega, M_n)$ completely isometrically. From the description of injective Banach spaces, $I(C(\Omega)) = C(\Omega')$ with Ω' Stonean. Then $X \subset C(\Omega', M_n)$ and this last C^*-algebra is injective, so $I(X) \subset C(\Omega', M_n)$ completely isometrically.

Suppose that W is an operator space predual of X. Then $X = CB(W, C)$ and if $I = \cup_n \text{Ball}(M_n(W))$, we have a w^*-continuous complete isometry $\psi : X \to \oplus_{n\in I} M_{n_w}$ (where $n_w = m$ if $w \in M_m(W)$) defined by $\psi(x) = ([x(\omega_{ij})])_{w\in I}$. Let $x \in M_k(X) = CB(W, M_k)$. As X is n-minimal, by [12, Proposition 8.11], $\|x^*\|_{cb} = \|id_{M_k} \otimes x^*\|$, where $x^* : M_k^* \to X$ denotes the adjoint map. However, for any l, $\|id_{M_l} \otimes x\| = \|id_{M_l} \otimes x^*\|$. Hence, $\|x\|_{cb} = \|id_{M_n} \otimes x\|$ and so, in the definition of ψ, we can majorize the n_w's by n and obtain a complete isometry.

We reviewed that an injective minimal operator space is a C^*-algebra, but this property is lost for n-minimal operator spaces (as soon as $n \geq 2$). Generally, an injective operator space only admits a structure of ternary ring of operators. We recall that a closed subspace X of a C^*-algebra is a ternary ring of operators (TRO in short) if $XX^* X \subset X$, here X^* denotes the adjoint space of X. And a W^*-TRO is w^*-closed subspace of a von Neumann algebra stable under the preceding ‘triple product’. TROs and W^*-TROs can be regarded as generalization of C^*-algebras and W^*-algebras. For instance, The Kaplansky density
Theorem and the Sakai Theorem remain valid for TROs (see e.g. [6]). A triple morphism between TROs is a linear map which preserves their ‘triple products’. This category enjoys some ‘rigidity properties’ like C^*-algebras category (see e.g. [6] or [2] Section 8.3) for details.

So far we have seen that certain properties of the minimal case ‘pass’ to the n-minimal situation. Therefore, the basic idea of this paper is to extend valid results in the commutative case to the more general n-minimal case.

A first commutative result that can be extended to the n-minimal case is a theorem on operator algebras due to Blecher. We recall that an operator algebra is a closed subalgebra of $B(H)$, see [2] or [12] for some backgrounds and developments. And an operator algebra is said to be approximately unital if it possesses a contractive approximate identity. In [1], Blecher showed that an approximately unital operator algebra which is minimal is in fact a uniform algebra (i.e a subalgebra of a commutative C^*-algebra). So here, let A be an approximately unital operator algebra and assume that A is n-minimal. Then we can obtain a completely isometric homomorphism from A into a certain $C(\Omega, M_n)$ (see Corollary 2.3). Of course, we can ask this type of question in various categories of operator spaces. More precisely, let \mathcal{C} denote a certain subcategory of the category of operator spaces with completely contractive maps. Let X be an object of \mathcal{C} which is n-minimal (as an operator space), can we obtain a completely isometric morphism of \mathcal{C} from X into a C^*-algebra of the form $C(\Omega, M_n)$? For example in Proposition 1.1 we answered this question in the category of dual operator spaces and w^*-continuous completely contractive maps. We will also give a positive answer in the category of:

- C^*-algebras and $*$-homomorphisms (see Theorem 2.2);
- von Neumann algebras and w^*-continuous $*$-homomorphisms (see Remark 2.4);
- approximately unital operator algebras and completely contractive homomorphisms (see Corollary 2.3);
- operator systems and completely positive unital maps (see Corollary 3.3);
- TRO and triple morphisms (see Proposition 4.1);
- W^*-TRO and w^*-continuous triple morphisms (see Corollary 4.5).

It means that, in any of the previous categories, the n-minimal operator space structure encodes the additional structure. Since the injective envelope of an n-minimal operator space is n-minimal too (see Proposition 1.1), passing to the injective envelope will be a useful technique to answer these preceding questions. In any case, the description of
\[\text{n-minimal injective operator spaces (established in Theorem 3.5) will be of major importance.}\]

The Christensen-Effros-Sinclair theorem (CES-theorem in short) is a second example of theorem that could be treated in the \(n\)-minimal case. Let \(A\) be an operator algebra (or more generally a Banach algebra endowed with an operator space structure) and let \(X\) be an operator space which is a left \(A\)-module. Then following [2, Chapter 3], we say that \(X\) is a left \(h\)-module over \(A\) if the action of \(A\) on \(X\) induces a completely contractive map from \(A \otimes_h X\) in \(X\) (where \(\otimes_h\) denotes the Haagerup tensor product). The CES-theorem states that if \(X\) is a non-degenerate \(h\)-module over an approximately unital operator algebra \(A\) (i.e. \(AX\) is dense in \(X\)), then there exists a \(C^*\)-algebra \(C\), a complete isometry \(i : X \to C\) and a completely contractive homomorphism \(\pi : A \to C\) such that \(i(a \cdot x) = \pi(a)i(x)\) for any \(a \in A\), \(x \in X\).

We will prove that if \(X\) is \(n\)-minimal, we can choose \(C\) to be \(n\)-minimal too. This leads to an ‘\(n\)-minimal version’ of the CES-theorem. The case \(n = 1\) has been treated (see [3]) in a Banach space framework; here we will use an operator space approach based on the multiplier algebra of an operator space.

2. SUBALGEBRAS OF \(C(\Omega, M_n)\)

Recall that a \(C^*\)-algebra is subhomogeneous of degree \(\leq n\) if it is contained \(*\)-isomorphically in a \(C^*\)-algebra of the form \(C(\Omega, M_n)\), where \(\Omega\) is compact Hausdorff space. Hence \(n\)-minimality could be seen as an operator space analog of subhomogeneity of degree \(\leq n\). We also recall the well-known characterization of subhomogeneous \(C^\ast\)-algebras in terms of representations. Indeed, a \(C^\ast\)-algebra \(A\) is subhomogeneous of degree \(\leq n\) if and only if every irreducible representation of \(A\) has dimension no greater than \(n\). The ‘if part’ is easily obtained taking a separating family of irreducible representations. Conversely, if \(A\) is contained \(*\)-isomorphically in \(C(\Omega, M_n)\), then every irreducible representation of \(A\) extends to one on \(C(\Omega, M_n)\) (because irreducible representations correspond to pure states). And as any irreducible representation of \(C(\Omega, M_n)\) has dimension no greater than \(n\), we can conclude (the author thanks Roger Smith for these explanations).

Lemma 2.1. Let \(k \in \mathbb{N}^\ast\), \(\Omega\) a compact Hausdorff space and \(t_k\) the transpose mapping

\[t_k : C(\Omega, M_k) \rightarrow C(\Omega, M_k), \quad [f_{ij}] \mapsto [f_{ji}]\]
Moreover in adapting the assumption (i) is of the form \(\sum C \). Hence the assumption (ii) holds. Then for any \(l \in \mathbb{N}^* \), \(\| id_{M_l} \otimes t_k \| = \inf(k, l) \). Thus \(t_k \) is completely bounded and \(\| id_{M_k} \otimes t_k \| = \| t_k \|_{cb} = k \).

Proof. The equality \(\| t_k \|_{cb} = k \) is obtained in adapting the proof of [7, Proposition 2.2.7]. Hence in the case \(k \leq l \), by [12, Proposition 8.11] we obtain \(\| id_{M_l} \otimes t_k \| = \inf(k, l) \). Next we prove \(\| id_{M_l} \otimes t_k \| \leq l \). Let \(\pi \) be the cyclical permutation matrix

\[
\pi = \begin{pmatrix}
0 & 0 & \cdots & 0 & I_k \\
I_k & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & I_k & 0
\end{pmatrix} \in M_l(C(\Omega, M_k)).
\]

Let \(D_l : M_l(C(\Omega, M_k)) \rightarrow M_l(C(\Omega, M_k)) \) be the diagonal truncation of \(M_l \) i.e. \(D_l(\epsilon_{ij} \otimes y) = \delta_{ij} \epsilon_{ij} \otimes y \) where \(\epsilon_{ij} \) (\(i, j \leq l \)) denotes the matrix units of \(M_l \) and \(y \in C(\Omega, M_k) \). Let \(x = [x_{ij}]_{i,j \leq l} \in M_l(C(\Omega, M_k)) \) and for simplicity of notation, we wrote \(t(x) = id_{M_l} \otimes t_k(x) \in M_l(C(\Omega, M_k)) \).

Then \(t(x) = \sum_{i=0}^{l-1} D_l(t(x) \pi^i) \pi^{-i} \), and so \(\| t(x) \| \leq \sum_{i=0}^{l-1} \| D_l(t(x) \pi^i) \| \) (because \(\pi \) is unitary). To conclude it suffices to majorize each terms of the previous sum by the norm of \(x \). However, for any \(i \), \(D_l(t(x) \pi^i) \) is of the form \(\sum_{j=1}^{l} \epsilon_{jj} \otimes t_k(x_{p,jq}) \) and we can majorize its norm,

\[
\| \sum_{j=1}^{l} \epsilon_{jj} \otimes t_k(x_{p,jq}) \|^2 = \| \sum_{j=1}^{l} \epsilon_{jj} \otimes t_k(x_{p,jq} x_{p,jq}^*) \| = \max_j \{ \| t_k(x_{p,jq} x_{p,jq}^*) \| \}
\]

but \(x_{p,jq} x_{p,jq}^* \) is a selfadjoint element of \(C(\Omega, M_k) \), so its norm is unchanged by \(t_k \) and \(\| t_k(x_{p,jq} x_{p,jq}^*) \| = \| x_{p,jq} \|^2 \leq \| x \|^2 \). Finally, for any \(i \), \(\| D_l(t(x) \pi^i) \| \leq \| x \| \) which enable us to conclude.

Moreover in adapting [7, Proposition 2.2.7], we have easily \(\| id_{M_l} \otimes t_k \| = l \), if \(l \leq k \).

In the next theorem, we denote by \(A^{op} \) the opposite structure of a C*-algebra \(A \) (see e.g. [13, Paragraph 2.10] or [2, Paragraph 1.2.25] for details). More generally, if \(X \) is an operator space, \(X^{op} \) is the same vector space but with the new matrix norms defined by

\[
\| [x_{ij}] \|_{M_n(X^{op})} = \| [x_{ij}] \|_{M_n(X)} \quad \text{for any} \quad [x_{ij}] \in M_n(X).
\]

Hence the assumption (iii) in the next theorem is equivalent to

\[
\| id_A \otimes t_k \| \leq n \quad \text{for any} \quad k \in \mathbb{N}^*,
\]

where \(t_k \) denotes the transpose mapping from \(M_k \) to \(M_k \) discussed above.

Theorem 2.2. Let \(A \) be a C*-algebra. Then the following are equivalent:

\[\text{...} \]
(i) A is subhomogeneous of degree $\leq n$.
(ii) A is n-minimal.
(iii) $\|id : A \to A^{op}\|_{cb} \leq n$.

Proof. (i) \Rightarrow (ii) is obvious and (ii) \Rightarrow (iii) follows from the first equality in the previous lemma. Suppose (iii). Let $\pi : A \to B(H)$ be an irreducible representation and $k \in \mathbb{N}^*$ such that $M_k \subset B(H)$; from the first paragraph of this section, we must prove that $k \leq n$. Using the previous lemma (with a singleton as Ω), there is $x \in M_k(M_k) \subset M_k(B(H))$ satisfying

$$
k = \|id_{M_k} \otimes t_k(x)\| \quad \text{and} \quad \|x\| \leq 1.
$$

The representation $\pi_k = id_{M_k} \otimes \pi$ is also irreducible so the commutant $\pi_k(M_k(A))^\prime = C I_{H^k}$, thus by the von Neumann’s double commutant theorem

$$
M_k(\pi(A))^{so} = M_k(B(H)).
$$

Then by the Kaplansky density theorem, there exists a net $(x_\lambda)_{\lambda \in \Lambda} \subset M_k(\pi(A))$ converging to x in the σ-strong operator topology and such that $\|x_\lambda\| \leq 1$. Therefore $id_{B(H)} \otimes t_k(x_\lambda)$ tends to $id_{M_k} \otimes t_k(x)$ in the w^*-topology and by the semicontinuity of the norm in the w^*-topology, we have

$$
k = \|id_{M_k} \otimes t_k(x)\| \leq \limsup_{\lambda} \|id_{B(H)} \otimes t_k(x_\lambda)\|.
$$

Let $\epsilon > 0$. For any λ, there exists $y_\lambda \in M_k(A)$ such that $x_\lambda = \pi_k(y_\lambda)$ and $\|y_\lambda\| \leq 1 + \epsilon$. By assumption,

$$
\|id_A \otimes t_k\| \leq n
$$

Moreover $(id_{B(H)} \otimes t_k) \circ \pi_k = \pi_k \circ (id_A \otimes t_k)$. Combining these arguments we finally obtain

$$
k = \|id_{M_k} \otimes t_k(x)\| \leq \limsup_{\lambda} \|id_{B(H)} \otimes t_k(\pi_k(y_\lambda))\|
$$

$$
\leq \limsup_{\lambda} \|\pi_k(id_A \otimes t_k(y_\lambda))\|
$$

$$
\leq \|id_A \otimes t_k\|(1 + \epsilon)
$$

$$
\leq n(1 + \epsilon).
$$

Hence $k \leq n$. \hfill \blacksquare

Now we extend $(i) \Leftrightarrow (ii)$ of the previous theorem, which concerns C^*-algebras, to the larger category of operator algebras and completely contractive homomorphisms.

Corollary 2.3. Let A be an approximately unital operator algebra. Then the following are equivalent:

1. There exists a compact Hausdorff space Ω and a completely isometric homomorphism $\pi : A \to C(\Omega, M_n)$.

(ii) A is n-minimal.

Proof. $(i) \Rightarrow (ii)$ is obvious. Suppose (ii). We know that the injective envelope $I(A)$ is a C^*-algebra and there is a completely isometric homomorphism from A into $I(A)$ (see [2, Corollary 4.2.8]). Since A is n-minimal, $I(A)$ is n-minimal too, by Proposition 1.1. Applying Theorem 2.2 to $I(A)$, we can conclude.

Remark 2.4. Using the well-known description of subhomogeneous W^*-algebras, we easily obtained that, if M is a W^*-algebra and M is n-minimal, then

$$M = \bigoplus_{i \in I} L^\infty(\Omega_i, M_{n_i})$$

via a normal $*$-isomorphism. Here Ω_i is a measure space and $n_i \leq n$, for any $i \in I$. This result will be extended to the category of W^*-TROs (see Corollary 4.5).

3. Injective n-Minimal Operator Spaces

Before describing injective n-minimal operator spaces, we can treat the more ‘rigid’ case of injective n-minimal C^*-algebras as an easy consequence of [16].

Proposition 3.1. Let A be an n-minimal C^*-algebra. Then the following are equivalent:

(i) A is injective.

(ii) There exists a finite family of Stonean compact Hausdorff spaces $(\Omega_i)_{i \in I}$ such that $A = \bigoplus_{i \in I} C(\Omega_i; M_{n_i})$ $*$-isomorphically with $n_i \leq n$, for any $i \in I$.

Proof. As A is injective, A is monotone complete (see [7, Theorem 6.1.3]). Thus A is an AW^*-algebra. Moreover, by [16, Proposition 6.6], A either contains $M_\infty = \bigoplus_k^\infty M_k$ or A is of the desired form. The first alternative is impossible because A is n-minimal, which ends the ‘only if’ part. The converse is clear, since each Ω_i is Stonean.

Remark 3.2. This theorem enables us to give a short proof of $(ii) \Rightarrow (i)$ in Theorem 2.2. If A is an n-minimal C^*-algebra, its injective envelope $I(A)$ is n-minimal too (by Proposition 1.1). $I(A)$ is a C^*-algebra and contains A $*$-isomorphically (see [7, Theorem 6.2.4]). Applying the previous proposition to $I(A)$, we obtain that

$$I(A) = \bigoplus_{i \in I}^\infty C(\Omega_i, M_{n_i})$$

$*$-isomorphically

with $n_i \leq n$, for any $i \in I$. And now it is not difficult to construct a $*$-isomorphism from A into $C(\Omega, M_n)$ where Ω denotes the (finite) disjoint union of the Ω_i's.
We recall that an operator space X is unital if there exists $e \in X$ and a complete isometry from X into a certain $B(H)$ which sends e on I_H. From the result below, an n-minimal operator system can embed into a C^*-algebra of the form $C(\Omega, M_n)$ via a unital complete order isomorphism.

Corollary 3.3. Let X be a unital operator space. Then the following are equivalent:

(i) There exists a compact Hausdorff space Ω and a completely isometric unital map $\pi : X \to C(\Omega, M_n)$.

(ii) X is n-minimal.

Proof. $(i) \Rightarrow (ii)$ is obvious. Suppose (ii). We know that the injective envelope $I(X)$ is a C^*-algebra and there is a unital complete isometry from X into $I(X)$ (see [2, Corollary 4.2.8]). As X is n-minimal, $I(X)$ is n-minimal too (by Proposition [1]). By the previous theorem

$$I(X) = \bigoplus_{i \in I} C(\Omega_i, M_{n_i}) \ast$$-isomorphically.

Next we show that for any i there exists a unital complete isometry $\varphi_i : M_{n_i} \to M_n$. By iteration, we only need to prove that for any $k \in \mathbb{N}^*$, there exists a unital complete isometry from M_k into M_{k+1}. The map

$$i_k : M_k \to M_{k+1} \quad x \mapsto x \oplus tr_k(x)$$

(where tr_k denotes the normalized trace on M_k) is a unital complete order isomorphism and thus a unital complete isometry. We can define a unital complete isometry

$$\psi : \bigoplus_{i \in I} C(\Omega_i, M_{n_i}) \to C(\Omega, M_n)$$

$$(f_i \otimes x_i)_i \mapsto \sum_i \tilde{f}_i \otimes \varphi_i(x_i)$$

where Ω denotes the disjoint union of Ω_i’s and \tilde{f}_i the continuous extension by 0 of f_i on Ω. Finally, we have

$$X \subset I(X) \subset C(\Omega, M_n)$$

via unital complete isometries.

Remark 3.4. This last corollary cannot be extended to the category of operator algebras and completely contractive homomorphisms. In fact, if $\pi : M_p \to C(\Omega, M_q)$ is a unital completely contractive homomorphism then π is positive so it is a \ast-homomorphism. Therefore (composing by an evaluation) we can obtain a unital \ast-homomorphism from M_p in M_q and thus p divides q (see [12, Exercise 4.11]).
We must recall a crucial construction of the injective envelope of an operator space X which will be useful in this paper (see [2, Paragraph 4.4.2] for more details on this construction). Assume that $X \subset B(H)$, we can consider its Paulsen system

$$S(X) = \left(\begin{array}{cc} \mathbb{C} & X \\ X^* & \mathbb{C} \end{array} \right) \subset M_2(B(H))$$

where X^* denotes the adjoint space of X. The injective envelope of $S(X)$ is the range of a completely contractive projection $\varphi : M_2(B(H)) \to M_2(B(H))$ which leaves $S(X)$ invariant. By [7, Theorem 6.1.3], $I(S(X))$ admits a C^*-algebraic structure but it is not necessarily a sub-C^*-algebra of $M_2(B(H))$. However

$$p = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad q = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 1 - p$$

(which are invariant by φ) are still orthogonal projections (i.e. selfadjoint idempotents) of the new C^*-algebra $I(S(X))$. Since they satisfy $p + q = 1$ and $pq = 0$, we can decompose $I(S(X))$ in 2×2 matrices, as follow :

$$I(S(X)) = \begin{pmatrix} I_{11}(X) & I_{12}(X) \\ I_{21}(X) & I_{22}(X) \end{pmatrix}$$

where $I_{11}(X) = pI(S(X))p$ and $I_{22}(X) = qI(S(X))q$ are injective C^*-algebras, $I_{12}(X) = pI(S(X))q$ and $I_{21}(X) = qI(S(X))p$ coincide with $I_{12}(X)^*$. Therefore, we obtain the Hamana-Ruan Theorem i.e. an injective operator space is an ‘off-diagonal’ corner of an injective C^*-algebra (see [7, Theorem 6.1.6]). It links the study of injective operator spaces to injective C^*-algebras (and, by the way, it proves that an injective operator space is a TRO).

Theorem 3.5. Let X be an n-minimal operator space. Then the following are equivalent :

(i) X is injective.

(ii) There exists a finite family of Stonean compact Hausdorff spaces $(\Omega_i)_{i \in I}$ such that $X = \bigoplus_{i \in I}^\infty C(\Omega_i, M_{r_i,k_i})$ completely isometrically with $r_i, k_i \leq n$, for any $i \in I$.

Proof. (ii) \Rightarrow (i) is obvious. Let X be an injective n-minimal operator space. By the discussion above, we know that there exists an injective C^*-algebra A and a projection $p \in A$ such that

$$X = pA(1 - p)$$

completely isometrically

In fact A is the injective envelope of $S(X)$ the Paulsen system of X (see above). As X is n-minimal, $S(X)$ is $2n$-minimal, so is A (by
Proposition 1.1. From Proposition 3.1,
\[A = \bigoplus_{i \in I} C(\Omega_i, M_{m_i}) \text{ \textit{*-isomorphically}} \]
where \(m_i \leq 2n \). For simplicity of notation, we will assume momentarily that the cardinal of \(I \) is equal to 1 and so
\[X = pC(\Omega, M_m)(1-p) \text{ \textit{completely isometrically}}, \]
for some projection \(p \in C(\Omega, M_m) \). Using [5, Corollary 3.3] or [8, Theorem 3.2], there is a unitary \(u \) of \(C(\Omega, M_m) \) such that for any \(\omega \in \Omega \), \(upu^*(\omega) \) is of the form \(\text{diag}(1, \ldots, 1, 0, \ldots, 0) \). So we may assume that for any \(\omega \in \Omega \), \(p(\omega) \) is a diagonal matrix of the form given above. For any \(k \leq m \), we define
\[\Omega_k = \{ \omega \in \Omega : \text{rg}(p(\omega)) = k \} \]
which is a closed subset of \(\Omega \) (because the rank and the trace of a projection coincide) and the family \((\Omega_k)_{k \leq m} \) forms a partition of \(\Omega \). Hence, any \(\Omega_k \) is open (and closed) in \(\Omega \), so \(\Omega_k \) is still Stonean. We have the completely isometric identifications
\[X = pC(\Omega, M_m)(1-p) = \bigoplus_{k \leq m} C(\Omega_k, M_{k,m-k}) = \bigoplus_{1 \leq k \leq m-1} C(\Omega_k, M_{k,m-k}). \]
Moreover, for any \(1 \leq k \leq m-1 \), we have the completely isometric embeddings
\[M_{k,m-k} \subset C(\Omega_k, M_{k,m-k}) \subset X \]
and as \(X \) is \(n \)-minimal, it forces \(k \leq n \) and \(m-k \leq n \); if not, at least the row Hilbert space \(R_{n+1} \) or the column Hilbert space \(C_{n+1} \) would be \(n \)-minimal. Thus \(X \) has the announced form. In general, \(I \) is a finite set and
\[X = p \bigoplus_{i \in I} C(\Omega_i, M_{m_i})(1-p) = \bigoplus_{i \in I} p_i C(\Omega_i, M_{m_i})(1-p_i) \]
where \(p_i \) is a projection in \(C(\Omega_i, M_{m_i}) \) and \(p = \bigoplus p_i \). Applying the preceding argument to each terms \(p_i C(\Omega_i, M_{m_i})(1-p_i) \), we can conclude.

Corollary 3.6. Let \(X \) be an \(n \)-minimal dual operator space. Then the following are equivalent:

(i) \(X \) is injective.

(ii) There exists a finite family of measure spaces \((\Omega_i)_{i \in I} \) such that \(X = \bigoplus_{i \in I} L^\infty(\Omega_i, M_{r_i,k_i}) \) via a completely isometric \(w^* \)-homeomorphism with \(r_i, k_i \leq n \), for any \(i \in I \).

Proof. From the previous theorem, \(X = \bigoplus_{i} C(K_i, M_{r_i,k_i}) \) completely isometrically, where \(K_i \) is Stonean. Since \(X \) is a dual operator space, it forces \(C(K_i) \) to be a dual commutative \(C^* \)-algebra i.e. \(C(K_i) = L^\infty(\Omega_i) \) (via a normal \(* \)-isomorphism) for some measure space \(\Omega_i \).
4. Application to \(n\)-minimal TROs

In this section, we will use the description of injective \(n\)-minimal operator spaces to obtain results on \(n\)-minimal TROs. First, we will see that the \(n\)-minimal operator structure of a TRO determines its whole triple structure. See e.g. [6] or [2, Section 8.3] for details on TROs.

Proposition 4.1. Let \(X\) be a TRO. The following are equivalent :

(i) There exists a compact Hausdorff space \(\Omega\) and an injective triple morphism \(\pi : X \to C(\Omega, M_n)\).

(ii) \(X\) is \(n\)-minimal.

Proof. \((i) \Rightarrow (ii)\) follows from the fact that an injective triple morphism is necessarily completely isometric (see e.g. [6, Proposition 2.2] or [2, Lemma 8.3.2]).

Suppose \((ii)\). By [2, Remark 4.4.5 (1)], the injective envelope of \(X\) admits a TRO structure and \(X\) can be viewed as a sub-TRO of \(I(X)\). From Theorem 3.5, we can describe this injective envelope as a direct sum,

\[
I(X) = \bigoplus_{i \in I} C(\Omega_i, M_{r_i,k_i}) \quad \text{completely isometrically.}
\]

But the right hand side of the equality admits a canonical TRO structure and it is known (see e.g. [2, Corollary 4.4.6]) that a surjective complete isometry between TROs is automatically a triple morphism. In addition, for any \(i\), the embedding \(\varphi_i : M_{r_i,k_i} \to M_n\) into the ‘up-left’ corner of \(M_n\) is an injective triple morphism. As in the end of the proof of Corollary 3.3, we finally obtain

\[
X \subset I(X) = \bigoplus_{i \in I} C(\Omega_i, M_{r_i,k_i}) \subset C(\Omega, M_n)
\]

as TROs.

For details on \(C^*\)-modules theory, the readers are referred to [11] or [2, Chapter 8] for an operator space approach. We must recall the construction of the linking \(C^*\)-algebra of a \(C^*\)-module. If \(X\) is a \(C^*\)-module over a \(C^*\)-algebra \(A\) then its conjugate vector space \(\overline{X}\) is a right \(C^*\)-module over \(A\) with the action \(\overline{x} \cdot a = a^*\overline{x}\) and inner product \(\langle \overline{x}, \overline{y} \rangle = \langle x, y \rangle\), for any \(a \in A, x, y \in X\). We denote by \(\mathcal{L}(X)\) the \(C^*\)-algebra of ‘compact’ adjointable maps of \(X\) and then

\[
\mathcal{L}(X) = \begin{pmatrix} A & X \\ \overline{X} & \mathcal{L}(X) \end{pmatrix}
\]
is a C^*-algebra too which is called the linking C^*-algebra of X. If X is an equivalence bimodule (see [2] Paragraph 8.1.2) over two C^*-algebras A and B, we define

$$\mathcal{L}(X) = \left(\begin{array}{cc} A & X \\ X & B \end{array} \right)$$ and $$\mathcal{L}^1(X) = \left(\begin{array}{cc} A^1 & X \\ X & B^1 \end{array} \right)$$

(where A^1 and B^1 denote the unitizations of A and B) which are also C^*-algebras (see [2] Paragraph 8.1.17 for details on linking C^*-algebra). We can notice that X is an ‘off-diagonal’ corner of a C^*-algebra i.e. $X = p\mathcal{L}^1(X)(1-p)$ for some projection $p \in \mathcal{L}^1(X)$. Hence a C^*-module admits a TRO structure. The converse will be seen later on, which will make the correspondence between C^*-modules, equivalence bimodules and TROs (see [2] Paragraph 8.1.19, 8.3.1). Thus the next corollary is a reformulation of the previous proposition in the C^*-modules language. However, this corollary on representation of module action can be compared with Theorem 5.4.

Corollary 4.2. Let X be a full left C^*-module over a C^*-algebra A. Then the following are equivalent:

(i) There exists a compact Hausdorff space Ω, a complete isometry $i : X \to C(\Omega, M_n)$ and a \ast-isomorphism $\sigma : A \to C(\Omega, M_n)$ such that for any $a \in A$, $x, y \in X$

$$i(a \cdot x) = \sigma(a)i(x)$$

$$\sigma(\langle x, y \rangle) = i(x)i(y)^*$$

(ii) X is n-minimal and A is subhomogeneous of degree $\leq n$.

(iii) X is n-minimal.

Proof. Only (iii) \Rightarrow (i) needs a proof. Since X is a C^*-module, it’s also a TRO (see above). From Proposition 4.1 there exists a compact Hausdorff space Ω and an injective triple morphism $i : X \to C(\Omega, M_n)$. By [2], Corollary 8.3.5], we can construct a corner preserving \ast-isomorphism $\pi : \mathcal{L}(X) \to M_2(C(\Omega, M_n))$ such that $i = \pi_{12}$. Choosing $\sigma = \pi_{11}$, we obtain the desired relations.

An equivalence bimodule version of the previous corollary could be stated. In the previous result we transfer n-minimality from X to A. We can treat the ‘reverse’ question ; let X be an equivalence bimodule over two n-minimal C^*-algebras, we will prove that X is n-minimal. But first, let us translate this proposition in the TROs language. Let X be a TRO contained in a C^*-algebra B via an injective triple morphism. As in the notation of the second section of [15], we define $C(X)$ (resp. $D(X)$) the norm closure of $\text{span}\{xy^*, \ x, y \in X\}$ (resp.
span\{x^*y, \; x, y \in X\}). As X is a sub-TRO of B, C(X) and D(X) are sub-C*-algebras of B and

\[A(X) = \begin{pmatrix} C(X) & X \\ X^* & D(X) \end{pmatrix} \]

is a sub-C*-algebras of \(M_2(B) \). Hence a TRO can be regarded as an ‘off-diagonal’ corner of a C*-algebra which prove totally the correspondence between C*-modules, equivalence bimodules and TROs. And A(X) is also called the linking C*-algebra of X. Analogously, in \(W^* \)-TROs category, let X be a \(W^* \)-TRO contained in a \(W^* \)-algebra B via a \(w^* \)-continuous injective triple morphism. We define \(M(X) \) (resp. \(N(X) \)) the \(w^* \)-closure of \(\text{span}\{xy^*, \; x, y \in X\} \) (resp. \(\text{span}\{x^*y, \; x, y \in X\} \)).

As X is a sub-\(W^* \)-TRO of B, M(X) and N(X) are sub-\(W^* \)-algebras of B and

\[R(X) = \begin{pmatrix} M(X) & X \\ X^* & N(X) \end{pmatrix} \]

is a sub-\(W^* \)-algebras of \(M_2(B) \). It is called the linking von Neumann algebra of X. In fact, the linking algebras do not depend on the embedding of X into a C*-algebra.

Obviously, if X is an equivalence bimodule over two C*-algebras A and B, C(X) and D(X) play the roles of A and B in the correspondence between equivalence bimodules and TROs. Hence in the TROs language, we obtain (in the dual case):

Proposition 4.3. Let X be a \(W^* \)-TRO such that \(M(X) \) and \(N(X) \) are n-minimal von Neumann algebras. Then X is n-minimal and

\[X = \oplus_i^{\infty} L^\infty(\Omega_i) \otimes M_{r_i,k_i} \]

where \(\Omega_i \) is a measure space, \(r_i, k_i \leq n \), for any i.

Proof. We write \(R(X) \) the linking von Neumann of X. From [9, Theorem 6.5.2], there exist \(p_1, p_2 \) and \(p_3 \) three central projections of \(R(X) \) such that

\[R(X) = p_1 R(X) \oplus^{\infty} p_2 R(X) \oplus^{\infty} p_3 R(X) \]

and for \(i = 1, 2, 3 \), \(p_i R(X) \) is a von Neumann algebra of type \(i \) or \(p_i = 0 \). Since \(M(X) \) is n-minimal, \(M(X) \) is of type I. However, \(M(X) = p R(X) p \) for some projection \(p \) in \(R(X) \) and for any i,

\[p_i M(X) = pp_i M(X) pp_i p \]

As the type is unchanged by compression (see [9, Exercise 6.9.16]), \(p_i M(X) \) is of type I or \(p_i M(X) = 0 \). On the other hand, for any i,

\[p_i M(X) = p_i p R(X) = pp_i R(X) p_i p \]
so \(p_i M(X) \) has the same type as \(p_i R(X) \) or \(p_i M(X) = 0 \). Thus \(p_i M(X) = 0 \) for \(i = 2, 3 \) i.e. \(p_i p = 0 \) for \(i = 2, 3 \). Symmetrically, using our assumption on \(N(X) \), we have \(p_i (1 - p) = 0 \) for \(i = 2, 3 \). Hence \(p_i = 0 \) for \(i = 2, 3 \) i.e. \(R(X) \) is of type \(I \). Using \cite{15} Theorem 4.1],
\[
X = \bigoplus_k^\infty L^\infty(\Omega_k) \otimes M_{I_k, J_k}
\]
where \(\Omega_k \) is a measure space, \(I_k, J_k \) are sets and \(M_{I_k, J_k} = B(\ell^2_k, \ell^2_k) \). Since \(M(X) \) (resp. \(N(X) \)) is \(n \)-minimal, it forces the cardinal of \(I_k \) (resp. \(J_k \)) to be no greater than \(n \), for any \(k \). So \(X \) is \(n \)-minimal and has the desired form.

Remark 4.4. In the next two results, we will use that the multiplier algebra of an \(n \)-minimal \(C^* \)-algebra is \(n \)-minimal too. It is due to Proposition \cite{1}.

The next corollary on \(W^* \)-TROs extends Remark \cite{2}.

Corollary 4.5. Let \(X \) be a \(W^* \)-TRO. The following are equivalent :

(i) \(X \) is \(n \)-minimal.

(ii) There exists a measure space \(\Omega \) and a \(w^* \)-continuous injective triple morphism \(\pi : X \to L^\infty(\Omega, M_n) \).

(iii) There exists a finite family of measure spaces \((\Omega_i)_{i \in I} \) such that \(X = \bigoplus_{i \in I} L^\infty(\Omega_i, M_{r_i, k_i}) \) with \(r_i, k_i \leq n \), for any \(i \in I \).

Proof. Only (i) \(\Rightarrow \) (iii) needs a proof. Suppose (i). From Proposition \cite{4.1}, we can see \(X \) as a sub-TRO of \(C(\Omega, M_n) \), hence by construction \(C(X) \) and \(D(X) \) are \(n \)-minimal \(C^* \)-algebras. By \cite{10}, \(M(X) \) (resp. \(N(X) \)) is the multiplier algebra of \(C(X) \) (resp. \(D(X) \)), so \(M(X) \) and \(N(X) \) are \(n \)-minimal \(W^* \)-algebras (by Remark 4.4). The result follows from the previous proposition.

Finally, we can generalize (ii) \(\Leftrightarrow \) (iv) \(\Leftrightarrow \) (v) of \cite{2} Proposition 8.6.5] on minimal TROs to the \(n \)-minimal case.

Theorem 4.6. Let \(X \) be a TRO, the following are equivalent :

(i) \(X \) is \(n \)-minimal.

(ii) \(X^{**} \) is an injective \(n \)-minimal operator space (see Corollary \cite{3.6}).

(iii) \(C(X) \) and \(D(X) \) are \(n \)-minimal \(C^* \)-algebras.

Proof. (ii) \(\Rightarrow \) (i) and (i) \(\Rightarrow \) (iii) are obvious. Suppose (iii). From \cite{10} Proposition 2.4], we know that the multiplier algebra of \(C(X^{**}) \) is \(C(X)^{**} \) and this \(C^* \)-algebra is \(n \)-minimal by our assumption on \(C(X) \) and Remark 4.4]. Moreover by \cite{15}, \(M(X^{**}) \) is also the multiplier algebra of \(C(X^{**}) \), so \(M(X^{**}) \) is \(n \)-minimal too. The same argument works for \(N(X^{**}) \) and we can apply Proposition \cite{4.3} to \(X^{**} \).
5. An \(n \)-minimal version of the CES-theorem

To prove the ‘\(n \)-minimal’ version the CES-Theorem we need the notion of left multiplier algebra of an operator space \(X \). A left multiplier of an operator space \(X \) is a map \(u : X \rightarrow X \) such that there exist a \(C^* \)-algebra \(A \) containing \(X \) via a complete isometry \(i \) and \(a \in A \) satisfying \(i(u(x)) = ai(x) \) for any \(x \in X \). Let \(\mathcal{M}_l(X) \) denote the set of left multipliers of \(X \). And the multiplier norm of \(u \) is the infimum of \(\|a\| \) over all possible \(A, i, a \) as above. In fact Blecher-Paulsen proved that any left multiplier can be represented in the embedding of \(X \) into the \(C^* \)-algebra (discussed in section 3)

\[
I(S(X)) = \left(\begin{array}{cc} I_{11}(X) & I(X) \\ I(X)^* & I_{22}(X) \end{array} \right)
\]

More precisely, for any left multiplier \(u \) of norm no greater than 1, there exists a unique \(a \in I_{11}(X) \) of norm no greater than 1 such that \(u(x) = ax \) for any \(x \in X \) (see [2] Theorem 4.5.2). This result enables us to consider \(M_l(X) \) as an operator subalgebra of \(I_{11}(X) \) (see the proof of [2] Proposition 4.5.5 and [2] Paragraph 4.5.3 for more details) and

\[
\mathcal{M}_l(X) = \{ a \in I_{11}(X), \ aX \subset X \}
\]

as operator algebras. The product used in the preceding centered formula is the one on the \(C^* \)-algebra \(I(S(X)) \). And the operator algebra \(\mathcal{M}_l(X) \) is called the multiplier algebra of \(X \). We let \(\mathcal{A}_l(X) = \Delta(\mathcal{M}_l(X)) \) denote the diagonal (see [2] Paragraph 2.1.2) of \(\mathcal{M}_l(X) \), this \(C^* \)-algebra is called the left adjointable multiplier algebra of \(X \).

Lemma 5.1. Let \(X \) be an operator space and \(I(X) \) its injective envelope. Then there exists a completely contractive unital homomorphism \(\theta : \mathcal{M}_l(X) \rightarrow \mathcal{M}_l(I(X)) \) such that \(\theta(u)|_X = u \), for any \(u \in \mathcal{M}_l(X) \). And thus, \(\theta_{\mathcal{A}_l(X)} : \mathcal{A}_l(X) \rightarrow \mathcal{A}_l(I(X)) \) is a \(* \)-isomorphism. Moreover, the same results hold for right multipliers.

Proof. Let \(u \in \mathcal{M}_l(X) \), then \(u \) can be represented by an element \(a \) in \(\{ a \in I_{11}(X), \ aX \subset X \} \). And using the multiplication inside \(I(S(X)) \),
$aI(X) \subset I(X)$, so a can be seen as an element of $\mathcal{M}_I(I(X))$ which will be written $\theta(u)$. Therefore, θ is an injective unital completely contractive homomorphism. The rest of the proof follows from [2, Paragraph 2.1.2].

In the next lemma, we use the C^*-envelope of a unital operator space, see [2, Theorem 4.3.1] for details. And we write R_n (resp. C_n) the row (resp. column) Hilbert space of dimension n. If X is an operator space, we let $C_n(X)$ be the minimal tensor product of C_n and X or equivalently

$$C_n(X) = \left\{ \begin{pmatrix} x_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ x_n & 0 & \cdots & 0 \end{pmatrix}, x_i \in X \right\} \subset M_n(X).$$

The definition of $R_n(X)$ is similar using a row instead of a column. Adapting the proof of the first example of the third section of [17], we can obtain:

Lemma 5.2. Let A be an injective C^*-algebra and $k \in \mathbb{N}^*$. Then

(1) $\mathcal{M}_l(R_k(A)) = A$ *-isomorphically and the action is given by :

$$a \cdot (x_1, \ldots, x_k) = (ax_1, \ldots, ax_k), \text{ for any } a, x_i \in A$$

(2) $\mathcal{M}_r(C_k(A)) = A$ *-isomorphically and the action is given by :

$$\begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix} \cdot a = \begin{pmatrix} x_1a \\ \vdots \\ x_ka \end{pmatrix}, \text{ for any } a, x_i \in A$$

Proof. We only prove (1), the proof of (2) is similar. Since $R_n = B(\ell^2_n, \mathbb{C})$, the Paulsen system S of $R_n(A)$ is

$$S = \left\{ \begin{pmatrix} \alpha 1_A \\ y^* \\ \beta I_n \otimes 1_A \end{pmatrix}, \alpha, \beta \in \mathbb{C}, x, y \in R_n(A) \right\} \subset M_{n+1}(A).$$

Clearly the C^*-algebra $C^*(S)$ generated by S (inside $M_{n+1}(A)$) coincides with $M_{n+1}(A)$. Next we show that the C^*-envelope $C^*_e(S)$ of S is $M_{n+1}(A)$. By the universal property of $C^*_e(S)$, there is a surjective $*$-homomorphism $\pi : C^*(S) \twoheadrightarrow C^*_e(S)$ such that the following commutative diagram holds

$$\begin{array}{ccc}
C^*(S) & \xrightarrow{\pi} & C^*_e(S) \\
\downarrow & & \\
S & \to & C^*_e(S)
\end{array}$$
We let
\[p = \pi\left(\begin{pmatrix} 1_A & 0 \\ 0 & 0 \end{pmatrix} \right) \quad \text{and} \quad q = \pi\left(\begin{pmatrix} 0 & 0 \\ 0 & I_n \otimes 1_A \end{pmatrix} \right). \]

Then \(p \) and \(q \) are projections of \(C_\pi^*(S) \) satisfying \(p + q = 1 \) and \(pq = 0 \). Thus we can decompose \(C_\pi^*(S) \) in ‘2 \times 2’ matrix corners. Hence \(\pi \) is corner preserving and there exist \(\pi_1, \pi_2, \pi_3, \pi_4 \) such that for any \(a \in A, b \in M_n(A), x, y \in R_n(A), \)

\[\pi\left(\begin{pmatrix} a & x \\ y & b \end{pmatrix} \right) = \begin{pmatrix} \pi_1(a) & \pi_2(x) \\ \pi_3(y) & \pi_4(b) \end{pmatrix}. \]

The (1,2) corners of \(S \) and of \(C^*(S) \) coincide so \(\pi_2 \) is injective (because \(\pi \) extends to \(C^*(S) \) the inclusion \(S \subset C^*(S) \)). Similarly \(\pi_3 \) is injective. On the other hand, for any \(a \in A, x \in R_n(A), \)

\[\pi_2(ax) = \pi_1(a)\pi_2(x). \]

Thus choosing ‘good \(x \)’, it shows that \(\pi_1 \) is injective too. Analogously, using

\[\pi_2(xb) = \pi_2(x)\pi_4(b), \quad \text{for any } b \in M_n(A), x \in R_n(A), \]

the previous argument works to prove the injectivity of \(\pi_4 \).

Finally, \(\pi \) is injective and so \(C^*(S) = M_{n+1}(A) \). By assumption on \(A, M_{n+1}(A) \) is an injective \(C^* \)-algebra. Therefore

\[I(S) = M_{n+1}(A) \quad \ast \text{-isomorphically} \]

and

\[I_{11}(R_n(A)) = \begin{pmatrix} 1_A & 0 \\ 0 & 0 \end{pmatrix} I(S) \begin{pmatrix} 1_A & 0 \\ 0 & 0 \end{pmatrix} = A. \]

This proves (1).

\[\square \]

Remark 5.3. We acknowledge that after the paper was submitted, D. Blecher pointed out to the author a more general result: let \(X \) be an operator space, then for any \(p, q \in \mathbb{N}^* \),

\[\mathcal{M}_l(M_{p,q}(X)) = M_p(\mathcal{M}_l(X)). \]

We outline the proof. As in [2, Paragraph 4.4.11], we can define the \(C^* \)-algebra \(\mathcal{C}(X) = I(X)I(X)^* \). Using [2, Corollary 4.6.12], we note that

\[\mathcal{C}(M_{p,q}(X)) = M_p(\mathcal{C}(X)). \]

Moreover, from [4], the multiplier algebra of \(\mathcal{C}(X) \) coincides with \(I_{11}(X) \) i.e.

\[\mathcal{M}(\mathcal{C}(X)) = I_{11}(X). \]
Hence, using the two previous facts, we can compute
\[
\mathcal{M}_l(M_{p,q}(X)) = \{ a \in I_{11}(M_{p,q}(X)), aM_{p,q}(X) \subset M_{p,q}(X) \}
\]
\[
= \{ a \in \mathcal{M}(C(M_{p,q}(X))), aM_{p,q}(X) \subset M_{p,q}(X) \}
\]
\[
= \{ a \in \mathcal{M}(M_p(C(X))), aM_{p,q}(X) \subset M_{p,q}(X) \}
\]
\[
= \{ a \in M_p(C(X)), a_{ij}X \subset X, \forall i,j \}
\]
\[
= \{ a \in M_p(I_{11}(X)), a_{ij}X \subset X, \forall i,j \}
\]
\[
= M_p(\mathcal{M}_l(X)).
\]

The next theorem enables to represent completely contractively a module action on an \(n\)-minimal operator space into a \(C^*\)-algebra of the form \(C(\Omega, M_n)\). It constitutes the main result of this section and generalizes \((i) \iff (iii)\) of [3, Theorem 2.2].

Theorem 5.4. Let \(A\) be a Banach algebra endowed with an operator space structure (resp. a \(C^*\)-algebra). Let \(X\) be an \(n\)-minimal operator space which is also a left Banach \(A\)-module. Assume that there is a net \((e_t)_t \subset \text{Ball}(A)\) satisfying \(e_t \cdot x \to x\), for any \(x \in X\). The following are equivalent :

(i) \(X\) is a left \(h\)-module over \(A\).

(ii) There exists a compact Hausdorff space \(\Omega\), a complete isometry \(i : X \to C(\Omega, M_n)\) and a completely contractive homomorphism (resp. \(*\)-homomorphism) \(\pi : A \to C(\Omega, M_n)\) such that

\[
i(a \cdot x) = \pi(a)i(x), \quad \text{for any } a \in A, x \in X
\]

Proof. Suppose (i). We first treat the Banach algebra case. By Blecher's oplication Theorem (see [2, Theorem 4.6.2]), we know that there is a completely contractive homomorphism \(\eta : A \to \mathcal{M}_l(X)\) such that \(\eta(a)(x) = a \cdot x\), for any \(a \in A, x \in X\). Using \(\theta\) obtained in Lemma 5.1, we have a completely contractive homomorphism \(\sigma = \theta \circ \eta : A \to \mathcal{M}_l(I(X))\) satisfying

\[
\sigma(a)(x) = a \cdot x, \quad \text{for any } a \in A, x \in X.
\]

Moreover, \(I(X)\) is an injective \(n\)-minimal operator space, so

\[
I(X) = \bigoplus_{i \in I}^\infty C(\Omega_i, M_{r_i, k_i})\quad \text{completely isometrically}
\]

where the \(\Omega_i\)'s are Stonean and \(r_i, k_i \leq n\), for any \(i \in I\). We have the completely isometric unital isomorphisms

\[
\mathcal{M}_l(I(X)) = \bigoplus_{i \in I}^\infty \mathcal{M}_l(C(\Omega_i, M_{r_i, k_i}))
\]
\[
= \bigoplus_{i \in I}^\infty \mathcal{M}_l(C_{r_i} \otimes_{\min} R_{k_i} \otimes_{\min} C(\Omega_i))
\]
\[
= \bigoplus_{i \in I}^\infty M_{r_i}(\mathcal{M}_l(R_{k_i} \otimes_{\min} C(\Omega_i)))
\]
\[
= \bigoplus_{i \in I}^\infty M_{r_i}(C(\Omega_i)) \quad \text{(by Lemma 5.2)}
\]
and via these last identifications, the action of $\mathcal{M}_l(I(X))$ on $I(X)$ is the one inherited from the obvious left action of M_{r_i} on M_{r_i,k_i}. More precisely for any $u = (f_i \otimes y_i)_i \in \mathcal{M}_l(I(X))$ and $x = (g_i \otimes x_i)_i \in I(X)$,

$$u(x) = (f_ig_i \otimes y_ix_i)_i.$$

For each i, let $\varphi_i : M_{r_i} \to M_n$ (resp. $\varphi_i : M_{r_i,k_i} \to M_n$) be the embedding of M_{r_i} (resp. M_{r_i,k_i}) in the ‘up-left corner’ of M_n. Hence, as in the end of the proof of Corollary 3.3, we have now a $*$-isomorphism

$$\psi : \mathcal{M}_l(I(X)) \to C(\Omega, M_n)$$

$$(f_i \otimes y_i)_i \mapsto \sum_i \tilde{f}_i \otimes \varphi(y_i)$$

and a complete isometry

$$j : I(X) \to C(\Omega, M_n)$$

$$(g_i \otimes x_i)_i \mapsto \sum_i \tilde{g}_i \otimes \varphi(x_i)$$

which verify

$$j(u(x)) = \psi(u)j(x) \text{ for any } u \in \mathcal{M}_l(I(X)), x \in I(X)$$

Finally $\Omega, i = j_\mathcal{X}$ and $\pi = \psi \circ \sigma$ satisfy the desired relations. If A is a C^*-algebra, we conclude using the fact that a contractive homomorphism between C^*-algebras is necessarily a $*$-homomorphism.

Remark 5.5. (1) From the previous result, a C^*-algebra which acts ‘suitably’ on an n-minimal operator space is necessarily an extension of a subhomogeneous C^*-algebra of degree $\leq n$.

(2) Suppose that A is unital and its action too (i.e. $1 \cdot x = x$ for any x in X). In the previous result, we cannot expect to obtain a unital completely contractive homomorphism π. Because when A is an operator algebra and $A = X$, the assumption (i) is verified (see the BRS theorem [2, Theorem 2.3.2]). Hence this particular case leads back to the Remark 3.4.

The theorem below could be considered as an ‘n-minimal version’ of the CES-theorem (see [2, Theorem 3.3.1]). It is the bimodule version of Theorem 5.4 and its proof is ‘symmetrically’ the same using the two lemmas above.

Theorem 5.6. Let A and B be two Banach algebras endowed with an operator space structure (resp. two C^*-algebras). Let X be an n-minimal operator space which is also a Banach A-B-bimodule. Assume that there is a net $(e_t)_t \subset Ball(A)$ (resp. $(f_s)_s \subset Ball(B)$) satisfying $e_t \cdot x \to x$ (resp. $x \cdot f_s \to x$), for any $x \in X$. The following are equivalent :

(i) X is an h-bimodule over A and B.

Corollary 5.7. Let A, B and X be three n-minimal operator spaces such that A and B are approximately unital operator algebras and X is a Banach A-B-bimodule. Assume that there is a net $(e_i)_i \subset \text{Ball}(A)$ (resp. $(f_s)_s \subset \text{Ball}(B)$) satisfying $e_i \cdot x \to x$ (resp. $x \cdot f_s \to x$), for any $x \in X$. The following are equivalent:

(i) X is a left h-module over A.

(ii) There exists a compact Hausdorff space Ω, a complete isometry $i : X \to C(\Omega, M_n)$ and two completely isometric homomorphisms $\pi : A \to C(\Omega, M_n)$ and $\theta : B \to C(\Omega, M_n)$ such that

$$i(a \cdot x \cdot b) = \pi(a)i(x)\theta(b), \quad \text{for any } a \in A, \ b \in B, \ x \in X.$$

The next result states that if A and B are originally n-minimal operator algebras, then π and θ can be chosen completely isometric. This corollary generalizes [3 Corollary 2.10].

References

[1] D.P. Blecher, *Commutativity in operator algebras*. Proc. Amer. Math. Soc. 109(1990), 709-715.
SUBALGEBRAS OF $C(\Omega, M_n)$ AND THEIR MODULES

[2] D.P. Blecher and C. Le Merdy, *Operator algebras and their modules - an operator space approach*. Oxford University Press, 2004.

[3] D.P. Blecher and C. Le Merdy, *On function and operator modules*. Proc. Amer. Math. Soc. 129(2001), 833-844.

[4] D.P. Blecher and V.I. Paulsen, *Multiplier of operator spaces, and the injective envelope*. Pacific J. Math. 200(2001), 1-17.

[5] D. Deckard and C. Pearcy, *On matrices over the ring of continuous functions on a Stonian space*. Proc. Amer. Math. Soc. 14(1963), 322-328.

[6] E. Effros, N. Ozawa and Z.J. Ruan, *On injectivity and nuclearity for operator spaces*. Duke Math. J. 110(2001), 489-521.

[7] E. Effros and Z.J. Ruan, *Operator spaces*. London Mathematical Society Monographs 23, Oxford University Press, New-York, 2000.

[8] K. Grove and G.K. Pedersen, *Diagonalizing matrices over $C(X)$*. J. Funct. Anal. 59(1984), 65-89.

[9] R. Kadison and J. Ringrose, *Fundamentals of the theory of operator algebras*, Vol. II. Academic Press, New-York, 1986.

[10] M. Kaur and Z.J. Ruan, *Local properties of ternary rings of operators and their linking C^*-algebras*. J. Funct. Anal. 195(2002), 262-305.

[11] E.C. Lance, *Hilbert C^*-modules - A toolkit for operator algebraists*. London Math. Soc. Lecture Notes, 210, Cambridge University Press, Cambridge, 1995.

[12] V. Paulsen, *Completely bounded maps and operator algebras*. Cambridge Studies in Advanced Mathematics 78, Cambridge University Press, Cambridge, 2002.

[13] G. Pisier, *An introduction to the theory of operator spaces*. London Mathematical Society Lecture Note Series 294, Cambridge University Press, Cambridge, 2003.

[14] G. Pisier, *Exact operator spaces*. Colloque sur les algèbres d’opérateurs, in “Recent advances in operator algebras” (Orléans 1992) Astérisque (Soc. Math. France) 232(1995), 159-186.

[15] Z.J. Ruan, *Type decomposition and the rectangular AFD property for W^*-TRO’s*. Canad. J. Math 56(2004), 843-870.

[16] R.R. Smith and D.P. Williams, *The decomposition property for C^*-algebras*. J. Operator Theory 16(1986), 5-74.

[17] C. Zhang, *Representation of operator spaces*. J. Operator Theory 33(1995), 327-351.

DEPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ DE FRANCHE-COMTÉ, 25030 BESANÇON CEDEX, FRANCE

E-mail address: jean.roydor@math.univ-fcomte.fr