Concentration Independent Random Number Generation in Tile Self-Assembly*

Cameron Chalk* Bin Fu* Eric Martinez* Robert Schweller* Tim Wylie*

Department of Computer Science
The University of Texas - Rio Grande Valley
Edinburg, TX, 78539-2999
{cameron.chalk01, bin.fu, eric.m.martinez02, robert.schweller, timothy.wylie}@utrgv.edu

Abstract

In this paper we introduce the robust random number generation problem where the goal is to design an abstract tile assembly system (aTAM system) whose terminal assemblies can be split into \(n \) partitions such that a resulting assembly of the system lies within each partition with probability \(1/n \), regardless of the relative concentration assignment of the tile types in the system. First, we show this is possible for \(n = 2 \) (a robust fair coin flip) within the aTAM, and that such systems guarantee a worst case \(O(1) \) space usage. We accompany our primary construction with variants that show trade-offs in space complexity, initial seed size, temperature, tile complexity, bias, and extensibility, and also prove some negative results. As an application, we combine our coin-flip system with a result of Chandran, Gopalkrishnan, and Reif to show that for any positive integer \(n \), there exists a \(O(\log n) \) tile system that assembles a constant-width linear assembly of expected length \(n \) for any concentration assignment. We then extend our robust fair coin flip result to solve the problem of robust random number generation in the aTAM for all \(n \). Two variants of robust random bit generation solutions are presented: an unbounded space solution and a bounded space solution which incurs a small bias. Further, we consider the harder scenario where tile concentrations change arbitrarily at each assembly step and show that while this is not possible in the aTAM, the problem can be solved by exotic tile assembly models from the literature.

* A preliminary version of some of these results appeared in \cite{3} and \cite{4}.

* This research was supported in part by National Science Foundation Grants CCF-1117672 and CCF-1555626.
Robust Coin Flip in the aTAM

| Space | Bias | τ | $|\sigma|$ | k-ext | Theorem |
|-------------|------|--------|----------|-------|---------|
| $O(1)$ | - | 1 | 7 | 2 | 3.1 |
| $O(1)$ | - | 1 | 1 | 2 | 5.1 |
| unbounded | - | 2 | 1 | 1 | 7.2 |
| s | $\leq p(s/10)$ | 2 | 1 | 1 | 7.3 |

Unstable Concentrations (Thm. 9.5)

| Model | Space | τ | $|\sigma|$ |
|-------------|-------|--------|----------|
| neg-aTAM | $O(1)$ | 1 | 2 |
| neg-bTAM | $O(1)$ | 1 | 1 |
| polyTAM | $O(1)$ | 2 | 3 |
| GTAM | $O(1)$ | 1 | 2 |

Robust Linear Assemblies

| Width | $|\sigma|$ | Theorem |
|-------|----------|---------|
| $O(\log n)$ | 6 | 1 | 5.2 |
| $O(\log n)$ | 6 | 1 | 5.3 |

Table 1: τ represents the temperature of the system, $|\sigma|$ is the number of tiles in the seed assembly, $|T|$ is the size of the tile system, and k-ext denotes the extensibility of the system. Given the largest disparity in relative tile concentration between any pair of tile types in the system for a given concentration distribution, p is the larger relative concentration of the two tiles. s is a space constraint, and n is the range of possible values or the length of the linear assembly.

1 Introduction

Self-assembly is the process by which local interactivity among unorganized, autonomous units results in their amalgamation into more complex compounds. One of the premiere models for studying the theoretical possibilities of self-assembly is the abstract tile assembly model (aTAM) [25] in which system monomers are 4-sided tiles (inspired by Wang tiles [24]) that attach to a growing seed assembly when matching glues present a sufficient bonding strength. The motivation for studying the aTAM stems from the feasibility of a nanoscale DNA implementation [14], along with the universal computational power of the model [21], which permits many features including algorithmic self-assembly of general shapes [22], and more [10,19].

A promising new direction in self-assembly is the consideration of randomized self-assembly systems. In randomized self-assembly (a.k.a. nondeterministic self-assembly), assembly growth is dictated by nondeterministic, competing assembly paths yielding a probability distribution on a set of final, terminal assemblies. Through careful design of tile-sets and the relative concentration distributions of these tiles, a number of new functionalities and efficiencies have been achieved that are provably impossible without this nondeterminism. For example, by precisely setting the concentration values of a generic set of tile species, arbitrarily complex strings of bits can be programmed into the system to achieve a specific shape with high probability [11,17]. Alternately, if the concentration of the system is assumed to be fixed at a uniform distribution, randomization still provides for efficient expected growth of linear assemblies [5] and low-error computation at temperature-1 [8]. Even in the case where concentrations are unknown, randomized self-assembly can build certain classes of shapes without error in a more efficient manner than without randomization [2].

Motivated by the power of randomized self-assembly, along with the potential for even greater future impact, we focus on the development of the most fundamental randomization primitive: the robust generation of a uniform random bit. In particular, we introduce the problem of self-assembling a uniformly random bit within $O(1)$ space that is guaranteed to work for all possible concentration distributions. We define a tile system to be a coin flip system, with respect to some tile concentration distribution, if the terminal assemblies of the system can be partitioned such that each partition has exactly probability 1/2 of assembling one of its terminals. We say a system is a robust coin flip system if such a partition exists that guarantees 1/2 probability for all possible tile concentration distributions. Through designing systems that flip a fair coin for all possible (adversarially chosen) concentration distributions, we achieve an intrinsically fair coin-
flipping system that is robust to the experimental realities of imprecise quantity measurements. Such fair systems may allow for increased scalability of randomized self-assembly systems in scenarios where exact concentrations of species are either unknown or intractable to predict at successive assembly stages.

Our results Our primary result is an aTAM construction that constitutes a robust fair coin flip system which completes in a guaranteed \(O(1) \) space even at temperature one. We apply our robust coin-flip construction to the result of Chandran, Gopalkrishnan, and Reif \[5\] to show that for any positive integer \(n \), there exists a \(O(\log n) \) tile system that assembles a constant width-4 linear assembly of expected length \(n \) that works for all concentration assignments. This result is for temperature two; at temperature one it must be a width-6 linear assembly. We accompany this result with a proof that such a concentration independent assembly of width-1 assemblies is not possible with fewer than \(n \) tile types. We further accompany our main coin-flip construction with variant constructions that provide trade-offs among standard aTAM metrics such as space, tile complexity, and temperature, as well as new metrics such as coin bias, and the extensibility of the system, which is the maximum number of distinct locations a tile can be added to a single producible assembly of the system.

We utilize the coin-flip construction as a fair random bit generator for implementation of some classical random number generation algorithms. We show that 1-extensible systems, while computationally universal, cannot robustly coin-flip in bounded space without incurring a bias, but can robustly coin-flip in bounded expected space. We also consider the more extreme model in which concentrations may change adversarially at each assembly step. We show that the aTAM cannot robustly coin flip in bounded space within this model, but a number of more exotic extensions of the aTAM from the literature are able to robustly coin flip in \(O(1) \) space. We summarize our results in Table 1. The problem of self-assembling random bits has been considered before \[13\], but their technique, and almost all randomized techniques to date, do not work when arbitrary concentrations are considered. Further, we utilize the self-assembly of uniform random bits to implement algorithms for uniform random number generation for any \(n \), one construction achieving an unbiased generator with unbounded space and the other imposing a space constraint while incurring some bias.

Organization Due to the many results in the paper, we briefly outline them here. Section 2 gives the definitions of the models and terms used throughout the paper as well as an overview of some related previous work. In Section 3 we cover the constant space coin flipping gadget—first with a big seed and then with a single seed at temperature two. We then use this gadget in Section 4 to assemble \(O(1) \times n \) expected length linear assemblies. Section 5 shows that the coin flip gadget can be built at temperature one with some extra tiles, and then we show how the expected length linear assemblies can be built with a slightly larger constant width using the temperature one gadget.

The paper then covers general random number generation in the aTAM in Section 6. Afterwards, the paper switches focus to the limitations of different aspects of the model covering 1-extensibility in 7 and unstable concentrations in 8. Then in Section 9 we show how robust fair coin flips are possible in some other models. Finally, we conclude and give some future directions in 10.

2 Definitions and Model: Tiles, Assemblies, and Tile Systems

Consider some alphabet of glue types \(\Pi \). A tile is a unit square with four edges each assigned some glue type from \(\Pi \). Further, each glue type \(g \in \Pi \) has some non-negative integer strength \(\text{str}(g) \). Each tile may be assigned a finite length string label, e.g., “black”, “white”, “0”, or “1”. For simplicity, we assume each tile center is located at a pixel \(p = (p_x, p_y) \in \mathbb{Z}^2 \). For a given tile \(t \), we denote the tile center of \(t \) as its position. As notation, we denote the set of all tiles that constitute all translations of the tiles in a set \(T \) as the set \(T^* \). An assembly is a set of tiles each assigned unique coordinates in \(\mathbb{Z}^2 \). For a given assembly \(\alpha \), define the bond graph \(G_\alpha \) to be the weighted graph in which each element of \(\alpha \) is a vertex, and each edge weight between tiles is \(\text{str}(g) \) if the tiles share an overlapping glue \(g \), and 0 otherwise. An assembly \(\alpha \) is said to be \(\tau \)-stable for a positive integer \(\tau \) if the bond graph \(G_\alpha \) has min-cut at least \(\tau \), and \(\tau \)-unstable otherwise.
tile system is an ordered triple \(\Gamma = (T, \sigma, \tau) \) where \(T \) is a set of tiles called the tile set (we refer to elements of \(T \) as tile types), \(\sigma \) is an assembly called the seed and \(\tau \) is a positive integer called the temperature. When considering a tile \(a \) that is some translation of an element of a tile set \(T \), we will use the term tile type of \(a \) to reference the element of \(T \) that \(a \) is a translation from. Assembly proceeds by growing from assembly \(\sigma \) by any sequence of single tile attachments from \(T \) as long as each tile attachment connects with strength at least \(\tau \). Formally, we define what can be built in this fashion as the set of producible assemblies:

Definition 2.1 (Producibility). For a given tile system \(\Gamma = (T, \sigma, \tau) \), the set of producible assemblies for system \(\Gamma \), \(\text{PROD}_\Gamma \), is defined recursively:

- (Base) \(\sigma \in \text{PROD}_\Gamma \)
- (Recursion) For any \(A \in \text{PROD}_\Gamma \) and \(b \in T^* \) such that \(C = A \cup \{b\} \) is \(\tau \)-stable, then \(C \in \text{PROD}_\Gamma \).

As additional notation, we say \(A \rightarrow^1 B \) if \(A \) may grow into \(B \) through a single tile attachment, and we say \(A \rightarrow^* B \) if \(A \) can grow into \(B \) through 0 or more tile attachments. An assembly sequence for a tile system \(\Gamma \) is a sequence (finite or infinite) \(\vec{\alpha} = (\alpha_1, \alpha_2, \ldots) \) in which \(\alpha_1 = \sigma \), each \(\alpha_{i+1} \) is a single-tile extension of \(\alpha_i \), and each \(\alpha_i \) is \(\tau \)-stable. The frontier of an assembly \(\alpha \), written as \(F(\omega, \Gamma) \), is a partial function that maps an assembly \(\omega \) and a tile system \(\Gamma \) to a set of tiles \(\{ t \in T^* | \omega \cup \{t\} \in \text{PROD}_\Gamma \land \ t \notin \omega \} \). We further define \(\text{TERM}_\Gamma \) to be the subset of \(\text{PROD}_\Gamma \) consisting only of assemblies for which no further tile in \(T \) may attach (i.e., the assembly has an empty frontier).

Definition 2.2 (Finiteness and Space). For a given tile assembly system \(\Gamma = (T, \sigma, \tau) \), we say \(\Gamma \) is finite iff \(\forall \beta \in \text{PROD}_\Gamma, \exists \alpha \in \text{TERM}_\Gamma : \beta \rightarrow^* \alpha \). That is, each producible assembly has a growth path ending in a finite, terminal assembly. If \(\Gamma \) is not finite, we say it is infinite. Define the space of an assembly \(\alpha \) as \(|\alpha| \). Let the space of a tile assembly system be defined as the \(\max_{\alpha \in \text{TERM}_\Gamma} |\alpha| \) if \(\Gamma \) is finite. If \(\Gamma \) is infinite, let space remain undefined. Note that a finite system may have infinite/unbounded space.

Definition 2.3 (Extensibility). Consider a tile assembly system \(\Gamma = (T, \sigma, \tau) \), and assembly \(\alpha \in \text{PROD}_\Gamma \). We denote the set of all locations at which a tile may stably attach to \(\alpha \) as \(L_\alpha \). More formally, \(L_\alpha = \{ p_i | t \in F(\alpha, \Gamma) \} \). We say a tile system \(\Gamma \) is \(k \)-extensible iff \(\forall \alpha \in \text{PROD}_\Gamma, |L_\alpha| \leq k \). Informally, a tile assembly system is \(k \)-extensible iff at any point in the assembly process, the assembly can only grow in at most \(k \) locations.

2.1 Probability in Tile Assembly

We use the definition of probabilistic assembly presented in [1][5][8][11][17]. Let \(P \) be a function denoting a concentration distribution over a tileset \(T \) representing the concentrations of each tile type with the restrictions \(\forall t \in T, P(t) > 0 \) and \(\sum_{t \in T} P(t) = 1 \). For a tile \(t \), we sometimes refer to \(P(t) \) as the concentration of \(t \). Using a concentration distribution, we can consider probabilities for certain events in the system. To study probabilistic assembly, we can consider the assembly process as a Markov chain where each producible assembly is a state and transitions occur with non-zero probability from assembly \(A \) to each \(B \) whenever \(A \rightarrow^1 B \). For each \(B \) that satisfies \(A \rightarrow^1 B \), let \(t_{A \rightarrow B} \) denote the tile in \(T \) whose translation is added to \(A \) to get \(B \). The transition probability from \(A \) to \(B \) is defined to be

\[
\text{TRANS}(A, B) = \frac{P(t_{A \rightarrow B})}{\sum_{C \mid A \rightarrow^1 C} P(t_{A \rightarrow C})}
\]

The probability that a tile system \(\Gamma \) terminally assembles an assembly \(A \) is defined to be the probability that the Markov chain ends in state \(A \). For each \(A \in \text{TERM}_\Gamma \), let \(\text{PROB}_{\Gamma \rightarrow A} \) denote the probability that \(\Gamma \) terminally assembles \(A \) with respect to concentration distribution \(P \).

Definition 2.4 (Expected Space). For a given finite tile system \(\Gamma = (T, \sigma, \tau) \), let the expected space of \(\Gamma \) relative to a concentration distribution \(P \) be defined as
Definition 2.5 (Coin Flipping). We consider a finite tile system Γ a \textit{coin flip tile system with bias} b with respect to a concentration distribution P for some $b \in \mathbb{R}^+$ iff the set of terminal assemblies in PROD_Γ can be partitioned into two sets X and Y such that $|\sum_{x \in X} \text{PROB}_\Gamma \rightarrow x - \sum_{y \in Y} \text{PROB}_\Gamma \rightarrow y| \leq 2b$. A \textit{fair coin flip tile system} is a coin flip tile system with bias 0. We consider a finite tile system a \textit{robust coin flip tile system with bias} b iff it is a coin flip tile system with bias b for all concentration distributions; i.e. $|\sum_{x \in X} \text{PROB}_\Gamma \rightarrow x - \sum_{y \in Y} \text{PROB}_\Gamma \rightarrow y| \leq 2b$ for all concentration distributions C. A \textit{robust fair coin flip tile system} is a robust coin flip tile system with bias 0.

3 Robust Fair Coin Flipping in the aTAM

In this section we show systems capable of robust fair coin flips in the aTAM. Figure 1 shows a simple fair coin flip aTAM system for the uniform concentration distribution. Since the concentrations are uniform, the tiles labeled H and T have equal concentrations, and the probability of their attachment is equal. Then we can partition the terminal states into two sets: the terminal containing H in one set and the terminal containing T in the other. These partitions satisfy the definition of a fair coin flip, but only for the uniform concentration distribution. Any variation in the concentrations of the H and T tiles results in a coin flip with some bias. To solve this problem for arbitrary concentration distributions, more involved techniques are required.

![Figure 2](image-url)
Figure 3: T is shown. Our seed, labeled σ, begins a deterministic attachment process ending with the placement of the tile labeled S. Glues labeled $\{1, 2, 3, \ldots, 11\}$ are of strength 2. Glues labeled $\{A, B, C, D\}$ are of strength 1, ensuring that the nondeterministic attachments of tiles h and t do not begin until the cooperative binding locations are opened by placement of the tile labeled S. The nondeterministic sequence of attachments following the placement of S is similar to that of Theorem 3.1.

by the labels of the tiles in positions (1,1), (2,1) and (3,1) as such: \ldots, h, \ldots, jh and so forth. Then, the two terminal assemblies of the system are hht and htt. We now show that $\text{PROB}_{\Gamma \rightarrow hht}^P = \frac{1}{2}$ for all concentration distributions P. Let c_h be the concentration of the tile labeled h and c_t be the concentration of the tile labeled t; then, with TRANS as defined in Equation 1,

$$
\text{PROB}_{\Gamma \rightarrow hht}^P = \text{TRANS}(\sigma, \ldots, \text{TRANS}(\ldots, \text{TRANS}(jh, hht)
+ \text{TRANS}(\sigma, \ldots, \text{TRANS}(\ldots, \text{TRANS}(h,t, hht)
+ \text{TRANS}(\sigma, \ldots, \text{TRANS}(\ldots, \text{TRANS}(h, h,t, hht)

= \frac{c_t}{c_t + c_h} \cdot \frac{c_h}{c_h + c_h} + \frac{c_t}{c_t + c_h} \cdot \frac{c_h}{c_h + c_h}
+ \frac{c_t + c_h}{c_t + c_t} \cdot \frac{c_h}{c_t + c_h}
= \frac{c_t^2}{2c_t^2 + 4c_t c_h + 2c_h^2}
= \frac{1}{2}.
$$

3.1 Extension to a Single-Seed

A common constraint in the aTAM is that σ contains only one tile. Thus, no seed structure must be formed prior to the self-assembly process. The construction shown in Figure 3 addresses this constraint and works in a similar fashion as the construction in Theorem 3.1. Note that this system requires $\tau = 2$.

Theorem 3.2. There exists a $O(1)$ space 2-extensible robust fair coin flip tile system $\Gamma = (T, \sigma, 2)$ in the aTAM with $|\sigma| = 1$.

Proof. Our tile set is shown in Figure 3. Without loss of generality, assume σ sits at position $(0,0)$. Until the tile labeled S (see Figure 3) is placed, the assembly process is deterministic. Upon attachment of S, cooperative binding locations allow the attachment of tiles h and t nondeterministically. We denote the assemblies following the placement of S similarly to the proof of Theorem 3.1. We refer to assemblies containing tile S by the labels of tiles in positions $(1,-1),(1,0)$ and $(2,0)$ as \ldots, h, \ldots, jh and so forth. Reflecting the analysis shown in Theorem 3.1, we have $\text{PROB}_{\Gamma \rightarrow hht}^P = \frac{1}{2}$ for all concentration distributions P, which implies $\text{PROB}_{\Gamma \rightarrow htt}^P = \frac{1}{2}$ as there are two terminal assemblies. \qed
4 Robust Simulation of Randomized Linear Assemblies

As an application of the primitive shown in Theorem 3.2, we show that a class of randomized linear aTAM tile assembly systems can be simulated in a concentration robust manner with a minor scale factor.

We first briefly describe a scale \((m, n)\)-simulation of a given tile system, based on the block replacement schemes of [6]. Consider an aTAM system \(\Gamma = (T, \sigma, \tau)\) and a proposed simulator system \(\Gamma' = (T', \sigma', \tau')\). Now consider the mapping from \(\text{TERM}_T\) to \(\text{TERM}_{T'}\) obtained by replacing each tile in an assembly \(A \in \text{TERM}_T\) with a rectangular \(m \times n\) block of tiles over \(U\), according to some fixed \(m \times n\) block mapping \(R\). If there exists such a mapping \(M\) from \(\text{TERM}_T\) to \(\text{TERM}_{T'}\), that is bijective, then we say that \(\Gamma'\) simulates the production of \(\Gamma\) at scale factor \((m, n)\). Further, we say that \(\Gamma\) robustly simulates \(\Gamma'\) for concentration distribution \(P\) if for all terminal assemblies \(A \in \text{TERM}_T\), \(\text{PROB}_{\Gamma'}^{T'}(A) = \text{PROB}_{\Gamma}^{T}(M(A))\) for all concentration distributions \(C\) over \(T'\), i.e., \(\Gamma'\) produces terminal assemblies with probability independent of concentration assignment, and with exactly the same probability distribution as the concentration dependent system it simulates.

We now define a class of linear assembly systems for which we can construct robust, concentration independent simulations.

Definition 4.1 (Unidirectional two-choice linear assembly systems). A tile system \(\Gamma\) is a unidirectional two-choice linear assembly system iff:

1. \(\Gamma\) is 1-extensible,
2. \(\forall \alpha \in \text{PROD}_T, |F(\alpha, \Gamma)| \leq 2,\)
3. \(\forall \beta \in \text{PROD}_T, \beta\) is a \(1 \times n\) line for some \(n \in \mathbb{N}\).

Theorem 4.2. For any unidirectional two-choice linear assembly system \(\Gamma = (T, \sigma, 2)\) in the aTAM, there is an aTAM system \(\Gamma' = (T', \sigma', \tau')\) that robustly simulates \(\Gamma\) for the uniform concentration distribution at scale factor \(5 \times 4\) with \(|T'| = 20|T|\).

Proof. Let \(\Gamma = (T, \sigma, \tau)\) be a unidirectional two-choice linear assembly system. Define an undecided assembly to be any assembly \(\alpha \in \text{PROD}_T\) such that \(|F(\alpha, \Gamma)| = 2\). For each undecided assembly, we will construct a gadget utilizing the technique in Theorem 3.2. We call the two tiles of an undecided assembly’s frontier \(h\) and \(t\). Consider \(\alpha_h = \alpha \cup h\) and \(\alpha_t = \alpha \cup t\). We simulate \(\Gamma\) in reference to a uniform concentration distribution, so \(\alpha\) transitions to \(\alpha_h\) with probability \(1/2\) and to \(\alpha_t\) with probability \(1/2\). Figure 4 shows an example of utilizing a \(5 \times 4\) gadget in \(\Gamma\) to simulate the transition from \(\alpha\) to \(\alpha_h\) or \(\alpha_t\). By application of Theorem 3.2, the gadget will grow into one of two possible states with probability \(1/2\) for any concentration distribution. By chaining the gadgets together we can robustly simulate the nondeterministic attachments in \(\Gamma\). Each tile from the original construction is simulated by a \(5 \times 4\) block of tiles, and therefore \(|T'| = 20|T|\).

As a corollary to Theorem 4.2, we can create a tile system to build an expected length \(n\) assembly for all concentration distributions with \(O(\log n)\) tile complexity. First, we will prove that there is no aTAM tile system which generates linear (width-1) assemblies of expected length \(n\) for all concentration distributions (5 showed that this is possible for the uniform concentration distribution).

Theorem 4.3. There does not exist an aTAM tile system which generates an assembly of width-1 and expected length \(n\) for all concentration distributions with less than \(n\) tile complexity.

Proof. Towards a contradiction, assume a self-assembly system can generate a linear assembly with expected length \(n\) and uses at most \(k < n\) tiles where \(n \geq 2\). There is at least one assembly that is of length at least \(n\). For all possible assemblies of length \(n\), since \(k < n\), they must have the form \(t_1 \cdots t_{m-1} t_i \cdots t_m t_1 \cdots t_z\) with the first cycle \(t_i \cdots t_m t_i\) for some \(i, m\), which may be different for each assembly. Define the ordering on the pair \((m, i)\) between all assemblies as \((m_1, i_1) < (m_2, i_2)\) iff \((m_1 < m_2)\) or \((m_1 = m_2\) and \(i_1 < i_2)\). Let \(S = t_1 \cdots t_{i-1} t_i \cdots t_m t_{i} \cdots t_z\) be the assembly with the minimal pair \((m, i)\) under our ordering, where \(t_i \cdots t_m t_i\) is the first cycle that appears in \(S\).
Since \((m, i)\) is the minimal pair for the choice of \(S\), it is impossible that the system generates \(t_1 \cdots t_{j-1} t_j \cdots t_{m'} t_j \cdots\) for some \(j < i\) and \(m' \leq m\). For \(u < m\), tile \(t_k\) with \(k < u\) cannot be attached to \(t_1 \cdots t_u\) to form \(t_1 \cdots t_u t_k\). Otherwise, the system could generate \(t_1 \cdots t_k \cdots t_u t_k\).

We define the concentration of the types of tiles as follows: Let \(c_1 = 1, c_j = c_{j-1}/n^{100}\) for \(j = 1, \cdots k\). The concentration of each type \(t_i\) is \(\frac{c_i}{c_1 + c_2 + \cdots + c_k}\). Consider the assembly \(t_1 \cdots t_j\) with \(j < m\), for those tiles \(t_u\) that can be attached to the assembly, it must be the case that \(u > j\). Therefore, the probability that \(t_{j+1}\) is attached to it is at least \(\frac{c_{j+1}}{c_1 + c_2 + \cdots + c_u} \geq \frac{1}{1+n^{1/100}} = \frac{1}{1+\frac{1}{n^{100}}}\).

Consider the assembly \(t_1 \cdots t_{i-1} t_i \cdots t_m\) and the tile \(t_u\) with the smallest \(u\) that can be attached. It must be the case that \(u = i\). Otherwise, it violates the condition that \((m, i)\) is the minimal pair for \(S\). Therefore, the probability that \(t_i\) is attached to it is at least \(\frac{c_i}{c_1 + c_2 + \cdots + c_u} \geq \frac{1}{1+n^{1/100}} = \frac{1}{1+\frac{1}{n^{100}}}\).

The concentration assignments ensure that with a probability of at least \(\left(\frac{1}{1+\frac{1}{n^{100}}}\right)^n\), the assembly \(t_1 \cdots t_{i-1} t_i \cdots t_m t_i\), or one at least as long, will be generated. This means that with a probability of at least \(\left(\frac{1}{1+\frac{1}{n^{100}}}\right)^n > 0.9\), an assembly at least as long as \(t_1 \cdots t_{i-1}(t_i \cdots t_m t_i)^n\) will be generated, which has length at least \(n^2\). This contradicts that the expected length is \(n\).

We now contrast the width-1 impossibility result of Theorem 4.3 with a result showing that width-4 linear assemblies do allow for efficient growth to expected length \(n\) in a concentration independent manner. To achieve this, we apply Theorem 4.2 to the unidirectional two-choice linear assembly system presented in [5], which yields the following result.

Corollary 4.4. There exists an aTAM tile system \(\Gamma = (T, \sigma, \tau)\) which terminates in a width-4 expected length \(n\) assembly for all concentration distributions. \(|T| = O(\log n)|n|\).

Proof. Let \(m = \left\lceil \frac{n}{5} \right\rceil\). Consider \(\Gamma = (T, \sigma, \tau)\) to be a robust simulation at scale factor \(5 \times 4\) of a unidirectional two-choice linear assembly system that terminates in an expected length \(m\) linear assembly using \(O(\log m)\).
Figure 5: A robust fair coin flip gadget at temperature one. The image on the left shows the deterministic gadget and the order in which the tiles attach until it opens up a spot of the coin flip to occur. The coin flipping tiles are shown above. The middle figure shows a head flip which exposes the h glue on top, and the right figure is the tail flip which exposes a t glue on top.

tile types. Note that such a unidirectional two-choice linear assembly system exists as shown in [5] and can be robustly simulated as shown by Theorem 4.2. If $5m = n$, then Γ terminates in an expected length n assembly with width-4; otherwise, we add $n \mod 5$ length deterministically. Since our scale factor is constant, $|T| = O(\log n)$.

5 Robust Fair Coin Flipping at Temperature 1

The previous construction for robust fair coin flipping used temperature two so that the gadget could use cooperative binding for simplicity. However, here we show that it can be done in the aTAM at temperature one if after the coin flip the geometry ensures that the gadget is contained. In order to do this, we use three additional tiles which relay the message and give either an h or t glue as the output. Figure 5 shows the tile set that flips the coin and the build order of the gadget that must place its pieces in order to work correctly. The basic construction is the same as before.

Theorem 5.1. There exists a $O(1)$ space 2-extensible robust fair coin flip tile system $\Gamma = (T, \sigma, \tau)$ in the aTAM with $|\sigma| = 1$ and $\tau = 1$.

Further, we can do expected length linear assemblies at temperature one (similar to Section 4), but due to the geometric constraints of the gadgets, the needed constant width is six. We use the gadget shown in Figure 5, but we turn it on its side in order to decrease the width (from eight to six). This is shown in Figure 6. The original construction of expected length linear assemblies in [6] only relied on $\tau = 1$, and thus our gadget is able to convert their system to be concentration independent while keeping the temperature constraint and only requiring a constant width of six.

Theorem 5.2. For any unidirectional two-choice linear assembly system $\Gamma = (T, \sigma, 1)$ in the aTAM, there is an aTAM system $\Gamma_s = (T', \sigma', \tau')$ that robustly simulates Γ for the uniform concentration distribution at scale factor 9×6 with $|T'| = O(|T|)$.

Proof. This follows the same argument as Theorem 4.2.

Corollary 5.3. There exists an aTAM tile system $\Gamma = (T, \sigma, \tau)$ which terminates in a width-6 expected length n assembly for all concentration distributions at $\tau = 1$. $|T| = O(\log n)$.

8
Figure 6: The temperature one coin flip gadget modified for the linear assemblies. The left shows the gadgets and coin flip tiles. The middle shows a tails being flipped and how the block fills in the remaining space and propagates the t glue up to the top for the next gadget to attach. The right image shows the same process when a head is flipped.

6 Robust Random Number Generation in the aTAM

A natural direction following the robust fair coin-flip problem is robust random number generation in the aTAM. The robust coin-flip solutions for the aTAM allow implementation of robust aTAM algorithms utilizing random bit generation. A more useful primitive, then, is the generation of random numbers within a given range. A generalization of our coin-flip problem definition is used to consider random number generation by aTAM systems.

Definition 6.1 (Random Number Generation). We consider a finite tile system Γ a random n generator with respect to a concentration distribution P iff the set of terminal assemblies in PROD_Γ is partitionable into n sets X_1, X_2, \ldots, X_n such that $\sum_{x \in X_i} \text{PROB}_{\Gamma \rightarrow x}$ = $\sum_{y \in X_j} \text{PROB}_{\Gamma \rightarrow y}$ for $1 \leq i, j \leq n$. We consider a finite tile system Γ a robust random n generator with bias b iff the set of terminal assemblies in PROD_Γ is partitionable into n sets X_1, X_2, \ldots, X_n such that

$$\max \left| \sum_{x \in X_i} \text{PROB}_{\Gamma \rightarrow x} - \sum_{y \in X_j} \text{PROB}_{\Gamma \rightarrow y} \right| \leq b$$

over all $X_i, X_j \in X_1, \ldots, X_n$ and $1 \leq i, j \leq n$ and all concentration distributions C. A fair robust random n generator is a robust random n generator with bias 0.

6.1 Robust Random Generator for Powers of Two

We start off with a corollary from Theorem 3.2 to solve a class of the robust random number generation problems involving powers of two.

Corollary 6.2. For $m \in \mathbb{Z}^+$, there exists a $\mathcal{O}(m)$ space 2-extensible fair robust random 2^m generator $\Gamma = (T, \sigma, 2)$ in the aTAM with $|\sigma| = 1$ and $|T| = \mathcal{O}(\log n)$.

Proof. This corollary follows from Theorem 3.2. The single seed robust fair coin-flip system is used as a bit generator. By assembling m distinct repetitions of the system, the resultant system has 2^m possible states. The equiprobability of the terminal states follows from each of the m repetitions being independent fair coin-flips. We assemble $m \mathcal{O}(1)$ space coin-flips, so the total space is $\mathcal{O}(m)$. \hfill \square

6.2 Robust Random Generator for General n

We generalize this result to the problem of robust random n generation for general n. We apply Corollary 6.2 to achieve two results. This first result, Theorem 6.3, achieves 0 bias and $\mathcal{O}(\log n)$ expected space, but uses unbounded space in the worst case. Then, we consider a given space bound s to construct a robust random n generator with bias $\frac{1}{2^{m+1}}$ guaranteed to use at most s space in Theorem 6.4.
Theorem 6.3. For \(n \in \mathbb{Z}^+ \), there exists a \(O(\log n) \) expected space 2-extensible fair robust random \(n \) generator \(\Gamma = (T, \sigma, 2) \) in the aTAM with \(|\sigma| = 1 \) and \(|T| = O(\log n) \).

Proof. According to Corollary 6.2 we can construct a robust random \(2^m \) generator. Let \(m \) be the smallest integer such that \(n \leq 2^m \). We implement the robust random \(2^m \) generator. We enumerate the \(2^m \) terminal states of the system \(0, 1, \ldots, 2^m - 1 \). We can then use additional tiles to read the final state of the \(2^m \) generator. If the result exceeds \(n - 1 \), we begin another \(2^m \) generator and repeat the process. If the result does not exceed \(n - 1 \), then we let the system terminate. We partition the set of terminal states by the result of the final \(2^m \) generator, which must have assembled a state between \([0, n - 1] \), or else it would have assembled an additional system, resulting in a robust random \(n \) generator. The algorithm has \(O(1) \) expected repetitions, and each repetition constructs a \(O(m) = O(\log n) \) space system, resulting in \(O(\log n) \) expected space.

Theorem 6.4. Given \(n, s \in \mathbb{N} \) such that \(s > 25[\log n] \), there exists a 2-extensible robust random \(n \) generator \(\Gamma = (T, \sigma, 2) \) with bias \(\frac{1}{2^{m(\frac{1}{\log n})}} \) in the aTAM where the space of \(\Gamma \) is \(s \), \(|\sigma| = 1 \), and \(|T| = O(s + \log n) \).

Proof. We construct a similar system to that of Theorem 6.3. Let \(m \) be the smallest integer such that \(n \leq 2^m \). We implement the algorithm used in Theorem 6.3, except that we bound the number of repetitions of bit string generation to \(k \) repetitions in order to meet the given space constraint. The generation of each bit requires 15 tiles as seen in Theorem 3.2. A set of tiles which grow a \(5m \times 1 \) row on top of the generated bits are used to read the output to check if the result is \(\leq n - 1 \). A set of \(4k \) distinct tiles are used to create a \(1 \times 4k \) column to bound the number of repetitions of the algorithm; that is, the algorithm will repeat a generation of \(m \) bits if the output of the previous generation exceeds \(n - 1 \) by introducing a cooperative binding location to continue attachment in the \(1 \times 4k \) column. With this method, a terminal assembly \(\alpha \) of the system which uses \(k \) repetitions satisfies \(|\alpha| \leq 20mk + 4k \), therefore a system implementing \(k = \Theta(\frac{s}{m}) = \Theta(\frac{1}{\log n}) \) satisfies \(\max \{|\alpha| : \alpha \in \text{TERM}_T \} \leq s \).

Let \(P_s(k) \) be the probability that the result is in the range \([0, n - 1] \) in at most \(k \) successive repetitions and \(P_f(k) = 1 - P_s(k) \), which is the probability that \(k \) successive repetitions generate a number in \([n, 2^m - 1] \). The probability that the result of a single repetition is in \([0, n - 1] \) (i.e., the system succeeds in generating a result in \([0, n - 1] \) uniformly) is at least \(\frac{1}{2} \) since \(2^m - n \leq n \). Therefore, the probability of failure after \(k \) rounds is \(P_f(k) \leq \frac{1}{2^k} \) and \(P_s(k) \geq 1 - \frac{1}{2^k} \). We partition the set of terminal states by the result of the final round. If the result \(r \) of the final repetition exceeds \(n - 1 \), then we map the result by the function \(f(r) = r - n \). That is, if the result \(r \) of number generation in the final repetition is outside the range \([0, n - 1] \), the system is considered to generate \(r - n \). This maps \([n, 2^m - 1] \) to \([0, 2^m - n - 1] \). Therefore, in the final repetition, results in the range \([0, 2^m - n - 1] \) have a higher probability than results in the range \([2^m - n, n - 1] \), resulting in bias of the generator. The probability of generating a single number in \([2^m - n, n - 1] \) given \(k \) repetitions is \(\frac{1}{n}P_s(k) \). The probability of generating a single number in \([0, 2^m - n - 1] \) is \(\frac{1}{n}P_s(k) + \frac{1}{2^m - n}P_f(k) \). Then the bias of the generator is

\[
\left| \left(\frac{1}{n}P_s(k) + \frac{1}{2^m - n}P_f(k) \right) - \frac{1}{n}P_s(k) \right| \leq \frac{1}{2^m - n}P_f(k) \\
\leq |P_f(k)| \\
\leq \frac{1}{2^k},
\]

therefore this robust random \(n \) generator implementing \(k = \Theta(\frac{s}{\log n}) \) repetitions has bias \(\frac{1}{2^{m(\frac{1}{\log n})}} \).

7 1-Extensible Robust Fair Coin Flipping in the aTAM

Thus far we have covered solutions to truly random coin flips that are robust to arbitrary concentrations. We then used these gadgets to build expected length \(n \) constant width lines at temperature two and one.
We also looked at approaching robust random number generation in the aTAM, and gave some methods for this that work in $O(\log n)$ expected space.

All of the positive results have required 2-extensibility, meaning in the assembly process there is at least one time when there are two possible locations tiles could be attach to. Following, we begin to look at some of the limitations of the aTAM with respect to randomness. We then give some positive results despite the inherent limitations. First we look at 1-extensible systems, and then at unstable concentrations (where the concentrations of tiles may change during assembly).

7.1 $O(1)$ Space 1-extensible Robust Fair Coin Flipping

A natural question from the 2-extensible solution to the robust fair coin flip problem is whether there is also a 1-extensible solution. We first answer this in the negative with Theorem 7.1, saying there is no $O(1)$ space solution in the aTAM. However, using algorithms based on John von Neumann’s randomness extractor [23] we can achieve an unbounded space robust fair coin flip system (Theorem 7.2) as well as an s space construction which incurs a small bias (Theorem 7.3), for some space constraint s. These are covered in Sections 7.2 and 7.3, respectively.

Theorem 7.1. There does not exist a $O(1)$ space 1-extensible robust fair coin flip tile system in the aTAM.

Proof. We prove this by contradiction. Assume that there exists a $O(1)$ space 1-extensible robust fair coin flip aTAM tile system $\Gamma = (T,\sigma,\tau)$. We now specify a concentration distribution for m tiles in T that contradicts this claim. Assume that Γ generates assemblies of size at most h. Consider a series of assemblies p_1, \ldots, p_n such that p_{i+1} is derived from p_i by the attachment of the tile in the frontier of p_i with the largest concentration. Select a parameter $t = 10mn^3$, and let $c_1 = 1$ and $c_{i+1} = tc_i$ for $i = 1, \ldots, m - 1$. Let the concentration for each $t_i \in T$ be $c_{1} c_{2} c_{3} \cdots c_{m}$.

For each assembly p_i, let q_{1i}, \ldots, q_{ui} be the set of tile types in the frontier of p_i listed in increasing order by their concentrations. Let c_{iu} denote the concentration of tile type q_{iu}. With probability $\frac{c_{iu}}{c_{1} c_{2} c_{3} \cdots c_{m}}$, tile type q_{iu} is attached. We have

$$\frac{c_{iu}}{c_{1} + \cdots + c_{iu}} \geq \frac{1}{\frac{(u-1)c_{u-1}}{c_{iu}} + 1} \geq \frac{1}{\frac{(u-1)}{t} + 1} \geq \frac{1}{\frac{m}{t} + 1} \geq \frac{1}{\frac{1}{10n^3} + 1}.$$

Therefore, with probability at least

$$\left(\frac{1}{\frac{1}{10n^3} + 1}\right)^n \geq \left(\frac{1}{\frac{1}{10n^3} + 1}\right)^{10n^3} \frac{1}{10n^3} \geq \frac{1}{e} \frac{1}{10n^3} > 0.6,$$

we follow the sequence p_1, \ldots, p_n to generate an assembly. This is a contradiction. Note that we use the facts that $(1 + \frac{1}{x})^x$ is an increasing function for all real $x > 1$, and $\lim_{x\to\infty}(1 + \frac{1}{x})^x = e \approx 2.71828$. \qed
Algorithm 1: Unbounded

Require: $h,t \in \mathbb{R}$, where $0 < h < 1, t = 1 - h$
Ensure: heads or tails

1: procedure UNBOUNDEDFCFE(h, t)
2: coin = {heads, tails}
3: pdist = {h, t}
4: repeat
5: flip_1 ← flip(coin, pdist)
6: flip_2 ← flip(coin, pdist)
7: until flip_1 ≠ flip_2
8: return flip_2
9: end procedure

Figure 7: Here we have the algorithm for an unbounded fair coin flip extractor on the left and the tile set for the construction that implements that algorithm on the right. The relative concentrations of the h tile and t tile serve as parameters h and t, respectively. The tile labeled S is the seed of the tile assembly system and the temperature is 2. The strength of the glues are as follows: str(0)=1, str(1)=1, str(A)=2, str(B)=2, str(C)=1, str(D)=1, str(F)=1, str(G)=2, str(R)=2, and str(R')=2.

7.2 Unbounded Space, 1-Extensible, Robust Coin Flipping

In response to Theorem 7.1, which says there does not exist a $O(1)$ space 1-extensible robust fair coin flip tile system in the aTAM, we give a 1-extensible aTAM system capable of robust fair coin flips in unbounded space. In 1951, John von Neumann gave a simple method for extracting a fair coin from a biased one [23]. We show an algorithm based on the Von Neumann extractor. Algorithm 1 uses an unbounded number of rounds to extract a fair coin flip. We use Algorithm 1 to show that a fair coin flip extractor can be implemented in the aTAM to achieve an unbounded space, 1-extensible, robust coin flip tile system. Let Algorithm 2 denote an extension of this method in which we create a bounded fair coin flip extractor by adding a parameter k which controls the maximum number of rounds allowed. If after all k rounds have been exhausted the system has not returned a fair coin flip, the result of a single flip is returned. We implement this bounded coin flip extractor in the aTAM and achieve an s space, 1-extensible, and robust coin flip tile system with bounded bias, for some space constraint s.

We now describe our 1-extensible aTAM tile system that implements Algorithm 1. In Algorithm 1, a coin is a set of cardinality 2 with possible values heads and tails. flip is a function that selects and returns a heads or tails value based on the probabilities h and t, respectively, where $h, t \in (0, 1)$ and $h + t = 1$. In our construction, calls to the flip function are carried out by a nondeterministic competition for attachment between a h tile and a t tile. Aside from calls to the flip function, the rest of the algorithm can be implemented by deterministic tile placements. Figure 7 gives the tile set used in the construction. This construction yields Theorem 7.2 and an example is shown in Figure 8.

Theorem 7.2. There exists a 1-extensible tile system $\Gamma = (T, \sigma, 2)$ in the aTAM that implements a robust fair coin flip tile system (unbounded) and achieves $O\left(\frac{1}{pq}\right)$ expected space, where p and q denote the relative concentrations of the two tiles with the largest difference in concentration for a given concentration distribution.

Proof. Let the probability that flipping a single coin is heads be represented by u and tails be represented by $1 - u$. In our construction, we have a h tile and a t tile with concentrations C_h and C_t, respectively. Let $u = \frac{C_h}{C_h + C_t}$ and $v = 1 - u$. In each round, we flip two times. Let the probability of generating a bit each round be $g = 2uv$. Then, let the expected total number of flips be t. If we succeed in the first round, we have only flipped twice. Otherwise, we have to start over, so the expected remaining number of flips is still two. Therefore, $t = 2g + (1 - g)(2 + t) = \frac{2}{g}$.
for a given concentration distribution. Where \(p \) can be controlled by first constructing a column of height \(O(k) \), leading to a tradeoff in bias, space, and tile complexity. There exists a \(\text{Theorem 7.3.} \)

more efficiently, by allowing some width, using a 1-extensible version of the aTAM counter construction of \(\text{Theorem 7.2} \) to grow along the right edge of the column. Note that this column can be built in nondeterministic attachment. This \(\text{bounded fair coin flip extractor} \)

not returned a fair coin flip, the system returns the result of a single additional flip of the two tiles used by using some additional tile types and modification to glue strengths. If after \(k \) rounds, the system has not returned a fair coin flip, the system returns the result of a single additional flip of the two tiles used in nondeterministic attachment. This \(\text{bounded fair coin flip extractor} \) can be implemented in the aTAM to achieve a fixed space, 1-extensible, robust coin flip tile system with bounded bias. The bounded \(k \)-rounds can be controlled by first constructing a column of height \(O(k) \) with glues that allow the variant of the construction of \(\text{Theorem 7.2} \) to grow along the right edge of the column. Note that this column can be built more efficiently, by allowing some width, using a 1-extensible version of the aTAM counter construction from \(\text{[7]} \) for a desired base, leading to a tradeoff in bias, space, and tile complexity.

\[\text{Algorithm 1:} \]

\[\text{start a new round.} \]

\[\text{generate a bit and proceeds to start a new round.} \]

\[\text{round of the algorithm failed to generate a bit.} \]

\[\text{second flip, respectively. From} \]

\[\text{Algorithm 1} \]

\[\text{this will return a heads.} \]

\[\text{An assembly where the first round of the algorithm failed to generate a bit and proceeds to start a new round.} \]

\[\text{An assembly where the first round of the algorithm was a valid flip and it generates a heads.} \]

\[\text{A t tile and a h tile have been placed for the first and second flip, respectively. From Algorithm 1 this will return a heads.} \]

\[\text{Two t tiles were placed for the first two flips. From Algorithm 1 the system must perform another round.} \]

\[\text{An assembly where the first two tiles with the largest difference in concentration are the h tile and t tile implying } \frac{1}{2uv} = \frac{1}{2pq}. \]

\[\text{Each round places a constant number of tiles } z, \text{ therefore the expected space of generating a coin flip is the expected number of rounds multiplied by the number of tiles per round, } \frac{s}{2pq} = O \left(\frac{1}{pq} \right). \]

\[\text{The placement of an H tile or T tile maps to the event that the algorithm returns heads or tails, respectively.} \]

7.3 Fixed Space, 1-Extensible, Robust Coin Flipping

We can also now limit the number of rounds, \(k \), so that space of the system does not exceed some constraint \(s \) by using some additional tile types and modification to glue strengths. If after \(k \) rounds, the system has returned a fair coin flip, the system returns the result of a single additional flip of the two tiles used in nondeterministic attachment. This \(\text{bounded fair coin flip extractor} \) can be implemented in the aTAM to achieve a fixed space, 1-extensible, robust coin flip tile system with bounded bias. The bounded \(k \)-rounds can be controlled by first constructing a column of height \(O(k) \) with glues that allow the variant of the construction of \(\text{Theorem 7.2} \) to grow along the right edge of the column. Note that this column can be built more efficiently, by allowing some width, using a 1-extensible version of the aTAM counter construction from \(\text{[7]} \) for a desired base, leading to a tradeoff in bias, space, and tile complexity.

\[\text{Theorem 7.3.} \]

\[\text{There exists an s space 1-extensible robust coin flip tile system in the aTAM with bias } p^{(s/10)}, \]

\[\text{where } p \text{ is the larger relative concentration from the pair of tiles with the largest difference in concentration for a given concentration distribution.} \]
Proof. We need at most 7 tile placements to perform a single additional flip when we fail all allotted rounds and each round places 10 tiles. We design a system that can perform as many possible rounds, \(k \), given \(s - 7 \) space, where

\[
\frac{s}{10} - 1 < k = \left\lfloor \frac{(s - 7)}{10} \right\rfloor < \frac{s}{10}.
\]

In the worst case, the two tile types with the largest difference in concentration, for a given concentration distribution, are the two tile types used in nondeterministic attachment. In our construction, those tiles are the \(h \) tile and a \(t \) tile with concentrations \(C_h \) and \(C_t \), respectively. Without loss of generality, consider that

\[C_h > C_t \]

and thus,

\[
p = \frac{C_h}{C_h + C_t} \quad \text{and let} \quad q = 1 - p. \]

Let \(P(X = \text{heads}) \) denote the probability that this system returns a heads and \(P(X = \text{tails}) = 1 - P(X = \text{heads}) \). Let \(F_k \) denote the probability that the system fails to return a coin flip after \(k \) rounds, that is \(F_k = (1 - 2pq)^k \). Therefore, \(p = \frac{1}{2} \) and

\[
\frac{|P(X = \text{heads}) - P(X = \text{tails})|}{2} = F_k \left(p - \frac{1}{2} \right). \quad (3)
\]

And, since \(\frac{1}{2} < p < 1 \) and \(p^k \geq F_k \),

\[
F_k \left(p - \frac{1}{2} \right) \leq p^k \left(p - \frac{1}{2} \right) \leq p^{k+1} \leq p^m.
\]

Therefore,

\[
2p^m \geq |P(X = \text{heads}) - P(X = \text{tails})|, \quad (5)
\]

which implies this system has bias \(p^m \).

8 Robust Fair Coins with Unstable Concentrations

As an extension to the idea of concentration independent solutions outlined in this paper, we consider an adversarial model wherein the concentration distribution of tiles changes during each stage of the assembly process; in other words, the concentrations are unstable.

Definition 8.1 (Unstable Concentrations Robust Fair Coin Flip). Let an unstable concentration distribution \(P \) be a function mapping \(z \in \mathbb{Z}^+ \) to concentration distributions over a tile set \(T \). Let \(P_i \) denote \(P(i) \). For each \(B \) that satisfies \(A \rightarrow^T B \), let \(t_A \rightarrow B \) denote the tile in \(T \) whose translation is added to \(A \) to get \(B \). The transition probability from \(A \) to \(B \) is defined to be

\[
\text{TRANS}(A,B) = \frac{P_i[A][t_A \rightarrow B]}{\sum_{(C|A \rightarrow^T C)} P_i[A][t_A \rightarrow C]}
\]

A finite tile system \(\Gamma \) an unstable concentrations robust fair coin flip if the set of terminal assemblies in \(\text{PROD}^\Gamma \) is partitionable into two sets \(X \) and \(Y \) such that \(\sum_{x \in X} \text{PROB}^\Gamma_{x \rightarrow x} = \sum_{y \in Y} \text{PROB}^\Gamma_{y \rightarrow y} \) for all unstable concentration distributions \(C \).

We now prove that there is no unstable concentration robust fair coin flip system in the aTAM. First, we state and prove a lemma that will be useful in our proof. Informally, by attaching the same tile type repeatedly to an assembly until it is no longer possible to attach the tile, the resulting assembly will be unique.
Lemma 8.2. For any producible assembly $A_0 \in PROD_T$ and any tile type $t \in T$, there exists another assembly A^* such that for any sequence of assemblies $(A_0, A_1, A_2, \ldots, A_h)$ where tile type t can not be attached to A_h, and each A_{i+1} is derived from A_i $(i = 0, 1, 2, \ldots, h - 1)$ by attaching a tile of type t, then $A_h = A^*$.

Proof. Let A^* be the least-sized producible assembly such that $A^* \setminus A_0$ contains only tiles of type t and the frontier of A^* contains no tiles of type t. We will show that A_0 can only grow A^* if only allowed to attach tile type t.

Towards a contradiction, assume there exists a sequence of assemblies from A_0 such that $A_h \neq A^*$. If A_h is some subassembly of A^*, note that we may still attach tiles of type t to reach A^*, implying that A_h does not fit the specified requirements. Otherwise, let A_n be the first assembly in the sequence which contains a tile not in A^*. Consider A_{n-1}. There is no tile of type t attachable to A_{n-1} such that the tile is not in A^*. If there were, that tile of type t would be attachable to A^*, contradicting the definition of A^*. Therefore no such A_n can exist, implying that $A_h = A^*$.

Theorem 8.3. There does not exist a $O(1)$ space unstable concentrations robust fair coin flip tile system in the aTAM.

Proof. Towards a contradiction, assume that a space-n solution does exist.

As the assembly process proceeds, the key point to consider is when the current assembly enters a state in which multiple distinct positions may attach a tile. In such a case select one type t of all attachable tiles, and increase its concentration to ensure, with high probability, that assembly proceeds by attaching only tiles of type t up until there is no position to attach type t tiles. Such a type t is called a dominate type. Let the concentration of the dominate tile type t be $(1 - \frac{1}{100n^2})$. For each step i, let t_i denote the dominate type of concentration $(1 - \frac{1}{100n^2})$.

When there is more than one position to attach the same type of tile t, we are assured by Lemma 8.2 that a unique assembly will result after repeatedly placing tiles of type t (in any order) until placement of t is no longer an option.

Given this setup, we have that at each step i, the assembly does not grow with a dominate type with probability at most $\frac{1}{100n^2}$. With probability at most $\frac{1}{100n^2}$, there is a step i among n steps that the assembly does not grow with the dominate type.

Therefore, there is a terminal assembly that will be generated with probability at least 0.9. This is a contradiction.

9 Other Self-Assembly Models

Figure 9: The terminal assemblies representing “heads” in some alternate models. C is a strength-τ glue and N is a strength-(-1) glue in (a) the aTAM tile system and (b) the hexTAM tile system. (c) C is a strength-1 glue in a $\tau = 2$ polyTAM tile system. (d) C is a strength-1 glue in a $\tau = 1$ GTAM tile system. The abutting geometry does not allow two C tiles to attach.

Motivated by the impossibility of robust coin flipping in the aTAM under unstable concentrations, we now consider some established extensions of the aTAM from the literature. In particular, we show that robust coin flipping with unstable concentrations is possible within the aTAM with negative glues [12, 20, 25], the hexTAM [9] with negative glues, the polyTAM [15], and the GTAM [16].
Definition 9.1 (The Abstract Tile Assembly Model with Negative Interactions). In the abstract Tile Assembly Model with Negative Interactions, the restriction that each glue type \(g \in \Pi \) must be of non-negative integer strength is removed. We relax this requirement and allow any \(g \in \Pi \) to have \(\text{str}(g) \in \mathbb{Z} \).

Definition 9.2 (The Polyomino Tile Assembly Model). In the Polyomino Tile Assembly Model (polyTAM), a tile assembly system \(\Gamma = (T,\sigma,\tau) \) is such that \(T \) is the set of polyomino tiles. A polyomino tile can easily be thought of as an arrangement of aTAM tiles, where every tile is adjacent to at least one other tile. These adjacent tiles are bonded with an infinite strength. \(\sigma \) is a \(\tau \)-stable assembly of polyomino tiles. \(\tau \) is defined as for the abstract Tile Assembly Model.

Definition 9.3 (The Hexagonal Tile Assembly Model with Negative Interactions). In the Hexagonal Tile Assembly Model (hexTAM), a tile assembly system \(\Gamma = (T,\sigma,\tau) \) is such that each tile in \(T \) is a regular unit hexagon. Similar to the aTAM with Negative Interactions Definition 9.1, there is no restriction that each glue type \(g \in \Pi \) must be of non-negative integer. \(\sigma \) and \(\tau \) are defined as they are for the abstract Tile Assembly Model.

Definition 9.4 (The Geometric Tile Assembly Model). In the Geometric Tile Assembly Model (GTAM), a tile assembly system \(\Gamma = (T,\sigma,\tau) \) is such that each edge of the tiles in \(T \) are assigned a geometric pattern. Tile attachments that would result in an overlap of edge geometries are disallowed. \(\sigma \) and \(\tau \) are defined as for the abstract Tile Assembly Model.

Theorem 9.5. There exists a \(O(1) \) space unstable concentration robust fair coin-flip tile system in the aTAM with negative glues, polyTAM, hexTAM with negative glues, and the GTAM.

Proof. Consider a tile assembly system \(\Gamma = (T,\sigma,\tau) \) with 3 producible assemblies: \(\sigma \), a terminal assembly heads, and a terminal assembly tails. Further, \(\sigma \rightarrow_{1} \text{heads} \) and \(\sigma \rightarrow_{1} \text{tails} \). Let \(t_{\sigma \rightarrow \text{heads}} \) and \(t_{\sigma \rightarrow \text{tails}} \) be the same tile \(c \), then \(\text{TRANS}(\sigma,\text{heads}) = \text{TRANS}(\sigma,\text{tails}) = \frac{P(c)}{2P(c)} = \frac{1}{2} \). Systems which meet these characteristics in the mentioned models are shown in Figure 9. \(\square \)

10 Conclusions and Future Work

In this paper we have introduced the problem of designing robust random number generating systems. Generating such random numbers is fundamental for the implementation of randomized self-assembly algorithms. By incorporating concentration independent robustness into the design of such systems, we directly address the practical issue of limited control over species concentrations. Our goal in this work is to provide a stepping stone for the creation of general, robust randomized self-assembly systems. As evidence towards the feasibility of this goal, we have shown how our gadgets can be applied to convert a large class of linear systems into equivalent systems with the concentration robustness property. A more general open problem is as follows: given a general tile system, is it possible to convert the system to an approximately equivalent system that is concentration robust? If possible, how efficiently can this be accomplished in terms of scale factor and approximation factor?

Another direction for future work is the consideration of generalizations of the coin flip problem. Our partition definition for coin flip systems extends naturally to distributions with more than two outcomes, as well as non-uniform distributions. What general probability distributions can be assembled in \(O(1) \) space, and with what efficiency? We have also introduced the online variant of concentration robustness in which species concentrations may change at each step of the self-assembly process. We have shown that when such changes are completely arbitrary, coin flipping is not possible in the aTAM. A relaxed version of this robustness constraint could permit concentration changes to be bounded by some fixed rate. In such a model, how close to a fair coin flip can a system guarantee in terms of the given rate bound? As an additional relaxation, one could consider the problem in which an initial concentration assignment may be approximately set by the system designer, thereby modeling the limited precision an experimenter can obtain with a pipette.
A final line of future work focuses on applying randomization in self-assembly to computing functions. The parallelization within the abstract tile assembly model allows for substantially faster arithmetic than what is possible in non-parallel computational models [18]. Can randomization be applied to solve these problems even faster? Moreover, there are a number of potentially interesting problems that might be helped by randomization, such as primality testing, sorting, or general simulation of randomized boolean circuits.

References

[1] Florent Becker, Ivan Rapaport, and Eric Rémi. Self-assembling classes of shapes with a minimum number of tiles, and in optimal time. In Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages 45–56, 2006.

[2] Nathaniel Bryans, Ehsan Chiniforooshan, David Doty, Lila Kari, and Shinnosuke Seki. The power of nondeterminism in self-assembly. Theory of Computing, 9(1):1–29, 2013. Preliminary version appeared in SODA 2011.

[3] Cameron T Chalk, Bin Fu, Alejandro Huerta, Mario A Maldonado, Eric Martinez, Robert T Schweller, and Tim Wylie. Flipping tiles: Concentration independent coin flips in tile self-assembly. In DNA Computing and Molecular Programming: 21st International Conference, DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015, Proceedings, volume 9211, page 87. Springer, 2015.

[4] Cameron T Chalk, Bin Fu, Alejandro Huerta, Mario A Maldonado, Eric Martinez, Robert T Schweller, and Tim Wylie. Flipping tiles: Concentration independent coin flips in tile self-assembly. CoRR, abs/1506.00680, 2015.

[5] Harish Chandran, Nikhil Gopalkrishnan, and John Reif. Tile complexity of linear assemblies. SIAM Journal on Computing, 41(4):1051–1073, 2012.

[6] Ho-Lin Chen and Ashish Goel. Error free self-assembly using error prone tiles. In DNA Computing, volume 3384 of LNCS, pages 62–75. 2005.

[7] Qi Cheng, Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kao, Robert T. Schweller, and Pablo Moisset de Espanés. Complexities for generalized models of self-assembly. SIAM Journal on Computing, 34:1493–1515, 2005.

[8] Matthew Cook, Yunhui Fu, and Robert T. Schweller. Temperature 1 self-assembly: Deterministic assembly in 3D and probabilistic assembly in 2D. In Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms, SODA’11, pages 570–589, 2011.

[9] Erik D. Demaine, Martin L. Demaine, Sandor P. Fekete, Matthew J. Patitz, Robert T. Schweller, Andrew Winslow, and Damien Woods. One tile to rule them all: Simulating any tile assembly system with a single universal tile. In Automata, Languages, and Programming, volume 8572 of LNCS, pages 368–379. 2014.

[10] D. Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55(12):78–88, 2012.

[11] David Doty. Randomized self-assembly for exact shapes. SIAM Journal on Computing, 39(8):3521–3552, 2010.

[12] David Doty, Lila Kari, and Benoît Masson. Negative interactions in irreversible self-assembly. Algorithmica, 66:153–172, 2013. Preliminary version appeared in DNA 2010.

[13] David Doty, Jack H. Lutz, Matthew J. Patitz, ScottM. Summers, and Damien Woods. Random number selection in self-assembly. In Unconventional Computation, volume 5715 of Lecture Notes in Computer Science, pages 143–157. 2009.
[14] Constantine Evans. *Crystals that Count!* Physical Principles and Experimental Investigations of DNA Tile Self-Assembly. PhD thesis, California Inst. of Tech., 2014.

[15] Sándor P. Fekete, Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, and Robert T. Schweller. Universal computation with arbitrary polyomino tiles in non-cooperative self-assembly. In *Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms*, SODA’15, pages 148–167. SIAM, 2015.

[16] Bin Fu, Matthew J. Patitz, Robert T. Schweller, and Robert Sheline. Self-assembly with geometric tiles. In *Automata, Languages, and Programming*, volume 7391 of *LNCS*, pages 714–725. 2012.

[17] Ming-Yang Kao and Robert T. Schweller. Randomized self-assembly for approximate shapes. In *Inter. Coll. on Automata, Languages, and Programming*, volume 5125 of *Lecture Notes in Computer Science*, pages 370–384, 2008.

[18] Alexandra Keenan, Robert Schweller, Michael Sherman, and Xingsi Zhong. Fast arithmetic in algorithmic self-assembly. *Natural Computing*, 15(1):115–128, 2016.

[19] Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent results. *Natural Computing*, 13(2):195–224, 2014.

[20] Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Exact shapes and turing universality at temperature 1 with a single negative glue. In *DNA Computing and Molecular Programming*, volume 6937 of *LNCS*, pages 175–189. 2011.

[21] Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled squares (extended abstract). In *Proceedings of the 32nd ACM Symposium on Theory of Computing*, STOC’00, pages 459–468, 2000.

[22] David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. *SIAM Journal on Computing*, 36(6):1544–1569, 2007.

[23] John von Neumann. Various Techniques Used in Connection with Random Digits. *Journal of Research of the National Bureau of Standards*, 12:36–38, 1951.

[24] Hao Wang. Proving theorems by pattern recognition – II. *The Bell System Technical Journal*, XL(1):1–41, 1961.

[25] Erik Winfree. *Algorithmic Self-Assembly of DNA*. PhD thesis, California Institute of Technology, June 1998.