Cytosolically expressed PrP GPI-signal peptide interacts with mitochondria

Gianni Guizzunti & Chiara Zurzolo

To cite this article: Gianni Guizzunti & Chiara Zurzolo (2015) Cytosolically expressed PrP GPI-signal peptide interacts with mitochondria, Communicative & Integrative Biology, 8:3, e1036206, DOI: 10.1080/19420889.2015.1036206

To link to this article: http://dx.doi.org/10.1080/19420889.2015.1036206
Cytosolically expressed PrP GPI-signal peptide interacts with mitochondria

Gianni Guizzunti¹,* and Chiara Zurzolo²,*
¹University of Texas Southwestern Medical Center; Department of Cell Biology; Dallas, TX USA; ²Institut Pasteur; Unité de Trafic Membranaire et Pathogénèse; Paris, France

We previously reported that PrP GPI-anchor signal peptide (GPI-SP) is specifically degraded by the proteasome. Additionally, we showed that the point mutation P238S, responsible for a genetic form of prion diseases, while not affecting the GPI-anchoring process, results in the accumulation of PrP GPI-SP, suggesting the possibility that PrP GPI-anchor signal peptide could play a role in neurodegenerative prion diseases. We now show that PrP GPI-SP, when expressed as a cytosolic peptide, is able to localize to the mitochondria and to induce mitochondrial fragmentation and vacuolarization, followed by loss in mitochondrial membrane potential, ultimately resulting in apoptosis. Our results identify the GPI-SP of PrP as a novel candidate responsible for the impairment in mitochondrial function involved in the synaptic pathology observed in prion diseases, establishing a link between PrP GPI-SP accumulation and neuronal death.

Prion diseases are a family of progressive fatal neurodegenerative diseases of infectious, sporadic or inherited origin, which affect humans and other animals. Central to the pathogenesis is the conversion of a host-encoded prion protein, PrP⁰, into a misfolded, protease resistant isoform, PrPSc, which accumulates in the brain and constitutes the infectious agent responsible for the disease.¹ Prion diseases are typically diagnosed by manifestation of dementia and locomotor symptoms, which correlate with extensive neuronal loss and PrPSc deposition. At the histological level, neuronal loss is preceded by synaptic pathology²-⁶ and early synaptic failure is a well-documented component of prion diseases.⁷,⁸ However, little is known about the underlying mechanisms of synaptic degeneration, and the sequence of events involved in the neurodegeneration is not yet completely understood.

It has been proposed that impairment in mitochondrial function could be responsible for the synaptic pathology observed in prion diseases. By investigating a wide range of mitochondrial parameters, it was shown that mitochondrial function was impaired in prion diseases and that mitochondrial damage could potentially be the initial cause of synaptic pathology.⁹,¹⁰ Additionally, several neurodegenerative diseases marked by the accumulation of misfolded proteins, such as Alzheimer and Parkinson diseases, are associated with synaptic dysfunction and mitochondrial abnormalities.¹¹-¹⁴ Evidence that mitochondria could have a role in prion pathology comes from the finding that PrP can interact with neuronal mitochondria and impair their function.¹⁵,¹⁶ In transgenic mice overexpressing PrP⁰, the prion protein localizes to the mitochondria and has been implicated in neuronal apoptosis.¹⁷ Redistribution of PrPSc to the mitochondria induces the loss of mitochondrial membrane potential (MMP) and cytochrome c release, resulting in caspase-3-dependent apoptosis, predominantly in hippocampal neurons. Moreover, the expression of PrP⁰ as a cytosolic protein induces the formation of cytosolic aggregates, mitochondrial clustering and promotes cell death by a process that involves depolarization of the mitochondrial membrane, release of

Keywords: apoptosis, GPI-anchored protein, mitochondria, prion, PrP, signal peptide

Abbreviations: GPI; glycosylphosphatidylinositol; GPI-SP; GPI-anchor signal peptide; ER; endoplasmic reticulum; MMP; mitochondrial membrane potential; FR; folate receptor.

© Gianni Guizzunti and Chiara Zurzolo
*Correspondence to: Gianni Guizzunti; Email: gianni.guizzunti@gmail.com; Chiara Zurzolo; Email: chiara.zurzolo@pasteur.fr
Submitted: 07/02/2014
Accepted: 07/24/2014
http://dx.doi.org/10.1080/19420889.2015.1036206
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
cytochrome c and caspase activation.18 Finally, the synthetic peptide PrP-(106–126), which has been shown to be neurotoxic,19 can induce the rapid depolarization of mitochondrial membranes,20 cytochrome c release and apoptosis in a panel of different neuronal cells.21,22 While the mechanism of prion disease development remains unclear, mitochondrial damage and dysfunction has emerged as the possible initial cause of synaptic degeneration, which eventually results in apoptotic neuronal cell death. The possibility that the mitochondria constitute the primary site of the proapoptotic pathway opens up new avenues for early diagnosis and particularly for early treatment.

PrP is a glycoprotein that localizes to the plasma membrane via a C-terminally linked glycosylphosphatidylinositol (GPI) anchor.23 This posttranslational modification concerns over 100 different proteins in humans, including adhesion molecules, surface receptors and enzymes.24 GPI anchor addition occurs in the lumen of the endoplasmic reticulum (ER), where the pre-assembled GPI anchor is transferred to the acceptor amino acid (called the omega site) by the action of a multimeric GPI transamidase.25 The GPI transamidase recognizes a C-terminal GPI-anchor signal peptide (GPI-SP), which is cleaved concomitantly to the attachment of the GPI-anchor. The GPI-SP consists of a hydrophilic region (5–10 amino acids) followed by a hydrophobic sequence (15–20 amino acids), but overall lacks a well-defined consensus sequence.26 As such, they are not usually conserved across species, with the significant exception of PrP, whose GPI-SP shows a remarkable degree of conservation. Additionally, PrP GPI-SP harbors 2 autosomal dominant pathogenic mutations responsible for genetic forms of prion diseases (M232R and P238S); these mutations are particularly perplexing since the GPI-SP is replaced by a GPI anchor and is absent in the mature prion protein.27,28

Because of its unusual level of conservation, and because of the presence of unexplained pathogenic mutations in its sequence, PrP GPI-SP represents an ideal model to address the fate of the GPI-anchor signal peptides. To investigate the metabolism of PrP GPI-SP we recently created a hybrid construct where the C-terminus of GFP had been fused to the GPI-SP of PrP, which had then been linked to the double tag Myc-His via a flexible Gly-Ser linker.29 As a control, we fused GFP to the GPI-SP of Folate Receptor (FR); the GPI-SPs of FR and PrP have the same length (24 amino acids) and an identical size of the hydrophilic (9 amino acids) and the hydrophobic (14 amino acids) regions. We were able to show that, while FR GPI-SP was retained within the lumen of the ER, PrP GPI-SP was selectively transported to the cytoplasm, where it was targeted for degradation by the proteasome. Interestingly, when the pathogenic point mutation P238S was introduced into our construct, PrP GPI-SP was spared from degradation. Linking the P238S point mutation to the accumulation of PrP GPI-SP potentially establishes a link between the accumulation of PrP GPI-SP and PrP induced neurodegeneration, opening up the possibility that PrP GPI-SP could play a role in prion diseases. Here we have investigated the intracellular localization of cytosolic PrP GPI-SP. We show that, differently form the control GPI-SP of Folate Receptor, the GPI-SP of PrP is targeted to the mitochondrial network that extended across the cytoplasm and around the nucleus (Fig. 1c), most likely representing the ER. This localization is not surprising, as the hydrophobic region of GPI-SPs can potentially function as an ER-signal sequence, explaining why cFRGPI-SP localizes to the ER. Specifically, PrP GPI-SP has been shown to work as an ER-signal sequence when linked to the N-term of GFP.30 However, when expressed in HeLa cells, cPrP-GPI-SP localized to discrete tubular elements (Fig. 1d), reminiscent of the mitochondrial network. To confirm the localization of our constructs, cells expressing cFRGPI-SP were costained with the ER marker Calnexin (Fig. 1e–g) and cells expressing cPrP GPI-SP were labeled with the mitochondrial marker Tom20 (Fig. 1h–j). As shown in Figure 1e–j, complete colocalization confirmed that cPrP GPI-SP localizes to the mitochondria, whereas cFRGPI-SP localizes to the ER.

While cFRGPI-SP ER localization had no effect on the structure of the compartment or on the viability of the transfected cells (data not shown), we noticed that in cells expressing cPrP GPI-SP the mitochondria were affected in a time-dependent fashion: within the first hours after transfection, cPrP GPI-SP localized to intact active mitochondria, as shown by staining with MitoTracker Red CMXRos. MitoTracker Red CMXRos was used to indicate the alteration of mitochondrial membrane
potential (MMP):34–36 cells were transduced with cPrPGPI-SP and incubated with MitoTracker Red CMXRos (100nM, 30 min) 12h, 24h and 36h after transfection (Fig. 2a–c respectively). After fixation, the degree of MMP was visualized qualitatively as red fluorescence while the morphology of nuclei could be observed as blue fluorescence (DAPI staining). Because the uptake of MitoTracker Red depends on MMP, loss in MMP causes a dramatic decrease of red fluorescence. As shown in Figure 2, the shape of mitochondria dramatically changed, appearing fragmented at 24h and extensively vacuolarized at 36h after transfection; at the same time the nuclei appeared condensed, a characteristic morphology of cells undergoing apoptosis37 (Fig. 2i). Moreover, the degree of red fluorescence in mitochondria containing cPrPGPI-SP decreased from 12h to 24h and almost completely disappeared 36h after transfection. The degree of colocalization between mitochondria and cPrPGPI-SP was quantified by calculating Manders’ overlap coefficient (Fig. 2j). Manders’ M1 and M2 coefficients measure the portion of the pixels in each channel (here red and green) that coincides with a signal in the other channel. The M coefficient varies from 0 to 1, where 1 indicates complete overlap. After each time-point (12h, 24h, 36h), the value of M1 (amount of
Figure 2. Time course of cPrPGPI-SP expression. HeLa cells transfected with cPrPGPI-SP for 12h (a–c), 24h (d–f) and 36h (g–i) were stained to visualize cPrPGPI-SP (green) and the status of MMP via MitoTracker (red). The absence of red staining indicates loss in MMP. Nuclei are in blue. Asterisk (*) indicates condensed nucleus. Colocalization efficiency was measured using ImageJ software and shown by Mander's coefficient (j). M1 = amount of MitoTracker colocalizing with cPrPGPI-SP; M2 = amount of cPrPGPI-SP colocalizing with MitoTracker. The average and standard deviation were obtained by the analysis of 5 images.
MitoTracker colocalizing with cPrP-GPI-SP was 0.9 ± 0.05, indicating that virtually all Mitotracker signal overlaps with cPrP-GPI-SP’s signal. However, the value of M2 (amount of cPrP-GPI-SP colocalizing with MitoTracker) decreased from 0.9 (at 12h after transfection) to 0.4 and 0.1 (24h and 36h after transfection respectively), indicating that the majority of cPrP-GPI-SP had lost MitoTracker staining, which is indicative of loss in MMP.

In conclusion, we were able to show that PrP GPI-SP, when expressed as a cytosolic peptide, is able to localize to the mitochondria and to induce mitochondria fragmentation and vacuolarization, which are accompanied by loss of MMP and ultimately apoptosis. This phenotype of mitochondrial damage and mitochondrial-dependent apoptosis strengthens the evidence that mitochondria play a role in prion pathology. Our results, for the first time, identify the GPI-SP of PrP as a novel candidate responsible for the impairment in mitochondrial function involved in the synaptic pathology observed in prion diseases. It is conceivable that during prion infection PrP GPI-SP may accumulate in the cytoplasm, bind to mitochondria and induce depolarization of the mitochondrial membrane, release of cytochrome c and caspase activation, resulting in neuronal cell death. Further experiments will be necessary to validate this hypothesis in models of prion infection.

Material and Methods

Cells, antibodies and reagents: HeLa cells (obtained from Dr. P. Cossart, Institut Pasteur, Paris, France) were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen) supplemented with 10% fetal calf serum (FCS) in a 5% CO2 incubator at 37°C. Cells were transfected at 70% confluence using FuGENE6 (Roche Diagnostic) according to manufacturer’s protocol. For immunofluorescence and western blot the following antibodies were used: Primary antibodies: rabbit anti-His (a gift from Dr. Dastry, Institut Pasteur); Tom20 (BD Transduction Laboratories, #612278); Calreticulin (Stressgen #SPA-600); Myc9E10 (Sigma #M4439). Secondary antibodies for IF: Alexa fluoro 488 goat anti mouse (1:500) and Alexa Fluor 594 goat anti rabbit (1:500) from Molecular Probes. MitoTracker Red CMX Ros (Invitrogen, Carlsbad, CA) was used at a final concentration of 50 nM for 15 min. DNA constructs: GPI-SPs were inserted into pcDNA3.1MycHis expression vector (Invitrogen) using Nhel/BamHI restriction sites. ssGFP-FR-MH and ssGFP-PrP-MH described in29 were used as templates. Primers: 5′-GGG GAC CCA AGC TGG CTA GCC ACC ATG AAG GAA TTC-3′ and BGHR; the use of a common Fw primer resulted in the addition of 8aa upstream of the omega site. Immunofluorescence: HeLa cells plated on 12mm glass coverslips were fixed with 4% formaldehyde, permeabilized with 0.1% TritonX100 in PBS for 5 min, then incubated in blocking buffer (PBS containing 10% FCS) for 30 min at room temperature. The cells were then incubated with primary and secondary antibody diluted in blocking buffer. DAPI (Molecular Probes) was used to stain DNA. Coverslips were then mounted onto glass slides with Aqua/Poly Mount (Polysciences) and visualized using a Zeiss Observer Z1 156 inverted microscope with 63x objective controlled by AxioVision software (Zeiss, Thornwood, NY). The degree of colocalization between mitochondria (red) and GA-bodipy (green) was quantified using the colocalization finder and JaCoP plug-in of ImageJ software (http://rsb.info.nih.gov/ij/). Manders’ overlap coefficients were measured for at least 5 cells per sample.

Western Blot: Cells were lysed with PAGE loading buffer (60 mM Tris, pH 6.8, 5% 2-mercaptoethanol, 2% SDS, 0.01% Bromophenol blue, and 10% glycerol). Proteins in the lysate were separated by SDS–PAGE using a 4–20% gradient Tris-Tricine gel (Mini-Protean Tris-Tricine Precast Gels, BioRad). Proteins were transferred on Whatman Protran nitrocellulose membranes (0.1um pore size) (Sigma). The membrane was kept in blocking buffer (50 mM, Tris pH 7.5, 150 mM NaCl, 0.05% Tween 20, and 3% BSA) and then incubated with the primary antibody diluted in blocking buffer. HRP-conjugated secondary antibodies and ECL™ reagents from Amersham (GE Healthcare) were used for detection on Kodak Biomax films.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Funding
The work in C.Z. lab was supported by fellowships from the Federation of European Biochemical Societies (FEBS), the Fondation pour la Recherche Médicale (FRM), the European Union (grant number FP7-KBBE-2007–2A-22287), the ANR (Agence Nationale de la Recherche) (grant numbers ANR-09-BLAN-0122) and the Pasteur–Weizmann Foundation (2010–2012). G.G. gratefully acknowledges Dr. Giulia N. Guizzunti for the critical review of the manuscript.

References
1. Prusiner SB. Prions. Proc Natl Acad Sci USA 1998; 95:13365–83; PMID:9811807; http://dx.doi.org/10.1073/pnas.95.23.13363
2. Cunningham C, Deacon RM, Chan K, Boche D, Rawlins JN, Perry VH. Neuropathologically distinct prion strains give rise to similar temporal profiles of behavioral deficits. Neurobiol Dis 2005; 18:258–69; PMID:15686954; http://dx.doi.org/10.1016/j.nbd.2004.08.015
3. Deacon RM, Raley JM, Perry VH, Rawlins JN. Bax-rowing into prion disease. Neuroreport 2001; 12:2053–7; PMID:11435945; http://dx.doi.org/10.1097/00001756-200107030-00052
4. Guarneri K, Deacon RM, Perry VH, Rawlins JN. Early behavioral changes in scrapie-infected mice and the influence of dapsone. Eur J Neurosci 2001; 14:401–9; PMID:11553290; http://dx.doi.org/10.1046/j.0953-816x.2001.01645.x
5. Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP, Scott H, Rawlins JN, Perry VH. Synaptic changes characterise early behavioral signs in the ME7 model of murine prion disease. Eur J Neurosci 2003; 17:2147–55; PMID:12786981; http://dx.doi.org/10.1046/j.1460-9568.2003.02662.x
6. Chiara R, Piccardo P, Mossena S, Nowoslawski L, Roth KA, Ghezzi B, Harris DA. Bas delamination prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease. Proc Natl Acad Sci USA 2005; 102:238–43; PMID:15618403; http://dx.doi.org/10.1073/pnas.040673102
7. Jamieson E, Jeffrey M, Ironside JW, Fraser JR. Apoptosis and dendritic dysfunction precede prion protein accumulation in 87V scrapie. Neuroreport 2001; 12:2147–53; PMID:11447324; http://dx.doi.org/10.1097/00001756-200102000-00021
8. Maluccelli GR. Prion neurodegeneration: starts and stops at the synapse. Prion 2009; 3:195–201; PMID:19987910; http://dx.doi.org/10.4161/prn.3.4.9981
9. Sikowicz Z, Mahal DJ, Pidney C, Campbell G, Cadogan M, Asuni A, O’Connor V, Perry VH. Morphological and functional abnormalities in mitochondria associated with synaptic degeneration in prion disease.

www.tandfonline.com Communicative & Integrative Biology e1036206-5
10. Li Z, Okamoto K, Hayashi Y, Sheng M: The importance of dendritic mitochondria in the morphogenesis and plasticity of neurons and synapses. Cell 2004; 119:873–87; PMID:15607982; http://dx.doi.org/10.1016/j.cell.2004.11.003

11. Trimmer PA, Swedlow RH, Parks JK, Keene PY, Bennett JP, Jr., Miller SW, Davis RE, Parker WD, Jr. Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol 2000; 162:37–50; PMID:10716887; http://dx.doi.org/10.1006/exnr.2000.7335

12. Castellani R, Hirai K, Aller G, Drew KL, Ninomura A, Takada A, Cash AD, Obenchain MF, Perry G, Smith MA. Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 2002; 70:357–60; PMID:12391597; http://dx.doi.org/10.1002/aja.10389

13. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003; 302:189–22; PMID:14593166; http://dx.doi.org/10.1126/science.1087753

14. Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 2005; 58:495–505; PMID:16178023; http://dx.doi.org/10.1002/ana.20624

15. Grenier C, Bissonnette C, Volkov L, Roucou X. Mitochondria take center stage in aging and neurodegeneration. Am J Pathol 2010; 177:1411–21; PMID:20651247; http://dx.doi.org/10.2353/ajpath.2010.091037

16. Mattei V, Matarrese P, Garofalo T, Tinari A, Gambari W, et al. Recruitment of cellular prion protein (PrPC) invokes neuronal apoptosis in human neuronal SH-SY5Y cells. J Biol Chem 2001; 276:43516–23; PMID:11533027; http://dx.doi.org/10.1074/jbc.M103894200

17. Carvalho AM, Barreira M, de Oliveira AR, Cunha R, Silva MJ, et al. Recruitment of cellular prion protein (PrPC) into synaptic regions and induction of neuronal apoptosis. Eur J Neurosci 2009; 29:2062–70; PMID:19064642; http://dx.doi.org/10.1111/j.1460-9568.2009.06720.x

18. Wang X, Dong CF, Shi Q, Shi S, Wang GR, Lei YJ, Xu K, An R, Chen JM, Jiang HY, et al. Cytosolic prion protein induces apoptosis in human neuronal cell SH-SYSY via mitochondrial disruption pathway. BMB Rep 2009; 42:444–9; PMID:19643043; http://dx.doi.org/10.5483/BMBRep.2009.42.7.444

19. Cambiolo J, Cronier S, Petit G, Peyrin JM, Bouchtouche F, Arez N, Lemaigre-Dubreuil Y, Brugg B, Miquel MC. Activation of the JNK-c-Jun pathway during the early phase of neuronal apoptosis induced by PrP(106-126) and prion infection. FEBS Lett 2005; 571:231–9; PMID:15932590; http://dx.doi.org/10.1016/j.febslet.2005.04.080.x

20. O’Donovan CN, Tobin D, Cotter TG. Prion protein fragment PrP(106-126) induces apoptosis via mitochondrial disruption in human neuronal SH-SYSY cells. J Biol Chem 2001; 276:43516–23; PMID:11533027; http://dx.doi.org/10.1074/jbc.M103894200

21. Cozzolino C, Beranger S, Lehmann S. Cellular pathogenesis in prion diseases. Vet Res; 2008 39:44; PMID:18411330; http://dx.doi.org/10.1051/vetres:2008021

22. Krauss J, Borchelt DR, Hirokawa K, Prusiner SB. Scapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987; 51:229–40; PMID:2444340; http://dx.doi.org/10.1016/0092-8674(87)90150-4

23. Orlean P, Menon AK. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 2007; 48:993–1011; PMID:17361015; http://dx.doi.org/10.1194/jlr.R700002-JLR200

24. Orlean P, Menon AK. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 2007; 48:993–1011; PMID:17361015; http://dx.doi.org/10.1194/jlr.R700002-JLR200

25. Ohkawa S, Nissue N, Kinoshita T. FGS and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J 2001; 20:15408; PMID:11483512; http://dx.doi.org/10.1093/emboj/20.15.4088

26. Casar FW. Probing the signal for glycosphosphatidylinositol attachment using decay-accelerating factor as a model system. Cell Biol Int Rep 1991; 15(9):815–26; PMID:17249580; http://dx.doi.org/10.1006/cbir.1991.1053

27. Hoque MZ, Kunitomo T, Furukawa H, Muramoto T, Tateishi J. Mutation in the prion protein gene at codon 15(9):815–26; PMID:17249580; http://dx.doi.org/10.1006/cbir.1991.1053

28. Guay S, Giannini E, Pertuiset C, Rassoul M, Dancourt C. The fate of PrP GPI-anchor signal peptide is modulated by P238S pathogenic mutation. Traffic 2014; 15:78–93; PMID:24112521; http://dx.doi.org/10.1111/trac.12126

29. Sommer T, Jennich S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 1993; 365:176–9; PMID:8396728; http://dx.doi.org/10.1038/365176a0

30. Rodighiero G, Tsai B, Rappoport TA, Lencer WI. Role of ubiquitination in retro-translocation of choleater toxin and escape of cytotoxic degradation. EMBO Rep 2002; 3:1222–7; PMID:12446567; http://dx.doi.org/10.1093/embo-reports/kv4239

31. de Virgilio F, Menegini H, Ivesa NE. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 1998; 273:9734–43; PMID:9545309; http://dx.doi.org/10.1074/jbc.273.16.9734

32. Suissa G, Zuwelz NA, Cumali N, Mazzu I, Snow BE, Brothers GM, Mangion J, Jacott E, Costantini P, Loeffer M, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397:441–6; PMID:9988411; http://dx.doi.org/10.1038/18135

33. Haugland RP. Molecular Probes: Handbook of Fluorescent Probes and Research Chemicals, 6th Ed., pp. 266–267. Eugene, OR: Molecular Probes, Inc.; 1996

34. Poort M, Zhang YZ, Kramer JA, Wells KS, Jones L, E11-04-0348

35. Haugland RP. Molecular Probes: Handbook of Fluorescent Probes and Research Chemicals, 6th Ed., pp. 266–267. Eugene, OR: Molecular Probes, Inc.; 1996

36. Poort M, Zhang YZ, Kramer JA, Wells KS, Jones L, E11-04-0348