Electrooxidative Rhodium-Catalyzed [5+2] Annulations via C–H/O–H Activations

Yulei Wang, João C. A. Oliveira, Zhipeng Lin, and Lutz Ackermann*

Abstract: Electrooxidative annulations involving mild transition metal-catalyzed C–H activation have emerged as a transformative strategy for the rapid construction of five- and six-membered heterocycles. In contrast, we herein describe the first electrochemical metal-catalyzed [5+2] cycloadditions to assemble valuable seven-membered benzoxepine skeletons by C–H/O–H activation. The efficient alkyne annulation featured ample substrate scope, using electricity as the only oxidant. Mechanistic studies provided strong support for a rhodium(III/I) regime, involving a benzoxepine-coordinated rhodium(I) sandwich complex as the catalyst resting state, which was reoxidized to rhodium(III) by anodic oxidation.

Based on major achievements in the C–H activation arena during the past two decades, transition metal-catalyzed annulations involving the activation of otherwise unreactive C–H bonds have revolutionized the art of preparing cyclic compounds.[2–4] Despite indisputable advances, sacrificial chemical oxidants, such as Cu(OAc)₂ and AgOAc, are generally required to facilitate these processes, thus resulting in the generation of undesired byproducts and reducing the atom economy.

Electricity has been considered as a green and atom-economic redox equivalent.[5–6] Significant recent momentum has been gained by the merger of electrocatalysis with organometallic C–H activation.[7–11] These reactions have provided efficient routes for the assembly of a variety of heterocycles, normally five- and six-membered rings through formal [3+2][9] or [4+1][10] or [4+2][11] cycloadditions, respectively, with major contributions by the groups of Mei, Lei, Xu, and Ackermann, among others (Scheme 1b). However, while seven-membered rings, such as benzoxepine derivatives, are the core structures of many natural products and pharmaceutically relevant molecules (Scheme 1a)[12] the construction of these scaffolds by means of metallaelectro-catalyzed annulations has proven elusive. Moreover, while rhodium catalysts have been widely used in C–H activation, the key low-valent rhodium(I) intermediates could seldom be isolated and their redox-chemistry was rarely studied by electroanalysis. Within our program on sustainable C–H activation,[13] we herein report on a uniquely efficient electrooxidative rhodium(III/I)-catalyzed annulation reaction to assemble the valuable seven-membered benzoxepine skeleton (Scheme 1b). Salient features of our approach comprise a) the first electrooxidative [5+2] cycloaddition, b) annulations by resource economical O–H/C–H functionalization, c) electrons as catalysts in cathodic proton reduction, d) isolation of key rhodium(I) intermediates and e) detailed mechanistic insights into electrooxidative rhodium catalysis.

We initiated our studies by exploring reaction conditions for the envisioned electrochemical [5+2] cycloadditions using 2-vinylphenol (1a) and diphenylacetylene (2a) in an undivided cell setup equipped with graphite felt (GF) and platinum plate (Pt) as anode and cathode material, respectively (Table 1). After considerable experimentations, the desired product 3aa was isolated in 88% yield with [Cp*RhCl₂]₂ (2.5 mol%), NaOPiv (2.0 equiv) as additive in tAmOH/H₂O (3:1) at 100°C for 18 h (Table 1, entry 1). The [5+2] annulation was not viable in the absence of NaOPiv,[13] while KOAc in lieu of NaOPiv afforded a sharp decrease of

Scheme 1. Electrochemical metal-catalyzed C–H annulation.

[9] Dr. Y. Wang, Dr. J. C. A. Oliveira, Z. Lin, Prof. Dr. L. Ackermann
Institut für Organische und Biomolekulare Chemie
and Wöhler Research Institute for Sustainable Chemistry
Georg-August-Universität Göttingen
Tammannstrasse 2, 37077 Göttingen (Germany)
E-mail: Lutz.Ackermann@chemie.uni-goettingen.de

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.202016895.

© 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.

Angew. Chem. Int. Ed. 2021, 60, 6419–6424 © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Wiley Online Library 6419
the yield (Table 1, entries 2–3). With H_2O or tAmOH alone as the solvent the electrocatalysis proved to be inefficient (Table 1, entries 4–5). Replacing the platinum cathode by a GF electrode inhibited the electrocatalysis (Table 1, entry 6). Increasing the current to 8 mA reduced the yield of product 3aa to 65%, and a control experiment confirmed the essential role of the electricity for the electrooxidative annulation (Table 1, entries 7–9). Reactions with other transition-metal catalysts, including Pd(OAc)_2 as well as Cp*-ligated iridium and cobalt complexes, proved to be ineffective for the annulation process (Table 1, entries 10–12).

With the optimized reaction conditions for the electrochemical [5+2] cycloadditions in hand (Table 1, entry 1), its performance was first explored with a set of substituted alkynes 2 (Scheme 2). The annulation was amenable to diverse diaryl alkynes 2 featuring both electron-withdrawing as well as electron-donating substituents on the aryl group (3ab–3an). Functional groups, including chloro, bromo, and even alkyl chloride as well as unprotected primary alcohol, were well tolerated. The annulation with unsymmetrical diaryl alkynes 2o and 2p results in 3.6:1 and 4.7:1 regioselectivities, respectively. The rhodaelectro-catalysis was also effective for dialkyl alkylene 2q. Notably, unsymmetrical arylalkyl alkynes 2r–2w were also efficiently converted to the corresponding benzoxepines with high levels of regiocontrol placing the alkyl group proximal to the heteroatom (3ar–3aw). This regioselectivity was assessed by means of computational studies at the PW6B95-D4/def2-QZVP + SMD (methanol)/PBE0-D3(BJ)/def2-SVP level of theory (Figure 1).[13] The regioisomer 3aw was shown to be favored, placing the aryl group proximal to the heteroatom. Non-covalent secondary interactions play a dominant role in the stabilization of the preferred transition state.

The scope of the electrorhoda-catalyzed annulative reaction was examined with diversely substituted 2-vinylphenols 1 (Scheme 3). Various phenols 1 were thereby selectively converted into the desired products 3 in high to excellent yields (3ba–3ma). Remarkably, the power of the metal-electrocatalysis was embodied in the chemo-selective C–H functionalization/annulation with sensitive iodovinylphenol 1l to afford the desired product (3la).

The fluorescent BODIPY motifs are widely used as effective biological labels, luminescent tags and laser dyes.[17] To our delight, the BODIPY-containing alkynes are suitable substrates for the metal-electro-catalyzed annulations, and corresponding fluorescence-labeled benzoxepines (3ax–3ay)
could be easily obtained in one step (Scheme 4a). This transition metal-catalyzed C-H activation/annulation to assemble various BODIPY-labeled heterocycles would have great potential applications in drug deliveries, dyes, and optoelectronics.

The scalability of the electrochemical rhodium-catalyzed [5+2] annulation was further demonstrated for the assembly of benzoxepines 3. The gram-scale reaction of substrates 1a and 2a hence yielded 1.33 g of the desired product 3aa (Scheme 4b).

To gain further insight into the reaction mechanism, we conducted a series of experiments. Monitoring the catalytic process by NMR spectroscopy revealed that a low-valent rhodium complex 4 was likely the catalyst resting state in the electrochemical annulative reaction (Scheme 5a). Notably, the corresponding rhodium(I) complexes 4aa and 4aj could be prepared and isolated by the reaction of Cp*Rh(OAc)2 with the substrates 1a and 2a or 2j, respectively. X-ray diffraction analysis featured rhodium(I) sandwich complexes in which the benzoxepines 3 are coordinated to the metal center as four-electron ligands (Scheme 5b).[16] Complex 4aa proved to be competent in the catalytic reaction (Scheme 5c). Electrolysis of 4aa released product 3aa, and the rhodium(I) was oxidized to the rhodium(III) species Cp*Rh(OPiv)2 (Scheme 5d). Increasing the electric current resulted in a higher initial reaction rate, indicating the reoxidation of rhodium(I) to rhodium(III) to be the rate-determining step (RDS) (Scheme 6a). H/D exchange experiments were conducted using D2O as the deuterium source, and deuterium incorporation was not observed in the recovered 2-vinylphenols 1a (Scheme 6b). Kinetic studies suggested a facial vinylic C-H metalation with a KIE value of kH/kD = 1.0 (Scheme 6c). Competition experiments with alkynes 2a and 2j revealed the greater reactivity of the electron-deficient alkyne 2j (Scheme 6d). CV studies of rhodium(I) complexes 4aa and 4aj exhibited irreversible oxidation waves at ~0.058 V versus FeCp2 and ~0.029 V versus FeCp2*, respectively (Figure 2). It is reasonable that the latter has a higher oxidation potential.
since 4aj possesses a electron-deficient metal center compared to 4aa. A constant potential was conducted at 1.0 V affording the desired product 3aa in 61% yield. Additional CV studies showed that the rhodium(I) intermediates 4aa and 4aj had lower oxidation potential than the substrates and products (Figure S10). The addition of PivOH had no significant influence on the oxidation potential of complex 4aa (Figure S11).

On the basis of our findings, a plausible catalytic cycle is presented that commences with a facile \(\text{O/C}0\text{C} \) activation to afford a rhodacycle A (Figure 3). Then, alkyne coordination-insertion occurs to produce intermediate C, which rapidly undergoes reductive elimination to deliver the rhodium(I) sandwich complex 4. Finally, the rhodium(I) species is re-oxidized to rhodium(III) at the anode, releasing the desired product 3 and generating molecular hydrogen as the by-product at the cathode. An alternative oxidation-
induced reduction elimination pathway may also be viable as depicted in Figure S9.[13] In conclusion, we have reported on the first electro-catalyzed [5+2] annulations to assemble valuable seven-membered benzoxepine skeletons by C–H/O–H activation. The versatility of the rhodaelectrosynthesis was demonstrated involving C–H rhodation and a rhodium(III/I) regime employing an efficient electrooxidation of the key benzoxepine-ligated rhodium(1) intermediate.

Acknowledgements

Generous support by the DFG (Gottfried-Wilhelm-Leibniz award to L.A.), the Alexander von Humboldt Foundation (fellowship to Y.W.), and the CSC (fellowship to Z.L.) is gratefully acknowledged. We thank Dr. Christopher Golz (Götingen University) for assistance with the X-ray diffraction analysis. Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: [5+2] cycloaddition · benzoxepine · C–H activation · electrochemistry · electrooxidative annulation

[1] For selected reviews of transition metal-catalyzed cycloadditions involving C–H bond activation, see: a) S. Rej, Y. Ano, N. Chatani, Chem. Rev. 2019, 119, 2192–2452; b) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247–9301.

[2] a) M. P. Huestis, L. Chan, D. R. Stuart, K. Fagnou, Angew. Chem. Int. Ed. 2011, 50, 1338–1341; Angew. Chem. 2011, 123, 1374–1377; b) S. Rakshit, F. W. Patureau, F. Glorius, J. Am. Chem. Soc. 2010, 132, 9585–9587; c) Z. Shi, C. Zhang, S. Li, D. Pan, S. Ding, Y. Cui, N. Jiao, Angew. Chem. Int. Ed. 2009, 48, 4572–4576; Angew. Chem. 2009, 121, 4642–4646; d) D. R. Stuart, M. Bertrand-Laperle, K. M. N. Burgess, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 16474–16475.

[3] a) G. Mihara, K. Ghosh, Y. Nishi, M. Miura, Org. Lett. 2020, 22, 5706–5711; b) N. Casanova, A. Seoane, J. Mascaréchas, M. Gulias, Angew. Chem. Int. Ed. 2015, 54, 2374–2377; Angew. Chem. 2015, 127, 2404–2407; c) J. D. Dooley, S. Reddy Chidipudi, H. W. Lam, J. Am. Chem. Soc. 2013, 135, 10829–10836; d) J. R. Huckins, E. A. Bercott, O. R. Thiel, T.-L. Hwang, M. M. Bio, J. Am. Chem. Soc. 2013, 135, 14492–14495; e) J. M. Neely, T. Rovis, J. Am. Chem. Soc. 2013, 135, 66–69; f) B. Ye, N. Cramer, Science 2012, 338, 504–506; g) X. Xu, Y. Liu, C.-M. Park, Angew. Chem. Int. Ed. 2012, 51, 9372–9376; Angew. Chem. 2012, 124, 9506–9510; h) X. Tan, R. Liu, X. Li, B. Li, S. Xu, H. Song, B. Wang, J. Am. Chem. Soc. 2012, 134, 16163–16166; i) T. K. Hyster, L. Knorr, T. Rard, T. Rovis, Science 2012, 338, 500–503; j) L. Ackermann, A. V. Lynig, N. Hofmann, Angew. Chem. Int. Ed. 2011, 50, 6379–6382; Angew. Chem. 2011, 123, 6503–6506; k) H. Shiota, Y. Ano, Y. Aihara, Y. Fukumoto, N. Chatani, J. Am. Chem. Soc. 2011, 133, 14952–14955; l) K. Sakabe, H. Tsurugi, K. Hirano, T. Sato, M. Miura, Chem. Eur. J. 2010, 16, 445–449.

[4] a) A. Seoane, N. Casanova, N. Quiñones, J. L. Mascaréchas, M. Gulias, J. Am. Chem. Soc. 2014, 136, 834–837; b) S. Cui, Y. Zhang, Q. Wu, Chem. Sci. 2014, 4, 3421–3426; c) Z. Shi, C. Grohmann, F. Glorius, Angew. Chem. Int. Ed. 2013, 52, 5393–5397; Angew. Chem. 2013, 125, 5503–5507.

[5] a) T. H. Meyer, J. Choi, C. Tian, L. Ackermann, Chem. 2020, 6, 2484–2496; b) J. C. Siu, N. Fu, S. Lin, Acc. Chem. Res. 2020, 53, 547–560; c) P. Xiong, H.-C. Xu, Acc. Chem. Res. 2019, 52, 3339–3350; d) Y. Yuan, A. Lei, Acc. Chem. Res. 2019, 52, 3309–3324; e) S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, S. R. Waldvogel, Angew. Chem. Int. Ed. 2018, 57, 6018–6041; Angew. Chem. 2018, 130, 6124–6149; f) F. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319; g) R. Feng, J. A. Smith, K. D. Moeller, Acc. Chem. Res. 2017, 50, 2346–2352; h) R. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492–2521; i) A. Jutand, Chem. Rev. 2008, 108, 2300–2347; j) J.-i. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265–2299.

[6] For selected recent examples on electrooxidative syntheses, see: a) H. Yan, Z.-W. Hou, H.-C. Xu, Angew. Chem. Int. Ed. 2019, 58, 4592–4595; Angew. Chem. 2019, 131, 4640–4643; b) Y. Liang, F. Lin, Y. Adeli, R. Jin, N. Jiao, Angew. Chem. Int. Ed. 2019, 58, 4566–4570; Angew. Chem. 2019, 131, 4614–4618; c) M. Rafiee, F. Wang, D. P. Hruszkewycz, S. S. Stahl, J. Am. Chem. Soc. 2018, 140, 22; d) P. Xiong, H.-H. Xu, J. Song, H.-C. Xu, J. Am. Chem. Soc. 2018, 140, 2460–2464; e) L. Schulz, M. Enders, B. Eislser, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed. 2017, 56, 4877–4881; Angew. Chem. 2017, 129, 4955–4959; f) E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533, 77–81.

[7] For reviews on metallaelectro-catalyzed C–H functionalization, see: a) Y. Qiu, C. Zhu, M. Stangier, J. Struwe, L. Ackermann, CCS Chem. 2020, 2, 1529–1552; b) L. Ackermann, Acc. Chem. Res. 2020, 53, 84–104; c) R. C. Samanta, T. H. Meyer, I. Siewert, L. Ackermann, Chem. Sci. 2020, 11, 9857–9870; d) K.-J. Jiao, Y.-K. Xing, Q.-L. Yang, H. Qiu, T.-S. Mei, Acc. Chem. Res. 2020, 53, 500–510; e) N. Sauermann, T. H. Meyer, Y. Qiu, L. Ackermann, ACS Catal. 2018, 8, 7086–7103.

[8] For selected recent examples of metallaelectro-catalyzed C–H functionalization, see: a) U. Dhawa, C. Tian, T. Wdowik, J. C. A. Oliveira, J. Hao, L. Ackermann, Angew. Chem. Int. Ed. 2020, 59, 13451–13457; Angew. Chem. 2020, 132, 13553–13559; b) T. H. Meyer, J. C. A. Oliveira, D. Ghorai, L. Ackermann, Angew.
