Superconducting Phase of Ti$_x$O$_y$ Thin Films Grown by Molecular Beam Epitaxy

Yasemin Ozbek, Cooper Brooks, Xuanyi Zhang, Athby Al-Tawhid, Vladmir A. Stoica, Zhan Zhang, and Divine P. Kumah

1Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
2Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
3Advanced Photon Source, Lemont, IL 76019, USA

(Dated: December 2, 2022)

Abstract

We investigate the complex relationship between the growth conditions and the structural and transport properties of Ti$_x$O$_y$ thin films grown by molecular beam epitaxy. Transport properties ranging from metallicity to superconductivity and insulating states are stabilized by effectively tuning the O/Ti ratio via the Ti flux rate and the O partial pressure, P$_{Ox}$, for films grown on (0001)-Al$_2$O$_3$ substrates at 850° C. A cubic c – TiO$_{1±δ}$ buffer layer is formed for low O/Ti ratios while a corundum cr-Ti$_2$O$_3$ layer is formed under higher oxidizing conditions. Metallicity is observed for c-TiO$_{1–δ}$ buffer layers. The superconducting γ – Ti$_3$O$_5$ Magnéli phase is found to nucleate on a c-TiO$_{1–δ}$ buffer for intermediate P$_{Ox}$ conditions and an insulator-superconducting transition is observed at 4.5 K (T$_{onset}^C$ = 6K) for 85 nm thick films. Strain relaxation of the γ – Ti$_3$O$_5$ occurs with increasing film thickness and correlates with a thickness-dependent increase in T$_C$ observed for Ti$_x$O$_y$ thin films.
The simple binary oxide, titanium oxide, Ti\textsubscript{x}O\textsubscript{y}, forms a wide range of polymorphs and Magnêli (Ti\textsubscript{n}O\textsubscript{n−1}) phases with properties ranging from insulating rutile and anatase TiO\textsubscript{2}, to corundum cr − Ti\textsubscript{2}O\textsubscript{3} which undergoes a metal-insulator transition at 450 K, to superconducting cubic NaCl-type c-TiO (bulk T\textsubscript{C} = 1-2 K).\cite{1} The ability to utilize the epitaxial stabilization of a given phase in thin films synthesised with atomic-layer control provides a route to tune the electronic properties of Ti\textsubscript{x}O\textsubscript{y}\cite{6–12}. Recent reports of superconductivity in Ti\textsubscript{x}O\textsubscript{y} thin films as high as 11 K has sparked renewed interest in superconducting binary oxides\cite{13}. The transition temperature, T\textsubscript{C} has been reported to depend on the film thickness\cite{14, 15}, oxygen stoichiometry\cite{16, 17} and growth temperature\cite{15}. The enhanced T\textsubscript{C} in thin films was attributed to the formation of a high growth-temperature orthorhombic o − Ti\textsubscript{2}O\textsubscript{3} phase\cite{15} (T\textsubscript{C} = 8 K), excess oxygen in c-TiO\textsubscript{1+δ} films (T\textsubscript{C} = 7.4 K)\cite{6, 16}, interfacial superconductivity at stoichiometric c-TiO/non-stoichiometric TiO\textsubscript{1+δ} interfaces in core-shell structures (T\textsubscript{C} = 11 K)\cite{13}, and the epitaxial stabilization of the γ − Ti\textsubscript{3}O\textsubscript{5} (T\textsubscript{C} = 7 K)\cite{18} Magnêli phase. Studies of mixed eutectic phases indicated a correlation between the coexistence of c-TiO\textsubscript{1+δ}, cr-Ti\textsubscript{2}O\textsubscript{3} and γ − Ti\textsubscript{3}O\textsubscript{5} phases with enhanced T\textsubscript{C} hinting at the non-trivial role of interactions at interfaces between Ti\textsubscript{x}O\textsubscript{y} phases in enhancing T\textsubscript{C}.\cite{19} Thus, a critical step in understanding the enhanced transition temperature, T\textsubscript{c}, in Ti\textsubscript{x}O\textsubscript{y} thin films involves elucidating the atomic-scale structure and composition of the system as a function of growth conditions (growth temperature, oxygen pressure, film thickness) using synthesis techniques which allow for the control of the film stoichiometry.

The relation between the transport properties and structural phases of Ti\textsubscript{x}O\textsubscript{y} was previously investigated for thin films grown by pulsed laser deposition (PLD) and molecular beam epitaxy (MBE) on (0001)-oriented α − Al\textsubscript{2}O\textsubscript{3}\cite{6, 11, 16, 18–22}. Figure\cite{1} shows the lattice structures of the lattice planes of Ti\textsubscript{x}O\textsubscript{y} phases grown epitaxially on (0001)-oriented α − Al\textsubscript{2}O\textsubscript{3}. A summary of reported phases and their superconducting T\textsubscript{C}s is given in Table\cite{1}. Li \textit{et al.} reported an orthorhombic o-Ti\textsubscript{2}O\textsubscript{3} phase for films grown by PLD above 650\textdegree C as evidenced by high-resolution transmission electron microscopy (TEM), Raman spectroscopy and specular X-ray diffraction measurements (XRD).\cite{11, 15} They observed a dependence of T\textsubscript{c} on the film thickness of the o − Ti\textsubscript{2}O\textsubscript{3} phase with a maximum T\textsubscript{c} of 8 K for 168 nm thick films\cite{15}. Low temperature growth (below 650 \textdegree C) led to the stabilization
FIG. 1. Atomic structure of cubic c-TiO, corundum cr – Ti$_2$O$_3$, γ – Ti$_3$O$_5$ and Ti$_4$O$_7$ along projections in the (a) [10$ar{1}$0] (b) [11$ar{2}$0] and (c) [0001] α – Al$_2$O$_3$ directions.

of the insulating bulk trigonal cr – Ti$_2$O$_3$ phase. Fan et. al. investigated the growth oxygen pressure dependence between 4.5×10^{-6} to 6.7×10^{-6} Torr for 80 nm thick films and found a suppression of superconductivity at high oxygen growth pressures.\[16\] The conclusion of a c-TiO structure was based on the analysis of the film layers close to the substrate by TEM and XRD measurements.\[6\] It is important to note that while multiple structures have been proposed/observed, the T_Cs are consistent with the reported thickness-dependence.\[14, 15\] Additionally, local TEM measurements indicated a transitional c-TiO interface layer for o-Ti$_2$O$_3$.\[15\] A study of eutectic Ti$_x$O$_y$ prepared by varying the growth and post-growth Ar annealing conditions showed a variation of T_C with the relative fractions of c-TiO, γ – Ti$_3$O$_5$ and cr – Ti$_2$O$_3$. Thus, the complexity of the system requires a systematic investigation of how specific growth conditions influence the relative fractions of the phases of Ti$_x$O$_y$ and
In this letter, we investigate the transport and structural properties of Ti$_x$O$_y$ films grown by MBE to elucidate the effect of tuning the film stoichiometry and thickness on the superconducting properties of Ti$_x$O$_y$ thin films. Here, we perform high-resolution synchrotron X-ray diffraction measurements on Ti$_x$O$_y$ films grown on (0001)-oriented α−Al$_2$O$_3$ at 850 °C. The film stoichiometry is tuned by controlling the growth oxygen pressure, P_{Ox}, Ti flux rate, and film thickness. P_{Ox} is varied from 4 × 10$^{-8}$ Torr to 1 × 10$^{-6}$ Torr. Films grown at low oxygen partial pressures ($P_{Ox} \leq 1 \times 10^{-7}$ Torr) are found to be metallic with carrier concentrations ranging from 3×1022 cm$^{-3}$ at 300 K to 6×1021 cm$^{-3}$ at 10 K. Metallic is correlated with the formation of oxygen-deficient c-TiO$_{1-\delta}$. By tuning the P_{Ox}, the Ti flux rate and the film thickness, an insulating-superconducting transition is observed in 85

Table I. Summary of reported Ti$_x$O$_y$ structures and superconducting transition temperatures, T_c.

Substrate (Method)	Thickness	Structure	T_c
Al$_2$O$_3$ (PLD)	80nm	TiO$_{1\pm\delta}$	7.4 K [6]
(Sintering)	bulk	TiO$_{1\pm\delta}$	5.5 K [22]
Al$_2$O$_3$(PLD)	168 nm	o-Ti$_2$O$_3$	8 K [15]
Al$_2$O$_3$(PLD)	120 nm	o-Ti$_2$O$_3$	I (no T_C)
Al$_2$O$_3$ (PLD)	120 nm	γ − Ti$_3$O$_5$	7.1 [18]
LSAT, MgAl$_2$O$_4$ (PLD)	120 nm	Ti$_4$O$_7$	3.0 [18]
Al$_2$O$_3$ (PLD)	80 nm	TiO$_{1\pm\delta}$	1.4−6 K [16]
Al$_2$O$_3$ (PLD)	150 nm	cr-Ti$_2$O$_3$	I(no T_C) [20]

The resulting effect on the transport properties.

In this letter, we investigate the transport and structural properties of Ti$_x$O$_y$ films grown by MBE to elucidate the effect of tuning the film stoichiometry and thickness on the superconducting properties of Ti$_x$O$_y$ thin films. Here, we perform high-resolution synchrotron X-ray diffraction measurements on Ti$_x$O$_y$ films grown on (0001)-oriented α−Al$_2$O$_3$ at 850 °C. The film stoichiometry is tuned by controlling the growth oxygen pressure, P_{Ox}, Ti flux rate, and film thickness. P_{Ox} is varied from 4 × 10$^{-8}$ Torr to 1 × 10$^{-6}$ Torr. Films grown at low oxygen partial pressures ($P_{Ox} \leq 1 \times 10^{-7}$ Torr) are found to be metallic with carrier concentrations ranging from 3×1022 cm$^{-3}$ at 300 K to 6×1021 cm$^{-3}$ at 10 K. Metallic is correlated with the formation of oxygen-deficient c-TiO$_{1-\delta}$. By tuning the P_{Ox}, the Ti flux rate and the film thickness, an insulating-superconducting transition is observed in 85
nm thick films which are characterized by a thin c-TiO$_{1±\delta}$ interfacial buffer layer and the formation of the γ–Ti$_3$O$_5$ phase. Strain relaxation is observed in γ–Ti$_3$O$_5$ with increasing film thickness and correlates with a thickness-tuned T$_C$ observed in Ti$_x$O$_y$ films.\cite{14, 15}

FIG. 2. Evolution of the surface RHEED pattern for the growth of 85 nm thick Ti$_x$O$_y$ film on (0001)-oriented α–Al_2O_3 at $P_{O_2} = 2 \times 10^{-7}$ Torr and a growth rate of 2.5 Å/min (Sample E). (a) Diffraction pattern of the initial Al_2O_3 surface (b) after 1 ML Ti$_x$O$_y$ along the [11\bar{2}0] azimuth, (c) after 85 nm along the [1\bar{1}20] and (d)[10\bar{1}0] directions.

RESULTS AND DISCUSSION

Ti$_x$O$_y$ films with thicknesses 25-85 nm were grown by oxide MBE. Prior to growth, the Al_2O_3 substrates were annealed at 1100 °C in a tube furnace tube for 12 hours. Atomic force microscope images show smooth surfaces with atomic steps. The films were grown by deposition of Ti from an effusion cell under partial pressures of molecular oxygen ranging from 4×10^{-8} to 1×10^{-6} Torr at a substrate temperature of 850 °C. The growth rates were determined from the Ti fluxes measured by a quartz crystal monitor and X-ray reflectivity measurements to be 1.3-2.5 Å/min. The sample growth conditions are summarized in Table II. After growth, the films were cooled down at a rate of 25 °C/min from the deposition temperature to room temperature in vacuum.

Figure 2(a) shows an *in-situ* reflection high energy diffraction (RHEED) image of the initial Al_2O_3 substrate surface prior to deposition of the Ti$_x$O$_y$ films at $P_{O_2} = 2 \times 10^{-7}$ Torr. Figure 2(b) shows the RHEED pattern after the deposition of 1 ML of Ti$_x$O$_y$. Roughening and relaxation are evident from the spotty nature of the RHEED pattern and the development of streaks with a closer spacing than the diffraction from the substrate. A streaky 2D pattern emerges after the 2nd ML and remains for the entire film growth. Figure 2(c)
TABLE II. Summary of growth conditions, film thickness and measured phases and transport properties of MBE-grown Ti$_x$O$_y$ films on (0001)-oriented α − Al$_2$O$_3$. I, M and SC refer to the insulating, metallic and superconducting phases, respectively. The P_{Ox}/Ti_{rate} are normalized to the values for the superconducting Sample E.

and 2(d) show the RHEED patterns after the growth of an 85 nm thick film along the [1120] and [1010] directions respectively. The narrow streaks are indicative of a smooth 2D surface. Along the [1010] direction, a 3x reconstruction is observed. A comparison of the final RHEED patterns of Samples A-F is shown in Figure S1 of the supplemental materials. Atomic force microscope images of the as-grown films (See Figure S2 of supplemental materials) show atomically flat layers with step-like features identical to the substrate.

Transport Properties

The dependence of the transport properties on the film thickness and growth conditions is determined by comparing the resistivities of a series of Ti$_x$O$_y$ films with thicknesses between 25 nm and 85 nm for $4 \times 10^{-8} \leq P_{Ox} \leq 3 \times 10^{-7}$ Torr in Figure 3(a). The transport measurements are performed in the Van der Pauw configuration using Au contacts deposited on the corners of 5 mm × 5 mm samples. Films grown with $P_{Ox} \leq 1 \times 10^{-7}$ Torr are metallic for thicknesses less than 45 nm. Growth at higher oxygen pressures ($P_{Ox} \geq 3 \times 10^{-7}$ Torr) results in insulating transport properties.
FIG. 3. (a) Comparison of sheet resistance for MBE-grown Ti$_x$O$_y$ films as a function of growth oxygen pressure and film thickness. The inset shows the drop in resistivity at low temperatures for the superconducting samples (Samples D and E). (b) Resistivity as a function of magnetic field applied in-plane for 85 nm thick Ti$_x$O$_y$ film (Sample E) grown at $P_{Ox} = 2 \times 10^{-7}$ Torr. (c) Relationship between critical magnetic field and T_C and the corresponding Werthamer-Helfand-Hohenberg (WHH) fit.

At the intermediate growth pressure of $P_{Ox} = 2 \times 10^{-7}$ Torr, the transport properties depend on the film thickness and the Ti flux rate. The 45 nm film grown at $P_{Ox} = 2 \times 10^{-7}$ Torr (Sample D) is metallic and undergoes a metal-superconducting transition at ~ 3.7 K. The thicker 85 nm film (Sample E) is insulating below 300 K and transitions to a superconducting state at 4.5 K. The absence of superconductivity above 2 K for the 25 nm thick films, for the Ti flux rates investigated, is consistent with the thickness dependence of T_C observed for PLD grown films.[15] Films grown with $P_{Ox} > 8 \times 10^{-7}$ Torr are insulating due to the formation of TiO$_2$ as evidenced by X-ray diffraction measurements.

Superconductivity in the 85 nm film (Sample E) is confirmed by measuring the resistance as a function of a magnetic field, H applied parallel to the sample surface. Figure 3(b) shows the suppression of T_C for $0T < H < 7T$. The upper critical field $H_{C2}(T)$ is defined by a 90% drop in the normal state resistance. Figure 3(c) shows a plot of H_{C2} as a function of temperature. The results are fit to the Werthamer-Helfand-Hohenberg (WHH) equation.
\[H_{C2}(T) = H_{C2}(0)[1 - \left(\frac{T}{T_c} \right)^2] \] From the fit, the upper critical field at 0 K, \(H_{c2}(0) \) is determined to be 9.8 T. The coherence length, \(\xi \), is determined to be 5.7 nm from the the Ginzburg-Landau superconducting coherence length relation, \(\xi = \left[\frac{(\hbar/2e)}{(H_{c2}(0))} \right]^{1/2} \). The measured coherence length is comparable to previous reports. [6] [16]

The insulating-superconducting transition has been previously observed in Ti\(_x\)O\(_y\) films [3] [14] and another 3D superconductor, BaPb\(_{1-x}\)Bi\(_x\)O\(_3\) which also exhibits a strong dependence of \(T_C \) on the film thickness and the presence of multiple polymorphs (tetragonal and orthorhombic fractions of BaPb\(_{1-x}\)Bi\(_x\)O\(_3\)). [25] Thus, structural disorder arising from local fluctuations in oxygen content may enhance disorder leading to the insulator-superconductor transition.

XRD Structure

The relationship between the synthesis conditions, crystal structure, and the transport properties is determined by synchrotron XRD measurements at the 33ID beamline at the Advanced Photon Source. Figure 4(a) shows a specular scan around the substrate (0006) Bragg peak measured with an X-ray energy of 16 KeV (\(\lambda = 0.774 \) Å) for a series of Ti\(_x\)O\(_y\) samples. For Sample A grown with the highest \(P_{Ox}/Ti_{rate} \) ratio, the main Bragg peak corresponds to the cr-Ti\(_2\)O\(_3\) phase. A second peak is observed corresponding to the cr-Ti\(_2\)O\(_3\) phase. A second peak is observed corresponding to a slightly O-rich c-TiO layer.

The diffraction intensities for the 25 nm metallic Ti\(_x\)O\(_y\) film (Sample B) comprise of a broad shoulder with lattice spacing \(d=2.423 \) Å and a main peak with \(d=2.375 \) Å. The shoulder and main peaks correspond, respectively, to the (111) Bragg reflection of oxygen-deficient c-TiO\(_1-\delta\) and the (022) Bragg peak of \(\gamma - Ti_3O_5 \) compressively strained to the buffer layer.

While weak insulating behavior has been reported for c-TiO\(_{1+\delta}\), the observation of metallicity in Samples B and C arises from the stabilization of Ti-rich/oxygen poor c-TiO\(_{1-\delta}\) due to the low growth oxygen pressures. For 0.05 \(\leq \delta \leq 0.2 \), Hulm et. al. show metallicity for as-cast single-phase c-TiO\(_{1-\delta}\) samples. [3] An expansion in the lattice parameter is expected for the oxygen deficient c-TiO\(_{1-\delta}\),[3] hence, from fits to the 00L data, the broad shoulder at low \(L (c_{measured}=4.19 \) Å) is assigned to a \(~15 \) Å thick metallic c-TiO\(_{1-\delta}\) layer which dominates the resistivity measurements in Figure 3(a). Annealing Sample B in flowing O\(_2\)
for 3 hours at 600 °C leads to the oxidation of both layers and a shift in the Bragg peaks to d=2.324 Å corresponding to the formation of c-r-Ti$_2$O$_3$ and a metal-insulator transition.

FIG. 4. (a) Comparison of specular X-ray diffraction around the α−Al$_2$O$_3$ (0006) Bragg peak for a Samples A (25 nm, $P_{Ox} = 3 \times 10^{-7}$ Torr), B (25 nm, $P_{Ox} = 4 \times 10^{-8}$ Torr), D (45 nm, $P_{Ox} = 2 \times 10^{-7}$ Torr) and E (85 nm, $P_{Ox} = 2 \times 10^{-7}$ Torr) Ti$_x$O$_y$ films grown by MBE. (b) Corresponding reflections for Sample D and E at higher q.

The 45 nm metallic Sample D also has a main peak at d=2.385 Å corresponding to the (022) peak of γ−Ti$_3$O$_5$ and a shoulder with d=2.4171 Å corresponding to slightly oxygen-deficient c-TiO$_{1−δ}$. The metallicity observed for this sample is again, due to the metallic oxygen-deficient c-TiO$_{1−δ}$ layer. Around 3.7 K, a decrease in the resistivity is observed (Figure 3(a) inset) due to the superconducting transition in the γ−Ti$_3$O$_5$ layer.[18]

The superconducting Sample E has a main Bragg peak at d=2.388 Å corresponding to the (022) peak of relaxed γ−Ti$_3$O$_5$. Close to the (044) γ−Ti$_3$O$_5$ in Figure 4(b), we observe a shoulder at lower q which corresponds to the (222) reflection of cubic stoichiometric TiO ($c_{measured} = 4.167$ Å). The metallic phase is strongly suppressed, possibly, due to the longer deposition time which allows for complete oxidation of the c−TiO buffer layer. The transport
properties of the Sample E in Figure 3(a) are dominated by the superconducting relaxed $\gamma - Ti_3O_5$ phase.\cite{17}

Based on the X-ray diffraction measurements, the emergent picture of the structural profiles of the films under different growth conditions is summarized in Figure 5. Oxygen-poor growth of Ti$_x$O$_y$ on (0001)-oriented $\alpha - Al_2O_3$ at high growth temperatures leads to the formation of a thin (111)-oriented cubic TiO$_{1-\delta}$ metallic buffer layer. As the film thickness increases, if the oxygen pressure is sufficiently high, the structure transforms into the Magnéli $\gamma - Ti_3O_5$ phase. The $\gamma - Ti_3O_5$ is initially strained to the buffer layer and the strain is relaxed as the film thickness is increased. Since pressure is known to suppress superconductivity in Ti$_x$O$_y$,\cite{6} this picture is consistent with the observed increase in T$_C$ with increasing film thickness.\cite{15, 17}

Phase segregation in Ti$_x$O$_y$

The transport and structural results indicate a strong correlation between the growth conditions and film thickness on the physical and structural properties of the Ti$_x$O$_y$ films. Stoichiometric c-TiO has an NaCl structure with lattice constant $c=4.177$ Å. The NaCl
structure is stable for oxygen concentrations ranging from 0.8 to 1.3 with T_C increasing from 0.5 K to 1 K for bulk c-TiO$_x$.\cite{3, 5, 8, 26} The tendency of Ti$_x$O$_y$ to form Magnéli phases and related polymorphs of the form Ti$_n$O$_{2n-1}$ suggests that the oxygen stoichiometry and the growth conditions strongly influence the structure and physical properties of the thin films.

![Image](72x710)

FIG. 6. Structural and transport properties of a 80 nm thick Ti$_x$O$_y$ film grown at Ti flux rate of 1.8 Å/min in P$_{O_2} = 2 \times 10^{-7}$ Torr (Sample F). (a) Reflection high energy diffraction for 80 nm Ti$_x$O$_y$ on 001-oriented Al$_2$O$_3$. (b) Optical micrograph of film indicating structural domains. High-resolution synchrotron X-ray diffraction raster maps around Bragg peaks observed at diffraction conditions fixed for (c) (111) c-TiO Bragg peak and (d) Ti$_4$O$_7$ Bragg peak indicating structural phase separation. (e) Specular diffraction along the substrate 00L direction at different points on the sample. (f) Resistance versus temperature. The inset shows the superconducting transition at low temperature.

To further investigate the delicate balance between film stoichiometry and the transport properties of the Ti$_x$O$_y$ system, we consider the structural properties of an eutectic film formed by growing at a reduced Ti rate with the oxygen pressure of 2×10^{-7} Torr. The slight increase in the O/Ti ratio is expected to allow for the thermodynamic stabilization of oxygen-rich Ti$_x$O$_y$ phases such as cr – Ti$_2$O$_3$.

11
The initial RHEED images for the sample grown at the lower Ti rate shows diffraction spots indicative of surface roughening, however, the final RHEED image in Figure 6(a) shows well defined 2D streaks after the growth of 80 nm. Figure 6(b) shows an optical image of the as-grown film. Clear ‘dark’ and ‘bright’ regions are observed indicating macroscopic phase separation. These variations are not observed for the uniform films previously discussed (Figure S3 of supplemental materials)\(^2\). To determine the differences in the structure of the observed phases, we perform micro-diffraction experiments at the Advanced Photon source where the X-ray beam is focused to a 20\(\mu m\) x40\(\mu m\) spot size using a Kirkpatrick–Baez mirror. Figure 6(c) and 6(d) shows diffraction intensity maps with the diffraction conditions fixed at the c-TiO (111) Bragg reflection and the Ti_4O_7 (2-20) reflection. The maps show that the two phases are not uniformly distributed throughout the sample. Figure 6(e) shows (00L) scans at locations close to the c-TiO phase and the Ti_4O_7 domain. The scans show that the intensity of the Ti_4O_7 is suppressed in regions of the film with increased fractions of the c-TiO and \(\gamma\) – Ti_3O_5 phase. At both locations surveyed in Figure 6(e), a cr-Ti_2O_3 peak is present indicating that the c-TiO/\(\gamma\) – Ti_3O_5 and Ti_4O_7 grains are located in a matrix of the insulating cr – Ti_2O_3 phase (The regions with 0 intensity in Figure 6(c) and (d)). The Ti_4O_7 grains have lateral dimensions on the order of 100 \(\mu m\) while the c-TiO/\(\gamma\) – Ti_3O_5 grains are an order of magnitude larger in dimensions.

The transport properties of the eutectic sample is shown in Figure 6(f). The multiple electronic transitions are consistent with the coexistence of multiple structural phases. Transitions in the resistivity are observed at 250 K and 150 K which are consistent with reported transitions for cr-Ti_2O_3 \(^1\) and Ti_3O_7 \(^1\). The resistivity drops at 3 K is indicative of a superconducting transition expected for either Ti_4O_7 or \(\gamma\) – Ti_3O_5, however, no zero-resistant state is observed at the instrument’s minimum temperature of 2 K.

CONCLUSION

In conclusion, we have used a combination of high-resolution synchrotron X-ray diffraction mapping and temperature-dependent transport to investigate the correlation between film thickness, phase separation and superconductivity in Ti_xO_y films grown on (0001)-oriented \(\alpha\) – Al_2O_3. The films with thicknesses ranging from 25 to 85 nm are grown by MBE where the oxygen stoichiometry of the films is tuned by the oxygen partial pressure and the Ti flux
rate during growth. The transport properties are correlated with the $P_{ox}/Ti_{r}ate$ ratio and thickness-dependent strain relaxation. A metallic c-TiO$_{1-\delta}$ buffer layer is formed for films grown under oxygen-poor conditions. A superconducting Magnéli $\gamma-Ti$_3O$_5$ layer nucleates on the buffer layer. Strain-relaxation occurs as the film thickness increases and correlates with a thickness-dependent increase in T_C. As the P_{ox}/Ti flux ratio increases, the buffer composition transitions to an insulating cr-Ti_2O_3 phase. A mixed-phase structure is formed for P_{ox}/Ti flux ratios close to the c-TiO/cr-Ti_2O_3 phase boundary. These results suggest that the thickness-dependence of T_C in Ti$_x$O$_y$ is related to a complex interplay between, strain and the nucleation kinetics of Ti$_x$O$_y$ phases and polymorphs. Thus, a complete elucidation of phase formation and phase separation and the electronic and structural interactions at inter-phase boundaries will allow for understanding and enhancing T_C in atomically-thin Ti$_x$O$_y$ layers.

ACKNOWLEDGMENTS

The authors acknowledge financial support by the US National Science Foundation under Grant No. NSF DMR-1751455. This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (award number ECCS-2025064). This work made use of instrumentation at AIF acquired with support from the National Science Foundation (DMR-1726294). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.
[1] Doyle, N., Hulm, J., Jones, C., Miller, R. & Taylor, A. Vacancies and superconductivity in titanium monoxide. *Physics Letters A* **26**, 604–605 (1968).

[2] Iwasaki, H., Bright, N. F. & Rowland, J. The polymorphism of the oxide Ti$_3$O$_5$. *Journal of the Less Common Metals* **17**, 99–110 (1969).

[3] Hulm, J., Jones, C., Hein, R. & Gibson, J. Superconductivity in the TiO and NbO systems. *Journal of Low Temperature Physics* **7**, 291–307 (1972).

[4] McLachlan, D. New models for the positive and negative temperature coefficients of resistivity for TiO$_{0.80–1.23}$ metallic oxides. *Physical Review B* **25**, 2285 (1982).

[5] Reed, T., Banus, M., Sjöstrand, M. & Keesom, P. Superconductivity in Cubic and Monoclinic “TiO”. *Journal of Applied Physics* **43**, 2478–2479 (1972).

[6] Zhang, C. et al. Enhanced superconductivity in TiO epitaxial thin films. *npj Quantum Materials* **2**, 2 (2017).

[7] Wagner, T. & Agarwal, M. Growth and Structure of Ti$_2$O$_3$ and TiO$_2$ Thin Films on (0001) α-Al$_2$O$_3$ Substrates. *MRS Online Proceedings Library* **472**, 81–86 (1997).

[8] Li, F. et al. Single-crystalline epitaxial TiO film: A metal and superconductor, similar to Ti metal. *Science Advances* **7**, eabd4248 (2021).

[9] Alexander, K. B., Walker, F. J., McKee, R. A. & List III, F. A. TiO$_x$/Al$_2$O$_3$ multilayer ceramic thin films. *Journal of the American Ceramic Society* **73**, 1737–1743 (1990).

[10] Li, Y. et al. Electronic-reconstruction-enhanced hydrogen evolution catalysis in oxide polymorphs. *Nature Communications* **10**, 1–11 (2019).

[11] Li, Y. et al. Orthorhombic Ti$_2$O$_3$: A Polymorph-Dependent Narrow-Bandgap Ferromagnetic Oxide. *Advanced Functional Materials* **28**, 1705657 (2018).

[12] Yoshimatsu, K. et al. Metallic ground states of undoped Ti$_2$O$_3$ films induced by elongated c-axis lattice constant. *Scientific Reports* **10**, 1–9 (2020).

[13] Xu, J. et al. Nano Titanium Monoxide Crystals and Unusual Superconductivity at 11 K. *Advanced Materials* **30**, 1706240 (2018).

[14] Zhang, C. et al. Quantum Griffiths singularities in TiO superconducting thin films with insulating normal states. *NPG Asia Materials* **11**, 1–9 (2019).
[15] Li, Y. et al. Observation of superconductivity in structure-selected Ti_2O_3 thin films. *NPG Asia Materials* **10**, 522–532 (2018).

[16] Fan, Y. et al. Quantum superconductor-insulator transition in titanium monoxide thin films with a wide range of oxygen contents. *Physical Review B* **98**, 064501 (2018).

[17] Fan, Y. et al. Structure and transport properties of titanium oxide (Ti_2O, $TiO_{1+\delta}$, and Ti_3O_5) thin films. *Journal of Alloys and Compounds* **786**, 607–613 (2019).

[18] Yoshimatsu, K., Sakata, O. & Ohtomo, A. Superconductivity in Ti_4O_7 and $\gamma-Ti_3O_5$ films. *Scientific Reports* **7**, 12544 (2017).

[19] Kurokawa, H., Yoshimatsu, K., Sakata, O. & Ohtomo, A. Effects of phase fraction on superconductivity of low-valence eutectic titanate films. *Journal of Applied Physics* **122**, 055302 (2017).

[20] Yoshimatsu, K., Kurokawa, H., Horiba, K., Kumigashira, H. & Ohtomo, A. Large anisotropy in conductivity of Ti_2O_3 films. *APL Materials* **6**, 101101 (2018).

[21] Zhang, C. et al. Quasi-two-dimensional vortex–glass transition and the critical current density in TiO epitaxial thin films. *Superconductor Science and Technology* **31**, 015016 (2017).

[22] Wang, D. et al. Enhanced superconductivity in rock-salt TiO. *ACS Omega* **2**, 1036–1039 (2017).

[23] Supplemental Materials.

[24] Werthamer, N., Helfand, E. & Hohenberg, P. Temperature and purity dependence of the superconducting critical field, H_{c2}. III. Electron spin and spin-orbit effects. *Physical Review* **147**, 295 (1966).

[25] Harris, D. T. et al. Superconductivity-localization interplay and fluctuation magnetoresistance in epitaxial BaPb$_{1-x}$Bi$_x$O$_3$ thin films. *Physical Review Materials* **2**, 041801 (2018).

[26] Banus, M., Reed, T. & Strauss, A. Electrical and magnetic properties of TiO and VO. *Physical Review B* **5**, 2775 (1972).
Supplemental Materials for “Superconducting Phase of Ti$_x$O$_y$ Thin Films Grown by Molecular Beam Epitaxy”

Yasemin Ozbek, Cooper Brooks, Xuanyi Zhang, Athby Al-Tawhid, Vladmir A. Stoica, Zhan Zhang, and Divine P. Kumah

1Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
2Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
3Advanced Photon Source, Lemont, IL 76019, USA
In-situ reflection high energy electron diffraction (RHEED)

RHEED images taken after the growths of samples A, B, D, E and F are compared in Figure S1 along the Al₂O₃ [1010] and Al₂O₃ [1120] azimuths.

Sample (Transport)	Al₂O₃ [1010] direction	Al₂O₃ [1120] direction
A (I)	![Image](image1.png)	![Image](image2.png)
B(M)	![Image](image3.png)	![Image](image4.png)
D(M,SC)	![Image](image5.png)	![Image](image6.png)
E(I,SC)	![Image](image7.png)	![Image](image8.png)
F(Eutectic)	![Image](image9.png)	![Image](image10.png)

Figure S1: Reflection high energy electron diffraction images of TiₓOᵧ films grown by MBE
Atomic Force Microscopy.

Figure S2 shows the atomic microscope image of an 85 nm Ti\textsubscript{x}O\textsubscript{y} film grown on (0001)-oriented α-\textit{Al}\textsubscript{2}O\textsubscript{3} . The step-like features observed for the film are identical to the as-prepared. The root-mean-square roughness is 0.7 nm.

Optical Images of Ti\textsubscript{x}O\textsubscript{y} films

A comparison of optical images of the eutectic (sample F), metallic (Sample B) and superconducting (Sample E) is shown in Figure S3.

• Eutectic
• Metallic
• Superconducting

Figure S3: Optical images of eutectic, metallic and superconducting Ti\textsubscript{x}O\textsubscript{y} films grown by molecular beam epitaxy on (0001)-\textit{Al}\textsubscript{2}O\textsubscript{3}.
