DISCRETE CAPACITY AND HIGHER-ORDER DIFFERENCES OF TWO-STATE MARKOV CHAINS

A. YU. SHAHVERDIAN

ABSTRACT. The paper studies the time-homogeneous two-state Markov chains; the states are assumed to be binary symbols 0 and 1. The higher-order absolute differences taken from progressive states of a given chain are considered. A discrete capacity of subsets of natural series is defined and a limiting theorem for these differences, formulated in terms of Wiener criterion type relation, is presented.

1. Introduction

In this paper an application of the suggested in [1]-[7] difference analysis to studying the two-state Markov chains is presented. The difference analysis is a method for studying irregular and random time series, based on consideration of higher-order absolute differences taken from the series’ progressive terms. This method allowed us to reveal some new aspects in dynamical systems: e.g., the higher-order-difference version for Lyapunov exponent [3] and bistability of higher-order differences, taken from periodic time series [6], have been established.

We study time-homogeneous Markov chains $\xi = (\xi_n)_{n=0}^{\infty}$, whose state space $X = \{x\}$ consists of two different items; more precisely, we suppose that $X = \{0, 1\}$, that is, each component ξ_n of ξ (which describes the chain at the moment n) is a random binary variable.

The main result of this paper, Theorem 1, is a limiting theorem for such chains: it assert the existence of the limit of kth order absolute differences taken from progressive terms of a given series $(\xi_n)_{n=0}^{\infty}$, when k converges to ∞ remaining on ”large” subsets $E \subseteq \mathbb{N}$ of natural series \mathbb{N}. The ”size” of such sets E is described in terms of some discrete capacity: such sets E are thick sets, defined by means of Wiener criterion type relation from potential theory (see, e.g., [8] and [9]). The limiting process, whose existence asserts Theorem 1, is the equi-distributed random sequence.

The paper consists of three sections. The next Section 2 describes the statement of the considered problem, in Section 3 we present the definitions of discrete capacity, thin and thick sets, and formulate our Theorem 1.

Date: November 11, 2017.

Key words and phrases. Markov chain, Higher-order differences, Ergodic theorems, Wiener criterion.

2010 Mathematics Subject Classification: 31C40, 31C45, 31CD05, 60J10, 60J45.
2. Statement of the problem

Let us explain the statement of the problem which we study. Let

\[\xi = (\xi_0, \xi_1, \ldots, \xi_n, \ldots) \]

be some random sequence whose components \(\xi_n \) take binary values \(x \) from \(X = \{0, 1\} \) with some positive probabilities \(p_n(x) \), \(P(\xi_n = x) = p_n(x) \) \((p_n(0) + p_n(1) = 1) \). Then \(k \)th order \((k \geq 0) \) absolute differences \(\xi_n^{(k)} \), defined recurrently as: \(\xi_n^{(0)} \equiv \xi_n \) and

\[\xi_n^{(k)} = |\xi_n^{(k-1)} - \xi_n^{(k-1)}| \quad (n \geq 0), \]

also take binary values with some probabilities \(p_n^{(k)}(x) \),

\[P(\xi_n^{(k)} = x) = p_n^{(k)}(x) \quad (p_n^{(k)}(0) + p_n^{(k)}(1) = 1); \]

hence, one can consider \(k \)th order difference random binary sequence

\[\xi^{(k)} = (\xi_0^{(k)}, \xi_1^{(k)}, \ldots, \xi_n^{(k)}, \ldots). \]

We are interested in existence of the limit of \(\xi^{(k)} \) when \(k \) goes to infinity. Let some infinite \(\Lambda \subseteq \mathbb{N} \) be given; we say that \(\xi^{(k)} \) converge to a random binary sequence \(\xi^{(\infty)} \), if \(p_n^{(k)}(x) \) \((n \in \mathbb{N}, x \in X) \) tend to some numbers \(p_n^{(\infty)}(x) \) \((p_n^{(\infty)}(0) + p_n^{(\infty)}(1) = 1) \) as \(k \to \infty \) and \(k \in \Lambda \) (convergence by probability on \(\Lambda \)). Given \(\Lambda \) the limiting process

\[\xi^{(\infty)} = \xi^{(\infty)}_{\Lambda} = (\xi_0^{(\infty)}, \xi_1^{(\infty)}, \ldots, \xi_n^{(\infty)}, \ldots) \]

(so-called partial limit) is defined as random sequence, whose components \(\xi_n^{(\infty)} \) take the values \(x \in X \) with the probabilities \(p_n^{(\infty)}(x) \).

We study time-homogeneous Markov chains \(\xi \), that is, when for \(x, x_1, y \in X \)

\[P(\xi_n = y | \xi_{n-1} = x, \xi_{n-2} = x_1, \ldots, \xi_0 = x_{n-1}) = P(\xi_n = y | \xi_{n-1} = x) \quad (1) \]

(Markov property) and there is some function \(\pi(x, y) \) on \(X \times X \) such that

\[P(\xi_n = y | \xi_{n-1} = x) = \pi(x, y) \quad \text{for } n \geq 1 \text{ and } x, y \in X \quad (2) \]

(homogeneity). Some computations testify, that if for such \(\xi \) an infinite \(\Lambda \subseteq \mathbb{N} \) is chosen arbitrarily, the limiting process \(\xi^{(\infty)}_{\Lambda} \) may not exist; on the other hand, a theorem announced in [7] asserts that if \(\Lambda = \{2^m - 1 : m \geq 0\} \), then \(\xi^{(\infty)}_{\Lambda} \) exists. The problem which studies the present paper is the following (descriptively): how "large" can be the sets \(\Lambda \subseteq \mathbb{N} \) which permit the existence of \(\xi^{(\infty)}_{\Lambda} \), and how their "size" can be described? This paper considers the chains for which

\[\pi(x, y) \neq 0, \quad \pi(0, 0) \neq \pi(1, 1), \quad \text{and} \quad \pi(0, 0) + \pi(1, 1) \neq 1. \quad (3) \]

We claim that for time-homogeneous binary Markov chains the problem stated is resolved in terms of some discrete capacity defined on \(2^\mathbb{N} \) and corresponding thin (fine) and thick sets. The capacity \(C \), considered here, is a modification of the discrete capacity used in [4]. The solution to our problem
is given by Theorem 1, which is formulated in terms of thick sets, defined by means of well-known in potential theory Wiener criterion type relation.

3. Some definitions and main theorem

We consider binary Markov chains \(\xi = (\xi_n)_{n=0}^\infty \) whose state space \(X \) consists of two binary symbols, \(X = \{0, 1\} \), and for which Eq. (1) holds. We assume that the chains \(\xi \) are time-homogeneous, which means that one-step transition probabilities \(P(\xi_n = y|\xi_{n-1} = x) \) do not depend on time \(n \), i.e., for some \(\pi(x, y) \) Eq. (2) holds; it is also assumed that some initial distribution of probabilities \(P(\xi_0 = x) \) on \(X \) is given.

To proceed to formulation of our Theorem 1, we first present the notions of discrete capacity \(C \) and associated with this capacity thin and thick sets.

The capacity \(C \) is assigned on \(2^\mathbb{N} \); to define it, we consider binary codes of natural numbers. Let \(k \in \mathbb{N}, (k \geq 1) \) and \((\varepsilon_0, \ldots, \varepsilon_p)\) be the binary code of \(k \): \(k = \sum_{i=0}^{p} \varepsilon_i 2^i \) where \(p \geq 0, \varepsilon_i \in \{0, 1\} \) and \(\varepsilon_p = 1 \) (binary expansion of \(k \)). Let \(\nu(k) \) denotes the maximal of such \(m (0 \leq m \leq p) \), for which all the coefficients \(\varepsilon_i, 0 \leq i \leq m \) of binary expansion of \(k \) are equal to 1.

Definition 1. For \(e \subseteq \mathbb{N} \) we define

\[
C(e) = \sum_{k \in e} \nu(k). \tag{4}
\]

A set \(e \subseteq \mathbb{N} \) is called thin (or, fine) set (\(F \)-set) if the relation

\[
\sum_{p=1}^{\infty} 2^{-p} C(e \cap K_p) < \infty, \tag{5}
\]

where \(K_p = \{k \in \mathbb{N} : 2^p \leq k < 2^{p+1}\} \), holds. If the set \(e \subseteq \mathbb{N} \) is not thin (i.e., Eq. (5) is failed), \(e \) is called thick set (\(T \)-set).

The \(C(e) \) from Eq. (1) can be expressed in terms of binomial coefficients as follows. Let (for given \(k \geq 1 \)) \(\mu(k) \) denotes the maximal of such \(m (0 \leq m \leq k) \), for which all the binomial coefficients \(\binom{k}{i}, 0 \leq i \leq m \) (first \(m \) entries of \(k \)th line \((\binom{k}{0}, \binom{k}{1}, \ldots, \binom{k}{k})\) of the Pascale triangle), are odd numbers; one can prove that

\[
\mu(k) = 2^{\nu(k)}
\]

and, therefore,

\[
C(e) = \sum_{k \in e} \log_2 \mu(k).
\]

Since for infinite collection of bounded sets \(e \subset \mathbb{N} \) and some positive constant we have \(C(e) \leq \text{const}. C(\partial e) \) (cp. [4]; such inequality is mentioned also in [10] when defining a capacity of clusters from \(\mathbb{N} \times \mathbb{N} \), used in some models [11]-[12] of self-organized criticality), which is a characteristic property of classical capacities (e.g., [13]), we call \(C \) a capacity. We note that \(C \) is differed from
discrete capacity, considered in denumerable Markov chains and random walk (see, e.g., [13]).

The next Proposition 1 contains some formal properties of capacity C and fine and thick sets (which we abbreviate as \mathcal{F}-sets and \mathcal{T}-sets, respectively); we note that $C(e) \geq 0$ for arbitrary $e \subseteq \mathbb{N}$.

Proposition 1. The next statements (a)-(f) are true: (a) $C(\emptyset) = 0$ and $C(\mathbb{N}) = \infty$. (b) If $e_1 \subseteq e_2$ then $C(e_1) \leq C(e_2)$. (c) $C(\{2^p \leq k < 2^{p+1}\}) = (1 + o(1))2^p (p \to \infty)$. (d) The \mathbb{N} is \mathcal{T}-set. (e) Every finite subset of \mathbb{N} is \mathcal{F}-set and finite union of \mathcal{F}-sets is \mathcal{F}-set. (f) If e is \mathcal{T}-set and e' is \mathcal{F}-set, then $e \cup e'$ and $e \setminus e'$ are \mathcal{T}-sets.

By using the next Proposition 2 one can construct more complicated examples of thin and thick subsets of \mathbb{N}.

Proposition 2. Let for $p \geq 1$ the natural numbers $0 \leq s_p \leq p, s_p \to \infty (p \to \infty)$ be given and $E \subseteq \mathbb{N}$ be defined as

$$E = \bigcup_{p=1}^{\infty} \{2^p \leq k < 2^{p+1} : \nu(k) \geq s_p\}. \quad (6)$$

Then E is \mathcal{F}-set if and only if for s_p the condition

$$\sum_{p=1}^{\infty} \frac{s_p}{2^p} < \infty$$

holds.

Definition 2. A number a is called thick limit point (\mathcal{T}-limit point or \mathcal{T}-cluster point) of a given infinite numerical sequence $a_k, k \geq 0$ if there is a \mathcal{T}-set $E \subseteq \mathbb{N}$ such that

$$\lim_{k \to \infty; k \in E} a_k = a.$$

A random binary sequence $\xi = (\xi_n)_{n=0}^{\infty}$ is called \mathcal{T}-limit process for a given infinite series of random binary sequences $\xi_k = (\xi_{n,k})_{n=0}^{\infty}, k \geq 0$ if for $x \in X$ and $n \geq 0$ the probability $P(\xi_n = x)$ is \mathcal{T}-limit point for the sequence of probabilities $P(\xi_{n,k} = x), k \geq 0$.

The following Theorem 1 is the main result of this paper.

Theorem 1. Let $\xi = (\xi_n)_{n=0}^{\infty}$ be time-homogeneous binary Markov chain for which Eq. (3) holds. Then the equi-distributed random binary sequence is the \mathcal{T}-limit process for the sequence of higher-order differences $\xi^{(k)} = (\xi^{(k)}_{n})_{n=0}^{\infty}, k \geq 0$. More precisely, for $x \in X$ and $n \geq 0$ there is a \mathcal{T}-set $E \subseteq \mathbb{N}$ of the form (6) with $\sum_{p=1}^{\infty} s_p 2^{-s_p} = \infty$, for which

$$\lim_{k \to \infty; k \in E} P(\xi^{(k)}_n = x) = \frac{1}{2}.$$
In certain sense, Theorem 1 can be treated as the higher-order-difference version of the classical ergodic theorem for finite (two-state) Markov chains, where some notions from potential theory are now involved.

To the end, we present some characteristics of the sets E from Theorem 1 formulated in terms of their density in natural series. For $m \geq 1$ we denote $E_m = \{k \in E : 1 \leq k \leq m\}$ and consider the ratio $\rho_m(E) = \frac{|E_m|}{m}$ where $|E_m|$ denotes the cardinality of E_m.

Remark 1. The sets $E \subseteq \mathbb{N}$ defined by Eq. (6) in Proposition 2 and presented in formulation of Theorem 4 are of zero density in natural series: $\rho_m(E) \to 0$ as $m \to \infty$. The sets E defined by Eq. (6) can be such that the ratio $\rho_m(E)$ converges to 0 as slow as we please: given $0 < \delta_m \leq 1$, $\delta_m \downarrow 0$ the \mathcal{T}-set E from Theorem 4 can be constructed in such a way that $\rho_m(E) \geq \delta_m$ for all $m \geq 1$.

REFERENCES

[1] Shahverdian, A. Yu., Apkarian, A. V. (1999). On irregular behavior of neural spike trains. *Fractals*, 7(1), 93-103.

[2] Shahverdian, A. Yu. (2000). The finite-difference method for analyzing one-dimensional nonlinear systems. *Fractals*, 8(1), 49-65.

[3] Shahverdian, A. Yu., Apkarian, A. V. (2007). A difference characteristic for one-dimensional nonlinear systems. *Comm. Nonlin. Sci. & Comput. Simul.*, 12, 233-242.

[4] Shahverdian, A. Yu. (2012). Minimal Lie algebra, fine limits, and dynamical systems. *Reports Armenian Natl. Acad. Sci.*, 112(2), 160-169.

[5] Shahverdian, A. Yu., Kilicman, A., Benosman, R. B. (2012). Higher difference structure of some discrete processes. *Adv. Difference Equations*, 202, 1-10.

[6] Shahverdian, A. Yu., Agarwal, R. P., Benosman, R. B. (2014). The bistability of higher-order differences of periodic signals. *Adv. Difference Equations*, 60, 1-9.

[7] Shahverdian, A. Yu. (2015). A theorem on higher-order differences of two-state Markov chains. *Proc. Intern. Conf. CSIT-2015*. Yerevan, 251-252 (reprinted in: *IEEE Conference Ser.*, *CSIT-2015*, 137-138).

[8] Brelot, M. (1971). Topologies and Boundaries in Potential Theory. *Springer*, Berlin.

[9] Shahverdian, A. Yu. (2011). Fine topology and estimates for potentials and subharmonic functions. *Computational Methods and Function Theory*, 11(1), 71-121.

[10] Shahverdian, A. Yu. (2011). Avalanches and memory in rotator networks. *Reports Armenian Natl. Acad. Sci.*, 111(3), 240-249.

[11] Shahverdian, A. Yu. (1997). Lattice animals and self-organized criticality. *Fractals*, 5(2), 199-213.

[12] Shahverdian, A. Yu., Apkarian, A. V. (2008) Avalanches in networks of weakly coupled phase shifting rotators. *Comm. Math. Sci.*, 6(1), 217-234.

[13] Dynkin, E. B., Yushkevich, A. A. (1969). Markov processes: Theorems and Problems. *Plenum Press*, New York.

INSTITUTE FOR INFORMATICS AND AUTOMATION PROBLEMS OF NAS RA

E-mail address: svrdn@yerphi.am