Angiogenesis in gastrointestinal stromal tumors: From bench to bedside

Stavros P Papadakos, Christos Tsagkaris, Marios Papadakis, Andreas S Papazoglou, Dimitrios V Moysidis, Constantinos G Zografos, Stamatios Theocharis

Abstract

Gastrointestinal stromal tumors (GISTs) are rare neoplasms with an estimated incidence from 0.78 to 1-1.5 patients per 100,000. They most commonly occur in the elderly during the eighth decade of life affecting predominantly the stomach, but also the small intestine, the omentum, mesentery and rectosigmoid. The available treatments for GIST are associated with a significant rate of recurrent disease and adverse events. Thorough understanding of GIST’s pathophysiology and translation of this knowledge into novel regimens or drug repurposing is essential to counter this challenge. The present review summarizes the existing evidence about the role of angiogenesis in GIST’s development and progression and discusses its clinical underpinnings.

Key Words: Gastrointestinal stromal tumor; Cancer; Oncology; Angiogenesis; Gastrointestinal oncology; Stromal tumors
Core Tip: Thorough understanding of gastrointestinal stromal tumors (GISTs)’s pathophysiology and translation of this knowledge into novel regimens or drug repurposing is essential to counter this challenge. The present review summarizes the existing evidence about the role of angiogenesis in GIST’s development and progression and discusses its clinical underpinnings.

Citation: Papadakos SP, Tsagkaris C, Papadakis M, Papazoglou AS, Moysidis DV, Zografos CG, Theocharis S. Angiogenesis in gastrointestinal stromal tumors: From bench to bedside. World J Gastrointest Oncol 2022; 14(8): 1469-1477
URL: https://www.wjgnet.com/1948-5204/full/v14/i8/1469.htm
DOI: https://dx.doi.org/10.4251/wjgo.v14.i8.1469

INTRODUCTION

Gastrointestinal stromal tumors (GISTs) are rare neoplasms with an estimated incidence from 0.78 patients to 2 patients per 100000[1,2]. Their highest prevalence is noted during the eight decade of age, when they affect up to 3.06 individuals per 100000[3]. GIST typically present as subepithelial masses mainly in stomach (60%) and small intestine (20%-30%) with omentum, mesentery and rectosigmoid areas being less-frequently involved areas[4]. According to their primary location, GISTs could clinically present as gastrointestinal hemorrhage, anemia, dyspepsia or constipation while extra-intestinal metastases to lymph nodes (LN) and lungs are infrequent[4]. The pathological diagnosis relies on the tissue’s morphological and molecular characteristics. Based on their morphology, GISTs are classified into three groups according to the predominant cell type: Spindle cell type (70%), epithelioid cell type (20%) and a mixed type (10%). CD117 comprises a transmembrane protein which is the end-product of the c-kit expression[6]. The KIT (CD117) positivity in immunohistochemistry (IHC) in tissues which are morphologically consistent with GIST establishes the diagnosis in the 95% of the cases. In KIT negative cases, the discovered on GIST 1 (DOG1) and CD34, which is an antigen of the myeloid progenitor cells, staining or the documentation of KIT or platelet-derived growth factor receptor (PDGFR) gene mutations are sufficient to institute a diagnosis. Seldom in pediatric and young populations, GIST formation arises in the context of succinate dehydrogenase-deficiency in conjunction with paragangliomas and pulmonary chondromas[7,8].

The pharmacologic targeting of angiogenesis in cancer therapeutics was introduced as a groundbreaking approach. Nevertheless, the anti-vascular endothelial growth factor (VEGF) targeting alone or in conjunction with chemotherapy displayed only modest benefit in overall survival in solid tumors indicating the complexity of the mechanisms that regulate tumor angiogenesis[9]. Thus, the necessity arose to develop a broad spectrum of anti-angiogenetic treatments such as: Direct VEGFR2 antagonists (ramucirumab), VEGF-Traps (aflibercept), several receptor tyrosine kinases inhibitors targeting the PDGF-R, CD117 (c-KIT), fibroblast growth factor receptors (FGFR), epidermal growth factor receptor, RET, RAF kinases and the repurposing of drugs like the mammalian target of rapamycin inhibitors and lenalidomide[9,10]. In fact, anti-angiogenetic therapy has gained ground in the management of advanced, unresectable disease. Imatinib, an abl, c-KIT and PDGF-R tyrosine kinase inhibitor (TKI), constitutes the empiric treatment when the mutational status of the disease remains unknown and the first line of treatment in KIT and PDGFR positive metastatic, inoperable GISTs. The D842V mutation in PDGFRα comprises a therapeutic exception and is being treated with avapritinib while KIT and PDGFR wild type tumors are treated with sunitinib or regorafenib[11].

All the above mentioned drugs achieve, at least partially, their cytotoxicity disrupting signaling pathways which are implicated in angiogenesis, as it would be further analyzed below. This suggests that angiogenesis might be of paramount importance for the carcinogenesis process in GISTs and an attempt to summarize all the pre-clinical and clinical data would be of great value.

THE ROLE OF ANGIOGENESIS IN GIST’S DEVELOPMENT AND PROGRESSION

The molecular mechanisms of angiogenesis in GISTs–preclinical data

The regulation of angiogenesis is necessary for cancer cells initially to cope with their increased metabolic needs and in the process to promote their metastatic potential. Its significance was firstly recognized by Folkman[12], which stated that the magnified rate of neovascularization compared with wound healing and inflammation as a result of an interplay between tumor cells and endothelial cells was a prerequisite in order to achieve tumor growth[12]. Presently, it is widely known that the
angiogenic process is being coordinated by the balance of several angiogenesis inducers and inhibitors in tumor’s microenvironment. The dominance of the pro-angiogenic factors, a phenomenon called “angiogenic switch”[13], triggers the angiogenesis and could result either as result of the consequent hypoxia from the increased tumor proliferation or by the immune cell infiltration[14]. The primary induction phase with the undeveloped vessels paves the way for the remodeling phase when the blood vessel generation is sustained[15]. Several models of angiogenesis have been described explaining partially the poor outcomes of the selective angiogenic blockage as certain tumors can utilize alternative modes of angiogenesis[14]. Their analytical presentation has been done elsewhere[14,16,17] and goes beyond the scope of this review but a brief presentation in Table 1 would be helpful.

Xenograft studies in mice constitute an invaluable source of evidence about the angiogenic mechanisms in GISTs. Our fundamental conceptualization about the orchestration of the angiogenic process descended from Giner et al[18]. They utilized an intensely CD117, DOG1 and CD34-positive GIST with continual Ki-67 expression in about 15% of the tumor’s mass. The neovascularization experiments demonstrated the propagation of the induction phase during the first 96 h after implantation which proceeded by the remodeling phase. The induction phase was guided by the VEGF, VEGFC, PDGFA, PDGFB gene expression in conformity with their receptors. In more detail, the IHC data indicate that the VEGF ligand and the VEGFR2, VEGFR3 were positive at day 4 after the xenografting. As regards the chemokine expression, CXCL9, CXCL10, GRO and their receptors CXCR3, CXCR2 were stained in tumor cells and stroma soon after the implantation with a slight staining predominance of the chemokine receptors. These effects are possibly orchestrated by hypoxia-inducible factor (HIF)Iα and the CXCL12/CXCR4 axis, which are constantly expressed[18].

The angiogenic process in GIST has been further delineated and several regulatory molecules have been identified. CCL2 represents a chemokine expressed by the tumor cells to attract CCR2-expressing endothelial progenitor cells from the circulation as documented in HER-2/neu-driven breast cancer[19]. On the other hand, the VEGF-induced nuclear factor kappa B (NF-kB) upregulation is frequently utilized to attract inflammatory cell into tumor to stimulate the angiogenesis[20]. The bromodomain and extraterminal domain family mediates immunity regulating several signaling pathways[21]. In GISTs, the BRD4 upregulation enhanced the migratory and invasion processes regulating angiogenesis through the NF-kB/CCL2 signaling pathway. The BRD4-expressing cells attract tumor-associated macrophages via the expression of CCL2 potentiating the tumor’s microvessel density and secrete various pro-angiogenic molecules such as VEGFA, LOX and MMP9[22,23]. Towards the same direction, mutations of the protein phosphatase 2, regulatory subunit A, alpha (PPP2R1A) affect the carcinogenesis process[24,25]. In GISTs, mutations in PPP2R1A gene are found in nearly 20% of the cases and correlate with a more aggressive tumor phenotype. They result in increased growth rate via enhancing phosphorylation of c-kit, Akt1/2, ERK1/2 and WNK1. The latter seems to mediate the regulation of the angiogenic process[26,27]. A further analysis of the specific mechanisms would be of great value and it should be applied.

Furthermore, while the contribution of epigenetic mechanisms in the GIST progression is well established, its impact in the angiogenic mechanisms could be further delineated. Several gaps in our understanding that remain unaddressed by the subdivisions according to the driver gene mutation status could be further elucidated by the tumor’s epigenetic landscape. The alterations in the tumor’s methylation profile are associated with a more aggressive phenotype[28] and the methylation status of the CD133 could reshape the management of the disease and it would be presented below in more depth[29]. The KDM4 family members (KDM4A-D) reshaping the structure of chromatin are implicated in the pathogenesis of a wide variety of cancers[30]. In GIST, the upregulation of KDM4D potentiates the angiogenesis in vivo, as indicated by the overexpression of CD31 in IHC. These effects are mediated by the HIF1β/VEGFA pathway in the presence of demethylation in the promoters of the H3K9me3 and H3K36me3 genes[31].

Finally, it is worth mentioning that several multi-TKIs exert their anti-tumor efficacy at least partially by the inhibition of angiogenesis. Cabozantinib exerts its activity inhibiting the receptor tyrosine kinases MET, VEGFR2, Flt-3, c-Kit and RET[32,33] while sorafenib inhibits the signaling of VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-β, Flt-3, c-Kit and the Raf serine/threonine kinases[34]. Both diminish the tumor’s microvascular density as evidenced by CD31 IHC[35,36].

The association between imaging data and angiogenesis in GISTS

There have been several classification systems to stratify the malignant potential of GISTs such as: The National Institutes of Healthv consensus criteria (Fletcher’s criteria), the Armed Forces Institute of Pathology criteria (Miettinen’s criteria) or the International Union against Cancer TNM classification. Their main drawback constitute the inability to validate the tumor’s aggressiveness without surgical resection and detailed pathologic examination of the entire tumor to estimate the mitotic count[37,38]. Although taking into consideration the current therapeutic trends, the management of the advanced, unresectable disease is unequivocal, there are margins for improvement in the management of primary localized disease, especially in small-sized tumors. It could not be emphasized enough that even small GISTS could develop malignant behavior. Thereat, it could provide us a wealth of valuable predictive and prognostic information an attempt to incorporate imaging data about the vascularization of the tumor such as the vessels’ irregularity or the blood perfusion[39].
Table 1 The basic mechanisms of angiogenesis

Angiogenic mechanism	Function	Implanted signaling/ pathways
Sprouting angiogenesis	Vessel formation from a parental one as a sprout outgrowth	VEGF, Dll4/notch pathways and neuropilins
Intussusceptive Angiogenesis	Splitting of a parental vessel into two newly formed	VEGF, PDGF pathways and erythropoietin
Vasculogenesis/Endothelial progenitor cells	Vessel formation from endothelial progenitor cells differentiating into mature endothelial cells	VEGF pathway, chemokines
Vasculogenic mimicry	Vessel-like formations without endothelial cells	HGFR
Trans-differentiation of CSCs	CSC give rise to endothelial cells	Tie-2, TGF-, CXCL12/CXCR4

Table 1: The above indicate that CE-US comprises a powerful tool towards the more personalized approach in the management of GIST. The utilization of EUS has emerged during the last decades. Its ability to evade the intervention of the abdominal fat and gastrointestinal gas in conjunction with the capability of FNA biopsy to address the clinical manifestations of GIST. Reviewing past literature, several studies have documented that aim to associate certain imaging features with pathologic parameters. Iannicelli et al. [40] presented that GISTs with irregular margins tended to have superior mitotic rate than tumors with regular margins. Furthermore, a heterogenous pattern of contrast enhancement (CE), the angiogenesis and necrosis correlated with an increased tumor size and a more aggressive clinical behavior. It worth mentioning that the intensity of CE although it represents a novel mark of biologic activity, was not correlated with neither the number of mitoses nor the tumor’s risk stratification [40]. The above comprise an indirect link between tumor’s margins and mitotic rate, which is essential in order to stratify before surgery the clinical behavior of the tumor and highlight the importance of angiogenesis in disease progression. The latter could also be deduced by dynamic positron emission tomography analysis. Strauss et al. [43] reported an association between the rate in which the F-18-fluorodeoxyglucose diffused into the tumor with the expression of VEGF-A [43]. The main limitation of CT comprises its low sensitivity as regards the imaging of vascularity in small sized tumors [39]. This divergence could be addressed by the endoscopic ultrasound (EUS) technology.

Angiogenesis mediators as biomarkers in GIST—clinical data

The development of biomarkers comprises an essential step towards the individualization of medical practice. Liquid biopsy provides a cutting-edge, non-invasive technology to access predictive information to guide the therapeutic management in a wide variety of diseases [47-51]. Its application in GIST treatment has been started to emerge [52,53]. Reviewing subsequent and more recent literature, an extensive number of studies has been found associating molecules implicated in angiogenesis with pathologic features. Although there are several limitations in the above mentioned research, the
Table 2 A brief presentation of several angiogenetic molecules in disease progression

Ref.	Sample size	Molecule/methods	Outcomes
Zhao et al[59]	124 patients-62, 50% in stomach, 22.6% in small intestine	HIF-1α/IHC, VEGF/IHC, MVD/IHC	Association with disease-free survival \(P = 0.03\), Association with disease-free survival \(P = 0.002\), Association with disease-free survival \(P < 0.001\)
Kang et al[60]	213 patients-63% in stomach, 25.3% in small intestine	634G/C	Superior OS than 634 G/G \(P = 0.054\), Superior RFS than 634 G/G \(P = 0.082\)
Mu et al[22]	20 patients	BRD4/mRNA, IHC	Increased BRD4 expression compared with normal tissue
Toda-Ishii et al[61]	94 patients-mean follow-up period 65 mo	PPP2R1A mutations/PCR	Lower OS \(P < 0.05\), Lower DFS \(P < 0.05\)
Liu et al[62]	52 patients-27 malignant cases-11 borderline-14 benign	MMP-9, COX-2, VEGF/IHC	Enhance metastasis \(P = 0.014, P = 0.010, P = 0.032\) respectively \(P = 0.002\)
Takahashi et al[63]	55 patients: 21 cases < 30 mm-9 cases with liver metastasis	VEGF/IHC, VEGF/IHC, MVD/IHC	Association with liver metastasis \(P < 0.01\), Poor 10-yr OS \(P < 0.05\), Association with liver metastasis \(P < 0.05\)
Verboom et al[64]	227 patients-36 SNPs-18 genes, median PFS 39 mo-median OS 86.5 mo	rs1570360 polymorphism in VEGFA gene, rs1870377 polymorphism in VEGFR2 gene	Association with poorer PFS \(P = 0.015\), Association with lower PFS \(P = 0.037\)
Chen et al[65]	62 patients: 31 high risk-31 low risk	HIF-1α/IHC, VEGF/IHC	Association with high risk disease \(P < 0.0001\), Association with GIST recurrence or metastasis \(P = 0.009\)
Basilio-de-Oliveira and Pannain[66]	54 patients	VEGF/IHC, CD105/IHC	Association with survival \(P < 0.001\), Association with prognosis \(P < 0.001\)
Imamura et al[67]	95 patients: 64 cases in stomach-31 in small intestine	MVD/IHC	Association with tumor grade \(P = 0.036\), Association with VEGF expression \(P < 0.0001\), Association with DFS after surgery \(P = 0.0028\)
Wang et al[68]	68 patients: 20 low risk cases-48 high risk cases	Soluble VEGF, VEGF/IHC, MVD/IHC	Association with lower DSS \(P < 0.05\)

OS: Overall survival; DSS: Disease-specific survival; DFS: Disease-free survival; PFS: Progression-free survival; VEGF: Vascular endothelial growth factor; IHC: Immunohistochemistry; MVD: Microvascular density; HIF: Hypoxia-inducible factor.

The importance of angiogenesis in GIST's malignant progression is delineated. In Table 2 are summarized the most significant data.
CONCLUSION

As highlighted above, angiogenesis mediates an extensive proportion of GIST's malignant dynamics. Several signaling pathways are implicated in the regulation of angiogenesis such as: The VEGF, the fibroblast growth factor-2 (FGF2), the PDGF, the angiopoietins, the Eph/ephrin signaling, the Apelin/APLN pathway, the HIFs and several chemokines[14]. The VEGF signaling comprises the most well-studied pathway in GIST angiogenesis.

The FGF2/R2 signaling has been extensively studied in GIST as a drug resistance mechanism. Sergei et al.[54] and Boichuk et al.[55] demonstrated that the blockage of FGFR2 signaling could enhance the responsiveness to DNA-Topoisomerase II inhibitors[54] while the downregulation of FGF2 signaling might stimulate the response to imatinib[55]. Its contribution in GIST progression has been reviewed [56] but data about potential effects in GIST vascularization process are missing. Towards the same direction, the Eph/ephrin system has been investigated in carcinogenesis[57,58]. It would be of paramount importance an attempt to outline its contribution in GIST angiogenesis.

FOOTNOTES

Author contributions: Papadakos SP and Tsagkaris C contributed equally; Papadakos SP and Tsagkaris C contributed to the onceptualization and study design; Papadakos SP wrote the first draft; Moysidis DV, Papazoglou AS, Papadakis M and Zografos CG wrote the second draft; Tsagkaris C, Papadakis M and Theocharis S contributed to the critical revision; Papadakis M and Theocharis S contributed to the supervision

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Greece

ORCID number: Stavros P Papadakos 0000-0003-1583-1125; Christos Tsagkaris 0000-0002-4250-574X; Marios Papadakis 0000-0002-9020-874X; Andreas S Papazoglou 0000-0003-4981-8121; Dimitrios V Moysidis 0000-0001-9083-0267; Constantinos G Zografos 0000-0002-8203-6407.

S-Editor: Fan JR
L-Editor: A
P-Editor: Fan JR

REFERENCES

1 van der Graaf WTA, Tielen R, Bonenkamp JJ, Lemmens V, Verhoeven RHA, de Wilt JHW. Nationwide trends in the incidence and outcome of gastrointestinal stromal tumour in the imatinib era. Br J Surg 2018; 105: 1020-1027 [PMID: 29664995 DOI: 10.1002/bjs.10809]
2 Casali PG, Blay JY, Abecassiss N, Bajun J, Bauer S, Biagini R, Bielack S, Bielack S, Bonvalot S, Boukova M, Bovee JVMG, Boye K, Brodowicz T, Buonadonna A, De Álava E, Dei Tos AP, Del Muro XG, Dufresne A, Eriksson M, Fedenko A, Ferraresi V, Ferrari A, Frezza AM, Gasperoni S, Gelderblom H, Gouin F, Grignani G, Haas R, Hassan AB, Hindi N, Hohenberger P, Joensuu H, Jones RL, Jungels C, Jutte P, Kasper B, Kawai A, Kopeckova K, Krákorová DA, Le Cesne A, Le Grange F, Legius E, Lehner H, Lopez-Pousa A, Martin-Broto J, Merimsky O, Messiou E, Miah AB, Mir O, Montemurro M, Morosi C, Palmieri E, Pantaleo MA, Piana R, Piperno-Neumann S, Reichardt P, Rutkowski P, Sañat AA, Sangalli C, Scharrá M, Scheipl S, Schöffski P, Sleijfer S, Sleijfer S, Solé-Soler J, Solé-Soler J, Trama A, Unk M, van de Sande MAJ, van der Graaf WTA, van Houdt WJ, Frebourg T, Gronchi A, Stacchiotti S, ESMO Guidelines Committee, EURACAN and GENTURIS. Gastrointestinal stromal tumors: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012; 23: 20-33 [PMID: 34560242 DOI: 10.1016/j.annonc.2011.09.005]
3 Ma GL, Murphy JD, Martinez ME, Sicklick JK. Epidemiology of gastrointestinal stromal tumors in the era of histology codes: results of a population-based study. Cancer Epidemiol Biomarkers Prev 2015; 24: 298-302 [PMID: 25277795 DOI: 10.1158/1055-9965.EPI-14-1002]
4 Nishida T, Blay JY, Hirota S, Kitagawa Y, Kang YK. The standard diagnosis, treatment, and follow-up of gastrointestinal stromal tumors based on guidelines. Gastric Cancer 2016; 19: 3-14 [PMID: 26273636 DOI: 10.1007/s10120-015-0526-9]
5 Caterino S, Lorenzon L, Petracciain N, Iannicelli E, Pilozzi E, Romiti A, Cavallini M, Zippor V. Gastrointestinal stromal tumors: correlation between symptoms at presentation, tumor location and prognostic factors in 47 consecutive patients. World J Surg Oncol 2011; 9: 13 [PMID: 21384869 DOI: 10.1186/1477-7819-9-13]
6 Sarlomo-Rikala M, Kovatch AJ, Barusevicius A, Miettinen M. CD117: a sensitive marker for gastrointestinal stromal
tumors that is more specific than CD34. *Mod Pathol* 1998; 11: 728-734 [PMID: 9720500]

7. Joensuu H, Hohenberger P, Corless CL. Gastrointestinal stromal tumour. *Lancer* 2013; 382: 973-983 [PMID: 23623056 DOI: 10.1016/S0140-6736(13)60106-3]

8. Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. *Am J Surg Pathol* 2011; 35: 1712-1721 [PMID: 21997692 DOI: 10.1097/PAS.0b013e31824620752]

9. Jain RK. Antiangiogenesis strategies revisited: from starving tumours to alleviating hypoxia. *Cancer Cell* 2014; 26: 605-622 [PMID: 25551774 DOI: 10.1016/j.ccel.2014.10.006]

10. Teug LS, Jin KT, He KF, Zhang J, Wang HH, Cao J. Clinical applications of VEGF-trap (aflibercept) in cancer treatment. *J Clin Med Assoc* 2010; 73: 449-456 [PMID: 20875616 DOI: 10.1016/S1726-4901(10)70097-6]

11. Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. *Nat Rev Clin Oncol* 2022; 19: 328-341 [PMID: 10.1038/s41571-022-00606-4]

12. Folkman J. Tumor angiogenesis: therapeutic implications. *N Engl J Med* 1971; 285: 1182-1186 [PMID: 4938153 DOI: 10.1056/NEJM197111182528102]

13. Hanahan D. Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. *Cell* 1996; 86: 353-364 [PMID: 8756718 DOI: 10.1016/0026-8952(87)80107-6]

14. Lugano R, Ramachandran M, Dimberg A. Tumor angiogenesis: causes, consequences, challenges and opportunities. *Cell Mol Life Sci* 2020; 77: 1745-1770 [PMID: 3169961 DOI: 10.1007/s00018-019-03351-7]

15. Llombart-Bosch A, López-Guerrero JA, Carda Batalla C, Ruiz Suari A, Peydró-Olaya A. Structural basis of tumoral angiogenesis. *Adv Exp Med Biol* 2003; 532: 69-89 [PMID: 12908551 DOI: 10.1007/978-1-4615-0081-0_8]

16. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. *Nature* 2011; 473: 298-307 [PMID: 21938862 DOI: 10.1038/nature10144]

17. Kuczenski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. *Nat Rev Clin Oncol* 2019; 16: 469-493 [PMID: 30816337 DOI: 10.1038/s41571-019-0181-9]

18. Giner F, Machado I, López-Guerrero JA, Mayordomo-Aranda E, Llombart-Bosch A. High-risk gastrointestinal stromal tumour (GIST) and synovial sarcoma display similar angiogenic profiles: a nude mice xenograft study. *Ercanercarmaliscience* 2017; 11: 726 [PMID: 28386296 DOI: 10.3332/ecancer.2017.726]

19. Chen X, Wang Y, Nelson D, Tian S, Mulvey E, Patel B, Conti I, Jaen J, Rollins BJ. CCL2/CCR2 Regulates the Tumor Microenvironment in HER-2/neu-Driven Mammary Carcinomas in Mice. *PloS One* 2016; 11: e0165595 [PMID: 27820834 DOI: 10.1371/journal.pone.0165595]

20. Jiang BH, Liu LZ. PI3K-PTEN signalling in angiogenesis and tumorigenesis. *Adv Cancer Res* 2009; 102: 19-65 [PMID: 19595306 DOI: 10.1016/S0090-0202(09)2080-8]

21. Wang N, Wu R, Tang D, Kang R. The BET family in immunity and disease. *Signal Transduct Target Ther* 2021; 6: 23 [PMID: 33462181 DOI: 10.1038/s41392-020-00384-4]

22. Mu J, Sun P, Ma Z. BRD4 promotes tumor progression and NF-kB/CCL2-dependent macrophage recruitment in GIST. *Cell Death Dis* 2019; 10: 935 [PMID: 31819043 DOI: 10.1038/s41419-019-2170-4]

23. Liu N, Ling R, Tang X, Yu Y, Zhou Y, Chen D. Post-Translational Modifications of BRD4: Therapeutic Targets for Tumor. *Front Oncol* 2022; 12: 847701 [PMID: 35402244 DOI: 10.3389/fonc.2022.847701]

24. Calin GA, di Iasio MG, Caprini E, Vorechovsky I, Natali PG, Sozzi G, Croce CM, Barbanti-Brodano G, Russo G, Negrini M. Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the serine-threonine protein kinase 1 (wnk1) affects angiogenesis associated with VEGF signaling. *J Biol Chem* 2013; 288: 8566-8574 [PMID: 23386621 DOI: 10.1074/jbc.M113.451575]

25. Lai JG, Tsai SM, Tu HC, Chen WC, Kou FJ, Lu JW, Wang HD, Huang CL, Yuh CH. Zebrafish WNK lysine deficient protein kinase 1 (wnk1) affects angiogenesis associated with VEGF signaling. *PLoS One* 2014; 9: e106129 [PMID: 25171174 DOI: 10.1371/journal.pone.0106129]

26. Okamoto Y, Sawaki A, Ito S, Nishida T, Takahashi T, Toyota M, Suzuki H, Shimomura Y, Takeuchi I, Shinjo K, An B, Ito H, Yamao K, Fujii M, Murakami H, Osada H, Katoaka H, Joh T, Sekido Y, Kondo Y. Aberrant DNA methylation associated with aggressiveness of gastrointestinal stromal tumour. *Gut* 2012; 61: 392-401 [PMID: 21708825 DOI: 10.1136/gut.2011.241034]

27. Geddert H, Braun A, Kayser C, Dimmler A, Fallier G, Agaimy A, Haller F, Moskalev EA. Epigenetic Regulation of CD133 in Gastrointestinal Stromal Tumors. *Am J Clin Pathol* 2017; 147: 515-524 [PMID: 28398518 DOI: 10.1093/ajcp/aqz028]

28. Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylation KDM4 as cancer therapeutic targets. *FASEB J* 2020; 34: 3461-3484 [PMID: 31961018 DOI: 10.1096/fj.201902584R]

29. Hu F, Li H, Liu L, Xu F, Lai S, Luo X, Hu J, Yang X. Histone demethylation KDM4D promotes gastrointestinal stromal tumour progression through HIP/P-VEGFA signalling. *Mol Cancer* 2018; 17: 107 [PMID: 30060750 DOI: 10.1186/s12943-018-0861-6]

30. Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, Orf J, You A, Laird AD, Engst L, Lee L, Lesch J, Chou YC, Joly AH. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. *Mol Cancer Ther* 2011; 10: 2298-2308 [PMID: 21926191 DOI: 10.1158/1535-7163.MCT-11-0624]

31. Grillich C. Cabozantinib: a MET, RET, and VEGFR2 tyrosine kinase inhibitor. *Recent Results Cancer Res* 2014; 201: 207-214 [PMID: 24756794 DOI: 10.1007/978-3-642-54490-3_12]

32. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase...
inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008; 7: 3129-3140 [PMID: 18852116 DOI: 10.1158/1535-7163.MCT-08-0013]

35 Gebreyohannes YK, Schöflpi S, Van Looy T, Wellens J, Vreys L, Cornillie J, Vanleeuw U, Aftab DT, Debiec-Rychter M, Sciot R, Wozniak A. Cabozantinib Is Active against Human Gastrointestinal Stromal Tumor Xenografts Carrying Different KIT Mutations. Mol Cancer Ther 2016; 15: 2845-2852 [PMID: 27772285 DOI: 10.1158/1535-7163.MCT-16-0224]

36 Huynh H, Lee JW, Chow PK, Ngo VC, Lew GB, Lam IW, Ong HS, Chung A, Soo KC. Sorafenib induces growth suppression in mouse models of gastrointestinal stromal tumors. Mol Cancer Ther 2009; 8: 152-159 [PMID: 1939124 DOI: 10.1158/1535-7163.MCT-08-0553]

37 Agaimy A. Gastrointestinal stromal tumors (GIST) from risk stratification systems to the new TNM proposal: more questions than answers? Int J Clin Exp Pathol 2010; 3: 461-471 [PMID: 20660727]

38 Takahashi T, Nakajima K, Nishitani A, Souma Y, Hirota S, Sawa Y, Nishida T. An enhanced risk-group stratification system for more practical prognostication of clinically malignant gastrointestinal stromal tumors. Int J Clin Oncol 2007; 12: 369-374 [PMID: 17929119 DOI: 10.1007/s10147-007-0705-7]

39 Sakamoto H, Kitano M, Matsui S, Kamata K, Komaki T, Imai H, Dote K, Kudo M. Estimation of malignant potential of GI stromal tumors by contrast-enhanced harmonic EUS (with videos). Gastrointest Endosc 2011; 73: 227-237 [PMID: 21295363 DOI: 10.1016/j.gie.2010.10.011]

40 Iannicelli E, Carbonetti F, Federici GF, Martini I, Caterino S, Pilozzi E, Ponzetto F, Bria S, David V. Evaluation of the Relationships Between Computed Tomography Features, Pathological Findings, and Prognostic Risk Assessment in Gastrointestinal Stromal Tumors. J Comput Assist Tomogr 2017; 41: 271-278 [PMID: 27753723 DOI: 10.1097/CT.0000000000000949]

41 Horton KM, Julura K, Montgomery E, Fishman EK. Computed tomography imaging of gastrointestinal stromal tumors with pathology correlation. J Comput Assist Tomogr 2004; 28: 811-817 [PMID: 15538156 DOI: 10.1097/00004728-200409000-00014]

42 Baheti AD, Shinagare AB, O'Neill AC, Krajevski KM, Hornick JL, George S, Ramaiya NH, Tumorini SH. MDCT and clinicopathological features of small bowel gastrointestinal stromal tumours in 102 patients: a single institute experience. Br J Radiol 2015; 88: 20150085 [PMID: 2611069 DOI: 10.1259/bjr.20150085]

43 Strauss LG, Dimitrakopoulou-Strauss A, Kozcan D, Pan L, Hohenberger P. Correlation of dynamic PET and gene array data in patients with gastrointestinal stromal tumors. ScientificWorldJournal 2012; 2012: 721313 [PMID: 22701369 DOI: 10.1100/2012/721313]

44 Palazzo L, Landi B, Cellier C, Cuillerier E, Roseau G, Barbier JP. Endosonographic features predictive of benign and malignant gastrointestinal stromal cell tumours. Gut 2000; 46: 88-92 [PMID: 10061061 DOI: 10.1136/gut.46.1.88]

45 Chhoda A, Jain D, Surabhi VR, Singhal S. Contrast Enhanced Harmonic Endoscopic Ultrasound: A Novel Approach for Diagnosis and Management of Gastrointestinal Stromal Tumors. Clin Endosc 2018; 51: 215-221 [PMID: 2987403 DOI: 10.5946/ce.2017.170]

46 Yamashita Y, Kato J, Ueda K, Nakamura Y, Abe H, Tamura T, Iinomaga M, Yoshida T, Maeda H, Moribaka K, Niwa T, Mackita T, Iguchi M, Tamai H, Ichinose M. Contrast-enhanced endoscopic ultrasonography can predict a higher malignant potential of gastrointestinal stromal tumors by visualizing large newly formed vessels. J Clin Ultrasound 2015; 43: 89-97 [PMID: 25043990 DOI: 10.1002/jcu.22195]

47 Hadjimichael AC, Pergearis A, Kaspiris A, Foukas AF, Theocharis SE. Liquid biopsy: A new translational diagnostic and monitoring tool for musculoskeletal tumors. Int J Mol Sci 2021; 22 [PMID: 34768955 DOI: 10.3390/ijms22111526]

48 Masouatis C, Korkolopoulou P, Theocharis S. Exosomes in sarcomas: Tiny messengers with broad implications in diagnosis, surveillance, prognosis and treatment. Cancer Lett 2019; 449: 172-177 [PMID: 30779943 DOI: 10.1016/j.canlet.2019.02.025]

49 Lone SN, Nisar S, Masoodi T, Singh M, Riswan A, Hashem S, El-Rifai W, Bedognetti D, Batra SK, Haris M, Bhat AA, Macha MA. Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer 2022; 21: 79 [PMID: 35303987 DOI: 10.1186/s12943-022-01543-7]

50 Heydari R, Abdollahpour-Atiappheh M, Shekari F, Meyfouri A. Emerging Role of Extracellular Vesicles in Biomarking the Gastrointestinal Diseases. Expert Rev Mol Diagn 2021; 21: 939-962 [PMID: 34308738 DOI: 10.1080/14737135.2021.1954909]

51 Koulouris A, Tsagkaris C, Missaritakis I, Gouvas N, Stafanaki M, Tryptaki M, Spyrou V, Christodoulakis M, Athanasakis E, Xynos E, Tzardis M, Movsasid M, Sakamoto H, Kamata K, Komaki T, Imai H, Dote K, Kudo M. Estimation of malignant potential of GI stromal tumors by visualizing large newly formed vessels. J Clin Ultrasound 2015; 43: 89-97 [PMID: 25043990 DOI: 10.1002/jcu.22195]

52 Ko TK, Lee E, Ng CC, Yang VS, Farid M, Teh BT, Chan JY, Somasundaram N. Circulating Tumor DNA Mutations in Progressive Gastrointestinal Stromal Tumors Identify Biomarkers of Treatment Resistance and Uncover Potential Therapeutic Strategies. Front Oncol 2022; 12: 840843 [PMID: 35273917 DOI: 10.3389/fonc.2022.840843]

53 Li J, Guo S, Sun Z, Fu Y. Noncoding RNAs in Drug Resistance of Gastrointestinal Stromal Tumor. Front Cell Dev Biol 2022; 10: 808591 [PMID: 35174150 DOI: 10.3389/fcell.2022.808591]

54 Sergi B, Pavel D, Aigal G, Firyuza B, Ilmira N, Ilshat M, Aida A, Refat K, Natalia A, Elena S, Vera G. Inhibition of FGFR2-Signaling Attenuates a Homology-Mediated DNA Repair in GIST and Sensitizes Them to DNA-Topoisomerase II Inhibitors. Int J Mol Sci 2020; 21 [PMID: 3194066 DOI: 10.3390/ijms21010352]

55 Boichuk S, Gajewicka A, Mikheeva E, Binkieva F, Aukhadieva A, Dunayev P, Khalikov D, Petrov S, Kursanov R, Valeeva E, Kireev I, Dugina V, Lushnikova A, Novikova M, Kopnin P. Inhibition of FGFR2-Mediated Signaling in GIST- Promising Approach for Overcoming Resistance to Imatinib. Cancers (Basel) 2020; 12 [PMID: 32599808 DOI: 10.3390/cancers12061674]

56 Napolitano A, Ostler AE, Jones RL, Huang PH. Fibroblast Growth Factor Receptor (FGFR) Signaling in GIST and Soft Tissue Sarcomas. Cells 2021; 10 [PMID: 34204560 DOI: 10.3390/cells10061531]

57 Pergearis A, Danas E, Goutas D, Sykaras AG, Soranidis A, Theocharis S. The Clinical Impact of the EPH/Ephrin System in
Cancer: Unwinding the Thread. *Int J Mol Sci* 2021; 22 [PMID: 34445116 DOI: 10.3390/ijms22168412]

Papadakos SP, Petrogiannopoulos L, Pergaris A, Theocharis S. The EPH/Ephrin System in Colorectal Cancer. *Int J Mol Sci* 2022; 23 [PMID: 35269901 DOI: 10.3390/ijms23052761]

Zhao Y, Wang Q, Deng X, Zhao Y. Altered angiogenesis gene expression in gastrointestinal stromal tumors: potential use in diagnosis, outcome prediction, and treatment. *Neoplasma* 2012; 59: 384-392 [PMID: 22489693 DOI: 10.4149/neo_2012_050]

Kang BW, Kim JG, Chae YS, Bae HI, Kwon O, Chung HY, Yu W, Song HS, Kang YN, Ryu SW, Lee KH, Bae YK, Choi JH, Kim SW, Ryoo HM, Cho CH, Chae HD, Park KW, Gu MJ, Bae BJ. Clinical significance of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 gene polymorphisms in patients with gastrointestinal stromal tumors. *Asia Pac J Clin Oncol* 2014; 10: e40-e45 [PMID: 23551429 DOI: 10.1111/ajco.12068]

Toda-Ishii M, Akaike K, Suehara Y, Mukaihara K, Kubota D, Kohsaka S, Okubo T, Mitani K, Mogushi K, Takagi T, Kaneko K, Yao T, Saito T. Clinicopathological effects of protein phosphatase 2, regulatory subunit A, alpha mutations in gastrointestinal stromal tumors. *Mod Pathol* 2016; 29: 1424-1432 [PMID: 27469332 DOI: 10.1038/modpathol.2016.138]

Liu N, Huang J, Sun S, Zhou Z, Zhang J, Gao F, Sun Q. Expression of matrix metalloproteinase-9, cyclooxygenase-2 and vascular endothelial growth factor are increased in gastrointestinal stromal tumors. *Int J Clin Exp Med* 2015; 8: 6495-6501 [PMID: 26131278]

Takahashi R, Tanaka S, Kitadai Y, Sumii M, Yoshihara M, Haruma K, Chayama K. Expression of vascular endothelial growth factor and angiogenesis in gastrointestinal stromal tumor of the stomach. *Oncology* 2003; 64: 266-274 [PMID: 12697968 DOI: 10.1159/000069316]

Verboom MC, Kloot JSL, Swen JJ, van der Straaten T, Bovée JVMG, Sleijfer S, Reyners AKL, Mathijszen RHJ, Guchelaar HJ, Steeghs N, Gelderblom H. Genetic polymorphisms in angiogenesis-related genes are associated with worse progression-free survival of patients with advanced gastrointestinal stromal tumours treated with imatinib. *Eur J Cancer* 2017; 86: 226-232 [PMID: 29054076 DOI: 10.1016/j.ejca.2017.09.023]

Chen WT, Huang CJ, Wu MT, Yang SF, Su YC, Chai CY. Hypoxia-inducible factor-1alpha is associated with risk of aggressive behavior and tumor angiogenesis in gastrointestinal stromal tumor. *Jpn J Clin Oncol* 2005; 35: 207-213 [PMID: 15845570 DOI: 10.1093/jjco/hyi067]

Basilio-de-Oliveira RP, Pannain VL. Prognostic angiogenic markers (endoglin, VEGF, CD31) and tumor cell proliferation (Ki67) for gastrointestinal stromal tumors. *World J Gastroenterol* 2015; 21: 6924-6930 [PMID: 26078569 DOI: 10.3748/wjg.v21.i22.6924]

Imamura M, Yamamoto H, Nakamura N, Oda Y, Yao T, Kakeji Y, Baba H, Maehara Y, Tsuneyoshi M. Prognostic significance of angiogenesis in gastrointestinal stromal tumor. *Mod Pathol* 2007; 20: 529-537 [PMID: 17334345 DOI: 10.1038/modpathol.3800767]

Wang TB, Qiu WS, Wei B, Deng MH, Wei HB, Dong WG. Serum vascular endothelial growth factor and angiogenesis are related to the prognosis of patients with gastrointestinal stromal tumors. *Ir J Med Sci* 2009; 178: 315-320 [PMID: 19367428 DOI: 10.1007/s11845-009-0315-7]
