EZNAS: Evolving Zero-Cost Proxies For Neural Architecture Scoring

Yash Akhauri\textsuperscript{1} J. Pablo Muñoz\textsuperscript{2} Nilesh Jain\textsuperscript{2} Ravi Iyer\textsuperscript{2}

\textsuperscript{1}Cornell University \quad \textsuperscript{2}Intel Labs

ya255@cornell.edu

\{pablo.munoz,nilesh.jain,ravishanker.iyer\}@intel.com

1 Appendix

1.1 NASBench-201 and NDS

For image classification, we utilize the NASBench-201 \cite{dong2020nasbench} and NDS \cite{radosavovic2019nas} NAS search spaces for our evolutionary search as well as testing. NASBench-201 consists of 15,625 neural networks trained on the CIFAR-10, CIFAR-100 and ImageNet-16-120 datasets. Neural Networks in Network Design Spaces (NDS) uses the DARTS \cite{liu2019darts} skeleton. The networks are comprised of cells sampled from each of AmoebaNet \cite{real2019amernet}, DARTS \cite{liu2019darts}, ENAS \cite{pham2018enas}, NASNet \cite{zoph2018nasnet} and PNAS \cite{liu2018pnas}. There exists approximately 5000 neural network architectures in each NDS design space.

1.2 Sequential Program Representation

Our initial attempts at discovering ZC-NASMs took a different approach to program representation. The sequential program representation described in Figure\textsuperscript{1} posed no structural limitations on the program. We have 22 static memory addresses, which contained network statistics and are referenced with integers 0–21. To store intermediate tensors generated by the program, we allocate 80 dynamic memory addresses, which can be over-written during the program execution as well. To store intermediate scalars generated by the program, we allocate 20 memory addresses. As seen in Figure\textsuperscript{1}, we represent the programs as integers, where each instruction is expressed as 4 integers. The first integer provides the write address, the second integer provides the operation ID and the third and fourth integers provide the read addresses for the operation. We initialize valid random integer arrays and convert them to programs to evaluate and fetch the fitness (score-accuracy correlation). We allow \texttt{Mate}, \texttt{InsertOP}, \texttt{RemoveOP}, \texttt{MutateOP} & \texttt{MutateOpArg} as variation functions. The \texttt{Mate} function takes two individuals, and takes the first half of each individual. Then, these components are interpolated to generate a new individual. The \texttt{InsertOP} function inserts an operation at a random point in the program. The \texttt{RemoveOP} function removes an operation at a random point in the program. The \texttt{MutateOP} changes a random operation in program without changing read/write addresses. The \texttt{MutateOpArg} function simply replaces one of the read arguments of any random instruction with another argument from the same address space (dynamic address argument cannot be replaced by a scalar address argument).

Figure 1: Our sequential program representation.
While we are able to discover weak ZC-NASMs with this formulation, we observe that there are too many redundancies in the programs discovered. Program length bloating as well as operations that do not contribute to the final output were frequently observed. Due to these issues, the evolution time evaluation of individual fitness quickly became an intractable problem. To address this, we change our program representation to a expression tree representation in the results reported in the paper. This representation necessitates contribution of each operation to the final output, which means there is no redundant compute. While the sequential program representation is valid, we believe that significant engineering efforts are required to ensure discovery of meaningful programs. Our sequential program representation is directly inspired by the formulation used in AutoML-Zero [2020]. AutoML-Zero makes significant approximations in the learning task to evolutionarily discover MLPs. While AutoML-Zero has a much larger program space to search for, approximations in computing individual fitness are not feasible in our formulation as generating exact score-accuracy correlation is an important factor in selecting individuals with high fitness.

1.3 Noise and Perturbation for Network Statistics

To generate network statistics, we use three types of input data. The first is simply a single random sample from the dataset (e.g. a single image or a batch of images from CIFAR-10). To generate a noisy input, we simply use the default torch.randn function as input = torch.randn(data_sample.shape). The third type of input we provide is a data-sample which has been perturbed by random noise (input = data_sample + 0.01*0.5*torch.randn(data_sample.shape)).

1.4 Network Initialization Seed Test

In Figure 2 (Left), we use different seeds to change the initialization and input tensors, but keep the neural architectures being sampled fixed in the respective spaces. The variance in the score accuracy correlation is much lesser than in Figure 2 (Right) where the seed also controls the neural architectures being sampled. This shows the true variation in our EZNAS-A ZC-NASM with respect to network initialization.

Figure 3: Experiment demonstrating the ability to discover ZC-NASMs with an alternate network statistics collection strategy and to_scalar function. Experiments are named as EZNAS-(Statistics Collection Structure)-(to_scalar). Two statistics collection structures are tested. (R-C-B) is a ReLU-Conv2D-BatchNorm2D structure, (C-B-R) is a Conv2D-BatchNorm2D-ReLU structure. (to_scalar) can be Mean or L2.

Figure 2: (Left) Experiment demonstrating the effect of seed on our score-accuracy correlation for neural network initialization with a batch size of 1. (Right) Effect of seed on our score-accuracy correlation with a batch size of 1. CIFAR and ImageNet abbreviated as CF and IN respectively. This test was done on each design space over 7 seeds for 400 Neural Networks.
Figure 4: Full correlation table. Each column represents the dataset evolution was performed on. The DARTS-CIFAR10 column is the EZNAS-A NASM. Each row represents the dataset the best discovered NASM program was tested on. Best score-accuracy KTR in bold and underlined. Second best score-accuracy KTR in italics and underlined. These tests are done by evolving on 100 neural networks and testing on the test task dataset (1000 randomly sampled neural networks on NASBench-201 and 200 randomly sampled neural networks on NDS). The network statistics were generated with a batch size of 1.

| Kendall Tau | NASBench201 CIFAR10 | NASBench201 CIFAR100 | NASBench201 ImageNet16-120 | Amoeba CIFAR10 | DARTS CIFAR10 | ENAS CIFAR10 | PNAS CIFAR10 | NASNet CIFAR10 | FLOPs | Params |
|------------|---------------------|----------------------|-----------------------------|----------------|---------------|-------------|-------------|---------------|-------|--------|
| NASBench201 CIFAR10 | 0.533 | -0.499 | 0.4345 | 0.4422 | **0.577** | 0.472 | 0.4514 | 0.2633 | **0.5610** | 0.5610 |
| NASBench201 CIFAR100 | 0.5242 | -0.496 | 0.4522 | 0.4152 | **0.5627** | 0.476 | 0.453 | 0.2531 | **0.5472** | 0.5472 |
| NASBench201 ImageNet16-120 | 0.4573 | -0.424 | 0.4350 | 0.4213 | **0.5733** | 0.456 | 0.2903 | 0.2338 | **0.5036** | 0.5036 |
| Amoeba CIFAR10 | 0.1146 | -0.029 | 0.3263 | 0.352 | **0.3774** | 0.380 | 0.35278 | **0.6013** | 0.2614 | 0.2658 |
| DARTS CIFAR10 | 0.3236 | -0.173 | 0.2088 | 0.4187 | **0.5077** | 0.460 | 0.47570 | 0.1439 | **0.5079** | 0.5042 |
| ENAS CIFAR10 | 0.2033 | -0.143 | 0.3132 | 0.4292 | 0.3795 | 0.422 | 0.41701 | 0.3400 | **0.4739** | **0.4739** |
| PNAS CIFAR10 | 0.2208 | -0.053 | 0.4212 | 0.4466 | **0.4435** | 0.514 | **0.4874** | 0.3799 | 0.3363 | 0.3223 |
| NASNet CIFAR10 | 0.2370 | 0.0229 | 0.2880 | 0.3759 | **0.4381** | 0.364 | 0.3594 | 0.3757 | 0.1996 | 0.2102 |

1.5 Hardware used for evolution and testing

Our evolutionary algorithm runs on Intel(R) Xeon(R) Gold 6242 CPU with 630GB of RAM. Our RAM utilization for evolving programs on a single Image Classification dataset was approximately 60GB. RAM utilization can vastly vary (linearly) based on the number of neural network statistics that are being used for the evolutionary search. Our testing to generate the statistics for the seed experiments as well as the final Spearman $\rho$ and Kendall Tau Rank Correlation Coefficient is done on an NVIDIA DGX-2 server with 4 NVIDIA V-100 32GB GPUs.

1.6 Varying network statistics and to_scalar

In Figure 3 we detail 3 tests while evolving on the NDS_DARTS CIFAR-10 search space in an identical fashion to EZNAS-A (referred to as EZNAS- (R-C-B) - (Mean) here). EZNAS- (C-B-R) - (Mean) and EZNAS- (C-B-R) - (L2) correspond to alternate to_scalar and network statistics collection tests respectively. We demonstrate that while EZNAS- (R-C-B) - (Mean) is more effective, we are able to discover ZC-NASMs with all three formulations.

1.7 Hyper-parameters for discovering EZNAS-A

num_generation: 15
population_size: 50
tournament_size: 4
MU: 25
lambda_: 50
crossover_prob: 0.4
mutation_prob: 0.4
min_tree_depth: 2
max_tree_depth: 10
References

[1] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture search, 2020.

[2] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search, 2018.

[3] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search, 2019.

[4] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture search via parameter sharing, 2018.

[5] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network design spaces for visual recognition, 2019.

[6] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image classifier architecture search, 2019.

[7] Esteban Real, Chen Liang, David R. So, and Quoc V. Le. Automl-zero: Evolving machine learning algorithms from scratch, 2020.

[8] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures for scalable image recognition, 2018.
| Op ID | Operation                | Description                                                                 |
|-------|--------------------------|-----------------------------------------------------------------------------|
| OP0   | Element-wise Sum         | $C = A + B$                                                                  |
| OP1   | Element-wise Difference  | $C = A - B$                                                                  |
| OP2   | Element-wise Product     | $C = A \cdot B$                                                             |
| OP3   | Matrix Multiplication    | $C = A @ B$                                                                  |
| OP4   | Lesser Than              | $C = (A < B).\text{bool}()$                                                 |
| OP5   | Greater Than             | $C = (A > B).\text{bool}()$                                                 |
| OP6   | Equal To                 | $C = (A == B).\text{bool}()$                                                |
| OP7   | Log                      | $A[A <= 0] = 1$                                                              |
|       |                          | $C = \log(A)$                                                               |
| OP8   | AbsLog                   | $A[A == 0] = 1$                                                             |
|       |                          | $C = \log(\text{abs}(A))$                                                  |
| OP9   | Abs                      | $C = \text{abs}(A)$                                                         |
| OP10  | Power                    | $C = \text{pow}(A, 2)$                                                      |
| OP11  | Exp                      | $C = \exp(A)$                                                               |
| OP12  | Normalize                | $C = (A - A_{\text{mean}})/A_{\text{std}}$                                |
| OP13  | ReLU                     | $C = \text{relu}(A)$                                                        |
| OP14  | Sign                     | $C = \text{sign}(A)$                                                        |
| OP15  | Heaviside                | $C = \text{heaviside}(A, \text{values}=[0])$                               |
| OP16  | Element-wise Invert      | $C = 1/A$                                                                   |
| OP17  | Frobenius Norm           | $C = \text{norm}(A, p=\text{fro})$                                         |
| OP18  | Determinant              | $C = \text{det}(A)$                                                         |
| OP19  | LogDeterminant           | $C = \logdet(A)$                                                            |
| OP20  | SymEigRatio              | $A = A_{\text{reshape}}(A_{\text{shape}[0]}, -1)$                          |
|       |                          | $A = A @ A^T$                                                               |
|       |                          | $e, v = \text{symeig}(A, \text{eigenvectors} = \text{False})$             |
|       |                          | $C = e[-1]/e[0]$                                                            |
|       |                          | $A = A_{\text{reshape}}(A_{\text{shape}[0]}, -1)$                         |
| OP21  | EigRatio                 | $A = \text{einsum}(\text{nc, mc} \rightarrow \text{nm}, [A, A])$          |
|       |                          | $e, v = \text{eig}(A)$                                                      |
|       |                          | $C = (e[-1]/e[0])[0]$                                                       |
| OP22  | Normalized Sum           | $C = \text{abs}(A)/\text{numel}(A)$                                        |
| OP23  | L1 Norm                  | $A = \text{Heaviside}(A)$                                                   |
|       |                          | $B = \text{Heaviside}(B)$                                                   |
|       |                          | $C = \text{sum}(A != B)$                                                    |
| OP24  | Hamming Distance         | $C = \text{nn.KLDivLoss}(\text{batchmean})(A,B)$                           |
| OP25  | KL Divergence            | $A = \text{reshape}(A_{\text{shape}[0]}, -1)$                             |
|       |                          | $B = B_{\text{reshape}}(B_{\text{shape}[0]}, -1)$                         |
| OP26  | Cosine Similarity        | $C = \text{nn.CosineSimilarity}(A, B)$                                     |
|       |                          | $C = \text{sum}(C)$                                                         |
| OP27  | Softmax                  | $C = \text{functional.F.softmax}(A)$                                        |
| OP28  | Sigmoid                  | $C = \text{functional.F.sigmoid}(A)$                                       |
| OP29  | Ones Like                | $C = \text{ones_like}(A)$                                                  |
| OP30  | Zeros Like               | $C = \text{zeros_like}(A)$                                                 |
| OP31  | Greater Than Zero        | $C = A > 0$                                                                 |
| OP32  | Less Than Zero           | $C = A < 0$                                                                  |
| OP33  | Number Of Elements       | $C = \text{Tensor}([A_{\text{numel}}])$                                   |

Table 1: List of operations available for the genetic program.