We present preliminary results from a two-pion intensity interferometry analysis from Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV measured in the STAR detector at RHIC. The dependence of the apparent pion source on multiplicity and transverse momentum are discussed and compared with preliminary results from d+Au and p+p collisions at the same beam energy.

1. Introduction

Two particle intensity interferometry (HBT) is a useful tool to study the space-time geometry of the particle emitting source in heavy ion collisions \[1,2\]. It also contains dynamical information that can be explored by studying the transverse momentum dependence of the apparent source size \[3,4\]. Extracted parameters in HBT analysis from Au+Au collisions at $\sqrt{s_{NN}}=130$ GeV at the Relativistic Heavy Ion Collider (RHIC) did not agree with predictions of hydrodynamic models that gave an almost perfect description of the momentum-space structure of the emitting source and elliptic flow \[5\].

In this paper we present two-pion correlation systematics as a function of the transverse total mass ($m_T = \sqrt{k_T^2 + m^2}$, $k_T = \frac{1}{2}(p_1 + p_2)_T$) and multiplicity in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV produced by RHIC at Brookhaven National Laboratory and measured by the STAR detector. We also discuss a fitting procedure in which the strength of the final state Coulomb interaction between the two charged pions is taking into account in the fit itself.

2. Experimental Details

Experimentally, two-particle correlations are studied by constructing the correlation function $C_2(q) = A(q)/B(q)$. Here $A(q)$ is the measured distribution of the momentum difference $q = p_1 - p_2$ for pairs of particles from the same event, and $B(q)$ is the corresponding distribution for pairs of particles from different events. For this analysis we selected events with a collision vertex position within ±25 cm measured from the center of the 4 m long STAR Time Projection Chamber (TPC), and we mixed events only if their longitudinal primary vertex positions were no farther apart than 5 cm. We divided our sample into six centrality bins, where the centrality was characterized according to the measured multiplicity of charged particles at midrapidity. The six centrality bins correspond to 0-5% (most central), 5-10%, 10-20%, 20-30%, 30-50% and 50-80% (most peripheral) of the total hadronic cross section. Charged pions were identified by correlating their specific ionization in the gas of the TPC with their measured momentum \[6\].

The effects of track-splitting (reconstruction of a single track as two tracks) and track-merging (two tracks with similar momenta reconstructed as a single track) were eliminated as described in \[7\]. A new procedure to take into account final state Coulomb interaction is described in the
next section.

The effect of the single-particle momentum resolution ($\delta p/p \sim 1\%$ for pions) induces systematic underestimate of the HBT parameters. Using an iterative procedure [7], we corrected our correlation functions for finite resolution effects. The correction due to the uncertainty on the removal of the artificial reduction of the HBT parameters associated with the anti-merging cut has been calculated in [8] and is included as systematic error.

3. Fitting procedure

The three-dimensional correlation functions were generated. The relative momentum was measured in the longitudinal co-moving system (LCMS) frame, and decomposed according to the Pratt-Bertsch [9,10] “out-side-long” parametrization. There is a Coulomb interaction between emitted particles that needs to be taken into account in order to isolate the Bose-Einstein interaction. This Coulomb interaction, repulsive for like-sign particles, causes a reduction on the number of real pairs at low q, reducing the correlation function. In our previous analysis [7,11] as well as in previous experiments, this was corrected by applying a pair Coulomb correction to each pair in the background [9] corresponding to a spherical Gaussian source of a given radius; we call this standard procedure. The correlation function was then fit with the functional form:

$$C(q_o, q_s, q_l) = C(0, q_s, q_l) = 1 + \lambda \exp[-R_o^2 q_o^2 - R_s^2 q_s^2 - R_l^2 q_l^2],$$

where R is the source parameter.

We have implemented a new procedure, first suggested by Bowler [12] and Sinyukov [13] and recently used by the CERES collaboration [14], in which the strength of the Coulomb interaction is taken into account in the fit itself and only pairs with Bose-Einstein interaction are considered to Coulomb interact; we call this Bowler-Sinyukov procedure. The fit in this case is:

$$C(q_o, q_s, q_l) = C(0, q_s, q_l) = (1-\lambda) + \lambda K_{coul}(q_{inv})(1 + \exp[-R_o^2 q_o^2 - R_s^2 q_s^2 - R_l^2 q_l^2]),$$

where $K_{coul}(q_{inv})$ is the same as above.

In Figure 1 the measured $\pi^+\pi^-$ correlation function is compared to several calculations. Lines indicate the standard ($K_{coul}(Q_{inv})$) and Bowler-Sinyukov ($1 + (\lambda - 1)K_{coul}(Q_{inv})$) Coulomb functions; in the latter, λ was extracted from the fit to the 3D like-sign correlation function. Clearly, the Bowler-Sinyukov function better reproduces the data. Further improvement is observed when the strong interaction (negligible for like-sign pion correlations) is included [15] into the $\pi^+\pi^-$ final state interactions.

When we use this procedure in our 3D analysis we observe an increase in R_o of 10-15%. The values of R_s and R_l do not depend significantly on the Coulomb procedure. Consequently the increase in R_o/R_s is not enough to solve the HBT puzzle.

4. HBT parameters versus centrality and transverse momentum

Figure 2 shows the m_T dependence of the source parameters for pions at six centrality bins from Au+Au collisions as well as from p+p and d+Au collisions at same beam energy. The three radii increase with increasing centrality and R_l varies similar to R_o and R_s; for R_0 and R_s this increase may be attributed to the geometrical overlap of the two nuclei. The extracted radii rapidly decrease as a function of m_T, which is an indication of transverse flow [16]. In order to extract information about the m_T dependence on centrality, we fit the m_T dependence of each radius and each centrality to a power-law function: $R_i(m_T) = R_0 \cdot m_T^{-\alpha}$ (solid lines in Figure 2). Figure 3 shows the dependence of α on the number of participants; for Au+Au, α is constant for R_l as a function of number of participants and decreases with the number of
Figure 1. Experimental (triangles) and theoretical [15] (stars) 1D $\pi^+\pi^-$ correlation functions compared with standard (discontinuous line) and Bowler-Sinyukov (continuous line) functions.

Figure 2. HBT radii for 6 different centrality from Au+Au collisions, and from p+p and d+Au collisions. The lines indicate power-law fits to each parameter and centrality.

participants for R_o and R_s for the most peripheral bins indicating a decrease of transverse flow for these collisions. $R_o/R_s \sim 1$ which indicates a short emission duration in a blast wave fit [17].

Assuming boost-invariant longitudinal flow we can extract an evolution time-scale by using a simple fit [17]: $R_t = < t_{fo} > \sqrt{\frac{T}{m_T} \frac{K_2(m_T/T)}{K_1(m_T/T)}}$ where T is the freeze-out temperature and K_1 and K_2 are the modified Bessel functions of order 1 and 2. For T extracted from fits to pion, kaon, and proton transverse momentum spectra (90 MeV for most central and 120 MeV for most peripheral collisions) [18] we get $< t_{fo} > \approx 9$ fm/c for central events and $< t_{fo} > \approx 6$ fm/c for peripheral events. Hence, the evolution time, in addition to the emission duration, is quite short.

For a transverse expanding, longitudinally boost-invariant source, and assuming a Gaussian transverse density profile, we can extract information about its radius, R_{geom}, by fitting the m_T dependence of R_s to: $R_s(m_T) = \sqrt{R_{geom}^2 + \rho^2}$ where T is again the freeze-out temperature and ρ_f is the surface transverse rapidity [19]. For T and ρ_f consistent with spectra we see an increase on this radius from ~ 5 fm for the most peripheral case to ~ 13 fm for the most central one as shown in Figure 4. We also observe a smooth transition from p+p ($N_{participants} = 2$) and d+Au ($N_{participants} = 8.3$) to Au+Au collisions.

5. Conclusion

We have presented identical pion interferometry results for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. With respect to multiplicity and m_T dependencies, pion HBT radii are very similar to results reported at $\sqrt{s_{NN}} = 130$ GeV. HBT radii and geometrical radius increase with increasing
centrality. HBT radii decrease with m_T and we observe a stronger flow for the most central collisions. Our results indicate that both the evolution timescale (as measured by the m_T dependence of R_l) and the emission duration (probed by comparing R_o to R_s) are surprisingly fast. The Bowler-Sinyukov Coulomb procedure does not solve the “HBT puzzle” although increases the ratio R_o/R_s by 10-15%.

REFERENCES

1. W. Bauer, C.K. Gelbke and S. Pratt, Annu. Rev. Nucl. Part. Sci. 42, 77 (1992).
2. U. Heinz and B. Jacak, Annu. Rev. Nucl. Part. Sci. 49, 529 (1999).
3. S. Pratt, Phys. Rev. Lett. 53, 1219 (1984).
4. A.N. Makhlin and Y.M. Sinyukov, Z. Physics. C 39, 29 (1988).
5. U. Heinz and P. Kolb, hep-ph/0204061.
6. K. H. Ackermann et al. (STAR Collaboration), Nucl. Instrum. Meth. A499, 624 (2003).
7. C. Adler et al. (STAR Collaboration), Phys. Rev. Letter. 87, 082301 (2001).
8. J. Adams et al. (STAR Collaboration), submitted to Phys. Rev. Lett.; nucl-ex/0312009.
9. S. Pratt, T. Csörgő, and J. Zimanyi, Phys. Rev. C 42, 2646 (1990).
10. G. Bertsch, Nucl. Phys. A498, 173c (1989).
11. M. López Noriega for the STAR Collaboration, Nucl. Phys. A715, 623c (2003).
12. M. G. Bowler, Phys. Lett. B 270, 69 (1991).
13. Yu. M. Sinyukov et al., Phys. Lett. B 432, 249 (1998).
14. D. Adamova et al. (CERES Collaboration), Nucl. Phys. A 714, 124 (2003).
15. R. Lednicky and V. L. Lyuboshitz, Yad. Fiz 35, 1316 (1982) [Sov. J. Nucl. Phys. 35, 770 (1982)]. Fortran program provided by R. Lednicky.
16. B. Tomakin et al., Nucl. Phys. A663, 753(2000).
17. F. Retière and M. A. Lisa, nucl-th/0312024
18. J. Adams et al. (STAR Collaboration), submitted to Phys. Rev. Lett.; nucl-ex/0310004.
19. U. Wiedemann, P. Scotto and U. Heinz, Phys. Rev. C53, 918 (1996)