A Gap Theorem for Self-shrinkers of the Mean Curvature Flow in Arbitrary Codimension*

Huai-Dong Cao and Haizhong Li

Abstract

In this paper, we prove a classification theorem for self-shrinkers of the mean curvature flow with $|A|^2 \leq 1$ in arbitrary codimension. In particular, this implies a gap theorem for self-shrinkers in arbitrary codimension.

1 Introduction

Let $x : M^n \to \mathbb{R}^{n+p}$ be an n-dimensional submanifold in the $(n+p)$-dimensional Euclidean space. If we let the position vector x evolve in the direction of the mean curvature H, then it gives rise to a solution to the mean curvature flow:

$$x : M \times [0, T) \to \mathbb{R}^{n+p}, \quad \frac{\partial x}{\partial t} = H$$

(1.1)

We call the immersed manifold M a self-shrinker if it satisfies the quasilinear elliptic system:

$$H = -x^\perp$$

(1.2)

where \perp denotes the projection onto the normal bundle of M.

Self-shrinkers are an important class of solutions to the mean curvature flow (1.1). Not only they are shrinking homothetically under mean curvature flow (see, e.g., [5]), but also they describe possible blow ups at a given singularity of the mean curvature flow.

In the curve case, U. Abresch and J. Langer [1] gave a complete classification of all solutions to (1.2). These curves are so-called Abresch-Langer curves.

In the hypersurface case (i.e. codimension 1), K. Ecker and G. Huisken [4] proved that if an entire graph with polynomial volume growth is a self-shrinker, then it is necessarily a hyperplane. Recently L. Wang [10] removed the condition of polynomial volume growth in Ecker-Huisken’s Theorem. Let $|A|^2$ denote the norm square of the second fundamental form of M. In [9] and [10], G. Huisken proved a classification theorem that n-dimensional self-shrinkers satisfying (1.2) in \mathbb{R}^{n+1} with non-negative mean curvature, bounded $|A|$, and polynomial volume growth are $\Gamma \times \mathbb{R}^{n-1}$, or $\mathbb{S}^m(\sqrt{m}) \times \mathbb{R}^{n-m}$ ($0 \leq m \leq n$). Here, Γ is a Abresch-Langer curve and $\mathbb{S}^m(\sqrt{m})$ is a m-dimensional sphere of radius \sqrt{m}. Recently, T.H. Colding and W.P. Minicozzi [5] showed that G. Huisken’s classification theorem still holds without the assumption that $|A|$ is bounded. Moreover, they showed that the only embedded entropy stable self-shrinkers with polynomial volume growth in \mathbb{R}^{n+1} are hyperplanes, n-spheres, and cylinders.

*The first author was partially supported by NSF grant DMS-0909581; the second author was supported by NSFC 10971110.
In arbitrary codimensional case, K. Smoczyk [15] proved the following two results: (i) For any n-dimensional compact self-shrinker M^n in \mathbb{R}^{n+p} satisfying (1.2), if $H \neq 0$ and unit mean curvature vector field $\nu = H/|H|$ is parallel in the normal bundle, then $M^n = S^n(\sqrt{n})$ in \mathbb{R}^{n+1}; (ii) For any n-dimensional compact self-shrinker M^n in \mathbb{R}^{n+p} satisfying (1.2), if M^n is a complete self-shrinker with $H \neq 0$ and unit mean curvature vector field $\nu = H/|H|$ is parallel in the normal bundle, and having uniformly bounded geometry, then M^n is either $\Gamma \times \mathbb{R}^{n-1}$, or $N^m \times \mathbb{R}^{n-m}$. Here Γ is an Abresch-Langer curve and N^m is an m-dimensional minimal submanifold in $S^{m+p-1}(\sqrt{m})$. On the other hand, Q. Ding and Z. Wang [7] recently have extended the result of L. Wang [16] to higher codimensional case under the condition of flat normal bundle.

Very recently, based on an identity of Colding and Minicozzi (see (9.42) in [3]), N. Q. Le and N. Sesum [11] proved a gap theorem (cf. Theorem 1.7 in [11]) for self-shrinkers of codimension 1: if a hypersurface $M^n \subset \mathbb{R}^{n+1}$ is a smooth complete embedded self-shrinker without boundary and with polynomial volume growth, and satisfies $|A|^2 < 1$, then M^n is a hyperplane. Motivated by this result of Le and Sesum, we prove in this paper the following classification theorem for self-shrinkers in arbitrary codimensions:

Theorem 1.1 If $M^n \rightarrow \mathbb{R}^{n+p}$ ($p \geq 1$) is an n-dimensional complete self-shrinker without boundary and with polynomial volume growth, and satisfies

$$|A|^2 \leq 1,$$

then M is one of the followings:

(i) a round sphere $S^n(\sqrt{n})$ in \mathbb{R}^{n+1},

(ii) a cylinder $S^m(\sqrt{m}) \times \mathbb{R}^{n-m}$, $1 \leq m \leq n-1$, in \mathbb{R}^{n+1},

(iii) a hyperplane in \mathbb{R}^{n+1}.

Here $|A|^2$ is the norm square of the second fundamental form of M.

As an immediate consequence, we have the following gap theorem valid for arbitrary codimensions:

Corollary 1.1 If $M^n \rightarrow \mathbb{R}^{n+p}$ ($p \geq 1$) is a smooth complete embedded self-shrinker without boundary and with polynomial volume growth, and satisfies

$$|A|^2 < 1,$$

then M is a hyperplane in \mathbb{R}^{n+1}.

Remark 1.1 We expect that the condition on volume growth in Theorem 1.1 and Corollary 1.1 can be removed. In fact, it was conjectured by the first author that a complete self-shrinker automatically has polynomial volume growth. Note that D. Zhou and the first author [3] proved that a complete Ricci shrinker necessarily has at most Euclidean volume growth.

Remark 1.2 Shortly after our work was finished, Q. Ding and Y. L. Xin [8] proved that any complete non-compact properly immersed self-shrinker M^n in \mathbb{R}^{n+p} has at most Euclidean volume growth.

Acknowledgements. Part of the work was carried out while the first author was visiting the Mathematical Sciences Center of Tsinghua University during fall 2010. He would like to thank the Center for its hospitality and support. The authors would also like to thank the referee for helpful comments which make the proofs of Lemma 3.1 and Proposition 5.1 more readable.
2 Preliminaries

In this section, we recall some formulas and notations for submanifolds in Euclidean space by using the method of moving frames.

Let \(x : M^n \to \mathbb{R}^{n+p} \) be an \(n \)-dimensional submanifold of the \((n+p)\)-dimensional Euclidean space \(\mathbb{R}^{n+p} \). Let \(\{e_1, \ldots, e_n\} \) be a local orthonormal basis of \(M \) with respect to the induced metric, and \(\{\theta_1, \ldots, \theta_n\} \) be their dual 1-forms. Let \(e_{n+1}, \ldots, e_{n+p} \) be the local unit orthonormal normal vector fields.

In this paper we make the following convention on the range of indices:

\[1 \leq i, j, k \leq n; \quad n + 1 \leq \alpha, \beta, \gamma \leq n + p. \]

Then we have the following structure equations,

\[dx = \sum_i \theta_i e_i, \quad (2.1) \]

\[de_i = \sum_j \theta_{ij} e_j + \sum_{\alpha,j} h_{ij}^\alpha \theta_j e_\alpha, \quad (2.2) \]

\[de_\alpha = -\sum_{i,j} h_{ij}^\alpha \theta_j e_i + \sum_\beta \theta_{\alpha\beta} e_\beta, \quad (2.3) \]

where \(h_{ij}^\alpha \) denote the components of the second fundamental form of \(M \) and \(\theta_{ij}, \theta_{\alpha\beta} \) denote the connections of the tangent bundle and normal bundle of \(M \), respectively.

The Gauss equations are given by

\[R_{ijkl} = \sum_\alpha (h_{ik}^\alpha h_{jl}^\alpha - h_{il}^\alpha h_{jk}^\alpha) \quad (2.4) \]

\[R_{ik} = \sum_\alpha H^\alpha h_{ik}^\alpha - \sum_{\alpha,j} h_{ij}^\alpha h_{jk}^\alpha \quad (2.5) \]

\[R = H^2 - |A|^2 \quad (2.6) \]

where \(R \) is the scalar curvature of \(M \), \(|A|^2 = \sum_{\alpha,i,j} (h_{ij}^\alpha)^2 \) is the norm square of the second fundamental form, \(H = \sum_\alpha H^\alpha e_\alpha = \sum_\alpha (\sum_i h_{ii}^\alpha) e_\alpha \) is the mean curvature vector field, and \(H = |H| \) is the mean curvature of \(M \).

The Codazzi equations are given by (see, e.g., [12])

\[h_{ij}^\alpha = h_{ik}^\alpha, \quad (2.7) \]

where the covariant derivative of \(h_{ij}^\alpha \) is defined by

\[\sum_k h_{ijk}^\alpha \theta_k = dh_{ij}^\alpha + \sum_k h_{kj}^\alpha \theta_{ki} + \sum_k h_{ik}^\alpha \theta_{kj} + \sum_\beta h_{ij}^\beta \theta_{\alpha\beta}. \quad (2.8) \]

If we denote by \(R_{\alpha\beta ij} \) the curvature tensor of the normal connection \(\theta_{\alpha\beta} \) in the normal bundle of \(x : M \to \mathbb{R}^{n+p} \), then the Ricci equations are

\[R_{\alpha\beta ij} = \sum_k (h_{ik}^\alpha h_{kj}^\beta - h_{jk}^\alpha h_{ki}^\beta). \quad (2.9) \]
By exterior differentiation of (2.8), we have the following Ricci identities (see, e.g., [12])

\[h^{\alpha}_{ijkl} - h^{\alpha}_{ijlk} = \sum_m h^{\alpha}_{mj} R^{mikl} + \sum_m h^{\alpha}_{km} R^{mjkl} + \sum_{\beta} h^{\beta}_{ij} R^{\beta\alpha kl}. \]

(2.10)

We define the first and second covariant derivatives, and Laplacian of the mean curvature vector field \(H = \sum_\alpha H^\alpha e_\alpha \) in the normal bundle \(N(M) \) as follows (cf. [4], [12])

\[\sum_i H^{\alpha}_{,i} \theta_i = dH^{\alpha} + \sum_\beta H^{\beta}_{,i} \theta_\beta, \]

(2.11)

\[\sum_j H^{\alpha}_{,j} \theta_j = dH^{\alpha}_{,i} + \sum_j H^{\alpha}_{j} \theta_{ji} + \sum_\beta H^{\beta}_{i} \theta_\beta, \]

(2.12)

\[\Delta_H^{\perp} H^{\alpha} = \sum_i H^{\alpha}_{,ii}, \quad H^{\alpha} = \sum_k h^{\alpha}_{kk}. \]

(2.13)

Let \(f \) be a smooth function on \(M \), we define the covariant derivatives \(f_i, f_{ij}, \) and the Laplacian of \(f \) as follows

\[df = \sum_i f_i \theta_i, \quad \sum_j f_{ij} \theta_j = df_i + \sum_j f_j \theta_{ji}, \quad \Delta f = \sum_i f_{ii}. \]

(2.14)

3 A Key Lemma

As we mentioned in the introduction, the proof of Le-Sesum’s gap theorem relies on an important identity of Colding and Minicozzi [5] for hypersurfaces. The identity, see (9.42) in [5] or (4.1) in [11], is obtained in terms of certain second order linear operator for hypersurfaces (which is part of the Jacobi operator for the second variation). In this section, we derive a similar inequality for arbitrary codimensions.

Let \(a \) be any fixed vector in \(\mathbb{R}^{n+p} \), we define the following height functions in the \(a \) direction on \(M \),

\[f = \langle x, a \rangle, \]

(3.1)

and

\[g_\alpha = \langle e_\alpha, a \rangle \]

(3.2)

for a fixed normal vector \(e_\alpha \).

From (2.13) for \(f_i \) and the structure equation (2.1), we have

\[f_i = \langle e_i, a \rangle. \]

(3.3)

Similarly, from (2.14) for \(f_{ij} \) and the structure equation (2.2), we have

\[f_{ij} = \sum_\alpha h^{\alpha}_{ij} \langle e_\alpha, a \rangle. \]

(3.4)

Since \(a \) can be arbitrary in (3.3) and (3.4), we obtain (see [4])

\[x_i = e_i, \quad x_{ij} = \sum_\alpha h^{\alpha}_{ij} e_\alpha. \]

(3.5)
Define the first derivative $g_{\alpha,i}$ of g_{α} by
\begin{equation}
\sum_{i} g_{\alpha,i} \theta_{i} = d g_{\alpha} + \sum_{\beta} g_{\beta} \theta_{\beta \alpha}.
\end{equation}
(3.6)
We have, by use of (2.3),
\begin{equation}
g_{\alpha,i} = - \sum_{k} h_{ik}^{\alpha} \langle e_{k}, a \rangle.
\end{equation}
(3.7)
Taking covariant derivatives on both sides of (3.7) in the e_{j} direction and using (3.5), we have
\begin{equation}
g_{\alpha,ij} = - \sum_{k} h_{ikj}^{\alpha} \langle e_{k}, a \rangle - \sum_{k,\beta} h_{ik}^{\alpha} h_{kj}^{\beta} \langle e_{\beta}, a \rangle,
\end{equation}
(3.8)
where the second derivative $g_{\alpha,ij}$ of g_{α} is defined by
\begin{equation}
\sum_{j} g_{\alpha,ij} \theta_{j} = d g_{\alpha,i} + \sum_{j} g_{\alpha,j} \theta_{ji} + \sum_{\beta} g_{\beta,i} \theta_{\beta \alpha}.
\end{equation}
(3.9)
Again, since a is arbitrary in (3.7) and (3.8), we obtain (see 4)
\begin{equation}
e_{\alpha,i} = - \sum_{j} h_{ij}^{\alpha} e_{j}, \quad e_{\alpha,ij} = - \sum_{k} h_{ikj}^{\alpha} e_{k} - \sum_{k,\beta} h_{ik}^{\alpha} h_{kj}^{\beta} e_{\beta},
\end{equation}
(3.10)
where the covariant derivative h_{ijk}^{α} of the second fundamental form h_{ij}^{α} is defined by (2.8).

Now the self-shrinker equation (1.2) is equivalent to
\begin{equation}
-H^{\alpha} = \langle x, e_{\alpha} \rangle, \quad n + 1 \leq \alpha \leq n + p.
\end{equation}
(3.11)
Taking covariant derivative of (3.11) with respect to e_{i} by use of (3.5) and (3.10), we have
\begin{equation}
-H^{\alpha}_{,i} = - \sum_{j} h_{ij}^{\alpha} < x, e_{j} >, \quad 1 \leq i \leq n, \quad n + 1 \leq \alpha \leq n + p.
\end{equation}
(3.12)
Taking covariant derivative of (3.12) with respect to e_{k} by use of (3.5) and (3.11), we have
\begin{equation}
-H^{\alpha}_{,ik} = - \sum_{j} h_{ij}^{\alpha} < x, e_{j} > - h_{ik}^{\alpha} - \sum_{\beta,j} h_{ij}^{\beta} h_{\beta jk}^{\alpha} < x, e_{\beta} >
\end{equation}
\begin{equation}
= - \sum_{j} h_{ij}^{\alpha} < x, e_{j} > - h_{ik}^{\alpha} + \sum_{\beta,j} H_{\beta j}^{\alpha} h_{ij}^{\beta}.
\end{equation}
(3.13)
Writing
\begin{equation}
\sigma_{\alpha \beta} = \sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta},
\end{equation}
(3.14)
we have
\begin{equation}
\sum_{\alpha,\beta} \sigma_{\alpha \beta} H^{\alpha} H^{\beta} \leq |A|^{2} |H|^{2}.
\end{equation}
(3.15)
We are now ready to prove the following key lemma:

Lemma 3.1 Let M^{n} be an n-dimensional complete self-shrinker in \mathbb{R}^{n+p} without boundary and with polynomial volume growth, if $|A|^{2}$ is bounded on M^{n}, then
\begin{align*}
\int_{M} |\nabla H|^{2} e^{-\frac{|x|^{2}}{4}} dv &= \int_{M} \sum_{\alpha,\beta} \sigma_{\alpha \beta} H^{\alpha} H^{\beta} - |H|^{2} e^{-\frac{|x|^{2}}{4}} dv \\
&\leq \int_{M} [|A|^{2} - 1] |H|^{2} e^{-\frac{|x|^{2}}{4}} dv.
\end{align*}
Proof. Letting $i = k$ in (3.13) and summing over i, we get

$$\Delta^\perp H^\alpha = \sum_j H^\alpha_{j < x, e_j} > +H^\alpha - \sum_\beta \sigma_{\alpha\beta} H^\beta. \tag{3.16}$$

Since M^n has polynomial volume growth and $|A|^2$ is bounded on M^n, (3.11), (3.12), (3.14) and (3.16) imply that

$$\int_M |\nabla^\perp H|^2 e^{-|x|^2/2} \, dv < +\infty,$$

and

$$\int_M \sum_{\alpha, i} H^\alpha_{i < x, e_i} e^{-|x|^2/2} \, dv < +\infty.$$

Let $\varphi_r(x)$ be a smooth cut-off function with compact support in $B_{x_0}(r+1) \subset M$,

$$\varphi_r(x) = \begin{cases} 1, & \text{in } B_{x_0}(r) \\ 0 & \text{in } M \setminus B_{x_0}(r+1) \end{cases} \quad 0 \leq \varphi_r(x) \leq 1, \quad |\nabla \varphi_r| \leq 1.$$

Then, by integration by parts, we get

$$\int_M \sum_{\alpha} \Delta^\perp H^\alpha (\varphi_r H^\alpha) e^{-|x|^2/2} \, dv = \int_M \varphi_r H^\alpha H^\alpha_{i < x, e_i} e^{-|x|^2/2} \, dv - \int_M \sum_{\alpha, i} H^\alpha (\varphi_r H^\alpha)_{i < x, e_i} e^{-|x|^2/2} \, dv$$

$$= \int_M \varphi_r \left(\sum_{\alpha, i} H^\alpha H^\alpha_{i < x, e_i} > -|\nabla^\perp H|^2 \right) e^{-|x|^2/2} \, dv$$

$$- \int_M \sum_{\alpha, i} H^\alpha H^\alpha_{i < x, e_i} (\varphi_r)_{i < x, e_i} e^{-|x|^2/2} \, dv.$$

Letting $r \to +\infty$, the dominated convergence theorem implies that

$$\int_M \sum_{\alpha} \Delta^\perp H^\alpha H^\alpha e^{-|x|^2/2} \, dv = \int_M \left(\sum_{\alpha, i} H^\alpha H^\alpha_{i < x, e_i} > -|\nabla^\perp H|^2 \right) e^{-|x|^2/2} \, dv. \tag{3.17}$$

Putting (3.16) into (3.17), we obtain:

$$\int_M |\nabla^\perp H|^2 e^{-|x|^2/2} \, dv = \int_M \left(\sum_{\alpha, \beta} \sigma_{\alpha\beta} H^\alpha H^\beta - |H|^2 \right) e^{-|x|^2/2} \, dv$$

$$\leq \int_M (|A|^2 - 1) |H|^2 e^{-|x|^2/2} \, dv.$$

\[\square\]

Remark 3.1 From the proof of Lemma 3.1, one can see that the conclusion of Lemma 3.1 is valid even if $|A|^2$ has certain growth in $|x|^2$.

4 Proof of Theorem 1.1

Now we present the proof of Theorem 1.1.

Proof of Theorem 1.1. Under the assumptions of Theorem 1.1, from Lemma 3.1, we know that either $H \equiv 0$, or $H \neq 0$ but with $\nabla^\perp H \equiv 0$ and $|A|^2 \equiv 1$.

If $H \equiv 0$, we have $\langle x, e_\alpha \rangle \geq 0$, $n + 1 \leq \alpha \leq n + p$, from which we easily conclude from (3.12) that M is totally geodesic, that is, a hyperplane in \mathbb{R}^{n+1}.

Next, suppose that $H \neq 0$, $\nabla^\perp H \equiv 0$, and $|A|^2 \equiv 1$. In this case, (3.13) becomes

$$\sum_{\beta,j} H^\beta h^\alpha_{ij} h^\beta_{jk} = h^\alpha_{ik} + \sum_{j} h^\alpha_{ijk} < x, e_j >, \quad 1 \leq i, k \leq n; n + 1 \leq \alpha \leq n + p. \quad (4.1)$$

Multiplying both sides of (4.1) by h^α_{ik} and summing over α, i, k, we get

$$\sum_{\alpha,\beta,i,j,k} H^\beta h^\alpha_{ij} h^\beta_{jk} h^\alpha_{ik} = |A|^2 + \frac{1}{2} (|A|^2)_j < x, e_j > = |A|^2 = 1. \quad (4.2)$$

Next we choose a local orthonormal frame $\{e_\alpha\}$ for the normal bundle of $x : M \to \mathbb{R}^{n+p}$, such that e_{n+p} is parallel to the mean curvature vector H; i.e.,

$$e_{n+p} = \frac{H}{|H|}, \quad H^{n+p} = H, \quad H^\alpha = 0, \quad \alpha \neq n + p. \quad (4.3)$$

Because now the equality holds in (3.15), we have

$$h^\alpha_{ij} = 0, \quad \alpha \neq n + p, \quad |A|^2 = \sum_{i,j} h^{n+p}_{ij} h^{n+p}_{ij} = 1. \quad (4.4)$$

Since $\nabla^\perp H \equiv 0$ and $|A|^2 \equiv 1$, by the definition of Δ and using (2.7), (2.10), (2.4), (2.5) and (2.9), we have (c.f. [14],[13],[12],[17])

$$0 = \frac{1}{2} \Delta |A|^2$$

$$= \sum_{\alpha,i,j,k} (h^\alpha_{ij})^2 + \sum_{\alpha,i,j,k} h^\alpha_{ij} h^\alpha_{jik}$$

$$= \sum_{\alpha,i,j,k} (h^\alpha_{ij})^2 + \sum_{\alpha,i,j,k,m} h^\alpha_{ij} h^\alpha_{mk} R_{mijk} + \sum_{\alpha,i,j,m} h^\alpha_{ij} h^\alpha_{im} R_{mj} + \sum_{\alpha,i,j,k} h^\alpha_{ij} h^\beta_{ik} R_{\beta ajk}$$

$$= \sum_{\alpha,i,j,k} (h^\alpha_{ij})^2 + \sum_{\alpha,i,j,k,m} H^\beta h^\alpha_{mj} h^\beta_{ij} h^\alpha_{im} - \sum_{\alpha,i,j,k,m} h^\alpha_{ij} h^\beta_{ijk} h^\alpha_{mk} h^\beta_{mk} + 2 \sum_{\alpha,i,j,k} h^\alpha_{ij} h^\beta_{ik} R_{\beta ajk}.$$

Plugging (4.2), (4.3) and (4.4) into the above identity, we conclude that

$$h^\alpha_{ij} = 0, \quad n + 1 \leq \alpha \leq n + p. \quad (4.5)$$

Because $e_{n+1} \wedge e_{n+2} \wedge \cdots \wedge e_{n+p-1}$ is parallel in the normal bundle of M and $h^\alpha_{ij} \equiv 0, \quad \alpha \neq n + p$, by Theorem 1 of Yau [15], we see that M is a hypersurface in \mathbb{R}^{n+1}. So (4.5) implies that M is an isoparametric hypersurface, thus from $|A|^2 = 1$ we conclude that M is either a round sphere $S^n(\sqrt{n})$, or a cylinder $S^m(\sqrt{m}) \times \mathbb{R}^{n-m}$, $1 \leq m \leq n - 1$ in \mathbb{R}^{n+1}. This completes the proof of Theorem 1.1. \square
5 Further Remarks

In this section, we make several simple observations:

Proposition 5.1 If a submanifold $M^n \to \mathbb{R}^{n+p}$ is an n-dimensional complete self-shrinker without boundary and with polynomial volume growth, such that

$$|H|^2 \geq n, \quad (5.1)$$

then $|H|^2 \equiv n$ and M is a minimal submanifold in the sphere $S^{n+p-1}(\sqrt{n})$.

Proof of Proposition 5.1. From (3.5) and (3.11), we have

$$\frac{1}{2}\Delta|\mathbf{x}|^2 = n < \mathbf{x}, \Delta \mathbf{x}> = n + \sum_{\alpha} H^\alpha < \mathbf{x}, e_\alpha> = n - |H|^2 \quad (5.2)$$

Under the polynomial volume growth assumption, (1.2) and (5.2) guarantee that

$$\int_M (\Delta|\mathbf{x}|^2)e^{-\frac{|\mathbf{x}|^2}{2}}d\mathbf{v} < +\infty \quad \text{and} \quad \int_M |\nabla|\mathbf{x}|^2|e^{-\frac{|\mathbf{x}|^2}{2}}d\mathbf{v} < +\infty.$$

Then, by integrating by parts and the dominated convergence theorem, it follows that (similar to the proof of Lemma 3.1)

$$\frac{1}{4}\int_M |\nabla|\mathbf{x}|^2|e^{-\frac{|\mathbf{x}|^2}{2}}d\mathbf{v} = \frac{1}{2}\int_M (\Delta|\mathbf{x}|^2)e^{-\frac{|\mathbf{x}|^2}{2}}d\mathbf{v} = \int_M (n - |H|^2)e^{-\frac{|\mathbf{x}|^2}{2}}d\mathbf{v}. \quad (5.3)$$

From (5.1) and (5.3), we get $|H|^2 = n$ and $< \mathbf{x}, \mathbf{x}> = r^2$. Thus by (1.2) we conclude that $r = \sqrt{n}$ and M is a minimal submanifold in the sphere $S^{n+p-1}(\sqrt{n})$. \square

Proposition 5.2 If a submanifold $M \to \mathbb{R}^{n+p}$ is an n-dimensional compact self-shrinker without boundary and satisfies either $|H|^2 = \text{constant}$, or

$$|H|^2 \leq n, \quad (5.4)$$

then $|H|^2 \equiv n$ and M is a minimal submanifold in the sphere $S^{n+p-1}(\sqrt{n})$.

Proof of Proposition 5.2. Integrating (5.2) over M and using the Stokes theorem, we have

$$\int_M (n - |H|^2)d\mathbf{v} = 0. \quad (5.5)$$

Hence Proposition 5.2 follows from (5.5), (5.4), and (1.2). \square

Remark 5.1 Let $x : M \to \mathbb{R}^{n+p}$ be an n-dimensional submanifold. If x satisfies

$$\lambda H^\alpha = < \mathbf{x}, e_\alpha>, \quad n + 1 \leq \alpha \leq n + p \quad (5.6)$$

for some positive constant λ, then we call M a self-expander of the mean curvature flow. Observe that for a self-expander, we have

$$\frac{1}{2}\Delta|\mathbf{x}|^2 = n+ < \mathbf{x}, \Delta \mathbf{x}> = n + n \sum_{\alpha} H^\alpha < \mathbf{x}, e_\alpha> = n + n\lambda |H|^2. \quad (5.7)$$
From (5.7), we immediately get

Proposition 5.3 There exists no n-dimensional compact self-expander without boundary in \(\mathbb{R}^{n+p} \).

Finally, we list some simple examples of self-shrinkers of higher codimensions.

Example 5.1 For any positive integers \(m_1, \ldots, m_p \) such that \(m_1 + \cdots + m_p = n \), the submanifold

\[
M^n = S^{m_1}(\sqrt{m_1}) \times \cdots \times S^{m_p}(\sqrt{m_p}) \subset \mathbb{R}^{n+p}
\]

is an n-dimensional compact self-shrinker in \(\mathbb{R}^{n+p} \) with

\[
H = -X, \quad |H|^2 = n, \quad |A|^2 = p.
\]

Here

\[
S^{m_i}(r_i) = \{ X_i \in \mathbb{R}^{m_i+1} : |X_i|^2 = r_i^2 \}, \quad i = 1, \ldots, p
\]

is an \(m_i \)-dimensional round sphere with radius \(r_i \).

Example 5.2 For positive integers \(m_1, \ldots, m_p, q \geq 1 \), with \(m_1 + \cdots + m_p + q = n \), the submanifold

\[
M^n = S^{m_1}(\sqrt{m_1}) \times \cdots \times S^{m_p}(\sqrt{m_p}) \times \mathbb{R}^q \subset \mathbb{R}^{n+p}
\]

is an n-dimensional complete non-compact self-shrinker in \(\mathbb{R}^{n+p} \) with polynomial volume growth which satisfies

\[
H = -X^\perp, \quad |H|^2 = \sum_{i=1}^{p} m_i, \quad |A|^2 = p.
\]

Remark 5.2 In Example 5.1 and Example 5.2, if we let \(p \geq 2 \), then we have an n-dimensional self-shrinker of codimension \(p \) with \(|A|^2 = p \geq 2 \), thus not one of the three cases in Theorem 1.1.

Remark 5.3 From Example 5.2, we can see that the condition "\(|H|^2 \geq n \)" in Proposition 5.1 is necessary.

Example 5.3 (cf. [2]) Let

\[
X : S^2(\sqrt{m(m+1)}) \hookrightarrow S^{2m}(\sqrt{2}) \subset \mathbb{R}^{2m+1}, \quad m \geq 2
\]

be a minimal surface in \(S^{2m}(\sqrt{2}) \). Consider it as a surface in \(\mathbb{R}^{2m+1} \), then it is a self-shrinker with

\[
H = -X, \quad |H|^2 = 2, \quad |A|^2 = 2 - \frac{2}{m(m+1)} < 2.
\]

Remark 5.4 By choosing local orthogonal frame \(\{ e_{\alpha} \} \) for the normal bundle of \(x : M^n \to \mathbb{R}^{n+p} \), such that \(e_{n+p} \) is parallel to the mean curvature vector \(H \), by Lemma 3.1, if \(|A|^2 \) is bounded, and

\[
\sum_{i,j} h_{ij}^{n+p} h_{ij}^{n+p} \leq 1,
\]

we have \(\nabla^\perp H = 0 \), that is, \(|H|^2 = \text{constant} \) and unit mean curvature vector field \(\nu = H/|H| \) is parallel in the normal bundle. From Proposition 5.2 and Theorem 1.3 of Smoczyk [15], we have

Proposition 5.4 Let \(M^n \) be an n-dimensional complete self-shrinker in \(\mathbb{R}^{n+p} \) without boundary and with polynomial volume growth. If \(|A|^2 \) is bounded on \(M^n \) and (5.15) holds, then

\[
M^n = N^m \times \mathbb{R}^{n-m}, \quad 0 \leq m \leq n,
\]

where \(N^m \) is a m-dimensional minimal submanifold in \(S^{m+p-1}(\sqrt{m}) \).
References

[1] U. Abresch and J. Langer, *The normalized curve shortening flow and homothetic solutions*, J. Differential Geom., 23 (1986), no. 2, 175-196.

[2] E. Calabi, *Minimal immersions of surfaces in Euclidean spheres*, J. Differential Geom. 1 (1967), 111-125.

[3] H. -D. Cao and D. Zhou, *On complete gradient shrinking Ricci solitons*, J. Differential Geom., 85 (2010), 175-186.

[4] L. F. Cao and H. Li, *r-minimal submanifolds in space forms*, Ann. Global Anal. Geom., 32 (2007), 311-341.

[5] T. H. Colding and W.P. Minicozzi II, *Generic mean curvature flow I: generic singularities*, Ann. of Math., 175 (2012), no.2, 755-833.

[6] K. Ecker and G. Huisken, *Mean curvature evolution of entire graphs*, Ann. of Math., 130 (1989), 453-471.

[7] Q. Ding and Z. Wang, *On the self-shrinking systems in arbitrary codimension spaces*, [arXiv:1012.0429v1].

[8] Q. Ding and Y.L. Xin, *Volume growth, eigenvalue and compactness for self-shrinkers*, arXiv: 1101.1411v1

[9] G. Huisken, *Asymptotic behavior for singularities of the mean curvature flow*, J. Differential Geom., 31 (1990), no. 1, 285-299.

[10] G. Huisken, *Local and global behaviour of hypersurfaces moving by mean curvature*, Differential geometry: partial differential equations on manifolds, 175-191, Proc. Sympos. Pure Math., 54 (1993), Amer. Math. Soc.

[11] Nam Q. Le and N. Sesum, *Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers*, Comm. Anal. Geom., 19 (2011), no.4, 1-27.

[12] H. Li, *Willmore submanifolds in a sphere*, Math. Res. Lett., 9 (2002), 771-790.

[13] R. Schoen, L. Simon and S.-T. Yau, *Curvature estimates for minimal hypersurfaces*, Acta Math., 134 (1975), 275-288.

[14] J. Simons, *Minimal varieties in riemannian manifolds*, Ann. of Math., 88 (1968), 62-105.

[15] K. Smoczyk, *Self-shrinkers of the mean curvature flow in arbitrary codimension*, Int. Math. Res. Not., 2005, no. 48, 2983-3004.

[16] L. Wang, *A Bernstein type theorem for self-similar shrinkers*, Geom. Dedicata, 15 (2011), 297-303.

[17] M. -T. Wang, *Mean curvature flow of surfaces in Einstein four-manifolds*, J. Differential Geom., 57 (2001), 301-338.

[18] S. -T. Yau, *Submanifolds with constant mean curvature*, Amer. J. Math., 96 (1974), 246-366.
Huai-Dong Cao
Department of Mathematics
Lehigh University
Bethlehem, PA 18015
USA
E-mail:huc2@lehigh.edu

Haizhong Li
Department of Mathematical Sciences
Tsinghua University
100084, Beijing
People's Republic of China
E-mail:hli@math.tsinghua.edu.cn