Adrenalectomy for incidental and symptomatic phaeochromocytoma: retrospective multicentre study based on the Eurocrine® database

L. Hallin Thompson 1,2,*, Ö. Makay3, L. Brunaud 4, M. Raffaelli 5,6 and A. Bergenfelz 1,2, on behalf of the Eurocrine Council, T. Musholt; F. Palazzo; M. Almquist; M. Barczynski; T. Clerici; M. Vriens; M. Raffaelli; O. Makay; N. Munos Pérez; M. H. Hansen; L. Brunaud; S. Van Slycke; F. Riss; M. Iacobone; E. Nordenström

1Department of Surgery, Skåne University Hospital, Lund, Sweden
2Department of Clinical Sciences, Lund University, Lund, Sweden
3Department of General Surgery, Division of Endocrine Surgery, Ege University Hospital, Izmir, Turkey
4Department of Gastrointestinal, Metabolic and Surgical Oncology, Université de Lorraine, CHU Nancy, Hospital Brabois Adultes, Vandoeuvre les Nancy, France
5Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
6Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy

*Correspondence to: Skåne University Hospital, 22185 Lund, Sweden (e-mail: lo.hallin-thompson@med.lu.se)

Abstract

Background: Phaeochromocytoma is sometimes not diagnosed before surgery and may present as an adrenal incidentaloma. The aim of this study was to investigate differences in clinical presentation and perioperative outcome in patients with subclinical and symptomatic phaeochromocytoma, and in patients operated with and without preoperative α-blockade.

Methods: This was a retrospective observational study of patients with a histopathological diagnosis of phaeochromocytoma registered in Eurocrine®, the European registry for endocrine tumours, between 1 January 2015 and 31 March 2020. Patient characteristics, clinical presentation, tumour detection, and perioperative variables were analysed.

Results: Some 551 patients were included. Of these, 486 patients (88.2 per cent) had a preoperative diagnosis of phaeochromocytoma. Tumours were detected as incidentalomas in 239 patients (43.4 per cent) and 265 (48.1 per cent) had a preoperative diagnosis of hypertension. Preoperative α-blockade was more frequently used in patients with a known phaeochromocytoma (350, 90.9 per cent) than in patients with other indications for adrenalectomy (16, 31 per cent). Complications did not differ between patients who had surgery because of catecholamine excess compared with those who had other indications for surgery (19 (3.9 per cent) versus 2 (3 per cent); P = 0.785), nor did the conversion rate from minimally invasive to open surgery differ between the groups. There were no obvious differences in complications, according to the Clavien–Dindo classification, based on preoperative α-blockade or not.

Conclusion: Subclinical phaeochromocytoma detected incidentally is common. A significant proportion of patients with phaeochromocytoma did not have α-blockade before surgery, without an apparent effect on complications.

Introduction

Phaeochromocytoma is a neuroendocrine, catecholamine-secreting tumour, arising from chromaffin cells of the adrenal medulla. Clinical presentation is variable, and depends on the magnitude, type, and pattern of hormone release (adrenaline, noradrenaline, and dopamine), as well as individual sensitivity to catecholamines and their metabolites1,2.

Clinical presentation includes a triad of symptoms: headache, sweating, and palpitations3. Other symptoms include anxiety, tremor, nausea, dyspnoea, and abdominal pain. Hypertension is...
was approved by the ethical committee at Lund University (2018/3-1 to 31 March 2020. Data were extracted on 28 May 2020. The study included patients with a histologically confirmed diagnosis of phaeochromocytoma. A special focus was to analyse outcomes for those diagnosed by clinical symptoms compared with incidentalomas. The aim of this study was to investigate contemporary clinical features, evaluation, preoperative medical treatment, surgery, and outcome in patients undergoing adrenalectomy for phaeochromocytoma. A special focus was to analyse outcomes for those diagnosed by clinical symptoms compared with incidentalomas, and in patients with or without preoperative treatment with \(\alpha \)-blockers. Data were retrieved from Eurocrine\(^R\), a pan-European quality registry for endocrine tumours.

Methods

Eurocrine\(^R\) is a pan-European registry for endocrine surgical procedures, with a special focus on rare tumours. The database was established in 2015 with a grant from the European Union health programme. Currently, the database is run by the non-profit Eurocrine Society with its seat in Vienna. The aim of the register is to improve clinical standards and reduce differences between hospitals, thereby diminishing morbidity and mortality\(^13\). The register also supports research within the field.

Patients with a histologically confirmed diagnosis of phaeochromocytoma were included in the study. Patients undergoing reoperation were excluded. The study period was 1 January 2015 to 31 March 2020. Data were extracted on 28 May 2020. The study was approved by the ethical committee at Lund University (2018/1054).

Data variables

Predefined preoperative variables were: sex, age, BMI, systolic and diastolic BP, preoperative diabetes and hypertension, type of detection (incidentaloma or adrenal-related symptoms), hereditary disease, indication for surgery (catecholamine excess, suspected malignancy on imaging, suspected metastasis, tumour size), preoperative imaging, preoperative biochemical evaluation (free metanephrine/normetanephrine in plasma or fractionated adrenaline/noradrenaline in urine), preoperative treatment for hormone excess, and tumour laterality.

Perioperative variables included: time on waiting list before surgery, surgical technique (open adrenalectomy, laparoscopic transabdominal adrenalectomy, posterior endoscopic adrenalectomy, robot assisted transabdominal adrenalectomy, robot assisted posterior adrenalectomy), conversion from endoscopic to open surgery, and surgical complications. Information on complications was retrieved from predefined data fields and from free-text fields, and also based on a Clavien–Dindo severity grade of II or more\(^14\).

Postoperative variables were final histology, tumour size, postoperative duration of hospital stay, postoperative treatment owing cortisol insufficiency, and residual tumour (R) classification.

Statistical analysis

Descriptive statistics are presented as number with percentage, mean (s.d.) or median (i.q.r), as appropriate. Missing values were excluded from frequency calculations. Differences between preoperative variables are analysed using the \(\chi^2 \) test, independent-samples \(t \) test or Mann–Whitney \(U \) test, as appropriate. Analyses were conducted using SPSS\(^R\) for Mac\(^R\) version 26.0 (IBM, Armonk, New York, USA). \(P < 0.050 \) was considered significant.

Results

Some 2904 patients underwent adrenalectomy during the study period. A total of 2353 patients were excluded: 2336 patients with adrenal disease other than phaeochromocytoma and 17 who had reoperation. Finally, 551 patients with phaeochromocytoma confirmed on histology were included in the study. Data were registered by 48 surgical departments in 11 European countries. The majority of patients underwent surgery at eight hospitals. The distribution between centres is shown in Table S1.

Preoperative characteristics

Preoperative characteristics of the cohort are shown in Table 1. The mean(s.d.) age was 53.2(16.0) years, and 319 (57.9 per cent) were women. Some 75 patients (13.6 per cent) were diagnosed with hereditary disease, and 23 had bilateral tumours. Thus, a total of 574 tumours were operated. The tumours were detected incidentally in 239 patients (43.4 per cent). Almost half of the patients had a preoperative diagnosis of hypertension. Hormone evaluation was undertaken before surgery in 491 patients (89.1 per cent). Twelve of 491 patients (2.4 per cent) had normal catecholamine levels in both plasma and urine. Imaging methods used were CT in 258 patients (46.8 per cent), MRI in 180 (32.7 per cent), metaiodobenzylguanidine (MBG) imaging in 172 of 549 (31.3 per cent), and fluorodeoxyglucose PET in 75 of 504 (14.9 per cent). The median tumour attenuation value was 30 (i.q.r. 21–40) Hounsfield units (HU), and only 4 of 181 patients (2.2 per cent) had a value below 10 HU.

Perioperative characteristics

Perioperative characteristics are summarized in Table 2. Indications for surgery (1 and/or several), were catecholamine excess (486 patients, 88.2 per cent), suspicion of malignancy on imaging (178 patients, 33.0 per cent), size (16 patients, 3.2 per cent), and suspicion of metastasis (6 patients, 1.1 per cent). The median time on the waiting list for surgery was 28 (14–47) days. Preoperative \(\alpha \)-blockade was used in 366 patients (83.8 per cent).

Endoscopic adrenalectomy was performed in 483 patients (89.1 per cent) and more than half of these operations were carried out using a posterior technique. Conversion from endoscopic to open adrenalectomy was done in 22 patients (4.6 per cent) (Table S2). Complications occurred in 22 patients (4.0 per cent) based on registry data field, and 21 (3.8 per cent) based on a Clavien–Dindo grade of II or above (Table S2).
Table 1 Characteristics of 551 patients with phaeochromocytoma included in the study

Characteristics	No. of patients* (n = 551)
Age (years)†	53.2 (16.0)
Sex ratio (F : M)	319 : 232
Hypertension	265 (48.1)
Diabetes	93 (16.9)
BMI (kg/m²) (n = 543)†	25.1 (5.6)
Hereditary disease	75 (13.6)
MEN2	44
Neurofibromatosis 1	16
von Hippel–Lindau syndrome	7
MEN1	3
Other	5
Urinary biochemical result‡	232 of 329 (70.5)
Urinary noradrenaline	261 of 331 (78.9)
Plasma metanephrine	317 of 393 (80.7)
Plasma normetanephrine	344 of 392 (87.8)
Normal biochemical evaluation on all biochemical investigations†	12 of 491 (2.4)

*With percentages in parentheses unless indicated otherwise; †values are mean(s.d.). §Owing to differences in the biochemical assays used, levels were registered as subnormal, normal or increased in the database. ¶Patients with pathological result as a proportion of those tested. ‡Patients with normal result as a proportion of those tested. MEN, multiple endocrine neoplasia.

Postoperative characteristics

The median size of the tumour on histology was 40 (30–60) mm. Malignant phaeochromocytoma was diagnosed in 16 patients (2.9 per cent), and a suspected malignancy on imaging was the indication for surgery for all of these. Median duration of hospital stay was 3 (2–5) days. Postoperative treatment for adrenal insufficiency was prescribed to 61 of 459 patients (13.3 per cent) at discharge, and 66 of 518 (12.7 per cent) at first follow-up.

Conversion and complications in relation to characteristics

There were no obvious differences in outcomes according to whether preoperative α-blockade was given (366 patients) or not (71) (data missing for 114 patients). Complications with a Clavien–Dindo grade of II or higher were registered in 12 of 366 (7.1 per cent) patients (3.3 per cent) with blockade versus no patients without blockade (P = 0.625). Conversion from a minimally invasive to an open technique was necessary in 13 of 327 patients (4.0 per cent) with blockade versus 3 of 56 (5.4 per cent) without (P = 0.633).

Of 12 patients (2.4 per cent) who had normal levels in all preoperative biochemical evaluations, of whom two had hereditary disease, MIBG Imaging was undertaken in three patients and MRI in three. In this subgroup of patients, there were no complications according to the predefined data fields, no complication was registered as Clavien–Dindo grade II or more, and there were no conversions from endoscopic to open surgery.

Hormone evaluation was not registered for 60 patients (10.9 per cent). MIBG imaging was performed in one of these patients (2 per cent) and MRI in nine (15 per cent). Complications were uncommon; one patient (2 per cent) had complications according to predefined data fields and none based on Clavien–Dindo grade II or more.

Analysis based on indication for surgery

Catecholamine excess was the indication of surgery in 486 patients, and 65 (11.8 per cent) had other indications for surgery. Comparisons between these groups are shown in Table 3. Suspected malignancy on imaging was more frequent in patients with an indication for surgery other than catecholamine excess. There was a larger proportion of incidentally detected tumours among patients with an indication for surgery other than catecholamine excess. Consequently, preoperative treatment with α-blockade was used less often in these patients. In 16 patients (31 per cent), preoperative treatment with α-blockade was not registered. In this subgroup of patients, 14 patients presented with increased catecholamine levels, although these were not registered before operation as the indication for surgery.

Analysis based on tumour detection

Preoperative and perioperative characteristics based on incidental tumour detection (239 patients) or adrenal-related symptoms (312) are shown in Table 4. Patients diagnosed with incidentaloma were slightly older and had a higher BMI. Patients with adrenal symptoms more often had hereditary disease. Importantly, 91 patients with adrenal incidentaloma (38.1 per cent) had a preoperative diagnosis of hypertension compared with 174 (55.8 per cent) with adrenal-related symptoms. As stated above, types of indication for adrenalectomy other than catecholamine excess were more frequent among patients with incidentaloma.
Consequently, preoperative \(\alpha \)-blockade was used in 150 patients with incidentaloma (75.8 per cent) versus 216 (90.4 per cent) with adrenal symptoms. Symptomatic patients more often had abnormal hormone levels than those with incidentaloma (Table 5).

Incidentalomas were more often registered as suspicious for malignancy on imaging, although there were no differences in attenuation on CT.

There were no major differences in surgical approach between the two groups. Endoscopic procedures were used in 216 patients with incidentaloma (90.8 per cent) versus 267 (87.8 per cent) with symptoms. There was no difference in conversion rate. A slight difference was noted in the number of complications registered in data fields: 6 of 239 patients (2.5 per cent) with adrenal incidentaloma versus 16 of 312 (5.1 per cent) with adrenal-related symptoms (\(P = 0.120 \)). There was, however, no difference in complications based on Clavien–Dindo grade, and no difference in duration of hospital stay.

Discussion

A non-negligible proportion of phaeochromocytomas are detected incidentally on imaging for non-adrenal indications\(^3,11\). The present registry-based retrospective observational study included a large collection of clinical data on phaeochromocytomas from almost 50 departments in 11 European countries. The general outcome was good: almost 9 in 10 patients were operated endoscopically, and the conversion rate was approximately 5 per cent. The median duration of hospital stay was 3 days;
complications occurred only in 4.0 per cent of patients, and severe complications as graded according to the Clavien–Dindo classification were rare. These results compare favourably with previous published series.

Almost half of the tumours (43.4 per cent) were detected as incidentalomas. This is in agreement with other reports, where 23–51 per cent incidentally detected phaeochromocytomas have been described.

Hypertension is frequent in patients with phaeochromocytomas and paragangliomas, with a prevalence of 78–94 per cent; the definition varies between studies. In the present study, the diagnosis was based on preoperative data on medical treatment for hypertension, and on measured BP. Hypertension was found in approximately half of the patients (48.1 per cent), and more often in patients with symptoms of catecholamine excess. Catecholamine secretory can be continuous or episodic, and the pattern affects the variation in clinical presentation. Some of the normotensive patients might therefore have had a paroxysmal hypertension that was not registered. Other symptoms described typically related to catecholamine release are headache, sweating, and palpitations.

In this short with predefined data fields, detailed information regarding such typical symptoms was not available.

Almost 90 per cent of the patients with phaeochromocytoma were diagnosed before operation. The diagnosis was usually based on biochemical evaluation of plasma free metanephrines or urinary fractionated metanephrines, as recommended in clinical guidelines. These patients were mostly detected based on adrenal-related symptoms.

Table 4 Characteristics and outcomes for patients with phaeochromocytoma diagnosed as incidentalomas or with symptoms

	Incidentaloma (n = 239)	Symptoms (n = 312)	p†‡
Age (years)*	56.8(15.1)	50.4(16.1)	<0.001**
Sex ratio (F : M)	147 : 92	172 : 140	0.133
Hypertension	91 (38.1)	174 (55.8)	<0.001
Systolic BP (mmHg)	136(20)	144(31)	0.002**
Diastolic BP (mmHg)	80(15)	84(16)	0.001**
Diabetes	37 (15.5)	56 (17.9)	0.443
BMI (kg/m²)	25.8(5.2)	24.5(4.8)	0.000**
Hereditary disease	17 (7.4)	58 (18.6)	0.004
Indication			
Catecholamine excess	182 (76.2)	304 (97.4)	<0.001
Suspicous for malignancy on imaging	119 of 232 (51.3)	58 of 306 (19.0)	<0.001
Size only	7 of 222 (3.2)	9 of 278 (3.2)	0.958
Suspicous for metastasis	3 (1.3)	3 (1.0)	0.742
Tumour side			
Left	103 (43.1)	140 (44.9)	
Right	132 (55.2)	153 (49.0)	
Bilateral	4 (1.7)	19 (6.1)	
CT	154 (64.4)	104 (33.3)	<0.001
Attenuation on CT (HU)**	30 (22–40)	33 (20–40)	0.617***
Positive MIBG imaging	51 of 57 (89.5)	109 of 115 (94.8)	0.002
MRI	61 (25.5)	119 (38.3)	0.002
Positive FDG-PET	29 of 31 (93.5)	38 of 44 (86.4)	0.052
Preoperative β-blockade	150 of 198 (75.8)	216 of 239 (90.4)	<0.001
Surgical approach			
Open	22 of 238 (9.2)	37 of 304 (12.2)	
Endoscopic	216 of 238 (90.8)	267 of 304 (87.8)	
Conversion	8 of 216 (3.7)	14 of 267 (5.2)	0.420
Complication	6 (2.5)	16 (5.1)	0.120
Clavien–Dindo complication grade	20 (8.4)	28 (9.0)	
I	4 (1.7)	9 (2.9)	
II	2 (0.8)	2 (0.6)	
III	1 (0.4)	3 (1.0)	
Duration of hospital stay (days)	3 (2–5)	3 (2–5.25)	0.400***
Malignant phaeochromocytoma on histology	3 (3.3)	8 (2.6)	0.587
Tumour size (mm)	40 (26.25–55)	40 (30–60)	0.060***
Resection margin status	403 (75.7)	302 (96.8)	0.463
R0	233 (97.5)	302 (96.8)	
R1	23 (8.2)	8 (2.6)	
R2	6 (2.5)	2 (0.6)	
Postoperative treatment owing to adrenal insufficiency	23 of 203 (11.3)	38 of 256 (14.8)	0.271
At discharge	25 of 230 (10.9)	41 of 288 (14.2)	0.254
At first follow-up	0	2 (0.6)	
Time on waiting list (days)	28 (14–47.25)	27 (14–46.75)	0.556***

Values in parentheses are percentages unless indicated otherwise; values are *mean(s.d.) and†median (i.q.r.). Complications according to predefined data fields and free text. Data available for 926 and 276, 926 and 273, 926 and 307, 123 and 58, 123 and 310, 123 and 283, and 186 and 228 in groups with incidentaloma and symptoms respectively. MEN, multiple endocrine neoplasia; HU, Hounsfield units; MIBG, metaiodobenzylguanidine; FDG, fluorodeoxyglucose. *χ² test, except **independent-samples t test and ***Mann–Whitney U test.

The table shows the characteristics and outcomes for patients with phaeochromocytoma diagnosed as incidentalomas or with symptoms. The results compare favourably with previous published series. Almost half of the tumours (43.4 per cent) were detected as incidentalomas. Hypertension is frequent in patients with phaeochromocytomas and paragangliomas, with a prevalence of 78–94 per cent; the definition varies between studies. In the present study, the diagnosis was based on preoperative data on medical treatment for hypertension, and on measured BP. Hypertension was found in approximately half of the patients (48.1 per cent), and more often in patients with symptoms of catecholamine excess. Catecholamine secretion can be continuous or episodic, and the pattern affects the variation in clinical presentation. Some of the normotensive patients might therefore have had a paroxysmal hypertension that was not registered. Other symptoms described typically related to catecholamine release are headache, sweating, and palpitations. In this cohort with predefined data fields, detailed information regarding such typical symptoms was not available. Almost 90 per cent of the patients with phaeochromocytoma were diagnosed before operation. The diagnosis was usually based on biochemical evaluation of plasma free metanephrines or urinary fractionated metanephrines, as recommended in clinical guidelines. These patients were mostly detected based on adrenal-related symptoms.
It is recommended that patients with hormonally functional phaeochromocytoma undergo preoperative blockade, preferably with α-adrenergic receptor blockers. This was done in 90.9 per cent of the procedures in the present study. Of patients with indications for surgery other than increased catecholamine levels, only 31 per cent were prepared with α-blockers. Despite this, no major differences in the frequency of conversion from endoscopic to open surgery, or intraoperative or postoperative complications was noted in this subgroup. Outcome was favourable for the 71 patients who underwent adrenalectomy without preoperative α-blockade, and no different from that of patients who had received α-blockers. The clinical impact of preoperative treatment with α-blockers has been questioned in observational studies. One recent meta-analysis provided no evidence to support preoperative α-blockade, but not enough evidence to recommend abstinence either. Given the present results, the value of preoperative treatment with α-blockers needs to be tested in prospective trials.

Non-contrast CT is the suggested imaging modality of choice for phaeochromocytomas. A tumour attenuation value of less than 10 HU indicates that an adrenal tumour is benign. The median attenuation value for phaeochromocytomas in the present study was 30 HU and only four patients (2.2 per cent) had values below 10 HU. In a recent, large population-based study of adrenal tumours, the attenuation value of phaeochromocytomas was 33 HU and none of the tumours had a value below 10 HU. The need for biochemical evaluation of adrenal incidentalomas with an attenuation value less than 10 HU, and using this as evidence of benign adrenal adenoma, has been discussed, but clear evidence is lacking. Here, CT was performed in only 46.8 per cent of the patients, and interestingly, more often in patients without adrenal-related symptoms and those with other indications for surgery than those with catecholamine excess.

Subclinical phaeochromocytoma is defined as an incidentally detected phaeochromocytoma with no clinical signs of catecholamine excess. Adrenaline-producing tumours often exhibit paroxysmal hormonal release, with a clinical picture varying from hypertensive crises to clinical silence, whereas tumours with predominantly noradrenaline excess have a more continuous release and sometimes symptoms resembling essential hypertension. Downregulation of adrenoceptors can sometimes produce a milder response. In the present investigation, patients with clinical phaeochromocytoma had higher levels of catecholamines than those with incidentaloma. This strengthens the theory that catecholamine levels matter in the clinical presentation, although the absolute hormone levels were not registered in the database. In a study by Haissaguerre and colleagues, patients with phaeochromocytomas and hypertension had higher levels of catecholamines than patients without hypertension. In contrast to a previous report which indicated that measurement of free plasma metanephrines may predict tumour size, clinical presentation was not influenced by tumour size in the present study.

The clinical consequences of untreated subclinical phaeochromocytoma are not known. Adrenalectomy is recommended for all phaeochromocytomas, as these tumours may cause hypertensive crises in stressful situations. In agreement with previous reports, patients with clinical phaeochromocytoma were younger and more often had a preoperative diagnosis of hypertension.

Phaeochromocytomas are products of genetic mutations in approximately 60 per cent of patients, of which two-thirds are hereditary. Germline and somatic mutations in combination with epigenetics in phaeochromocytoma is a fast-growing research field. In the present study, hereditary disease was diagnosed in 13.6 per cent of the patients. This is a fairly low figure, and most likely postoperative genetic evaluation was not captured fully owing to a comparatively short follow-up time. Therefore, the number of patients with different mutations is probably underestimated.

Most phaeochromocytomas are benign, but about 10 per cent are malignant. Histological appearance does not, however, clearly distinguish benign from malignant tumours, and the malignant potential is defined by the presence of distant metastasis. Only malignant tumours in the final histological evaluation were included here.

Postoperative adrenal insufficiency was noted in more than 10 per cent of patients in the present study. The reason for this is unknown but, of note, glucocorticoid excess in patients with phaeochromocytoma has been discussed recently.

A number of limitations of the present study should be acknowledged. Eurocrine is a quality registry and data were analysed retrospectively. Exact biochemical data are not registered, which is a drawback for analysis of the value of preoperative treatment with α-blockers. Some 48 centres in 11 different countries are included, and thus probably a fairly wide variation in patient management. The strength of the present study is that it is a large, international series and data fields were predefined. Outcome is therefore likely to reflect current clinical presentation and practice.

Collaborators

Members of the Eurocrine Council: T. Musholt (Johannes Gutenberg University Medical Center, Mainz, Germany); F. Palazzo (Imperial College, London, UK); M. Almquist (Lund University, Lund, Sweden); M. Barczynski (Jagiellonian University Medical College, Krakow, Poland); T. Clerici (Kantonsspital St Gallen, St Gallen, Switzerland); M. Vriens (University Medical College, Krakow, Poland); T. Clerici (Kantonsspital St Gallen, St Gallen, Switzerland); M. Vriens (University Medical College, Krakow, Poland).
Center Utrecht, Utrecht, the Netherlands); M. Raffaelli (Università Cattolica del Sacro Cuore, Rome, Italy); O. Makay (Ege University Hospital, Izmir, Turkey); C. Martínez-Santos (Agencia Sanitaria Costa del Sol, Málaga, Spain); M. H. Hansen (University Hospital of North Norway, Tromsø, Norway); L. Brunaud (Université de Lorraine, CHU Nancy, France); S. Van Slycke (Onze-Lieve-Vrouw Ziekenhuis Aalst, Aalst, Belgium); P. Riss (Medical University of Vienna, Vienna, Austria); M. Iacobone, (University of Padova, Padua, Italy); E. Nordenström (Lund University, Lund, Sweden).

Acknowledgements
The authors thank all centres that contribute data to the Eurocrine database (https://www.eurocrine.eu).

Disclosure. The authors declare no conflict of interest.

Funding
This study was supported by Skåne University Hospital Foundation.

Supplementary material
Supplementary material is available at BJ/S online.

References
1. Bravo EL, Tagle R. Pheochromocytoma: state-of-the-art and future prospects. Endor Rev 2003;24:539–553.
2. Mannelli M, Lenders JWM, Parenti G, Eisenhofer G, Pacak K. Subclinical pheochromocytoma. Best Pract Res Clin Endocrinol Metab 2012;26:507–515.
3. Kopetschke R, Sisko M, Kilisli A, Tuschy U, Wallaschofski H, Fassnacht M et al. Frequent incidental discovery of pheochromocytoma: data from a German cohort of 201 phaeochromocytoma. Eur J Endocrinol 2009;161:355–361.
4. Haissaguerre M, Couriel M, Caron P, Denot S, Dubessy C, Gosse P et al. Normotensive incidentally discovered pheochromocytomas display specific biochemical, cellular, and molecular characteristics. J Clin Endocrinol Metab 2013;98:4346–4354.
5. Lewis S. Recognition and management of pheochromocytoma. Anaesth Intensive Care Med 2008;9:446–450.
6. Lenders JWM, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SKG, Murad MH et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2014;99:1915–1961.
7. Schimmack S, Kaiser J, Probst P, Kalikum E, Dienert MK, Strobel O. Meta-analysis of α-blockade versus no blockade before adrenalectomy for pheochromocytoma. Br J Surg 2020;107:1–12.
8. Groeben H, Nottebaum BJ, Alesina PF, Traut A, Neumann HP, Walz MK. Perioperative α-receptor blockade in pheochromocytoma surgery: an observational case series. Br J Anaesth 2017;118:182–189.
9. Brunaud L, Boutami M, Nguyen-Thi PL, Finnerty B, Germain A, Weryha G et al. Both preoperative alpha and calcium channel blockade improve intraoperative hemodynamic stability similarly in the management of pheochromocytoma. Surgery 2014;156:1410–1418.
10. Comlekci A, Yener S, Ertilav S, Akinci B, Demir T, Kebapciar L et al. Adrenal incidentaloma, clinical, metabolic, follow-up aspects: single centre experience. Endocrine 2010;37:40–46.
11. Fassnacht M, Arlt W, Bancos I, Dralle H, Newell-Price J, Sadeh A et al. Management of adrenal incidentalomas: European Society of Endocrinology Clinical Practice Guideline in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol 2016;175:G1–G34.
12. Mantero F, Terzolo M, Arnaldi G, Osella G, Masini AM, Ali A et al. A survey on adrenal incidentaloma in Italy. Study Group on Adrenal Tumors of the Italian Society of Endocrinology. J Clin Endocrinol Metab 2000;85:637–644.
13. Eurocrine, https://eurocrine.eu (accessed 1 December 2020).
14. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004;240:205–213.
15. Thompson LH, Nordenström E, Almquist M, Jacobsson H, Bergenfelz A. Risk factors for complications after adrenalectomy: results from a comprehensive national database. Langenbecks Arch Surg 2017;402:315–322.
16. Marrero AP, Kazaure HS, Thomas SM, Stang MT, Scheri RP. Patient selection and outcomes of laparoscopic transabdominal versus posterior retroperitoneal adrenalectomy among surgeons in the Collaborative Endocrine Surgery Quality Improvement Program (CESQIP). Surgery 2020;167:250–256.
17. Chen Y, Scholten A, Chomsky-Higgins K, Nwaogu I, Gosnell JE, Seib C et al. Risk factors associated with perioperative complications and prolonged length of stay after laparoscopic adrenalectomy. JAMA Surg 2018;153:1036–1041.
18. Changwei J, Qin L, Wei C, Feifei Z, Hao J, Shiwei Z et al. Retrospective comparison of three minimally invasive approaches for adrenal tumors: perioperative outcomes of transperitoneal laparoscopic, retroperitoneal laparoscopic and robot-assisted laparoscopic adrenalectomy. BMC Urology 2020;20:1–6.
19. Geroula A, Deutschbein T, Langton K, Masjkur J, Pamporaki C, Peitzsch M et al. Pheochromocytoma and paraganglioma: clinical feature-based disease probability in relation to catecholamine biochemistry and reason for disease suspicion. Eur J Endocrinol 2019;181:409–420.
20. Davison AS, Jones DM, Ruthven S, Helliswell T, Shore SL. Clinical evaluation and treatment of pheochromocytoma. Ann Clin Biochem 2018;55:34–48.
21. Ebbehøj A, Li D, Kaur RJ, Zhang C, Singh S, Li T et al. Epidemiology of adrenal tumours in Olmsted County, Minnesota, USA: a population-based cohort study. Lancet Diabetes Endocrinol 2020;8:894–902.
22. Sane T, Schalin-Jäntti C, Raade M, Sane T, Schalin-Jäntti C, Raade M. Is biochemical screening for pheochromocytoma in adrenal incidentalomas expressing low unenhanced attenuations on computed tomography necessary? J Clin Endocrinol Metab 2012;97:2077–2083.
23. Streeter DH, Anderson GH Jr. Mechanisms of orthostatic hypotension and tachycardia in patients with pheochromocytoma. Am J Hypertens 1996;9:760–769.
24. Eisenhofer G, Lenders JWM, Goldstein DS, Mannelli M, Csako G, Walther MM et al. Pheochromocytoma catecholamine phenotypes and prediction of tumor size and location by use of plasma free metanephrines. Clin Chem 2005;51:735–744.
25. Pillai S, Gopalan V, Smith RA, Lam AKY. Updates on the genetics and the clinical impacts on pheochromocytoma and paraganglioma in the new era. Crit Rev Oncol Hematol 2016;100:190–208.
26. Favier J, Amar L, Gimenez-Roqueplo AP. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol 2015;11:101–111.

27. Rami A, Andres S, Isabel T, Karel P. Update of pheochromocytoma syndromes: genetics, biochemical evaluation, and imaging. Front Endocrinol 2018;9:1–13.

28. Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer 2014;14:108–119.

29. Constantinescu G, Bornstein S, Eisenhofer G, Deinum J, Langton K, Conrad C et al. Glucocorticoid excess in patients with pheochromocytoma compared with paraganglioma and other forms of hypertension. J Clin Endocrinol Metab 2020;105:E3374–E3383.

Snapshots Quiz

Question: A 45-year-old woman presented with decreased mouth opening, foul smell from the oral cavity and a chain of nodular swellings over chin, neck and chest region for 3 months. These had increased in size and number over the past month. Dimpling over her left cheek and scar marks over her neck and chin region were also noted. What is the diagnosis?

Answer: Recurrent oral cavity carcinoma with multiple subcutaneous metastases, with a previous history of surgery followed by adjuvant radiotherapy.