Clinical Responses to Crizotinib, Alectinib, and Lorlatinib in a Metastatic Colorectal Carcinoma Patient With ALK Gene Rearrangement: A Case Report

Xi He, MD; Xiao-Dong Jiao, MD; Ke Liu, MD; Bao-Dong Qin, MD, PhD; Ying Wu, MD; Yan Ling, MD; Jun Liu, MD; A-Qiao Xu, MD; Kun Song, MD; and Yuan-Sheng Zang, MD, PhD

INTRODUCTION

Colorectal carcinoma (CRC) has the third highest incidence and the second highest mortality across all types of cancer worldwide.1 In 2015, there were 388,000 new CRC cases and 187,000 deaths in China.2 With advances in combining chemotherapy with vascular endothelial growth factor or epidermal growth factor receptor inhibitors, the median overall survival for patients with metastatic colorectal carcinoma (mCRC) is approximately 30 months.3 Recent next-generation sequencing (NGS) has uncovered several novel potential molecular targets in mCRC, such as RET, ROS1, NTRK, and ALK.4-11 Based on basket trials that screen for the off-label use of a targeted drug in patients with the same genomic alterations,12 NGS-guided therapy could yield clinical benefits and provide novel insights into optimal clinical management for intractable mCRC.

ALK gene fusions have been successfully exploited as therapeutic targets in non–small-cell lung cancer (NSCLC) using the ALK inhibitors crizotinib and lorlatinib.13,14 However, knowledge on the efficacy of targeted therapy for ALK gene fusion in mCRC remains rare. To our knowledge, only two patients have been described who harbored ALK gene fusions and responded to ceritinib and entrectinib, respectively.8,10

A diagnosis of leptomeningeal metastasis (LM) carries a poor prognosis with a median survival of only 2-4 months.15 Few cases of LM caused by CRC have been reported.16 Recently, it was found that CSF circulating tumor DNA (ctDNA) could better reflect the molecular characteristics than plasma ctDNA in patients with NSCLC harboring ALK rearrangement and may be useful in identifying drug targets and guiding treatment.17

In this case study, we describe the first instance of ALK rearrangement in CRC detected using NGS of CSF ctDNA, as well as a case of lasting objective tumor response to crizotinib, alectinib, and lorlatinib therapy.

CASE REPORT

A 70-year-old female arrived at our clinic with abdominal pain present for 3 months. A computed tomography scan revealed a mass in the ascending colon accompanied by peritoneum, and pleura metastases. Serum tumor markers including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 125, and CA19-9 significantly increased (Figs 1A and 1B). Colonoscopy pathology reported moderately to poorly differentiated adenocarcinoma (Fig 2A), and immunohistochemistry (IHC) demonstrated positivity to poorly differentiated adenocarcinoma (Fig 2A), and immunohistochemistry (IHC) demonstrated positivity.
scans revealed partial response (PR) for retroperitoneal lymphadenectomy and liver metastases based on RECIST 1.1 (Fig 4) and concomitant decrease in serum CEA and CA 19-9 (Figs 1A and 1B). After four months of treatment, LM symptoms appeared, accompanied by continuous elevation of serum CA 19-9. Brain MRI demonstrated diffuse linear enhancement of the cerebral sulci (Fig 4). The second ctDNA NGS test was implemented, but no resistant mutations were found except for a lower allele frequency of EML4-ALK fusion (0.3%) and TP53 mutation (0.3%) (Table 1 and Fig 1A). The patient accepted alectinib (600 mg twice a day), and the LM symptoms were slightly relieved, but did not entirely disappear after 2 weeks. Thus, lorlatinib, a third-generation tyrosine kinase inhibitor, was recommended as fifth-line therapy with a dose of 75 mg qd beginning December 9, 2019. As the patient’s LM symptoms gradually improved, we increased the dose to 100 mg qd. The progression-free survival (PFS) on lorlatinib was 11.5 months. Because of the increasing serum CEA and CA 19-9 and stable extracranial lesions, her oncologist opted for a lumbar puncture to obtain her CSF to implement the third ctDNA test with CSF and plasma samples on August 13, 2020. It is surprising that high allele frequency of EML4-ALK (99%) and other gene alterations, such as FGFR2 mutations, KRAS amplification, and PTEN deletion, appeared in CSF (Table 1). No evidence was confirmed regarding the progressive index related to ALK alterations, and thus, lorlatinib was still retained. The patient died on September 17, 2020, because of progression of LM.

DISCUSSION

In this report, we show the clinical efficacy of crizotinib, alectinib, and lorlatinib in an ALK-rearrangement mCRC...
with LM. This case had several uncommon features: the presence of \textit{ALK} fusions that are rarely present in mCRC; the first report of a patient with \textit{ALK}-rearranged mCRC who showed a good response to crizotinib, alectinib, and lorlatinib therapy; and the first case of \textit{ALK} fusion detected in a patient with mCRC through CSF ctDNA. \textit{ALK} fusion activates downstream signaling pathways without ligand binding, including phospholipase \textit{C}\textsubscript{γ}, Janus kinase-signal transducer and activator of transcription, and \textit{PI3K-AKT-mTOR} signaling cascades, which regulate proliferation, growth, invasion, and antiapoptotic signaling. In epithelial tumors, \textit{ALK} gene rearrangements are most common in lung carcinomas, with an incidence rate varying from 3\% to 7\%, and are rare in CRCs.18 The oncogenic \textit{ALK} rearrangements were reported to have frequencies varying from 0.04\% to 2.5\% and in 23 cases of CRC with various fusion partners (Table 2). Sheng et al19 reported more than 40,000 Chinese cancer tissue or blood sample subjected to NGS for \textit{ALK} rearrangement. The frequency of \textit{ALK} fusion in CRC is 0.99\%. Based on the data available from The Cancer Genome Atlas and Burning Rock datasets, the rates of \textit{ALK} fusion in CRC cases are estimated to be 0.17\% and 0.16\%, respectively. Several studies have investigated the effects of \textit{ALK} inhibitors on CRC in vitro. It was shown that crizotinib or entrectinib could inhibit the phosphorylation of \textit{ALK} protein tumor cell line derived from \textit{EML4-ALK} fusion CRC.8 It was noted that C10 cells, harboring the \textit{ALK} rearrangement, were sensitive to crizotinib, which downregulates MAPK

![Image 1](https://example.com/image1.png)

Fig 2. H&E staining (A), 100x, and IHC, (B) for CK20 (+), (C) for Ki-67 (−), and (D) for IHC with D5F3 anti-ALK Ventana antibody showing strong staining and verifying ALK overexpression as a result of \textit{EML4-ALK} fusion. ALK, anaplastic lymphoma kinase; H&E, hematoxylin and eosin; IHC, immunohistochemistry.

![Image 2](https://example.com/image2.png)

Fig 3. NGS showing \textit{EML4-ALK} fusion (E21;A20) on (A) FFP and (B) CSF, in which the AF is 21.5\% and 99\%, respectively. AF, allele frequency; ctDNA, circulating tumor DNA; FFP, fresh frozen plasma; NGS, next-generation sequencing; PR, partial response.
and PI3K pathways. To date, only three patients have been responsive to ALK inhibitor, including our patient. Yakirevich et al reported an 84-year-old male presenting with an \textit{STRN-ALK} fusion who achieved clinical benefit for 9 months after treatment with ceritinib, a second-generation \textit{ALK/ROS1} inhibitor. Another case study also reported an objective response to the \textit{ALK/ROS1/NTRK} inhibitor entrectinib in a patient with CRC harboring a \textit{CAD-ALK} fusion. Interestingly, nivolumab, a PD-1 inhibitor, also remained PR in a patient with dMMR and high PD-L1 (> 50%) CRC harboring EML4-ALK fusion more than 9 months. The most common ALK-dependent resistance mechanisms of crizotinib are \textit{L1196M} and of alectinib and ceritinib are \textit{G1269A} and \textit{G1202R}, yet no secondary resistant mutations were found in our second ctDNA NGS. Lorlatinib was designed to cross the blood-brain barrier and had potent antitumor activity in preclinical study result in durable control of LMs in our case (Table 3).

Sample diversity makes ctDNA-based liquid biopsies not less limited to plasma, such as urine. Based on the urine sample of patient who has objective response to entrectinib, Siravegna et al showed that detection of the \textit{CAD-ALK} gene fusion in urine trans-renal DNA anticipated CRC response to entrectinib.
TABLE 1. Results of Molecular Diagnostic Assays

Tissue Assay	Plasma ctDNA Assay	Plasma ctDNA Assay	CSF ctDNA Assay	Plasma ctDNA Assay
May 31, 2019	May 31, 2019	November 14, 2019	August 12, 2020	August 18, 2020
II class alteration				
EML4-ALK fusion (AF = 21.05%)	EML4-ALK fusion (AF = 54.96%)	EML4-ALK fusion (AF = 0.3%)	EML4-ALK fusion (AF = 99%)	EML4-ALK fusion (AF = 0.66%)
TP53 R175H				
FGFR2-ETV6	FGFR2-DUSP16	FGFR2 amplification	FGFR2 amplification	FGFR2 amplification
III class alteration				
AKT1	AKT1	AKT1	AKT1	AKT1
ANNKRD11	ANNKRD11	ANNKRD11	ANNKRD11	ANNKRD11
BRAF splice site c.240+1G>A				
FANCA	FANCA	FANCA	FANCA	FANCA
DNMT3A	DNMT3A	DNMT3A	DNMT3A	DNMT3A
FLT4	FLT4	FLT4	FLT4	FLT4
GABRA6	GABRA6	GABRA6	GABRA6	GABRA6
NKX2-1	NKX2-1	NKX2-1	NKX2-1	NKX2-1
PTPRT splice site c.685-10T>G				
RBM10	RBM10	RBM10	RBM10	RBM10
SLX4	SLX4	SLX4	SLX4	SLX4
EPHA5	EPHA5	EPHA5	EPHA5	EPHA5
XPO1 amplification				

Additional findings				
TMB-intermediate (11.11 mut/Mb)	TMB-intermediate (12.70 mut/Mb)	TMB-low (3.22 mut/Mb)	TMB-intermediate (8.97 mut/Mb)	TMB-low (2.99 mut/Mb)
MSS	NA	NA	MSS	NA

Abbreviations: AF, allele frequency; ctDNA, circulating tumor DNA; MSS, microsatellite stability; mut, mutation; NA, not available; TMB, tumor mutation burden.
In conclusion, we have reported on an elderly patient with ALK-fusion mCRC who was treated with crizotinib, alectinib, and lorlatinib and achieved PR with the PFS of 3, 0.5, and 11.5 months, respectively. The case provides a new potential treatment strategy for patients with CRC who did not respond to standard treatment with ALK rearrangement but still poses a few questions. Are there any other targetable ALK-fusion partners in patients with mCRC? What are the biological characteristics in such patients harboring ALK fusions? Translational studies and the establishment of a database will be instrumental for addressing many of these unanswered questions.
The patient provided written informed consent and gave permission for the use of biopsies and the publication of case details. This study was approved by the Ethical Committee of the Changzheng Hospital of Naval Medical University. Data and materials in the current study are not available to any readers as they contain the patient’s personal details.

AFFILIATIONS

1Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
2Shaoxing Central Hospital, Shaoxing, Zhejiang Province, China
3Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China

CORRESPONDING AUTHOR

Yuan-Sheng Zang, MD, PhD, Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Hetian Rd 64, Shanghai 200070, China; e-mail: doctorzangys@163.com.

EQUAL CONTRIBUTION

X.H. and X.-D.J. contributed equally to this work.

AUTHOR CONTRIBUTIONS

Conception and design: Xi He, Xiao-Dong Jiao, Ke Liu, Yuan-Sheng Zang
Administrative support: Ying Wu, Yan Ling, Kun Song, Yuan-Sheng Zang
Financial support: Xi He
Provision of study materials or patients: Ying Wu, Yan Ling, A-Qiao Xu, Kun Song, Yuan-Sheng Zang
Collection and assembly of data: Xi He, Xiao-Dong Jiao, Ke Liu, Ying Wu, Yan Ling, Jun Liu, A-Qiao Xu

Data analysis and interpretation: Xi He, Xiao-Dong Jiao, Bao-Dong Qin, Ying Wu, Yan Ling, Kun Song, Yuan-Sheng Zang

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/po/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

No potential conflicts of interest were reported.

ACKNOWLEDGMENT

The authors thank our patient for sharing her presentation for this work.

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, et al: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394-424, 2018
2. Zheng R, Sun K, Zhang S, et al: Report of cancer epidemiology in China, 2015. Zhonghua Zhong Liu Za Zhi 41:19-28, 2019
3. Venook AP, Niedzwiecki D, Lenz HJ, et al: Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: A randomized clinical trial. JAMA 317:2392-2401, 2017
4. Stransky N, Cerami E, Schalm S, et al: The landscape of kinase fusions in cancer. Nat Commun 5:4846, 2014
5. Lipson D, Capelletti M, Yelensky R, et al: Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 18:382-384, 2012
6. Lee J, Kim HC, Hong JY, et al: Detection of novel and potentially actionable anaplastic lymphoma kinase (ALK) rearrangement in colorectal adenocarcinoma by immunohistochemistry screening. Oncotarget 6:24520-24532, 2015
7. Lai AZ, Schrock AB, Erlich RL, et al: Detection of an ALK fusion in colorectal carcinoma by hybrid capture-based assay of circulating tumor DNA. Oncologist 22:774-779, 2017

TABLE 3. Clinical Characteristics and Prognosis of Patients With CRC Harboring the ALK Fusions

Age/Sex	Partner	Primary Site	Surgery	Stage	Metastases	Sample	Assay	Treatment	PFS (months)	OS (months)
84/female	STRN	Cecum	Radical	IV	Lung and umbilicus	Tissue	NGS	Ceritinib (third-line)	9	> 12
53/female	CAD	Right colon	Palliative	IV	Brain, cerebellum, and liver	Tissue	IHC	Entrectinib (third-line)	4.5	5
84/female	EML4	Ascending	None	IV	Meningeal, liver, pleural, and peritoneum	Tissue, plasma, CSF	IHC, NGS	Crizotinib (third-line)	4	16
								Alectinib (fourth-line)	0.5	
								Lorlatinib (fifth-line)	11.5	

Abbreviations: ALK, anaplastic lymphoma kinase; CRC, colorectal carcinoma; IHC, immunohistochemistry; NGS, next-generation sequencing; OS, overall survival; PFS, progression-free survival.
Case Report

8. Yakirevich E, Resnick MB, Mangray S, et al: Oncogenic ALK fusion in rare and aggressive subtype of colorectal adenocarcinoma as a potential therapeutic target. Clin Cancer Res 22:3831-3840, 2016

9. Martineelli E, Sforza V, Cardone C, et al: Clinical outcome and molecular characterisation of chemorefractory metastatic colorectal cancer patients with long-term efficacy of regorafenib treatment. ESMO Open 2:e000177, 2017

10. Amatu A, Somaschini A, Cerea G, et al: Novel CAD-ALK gene rearrangement is druggable by entrectinib in colorectal cancer. Br J Cancer 113:1730-1734, 2015

11. Ying J, Lin C, Wu J, et al: Anaplastic lymphoma kinase rearrangement in digestive tract cancer: Implication for targeted therapy in Chinese population. PLoS One 10:e0144731, 2015

12. Qin BD, Jiao XD, Liu K, et al: Basket trials for intractable cancer. Front Oncol 9:229, 2019

13. Solomon BJ, Besse B, Bauer TM, et al: Lorlatinib in patients with ALK-positive non-small-cell lung cancer: Results from a global phase 2 study. Lancet Oncol 19:1654-1667, 2018

14. Solomon BJ, Mok T, Kim DW, et al: First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371:2167-2177, 2014

15. Thakkar JP, Kunthekar P, Doxt KS, et al: Leptomeningeal metastasis from solid tumors. J Neurol Sci 411:116706, 2020

16. Giglio P, Weinberg JS, Forman AD, et al: Neoplastic meningitis in patients with adenocarcinoma of the gastrointestinal tract. Cancer 103:2355-2362, 2005

17. Zheng MM, Li YS, Jiang BY, et al: Clinical utility of cerebrospinal fluid cell-free DNA as liquid biopsy for leptomeningeal metastases in ALK-rearranged NSCLC. J Thorac Oncol 14:924-932, 2019

18. Hallberg B, Palmer RH: Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer 13:685-700, 2013

19. Sheng Y, Gong FY, Wang GQ, et al: Novel ALK fusions are detected in patients with not only NSCLC but also other solid tumors NGS fusion assay is an optional method for screening novel fusion. Presented at the ASCO 2020 (poster 3555)

20. Medico E, Russo M, Picco G, et al: The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat Commun 6:7002, 2015

21. Pietrantonio F, Di Nicolantonio F, Schrock AB, et al: ALK, ROS1, and NTRK rearrangements in metastatic colorectal cancer. J Natl Cancer Inst 109, 2017

22. Lin JJ, Riely GJ, Shaw AT: Targeting ALK Precision medicine takes on drug resistance. Cancer Discov 7:137-155, 2017

23. Shaw AT, Bauer TM, De Marins F, et al: First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med 383:2018-2029, 2020

24. Siravegna G, Sartore-Bianchi A, Mussolin B, et al: Tracking a CAD-ALK gene rearrangement in urine and blood of a colorectal cancer patient treated with an ALK inhibitor. Ann Oncol 28:1302-1308, 2017

25. Lin E, Li L, Guan Y, et al: Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 7:1466-1476, 2009

26. Ainsler DL, Nguyen TT, Paskulid DD, et al: ROS1 and ALK fusions in colorectal cancer; with evidence of intratumoral heterogeneity for molecular drivers. Mol Cancer Res 12:111-118, 2014

27. Houang M, Toon CW, Clarkson A, et al: ALK and ROS1 overexpression is very rare in colorectal adenocarcinoma. Appl Immunohistochem Mol Morphol 23:134-138, 2015

28. Cocco E, Benhamida J, Middha S, et al: Colorectal carcinomas containing hypermethylated MLH1 promoter and wild-type BRAF/KRAS are enriched for targetable kinase fusions. Cancer Res 79:1047-1053, 2019