Sparse graphs using exchangeable random measures

François Caron

Department of Statistics, Oxford

Oxford/Warwick workshop
Scalable Statistical Methods for Analysis of large and complex data sets
October 9, 2015
Introduction

- Directed Multigraphs
 - Emails
 - Citations
 - WWW
Introduction

- Simple graphs
 - Social network
 - Protein-protein interaction
Introduction

- Simple graphs
 - Social network
 - Protein-protein interaction
Introduction

Bipartite graphs

- Scientists authoring papers
- Readers reading books
- Internet users posting messages on forums
- Customers buying items
Introduction

- Build a statistical model of the network to
 - Find interpretable structure in the network
 - Predict missing edges
 - Predict connections of new nodes
Introduction

- Massive networks
 - Linkedin: \(\sim 300\) millions
 - Facebook: \(\sim\) billion
 - Twitter: \(\sim 300\) millions
 - www: \(\sim\) billion

- Capture large-scale properties of networks
- Scalable inference algorithms
Introduction

- Properties of real-world networks
 - Sparsity
 - Dense graph: \(n_e = \Theta(n^2) \)
 - Sparse graph: \(n_e = o(n^2) \)
 with \(n_e \) the number of edges and \(n \) the number of nodes
 - Heavy-tailed degree distributions
 - Latent structure

[Newman, 2009, Clauset et al., 2009]
Book-crossing community network

5 000 readers, 36 000 books, 50 000 edges
Book-crossing community network

Degree distributions on log-log scale

(a) Readers

(b) Books
Introduction

- Simple graphs
- Adjacency matrix $X_{ij} \in \{0, 1\}, (i, j) \in \mathbb{N}^2$
- Joint exchangeability

$$(X_{ij}) \overset{d}{=} (X_{\pi(i)\pi(j)})$$

for any permutation π of \mathbb{N}
Introduction

- **Aldous-Hoover** representation theorem for exchangeable binary matrices

\[X_{ij} | U_i, U_j, W \sim \text{Ber}(W(U_i, U_j)) \]

with \(U_i \overset{\text{iid}}{\sim} \text{Unif}(0, 1) \) and \(W : [0, 1]^2 \to [0, 1] \) a random function

- Several network models fit in this framework
 - Erdös-Rényi, (mixed-membership) stochastic block-models, infinite relational models, etc
Introduction

▶ Corollary of A-H theorem

Graphs represented by an exchangeable matrix are either trivially empty or dense

▶ To quote the survey paper of Orbanz and Roy

“the theory [...] clarifies the limitations of exchangeable models. It shows, for example, that most Bayesian models of network data are inherently misspecified”

[Hoover, 1979, Aldous, 1981, Lloyd et al., 2012, Orbanz and Roy, 2015]
Introduction

How to handle sparse graphs?

➤ Give up infinite exchangeability?
 ➤ Non-exchangeable generative models
 ➤ Preferential attachment model
 ➤ Sequence of finitely exchangeable models \((X_{ij}^{(n)})_{1 \leq i,j \leq n}\)
 ➤ Chung-Lu

\[
X_{ij}^{(n)} \sim \text{Ber}\left(\frac{w_i w_j}{\sum_{k=1}^{n} w_k}\right)
\]

➤ Sparsification of the graphon

\[
X_{ij}^{(n)} \sim \text{Ber}(\rho_n W(U_i, U_j))
\]

with \(\rho_n \to 0\)

[Barabási and Albert, 1999, Chung and Lu, 2002, Bickel and Chen, 2009, Wolfe and Olhede, 2013]
Point process representation

- Representation of a graph as a (marked) point process over \mathbb{R}_+^2
- Representation theorem by Kallenberg for jointly exchangeable point processes on the plane
- Construction based on completely random measures
- Properties of the model
 - Exchangeable point process
 - Sparsity
 - Heavy-tailed degree distributions
- Scalable inference

[Kallenberg, 2005, Caron and Fox, 2014]
Point process representation

- Undirected graph represented as a point process on \mathbb{R}_+^2

$$Z = \sum_{i,j} z_{ij} \delta(\theta_i, \theta_j)$$

with $\theta_i \in \mathbb{R}_+$, $z_{ij} \in \{0, 1\}$ with $z_{ij} = z_{ji}$
Point process representation

Joint exchangeability

Let $A_i = [h(i - 1), hi]$ for $i \in \mathbb{N}$ then

$$(Z(A_i \times A_j)) \overset{d}{=} (Z(A_{\pi(i)} \times A_{\pi(j)}))$$

for any permutation π of \mathbb{N} and any $h > 0$
Completely random measures

- Nodes are embedded at some location \(\theta_i \in \mathbb{R}_+ \)
- Each node has a sociability parameter \(w_i \)
- Homogeneous completely random measure on \(\mathbb{R}_+ \)

\[
W = \sum_{i=1}^{\infty} w_i \delta_{\theta_i} \quad W \sim \text{CRM}(\rho, \lambda).
\]

- Lévy measure \(\nu(dw, d\theta) = \rho(dw)\lambda(d\theta) \)

\[
\int_0^{\infty} \rho(dw) = \infty \implies \text{Infinite number of jumps in any interval } [0, T]
\]

\[
\int_0^{\infty} \rho(dw) < \infty \implies \text{Finite number of jumps in any interval } [0, T]
\]

[Kingman, 1967]
Model for undirected graphs

- For $i \leq j$

$$\Pr(z_{ij} = 1 \mid w) = \begin{cases}
1 - \exp(-2w_i w_j) & i \neq j \\
1 - \exp(-w_i^2) & i = j
\end{cases}$$

and $z_{ji} = z_{ij}$
Properties: Sparsity

\[N_\alpha \]

\[N^{(e)}_\alpha \]
Assume $\rho \neq 0$ and $\mathbb{E}[W([0, 1])] < \infty$.

Theorem

Let N_α be the number of nodes and $N^{(e)}_\alpha$ the number of edges in the undirected graph restriction, Z_α. Then

$$N^{(e)}_\alpha = \begin{cases} \Theta \left(N_\alpha^2 \right) & \text{if } W \text{ is finite-activity} \\ o \left(N_\alpha^2 \right) & \text{if } W \text{ is infinite-activity} \end{cases}$$

almost surely as $\alpha \to \infty$.
Particular case: Generalized Gamma Process

- Lévy intensity

\[\frac{1}{\Gamma(1 - \sigma)} w^{-1-\sigma} e^{-\tau w} \]

with \(\sigma \in (-\infty, 0] \) and \(\tau > 0 \)

or \(\sigma \in (0, 1) \) and \(\tau \geq 0 \)

- Infinite activity for \(\sigma \geq 0 \)

- Exact sampling of the graph via an urn process

- Power-law degree distribution

[Brix, 1999, Lijoi et al., 2007]
Particular case: Generalized Gamma Process

- Erdös-Rényi $G(1000, 0.05)$
- Gamma Process
- GGP ($\sigma = 0.5$)
- GGP ($\sigma = 0.8$)
Particular case: Generalized Gamma Process

Power-law degree distributions

- Power-law like behavior providing a heavy-tailed degree distribution
- Higher power-law exponents for larger σ
- The parameter τ tunes the exponential cut-off in the tails.
Particular case: Generalized Gamma Process
Posterior inference

- Let $\phi = (\alpha, \sigma, \tau)$ with improper priors
- We want to approximate

$$p(w_1, \ldots, w_{N_\alpha}, w_*, \phi | (z_{ij})_{1 \leq i,j \leq N_\alpha})$$

- Latent count variables $\bar{n}_{ij} = n_{ij} + n_{ji}$

- Markov chain Monte Carlo sampler
 1. Update the weights $(w_1, \ldots, w_{N_\alpha})$ given the rest using an Hamiltonian Monte Carlo update
 2. Update the total mass w_* and hyperparameters $\phi = (\alpha, \sigma, \tau)$ given the rest using a Metropolis-Hastings update
 3. Update the latent counts (\bar{n}_{ij}) given the rest from a truncated Poisson distribution
Simulated data

- Simulation of a GGP graph with $\alpha = 300$, $\sigma = 1/2$, $\tau = 1$
- 13,995 nodes and 76,605 edges
- MCMC sampler with 3 chains and 40,000 iterations
- Takes 10min on a standard desktop with Matlab
Simulated data

(a) 50 nodes with highest degree
(b) 50 nodes with lowest degree

Figure: 95% posterior intervals of (a) the sociability parameters w_i of the 50 nodes with highest degree and (b) the log-sociability parameter $\log w_i$ of the 50 nodes with lowest degree. True values are represented by a green star.
Real network data

- Assessing the sparsity of the network
- We aim at reporting $\Pr(\sigma \geq 0 | z)$ based on a set of observed connections (z)
- 12 different networks
- $\sim 1,000 - 300,000$ nodes and $10,000 - 1,000,000$ edges
Real network data

| Name | Nb nodes | Nb edges | Time (min) | $\Pr(\sigma \geq 0 | z)$ | 99% CI σ |
|------------|----------|-----------|------------|----------------|------------------|
| facebook107| 1,034 | 26,749 | 1 | 0.00 | $[-1.06, -0.82]$ |
| polblogs | 1,224 | 16,715 | 1 | 0.00 | $[-0.35, -0.20]$ |
| USairport | 1,574 | 17,215 | 1 | 1.00 | $[0.10, 0.18]$ |
| UCirvine | 1,899 | 13,838 | 1 | 0.00 | $[-0.14, -0.02]$ |
| yeast | 2,284 | 6,646 | 1 | 0.28 | $[-0.09, 0.05]$ |
| USpower | 4,941 | 6,594 | 1 | 0.00 | $[-4.84, -3.19]$ |
| IMDB | 14,752 | 38,369 | 2 | 0.00 | $[-0.24, -0.17]$ |
| cond-mat1 | 16,264 | 47,594 | 2 | 0.00 | $[-0.95, -0.84]$ |
| cond-mat2 | 7,883 | 8,586 | 1 | 0.00 | $[-0.18, -0.02]$ |
| Enron | 36,692 | 183,831 | 7 | 1.00 | $[0.20, 0.22]$ |
| internet | 124,651 | 193,620 | 15 | 0.00 | $[-0.20, -0.17]$ |
| www | 325,729 | 1,090,108 | 132 | 1.00 | $[0.26, 0.30]$ |
Conclusion

- Statistical network models
- Build on exchangeable random measures
- Sparsity and power-law properties
- Scalable inference
- Extensions to more structured models: non-negative factorization, block-model, covariates, dynamic networks, etc

Matlab code available

http://www.stats.ox.ac.uk/~caron/code/bnpgraph/
Aldous, D. J. (1981). Representations for partially exchangeable arrays of random variables. *Journal of Multivariate Analysis*, 11(4):581–598.

Barabási, A. L. and Albert, R. (1999). Emergence of scaling in random networks. *Science*, 286(5439):509–512.

Bickel, P. J. and Chen, A. (2009). A nonparametric view of network models and Newman–Girvan and other modularities. *Proceedings of the National Academy of Sciences*, 106(50):21068–21073.

Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. *Advances in Applied Probability*, 31(4):929–953.

Caron, F. (2012). Bayesian nonparametric models for bipartite graphs. In *NIPS*.

Caron, F. and Fox, E. B. (2014). Sparse graphs using exchangeable random measures. Technical report, arXiv:1401.1137.
Bibliography II

Chung, F. and Lu, L. (2002).
The average distances in random graphs with given expected degrees.
Proceedings of the National Academy of Sciences, 99(25):15879–15882.

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009).
Power-law distributions in empirical data.
SIAM review, 51(4):661–703.

Hoover, D. N. (1979).
Relations on probability spaces and arrays of random variables.
Preprint, Institute for Advanced Study, Princeton, NJ.

Kallenberg, O. (2005).
Probabilistic symmetries and invariance principles. Springer.

Kingman, J. (1967).
Completely random measures.
Pacific Journal of Mathematics, 21(1):59–78.

Lijoi, A., Mena, R. H., and Prünster, I. (2007).
Controlling the reinforcement in Bayesian non-parametric mixture models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):715–740.
Lloyd, J., Orbanz, P., Ghahramani, Z., and Roy, D. (2012). Random function priors for exchangeable arrays with applications to graphs and relational data. In *NIPS*, volume 25, pages 1007–1015.

Newman, M. (2009). *Networks: an introduction*. OUP Oxford.

Orbanz, P. and Roy, D. M. (2015). Bayesian models of graphs, arrays and other exchangeable random structures. *IEEE Trans. Pattern Anal. Mach. Intelligence (PAMI)*, 37(2):437–461.

Wolfe, P. J. and Olhede, S. C. (2013). Nonparametric graphon estimation. *arXiv preprint arXiv:1309.5936*.