The relationship between GSTA1, GSTM1, GSTP1, and GSTT1 genetic polymorphisms and bladder cancer susceptibility
A meta-analysis

Yajie Yu, MD,a Xiaoli Li, MDa,c, Chao Liang, MDa, Jingyuan Tang, MDa, Zhiqiang Qin, MDa, Chengming Wang, MDa, Weizhang Xu, MDb, Yibo Hua, MDc, Pengfei Shao, PhDc, Ting Xu, MDd,e

Abstract

Background: Previous studies have investigated the relationship between GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and bladder cancer (BCa) susceptibility, respectively, but the results remain inconsistent. So, we conducted this meta-analysis including 79 case-control studies to explore such relationships.

Methods: We searched PubMed, EMBASE, Cochrane library, Web of Science, and CNKI for relevant available studies. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were implemented to evaluate the intensity of associations. Publication bias was estimated using Begg funnel plots and Egger regression test. To assess the stability of the results, we used sensitivity analysis with the method of calculating the results again by omitting 1 single study each time. Between-study heterogeneity was tested using the I² statistic.

Results: No significant association between GSTA1 polymorphism and BCa susceptibility (OR = 1.05, 95% CI 0.83–1.33) was noted. Besides, meaningful association between individuals who carried the GSTM1 null genotype and increased BCa risk was detected (OR = 1.39, 95% CI 1.29–1.51). When stratified by ethnicity, significant difference was found in both Caucasian (OR = 1.39, 95% CI 1.23–1.58) and Asian populations (OR = 1.45, 95% CI 1.31–1.61). Moreover, in the subgroup analysis by source of controls (SOC), the results were significant in both hospital-based control groups (OR = 1.49, 95% CI 1.35–1.64) and population-based control groups (OR = 1.21, 95% CI 1.07–1.37). Additionally, the analysis revealed no significant association between GSTP1 polymorphism and BCa risk (OR = 1.07, 95% CI 0.96–1.20). What is more, significant associations between GSTT1 polymorphism and BCa susceptibility were discovered (OR = 1.11, 95% CI 1.00–1.22). In the subgroup analysis by ethnicity, significant associations between GSTT1 null genotype and BCa risk were observed only in Caucasians (OR = 1.25, 95% CI 1.09–1.44). Furthermore, when stratified by SOC, no obvious relationship was found between the GSTT1 null genotype polymorphism with hospital-based population (OR = 1.11, 95% CI 0.97–1.28) or population-based population (OR = 1.10, 95% CI 0.96–1.27).

Conclusion: This study suggested that GSTM1 null genotype and GSTT1 null genotype might be related to higher BCa risk, respectively. However, no associations were observed between GSTA1 or GSTP1 polymorphisms and BCa susceptibility.

Abbreviations: BCa = bladder cancer, CI = confidence interval, GST = glutathione S-transferase, HB = hospital-based, OR = odds ratio, PB = population-based, SOC = source of controls.

Keywords: bladder cancer, glutathione S-transferases, meta-analysis, single gene polymorphism, susceptibility

1. Introduction

Bladder cancer (BCa), with an increasing incidence and mortality nowadays, has become the 9th most common cancer and the 14th leading cause of death due to cancer worldwide.[1] An estimated 429,800 new cases of BCa and 165,100 deaths took place in 2012 worldwide.[2] As a complicated and multifactorial procedure, the initiation and development of BCa are still not completely understood.[3] However, the risk factors could be mainly classified into 3 subgroups: long-term inflammation stimulation, specific chemical exposure, and genetic factors.[4]

Interestingly, some people never get BCa even though exposed to specific chemicals. In contrast, many BCa patients do not have those known risk factors, suggesting that genetic factors might play a significant role in bladder carcinogenesis.[5,6] Glutathione S-transferases (GSTs), existing in almost all living organisms, are members of a polygene family of isoenzymes.[7] GSTs are a family of multifunctional phase II enzymes that catalyze the combination of many exogenous and endogenous electrophilic compounds with glutathione, which are characterized with assisting the detoxification of various therapeutic drugs,
Therefore, we conducted such meta-analysis to assess these relationships.

2. Materials and methods

2.1. Search strategy

We did a systematic search of PubMed, EMBASE, Cochrane library, Web of Science, and CNKI up to December 2015 by using the combination of the following key words: “glutathione S-transferase A1” or “GSTA1,” “glutathione S-transferase M1” or “GSTM1,” “glutathione S-transferase T1” or “GSTT1,” “bladder” or “urothelial,” “cancer” or “carcinoma” or “neoplasm,” and “polymorphism” or “polymorphisms” without any restriction on language. The reference lists of the selected papers were searched by hand for potentially eligible articles. We only included the study with the most recent and/or the largest sample size when several studies had partially overlapped or similar data.

2.2. Selection criteria

For this meta-analysis, the inclusion criteria were as follows: case-control studies with the original data for the evaluated associations between GSTA1, GSTM1, GSTP1 and/or GSTT1 polymorphisms, and BCa risk; the diagnosis of the patients with BCa was confirmed pathologically, and the controls were confirmed free of any cancer; and sufficient published data about the size of the sample, odds ratio (OR), and their 95% confidence interval (CI). The exclusion criteria were duplicates of previous publication; no control subjects; and patients without confirmation of BCa or mixed with other diseases.

If study populations were the same or duplicate data were published, only the study with the largest number of sample size was included. We did not need to obtain ethical approval or informed consent because our data were extracted from previous studies. Nevertheless, the included studies in our review did get patient consent, and each study was approved by an ethics committee.

2.3. Data extraction

Data were independently extracted from all eligible publications by 5 investigators (YJY, XL, CL, JYT, and ZQQ), and quality assessment was conducted by 3 authors (YJY, XL, and CL).

When meeting conflicting opinions about inclusion, disagreements were resolved by discussion among team members. Relevant data were extracted from each eligible study and carefully recorded, including involved genes, 1st author name, year of publication, the ethnicity of the study population, subject source, total number of cases and controls, and different number of genotypes in cases and controls. If important unpublished information were needed, we also e-mailed the original authors. According to source of controls (SOC), studies were classified into hospital-based (HB) and population-based (PB) groups. Ethnic groups were principally defined as Caucasian, Asian, African, or Mixed.

2.4. Statistical analysis

ORs with 95% CIs were implemented. The heterogeneity was estimated using the x\(^2\)-based Q statistic, and heterogeneity was considered statistically significant when \(P < 0.05\) or \(I^2 > 50\%\). If the presence of heterogeneity was found, the random-effects model would be utilized. Otherwise, fixed-effects model would be performed. Then, subgroup analysis was further carried out by ethnicity and SOC properly.

To assess the stability of the results, we used sensitivity analysis with the method of calculating the results again by omitting 1 single study each time. To check the publication bias between the studies, Egger linear regression test and Begg funnel plots were executed.[16] Hardy–Weinberg equilibrium was assessed by the goodness-of-fit Chi-square test, and \(P < 0.05\) was considered as an obviously selective bias.[18] All statistical analyses were performed with Stata software (version 12.0; Stata Corp LP, College Station, TX). All P values below 0.05 were considered statistically significant.

3. Results

3.1. Literature search and studies characteristics

Figure 1 shows the flowchart of literature search and selection process. Finally, a total of 79 case–control studies were included according to the inclusion criteria.[19–97] Characteristics of individual study qualified for the current meta-analysis (GSTA1, GSTM1, GSTP1, and GSTT1, respectively) are presented in Tables 1–4 individually. This meta-analysis results of association between GSTs polymorphism and BCa risk are shown in Table 5.

3.2. GSTA1

Four studies consisting of 585 cases and 702 controls were adopted in order to evaluate the relationship between GSTA1 polymorphism and BCa risk. As shown in Fig. 2, the results indicated no significant association between GSTA1 polymorphism and BCa susceptibility (OR = 1.05, 95% CI 0.83–1.33). Subgroup analysis was not performed owing to the limited studies.

3.3. GSTM1

As shown in Table 5, 48 studies including 11,473 cases and 13,795 controls were analyzed. Overall, significant associations between individuals who carried GSTM1 null genotype and increased BCa risk were observed (OR = 1.39, 95% CI 1.28–1.51) (Fig. 3). When stratified by ethnicity, significant differences was detected in Caucasian (OR = 1.39, 95% CI 1.23–1.58) and Asian populations (OR = 1.45, 95% CI 1.31–1.61) instead of African (OR = 1.23, 95% CI 0.95–1.59) or Mixed populations (OR =
1.16, 95% CI 0.93–1.45). In addition, in the subgroup analysis by SOC, the results were significant both in HB populations (OR = 1.49, 95% CI 1.35–1.64) and PB populations (OR = 1.21, 95% CI 1.07–1.37).

3.4. GSTP1

Twenty-three studies involving 5080 cases and 6187 controls were included in this study. Because a few studies provided precise data of genotypes, only dominant model could be carried out with all studies. Generally, the analysis revealed no significant association between GSTP1 Ile105Val polymorphism and BCa risk (OR = 1.07, 95% CI 0.96–1.20) (Fig. 4). No significant relationship was observed between GSTP1 polymorphism and BCa risk in patients when stratified by ethnicity. Meanwhile, there seems no relationship between GSTP1 polymorphism and the susceptibility of BCa when stratified by SOC (Table 5).

3.5. GSTT1

Fifty-seven studies including 12,369 cases and 15,333 controls were analyzed. The results indicated significant association between GSTT1 polymorphism and BCa susceptibility (OR = 1.11, 95% CI 1.00–1.22) (Fig. 5). In the subgroup analysis by ethnicity, significant associations between GSTT1 null genotype and BCa risk were noted only in Caucasians (OR = 1.25, 95% CI 1.09–1.44). Additionally, when stratified by SOC, no obvious relationship was detected between the GSTT1 null genotype polymorphism with HB (OR = 1.11, 95% CI 0.97–1.28) or PB (OR = 1.10, 95% CI 0.96–1.27), respectively (Table 5).

3.6. Sensitivity analysis

Sensitivity analysis was utilized to identify the influence of each study on the pooled OR by consecutively omitting 1 study each time for all subjects and subgroups. The sensitivity analysis for GSTA1, GSTM1, GSTP1, and GSTT1 polymorphism showed that no individual study affected the pooled OR significantly, which indicated that our results were reliable.

3.7. Publication bias

The publication bias of studies GSTA1, GSTM1, GSTP1, and GSTT1 were assessed, respectively, using Begg and Egger funnel

Table 1

Year	Surname	Ethnicity	SOC	Genotyping	Case (n)	Control (n)	AA	AB	BB	AB + BB	AA	AB	BB	AA	AB	BB	AB + BB
2014	Reszka	Caucasian	PB	RT-PCR	243	118	33	151	123	165	35	110					
2013	Matic	Caucasian	HB	PCR-RFLP	201	112	22	134	49	73	57	16					
2013	Savic-Radojevic	Caucasian	HB	PCR-RFLP	80	67	22	112	67	22	73	16					
2005	Broberg	Caucasian	PB	TaqMan	61	155	24	9	37	45	75	35					

HB = hospital-based (controls), PB = population-based (controls), PCR-RFLP = polymerase chain reaction-restriction fragment length polymorphism, RT-PCR = reverse transcription-polymerase chain reaction, SOC = source of controls.
The overall outcomes revealed that our results were statistically dependable.

4. Discussion

BCa is one of the most common cancers of the urinary tract. However, the exact mechanisms of bladder carcinogenesis remain unclear. There is a growing realization that the development of BCa is caused by a complex interaction of both genetic and environmental factors. Although genetic factors are considered to be a crucial part of the pathogenic process of BCa, especially the polymorphisms in metabolic pathways. As one of the most important parts of phase II super family of metabolism enzymes, GSTs are composed of 7 classes (α, μ, ν, π, σ, θ, ξ). Among them, GSTA1, GSTM1, GSTP1, and GSTT1 are considered to be the most important. Almost all members of the GST family show genetic polymorphism, which leads to a complete absence or lowering of enzyme activity.

Table 2

Characteristics of individual studies included in the meta-analysis.

Year	Surname	Ethnicity	SOC	Genotyping	Case (n)	Control (n)	Present	Null	Present	Null
2015	Ceylan	Caucasian	HB	PCR-RFLP	65	70	43	22	39	31
2014	Reszka	Caucasian	PB	RT-PCR	244	365	95	149	200	165
2014	Wang	Asian	HB	Multiplex PCR	1050	1404	351	699	570	834
2013	Matic	Caucasian	HC	PCR	201	122	90	111	61	61
2013	Berber	Caucasian	HB	Multiplex PCR	114	114	60	54	63	51
2013	Kang	Asian	HB	Multiplex PCR	110	220	45	65	117	103
2013	Sato-Radojvic	Caucasian	HB	Multiplex PCR	80	60	35	45	28	32
2013	Sabarnejad	Asian	HB	PCR	186	332	116	50	239	93
2012	Oresnikov	Caucasian	HB	Duplex-PCR	196	235	94	102	112	123
2011	ÖZTÜRK	Caucasian	PB	PCR	176	97	78	98	46	51
2011	Rouissi	African	PB	Multiplex PCR	125	125	62	63	69	56
2011	Goerlitz	African	PB	TaqMan	618	621	274	344	289	332
2009	Aitayli	Caucasian	HB	Multiplex PCR	135	128	77	58	63	65
2009	Granado	Mixed	PB	PCR	100	100	60	40	67	33
2009	Rouissi	African	PB	Multiplex PCR	125	125	62	63	69	56
2009	Song	Asian	HB	Multiplex PCR	208	212	77	131	104	108
2009	Zupa	Caucasian	HB	Multiplex PCR	23	121	10	13	53	68
2008	Abd	Caucasian	HB	PCR	20	20	9	11	11	9
2008	Cooolo	Caucasian	HB	PCR-RFLP	197	211	69	128	100	111
2008	Gotka	Caucasian	HB	PCR	293	176	109	184	88	88
2008	Zhao	Asian	HB	Multiplex PCR	202	272	117	85	191	81
2007	Moore	Caucasian	HB	Multiplex PCR	1077	1022	394	683	498	577
2007	Cengiz	Caucasian	HB	Multiplex PCR	51	53	17	34	31	22
2007	Murt-Nascimento	Caucasian	HB	TaqMan	679	735	251	428	368	367
2007	Zhao	Caucasian	HB	TaqMan	622	633	298	324	316	317
2005	Saad	Caucasian	PB	PCR	72	81	27	45	41	40
2005	Garcia-Diosas	Caucasian	HB	TaqMan	1138	1132	422	716	561	571
2005	Karagas	Mixed	PB	PCR	354	542	144	210	233	309
2005	Keilen	Caucasian	PB	PCR	579	1600	267	312	466	597
2005	Kim	Asian	HB	Multiplex PCR	153	152	61	92	80	73
2005	Sabitl	Asian	PB	Multiplex PCR	100	76	63	37	52	24
2005	Srivastava	Asian	PB	Multiplex PCR	106	370	63	43	230	140
2004	Hung	Caucasian	HB	PCR	201	214	69	132	102	112
2004	Moore	Mixed	PB	PCR	106	109	52	54	60	49
2004	Srivastava	Asian	HB	Multiplex PCR	106	182	64	42	128	54
2003	Jeong	Asian	HB	PCR	126	204	51	75	105	99
2002	Giannakopoulos	Caucasian	HB	PCR	89	147	33	56	91	56
2002	Lee	Asian	HB	Multiplex PCR	232	165	83	149	79	86
2001	Aktas	Caucasian	HB	ELISA	103	202	47	56	132	70
2001	Töröner	Caucasian	PB	PCR	121	121	46	75	66	55
2000	Kim	Asian	HB	Multiplex PCR	112	220	34	78	97	123
2000	Schnakenberg	Caucasian	HB	Multiplex PCR	157	223	64	93	94	129
2000	Steinhoff	Caucasian	HB	TrpPCR	136	127	55	80	70	95
1999	Salagovic	Caucasian	PB	PCR	76	246	36	40	125	123
1998	Abdel-Rahman	African	PB	Multiplex PCR	37	34	11	26	19	15
1996	Brockmüller	Caucasian	HB	PCR	374	363	156	218	171	192
1996	Anwar	Caucasian	HB	PCR-RFLP	22	21	3	19	11	10
1993	Zhong	Caucasian	PB	PCR	97	225	58	39	131	94

HB = hospital-based (controls), PB = population-based (controls), PCR-RFLP = polymerase chain reaction-restriction fragment length polymorphism, RT-PCR = reverse transcription-polymerase chain reaction, SOC = source of controls.
susceptibility. With the associations between GSTs polymorphisms and BCa the development of BCa. GSTM1, GSTP1, and GSTT1 may play an important role in

SOC pounds could damage the DNA. Therefore, GSTA1, for maintaining genomic integrity because electrophilic compounds through conjugation with glutathione, these enzymes can prevent cells from damage. Besides, GSTs are able to regulate the induction of other proteins and enzymes which is important for cellular functions. The polymorphisms affect the enzyme activity, leading to increased genotoxic damage and decreased ability to detoxify the environmental and dietary agents, especially 1,3-butadiene and ethylene oxide, which could induce chromosomal damage and make people more susceptible to cancer. By catalyzing the detoxification of electrophilic compounds through conjugation with glutathione, these enzymes can prevent cells from damage. Besides, GSTs are able to regulate the induction of other proteins and enzymes which is important for cellular functions. The polymorphisms affect the enzyme activity, leading to increased genotoxic damage and decreased ability to detoxify the environmental and dietary agents, especially 1,3-butadiene and ethylene oxide, which could induce chromosomal damage and make people more susceptible to cancer. By catalyzing the detoxification of electrophilic compounds through conjugation with glutathione, these enzymes can prevent cells from damage. Besides, GSTs are able to regulate the induction of other proteins and enzymes which is important for cellular functions. The polymorphisms affect the enzyme activity, leading to increased genotoxic damage and decreased ability to detoxify the environmental and dietary agents, especially 1,3-butadiene and ethylene oxide, which could induce chromosomal damage and make people more susceptible to cancer.

Table 3

Year	Surname	Ethnicity	SOC	Genotyping	Case (n)	Control (n)	AA	AG	GG	AG + GG	AA	AG	GG	AG + GG
2000	Steinhoff	Caucasian	HB	PCR-RFLP	135	122	84	95	22	117	49	52	21	73
2005	Broberg	Caucasian	PB	TaqMan	1141	1138	486	525	130	655	488	531	119	650
2005	Srivastava	Caucasian	PB	PCR-RFLP	106	370	25	32	14	46	79	66	10	76
2005	Cao	Caucasian	HB	PCR-RFLP	145	170	77	42	7	49	69	39	4	43
2005	García-Closas	Caucasian	HB	TaqMan	114	118	486	525	130	655	488	531	119	650
2005	Matic	Caucasian	HB	PCR-RFLP	201	122	84	95	22	117	49	52	21	73
2005	Fontana	Caucasian	HB	TaqMan	51	45	20	27	4	31	28	13	4	17
2005	Attayi	Caucasian	HB	PCR-RFLP	135	128	75	46	14	60	62	58	8	66
2008	Yuan	Caucasian	HB	PCR-RFLP	657	684	301	274	82	356	284	327	73	400
2008	Kopps	Caucasian	HB	PCR-RFLP	143	196	66	56	21	71	82	82	32	114
2006	Xing	Asian	PB	PCR-RFLP	108	112	59	42	7	49	69	39	4	43
2006	Peluso	Caucasian	HB	PCR-RFLP	123	54	50	17	4	28	13	13	4	17
2004	Hung	Caucasian	HB	PCR-RFLP	201	214	103	77	21	98	112	78	24	102
2002	Ma	Asian	PB	PCR-RFLP	61	155	24	27	10	37	71	69	15	84
2001	Türiner	Caucasian	PB	PCR-RFLP	121	121	67	42	12	54	83	33	5	38
2000	Heinonen	Caucasian	PB	PCR-RFLP	135	127	67	59	9	68	70	46	11	57
2000	Peluso	Caucasian	HB	PCR-RFLP	123	54	50	20	–	73	32	23	4	22
1997	Harries	Caucasian	PB	PCR-RFLP	71	155	25	32	14	46	79	66	10	76

HB = hospital-based (controls), PB = population-based (controls). PCR-RFLP = polymerase chain reaction-restriction fragment length polymorphism. RT-PCR = reverse transcription-polymerase chain reaction, SOC = source of controls.

1 AG + GG genotypes: 77 cases and 21 controls.
2 AG + GG genotypes: 27 cases and 33 controls.
3 AG + GG genotypes: 27 cases and 33 controls.
4 AG + GG genotypes: 73 cases and 22 controls.

(−567T, −69C, and −52G) are resulted from these replacements. GSTM1 plays an important role in preventing the development of cancers. The inherited homozygous absence of the GSTM1 gene results in the deficiency of the enzyme activity. GSTP1 is an important part of GST families, and the most commonly studied GSTP1 variant is exon 5 Ile105Val, encoding an Ile/Val exchange at codon 105 (Ile105Val; A105G) (rs947894), which has been shown to be linked to lower expression of metabolic activity. People with the GSTT1 null genotype were reported to have decreased enzyme activity and decreased ability to detoxify the environmental and dietary agents, especially 1,3-butadiene and ethylene oxide, which could induce chromosomal damage and make people more susceptible to cancer. By catalyzing the detoxification of electrophilic compounds through conjugation with glutathione, these enzymes can prevent cells from damage. Besides, GSTs are able to regulate the induction of other proteins and enzymes which is important for cellular functions. The polymorphisms affect the enzyme activity, leading to increased genotoxic damage and the results suggested that there was no association. According to the published papers, the conclusion on the relationship between GSTA1 polymorphism and BCa susceptibility is still unclear. The limited amount of involved studies may become a major factor which could influence the evaluation of the real association between GSTA1 polymorphism and BCA risk.

The analysis of the present studies indicated that the null genotype of GSTM1 polymorphism significantly increases BCA susceptibility. Jiang et al performed a meta-analysis indicating the similar results with ours in 2011, which included 33 studies. Nevertheless, 48 studies were involved in our meta-analysis, which could provide more comprehensive and reliable results.

Meanwhile, similar to the outcome of the meta-analysis conducted by Gong et al in 2012, significant associations between GSTT1 polymorphism and BCa susceptibility were discovered. However, we included 7 more studies, which could be more credible.

![Table 3](image-url)
Table 4

Characteristics of individual studies included in the meta-analysis.

Year	Surname	Ethnicity	SOC	Genotyping	Case (n)	Control (n)	Case (%)	Control (%)		
2015	Ceylan	Caucasian	HB	PCR-RFLP	65	70	46	19		
2014	Reszka	Caucasian	PB	RT-PCR	244	365	212	312		
2013	Matic	Caucasian	HB	PCR	201	122	145	56		
2013	Berber	Caucasian	HB	Multiplex PCR	114	114	83	31		
2013	Kang	Asian	HB	Multiplex PCR	110	220	46	64		
2013	Safarinejad	Asian	HB	PCR	166	332	131	315		
2012	Lessieur	Caucasian	HB	PCR	662	923	556	106		
2012	Ovinnikov	Caucasian	HB	Multiplex PCR	196	235	163	33		
2011	Gortitz	Caucasian	PB	PCR	617	620	470	147		
2011	Henríquez-Hernández	Caucasian	HB	Multiplex PCR	90	81	30	60		
2011	Moore	Caucasian	PB	Melt curve/copy number assays	1004	1179	794	210	942	237
2011	Salinas-Sánchez	Caucasian	HB	Multiplex PCR	190	163	148	42		
2011	Rousii	African	PB	PCR	125	125	95	30		
2010	Cantor	Caucasian	HB	TagMan	678	710	542	136		
2009	Altyayi	Caucasian	HB	Multiplex PCR	135	128	104	31		
2009	Song	Asian	HB	Multiplex PCR	208	212	98	110		
2008	Yuan	Caucasian	PB	Multiplex PCR	316	628	608	433		
2008	Covolo	Caucasian	PB	PCR-RFLP	197	211	155	42		
2008	Song	Asian	HB	Multiplex PCR	108	112	37	71		
2008	Grandos	Mixed	PB	Multiplex PCR	100	100	49	51		
2007	Cengiz	Caucasian	HB	Multiplex PCR	51	53	33	18		
2007	Zhou	Mixed	PB	TagMan	623	634	520	100		
2006	Kogutinas	Caucasian	HB	Multiplex PCR	99	91	75	24		
2006	Shao	Asian	PB	Multiplex PCR	405	389	201	204		
2006	Querñani	African	PB	Multiplex PCR	62	79	36	26		
2006	McGrath	Mixed	PB	PCR	191	321	156	35		
2005	Sohrti	Caucasian	PB	Multiplex PCR	100	76	70	30		
2005	Silvestrav	Caucasian	PB	Multiplex PCR	106	370	78	28		
2005	Saad	Caucasian	PB	PCR	72	81	46	26		
2005	Broberg	Caucasian	PB	PCR	61	154	54	7		
2005	García-Oxas	Caucasian	HB	TagMan	1146	1137	916	230		
2005	Golka	Caucasian	HB	PCR	136	163	106	30		
2005	Kim	Asian	PB	Multiplex PCR	153	153	82	71		
2005	Kanagas	Mixed	PB	PCR	354	541	301	53		
2004	Moore	Caucasian	PB	PCR	106	109	89	17		
2004	Sanyal	Caucasian	PB	PCR	270	122	204	46		
2004	Silvestrav	Caucasian	HB	Multiplex PCR	106	182	78	28		
2004	Hung	Caucasian	HB	Multiplex PCR	201	214	158	43		
2004	Chen	Asian	PB	Multiplex PCR	62	81	30	32		
2003	Jong Jeong	Asian	PB	PCR	126	204	58	68		
2003	Gago-Dominguez	Mixed	PB	Multiplex PCR	196	176	146	50		
2002	Lee	Caucasian	HB	Multiplex PCR	232	163	97	135		
2002	Giannakopoulos	Caucasian	HB	PCR	89	147	83	16		
2002	Ma	Asian	PB	PCR	61	182	32	29		
2002	Kim	Asian	PB	Multiplex PCR	216	449	125	91		
2001	Törnér	Caucasian	HB	PCR	121	121	97	24		
2000	Schnakenberg	Caucasian	PB	Multiplex PCR	157	223	129	28		
2000	Steinhoff	Caucasian	HB	Triplex PCR	135	127	115	20		
2000	Petusso	Caucasian	HB	PCR-RFLP	122	54	108	14		
2000	Kim	Asian	HB	Multiplex PCR	112	220	65	47		
1999	Salagovic	Caucasian	PB	PCR	76	248	55	21		
1999	Lee	Asian	HB	Multiplex PCR	158	131	65	93		
1998	Abdel-Rahman	Caucasian	PB	Multiplex PCR	37	34	20	17		
1998	Salagovic	Caucasian	PB	PCR	67	248	47	20		
1998	Katoh	Asian	PB	Multiplex PCR	112	112	66	46		
1998	Kim	Asian	HB	Multiplex PCR	67	67	49	18		
1996	Kempkes	Caucasian	PB	PCR	113	170	93	20		

HB = hospital-based (controls), PB = population-based (controls), PCR-RFLP = polymerase chain reaction-restriction fragment length polymorphism, RT-PCR = reverse transcription-polymerase chain reaction, SOC = source of controls.
Table 5

Meta-analysis results of association between GSTs polymorphism and bladder cancer risk.

	GSTA1	GSTM1	GSTP1	GSTT1								
N	Sample size	OR (95% CI)	P	Sample size	OR (95% CI)	P	Sample size	OR (95% CI)	P	Sample size	OR (95% CI)	P
Total	4 1278	1.05 (0.83–1.33)	0.184	48 25268	1.39 (1.28–1.51)	0.018	23 11267	1.07 (0.96–1.20)	0.062	57 27702	1.11 (1.00–1.22)	0
Ethnicity												
Caucasian	–	–	–	–	–	–	–	–	–	–	–	–
Asian	–	–	–	–	12	6481	1.39 (1.23–1.58)	0.018	18	9519	1.05 (0.92–1.20)	0.388
African	–	–	–	–	4	1810	1.23 (0.95–1.59)	0.257	–	–	–	–
Mixed	–	–	–	–	3	1311	1.16 (0.93–1.49)	1.765	–	–	–	–
SOC												
PB	–	–	–	–	18	7862	1.21 (1.07–1.37)	0.092	9	5048	0.99 (0.84–1.17)	0.771
HB	–	–	–	–	30	17406	1.49 (1.35–1.64)	0.002	14	6219	1.14 (0.98–1.31)	0.075
Mixed	–	–	–	–	–	–	–	–	–	–	–	–

CI = confidence interval, GST = glutathione S-transferase, HB = hospital based (controls), OR = odds ratio, PB = population based (controls), PCR-RFLP = polymerase chain reaction restriction fragment length polymorphism, RT-PCR = reverse transcription-polymerase chain reaction, SOC = source of controls.

Number of studies.

1 Random-effects model was used when P value for heterogeneity test < 0.1; otherwise, fixed-effects model was used.

P value of Q test for heterogeneity.
Figure 2. Forest plots of the association between GSTA1 polymorphism and bladder cancer susceptibility. CI = confidence interval, OR = odds ratio.

Figure 3. Forest plots of the association between GSTM1 polymorphism and bladder cancer susceptibility. CI = confidence interval, OR = odds ratio.
Figure 4. Forest plots of the association between GSTP1 polymorphism and bladder cancer susceptibility. CI = confidence interval, OR = odds ratio.

Figure 5. Forest plots of the association between GSTT1 polymorphism and bladder cancer susceptibility. CI = confidence interval, OR = odds ratio.
The results indicated that the GSTM1 null genotype might elevate BCa susceptibility, and the GSTT1 polymorphism might enhance BCa risk. No significant associations were observed between GSTA1 or GSTP1 polymorphism and BCa risk. For the 1st time, we performed this meta-analysis to evaluate the association between GSTA1 polymorphism and BCa risk. However, taking the restriction of sample size into consideration, analysis with larger and more well-designed studies is required to validate our results. In the future, the analysis of different combinations of polymorphisms of the 4 isomorphs could be performed if the data is available.

References
[1] Mahdavifar N, Ghoncheh M, Pakzad R, et al. Epidemiology, incidence and mortality of bladder cancer and their relationship with the development index in the world. Asian Pac J Cancer Prev 2015;17: 381–6.
[2] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2013;63:85–108.
[3] Sanchez-Carbayo M. Hypermethylation in bladder cancer: biological pathways and translational applications. Tumour Biol 2012;33: 347–61.
[4] Kaufman DS, Shipley WU, Feldman AS, et al. Bladder cancer. Lancet 2009;374: 239–49.
[5] Pandith AA, Siddiqui MA. Burden of cancers in the valley of Kashmir: 5 year epidemiological study reveals a different scenario. Tumour Biol 2012;33:1629–37.
[6] Wu X, Hildebrandt MA, Chang DW. Genome-wide association study of bladder cancer risk: a field synopsis of progress and potential applications. Cancer Metastasis Rev 2009;28:269–80.
[7] Simic T, Savic-Radojevic A, Pjesa-Ercogovac M, et al. Glutathione S-transferases in kidney and urinary bladder tumors. Nat Rev Urol 2009;6:281–9.
[8] Rebbeck TR. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1997;6:733–43.
[9] Tang JJ, Wang MW, Ju EZ, et al. The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Mol Biol Rep 2010;37:403–10.
[10] Zhang RG, Xu GY, Chen WJ, et al. Genetic polymorphisms of glutathione S-transferase M1 and bladder cancer risk: a meta-analysis involving 33 studies. Exp Biol Med 2012;316:723–8.
[11] Zhang RG, Xu GY, Chen WJ, et al. Genetic polymorphisms of glutathione S-transferase M1 and bladder cancer risk: a meta-analysis of 26 studies. Mol Biol Rep 2011;38:2491–7.
[12] Wu K, Wang X, Xie Z, et al. Glutathione S-transferase PI gene polymorphism and bladder cancer susceptibility: an updated analysis. Mol Biol Rep 2013;40:87–95.
[13] Wang Z, Yue L, Chong T, et al. Quantitative assessment of the association between glutathione S-transferase PI Ile105Val polymorphism and bladder cancer risk. Tumour Biol 2013;34: 1631–7.
[14] Gong M, Dong W, An R, et al. Glutathione S-transferase T1 polymorphism contributes to bladder cancer risk: a meta-analysis involving 50 studies. DNA Cell Biol 2012;31:1187–97.
[15] Higgins JP, Thompson SG. Quantifying heterogeneity in a metaanalysis. Stat Med 2002;21:1539–58.
[16] Xu Q, Guo W, Shi X, et al. Association between alcohol consumption and the risk of Barrett’s esophagus: a meta-analysis of observational studies. Medicine (Baltimore) 2015;94:e1244.
[17] Egger M, Davey SG, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
[18] Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biommetrics 1992;48: 361–72.
[19] Reszka E, Jablonowski Z, Wieczorek E, et al. Polymorphisms of NFRF2 and NFRF2 target genes in urinary bladder cancer patients. J Cancer Res Clin Oncol 2014;140:1723–31.
[20] Matic M, Pekmezovic T, Djukic T, et al. GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and susceptibility to smoking-related bladder cancer: a case-control study. Urol Oncol 2013;31: 1184–92.
[21] Savic-Radojevic A, Djukic T, Simic T, et al. GSTM1-null and GSTA1-low activities associated with enhanced oxidative damage in bladder cancer. Redox Rep 2013;18:1–7.
[22] Broberg K, Björk J, Paulsson K, et al. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Cancers (Basel) 2015;7:263–71.
[23] Ceylan GG, Ceylan C, Tasdemir S, et al. The effect of glutathione-S-transferases in the susceptibility to bladder cancer. J Urol Med Sci 2015;1:843–51.
[24] Wang M, Chu H, Lv Q, et al. Cumulative effect of genome-wide association study-identified genetic variants for bladder cancer. Int J Cancer 2014;135:2653–60.
[25] Berber U, Yilmaz I, Yilmaz O, et al. CYP1A1 (Ile 462 Val), CYP1B1 (Ala 119 Ser and Val 432 Leu), GSTM1 (null), and GSTT1 (null) polymorphisms and bladder cancer risk in a Turkish population. Asian Pac J Cancer Prev 2013;14:3925–9.
[26] won Kang H, Song PH, Ha YS, et al. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility and outcomes in muscle invasive bladder cancer patients. Eur J Cancer 2013;49:3010–9.
[27] Safarinejad MR, Safarinejad S, Shahtf, et al. Association of genetic polymorphism of glutathione S-transferase (GSTM1, GSTT1, GSTP1) with bladder cancer susceptibility. Urol Oncol 2013;31:1193–203.
[28] Osviannikov D, Selinski S, Lehmann ML, et al. Polymorphic enzymes, urinary bladder cancer risk, and structural change in the local industry. J Toxicol Environ Health Part A 2012;75:557–65.
[29] Oztrük T, Kahraman OT, Toptas B, et al. The effect of CYP1A1 and GSTM1 gene polymorphisms in bladder cancer development in a Turkish population. In Vivo 2011;25:63–8.
[30] Rouissi K, Ouerhani S, Hamrta B, et al. Smoking and polymorphisms in xenobiotic metabolism and DNA repair genes are additive risk factors affecting bladder cancer in Northern Tunisia. Pathol Oncol Res 2011;17:879–86.
[31] Goerlitz D, El Daly M, Abdel-Hamid M, et al. GSTM1 null variants, and GXP1 single nucleotide polymorphism are not associated with bladder cancer risk in Egypt. Cancer Epidemiol Biomarkers Prev 2011;20:1352–4.
[32] Altayli E, Dijali M, Abdel-Hamid M, et al. GSTM1, GSTT1 null variants, and GXP1 single nucleotide polymorphism are not associated with bladder cancer risk in Egypt. Cancer Epidemiol Biomarkers Prev 2011;20:1352–4.
[33] Grando JPS, Kusasne H, Losi-Guembarovski R, et al. Association between polymorphisms in the biometabolism genes CYP1A1, GSTM1, GSTT1 and GXP1 in bladder cancer. Clin Exp Med 2009;9:21–8.
[34] Rouissi K, Ouerhani S, Marrakchi R, et al. Combined effect of smoking and inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1 on bladder cancer in a Tunisian population. Cancer Genet Cytof ogent 2009;190:101–7.
[35] Song DK, Xing DL, Zhang LR, et al. Association of NAT2, GSTM1, GSTT1, CYP2A6, and CYP2A13 gene polymorphisms with susceptibility and clinicopathology characteristics of bladder cancer in Central China. Cancer Detect Prev 2009;32:416–23.
[36] Zuza A, Sambato A, Bianchino G, et al. GSTM1 and NAT2 polymorphisms and colon, lung and bladder cancer risk: a case-control study. Anticancer Res 2009;29:1709–14.
[37] Abdel El Hameed AH, Negm OE, El-Gamal OM, et al. Genetic polymorphism of glutathione S-transferases M1 and T1 in Egyptian patients with bladder cancer. Urol Oncol 2008;34:399–406.
[38] Golka K, Schmidt T, Seidel N, et al. The influence of polymorphisms of glutathione S-transferases M1 and M3 on the development of human urothelial cancer. J Toxicol Environ Health 2008;71:881–6.
[39] Shao J, Gu M, Zhang Z, et al. Genetic variants of the cytochrome P450 and glutathione-S-transferase associated with risk of bladder cancer in a south-eastern Chinese population. Int J Urol 2008;15:216–21.
[40] Moore LE, Malats N, Rothman N, et al. Association of one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer 2007;120:2452–8.
[41] Cengiz M, Ozzyalin A, Orkicic AE, et al. The investigation of GSTT1, GSTM1 and SOD polymorphisms in bladder cancer patients. Int Urol Nephrol 2007;39:1043–8.
[42] Murta-Nascimento C, Silverman DT, Kogevinas M, et al. Risk of bladder cancer associated with family history of cancer: do low-penetrance polymorphisms account for the increase in risk. Cancer Epidemiol Biomarkers Prev 2007;16:1595–600.
[44] Zhao H, Lin J, Grossman HB, et al. Dietary isothiocyanates, GSTM1, GSTT1, NAT2 polymorphisms and bladder cancer risk. Int J Cancer 2007;120:2208–13.

[45] Saad AA, O’Connor PJ, Mostafa MH, et al. Glutathione S-transferase M1, T1 and P1 polymorphisms and bladder cancer risk in Egyptians. Int J Biol Markers 2004;20:69–72.

[46] Garcia-Closas M, Malats N, Silverman D, et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 2005;366:649–59.

[47] Karagas MR, Park S, Warren A, et al. Gender, smoking, glutathione-S-transferase variants and bladder cancer incidence: a population-based study. Cancer Lett 2005;219:63–9.

[48] Kellen E, Zeegers M, Paulussen A, et al. Does occupational exposure to PAHs, diesel and aromatic amines interact with smoking and metabolic genetic polymorphisms to increase the risk on bladder cancer? The Belgian case control study on bladder cancer risk. Cancer Lett 2007;245:51–60.

[49] Kim EJ, Jeong P, Quan C, et al. Genotypes of TNF-α, VEGF, hOGG1, GSTM1, and GSTT1: useful determinants for clinical outcome of bladder cancer. Urology 2005;65:70–5.

[50] Sobr RC, Al-Badrani AI, Sharma S, et al. Genetic polymorphisms of CYP2D6, GSTM1, and GSTT1 genes and bladder cancer risk in North India. Cancer Genet CYtogenet 2005;156:68–73.

[51] Srivastava DSL, Mishra DK, Mandhani A, et al. Association of genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer 2004;110:598–604.

[52] Moore LE, Wienczek JK, Bates MN, et al. Investigation of genetic polymorphisms and smoking in a bladder cancer case-control study in Argentina. Cancer Lett 2004;211:199–207.

[53] Srivastava DSL, Kumar A, Mittal B, et al. Polymorphism of GSTM1 and GSTT1 genes in bladder cancer: a study from North India. Arch Toxicol 2004;78:430–4.

[54] Jeong HJ, Kim HJ, Seo SY, et al. Association between glutathione S-transferase M1 and T1 polymorphisms and increased risk for bladder cancer in Korean smokers. Cancer Lett 2005;202:193–9.

[55] Giannakopoulos X, Charalabopoulos K, Baltogiannis D, et al. The role of N-acetyltransferase 2 and glutathione S-transferase on the risk and aggressiveness of bladder cancer. Anticancer Res 2001;21:3801–4.

[56] Lee SJ, Cho SH, Park SK, et al. Combined effect of glutathione S-transferase M1 and T1 genotypes on bladder cancer risk. Cancer Lett 2002;177:173–9.

[57] Aksat D, Ozen H, Ansu N, et al. Glutathione S-transferase M1 gene polymorphism in bladder cancer patients: a marker for invasive bladder cancer. Cancer Genet CYtogenet 2001;125:63–4.

[58] Toruner GA, Akyerli C, Ucar A, et al. Polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) and bladder cancer susceptibility in the Turkish population. Arch Toxicol 2001;75:459–64.

[59] Kim WUNJAE, LEE HLAE, LEE SC, et al. Polymorphisms of N-acetyltransferase 2, glutathione-S-transferase mu and theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis. J Urol 2000;164:209–13.

[60] Schachtenberg E, Lustig M, Berzer R, et al. Gender-specific effects of NAT2 and GSTM1 in bladder cancer. Clin Genet 2000;57:270–7.

[61] Steinhoff C, Franke KH, Golk K, et al. Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma. Arch Toxicol 2000;74:524–5.

[62] Salagovic J, Kalina H, Hrvnak M. The role of human glutathione S-transferases M1 and T1 in individual susceptibility to bladder cancer. Physiol Res 1999;48:465–71.

[63] Abdel-Rahman SA, Anwar WA, Abdel-Aal WE, et al. GSTM1 and GSTT1 genes are potential risk modifiers for bladder cancer. Cancer Detect Prev 1997;22:129–38.

[64] Brockmöller J, Cascorbi I, Kerb R, et al. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, carboxional epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res 1996;56:3915–25.

[65] Anwar WA, Abdel-Rahman SA, El-Zein RA, et al. Genetic polymorphism of GSTM1, CYP2E1 and CYP2D6 in Egyptian bladder cancer patients. Carcinogenesis 1996;17:1923–9.

[66] Anwar WA, Abdel-Rahman SA, El-Zein RA, et al. Genetic polymorphism of GSTM1, CYP2E1 and CYP2D6 in Egyptian bladder cancer patients. Carcinogenesis 1996;17:1923–9.
[91] Gago-Dominguez M, Bell DA, Watson MA, et al. Permanent hair dyes and bladder cancer: risk modification by cytochrome P4501A2 and N-acetyltransferases 1 and 2. Carcinogenesis 2003;24:483–9.

[92] Kim WJ, Kim H, Kim CH, et al. GSTT1-null genotype is a protective factor against bladder cancer. Urology 2002;60:913–8.

[93] Lee SJ, Kang D, Cho SH, et al. Association of genetic polymorphism of glutathione S-transferase M1 and T1 and bladder cancer. J Korean Cancer Assoc 1999;31:548–55.

[94] Salagovic J, Kalina I, Stubna J, et al. Genetic polymorphism of glutathione S-transferases M1 and T1 as a risk factor in lung and bladder cancers. Neoplasma 1997;45:312–7.

[95] Katoh T, Inatomi H, Kim H, et al. Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett 1998;132:147–52.

[96] Kim H, Kim WJ, Lee HL, et al. A case-control study on the effects of the genetic polymorphisms of N-acetyltransferase 2 and glutathione S-transferase mu and theta on the risk of bladder cancer. Korean J Prevent Med 1998;31:275–84.

[97] Kempkes M, Golka K, Resch S, et al. Glutathione S-transferase GSTM1 and GSTT1 null genotypes as potential risk factors for urothelial cancer of the bladder. Arch Toxicol 1996;71:123–6.

[98] Malats N, Real FX. Epidemiology of bladder cancer. Hematol Oncol Clin North Am 2013;27:177–89.

[99] Rodrigues IS, Kuasne H, Losi-Guembarovski R, et al. Evaluation of the influence of polymorphic variants CYP1A1 2B, CYP1B1 2, CYP3A4 1B, GSTM1 0, and GSTT1 0 in PCa. Urol Oncol 2011;29:654–63.

[100] McIlwain CC, Townsend DM, Tew KD, et al. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 2006;25:1639–48.

[101] Listowsky I, Abramovitz M, Homma H, et al. Intracellular binding and transport of hormones and xenobiotics by glutathione-S-transferases. Drug Metab Rev 1988;19:305–18.

[102] Huang W, Shi H, Hou Q, et al. GSTM1 and GSTT1 polymorphisms contribute to renal cell carcinoma risk: evidence from an updated meta-analysis. Sci Rep 2015;5:17971.

[103] Hirschhorn JN, Lohmueller K, Byrne E, et al. A comprehensive review of genetic association studies. Genet Med 2002;4:45–61.

[104] Kellen E, Hemelt M, Broberg K, et al. Pooled analysis and meta-analysis of the glutathione S-transferase P1 Ile105Val polymorphism and bladder cancer: a HuGe-GSEC review. Am J Epidemiol 2007;165:1221–30.