Title
2D perovskite stabilized phase-pure formamidinium perovskite solar cells.

Permalink
https://escholarship.org/uc/item/783736dj

Journal
Nature communications, 9(1)

ISSN
2041-1723

Authors
Lee, Jin-Wook
Dai, Zhenghong
Han, Tae-Hee
et al.

Publication Date
2018-08-01

DOI
10.1038/s41467-018-05454-4

Peer reviewed
2D perovskite stabilized phase-pure formamidinium perovskite solar cells

Jin-Wook Lee¹, Zhenghong Dai¹, Tae-Hee Han¹, Chungseok Choi¹, Sheng-Yung Chang¹, Sung-Joon Lee¹, Nicholas De Marco¹, Hongxiang Zhao¹, Pengyu Sun¹, Yu Huang¹ & Yang Yang¹

Compositional engineering has been used to overcome difficulties in fabricating high-quality phase-pure formamidinium perovskite films together with its ambient instability. However, this comes alongside an undesirable increase in bandgap that sacrifices the device photocurrent. Here we report the fabrication of phase-pure formamidinium-lead tri-iodide perovskite films with excellent optoelectronic quality and stability. Incorporation of 1.67 mol% of 2D phenylethylammonium lead iodide into the precursor solution enables the formation of phase-pure formamidinium perovskite with an order of magnitude enhanced photoluminescence lifetime. The 2D perovskite spontaneously forms at grain boundaries to protect the formamidinium perovskite from moisture and suppress ion migration. A stabilized power conversion efficiency (PCE) of 20.64% (certified stabilized PCE of 19.77%) is achieved with a short-circuit current density exceeding 24 mA cm⁻² and an open-circuit voltage of 1.130 V, corresponding to a loss-in-potential of 0.35 V, and significantly enhanced operational stability.
Tremendous attention has been focused on hybrid perovskites (PVSK) since the first development of the solid-state PVSK solar cell in 20121–4. Rapid progress in power conversion efficiency (PCE) has been achieved via compositional and process engineering. As of 2017, the state-of-the-art PVSK solar cell achieved a certified PCE of 22.7%, which is on par with well-established silicon solar cells5–12.

Typical PVSK absorbers employ 3D ABX\textsubscript{3} structures, where a monovalent ‘A-site’ cation in the cubic-octahedral site bonds with the BX\textsubscript{6} octahedra. Compositional engineering has been considered an important approach to enhance the stability and performance of PVSK solar cells. Important milestones have been achieved through compositional engineering. For example, incorporation of the formamidinium (FA) cation into the ‘A-site’ has enabled the formation of a cubic FAPbI\textsubscript{3} phase with a lower bandgap (E_g) of 1.48 eV, higher absorption coefficient and longer carrier diffusion lengths than methylammonium (MA)-based tetragonal MAPbI\textsubscript{3} ($E_g = 1.57$ eV)9,13. However, FAPbI\textsubscript{3} has poor ambient stability because its non-PVSK hexagonal phase is thermodynamically more favorable than the cubic phase at room temperature. Partial substitution of FA and I with MA and/or Br has enabled fabrication of phase-pure FAPbI\textsubscript{3} with improved performance and stability4. Recently, incorporation of smaller inorganic ‘A’ cations, such as Cs and Rb, has further improved the stability and PCE of the PVSK solar cells with the lowest open-circuit voltage (V_{OC}) deficit of 0.39 V14,15. As a result, typical high efficiency devices nowadays incorporate PVSK with FA, MA, Cs, Rb, and Br having relatively larger E_g than 1.60 eV15,16. However, such compositional engineering has enhanced the V_{OC} and stability at the expense of short-circuit current density (I_{SC}) due to increased E_g. Utilization of pure FAPbI\textsubscript{3} is desired in regards to its lower E_g, which is close to the optimum value for a single junction solar cell suggested by the detailed balance limit17. However, no efficient method has been developed so far to fabricate a high quality phase-pure FAPbI\textsubscript{3} film and device.

Recently, the manipulation of surface energy has been proposed as a means to stabilize metastable PVSK phases such as CsPbI\textsubscript{3} and FAPbI\textsubscript{3}18–20. Swarnkar et al. reported ambient stable α-CsPbI\textsubscript{3} in the form of a colloidal quantum dot, in which the contribution of surface energy significantly increases due to the high surface-to-volume ratio18. Very recently, Fu et al. reported that the cubic FAPbI\textsubscript{3} phase can be stabilized by functionalizing the surface with large-sized organic molecules19. They demonstrated that the functionalized surface contributes to lower formation energy to stabilize the cubic FAPbI\textsubscript{3} phase at room temperature. However, the steady-state PCE was as low as 14.5%. Several attempts have been made to utilize such approach, where impressive improvements in performance and stability have been demonstrated21–23. However, their performance and stability are still relatively poor comparing with those of MAPbI\textsubscript{3} or mixed-cation-halide PVSK solar cells.

Here we report a method to fabricate high-quality stable FAPbI\textsubscript{3} PVSK films using 2D PVSK. Incorporation of 2D pheetylammomium lead iodide (PEA\textsubscript{2}PbI\textsubscript{4}) PVSK into precursor solution enables the formation of phase-pure FAPbI\textsubscript{3} films with a tenfold enhancement in photoluminescence (PL) lifetime. The 2D PVSK is spontaneously formed at the grain boundaries of FAPbI\textsubscript{3} to protect the FAPbI\textsubscript{3} from moisture and assists in charge separation/collection. Thanks to the superior optoelectronic quality, we were able to fabricate a PVSK solar cell with a stabilized efficiency of 20.64% (certified stabilized efficiency of 19.77%). Notably, the PVSK solar cell shows a peak V_{OC} of 1.130 V, corresponding to a loss-in- potential of 0.35 V considering the E_g of 1.48 eV versus 0.39 V for mixed-cation-halide perovskite solar cells15. Furthermore, the device demonstrates significantly enhanced ambient and operational stability.

Results

Effects of 2D perovskite on phase purity of FAPbI\textsubscript{3}. FAPbI\textsubscript{3} films were prepared by the modified adduct method, in which N-methyl-2-pyrrolidone (NMP) was used as a Lewis base26,27. To the PVSK precursor solution, 2D PVSK (PEA\textsubscript{2}PbI\textsubscript{4}) precursors with different molar ratios ranging from 1.25 to 10 mol% were added. The steady-state PL spectra of the films were measured and are shown in Supplementary Fig. 1. As seen in Fig. 1a and Supplementary Fig. 1, we observed no obvious changes in PL peak position until the amount of 2D PVSK reached 10 mol%. With 10 mol% PVSK, the PL peak was blue-shifted by 6 nm. The blueshift of the PL peak might be due to formation of a quasi-3D PVSK, where charge carriers are confined by large potential barrier originated from the 2D PVSK28. Based on this observation, we presume the added 2D PVSK does not result in the formation of the quasi-3D PVSK if it remains below a certain threshold. This threshold was found to be lower than 10 mol%, where this quantity was then optimized based on photovoltaic performance (Fig. 1a and Supplementary Fig. 2). A planar heterojunction architecture consisting of Indium doped SnO\textsubscript{2} (ITO) glass/compact-SnO\textsubscript{2}/PVSK/spiro-MeOTAD/Ag or Au was utilized for construction of PVSK solar cells in this study (cross-sectional scanning electron microscopic (SEM) images of the materials).

Fig. 1 Crystallographic and absorption properties. **a** Peak position for steady-state photoluminescence (PL) spectrum and normalized power conversion efficiency (PCE) of the devices for FAPbI\textsubscript{3} perovskite with different amount of added 2D PEA\textsubscript{2}PbI\textsubscript{4} perovskite. The error bar of the normalized PCE indicates standard deviation of the PCEs. At least 10 devices were fabricated for each condition. **b** X-ray diffraction patterns. **c** absorption and normalized PL spectra of bare FAPbI\textsubscript{3} and FAPbI\textsubscript{3} with 1.67 mol% PEA\textsubscript{2}PbI\textsubscript{4} 2D perovskite. Inset of **c** shows onset region of the absorption spectra with linear approximation (solid lines).
Photoluminescence properties and photovoltaic performance. Steady-state and time-resolved PL profiles were investigated in...
Fig. 2a, b. The steady-state PL intensity was largely enhanced more than five times from 4.3 x 10^3 to 2.3 x 10^6 with addition of 1.67 mol% PEA_2PbI_4 into FAPbI_3 film (Fig. 2a). The large enhancement of PL intensity was attributed to a significantly elongated PL lifetime as seen in Fig. 2b. The time resolved PL profiles were fitted to exponential decay, in which bi- and trinolecular decay models were used for the bare and 2D PVSK incorporated PVSK films, respectively (Supplementary Table 1). The relatively fast decay component (τ_1 around 3 ns) was assigned to charge carrier trapping induced by trap states formed due to the structural disorder such as vacancy or interstitial defects while much slower components (τ_2, τ_3) were assigned to free carrier radiative recombination. With addition of 1.67 mol% 2D PVSK, proportion of the fast decay component (τ_1) was decreased (from 51.8% to 46.5%) while τ_2 significantly elongated from 78.5 ns to 148.7 ns, which indicates reduced defect density and enhanced charge carrier lifetime. We attributed such improvements to enhanced phase purity and crystallinity of FAPbI_3 as observed from XRD measurements (Fig. 1b), which decreases the structural disorder at grain interiors and/or boundaries. Moreover, a new decay component (τ_3) with a significantly long lifetime (>1 μs) appeared after addition of the 2D PVSK, which is likely related to the added 2D PVSK. As a result, the average PL lifetime was enhanced by almost one order of magnitude from 39.4 ns to 376.9 ns while τ_2 was decreased (from 78.5 ns to 148.7 ns), which indicates reduced defect density and enhanced charge carrier lifetime. We attributed such improvements to enhanced phase purity and crystallinity of FAPbI_3 as observed from XRD measurements (Fig. 1b), which decreases the structural disorder at grain interiors and/or boundaries.

Moisture stability and TEM analysis. Under ambient conditions, a cubic FAPbI_3 PVSK phase is sensitive to degradation in photovoltaic performance. The phase transformation is in part accelerated under high relative humidity. To evaluate the effects of 2D PVSK incorporation on phase stability, we investigated changes in absorbance of the film under relative humidity (RH) of 80 ± 5%. Figure 3a shows absorbance spectra of the FAPbI_3 films with and without 2D PVSK. Figure 3b demonstrates the absorbance (at 600 nm) of the FAPbI_3 films with and without 2D PVSK as a function of exposure time (individual absorption spectra can be found in Supplementary Fig. 20). The absorbance of the bare FAPbI_3 rapidly degraded during 24 h, while FAPbI_3 films with 2D PVSK did not show noticeable degradation within 24 h. With addition of 2 mol% Cs, the film also remained stable after 24 h. The color change of the bare FAPbI_3 film under high RH is due to its transformation to the δ-phase as can be seen in XRD spectra in Supplementary Fig. 21a whereas no detectable change in color for the films with 2D PVSK is correlated with their neat XRD spectra without the δ-phase (Supplementary Figs. 21b, c). The enhanced phase stability under high RH implies that the possible ingestion pathway of moisture in the PVSK film is passivated. Previously, we demonstrated grain boundary engineering techniques using the adduct approach, in which the additives had precipitated at grain boundaries if not incorporated into the lattice of PVSK. We supposed that grain boundaries within the film, which have been reported to be ingestion pathways for moisture, might be passivated by the added 2D PVSK.

Indeed, the vertically aligned 2D PVSK was sparsely observed from SEM images in Supplementary Fig. 10b, c with addition of 2D PVSK (see also Supplementary Fig. 22 and Supplementary Note 4 for additional discussion). However, the enhanced moisture stability throughout the whole film implies that the 2D PVSK probably exist along the grain boundaries. To confirm our assumption, transmission electron microscopic (TEM) images of the FAPbI_3 film with 2D PVSK was analyzed in Fig. 3c–e. The inset of Fig. 3c shows a chunk of the polycrystalline film scratched off from the substrate. Several hundreds of nanometer sized grains and their boundaries are clearly visible from the image, and from which one of the grains is magnified in Fig. 3c. The region (1) in Fig. 3c, which is the grain interior, was...
PVSK shows 2D PVSK formation at the grain boundaries of the 3D perovskite and FA0.98Cs0.02PbI3 with 2D perovskite exposed to relative humidity (RH) of 80 ± 5% at 20 ± 2 °C for different time. Inset of magnified (Supplementary Fig. 24). At grain boundary regions, relatively was further conformed by elemental distribution (EDS) analysis (Supplementary Fig. 24). At grain boundary regions, relatively larger amounts of carbon and nitrogen were detected, which could be due to presence of phenylethylammonium cation in the 2D PVSK.

Band structure and electrical properties. A schematic in Fig. 4a shows 2D PVSK formation at the grain boundaries of the 3D PVSK film. Since the 2D PEA2PbI4 PVSK with aromatic rings and longer alkyl chains is expected to be more resistant to moisture, it protects the defective grain boundaries of 3D PVSK, resulting in significantly enhanced moisture stability of the films. Regardless of the improved stability, however, one can expect degraded electronic properties of the film due to the poor charge carrier mobility of the 2D PVSK. We investigated the band structure of FA0.98Cs0.02PbI3 (with 1.67 mol% of 2D PVSK) and PEA2PbI4 PVSK, which is illustrated in Fig. 4b. The valence band maximum was measured using ultraviolet photoelectron spectroscopy (UPS, Supplementary Fig. 25), while the E_g was determined from Tauc plots (Supplementary Fig. 26). As seen in Fig. 4b, FA0.98Cs0.02PbI3 and PEA2PbI4 PVSK shows type I band alignment. Such band alignment resembles the alignment between PVSK and PbI2 formed at grain boundaries, which was found to reduce charge recombination and assist in charge separation/collection40,41. Thus, analogous advantages of 2D PVSK at grain boundaries can be expected. Conductive atomic force microscopy (c-AFM) was performed in Fig. 4c–f to see spatially resolved electrical properties of the films. Under ambient light conditions (Fig. 4c, d), current flow in the PVSK film with 2D PVSK was higher at/near the grain boundaries while relatively uniform current flow was observed in the bare FAPbI3 film. With light illumination (Fig. 4e, f), the current flow was further enhanced at/near the grain boundaries with 2D PVSK whereas current flow in bare FAPbI3 film was uniformly increased, which indicates charge separation and collection of photo-generated electrons is facilitated more so at grain boundaries with 2D PVSK. As suggested for PbI2, thin 2D PVSK regions at grain boundaries might suffer downward band bending under illumination (dashed line in Fig. 4b) where photo-generated electrons are transferred from grain interiors. Due to the high-potential barrier to the holes, charge recombination will be reduced, which might be the origin of the superior PL lifetime and photovoltaic performance with 2D PVSK.

Ambient and operational stability. Finally, the stability of the control and target devices was compared. Figure 5a demonstrates the changes in PCE of the unencapsulated devices stored in a desiccator (relative humidity lower than 30%), evolution of an AM1.5 solar spectrum, and ambient light conditions (RH 80% at 20 ± 2 °C). As seen, the PCE of the target device (FA0.98Cs0.02PbI3 and Cs2PEA2PbI4, respectively) was significantly enhanced relative to the control device (FA0.98Cs0.02PbI3) due to the presence of 2D PVSK at grain boundaries. As a result, the target device exhibited improved stability over extended time compared to the control device.
Supplementary Fig. 27). While the control device degraded by 29% for 1392 h, the target device maintained 98% of its initial efficiency during this time. The operational stability of the devices was also compared by maximum power point (MPP) tracking under 1 sun illumination in Fig. 5b. Without encapsulation, the PCE of the control device rapidly degraded by 68% during 450 min whereas that of target device was relatively less (20%) during the time. We performed 500 h of light exposure test with the encapsulated control (bare FAPbI3 device) and target devices (w/ 1.67 mol% 2D PVSK). The encapsulated devices were exposed to ca. 0.9 sun (90 ± 5 mW cm−2) under open-circuit condition, of which the steady-state PCE was periodically measured for different exposure time. As seen in Fig. 5c, both of the devices showed a rapid initial decay in PCE followed by slower decay with an almost linear profile, which is in agreement with previous reports42. After 500 h of exposure, the control device degraded to ca. 52.3% of its initial PCE whereas the target device maintained 72.3% of the initial PCE, indicating enhanced stability with addition of 2D PVSK. We could extract tentative T80 (time at which PCE of the device decays to 80% of initial PCE) for the devices by fitting of the post-burn-in region in which the PCE of the device shows an almost linear decay profile (after 48 h). The T80 for control and target devices were calculated to be 592 h and 1362 h, respectively. This indicates the stability of the device was significantly improved with addition of 2D PVSK. We also performed MPP tracking of the encapsulated target device under 1 sun (100 mW cm−2) illumination in Supplementary Fig. 28. A total of 18.7% of initial PCE was degraded for 130 h of operation, which is relatively slower compared to the device maintained at open-circuit condition. This is correlated with previous studies that attributed the faster degradation under open-circuit condition to larger number of photo-generated charge carriers recombining within the device43. Under operational condition with abundant photo-generated charges and built-in electric field, the major factors causing the degradation of the devices might be the highly mobile and reactive charged defects (ions) and/or trapped charge carriers associated with it42,44. We suppose that migration of the charged defects or ions is possibly suppressed by 2D PVSK at grain boundaries. The temperature-dependent conductivity (σ) measurement of the lateral devices was performed to evaluate the activation energy for the ion migration (Fig. 6). The activation energy (Ea) for the migration can be determined according to the Nernst-Einstein relation42,

\[
\sigma(T) = \sigma_0 \exp \left(\frac{E_a}{kT} \right),
\]

where k is Boltzmann constant, \(\sigma_0\) is a constant. Inset of Fig. 6a describes the structure of the lateral devices. With bare FAPbI3 PVSK, exponential enhancement in conductivity was clearly identified at around 130 K (Fig. 6a), which is attributed to contribution of ions. The \(E_a\) for bare FAPbI3 film was calculated to be 0.16 eV, indicating significant contribution of activated ions at room temperature, which might cause degradation of the material and device under operational condition with built-in electric field. The pronounced current–voltage hysteresis behavior was observed even at very low temperature (180 K, Fig. 6c). In case of the PVSK film with 2D PVSK, the film did not show noticeable enhancement in conductivity with increased temperature; although, the overall conductivity was relatively lower than the bare FAPbI3 film (Fig. 6c). Even with moderate light illumination, it does not show the indicative of activated ions. As a result, the current–voltage curve did not show any hysteresis behavior (Fig. 6d). As the grain boundaries of 3D perovskite were reported to be a major pathway for the migration of ions39, passivating the grain boundaries by incorporation of the ion-migration-immune 2D PVSK likely suppressed overall ion migration in the target device45. In addition, the improved phase purity of the film might also partially contribute to the suppressed ion migration because the secondary phase can generate defect sites that can act as an additional pathway for ion migration. We believe the suppressed
ion migration contributes to enhanced operational stability of the target device.

Discussion

We demonstrated a reproducible way to fabricate phase-pure formamidinium tri-iode PVSK with high-optoelectronic quality and stability by incorporating 2D PVSK. The large phenylethylammonium molecules from 2D PVSK precursors interact with FAPbI₃ crystals to facilitate formation of the cubic PVSK phase during crystallization, which subsequently functionalize the grain boundaries after completion of the crystallization. The resulting phase-pure PVSK film has an identical E_g (1.48 eV) to that of pure FAPbI₃ and an order of magnitude enhanced PL lifetime. Average PCE of 20.05 ± 0.45% over 74 devices and the highest stabilized PCE of 20.64% (certified stabilized PCE of 19.77%) was achieved. Regardless of its low E_g, the PVSK solar cell showed the peak V_{OC} of 1.130 V, corresponding to the lowest loss-in-potential of 0.35 V among all the reported PVSK solar cells. Owing to the functionalized grain boundaries by 2D PVSK, the phase stability of the film under high RH significantly improved and migration of ions (or charged defects) was suppressed, resulting in significantly improved ambient and operational stability of the device. We believe our approach to utilize spontaneously formed grain boundary 2D PVSK will provide important insights for the research community to design PVSK materials to achieve record PCEs accompanied by high stability and longevity.

Methods

Synthesis of phenylethylammonium iodide. In a typical synthesis, 4.8 g of phenylethylamine (39.6 mmol, Aldrich, >99%) was dissolved in 15 mL of ethanol and placed in iced bath. Under vigorous stirring, 10.8 g of hydroiodic acid (57 wt% in H₂O, 48.1 mmol, Sigma-Aldrich, 99.99%, contains no stabilizer) was slowly added to the solution. The solution was stirred overnight to ensure complete reaction, which was followed by removal of the solvent by a rotary evaporator. The resulting solid was washed with diethyl ether several times until the color is changed to white. The white solid was further purified by recrystallization in mixed solvent of methanol and diethyl ether. Finally, white plate-like solid was filtered and dried under vacuum (yield around 90%).

Device fabrication. Indium doped tin oxide (ITO) glass was cleaned with successive sonication in detergent, deionized (DI) water, acetone and 2-propanol for 15 min, respectively. The cleaned substrates were further treated with UV-ozone to remove the organic residual and enhance the wettability. A total of 30 mM SnCl₂·2H₂O (Aldrich, >99.995%) solution was prepared in ethanol (anhydrous, Decon Laboratories Inc.), which was filtered by 0.2 μm syringe filter before use. To form a SnO₂ layer, the solution was spin-coated on the cleaned substrate at 3000 rpm for 30 s, which was heat-treated at 150 °C for 30 min. After cooling down to room temperature, the spin-coating process was repeated one more time, which was followed by annealing at 150 °C for 5 min and 180 °C for 1 h. The SnO₂ coated ITO glass was further treated with UV-ozone before spin-coating of PVSK solution. The PVSK layer was prepared by the modified adduct method. The bare FAPbI₃ layer was formed from the PVSK solution containing equimolar amount of HC(NH₂)₂I (FAI, Dyesol), PbI₂ (TCI, 99.99%) and N-Methyl-2-pyrrolidone (NMP, Sigma-Aldrich, >99.8%). Typically, 172 mg of FAI, 461 mg of PbI₂ and 99 mg of NMP were added to 600 mg of DMF. For the 2D PVSK (PEA₂PbI₄) and Cs incorporated PVSK, corresponding amount of FAI was replaced with PEAI and CsI. For example, FAPbI₃ with 1.67 mol% PEAI, PbI₂, PVSK was formed from the precursor solution containing 166.4 mg of FAI, 8.2 mg of phenylethylammonium...
iodide (PEAI), 453.4 mg of PbI$_2$ and 97.4 mg of NMP in 600 mg of DMF. With 2 mol% of Cs, the precursor solution was prepared by mixing 163.0 mg of FAI, 8.2 mg of PEAI, 5.0 mg of Cd (Alfa Aesar, 99.999%), 453.4 mg of PbI$_2$ and 97.4 mg of NMP in 600 mg. For the best performing devices in Fig. 2d, the amount of DMF was adjusted to 350 mg. Spin-coating of PVSK and hole transporting layer was performed in a glove box filled with dry air. The PVSK solution was spin-coated at 4000 rpm for 20 s where 0.15 mL of diethyl ether (anhydrous, >99.0%, contains BHT as stabilizer, Sigma-Aldrich) was dropped after 10 s on the spinning substrate. The resulting transparent aduct film was heat-treated at 100 °C for 1 min followed by 150 °C for 10 min. (for the best performing target device, the annealing condition was adjusted to 80 °C 1 min followed by 150 °C for 20 min) The spiro-MeOTAD solution was prepared by dissolving 85.8 mg of spiro-MeOTAD (Lumtec) in 1 mL of chlorobenzene (anhydrous, 99.8%, Sigma-Aldrich) which was doped by 33.8 μL of 4-tert-butylypyridine (96%, Aldrich) and 19.3 μL of Li-TFSI (99.95%, Aldrich, 520 mg mL$^{-1}$ in acetonitrile) solution. The spiro-MeOTAD solution was spin-coated on the PVSK layer at 3000 rpm for 20 s where 0.15 mL of diethyl ether (anhydrous, >99.0%, contains BHT as stabilizer, Sigma-Aldrich) was dropped after 10 s on the spinning substrate. The resulting transparent aduct film was heat-treated at 100 °C for 1 min followed by 150 °C for 10 min. (for the best performing target device, the annealing condition was adjusted to 80 °C 1 min followed by 150 °C for 20 min) The spiro-MeOTAD solution was prepared by dissolving 85.8 mg of spiro-MeOTAD (Lumtec) in 1 mL of chlorobenzene (anhydrous, 99.8%, Sigma-Aldrich) which was doped by 33.8 μL of 4-tert-butylypyridine (96%, Aldrich) and 19.3 μL of Li-TFSI (99.95%, Aldrich, 520 mg mL$^{-1}$ in acetonitrile) solution. The spiro-MeOTAD solution was spin-coated on the PVSK layer at 3000 rpm for 20 s by dropping 17 μL of the solution on the spinning substrate. On top of the spiro-MeOTAD layer, ca. 100 nm-thick silver or gold layer was thermally evaporated at 0.5 Ås$^{-1}$ to be used as an electrode.

Material characterization. The PVSK layer was coated on a SnO$_2$ coated ITO substrate for the measurements. UV-vis absorption spectra were recorded by U-4100 spectrophotometer (Hitachi) equipped with integrating sphere. The monochromatic light was incident to the substrate side. X-ray diffraction (XRD) patterns were obtained by X-ray diffractometer (PANalytical) with Cu k$_\alpha$ radiation at a scan rate of 4° min$^{-1}$. Surface and cross-sectional morphology of the films and devices were investigated by scanning electron microscopy (SEM, Nova Nano 230). For the cross-sectional image, cross-sectional surface of the sample was coated with ca. 1 nm-thick gold using sputter to enhance the conductivity. Transmission electron microscopic (TEM) analysis was performed by Titan Krios (FEI). The PVSK film was scratched off from the substrate and dispersed in toluene by sonication for 10 min, which was dropped on an aluminium grid. Accelerating voltage of 300 kV was used for the measurement. Steady-state photoluminescence (PL) signal was analyzed by a Horiba Jobin Yvon system. A 640 nm monochromatic laser was used as an excitation fluorescence source. Time resolved PL decay profiles were obtained using a Picoharp 300 with time-correlated single-photon counting capabilities. The films were excited by a 640 nm pulse laser with a repetition frequency of 100 kHz provided by a picosecond laser diode head (PLD 800R, PicQuant). The energy density of the excitation light was ca. 1.4 nJ cm$^{-2}$, in which carrier annihilation and non-geminate recombination are negligible34. Ultraviolet photoelectron spectroscopic (UPS) analysis was carried out using Kratos Ultraviolet photoelectron spectrometer. He I (21.22 eV) source was used as an excitation source. The PVSK films were coated on ITO substrate and grounded using silver paste to avoid the charging during the measurement. Conductive atomic force microscopic (AFM) measurement was performed by Bruker Dimension Icon Scanning Probe Microscope equipped with TUNA application module. The TUNA module provides ultra-high tunneling current sensitivity (<1 pA) with high-lateral resolution. Antimony doped Si tip (0.01–0.025 Ohm-cm) coated with 20 nm Pt-Ir was used as a probe. To avoid the electrically driven degradation during the measurement, low bias voltage (100 mV) was applied. The measurement was carried out under either room right or low intensity light illumination provided by AFM setup. The temperature-dependent conductivity measurement was carried out using a commercial probe station (Lakeshore, TTP4) in which temperature of the device was controlled by thermoelectric plate and flow of liquid nitrogen. The electrical measurement was conducted with a source/measurement unit (Agilent, B2902A).

Device characterization. Current density–voltage (J–V) curves of the devices were measured using Keithley 2401 source meter under simulated one sun illumination (AM 1.5G, 100 mW cm$^{-2}$) in ambient atmosphere. The one sun illumination was generated from Oriel Sol3A with class AAA solar simulator (Newport), in which light intensity was calibrated by NREL-certified Si photodiode equipped with KG-5 filter. Typically, the J–V curves were recorded at 0.1 V s$^{-1}$ (between 1.2 V and 0.1 V with 65 data points and 0.2 s of delay time per point). During the measurement, the device was covered with metal aperture (0.100 cm2) to define the active area. All the devices were measured without pre-conditioning such as light-soaking and applied bias voltage. Steady-state power conversion efficiency was calculated by measuring stabilized photocurrent density under constant bias voltage. The external quantum efficiency (EQE) was measured using specially designed system (Enli tech) under AC mode (frequency = 133 Hz) without bias light. For electro-luminescence measurement, a Keithley 2400 source meter and silicon photodiode (Hamamatsu S1333-14, Japan) were used to measure Current–voltage–luminance characteristics of PVSK solar cells. Electroluminescence spectra were recorded by Horiba Jobin Yvon system, and used to calculate radiance and external quantum efficiency of PVSK solar cells. All the devices were assumed as Lambertian emitter in the calculation.

Stability test. Moisture stability of the films was tested by exposing the PVSK films under relative humidity of 80 ± 5% and room light. Absorbance of the films was measured every 2 h while XRD of the films were recorded every 12 h. For the devices, ex-situ test was conducted by storing the devices in desiccator (relative...
humidity, RH <30%) under dark condition. The device was taken out and mea-
sured in ambient condition. For operational stability, maximum power point
(MPP) tracking and continuous light exposure under open-circuit condition
were performed in ambient condition (RH around 50%, T around 40 °C). For the MPP
tracking, the photocurrent density was monitored while the devices were biased at
MPP under 1 sun illumination. For light exposure under open-circuit condition, the
encapsulated devices were exposed to ca. 0.9 sun (90 ± 5 mW cm−2) generated by halogen
lamps under open-circuit condition, of which steady-state PCE was periodically
measured with different exposure time under 1 sun illumination. The encapsulation of the
device was performed inside the glove box filled with nitrogen by using an UV-curable adhesive
and a piece of glass. The glass substrate was superimposed on active layer and fixed with the UV-curable adhesive.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files.

Received: 14 January 2018 Accepted: 3 July 2018
Published online: 01 August 2018

References

1. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron
thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
2. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snailt, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide
perovskites. Science 338, 643–647 (2012).
3. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide
perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
4. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).
5. Poursafa, P. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).
6. Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–998 (2014).
7. Lee, J.-W., Seol, D. J., Cho, A. N. & Park, N. G. High efficiency perovskite solar cells based on the black polymorph of H2(HN(CH3)2)2PbI2. Adv. Mater. 26, 4991–4998 (2014).
8. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-
performance solar cells. Nature 517, 476–480 (2015).
9. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).
10. Yang, W. et al. High-performance ultrathin perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).
11. Yang, W. et al. Iodide management in formamidinium–lead–halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).
12. National renewable energy laboratory, Best research-cell ef-
ficiency perovskite solar cells. Adv. Energy Mater. 7, 1701038 (2017).
13. Lee, J.-W., Kim, H.-S. & Park, N.-G. Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016).
14. Lee, J.-W. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018).
15. Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2653 (2016).
16. Saitaun, M. L., Abdelhady, A. L., Maculan, G. & Bakr, O. M. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. Chem. Commun. 51, 17658–17661 (2015).
17. Foley, B. J. et al. Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives. J. Mater. Chem. 5, 113–123 (2017).
18. Nagabhushana, G., Shivaramaiah, R. & Navrotsky, A. Direct calorimetric verification of thermodynamic stability of lead halide hybrid perovskites. Proc. Natl Acad. Sci. USA 113, 7717–7721 (2016).
19. Stoumpos, C. C. et al. High members of the 2D Ruddlesden–Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem. 2, 427–440 (2017).
20. Seol, D. J., Lee, J.-W. & Park, N. G. On the role of interfaces in planar-
structured H2(NH3)2PbI2 perovskite solar cells. Chem. Sustain Sci. 8, 2414–2419 (2015).
21. Son, D.-Y. et al. Self-formed grain boundary heating layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nature Energy 1, 16081 (2016).
22. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).
23. Ham, S., Choi, Y. J., Lee, J.-W., Park, N.-G. & Kim, D. Impact of excess CH3NH3I on free carrier dynamics in high-performance nonstoichiometric perovskites. J. Phys. Chem. C 131, 3134–3148 (2017).
24. Agiorgousis, M. L., Sun, Y.-Y., Zeng, H. & Zhang, S. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136, 14570–14575 (2014).
25. Lee, J.-W. et al. A bifunctional Lewis base additive for microscopic homogeneity in perovskite solar cells. Chem. Sci. 3, 290–302 (2017).
26. Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016).
27. Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).
28. Shih, M.-C. et al. Spatially resolved imaging on photocarrier generations and band alignments at perovskite/PbI2 heterointerfaces of perovskite solar cells by light-modulated scanning tunneling microscopy. Nano Lett. 17, 1154–1160 (2017).
29. Domenkshi, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017).
30. Domenkshi, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).
31. Ahrn, N. et al. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016).
32. Xiao, X. et al. Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 3, 684–688 (2018).

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (AFOSR, Grant No. FA9550-15-1-0333), Office of Naval Research (ONR, Grant No. N00141-17-1-2484), National Science Foundation (NSF, Grant No. ECCS-EPMD-1509955), and Horizon PV.

Author contributions

J.-W.L. conceived an idea and led overall project under supervision of Y.-Y. J.-W.L. and Z.D.G. designed the materials. T.-H.H. assisted the device fabrication and performed EL measurement. C.C. and Y.H. carried out TEM character-ization. S.-Y.C. helped UPS measurement. S.L. performed temperature-dependent conductivity measurement. H.Z. synthesized the PEAI. N.D.M. and P.S.
commented on the manuscript. All the authors discussed and commented on the manuscript.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-05454-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.