Light- and Temperature-Assisted Spin State Annealing: Accessing the Hidden Multistability

Yan-Cong Chen, Yan Meng, Jiří Tuček, Yan-Jie Dong, Xiao-Wei Song, Guo-Zhang Huang, Chuan-Lei Zhang, Zhao-Ping Ni, Radek Zbořil, Ming-Liang Tong

Submitted date: 22/11/2019 • Posted date: 29/11/2019
Licence: CC BY-NC-ND 4.0
Citation information: Chen, Yan-Cong; Meng, Yan; Tuček, Jiří; Dong, Yan-Jie; Song, Xiao-Wei; Huang, Guo-Zhang; et al. (2019): Light- and Temperature-Assisted Spin State Annealing: Accessing the Hidden Multistability. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.10736867.v1

Among the responsive multistable materials, spin crossover (SCO) systems are of particular interest for stabilizing multiple spin states with various stimulus inputs and physical outputs. Here in a 2D Hofmann-type coordination polymer \([\text{Fe(isoq)}_2\{\text{Au(CN)}_2\}_2]\) (isoq = isoquinoline), hidden multistability of the spin state is accessed by introducing an medium-temperature annealing after a light/temperature stimulation. With the combined effort of magnetic, crystallographic and Mössbauer spectral investigation, these distinct spin states are identified and the light- and temperature-assisted transition pathways are clarified. Such excitation-relaxation and trapping-relaxation joint mechanisms, as ingenious interplays between the kinetic and thermodynamic effects, uncover hidden possibilities for the discovery of multistable materials and the development of multistate intelligent devices.
File	Size	Action
Text.pdf	1.06 MiB	view on ChemRxiv, download file
SI.pdf	2.67 MiB	view on ChemRxiv, download file