Evaluation of the corrosion of a reinforced concrete designed for
the construction of an intermediate-level radioactive waste
disposal facility

G.S. Duffó a, b, c, E.A. Arva c, F.M. Schulz a and D.R. Vazquez c *

(a) Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
(b) Universidad Nacional de Gral. San Martín, Argentina.
(c) Comisión Nacional de Energía Atómica, Departamento de Materiales, Av. Gral. Paz 1499, San Martín (1650). Argentina.

Abstract

The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of SAM/CONAMET 2011, Rosario, Argentina. Open access under CC BY-NC-ND license.

Keywords: Corrosion, Radioactive Waste, High-Performance Concrete.

* Corresponding author. Tel.: +54-011-6772-7347
E-mail address: dvazquez@cnea.gov.ar.
1. Introduction

Since 1950, the National Atomic Energy Commission (CNEA) of the Argentine Republic works on the development of nuclear energy applications for peaceful purposes. The tasks include the operation of important facilities in charge of the production of radioisotopes for medical and industrial applications and the performance of tasks in connection with the nuclear fuel cycle, manufacturing of fuel elements and the operation of two nuclear power plants. As a result of such activities performed in the nuclear field by CNEA and other private and public entities, various types of radioactive waste are being produced. The CNEA is the implementing authority to perform all activities related to the radioactive waste management and sets up the Radioactive Waste Management National Program (PNGRR), National Report, 2003. In order to achieve its objectives the PNGRR is in charge of the adoption of the most appropriate technological solution for the management of such wastes and the scientific-technological support. At the end of the 1990s, the CNEA started an extended research programme which final purpose was to design a facility for the disposal of Intermediate Level Radioactive Waste (ILRW) and to study the long-term behaviour of the materials used for its construction. ILRW is originated from operation and maintenance activities of the two Argentine Nuclear Power Plants (Atucha I and Embalse), and consist mainly of mechanical filters from the primary circuit of the reactor and by spent ionic exchange resin beds. In this context, a near-surface monolithic repository based on those in operation in El Cabril, Spain, is foreseen. The conceptual design of this repository is the use of multiple, redundant and independent barriers, and the model considers a 300 years post-closure institutional control. The barriers which will be used in the near-surface repository include: waste forms and metallic disposal containers (waste will be immobilized in cement matrices and packed in 200 litre drums or in special concrete containers), backfill and buffer materials, vaults and cover and geological media. The vaults and covers are major components of the engineered barriers, and due to the fact that these barriers are made of reinforced concrete, its durability is an important aspect regarding the integrity of the facility. So, the research and development are focused to design a concrete of 300 years durability and to establish the methodology to determine its durability, through the knowledge of its performance in the disposal conditions.

This work presents laboratory investigations performed on concrete specimens made with a formulation candidate to be used in the construction of the ILRW disposal facility in order to predict the service life of concrete vaults and cells from data obtained with available techniques. In addition, a concrete prototype was built and instrumented with sensors specially designed, in order to monitor the evolution of the rebar state in real conditions. Finally, a comparison between laboratory and field data was done.

2. Experimental technique

The study was performed using concrete specimens containing rebar segments. The specimens are 25 cm high and have a square section of 15 cm per side. Each specimen contained 3 rebar segments (in the as-received condition, without traces of rusting) of the DNA-420 type, two straight ones and one containing two welds. The rebars are 10 mm diameter and present an exposed area of 30 cm². The chemical composition of the reinforcing bars used in the study is as follows: C, 0.41%; Mn, 0.73%; Cu, 0.27%; Ni, 0.13%; Si, 0.28%; P, <0.01%; S, 0.02%; N, 0.008%, Fe, balance. The rebar segments were positioned in such a way that a 3 cm concrete cover was achieved. Each specimen contains a metal-metal oxide (MMO) internal reference electrode (IRE) as reported by Duffó et al., 2009 and Duffó et al., 2010, with a diameter of 3 mm and 50 mm long, located in its centre.

The concrete used in this study was Cement CAH40 (SR) IRAM 50000, which was selected based, among other characteristics, on the mechanical properties and workability. The composition of the concrete used is as follows: w/c, 0.37; sand/cement, 1.95; coarse aggregate/cement, 2.39. Two specimens were cast and, after a
curing period of 28 days at 100% relative humidity, the specimens were exposed to the laboratory atmosphere, with temperatures between 20°C and 25°C and relative humidity between 60 and 70%.

The electrochemical parameters normally used to characterise the corrosion behaviour of reinforcing steel in concrete were monitored periodically during approximately 1600 days (about 4.4 years). These parameters include the corrosion potential (Ecorr), the corrosion rate (C.R.) obtained from polarisation resistance (Rp) measurements, and the electrical resistivity of concrete (ρ) determined from resistance measurements between the straight rebar segments and the IRE.

The concrete electrical resistance (Rs) was measured using an earth ohm-meter Metrel Smarctec MI 2124. These values were used to estimate the electrical resistivity of the concrete as ρ=k.Rs, where k is the geometric cell constant measured experimentally with solutions of known electrical resistivity. The Ecorr were measured using a high input impedance multimeter (Brymen BM815) connected to the IRE. The Ecorr were then corrected against a copper/saturated copper sulphate reference electrode (SCE) Duffó et al., 2009 and Duffó et al., 2010. The results were evaluated according to ASTM standard C-876. Rp was evaluated as ∆V/∆I according to Stern and Geary, 1957, from potential sweeps within Ecorr ± 0.01 V at a scan rate of 10-4 V/s, using a Gamry CMS-100 potenciostat-galvanostat. The results were corrected to compensate the I.Rs drop error. Rp values were used to calculate the rebar corrosion current density (Icorr) according to the Stern-Geary relationship as follows: Icorr=B/Rp, where B values should take into account whether the steel segments are in the active or passive state. Andrade et al., 1990, reported typical values for steel embedded in mortar.

The carbonation rate was determined after 3.4 and 5.7 years exposure using cylindrical concrete specimens (10 cm diameter and 10 cm height) by the phenolphthalein test. These specimens were exposed to laboratory environment, where the temperature was 24.4 ± 2.9°C and the relative humidity was 50 ± 10%.

An “L shape” reinforced concrete wall (named “prototype”) was built with the concrete previously described, using a pre-welded cage made with 10 mm diameter rebars. The cover concrete of this prototype is 50 mm. This wall simulates the corner of the radioactive waste disposal cells, and was built on the Centro Atómico Constituyentes grounds, of the CNEA, where the external temperature was measured on a periodic basis. The compressive strength of the concrete, measured at 28 days, was 52.1±1.0 MPa. Three corrosion sensors, specially developed in the laboratory by Duffó and Farina, 2009, were embedded in the prototype in order to monitor the evolution of several parameters associated with the corrosion process along time: the temperature inside the structure, the corrosion potential and the corrosion rate of the reinforcing bars, the electrical resistivity of concrete and the availability of oxygen. The measurements started 28 days after the concrete was discharged into formwork. This monitoring has been followed for approximately 1200 days (about 3.3 years), and it will continue for the next years.

3. Results and discussion

The carbonation depth after 3.4 years exposure was 5.7 mm and after 5.7 years was 6.8 mm. These values give a carbonation rate k (in the equation x=k.t^{0.5}, being x the carbonation depth and t the exposure time), of 3.09 mm.years^{-0.5} in the first case, and 2.75 mm.years^{-0.5} in the second one. Figure 1a shows the values of the carbonation rate obtained in the present work compared with those obtained by Andrade et al., 2006, for the same type of application. It can be seen that, up to the moment, the values obtained in the present case are higher than those measured in the “El Cabril” facility. However, the concrete under study will fulfill the requirements for the expected life-time, as the carbonation depth will be about 48 mm after 300 years (assuming a constant value of the carbonation rate equal to that obtained after 5.7 years exposure) and the design of the containers and cells foresee a concrete cover of 50 mm.

Figure 1b shows the evolution of the electrical resistivity of the concrete exposed to the laboratory environment. Two measurements were performed on each specimen (A and B), yielding a total of 4 data. It can be seen that the electrical resistivity continuously increases with the exposure time from 2x10^5 ohm.cm,
being this fact an indication of the continuous concrete hydration process. The apparent saturation of the resistivity value at about 5x10^5 ohm.cm is due to the maximum value that can be measured with the available device.

Figure 1c shows the evolution of the corrosion potentials of the straight reinforcing bars as a function of time (up to 1600 days). It can be seen that the corrosion potential has a trend to increase along time and, in all cases, the value is more positive than -0.2 V_{SCE} that, according to ASTM C-876 standard, reveals a passive state of the steel.

The corrosion rate of the straight rebars embedded in concrete and exposed to the laboratory environment remained almost constant and close to 0.8 µm/year after 1600 days exposure (Figure 1d). Again, these results are a clear indication that steel presents a passive state. As for the effect of welds on the reinforcing bars, it was found that no differences between the corrosion rate measured on welded and straight (un-welded) rebars were detected; so the presence of welds does not modify corrosion susceptibility of rebars.

Figure 2a shows the evolution of the temperature measured inside the prototype as a function of time. The figure also includes the evolution of the average external temperature measured in the same place where the prototype is installed. It can be seen that the internal temperature is always higher than the external one, being the difference higher during the summer periods, when the difference reaches almost 15 °C.

Figure 2b shows the evolution of the concrete electrical resistivity as a function of time. The evolution of the internal temperature is also included (in this case, for the sake of simplicity, only the values provided by the sensor 1 are included). It should be noted that the progression of the hydration is well reflected by the increase in electrical resistivity. The impact of the cycle of temperature along the year on the electrical resistivity is remarkable: the higher the temperature, the lower the electrical resistivity. The same might happen with the other parameters measured so, care has to be taken when interpreting on-site results.

Figure 2c shows the evolution of the corrosion potential of the reinforcing bars as a function of time (the

Time (days)	Rebar A1	Rebar A2	Rebar B1	Rebar B2
1	-0.10	-0.10	-0.05	-0.05
2	-0.05	-0.05	-0.08	-0.08
3	-0.08	-0.08	-0.06	-0.06
4	-0.06	-0.06	-0.02	-0.02
5	-0.02	-0.02	-0.08	-0.08
6	-0.08	-0.08	-0.12	-0.12
7	-0.12	-0.12	-0.05	-0.05
8	-0.05	-0.05	-0.08	-0.08
9	-0.08	-0.08	-0.06	-0.06
10	-0.06	-0.06	-0.02	-0.02
11	-0.02	-0.02	-0.08	-0.08
12	-0.08	-0.08	-0.12	-0.12
13	-0.12	-0.12	-0.05	-0.05
14	-0.05	-0.05	-0.08	-0.08

Figure 1. Evolution as function of time of (a) carbonation rate, (b) electrical resistivity, (c) corrosion potential and (d) corrosion rate, for specimens exposed to the laboratory environment.
temperature values provided by sensor 1 are also included). It can be seen that the corrosion potential is almost constant along the 3 year measurements period, with a small tendency to increase. In all cases, the value are close to -0.2 V SCE that, according to ASTM C-876 standard, is the borderline between intermediate and low corrosion risk.

Figure 2d shows the evolution of the oxygen flow as a function of time. It can be seen a progressive decrease in the oxygen flow that reaches the rebars, without this being noticed by changes in the corrosion potential values. The trend of the oxygen flow follows the trend of the internal temperature (the figure shows the values obtained with sensor 1): the higher the internal temperature, the higher the oxygen flow. Again, the impact of the cycle of temperature along the year on the measured parameter is noticeable.

Figure 3 shows the evolution of the corrosion rate of the rebars as a function of time. The corrosion rate starts from 30 μm/year and, after 3 years, it reaches a value close to 2 μm/year. From this figure it is possible to deduce that the temperature evolution due to the seasonal changes is, again, the most influencing factor for the trends recorded. The reinforcement corrosion rate values are in the borderline between low and negligible
corrosion rate according to Andrade and Alonso, 2001.

According to the threshold corrosion potential and corrosion rate values for the passive to active transition for steel corrosion in concrete (Ecorr = -0.35 VSCE and C.R. = 1 μm/year), the results obtained in laboratory show that the steel reinforcement remains in the passive state. However, the comparison of the corrosion potentials and corrosion rates data obtained in laboratory and those obtained in the prototype seems to be not straightforward: the prototype shows lower corrosion potentials and higher corrosion rates than those obtained in laboratory specimens. The explanation for this phenomenon is that rebars embedded in the laboratory specimens were free of rusting, while the pre-welded cage of the prototype, after being exposed to the atmosphere for several days without any protection, underwent atmospheric corrosion and the steel were covered by a red type of corrosion product. These products were not properly eliminated before the cast of the concrete. It is a known fact that clean steel electrodes behave differently than pre-corroded ones. Mortar alkalinity by itself, which rapidly passiveness a clean steel surface, does not ensure passivation of pre-rusted steel. In fact, rebars with pre-rusted surfaces exhibit unacceptable corrosion rates, even in non-carbonated concrete with a very low concentration of chloride, as reported by Novak et al., 2001.

In a previous work performed with other concretes exposed to both, the laboratory and external environments, it was shown by Duffó et al., 2008 that the corrosion rates were very similar. So, the lack of accordance found in the present work between parameters related to rebars corrosion measured in a prototype and those obtained in laboratory specimens should be due to the use of pre-rusted reinforced bars that increases the corrosion susceptibility of the rebars.

Conclusions

- The concrete studied in the present work in laboratory tests, shows an electrical resistivity that increases with time, which reflects the continuous hydration process. It provides a passive status of corrosion to steel rebars characterised by corrosion rates lower than 1 μm/year.
- The value of the carbonation rate is adequate to comply with the foreseen specifications.
- The corrosion rate as well as other parameters related to rebars durability measured in a prototype, show values that are not in accordance with those obtained in laboratory specimens. This is due to the use of pre-rusted reinforced bars that increases the corrosion susceptibility of rebars. Besides, the impact of the cycle of temperature along the year on the parameter measured is remarkable so, this effect should be carefully taken into account when applying durability models.
- In order to fully evaluate the behaviour of reinforced concretes, once the selection of the site for the near surface disposal facility is made, the medium and long term evolution of the parameters under study should be followed up.

Acknowledgements

The financial support of the CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas); the FONCYT, Agencia Nacional de Promoción Científica y Tecnológica Argentina and the Universidad Nacional de San Martin is acknowledged.

References

Andrade, M., Alonso, M., Gonzalez, J., 1990. An initial effort to use the corrosion rate measurements for estimating rebar durability, in “Corrosion Rates of Steel in Concrete” N. Berke, V. Chaker, W. Whiting, Editors. ASTM STP 1065, ASTM International, Philadelphia, p. 29.
Andrade, M., Alonso, M., 2001. On-site measurements of corrosion rate of reinforcements, Construction and Building Materials 15, p. 141.

Andrade, M., Martínez, I., Castellote, M., Zuloaga, P., 2006. Some principles of service life calculation of reinforcements and in situ corrosion monitoring by sensors in the radioactive waste containers of El Cabril disposal (Spain), Journal of Nuclear Materials 358, p. 82.

ASTM C 876, Standard test method for half-cell potential for uncoated reinforcing steel in concrete, American Society of Testing and Materials, Philadelphia, 1987.

Duffò, G., Farina, S., Arva, E., Giordano, C., Lafont, C., 2008. Durability of concrete vaults for radioactive waste disposal, High-Performance Concrete Structures and Materials, SP-253, American Concrete Institute (ISBN 978-0-87031-277-9), p. 1.

Duffò, G., Farina, S., 2009. Development of an embeddable sensor to monitor the corrosion process of new and existing reinforced concrete structures, Construction and Building Materials 23, p. 2746.

Duffò, G., Farina, S., Giordano, M., 2009. Characterization of solid embeddable reference electrodes for corrosion monitoring in reinforced concrete structures, Electrochemical Acta 54, p. 2010.

Duffò, G., Farina, S., Giordano, M., 2010. Embeddable reference electrodes for corrosion monitoring of reinforced concrete structures, Materials Corrosion 61, p. 480.

Joint convention on the safety of spent fuel management and on the safety of radioactive waste management, 2003. National Report. Argentina, http://www.cab.cnea.gov.ar/residuos/CC2003/0002-SecA.pdf, accessed March 25/2011.

Stern, M., Geary, A., 1957. Electrochemical Polarization: I. A theoretical analysis of the shape of the polarization curve, Journal of Electrochemical Society 104, p. 56.

Novak, P., Mala, R., Josta, L., 2001. Influence of pre-rusting on steel corrosion in concrete, Cement and Concrete Research 31, p. 589.