Clustering and redshift-space distortions in interacting dark energy cosmologies

Federico Marulli,1,2,3* Marco Baldi4,5 and Lauro Moscardini1,2,3

1 Dipartimento di Astronomia, Alma Mater Studiorum – Università di Bologna, via Ranzani 1, I-40127 Bologna, Italy
2 INAF–Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy
3 INFN/National Institute for Nuclear Physics, Sezione di Bologna, viale Berti Pichat 6/2, I-40127 Bologna, Italy
4 Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany
5 University Observatory, Ludwig-Maximilians University Munich, Scheinerstr. 1, D-81679 Munich, Germany

ABSTRACT
We investigate the spatial properties of the large-scale structure of the Universe in the framework of coupled dark energy (cDE) cosmologies. Using the public halo catalogues from the Coupled Dark Energy Cosmological Simulations (CODECS) simulations – the largest set of N-body experiments to date for such cosmological scenarios – we estimate the clustering and bias functions of cold dark matter (CDM) haloes, both in real space and redshift space. Moreover, we investigate the effects of the dark energy (DE) coupling on the geometric and dynamic redshift-space distortions, quantifying the difference with respect to the concordance ΛCDM model. At z ≲ 0, the spatial properties of CDM haloes in cDE models appear very similar to the ΛCDM case, even if the cDE models are normalized at last scattering in order to be consistent with the latest cosmic microwave background (CMB) data. At higher redshifts, we find that the DE coupling produces a significant scale-dependent suppression of the halo clustering and bias function. This effect, which strongly depends on the coupling strength, is not degenerate with σ8 at scales r ≲ 5–10 h⁻¹ Mpc. Moreover, we find that the coupled DE strongly affects both the linear distortion parameter, β, and the pairwise peculiar velocity dispersion, σ₁₂. Although the models considered in this work are found to be all in agreement with presently available observational data, the next generation of galaxy surveys will be able to put strong constraints on the level of coupling between DE and CDM exploiting the shape of redshift-space clustering anisotropies.

Key words: cosmology: observations – cosmology: theory – dark energy – dark matter.

1 INTRODUCTION
The concordance Λ cold dark matter (ΛCDM) cosmological model has strongly improved its reputation over the last two decades thanks to the overall agreement between its predictions and the ever increasing wealth of available observational data (see e.g. Riess et al. 1998; Perlmutter et al. 1999; Percival et al. 2001; Spergel et al. 2003; Astier et al. 2006; Komatsu et al. 2009; Carnero et al. 2011; Crocce et al. 2011). However, some possible tensions between the predictions of the ΛCDM scenario and astrophysical observations at small scales have also been claimed, like the abundance of satellite galaxies in CDM haloes, the low baryon fraction in galaxy clusters and the ‘cusp–core’ problem for the halo density profiles (see e.g. Binney & Evans 2001; Simon et al. 2003; Allen et al. 2004; LaRoque et al. 2006; Vikhlinin et al. 2006; Newman et al. 2009). It is still unclear whether such discrepancies might be due to an incorrect description of the baryonic phenomena at work, or if they are directly connected to the underlying cosmological scenario. In any case, it is interesting to investigate how the standard ΛCDM model could be modified in order to better match the above-mentioned observations.

Furthermore, the fundamental nature of CDM particles and of the dark energy (DE) component – which together constitute more than 95 per cent of the total energy of the Universe – is still unknown, which represents one of the central problems of modern cosmology. From an observational point of view, the existence of a stress-energy component with negative pressure, responsible for the accelerated expansion of the Universe, can be directly deduced from supernova measurements (see e.g. Riess et al. 1998; Schmidt et al. 1998; Perlmutter et al. 1999; Astier et al. 2006; Kowalski et al. 2008), or by jointly combining the cosmic microwave background (CMB) power spectrum and low-redshift observations, like measurements of the Hubble constant, of the galaxy power spectrum and of cluster counts. More recently, by combining the CMB lensing deflection power spectrum from the Atacama Cosmology...
Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe (WMAP), it has been possible to break the geometric degeneracy and constrain the DE density using measurements of the CMB radiation alone (Sherwin et al. 2011).

Several theoretical efforts have been made in order to find a satisfactory explanation for the cosmic acceleration. Different DE models have been proposed in the literature, ranging from simple scenarios with a constant equation of state to models considering interactions between DE and other cosmic fluids, as e.g. CDM (see e.g. Wetterich 1995; Amendola 2000) or massive neutrinos (Amendola, Baldi & Wetterich 2008). Indeed, if the accelerated expansion is driven by a scalar field, there is no fundamental reason why DE and CDM should not interact with each other. Interestingly, it has been shown that such a direct coupling could help in alleviating some of the small-scale problems of the ΛCDM cosmology (see e.g. Baldi et al. 2010; Baldi & Pettorino 2011; Lee & Baldi 2011).

In the present paper, we investigate the spatial properties of large-scale structure (LSS) predicted by interacting DE cosmological models. In particular, this work is focused on the clustering and bias properties of CDM haloes and on their redshift-space clustering distortions (RSDs) caused by the line-of-sight component of galaxy peculiar velocities. The latest galaxy surveys that have enabled measurements of RSD are the 2-degree Field Galaxy Redshift Survey (Peacock et al. 2001; Hawkins et al. 2003; Percival et al. 2004), the Sloan Digital Sky Survey (Tegmark et al. 2004, 2006; Zehavi et al. 2005; Okumura et al. 2008; Cabré & Gaztañaga 2009a,b) and the VIMOS-VLT Deep Survey (Guzzo et al. 2008).

RSD can be used to probe gravity theories, as they are directly related to the growth rate of LSS (Linder 2008). Moreover, they can also be used in several other contexts, e.g. to robustly constrain the value of the total mass of cosmological neutrinos (Marulli et al. 2011) or to investigate the dynamical properties of the warm–hot intergalactic medium (Ursino et al. 2011). Since the interaction between DE and CDM strongly affects the formation and evolution of LSS, a significant effect on RSD is also expected. To properly describe all the non-linear effects at work, we use a series of state-of-the-art N-body simulations for a wide range of different coupled dark energy (cDE) scenarios – the Coupled Dark Energy Cosmological Simulations (cODECS) simulations (Baldi 2011c) – and discuss the impact that DE interactions can have on LSS with respect to the ΛCDM case. Both ongoing and next generation galaxy surveys, such as VIPERS (Guzzo et al., in preparation), BigBOSS (Schlegel et al. 2009) and Euclid (Refregier et al. 2010; Laureijs et al. 2011), will greatly improve the precision in RSD measurements over an even greater redshift range, up to $z = 2$, allowing for direct constraints on the underlying cosmological model and on the gravity theory.

The structure of the paper is as follows. In Section 2 we describe the cDE models analysed in this work, while in Section 3 we introduce the exploited set of N-body experiments used to simulate the LSS in these cosmological frameworks. In Section 4 we analyse the CDM halo clustering and bias functions and the RSDs. Finally, in Section 5 we draw our conclusions.

2 THE COUPLED DARK ENERGY MODELS

Interacting DE scenarios have been introduced as a possible alternative to the standard ΛCDM cosmology (Wetterich 1995; Amendola 2000) with the aim of addressing the fine-tuning problems that characterize the cosmological constant. These alternative cosmologies include models where a DE scalar field ϕ interacts with other cosmomic fluids by exchanging energy–momentum during the evolution of the Universe. Several possible forms of DE interaction have been proposed in the literature, including e.g. models of coupling to the CDM fluid (as e.g. Amendola 2000, 2004; Koyama, Maartens & Song 2009; Honorez et al. 2010; Baldi 2011d) or to massive neutrinos (Amendola et al. 2008). In the present work, we will focus on the former class, considering a DE–CDM interaction defined by the following set of background dynamic equations:

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = \sqrt{\frac{2}{3}}\eta_c(\phi)\rho_c\frac{\dot{\rho}_c}{\rho_c},$$

(1)

$$\ddot{\rho}_c + 3H\dot{\rho}_c = -\sqrt{\frac{2}{3}}\eta_c(\phi)\rho_c\frac{\dot{\rho}_c}{\rho_c},$$

(2)

$$\ddot{\rho}_b + 3H\dot{\rho}_b = 0,$$

(3)

$$\ddot{\rho}_\nu + 4H\dot{\rho}_\nu = 0,$$

(4)

$$3H^2 = \frac{1}{M_{Pl}^2}\left(\rho_c + \rho_b + \rho_\nu + \rho_f\right),$$

(5)

where an overdot represents a derivative with respect to the cosmic time t, $H = \dot{a}/a$ is the Hubble function, $V(\phi)$ is the scalar field self-interaction potential, $M_{Pl} = 1/\sqrt{8\pi G}$ is the reduced Planck mass, and the subscripts ‘c', ‘b' and ‘ν' indicate baryons, CDM and radiation, respectively. The strength of the interaction between the DE scalar field and CDM particles is defined by the coupling function $\eta_c(\phi)$, while the shape of the potential $V(\phi)$ dictates the dynamical evolution of the DE field that in turn determines a time evolution of the CDM particle mass:

$$\frac{d\ln M_c}{dr} = -\sqrt{\frac{2}{3}}\eta_c(\phi)\dot{\phi},$$

(6)

as one can obtain from equation (2).

In this work, we will consider the set of coupled DE scenarios defined in Baldi (2011c), which includes two possible choices for the coupling function – namely a constant coupling $\eta_c = \eta_0$ and an exponential coupling $\eta_c(\phi) = \eta_0\exp[\alpha\phi]$ – and two possible forms of the scalar potential, namely an exponential potential (Lucchin & Matarrese 1985; Wetterich 1988):

$$V(\phi) = Ae^{-\alpha\phi},$$

(7)

and a SUGRA potential (Brax & Martin 1999):

$$V(\phi) = A\phi^{-\alpha}e^{\alpha\phi/2},$$

(8)

where for simplicity the field ϕ has been expressed in units of the reduced Planck mass in equations (7) and (8). The parameters of the models investigated in the present work are summarized in Table 1.

At the linear perturbations level, the time evolution of density fluctuations in the coupled CDM fluid and in the uncoupled baryonic

Table 1. The list of cosmological models considered in the cODECS project and their specific parameters.

Model	Potential	α	η_0	η_1	$w_\phi(z = 0)$	$\sigma_8(z = 0)$
ΛCDM	$V(\phi) = A$	$-$	$-$	$-$	-1.0	0.809
EXP001	$V(\phi) = Ae^{-\phi}$	0.08	0.05	0	-0.997	0.825
EXP002	$V(\phi) = Ae^{-\phi}$	0.08	0.15	0	-0.995	0.875
EXP003	$V(\phi) = Ae^{-\phi}$	0.08	0.15	0	-0.992	0.967
EXP008c	$V(\phi) = Ae^{-\phi}$	0.08	0.15	0	-0.982	0.895
SUGRA003	$V(\phi) = A\phi^{-\phi}e^{\phi/2}$	2.15	-0.15	0	-0.901	0.806

© 2011 The Authors, MNRAS 420, 2377–2386
Monthly Notices of the Royal Astronomical Society © 2011 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/420/3/2377/979543 by guest on 26 July 2018
component ($\delta_{\text{b}} \equiv \delta_{\text{p,b}}/\rho_{\text{c,b}}$, respectively) obeys the following system of equations:

\[\ddot{\delta}_{\text{c}} = -2H \left[1 - \eta_c \frac{\phi}{H^2} \right] \dot{\delta}_{\text{c}} + 4\pi G \left[\rho_{\text{h}} \delta_{\text{h}} + \rho_{\text{c}} \delta_{\text{c}} \right], \]

(9)

\[\ddot{\delta}_{\text{b}} = -2H \dot{\delta}_{\text{b}} + 4\pi G \left[\rho_{\text{h}} \delta_{\text{h}} + \rho_{\text{b}} \delta_{\text{b}} \right]. \]

(10)

where for simplicity the field dependence of the coupling function $\eta_c(\phi)$ has been omitted. In equation (9), the factor $\Gamma_c = 1 + 4\pi G \delta_{\text{c}}/3$ encodes the effect of the additional fifth force mediated by the DE scalar field ϕ for CDM perturbations. Additionally, the second term in the first square bracket at the right-hand side of equation (9) represents an extra-friction term on CDM fluctuations arising as a consequence of momentum conservation [see e.g. Amendola 2004; Pettorino & Baccigalupi 2008; Baldi et al. 2010; Baldi 2011a, for a derivation of equations (1)–(5), (9), (10) and for a detailed discussion of the extra-friction and fifth-force corrections to the evolution of linear perturbations].

The background and linear perturbations evolution of all the cosmologies considered in this work have been discussed in full detail in Baldi (2011b) and Baldi (2011c), to which we refer the interested reader for a more thorough description of the models. In particular, the EXP008e3 model – based on an exponential potential and on an exponential coupling function – features a steep growth of the interaction strength at low redshifts and has been shown to significantly enhance the pairwise infall velocity of colliding galaxy clusters similar to the ‘Bullet cluster’ (Lee & Baldi 2011). On the other hand, the SUGRA003 model based on a SUSY potential and on a negative constant coupling is an example of the recently proposed ‘bouncing’ cDE scenario (Baldi 2011b), which is characterized by an inversion of the scalar field direction of motion at relatively recent epochs ($z_{\text{inv}} \approx 6.8$ for the specific model under investigation), giving rise to a ‘bounce’ of the DE equation-of-state parameter w_ϕ on the dynamical constant barrier $w_\phi = -1$. As a consequence of such inversion, the quantity $\eta_c \phi$ that appears both in equations (6) and (9) changes sign in correspondence to the bounce such that the CDM particle mass decreases before the bounce and increases again afterwards, while the extra-friction term changes from a drag to a proper friction at z_{inv}. Such peculiar dynamical behaviour has been shown to provide a possible explanation (Baldi 2011b) to the recent detections of massive clusters of galaxies at high redshifts (Jee et al. 2009; Rosati et al. 2009), although the statistical significance of such detections as a challenge to the standard ΛCDM scenario is presently not yet conclusive (see e.g. Mortonson, Hu & Huterer 2011; Waizmann, Ettori & Moscardini 2011).

3 THE N-BODY SIMULATIONS

For our investigation, we rely on the public halo catalogues of the CODES simulations (Baldi 2011c), the largest N-body simulations for cDE cosmologies to date, which include all the models described in Table 1. In particular, we make use of the L-CODES suite which consists of large-scale, collisionless N-body runs following the evolution of 10243 CDM particles and 10243 baryonic particles in a cosmological box of 1 comoving Gpc h^{-1} on a side. The simulations have been carried out with the modified version by Baldi et al. (2010) of the widely used parallel Tree-PM N-body code GADGET (Springel 2005), and have a mass resolution of $m_\text{p}(z = 0) = 5.84 \times 10^{10} M_\odot h^{-1}$ and $m_\text{b} = 1.17 \times 10^{10} M_\odot h^{-1}$ for CDM and baryons, respectively, and a force resolution of $\epsilon_\text{s} = 20 kpc h^{-1}$.

The initial conditions for all the different cosmologies were generated by perturbing a homogeneous ‘glass’ distribution (White 1994; Baugh, Gaztangana & Efstathiou 1995) based on the same linear power spectrum at z_{CMB}, and then rescaling the resulting displacements to the starting redshift of the simulations, $z_i = 99$, with the specific growth factor $D(z_i)$ of each model computed by numerically solving equations (9) and (10). This procedure ensures that all the models are consistent with the same normalization of density perturbations at the last scattering surface, which has been assumed to correspond to the ‘WMAP7 only maximum likelihood’ constraints of Komatsu et al. (2011). The cosmological parameters at $z = 0$ assumed for all the models included in the CODES project are $H_0 = 70.3$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_{\text{CDM}} = 0.226$, $\Omega_{\text{DE}} = 0.729$, $\sigma_8 = 0.809$, $\Omega_\bar{b} = 0.0451$ and $n_s = 0.966$.

The halo catalogues have been obtained by identifying groups of particles by means of a Friends-of-Friends (FOF) algorithm with linking length $\lambda = 0.2 \times d$, where d is the mean interparticle separation. The FOF algorithm was run over the CDM particles as primary tracers of the matter distribution, and then baryonic particles have been attached to the FOF group of their closest CDM neighbour. In order to identify CDM substructures, we have used the SUBFIND algorithm described in Springel, Yoshida & White (2001). All the results presented in this paper have been obtained using mass-selected subhalo catalogues, composed by the gravitationally bound substructures that SUBFIND identifies in each FOF halo. For all the simulations, we have restricted our analysis in the mass range $M_{\text{min}} < M < M_{\text{max}}$, where $M_{\text{min}} = 2.5 \times 10^{12} M_\odot h^{-1}$ and $M_{\text{max}} = 3.6 \times 10^{15}, 1.1 \times 10^{15}, 4.9 \times 10^{14}, 2.6 \times 10^{14}, 1.8 \times 10^{14} M_\odot h^{-1}$ at $z = 0, 0.55, 1, 1.6, 2$, respectively. For the analysis presented in this paper, we have used one realization of each model. To investigate how reliable our results are, we have divided each simulation box in 27 independent sub-boxes and estimated the uncertainties in our predictions from the scatter between them. At the scales considered, we found a very good agreement between the errors estimated in this way and the theoretical ones, both for the correlation function and for the bias.

4 LSS IN cDE MODELS

In this section we show how the halo clustering, the bias function and the RSD parameters β and σ_{12} get modified, with respect to the standard ΛCDM case, when CDM and DE can interact with each other.

4.1 The DM halo clustering in real space

In cDE scenarios, the formation and evolution of cosmic structures can differ significantly with respect to the ΛCDM case. To analyse the spatial properties of LSS as a function of the DE coupling, we measure the CDM halo two-point correlation function, $\xi(r)$, defined as

\[dP = n^2 \left[1 + \xi(r) \right] dV_1 dV_2, \]

(11)

where dP is the probability of finding a halo pair with one of them in the volume dV_1 and the other in the volume dV_2, separated by a comoving distance r. To measure the function $\xi(r)$, we use the standard Landy & Szalay (1993) estimator:

\[\xi(r) = \frac{\langle HH(r) - 2HR(r) + RR(r) \rangle}{RR(r),} \]

(12)

where $HH(r)$, $HR(r)$ and $RR(r)$ are the fraction of halo–halo, halo–random and random–random pairs, with spatial separation in the
range \([r - dr/2, r + dr/2]\). The random samples are three times larger than the halo ones. A computationally efficient linked-list algorithm has been used to count the number of pairs in the halo and random catalogues.

Fig. 1 shows the real-space two-point correlation function of CDM haloes for all the models of the CODECS project. The black error bars represent the statistical noise as prescribed by Mo et al. (1992). The lower panels show the percentage difference between cDE and ΛCDM predictions, \(\Delta \xi_{\text{DE}} = 100 \times (\xi_{\text{DE}} - \xi_{\text{CDM}})/\xi_{\text{CDM}}\). At \(z = 0\), the spatial properties of CDM haloes in cDE models are very similar to the ΛCDM case. However, at higher redshifts the DE coupling produces a significant scale-dependent suppression in the halo clustering.

The effect of DE coupling on the CDM halo large-scale bias of CDM haloes defined as follows:

\[
\langle b(z) \rangle = \left\langle \sqrt{\frac{\xi_{\text{DE}, \text{halo}}}{\xi_{\text{CDM}, \text{halo}}}} \right\rangle, \tag{13}
\]

where \(\xi_{\text{DE}, \text{halo}}\) is the cDE halo clustering and \(\xi_{\text{CDM}, \text{halo}}\) is the ΛCDM DM clustering normalized to the \(\sigma_8\) values of the CODECS models. \(\xi_{\text{CDM}, \text{halo}}\) has been obtained by Fourier transforming the non-linear power spectrum extracted from CAMB (Lewis & Bridle 2002), which exploits the HALOFIT routine (Smith et al. 2003). The bias is averaged in the range \(10 < r < 50 \text{ h}^{-1} \text{ Mpc}\). The error bars represent the propagated statistical noise as prescribed by Mo et al. (1992). By definition, \(\langle b(z) \rangle\) represents the apparent bias that would be derived in a cDE Universe if a ΛCDM model was erroneously assumed to predict the DM clustering.

Dashed and dotted black lines in Fig. 2 show the theoretical ΛCDM effective bias of Sheth et al. (2001) and Tinker et al. (2010), respectively, normalized to the values of \(\sigma_8\) of the CODECS models and weighted with the halo mass function, \(n(M, z)\):

\[
b_{\text{eff}}(z) = \frac{\int_{M_{\text{min}}}^{M_{\text{max}}} n(M, z) b(M, z) \, dM}{\int_{M_{\text{min}}}^{M_{\text{max}}} n(M, z) \, dM}, \tag{14}
\]

where \(M_{\text{min}}\) and \(M_{\text{max}}\) have been defined in Section 3. The grey shaded bands show a 10 per cent error, which approximately represents the uncertainty in the theoretical bias predictions presented in the literature.

The effect of DE coupling on the CDM halo large-scale bias appears totally degenerate with \(\sigma_8\) for all the cosmological models considered (see also Clemson et al. 2011, for a general approach in the case of interacting DE cosmologies).
Figure 2. Mean apparent effective bias of CDM haloes, \(\langle b \rangle = \langle (\xi_{\text{halo}}/\xi_{\text{CDM}}) \rangle^{0.5} \), averaged in the range \(10 < r < 50 \h^{-1} \) Mpc. Dashed and dotted black lines show the theoretical AC DM effective bias computed according to the relations of Sheth, Mo & Tormen (2001) and Tinker et al. (2010), respectively, normalized to the \(\sigma_8 \) values of the CODECS models. The error bars represent the propagated statistical noise as prescribed by Mo et al. (1992), while the grey shaded areas show a 10 per cent error. The effect of DE coupling on the CDM halo large-scale bias appears totally degenerate with \(\sigma_8 \) for all the cosmological models considered.

4.3 Redshift-space clustering distortions

4.3.1 Clustering shape in redshift space

The redshift of a galaxy does not correspond to a unique distance from the observer, as the line-of-sight component of a galaxy’s peculiar velocity creates an additional Doppler shift. When the distances are computed without correcting for this peculiar velocity contribution, we say to be in redshift space and we refer to the redshift-space spatial coordinates using the vector \(s \) (while \(r \) indicates real-space coordinates). A redshift-space galaxy map is distorted with respect to the real one. RSD provide crucial constraints on the build-up of LSS. On small scales (\(\lesssim 1 \h^{-1} \) Mpc), the distortion is mainly caused by the random orbital motions of galaxies moving inside virialized structures, i.e. the well-known fingers of God effect (Jackson 1972). On larger distance scales, the coherent bulk motion of virializing structures leads to an apparent excess in the clustering strength perpendicularly to the line of sight.

Since both comoving coordinates and peculiar velocities are known in an N-body simulation, we can investigate the spatial properties of LSS both in real space and redshift space. To obtain redshift-space halo maps, we locate a virtual observer at \(z = 0 \) and put each simulation box at a comoving distance corresponding to its output redshifts. The redshift-space distance of each CDM halo is obtained through the following equation:

\[
\mathbf{s}_\parallel = \int_0^{z_{\text{obs}}} \frac{c \, \mathbf{d}z_{\text{obs}}}{H(z_{\text{obs}})},
\]

where \(H(z_{\text{obs}}) \) is the Hubble rate, \(c \) is the speed of light, and the observed redshift, \(z_{\text{obs}} \), is given by

\[
z_{\text{obs}} = z_c + \frac{v_{\parallel}}{c} (1 + z_c).
\]

Here \(z_c \) is the cosmological redshift, due to the Hubble flow, while the second term of equation (16) is caused by galaxy peculiar
velocities (v_r is the component of the peculiar velocity parallel to the line of sight).

Whether the cosmological parameters assumed in equation (15) are not the true ones or the Universe is not described by the ΛCDM equations, like in the cDE scenarios, a geometric kind of distortion is added to the dynamical distortion caused by peculiar velocities (Alcock & Paczynski 1979). However, as we will see in Section 4.3.2, geometric distortions in cDE models are rather small relative to the dynamical ones and can therefore be neglected.

Such a simple method to derive redshift-space coordinates is not as accurate as a full past light-cone reconstruction (see e.g. Marulli et al. 2009), since it neglects the redshift evolution of halo properties inside each snapshot box. However, this method is accurate enough for the purpose of the present work. In a companion paper, we aim to estimate the expected observational uncertainties in constraining cDE model parameters with next generation galaxy surveys, and for that specific goal realistic mock galaxy catalogues will be constructed.

To extract cosmological constraints from RSD, it is convenient to decompose the distances into the two components perpendicular and parallel to the line of sight, $r = (r_\perp, r_\parallel)$. When measured in real space, the contour lines of $\xi(r_\perp, r_\parallel)$ are circles, as the population of haloes/galaxies is isotropic when averaged on large scales. Instead, the redshift-space correlation function is distorted: at small scales, the fingers of God effect changes the shape of correlation in the direction parallel to the line of sight, while at large scales the bulk motion squashes the correlation perpendicularly to the line of sight.

These effects can be clearly seen in Fig. 4, where the contour lines of the two-point redshift-space correlation function of CDM haloes are shown. We also plot in the same panels the undistorted real-space correlation function (dotted grey lines) for comparison.

4.3.2 Modelling the dynamical redshift-space distortions

Assuming the plane-parallel approximation, the linear power spectrum of the matter density fluctuations, $P(k)$, can be parametrized in redshift space as follows:

$$P(k) = (1 + \beta \mu^2) P_{\text{lin}}(k),$$

(17)

where $P_{\text{lin}}(k)$ is the linear power spectrum in real space, μ is the cosine of the angle between k and the line of sight, and β is the linear distortion parameter. Fourier transforming equation (17) gives

$$\xi(s, \mu) = \xi_0(s) P_0(\mu) + \xi_2(s) P_2(\mu) + \xi_4(s) P_4(\mu),$$

(18)

where the functions P_i are the Legendre polynomials (Hamilton 1992), while the multipoles, $\xi_i(s)$, can be written as follows:

$$\xi_0(s) = \left(1 + \frac{2\beta}{3} + \frac{\beta^2}{5}\right) \xi(r),$$

(19)

$$\xi_2(s) = \left(\frac{4\beta}{3} + \frac{4\beta^2}{7}\right) \left[\xi(r) - \bar{\xi}(r)\right],$$

(20)

$$\xi_4(s) = \frac{8\beta^2}{35} \left[\xi(r) + \frac{5}{2} \bar{\xi}(r) - \frac{7}{2} \bar{\xi}(r)\right].$$

(21)
Contour lines of the two-point redshift-space correlation function of CDM haloes, $\xi(s_1, s_2)$. The isocurves plotted are $\xi(s_1, s_2) = \{0.05, 0.08, 0.13, 0.2, 0.3, 0.5, 1, 3\}$ and $\{0.08, 0.15, 0.25, 0.5, 1, 3\}$ in the left- and right-hand panels, respectively. Dotted grey lines show the undistorted correlation function in real space.

where $\xi(r)$ is the real-space correlation function and the barred correlation functions are defined as

$$\bar{\xi}(r) = \frac{3}{r^3} \int_0^r dr' \xi(r')r'^2,$$

(22)

$$\bar{\bar{\xi}}(r) = \frac{5}{r^5} \int_0^r dr' \xi(r')r'^4.$$

(23)

To include in the model also the small non-linear scales, we convolve it with the distribution function of random pairwise velocities, $f(v)$ (but see e.g. Matsubara 2004; Scoccimarro 2004):

$$\xi(s_1, s_2) = \int_{-\infty}^{\infty} dv f(v)\xi[s_1, s_2 - v/H(z)/a(z)].$$

(24)

In this work, we adopt for $f(v)$ the form:

$$f_{\text{exp}}(v) = \frac{1}{\sigma_{12}\sqrt{2}} \exp\left(-\frac{\sqrt{2}|v|}{\sigma_{12}}\right).$$

(25)

where σ_{12} is the dispersion in the pairwise peculiar velocities.

To summarize, the model for the distorted correlation function in redshift space (equation 24) depends on the correlation function in real space, $\xi(r)$, and on two free parameters: the linear distortion parameter, β, and the pairwise peculiar velocities dispersion, σ_{12}. It can be demonstrated that β is well parametrized by the following equation:

$$\beta = \frac{f(\Omega_m)}{b} \simeq \frac{\Omega_m(z)^{5/3}}{b},$$

(26)

where $f(\Omega_m) = d\ln D/d\ln a$ is the velocity growth rate, D is the linear density growth factor, b is the linear CDM halo bias, and $\Omega_m(z)$ is the matter density. The so-called gravitational growth index, γ, directly depends on the gravity theory, being $\gamma \sim 0.545$ for GR gravity. As a consequence, observational constraints on the parameter β that can be obtained modelling the redshift-space correlation function $\xi(s_1, s_2)$ directly translate to constraints on the gravity theory.

Redshift-space distortions in cDE models

Fig. 5 shows the ratio between redshift- and real-space correlation functions of the CDM haloes in all the cDE simulations. The error bars represent the statistical noise (Mo et al. 1992). The black lines show the theoretical ΛCDM prediction given by the large-scale limit of equation (18):

$$\frac{\xi(s)}{\xi(r)} = 1 + \frac{2\beta + \beta^2}{3} .$$

(27)

where $\beta = \Omega_m(z)^{5/3}/b_{\text{eff}}$, and the effective bias b_{eff} is given by equation (14). Dashed and dotted black lines refer to the theoretical ΛCDM predictions obtained using the effective bias of Sheth et al. (2001) and Tinker et al. (2010), respectively, normalized to the values of σ_8 of the cDE models. The grey shaded area represents the propagated 10 per cent theoretical bias error.

As expected, the measured and model ratios $\xi(s)/\xi(r)$ agree quite well in the ΛCDM model. The cosmic evolution of LSS in cDE models has the effect of significantly suppressing this ratio. However, as for the large-scale clustering and biasing function, RSD appears to be strongly degenerate with σ_8 at the scales and redshifts considered. Indeed, the mean ratio $\xi(s)/\xi(r)$ of CDM haloes in the cDE simulation can be reproduced quite well by the expected ΛCDM prediction rescaled at the σ_8 value of the cDE model. Only the SUGRA003 model appears not totally degenerate with σ_8 at $z = 0.5$, but the effect is quite small.

To extract the cosmological information from RSD both at small and large scales, we use equation (24) to model the redshift-space correlation function $\xi(s_1, s_2)$, where the real-space $\xi(r)$ has been measured using directly the comoving CDM halo model coordinates. The best-fitting parameters, β and σ_{12}, obtained with a standard χ^2 minimization procedure are shown in the upper panels of Fig. 6, as a function of redshift. The errors on the best-fitting parameter predictions have been estimated dividing the simulation box in 27 sub-boxes, measuring β and σ_{12} in each of them and rescaling their scatter by the square root of the total volume of the simulation box (see e.g. Marulli et al. 2011). The strong effect of cDE on both these parameters can be appreciated in the lower panels that show the percentage difference between cDE and ΛCDM predictions. Both in the models with a constant coupling and in the EXP008e3 one, β and σ_{12} are higher with respect to the ΛCDM case. This effect depends significantly on the coupling strength and for the most extreme models considered raises to the level of ~ 20 per cent for β and ~ 40 per cent for σ_{12}. On the contrary, the SUGRA003 model predicts a suppression of ~ 10 per cent both in β and in σ_{12} at $z \sim 0.5$–1, while at higher redshifts the differences with respect to the ΛCDM model decrease.

This result suggests that using an independent constraint on σ_8, which for instance can be obtained from the clustering and bias function at small scales (see Sections 4.1 and 4.2), the next generation of galaxy surveys will be able to put strong constraints on the coupling between DE and CDM exploiting the shape of redshift-space clustering anisotropies.

4.3.3 Geometric distortions

In cDE scenarios, the relation between redshift and comoving distance is different from the one in the ΛCDM case. This means that if the ΛCDM equations are used to obtain galaxy maps from redshift measurements in a Universe where DE and CDM interact, the correlation function appears distorted. To investigate the effect of such geometric distortions, also called Alcock–Paczynski distortions (Alcock & Paczynski 1979), we have repeated all the
Figure 5. Ratio between redshift- and real-space correlation function of the CDM haloes. Dashed and dotted black lines show the theoretical ΛCDM predictions (equation 27) using the effective bias functions computed according to the relations of Sheth et al. (2001) and Tinker et al. (2010), respectively, normalized to the values of σ_8 of the CODECs models. The error bars represent the statistical noise (Mo et al. 1992). The DE coupling strongly affects the RSDs. However, such effect is strongly degenerate with σ_8 for the redshift considered. Only the SUGRA003 model appears not totally degenerate with σ_8 at $z = 0.5$, but the effect is small.

measurements described in the previous sections assuming the ΛCDM Hubble parameter $H(z)$ in equation (15) to measure redshift-space distances also in the cDE simulations. Fig. 7 shows the percentage error on the best-fitting parameters introduced in this way. In the three models with a constant coupling (EXP001, EXP002 and EXP003), these distortions slightly increase as a function of redshift, but only up to the level of ~ 1 per cent for β and ~ 2 per cent for σ_{12} at $z = 2$, for the extreme EXP003 model. So, as expected, these distortions are quite small compared to the dynamical ones. Also in the EXP008e3 models, the geometric distortions appear clearly negligible with respect to the dynamical distortions. Only the SUGRA003 model shows large geometric distortions, at a level of ~ 5 per cent for β and ~ 10 per cent for σ_{12}, comparable to the level of dynamical distortions. This suggests that geometric and dynamic distortions on the redshift-space clustering of galaxies might be strongly degenerate for the ‘bouncing’ cDE scenario, and independent measurements as e.g. the redshift evolution of the halo mass function should be used to break the degeneracy.

5 CONCLUSIONS

In the present paper, we have investigated the impact of a possible interaction between DE and CDM on the clustering and RSDs of CDM haloes, also in view of the large wealth of high-quality data expected from the next generation of large galaxy surveys. In cDE scenarios, in fact, the formation and evolution of LSS can be significantly different with respect to the ΛCDM case. The interaction induces a time evolution of the mass of CDM particles as well as a modification of the growth of structures determined by the combined effect of a long-range fifth force mediated by the DE scalar degree of freedom and of an extra friction arising as a consequence of momentum conservation. The combination of these effects can significantly alter the evolution of linear and non-linear density perturbations as compared to the standard ΛCDM scenario, and provide a direct way to test this class of cosmological models. In particular, the clustering properties of CDM haloes from linear to highly non-linear scales might show specific signatures allowing us to distinguish a cDE Universe from ΛCDM.
In order to investigate the spatial properties of LSS in these cosmological scenarios, it is therefore necessary to rely on a fully non-linear treatment of structure formation in the context of cDE models. To this end, we made use of the public halo catalogues extracted from the largest set of N-body experiments to date for such cosmologies, the CODECS simulations. From such catalogues, we measured the clustering and bias properties of CDM haloes both in real space and redshift space, as a function of the DE coupling and redshift. Moreover, we investigated the effects of the DE coupling on the geometric and dynamic RSDs, quantifying the difference with respect to the concordance ΛCDM model. We compared numerical predictions with theoretical expectations finding a good agreement in ΛCDM, as expected, and a strong degeneracy between the DE coupling and the matter power spectrum normalization, σ_8.

In particular, at $z \sim 0$ the spatial properties of CDM haloes in cDE models appear very similar to the ΛCDM case, even if the CODECS simulations are normalized to be consistent with the latest CMB data at last scattering. At higher redshifts instead, we find that the DE coupling produces a significant scale-dependent suppression in the halo clustering and bias function. Furthermore, the DE coupling strongly affects the RSDs. We quantified this effect by modelling RSD in terms of the redshift-space correlation function and the distribution function of random pairwise velocities and deriving the linear distortion parameter, β, and the pairwise peculiar velocity dispersion, σ_{12}, for all the CODECS models. We find that for cDE models characterized by an exponential self-interaction potential, both a constant coupling and an exponentially growing coupling determine higher values of β and σ_{12} with respect to the ΛCDM case. On the contrary, bouncing cDE models based on a SUGRA self-interaction potential predict a suppression of β and σ_{12} at $z \sim 0.5–1$, while at higher redshifts the differences with respect to the ΛCDM model decrease.

We also analysed the geometric distortions induced by the DE coupling, finding that these are always negligible with respect to dynamical ones for all the exponential potential models, while they might have a comparable effect as the latter for the bouncing cDE scenario.

Overall, we found a strong degeneracy of the DE coupling phenomenology with the amplitude of linear density perturbations defined by σ_8: the clustering, the bias function and the RSD in cDE scenarios can be well reproduced by a standard ΛCDM model after having rescaled the matter power spectrum to the σ_8 normalization of each cDE model, for scales larger than $\sim 5–10\, h^{-1}\, \text{Mpc}$. However, we also find that the σ_8 degeneracy is broken at smaller scales. Our results therefore suggest that it is possible to put strong constraints on the coupling between DE and CDM, exploiting the shape of redshift-space clustering anisotropies and comparing the clustering and bias functions at small and large scales.

To conclude, we performed an extended analysis of the impact of an interaction between DE and CDM on the clustering and RSDs properties of CDM haloes, using state-of-the-art N-body simulations for these cosmologies. Although the effect of the coupling is highly degenerate with σ_8 at large scales, at smaller scales the degeneracy is broken, offering the chance that the next generation of wide and high-precision measurements of the galaxy distribution in real space and redshift space might be able to tightly constrain or possibly detect a new interaction in the dark sector.

ACKNOWLEDGMENTS

We warmly thank C. Carbone and E. Branchini for helpful discussions and suggestions. We acknowledge financial contributions from contracts ASI-INAF I/033/05/0, ASI-INAF I/088/06/0, ASI I/016/07/0 COFIS, ASI Euclid-DUNE I/064/08/0, ASI-Uni Bologna-Astronomy Department Euclid-NIS I/039/10/0 and PRIN MIUR dark energy and cosmology with large galaxy surveys.

MB is supported by the DFG Cluster of Excellence ‘Origin and Structure of the Universe’ and by the TRR33 Transregio Collaborative Research Network on the ‘Dark Universe’. MB also acknowledges the HPC-Europa2 visiting programme for financial support during his visits to the Astronomy Department in Bologna.
REFERENCES

Alcock C., Paczynski B., 1979, Nat, 281, 358
Allen S. W., Schmidt R. W., Ebeling H., Fabian A. C., van Speybroeck L., 2004, MNRAS, 353, 457
Amendola L., 2000, Phys. Rev. D, 62, 043511
Amendola L., 2004, Phys. Rev. D, 69, 103524
Amendola L., Baldi M., Wetterich C., 2008, Phys. Rev. D, 78, 023015
Astier P. et al., 2006, A&A, 447, 31
Baldi M., 2011a, MNRAS, 414, 116
Baldi M., 2011b, MNRAS, submitted (arXiv:1107.5049)
Baldi M., 2011c, preprint (arXiv:1109.5695)
Baldi M., 2011d, MNRAS, 411, 1077
Baldi M., Pettorino V., 2011, MNRAS, 412, L1
Baldi M., Pettorino V., Robbers G., Springel V., 2010, MNRAS, 403, 1684
Baugh C. M., Gaztañaga E., 1995, MNRAS, 274, 1049
Binney J. J., Martin J., 1999, Phys. Lett. B, 468, 40
Cabrera A., Gaztañaga E., 2009a, MNRAS, 393, 1183
Cabrera A., Gaztañaga E., 2009b, MNRAS, 396, 1119
Carnero A., Sánchez E., Crocce M., Cabrera A., Gaztañaga E., 2011, MNRAS, preprint (arXiv:1104.5426)
Clemson T., Koyama K., Zhao G.-B., Maartens R., Valiviita J., 2011, preprint (arXiv:1109.6234)
Crocce M., Gaztañaga E., Cabrera A., Carnero A., Sanchez E., 2011, MNRAS, 417, 2577
Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371
Guzzo L. et al., 2008, Nat, 451, 541
Hamilton A. J. S., 1992, ApJ, 385, 15
Hawkins E. et al., 2003, MNRAS, 346, 78
Honorez L. L., Reid B. A., Mena O., Verde L., Jimenez R., 2010, J. Cosmol. Astropart. Phys., 1009, 029
Jackson J. C., 1972, MNRAS, 156, 15
Kowalski M. et al., 2008, ApJ, 686, 749
Koyama K., Maartens R., Song Y.-S., 2011, J. Cosmol. Astropart. Phys., 0910, 017
LaRoque S. J., Bonamente M., Carlstrom J. E., Joy M. K., Nagai D., Reese E. D., Dawson K. S., 2006, ApJ, 652, 917
Laureijs R. et al., 2011, preprint (arXiv:1110.3193)
Lee J., Baldi M., 2011, preprint (arXiv:1110.0015)
Lind E. V., 2008, Astropart. Phys., 29, 336
Lucchin F., Matarrese S., 1985, Phys. Rev. D, 32, 1316
Marulli F., Bonoli S., Branchini E., Gilli R., Moscardini L., Springel V., 2009, MNRAS, 396, 1404
Marulli F., Carbone C., Viel M., Moscardini L., Cimatti A., 2011, MNRAS, 418, 346
Matsubara T., 2004, ApJ, 615, 573
Mo H. J., Jing Y. P., Boerner G., 1992, ApJ, 392, 452
Mortonson M. J., Hu W., Huterer D., 2011, Phys. Rev. D, 83, 023015
Newman A. B., Treu T., Ellis R. S., Sand D. J., Richard J., Marshall P. J., Capak P., Miyazaki S., 2009, ApJ, 706, 1078
Okumura T., Matsubara T., Eisenstein D. J., Kayo I., Hikage C., Szalay A. S., Schneider D. P., 2008, ApJ, 676, 889
Peacock J. A. et al., 2001, Nat, 410, 169
Percival W. J. et al., 2001, MNRAS, 327, 1297
Percival W. J. et al., 2004, MNRAS, 353, 1201
Peirson T. et al., 1999, ApJ, 517, 565
Pettorino V., Baccigalupi C., 2008, Phys. Rev. D, 77, 103003
Refregier A., Amara A., Kitching T. D., Rassat A., Scaramella R., Weller J. (Euclid Imaging Consortium), 2010, preprint (arXiv:1001.0061)
Riess A. G. et al., 1998, AJ, 116, 1009
Rosati P. et al., 2009, A&A, 508, 583
Schlegel D. J. et al., 2009, preprint (arXiv:0904.0468)
Schmidt B. P. et al., 1998, ApJ, 507, 46
Sococcimarro R., 2004, Phys. Rev. D, 70, 083007
Sherwin B. D. et al., 2011, Phys. Rev. Lett., 107, 021302
Sheth R. K., Mo H. J., Tormen G., 2001, MNRAS, 323, 1
Simon J. D., Bolatto A. D., Leroy A., Blitz L., 2003, ApJ, 596, 957
Smith R. E. et al., 2003, MNRAS, 341, 1311
Spergel D. N. et al., 2003, ApJS, 148, 175
Springel V., 2005, MNRAS, 364, 1105
Springel V., Yoshida N., White S. D. M., 2001, New Astron., 6, 79
Tegmark M. et al., 2004, ApJ, 606, 702
Tegmark M. et al., 2006, Phys. Rev. D, 74, 123507
Tinker J. L., Robertson B. E., Kravtsov A. V., Klypin A., Warren M. S., Yepes G., Gottlöber S., 2010, ApJ, 724, 878
Urino E., Branchini E., Galeazzi M., Marulli F., Moscardini L., Piro L., Roncarelli M., Takei Y., 2011, MNRAS, 414, 2970
Vikhlinin A., Kravtsov A., Forman W., Jones C., Markevitch M., Murray S. V., van Speybroeck L., 2006, ApJ, 640, 691
Waizmann J.-C., Ettori S., Moscardini L., 2011, MNRAS, 418, 456
Wetterich C., 1988, Nuclear Phys. B, 302, 668
Wetterich C., 1995, A&A, 301, 321
White S. D. M., 1994, preprint (arXiv:astro-ph/9404043)
Zehavi I. et al., 2005, ApJ, 621, 22

This paper has been typeset from a TeX/PostScript file prepared by the author.