ON THE CAUCHY PROBLEM FOR DIFFERENTIAL EQUATIONS IN A BANACH SPACE OVER THE FIELD OF \(p \)-ADIC NUMBERS. I. \(^1\)

MYROSLAV L. GORBACHUK and VALENTYNA I. GORBACHUK

ABSTRACT. For the Cauchy problem for an operator differential equation of the form \(y'(z) = Ay(z) \), where \(A \) is a closed linear operator on a Banach space over the field of \(p \)-adic numbers, the criterion of well-posedness in the class of locally analytic vector-functions is established. It is shown how the Cauchy-Kovalevskaya theorem for \(p \)-adic partial differential equations may be obtained as a particular case from this criterion.

1. Let \(\mathcal{B} \) be a Banach space with norm \(\| \cdot \| \) over the completion \(\Omega = \Omega_p \) of an algebraic closure of the field of \(p \)-adic numbers [1 - 3] (\(p \) is prime), and let \(A \) be a closed linear operator on \(\mathcal{B} \), that is, the convergences \(\mathcal{D}(A) \ni x_n \to x \) and \(Ax_n \to y \ (n \to \infty) \) in \(\mathcal{B} \) imply the inclusion \(x \in \mathcal{D}(A) \) and the equality \(Ax = y \) (\(\mathcal{D}(\cdot) \) is the domain of an operator).

For a number \(\alpha > 0 \), we put
\[
E_\alpha(A) = \left\{ x \in \bigcap_{n \in \mathbb{N}_0} \mathcal{D}(A^n) \mid \exists c = c(x) > 0 \ \forall k \in \mathbb{N}_0 \ \| A^k x \| \leq c \alpha^k \right\}.
\]

The linear space \(E_\alpha(A) \) is a Banach space with respect to the norm
\[
\| x \|_\alpha = \sup_{n \in \mathbb{N}_0} \frac{\| A^n x \|}{\alpha^n}.
\]

The set
\[
E(A) = \bigcup_{\alpha > 0} E_\alpha(A)
\]

is endowed with the inductive limit topology of the Banach spaces \(E_\alpha(A) \):
\[
E(A) = \text{ind lim}_{\alpha \to \infty} E_\alpha(A).
\]

By the closed graph theorem, \(E(A) \) coincides with \(\mathcal{B} \) if and only if \(\mathcal{D}(A) = \mathcal{B} \). The elements of \(E(A) \) are called entire vectors of exponential type for the operator \(A \). Define the type \(\sigma(x; A) \) of a vector \(x \in E(A) \) as
\[
\sigma(x; A) = \inf \{ \alpha > 0 : x \in E_\alpha(A) \} = \lim_{n \to \infty} \| A^n x \|^{\frac{1}{n}}.
\]

Thus, the equality \(\sigma(x; A) = \sigma \) means that for an arbitrary \(\varepsilon > 0 \), there exists a constant \(c_\varepsilon = c_\varepsilon(x) > 0 \) such that
\[
\forall n \in \mathbb{N}_0 \ \| A^n x \| \leq c_\varepsilon (\sigma + \varepsilon)^n,
\]

\(^1\)Mathematics Subject Classification. Primary 34G10

Key words and phrases. Field of \(p \)-adic numbers, differential equation in a Banach space, entire vector of exponential type, Cauchy problem, Cauchy-Kovalevskaya theorem.

Supported by CRDF (Project UM 1-2421-KV-02)
and
\[\lim_{i \to \infty} \frac{\| A^{n_i} x \|}{(\sigma - \varepsilon)^{n_i}} = \infty \]
for some subsequence \(n_i \to \infty \) when \(i \to \infty \). In the case, where the operator \(A \) is bounded, the type of a vector \(x \in \mathfrak{B} = E(A) \) does not exceed the norm of \(A \):
\[\forall x \in \mathfrak{B} \quad \sigma(x; A) \leq \| A \|. \]

2. The object of consideration now is a power series
\[y(z) = \sum_{n=0}^{\infty} c_n z^n, \quad c_n \in \mathfrak{B}, \quad z \in \Omega. \] (1)

For such a series the convergence radius is determined by the formula
\[r = r(y) = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|c_n|}}. \] (2)

In the open disk \(d(r^{-}; \Omega) = \{ z \in \Omega : |z|_p < r \} \), the series (1) defines a vector-function \(y(z) \) with values in \(\mathfrak{B} \) (\(| \cdot |_p \) is the \(p \)-adic valuation on \(\Omega \)).

Denote by \(\mathfrak{A}_{loc}(\mathfrak{B}) \) the set of all vector-functions \(y(z) \) which are represented by a series of the form (1) with \(r(y) > 0 \). It is obvious that \(\mathfrak{A}_{loc}(\mathfrak{B}) \) is a vector space over \(\Omega \). We call its elements locally analytic vector-functions. The convergence \(y_n \to y (n \to \infty) \) in \(\mathfrak{A}_{loc}(\mathfrak{B}) \) means that there exists a number \(\delta > 0 \) such that \(r(y_n) \geq \delta \), for any \(n \in \mathbb{N} \), and for an arbitrary \(\varepsilon \in (0, \delta) \),
\[\sup_{|z|_p \leq \delta - \varepsilon} \| y_n(z) - y(z) \| \to 0, \quad n \to \infty. \]

Let \(y \in \mathfrak{A}_{loc}(\mathfrak{B}) \). Its derivatives are defined as
\[y^{(k)}(z) = \sum_{n=0}^{\infty} (n+1) \ldots (n+k) c_{n+k} z^n, \quad k \in \mathbb{N}. \]

It follows from (2) that
\[r(y^{(k)}) \geq r(y). \]

It is easily checked also that if \(z \to 0 \), then
\[y(z) \to y(0) = c_0, \quad \text{and} \quad \frac{y^{(k)}(z) - y^{(k)}(0)}{z} \to y^{(k+1)}(0) = c_{k+1}(k+1)! \] (3)
in the topology of \(\mathfrak{B} \).

3. Let us consider the Cauchy problem
\[\begin{cases} \frac{dy(z)}{dz} = Ay(z) \\ y(0) = y_0, \end{cases} \] (4)

where \(A \) is a closed linear operator on \(\mathfrak{B} \). We say that a vector-function \(y(z) \) from \(\mathfrak{A}_{loc}(\mathfrak{B}) \) is a solution of problem (4) if \(y(z) \in \mathcal{D}(A) \) for \(z \in d(r(y)^{-}; \Omega) \) and satisfies (4) in this disk.
Theorem 1. In order that problem (4) have a solution in $\mathfrak{A}_{\text{loc}}(\mathfrak{B})$, it is necessary and sufficient that $y_0 \in E(A)$; moreover $\sigma(y_0; A)r(y) = p^{-\frac{1}{p-1}}$. The problem (4) is well-posed, that is, the solution is unique, and if a sequence of initial data $y_{n,0} \in E(A)$ converges to y_0 in $E(A)$, then the sequence of the corresponding solutions $y_n(z) \in \mathfrak{A}_{\text{loc}}(\mathfrak{B})$ converges to $y(z)$ in the space $\mathfrak{A}_{\text{loc}}(\mathfrak{B})$.

Proof. Suppose that

$$y(z) = \sum_{k=0}^{\infty} c_k z^k, \quad c_k \in \mathfrak{B}, \quad z \in d(r(y)^{-}; \Omega),$$

is a solution of (4). Then $c_k \in \mathcal{D}(A), k \in \mathbb{N}_0$. Indeed, $c_0 = y(0) = y_0 \in \mathcal{D}(A)$. Since

$$\mathcal{D}(A) \ni \frac{y(z) - c_0}{z} = \sum_{k=0}^{\infty} c_k z^{k-1} \to c_1,$$

and

$$\mathcal{A}(y(z) - y_0) = \frac{y'(z) - y'(0)}{z} \to 2c_2$$

as $z \to 0$, we have because of closure of the operator \mathcal{A} that $c_1 \in \mathcal{D}(A)$, and $\mathcal{A}c_1 = 2c_2$. Using (3), we get by induction that

$$\forall k \in \mathbb{N} \quad c_k = \frac{\mathcal{A}c_{k-1}}{k} \in \mathcal{D}(A),$$

hence,

$$\forall k \in \mathbb{N} \quad y_0 \in \mathcal{D}(A^k), \quad A^k y_0 = k! c_k.$$

In view of (2),

$$\frac{1}{r(y)} = \lim_{n \to \infty} \sqrt[n]{\frac{\|A^n y_0\|}{|n!|_p}}.$$

Taking into account the equality

$$\lim_{n \to \infty} \sqrt[n]{|n!|_p} = p^{-\frac{1}{p-1}}$$

(see [1]), we obtain

$$\lim_{n \to \infty} \frac{\|A^n y_0\|}{|n!|_p} = \frac{p^{-\frac{1}{p-1}}}{r(y)},$$

whence

$$\forall n \in \mathbb{N}_0 \quad \|A^n y_0\| \leq c_n^n,$$

where $0 < c = \text{const}$. So, $y_0 \in E(A)$, and $\sigma(y_0; A)r(y) = p^{-\frac{1}{p-1}}$.

Conversely, let y_0 be an entire vector of exponential type for the operator A with $\sigma(y_0; A) = \sigma$. Then the series

$$y(z) = \sum_{k=0}^{\infty} \frac{A^k y_0}{k!} z^k \quad (5)$$

is convergent in the disk $d(r^{-}; \Omega)$, where

$$r(r) = \left(\lim_{n \to \infty} \sqrt[n]{\frac{\|A^n y_0\|}{|n!|_p}}\right)^{-1} = \frac{\lim_{n \to \infty} \sqrt[n]{|n!|_p}}{\lim_{n \to \infty} \sqrt[n]{\|A^n y_0\|}} = \frac{p^{-\frac{1}{p-1}}}{\sigma}.$$
We shall prove now that if \(z \in d(r^-; \Omega) \), then \(y(z) \in \mathcal{D}(A) \). Really, since every component of series (5) belongs to \(\mathcal{D}(A) \), the sums \(S_n(z) = \sum_{k=0}^{n} \frac{A^k y_0}{k!} z^k \) belong to \(\mathcal{D}(A) \), too. For \(z \in d(r^-; \Omega) \), the sequence \(S_n(z) \) converges to \(y(z) \) \((n \to \infty)\) in the topology of \(\mathcal{B} \). As \(\sigma(A y_0; A) = \sigma(y_0; A) = \sigma \), the sequence \(A S_n(z) = \sum_{k=0}^{n} \frac{A^{k+1} y_0}{k!} z^k \), \(n \in \mathbb{N} \), converges in \(\mathcal{B} \) \((n \to \infty)\) in the same disk \(d(r^-; \Omega) \). Since the operator \(A \) is closed, we have that \(y(z) \in \mathcal{D}(A) \) when \(z \in d(r^-; \Omega) \).

The formal differentiation of series (5) verifies that \(y(z) \) satisfies (4). Thus, the vector-function (5) is a solution of problem (4).

It remains to check the well-posedness of problem (4). Assume that \(y_{n,0} \to y_0 \) \((n \to \infty)\) in \(E(A) \). This means that there exists a number \(\alpha > 0 \) such that \(y_{n,0} \in E_\alpha(A) \) for sufficiently large \(n \), and \(\|y_{n,0} - y_0\|_\alpha \to 0 \) as \(n \to \infty \). It follows from the above proof of sufficiency that

\[
 r(y_n) \geq \frac{p^{-1}}{\alpha}.
\]

So, we may take \(\delta = \frac{p^{-1}}{\alpha} \), and to complete the proof, we need only show that for an arbitrary fixed \(\varepsilon \in (0, 1) \), \(\|y_n(z) - y(z)\| \to 0 \) \((n \to \infty)\) uniformly in the disk \(d((1 - \varepsilon)\delta^-; \Omega) \). We have

\[
 \|y_n(z) - y(z)\| = \left\| \sum_{k=0}^{\infty} \frac{A^k (y_{n,0} - y_0) z^k}{k!} \right\| \\
 \leq \sum_{k=0}^{\infty} \frac{\|A^k (y_{n,0} - y_0) z^k\|}{k!} = \sum_{k=0}^{\infty} \frac{\|A^k (y_{n,0} - y_0) z^k\|}{k!}.
\]

Taking into account that

\[
 \frac{1}{z} \leq \frac{p}{z}
\]

(see [2]), we arrive at the inequality

\[
 \|y_n(z) - y(z)\| \leq \varepsilon^{-1} \|y_{n,0} - y_0\|_\alpha,
\]

and therefore problem (4) is well-posed. \(\square \)

It is seen from the proof of Theorem 1 that the series \(\sum_{k=0}^{\infty} \frac{A^k y_0}{k!} z^k \) is convergent for all \(z \in \Omega \) if and only if \(y_0 \in \bigcap_{\alpha > 0} E_\alpha(A) \).

Corollary 1. If the operator \(A \) is bounded, then for any \(y_0 \in \mathcal{B} \), the Cauchy problem (4) is well-posed in the class \(\mathfrak{A}_{loc}(\mathcal{B}) \).

Remark 1. If \(\mathcal{B} \) is a Banach space over the field \(\mathbb{C} \) of complex numbers, then, as was shown in [4], problem (4) is well-posed in the class of locally analytic vector-functions if and only if \(y_0 \) is an analytic vector for the operator \(A \), that is, \(y_0 \in \bigcap_{n \in \mathbb{N}_0} \mathcal{D}(A^n) \), and

\[
 \exists \alpha > 0 \ \exists c > 0 \ \forall k \in \mathbb{N}_0 \ \|A^k y_0\| \leq c \alpha^k k!.
\]

In this case, in order that problem (4) be well-posed in the class of entire vector-functions of exponential type, it is necessary and sufficient that \(y_0 \in E(A) \).
4. In this section we show how the existence and uniqueness theorem for the Cauchy problem for partial differential equations over a non-archimedean field of characteristic zero (see [5]) may be obtained from the above result.

Let A_ρ be the space of Ω-valued functions $f(x)$ analytic on the n-dimensional disk

$$d(\rho^+; \Omega^n) = \left\{ x = (x_1, \ldots, x_n) \in \Omega^n : |x|_p = \left(\sum_{i=1}^n |x_i|^2 \right)^{1/2} \leq \rho \right\}.$$

This means that

$$f(x) = \sum_\alpha f_\alpha x^\alpha, \quad f_\alpha \in \Omega, \quad \lim_{|\alpha| \to \infty} |f_\alpha|_p \rho^{\alpha} = 0,$$

where $\alpha = (\alpha_1, \ldots, \alpha_n)$, $\alpha_i \in \mathbb{N}_0$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$.

The space A_ρ is a non-archimedean Banach space with respect to the norm

$$\|f\|_\rho = \sup_\alpha |f_\alpha|_p \rho^{\alpha}.$$

It is clear that the differential operators

$$\frac{\partial f}{\partial x_j} = \sum_\alpha \alpha_j f_\alpha x_1^{\alpha_1} \cdots x_j^{\alpha_j-1} \cdots x_n^{\alpha_n}, \quad j = 1, \ldots, n,$$

are bounded in A_ρ, and

$$\left\| \frac{\partial f}{\partial x_j} \right\|_\rho = \max_\alpha |f_\alpha|_p \rho^{\alpha-1} \leq \frac{1}{\rho} \max_\alpha |f_\alpha|_p \rho^{\alpha} = \frac{1}{\rho} \|f\|_\rho.$$

The multiplication map

$$G : f \mapsto fg,$$

where $g \in A_\rho$, is bounded in A_ρ, too, and

$$\|G\| = \|g\|_\rho.$$

Indeed, let $f(x) = \sum_\alpha f_\alpha x^\alpha$, $g(x) = \sum_\alpha g_\alpha x^\alpha$, $\alpha = (\alpha_1, \ldots, \alpha_n)$. Then

$$f(x)g(x) = \sum_\alpha c_\alpha x^\alpha,$$

where

$$c_\alpha = \sum_{0 \leq i \leq \alpha} f_i g_{\alpha-i} = \sum_{i_1=0}^{\alpha_1} \cdots \sum_{i_n=0}^{\alpha_n} f_{i_1,\ldots,i_n} g_{\alpha_1-i_1,\ldots,\alpha_n-i_n} \quad (i = (i_1, \ldots, i_n)).$$

So,

$$\|fg\|_\rho = \sup_\alpha \max_{0 \leq i \leq \alpha} |f_1|_p |g_{\alpha-i}|_p \rho^{|\alpha|-|i|} \leq \|f\|_\rho \|g\|_\rho.$$

We pass now to the Cauchy problem

$$\begin{cases}
\frac{\partial u(t,x)}{\partial t} = \sum_{|\beta|=0}^n a_\beta(x) D^\beta u(t,x) \\
u(0,x) = \varphi(x),
\end{cases} \quad (6)$$
where \(a_\beta(x) \in \mathcal{A}_\rho, \ \varphi(x) \in \mathcal{A}_\rho, \ D^\beta = \frac{\partial^{\vert \beta \vert}}{\partial x_1^{\beta_1} \ldots \partial x_n^{\beta_n}}. \)

In the space \(\mathcal{A}_\rho \) we define the operator \(A \) as follows:

\[
 f \mapsto Af = \sum_{|\beta|=0}^{n} a_\beta D^\beta f.
\]

The relations

\[
 \left\| \sum_{|\beta|=0}^{n} a_\beta D^\beta f \right\|_\rho \leq \max_{\beta} \|a_\beta D^\beta f\|_\rho \leq \max_{\beta} \|a_\beta\|_\rho \|D^\beta f\|_\rho \leq \max_{\beta} \{\rho^{-|\beta|}\|a_\beta\|_\rho\} \|f\|_\rho
\]

show that the operator \(A \) is bounded, and

\[
 \|A\| \leq \max_{\beta} \{\rho^{-|\beta|}\|a_\beta\|_\rho\}.
\]

It follows from Corollary 1 that problem (6) is well-posed in \(\mathcal{A}_{\text{loc}}(\mathcal{A}_\rho) \) in the disk

\[
 \left\{ t \in \Omega : |t|_p < \frac{p^{-\frac{1}{p-1}}}{\max_{\beta} \{\rho^{-|\beta|}\|a_\beta\|_\rho\}} \right\}.
\]

It should be noted that Theorem 1 is valid also in the case where \(\mathcal{B} \) is a Banach space over an arbitrary non-archimedean field \(K \) of characteristic zero. But then the role of \(p^{-\frac{1}{p-1}} \) is played by a certain constant \(b = b(K) \) such that \(\frac{1}{|n|!_K} \leq b^n \) (see, for instance, [6]).
References

[1] Koblitz N. *p-adic numbers, p-adic Analysis, and Zeta-functions*, Springer-Verlag, New York-Heidelberg-Berlin, 1977; Russian edition: Mir, Moscow, 1982.

[2] Dwork B., Gerotto G., and Sullivan F.J. *An Introduction to G-functions*, Princeton University Press, Princeton-New Jersey, 1994.

[3] Schikhof W.H. *Ultrametric Calculus, An Introduction to p-adic Analysis*, Cambridge University Press, London-New York-New Rochelle-Melburnr-Sydney, 1984.

[4] Gorbachuk M. L. *On analytic solutions of differential-operator equations*, Ukrain. Mat. Zh. 52 (2000), no. 2, 596-607.

[5] Khrennikov A.Yu. *Mathematical methods of non-archimedean physics*, Uspehi. Mat. Nauk. 45 (1990), no. 4, 79-110.

[6] Borevich Z.I., Shafarevich I.R. *Number Theory*, Nauka, Moscow, 1985.

Institute of Mathematics
National Academy of Sciences of Ukraine
3 Tereshchenkivs'ka
Kyiv 01601, Ukraine
E-mail: imath@horbach.kiev.ua