THE 2-IWASAWA MODULE OVER CERTAIN OICT ELEMENTARY FIELDS

MOHAMED MAHMOUD CHEMS-EDDIN

Abstract. The aim of this paper is to determine the structure of 2-Iwasawa module of some imaginary triquadratic fields.

1. Introduction

Let \(\ell \) denote a prime number. Let \(\mathbb{Z}_\ell \) be the additive group of \(\ell \)-adic integers, \(\Lambda = \mathbb{Z}_\ell[[T]] \) and \(M \) a finitely generated \(\Lambda \)-module. It is known, by the structure theorem, that there exist \(r, s, t, n_i, m_i \in \mathbb{Z} \), and \(f_i \) distinguished and irreducible polynomials of \(\mathbb{Z}_\ell[T] \) such that

\[
M \sim \Lambda^r \oplus \left(\bigoplus_{i=1}^s \Lambda/(\ell^{n_i}) \right) \oplus \left(\bigoplus_{j=1}^t \Lambda/(f_j(T)^{m_j}) \right).
\]

Denote by \(k_\infty/k \) the cyclotomic \(\mathbb{Z}_\ell \)-extension of a number field \(k \). For any integer \(n \geq 1 \), it is known that \(k_\infty \) contains a unique cyclic subfield \(k_n \) of degree \(\ell^n \) over \(k \). The field \(k_n \) is called the \(n \)-th layer of the cyclotomic \(\mathbb{Z}_\ell \)-extension of \(k \). Let \(A_n(k) \) denote the \(\ell \)-class group of \(k_n \) and us consider the Iwasawa module \(A_\infty(k) = \varprojlim A_n(k) \) which is a finitely generated \(\Lambda \)-module.

The determination of the structure of \(A_\infty(k) \), for a given number field \(k \), is a very difficult and interesting problem in Iwasawa theory. In this paper we shall deal with this problem (in the case \(\ell = 2 \)) for some infinite families of number fields of the form \(F = \mathbb{Q}(\sqrt{p}, \sqrt{q}, i) \), where \(p \) and \(q \) are two primes satisfying one of the following conditions:

\[
q \equiv 7 \pmod{8}, \ p \equiv 5 \text{ or } 3 \pmod{8} \text{ and } \left(\frac{p}{q} \right) = 1. \tag{1}
\]

\[
q \equiv 7 \pmod{8}, \ p \equiv 5 \text{ or } 3 \pmod{8} \text{ and } \left(\frac{p}{q} \right) = -1. \tag{2}
\]

Let us adopt the following notations: \(h_2(d) \) the 2-class number of \(\mathbb{Q}(\sqrt{d}) \), \(h(k) \) (resp. \(h_2(k) \)) the class number (resp. 2-class number) of a number field \(k \), \(k^+ \) the

2010 Mathematics Subject Classification. 11R29; 11R23; 11R18; 11R20.

Key words and phrases. Cyclotomic \(\mathbb{Z}_p \)-extension, 2-Iwasawa module, 2-rank, 2-class group.
maximal real subfield of k, $\mathrm{Cl}(k)$ the class group of k, $q(k)$ the unit index of a multiquadratic number field k and $N_{k'/k}$ the norm map of an extension k'/k.

2. The 2-Iwasawa Module

Let us recall some results that will be useful in what follows.

Lemma 2.1 ([1]). Let $m \geq 1$ and p a prime such that $p \equiv 3$ or 5 (mod 8). Then p decomposes into the product of 2 prime ideals of $K_n = \mathbb{Q}(\zeta_{2n+2})$ while it is inert in K_n^+.

Theorem 2.2 ([7]). Let F and K be CM-fields and K/F a finite 2-extension. Assume that $\mu^-(F) = 0$. Then $\mu^-(K) = 0$ and

$$\lambda^-(K) - \delta(K) = [K_\infty : F_\infty] (\lambda^-(F) - \delta(F)) + \sum (e_\beta - 1) - \sum (e_{\beta+} - 1),$$

where $\delta(k)$ takes the values 1 or 0 according to whether F_∞ contains the fourth roots of unity or not. The e_β is the ramification index of a prime β in K_∞/F_∞ coprime to 2 and $e_{\beta+}$ is the ramification index for a prime coprime to 2 in K_∞^+/F_∞^+.

Let $\text{rank}_\ell(G)$ denote the ℓ-rank of an abelian group G and $\mu(k)$, $\lambda(k)$ denote the Iwasawa Invariants of k. We have:

Theorem 2.3. Let K_∞/k be a \mathbb{Z}_ℓ-extension of a number field k and assume that any prime which is ramified in K_∞/k is totally ramified. If $\mu(k) = 0$ and $\lim_{n \to \infty} A_n$ is an elementary Λ-module, then $\text{rank}_\ell(A_n) = \lambda(k)$ for all $n \geq \lambda(k)$.

Proof. We have $\text{rank}_\ell(A_n) = \lambda(k)$, for n large enough and we have $\text{rank}_\ell(A_n) \leq \lambda(k)$, for all n. Assume that $\text{rank}_\ell(A_{m_0}) \leq \lambda(k) - 1$ for some $m_0 \geq \lambda(k)$. This implies that necessary there is $r \leq \lambda(k)$ such that $\text{rank}_\ell(A_r) = \text{rank}_\ell(A_{r+1})$ and therefore by [6, Theorem 1], $\text{rank}_\ell(A_n) = \text{rank}_\ell(A_{k+1}) \leq \lambda(k) - 1$, for all $n \geq r$. Which is absurd. \qed

Lemma 2.4. Let p and q be two primes satisfying conditions (1) or (2). Set $\pi_1 = 2$, $\pi_2 = 2 + \sqrt{2}$, ..., $\pi_n = 2 + \sqrt{\pi_{n-1}}$. Then, the 2-class group of $\mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{\pi_n})$ is trivial for all $n \geq 1$.

Proof. Assume that $p \equiv 5$ (mod 8). Put $k = \mathbb{Q}(\sqrt{p}, \sqrt{q})$. If $\left(\frac{p}{q}\right) = -1$, then by [3, Lemma 3.2] we easily deduce that $q(k) = 2$ (we similarly show that we have the same equality for other cases). Note that by class number formula (cf. [9]) and the fact that we have $h_2(p) = h_2(q) = 1$ and $h_2(pq) = 2$ (cf. [5, Corollaries 18.4, 19.7 and 19.8]). we have

$$h_2(k) = \frac{1}{4}q(k)h_2(p)h_2(q)h_2(pq) = \frac{1}{4} \cdot 2 \cdot 1 \cdot 1 \cdot 2 = 1.$$

By [3, Theorem 4.4] and [4, Theorem 3.14] the class number of $k_1 = \mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{2})$ is odd. Therefore the result follows by [6, Theorem 1]. We prove similarly the result for the case $p \equiv 3$ (mod 8). \qed
Theorem 2.5. Let p and q be two primes satisfying conditions (1) or (2). Put $F = \mathbb{Q}(\sqrt[p]{q}, \sqrt[q]{p}, i)$. Let $A_n(F)$ denote the 2-class group of the n-th layer of the cyclotomic \mathbb{Z}_2-extension of F. Then the Iwasawa module $A_\infty(F) = \lim_{n \to \infty} A_n(F)$ of F is a Λ-module without finite part. If moreover $q \equiv 7 \pmod{16}$, then

- We have $A_\infty(F) \cong \mathbb{Z}_2^n$.
- $\text{rank}_2(A_n(F)) = 3$, for all $n \geq 3$.

Proof. Assume that $p \equiv 5 \pmod{8}$. Let F_n denote the n-th ($n \geq 1$) layer of the cyclotomic \mathbb{Z}_2-extension of F and $A_n(F)$ denote the 2-class group of F_n. Let us define A_n^+ as the group of strongly ambiguous classes with respect to the extension F_n/F^n_+ and $A_n^- = A_n/A_n^+$ (cf. [8] for more details about this new definition).

Since the class number of F_n^+ is odd (Lemma 2.4), then A_n^+ is generated by the ramified primes above 2. Since F_1/F_1^+ is unramified, then F_n/F_n^+ is also unramified. Therefore A_n^+ is trivial. So $A_n = A_n^-$. By [8, Theorem 2.5] there is no finite submodule in A_n^-. Hence $A_\infty(F) = A_n^-$ is a Λ-module without finite part.

- Assume now that $q \equiv 7 \pmod{16}$.

Set $K_n = \mathbb{Q}(\zeta_{2n+2})$ and $K = \mathbb{Q}(\sqrt{q}, i)$. Note that p splits into 2 prime ideals in $\mathbb{Q}(\sqrt{q})$ or $\mathbb{Q}(\sqrt{2q})$. Since by Lemma 2.1, p splits into 2 primes of K_n and inert in K_n^+, for n large enough, then p splits into 4 primes in F_n while it splits into 2 primes in F_n^+. By [2, Theorem 4] we have $\lambda^-(K) = 1$. Since $[F_\infty : K_\infty] = [F^+_\infty : K^+_\infty] = 2$, then by Kida’s formula (Theorem 2.2) applied on F/K we have

$$\lambda^-(F) - 1 = 2(1 - 1) + 4 - 2.$$

Thus by Lemma 2.4 $\lambda(F) = \lambda^-(F) = 3$. It follows that

$$A_\infty(F) \cong \bigoplus \Lambda/(f_i(T)),$$

for some distinguished polynomials f_i such that $\sum \deg(f_i) = 3$. Since by the division algorithm we have $\Lambda/(f_i(T)) \cong \mathbb{Z}_2^{\deg(f_i)}$, then $A_\infty(F) \cong \mathbb{Z}_2^3$. Therefore, Theorem 2.3 completes the proof of the result for $p \equiv 5 \pmod{8}$. We proceed similarly for the other cases.

References

[1] Chems-Eddin MM., Azizi A., Zekhnini A., On the 2-class group of some number fields with large degree, Arch. Math. (Brno), 57 (2021), 13-26.

[2] Chems-Eddin MM., Müller K., 2-Class groups of cyclotomic towers of imaginary biquadratic fields and applications, Int. J. Number Theory, https://doi.org/10.1142/S1793042121500627.

[3] Chems-Eddin MM., Zekhnini A., Azizi A., Units and 2-class field towers of some multi-
quadric number fields, Turk. J. Math., 44 (2020), 1466-1483.

[4] Chems-Eddin MM., Arithmetic of some real triquadratic fields; Units and 2-class groups, (Preprint) arXiv:...

[5] Conner PE., Hurrelbrink J., Class number parity. Series in Pure Mathematics 8, World Scientific, 1988.
[6] Fukuda T., Remarks on \mathbb{Z}_p-extensions of number fields. Proc. Japan Acad. Ser. A Math. Sci. 1994, 70: 264–266.

[7] Kida Y., Cyclotomic \mathbb{Z}_2-extensions of J-fields, J. Number Theory, 1982, 14: 340-352.

[8] Müller K., Capitulation in the \mathbb{Z}_2 extension of CM number fields. Math. Proc. Camb. Phil. Soc., 2019, 166: 371-380.

[9] Wada H., On the class number and the unit group of certain algebraic number fields. J. Fac. Sci. Univ. Tokyo, 1966, 13: 201–209.

Mohamed Mahmoud CHEMS-EDDIN: Mohammed First University, Mathematics Department, Sciences Faculty, Oujda, Morocco

Email address: 2m.chemseddin@gmail.com