Valley controlled spin-transfer torque in ferromagnetic graphene junctions

Zhi Ping Niu
College of Science, Nanjing University of Aeronautics and Astronautics, Jiangsu 210016, People’s Republic of China
E-mail: zpniu@nuaa.edu.cn

Keywords: spin-transfer torque, valleytronics, graphene

Abstract
The presence of the valley degree of freedom in graphene leads to the valleytronics, in which information is encoded by the valley quantum number of the electron. We propose a valley controlled spin-transfer torque (STT) in graphene-based normal/normal/ferromagnetic junctions with the normal lead irradiated by the off-resonant circularly polarized light. The interplay of the spin–orbit interaction and the staggered potential in the central normal part results in the coupling between the valley and spin degrees of freedom, so a valley dependent spin polarized current can be demonstrated, which can exert a valley controlled STT on the ferromagnetic lead. The amplitude of the STT can be manipulated by the intensity of the light, the Fermi energy and the magnetization direction of the ferromagnetic lead. This valley controlled STT may find potential application in future valleytronics and spintronics.

1. Introduction

Over the past decade, motivated by the development of spintronics, the presence of the valley degree of freedom in graphene leads to the valleytronics [1, 2], whose goal is to manipulate the valley degree of freedom and search for its potential applications in semiconductor technologies and quantum information. Much substantial progress in valleytronics has been made recently, such as quantum valley Hall effect [3–6], valley polarization controlled by circularly polarized light in molybdenum disulfide [7], and valley and spin currents in silicene junctions [8–10]. Interestingly, if the intrinsic spin–orbit interaction and the staggered potential coexist in graphene-like materials, the band structure becomes spin-valley coupling, so one can control the spin polarized current by the valley degree of freedom [8–11].

Recently, on the other hand, the spin-transfer torque (STT) has also attracted much attention [12–19]. When a spin polarized current is injected into a ferromagnetic layer with a magnetization misaligned to the spin polarization of the current, it can transfer spin angular momentum to the ferromagnetic layer, and hence exerts a torque on the magnetic moments of the ferromagnetic layer, which may change the magnetization orientation of the ferromagnetic layer. The STT effect has the potential application in random access memory, which offers an all-electrical read and write process. The STT was theoretically predicted by Slonczewski [12] and Berger [13], and then it has been extensively confirmed experimentally [14]. Recently, the STT in ferromagnetic graphene junctions has also been reported. Yokoyama and Linder [15] demonstrated that both the magnitude and the sign of the STT can be controlled by means of the gate voltage in a bulk ferromagnetic/normal/ferromagnetic graphene junction. Then Ding et al [16] investigated theoretically the effect of strain on the STT in a zigzag-edged graphene nanoribbon spin–valve device. Later Zhang et al [17] studied the helical spin polarized current induced STT in graphene-based normal/topological insulator/ferromagnetic junctions. Although the STT in ferromagnetic graphene junctions has been investigated in [15–17], the effect of the valley degree of freedom on the STT is not explored. If the coupling between the valley and spin degrees of freedom exists, a valley controlled spin polarized current is generated. Naturally, it is interesting to discuss the effect of the valley degree of freedom on the STT in a ferromagnetic graphene junction.
In this work, we predict a valley controlled STT in graphene-based normal/normal/ferromagnetic (N1/N2/F) junctions, where the N1 is irradiated by the off-resonant circularly polarized light. In the N1, the valley polarization can be modulated by the interaction between the staggered potential and the light. While in the N2, the interplay of the spin–orbit interaction and the staggered potential leads to the coupling between the valley and spin degrees of freedom. In this case one can control the valley dependent spin polarized current by the intensity of the light, the Fermi level and Rashba spin–orbit interaction on the STT are discussed.

The rest of this paper is organized as follows. In section 2 we give the Hamiltonian of the N1/N2/F junctions, discretize the Hamiltonian in the basis \(|x_i\rangle \otimes |k_j\rangle \), and then present the formula of the valley dependent STT by the Keldysh non-equilibrium Green’s function method. In section 3, numerical results and detailed discussions are demonstrated. Finally, in section 4 we summarize the main conclusions of this work.

2. Model and formulation

We consider a graphene-based two dimensional N1/N2/F junction (see figure 1 (a)) with the interfaces located at \(x = 0 \) and \(x = L \), where \(L \) is the width of the N2. The N1 \((x < 0) \) is irradiated by off-resonant circularly polarized light that requires \(h\omega \gg \gamma \) in principle, where \(\omega \) is the frequency of light and \(\gamma \) is the nearest-neighboring hopping energy in graphene [20–24]. In the central part N2 the spin–orbit interaction and the staggered potential are considered, which leads to the coupling between the valley and spin degrees of freedom. The ferromagnetic electrode deposited on top of the graphene sheet \((x > L) \) induces a finite exchange field \(\mathbf{h} = h(\cos \theta, 0, \sin \theta) \) [8, 15, 25], where \(h \) is the magnitude of exchange field and \(\theta \) describes the direction angle of the magnetization. In the low-energy approximation, the Hamiltonian of the present junctions is expressed as [8, 9, 21, 26]

\[
H^{\text{eff}} = \sigma_0 \otimes (\epsilon N_F \sigma_{x} \tau_{z} + k_z \tau_{y}) + (\eta \lambda_{\sigma} - \lambda_{c}) \tau_{z} + \eta \lambda_{\sigma} \sigma_{x} \otimes \tau_{z} - \sigma \cdot \mathbf{h} \otimes \tau_{b}.
\]

Here \(\eta = +1 (-1) \) represents the \(K (K') \) valley with \(v_F \) the velocity of electrons. \(\tau_{j} \) and \(\sigma_{j} (j = x, y, z, 0) \) are the Pauli matrices and unit matrices in valley and spin space, respectively. \(\eta \lambda_{\sigma} \sigma_{x} \otimes \tau_{z} \) is intrinsic spin–orbit coupling term in graphene. As indicated in Kane and Mele investigation [26], graphene will be driven into topological phase when this term in graphene is enhanced. In general, the spin–orbit interaction is very weak in graphene. However, many works suggested that spin–orbit interaction can be enhanced by the substrates or adatom deposition [27–30], which results in the nontrivial topological phase. \(\lambda_{c} \) is related to the intensity of the off-resonant circularly polarized light and provides an additional site energy of a sublattice in the N1. By using the Floquet theory [20–24] \(\lambda_{c} \) can be written as \(\lambda_{c} = \frac{8\pi \sigma \xi v_F^2}{\omega^2} \), where \(\xi = (+) \) corresponds to the right-hand (left-hand) circularly polarized light with the frequency \(\omega \), the intensity \(I \), and the fine structure constant

Figure 1. (a) Schematic plot of a N1/N2/F junction, where a graphene monolayer sheet in the xy plane is grown on the substrates. Here the staggered potential induced by the substrates is assumed to be finite in the N1 and N2 but zero in the F. (b) The band structure of the N1/N2/F junctions. In the N1, the spin is degenerate, and due to the interaction between the staggered potential (SP) and the light, a valley-dependent band gap exists. In the N2, the interplay of the spin–orbit interaction (SOC) and the SP leads to the coupling between the valley and spin degrees of freedom. While in the F the valley is degenerate.
Before presenting the numerical results for the valley dependent STT in the N1 channel, we need to discuss some details about the system. The valley dependent STT is studied by the non-equilibrium Green’s function method. The retard Green’s function of the central part N2 can be calculated by the following expression:

\[G'(\varepsilon) = \left[(\varepsilon + i\eta)I - H_C - \sum_{L} - \sum_{R} \right]^{-1}, \]

where the self-energy is \(\Sigma^{R}_{L,R} = H_{R,L} \delta_{R,L} - iE_0 \delta_{R,L} \delta_{R+1,L+1} + iE_0 \delta_{R,L} \delta_{R-1,L-1} \), and \(H_{R,L} \) is the coupling matrix between the left (right) lead and the central part, and \(H_C \) is the Hamiltonian of the N2. For a small bias voltage, the valley dependent STT per unit of the bias voltage in zero temperature can be obtained as

\[\tau^{Rk}_{x} = \frac{\varepsilon}{4\pi} \sum_{k} Tr \left\{ (G'(\mu_L)\Gamma_L(\mu_L)G'^{-1}(\mu_L)\Gamma_R(\mu_R))(\sigma_x \cos \theta - \sigma_y \sin \theta) \right\}, \]

where \(\mu_L \) and \(\mu_R \) are the Fermi level. By using equation (6), we can obtain the total STT \(\tau^{R^2} = \tau^{R}_{x} + \tau^{R}_{z} \).

3. Results and discussions

Before presenting the numerical results for the valley dependent STT in the N1/N2/F junctions, we first make a physical analysis for the valley dependent STT. As shown in equation (2), in the N1, the spin is degenerate and the valley polarization can be manipulated by stagger potential and the off-resonant circularly polarized light. While from equation (1) the dispersion relation of the N2 can be written as \(\varepsilon_{n} = n\sqrt{-(\lambda_0 - \eta\lambda_\omega)^2 + (\hbar v_F k)^2} \), where \(n = \pm \) represents the conduction (valence) band, and \(k = \sqrt{k_x^2 + k_y^2} \) is the modulus of wave vector \(k \). It is noted that for the electrons in the valley where there exists an energy gap \(\Delta E \), which \(\pm \) can be tuned by the parameters \(\lambda_0 \) and \(\lambda_\omega \). The shift of the incident electron should be satisfy \(|\varepsilon| > \Delta E/2 \) to generate propagating incident modes in the valley of the normal lead.

Due to the translation invariant along the y-axis, the transversal wave vector \(k_y \) of the incident electron must be conserved. Following the [34], we can discretize the Hamiltonian (1) in the basis \{\(|x_i\rangle \otimes |k_j\rangle \} \)

\[H^{0}_{i,i'} = H_{i,i'} \delta_{i,i'} - \varepsilon \delta_{i,i'+1} + iE_0 \delta_{i,i'} \delta_{i,i'+1} + \varepsilon \delta_{i,i'} \delta_{i,i'+1}, \]

where \(E_0 = \frac{\hbar v_F a}{a} \) and \(a = x_{i+1} - x_i \) with \(a = 0.5 \) nm [35] is the mesh spacing along the x direction (\(i \leq N \) for the left lead; \(1 \leq i \leq N \) for the central part, and \(i \geq N + 1 \) for the right lead). \(H_{i,i'} \) is given as

\[H_{i,i'} = \delta_{i,i'} \left[\right(\varepsilon + i\eta) \delta_{i,i'} - \sum_{L} - \sum_{R} \right]^{-1}, \]

where the self-energy is \(\Sigma^{R}_{L,R} = H_{R,L} \delta_{R,L} \), \(H_{R,L} \) is the surface retarded Green’s function of the left (right) lead, and \(H_C \) is the Hamiltonian of the N2. For a small bias voltage, the valley dependent STT per unit of the bias voltage in zero temperature can be obtained as

\[\tau^{Rk}_{x} = \frac{\varepsilon}{4\pi} \sum_{k} Tr \left\{ (G'(\mu_L)\Gamma_L(\mu_L)G'^{-1}(\mu_L)\Gamma_R(\mu_R))(\sigma_x \cos \theta - \sigma_y \sin \theta) \right\}, \]

where \(\mu_L \) is the Fermi level. By using equation (6), we can obtain the total STT \(\tau^{R^2} = \tau^{R}_{x} + \tau^{R}_{z} \).
amplitude of τ_{Rx} first increases and then begins to decrease, so in order to get a large τ_{Rx}, one should choose an appropriate parameter λ_ω. We can understand this behavior as follows. For a finite positive λ_ω, because the density of states of the incident electrons in the K valley nonmonotonically depends on λ_ω, the current coming from the K valley first increases and then decreases with λ_ω, leading to a nonmonotonic dependence of K_{Rx} on λ_ω. While for the parameters taken here the density of states of the incident electrons in the K' valley monotonically decreases with λ_ω and becomes zero for large λ_ω, so K_{Rx}' decreases and becomes zero for large λ_ω.

As discussed above, the off-resonant circularly polarized light strongly influences on the valley dependent STT, so it is interesting to analyze the effect of λ_ω on the valley dependent STT in detail. Figure 3(a) displays the valley dependent STT as a function of θ at $\omega = \pi/4$ (black lines), $\pi/2$ (read lines) and $3\pi/4$ (blue lines). As shown in equation (2), the band structure of the η valley in the N1 has an band gap E_g^η, which can be tuned by λ_ω.

For the K valley $\mu_F > E_g^K/2$ should be satisfied to generate propagating incident modes in the N1, so for the parameters $\mu_F = 30$ meV and $\lambda_\omega = 20$ meV taken here, τ_{Rx}' nonmonotonically depends on λ_ω in the regime of -10 meV $< \lambda_\omega < 50$ meV. On the other hand, for the K' valley $\mu_F > E_g^{K'}/2$ is needed to generate propagating incident modes, thus τ_{Rx}' nonmonotonically depends on λ_ω in the regime of -50 meV $< \lambda_\omega < 10$ meV. In this case the curves of τ_{Rx} versus λ_ω can divide into three regimes. (1) For -50 meV $< \lambda_\omega < -10$ meV τ_{Rx} is positive and only originates from τ_{Rx}'. (2) For -10 meV $< \lambda_\omega < 10$ meV both τ_{Rx} and τ_{Rx}' contribute to τ_{Rx}, which changes from positive to negative with increase of λ_ω. (3) For $\lambda_\omega > 10$ meV τ_{Rx} is negative and only comes from $\tau_{Rx}'. At \theta = \pi/2$, due to the presence of $\tau_{Rx}'(\lambda_\omega) = \tau_{Rx}'(-\lambda_\omega)$, τ_{Rx}' is an odd function of λ_ω (red dotted line in figure 3(a)). On the other hand, for the other θ, the symmetry of $\tau_{Rx}'(\lambda_\omega) = \tau_{Rx}'(-\lambda_\omega)$ is broken, τ_{Rx}' is not an odd function of λ_ω any more. In order to explain the behavior of τ_{Rx}', we divide τ_{Rx}' into two parts:
Figure 3. (a) $\tau_{\pi R}^E$ (solid lines), $\tau_{\pi L}^E$ (dashed lines) and $\tau_{\pi E}^E$ (dotted lines) versus λ_{ω} at different θ. (b) $-G_z \sin(\phi)$ and (c) $G_x \cos(\phi)$ versus λ_{ω} at different θ. Other parameters are the same as those in figure 2.
\[\tau_{Q1}^{Rx} = -G_2 \sin \theta \quad \tau_{Q2}^{Rx} = G_\lambda \cos \theta \]

with \(G_\pm = \frac{1}{2} \sum_{\sigma \in \{+,-\}} \mathrm{Tr} (G^\dagger \Gamma_{Q1} \Gamma_1 \sigma_{z(\pm)}) \). For \(\theta = \pi / 2 \) \(\tau_{Q2}^{Rx} \) is zero and \(\tau_{Q1}^{Rx} \) only comes from \(\tau_{Q1}^{Rx} \), which has the symmetry of \(\tau_{Q1}^{Rx}(-\lambda_\omega) = \tau_{Q1}^{Rx}(\lambda_\omega) \), thus \(\tau_{Q1}^{Rx} \) is an odd function of \(\lambda_\omega \).

However, for \(\theta = \pi / 4 \) or \(3\pi / 4 \) both \(\tau_{Q1}^{Rx} \) and \(\tau_{Q2}^{Rx} \) (\(\tau_{K1}^{Rx} \) and \(\tau_{K2}^{Rx} \)) are finite and contribute to \(\tau_{Q}^{Rx} \) (\(\tau_{K1}^{Rx} \) and \(\tau_{K2}^{Rx} \) have the opposite sign (figure 3(b)), but \(\tau_{K1}^{Rx} \) and \(\tau_{K2}^{Rx} \) have the same sign (figure 3(c))). Because \(\tau_{Q1}^{Rx} \) comes from the combined contribution of \(\tau_{Q1}^{Rx} \) and \(\tau_{Q2}^{Rx} \), which breaks the symmetry of \(\tau_{Q}^{Rx}(\lambda_\omega) = \tau_{Q}^{Rx}(-\lambda_\omega) \), \(\tau_{Q}^{Rx} \) is not an odd function of \(\lambda_\omega \) any more.

Since the STT strongly depends on the magnetization direction of the F (figure 2) and the off-resonant circularly polarized light (figure 3), the STT as a function of \(\theta \) and \(\lambda_\omega \) is plotted in figure 4. It is found that the STT is zero for \(\theta = 0, \pi, 2\pi \), where the spin polarization direction of the incident current is parallel or antiparallel to the magnetization direction of the F. For \(\theta \) near the angles \(\theta = \frac{\pi}{2}, \frac{3\pi}{2} \) the STT can reach maximum. When \(\theta \) is fixed, as discussed in figure 2, with increase of \(\lambda_\omega \), the amplitude of \(\tau_{Q1}^{Rx} \) first increases and then begins to decrease, so in order to get a large \(\tau_{Q1}^{Rx} \) one should choose an appropriate parameter \(\lambda_\omega \). We also find by changing the sign of \(\lambda_\omega \) the STT can convert from the negative to positive, so we can control the STT direction by the handedness of the light.

Furthermore, let us discuss the effect of the Fermi level \(\mu_F \) on the valley dependent STT at \(\lambda_\omega = 10 \) meV (solid lines) and \(-10 \) meV (dashed lines) in figure 5. At \(\lambda_\omega = 10 \) meV \(\tau_{Q1}^{Rx} \) is finite and negative for \(\mu_F > 10 \) meV. With increase of \(\mu_F \) \(\tau_{Q1}^{Rx} \) (blue solid line) first increases with its slope changing at \(\mu_F = 15 \) and
20 meV, and then decreases for $\mu_F > 30$ meV. This can be explained by τ_{Kz}^{Rx} (black solid line) and τ_{Kx}^{Rx} (red solid line). When μ_F is smaller than 10 meV, because μ_F lies in the band gap of the K valley in the N_1, the current is zero, leading to vanishing τ_{Kz}^{Rx}. For 10 meV < μ_F < 20 meV μ_F locates at the conduction band of the K valley in the N_1, the current becomes finite. We find a finite τ_{Kz}^{Rx}, whose amplitude first increases and then becomes almost constant for 15 meV < μ_F < 20 meV. This is because in this regime τ_{Kz}^{Rx} depends on the density of states of the band structure $E_{K_+} = \pm (\hbar v_K k + h)$ and $E_{K_-} = \pm (\hbar v_K k - h)$ in the right F, which, respectively, decreases and increases with μ_F, so τ_{Kz}^{Rx} first increases and then becomes almost constant for 15 meV < μ_F < 20 meV. For $\mu_F > 20$ meV the density of states of E_{K_+} (E_{K_-}) increases with μ_F, so the spin polarized current exerted on the F increases, leading to the increase of τ_{Kz}^{Rx}. Once μ_F is larger than 30 meV, μ_F also locates at the conduction band of the K' valley in the N_1, τ_{Kx}^{Rx} increases with μ_F. Because τ_{Kz}^{Rx} and τ_{Kx}^{Rx} have opposite sign, τ_{Kz}^{Rx} relies on the competition of τ_{Kz}^{Rx} and τ_{Kx}^{Rx}. τ_{Kx}^{Rx} increases faster than τ_{Kz}^{Rx}, so with further increasing of μ_F, the amplitude of τ_{Kz} decreases. Due to the presence of the relationship of $\tau_{Kz}^{Rx}(\lambda_\omega)\big|_{\lambda_\omega=10}$ meV, one observes the STTs at $\lambda_\omega = 10$ meV and $\lambda_\omega = 10$ meV have the same amplitude but opposite sign, thus the sign of the STT can be controlled by handedness of the light.

In addition, due to the presence of the structure inversion asymmetry in the z direction, the Rashba spin–orbit interaction $\lambda(\sigma_z \otimes \tau_y - \eta \sigma_y \otimes \tau_z)$ may appear in the N_2. In figure 6 we study the effect of the Rashba spin–orbit interaction on τ^{Rx} at $\theta = \pi / 2$. As shown in figure 6 τ^{Rx} is an odd function of λ_ω and decreases with λ. This is because without λ the current can arrive at the N_2/F interface with the spin polarization direction along z (for the K valley) or $-z$ (for the K' valley) axis, which is perpendicular to the magnetization direction of the F. However, when λ is finite, the electrons precess in the process of traveling across the N_2, so the spin polarization direction deviates from the z axis, which results in the decrease of τ^{Rx} with λ. Therefore in order to obtain a large τ^{Rx}, a small λ is needed.

Last we will comment on the experimental feasibility of our results. The staggered potential can be induced by the substrate. Actually, in experiment, the gap induced by the SiC substrate can range from several meV to almost constant for zero, leading to vanishing τ^{Rx}. It should be pointed out that the amplitude of τ^{Rx} obtained here is comparable to the STT in a previous work, where a ferromagnetic/normal/ferromagnetic junction is
investigated [15]. However, unlike [15], the spin polarized currents in this work originates from the coupling between the valley and spin degrees of freedom, so the STT reported here does not require additional ferromagnetic layer with fixed magnetization.

4. Summary

In summary, we study the valley dependent STT in N$_1$/N$_2$/F junctions. The N$_1$ is irradiated by the off-resonant circularly polarized light, and the valley polarization can be modulated by the interaction between the staggered potential and the light. While in the N$_2$, due to the interplay of the spin–orbit interaction and the staggered potential induced by the substrate, the band structure is spin-valley coupling, so one can control the valley dependent spin polarized current by the valley degree of freedom, which exerts a valley controlled STT on the F. The effects of the intensity of the light, the Fermi level and Rashba spin–orbit interaction on the STT are investigated. The valley controlled STT reported here suggests the ferromagnetic graphene junction ideal for very efficient magnetization manipulation of magnetic materials without external magnetic fields.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11374158.

References

[1] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[2] Schäibley JR, Yu H, Clark G, Rivera P, Ross JS, Seyler KL, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[3] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[4] Gorbachev RV, Song J CW, Yu GL, Kretinin A V, Wüthers F, Cao Y, Mishchenko A, Grigorieva IV, Novoselov KS, Levitov LS and Geim AK 2014 Science 346 448
[5] Ju L et al 2015 Nature 520 650
[6] Shimazaki Y, Yamamoto M, Borzenets IV, Watanabe K, Taniguchi T and Tarucha S 2015 Nat. Phys. 11 1032
[7] Niu Z P and Yao J 2018 Phys. Lett. A 382 920
[8] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[9] Niu Z P and Dong S 2014 Appl. Phys. Lett. 104 202411
[10] Niu Z P, Zhang Y M and Dong S 2015 New. J. Phys. 17 073026
[11] Okuyama T 2013 Phys. Rev. B 87 241409(R)
[12] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
[13] Yamanaka A, Ezawa M, Tanaka Y and Nagaosa N 2013 Phys. Rev. B 88 085322
[14] Miron IM, Garello K, Gaudin G, Zermatten P-J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[15] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[16] Melnik A R et al 2014 Nature 511 449
[17] Okuyama T and Linder J 2011 Phys. Rev. B 83 081418(R)
[18] Ding K H, Zhu Z G and Su G 2014 Phys. Rev. B 89 195443
[19] Zhang Q, Chan KS and Li J 2018 Sci. Rep. 8 4343
[20] Ralph DC and Siles MD 2008 J. Magn. Magn. Mater. 320 1190
[21] Brataas A, Kent AD and Ohno H 2012 Nat. Mater. 11 372
[22] Zhou X, Xu Y and Jin G 2013 Phys. Rev. B 92 235436
[23] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[24] Zhai X and Jin G 2014 Phys. Rev. B 89 235416
[25] Yan Z and Wang Z 2016 Phys. Rev. Lett. 117 087402
[26] Zhang X X, Ong T and Nagaosa N 2016 Phys. Rev. B 94 235137
[27] Niu Z P and Wu X 2018 Phys. Lett. A 382 729
[28] Niu Z P and Dong S 2015 Europhys. Lett. 111 37007
[29] Wang J, Yang Y H and Chan KS 2014 Phys. Rev. B 89 064501
[30] Haugen H, Hernando D H and Brataas A 2008 Phys. Rev. B 77 115406
[31] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[32] Weeks C, Hu J, Alicea J, Franz M and Wu R 2011 Phys. Rev. X 1 021001
[33] Jin K and Jihi S 2013 Phys. Rev. B 87 075442
[34] Kou L, Yan B, Hu F, Wu S, Wehling TO, Felser C, Chen C and Frauenheim T 2013 Nano Lett. 13 6251
[35] Kou L, Wu S, Felser C, Frauenheim T, Chen C and Yan B 2014 ACS Nano 8 10448
[36] Hu FM, Kou L and Frauenheim T 2015 Sci. Rep. 5 8943
[37] Kitagawa T, Oka T, Brataas A, Fu L and Démler E 2011 Phys. Rev. B 84 235108
[38] Bukov M, D’Alessio L and Polkovnikov A 2015 Adv. Phys. 64 139
[39] Sheremet A S, Kibis O V, Kavokin A V and Sheykhk J A 2016 Phys. Rev. B 93 165307
[32] Zhou S Y, Gweon G-H, Fedorov A V, First P N, de Heer W A, Lee D-H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770
[33] Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T and Horn K 2008 Nat. Mater. 7 258
[34] Nam Do V, Hung Nguyen V, Dollfus P and Bournel A 2008 J. Appl. Phys. 104 063708
[35] Xu G J, Wu B H and Cao J C 2011 J. Appl. Phys. 109 083704
[36] Lopez Sancho M P, Lopez Sancho J M and Rubio J 1984 J. Phys. F: Met. Phys. 14 1205
[37] Liang Q and Dong J 2008 Nanotechnology 19 355706
[38] Niu Z P and Xing D Y 2010 Eur. Phys. J. B 73 139
Niu Z P 2011 J. Phys.: Condens. Matter 23 435302
Niu Z P and Xing D Y 2012 Appl. Phys. Lett. 101 062601
[39] Roberts A, Cormode D, Reynolds C, Newhouse-Illige T, LeRoy B J and Sandhu A S 2011 Appl. Phys. Lett. 99 051912
[40] Zhai X, Zhang S, Zhao Y, Zhang X and Yang Z 2016 Appl. Phys. Lett. 109 122404
[41] Zhai X, Wang S and Zhang Y 2017 New J. Phys. 19 063007