TOPOLOGICAL POLYLOGARITHMS AND p-ADIC INTERPOLATION OF L-VALUES OF TOTALLY REAL FIELDS

ALEXANDER BEILINSON, GUIDO KINGS, AND ANDREY LEVIN

ABSTRACT. We develop the topological polylogarithm which provides an integral version of Nori’s Eisenstein cohomology classes for $GL_n(\mathbb{Z})$ and yields classes with values in an Iwasawa algebra. This implies directly the integrality properties of special values of L-functions of totally real fields and a construction of the associated p-adic L-function. Using a result of Graf, we also apply this to prove some integrality and p-adic interpolation results for the Eisenstein cohomology of Hilbert modular varieties.

CONTENTS

Introduction 2
Acknowledgements 3
1. The topological polylogarithm 3
1.1. Group rings of lattices 3
1.2. Iwasawa algebras of lattices 3
1.3. Torsors and locally constant sheaves 5
1.4. The logarithm sheaf 6
1.5. Trivializations of the logarithm sheaf 6
1.6. Cohomology of the logarithm sheaf 7
1.7. Equivariant cohomology of the logarithm sheaf 8
1.8. The topological polylogarithm and Eisenstein classes 11
1.9. A variant of the polylogarithm I 11
1.10. A variant of the polylogarithm II 12
1.11. Trace compatibility 14
2. Explicit formulas 15
2.1. The continuous trivialization of the logarithm sheaf 16
2.2. Green’s currents and the topological polylogarithm 16
2.3. Explicit construction of a Green’s current 18
3. Applications to L-values of totally real fields and Eisenstein cohomology of Hilbert modular varieties 21
3.1. Values of partial L-functions of totally real fields 21
3.2. The evaluation map 22
3.3. The topological polylogarithm and L-values of totally real fields 24
3.4. Eisenstein distributions and measures 27
3.5. Relation with Eisenstein cohomology on Hilbert modular varieties 29
References 31

The authors research was partially supported by the following grants: NSF grant DMS-1406734 (Beilinson), SFB 1085 Higher invariants (Kings).
In the beginning of the 90s Nori [Nor95] and Sczech [Scz93] almost simultaneously and independently developed the so called Eisenstein cohomology classes for $GL_n(\mathbb{Z})$ with rational coefficients and showed that one can get the Klingen-Siegel theorem, about the rationality of zeta values of totally real fields at negative integers, as a direct consequence.

The approach by Nori involves the de Rham complex and is therefore restricted to rational coefficients. Sczech’s construction is analytic in nature and he gets rational cohomology classes in the end by studying Dedekind sums.

In this paper we present a different approach, depending on the topological polylogarithm, which is very much inspired by Nori’s beautiful construction, but works with almost arbitrary coefficients. Moreover, the cohomology class we construct has values in the formal completion of the group ring of a finitely generated free abelian group and is hence exactly the Iwasawa algebra if one considers p-adic coefficients.

The main idea of our construction can be explained as follows. Nori’s cohomology classes should be really considered not as classes on the locally symmetric space associated to $GL_n(\mathbb{Z})$ but rather on the universal family of topological metrized tori above it. On this universal family these classes are completely determined by a residue condition, so that the comparison map between de Rham and singular cohomology in Nori’s approach becomes unnecessary. In particular, Nori’s construction interpreted in this way works for almost arbitrary coefficients.

From our construction we get directly the integrality results of Deligne-Ribet and the p-adic interpolation of the special L-values of totally real fields. In fact we get directly cohomology classes with values in the Iwasawa algebra. We also explain a new result, building upon results of Graf [Gra14], about the integrality and p-adic interpolation of Eisenstein cohomology classes for Hilbert modular varieties.

In recent years the question of finding integral versions of Sczech’s Eisenstein cocycle or of Shintani’s construction received considerable interest. Charollois and Dasgupta were able to refine Sczech’s construction to the integral level in [CD12]. But because of problems with their smoothing construction they could only prove part of the integrality result of Deligne-Ribet for the L-values. Another approach to p-adic interpolation is via the Shintani cocycle of Hill [Hil07] and Solomon, which was refined to give p-adic interpolation by Spiess [Spi14] and Steele [Ste12] independently.

Our approach is completely different from all the above and relies only on the cohomological properties of the so called logarithm sheaf. Being purely topological, we do not need to choose any extra data as for the Shintani cocycle (which depends on a Shintani decomposition) nor do we have any severe restrictions on the coefficients as our approach is not analytic at all.

Moreover, in a geometric situation, where one replaces the tori by abelian varieties, a completely parallel story for other cohomology theories (and even for motivic cohomology) can be developed. This leads to p-adic interpolation of motivic cohomology classes and hence of non-critical L-values (see [Kin13] and the applications of this theory in [KLZ14]). This gives a further argument for pursuing the approach by the topological polylogarithm.

The essential results on p-adic interpolation of L-values of this paper were obtained many years ago in the nineties but were never published. The only exception is the case of the Riemann zeta function which is covered in [BL94]. The newer results on the Eisenstein classes of Hilbert modular varieties and their p-adic interpolation depends on the purely topological construction of the Harder’s Eisenstein cohomology in the thesis of Graf (forthcoming [Gra14]).
Acknowledgements. The first author would like to thank M. Nori for the introduction to his Eisenstein cohomology classes back in 1992. The second author would like to thank the University of Chicago for a very profitable stay in 2002 where he became first acquainted with the topological polylogarithm. He also would like to thank M. Nori for discussions at that time about the possibility to construct Harder’s Eisenstein classes for Hilbert modular varieties with his $\text{GL}_n(\mathbb{Z})$ cohomology classes.

1. The topological polylogarithm

1.1. Group rings of lattices. We consider free abelian groups L of finite rank n, which we call lattices. Let A be a commutative ring and $A[L]$ the group ring of L with coefficients in A. We write $\delta : L \to A[L]^\times$, $\ell \mapsto \delta_\ell$ for the universal group homomorphism. In particular, $\ell \in L$ acts on $A[L]$ by multiplication with δ_ℓ. Let $L_A := A \otimes_{\mathbb{Z}} L$.

Definition 1.1.1. The completion of $A[L]$ with respect to the augmentation ideal J is denoted by

$$R := R(L) := \lim_{\leftarrow k} A[L]/J^k.$$

We write $I := JR$ and consider R with the filtration defined by the I^kR and the induced L-action $\delta : L \to R^\times$. We write $R(k) := R/I^{k+1}$ and R_A if we need to express the dependence on A.

Remark 1.1.2. Let $T(L^\vee) := \text{Spec} A[L] = \text{Hom}(L, G_m)$ be the algebraic torus with character group L over $\text{Spec} A$. The augmentation ideal $J := \ker(A[L] \to A)$ defines the zero section of the smooth map $T(L^\vee) \to \text{Spec} A$ and hence is a regular ideal. Note also that it is stable under the L-action. Then $\text{Spf} R$ is the formal group associated to $T(L^\vee)$. In particular, if ℓ_1, \ldots, ℓ_n is a basis of L, then R is a power series ring in the $\delta_{\ell_1} - 1, \ldots, \delta_{\ell_n} - 1$.

Lemma 1.1.3. There is an isomorphism

$$(1.1.1) \quad \text{Sym}^r L_A \cong \text{gr}_I R = \bigoplus_{k \geq 0} I^k/I^{k+1}.$$

The induced action of L on $\text{gr}_I R$ is trivial.

Proof. As L is abelian we have an isomorphism $L_A \cong J/J^2 \cong I/I^2$, which sends $1 \otimes \ell$ to $\delta_\ell - 1 \mod J^2$. As J and hence I is a regular ideal, the induced map $\text{Sym}^r L_A \to \text{gr}_I R$ is an isomorphism. If $a \in I^k$ then $(\delta_\ell - 1) \cdot a \equiv 0 \mod I^{k+1}$, so that $\delta_\ell \cdot a \equiv a \mod I^{k+1}$, which implies that L acts trivially on $\text{gr}_I R$.

The formation of R is functorial in L: For each homomorphism $\varphi : L \to L'$ we have an A-algebra homomorphism

$$\varphi_R : R \to R',$$

where $R' := R(L')$, which respects the filtrations by I and I'.

Definition 1.1.4. A homomorphism of lattices $\varphi : L \to L'$ is called an isogeny, if it is injective with finite cokernel. For an isogeny φ we denote by $\deg \varphi := \#(L'/\varphi(L))$ the degree of φ.

Proposition 1.1.5. Let $\varphi : L \to L'$ be an isogeny with $\deg \varphi$ invertible in A, then $\varphi_R : R \to R'$

is an isomorphism.
Proof. Both rings R, R' are complete and separated so that it suffices to show that
\[\text{gr}_I \varphi_R : \Sym L_A \to \Sym L'_A \]
is an isomorphism. The A-module I^k/I^{k+1} is generated by products of elements of the form $(\delta_{l} - 1)^{r}$ and φ_R maps these to $(\delta_{\varphi(l)} - 1)^{r}$. This shows that $\text{gr}_I \varphi_R = \Sym \varphi_A$, where $\varphi_A : L_A \to L'_A$ is the induced map. If $\deg \varphi$ is invertible in A, φ_A and hence $\text{gr}_I \varphi$ is an isomorphism.

For the closer investigation of R we need the completion of the divided power algebra of L_A.

Definition 1.1.6. Let $\Gamma L_A = \bigoplus_{k \geq 0} \Gamma_k L_A$ be the graded divided power algebra of L_A.

For $\ell \in L_A$ we write $\ell^{[k]}$ for the k-th divided power of ℓ and write
\[\hat{\Gamma} L_A := \lim_{\rightarrow} \Gamma L_A/I[v] \]
where $I := \Gamma_+ L_A$ is the augmentation ideal.

Note that one has $\ell^n = n! \ell^{[n]}$ and the formula
\[(\ell + \ell')^{[k]} = \sum_{m=0}^{k} \ell^{[m]} \ell^{[k-m]} \]
in ΓL_A. As $\Gamma_{L_A \oplus L_A} \cong \Gamma L_A \otimes_{A} \Gamma L_A$ the algebra ΓL_A is a graded Hopf algebra. Its (graded) dual is $(\Gamma L_A)^* \cong \Sym L_A^*$, where L_A^* is the A-dual of L_A. As L_A is free one has a canonical isomorphism
\[\Gamma L_A \cong \TSym L_A \]
with the Hopf algebra of the symmetric tensors. The isomorphism $L_A \cong \Gamma_1 L_A$ induces an A-algebra homomorphism
\[\hat{\Sym} L_A \to \hat{\Gamma} L_A, \]
where $\hat{\Sym} L_A$ is the completion of $\Sym L_A$ at its augmentation ideal. Explicitly, if we choose a basis ℓ_1, \ldots, ℓ_n of L_A, this homomorphism is given by
\[\ell_1^{k_1} \ldots \ell_n^{k_n} \mapsto k_1! \ldots k_n! \ell_1^{[k_1]} \ldots \ell_n^{[k_n]} \]
From this description it is clear that $(1.1.3)$ is an isomorphism if A is a \mathbb{Q}-algebra.

Lemma 1.1.7. There is an A-algebra homomorphism
\[\exp^* : R \to \hat{\Gamma} L_A \]
compatible with the filtrations. We write $\exp^*_k : R \to \Gamma_k L_A$ for the composition with the projection to $\Gamma_k L_A$.

Proof. Consider the group homomorphism $L \to (\hat{\Gamma} L_A)^\times$ given by $\ell \mapsto \sum_{k \geq 0} \ell^{[k]}$. This induces an A-algebra homomorphism $A[L] \to \hat{\Gamma} L_A$ which maps $(\delta_{\ell} - 1)^{r}$ into $(\hat{\Gamma}_+ L_A)^{[r]}$ and hence J^r to $(\hat{\Gamma}_+ L_A)^{[r]}$. This induces the desired A-algebra homomorphism $\exp^* : R \to \hat{\Gamma} L_A$.□

Remark 1.1.8. The map \exp^* is induced from the exponential map of the formal group $\text{Spf } R$. For this one should think of $\text{Spf } \hat{\Gamma} L_A$ as the divided power formal neighbourhood of 0 in the Lie algebra L_A' of $\text{Spf } R$. The homomorphism \exp^* has also the following description. Let $\mathbb{H} := \lim_{\rightarrow} \Hom_A(R/I^r, A)$ be the bigebra of translation invariant differential operators on $\text{Spf } R$. Then one has $R \cong \Hom_A(\mathbb{H}, A)$ and one has a map $U(L_A^*) \to \mathbb{H}$.
of the universal enveloping algebra of the Lie algebra L_A^* to \mathbb{H}. If we observe that $U(L_A^*) \cong \text{Sym} L_A^*$ we get an A-algebra homomorphism
\[R \cong \text{Hom}_A(\mathbb{H}, A) \rightarrow \text{Hom}_A(U(L_A^*), A) \cong \hat{\Gamma} L_A \]
which coincides with exp^*.

Proposition 1.1.9. If A is a \mathbb{Q}-algebra, then
\[\text{exp}^* : R \rightarrow \hat{\Gamma} L_A \]
is an isomorphism.

Proof. Identify $\text{gr}_I R \cong \text{Sym} I/I^2 \cong \text{Sym} L_A$. Then we claim that the associated graded of $\text{exp}^* : R \rightarrow \hat{\Gamma} L_A$
\[\text{gr}_I \text{exp}^* : \text{Sym} L_A \rightarrow \Gamma L_A \]
coincides with the canonical map. But $L_A \cong I/I^2$ is generated by $\ell - 1$ which maps to $(\sum_{k \geq 0} \ell^{[k]}) - 1$. This is congruent to $\ell^{[1]}$ modulo $\Gamma_L A$[2]. Thus $\text{gr}_I \text{exp}^*$ must be induced from the isomorphism $L_A \cong \Gamma_L A$ by the universal property of $\text{Sym} L_A$. In particular, if A is a \mathbb{Q}-algebra then $\text{gr}_I \text{exp}^*$ is an isomorphism. As R and $\hat{\Gamma} L_A$ are complete and separated, this implies that exp^* is an isomorphism. \(\square\)

Usually it is more convenient to work with the power series ring $\hat{\text{Sym}} L_A$ than with $\hat{\Gamma} L_A$.

Corollary 1.1.10. Let A be a \mathbb{Q}-algebra, then the isomorphism
\[\text{exp}^* : R \cong \hat{\Gamma} L_A \cong \hat{\text{Sym}} L_A \]
is induced by the group homomorphism $\text{exp} : L \rightarrow \hat{\text{Sym}} L_A$ which maps $\ell \mapsto \sum_{k \geq 0} \frac{\ell^{[k]}}{k!}$.

Proof. This is clear as $\frac{\ell^{[k]}}{k!} \mapsto \ell^{[k]}$ under $\hat{\text{Sym}} L_A \cong \hat{\Gamma} L_A$. \(\square\)

1.2. **Iwasawa algebras of lattices.** This section is not needed for the construction of the topological polylogarithm, but it is needed later in the construction of the p-adic measures.

Fix a prime number p. In this section A will be a p-adically complete and separated ring.

Definition 1.2.1. The Iwasawa algebra $A[[L_p]]$ is the completed group ring
\[A[[L_p]] := \lim_{\leftarrow} A[L/p^n L] \]
where the projective limit is taken with respect to $A[L/p^{n+1} L] \rightarrow A[L/p^n L]$.

The A-algebra R is canonically isomorphic to the Iwasawa algebra.

Proposition 1.2.2. The map $\delta : L \rightarrow R^\times$ induces a continuous A-algebra isomorphism
\[A[[L_p]] \cong R. \]

Proof. Consider the composition $L \xrightarrow{\delta} A[L]^\times \rightarrow (A[L]/(p, J)^{r+1})^\times$. By induction on r one sees that $\delta p^r - 1 = \delta p^r - 1 \in (p, I)^{r+1}$. This implies that this composition factors through $L/p^n L$ and one gets by the universal property of the group ring an A-algebra homomorphism $A[L/p^n L] \rightarrow A[L]/(p, J)^{r+1}$, such that the composition $A[L] \rightarrow A[L/p^n L] \rightarrow A[L]/(p, J)^{r+1}$ is the quotient map. This induces a continuous homomorphism
\[A[[L_p]] \rightarrow \lim_{\leftarrow} A[L]/(p, J)^{r+1} \]
which is an isomorphism on the subring $A[L]$. As $A[L]$ is a dense subring on both sides and both rings $A[[L_{zp}]]$ and $\lim_{r \to \infty} A[L]/(p, J)^{r+1}$ are complete and separated, the homomorphism itself must be an isomorphism. It remains to show that

$$R \cong \lim_{r \to \infty} A[L]/(p, J)^{r+1},$$

i.e., that R is (p, I)-adically complete and separated. As $(p, I)^{2r} \subset (p)^r + I^r \subset (p, I)^r$ the (p, I)-adic topology on the finitely generated A-module $R/I^r \cong A[L]/J^r$ coincides with the (p)-adic one. Hence the R/I^r are complete in the (p, I)-adic topology, so that also R is (p, I)-adically complete. As $\bigcap_{r \geq 0}(p)^r = 0$ and $\bigcap_{r \geq 0} I^r = 0$ it is also separated. \qed

Definition 1.2.3. Let A be a p-adically complete and separated ring. Then we call

$$\text{mom} : A[[L_{zp}]] \xrightarrow{\cong} R \xrightarrow{\exp^*} \hat{\Gamma} L_A \cong \text{TSym} L_A$$

the moment map. The projection onto its k-th component

$$\text{mom}^k : A[[L_{zp}]] \xrightarrow{\cong} R \to \text{TSym}^k L_A$$

we call the k-th moment map.

To explain the name “moment map” recall that $A[[L_A]]$ can be interpreted as the algebra of measures on L_{zp}.

Definition 1.2.4. Let $\mathcal{C}(L_{zp})$ be the continuous A-valued functions on L_{zp}. An A-valued measure is an A-linear map $\mu : \mathcal{C}(L_{zp}) \to A$. We write

$$\text{Meas}(L_{zp}, A) := \text{Hom}_A(\mathcal{C}(L_{zp}), A)$$

for the space of all A-valued measures.

It is well-known that $\text{Meas}(L_{zp}, A)$ is a ring under convolution of measures which is canonically isomorphic to $A[[L_{zp}]]$.

Proposition 1.2.5. Identify $\text{Meas}(L_{zp}, A) \cong A[[L_{zp}]]$ and let

$$\text{Meas}(L_{zp}, A) \cong R \xrightarrow{\text{mom}^k} \text{TSym}^k L_{zp}$$

be the composition of the isomorphism in Proposition 1.2.2 with the k-th moment map. If we interpret the A-dual $(\text{TSym} L_A)^*$ as polynomial functions $x_1^{k_1} \cdots x_n^{k_n}$ on L_A, then

$$\text{mom}^k(\mu) = \sum_{k_1 + \cdots + k_n = k} \mu(x_1^{k_1} \cdots x_n^{k_n}) \ell_1^{[k_1]} \cdots \ell_n^{[k_n]}$$

where $\mu(x_1^{k_1} \cdots x_n^{k_n})$ are the moments of the measure μ.

The proposition follows by a direct calculation, as we do not need it, we skip the proof.

1.3. **Torsors and locally constant sheaves.** We follow the principle “right action on spaces, left action on cohomology”.

Let G be a group and $\pi : X \to S$ be a right G-torsor. For a left G-module M we define a G action on $X \times M$ by $(x, m)g := xg, g^{-1}m$ and write as usual

$$X \times^G M := X \times M/G$$

for the orbits of G on $X \times M$.

Definition 1.3.1. For a left G-module M, we define the locally constant sheaf \widetilde{M} to be the sheaf of sections of $X \times^G M$ over S (where M has the discrete topology). If the L-action is trivial then \widetilde{M} is the constant sheaf \underline{M}.
The sections over \(U \subset S \) open of the sheaf \(\tilde{M} \) are explicitly given by
\[
\tilde{M}(U) = \{ f : \pi^{-1}(U) \to M \mid f(ug) = g^{-1}f(u) \text{ for all } g \in G, u \in \pi^{-1}(U) \}.
\]
If \(X \) is simply connected, then the functor
\[
\{ G\text{-modules} \} \to \{ \text{locally constant sheaves on } S \}
\]
(1.3.2) \(M \mapsto \tilde{M} \) is an equivalence of categories. The inverse functor is \(F \mapsto \Gamma(X, \pi^*F) \). We apply this in the case of lattices.

Definition 1.3.2. Let \(L \) be a lattice. We write \(V := \mathbb{R} \otimes L \) where \(\ell \in L \) acts from the right on \(V \) by \(v \mapsto v + \ell \). We denote by \(T := T(L) := V/L \) the associated compact real torus.

Over \(T \) we have the fundamental \(L \)-torsor \(V \)
\[
0 \to L \to V \xrightarrow{\pi} T \to 0
\]
with \(\pi^{-1}(0) = L \).

Definition 1.3.3. Let \(R_1^\times := (1 + I)^\times \subset R^\times \) be the subgroup of 1 units. The \(R_1^\times \)-torsor \(\text{Log}^{\times} \) on \(T \) is the push-out of the sequence (1.3.3) with \(\delta : L \to R_1^\times \), so that one has an exact sequence of abelian groups
\[
0 \to R_1^\times \to \text{Log}^{\times} \xrightarrow{\text{pr}_1} T \to 0.
\]

Note that we also have \(\text{Log}^{\times} := V \times^L R_1^\times \). The \(R_1^\times \)-torsor \(\text{Log}^{\times} \) is obviously rigidified over \(0 \in T \) by \(1 \in R_1^\times \). By [SGA72, Expose VII, Proposition 1.3.5] the group structure on \(\text{Log}^{\times} \) can be uniquely recovered from its \(R_1^\times \)-torsor structure together with its rigidification 1 of its fibre \(\text{Log}^{\times}_0 \) in \(0 \in T \).

1.4. **The logarithm sheaf.** We will consider local systems on the compact torus \(T := T(L) := V/L \).

Proposition 1.4.1. There exists a local system \(\mathcal{L} \text{og} = \mathcal{L} \text{og}_T \) on \(T \) of free rank one \(\mathbb{R} \)-modules, such that the monodromy action \(L \text{-action} L \to \text{Aut}(0^*\mathcal{L} \text{og}) = R^\times \) coincides with \(\delta : L \to R^\times \). Let \(1 \in 0^*\mathcal{L} \text{og} \) be a generator, then the pair \((\mathcal{L} \text{og},1) \) is unique up to unique isomorphism.

Proof. Uniqueness: Let \((\mathcal{L}, s) \) be another pair with the properties of \(\mathcal{L} \text{og} \). Then there exists a unique \(L \)-equivariant isomorphism \(\alpha : 0^*\mathcal{L} \text{og} \cong 0^*\mathcal{L} \) with \(\alpha(1) = s \). Hence there is a unique isomorphism of local systems \(\mathcal{L} \text{og} \cong \mathcal{L} \).

Existence: We give two constructions. For the first consider \(R \) as \(L \)-module via \(\delta : L \to R^\times \) and define \(\mathcal{L} \text{og} := R \). As generator \(1 \in 0^*\mathcal{L} \text{og} = R \) we choose the element \(1 \in R \).

For the second let \(\pi_*A \) be the direct image with compact supports of the constant sheaf \(A \) on \(V \). The sheaf \(\pi_*A \) is a local system of \(A[L] \)-modules of rank one and \(0^*\pi_*A = A[L] \) has \(1 \in A[L] \) as generator. Hence we can take
\[
\mathcal{L} \text{og} := R \otimes_{A[L]} \pi_*A
\]
with the induced generator \(1 \in 0^*\mathcal{L} \text{og} \). \(\square \)
Definition 1.4.2. We call $(\mathcal{L}og, 1)$ the logarithm sheaf and we let
\[
\text{Log} := V \times^L R
\]
so that $\mathcal{L}og$ is the sheaf of sections of Log.

Proposition 1.4.3. The logarithm sheaf $(\mathcal{L}og, 1)$ has the following properties.

1. Consider the filtration $I^k \mathcal{L}og := \tilde{I}^k$ on $\mathcal{L}og$. Then there is a unique identification of local systems of $\text{gr}_I R = \text{Sym} L_A$ modules
\[
\text{gr}_I \mathcal{L}og \cong \text{Sym} L_A
\]
that maps $1 \mod I \mathcal{L}og$ to $1 \in \text{Sym}^0 L_A = A$.

2. Let $\varphi : L \to L'$ be a homomorphism of lattices and $\varphi : T \to T'$ be the induced map, then one has an homomorphism of local systems
\[
\varphi_* \mathcal{L}og : \mathcal{L}og_T \to \varphi^* \mathcal{L}og_{T'},
\]
which is compatible with the filtrations and respects the generators $1, 1'$.

3. If $\varphi : L \to L'$ is an isogeny and $\deg \varphi$ invertible in A, then
\[
\varphi_* \mathcal{L}og : \mathcal{L}og_T \to \varphi^* \mathcal{L}og_{T'},
\]
is an isomorphism.

4. Let $+ : T \times T \to T$ be the group structure on the torus, then one has a unique isomorphism
\[
\text{pr}_1^* \mathcal{L}og \otimes_R \text{pr}_2^* \mathcal{L}og \cong +^* \mathcal{L}og,
\]
under which $1 \otimes 1 \mapsto 1$, i.e, $\mathcal{L}og$ is a character sheaf.

5. Consider the R^\times_1-torsor of local sections of $\mathcal{L}og$ that are modulo $I \mathcal{L}og$ equal to $1 \in A$. Then there is a canonical isomorphism of this R^\times_1-torsor with Log^\times such that $1 \mapsto 1$. Under this isomorphism the group structure on Log^\times is given by the product induced by the isomorphism in (4).

Proof. (1) follows immediately from Lemma 1.1.3 and the functoriality of the functor $M \mapsto \tilde{M}$. For (2) note that $\varphi^* \mathcal{L}og_{T'}$ are the sections of $V \times^L R'$, where L acts via $\varphi : L \to L'$ and $\delta' : L' \to (R')^\times$ on R'. Then (3) follows from (2) and 1.1.5. The assertion (4) follows from the isomorphism $0^*(\text{pr}_1^* \mathcal{L}og \otimes_R \text{pr}_2^* \mathcal{L}og) \cong 0^* (+^* \mathcal{L}og)$. Finally, as $\mathcal{L}og = \widetilde{\mathcal{R}}$, the torsor in (5) is $\widetilde{R^\times}$ and there is a unique isomorphism with Log^\times sending 1 to 1. From the remark after Definition 1.3.3 it follows that the group structure on Log^\times is induced by the isomorphism in (4).

1.5. Trivializations of the logarithm sheaf.

Definition 1.5.1. Let $H \subset T$ be a subgroup. A multiplicative trivialization of $\mathcal{L}og$ on H is a collection of generators $1_h \in \mathcal{L}og_h$ for all $h \in H$ such that $1_h \mod I \mathcal{L}og_h$ equals $1 \in A$ and $1_h \otimes 1_{h'} = 1_{h+h'}$ under the isomorphism in Proposition 1.4.3 for all $h, h' \in H$.

We give two alternative descriptions of a multiplicative trivialization. First consider the group extension
\[
0 \to R^\times_1 \to \text{Log}^\times \xrightarrow{\text{pr}_1} T \to 0
\]
From Definition 1.3.3 A multiplicative trivialization is a group homomorphism $\varrho : H \to \text{Log}^\times$ which is a section of pr_1. In particular, the set of all multiplicative trivializations of $\mathcal{L}og$ is a $\text{Hom}(H, R^\times_1)$-torsor.

For a second description consider the right translation action $+ : T \times H \to T$. A multiplicative trivialization is an extension of this H-action to Log^\times, i.e., a map
Log^x \times H \to \Log^x$ satisfying the usual condition for an H-action, such that one has a commutative diagram

$$
\begin{array}{ccc}
\Log^x \times H & \longrightarrow & \Log^x \\
\pr_1 \times \text{id} & & \downarrow \text{pr}_1 \\
T \times H & \longrightarrow & T.
\end{array}
$$

Given a multiplicative trivialization $\varrho : H \to \Log^x$ the map $+ : \Log^x \times H \to \Log^x$ is the composition of ϱ with the group structure $\Log^x \times \Log^x \to \Log^x$.

Definition 1.5.2. Denote by $T^{\text{tors}} := L_{Q}/L \subset T$ the subgroup of torsion elements in T and by $T^{(A)} \subset T^{\text{tors}}$ the subgroup of elements whose order is invertible in A.

Proposition 1.5.3. There exists a unique multiplicative trivialization ϱ_{can} of \Log over $T^{(A)}$. It is compatible with isogenies and for $t \in T[N] \subset T^{(A)}$ it is explicitly given by the isomorphism

$$
t^* \Log \cong t^*[N]^* \Log \cong 0^*[N]^* \Log \cong 0^* \Log,
$$

where the outer isomorphisms are the pull-backs of $[1.4.3]$ (3) and the middle one comes from $[N] \circ t = [N] \circ 0$.

Proof. Uniqueness: Let N be an integer which is invertible in A. It suffices to show that ϱ_{can} is uniquely determined on the N-torsion points $T[N]$. But the multiplicative trivializations on $T[N]$ form an $\text{Hom}(T[N], R_{1}^{\times})$-torsor. But R_{1}^{\times} has a filtration by $(1 + I^{*})^{\times}$ such that $gr_{\geq 0} R_{1}^{\times} \cong \text{Sym}_{\geq 0} L_{A}$, which has no N-torsion as N is invertible in A. This implies that $\text{Hom}(T[N], R_{1}^{\times}) = 0$.

Existence: Let $\varrho \mid_{T[N]}$ be the inverse of $\Log^x[N] \cong T[N]$. By construction these isomorphisms are compatible for different N. \hfill \Box

1.6. **Cohomology of the logarithm sheaf.** All unlabelled tensor products in this section and the following ones are taken over \mathbb{Z}.

Let L be a lattice of rank n. Recall that one has a canonical isomorphism of algebras $H(A, \mathbb{Z}) \cong \Lambda L$. We define

$$(1.6.1) \quad \lambda := \lambda(L) := \Lambda^{n} L = H_{n}(L, \mathbb{Z}).$$

Theorem 1.6.1. Let L be lattice of rank n. One has

$$H^{i}(T, \Log) \cong \begin{cases} 0 & \text{for } i \neq n \\ H^{n}(T, \underline{\Lambda}) & \text{for } i = n \end{cases}$$

induced by the map $\Log \to \Log / I \Log = A$. In particular, the cap-product induces an isomorphism

$$H^{n}(T, \Log \otimes \lambda) \cong A.$$

Proof. From $\Log \cong R \otimes_{A[L]} \pi_{L} \underline{\Lambda}$ and because R is $A[L]$-flat one gets $H^{i}(T, \Log) \cong H^{i}(T, \pi_{L} \underline{\Lambda}) \otimes_{A[L]} R$. As

$$H^{i}(T, \pi_{L} \underline{\Lambda}) \cong H_{c}^{i}(V, \Lambda) \cong \begin{cases} 0 & i \neq n \\ A & i = n \end{cases}$$

this implies the vanishing result. The homomorphism $H^{n}(T, \Log) \to H^{n}(T, \underline{\Lambda})$ induced by $\Log \to A$ is surjective and because both groups are isomorphic to A it must be an isomorphism. The cap-product gives $H^{n}(T, \Log \otimes \lambda) \cong H^{n}(T, \underline{\Lambda}) \otimes H_{n}(L, \mathbb{Z}) \cong A$. \hfill \Box
Corollary 1.6.2. Let \(D \subset T \) be a finite and non-empty subset. Then for \(i \neq n - 1 \)
\[
H^i(T \setminus D, \mathcal{L}og \otimes \lambda) = 0
\]
and one has a short exact sequence
\[
0 \to H^{n-1}(T \setminus D, \mathcal{L}og \otimes \lambda) \to \mathcal{L}og \mid_{D} \to A
\]
where \(\mathcal{L}og \mid_{D} = \bigoplus_{d \in D} \mathcal{L}og_{d} \) is the restriction of \(\mathcal{L}og \) to \(D \) and \(\sigma_{D} \) is the sum of the maps \(\mathcal{L}og_{d} \to \mathcal{L}og_{d}/I \mathcal{L}og_{d} = A \).

Proof. Consider the localization sequence for the closed subset \(D \subset T \)
\[
\cdots \to H^i(T, \mathcal{L}og \otimes \lambda) \to H^i(T \setminus D, \mathcal{L}og \otimes \lambda) \to H^{i+1}(T, \mathcal{L}og \otimes \lambda) \to \cdots
\]
For each \(d \in D \) choose an open neighbourhood \(U_d \) such that \(\mathcal{L}og \) is constant on \(U_d \) and the \(U_d \) for different \(d \) are disjoint. Then by excision
\[
H^{i+1}(T, \mathcal{L}og \otimes \lambda) \cong \bigoplus_{d \in D} H^{i+1}_{(d)}(U_d, \mathcal{L}og \mid_{U_d} \otimes \lambda).
\]
As \(\mathcal{L}og \mid_{U_d} \) is constant and hence isomorphic to \(\mathcal{L}og_{d} \), one has a canonical isomorphism
\[
H^n_{(d)}(U_d, \mathcal{L}og \mid_{U_d} \otimes \lambda) \cong \mathcal{L}og_{d}
\]
and \(H^{i+1}_{(d)}(U_d, \mathcal{L}og \mid_{U_d} \otimes \lambda) = 0 \) for \(i + 1 \neq n \) (see [KS90], Proposition 3.2.3). \(\square \)

1.7. Equivariant cohomology of the logarithm sheaf. We describe an equivariant version of the above construction.

Let \(\Gamma \to \text{GL}(L) \) be a group action on \(L \). We write \(L \rtimes \Gamma \) for the semi-direct product with multiplication
\[
(\ell, \gamma)(\ell', \gamma') = (\ell + \gamma \ell', \gamma \gamma').
\]
To follow our principle, we let \((l, \gamma) \in L \rtimes \Gamma \) act from the right on \(v \in V \) by \(v(l, \gamma) := \gamma^{-1}v + \gamma^{-1}l \). In particular, the \(L \)-torsor \(\pi : V \to T \) is \(\Gamma \)-equivariant. From this we deduce a right action of \(\Gamma \) on \(\mathcal{L}og \) by
\[
(1.7.1) \quad \text{Log} \times \Gamma \to \text{Log}; \quad ((v, r), \gamma) \mapsto (\gamma^{-1}v, \varphi_{\gamma^{-1}}(r))
\]
so that \(\mathcal{L}og \) is a \(\Gamma \)-equivariant sheaf. We want to compute the \(\Gamma \)-equivariant cohomology \(H^i(T, \Gamma; \mathcal{L}og \otimes \lambda) \) but for later needs, we compute a slightly more general cohomology group.

Theorem 1.7.1. Let \(D \subset T \) be a finite non-empty subset stabilized by \(\Gamma \) and \(M \) an \(A[\Gamma] \)-module. Then:

1. There are isomorphisms
\[
H^i(T, \Gamma; M \otimes_{A} \mathcal{L}og \otimes \lambda) \cong H^{i-n}(\Gamma, M)
\]
and
\[
H^i(T \setminus D, \Gamma; M \otimes_{A} \mathcal{L}og \otimes \lambda) \cong H^{i-n+1}(\Gamma, H^{n-1}(T \setminus D, M \otimes_{A} \mathcal{L}og \otimes \lambda)).
\]

2. One has a long exact sequence
\[
\cdots \to H^i(T \setminus D, \Gamma; M \otimes_{A} \mathcal{L}og \otimes \lambda) \to H^{i+1}(\Gamma, M \otimes_{A} \mathcal{L}og \mid_{D}) \to \cdots
\]

Proof. This follows from the spectral sequence
\[
H^i(\Gamma, H^j(X, M \otimes_{A} \mathcal{L}og \otimes \lambda)) \Rightarrow H^{i+j}(X, M \otimes_{A} \mathcal{L}og \otimes \lambda)
\]
for \(X = T, T \setminus D \), the isomorphism \(H^j(X, M \otimes_{A} \mathcal{L}og \otimes \lambda) \cong M \otimes_{A} H^j(X, \mathcal{L}og \otimes \lambda) \) of \(A[\Gamma] \)-modules, Theorem 1.6.1 and Corollary 1.6.2. \(\square \)
As a special case, we get:

Corollary 1.7.2. One has $H^i(T \setminus D, \Gamma; \underline{M} \otimes \underline{\mathcal{L}} \log \otimes \lambda) = 0$ for $i < n - 1$ and a canonical isomorphism

$$\text{res} : H^{n-1}(T \setminus D, \Gamma; \underline{M} \otimes \underline{\mathcal{L}} \log \otimes \lambda) \cong \ker(M \otimes A \mathcal{L} \log |_D \sigma \to M)^\Gamma.$$

1.8. **The topological polylogarithm and Eisenstein classes.**

Definition 1.8.1. For $D \subset T$ finite and non-empty we define

$$A[D]^0 := \ker(\bigoplus_{d \in D} A \sum A),$$

where Σ is the summation map $(a_d)_{d \in D} \mapsto \sum_{d \in D} a_d$. We view the elements $\alpha \in A[D]^0$ as functions $\alpha : D \to A$. We also set

$$R[D]^0 := \ker(\bigoplus_{d \in D} R \sigma_n \to A)$$

where σ_D is the sum of the augmentations $R \to R/I = A$.

Suppose that $D \subset T^{(A)}$ and that Γ stabilizes D. Then the trivialization \mathcal{g}_{can} from Proposition 1.8.3 induces an isomorphism $R[D]^0 \cong \ker(\mathcal{L} \log |_D \sigma \to A)$, so that we get

$$(A[D]^0)^\Gamma \subset (R[D]^0)^\Gamma \cong \ker(\mathcal{L} \log |_D \sigma \to A)^\Gamma.$$

We apply this to Corollary 1.7.2 in the case $M = A$:

Definition 1.8.2. For $D \subset T^{(A)}$, stabilized by Γ and $\alpha \in (A[D]^0)^\Gamma$ the unique cohomology class

$$\text{pol}_{\alpha} \in H^{n-1}(T \setminus D, \Gamma; \mathcal{L} \log \otimes \lambda)$$

with $\text{res}(\text{pol}_{\alpha}) = \alpha$ is called the **topological polylogarithm** associated with α.

Remark 1.8.3. Note that $(A[D]^0)^\Gamma \neq 0$ in general: Let N be invertible in A and $D = T[N]$ be the N-torsion points of T. Then D is stable under Γ and $N^\alpha \delta_0 - \sum_{d \in T[N]} \delta_d \in (A[D]^0)^\Gamma$.

Let $t \in T \setminus D$ be any point stabilized by Γ. Then the pull-back of pol_{α} along t is a cohomology class

$$(1.8.1) \quad t^* \text{pol}_{\alpha} \in H^{n-1}(\Gamma, \mathcal{L} \log_t \otimes \lambda).$$

If $t \in T^{(A)}$, we can use the trivialization \mathcal{g}_{can} to identify $\mathcal{L} \log_t \cong R$.

Definition 1.8.4. Let $D \subset T^{(A)}$ and $t \in T^{(A)} \setminus D$ be both stabilized by Γ, then for $\alpha \in (A[D]^0)^\Gamma$ the class

$$\text{Eis}_{\alpha}(t) := t^* \text{pol}_{\alpha} \in H^{n-1}(\Gamma, R \otimes \lambda).$$

is called the **Eisenstein classes** associated to t and α.

If we identify $\widehat{\Gamma} L_A \cong \overline{\text{TSym}} L_A$ then we also write

$$(1.8.2) \quad \text{Eis}_{\alpha}^k(t) := \exp^*(\text{Eis}_{\alpha}(t)) \in H^{n-1}(\Gamma, \overline{\text{TSym}}^k L_A \otimes \lambda)$$

for the k-th component of $\exp^*(\text{Eis}_{\alpha}(t))$.

The following special case of the above definition was considered by Nori and Sczech:

Definition 1.8.5. Let $D \subset T^{(A)}$ be a finite non-empty subset such that $0 \in D$. The Eisenstein operator of Nori and Sczech is the map

$$(A[D]^0)^\Gamma \to H^{n-1}(\Gamma, R \otimes \lambda)$$

$$\alpha \mapsto \text{Eis}_{\alpha}(0).$$
As above, the k-th component of $\exp^*(E_{is}(0))$ gives rise to a map

$$ (A[D]^0)^\Gamma \to H^{n-1}(\Gamma, \text{TSym}^k L_A \otimes \lambda) \quad \alpha \mapsto E_{is}^k(0). $$

1.9. A variant of the polylogarithm I.

For the study of the general Eisenstein distribution the polylogarithm defined so far is not flexible enough. In this section we discuss the required slight generalization of the polylogarithm.

Let $C \subset T$ be a finite subset then $\mathcal{L}og |_C$ has an $A[C]$-module structure

$$ (1.9.1) \quad A[C] \otimes \mathcal{L}og |_C \to \mathcal{L}og |_C $$

given on a stalk $c \in C$ by multiplication with the value $f(c)$ for $f \in A[C]$. Assume that $C \subset T^{\text{tors}}$, $C \cap D = \emptyset$ and suppose that Γ stabilizes C and D. Let $M = A[C]$, then from Corollary 1.7.2 we get the isomorphism

$$ (1.9.2) \quad \text{res} : H^{n-1}(T \setminus D, \Gamma; A[C] \otimes_A \mathcal{L}og \otimes \lambda) \cong \ker(A[C] \otimes_A \mathcal{L}og |_{D,0} \to A[C])^\Gamma. $$

From the definition of $A[D]^0$ we get

$$ (1.9.3) \quad (A[C] \otimes_A A[D]^0)^\Gamma \subset \ker(A[C] \otimes_A \mathcal{L}og |_{D,0} \to A[C])^\Gamma. $$

Definition 1.9.1.

We define for $h \in (A[C] \otimes_A A[D]^0)^\Gamma$ the polylogarithm pol_h to be the class

$$ \text{pol}_h \in H^{n-1}(T \setminus D, \Gamma; A[C] \otimes_A \mathcal{L}og \otimes \lambda) $$

which corresponds to h under the isomorphism (1.9.2).

The restriction of pol_h to C is a class in $H^{n-1}(\Gamma, A[C] \otimes_A \mathcal{L}og |_C \otimes \lambda)$ and the image under the map from (1.9.1) gives a class

$$ (1.9.4) \quad E_{is}^h \in H^{n-1}(\Gamma, \mathcal{L}og |_C \otimes \lambda). $$

Definition 1.9.2.

For $C \subset T^{\text{tors}}$ and $D \subset T^{(A)}$ with $C \cap D = \emptyset$ and such that Γ stabilizes C and D, we define the map

$$ \text{Eis} : (A[C] \otimes_A A[D]^0)^\Gamma \to H^{n-1}(\Gamma, \mathcal{L}og |_C \otimes \lambda) $$

by $h \mapsto E_{is}^h$.

Remark 1.9.3.

A more intuitive way to think about E_{is}^h is as follows. Suppose that Γ stabilizes each point of C. Then we can view $h \in (A[C] \otimes_A A[D]^0)^\Gamma$ as a map $h : C \to (A[D]^0)^\Gamma$, $c \mapsto h_c$, with $h_c(d) := h(c, d)$. With this notation one has $E_{is}^h = \sum_{c \in C} c^* \text{pol}_{h_c}$, with pol_{h_c} as defined in (1.8.2).

1.10. A variant of the polylogarithm II.

The polylogarithm pol_h has the advantage of being defined for arbitrary coefficients and it has good trace compatibilities as will be shown in the next section. The disadvantage is that it depends on functions α of degree zero. The variant pol discussed below can be evaluated on each non-zero torsion point but works only for \mathbb{Q}-algebras A. It is also this version of the polylogarithm which plays the dominant role in the literature on the motivic polylogarithm.

We specialize Corollary 1.7.2 to the case $D := \{0\}$ and $M = L_A^* := \text{Hom}_A(L_A, A)$. Then we get

$$ (1.10.1) \quad \text{res} : H^{n-1}(T \setminus \{0\}, \Gamma; L_A^* \otimes_A \mathcal{L}og \otimes \lambda) \cong (L_A^* \otimes_A I)^\Gamma, $$

where $I \subset R$ is the augmentation ideal. If A is a \mathbb{Q}-algebra we have an isomorphism $\exp^* : R \cong \text{Sym} L_A$ and we have a canonical class

$$ (1.10.2) \quad \varpi \in L_A^* \otimes_A L_A \subset L_A^* \otimes_A I $$

corresponding to $\text{id} : L_A \to L_A$. Obviously, $\varpi \in (L_A^* \otimes I)^\Gamma$.

12
Definition 1.10.1. Let A be a \mathbb{Q}-algebra, then the polylogarithm pol is the class
\[
\mathrm{pol} \in H^{n-1}(T \setminus \{0\}; \Gamma; \leftarrow_{\Lambda} \mathcal{L} \log \otimes \lambda)
\]
corresponding to ϖ under the isomorphism (1.10.1).

The contraction $L_A^* \otimes_A \text{Sym}^k L_A \to \text{Sym}^{k-1} L_A$ induces a map
\[
(1.10.3) \quad \text{contr} : L_A^* \otimes_A R \to R.
\]
Furthermore, the multiplication $L_A \otimes_A R \to R$ induces
\[
(1.10.4) \quad \text{mult} : R \to L_A^* \otimes_A R
\]
and it is straightforward to show that $\text{contr} \circ \text{mult} = \text{id}$. The map mult extends to a homomorphism of sheaves
\[
(1.10.5) \quad \text{mult} : \mathcal{L} \log \to L_A^* \otimes_A \mathcal{L} \log
\]

Let $t \in T_{\text{tors}} \setminus \{0\}$ be stabilized by Γ. Then θ_{can} allows us to identify $t^* \mathcal{L} \log \cong R$.

Definition 1.10.2. Let $t \in T_{\text{tors}} \setminus \{0\}$ be stabilized by Γ. The class
\[
\text{Eis}(t) := \text{contr}(t^* \text{pol}) \in H^{n-1}(\Gamma, R \otimes \lambda)
\]
is called the Eisenstein class associated to t. We also write
\[
\text{Eis}_t^k(t) := \exp_t^k(\text{Eis}(t)) \in H^{n-1}(\Gamma, \text{Sym}^k L_A \otimes \lambda).
\]

Let us discuss one special case of the relation between $\text{Eis}_t^k(t)$ and the class $\text{Eis}_\alpha(t)$ defined in (1.8.4), which will be used later (compare also [Kin13, 12.4.4]).

Definition 1.10.3. Let $\varphi : L \to L'$ be an isogeny and define the function on $D := L'/\varphi(L)$
\[
\alpha_\varphi := (\deg \varphi)\delta_0 - \sum_{d \in D} \delta_d.
\]
Consider
\[
\text{mult}(\mathrm{pol}_{\alpha_\varphi}) \in H^{n-1}(T \setminus \varphi^{-1}(0); \Gamma; \leftarrow_{\Lambda} \mathcal{L} \log \otimes \lambda)
\]
then using the isomorphisms $\mathcal{L} \log \cong \varphi^* \mathcal{L} \log'$ and $L_A \cong L_A'$ (because A is a \mathbb{Q}-algebra) one also has ($D = \varphi^{-1}(0)$)
\[
\varphi^* \text{pol}' \in H^{n-1}(T \setminus D; \Gamma; \leftarrow_{\Lambda} \mathcal{L} \log \otimes \lambda).
\]
Finally, $\text{pol} \mid_{T \setminus D}$, the restriction of pol to $T \setminus D$, gives a class in the same group.

Proposition 1.10.4. One has the equality
\[
\text{mult}(\text{pol}_{\alpha_\varphi}) = (\deg \varphi) \text{pol} \mid_{T \setminus D} - \varphi^* \text{pol}'.
\]
in $H^{n-1}(T \setminus D; \Gamma; \leftarrow_{\Lambda} \mathcal{L} \log \otimes \lambda)$.

Proof. From Theorem 1.7.1 we have an isomorphism
\[
\text{res} : H^{n-1}(T \setminus D; \Gamma; \leftarrow_{\Lambda} \mathcal{L} \log \otimes \lambda) \cong (L_A^* \otimes_A R[D]_0)^\Gamma.
\]
We have $\text{res}(\text{mult}(\text{pol}_{\alpha_\varphi})) = (\deg \varphi)\delta_0 \varpi - \sum_{d \in D} \delta_d \varpi$ and $\text{res}((\deg \varphi) \text{pol} \mid_{T \setminus D}) = (\deg \varphi)\delta_0 \varpi$. Moreover, $\text{res}(\varphi^* \text{pol}') = \sum_{d \in D} \delta_d \varpi$, which proves the claim.

Corollary 1.10.5. For $k \geq 0$ the relation of Eisenstein classes
\[
\text{Eis}_t^k(\varphi(t)) = (\deg \varphi)\text{Eis}_t^k(t) - \text{Eis}_t^k(\varphi(t))
\]
holds in $H^{n-1}(\Gamma, \text{TSym}^k L_A \otimes \lambda)$, where we have used the isomorphism $\text{Sym}^k L_A \cong \text{TSym}^k L_A$.

Proof. One has
\[\text{Eis}_k^\varphi (t) = \exp_k^* (\text{contr} \circ \text{mult}(t^* \text{pol}_\varphi)) \]
\[= (\deg \varphi) \exp_k^* \circ \text{contr} \left(t^* \text{pol} |_{T \setminus D} - t^* \varphi^* \text{pol}' \right) \]
\[= (\deg \varphi) \text{Eis}_k^\varphi (t) - \text{Eis}_k^\varphi (\varphi(t)). \]

\[\Box \]

1.11. **Trace compatibility.** The polylogarithm classes are compatible with respect to isogenies \(\varphi_T : T' \to T \) (note that in this section we interchange the role of \(L \) and \(L' \)). This is a geometric incarnation of the distribution property of Eisenstein series.

We use the following set up: Let \(L, L' \) be lattices of rank \(n \) with actions by \(\Gamma \) and let \(\varphi : L' \to L \) be an isogeny compatible with the \(\Gamma \)-action. Then one has a group homomorphism \((\varphi, \text{id}) : L' \times \Gamma \to L \times \Gamma \).

We consider finite non-empty subsets \(D \subset T^{(A)} \) and \(D' \subset T'^{(A)} \) such that \(\varphi_T(D') \subset D \). One has a cartesian square

\[
\varphi^{-1}(D) \longrightarrow T' \\
\varphi \downarrow \quad \downarrow \varphi \\
D \longrightarrow T
\]

(1.11.1)

Proposition 1.11.1. Let \(M \) be an \(A[\Gamma] \)-module, then there is a trace map

\[\text{Tr}_\varphi : H^{n-1}(T' \setminus D', \Gamma; M \otimes_A \mathcal{L}og_{T'} \otimes \lambda) \to H^{n-1}(T \setminus D, \Gamma; M \otimes_A \mathcal{L}og_T \otimes \lambda) \]

such that the diagram

\[
\begin{array}{ccc}
H^{n-1}(T' \setminus D', \Gamma; M \otimes_A \mathcal{L}og_{T'} \otimes \lambda) & \overset{\text{res}}{\longrightarrow} & \ker(M \otimes_A R'[D'] \to M)^\Gamma \\
\text{Tr}_\varphi & & \downarrow \varphi_R \\
H^{n-1}(T \setminus D, \Gamma; M \otimes_A \mathcal{L}og_T \otimes \lambda) & \overset{\text{res}}{\longrightarrow} & \ker(M \otimes_A R[D] \to M)^\Gamma
\end{array}
\]

commutes.

Proof. As \(\varphi : T' \to T \) is a topological submersion and a finite map we have \(\varphi^*(M \otimes_A \mathcal{L}og_T) \otimes \lambda' \cong \varphi_!(M \otimes_A \mathcal{L}og_T) \otimes \lambda \) (see [KS90, Section 3.3]). In particular, the trace map \(R\varphi_! \varphi^*(M \otimes_A \mathcal{L}og_T) \to M \otimes_A \mathcal{L}og_T \) induces a map

\[\varphi_! \varphi^*(M \otimes_A \mathcal{L}og_T) \otimes \lambda' \to M \otimes_A \mathcal{L}og_T \otimes \lambda. \]

This gives

\[
H^{n-1}(T' \setminus D', M \otimes_A \mathcal{L}og_{T'} \otimes \lambda') \overset{\varphi_! \varphi^* \mathcal{L}og_T}{\longrightarrow} H^{n-1}(T' \setminus D', \varphi^*(M \otimes_A \mathcal{L}og_T) \otimes \lambda')
\]

\[\overset{\text{restr}}{\longrightarrow} H^{n-1}(T' \setminus \varphi^{-1}(D), \varphi^*(M \otimes_A \mathcal{L}og_T) \otimes \lambda') \]

\[\cong H^{n-1}(T \setminus D, \varphi_! \varphi^*(M \otimes_A \mathcal{L}og_T) \otimes \lambda') \]

\[\to H^{n-1}(T \setminus D, M \otimes_A \mathcal{L}og_T \otimes \lambda), \]

where we have used that \(\varphi : T' \setminus \varphi^{-1}(D) \to T \setminus D \) is finite, so that \(\varphi_1 = \varphi_\ast \). The result follows from Theorem 1.7.1 and the diagram commutes because of the cartesian square 1.11.1 and [KS90, 3.1.9].

\[\Box \]
Corollary 1.11.4. Let $\varphi : A[C] \rightarrow A[C']$ be the map $f \mapsto f \circ \varphi$. Then for $h \in (A[C] \otimes_A A[D]^0)^\Gamma$ one has

$$\text{Tr}_{\varphi}(\text{Eis}_h) = \text{Eis}_h(\varphi^* \otimes \text{id})(h).$$

Proof. This is immediate from the definition of Eis and the commutative diagram.

2. Explicit formulas

In this section we give an explicit formula for the topological polylogarithm. The computations were essentially done by Nori [Nor95] and we present them here in a slightly different form.

In this section we always consider $A = \mathbb{C}$ so that we can identify $R \cong \text{Sym}_L \mathbb{C}$.
2.1. The continuous trivialization of the logarithm sheaf. Let \mathcal{P} be the space of positive definite symmetric bilinear forms on V, which we also consider as translation invariant metrics on V. Let V^* be the \mathbb{R}-dual of V, then we consider $\mathcal{P} \subset \text{Hom}(V, V^*)$ with its induced right Γ-action: $B[\gamma](v, w) := B(\gamma v, \gamma w)$.

We let $L \rtimes \Gamma$ act on $\mathcal{P} \times V$ by
\[(B, v)(\ell, \gamma) := (B[\gamma], \gamma^{-1}(v + \ell)).\]
Note that the action of Γ on L factors through $\text{GL}(L)$, which acts almost discretely on \mathcal{P} and that \mathcal{P} is contractible. We consider the sheaf $\mathcal{L}\log$ over $(\mathcal{P} \times \text{Log})/\Gamma$ as the sheaf of sections of $\mathcal{P} \times V/L \rtimes \Gamma$. Let $D \subset T^{(A)}$ be a finite non-empty subset, which does not contain 0. By general principles from equivariant cohomology we have
\[H^{n-1}(T \setminus D, \Gamma; \mathcal{L}\log \otimes \lambda) \approx H^{n-1}(\mathcal{P} \times (V \setminus \pi^{-1}(D))/L \rtimes \Gamma, \mathcal{L}\log \otimes \lambda).\]
We need to set up some more notation.

We write $L_0 \oplus R$ for the \mathbb{R}-pro-bundles defined by the inverse system of bundles corresponding to the local systems $\mathcal{L}og^{(k)}$ and $\mathcal{R}^{(k)}$. We consider the sheaves of \mathcal{C}^∞-differential forms $\Omega^i \hat{\otimes} \mathcal{L}og := \lim_{\to} \Omega_i \otimes \mathcal{L}og^{(k)}$ and currents $\hat{\Omega}^i \hat{\otimes} \mathcal{L}og := \lim_{\to} \hat{\Omega}^i \otimes \mathcal{L}og^{(k)}$ etc. with values in these pro-bundles. Recall that a current is a generalized section of the sheaf of k-forms.

On $\mathcal{L}og^\infty$ we have the connection $\nabla := d \otimes 1$ and on \mathcal{R}^∞ we have the connection $\nabla_0 := d \otimes 1$.

Definition 2.1.1. Let κ be the \mathcal{R}^∞-valued 1-form on T
\[\kappa \in V^* \otimes V \subset V^* \hat{\otimes} R \subset \Gamma(T, \Omega^1 \hat{\otimes} \mathcal{R}),\]
which corresponds to the identity map $1 \in \text{Hom}(V, V) \cong V^* \otimes V$.

Obviously, κ is Γ invariant.

Lemma 2.1.2. The sheaf $\mathcal{L}og^\infty$ admits a unique continuous multiplicative trivialization ϱ_{cont} on T. The section ϱ_{cont} is \mathcal{C}^∞, compatible with N-multiplication, and one has
\[\nabla(\varrho_{\text{cont}}) = -\kappa \varrho_{\text{cont}}.\]
In particular, $\varrho_{\text{cont}} \mid_{T^{\text{tors}}} = \varrho_{\text{can}}$.

Proof. The set of continuous multiplicative trivializations with the property in the lemma is a torsor under $\text{Hom}_{\text{cont}}(T, (1 + I)^*)$, which is trivial because T is compact. This shows the uniqueness of ϱ_{cont}. For the existence we consider
\[V \to V \times R^\times \quad v \mapsto (v, \exp(-v))\]
where $\exp(-v) := \sum_{k \geq 0} \frac{(-v)^k}{k!}$. This is a section by (1.3.1), is compatible with N-multiplication and has the desired property $d \exp(-v) = -\kappa \exp(-v)$. \[\square\]

2.2. Green’s currents and the topological polylogarithm. We use ϱ_{cont} from Lemma 2.1.2 to identify $\varrho_{\text{cont}} : \mathcal{R}^\infty \cong \mathcal{L}og^\infty$. The connection ∇ of $\mathcal{L}og^\infty$ corresponds to $\nabla_0 - \kappa$ under this identification. In particular, we can compute the equivariant cohomology of $\mathcal{L}og$ as
\[H^i(T \setminus D, \Gamma; \mathcal{L}og \otimes \lambda) = H^i((\Omega(\mathcal{P} \times (T \setminus D)) \hat{\otimes} R \otimes \lambda)_{\Gamma}, \nabla).\]
For the construction of a cohomology class representing the topological polylogarithm pol_λ, we will first construct a certain Green’s-current. To define these, we need two notions: Let $\lambda^* := \text{Hom}_Z(\lambda, \mathbb{Z})$, then the volume form on T is defined to be the section
\[(2.2.1) \quad \text{vol} \in \lambda^* \otimes \lambda \subset \Omega^n(T) \otimes \lambda\]
corresponding to the isomorphism $\lambda \cong \lambda$. Let $\delta_{\mathcal{P} \times \{0\}}$ be the delta function of $\mathcal{P} \times \{0\} \subset \mathcal{P} \times T$. We consider this as an element in $\hat{\Omega}^n(T) \otimes \lambda$ by multiplying it with vol.

Definition 2.2.1. A Green’s-current is an $n-1$-current $\mathcal{G} \in (\hat{\Omega}^{n-1}(\mathcal{P} \times T) \otimes R \otimes \lambda)\Gamma$, which is smooth on $\mathcal{P} \times (T \setminus \{0\})$, and such that

$$\nabla(\mathcal{G}) = \delta_{\mathcal{P} \times \{0\}} \text{vol} - \text{vol}$$

in $(\hat{\Omega}^n(\mathcal{P} \times T) \otimes R \otimes \lambda)\Gamma$.

With a method due essentially to Nori we prove in the next section (see Corollary 2.3.7):

Theorem 2.2.2. A Green’s-current as in Definition 2.2.1 exists.

Here we explain how we get a representative of pol_α with the help of \mathcal{G}. The group T acts on the complex $\hat{\Omega} \cdot (\mathcal{P} \times T) \otimes R \otimes \lambda$ by translation.

Definition 2.2.3. Let $D \subset T^{\text{tors}}$ be finite and non-empty and \mathcal{G} be a Green’s-current. Let τ_d be the translation by $d \in T$ and $\alpha = \sum_{d \in D} \alpha_d I_d \in C[D]^0$. Then we define the $n-1$-current

$$\mathcal{G}(\alpha) := \sum_{d \in D} \alpha_d \tau_d^* \mathcal{G},$$

which is smooth on $\mathcal{P} \times (T \setminus D)$.

With this notation we can formulate the main result in this section.

Theorem 2.2.4. If $D \subset T^{\text{tors}}$ and $\alpha \in (C[D]^0)^\Gamma$, then the restriction of $\mathcal{G}(\alpha)$ to $\mathcal{P} \times (T \setminus D)$ is a smooth Γ-invariant closed $n-1$-form, which represents pol_α.

Proof. As α and \mathcal{G} are Γ-invariant, the same holds for $\mathcal{G}(\alpha)$. By definition $\nabla(\mathcal{G}(\alpha)) = \sum_{d \in D} \alpha_d \delta_d$, which implies that the restriction of $\mathcal{G}(\alpha)$ to $\mathcal{P} \times (T \setminus D)$ is closed and that $\text{res}(\mathcal{G}(\alpha)) = \alpha$. With Corollary 1.7.2 we see that $\mathcal{G}(\alpha)$ represents pol_α. \square

We also want to construct a current, which represents the variant of the polylogarithm pol from Definition 1.10.1. Let ℓ_1, \ldots, ℓ_n be a basis of L and μ_1, \ldots, μ_n be the dual basis of V^*. Define the closed form $\eta := \frac{1}{n} \sum_{j=1}^n (-1)^j \mu_j \wedge \ldots \wedge d\mu_j \wedge \ldots \wedge d\mu_n$, then a straightforward computation shows

$$-\kappa \eta = \varpi \text{vol},$$

where $\varpi \in L_A^* \otimes_A L_A$ is element from (1.10.2).

Theorem 2.2.5. Let $\tilde{\mathcal{G}} := \varpi \mathcal{G} + \eta$, then

$$\nabla(\tilde{\mathcal{G}}) = \delta_{\mathcal{P} \times \{0\}} \varpi \text{vol}$$

and $\tilde{\mathcal{G}}$ represents $\text{pol} \in H^{n-1}(T \setminus \{0\}, \Gamma; L_A^* \otimes_A \log \otimes \lambda)$ defined in 1.10.1.

Proof. This follows from the formula

$$(\nabla_0 - \kappa)(\varpi \mathcal{G} + \eta) = \varpi(\delta_{\mathcal{P} \times \{0\}} \text{vol} - \text{vol}) - \kappa \eta = \varpi \delta_{\mathcal{P} \times \{0\}} \text{vol}.$$

\square
2.3. Explicit construction of a Green’s current. The idea for the construction of the Green’s current presented in this section goes essentially back to Nori [Nor95]. One rewrites \(\mathcal{G} \) as a Fourier-series and considers the resulting differential equations for the coefficients. This differential equation can be solved by inverting a differential operator.

We write

\[
L^* := \text{Hom}(L, \mathbb{Z}) \subset V^*
\]

for the dual lattice of \(L \) and \(\langle _,_ \rangle : V \times V^* \to \mathbb{R} \) for the evaluation map. Further we let \(i := \sqrt{-1} \) be a square-root of \(-1\). Any current \(\mathcal{G} \in \Omega^{n-1}(\mathcal{P} \times T) \otimes R \otimes \lambda \) has a Fourier-series

\[
\mathcal{G}(B,v) = \sum_{\mu \in L^*} E_\mu(B)e^{2\pi i (v, \mu)}
\]

where \(E_\mu(B) \in \Omega^{n-1}(\mathcal{P} \times T) \otimes R \otimes \lambda \) are \(R \)-valued differential forms, which are constant in the \(T \) direction. We write

\[
E_\mu(B) = E_\mu^0 + \ldots + E_\mu^{n-1}
\]

and \(E_\mu^a \in \Omega^a(\mathcal{P}) \otimes \Lambda^{n-1-a}V^* \otimes R \otimes \lambda \) is the component in bidegree \((a,n-1-a)\) of \(E_\mu \).

Lemma 2.3.1. Suppose that \(\mathcal{G} \) is a Green’s-current as in Definition 2.2.1 and

\[
\mathcal{G}(B,v) = \sum_{\mu \in L^*} E_\mu(B)e^{2\pi i (v, \mu)}
\]

its Fourier-series. If we assume that \(E_0 = 0 \), then the differential equation \(\nabla(\mathcal{G}) = \delta_{\mathcal{P} \times \{0\}} \text{vol} - \text{vol} \) amounts to

\[
dE_\mu + (2\pi i \mu - \kappa)E_\mu = \text{vol} \quad \text{for all } \mu \neq 0,
\]

e.g.,

\[
(2\pi i \mu - \kappa)E_\mu^0 = \text{vol} \quad \text{and} \quad dE_\mu^a + (2\pi i \mu - \kappa)E_\mu^{a+1} = 0.
\]

Here we view \(\mu \in V^* \subset \Lambda V^* \otimes R \) as an \(R \)-valued 1-form, so that \((2\pi i \mu - \kappa) \in \Lambda V^* \otimes R \).

Proof. Immediate calculation using \(\nabla = \nabla_0 - \kappa \) and the fact that the Fourier series of \(\delta_{\mathcal{P} \times \{0\}} \text{vol} \) is \(\sum_{\mu \in L^*} e^{2\pi i (v, \mu)} \text{vol} \).

We will now forget the fact that \(\mu \) comes from the lattice \(L^* \) and try to find a natural solution of (2.3.1) for any \(0 \neq \mu \in V^* \). For this we consider the half-space \(V_{\mu > 0} := \{ v \in V \mid \langle v, \mu \rangle > 0 \} \). We consider \(B \) as an isomorphism \(B : V \cong V^* \), so that we have a map

\[
v_\mu : \mathcal{P} \to V_{\mu > 0} \quad B \mapsto B^{-1}(\mu).
\]

We will construct \(E_\mu \) as the \(v_\mu \)-pull-back of a natural \(n-1 \)-form \(E_{(\mu)} \) on \(V_{\mu > 0} \).

Define the commutative DG-algebra \(\mathcal{A} := \Omega(V) \otimes \Lambda V^* \) with differential \(d(\omega \otimes \xi) := d\omega \otimes \xi \). On \(\mathcal{A} \) we have the derivation \(\theta \) of degree \(-1\), which is zero on \(\Omega(V) \) and maps \(\mu \in V^* \subset \Lambda V^* \) to the linear function \(\mu_V \in \mathcal{C}^\infty(V) \) with \(\mu_V(v) := \mu(v) \). The DG-algebra \(\mathcal{A} \) contains the subalgebra

\[
\Lambda(V^* \otimes V^*) \cong \Lambda V^* \otimes \Lambda V^* \subset \Omega(V) \otimes \Lambda V^*
\]

and we let \(\Delta : \Lambda V^* \to \Lambda V^* \otimes \Lambda V^* \) be the algebra homomorphism induced by the diagonal map \(V^* \to V^* \otimes V^* \).

Let \(\ell_1, \ldots, \ell_n \) be a basis of \(L \) and \(\mu_1, \ldots, \mu_n \) be the dual basis of \(V^* \). Then

\[
\text{vol} := \mu_1 \wedge \ldots \wedge \mu_n \otimes \ell_1 \wedge \ldots \wedge \ell_n \in \Lambda^n V^* \otimes \lambda
\]

and \(\kappa = \sum_{j=1}^n d\mu_j \wedge \ell_j \in \Omega^1(V) \otimes R \).
Definition 2.3.2. We let \(\psi := \Delta(\text{vol}) \in \mathcal{A}^n \otimes \lambda \) and write \(\psi = \sum_{a=0}^{n} \psi^a \) with \(\psi^a \in \Omega^a(V) \otimes \Lambda^{n-a}V^* \otimes \lambda \). Then we define

\[
\nu^a := \theta(\psi^a) \in \Omega^a(V) \otimes \Lambda^{n-1-a}V^* \otimes \lambda.
\]

We note that the forms \(\nu^a \) have the following explicit description. Let \(\omega_i := d\mu_{i,V} \in \Omega^1(V), \omega_I := \Lambda_{i \in I} \omega_i \) for any subset \(I \subset \{1, \ldots, n\} \) and define similarly \(\mu_I \). Then

\[
\nu^a = \sum_{|I|=a} \sum_{j=1}^{n} \mu_{j,V} \omega_I \otimes \mu_{I^c \setminus \{j\}},
\]

where \(I^c \) is the complement of \(I \). The forms \(\nu^a \) have the following properties:

Lemma 2.3.3. For \(\xi \in V^* \) one has the formulae

\[
\begin{align*}
d\nu^a &= (a+1)\psi^{a+1} \\
\xi \wedge \psi^a &= -d\xi \wedge \psi^{a-1} \\
\xi \wedge \nu^a &= \xi \nu^a - d\xi \wedge \nu^{a-1}
\end{align*}
\]

In particular, if one writes \(\kappa_V := \sum_{j=1}^{n} \mu_{j,V} \otimes \ell_j \), so that \(d\kappa_V = \kappa \), one has

\[
\kappa \wedge \nu^a = \kappa_V \nu^a - d\kappa_V \wedge \nu^{a-1}.
\]

Proof. For a form \(\omega \in \mathcal{A} \) denote by \(\omega^a \in \Omega^a(V) \otimes \Lambda^{n-a}V^* \) its \(a \)-part. For \(\xi \in V^* \) one has \(\Delta(\xi) = d\xi + \xi \) and hence \(d\theta(\Delta(\xi)^1) = 0 \) and \(d\theta(\Delta(\xi)^0) = d\xi = \Delta(\xi)^1 \). Write \(\text{vol}_n = \text{vol}_{n-1} \wedge \mu_n \). Then

\[
\Delta(\text{vol}_n)^a = \Delta(\text{vol}_{n-1})^{a-1} \wedge \Delta(\mu_n)^1 + \Delta(\text{vol}_{n-1})^a \wedge \Delta(\mu_n)^0.
\]

Applying \(d\theta \) and induction on \(n \) gives

\[
d\nu^a = a\Delta(\text{vol}_{n-1})^a \wedge \Delta(\mu_n)^1 + (a+1)\Delta(\text{vol}_{n-1})^{a+1} \wedge \Delta(\mu_n)^0 + \Delta(\text{vol}_{n-1})^a \wedge \Delta(\mu_n)^1.
\]

This shows the first equation. The second follows from \(\Delta(\xi) \wedge \Delta(\text{vol}) = \Delta(\xi \wedge \text{vol}) = 0 \) and \(\Delta(\xi) = d\xi + \xi \) and the third by applying \(\theta \) to it. The formula for \(\kappa \) follows from the third equation using the explicit formulae for \(\kappa \) and \(\kappa_V \). \(\square \)

Write \(\mathcal{A}_{(\mu)} := \Omega(V_{>\mu}) \otimes \Lambda V^* \), then \(\mu_V \) is invertible in \(\mathcal{A}_{(\mu)} \). The element \(\kappa_V := \sum_{j=1}^{n} \mu_{j,V} \otimes \ell_j \in \mathcal{C}^\infty(V) \otimes R \) is topologically nilpotent, so that \(\mu_V - \kappa_V \) is invertible in \(\mathcal{C}^\infty(V_{>\mu}) \otimes R \). Define

\[
E^a_{(\mu)} := (-1)^a a! (2\pi i \mu_V - \kappa_V)^{-a-1} \nu^a \quad E_{(\mu)} := \sum_{a=0}^{n-1} E^a_{(\mu)}.
\]

Lemma 2.3.4. The formulae

\[
(2\pi i \mu - \kappa) E^0_{(\mu)} = \psi^0 = \text{vol}
\]

\[
dE^a_{(\mu)} + (2\pi i \mu - \kappa) E^{a+1}_{(\mu)} = 0
\]

hold. In particular, \(E_{\mu} := v^*_{\mu} E_{(\mu)} \) satisfies the differential equation \(\Box \). Moreover, for \(\gamma \in \Gamma \) one has

\[
\gamma^* E_{\mu} = E_{\mu \gamma^{-1}}.
\]

Proof. From Lemma \(\Box \) we have

\[
(2\pi i \mu - \kappa) \nu^{a+1} = (2\pi i \mu_V - \kappa_V) \psi^{a+1} - d(2\pi i \mu_V - \kappa_V) \wedge \nu^a
\]

\[
d((2\pi i \mu_V - \kappa_V)^{-a-1} \nu^a) = (a+1) ((2\pi i \mu_V - \kappa_V)^{-a-1} \psi^{a+1} - (2\pi i \mu_V - \kappa_V)^{-a-2} d(2\pi i \mu_V - \kappa_V) \psi^a)
\]
which show that the differential equations are satisfied. For the action of \(\gamma \) note that
\(v_\mu \circ \gamma = \gamma^{-1} \circ v_{\mu \circ \gamma^{-1}}. \) As \(\text{vol} \) and \(\theta \) are \(\Gamma \)-invariant one has \((\gamma^{-1})^* \nu^\mu = \nu^\mu. \) The map
\(\kappa_V : V \to R \) is the canonical inclusion and obviously \(\Gamma \)-invariant. Therefore \((\gamma^{-1})^* E(\mu) = E(\mu_{\circ \gamma^{-1}}) \) and the formula follows.

Lemma 2.3.5. Let \(E^a_\mu := v_\mu^*(E^a_{(\mu)}) \) and consider \(B^{-1} : V^* \cong V \) as bilinear form on \(V^* \), then one has explicitly
\[
E^a_\mu = (-1)^a a! \frac{v_\mu^*(\nu^\mu)}{(2\pi i B^{-1}(\mu, \mu) - B^{-1}(\mu))^a + 1} = (-1)^a \frac{(k + a)!}{k!} \sum_{k \geq 0} \frac{B^{-1}(\mu)^{\otimes k}}{(2\pi i B^{-1}(\mu, \mu))^{k+a+1}} v_\mu^*(\nu^\mu)
\]
(where we let \(B^{-1}(\mu)^{\otimes 0} := 1 \)) and
\[
v_\mu^*(\nu^\mu) = \sum_{|I| = a} \sum_{j=1}^n B^{-1}(\mu_j, \mu) \Lambda_{i \in I} dB^{-1}(\mu, \mu) \otimes \mu_{I^\perp \{j\}} \otimes \ell_1 \wedge \ldots \wedge \ell_n.
\]

Proof. Direct computation. \(\square \)

We are going to show that the series \(\sum_{\mu \in L^* \setminus \{0\}} E^a_\mu e^{2\pi i(v, \mu)} \) defines a current on \(\mathcal{P} \times T \), which is smooth on \(\mathcal{P} \times (T \setminus \{0\}) \). The following proof is due to Levin (see the Appendix of [Blo09]). Let \(P : \mathcal{P} \times V \to \mathcal{C} \) be a \(\mathcal{C}^{\infty} \) function, which is a homogeneous polynomial of degree \(g \) in the \(V \)-variables. We consider the series of distributions
\[
\mathcal{K}(B, v, P) := \sum_{\mu \in L^* \setminus \{0\}} \frac{P(B, \mu)}{B^{-1}(\mu, \mu)^{g+1/2}} e^{2\pi i(v, \mu)}
\]
and we are interested in the convergence and the analyticity in \(s \). We have the following result:

Theorem 2.3.6. Let \(v \neq 0 \) then \(\mathcal{K}(B, v, P) \) is a smooth distribution for all \(s \in \mathbb{C} \).

Proof. We give the essential steps of the proof.

The first step is to show that the series \(\mathcal{K}(B, v, P) \) defines a (tempered) distribution on \(\mathcal{P} \times T \) for all \(s \in \mathbb{C} \). We may assume that \(B \) varies in a compact subset of \(\mathcal{P} \). A Fourier series defines a distribution, if the coefficients grow less than a polynomial of fixed degree \(N \geq 0 \). But \(\frac{B^{-1}(\mu)^{\otimes k}}{(2\pi i B^{-1}(\mu, \mu))^{k+1/2}} \) satisfies this requirement if \(s \geq -N \).

The second step is to remark that the map \(s \mapsto \mathcal{K}(B, v, P) \) is analytic. This follows because for each test function \(\psi \) the series \(\mathcal{K}(B, v, P)(\psi) \) converges absolutely and uniformly on every compact subset of \(\mathbb{C} \) (same proof as for Dirichlet series, one also has to use that weakly analytic functions with values in the dual of a Frechet space are actually analytic).

Next we note that \(\mathcal{K}(B, v, P) \) converges as a sequence of functions absolutely and uniformly for \(\Re(s) \geq n/2 + \epsilon \) with \(\epsilon > 0 \). The resulting analytic function on the half plane \(\Re(s) > n/2 \) can be analytically continued with the standard procedure known from the analytic continuation of the zeta functions: One writes \(\mathcal{K}(B, v, P) \) as the Mellin-transform of a theta series as in [Sie80 Chapter I, Paragraph 5] and uses the Poisson summation formula to obtain the analytic continuation \(\tilde{\mathcal{K}}(B, v, P) \) of \(\mathcal{K}(B, v, P) \). To see that the function \(\tilde{\mathcal{K}}(B, v, P) \) has no poles one uses [Sie80 Chapter I.5, Theorem 3]. Note that our polynomial function \(P \) is homogeneous so that its value at \(v = 0 \) is 0 if the degree \(g > 0 \). For \(g = 0 \) the polynomial is constant and it is here that the assumption \(v \neq 0 \) enters to guaranty that \(\tilde{\mathcal{K}}(B, v, P) \) has no pole.
Finally we remark that the principle of analytic continuation holds for tempered distributions, so that we can conclude that $\tilde{\mathcal{K}}_s(B, v, P) = \mathcal{K}_s(B, v, P)$ for all $s \in \mathbb{C}$. This shows the assertion of the theorem. □

The next corollary finishes the proof of Theorem 2.2.2.

Corollary 2.3.7. The series

$$G(B, v) = \sum_{a=0}^{n-1} \sum_{\mu \in L^\times \setminus \{0\}} E_{a}^{\varepsilon} e^{2\pi i (v, \mu)}$$

defines a $\mathbb{R} \otimes \lambda$-valued, Γ-invariant current on $\mathcal{P} \times T$, which is smooth on $\mathcal{P} \times (T \setminus \{0\})$ and satisfies the differential equation

$$\nabla(G) = \delta_{\mathcal{P} \times \{0\}} \text{vol} - \text{vol}.$$

In particular, G is a Green’s-current.

Proof. We have

$$\sum_{\mu \in L^\times \setminus \{0\}} \frac{B^{-1}(\mu)^{\otimes k} e^{2\pi i (v, \mu)}}{(2\pi i B^{-1}(\mu, \mu))^{k+a+1}} v_\mu^a = \frac{1}{(2\pi i)^{k+a+1}} \sum_{k \geq 0} \mathcal{K}_{(k+a+1)/2}(B, v, P) \omega$$

where $\omega \in \Omega^a(\mathcal{P}) \otimes \Lambda^{n-1-a} V^*$ is a smooth differential form, which does not depend on μ and P is a polynomial of degree $k + a + 1$ in the V-variables. Hence, by Theorem 2.3.6 the left hand side defines a current on $\mathcal{P} \times T$, which is smooth on $\mathcal{P} \times (T \setminus \{0\})$. By Lemma 2.3.4 we have $\gamma^* (E_{a}^{\varepsilon} e^{2\pi i (v, \mu)}) = E_{\mu^\gamma} e^{2\pi i (v, \mu^\gamma)}$, which shows that $G(B, v)$ is Γ-invariant. The differential equation is an immediate consequence of Lemma 2.3.4. □

3. Applications to L-values of totally real fields and Eisenstein cohomology of Hilbert modular varieties

We discuss the relation between the topological polylogarithm and special values of partial L-functions of totally real fields. This is due to Nori and Szczec but we need the explicit formulae for the p-adic interpolation. The second application shows the relation of the topological polylogarithm to Eisenstein cohomology for Hilbert modular varieties. This is a new result due to Graf and the detailed relationship will appear in his thesis [Gra14]. We discuss here the p-adic interpolation of his construction.

3.1. Values of partial L-functions of totally real fields. In this section F will be a totally real field of degree n over \mathbb{Q} and ring of integers \mathcal{O}_F. Let $L \subset F \otimes \mathbb{R}$ be a fractional ideal and h be an element which is non-zero and torsion in $T(L) = F \otimes \mathbb{R}/L$. We define

$$\mathcal{O}^{+\times}_h := \{u \in \mathcal{O}_F^\times \mid uh \equiv h \mod L \text{ and } u \text{ totally positive}\}$$

We consider the partial zeta function for $\Re(s) > 1$

$$(3.1.1) \quad \zeta(h, L, s) := \sum_{\alpha \in (h+L)^+/\mathcal{O}_h^{+\times}} N \alpha^{-s}.$$

where $(h+L)^+$ are the totally positive elements in $h+L$. A sign character $\varepsilon : (F \otimes \mathbb{R})^\times \rightarrow \{\pm1\}$ is a character, which is trivial on $(F \otimes \mathbb{R})^{+\times}$ the connected component of 1 in
Each ε is the product of $|\varepsilon|$ sign characters of embeddings of F. We consider also more generally the partial zeta functions

\[
(3.1.2) \quad \zeta(\varepsilon, h, L, s) := \sum_{\alpha \in (h+L)/\mathcal{O}_h^{\times}} \frac{\varepsilon(\alpha)}{N\alpha|s}
\]

and we have the identity

\[
(3.1.3) \quad \sum_{\varepsilon} \zeta(\varepsilon, h, L, s) = 2^n \zeta(h, L, s).
\]

Remark 3.1.1. Let \mathfrak{f} and \mathfrak{b} be two coprime integral ideals of F and set $L = \mathfrak{f} \mathfrak{b}^{-1}$. Then $N\mathfrak{b}^{-s} \zeta(1, \mathfrak{f} \mathfrak{b}^{-1}, s)$ is the partial zeta function $\zeta(\mathfrak{b}, \mathfrak{f}, s)$ considered by Siegel in [Sie70].

Proposition 3.1.2. The function $\zeta(\varepsilon, h, L, s)$ admits an analytic continuation to \mathbb{C} and satisfies the functional equation

\[
\zeta(\varepsilon, h, L, 1-s) = \frac{(\cos(\pi(s+1)/2))^{|\varepsilon|}(\cos(\pi s/2))^{n-|\varepsilon|}}{(2\pi)^{n+1}} \sum_{\mu \in L^* \setminus \{0\}/\mathcal{O}_h^{\times}} \frac{\varepsilon(\mu)e^{2\pi i(h, \mu)}}{N \mu |s|}
\]

where $L^* = \text{Hom}_\mathbb{Z}(L, \mathbb{Z})$ is the dual lattice.

Proof. This is a standard result. A sketch of the proof can be found in [Sie70] (for $h = 1$). The case of general h is the same. Alternatively the result can be deduced from [DR80, Theorem 3.12].

Corollary 3.1.3. Let sgn^{k+1} be the sign character $\text{sgn}^{k+1}(\mu) := \frac{N(\mu)e^{k+1}}{|N(\mu)|^{k+1}}$. Then for any integer $k \geq 0$, the value $\zeta(\varepsilon, h, L, -k)$ is 0 except for $\varepsilon = \text{sgn}^{k+1}$. In particular, $\zeta(\text{sgn}^{k+1}, h, L, -k) = 2^n \zeta(h, L, -k)$ and one has

\[
\zeta(h, L, -k) = \frac{(k!)^n}{(2\pi)^{n(k+1)}} \sum_{\mu \in \mathcal{O}^{\times}} \frac{e^{2\pi i(h, \mu)}}{N \mu^{k+1}}.
\]

Proof. This is an easy consequence of Proposition 3.1.2 and the location of the zeroes of the functions $(\cos(\pi(s+1)/2))^{|\varepsilon|}$ and $(\cos(\pi s/2))^{n-|\varepsilon|}$.

3.2. The evaluation map. We keep the notation of the previous section, i.e., F is a totally real field of degree n over \mathbb{Q} with ring of integers \mathcal{O}_F, $L \subset F \otimes \mathbb{R}$ is a fractional ideal and we consider the torus $T := F \otimes \mathbb{R}/L$.

Let \mathcal{O}_F^{\times} be the group of totally positive units in \mathcal{O}_F. Note that this is a free abelian group of rank $n-1$. Let $D \subset T^{(A)}$ be a finite non-empty set of torsion points, $t \in T^{(A)}$ and $\alpha \in (A[\mathcal{O}]^\Gamma)$. We consider the Eisenstein class

$$\text{Eis}_n(t) \in H^{n-1}((\Gamma, R \otimes \lambda(L)))$$

from Definition 1.8.4, where $\Gamma \subset \mathcal{O}_F^{\times}$ is the stabilizer of D and t. Note that Γ acts through the norm and hence trivially on λ. The cap-product with $H_{n-1}(\Gamma, \mathbb{Z})$ induces a homomorphism

\[
(3.2.1) \quad H^{n-1}(\Gamma, R \otimes \lambda(L)) \otimes H_{n-1}(\Gamma, \mathbb{Z}) \rightarrow H_0(\Gamma, R \otimes \lambda) = R_{\Gamma} \otimes \lambda
\]

where R_{Γ} are the Γ-coinvariants. For the actual evaluation we choose coordinates for T, which at the same time allow us to trivialize $\lambda(L) \otimes \mathbb{R}$ and to give a generator for $H_{n-1}(\Gamma, \mathbb{Z})$.

22
Let \(\{ \tau_1, \ldots, \tau_n \} \) be the different embeddings of \(F \) into \(R \), so that we have an isomorphism \(F \otimes R \cong R^n \). On \(R^n \) we use the standard orientation. For each \(x \in F \otimes R \) we write \(x_i := \tau_i(x) \).

If we identify \(\lambda = H_n(L, Z) \cong H_n(F \otimes R/L, Z) \), then the fundamental class of \(F \otimes R/L \) provides us with a generator of \(\lambda \).

Let \((F \otimes R)^{+, \times} \) be the totally positive and invertible elements in \(F \otimes R \). This is the connected component of 1 in \((F \otimes R)^{\times} \). The norm of \(F/Q \) defines a homomorphism \(N : (F \otimes R)^{\times} \rightarrow R^{\times} \) and we denote by

\[
(F \otimes R)^\dagger := \ker((F \otimes R)^{+, \times} \xrightarrow{N} R^{+, \times})
\]

the subgroup of elements of norm 1. Then \(\Gamma \subset O^+_F \subset (F \otimes R)^\dagger \) and one has a canonical isomorphism

\[
H_{n-1}(\Gamma, Z) \cong H_{n-1}(F \otimes R)^\dagger/\Gamma, Z
\]

with the homology of \((F \otimes R)^\dagger/\Gamma \). The logarithm \(\log : (F \otimes R)^{+, \times} \xrightarrow{\cong} F \otimes R \cong R^n \) induces an orientation on \((F \otimes R)^{+, \times} \). Using the standard orientation on \(R^{+, \times} \) this induces also an orientation on \((F \otimes R)^\dagger \). We use the fundamental class of \((F \otimes R)^\dagger/\Gamma \) as a generator of \(H_{n-1}(\Gamma, Z) \).

Definition 3.2.1. With the above notations and generators we define the **evaluation map** to be the homomorphism induced by (5.2.1)

\[
ev : H^{n-1}(F \otimes R)^\dagger/\Gamma, R \rightarrow R_{\Gamma}.
\]

Note that \(\ev \) is defined for any coefficient ring \(A \). In the case \(A = R \) or \(C \) the isomorphism \(F \otimes R \cong R^n \) induces

\[
\lambda(L) \otimes R \cong \lambda(Z^n) \otimes R
\]

and we define \(\text{vol}(L) \in R \), such that \(\text{vol}(L)\lambda(Z^n) \) corresponds to the lattice \(\lambda(L) \) under this isomorphism. Then the evaluation is given explicitly by

\[
(3.2.2) \quad \ev(\eta) = \text{vol}(L)^{-1} \int_{(F \otimes R)^\dagger/\Gamma} \eta
\]

for a differential form \(\eta \in H^{n-1}(F \otimes R)^\dagger/\Gamma, R \otimes \lambda(L) \).

We give a more explicit description of \((R_{\Gamma})_{\Gamma} \). The isomorphism \(L_{\Gamma} \cong R^n \) allows us to identify \(R_{\Gamma} \cong \text{Sym} L_{\Gamma} \) with the power series ring \(C[[z_1, \ldots, z_n]] \). The action of \(\Gamma \subset O^+_F \) on \(L \otimes R \) decomposes into a direct sum of homomorphisms \(\tau_i : \Gamma \rightarrow R^{\times} \), such that \(u \in \Gamma \) acts as \(\tau_i(u)z_i \) on \(z_i \).

Lemma 3.2.2. Let \(w := z_1 \cdots z_n \) be the product of the \(z_i \)'s, then

\[
R_{\Gamma}^C = C[[w]] \subset C[[z_1, \ldots, z_n]] = R_C
\]

and the projection \(p_{\Gamma} : R_{\Gamma} \rightarrow (R_C)^{\Gamma} \) induces an isomorphism \((R_{\Gamma})_C \cong (R_{\Gamma})_{\Gamma} \).

Proof. On each monomial \(z_1^{k_1} \cdots z_n^{k_n} \) the element \(u \in \Gamma \) acts via \(\tau(u)^{k_1} \cdots \tau_n(u)^{k_n} \), so that the action of \(\Gamma \otimes R \) on \(R_{\Gamma} \) is semi-simple. In particular, \(R_{\Gamma}^C = R_{C_{\Gamma}} \otimes R \) is a direct summand. Moreover, as each trivial \(\Gamma \)-representation has to factor through the norm, \(\Gamma \) acts trivially exactly on \(w^k \) for integers \(k \geq 0 \).

\[\square\]

Remark 3.2.3. Let \(A \) be any \(Q \)-algebra and let \(\Lambda := \Lambda \text{Hom}(\Gamma, Q) = H(\Gamma, Q) \). Then the projection \(p_{\Gamma} : R_{\Lambda} \rightarrow (R_{\Lambda})_{\Gamma} \) yields isomorphisms

\[
H^p(\Gamma, R_{\Lambda}) \cong H^p(\Gamma, (R_{\Lambda})_{\Gamma}) = (R_{\Lambda})_{\Gamma} \otimes N^p.
\]
3.3. The topological polylogarithm and L-values of totally real fields. Theorem \ref{22.31} implies that the class of $E_{\alpha}(t)$ is represented by $\sum_{d \in D} \alpha(d)(t - d)^s \mathcal{G}$, where we consider $t - d$ as a torsion section of the torus family $((F \otimes \mathbb{R})^1 \times T)/\Gamma \to (F \otimes \mathbb{R})^1/\Gamma$. Note that for any torsion section h

$$h^s \mathcal{G} \in H^{n-1}((F \otimes \mathbb{R})^1/\Gamma, R_C \otimes \lambda(\mathcal{L}))$$

because $\nabla(h^s \mathcal{G}) = h^s(\delta_{(F \otimes \mathbb{R})^1/\Gamma \times \{0\}} \text{vol} - \text{vol}) = 0$. We can now formulate the main result in this section.

Theorem 3.3.1. Let $h \in T = F \otimes \mathbb{R}/L$ be a non-zero torsion section and let $\Gamma = \mathcal{O}_h^{\times,\times}$ be the stabilizer of h in $\mathcal{O}_F^{\times,\times}$. Identify $(R_C)_\Gamma \cong \mathbb{C}[[w]]$ as in Lemma \ref{22.22}. Then one has

$$\text{ev}(h^s \mathcal{G}) = (-1)^{n-1} \sum_{k \geq 0} \zeta(h, L, -k) \frac{w^k}{(k!)^n}.$$}

Equivalently, using the isomorphism $\text{Sym} L_C \cong \text{TSym} L_C$, we get

$$\exp^* \circ \text{ev}(h^s \mathcal{G}) = \zeta(h, L, -k) z_1^{[k]} \cdots z_n^{[k]} \in \text{TSym}^k L_C.$$

Proof. From Corollary \ref{2.3.7} we know that $\mathcal{G}(B, v) = \sum_{a=0}^{n-1} \sum_{\mu \in L^* \langle 0 \rangle} E^a_\mu e^{2\pi i (v, \mu)}$ and by definition $h^s E^a_\mu = 0$ for $a \neq n - 1$.

For the evaluation we use the following explicit embedding of $(F \otimes \mathbb{R})^1 \to \mathcal{P}$. For $q = (q_1, \ldots, q_n) \in (F \otimes \mathbb{R})^1$ we consider the form $B_q \in \mathcal{P}$ on \mathbb{R}^n, defined by

$$(3.3.1) \quad B_q(v, w) := \sum_{j=1}^{n} q_j^{-1} v_j w_j.$$}

Then the map $v_\mu : \mathcal{P} \to V$ is given by $v_\mu(B_q) = (q_1 \mu_1, \ldots, q_n \mu_n)$ and writing $R = \mathbb{C}[[z_1, \ldots, z_n]]$ the map $\kappa_V : V \to R$ is given by $\kappa_V(v) = \sum_{j=1}^{n} v_j z_j$. We want to compute the integral

$$(3.3.2) \quad \text{ev}(h^s \mathcal{G}) = \text{vol}(L)^{-1} \int_{(F \otimes \mathbb{R})^1/T} h^s \mathcal{G}$$

$$= (-1)^{n-1} \sum_{\mu \in L^* \langle 0 \rangle/T} \frac{e^{2\pi i (h, \mu)}}{\text{vol}(L)} \int_{(F \otimes \mathbb{R})^1} \frac{(n - 1)! v_\mu^s(\nu^{n-1})}{(\sum_{j=1}^{n} 2\pi i \mu_j q_j - \mu_j q_j z_j)^n}.$$}

Using $N(q) = q_1 \cdots q_n = 1$ we get

$$v_\mu^s(\nu^{n-1}) |_{(F \otimes \mathbb{R})^1} = N(\mu) \sum_{j=1}^{n} (-1)^{j-1} d \log q_1 \wedge \cdots \wedge d \log q_j \wedge \cdots d \log q_n.$$}

Let y_1, \ldots, y_n be the coordinate functions of \mathbb{R}^n and let $t := (N y)^{1/n}$, so that $y_j = t q_j$. Then $d \log t = \frac{1}{n} \sum_{j=1}^{n} d \log y_j$, which gives

$$(3.3.3) \quad N \mu \frac{dy_1}{y_1} \wedge \cdots \wedge \frac{dy_n}{y_n} = \frac{dt}{t} v_\mu^s(\nu^{n-1}) |_{(F \otimes \mathbb{R})^1}.$$}

We write

$$\frac{(n - 1)!}{(\sum_{j=1}^{n} 2\pi i \mu_j^2 q_j - \mu_j q_j z_j)^n} = \int_{\mathbb{R}^{n,\times}} e^{-t(\sum_{j=1}^{n} 2\pi i \mu_j^2 q_j - \mu_j q_j z_j)} t^n \frac{dt}{t}$$

for $t := (N y)^{1/n}$. Then

$$\frac{dt}{t} v_\mu^s(\nu^{n-1}) |_{(F \otimes \mathbb{R})^1}.$$
and we substitute this and \((3.3.3)\) into \((3.3.2)\). Using the exact sequence \(0 \to (F \otimes \mathbb{R})^1 \to (F \otimes \mathbb{R})^+ \to \mathbb{R}^+ \to 0\), we have to compute the integral

\[
\int_{(F \otimes \mathbb{R})^+} e^{-(\sum_{j=1}^{n} 2\pi i\mu_j y_j - \mu_j y_j z_j)} N y_1 \frac{dy_1}{y_1} \wedge \ldots \wedge \frac{dy_n}{y_n} = \prod_{j=1}^{n} \int_{\mathbb{R}^+} e^{-y_j \mu_j (2\pi i \mu_j - z_j)} \frac{dy_j}{y_j}
\]

\[
= \prod_{j=1}^{n} \frac{1}{\mu_j (2\pi i \mu_j - z_j)}
\]

\[
= \frac{1}{N \mu^2} \sum_{\ell \geq 0} \frac{1}{(2\pi i)^{\ell+n}} \prod_{\ell_1 + \ldots + \ell_n = \ell} \zeta_{\ell_1}^{z_1} \ldots \zeta_{\ell_n}^{z_n}.
\]

If we apply the projection \(p_{\Gamma} : \mathbb{C}[z_1, \ldots, z_n] \to \mathbb{C}[[w]]\) only the monomials for \(\ell = nk\) of the form \((\frac{w}{N\mu})^k\) survive and we get

\[
p_{\Gamma} \int_{(F \otimes \mathbb{R})^1/\Gamma} \frac{(n-1)!v_n^*(\nu^{n-1})}{(\sum_{j=1}^{n} 2\pi i\mu_j y_j - \mu_j y_j z_j)^n} = \sum_{k \geq 0} \frac{w^k}{(2\pi i)^{n(k+1)} N \mu^{k+1}}.
\]

This gives

\[
ev(h^*\mathcal{G}) = (-1)^{n-1} \text{vol}(L)^{-1} \sum_{k \geq 0} \left(\sum_{\mu \in L^* \setminus \{0\}/\Gamma} \frac{e^{2\pi i(h,\mu)}}{N \mu^{k+1}} \right) \frac{w^k}{(2\pi i)^{n(k+1)}}
\]

\[
= (-1)^{n-1} \sum_{k \geq 0} \zeta(h, L, -k) \frac{w^k}{(k!)^n}
\]

where in the last line we have used Corollary 3.1.3. The formula for \(\exp^*(\text{ev}(h^*\mathcal{G}))\) follows from the fact that \(w^k = (z_1 \cdots z_n)^k \mapsto (k!)^n z_1^{[k]} \cdots z_n^{[k]}\) under the isomorphism \(\text{Sym}^k L_C \cong T\text{Sym}^k L_C\).

From the theorem we immediately get all the known rationality, integrality and \(p\)-adic interpolation properties of \(\zeta(h, L, s)\). For this we use the following principle: For any subring \(A \subset \mathbb{C}\) consider the natural inclusion \(R_A \subset R_C\). Then we have a commutative diagram

\[
\begin{array}{ccc}
H^{n-1}(\Gamma, R_A \otimes \lambda) & \xrightarrow{\text{ev}} & (R_A)_\Gamma \\
\downarrow & & \downarrow \\
H^{n-1}(\Gamma, R_C \otimes \lambda) & \xrightarrow{\text{ev}} & (R_C)_\Gamma
\end{array}
\]

and any class coming from \(H^{n-1}(\Gamma, R_A \otimes \lambda)\) has to have coefficients in \(A\) under the evaluation map.

To express the next results also in more classical notation, let \(f, b\) be coprime integral ideals and \(L := fb^{-1}\). Then Siegel’s zeta function is defined to be

\[
\zeta(b, f, s) := N b^{-s} \zeta(1, fb^{-1}, s).
\]

Corollary 3.3.2 (Klingen-Siegel). Let \(h \in F \otimes \mathbb{R}/L\) be a non-zero torsion point, then for \(k \geq 0\) one has \(\zeta(h, L, -k) \in \mathbb{Q}\). In particular,

\[
\zeta(b, f, -k) \in \mathbb{Q}.
\]
Proof. Recall from Theorem 2.2.5 that the class from Definition 1.10.2
\[\text{Eis}(h) = \text{contr}(h^* \text{ pol}) \in H^{n-1}(\Gamma, R_\mathbf{Q} \otimes \lambda) \]
is represented by \(\text{contr}(h^*(w^g + \eta)) = \text{contr}(w(h^*g)) \). By definition of mult in (1.10.4) we have \(w(h^*g) = \text{mult}(h^*g) \), so that \(\text{Eis}(h) \) is represented by \(h^*g \) (recall that \(\text{contr} \circ \text{mult} = \text{id} \)). It follows from Theorem 3.3.1 and the above principle that
\[\exp_k^*(\text{ev}(\text{Eis}(h))) = (-1)^{n-1}\zeta(h, L, -k)z_1^{[k_1]} \cdots z_n^{[k_n]} \]
has coefficients in \(\mathbf{Q} \).

\[\square \]

Corollary 3.3.3 (Deligne-Ribet \[DR80\]). Let \(c \) be an integral ideal coprime to \(fb^{-1} \). Then for \(k \geq 0 \) one has
\[(Nc)^{1+k}\zeta(b, f, -k) - \zeta(bc, f, -k) \in \mathbf{Z}[\frac{1}{Nc}]. \]

Proof. Let \(L := fb^{-1} \). We consider the isogeny \([c] : L \to Lc^{-1}\) of degree \(Nc \) and let \(A := \mathbf{Z}[\frac{1}{Nc}] \), so that \(\ker[c] \subset T(A) \). Then the function \(\alpha_{[c]} \in A[\ker[c]]^0 \) defined in (1.10.3) gives an element
\[\text{Eis}_{\alpha_{[c]}}(1) \in H^{n-1}(\Gamma, R_\mathbf{Z}[\frac{1}{Nc}] \otimes \lambda). \]

From Corollary 1.10.5 we get
\[\text{Eis}_{\alpha_{[c]}}^k(1) = (Nc)\text{Eis}^k(1) - \text{Eis}^k([c](1)) \]
and from the proof of Corollary 3.3.2 we deduce that
\[\text{ev}(\text{Eis}_{\alpha_{[c]}}^k(1)) = (-1)^{n-1}\left((Nc)\zeta(1, fb^{-1}, -k) - \zeta(1, fb^{-1}c^{-1}, -k)\right)z_1^{[k_1]} \cdots z_n^{[k_n]} \]
has a coefficient in \(\mathbf{Z}[\frac{1}{Nc}] \). Multiplying by the integer \(N(bc)^k \) gives the result as stated.

\[\square \]

Finally, we deduce the \(p \)-adic interpolation of the zeta values. This was proven independently by Barsky [Bar78], Cassou-Noguès [CN79] and Deligne-Ribet [DR80].

Fix a prime number \(p \), an integral ideal \(c \) prime to \(p \) and let \(A = \mathbf{Z}_p \). Recall from 1.2.2 that \(R_\mathbf{Z}_p \) is isomorphic to the Iwasawa algebra \(\text{Meas}(L\mathbf{Z}_p, \mathbf{Z}_p) \). Consider the polynomial function \(w^k : L\mathbf{Z}_p \to \mathbf{Z}_p \) defined by the element \(w^k \in \text{Sym}^k L\mathbf{Z}_p \), which maps \(a_1\ell_1 + \cdots + a_n\ell_n \) to \((a_1 \cdots a_n)^k \). Then the moment map
\[(3.3.6) \quad \text{mom}^k : (R_\mathbf{Z}_p)_\Gamma \to (\text{TSym}^k L\mathbf{Z}_p)_\Gamma \cong \mathbf{Z}_p z_1^{[k_1]} \cdots z_n^{[k_n]} \]
maps \(\mu \mapsto \mu(w^k)z_1^{[k_1]} \cdots z_n^{[k_n]} \). We keep the lattice \(L = fb^{-1} \) and consider the function \(\alpha_{[c]} \) for the isogeny \([c] : L \to Lc^{-1}\) as defined in Definition 1.10.3.

Corollary 3.3.4 (\(p \)-adic interpolation). With the above notations the element
\[\text{ev}(\text{Eis}_{\alpha_{[c]}}) \in (R_\mathbf{Z}_p)_\Gamma \]
is a measure whose value on \(w^k \) is \((-1)^{n-1}((Nc)\zeta(1, fb^{-1}, -k) - \zeta(1, fb^{-1}c^{-1}, -k))\).

Proof. This is immediate from the above remarks and Corollary 3.3.3

\[\square \]
3.4. Eisenstein distributions and measures. In this section we let \(A = \mathbb{Z}_p \) so that we can identify \(R = \mathbb{Z}_p[[L_{\mathbb{Z}_p}]] \) (see Proposition 1.2.2). Denote by \(T^{(p)} := T^{(p)}(\mathbb{Z}_p) \) the subgroup of \(T^{\text{tors}} \) of elements of order prime to \(p \). For any \(\mathbb{Z}_p \)-module \(M \) we consider the \(\mathbb{Z}_p \)-module

\[
M[\Gamma \backslash L_{\mathbb{Z}_p}] := \text{Meas}(\Gamma \backslash L_{\mathbb{Z}_p}, M) := \lim_{\rightarrow} M[\Gamma \backslash (L/p^r L)]
\]

of \(M \)-valued distributions on \(\Gamma \backslash L_{\mathbb{Z}_p} \). Here we have set \(M[\Gamma \backslash (L/p^r L)] := M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\Gamma \backslash (L/p^r L)] \).

Note that these are measures in the ordinary sense, if \(M \) is a finitely generated \(\mathbb{Z}_p \)-module, otherwise these are just distributions.

Proposition 3.4.1. For every function \(g \in (\mathbb{Z}_p[T^{(p)} \smallsetminus \{0\}]^0)^\Gamma \) there is an \(H^{n-1}(\Gamma, R \otimes \lambda) \)-valued distribution

\[
\mu_{L,Eis}^g \in \text{Meas}(\Gamma \backslash L_{\mathbb{Z}_p}, H^{n-1}(\Gamma, R \otimes \lambda))
\]
on \(\Gamma \backslash L_{\mathbb{Z}_p} \).

Proof. We are going to construct elements \(\mu_{r,L,Eis}^g \in M[\Gamma \backslash (L/p^r L)] \) in a compatible way. The distribution \(\mu_{r,L,Eis}^g \) assigns to a \(\Gamma \)-invariant function \(f \) on \(L/p^r L \) an element in \(H^{n-1}(\Gamma, R \otimes \lambda) \). This we define as follows. The isogeny \([p^r] : T_{p^r L} \to T_L\) associated to the inclusion \(p^r L \subset L \) yields an isomorphism \([p^r] : T_{p^r L}^{(p)} \cong T_L^{(p)}\), which allows to consider the function \(g \in (\mathbb{Z}_p[T_{p^r L}^{(p)} \smallsetminus \{0\}]^0)^\Gamma \) as an element \(g_r \in (\mathbb{Z}_p[T_{p^r L}^{(p)} \smallsetminus \{0\}]^0)^\Gamma \). Then Definition 1.9.2 gives an element

\[
\text{Eis}(f \otimes g_r) \in H^{n-1}(\Gamma, \mathcal{L}\log_{p^r L} |_{L/p^r L} \otimes \lambda_{p^r L}),
\]

where we view \(L/p^r L \subset T_{p^r L} \) is the kernel of the isogeny \([p^r]\). The trace map associated to \([p^r]\) induces

\[
\text{Tr}_{[p^r]} : H^{n-1}(\Gamma, \mathcal{L}\log_{p^r L} |_{L/p^r L} \otimes \lambda_{p^r L}) \to H^{n-1}(\Gamma, \mathcal{L}\log_L |_{\{0\}} \otimes \lambda_{L}) = H^{n-1}(\Gamma, R \otimes \lambda)
\]

and we define

\[
\mu_{r,L,Eis}^g(f) := \text{Tr}_{[p^r]}(\text{Eis}(f \otimes g_r)).
\]

As \(g_r = [p^r]^*(g) \) it follows from Corollary 1.11.4 that the \(\mu_{r,L,Eis}^g(f) \) indeed define a distribution on \(\Gamma \backslash L_{\mathbb{Z}_p} \). \(\square \)

Proposition 3.4.2. Recall that \(R = \mathbb{Z}_p[[L_{\mathbb{Z}_p}]] \). There is a canonical homomorphism

\[
H^{n-1}(\Gamma, \mathbb{Z}_p[[L_{\mathbb{Z}_p}]] \otimes \lambda) \to \text{Meas}(\Gamma \backslash L_{\mathbb{Z}_p}, H^{n-1}(\Gamma, \mathbb{Z}_p \otimes \lambda)).
\]

Proof. The pairing between distributions and functions on \(L/p^r L \) is a map

\[
\mathbb{Z}_p[L/p^r L] \times \mathbb{Z}_p[L/p^r L] \to \mathbb{Z}_p
\]

so that the cup-product defines a pairing

\[
H^0(\Gamma, \mathbb{Z}_p[L/p^r L]) \otimes \mathbb{Z}_p \to H^{n-1}(\Gamma, \mathbb{Z}_p[L/p^r L] \otimes \lambda)
\]

and hence a homomorphism

\[
H^{n-1}(\Gamma, \mathbb{Z}_p[L/p^r L] \otimes \lambda) \to H^{n-1}(\Gamma, \mathbb{Z}_p \otimes \lambda) \otimes \mathbb{Z}_p \mathbb{Z}_p[\Gamma \backslash (L/p^r L)].
\]

Composing this homomorphism with the projection

\[
H^{n-1}(\Gamma, \mathbb{Z}_p[[L_{\mathbb{Z}_p}]] \otimes \lambda) \to H^{n-1}(\Gamma, \mathbb{Z}_p[L/p^r L] \otimes \lambda)
\]

and passing to the projective limit give the desired homomorphism. \(\square \)
Using this proposition the Eisenstein distribution gives rise to an element in (3.4.1)
\[\text{Meas}(L_{Z_p}/\Gamma, \text{Meas}(\Gamma \backslash L_{Z_p}, H^{n-1}(\Gamma, Z_p \otimes \lambda))) \cong \text{Meas}(\Gamma \backslash L_{Z_p} \times \Gamma \backslash L_{Z_p}, H^{n-1}(\Gamma, Z_p \otimes \lambda)) \]
where the isomorphism comes from the Fubini theorem about integration on a product space. Note that in the case where \(\Gamma \subset \text{Aut}(L) \) is an arithmetic subgroup, the \(Z_p \)-module \(H^{n-1}(\Gamma, Z_p \otimes \lambda) \) is finitely generated, so that the Eisenstein distribution becomes a measure on \(\Gamma \backslash L_{Z_p} \times \Gamma \backslash L_{Z_p} \).

The next theorem shows that the Eisenstein distribution does not give anything essentially new.

Theorem 3.4.3. For any \(g \in (Z_p[T^{(p)} \setminus \{0\}]^{\Gamma}) \) the Eisenstein measure
\[\mu^0_{L, \text{Eis}} \in \text{Meas}(\Gamma \backslash L_{Z_p} \times \Gamma \backslash L_{Z_p}, H^{n-1}(\Gamma, Z_p \otimes \lambda)) \]
is supported on the diagonal \(\Gamma \backslash L_{Z_p} \xrightarrow{\Delta} \Gamma \backslash L_{Z_p} \times \Gamma \backslash L_{Z_p} \).

Proof. The proof is formal and one has just to unravel the definition of \(\mu^0_{L, \text{Eis}} \). It certainly suffices to show this for \(\mu^0_{r, \text{Eis}} \), i.e., to work with \(L_r := L/p^r L \) and \(A_r := \mathbb{Z}/p^r \mathbb{Z} \). Let \(L' := p^r L \) and \(t \in L \). Then \(t \) defines a \(p^r \)-torsion point on \(T' \) because this group is just \(L_r \). We assume in this proof that \(\Gamma \) acts trivially on \(L_r \) otherwise one has to replace \(t \) by some linear combination of \(p^r \)-torsion sections. We consider the Eisenstein measure
\[\mu^0_{r, \text{Eis}} : A_r[L_r]^{\Gamma} \rightarrow H^{n-1}(\Gamma, A_r[L_r] \otimes \lambda) \]
as a map from the \(\Gamma \)-invariant functions on \(L_r \) to \(H^{n-1}(\Gamma, A_r[L_r] \otimes \lambda) \). By its construction \(\mu^0_{r, \text{Eis}} \) evaluated at \(\delta_t \in A_r[L_r] \) is given by \(\text{Tr}_{p^r}(\text{Eis}(\delta_t \otimes [p^r]^*(g))) \), where \([p^r] \) is the isogeny \([p^r] : L' \rightarrow L \). We have
\[\text{Eis}(\delta_t \otimes [p^r]^*(g)) \in H^{n-1}(\Gamma, t^* \text{Log}' \otimes \lambda') \]
We claim that \(t^* \text{Log}' \cong \text{Meas}(t + L'_{Z_p}, A_r) \). This follows because \(\text{Log}' \cong \pi_t A_r[L'] \otimes_{A_r} R' \)
by the construction of \(\text{Log}' \) and because \(t^* \pi_t A_r[L'] = A_r[t + L'] \), where we denote by \(A_r[t + L'] \) the free \(A_r \)-module on \(t + L' \). Taking the tensor product with \(R \) completes this \(Z_p[L'] \)-module and gives the desired isomorphism.

The isogeny \([p^r] \) induces a map \([p^r]_{\text{Log}} : t^* \text{Log}' \rightarrow 0^* \text{Log} \) which identifies with
\[[p^r]_{\Delta} : \text{Meas}(t + L'_{Z_p}, A_r) \rightarrow \text{Meas}(L_{Z_p}, A_r) \]
If we compose this with \(\text{Meas}(L_{Z_p}, A_r) \rightarrow \text{Meas}(L_r, A_r) \) we see that the image of \(\text{Meas}(t + L'_{Z_p}, A_r) \) in \(A_r[L_r] \) is given by \(A_r \delta_t \). In particular, if we consider the pairing
\[A_r[L_r]^{\Gamma} \otimes H^{n-1}(\Gamma, A_r[L_r] \otimes \lambda) \rightarrow H^{n-1}(\Gamma, A_r \otimes \lambda) \]
we see that \(\delta_t \otimes \mu^0_{r, \text{Eis}}(\delta_t) \mapsto 0 \) for \(s \neq t \). If we rewrite the Eisenstein measure as
\[\mu^0_{r, \text{Eis}} : A_r[L_r]^{\Gamma} \times A_r[L_r]^{\Gamma} \rightarrow H^{n-1}(\Gamma, A_r \otimes \lambda) \]
this just means that \(\mu^0_{r, \text{Eis}}(\delta_t \otimes \delta_s) = 0 \) for \(t \neq s \), i.e., that \(\mu^0_{r, \text{Eis}} \) is supported on the diagonal.

Corollary 3.4.4. The Eisenstein measure \(\mu^0_{L, \text{Eis}} \in \text{Meas}(\Gamma \backslash L_{Z_p}, H^{n-1}(\Gamma, A[L_{Z_p}] \otimes \lambda)) \) is completely determined by its image
\[\mu^0_{L, \text{Eis}} \in \text{Meas}(\Gamma \backslash L_{Z_p}, H^{n-1}(\Gamma, A \otimes \lambda)) \]
under the augmentation map \(A[L_{Z_p}] \rightarrow A \). It is also completely determined by its value on the constant function \(1 \) on \(L_{Z_p}/\Gamma \):
\[\mu^0_{L, \text{Eis}}(1) \in H^{n-1}(\Gamma, A[L_{Z_p}] \otimes \lambda). \]
Proof. This is just a reformulation of the theorem. □

In the case of totally real fields, this has the following consequence.

Corollary 3.4.5. Let F be a totally real field with ring of integers \mathcal{O}_F and $\Gamma \subset \mathcal{O}_F^{+} \times$ a subgroup of finite index of the totally positive units of \mathcal{O}_F. Let $L = fb^{-1}$ be a fractional ideal. Then the measure
\[
ev(\text{Eis}_{\alpha y}) \in (R_{Z_p})_{\Gamma}\]
from Corollary 3.3.4 coincides with the measure $\mu_{L, \text{Eis}}$.

3.5. Relation with Eisenstein cohomology on Hilbert modular varieties. In this section we explain a construction of Graf which uses the topological polylogarithm to get the Eisenstein cohomology on Hilbert modular varieties in all cohomological degrees. For more details and the actual comparison with Harder’s Eisenstein cohomology we refer to the forthcoming thesis of Graf [Gra]. We present here a slight variant of his results and we will deduce from our general principles some integrality and p-adic interpolation properties of the Eisenstein cohomology classes.

Let again F/\mathbb{Q} be a totally real field of degree n with ring of integers \mathcal{O}_F. We define for any fractional ideal α of F the group
\[GL_2^+(\mathcal{O}_F, \alpha) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(F) \mid a, d \in \mathcal{O}_F, b, c \in \alpha^{-1}, ad - bc \in \mathcal{O}_F^{+} \times \right\}.\]
We identify the centre of $GL_2^+(\mathcal{O}_F, \alpha)$ with \mathcal{O}_F^\times and we let $PGL_2(\mathcal{O}_F, \alpha)$ be the quotient. The group $GL_2^+(\mathcal{O}_F, \alpha)$ acts on $(F \otimes \mathbb{R})^2 \cong F \otimes \mathbb{C}$ from the right and stabilizes the lattice $L := \mathcal{O}_F \cdot 1 + \alpha \cdot \sqrt{-1} \subset F \otimes \mathbb{C}$.

We consider the torus $T := F \otimes \mathbb{C}/L$ of real dimension $2n$ and an integer $N > 1$ which is invertible in A. We let
\[(3.5.1) \quad D := T[N] \setminus \{0\} \subset T\]
be the N-torsion subgroup without the 0-section and denote by $\Gamma \subset GL_2^+(\mathcal{O}_F, \alpha)$ the stabilizer of D. Let $\Delta := \Gamma \cap \mathcal{O}_F^\times$ be the intersection of Γ with the centre. Then $\Gamma \subset GL_2^+(\mathcal{O}_F, \alpha)$ and $\Delta \subset \mathcal{O}_F^\times$ are subgroups of finite index and we define $\Gamma' := \Gamma/\Delta \subset PGL_2(\mathcal{O}_F, \alpha)$, so that we have an exact sequence
\[0 \to \Delta \to \Gamma \to \Gamma' \to 0.\]

Remark 3.5.1. To have a geometric perspective on this, we define $GL_2^+(F \otimes \mathbb{R}) := \{(\omega_1, \omega_2) \in (F \otimes \mathbb{C})^2 \mid \Im(\frac{\omega_1}{\omega_2}) > 0\}$. Then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ acts on $(\omega_1, \omega_2) \in GL_2^+(F \otimes \mathbb{R})$ by right multiplication $(\omega_1, \omega_2) \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\lambda \in (F \otimes \mathbb{C})^\times$ acts by left multiplication $\lambda(\omega_1, \omega_2) = (\lambda \omega_1, \lambda \omega_2)$. The map $(\omega_1, \omega_2) \mapsto \tau := \frac{\omega_1}{\omega_2}$ identifies the quotient $(F \otimes \mathbb{C})^\times \setminus GL_2^+(F \otimes \mathbb{R})$ with the upper half plane $F \otimes \mathbb{H} := \{\tau \in F \otimes \mathbb{C} \mid \Im \tau \text{ totally positive}\}$. Note that the map $GL_2^+(F \otimes \mathbb{R}) \to F \otimes \mathbb{H}$ is compatible with the homomorphism $\Gamma \to \Gamma'$.

The Eisenstein class of Definition 1.8.3 provides us for any ring A in which N is invertible with a map
\[(3.5.2) \quad \text{Eis} : (A[D])^\Gamma \to H^{2n-1}(\Gamma, R \otimes \lambda).\]
We explain how to get cohomology classes in other degrees starting from this class. Consider the Hochschild-Serre spectral sequence
\[H^{2n-1-p}(\Gamma', H^p(\Delta, R \otimes \lambda)) \Rightarrow H^{2n-1}(\Gamma, R \otimes \lambda).\]
As \(\Delta \) has cohomological dimension \(n - 1 \) we have an edge morphism
\[
H^{2n-1}(\Gamma', R \otimes \lambda) \to H^n(\Gamma', H^{n-1}(\Delta, R \otimes \lambda)).
\]
If we compose this with the cap-product with \(H_{n-1}(\Delta, \mathbb{Z}) \) we get a map
\[
\text{Eis} : (A[D]^0)\Gamma \otimes H_{n-1}(\Delta, \mathbb{Z}) \to H^n(\Gamma', (R \otimes \lambda)_\Delta).
\]
In order to get also the Eisenstein classes in other cohomological degrees consider \(\mathcal{O}_N^{+, \times} := \{ u \in \mathcal{O}_F^{+, \times} \mid u \equiv 1 \mod N \} \) and the determinant map \(\Gamma \xrightarrow{\det} \mathcal{O}_N^{+, \times} \). For the rest of the section we use the following notation:
\[
(3.5.4) \quad \Lambda := \Lambda \cdot \text{Hom}(\mathcal{O}_N^{+, \times}, \mathbb{Z}) = H(\mathcal{O}_N^{+, \times}, \mathbb{Z}).
\]
Then the map \(\det \) gives rise to a ring homomorphism
\[
\det^* : \Lambda \rightarrow H(\Gamma, \mathbb{Z})
\]
so that \(H(\Gamma, \mathbb{Z}) \) becomes a \(\Lambda \)-module. Therefore \(3.5.3\) yields the map
\[
\text{Eis} : (A[D]^0)\Gamma \otimes \Lambda^p \to H^{2n-1+p}(\Gamma, R \otimes \lambda).
\]
A further composition with the edge morphism and the cap-product with \(H_{n-1}(\Delta, \mathbb{Z}) \) gives:

Definition 3.5.2. For each \(0 \leq p \leq n - 1 \) we define the Eisenstein cohomology operator in degree \(n + p \) to be the map
\[
\text{Eis} : A[D]^0 \otimes \Lambda^p \otimes H_{n-1}(\Delta, \mathbb{Z}) \to H^{n+p}(\Gamma', (R \otimes \lambda)_\Delta).
\]
Composing with \(\exp^*_k \) gives
\[
\text{Eis}^k : A[D]^0 \otimes \Lambda^p \otimes H_{n-1}(\Delta, \mathbb{Z}) \to H^{n+p}(\Gamma', (\text{TSym}^k L_A)_\Delta \otimes \lambda).
\]

Remark 3.5.3. For \(A \) a \(\mathbb{Q} \)-algebra, one can show that \((\text{TSym}^k L_A)_\Delta = 0 \) if \(k \) is not a multiple of \(n \) and non-trivial otherwise.

Choose generators for \(\Lambda^p \) and \(H_{n-1}(\Delta, \mathbb{Z}) \cong \Lambda^{n-1} \Delta \), then we get directly from the construction the following integrality result for the Eisenstein cohomology:

Proposition 3.5.4. Let \(\alpha \in \mathbb{Z}[\frac{1}{n}][D]^0 \) then with the above generators
\[
\text{Eis}^k_\alpha \in H^{n+p}(\Gamma', (\text{TSym}^k L_{\mathbb{Z}[\frac{1}{n}]})_\Delta \otimes \lambda).
\]
Keeping the generators and putting \(A = \mathbb{Z}_p \) we get also a \(p \)-adic interpolation result. Recall \(\text{I2.2} \) that for \(A = \mathbb{Z}_p \) one has an isomorphism \(A[[L_{\mathbb{Z}_p}]] \cong R \).

Proposition 3.5.5. With the above notations, for each \(\alpha \in \mathbb{Z}_p[D]^0 \) the class
\[
\text{Eis}^k_\alpha \in H^{n+p}(\Gamma', (A[[L_{\mathbb{Z}_p}]])_\Delta \otimes \lambda)
\]
has the interpolation property that \(\text{mom}^k(\text{Eis}^k_\alpha) = \text{Eis}^k_\alpha \in H^{n+p}(\Gamma', (\text{TSym}^k L_{\mathbb{Z}_p})_\Delta \otimes \lambda) \).

Proof. This is clear from the construction. \(\square \)

Proposition 3.5.6 (Graf [Gra13]). If \(A \) is a \(\mathbb{Q} \)-algebra then the product map
\[
\bigoplus_p H^{2n-1-p}(\Gamma', R^\Delta \otimes \lambda) \otimes \Lambda^p \to H^{2n-1}(\Gamma, R \otimes \lambda)
\]
is an isomorphism.
Proof. One has $\Lambda \otimes Q \cong H(\Delta, Q)$. As in Remark 3.2.3 the projection $p_\Delta : R \to R_\Delta$ then gives rise to isomorphisms
\[H^p(\Delta, R \otimes \lambda) \cong H^p(\Delta, R_\Delta \otimes \lambda) \cong R_\Delta \otimes \lambda \otimes \Lambda^p \]
and the result follows from the Hochschild-Serre spectral sequence. \qed

Remark 3.5.7. In his thesis Graf decomposes the topological polylogarithm according to the isomorphism in the above proposition and shows how the resulting cohomology classes are related with the ones constructed by Harder. For this he explicitly computes the residue of these classes at the boundary.

References

[Bar78] Daniel Barsky, * Fonctions zeta p-adiques d’une classe de rayon des corps de nombres totalement réels*, Groupe d’Étude d’Analyse Ultramétrique (5e année: 1977/78), Secrétariat Math., Paris, 1978, pp. Exp. No. 16, 23.

[BL94] Alexander A. Beilinson and Andrey Levin, *The elliptic polylogarithm*, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 123–190.

[Blo09] David Blotiére, *Réalisation de Hodge du polylogarithme d’un schéma abélien*, J. Inst. Math. Jussieu 8 (2009), no. 1, 1–38.

[CD12] Pierre Charollois and Samit Dasgupta, *Integral Eisenstein cocycles on GL_n*, I: Sczech’s cocycle and p-adic L-functions of totally real fields, preprint, 2012.

[CN79] Pierrette Cassou-Noguès, * Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques*, Invent. Math. 51 (1979), no. 1, 29–59.

[DR80] Pierre Deligne and Kenneth A. Ribet, *Values of abelian L-functions at negative integers over totally real fields*, Invent. Math. 59 (1980), no. 3, 227–286.

[Gra14] Philipp Graf, *Forthcoming thesis on Eisenstein cohomology on Hilbert modular varieties and the topological polylogarithm*, Universität Regensburg, 2014.

[Hil07] Richard Hill, *Shintani cocycles on GL_n*, Bull. Lond. Math. Soc. 39 (2007), no. 6, 993–1004.

[Kin08] Guido Kings, *Degeneration of polylogarithms and special values of L-functions for totally real fields*, Doc. Math. 13 (2008), 131–159.

[Kin13] Guido Kings, *Eisenstein classes, elliptic Soulé elements and the ℓ-adic elliptic polylogarithm*, preprint, 2013.

[KLZ14] Guido Kings, David Loeffler, and Sarah Zerbes, *Rankin-Selberg Euler systems and p-adic interpolation*, preprint, 2014.

[KS90] Masaki Kashiwara and Pierre Schapira, *Sheaves on manifolds*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990, With a chapter in French by Christian Houzel.

[Nor95] Madhav V. Nori, *Some Eisenstein cohomology classes for the integral unimodular group*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (Basel), Birkhäuser, 1995, pp. 690–696.

[Scz93] Robert Sczech, *Eisenstein group cocycles for GL_n and values of L-functions*, Invent. Math. 113 (1993), no. 3, 581–616.

[SAGA72] *Groupes de monodromie en géométrie algébrique*. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972, Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. MR 0335656 (50 #7134)

[Sie70] Carl Ludwig Siegel, *Über die Fourierschen Koeffizienten von Modulformen*, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 (1970), 15–56.

[Sie80] , *Advanced analytic number theory*, second ed., Tata Institute of Fundamental Research Studies in Mathematics, vol. 9, Tata Institute of Fundamental Research, Bombay, 1980.

[Spi14] Michael Spiess, *Shintani cocycles and the order of vanishing of p-adic Hecke L-series at $s = 0$*, Math. Ann. 359 (2014), no. 1-2, 239–265.

[Ste12] G. Ander Steele, *The p-adic Shintani cocycle*, preprint, 2012.
