B-RAF kinase drives developmental axon growth and promotes axon regeneration in the injured mature CNS

Citation
O’Donovan, K. J., K. Ma, H. Guo, C. Wang, F. Sun, S. B. Han, H. Kim, et al. 2014. “B-RAF kinase drives developmental axon growth and promotes axon regeneration in the injured mature CNS.” The Journal of Experimental Medicine 211 (5): 801-814. doi:10.1084/jem.20131780. http://dx.doi.org/10.1084/jem.20131780.

Published Version
doi:10.1084/jem.20131780

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13454857

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Axon growth is essential for the establishment of a functional nervous system as well as for the restoration of neuronal connectivity after injury or disease. It has long been hypothesized that reactivation of developmental growth mechanisms might help to achieve axon regeneration in the injured adult nervous system (Filbin, 2006). The role of MAP kinases in axon growth signaling has been much studied and discussed (Markus et al., 2002; Hanz and Fainzilber, 2006; Agthong et al., 2009; Hollis et al., 2009). However, depending on the model systems used, the outcomes have been controversial or even contradictory (Pernet et al., 2005; Sapieha et al., 2006; Hollis et al., 2009). We have shown that RAF–MEK signaling robustly promotes axon growth in primary sensory neurons in vitro (Markus et al., 2002). In vivo, conditional gene targeting studies have shown that RAF signaling is necessary for developing sensory neurons to arborize in their target fields in the skin (Zhong et al., 2007). However, it remains unknown whether RAF signaling is sufficient to enable axon growth in vivo or whether concomitant activation of other signaling pathways is necessary to drive long-range axon projections. Furthermore, it is unclear whether this pathway can promote axon growth in neuronal populations beyond the sensory neurons and the extent to which it can be harnessed to promote regeneration in the injured central nervous system (CNS). To address these questions, we have used conditional B-RAF gain-of-function mouse models to show that
activation of intraneuronal RAF–MEK signaling is sufficient to promote robust axon growth in developing and regenerating neurons in the peripheral nervous system and CNS.

RESULTS
Activation of B-RAF signaling alone is sufficient to promote sensory axon extension during early development
In vivo, the neurotrophin nerve growth factor (NGF) signals through its receptor kinase TrkA to promote developmental extension of dorsal root ganglion (DRG) nociceptive TrkA+ peripheral axons into the epidermis. To examine whether RAF signaling alone is sufficient to promote long-range axon extension of TrkA-positive neurons, we set out to selectively activate RAF kinase signaling in these neurons in a TrkA-null background.

To this end, we first conditionally activated RAF signaling in a WT background using a genetically modified loxP-STOP-loxP-Braf^{V600E} (LSL-kaBraf) knock-in mouse line (Mercer et al., 2005), in which a kinase-activated B-RAF (kaB-RAF) mutant is expressed from the endogenous B-RAF locus upon Cre recombination. We next bred LSL-kaBraf mice with a neuronal
JEM Vol. 211, No. 5

Article

803

(Fig. 1, C and D). Note that compared with MEK1/2, ERK1/2 activation appears minor in the kaB-RAF–expressing DRGs; this is because of relatively high levels of pERK1/2 in the DRG at baseline. B-RAF activation did not affect mTOR phosphorylation (Fig. 1 E). Levels of pAKT, pS6K, and pGSK3β were not changed significantly in the DRG of LSL-kaBraf:nes-Cre mice (Fig. 1 F), indicating minimal cross talk between the MAP kinase and PI3-kinase–AKT pathways. Because the expression of kaB-RAF is under the control of endogenous Braf promoter, the expression level of B-RAF protein is not changed in

nestin promoter–driven Cre deleter (nes-Cre; Tronche et al., 1999). In DRG neurons, nes-Cre–mediated recombination occurs as early as embryonic day (E) 11.5 (Galabova-Kovacs et al., 2008). Embryos heterozygously expressing kaB-RAF progressively developed macrocephaly from E13.5 onwards (Fig. 1 A) but appeared otherwise normal, including normally sized DRGs (Fig. 1 B). The known RAF effectors were activated in neuronal tissues expressing Cre recombinase, as indicated by elevated phospho-MEK1/2 (pMEK1/2) and pERK1/2 in the neocortex and spinal cord of E12.5 LSL-kaBraf:nes-Cre mice (Fig. 1, C and D). Note that compared with MEK1/2, ERK1/2 activation appears minor in the kaB-RAF–expressing DRGs; this is because of relatively high levels of pERK1/2 in the DRG at baseline. B-RAF activation did not affect mTOR phosphorylation (Fig. 1 E). Levels of pAKT, pS6K, and pGSK3β were not changed significantly in the DRG of LSL-kaBraf:nes-Cre mice (Fig. 1 F), indicating minimal cross talk between the MAP kinase and PI3-kinase–AKT pathways. Because the expression of kaB-RAF is under the control of endogenous Braf promoter, the expression level of B-RAF protein is not changed in

Figure 2. Expression of kaB-RAF substantially rescues sensory afferent growth in the absence of TrkA/NGF signaling. (A, left) Normal sensory cutaneous innervation at E16.5. (middle) Sensory cutaneous innervation is lost in embryos lacking the NGF receptor TrkA. (right) Expression of kaB-RAF restores cutaneous innervation. Arrowheads label the blue β-gal–positive (presumptive TrkA+) sensory trajectories. (B) Visualization of axon growth patterns after tissue clearing. The thoracic somatosensory innervation driven by kaB-RAF in a TrkA−/− embryo (bottom; compare with middle for TrkA+/− alone) is similar to that seen in a control TrkA+/+ littermate (top). White arrowheads indicate the normal pathways of peripheral axons extending from thoracic DRGs. Red arrowheads indicate sensory projections rescued by kaB-RAF in the TrkA−/− background. (C) Expression of kaB-RAF substantially rescues trigeminal TrkA+ afferent growth in the absence of TrkA/NGF signaling. Presumptive TrkA+ trigeminal axon projections (top) are lost in TrkA-deficient mice (middle) and are rescued by kaB-RAF (bottom). Ga, great auricular nerve; Go, greater occipital nerve; Mn, mandibular branch; Mx, maxillary branch; Op, ophthalmical branch. Images show littermates and are representative of three embryos per genotype. Bars: (A) 2 mm; (B and C) 1 mm.
the DRG and spinal cord at E12.5 (Fig. 1 G). At E13.5, the branching pattern of sensory nerves in the skin was not changed by kaB-RAF expression (Fig. 1, H and I).

B-RAF activation rescues nociceptor axon extension in embryos lacking TrkA

To test whether kaB-RAF is sufficient to drive nociceptor axon growth in the absence of TrkA signaling, we next mated the LSL-kaBraf:nes-Cre line with available TrkA^taulacZ and Bax^-/- lines to generate LSL-kaBraf:TrkA^taulacZ/taulacZ:Bax^-/-:nes-Cre mice. In TrkA^taulacZ mice, the WT TrkA gene is replaced by a taulacZ expression cassette, such that the axonal morphology of putative TrkA^+ neurons can be visualized by β-gal staining (Moqrich et al., 2004). Because TrkA expression is absent in homozygous TrkA^taulacZ/taulacZ mice, we refer to the "TrkA^taulacZ/taulacZ" as "TrkA^-/-" in the text below. Removal of the Bax gene blocks apoptosis in embryonic DRG neurons, rescuing them from cell death that is otherwise observed in the absence of TrkA signaling. The Bax^-/- background thus allows for the molecular dissection of signaling pathways that specifically affect axon growth (Knudson et al., 1995; Lentz et al., 1999; Patel et al., 2000; Markus et al., 2002; Kuruvilla et al., 2004; Moqrich et al., 2004). In TrkA^-/-:Bax^-/- mice, DRG neurons survive, but sensory afferent innervation in the skin is completely abolished (Fig. 2, A and B, middle; Patel et al., 2000). Compared with control littermates (which include LSL-kaBraf:TrkA^-/-:Bax^-/-, nes-Cre:TrkA^-/-:Bax^-/-, and TrkA^-/-:Bax^-/- genotypes), in which we detected no LacZ-positive fibers in the skin at E16.5, expression of kaB-RAF in TrkA^-/-:Bax^-/- DRG and trigeminal neurons substantially restored cutaneous sensory axon projections (Fig. 2, middle; Patel et al., 2000). Data are from three fetuses per genotype. Error bars indicate SEM. One-way ANOVA with post-hoc Tukey’s HSD test: **, P < 0.01.

Figure 3. Axon terminal innervation of E18.5 footpad. (A, top) Normal innervation. (middle) In the absence of TrkA, innervation is diminished overall, and the CGRP-positive nociceptor endings are completely absent. Red arrowheads indicate the CGRP-positive axonal terminals in the epidermis. (bottom) kaB-RAF expression partially rescues nociceptive innervation in the TrkA^-/- background. The dashed lines indicate the dermal-epidermal border. Bar, 100 µm. (B) Quantification of axon innervation in footpad (Luo et al., 2007; Hancock et al., 2011). Data are from three fetuses per genotype. Error bars indicate SEM. One-way ANOVA with post-hoc Tukey’s HSD test: **, P < 0.01.
Specifically, nociceptive TrkA+ fibers terminate in the superficial laminae I and II of the dorsal horn, and proprioceptive parvalbumin-positive afferents project to intermediate laminae or to the ventral spinal cord.

In B-RAF gain-of-function mice, we observed excessive growth of both nociceptive and proprioceptive afferents (Fig. 5). Nociceptive axons normally restricted to superficial dorsal horn extended ectopically into deeper layers of dorsal spinal cord, and many axons aberrantly crossed the midline (Fig. 5 A). This kaB-RAF–driven overgrowth was substantially rescued by concomitant elimination of MEK1/2, the canonical down-stream kinases of RAF (Fig. 5 C), suggesting that the effect of kaB-RAF expressed from the endogenous Braf locus depends strictly on canonical signaling.

In WT mice, the central proprioceptive afferents enter the cord medially at tightly circumscribed dorsal root entry zones (DREZs; Fig. 5 B, left). kaB-RAF expression caused the proprioceptive sensory axons to enter the spinal cord all across its surface and to aberrantly terminate some branches in the superficial dorsal laminae (Fig. 5 B, right). Proprioceptive axons in the DREZs normally are subject to repulsive guidance from Semaphorin 6C/D (Sema6) expressed in the spinal cord, acting on PlexinA1 on the sensory axons (Yoshida et al., 2006). kaB-RAF expression did not detectably alter the protein (Fig. 5 D) or transcript levels (RNAseq; not depicted).

kaB-RAF causes overgrowth of nociceptive and proprioceptive afferent fibers in the spinal cord

In WT mice, different subpopulations of sensory neurons project from the DRG to highly specific targets in the spinal cord. B-RAF gain–of–function restored CGRP expression in the absence of TrkA (Fig. 4 A, right). Note also that in contrast to the projections in the periphery, the growth of presumptive TrkA–positive afferent projections in the dorsal horn is independent of TrkA signaling (Fig. 4 B, middle; Patel et al., 2000; Harrison et al., 2004) and that kaB-RAF expression caused overgrowth of these afferents (Fig. 4 B, right) but not of peripheral projections (Fig. 1). In vitro, kaB-RAF alone did not induce CGRP expression in DRG neurons (Fig. 4 C, top); this required the addition of NGF and skin-conditioned medium as previously reported (Fig. 4 C, bottom; Hall et al., 1997; Patel et al., 2000; Xu and Hall, 2007). In addition, we have shown previously that loss of both B- and C-RAF in DRGs does not abrogate the CGRP expression (Zhong et al., 2007). These data together indicate that the restoration of CGRP expression in LSL-kaBraf:nes-Cre:TrkA−/− DRG neurons is not directly caused by the elevation of neuron-intrinsic B-RAF activity, but indirectly through the restoration of cutaneous innervation and subsequent retrograde signaling from skin-derived factors.

Figure 4. Activation of B-RAF indirectly rescues CGRP expression in TrkA−/− nociceptive neurons. (A, left) Normal CGRP staining in the DRG and superficial dorsal horn. Arrowhead indicates CGRP-expressing spinal motoneurons. (middle) CGRP expression is completely abolished in the DRG and its projections in TrkA/Bax double-null mice. CGRP staining in spinal motoneurons is not affected by loss of TrkA signaling (arrowhead). (right) CGRP expression in DRG is rescued by expression of kaB-RAF, in the absence of TrkA signaling (LSL-kaBraf:nes-Cre:TrkA−/−:Bax−/−). Arrowhead indicates the CGRP+ motor neurons. Dashed white lines outline the spinal cord and DRG. (B) The nociceptive projection into the dorsal horn (left) does not depend on TrkA (middle). Expression of kaB-RAF causes overgrowth and ectopic targeting of these fibers (right). (A and B) Images are representative of three embryos each. (C) Activation of B-RAF does not directly induce CGRP expression in cultured DRG neurons. (top) No CGRP is expressed in 7-d in vitro cultures of dissociated E12.5 LSL-kaBraf:Bax−/−:nes-Cre DRG neurons. (bottom) NGF and conditioned medium from skin cultures are necessary to induce CGRP expression in E12.5 LSL-kaBraf:Bax−/−:nes-Cre DRG neurons. Images are representative of three independent experiments. This experiment has been repeated three times. Each experiment used two embryos per genotype. Bars: (A and B) 100 µm; (C) 20 µm.
phenotype suggested that reactivation of the B-RAF pathway in injured adult neurons might be exploited to promote regeneration.

of these factors in E12.5 DRG and spinal cord. The overgrowth phenotype for both nociceptive and proprioceptive afferents was observed at all levels of the spinal cord (Fig. 5, E–J). This
Figure 6. Activation of B-RAF signaling in mature DRG neurons elevates their growth competency. (A, top) Schematic of the brn3a-CreER^{T2} construct used to generate the brn3a-CreER^{T2} deleter mouse line. (bottom) A cross section of the spinal cord of a 10-wk-old Rosa26-lacZ:brn3a-CreER^{T2} mouse treated with tamoxifen. Blue LacZ staining indicates CreER^{T2}-mediated recombination in the DRG neurons. (B) Representative DRGs from adult LSL-kaBraf:TdTom:brn3a-CreER^{T2} mice without (top left) and with (bottom left) tamoxifen treatment. TdTom expression indicates recombination in DRG neurons. Cells were counterstained with Draq5 (Dq5) to label nuclei. (C) ATF3 is induced by preconditioning lesion. (D) Representative images of adult DRG neurons derived from intact brn3a-CreER^{T2}:TdTom (left), LSL-kaBraf:brn3aCreER^{T2}:TdTom (middle), and pre-conditioning lesion (right).
kaB-RAF enables regeneration of injured adult DRG central axons across the DREZ

To test whether activation of B-RAF kinase signaling can promote axon regeneration of injured adult CNS neurons, we used an optic nerve regeneration model (Fig. 8, A and B; Park et al., 2008; Benowitz and Yin, 2010). 8–12-wk-old LSL-kaBraf: Bax−/− mice and Bax−/− controls were injected intravitreally with AAV2-Cre to induce kaB-RAF expression in retinal ganglion cells (RGCs) and then subjected to optic nerve crush. The Bax−/− background was used to minimize apoptotic death of retinal ganglion neurons triggered by optic nerve injury, which may amount to 80% at 2 wk after optic nerve crush (Li et al., 2000). 2 wk after the injury, we observed robust regenerative axon growth up to 3 mm past the lesion site in the kaB-RAF–expressing neurons, with more branching compared with that of WT neurons (Fig. 8, D–G). Furthermore, the axonal morphology of kaB-RAF–expressing neurons differs from WT neurons subject to a preconditioning lesion, which exhibited single long axons (Fig. 6, D and H).

Having thus ascertained the functionality of the LSL-kaBraf:TdTom:brn3a-CreERT2 mouse line, we next tested whether kaB-RAF can enable axon regeneration after dorsal root crush injury in vivo. 12-wk-old mice were again treated with tamoxifen for a consecutive 5 d. After 2-d rest, C5–8 cervical roots were crushed and AAV2-GFP was injected into C6 and C7 DRGs to label regenerating sensory axons. After 2 wk, regeneration in the C6 and C7 roots and spinal cord was examined in whole-mount preparations (Fig. 7, A and B) or in transverse sections (Fig. 7, C and D). As expected, in control brn3a-CreERT2 mice (Fig. 7, A and C), axons regenerated along the roots but stopped at the DREZ. In contrast, in mice with kaB-RAF expression in DRG neurons, numerous axons penetrated the DREZ and grew deeply into the spinal cord, exhibiting dense collateral branches in the dorsal column (Fig. 7 B) and reaching superficial laminae of the dorsal horn (Fig. 7 D). Thus, elevation of intrinsic B-RAF signaling is sufficient, both in vitro and in vivo, to induce robust axon regrowth of adult DRG neurons and, importantly, renders the axons capable of overcoming growth–inhibitory signals that are abundant at the DREZ and within the spinal cord.

kaB-RAF enables regenerative axon growth in the injured optic nerve through an MEK-dependent pathway

Figure 7. Activation of B-RAF signaling enables crushed sensory axons to regenerate into adult spinal cord. (A–D) Confocal views of regenerating dorsal root axons in whole mounts (A and B) or transverse sections (C and D) 2 wk after root crush. Axons were labeled by AAV-GFP injected into C6 and C7 DRGs at the time of the crush injury. (A and C) Control mice (brn3a-CreERT2). (B and D) Mice expressing activated B-RAF in DRGs (LSL-kaBraf:brn3a-CreERT2). Dashed yellow lines indicate the DREZ, dashed gray lines indicate the border between gray and white matter, and arrowheads indicate the extent of axon growth across the DREZ (B) and into gray matter (D). DH, dorsal horn; DR, dorsal root; PNS, peripheral nervous system; SC, spinal cord. n = 2 DRGs from each of three animals per genotype. Bars, 200 µm.
B-RAF gain-of-function is comparable with the maximal axon growth reported in PTEN deletion mice (Fig. 8 F; Park et al., 2008), in a direct comparison, we found up to a 3.9-fold higher density of regenerating axons in the LSL-kaBraf:Bax^{−/−} mice 1.5 mm distal to the crush site than is seen in the crushed Pten^{−/−}:Bax^{−/−} optic nerve (Fig. 8, D, F, and G).

Figure 8. Activation of B-RAF enables regenerative axon growth in the crush-lesioned optic nerve via the canonical effectors MEK1/2. (A) Schematic of experimental time course. (B) Intravitreal injection of AAV2-Cre induces expression of TdTom in retinal ganglion neurons, labeling the entire optic nerve (red). (C, top) Whole-mount image of a crushed Bax^{−/−} optic nerve. Crush site is indicated by a red asterisk here and in all following panels, (bottom) Confocal fluorescence image of the same nerve. Green shows axons anterogradely labeled with CTB–Alexa Fluor 488. (D) Whole-mount confocal imaging shows strong regenerative growth in the lesioned kaB-RAF–expressing optic nerve. (Inset) Axons at ~3.5 mm from the crush site (magnified from the boxed area). Arrowheads indicate outgrowing axons. (E) Loss of MEK1 and MEK2 abolishes the regeneration driven by kaB-RAF. (F) Optic nerve regeneration in the absence of PTEN. Bar, 0.5 mm. (C–F) Images are representative of three optic nerves per genotype. (G) Quantitation of axon regenerative growth in the optic nerve 2 wk after nerve crush; genotypes as shown in B–E. At ~1.6 mm from the crush site, the density of regenerating axons is more than threefold greater in the LSL-kaBraf:Bax^{−/−} genotype than in the Pten^{−/−}:Bax^{−/−} genotype. Data are from three nerves per genotype. Optic densities were acquired from the whole-mount optic nerves using an LSM710NLO two-photon confocal microscope with the ZEN2009 software. Data were normalized by setting the baseline OD, as measured 0.2 cm proximal to the crush site in all nerves, to the same (arbitrary) level.
DISCUSSION

An understanding of the mechanisms that drive axon growth is important, both to decipher how connectivity develops in the nervous system and to develop therapeutic strategies for nervous system repair after injury or disease. We show that the RAF–MEK axis plays a key role in axon growth signaling. Activation of B-RAF in neurons is sufficient to drive sensory axon growth in the embryo, to enable adult sensory axons to regenerate across the DREZ and further into the spinal cord, and to induce robust regeneration of adult retinal axons in the injured optic nerve. Both developmental DRG axon overgrowth in the spinal cord and mature RGC axon regeneration in the optic nerve were abrogated by concomitant ablation of MEK1 and MEK2. We thus establish classical cell-autonomous RAF–MEK signaling as a fundamental driver of axon growth. We should note that this pathway seems to be selective to axon growth signaling because we have never observed that B-RAF activation supports neuronal survival (unpublished data).

In vitro work has long suggested a potential role for RAF–MEK signaling in axon growth. Previous in vivo data, however, have been scarce and controversial. In the retina, for example, pharmaceutical inhibition of MEK–ERK signaling abrogated optic nerve regeneration supported by FGF2 (Sapieha et al., 2006). Two putative intracellular activators of RAF signaling, BAG1 and Mst3b, have been shown to promote regenerative axon growth in the optic nerve (Planchamp et al., 2008; Lorber et al., 2009), but the expression of a constitutively active MEK1 did not drive any regeneration in the optic nerve (Pernet et al., 2005). Others have concluded that ERK activity promotes RGC axon regeneration via an indirect mechanism dependent on glial cells (Müller et al., 2009). Although it is likely that multiple mechanisms, direct as well as indirect, will contribute to axon regeneration in the inhibitory environment of the CNS, the current cacophonous state of the field is likely caused by the mainly indirect approaches of incomplete penetration that have been taken by various laboratories. When using small molecule inhibitors or transient viral overexpression of interfering or activating constructs, it is difficult to accurately titrate the dose for the entire duration of an experiment. We believe that we have applied a stringent approach toward activation of RAF signaling in RGCs, and our data argue strongly for a direct positive effect of RAF–MEK signaling on axon growth and regeneration of RGCs, as well as in DRG neurons. Possible downstream mechanisms beyond the MEK kinases remain speculative at this point. Stabilization of microtubules improves axon regeneration in a spinal cord injury (SCI) model through both neuron-intrinsic and -extrinsic mechanisms (Hellal et al., 2011), and it is likely that activation of RAF–MEK signaling will directly affect microtubule stability in injured axons via its effects on microtubule-regulating enzymes such as HDAC6 (Williams et al., 2013). Furthermore, B-RAF has been shown to directly interact with tubulin (Bonfiglio et al., 2011). Activation of B-RAF signaling is also likely to trigger the expression of axon growth–enhancing gene sets in injured neurons. The elucidation of exact mechanisms awaits further study.
The developmental phenotypes we observed in the Br-RAF gain-of-function embryos were generally complementary to those previously observed in Br-RAF/C-Raf loss-of-function mice (Zhong et al., 2007). In contrast to nociceptors’ peripheral projections, the development of their central projections does not depend on NGF/TrkA signaling (Pate et al., 2000; Harrison et al., 2004; Zhong et al., 2007). Notably, we found that activation of Br-RAF resulted in overgrowth of both proprioceptive and nociceptive axons in the spinal cord, whereas the expression of two known regenerative signaling molecules in the dorsal cord and DRG: SemiA and PlexinA1, remained unaltered. Thus, Br-RAF appears to activate a normally quiescent axon growth signaling pathway in the central sensory axons that seems to be unaffected by regenerative guidance cues.

The importance of this effect, the lack of response to regenerative cures, becomes clear in the context of regeneration of central sensory branches after dorsal root crush injury. Sensory axons expressing Br-RAF robustly regenerated into the DREZ and spinal cord.

The regeneration failure of DRG axons after dorsal root avulsion injuries has been variously attributed to the lack of intrinsic growth capacity, to extrinsic growth barriers such as glia-associated growth inhibitors at the DREZ, and to premature synaptic differentiation (Han et al., 2012; Smith et al., 2012). Application of neurotrophic factors acting via tyrosine kinase receptors has shown substantially enhanced regeneration (Ramer et al., 2000; Wang et al., 2008; Harvey et al., 2010), even functional recovery with the systemic administration of artemin (Wang et al., 2008), although these results await independent replication. Future studies will test whether a combination of RAf activation with trophic growth factors can further enhance axon regeneration and reinnervation of presumptive targets in the spinal cord.

Compared with spinal cord lesions, the optic nerve’s simple structure allows for clear evaluation of both lesion and regeneration. In recent years, the optic nerve model has revealed several intracellular signaling pathways that can drive CNS axon regeneration, most prominently the PI3-kinase–mTOR and the JAK–STAT pathways, engaged by growth factor tyrosine kinase receptors and cytokines (Park et al., 2008; Smith et al., 2010; Gatto et al., 2013). Therefore, the most promising studies using growth factors have combined them with genetic intervention to up-regulate growth factor receptors or down-regulate their intrinsic inhibitors (Hollis et al., 2009; Sun et al., 2011). The second issue is that of undesirable side effects, especially that of neuropathic pain caused by neurotrophin administration (Obata et al., 2006; Jankowski and Koerber, 2009). Development of “painless” neurotrophins (Capsoni et al., 2011) may improve the usefulness of this family of growth factors in the context of regeneration. Future combined activation of several growth signaling pathways with blockade of growth inhibitory pathways may lead to realistic treatment options for patients with loss of vision, sensation, or locomotion.

Materials and Methods

Mouse models. Mouse breeding and genotyping were performed as described previously (Mercer et al., 2005; Zhong et al., 2007). The animal protocol was approved by the Institutional Animal Care and Use Committee at Weill Cornell Medical College, and experiments were conducted in accordance with the National Institutes of Health Guide for the Use and Care of Laboratory Animals. The LSL-creLoxP mouse line was provided by C.A. Pritchard (University of California, San Francisco, CA; Moqrich et al., 2004). Nestin-Cre deleter and Bax-null mice were generated in R. Klein’s laboratory (Max Planck Institute of Neurobiology, Martinsried, Germany; Tronche et al., 1999) and S.J. Korsmeyer’s laboratory (Dana-Farber Cancer Institute, Boston, MA; Knudson et al., 1995), respectively. The brn3a-CreER2 deleter mouse line was generated by J. Zhong in W.D. Snider’s laboratory (University of North Carolina at Chapel Hill, Chapel Hill, NC). All mice were on a mixed 129Sv and C57BL/6 background. We used littermates as controls throughout.

Generation of the brn3a-CreER2 deleter mouse line. Brn3a is a Pou domain transcription factor that is selectively expressed in DRG neurons. Using a brn3a promoter construct (Eng et al., 2001), we generated a brn3a-CreER2 deleter mouse line using the pronuclear injection technique (Fig. 6 A).

Western blotting and immunohistochemical staining. Western blotting and immunohistochemical staining were performed as described previously (Zhong et al., 2007). An equal amount of total protein was loaded in each lane. The antibodies used were as follows: TrkA, Brn3a, and PlexinA1 antibodies were provided by L. Reichardt, E. Turner (University of California, San Diego, La Jolla, CA), and T. Jessell (Columbia University, New York, NY), respectively. Antibodies against MEK1/2 (9122), pMEK1/2 (9121), ERK1/2 (9102), pERK1/2 (9101), pAKT (9271 and 9275), phospho-p70S6K (9231 and 9234), and phospho-ERK1/2 (9102), pERK1/2 (9101), pAKT (9271 and 9275), phospho-p70S6K (9231 and 9234) were provided by L. Reichardt, E. Turner (University of California, San Diego, La Jolla, CA), and T. Jessell (Columbia University, New York, NY), respectively.
(9206), phospho-mTOR Ab (2971), and pGSK3β (9336) were obtained from Cell Signaling Technology. BIH1-Tubulin (AA10) was purchased from Invitrogen; Semi65D (S-16) was purchased from Santa Cruz Biotechnology, Inc.; C-Raf antibody (610151) was purchased from BD. Parvalbumin antibody (PV26) was obtained from Swant. CGRP antibodies (AB9290 and AB5705) were obtained from EMD Millipore. All Western blot and immunohistochemical experiments were repeated with tissue from at least three embryos for each genotype, and these embryos were obtained from a different litter for each experiment. Littermate controls were used throughout.

LacZ staining. E16.5 embryos were fixed in 4% paraformaldehyde and stained with X-gal using EMD Millipore’s Tissue Base staining solution according to the manufacturer’s protocol. After imaging of axon skin innervation, embryos were dehydrated using a methanol in PBS dilution series (25–50%, 75–95%, and 100%), followed by incubation in 50% methanol: 50% benzoyl alcohol/benzoyl benzoate (BABB), and subsequently cleared in 100% BABB (Sigma-Aldrich). Specimens were imaged with a M205A stereomicroscope equipped with a DFC310FX color digital camera system (Leica).

DRG culture. For CGRP expression assay, E12.5 DRGs derived from LSL-KdrFaf1Bac/× nes-Cre embryos were cultured with 100 ng/ml NGF (Alomone Labs) and skin-conditioned medium for 8 d. DRG neurons cultured in N2-supplied MEM (without NGF) were used as control. Both cultures where treated with FdU (5-flouro–2-deoxyuridine; Sigma-Aldrich). Culture media were changed every 12 h. The cells were fixed 8 d thereafter, and the cells were stained for CGR and TrkA. For axon growth and neuron survival assays, DRGs were dissected from E12.5 embryos with the desired genotypes as described previously (Markus et al., 2002; Zhong et al., 2007). The cells were dissociated and plated on laminin-coated coverslips. Cells were then cultured in serum-free media supplemented with 1× N2 (Invitrogen) and 1% BSA. FdU, NGF, or AAV2-Cre (Vector Laboratories) were added as described previously (Markus et al., 2002; Zhong et al., 2007).

Dorsal root crush. Surgeons and all other personnel performing experiments and analyses were blinded as to genotypes. 10–14-wk-old mice were injected s.c. with tamoxifen (5 µg/10 g body weight) for a consecutive 5 d, followed by 5 d of rest. Unilateral sciatic nerve crush. Mice were injected with tamoxifen (2 µg/10 g body weight) for a consecutive 5 d, followed by 5 d of rest. Unilateral sciatic nerve crush. Mice were injected with tamoxifen (2 µg/10 g body weight) for a consecutive 5 d, followed by 5 d of rest. Unilateral sciatic nerve crush was then performed as described previously (Zhong et al., 1999). Adult DRGs were collected and cultured as described previously (Zou et al., 2009). Images were taken using a Carl Zeiss LSM710 NLO confocal microscope. Axon length was quantified as described previously (Zou et al., 2009).

Optic nerve crush. Surgeons and all other personnel performing experiments and analyses were blinded as to genotypes. The crush-regeneration and axon counting protocol is adapted from Park et al. (2008). Whole-mount optic nerves were treated with FocusClear (CelExplorer Labs) and scanned using an LSM710 NLO multiphoton confocal microscope. OD was determined with the Carl Zeiss ZEN2009 software.

We would like to thank Louis Reichardt for the TrkαKO× mice and Trkα antibody, Caitrin A. Pritchard for the LSL-KdrFaf1b mice, Eric Turner for the Brn3a promoter, and Thomas Jessel for the Plexin1A antibody. Larry Benowitz provided experimental advice on the optic nerve injury model. Rajiv Ratan, David Ginty, William D. Snider, and Annette Markus are acknowledged for insightful discussion and suggestions. This work was supported by startup funds from the Burke Foundation as well as Whitewater Foundation research grant 2010-08-61, grants 1RO1EY022409 and 3RO1EY022409-01S1 from the National Eye Institute (NEI), and grant ZBI-1102-2 from the Christopher & Dana Reeve Foundation to J. Zhong. Z. He is supported by grants 5R01EY15126 and EY021342 from NEI. Y.-J. Son is supported by grant 1R01NS079631 from the National Institute of Neurological Disorders and Stroke and grants from Shriners Hospitals for Children and the Muscular Dystrophy Association. H. Zou is supported by grants from the National Institutes of Health (1R01NS073596) and the Irma T. Hirschi/Monique Weill-Caulier Foundation. K.J. O’Donovan is a Goldsmith fellow.

The authors declare no competing financial interests.

Submitted: 24 August 2013
Accepted: 18 March 2014

REFERENCES
Agthsong, S.J., J. Kooman, A. Kaewsena, and V. Chentanez. 2009. Inhibition of MAPK ERK impairs axonal regeneration without an effect on neuronal loss after nerve injury. Neuron. 31:1068–1074. http://dx.doi.org/10.1016/j.neuron.2009.10.004
Allen, S.J., J.J. Watson, D.K. Shoemark, N.U. Barua, and N.K. Patel. 2013. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol. Ther. 138:155–175. http://dx.doi.org/10.1016/j.pharmthera.2013.01.004
Benowitz, L.I., and Y. Yin. 2010. Optic nerve regeneration. Anh. Ophthalmol. 128:1059–1064. http://dx.doi.org/10.1010/10010.1010.152
Blackmore, M.G., Z. Wang, J.K. Lerch, D. Motti, Y.P. Zhang, C.B. Shield, J.K. Lee, J.L. Goldberg, V.P. Lemmon, and J.J. Bixby. 2012. Kruppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proc. Natl. Acad. Sci. USA. 109:7517–7522. http://dx.doi.org/10.1073/pnas.1120684109
Bonfiglio, J.J., G. Maccarrone, C. Rewerts, H. Hoboeb, E. Arzt, C.W. Turck, and S. Silberstein. 2011. Characterization of the B-Raf interactor in mouse hippocampal neuronal cells. J. Proteomics. 74:186–198. http://dx.doi.org/10.1016/j.jprot.2010.10.006
Buchser, W.J., R.P. Smith, J.R. Pardinas, C.L. Haddox, T. Hutton, L. Moon, S.R. Hoffman, J.J. Bixby, and V.P. Lemmon. 2012. Peripheral nervous system gene expressed in central neurons induce growth on inhibitory substrates. PLoS ONE. 7:e38101. http://dx.doi.org/10.1371/journal.pone.0038101
Capsom, S.S., S. Covaceuszach, S. Marinelli, M. Ceci, A. Bernardo, L. Minghetti, G. Ugolini, F. Pavone, and A. Cattaneo. 2011. Taking pain out of NGF: a “painless” NGF mutant, linked to hereditary sensory autonomic neuropathy type V, with full neurotrophic activity. PLoS ONE. 6:e17321. http://dx.doi.org/10.1371/journal.pone.0017321
Di Maio, A., A. Skuba, B.T. Himes, S.L. Bhagat, J.K. Hyun, A. Tessler, D. Bishop, and Y.J. Son. 2011. In vivo imaging of dorsal root regeneration: rapid immobilization and prosynaptic differentiation at the CNS/PNS border. J. Neurosci. 31:4569–4582. http://dx.doi.org/10.1523/JNEUROSCI.4638-10.2011
Eng, S.R., K. Gratwick, J.M. Rhee, N. Fedsova, L. Gan, and E.E. Turner. 2001. Defects in sensory axon growth precede neuronal death in Bm3a-deficient mice. J. Neurosci. 21:541–549.
Flibin, M.T. 2006. Recapitulation development to promote axonal regeneration: good or bad approach? Philos. Trans. R. Soc. Land. B Biol. Sci. 361:1565–1574. http://dx.doi.org/10.1098/rstb.2006.1885
Galabova-Kovacs, G., F. Catalanotti, D. Matzen, G.X. Reyes, J. Zezula, R. Herbst, A. Silva, I.Walter, and M. Baccarini. 2008. Essential role of B-Raf in oligodendrocyte maturation and myelination during postnatal central nervous system development. J. Cell Biol. 180:947–955. http://dx.doi.org/10.1083/jcb.200709069
Gatto, G., I. Dudanova, P. Suetterlin, A.M. Davies, U. Drescher, J.L. Bixby, and R. Klein. 2013. Protein tyrosine phosphate receptor type O inhibits trigeminal axon growth and branching by repressing TrkB and Ret signaling. J. Neurosci. 33:5399–5410. http://dx.doi.org/10.1523/JNEUROSCI.4707-12.2013
Goldberg, J.L., J.S. Espinosa, Y.Xu, N. Davidson, G.T. Kovacs, and B.A. Barres. 2002. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron. 33:689–702. http://dx.doi.org/10.1016/S0896-6273(02)00602-5
Hall, A.K., X. Ai, G.E. Hickman, S.E. MacPhedran, C.O. Nduaguba, and C.P. Robertson. 1997. The generation of neuronal heterogeneity in a rat sensory ganglion. J. Neurosci. 17:2775–2784.

Hall, A.K., K.J. Dinso, and J. Cappuzzello. 2001. Skin cell induction of calcitonin gene-related peptide in embryonic sensory neurons in vitro involves activin. Dev. Biol. 229:263–270. http://dx.doi.org/10.1006/dbio.2000.9666

Han, S.B., H. Kim, A. Skuba, A. Tessler, T. Ferguson, and Y.J. Son. 2012. Neurotrophic factors and nociception: A review from an in vivo imaging perspective. Exp. Neurol. 239:83–93. http://dx.doi.org/10.1016/j.expneurol.2012.07.038

Han, S.B., H. Kim, A. Skuba, A. Tessler, T. Ferguson, and Y.J. Son. 2012. STAT3 promotes corticospinal remodelling and functional reintegration of injured spinal cord neurons after acute injury. J. Neurosci. 32:1407–1414. http://dx.doi.org/10.1091/jn.2011.04.214

Hanz, S., and M. Fainzilber. 2006. Retrograde signaling in injured nerve—the axon reaction revisited. J. Neurochem. 99:13–19. http://dx.doi.org/10.1111/j.1471-4159.2006.04089.x

Harrison, S.M., B.M. Davis, M. Nishimura, K.M. Albers, M.E. Jones, and H.S. Phillips. 2004. Rescue of NGF-deficient mice I: transgenic expression of NGF in skin rescues mice lacking endogenous NGF. Brain Res. Mol. Brain Res. 122:116–125. http://dx.doi.org/10.1016/j.molbrainres.2003.12.004

Hellal, F., A. Hurtado, J. Ruschel, K.C. Flynn, C.J. Laskowski, M. Umlauf, L.C. Harrison, S.M., B.M. Davis, M. Nishimura, K.M. Albers, M.E. Jones, and H.S. Phillips. 2004. Rescue of NGF-deficient mice II: transgenic expression of NGF in sensory neurons rescues mice lacking endogenous NGF and peripheral nerve. Brain Res. Mol. Brain Res. 122:116–125. http://dx.doi.org/10.1016/j.molbrainres.2003.12.004

Hare, P. 2011. Distinct roles of neurotrophin signaling in adult spinal cord injury. J. Neurosci. Res. 89:1038–1048. http://dx.doi.org/10.1006/jexer.2000.0873

Li, Y., L. Cai, L. Zhou, Y. Zhang, X. Zhang, S.W. Chiang, Y. Huang, D. Lin, Y.M. Fan, N. van Rooijen, D.S. Lam, C.P. Pang, and Q. Cui. 2007. PI3K/akt/JAK/STAT and MEK/ERK pathway inhibition protects retinal ganglion cells via different mechanisms after optic nerve injury. Eur. J. Neurosci. 26:826–842. http://dx.doi.org/10.1111/j.1460-9568.2007.05718.x

Lykkas, M.G., A.K. Batistatou, K.A. Charalabopoulos, and A.E. Beris. 2007. The role of neurotrophins in axonal growth, guidance, and regeneration. Curr. Neurosci. Rep. 4:143–151. http://dx.doi.org/10.1007/s11974-008-0057-3

Markus, A., J. Zhong, and W.D. Snider. 2002. Raf and akt mediate distinct aspects of sensory axon growth. Neuron. 35:65–76. http://dx.doi.org/10.1016/S0896-6273(02)00752-3

Mercer, K., S. Gibbitt, S. Green, D. Lloyd, S. DaRoche Dias, M. Plumb, R. Marais, and C. Pritchard. 2005. Expression of endogenous oncogenic V600EB-raf induces proliferation and developmental defects in mice and transformation of primary fibroblasts. Cancer Res. 65:11493–11500. http://dx.doi.org/10.1158/0008-5472.CAN-05-2211

Megrach, A., T.J. Earley, J. Watson, M. Andaluz, C. Backus, D. Martin-Zanca, D.E. Wright, L.F. Reichardt, and A. Patapoutian. 2004. Expression of TrkC from the TrkA locus causes a subset of dorsal root ganglia neurons to switch fate. Nat. Neurosci. 7:812–818. http://dx.doi.org/10.1038/nn1283

Müller, A., T.G. Hauk, M. Leibinger, R. Marienfeld, and D. Fischer. 2009. Exogenous CNTF stimulates axon regeneration of retinal ganglion cells partially via endogenous CNTF. Mol. Cell. Neurosci. 41:233–246. http://dx.doi.org/10.1016/j.mcn.2009.03.002

Obata, K., H. Katsura, J. Sakurai, K. Kobayashi, H. Yamanaka, Y. Dai, T. Fukuoka, and K. Noguchi. 2006. Suppression of the p75 neurotrophin receptor in uninjured sensory neurons reduces neuropathic pain after nerve injury. J. Neurosci. 26:11974–11986. http://dx.doi.org/10.1523/JNEUROSCI.3188-06.2006

Parikh, P., Y. Hao, M. Hosseinikhani, S.B. Patil, G.W. Huntley, M. Tessler-Lavigne, and H. Zhou. 2011. Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad signaling pathway in adult neurons. Proc. Natl. Acad. Sci. USA. 108:E99–E107. http://dx.doi.org/10.1073/pnas.1100426108

Pernet, V., W.W. Hauswirth, and A. Di Polo. 2005. Extracellular signal-regulated kinase 1/2 mediates survival, but not axon regeneration, of adult injured central nervous system neurons in vivo. J. Neurosci. 25:4213–4222. http://dx.doi.org/10.1523/JNEUROSCI.5313-06.2007

Pernet, V., W.W. Hauswirth, and A. Di Polo. 2005. Extracellular signal-regulated kinase 1/2 mediates survival, but not axon regeneration, of adult injured central nervous system neurons in vivo. J. Neurosci. 25:4213–4222. http://dx.doi.org/10.1523/JNEUROSCI.5313-06.2007

Patel, T.A., C. Jackman, E.L. Rice, J. Kacera, and W.D. Snider. 2000. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neurosci. Lett. 287:345–357. http://dx.doi.org/10.1016/S0304-3940(00)00899-5

Perrett, V., W.W. Hauswirth, and A. Di Polo. 2005. Extracellular signal-regulated kinase 1/2 mediates survival, but not axon regeneration, of adult injured central nervous system neurons in vivo. J. Neurosci. 25:4213–4222. http://dx.doi.org/10.1523/JNEUROSCI.5313-06.2007

Ramer, M.S., J.V. Priestley, and S.B. McMahon. 2000. Functional regeneration of sensory axons into the adult spinal cord. Nature. 403:312–316. http://dx.doi.org/10.1038/35020848

Sapieha, P., W.W. Hauswirth, and A. Di Polo. 2006. Extracellular signal-regulated kinases 1/2 are required for adult retinal ganglion cell axon regeneration induced by fibroblast growth factor-2. J. Neurosci. 32:10559–10569. http://dx.doi.org/10.1523/JNEUROSCI.3742-06.2007

Seijffers, R., C.D. Mills, and C.J. Woolf. 2007. ATF3 increases the intrinsic growth potency and rescues nigrostriatal neurons in adult rats. Exp. Neurol. 178:259–267. http://dx.doi.org/10.1016/j.expneu.2002.08.042

Song, J.M., L.P. Cen, X.M. Zhang, S.W. Chiang, Y. Huang, D. Lin, Y.M. Fan, N. van Rooijen, D.S. Lam, C.P. Pang, and Q. Cui. 2007. PI3K/akt/JAK/STAT and MEK/ERK pathway inhibition protects retinal ganglion cells via different mechanisms after optic nerve injury. Eur. J. Neurosci. 26:826–842. http://dx.doi.org/10.1111/j.1460-9568.2007.05718.x

Stavrou, M.G., T. Katsaros, K. Caparros, and A.E. Beris. 2005. The role of neurotrophins in axonal growth, guidance, and regeneration. Curr. Neurosci. Rep. 4:143–151. http://dx.doi.org/10.1007/s11974-008-0057-3

Sellers, R.J., and R.G. Mole. 2002. Raf and akt mediate distinct aspects of sensory axon growth. Neuron. 35:65–76. http://dx.doi.org/10.1016/S0896-6273(02)00752-3

Seijffers, R., C.D. Mills, and C.J. Woolf. 2007. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J. Neurosci. 27:7911–7920. http://dx.doi.org/10.1523/JNEUROSCI.3531-06.2007
Shin, J.E., Y. Cho, B. Beirowi, J. Milbrandt, V. Cavalli, and A. DiAntonio. 2012. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron. 74:1015–1022. http://dx.doi.org/10.1016/j.neuron.2012.04.028

Smith, D.S., and J.H. Skene. 1997. A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J. Neurosci. 17:646–658.

Smith, G.M., A.E. Falone, and E. Frank. 2012. Sensory axon regeneration: rebuilding functional connections in the spinal cord. Trends Neurosci. 35: 156–163. http://dx.doi.org/10.1016/j.tins.2011.10.006

Smith, P.D., F. Sun, K.K. Park, B. Cai, C. Wang, K. Kuwako, I. Martinez-Carrasco, L. Connolly, and Z. He. 2009. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron. 64:617–623. http://dx.doi.org/10.1016/j.neuron.2009.11.021

Sun, F., K.K. Park, S. Belin, D. Wang, T. Lu, G. Chen, K. Zhang, C. Yeung, G. Feng, B.A. Yankner, and Z. He. 2011. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature. 480:372–375. http://dx.doi.org/10.1038/nature10594

Tronche, F., C. Kellendonk, O. Kretz, P. Gass, K. Anlag, P.C. Orban, R. Bock, R. Klein, and G. Schütz. 1999. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23:99–103. http://dx.doi.org/10.1038/12703

Wang, R., T. King, M.H. Ouspov, A.J. Rossomando, T.W. Vanderah, P. Harvey, P. Cariani, E. Frank, D.W. Sah, and F. Porreca. 2008. Persistent restoration of sensory function by immediate or delayed systemic artemin after dorsal root injury. Nat. Neurosci. 11:488–496. http://dx.doi.org/10.1038/nn.2069

Williams, K.A., M. Zhang, S. Xiang, C. Hu, J.Y. Wu, S. Zhang, M. Ryan, A.D. Cox, C.J. Der, B. Fang, et al. 2013. Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration. J. Biol. Chem. 288:33156–33170. http://dx.doi.org/10.1074/jbc.M113.472506

Xu, P., and A.K. Hall. 2007. Activin acts with nerve growth factor to regulate calcitonin gene-related peptide mRNA in sensory neurons. Neuroscience. 150:665–674. http://dx.doi.org/10.1016/j.neuroscience.2007.09.041

Yan, D., Z. Wu, A.D. Chisholm, and Y. Jin. 2009. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell. 138:1005–1018. http://dx.doi.org/10.1016/j.cell.2009.06.023

Zhong, J., I.D. Dietzel, P. Wahle, M. Kopf, and R. Heumann. 1999. Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. J. Neurosci. 19:4305–4313.

Zhong, J., X. Li, C. McNamee, A.P. Chen, M. Baccarini, and W.D. Snider. 2007. Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo. Nat. Neurosci. 10:598–607. http://dx.doi.org/10.1038/nn1898

Zou, H., C. Ho, K. Wong, and M. Tessier-Lavigne. 2009. Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J. Neurosci. 29:7116–7123. http://dx.doi.org/10.1523/JNEUROSCI.5897-08.2009