An Isosteric Triaza Analogue of a Polycyclic Aromatic Hydrocarbon Monkey Saddle

Tobias Kirschbaum, Frank Rominger, and Michael Mastalerz*[^1]
1 General Remarks

Materials: All used reagents and solvents were purchased from abcr, Acros Organics, Carbolution, Carl Roth, Deutero, Fisher Scientific, Honeywell, Sigma-Aldrich, Grüssing, Merck, TCI or VWR Chemicals and used without further purification, if not mentioned otherwise. Anhydrous tetrahydrofuran was dispensed from a Solvent Purification System MB SPS-800. Water was degassed by bubbling Argon through it for two hours, tetrahydrofuran was degassed by three times freeze-thaw pumping. If not mentioned otherwise, all reactions were performed under standard conditions (25°C, 1013 mbar). Inert conditions were achieved by evacuating the flasks, bake out and flooding with Argon (three cycles). Complete removal of solvents was achieved by applying high vacuum (1 · 10⁻¹ mbar).

Thin layer and flash column chromatography Analytical Thin Layer Chromatography was performed with POLYGRAM® SIL G/UV₂₅₄ gel plates sold by Macherey-Nagel. Detection was accomplished using UV-light (254 nm). Flash column chromatography was accomplished using Silica gel 60 (40–63 μm / 230–400 mesh ASTM) purchased from Macherey-Nagel.

Chiral high-performance liquid chromatography (HPLC) Analytical chiral HPLC was performed on a Shimadzu LC-40 Nexera HPLC-System and semi-preparative chiral HPLC was performed on an Agilent 1200 series HPLC system. Both systems use Chiralpak® IE columns from Daicel.

Nuclear magnetic resonance (NMR) All reported NMR spectra were recorded on the following spectrometers: Bruker Avance III 300 (300 MHz), Bruker Avance DRX 300 (300 MHz), Bruker Fourier 300 (300 MHz), Bruker Avance III 400 (400 MHz), Bruker Avance III 500 (500 MHz) or Bruker Avance III 600 (600 MHz). Chemical shifts (δ) are given in parts per million (ppm) and coupling constants in Hertz (Hz). All spectra were calibrated relative to traces of less-deuterated solvent (CDCl₃: 7.26 ppm / 77.16 ppm, CD₂Cl₂: 5.32 ppm / 53.84 ppm). The following abbreviations were used for °H NMR to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). All ¹³C NMR spectra were measured with °H decoupling.
Mass spectrometry (MS) MS experiments were performed on a Bruker AutoFlex Speed time-of-flight spectrometer (MALDI-MS), a JEOL AccuTOF GCx time-of-flight spectrometer (EI-MS) or on a Bruker ApexQe hybrid 9.4 T FT-ICR spectrometer (ESI-, DART-, MALDI-MS). For MALDI-MS experiments DCTB (trans-2-[3-(4-tert-Butylphenyl)-2-methylpropenylidene)-malononitrile) was used as matrix. All measurements were performed by the mass spectrometry division of the University of Heidelberg under the supervision of Dr. Jürgen H. Gross.

Infrared spectroscopy (IR) IR spectra were recorded on a ZnSe ATR crystal using a Bruker Tensor 27 spectrometer. The following abbreviations were used to indicate the absorption intensity: vw (very weak), w (weak), m (medium), s (strong), vs (very strong).

Elemental analysis Elemental analysis were performed in the Microanalytical laboratory of the University of Heidelberg with a Vario EL Element Analyzer.

UV/vis and fluorescence spectroscopy UV/vis spectra were recorded with a Jasco V-730 spectrometer and fluorescence spectra with a Jasco FP-8300 spectrometer.

CD spectroscopy CD spectra were recorded with a Jasco J-1500 CD spectrometer.

Melting points The non-corrected melting points were determined with a Büchi Melting Point B-545.

X-ray crystal structure analysis X-ray crystal structure analyses were recorded with a Bruker APEX-II Quazar diffractometer using Mo-Kα radiation (λ = 0.71073 Å) at 200 K or with a Stoe Stadivari using Cu-Kα radiation (λ = 1.54178 Å) at 100 K. Intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using SADABS[52] or X-Area LANA 1.70.0.0[53] based on the Laue symmetry of the reciprocal space (μ, Tmin, Tmax). The structures were solved with SHELXT-2014 (Sheldrick 2014)[54] and refined against F2 with a Full-matrix least-squares algorithm using the SHELXL-2018/1 software.[55]

Computational Details All quantumchemical calculations were performed by employing the Gaussian09 program package.[56] The theoretical approach is based on Kohn-Scham density functional methodologies[57] using the B3LYP[58] functional. As basis set the triple-ζ-basis (6-311G(d,p))[59] was used. The geometries of the regarded species were fully optimized using ultra-tight convergence criteria of the representative computational method. Ground states were confirmed by using frequency calculations to not exhibit any imaginary frequency. Prediction of excited state properties[510] and electronic circular dichroism (ECD) analysis[511] were performed using time-depended DFT methods with the B3LYP or BHandHLYP functional, as implemented in Gaussian 09, Rev. D.01, and convoluted with GaussSum.[512] NICS(0) and NICS(1) values were calculated from the optimized geometries by adding a ghost atom in the centroid or 1 Å above/below of the corresponding ring and performing a single-point calculation based on Hartree-Fock methods[513] using the augmented double-ζ-basis (6-31+G(d))[59, 514] with the GIAO method.[515] Ring-current analysis was accomplished by performing a single-point calculation with the CSGT method[515a, 516] on the HF/6-31+G(d) level and using the AICD program package of the Herges group.[517]
2 Experimental Procedures

Scheme S1: Compounds S1-S3 and 3 were synthesised as reported in our previous paper.\[S18\]

2.1 4,9,14-Tribromo-1,6,11-tris(hexyloxy)-5H-diindenoph1,2-a:1’,2’-c]fluorene-5,10,15-trione (4)

Tribrromotruxene 3 (880 mg, 1.00 mmol) was added to a solution of potassium carbonate (829 mg, 6.00 mmol) in DMF (100 mL). The flask was equipped with an oxygen balloon and the atmosphere exchanged three times. Then the mixture was stirred at 40°C for 96 hours. After cooling down to room temperature, the solvent was removed \textit{in vacuo}, the residue re-dissolved in DCM (50 mL) and eluted through a short plug of silica until the eluent was colorless (approx. 400 mL). The solvent was evaporated, methanol (10 mL) was added and the mixture ultrasonicated for 20 minutes. The suspension was cooled to 0°C, the precipitate filtered off and washed with cold methanol (3×5 mL). After drying in an air-stream, truxenone 4 was isolated as yellow powder in 62% yield (570 mg, 619 μmol).\[mp. 211–213°C; \textit{^1}H NMR\]
Aniline boronic acid hydrochloride S4 (624 mg, 3.60 mmol), Pd2(dbad)2 (18.3 mg, 20.0 μmol), t-Bu3PHBF4 (23.2 mg, 80.0 μmol) and potassium carbonate (1.16 g, 8.40 mmol) were suspended in degassed THF/water (3.0 mL, 1:1 V/V) and stirred under argon for five minutes. Bromotruxenone 4 (369 mg, 400 μmol) was added and the mixture stirred for 48 hours at 80°C. After cooling to room temperature, the phases were separated and the aqueous phase extracted with ethyl acetate (2×10 mL). From the combined organic phases the solvent was evaporated in vacuo, the residue suspended in methanol (5 mL), the dark red precipitate filtered off and dried under air. The dark red powder was dissolved in chloroform (12 mL), acetic acid (1.2 mL) was added and the mixture was stirred at 80°C overnight. After cooling down to room temperature DCM (20 mL) was added, the phases separated, the organic phase washed with saturated sodium carbonate solution (30 mL) and the combined aqueous phases reextracted with DCM (3×20 mL). The combined organic phases were dried over Na2SO4, filtered and the solvent was removed in vacuo. The residue was further purified via flash column chromatography (SiO2, PE/toluene 1:5; Rf = 0.33) to give 161 mg (45%) of 2 as yellow-orange powder. mp. 135-137°C (decomp.) 1H NMR (CD2Cl2, 400 MHz) δ (ppm) 7.44 (d, 3J = 8.5 Hz, 3H, H-3/11/19), 7.31 (td, 3J = 7.7 Hz, 4J = 1.3 Hz, 3H, H-6/14/22), 7.13 (td, 3J = 7.5 Hz, 4J = 1.5 Hz 3H, H-5/13/21), 7.09 (d, 3J = 8.6 Hz, 3H, H-2/10/18), 6.89 (dd, 3J = 8.0 Hz, 4J = 1.3 Hz, 6H, H-4/7/12/15/20/23), 4.28 (dt, 3J = 9.6 Hz, 4J = 6.1 Hz, 3H, H-1’), 4.14 (dt, 3J = 9.6 Hz, 4J = 6.9 Hz, 3H, H-1”), 4.17-4.11 (m, 3H, H-1”), 1.90 - 1.74 (m, 6H, H-2”), 1.61 - 1.43 (m, 6H, H-3”), 1.36 - 1.29 (m, 12H, H-4’/5’), 0.86 (t, 3J = 7.1 Hz, 9H, H-6’); 13C NMR (CD2Cl2, 100 MHz) δ (ppm) 153.9 (C-1/6/11), 144.6 (C-4a/9a/14a), 144.4 (C-4b/9b/14b), 141.1 (C-3/8/13), 135.8 (C-4c/9c/14c), 126.1 (C-5a/10a/15a), 117.9 (C-2/7/12), 112.4 (C-4/9/14), 69.9 (C-1”), 31.6 (C-5”), 29.1 (C-2”), 25.6 (C-3”), 22.7 (C-4”), 14.2 (C-6’); IR (ATR, FT) ν (cm⁻¹) 2951 (w), 2930 (m), 2870 (w), 2858 (w), 1709 (s), 1597 (m), 1583 (m), 1566 (s), 1462 (s), 1375 (m), 1354 (w), 1281 (vs), 1219 (m), 1169 (s), 1121 (s), 1074 (m), 1036 (m), 961 (m), 919 (m), 818 (m), 795 (m), 762 (w), 721 (m), 640 (vw); UV/vis (dichloromethane) λmax (lg ε) 305 nm (4.67), 400 nm (4.29), 436 nm (3.81) (sh); MS (HR-DART+) m/z calculated for [M+H]+: 919.0839, found: 919.0839; Elem. Anal. calculated for C45H45Br3O6·2/3 MeOH: C 58.17%, H 5.10%, found: C 58.13%, H 5.19%.

2.2 8,16,24-Triaza-1,9,17-tris(hexyloxy)-16a,24a-dihydro-8aH-bis(benzo[4,5]-cycloocta[1,2,3-cd]indenoo)[2,2a,3,4-sab:2’,2a’,3’,4’-cde]benzo[5,6]-cycloocta[1,2,3,4-def]fluorene (2)
(ppm) 166.2 (C-8a/16a/24a), 156.4 (C-1/9/17), 149.8 (C-7a/15a/23a), 147.7 (C-8d/16d/24d), 144.5 (C-8c/16c/24c), 135.5 (C-3/11/19), 134.7 (C-4/12/20), 132.5 (Cq), 131.1 (C-3a/11a/19a), 131.0 (C-3b/11b/19b), 128.9 (Cq), 128.5 (C-6/14/22), 126.2 (C-7/15/23), 125.4 (C-5/13/21), 116.5 (C-2/10/18), 69.9 (C-1'), 31.9 (C-5'), 29.6 (C-2'), 26.0 (C-3'), 23.0 (C-4'), 14.2 (C-6'); IR (ATR, FT) $\tilde{\nu}$ (cm$^{-1}$) 3057 (vw), 2920 (m), 2853 (m), 1645 (m), 1582 (s), 1562 (m), 1502 (m), 1464 (s), 1431 (w), 1379 (w), 1350 (w), 1281 (s), 1248 (m), 1207 (w), 1169 (m), 1119 (m), 1094 (m), 1063 (m), 1043 (w), 1005 (m), 943 (w), 926 (w), 883 (w), 812 (s), 791 (w), 756 (vs), 727 (m), 700 (m), 640 (w); UV/vis (dichloromethane) λ_{max} (lg ε) 273 nm (4.80), 316 nm (4.43), 414 nm (4.13); MS (HR-DART$^+$) m/z calculated for [M+H]$^+$: 904.4473, found: 904.4482.

3 Spectra

3.1 1H NMR and 13C NMR spectra

![NMR spectra diagram]

Figure S1: 1H NMR spectrum of 4 (CDCl$_3$, 600 MHz, 300 K).
Figure S2: 13C NMR spectrum of 4 (CDCl$_3$, 150 MHz, 300 K).

Figure S3: 1H NMR spectrum of 2 (CD$_2$Cl$_2$, 400 MHz, 300 K).
Figure S4: 13C NMR spectrum of 2 (CD$_2$Cl$_2$, 100 MHz, 300 K).

3.2 2D NMR Spectra

Figure S5: 1H,1H-COSY spectrum of 4 (CDCl$_3$, 600 MHz, 300 K).
Figure S6: 1H,13C-HSQC spectrum of 4 (CDCl$_3$, 600 MHz, 150 MHz, 300 K).

Figure S7: 1H,13C-HMBC spectrum of 4 (CDCl$_3$, 600 MHz, 150 MHz, 300 K).
Figure S8: 1H,1H-COSY spectrum of 2 (CD$_2$Cl$_2$, 400 MHz, 300 K).

Figure S9: 1H,1H-NOESY spectrum of 2 (CD$_2$Cl$_2$, 400 MHz, 300 K).
Figure S10: 1H, 13C-HSQC spectrum of 2 (CD$_2$Cl$_2$, 400 MHz, 100 MHz, 300 K).

Figure S11: 1H, 13C-HMBC spectrum of 2 (CD$_2$Cl$_2$, 400 MHz, 100 MHz, 300 K).
3.3 IR spectra

Figure S12: FT-IR spectrum of 4 (ATR, ZnSe).

Figure S13: FT-IR spectrum of 2 (ATR, ZnSe).
3.4 Mass Spectra

Figure S14: HR DART-MS of compound 4.

Figure S15: HR MALDI-MS of compound 2.
3.5 UV/vis Spectra

Figure S16: UV/vis spectrum of 4 in DCM.

Figure S17: UV/vis spectrum of 2 in DCM.
Figure S18: UV/vis spectrum of 2 in n-heptane.

Figure S19: UV/vis spectrum of 2 in DCM (black, solid line), with triethylamine (orange dotted line) and with TFA (red, solid line).
Figure S20: UV/vis spectrum of 1 in DCM (black, solid line), with triethylamine (orange dotted line) and with TFA (red, dotted line).

3.6 HPLC-Chromatograms

Figure S21: Analytical chromatograms of the racemic mixture of 2 (top) and from the both separated enantiomers (IE column, n-heptane/i-PrOH 70:30, 1.0 mL min⁻¹, 254 nm).
3.7 CD Spectra

The g-values were calculated following eq. (1), dividing the absorption of the CD spectra through the absorption of the UV/vis spectrum, for each wavelength.$^{[S19]}$

\[
g_{\text{abs}} = \frac{\Delta \varepsilon_{\text{nm}}}{\varepsilon_{\text{nm}}} \quad (1)
\]

The Aza Monkey Saddle 2 has the most positive g-value at 290 nm with \(g_{\text{abs}} = 3.41 \times 10^{-3}\), corresponding with the maximum in the CD spectrum at 288 nm and the most negative at 343 nm with \(g_{\text{abs}} = -2.70 \times 10^{-3}\) corresponding to minimum at 338 nm.

Figure S22: CD spectrum of 2 (n-heptane).
4 Crystallographic Data

4.1 4,9,14-Tribromo-1,6,11-tris(hexyloxy)-5H-diindeno[1,2-a:1’,2’-c]fluorene-5,10,15-trione (4)

Crystals suitable for X-ray diffraction were obtained by diffusion of n-hexane into a solution of 4 in chloroform at room temperature.

CCDC 1994481
Empirical formula C₅₅H₄₅Br₃O₆
Formula weight 921.54
Temperature 200(2) K
Wavelength 1.54178 Å
Crystal system orthorhombic
Space group Pbca
Z 8
Unit cell dimensions
\[a = 19.3949(4) \text{ Å} \quad \alpha = 90 \text{ deg.} \]
\[b = 14.4594(3) \text{ Å} \quad \beta = 90 \text{ deg.} \]
\[c = 28.3431(8) \text{ Å} \quad \gamma = 90 \text{ deg.} \]
Volume 7948.5(3) Å³
Density (calculated) 1.54 g/cm³
Absorption coefficient 4.16 mm⁻¹
Crystal shape brick
Crystal size 0.160 x 0.130 x 0.115 mm³
Crystal colour yellow
Theta range for data collection 3.9 to 72.0 deg.
Index ranges -17≤h≤23, -17≤k≤13, -34≤l≤26
Reflections collected 30156
Independent reflections 7495 (R(int) = 0.0150)
Observed reflections 6688 (I > 2σ(I))
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 1.38 and 0.76
Refinement method Full-matrix least-squares on F²
Data/restraints/parameters 7495 / 663 / 553
Goodness-of-fit on F² 1.06
Final R indices (I>2sigma(I)) R1 = 0.030, wR2 = 0.069
Largest diff. peak and hole 0.57 and -0.51 eÅ⁻³

4.2 8,16,24-Triaza-1,9,17-tris(hexyloxy)-16a,24a-dihydro-8aH-bis(benzo[4,5]-cycloocta[1,2,3-cd]indeno)[2,2a,3,4-sab:2',2a',3',4'-cd]benzo[5,6]-cycloocta[1,2,3,4-def]fluorene (2)

Crystals suitable for X-ray diffraction were obtained by diffusion of n-pentane into a solution of 2 in methyl tert-butyl ether at room temperature.
5 Kinetic studies of the racemisation process

As we showed for the hydrocarbon monkey saddle 1, four enantiomers of the molecule are possible, which can interconvert by a stepwise mechanism.\cite{S18} Figure S23 shows the determination of the stereodescriptors for 2 according to the three chiral biaryl axes.

![Figure S23: (S_a,S_a,S_a)-2 with one of the three chiral biaryl units highlighted in orange with the biaryl axis in blue (left side). The determination of the stereodescriptor follows the rules for axially chiral compounds.]

The same calculations and measurements were also done for the aza monkey saddle 2. A planar transition state was not considered this time. The results of the DFT calculations differ from the hydrocarbon congener 1 (Figure S24). The first transition state, which is the rate determining step for 1, is equally high for both congeners (102 and 103 kJ mol\(^{-1}\)), but the second transition state turns out to be 12 kJ mol\(^{-1}\) higher for the aza monkey saddle 2, making this here the rate determining barrier.

The determination of the inversion barrier was conducted via CD spectroscopy. A 25 \(\mu\)M solution of the (\(R_a\)\(_a\)\(_a\)\(_a\)) was heated at different temperatures and the CD spectra recorded over time (Figure S25 to Figure S30). All measurements were repeated three times and averaged. The typical measurement time per spectrum is about 3 minutes. The time course of the signal at 250 nm is shown in Figure S31. The data were fitted according a first-order kinetics using an Arrhenius plot (Figure S32). In contrast to the hydrocarbon monkey saddle 1, the enantiomers of 2 are more stable at room temperature. Over 24 h no decay could be
observed. Using the other kinetic data, a half-life at 25°C of 162 days was calculated. At 70°C, the half-life of 2 is 67 times longer than of 1.

The with the Arrhenius equation calculated activation barrier of 113±6 kJ mol\(^{-1}\) fits well to the DFT value of 112 kJ mol\(^{-1}\).

Table S1: Kinetic data for the racemisation of 2 from the CD time course measurements in comparison to the hydrocarbon Monkey Saddle 1. Kinetic data for 1 were earlier published.\(^{[S18]}\)

No.	temperature	Aza Monkey Saddle 2	Monkey Saddle 1		
		\(k_e\) [10\(^{-3}\) s\(^{-1}\)]	\(t_{1/2}\)	\(k_e\) [10\(^{-3}\) s\(^{-1}\)]	\(t_{1/2}\)
1	25°C	162 d\(^a\)	0.0083 ± 0.0004	23 ± 1 h	
2	50°C	0.0016 ± 0.0001	123 ± 6 h	0.1999 ± 0.0013	57.8 ± 0.4 min
3	60°C	0.0102 ± 0.0001	18.9 ± 0.1 h	0.6966 ± 0.0161	16.6 ± 0.4 min
4	70°C	0.0250 ± 0.0002	7.7 ± 0.1 h	1.6800 ± 0.0922	6.9 ± 0.4 min
5	85°C	0.0983 ± 0.0023	118 ± 3 min	-	-
6	100°C	0.4118 ± 0.0025	28.1 ± 0.2 min	-	-

\(^a\) Calculated from kinetic data.

Figure S24: Comparison between the calculated inversion barriers for the racemisation process (red: CH-MS 1, black: aza-MS 2). The first barrier between the \((S_a,S_a,S_a)\) and the \((S_a,S_a,R_a)\) enantiomer is for both Monkey Saddles equally high, but the middle barrier between \((S_a,S_a,R_a)\) and \((R_a,R_a,S_a)\) is for the Aza Monkey Saddle 2 significantly higher.
Figure S25: Change of the CD spectra of 2 at 25°C over time (n-heptane).

Figure S26: Change of the CD spectra of 2 at 50°C over time (n-heptane).
Figure S27: Change of the CD spectra of 2 at 60°C over time (n-heptane).

Figure S28: Change of the CD spectra of 2 at 70°C over time (n-heptane).
Figure S29: Change of the CD spectra of 2 at 85°C over time (n-heptane).

Figure S30: Change of the CD spectra of 2 at 100°C over time (n-heptane).
Figure S31: Time course of CD signal of 2 at 250 nm over time at different temperatures (red square: 25°C, yellow circle: 50°C, green triangle: 60°C, bright blue inversed triangle: 70°C, blue diamond: 85°C, purple left triangle: 100°C).

Figure S32: Arrhenius plot for the racemisation of 2. The data were fitted using a linear equation, as shown in the graph. Following the Arrhenius equation \(\ln(k) = -\frac{E_A}{R} \cdot \frac{1}{T} \), the activation energy is calculated by \(E_A = -b \cdot R \), where \(R \) is the gas constant.
6 Computational Details

6.1 Frontier Molecular Orbital analysis

All possible C₃-symmetric aza monkey saddles were investigated by their frontier molecular orbitals, as shown in Figure S33, using DFT methods (B3LYP/6-311G(d,p)).

![Energy levels and Frontier Molecular Orbitals](image)

Figure S33: DFT (B3LYP/6-311G(d,p)) analysis of the frontier molecular orbitals of 1, 2 and all other possible C₃-symmetrical Aza Monkey Saddles.

6.2 TD-DFT calculations

The absorption spectrum was reproduced using TD-DFT methods (B3LYP/6-311G(d,p)). Even if the overall shape of the spectrum fits only partially, the most prominent peaks are reproduced, as shown in Figure S34.

![Absorption spectra](image)

Figure S34: Comparison between the calculated absorption spectrum applying TD-DFT methods (B3LYP/6-311G(d,p)) (black, solid line) and the experimental spectrum (red, dotted line) of 2. Both spectra are recorded/calculated in/for DCM. The UV correction is 9 nm.
The assignment of the enantiomers was performed using the calculated ECD spectrum, shown in Figure S35. The best congruence between the shapes of the experimental and calculated spectra was achieved by using the BHandHLYP functional and the 6-311G(d,p) basis set. Not only the first maximum, which is used to assign the enantiomers,\(^{[520]}\) fits but also the rest of the spectrum is reproduced. The in red shown experimental CD spectrum was assigned to be the (S\(_a\)S\(_a\)S\(_a\)) enantiomer of 2.

Figure S35: Comparison between the experimental CD spectra for both enantiomers of 2 (top, (S\(_a\)S\(_a\)S\(_a\)): red, (R\(_a\)R\(_a\)R\(_a\)): black) and calculated ECD spectrum (BHandHLYP/6-311G(d,p), \(\sigma = 0.6\) eV) for the (S\(_a\)S\(_a\)S\(_a\)) enantiomer of compound 2. The assignment of the absolute configuration was accomplished by comparing experimental and simulated spectra.
6.2 NICS values and AICD calculations

To investigate the overall aromaticity and the difference between the both sides of the monkey saddles, we calculated the NICS(0) and NICS(1) values for 2 and compared them with the earlier reported values of the hydrocarbon monkey saddle 1,[18] which we extended for the NICS(1) values. For the splitting of the NICS(1) values we followed the suggestions of Lipiński and coworkers.[21]

As shown in Table S2, the overall trends for the different rings in the aza monkey saddle 2 are the same as in the parent structure 1. The six-membered rings A, C and E show an aromatic character, as indicated by negative NICS(0) and NICS(1)av values. In comparison between 1 and 2, the NICS values for the central ring A are smaller for 2. On the other hand are the five-membered ring B slightly more positive for the aza monkey saddle 2. The NICS(0) values for the five- and eight-membered rings B and D are for both structures positive, which means that there tend to be slightly antiaromatic. But the corresponding NICS(1)av values, which are less influenced by the σ electrons, are nearly zero and so the rings have mainly non-aromatic character. This is also displayed by the the NICS(1)bia values. For the six-membered rings A, C and E these values are quite small for both 1 and 2, but the rings B and D show large values between 3.4 and 4.7. This indicates a bigger influence of non-aromatic anisotropy effects on the NICS(0) values.

Table S2: Calculated NICS(0) and NICS(1) values for the Aza Monkey Saddle 2 and the Monkey Saddle 1 on the HF/6-31+G(d) level of theory (GIAO method). The different NICS(1) values are calculated following the suggestions of Lipiński and coworkers.[21] The picture on the right side shows from which side NICS(+1) and NICS(-1) values were defined.

Ring	NICS(0)	NICS(-1)	NICS(+1)	NICS(1)av	NICS(1)diff	NICS(1)as	NICS(1)bia
A	-5.6	-4.4	-8.6	-6.5	-4.3	1.0	0.9
B	4.5	0.4	-0.8	-0.2	-1.2	-2.9	4.7
C	-9.0	-9.5	-8.9	-9.2	0.5	-0.1	0.2
D	4.8	1.1	0.4	0.8	-0.7	0.6	4.0
E	-9.1	-9.9	-10.0	-10.0	-0.1	0.0	0.9

Aza Monkey Saddle (X = CH, N) 2
The difference between both sides of the monkey saddles is only visible for the inner rings A and B. The NICS(1)_{diff} values are -4.3 for A and -1.2 for B for the Aza Monkey Saddle. In 1 the values are slightly larger (-5.4 and -2.0, respectively). For the other rings C-E NICS(1)_{diff} is in smaller than ±1.

The results of the NICS calculations are supported by the ring current analysis (AICD). The results are shown in Figure S36 and are for both structures nearly identical. The six-membered rings have an clockwise ring current, as expected for aromatic rings, which fits to the negative NICS(0) and NICS(1)_{av} values. The five- and eight-membered rings, where the NICS(1)_{av} values tend to be non-aromatic, are completely delocalized, but no main direction of the ring current can be observed. This supports the non-aromatic character.

Table

Ring	NICS(0)	NICS(-1)	NICS(+1)	NICS(1)_{av}	NICS(1)_{diff}	NICS(1)_{as}	NICS(1)_{bia}
A	-7.2	-5.2	-10.7	-7.9	-5.4	1.0	0.8
B	1.7	-0.7	-2.7	-1.7	-2.0	2.8	3.4
C	-9.5	-9.9	-9.2	-9.5	0.7	-0.1	0.0
D	5.4	2.0	1.2	1.6	-0.8	-0.4	3.8
E	-8.7	-9.8	-10.3	-10.1	-0.6	0.1	1.4

Figure S36: AICD analysis of both monkey saddles (the magnetic field points out of the paper plane). As the large arrows indicate, is the ring current in the six-membered rings clockwise, as expected for aromatic rings. For the five- and eight-membered rings is no uniform direction of the ring current visible. This indicates a non-aromatic character.
6.3 xyz coordinates of computed geometries

(S_a,S_a,S_a) enantiomer of 2

atom	x	y	z
C1	-1.3888	0.2285	0.4717
C2	-0.8727	-1.1043	0.4824
C3	0.4965	-1.3169	0.4715
C4	1.3927	-0.2036	0.4824
C5	0.8923	1.0885	0.4715
C6	-0.5200	1.3080	0.4826
C7	2.7281	-0.6923	0.0239
N8	3.9158	-0.2431	0.1367
C9	4.3598	0.8081	0.9448
C10	3.9467	2.1523	0.9073
C11	2.8991	2.7228	0.0164
C12	1.5537	2.3293	0.0142
C13	-0.7645	2.7087	0.0239
N14	-1.7473	3.5127	0.1369
C15	-2.8793	3.3716	0.9456
C16	-3.8370	2.3418	0.9085
C17	-3.8077	1.1495	0.0174
C18	-2.7942	0.1810	0.0146
C19	-1.9636	-2.0163	0.0236
N20	-2.1686	-3.2695	0.1362
C21	-1.4805	-4.1796	0.9445
C22	-0.1098	-4.4940	0.9074
C23	0.9083	-3.8721	0.0167
C24	1.2404	-2.5103	0.0144
C25	3.1987	3.8962	-0.6929
C26	2.2283	4.6820	-1.3062
C27	0.8707	4.3659	-1.1630
C28	0.5487	3.1851	-0.4771
C29	1.7748	-4.7184	-0.6923
C30	2.9408	-4.2711	-1.3053
C31	3.3459	-2.9374	-1.1622
C32	2.4841	-2.0679	-0.4768
C33	-4.9740	0.8222	-0.6914
C34	-5.1695	-0.4109	-1.3049
C35	-4.2168	-1.4285	-1.1625
C36	-3.0329	-1.1171	-0.4770
C37	-3.0792	4.4601	1.8174
C38	-4.1594	4.5154	2.6822
C39	-5.1044	3.4914	2.6630
C40	-4.9393	2.4347	1.7789
C41	5.4029	0.4374	1.8163
C42	5.9912	1.3456	2.6804
C43	5.5768	2.6760	2.6608
atom	x	y	z
C44	4.5787	3.0609	1.7770
C45	-2.3232	-4.8974	1.8159
C46	-1.8312	-5.8609	2.6803
C47	-0.4718	-6.1673	2.6610
C48	0.3609	-5.4955	1.7774
O49	-0.1420	5.1083	-1.6575
C50	-1.1729	6.9337	-2.7676
C51	0.1521	6.3214	-2.3569
O52	-4.3535	-2.6765	-1.6574
C53	-5.5515	-3.0282	-2.3563
C54	4.4953	-2.4319	-1.6565
C55	6.5922	-2.4525	-2.7656
O56	5.3992	-3.2935	-2.3550
O57	-5.1492	-4.4816	-2.7679
H58	4.2340	4.2114	-0.7529
H59	2.5357	5.5588	-1.8591
C60	1.5302	-5.7727	-0.7521
C66	3.5465	-4.9759	-1.8579
C62	-5.7647	1.5612	-0.7509
H63	-6.0827	-0.5830	-1.8574
H64	-2.3500	5.2602	1.7841
H65	-4.2712	5.3584	3.3549
H66	-5.9623	3.5161	3.3249
H67	-5.6680	1.6325	1.7685
H68	5.7312	-0.5941	1.7833
H69	6.7774	1.0212	3.3529
H70	6.0274	3.4070	3.3221
H71	4.2484	4.0931	1.7663
H72	-3.3807	-4.6660	1.7826
H73	-2.5053	-6.3795	3.3527
H74	-0.0643	-6.9229	3.3226
H75	1.4199	-5.7255	1.7670
H76	-1.0032	7.8693	-3.3069
H77	-1.7245	6.2513	-3.4171
H78	-1.7864	7.1411	-1.8891
H79	0.7128	6.9991	-1.7018
H80	0.7722	6.1024	-3.2349
H81	-6.4184	-2.8820	-1.7007
H82	-5.6724	-2.3813	-3.2339
H83	6.2774	-1.6340	-3.4157
H84	7.0781	-2.0244	-1.8871
H85	7.3179	-3.0676	-3.3042
H86	5.7053	-4.1177	-1.6993
atom	x	y	z
------	---------	---------	---------
H87	4.8998	-3.7214	-3.2330
H88	-6.3146	-4.8023	-3.3069

(S$_a$S$_a$R$_a$) enantiomer of 2

atom	x	y	z				
C1	-0.0113	1.4062	-0.0831				
C2	1.2128	0.6825	-0.1675				
C3	1.1928	-0.7004	-0.0471				
C4	-0.0327	-1.3973	-0.1738				
C5	-1.2118	-0.6912	-0.3758				
C6	-1.2180	0.7210	-0.1780				
C7	0.1603	-2.7649	0.3832				
N8	-0.4154	-3.8894	0.2087				
O8	-1.2112	-4.2554	-0.8878				
C10	-2.3183	-3.6038	-1.4758				
C11	-3.0806	-2.4265	-0.9619				
C12	-2.5836	-1.1568	-0.6237				
C13	2.3279	1.6465	-0.3020				
N14	3.5846	1.5363	-0.4938				
C15	4.4537	0.4780	-0.7325				
C16	4.5057	-0.8308	-0.1865				
C17	3.5668	-1.4915	0.7695				
C18	2.1797	-1.5926	0.5913				
C19	-2.6390	1.1634	-0.1479				
N20	-3.2516	2.2069	0.2583				
C21	-2.8941	3.3036	1.0305				
C22	-1.7066	4.0730	1.0713				
C23	-0.4894	3.9863	0.2099				
C24	0.3046	2.8507	-0.0367				
C25	0.0900	5.2140	-0.1570				
C26	1.4078	5.3495	-0.5720				
C27	2.2596	4.2386	-0.5729				
C28	1.6838	2.9831	-0.3049				
C29	4.1084	-2.3437	1.7482				
C30	3.3674	-3.3198	2.4079				
C31	2.0341	-3.5571	2.0457				
C32	1.4524	-2.6779	1.1221				
C33	-4.4817	-2.5344	-1.0025				
C34	-5.3382	-1.4535	-0.8417				
C35	-4.8262	-0.1646	-0.6478				
C36	-3.4328	-0.0357	-0.5184				
C37	-3.9546	3.6502	1.9004				
C38	-3.8518	4.6458	2.8551				
C39	-2.6629	5.3617	2.9456				
C40	-1.6304	5.0737	2.0638				
C41	-0.7615	-5.4694	-1.4481				
C42	-1.2940	-5.9949	-2.6128				
C43	-2.3349	-5.3194	-3.2427				
C44	-2.8327	-4.1600	-2.6663				
C45	5.4704	0.8706	-1.6345				
C46	6.4737	0.0185	-2.0586				
C47	6.5157	-1.2735	-1.5442				
C48	5.5504	-1.6689	-0.6288				
C49	-5.5963	0.9430	-0.5778				
C50	-7.5898	2.2255	-0.7239				
C51	-7.0087	0.8256	-0.7758				
C52	3.5816	4.3112	-0.8379				
C53	5.6599	5.3707	-1.2891				
C54	4.1741	5.5913	-1.0808				
C55	1.2646	-4.5448	2.5494				
C56	0.7439	-6.4565	3.8552				
C57	1.8266	-5.4567	3.4983				
C58	-0.5153	6.1092	-0.0800				
C59	1.7736	6.3303	-0.8406				
C60	5.1621	-2.2530	1.9853				
C61	3.8494	-3.9202	3.1669				
C62	-4.9176	-3.5079	-1.1912				
C63	-6.4045	-1.6214	-0.8978				
C64	-4.8617	3.0704	1.7913				
C65	-4.6851	4.8588	3.5149				
C66	-2.5340	6.1389	3.6902				
C67	-0.7053	5.6279	2.1569				
C68	0.0474	-5.9687	-0.9302				
C69	-0.9007	-6.9188	-3.0216				
C70	-2.7647	-5.6927	-4.1651				
C71	-3.6468	-3.6419	-3.1579				
C72	5.4209	1.8931	-1.9852				
C73	7.2182	0.3619	-2.7678				
C74	7.2864	-1.9716	-1.8503				
C75	5.5759	-2.6862	-0.2594				
C76	-8.6702	2.1883	-0.8863				
C77	-7.1415	2.8542	-1.4954				
C78	-7.4003	2.6871	0.2470				
C79	-7.4433	0.1920	0.0070				
C80	-7.2083	0.3556	-1.7464				
C81	6.1603	6.3285	-1.4546				
C82	5.8375	4.7333	-2.1576				
atom	x	y	z	atom	x	y	z
------	--------	--------	--------	------	--------	--------	--------
H83	6.1018	4.8915	-0.4137	H87	0.4117	-6.9942	2.9654
H84	3.9933	6.2499	-0.2227	H88	-0.1185	-5.9473	4.2897
H85	3.7194	6.0505	-1.9669	H89	2.1612	-4.9072	4.3866
H86	1.1251	-7.1797	4.5809	H90	2.6968	-5.9582	3.0576

Aza Monkey Saddle S4

atom	x	y	z	atom	x	y	z
C1	-1.1976	0.7444	-0.3628	C40	-5.3634	1.5010	-1.7873
C2	0.0650	1.4122	-0.3456	C41	3.8444	-4.1900	-1.5982
C3	1.2436	0.6649	-0.3628	C42	3.6841	-5.2678	-2.4555
C4	1.1907	-0.7624	-0.3456	C43	2.4337	-5.8691	-2.5616
C5	-0.0458	-1.4095	-0.3627	C44	1.3821	-5.3952	-1.7871
C6	-1.2554	-0.6500	-0.3457	C45	1.7062	5.4242	-1.5988
C7	2.5162	-1.2723	0.0625	C46	2.7196	5.8242	-2.4563
C8	3.1234	-2.4755	-0.0625	C47	3.8656	5.0420	-2.5625
C9	2.7769	-3.6658	-0.8423	C48	3.9811	3.8944	-1.7880
C10	1.5275	-4.3100	-0.9046	C49	-3.4717	-3.9808	1.5157
C11	0.3423	-4.0080	-0.0559	C50	-5.3571	-4.8981	2.6468
C12	-0.3734	-2.7975	0.0006	C51	-3.9463	-5.1786	2.1688
C13	-0.1562	2.8151	0.0624	C52	-1.7118	4.9965	1.5165
C14	0.5822	3.9425	-0.0629	C53	-1.5638	7.0879	2.6476
C15	1.7861	4.2376	-0.8428	C54	-2.5119	6.0062	2.1699
C16	2.9687	3.4777	-0.9053	C55	5.1834	-1.0157	1.5161
C17	3.3000	2.3004	-0.0565	C56	6.9210	-2.1894	2.6469
C18	2.6094	1.0753	0.0003	C57	6.4582	-0.8276	2.1689
C19	-2.3599	-1.5429	0.0621	C58	4.1390	-2.5001	0.3125
C20	-3.7054	-1.4673	-0.0634	C59	0.0956	4.8344	0.3121
C21	-4.5630	-0.5719	-0.8430	C60	-4.2345	-2.3347	0.3112
C22	-4.4962	0.8322	-0.9050	C61	-5.3614	2.7971	0.6277
C23	-3.6421	1.7075	-0.0561	C62	5.1034	3.2446	0.6270
C24	-2.2359	1.7220	0.0005	C63	0.2581	-6.0418	0.6278
C25	-4.2770	2.7797	0.5814	C64	-5.6244	-2.3129	-1.5148
C26	-3.6602	3.8211	1.1502	C65	-7.1403	-1.1022	-3.0348
C27	-2.3447	3.9038	1.0348	C66	-6.9466	1.3816	-3.2322
C28	-1.5790	2.8830	0.4437	C67	-5.2914	2.5793	-1.8626
C29	4.5461	2.3141	0.5807	C68	4.8154	-3.7144	-1.5137
C30	5.1397	1.2593	1.1495	C69	4.5252	-5.6322	-3.0342
C31	4.5535	0.0787	1.0344	C70	2.7273	-6.7063	-3.2322
C32	3.2864	-0.0741	0.4437	C71	0.4122	-5.8720	-1.8628
C33	-0.2690	-5.0940	0.5815	C72	0.8087	6.0273	-1.5142
C34	-1.4795	-5.0806	1.1499	C73	2.6145	6.7348	-3.0350
C35	-2.2088	-3.9826	1.0344	C74	4.6687	5.3251	-3.2332
C36	-1.7074	-2.8091	0.4435	C75	4.8789	3.2929	-1.8637
C37	-5.5508	-1.2341	-1.5990	C76	-5.7528	-5.7757	3.1646
C38	-6.4042	-0.5562	-2.4561	C77	-5.3724	-4.0535	3.3389
C39	-6.2997	0.8274	-2.5618	C78	-6.0185	-4.6690	1.8080
Aza Monkey Saddle S5

atom	x	y	z
C1	0.1588	-1.4020	-0.3232
C2	-1.1458	-0.8232	-0.3136
C3	-1.2934	0.5634	-0.3235
C4	-0.1400	1.4039	-0.3134
C5	1.1347	0.8384	-0.3233
C6	1.2859	-0.5807	-0.3132
C7	-0.5594	2.7655	0.0639
C8	0.0092	3.9802	-0.1088
C9	1.1707	4.4137	-0.8918
C10	2.4596	3.8555	-0.8924
C11	2.9539	2.7445	-0.0203
C12	2.4318	1.4392	0.0316
C13	-2.1155	-1.8672	0.0635
C14	-3.4517	-1.9820	-0.1092
C15	-4.4079	-1.1926	-0.8920
C16	-4.5689	0.2027	-0.8923
C17	-3.8537	1.1860	-0.0201
C18	-2.4622	1.3864	0.0315
C19	2.6748	-0.8983	0.0641
C20	3.4424	-1.9982	-0.1082
C21	3.2371	-3.2211	-0.8908
C22	2.1092	-4.0582	-0.8913
C23	0.8997	-3.9304	-0.0196
C24	0.0304	-2.8256	0.0318
N25	0.5435	-5.0859	0.5595
N26	-0.6524	-5.2238	1.1301
N27	-1.6525	-4.2513	1.0482
C28	-1.2995	-3.0332	0.4536
N29	-4.6764	2.0720	0.5591
C30	-4.1979	3.1763	1.1304
C31	-2.8556	3.5561	1.0489
C32	-1.9771	2.6417	0.4541
N33	4.1327	3.0141	0.5585
C34	4.8502	2.0476	1.1295
C35	4.5080	0.6952	1.0482
C36	3.2766	0.3915	0.4539
C37	4.3398	-3.5758	-1.6952

S31
atom	x	y	z
H75	-5.6812	1.8375	-1.7055
H76	8.0428	-1.1325	3.1979
H77	6.4372	-1.8811	3.2835
H78	7.3667	-1.9453	1.7762
H79	7.1756	0.5454	1.5480
H80	6.2629	0.6156	3.0705
H81	-5.0031	-6.3968	3.1991
H82	-4.8487	-4.6320	3.2832

Aza Monkey Saddle S6

atom	x	y	z
C1	0.8803	1.1050	0.3495
C2	-0.5349	1.3048	0.3398
C3	-1.3970	0.2098	0.3497
C4	-0.8625	-1.1157	0.3395
C5	0.5168	-1.3148	0.3494
C6	1.3975	-0.1892	0.3395
C7	-1.9399	-2.0421	-0.0573
C8	-2.1001	-3.3707	0.1256
C9	-1.3546	-4.3257	0.9484
C10	0.0337	-4.5521	0.9551
C11	1.0358	-3.8932	0.0643
C12	1.2975	-2.5152	-0.0169
C13	2.7386	-0.6589	-0.0570
C14	3.9692	-0.1334	0.1263
C15	4.4234	0.9900	0.9488
C16	3.9254	2.3057	0.9548
C17	2.8536	2.8437	0.0638
C18	1.5294	2.3812	-0.0170
C19	-0.7988	2.7011	-0.0566
C20	-1.8690	3.5041	0.1271
C21	-3.0687	3.3356	0.9500
C22	-3.9590	2.2465	0.9562
C23	-3.8895	1.0496	0.0649
C24	-2.8269	0.1340	-0.0167
C25	1.9595	-4.7532	-0.5427
C26	3.1138	-4.2999	-1.1675
C27	3.4552	-2.9478	-1.0924
C28	2.5570	-2.0640	-0.4755
C29	-5.0961	0.6799	-0.5422
C30	-5.2806	-0.5462	-1.1675
C31	-4.2803	-1.5179	-1.0928
C32	-3.0658	-1.1822	-0.4758
C33	3.1365	4.0734	-0.5436
C34	2.1666	4.8462	-1.1685
C35	0.8250	4.4658	-1.0929

atom	x	y	z
H83	-5.3688	-5.4061	1.7764
H84	-3.1162	-6.4863	1.5498
H85	-2.5994	-5.7295	3.0716
H86	-3.0392	7.5296	3.2016
H87	-1.5882	6.5132	3.2859
H88	-1.9976	7.3517	1.7794
H89	-4.0594	5.9412	1.5505
H90	-3.6635	5.1144	3.0722

C32

S32
Aza Monkey Saddle S7

atom	x	y	z
H71	-2.1503	-6.7077	3.2667
H72	0.3470	-9.4166	3.1765
H73	-2.7337	5.2921	1.7753
H74	-4.7333	5.2144	3.2697
H75	-6.1846	3.1687	3.1786
H76	7.3902	-3.0060	-3.3261
H77	6.3295	-1.6409	-3.4124
H78	7.2139	-1.9977	-1.9192
H79	5.8692	-4.0931	-1.6186
H80	5.0017	-3.7552	-3.1311

atom	x	y	z
C	0.2734	-1.3851	-0.3463
C2	-1.0764	-0.9142	-0.3340
C3	-1.3362	0.4558	-0.3464
C4	-0.2535	1.3893	-0.3337
C5	1.0628	0.9293	-0.3464
C6	1.3299	-0.4751	-0.3336
C7	2.3048	1.6368	0.0210
C8	3.2170	0.6661	0.4872
C9	2.7395	-0.6693	0.0706
C10	-2.5698	1.1776	0.0214
C11	-2.1850	2.4528	0.4877
C12	-0.7900	2.7071	0.0705
C13	0.2649	-2.8144	0.0214
C14	-1.0321	-3.1188	0.4871
C15	-1.9496	-2.0377	0.0698
C16	2.6874	2.9870	0.0584
C17	3.8820	3.3407	0.5831
C18	4.7093	2.4105	1.2052
C19	4.4142	1.0492	1.1142
C20	-3.9304	0.8339	-0.0575
C21	-4.8337	1.6913	0.5849
C22	-4.4414	2.8726	1.2074
C23	-3.1151	3.2978	1.1156
C24	1.2430	-3.8208	-0.0568
C25	0.9518	-5.0319	0.5854
C26	-0.2677	-5.2829	1.2071
C27	-1.2992	-4.3468	1.1147
C28	5.2200	0.0648	1.6015
C29	6.4110	0.4227	2.3129
C30	7.0686	-0.8615	2.7793
O31	-2.6651	4.4877	1.6032
C32	-3.5700	5.3393	2.3163
C33	-2.7864	6.5504	2.7835

atom	x	y	z
O34	-2.5549	-4.5522	1.6013
C35	-2.8407	-5.7621	2.3135
C36	-4.2820	-5.6894	2.7788
C37	2.4256	-3.8081	-0.9584
C38	3.6023	-1.6948	-0.1044
C39	3.4878	-2.8940	-0.9361
C40	4.5784	-3.1540	-1.7850
C41	4.5564	-4.2412	-2.6427
C42	5.3288	-5.0942	-2.7103
C43	2.5105	-4.8661	-1.8841
C44	-0.3335	3.9670	-0.1052
C45	0.7619	4.4671	-0.9377
C46	2.0846	4.0042	-0.9603
C47	0.4412	5.5409	-1.7872
C48	1.3934	6.0650	-2.6456
C49	2.6459	5.6017	-2.7134
C50	2.9579	4.6063	-1.8868
C51	-3.2690	-2.2722	-0.1062
C52	-4.2498	-1.5731	-0.9382
C53	-4.5103	-0.1962	-0.9599
C54	-5.4685	0.2598	-1.8859
N55	-6.1747	-0.5076	-2.7129
C56	-5.9497	-1.8240	-2.6460
C57	-5.0195	-2.3871	-1.7881
C58	4.1828	4.3819	0.5814
C59	5.6025	2.7535	1.7079
H60	-5.8857	1.4312	0.5836
H61	-5.1848	3.4744	1.7108
H62	1.7031	-5.8128	0.5846
H63	-0.4176	-6.2275	1.7104
H64	7.0788	0.9898	1.6538
H65	6.1485	1.0593	3.1657
H66	7.9746	-0.6318	3.3459

S33
atom	x	y	z
H67	6.3917	-1.4281	3.4216
H68	7.3449	-1.4884	1.9289
H69	-4.3956	5.6347	1.6582
H70	-3.9893	4.7927	3.1689
H71	-3.4379	7.2195	3.3513
H72	-1.9567	6.2468	3.4248
H73	-2.3822	7.1041	1.9334
H74	-2.6828	-6.6245	1.6552
H75	-2.1588	-5.8521	3.1669
H76	-4.5363	-6.5883	3.3460
H77	-4.4350	-4.8193	3.4202
H78	-4.9625	-5.6160	1.9279

atom	x	y	z
H79	4.6082	-1.5166	0.2526
H80	5.4349	-2.4893	-1.7752
H81	5.3944	-4.4393	-3.3051
H82	1.6837	-5.5677	-1.9476
H83	-0.9907	4.7492	0.2518
H84	-0.5627	5.9502	-1.7773
H85	1.1456	6.8893	-3.3085
H86	3.9789	4.2410	-1.9506
H87	-3.6178	-3.2326	0.2503
H88	-5.6627	1.3267	-1.9488
H89	-6.5397	-2.4503	-3.3093
H90	-4.8720	-3.4612	-1.7790

Aza Monkey Saddle S8

atom	x	y	z
C1	1.1047	-0.8793	0.3427
C2	1.3070	0.5353	0.3277
C3	0.2091	1.3964	0.3427
C4	-1.1170	0.8643	0.3279
C5	-1.3139	-0.5171	0.3426
C6	-0.1900	-1.3995	0.3277
C7	-2.0417	1.9466	-0.0692
C8	-3.3705	2.1198	0.1111
C9	-4.3272	1.3736	0.9255
C10	-4.5232	-0.0145	0.9618
C11	-3.8909	-1.0222	0.0672
C12	-2.5146	-1.2960	-0.0180
C13	-0.6650	-2.7414	-0.0695
C14	-0.1507	-3.9788	0.1110
C15	0.9736	-4.4343	0.9256
C16	2.2738	-3.9098	0.9626
C17	2.8308	-2.8585	0.0682
C18	2.3797	-1.5297	-0.0176
C19	2.7065	0.7948	-0.0695
C20	3.5210	1.8590	0.1104
C21	3.3535	3.0606	0.9249
C22	2.2493	3.9244	0.9619
C23	1.0601	3.8808	0.0677
C24	0.1349	2.8258	-0.0176
C25	-4.7557	-1.9251	-0.5656
C26	-4.3093	-3.0847	-1.1908
C27	-2.9631	-3.4443	-1.1034
C28	-2.0724	-2.5551	-0.4790
C29	0.7104	5.0814	-0.5646
C30	-0.5172	5.2747	-1.1895
C31	-1.5016	4.2886	-1.1023

atom	x	y	z
C32	-1.1767	3.0725	-0.4784
C33	4.0455	-3.1561	-0.5638
C34	4.8267	-2.1898	-1.1890
C35	4.4648	-0.8442	-1.1024
C36	3.2491	-0.5173	-0.4786
C37	0.7012	-5.5477	1.7480
N38	1.5491	-6.1028	2.6067
C39	2.7666	-5.5537	2.6769
C40	3.1631	-4.4872	1.8832
C41	-5.1553	2.1660	1.7481
N42	-6.0602	1.7089	2.6063
C43	-6.1937	0.3800	2.6758
C44	-5.4682	-0.4964	1.8818
C45	4.4541	3.3815	1.7470
N46	4.5111	4.3936	2.6053
C47	3.4269	5.1736	2.6756
C48	2.3048	4.9835	1.8821
O49	-2.4585	-4.6111	-1.5918
C50	-2.4840	-6.6808	-2.7657
C51	-3.3241	-5.5083	-2.2978
O52	5.2231	0.1761	-1.5908
C53	6.4332	-0.1250	-2.2963
O54	-2.7644	4.4351	-1.5905
C55	-4.5445	5.4920	-2.7638
C56	-3.1090	5.6335	-2.2961
C57	7.0286	1.1887	-2.7643
H58	-3.7570	3.0689	-0.2370
H59	-0.7793	-4.7880	-0.2372
H60	4.5360	1.7191	-0.2380
H61	-5.8193	-1.7174	-0.5570
H62	-5.0241	-3.7222	-1.6915

S34
atom	x	y	z
H63	1.4219	5.8987	-0.5557
H64	-0.7121	6.2127	-1.6897
H65	4.3975	-4.1809	-0.5546
H66	5.7365	-2.4902	-1.6891
H67	-0.2862	-6.0005	1.6950
H68	3.4571	-5.9972	3.3888
H69	-5.0535	3.2475	1.6957
H70	-6.9233	0.0035	3.3872
H71	5.3399	2.7528	1.6940
H72	3.6460	5.9935	3.3872
H73	-3.1046	-7.3828	-3.3283
H74	-1.6736	-6.3385	-3.4121
H75	-2.0488	-7.2113	-1.9161
H76	-4.1305	-5.8422	-1.6343

atom	x	y	z
H77	-3.7743	-4.9856	-3.1497
H78	7.1254	-0.6562	-1.6325
H79	6.2059	-0.7765	-3.1481
H80	-4.6532	4.6192	-3.4105
H81	-5.2213	5.3800	-1.9142
H82	-4.8424	6.3806	-3.3260
H83	-2.9950	6.4986	-1.6324
H84	-2.4314	5.7623	-3.1480
H85	7.9472	1.0021	-3.3264
H86	6.3273	1.7191	-3.4113
H87	7.2699	1.8311	-1.9149
H88	4.1699	-4.0978	1.9719
H89	1.4644	5.6608	1.9708
H90	-5.6346	-1.5630	1.9699

Aza Monkey Saddle S9

atom	x	y	z
C1	-0.9797	1.0154	0.3381
C2	-1.3661	-0.3610	0.3220
C3	-0.3896	-1.3562	0.3381
C4	0.9956	-1.0026	0.3223
C5	1.3693	0.3407	0.3382
C6	0.3705	1.3635	0.3222
C7	1.7698	-2.1958	-0.0836
C8	3.0665	-2.5426	0.0756
C9	4.1181	-1.9463	0.9063
C10	4.4714	-0.5878	0.9688
C11	3.9851	0.4951	0.6969
C12	2.6604	0.9541	-0.0212
C13	1.0167	2.6305	-0.0840
C14	0.6688	3.9268	0.0749
C15	-0.3731	4.5395	0.9060
C16	-1.7263	4.1662	0.9690
C17	-2.4214	3.2037	0.0700
C18	-2.1565	1.8270	-0.0210
C19	-2.7865	-0.4347	0.0842
C20	-3.7352	-1.3843	0.0744
C21	-3.7450	-2.5932	0.9050
C22	-2.7451	-3.5785	0.9681
C23	-1.5637	-3.6989	0.0693
C24	-0.5038	-2.7811	-0.0212
C25	4.9654	1.2731	-0.5607
C26	4.6811	2.4839	-1.1847
C27	3.3941	3.0202	-1.1069
C28	2.3895	2.2583	-0.4876
C29	-1.3799	-4.9368	-0.5608

atom	x	y	z
C30	-0.1890	-5.2962	-1.1844
C31	0.9190	-4.4498	-1.1062
C32	0.7612	-3.1987	-0.4872
C33	-3.5853	3.6638	0.5600
C34	-4.4920	2.8123	-1.1838
C35	-4.3130	1.4295	-1.1063
C36	-3.1506	0.9403	-0.4874
N37	0.1236	5.5641	1.6307
C38	-0.6592	6.1848	2.5064
C39	-1.9919	5.8386	2.7071
C40	-2.5218	4.8307	1.9148
N41	4.7572	-2.8886	1.6313
C42	5.6863	-2.5206	2.5068
C43	6.0527	-1.1933	2.7069
C44	5.4447	-0.2307	1.9143
N45	-4.8810	-2.6757	1.6294
C46	-5.0273	-3.6644	2.5048
C47	-4.0610	-4.6453	2.7054
C48	-2.9229	-4.5999	1.9134
O49	3.0515	4.2407	-1.6015
C50	3.3746	6.3239	-2.7001
C51	4.0448	5.0390	-2.2535
O52	-5.1987	0.5227	-1.6008
C53	-6.3871	0.9839	-2.2522
O54	2.1474	-4.7633	-1.6004
C55	3.7903	-6.0848	-2.6986
C56	2.3423	-6.0227	-2.2525
C57	-7.1651	-0.2389	-2.6985
H58	3.3357	-3.5356	-0.2538

S35
atom	x	y	z	atom	x	y	z
H59	1.394	4.656	-0.2547				
H60	-4.7297	-1.1209	-0.2551				
H61	5.9916	0.9242	-0.5490				
H62	5.4775	3.0211	-1.6803				
H63	-2.1.952	-5.6511	-0.5494				
H64	-0.1218	-6.2544	-1.6799				
H65	-3.7963	4.7270	-0.5481				
H66	-5.3555	3.2334	-1.6791				
H67	-2.5976	6.3546	3.4424				
H68	6.8026	-0.9264	3.4420				
H69	-4.2052	-5.4282	3.4404				
H70	4.0954	6.9592	-3.2214				
H71	2.5469	6.1086	-3.3787				
H72	2.9843	6.8752	-1.8423				
H73	4.8672	5.2454	-1.5584				
H74	4.4500	4.4902	-3.1119				
H75	-6.9767	1.5928	-1.5568				
H76	-6.1148	1.6092	-3.1108				
H77	4.0179	-5.2603	-3.3772				
H78	4.4626	-6.0223	-1.8405				
H79	3.9802	-7.0267	-3.2197				
H80	2.1.097	-6.8382	-1.5575				
H81	1.6647	-6.0991	-3.1112				
H82	-8.0759	0.0678	-3.2192				
H83	-6.5651	-0.8480	-3.3775				
H84	-7.4469	-0.8526	-1.8406				
H85	-3.5630	4.5473	2.0159				
H86	-2.1569	-5.3599	2.0146				
H87	5.7199	0.8128	2.0150				
H88	6.1619	-3.3220	3.0663				
H89	-5.9593	-3.6756	3.0638				
H90	-0.2028	6.9974	3.0658				

References

[S1] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* **2010**, *29*, 2176–2179.

[S2] a) L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, *J. Appl. Crystallogr.* **2015**, *48*, 3–10; b) L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke: *SADABS 2016/2: Bruker AXS area detector scaling and absorption correction*, Bruker Analytical X-ray Division, Madison, Wisconsin, 2016.

[S3] *X-Area LANA 1.70.0.0*, Stoe & Cie GmbH, Darmstadt, 2017.

[S4] G. M. Sheldrick, *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2015**, *71*, 3–8.

[S5] G. M. Sheldrick, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.* **2015**, *71*, 3–8.

[S6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox: *Gaussian 09, Rev. D.01*, Gaussian Inc., Wallingford, CT, 2016.

[S7] a) W. Koch, *A Chemist’s Guide to Density Functional Theory*, 2 ed., Wiley-VCH, Weinheim, 2001; b) R. G. Parr, W. Yang, *Density-functional theory of atoms and molecules*, 1 ed., Oxford Univ. Press, New York, NY, 1994; c) P. Hohenberg, W. Kohn, *Phys. Rev.* **1964**, *136*, B864-B871; d) W. Kohn, L. J. Sham, *Phys. Rev.* **1965**, *140*, A1133-A1138.
[S8] a) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627; b) S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211; c) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652; d) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785–789.

[S9] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650–654.

[S10] a) F. Furche, R. Ahlrichs, J. Chem. Phys. 2002, 117, 7433–7447; b) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218–8224; c) C. van Caillie, R. D. Amos, Chem. Phys. Lett. 1999, 308, 249–255; d) G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V. Barone, J. Chem. Phys. 2006, 124, 94107; e) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439–4449; f) R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454–464.

[S11] a) K. L. Bak, A. E. Hansen, K. Ruud, T. Helgaker, J. Olsen, P. Jørgensen, Theor. Chim. Acta 1995, 90, 441–458; b) A. E. Hansen, K. L. Bak, ENANTIOMER 1999, 455–476; c) J. Autschbach, T. Ziegler, S. J. A. van Gisbergen, E. J. Baerends, J. Chem. Phys. 2002, 116, 6930–6940; d) T. Helgaker, P. Jørgensen, J. Chem. Phys. 1991, 95, 2595–2601; e) K. L. Bak, P. Jørgensen, T. Helgaker, K. Ruud, H. J. r. A. Jensen, J. Chem. Phys. 1993, 98, 8873–8887; f) J. Olsen, K. L. Bak, K. Ruud, T. Helgaker, P. Jørgensen, Theor. Chim. Acta 1995, 90, 421–439.

[S12] N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem. 2008, 29, 839–845.

[S13] a) V. Fock, Z. Phys. 1930, 61, 126–148; b) C. C. J. Roothaan, Rev. Mod. Phys. 1951, 23, 69–89; c) J. C. Slater, Phys. Rev. 1930, 35, 210–211; d) J. C. Slater, Phys. Rev. 1928, 32, 339–348; e) V. Fock, Z. Phys. 1930, 62, 795–805; f) D. R. Hartree, W. Hartree, Proc. R. Soc. London, A 1935, 150, 9–33; g) J. A. Gaunt, Math. Proc. Camb. Phil. Soc. 1928, 24, 328–342; h) D. R. Hartree, Math. Proc. Camb. Phil. Soc. 1928, 24, 111–132.

[S14] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem. 1983, 4, 294–301.

[S15] a) J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497–5509; b) K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251–8260; c) R. McWeeny, Phys. Rev. 1962, 126, 1028–1034; d) R. Ditchfield, Mol. Phys. 1974, 27, 789–807; e) F. London, J. Phys. Radium 1937, 8, 397–409.

[S16] a) T. A. Keith, R. F. W. Bader, Chem. Phys. Lett. 1993, 210, 223–231; b) T. A. Keith, R. F. W. Bader, Chem. Phys. Lett. 1992, 194, 1–8.

[S17] a) D. Geueneich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758–3772; b) R. Herges, D. Geueneich, J. Phys. Chem. A 2001, 105, 3214–3220.

[S18] T. Kirschbaum, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 2020, 59, 270–274.

[S19] H. Tanaka, Y. Inoue, T. Mori, ChemPhotoChem 2018, 2, 386–402.

[S20] a) L. Di Bari, S. Guillarme, S. Hermitage, D. A. Jay, G. Pescitelli, A. Whiting, Chirality 2005, 17, 323–331; b) L. Di Bari, G. Pescitelli, P. Salvadori, M. Rovini, M. Anzini, A. Cappelli, S. Vomero, Tetrahedron: Asymmetry 2006, 17, 3430-3436.

[S21] J. C. Dobrowolski, P. F. J. Lipiński, RSC Adv. 2016, 6, 23900–23904.