PHENOTYPIC SCREENING OF CHILLI GENOTYPES COLLECTED FROM DIFFERENT REGIONs

Abstract

The experiment was performed at Maharajpur Farm under the Department of Horticulture, College of Agriculture, J.N.K.V.V., Jabalpur (M.P.) during the Kharif season 2019-2022 and planted in Randomized Complete Block Design (RCBD) with three replications. The characterization of thirty genotype for thirty-five qualitative traits articulated no variability for trait i.e., the monomorphic trait was non-enveloping fruit calyx cover, two descriptors were found to be moderately diverse, which were with medium fruit intensity of the red colour (at the mature unripe stage) and the narrow triangular shape of fruit with the Shannon-Weaver diversity index H'=0.46 & H'=0.50, both of these traits are fruit related. The descriptor intensity of pubescence (hairiness) of the stem had the highest diversity index of 1.82. The studies highlighted some of the genotypes with the distinctness, MPKC-1(Katni collection) addressed unique features with green with purple tinge leaf colour, purple petal colour, upright fruit orientation, absence of fruit curvature, purple fruit colour at ripening maturity, ovate leaf and erect plant habit, depicting it like a wild relative of capsicum and could be utilized as the morphological descriptor.

Introduction

One of the most significant solanaceous vegetable and spice crops in India is the chilli (Capsicum annum Linn.). India is the largest producer, exporter and consumer of chillies in the world (Halder e al., 2021). Along with the convention utilization of capsicum as fresh fruits, processed sauce, pickling, canning, dried spices, industrial extract, etc requirements are also enhanced in the market. Further, capsicum is aggrandizing its significance due to the presence of nutrition sources like ascorbic acid (vitamin C), carotenoids (pro-vitamin A), tocopherols (vitamin E), flavonoids, capsaicinoids and also as a non-food it is used in defence as ethnobotanical products. (Kumar et al., 2006; Meghavansi et. al.,2010). The rise in importance of chilli demands yields enhancement, through the collection and characterization of genotype. The genetic diversity of germplasm resources is the basis of breeding, and the determination of plant genetic variation and diversity via phenotypic traits can be conducive to understanding the level of genetic variation in a short amount of time (Liu et al., 2022).

Furthermore, genetic variety is vital for selecting parents with stronger combination potential and for obtaining superior genotypes (Taki-Ajdukovi et al. 2017). The raw material
which is genotype to the plant breeder is the pool of genes that must be identified, isolated, and melded into the genome of a new genetic entity that expresses a unique and desirable phenotype (Orton and Ayeni, 2022). The crafting of raw material into high yielding varieties needs to go through domestication, refinement and maintenance, which is done by local farmers and characterization of these farmer's varieties could be a potential source of revolutionary genes in plant breeding. The diversified gene pool and intensive selection designed for varietal development followed by molecular characterization give a precise idea about the upcoming utilization of existing genetic diversity (Tiwari, et al., 2021). As per the Protection of Plant Varieties and Farmers' Right Act (PPV&FRA), 2001, the protection of these varieties is given based on Distinctiveness, Uniformity and Stability (DUS). The presented research phenotypically assessed the diversity, as the diverse genotype are an excellent source of developing new varieties for crop improvement (Tiwari et al., 2021)

Material method

The experiment was performed at Maharajpur Farm under the Department of Horticulture, College of Agriculture, J.N.K.V.V., Jabalpur (M.P.) during the Kharif season 2019-2022. The thirty genotypes of capsicum were collected from Indian Institute of Vegetable Research (IIVR), Varanasi, different regions of Madhya Pradesh and South (Table 01). The genotypes were planted in Randomized Complete Block Design (RCBD) with three replications. Phenotypic assessments of capsicum genotypes were done based on thirty-five qualitative traits (Table 02).

Shannon-Weaver diversity index (H) was used to calculate the phenotypic diversity of the characterized farmers' varieties following the protocol used by Sotto and Rabara (2007). An arbitrary scale was adapted from Jamago and Cortes (2012) to categorize the computed indices into maximum (H = 1.00), high (H = 0.76–0.99), and moderate (H = 0.46–0.75) and low diversity (0.01–0.45). The phenotypic frequencies calculated were further used to estimate Shannon's Diversity Index (H) according to Negassa (1985) to assess the present diversity.

\[H = -\sum [p_i \times \log p_i] \]

Where, pi is the portion of the total number of entries belonging to the ith class.

S.NO	MATERIAL	COLLECTION	S.NO	MATERIAL	COLLECTION
1.	KASHI ANMOL	IIVR	16.	RED TOP	SOUTH
2.	K2	IIVR	17.	GUNTUR	SOUTH
Table no. 02: MORPHOLOGICAL TRAITS

A. Plant traits	E. Fruit traits
Habit	Colour (at mature unripe stage)
Anthocynin colour of node	Intensity of colour (at mature unripe stage)
B. Stem traits	Shape
Intensity of Anthocynin colouration	Curvature
Intensity of pubescence (hairiness)	Intensity of Curvature
Pubescence (hairiness)	Neck at Basal End
Shape	Cross sectional corrugation (at level of placenta)
C. Leaf traits	Sinuation of Pericarp
Colour	Texture of surface
Intensity of green colour	Colour (at ripe maturity)
Intensity of purple colour	Intensity of colour (at maturity)
Shape	Colour Transition
Undulation	Glossiness
Pubescence (hairiness)	Shape at the base
Intensity of pubescence (hairiness)	Shape of apex
D. Flower traits	Calyx Cover
Petal colour	Calyx Margin
Shannon diversity index (H') was generated to compare phenotypic diversity for the characters utilised in the study and its assessment is an important activity in evaluating the germplasm collections in a gene bank. The diversity analysis of the chilli genotype revealed a low overall average Shannon Diversity index (H') of 0.32, which did not agree with Nsabiyera et al. (2013) with a moderate mean H' index (0.52).

From ancient times, these visual observations (scoring) were used as an aid in determining genetic diversity in the gene pool. The characterization of thirty chilli genotype for thirty-five qualitative traits articulated no variability for trait i.e., the monomorphic trait was non-enveloping fruit calyx cover. Among all the qualitative traits scores, the predominant descriptor with <90% frequent occurrence were green leaf colour, absence of intensity of leaf purple colour, white flower petal colour, drooping fruit or flower orientation, all these traits also revealed invariance with $H'=0.0$. Sean and Jindal, 2021; Fonseca et al., 2008 observed similar zero divergences for trait white flower petal colour, while the results were not in propinquity with Nahak et al. (2018). Twenty-seven traits scored were dominated by one descriptor in each trait, with the most frequent contribution ranges of 80-90% and low diversity indices ranging between 0.17-0.45 as depicted in table no. 02, were red fruit colour at ripening maturity (86.6%), absence of fruit neck at the basal end (83.3%), dark fruit intensity of colour at ripening maturity (83.3%), one stage fruit colour transition (83.3%), lanceolate leaf shape (83.3%), dented fruit calyx margin (80.0%) and presence of anthocyanin colouration of node (80.0%). The propinquity in results was found for traits of red fruit colour at ripening maturity, one stage fruit colour transition, dented fruit calyx margin and lanceolate leaf shape by Santhosha et al., 2019. Leaf pubescence with a similar low H' index (0.25) predicted genotype belongs to a wild relative by Datt et al., 2017 and Sran and Jindal, (2021). The index is used to assess allelic richness and evenness in which a low H' index suggests that the frequency classes for individual characters are very imbalanced and that there is a paucity of genetic diversity (Rabara et al., 2014; Upadhyaya, 2010). Two descriptors were found to be moderately diverse, which were medium fruit intensity of the red colour (at the mature unripe stage) and the narrow triangular shape of fruit with the indices $H'=0.46$ & $H'=0.50$, both of these traits are fruit related. The descriptor intensity of pubescence (hairiness) of the stem had the highest diversity index of 1.82.
The studies highlighted some of the genotypes with the distinctness of germplasms MPKC-1 addressed unique features such as green with purple tinge leaf colour, purple petal colour, upright fruit orientation, absence of fruit curvature, purple fruit colour at ripening maturity, ovate leaf and erect plant habit, depicting it like a wild relative of capsicum and could be utilized as a morphological marker.

Conclusion

The current study revealed the pattern and structure of phenotypic variation in a collection of 30 chilli genotype, which is important for successful pre-breeding, management, and exploitation in crop improvement programmes, as well as for increasing the crop's genetic potential. Several low diversity aspects may be highlighted in future collection visits to boost gene bank variation. Our findings indicate that indirect selection of chilli genitors based on various morphological traits could be beneficial for biotic and abiotic stress management, as the phenotypic feature leaf pubescence reduces water loss during heat stress and is a non-preference trait for many insects, and the drooping fruit habit and spreading plant habit protect the plant from direct incidence of light, making it suitable for biotic and abiotic stress management. Various morphological descriptors, such as yellow, orange, and purple fruit colour, upright fruit orientation, purple flower, cordate, oblate, and trapezoid fruit shape, might be employed in hybridised breeding programmes. Furthermore, the information we produced supplements the vigorous breeding programme of high-yielding and climate-resilient varieties of end users' preferences, as well as promotes varietal choice alternatives for expediting advantages and strengthening agro-biodiversity.

Table 03 : Morphological Characters depicting the predominate state, frequency distribution and the calculated Shannon diversity indices (H’) for each descriptor scored in Chilli genotype

S.no	Characterises	States	Freq %	H’ Index	Unique genotype													
1.	Fruit: Calyx Cover	Non-enveloping	100.0	0.00														
		Enveloping	00.00															
2.	Leaf: Colour	Green	96.67	0.06														
		Purple	3.33		MPKC-1													
3.	Leaf: Intensity of purple colour	Absent	96.66	0.06														
		Light	3.333		MPKC-1													
		Medium	0															
		Dark	0															
4.	Flower: Petal colour	White	96.66	0.06														
		Yellowish green	0															
		Purple	3.33		MPKC-1													
---	---	---	---	---	---													
5.	Flower/fruit Orientation	Drooping	90	0.17	2020/CHI VAR-6													
		Semi-Drooping	3.33	0.17	2020/CHI VAR-7, MPKC-1													
		Erect	6.66															
6.	Fruit Curvature	Absent	13.33	0.17	MPC-1													
		Present	86.66		MPC-2													
7.	Neck at Basal End	Absent	83.33	0.20														
		Present	16.66															
8.	Fruit Colour Transition	One stage	83.33															
		Two stage	16.66	0.20	MPHC-1													
		>Two stage	0		MPKC-1													
9.	Leaf: Intensity of pubescence (hairiness)	Sparse	66.66															
		Medium	3.333	0.22														
		Strong	3.333															
10.	Plant: Anthocynin colour of node	Absent	20	0.22														
		Present	80															
11.	Fruit: Calyx Margin	Smooth	20	0.22														
		Dented	80															
12.	Fruit: Colour (at ripe maturity)	Yellow	3.33	0.23	MPKHC-1													
		Orange	3.33		MPKHC-2													
		Red	86.66															
		Brown	0															
		Purple	6.66		MPKC-1													
13.	Stem: Pubescence (hairiness)	Absent	23.33	0.24	2020/CHI VAR-1													
		Present	76.67															
14.	Leaf: Shape	Lanceolate	83.33	0.24	MPCTC-1													
		Ovate	10		MPKC-1													
		Broad elliptical	6.66															
15.	Leaf: pubescence (hairiness)	Absent	26.66	0.25														
		Present	73.33															
16.	Fruit: Calyx Constriction	Absent	26.66	0.25														
		Present	73.33															
17.	Fruit: Intensity of colour (at maturity)	Light	10	0.26														
		Medium	73.33															
		Dark	83.33															
18.	Fruit: Colour (at mature unripe stage)	White	0	0.27														
		Cream	0															
		Green	70															
		Purple	30		MPKC-1, MPC-2													
19.	Fruit: Pedicel attachment	Weak	53.33	0.30														
			0.30		0.33		0.35		0.38		0.41		0.45		0.46			
---	--------------------------------	--------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	
20.	Anther Colour	Strong	46.66															
		Yellow	0															
		Blue	50															
		Purple	50															
		Smooth	16.66															
21.	Fruit Texture of surface	Slightly Rough	73.33															
		Rough	10															
		Less	23.33															
22.	Fruit Intensity of Curvature	Medium	60															
		Strong	3,333															
23.	Stem: Shape	Angled	70	0.33														
		Flat	6.66															
24.	Fruit: Shape of apex	Acute	60															
		Blunt	36.66	0.34														
		Depressed	3.33															
25.	Fruit: Cross sectional	Round	20															
	corrugation (at level of	Slightly corrugated	70	0.35														
	placenta)	Strongly corrugated	10															
26.	Fruit: Shape at the base	Round	50	0.35														
		Sunken	3.33															
27.	Plant: Habit	Spreading	13.33															
		Semi-upright	70	0.35														
		Upright	16.66															
28.	Leaf: Undulation	Weak	56.66	0.38														
		Medium	36.66															
		Strong	6.666															
29.	Leaf: Intensity of green	Light	20															
	colour	Medium	63.33	0.38														
		Dark	13.33															
30.	Fruit: Glossiness	Weak	20	0.41														
		Medium	60															
		Strong	20															
31.	Plant: Intensity of	Weak	33.33	0.45														
	Anthocynin colouration	Medium	30															
		Strong	16.67															
32.	Fruit: Sinuation of pericarp	Medium	43.33	0.45														
		Strong	16.66															
33.	Fruit: Intensity of colour (at	Light	26.66															
	mature unripe stage)	Medium	46.66	0.46														
		Dark	26.66															
34.	Fruit Shape	Oblate	0															
		Circular	0															
		Cordate	3.33															
		Square	0															

MEDIUM DIVERSITY

		Light	26.66	0.46				
33.	Fruit: Intensity of colour (at	Medium	46.66					
	mature unripe stage)	Dark	26.66					
34.	Fruit Shape	Oblate	0					
		Circular	0					
		Cordate	3.33					
		Square	0					
Shape	Percentage	Code						
---------------------	------------	------						
Rectangular	0	MPHC-1						
Trapezoidal	10	MPKHC-1						
Moderate triangular	30	MPC-1						
Narrow Triangular	53.33	MPC-2						
Horn Shape	3.33							

HIGH DIVERSITY

35. Stem: Intensity of pubescence (hairiness)

Intensity	Percentage	Code
Sparse	16.66	
Medium	30	
Strong	30	

AVERAGE DIVERSITY 0.32
Image 1: Morphological Images

Fig 01: Contribution percentage of highly divergent traits

A. Stem: Intensity of pubescence (hairiness)

B. Fruit: Intensity of colour (at mature unripe stage)

C. Fruit Shape

Reference

1. Fonseca R. M., Lopes R., Barros W. S., Lopes M. T. G. and Ferreira F. M. (2008). Morphological characterization and genetic diversity of Capsicum chinense Jacq.accessions along the upper Rio Negro-Amazonas. Crop Breeding and Applied Biotechnology 8: 187-94.

2. Halder, J., Rani, A. And Divekar, P. (2021) Effectiveness and economic evaluation of new generation insecto-acaricides against thrips and mites in green chilli. Pest Management in Horticultural Ecosystems. 27 (2): 153-156
3. Jamago, J.M.; Cortes, R.V. Seed diversity and utilization of the upland rice landraces and traditional varieties from selected areas in Bukidnon, Philippines. *International Journal of Ecological Conservation*. 4:112–130. http://dx.doi.org/10.7718/ijec.v4i1.366
4. Kumar S, Kumar R, Singh J (2006a). Cayenne/American pepper. In: Peter KV ed., *Handbook of Herbs and Spices, Woodhead Publishing, Cambridge, UK*, pp. 299–312 https://www.sciencedirect.com/science/article/pii/B9781845690175500166
5. Liu, D., Wang, X., Li, W., Li, J., Tan, W. and Xing, W., (2022). Genetic Diversity Analysis of the Phenotypic Traits of 215 Sugar Beet Germplasm Resources. *Sugar Tech*, pp.1-11.
6. Meghvansi MK, Siddiqui S, Khan H, Gupta VK, Vairale MG, Gogo HK, Singh L (2010). Naga Chilli: a potential source of capsaicinoids with broad-spectrum ethno pharmaceutical applications. *Journal of Ethno pharmacology* 132: 1–14. https://www.sciencedirect.com/science/article/pii/S0378874110005817
7. Nahak S C, Nandi A, Sahu G S, Tripathy P, Das S, Mohanty A and Pradhan S R (2018). Assessment of genetic diversity in different chilli (Capsicum annuum L.) genotypes. *International Journal of Current Microbiology and Applied Sciences*. 7(9): 634-39.
8. Negassa, M. (1985). Patterns of Phenotypic Diversity in an Ethiopian Barley Collection and the Arussi-Bale Highland as a Center of Origin of Barley. *Hereditas*, 102:139–150. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1601-223.1985.tb00474.x
9. Nsabiyera V., Logose M., Ochwo S. M., Sseruwagi P., Gibson P. and Ojiewo C. (2013). Morphological characterization of local and exotic hot pepper (Capsicum annuum L.) collections in Uganda. *Biorem Biodiver Bioavail* 7(1): 22-32.
10. Orton, T. and Ayeni, A., (2022). Specialty Crop Germplasm and Public Breeding Efforts in the United States. *Agronomy*, 12(2):239. http://dx.doi.org/10.3390/agronomy12020239
11. Rabara, R.C., Ferrer, M.C., Diaz, C.L., Newingham, M., Cristina, V. and Romero, G.O., (2014). Phenotypic diversity of farmers’ traditional rice varieties in the Philippines. *Agronomy*, 4(2): 217-241. https://www.mdpi.com/72076
12. Sānthosha, H.M., Manju, M.J. and Roopa, S.P. (2019). Morphological characterization of bird eye chilli grown as intercrop in arecanut plantation. *Journal of Pharmacognosy and Phytochemistry*, 8(3):2504-2507. https://www.phytojournal.com/archives/2019/vol8issue3/PartAI/8-3-106-122.pdf
13. Sotto, R.; Rabara, R.C. (2017). Morphological diversity of Musa balbisiana in the Philippines. *Journal of Natural Studies* 6:37–46. https://agris.fao.org/agris-search/search.do?recordID=PH2009000980
14. Sran, T.S. and Jindal, S.K. (2021). Genetic diversity analysis of chilli genotypes based on qualitative morphological traits. *Agriculture Research Journal*. 58 (4): 603-610. DOI No. 10.5958/2395-146X.2021.00085.
15. Taški-Ajduković, K., N. Nagl, Ž Ćurčić, and M. Zorić. (2017). Estimation of genetic diversity and relationship in sugar beet pollinators based on SSR markers. *Electronic Journal of Biotechnology* 27: 1–7. https://doi.org/10.1016/j.ejbt.2017.02.001
16. Tiwari, S., Koutu, G.K. and Pathak, N. (2021). Diversity Analysis of Grain Attributes in Restorer Lines of Rice (Oryzae sativa). *In Biological Forum–An International Journal*. 13(2): 386-392 http://dx.doi.org/10.13140/RG.2.2.28624.02561

17. Tiwari, S., Singh, Y., Upadhyay, P., & Koutu, G. (2022). Principal component analysis and genetic divergence studies for yield and quality-related attributes of rice restorer lines. *Indian Journal of Genetics and Plant Breeding*, 82(01): 94–98. https://doi.org/10.31742/IJGPB.82.1.13