Research Article

Gene Transmission, Growth, and Exogeneous Growth Hormone Expression of G2 Transgenic Betta Fish (*Betta imbellis*)

Nadia Ayuningthias¹, Hasan Nasrullah¹, Dinar Tri Soelistyowati¹, Eni Kusrini², and Alimuddin Al-imuddin¹* 1

¹Department of Aquaculture, Faculty of Fisheries and Marine Sciences, IPB University Bogor, West Java, 16680. Indonesia
²Research Institute for Ornamental Fish Culture, Ministry of Marine Affairs and Fisheries, Depok, West Java, 16436. Indonesia

Abstract

In our previous research, we had successfully produced G₀ and G₁ *Pangasianodon hypophthalmus* growth hormone (*PhGH*) transgenic *Betta imbellis*, native ornamental betta from Indonesia, which it’s giant-sized variant has valuable price for the breeders. The G₀ and G₁ transgenic (TG) fish showed higher growth rate and body size compared to the non-transgenic (NT) fish. The study was aimed to produce and evaluate the consistencies of transgene transmission and expression in G₂ generation. The growth rate and body size between TG and NT fish was also compared. The G₂ generation was produced using crosses between TG and NT G₁ fish: ♂TG × ♀TG, ♂TG × ♀NT, ♂NT × ♀TG, and ♂NT × ♀NT. Fish were reared for 12 weeks and transgene detection was performed using the polymerase chain reaction method from the caudal fin clips. The endogenous and exogenous GH expression analysis was conducted using the quantitative real-time PCR (qPCR) method. The results showed that the inheritance of the GH transgene by the G₂ fish was more than 90% in all transgenic crosses. Endogenous GH was expressed at the same levels in the brain of TG and NT fish, but the exogenous GH expression was highly detected only in the TG fish. The G₂ transgenic fish had a higher specific growth rate, up to 31%, compared to the control. The body length of TG crosses were 23-35% higher and had 111-135% higher body weight compared to NT fish. These results showed a promising approached in mass-producing stable lines of giant-sized betta using the GH-transgenic technology.
1. Introduction

Transgenics is an important genetic experimental tool used to change or adjust animal traits to be useful in scientific research, biomedical study, and aquaculture by inserting a gene into an organism’s genome (Dunham and Winn, 2014). For aquaculture purposes, this gene manipulation has primarily concentrated on elevating the fish growth rates to enhance production efficiency by shortening production times in many species (Devlin, 2011). This technique has shown promising results for increasing fish growth and body size in some fish species, including some with high commercial demand for human consumption, such as carp (Fu et al., 2007; Kurdyanto et al., 2016), salmonid (Devlin et al., 2004), loach (Nam et al., 2001), and tilapia (Kobayashi et al., 2007). Beside the consumable fish, the transgenesis method is also potentially applied in the ornamental fish culture, mostly to enhance its color appearance (Gong et al., 2003; Rezaei et al., 2019). The application of the GH-transgenesis method in ornamental fish is still scarce.

Betta fish (Betta spp.) is an elegant tropical freshwater fish that is popular as a pet and mostly kept in home aquariums. In the wild, this genus is native from Thailand, Cambodia, Indonesia, and also present in other Southeast Asian countries (Kusrini et al., 2016; Panijpan et al., 2014). They are domesticated from the wild and desired mostly for their appealing body-color, fin shape, and color pattern (Panijpan et al., 2020). Nowadays, giant-sized betta becomes one of the favorable variants, sought by the breeders due to its high price. In Indonesia, the breeders are trying to produce giant-sized betta variants, 1-3 times larger than normal size, through selective breeding. However, there are still some inconsistencies in the fish size and the number of the progenies that reach the giant-size is less than 10% per-spawning cycle (unpublished data). One of the alternative methods to consistently produce giant betta is through the transgenic method and then breeds the germ-line transmitted fish to mass produce the transgenic giant betta progenies. Previous studies have shown that the genetic transformation of fish with the growth hormone transgenic method resulted in significant improvements in weight gain and growth rate of fish. Second-generation of GH-transgenic mud loach Misgurnus mizolepis growth was accelerated up to 35 times higher than no-transgenic fish (Nam et al., 2001), and about 30 times in Coho salmon Oncorhynchus kisutch (Devlin et al., 2004). In 16-month-old G1 transgenic Nile tilapia Oreochromis niloticus, the average growth of the fish weight was 300-500% higher than control with the same rearing time (Kobayashi et al., 2007). Growth-hormone transgenic technology also potentially used to increase the growth.

In our recent study, we have successfully produced G0 and G1 GH-transgenic fish of the B. imbellis, native ornamental betta from Indonesia (Kusrini et al., 2018; Kusrini et al., 2016a). The gene introduction was conducted using the pCcBA-PghGH vector that consisted of the P. hypophthalmus GH cDNA and regulated by C. carpio β-actin promoter (Dewi et al., 2012). The fish were maintained in the controlled indoor rearing facility in the Research Institute for Ornamental Fish Aquaculture, Depok, West Java, Indonesia. Previously, The G0 transgenic fish showed 37.8% higher body weight than non-transgenic control after 7 months of rearing, and the PghGH cDNA was detected in the various tissues after PCR amplification (Kusrini et al., 2016a; Kusrini et al., 2016b). Furthermore, the G1 transgenic was produced from three different crosses of G0; transgenic (TG) male and non-transgenic (NT) female, NT male paired with TG female, and NT transgenic fish pair as a control. Transgene transmission in G1 was about 62.5%. Comparing to the non-transgenic fish, the G1 transgenic had 47% and 76% higher growth rate, and 32% and 25% higher body length from ♂TG × ♀NT and ♂NT × ♀TG, respectively, at five months old (Kusrini et al., 2018).

These previous studies showed promising results regarding the production of the giant variation of betta fish. However, the G0 fish are mosaics with varying GH expression levels between individuals. G1 fish also possessed very large variation in expression between individuals even from the same G0 fish, and relatively low transmission (Kusrini et al., 2018). The G1 fish will probably possessed higher transmission with phenotypes that match the target and had high exogenous GH expression. This G1 fish are very important to make transgenic homozygote, where these homozygous transgenic fish will be used for mass transgenic fish production (Kurdyanto et al., 2016). However, the G2 generation of GH transgenic betta was not produced yet. This study was aimed to produce and evaluate the consistencies of transgene transmission and PghGH expression in G2 transgenic B. imbellis and also compared the growth rate and body length between transgenic and non-transgenic progenies.

2. Materials and Methods

The care and use of experimental animals complied with IPB University and Research Institute for Ornamental Fish Culture animal welfare and experimentation guidelines.

2.1 Material

The G0 growth hormone transgenic B. imbellis...
were produced previously by transfection method of pCcBa-PhGH expression vector (Dewi et al., 2012) into the fertilized eggs of B. imbellis (Kusrini et al., 2016). The G₁ progenies were obtained through reciprocal crosses of male/female transgenic G₀ with non-transgenic fish. The G₂ transgenic was produced from reciprocal crosses of G₁ transgenic fish. The fish were obtained from the Research Institute for Ornamental Fish Culture, Depok, West Java, Indonesia, and then reared in the same facility. Other materials were Artemia for feeding (Supreme Plus™, Golden West, USA), GenJet Genomic DNA Purification Kit (Thermo Scientific, USA), oligonucleotide primers (IDT, Singapore), cDNA synthesis kit Revertra® Ace qPCR RT Mastermix with gDNA removal (Toyobo, Japan), DNA ladders and loading dye (Invitrogen, USA), Go-Taq® Green Mastermix (Promega, USA), TRI Reagent® (Sigma-Aldrich, USA), nuclease-free water (1st base, Malaysia), alcohol (chloroform, isopropanol, ethanol 96% pro-analyst; Merck, USA), filtered microtips and sterile microtubes (ExtraGene, Taiwan). Equipment used for this study were peqSTAR Thermocycler (VWR, Austria), electrophoresis chamber and UV-illuminator (Bio-Rad's Sub-Cell® System and Power Pac™, Bio-Rad, USA), Rotor-Gene 6000 qPCR machine (Qiagen, USA), refrigerated centrifuge (VWR, Austria), GeneQuant DNA Calculator (Pharmacia Biotech, USA), and various volumes of micropipettes (Axygen, USA).

Male fish (♂)	Female fish (♀)	TG	NT
TG	♀TG × ♂TG	♀TG × ♀NT	♂NT × ♀NT

Description: TG = transgenic, NT = non-transgenic. Each cross consists of three pairs of fish (n=3 replication each cross).

Primer Name	Sequence (5’–3’)	Annealing Temperature (°C)	Application
PhGH-Fw	CTCTCTAGCTCAAGGCGACAGATCCGAGA	65	PhGH transgene screening
PhGH-Rv	CGATAAAGCCAGGCGATGCCGATTCTTTTCA		
β-actin-Fw	TATGAAGATGCTGCTGCCC	60	PCR internal control
β-actin-Rv	CATCCCCAGAAGATGCTTG		
qBeGH-Fw	TGGAGGTCTCCTCAAGGATTAC	60	qPCR of BeGH
qBeGH-Rv	CATCTTACACATCTCATTG		
qIGF-1-Fw	TTTTGTGTGGCGGAGATAGAG	60	qPCR of IGF-1
qIGF-1-Rv	CTCACAGCTGCGGAAGCAG		
qPhGH1-Fw	CGAGAGGTCACCCAGCCTTGG	60	qPCR of PhGH
qPhGH1-Rv	GCTGAGATAGGCTCCATTGG		
EF-1α-Fw	GGTGTGCAAGCAGCTCATGTTTG	60	qPCR normalizer, internal control
EF-1α-Rv	AGAGATGGGACAAAGGCAACAG		

Table 3. Transgene transmission in G₁, and G₂ Betta imbellis

Crosses	Transgene transmission	
	G₁	G₂
♀NT × ♂NT	0.00	0.00
♀NT × ♂TG	66.67	96.66
♀TG × ♂NT	58.93	90.00
♀TG × ♂TG	n.d	96.66

*from previous study (Kusrini et al., 2018). Description: n=30 for each cross. NT = G₁ non-transgenic, TG = G₁ transgenic. N.d = not determined.
2.2 Method

2.2.1 Experimental design and fish rearing

Mature G₁ of transgenic (TG) male (4.7±0.6 cm; 1.2±0.5 g), TG female (4.4±0.3 cm; 1.3±0.3 g), non-transgenic (NT) male (3.17±0.21 cm; 0.79±0.24 g), and NT female (3.40±0.17 cm; 1.04±0.19 g) that were in the same age were used in the reciprocal crossing to produce G₂ progenies. Transgenic crosses were ♂TG × ♀TG, ♂TG × ♀NT, ♀NT × ♂TG, and non-transgenic ♀NT × ♀NT cross as control (Table 1). The spawning process was conducted in pair (1:1) inside the plastic buckets (d= 40 cm) with 7.5 L of water volume. Eggs were collected and placed in the 50 × 60 × 90 cm³ tanks. After hatching, G₂ fish were reared for 5 months. The larva was fed with *Artemia* nauplius starting from day 2 until 14 days after hatching (DAH). Then, fish were fed with *Moina* sp. and chopped *Tubifex* sp. until it reached 1 month DAH. *Tubifex* and bloodworm were given until fish reach 3 months DAH. All progenies from each cross were fed with the same amount of feed during the rearing period. Waste was removed daily and 50% water change was done every 3 days. At two months old, sex differentiation was conducted and male fish were reared separately. Male progenies were reared individually (1 fish per-tank), while female progenies were reared in the same rearing tank (10 fish L⁻¹). Fish bodyweight and length were measured every week randomly within the population without prior DNA analysis (n= 40 fish each cross).

2.2.2 Transgene transmission

Fin clips were taken from six weeks old G₂ progenies (n= 30 from each cross) to screen the *PhGH* transgene within the genome. The screening was done using the polymerase chain reaction (PCR) method. Genomic DNA from the fins was isolated and amplified using the specific *PhGH* primer that amplifies the exogenous GH cDNA sequence. The primer was consisted of *PhGH* forward: 5’-TCTTTAGTCAAGGCCGCAGATTCGAGA-3’ and the reverse sequence was: 5’-CGATAAGCACGCGATGCCCATTTCA-3’. The β-actin gene was used for the PCR internal control with forward sequence: 5’-TATGAGGTATGCTCGCCC-3’ and reverse sequence: 5’-CATACCAAGAAAGATGGCTG-3’ (Table 2). The PCR program and reaction were based on our previous result (Dewi et al., 2012). The amplification result was visualized under the UV-light after the gel electrophoresis separation. Positive *PhGH* transgene fish will produce a single band at 334 bp while no-transgene fish will have no observed DNA band after gel electrophoresis.

2.2.3 Total RNA extraction and mRNA expression

Total RNA was extracted from the brain of the transgenic progenies from the TG × TG cross and non-transgenic control from NT × NT cross (n= 3 from each cross). The total RNA was extracted and its concentration was measured using a spectrophotometer at 260 and 280 nm. The cDNA synthesis was conducted from 100 ng µL⁻¹ of total RNA. The qPCR reaction was performed to determine the mRNA expression levels of the growth-related gene. The endogenous *B. imbellis* growth hormone (*BeGH*), and exogenous *PhGH* expression in transgenic and non-transgenic G₂ progenies were evaluated using the specific primers (Table 2). The qPCR reaction was performed with the total reaction volume was 20 µL, consisted of 10 µL 2× sensiFAST SYBR NO-ROX mix (Bioline, UK), 0.8 µL of each specific primer, 4 µL cDNA, and 4.4 µL NFW (nucleases-free water). The amplification program was conducted in the Rotor-Gene 6000 (Corrbet, USA) with Green channel to detect the florescence dye (470 nm for source, and 530 nm for the detector). The qPCR program was set at 95°C for 3 min, continued with 40 cycles of 95°C for 10 s, 60°C for 15s, and 72°C for 15s. Melting-curve analysis was performed at the end of the amplification reaction to evaluate the specificity of the amplification. The melting curve analysis was performed at 72-95°C with 1°C resolution per-second at Rotor-Gene 6000 machine. All molecular works were performed using the sterile-filtered microtips and tubes (Extra Gene, Taiwan).

2.3 Analysis Data

The transgene transmission data were compared descriptively while the growth performance, growth pattern, and mRNA expression data were compared statistically using the one-way ANOVA analysis followed by Duncan’s test at α= 0.05. The expression levels after qPCR analysis were normalized to the elongation factor-1α (EF1α) gene and analyzed using the 2⁻ΔΔCt method (Livak and Schmittgen, 2001).

3. Results and Discussion

The growth process in fish is regulated through the growth hormone synthesized in hypophysis and then it is released into the bloodstream. The GH protein will interact with its specific receptors on the cells and altered the intracellular-somatotrophic signaling pathways, with insulin-like growth factor 1 (IGF-1) as the main mediator for cell proliferation and growth (Fuentes et al., 2013; Nipkow et al., 2018). Although not common,
the application of GH transgenesis in ornamental fish is also potential to increase fish growth rate and reduce its production period. In this study, the G2 generation of GH-transgenic betta is successfully produced using various crosses of TG and NT fish to obtain giant-sized betta fish. PCR analysis confirmed the presence of the transgene in the purified genomic DNA from the G2 progenies from different crosses groups, except the control (Figure 2). The β-actin as an internal control was amplified in all fish and the non-template control was not contaminated. The amplicon size of the PhGH DNA was similar between the plasmid control and sample DNA. The PCR product, corresponding to 334 bp of the specific PhGH cDNA sequence, was detected in 29 of 30 (96.67%) progenies of ♂NT × ♀TG, 27 of 30 (90%) from ♂TG × ♀NT, 29 of 30 (96.67%) from ♂TG × ♀TG, and was not detected in any of the control fish from ♂NT × ♀NT (Table 3). The inheritance was significantly increased from its G1 generation. Previously, the gene transmission from the G0 to the G1 progenies was 58.89-66.67% (Kusrini et al., 2018). The transgene transmission was more than expected for Mendelian segregation of single locus. This pattern suggested that the transgene DNA might be integrated at multiple loci in founder fish, and thus inherited stably (Chen et al., 2015; Devlin et al., 2004).

![Transgenic](image1)

![Non-Transgenic](image2)

Figure 1. PCR detection of the PhGH gene in the purified genomic DNA from G2 transgenic and non-transgenic B. imbellis. M= 100 bp DNA ladder, K+= CcBA-PhGH vector, N= no-template control, 1-10= sample number.

Parameter	Crosses			
	♂NT × ♀NT	♂NT × ♀TG	♂TG × ♀NT	♂TG × ♀TG
Body length growth (cm day⁻¹)	0.374±0.02b	0.442±0.03a	0.444±0.278a	0.415±0.032a
Body weight growth (gram day⁻¹)	0.031±0.001b	0.039±0.002a	0.04±0.002a	0.04±0.002a
Specific growth rate (% day⁻¹)	2.689±0.078b	3.5340.169a	3.474±0.142a	3.511±0.101a
Survival (%)	81±2.29a	81±3.46a	79±2.96a	80±2.22a

Table 4. Growth performance and survival of transgenic G2 Betta imbellis from different crosses

Description: TG= transgenic G1; NT= Non-transgenic G1. Different letters indicate a significant difference between crosses.
Figure 2. Body length and body weight of G2 transgenic and non-transgenic B. imbellis. Bodyweight (A) and body length (B) pattern during 12 weeks of rearing and size comparison of all crosses at the end of the experiment (C and D) are shown. Data were presented as mean ± S.D with the error bar. However, in several points, the error bar was smaller than the marker, thus not shown in the figure. Different letters in the bar graph indicate a significant difference between progenies from different crosses (p<0.05).

Figure 3. The relative mRNA expression of transgene PhGH and endogeneous BeGH of G2 transgenic and non-transgenic B. imbellis. No PhGH mRNA transcript was detected in male NT × female NT non-transgenic control. Data were presented as mean ± SD. Different letters indicate a significant difference in the mRNA expression of the same gene among crosses (p<0.05).
The results showed that the body length and weight growth of all transgenic crosses (♂NT × ♀TG; ♂TG × ♀NT; ♀TG × ♂TG) were significantly higher compared to the non-transgenic control (♂NT × ♂NT) (Table 4). The progenies from the transgenic crosses also had a higher specific growth rate, up to 31.2%, compared to the control group with no significant difference in the fish survival. The results showed that the progenies from transgenic crosses had a higher average body length and weight during the 12-weeks of rearing compared to the non-transgenic control (Figure 2A and 2B). The body length of fish from transgenic crosses was 23-35% higher than control. The ♂TG × ♀TG progenies had higher body length compared to the ♀TG × ♀NT, but not different than ♂NT × ♂TG (Figure 2C). Fish body weight showed the same results (Figure 2B). At the end of rearing, the G₂ fish that came from transgenic crosses had a higher average body weight, 111-135% fold compared to NT control. The ♂TG × ♀TG progenies had higher body weight compared to the ♀TG × ♀NT, but not different than ♂NT × ♂TG (Figure 2D). This result was not surprising since it was widely reported in other transgenic fish species that bearing the exogenous GH. In six months old zebrafish Danio rerio, GH transgenic fish reached about 155% higher final average mass compared to its non-transgenic siblings (Figueredo et al., 2007). In the tilapia GH-transgenic Nile tilapia, the body weight of G₁-transgenic fish was 7 times larger compared to the non-transgenic control (Kobayashi et al., 2007). In the G₂ generation of GH-transgenic common carp, specific growth was reported to be 77.4% higher than non-transgenic fish and had 69.2% times higher body weight (Fu et al., 2007).

This significant body weight and length alteration in TG fish might due to the overexpression of exogenous GH-transgene thus affect other growth factors (Triantaphyllopoulos et al., 2020). The PhGH mRNA transcripts were observed in the fish brain and only detected in TG fish (Figure 3). These results indicated that the PhGH DNA was successfully incorporated into the fish genome and undergone the transcription process. The expression of PhGH in the fish brain might have a not significant effect on the transcription of the endogenous BeGH since BeGH was expressed at the same levels in the brain of transgenic fish and non-transgenic control (Figure 3). However, in vivo protein translation of PhGH and BeGH was not analyzed in this study and needs to be evaluated in the future. This transcription of PhGH mRNA potentially leads to a significant increase in the GH synthesis, thus resulting in a significant growth rate of TG fish compared to the NT fish (Table 4 and Figure 2). Moreover, compared to the G₁ fish, G₂ betta had a faster growth rate and larger body weight at the same rearing points. The G₁ TG progenies reached 0.4-0.8 g of body weight, 2.7-3.5 cm of body length after 12 weeks (Kusrini et al., 2018), while in G₂ fish it was already reached 0.67-1.59 g for body weight and 3.8-5 cm for body length within the same rearing period (Figure 2). Taking together, the G₂ progenies inherited a higher percentage of GH transgene and possessed a higher growth rate compared to its G₁ generation. This might be beneficial for the large and stable production of giant-sized ornamental betta fish. However the commercial use of genetically modified fish in aquaculture is still up for discussion, since the first commercialization of genetically modified fish, GloFish, was in 2003 (Gong et al., 2003), and further, the United States and Canada allowed the commercial processing and selling of the AquAdvantage® Salmon (Ledford, 2015). To prevent potential adverse impact on the environment, biological and environmental containments should be applied in the production of TG betta, for example using the closed containment aquaculture system (Crouse et al., 2021). Furthermore, the transgenic betta should be bred as sterile-triploid fish to avoid reproduction. As example, the transgenic-commercial AquAdvantage® salmon are produced as triploid females, which do not contain fertile gametes and thus have little reproductive potential. They are therefore incompatible with wild diploid fish (Ignatz et al., 2020).

4. Conclusion

The G₂ generation of GH TG betta had been successfully produced, with more than 90% of the inherited transgene. Endogenous GH was expressed at the same levels in the TG and NT, but the exogenous GH was only detected in the TG fish. The growth of G₂ TG fish was up to 31.2% higher than control and TG crosses had significantly higher body weight and length compared to NT. Moreover, G₁ TG fish reached a larger body length and weight in a shorter period compared to G₁. These results showed a promising approached in mass-producing giant-sized betta using the GH-transgenic technology.

Acknowledgment

The authors thank Ms. Dian Novita Sari, Ms. Anzila R.W. Muharrama, and all laboratory staff of Research Institute for Ornamental Fish Culture, Depok.
Indonesia for their excellent help with this study.

Authors’ Contributions

All authors have contributed to the final manuscript. The contribution of each author as follows, NA and EK; reared the fish, collected the data, performed PCR analysis, drafted the manuscript, AMD and DTS; devised the main conceptual ideas, analyzed and evaluated the final data, and done critical revisions of the manuscript, HN; performed qPCR experiment and analysis, designed the figures and tables, finalized the manuscript. All authors discussed the results and contributed to the final manuscript equally.

Conflict of Interest

The authors declare that they have no competing interests.

Funding Information

This research was partially supported by the Ministry of Research and Higher Education of the Republic of Indonesia with grant number: 1629/IT3.11/PN/2018 in 2018.

References

Chen, J., Luo, Q., Bao, H., Liao, L., Li, Y., Zhu, Z., Wang, Y., & Hu, W. (2015). The integration characteristics of the exogenous growth hormone gene in a transgenic common carp (Cyprinus carpio L.) with fast-growth performance. Science Bulletin, 60(19):1654-1660.

Crouse, C., Davidson, J., May, T., Summerfelt, S., & Good, C. (2021). Production of market-size European strain Atlantic salmon (Salmo salar) in land-based freshwater closed containment aquaculture systems. Aquacultural Engineering, 92:102-138.

Devlin, R. H. (2011). Cellular, molecular, genomics, and biomedical approaches | Growth hormone overexpression in transgenic fish. In Encyclopedia of Fish Physiology (Vol. 3, pp. 2016-2024). Elsevier Inc.

Devlin, R. H., Biagi, C. A., & Yesaki, T. Y. (2004). Growth, viability and genetic characteristics of GH transgenic coho salmon strains. Aquaculture, 236(1-4):607-632.

Dewi, R. S. P. S., Alimuddin, Sudrajat, A. O., & Sumantadinata, K. (2012). The effectivity of gene transfer and expression of PhGH in stripped catfish (Pangasiastodon hypophthalmus). Jurnal Riset Akuakultur, 7(2): 171-180.

Dunham, R. A., & Winn, R. N. (2014). Production of Transgenic Fish. In Transgenic animal technology: A laboratory handbook: Third Edition (pp. 305-334). Elsevier Inc.

Figueiredo, M. A., Lines, C. F. C., Almeida, D. V., Proietti, M. C., & Marins, L. F. (2007). The effect of GH overexpression on GHR and IGF-I gene regulation in different genotypes of GH-transgenic zebrafish. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2(3):228-233.

Fu, C., Li, D., Hu, W., Wang, Y., & Zhu, Z. (2007). Growth and energy budget of F2 “all-fish” growth hormone gene transgenic common carp. Journal of Fish Biology, 70(2):347-361.

Fuentes, E. N., Valdés, J. A., Molina, A., & Björnsson, B. T. (2013). Regulation of skeletal muscle growth in fish by the growth hormone - Insulin-like growth factor system. General and Comparative Endocrinology, 192:136-148.

Gong, Z., Wan, H., Tay, T. L., Wang, H., Chen, M., & Yan, T. (2003). Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochemical and Biophysical Research Communications, 308(1):58-63.

Ignatz, E. H., Dumas, A., Benfey, T. J., Hori, T. S., Braden, L. M., Runighan, C. D., Rise, M. L., & Westcott, J. D. (2020). Growth performance and nutrient utilization of growth hormone transgenic female triploid Atlantic salmon (Salmo salar) reared at three temperatures in a land-based freshwater recirculating aquaculture system (RAS). Aquaculture, 519:734896.

Kobayashi, S., Alimuddin, Morita, T., Miwa, M., Lu, J., Endo, M., Takeuchi, T., & Yoshizaki, G. (2007). Transgenic nile tilapia (Oreochromis niloticus) over-expressing growth hormone show reduced ammonia excretion. Aquaculture, 270(1):427-435.

Kurdianto, Alimuddin, Faridah, N., Yoshizaki, G., Nuryati, S., & Setiawati, M. (2016). Growth, survival, and body composition of transgenic common carp Cyprinus carpio 3rd generation expressing tilapia growth hormone cDNA. HAYATI Jurnal Ilmiah Perikanan dan Kelautan
Journal of Biosciences, 23(3):150-154.

Kusrini, E., Alimuddin, Zairin, M. Jr., & Sulistyowati, D. T. (2016a). Gene transfer on Betta imbellis through transfection method with different DNA concentration. Indonesian Aquaculture Journal, 11(1):1-7.

Kusrini, E., Zairin, M. Jr., & Sulistyowati, D.T. (2016b). Identification of founder generation of betta fish (Betta imbellis) growth hormone transgenic. Jurnal Riset Akuakultur, 11(3):197-205.

Kusrini, E., Alimuddin, Zairin Jr, M., & Soelistyowati, D. T. (2018). Foreign growth hormone gene transmission and expression in F1 transgenic betta fish (Betta imbellis). Pakistan Journal of Biotechnology, 15(1):1-9.

Ledford, H. (2015). Transgenic salmon leaps the dinner table. Nature, 527:417-418.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4):402-408.

Nam, Y. K., Noh, J. J., Cho, Y. S., Cho, H. J., Cho, K. N., Kim, C. G., & Kim, D. S. (2001). Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis. Transgenic Research, 10:353-362.

Nipkow, M., Wirthgen, E., Luft, P., Rebl, A., Hoeflich, A., & Goldammer, T. (2018). Characterization of IGF1 and IGF2 genes during maraena whitefish (Coregonus maraena) ontogeny and the effect of temperature on embryogenesis and IGF expression. Growth Hormone and IGF Research, 40:32-43.

Paniapan, B., Kowasupat, C., Laosinchai, P., Ruenwongsa, P., Phongdara, A., Senapin, S., Wanna, W., Phiw사이야, K., Kühne, J., & Fasquel, F. (2014). Southeast Asian mouth-brooding Betta fighting fish (Teleoste: Perciformes) species and their phylogenetic relationships based on mitochondrial COI and nuclear ITS1 DNA sequences and analyses. Meta Gene, 2:862-879.

Paniapan, B., Sriwattanarothai, N., & Laosinchai, P. (2020). Wild betta fighting fish species in Thailand and other Southeast Asian countries. ScienceAsia, 46(4):382-391.

Rezaei, M., Basiri, M., Hasani, S. N., Asgari, B., Kashiri, H., Shabani, A., & Baharvand, H. (2019). Establishment of a transgenic zebrafish expressing GFP in the skeletal muscle as an ornamentalfish. Galen Medical Journal, 8:1068.

Triantaphyllopoulos, K. A., Cartas, D., & Miliou, H. (2020). Factors influencing GH and IGF-I gene expression on growth in teleost fish: how can aquaculture industry benefit? Reviews in Aquaculture, 12(3):1637-1662.