Opportunities to diagnose chronic obstructive pulmonary disease in routine care in the UK: a retrospective study of a clinical cohort

Rupert C M Jones, David Price, Dermot Ryan, Erika J Sims, Julie von Ziegenweidt, Laurence Mascarenhas, Anne Burden, David M G Halpin, Robert Winter, Sue Hill, Matt Kearney, Kevin Holton, Anne Mager, Daryl Freeman, Alison Chisholm, Eric D Bateman, on behalf of The Respiratory Effectiveness Group*"
have higher prevalence of cardiovascular disease, diabetes, peptic ulcer, gastro-oesophageal reflux disease, and lung cancer.\textsuperscript{6–12} Shared risk factors between comorbidities, including lifestyle (eg, cigarette smoking), environmental and occupational exposures, and airway or generalised chronic inflammation from other causes all contribute to chronic ill-health and inactivity. These factors promote a cycle of debility, muscle wasting, increased susceptibility to COPD exacerbations, and worsening comorbidities.\textsuperscript{13,14} Although comorbidities are common, guidelines and governmental initiatives to improve management of chronic disease are usually disease-specific.

COPD exacerbations accelerate worsening of lung function, leading to: quicker disease progression,\textsuperscript{15} reduced mobility,\textsuperscript{16} and poorer quality of life.\textsuperscript{16} Indeed, COPD exacerbations account for a large proportion of the COPD-associated costs in primary and secondary care.\textsuperscript{14} Identification of people with as yet undiagnosed COPD, using a case-finding approach\textsuperscript{19} might facilitate earlier intervention to prevent exacerbations and slow the decline of lung function.

Major guidelines and strategic statements assert that early diagnosis, combined with effective interventions, can reduce the health burden and financial cost of symptomatic COPD.\textsuperscript{1,2,3} However, the precise mechanisms through which this can be achieved are not yet agreed.\textsuperscript{1,2,3} In this study we assessed patterns of health-care use and comorbidities before a diagnosis of COPD to inform future case-finding strategies.

Methods

Study design and dataset

We did this retrospective, cohort study with primary and secondary care data routinely collected between Jan 1, 1990, and Dec 31, 2009, in the UK. Data were pooled from the General Practice Research Database, part of the Clinical Practice Research Datalink\textsuperscript{1,2,3} and the Optimum Patient Care Research Database.\textsuperscript{14} The Optimum Patient Care Research Database has been approved for clinical research use by the Trent Multi Centre Research Ethics Committee.\textsuperscript{14} The study protocol was approved by the General Practice Research Database’s independent scientific advisory committee and the Optimum Patient Care Research Database’s anonymised data ethics and transparency committee.

Eligible patients were aged 40 years or older with an electronically coded diagnosis of COPD in their primary care records between 1990 and 2009. The minimum age was chosen because COPD predominantly affects people aged 40 years and older.\textsuperscript{25} All patients had a minimum of 3 years of continuous practice data (up to a maximum of 20 years), 2 years before diagnosis and 1 year after diagnosis, and at least two prescriptions for COPD-related drugs since diagnosis. This criterion indicates continued treatment and was used as a proxy for diagnosis of symptomatic disease.\textsuperscript{28}

Procedures

We reviewed data for a maximum of 20 years before diagnosis, including demographic characteristics, data about use of health-care resources indicative of missed opportunities for diagnosis, and comorbidities. This 40-year period (1970–2009) coincided with the migration of patient records from a paper to electronic format. To avoid use of retrospectively entered routine consultation data, we examined routine data recorded only after the date the practice began to use full electronic medical records. For comorbidities, diagnostic data entered retrospectively were considered valid for the purposes of identifying a comorbidity (appendix).

We recorded demographic characteristics: sex, age at COPD diagnosis, smoking status (recorded within 12 months of date of COPD diagnosis), location of diagnosis (primary or secondary care), lung function (forced expiratory volume in 1 s as a percentage of predicted [FEV\(_1\)%], recorded before or up to 10 years after COPD diagnosis), and airflow obstruction grading at COPD diagnosis (consistent with UK and 2011 Global Initiative for Chronic Obstructive Lung Disease [GOLD] airflow obstruction severity categories: GOLD I=FEV\(_1\)% ≥80; GOLD II=FEV\(_1\)% 50–79; GOLD III=FEV\(_1\)% 30–49; and GOLD IV=FEV\(_1\)% <30).\textsuperscript{27} The MRC dyspnoea scale\textsuperscript{28} was not routinely recorded across the timeframe analysed so it was not included.

We identified missed opportunities for COPD diagnosis for each patient. We used three primary care measures of missed opportunity. First, lower respiratory consultations, defined as all consultations coded for lower respiratory complaints, including lower respiratory tract infections (such as bronchitis, tracheitis, and pneumonia, which might need antibiotic treatment), non-infective lower respiratory conditions (such as asbestosis and chronic respiratory failure), and respiratory symptoms (such as breathlessness, hyperventilation, cough, and wheezing). Second, consultations for lower respiratory symptoms with a course of antibiotic drugs or oral steroids prescribed on the same day. And third, chest radiography. We searched 919 lower respiratory Read Codes covering symptoms, diagnoses, and procedures to identify all possible consultations at which the patient would have presented with lower respiratory symptoms. Chest radiographs were included as a missed opportunity even if they were not done to look for COPD specifically, because it suggests that the patient had symptoms for which the differential diagnosis could have included COPD.

Missed opportunities during secondary care were respiratory-related outpatient and unscheduled hospital admissions that did not lead to a coded diagnosis of COPD. The 20-year period of time leading up to COPD diagnosis was stratified into four bands: 0–3 years, 6–10 years, 11–15 years, and 16–20 years. To be included in the periods 6–10 years, 11–15 years, and 16–20 years, patients had to have no less than 10 years, 15 years,
or 20 years of data, respectively. Patients with less than 10 years of data were included in the 0–5 year period.

We also identified recorded COPD exacerbations in the 2 years after diagnosis. Exacerbations were defined as admission to hospital or accident and emergency attendance coded for COPD or lower respiratory prescribing consultations requiring antibiotic drugs or oral steroid treatment on the same day.

The appendix shows the definitions we used to identify active chronic comorbid conditions. We used diagnostic codes present at any time before diagnosis of COPD for cardiovascular disease, osteoporosis, bronchiectasis, asthma, and diabetes (or diabetes treatment ever before COPD diagnosis, irrespective of presence of a diabetes diagnostic code). We used recent diagnostic codes (ie, within 2 years), or diagnostic codes present at any time before diagnosis of COPD and active drug management (ie, prescriptions within 2 years of date of COPD diagnosis) to identify gastro-oesophageal reflux disease, allergic rhinitis, chronic pain, and depression or anxiety. The use of prescription data or diagnostic codes aimed to identify all patients who (1) might have had a current comorbidity, whether or not it was coded (eg, diabetes and chronic pain); and (2) for diseases that have a natural history of active and remission phases (eg, gastro-oesophageal reflux disease, allergic rhinitis, and depression), ensured that only patients with active disease in the 2 years before COPD diagnosis were identified. We selected these COPD concordant or related comorbidities on the basis of our clinical experience and known pathophysiology at the time of the study design because no large epidemiological studies of comorbidity were available; the subsequent work of Barnett and colleagues suggests that this approach was justified.

### Statistical analysis

We assessed trends in missed opportunities for diagnosing COPD in both primary and secondary care over the 20 years preceding diagnosis. Missed opportunities in the 2 years immediately before diagnosis were also assessed for change over the 20-year period (1990–2009). We evaluated age at diagnosis and comorbidities present at the time of COPD diagnosis over the same 20-year period. We also assessed frequency of missed opportunities and comorbidities by severity of airway obstruction and by sex. All analyses were done with SPSS (version 18).

We used summary statistics for patient characteristics at time of COPD diagnosis. We compared age at diagnosis by year of diagnosis and by severity of airway obstruction with F tests; age at diagnosis between sexes with a t test; and severity of airway obstruction by year of diagnosis and sex with χ² tests.

We used a general linear model to investigate the effects of year of diagnosis, sex, place of diagnosis (primary care or secondary care), and practice (treated as an independent variable) on smoking status and GOLD severity classification. We used summary statistics for the comparison of patients with FEV₁ data versus those without. COPD=chronic obstructive pulmonary disease.
COPD = chronic obstructive pulmonary disease.

For consultations for lower respiratory symptoms (A), lower respiratory prescribing consultations (B), chest radiography (C), and outpatient consultations (D). Too few data were available to present number of admissions to hospital. COPD = chronic obstructive pulmonary disease.

Table 2: Missed opportunities to diagnose COPD in the years preceding diagnosis

|                      | 0-5 years (n=38 859) | 6-10 years (n=22 286) | 11-15 years (n=9 351) | 16-20 years (n=1 167) |
|----------------------|----------------------|-----------------------|-----------------------|-----------------------|
| Lower respiratory consultation | 32 900 (85%)         | 12 855 (58%)         | 3943 (42%)           | 95 (8%)               |
| Lower respiratory prescribing consultation | 26 672 (68%)         | 10 627 (48%)         | 3185 (34%)           | 31 (3%)               |
| Prescribed oral steroids | 15 498 (40%)         | 3869 (17%)           | 928 (10%)            | 1 (<1%)               |
| Prescribed antibiotics | 21 364 (55%)         | 8 656 (39%)          | 2 544 (27%)          | 1 (<1%)               |
| Chest radiography     | 14 677 (38%)         | 3366 (15%)           | 648 (7%)             | 19 (2%)               |
| Outpatient consultation | 4 237 (11%)         | 1 645 (7%)           | 364 (4%)             | 0 (0%)                |
| Admitted to hospital  | 881 (2%)             | 220 (1%)             | 53 (1%)              | 3 (<1%)               |

Data are n (%). Shows the number and proportion of patients who had one or more of each event in each 5-year period. COPD = chronic obstructive pulmonary disease.

Figure 2: Mean frequency of missed opportunities to diagnose COPD

Role of the funding source
The Department of Health and Research in Real Life designed the study, interpreted data, and revised the report. The corresponding author had full access to all of the data and the final responsibility to submit for publication.

Results
38 859 patients were included in the study from a total of 112 278 patients who had a history of respiratory disease (figure 1). Average duration of longitudinal data was 10-4 years (range 3-21 years). All patients had 2 years of clinical and treatment data available before diagnosis; 33 040 of 38 859 (85%) patients had at least 5 years of data.

Table 1 shows the population demographic data. Data for smoking history were available for 28 392 of 38 859 (73%) patients and FEV1% predicted data for 22 821 of 38 859 (59%) patients. Median duration between date of diagnosis and date of recording FEV1% was 2 months (IQR 0-29 months). Of patients with an FEV1% value available at time of COPD diagnosis, a smaller proportion of women than of men had evidence of a random effect to account for potential variations in clinical practice and thereby enabling results to be generalised across all practices) on age at diagnosis. We also included interactions between explanatory variables in the model. Interaction terms that were not significant were excluded and the model refitted. We evaluated prevalence of comorbidities by year of COPD diagnosis with a χ² test. For patients with data available for FEV1%, we compared the distribution of airway obstruction severity by (1) year of diagnosis and (2) comorbidity prevalence with a χ² test. We tested the association between degree of airway obstruction (FEV1%) and frequency of lower respiratory prescribing consultations with Spearman’s rank correlation coefficient. We analysed the prevalence of comorbidity by airway obstruction severity with the χ² test.

We used logistic regression to assess the odds of multiple COPD exacerbations in the first and second years after diagnosis for patients with two or more lower respiratory prescribing consultations before diagnosis compared with patients with one or no consultations. Indicator variables for two or more lower respiratory prescribing consultations in the year before diagnosis, age, sex, and year of diagnosis were included in the model as explanatory variables. We repeated the analysis using an indicator for two or more lower respiratory prescribing consultations in the 2 years before diagnosis.

This study is registered with ClinicalTrials.gov, number NCT01655667.
airflow limitation (appendix). Small but significant demographic differences were present between the 22821 patients with data available for predicted FEV1% and those without such data available (table 1). Patients with available FEV1, data were 2.8 years (95% CI 2.6–3.1) younger (p<0.0001), were more likely to be men (odds ratio [OR] 1.06, 95% CI 1.02–1.10; p=0.006), have smoking status available (4.10, 3.91–4.30; p<0.0001), be current or ex-smokers (0.67, 0.61–0.74; p<0.0001), and were more likely to be diagnosed in primary care (2.64, 2.22–3.14; p<0.0001).

During the 20 years preceding diagnosis, opportunities to diagnose COPD related to lower respiratory events were missed in both primary and secondary care (table 2, appendix). Opportunities were missed during all four, 5-year periods (0–5, 6–10, 11–15, and 16–20 years), with many patients having opportunities missed in two or more 5-year periods in both primary and secondary care. The average number of missed opportunities per patient per year also increased leading up to the date of diagnosis (figure 2). 25 of 379 (6.6%) patients diagnosed in secondary care had one or more admissions to hospital in the 5 years before diagnosis, compared with 457 of 38480 (1.2%) diagnosed in primary care (OR 5.55, 95% CI 3.67–8.41; p<0.0001).

Table 3 and figure 3 show comorbidity prevalence data at the time of COPD diagnosis for patients diagnosed between 1990 and 2009. Prevalence of all comorbidities present at COPD diagnosis significantly increased over this period, with the exception of asthma and bronchiectasis, which had small but significant decreases. The highest yearly means for active comorbidities were chronic pain (40%), asthma (34%), diabetes (18%), depression or anxiety (16%), and cardiovascular disease (15%). Presence of one or more diagnosed comorbidities at the time of COPD diagnosis was associated with less airway obstruction (22821 patients had data for airway obstruction; appendix).

Many opportunities to diagnose COPD were missed in the 2 years before diagnosis (appendix) throughout the 20-year evaluation period. The number of lower respiratory prescribing consultations per year significantly decreased from 1990 to 2009 (rate ratio 0.982 per year, 95% CI 0.979–0.985), as did the number of outpatient consultations per year (0.917 per year, 95% CI 0.910–0.925; table 4). The yearly rate of all lower respiratory consultations decreased significantly for patients eventually diagnosed in secondary care (rate ratio 0.955 per year, 95% CI 0.934–0.976) but remained consistent for patients diagnosed in primary care (rate ratio 1.000 per year, 95% CI 0.998–1.003); whereas the number of chest radiographs significantly increased with year of diagnosis (rate ratio 1.093 per year, 95% CI 1.088–1.097). Because of the small numbers, change in frequency of admission to hospital over time could not be evaluated. For the 22821 patients with an FEV1% value, the frequency of lower respiratory prescribing consultations in the 5 years before diagnosis was not correlated with airway obstruction (r=0.012; p=0.075). Of the 6897 patients who had chest radiography in the 2–24 months before diagnosis, only 2296 (33%) had evidence of having had spirometry (with or without an FEV1% value) in the same period.

Table 3: Prevalence of comorbidities at time of COPD diagnosis

| Comorbidity                           | Mean prevalence 1990–2009 (%) | Prevalence in 1990 (%) | Prevalence in 2007 (%) |
|---------------------------------------|------------------------------|------------------------|------------------------|
| Asthma                                | 34%                          | 33%                    | 31%                    |
| Bronchiectasis                        | 4%                           | 6%                     | 4%                     |
| Cardiovascular disease*               | 15%                          | 7%                     | 14%                    |
| Gastro-oesophageal reflux disease     | 7%                           | 1%                     | 7%                     |
| Osteoporosis                          | 3%                           | 1%                     | 6%                     |
| Diabetes                              | 18%                          | 13%                    | 23%                    |
| Sinusitis                             | 3%                           | 0%                     | 5%                     |
| Chronic pain                          | 40%                          | 17%                    | 48%                    |
| Depression or anxiety                 | 16%                          | 7%                     | 19%                    |
| Allergic rhinitis                     | 7%                           | 4%                     | 6%                     |

Because of small numbers of patients in 2008 and 2009, results for these years were inconsistent with the general trend over time and therefore results for 2007 are reported here instead. COPD=chronic obstructive pulmonary disease.

*Heart failure, angina, or myocardial infarction.
Median age of the total population at diagnosis fell from 69 years (IQR 62–76) in 1990, to 67 years (62–77) in 2007. However, by contrast with the raw data, the general linear model, which included practice as a random effect, reported a yearly increase in age at diagnosis (table 5). Excluding practice from the model reversed the findings in line with the raw values. Increasing chronological year of diagnosis was associated with an increasing proportion of patients with a lesser degree of airway obstruction at time of diagnosis. Two or more lower respiratory prescribing consultations before diagnosis and data available for 2 years after diagnosis (OR 3·16, 95% CI 3·01–3·32) and the second year after diagnosis (2·81, 2·67–2·96).

Discussion

Our findings show that, during the 20 years leading up to diagnosis, the proportion of patient consultations in primary and secondary care (and the frequency of consultations) for lower respiratory symptoms, antibiotic and oral steroid prescriptions, and chest radiography increased. Indeed, 85% of patients consulted primary care for lower respiratory symptoms in the 5 years before diagnosis of COPD. This finding confirms that many opportunities exist for earlier diagnosis of COPD in the course of routine clinical practice in the UK; recognition of these opportunities could be incorporated to serve as part of a case-finding strategy for patients with COPD and associated comorbidities (panel).

Women had more missed opportunities in primary care, but not in secondary care, than did men. One explanation might be that general practitioners are less likely to suspect COPD in women than in men. However, in this study—as in others—men had more severe airway obstruction at time of diagnosis than did women.31 Bridevaux and colleagues32 have reported that increased weight gain in female but not male patients with COPD was associated with rapid fall of FEV1; thus, opportunities for early diagnosis and intervention including the provision of lifestyle advice are important. Contrary to the GOLD guidelines,22 which document reduced FEV1, as one of the defining parameters for risk of exacerbation, we report that the frequency of lower respiratory prescribing consultations was not associated with degree of airway obstruction (FEV1%), although a history of lower respiratory prescribing consultations before diagnosis was associated with an increased risk of exacerbations after diagnosis. The absence of association between frequency of lower respiratory prescribing consultations and degree of airway obstruction might be a result of selection bias, although since the implementation of the Quality Outcome Framework in 2005, most patients diagnosed had an FEV1% value available. In view of our findings and those for the SAPALDIA cohort study—which showed an association between early symptom presentation and progression to COPD—a history of multiple lower respiratory prescribing consultations could be a useful marker for case-finding as well as predicting which patients are likely to have frequent exacerbations after diagnosis.

Recent COPD policy and practice guidance have aimed to improve COPD diagnosis. Over the 20-year study period, median age at diagnosis reduced slightly between 1990

---

![Table 4: General linear model derived rate ratios for missed opportunities](image)

| Dependent variable | Independent variable | Rate ratio per year (95% CI) |
|--------------------|----------------------|-----------------------------|
| Lower respiratory prescribing consultations | Year of diagnosis | 0.982 (0.979-0.985) |
| | Age at diagnosis | 1.004 (1.002-1.006) |
| | Men | 0.992 (0.993-0.994) |
| Lower respiratory consultations | Age at diagnosis | 0.990 (0.980-0.991) |
| | Men diagnosed in secondary care | 0.994 (0.993-0.995) |
| | Women diagnosed in secondary care | 0.982 (0.972-0.993) |
| | Women diagnosed in primary care | 0.996 (0.994-0.997) |
| | Year of diagnosis | 0.955 (0.934-0.976) |
| | Secondary care | 1.000 (0.998-1.003) |
| Chest radiography | Year of diagnosis | 1.993 (1.088-1.097) |
| | Age at diagnosis | 1.001 (1.001-1.004) |
| | Diagnosed in secondary care vs primary care (reference) | 0.73 (0.57-0.94)* |
| | Men vs women (reference) | 1.06 (1.06-1.14)* |
| Outpatient visits | Year of diagnosis | 0.917 (0.910-0.925) |
| | Age at diagnosis | 0.998 (0.992-1.004) |
| | Men | 0.983 (0.982-0.993) |
| | Diagnosed in secondary care vs primary care (reference) | 1.49 (1.06-2.02)* |

*Rate ratio (95% CI) not rate ratio per year.

---

![Table 5: Mean differences in age at diagnosis from general linear model](image)

| Dependent variable | Independent variable | Difference in age (years) |
|--------------------|----------------------|--------------------------|
| Age at diagnosis including practice as a random effect | Increase in age per increase in year | 0.06 (0.04-0.09) |
| | Diagnosis in secondary care vs primary care | 2.82 (1.77-3.87) |
| | Men vs women | 0.35 (0.02-0.68) |
| | Practice | Significant (age varies across practices) |
| | Sex by practice | Significant (age varies with sex across practices) |
| Age at diagnosis excluding practice as a random effect | Decrease in age per increase in year | 0.05 (0.03-0.07) |
| | Diagnosis in secondary care vs primary care | 2.15 (1.10-3.20) |

Data are mean (95% CI).
and 2007, as did the yearly mean adjusted age at diagnosis (excluding practice). However, adjustment for practice (as a random effect) resulted in a reversal of the trend, with the yearly mean adjusted age at diagnosis increasing over time. This finding suggests that practice policy might have significantly affected age at diagnosis over the study duration. Over the same time period, we also recorded reductions in the frequency of lower respiratory events, substantial increases in the prevalence of common COPD comorbidities, and a reduction in the proportion of patients with high airflow obstruction at diagnosis, which is contrary to the accepted notion that patients with many comorbidities have severe COPD disease.14

Analyses using historical primary care datasets are limited by the quality of the data. However, treatment and consultation data in UK electronic patient records are regarded to be of high quality,15–17 with treatment data accepted as a reliable proxy of dispensed drugs (in the UK, pharmacists are required to dispense drugs that physicians prescribe). The diagnosis of COPD in this study is based on the presence of a coded diagnosis of COPD and at least two prescriptions for COPD treatment to indicate initiation and continuation of treatment. We did not assess the different phenotypes of COPD. Because the dataset draws from a geographically and socioeconomically diverse population, we believe that the study results are widely applicable to routine clinical practice in the UK.

Active long-term comorbid disease was defined a priori as a recent diagnostic code or as ever having had a diagnostic code plus recent treatment for disorders that might entail long-term treatment and no re-entry of diagnostic coding. We recorded a high prevalence of asthma across all COPD severities. A possible cause is that many patients receive an initial diagnosis of asthma on the basis of their symptoms, which is not updated (to asthma resolved) when they are subsequently diagnosed with COPD. As diagnostic accuracy improves, asthma and COPD phenotypes should be better delineated.

Using population-based cohorts established in the late 1980s from the Atherosclerosis Risk in Communities Study and the Cardiovascular Health Study, Mannino and colleagues34 reported that prevalence of diabetes, hypertension, and cardiovascular disease increased with increasing airflow obstruction. By contrast, across almost all the comorbidities, we report that a higher prevalence of comorbidity was associated with less airway obstruction at the time of diagnosis. This finding suggests that the presence of comorbidities leads to earlier COPD diagnosis, because those with comorbidities are more likely to visit their family doctor or nurse, leading to increased opportunities to identify symptoms and a diagnosis. Also there may be increased awareness of the risk of COPD in these patients (perhaps driven by national targets such as the UK’s Quality and Outcomes Framework).9 Conversely, patients with fewer comorbidities attended their family doctor less frequently, resulting in fewer opportunities for diagnosis and therefore fewer chances to implement steps that might slow disease progression. This effect might have led to increased disease progression.

Our data searches showed that recording routine data into electronic patient records started around 15–20 years ago. During the initial years after transition from paper to electronic patient records, not all consultations were fully coded, limiting the usability of the data. The introduction in 2005 of the UK Quality and Outcomes Framework, which requires current smoking status and a valid FEV1 value to be entered into the COPD patient record, has improved the frequency of data recording.34 We maximised the FEV1% data available by using the nearest recorded FEV1 or FEV1% value recorded either before diagnosis or within 10 years after diagnosis. Yearly decrease of lung function is 25–30 mL per year for patients aged 35–40 years, increasing to 60 mL per year for those aged 70 years and older.35 Thus, the small median duration between the date of entry of FEV1, value and date of diagnosis in our dataset (2 months, IQR 0–29), suggests that the duration over which the FEV1 data were identified did not significantly affect our findings. If spirometry values
were missing, we assumed that patients had spirometry done to inform the diagnosis, but results were not entered. Although small but significant differences for age at diagnosis, sex, place of diagnosis, and recording of smoking history existed between the FEV1 subgroups and the total population, we believe our findings can be generalised to the COPD population as a whole. Indeed, the greater characterisation of the FEV1 subgroup is consistent with management of chronic disease moving to a primary care setting and the implementation of Quality and Outcomes Framework targets for recording smoking status and FEV₁. However, questions remain about the overall quality of spirometry in primary care, and therefore the accuracy of any results.

It might be easier to identify those at risk of COPD by auditing a practice’s patient records systematically rather than attempting to do so opportunistically during a consultation. Time pressure can lead to short consultations and reduced continuity of care. Case-finding strategies have been proposed as a mechanism for identifying high-risk patients. To date, these strategies have focused on patients with appropriate symptoms and risk factors including smoking, but have not included the number of lower respiratory consultations or chest radiographs (discrete clinical episodes). Screening asymptomatic patients for COPD with spirometry does not seem justified by current evidence and is less useful in young people, for whom the pre-test probability of COPD is low. Prospective case-finding studies that include use of health-care resources are needed to establish how our findings can be used in routine primary care to help identify patients with COPD as early as possible. Such studies would require establishing background levels of use of respiratory health-care resources in the short term and long term for the healthy non-COPD population. We noted that the yearly frequency of missed opportunities increased in the 5 years immediately before diagnosis, therefore a 5-year review window of discrete clinical episodes might be appropriate for case-finding. Indeed, a 5-year window would avoid difficulties such as availability of data and changing awareness of COPD and investigations (for example following the implementation of the Quality and Outcomes Framework).

Decline in lung function seems to be steepest in the early stages of disease, indicating that opportunities to diagnose COPD earlier should be taken as early as possible. Our data suggest that: (1) although recurrent respiratory infections should always be assessed in their own right and treated accordingly, the possible presence of COPD should also be considered; (2) patients who smoke (current or past), are aged 40 years or older, presenting with lower respiratory symptoms requiring a prescription should be recalled after 6 weeks for spirometry to detect COPD; and (3) COPD symptoms should also be sought in patients who do or have smoked, are aged 40 years or older, and are attending clinics for COPD concordant comorbidities with screening (hand-held or similar spirometry done as appropriate). The diagnosis of COPD should include clinical assessment and stratification and be confirmed by post-bronchodilator spirometry done by trained staff using appropriate devices. Although most general practices in the UK have a spirometer, our data confirm that barriers to effective spirometric evaluation exist, probably in the form of time pressures, lack of appropriate training, and low confidence in interpretation of results. Although chest radiography might be needed to rule out cancer or tuberculosis, requesting a chest radiograph indicates that an opportunity to consider COPD might have been missed. In such cases, spirometry could have been ordered as well as chest radiography.

We noted that patients who have had recurrent lower respiratory prescribing consultations before COPD diagnosis are at a greater risk of future exacerbations. This finding is consistent with the frequent exacerbator phenotype described by Hurst and colleagues. Because people who have frequent exacerbations are liable to rapid decline in lung function and low quality of life, they have much to gain from early detection. Indeed, our results suggest that patients tended to have moderate-to-severe disease at the point of diagnosis, thereby minimising the potential benefit that starting treatment could provide in terms of delayed disease progression. Prospective studies are necessary to confirm the benefit, if any, of early detection and management of COPD in primary care, based on the findings of our study.

What improvements can be made? The situation in the UK—where these data were recorded—has steadily improved over the past 20 years. This improvement might be partly related to resource allocation to encourage use of diagnostic spirometry and recent policies of the Department of Health. An important priority is education of primary care nurses and doctors to be aware of the possibility of COPD in people presenting with risk factors (including comorbidity) and respiratory symptoms, and to undertake quality spirometry as an early investigation. Proposals to address these priorities have included incentivisation of primary care as a means of obtaining access to quality spirometry, coupled with knowledge and skills about disease management and an enhanced yearly structured review. Collaboration with community workers such as respiratory nurses, smoking cessation counsellors, and public health workers who provide dietary and exercise advice has the potential to improve clinical outcomes while reducing hospital admissions and treatment costs, as evidenced by the Finnish 10-year COPD Programme. Because the Programme showed no improvement in the number of patients diagnosed with COPD, integration of a case-finding strategy—including analysis of routinely collected data—to identify patients at risk of COPD and who might benefit from further assessment could lead to further improvements.
We suggest that a case-finding approach should be modified to include: all patients older than 40 years with a diagnosis of asthma and who currently smoke; all smokers older than 40 years who have a lower respiratory prescribing event; and follow-up of existing recommendations for smokers aged older than 40 years with any respiratory symptoms, especially if they are male. Although we are unable to discern the principal drivers responsible for the small improvements in COPD diagnosis over the 20-year study period, our study suggests that patient outcomes could be improved when a person-centred approach to disease management is taken, including both related or concordant and unrelated disconcordant comorbidities. Decision support software could be used to automatically generate prompts for clinicians on possible next steps for patients deemed at risk. The substantial financial costs of failing to diagnose and treat COPD until a later stage would probably outweigh the costs of implementing this approach.

Understanding historical patterns of respiratory symptoms, treatments, and test results, comorbidities and health-care resource use in patient-centred primary care such as we propose relies on a doctor having access to all current and past records and information. For health-care systems outside of the UK that are less focused on primary care—eg, in the USA—implementation of mechanisms to enable clinical information to be shared with family doctors is essential if diagnosis of COPD is to improve.

Contributors
RCJM, DP, LM, DMGH, RW, DR, SH, MK, KH, AM, EDB, DF, and AC designed the study, interpreted data, and revised the report. EJS, JVZ, AB, AC, and DP analysed and interpreted data. RCJM, DP, LM, DMGH, RW, DR, SH, MK, KH, AM, EDB, DF, EJS, JVZ, AB, and AC wrote and revised the report. All authors have given final approval of the version to be published.

Declaration of interests
We declare that we have no competing interests.

References
1 National Clinical Guideline Centre. Chronic obstructive pulmonary disease: management of chronic obstructive pulmonary disease in adults in primary and secondary care, 2010. http://guidance.nice.org.uk/CG101/Guidance/pdf/English (accessed Jan 9, 2014).
2 Maltas F, Dennis N, Chan CK. Rationale for earlier treatment in COPD: a systematic review of published literature in mild-to-moderate COPD. COPD 2013; 10: 79–103.
3 Sissa S, Dell’Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 2002; 57: 957–63.
4 Price D, Freeman D, Cleland J, Kaplan A, Cerasoli F. Earlier diagnosis and earlier treatment of COPD in primary care. Prim Care Respir J 2011; 20: 15–22.
5 Department of Health. An outcomes strategy for people with chronic obstructive pulmonary disease (COPD) and asthma in England, 2011. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/151852/dh_128428.pdf.pdf (accessed Jan 9, 2014).
6 Department of Health. Consultation on a strategy for services for chronic obstructive pulmonary disease (COPD) in England, 2010. http://www.dh.gov.uk/prod_consum_dh/groups/dh_digitalassets/@dh/@en/documents/digitalasset/dh_113279.pdf (accessed Jan 9, 2014).
7 Street Rl Jr, Gordon HS, Ward MM, Krugt E, Kravitz RL. Patient participation in medical consultations: why some patients are more involved than others. Med Care 2005; 43: 960–69.
8 Agusti A, Calverley PM, Celli B, et al. Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir Res 2010; 11: 122.
9 Solano JP, Gomes B, Higginson JJ. A comparison of symptom prevalence in far advanced cancer. AIDS, heart disease, chronic obstructive pulmonary disease and renal disease. J Pain Symptom Manage 2006; 31: 58–69.
10 Purdue MP, Gold L, Jarvholm B, Alavanja MC, Ward MH. Vermeulen R. Impaired lung function and mortality in a cohort of Swedish construction workers. Thorax 2007; 62: 51–56.
11 Waswa-Kintu S, Gan WQ, Man SF, Pare PD, Sin DD. Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis. Thorax 2005; 60: 750–75.
12 Bentsen SB, Rustoen T, Miaskowski C. Prevalence and characteristics of pain in patients with chronic obstructive pulmonary disease compared to the Norwegian general population. J Pain 2011; 12: 539–45.
13 Miller J, Edwards LD, Agusti A, et al. Comorbidity, systemic inflammation and outcomes in the ECLIPSE cohort. Respir Med 2013; 107: 1376–84.
14 Artuad F, Dugravot A, Sabia S, Singh-Manouz A, Trinquart C, Elbaz A. Unhealthy behaviours and disability in older adults: Three-City Dijon cohort study. BMJ 2013; 347: f2420.
15 Donaldson GC, Seemungal TA, Bhownik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002; 57: 847–52.
16 Donaldson GC, Wilkinson TM, Hurst JR, Perera WR, Wedzicha JA. Exacerbations and time spent outdoors in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 171: 446–52.
17 Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998; 157: 418–22.
18 Sullivan SD, Ramsey SD, Lee TA. The economic burden of COPD. Chest 2000; 117 (2 suppl): 55–95.
19 Soriano JB, Ziehnius J, Price D. Screening for and early detection of chronic obstructive pulmonary disease. Lancet 2009; 374: 721–32.
20 Qaseem A, Will JT, Weinberger SE, et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med 2011; 155: 179–91.
21 Hansell A, Hollowell J, Nichols T, McNiece R, Strachan D. Use of the General Practice Research Database (GPRD) for respiratory epidemiology: a comparison with the 4th Morbidity Survey in the General Practice Research Database. J Epidemiol Community Health 1999; 53: 107–10.
22 Global Initiative for Chronic Obstructive Lung Disease (GOLD). The diagnosis, management and prevention of chronic obstructive pulmonary disease (updated 2011). 2011. http://www.goldcopd.org/uploads/users/files/GOLD_Report_2011_Feb21.pdf (accessed Jan 10, 2014).
23 Jick SS, Kaye JA, Vasilakis-Scaramozza C, et al. Validity of the general practice research database. Pharmacotherapy 2003; 23: 686–89.
24 The Medicines and Healthcare Products Regulatory Agency. General Practice Research Database (GPRD), 2012. http://www.cprd.com (accessed Jan 9, 2014).
25 Global Initiative for Chronic Obstructive Lung Disease Global Strategy for The Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease (updated 2011). Medical Communications Resources, 2011.
26 Paul EA, Garrod R, Garnham R, et al. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999; 54: 581–86.
27 Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 2012; 380: 37–43.

28 Price D, Brusselle G. Challenges of COPD diagnosis. Expert Opin Med Diagn 2013; 7: 543–56.

29 Corsonello A, Antonelli Incalzi R, Pistelli R, Pedone C, Bustacchini S, Lattanzio F. Comorbidities of chronic obstructive pulmonary disease. Curr Opin Pulm Med 2011; 17 (suppl 1): S21–28.

30 Fabbri LM, Boyd C, Boschetto P, et al. How to integrate multiple comorbidities in guideline development: article 10 in Integrating and coordinating efforts in COPD guideline development. An official ATS/ERS workshop report. Proc Am Thorac Soc 2012; 9: 274–81.

31 Laitinen T, Hodgson U, Kupiainen H, et al. Real-world clinical data identifies gender-related profiles in chronic obstructive pulmonary disease. COPD 2009; 6: 256–62.

32 Bridevaux PO, Gerbase MW, Schindler C, et al. Sex-specific effect of body weight gain on systemic inflammation in subjects with COPD: results from the SAPALDIA cohort study 2. Eur Respir J 2009; 34: 332–39.

33 Probst-Hensch NM, Curjuric I, Pierre-Olivier B, et al. Longitudinal change of prebronchodilator spirometric obstruction and health outcomes: results from the SAPALDIA cohort. Thorax 2010; 65: 150–56.

34 Mannino DM, Thorn D, Swensen A, Holguin F. Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD. Eur Respir J 2008; 32: 962–69.

35 Poels PJ, Schermer TR, van Weel C, Calverley PM. Spirometry in chronic obstructive pulmonary disease. BMJ 2006; 333: 870–71.

36 Winchester CC, Macfarlane TV, Thomas M, Price D. Antibiotic prescribing and outcomes of lower respiratory tract infection in UK primary care. Chest 2009; 135: 1163–72.

37 Kinnula VL, Vasankari T, Kontula E, et al. The 10-year COPD Programme in Finland: effects on quality of diagnosis, smoking, prevalence, hospital admissions and mortality. Prim Care Respir J 2011; 20: 178–83.