q-deformation with (φ, Γ) structure of the de Rham cohomology of the Legendre family of elliptic curves

Ryotaro Shirai

June 23, 2020

Abstract

In the late ’60s, B. Dwork studied a Frobenius structure compatible with the classical hypergeometric differential equation with parameters $(\frac{1}{2}, \frac{1}{2}; 1)$ by analyzing behavior of solutions of the differential equation under Frobenius transformation. Recently, P. Scholze conjectured the existence of q-de Rham cohomology groups for any \mathbb{Z}-scheme. In this paper, we give a Frobenius structure compatible with the q-hypergeometric differential equation with parameters (q^i, q^j, q) by showing a q-analogue of some results of Dwork. This construction gives a q-deformation with (φ, Γ)-structure over $\mathbb{Z}_p[[q-1]][[\lambda]]$ of the de Rham cohomology of the p-adic Legendre family of elliptic curves which has Frobenius structure and connection.

1 Introduction

Let p be an odd prime number. Let $h(\lambda) = \sum_{i=0}^{\nu-1} \left(\frac{\lambda}{p} \right)^i \lambda^i$ be the Hasse polynomial. Let $B = \mathbb{Z}_p\left(\lambda, \frac{1}{\lambda(1-\lambda)} \right)$ be the p-adic completion of the ring $\mathbb{Z}_p\left[\lambda, \frac{1}{\lambda(1-\lambda)} \right]$. We consider the p-adic Legendre family of elliptic curves

$$E = \text{Proj} \left(B[X, Y, Z]/(Y^2 Z - X(X - Z)(X - \lambda Z)) \right) \to \text{Spec}(B).$$

Let $\overline{\mathbb{Q}}_p$ be an algebraic closure of \mathbb{Q}_p. Let $\overline{\mathbb{Z}}_p$ be the integral closure of \mathbb{Z}_p in $\overline{\mathbb{Q}}_p$. Let \mathfrak{m} be the maximal ideal of $\overline{\mathbb{Z}}_p$. For every value $\mu \in \overline{\mathbb{Z}}_p, \mu(1 - \mu) \not\equiv 0 \mod p$ of λ, the fiber above μ is an elliptic curve with good ordinary reduction, denoted by E_μ. The relative curve E over B with the divisor at infinity deleted is written as $\text{Spec} \left(B[x, y]/(y^2 - x(x - 1)(x - \lambda)) \right)$, where $(x, y) = \left(\frac{X}{Z}, \frac{Y}{Z} \right)$. Then the de Rham cohomology $H^1_{\text{dR}} := H^1_{\text{dR}}(E/B)$ is a free B-module of rank 2 and $\text{Fil}^1 H^1_{\text{dR}} = \Gamma(E, \Omega_{E/B})$ is a free B-module of rank 1 with basis $\omega = \mathfrak{d}$. In [Dw69] §6, Dwork defined a Frobenius structure $\varphi_{H^1_{\text{dR}}}$ on H^1_{dR}. Moreover, he found that there exists a unique direct summand U of the B-module H^1_{dR} stable under $\varphi_{H^1_{\text{dR}}}$. (See [vdP86] and [FrP04, pp. 232-233].) This U is called the unit root part of H^1_{dR}. Let $E_{\mathfrak{m}}$ denote the reduction mod p of E. Then H^1_{dR} is canonically isomorphic to the crystalline cohomology $H^1_{\text{crys}}(E_{\mathfrak{m}}/B)$, and $\varphi_{H^1_{\text{dR}}}$ coincides with the Frobenius structure induced by the absolute Frobenius of $E_{\mathfrak{m}}$.

More precisely, we obtain U as follows. Let $\varphi: B \to B$ be the unique lifting of the absolute Frobenius satisfying $\varphi(a) = a (a \in \mathbb{Z}_p)$ and $\varphi(\lambda) = \lambda^p$ (cf. §2). Then the Frobenius structure $\varphi_{H^1_{\text{dR}}}$ is realized as a φ-semilinear endomorphism of H^1_{dR}, which is again denoted by $\varphi_{H^1_{\text{dR}}}$ in the following. Let $\nabla: H^1_{\text{dR}} \to H^1_{\text{dR}} \otimes_B \Omega_B$ be the Gauss-Manin connection. We define the B-linear endomorphism D of H^1_{dR} by $\nabla = D \otimes d\lambda$. Then ω and $D(\omega)$ form a basis of H^1_{dR} because the Kodaira-Spencer map $\Gamma(E, \Omega_{E/B}) \subset H^1_{\text{dR}} \nabla \to H^1_{\text{dR}} \otimes_B \Omega_B \to H^1_{\text{dR}}/\text{Fil}^1 \otimes_B \Omega_B$ is an isomorphism. (This follows from the following fact: For any field F of characteristic
$\neq 2$, and any $a \in F \setminus \{0,1\}$, the elliptic curve $y^2 = x(x-1)(x-a-\varepsilon)$ over $F[\varepsilon]/(\varepsilon^2)$ is not constant, i.e., not isomorphic to the base change of the elliptic curve $y^2 = x(x-1)(x-a)$ over F under $F \rightarrow F[\varepsilon]/(\varepsilon^2)$.

By [vdP86 Proposition 7.11.(ii)], we can write ∇ on H^1_{dR} explicitly as

$$\nabla \left((\lambda(1-\lambda) \omega - \lambda(1-\lambda) D(\omega)) \right) = \left(\lambda(1-\lambda) \omega - \lambda(1-\lambda) D(\omega) \right) \frac{1}{\lambda(1-\lambda)} \left(\begin{array}{c} 1 - 2\lambda \\ -\lambda(1-\lambda) \\ 0 \end{array} \right) \otimes d\lambda. \quad (1)$$

Let C be a ring extension of B (e.g. $\mathbb{Q}_p[[\lambda]]$) which carries an extension of $\frac{d}{d\lambda}$. Then the above formula implies that, for $f_1, f_2 \in C$, we have $D(f_1(1-\lambda) \omega - f_2(1-\lambda) D(\omega)) = 0$ if and only if $f_1 = \frac{df}{d\lambda}$ and f_2 satisfies the classical hypergeometric equation with parameters $(\frac{1}{2}, \frac{1}{2}; 1)$ ([vdP86 Proposition 7.11.(iii))]

$$\lambda(1-\lambda) \frac{d^2}{d\lambda^2} f_2 + (1-2\lambda) \frac{d}{d\lambda} f_2 - \frac{1}{4} f_2 = 0. \quad (2)$$

This differential equation has the well-known solution $f(\lambda) := F(\frac{1}{2}, \frac{1}{2}; 1; \lambda) = \sum_{n=0}^{\infty} \left(\prod_{i=0}^{n-1} \left(\frac{i+\frac{1}{2}}{\lambda} \right) \right) \lambda^n \in \mathbb{Q}_p[\lambda]$, which converges on the open unit disk.

Let $\mathbb{Z}_p \left< \frac{1}{\n\lambda} \right>$ be the p-adic completion of $\mathbb{Z}_p \left< \lambda, \frac{1}{\n\lambda} \right>$. In [Dw69 §1-§4], Dwork showed $\frac{\varepsilon f}{\varepsilon} \in \mathbb{Z}_p \left< \frac{1}{\n\lambda} \right>$, from which he derived $\frac{df}{d\lambda} \in \mathbb{Z}_p \left< \frac{1}{\n\lambda} \right>$. The latter implies that $\lambda \n 2 \omega = D(\omega)$ form a basis of H^1_{dR}. The unit root part U is given by $U = B \n 2$, and he further showed a formula ([Dw69 (6.29))]

$$\varphi_{H^1_{\text{dR}}} (\n 2) = \varepsilon \frac{\varphi(f)}{\varphi(f)} \n 2, \quad \varepsilon = (-1)^{\frac{n}{2}}. \quad (3)$$

By the last claim in the previous paragraph, we see $D(f \n 2) = 0$, which implies $D(\n 2) = -\frac{df}{d\lambda} \n 2$, and therefore U is stable under ∇.

By using the explicit formula of ∇ on H^1_{dR} above, we see $\nabla(\n 2 \n 2) = 0$ and therefore $(\n \lambda^2 H^1_{\text{dR} \mid \varepsilon = 0}) = \mathbb{Z}_p (\n 2 \n 2)$. Since the Frobenius endomorphism of $\n \lambda^2 H^1_{\text{dR}} (E_p) = H^2_{\text{dR}} (E_p)$ for $\mu = [a] \in \mathbb{Z}_p (a \in \mathbb{F}_p \{0,1\})$ is the multiplication by p, this implies $\varphi(\n 2 \n 2) = \varepsilon p \n 2 \n 2$. As $\varphi_{H^1_{\text{dR}}} (\varepsilon) H^1_{\text{dR}} \subset pH^1_{\text{dR}}$, we have

$$\varphi_{H^1_{\text{dR}}} (\n 1) = \varepsilon p \varphi(f) \n 1 + pb \n 2 \quad (4)$$

for some $b \in B$.

Let B' be $\mathbb{Z}_p \left< \lambda, \frac{1}{\n\lambda} \right>$ equipped with the Frobenius φ defined in the same way as B. Let $U_{B'}$ be the B'-submodule $B' \n 2$ of U. Then, by the explicit description of $\varphi_{H^1_{\text{dR}}} \mid_U$ and $\nabla \mid_U$ recalled above, we see that they induce a φ-semilinear endomorphism $\varphi_{U_{B'}}$ of $U_{B'}$, which satisfies $B' \cdot \varphi_{U_{B'}} (U_{B'}) = U_{B'}$, and a connection $\nabla: U_{B'} \rightarrow U_{B'} \otimes_{\Omega_{B'}} \Omega_{B'}$, where $\Omega_{B'} = B' \varepsilon d\lambda$. We also see that $(H^1_{\text{dR}} \mid \varepsilon, \nabla)$ has a “B'-structure” given by relative log de Rham cohomology as follows. Let T be $\text{Spec}(B')$ equipped with the log structure defined by the divisor $\lambda(1-\lambda) = 0$. Then, by replacing B with B' in the definition of E, we obtain a log smooth extension E'/T of $E/\text{Spec}(B)$. Its relative log de Rham cohomology $H_{B'} := H^1_{\text{dR}}(E'/T)$ is a free B'-module of rank 2 equipped with the logarithmic Gauss-Manin connection $\nabla: H_{B'} \rightarrow H_{B'} \otimes_{\Omega_{B'}} \Omega_{B'}$, where $\Omega_{B'} = B' \frac{d\lambda}{\lambda(1-\lambda)}$. The pull-back by $\text{Spec}(B) \rightarrow T$ induces a B'-linear isomorphism $H_{B'} \otimes_{B'} B \cong H^1_{\text{dR}}$ compatible with ∇, and Fil^\bullet. Moreover, we have $\text{Fil}^1 H_{B'} = \Gamma(E', \Omega_{E'/T}) = B' \omega$, and the Kodaira-Spencer map $\text{Fil}^1 H_{B'} \rightarrow H_{B'}/\text{Fil}^1 \otimes_{B'} \Omega_{B'}$ is an isomorphism. Since $\nabla(\omega) = (\lambda(1-\lambda) D(\omega) \otimes \frac{d\lambda}{\lambda(1-\lambda)})$, this means
that both \((\omega, \lambda(1 - \lambda)D(\omega))\) and \((\overline{\omega}, \overline{\lambda})\) are bases of \(H_{B'}\). This implies that \(U_{B'}\) is a direct factor of \(H_{B'}\). Since \(\varphi\) of \(B'\) does not preserve the divisor \(\lambda(1 - \lambda) = 0\), the comparison isomorphism with the log crystalline cohomology of \(E^e_{D'}/T\) does not give a \(q\)-semilinear endomorphism of \(H_{B'}\).

Let \(B'' = \mathbb{Z}_p \langle \lambda, \frac{1}{1 - \lambda(1 - \lambda)H(\lambda)} \rangle\) be the \(p\)-adic completion of \(\mathbb{Z}_p \langle \lambda, \frac{1}{1 - \lambda(1 - \lambda)H(\lambda)} \rangle\), and define the Frobenius \(\varphi\) of \(B''\) in the same way as that of \(B\). Then, since \(\varphi\) of \(B''\) preserves the divisor \(\lambda = 0\), the comparison isomorphism with the log crystalline cohomology induces a \(q\)-semilinear endomorphism \(\varphi_{H_{B''}}\) of \(H_{B''} := H_{B''} \otimes B''\), which is compatible with \(\varphi_{H_{B''}}\). As \(\varphi_{H_{B''}}(\text{Fil}^1H_{B''}) \subset pH_{B''}\), we obtain \(b \in B''\).

In \([3]\) we introduce a category \(\text{MIC}_{[0, a]}(A, \varphi, \text{Fil}^*)\) for a non-negative integer \(a\) whose object is a free \(A\)-module of finite type \(M\) with a decreasing filtration, a Frobenius endomorphism and a connection satisfying certain conditions. By the above construction, we obtain an object of \(\text{MIC}_{[0, a]}(A, \varphi, \text{Fil}^*)\) in each of the cases \(A = B'\), \(a = 0\), \(M = U_{B'}\) and \(A = \mathbb{Z}_p[\lambda]\), \(a = 1\), \(M = H_{B''} \otimes B''\). In this paper, we are interested in \(q\)-analogues of these objects, namely \(q\)-deformations involving a formal variable \(q\) such that the specialization to \(q = 1\) recovers the original objects. P. Scholze made a conjecture that there exists a canonical \(q\)-deformation of de Rham cohomology, which is sometimes called \(q\)-de Rham cohomology or Aomoto-Jackson cohomology. (See [Sch17].) Especially in [Sch17] (8), he asked whether there is a relation between the \(q\)-differential equation given by the conjectured \(q\)-de Rham cohomology of the Legendre family and the \(q\)-hypergeometric equation. Our result, which is explained below, may be regarded as positive evidence to his question.

Let \(S' = \mathbb{Z}_p[[q - 1]] \langle \lambda, \frac{1}{1 - \lambda(1 - \lambda)H(\lambda)} \rangle\) be the \((p, q - 1)\)-adic completion of \(\mathbb{Z}_p[[q - 1]] \langle \lambda, \frac{1}{1 - \lambda(1 - \lambda)H(\lambda)} \rangle\). Let \(R'\) be \(\mathbb{Z}_p[[q - 1]][\lambda]\) or \(S'\). Put \(A := R'/(q - 1)\), then we can identify \(A\) with \(\mathbb{Z}_p[[\lambda]]\) (resp. \(B'\)) when \(R' = \mathbb{Z}_p[[q - 1]]\) (resp. \(S'\)).

In \([2]\) we give a Frobenius structure and a \(\Gamma\)-action \(\rho\), and then recall the definition of \(q\)-connections on \(R'\)-modules and the relation between \(\rho\)-semilinear \(\Gamma\)-actions and \(q\)-connections. In \([3]\) we introduce the category \(\text{MF}^{[p], q-1}_{[0, a]}(R', \varphi, \Gamma)\) for a non-negative integer \(a\) whose object is a free \(R'\)-module of finite type \(M\) with a decreasing filtration, a \(\varphi\)-semilinear endomorphism and a \(\rho\)-semilinear action of \(\Gamma\) satisfying certain conditions. Then the canonical surjection \(R' \to A\) induces a functor

\[
\text{MF}^{[p], q-1}_{[0, a]}(R', \varphi, \Gamma) \xrightarrow{\text{mod } q - 1} \text{MIC}_{[0, a]}(A, \varphi, \text{Fil}^*).
\]

By using the equivalence of categories in [Tsu17] §7, we further construct a canonical right inverse of this functor when \(a = 0, 1\) as

\[
\text{MIC}_{[0, a]}(A, \varphi, \text{Fil}^*) \xrightarrow{- \otimes A/(q - 1)^{a+1}} \text{MF}^{[p], q-1}_{[0, a]}(R'/(q - 1)^{a+1}, \varphi, \Gamma) \xleftarrow{\sim} \text{MG}^{[p], q-1}_{[0, a]}(R', \varphi, \Gamma)
\]

This applies to the objects \(U_{B'}\) (for \(A = B'\) and \(a = 0\)) and \(H_{B''} \otimes B''\mathbb{Z}_p[\lambda]\) (for \(A = \mathbb{Z}_p[\lambda]\) and \(a = 1\)) mentioned above.

One can ask whether there is a relationship between the canonical lifts (\(q\)-deformations) of \(U_{B'}\) and \(H_{B''} \otimes B''\mathbb{Z}_p[\lambda]\) constructed as above and the \(q\)-hypergeometric differential equation [GR99] with parameters \((q^2, q^2, q^2, q^2, q^2)\) defined by

\[
q\lambda(1 - q\lambda)d^2f + (1 - (1 + [2| q] - 2 [\frac{1}{q}])\lambda)d_qf - [\frac{1}{q}]^2f = 0,
\]

which is a \(q\)-analogue of the differential equation \([2]\). We give a positive answer to this question as follows. By “\(q\)-deforming” the relations of \(\nabla\) and \(\varphi\) on \(U_{B'}\) (resp. \(H_{B''} \otimes B''\mathbb{Z}_p[\lambda]\)) to the hypergeometric equation \([2]\) recalled above, we construct a Frobenius endomorphism and a \(q\)-connection on a free \(S''\)-module of rank 1 (resp. a free \(\mathbb{Z}_p[[q - 1]][\lambda]\)-module of rank 2) associated with the \(q\)-hypergeometric differential equation \([5]\), and show that it gives the desired canonical \(q\)-deformation of \(U_{B'}\) (resp. \(H_{B''} \otimes B''\mathbb{Z}_p[\lambda]\)).
In we state the main theorems. In we give explicit solutions of the \(q \)-hypergeometric equation \(5 \), one of which involves a \(q \)-analogue of the logarithmic functions \(\log(\lambda) \) and \(\log(1 - \lambda) \), and compute a \(q \)-analogue of Wronskian of the explicit solutions. In we construct a \(q \)-deformation of \(\nabla \) on \(H_{B^a} \) which is related to the \(q \)-differential equation \(5 \) similarly to the relation between \(\nabla \) on \(H_{B^a} \) and the differential equation \(2 \) recalled above. In we show a \((p, q - 1) \)-adic formal congruence, which is a \(q \)-analogue of Dwork’s results in \(\text{Dw69} \). In and \(9 \) by applying the formal congruence to the explicit solutions constructed in we give Frobenius structures to the \(q \)-deformations of the connections on \(U_{B^a} \) and \(M_{B^a} \otimes B^a \mathbb{Z}[\lambda]|_\mathbb{Z} \) (constructed in \(8 \)), and show that they give the desired canonical \(q \)-deformations. In we further show that the \(q \)-deformation of \(\varphi \) and \(\nabla \) on \(U_{B^a} \) admits an “arithmetic \(\Gamma \)-structure”.

Remark 1.1. The \(B^a \)-module \(H_{B^a} \) with \(\nabla, \varphi_{B^a}, \) and the filtration is an object of MIC\([0,1]\)(\(B^a, \varphi, \text{Fil}^* \)), and the functor \(10 \) in \(8 \) for \(a = 1 \) and \(R' = S'' := \mathbb{Z}_p[[q - 1]] \left(\lambda, \frac{1}{1 - \lambda} \right) \) gives a canonical \(q \)-deformation of \(H_{B^a} \) in MF\([\lambda]\)^{\text{\(q \)-1}}(\(S'', \varphi, \Gamma \)). Therefore one may ask whether its \(q \)-connection is related to the \(q \)-differential equation \(3 \) similarly to the relation between \(\nabla \) on \(H^{1\text{\(dR \)}}_{B^a} \) and the differential equation \(2 \). We can also apply the same construction to the log smooth extension of the Legendre family over the base \(\mathbb{Z}_p \left(\lambda, \frac{1}{1 - \lambda} \right) \) (without removing the supersingular locus), and ask the same question. It is natural to expect that this canonical \(q \)-deformation coincides with the conjectured (log) \(q \)-de Rham cohomology of the family. (We can compare the two in the category MF\([\lambda]\)^{\text{\(q \)-1}}(\(\mathbb{Z}_p[q - 1]/(q - 1)^2 \left(\lambda, \frac{1}{1 - \lambda} \right), \varphi, \Gamma \)), where our canonical \(q \)-deformation is reduced to the scalar extension by \(\mathbb{Z}_p \left(\lambda, \frac{1}{1 - \lambda} \right) \rightarrow \mathbb{Z}_p[q - 1]/(q - 1)^2 \left(\lambda, \frac{1}{1 - \lambda} \right) \). Thus our question is connected with the question by Scholze mentioned above.

Notation. We fix some notation used throughout this paper. Let \(p \) be an odd prime number. Let \(v_p \) be the \(p \)-adic valuation of \(\mathbb{Q}_p \), normalized by \(v_p(p) = 1 \). Let \(q \) be a formal variable. Let \(R = \mathbb{Z}_p[[q - 1]] \). Let \(Q \) be the quotient field of \(R \). Let \(B = \mathbb{Z}_p \left(\lambda, \frac{1}{1 - \lambda} \right) \). Let \(B' = \mathbb{Z}_p \left(\lambda, \frac{1}{1 - \lambda} \right) \). We equip \(B \) and \(B' \) with the \(p \)-adic topology. Let \(S' = R \left(\lambda, \frac{1}{1 - \lambda} \right) \). We equip \(R[[\lambda]] \) and \(S' \) with the \((p, q - 1) \)-adic topology. For \(a \in \mathbb{Q} \cap \mathbb{Z}_p \), let \([a]_q\) be the \(q \)-number (the \(q \)-analogue of the rational number \(a \)) defined by

\[
[a]_q := \frac{q^a - 1}{q - 1} = \sum_{i=1}^{\infty} \binom{a}{i} (q - 1)^{i-1}.
\]

If \(a \) is a positive integer, \([a]_q\) is equal to \(1 + q + q^2 + \cdots + q^{a-1} \).

Acknowledgments. This paper is based on the author’s Master’s thesis. The author is deeply grateful to Professor Takeshi Tsuji. He is the supervisor of the author.

2 \(q \)-connection

We define \(R(\lambda) \) to be the completion of the polynomial ring \(R[\lambda] \) with respect to the \((p, q - 1) \)-adic topology, namely,

\[
R(\lambda) := \varprojlim_n R[\lambda]/(p, q - 1)^n R[\lambda].
\]

For \(g(\lambda) \in R[\lambda] \setminus (p, q - 1)R[\lambda] \), we define \(R \left(\lambda, \frac{1}{g(\lambda)} \right) \) to be the completion of the ring \(R \left[\lambda, \frac{1}{g(\lambda)} \right] \) with respect to the \((p, q - 1) \)-adic topology. In this section, we construct a \(q \)-analogue of the differential operator \(\frac{d}{d\lambda} \) on \(R' = R[[\lambda]], R(\lambda) \) and \(R \left(\lambda, \frac{1}{g(\lambda)} \right) \) (\(g(\lambda) \in R[\lambda] \setminus (p, q - 1)R[\lambda] \)).
Definition 2.1. We define the Frobenius endomorphism φ of $R[[\lambda]], R\langle\lambda\rangle$ and $R\left\langle\lambda, \frac{1}{q\lambda}\right\rangle$ $(g(\lambda) \in R[\lambda] \setminus (p, q-1)R[\lambda])$ as follows: First, we define the endomorphism φ of $R[\lambda]$ satisfying $\varphi(x) \equiv x^p \mod p$ by $\varphi(a) = a (a \in Z_p)$, $\varphi(q) = q^p$, and $\varphi(\lambda) = \lambda^p$. Since it maps the ideals (λ) and $(p, q-1)$ of $R[\lambda]$ into themselves, we can define φ of $R[[\lambda]]$ and $R\langle\lambda\rangle$ by taking its λ- and $(p, q-1)$-adic completions, respectively. The endomorphism φ of $R[\lambda]$ induces a homomorphism $\varphi: R\left\langle\lambda, \frac{1}{q\lambda}\right\rangle \rightarrow R\left\langle\lambda, \frac{1}{q\lambda}\right\rangle$, and its $(p, q-1)$-adic completion gives the Frobenius endomorphism φ on $R\left\langle\lambda, \frac{1}{q\lambda}\right\rangle$ by Lemma 2.2 below.

Lemma 2.2. For $g(\lambda), h(\lambda) \in R[\lambda]$ satisfying $g(\lambda) \equiv h(\lambda)^n \not\equiv 0 \mod (p, q-1)R[\lambda]$ for some integer $n > 0$, we have

$$R\left\langle\lambda, \frac{1}{g(\lambda)}\right\rangle = R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle.$$

Proof. The congruence $g(\lambda) \equiv h(\lambda)^n \mod (p, q-1)$ implies that the image of $g(\lambda)$ in the quotient $R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle/\langle p, q-1\rangle R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle$ is a unit. Since $R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle$ is $(p, q-1)$-adically complete, $g(\lambda)$ is a unit of $R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle$. By the same argument, we see that $h(\lambda)$ is a unit of $R\left\langle\lambda, \frac{1}{g(\lambda)}\right\rangle$. Thus the natural homomorphisms $R[\lambda] \rightarrow R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle, R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle$ extend to homomorphisms

$$f: R\left\langle\lambda, \frac{1}{g(\lambda)}\right\rangle \rightarrow R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle, \quad g: R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle \rightarrow R\left\langle\lambda, \frac{1}{g(\lambda)}\right\rangle,$$

which satisfy $g \circ f = \text{id}$ and $f \circ g = \text{id}$. □

Definition 2.3. Let Γ be a group isomorphic to Z, and let γ be a generator of Γ. We define the action of Γ on $R[\lambda], R\langle\lambda\rangle$ and $R\left\langle\lambda, \frac{1}{q\lambda}\right\rangle$ $(g(\lambda) \in R[\lambda] \setminus (p, q-1)R[\lambda])$ as follows. First, we define the action of Γ on $R[\lambda]$ by $\gamma(\lambda) = q\lambda$ and $\gamma(a) = a (a \in R)$. Since this action of Γ preserves the ideals (λ) and $(p, q-1)$ of $R[\lambda]$, it induces an action of Γ on $R[[\lambda]]$ and $R\langle\lambda\rangle$. The action of γ on $R[\lambda]$ extends to an isomorphism $\gamma: R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle \rightarrow R\left\langle\lambda, \frac{1}{h(\lambda)}\right\rangle$, whose $(p, q-1)$-adic completion gives an action of γ on $R\left\langle\lambda, \frac{1}{q\lambda}\right\rangle$ by Lemma 2.2.

Let R' be one of the R-algebras $R[[\lambda]], R\langle\lambda\rangle$ and $R\left\langle\lambda, \frac{1}{q\lambda}\right\rangle$. Since R' is noetherian, $(q-1)\lambda R'$ is a closed ideal of R' with respect to the λ-adic topology for $R' = R[[\lambda]],$ and the $(p, q-1)$-adic topology for $R' = R\langle\lambda\rangle, R\left\langle\lambda, \frac{1}{q\lambda}\right\rangle$. Hence $(\gamma - 1)(\lambda^n) = (q-1)[n]q\lambda^n \in (q-1)\lambda R[\lambda]$ and $(\gamma - 1)(g(\lambda)^{-n}) = -g(\lambda)^{-n}\gamma(g(\lambda))^{-n}(\gamma - 1)(g(\lambda)^{-n}) \in (q-1)\lambda R\left\langle\lambda, \frac{1}{q\lambda}\right\rangle$ imply the inclusion $(\gamma - 1)(R') \subset (q-1)\lambda R'$.

Definition 2.4. We define the q-differential operator $d_q: R' \rightarrow R'$ by $d_q = \frac{\gamma - 1}{(q-1)\lambda}$.

This is a q-analogue of the differential operator $\frac{d}{d\lambda}$. Clearly we have $\gamma = 1 + (q-1)\lambda d_q$.

Proposition 2.5. We have a q-analogue of Leibniz rule:

$$d_q(xy) = d_q(x)\gamma(y) + xd_q(y), \quad x, y \in R'.$$

Proof. The formula follows from $(\gamma - 1)(xy) = (\gamma - 1)(x)\gamma(y) + x(\gamma - 1)(y)$. □

Definition 2.6. We define the q-differential module $q\Omega_{R'/R}$ to be the free R'-module $R'd\log\lambda$ and the q-derivation $\delta_q: R' \rightarrow q\Omega_{R'/R}$ by $d_q(x) = d_q(x) \cdot d\lambda$, where $d\lambda = \lambda d\log\lambda$.

5
Let \(A = R'/\langle q - 1 \rangle R' \). Then \(q\Omega_{R'/R} \) mod \(q - 1 \) is naturally identified with the differential module \(\Omega_{A/\mathbb{Z}_p, \log} \) with log poles along the divisor \(\lambda = 0 \). Since \(\delta_q \) is \(R \)-linear, we can define \(\delta : A \to \Omega_{A/\mathbb{Z}_p, \log} \) as \(\delta_q \) mod \(q - 1 \). We have \(\delta(x) = \frac{dx}{\Delta} - d\lambda \), i.e., \(\delta \) is the universal continuous \(R \)-linear derivation.

Definition 2.7. Let \(M \) be an \(R' \)-module. An \(R \)-linear map \(\nabla_q : M \to M \otimes_{R'} q\Omega_{R'/R} \) is called a \(q \)-connection on \(M \) if it satisfies

\[
\nabla_q(\mathbf{a}m) = m \otimes \delta_q(a) + \gamma(a)\nabla_q(m), \quad a \in R', m \in M.
\]

Let \((M, \nabla_q)\) be an \(R' \)-module with a \(q \)-connection. Let \(A = R'/\langle q - 1 \rangle R', N = M/\langle q - 1 \rangle M \) and let \(\nabla : N \to N \otimes_A \Omega_{A/\mathbb{Z}_p, \log} \) be \(\nabla_q \) mod \(q = 1 \). Then \(\nabla \) satisfies

\[
\nabla(\mathbf{a}m) = m \otimes \delta(a) + a\nabla(m)
\]

for all \(a \in A, m \in N \), i.e., \(\nabla \) is a connection on \(N \).

Definition 2.8. For an \(R' \)-module \(M \) with a \(q \)-connection \(\nabla_q \), we define the \(R \)-linear endomorphisms \(D^\log_q \) and \(\gamma_M \) of \(M \) by \(\nabla_q = D^\log_q \otimes d\log\lambda \) and \(\gamma_M = 1 + (q - 1)D^\log_q \). We define \(D_q \) to be \(\lambda^{-1}D^\log_q \) if \(\lambda \) is invertible in \(R' \).

We see that \(\gamma_M \) is \(\gamma \)-semilinear as follows: For all \(r \in R', m \in M \), we have

\[
\gamma_M(rm) = rm + (q - 1)D^\log_q(rm) = rm + (q - 1)(\lambda d_q(r)m + \gamma(r)D^\log_q(m)) = rm + (q - 1)(r)m + (q - 1)\gamma(r)D^\log_q(m) = \gamma(r)\gamma_M(m).
\]

The endomorphism \(\gamma_M \) is bijective and defines a \(\rho \)-semilinear action of \(\Gamma \) on \(M \) continuous with respect to the \((p, q - 1) \)-adic topology.

Remark 2.9. For any \(\ell(\lambda) \in R' \setminus \{0\} \), we can define a \(q \)-connection \(\nabla_q : M \to M \otimes_{R'} \frac{1}{\ell(\lambda)} q\Omega_{R'/R} \) in the same way as in Definition 2.8. However we cannot construct the \(\Gamma \)-action associated to \(\nabla_q \) in general unless \(\ell(\lambda) \) is invertible in \(R' \).

We give some properties necessary for the \(q \)-analogue calculation in the following sections.

Proposition 2.10. (i) \([a + b]_q = [a]_q + q^a [b]_q\); (ii) \([ap]_q = [p]_q \varphi ([a]_q)\); (iii) \([p^n]_q \in (p, q - 1)^n R\); (iv) \(\gamma \circ \varphi = \varphi \circ \gamma \) on \(R' \); (v) \(d_q \varphi = [p]_q \lambda^{p - 1} \varphi d_q \) on \(R' \).

Proof. We can verify the equalities (i) and (ii) by simple computations. The claim (iii) follows from \([p^n]_q \equiv p^n \mod (q - 1)R\). For the claim (iv), since both sides are continuous endomorphisms, it suffices to show the commutativity for \(a \in \mathbb{Z}_p, q, \) and \(\lambda \), which is verified as follows:

\[
\gamma \circ \varphi(a) = a = \varphi \circ \gamma(a), \quad \gamma \circ \varphi(q) = q^p = \varphi \circ \gamma(q). \quad \gamma \circ \varphi(\lambda) = q^p \lambda^p = \varphi \circ \gamma(q).
\]

We obtain the equality (v) by substituting \(\gamma = 1 + (q - 1)\lambda d_q \) into the equality (iv).

3 Background

First, we define a category \(\text{MIC}_{[0, \infty)}(A, \varphi, \text{Fil}^\bullet) \). Let \(a \) be a non-negative integer. Let \(A \) be a \(p \)-torsion free commutative ring with an endomorphism \(\varphi \), and let \(\text{Fil}^\bullet A \) be the trivial decreasing filtration of \(A \) defined by

\[
\text{Fil}^r A = \begin{cases} A & r \in \mathbb{Z} \cap (-\infty, 0] \\ 0 & r \in \mathbb{Z} \cap (0, \infty). \end{cases}
\]
Let Ω_A be a free A-module of rank 1, let $\delta: A \to \Omega_A$ be a derivation, and let $\varphi^1: \Omega_A \to \Omega_A$ be a φ-semilinear homomorphism satisfying $\varphi^1 \circ \delta = \delta \circ \varphi$.

Definition 3.1. We define the category $\text{MIC}_{[0,a]}(A, \varphi, \text{Fil}^*)$ as follows. An object is a quartet $(M, \text{Fil}^*M, \varphi_M, \nabla)$ consisting of the following.

1. M is a free A-module of finite type. (Let N be the rank of M.)
2. A decreasing filtration $\text{Fil}^r M$ ($r \in \mathbb{N} \cap [0,a]$) of M satisfying the following conditions.
 - (ii-a) There exists a basis e_ν ($\nu \in \mathbb{N} \cap [1,N]$) of M and $r_\nu \in \mathbb{N} \cap [0,a]$ for each $\nu \in \mathbb{N} \cap [1,N]$ such that $\text{Fil}^r M = \bigoplus_{\nu \in \mathbb{N} \cap [1,N]} \text{Fil}^{r_\nu} \cdot e_\nu$ for $r \in \mathbb{N} \cap [0,a]$.
3. $\varphi_M: M \to M$ is a φ-semilinear endomorphism satisfying the following condition.
 - (iii-a) $\varphi_M(\text{Fil}^r M) \subseteq p^r M$ for $r \in \mathbb{N} \cap [0,a]$.
 - (iii-b) $M = \sum_{r \in \mathbb{N} \cap [0,a]} A \cdot p^{-r} \varphi_M(\text{Fil}^r M)$.
4. $\nabla: M \to M \otimes_A \Omega_A$ is a connection on M satisfying the following condition.
 - (iv-a) $\nabla(\text{Fil}^r M) \subseteq \text{Fil}^{r-1} M \otimes_A \Omega_A$ for $r \in \mathbb{N} \cap [1,a]$.
 - (iv-b) $\nabla \circ \varphi_M = (\varphi_M \otimes \varphi^1) \circ \nabla$.

A morphism is an A-linear homomorphism preserving the filtration, and compatible with φ_M and ∇.

The Frobenius structure $\varphi^1_{H^1}$ recalled in [11] satisfies the following.

1. Assume that $a = 0$, $A = B'$, and $\Omega_A = Ad \lambda$. Then we have $(U_{B'}, \nabla, \varphi_{U_{B'}}) \in \text{MIC}_{[0,0]}(A, \varphi, \text{Fil}^*)$. (In the case $a = 0$, we can forget filtrations because the condition (ii-a) implies $\text{Fil}^0 U = U$ and $\text{Fil}^1 U = 0$.)
2. Assume that $a = 1$, $A = \mathbb{Z}_p[[\lambda]]$, and $\Omega_A = Ad \log \lambda$. Put $H_0 = H_{B'} \otimes_{B'} \mathbb{Z}_p[[\lambda]]$, which has the connection ∇, the Frobenius structure φ_{H_0}, and the filtration induced by those of $H_{B'}$. Then we have $(H_0, \nabla, \varphi_{H_0}, \text{Fil}^*H_0) \in \text{MIC}_{[0,1]}(A, \varphi, \text{Fil}^*)$.
3. Assume that $a = 1$, $A = B''$, and $\Omega_A = Ad \log \lambda$. Then we have $(H_{B''}, \nabla, \varphi_{H_{B''}}, \text{Fil}^*) \in \text{MIC}_{[0,1]}(A, \varphi, \text{Fil}^*)$.

Next, we define a category $\text{MF}^{[p]a}_{[0,a]}(R', \varphi, \Gamma)$. Let a be the same as above. As before Definition 2.4, let R' be one of the rings $R[[\lambda]]$, $R(\lambda)$, and $R\left<\lambda, \frac{1}{p^m}\right>$ for $(g(\lambda) \in R[[\lambda]]\setminus(p,q-1)R(\lambda))$ equipped with the $(p,q-1)$-adic topology, and put $A = R'/(q-1)$. Then R' is a commutative ring with an endomorphism φ and an action ρ of Γ (See §2). Let $\text{Fil}^* R'$ be the decreasing filtration of R' defined by

$$\text{Fil}^r R' = \begin{cases} R' & r \in \mathbb{Z} \cap (-\infty, 0) \\ (q-1)^r R' & r \in \mathbb{Z} \cap [0, \infty) \end{cases}.$$

We give Γ a discrete topology. Then, as $\varphi(q-1) = (q-1)[p]_{q}$ and $\gamma \circ \varphi = \varphi \circ \gamma$, the quartet $(R', [p]_{q}, \text{Fil}^* R', \varphi, \rho)$ satisfies all conditions in §6, 7 of [Tsu17].

Thus we can define the category $\text{MF}^{[p]a}_{[0,a]}(R', \varphi, \Gamma)$.

Definition 3.2 ([Tsu17], §7). We define the category $\text{MF}^{[p]a}_{[0,a]}(R', \varphi, \Gamma)$ as follows. An object is a quartet $(M, \text{Fil}^* M, \varphi_M, \rho_M)$ consisting of the following.
(i) M is a free R'-module of finite type. (Let N be the rank of M.)

(ii) A decreasing filtration $\text{Fil}^r M$ ($r \in \mathbb{N} \cap [0, a]$) of M satisfies the following conditions.

(ii-a) There exists a basis e_r ($\nu \in \mathbb{N} \cap [1, N]$) of M and $r_r \in \mathbb{N} \cap [0, a]$ for each $\nu \in \mathbb{N} \cap [1, N]$ such that $\text{Fil}^r M = \oplus_{\nu \in \mathbb{N} \cap [1, N]} \text{Fil}^{r-r_r} R' e_r$ for $r \in \mathbb{N} \cap [0, a]$.

(iii) $\varphi_M : M \to M$ is a φ-semilinear endomorphism satisfying the following conditions.

(iii-a) $\varphi_M (\text{Fil}^r M) \subset [p]_q^r M$ for $r \in \mathbb{N} \cap [0, a]$.

(iii-b) $M = \sum_{r \in \mathbb{N}_0} r' \cdot [p]^{-r'}_q \varphi_M (\text{Fil}^r M)$.

(iv) $\rho_M : \Gamma \to \text{Aut}(M)$ is a ρ-semilinear action and satisfies the following conditions.

(iv-a) $\rho_M (g) (\text{Fil}^r M) = \text{Fil}^r M$ for $r \in \mathbb{N} \cap [0, a]$ and $g \in \Gamma$.

(iv-b) $\rho_M (g) \varphi_M = \varphi_M \rho_M (g)$ for $g \in \Gamma$.

(v) $\Gamma \times M \to M; (g, m) \mapsto \rho_M (g)m$ is continuous.

A morphism is an R'-linear homomorphism preserving the filtrations, compatible with φ_M’s , and moreover Γ-equivariant.

Remark 3.3. Let M be a free R'-module equipped with a q-connection $\nabla_q : M \to M \otimes_R q \Omega_{R'/R}$, and a φ-semilinear endomorphism φ_M. Let ρ_M be the ρ-semilinear continuous action of Γ on M associated to ∇_q. Then φ_M is Γ-equivariant, i.e., satisfy the condition (iv-b) in Definition 3.2 if and only if $(\varphi_M \otimes \varphi^1) \circ \nabla_q = \nabla_q \circ \varphi_M$. Here φ^1 is the φ-semilinear endomorphism of $q \Omega_{R'/R}$ defined by $\varphi^1 (d \log \lambda) = [p]_q d \log \lambda$. Note that we have $\varphi^1 \circ \delta_q = \delta_q \circ \varphi$ by Proposition 2.10(v).

Definition 3.4. We define $\text{MF}^{[p]_q, q^{-1}}_{[0, a]} (R', \varphi, \Gamma)$ to be the full subcategory of $\text{MF}^{[p]_q, \text{cont}}_{[0, a]} (R', \varphi, \Gamma)$ consisting of M such that the Γ-action ρ_M on M satisfies $(\rho_M (\gamma) - 1)(M) \subset (q - 1)M$.

The Frobenius φ and the Γ-action on R' induce those on $R'(q - 1)^{a+1}$, and we can define the decreasing filtration of R' by $\text{Fil}^\bullet (R'(q - 1)^{a+1}) = (\text{Fil}^\bullet R') \cdot (R'(q - 1)^{a+1})$. Therefore we can define the categories $\text{MF}^{[p]_q, \text{cont}}_{[0, a]} (R'(q - 1)^{a+1}, \varphi, \Gamma)$ and $\text{MF}^{[p]_q, q^{-1}}_{[0, a]} (R'(q - 1)^{a+1}, \varphi, \Gamma)$ in the same way.

We equip A with the derivation $\delta : A \to \Omega_{A, \log} = Ad \log \lambda$, the reduction mod $q - 1$ of $\delta_q : R' \to q \Omega_{R'/R}$. Then the scalar extension by $R' \to A$ induces a functor

$$
\text{MF}^{[p]_q, q^{-1}}_{[0, a]} (R', \varphi, \Gamma) \xrightarrow{\text{mod } q - 1} \text{MIC}_{[0, a]} (A, \varphi, \text{Fil}^\bullet).
$$

(For $(M, \text{Fil}^\bullet M, \varphi_M, \rho_M) \in \text{MF}^{[p]_q, q^{-1}}_{[0, a]} (R', \varphi, \Gamma)$, we define the connection of $M/(q - 1)M$ by $\frac{\rho_M (\gamma) - 1}{q-1} \text{mod } q - 1 \otimes d \log \lambda$.)

For $a = 0, 1$, we have a functor induced by the base change from A to $R'(q - 1)^{a+1}$:

$$
\text{MIC}_{[0, a]} (A, \varphi, \text{Fil}^\bullet) \to \text{MF}^{[p]_q, q^{-1}}_{[0, a]} (R'(q - 1)^{a+1}, \varphi, \Gamma).
$$

(7) For $(M, \text{Fil}^\bullet M, \varphi_M, \nabla) \in \text{MIC}_{[0, a]} (A, \varphi, \text{Fil}^\bullet)$, we define the ρ-semilinear action of Γ on $M \otimes_A R'(q - 1)^{a+1}$ by $1 + (q - 1)D q^{-1} a$, if $a = 1$, and by 1, i.e., the trivial action if $a = 0$. For the Frobenius structure, note that we have $[p]_q q = p \cdot (\text{unit})$ in $R'(q - 1)^{a+1}$ because $a + 1 \leq p - 1$. The reduction mod $(q - 1)^{a+1}$ gives an equivalence of categories [Tsu17]

$$
\text{MF}^{[p]_q, \text{cont}}_{[0, a]} (R', \varphi, \Gamma) \to \text{MF}^{[p]_q, \text{cont}}_{[0, a]} (R'(q - 1)^{a+1}, \varphi, \Gamma),
$$

(8)
which induces an equivalence between full subcategories
\[MF_{[0,a]}^{[p,q-1]}(R',\varphi,\Gamma) \rightarrow MF_{[0,a]}^{[p,q-1]}(R'(q-1)^{a+1},\varphi,\Gamma). \] (9)

By combining (7) and (9), we obtain a right inverse of the functor (6)
\[\text{MIC}_{[0,a]}(A,\varphi,\text{Fil}^\bullet) \rightarrow MF_{[0,a]}^{[p,q-1]}(R',\varphi,\Gamma). \] (10)

If \(a = 0 \), then the functor (7) is an equivalence of categories. Hence the functors (6) and (10) are equivalences of categories quasi-inverse of each other. By applying this functor, we obtain the canonical \(q \)-deformations of the objects \((U'_B,\nabla,\varphi_{U'_B})\) and \((H_0,\nabla,\varphi_{H_0},\text{Fil}^\bullet H_0)\) to \(MF_{[0,a]}^{[p,q-1]}(R',\varphi,\Gamma) \) for \(R' = S' \), \(a = 0 \) and \(R' = R[[\lambda]] \), \(a = 1 \), respectively.

We want to know whether the two canonical deformations are related to the \(q \)-hypergeometric differential equation (9).

Remark 3.5. To show the equivalence of categories (5), we have to check that \(R' \) with the \(\Gamma \)-action, \(\varphi \), and the filtration satisfies the conditions in [Tsu17, §6,§7], specifically [Tsu17, Conditions 39 and 54], while they are trivial.

4 Main theorems

As before Definition 2.4 let \(R' \) be one of the rings \(R[[\lambda]] \), \(R(\lambda) \), and \(R\left< \lambda, \frac{1}{g(\lambda)} \right> (g(\lambda) \in R[\lambda]\backslash\{(p,q-1)R[\lambda]\}) \) equipped with the \((p,q-1)\)-adic topology. Let \(\nabla_q: M' \rightarrow M' \otimes_R q\Omega_{R'/R} \) be the \(q \)-connection associated with the \(q \)-hypergeometric differential equation on a free \(R' \)-module \(M' \) of rank 2 introduced later in (6). The \(R' \)-module \(M' \) is also equipped with a filtration, and the reduction mod \(q = 1 \) of \((M',\nabla_q,\text{Fil}^\bullet)\) is canonically isomorphic to \((H_{B'} \otimes_{B'} A, \nabla, \text{Fil}^\bullet)\) (see (21)):
\[(M',\nabla_q,\text{Fil}^\bullet) \otimes_{R'} A \cong (H_{B'} \otimes_{B'} A, \nabla, \text{Fil}^\bullet). \] (11)

Let \(S' = R\left< \lambda, \frac{1}{g(\lambda)} \right> \) be the \((p,q-1)\)-adic completion of \(R\left< \lambda, \frac{1}{g(\lambda)} \right> \), where \(h(\lambda) \) is the Hasse polynomial (see 3). In this paper, we give an appropriate Frobenius structure which is compatible with the \(q \)-connection on a rank 1 and \(\nabla_q \)-stable submodule of \(M' \) (resp. \(M' \) itself) in the case \(R' = S' \) (resp. \(R[[\lambda]] \)).

Theorem 4.1. Assume that \(R' = S' \). There exists a pair \((U',\varphi_{U'})\) which satisfies the following conditions.

(i) \(U' \) is a direct factor of the \(S' \)-module \(M' \) of rank 1 satisfying \(\nabla_q(U') \subset U' \otimes_R q\Omega_{R'/R} \). Let \(\rho_{U'} \) be the \(\rho \)-semilinear continuous action of \(\Gamma \) on \(U' \) associated to \(\nabla_q U' \).

(ii) \(\varphi_{U'} \) is a \(\varphi \)-semilinear endomorphism of \(U' \) and satisfies \(S' \cdot \varphi_{U'}(U') = U' \).

(iii) The triple \((U',\varphi_{U'},\rho_{U'})\) is an object of \(MF_{[0,0]}^{[p,q-1]}(S',\varphi,\Gamma) \), i.e., \(\rho_{U'}(\gamma) \circ \varphi_{U'} = \varphi_{U'} \circ \rho_{U'}(\gamma) \).

(iv) The isomorphism (11) induces a \(B' \)-linear isomorphism \(U' \otimes_{S'} B' \rightarrow U_{B'} \), and it defines an isomorphism between \((U_{B'},\nabla,\varphi_{U_{B'}})\) and the image of \((U',\varphi_{U'},\rho_{U'})\) under the equivalence of categories (see after (10))
\[MF_{[0,0]}^{[p,q-1]}(S',\varphi,\Gamma) \rightarrow \text{MIC}_{[0,0]}(B',\varphi,\text{Fil}^\bullet). \]

Theorem 4.2. Assume that \(R' = R[[\lambda]] \), and let \(\rho_{M'} \) be the continuous \(\rho \)-semilinear action of \(\Gamma \) on \(M' \) associated to \(\nabla_q \). (Note that we have \(\nabla_q \Omega_{R'/R} = q\Omega_{R'/R} \) because \(1 - \lambda \in R[[\lambda]]^\times \).) Then there exists a \(\varphi \)-semilinear endomorphism \(\varphi_{M'} \) on \(M' \) which satisfies the following conditions.
In this section, we give explicit solutions of the q-hypergeometric differential equation and its solutions

(i) There exists a basis (f_1, f_2) of M' such that $\varphi(e_1') = [p]_q f_1, \varphi(e_2') = f_2$.

(ii) The quartet $(M', \text{Fil}^* M', \varphi_{M'}, \rho_{M'})$ is an object of $\text{Fil}^*[p]_q [-1] (\mathcal{R}_{[\lambda]}, \varphi, \Gamma)$, i.e., $\rho_{M'}(\gamma)(\text{Fil}^1 M') = \text{Fil}^1 M'$ and $\rho_{M'}(\gamma) \circ \varphi_{M'} = \varphi_{M'} \circ \rho_{M'}(\gamma)$.

(iii) The isomorphism (11) induces an isomorphism

$$
(M', \varphi_{M'}, \nabla_q, \text{Fil}^* M') \otimes \mathcal{R}_{[\lambda]}[\lambda] / \mathbb{Z}_p[\lambda] \cong (H_0, \nabla, \varphi_{H_0}, \text{Fil}^* H_0).
$$

Moreover, it can be lifted to an isomorphism between $(M', \text{Fil}^* M', \varphi_{M'}, \rho_{M'})$ and the canonical q-deformation of $(H_0, \nabla, \varphi_{H_0}, \text{Fil}^* H_0)$ constructed after (10).

5 q-hypergeometric differential equation and its solutions

In this section, we give explicit solutions of the q-hypergeometric differential equation [GR90] defined by

$$
L[f] = q\lambda(1-q\lambda)d^2_q f + (1 - (1 + [2]_q - 2 [\frac{1}{2}]_q)\lambda)d_q f - [\frac{1}{2}]_q^2 f = 0,
$$

which is a q-analogue of the classical hypergeometric differential equation [vDP86]

$$
\lambda(1-\lambda)\frac{d^2}{d\lambda^2} f + (1 - 2\lambda)\frac{d}{d\lambda} f - \frac{1}{4} f = 0.
$$

For convenience, we put $\alpha = 1 + [2]_q - 2 [\frac{1}{2}]_q$.

To describe the solutions, we introduce q-logarithmic function $\log_q(-)$. (Note that the “q” in “log$_q$” does not mean a base.) Since d_q does not have compatibility with the translation $\lambda \mapsto \lambda + a$ for $a \in \mathbb{Z}_p$, we have to define $\log_q \lambda$ and $\log_q(1-\lambda)$ respectively. Since φ and γ are injective as endomorphisms of $\mathcal{R}_{[\lambda]}$, we can extend them to endomorphisms of $\mathcal{R}_{[\lambda]}(\mathcal{R}_{[\lambda]})$. First, put $\log_q(1-\lambda) = -\sum_{n=1}^{\infty} \frac{\lambda^n}{[n]_q}$. Then, $\log_q(1-\lambda)$ is an element of $\mathcal{R}_{[\lambda]}(\mathcal{R}_{[\lambda]})$ and $d_q \log_q(1-\lambda) = \frac{1}{1-q}$. Next, let $\log_q \lambda$ be a formal variable and extend φ and γ to endomorphisms of $\mathcal{R}_{[\lambda]}(\mathcal{R}_{[\lambda]})$ by

$$
\varphi(\log_q \lambda) = [p]_q \log_q \lambda \quad \text{and} \quad \gamma(\log_q \lambda) = q - 1 + \log_q \lambda.
$$

Then, by

$$
\gamma(\varphi(\log_q \lambda)) = (q-1)[p]_q + [p]_q \log_q \lambda = \varphi(\gamma(\log_q \lambda)),
$$

the commutativity $\gamma \circ \varphi = \varphi \circ \gamma$ is satisfied on $\mathcal{R}_{[\lambda]}(\mathcal{R}_{[\lambda]})$. Moreover, since $(q-1)\lambda \in \mathcal{R}_{[\lambda]}(\mathcal{R}_{[\lambda]})$, we can extend d_q of $\mathcal{R}_{[\lambda]}(\mathcal{R}_{[\lambda]})$ to $\mathcal{R}_{[\lambda]}(\mathcal{R}_{[\lambda]})$ by $d_q = \frac{q-1}{(q-1)^2}$. We have $d_q \log_q \lambda = \frac{1}{1-q}$. In the theorem below, we give explicit solutions of (12) in $\mathcal{R}_{[\lambda]}(\mathcal{R}_{[\lambda]})$. Put $a_n = \prod_{i=0}^{n-1} \left(\frac{[i+\frac{1}{2}]_q}{[i+\frac{1}{2}]_q} \right)^2$ for a non-negative integer n.

Theorem 5.1. We have $L[F] = L[H] = 0$, where

$$
F = \sum_{n=0}^{\infty} a_n \lambda^n, \quad H = F \log_q \lambda - F \log_q(1-\lambda) - \sum_{n=0}^{\infty} a_n \lambda^n \sum_{i=1}^{n} \left(\frac{2}{[i]_q} + q - 1 \right).
$$

First, we give some lemma.

Lemma 5.2. (i) $d_q \gamma = q \gamma d_q$; (ii) $d_q \gamma + \gamma d_q = (1+q)(d_q + (q-1)\lambda d_q)$; (iii) $\gamma^2 = 1 + (q^2-1)\lambda d_q + q(q-1)^2\lambda^2 d_q^2$.

Proof. We can verify the equalities by simple computations. □

Proof of Theorem 5.1 First, we prove that \(L[F] = 0 \). Put \(y = \sum_{n=0}^{\infty} c_n \lambda^n \in Q[[\lambda]] \) \((c_n \in Q) \). Then, the coefficient of \(\lambda^n \) in \(-\left[\frac{1}{2} \right]_q y \), and in \(q \lambda(1 - q \lambda) d_q^2 y \), are \(-\left[\frac{1}{2} \right]_q c_n, [n + 1]_q c_{n+1} - \alpha [n]_q c_n, \) and \(q [n + 1]_q [n]_q c_{n+1} - q^2 [n]_q [n-1]_q c_n \) respectively. By adding all of them, we see that the coefficient of \(\lambda^n \) in \(L[y] \) is \([n + 1]_q c_{n+1} - [n + \frac{1}{2}]_q c_n \). Since \(\{a_n\}_{n \geq 0} \) has the property \([n + 1]_q a_{n+1} = [n + \frac{1}{2}]_q a_n \) for \(n \geq 0 \), we obtain \(L[F] = 0 \).

For a non-negative integer \(r \), we put \(F_{\geq r} = \sum_{n=r}^{\infty} a_n \lambda^n \). Then by the same calculation as \(L[F] \), we have \(L[F_{\geq r}] = [r]_q a_r \lambda^{r-1} \). To prove \(L[H] = 0 \), we calculate \(L[F \log_q \lambda - F \log_q(1 - \lambda)] \) by using the following two claims.

Claim.

\[L[F \log_q \lambda] = -2 \left[\frac{1}{2} \right]_q F + 2(1 - q^{\frac{1}{2}} \lambda) d_q F. \] (13)

First, we calculate \(d_q(F \log_q \lambda) \) and \(d_q^2(F \log_q \lambda) \).

\[
d_q(F \log_q \lambda) = d_q F \log_q \lambda + \frac{1}{\lambda} F + (q - 1) d_q F;
\]

\[
d_q^2(F \log_q \lambda) = d_q^2 F \log_q \lambda + (\gamma d_q + d_q \gamma) F \left[\frac{1}{\lambda} - \gamma^2(F) \frac{1}{q \lambda^2} \right]
= d_q^2 F \log_q \lambda - \frac{1}{q \lambda^2} F + \frac{q + 1}{q \lambda} d_q F + 2(q - 1) d_q^2 F.
\]

Thus,

\[
L[F \log_q \lambda] = q \lambda(1 - q \lambda) d_q^2(F \log_q \lambda) + (1 - \alpha \lambda)d_q(F \log_q \lambda) - \left[\frac{1}{2} \right]_q F \log_q \lambda
= q \lambda(1 - q \lambda) \left(-\frac{1}{q \lambda^2} F + \frac{q + 1}{q \lambda} d_q F + 2(q - 1) d_q^2 F \right)
+ (1 - \alpha \lambda) \left(\frac{1}{\lambda} F + (q - 1) d_q F \right) \quad \text{(by } L[F] = 0)\n= (q - \alpha + 2(q - 1) \left[\frac{1}{2} \right]_q) F + (2(-q^2 - q + \alpha(q - 1))) d_q F
= -2 \left[\frac{1}{2} \right]_q F + 2(1 - q^{\frac{1}{2}} \lambda) d_q F.
\]

Claim.

\[L[F \log_q(1 - \lambda)] = -\frac{2q \left[\frac{1}{2} \right]_q \lambda - 1}{q \lambda - 1} F - 2q \lambda \frac{q^{\frac{1}{2}} \lambda - 1}{q \lambda - 1} d_q F. \] (14)

In the same way as above, we obtain

\[
d_q(F \log_q(1 - \lambda)) = d_q F \log_q(1 - \lambda) + \frac{1}{\lambda - 1} F + \frac{(q - 1)\lambda}{\lambda - 1} d_q F;
\]

\[
d_q^2(F \log_q(1 - \lambda)) = d_q^2 F \log_q(1 - \lambda) - \frac{1}{(\lambda - 1)(q \lambda - 1)} F + \frac{q + 1}{q \lambda - 1} d_q F + \frac{(q - 1)\lambda}{(\lambda - 1)(q \lambda - 1)} d_q^2 F.
\]
Thus,

\[
L[F \log_q (1 - \lambda)] = q \lambda (1 - q \lambda) \left(-\frac{1}{\lambda - 1} \frac{F}{(q \lambda - 1)} + \frac{q + 1}{q \lambda - 1} d_q F + \frac{(q - 1) \lambda (2q \lambda - q - 1)}{(\lambda - 1)(q \lambda - 1)} d_q^2 F \right) \\
+ (1 - \alpha \lambda) \left(\frac{1}{\lambda - 1} F + \frac{(q - 1) \lambda}{\lambda - 1} d_q F \right) \quad \text{(by } L[F] = 0) \\
= \frac{(1 + (q - \alpha) \lambda)(q \lambda - 1) + \left[\frac{1}{q} \right]^2 (q - 1) \lambda (2q \lambda - q - 1)}{(\lambda - 1)(q \lambda - 1)} F \\
+ \frac{(1 - \alpha \lambda)(q - 1) \lambda - q(q + 1) \lambda (\lambda - 1)(q \lambda - 1) - (1 - \alpha \lambda)(q - 1) \lambda (2q \lambda - q - 1)}{(\lambda - 1)(q \lambda - 1)} d_q F.
\]

Now the proofs of the two claims are completed. By claims (13) and (14),

\[
L[F \log_q \lambda - F \log_q (1 - \lambda)] \\
= 2(1 - q \lambda) d_q F - 2 \left(\left[\frac{1}{q} \right] \lambda - 1 \text{) } \frac{2q \lambda - q - 1}{q \lambda - 1} d_q F \\
= 2q \left[\frac{1}{q} \right] \lambda - 1 d_q F + 2 \left[\frac{1}{q} \right] \frac{q \lambda - 1}{q \lambda - 1} F.
\]

We describe (15) as an Q-linear combination of $L[F_{\geq n+1}]$ for n (and $d_q F$). We start by writing $\frac{1}{1 - q \lambda} F$ and $\frac{q \lambda}{1 - q \lambda} d_q F$ as Q-linear combinations of $L[F_{\geq n+1}]$.

\[
\frac{1}{1 - q \lambda} F = \left(\sum_{n=0}^{\infty} a_n \lambda^n \right) \left(\sum_{m=0}^{\infty} q^m \lambda^m \right) = \sum_{n=0}^{\infty} \lambda^n \sum_{m=0}^{n} a_m q^{n-m} = \sum_{n=0}^{\infty} L[F_{\geq n+1}] \left(\sum_{m=0}^{n} a_m q^{n-m} \right).
\]

\[
\frac{q \lambda}{1 - q \lambda} d_q F = \left(\sum_{n=0}^{\infty} \left[\frac{n}{q} \right] a_n \lambda^{n-1} \right) \left(\sum_{m=0}^{\infty} q^m \lambda^m \right) = \sum_{n=0}^{\infty} L[F_{\geq n+1}] \left(\sum_{m=0}^{n} \left[\frac{m}{q} \right] a_m q^{n+1-m} \right).
\]
Thus,

\[
2q^{\frac{1}{2}}\lambda - 1 \overline{d_q} F + \frac{2}{q} \left[\frac{1}{2} \right] \frac{\lambda - 1}{d_q} F
\]

\[
= 2d_q F + 2 \sum_{n=0}^{\infty} L[F_{\geq n+1}] \sum_{m=0}^{n} \left(\frac{2}{q} - q^{\frac{1}{2}} \right) [m] q a_m q^{n+1-m} - 2 \left[\frac{1}{2} \right] q - 1 \right) \frac{1}{1-q\lambda} F
\]

\[
= 2d_q F + \sum_{n=0}^{\infty} L[F_{\geq n+1}] \sum_{m=0}^{n} \left(2(q - q^{\frac{1}{2}}) [m] q - 2 \left[\frac{1}{2} \right] - 1) a_m q^{n-m} \right)
\]

\[
= 2d_q F + (q-1) \sum_{n=0}^{\infty} L[F_{\geq n+1}] \quad \text{(by Lemma 5.3 below)}
\]

\[
= 2 \sum_{r=0}^{\infty} \frac{1}{[n+1]_q} L[F_{\geq n+1}] + (q-1) \sum_{n=0}^{\infty} (2(q - q^{\frac{1}{2}}) [m] q - 2 \left[\frac{1}{2} \right] - 1) a_m q^{n-m}
\]

\[
= L \left[\sum_{r=0}^{\infty} a_n \lambda^n \sum_{n=1}^{\infty} \left(\frac{2}{[n]_q} - 1 \right) \right].
\]

Hence we obtain

\[
L \left[F \log_q \lambda - F \log_q (1 - \lambda) \right] - L \left[\sum_{n=1}^{\infty} a_n \lambda^n \sum_{i=1}^{n} \left(\frac{2}{[n]_q} - 1 \right) \right] = 0.
\]

\[\square\]

Lemma 5.3. For all \(n \in \mathbb{N},\)

\[
\sum_{m=0}^{n} \left(2(q - q^{\frac{1}{2}}) [m] q - 2 \left[\frac{1}{2} \right] - 1) a_m q^{n-m} = (q - 1) [n+1]_q^2 a_{n+1}. \tag{16}\]

Proof. We prove this by induction on \(n.\) If \(n = 0,\) the left-hand side of (16) is \(-\left[\frac{1}{2} \right]_q = (q-1) \left[\frac{1}{2} \right]_q^2.\)

So it is equal to the right-hand side of (16). We assume (16) for \(n.\) To prove (16) for \(n + 1,\) it suffices to show

\[
(2(q - q^{\frac{1}{2}}) [n] q - 2 \left[\frac{1}{2} \right] q + 1) a_n = (q - 1) \left([n+1]_q^2 a_{n+1} - [n]_q^2 a_n \right) \tag{17}.
\]

We can verify the equation (17) by simple computations. \[\square\]

Remark 5.4. We have another description of \(H:\)

\[
H = F \log_q \lambda + \sum_{n=1}^{\infty} a_n \lambda^n \left(\sum_{i=1}^{n} \frac{2}{[i]_q - 1} \right).
\]

One can show that the right-hand side is annihilated by \(L\) in the same way as the proof of \(L[H] = 0\) in Theorem 5.1.

In the rest of this section, we calculate a \(q\)-analogue of Wronskian \(W(F, H) = F d_q H - H d_q F.\) in the preparation for the computation in §8.

Lemma 5.5. We have \(F d_q H - H d_q F = \frac{1}{\lambda(1-\lambda)}.\)
Proof. We have
\[
q(1 - \lambda) dqF = (1 - [2]_q \lambda) dqF + \gamma(1 - \lambda) dq^2 F
= (1 - [2]_q \lambda) dqF + q(1 - \lambda) dq^2 F
= (1 - [2]_q \lambda) dqF - (1 - \alpha \lambda) dqF + [\frac{1}{2}]_q dq^2 F
= \left[\frac{1}{2}\right]_q^2 \gamma(F).
\]
Similarly, \(dq(1 - \lambda) dqH = \left[\frac{1}{2}\right]_q^2 \gamma(H)\). Thus,
\[
dq(1 - \lambda)(Fd_q H - Hd_q F) = dqF \cdot (1 - \lambda) dqH + \gamma(F) \cdot dq(1 - \lambda) dqH
- dqH \cdot (1 - \lambda) dqF - \gamma(H) \cdot dq(1 - \lambda) dqF
= \gamma(F) \cdot dq(1 - \lambda) dqH - \gamma(H) \cdot dq(1 - \lambda) dqF
= 0.
\]
Since \(\lambda(1 - \lambda)(Fd_q H - Hd_q F) \in Q[[\lambda]]\) and \(Q[[\lambda]]^{dq=0} = Q\), we see that \(\lambda(1 - \lambda)(Fd_q H - Hd_q F)\) is constant. For all \(g \in Q[[\lambda]]\), we have \(\lambda g = 0\), \(\lambda dq(g) = 0\) when \(\lambda = 0\). Therefore, we have
\[
\lambda(1 - \lambda)(Fd_q H - Hd_q F) |_{\lambda=0} = \lambda(1 - \lambda)(Fd_q F \log_q \lambda - Fd_q F \log_q \lambda) |_{\lambda=0}
= \lambda(1 - \lambda) \left(Fd_q F \log_q \lambda + \gamma(F) \frac{1}{\lambda} - Fd_q F \log_q \lambda \right) |_{\lambda=0}
= (1 - \lambda) F \gamma(F) |_{\lambda=0}
= 1.
\]

6 \(q\)-connection and \(q\)-hypergeometric differential equation

Let \(R'\) be one of the rings \(R[[\lambda]], R(\lambda),\) and \(R \left(\lambda, \frac{1}{\gamma(\lambda)} \right) \) \((g(\lambda) \in R[\lambda] \setminus (p, q - 1) R[\lambda])\). Let \(M''\) be the free \(R'\) module \(R'e_1 \oplus R'e_2\) of rank 2. In this section, we determine a \(q\)-connection \(\nabla_q : M'' \to M'' \otimes_R q \Omega_{R'/R}\)
(\text{Remark 2.9}) which satisfies

\[
\nabla_q \left(e_1 \quad e_2 \right) \left(\begin{array}{c} f_1 \\ f_2 \end{array} \right) = 0 \iff dq(f_2) = f_1 \text{ and } L[f_2] = 0,
\]

(18)

which is a \(q\)-analogue of \([vdP86], \text{Proposition 7.11 (iii)}\) (see the claim before (1)). Here \(f_1\) and \(f_2\) are elements of any extension \(C\) of \(\text{Frac}R'\) which is \((q - 1)\)-torsion free and carries an extension of \(\Gamma\)-action satisfying \((\gamma - 1)C \subset (q - 1)C\). Let \(P \in \frac{1}{\lambda - 1} M_2(R')\) and define a \(q\)-connection \(\nabla_q : M'' \to M'' \otimes_R q \Omega_{R'/R}\)
by \(\nabla_q (e_1 \quad e_2) = \left(e_1 \quad e_2 \right) P \otimes dq\). Then,
\[
\nabla_q \left(e_1 \quad e_2 \right) \left(\begin{array}{c} f_1 \\ f_2 \end{array} \right) = 0 \iff (e_1 \quad e_2) P \gamma \left(\begin{array}{c} f_1 \\ f_2 \end{array} \right) + (e_1 \quad e_2) dq \left(\begin{array}{c} f_1 \\ f_2 \end{array} \right) = 0
\]

\[
\iff (1 + (q - 1) \lambda P) \left(\begin{array}{c} \gamma(f_1) \\ \gamma(f_2) \end{array} \right) = \left(\begin{array}{c} f_1 \\ f_2 \end{array} \right).
\]

(19)

We define \(P' \in M_2(\text{Frac}R')\) by \(1 + (q - 1) \lambda P = (1 + (q - 1) \lambda P')^{-1}\). Then the equation (19) is equivalent to \(dq \left(\begin{array}{c} f_1 \\ f_2 \end{array} \right) = P' \left(\begin{array}{c} f_1 \\ f_2 \end{array} \right)\). Hence (18) holds when
\[
P' = \frac{1}{q \lambda(1 - q \lambda)} \left(\begin{array}{cc} -1 + \alpha \lambda & [\frac{1}{2}]_q^2 \\ q \lambda(1 - q \lambda) & 0 \end{array} \right).
\]

14
Therefore,
\[
1 + (q - 1)\lambda P = (1 + (q - 1)\lambda P')^{-1}
\]
\[
= q\lambda(1 - q\lambda) \left(\frac{q\lambda(1 - q\lambda) - (q - 1)\lambda(1 - \alpha\lambda)}{(q - 1)\lambda q\lambda(1 - q\lambda)} \left(\frac{q\lambda(1 - q\lambda)}{\lambda(1 - \lambda)}\right)^2\right)^{-1}
\]
\[
= \frac{1}{\lambda(1 - \lambda)} \left(\frac{q\lambda(1 - q\lambda)}{\lambda(1 - \lambda)} - (q - 1)\lambda \left(\frac{1}{\lambda}\right)^2 (q - 1)\lambda\right)
\]
and we obtain
\[
P = \frac{1}{\lambda(1 - \lambda)} \left(\frac{1 - [2]_q \lambda}{-q\lambda(1 - q\lambda)} - \left(\frac{1}{\lambda}\right)^2 (q - 1)\lambda\right).
\]

Let \(\overline{\tau}_1\) and \(\overline{\tau}_2\) be the elements \(\lambda(1 - \lambda)\omega\) and \(-\lambda(1 - \lambda)D(\omega)\) of \(H^1_{\text{dR}}\), respectively (see \(\mathcal{H}\)). Then, in the case \(R' = R \left< \lambda, \frac{1}{\lambda(1 - \lambda)}\right>\), the comparison with the formula \(\mathcal{I}\) shows that we have the following isomorphism of \(B'\)-modules with connection and filtration
\[
(M'', \nabla_q) \otimes_{R'} B \xrightarrow{\cong} (H^1_{\text{dR}}, \nabla); e_1 \otimes 1, e_2 \otimes 1 \mapsto \overline{\tau}_1, \overline{\tau}_2.
\]

(20)

Put \(e'_1 = \frac{1}{\lambda(1 - \lambda)}\right)e_1 \in M'' \left< \frac{1}{\lambda(1 - \lambda)}\right>,\) and let \(M'\) be the free \(R'\)-submodule \(R'e'_1 \oplus R'e_2\) of \(M'' \left< \frac{1}{\lambda(1 - \lambda)}\right>.\)

Then the \(q\)-connection \(\nabla_q\) on \(M''\) uniquely extends to a \(q\)-connection on \(M'' \left< \frac{1}{\lambda(1 - \lambda)}\right>,\) and by a straightforward computation, we see that its restriction to \(M'\) gives the \(q\)-connection \(\nabla_q': M' \to M' \otimes_{R'} \frac{1}{\lambda(1 - \lambda)}q\Omega_{R'/R}\) on \(M'\) defined by
\[
\nabla_q(e'_1, e_2) = (e'_1, e_2) \left(\frac{0}{\lambda(1 - \lambda)} - \left(\frac{1}{\lambda}\right)^2 (q - 1)\lambda\right) \otimes d\lambda.
\]

We define the filtration on \(M'\) by
\[
\text{Fil}^r M' = \begin{cases}
M' & r = 0 \\
R'e'_1 \oplus (q - 1)R'e_2 & r = 1.
\end{cases}
\]

Then, in the case \(R' = R \left< \lambda, \frac{1}{\lambda(1 - \lambda)}\right>\), we have an isomorphism of \(B'\)-modules with connection and filtration
\[
(M', \nabla_q, \text{Fil}^\bullet) \otimes_{R'} B' \xrightarrow{\cong} (H^1_{B'}, \nabla, \text{Fil}^\bullet); e'_1, e_2 \mapsto \overline{\tau}'_1, \overline{\tau}'_2.
\]

(21)

7 \(q\)-analogue of \(p\)-adic formal congruence

In this section, we prove some formal congruence between power series in \(R[[\lambda]]\) and show that certain constructions give elements of a ring smaller than \(R[[\lambda]]\) by constructing \(q\)-analogues of some results of [Dw09] \(\S 1-3\). Put
\[
C_\theta(n) = \prod_{\nu=0}^{n-1} \left[\theta + \nu\right]_q.
\]

Let \(\theta \in \mathbb{Z}_p\) be neither zero nor negative rational integer. We define \(\theta' \in \mathbb{Q} \cap \mathbb{Z}_p\) to be the unique number such that \(p\theta' - \theta\) is an ordinary integer in \([0, p - 1]\). For all \(x \in \mathbb{Q}\), we put
\[
\rho(x) = \begin{cases}
0 & x \leq 0 \\
1 & x > 0.
\end{cases}
\]
Lemma 7.1. [Dw69, §1, Lemma 1 (1,1)] Let μ, s be positive integers. Let $a \in \mathbb{N} \cap [0, p-1]$. Then,

$$
\frac{C_\theta(a + \mu p + mp^{s+1})}{\varphi(C_\theta(\mu + mp^s))} = \frac{C_\theta(mp^{s+1})}{\varphi(C_\theta(mp^s))} \left(\frac{[mp^s]_q}{[\theta + \mu]_q} \right)^{p(a + \theta - mp^s)} \mod 1 + [p^{s+1}]_q R.
$$

Proof. By the definition of C_θ,

$$
\frac{C_\theta(a + \mu p + mp^{s+1})}{C_\theta(mp^{s+1})} = \prod_{\nu=0}^{a+mp-1} \left[\theta + mp^{s+1} + \nu \right]_q
$$

and

$$
\frac{C_\theta(mp^{s+1})}{C_\theta(mp^s)C_\theta(\mu + mp^s)} = \prod_{\nu=0}^{a+mp-1} \left[\theta + mp^{s+1} + \nu \right]_q \frac{\theta + \nu}{[\theta + \nu]_q} = \prod_{\nu=0}^{a+mp-1} \left(1 + q^{\theta + \nu} \frac{[mp^s]_q}{[\theta + \nu]_q} \right).
$$

We have

$$
[mp^{s+1}]_q = [p^{s+1}]_q \left(1 + q^{\nu_1 + 1} + q^{\nu_2 + 1} + \cdots + q^{\nu_m + 1} \right) \in [p^{s+1}]_q R,
$$

so the proof of Lemma 1.1 is almost the same as the Dwork’s proof in [Dw69, §1 Lemma 1 p.31].

Lemma 7.2. [Dw69, §1, Lemma 1 (1,2)] Let μ, s be positive integers. Then,

$$
\frac{C_\theta(mp^{s+1})}{\varphi(C_\theta(mp^s))} \equiv \frac{C_1(mp^{s+1})}{\varphi(C_1(mp^s))} \mod 1 + [p^{s+1}]_q R.
$$

Proof. By putting $a = 0, \mu = p^s$, the proof of Lemma 7.2 is reduced to the case $m = 1$. For $\nu \in \mathbb{N} \cap [0, p^{s+1} - 1]$, the condition

$$
\theta + \nu \equiv 0 \mod p
$$

is equivalent to the condition that there exists $\nu' \in \mathbb{N} \cap [0, p^s - 1]$ such that $\nu = (p\theta' - \theta) + p\nu'$. This condition implies that $\theta + \nu = p(\theta + \nu')$. Thus, we have

$$
\frac{C_\theta(p^{s+1})}{\varphi(C_\theta(p^s))} = \prod_{\nu', \theta + \nu'} \left[p(\theta' + \nu') \right]_q \prod_{\nu, \theta + \nu} \left[\theta + \nu \right]_q = \prod_{\nu', \theta + \nu'} \left[p^{\theta + \nu'} \right]_q \prod_{\nu, \theta + \nu} \left[\theta + \nu \right]_q.
$$

Especially, by putting $\theta = \theta' = 1$, we have (replacing ν with ν_1)

$$
\frac{C_1(p^{s+1})}{\varphi(C_1(p^s))} = [p]_q^{p\nu_1} \prod_{\nu_1 \in \mathbb{N} \cap [0, p^{s+1} - 1]} [1 + \nu_1]_q.
$$

The sets $\{ \theta + \nu \mid p \nmid \theta + \nu, \nu \in \mathbb{N} \cap [0, p^{s+1} - 1] \}$ and $\{ 1 + \nu_1 \mid p \nmid 1 + \nu_1, \nu_1 \in \mathbb{N} \cap [0, p^{s+1} - 1] \}$ are both representatives of $(\mathbb{Z}/p^{s+1}\mathbb{Z})^\times$, so they have one-to-one correspondence. Namely for all ν, there is a unique ν_1 such that

$$
\theta + \nu \equiv 1 + \nu_1 \mod p^{s+1}.
$$

Since $(1 + \nu_1, p) = 1$, we have $\theta + \nu = (1 + \nu_1)(1 + p^{s+1}a_{\nu})$ for some $a_{\nu} \in \mathbb{Z}_q$. Thus, we have

$$
\frac{C_\theta(p^{s+1})}{\varphi(C_\theta(p^s))} = [p]_q^{p\nu_1} \prod_{1 + \nu_1} \left[1 + \nu_1 \right]_q\left(1 + q^{1 + \nu_1} \frac{[p^{s+1}a_{\nu}(1 + \nu_1)]_q}{[1 + \nu_1]_q} \right).
$$

This is congruent to $\frac{C_1(p^{s+1})}{\varphi(C_1(p^s))} \mod 1 + [p^{s+1}]_q R$, which follows from $\frac{[p^{s+1}a_{\nu}(1 + \nu_1)]_q}{[1 + \nu_1]_q} \in [p^s + 1]_q R$.

16
Corollary 7.3. [Dw69 §1, Corollary 2] Assume that \(\theta = \frac{1}{2} \). (Then we have \(\theta' = \frac{1}{2} \) by the definition.)

(i) Assume \(a > \frac{v_{p+1}}{2} \). Then
\[
\frac{A_{\frac{1}{2}}(a + \mu p)}{\varphi(\mu)} \equiv 0 \mod \left[p^{1+v_p\left(\mu + \frac{1}{2}\right)} \right]_q R.
\]

(ii) We have
\[
\frac{A_{\frac{1}{2}}(n + mp^{+1})}{\varphi(\mu)} \equiv \frac{A_{\frac{1}{2}}(n)}{\varphi(\mu)} \mod \left[p^{s+1} \right]_q R.
\]

Proof. (i) Put
\[
r(N, m) = \left| \left\{ \frac{1}{2} + i \mid i \in \mathbb{N} \cap [0, N - 1], v_p\left(\frac{1}{2} + i\right) \geq m \right\} \right| - \left| \left\{ i \mid i \in \mathbb{N} \cap [0, N - 1], v_p(i) \geq m \right\} \right|.
\]
If we write \(N = b + p^m c \) \((b, c \in \mathbb{N}, b \in [0, p^m - 1])\), we can rewrite \(r(N, m) \) by
\[
r(N, m) = \begin{cases} 1 & b \geq \frac{1}{2}(p^m + 1) \\ 0 & b < \frac{1}{2}(p^m + 1). \end{cases}
\]
Put
\[
\Phi_p(q) = \frac{q^{p^m} - 1}{q^{p^m - 1} - 1}.
\]
Then modulo units, we have
\[
A_{\frac{1}{2}}(a + \mu) = \left(\prod_{m=1}^{\infty} \Phi_p(q)^{r(\mu, m)} \right) \varphi \left(\frac{\mu}{p} \right)
\]
and
\[
\varphi \left(\frac{\mu}{p} \right) = \varphi \left(\prod_{m=1}^{\infty} \Phi_p(q)^{r(\mu, m)} \right) = \prod_{m=1}^{\infty} \Phi_p(q)^{r(\mu, m)} = \prod_{m=1}^{\infty} \Phi_p(q)^{r(\mu, m - 1)}.
\]
Therefore, by setting \(r(N, 0) = 0 \) for \(N \in \mathbb{N} \) we obtain
\[
\frac{A_{\frac{1}{2}}(a + \mu p)}{\varphi(\mu)} = \left(\prod_{m=1}^{\infty} \Phi_p(q)^{r(\mu, m - 1)} \right).
\]
So we have to determine \(r(a + \mu p, m) - r(\mu, m - 1) \) for each \(m \).

Thus,
\[
\nu = \left[\frac{a + \nu p}{p} \right] = \left[\frac{p^m - 1}{2p} \right] \leq \frac{1}{2}(p^m - 1).
\]

So \(m - 1 \geq p^m - 1 \) implies \(r(a + \mu p, m) - r(\mu, m - 1) \geq 0 \) for all \(m. \) Assume \(m - 1 \leq \nu \left(\mu + \frac{1}{2}\right) \), then we obtain
\[
\nu \left(\mu + \frac{1}{2}\right) \geq m - 1,
\]
from which we obtain
\[
\mu + \frac{1}{2} \geq \frac{p + 1}{2},
\]
and
\[
\nu \geq \frac{1}{2}(p^m - 1).
\]

Put \(A_\theta(n) = C_\theta(n)/C_1(n) \) for a non-negative number \(n. \)
The inequality \([23] \) means \(r(a + \mu m, m) = 1 \) and \([24] \) means \(r(\mu, m - 1) = 0 \), so we obtain \(r(a + \mu p, m) - r(\mu, m - 1) = 1 \) under the condition \(m \leq 1 + v_p(\mu + \frac{a}{m}) \). Therefore,

\[
\frac{A_\frac{a}{m}(n)}{\varphi\left(A_\frac{a}{m}\left(\frac{n}{m}\right)\right)} \in \prod_{m=1}^{\infty} \Phi_p(q) = \left[p^{1+v_p(\mu+\frac{a}{m})}\right]_q.
\]

(ii) Put \(n = a + \mu p \ (a, \mu \in \mathbb{N}, a \in \{0, p - 1\}) \). Then,

\[
\frac{A_\frac{a}{m}(n + mp^{s+1})}{\varphi\left(A_\frac{a}{m}\left(\frac{n}{m} + mp\right)\right)} = \frac{\varphi(C_\frac{a}{m}(\mu + mp^{s+1}))}{\varphi\left(A_\frac{a}{m}(\mu + mp)\right)}
\]

\[
= \frac{\varphi(C_\frac{a}{m}(\mu + mp))}{\varphi(A_\frac{a}{m}(\mu))}
\]

\[
= \left[\varphi\left(1 + q^{\frac{a}{m} + \mu}\left[\frac{mp^s}{q^{1+\mu}}\right]_q\right)\right]^{o(a - \frac{a}{m})} \mod [p^{s+1}]_q R \quad \text{(by Lemma 7.1)}
\]

\[
= \frac{A_\frac{a}{m}(a + \mu p)}{\varphi(A_\frac{a}{m}(\mu))} \left[\varphi\left(1 + q^{\frac{a}{m} + \mu}\left[\frac{mp^s}{q^{1+\mu}}\right]_q\right)\right]^{o(a - \frac{a}{m})} \mod [p^{s+1}]_q R
\]

by Lemma 7.1 again. (Use for \(\theta = \theta' = 1 \).) Thus, if \(a - \frac{a}{m} \leq 0 \), \(\text{ii} \) is clear. Assume \(a - \frac{a}{m} > 0 \), then

\[
\frac{A_\frac{a}{m}(a + \mu p)}{\varphi(A_\frac{a}{m}(\mu))} \left[\varphi\left(1 + q^{\frac{a}{m} + \mu}\left[\frac{mp^s}{q^{1+\mu}}\right]_q\right)\right]^{o(a - \frac{a}{m})} \mod [p^{s+1}]_q R
\]

This is congruent to 0 modulo \([p^{s+1}]_q R \), which follows from

\[
\frac{A_\frac{a}{m}(a + \mu p)}{\varphi(A_\frac{a}{m}(\mu))} \in \left[p^{1+v_p(\mu+\frac{a}{m})}\right]_q R
\]

and

\[
[p^{1+v_p(\mu+\frac{a}{m})}]_q \varphi\left(\frac{[p^s]_q}{[p^{s+1}]_q}\right) = [p]_q \varphi\left([p^s]_q\right) = [p^{s+1}]_q.
\]

\]

\[
\square
\]

Theorem 7.4. \([\text{Dw69}, \text{Theorem 2}]\) Let \(A = B^{(-1)}, B = B^{(0)}, B^{(1)}, B^{(2)}, \ldots \), be a sequence of functions on \(\mathbb{N} \) with values in \(Q := \text{Frac}(R) \). Put

\[
F(\lambda) = \sum_{n=0}^{\infty} A(n) \lambda^n, \quad G(\lambda) = \sum_{n=0}^{\infty} B(n) \lambda^n.
\]

Assume for all \(n, m, s \in \mathbb{N}, i \geq -1, \)
(a) \[\frac{B^{(i)}(n+mp^s)}{\varphi(B^{(i)}([\frac{n}{p}]+mp^s))} \equiv \frac{B^{(i)}(n)}{\varphi(B^{(i)}([\frac{n}{p}]))} \mod [p^{s+1}]_q R. \]

(b) \[\frac{B^{(i)}(n)}{\varphi(B^{(i)}([\frac{n}{p}]))} \in R. \]

(c) \[B^{(i)}(n) \in R. \]

(d) \[B^{(i)}(0) \in R^\times. \]

Then,

\[F(\lambda) \varphi \left(\sum_{j=mp^s}^{(m+1)p^s-1} B(j) \lambda^j \right) \equiv \varphi(G(\lambda)) \sum_{j=mp^s+1}^{(m+1)p^s-1} A(j) \lambda^j \mod [p^{s+1}]_q \varphi^{s+1}(B^{(s)}(m)) R[[\lambda]]. \]

Proof. Let \(n = a + pN \) (\(a \in \mathbb{N} \cap [0, p - 1] \)). So the coefficient of \(\lambda^n \) on the left side of (7.4) is

\[\sum_{j=mp^s}^{(m+1)p^s-1} A(n - pj) \varphi(B(j)), \]

and the coefficient of \(\lambda^n \) on the right side of (7.4) is

\[\sum_{j=mp^s}^{(m+1)p^s-1} \varphi(B(N - j)) A(a + pj). \]

Let

\[U_a(j, N) = A(a + p(N - j)) \varphi(B(j)) - \varphi(B(N - j)) A(a + pj), \]

\[H_a(m, s, N) = \sum_{j=mp^s}^{(m+1)p^s-1} U_a(j, N). \]

Then what we have to show is

\[H_a(m, s, N) \equiv 0 \mod [p^{s+1}]_q \varphi^{s+1}(B^{(s)}(m)) R. \] (25)

Since \(a \in [0, p - 1] \), we have \(U_a(j, N) = 0 \) for \(j > N \). So

\[H_a(m, s, N) = 0 \quad \text{for} \quad N < mp^s. \] (26)

In preparation for the proof of this theorem, we note some facts. The proof of these facts is almost the same as [Dw69].

\[\sum_{m=0}^{T} H_a(m, s, N) = 0 \quad \text{for} \quad (T + 1)p^s > N. \] (27)

\[H_a(m, s, N) = \sum_{\mu=0}^{p-1} H_a(\mu + mp^s, s - 1, N) \quad \text{for} \quad s \geq 1. \] (28)

\[B^{(i)}(i + mp^s) \equiv 0 \mod \varphi^s(B^{(s+t)}(m)) R \quad \text{for} \quad i \in \mathbb{N} \cap [0, p^s - 1], s \geq 0, t \geq -1. \] (29)
We prove \([24]\) using induction on \(s\). Put the induction hypothesis

\[(\alpha)_s : \hat{H}_a(m,u,N) \equiv 0 \mod \ [p^{u+1}]_q \varphi^{u+1}(B^{(u)}(m))R \quad \text{for} \quad 0 \leq u < s,
\]

and the supplementary hypothesis

\[(\beta)_{t,s} : \hat{H}_a(m,s,N+mp^s) \equiv \sum_{j=0}^{p^{t-1}} \frac{\varphi^{t+1}(B^{(1)}(j+mp^{s-1}))H_a(j,t,N)}{\varphi^{t+1}(B^{(1)}(j))} \mod \ [p^{t+1}]_q \varphi^{t+1}(B^{(s)}(m))R \quad \text{for} \quad t \in \mathbb{N} \cap [0,s].
\]

Then \((\alpha)_s\) for all \(s \geq 1\) is reduced to the following four claims:

(i) \((\alpha)_1\); (ii) \((\beta)_{0,s}\); (iii) \((\beta)_{t,s}\) and \((\alpha)_s\) imply \((\beta)_{t+1,s}\); (iv) \((\beta)_{s,s}\) implies \((\alpha)_{s+1}\).

(i) By \([20]\), we may assume \(N \geq m\). By hypothesis \([\mathbb{1}]\),

\[
\frac{A(a+p(N-m))}{\varphi(B(N-m))} = \frac{A(a)}{\varphi(B(0))} \mod \ [p]_q R.
\]

Especially if \(N = 2m\), \(\frac{A(a+pmn)}{\varphi(B(m))} \equiv \frac{A(a)}{\varphi(B(0))} \mod \ [p]_q R\). Thus,

\[
\frac{U_a(m,N)}{\varphi(B(m))\varphi(B(N-m))} = \frac{A(a+p(N-m))}{\varphi(B(N-m))} \equiv \frac{A(a+pmn)}{\varphi(B(m))} \equiv 0 \mod \ [p]_q R.
\]

Then by \([\mathbb{1}]\), \(U_a(m,N) \equiv 0 \mod \ [p]_q \varphi(B(m))R\).

(ii) We have \(H_a(m,s,N+mp^s) = \sum_{j=0}^{p^{s-1}} U_a(j+mp^s,N+mp^s)\) and by definition of \(U_a\),

\[
U_a(j+mp^s,N+mp^s) = A(a+p(N-j))\varphi(B(j+mp^s)) - \varphi(B(N-j))A(a+mp+mp^s).
\]

By hypothesis \([\mathbb{2}]\),

\[
A(a+mp+mp^s) = \frac{A(a+mpj)\varphi(B(j+mp^s))}{\varphi(B(j))} + X_j\varphi(B(j+mp^s))
\]

for some \(X_j \in [p^{s+1}]_q R\). Then the right-hand side of \((30)\) is

\[
A(a+p(N-j))\varphi(B(j+mp^s)) - \varphi(B(N-j))\left(\frac{A(a+mpj)\varphi(B(j+mp^s))}{\varphi(B(j))} - X_j\varphi(B(j+mp^s))\right)
\]

\[
= \varphi(B(j+mp^s))\left(\frac{U_a(j,N)}{\varphi(B(j))} - X_j\varphi(B(N-j))\right)
\]

\[
= \varphi(B(j+mp^s))\left(\frac{H_a(j,0,N)}{\varphi(B(j))} - X_j\varphi(B(N-j))\right)
\]

\[
= \frac{\varphi(B(j+mp^s))H_a(j,0,N)}{\varphi(B(j))} - X_j\varphi(B(j+mp^s))\varphi(B(N-j)).
\]

We have \(\varphi(B(j+mp^s)) \equiv 0 \mod \varphi^{s+1}(B^{(s)}(m))R\) by \([23]\). So, by combining \(X_j \in [p^{s+1}]_q R\), we obtain \(X_j\varphi(B(j+mp^s)) \equiv 0 \mod \ [p^{s+1}]_q \varphi^{s+1}(B^{(s)}(m))R\), namely

\[
U_a(j+mp^s,N+mp^s) \equiv \frac{\varphi(B(j+mp^s))H_a(j,0,N)}{\varphi(B(j))} \mod \ [p^{s+1}]_q \varphi^{s+1}(B^{(s)}(m))R.
\]
Therefore, we obtain

\[H_a(m, s, N + mp^s) \equiv \sum_{j=0}^{p^s-1} \frac{\varphi(B(j + mp^s))H_a(j, 0, N)}{\varphi(B(j))} \mod [p^{s+1}]_q \varphi^{s+1}(B^{(s)}(m))R, \]

which is \((\beta)_{0,s}\).

(iii) Put \(j = \mu + pi\), then the right-hand side of \((\beta)_{t,s}\) is

\[\sum_{\mu=0}^{p-1} \sum_{i=0}^{p^s t - 1 - 1} \frac{\varphi^{t+1}(B^{(t)}(\mu + pi + mp^{s-t}))H_a(\mu + pi, t, N)}{\varphi^{t+1}(B^{(t)}(\mu + pi))}, \tag{31} \]

By hypothesis (a),

\[B^{(t)}(\mu + pi + mp^{s-t}) = B^{(t)}(\mu + pi)\varphi(B^{(t+1)}(i + mp^{s-t-1})) + X_{i,\mu} \varphi(B^{(t+1)}(i + mp^{s-t-1})) \]

for some \(X_{i,\mu} \in [p^{s-t}]_q R\). Thus, the general term in the double sum of (31) is

\[\frac{\varphi^{t+2}(B^{(t+1)}(i + mp^{s-t-1}))H_a(\mu + pi, t, N)}{\varphi^{t+2}(B^{(t+1)}(i))} + Y_{i,\mu}, \]

where

\[Y_{i,\mu} = \varphi(X_{i,\mu}) \frac{\varphi^{t+2}(B^{(t+1)}(i + mp^{s-t-1}))H_a(\mu + pi, t, N)}{\varphi^{t+2}(B^{(t+1)}(\mu + pi))}. \]

By (a), \(H_a(\mu + pi, t, N) \equiv 0 \mod [p^{s+1}]_q \varphi^{t+1}(B^{(t)}(\mu + pi))\), so combining \(X_{i,\mu} \in [p^{s-t}]_q R\), we obtain

\[Y_{i,\mu} \equiv 0 \mod [p^{s+1}]_q \varphi^{t+2}(B^{(t+1)}(i + mp^{s-t-1}))R \]

\[\equiv 0 \mod [p^{s+1}]_q \varphi^{s+1}(B^{(s)}(m))R \quad \text{by (29)}, \]

Therefore, the right-hand side of \((\beta)_{t,s}\) \(\mod [p^{s+1}]_q \varphi^{s+1}(B^{(s)}(m))R\) is

\[\sum_{\mu=0}^{p-1} \sum_{i=0}^{p^s t - 1 - 1} \frac{\varphi^{t+2}(B^{(t+1)}(i + mp^{s-t-1}))H_a(\mu + pi, t, N)}{\varphi^{t+2}(B^{(t+1)}(i))} = \sum_{i=0}^{p^s t - 1 - 1} \frac{\varphi^{t+2}(B^{(t+1)}(i + mp^{s-t-1}))H_a(i, t + 1, N)}{\varphi^{t+2}(B^{(t+1)}(i))} \quad \text{by (29)}, \]

which is \((\beta)_{t+1,s}\).

(iv) Let us think about the hypothesis

\[(\gamma)_N : H_a(0, s, N) \equiv 0 \mod [p^{s+1}]_q R \]

for \(n \in \mathbb{Z}\). We know \((\gamma)_N\) is true for \(N \leq 0\). Suppose that \(\{N \in \mathbb{N} \mid (\gamma)_N \text{ fails }\} \neq \emptyset\) and put \(N' = \min\{N \in \mathbb{N} \mid (\gamma)_N \text{ fails }\}\). Then by \((\beta)_{s,s}\) and hypothesis (a), we have

\[\varphi^{s+1}(B^{(s)}(0))H_a(m, s, N') \equiv \varphi^{s+1}(B^{(s)}(m))H_a(0, s, N' - mp^s) \mod [p^{s+1}]_q \varphi^{s+1}(B^{(s)}(m))R \]

21
Theorem 7.5. [Dw69, §3, Theorem 3] Let $B: \mathbb{N} \to R$ be a map satisfying conditions (a), (b), (c) of Theorem 7.4 and a condition

(d') $B(0) = 1$.

(We set $B(i) = B$ for all $i \geq -1$.) Put

$$F_λ = \sum_{j=0}^{\infty} B(j)λ^j, \quad F_s(λ) = \sum_{j=0}^{p^s-1} B(j)λ^j.$$

Let $T = R\left<\lambda, \frac{1}{F_λ}\right>$. Then,

$$\frac{F_{s+1}(λ)}{φ(F_s(λ))}$$

converges to an element of T^\times.

Proof. By Theorem 7.4 for $i \geq 0, s \geq 0$, $F_λφ(F_λ) \equiv φ(F_λ)F_{s+1}(λ) \mod [p^{s+1}]_q R[[λ]]$. Since $F, F_s \in R[[λ]]^\times$ by (d'),

$$\frac{F_{s+1}(λ)}{φ(F_s(λ))} \equiv \frac{F(λ)}{φ(F(λ))} \mod [p^{s+1}]_q R[[λ]]. \quad (32)$$

Especially for $s = 0$, $F_1(λ) \equiv \frac{F(λ)}{φ(F(λ))} \mod [p]_q R[[λ]]$. Hence,

$$\frac{F_{s+1}(λ)}{φ(F_s(λ))} \equiv F_1(λ) \mod [p]_q R[[λ]].$$

Therefore, we have

$$F_{s+1}(λ) \equiv φ(F_s(λ))F_1(λ) \mod [p]_q R[[λ]], \quad (33)$$

since the congruence holds mod $[p]_q R[[λ]]$ and both sides are polynomials. Clearly we have $F_1 \in T^\times$. Since $[p]_{q} \in (p, q - 1)T$ (Proposition 2.10), we obtain $F_s \in T^\times$ ($s ∈ \mathbb{N}$) from (33) by induction on s. For $s ∈ \mathbb{N}$, we put

$$f_s(λ) = \frac{F_{s+1}(λ)}{φ(F_s(λ))}.$$

Then $f_s \in T^\times$. By (32), we have

$$f_{s+1} \equiv f_s \mod (p, q - 1)^{s+1} R[[λ]]. \quad (34)$$

Let $R_{s+1} = R/(p, q - 1)^{s+1}$. Since $F_1(λ) ∈ R_{s+1}[[λ]]^\times$, the natural homomorphism $R_{s+1}[λ]F_1(λ) → R_{s+1}[[λ]]$ is injective. Then by $R_{s+1}[λ]F_1(λ) = R_{s+1}[\lambda, \frac{1}{F_1(λ)}] = T/(p, q - 1)^{s+1}T$, the natural homomorphism

$$T/(p, q - 1)^{s+1}T → R_{s+1}[[λ]] = R[[λ]]/(p, q - 1)^{s+1}R[[λ]]$$

is injective. Therefore by (34), we have $f_{s+1} \equiv f_s \mod (p, q - 1)^{s+1}T$. So by the completeness of T, \{f_s\}_{s∈\mathbb{N}} converges to a unit of T. □
Corollary 7.6. Let F, F_1 be same as Theorem 7.5. Then, $\frac{d_q F}{F}$ and $\frac{d_q F}{\gamma(F)}$ are elements of $T = R \left(\lambda, \frac{1}{\gamma(\lambda)} \right)$.

Proof. Put $f = \frac{F}{\varphi(F)}$. By Theorem 7.5, $f, f^{-1} \in T$. So we have

$$\frac{d_q F}{F} = \frac{1}{F} d_q (f \varphi(F))$$

$$= \frac{1}{F} \left(d_q (f) \varphi(F) + \gamma(f) d_q (\varphi(F)) \right)$$

$$= \frac{1}{F} \left(d_q (f) \varphi(F) + [p_q] \lambda^p - 1 \gamma(f) \varphi(d_q(F)) \right) \quad \text{(by Proposition 2.11)}$$

$$= \frac{d_q f}{f} + [p_q] \lambda^p - 1 \gamma(f) \varphi \left(\frac{d_q F}{F} \right).$$

By repeating this computation,

$$\frac{d_q F}{F} = \sum_{j=0}^{s-1} [p_j] \lambda^p - 1 \left(\prod_{i=0}^{j-1} \varphi \left(\frac{\gamma(f)}{f} \right) \right) \varphi^j \left(\frac{d_q f}{f} \right) + [p^s] \lambda^p - 1 \left(\prod_{j=0}^{s-1} \varphi \left(\frac{\gamma(f)}{f} \right) \right) \varphi^s \left(\frac{d_q F}{F} \right).$$

The last term of the right side converges to 0 in $R[[\lambda]] \ (s \to \infty)$. Put

$$\eta_s = \sum_{j=0}^{s-1} [p_j] \lambda^p - 1 \left(\prod_{i=0}^{j-1} \varphi \left(\frac{\gamma(f)}{f} \right) \right) \varphi^j \left(\frac{d_q f}{f} \right).$$

Then by the completeness of T, we obtain $\frac{d_q F}{F} = \lim_{s \to \infty} \eta_s \in T$.

To prove the latter, put $g = f^{-1} = \frac{\varphi(F)}{f}$. We have $\frac{d_q F}{\gamma(F)} = -F d_q \left(\frac{1}{f} \right)$, and $F d_q \left(\frac{1}{f} \right) = F d_q \left(\frac{g}{\varphi(F)} \right) = \frac{d_q g}{g} + [p_q] \lambda^p - 1 \gamma(g) \varphi \left(F d_q \frac{1}{f} \right).$ So discussing similarly, we obtain $\frac{d_q F}{\gamma(F)} \in T$. \qed

8 Proof of the main theorems I

In this section, we prove Theorem 4.1 and construct $\varphi_{M'}$ of M' satisfying the conditions (i) and (ii) in Corollary 2.2.

Let $B(n) = a_n = \prod_{i=0}^{n-1} \left(\frac{1 + i}{1 + n} \right)^2 \in R$. Then by Corollary 7.3, $\{B(n)\}_{n \in N}$ satisfies the conditions (a), (b), (c) of Theorem 7.3 and the condition (d') of Theorem 7.3. Therefore, we can apply Theorem 7.4 and Corollary 7.6 to $\{B(n)\}_{n \in N}$.

Let $F(\lambda) = \sum_{n=0}^{\infty} a_n \lambda^n \in R[[\lambda]]$ and $F_1(\lambda) = \sum_{n=0}^{\infty} a_n \lambda^n \in R[\lambda]$. Then, by Theorem 5.1, $F(\lambda)$ is a solution of the q-hypergeometric differential equation (12). Put $S' = R \left(\lambda, \frac{1}{\alpha(\lambda)} \right)$ as in (11). Then by Lemma 2.2, we have $S' = R \left(\lambda, \frac{1}{\gamma(\lambda)} \right)$. \qed

Proof of Theorem 7.7. Put $\eta = \frac{d_q F}{S'} \in S'$ (Corollary 7.6), $e_1' = \eta e_1 + e_2 \in M'$, and $U' = S' e_1' \subseteq M'$. Then by (18), $\nabla_q (F e_1') = \nabla_q (d_q F e_1 + F e_2) = 0$. Put

$$\nabla_q (e_1') = -\eta' e_1' \otimes d\lambda \quad \left(\eta' \in \frac{1}{\lambda(1-\lambda)} S' \right).$$

Then $\nabla_q (F e_1') = d_q F e_1' \otimes d\lambda - \gamma(F) \eta' e_2' \otimes d\lambda = 0$, which implies $\eta' = \frac{d_q F}{\gamma(F)} = \eta' F e_1'$. (We can determine η' directly by the matrix P of (19).) Corollary 7.6 implies $\eta' \in S'$. By Theorem 7.5, we have $\frac{F}{\varphi(F)} \in S'^e$. 23
Define φ_U' by $\varphi_U'(e'_2) = \varepsilon \frac{F}{\varphi(F)} e'_2$, where $\varepsilon = (-1)^{\frac{p-1}{2}}$ comes from the classical Frobenius structure \mathfrak{M} of U_B'. Then the pair (U', φ_U') satisfies the four conditions in Theorem 4.1.

Proof of Theorems 4.2 (i), (ii). Let $e'_2 = \eta e_1 + e_2 \in M'$ and $U' = R[[\lambda]]e'_2 \subset M'$ as in the proof of Theorem 4.1. Let us consider the natural projection $M' \to M'/U'$. Let $e'_1 \in M'/U'$ be the image of e'_1 by this projection. Then,

$$\nabla_q(e'_1) = - \frac{1}{\lambda(1 - \lambda)} e_2 \otimes d\lambda = \left(- \frac{1}{\lambda(1 - \lambda)} e'_2 + \eta e'_1 \right) \otimes d\lambda.$$

Therefore, $\nabla_q(e'_1) \equiv \eta e'_1 \otimes d\lambda$ and

$$\nabla_q \left(\frac{1}{F} e'_1 \right) = d_q \left(\frac{1}{F} \right) e'_1 \otimes d\lambda + \gamma \left(\frac{1}{F} \right) \nabla_q \left(e'_1 \right) = - \frac{d_q(F)}{F \gamma(F)} e'_1 \otimes d\lambda + \frac{1}{\gamma(F)} \eta e'_1 \otimes d\lambda = 0.$$

Thus, we define a φ-semilinear endomorphism $\varphi_{M'/U'}$ of M'/U' by $\varphi_{M'/U'}(e'_1) = \varepsilon [p] \frac{\varphi(F)}{\varphi(H)} e'_1$ so that $\varphi_{M'/U'} \left(\frac{1}{F} e'_1 \right)$ is a solution of $\nabla_q = 0$ and that the reduction modulo $q - 1$ of $\varphi_{M'/U'}$ coincides with φ of $(H_{U'})/(U_B' \otimes B''')$ via (11) (see (4)). Then its lifting $\varphi_{M'}(e'_1)$ should be of the form $\varepsilon \left([p] \frac{\varphi(F)}{\varphi(H)} e'_1 + [p] \frac{\varphi(F)}{\varphi(F)} e'_2 \right)$ for some $a \in R[[\lambda]]$ by the condition (i) in Theorem 4.2.

Let H be the solution of $L = 0$ given in Theorem 5.1. We have $\nabla_q(d_q H e_1 + H e_2) = 0$ by (18) and

$$d_q H e_1 + H e_2 = \lambda(1 - \lambda) d_q H e'_1 + H (e'_2 - \lambda(1 - \lambda) \eta e'_1) = \lambda(1 - \lambda) \frac{F d_q H - H d_q F}{F} e'_1 + H e'_2$$

$$= \frac{1}{F} e'_1 + H e'_2.$$

Here the last equality follows from Lemma 4.3. Then,

$$\varphi_{M'} \left(\begin{pmatrix} 0 & \frac{1}{F} \lambda(1 - \lambda) \end{pmatrix} e'_1 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{F} \lambda(1 - \lambda) \end{pmatrix} \begin{pmatrix} 0 & \frac{\varphi(F)}{\varphi(H)} \frac{\varphi'(F)}{\varphi'(H)} \end{pmatrix}$$

Since $\varphi_{M'} \left(\frac{1}{F} e'_1 + H e'_2 \right)$ has to be in the kernel of ∇_q by the condition (ii) of Theorem 4.2, we try to find $a \in R[[\lambda]]$ such that $\varphi_{M'} \left(\frac{1}{F} e'_1 + H e'_2 \right)$ is an R-linear combination of $F e'_2$ and $\frac{1}{F} e'_1 + H e'_2$. Suppose that there exists $c \in R$ satisfying

$$ \begin{pmatrix} c e'_1 & e'_2 \end{pmatrix} \begin{pmatrix} |p| c \frac{\varphi(F)}{\varphi(H)} & |p| c \frac{\varphi'(F)}{\varphi'(H)} \end{pmatrix} = \begin{pmatrix} c e'_1 & e'_2 \end{pmatrix} \begin{pmatrix} \frac{1}{F} \lambda(1 - \lambda) \frac{\varphi(F)}{\varphi(H)} & c \frac{\varphi(F)}{\varphi(H)} \end{pmatrix},$$

which is equivalent to

$$a = \varphi(F) H - \frac{1}{|p|} F \varphi(H) + c F \varphi(F).$$

We prove

$$\varphi(F) H - \frac{1}{|p|} F \varphi(H) \in R[[\lambda]].$$

24
Put
\[G_1 = \sum_{n=1}^{\infty} a_n \lambda^n \sum_{i=1}^{n} \frac{2}{[n]_q}, \quad G_2 = \sum_{n=1}^{\infty} a_n \lambda^n \sum_{i=1}^{n} (q - 1), \]
then \(H = F \log_q \lambda - F \log_q (1 - \lambda) - G_1 - G_2 \). We prove (iii) by dividing \(H \) into these four terms.

(i) \(\varphi(F)F \log_q \lambda - \frac{1}{[p]_q} F \varphi(F \log_q \lambda) = \varphi(F)F \log_q \lambda - \frac{1}{[p]_q} F \varphi(F) \varphi(\log_q \lambda) = 0. \)

(ii)
\[
-\varphi(F)F \log_q(1 - \lambda) + \frac{1}{[p]_q} F \varphi(F \log_q(1 - \lambda)) = F \varphi(F) \left(\sum_{n=1}^{\infty} \frac{\lambda^n}{[n]_q} - \frac{1}{[p]_q} \sum_{n=1}^{\infty} \lambda^{pn} \right) = F \varphi(F) \sum_{(n,p)=1}^{\infty} \frac{\lambda^n}{[n]_q}.
\]

This is an element of \(R[[\lambda]] \).

(iii)
\[
-\varphi(F)G_1 + \frac{1}{[p]_q} F \varphi(G_1) = -\varphi(F) \sum_{n=1}^{\infty} a_n \lambda^n \sum_{i'=1}^{n} \frac{2}{[i']_q} + \frac{1}{[p]_q} F \varphi \left(\sum_{n=1}^{\infty} a_n \lambda^n \sum_{i'=1}^{n} \frac{2}{[i']_q} \right) = -2\varphi(F) \sum_{i=1}^{\infty} \frac{1}{[i]_q} \sum_{n=1}^{\infty} a_n \lambda^n + 2\varphi(F) \sum_{n=1}^{\infty} \frac{1}{[n]_q} \left(\sum_{n=1}^{\infty} a_n \lambda^n \right) = -2\varphi(F) \sum_{(i,n)=1}^{\infty} \frac{1}{[i]_q} \sum_{n=1}^{\infty} a_n \lambda^n - 2\varphi(F) \sum_{(n,p)=1}^{\infty} \frac{1}{[n]_q} \sum_{n=1}^{\infty} a_n \lambda^n + 2\varphi(F) \sum_{(n,p')=1}^{\infty} \frac{1}{[n]_q} \left(\sum_{n=1}^{\infty} a_n \lambda^n \right).
\]

The first term is an element of \(R[[\lambda]] \), and the remaining two terms are equal to
\[
2 \sum_{i'=1}^{\infty} \frac{1}{[i']_q} \left(-\varphi(F) \sum_{n=1}^{\infty} a_n \lambda^n + F \varphi \left(\sum_{n=1}^{\infty} a_n \lambda^n \right) \right).
\]

By Theorem 7.3,
\[
-\varphi(F) \sum_{n=0}^{p_i'-1} a_n \lambda^n + F \varphi \left(\sum_{n=0}^{p_i'-1} a_n \lambda^n \right) \in \left[p_i^{p_i'(i') + 1} \right]_q R[[\lambda]] = [p_i']_q R[[\lambda]],
\]
which implies \(-\varphi(F) \sum_{n=0}^{\infty} a_n \lambda^n + F \varphi \left(\sum_{n=0}^{\infty} a_n \lambda^n \right) \in [p_i']_q R[[\lambda]] \). Therefore, we have \(-\varphi(F)G_1 + \frac{1}{[p]_q} F \varphi(G_1) \in R[[\lambda]] \).

(iv) \(-\varphi(F)G_2 + \frac{1}{[p]_q} F \varphi(G_2) = -(q - 1)\varphi(F) \sum_{n=1}^{\infty} na_n \lambda^n + (q - 1)F \varphi \left(\sum_{n=1}^{\infty} na_n \lambda^n \right) \in R[[\lambda]]. \)

By adding all of them, we obtain \(-\varphi(F)H + \frac{1}{[p]_q} F \varphi(H) \in R[[\lambda]]. \)
We define \(\varphi_M' \) by choosing \(c \in R \) and using \(a \in R[[\lambda]] \) defined by (37); we set \(\varphi_M'(e'_1) = \epsilon \frac{F}{\varphi(F)} e'_1 \) as in the proof of Theorem 4.1. Then, \(\varphi_M' \) satisfies the condition (i) of Theorem 4.2. We show the condition (ii) of Theorem 4.2. We have

\[
\begin{align*}
\gamma_M(e'_1) &= \frac{\gamma(F)}{F} e'_1 - (q - 1) \frac{1}{1 - \lambda} e'_2 \quad \text{by (36)} \\
\gamma_M(e'_2) &= \frac{F}{\gamma(F)} e'_2 \quad \text{by (35)} \\
\varphi_M'(e'_1) &= \epsilon [p]_q \frac{\varphi(F)}{F} e'_1 + \epsilon [p]_q a e'_2 \\
\varphi_M'(e'_2) &= \epsilon \frac{F}{\varphi(F)} e'_2 .
\end{align*}
\]
(39)

The equation \(\varphi_M'(\gamma_M(e'_2)) = \gamma_M(\varphi_M'(e'_2)) \) follows from \(\varphi \circ \gamma = \gamma \circ \varphi \) on \(Q((\lambda)) \). By calculating \(\varphi_M'(\gamma_M(e'_1)) \) and \(\gamma_M(\varphi_M'(e'_1)) \), the equality \(\varphi_M' \circ \gamma_M(e'_1) = \gamma_M \circ \varphi_M'(e'_1) \) holds if and only if

\[
\epsilon [p]_q a \frac{\varphi(F)}{\varphi(F)} (q - 1) [p]_q \frac{1}{1 - \lambda} \frac{F}{\varphi(F)} = -(q - 1) [p]_q \frac{1}{1 - \lambda} \frac{\gamma(F)}{\gamma(F)} + [p]_q a \frac{F}{\gamma(F)}
\]
\[
\iff \lambda d_q \left(\frac{a}{F \varphi(F)} \right) = \frac{1}{1 - \lambda F \gamma(F)} - \varphi \left(\frac{1}{1 - \lambda F \gamma(F)} \right).
\]

On the other hand, by (37), we have \(\frac{a}{F \varphi(F)} = \frac{H}{F} - \frac{1}{[p]_q} \varphi \left(\frac{H}{F} \right) + c \). We calculate \(d_q \left(\frac{H}{F} \right) \) and \(d_q \left(\frac{1}{[p]_q} \varphi \left(\frac{H}{F} \right) \right) \). Note that \(d_q e = 0 \) by \(c \in R \). We have

\[
d_q \left(\frac{H}{F} \right) = d_q H - \frac{1}{\gamma(F)} F d_q H = \frac{F d_q H - H d_q F}{F \gamma(F)} = \frac{1}{\lambda(1 - \lambda) F \gamma(F)} \quad \text{(by Lemma 5.5),}
\]
\[
d_q \left(\frac{1}{[p]_q} \varphi \left(\frac{H}{F} \right) \right) = \left[\frac{1}{[p]_q} d_q \right] \varphi \left(\frac{H}{F} \right) = \frac{1}{[p]_q} \left[p \right]_q \lambda^{p-1} \varphi \left(\frac{H}{F} \right) = \lambda^{p-1} \varphi \left(\frac{1}{\lambda(1 - \lambda) F \gamma(F)} \right) .
\]

Thus, we obtain

\[
\lambda d_q \left(\frac{a}{F \varphi(F)} \right) = \lambda d_q \left(\frac{H}{F} - \frac{1}{[p]_q} \varphi \left(\frac{H}{F} \right) + c \right) = \frac{1}{(1 - \lambda) F \gamma(F)} - \varphi \left(\frac{1}{(1 - \lambda) F \gamma(F)} \right).
\]

Therefore, we have \(\varphi_M' \circ \gamma_M(e'_1) = \gamma_M \circ \varphi_M'(e'_1) \).

In conclusion, if we choose \(c \in R \) and define \(a \) by (37). Then \(\varphi_M' \), defined by (39), satisfies the conditions (i) and (ii) of Theorem 4.2. \(\square \)

9 Proof of the main theorems II

Assume that \(R' = R[[\lambda]] \). In this section, we prove the condition (iii) in Theorem 4.2 holds for \(\varphi_M' \) constructed in (38) for a suitable \(c \in R \). First, by taking the image of \((H_0, \nabla, \varphi H_0, \text{Fil}^* H_0) \) under the functor (7) with \(a = 1 \), we obtain an \(R/(q - 1)^2[[\lambda]] \)-module \(H_0 \otimes R/(q - 1)^2[[\lambda]] \) with a filtration, a Frobenius endomorphism and a \(\Gamma \)-action. Second, by taking the image of \((M', \text{Fil}^* M', \varphi M', \rho M) \) in \(M^{[p], \varphi^{-1}}_0 (R'/q - 1)^2 \varphi, \Gamma) \) under the equivalence of categories (9) with \(a = 1 \), we obtain an \(R/(q - 1)^2[[\lambda]] \)-module \(M'/q - 1)^2 M' \) with a filtration, a Frobenius endomorphism, and a \(\Gamma \)-action.

By the construction of the canonical \(q \)-deformation of \((H_0, \nabla, \varphi H_0, \text{Fil}^* H_0) \), it suffices to show that there exists an isomorphism \(g : M'/q - 1)^2 M' \rightarrow H_0 \otimes R/(q - 1)^2[[\lambda]] \) in \(M^{[p], \varphi^{-1}}_0 (R'/q - 1)^2, \varphi, \Gamma) \) for a
suitable choice of $c \in R$ such that $g \mod q - 1$ coincides with the isomorphism (11). Let $B_1 \in M_2(\mathbb{Z}_p[[\lambda]])$, and define an $R/(q - 1)^2[[\lambda]]$-linear lifting g of (11) by

$$g(e_1', e_2') = (\overline{e}_1 \otimes 1 \, \overline{e}_2 \otimes 1)(1 + (q - 1)B_1).$$

It is clear that g is a filtered isomorphism. Since $\gamma_{M'} = 1 + (q - 1)D_{q}^{\text{log}}$, the compatibility of g with the Γ-actions is equivalent to that of the compatibility with the connections mod $q - 1$. The latter is clear by (11).

Set $\varphi_{M/(q-1)^2M} \, (e_1', e_2') = (e_1' \, e_2')(A_0 + (q - 1)A_1)$ for $A_0, A_1 \in M_2(\mathbb{Z}_p[[\lambda]])$. We choose $c \in R$ such that a defined by (13) is the lift of b in (11); we can show that such a c exists by taking the reduction modulo $q - 1$ of the proof of Theorem 4.2 (i), (ii) in [3]. Then we have

$$\varphi_{M} \otimes \varphi \, (\overline{e}_1 \otimes 1 \, \overline{e}_2 \otimes 1) = (\overline{e}_1 \otimes 1 \, \overline{e}_2 \otimes 1) \, A_0.$$ We determine $B_1 \in M_2(\mathbb{Z}_p[[\lambda]])$ satisfying $\varphi \, g = g \circ \varphi_{M/(q-1)^2M}$. We have

\[
\begin{align*}
(\varphi_{M} \otimes \varphi) \circ g \, (e_1', e_2') &= (\overline{e}_1 \otimes 1 \, \overline{e}_2 \otimes 1) \, A_0 \varphi(1 + (q - 1)B_1), \\
g \circ \varphi_{M/(q-1)^2M} \, (e_1', e_2') &= (\overline{e}_1 \otimes 1 \, \overline{e}_2 \otimes 1)(1 + (q - 1)B_1)(A_0 + (q - 1)A_1).
\end{align*}
\]

Therefore the compatibility of g with Frobenius is equivalent to

$$A_0 \varphi(1 + (q - 1)B_1) = (1 + (q - 1)B_1)(A_0 + (q - 1)A_1) \equiv 0 \mod (q - 1)^2M_2(R/(q - 1)R[[\lambda]])$$

$$\Leftrightarrow A_0 + (q^p - 1)A_0 \varphi(B_1) = A_0 + (q - 1)(A_1 + B_1A_0) \quad \text{by (q - 1)^2 = 0}$$

$$\Leftrightarrow [p]_q \, A_0 \varphi(B_1) = A_1 + B_1A_0 \quad \text{in } M_2(R/(q - 1)R[[\lambda]])$$

$$\Leftrightarrow B_1 - pA_0 \varphi(B_1)A_0^{-1} = -A_1A_0^{-1} \quad \text{in } M_2(\mathbb{Z}_p[[\lambda]]).$$

Let us consider the φ-semilinear map $\mathcal{F} : M_2(\mathbb{Z}_p[[\lambda]]) \rightarrow M_2(\mathbb{Z}_p[[\lambda]])$ defined by $\mathcal{F}(X) = pA_0 \varphi(X)A_0^{-1}$. (Since det $A_0 = p^{-1}$, $pA_0 \varphi(X)A_0^{-1}$ is an element of $M_2(\mathbb{Z}_p[[\lambda]])).$

Then what we want to show is that we can choose $c \in R$ so that $(a \mod q - 1) = b$ and there exists $B_1 \in M_2(\mathbb{Z}_p[[\lambda]])$ satisfying $(1 - \mathcal{F})(B_1) = -A_1A_0^{-1}$. (40)

Note that $A_1A_0^{-1} \in M_2(\mathbb{Z}_p[[\lambda]])$ because $(A_0 + (q - 1)A_1)A_0^{-1} = 1 + (q - 1)A_1A_0^{-1}$ and, by letting $f = F_{|_{q=1}}$, we have

\[
(A_0 + (q - 1)A_1)A_0^{-1} \equiv \begin{pmatrix} [p]_q \varphi(F) & 0 \\ [p]_q a & \varphi(F) \end{pmatrix} \begin{pmatrix} f & 0 \\ \frac{f}{\varphi(F)} - b & \varphi(F) \end{pmatrix} \mod (q - 1)^2M_2(R[[\lambda]])
\]

\[
\equiv \begin{pmatrix} [p]_q \varphi(F) & 0 \\ [p]_q a & \varphi(F) \end{pmatrix} \begin{pmatrix} f & 0 \\ \frac{f}{\varphi(F)} - b & \varphi(F) \end{pmatrix} \mod (q - 1)^2M_2(R[[\lambda]])
\]

which is an element of $M_2(R/(q - 1)^2[[\lambda]])$ by $[p]_q = p \cdot \text{unit in } R/(q - 1)^2$.

We first prove the claim modulo λ. Let $A_1(0), A_2(1) \in R$ be the values of A_1 and A_2 at $\lambda = 0$.

Lemma 9.1. We can choose $c \in R$ so that $(a \mod q - 1) = b$ and there exists $C \in M_2(\mathbb{Z}_p)$ satisfying $C - pA_0(0)CA_0(0)^{-1} = -A_1(0)A_0(0)^{-1}$.

Proof. Choose $c \in R$ such that $(a \mod q - 1) = b$. By (8) we have

$$A_0 + (q - 1)A_1 \equiv \begin{pmatrix} [p]_q \varphi(F) & 0 \\ [p]_q a & \varphi(F) \end{pmatrix} \mod (q - 1)^2R.$$
Let $b_0, b_1 \in \mathbb{Z}_p$ satisfy $a |\lambda=0=b_0 + (q-1)b_1 \mod (q-1)^2 R$. (We have $b |\lambda=0=b_0$.) Then, we have

$$A_0(0) = \begin{pmatrix} p & 0 \\ pb_0 & 1 \end{pmatrix}, \quad A_1(0) = \begin{pmatrix} \frac{p(p-1)}{2} & 0 \\ pb_1 & 0 \end{pmatrix}$$

because $F(0)=1$ and $[p]_q=p+(q-1)(\frac{p}{2})+ (q-1)^2 (\frac{p}{6}) + \cdots$. Put $C = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$. Then,

$$C - pA_0(0)CA_0(0)^{-1} = \begin{pmatrix} (1-p)x + p^2b_0y & (1-p^2)y \\ -pb_0x + p^2b_0^2y + pb_0w & -p^2b_0y + (1-p)w \end{pmatrix},$$

$$-A_1(0)A_0(0)^{-1} = -\left(\begin{pmatrix} \frac{p(p-1)}{2} & 0 \\ pb_1 & 0 \end{pmatrix} \right) \begin{pmatrix} 1 \\ -b_0 \end{pmatrix} = -\begin{pmatrix} \frac{p(p-1)}{2} & 0 \\ b_1 & 0 \end{pmatrix}.$$

Hence the equality in the lemma holds if and only if

$$(1-p)x + p^2b_0y = \frac{1}{2}(p-1)$$

$$(1-p^2)y = 0$$

$$-pb_0x + p^2b_0^2y + pb_0w = -b_1$$

$$-p^2b_0y + (1-p)w = 0.$$

The equations (11), (12), and (13) are equivalent to $x = \frac{1}{2}, y = w = 0$. This solution satisfies the equation (13) if and only if $b_1 = \frac{1}{2}pb_0$. Since $I_2(F) \in 1 + (q-1)\mathbb{R}[\lambda]$, one can replace c by $c + (q-1)c'$ for some $c' \in \mathbb{R}[\lambda]$ so that this equality holds.

Choose $c \in R$ satisfying the condition in Lemma 9.1. We show that (40) holds for φ_M defined by c. We have $F^n(\lambda M_2(\mathbb{Z}_p[[\lambda]])) \subset \lambda^n M_2(\mathbb{Z}_p[[\lambda]])$ for all $n \in \mathbb{N}$. Thus, $\sum_{n=0}^{\infty} F^n$ converges to an endomorphism of $\lambda M_2(\mathbb{Z}_p[[\lambda]])$. Therefore, $1 - F$ is bijective on $\lambda M_2(\mathbb{Z}_p[[\lambda]])$, because $\sum_{n=0}^{\infty} F^n$ is the inverse of $1 - F$.

We have the following commutative diagram whose two horizontal lines are exact.

$$\begin{array}{ccccccccc}
0 & \rightarrow & \lambda M_2(\mathbb{Z}_p[[\lambda]]) & \rightarrow & M_2(\mathbb{Z}_p[[\lambda]]) & \rightarrow & M_2(\mathbb{Z}_p) & \rightarrow & 0 \\
\uparrow{\cong} & & \uparrow{\pi_1} & & \uparrow{\pi_2} & & \uparrow{1-F(0)} & & \\
0 & \rightarrow & \lambda M_2(\mathbb{Z}_p[[\lambda]]) & \rightarrow & M_2(\mathbb{Z}_p[[\lambda]]) & \rightarrow & M_2(\mathbb{Z}_p) & \rightarrow & 0
\end{array}$$

By the choice of c, there exists $C \in M_2(\mathbb{Z}_p)$ satisfying $(1-F(0))(C) = -A_1(0)A_0(0)^{-1}$. Then by the surjectivity of π_1, there exists $\tilde{C} \in M_2(\mathbb{Z}_p[[\lambda]])$ such that $\pi_1(\tilde{C}) = C$. By the commutativity of the right square, $\pi_2((1-F)(\tilde{C})) = -A_1A_0^{-1}$, and therefore $-A_1A_0^{-1} = (1-F)(\tilde{C})$ lies in the kernel of π_2. By the exactness of the lower horizontal line, there exists $D \in \lambda M_2(\mathbb{Z}_p[[\lambda]])$ which satisfies $\pi_2(D) = -A_1A_0^{-1} - (1-F)(\tilde{C})$. Put $E = (1-F)^{-1}(D)$ in $\lambda M_2(\mathbb{Z}_p[[\lambda]])$. Then $(1-F)(\{1\}(E) + \tilde{C}) = -A_1A_0^{-1} - (1-F)(\tilde{C}) = -A_1A_0^{-1}$. This completes the proof.

10 A further topic

Let R' be one of the rings S' and $R[[\lambda]]$. The Γ-action on R' is geometric in the sense that it defines through the coordinate λ relevant to q-connection. In this section, we introduce an arithmetic action on R' via the coefficient ring R and show that the unit root part U' of M' admits an arithmetic action.

Let U' be the unit root part of M' given in Theorem 11.1. For $l \in \mathbb{Z}_p^\times$, we define an automorphism σ_l of S', and also of $R[[\lambda]]$, by $\sigma_l(a) = a (a \in \mathbb{Z}_p)$, $\sigma_l(q) = q^l$, and $\sigma_l(\lambda) = \lambda$. This σ_l satisfies $\sigma_l \circ \varphi = \varphi \circ \sigma_l$. Let $F \in \mathbb{R}[[\lambda]]$ be the solution of the q-differential equation (12) given in Theorem 5.1.
Lemma 10.1. \(\bar{F}_{\sigma(l)} \) is an element of \(S'^{\times} \).

Proof. For each \(n \), put \(a'_{n} = a_{n} \mid_{q = 1} \in \mathbb{Z}_{p} \). Then there is a unique \(a''_{n} \in R \) such that \(a_{n} = a'_{n} + (q - 1)a''_{n} \).

For \(r \geq 0 \), we have

\[
\varphi^{r+1}(F) \equiv \sum_{n=0}^{\infty} \varphi^{r+1}(a_{n})\lambda^{p^{r+1}n} = \sum_{n=0}^{\infty} (a'_{n} + \varphi^{r+1}(q-1)(a''_{n}))\lambda^{p^{r+1}n}
\]

\[
\equiv \sum_{n=0}^{\infty} a'_{n}\lambda^{p^{r+1}n} \mod [p^{r+1}]_{q},
\]

and similarly we have \(\sigma_{l}(\varphi^{r+1}(F)) \equiv \sum_{n=0}^{\infty} a'_{n}\lambda^{p^{r+1}n} \mod [p^{r+1}]_{q} \). Therefore, \(\varphi^{r+1}(F) \equiv \sigma_{l}(\varphi^{r+1}(F)) \mod (p, q - 1)^{r+1} \). Since \(\sigma_{l}(\varphi^{r+1}(F)) \) is a unit of \(R[[\lambda]] \), we have

\[
\frac{\varphi^{r+1}(F)}{\sigma_{l}(\varphi^{r+1}(F))} \equiv 1 \mod (p, q - 1)^{r+1},
\]

(45)

Put \(f = \frac{F}{\sigma_{l}(F)} \in S'^{\times} \). Then we have \(\frac{F}{\sigma_{l}(F)} = \frac{f^{q^{r}(F)} - f^{q^{r+1}(F)}}{\sigma_{l}(f^{q^{r}(F)} - f^{q^{r+1}(F)})} \cdot \frac{\varphi^{r+1}(F)}{\sigma_{l}(\varphi^{r+1}(F))} \), and the first term of the right-hand side is contained in \(S'^{\times} \). Hence, the same argument as the proof of Theorem 12.3 shows that \(\frac{F}{\sigma_{l}(F)} \) is an element of \(S'^{\times} \).

Let \(\widehat{\Gamma} \) be the inverse limit \(\lim_{\leftarrow} \Gamma/\Gamma^{p^{n}} \), which is isomorphic to \(\mathbb{Z}_{p} \). For \(R' = S'^{\times}, R[[\lambda]] \), the triviality modulo \(q - 1 \) of \(\Gamma \) on \(R' \) implies that the action is continuous with respect to the \(p \)-adic topology of \(\Gamma \) and the \((p, q - 1)\)-adic topology of \(R' \). Therefore the action of \(\Gamma \) on \(R' \) uniquely extends to a continuous action \(\widehat{\rho} : \widehat{\Gamma} \to \text{Aut}(R') \) of \(\Gamma \) on \(R' \). We have \(\widehat{\rho}(\gamma)(a) = a \) (\(a \in R \)) and \(\widehat{\rho}(\gamma)(\lambda) = q^{m} \lambda \) for \(m \in \mathbb{Z}_{p} \).

Similarly, the action \(\rho_{U'} \) of \(\Gamma \) on \(U' \) uniquely extends to a continuous \(\widehat{\rho} \)-linear action \(\rho_{U'} : \widehat{\Gamma} \to \text{Aut}(U') \) of \(\Gamma \) on \(U' \). The formula \(\nabla_{q}(e_{2}^{l}) = -q\frac{F}{\gamma^{m}(F)}e_{2}^{l} \otimes d\lambda \) shown in the proof of Theorem 4.1 implies \(\rho_{U'}(e_{2}^{l}) = \frac{F}{\gamma^{m}(F)}e_{2}^{l} \) for \(m \in \mathbb{Z}_{p} \).

Let \(\Gamma'^{\times} \) be the group \(\mathbb{Z}_{p}^{\times} \). We define a homomorphism \(\rho' : \Gamma' \to \text{Aut}(S') \) trivial modulo \(q - 1 \) by \(\rho'(l)(s) = \sigma_{l}(s) \). By Lemma 10.1, we can define a \(\sigma_{l} \)-semilinear automorphism \(\sigma_{l,U'} \) of \(U' \) by

\[
\sigma_{l,U'}(e_{2}^{l}) = \frac{F}{\sigma_{l}(F)}e_{2}^{l}.
\]

We define the \(\rho' \)-semilinear action \(\rho'_{U'} : \Gamma' \to \text{Aut}(U') \) of \(\Gamma' \) on \(U' \) by \(\rho'_{U'}(l)(u) = \sigma_{l,U'}(u) \).

Let \(\Gamma' \cong \widehat{\Gamma} \) be the semi-direct product defined by the canonical action of \(\Gamma' = \mathbb{Z}_{p}^{\times} \) on \(\widehat{\Gamma} \cong \mathbb{Z}_{p} \). Since \(\sigma_{l}\rho(\gamma)\sigma_{l}^{-1} = \rho(\gamma^{m}) \) on \(S' \) and on \(R[[\lambda]] \) for \(l \in \mathbb{Z}_{p}^{\times} \) and \(m \in \mathbb{Z}_{p} \), we can define an action \(\rho' \ast \widehat{\rho} : \Gamma' \cong \widehat{\Gamma} \to \text{Aut}(S') \) by \(\rho' \ast \widehat{\rho} \) and \(\rho'_{U'} \).

By using \(\varphi \circ \sigma_{l} = \sigma_{l} \circ \varphi \) on \(R[[\lambda]] \), we see that the triplet \((U', \varphi_{U'}, (\rho' \ast \widehat{\rho})_{U'}) \) is an object of the category \(\text{MF}^{[\varphi]}_{[0, q^{-1}]}(S', \varphi, \Gamma' \cong \widehat{\Gamma}) \), whose image under the equivalence of categories (Tsu17, Proposition 56)

\[
\text{MF}^{[\varphi]}_{[0, q^{-1}]}(S', \varphi, \Gamma' \cong \widehat{\Gamma}) \xrightarrow{\text{mod } q^{-1}} \text{MF}^{[\varphi]}_{[0, 0]}(B', \varphi)
\]

is \((U_{B'}, \varphi_{U_{B'}}) \).
References

[And01] Y. André. Différentielles non commutatives et théorie de Galois différentielle ou aux différences. Annales scientifiques de l’École Normale Supérieure, Série 4, Volume 34 (2001) no. 5, pp. 685-739.

[Dwe69] B. Dwork. p-adic cycles. Publications Mathématiques de l’IHÉS, Volume 37 (1969).

[FrP04] J. Fresnel and M. van der Put. Rigid Analytic Geometry and Its Applications, volume 218 of Progress in Mathematics. Birkhäuser. 2004.

[GR90] G. Gasper, M. Rahman. Basic Hypergeometric Series Second Edition. Cambridge Univ. Press. 2004, pp. 27-28.

[Ked08] K. S. Kedlaya. p-adic cohomology: from theory to practice, in p-adic Geometry, Lectures from the 2007 Arizona Winter School. American Mathematical Society. 2008.

[Sch17] P. Scholze. Canonical q-deformations in arithmetic geometry. Ann. Fac. Sci. Toulouse Math. (6) 26 (2017), no. 5, 11631192.

[Tsu17] T. Tsuji. Crystalline \mathbb{Z}_p-representations and A_{\inf}-representations with Frobenius. To appear in the proceedings of the Simons Symposium on p-adic Hodge Theory (2017).

[vdP86] M. van der Put. The cohomology of Monsky and Washnitzer, in Introductions aux cohomologies p-adiques, Mémoires de la Société Mathématique de France, Série 2, no. 23 (1986), pp. 33-59.