Bayesian Analysis for Penalized Spline Regression Using WinBUGS

Ciprian Crainiceanu
Johns Hopkins University, ccrainic@jhsph.edu

David Ruppert
Cornell University, dr24@cornell.edu

M. P. Wand
University of Wollongong, mwand@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation
Crainiceanu, Ciprian; Ruppert, David; and Wand, M. P., "Bayesian Analysis for Penalized Spline Regression Using WinBUGS" (2005). *Faculty of Engineering and Information Sciences - Papers: Part A*. 2517. https://ro.uow.edu.au/eispapers/2517

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Bayesian Analysis for Penalized Spline Regression Using WinBUGS

Abstract
Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. This paper provides a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained by using low-rank thin-plate splines, while simulation times per iteration are reduced employing WinBUGS specific computational tricks.

Keywords
penalized, winbugs, spline, bayesian, analysis, regression

Disciplines
Engineering | Science and Technology Studies

Publication Details
Crainiceanu, C. M., Ruppert, D. & Wand, M. P. (2005). Bayesian Analysis for Penalized Spline Regression Using WinBUGS. Journal of Statistical Software, 14 (14), 1-24.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/2517
Bayesian Analysis for Penalized Spline Regression Using WinBUGS

Ciprian M. Crainiceanu
Johns Hopkins University
David Ruppert
Cornell University
M. P. Wand
University of New South Wales

Abstract

Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. This paper provides a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained by using low-rank thin-plate splines, while simulation times per iteration are reduced employing WinBUGS specific computational tricks.

Keywords: MCMC, semiparametric regression.

1. Introduction

The virtues of nonparametric regression models have been discussed extensively in the statistics literature. Competing approaches to nonparametric modeling include, but are not limited to, smoothing splines (Eubank 1988; Green and Silverman 1994; Wahba 1990), series-based smoothers (Ogden 1996; Tarter and Lock 1993), kernel methods (Fan and Gijbels 1996; Wand and Jones 1995), regression splines (Friedman 1991; Hansen and Kooperberg 2002; Hastie and Tibshirani 1990), penalized splines (Eilers and Marx 1996; Ruppert, Wand, and Carroll 2003). The main advantage of nonparametric over parametric models is their flexibility. In the nonparametric framework the shape of the functional relationship between covariates and the dependent variables is determined by the data, whereas in the parametric framework the shape is determined by the model.

In this paper we focus on semiparametric regression models using penalized splines (Ruppert et al. 2003), but the methodology can be extended to other penalized likelihood models. It is becoming more widely appreciated that penalized likelihood models can be viewed as
particular cases of Generalized Linear Mixed Models (GLMMs, see Brumback, Ruppert, and Wand 1999; Eilers and Marx 1996; Ruppert et al. 2003). We discuss this in more details in Section 2. Given this equivalence, statistical software developed for mixed models, such as S-PLUS (Insightful Corp. 2003, function lme) or SAS (SAS Institute Inc. 2004, PROC MIXED and the GLIMMIX macro) can be used for smoothing (Ngo and Wand 2004; Wand 2003). There are at least two potential problems when using such software for inference in mixed models. Firstly, in the case of GLMMs the likelihood of the model is a high dimensional integral over the unobserved random effects and, in general, cannot be computed exactly and has to be approximated. This can have a sizeable effect on parameter estimation, especially on the variance components. The second problem is that confidence intervals are obtained by replacing the estimated parameters instead of the true parameters and ignoring the additional variability. This results in tighter than normal confidence intervals and could be avoided by using bootstrap. However, standard software does not have bootstrap capabilities and favors the “plug-in” method.

Bayesian analysis treats all parameters as random, assigns prior distributions to characterize knowledge about parameter values prior to data collection, and uses the joint posterior distribution of parameters given the data as the basis of inference. Often the posterior density is analytically unavailable but can be simulated using Markov Chain Monte Carlo (MCMC). Moreover, the posterior distribution of any explicit function of the model parameters can be obtained as a by-product of the simulation algorithm.

The Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. It is this combination that makes Bayesian nonparametric modeling so attractive (Berry, Carroll, and Ruppert 2002; Ruppert et al. 2003).

The goal of this paper is not to discuss Bayesian methodology, nonparametric regression or provide novel modeling techniques. Instead, we provide a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS (Spiegelhalter, Thomas, and Best 2003), which has become the standard software for Bayesian analysis. Special attention is given to the choice of spline basis and MCMC mixing properties. The R (R Development Core Team 2005) package R2WinBUGS (Sturtz, Ligges, and Gelman 2005) is used to call WinBUGS 1.4 and export results in R. This is especially helpful when studying the frequentist properties of Bayesian inference using simulations.

2. Low-rank thin-plate splines

The general methodology of semiparametric modeling using the equivalence between penalized splines and mixed models is presented in Ruppert et al. (2003). Consider the regression model

\[y_i = m(x_i) + \epsilon_i, \]

where \(\epsilon_i \) are i.i.d. \(N(0, \sigma^2) \), \(\epsilon_i \) is independent \(x_i \), and \(m(\cdot) \) is a smooth function. The smooth function could be modeled using natural cubic splines, B-splines, truncated polynomials, radial splines etc. In Bayesian analysis, the particular choice of basis has important consequences for the mixing properties of the MCMC chains. We will focus on low-rank thin-plate splines which tend to have very good numerical properties. In particular, the posterior correlation of parameters of the thin-plate splines is much smaller than for other basis (e.g. truncated polynomials) which greatly improves mixing.
The low-rank thin-plate spline representation of \(m(\cdot) \) is

\[
m(x, \theta) = \beta_0 + \beta_1 x + \sum_{k=1}^{K} u_k |x - \kappa_k|^3,
\]

where \(\theta = (\beta_0, \beta_1, u_1, \ldots, u_K)^\top \) is the vector of regression coefficients, and \(\kappa_1 < \kappa_2 < \ldots < \kappa_K \) are fixed knots. Following Ruppert (2002) we consider a number of knots that is large enough (typically 5 to 20) to ensure the desired flexibility, and \(\kappa_k \) is the sample quantile of \(x \)'s corresponding to probability \(k/(K + 1) \), but results hold for any other choice of knots. To avoid overfitting, we minimize

\[
\sum_{i=1}^{n} \{y_i - m(x_i, \theta)\}^2 + \frac{1}{\lambda} \theta^\top D \theta,
\]

where \(\lambda \) is the smoothing parameter and \(D \) is a known positive semi-definite penalty matrix.

The thin-plate spline penalty matrix is

\[
D = \begin{bmatrix}
0_{2 \times 2} & 0_{2 \times K} \\
0_{K \times 2} & \Omega_K
\end{bmatrix},
\]

where the \((l, k)\)th entry of \(\Omega_K \) is \(|\kappa_l - \kappa_k|^3 \) and penalizes only coefficients of \(|x - \kappa_k|^3 \).

Let \(Y = (y_1, y_2, \ldots, y_n)^\top \), \(X \) be the matrix with the \(i \)th row \(X_i = (1, x_i) \), and \(Z_K \) be the matrix with \(i \)th row \(Z_{Ki} = \{|x_i - \kappa_1|^3, \ldots, |x_i - \kappa_K|^3\} \). If we divide (1) by the error variance one obtains

\[
\frac{1}{\sigma^2} \|Y - X\beta - Z_K u\|^2 + \frac{1}{\lambda \sigma^2} u^\top \Omega_K u,
\]

where \(\beta = (\beta_0, \beta_1)^\top \) and \(u = (u_1, \ldots, u_K)^\top \). Define \(\sigma^2_u = \lambda \sigma^2 \), consider the vector \(\beta \) as fixed parameters and the vector \(u \) as a set of random parameters with \(E(u) = 0 \) and \(\text{cov}(u) = \sigma^2_u \Omega_K^{-1} \). If \((u^\top, \epsilon^\top)^\top \) is a normal random vector and \(u \) and \(\epsilon \) are independent then one obtains an equivalent model representation of the penalized spline in the form of a LMM (Brumback et al., 1999). Specifically, the P-spline is equal to the best linear predictor (BLUP) in the LMM

\[
Y = X\beta + Z_K u + \epsilon, \quad \text{cov}
\begin{pmatrix}
 u \\
 \epsilon
\end{pmatrix}
\begin{bmatrix}
 \sigma^2_u \Omega_K^{-1} & 0 \\
 0 & \sigma^2 \Omega
\end{bmatrix}.
\]

Using the reparametrization \(b = \Omega_K^{1/2} u \) and defining \(Z = Z_K \Omega_K^{-1/2} \) the mixed model (2) is equivalent to

\[
Y = X\beta + Zb + \epsilon, \quad \text{cov}
\begin{pmatrix}
 b \\
 \epsilon
\end{pmatrix}
\begin{bmatrix}
 \sigma^2_b I_K & 0 \\
 0 & \sigma^2 \Omega
\end{bmatrix}.
\]

The mixed model (3) could be fit in a frequentist framework using Best Linear Unbiased Predictor (BLUP) or Penalized Quasi-Likelihood (PQL) estimation. In this paper we adopt a Bayesian inferential perspective, by placing priors on the model parameters and simulating their joint posterior distribution.
3. The Canadian age–income data

Figure 1 is a scatterplot of age versus log(income) for a sample of \(n = 205 \) Canadian workers, all of whom were educated to grade 13. These data were used in Ullah (1985), and their source is a 1971 Canadian Census Public Use Tape.

3.1. Model and priors

The mean of log(income) as a function of age was modeled using thin-plate splines with \(K = 20 \) knots chosen so that the \(k \)-th knot is the sample quantile of age corresponding to probability \(k/(K + 1) \). We used model (3) where \(y_i, x_i \) denote the log income and age of the \(i \)-th worker. The following priors were used

\[
\begin{align*}
\beta_0, \beta_1 \sim & \quad N(0, 10^6) \\
\sigma_{\beta}^{-2}, \sigma_{\epsilon}^{-2} \sim & \quad \text{Gamma}(10^{-6}, 10^{-6})
\end{align*}
\]

(4)

where the second parameter of the normal distribution is the variance. In many applications a normal prior distribution centered at zero with a standard error equal to 1000 is sufficiently noninformative. If there are reasons to suspect, either using alternative estimation methods or prior knowledge, that the true parameter is in another region of the space, then the prior should be adjusted accordingly. The parametrization of the Gamma\((a, b)\) distribution is chosen so that its mean is \(a/b = 1 \) and its variance is \(a/b^2 = 10^6 \). In Section 8 we discuss several issues related to prior choice for nonparametric smoothing.

3.2. WinBUGS program for age–income data

We now describe the WinBUGS program that follows closely the description of the Bayesian nonparametric model in Equation (3) with the priors defined in (4). We provide the entire

Figure 1: Scatterplot of log(income) versus age for a sample of \(n = 205 \) Canadian workers with posterior median (solid) and 95% credible intervals for the mean regression function
program in Appendix A. While this program was designed for the age–income data, it can be used for other penalized spline regression models with minor adjustments. Many features of the program will be repeated in other examples and changes will be described, as needed.

The likelihood part of the model (3) is specified in WinBUGS as follows

```r
for (i in 1:n)
  {response[i]~dnorm(m[i],taueps)
   m[i]<-mfe[i]+mre110[i]+mre1120[i]
   mfe[i]<-beta[1]*X[i,1]+beta[2]*X[i,2]
   mre110[i] <-b[1]*Z[i,1]+b[2]*Z[i,2]+b[3]*Z[i,3]+b[4]*Z[i,4]+
     b[5]*Z[i,5]+b[6]*Z[i,6]+b[7]*Z[i,7]+b[8]*Z[i,8]+
     b[9]*Z[i,9]+b[10]*Z[i,10]
   mre1120[i]<-b[11]*Z[i,11]+b[12]*Z[i,12]+b[13]*Z[i,13]+b[14]*Z[i,14]+
     b[15]*Z[i,15]+b[16]*Z[i,16]+b[17]*Z[i,17]+b[18]*Z[i,18]+
     b[19]*Z[i,19]+b[20]*Z[i,20]}
```

The number of subjects, n, is a constant in the program. The first statement specifies that the i-th response (log income of the i-th worker) has a normal distribution with mean m_i and precision $\tau_\epsilon=\sigma^{-2}_\epsilon$. The second statement provides the structure of the conditional mean function, $m_i=m(x_i)$. Here $\text{beta}[\]$ denotes the 2×1 dimensional vector $\beta=(\beta_0, \beta_1)$, which is the vector of fixed effects parameters. The i-th row of matrix X is $X_i=(1, x_i)$. Similarly, $\text{b}[\]$ denotes the 20×1 dimensional vector $b=(b_1, \ldots, b_k)$ of random coefficients. Both the matrix X and $Z=Z_K\Omega_K^{-1/2}$ are design matrices obtained outside WinBUGS and are entered as data. In Section 9 we discuss an auxiliary R program that calculates these matrices and uses the R2WinBUGS package to call WinBUGS from R. Such programs would be especially useful in a simulation study. The formulae for $\text{mre110}[\]$ and $\text{mre1120}[\]$ could be shortened using the inner product function inprod. However, depending on the application, computation time can be 5 to 10 times longer when inprod is used.

The distribution of the random coefficients b is represented in WinBUGS as

```r
for (k in 1:num.knots){b[k]~dnorm(0,taub)}
```

This specifies that the b_k are independent and normally distributed with mean 0 and precision $\tau_b=\sigma^{-2}_b$. Here num.knots is the number of knots ($K=20$) and is introduced in WinBUGS as a constant. The prior distributions of model parameters described in Equation (4) are specified in WinBUGS as follows

```r
for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}
taueps~dgamma(1.0E-6,1.0E-6)
taub~dgamma(1.0E-6,1.0E-6)
```

The prior normal distributions for the β parameters are expressed in terms of the precision parameter and the Gamma distributions are specified for the precision parameters $\tau_\epsilon=\sigma^{-2}_\epsilon$ and $\tau_b=\sigma^{-2}_b$.

Note that the code is very short and intuitive presenting the model specification in rational steps. After writing the program one needs to load the data: the n-dimensional vector
Table 1: Posterior median and 95% credible interval for some parameters of model (3) for the Canadian age–income data

Parameter	2.5%	50%	97.5%
β₀	10.12	14.47	19.79
β₁	-0.14	-0.02	0.08
σₚ	0.0029	0.0066	0.0161
σₑ	0.48	0.53	0.59

response \((y) \) and the design matrices \(X[,] \) (\(X \)) and \(Z[,] \) (\(Z \)), the sample size \(n \) (\(n \)), the number of knots \(\text{num.knots} \) (\(K \)). At this stage the program needs to be compiled and initial values for all random variables have to be loaded.

3.3. Model inference

Convergence to the posterior distributions was assessed using several initial values of model parameters and visually inspecting several chains corresponding to the model parameters. Convergence was attained in less than 1,000 simulations, but we discarded the first 10,000 burn-in simulations. For inference we used 90,000 simulations. These simulations took approximately 6 minutes on a PC (3.6GB RAM, 3.4GHz CPU).

Table 1 shows the posterior median and a 95% credible interval for some of the model parameters. We also obtained the posterior distributions of the mean function of the response, \(m_i = m(x_i) \). Figure 1 displays the median, 2.5% and 97.5% quantiles of these posterior distributions for each value of the covariate \(x_i \). The greyed area corresponds to pointwise credible intervals for each \(m(x_i) \) and is not a joint credible band for the mean function. An important advantage of Bayesian over the typical frequentist analysis is that in the Bayesian case the credible intervals take into account the variability of each parameter and do not use the “plug-in” method. Prediction intervals at an in-sample \(x \) value can be obtained very easily by monitoring random variables of the type

\[
y_i^* = m_i + \epsilon_i^*,
\]

with \(\epsilon_i^* \) being independent realizations of the distribution \(N(0, \sigma^2_\epsilon) \). This can be implemented by adding the following lines to the WinBUGS code

```wbn
for (i in 1:n)
{epsilonstar[i]~dnorm(0,taueps)
ystar[i]<-m[i]+epsilonstar[i]}
```

4. The wage–union membership data

Figure 2 displays data on wages and union membership for 534 workers described in Berndt (1991). The data were taken from the Statlib website at Carnegie Mellon University http://lib.stat.cmu.edu/. This data set was analyzed in Ruppert et al. (2003) and standard linear, quadratic and cubic logistic regression are not appropriate in this case. Instead, they
model the logit of the union membership probability as a penalized spline, which allows
identification of features that are not captured by standard regression techniques. In this
section we show how to implement a semiparametric Bernoulli regression in WinBUGS using
low-rank thin-plate splines.

4.1. Generalized P-spline model

Denote by y the binary union membership variable, by x the continuous wage variable and by
$p(x)$ the union membership probability for a worker with wage x in USD per hour. The logit
of $p(x)$ is modeled nonparametrically using a linear ($p = 1$) penalized spline with $K = 20$
knots. We used the following model

$$
\begin{cases}
 y_i | x_i & \sim \text{Bernoulli}\{p(x_i)\} \\
 \text{logit}\{p(x_i)\} & = \beta_0 + \beta_1 x_i + \sum_{k=1}^{K} b_k z_{ik} \\
 b_k & \sim N(0, \sigma^2_b) \\
 \epsilon_i & \sim N(0, \sigma^2_\epsilon)
\end{cases},
$$

where z_{ik} is the (i,k)th entry of the design matrix $Z = Z_K \Omega_K^{-1/2}$ defined in Section 2. The
following prior distributions were used

$$
\begin{cases}
 \beta_0, \beta_1 & \sim N(0, 10^6) \\
 \sigma^{-2}_b & \sim \text{Gamma}(10^{-6}, 10^{-6})
\end{cases}.
$$

Figure 2: Logistic spline fit to the union and wages scatterplot (solid) with 95% credible sets.
Raw data are plotted as pluses, but with values of 1 for union replaced by 0.5 for graphical
purposes. A worker making USD 44.50 per hour was used in the fitting but not shown to
increase detail.
Bayesian Analysis for Penalized Spline Regression Using WinBUGS

Parameter	2.5%	50%	97.5%
β_0	-7.48	-4.15	-2.43
β_1	-0.03	0.34	1.08
σ_b	0.045	0.100	0.229

Table 2: Posterior median and 95% credible interval for some parameters of the model presented in Equations (5) and (6)

4.2. WinBUGS program for wage–union data

While model (5) is very similar to model (3) the Bayesian analysis implementation in MATLAB, C or other software is significantly different. Typically, when the model is changed one needs to rewrite the entire code and make sure that all code bugs have been removed. This is a lengthy process that requires a high level of expertise in statistics and MCMC coding. WinBUGS cuts short this difficult process, thus making Bayesian analysis appealing to a larger audience.

In this case, changing the model from (3) to (5) requires only small changes in the WinBUGS code. Specifically, the two lines specifying the conditional distribution of the response variable are replaced with

```plaintext
for (i in 1:n)
{response[i]~dbern(p[i])
 logit(p[i])<-mfe[i]+mre110[i]+mre1120[i]}
```

while the rest of the code remains practically unchanged. Given this very simple change, we do not provide the rest of the code here, but we provide a commented version in the accompanying software file.

4.3. Model inference

Table 2 shows the posterior median and a 95% credible interval for some of the model parameters. We also obtained the posterior distributions of $p_i = p(x_i)$ and Figure 2 displays the median, 2.5% and 97.5% quantiles of these distributions. The greyed area corresponds to credible intervals for each $p(x_i)$ and is not a joint credible band. The credible intervals take into account the variability of each parameter. Convergence was attained in less than 1,000 simulations, but we discarded the first 10,000 burn-in simulations. For inference we used 90,000 simulations. These simulations took approximately 80 minutes on a PC (3.6GB RAM, 3.4GHz CPU).

5. The Sitka spruce data

The mixed model representation of penalized splines allows simple extensions to additive mixed models. As an example we will use data on the growth of Sitka spruces displayed in Figure 1.3 in Diggle, Heagerty, Liang, and Zeger (2002). The data consist of growth measurements of 79 trees over two seasons: 54 trees were grown in an ozone-enriched atmosphere while the remaining 25 comprise the control group.
5.1. Additive mixed models

A useful mixed model for the Sitka data is

\[
\begin{align*}
 y_{ij} & = U_i + \alpha w_i + f(x_{ij}) + \epsilon_{ij} \\
 U_i & \sim N(0, \sigma_U^2)
\end{align*}
\]

where \(y_{ij}, 1 \leq i \leq 79, 1 \leq j \leq 13, \) is the log size of spruce \(i \) at the time of measurement \(j \) taken on day \(x_{ij} \). Also \(U_i \) are independent random intercepts for each tree, \(w_i \) is the ozone exposure indicator and \(\epsilon_{ij} \) are random errors. We model \(f(\cdot) \) using low-rank thin-plate splines

\[
\begin{align*}
 f(x_{ij}) & = \beta_0 + \beta_1 x_{ij} + \sum_{k=1}^{K} b_k z_{ijk} \\
 b_k & \sim N(0, \sigma_b^2)
\end{align*}
\]

where the \(x_{ij} \) observations are stacked in one vector and \((ij)\) corresponds to the \(\{13 \cdot (i - 1) + j\} \)th observation. Here \(z_{ijk} \) is the \((13 \cdot (i - 1) + j, k) \)th entry of the design matrix \(Z = Z_K \Omega_K^{-1/2} \) defined in Section 2. The random parameters \(b_k \) are assumed independent normal with \(\sigma_b^2 \) controlling the shrinkage of the thin-plate spline function towards the first degree polynomial.

5.2. WinBUGS program for the Sitka spruce data

The WinBUGS program has essentially the same structure as the previous programs. The likelihood part of the program is

```r
for (k in 1:n)
{ 
  log.size[k] ~ dnorm(mu[k], tau.epsilon)
  mu[k] <- U[id.num[k]] + alpha * ozone[k] + m[k]
  m[k] <- beta[1] * X[k,1] + beta[2] * X[k,2] + b[1] * Z[k,1] +
         b[2] * Z[k,2] + b[3] * Z[k,3]
}
```

Figure 3: Thin-plate spline fit for the function \(f(\cdot) \) for Sitka spruce data (solid) with 95% credible sets. Sampling days are plotted as pluses.
The indexing structure is induced by stacking the vectors of observations corresponding to trees. For example the kth observation corresponds to the index (i, j) such that $k = 13 \times (i - 1) + j$. The first line of the program specifies that, conditional on its mean y_{ij} are independent with mean μ_{ij} and precision $\tau_{i} = 1/\sigma_{\epsilon}^{2}$. The second line of code specifies the structure of the mean function as the sum between a random intercept U_{i}, the ozone treatment effect αw_{i} and a nonparametric mean function $f(\cdot)$. The third line describes the mean function $f(\cdot)$ as a low-rank thin-plate spline.

Nested indexing is a powerful feature of WinBUGS and was used here to define the clusters corresponding to trees. To achieve this we defined a new vector $\text{id.num}[\cdot]$ which is the tree indicator. More precisely, $\text{id.num}[k]=i$ if and only if the kth observation corresponds to tree i. In this way $U[\text{id.num}[k]]$ is U_{i}, the random intercept corresponding to tree i, if and only if kth observation corresponds to tree i.

The distribution of random intercepts is specified as

$$\text{for (i in 1:M)}\{U[i]\sim \text{dnorm}(0, \text{tauU})\}$$

where $M = 79$ is a constant in the program and tauU is the precision $\tau_{U} = 1/\sigma_{U}^{2}$ of the random intercept. The rest of the program is identical to the program for age and log income data and is omitted. A file containing the commented program and the corresponding R programs is attached.

5.3. Model inference

Table 3 shows the posterior median and a 95% credible interval for some of the model parameters. We also obtained the posterior distributions of $f(x_{ij})$ and Figure 3 displays the median, 2.5% and 97.5% quantiles of these distributions. The greyed area corresponds to credible intervals for each $f(x_{ij})$ and is not a joint credible band. Convergence was attained in less than 1,000 simulations, but we discarded the first 10,000 burn-in simulations. For inference we used 90,000 simulations. These simulations took approximately 5.5 minutes on a PC (3.6GB RAM, 3.4GHz CPU).

Parameter	2.5%	50%	97.5%
α	-0.61	-0.31	-0.007
β_{0}	3.39	7.20	10.99
β_{1}	-0.92	-0.30	0.32
σ_{U}	1.87	2.62	3.55
σ_{b}	0.34	0.70	2.35
σ_{ϵ}	0.178	0.187	0.195

Table 3: Posterior median and 95% credible interval for some parameters of the model presented in Equations (7) and (8)
6. The coronary sinus potassium data

We consider the coronary sinus potassium concentration data measured on 36 dogs published in Grizzle and Allan (1969). The measurements on each dog were taken every 2 minutes from 1 to 13 minute (7 observations per dog). The 36 dogs come from 4 treatment groups.

Four smoothing spline analyses of these data were presented in Wang (1998). In Crainiceanu and Ruppert (2004b) is presented a hierarchical model of curves including a nonparametric overall mean, nonparametric treatment deviations from the overall curve, and nonparametric subject deviations from the treatment curves. In this section we show how to implement such a complex model in WinBUGS.

6.1. Longitudinal nonparametric ANOVA model

Denote by \(y_{ij} \) and \(t_{ij} \) the potassium concentration and time for dog \(i \) at time \(j \) (in this example \(t_{ij} = 2j - 1 \), but we keep the presentation more general). Consider the following model for potassium concentration

\[
y_{ij} = f(t_{ij}) + f_{g(i)}(t_{ij}) + f_{i}(t_{ij}) + \epsilon_{ij},
\]

where \(f(\cdot) \) is the overall curve, \(f_{g(i)}(\cdot) \) are the deviations of the treatment group from the overall curve and \(f_{i}(\cdot) \) are the deviations of the subject curves from the group curves. Here \(g(i) \) represents the treatment group index corresponding to subject \(i \). All three functions are modeled as low-rank thin-plate splines as follows

\[
\begin{align*}
 f(t) &= \beta_0 + \beta_1 t + \sum_{k=1}^{K_1} b_k z_{tk} \\
 f_{g}(t) &= \gamma_{0g} I_{(g>1)} + \gamma_{1g} t I_{(g>1)} + \sum_{k=1}^{K_2} c_{gk} z_{tk}^{(g)} \\
 f_{i}(t) &= \delta_{0i} + \delta_{1i} t + \sum_{k=1}^{K_3} d_{ik} z_{tk}^{(i)}
\end{align*}
\]

where \(I_{(g>1)} \) is the indicator that \(g > 1 \), that is that the treatment group is \(g = 2, 3 \) or \(4 \). Here \(z_{tk} \) is the \((t, k)\)th entry of the design matrix for the thin-plate spline random coefficients, \(Z = Z_K \Omega_K^{-1/2} \) corresponding to the overall mean function \(f(\cdot) \). Similarly, we defined \(z_{tk}^{(g)} \) and \(z_{tk}^{(i)} \) as the \((t, k)\)th entries of the design matrices for random coefficients corresponding to the group level \(f_{g}(\cdot), 1 \leq g \leq 4 \), and subject level curves \(f_{i}(\cdot), 1 \leq i \leq 36 \). The number of knots can be different for each curve and one can choose, for example, more knots to model the overall curve than each subject specific curve. However, in our example we used the same knots for each curve \((K_1 = K_2 = K_3 = 3)\).

The model also assumes that the \(b, c, d \) and \(\delta \) parameters are mutually independent and

\[
\begin{align*}
 b_k &\sim N(0, \sigma_b^2), \ k = 1, \ldots, K_1 \\
 c_{gk} &\sim N(0, \sigma_c^2), \ g = 1, \ldots, 4, \ k = 1, \ldots, K_2 \\
 d_{ik} &\sim N(0, \sigma_d^2), \ i = 1, \ldots, N, \ k = 1, \ldots, K_3 \\
 \delta_{0i} &\sim N(0, \sigma_0^2), \ i = 1, \ldots, N \\
 \delta_{1i} &\sim N(0, \sigma_1^2), \ i = 1, \ldots, N
\end{align*}
\]

where \(\sigma_b^2, \sigma_c^2 \) and \(\sigma_d^2 \) control the amount of shrinkage of the overall, group and individual curves respectively and \(\sigma_0^2 \) and \(\sigma_1^2 \) are the variance components of the subject random intercepts and slopes. We could also add other covariates that enter the model parametrically or
Bayesian Analysis for Penalized Spline Regression Using WinBUGS

nonparametrically, consider different shrinkage parameters for each treatment group, etc. All these model transformations can be done very easily in WinBUGS.

To completely specify the Bayesian nonparametric model one needs to specify prior distributions for all model parameters. The following priors were used

\[
\begin{align*}
\beta_0, \beta_1, \gamma_{0g}, \gamma_{1g} & \sim N(0, 10^6), \ g = 1, \ldots, 4 \\
\sigma_{\beta}^{-2}, \sigma_{\gamma}^{-2}, \sigma_{\epsilon}^{-2}, \sigma_{\delta}^{-2}, \sigma_{\epsilon_0}^{-2}, \sigma_{\epsilon_1}^{-2} & \sim \text{Gamma}(10^{-6}, 10^{-6})
\end{align*}
\] (12)

6.2. WinBUGS program for the dog data

We provide the entire WinBUGS code for this model in Appendix B. Equation (10) is coded in WinBUGS as

\[
\text{for (k in 1:n)}
\{ \text{response[k]~dnorm(m[k],taueps)} \\
\text{m[k]<-f[k]+fg[k]+fi[k]} \\
\text{f[k]<-beta[1]*X[k,1]+beta[2]*X[k,2]+b[1]*Z[k,1]+}
\text{b[2]*Z[k,2]+b[3]*Z[k,3]} \\
\text{fg[k]<-gamma[group[k],1]*X[k,1]+gamma[group[k],2]*X[k,2]} \\
\text{*step(group[k]-1.5)+c[group[k],1]*Z[k,1]+}
\text{c[group[k],2]*Z[k,2]+c[group[k],3]*Z[k,3]} \\
\text{fi[k]<-delta[dog[k],1]*X[k,1]+delta[dog[k],2]*X[k,2]+}
\text{d[dog[k],1]*Z[k,1]+d[dog[k],2]*Z[k,2]+d[dog[k],3]*Z[k,3]} \}
\]

The response is organized as a column vector obtained by stacking the information for each dog. Because there are 7 observations for each dog, the observation number \(k \) can be written explicitly in terms of \((i, j)\), that is \(k = 7(i - 1) + j \). The number of observations is \(n = 36 \times 7 = 252 \).

We used two \(n \times 1 \) column vectors with entries \(\text{dog[k]} \) and \(\text{group[k]} \), that store the dog and treatment group indexes corresponding to the \(k \)-th observation.

The first two lines of code in the for loop correspond to Equation (9), where dnorm specifies that response[k] has a normal distribution with mean m[k] and precision taueps. The mean of the response is specified to be the sum of f[k], fg[k] and fi[k], which are the variables for the overall mean, treatment group deviation from the mean and individual deviation from the group curves.

The following lines of code in the for loop describe the structure of these curves in terms of splines. We keep the same notations from the previous sections. Because in this example we use the same knots and covariates the matrices X and Z do not change for the three types of curves.

The definition of the overall curve \(f[k] \) follows exactly the same procedure with the one described in Section 3.2. The definition of \(fg[k] \) follows the same pattern but it involves two WinBUGS specific tricks. The first one is the use of the step function, described in Section 5.2. Here step(group[k]-1.5) is 1 if the index of the group corresponding to the \(k \)-th observation is larger than 1.5 and zero otherwise. This captures the structure of the \(f_g(\cdot) \) function in Equation (10) because the possible values of group[k] are 1, 2, 3 and 4. The second trick is the nested indexing used in the definition of the \(\gamma \) and \(c \) parameters using
the **dogs** vector described above. For example, the γ parameters are stored in a 4×2 matrix $\text{gamma}[,]$ with the g-th line $\text{gamma}[g,]$ corresponding to the parameters $\gamma_0 g$, $\gamma_1 g$ of the $f_g(\cdot)$ function. Note that if g is replaced by $\text{group}[k]$ we obtain the parameters corresponding to the k-th observation. Similarly, $\text{c}[,]$ stores the c_{gk} parameters of $f_g(\cdot)$ and is a 4×3 matrix because there are 4 treatment groups and 3 knots. The definition of $f_{i[k]}(\cdot)$ curve uses the same ideas, with the only difference that the vector $\text{dog}[k]$ is used instead of $\text{group}[k]$. Here, $\text{delta}[,]$ is a 36×2 matrix with the i-th line containing the $\delta_0 i$ and $\delta_1 i$, the random slope and intercept corresponding to the i-th dog. Also, $\text{d}[,]$ is a 36×3 matrix with the i-th line storing the d_{i1}, d_{i2} and d_{i3}, the parameters of the truncated polynomial functions for the i-th dog.

The **WinBUGS** coding of the distributions of b, c, d and δ follows almost literally the definitions provided in Equation (11)

```r
for (k in 1:num.knots) {b[k]~dnorm(0,taub)}
for (k in 1:num.knots) {
    for (g in 1:ngroups) {c[g,k]~dnorm(0,tauc)}}
for (i in 1:ndogs) {
    for (k in 1:num.knots) {d[i,k]~dnorm(0,taud)}}
for (i in 1:ndogs) {
    for (j in 1:2) {delta[i,j]~dnorm(0,taudelta[j])}}
```

For example, the parameters $c_{j,k}$ are assumed to be independent with distribution $N(0, \sigma^2 c)$ and the **WinBUGS** code is $c[g,k]~dnorm(0,tauc)$. Here num.knots, ngroups and ndogs are the number of knots of the spline, the number of treatment groups and the number of dogs respectively. These are constants and are entered as data in the program. Using the same notations as in Section 3.2 the normal prior distributions described in Equation (12) are coded as

```r
for (l in 1:2) {beta[l]~dnorm(0,1.0E-6)}
for (l in 1:2) {
    for (j in 1:ngroups) {gamma[j,l]~dnorm(0,1.0E-6)}}
```

and the prior gamma distributions on the precision parameters are coded as

```r
taub~dgamma(1.0E-6,1.0E-6)
tauc~dgamma(1.0E-6,1.0E-6)
taud~dgamma(1.0E-6,1.0E-6)
taudeps~dgamma(1.0E-6,1.0E-6)
for (j in 1:2) {taudelta[j]~dgamma(1.0E-6,1.0E-6)}
```

Here taub, tauc, taud and taudeps are the precisions σ_b^{-2}, σ_γ^{-2}, σ_d^{-2} and σ_ϵ^{-2} respectively. $\text{taudelta}[1]$ and $\text{taudelta}[2]$ are the precisions σ_0^{-2} and σ_1^{-2} for the δ-parameters.

6.3. Model inference

Figure 4 shows the data for the 36 dogs corresponding to each treatment group together with the posterior mean and 90% credible interval for the treatment group mean functions. Recall
that the treatment group functions are the sums between the overall mean function and the functions for the treatment group deviations from the mean functions, that is

$$f_{\text{group}}(t) = f(t) + f_g(t)$$

This is achieved in WinBUGS by monitoring a new variable $f_{\text{group}} \[\]$ defined as

```r
for (k in 1:n) {fgroup[k] <- f[k] + fg[k]}
```

For inference we used 90,000 simulations. These simulations took approximately 4.5 minutes on a PC (3.6GB RAM, 3.4GHz CPU).

7. Improving mixing

Mixing is the property of the Markov chain to move rapidly throughout the support of the posterior distribution of the parameters. Improving mixing is very important especially when computation speed is affected by the size of the data set or model complexity. In this section we present a few simple but effective techniques that help improve mixing.
Model parametrization can dramatically affect MCMC mixing even for simple parametric models. Therefore careful consideration should be given to the complex semiparametric models, such as those considered in this paper. Probably the most important step for improving mixing in this framework is careful choice of the spline basis. While we have experimented with other spline bases, the low-rank thin-plate splines seem best suited for the MCMC sampling in WinBUGS. This is probably due to the reduced posterior correlation between the spline parameters. The truncated polynomial basis provides similar inferences about the mean function but mixing tends to be very poor with serious implications about the coverage probabilities of the pointwise confidence intervals.

In our experience with WinBUGS, centering and standardizing the covariates also improve, sometimes dramatically, mixing properties of simulated chains.

Another, less known technique is hierarchical centering (Gelfand, Sahu, and Carlin 1995b,a). Many statistical models contain random effects that are ordered in a natural hierarchy (e.g. observation/site/region). The hierarchical centering of random effects generally has a positive effect on simulation mixing and we recommend it whenever the model contains a natural hierarchy. Bayesian smoothing models presented in this paper also contain the exchangeable random effects, \(b \), which are not part of an hierarchy and they cannot be “hierarchically centered”.

In Crainiceanu, Ruppert, Stedinger, and Behr (2002) it is shown that even for a simple Poisson-Log Normal model the amount of information has a strong impact on the mixing properties of parameters. A practical recommendation in these cases is to improve mixing, as much as possible, for a subset of parameters of interest. These model specification refinements pay off especially in slow WinBUGS simulations.

8. Prior specification

Any smoother depends heavily on the choice of smoothing parameter, and for P-splines in a mixed model framework, the smoothing parameter is the ratio of two variance components Ruppert et al. (2003). The smoothness of the fit depends on how these variances are estimated. For example, in Crainiceanu and Ruppert (2004a) it is shown that, in finite samples, the (RE)ML estimator of the smoothing parameter is biased towards oversmoothing.

In Bayesian mixed models, the estimates of the variance components are known to be sensitive to the prior specification, e.g., see Gelman (2004). To study the effect of this sensitivity upon Bayesian P-splines, consider model (3) with one smoothing parameter and homoscedastic errors. In terms of the precision parameters \(\tau_b = 1/\sigma_b^2 \) and \(\tau_\epsilon = 1/\sigma_\epsilon^2 \), the smoothing parameter is \(\lambda = \tau_\epsilon/\tau_b = \sigma_b^2/\sigma_\epsilon^2 \) and a small (large) \(\lambda \) corresponds to oversmoothing (undersmoothing).

It is standard to assume that the fixed effects parameters, \(\beta_i \), are apriori independent, with prior distributions either \(|\beta_i| \propto 1 \) or \(\beta_i \propto N(0, \sigma_\beta^2) \), where \(\sigma_\beta^2 \) is very large. In our applications we used \(\sigma_\beta^2 = 10^6 \), which we recommend if \(x \) and \(y \) have been standardized or at least have standard deviations with order of magnitude one.

As just mentioned, the priors for the precisions \(\tau_b \) and \(\tau_\epsilon \) are crucial. We now show how critically the choice of \(\tau_b \) may depend upon the scaling of the variables. If \(\tau_b \sim \text{Gamma}(A_b, B_b) \) and, independently of \(\tau_b \), \(\tau_\epsilon \sim \text{Gamma}(A_\epsilon, B_\epsilon) \) where Gamma\((A, B)\) has mean \(A/B \) and
variance \(A/B^2 \), then
\[
[\tau_b | Y, \beta, b, \tau_e] \sim \text{Gamma} \left(A_b + \frac{K_m}{2}, B_b + \frac{|b|^2}{2} \right)
\]
and
\[
[\tau_e | Y, \beta, b, \tau_e] \propto \text{Gamma} \left(A_e + \frac{n}{2}, B_e + \frac{|Y - X\beta - Zb|^2}{2} \right).
\]
Also,
\[
E(\tau_b | Y, \beta, b, \tau_e) = \frac{A_b + K_m/2}{B_b + |b|^2/2}, \quad \text{Var}(\tau_b | Y, \beta, b, \tau_e) = \frac{A_b + K_m/2}{(B_b + |b|^2/2)^2},
\]
and similarly for \(\tau_e \).

The prior does not influence the posterior distribution of \(\tau_e \) when both \(A_b \) and \(B_b \) are small compared to \(K_m/2 \) and \(|b|^2/2 \) respectively. Since the number of knots is \(K_m \geq 1 \) and in most problems considered \(K_m \geq 5 \), it is safe to choose \(A_b \leq 0.01 \). When \(B_b << |b|^2/2 \) the posterior distribution is practically unaffected by the prior assumptions. When \(B_b \) increases compared to \(|b|^2/2 \), the conditional distribution is increasingly affected by the prior assumptions. \(E(\tau_b | Y, \beta, b, \tau_e) \) is decreasing in \(B_b \) so large \(B_b \) compared to \(|b|^2/2 \) correspond to undersmoothing. Since the posterior variance of \(\tau_b \) is also decreasing in \(B_b \) a poor choice of \(B_b \) will likely result in underestimating the variability of the smoothing parameter \(\lambda = \tau_e/\tau_b \) causing too narrow confidence intervals for \(m \). The condition \(B_b << |b|^2/2 \) shows that the “noninformativeness” of the gamma prior depends essentially on the scale of the problem, because the size of \(|b|^2/2 \) depends upon the scaling of the \(x \) and \(y \) variables. If \(y \) is rescaled to \(a_y y \) and \(x \) to \(a_x x \), then the regression function becomes \(a_y a_x^p m(a_x x) \) whose \(p \)-th derivative is \(a_y a_x^{p-1} m^{(p)}(a_x x) \) so that \(|b|^2/2 \) is rescaled by the factor \(a_y^2 a_x^{2p} \). Thus, \(|b|^2/2 \) is particularly sensitive to the scaling of \(x \).

A similar discussion holds true for \(\tau_e \) but now large \(B_e \) corresponds to oversmoothing and \(\tau_e \) does not depend on the scaling of \(x \). In applications it is less likely that \(B_e \) is comparable in size to \(|Y - X\beta - Zb|^2 \), because the latter is an estimator of \(n\sigma^2 \). If \(\sigma^2 \) is an estimator of \(\sigma^2_e \) a good rule of thumb is to use values of \(B_e \) smaller than \(n\sigma^2_e/100 \). This rule should work well when \(\sigma^2_e \) does not have an extremely large variance.

Alternative to gamma priors are discussed by, for example, in Gelman (2004); Natarajan and Kass (2000). These have the advantage of requiring less care in the choice of the hyperparameters. However, we find that with reasonable care, the conjugate gamma priors can be used in practice. Nonetheless, exploration of other prior families for P-splines would be well worthwhile, though beyond the scope of this paper.

9. Interface with and processing in R

WinBUGS 1.4 provides a Graphical User Interface (GUI) that is user friendly and provides important information including the chain histories that can be used to assess mixing. However, the WinBUGS script language is relatively limited and is hard to use for effective simulation studies involving repeated calls for WinBUGS.

R2WinBUGS (Sturtz et al. 2005) is an R package that calls WinBUGS 1.4 and exports results into R. We used this package into our own R function that also does processing of data. R
functions for each model described in this paper are attached to this paper. We present here important parts of the R code, while commented R programs are attached to this paper.

The R program starts with

\begin{verbatim}
data.file.name="smoothing.norm.txt"
program.file.name="scatter.txt"
inits.b=rep(0,20)
inits<-function(){list(beta=c(0,0),b=inits.b,taub=0.01,taueps=0.01)}
parameters<-list("lambda","sigmab","sigmaeps","beta","b","ystar")
\end{verbatim}

The first two code lines define the file names for data and WinBUGS program respectively. The third and fourth lines define the initial values to be used in the WinBUGS program and the fifth line indicates the name of the parameters to be monitored in the MCMC sampling. These parameters must correspond to parameters in the WinBUGS program. The R program continues with

\begin{verbatim}
data<-read.table(file=data.file.name,header=TRUE)
attach(data)
n<-length(covariate)
X<-cbind(rep(1,n),covariate)
knots<-quantile(unique(covariate),
seq(0,1,length=(num.knots+2))[-c(1,(num.knots+2))])
\end{verbatim}

The first and second lines read and attach the data, the third line defines the sample size, and the fourth line defines the X matrix of fixed effects for the thin-plate spline. The last assignment defines the \(num.knots\) number of knots at the sample quantiles of the covariate. An important step in using thin-plate splines is to define the \(Z_K, \Omega_K\) and the design matrix of random coefficients \(Z = Z_K \Omega_K^{-1/2}\). The following lines of code achieve this

\begin{verbatim}
Z_K<-(abs(outer(covariate,knots,"-")))^3
OMEGA_all<-(abs(outer(knots,knots,"-")))^3
svd.OMEGA_all<-svd(OMEGA_all)
sqrt.OMEGA_all<-t(svd.OMEGA_all$v %*% (t(svd.OMEGA_all$u)*sqrt(svd.OMEGA_all$d)))
Z<-t(solve(sqrt.OMEGA_all,t(Z_K)))
\end{verbatim}

At this stage data is defined, WinBUGS is called from R and the output of the program is loaded into R for further processing. The main function for doing this is `bugs()` implemented in the R2WinBUGS package.

\begin{verbatim}
data<-list("response","X","Z","n","num.knots")
Bayes.fit<- bugs(data, inits, parameters, model.file = program.file.name, n.chains = 1, n.iter = n.iter, n.burnin = n.burnin, n.thin = n.thin,debug = FALSE, DIC = FALSE, digits = 5, codaPkg = FALSE,bugs.directory = "c:/Program Files/WinBUGS14/")
attach.all(Bayes.fit)
\end{verbatim}
10. Pros and cons

An advantage of WinBUGS is the simple programming that translates almost literally the Bayesian model into code. This saves time by avoiding the usually lengthy implementations of the MCMC simulation algorithms. For example, total programming time for one model is approximately 1 to 2 hours. Programs designed by experts for specific problems can be more refined by taking into account properties of the model and using a combination of art and experience to improve mixing and computation time. However, when we compare a WinBUGS with an expert program in terms of computation speed, programming time needs to be taken into account.

WinBUGS allows simple model changes to be reflected in simple code changes, which encourages the practitioner or the expert to investigate a much wider spectrum of models. Expert programs are usually restrictive in this sense.

Our recommendation is to start with WinBUGS, implement the model for the specific data set. If it runs in a reasonable time and has good mixing properties, then continue with WinBUGS. Otherwise consider designing an expert program. Even if one decides to use the expert program we still recommend using WinBUGS as a method of checking results. Programming errors and debugging time are also dramatically reduced in WinBUGS.

References

Berndt E (1991). *The Practice of Econometrics: Classical and Contemporary*. Addison-Wesley, Reading MA, USA.

Berry S, Carroll RJ, Ruppert D (2002). “Bayesian Smoothing and Regression Splines for Measurement Error Problems.” *Journal of the American Statistical Association*, 97, 160–169.

Brumback B, Ruppert D, Wand MP (1999). “Comment on Variable Selection and Function Estimation in Additive Nonparametric Regression Using Data–based Prior by Shively, Kohn, and Wood.” *Journal of the American Statistical Association*, 94, 794–797.

Crainiceanu CM, Ruppert D (2004a). “Likelihood Ratio Tests in Linear Mixed Models with One Variance Component.” *Journal of the Royal Statistical Society B*, 66, 165–185.

Crainiceanu CM, Ruppert D (2004b). “Restricted Likelihood Ratio Tests in Nonparametric Longitudinal Models.” *Statistica Sinica*, 14.

Crainiceanu CM, Ruppert D, Stedinger JR, Behr CT (2002). “Improving MCMC Mixing for a GLMM Describing Pathogen Concentrations in Water Supplies.” In C Gatsonis, RE Kass, A Carriquiry, A Gelman, D Higdon, DK Pauler, I Verdinelli (eds.), “Case Studies in Bayesian Statistics,” volume 6. Springer-Verlag, New York.

Diggle P, Heagerty P, Liang K, Zeger S (2002). *Analysis of Longitudinal Data*. Oxford University Press, New York, USA.

Eilers P, Marx B (1996). “Flexible Smoothing with B-splines and Penalties.” *Statistical Science*, 11(2), 89–121.
Eubank R (1988). *Spline Smoothing and Nonparametric Regression*. Marcel Dekker, New
York, USA.

Fan J, Gijbels I (1996). *Local Polynomial Modeling and its Applications*. Chapman and Hall,
London, UK.

Friedman J (1991). “Multivariate Adaptive Regression Splines (with Discussion).” *The Annals
of Statistics*, 19, 1–141.

Gelfand A, Sahu S, Carlin B (1995a). “Efficient Parameterizations for Normal Linear Mixed
Model.” In AD JM Bernardo J Berger, A Smith (eds.), “Bayesian Statistics,” volume 5.
Oxford University Press, Oxford, UK.

Gelfand A, Sahu S, Carlin B (1995b). “Efficient Parameterizations for Normal Linear Mixed
Models.” *Biometrika*, 3, 479–488.

Gelman A (2004). “Prior Distributions for Variance Parameters in Hierarchical Models.”
manuscript.

Green P, Silverman B (1994). *Nonparametric Regression and Generalized Linear Models*.
Chapman and Hall, London, UK.

Grizzle J, Allan D (1969). “Analysis of Dose and Dose Response Curves.” *Biometrics*, 25,
357–381.

Hansen M, Kooperberg C (2002). “Spline Adaptation in Extended Linear Models (with
Discussion).” *Statistical Science*, 17, 2–51.

Hastie T, Tibshirani R (1990). *Generalized Additive Models*. Chapman and Hall, London,
UK.

Insightful Corp (2003). *S-PLUS 6.2*. Seattle, WA.

Natarajan R, Kass R (2000). “Reference Bayesian Methods for Generalized Linear Mixed
Models.” *Journal of the American Statistical Association*, 95, 227–237.

Ngo L, Wand M (2004). “Smoothing with Mixed Model Software.” *Journal of Statistical
Software*, 9(1). URL http://www.jstatsoft.org/v09/i01/.

Ogden R (1996). *Essential Wavelets for Statistical Applications and Data Analysis*.
Birkhauser, Boston, USA.

R Development Core Team (2005). *R: A Language and Environment for Statistical Computing*.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://
www.R-project.org/.

Ruppert D (2002). “Selecting the Number of Knots for Penalized Splines.” *Journal of Com-
putational and Graphical Statistics*, 11, 735–757.

Ruppert D, Wand M, Carroll R (2003). *Semiparametric Regression*. Cambridge University
Press, Cambridge, UK.

SAS Institute Inc (2004). *SAS/STAT User’s Guide*. Cary, NC. Version 8.
Spiegelhalter D, Thomas A, Best N (2003). *WinBUGS Version 1.4 User Manual*. Medical Research Council Biostatistics Unit, Cambridge, UK.

Sturtz S, Ligges U, Gelman A (2005). “R2WinBUGS: A Package for Running WinBUGS from R.” *Journal of Statistical Software*, 12(3). URL http://www.jstatsoft.org/v12/i03/.

Tarter M, Lock M (1993). *Model-free Curve Estimation*. Chapman and Hall, New York, USA.

Ullah A (1985). “Specification Analysis of Econometric Models.” *Journal of Quantitative Economics*, 2, 187–209.

Wahba G (1990). *Spline Models for Observational Data*. Society for Industrial and Applied Mathematics, Philadelphia PA, USA.

Wand M (2003). “Smoothing and Mixed Models.” *Computational Statistics*, 18, 223–249.

Wand M, Jones M (1995). *Kernel Smoothing*. Chapman and Hall, London, UK.

Wang Y (1998). “Mixed Effects Smoothing Spline Analysis of Variance.” *Journal of Royal Statistical Society B*, 60, 159–174.
A. WinBUGS code for the age–income example

Model

This is the complete code for scatterplot smoothing used in the age–income example.

```winbugs
model{
  #Begin model
  #This model can be used for any simple scatterplot smoothing. It
  #can be easily modified to accommodate other covariates and/or
  #random effects
  #Likelihood of the model
  for (i in 1:n)
    {response[i]~dnorm(m[i],taueps)
     m[i]<-mfe[i]+mre110[i]+mre1120[i]
     mfe[i]<-beta[1]*X[i,1]+beta[2]*X[i,2]
     mre110[i]<-b[1]*Z[i,1]+b[2]*Z[i,2]+b[3]*Z[i,3]+b[4]*Z[i,4]+
       b[5]*Z[i,5]+b[6]*Z[i,6]+b[7]*Z[i,7]+b[8]*Z[i,8]+
       b[9]*Z[i,9]+b[10]*Z[i,10]
     mre1120[i]<-b[11]*Z[i,11]+b[12]*Z[i,12]+b[13]*Z[i,13]+b[14]*Z[i,14]+
       b[15]*Z[i,15]+b[16]*Z[i,16]+b[17]*Z[i,17]+b[18]*Z[i,18]+
       b[19]*Z[i,19]+b[20]*Z[i,20]}
  #Prior distributions of the random effects parameters
  for (k in 1:num.knots){b[k]~dnorm(0,taub)}
  #Prior distribution of the fixed effects parameters
  for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}
  #Prior distributions of the precision parameters
  taueps~dgamma(1.0E-6,1.0E-6); taub~dgamma(1.0E-6,1.0E-6)
  #Deterministic transformations. Obtain the standard deviations and
  #the smoothing parameter
  sigmaeps<-1/sqrt(taueps); sigmab<-1/sqrt(taub)
  lambda<-pow(sigmab,2)/pow(sigmaeps,2)
  #Predicting new observations
  for (i in 1:n)
    {epsilonstar[i]~dnorm(0,taueps)
     ystar[i]<-m[i]+epsilonstar[i]}}
#end model
```
Data

Data consists of the response variable (response[]) design matrix for fixed effects (X[,])
design matrix of random effects (Z[,]) sample size (n), and number of knots (num.knots).

Initial values

Initial values are provided for the fixed effects β (beta[]) random coefficients b (b[]) precision τ_b (taub) and precision τ_ϵ (taueps). All other initial values are generated by WinBUGS from their prior distributions.

Both data and initial values are specified and processed in R and then used in WinBUGS through the bugs() function implemented in the R2WinBUGS package as described in Section 9.

B. WinBUGS code for coronary sinus potassium example

Model

This is the complete code for the Bayesian semiparametric model for coronary sinus potassium
example presented in Section 6.

```r
model{ #Begin model
#This model was designed for the coronary sinus potassium model
described in this paper. However, the basic coding ideas can be
applied more generally to longitudinal models that involve a
hierarchy of parametric and/or nonparametric curves

#Likelihood of the model
for (k in 1:n)
{response[k]~dnorm(m[k],taueps)
m[k]<-f[k]+fg[k]+fi[k]
f[k]<-beta[1]*X[k,1]+beta[2]*X[k,2]+b[1]*Z[k,1]+
  b[2]*Z[k,2]+b[3]*Z[k,3]
fg[k]<-(gamma[group[k],1]*X[k,1]+gamma[group[k],2]*X[k,2])*
  step(group[k]-1.5)+c[group[k],1]*Z[k,1]+
  c[group[k],2]*Z[k,2]+c[group[k],3]*Z[k,3]
fi[k]<-delta[dog[k],1]*X[k,1]+delta[dog[k],2]*X[k,2]+
  d[dog[k],1]*Z[k,1]+d[dog[k],2]*Z[k,2]+d[dog[k],3]*Z[k,3]} #Prior for the random parameters of the overall curve
for (k in 1:num.knots){b[k]~dnorm(0,taub)}} #Prior for the random parameters for the curves describing group
deviations from the overall curve
for (k in 1:num.knots)
{for (g in 1:ngroups){c[g,k]~dnorm(0,tauc)}}
```
Prior for the random parameters for the individual deviations
from the group curve
for (i in 1:ndogs)
 {for (k in 1:num.knots){d[i,k]~dnorm(0,taud)}}

Prior for monomial parameters of the overall curve
for (l in 1:2){beta[l]~dnorm(0,1.0E-6)}

Prior for monomial parameters of curves describing the group
deviations from the overall curve
for (l in 1:2)
 {for (j in 1:ngroups){gamma[j,l]~dnorm(0,1.0E-6)}}

Prior for monomial parameters of curves describing the individual
deviations from the group curve
for (i in 1:ndogs)
 {for (j in 1:2){delta[i,j]~dnorm(0,taudelta[j])}}

Priors of precision parameters
taub~dgamma(1.0E-6,1.0E-6)
tauc~dgamma(1.0E-6,1.0E-6)
taud~dgamma(1.0E-6,1.0E-6)
taueps~dgamma(1.0E-6,1.0E-6)
for (j in 1:2){taudelta[j]~dgamma(1.0E-6,1.0E-6)}

Define the group curves
for (i in 1:n){fgroup[i]<-f[i]+fg[i]} # End model

Data

Data consists of the response variable (response[]) design matrix for fixed effects (X[]), design matrix of random effects (Z[]), sample size (n), number of knots (num.knots), number of subjects (nsubjects), number of groups (ngroups), subject indicator vector (dog), and group vector indicator (group).

Initial values

Initial values are provided for the fixed effects for all curves \(\beta \) (beta[]), \(\gamma \) (gamma[]), \(\delta \) (delta[]), random coefficients for all curves \(b \) (b[]), \(c \) (c[]), \(d \) (d[]), precisions \(\tau_b \) (taub), \(\tau_c \) (tauc), \(\tau_d \) (taud) and precision \(\tau_\epsilon \) (taueps).

Both data and initial values are specified and processed in R and then used in WinBUGS through the bugs() function implemented in the R2WinBUGS package as described in Section 9.
Affiliation:

Ciprian Crainiceanu
Department of Biostatistics
Johns Hopkins University
615 N. Wolfe St. E3636
Baltimore, MD 21205, United States of America
E-mail: ccrainic@jhsph.edu
URL: http://www.biostat.jhsph.edu/~ccrainic/

David Ruppert
School of Operational Research and Industrial Engineering
Cornell University
Rhodes Hall, NY 14853, United States of America
E-mail: ruppert@orie.cornell.edu
URL: http://www.orie.cornell.edu/~davidr/

M.P. Wand
Department of Statistics
School of Mathematics
University of New South Wales
Sydney 2052, Australia
E-mail: wand@maths.unsw.edu.au
URL: http://www.maths.unsw.edu.au/~wand/