Low Resource Style Transfer via Domain Adaptive Meta Learning

Xiangyang Li1,∗, Xiang Long2,∗, Yu Xia1, Sujian Li1,†

1Key Laboratory of Computational Linguistics, Peking University, MOE, China
2Beijing University of Posts and Telecommunications, Beijing, China

{xiangyangli, yuxia, lisujian}@pku.edu.cn
xianglong@bupt.edu.cn

Abstract

Text style transfer (TST) without parallel data has achieved some practical success. However, most of the existing unsupervised text style transfer methods suffer from (i) requiring massive amounts of non-parallel data to guide transferring different text styles. (ii) colossal performance degradation when fine-tuning the model in new domains. In this work, we propose DAML-ATM (Domain Adaptive Meta-Learning with Adversarial Transfer Model), which consists of two parts: DAML and ATM. DAML is a domain adaptive meta-learning approach to learn general knowledge in multiple heterogeneous source domains, capable of adapting to new unseen domains with a small amount of data. Moreover, we propose a new unsupervised TST approach Adversarial Transfer Model (ATM), composed of a sequence-to-sequence pre-trained language model and uses adversarial style training for better content preservation and style transfer. Results on multi-domain datasets demonstrate that our approach generalizes well on unseen low-resource domains, achieving state-of-the-art results against ten strong baselines.

1 Introduction

Text style transfer (TST) aims to change the style of the input text and keep its content unchanged, which has been applied successfully to text formalization (Jain et al., 2019), text rewriting (Nikolov and Hahnloser, 2018), personalized dialogue generation (Niu and Bansal, 2018) and other stylized text generation tasks (Gao et al., 2019; Cao et al., 2020; Syed et al., 2020).

Text style transfer has been explored as a sequence-to-sequence learning task using parallel datasets (Jhamtani et al., 2017; Wang et al., 2020b; Pryzant et al., 2020). However, parallel datasets are difficult to obtain due to expensive manual annotation. The recent surge of deep generative methods (Hu et al., 2017a; Zhao et al., 2017; Li et al., 2018) has spurred progress in text style transfer without parallel data. However, these methods typically require large amounts of non-parallel data and do not perform well in low-resource domain scenarios.

One typical method is to resort to massive data from different domains, which has been studied as an effective solution to address the above data insufficiency issue (Glorot et al., 2011; Wang et al., 2017; Li et al., 2021b). However, directly leveraging large amounts of data from other domains for the TST task is problematic due to the differences in data distribution over different domains, as different domains usually use their domain-specific lexica (Li et al., 2019a). For instance, fine-tuning a TST model trained on a high-resource movie-related domain to a low-resource restaurant-related domain can get us unreasonable sentences like "the food is dramatic." The sentiment word "dramatic" is suitable for commenting a movie but weird to comment on the food.

In this work, we tackle the problem of domain adaptation in the scenarios where the target domain data is scarce and misaligned with the distribution in the source domain. Recently, model-agnostic meta-learning (MAML) has received resurgence in the context of few-shot learning scenario (Lin et al., 2019; Gu et al., 2018; Nooralahzadeh et al., 2020). Inspired by the essence of MAML (Finn et al., 2017), we propose a new meta-learning training strategy named domain adaptive meta-learning (DAML). Unlike MAML, DAML adopts a domain adaptive approach to construct meta tasks that would be more suitable to learn a robust and generalized initialization for low-resource TST domain adaption.

To well preserve content and transfer style, one typical strategy of a TST model is to decouple style information from the semantics of a text, and it tends to produce content loss during style transfer (Hu et al., 2017b; Dai et al., 2019; Carlson et al.,

* Equal contribution.
† Corresponding author.
Here, we do not try to decouple content and style, and propose a new Adversarial style Transfer model ATM, which is composed of a sequence-to-sequence pre-trained language model combined with adversarial style training for style transfer. In this way, our model can better preserve the content information without disentangling content and style in the latent space.

Combining DAML and ATM, in this paper, we propose the method named DAML-ATM, which extends traditional meta-learning to a domain adaptive method combined with a sequence-to-sequence style transfer model. DAML contains two alternating phases. During the meta-training phase, a series of meta-tasks are constructed from a large pool of source domains for balanced absorption of general knowledge, resulting in a domain-specific temporary model. In the meta validation stage, the temporary model is evaluated on the meta validation set to minimize domain differences and realize meta knowledge transfer across different domains. In ATM, a pre-training language model based TST model is used to improve text content retention. Moreover, we propose a two-stage training algorithm to combine the DAML training method and ATM model better.

In summary, the main contributions in this paper are three-fold: (i) We propose a new unsupervised TST model, which achieves SOTA performance without disentangling content and style latent representations compared to other models. (ii) We extend the traditional meta-learning strategy to the domain adaptive meta transfer method, effectively alleviating the domain adaption problem in TST. (iii) We propose a two-stage training algorithm to train DAML-ATM, achieving state-of-the-art performance against multiple strong baselines.

2 Related Work

2.1 Text Style Transfer

Text style transfer based on deep learning has been extensively studied in recent years. A typical pattern is first to separate the latent space as content and style features, then adjust the style-related features and generate stylistic sentences through the decoder. (Hu et al., 2017a; Fu et al., 2017; Li et al., 2019a) assume that appropriate style regularization can achieve the separation. Style regularization may be implemented as an adversarial discriminator or style classifier in an automatic encoding process. However, these style transfer paradigms use large amounts of annotation data to train models for specific tasks. If we already have a model for a similar task, it is unreasonable to need many data still to train the model from scratch.

On the other hand, some of the previous work learned to do TST without manipulating the style of the generated sentence based on this learned latent space. (Dai et al., 2019) use the transformer architecture language model to introduce attention mechanism, but they do not make full use of the prior knowledge of sequence to sequence pre-trained language model, such as Bart (Lewis et al., 2019) and T5 (Raffel et al., 2019), which have made significant progress in text generation tasks. In this paper, we proposed the DAML training method to solve the domain shift problem in TST and proposed a new TST model architecture named ATM, which makes no assumption about the latent representation of source sentence and takes the proven sequence-to-sequence pre-trained language model.

2.2 Domain adaptation

Domain adaptation has been studied in various natural language processing tasks (Glorot et al., 2011; Qian and Yu, 2019; Wang et al., 2017; Li et al., 2021a). However, there is no recent work about domain adaptation for a TST, except DAST (Li et al., 2019a). DAST is a semi-supervised learning method that adapts domain vectors to adapt models learned from multiple source domains to a new target domain via domain discriminator. Different from DAST, we propose to combine meta-learning and adversarial networks to achieve similar domain adaption ability, and our model exceeds the performance of DAST without domain discriminator. Although there are some methods perform well in few shot data transfer (Riley et al., 2021; Krishna et al., 2021), these methods discuss completely new text style transfer, while we focus on the domain adaptation issue.

2.3 Model-Agnostic Meta-Learning

Model-agnostic meta-learning (MAML) (Finn et al., 2017) provides a general method to adapt to parameters in different domains. MAML solves few-shot learning problems by learning a good parameter initialization. During testing, such initialization can be fine-tuned through a few gradient steps, using a limited number of training examples in the target domain. Although there have been some researches (Qian and Yu, 2019; Li et al., 2020; Wu et al., 2020) on MAML in natural language
processing, it is still scarce compared to computer vision. Unlike the above research on classification under few-shot learning, our research focuses on text style transfer based on text generation. In this paper, we seek a new meta-learning strategy combined with adversarial networks, which is more suitable for encouraging robust domain representation. As far as we know, we are the first to adopt meta-learning in the domain adaptation problem of text style transfer tasks.

3 Methodology

In this section, we first define the problem of domain adaptive learning for TST. Then we describe our approach, DAML-ATM, in detail.

3.1 Task Definition

Let $D_S = \{D_1, ..., D_N\}$ be N source domains in the training phase, where $D_n (1 \leq n \leq N)$ is the n-th source domain containing style-labelled non-parallel data $D_n = \{(X_i, l_i)\}_{i=1}^{L_n}$, where L_n is the total number of sentences, X_i denotes the i^{th} source sentence, and l_i denotes the corresponding style label, which belongs to a source style label set: $l_i \in L_S$ (e.g., positive/negative). Likewise, there are K target domains $D_T = \{D_1, ..., D_K\}$ which are unseen in D_S. Our task is to transfer a sentence X_i with style l_i in the target domain to another sentence Y_i^t sharing the same content while having a different style l_i' from l_i and domain-specific characteristics of the target domain.

We propose a two-stage algorithm for domain adaptation in TST: pre-training learning strategy and domain adaptive meta-learning strategy. In pre-training learning, our objective is to make the model more able to preserve content information and distinguish between different text styles. In domain adaptive meta-learning, our objective is to learn a meta-knowledge learner for the sequence-to-sequence model by leveraging sufficient source data D_S. Given a new unseen domain from D_{new}, the new learning task of TST can be solved by fine-tuning the learned sequence-to-sequence model (domain-invariant parameters) with only a small number of training samples.

3.2 DAML-ATM Approach

3.2.1 Overview of DAML

Model-agnostic meta-learning can utilize a few training samples to train a model with good generalization ability. However, since it is based on the assumption that the meta tasks are from the same distribution (Figure 1, left), simply feeding all the sources data into it might get sub-optimal results (Chen and Zhu, 2020). Therefore, we propose a modified way to construct meta tasks (Figure 1, right).

Different from MAML, for DAML, in one batch, the data in each meta task comes from the same source domain, and each meta task comes from a different domain. In this way, we can guarantee that DAML can learn generic representations from different domains in a balanced way. During each iteration, we randomly split all source domains into a meta-training set D_{tr} and a meta-validation set D_{val}, where $D_S = D_{tr} \cup D_{val}$ and $D_{tr} \cap D_{val} = \emptyset$. A meta-training task T_i is sampled from D_{tr} and is composed of n instances from a specific domain. Likewise, a meta-validation task T_j is sampled from D_{val}. The validation errors on D_{val} should be considered to improve the robustness of the model. In short, with DAML, the parameters learned by the model in the parameter space are not biased towards any one particular domain with as little data as possible during model updating as shown in Figure 1(right).

In the final evaluation phase, the meta-knowledge learned by the sequence-to-sequence model can be applied to new domains. Given a new unseen domain $D_{new} = (T_{tr}, T_{te})$, the learned sequence-to-sequence model and the discriminator are fine-tuned on T_{tr} and finally tested on T_{te}.

3.2.2 ATM Model

In this section, we give a brief introduction to our proposed model: ATM, which combines sequence-to-sequence pre-trained model with adversarial training. (1) For the content preservation, we train...
the sequence-to-sequence model θ to reconstruct the original input sentence X with the original style label l. (2) For the style controlling, we train a discriminator network γ to assist the sequence-to-sequence model network in better controlling the style of the generated sentence. The structure of the model is shown in Figure 2.

S2S-model To ease the explanation, we start with the sequence-to-sequence (S2S) model here. Explicitly, for an input sentence $X = (x_1, x_2, ..., x_n)$ of length n, $X \in D$, the S2S encoder $Enc(X; \theta_E)$ maps inputs to a sequence of continuous hidden representations $H = (h_1, h_2, ..., h_n)$. Then, the S2S decoder $Dec(H; \theta_D)$ estimates the conditional probability for the output sentence $Y = (y_1, y_2, ..., y_n)$ by auto-regressively factorized its as:

$$p_\theta(Y|X) = \prod_{t=1}^{n} p_\theta(y_t|H, y_1, ..., y_{t-1}) \quad (1)$$

At each time step t, the probability of the next token is computed by a softmax classifier:

$$p_\theta(y_t|H, y_1, ..., y_{t-1}) = \text{softmax}(o_t) \quad (2)$$

where o_t is logit vector outputted by decoder network. The standard S2S model without discriminator makes the output sequence Y the same as the input sequence X.

Discriminator Model By teacher forcing, S2S tends to ignore the style labels and collapses to a reconstruction model, which might copy the input sentence, hence failing to transfer the style. Therefore, to make the model learn meaningful style information, we apply a style discriminator γ for the style regularization. In summary, we use a style discriminator to provide the direction (gradient) for TST to conform to the target style. Our discriminator is a multi-layer perceptron with a sigmoid activation function to predict style labels or guide the direction of style transfer. Our model training involves a pre-training learning strategy and a domain adaptive meta-learning strategy.

3.2.3 First Stage: Pre-training Learning

In the first stage, we train the discriminator model to distinguish different text styles. In this stage, the discriminator models are equivalent to a text classifier. Inspired by (Lewis et al., 2019), we feed the hidden states from the last layer of the decoder into the classifier instead of the gumble-softmax trick (Jang et al., 2017) for gradient back-propagation, which is more stable and better than gumble-softmax (See Table 5). The loss function for the discriminator is simply the cross-entropy loss of the classification problem:

$$L_{cls}(\gamma) = - \mathbb{E}_{X_i \sim D_S} [\log P(l_i|X_i; \gamma)] \quad (3)$$

For the S2S model, we pre-train the S2S model to allow the generation model to learn to copy an input sentence X using teacher forcing. The loss function of the sequence-to-sequence model minimizes the negative log-likelihood of the training data:

$$L_{rec}(\theta) = - \mathbb{E}_{X_i \sim D_S} [\log P(Y_i|X_i; \theta)] \quad (4)$$

In summary, we train the sequence model and the style classification model separately on the source domain to learn content preservation and style discrimination in the first stage. The first stage training procedure of the ATM is summarized in Algorithm 1.
Figure 3: Overview of our proposed DAML-ATM with second stage training strategy. In the meta-training phase, a temporary model \((\theta_{\text{old}}, \theta_{\text{new}}) \) is learned from \(D_{\text{tr}} \). In the meta-validation phase, the base model is updated by gradient descent with respect to the parameters \(\theta \) on \(D_{\text{val}} \). In the final evaluation phase, the learned sequence encoder is fine-tuned on \(T_{\text{te}} \) and tested on \(T_{\text{new}} \) from an unseen domain \(D_{\text{new}} \).

3.2.4 Second Stage: Domain Adaptive Meta-Learning with Adversarial Training

After the first stage of training, the style classifier has learned how to distinguish between different text styles. For style controlling, we adopt a method of adversarial training to avoid disentangling the content and style in the latent space. The discriminator model aims to minimize the negative log-likelihood of opposite style \(l_i \) when feeding to the style classification model \(y \) of sentence \(x \). In the second stage, we freeze the parameters of the discriminator. Therefore, style loss only works on the S2S model \(\theta \), which forces the S2S model \(\theta \) to generate opposite styles of sentences:

\[
\mathcal{L}_{\text{style}}(\theta) = - \mathbb{E}_{X_i \sim D} \left[\log P(\tilde{l}_i | X_i, l_i; \theta, \gamma) \right] \tag{5}
\]

In the second stage, we use the DAML algorithm for domain adaptive TST, so the text reconstruction loss and the style discriminator loss are calculated over the meta-training samples in task \(T_i \) from \(D_{\text{tr}} \). These two losses can be written as

\[
\mathcal{L}^{\text{rec}}_{T_i}(\theta) = - \mathbb{E}_{X_i \sim T_i} \left[\log P(Y_i | X_i; \theta) \right]
\]

\[
\mathcal{L}^{\text{style}}_{T_i}(\theta) = - \mathbb{E}_{X_i \sim T_i} \left[\log P(\tilde{l}_i | X_i, l_i; \theta, \gamma) \right] \tag{6}
\]

We add different prefixes to the input in the second stage, which allows the S2S model to perceive different TST tasks. The second stage of the algorithm is called domain adaptive meta-strategy, which consists of two core phases: a meta-training phase and a meta-validation phase, as shown in Figure 3.

Domain Adaptive Meta-Training

In the meta-training phase, our objective is to learn different domain-specific temporary models for each domain that are capable of learning the general knowledge of each domain. Inspired by feature-critic networks (Li et al., 2019b), we use a similar manner to adapt the parameters of the domain-specific temporary model:

\[
\theta_{\text{old}} = \theta_{i-1} - \alpha \nabla \theta_{i-1} \mathcal{L}^{\text{rec}}_{T_i}(\theta_{i-1}, \gamma_{i-1})
\]

\[
\theta_{\text{new}} = \theta_{\text{old}} - \alpha \nabla \theta_{i-1} \mathcal{L}^{\text{style}}_{T_i}(\theta_{i-1}, \gamma_{i-1}) \tag{7}
\]

where \(i \) is the adaptation step in the inner loop, and \(\alpha \) is the learning rate of the internal optimization. At each adaptation step, the gradients are calculated with respect to the parameters from the previous step. For each domain of \(D_{\text{tr}} \), it has different \(\theta_{\text{old}} \) and \(\theta_{\text{new}} \). The base model parameters \(\theta_0 \) should not be changed in the inner loop.

Algorithm 2 The training procedure of DAML-ATM

Input: \(D = \{D_1, \ldots, D_K\} \), \(\alpha, \beta \)

Output: optimal meta-learned model \(\theta \)

1: Initialize the base sequence-to-sequence model \(\theta_0 \) and discriminator model \(\gamma \) by algorithm 1
2: while not converge do
3: Randomly split \(D = D_{\text{tr}} \cup D_{\text{val}} \) and \(D_{\text{tr}} \cap D_{\text{val}} = \emptyset \)
4: Meta-training:
5: for \(j \) in meta batches do // Outer loop
6: Sample a task \(T_j \) from \(D_{\text{val}} \)
7: for \(i \) in adaptation steps do // Inner loop
8: Sample a task \(T_i \) from \(D_{\text{tr}} \)
9: Compute meta-training rec loss \(\mathcal{L}^{\text{rec}}_{T_j} \)
10: Compute meta-training style loss \(\mathcal{L}^{\text{style}}_{T_j} \)
11: Compute adapted parameters with gradient descent for \(\theta_{i-1} \):
12: \(\theta_{i-1}^{\text{old}} = \theta_{i-1} - \alpha \nabla \theta_{i-1} \mathcal{L}^{\text{rec}}_{T_j}(\theta_{i-1}, \gamma_{i-1}) \)
13: \(\theta_{i-1}^{\text{new}} = \theta_{i-1}^{\text{old}} - \alpha \nabla \theta_{i-1} \mathcal{L}^{\text{style}}_{T_j}(\theta_{i-1}, \gamma_{i-1}) \)
14: Meta-validation:
15: Compute meta-validation loss on \(T_j \); \(\mathcal{L}^{\text{val}}_{T_j} \)
16: Meta-optimization:
17: Perform gradient step w.r.t. \(\theta \)
18: \(\theta_0 = \theta_0 - \beta \nabla_{\theta_0} \mathcal{L}^{\text{val}}_{T_j}(\theta_{\text{old}}, \theta_{\text{new}}, \gamma) \)

Domain Adaptive Meta-Validation

After meta-training phase, DAML-ATM has already learned a temporary model \((\theta_{\text{old}}, \theta_{\text{new}}) \) in the meta-training domains \(D_{\text{tr}} \). The meta-validation phase tries to minimize the distribution divergence
between the source domains D_{tr} and simulated target domains D_{val} using the learned temporary model. In the meta-validation phase, each temporary model is calculated on the meta-validation domain D_{val} to get meta validation losses.

$$L_{val}^{T} = L_{val}^{rec}(\theta^{old}, \gamma_{0}) + L_{val}^{style}(\theta^{new}, \gamma_{0}) \quad (8)$$

Thus, the base model θ is updated by gradient descent

$$\theta_{0} = \theta_{0} - \beta \nabla \theta_{0} L_{val}^{T}$$ \quad (9)

where β is the meta-learning rate. Unlike the ordinary gradient descent process, the update mechanism of Eq. (9) involves updating one gradient by another gradient (w.r.t. the parameters of the temporary model). This process requires a second-order optimization partial derivative.

3.2.5 Final Evaluation Phase of DAML-ATM

In the final evaluation phase, we first initialize the model with the parameters learned during the above algorithm 2. Then, the model takes input as a new adaptation task T, which consists of a small in-domain data S_{tr} for fine-tuning the model and a test set S_{te} for testing. The procedure is summarized in Algorithm 3. (Note that the discriminator is not needed for inference.)

Algorithm 3 The Final Evaluation Procedure of DAML-ATM

Input: θ, γ learned from Algorithm 2, low resource training set S_{tr}, and test set S_{te} of an unseen domain D_{new}

Output: Performance on S_{te}

1. while not convergence do
2. serialize a task T_{k} from the unseen domain S_{tr}
3. Update $\theta = \theta - \beta \nabla \theta \sum L_{val}^{T}(\theta) + L_{val}^{style}(\theta)$
4. return optimal θ^* for S_{te}
5. Style accuracy, bleu, domain accuracy = $f_{T_{k}}(\theta)$

4.1 Datasets and Experimental Setups

In this experiment, we use the following four datasets from different domains: (i) IMDB movie review corpus (Diao et al., 2014). (ii) Yelp restaurant review dataset (Li et al., 2018). (iii) Amazon product review dataset (Li et al., 2018). (iv) YAHOO! Answers dataset (Li et al., 2019a), the amazon and yelp test sets each have 1k human annotations. The statistics of these corpora are summarized in Table 1.

For the S2S model, we take the T5 base model (Raffel et al., 2019) (220MB) for our experiments. For style discriminator, we use 4-layer fully connected neural networks. We train our framework using the Adam optimizer (Kingma and Ba, 2014) with the initial learning rate 1e-5. The epoch is set to 50 for both stage 1 and stage 2. The inner learning rate α is 0.0001, and the outer learning rate β is 0.001. Following (Shankar et al., 2018; Li et al., 2020), we use the leave-one-out evaluation method by picking a domain as the target domain D_{new} for the final evaluation. For each iteration of the training phase, two source domains are randomly selected as the meta-training domain D_{tr}, and the remaining domains as the meta-validation domain D_{val}.

In order to evaluate the model performance, we use three famous and widely adopted automatic metrics following previous work (Li et al., 2019a; Fu et al., 2017; Hu et al., 2017a) and a human metric. **BLEU** verifies whether the generated sentences retain the original content (Papineni et al., 2002). While IMDB and Amazon have no manual references, we compute the BLEU scores w.r.t. the input sentences. **Style Control** (S-Acc) measures the style accuracy of the transferred sentences with a style classifier that is pre-trained on the datasets. **Domain Control** (D-Acc) verifies whether the generated sentences have the characteristics of the target domain with a pre-trained domain classifier to measure the percentage of generated sentences belonging to the target domain. **Human Evaluation** Following (Madotto et al., 2019), We randomly sampled 100 sentences generated on the target domain and distributed a questionnaire at Amazon Mechanical Turk asking each worker to rank the content retention (0 to 5), style transfer (0 to 5) and fluency (0 to 5): human score = Average($\sum score_{style} + \sum score_{content} + \sum score_{fluency}$), human score $\in [0,100]$. Five workers were recruited for human evaluation.

4 Experiment

In this section, we first detail the experimental setups. Then, we present our experimental results over multiple target domains.
The results of the other metrics are shown in the appendix.

4.2 Baselines

Movie	In-Domain	Fine-Tuning	D-Shift	MAML	DAML
S-Acc	70.4	59.3	74.4	79.8	**81.5**
BLEU	**23.1**	25.4	27.4	26.9	**31.2**
D-Acc	87.3	75.2	72.2	74.5	**92.3**

Product	In-Domain	Fine-Tuning	D-Shift	MAML	DAML
S-Acc	84.1	80.2	83.5	84.6	**87.0**
BLEU	**14.0**	14.5	17.8	18.1	**19.9**
D-Acc	80.5	75.4	73.5	79.4	**84.1**

Q & A	In-Domain	Fine-Tuning	D-Shift	MAML	DAML
S-Acc	94.1	90.1	92.1	89.6	**95.5**
BLEU	**12.8**	13.7	14.5	18.7	**20.5**
D-Acc	80.6	70.0	72.5	76.5	**86.7**

Table 4: Results on each of the remaining domains treated as target domain, every target domains using 1% data for fine-tuning, base model is AMT.

In our experiments, for ATM model, we adopt five state-of-the-art TST models for comparison: CrossAlign (Shen et al., 2017), ControlGen (Hu et al., 2017a), DAST (Li et al., 2019a), CatGen (Wang et al., 2020a) and FGIM (Wang et al., 2019). They are jointly trained on the source domains and fine-tuned on the target domain.

To well analyze our training method DAML, following (Li et al., 2020), we also use five simple and effective domain adaptation settings with ControlGen (Hu et al., 2017a) structure as DAML: (1) **In-Domain** method is trained on the training set of the target domain; (2) **Joint-Training** method combines all the training sets of the source and target domains and performs a joint-training on these datasets; (3) **Fine-Tuning** method is trained on the training sets of the source domains and then fine-tuned on the training set of the target domain; (4) **D-Shift** This is trained on the combination of training sets from all source domains. Then, the evaluation is conducted on the test set of a target domain using the direct domain shift strategy; (5) **MAML** method uses classical model agnostic meta-learning algorithm (Finn et al., 2017).

4.3 Results and Analysis

For DAML-ATM, we first choose restaurant as the target domain and the other three as the source domains for observation. Table 2 reports the results of different methods and models under both the full-data and few-shot settings. From this table, we can see that DAML-ATM outperforms all baselines in terms of S-Acc, BLEU, D-Acc and human evaluation. We attribute this to the fact that DAML-ATM explicitly simulates the domain shift during few-shot learning.
Figure 4: The system performance on Amazon improves when the size of the target data increases. Even the one-shot learning achieves decent performance.

Figure 5: The t-SNE plots of source domain sentences and generated target domain sentence in different DAML training epochs. The labels 0 and 1 represent the source domain sentence embedding and the generated target domain sentence embedding.

training via DAML, which helps adapt to the new target domain. We can also see that in the case of a few-shot setting, the results of Fine-tuning and Joint training are even worse than In-domain and DAML. The reason may be that the data size of the source domain is much larger than the target domain so that the model tends to remember the characteristics of the source domain. MAML achieves good performance in most metrics. However, it does not balance meta-tasks across different source domains, performing poorly on D-acc.

Further, to verify the robustness of our method under the low-resource setting, we separately select the other three domains as the target domain. As shown in Table 4, our approach has achieved good performance on different target domains.

We also provide some examples in Table 3. From the example, we can see intuitively that D-shift and Fine-tuning will lead to the misuse of domain-specific words due to lack of target domain information. In addition, compared with Joint-training, the sentences generated by DAML-ATM are more consistent with the human reference. Compared to MAML, DAML generates sentences that are more diverse and vivid due to the more balanced absorption of information from multiple domains. Figure 4 shows the system performance positively correlates with the amount of training data available in the target domain. To visualize how well DAML-ATM performs on the new unseen domain, we use t-SNE (Van der Maaten and Hinton, 2008) plots to analyze the degree of separation between the source domain sentences and the generated target domain sentences. Figure 5 shows that as the training epoch increases, the sentences generated by DAML-ATM in the target domain are completely separated from the source domain in the latent space.

4.4 Ablation Study

To study the impact of different components on the overall performance, we further did an ablation study for our model, and the results are shown in Table 5. After we disabled the reconstruction loss, our model failed to learn meaningful outputs and only learned to generate a word for any combination of input sentences and styles. Then, when the discriminator loss is not used, the model degrades rapidly, simply copying the original sentence without any style modification. After not using the pre-training language model weights, the model’s performance is reduced in the metric of content preservation. When using gumble-softmax instead of hidden states for gradient descent, the model performs poorly in style accuracy because of the instability of gumble-softmax. In summary, each factor plays an essential role in the DAML-ATM training stage.

Table 5: Model ablation study results on Yelp dataset. The size of adaptation training data is 1%.

Model	S-Acc	BLEU	D-Acc
DAML-ATM	94.5	25.4	92.9
w/o reconstruction loss	50.0	0	50.0
w/o discriminator loss	2.1	21.6	92.4
w/o language model weights	87.4	17.3	90.3
w/ gumble-softmax	85.6	18.3	91.0

5 Conclusion

In this paper, we propose DAML-ATM, a novel training strategy combined with a new TST model.
for domain adaptation, which can be easily adapted to new domains with few shot data. On four popular TST benchmarks, we found significant improvements against multiple baselines, verifying the effectiveness of our method. We explore extending this approach for other low resource NLP tasks in future work.

Acknowledgements

This work was partially supported by National Key Research and Development Project (2019YFB1704002) and National Natural Science Foundation of China (61876009).

References

Yixin Cao, Ruihao Shui, Liangming Pan, Min-Yen Kan, Zhiyuan Liu, and Tat-Seng Chua. 2020. Expertise style transfer: A new task to assess better communication between experts and laymen. arXiv preprint arXiv:2005.00701.

Keith Carlson, Allen Riddell, and Daniel Rockmore. 2018. Evaluating prose style transfer with the bible. Royal Society open science, 5(10):171920.

Xiwen Chen and Kenny Q Zhu. 2020. St62: Small-data text style transfer via multi-task meta-learning. arXiv preprint arXiv:2004.11742.

Ning Dai, Jianze Liang, Xipeng Qiu, and Xuanjing Huang. 2019. Style transformer: Unpaired text style transfer without disentangled latent representation. arXiv preprint arXiv:1905.05621.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J Smola, Jing Jiang, and Chong Wang. 2014. Jointly modeling aspects, ratings and sentiments for movie recommendation (jmars). In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 193–202.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. arXiv preprint arXiv:1703.03400.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. 2017. Style transfer in text: Exploration and evaluation.

Xiang Gao, Yizhe Zhang, Sungjin Lee, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2019. Structuring latent spaces for stylized response generation. arXiv preprint arXiv:1909.05361.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Domain adaptation for large-scale sentiment classification: A deep learning approach. In ICML.

Jiatao Gu, Yong Wang, Yun Chen, Kyunghyun Cho, and Victor O. K. Li. 2018. Meta-learning for low-resource neural machine translation.

Zhitong Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P. Xing. 2017a. Toward controlled generation of text.

Zhitong Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P. Xing. 2017b. Toward controlled generation of text. In International Conference on Machine Learning, pages 1587–1596. PMLR.

Parag Jain, Abhijit Mishra, Amar Prakash Azad, and Karthik Sankaranarayanan. 2019. Unsupervised controllable text formalization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6554–6561.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical reparameterization with gumbel-softmax.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, and Eric Nyberg. 2017. Shakespearizing modern language using copy-enriched sequence-to-sequence models. arXiv preprint arXiv:1707.01161.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Kalpesh Krishna, Deepak Nathani, Xavier Garcia, Bidisha Samanta, and Purtha Talukdar. 2021. Few-shot controllable style transfer for low-resource settings: A study in indian languages.

Kalpesh Krishna, John Wieting, and Mohit Iyyer. 2020. Reformulating unsupervised style transfer as paraphrase generation.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension.

Dianqi Li, Yizhe Zhang, Zhe Gan, Yu Cheng, Chris Brockett, Ming-Ting Sun, and Bill Dolan. 2019a. Domain adaptive text style transfer. arXiv preprint arXiv:1908.09395.

Jing Li, Shuo Shang, and Ling Shao. 2020. Metaner: Named entity recognition with meta-learning. In Proceedings of The Web Conference 2020, pages 429–440.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018. Delete, retrieve, generate: A simple approach to sentiment and style transfer. arXiv preprint arXiv:1804.06437.

Xiangyang Li, Zheng Li, Sujian Li, Zhimin Li, and Shimin Yang. 2021a. Knowledge enhanced transformers system for claim stance classification. In
A Appendix

A.1 More Details on Experiment Setups

Our model is initialized from T5 and Bart (Liu et al., 2020; Raffel et al., 2019). Specifically, the
encoder and decoder are all 12-layer transformers with 16 attention heads, hidden size 1,024 and feed-forward filter size 4,096, which amounts to 406M trainable parameters. We train our framework using the Adam optimizer (Kingma and Ba, 2014) with the initial learning rate 1e-5, and we employ a linear schedule for the learning rate, all models are trained on 8 RTX 3090 GPUs.

A.2 Details on Human Evaluation

For the results generated by each method, following (Krishna et al., 2020), we randomly selected 100 sentences to be placed in the Amazon Mechanical Turk\(^1\) questionnaire. We pay our workers 5 cents per sentence. As shown in Figure 6, the questionnaire asked to judge the generated sentences on three dimensions: strength of style transfer, degree of content retention, and text fluency. To minimize the impact of spamming, we require each worker to be a native English speaker with a 95% or higher approval rate and a minimum of 1,000 hits.

A.3 More Ablation Study and Metrics

To verify that the general S2S models work well with our algorithm, we use bart (Lewis et al., 2019) as the S2S base model. For the robustness of the experiment, we add a new metric \(J-(a,c,f)\) (Krishna et al., 2020) to measure our results, which is a sentence-level aggregation strategy evaluate style transfer models.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Domain} & \text{S-Acc} & \text{BLEU} & \text{G-score} & \text{D-Acc} & \text{J-(a,c,f)} \\
\hline
\text{Restaurant(T5-base)} & 94.5 & 25.4 & 48.9 & 89.2 & 46.4 \\
\text{Restaurant(Bart-base)} & 94.7 & 24.1 & 47.8 & 88.4 & 40.2 \\
\text{Movie(T5-base)} & 81.5 & 31.2 & 50.4 & 92.3 & 42.8 \\
\text{Movie(Bart-base)} & 84.5 & 34.2 & 54.1 & 90.1 & 43.5 \\
\text{Product(T5-base)} & 87.0 & 19.9 & 41.6 & 84.1 & 34.5 \\
\text{Product(Bart-base)} & 84.3 & 20.4 & 41.4 & 86.4 & 34.7 \\
\text{Q & A(T5-base)} & 95.5 & 20.5 & 44.25 & 86.7 & 39.5 \\
\text{Q & A(Bart-Base)} & 92.5 & 17.7 & 40.46 & 79.8 & 34.1 \\
\hline
\end{array}
\]

Table 6: Results on each of the remaining domains treated as target domain, every target domain using 1% data for fine-tuning, base models are BART and T5.

As can be seen from Table 6, our approach can be combined with other general pre-trained language models and performs well, proving our method’s generality. Furthermore, as we can visually see from Table 7, our model also performs well on the \(J-(a,c,f)\) metric, which indicates that our model generates sentences in a specific style while having the right target style, preserving content, and being fluent.

A.4 More Generation Examples

To demonstrate more examples of generation to verify the effectiveness of the model, we selected 10 generated sentences from amazon and yelp each, as shown in Table 8 and Table 9.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Model/Training Method} & J-(a,c,f) & J-(a,c,f) \\
\hline
\text{CrossAlign} & 18.4 & 22.9 \\
\text{ControlGen} & 19.2 & 24.5 \\
\text{FGIM} & 25.6 & 28.7 \\
\text{DAST} & 24.5 & 32.3 \\
\text{Cat-Gen} & 20.3 & 31.2 \\
\text{ATM(ours)} & 30.4 & 39.5 \\
\hline
\text{In-Domain} & 32.5 & 35.2 \\
\text{Joint-Training} & 32.3 & 35.4 \\
\text{Fine-Tuning} & 28.2 & 37.8 \\
\text{D-Shift} & 25.5 & 34.1 \\
\text{MAML} & 38.8 & 44.1 \\
\text{DAML(ours)} & 44.8 & 47.6 \\
\text{DAML-ATM(ours)} & 46.4 & 50.8 \\
\hline
\end{array}
\]

Table 7: Evaluation results on restaurant domain(Yelp). The restaurant domain is used as the target domain and the other three domains as the source domain. G-score is the geometric mean of S-Acc and BLEU. The evaluation metrics is \(J-(a,c,f)\)

\(^1\)https://www.mturk.com/
Figure 6: Human evaluation questionnaire. We randomly sampled 100 sentences generated on the target domain and distributed a questionnaire at Amazon Mechanical Turk asking each worker to rank the content retention (0 to 5), style transfer(0 to 5), and fluency(0 to 5).

Input	Amazon (negative-to-positive) or (positive-to-negative)
anker, don’t like it.	DAML-ATM: anker is a great product, i like it. Human Ref. anker is a fine product though i d never heard of it.
but the back side looks terrible as well.	DAML-ATM: but the back side looks great as well. Human Ref. but the back side looks nice as well.
the hot dogs come out bad	DAML-ATM: the hot dogs come out great. Human Ref. we often cook sausages , hot dogs and hamburgers in it as well.
i will buy hamilton beach products again .	DAML-ATM: i will never buy hamilton beach products again. Human Ref. synching is not too hard , with no passwords or codes required synching is easy, with no passwords or codes required. synching is simple , with no passwords or codes required.
they were flimsy	DAML-ATM: synching is not too hard , with no passwords or codes required synching is easy, with no passwords or codes required. synching is simple , with no passwords or codes required. Human Ref. they were a bit flimsy, but they were ok. was concerned for the price that these measuring cups would be flimsy .
it does not move much air.	DAML-ATM: very ugly unit, hard to assemble and difficult to operate. Human Ref. very nice unit, easy to assemble and operate. very nice unit , easy to assemble and operate .
i would recommend this money case	DAML-ATM: i would not recommend this money case to anyone. Human Ref. i would never recommend this terrible waste of money case.
And this is not what you would need. and this is what you would need.	DAML-ATM: And this is not what you would need. Human Ref. and this would be what you would need .

Table 8: More Transferred sentences on Amazon(few shot setting).
Input	Yelp (negative-to-positive) or (positive-to-negative)
Ever since joes has changed hands it’s gotten better and better.	ever since joes has changed hands it’s gotten worse and worse.
Human Ref.	ever since joes has changed hands it’s just gotten worse and worse.
There is so much room in that part of the venue	there is not enough room in that part of the venue.
Human Ref.	there is definitely not enough room in that part of the venue.
It didn’t taste watered down at all.	it tasted watered down.
Human Ref.	so basically tasted watered down.
This pharmacy is really considerate.	this pharmacy is really a shithole.
Human Ref.	i ca’n’t believe how inconsiderate this pharmacy is.
definitely not disappointed that i could use my birthday gift!	definitely disappointed that i could not use my birthday gift!
Human Ref.	definitely disappointed that i could not use my birthday gift!
but it probably doesn’t suck too!	but it probably does suck too!
Human Ref.	but it probably sucks too!
the service was quick and responsive	the service was slow and not responsive.
Human Ref.	we sit down and we got some really slow and lazy service.
they said we could sit at the table with no hesitation	they said we could not sit at the table.
Human Ref.	said we could n’t sit at the table if we were n’t ordering dinner.
the wine was above average and the food was even better	the wine was average and the food was even wore.
Human Ref.	the wine was very average and the food was even less.
i would not visit this place again	i would definitely visit this place again.
Human Ref.	one of my favorite chinese place to eat!

Table 9: More Transferred sentences on Yelp(few shot setting).