Abstract Book

Organized by

Smartfab
The 2nd International Conference on Finance, Banking, and Financial Stability in collaboration with the Journal of Financial Stability

SMICBES
The 5th Sebelas Maret International Conference on Business, Economics and Social Sciences

Partners

Supported by

Sampoerna University

HSBC

Putera Sampoerna Foundation

Journal of Financial Stability
Session: Technology Management and Information System 1

- **Date:** 18 July 2018
- **Time:** 12.00 – 14.30
- **Room:** Kemiri
- **Chair:** Dr. Catur Sugiarto (Universitas Sebelas Maret)

Session	Title	Page
1	THE ROLE OF DIGITAL COMPETING CAPABILITY IN THE INTENTION TO ADOPT E-COMMERCE OF MICRO, SMALL, AND MEDIUM ENTERPRISES (TOWARD A CONCEPTUAL MODEL)	87
	Muhammad Kholid Arif Rozaq, Institut Seni Indonesia Yogyakarta and Universitas Sebelas Maret Surakarta, Indonesia	
	Asri Laksmi Riani, Universitas Sebelas Maret Surakarta	
	Mugi Harsono, Universitas Sebelas Maret Surakarta	
	Ahmad Ikhwan Setiawan, Universitas Sebelas Maret Surakarta	
2	ACCEPTANCE AND PENETRATION OF BITCOIN: THE ROLE OF PSYCHOLOGICAL DISTANCE AND NATIONAL CULTURE	88
	Juneman Abraham, Bina Nusantara University, Indonesia	
	Dian Utami Sutiksno, Politeknik Negeri Ambon, Indonesia	
	Nuning Kurniasih, Universitas Padjadjaran, Indonesia	
	Ari Warroka, Universidad Autonoma de Madrid, Spain	
3	CAN TEFA (TEACHING FACTORY) BE REALIZED WITH A CREATIVE ECONOMY, APPROPRIATE LEARNING MODEL AND ICT IN INDONESIA?	88
	Dewi Nurmalasari, Universitas Negeri Jakarta, Indonesia	
	Darma Rika Swaramarinda, Universitas Negeri Jakarta, Indonesia	
4	CONTINUITY DECISION IN STRATEGIC ALLIANCES OF TECHNOLOGY DEVELOPMENT STAGES	89
	Lidia Mayangsari, Institut Teknologi Bandung, Indonesia	
	Khrisna Ariyanto Manuhutu, Institut Teknologi Bandung and NIKOS, University of Twente	
	Utomo Sarjono Putro, Institut Teknologi Bandung, Indonesia	
ACCEPTANCE AND PENETRATION OF BITCOIN: THE ROLE OF PSYCHOLOGICAL DISTANCE AND NATIONAL CULTURE

Juneman Abraham, Bina Nusantara University, Indonesia
Dian Utami Sutiksnso, Politeknik Negeri Ambon, Indonesia
Nuning Kurniasih, Universitas Padjadjaran, Indonesia
Ari Warroka, Universidad Autonoma de Madrid, Spain

ABSTRACT

Previous studies showed that a number of factors play roles in influencing Bitcoin penetration and acceptance, both at country and individual level, such as trust, perceived risk, security threat, perceived benefit, and perceived ease of use, as well as macro-technological and socioeconomic factors. This present study aimed at finding theoretical models at the macro and micro levels that could explain the penetration and acceptance. Study 1 examines hypotheses on the predictive relationship between national cultural orientation and Bitcoin penetration involving 60 countries. Study 2, using a construal-level perspective, tested the predictive strength of psychological distances against Bitcoin acceptance, involving 565 Indonesians (M_age = 28.88 years old, SD_age = 12.482 years). The results showed that national cultures of individualism, uncertainty avoidance, and long-term orientation could predict the penetration. Spatial/physical distance, social distance, and hypothetical distance are able to predict the acceptance. This research is pivotal in obtaining the fundamental factors of community vulnerability in receiving and endorsing new e-money, a.k.a. Bitcoin. Monetary policy is expected to consider cultural and psychological factors in intervening against economic-technological disruptive innovations developing among societies.

Key words: Bitcoin, national culture, acceptance, penetration, socio-psychological, Indonesia

CAN TEFA (TEACHING FACTORY) BE REALIZED WITH A CREATIVE ECONOMY, APPROPRIATE LEARNING MODEL AND ICT IN INDONESIA?

Dewi Nurmalasari, Universitas Negeri Jakarta, Indonesia
Darma Rika Swaramarinda, Universitas Negeri Jakarta, Indonesia

ABSTRACT

TEFA is an Indonesian government program that integrates work experience into the school curriculum. All equipment, materials and educators are structured and designed to perform production processes in order to produce products (goods or services). TEFA is a combination of production-based learning and competency learning. The research aims is to see the extent of sucessfull of government program with analytical technique is a qualitative research method using descriptive analysis by doing observation, interview, and quisionary dissemination. The research held on 11 state vocational High school in West Java, Indonesia with the field of study is education. The sample of this reseach is principal, entrepreneurship teacher and head of teacher’s organization (MGMP).The realization of TEFA can be done very well, if all the component involved have a good capability in their fields, such as teachers who must be able to use appropriate learning models, mastering the concept of creative economy and ICT. The result show that innovation program in entrepreneurship subject, the teacher in creative economy program, the students have obliged entrepreneurship practice in school production unit get done verywell. The laboratory facilities of
I. INTRODUCTION

Teaching factory (TEFA) is an Indonesian government program that integrates work experience into the school curriculum. All equipment, materials and educational actors are designed to carry out the production process to produce products (goods or services). Teaching factory (TEFA) is a combination of production-based learning and competency learning. In production-based learning, students are directly involved in the production process, so that the needs of production build their competence. Production capacity and product type become the main key of successful implementation of learning.

In a teaching factory, the school carries out production activities or services that are part of the Teaching and Learning Process. Thus, the school is required to have a factory, workshop or other business unit for TEFA learning activities. The legal bases for the implementation of Teaching Factory are: Law Number 20 Year 2003 (Sisdiknas), Elucidation of Article 15 (Vocational Education prepares learners primarily to work in certain fields); Government Regulation Number 19 Year 2005 (SPN), Article 26 (Vocational Secondary Education Unit aims to improve intelligence, knowledge, personality, noble religion, and skills to live independently and follow further education in accordance with the vocational); and Education Priorities 2010-2014 (INPRES No. 1 of 2010: Improved access to quality education, affordable, relevant, and efficient toward uplifting people’s welfare, independence, noble character, and strong character of the nation). The education sector is developed to achieve economic growth that is supported through the harmonisation of the availability of educated personnel and the ability to create employment or entrepreneurship, to answer the challenges of labour needs. From the Presidential Decree 2014 on function and organization, Kemdikbud SMK built a Teaching Factory and technopark SMK environment with the latest technology.

The purpose of preparing graduates of vocational schools to become workers and entrepreneurs is to: help students choose the work field in accordance with their competence; grow the creativity of students through learning by doing; provide skills needed in the work world; and extend the scope of recruitment opportunities for SMK graduates. We must determine the right way to achieve these goals. The right way to do this is to improve the quality of education. The quality or quality of education cannot be separated from the teaching and learning process conducted in the classroom by the teachers. A good learning process will be reflected through a good and appropriate learning model. How can a teacher choose a good and appropriate learning model that is in line with the goals of TEFA?
The current curriculum used by schools is the 2013 curriculum that employs either an inquiry based-learning model, discovery learning model, project-based learning, or problem-based learning. The four models of learning above are not done completely by the teachers in the classroom. It is necessary to determine the appropriate learning model for teachers to be able to implement it well in the field, because it is the teachers who will be spearheading TEFA program implementation. One of the major teaching obstacles to implementing TEFA in education is the lack of teachers who can apply appropriate learning models. According to Aggarwal (1998), universally issued ICT can facilitate the teaching learning process but it cannot replace the traditional system of teaching-learning. The teaching-learning activities, which are varied and complex, must be harmonized. So, it is very important that an up to date professional teacher integrates the various elements of the teaching-learning situation, and more importantly should be brought into an intelligible whole.

II. LITERATURE REVIEW

II.I. LEARNING MODEL

According Anatta Sannai in Asmani (2011), information and communication technology is a medium or tool that obtains knowledge amongst individuals. Meanwhile, according to Sofan Amri (2013), the model of learning in the 2013 curriculum is a pattern that is used as a guide in planning the learning in the classroom or tutorial and determines the learning tools including books, films, computers, curriculum, and so on. The learning models that are preferred in the implementation of Curriculum 2013 are Inquiry Based Learning, Discovery Learning model, Project Based Learning model, and Problem Based Learning model.

II.I.I. Model Inquiry Learning

The steps in the inquiry model consist of observing the sharing of natural phenomena, asking questions about the phenomena encountered, suggesting hypotheses or possible answers, collecting data related to the conjecture or question posed and formulating conclusions based on data that has been processed or analysed.

II.I. II. Discovery Learning Model

Discovery learning model includes Stimulation steps, Problem Statement, Data Collecting, Data Processing, Verification and Generalization (summing up).

II.I.III. Problem Based Learning Model

This learning model aims to stimulate learners through various real problems in their daily life related to the knowledge they have or will learn during the following steps: orienting learners to problems, organizing learning activities, guiding independent and group investigations, developing and presenting the work, analysing and evaluating the problem-solving process.

II.I. IV. Model Based Project Learning

This learning model focuses on complex issues that learners need to conduct investigations and understand learning through investigation, guiding learners in a collaborative project that integrates various subjects
(materials) in the curriculum, providing opportunities for learners to explore content (material) by using various means that are meaningful to them, and doing experiments collaboratively.

II.II. CREATIVE ECONOMY

The concept of creative economy is an economic concept in the new economic era that intensifies information and creativity by relying on the idea and stock of knowledge from Human Resources as the main factor of production in its economic activity. The structure of the world economy is undergoing rapid transformation in line with economic growth; formerly the world economy was based on Natural Resources (SDA) and is now human-based, and there has been a shift from the agricultural era to the industrial and information age. Alvin Toffler in his theory, divides economic civilization into three waves. The first wave was a wave of agricultural economy. Second, the wave of the industrial economy. The third is the wave of the information economy. He then predicted the fourth wave is the wave of creative economy with the orientation of creative ideas.

According to Howkins (2001), the wave of creative economy was first present in 1996 when the export of US copyright works had a sales value of US $60.18 billion, which far exceeded exports of other sectors such as automotive, agriculture and aircraft. The new economy emerged around creative industries controlled by intellectual property laws such as patents, copyrights, brands, royalties and designs. Added by Dos Santos (2007), a creative economy is a concept where development is based on creative assets that have the potential to increase economic growth.

II.III. ICT

Information and Communications Technology (ICT) has gone through innovations that has transformed society and has totally changed the way people think, work and live (Grabe, 2007). As part of this, schools need to consider ICT integration in their curriculum (Ghavifekr, Afshari&AmlaSalleh, 2012). This should occur in conjunction with preparing students for the current digital era ICT in their daily classrooms. ICT has the capability of providing a dynamic and proactive teaching-learning environment (Arnseth&Hatlevik, 2012). There is no doubt that the technology in this contemporary society is used more and more, especially for teaching and learning. This is because modern technology offers many tools that can be used in classrooms to improve teaching and learning quality (Bruniges, 2003; Lefebvre, Deaudelin, &Loiselle, 2006; Bingimlas, 2009; Hamidi et al., 2011; Hussain et al. 2011). Rosnaini Mahmud and MohdArif (2008) define ICT integration as the process of determining where and how technology fits in the teaching and learning scenario. It enables students and teachers to have access to any website at any time freely on the internet. Worldwide research has shown that ICT can improve students' learning and pedagogical practices.
According to Blurton, ICT stands for technological tools and resources used to communicate, create, disseminate, store and manage information. These technologies include computers, the Internet, broadcasting technologies (radio and television), and telephone.

Thus, ICT covers two aspects, namely information technology and communication technology. Information technology includes all tools related to the process, manipulation, and information management. Communication technology is anything related to the use of tools to process and transfer data from one device to another. So, Information and Communication Technology contains a broad understanding of all activities related to processing, manipulation, management, and transfer of information between media.

The general principles of technology used in ICT are as follows:

1. Effective and efficient. The use of ICT should pay attention to the benefits of this technology in terms of making learning effective.
2. Optimal learning potential using ICT. ICT provides value through the breadth of coverage, up to date, modernity and openness.
3. Interesting. Classroom learning will be more interesting and provoke more curiosity.
4. Stimulate students’ creative thinking. By using ICT, students will grow their creativity to their maximum potential. Students who have high creativity will certainly be able to solve problems quickly and respond to emerging problems.

Thus, the purpose of ICT will be in line with the purpose of education itself when used in learning. The use of ICT is not an obstacle in learning but will provide significant benefit.

III. RESEARCH METHOD

III.I. Data source

Primary data is taken directly from the respondents through questionnaires and interviews that discuss the implementation of TEFA using appropriate learning models and applications of creative economy based on ICT. The data is obtained from public Vocational High school in West Java, Indonesia

III.II. Data Collection Technique

Data collection will use the following techniques:

1. Observation: the data collection of this research will be done through direct observation of the object of analysis to explore relevant and important aspects as the basis of analysis and interpretation.
2. Interview: data collection will be done through in-depth interviews intended to obtain qualitative data as well as information from informants.
3. Questionnaire: to obtain valid or accurate data beyond observation, data collection will be done through questionnaires with the intention of understanding opinions and gathering information.
IV. RESULT AND DISCUSSION

The following is an elaboration of interview results obtained from in-depth interviews and calculated using pie charts with key informants; that is, MGMP's (teacher association) chair of entrepreneurship subjects and principals.

NO	STATEMENT	YES	NO
1	Are there any constraints that arise when implementing ICT in learning	50%	50%
2	ICT utilization by teachers is still low	50%	50%
3	What efforts have been made in improving teacher competence in ICT	100%	0%
4	Schools undertake innovation programs related to Entrepreneurship maple	100%	0%
5	Schools facilitate Entrepreneurship laboratories	75%	25%
6	Schools facilitate the growth of creative economy program	100%	0%
7	Schools facilitate computer labs for entrepreneurship subjects	75%	25%
8	Schools require students to follow entrepreneurial practice	100%	0%
9	Involving students in school production unit/school cooperative activities	100%	0%
10	Teachers use the practice method in the entrepreneurial maple	100%	0%

In the case of obstacles that may arise in the practice of teaching and learning in schools when using ICT, 50% of respondents believe that there are still obstacles that arise and the remaining 50% said there are no significant obstacles. By Mrs. Yarnita pointed out that not all teachers can take advantage of technology tools. Similarly, according to Mr. AgusWimbadi, another obstacle is inadequate electricity that often causes electric shock. This is of course contrary to the opinion of IbuNursyamsiah, who states that MGMP teachers have applied various teaching methods relevant to information technology.

While the utilization of ICT by teachers is still low, 50% of respondents believe that ICT utilization is still low and the remaining 50% state it is not low. The use of ICT by teachers is still low because, according to IbuYarnita, some teachers do not use technology facilities that exist in school or outside school. Similarly, according to Mr. AgusWimbadi, few teachers apply learning using in-focus tools. This is of course contrary to the opinion of Mr. AchmadSupardi and Mrs. Nursyamsiah, who state that all teachers in the teaching and learning process minimally use ICT learning media Powerpoint.

Believe that improvements made to increase the competence of teachers in the utilization of ICT already exists. According to Mr. AchmadSupardi, there has been software development the development of teaching materials to improve student achievement is still required. Similarly, according to Mrs. Yarnita, the school has managed various trainings that are independent from their own teachers to get information from the outside but is still funded by the school. This is of course in line with information from Mr. AgusWimbadi, who believes that there is continuous training to improve the competence of teachers in utilizing ICT. Agreeing with that, Mrs. Nursyamsiah stated that
teachers have been trying to present learning with innovative techniques that teachers and students can learn easily, and schools have done innovation programs related to entrepreneurship. The principal and Chairman of MGMP Entrepreneurship subject believe that innovation programs related to entrepreneurship subjects have been done by the school. According to Mr. Achmad Supardi, the school has been using Teaching Factory learning model in certain skill programs. On the subject of entrepreneurship, Mrs. Yarnita believes that the school has adjusted to the needs of each major, such as in the banking program where there is a mini bank named Bank Arta Kusuma where all students are required to save.

According to Mr. Agus Wimbadi, there has been innovation in entrepreneurship subjects, such as students making lipstick from fruit. Mrs. Nursyamsiah states that teachers use creativity and expertise in technology to develop potential learners and schools facilitate this with an entrepreneurship laboratory. Seventy-five percent of respondents rate that schools have facilitated entrepreneurship laboratories and the remaining 25% stated not this is not yet fully facilitated. According to Mr. Agus Wimbadi, this is because there is no room available in school. This is of course contrary to the opinion of other key informants, namely Mr. Achmad Supardi, Mrs. Yarnita and Mrs. Nursyamsiah, who believe that each study program already has a laboratory or workshop with complete and adequate equipment.

Schools have facilitated the growth of creative economy programs for entrepreneurship subjects, as is shown in interviews with school principals and Chairman MGMP Entrepreneurship, with 100% of respondents believing that the school has facilitated the creative economy program. According to Mr. Achmad Supardi, in entrepreneurship learning, the Entrepreneurship Teacher has assigned students to sell something with their competence. Ibu Yarnita believes that teachers have empowered students based on their respective study program to develop their own business. Similarly, Mr. Agus Wimbadi states that students perform creative economic programs that is demonstrated in the manufacture of food and beverages that are managed for sale to the public in general and school friends in particular. While Mrs. Nursyamsiah stated learning is arranged along with expectations of motivational design, using technology to foster creative economy in students in entrepreneurship subjects.

In the case of schools facilitating computer labs for entrepreneurship subjects, 75% of respondents consider that schools have facilitated computer laboratory for entrepreneurship subject and the remaining 25% stated this is not yet fully facilitated. According to Mr. Achmad Supardi, this is because although the school already has a Computers Laboratory, entrepreneurship teachers do not use the computer laboratories specifically for the teaching process. This is contrary to the opinion of the other key informants, namely Mr. Agus Wimbadi, Mrs. Yarnita and Mrs. Nursyamsiah, who believe that in the learning activities students use the computer and teachers have set the division of tasks that students learn using ICT. In the case of whether the school requires students to follow entrepreneurial practices, interviews with headmasters and MGMP Chair of Entrepreneurship, show that schools have required students to follow entrepreneurship practices in schools. According to Mr. Achmad Supardi, this should be done because it is a demand of the curriculum. Mrs. Yarnita argues that this is a requisite in every class, especially in class XII where students practice their work for sale by making sales. This correlates with the opinion
of Mr. AgusWimbadi, who states that this practice has occurred because it is one of the requirements of the test scores. Mrs. Nursyamsiah added that in schools the students who take the entrepreneurial subject must participate in entrepreneurial practice. According to Mr. AchmadSupardi, teaching factory teaching has been integrated with the process of teaching and learning activities. According to Mrs. Yarnita, every school department has produced a production unit. For example, in the building development major, students make budgeting systems, design buildings and finish building in collaboration with the primary education department. In the air-conditioning major, students can do AC services, make lesson cards of the contents of the pulse. In the Prodi Banking, students are active in the Student Cooperative and Mini Bank.

Mr. AgusWimbadi argues that schools involve students in unit production activities because students are the ones who keep the cooperative. Similarly, IbuNursyamsiah stated that the students were involved in managing the operational unit of the school cooperative. In the case of whether the teacher has been using the method of practice in entrepreneurship subjects, interviews with the principal and Chairman of MGM Chairman MGMP Entrepreneurship show that all teachers have used the method of practice in Entrepreneurship lesson. According to Mr. Achmad Supardi, teachers use the method of practice where students learn from making proposals and implementing the business model accordingly. Likewise, Mrs. Yarnita believes that the teacher is definitely using the method of practice because every course of study in the school should be able to market their efforts made by the students. Mr. AgusWimbadi, another key informant, argued that in the practice method the teacher asked the students to create their own products and asked them to sell it themselves. IbuNursyamsiah, who studied various disciplines to enrich his scientific methodology in order to apply practice-based learning, also said the same thing.

From the above results, we can see that the strength of SMKN Bekasi shows that 100% of schools make innovation programs related to entrepreneurship subjects, and teachers have used the practice of entrepreneurship subjects. This has become the strength of other schools, as 75% of schools provide learning facilities and entrepreneurship laboratories. The 50% weakness is the barriers caused in the practice of teaching process in school when using ICT. On the occasion, 100% of teachers agreed that teacher’s ICT competencies should be improved and 100% agree that schools should provide facilitation to create creative economic programs for entrepreneurship subjects, as schools require students to follow entrepreneurship and school practices involving students in school activities or cooperative production. One-hundred percent of schools must improve teacher competence in the use of ICT.

School face threats as 50% of teachers still have low competency in ICT. Based on research data, the following is an analysis of the steps of learning models obtained from the questionnaire subjects of vocational entrepreneurship teachers in West Java. The researcher outlines the steps of the learning models and then lets the respondent choose the steps that are frequently performed in classroom teaching activities on entrepreneurship subjects. This procedure can therefore conclude which learning models are often used by respondents in daily teaching and learning activities in schools.
The following analysis of the steps of learning models shown in Table 5.3 and Table 5.4.

No	TYPES OF STAGE	results
1	Inquiry Learning Observation/Observing natural phenomena	91.67%
2	Ask questions about unexplained issues	91.67%
3	Asking for an alleged or probable answer	87.5%
4	Collecting data relating to allegations or questions	91.67%
5	Formulate the conclusions based on data that has been analysed	91.67%
6	Discovery Learning Stimulation	95.83%
7	Problem Statement	95.83%
8	Data Collection	100%
9	Data Processing	83.33%
10	Verification	87.5%
11	Generalize	100%
12	Problem Based Learning Preparing problems for students	91.67%
13	Organizing learning activities	83.75%
14	Guided and independent inquiry group	95.83%
15	Develop and present work	87.5%
16	Analysis and evaluation of troubleshooting process	87.5%
17	Project Based Learning Determining the underlying problem	87.5%
18	Designing project planning	87.5%
19	Scheduling test	75%
20	Monitoring of project progress	87.5%
21	Process evaluation and learning outcomes	79.2%
22	Evaluating project experience	91.67%

In referencing the table above, the learning model that most teachers use today is discovery learning. If this is associated with SWOT analysis data than 100% of teachers have used learning innovation, and 100% of teachers agree that the use of ICT in learning will increase competence of teachers, although only 50% of teachers have mastered ICT in learning. According to the research, the appropriate learning model is project-based learning if you want to adjust the government program as a government regulation no. 20/2003, on the competency of vocational students should be in accordance with the work / industry.19 The industrial-based production and learning approach that implements production in schools is called Teaching Factory (TEFA).

Teaching factory is the development of production units and dual educational systems that have been implemented in a vocational manner. The concept of factory teaching is the development of vocational schools to achieve a school production model. This is in line with the statement of Triatmoko (2009), that the implementation of production-based education (production-based education and training) in vocational schools is difficult, as
applied in ATMI (AkademiTeknikTeknik Indonesia). Therefore, there is a need to create teaching factories that require CMS to be implemented to have a business unit or unit of production as a place of student learning. In a business or production unit, students directly practice producing goods or services sold to consumers.

V. CONCLUSION AND RECOMMENDATION
While schools have adequate ICT learning facilities and learning, the constraints facing entrepreneurship are the limited number of teachers who master and apply ICT in learning. Teachers have applied the discovery learning model to improve students' creativity; but if they want to apply the selected model more precisely according to the concept, it is better to study the TEFA learning model of project-based learning.

Schools have facilitated the growth of creative economy programs for entrepreneurship subjects by requiring students to follow entrepreneurial practices and engage students in school activities or units of cooperative school production. Teachers must create a learning program that produces a product in the form of goods or services that have added value to improve income streams and improve student according to market needs in order to welcome the coming MEA.

In addition, the school is expected to improve cooperation with industry or business entities that are relevant in marketing. Therefore, teachers should be able to implement online marketing systems using ICT so that students can be involved in stretching the creative economy.

From the above conclusions, researchers want to provide suggestions for the improvement of schools, teachers and research.

a. The government provides teacher training in the use of ICT in learning.
b. The use of project-based learning is implemented in the learning process.
c. Increased school collaboration with industry.
d. Teachers improve their knowledge of E-Marketing in terms of creative economy.

REFERENCES
Ahira, Anne. Metodologi Pembelajaran Creative Learning, from http://www.annehira.com/metodologi-pembelajaran
Arikunto, Suharsimi. 1992. Pengelolaan Kelas dan Siswa (sebuah Pendekatan Evaluatif). Jakarta : Rajawali.
Bachtiar, Abdul Aziz. 2013. Pengaruh Kompetensi Profesionalisme Dan Kompetensi dalam Implementasi Pembelajaran yang Efektif dan Berkualitas. (Cet. II).
Daryanto & Tasrial. 2012. Konsep pembelajaran kreatif. Yogyakarta: Gava Media.
Depdiknas. 2004. Wawasan dan Pengembangan Profesi guru (PSS3), Jakarta, Jakarta : Rajawali Press.
Legawa, I Wayan. 2003. Profesi Keguruan. Jakarta: Depdiknas
Lie, Anita. 2004. Cooperative Learning, Jakarta: Grasindo
Munadi, Yudhi. 2008. Media Pembelajaran. Jakarta: GP Press.
Riyanto, Yatim. 2010. Paradigma Baru Pembelajaran, Sebagai Referensi bagi Pendidik. Jakarta: Kencana.

Robbins, Stephen P. 2006. Perilaku Organisasi. Gramedia : PT INDEKS

Rusman. 2011. Model-model pembelajaran. Jakarta: Rajawali Pers.

Smaldino, Sharon. 2011. Instructional Technology and Media for Learning, Teknologi Pembelajaran dan Media untuk Belajar. Jakarta: Kencana.

Surakhmad, Winarno. 1986. Metodologi Pengajaran Nasional. Bandung : Jemmars.

Uno, Hamzah B. 2007. Model Pembelajaran: Menciptakan Proses Belajar Mengajar yang Kreatif dan Efektif. Jakarta: PT Bumi Aksara.

Sugiyono. 2008. Metode Penelitian Kuantitatif, Kualitatif Dan R & D. Bandung : Alfabeta.