In vitro antibiotic resistance of Staphylococci isolated from different animal species

Nurdan KARACAN SEVER1,*, Mehmet AKAN2

1Department of Microbiology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
2Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey

Abstract: The purpose of this study is to investigate resistance to antibiotics of Staphylococcus species isolated from various samples belonging to different animal species. Among 48 Staphylococcus spp. strains, Staphylococcus intermedius was the most common species, followed by S. aureus, S. epidermidis, S. hyicus, S. saprophyticus. In a total of 48 Staphylococcus strains, the highest antibiotic resistance was observed to oxacillin (79.17%), tetracycline (39.58%), and ampicillin and cefoxitin (31.25%). Of 48 Staphylococcus strains, 23 of the strains had multidrug resistance. Antimicrobial resistance to oxacillin (79.17%), tetracycline (39.58%), and ampicillin and cefoxitin (31.25%) respectively. Resistance rates for ampicillin, cefoxitin, and enrofloxacin were determined as 66.67% in S. hyicus strains. S. saprophyticus was determined to show resistance to 13 antibiotics other than meropenem. The highest antibiotic resistance was determined in S. aureus, S. intermedius, S. epidermidis, and in 48 Staphylococcus strains to oxacillin. Consequently, this study revealed resistance to various antibiotics in Staphylococcus species. Additionally, the presence of high oxacillin resistance and multidrug resistance in the Staphylococcus strains revealed the importance of determination of antimicrobial susceptibility before treatment and for rational use of antibiotics.

Key words: Staphylococcus spp., domestic animals, antimicrobial resistance, oxacillin

1. Introduction
Staphylococci are a part of the normal bacterial flora of the urogenital and digestive system mucous membranes and skin of several mammalian animals and poultry [1,2,3]. Most of the 44 Staphylococcus species defined so far are present in animals [2,4]. Staphylococcus aureus (S. aureus) is accepted as the most prevalent pathogen species in both humans and animals, while other significant pathogen species in veterinary medicine were reported as S. hyicus and S. intermedius (reclassified as S. pseudointermedius) [4,5,6]. As it is difficult to phenotypically distinguish S. pseudointermedius, which was recently defined from S. delphini, it is believed that it would be better to use the term “S. intermedius group” for the species S. intermedius, S. delphini, and S. pseudointermedius [4,5,6,7,8]. Based on the coagulase test, Staphylococci used to be defined as coagulase-positive S. aureus and negative staphylococci. However, while S. intermedius, S. pseudintermedius, and S. delphini are positive in terms of coagulase and S. hyicus shows a variety, coagulase-negative staphylococci are also associated with various infections in humans and animals [6]. S. aureus may lead to suppurative infections such as mastitis, dermatitis, and botryomycosis in cows, sheep, goats, horses, pigs, cats, and dogs. S. intermedius causes several different suppurative infections such as endometritis and pyoderma in cats and dogs [1,2,9]. S. hyicus causes exudative epidermitis in pigs and cutaneous infections in horses and cows [3]. Due to reports that S. intermedius can be transmitted from animals to humans (especially from pets to owners), like S. aureus (zoonotic significance), S. intermedius also poses a serious public health risk [10,11,12].

Several different antibiotic drugs are used in the treatment of Staphylococcus spp. infections. However, usage of these drugs for shorter or longer than normal duration, and usage without antimicrobial susceptibility tests or microbiological analyses, had led to the emergence of antibiotic-resistant staphylococcus strains. Increased resistance to antibiotics in recent years, including multidrug resistance (MDR), will lead to untreatable Staphylococcus infections [13]. Some studies reveal antibiotic resistance in Staphylococcus species isolated from various animal species and humans [10,14,15,16,17,18,19]. It is known that especially the increase in methicillin-resistant Staphylococci creates a risk for animal health and public health [20,21,22]. The mecgenes that are found on the
Staphylococcal Cassette Chromosome mec (SCCmec) code the penicillin-binding protein 2a and lead to methicillin resistance by reducing the susceptibility of staphylococci to all β-lactam antibiotics [23,24,25]. In addition to the infections they cause in animals, methicillin-resistant staphylococci have become a significant risk due to their potential to be transmitted to people who are in close contact with animals, such as pet owners and veterinary clinic staff [20,26,27].

The purpose of this study is to determine resistance to antibiotics of Staphylococcus species isolated from samples belonging to different animal species brought to the Clinics of the Faculty of Veterinary Medicine at Ankara University with various complaints.

2. Materials and methods

2.1. Bacterial strains

Staphylococcus spp. strains were obtained from various samples of different animal species submitted to the Clinics of the Faculty of Veterinary Medicine at Ankara University. A total of 48 Staphylococcal strains, of which 15 strains were from dogs (31.25%), 12 from cats (25%), nine from cows (18.75%), four from horses (8.33%), three from chickens (6.25%), two from goats (4.17%), and one each from a calf, pigeon, and parrot (2.08%) were used in this study (Table 1).

2.2. Identification of Staphylococcus spp. strains

Staphylococcus spp. strains were identified based on colony characteristics, catalase production, Gram’s stain, coagulase reaction, pigment production, and Deoxyribonuclease (DNase) reaction on DNase agar, etc. [2,9].

2.3. Antimicrobial susceptibility testing

Antibiotic resistance of staphylococci was tested with the Kirby-Bauer disc diffusion method according to the Clinical and Laboratory Standards Institute (CLSI) (2008) [28]. The following antibiotic discs (Oxoid, Basingstoke, UK) were used: ampicillin (10µg), enrofloxacin (5µg), ciprofloxacin (5µg), meropenem (10µg), chloramphenicol (30µg), streptomycin (10µg), mupirocin (200µg), erythromycin (15µg), rifampicin (5µg), tetracycline (30µg), gentamicin (10µg), tobramycin (10µg), and cefoxitin (30 µg). For oxacillin (1µg) resistance, Mueller Hinton agar (Oxoid, CM0337, UK) onto which 2% NaCl was added was used. A Staphylococcus aureus ATCC® 25923 strain was used as the positive control. The inhibition zone diameters were assessed based on CLSI [28]. Among the tested antibiotics, strains that showed resistance to ≥3 antimicrobial agent classes were defined as multidrug-resistant (MDR) strains [29,30].

3. Results

3.1. Bacteriological identification

Staphylococcus spp. strains were isolated from samples belonging to different animal species, distributed among S. intermedius 21 (43.75%), S. aureus 15 (31.25%), S. epidermidis 8 (16.67%), S. hyicus 3 (6.25%), and S. saprophyticus 1 (12.08%) (Table 1).

3.2. Antimicrobial susceptibility testing

In a total of 48 Staphylococcus spp. strains, the highest antibiotic resistance was determined to oxacillin 38 (79.17%), tetracycline 19 (39.58%), and ampicillin and cefoxitin 15 (31.25%). Regarding the resistance rates (Table 2), 42 (87.5%) strains were resistant to at least one drug, and 47.92% of strains were multidrug-resistant. Resistance rates in S. aureus, S. intermedius, and S. epidermidis were variable, with 40% of S. aureus strains exhibiting resistance to cefoxitin and ampicillin, 20% of strains being resistant to erythromycin and enrofloxacin, and tetracycline and tobramycin; with 38.10% of S. intermedius strains being resistant to erythromycin, 19.05% of strains exhibiting resistance to ampicillin, tobramycin, gentamicin, and chloramphenicol; with 37.5% of S. epidermidis strains exhibiting resistance to ampicillin and tetracycline, 12.5% being resistant to gentamicin, cefoxitin, chloramphenicol, erythromycin, mupirocin, and rifampicin. Resistance was not observed to rifampicin, ciprofloxacin, mupirocin, and meropenem in S. aureus strains, to mupirocin in S. intermedius, and to meropenem, tobramycin, ciprofloxacin, and enrofloxacin in S. epidermidis. Resistance rates of S. hyicus strains were determined to be 66.67% to ampicillin, cefoxitin, and enrofloxacin; 33.33% to tetracycline, erythromycin, ciprofloxacin, and mupirocin. Resistance was not noted to meropenem, tobramycin, gentamicin, streptomycin, rifampicin, and chloramphenicol in S. hyicus strains. S. saprophyticus was determined to show resistance to 13抗生素 other than meropenem. Also, antimicrobial resistance rates to oxacillin were noted in S. aureus, S. intermedius, S. epidermidis, S. hyicus, and S. saprophyticus (93.33%, 76.19%, 62.5%, 66.67%, and 100%, respectively).

4. Discussion

This study investigated the antibiotic resistance of Staphylococcus species isolated from samples belonging to different animal species with various clinical symptoms and the presence of methicillin-resistant Staphylococcus species with zoonotic potential. A large proportion of cat and dog samples were obtained from the skin and ear, whereas all parrot and horse samples were taken from the skin. In our study, S. intermedius was identified as the most prevalent species from samples of the skin and ear. This could be related to the number of samples collected from the skin and ear. The most prevalent species were reported as S. intermedius and S. aureus in dogs with otitis externa and pyoderma [15,31,32]. S. aureus was isolated from cow milk samples in our study. Some researchers detected the most prevalent species as S. aureus and S. epidermidis,
Table 1. Distribution of the *Staphylococcus* spp. strains based on the animal species and samples they were isolated from [n (%)].

Animal Species	Dog	Cat	Cow	Horse	Chicken	Goat	Lamb	Pigeon	Parrot											
	skin swab	ear swab	joint swab	nail wound swab	vaginal swab	skin swab	ear swab	nose swab	oral swab	urine	milk	nose swab	nail wound swab	joint swab	sinus swab	nail wound swab	vaginal swab	lung	lung	skin swab
S. intermedius	15 (31.25)	12 (25)	9 (18.75)	4 (8.33)	3 (6.25)	2 (4.17)	1 (2.08)	1 (2.08)	1 (2.08)											
21 (43.75)	5 (23.81)	3 (14.28)	1 (4.76)	1 (4.76)	1 (4.76)	1 (4.76)	1 (4.76)	1 (4.76)	4 (19.05)	1 (2.08)	1 (2.08)	1 (4.76)								
S. aureus	15 (31.25)	1 (6.67)	-	-	-	-	-	-	-	-	5 (33.33)	2 (13.33)	1 (6.67)	-	-	-	-	-	1 (6.67)	-
1 (6.67)	-	-	-	1 (6.67)	-	1 (6.67)	1 (6.67)	-	4 (19.05)	-	-	-	-	-	-	-	-	-		
S. epidermidis	8 (16.67)	-	-	-	-	3 (37.5)	-	-	-	-	-	-	-	-	-	1 (12.5)	1 (12.5)	-	-	-
3 (37.5)	-	-	-	-	-	-	-	-	-	-	-	1 (33.33)	-	-	1 (33.33)	-	-	-	1 (33.33)	
S. hyicus	3 (6.25)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1 (33.33)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. saprophyticus	1 (2.08)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1 (100)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Table 2. Antibiotic resistance in *Staphylococcus* species with different animal species origins [n (%)].

Antimicrobial agents	S. aureus (15)	S. intermedius (21)	S. epidermidis (8)	S. hyicus (3)	S. saprophyticus (1)	Total (48)																					
	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R	S	I	R
OX	1 (6.67)	0	14 (93.33)	3 (14.28)	2 (9.52)	16 (76.19)	2 (25)	1 (12.5)	5 (62.5)	0	1 (33.33)	2 (66.67)	0	0	1 (100)	6 (12.5)	4 (8.33)	38 (79.17)									
CFX	9 (60)	0	6 (40)	16 (76.19)	0	5 (23.81)	7 (87.5)	0	1 (12.5)	1 (33.33)	0	2 (66.67)	0	0	1 (100)	33 (68.75)	0	15 (31.25)									
AMP	9 (60)	0	6 (40)	17 (80.95)	0	4 (19.05)	6 (75)	0	2 (25)	1 (33.33)	0	2 (66.67)	0	0	1 (100)	33 (68.75)	0	15 (31.25)									
MER	15 (100)	0	0	19 (90.48)	0	2 (9.52)	8 (100)	0	0	3 (100)	0	0	1 (100)	0	46 (95.83)	0	2 (4.17)										
TOB	11 (73.33)	2 (13.33)	2 (13.33)	17 (80.95)	0	4 (19.05)	7 (87.5)	1 (12.5)	0	3 (100)	0	0	0	0	1 (100)	38 (79.17)	3 (6.25)	7 (14.58)									
CN	10 (66.67)	0	5 (33.33)	16 (76.19)	1 (4.76)	4 (19.05)	7 (87.5)	0	1 (12.5)	3 (100)	0	0	0	0	1 (100)	36 (75)	1 (2.08)	11 (22.92)									
S	13 (86.67)	1 (6.67)	1 (6.67)	13 (61.90)	1 (4.76)	7 (33.34)	5 (62.5)	0	3 (37.5)	3 (100)	0	0	0	0	1 (100)	34 (70.83)	2 (4.17)	12 (25)									
TET	7 (46.67)	0	8 (53.33)	14 (66.67)	0	7 (33.34)	6 (75)	0	2 (25)	2 (66.67)	0	1 (33.33)	0	0	1 (100)	29 (60.42)	0	19 (39.58)									
E	11 (73.33)	1 (6.67)	3 (20)	13 (61.90)	0	8 (38.10)	6 (75)	1 (12.5)	1 (12.5)	1 (33.33)	1 (33.33)	1 (33.33)	0	0	1 (100)	31 (64.58)	3 (6.25)	14 (29.17)									
CL	13 (86.67)	0	2 (13.33)	17 (80.95)	0	4 (19.05)	7 (87.5)	0	1 (12.5)	3 (100)	0	0	0	0	1 (100)	40 (83.33)	0	8 (16.67)									
MUP	15 (100)	0	0	21 (100)	0	0	7 (87.5)	0	1 (12.5)	2 (66.67)	0	1 (33.33)	0	0	1 (100)	45 (93.75)	0	3 (6.25)									
ENR	12 (80)	0	3 (20)	16 (76.19)	2 (9.52)	3 (14.29)	8 (100)	0	0	1 (33.33)	2 (66.67)	0	0	1 (100)	37 (77.08)	2 (4.17)	9 (18.75)										
CIP	13 (86.67)	2 (13.33)	0	19 (90.48)	0	2 (9.52)	8 (100)	0	0	1 (33.33)	1 (33.33)	1 (33.33)	0	0	1 (100)	41 (85.42)	3 (6.25)	4 (8.33)									
RIF	15 (100)	0	0	19 (90.48)	0	2 (9.52)	7 (87.5)	0	1 (12.5)	2 (66.67)	1 (33.33)	0	0	0	0	1 (100)	43 (89.58)	1 (2.08)	4 (8.33)								

S: sensitive, I: intermediate, R: resistant; OX: oxacillin, CFX: cefoxitin, AMP: ampicillin, MER: meropenem, TOB: tobramycin, CN: gentamicin, S: streptomycin, TET: tetracycline, E: erythromycin, CL: chloramphenicol, MUP: mupirocin, ENR: enrofloxacin, CIP: ciprofloxacin, RIF: rifampicin.
S. aureus, S. agalactiae, and S. hyicus from cow milk with bovine mastitis in Turkey and Poland, respectively [33,34]. S. intermedius (dog), S. aureus (cow), and S. epidermidis (goat) were isolated from the samples collected from wounds under the nails. Vanni et al. [15] also isolated S. intermedius (30%) from samples collected from under the nails of diseased and healthy dogs. S. saprophyticus was isolated from a cat urine sample, while it was determined to be susceptible to only meropenem among the antibiotics tested in our study. Some researchers have reported that S. pseudointermedius (20.1%), S. saprophyticus (2.9%), and S. aureus (2.5%) were isolated from urine samples of cats and dogs diagnosed with urinary system infection [22,35].

In the treatment of Staphylococcus spp. infections, long-term usage or repeated usage of both broad-spectrum and narrow-spectrum antibiotics may lead to the emergence of antimicrobial resistance, especially multidrug resistance. Considering the antibiotic resistance of all Staphylococcus spp. strains that we analyzed in our study, the resistance we determined to tobramycin (14.58%), streptomycin (25%), tetracycline (39.58%), and erythromycin (29.17%) were found to be higher than those reported by other researchers [14,33,36]. The resistance to ampicillin (31.25%), gentamicin (22.92%), rifampicin (19.05%), and chloramphenicol (16.67%) was lower [14,16,25]. In the CLSI report in 2008, it was stated that the use of cefoxitin is more suitable in determining methicillin resistance [17,42,43,44,45]. However, there is confusion in the determination of methicillin resistance in staphylococci due to heterogeneous resistance in coagulase-negative staphylococci and studying different Staphylococcus species in different geographical regions [17,45,46,47]. In the CLSI report in 2008, it was stated that using cefoxitin is more suitable in determining methicillin resistance [28]. Considering the comparison of resistance to the two antimicrobials, the resistance determined to oxacillin and cefoxitin was observed to agree in the S. hyicus (66.67%) and S. saprophyticus (100%) strains, whereas it showed differences in the S. aureus (93.33% / 40%), S. intermedius (76.19% / 23.81%), S. epidermidis (62.5% / 12.5%), and all Staphylococcus strains (79.17% / 31.25%). High oxacillin resistance in the S. intermedius, S. aureus, S. epidermidis, and all Staphylococcus strains was in agreement with the results of other researchers [25,33,38,48]. However, some researchers reported oxacillin resistance to be low in S. aureus strains [14,32,35,36,49]. Low cefoxitin resistance in the analyzed S. intermedius, S. epidermidis, and all Staphylococcus spp. strains was similar to the results in some studies [16,36,39]. Cefoxitin resistance observed
in approximately half (40%) of the S. aureus strains was in agreement with the findings of Couto et al. [36], whereas Kot et al. [16] reported encountering no cefoxitin-resistant S. aureus strains. A literature review did not reveal any study of cefoxitin resistance in S. saprophyticus strains, and this study can be considered as the first to determine cefoxitin resistance in a S. saprophyticus strain.

Consequently, this study indicated that Staphylococcus strains and Staphylococcus species originating from different animal species have high oxacillin resistance, but all Staphylococcus strains have high levels of meropenemas a common feature. It has also shown that almost half of the Staphylococcus strains have MDR. It was demonstrated that determining antimicrobial susceptibility and effective treatment based on this, especially in infections caused by Staphylococcus species with MDR, carries great significance in terms of both animal health and reduction of the risk of resistance to antibiotics. Additionally, this study also revealed the necessity of taking the necessary health precautions by keeping in mind the probability of transmission of MRSA with zoonotic potential to pet owners and healthcare employees in close contact with animals and the formation of control programs regarding the carriage of the factor.

Conflict of interest
The authors declare no conflict of interest.

This study was presented as a poster at the “XXXVII. Turkish Microbiology Congress”, November 16–20, 2016, Titanic Hotel, Antalya, Turkey.

Acknowledgments
I would like to express great appreciation to Özlem ŞAHAN YAPICIER, Ph.D. for his valuable and constructive suggestions during the writing and development of this research.

References

1. Rich M. Staphylococci in animals: prevalence, identification and antimicrobial susceptibility, with an emphasis on methicillin-resistant Staphylococcus aureus. British Journal of Biomedical Science 2005; 62 (2): 98-105.

2. Markey B, Leonard F, Archambault M, Cullinane A, Maguire D. Staphylococcus species. In: Edwards R, Hewat C (editor). Clinical Veterinary Microbiology. 2th. ed. Missouri, USA: Mosby Elsevier; 2013. pp. 105-119.

3. Smeltzer MS, Beenken KE. Staphylococcus. In: McVey DS, Kennedy M, Chenganpa MM (editor). Veterinary Microbiology. 3th. ed. Iowa, USA: Wiley-Blackwell; 2013. pp. 184-193.

4. Bond R, Loeffler A. What's happened to Staphylococcus intermedius? Taxonomic revision and emergence of multi-drug resistance. Journal of Small Animal Practice 2012; 53 (3): 147-154. doi: 10.1111/j.1748-5827.2011.01165.x

5. Ross Fitzgerald J. The Staphylococcus intermedius group of bacterial pathogens: species re-classification, pathogenesis and the emergence of methicillin resistance. Veterinary Dermatology 2009; 20 (5-6): 490-495. doi: 10.1111/j.1365-3164.2009.00828.x

6. Hermans K, Devriese LA, Haesebrock F. Staphylococcus. In: Gyles CL, Prescott JP, Songer G, Thoen CO (editor). Pathogenesis of Bacterial Infections in Animals. 4th. ed. Iowa, USA: Wiley-Blackwell; 2010. pp.75-89.

7. Devriese LA, Vancanneyt M, Baele M, Vanechouette M, De Graef E, et al. Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. International Journal of Systematic and Evolutionary Microbiology 2005; 55 (4): 1569-1573. doi: 10.1099/ijs.0.63413-0

8. Van Duijkeren E, Catry B, Greko C, Moreno MA, Pomba MC, et al. Review on methicillin-resistant Staphylococcus pseudintermedius. Journal of Antimicrobial Chemotherapy 2011; 66 (12): 2705-2714. doi: 10.1093/jac/dkr367

9. Akan M. StaphylococcusInfeksiyonları. In: Aydin N, Parackoğlu J (editor). VeterinerMikrobiyoloji (BakteriyelHastalıklar). 1th. ed. Ankara, TÜRKİYE: İlke-EmekYayınları; 2006. pp. 5-13.

10. Simoons-Smit A, Savelkoul P, Stoof J, Starink T, Vandenbroucke-Grauls C. Transmission of Staphylococcus aureus between humans and domestic animals in a household. The European Journal of Clinical Microbiology & Infectious Diseases 2000; 19 (2): 150-152. doi: 10.1007/s100960050450

11. Tanner MA, Everett CL, Youvan DC. Molecular phylogenetic evidence for noninvasive zoonotic transmission of Staphylococcus intermedius from a canine pet to a human. The Journal of Clinical Microbiology 2000; 38 (4): 1628-1631.

12. Boost MV, Oidonoghue M, James A. Prevalence of Staphylococcus aureus carriage among dogs and their owners. Epidemiology and Infection 2008; 136 (7): 953-964. doi: 10.1017/S0950268807009326

13. Davis J, Jackson C, Fedorka-Cray P, Barrett J, Brousse J, et al. Carriage of methicillin-resistant staphylococci by healthy companion animals in the US. Letters in Applied Microbiology 2014; 59 (1): 1-8. doi: 10.1111/lam.12254

14. Lilenbaum W, Veras M, Blum E, Souza G. Antimicrobial susceptibility of staphylococci isolated from otitis externa in dogs. Letters in Applied Microbiology 2000; 31 (1): 42-45. doi: 10.1046/j.1472-765x.2000.00079.x

15. Vanni M, Tognetti R, Pretti C, Crema F, Soldani G, et al. Antimicrobial susceptibility of Staphylococcus intermedius and Staphylococcus schleiferi isolated from dogs. Research in Veterinary Science 2009; 87 (2): 192-195. doi: 10.1016/j. rvs.2009.01.011
16. Kot B, Piechota M, Wolska K, Frankowska A, Zdunek E, et al. Phenotypic and genotypic antimicrobial resistance of staphylococci from bovine milk. Polish Journal of Veterinary Sciences 2012; 15 (4): 677-683. doi: 10.2478/v10181-012-0105-4

17. Hanci H, Ayyildiz A, Baltaci MO, Igan H, Uyanik MH, et al. Staphylococcus aureus isolated from Australian animals and veterinarians. Microbial Drug Resistance. 2018; 24 (2): 203-212. doi: 10.1089/mdr.2017.00127

18. Worthing KA, Abraham S, Pang S, Coombs GW, Saputra A, et al. Transmission of methicillin-resistant Staphylococcus aureus isolates from companion animals, humans and the environment in households. Veterinary Microbiology 2011; 150 (3-4): 398-403. doi: 10.1016/j.vetmic.2010.09.029

19. Sığırcı Diren B. Methicillin-resistant Staphylococci from dogs and cats with dermatologic problems. International Journal of Agriculture, Environment and Biotechnology 2019; 4 (2): 24-30.

20. Pantosti A. Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to human health. Frontiers in Microbiology 2012; (3):1-12. doi: 10.3389/fmicb.2012.00127

21. Bierowiec K, Płoneczka-Janeczko K, Rypuła K. Cats and dogs as a reservoir for Staphylococcus aureus. Postepy Hig Med Czynn O国际贸易alnych (Advances in Hygiene and Experimental Medicine) (Online) 2014; (68): 992-997. doi: 10.5604/17322693.1117546

22. Göçmen H, Şükür H, Tamakan H, Esendal ÖM. Kuzey Kıbrıs Türk Cumhuriyeti’nde Halıvanlardan İzole Edilen Stafilokok Tüllerinin meticillin dirençli olduğu tespit edilmişdir. Etilk Veteriner Mikrobiyoloji Dergisi 29 (2): 87-93.

23. Weese JS, Van Duikeren E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Veterinary Microbiology 2010; 140 (3-4): 418-429. doi: 10.1016/j.vetmic.2009.01.039

24. Weese JS. Methicillin-resistant Staphylococcus aureus in animals. Institute for Laboratory Animal Research 2010; 51 (3): 233-244.

25. McManus BA, Coleman DC, Deasy EC, Brennan GI, O’Connell B, et al. Comparative genotypes, staphylococcal cassette chromosome mec (SCCmec) genes and antimicrobial resistance amongst Staphylococcus epidermidis and Staphylococcus haemolyticus isolates from infections in humans and companion animals. PLoS One 2015; 10 (9): 1-18. doi: 10.1371/journal.pone.0138079

26. Van Duikeren E, Houwers D, Schoormans A, Broekhuizen-Stins M, Ikawaty R, et al. Transmission of methicillin-resistant Staphylococcus intermedius between human and animals. Veterinary Microbiology 2008; 128 (1): 213-215. doi: 10.1016/j.vetmic.2007

27. Van Duikeren E, Kamphuis M, Van der Mijl I, Laarhoven I, Duin B, et al. Transmission of methicillin-resistant Staphylococcus pseudintermedius between infected dogs and cats and contact pets, humans and the environment in households and veterinary clinics. Veterinary Microbiology 2011; 150 (3-4): 338-243. doi: 10.1016/j.vetmic.2011.02.012

28. Wayne PA. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 18th informational supplement. CLSI document 2008; M100-S18: 100-121.

29. Tenover FC. Mechanisms of antimicrobial resistance in bacteria. The American Journal of Medicine 2006; 119 (6): S3-10. doi: 10.1016/j.amjmed.2006.05.219

30. Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E, et al. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Journal of Antimicrobial Chemotherapy 2010; 65 (4): 601-604. doi: 10.1016/j.jantimic.2009.12.013

31. Oliveira LC, Leite CA, Brilhante RS, Carvalho CB. Comparative study of the microbial profile from bilateral canine otitis externa. The Canadian Veterinary Journal2008; 49 (8): 785-788.

32. Penna B, Varges R, Medeiros L, Martins GM, Martins RR, et al. Species distribution and antimicrobial susceptibility of staphylococci isolated from canine otitis externa. Veterinary Dermatology. 2010; 21 (3): 292-296.

33. Kirkam S, Göksoy EO, Kaya O. Identification and antimicrobial susceptibility of Staphylococcus aureus and coagulase negative staphylococci from bovine mastitis in the Aydın region of Turkey. Turkish Journal of Veterinary and Animal Sciences 2005; 29 (3): 791-796.

34. Klimienė I, Ružauskas M, Špakauskas V, Matusievičius A, Moksleifūnas R, et al. Antimicrobial resistance patterns to beta-lactams of gram-positive cocci isolated from bovine mastitis in Lithuania. Polish Journal of Veterinary Sciences 2011; 14 (3): 467-472. doi: 10.2478/v10181-011-0069-9

35. Penna B, Varges R, Martins R, Martins G, Lilenbaum W. In vitro antimicrobial resistance of staphylococci isolated from canine urinary tract infection. Veterinary Dermatology. 2010; 51 (7): 738-742.

36. Couto N, Monchique C, Belas A, Marques C, Gama LT, et al. Trends and molecular mechanisms of antimicrobial resistance in clinical staphylococci isolated from companion animals over a 16 year period. Journal of Antimicrobial Chemotherapy 2016;71(6):1479-1487. doi: 10.1093/jac/dkw029

37. Pedersen K, Pedersen K, Jensen H, Finster K, Jensen VF, et al. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs. Journal of Antimicrobial Chemotherapy 2007; 60 (4): 775-781.

38. Blunt CA, Van Vuuren M, Picard J. Antimicrobial susceptibility profiles of Staphylococcus intermedius isolates from clinical cases of canine pyoderma in South Africa 2013;16 (84): E1-6. doi: 10.4102/jsava.v84i1.276

39. Moser A, Stephan R, Ziegler D, Johler S. Species distribution and resistance profiles of coagulase-negative staphylococci isolated from bovine mastitis in Switzerland. Schweizer Archivfür Tierheilkunde 2013; 155 (6): 333-338. doi: 10.1024/0036-7281/a000468
40. Youn J-H, Park YH, Hang'ombe B, Sugimoto C. Prevalence and characterization of *Staphylococcus aureus* and *Staphylococcus pseudintermedius* isolated from companion animals and environment in the veterinary teaching hospital in Zambia, Africa. Comparative Immunology, Microbiology & Infectious Diseases 2014; 37 (2): 123-130. doi: 10.1016/j.cimid.2014.01.003

41. Park J, Friendship RM, Poljak Z, Weese JS, Dewey CE. An investigation of exudative epidermitis (greasy pig disease) and antimicrobial resistance patterns of *Staphylococcus hyicus* and *Staphylococcus aureus* isolated from clinical cases. The Canadian Veterinary Journal 2013; 54 (2): 139-144.

42. Tiwari DH, Sapkota D, Das AK, Sen MR. Assessment of different tests to detect methicillin resistant *Staphylococcus aureus*. The Southeast Asian Journal of Tropical Medicine and Public Health 2009; 40 (4): 801-806.

43. Vural A, Afşar İ, Kurultay N, Demirci M. *Staphylococcus aureus’* da metisilin direncinin saptanmasında disk difüzyon, oksasılın agar tarama, mikrodilüsyon ve PBP2A lateks aglütinasyon testlerinin karşılaştırılması. Ankem Dergisi 2011; 25 (3): 145-149. doi:10.5222/ankem.2011.145

44. Pourmand MR, Hassanzadeh S, Masjhad R, Askari E. Comparison of four diagnostic methods for detection of methicillin resistant *Staphylococcus aureus*. The Iranian Journal of Microbiology 2014; 6 (5): 341-344.

45. Shah DA,Wasim S, Abdullah FE. Comparison of oxacillin and cefoxitin for the detection of mecA gene to determine methicillin resistance in coagulase negative *Staphylococci* (CoNs).Journal of College of Physicians and Surgeons Pakistan 2017; 27 (8): 520-522. doi: 10/2685

46. Antunes ALS, Secchi C, Reiter KC, Perez LRR, Freitas ALPD, et al. Evaluation of oxacillin and cefoxitin disks for detection of resistance in coagulase negative staphylococci. The Memórias do Instituto Oswaldo Cruz 2007;102(6):719-723. doi: 10.1590/S0074-02762007005000078

47. Anand K, Agrawal P, Kumar S, Kapila K. Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian Journal of Medical Microbiology 2009; 27 (1): 27-29.

48. Moon BY, Youn J-H, Shin S, Hwang SY, Park YH. Genetic and phenotypic characterization of methicillin-resistant staphylococci isolated from veterinary hospitals in South Korea. The Journal of Veterinary Diagnostic Investigation 2012; 24 (3): 489-498. doi: 10.1177/1040638712440985

49. Öztürk D, Türütoğlu H, Pehlivanoğlu F, Yapıcıer ÖŞ. Identification of bacteria isolated from dairy goats with subclinical mastitis and investigation of meticillin and vancomycin resistant *Staphylococcus aureus* strains. Ankara Üniversitesi Veteriner Fakültesi Dergisi 2019; 66 (2): 191-196. doi: 10.33988/auvfd.431465