The “sweet” side of a long pentraxin: how glycosylation affects PTX3 functions in innate immunity and inflammation

Antonio Inforzato1, Patrick C. Reading2,3, Elisa Barbati1, Barbara Bottazzi1, Cecilia Garlanda1* and Alberto Mantovani1,4

1 Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Rozzano, Italy
2 Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
3 Victorian Infectious Diseases Reference Laboratory, World Health Organization Collaborating Centre for Reference and Research on Influenza, Melbourne, VIC, Australia
4 Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy

INTRODUCTION

The innate immune system has evolved to specifically recognize and eradicate potentially harmful microorganisms, thus providing the first line of defense against pathogens. Evolutionarily older than the adaptive immune system, innate immunity plays key roles in activation and orientation of adaptive immunity that provides the immunological memory. Components of the innate immune system that are involved in pathogen recognition and initiation of the immune response are germline-encoded receptors known as pattern recognition molecules (PRMs). These receptors recognize microbes or microbial moieties collectively named pathogen-associated molecular patterns (PAMPs;Iwasaki and Medzhitov, 2005), signaling receptors, such as TLRs (Akira et al., 2006) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLR;Meylan et al., 2006), and (ii) fluid phase molecules or opsonins, which represent the functional ancestors of antibodies and are involved in pathogen opsonization, complement activation, and self versus modified-self discrimination (Botazzi et al., 2010). Fluid phase PRMs are essential effectors and modulators of the innate resistance in animals and humans, and form a heterogeneous group of molecules that includes collectins,
ficolins, and pentraxins (Fujita, 2002; Holmiovk et al., 2003; Bottazzi et al., 2006).

Conserved in evolution from arachnoids to humans, pentraxins are pivotal components of the humoral arm of innate immunity with a distinctive multimeric structure. Based on the primary structure of the composing protomers, pentraxins are divided into two groups: short and long pentraxins (Urban et al., 2013). C-reactive protein (CRP) and serum amyloid P component (SAP) are prototypic short pentraxins, whereas pentraxin 3 (PTX3) and other subsequently identified proteins represent the long pentraxin arm of the family (Garlanda et al., 2003).

Here we review past and present literature on this family of proteins, with major emphasis on the long pentraxin PTX3 and the glycan-dependent mechanisms underlying its functions in pathogen recognition and crosstalk with other components of the innate immune system.

THE SHORT PENTRAXINS

Pentraxins are distinctively characterized by the presence in their carboxy-terminal region of a ~200 amino acid domain containing a highly conserved motif of primary sequence known as pentraxin signature (HxCxT/W/VxS, where x is any amino acid). In the 1930s, CRP was the first purified PRM, which was named after its ability to bind in a calcium-dependent fashion the C-polysaccharide of Streptococcus pneumoniae (Tillet and Francis, 1930; Abernethy and Avery, 1941). Human SAP was subsequently identified as a closely related protein (i.e., with 51% sequence identity to human CRP; Emley et al., 1994). Orthologous proteins to human CRP and SAP have also been described in the hemolymph of the arthropod Limulus polyphemus, where they are involved in recognition and killing of pathogens (Liu et al., 1982; Armstrong et al., 1996; Sheive et al., 1999).

Both short pentraxins are 25 kDa proteins with a common structural organization that comprises 5 or 10 identical subunits arranged in a pentameric radial symmetry (Rubio et al., 1993; Emley et al., 1994). Each of the composing subunits displays a lectin-like fold with two-layered β sheet in a flattened jellyroll topology (Thompson et al., 1999). The human CRP protein is not glycosylated, whereas human SAP is traditionally described as homogeneously modified with sialylated biantennary complex type glycans (Pepeys et al., 1994). However, this view has been challenged by studies reporting microheterogeneity of the glycosidic moiety of SAP due to loss of one or both terminal sialic acid residues (Weiss et al., 2011). In this regard, it has been proposed that the loss of sialic acid might cause a reorientation of SAP oligosaccharides, which in turn induces conformational changes in the protein tertiary and quaternary structure. Therefore, it is conceivable that the glycosylation status of SAP might affect the structure/function relationships of this short pentraxin (Ashton et al., 1997; Siebert et al., 1997).

C-reactive protein and SAP are the main acute-phase reactants in human and mouse, respectively. CRP is barely detectable in the plasma of healthy human adults (~3 mg/l) but its concentration increases by as much as 1000-fold in several pathological conditions. As opposed to this, the concentration of human (but not murine) SAP is substantially invariant (30–50 mg/l), even during the early acute-phase response. Human CRP and SAP are both produced by hepatocytes, where the pro-inflammatory cytokine IL-6 is a major inducer of CRP both on its own and in synergy with IL-1 (Pepeys and Hirschfeld, 2003).

Short pentraxins are important players in humoral innate immunity, where they have been described to recognize a number of diverse ligands, mostly in a calcium-dependent manner. As mentioned above, the first reported ligand of CRP is the C-polysaccharide of Streptococcus pneumoniae. This interaction is mediated by phosphorlycholine (PC), a major constituent of the C-type capsule polysaccharides (Tillet and Francis, 1930; Abernethy and Avery, 1941). CRP recognizes additional pathogens, including fungi, yeasts, and bacteria, thus promoting phagocytosis and resistance to infection (Szalai, 2002). Consistent with this, CRP transgenic (Tg) mice are resistant to infection with Streptococcus pneumoniae, displaying longer survival time and lower mortality rate than normal littermates (Szalai et al., 1993). SAP is a calcium-dependent lectin originally purified based on its binding to the agaroase component 4,6-cyclin pyruvate acetal of β-D-galactose (Hind et al., 1984). Like CRP, SAP binds a number of bacteria, such as Streptococcus pyogenes and Neisseria meningitidis (Hind et al., 1985; Noursadeghi et al., 2000). In addition, it has been shown that SAP acts as β inhibitor against influenza virus, binding in a calcium-dependent fashion to mannose-rich glycans on the viral hemagglutinin (HA) to inhibit both hemagglutination and viral infectivity (Andersen et al., 1997; Horvath et al., 2001). Furthermore, SAP has been described to prevent lipopolysaccharide (LPS)-mediated complement activation and LPS toxicity (De Haas et al., 1998, 2000; Noursadeghi et al., 2000). However, the relationship between ligand binding and function of these proteins is still a matter of debate (Noursadeghi et al., 2000; Szalai et al., 2000; Szalai et al., 2007).

The short pentraxins participate in activation and regulation of the three complement pathways (i.e., classical, lectin, and alternative), by interacting with C1q (CRP and SAP; Roumenina et al., 2006), ficolins (CRP, Ng et al., 2007; Tanio et al., 2009), and factor H (CRP, Jarva et al., 1999; Mihlan et al., 2009; Okemefuna et al., 2010). It has been suggested that complement activation by short pentraxins might favour removal of the apoptotic debris, with potential implications in preventing the onset of autoimmune diseases (Nauta et al., 2003b). Specific and saturable binding to all three classes of Fc receptors (FcγR) has been demonstrated for both CRP and SAP, where these interactions mediate phagocytosis of apoptotic cells and microorganisms (Bharadwaj et al., 1999, 2001; Mold et al., 2002; Lu et al., 2008). Therefore, pentraxins can activate both complement and FcγR pathways, which resembles the functional properties of antibodies.

THE LONG PENTRAXIN PTX3

Pentraxin 3 is the prototypic long pentraxin that was first identified in the early 1990s as a cytokine-inducible gene in endothelial cells and fibroblasts (Breviario et al., 1992; Lee et al., 1993). Long pentraxins have an unrelated amino-terminal region coupled to a 203 amino acids long carboxy-terminal pentraxin-like domain. Despite the sequence homology, long pentraxins differ from short pentraxins in gene organization, chromosomal localization, cellular source, inducing stimuli and recognized ligands. Other members of the long pentraxin subfamily have been
identified, including guinea pig aepxin (Reid and ØrøeBøl, 1994),
neuronal pentraxin 1 (PTX1 or NP1; Omens et al., 1996), neu-
ronal pentraxin 2 (PTX2, also called Narp or NP2; Hsieh and Perin, 1995),
and the transmembrane protein neuronal pentraxin receptor
(PTXR; Dödd et al., 1997). In an attempt to find new
pentraxin domain-containing proteins, we have recently identified
a new long pentraxin, which we named PTX4. Like other mem-
bers of this family, the gene encoding PTX4 is well conserved from
mammals to lower vertebrates. However, PTX4 has a unique pat-
tern of mRNA expression, which is distinct from that of other long
pentraxins (Martinez de la Torre et al., 2010).

GENE ORGANIZATION AND EXPRESSION

The human PTX3 gene has been localized on chromosome 3
band q25 and is organized in three exons, coding respectively
for the leader peptide, the N-terminal domain and the pentraxin
domain, separated by two introns. The murine gene presents the
same structural organization and is located on chromosome 3.

The proximal promoters of both human and murine PTX3 genes
share numerous potential enhancer-binding elements, including
Pu1, AP-1, NF-κB, SP1, and NF-IL-6 sites (Breviario et al., 1992;
Altmeyer et al., 1995; Bäisle et al., 1997).

Pentraxin 3 expression is rapidly induced in a variety of addi-
tional cell types by several stimuli, such as cytokines (e.g., IL-1β,
and TNF-α), TLR agonists, microbial moieties (e.g., LPS, OmpA,
and lipoprotein lipids), and intact microorganisms (Bottazzi et al.,
2009). Oxidized and enzymatically modified low density
lipoproteins (ox-LDL) promote PTX3 production in endothelial
cells and human primary vascular smooth muscle cells (SMCs;
Presta et al., 2007). Similar inflammatory signals induce PTX3
expression in other cell types, including myoid dendritic cells
(DCs), macrophages, kidney epithelial cells, synovial cells, chon-
drocytes, adipocytes, alveolar epithelial cells, glial cells, mesangial
cells, and granulosa cells (Bottazzi et al., 2009). PTX3 is con-
stitutively stored in the specific granules of neutrophils and is
released in response to TLR engagement by microorganisms or
TLR agonists (Jaillon et al., 2007; Maina et al., 2009). The released
protein can partially localize in neutrophil extracellular traps
(NETs) and neutrophil-associated PTX3 promotes the genera-
tion of an effective antimicrobial microenvironment (Jaillon et al.,
2007). Constitutive expression of PTX3 has been reported in both
human and murine lymphatic endothelial cells (Sironi et al., 2006),
whereas resting T and B lymphocytes and natural killer cells do
not produce PTX3 mRNA.

Different signaling pathways can affect PTX3 production,
depending on cell type and/or stimuli. For instance, IFN-γ inhibits
PTX3 production in DCs, monocytes, and macrophages, while
IL-10 ameliorates LPS-induced PTX3 expression (Doni et al., 2006;
Maina et al., 2009). IL-4, dexamethasone, 1α,25-dihydroxyvitamin
D3, and prostaglandin E2 also inhibit LPS-induced PTX3 in
myoid DCs (Doni et al., 2006). PTX3 expression in a model of
acute myocardial ischemia is controlled by the NF-κB pathway
(Salio et al., 2008), while induction of the protein by TNF-α in
lung epithelial cells involves the c-Jun N-terminal kinase (JNK)
pathway (Han et al., 2005). Moreover, production of PTX3 in
endothelial cells that is induced by high-density lipoproteins
(HDL) requires the activation of the PI3K/Akt pathway through
G-coupled lysosphingolipid receptors (Norata et al., 2008). Glu-
corticoid hormones (GCs) induce or enhance PTX3 production
in non- hematopoietic cells (e.g., fibroblasts and endothelial cells),
but inhibit PTX3 production in hematopoietic cells (e.g., DCs and
macrophages; Doni et al., 2008).

PROTEIN STRUCTURE AND GLYCOYLATION

The human PTX3 is a multimeric glycoprotein whose composing
subunits are made of 381 amino acids, including a 17-residue
signal peptide (Breviario et al., 1992). PTX3 primary sequence
is highly conserved among animal species (human and murine
PTX3 sharing 92% of conserved amino acid residues), suggesting
a strong evolutionary pressure to maintain its structure/function
relationships. Like other members of the long-pentraxin family,
PTX3 is composed of a unique N-terminal region and a 203 amino
acid C-terminal domain homologous to the short pentraxins CRP
and SAP (Figure 1A; Bottazzi et al., 1997).

The N-terminal region (residues 18–178 of the preprotein)
is unrelated to any known protein structure. Nevertheless,
secondary structure predictions indicate that this part of the protein
is likely to form four α-helices, three of which (amino acids 78–97,
109–135, and 144–170) are probably involved in the formation
of coiled-coil structures (Presta et al., 2007; Inforzato et al., 2010;
Figures 1A, B). As stated above, the C-terminal domain of PTX3
(residues 179–381 of the preprotein) is homologous to the short-
pentraxins CRP and SAP, with up to 57% similarity (Bottazzi et al.,
1997). Therefore, three-dimensional models of this domain have
been generated that are based on the crystallographic structures
of CRP (PDB ID: 1b09) and SAP (PDB ID: 1sac; Goodman et al.,
1996; Introna et al., 1996; Inforzato et al., 2006). Here we report
a CRP-derived model (Figure 1A) that shows the pentraxin-like
domain of PTX3 to adopt a β-jelly roll topology, similar to that
found in legume lectins.

A single N-glycosylation site has been identified in the C-
terminal domain of PTX3 at Asn220. This is fully occupied by
complex type oligosaccharides, mainly fucosylated and sialylated
biantennary sugars with a minor fraction of tri- and tetrantennary
glycans. Based on three-dimensional models of the glycosylated
C-terminal domain, we have proposed that the PTX3 oligosaccha-
rides make contacts to polar and basic amino acids at the protein
surface (i.e., Lys214, Glu252, Lys255, and Arg332) mainly through
terminal residues of sialic acid (Figure 1D). These interactions are
lost when sialic acid is removed and protein sites become accessible
that are potentially relevant to ligands recognition and/or modifi-
cations of the PTX3 tertiary/quaternary structure (Inforzato et al.,
2006). Interestingly, we have found that the relative content of bi-,
tri-, and tetrantennary oligosaccharides and the level of sialylation
are highly variable amongst PTX3 isoforms from different cellular
sources, thus suggesting that the glycosylation pattern of this
long pentraxin might change depending on cell type and inducing
stimuli. This might have important functional implications given
that the glycosidic moiety of PTX3 has been involved in a number
of biological activities as discussed below.

In addition to the multidomain organization, the human PTX3
protein shows a complex quaternary structure with eight pro-
tomer subunits assembled into high order oligomers stabilized by
disulfide bonds (Inforzato et al., 2008; Figure 1B). Based on data

FIGURE 1 | Model of the PTX3 protein and its glycosylation. (A) Schematic representation of the PTX3 protomer subunit showing the N-terminal domain in yellow, followed by the globular pentraxin domain in red. Positions of the Cys residues, the N-glycosylation site at Asn220 and the pentraxin signature motif are indicated. Arrows point to a topological drawing of the N-terminal domain, which is believed to be composed of a globular region and three α-helical segments (α1, α2, and α3), and a three-dimensional model of the C-terminal pentraxin domain based on the crystal structure of C-reactive protein (Protein Data Bank ID: 1b09). (B) Disulfide bond organization of the PTX3 octamer. Highlighted are the Cys residues that participate in disulfide bond formation. The α-helical regions of the N-terminal domains are predicted to form coiled-coil-like structures, which are hypothesized to adopt either an extended (bottom) or a compact (top) conformation. (C) Different views of the SAXS scattering envelope and a schematic model of PTX3 based on the two different structural arrangements proposed for the N-terminal domain. The α-helical segments of the N-terminal domain are depicted as yellow rods. The C-terminal pentraxin domains are in red. (D) Molecular dynamics simulations indicate that the PTX3 oligosaccharides, here represented by a core monofucosylated and desialylated biantennary glycan, can adopt different conformations (orange, green, and purple), where terminal residues of sialic acid can contact specific amino acids (ball-and-stick) at the protein surface (see text for details).

from electron microscopy (EM) and small angle X-ray scattering (SAXS), we have generated a low-resolution model of the protein that shows the composing subunits to fold into an elongated structure with a large and a small domain interconnected by a stalk region (Inforzato et al., 2010; Figure 1C). This oligomeric state and the asymmetric shape of the molecule make PTX3 unique amongst pentraxins. Indeed, it displays pseudo 4-fold symmetry along its longitudinal axis, in sharp contrast to the typical pentameric arrangement of the classical short pentraxins. The structural determinants of the PTX3 quaternary organization are mainly localized in the protein N-terminal domain, where this region mediates the association of protomers into tetramers via both covalent (i.e., disulfide bonds) and non-covalent (i.e., inter-chain coiled-coils) interactions (see Figure 1B). Although a detailed discussion of the PTX3 structure is beyond the scopes of this review, evidence has been provided that the quaternary structure of this long pentraxin is fundamental in mediating its binding properties and, ultimately, its biological functions (Inforzato et al., 2011).

PTX3 LIGANDS AND THE ROLE OF GLYCANS

The structural complexity and modular nature of PTX3, as described above, probably explain the rather broad spectrum of ligands of this long pentraxin and the diversity of its biological roles as compared to the short pentraxins (Table 1). Here we discuss the most relevant ligands of PTX3 based on the functional outcome of their interaction with this protein, with major emphasis on complement regulation, inflammation, and pathogen recognition. An effort has been made to revisit the PTX3 interactome in the light of the role that glycosylation plays in modulating and, in certain cases, dictating the protein functions.

INTERACTION WITH COMPLEMENT

Classical pathway

The first described and best characterized ligand of PTX3 is the complement component C1q (Bottazzi et al., 1997; Nauta et al., 2003a). PTX3 binds to plastic-immobilized C1q (Nauta et al., 2003a; Roumenina et al., 2006), and, unlike the classical
Influenza virus

Human cytomegalovirus (HCMV)

Table 1 | Ligand specificity of CRP, SAP, and PTX3.

Ligand	CRP	SAP	PTX3
C1q	+	+	+
Factor H	+	NT	+
C4BP	+	+	+
M-, L-ficolin	+	−	+
MBP	−	+	−
Extracellular matrix proteins			
TNF-stimulated gene-6 (TSG-6)	NT	NT	+
Intensin	−	NT	+
Hyaluronic acid	NT	NT	−
Laminin	+	+	−
Collagen IV	NT	NT	+
Fibronection	+	+	−
Growth factors			
FGFI	+/−	NT	+
FGFI and FGFI4	NT	NT	−
Membrane moieties			
Phosphocholine (PC)	+	−	−
Phosphorothiolamine (PE)	+	−	−
LPS	+	+	−
Outer membrane protein A from			
Klebsiella pneumoniae	NT	NT	+
Klebsiella pneumoniae (KpOmpA)			
Methylated mannosyl (α1,3) mannose			
Methylated mannose			
Phosphorylcholine			
Fungi and yeasts			
Aspergillus fumigatus	+	NT	+
Saccharomyces cerevisiae	+	+	+
Paracoccidioides brasiliensis	NT	NT	+
Viruses			
Influenza virus	−	+	+
Human cytomegalovirus (HCMV)	NT	NT	+
NT, not tested.			

The apparent ambivalence of PTX3 might have important implications in apoptosis, where rapid and efficient clearance of apoptotic cells by phagocytes is necessary to avoid tissue damage due to release of the pro-inflammatory content of dying cells (Jean-nin et al., 2008). PTX3 and C1q bind apoptotic cells with similar kinetics, interacting with different binding sites and remaining stably associated to the apoptotic cell membrane (Baruah et al., 2006). The interaction of PTX3 with C1q in the fluid phase prevents C1q binding and C3 deposition onto apoptotic cells as well as the C1q-mediated phagocytosis of apoptotic cells by DCs and phagocytes (Rovere et al., 2000; van Rossum et al., 2004; Baruah et al., 2006). In contrast, when PTX3 is incubated with apoptotic cells, it enhances the deposition of both C1q and C3 on the cell surface (Nauta et al., 2003b). In addition, membrane-associated PTX3 acts as an "eat-me" molecule in promoting phagocytosis of late apoptotic neutrophils, as opposed to the soluble form of PTX3 that inhibits this process (Jaillon et al., 2009). This view is supported by data from an in vivo murine model of systemic lupus erythematosus, where it has been shown that PTX3 fosters the rapid clearance of apoptotic T cells by peritoneal macrophages (Lesch et al., 2011).

Interestingly, we have reported that the glycosylation status of PTX3 modulates the protein interaction with C1q mostly through the terminal residues of sialic acid. In fact, either desialylation or complete deglycosylation of the long pentraxin equally increase its binding to C1q (Inforzato et al., 2006). Consistent with this, hydrolysis of the terminal residues of sialic acid enhances the PTX3-dependent activation of the classical pathway of complement, as assessed by C3 and C4 deposition on PTX3-coated surfaces. Furthermore, in the fluid phase desialylated PTX3 is a stronger inhibitor of the C1q hemolytic activity than the fully glycosylated protein. Therefore the strengthening of PTX3 binding to C1q that occurs upon removal of sialic acid is independent of the way the long pentraxin is presented, either immobilized or in solution. Also, sialylation of the PTX3 oligosaccharides might provide a strategy to fine tune both the activating and inhibitory activities of this long pentraxin on the classical complement cascade (Figure 2). **Lectin pathway**

We have recently found a direct interaction of PTX3 with ficolin-2, also known as L-ficolin (Ma et al., 2009), and ficolin-1, also named M-ficolin (Gout et al., 2011), where these molecules are major soluble receptors of the lectin pathway of complement. Both ficolins are ligands of CRP also, and a functional cooperation has been described with this short pentraxin that boosts complement-mediated antimicrobial activities (Ng et al., 2007; Zhang et al., 2009). Ficolin-1 and -2 bind PTX3 in a calcium-dependent fashion through their fibrinogen (FBG)-like domain. Ficolin-1 is a sialic acid-binding lectin; indeed enzymatic desialylation of PTX3 strongly impairs recognition of this long pentraxin by ficolin-1. Also, mutants of this lectin with reduced binding to sialic acid display defective recognition of PTX3 (Gout et al., 2011). Ficolin-1 binds Aspergillus fumigatus and this interaction is strengthened...
FIGURE 2 | Glycosylation as a tuner of PTX3 functions in innate immunity. A number of both somatic and immune cell types produce PTX3 at sites of infection/inflammation. The glycosylation status of PTX3 (e.g., branching and sialylation) might change depending on cellular source and inducing stimuli (a). In addition, the protein oligosaccharides might undergo processing by glycosidases, including neuraminidases, which are expressed or mobilized on the surface of both pathogens and host cells (e.g., neutrophils) (b). Desialylated PTX3 has higher affinity for C1q but loses recognition of ficolin-1 and influenza virus (c).

by PTX3 and vice versa. Likewise, the ficolin-2-dependent deposition of complement components on the surface of A. fumigatus is enhanced by PTX3 (see below). This effect is alleviated by a common amino acid change in the FBG-like domain of ficolin-2, which affects recognition of N-acetyl-D-glucosamine (GlcNAc) and PTX3 (Ma et al., 2009). PTX3 and ficolin-2 may recruit each other to the surface of recognized microbes and amplify synergistically complement-mediated innate responses. PTX3 also triggers ficolin-1-dependent activation of the lectin complement pathway, although the potential physiological implications of this interaction remain to be determined (Gout et al., 2011). This crosstalk between PTX3 and ficolins is a remarkable example of how soluble PRMs can communicate through a common glycan code, where the functional information that is contained in the glycans of PTX3 is read and executed by the ficolins (Figure 2).

Recently an interaction of PTX3 with mannose-binding lectin (MBL), a molecule with structural and functional similarities with C1q and the ficolins, has been described (Ma et al., 2011). PTX3–MBL interaction occurs in a calcium-dependent manner and involves the MBL collagen-like domain. Formation of the MBL–PTX3 complex recruits C1q to Candida albicans and enhances C4 and C3 deposition as well as phagocytosis of this pathogen (Ma et al., 2011).

Complement regulation

In addition to components of the classical and lectin pathways of complement, PTX3 has been described to interact with factor H (FH; Deban et al., 2008), the main soluble regulator of the alternative pathway of complement activation, and with the classical and lectin pathway regulator C4b-binding protein (C4BP; Braunschweig and Jozsi, 2011). Two binding sites for PTX3 are present on FH: the primary binding site is located on FH short consensus repeat (SCR) domains 19–20, which interact with the N-terminal domain of PTX3, while a secondary site on SCR7 binds the glycosylated PTX3 pentraxin domain. In agreement, SCR7 has been also recognized as the CRP-binding site on FH (Jarva et al., 1999; Okemefuna et al., 2010). PTX3-bound factor H remains functionally active, and PTX3 enhances factor H and iC3b deposition on apoptotic cells. These observations suggest that the interaction of PTX3 with factor H modulates the alternative pathway activation by promoting factor H deposition on PTX3-coated surfaces and preventing exaggerated complement activation. The interaction with FH is strongly affected by PTX3 glycosylation, as indicated by the observation that deglycosylation of this long pentraxin impairs its binding to FH (Deban et al., 2008). It is therefore licit to speculate that the PTX3-dependent modulation of FH activity might be altered by the glycosylation status of the long pentraxin as discussed above for the C1q–PTX3 crosstalk. Similarly to CRP and SAP, PTX3 binds C4BP (Braunschweig and Jozsi, 2011). This interaction is dependent on the presence of Ca2+ and inhibited by C1q and ficolin-2 but not by FH. Interaction of PTX3 with C4BP occurs without interfering with the cofactor activity of C4BP in the fluid phase. PTX3 can recruit C4BP on ECM and on apoptotic cells, where it can increase the rate of C4b-inactivation. In parallel, the deposition of the lytic C5b-9 terminal complex is reduced in the presence of PTX3 (Braunschweig et al.,
and Joni, 2011). Thus PTX3 can recruit both complement regulators, FH and C4BP, to limit excessive complement activation on apoptotic cells.

Together, these observations suggest a dual role for PTX3 in the regulation of complement-mediated immune responses. Interplay with key components of the three complement pathways (i.e., Clq, sC1r, sC1Inhibitor, and factor H) points to PTX3 as an important player of the complex network of interactions that control complement functions. In addition, the functional outcome of these interactions is dependent on the glycosylation status of PTX3.

INFLAMMATION

It has been shown that PTX3 plasma levels increase rapidly and dramatically in different pathological contexts. Overexpression of PTX3 confers to Tg mice greater resistance than wild-type animals to LPS toxicity and to cecal ligation and puncture (Dias et al., 2003b; Deban et al., 2008; Ma et al., 2009) or promotion of inflammation through the complex role exerted on the apoptotic process, this function being relevant for the control of autoreactivity.

In vivo studies with Ptx3-deficient mice showed that PTX3 plays non-redundant roles in innate resistance to infections caused by these microorganisms, and for some of them the protective role of PTX3 is mediated by complement. Ptx3-deficient mice are highly susceptible to invasive pulmonary aspergillosis, showing high mortality (Garlanda et al., 2002). Ptx3-deficient phagocytes exhibit defective recognition and killing of conidia and the treatment with recombinant PTX3 or neutrophil-associated PTX3 reverses this phenotype in vitro and in vivo (Garlanda et al., 2002; Gaziano et al., 2004; Jaillon et al., 2007; D’Angelo et al., 2009). The molecular mechanisms underlying the opsonic activity of PTX3 and increased phagocytosis of conidia by neutrophils involve Fcγ receptor II (FcγRII)-, CD11b-, and complement-dependent mechanisms (Moalli et al., 2010). Indeed, PTX3 modulates different effector pathways involved in innate resistance to A. fumigatus, including complement activation (Bottazzi et al., 1997; Nauta et al., 2004; Jaillon et al., 2007; D’Angelo et al., 2009), which is reminiscent of some properties of the immunoglobulins (Kanezaki et al., 2006).

As mentioned above, PTX3 has an ambivalent role in the apoptotic process. In vivo, ptx3−/− mice have a defective capability to clear apoptotic T cells (Lech et al., 2011). In addition lack of PTX3 on lupus prone genetic background (88lpr) accelerates the evolution of autoimmune lung disease, which is associated to selective expansion of CD4/CD8 double negative (“autoreactive”) T cells (Lech et al., 2011). Thus PTX3 may be also involved in resolution of inflammation through the complex role exerted on the apoptotic process, this function being relevant for the control of autoreactivity.

PATHOGEN RECOGNITION

Pentraxin 3 interacts with selected microbes, including fungi like Saccharomyces cerevisiae, Paracoccidioides brasiliensis and conidia from A. fumigatus, bacteria as Pseudomonas aeruginosa and Streptococcus pneumoniae, and viruses, such as human and murine cytomegalovirus (HCMV and MCMV) and the H3N2 influenza virus (Garlanda et al., 2002; Diniz et al., 2004; Gaziano et al., 2004; Bozza et al., 2006; Reading et al., 2008; Moalli et al., 2011a). Interestingly, the binding of PTX3 to A. fumigatus conidia is abolished in the presence of galactomannan, a major constituent of the conidium wall, but not in the presence of dextran, galactose, fucose, or mannosae (Garlanda et al., 2002). However, a direct interaction between PTX3 and galactomannan has not been proved yet.

In vivo studies with Ptx3-deficient mice showed that PTX3 plays non-redundant roles in innate resistance to infections caused by these microorganisms, and for some of them the protective role of PTX3 is mediated by complement. Ptx3-deficient mice are highly susceptible to invasive pulmonary aspergillosis, showing high mortality (Garlanda et al., 2002). Ptx3-deficient phagocytes exhibit defective recognition and killing of conidia and the treatment with recombinant PTX3 or neutrophil-associated PTX3 reverses this phenotype in vitro and in vivo (Garlanda et al., 2002; Gaziano et al., 2004; Jaillon et al., 2007; D’Angelo et al., 2009). The molecular mechanisms underlying the opsonic activity of PTX3 and increased phagocytosis of conidia by neutrophils involve Fcγ receptor II (FcγRII)-, CD11b-, and complement-dependent mechanisms (Moalli et al., 2010). Indeed, PTX3 modulates different effector pathways involved in innate resistance to A. fumigatus, including complement activation (Bottazzi et al., 1997; Nauta et al., 2004; Jaillon et al., 2007; D’Angelo et al., 2009), which is reminiscent of some properties of the immunoglobulins (Kanezaki et al., 2006).

As mentioned above, PTX3 has an ambivalent role in the apoptotic process. In vivo, ptx3−/− mice have a defective capability to clear apoptotic T cells (Lech et al., 2011). In addition lack of PTX3 on lupus prone genetic background (88lpr) accelerates the evolution of autoimmune lung disease, which is associated to selective expansion of CD4/CD8 double negative (“autoreactive”) T cells (Lech et al., 2011). Thus PTX3 may be also involved in resolution of inflammation through the complex role exerted on the apoptotic process, this function being relevant for the control of autoreactivity.
neutrophil recruitment in the airways and histopathological lesions. Also in this condition, the PTX3-dependent recognition and phagocytosis of Pseudomonas aeruginosa involves the interplay with complement and FcγRs (Mosli et al., 2011b).

Pentraxin 3 binds to the outer membrane protein A (KpOmpA), a major component of the outer membrane of Klebsiella pneumoniae (Jeanin et al., 2005), which interacts also with different cellular PRMs, such as scavenger receptor lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and scavenger receptor expressed by endothelial cell-1 (SREC-1), and TLR2. The recognition of this microbial component by PTX3 amplified the inflammatory response through complement. Thus, recognition and activation of several PRMs by KpOmpA lead to amplification of the cellular and humoral innate responses to this microbial moiety (Jeanin et al., 2005; Cotena et al., 2007).

Bozza et al. (2006) studied the role of PTX3 in viral infections and found that PTX3 binds both HCMV and MCMV, reducing viral entry and infection in DC in vitro. Consistent with this PTx3-deficient mice are more susceptible to MCMV infection than wild-type mice and PTX3 protects susceptible BALB/c mice from MCMV primary infection and reactivation in vivo as well as Aspergillus superinfection (Bozza et al., 2006). Recent studies also demonstrated that PTX3 binds to coronaviruses such as murine hepatitis virus (MHV)-1/3 and reduced the infectivity of MHV-1 in vitro. Moreover, Ptx3-deficient mice showed enhanced susceptibility to MHV-1 pulmonary infection and administration of exogenous PTX3 accelerated viral clearance, reduced neutrophil influx and ameliorated lung injury (Han et al., 2012).

The relevance of the role of PTX3 in infections in humans has been demonstrated by Olsen et al. (2007), who recently showed that polymorphisms within the PTX3 gene and in particular the 2-3Gal and Neu5Ac α 2-6Gal (Ryan-Poirier et al., 1998), but from 1975 onward isolates recognized only Neu5Acα2-6Gal. Early H3N2 strains (1968–1973) were sensitive to PTX3 whereas later strains (>1975) were resistant (Reading et al., 2008), consistent with exclusive expression of Neu5Acα2-6Gal by recombinant PTX3. To date, the antiviral activity of PTX3 against avian IAV has not been reported. However, given the HA preference of avian strains for Neu5Acα2-3Gal, the neutralizing activity of PTX3 in human airways may represent an additional factor limiting interspecies transmission. Moreover, in the first years of a pandemic when receptor specificity can be less strict (Ryan-Poirier et al., 1998; Matrosovich et al., 2000), PTX3 may be one factor driving evolution of human IAV with dual specificity toward preferential recognition of Neu5Acα2-6Gal.

Given the HA-mediated receptor specificity, the PTX3 glyco-oligation will be critical in determining its spectrum of anti-IAV activities. Moreover, glycans terminating with sialic acid represent attachment factors and/or receptor components for many different viruses (reviewed in Neu et al., 2011), suggesting that the γ-type antiviral activity of PTX3 may not be limited to IAV. Recombina-
activity against certain H3N2, but not H1N1, virus strains in vitro (Reading et al., 2008; Job et al., 2010). In addition to the specificity of HA, the viral NA plays a critical role in determining PTX3 sensitivity, as the sialic acid moiety on PTX3 must resist hydrolysis by NA for neutralization to occur. Therefore, specificity and activity of N1 versus N2 NA might be an additional factor contributing to the differences observed in the pathogenicity of H1N1 and H3N2 viruses to PTX3. PTX3 preparations from human DCs and fibroblasts show heterogeneity in the relative amounts of bi-, tri-, and tetrasaccharides that have been shown to modulate PTX3 crosstalk with a number of its ligands (i.e., complement components, influenza virus, and P-selectin).

As a consequence, these data point to a critical role of glycosylation in the modulation of PTX3 functions. It has been suggested that PTX3 can act as double-edged sword. Following binding to microbial moieties, it has opsonic activity, activates complement and enhances leukocyte recruitment. On the other hand, PTX3 per se can act as a regulatory molecule of innate immunity and inflammation by dampening excessive neutrophil recruitment. This latter activity in particular is clearly dependent on PTX3 glycosylation (Debattisti et al., 2010).

The finding of a regulatory function mediated by the glycosidic moiety is reminiscent of similar activity of immunoglobulins (Kaneko et al., 2006). Thus, molecules of the humoral arm of the innate immune system, such as PTX3, and immunoglobulins, share fundamental mechanisms of activity, including agglutination, complement activation, opsonization, and glycosylation-dependent regulation of inflammation, despite the genetic and structural differences between the two classes of molecules.

ACKNOWLEDGMENTS

The financial supports of the European Research Council (ERC project HII), the European Commission (FP7-HEALTH-2011-AIDTEC-280873 and FP7-HEALTH-F4-2008-TOLELAG-202156), the Italian Association for Cancer Research, Cariplo Foundation (project 2009-2582), Regione Lombardia (project Metadistretti – SEPSIS), and Ministero della Salute (projects Ricerca Finalizzata 2008 and Ricerca Indipendente 2011), are gratefully acknowledged. Financial support from the National Health and Medical Research Council (NHMRC) of Australia (Project Grant 4103079) is also gratefully acknowledged. The Melbourne WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health and Ageing.

REFERENCES

Abromeit, T. J., and Jovey, O. T. (1960). The infections of a protein non normally present in the blood. J. Distribution of the reactive protein in patients’ sera and the effect of calcium on the distribution reaction with C. Pyelonephritis of pneumococcus. J. Exp. Med. 73, 173–182.

Akin, S., Umetanu, S., and Takahashi, O. (2008). Pathogen recognition and innate immunity. Cell 124, 785–801.

Altmeyer, A., Klampfer, L., Good-Akira, S., Uematsu, S., and Takeuchi, O. (2008). Exogenous PTX3 ameliorate disease in the mouse model of IA V infection. Moreover, treatment of wild-type mice with recombinant human PTX3 ameliorates virus replication and disease severity in mice infected with PTX3-susceptive virus, providing the first evidence of the therapeutic potential of PTX3 against IA V infections in vivo. In addition to binding IAV and facilitating virus clearance, PTX3 may also regulate inflammatory responses to IAV infection in the lung and further studies are required to define the mechanisms by which endogenous and exogenous PTX3 ameliorate disease in the murine model of IAV infection.

CONCLUDING REMARKS

Pentraxin 3 is an evolutionary conserved element of the humoral arm of the innate immune system, which plays a non-redundant role in the response to IA V. Pentraxin 3 is highly conserved in evolution and murine and human PTX3 are equally effective in mediating anti-IAV activity (Reading et al., 2008). PTX3 production is upregulated in sera and the effect of calcium on the distribution of the reactive protein in patients’ sera is well characterized (Inforzato et al., 2006). Therefore, it will be of interest to determine the role of PTX3 in the modulation of the genetic and exogenous PTX3 atopy-like disease in the mouse model of IAV infection.

PTX3 is a prototypic humoral pattern recognition receptor. It contains a number of its ligands (i.e., complement components, influenza virus, and P-selectin) and plays with cellular innate immunity. Pentraxin 3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. J. Leukoc. Biol. 90, 87–95.

Bada, A., Sea, A., D’Alessio, E., Burvianio, F., Garrida, G., Castellino, M., et al. (1997). Characterization of the promoter for the human long pentraxin PTX3 as a paradigm. Ann. N. Y. Acad. Sci. 826, 57–63.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Byrne, D., Doon, M. P., Velez, M., Mold, C., and Da Cao, T. W. (1999). The major receptor for C-reactive protein on leukocytes is ficolin-1. J. Exp. Med. 189, 585–596.

Bottazzi, B., Doon, M. P., Grandal, C., and Mantovani, A. (2008). PTX3 in innate immunity.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.

Bottazzi, B., Grandal, C., Cottone, A., Moalli, F., Iadone, S., Debattisti, D., and Mantovani, A. (2009). An integrated view of humoral innate immunity: pentraxins as a paradigm. Adv. Immunol. 106, 673–874.
immunity. Curr Opin Immunol 18, 10–15.
Bottazzi, B., Vannini-Cravari, V., Baste-
tone, A., De Gioia, L., Matteucci, C., Peri, G., et al. (1997). Multifactor formation and ligand recognition by the long pentraxin PTX3. Similarities and differences with the short pen-
traxins C-reactive protein and serum amyloid P component. J Biol Chem 272, 32825–32835.
Botza, S., Bottazzi, F., Garlanda, R., Pitruo-
la, L., Zelante, T., Bonfanti, P., et al. (2006). Pentraxin 3 protects from MCMV infection and reactiva-
tion through TLR sensing pathways leading to B-cell activation. J Immunol 180, 3587–3596.
Bratschitsch, O., and Jori, M. (2011). Human pentraxin 3 binds to the complement regulatory C4b-binding protein. PLoS ONE 6:e23799. doi: 10.1371/journal.pone.0023799
Breviario, F., D’Amato, E. M. G., Golay, J., Peri, G., Bottazzi, B., Barouch, A., et al. (1992). Interleukin-1-inducible genes in endothelial cells: Cloning of a new gene related to C-reactive protein and serum amyloid P component. J Biol Chem 267, 22190–
22197.
Chiarura, M., Saffi, M., Molletti, P., Ga-
lend a, G., Sorellini, G., Marza, C., et al. (2010). PTX3 genetic variations affect the risk of Pseudomonas aerug-
osa airway colonization in cystic fibrosis. J Cyst Fibros 11, 665–670.
Ciuciu, A., Miana, V., Sironi, M., Bot-
tazz, B., Biniain, P., Vecchi, A., et al. (2007). Complement dependent antiphagocytosis of PTX3 as a cognate microbial ligand by the long pentraxin PTX3. J Immunol 181, 6531–6537.
D’Angelo, C., De Luca, A., Zelante, T., Bonfanti, T., Marchi, A., et al. (2004). Gangliosides of the long pentraxin PTX3. Eur J Immunol 34, 822–831.
D’amore, G., Negrini, F., Ciampaglia, P. S., Trezza, M. M., Brown, G. D., Mantovani, A., et al. (2004). PTX3 recognizes a cognate microbial ligand through the dectin-1-dependent internaliza-
tion of yeast by macrophages. J Leukoc Biol 75, 649–656.
Dodda, D. C., Ono, I. S., Callahan, S. E., Bonventre, J. V., and Peri, M. S. (1997). Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neur
tnopyelin-1 and 2 and taipoxin.
Doni, A., Tedesco, P., Bottazzi, B., Merti, S., Garred, P., and Mantovani, A. (2012). Interactions of the humoral pattern recognition molecule PTX3 with the complement system. J Innate Immun 4, 1123–1128.
Doni, A., Mantovani, G., Peri, C., Tuckermann, J., Reischauf, H. M., Kleinman, A., et al. (2008). Cytosolic regulation of PTX3 by glucose-
corticoids in hematopoietic and non-hematopoietic cells. J Biol Chem 283, 29983–29990.
Doni, A., Michela, M., Bottazzi, B., Peri, G., Valenti, S., Poletti, C., et al. (2006). Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells stimulated by IL-10 and inhibition
by IFN-gamma. J Leukoc Biol 79, 797–802.
Emady, J., White, H. E., O’hara, B. P., Oller, G., Steenstra, N., Tickle, I. J., et al. (1994). Structure of pentameric human serum amyloid P component. Nature 367, 338–341.
Faucci, Y. (2002). Evolution of the lectin-complement pathway and its role in innate immunity. Nat Rev Immunol 2, 546–553.
Garlanda, C., Bottazzi, B., Mantovani, A., and Botza, S. (2006). Pentrax-
Ins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 25, 557–566.
Garlanda, C., Hirsch, E., Botza, S., Safarletti, A., De Aceto, M., Nota, R., et al. (2002). Non-redundant role of the long pentraxin PTX3 in antifungal innate immune response. Nature 418, 182–186.
Garlanza, R., Botza, S., Boloccochio, S., Pertuzo, R., Montaneghi, C., Pitruo, L., et al. (2004). Anti-
Aspergillus fumigatus opsonic efficacy of pen-
truaxin 5 alone and in combination with antifungal. Antimicrob Agents Che-
onoter 44, 4414–4421.
Goodman, A. R., Carlson, T., Ahogren, R., Altmeyer, A., Winterowd, H. G., and Vilcek, J. (1996). Long pen-
traxin: an emerging group of pro-
tens with diverse functions. Cytokine Growth Factor Rev 7, 191–202.
Guerrero, E., Mercinio, C., Doni, A., Dome-
tico-Petral, C., Lacies, M., Perard, J., et al. (2011). M-Aelin interacts with the long pentraxin PTX3: a novel case of cross-talk between soluble pattern-recognition molecules. J Leukoc Biol 100, 581–592.
Gutierrez, L. V., Kainz, L., and Hayden, F. G. (2000). Influenza virus neu-
ronal antibodies. Nat Rev Immunol 1, 827–835.
Hans, B., Ma, X., Zheng, J., Zhang, Y., Bai, X., Huang, D. M., et al. (2012). Pro-
tective effects of long pentraxin PTX3 on lung injury in a severe acute respira-
tory syndrome mouse model in mice. Lab Invest 92, 1293–1296.
Head, R., Mora, M., Andrade, C. F., Oku-
tani, D., Loeppke, M., De Santos, C., et al. (2005). TNF-alpha-induced long pentraxin PTX3 expression in homogeneous long epithelial cells via TLR-4. J Immunol 175, 8393–8401.
Hind, C. R., Collins, P. M., Ronn, D., Cook, R. K., Caspi, D., Balli, M. L., and Pepys, M. B. (1984). Binding
specificity of serum amyloid P component for the pyrogenic aerosol of clostridial endotoxin. J Exp Med 159, 1098–
1109.
Holmstedt, U., Thiel, S., and Jense-
min, J. C. (2003). Collectins and ficolins: humoral lectins of the innate immune defense. Annu Rev. Immunol 21, 547–578.
Horvath, A., Anderson, J., Jankot, K., Lyck Foug-Schulte, B., Holm Nielsen, E., Garattini, S., et al. (2001). Serum amyloid P component inhibits influenza A virus infection in vitro and in vivo studies. Antiviral Res 52, 45–53.
Hou, Y. C., and Portin, M. S. (1995). Human neuronal pentraxin II (NPTX2): conservation, genomic structure, and chromosomal localization. Genome 28, 220–227.
Inforzato, A., Baldick, C., Jostet, T. A., Holmaz, D. F., Lindahl, R., Mar-
sollen, M., et al. (2010). The angio-
egenetic inhibitor long pentraxin PTX3 forms an asymmetric octamer with two binding sites for PPARg. J Biol Chem 285, 17891–17898.
Inforzato, A., Bottazzi, B., Garlanda, C., Valentinio, S., and Mantovani, A. (2012). Pentraxin in innate immu-
nity. Berlin Springer.
Inforzato, A., Jullian, S., Molletti, F., Barzu,
B., Bonutti, A., Beretta, E., Bonvante, B., et al. (2011). The long pentraxin PTX3 at the crossroads between innate immunity and tissue remod-
ing. Tissue Antigens 77, 271–282.
Inforzato, A., Peri, G., Doni, A., Gar-
landa, C., Mantovani, A., Bonventre, A., et al. (2006). Structure and function of the long pentraxin PTX3 glyco-
saccharide moiety: fine-tuning of the interac-
tion with C1q and complement C1r/C1s,
activation. Biochemistry 45, 11548–11557.
Inforzato, A., Rietorke, V., Mornati, A. P., Butonati, A., Sabatini, A., and Sarchielli, L., et al. (2008). Structural charac-
terization of PTX3 disablel bound network and its multimeric status in murine matrix organization. J Biol Chem 283, 10157–10161.
Intorno, M., Alli, V. C., Candian, M., Pezzi, G., De Gioia, L., Bottazzi, B., et al. (1996). Chronic myelomonocytic leukemia: a new member of the pentraxin gene family expressed at cutaneous sites. Blood 86, 1862–1872.
Iwasaki, A., and Medzhitov, R. (2010). Regulation of adaptive immunity by the innate immune system. Science 327, 291–295.
Jullion, S., Jeannin, P., Hanon, Y., Fremb, A., Botza, D., Bottazzi, B., et al. (2006). Pentraxin 3 binds to the complement regular C4b-binding protein. PLoS ONE 6:e23799. doi: 10.1371/journal.pone.0023799

"fimmu-03-00407" — 2013/1/4 — 18:24 — page 10 — #10
PTX3 and glycosylation

Liu, T. T., Rehby, F. A., and Wang, C. M. (1992). Structural studies on C-reactive protein. J. Biol. Chem. 267, 15315–15321.

Mammalian C-reactive protein: insight into the evolutionary history of the long pentraxin PTX3 family. J. Exp. Med. 192, 1841–1849.

Oskenumana, A. I., Nan, R., Miller, A., Goz, J., and Perkins, S. J. (2010). Complement factor H binds to two independent sites on C-reactive protein in acute phase concentrations. J. Biol. Chem. 285, 10553–10563.

Oksenholt, R., Weyte, C., Vokurka, D. R., Buscay, C., Jodoin, M., Aabo, P., et al. (2007). DC-SIGN (CD209): a human scavenger receptor with pulmone in West-Africans. Genes Immun. 8, 456–467.

Osumi, I. A., Hsu, C. T., and Perin, M. S. (1996). Mice and human neutrophil protein 1 (PTX1) conserved genes, genomic structure, and chromosomal localization. Genomics 46, 543–548.

Pai, Q., Chen, H., Feng, W., Jura, T. V., Hou, W., Zhao, Y., et al. (2012). L-fucose binds to the glycnosylphosphatidylinositol and inhibits influenza A virus infection both in vitro and in vivo. J. Immunol. 188, 321–324.

Pepp, M. B., and Hendriksen, G. M. (2003). C-reactive protein: a critical update. J. Clin. Invest. 111, 1805–1812.

Pepp, M. B., Radlemacher, T. W., Amatayakul-Chantler, S., Williams, P., Noble, G. E., Hutchinson, W. L., et al. (1996). Human serum amyloid P component is an arrentant constitit of complemnt depletes and has a uniquely homologous structure. Proc. Natl. Acad. Sci. U.S.A. 93, 7462–7466.

Poots, M., Camozzi, M., Sabatini, G., and Rumenti, M. (2007). Role of the soluble pattern recognition molecule PTX3 in vascular biology. J. Mol. Med. 11, 723–738.

Raycroft, T., Menes, D., Bottazzi, B., Patel, G., Garlanda, C., Hirsch, E., et al. (2001). Dynamic induction of the long pentraxin PTX3 in the CNS after lite seizures: evidence for a protective role in seizure-induced neurodegeneration. Neuroscience 105, 45–53.

Reading, P. C., Beza, S., Gilbertson, B., Tat, M., Momot, S., Jost, E. B., et al. (2008). Antireceptor activity of the long pentraxin PTX3 against influenza viruses. J. Immunol. 180, 3591–3598.

Reading, P. C., Harley, C. A., Einkowtsh, K. A., and Anders, E. M. (1995). A human mannose-binding lectin mediates complement-dependent lysis of influenza virus-infected cells. J. Immunol. 155, 1227–1234.

Real, J. M., Spilberg, G. M., Merato, Marques, M., De Morati, R. P., Nagi, E. M., Camargo, A. A., et al. (2012). Pentraxin 3 accelerates lung injury in...
Siebert, H. C., Andre, S., Reuter, N., Sharp, P. M., Rits, M., Zahedi, Roumenina, L. T., Ruseva, M. M., Ryan-Poirier, K., Suzuki, Y., Bean, W., Salio, M., Chimenti, S., De Angelis, N., Inforzato et al. (2003). PTX3 and glycosylation A virus receptor specificity during J. Immunol. 174, 1539–1548.

Soraru, D. G., Amorosi, E. A., Fagan- dos, C. T., Codelli, F. M., Amorosi, R. M., Souza, L. F., et al. (2008). Generation and characterization of a mouse lymphatic endothelial cell line. Cell Tissue Res. 325, 91–100.

Souza, D. G., Amorosi, E. A., Fagan- dos, C. T., Codelli, F. M., Amorosi, R. M., Souza, L. F., et al. (2008). The long pentraxin PTX3 is crucial for tissue inflammation after intestinal ischemia and reperfusion in mice. Am. J. Pathol. 174, 1509–1518.

Stazi, B., Doni, A., Bondanza, A., et al. (2006). Structure, expression, and evolution of guinea pig serum amyloid P component and C-reactive protein. J. Biol. Chem. 281, 2586–2595.

Saxo, M., Climente, S., De Angelis, A., Molina, E., Mania, V., Nabuloni, M., et al. (2008). Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation 118, 1036–1043.

Shero, A., Kutt, E. M., Metzler, A. M., Cartwright, J. B., and Greenough, T. J. (1999). C-reactive protein and SAP-like pentraxins are both present in Limulus polyphemus haemocyte lysosomal crystal structure of Limulus SAJ. J. Biol. Chem. 274, 907–916.

Szalai, A. J., Vancott, J. M., Mohgy, R. J., Volanakis, J. E., and Benjamin, W. H. Jr. (2000). Human C-reactive protein is protective against fatal Salmonella enterica sepsis typhlitis in transgenic mice. J. Immunol. 164, 5852–5856.

Tano, M., Wakisaka, K., and Kohno, T. (2008). Binding site of C-reactive protein on M-ficolin. J. Biol. Chem. 47, 215–221.

Thompson, D., Psyc, M. B., and Wood, S. P. (1989). The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 7, 188–197.

Tilk, W. S., and Francis, T. J. (1996). Serological reactions in pneumonia with a non protein somatic fraction of pneumococcus. J. Exp. Med. 179, 362–385.

van Koyek, Y., and Rahimov, G. A. (2008). Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 595–601.

van Rozendaal, A., Fauzi, E., Limburg, F. C., Manfredi, A. A., Roovers, Querini, P., Mantovani, A., et al. (2004). The prototypic tissue pentraxin PTX3, in contrast to the short pentraxin serum amyloid P, inhibits phagocytosis of late apoptotic neutrophils by macrophages. J. Leukoc. Biol. 75, 2677–2674.

Vernia, A., White, M., Vathipadiekal, V., Tripathi, S., Mihanda, L., Ieong, M., et al. (2012). Ficolin inhibits replication of seasonal and pandemic influenza A viruses. J. Immunol. 189, 2478–2487.

Velasco, A. N., Moreno, A. M., and Gay, N. J. (2004). Four N-linked glycosylation sites in human toll-like receptor 2 cooperate to direct efficient biosynthesis and secretion. J. Biol. Chem. 279, 34099–34104.

White, N. G., Jarrin, J. W., Nelson, R. W., and Hayes, M. A. (2011). Examining serum amyloid P component microheterogeneity using capillary isoelectric focusing and MALDI-TOF-MS. Proteomics 11, 106–113.

Wick, S., De Graaf, M., Smith, D. J., and Burke, D. F. (2012). A review of influenza haemagglutinin receptor binding as it relates to pandemic properties. Vaccine, 30, 4309–4316.

Zhang, J., Keh, J., Lu, J., Thiel, S., Leong, B. S., Seth, S., et al. (2009). Local inflammation induces complement crash which amplifies the antimicrobial response. PLoS Pathog. 5(10): e1000282. doi: 10.1371/journal.ppat.1000282.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Author/s:
Inforzato, A; Reading, PC; Barbati, E; Bottazzi, B; Garlanda, C; Mantovani, A

Title:
The "sweet" side of a long pentraxin: how glycosylation affects PTX3 functions in innate immunity and inflammation

Date:
2013-01-01

Citation:
Inforzato, A., Reading, P. C., Barbati, E., Bottazzi, B., Garlanda, C. & Mantovani, A. (2013). The "sweet" side of a long pentraxin: how glycosylation affects PTX3 functions in innate immunity and inflammation. FRONTIERS IN IMMUNOLOGY, 3 (JAN), https://doi.org/10.3389/fimmu.2012.00407.

Persistent Link:
http://hdl.handle.net/11343/264995

File Description:
Published version

License:
CC BY