Adaptive Event-Triggered Consensus of Fractional-Order Nonlinear Multi-Agent Systems

PENG XIAO¹, ZHENYU GU²
¹ Engineering Training Center, Beihua University, Jilin, China
² School of Automation, Chongqing University, Chongqing 400044, China

Corresponding author: ZHENYU GU (e-mail: gzy@cqu.edu.cn).

This work was supported in part by National Key R&D Program of China under Grant 2019YFB1302600, the Fundamental Research Funds for the Central Universities under Grants 2019CDCGZDH207 and 2019CDCGZDH211, Basic and Frontier Research Project of Chongqing under Grant cstc2017jcyjAX0037.

ABSTRACT The leader-following consensus of fractional-order nonlinear multi-agent systems is studied in this paper. An adaptive event-triggered control protocol is proposed to achieve the leader-following consensus scheme. By applying Lyapunov stability theory of fractional-order systems and some effective inequality techniques, some sufficient conditions for ensuring the consensus are derived intensively, and the proposed control method can reduce the communication between the agents greatly. Moreover, the Zeno behavior of event-triggered algorithm for multi-agent systems is excluded. Finally, a simulation example is presented to validate the effectiveness of the proposed consensus protocol.

INDEX TERMS Leader-following consensus, Multi-agent systems, Adaptive control, Event-triggered control

I. INTRODUCTION

Over the last decades, the coordination problem of multi-agent systems (MASs) has become one of the research hotspots in the automation field and drawn much attention to researchers owing to the extensive applications in such wide fields as robotic group, unmanned aerial vehicles formation flight and so on [1-3]. A lot of useful conclusions on cooperative control problem have hitherto been obtained on account of different application. For instance, the consensus cases with impulsive control [4-6], adaptive control [7,8], fuzzy control [9,10], event-triggered control [11,12] and sliding mode control [13,14] are widely studied in the challenge of consistency. A significant topic is the leader-following coordination of MASs, in which the leader guides all the other agents to reach the same dynamic process.

A particular practical direction is to describe MASs with fractional-order dynamics, where the fractional calculus can reflect the essence and performance of a complicated system better than integral calculus. In [15], the consensus of fractional-order multi-agent systems (FOMASs) under a directed connection network topology and the characteristic relations between the agents and fractional calculus was studied. The cooperativity problem of FOMASs under switching topology with double-integrator was solved by employing Laplace transformation, dwell-time technology and Mittag-Leffler function in [16]. The system stabilization with fractional-order dynamic performance can be analyzed by using Lyapunov method under the control protocol [17,18]. As developing theories and applications of fractional dynamical systems, the coordination problem of FOMASs with many different topics such as leader-following consensus [19-21], unknown system parameters [22-24], fixed-time consensus [25], input and distributed delays [26], has attracted more and more attention.

Moreover, adaptive control is an excellent control strategy for FOMASs with uncertain parameters, and the controller parameters can be automatically updated during control process. Over the past few decades, the increasing works applied adaptive control theory to discuss the dynamic response characteristics of distributed network systems, and the consensus of MASs is one of them. Combining the superiority of adaptive control laws in nonlinear system and the energy-saving of using event-triggered control method, the adaptive event-triggered controller was studied to reduce information exchange and resolve consensus problem in [27,28]. In [29], an adaptive control strategy is given to realize consensus of MASs with uncertain nonlinearity. The adaptive neural-network consensus problems of MASs with nonlinearity were investigated in [30-32]. The event trigger-based adaptive control method is proposed to solve consensus problems of linear MASs in [33].
Furthermore, the event-triggered protocol is one of the effective control strategies to reduce unnecessary control cost and can improve availability of system resources and computing capabilities. Note that the control variables are changed only when event-triggered condition is matched, which is completely different from the previous control strategies based on time driving [34-36]. Distributed and centralized event-triggered protocols have been applied to consider the consensus challenge of the first order MASs in [37]. In [38], the event-triggered case by sampled data states in traditional integer-order system was discussed. From the obtained results on event-triggered consensus problem of MASs, one of triggering conditions is the norm state of boundary function, and the control mechanism is triggered on any occasion that a defined error exceed limit value.

Enlightened by the previous discussions and knowledge, the consensus of leader-following FOMASs is studied in this paper. By designing an adaptive event-triggered controller, some new sufficient consensus conditions are derived, and the adaptive event-triggered protocol and event-triggered timing function are given for each agent. As far as the authors know, this is the first time to explore the combination of adaptive control and event-triggered method for achieving the coordination of FOMASs with nonlinear dynamics. The obtained results are not only functional and novel for consensus problem, but also consistent with the actual systems.

The main contributions of this paper are summed up as follows:

1. For the fractional-order nonlinear dynamics, the proposed adaptive event-triggered protocol can achieve the consensus of leader-following FOMASs effectively.
2. At the last event-triggering time instants, the state update of each agent only needs the local and neighboring state values.
3. Note that the state updates only happen at event-triggering instants, and the FOMASs can greatly decrease the information exchange between agents.

The structure of the rest of this paper is presented as follows. Section 2 briefly reviews some concepts and notations of graph theory, summarize the properties of Caputo fractional derivative, and describe the nonlinear MASs. In Section 3, the sufficient consensus conditions of leader-following FOMASs with nonlinearity are analyzed intensively, and the Zeno phenomenon of the corresponding MASs can be excluded. In Section 4, a numerical simulation is provided to illustrate the feasibility of the proposed method. Finally, a conclusion is stated briefly in Section 5.

Notation: Throughout the paper, $\lambda_{\text{min}}(A)$ and $\lambda_{\text{max}}(A)$ denotes the minimal and maximal eigenvalues of matrix $A$. $\mathbb{R}^{m \times n}$, $\mathbb{N}$ and $\otimes$ stands for the set of all $m \times n$ real matrices, positive integers and the Kronecker product respectively. $A^+$ and $A^T$ denote the inverse and the transpose of matrix $A$.

II. PRELIMINARIES

Let $G = (\mathcal{V}, \mathcal{E}, \mathcal{A})$ be a undirected graph which means the communication between the nodes, $\mathcal{V} = \{v_1, v_2, \ldots, v_N\}$ and $\mathcal{E} \subset (\mathcal{V} \times \mathcal{V})$ denotes the group of $N$ nodes and the set of edges. $N_i = \{ j \in \mathcal{V} : (j, i) \in \mathcal{E} \}$ denotes the neighbors of node $i$. $\mathcal{A} = (a_{ij})_{N \times N}$ is the adjacency associate matrix of nodes, where $a_{ij}$ represents the weight of edge $(j, i)$.

$A = \mathbb{R}^{N \times N}$ and $L = D - A$ are the in-degree of node $i$ , the related in-degree matrix and the Laplacian matrix respectively. To represent whether the agents exist information exchange with the leader, we define the adjacency matrix of the leader as $B = \text{diag}\{b_1, \ldots, b_N\}$ related to $G$, where $b_i > 0$ if the leader exist communication with agent $i$ and otherwise $b_i = 0$. Moreover let $Q = L + B$. Due to the undirected topology graph, only when there exist a spanning tree in the undirected topology $G$, which the leader is root node, all eigenvalues of matrix $Q$ are positive [39].

In last several decades, there are few forms for the fractional calculus. Due to its initial value has actual physical meaning in many system models, the Caputo fractional operator have huge impact on fractional-order calculus. Therefore, we use Caputo fractional calculus to study the system dynamics. The differential equation of the Caputo fractional calculus is presented subsequently:

$$\frac{\mathcal{D}^\alpha}{\mathcal{C}_t^\alpha} x(t) = \frac{1}{\Gamma(r - \alpha)} \int_t^\infty \frac{x^r(\tau)}{(\tau - r)^{\alpha - 1}} d\tau,$$  \hspace{1cm} (1)

where $r - 1 < \alpha < r$, $r \in \mathbb{N}$. $\alpha$ means the differential order, $t \geq 0$. $\Gamma()$ denotes the Gamma function and $\Gamma(n) = \int_0^\infty e^{-t} t^{n-1} dt$. In order to simplify the analysis, $\frac{\mathcal{D}^\alpha}{\mathcal{C}_t^\alpha} x(t)$ is expressed by $x^{(\alpha)}(t)$ in this paper. $\mathcal{I}$ denotes all elements of the column vector are 1.

Next, the Mittag-Leffler function is introduced, which has high-frequency application in judging the stability of the FOMASs with nonlinear dynamics and the solutions of fractional-order derivative.

$$E_{\alpha, \beta}(z) = \sum_{l=0}^{\infty} \frac{z^l}{\Gamma(l\alpha + \beta)},$$  \hspace{1cm} (2)

when $\beta = 1$, $\alpha > 0$, a special form is obtained as follows:

$$E_{\alpha}(z) = \sum_{l=0}^{\infty} \frac{z^l}{\Gamma(l\alpha + 1)}.$$  \hspace{1cm} (3)

Lemma 1 [40]. Let $0 < \alpha < 1$. $\gamma \in \mathbb{R}$ and $g(t)$ is a known differentiable function. The form of fractional derivative is
\[ D^\alpha f(t) = \gamma f(t) + g(t), \] (4)

which can be solved as

\[ f(t) = f(t_0)E_\alpha(\gamma(t-t_0)\alpha) + \alpha\int_{t_0}^t (t-r)^{\alpha-1}E_{\alpha\alpha}(\gamma(t-r)^\alpha)g(r)dr. \] (5)

**Lemma 2 [41].** Define \( x(t) \in \mathbb{R}^N \) and \( H \in \mathbb{R}^{N \times N} \) as a continuously derivable vector function of time and a real matrix. It can be guaranteed for \( t \geq t_0 \) that

\[ \frac{1}{2}D^\alpha(x^T(t)Hx(t)) = \leq x^T(t)HD^\alpha x(t), \] (6)

where \( \forall \alpha \in (0,1] \) and \( \forall t \geq t_0 \).

**III. MAIN RESULTS**

The leader-following FOMASs consist of \( N \) agents with a leader is defined by

\[ \begin{cases} \dot{x}^a_i(t) = Ax^a_i(t) + g(t, x^a_i(t)), t \geq t_0 \\ \dot{x}^c_i(t) = Ax^c_i(t) + Bu(t) + g(t, x^c_i(t)), i = 1, 2, \ldots, N, \end{cases} \] (7)

where \( 0 < c < 1 \), \( A \in \mathbb{R}^{n \times n} \), \( B \in \mathbb{R}^{n \times m} \). \( x^c_i \in \mathbb{R}^n \) and \( u^c_i \in \mathbb{R}^m \) are the state variables and input variables of agent \( i \), respectively. \( x^a_i \in \mathbb{R}^n \) is the state variable of the leader. \( g(t, x^c_i(t)) \) is a differentiable function with the local Lipschitz constant \( \sigma > 0 \) on \( x^c_i(t) \), and the function satisfies

\[ g(t, x^c_i(t)) - g(t, x^c_j(t)) \leq \sigma \|x^c_i(t) - x^c_j(t)\|, \quad t > 0, \quad i \neq j. \] (8)

**Definition 1.** For any initial value, the consensus for FOMASs is reached if all state variables of followers satisfy

\[ \lim_{t \to \infty} \|x_i(t) - x_0(t)\| = 0, \quad i = 1, 2, \ldots, N. \] (9)

**Assumption 1.** In fact, due to the stabilization of \( (A, B) \), the following inequality holds

\[ TA + A^T T - TBB^T T + \sigma I_N \leq 0, \] (10)

where \( \sigma > 0 \) and \( T \) is a positive definite symmetric matrix.

Consider the latest state information at event instant \( t_k \), the adaptive event-triggered distributed control controller for each agent is given as follows:

\[ \begin{cases} u^c_i(t) = -Jw^c_i(t)\Delta_i(t^*_k), \\ w^c_i(t) = \Delta_i(t^*_k)K\Delta_i(t^*_k) - \frac{\partial w^c_i(t)}{2}, \quad t \in [t_k^*, t_{k+1}), \end{cases} \] (11)

where

\[ \Delta_i(t_k) = \sum_{j=1}^N a_{ij}(|x_j^c(t_k) - x_i(t_k)| + b_i(|x_j^c(t_k) - x_0(t_k)|), \quad J \in \mathbb{R}^{n \times n} \] and \( K \in \mathbb{R}^{n \times 1} \) are control gain matrices. \( w^c_i(t) \) denotes the adaptive control function related to the agent \( i \) and \( w^c_i(t_0) > 0 \). The triggering time \( \{t^*_k\} \) for each agent is determined by

\[ t_{k+1} = \inf\{ t > t_k \text{ and } \xi(t) \geq 0 \}, \] (12)

where

\[ \xi_i(t) = w^c_i(t)\varphi_i(t)K\varphi_i(t) \] (13)

is defined as the triggering condition for parameter as \( \psi > 0 \), \( \sigma > 0 \) and \( \varphi_i(t) = \Delta_i(t^*_k) - \Delta_i(t_k) \).

Let \( e_i(t) = x_i(t) - x_0(t) \), \( e(t) = (e_1(t), e_2(t), \ldots, e_N(t))^T \), \( \varphi(t) = (\varphi_1(t), \varphi_2(t), \ldots, \varphi_N(t))^T \) and \( W(t) = \text{diag}(w^c_1(t), w^c_2(t), \ldots, w^c_N(t)) \), by connecting (7) and (11), one gets

\[ \begin{cases} e^{(a)}(t) = (I \otimes A - W(t)Q \otimes B)(e(t) - (W(t) \otimes B)\varphi(t)) + G(t, x(t)) - 1_N \otimes g(t, x(t)), \\ w^{(a)}(t) = \varphi^T(t)K\varphi(t) + 2\Delta_i(t)K\varphi_i(t) \end{cases} \] (14)

It follows from (14) that the adaptive event-triggered function for each follower only needs the neighboring state variable at the latest triggering timing, which means the controller can reduce the exchange and computing cost between neighboring agents.

**Theorem 1.** The protocol (11) solves the cooperative problem of leader-following nonlinear FOMASs (7) if the information flow graph include a spanning tree, where the leader is the root node, \( J = B^T T \), \( K = TBB^T T \), \( \lambda_{\max}(T) \geq 1 \), \( \sigma > 0 \), and \( 0 < \psi < \phi \lambda_{\max}(BB^T T) - 2\sigma \), the event-triggered timing are defined by (12).

**Proof:** By choosing a SPDM \( T, Q \otimes T \) is also a SPDM. Therefore, the Lyapunov function is selected as below

\[ V(t) = e^T(t)(Q \otimes T)e(t) + \sum_{i=1}^N \frac{w^c_i(t)}{2}. \] (15)

From (1), one gets the derivative of \( V(t) \)

\[ \begin{align*}
D^\alpha V(t) &= 2e^T(t)(Q \otimes T)e(t) + \sum_{i=1}^N w^c_i(t)w^{(a)}(t) \\
&= 2e^T(t)(Q \otimes TA)e(t) - 2e^T(t)(QW(t)(Q \otimes B)TJ)e(t) \\
&= 2\varphi_1(t)(Q \otimes T)(G(t, x(t)) - 1_N \otimes g(t, x(t))) + \sum_{i=1}^N \frac{\partial w^c_i(t)}{2} \\
&= 2\varphi_1(t)(Q \otimes T)e(t) - \varphi_1(t)(QW(t)(Q \otimes B)TJ)e(t) \\
&= 2e^T(t)(Q \otimes T)e(t) + \varphi_1(t)(QW(t)(Q \otimes B)TJ)e(t) \\
&= 2\varphi_1(t)(Q \otimes T)(G(t, x(t)) - 1_N \otimes g(t, x(t))) + \sum_{i=1}^N \frac{\partial w^c_i(t)}{2}.
\end{align*} \] (16)
According to the triggering timing \( \{t_i^*\} \) and triggering condition (12), one has

\[
\begin{align*}
    w_i(t)\phi^T(t)K\phi(t) \\
    \leq w_i(t)\Delta^T_i(t)K\Delta_i(t) + \delta\exp(-\psi(t-t_0)),
\end{align*}
\]

which implies that

\[
\begin{align*}
    \sum_{i=1}^N w_i(t)\phi^T_i(t)K\phi_i(t) \\
    \leq \sum_{i=1}^N w_i(t)\Delta^T_i(t)K\Delta_i(t) + \sum_{i=1}^N \delta\exp(-\psi(t-t_0)).
\end{align*}
\]

then, one gets

\[
\begin{align*}
    \phi^T(t)(W(t) \otimes K)\phi(t) \\
    \leq e^t(t)(Q(W(t)Q \otimes K)e(t) + N\delta\exp(-\psi(t-t_0)).
\end{align*}
\]

From (16) and (19), it derives that

\[
\begin{align*}
    D^\alpha V(t) \\
    \leq e^T(t)(Q \otimes (TA + A^T T))e(t) + N\delta\exp(-\psi(t-t_0)) + 2\sigma e^T(t)(Q \otimes T)G(t, x(t)) - 1 \times \otimes g(t, x(t)_i) - \sum_{i=1}^N \frac{\partial w_i^2(t)}{2} \\
    \leq e^T(t)(Q \otimes (TA + A^T T))e(t) + N\delta\exp(-\psi(t-t_0)) + 2\sigma e^T(t)(Q \otimes T)G(t, x(t)) - 1 \times \otimes g(t, x(t)_i) - \sum_{i=1}^N \frac{\partial w_i^2(t)}{2} \\
    \leq \delta e^T(t)(Q \otimes TT^{-1})e(t) + e^T(t)(Q \otimes TBB^T T)e(t) + N\delta\exp(-\psi(t-t_0)) + 2\sigma e^T(t)(Q \otimes T)G(t, x(t)) - 1 \times \otimes g(t, x(t)_i) - \sum_{i=1}^N \frac{\partial w_i^2(t)}{2} \\
    \leq \lambda_{\min}^{-1}(T^{-1}) + \lambda_{\max}(BB^T T) + 2\sigma e^T(t)(Q \otimes T)G(t, x(t)) - 1 \times \otimes g(t, x(t)_i) - \sum_{i=1}^N \frac{\partial w_i^2(t)}{2} + N\delta\exp(-\psi(t-t_0)).
\end{align*}
\]

which means that

\[
D^\alpha V(t) \leq -\mu V(t) + N\delta\exp(-\psi(t-t_0)),
\]

where \( \mu = \lambda_{\min}^{-1}(T^{-1}) - \lambda_{\max}(BB^T T) - 2\sigma \), and one can make \( \mu < 1 \) by choosing suitable \( T, B \) and \( \sigma \).

Then, from Lemma 1 and (21), one gets

\[
\begin{align*}
    V(t) \leq V(t_0)E_{a,a}(-\mu(t-t_0)^\alpha) \\
    + \alpha \int_0^t (t-\tau)^{a-1}E_{a,a}(-\mu(t-\tau)^\alpha)N\delta\exp(-\psi(\tau-t_0))d\tau \\
    \leq V(t_0)E_{a,a}(-\mu(t-t_0)^\alpha) \\
    + \alpha N\delta\exp(-\psi(t-t_0))^*(t^{a-1}E_{a,a}(-\mu^a)),
\end{align*}
\]

Note that

\[
\begin{align*}
    \lambda_{\max}(Q \otimes T)\|\phi(t)\|^2 \\
    \leq V(t) \\
    = e^T(t)(Q \otimes T)G(t, x(t)) + \sum_{i=1}^N \frac{\partial w_i^2(t)}{2} \\
    \leq V(t_0)E_{a,a}(-\mu(t-t_0)^\alpha) + \Theta\exp(-\psi(t-t_0)).
\end{align*}
\]

therefore, one gets
\[ \lim_{t \to \infty} \| w_i(t) \| = \lim_{t \to \infty} \| x(t) - I_N \otimes x_0(t) \| \leq \lim_{t \to \infty} \sqrt{\| V(t) \|} \leq \lim_{t \to \infty} \frac{1}{\lambda_{\text{min}}(Q \otimes T)} \left\| V(t) \| \right\| = 0 \]

which means for any agent \( i \), one gets
\[ \lim_{t \to \infty} \| x(t) - I_N \otimes x_0(t) \| = 0, \]
and all agents obviously reach consensus according to Definition 1. This completes the proof. \( \square \)

Note that there are some control parameters to be chosen, the design procedure follows for better clarity.

1. From the inequality (10), one gets \( \theta > 0 \) and \( T \).
2. From the conditions in Theorem 1, i.e., \( J = B^T T \), \( K = T B B^T T \), one gets control gains \( J \) and \( K \).
3. From the condition in Theorem 1, i.e., \( \psi = \theta / \lambda_{\text{max}}(T) - \lambda_{\text{max}}(B B^T) - 2 \sigma \), one gets \( \psi \).

**Theorem 2.** The concerned leader-following FOMASs avoid Zeno phenomenon under the same conditions as Theorem 1, which means that the lower bound of minimum triggering time interval is a positive number.

**Proof:** Zeno behavior has a strict mathematical definition, but can be described informally as the system making an infinite number of jumps in a finite amount of time. The adaptive event-triggered protocol is used to avoid Zeno-behavior problem, it is necessary to prove the lower bound of minimum triggering time interval is positive, i.e.,
\[ t_{k+1} = \inf \{ t : t > t_k \} \quad \text{and} \quad \xi(t) \geq 0, \]
\[ \xi(t) = w_i(t) \varphi^T(t) K \varphi(t) - w_i(t) \Delta^T(t) K \Delta(t) - \delta \exp(-\psi(t-t_0)). \]

Thus, the next time when the agents change its control variables will not update until triggering condition \( \theta(t) \geq 0 \), and one have
\[ w_i(t_{k+1}) \varphi^T(t_{k+1}) K \varphi(t_{k+1}) = w_i(t_{k+1}) \Delta^T(t_{k+1}) K \Delta(t_{k+1}) + \delta \exp(-\psi(t_{k+1}-t_0)). \]

Since \( B \) is a real matrix and \( T \) is a SPD, \( B B^T \) is positive semi-definite matrix and \( K \) is a positive semi-definite matrix. By using the second equality of (11) and Lemma 1, one gets

\[ w_i(t) = w_i(t_0) e^{-\frac{3}{2} (t-t_0)^2} + \alpha \int_{t_0}^{t} e^{-\frac{3}{2} (t-t_0)^2} \Delta^T(t') K \Delta(t') d t'. \]

Obviously, \( w_i(t) \) is positive if \( w_i(t_0) > 0 \). Then one derives that
\[ \| \varphi(t_{k+1}) \| \geq \frac{1}{w_i(t_{k+1})} \| K \| (w_i(t_{k+1}) \Delta^T(t_{k+1}) K \Delta(t_{k+1}) + \delta \exp(-\psi(t_{k+1}-t_0))) \]
\[ \geq \frac{\delta}{w_i(t_{k+1})} \| K \| \exp(-\psi(t_{k+1}-t_0)) \]
\[ \geq d_e \exp(-\frac{\psi}{2} (t_{k+1}-t_0)), \]
where \( d_e = \frac{\delta}{w_i(t_{k+1})} \| K \| \). The fractional derivative of \( \| \varphi \| \) over interval \([t_{k}, t_{k+1}]\) is derived as
\[ D^\alpha \| \varphi(t) \| \leq D^\alpha \| \varphi(t_{k}) \| = D^\alpha \| \Delta(t) \| \]
\[ = D^\alpha \left( \sum_{j=1}^N a_j (x_j(t) - x_j(t)) + b_j (x_j(t) - x_j(t_0)) \right) \]
\[ = \sum_{j=1}^N a_j (A e(t_j - e_j(t)) + B u(t_j - u_j(t)) + g_j(t)) \]
\[ + g_j(t) - g_j(t_0) + b_j (e_j(t) + B u(t_j + g_j(t)) \]
\[ \leq \| Q \otimes A \| \| e(t) \| + \| Q \otimes B \| \| u(t) \| + \| Q \otimes J \| \| e(t) \| ) \]
\[ \leq \| Q \otimes A \| \| e(t) \| + \| Q \otimes B \| \| W(t) Q \otimes J \| \| e(t) \| + \| Q \otimes B \| \| W(t) Q \otimes J \| \| e(t) \| \]
\[ \leq c_1 \| e(t) \| + c_2 \| e(t) \| . \]

Since \( \exp(t) \) and \( E_a(t) \) are bounded on \([t_k, t_{k+1}]\), that means, for \( \forall t \in [t_k, t_{k+1}] \), \( \exists \sigma > 0 \)
\[ \sigma \exp(-\psi(t-t_0)) \geq E_a(-\mu(t-t_0))^2, \]
which implies that
\[ \| e(t) \| \leq \sqrt{\frac{1}{\lambda_{\text{min}}(Q \otimes T)} (V(t_0) \sigma + \Theta) \exp(-\psi(t-t_0))} \]
\[ = \kappa \exp(-\frac{\psi}{2} (t-t_0)), \]
where \( \kappa = \frac{1}{\lambda_{\text{min}}(Q \otimes T)} (V(t_0) \sigma + \Theta) \).

Invoking (30), one gets
\[ D^{\frac{d}{2}} \left\| \phi(t) \right\| \leq c_i \left\| e(t_k) \right\| + c_z \left\| e(t_k) \right\| \]
\[ \leq c_i k \exp\left(-\frac{\psi}{2} (t - t_0)\right) + c_z k \exp\left(-\frac{\psi}{2} (t_k - t_0)\right). \]  \hspace{1cm} (36)

According to (1), one can get
\[ D^{\alpha} = 1 = \frac{1}{\Gamma(\alpha)} \int t \frac{1}{(t-\tau)^{\alpha+1}} d\tau \]
\[ = \frac{1}{\alpha \Gamma(\alpha)} (t-t_0)^\alpha \]
\[ = \frac{1}{\alpha \Gamma(\alpha)} (t-t_k)^\alpha \]
where \(-1 < -\alpha < 0\), which means the integral of constant 1.

From (36) and \(\phi(t_k) = 0\), we derive
\[ \left\| \phi(t) \right\| \leq c_i k \left(\frac{2}{\psi}\right) \exp\left(-\frac{\psi}{2} (t - t_0)\right) - \exp\left(-\frac{\psi}{2} (t_k - t_0)\right) \]
\[ + c_z k \exp\left(-\frac{\psi}{2} (t_k - t_0)\right) - \frac{1}{\alpha \cdot \Gamma(\alpha)} (t-t_k)^\alpha. \]  \hspace{1cm} (38)

Note that \(d \exp\left(-\frac{\psi}{2} (t_k+\epsilon - t_0)\right) \leq \left\| \phi(t_k+\epsilon) \right\|\), one gets
\[ d_i \exp\left(-\frac{\psi}{2} (t_k+\epsilon - t_0)\right) \leq c_i k \left(\frac{2}{\psi}\right) \exp\left(-\frac{\psi}{2} (t_k+\epsilon - t_0)\right) - \exp\left(-\frac{\psi}{2} (t_k - t_0)\right) \]
\[ + c_z k \exp\left(-\frac{\psi}{2} (t_k - t_0)\right) - \frac{1}{\alpha \cdot \Gamma(\alpha)} (t_k+\epsilon - t_k)^\alpha, \]  \hspace{1cm} (39)

then, one gets
\[ d_i \exp\left(-\frac{\psi}{2} (t_k+\epsilon - t_k)\right) \leq d_j \exp\left(-\frac{\psi}{2} (t_k+\epsilon - t_k)\right) - 1 + d_j (t_k+\epsilon - t_k)\alpha, \]  \hspace{1cm} (40)

where \(d_i = c_i k \left(\frac{2}{\psi}\right)\), \(d_j = \frac{c_i k}{\alpha \cdot \Gamma(\alpha)}\).

Denoting \(t^* = t_k+\epsilon - t_k\), \(\epsilon = \psi/2\), by (40), it yields
\[ d_i \exp\left(-\epsilon t^*\right) \leq d_j \exp\left(-\epsilon t^*\right) - 1 + d_j t^*\alpha. \]  \hspace{1cm} (41)

By (41), one gets \(t^* \neq 0\), for any triggering time and agents, which shows that the Zeno-behavior will not exhibit for the whole leader-following FOMASs. This completes the proof. \(\square\)

**IV. NUMERICAL EXAMPLES**

A specific numerical example is presented to verify the proposed method in this section. Choose the MASs with a leader and five agents, where
\[
\chi_i(t) = \left[ x_i^1(t), x_i^2(t), x_i^3(t), x_i^4(t) \right]^T, i = 0, 1, 2, 3, 4, 5.
\]

Assume that the connection graph is defined as in Fig. 1. One gets the following relevant matrices,
\[
A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}
\]
\[
L = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 2 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
\]

**FIGURE 1. The undirected topology graph of leader-following FOMASs**

Let
\[
A = \begin{bmatrix} -0.5180 & -0.1858 & 0.3069 & -0.2435 \\ 0.4372 & -0.4768 & 0.5276 & -0.1787 \\ 0.4382 & -0.903 & -1.5114 & 0.4436 \\ -0.3123 & -0.0476 & 0.1370 & -2.299 \end{bmatrix}, \quad B = \begin{bmatrix} -0.1707 \\ 0.423 \\ 0.325 \end{bmatrix}
\]
and \(\delta = 1.0714\), then one gets from Theorem 1 and (10)
\[
T = \begin{bmatrix} 1.4403 & -0.0404 & 0.0821 & -0.0115 \\ -0.0404 & 1.2354 & 0.1651 & 0.0117 \\ 0.0821 & 0.1651 & 1.3216 & 0.0114 \\ -0.0115 & 0.0117 & 0.0114 & 1.4079 \end{bmatrix}, \quad J = \begin{bmatrix} 0.6711 \\ 0.5603 \\ 0.4652 \end{bmatrix}
\]
\[
K = \begin{bmatrix} 0.0474 & -0.0364 & 0.1220 & -0.1013 \\ -0.0364 & 0.0279 & 0.0936 & 0.0777 \\ 0.1220 & 0.0936 & 0.3139 & 0.2606 \\ -0.0103 & 0.0777 & 0.2606 & 0.2164 \end{bmatrix}
\]

the nonlinear part of FOMASs is \(g(t, x_i(t)) = 0.1 \sin\left(\frac{\chi_i(t)}{15}\right)\).

Thus, one gets that \(\sigma = 0.1\), \(\lambda_{\text{max}}(T) = 1.4940 > 1\), and \(\delta/\lambda_{\text{max}}(T) - \lambda_{\text{max}}(BB^T T) - 2\sigma = 0.0484\). Then we choose \(\psi = 0.04\). Furthermore, it follows from Fig. 1 that the leader agent is the root node of spanning tree in connection graph. Therefore, the leader-following consensus will be reached for \(\delta > 0\) based on Theorem 1. According to Theorem 2, the Zeno-behavior of the related leader-following FOMASs will be avoided.
Note that the above design parameters $J$, $K$, $\vartheta$, $\psi$, $\delta$ are not the unique solutions to achieve the consensus goal. The different parameter combination can obtain different control performance. The single parameter has not positive correlation with the performance.

Let the initial conditions be $x_0(t) = 0.1 \times [1, 2, 3, 4]^T$, $x_i(t_0) = (0.5 - 0.8 \times i) \times [1, 2, 3, 4]^T$, $w_i(t_0) = i$, $\delta = 0.0134$, $i = 1, 2, 3, 4, 5$.

Figs. 2-4 show the tracking dynamic process, control variable and event-triggered time instants, respectively, which mean that MASs can achieve consensus while the Zeno-behavior does not exhibit.

V. CONCLUSION
In this article, the adaptive event-triggered consensus of multi-agent systems described by fractional calculus with nonlinearity is investigated. At the latest triggering timing for each agent, adaptive protocols only use the neighboring state variable. By choosing the appropriate Lyapunov functions, the above proofs have revealed the obtained control protocol are effective to reach coordination. Simulations have been carried out to show the practicability of the conclusions. Moreover, the Zero-behavior is excluded. Note that the consensus scheme in this paper is just under ideal conditions, and some practical effects such as unknown false data-injection and replay cyber-attacks [42] are very worth exploring. More in-depth research will be developed in our future work.

REFERENCES
[1] Y. Yang, D.Z. Xu, T.D. Ma, X.J. Su, Adaptive cooperative terminal sliding mode control for distributed energy storage systems, IEEE Transactions on Circuits and Systems--I: Regular Papers, DOI: 10.1109/TCSI.2020.3027376.
[2] T.D. Ma, J.M. Zhang, Z.L. Xiong, Z.L. Zhang, Impulsive synchronization of delayed chaotic neural networks with actuator saturation, IEEE Access, DOI: 10.1109/ACCESS.2020.3038320.
[3] J. Fu, J.F. Bai, J.J. Lai, P.D. Li, M. Yu, H.K. Lam, Adaptive fuzzy control of a magnetorheological elastomer vibration isolation system with time-varying sinusoidal excitations, Journal of Sound and Vibration 456 (2019) 386–406.
[4] T.D. Ma, Z.L. Zhang, B. Cui, Variable impulsive consensus of nonlinear multi-agent systems, Nonlinear Analysis: Hybrid Systems 31 (2019) 1–18.
[5] T.D. Ma, B. Cui, Y.J. Wang, K. Liu, Stochastic synchronization of delayed multi-agent networks with intermittent communications: an impulsive framework, International Journal of Robust and Nonlinear Control 29(13) (2019) 4537–4561.
[6] W.G. Ao, T.D. Ma, R.V. Sanchez, H.T. Gan, Finite-time and fixed-time impulsive synchronization of chaotic systems, Journal of the Franklin Institute 357(16) (2020) 11545–11557.
[7] T.D. Ma, T.T. Yu, B. Cui, Adaptive synchronization of multi-agent systems via varying impulsive control, Journal of the Franklin Institute 355(15) (2018) 7490–7508.
[8] T.D. Ma, T.T. Yu, J.S. Huang, X.S. Yang, Z.Y. Gu, Adaptive odd impulsive consensus of multi-agent systems via comparison system method, Nonlinear Analysis: Hybrid Systems 35 (2020) 100824.
[9] J. Fu, Z.Y. Dai, Z.N. Yang, M. Yu, Time delay analysis and constant time-delay compensation control for MRE vibration control system with Fuzzy controller and multiple-frequency excitation, Smart Material and Structures 29(1) (2020) 014001.
[10] J. Fu, J.J. Lai, Z.N. Yang, J.F. Bai, M. Yu, Fuzzy-neural network control for a Magnetorheological elastomer vibration isolation system, Smart Material and Structures 29(7) (2020) 074001.
[11] X. Chen, F. Hao. Event-triggered average consensus control for discrete-time multi-agent systems, IET Control Theory & Applications 6(5) (2012) 2493-2498.
[12] X. Zhang, M. Chen, L. Wang. Distributed event-triggered consensus in multi-agent systems with non-linear protocols, IET Control Theory & Applications 9(7) (2015) 2626-2633.
[13] H. Liu, L. Cheng, M. Tan. Containment control of general linear multi-agent systems with multiple dynamic leaders: a fast sliding mode based approach, IEEE/CAA Journal of Automatica Sinica 1(2) (2015) 134-140.
[14] S. Mondal, R. Su, L.H. Xie. Heterogeneous consensus of higher-order multi-agent systems with mismatched uncertainties using sliding mode control, International Journal of Robust and Nonlinear Control 27(13) (2017) 2303-2320.
[15] Y.C. Cao, Y. Li, W. Ren, Y.Q. Chen. Distributed coordination of networked fractional-order systems, IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 40(2) (2010) 362-370.

[16] S.Y. Shen, W.J. Li, W. Zhu. Consensus of fractional-order multi-agent systems with double integrator under switching topologies, Discrete Dynamics in Nature and Society 2017 (2017) 9394751.

[17] Z.Y. Yu, H.J. Jiang, C. Hu. Leader-following consensus of fractional-order multi-agent systems under fixed topology, Neurocomputing 149(B) (2015) 613-620.

[18] P. Gong. Distributed consensus of non-linear fractional-order multi-agent systems with directed topologies, IET Control Theory and Applications 10(18) (2016) 2515-2525.

[19] F. Wang, Y.Q. Yang. Leader-following consensus of nonlinear fractional-order multi-agent systems via event-triggered control, International Journal of Systems Science 48 (2016) 571-577.

[20] Z. Yu, H. Jiang, C. Hu. Leader-following consensus of fractional-order multi-agent systems under fixed topology, Neurocomputing 149 (2015) 613-620.

[21] T.D. Ma, T. Li, B Cui. Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control, International Journal of Systems Science 49 (2018) 1-14.

[22] M. Shahvahi, M.B. Naghibi-Sistani, H. Modares. Distributed consensus control for a network of V fractional-order systems, IEEE Control Systems Letters, 3(2) (2019) 481-486.

[23] P. Gong, W. Lan, Q.L. Han. Robust adaptive fault-tolerant consensus control for uncertain nonlinear fractional-order multi-agent systems with directed topologies, Automatica 117 (2020) 109111.

[24] M. Shahvahi, A. Azarbahram, M.B. Naghibi-Sistani, J. Askari. Bipartite consensus control for fractional-order nonlinear multi-agent systems: an output constraint approach. Neurocomputing 397 (2020) 212-223.

[25] P. Gong, Q.L. Han. Fixed-time bipartite consensus tracking of fractional-order multi-agent systems with a dynamic leader, IEEE Transactions on Circuits and Systems II: Express Briefs 67(10) (2020) 2054-2058.

[26] Y. Ye, H. Su. Leader-following consensus of general linear fractional-order multi-agent systems with input delay via event-triggered control, Int J Robust Nonlinear Control 28 (2018) 5717-5729.

[27] X. Yin, D. Yue, S. Hu. Adaptive event-triggered consensus control for multi-agent systems subject to input saturation, 34th Chinese Control Conference (CCC), Hangzhou, China (2015) 7245-7250.

[28] D. Yue, X. Yin. Adaptive event-triggered consensus for multi-agent systems with stochastic switching topologies and delays, IEEE International Symposium on Industrial Electronics (ISIE), Taipei, Taiwan (2013) 1-6.

[29] H. Su, G. Chen, X. Wang, Z. Lin. Adaptive second-order consensus of networked mobile agents with nonlinear dynamics. Automatica 17(2) (2011) 368-375.

[30] Z.G. Hou, L. Cheng, M. Tan. Decentralized robust adaptive control for the multi-agent system consensus problem using neural network, IEEE Transactions on Systems Man and Cybernetics 39(3) (2009) 636-646.

[31] H.W. Zhang, F.L. Lewis. Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics, Automatica 48(7) (2012) 1432-1439.

[32] C. Chen, G. Wen, Y. Liu, F. Wang. Adaptive Consensus Control for a Class of Nonlinear Multiagent Time-Delay Systems Using Neural Networks, IEEE Transactions on Neural Networks and Learning Systems 25(6) (2014) 1217-1226.

[33] W. Zhu, D. Wang, Q. Zhou. Leader-following consensus of multi-agent systems via adaptive event-based control, Journal of Systems Science and Complexity 32(3) (2019) 846-856.

[34] A. Adalco, F. Alderisio, D. Lizzua, G. Shi, D. Dimarogonas, M. Bernardo, K.H. Johansson. Event-triggered pinning control of switching networks. IEEE Transactions on Control of Network Systems 2(2) (2015) 204-213.

[35] F. Forni, S. Galeani, D. Nesci, L. Zaccarian. Event-triggered transmission for linear control over communication channels. Automatica 50 (2014) 490-498.

[36] A.H. Hu, J.D. Cao, M.F. Hu, L.X. Guo. Event-triggered consensus of Markovian jumping multi-agent systems via stochastic sampling. Control Theory & Applications 9(13) (2015) 1964-1972.

[37] D. V. Dimarogonas, E. Frazzoli, K.H. Johansson. Distributed event-triggered control for multi-agent systems, IEEE Transactions on Automatic Control 57(5) (2012) 1291-1297.

[38] Y. Fan, Y. Yang, Y. Zhang. Sampling-based event-triggered consensus for multi-agent systems, Neurocomputing 191 (2016) 141–147.

[39] W. Ren, R.W. Beard. Distributed Consensus in Multi-Vehicle Cooperative: Theory and Applications, Springer-Verlag, London (2008).

[40] I. Podlubny. Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, New York, NY: Academic Press (1998).

[41] M. Duarte-Mermoud, N. Aguila-Camacho, J. Gallegos, R. Castro-Linares. Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Communications in Nonlinear Science and Numerical Simulation 22 (2015) 650-659.

[42] A.H. Tahoun, M. Arafa. Cooperative control for cyber-physical multi-agent networked control systems with unknown false data-injection and replay cyber-attacks, ISA Transactions 110 (2021) 1-14.

PENG XIAO was born in Jilin Province, China, in 1976. He received the B.S. degree with Electrical technology from Changchun Normal University in 2000. He is an experimental Engineer at the Beihua University engineering training center in Jilin. He mainly engaged in the automation technology theory and application, the servo control theory and Application of research. He has participated and chaired in many important projects of electrode auto process machine and stability analysis.

ZHENYU GU was born in Liaoning Province, China, in 1975. He received the Ph.D. degree in Mechanical Manufacturing & Automation from Chongqing University, Chongqing, China, in 2010. He is currently an associate professor of the College of Automation, Chongqing University, Chongqing, China. His main research interests are intelligent control of nonlinear system, prognostics and health management for mechanical and electrical equipment, energy efficiency optimization of manufacturing system.