A SNP in the 5' flanking region of the myostatin-1b gene is associated with harvest traits in Atlantic salmon (Salmo salar)

Citation for published version:
Peñaloza, C, Hamilton, A, Guy, DR, Bishop, SC & Houston, RD 2013, 'A SNP in the 5' flanking region of the myostatin-1b gene is associated with harvest traits in Atlantic salmon (Salmo salar)', BMC Genetics, vol. 14, 112. https://doi.org/10.1186/1471-2156-14-112

Digital Object Identifier (DOI):
10.1186/1471-2156-14-112

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
BMC Genetics

Publisher Rights Statement:
© 2013 Peñaloza et al.; licensee BioMed Central Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A SNP in the 5′ flanking region of the myostatin-1b gene is associated with harvest traits in Atlantic salmon (Salmo salar)

Carolina Peñaloza1, Alastair Hamilton2, Derrick R Guy2, Stephen C Bishop1 and Ross D Houston1*

Abstract

Background: Myostatin (MSTN) belongs to the transforming growth factor-β superfamily and is a potent negative regulator of skeletal muscle development and growth in mammals. Most teleost fish possess two MSTN paralogues. However, as a consequence of a recent whole genome-duplication event, salmonids have four: MSTN-1 (-1a and -1b) and MSTN-2 (-2a and -2b). Evidence suggests that teleost MSTN plays a role in the regulation of muscle growth. In the current study, the MSTN-1b gene was re-sequenced and screened for SNP markers in a commercial population of Atlantic salmon. After genotyping 4,800 progeny for the discovered SNPs, we investigated their association with eight harvest traits - four body-weight traits, two ratios of weight traits, flesh colour and fat percentage - using a mixed model association analysis.

Results: Three novel SNPs were discovered in the MSTN-1b gene of Atlantic salmon. One of the SNPs, located within the 5′ flanking region (g.1086C > T), had a significant association with harvest traits (p < 0.05), specifically for: Harvest Weight (kg), Gutted Weight (kg), Deheaded Weight (kg) and Fillet Weight (kg). The haplotype-based association analysis was consistent with this result because the two haplotypes that showed a significant association with body-weight traits, hap4 and hap5 (p < 0.05 and p < 0.01, respectively), differ by a single substitution at the g.1086C > T locus. The alleles at g.1086C > T act in an additive manner and explain a small percentage of the genetic variation of these phenotypes.

Conclusions: The association analysis revealed that g.1086C > T had a significant association with all body-weight traits under study. Although the SNP explains a small percentage of the variance, our results indicate that a variation in the 5′ flanking region of the myostatin gene is associated with the genetic regulation of growth in Atlantic salmon.

Keywords: Association analysis, Atlantic salmon, Myostatin, Aquaculture, Marker-assisted selection

Background

Myostatin (MSTN) is a potent negative regulator of skeletal muscle development and growth in mammals [1]. Therefore, it has been an attractive candidate gene for the identification of genetic markers for growth and carcass traits in livestock species. Several mutations leading to non-functional MSTN products have been reported to cause the “double-muscling” phenotype characteristic of Piedmontese and Belgian Blue cattle [2,3]. Additionally, a single nucleotide polymorphism (SNP) in the ovine myostatin gene has been shown to contribute to the muscular hypertrophy of Texel sheep [4]. Selective breeding for enhanced muscle growth has indirectly increased the frequency of these naturally occurring mutations in meat-producing breeds. Moreover, as a consequence of intense selection double-muscled Belgian Blue cattle are virtually homozygous for the mt821(del11) loss-of-function mutation [5]. The MSTN gene has also been sequenced in lower vertebrates and invertebrates, such as the zhikong scallop, the bighead carp, the Asian sea bass, the shrimp and amphioxus [6-10]. However, for the majority of non-mammalian species, the functional role of MSTN is poorly defined.

The phylogenetic analysis of MSTN genes in teleost fish suggested that a whole genome duplication event, which occurred 320-350 million years ago during early fish radiation [11,12], resulted in two MSTN paralogues being
present in modern bony fishes (MSTN-1 and MSTN-2). Additionally, in salmonids, each paralogue was duplicated once again likely due to tetraploidization (25-100 million years ago) [13,14]. Thus, a total of four MSTN genes can be found in rainbow trout and Atlantic salmon, namely MSTN-1(-1a and -1b) and MSTN-2(-2a and -2b) paralogues. MSTN gene structure among teleosts is highly conserved, comprising three exons of comparable size (300–400 nucleotides) separated by two introns, similar to mammals [15]. However, in contrast to mammals, where the expression of a single MSTN gene is limited primarily to skeletal muscle [16], teleost fish exhibit a broad pattern of differentially expressed MSTN paralogues. For example, MSTN-1 transcripts have been detected in eye, spleen, muscle and brain, among other tissues [17]. In comparison, MSTN-2 expression pattern has been shown to be more limited and occurs mostly in the brain [18,19]. While it is unclear exactly what functional role MSTN plays in these tissues, evidence indicates that teleost MSTN might be involved in the regulation of muscle development and growth (however, see [15]). In transgenic zebrafish the suppression of the MSTN gene by RNA interference has led to a double-muscled phenotype [20], suggesting a similar biological function to that previously described in mammals. This functionality is supported by an increase in the number of muscle fibers (hyperplasia) observed in transgenic Medaka that expresses a dominant-negative MSTN [21]. Transgenic trout over-expressing follistatin, one of the more efficacious antagonists of MSTN, also showed enhanced muscle growth due to hyperplasia [22].

The Atlantic salmon (Salmo salar L.) is the most important aquaculture species in several countries, including Chile and Norway [23]. Currently, selective breeding programs are being carried out in Norway, Canada, Iceland, Chile and the UK [24]. An important goal of finfish aquaculture is to enhance skeletal muscle growth and improve fillet trait characteristics. Since the Atlantic salmon MSTN-1b promoter region harbours cis-regulatory elements (E-boxes) that have been shown to bind in vitro to the myogenic differentiation factor MyoD [18], a regulatory factor of importance for initiating the myogenic program, it is reasonable to suggest that this paralogue is a strong candidate for regulation of skeletal muscle growth. If true, variation within Atlantic salmon MSTN-1b gene may be contributing to the phenotypic variation of economically important harvest traits. Accordingly, relevant polymorphisms could then be applied as tools for marker-assisted selection (MAS) in salmon breeding programs. The objective of this study was to identify novel SNP markers on the SsMSTN-1b gene and analyse their association with growth, fatness and colour-related traits in a commercial population of Atlantic salmon.

Results

SNP identification and genotypes

The Atlantic salmon MSTN-1b gene was re-sequenced to screen for polymorphic variation and to assess the association between this variation and harvest traits. The MSTN-contig used for primer design was built by the alignment of the SsMSTN-1b gene and two contigs of the Atlantic salmon draft genome assembly (see [25]; NCBI assembly GCA_000233375.1, Contig_064406 and Contig_398167). Following amplification and sequencing of PCR products from ten samples of parental salmon, amplicons generated by two primer pairs (SaMSTNb23 and SaMSTNb33) were found to contain two and one SNP(s), respectively (see Table 1). By re-aligning the PCR products containing the SNPs with SsMSTN-1b, their position in the gene was established: two were located in the upstream putative promoter region of the gene (g.1060C>A and g.1086C>T) and one in the third exon (c.3501C>G). For c.3501C>G, the substitution of alternative alleles was functionally synonymous.

A total of 4,800 animals were genotyped. Genotypes and frequencies estimated for the three MSTN loci are shown in Table 2. The genotype frequencies of g.1060C>A and g.1086C>T were consistent with HWE expectations. However, c.3501C>G was not in HW equilibrium (p < 0.001), showing a slight deficit of heterozygous animals. The correlations between alleles indicate that g.1060C>A and g.1086C>T were in strong LD (D' 0.99, r² 0.38). There was evidence of recombination between g.1086C>T and c.3501C>G (pairwise D' 0.52 and r² 0.13).

Trait properties

The population of 4,800 commercial Atlantic salmon had been measured for several traits at harvest (approximately 3 years of age). The phenotypic mean, standard deviations and ranges of the traits used in this study are given in Table 3 along with their heritability. All of the weight traits (HWT, GWT, DHWT and FLWT) showed given in Table 3 along with their heritability. All of the weight traits (HWT, GWT, DHWT and FLWT) showed similar and high heritabilities (~0.5), whereas yield traits (GYLD and FLYLD) exhibited low estimates (h² < 0.05). Fat content and flesh colour heritabilities were moderate, viz. 0.17 and 0.29, respectively.

Association study

To assess the association between SNP genotype and harvest traits, a mixed model analysis was performed in 4,759 successfully genotyped individuals. A significant association was observed between g.1086C>T genotypes (p < 0.05) and all weight phenotypes (HWT, GWT, DHWT and FLWT), but not with any of the other traits. This significance was maintained when g.1086C>T was fitted either separately or simultaneously in the model with the other SNPs. Genotypes of g.1060C>A and c.3501C>G were not significantly associated with any
trait when fitted either individually or simultaneously in the model.

To assess the size of effect associated with the significant MSTN-1b SNP alleles, the predicted trait values for each genotypic class of \(g.1086C > T \) were calculated. The thymine allele was associated with an increase in each of the weight traits (\(p < 0.05 \)), with the additive effect of the SNP on these traits ranging from 30 to 50 g (Table 4). Whilst this effect was significant, the percentage of the additive genetic variance explained by \(g.1086C > T \) in each trait was less than 1%. The dominance effect was trivial and non-significant.

Haplotypes were constructed for the three SNPs and the association between haplotype and trait was assessed. In the Atlantic salmon population analysed, 6 haplotypes and 13 diplotypes were identified. Haplotypes with a frequency < 0.01 were excluded from further analysis. The most prevalent haplotype, hap5, accounted for 67% of all haplotypes. The most common diplotype (43% of samples) comprised hap5 homozygotes (Table 5). When haplotype combination was fitted in the model, hap4 showed a significant association with the weight traits (\(p < 0.05 \)), and the association with hap5 with the same traits was highly significant (\(p < 0.01 \)); the exception was the fillet weight trait (FLWT), for which only hap5 was significant (\(p = 0.031 \)) (Table 6). These two haplotypes differ in a single nucleotide substitution at \(g.1086C > T \), supporting the significant association of this SNP with harvest traits. The occurrence of hap5 at a dosage of two copies in the SsMSTN-1b gene was related with a decrease in 60 to 110 g in body weight traits compared to zero copies.

Discussion
In this study, the SsMSTN-1b gene was re-sequenced and three novel SNPs were detected: \(g.1060C > A \) and \(g.1086C > T \), both in the 5′ flanking region; and \(c.3501C > G \), located in the third exon of the gene. The association analysis showed that \(g.1086C > T \) had a significant association with the weight traits under study (HWT, GWT, DHWT and FLWT), all of which show a high positive phenotypic correlation (\(r > 0.97 \)). Quantitative trait loci (QTL) associated with flesh colour and growth traits have been described for Atlantic salmon [26-30]. However, SsMSTN-1b is linked to markers mapping to chr25 [18], where only [30] identified a QTL for body-weight in ~38 month-old fish. In general, QTL scans for growth traits in Atlantic salmon suggest that body-weight traits are highly polygenic. As many loci of small effect are expected to be co-regulating traits related to the growth of fish, it is possible that previous QTL mapping studies failed to detect the effect observed in the current study due to a lack of statistical power.

For aquacultural species, a significant association between MSTN polymorphisms and production traits has been detected in the bighead carp (Aristichthys nobilis), the yellow catfish (Pelteobagrus fulvidraco), the spotted halibut (Verasper variegatus), the common carp (Cyprinus carpio), the Atlantic bay scallop (Argopecten irradians) and the gilthead seabream (Sparus aurata) [7,31-35]. Interestingly, for marine species the majority of polymorphisms that have been described as having an effect on weight traits (including the present study) are located in non-coding regions of the MSTN gene. Although this might be a reflection of low frequency of coding genetic variants in marine species [7,8], it may also be a consequence of the incipient stage of aquacultural research and the shorter history of selective breeding for aquaculture species. For example, it is possible that loss or reduction of function mutations in coding regions of MSTN have not yet been observed and/or selected to appreciable frequencies in commercial aquaculture species. Despite the observation that mutations in the coding region of the myostatin gene are known to cause an increase in muscle mass in several mammals, non-coding mutations associated with regulatory pathways may also be underlying

| Table 1 Primer design for PCR analysis of MSTN candidate gene in Atlantic salmon |
|-------------------------------|-------------------------------|-------------------------------|
Gene	SNP	Primer	Sequence (5′-3′)	PCR product size (bp)	\(T_a \) (°C)
MSTN-1b	g.1060C > A	SaMSTNpb23	AAAGCGGATTCATTGTTTCACCATACCA	567	55
	g.1086C > T	SaMSTNpb33	ACTGAGGATCAGGACGCGGTTCC	571	50
	c.3501C > G	SaMSTNpb33	TTGGCAGCCACACCACCA	571	50

Table 2 Genotype and allele frequencies of SNPs
Genotype

Frequency
AA
AC
CC
TT
TC
CC
CG
GG
Minor allele frequency
Major allele frequency
phenotypic variation. Moreover, “double-muscling” in Texel sheep is associated with mutations in the 3′UTR of the MSTN gene, which create illegitimate miRNA binding sites and reduce the amount of circulating MSTN protein [4]. It remains to be investigated whether studied marine species encode a more stable MSTN protein, and whether the main effects on growth mediated by this gene are associated with gene regulation or gene structure.

The haplotype-based association analysis was consistent with the significant effect detected for g.1086C > T; the two haplotypes that showed a significant association with weight traits, hap4 and hap5 (p < 0.05 and p < 0.01, respectively), differed only by a nucleotide substitution at this locus. In accordance with the predicted trait values of the genotypes at g.1086C > T, two copies of the haplotype carrying the unfavourable SNP allele, homozygote hap5/hap5, was associated with a decrease in all body weight traits. The difference between the predicted mean of individuals carrying zero or two copies of hap5 varies between 60 g (for FLWT) to 110 g (for HWT).

Myostatin is an important target gene for aquaculture research. Some studies have explored the improvement of growth through the suppression of gene activity by over-expressing the MSTN prodomain (Mstnpro). For example, [36] increased growth rates of rainbow trout by immersing juveniles in bath treatments with flatfish MSTN-1pro expressed in Escherichia coli. The improvement of body mass by inhibiting the myostatin gene has also been achieved in African catfish (Clarias gariepinus), goldfish (Carassius auratus) and tilapia (Oreochromis aureus) larvae by an immersion bath treatment with a soluble form of the Active Type IIb receptor [37]. However, a study by [38] showed that the positive growth responses achieved by juvenile tilapia under MSTN inhibition by immersion were not sustained until market size; after 45 weeks of exposure to flatfish Mstnpro, no significant weight or length differences between control and immersed tilapia groups were observed.

A promising alternative to short or long-term administration of MSTN inhibiting agents is marker-assisted-selection (MAS) exploiting favourable alleles at naturally segregating polymorphisms in commercial populations of fish. However, in contrast to mammals like the Belgian blue cattle, where a natural deletion of 11 base pairs on the third exon increased from 20–25% muscle mass by hyperplasia [3,5], no genetic variants with large impacts on weight phenotypes have been identified in fish [39]. Our results show that genetic variation at g.1086C > T has a significant association with growth traits in a commercial population of Atlantic salmon, although the proportion of variance explained by this marker is relatively small (< 1%). Nonetheless, this SNP should be evaluated further to assess its effect in other populations of salmon

Table 3 Descriptive statistics and estimates of heritability (h²) for harvest weight (HWT), gutted weight (GWT), deheaded weight (DHWT), fillet weight (FLWT), gutted yield (GYLD), fillet yield (FLYLD), fat content (FAT) and fillet colour (COL) of Atlantic salmon

Trait	Mean	SD	Minimum	Maximum	h²
HWT (kg)	2.54	0.63	0.45	7.5	0.52 (0.05)
GWT (kg)	2.32	0.57	0.39	6.8	0.53 (0.05)
DHWT (kg)	2.02	0.51	0.32	6.0	0.51 (0.05)
FLWT (kg)	1.68	0.42	0.23	5.2	0.53 (0.05)
GYLD (%)	0.92	0.01	0.66	0.99	0.04 (0.01)
FLYLD (%)	0.66	0.04	0.28	1.02	0.05 (0.01)
FAT	12.15	5.64	1.1	41.7	0.16 (0.02)
COL	28.92	0.76	24	33	0.29 (0.16)

Standard errors for the heritability of each trait are included in parenthesis.

Table 4 Genotype means with standard error, additive effect and dominance effects for the SNP that showed a significant trait association

SNP	Genotype Mean ± SE	a ± SE	d ± SE	
Trait	g.1086C > T			
	TT	2.60 ± 0.04	0.05 ± 0.017*	−0.0002 ± 0.02
	TC	2.55 ± 0.02	0.04 ± 0.019*	0.003 ± 0.02
	CC	2.50 ± 0.02	0.03 ± 0.017*	0.007 ± 0.01
		2.37 ± 0.03	0.04 ± 0.019*	0.003 ± 0.02
		2.33 ± 0.02	0.03 ± 0.017*	0.007 ± 0.01
		2.07 ± 0.03	0.04 ± 0.019*	0.003 ± 0.02
		2.04 ± 0.01	0.03 ± 0.017*	0.007 ± 0.01
	FLWT	1.73 ± 0.02	0.03 ± 0.014*	−0.007 ± 0.01

1Estimate of the effect is expressed in kg.

*p < 0.05.

Table 5 Frequencies of common haplotypes and diplotypes

Haplotype	Frequency	Diplotype	Frequency
ATG (hap1)	0.02	hap5/hap5	0.43
ATC (hap2)	0.12	hap4/hap5	0.21
CTC (hap4)	0.14	hap2/hap5	0.17
CCG (hap5)	0.67	hap5/hap6	0.07
CCC (hap6)	0.05	hap2/hap4	0.03
		hap4/hap4	0.02
		hap1/hap5	0.02
		hap2/hap6	0.01

Haplotypes and Diplotypes with frequency < 0.01 were excluded.

Peñaloza et al. BMC Genetics 2013, 14:112
http://www.biomedcentral.com/1471-2156/14/112
and to test any possible functional role on the promoter region of the SsMSTN-1b gene. In other domestic animals, it is likely that polymorphisms with large effects on growth traits are rare due to larger selection pressures moving favourable alleles towards fixation [40]. However, Atlantic salmon and other aquaculture species are relatively recently domesticated, and polymorphisms of large effect may feasibly still be segregating in commercial populations. Therefore, future studies should aim at evaluating the effect of additional MSTN polymorphisms and other candidate genes for growth in Atlantic salmon. These results would not only be of importance in fish breeding, but also may aid insights into the physiology of muscle growth and development in fish.

Conclusions

The aim of the study was to discover SNPs in the Atlantic salmon MSTN-1b gene and to evaluate their association with growth and fillet traits. Three SNPs were found to be segregating in the fish that were sequenced, and these were then tested in a large commercial population. A SNP located in the upstream region of the gene (g.1086C > T) was associated with all body weight traits under study (HWT, GWT, DHWT and FLWT). The alleles in the g.1086C > T locus acted in an additive manner, with a change from a CC to a TT genotype associated with an increase of 70 to 100 g depending on the trait. These results add to the evidence that suggests SsMSTN-1b, and potentially the orthologous gene in other teleost species, plays a role in muscle development in fish. The combined effect of further QTL mapping and candidate gene studies assessing the association between genotypes and growth traits may further unravel genes of larger effect and lead to an improved understanding of the regulation of muscle growth in fish.

Methods

SNP identification

To discover polymorphisms in the Atlantic salmon MSTN-1b locus, specific primer pairs (Table 1) were designed to generate overlapping PCR products from a MSTN-contig that contained the entire gene (6394 bp) and ~300 bp of flanking sequence at both ends. This contig was built by aligning the complete SsMSTN-1b gene [NCBI: Acc. Num. AJ316006.2] with the Atlantic salmon draft genome assembly ([25]; NCBI assembly GCA_000233375.1). For SNP discovery and the optimization of PCR amplifications, a panel of ten parental individuals was randomly chosen from randomly-selected families of a commercial population of Atlantic salmon (sourced from Landcatch Natural Selection, Ormsary, UK). By searching for polymorphisms in a subset of the parental samples we may have failed to detect some SNPs in our population, particularly those with a rare allele frequency (e.g. < 0.05). However, sampling 10 individuals is adequate to give a good probability of finding SNPs with a minor allele frequency above 0.1. Each PCR product was sequenced using an ABI 3730xl at ARK-Genomics (Roslin, UK) with forward and reverse primers to check for consistency of sequences. SNPs were identified by visual inspection of both chromatograms. SNP Identification above).
U.K.) using a KASP assay. The KASP assay is a competitive allele-specific PCR-based genotyping system that allows high levels of assay robustness and accuracy (see technology details at http://www.kbioscience.co.uk/reagents/KASP.html). Allele-specific primers were designed and utilised by LGC Genomics based on the supplied gene sequences (see Additional file 1).

C. Statistical analysis

Test for Hardy-Weinberg equilibrium and linkage disequilibrium Three SNPs segregating in SsMSTN-1b were further tested for departure from Hardy-Weinberg equilibrium (HWE) with a χ^2 goodness of fit test. Linkage Disequilibrium (LD) was estimated for each pair of SNPs, using both the squared correlation, r^2, and the normalised linkage disequilibrium coefficient, D'. Both statistical analyses were performed using Haploview 4.2 [43].

Haplotype reconstruction Haplotypes were inferred for individuals using PHASE 2.1 [44,45] and used to perform a haplotype-based association analysis.

Mixed model association analysis Descriptive statistics of harvest traits were performed using the SAS software (SAS Inst., Inc., Cary, NC). The heritability values of each phenotype were calculated from the result of the partitioning of variance components ($h^2 = Va/Vp$, where Va and Vp are the additive genetic and the phenotypic variance, respectively) obtained by fitting a single-trait animal model and omitting SNP genotype as a fixed effect, using the ASReml package [46]. To evaluate the relationship between the discovered markers and the harvest traits, SNP genotypes and haplotypes were included in the model as fixed effects.

The mixed model was as follows:

$$Y_{ik} = \mu + G_k + a_i + e_{ik}$$

where Y_{ik} is vector of one of the traits on the individual i; μ is the overall mean of the trait; G_k is the fixed effect of the SNP genotype k (3 classes) or the effect of the haplotype (coded as the number of copies given per each haplotype described in the population: 0, 1 or 2 copies); a_i is the additive effect of the i^{th} animal; and e is the residual term. All available pedigree information was included when fitting the model. Statistical significance of the fixed effects was assessed using the Wald F-statistics with denominator degrees of freedom from the fitted model.

Predicted SNP genotype effects For the SNP(s) that showed significant association with a harvest trait, differences between the means of each genotypic class and allelic frequencies were used to estimate additive and dominance effects [47]. Standard errors for both effects were calculated from the variance-covariance matrix of the predicted genotype classes along with the standard errors of their differences (SED). The percentage of the additive genetic variance ($%Va$) explained by the SNP was determined using the standard formula: $2pq(a + d(q-p))^2/Va$, where p and q are the major and minor allele frequencies of the SNP, a is the additive effect and d is the calculated dominance effect. The additive genetic variance (Va) was taken from the mixed model without fitting genotype.

Additional file

Additional file 1: KASP assay template sequence. SsMSTN-1b sequences indicating the position and alleles of the three SNP markers.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

CP carried out the experiments that led to SNP discovery, performed the statistical analysis and drafted the manuscript. SB and RH conceived the study and helped to draft the manuscript. AH and DG contributed to the collection and management of the harvest data, pedigrees and samples. All authors read and approved the final manuscript.

Acknowledgements

The authors acknowledge staff at the ARK Genomics facility for assistance with ABI sequencing. The authors acknowledge funding from the British Biotechnology and Biological Sciences Research Council (BBSRC), grant number BB/H022007/1, the Roslin Institute’s BBSRC Institute Strategic Funding Grant, and CONICYT (Chile).

Author details

1Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian EH25 9RG, UK. 2Landcatch Natural Selection Ltd, 15 Beta Centre, Stirling University Innovation Park, Stirling FK9 4NF, UK.

Received: 16 May 2013 Accepted: 11 November 2013 Published: 27 November 2013

References

1. Lee SJ, McPherron AC: Myostatin and the control of skeletal muscle mass. Curr Opin Genet Dev 1999, 9:604–607.
2. McPherron AC, Lee SJ: Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 1997, 94:12457–12461.
3. Kambadur R, Sharma M, Smith TPL, Bass JJ: Mutations in myostatin (GDF8) in double-muscled Belgian blue and piedmontese cattle. Genome Res 1997, 7:910–915.
4. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen JM, Eychenne F, Laville E, Deus F, Milenkovic D, Tobin J, Charlier C, Georges M: A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 2006, 38:813–818.
5. Grobet L, Martin L, Poncetel D, Pirottin D, Brouwers B, Riquet J, Schoepberlein A, Durner S, Ménessier M, Masabanda J, Fries R, Hanset R, Georges M: A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 1997, 17:71–74.
6. Hu X, Guo H, He Y, Wang S, Zhang L, Huang X, Roy SW, Lu W, Hu J, Bao Z: Molecular characterization of myostatin gene from zhikong scallop Chlamys farreri (Jones et Preston 1904). Genes Genet Syst 2010, 85:207–218.
7. Liu L, Yu X, Tong J: Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Mol Biol Rep 2012, 39:2211–2221.
8. De Santos C, Evans B, Smith-Keune C, Jerey D: Molecular characterization, tissue expression and sequence variability of the baramundi (Lates calcarifer) myostatin gene. BMC Genomics 2008, 9:82.
9. De Santis C, Wade NM, Jerry DR, Preston NP, Glencross BD, Sellers MJ: Growing backwards: an inverted role for the shrimp ortholog of vertebrate myostatin and GDF11. J Exp Biol 2011, 214:2671–2677.

10. Xing F, Tao X, Zhang PJ, Ma J, Zhang Y, Xu P, Xu Y: Characterization of amphioxus GDF8/11 gene, an archetype of vertebrate MSTN and GDF11. Dev Genes Evol 2007, 217:549–554.

11. Armores A, Force A, Yan V-L, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang Y-L, Westerfer M, Eker M, Postlethwait JH: Zebrafish hox clusters and Vertebrate Genome Evolution. Science 1998, 282:1711–1714.

12. Postlethwait JH, Yan Y-L, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goulet C, Fritz A, Kelih R, Knüpík L, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beer D, Joly J-S, Lahmann D, Rosa F, Westerfelld M, Zou L, Johnson SL, Talbot WS: Vertebrate genome evolution and the zebrafish gene map. Nat Genet 1998, 18:345–349.

13. Kerr T, Roalson EH, Rodgers BD: Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol Dev 2005, 7:390–400.

14. Allendorf FW, Thorgaard GH: Tetraploidy and the Evolution of the Aquatic Fishes. In Evolutionary Genetics of Fishes. Edited by Turner BJ New York: Plenum Press; 1984:1–53.

15. Gabillard J-C, Biga PR, Rescan P-Y, Seiliez I: Revisiting the paradigm of myostatin in vertebrates: insights from fishes. Gen Comp Endocrinol 2013, 194:45–55.

16. McPherron AC, Lawler AM, Lee SJ: Overexpression of the dominant-negative form of myostatin-1b genes. J Exp Biol 2003, 206:4041-4046.

17. Garikipati D, Gahr S, Rodgers B: Identification, characterization, and quantitative analysis of reverse transcript myostatin-1a and myostatin-1b genes. J Endocrinol 2006, 190:879–888.

18. Ostbye T-K, Wetton O, Tooming-Klunderud A, Jakobsen K, Yafe A, Etzioni S, Moen T, Andersen O: Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and –2. Gene 2007, 403:159–169.

19. Macròtto L, Bargiello L, Cardazzo B, Rizzo G, Patarnello T: A novel second myostatin gene is present in teleost fish, FEB6 2001, 50936–40.

20. Lee CY, Hu SY, Gong HY, Chen MH, Lu JK, Wu JL: Characterization of amphioxus GDF8/11 gene, an archetype of vertebrate MSTN and GDF11. Dev Genes Evol 2007, 217:549–554.

21. Armores A, Force A, Yan V-L, Joly L, Amemiya C, Fritz A, Ho R, K, Langeland J, Prince V, Wang Y-L, Westerfer M, Eker M, Postlethwait JH: Zebrafish hox clusters and Vertebrate Genome Evolution. Science 1998, 282:1711–1714.

22. Postlethwait JH, Yan Y-L, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goulet C, Fritz A, Kelih R, Knüpík L, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beer D, Joly J-S, Lahmann D, Rosa F, Westerfelld M, Zou L, Johnson SL, Talbot WS: Vertebrate genome evolution and the zebrafish gene map. Nat Genet 1998, 18:345–349.

23. Kerr T, Roalson EH, Rodgers BD: Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol Dev 2005, 7:390–400.

24. Allendorf FW, Thorgaard GH: Tetraploidy and the Evolution of the Aquatic Fishes. In Evolutionary Genetics of Fishes. Edited by Turner BJ New York: Plenum Press; 1984:1–53.

25. Gabillard J-C, Biga PR, Rescan P-Y, Seiliez I: Revisiting the paradigm of myostatin in vertebrates: insights from fishes. Gen Comp Endocrinol 2013, 194:45–55.

26. McPherron AC, Lawler AM, Lee SJ: Overexpression of the dominant-negative form of myostatin-1b genes. J Exp Biol 2003, 206:4041-4046.

27. Garikipati D, Gahr S, Rodgers B: Identification, characterization, and quantitative analysis of reverse transcript myostatin-1a and myostatin-1b genes. J Endocrinol 2006, 190:879–888.

28. Ostbye T-K, Wetton O, Tooming-Klunderud A, Jakobsen K, Yafe A, Etzioni S, Moen T, Andersen O: Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and –2. Gene 2007, 403:159–169.

29. Macròtto L, Bargiello L, Cardazzo B, Rizzo G, Patarnello T: A novel second myostatin gene is present in teleost fish, FEB6 2001, 50936–40.

30. Lee CY, Hu SY, Gong HY, Chen MH, Lu JK, Wu JL: Characterization of amphioxus GDF8/11 gene, an archetype of vertebrate MSTN and GDF11. Dev Genes Evol 2007, 217:549–554.

31. Armores A, Force A, Yan V-L, Joly L, Amemiya C, Fritz A, Ho R, K, Langeland J, Prince V, Wang Y-L, Westerfer M, Eker M, Postlethwait JH: Zebrafish hox clusters and Vertebrate Genome Evolution. Science 1998, 282:1711–1714.

32. Postlethwait JH, Yan Y-L, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goulet C, Fritz A, Kelih R, Knüpík L, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beer D, Joly J-S, Lahmann D, Rosa F, Westerfelld M, Zou L, Johnson SL, Talbot WS: Vertebrate genome evolution and the zebrafish gene map. Nat Genet 1998, 18:345–349.

33. Kerr T, Roalson EH, Rodgers BD: Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol Dev 2005, 7:390–400.

34. Allendorf FW, Thorgaard GH: Tetraploidy and the Evolution of the Aquatic Fishes. In Evolutionary Genetics of Fishes. Edited by Turner BJ New York: Plenum Press; 1984:1–53.

35. Gabillard J-C, Biga PR, Rescan P-Y, Seiliez I: Revisiting the paradigm of myostatin in vertebrates: insights from fishes. Gen Comp Endocrinol 2013, 194:45–55.

36. McPherron AC, Lawler AM, Lee SJ: Overexpression of the dominant-negative form of myostatin-1b genes. J Exp Biol 2003, 206:4041-4046.

37. Garikipati D, Gahr S, Rodgers B: Identification, characterization, and quantitative analysis of reverse transcript myostatin-1a and myostatin-1b genes. J Endocrinol 2006, 190:879–888.

38. Ostbye T-K, Wetton O, Tooming-Klunderud A, Jakobsen K, Yafe A, Etzioni S, Moen T, Andersen O: Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and –2. Gene 2007, 403:159–169.

39. Macròtto L, Bargiello L, Cardazzo B, Rizzo G, Patarnello T: A novel second myostatin gene is present in teleost fish, FEB6 2001, 50936–40.

40. Lee CY, Hu SY, Gong HY, Chen MH, Lu JK, Wu JL: Characterization of amphioxus GDF8/11 gene, an archetype of vertebrate MSTN and GDF11. Dev Genes Evol 2007, 217:549–554.

41. Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95–98.

42. Powell J, White I, Guy D, Brotherstone S: Genetic parameters of production traits in Atlantic salmon (Salmo salar). Aquaculture 2008, 274:225–231.

43. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21:263–265.

44. Stephens M, Donnelly P: A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003, 73:1162–1169.

45. Stephens M, Smith N, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001, 68:978–989.

46. Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R: ASREML User Guide. 4th edition. Longmans Green: Harlow, Essex, UK, 1996.