Candidate gene analysis in pathogenesis of surgically and non-surgically treated necrotizing enterocolitis in preterm infants

Dawid Szpecht1 · Natalia Neumann-Klimasińska1 · Michał Błaszczynski2 · Agnieszka Seremak-Mrozikiewicz3,4 · Grażyna Kurzawinska3 · Dorothy Cygan5 · Marta Szymankiewicz1 · Krzysztof Drews3 · Janusz Gadzinowski1

Received: 19 April 2017 / Accepted: 26 July 2017 / Published online: 2 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract Necrotizing enterocolitis (NEC) is one of the most severe and unpredictable complications of prematurity. There are two possible mechanisms involved in the pathogenesis of NEC: individual inflammatory response and impaired blood flow in mesenteric vessels with secondary ischemia of the intestine. The aim of this study was to evaluate the possible relationship between polymorphisms: Il-1β 3953C>T, Il-6 -174G>C and -596G>A, TNFα -308G>A, and 86 bp variable number tandem repeat polymorphism of interleukin-1 receptor antagonist (Il-1RN VNTR 86 bp) and three polymorphisms that may participate in arteries tension regulation and in consequence in intestine blood flow impairment: eNOS (894G>T and -786T>C) and END-1 (5665G>T) and NEC in 100 infants born from singleton pregnancy, before 32 + 0 weeks of gestation, exposed to antenatal steroids therapy, and without congenital abnormalities. In study population, 22 (22%) newborns developed NEC. Surgery-requiring NEC was present in 7 children. Statistical analysis showed 20-fold higher prevalence of NEC in infants with the genotype TT [OR 20 (3.71–208.7); p = 0.0004] of eNOS 894G>T gene polymorphism. There was a higher prevalence of allele C carriers of eNOS 786T>C in patients with surgery-requiring NEC [OR 4.881 (1.33–21.99); p = 0.013]. Our investigation did not confirm any significant prevalence for NEC development in another studied genotypes/alleles. This study confirms the significant role of polymorphisms that play role in intestine blood flow. Identifying gene variants that increase the risk for NEC development may be useful in screening infants with inherent vulnerability and creating strategies for individualized care.

Keywords Gene · Polymorphism · Necrotizing enterocolitis · Preterm newborn

Background

Necrotizing enterocolitis (NEC) is one of the most severe and unpredictable complications of prematurity. 7% of neonates born with very low birth weight (VLBW) will develop NEC [1]. Despite the efforts, up to 1/3 of the cases will be fatal [2] and the rest remain threatened by chronic gastrointestinal complications and poor neurodevelopmental outcome [3]. Several risk factors for developing NEC have been reported, although the exact pathogenesis of this disease remains unclear. Onset of clinical symptoms might be abrupt and the severity of the disease may lead to surgical intervention. Thereby the morbidity and mortality tends to be higher in patients requiring laparotomy [2, 4].

According to the present consensus, NEC develops in the premature intestine in the setting of improper bacterial colonization, often after enteral feedings with formula...
instead of breast milk. A baseline increased reactivity of the premature intestinal mucosa to microbial ligands leads to increased and flawed inflammatory response [5, 6]. The proof of this theory seems to be the fact that plasma concentrations and tissue expression of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin 6 (IL-6), as well as tumor necrosis factor alpha (TNF-α) [7], are elevated in neonates with NEC [8, 9].

Another somewhat controversial hypothesis involves hypoxia/ischemia injury [10]. Nitric oxide (NO), a product of endothelial (eNOS) and inducible NO (iNOS) synthases [11], has a crucial role in gut physiology. Not only is NO responsible for the tension of vascular wall, but it also promotes damage to the intestinal barrier by inducing apoptosis of enterocytes and inhibiting their regeneration [12]. NO might be produced through the activity of commensal intestinal bacteria [13]. Breast milk, with its rich levels of nitrate, may have a protective role against NEC due to its vasodilatory effect [14]. In state of chronic inflammation and oxidative stress, which characterizes late NEC, mesenteric production of NO decreases and contributes to further vasoconstriction and intestinal ischemia [15]. Nitric oxide synthase is crucial for intestinal microcirculation and therefore, it may play a key role in the pathogenesis of NEC [16]. On the contrary, endothelin 1 (END-1) is the strongest known vasoconstrictor and plays a major role in maintaining hemodynamic homeostasis by changing the distribution of blood in the system [17].

We propose that the recognition of Single Nucleotide Polymorphisms (SNP) for inflammatory response markers: IL-1β, IL-6, TNF-α, IL-1RN, as well as vasoactive agents eNOS and END-1, might add insight to the pathogenesis of NEC. SNPs, single base pair changes, occur naturally in the human genome and can alter the translation of related proteins, influencing various processes. Since studies on animal models have proposed that modulating the inflammatory cytokine cascade could be profitable for treating preterm neonates with NEC [18, 19], undoubtedly better understanding of the diversity of NEC patients’ biology could lead to enhancement of individualized treatment options.

Materials and methods

Population

In order to guarantee a homogenous group of patients, we used the following inclusion criteria: Caucasian origin, neonates born between 24 + 0 and 32 + 0 weeks of gestation, single pregnancy neonates, pregnancies without death of one of the fetuses, and newborns with antenatal steroid therapy (AST). Newborns with chromosomal abnormalities, TORCH infections (toxoplasmosis, other, rubella, cytomegalovirus, herpes), and inborn errors of metabolism were excluded from this study—Fig. 1. We enrolled 100 (23.3%) out of the 428 infants admitted to the Neonatal Intensive Care Unit at the Poznan University of Medical Sciences between June 1st, 2014 and August 15th, 2016.

Additional data

We collected the following information: gender, gestational age (GA; weeks), birth weight (BW, g), birth weight under 3rd percentile, the type of delivery (vaginal vs. cesarean section), birth asphyxia (defined as APGAR score <6 at 10 min and pH <7.0 or blood base excess (BE) <−12 mmol/l in cord blood), intrauterine infection (defined as positive blood culture accompanied by clinical symptoms or inborn pneumonia diagnosed in the first 48 h
after birth), surfactant replacement therapy (indications for the treatment based on European guidelines [20], ventilatory support (conventional vs. non-invasive), intraventricular hemorrhage (IVH, definition based on Papile classification [21]), and the presence of bronchopulmonary dysplasia (definition by the National Institute of Child Health and Human Development [22]). Our patients were fed according to a protocol proposed by ESPHGAN [23].

Diagnosis of NEC

The diagnosis was based on Modified Bell’s staging criteria for NEC [24]. Auxiliary examination in the diagnosis of NEC was used as an abdomen ultrasound (5–8 and 13 MHz transducer, Prosound 97 Premier, Aloka) and X-ray of the abdomen. Abdomen ultrasounds were performed by a single trained neonatologist.

Surgical treatment

Every patient developing the symptoms of mild, moderate, or severe forms of NEC was consulted by the pediatric surgeon. Qualification for surgical treatment was based on past history, symptoms, and results of laboratory and imaging studies. Surgical procedures included laparotomy, resection of necrotic intestine, and intestinal anastomosis with decompressing temporary enterostomy using T-tube (TTES) [25]. In case of multilocal or extensive necrosis found during laparotomy, the proximal enterostomy with Hartmann procedure was performed. In critically ill and unstable premature children, the peritoneal drainage was used as a primary and definitive procedure or as the first step in surgical treatment.

Ethical considerations

Informed consent was obtained from the parents of all infants enrolled in the study. The study followed the tenets of the Declaration of Helsinki and was approved by the Bioethics Committee of Poznan University of Medical Sciences (66/14 and 799/16).

Laboratory method

Our selection of candidate genes is based on two possible mechanisms involved in the pathogenesis of NEC: individual inflammatory response and impaired blood flow in mesenteric vessels with secondary ischemia of the intestine. Accordingly, we analyzed the following polymorphisms: II-1R 3953C>T, II-6 -174G>C and -596G>A, TNF-α -308G>A, and 86 bp variable number tandem repeat polymorphism of interleukin-1 receptor antagonist (II-1RN VNTR 86 bp) and three polymorphisms that may participate in arterial tension regulation and in consequence in intestinal blood flow impairment: eNOS (894G>T and −786T>C) and END-1 (5665G>T).

A blood sample (0.5 ml) was taken directly post-delivery and banked. Genomic DNA was extracted from blood leukocytes using QIAamp DNA Blood Mini Kit (QIAGEN inc; Germany) according to the manufacturer’s recommendations. Genotyping was performed using polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) procedures. Primer sequences and conditions for PCR–RFLP analyses and restriction fragment length are presented in Table 1. Products were analyzed by electrophoresis on 2% agarose gel with Midori Green Advanced DNA Stain (Nippon Genetics, Europe GmbH).

Statistical analysis

The normality of variable distribution was assessed by Shapiro–Wilk test. Accordingly, the results are presented as percentage for categorical variables, or median (range) for non-normally distributed continuous variables. p value <0.05 indicates statistical significance. The following tests were used to evaluate the association between NEC and categorical variables: the Fisher’s exact probability test, the Chi-square test, Fisher Freeman Halton, and Chi-squared test with Yates’s correction. Differences in non-normally distributed continuous variables were compared with the U Mann–Whitney test. Logistic regression analysis was used to compute ORs and their 95% confidence intervals (CI) for patients without NEC and with NEC combined with different genotypes and alleles. The odds ratio (OR) and 95% confidence intervals (95% CI) were calculated in surgically and non-surgically treated NEC in different genotype distributions of the studied polymorphisms. Statistical analysis was performed using CytelStudio version 10.0, created January 16, 2013 (CytelStudio Software Corporation, Cambridge, Massachusetts, United States), and Statistica version 10, 2011 (Stat Soft, Inc., Tulsa, Oklahoma, United States).

Results

The median gestational age of enrolled infants was 28 ± 4 (range 24 ± 0–32 ± 0). The median birth weight was 1124.4 ± 378.7 grams. In our study population, we found that 22 (22%) preterm newborns developed NEC. Surgery-requiring NEC was present in 7 children (7% of total, 31.8% of NEC cases). The primary peritoneal drainage was performed in 4 cases. Laparotomy was done in 6 patients: 3 of them as primary operation and in 3 others secondary to peritoneal drainage. In one patient, three surgical
The incidence of NEC was significantly higher in children born from 24 to 28 weeks of gestation than born from 29 to 32 weeks of gestation (72.73 vs. 27.27%; p = 0.046). Moreover, we confirmed that the lower the gestational age, the greater the lower birth weight (p = 0.013); the higher the incidence of NEC. The disease was more prevalent in children ventilated conventionally (68.18 vs. 21.82%; p = 0.031).

Ten of 100 (10%) cases were fatal, including 5 patients treated due to NEC. In our Department, the mortality rate of infants with NEC was 22%. In 2 out of 5 deceased neonates (40%), NEC was surgically treated which provides the surgical NEC mortality rate of 28.5%. Table 2 shows clinical and demographic data of enrolled infants.

Statistical analysis showed 20-fold higher prevalence of NEC in infants with the genotype TT (OR 20 (3.71–208.7); p = 0.0004) of eNOS 894G>T gene polymorphism. There was a higher prevalence of allele C carriers of eNOS 786T>C in patients with surgery-requiring NEC (OR 4.881 (1.33–19.99); p = 0.013). Our investigation did not confirm any significant prevalence for NEC development in other studied genotypes/alleles such as END-1 5665G>T; II-1β 3953C>T; II-6 −174G>C and −596G>A; TNF-α −308G>A; and II-1RN VNTR 86 bp. Genotype distribution of the polymorphisms involved in inflammation pathways in infants with/without NEC and with/without surgery-requiring NEC is presented in Table 3. Genotype distribution of eNOS (894G>T) and −786T>C and END-1 (5665G>T) in infants without/with NEC and with/without surgery-requiring NEC is presented in Table 4.
Table 2 Demographic and clinical characteristic of enrolled infants

	Group without NEC	Group with NEC	p value
	N = 78 (%)	N = 22 (%)	
Gender			0.670a
Male	43 (55.13)	11 (50.00)	
Female	35 (44.87)	11 (50.00)	
Gestational age (week)			0.046a
24–28	38 (48.72)	16 (72.73)	
29–32	40 (51.28)	6 (27.27)	
Birth weight (g)			0.013b
< 750	9 (11.54)	5 (22.73)	
750–1000	17 (21.79)	10 (45.45)	
>1000	52 (66.67)	7 (31.82)	
Birth weight < 3rd percentile			0.165b
Yes	67 (85.90)	16 (72.73)	
No	11 (14.10)	6 (27.27)	
Apgar score (median and range)			0.334d
1st minute	6 (1–10)	5 (1–9)	0.396d
5th minute	7 (1–10)	7 (5–9)	
Mode of delivery			0.052b
Vaginal	28 (35.90)	13 (59.09)	
Cesarean section	50 (64.10)	9 (40.91)	
Asphyxia (pH lower than 7.0 or BE lower than −12)			0.458c
Yes	3 (4.00)	0 (0.00)	
No	72 (96.00)	22 (100.0)	
Surfactant therapy			0.068a
Yes	36 (46.15)	15 (68.18)	
No	42 (53.85)	7 (31.82)	
Ventilation support			0.031a
Non-invasive	45 (57.69)	7 (31.82)	
Conventional	33 (42.31)	15 (68.18)	
IVH II–IV			0.036b
Yes	20 (25.64)	11 (50.00)	
No	58 (74.36)	11 (50.00)	
BPD			0.043b
Yes	24 (30.77)	12 (54.55)	
No	54 (69.23)	10 (45.45)	
Deaths			0.040b
Yes	5 (6.49)	5 (22.73)	
No	72 (93.51)	17 (77.27)	

Results are expressed as absolute number of patients (percentage) and median (interquartile range)

NEC necrotizing enterocolitis, IVH intraventricular hemorrhage, BPD bronchopulmonary dysplasia

a Chi-square test
b Fisher Freeman Halton test
c Chi-square test with Yate’s correction
d Mann–Whitney test
Gene symbol	Genotypes/allele	Group without NEC	Group with NEC	p	OR 95% CI	Group without NEC	Group with NEC	p	OR 95% CI
		N (%)	N (%)			N (%)	N (%)		
II-1β									
	CC	47 (60.26)	15 (68.18)	–	References	57 (61.29)	5 (71.43)	–	References
+3953C>T									
(rs1143634)	CT	26 (33.33)	5 (22.73)	0.540	0.603 (0.154–2.016)	29 (31.18)	2 (28.57)	1.000	0.786 (0.071–5.182)
	TT	5 (6.41)	2 (9.09)	1.000	1.253 (0.108–8.656)	7 (7.53)	0 (0.00)	1.000	0.000 (0.000–10.83)
	C	120 (76.92)	35 (79.55)	–	References	143 (76.88)	12 (85.71)	–	References
	T	36 (23.08)	9 (20.45)	0.887	0.857 (0.331–2.042)	43 (23.12)	2 (14.29)	0.702	0.554 (0.058–2.646)
ILIRN	86 BP VNTR								
	1/1	40 (51.28)	10 (45.45)	–	References	47 (50.54)	3 (42.86)	–	References
	1/2	26 (33.33)	7 (31.28)	1.000	1.077 (0.306–3.603)	31 (33.33)	2 (28.57)	1.000	1.011 (0.080–9.358)
	1/3	2 (2.56)	0 (0.00)	1.000	0.000 (0.000–23.05)	2 (2.15)	0 (0.00)	1.000	0.000 (0.000–101.6)
	2/2	9 (11.54)	5 (22.73)	0.379	2.222 (0.470–9.455)	12 (12.90)	2 (28.57)	0.599	2.611 (0.194–25.15)
	2/3	1 (1.28)	0 (0.00)	1.000	0.000 (0.000–159.9)	1 (1.08)	0 (0.00)	1.000	0.000 (0.000–624)
	1	108 (69.23)	27 (61.36)	–	References	127 (68.28)	8 (57.14)	–	References
	2	45 (28.85)	17 (38.64)	0.328	1.511 (0.699–3.198)	56 (30.11)	6 (42.86)	0.503	1.701 (0.462–5.874)
	3	3 (1.92)	0 (0.00)	1.000	0.000 (0.000–10.10)	3 (1.61)	0 (0.00)	1.000	0.000 (0.000–42.83)
II-6									
	GG	14 (17.95)	7 (31.82)	–	References	19 (20.43)	2 (28.57)	–	References
	GC	49 (62.82)	12 (54.55)	0.326	0.489 (0.144–1.776)	57 (61.29)	4 (57.14)	0.969	0.667 (0.088–7.963)
	CC	15 (19.23)	3 (13.64)	0.414	0.400 (0.057–2.250)	17 (18.28)	1 (14.29)	1.000	0.559 (0.009–11.81)
	G	77 (49.36)	26 (59.09)	–	References	95 (51.08)	8 (57.14)	–	References
	C	79 (50.64)	18 (40.91)	0.332	0.675 (0.321–1.399)	91 (48.92)	6 (42.86)	0.875	0.783 (0.215–2.691)
	GG	16 (20.51)	7 (31.82)	–	References	21 (22.58)	2 (28.57)	–	References
II-6									
	GA	48 (61.54)	12 (54.55)	0.465	0.571 (0.171–2.036)	56 (60.22)	4 (57.14)	1.000	0.750 (0.099–8.901)
	AA	14 (17.95)	3 (13.64)	0.586	1.489 (0.069–2.729)	16 (17.20)	1 (14.29)	1.000	0.656 (0.010–13.80)
	G	80 (51.28)	26 (59.09)	–	References	98 (52.69)	8 (57.14)	–	References
	A	76 (48.72)	18 (40.91)	0.457	0.729 (0.347–1.510)	88 (47.31)	6 (42.86)	0.969	0.835 (0.229–2.870)
The aim of our study was to have a homogenous tested probe which is representative for a population of extremely premature infants. The mean gestational age in our population of infants diagnosed with NEC was comparable to the one found in literature (28 ± 4 vs. 27 ± 3) [26]. In our Department, however, the prevalence of NEC (22%) among newborns under 33 GA was higher than the 6.3% incidence of NEC stage II/III reported by the EPICE research group [27]. These data reflect the statistics for around 300 neonates treated in the Wielkopolska region of Poland where our department is located. US Neonatal Research Network [28] reported a 7% NEC morbidity. According to other American data, NEC prevalence varied from 11 to 30% [11, 26].

The significant variation in data from different NICUs may be related to the disparity in understanding the definition and diagnosing criteria of NEC. Signs and symptoms of the disease tend to be non-specific and involve a high index of suspicion. Recently, this issue has been raised by a group of researchers on the subject [29]. The exclusion of Bell’s stage I—“suspected NEC”—in the analyses has been the proposed [30], similar to the EPICE research. In our study, stage I qualified as a diagnosis of NEC which could have led to the overestimation of exact numbers of NEC cases. High incidence of NEC in our ward might be also a result of statistically significant lower gestational age of patients in Polish NICUs [27] and the fact that our department is of the highest reference in neonatal medicine in our region.

Moreover, in our study, the percentage of surgical NEC (around 30% of NEC cases and 7% of our probe) is higher than in EPICE (2.7% of population) and lower than in the American data (50% VLBW NEC cases) [31]. Again, the 22% mortality rate of our NEC patients is lower than the one generally reported 30% [18]. The mortality in surgical NEC among our patients is lower (28 vs. 45%). These data may reflect the influence of proper decision making concerning timing and the choice of surgical procedures. Rest of the demographic features of our probe seem consistent with the well-documented NEC characteristics and co-morbidities of prematurity, proving that our group was homogenous and representative for the given population.

To date, there have been no studies assessing the association of eNOS: 894G>T and −786 T>C polymorphism genes with NEC. The eNOS gene polymorphism in which guanine (G) is replaced with thymine (T) at nucleotide 894 (exon 7), results in a change of the amino acid sequence Glu298Asp. The −786T>C polymorphism of the eNOS gene replaces thymine with cytosine in the eNOS gene promoter at position 786. It is thought that in the presence of the eNOS: 894G>T and −786 T>C polymorphism genes with NEC.

Table 3 continued

Gene symbol	db SNP	Genotypes/allele	Group with NEC	Group without NEC	p	OR 95% CI	p	OR 95% CI	
			Group with NEC	Group with NEC		References	Group with NEC	Group with NEC	
TNF-α	−308G>A	(rs1800629)	GG	60 (76.92)	0.980 (0.248–3.304)	0.983 (0.268–2.983)			
			GA	18 (23.08)	1.000	References			
			AA	0 (0.00)	0.000	References			
			G	138 (88.46)	0.983 (0.268–2.983)	1.000	References		
			A	18 (11.54)	1.000	References			

Results are expressed as absolute number of patients (percentage). The odds ratio (OR) and 95% confidence intervals (95% CI) were calculated using logistic regression analysis. Significant differences are indicated with p < 0.05.
of 894G>T and −786T>C polymorphic variants, eNOS enzymatic activity is impaired [32]. Our analysis showed a 20-fold increased prevalence of NEC in infants with the genotype TT (OR 20 (3.71–208.7); p = 0.0004) of eNOS 894G>T gene polymorphism. Additionally, there was a higher prevalence of allele C carriers of eNOS 786T>C in patients with surgery-requiring NEC. These novel findings suggest that the role of NO in pathogenesis of NEC is significant. Decreased levels of NO in homozygous TT of eNOS 894G>T gene polymorphisms and allele C carriers of eNOS −786T>C may predispose to NEC due to ischemia. Franklin et al. analyzed the 6797G>A (rs1800779) eNOS polymorphism. The role of this polymorphism in NEC pathogenesis, however, still remains unclear [33].

Polymorphism 5665G>T of endothelin-1 gene consists of replacing guanine for thymine on position 5665, which affects the amino acid sequence (Lys198Asn). Abnormal production of END-1 in individuals with genotype GT and TT 5665G>T polymorphism may lead to impaired regulation of vascular smooth muscle tension and ischemia [34]. To our knowledge, there have been no studies assessing the association of NEC and 5665G>T END-1 polymorphism. We could not, however, confirm any role of the END-1 5665G>T polymorphism in pathogenesis of this disease.

We analyzed the following polymorphisms involved in inflammation pathway: II-1β 3953C>T, II-6 −174G>C and −596G>A, TNFα −308G>A, and II-1RN VNTR 86 bp.

Table 4 Genotype distribution of the three polymorphisms involved in regulation of arteries tension in infants without and with NEC and without/with NEC surgery-requiring

Gene symbol db SNP	Genotypes/allele	Group without NEC N (%)	Group with NEC N (%)	OR 95% CI	Group with NEC without surgery N (%)	Group with NEC with surgery N (%)	p OR 95% CI	p
eNOS 894G>T (rs1799983)	GG 45 (57.69) 9 (40.91) –	References 50 (53.76) 4 (57.14) –	References					
	GT 31 (39.74) 5 (22.73) 0.964 0.807 (0.193–3.00) 35 (37.63) 1 (14.29) 0.662 0.357 (0.193–3.00)							
	TT 2 (2.56) 8 (36.36) 0.0004 20 (3.71–208.7) 8 (8.60) 2 (28.57) 0.467 3.125 (0.239–25.81)							
	G 121 (77.56) 23 (52.27) –	References 135 (72.58) 9 (64.29) – References						
	T 35 (22.44) 21 (47.73) 0.003 3.157 (1.466–6.726) 51 (27.42) 5 (35.71) 0.696 1.471 (0.368–5.156)							
eNOS −786T>C (rs2070744)	TT 32 (41.03) 6 (27.27) –	References 38 (40.86) 0 (0.00) – References						
	TC 40 (51.28) 11 (50.00) 0.685 1.467 (0.437–5.362) 47 (50.54) 4 (57.14) – –							
	CC 6 (7.69) 5 (22.73) 0.105 4.444 (0.773–24.27) 8 (8.60) 3 (42.86) – –							
	T 104 (66.67) 23 (52.27) –	References 123 (66.13) 4 (40.00) – References						
	C 52 (33.33) 21 (47.73) 0.118 1.826 (0.871–3.799) 63 (33.87) 10 (60.00) 0.013 4.881 (1.330–21.99)							
END-1 5665G>T (rs5370)	GG 52 (66.67) 14 (63.64) –	References 63 (67.74) 3 (42.86) – References						
	GT 24 (30.77) 7 (31.82) 1.000 1.083 (0.326–3.329) 28 (30.11) 3 (42.86) 0.577 2.250 (0.281–17.70)							
	TT 2 (2.56) 1 (4.55) 1.000 1.857 (0.029–37.76) 2 (2.15) 1 (14.29) 0.333 10.5 (0.134–243.2)							
	G 128 (82.05) 35 (79.55) –	References 154 (82.80) 9 (64.29) – References						
	T 28 (17.95) 9 (20.45) 0.854 1.176 (0.445–2.863) 32 (17.20) 5 (35.71) 0.184 2.674 (0.655–9.549)							

Results are expressed as absolute number of patients (percentage). The odds ratio (OR) and 95% confidence intervals (95% CI)

END-1 endothelin-1, eNOS endothelial nitric oxide synthase, NEC necrotizing enterocolitis
Polymorphism II-1β 3953C>T consists of replacing cytosine with thymine. It leads to appearance of a rarer allele 2 which is connected with higher production of II-1β [35]. II-6 −174G>C is connected with replacing guanine with cytosine at position −174 and II-6 −596G>A consists of replacing of guanine with adenosine at position −596. Both homozygotes CC of polymorphism II-6 −174G>C and AA of polymorphism II-6 −596G>A result in decreased production of II-6 [36]. Polymorphism TNF −308G>A is caused by replacement of guanine by adenosine, resulting in loss of binding site for transcription factor AP-2 [37]. Treszl et al. found that the prevalence of alleles with guanine–adenine transition in the −308 and −238 positions was the same in NEC and control subjects [38]. Interleukin-1 receptor antagonists competitively inhibit II-1-induced proinflammatory activity. Its encoding gene is polymorphic, resulting in quantitative differences in both II-1 receptor antagonist and II-1β production. The VNTR polymorphism occurs within intron 2 of the human II-1RN gene, consisting of repeats of 86 bp sequence. The number of repeats is of functional significance as these repeats contain binding sites for transcription factors. It was proven that the occurrence of IL1RN*2 is connected with a more severe and prolonged inflammatory response [39]. To our knowledge, the polymorphism of this gene has not been studied in accordance to neonates with NEC. In our analysis, we did not find any significant association.

Our study confirms the finding of Treszl et al. that no significant differences were present in the allelic frequencies of II-1 and II-6 genes between NEC and control infants [40]. Large 2009 meta-analysis by Henderson et al. [41] also confirmed that none of the candidate cytokine polymorphisms were significantly associated with NEC. However, Henderson showed that (by the upper limit of the 95% CI of the OR) the common II-6 −174G>C had a modest protective effect towards NEC, reducing the odds of developing the disease by half. Previously, this polymorphism has also been linked to an increased II-6 production in neonatal lymphocytes [42]. Exclusively in neonates, it is thought to alter the promoter region that increases the transcription of II-6 protein [43]. Decreased susceptibility of invasive infection in preterm infants might also be connected with II-6 −174G>C [44] presumably due to a strong immune response to a pathogen. A recent 2015 paper by Franklin et al. showed that 59 Caucasian neonates with II-6 −174G>C were over 6 times more likely to have NEC (p = 0.013) and over 7 times more likely to have Stage III disease (p = 0.011) [33]. This association was not observed in Black neonates. These conflicting data reflect the complexity of immunologic findings in NEC—the observations can suggest rather concomitant than causal role of all the polymorphisms we tested [45].

Conclusions

Homoygous TT of eNOS 894G>T gene polymorphism are 20 times more likely to develop NEC. In children with surgery-requiring NEC, a higher prevalence of allele C carriers of eNOS 786T>C was found. This study confirms the significant role of NO and ischemia in the pathogenesis of NEC. Identifying gene variants that increase the risk for NEC development may be useful in screening infants with inherent vulnerability and creating strategies for individualized care. New information about NEC pathogenesis may create new opportunities in preventive medicine.

Funding This study was funded by Poznan University of Medical Sciences (Grant No. 502-14-02215338-09691).

Author contributions D.S., designed research. D.S., N.N., M.B., collected and analyzed data and wrote the manuscript. D.S., J.G., A.S.-M., G.K., K.D., M.S. performed research. G.K. was responsible for PCR procedure. All authors commented on the manuscript at all stages.

Compliance with ethical standards

Conflict of interest All authors of this manuscript declare that they have no conflict of interest.

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Bioethics Committee of Poznan University of Medical Sciences (Nos. 66/14 and 799/16).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Henry MCW, Moss RL (2008) Neonatal necrotizing enterocolitis. Semin Pediatr Surg 17:98–109. doi:10.1053/j.sempedsurg.2008.02.005
2. Holman RC, Stoll BJ, Curns AT et al (2006) Necrotising enterocolitis hospitalisations among neonates in the United States. Paediatr Perinat Epidemiol 20:498–506. doi:10.1111/j.1365-3016.2006.00756.x
3. Hintz SR (2005) Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics 115:696–703. doi:10.1542/peds.2004-0569
4. Lim JC, Golden JM, Ford HR (2015) Pathogenesis of neonatal necrotizing enterocolitis. Pediatr Surg Int 31:509–518. doi:10.1007/s00383-015-3697-9
5. Niño DF, Sodhi CP, Hackam DJ (2016) Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol 13:590–600. doi:10.1038/nrgastro.2016.119
6. Tian J, Liu Y, Jiang Y et al (2017) Association of single nucleotide polymorphisms of IL23R and IL17 with necrotizing enterocolitis in premature infants. Mol Cell Biochem. doi:10.1007/s11010-017-2972-6
7. Yurttutan S, Ozdemir R, Canpolat FE et al (2014) Beneficial effects of Etanercept on experimental necrotizing enterocolitis. Pediatr Surg Int 30:71–77. doi:10.1007/s00383-013-3415-4
8. Harris MC, Costarino AT, Sullivan JS et al (1994) Cytokine elevations in critically ill infants with sepsis and necrotizing enterocolitis. J Pediatr 124:105–111
9. Viscardi RM, Lyon NH, Sun CC et al (1997) Inflammatory cytokine mRNAs in surgical specimens of necrotizing enterocolitis and normal newborn intestine. Pediatr Pathol Lab Med 17:547–559
10. Chen Y, Chang KTE, Lian DWQ et al (2016) The role of ischemia in necrotizing enterocolitis. J Pediatr Surg 51:1255–1261. doi:10.1016/j.jpedsurg.2015.12.015
11. Galluccio E, Cassina L, Russo I et al (2014) A novel truncated form of eNOS associates with altered vascular function. Cardiovasc Res 101:492–502. doi:10.1093/cvr/cvt267
12. Grishin A, Bowling J, Bell B et al (2016) Roles of nitric oxide and intestinal microbiota in the pathogenesis of necrotizing enterocolitis. J Pediatr Surg 51:13–17. doi:10.1016/j.jpedsurg.2015.10.006
13. Gladwin MT, Tejero J (2011) Nitrite-NO bailout for a NOS complex too big to fail. Nat Med 17:1556–1557. doi:10.1038/nm.2591
14. Yazji I, Sodhi CP, Lee EK et al (2013) Endothelial TLR4 activation impairs intestinal microrcirculatory perfusion in necrotizing enterocolitis via eNOS–NO–nitrite signaling. Proc Natl Acad Sci USA 110:9451–9456. doi:10.1073/pnas.1219997110
15. Whitehouse JS, Xu H, Shi Y et al (2010) Mesenteric nitric oxide and superoxide production in experimental necrotizing enterocolitis. J Surg Res 161:1–8. doi:10.1016/j.jss.2009.07.028
16. Shang Q, Bao L, Guo H et al (2016) Contribution of glutaredoxin-1 to S-glutathionylation of endothelial nitric oxide synthase for mesenteric nitric oxide generation in experimental necrotizing enterocolitis. Transl Res. doi:10.1016/j.trsl.2016.01.004
17. Kawanebe Y, Nauli SM (2011) Endothelin. Cell Mol Life Sci 68:195–203. doi:10.1007/s00018-010-0518-0
18. Travadi J, Patole S, Charles A et al (2006) Pentoxifylline reduces elevations in critically ill infants with sepsis and necrotizing enterocolitis. J Pediatr 124:105–111
19. Halpern MD (2006) Reduction of experimental necrotizing enterocolitis with anti-TNF-. AJP Gastrointest Liver Physiol 290:G757–G764. doi:10.1152/ajpgi.00408.2005
20. Sweet DG, Carnielli V, Greisen G et al (2013) European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants-2013 update. Neonatology 103:353–368
21. Papile LA, Burstein J, Burstein R, Koffler H (1978) Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 92:529–534
22. Jobe AH, Bancalari E (2001) Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163:1723–1729. doi:10.1164/ajccm.163.7.2011060
23. Agostoni C, Buonocore G, Carnielli V et al (2010) Enteral nutrient supply for preterm infants: commentary from the european society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr 50:85–91. doi:10.1097/MPG.0b013e3181adae0
24. Lee JS, Polin RA (2003) Treatment and prevention of necrotizing enterocolitis. Semin Neonatol 8:449–459. doi:10.1016/S1084-2756(03)000123-4
25. Blaszczyszki P, Porzucek W, Becela P, Gadzinowski J (2011) T-tube enterostomy in surgical management of emergency cases in neonate. Arch Perinat Med 17:93–96
26. Yee WH, Soraisham AS, Shah VS et al (2012) Incidence and timing of presentation of necrotizing enterocolitis in preterm infants. Pediatrics 129:e298–e304. doi:10.1542/peds.2011-2022
27. Zeitlin J, Mankelow BN, Piedvache A et al (2016) Use of evidence based practices to improve survival without severe morbidity for very preterm infants: results from the EPICE population based cohort. BMJ 354:j2976
28. Stoll BJ, Hansen NL, Bell EF et al (2010) Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126:443–456. doi:10.1542/peds.2009-2959
29. Gordon PV, Swanson JR, MacQueen BC, Christensen RD (2016) A critical question for NEC researchers: can we create a consensus definition of NEC that facilitates research progress? Semin Perinatol. doi:10.1053/j.semperi.2016.09.013
30. Gordon PV, Swanson JR (2016) A critical question for NEC researchers: Can we create a consensus definition of NEC that facilitates research progress? Semin Perinatol 41(1):7–14
31. Hull MA, Fisher JG, Gutierrez IM et al (2014) Mortality and management of surgical necrotizing enterocolitis in very low birth weight neonates: a prospective cohort study. J Am Coll Surg 218:1148–1155. doi:10.1016/j.amcollsurg.2013.11.015
32. Veldman BA, Sperier W, Doevendans PA et al (2002) The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide. J Hypertens 20:2023–2027. doi:10.1097/00004872-200210000-00022
33. Franklin AL, Said M, Cappiello CD et al (2015) Are immune modulating single nucleotide polymorphisms associated with necrotizing enterocolitis? Sci Rep 5:18369. doi:10.1038/srep18369
34. Mei M, Cheng G, Sun B et al (2016) EDN1 gene variant is associated with neonatal persistent pulmonary hypertension. Sci Rep 6:29877
35. Serafin M, Kalinka J (2014) The role of chosen polymorphism of genes coding cytokines IL-1, IL1ra, IL-6 and TNFalpha in the pathogenesis of the preterm delivery. Ginekol i Poloznictwo 2014:421–429. doi:10.15089/pol.2014.01.004
36. Drews-Piasecka E, Seremak-Mrozikiewicz A, Barlik M et al (2014) The significance of TNF-α gene polymorphisms in preterm delivery. Ginekol Pol 85:428–434
37. Kroeger KM, Carville KS, Abraham LJ (1997) The -308 tumor necrosis factor-alpha promoter gene do not influence the incidence and severity of necrotizing enterocolitis in a neonatal rat model. Pediatr Res 40:222–225. doi:10.1203/01.pdr.0000228325.24945.ac
38. Treszl A, Kocsis I, Szathmary M et al (2001) Genetic variants of the tumour necrosis factor-alpha promoter gene do not influence the development of necrotizing enterocolitis. Acta Paediatr 90:1182–1185
39. Withkin SS, Gerber S, Ledger WJ (2002) Influence of interleukin-1 receptor antagonist gene polymorphism on disease. Clin Infect Dis 34:204–209. doi:10.1086/338261
40. Treszl A, Héninger E, Kálmán A et al (2003) Lower prevalence of IL-4 receptor α-chain gene 1902G variant in very-low-birth-weight infants with necrotizing enterocolitis. J Pediatr Surg 38:1374–1378. doi:10.1016/S0022-3468(03)00399-3
41. Henderson G, Craig S, Baier RJ et al (2009) Cytokine gene polymorphisms in preterm infants with necrotising enterocolitis: genetic association study. Arch Dis Child Fetal Neonatal Ed 94:F124–F128. doi:10.1136/adc.2007.119933
42. Chen H (2006) Single nucleotide polymorphisms in the human interleukin-1B gene affect transcription according to haplotype context. Hum Mol Genet 15:519–529. doi:10.1093/hmg/ddi469
43. Kilpinen S, Hulkkonen J, Wang XY, Hurme M (2001) The promoter polymorphism of the interleukin-6 gene regulates interleukin-6 production in neonates but not in adults. Eur Cytokine Netw 12:62–68

44. Harding D, Dhamrait S, Millar A et al (2003) Is interleukin-6 -174 genotype associated with the development of septicemia in preterm infants? Pediatrics 112:800–803

45. Treszl A, Kocsis I, Szathmári M et al (2003) Genetic variants of TNF-[FC12]a, IL-1beta, IL-4 receptor [FC12]a-chain, IL-6 and IL-10 genes are not risk factors for sepsis in low-birth-weight infants. Biol Neonate 83:241–245