THE $L_p$ MINKOWSKI PROBLEM FOR POLYTOPES FOR $0 < p < 1$

GUANGXIAN ZHU

Abstract. Necessary and sufficient conditions are given for the existence of solutions to the discrete $L_p$ Minkowski problem for the critical case where $0 < p < 1$.

1. Introduction

The setting for this paper is $n$-dimensional Euclidean space $\mathbb{R}^n$. A convex body in $\mathbb{R}^n$ is a compact convex set that has non-empty interior. If $K$ is a convex body in $\mathbb{R}^n$, then the surface area measure, $S_K$, of $K$ is a Borel measure on the unit sphere, $S^{n-1}$, defined for a Borel $\omega \subset S^{n-1}$, by

$$S_K(\omega) = \int_{x \in \nu_K^{-1}(\omega)} dH^{n-1}(x),$$

where $\nu_K : \partial K \rightarrow S^{n-1}$ is the Gauss map of $K$, defined on $\partial K$, the set of points of $\partial K$ that have a unique outer unit normal, and $H^{n-1}$ is $(n-1)$-dimensional Hausdorff measure.

The Minkowski problem is one of the cornerstones of the classical Brunn-Minkowski theory: What are necessary and sufficient conditions on a finite Borel measure $\mu$ on $S^{n-1}$ so that it is the surface area measure of a convex body in $\mathbb{R}^n$?

More than a century ago, Minkowski himself solved his problem for the case where the given measure is discrete [47]. The complete solution to this problem for arbitrary measures was given by Aleksandrov, and Fenchel and Jessen (see, e.g., [52]): If $\mu$ is not concentrated on a great subsphere of $S^{n-1}$, then $\mu$ is the surface area measure of a convex body if and only if

$$\int_{S^{n-1}} ud\mu = 0.$$

In [38], Lutwak showed that there is an $L_p$ analogue of the surface area measure and posed the associated $L_p$ Minkowski problem which has the classical Minkowski problem as an important case. If $p \in \mathbb{R}$ and $K$ is a convex body in $\mathbb{R}^n$ that contains the origin in its interior, then the $L_p$ surface area measure, $S_p(K, \cdot)$, of $K$ is a Borel measure on $S^{n-1}$ defined for a Borel $\omega \subset S^{n-1}$, by

$$S_p(K, \omega) = \int_{x \in \nu_K^{-1}(\omega)} (x \cdot \nu_K(x))^{1-p} dH^{n-1}(x).$$

Obviously, $S_1(K, \cdot)$ is the classical surface area measure of $K$. In recent years, the $L_p$ surface area measure appeared in, e.g., [11, 14, 17, 19, 20, 22, 23, 27, 35, 37, 40, 42, 45, 46, 48–51, 55].

Today, the $L_p$ Minkowski problem is one of the central problems in convex geometric analysis. It can be stated in the following way:

$L_p$ Minkowski problem: For fixed $p$, what are necessary and sufficient conditions on a finite Borel measure $\mu$ on $S^{n-1}$ so that $\mu$ is the $L_p$ surface area measure of a convex body in $\mathbb{R}^n$?

2010 Mathematics Subject Classification: 52A40.
Key Words: Polytope, $L_p$ surface area measure, $L_p$ Minkowski problem, Monge-Ampère equation.
When \( \mu \) has a density \( f \), with respect to spherical Lebesgue measure, the \( L_p \) Minkowski problem involves establishing existence for the Monge-Ampère type equation:

\[
h^{1-p} \det(h_{ij} + h\delta_{ij}) = f,
\]

where \( h_{ij} \) is the covariant derivative of \( h \) with respect to an orthonormal frame on \( S^{n-1} \) and \( \delta_{ij} \) is the Kronecker delta.

Obviously, the \( L_1 \) Minkowski problem is the classical Minkowski problem. Establishing existence and uniqueness for the solution of the classical Minkowski problem was done by Aleksandrov, and Fenchel and Jessen (see, e.g., \cite{52}). When \( p \neq 1 \), the \( L_p \) Minkowski problem has been studied by, e.g., Lutwak \cite{38}, Lutwak and Oliker \cite{39}, Guan and Lin \cite{18}, Chou and Wang \cite{10}, Hug, et al. \cite{30}, Böröczky, et al. \cite{5}. Additional references regarding the \( L_p \) Minkowski problem and Minkowski-type problems can be found in \cite{5, 8, 10, 17–21, 28–30, 32–34, 38, 39, 44, 53, 54}.

The solutions to the Minkowski problem and the \( L_p \) Minkowski problem connect with some important flows (see, e.g., \cite{2, 3, 9, 12, 31}), and have important applications to Sobolev-type inequalities, see, e.g., Zhang \cite{58}, Lutwak, et al. \cite{43}, Ciachi, et al. \cite{11}, Haberl and Schuster \cite{24–26}, and Wang \cite{57}.

Most previous work on the \( L_p \) Minkowski problem was limited to the case where \( p > 1 \). The reason that uniqueness of solutions to the \( L_p \) Minkowski problem for \( p > 1 \) can be shown is the availability of mixed volume inequalities established by Lutwak \cite{38}. One reason that the \( L_p \) Minkowski problem becomes challenging when \( p < 1 \) is because little is known about the mixed volume inequalities when \( p < 1 \) (see, e.g., \cite{6}). In \( \mathbb{R}^n \), necessary and sufficient conditions for the existence of the solution of the even \( L_p \) Minkowski problem for the case of \( 0 < p < 1 \) was given by Haberl, et al. \cite{21}. Necessary and sufficient conditions for the existence of solutions to the even \( L_0 \) Minkowski problem (also called the logarithmic Minkowski problem) was recently established by Böröczky, et al. \cite{5}. Without the assumption that the measure is even, existence of solution of the PDE (1.1) for the case where \( p > -n \) were given by Chou and Wang \cite{10}. In \cite{59, 60}, the author established necessary and sufficient conditions for the existence of the solution of the \( L_p \) Minkowski problem for the case where \( p = 0 \) and \( p = -n \), and \( \mu \) is a discrete measure whose support-vectors (i.e., vectors in the support of the measure) are in general position.

One reason that the Minkowski and the \( L_p \) Minkowski problem for polytopes are important is because the Minkowski problem and the \( L_p \) Minkowski problem (for \( p > 1 \)) for measures can be solved by an approximation argument by first solving the polytopal case (see, e.g., Hug, et al. \cite{30} and Schneider \cite{52}, pp. 392-393).

A polytope in \( \mathbb{R}^n \) is the convex hull of a finite set of points in \( \mathbb{R}^n \) provided that it has positive \( n \)-dimensional volume. The convex hull of a subset of these points is called a facet of the polytope if it lies entirely on the boundary of the polytope and has positive \( (n-1) \)-dimensional volume. If a polytope \( P \) contains the origin in its interior with \( N \) facets whose outer unit normals are \( u_1, \ldots, u_N \), and such that if the facet with outer unit normal \( u_k \) has area \( a_k \) and distance from the origin \( h_k \) for all \( k \in \{1, \ldots, N\} \). Then,

\[
S_p(P, \cdot) = \sum_{k=1}^{N} h_k^{1-p} a_k \delta_{u_k}(\cdot).
\]

where \( \delta_{u_k} \) denotes the delta measure that is concentrated at the point \( u_k \).

It is the aim of this paper to establish:

**Theorem.** If \( p \in (0, 1) \), and \( \mu \) is a discrete measure on the unit sphere, then \( \mu \) is the \( L_p \) surface area measure of a polytope if and only if the support of \( \mu \) is not concentrated on a closed hemisphere.
This paper is organized as follows. In Section 2, we recall some basic facts about convex bodies. In Section 3, we study an extremal problem related to the \( L_p \) Minkowski problem. In Section 4, we prove the main theorem of this paper.

For the case where \( p > 1 \) with \( p \neq n \), necessary and sufficient conditions for the existence of solutions to the discrete \( L_p \) Minkowski problem were established by Hug, et al. [30]. In Section 5, we give a new proof of this condition. The proof presented in this paper includes a new approach to the classical Minkowski problem.

2. Preliminaries

In this section, we collect some basic definitions and facts about convex bodies. For general references regarding convex bodies see, e.g., [13][15][16][52][56].

The sets of this paper are subsets of the \( n \)-dimensional Euclidean space \( \mathbb{R}^n \). For \( x, y \in \mathbb{R}^n \), we write \( x \cdot y \) for the standard inner product of \( x \) and \( y \), \( |x| \) for the Euclidean norm of \( x \) and \( B^n \) for the unit ball of \( \mathbb{R}^n \).

For \( K_1, K_2 \subset \mathbb{R}^n \) and \( c_1, c_2 \geq 0 \), the Minkowski combination, \( c_1K_1 + c_2K_2 \), is defined by
\[
c_1K_1 + c_2K_2 = \{c_1x_1 + c_2x_2 : x_1 \in K_1, x_2 \in K_2 \}.
\]
The support function \( h_K : \mathbb{R}^n \rightarrow \mathbb{R} \) of a compact convex set \( K \) is defined, for \( x \in \mathbb{R}^n \), by
\[
h(K, x) = \max \{x \cdot y : y \in K \}.
\]
Obviously, for \( c \geq 0 \) and \( x \in \mathbb{R}^n \),
\[
h(cK, x) = h(K, cx) = ch(K, x).
\]
The Hausdorff distance between two compact sets \( K, L \) in \( \mathbb{R}^n \) is defined by
\[
\delta(K, L) = \inf \{t \geq 0 : K \subset L + tB^n, L \subset K + tB^n \}.
\]
It is easily shown that the Hausdorff distance between two convex bodies, \( K \) and \( L \), is
\[
\delta(K, L) = \max_{u \in S^{n-1}} |h(K, u) - h(L, u)|.
\]
For a convex body \( K \) in \( \mathbb{R}^n \), and \( u \in S^{n-1} \), the support hyperplane \( H(K, u) \) in direction \( u \) is defined by
\[
H(K, u) = \{x \in \mathbb{R}^n : x \cdot u = h(K, u)\},
\]
the half-space \( H^-(K, u) \) in direction \( u \) is defined by
\[
H^-(K, u) = \{x \in \mathbb{R}^n : x \cdot u \leq h(K, u)\},
\]
and the support set \( F(K, u) \) in direction \( u \) is defined by
\[
F(K, u) = K \cap H(K, u).
\]
For a compact \( K \in \mathbb{R}^n \), the diameter of \( K \) is defined by
\[
d(K) = \max \{|x - y| : x, y \in K\}.
\]
Let \( \mathcal{P} \) be the set of polytopes in \( \mathbb{R}^n \). If the unit vectors \( u_1, ..., u_N \) (\( N \geq n+1 \)) are not concentrated on a closed hemisphere, let \( \mathcal{P}(u_1, ..., u_N) \) be the subset of \( \mathcal{P} \) such that a polytope \( P \in \mathcal{P}(u_1, ..., u_N) \) if
\[
P = \bigcap_{k=1}^{N} H^-(P, u_k).
\]
Obviously, if \( P \in \mathcal{P}(u_1, ..., u_N) \), then \( P \) has at most \( N \) facets, and the outer unit normals of \( P \) are a subset of \( \{u_1, ..., u_N\} \). Let \( \mathcal{P}_N(u_1, ..., u_N) \) be the subset of \( \mathcal{P}(u_1, ..., u_N) \) such that a polytope \( P \in \mathcal{P}_N(u_1, ..., u_N) \) if, \( P \in \mathcal{P}(u_1, ..., u_N) \) and \( P \) has exactly \( N \) facets.
3. An extreme problem related to the $L_p$ Minkowski problem

Suppose $p \in (0, 1)$, $\alpha_1, \ldots, \alpha_N \in \mathbb{R}^+$, the unit vectors $u_1, \ldots, u_N$ ($N \geq n + 1$) are not concentrated on a closed hemisphere, and $P \in \mathcal{P}(u_1, \ldots, u_N)$. Define the function, $\Phi_P : P \to \mathbb{R}$, by

$$\Phi_P(\xi) = \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi \cdot u_k)^p.$$ 

In this section, we study the extremal problem

$$(3.0) \quad \inf \{ \sup_{\xi \in Q} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, \ldots, u_N) \text{ and } V(Q) = 1 \}.$$ 

We will prove that $\Phi_P(\xi)$ is strictly concave on $P$ and that there exists a unique $\xi_p(P) \in \text{Int}(P)$ such that

$$\Phi_P(\xi_p(P)) = \sup_{\xi \in P} \Phi_P(\xi).$$

Moreover, we will prove that there exists a polytope with $u_1, \ldots, u_N$ as its outer unit normals, and the polytope solving problem (3.0).

We first prove the concavity of $\Phi_P(\xi)$.

**Lemma 3.1.** If $0 < p < 1$, $\alpha_1, \ldots, \alpha_N \in \mathbb{R}^+$, the unit vectors $u_1, \ldots, u_N$ ($N > n + 1$) are not concentrated on a closed hemisphere and $P \in \mathcal{P}(u_1, \ldots, u_N)$, then $\Phi_P(\xi)$ is strictly concave on $P$.

**Proof.** For $0 < p < 1$, $t^p$ is strictly concave on $[0, +\infty)$. Thus, for $0 < \lambda < 1$ and $\xi_1, \xi_2 \in P$,

$$\lambda \Phi_P(\xi_1) + (1 - \lambda) \Phi_P(\xi_2) = \lambda \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi_1 \cdot u_k)^p + (1 - \lambda) \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi_2 \cdot u_k)^p$$

$$= \sum_{k=1}^{N} \alpha_k \left[ \lambda (h(P, u_k) - \xi_1 \cdot u_k)^p + (1 - \lambda) (h(P, u_k) - \xi_2 \cdot u_k)^p \right]$$

$$\leq \sum_{k=1}^{N} \alpha_k [h(P, u_k) - (\lambda \xi_1 + (1 - \lambda) \xi_2) \cdot u_k]^p$$

$$= \Phi_P(\lambda \xi_1 + (1 - \lambda) \xi_2),$$

with equality if and only if $\xi_1 \cdot u_k = \xi_2 \cdot u_k$ for all $k = 1, \ldots, N$. Since $u_1, \ldots, u_N$ are not concentrated on a closed hemisphere, $\mathbb{R}^n = \text{Span} \{ u_1, \ldots, u_N \}$. Thus, $\xi_1 = \xi_2$. Therefore, $\Phi_P$ is strictly concave on $P$.

The following lemma is needed.

**Lemma 3.2.** If $0 < p < 1$, $\alpha_1, \ldots, \alpha_N \in \mathbb{R}^+$, the unit vectors $u_1, \ldots, u_N$ ($N > n + 1$) are not concentrated on a closed hemisphere and $P \in \mathcal{P}(u_1, \ldots, u_N)$, then there exists a unique $\xi_p(P) \in \text{Int}(P)$ such that

$$\Phi_P(\xi_p(P)) = \max_{\xi \in P} \Phi_P(\xi),$$

where $\Phi_P(\xi) = \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi \cdot u_k)^p$.

**Proof.** From Lemma 3.1, for $0 < p < 1$, $\Phi_P(\xi)$ is strictly concave on $P$. From this and the fact that $P$ is a compact convex set, we have, there exists a unique $\xi_p(P) \in P$ such that

$$\Phi_P(\xi_p(P)) = \max_{\xi \in P} \Phi_P(\xi).$$

We next prove that $\xi_p(P) \in \text{Int}(P)$. Otherwise, suppose $\xi_p(P) \in \partial P$ with

$$h(P, u_k) - \xi_p(P) \cdot u_k = 0.$$
for $k \in \{i_1, ..., i_m\}$ and
\[ h(P, u_k) - \xi_p(P) \cdot u_k > 0 \]
for $k \in \{1, ..., N\} \setminus \{i_1, ..., i_m\}$, where $1 \leq i_1 < ... < i_m \leq N$ and $1 \leq m \leq N - 1$. Choose $x_0 \in \text{Int}(P)$, let
\[ u_0 = \frac{x_0 - \xi_p(P)}{|x_0 - \xi_p(P)|}, \]
and let
\[
[ h(P, u_k) - (\xi_p(P) + \delta u_0) \cdot u_k ] - [ h(P, u_k) - \xi_p(P) \cdot u_k ] = (-u_0 \cdot u_k)\delta = c_k \delta,
\]
where $c_k = -u_0 \cdot u_k$. Since $h(P, u_k) - \xi_p(P) \cdot u_k = 0$ for $k \in \{i_1, ..., i_m\}$ and $x_0$ is an interior point of $P$, $c_k = -u_0 \cdot u_k > 0$ for $k \in \{i_1, ..., i_m\}$. Let
\[
c_0 = \min \{ h(P, u_k) - \xi_p(P) \cdot u_k : k \in \{1, ..., N\} \setminus \{i_1, ..., i_m\} \} > 0,
\]
and choose $\delta > 0$ small enough so that $\xi_p(P) + \delta u_0 \in \text{Int}(P)$ and
\[
\min \{ h(P, u_k) - (\xi_p(P) + \delta u_0) \cdot u_k : k \in \{1, ..., N\} \setminus \{i_1, ..., i_m\} \} > \frac{c_0}{2}.
\]
Obviously, for $0 < p < 1$ and $x_0, x_0 + \Delta x \in \left(\frac{c_0}{2}, +\infty\right)$,
\[
|\langle x_0 + \Delta x \rangle^p - x_0^p| < p \left(\frac{c_0}{2}\right)^{p-1} |\Delta x|.
\]
From this, the fact that $h(P, u_k) = \xi_p(P) \cdot u_k$ for $k \in \{i_1, ..., i_m\}$, the fact $c_k > 0$ for $k \in \{i_1, ..., i_m\}$, and Equations (3.1), (3.2) and (3.3), we have
\[
\Phi_p(\xi_p(P) + \delta u_0) - \Phi_p(\xi_p(P)) = \sum_{k=1}^{N} \alpha_k \left[ (h(P, u_k) - (\xi_p(P) + \delta u_0) \cdot u_k)^p - (h(P, u_k) - \xi_p(P) \cdot u_k)^p \right]
\]
\[ \geq \sum_{k \in \{i_1, ..., i_m\}} \alpha_k (c_k \delta)^p - \sum_{k \in \{1, ..., N\} \setminus \{i_1, ..., i_m\}} \alpha_k \left| (h(P, u_k) - \xi_p(P) \cdot u_k)^p + c_k \delta \right|
\]
\[
\geq \left( \sum_{k \in \{i_1, ..., i_m\}} \alpha_k c_k^p \right) \delta^p - \left( \sum_{k \in \{1, ..., N\} \setminus \{i_1, ..., i_m\}} \alpha_k p \left( \frac{c_0}{2} \right)^{p-1} |c_k \delta| \right)
\]
\[
= \left( \sum_{k \in \{i_1, ..., i_m\}} \alpha_k c_k^p \right) - \left( \sum_{k \in \{1, ..., N\} \setminus \{i_1, ..., i_m\}} \alpha_k p \left( \frac{c_0}{2} \right)^{p-1} |c_k \delta^{1-p}| \right) \delta^p.
\]
Thus, there exists a small enough $\delta_0 > 0$ such that $\xi_p(P) + \delta_0 u_0 \in \text{Int}(P)$ and
\[
\Phi_p(\xi_p(P) + \delta_0 u_0) > \Phi_p(\xi_p(P)).
\]
This contradicts the definition of $\xi_p(P)$. Therefore, $\xi_p(P) \in \text{Int}(P)$.

By definition, for $\lambda > 0$, $p \in (0, 1)$ and $P \in \mathcal{P}(u_1, ..., u_N)$,
\[
(3.4) \quad \xi_p(\lambda P) = \lambda \xi_p(P).
\]
Obviously, if $P_i \in \mathcal{P}(u_1, ..., u_N)$ and $P_i$ converges to a polytope $P$, then $P \in \mathcal{P}(u_1, ..., u_N)$. \qed
Lemma 3.3. If \( p \in (0, 1), \alpha_1, ..., \alpha_N \) are positive, the unit vectors \( u_1, ..., u_N \) \((N \geq n + 1)\) are not concentrated on a closed hemisphere, \( P_i \in \mathcal{P}(u_1, ..., u_N) \), and \( P_i \) converges to a polytope \( P \). Then,

\[
\lim_{i \to \infty} \xi_p(P_i) = \xi_p(P)
\]

and

\[
\lim_{i \to \infty} \Phi_{P_i}(\xi_p(P_i)) = \Phi_{P}(\xi_p(P)),
\]

where \( \Phi_P(\xi) = \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi \cdot u_k)^p \).

Proof. Since \( P_i \to P \) and \( \xi_p(P_i) \in \text{Int}(P_i) \), \( \xi_p(P_i) \) is bounded. Suppose \( \xi_p(P_i) \) does not converge to \( \xi_p(P) \), then there exists a subsequence \( P_{i_j} \) of \( P_i \) such that \( P_{i_j} \) converges to \( P \), \( \xi_p(P_{i_j}) \to \xi_0 \) but \( \xi_0 \neq \xi_p(P) \). Obviously, \( \xi_0 \in \mathcal{P} \) and

\[
\lim_{j \to \infty} \Phi_{P_{i_j}}(\xi_p(P_{i_j})) = \Phi_{P}(\xi_0)
\]

\[
< \Phi_{P}(\xi_p(P))
\]

\[
= \lim_{j \to \infty} \Phi_{P_{i_j}}(\xi_p(P)).
\]

This contradicts the fact that

\[
\Phi_{P_{i_j}}(\xi_p(P_{i_j})) \geq \Phi_{P_{i_j}}(\xi_p(P)).
\]

Therefore, \( \xi_p(P_i) \to \xi_p(P) \) and thus,

\[
\lim_{i \to \infty} \Phi_{P_i}(\xi_p(P_i)) = \Phi_{P}(\xi_p(P)).
\]

The following lemma is useful in the proving of the compactness of problem (3.0).

Lemma 3.4. Suppose \( p > 0, \alpha_1, ..., \alpha_N \) are positive, and the unit vectors \( u_1, ..., u_N \) \((N \geq n + 1)\) are not concentrated on a hemisphere. If \( P_k \in \mathcal{P}(u_1, ..., u_N), o \in P_k \), and \( R(P_k) \) is not bounded, then

\[
\sum_{i=1}^{N} \alpha_i h(P_k, u_i)^p
\]

is not bounded.

Proof. Without loss of generality, we can assume

\[
\lim_{k \to \infty} R(P_k) = \infty.
\]

Let

\[
f(u) = \sum_{i=1}^{N} \alpha_i |u \cdot u_i|^p,
\]

where \( u \in S^{n-1} \).

Since \( u_1, ..., u_N \) are not contained in a closed hemisphere, \( \mathbb{R}^n = \text{Span} \{u_1, ..., u_N\} \). Thus, \( f(u) > 0 \) for all \( u \in S^{n-1} \). On the other hand, \( f(u) \) is continuous on \( S^{n-1} \). Thus, there exists a constant \( a_0 > 0 \) such that

\[
\sum_{i=1}^{N} \alpha_i |u \cdot u_i|^p \geq a_0
\]

for all \( u \in S^{n-1} \).
Choose \( u_k \in S^{n-1} \) such that \( R(P_k)u_k \in P_k \). Since \( o \in P_k \),
\[
\sum_{i=1}^{N} \alpha_i h(P_k,u_i)^p \geq \sum_{i=1}^{N} \alpha_i |R(P_k)u_k \cdot u_i|^p
\]
\[
= R(P_k)^p \left( \sum_{i=1}^{N} \alpha_i |u_k \cdot u_i|^p \right)
\]
\[
\geq a_0 R(P_k)^p \to +\infty.
\]

The following lemma will be needed.

**Lemma 3.5.** If \( P \) is a polytope in \( \mathbb{R}^n \) and \( v_0 \in S^{n-1} \) with \( V_{n-1}(F(P,v_0)) = 0 \), then there exists a \( \delta_0 > 0 \) such that for \( 0 \leq \delta < \delta_0 \)
\[
V(P \cap \{ x : x \cdot v_0 \geq h(P,v_0) - \delta \}) = c_n \delta^n + \ldots + c_2 \delta^2,
\]
where \( c_n, \ldots, c_2 \) are constants that depend on \( P \) and \( v_0 \).

**Proof.** It is known (e.g., [14], Proposition 3.1) that
\[
g(\delta) = V_{n-1}(P \cap \{ x : x \cdot v_0 = h(P,v_0) - \delta \})
\]
is a piecewise polynomial function of degree at most \( n - 1 \). By conditions, \( g(0) = 0 \). Thus, there exists a \( \delta_0 > 0 \) and \( c'_{n-1}, \ldots, c'_1 \) (depend on \( P \) and \( v_0 \)) such that when \( 0 \leq \delta < \delta_0 \)
\[
g(\delta) = c'_{n-1} \delta^{n-1} + \ldots + c'_1 \delta.
\]
Therefore, when \( 0 \leq \delta < \delta_0 \),
\[
V(P \cap \{ x : x \cdot v_0 \geq h(P,v_0) - \delta \}) = \int_0^{\delta} g(t) dt
\]
\[
= c_n \delta^n + \ldots + c_2 \delta^2,
\]
where \( c_n = c'_{n-1}/n, \ldots, c_2 = c'_1/2 \) are constants that depend on \( P \) and \( v_0 \). \( \square \)

We next solve problem (3.0).

**Lemma 3.6.** If \( 0 < p < 1 \), \( \alpha_1, \ldots, \alpha_N \) are positive, and the unit vectors \( u_1, \ldots, u_N \) \( (N \geq n + 1) \) are not concentrated on a hemisphere, then there exists a \( P \in \mathcal{P}_N(u_1, \ldots, u_N) \) such that \( \xi_p(P) = o \), \( V(P) = 1 \), and
\[
\Phi_P(o) = \inf \{ \max_{\xi \in Q} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, \ldots, u_N) \text{ and } V(Q) = 1 \},
\]
where \( \Phi_Q(\xi) = \sum_{k=1}^{N} \alpha_k (h(Q,u_k) - \xi \cdot u_k)^p \).

**Proof.** Obviously, for \( P, Q \in \mathcal{P}(u_1, \ldots, u_N) \), if there exists a \( x \in \mathbb{R}^n \) such that \( P = Q + x \), then
\[
\Phi_P(\xi_p(P)) = \Phi_Q(\xi_p(Q)).
\]
Thus, we can choose a sequence \( P_i \in \mathcal{P}(u_1, \ldots, u_N) \) with \( \xi_p(P_i) = o \) and \( V(P_i) = 1 \) such that \( \Phi_{P_i}(o) \) converges to
\[
\inf \{ \max_{\xi \in Q} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, \ldots, u_N) \text{ and } V(Q) = 1 \}.
\]
Choose a fixed \( P_0 \in \mathcal{P}(u_1, \ldots, u_N) \) with \( V(P_0) = 1 \), then
\[
\inf \{ \max_{\xi \in Q} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, \ldots, u_N) \text{ and } V(Q) = 1 \} \leq \Phi_{P_0}(\xi_p(P_0)).
\]
We claim that $P_i$ is bounded. Otherwise, from Lemma 3.4, $\Phi_P(\xi_p(P_i))$ converges to $+\infty$. This contradicts the previous inequality. Therefore, $P_i$ is bounded.

From Lemma 3.3 and the Blaschke selection theorem, there exists a subsequence of $P_i$ that converges to a polytope $P$ such that $P \in \mathcal{P}(u_1, \ldots, u_N)$, $V(P) = 1$, $\xi(P) = o$ and

\begin{equation}
\Phi_P(o) = \inf \{ \max_{\xi \in Q} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, \ldots, u_N) \text{ and } V(Q) = 1 \}.
\end{equation}

We next prove that $F(P, u_i)$ are facets for all $i = 1, \ldots, N$. Otherwise, there exists a $i_0 \in \{1, \ldots, N\}$ such that $F(P, u_{i_0})$ is not a facet of $P$.

Choose $\delta > 0$ small enough so that the polytope

\[ P_{\delta} = P \cap \{ x : x \cdot u_{i_0} \leq h(P, u_{i_0}) - \delta \} \in \mathcal{P}(u_1, \ldots, u_N) \]

and (by Lemma 3.3)

\[ V(P_{\delta}) = 1 - (c_n\delta^n + \ldots + c_2\delta^2), \]

where $c_n, \ldots, c_2$ are constants that depend on $P$ and direction $u_{i_0}$.

From Lemma 3.3 for any $\delta_i \to 0$ it always true that $\xi_{p}(P_{\delta_i}) \to o$. We have,

\[ \lim_{\delta \to 0} \xi_{p}(P_{\delta}) = o. \]

Let $\delta$ be small enough so that $h(P, u_k) > \xi_{p}(P_{\delta}) \cdot u_k + \delta$ for all $k \in \{1, \ldots, N\}$, and let

\[ \lambda = V(P_{\delta}) = (1 - (c_n\delta^n + \ldots + c_2\delta^2))^{-\frac{1}{n}}. \]

From this and Equation (3.4), we have

\begin{equation}
\Phi_{\lambda P_{\delta}}(\xi_{p}(\lambda P_{\delta})) = \sum_{k=1}^{N} \alpha_k(\lambda P_{\delta}, u_k) - \xi_{p}(\lambda P_{\delta}) \cdot u_k)^p
= \lambda^p \sum_{k=1}^{N} \alpha_k(h(P_{\delta}, u_k) - \xi_{p}(P_{\delta}) \cdot u_k)^p
= \lambda^p \sum_{k=1}^{N} \alpha_k(h(P, u_k) - \xi_{p}(P_{\delta}) \cdot u_k)^p - \alpha_{i_0}\lambda^p(h(P, u_{i_0}) - \xi_{p}(P_{\delta}) \cdot u_{i_0})^p
+ \alpha_{i_0}\lambda^p(h(P, u_{i_0}) - \xi_{p}(P_{\delta}) \cdot u_{i_0} - \delta)^p
= \sum_{k=1}^{N} \alpha_k(h(P, u_k) - \xi_{p}(P_{\delta}) \cdot u_k)^p + \lambda^p - 1 \sum_{k=1}^{N} \alpha_k(h(P, u_k) - \xi_{p}(P_{\delta}) \cdot u_k)^p
+ \alpha_{i_0}\lambda^p \left[ (h(P, u_{i_0}) - \xi_{p}(P_{\delta}) \cdot u_{i_0} - \delta)^p - (h(P, u_{i_0}) - \xi_{p}(P_{\delta}) \cdot u_{i_0})^p \right]
= \Phi_P(\xi_{p}(P_{\delta})) + B(\delta),
\end{equation}
where
\[ B(\delta) = (\lambda^p - 1) \left( \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi_p(P_\delta) \cdot u_k)^p \right) \]
\[ + \alpha_{i_0} \lambda^p \left[ (h(P, u_{i_0}) - \xi_p(P_\delta) \cdot u_{i_0} - \delta)^p - (h(P, u_{i_0}) - \xi_p(P_\delta) \cdot u_{i_0})^p \right] \]
\[ = \left[ (1 - (c_n \delta^n + \ldots + c_2 \delta^2))^{-\frac{p}{n}} - 1 \right] \left( \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi_p(P_\delta) \cdot u_k)^p \right) \]
\[ + \alpha_{i_0} \lambda^p \left[ (h(P, u_{i_0}) - \xi_p(P_\delta) \cdot u_{i_0} - \delta)^p - (h(P, u_{i_0}) - \xi_p(P_\delta) \cdot u_{i_0})^p \right]. \]

From the facts that \( d_0 = d(P) > h(P, u_{i_0}) - \xi_p(P_\delta) \cdot u_{i_0} > h(P, u_{i_0}) - \xi_p(P_\delta) \cdot u_{i_0} - \delta > 0 \) and that the function \( f(t) = t^p \) is concave on \([0, \infty)\), we have
\[ (h(P, u_{i_0}) - \xi_p(P_\delta) \cdot u_{i_0} - \delta)^p - (h(P, u_{i_0}) - \xi_p(P_\delta) \cdot u_{i_0})^p < (d_0 - \delta)^p - d_0^p. \]

Then,
\[ B(\delta) = (\lambda^p - 1) \left( \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi_p(P_\delta) \cdot u_k)^p \right) \]
\[ + \alpha_{i_0} \lambda^p \left[ (h(P, u_{i_0}) - \xi_p(P_\delta) \cdot u_{i_0} - \delta)^p - (h(P, u_{i_0}) - \xi_p(P_\delta) \cdot u_{i_0})^p \right] < \left[ (1 - (c_n \delta^n + \ldots + c_2 \delta^2))^{-\frac{p}{n}} - 1 \right] \left( \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi_p(P_\delta) \cdot u_k)^p \right) \]
\[ + \alpha_{i_0} \lambda^p [(d_0 - \delta)^p - d_0^p]. \]

On the other hand,
\[ \lim_{\delta \to 0} \sum_{k=1}^{N} \alpha_k (h(P, u_k) - \xi_p(P_\delta) \cdot u_k)^p = \sum_{k=1}^{N} \alpha_k h(P, u_k)^p, \]

\[ (d_0 - \delta)^p - d_0^p < 0, \]
and
\[ \lim_{\delta \to 0} \frac{(1 - (c_n \delta^n + \ldots + c_2 \delta^2))^{-\frac{p}{n}} - 1}{(d_0 - \delta)^p - d_0^p} = \lim_{\delta \to 0} \frac{(-\frac{p}{n})(1 - (c_n \delta^n + \ldots + c_2 \delta^2))^{-\frac{p}{n} - 1}(-nc_n \delta^{n-1} - \ldots - 2c_2 \delta)}{p(d_0 - \delta)^{p-1}(-1)} = 0. \]

From Equations (3.8), (3.9), (3.10), (3.11), and the fact that \( 0 < p < 1 \), we have \( B(\delta) < 0 \) for small enough \( \delta > 0 \). From this and Equation (3.11), there exists a \( \delta_0 > 0 \) such that \( P_{\delta_0} \in \mathcal{P}(u_1, ..., u_N) \) and
\[ \Phi_{\lambda_0 P_{\delta_0}}(\xi_p(\lambda_0 P_{\delta_0})) < \Phi_P(\xi_p(P_{\delta_0})) \leq \Phi_P(\xi_p(P)) = \Phi_P(o), \]
where \( \lambda_0 = V(P_{\delta_0})^{-\frac{1}{p}} \). Let \( P_0 = \lambda_0 P_{\delta_0} - \xi_p(\lambda_0 P_{\delta_0}) \), then \( P_0 \in \mathcal{P}^n(u_1, ..., u_N) \), \( V(P_0) = 1 \), \( \xi_p(P_0) = o \) and
\[ \Phi_{P_0}(o) < \Phi_P(o). \]
This contradicts Equation (3.6). Therefore, \( P \in \mathcal{P}_N(u_1, ..., u_N) \). \( \square \)
4. The $L_p$ Minkowski problem for polytopes ($0 < p < 1$)

In this section, we prove the main theorem of this paper. We only need prove the following:

**Theorem 4.1.** If $p \in (0, 1)$, $\alpha_1, ..., \alpha_N \in \mathbb{R}^+$, and the unit vectors $u_1, ..., u_N (N \geq n + 1)$ are not concentrated on a closed hemisphere, then there exists a polytope $P_0$ such that

$$S_p(P_0, \cdot) = \sum_{k=1}^{N} \alpha_k \delta_{u_k}(\cdot).$$

**Proof.** From Lemma 3.6, there exists a polytope $P \in \mathcal{P}_N(u_1, ..., u_N)$ with $\xi_p(P) = o$ and $V(P) = 1$ such that

$$\Phi_P(o) = \inf_{Q \in \mathcal{Q}} \left\{ \max_{\xi \in \mathcal{Q}} \Phi_Q(\xi) : Q \in \mathcal{P}(u_1, ..., u_N) \right\},$$

where $\Phi_Q(\xi) = \sum_{k=1}^{N} \alpha_k (h(Q, u_k) - \xi \cdot u_k)^p$.

For $\delta_1, ..., \delta_N \in \mathbb{R}$, choose $|t|$ small enough so that the polytope $P_t$ defined by

$$P_t = \bigcap_{i=1}^{N} \{ x : x \cdot u_i \leq h(P, u_i) + t\delta_i \}$$

has exactly $N$ facets. Then,

$$V(P_t) = V(P) + t \left( \sum_{i=1}^{N} \delta_i a_i \right) + o(t),$$

where $a_i$ is the area of $F(P, u_i)$. Thus,

$$\lim_{t \to 0} \frac{V(P_t) - V(P)}{t} = \sum_{i=1}^{N} \delta_i a_i.$$

Let $\lambda(t) = V(P_t)^{-\frac{1}{n}}$, then $\lambda(t)P_t \in \mathcal{P}_N(u_1, ..., u_N)$, $V(\lambda(t)P_t) = 1$ and

$$\lambda'(0) = -\frac{1}{n} \sum_{i=1}^{N} \delta_i S_i.$$

Let $\xi(t) = \xi_p(\lambda(t)P_t)$, and

$$\Phi(t) = \max_{\xi \in \lambda(t)P_t} \sum_{k=1}^{N} \alpha_k (\lambda(t)h(P_t, u_k) - \xi \cdot u_k)^p$$

(4.2)

$$= \sum_{k=1}^{N} \alpha_k (\lambda(t)h(P_t, u_k) - \xi(t) \cdot u_k)^p.$$

From Equation (4.2) and the fact that $\xi(t)$ is an interior point of $\lambda(t)P_t$, we have

$$\sum_{k=1}^{N} \alpha_k \frac{u_{k,i}}{[\lambda(t)h(P_t, u_k) - \xi(t) \cdot u_k]^{1-p}} = 0,$$

for $i = 1, ..., n$, where $u_k = (u_{k,1}, ..., u_{k,n})^T$. As a special case when $t = 0$,

$$\sum_{k=1}^{N} \alpha_k \frac{u_{k,i}}{h(P, u_k)^{1-p}} = 0,$$
for \( i = 1, \ldots, n \). Therefore,

\[(4.4) \quad \sum_{k=1}^{N} \alpha_k \frac{u_k}{h(P, u_k)^{1-p}} = 0.\]

Let

\[F_i(t, \xi_1, \ldots, \xi_n) = \sum_{k=1}^{N} \alpha_k \frac{u_k}{[\lambda(t)h(P, u_k) - (\xi_1 u_{k,1} + \ldots + \xi_n u_{k,n})]^{1-p}}\]

for \( i = 1, \ldots, n \). Then,

\[
\frac{\partial F_i}{\partial \xi_j} \bigg|_{(0, \ldots, 0)} = \sum_{k=1}^{N} \frac{(1-p)\alpha_k}{h(P, u_k)^{2-p}} u_{k,i} u_{k,j}.
\]

Thus,

\[
\left( \frac{\partial F}{\partial \xi} \right)_{(0, \ldots, 0)} \bigg|_{(0, \ldots, 0)} = \sum_{k=1}^{N} \frac{(1-p)\alpha_k}{h(P, u_k)^{2-p}} u_k \cdot u_k^T,
\]

where \( u_k u_k^T \) is an \( n \times n \) matrix.

Since \( u_1, \ldots, u_N \) are not contained in a closed hemisphere, \( \mathbb{R}^n = \text{Span} \{u_1, \ldots, u_N\} \). Thus, for any \( x \in \mathbb{R}^n \) with \( x \neq 0 \), there exists a \( u_{io} \in \{u_1, \ldots, u_N\} \) such that \( u_{io} \cdot x \neq 0 \). Then,

\[
x^T \left( \sum_{k=1}^{N} \frac{(1-p)\alpha_k}{h(P, u_k)^{2-p}} u_k \cdot u_k^T \right) \cdot x = \sum_{k=1}^{N} \frac{(1-p)\alpha_k}{h(P, u_k)^{2-p}} (x \cdot u_k)^2 \geq \frac{(1-p)\alpha_{io}}{h(P, u_{io})^{2-p}} (x \cdot u_{io})^2 > 0.
\]

Thus, \( \frac{\partial F}{\partial \xi} \bigg|_{(0, \ldots, 0)} \) is positive defined. From this, Equations \((4.3)\) and the inverse function theorem, we have

\[
\xi'(0) = (\xi'_1(0), \ldots, \xi'_n(0))
\]

exists.

From the fact that \( \Phi(0) \) is an extreme value of \( \Phi(t) \) (in Equation \((4.2)\)), Equation \((4.1)\) and Equation \((4.4)\), we have

\[0 = \Phi'(0)/p\]

\[
= \sum_{k=1}^{N} \alpha_k h(P, u_k)^{p-1} (\lambda'(0)h(P, u_k) + \delta_k - \xi'(0) \cdot u_k)
\]

\[
= \sum_{k=1}^{N} \alpha_k h(P, u_k)^{p-1} \left[ -\frac{1}{n} \left( \sum_{i=1}^{N} a_i\delta_i \right) h(P, u_k) + \delta_k \right] - \xi'(0) \cdot \left[ \sum_{k=1}^{N} \alpha_k \frac{u_k}{h(P, u_k)^{1-p}} \right]
\]

\[
= \sum_{k=1}^{N} \alpha_k h(P, u_k)^{p-1} \delta_k - \left( \sum_{i=1}^{N} a_i\delta_i \right) \frac{\sum_{k=1}^{N} \alpha_k h(P, u_k)^{p}}{n}
\]

\[
= \sum_{k=1}^{N} \left( \alpha_k h(P, u_k)^{p-1} - \frac{\sum_{j=1}^{N} \alpha_j h(P, u_j)^{p}}{n} a_k \right) \delta_k.
\]

Since \( \delta_1, \ldots, \delta_N \) are arbitrary,

\[
\sum_{j=1}^{N} \frac{\alpha_j h(P, u_j)^{p}}{n} h(P, u_k)^{1-p} a_k = \alpha_k,
\]
for all \( k = 1, \ldots, N \). Let

\[
P_0 = \left( \frac{\sum_{j=1}^{N} \alpha_j h(P, u_j)^p}{n} \right)^{\frac{1}{p}} P,
\]

we have

\[
S_p(P_0, \cdot) = \sum_{k=1}^{N} \alpha_k \delta_{u_k}(\cdot).
\]

5. The \( L_p \) Minkowski problem for polytopes (\( p \geq 1 \) with \( p \neq n \))

In [30], Hug, et al. established a necessary and sufficient condition of the existence of the solution of the discrete \( L_p \) Minkowski problem for the case where \( p > 1 \) with \( p \neq n \). In this section, we prove it by a different method. Moreover, this proof also includes a new approach to the classical Minkowski problem.

Let \( p \geq 1, \alpha_1, \ldots, \alpha_N \in \mathbb{R}^+ \), the unit vectors \( u_1, \ldots, u_N \) \((N \geq n + 1)\) are not concentrated on a closed hemisphere (in addition \( \sum_{i=1}^{N} \alpha_i u_i = 0 \) for the case where \( p = 1 \)), \( P \in \mathcal{P}(u_1, \ldots, u_N) \), and \( o \in P \). Define

\[
\Psi(P) = \sum_{i=1}^{N} \alpha_i h(P, u_i)^p.
\]

Consider the extreme problem

(5.0) \[
\inf \{ \Psi(Q) : Q \in \mathcal{P}(u_1, \ldots, u_N), V(Q) = 1, o \in Q \}.
\]

In this section, we prove that there exists a polytope \( P \) with \( u_1, \ldots, u_N \), as its unit facet normal vectors and \( o \in \text{Int} (P) \), which is the solution of problem (5.0). Moreover, we prove that a dilatation of \( P \) is the solution of the corresponding discrete \( L_p \) Minkowski problem.

The following lemma will be needed.

**Lemma 5.1.** Suppose the unit vectors \( u_1, \ldots, u_N \) \((N \geq n + 1)\) are not concentrated on a closed hemisphere, \( P \in \mathcal{P}(u_1, \ldots, u_N) \) and \( o \in P \). If there exists an \( i_0 \) \((1 \leq i_0 \leq N)\) such that \( h(P, u_{i_0}) = 0 \) and \(|F(P, u_{i_0})| > 0, \) then there exists a \( \delta_0 > 0 \) so that when \( 0 < \delta < \delta_0 \) the polytope

\[
P_{\delta} = \left( \bigcap_{i \neq i_0} H^-(P, u_i) \right) \cap \{ x : x \cdot u_{i_0} \leq \delta \} \in \mathcal{P}(u_1, \ldots, u_N)
\]

and

\[
V(P_{\delta}) = V(P) + (c_n \delta^n + \ldots + c_2 \delta^2 + c_1 \delta),
\]

where \( c_n, \ldots, c_2 \) are constants that depend on \( P \) and \( u_{i_0} \), and \( c_1 \neq 0 \).

**Proof.** By condition

\[
P_1 = \left( \bigcap_{i \neq i_0} H^-(P, u_i) \right) \cap \{ x : x \cdot u_{i_0} \leq 1 \} \in \mathcal{P}(u_1, \ldots, u_N).
\]

Thus, (e.g., [14], Proposition 3.1) for \( \delta \in \mathbb{R} \),

\[
g(\delta) = V_{n-1}(P_1 \cap \{ x : x \cdot v_0 = \delta \})
\]

is a piecewise polynomial function of degree at most \( n - 1 \). By conditions, \( g(0) \neq 0 \). Thus, there exists a \( \delta_0 > 0 \) and \( c'_{n-1}, \ldots, c'_1, c'_0 \) (depend on \( P \) and \( u_{i_0} \)) such that \( c'_0 \neq 0 \) and when \( 0 \leq \delta < \delta_0 \)

\[
g(\delta) = c'_{n-1} \delta^{n-1} + \ldots + c'_1 \delta + c'_0.
\]
Therefore, when \( 0 \leq \delta < \delta_0 \),

\[
V(P_\delta) = V(P) + \int_0^\delta g(t)dt = V(P) + (c_n\delta^n + \ldots + c_2\delta^2 + c_1\delta),
\]

where \( c_n = c'_{n-1}/n, \ldots, c_2 = c'_1/2, c_1 = c'_0 \) are constants that depend on \( P \) and \( u_{i_0} \), and \( c_1 \neq 0 \). \( \square \)

The following two lemmas solve problem (5.0).

**Lemma 5.2.** Let \( p \geq 1 \), \( \alpha_1, \ldots, \alpha_N \in \mathbb{R}^+ \), and the unit vectors \( u_1, \ldots, u_N (N \geq n + 1) \) are not concentrated on a closed hemisphere (in addition, \( \sum_{i=1}^N \alpha_i u_i = 0 \) if \( p = 1 \)). Then, there exists a \( P \in \mathcal{P}(u_1, \ldots, u_N) \) with \( o \in \text{Int}(P) \) such that

\[
\Psi(P) = \inf \{ \Psi(Q) : Q \in \mathcal{P}(u_1, \ldots, u_N), V(Q) = 1, o \in Q \}.
\]

**Proof.** Choose a \( P_0 \in \mathcal{P}(u_1, \ldots, u_N) \) with \( V(P_0) = 1 \) and \( o \in P \), then

(5.1) \[
\inf \{ \Psi(Q) : Q \in \mathcal{P}(u_1, \ldots, u_N), V(Q) = 1, o \in Q \} \leq \Psi(P_0).
\]

Choose a sequence \( P_k \in \mathcal{P}(u_1, \ldots, u_N) \) with \( V(P_k) = 1 \) and \( o \in P_k \) such that \( \Psi(P_k) \) converges to

\[
\inf \{ \Psi(Q) : Q \in \mathcal{P}(u_1, \ldots, u_N), V(Q) = 1, o \in Q \}.
\]

We claim that \( P_k \) is bounded. Otherwise from Lemma 3.1 \( \Psi(P_k) \) is not bounded from above. This contradicts Equation (5.1). Therefore, \( P_k \) is bounded. From the Blaschke section theorem, there exists a subsequence of \( P_k \) that converges to a polytope \( P \) such that \( P \in \mathcal{P}(u_1, \ldots, u_N) \), \( V(P) = 1 \), \( o \in P \) and

(5.2) \[
\Psi(P) = \inf \{ \Psi(Q) : Q \in \mathcal{P}(u_1, \ldots, u_N), V(Q) = 1, o \in Q \}.
\]

From conditions, if \( p = 1 \), \( P, Q \) contain the origin, and \( P = Q + x \) for some \( x \in \mathbb{R}^n \), then \( \Psi(P) = \Psi(Q) \). Thus, we can assume \( o \) is an interior point of \( P \) (in (5.2)).

We next prove that when \( p > 1 \) the origin is an interior point of \( P \). Otherwise, there exists an \( i_0 (1 \leq i_0 \leq N) \) such that \( h(P, u_{i_0}) = 0 \) and \( |F(P, u_{i_0})| > 0 \).

By Lemma 5.1 we can choose \( \delta > 0 \) small enough so that the polytope

\[
P_\delta = \left( \cap_{i \neq i_0} H^-(P, u_i) \right) \cap \{ x : x \cdot u_{i_0} \leq \delta \} \in \mathcal{P}(u_1, \ldots, u_N)
\]

and

\[
V(P_\delta) = 1 + (c_n\delta^n + \ldots + c_2\delta^2 + c_1\delta),
\]

where \( c_n, \ldots, c_1 \) are constants that depend on \( P \) and \( u_{i_0} \), and \( c_1 \neq 0 \).
Let $\lambda = V(P_\delta)^{-\frac{1}{n}}$. From the hypothesis $h(P, u_{i_0}) = 0,$

$$
\Psi(\lambda P_\delta) = \sum_{i=1}^{N} \alpha_i h(\lambda P_\delta, u_i)^p
= \lambda^p \left[ \sum_{i=1}^{N} \alpha_i h(P_\delta, u_i)^p \right]
= \lambda^p \left[ \sum_{i=1}^{N} \alpha_i h(P, u_i)^p \right] + \lambda^p \alpha_{i_0} (h(P, u_{i_0}) + \delta)^p - \lambda^p \alpha_{i_0} h(P, u_{i_0})^p
= \sum_{i=1}^{N} \alpha_i h(P, u_i)^p + (\lambda^p - 1) \sum_{i=1}^{N} \alpha_i h(P, u_i)^p + \lambda^p \alpha_{i_0} \delta^p
= \Psi(P) + B_1(\delta),
$$

where

$$
B_1(\delta) = (\lambda^p - 1) \sum_{i=1}^{N} \alpha_i h(P, u_i)^p + \lambda^p \alpha_{i_0} \delta^p
= \left[ \frac{1}{(1 + c_n \delta^n + \ldots + c_2 \delta^2 + c_1 \delta)} \right]^{\frac{p}{n}} - 1 \sum_{i=1}^{N} \alpha_i h(P, u_i)^p + \lambda^p \alpha_{i_0} \delta^p.
$$

Since $c_1 \neq 0$ and

$$
\lim_{\delta \to 0} \frac{\delta^p}{\left[ \frac{1}{(1 + c_n \delta^n + \ldots + c_2 \delta^2 + c_1 \delta)} \right]^{\frac{p}{n}} - 1}
= \lim_{\delta \to 0} \left( -\frac{p}{n} \right)(1 + c_n \delta^n + \ldots + c_2 \delta^2 + c_1 \delta)^{-\frac{p}{n}-1}(nc_n \delta^{n-1} + \ldots + c_1) = 0,
$$

$B_1(\delta) < 0$ for small enough positive $\delta$. Thus

$$
\Psi(\lambda P_\delta) < \Psi(P)
$$

for small enough positive $\delta$. This contradicts Equation (5.2). Therefore, the origin is an interior point of $P$. \qed

**Lemma 5.3.** The minimizing polytope in Lemma 5.2 has $N$ facets.

**Proof.** If the statement of the Lemma is not true, then there exists an $i_0 \in \{1, \ldots, N\}$ such that

$$F(P, u_{i_0})$$

is not a facet of $P$.

By Lemma 3.3, we can choose $\delta > 0$ small enough so that the polytope

$$P_\delta = P \cap \{ x : x \cdot u_{i_0} \leq h(P, u_{i_0}) - \delta \} \in \mathcal{P}(u_1, \ldots, u_N),
$$

and

$$V(P_\delta) = 1 - (c_n \delta^n + \ldots + c_2 \delta^2),
$$

where $c_n, \ldots, c_2$ are constants that depend on $P$ and direction $u_{i_0}$.

Let

$$
\lambda = \lambda(\delta) = V(P_\delta)^{-\frac{1}{n}} = \left( 1 - (c_n \delta^n + \ldots + c_2 \delta^2) \right)^{-\frac{1}{n}},
$$
then
\[
\Psi(\lambda P_\delta) = \sum_{i=1}^{N} \alpha_i h(\lambda P_\delta, u_i)^p \\
= \lambda^p \sum_{i=1}^{N} \alpha_i h(P_\delta, u_i)^p \\
= \sum_{i=1}^{N} \alpha_i h(P, u_i)^p + (\lambda^p - 1) \sum_{i=1}^{N} \alpha_i h(P, u_k)^p + \alpha_{i_0} \lambda^p [(h(P, u_{i_0}) - \delta)^p - h(P, u_{i_0})^p] \\
= \Psi(P) + B_2(\delta),
\]
where,
\[
B_2(\delta) = (\lambda^p - 1) \sum_{i=1}^{N} \alpha_i h(P, u_i)^p + \alpha_{i_0} \lambda^p [(h(P, u_{i_0}) - \delta)^p - h(P, u_{i_0})^p] \\
= \left[(1 - (c_n \delta^n + \ldots + c_2 \delta^2))^\frac{p}{n} - 1\right] \left(\sum_{i=1}^{N} \alpha_i h(P, u_i)^p\right) + \alpha_{i_0} \lambda^p [(a_0 - \delta)^p - a_0^p],
\]
and \(a_0 = h(P, u_{i_0})\).

Since \((a_0 - \delta)^p - a_0^p \leq 0\) for small positive \(\delta\) and
\[
\lim_{\delta \to 0} \frac{(1 - (c_n \delta^n + \ldots + c_2 \delta^2))^\frac{p}{n} - 1}{(a_0 - \delta)^p - a_0^p} \\
= \lim_{\delta \to 0} \frac{-\frac{p}{n}(1 - (c_n \delta^n + \ldots + c_2 \delta^2))^\frac{p}{n-1}(-nc_n \delta^{n-1} - \ldots - 2c_2 \delta)}{p(a_0 - \delta)^{p-1}(-1)} = 0,
\]
there exists a \(\delta_0 > 0\) such that \(B_2(\delta) < 0\) for all \(0 < \delta < \delta_0\). Thus,
\[
\Psi(\lambda P_\delta) < \Psi(P)
\]
for all \(0 < \delta < \delta_0\). This contradicts Equation (5.2). Therefore, \(P \in \mathcal{P}_N(u_1, \ldots, u_N)\). \(\square\)

Suppose \(P\) is a polytope with \(N\) facets whose outer unit normals are \(u_1, \ldots, u_N\) and such that the facet with outer normal \(u_k\) has area \(a_k\). Obviously, for any \(u \in S^{n-1}\)
\[
\sum_{u_k \cdot u \geq 0} (u_k \cdot u)a_k = -\sum_{u_k \cdot u \leq 0} (u_k \cdot u)a_k,
\]
and both equal to the \((n - 1)\)-dimensional volume of the projection of \(P\) on \(u^\perp\). Thus, for all \(u \in S^{n-1}\)
\[
\sum_{k=1}^{N} (u_k \cdot u)a_k = 0.
\]

Therefore,
\[
(5.3) \sum_{k=1}^{N} a_k u_k = 0.
\]

Equation (5.3) is a necessary condition for the existence of the solution of the discrete classical Minkowski problem. The following theorem shows that it is also the sufficient condition. Moreover, the following theorem is the necessary and sufficient conditions for the existence of the solution of the discrete \(L_p\) Minkowski problem for the case where \(p > 1\) with \(p \neq n\).
Theorem 5.4. If $p \geq 1$ with $p \neq n$, $\alpha_1, \ldots, \alpha_N \in \mathbb{R}^+$, and the unit vectors $u_1, \ldots, u_N$ ($N \geq n + 1$) are not concentrated on a closed hemisphere (in addition, $\sum_{i=1}^{N} \alpha_i u_i = 0$ if $p = 1$), then there exists a polytope $P_0$ such that

$$S_p(P_0, \cdot) = \sum_{k=1}^{N} \alpha_k \delta u_k(\cdot).$$

Proof. By Lemma 5.2 and Lemma 5.3, there exists a polytope $P \in \mathcal{P}_N(u_1, \ldots, u_N)$ with $o \in \text{Int}(P)$ and $V(P) = 1$ such that

$$\Psi(P) = \inf \{ \Psi(Q) : Q \in \mathcal{P}(u_1, \ldots, u_N), V(Q) = 1, o \in Q \}.$$

For $\delta_1, \ldots, \delta_N \in \mathbb{R}$, choose $|t|$ small enough so that the polytope $P_t$ defined by

$$P_t = \bigcap_{i=1}^{N} \{ x : x \cdot u_i \leq h(P, u_i) + t\delta_i \}$$

has exactly $N$ facets. Then,

$$V(P_t) = V(P) + t \left( \sum_{i=1}^{N} \delta_i a_i \right) + o(t),$$

where $a_i$ is the area of $F(P, u_i)$. Thus,

$$\lim_{t \to 0} \frac{V(P_t) - V(P)}{t} = \sum_{i=1}^{N} \delta_i a_i.$$

Let $\lambda(t) = V(P_t)^{-\frac{1}{p}}$, then $\lambda(t)P_t \in \mathcal{P}_N^p(u_1, \ldots, u_N)$, $o \in \text{Int}(\lambda(t)P_t)$, $V(\lambda(t)P_t) = 1$ and

$$\lambda'(0) = -\frac{1}{n} \sum_{i=1}^{N} \delta_i S_i.$$

Let

$$\Psi(t) = \Psi(\lambda(t)P_t) = \sum_{i=k}^{N} \alpha_k \left( \lambda(t) h(P, u_k) \right)^p.$$

From the fact that $\Psi(0)$ is an extreme value of $\Psi(t)$, we have

$$0 = \Psi'(0)/p$$

$$= \sum_{k=1}^{N} \alpha_k h(P, u_k)^{p-1} \left( \lambda'(0) h(P, u_k) + \delta_k \right)$$

$$= \sum_{k=1}^{N} \alpha_k h(P, u_k)^{p-1} \left[ -\frac{1}{n} \left( \sum_{i=1}^{N} a_i \delta_i \right) h(P, u_k) + \delta_k \right]$$

$$= \sum_{k=1}^{N} \alpha_k h(P, u_k)^{p-1} \delta_k - \left( \sum_{i=1}^{N} a_i \delta_i \right) \sum_{k=1}^{N} \alpha_k h(P, u_k)^p$$

$$= \sum_{k=1}^{N} \left( \alpha_k h(P, u_k)^{p-1} - \sum_{j=1}^{N} \alpha_j h(P, u_j)^p \frac{a_k}{a_j} \right) \delta_k.$$

Since $\delta_1, \ldots, \delta_N$ are arbitrary,

$$\frac{\sum_{j=1}^{N} \alpha_j h(P, u_j)^p}{n} h(P, u_k)^{1-p} a_k = \alpha_k,$$
for all $k = 1, \ldots, N$. Let

$$P_0 = \left( \frac{\sum_{j=1}^{N} \alpha_j h(P, u_j)^p}{n} \right)^{\frac{1}{p}} P,$$

we have

$$S_p(P_0, \cdot) = \sum_{k=1}^{N} \alpha_k \delta_{u_k}(\cdot).$$

\[\square\]

**References**

[1] A.D. Alexandrov, Existence and uniqueness of a convex surface with a given integral curvature. C. R. (Doklady) Acad. Sci. USSR (N.S.) 35, 131-134 (1942).

[2] B. Andrews, Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138, 151-161 (1999).

[3] B. Andrews, Classification of limiting shapes for isotropic curve flows. J. Amer. Math. Soc. 16, 443-459 (2003).

[4] F. Barthe, O. Guédon, S. Mendelson, A. Naor, A probabilistic approach to the geometry of the $l^n_p$-ball. Ann. of Probability 33, 480-513 (2005).

[5] J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem. J. Amer. Math. Soc. 26, 831-852 (2013).

[6] J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The log-Brunn-Minkowski inequality. Adv. Math. 231, 1974-1997 (2012).

[7] S. Campi, P. Gronchi, The $L^p$-Busemann-Petty centroid inequality. Adv. Math. 167, 128-141 (2002).

[8] W. Chen, $L^p$ Minkowski problem with not necessarily positive data. Adv. Math. 201, 77-89 (2006).

[9] K.-S. Chou, Deforming a hypersurface by its Gauss-Kronecker curvature. Comm. Pure Appl. Math. 38, 867-882 (1985).

[10] K.-S. Chou, X.-J. Wang, The $L^p$-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33-83 (2006).

[11] A. Cianchi, E. Lutwak, D. Yang, G. Zhang, Affine Moser-Trudinger and Morrey-Sobolev inequalities. Calc. Var. Partial Differential Equations 36, 419-436 (2009).

[12] M. Gage, R. Hamilton, The heat equation shrinking convex plane curves. J. Differential Geom. 23, 69-96 (1986).

[13] R.J. Gardner, Geometric Tomography, 2nd edition, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2006.

[14] R.J. Gardner, P. Gritzmann, Successive determination and verification of polytopes by their X-rays. J. London Math. Soc. 50, 375-391 (1994).

[15] P.M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften, 336. Springer, Berlin, 2007.

[16] B. Grünbaum, convex polytope (graduate Texts in Mathematics), 2nd edition. Springer, 2003.

[17] B. Guan, P. Guan, Convex hypersurfaces of prescribed curvatures. Ann. of Math. (2) 156, 655-673 (2002).

[18] P. Guan, C.-S. Lin, On equation $\det(u_{ij} + \delta_{ij}u) = w^p$ on $S^n$. (preprint).

[19] P. Guan, X. Ma, The Christoffel-Minkowski problem I: Convexity of solutions of a Hessian equation. Invent. Math. 151, 553-577 (2003).

[20] C. Haberl, Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. 14, 1565-1597 (2012).

[21] C. Haberl, E. Lutwak, D. Yang, G. Zhang, The even Orlicz Minkowski problem. Adv. Math. 224, 2485-2510 (2010).

[22] C. Haberl, L. Parapatits, Valuations and surface area measures. J. Reine Angew. Math. 687, 225-254 (2014).

[23] C. Haberl, L. Parapatits, The centro-affine Hadwiger theorem. J. Amer. Math. Soc. 27, 685-705 (2014).

[24] C. Haberl, F. Schuster, General $L^p$ affine isoperimetric inequalities. J. Differential Geom. 83, 1-26 (2009).

[25] C. Haberl, F. Schuster, Asymmetric affine $L^p$ Sobolev inequalities. J. Funct. Anal. 257, 641-658 (2009).

[26] C. Haberl, F. Schuster, J. Xiao, An asymmetric affine Pólya-Szegö principle. Math. Ann. 352, 517-542 (2012).

[27] M. Henk, E. Linke, Cone-volume measures of polytopes. Adv. Math. 253, 50-62 (2014).
[28] C. Hu, X. Ma, C. Shen, On the Christoffel-Minkowski problem of Firey’s p-sum. Calc. Var. Partial Differential Equations. 21, 137-155 (2004).

[29] Y. Huang, Q. Lu, On the regularity of the $L_p$-Minkowski problem. Adv. in Appl. Math. 50, 268-280 (2013).

[30] D. Hug, E. Lutwak, D. Yang, G. Zhang, On the $L_p$ Minkowski problem for polytopes. Discrete Comput. Geom. 33, 699-715 (2005).

[31] G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differential Geom. 20, 237-266 (1984).

[32] M.Y. Jiang, Remarks on the 2-dimensional $L_p$-Minkowski problem. Adv. Nonlinear Stud. 10, 297-313 (2010).

[33] D. Klain, The Minkowski problem for polytopes. Adv. Math. 185, 270-288 (2004).

[34] J. Lu, X.-J. Wang, Rotationally symmetric solution to the $L_p$-Minkowski problem. J. Differential Equations. 254, 983-1005 (2013).

[35] M. Ludwig, Ellipsoids and matrix-valued valuations. Duke Math. J. 119, 159-188 (2003).

[36] M. Ludwig, General affine surface areas. Adv. Math. 224, 2346-2360 (2010).

[37] M. Ludwig, M. Reitzner, A classification of SL(n) invariant valuations. Ann. of Math. (2) 172, 1219-1267 (2010).

[38] E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom. 38, 131-150 (1993).

[39] E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem. J. Differential Geom. 41, 227-246 (1995).

[40] E. Lutwak, D. Yang, G. Zhang, $L_p$ affine isoperimetric inequalities. J. Differential Geom. 56, 111-132 (2000).

[41] E. Lutwak, D. Yang, G. Zhang, A new ellipsoid associated with convex bodies. Duke Math. J. 104, 375-390 (2000).

[42] E. Lutwak, D. Yang, G. Zhang, The Cramer-Rao inequality for star bodies. Duke Math. J. 112, 59-81 (2002).

[43] E. Lutwak, D. Yang, G. Zhang, Sharp affine $L_p$ Sobolev inequalities. J. Differential Geom. 62, 17-38 (2002).

[44] E. Lutwak, D. Yang, G. Zhang, On the $L_p$-Minkowski problem. Trans. Amer. Math. Soc. 356, 4359-4370 (2004).

[45] E. Lutwak, D. Yang, G. Zhang, Volume inequalities for subspaces of $L_p$. J. Differential Geom. 68, 159-184 (2004).

[46] E. Lutwak, G. Zhang, Blaschke-Santaló inequalities. J. Differential Geom. 47, 1-16 (1997).

[47] H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder. Gött. Nachr. 1897, 198-219 (1897).

[48] A. Naor, The surface measure and cone measure on the sphere of $l^n_p$. Trans. Amer. Math. Soc. 359, 1045-1079 (2007).

[49] A. Naor, D. Romik, Projecting the surface measure of the sphere on $l^n_p$. Ann. Inst. H. Poincaré Probab. Statist. 39, 241-261 (2003).

[50] G. Paouris, Concentration of mass on convex bodies. Geom. Funct. Anal. 16, 1021-1049 (2006).

[51] G. Paouris, E. Werner, Relative entropy of cone measures and $L_p$ centroid bodies. Proc. London Math. Soc. 104, 253-286 (2012).

[52] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993.

[53] A. Stancu, The discrete planar $L_0$-Minkowski problem. Adv. Math. 167, 160-174 (2002).

[54] A. Stancu, On the number of solutions to the discrete two-dimensional $L_0$-Minkowski problem. Adv. Math. 180, 290-323 (2003).

[55] A. Stancu, Centro-affine invariants for smooth convex bodies. Int. Math. Res. Not. 2012, 2289-2320 (2012).

[56] A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1996.

[57] T. Wang, The affine Sobolev-Zhang inequality on $BV(\mathbb{R}^n)$. Adv. Math. 230, 2457-2473 (2012).

[58] G. Zhang, The affine Sobolev inequality. J. Differential Geom. 53, 183-202 (1999).

[59] G. Zhu, The logarithmic Minkowski problem for polytopes. Adv. Math. 262, 909-931 (2014).

[60] G. Zhu, The centro-affine Minkowski problem for polytopes. J. Differential Geom. (in press).