SYSTEMATIC REVIEW

Demystifying media sources of information and levels of knowledge about COVID-19: a rapid mini-review of cross-sectional studies in Africa [version 1; peer review: 1 approved with reservations, 1 not approved]

Dickson Aruhomukama1,2, Douglas Bulafu3

1 Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Central, P.O Box 7072, Uganda
2 Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Central, P.O Box 7072, Uganda
3 Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, Makerere University, Kampala, 7072, Uganda

Abstract

COVID-19 control is highly affected by knowledge levels which are also affected by receipt of information on the disease. Therefore, this review examined knowledge levels and media sources of information findings of the studies on knowledge, attitudes, perceptions, and practices towards COVID-19 done in low- and middle-income countries in Africa to shed light on the interplay of the use of different media platforms and populations’ knowledge about the COVID-19 pandemic and identify shorter- and longer-term priorities for COVID-19 research to improve the continent's capacity to not only deal with COVID-19 but also future pandemics. Searches were conducted in PubMed and CINAHL databases/sites with major terms being “knowledge”, “attitudes”, “perceptions”, “practices”, “COVID-19”, and “Africa”. 319 were where identified and subjected to the exclusion and inclusion criteria retaining only 10 free, full-text research articles related to knowledge, attitudes, perceptions, and practices towards COVID-19. This review summarized the levels of knowledge and media information sources among African populations. The review indicated a largely higher level of knowledge towards COVID-19 among populations who received information through various media platforms and alluded to the different media platforms that could be appropriate to spread COVID-19 related information to African populations.

Keywords

COVID-19, Knowledge levels, Media information sources, Africa
Corresponding author: Dickson Aruhomukama (dickson.aruhomukama@chs.mak.ac.ug)

Author roles:
- **Aruhomukama D**: Conceptualization, Methodology, Writing – Original Draft Preparation, Writing – Review & Editing;
- **Bulafu D**: Conceptualization, Formal Analysis, Methodology, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2021 Aruhomukama D and Bulafu D. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Aruhomukama D and Bulafu D. Demystifying media sources of information and levels of knowledge about COVID-19: a rapid mini-review of cross-sectional studies in Africa [version 1; peer review: 1 approved with reservations, 1 not approved] F1000Research 2021, 10:345 https://doi.org/10.12688/f1000research.51240.1

First published: 05 May 2021, 10:345 https://doi.org/10.12688/f1000research.51240.1
Introduction

The 2019 novel coronavirus disease (COVID-19) is a communicable respiratory disease caused by a novel strain of coronavirus, the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). COVID-19 was first identified in Wuhan, Hubei Province of China at the end of 2019 and was later declared a pandemic on the 11th of March 2020, underscoring the disease's high contagion potential, and exponential global rise.1–4

At the start of the pandemic, scholars had predicted that over 16.3 million people in Africa could have contracted COVID-19 by 30th June 2020.5 These predictions had been attributed to Africa’s rather weak health service infrastructure and low clinician to population ratio,6 limited laboratory capacity,7 and a higher rate of underlying conditions including malnutrition, anemia, HIV/AIDS, and chronic respiratory conditions due to tuberculosis and air pollution.8

Despite Africa’s vulnerabilities, at the time of writing (i.e. 14:30 East African Time (EAT) on the 11th of November 2020), only 45/54 African countries had been hit by COVID-19 with only 1.3 million cumulative cases and 24,464 deaths.9 This could be attributed to the high levels of knowledge,10–12 positive attitudes and perceptions,11,12 and good practices towards COVID-1910,13–15 among the African people, as good knowledge, attitudes, perceptions, and practices have been reported to positively influence disease prevention as well as health promotion.16,17

Many African countries put up stringent measures such as: instigating institutional and self-quarantines, restricted access to borders, closure of learning institutions, banning public transport and gatherings, among others to curb COVID-19.13 It is worth noting that for such measures to be effective, there should be public adherence which is affected by people’s levels of knowledge, which in turn influences their attitudes, perceptions, and practices.18,19

Scholars have also revealed that knowledge towards infectious diseases could be associated with serious panic alongside emotional reactions among people, which could hinder measures to curb the COVID-19 pandemic.20,21 These involve a range of opinions about the causes of the disease and exacerbating factors, identification of symptoms, and available methods of treatments and consequences that could determine different behaviors and preventive measures.22,23 Therefore, low levels of knowledge, towards COVID-19 and its preventive measures could be potential barriers in controlling the pandemic.17,22

Although various studies on knowledge towards COVID-19 have been completed,13,24,25 no review has been pursued to interrogate and integrate the findings of these studies with regards to the levels of knowledge about COVID-19 and media sources of information about the same in low and middle-income countries in Africa.

Pursuing such a review would allow the: (i) deeper understanding of how the use of different media platforms affects knowledge which could constitute an important component for the implementation of COVID-19 prevention and control measures at both national and sub-national levels, (ii) identification of shorter- and longer-term priorities for COVID-19 research on the continent, and (iii) development of an agenda for both shorter- and longer-term priorities to help build Africa’s capacity to deal with future pandemics.

Hence, the objective of this review was to interrogate and integrate knowledge levels and media sources of information findings of the studies on knowledge, attitudes, perceptions, and practices towards COVID-19 done in low and middle-income countries in Africa to shed light on the interplay of the use of different media platforms and populations’ knowledge about the COVID-19 pandemic and identify shorter- and longer-term priorities for COVID-19 research which when pursued could improve the continent’s capacity to not only deal with COVID-19 but also future pandemics.

Methods

Eligibility criteria

Studies that were included fitted the criteria below:

1. **Population;** African population
2. **Intervention/Exposure of interest;** Corona Virus Disease 2019
3. **Comparison;** N/A
4. **Outcome;** Knowledge, attitudes, practices, perception
5. **Study design;** Cross Sectional studies
6. **Study period:** January 2019 to October 2020

7. **Language:** English

Furthermore, studies that were not available in English, all other studies other than cross-sectional studies, studies not related to knowledge on COVID-19 will be excluded from the study. A protocol was not registered for this study.

Information sources and literature search

A literature search was conducted in from January 2019 to October 2020 (time of last search) on PubMed and CINAHL databases/sites with major terms being “knowledge”, “attitudes”, “perceptions”, “practices”, “COVID-19 “, and “Africa”. The search yielded a total of 305 articles at initial search in PubMed and 14 articles in CINAHL.

Search string: (((practices) OR (attitudes) OR (knowledge) OR (perceptions)) AND (Africa)) AND COVID-19.

Study selection

The articles were moved to endnote where reviewers, DB and DA, screened articles basing on titles and abstracts. During this process; duplicates, systematic reviews, opinions, letters to editors, perspectives, and articles related to COVID-19 but not related to knowledge, attitudes, perceptions, and practices towards COVID-19 were removed, retaining only free, full-text research articles related to knowledge, attitudes, perceptions, and practices towards COVID-19 conducted among African countries, which were then considered for this review (Figure 1).

Data collection process and data items

An extraction sheet was created in Microsoft word. One independent reviewer (DB) extracted the data and entries were checked by the second reviewer (DA). This extraction form included; study number, authors, study designs, country, respondents, number of respondents, and data collection tools.

Risk of Bias assessment

In this review, two researchers (DB and DA) independently assessed the potential bias of the studies. Also, the Joana Briggs Institute Prevalence Critical Appraisal Tool, which is used for systematic reviews of prevalence studies, was used to assess the risk of bias in the studies [1]. Sample representativeness, sampling method, sample size, study participants, sites and settings, coverage of the identified sample, and appropriateness of the statistical analysis were evaluated in all included studies. Grading of Recommendations Assessment and Development Evaluation (GRADE) was used to assess the quality of evidence of the studies. Methodological quality, directness of the evidence, heterogeneity of data, and risk of publication bias were considered in the criteria. The outcomes were graded as low, moderate and high.

![Flow chart of literature search](Figure 1)
Results

Study selection

The initial literature search resulted into 319 articles (305 articles from PubMed and 14 articles from CINAHL). During the screening process, 309 articles did not meet the inclusion criteria and were excluded leaving 10 cross-sectional studies as shown in Figure 1.

Study characteristics

10 studies related to knowledge, attitudes, perceptions, and practices towards COVID-19 in African countries i.e., Egypt, Cameroon, Uganda, Nigeria, Libya, the Democratic Republic of Congo, Ethiopia, and Sierra Leone were reviewed. Only four of the studies used self-administered questionnaires while six studies used online forms to collect data during the pandemic. The respondents/participants in these studies included: the public/communities, medical students and lecturers, and health-care workers. The total number of respondents/participants involved in the studies were 8,013 (Table 1).

Risk of Bias of Studies

The Joanna Briggs Institute Prevalence Critical Appraisal Tool, which is used for systematic reviews of prevalence studies, was used to assess the risk of bias in the studies. All the studies had a low risk of bias in terms of Sample representativeness, Methodological quality, coverage of the identified sample, and appropriateness of the statistical analysis, and risk of publication bias. Results of the GRADE analysis are available on Figshare.68

Table 1. Characteristics of the reviewed studies.

No.	Authors	Type of study	Country	Respondents/Participants	Number of Respondents/participants	Tool
1	Abdelhafiz et al., 2020²⁶	Cross-sectional	Egypt	Community	559	Online survey
2	Adela et al., 2020¹⁰	Cross-sectional	Cameroon	Community/Public	1006	Online survey
3	Aruhomukama et al., 2020¹³	Cross-sectional	Uganda	Community	644	Interviewer-administered questionnaire
4	Echoru et al., 2020¹⁴	Cross-sectional	Uganda	Medical students and lecturers	103	Online survey
5	Elhadi et al., 2020²⁷	Cross-sectional	Libya	Health-care workers	1572	Self-administered paper-based questionnaire
6	Hager et al., 2020¹¹	Cross-sectional	Egypt and Nigeria	Community/Public	1437	Online survey
7	Kebede et al., 2020²⁴	Cross-sectional	Ethiopia	Medical facility visitors	247	Self-administered questionnaire
8	Lee et al., 2020²⁸	Cross-sectional	Ethiopia and the Democratic Republic of Congo (DRC)	Community	Ethiopia = 175 DRC = 273	Online survey
9	Olum et al., 2020¹²	Cross-sectional	Uganda	Medical students	741	Online survey
10	Sengeh et al., 2020¹⁵	Cross-sectional	Sierra Leone	Public/Community	1253	Self-administered questionnaire

Total number of participants

n=8013
Media sources of information and levels of knowledge about COVID-19.

10 studies featured results on knowledge with regards to COVID-19 among the: public/communities, medical students and lecturers, and health-care workers (Table 2).

Four studies reported that nearly all of the respondents/participants had heard about COVID-19. Furthermore, three studies reported that respondents/participants had adequate knowledge of COVID-19 while one study reported that respondents/participants had inadequate knowledge of COVID-19.

Respondents/participants in four studies reported that social media platforms, for example, WhatsApp, Twitter and Facebook, local television and radio stations, and other internet platforms largely organizational websites were their major sources of information with regards to COVID-19. Respondents/participants in two studies also reported having received information with regards to COVID-19 from their family members, friends as well as places of worship, for example mosques and churches (Table 2).

Table 2. Media sources of information and levels of knowledge about COVID-19.

No.	Authors	Findings
1	Abdelhafiz et al., 2020	All, 100% of the participants reported having heard about COVID-19. The commonest reported sources of information about the disease were social media, 66.9%, the internet, 58.3%, and TV or satellite channels, 52.6%.
2	Adela et al., 2020	The majority, 84.19% of the respondents were reported to have had high knowledge scores of 4–7 regarding the modes of transmission of COVID-19. More than half, 54.5% reported having obtained information about the disease for the first time via television during the first and last 15 days of the study. The respondents also reported having obtained information about the disease through WhatsApp, 15.6%, and websites, 16.1%.
3	Aruhomukama et al., 2020	Nearly all, 99.7% of the participants reported having heard about COVID-19. The majority of the participants, 80.6% reported having heard and/or seen the messages on local television stations. Other sources of information about COVID-19 reported by the participants included: local radio stations, 64.3%, family and friends, 14.7%, local newspapers, 15.6%, social media platforms, 29.5%, and other internet platforms, 5.8%.
4	Echoru et al., 2020	Most lecturers, 96%, and students, 92.5% reported that they knew about COVID-19 and its modes of transmission.
5	Elhadi et al., 2020	The majority, 73.5% of the participants reported that they had inadequate knowledge about COVID-19.
6	Hager et al., 2020	Most of the respondents, 61.6% reported that they had satisfactory knowledge about COVID-19. The respondents also reported that the internet as their main source of information about the disease.
7	Kebede et al., 2020	A high proportion, 95.1% of the visitors reported that they knew about COVID-19 and its modes of transmission.
8	Lee et al., 2020	The majority of the participants, 97.7% in Ethiopia, and 99.5% in DRC reported that they knew about COVID-19 and its modes of transmission. The percentages of respondents with knowledge of COVID-19 modes of transmission by droplets were 98.8% in Ethiopia, and 94.9% in DRC. While about 48.1% of respondents in Ethiopia and 63.4% in DRC knew about airborne transmission. Those with knowledge of COVID-19 transmission via contaminated objects were 98.3% in Ethiopia, 93.4% in DRC.
9	Olum et al., 2020	The mean knowledge score of the participants was 13.1 (SD 1.2) indicating a good overall knowledge among medical students. The majority of medical students identified fever, cough, and difficulty in breathing as the main clinical symptoms of COVID-19 (95%, 85%, and 88%, respectively).
10	Sengeh et al., 2020	The majority, 91% of the participants reported that they had heard about COVID-19. The commonest reported sources of information about the disease were social media, 39%, radio, 73%, and churches/mosques, 24%. The majority of the participants mentioned body fluids, 74%, air, 61%, and touching, 66% infected persons or surfaces as the commonest modes of transmission of the disease.
Discussion
To the best of our knowledge, this is the first review of the levels of knowledge and media information sources about COVID-19 in Africa. This review identified shorter- and longer-term priorities for COVID-19 research on the continent, which when pursued could potentially improve the continent’s capacity to not only efficiently and effectively deal with COVID-19 but also future pandemics.

Similar to related studies, the high levels of knowledge about COVID-19 in some of the reviewed studies could be attributed to the seriousness of the disease in addition to the daily updates from public health agencies in the respective countries which could have positively influenced the respondents/participants need to learn and acquire knowledge about the disease,11,29 and the role of the different media platforms especially social media in explaining the basics about the disease.29–33

While high knowledge levels have been documented to positively influence populations’ adherence to infection control and prevention measures,25,29 indifferent adherence to untrue and gullible beliefs by populations have been documented to habitually arise due to inadequate knowledge and inaccurate information, which could further affect the readiness levels as well as proper implementation of infection prevention and control measures at both the national or sub-national levels.25,29 Although social media platforms offer opportunities for specialists to speedily convey accurate information, they also offer other non-specialists opportunities to counter this with the spread of misinformation and exacerbating outrage.34,35 In concert, hazard and outrage along with socio-cultural and economic context shape adherence to, as well as the overall acceptance of, infection prevention and control measures.34–36

Studies similar to those reviewed have reported the common use of social media platforms largely by the young adults and more educated attributing this to their understanding of the English language,29,37,38 while others have shown that social media platforms are also largely used by those having upper and middle socio-economic status,29,39 and urban and sub-urban dwellers40 who own smartphones and can easily access the internet or afford mobile data and as a result, the reviewed studies could have excluded the older adults, uneducated, those having low social-economic status, and rural dwellers.29 Unlike a study on smartphone internet access and use in the United States41 that reported the dependency on smartphones by similar groups of people (i.e. the uneducated and those having low social-economic status), the review of the findings of the reviewed studies implore the use of social media platforms as tools to wisely, prudently, and speedily spread the constantly changing information about COVID-19. Social media platforms when used as tools could serve to change people’s behavior as well as to promote the well-being of individuals and public health. Despite this, the role of social media in shaping knowledge, attitudes, perceptions, and practices should be carefully studied to increase compliance with infection prevention and control measures at both the national or sub-national levels. Also, the understanding of varying opinions and concerns of different demographic groups could be done to enable public health officials to design and implement on-target response strategies. In a similar light, research is needed to expand the geographical focus and test strategies to facilitate the efficient and effective use of social media for health-related purposes in low- and middle-income countries in Africa.

Above and beyond, the utilization of social media platforms for health-related purposes in low- and middle-income countries in Africa has been reported to be on the increase.37,38,44 The low levels of knowledge about COVID-19 reported in the reviewed studies could be attributed to several factors reported in related studies including misinformation powered by rumors, stigma, and several conspiracy beliefs about the disease.39–41

With the projected rise in smartphone ownership and internet usage in low- and middle-income countries in Africa,44 the findings of the reviewed studies implore the use of social media platforms as tools to wisely, prudently, and speedily spread the constantly changing information about COVID-19. Social media platforms when used as tools could serve to change people’s behavior as well as to promote the well-being of individuals and public health. Despite this, the role of social media in shaping knowledge, attitudes, perceptions, and practices should be carefully studied to increase compliance with infection prevention and control measures at both the national or sub-national levels. Also, the understanding of varying opinions and concerns of different demographic groups could be done to enable public health officials to design and implement on-target response strategies. In a similar light, research is needed to expand the geographical focus and test strategies to facilitate the efficient and effective use of social media for health-related purposes in low- and middle-income countries in Africa.

Also, the role of public health officials should be applauded and fortified, while a framework to improve the public health emergency preparedness system is pursued to encourage a focused conversation to improve preparedness for the benefit of individuals, families, communities, and societies.

The low levels of knowledge about COVID-19 reported in the reviewed studies could be attributed to several factors reported in related studies including misinformation powered by rumors, stigma, and several conspiracy beliefs about the disease.
Misinformation related to COVID-19 has been reported to be gaining considerable popularity and playing a role in augmenting the disease’s threat through encouraging its continuous global spread. Also, misinformation can negatively impact individuals’, communities’, and societies’ actions, and devalue infection prevention and control measures employed at both the national or sub-national levels. Misinformation has also been documented to potentially have serious negative implications not only on individuals and communities but also societies particularly if prioritized over scientifically proven guidelines. Maintaining effective information governance across the general public to substitute any misinformation related to the disease especially in Africa has been recommended even though falsehoods on various media platforms have been predicted to continue surging high as long as the disease lingers on. The findings of the reviewed studies sustain the suggestions that regular prompts on the concept of accuracy by several mass media platforms be given as these may not only enhance individuals, communities, and societies at large to demystify misinformation.

Regarding the gaps in socio-demographic groups, the use of more native non-smartphone and/or non-internet requiring mass media campaigns through which high proportions of large populations can be exposed to COVID-19 related messages via television, radio, and non-digital or traditional newspaper platforms could be explored to target especially individuals of low- socioeconomic status, the elderly as well as those dwelling in rural settings. This assertion is based on previous studies on how rural communities accessed and used information that had been conducted in rural communities, these studies revealed that most of the information needed by these populations related to day-to-day problems, and that most of the information was accessed mainly through radio, television, and traditional or non-digital newspapers, as well as face to face communication. These studies further revealed that the choice of information sources was majorly influenced by among other factors the levels of education, income, as well as the occupation of their respondents.

The same assertion is supported by the findings of related studies that investigated sources of COVID-19 related information that revealed that populations constituting of mainly the older adults, unemployed or those mainly employed in the informal sector, uneducated, and rural and semi-urban dwellers have limited or poor knowledge which could be associated with negative attitudes, perceptions, and practices towards COVID-19. The findings of the reviewed studies could enhance the recommendations previously made by several related studies that knowledge, attitude, and practices towards COVID-19 studies be pursued especially in the underprivileged and vulnerable groups especially as the COVID-19 pandemic lingers on.

Although exposure to messages through mass media campaigns has been described as largely passive, with such campaigns recurrently competing with several factors such as prevailing social norms, persistent merchandise marketing, and behaviors driven by habit and/or addiction. Through the evaluation of the same campaigns in the context of various health risk behaviors, mass media campaigns have been documented to have the potential to positively influence health-related behavior, particularly across large populations. The findings of this study in the context of the reviewed studies hence suggest that mass media campaigns could be leveraged to spread COVID-19 related information and that investments in longer and better-funded mass media campaigns to achieve adequate population exposure to media messages should be done.

With regards to face-to-face communication, several avenues have been identified through studies related to those reviewed including the utilization of small and regulated meetings of different religious faiths and music concerts, engaging community health workers in spreading COVID-19 related messages in their communities as well as encouraging interpersonal communication in families aimed at spreading information about COVID-19. Communication of health-related themes through music has been recognized to foster a culture-centered approach that considers community participation concerning broader social and organizational issues as compared to individual-focused behavior change communication. Also, communication of health-related themes through music has been reported to have the potential to bridge and build trust between health care workers particularly community health care workers, and target communities while facilitating information dissemination as well as stimulating public debate regarding sensitive health-related themes.
Conclusion
This review largely indicates higher levels of knowledge about COVID-19 among populations in low- and middle-income settings in Africa that had received information about the same via several media platforms. In populations with lower levels of knowledge about COVID-19, this review alludes to the different media platforms that could be appropriate to spread COVID-19 related information to the same populations. The ability of health care agencies to communicate COVID-19 related messages while leveraging appropriate media platforms can play a critical role in easing the shorter- and longer-term impacts of the COVID-19 pandemic in low- and middle-income settings in Africa.

Data availability
Underlying data
All data underlying the results are available as part of the article and no additional source data are required.

Extended data
Figshare: GRADE results_Demystifying media sources of information and levels of knowledge about COVID-19—a rapid mini-review of cross-sectional studies in Africa. https://doi.org/10.6084/m9.figshare.14160758.v1.68

Reporting guidelines
Figshare: PRISMA checklist for ‘Demystifying media sources of information and levels of knowledge about COVID-19: a rapid mini-review of cross-sectional studies in Africa.’ https://doi.org/10.6084/m9.figshare.14045471.v1.67

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

Competing interests
No competing interests were disclosed.

Grant information
The authors declared that no grants were involved in supporting this work.

References
1. Ornerr F, Schuch JB, Sardi AO, et al.: “Pandemic fear” and COVID-19: mental health burden and strategies. Brazilian J Psychiatry. 2020; 42: 232–235. DOI: 10.1590/1516-4446-2020-0008
2. Kenri R, Alexander A, Nayak PG, et al.: COVID-19: Emergence, Spread, Possible Treatments, and Global Burden. Front. public Heal. 2020; 8(2).16.
3. de León-Martínez LD, Palacios-Ramírez A, Rodríguez-Aguilar M, et al.: Critical review of social, environmental and health risk factors in the Mexican indigenous population and their capacity to respond to the COVID-19. Soc. Total Environ. 2020; 139357.
4. Sahin AR, et al.: 2019 novel coronavirus (COVID-19) outbreak: a review of the current literature. EJMO. 2020; 4: 1–7.
5. Poitras C: Study Predicts COVID-19’s Impact Across Africa. 2020; Reference Source
6. El-Sadr WM, Justman J: Africa in the Path of Covid-19. N Engl J Med. 2020.
7. Beker M, Hamed H, Mengistu E, et al.: Building laboratory capacity to combat disease outbreaks in Africa. Afr. J. Lab. Med. 2016; 5: 1–2.
8. Baker T, et al.: Essential care of critical illness must not be forgotten in the COVID-19 pandemic. Lancet. 2020; 395(10232): 1253–1254.
9. WHO: African Region numbers at a glance. 2020; Reference Source
10. Adela N, et al.: Knowledge, attitudes, practices of/towards COVID 19 preventive measures and symptoms: A cross-sectional study during the exponential rise of the outbreak in Cameroon. Plas Negl Trop Dis. 2020; 14(9): e0008700.
11. Hager E, et al.: Knowledge, attitude, and perceptions towards the 2019 Coronavirus Pandemic: A bi-national survey in Africa. PLoS One. 2020; 15: e0236918.
12. Olum R, et al.: Perspective of Medical Students on the COVID-19 Pandemic: Survey of Nine Medical Schools in Uganda. JMR Public Heal Survell. 2020; 6: e19847.
13. Mboowa G, Musoke D, Bulafa D, et al.: Face-Masking, an Acceptable Protective Measure against COVID-19 in Ugandan High-Risk Groups. Am. J. Trop. Med. Hyg. gmad201174. 2020.
14. Echoru I, et al.: University Lecturers and Students Could Help in Community Education About SARS-CoV-2 Infection in Uganda. Heal. Serv. insights. 2020; 13: 1178632920944167.
15. Sehri P, et al.: Community knowledge, perceptions and practices around COVID-19 in Sierra Leone: a nationwide, cross-sectional survey. BMJ Open. 2020; 10: e060328.
16. Ferdouza MZ, Islama MS, Sikdera MT, et al.: Knowledge, attitude, and practice regarding COVID-19 outbreak in Bangladesh: An online-based cross-sectional study. PubMed Abstract | Publisher Full Text | Free Full Text
17. Zhou M, et al.: 2020; Knowledge, attitude and practice regarding COVID-19 among health care workers in Henan. J Hosp Infect. 2020.
18. Ajilore K, Atakiri I, Oyenankanaya K: College students’ knowledge, attitudes and adherence to public service announcements on Ebola in Nigeria: Suggestions for improving future Ebola prevention education programmes. Health Educ. J. 2017; 76: 648–660.

Publisher Full Text
19. Tachfouti N, Siami K, Berraho M, et al. The impact of knowledge and attitudes on adherence to tuberculosis treatment: a case-control study in a Moroccan region. Pan Afr. Med. J. 2012; 12. PMID: 22937192 PMCID: PMC3428172.

20. Tao N. An analysis on reasons of SARS-induced psychological panic among students. J. Anhui Inst. Med. Educ. 2003; 21: 78-79.

21. Person B, Sy F, Holton K, et al. Fear and stigma: the epidemic within the SARS outbreak. Emerg. Infect. Dis. 2004; 10: 358.

22. Ferdous MZ, et al. Knowledge, attitude, and practice regarding COVID-19 outbreak in Bangladesh: An online-based cross-sectional study. PLoS One. 2020; 15: e0233925.

23. Szymona-Patkowska K, et al. Knowledge of the disease, perceived social support, and cognitive appraisals in women with urinary incontinence. Biomed Res. Int. 2016; 2016: 1.

24. Kebede Y, Yitay Y, Birhanu Z, et al. Knowledge, perceptions and preventive practices towards COVID-19 early in the outbreak among Jimma university medical center visitors, Southwest Ethiopia. PLoS One. 2020; 15: e0233744.

25. Zhong B-L, et al. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: a quick online cross-sectional survey. Int. J. Biol. Sci. 2020; 16: 1745.

26. Abdelghafir AS, et al. Knowledge, perceptions, and attitude of Egyptians towards the novel coronavirus disease (COVID-19). J. Community Health. 2020; 1-10.

27. Elhadi M, et al. Assessment of healthcare workers’ levels of preparedness and awareness regarding COVID-19 infection in low-resource settings. Am. J. Trop. Med. Hyg. 2020; 103: 828-833.

28. Lee H, et al. COVID-19 perception, knowledge, and preventive practice: Comparison between South Korea, Ethiopia, and Democratic Republic of Congo. Afr. J. Reprod. Health. 2020; 24: 66-77.

29. Reuben RC, Danladi MMA, Saleh DA, et al.: Knowledge, Attitudes and Practices Towards COVID-19: An Epidemiological Survey in North-Central Nigeria. J. Community Health. 2020; 1-14.

30. Alosa M, Stantcheva S, Yang D, et al.: Disparities in coronavirus 2019 reported incidence, knowledge, and behavior among US adults. JAMA Netw. Open. 2020; 3: e2024305-e2024303.

31. Mheidly N, Fares J. Leveraging media and health communication strategies to overcome the COVID-19 infodemic. J. Health Policy. 2020; 1-11.

32. Sahni H, Sharma H. Role of social media during the COVID-19 pandemic: Beneficial, destructive, or reconstructive? Int. J. Acad. Med. 2020; 6: 70.

33. Karasneh R, et al. Media's effect on shaping knowledge, awareness risk perceptions and communication practices of pandemic COVID-19 among pharmacists. Res Social Adm Pharm. 2020.

34. Islam AKMN, Laato S, Talukder S, et al.: Misinformation sharing and social media fatigue during COVID-19: An affordability and cognitive load perspective. Technol. Forecast. Soc. Change. 2020; 159: 120201.

35. Malecki K, Keating JA, Salfar NC. Crisis communication and public perception of COVID-19 risk in the era of social media. Clin. Infect. Dis. 2020.

36. Urmilighozho G, et al.: Sub-Saharan Africa preparedness and response to the COVID-19 pandemic: A perspective of early career African scientists. Wellcome open Res. 2020; 5.

37. Hagg E, Dahinten VS, Currie LM. The emerging use of social media for health-related purposes in low and middle-income countries: A scoping review. Int. J. Med. Inform. 2018; 115: 92-105.

38. Silver L, Johnson C. Internet use is growing across much of sub-Saharan Africa, but most are still offline. Pew Res. 2018 Reference Source.

39. Protopop-Pietro D, Volkova S, Lampso V, et al.: Studying user income through language, behaviour and affect in social media. PLoS One. 2015; 10: e0138717.

40. Huang Q, Wong DVS. Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? Int. J. Geogr. Inf. Sci. 2016; 30: 1873-1898.

41. Tettis E, Raines SA. Smartphone Internet access and use: Extending the digital divide and usage gap. Mob. Media Commun. 2017; 5: 239-255.

42. Mellon J, Prosser C. Twitter and Facebook are not representative of the general population: Political attitudes and demographics of British social media users. Res. Polit. 2017; 4: 205316917720008.

43. Shava H, Chinyamurindi WT. Determinants of social media usage among a sample of rural South African youth. South African Inf. Manag. 2019; 20: 1-8.

44. Pauwels J. Smartphone ownership and internet usage continues to climb in emerging economies. Pew Res. Cent. 2016; 22: 1-44.

45. Olutani OS, Ayandele O, Ashiruene D, et al.: "Infodemic" in a pandemic: COVID-19 conspiracy theories in an African country. Soc. Heal. Behav. 2020; 3: 152.

46. Achinkorah BO, Ameyaw EK, Hagan JE Jr, et al.: Rising above misinformation or fake news in Africa: Another strategy to control COVID-19 spread. Front. Commun. 2020; 5: 45.

47. Rakhmanov O, Dane S. Knowledge and anxiety levels of African university students against COVID-19 during the pandemic outbreak by an online survey. J. Res. Dent. Sci. 2020; 8: 53-56.

48. Adesegun OA, et al.: The COVID-19 crisis in Sub-Saharan Africa: Knowledge, attitudes, and practices of the Nigerian public. Am. J. Trop. Med. Hyg. 2020; 103: 1997-2004.

49. Asemahogan MA: Factors determining the knowledge and prevention practice of healthcare workers towards COVID-19 in Amhara region, Ethiopia: a cross-sectional survey. Trop. Med. Health. 2020; 48: 1-11.

50. Bates BR, Moncayo AL, Costales JA, et al.: Knowledge, attitudes, and practices towards COVID-19 among Ecuadorians during the outbreak: an online cross-sectional survey. J. Community Health. 2020; 45: 1158-1167.

51. Subramanuy U, et al.: Coronavirus disease 2019 (COVID-19) and psychiatric sequelae in South Africa: Anxiety and beyond. Wits J. Clin. Med. 2020; 2: 115-122.

52. Austrian K, et al.: COVID-19 related knowledge, attitudes, practices and needs of households in informal settlements in Nairobi, Kenya.2020.

53. Patil R, et al.: COVID-19 related knowledge, attitudes and practices in India. J. Trop. Med. 2021; 2021: 154754.

54. Vratsa EK, Tully M, Bode L. Empowering users to respond to misinformation about COVID-19. Media Commun. 2020; 8: 475-479.

55. Vratsa EK, Tully M, Bode L. Empowering users to respond to misinformation about COVID-19. Media Commun. 2020; 8: 475-479.

56. Mian A, Khan S. Coronavirus: the spread of misinformation. BMC Med. 2020; 18: 1-2.

57. Pennycuick G, McPhetres J, Zhang Y, et al.: Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychol. Sci. 2020; 31: 770-780.

58. Mfeka WP. Access to and usage of information among rural communities: A case study of Kilosa District Morogoro Region in Tanzania. Partnersh. Com. J. Bibr. Inf. Pract. Res. 2012; 7.

59. Hutchinson P, Lance P, Guikley DK, et al.: Measuring the cost-effectiveness of a national health communication program in rural Bangladesh. J. Health Commun. 2006; 11: 91-121.
60. Van Rossem R, Meekers D: The reach and impact of social marketing and reproductive health communication campaigns in Zambia. *BMC Public Health*. 2007; 7: 352. PubMed Abstract | Publisher Full Text | Free Full Text

61. Byanaku A, Ibrahim M: Knowledge, attitudes, and practices (KAP) towards COVID-19: A quick online cross-sectional survey among Tanzanian residents. *medRxiv*. 2020. Publisher Full Text

62. Wakefield MA, Loken B, Hornik RC: Use of mass media campaigns to change health behaviour. *Lancet*. 2010; 376: 1261-1271. PubMed Abstract | Publisher Full Text | Free Full Text

63. Ataguba OA, Ataguba JE: Social determinants of health: the role of effective communication in the COVID-19 pandemic in developing countries. *Glob. Health Action*. 2020; 13: 1788263. PubMed Abstract | Publisher Full Text | Free Full Text

64. Modell SM, Kardia SLR: Religion as a health promoter during the 2019/2020 COVID outbreak: View from Detroit. *J. Relig. Health*. 2020; 59: 2243-2255. PubMed Abstract | Publisher Full Text | Free Full Text

65. Núñez A, Madison M, Schiavo R, et al.: Responding to healthcare disparities and challenges with access to care during COVID-19. *Heal. Equity*. 2020; 4: 117-128. PubMed Abstract | Publisher Full Text | Free Full Text

66. McConnell BB: Music and health communication in The Gambia: A social capital approach. *Soc. Sci. Med.*. 2016; 169: 132-140. PubMed Abstract | Publisher Full Text

67. Aruhomukama D: Demystifying media sources of information and levels of knowledge about COVID-19: a rapid mini-review of cross-sectional studies in Africa. *figshare*. 2021. Publisher Full Text

68. Aruhomukama D, Bulafu D: GRADE results_Demystifying media sources of information and levels of knowledge about COVID-19-a rapid mini-review of cross-sectional studies in Africa. *figshare*. 2021. Publisher Full Text

69. Munn Z, Moola S, Riitano D, et al.: The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. *Int. J Health Policy Manag*. 2014; 3(3): 123. PubMed Abstract | Publisher Full Text | Free Full Text
Ahmed Shihab Albahri
Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Malaysia

The corrections and comments are based on the manuscript.

1. Concern number 1: I think the problem of this study is questionable and not valid. The authors reported:
 “COVID-19 control is highly affected by knowledge levels which are also affected by receipt of information on the disease.”
 However, in my opinion, this is not a hot topic problem to justify the presented systematic study. It could be a part of the contributions rather than the main problem. Another way to solve this issue is to present the advanced idea that matches receipt of the information on the COVID-19 disease problem.

2. Concern number 2: It is advisable that the abstract contains a statement at the end with the main achievement/contribution of the paper at a higher level and how this might be useful overall.

3. Concern number 3: According to the above concerns, reorganize the abstract to conclude:
 (a) The overall purpose of the paper and the research problems you investigated including the background and the contexts.
 (b) The basic design of the study.
 (c) Major findings or trends found as a result of the study.
 (d) A summary of your interpretations and conclusions.

4. Concern number 4: I need the authors to explain why this study includes only 2 databases, in particular, the author mentioned “A literature search was conducted in from January 2019 to October 2020 (time of last search) on PubMed and CINAHL databases/sites”. In this context, more reliable databases should be included to collect more articles due to the limited number of studies (only 10 studies).

5. Concern number 5: In general, the discussion is confusing to the readers. The discussion presented paragraph after paragraph and neither summary points nor claim points were
explaining the topic of the paper. Although some interesting discussed subjects were presented the overall direction of this section is confusing and not apparent.

6. Concern number 6: The conclusion is also confusing in general. So rewrite it and consider the following comments:
 - Highlight your analysis and reflect only the important points for the whole paper.
 - Mention the benefits.
 - Mention the implication in the last part of this section.

7. Concern number 7: In conclusion, my question here is: how can the readers be satisfied with the presented study without a clear justification from the academic literature about challenges, limitations, gaps...etc. Therefore, and based on the above, I reject the paper for indexing. However, some comments that could improve the paper are presented above.

References
1. Albahri AS, Hamid RA, Albahri OS, Zaidan AA: Detection-based prioritisation: Framework of multi-laboratory characteristics for asymptomatic COVID-19 carriers based on integrated Entropy-TOPSIS methods. *Artif Intell Med*. 2021; **111**: 101983 PubMed Abstract | Publisher Full Text
2. Albahri AS, Hamid RA, Alwan JK, Al-Qays ZT, et al.: Role of biological Data Mining and Machine Learning Techniques in Detecting and Diagnosing the Novel Coronavirus (COVID-19): A Systematic Review. *J Med Syst*. 2020; **44** (7): 122 PubMed Abstract | Publisher Full Text
3. Albahri OS, Al-Obaidi JR, Zaidan AA, Albahri AS, et al.: Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. *Comput Methods Programs Biomed*. 2020; **196**: 105617 PubMed Abstract | Publisher Full Text

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Partly

Are sufficient details of the methods and analysis provided to allow replication by others?
Yes

Is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are the conclusions drawn adequately supported by the results presented in the review?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Tele-medicine, healthcare services, bioinformatics, artificial intelligence

I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above.
Thank you for giving me an opportunity to review this paper.

1. The search was last conducted in October 2020 which is too old and needs to be updated as much literature has been published since then.

2. I think the Exposure/Intervention should be a Digital platform for COVID-19 information.

3. How are self-administered questionnaires different from online? I believe online questionnaires were also self-administered. Please clarify?

4. Although the reviewers have discussed each platform in detail in the discussion section, I guess the importance of authentic source information and pros/cons of using each platform and their impact on population’s mental health should be discussed.

Are the rationale for, and objectives of, the Systematic Review clearly stated?
Yes

Are sufficient details of the methods and analysis provided to allow replication by others?
Partly

Is the statistical analysis and its interpretation appropriate?
Partly

Are the conclusions drawn adequately supported by the results presented in the review?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Systematic review methodology.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.
Dickson Aruhomukama, Makerere University, Kampala, Uganda

We thank the reviewer for the great comments,

We will respond to each of them in the revised version of the write-up.

Competing Interests: None to declare

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com