A Fully Analytical Integration of Properties over the 3D Volume of the β Sphere in Topological Atoms

Paul L. A. Popelier[a,b]

Atomic multipole moments associated with a spherical volume fully residing within a topological atom (i.e., the β sphere) can be obtained analytically. Such an integration is thus free of quadrature grids. A general formula for an arbitrary rank spherical harmonic multipole moment is derived, for an electron density comprising Gaussian primitives of arbitrary angular momentum. The closed expressions derived here are also sufficient to calculate the electrostatic potential, the two types of kinetic energy, as well as the potential energy between atoms. Some integrals have not been solved explicitly before but through recursion and substitution are broken down to more elementary listed integrals. The proposed method is based on a central formula that shifts Gaussian primitives from one center to another, which can be derived from the well-known plane-wave expansion (or Rayleigh equation). © 2018 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.25158

Introduction

Quantum chemical topology (QCT),[11] pioneered[2] by the research group of the late Richard Bader, has carved out a space among non-topological methods in extracting insight from wave functions, both in chemistry (including metal-metal interactions[33] and solid state physics (including high-resolution X-ray crystallography[44]). This imaginative approach started, in quantum chemistry, as (the Quantum Theory of) Atoms in Molecules[35] (QTAIM) in the early 1970s. After adopting the mathematical language of dynamical systems with an eye on analyzing the electron density, QTAIM proposed a parameter-free definition of an atom and a chemical bond (the latter continuing to be a topic of contemporary research). The concepts of dynamical systems (e.g., separatrix, critical point, basin, gradient path) have been applied with success to quantum mechanical density functions, other than the electron density, such as the Laplacian of the electron density, the nuclear potential, the electron localization function, the electron localizability indicator, the virial field, to name a few (references and more details see both the Introduction and Box 8.1 in Ref. [6]). A detailed history of QTAIM and its QCT follow up has been given elsewhere.[6–8]

Although sometimes still mistaken[29] for yet another population analysis, QTAIM offers a good number of important atomic properties other than an atomic charge, which all derive from a single universal formula. This formula is the 3D integration of a relevant integrand over the volume of the topological atom, and can yield atomic (kinetic) energy, volume, electrostatic potential, and multipole moments, to name a few common ones. The existence of a single formula that delivers atomic properties in a consistent way should at least be emphasized and perhaps even celebrated. Indeed, this is not true for other methods: for example, there is no Mulliken volume or Hirshfeld volume; similarly, there is no van der Waals charge (as opposed to volume or radius). Better controlling the atomic integration over a spherical volume that resides completely within a topological atom (see below) is a sign of progress.

An important development within the QCT framework is that of an energy partitioning method called interacting quantum atoms (IQA),[10] which is based on earlier work.[11] In spite of its great computational cost, IQA is increasingly applied to a wide variety of chemical phenomena, non-exhaustively ranging from hydrogen bond cooperativity[12] over metal carbonyl bonds,[13] halogen bonds,[14] Zn-complexes,[15] excited states,[16] and congested molecules[17] to torsional energy barriers in peptides.[18] IQA hereby avoids the pitfalls,[19] both conceptual and numerical, of older non-topological energy partitioning schemes such as EDA and SAPT. The surge of IQA has been made possible by improved algorithms (e.g., parallelization and parameter fine-tuning) such as those found in the program[20] AIMAll.

Still, the computational challenge of the topological partitioning remains, compared to cheaper non-topological methods. This is why research that improves algorithms to integrate topological atoms should continue. This article focuses on the elimination of integration quadrature, but only inside the so-called β sphere,[21] which is the largest sphere that is completely contained within the topological atom at whose nucleus it is centered. In practice, the β sphere is just a...
sphere with an adequately large radius, typically ~90% of the distance between the nucleus and the nearest bond critical point. Numerical volume integration over the whole topological atom does not require a \(\beta \) sphere, in principle. Indeed, the radial quadrature can be performed by a single interval stretching from the nucleus to the edge of the atom. However, the very high values of electron density near the nucleus make it numerically advantageous to keep the \(\beta \) sphere, and to work with two radial integration intervals, one inside the \(\beta \) sphere and one outside, each with its own quadrature grid. Heavy elements (fourth period and beyond) benefit from even more than two radial integration intervals. In 2011, a fully analytical 3D volume integration over the \(\beta \)-sphere was achieved for the first time.\(^{[22]}\) Here, we propose an alternative analytical integration, which not only avoids the tedious axes rotations occurring in the former integration procedure but also generalizes much better to arbitrary multipole moments, and enables controlled elimination of Gaussian primitive functions far from the nucleus of the atom being integrated.

The Introduction to the 2011 paper contains a very detailed and rather exhaustive history at the time of topological integration algorithms, which will not be repeated here. Instead, we expeditiously review the literature, now extending it with the period 2012–2017, and starting with the first integrations over topological atoms, carried out\(^{[23]}\) already in 1973 but for linear molecules only. In 1981, the first computer program called OMEGA\(^{[24]}\) enabled the integration of topological atoms in any polyatomic molecule, followed by a completely different program\(^{[24]}\) a year later, called PROAIM. The Bader group gathered these programs, together with critical point location software, into the AIMPAC suite. With the help of collaborators, the main author of the atomic integration code, mathematician Biegler-König, resurrected and perfected\(^{[25–27]}\) his effort of the 1980s, leading to the AIM2000 code. Meanwhile, in the 1990s, the program MORPHY\(^{[28]}\) appeared as the first integration code\(^{[29]}\) written independently from the AIMPAC suite. MORPHY, also for the first time combined all AIMPAC functionality into a single program. In 1997, AIMAll emerged from an extensive AIMPAC modification, and is now a popular and fast QCT code. Independent rather than solid state electron densities, and focusing on solid state systems, and later honed it to CRITIC2.\(^{[32]}\) In the early 2000s, they also wrote PROMOLDEN, a code specialized in molecular integration algorithms. But encourages crude parameter settings, and typically implements the simplest (i.e., mathematically elementary) algorithms.

In this article, we focus on the involved mathematics of deriving closed formulae for the \(\beta \) sphere’s contribution to atomic multipole moments of arbitrary spherical harmonic rank, the two types of kinetic energy (K and G), the electrostatic potential and the potential energy between topological atoms. To keep the Method Section to the point, much material has been siphoned off to the Supporting Information. Due to the mathematical complexity of the analytical approach, the strategy and all details are reported in this article, while an implementation will follow in a future software-oriented publication.

Method

Imagine a sphere with a given radius \(\beta \), centered at a given nuclear position. In the context of topological atoms, this sphere is called the \(\beta \) sphere. This is the largest sphere that completely fits within a topological atom. Whichever the shape of this atom’s interatomic surfaces, \(\beta \) must be smaller than the distance between the nucleus and the closest-by bond critical point.

The first aim is to calculate, by analytical integration, the atomic multipole moments \(Q_{LM} \) associated with the volume of the \(\beta \) sphere only. The integrand of the integral leading to \(Q_{LM}(\beta) \) is the product of the electron density \(\rho \) and a regular spherical harmonic \(R_{LM} \) centered on the center of atomic integration with position vector \(\mathbf{R} \).

\[
Q_{LM}(\beta) = \int_{\beta} dr \rho(r) R_{LM}(r-R)
\]

(1)

where the radius \(\beta \) acts as a parameter and where the regular spherical (or solid) harmonic \(R_{LM} \) is defined by eq. (2),

\[
R_{LM}(r, \theta, \varphi) = \frac{4\pi}{\sqrt{2L+1}} Y_{LM}(\theta, \varphi)
\]

(2)

Here \(r, \theta, \) and \(\varphi \) represent spherical coordinates centered on \(\mathbf{R} \), which typically is the nucleus of (topological) atom \(\Omega \) and \(Y_{LM} \) represents a spherical harmonic, defined using the so-called “quantum mechanics convention” and including the Condon-Shortley factor.

Three comments are in order here. First, the uppercase indices \(L \) and \(M \) should not be confused with the lowercase indices \(l \) and \(m \), which will appear in formulae below. The regular...
spherical harmonics share their mathematical shape with the familiar s, p, d, f orbitals, or orbitals of higher rank. Second, eq. (2) defines the R_{LM} functions as complex (for details see Part A in the Supporting Information). It is best to work with complex R_{LM} functions during a derivation and, if necessary, convert them to real functions only at the end. Third, there is a local frame centered on a given nucleus, which determines the orientation of R_{LM} in space. This local frame is parallel to the global frame, which renders the local and global frames identical but for a translation. Earlier work\(^{22}\) shows that one can make the nuclear position of the $β$ sphere coincide with the origin of the global frame, without loss of generality.

The electron density appearing in eq. (1) is expanded in Gaussian primitives (denoted $G(r - R_i)$) of arbitrary angular momentum and centered at position R_i,

$$
\rho(r) = \sum_{\beta=1}^{\text{nMO}} n_\beta \sum_{j=1}^{n_\beta} c_{\beta j} G_j(r - R_i) \left(\sum_{k=1}^{n_\beta} c_{\beta k} G_k(r - R_i) \right)
$$

$$= \sum_{\beta=1}^{\text{nMO}} \sum_{j=1}^{n_\beta} \sum_{k=1}^{n_\beta} n_\beta c_{\beta j} c_{\beta k} G_j(r - R_i) G_k(r - R_i)
$$

where n_{MO} signifies the number of molecular orbitals, n_β is the number of Gaussian primitives used to expand each MO in, and c are the LCAO coefficients, which include the normalization factors of the Gaussian primitives. This notation makes clear that a Gaussian primitive is centered on either nuclear position R_i or R_k. Note that R_i may or may not coincide with the center of atomic integration R_j. The same is true for R_k, independently of whether R_i coincides with R_k.

A brief digression points out that, in a quadrature scheme, it is possible to evaluate a molecular orbital on its own, as part of the integration procedure calculating the integral of eq. (1). However, in an analytical integration, one cannot do this and one must instead consider the whole electron density in the integrand in eq. (1). This point is elaborated in Appendix A of the Supporting Information of Ref. [22].

Using the Gaussian product theorem, the product of any two Gaussians centered on R_j and R_k can be written as a single Gaussian, centered on R_{jk}, by ignoring the angular part of the Gaussian primitives, the product theorem is formally written as

$$
G_j(r - R_j) G_k(r - R_k) = \exp \left(-z_j |r - R_j|^2 \right) \exp \left(-z_k |r - R_k|^2 \right)
$$

$$= K_{jk} |r - R_{jk}|^2 = G_{jk}(r - R_{jk})
$$

The new Gaussian exponent z_{jk}, the new center R_{jk} and prefactor K_{jk} are also easily calculated,

$$z_{jk} = z_j + z_k, \quad R_{jk} = \frac{z_j R_j + z_k R_k}{z_j + z_k}, \quad K_{jk} = \exp \left(-\frac{z_j z_k}{z_j + z_k} |R_j - R_k|^2 \right)
$$

Substitution of eq. (3) into eq. (1) leads to eq. (6),

$$
Q_{LM}(\beta) = \sum_{\beta=1}^{\text{nMO}} \sum_{j=1}^{n_\beta} \sum_{k=1}^{n_\beta} c_{\beta j} c_{\beta k} \int \left[\prod_{\beta=1}^{\text{nMO}} \right] G_{jk}(r - R_{jk})
$$

The integration problem is then confined to the contribution of a single Gaussian to a given multipole moment and denoted $Q_{LM,jk}(\beta)$, which is centered on a site that is, in principle, different to the site R_j at which the multipole moment is centered,

$$Q_{LM,jk}(\beta) = \int dr R_{LM}(r - R_j) G_{jk}(r - R_{jk})
$$

Without loss of generality one can position the atomic integration center R_j at the origin, which is equivalent to translate the whole relative configuration of vectors r, R_j, R_k, and R_{jk} to the global origin.

Figure 1 illustrates all vectors introduced so far, and how they relate to one another geometrically, for an arbitrary pair of Gaussian primitives centered on R_j and R_k and contributing to the atomic integral calculated in eq. (7). Figure 1 illustrates the case of two Gaussian p-type primitives, p_x and p_z, making a contribution to $\rho(r)$ and hence to Q_{LM}.

For the general product of two Gaussian primitives of arbitrary angular momentum, eq. (7) becomes

$$Q_{LM,jk}(\beta) = K_{jk} \int \left[\prod_{\beta=1}^{\text{nMO}} \right] \exp \left(-\frac{z_j}{z_j + z_k} |r - R_{jk}|^2 \right) |x - X_j|^l \frac{(y - Y_j)^m}{(z - Z_j)^n}
$$

where the indices l, j, and k with superscript bars mark the angular momenta. One can use the binomial expression to work out each of the three products in eq. (8), one product in x, one in y and one in z. For example, focusing on x only, one obtains eq. (9),

\[Q_{LM,jk}(\beta) = K_{jk} \int \left[\prod_{\beta=1}^{\text{nMO}} \right] \exp \left(-\frac{z_j}{z_j + z_k} |r - R_{jk}|^2 \right) (x - X_j)^l (y - Y_j)^m (z - Z_j)^n\]
where the function $f_{s\lambda}$ provides the coefficients corresponding to the power $\lambda = r + s$ in x, which parametrically depend on the position of the centers (X_j, X_k) of the Gaussian primitives and their angular momenta (the various powers of X_j and X_k). We can then deduce from eq. (9) the two lowest powers of λ (0 and 1),

$$\langle x - X_j \rangle^i \langle x - X_k \rangle^j = \sum_{i=0}^{N} f_{s\lambda}(X_j, X_k)x^i$$

(9)

where λ is the integer power of the coordinate x, and μ of y, and ν of z. Part B of the Supporting Information also applies eqs. (11) and (10) to the specific case illustrated in Figure 1, which shows two different p-type Gaussian primitives (p_x and p_y) contributing to $G_{\lambda\mu\nu}$. The integral of eq. (11) is naturally carried out in spherical coordinates centered at \mathbf{O} because the electron density is essentially spherical, even for an atom inside a molecule. In other words, the deviations from sphericity are too small to abandon spherical coordinates in favor of alternative but inappropriate coordinates, such as Cartesian coordinates. The challenge is therefore to re-express $G_{\lambda\mu\nu}$ in terms of spherical coordinates centered at \mathbf{O}. This can be achieved using a key equation proposed before,[5,3]

$$Q_{\lambda\mu\nu}(\beta) = \int d\mathbf{r} \, \mathbf{R}_{\mu\nu}(\mathbf{r}) \exp \left(-z_{\lambda\mu\nu} | \mathbf{r} - \mathbf{R}_{\lambda\mu\nu} |^2 \right) \left(\sum_{m=0}^{\infty} | \mathbf{f}_{\lambda\mu\nu} |^m | \mathbf{g}_{\mu\nu} |^m \right) \left(\sum_{n=0}^{\infty} \mathbf{f}_{\lambda\mu\nu} |^n | \mathbf{g}_{\mu\nu} |^n \right)$$

(11)

and $i_0(0) = 1$ and $P_0(x) = 1$ (even when γ is indeterminate, as is the case here, with an undefined angle γ resulting between a null vector and non-null vector). Sixth and finally, the argument of an exponential function must be dimensionless and hence, if \mathbf{r}_1 has the dimension of length then \mathbf{r}_2 must have the dimension of reciprocal length, which is the case if it were a wave factor (as indeed it is in the Rayleigh equation).

To make use of eq. (12), the exponential function's argument in eq. (11) needs to be rewritten. This is done in eq. (13),

$$\exp \left(-z_{\lambda\mu\nu} | \mathbf{r} - \mathbf{R}_{\lambda\mu\nu} |^2 \right) = \exp \left(-z_{\lambda\mu\nu} (r^2 + R^2) \right) \exp \left(2z_{\lambda\mu\nu} R \cdot \mathbf{r} \right)$$

(13)

such that eq. (12) applies to the second factor on the right-hand side of eq. (13), setting $r_1 = 2z_{\lambda\mu\nu} \mathbf{R}_{\lambda\mu\nu}$ and $r_2 = \mathbf{r}$ where $| \mathbf{R}_{\lambda\mu\nu} | = \mathbf{R}_{\lambda\mu\nu}$ and $| \mathbf{r} | = r$. In terms of dimensionality (see 6th remark just above), the dimension of λ is reciprocal length squared, and hence, the argument of the exponential in eq. (13) is again dimensionless. Substitution of eqs. (12) and (13) into eq. (11), and dropping the by now tedious indices j and k, one obtains eq. (14),

$$Q_{\lambda\mu}(\beta) = \int d\mathbf{r} \, \mathbf{R}_{\mu\nu}(\mathbf{r}) \exp \left(-z_{\lambda\mu\nu} | \mathbf{r} - \mathbf{R}_{\lambda\mu\nu} |^2 \right) \left(\sum_{m=0}^{\infty} | \mathbf{f}_{\lambda\mu\nu} |^m | \mathbf{g}_{\mu\nu} |^m \right) \left(\sum_{n=0}^{\infty} \mathbf{f}_{\lambda\mu\nu} |^n | \mathbf{g}_{\mu\nu} |^n \right)$$

(14)

Two remarks must be made. If either $\mathbf{R} = \mathbf{0}$ (center of product Gaussian coincides with the center of integration) or $\mathbf{r} = \mathbf{0}$ (lower boundary of volume integration), then the expansion of eq. (12) becomes trivial but it still holds. From the latter statement, it follows that there is no need to treat the case of $\mathbf{R} = \mathbf{0}$ separately, at least at this stage. Later in the derivation a further comment on $\mathbf{R} = \mathbf{0}$ will be needed. In summary, although the case of $\mathbf{R} = \mathbf{0}$ can be solved directly using spherical coordinates centered on the global origin in eq. (11) we proceed anyway with the expansion that is eq. (12). Second,
the quantities R, K, s, and f in eq. (14) are parameters, depending on the fixed characteristics of the product Gaussian. The volume integral in eq. (14) is best described via spherical coordinates, denoted r, θ, and φ, and centered at the global origin \mathbf{o}. The quantity γ is the angle between \mathbf{r} and \mathbf{R} and hence is a mixture of a parameter (\mathbf{R}) and a variable (\mathbf{r}). We aim to separate all variables from parameters, so the $P(\cos \gamma)$ factor needs to be expanded. The well-known addition theorem involving two spherical harmonics, given in eq. (15), achieves this aim,

$$P(\cos \gamma) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} Y_{l,m}^*(\theta, \varphi) Y_{l,m}(\theta_R, \varphi_R)$$ \hspace{1cm} (15)$$

where vectors \mathbf{r} and \mathbf{R} are, respectively, described by spherical coordinates (r, θ, φ) and (R, θ_R, φ_R), which are both centered on \mathbf{o}. The choice as to which variables describe the complex conjugate spherical harmonic is steered by the application of an advantageous orthonormalization relationship discussed below, the special case where $\lambda = \nu = \mu = 0$. Substituting eq. (15) into eq. (14), and rearranging delivers

$$Q_{LM}(\beta) = 4\pi K \exp(-\pi R^2) \int \frac{dr}{\beta} R_{LM}(\mathbf{r})$$

$$\times \int_{0}^{2\pi} d\theta d\varphi \frac{r^3 \sin \theta}{\beta} Y_{l,M}(\theta, \varphi) \exp(-\pi r^2) \sum_{l=0}^{\infty} i_l(2\pi r) \sum_{m=-l}^{l} Y_{l,m}^*(\theta, \varphi) Y_{l,m}(\theta_R, \varphi_R) \sin \theta \cos \varphi \sin \nu \cos \varphi$$

$$\times \frac{r^2}{\beta}$$

$$\exp(-\pi r^2) \int d\theta d\varphi Y_{l,M}^*(\theta, \varphi) Y_{l,M}(\theta, \varphi) \sin^{\nu+1} \theta \cos \nu \sin \varphi \cos \varphi$$

$$= \frac{4\pi}{2l+1} \exp(-\pi R^2) Y_{l,M}(\theta_R, \varphi_R) \int_{0}^{2\pi} d\theta d\varphi d\varphi$$

$$\times \frac{r^3 \sin \theta}{\beta} \sin \theta \cos \varphi \sin \nu \cos \varphi$$

$$= \frac{4\pi}{2l+1} \exp(-\pi R^2) Y_{l,M}(\theta_R, \varphi_R) \delta_{l,0} \delta_{m,0}$$ \hspace{1cm} (16)$$

Further rearrangement yields the following master equation, eq. (18),

$$Q_{LM}(\beta) = 4\pi K \exp(-\pi R^2) \sum_{l=0}^{\infty} i_l(2\pi r) \sum_{m=-l}^{l} Y_{l,m}^*(\theta, \varphi) Y_{l,m}(\theta_R, \varphi_R) \sin \theta \cos \varphi \sin \nu \cos \varphi$$

$$\times \frac{r^2}{\beta}$$

$$\exp(-\pi r^2) \int d\theta d\varphi Y_{l,M}^*(\theta, \varphi) Y_{l,M}(\theta, \varphi) \sin^{\nu+1} \theta \cos \nu \sin \varphi \cos \varphi$$

$$\times \frac{r^2}{\beta}$$

$$\exp(-\pi r^2) \int d\theta d\varphi Y_{l,M}^*(\theta, \varphi) Y_{l,M}(\theta, \varphi) \sin^{\nu+1} \theta \cos \nu \sin \varphi \cos \varphi$$

$$\times \frac{r^2}{\beta}$$

$$\exp(-\pi r^2) \int d\theta d\varphi Y_{l,M}^*(\theta, \varphi) Y_{l,M}(\theta, \varphi) \sin^{\nu+1} \theta \cos \nu \sin \varphi \cos \varphi$$

In the special case where $\lambda = \nu = \mu = 0$, the angular integration in eq. (18) has been prepared for the use of the orthonormalization relationship announced above,

$$Q_{LM}(\beta) = 4\pi K \exp(-\pi R^2) \sum_{l=0}^{\infty} i_l(2\pi r) \sum_{m=-l}^{l} Y_{l,m}^*(\theta, \varphi) Y_{l,m}(\theta_R, \varphi_R) \sin \theta \cos \varphi \sin \nu \cos \varphi$$

$$\times \frac{r^2}{\beta}$$

$$\exp(-\pi r^2) \int d\theta d\varphi Y_{l,M}^*(\theta, \varphi) Y_{l,M}(\theta, \varphi) \sin^{\nu+1} \theta \cos \nu \sin \varphi \cos \varphi$$

$$\times \frac{r^2}{\beta}$$

$$\exp(-\pi r^2) \int d\theta d\varphi Y_{l,M}^*(\theta, \varphi) Y_{l,M}(\theta, \varphi) \sin^{\nu+1} \theta \cos \nu \sin \varphi \cos \varphi$$

$$\times \frac{r^2}{\beta}$$

$$\exp(-\pi r^2) \int d\theta d\varphi Y_{l,M}^*(\theta, \varphi) Y_{l,M}(\theta, \varphi) \sin^{\nu+1} \theta \cos \nu \sin \varphi \cos \varphi$$

This pleasing result shows that there is no need to evaluate any angular integrals in the case of only s-like Gaussian primitives contributing to $Q_{LM}(\beta)$. Second, the multipole moment $Q_{LM}(\beta)$ is simply proportional to the value of $Y_{l,M}(\theta_R, \varphi_R)$. Note that this multipole moment $Q_{LM}(\beta)$ can be a complex number because $Y_{l,M}$ can be complex and the other factors in eq. (20) are real. Third, the contribution of a given Gaussian primitive drops off quickly with the distance of its center from the origin \mathbf{o}. The radial integral in eq. (20),

$$Q_{LM}(\beta) = 4\pi K \exp(-\pi R^2) \sum_{l=0}^{\infty} i_l(2\pi r) \sum_{m=-l}^{l} Y_{l,m}^*(\theta, \varphi) Y_{l,m}(\theta_R, \varphi_R) \sin \theta \cos \varphi \sin \nu \cos \varphi$$

$$\times \frac{r^2}{\beta}$$

$$\exp(-\pi r^2) \int d\theta d\varphi Y_{l,M}^*(\theta, \varphi) Y_{l,M}(\theta, \varphi) \sin^{\nu+1} \theta \cos \nu \sin \varphi \cos \varphi$$

$$\times \frac{r^2}{\beta}$$

$$\exp(-\pi r^2) \int d\theta d\varphi Y_{l,M}^*(\theta, \varphi) Y_{l,M}(\theta, \varphi) \sin^{\nu+1} \theta \cos \nu \sin \varphi \cos \varphi$$

$$\times \frac{r^2}{\beta}$$

$$\exp(-\pi r^2) \int d\theta d\varphi Y_{l,M}^*(\theta, \varphi) Y_{l,M}(\theta, \varphi) \sin^{\nu+1} \theta \cos \nu \sin \varphi \cos \varphi$$

at any order L, can be reduced to a linear combination of the basic integral of an exponential with quadratic argument. An efficient implementation to any order L is possible through a recursion relation for modified spherical Bessel functions.

We now return to the master equation, eq. (18), which presents a radial and a double angular integral to be solved. The radial integral is tackled first, and can be written as
been siphoned off to Part D in the Supporting Information, known integrals. The explicit derivation and validation has therefore, the integral had to be creatively reduced to solved based on ready inspection of published solved integrals. This integral does not appear to have been

\[
I_\alpha(t, S : x, \beta, p) = \int_0^\beta ds r^\alpha \exp (-sr^2) \left(\frac{\beta}{2\pi} \right)^{s-k} 2^s \Gamma \left(\frac{s-k}{2} \right)
\]

where \(p = 2\alpha R \) and \(S = \lambda + \mu + v + L + 2 \). Simplify the notation of the integral. The result for the integral in eq. (18) focuses on the angular part counterpart of the radial integral \(I_\alpha(t, S : x, \beta, p) \). To shorten this article even more, the explicit derivation and validation has been siphoned off to Part E in the Supporting Information. This derivation solves the angular integral analytically, splitting it into an integral in \(\vartheta \) and one in \(\varphi \), that is,

\[
I_\alpha(t, S : x, \beta, p) = \int_0^{2\pi} d\vartheta d\varphi Y_{\ell,m}^* (\theta, \varphi) Y_{\ell,m} (\theta, \varphi) \sin^{\lambda+\mu+1} \theta \cos^\lambda \vartheta \sin^\mu \varphi \cos^k \varphi
\]

\[
= \left[\frac{(2\ell + 1)(\ell - m)!}{4\pi (\ell + m)!} \right]^{1/2} \left[\frac{(2L + 1)(L - M)!}{4\pi (L + M)!} \right]^{1/2} \int_0^{2\pi} d\varphi \rho^\ell (\cos \theta) P_{\ell} (\cos \theta) \sin^{\lambda+\mu+1} \theta \cos^\lambda \vartheta \sin^\mu \varphi \cos^k \varphi
\]

\[
= \left[\frac{(2\ell + 1)(\ell - m)!}{4\pi (\ell + m)!} \right]^{1/2} \left[\frac{(2L + 1)(L - M)!}{4\pi (L + M)!} \right]^{1/2} I_o(\ell, M, \lambda, \mu, v) I_o(M, \lambda, \mu, v)
\]

The result for the integral in \(\varphi \) is

\[
I_o(\lambda, \mu, v) = \frac{\pi}{2^{\mu+\nu+1}} \sum_{k=0}^{\nu} (\lambda-k)_{\mu-k} \left(\frac{\mu}{k} \right) \left(\frac{\lambda}{\lambda+\mu+M} \right) \frac{1}{2} \left(\lambda+\mu+M \right) !
\]

It is very important to realize that \(I_o \) vanishes if \(m > \lambda + \mu + M \).

In the calculation of \(\theta \), it proved crucial to use a finite expansion of the associated Legendre polynomials in terms of cosines and sines, to obtain a closed and more importantly, universal expression, which is

\[
I_o(\ell, M, L, \lambda, \mu, v) = \left(-\frac{1}{2} \right)^{m+M} \left(\ell + m \right)! \left(\ell - m \right)! \sum_{j=0}^{\ell} \sum_{k=0}^{M} \left(-1 \right)^{j+k} \left(\frac{a+1}{2} \right)^{2j} \left(\frac{b+1}{2} \right)^{2k} \times
\]

\[
\Gamma \left(\frac{a+1}{2} \right) \Gamma \left(\frac{b+1}{2} \right) \Gamma \left(\frac{a+b+2}{2} \right)
\]

where \(a = l - m - 2j + L - 2k + \frac{\lambda + \mu + 1}{2} \) and \(b = m + 2j + M + 2k + \lambda + \mu + 1 \).
In summary, by substituting eqs. (24) and (25) back into eq. (23), the integral in the master equation eq. (18) has been solved. Thus, we obtained a general formula for an arbitrary spherical harmonic multipole moment generated by the electron density, within a sphere with radius \(\beta \), and constructed from Gaussian of arbitrary angular momentum.

The next derivation focuses on the kinetic energy, starting with one type of kinetic energy density, usually denoted \(G(r) \) but here written as \(E_G(\beta) \) to avoid confusion with the Gaussian primitive function. Because \(E_G(\beta) \) contains only first derivatives the expressions are less complex than for another type of kinetic energy density called \(K(r) \), now denoted \(E_K(\beta) \) for consistency. The latter contains second derivatives and is discussed later. The contribution of the \(\beta \) sphere to the integrated kinetic energy, denoted \(E_G(\beta) \), is defined as follows:

\[
E_G(\beta) = \int_{\beta} d\mathbf{r} E_G(\mathbf{r}) = \frac{1}{2} \sum_{p=1}^{\text{max}} n_p \int_{\beta} d\mathbf{r} \nabla \psi_p \cdot \nabla \psi_p
\]

(26)

where all symbols in common with eq. (3) mean the same. The derivation leading to a solution for eq. (26) is given in Part F of the Supporting Information. Thus, the equivalent of eq. (11), which formulates the key integral for \(Q_{LM,jk} \), then becomes:

\[
\nabla^2 G_j(\mathbf{r}-\mathbf{R}_j; \mathbf{x}, \mathbf{I}_j, \mathbf{m}_j, \mathbf{n}_j) = -2\omega_j \left[2(\mathbf{l}_j + \mathbf{m}_j + \mathbf{n}_j) + 3 \right] G_j(\mathbf{r}-\mathbf{R}_j; \mathbf{x}, \mathbf{I}_j, \mathbf{m}_j, \mathbf{n}_j)
+ 4\omega_j^2 \left[G_j(\mathbf{r}-\mathbf{R}_j; \mathbf{x}, \mathbf{I}_j + 2, \mathbf{m}_j, \mathbf{n}_j) + G_j(\mathbf{r}-\mathbf{R}_j; \mathbf{x}, \mathbf{I}_j, \mathbf{m}_j + 2, \mathbf{n}_j) + G_j(\mathbf{r}-\mathbf{R}_j; \mathbf{x}, \mathbf{I}_j, \mathbf{m}_j, \mathbf{n}_j + 2) \right]
+ [I_j(I_j-1)G_j(\mathbf{r}-\mathbf{R}_j; \mathbf{x}, \mathbf{I}_j-2, \mathbf{m}_j, \mathbf{n}_j) + m_j(m_j-1)G_j(\mathbf{r}-\mathbf{R}_j; \mathbf{x}, \mathbf{I}_j, \mathbf{m}_j-2, \mathbf{n}_j) + n_j(n_j-1)G_j(\mathbf{r}-\mathbf{R}_j; \mathbf{x}, \mathbf{I}_j, \mathbf{m}_j, \mathbf{n}_j-2)]
\]

(29)

This equation allows one to write the equivalent of eq. (F4) of the Supporting Information:

\[
E_K(\beta) = \frac{1}{2} \sum_{p=1}^{\text{max}} n_p \int d\mathbf{r} \left(\sum_{j=1}^{n_0} \sum_{k=1}^{n_0} c_{jk} G_j(\mathbf{r}-\mathbf{R}_j; \mathbf{x}, \mathbf{I}_j, \mathbf{m}_j, \mathbf{n}_j) \left(\sum_{q=1}^{n_0} \sum_{l=1}^{n_0} c_{jl} G_l(\mathbf{r}-\mathbf{R}_l; \mathbf{x}, \mathbf{I}_l, \mathbf{m}_l, \mathbf{n}_l) \right) \right)
\]

\[
= \frac{1}{2} \sum_{p=1}^{\text{max}} n_p \sum_{j=1}^{n_0} \sum_{k=1}^{n_0} c_{jk} \int d\mathbf{r} \sum_{l=1}^{n_0} \sum_{j=1}^{n_0} c_{jl} G_j(\mathbf{r}-\mathbf{R}_j; \mathbf{x}, \mathbf{I}_j, \mathbf{m}_j, \mathbf{n}_j) \nabla^2 G_k(\mathbf{r}-\mathbf{R}_k; \mathbf{x}, \mathbf{I}_k, \mathbf{m}_k, \mathbf{n}_k)
\]

\[
= \frac{1}{2} \sum_{p=1}^{\text{max}} n_p \sum_{j=1}^{n_0} \sum_{k=1}^{n_0} c_{jk} \int d\mathbf{r} E_{K,jk}(\beta)
\]

(30)

where the explicit product between \(G_j \) and \(\nabla^2 G_k \) is now not written out but seen to give rise to a 7-term sum with its own pre-factors \(F_i \) and pattern of powers (\(l, m, n \)). As for \(E_G \), we are now reassured that we make contact with the previously established machinery of solving the arising integrals. This completes the treatment of kinetic energy. Note that the \(\beta \)-sphere contribution of the Laplacian of the electron density can be trivially obtained from the two kinetic energies because

\[
L(\beta) = \frac{1}{4} \int d\mathbf{r} \nabla^2 \rho(\mathbf{r}) = E_K(\beta) - E_G(\beta)
\]

(31)

To complete the treatment of IQA energies by their \(\beta \)-sphere contributions, the final section focuses on the potential energy, both within the same topological atom (intra) and between two different topological atoms (inter). An efficient strategy to calculate potential energies builds on two insights: (i) the calculation of the electrostatic potential (generated by a given electron density) as a useful intermediate physical quantity, and (ii) the exploitation of the exact convergence of the multipole expansion (due to the finite volume of the \(\beta \)-sphere).
The electrostatic potential at a given point \(\mathbf{P} \), generated by the total charge density inside the \(\beta \) sphere, is defined by

\[
V_{\text{tot}}(\mathbf{P}) = \int_{\beta} \frac{\rho_\text{tot}(\mathbf{r})}{|\mathbf{r} - \mathbf{P}|} d\mathbf{r} = Z_\beta - \int_{\beta} \frac{\rho(\mathbf{r})}{|\mathbf{r} - \mathbf{P}|} = V_{\text{nuc}} + V_{\text{elec}}
\]

where \(\rho_\text{tot}(\mathbf{r}) \) is the sum of the electronic and nuclear charge density, described by the position vector \(\mathbf{r} \), \(\rho(\mathbf{r}) \) the purely electronic density featuring throughout this article [starting with eq. (1)], and \(Z_\beta \) is the charge of the nucleus inside the \(\beta \) sphere. We take advantage of the following well known expansion

\[
\frac{1}{|\mathbf{r} - \mathbf{P}|} = \sum_{L=0}^{\infty} \frac{4\pi}{2L+1} \sum_{M=-L}^{L} (-1)^M Y_{L-M}(\theta_\beta, \varphi_\beta) Y_{L,M}(\theta, \varphi)
\]

which proves that the electrostatic potential can be calculated directly from the previously computed multipole moments \(Q_{\text{at}}(\beta) \), without introducing new integrals. The calculation of the potential energy between two topological atoms benefits from this straightforwardly calculated electrostatic potential because this energy can be written as follows:

\[
E_{\text{pot}}^{\text{tot}}(\mathbf{A}, \mathbf{B}) = \int_{\Omega_A} \int_{\Omega_B} \frac{\rho_\text{tot}(\mathbf{r}_A) \rho_\text{tot}(\mathbf{r}_B)}{r_{AB}} d\mathbf{r}_A d\mathbf{r}_B - \int_{\Omega_A} d\mathbf{r}_A \rho_\text{tot}(\mathbf{r}_A) V_{\beta}(\mathbf{r}_A) - \int_{\Omega_B} d\mathbf{r}_B \rho_\text{tot}(\mathbf{r}_B) V_{\beta}(\mathbf{r}_B)
\]

where

\[
V_\beta(\mathbf{r}) = \int_{\Omega_\beta} \frac{\rho_\text{tot}(\mathbf{r}_B)}{r_{AB}}
\]

is the electrostatic potential generated by atom B in atom A.

Figure 2 sets the scene, introducing symbols that will appear in the equations below. A topological atom, denoted \(\Omega \), consists of two regions: the \(\beta \)-sphere and the remaining region outside the \(\beta \)-sphere, which we call "a." All integration in the \(a \)-region could be possible analytically as well, by introducing so-called natural coordinates in eq. (18), but actually achieving this is perhaps more of a retirement project. The point \(\mathbf{P} \) marks a possible position where one wants to know the electrostatic potential generated by the electron density in \(\beta_a \).

Figure 2. Electrostatic potential and potential energies within and between two topological atoms \(\Omega_a \) and \(\Omega_b \). Note that for convenience the global origin coincides with the nuclear position of \(\Omega_a \). [Color figure can be viewed at wileyonlinelibrary.com]
where \(T_{1a4a5a6b} \) is a purely geometric interaction tensor and \(R_{AB} \) is the internuclear vector. In the second and third term, the quadrature grid over the respective \(z \)-regions of atoms \(A \) and \(B \) will ask for values of the analytically evaluated electrostatic potential in each of its points. The fourth term is purely numerical and hence does not benefit from the work of the current article. There remains only one case to be mentioned, which is that of \(A = B \), because it causes its own computational regime, but only for \(\beta_A - \beta_B \). Indeed, the interactions \(\beta_A - \beta_B \) are calculated without extra knowledge. For the \(\beta_A - \beta_B \) case, one option is to follow the method “inverse multiple moments,” another is to introduce a Fourier transform that is used in the evaluation of nuclear-electron attraction integrals.

Conclusions

We present a detailed derivation of a fully analytical 3D integration over the volume bounded by the \(\beta \) sphere inside a topological atom. The formulae are sufficiently general such that a Gaussian primitive of arbitrary angular momentum can contribute to the electron density within the \(\beta \) sphere. We obtained a general formula for an arbitrary spherical harmonic multiple moment, the kinetic energies and the potential energy between atoms. We showed that closed expressions can be obtained involving the exponential, error function, and gamma functions. The implementation of the results of the derivations given here will follow in a subsequent publication. This implementation will make a choice of quadrature grid superfluous, but it is not yet clear how the current formulae will perform computationally, compared with quadrature schemes.

Acknowledgment

Matthew J. L. Mills is thanked for preparing the images in Figure 2 making use of the \(\text{RhoRix}^{[15]} \).

Keywords: QTAIM · quantum chemical topology · integration · spherical Bessel function · beta sphere

How to cite this article: P. L. A. Popelier. J. Comput. Chem. 2018, 39, 604–613. DOI: 10.1002/jcc.25158

Additional Supporting Information may be found in the online version of this article.
Received: 15 October 2017
Revised: 18 December 2017
Accepted: 18 December 2017
Published online on 10 January 2018