Soft Bigram distance for names matching

Mohammed Hadwan Corresp., 1, 2, 3, Mohammed A. Al-Hagery 4, Maher Al-Sanabani 5, Salah Al-Hagree 6

1 Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia
2 Intelligent Analytics Group (IAG), College of Computer, Qassim University, Buraydah, Saudi Arabia
3 Department of Computer Sciences, Faculty of Applied Sciences, Taiz University, Taiz, Yemen
4 Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia
5 Faculty of Computer Science and Information Systems, Thamar University, Thamar, Yemen
6 Department of Computer Sciences & Information Technology, IBB University, IBB, Yemen

Corresponding Author: Mohammed Hadwan
Email address: m.hadwan@qu.edu.sa

Background: Bi-gram distance (BI-DIST) is a recent approach to measure the distance between two strings that have an important role in a wide range of applications in various areas. The importance of BI-DIST is due to its representational and computational efficiency, which has led to extensive research to further enhance its efficiency. However, developing an algorithm that can measure the distance of strings accurately and efficiently has posed a major challenge to many developers. Consequently, this research aims to design an algorithm that can match the names accurately. BI-DIST distance is considered the best orthographic measure for names identification; nevertheless, it lacks a distance scale between the name bigrams. Methods: In this research, the Soft Bigram Distance (Soft-Bidist) measure is proposed. It is an extension of BI-DIST by softening the scale of comparison among the name Bigrams for improving the name matching. Different datasets are used to demonstrate the efficiency of the proposed method. Results: The results show that Soft-Bidist outperforms the compared algorithms using different name matching datasets.
Soft Bigram Distance for Names Matching

Mohammed HadwanCorresp.,1,2,3, Mohammed A. Al-Hagery4, Maher Al-Sanabani5 and Salah Al-Hagree6

1 Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia
2 Department of Computer Science, Faculty of Applied Sciences, Taiz University, Taiz, Yemen
3 Intelligent Analytics Group (IAG), College of Computer, Qassim University, Buraydah, Saudi Arabia
4 Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia
5 Faculty of Computer Science and Information Systems, Thamar University, Thamar, Yemen
6 Department of Computer Sciences & Information Technology, IBB University, IBB, Yemen

Corresponding Author: Mohammed Hadwan
Email address: M.hadwan@qu.edu.sa

Abstract

Background: Bi-gram distance (BI-DIST) is a recent approach to measure the distance between two strings that have an important role in a wide range of applications in various areas. The importance of BI-DIST is due to its representational and computational efficiency, which has led to extensive research to further enhance its efficiency. However, developing an algorithm that can measure the distance of strings accurately and efficiently has posed a major challenge to many developers. Consequently, this research aims to design an algorithm that can match the names accurately. BI-DIST distance is considered the best orthographic measure for names identification; nevertheless, it lacks a distance scale between the name bigrams.

Methods: In this research, the Soft Bigram Distance (Soft-Bidist) measure is proposed. It is an extension of BI-DIST by softening the scale of comparison among the name Bigrams for improving the name matching. Different datasets are used to demonstrate the efficiency of the proposed method.

Results: The results show that Soft-Bidist outperforms the compared algorithms using different name matching datasets.
Introduction

Currently, Name Matching is one of the hottest topics in the emerging data science area, where, the BI-DIST is a recent and significant approach for name matching by measuring the distance between two strings, which play an important role in a wide range of applications in different fields.

Consequently, this led us to develop a strong and effective method for this purpose. Although,, developing highly accurate name matching algorithms is still a challenging issue in the research community (Navarro 2001)(Hall and Dowling 1980). By deeply reviewing the previous studies, it found that several studies have been conducted to develop name-matching algorithms, which are used to cope with many important topics. The classification of these algorithms is implemented into two categories: approximate string matching (inexact) algorithms (Al-Ssulami 2015; Hall and Dowling 1980; Navarro 2001) and exact string-matching algorithms (Al-Ssulami 2015; Charras and Lecroq 2004; Peter Christen 2006).

Name identification and matching are increasingly used in several applications such as Customer Relation Management (CRM), Health Care (HC), Customer Data Integration (CDI), Anti-Money Laundering (AML), Criminal Investigation (CI) and Genealogy Services (GS) (Lisbach et al. 2013). Besides, it is used also in other applications in the airports, Plagiarism Checking software, etc. If the matching is carried out considering only the exact similarity in such applications, it would be difficult and might be impossible to deal with the case of name variations, which is an unavoidable situation when dealing with real-world data sets (Delgado et al. 2016). That is, the exact matching approach is not suitable for large-scale applications and complex information systems, since it cannot retrieve names that have more than one acceptable spelling (Peter Christen 2006).

To have a highly effective name matching methods, the approximate string-matching approach should be adopted rather than exact matching. Therefore, this paper aims to develop an algorithm for name matching, that consider an approximate string-matching algorithm to allow dealing with possible technical or computational errors. Such matching algorithms have been used in several applications such as Spelling correction (Park et al. 2020), Linking database (Hand and Christen 2018), Text retrieval (Abdulhayoglu, Thijs, and Jeuris 2016), Handwriting recognition (Chowdhury, Bhattacharya, and Parui 2013), Computational biology “DNA” (Berger, Waterman, and Yu 2020), and Name recognition (Delgado et al. 2016)… etc. Consequently, in this work, a new softened distance measure is proposed, based on the BI-DIST distance to increase the efficiency and accuracy of the name-matching method. This is achieved by identifying different cases that form bigram scales, grounded on statistical analysis to soften the distance scale. Accordingly, it is hypothesized that an evolutionary method can be adapted to adjust the weights of the distance scale between n-grams.
Background and related work

Many research works mainly concentrate on name matching methods improvement and algorithm complexity. In addition to the complex process of matching names as aforementioned, misspelling and different spelling of words are detected. The effective way is to apply an approximate string-matching technique to prevent the recurring of different spelling inputs and misspelling (Lertnattee and Paluekpet 2019). Given two names X and Y represented as strings of n and m characters, respectively, the Edit Distance, aka Levenshtein Distance (LD), indicates the least possible cost of editing processes (insertion, deletion, and substitution) to convert X to Y (Levenshtein 1966). For example, if X = “Zantac” and Y = “Xanax”, the edit distance is 3 as the minimum transformation implies two substitution operations (“Z” → “X” and “c” → “x”) and one deletion operation (letter “t”). Which is calculated using the recurrence formula in Eq. (1), The Levenshtein distance between two strings s, t is given mathematically by \(\text{Lev}_{s,t}(|s|,|t|) \) where.

\[
\text{Lev}_{s,t}(i,j) = \begin{cases}
\text{Max}(i,j) & \text{if } (\text{Min}(i,j) = 0) \\
\text{Lev}_{s,t}(i,j-1) + 1 & \text{if } j > 0 \\
\text{Lev}_{s,t}(i-1,j) + 1 & \text{if } i > 0 \\
\text{Lev}_{s,t}(i-1,j-1) + 1 & \text{otherwise (} s[i] \neq t[j] \text{)} \end{cases} \tag{1}
\]

In equation (1), \(1 \) is the indicator function equal to 0 if \(s[i] = t[j] \) and 1 otherwise. By \(|s| \) we denote the length of the string s. \(\text{Lev}_{s,t}(i,j) \) is the distance between string prefixes – the first i characters of s and the first j characters of t. The first part of this formula denotes the number of insertion or deletion steps to transform prefix into an empty string or vice versa. The second block is a recursive expression with the first line represents deletion and the second one represents insertion. The last line is responsible for substitutions. More details are available at 1.

In (Damerau 1964), Damerau–Levenshtein Distance (DLD) is presented which is akin to the LD algorithm. The chief modification is that DLD lets one more edit, particularly where the two adjacent characters can be transposed. The DLD algorithm describes the distance between two strings s and t by the following recursive relation as shown in Eq. (2):

\[
D\text{Lev}_{s,t}(i,j) = \begin{cases}
0 & \text{if } i = j = 0 \\
D\text{Lev}_{s,t}(i-1,j) + 1 & \text{if } i > 0 \\
D\text{Lev}_{s,t}(i,j-1) + 1 & \text{if } j > 0 \\
D\text{Lev}_{s,t}(i-1,j-1) + 1 & \text{if } i,j > 0 \\
D\text{Lev}_{s,t}(i-2,j-2) + 1 & \text{if } i,j > 1 \text{ and } s[i] = t[j-1] \text{ and } s[i-1] = t[j] \\
\end{cases} \tag{2}
\]

Where \(1_{s[i] \neq t[j]} \) is the indicator function equal to 0 when \(s[i] = t[j] \) and equal to 1 otherwise.

1 https://www.baeldung.com/cs/levenshtein-distance-computation
In (Rees 2014), a customized approach called a Modified Damerau-Levenshtein Distance algorithm (MDLD) was proposed. MDLD was adjusted and tested against two input strings that support block transpositions of numerous characters. The MDLD algorithm’s time complex $O(n^3)$, is presented algorithm (MDLD) in its Oracle PL/SQL form. More details are available at ²

The N-gram Distance (N-DIST) that was proposed by Kondrak (Kondrak 2005) in his research works by the fusion of features carried out by grams of size and non-crossing-links constraints, and the first letter is repeated initially. On the other hand, it is found that BI-DIST is a case of N-DIST(Kondrak 2005). In (Abdulhayoglu et al. 2016) each matrix element $NDIST_{st}(i,j)$ is calculated according to Eq. (3), where the cost in Eq. (4) is the total number of distinct letters in the same positions in the character n-grams $s_i; t_j$, and n is the size of the character n-gram, as shown in Eqs. (3)-(4):

$$NDIST_{st}(i,j) = \begin{cases} \max(i, j) & (i = 0 \text{ or } j = 0) \\ \min \left(\begin{array}{l} NDIST_{st}(i-1,j) + 1 \\ NDIST_{st}(i,j-1) + 1 \\ NDIST_{st}(i-1,j-1) + d_n(T^n_{ij}) \end{array} \right) \end{cases} \quad (3)$$

$$d_n(T^n_{ij}) = \frac{1}{n} \sum_{u=1}^{n} \sum_{x_i+y_j+u} d_1(x_i+y_j+u), \quad (4)$$

Kondrak (Kondrak 2005) proposed the measures N-gram Distance and Similarity (N-DIST and N-SIM) respectively, where the recall metric is used to assess the results of twelve measures with the U.S. Pharmacopeia (USP) look-alike/sound-alike (LASA) list of 360 unique drug names. In this study, Kondrak concluded that combining BI-DIST and BI-SIM achieves the best results. The Food and Drug Administration (FDA) uses it to create automated warning systems to identify potential LASA errors in prescription electronic systems and phonetic orthographic computer analysis (POCA) software. Moreover, (Millán-Hernández et al. 2019) proposed a Soften Bigram Similarity measure (Soft-Bisim). This work concentrated on improving an algorithm to Identify Confusable Drug Names, based on Bi-gram algorithms and the blend of the longest common subsequences. Furthermore, the research work achieved (S Al-Hagree et al. 2019) proposed an enhanced N-DIST method that concentrated on improving an algorithm for Name Matching. However, the previous studies differ from the contribution in this paper, because the proposed algorithm in this paper combines a Bi-gram technique with a distance technique (Salah Al-Hagree et al. 2019).

The Proposed Method

In this section, a Soft-Bidist is presented. The Soft-Bidist measure is an extension of BI-DIST, it softening the scale of comparison among the name Bigrams for improving the name detection. This section organizes as follows. The first subsection is to describe the involved cases of bigrams

² https://confluence.csiro.au/public/taxamatch/the-mdld-modified-damerau-levenshtein-distance-algorithm
in the scale of the Soft-Bidist distance. Then, the Minimum, Maximum, and Average functions, which are used as means to identify the weights in the distance scale by statistical means, are mentioned. It is thus assumed that an evolutionary approach identifies the best levels in the distance scale compared to the original distance scale that Kondrak proposed in BI-DIST (cf. Eqs. (3) and (4)). In other words, we consider this problem as an evolutionary approach for optimizing the internal parameters of the distance scale.

Definition of Soft-Bidist Distance

Let X and Y be given names represented as sequences of sizes n and m, respectively, Soft-Bidist is defined as follows:

\[
BIDIST_{st}(i,j) = \begin{cases}
\max(i,j) & (i = 0 \text{ or } j = 0) \\
BIDIST_{st}(i-1,j) + ID_n(T^n_{ij}) & (i,j) = (1,1) \\
BIDIST_{st}(i,j-1) + ID_n(T^n_{ij}) & (i,j) = (i-1,j) \\
BIDIST_{st}(i,j-1) + d_n(T^n_{ij}) & (i,j) = (i,j-1) \\
\end{cases}
\]

(5)

The distance scale for Soft-Bidist is shown as follows:

\[
d_n(T^n_{ij}) = \begin{cases}
\text{wt}_1, & \text{if}(S_{i-1} = T_{j-1}) \text{and}(S_i = T_j) \\
\text{wt}_2, & \text{if}(S_{i-1} \neq T_{j-1}) \text{and}(S_i \neq T_j) \text{and}(S_{i-1} \neq T_{j-1}) \\
\text{wt}_3, & \text{if}(S_{i-1} = T_{j-1}) \text{and}(S_i \neq T_j) \\
\text{wt}_4, & \text{if}(S_{i-1} \neq T_{j-1}) \text{and}(S_i \neq T_j) \\
\text{wt}_5, & \text{if}(S_{i-1} = T_{j-1}) \text{and}(S_i \neq T_{j-1}) \\
\text{wt}_6, & \text{if}(S_{i-1} \neq T_{j-1}) \text{and}(S_i \neq T_{j-1}) \\
\text{wt}_7, & \text{if}(S_{i-1} \neq T_{j-1}) \text{and}(S_i = T_{j-1}) \\
\end{cases}
\]

(6)

\[
ID_n(T^n_{ij}) = \begin{cases}
\text{wt}_8, & \text{if}(S_{i-1} = T_j) \text{and}(S_i \neq T_{j-1}) \\
\text{wt}_9, & \text{if}(S_{i-1} \neq T_j) \text{and}(S_i = T_{j-1}) \\
\end{cases}
\]

(7)

To increase the accuracy of identifying the names, there is a need to find the set of weights $WT = \{wt_1; wt_2; \ldots; wt_9\}$ of the distance scale of Soft-Bidist. For this, a randomized value is used (Levenshtein 1966)(S Al-Hagree et al. 2019; Salah Al-Hagree et al. 2019; Earley 1969; Kondrak 2005; Millán-Hernández et al. 2019; Rees 2014).

Definition of Soft-Bidist Distance

The cases are weighted as symbols wt_1, wt_2, wt_3, wt_4, wt_5, wt_6, wt_7, wt_8, and wt_9. These weights depend on Table 1 and Table 2, which are used to adapt to the operational environment and get highly accurate results in various situations. Therefore, Table 1 contains several different weights. After changing the default values of $[0, 1, 1, 0, 1, 1, 1, 1]$ with wt_1, wt_2, wt_3, wt_4, wt_5, wt_6, wt_7, wt_8, and wt_9 for all cases respectively, the new weights achieve results similar to that obtained by LD algorithm. Again, other default values have been examined $[0, 1, 0, 1, 1, 1, 1, 1]$ with wt_1, wt_2, wt_3, wt_4, wt_5, wt_6, wt_7, wt_8 and wt_9 for all cases respectively, the new weights...
weights achieve results similar to that obtained by the DLD algorithm. Finally, other default values
of [0, 1, 1, 0.5, 0.5, 1, 1, 1 and 1] for wt1, wt2, wt3, wt4, wt5, wt6, wt7, wt8, and wt9 for all cases
respectively, the new weights achieves results similar to that obtained by the N-DIST algorithm.
Based on the previous weight values, new weights were added to Table 2.

Table 1: The various weights for Soft-Bidist that yelled similar results to other algorithms from
the literature

Table 2: The Randomize of weights for Soft-Bidist algorithm

The Experimental Results
This section presents the experimental results that are carried out in this research. The objective of
these experiments is to assess the Soft-Bidist algorithm compared with other algorithms from the
literature. Due to the absence of standard datasets for name matching, different multilingual
datasets (English, Arabic, Portuguese) is used in the experiments carried out in this research. These
datasets are presented by (S Al-Hagree et al. 2019), (Ahmed and Nürnberg 2009), (Rees 2014) and
(Al-Sanabani and Al-Hagree 2015). Different spelling errors and typographical are included in these
datasets. In our previous work, a modified algorithm was applied to drug names in English documents, but
for current work, the Soft-Bidist is applied to the different datasets deals with personal names in Arabic,
English and Portuguese. To our knowledge, there have been no previous reports of good performance on
this combination of datasets with different languages.

The same data preparation used in (S Al-Hagree et al. 2019) is used in this research to be compared
with the Soft-Bidist algorithm.

After defining the default values of [0, 1, 1, 0.2, 0.2, 1, 1, 1 and 1] for wt1, wt2, wt3, wt4, wt5,
wt6, wt7, wt8, and wt9 for all cases respectively, the proposed algorithm appears to have achieved
high accurate results. Generally, it is not easy to provide accurate weights between pair source and
target. In order to gain proper values for weights wt1, wt2, wt3, wt4, wt5, wt6, wt7, wt8, and wt9,
the experiments with different weights for Table 1 and Table 2 of dataset 1 (S Al-Hagree et al.
2019) should be repeated. The results are presented in Table 3.

Table 3: The results with different weights for Soft-Bidist

The experiments are repeated on dataset 2 (Ahmed and Nürnberg 2009)(Al-Sanabani and
Al-Hagree 2015) for the Soft-Bidist algorithms. Table 4 shows the result of this experiment. It can
be noticed that the Soft-Bidist Algorithm functions better than the DLD, LD and N-DIST
algorithms particularly being compared with names transposition such as the names that are shown
in rows 3 and 4. Unlike DLD, LD, and N-DIST, the Soft-Bidist algorithm is sensitive to
replacement as shown in rows 6 and 7. The Soft-Bidist Algorithm computes recurring letters,
detection of errors, and deletion in a more proficient manner than DLD, LD, and N-DIST as they
appear in rows 5, 8, 9, 10, 11, 12, 13, and 14. The Soft-Bidist algorithm exhibits a number of
advantages over the DLD, LD, and N-DIST algorithms as aforementioned. Therefore, the Soft-
Bidist algorithm functions well and gives a better accuracy compared with the DLD, LD, and N-
DIST algorithms for all pairs in dataset 2 as appears in Table 4.

Table 4: Comparison between proposed algorithms.

Furthermore, more experiments are implemented with various datasets to prove the evidence
of the ability of the Soft-Bidist algorithm. Ten datasets are chosen and implemented on the DLD,
LD, N-DIST, MDLD, and Soft-Bidist algorithms as appears in Table 5. That demonstrates the
evidence and ability of the Soft-Bidist algorithm in name matching.

In Table 5, the Soft-Bidist algorithm gets 93% and 90% while DLD, LD, N-DIST, and MDLD
algorithms get 88%, 88%, 86%, and 89%, respectively. Therefore, the Soft-Bidist algorithm gives
more accurate results than the DLD, LD, N-DIST, and MDLD algorithms for all datasets, because
LD, DLD, N-DIST, and MDLD algorithms have not considered the transposition operations of
Latin-based language especially the English language.

Table 5: The mean similarity of LD, DLD, N-DIST, MDLD and Soft-Bidist algorithms with a
different dataset.

Comparative Study for Soft-Bidist Algorithm and compared
algorithms

The dataset used for comparison in this section has been extracted manually from the book of
(Christen 2012). To clarify the way that string comparison functions approximate various
similarity estimations when used for similar strings. Table 6 gives sample results when given
names and surnames are compared for the Soft-Bidist algorithm and compared algorithms as well.
The highest similarity is shown in bold, while the lowest is shown in italics. The similarity values
in Table 6 are calculated based on chosen name pairs. Table 6 reflects how different string
comparison functions produce various similarity approximates for the same name pairs. According
to the given results, there are significant differences in the similarities approximated on the same
pair. These functions have various characteristics concerning the average and the spread of the
value of similarity. Methods as Winkler, Jaro, the compression-based comparison operates, and
Soft-Bidist Algorithm gives the highest mean of similarity values. Whereas, the edit distance (ED),
the longest common substring (LCS) comparison, and the q-gram (‘n-gram’) based functions
(Ukkonen 1992) result in a much lower mean in the similarity values as can be seen in Table 6.
Table 6: The average similarities for proposed weights and compared methods presented at
(Christen 2012)

The Estimated Measure
The estimated measure is using the f-measure which is also called f-score. The name matching
quality has proven to be effective (P Christen 2006) (Christen, 2006; Olson et al., 2008;
Kolomvatsos et al., 2013), which is based on precision and recall. These metrics are used for
classification tasks. They compare the predicted class of an item with the actual class, as shown in
Table 7. Based on Table 7 and following (Kolomvatsos et al., 2013), precision and recall are
defined as:

\[
\text{Precision} = \frac{TP}{TP + FP} \quad (8)
\]

\[
\text{Recall} = \frac{TP}{TP + FN} \quad (9)
\]

Moreover, the F-measure is defined as the weighted combination of precision and recall. The F-
measure is defined by:

\[
F\text{– Measure} = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \quad (10)
\]

Table 7: Correspondence between the predicted and the actual classes.

Since f-measure is an accuracy measure between 0 and 1, the higher the values, the better and
more accurate are the results. The experiments can be seen in Table 8, the mean of f-measures
achieved by the proposed Soft-Bidist algorithm on all instances for the used dataset and the
threshold is 0.94, which outperforms the other algorithms. Best results shown boldface and worst
results underlined. The thresholds are 0.90, 0.85, 0.80, 0.75, 0.70 and 0.65 of all datasets tested
(three English datasets, one Portuguese dataset, three species datasets, three genera datasets, and
one Arabic dataset).

Table 8: The results of average f-measure values

Table 9 presents the F1-scores for different scenarios. For the dataset 5 (Portuguese 120 pairs),
using different Edit Distance. The best results were retrieved with the threshold values for a correct
match of 0.65, 0.70, 0.75, 0.80, 0.85 and 0.90 for LD, DLD, N-DIST, MDLD and Soft-Bidist, respectively (Abdulhayoglu et al., 2016). Table 9 shows F-measure vs. Threshold curves for dataset 5 (Portuguese 120 pairs).

Table 9: F1-scores of different algorithms, thresholds and similarity calculation.

Table 10: The results of F-measure mean values

Conclusion

In this research, Soft-Bidist is proposed where it used a new methodology for improving name-matching accuracy. Soft-Bidist algorithm handles the transposition, deletion, substitution, and insertion operations in a new way. These operations are dealt with differently, considering its different states of the name matching to enhance the matching performance. Furthermore, different weights were assigned for each operation, which in turn enhanced the whole matching process. In comparison with other algorithms from the literature, the results of the experiments prove that the Soft-Bidist outperformed compared algorithms significantly. For future studies, it is suggested to explore the evolutionary algorithms to get the most proper weights for the soft calculation case, Genetic Algorithm (GA) for instance.

Funding

Deanship of Scientific Research, Qassim University funding the publication of this project.

Acknowledgments

Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this project.
Conflicts of Interest

The authors declare no conflict of interest.

References

Abdulhayoglu, Mehmet Ali, Bart Thijs, and Wouter Jeuris. 2016. “Using Character N-Grams to Match a List of Publications to References in Bibliographic Databases.” *Scientometrics*. doi: 10.1007/s11192-016-2066-3.

Ahmed, Farag, and Andreas Nürnberger. 2009. “Evaluation of N-Gram Conflation Approaches for Arabic Text Retrieval.” *Journal of the American Society for Information Science and Technology*. doi: 10.1002/asi.21063.

Al-Hagree, S, M. Al-Sanabani, M. Hadwan, and M. A. Al-Hagery. 2019. “An Improved N-Gram Distance for Names Matching.” In *2019 First International Conference of Intelligent Computing and Engineering (ICOICE)*. IEEE.

Al-Hagree, Salah, Maher Al-Sanabani, Khaled M. A. Alalayah, and Mohammed Hadwan. 2019. “Designing an Accurate and Efficient Algorithm for Matching Arabic Names.” In *2019 1st International Conference of Intelligent Computing and Engineering: Toward Intelligent Solutions for Developing and Empowering our Societies, ICOICE 2019*.

Al-Sanabani, Maher, and Salah Al-Hagree. 2015. “Improved An Algorithm For Arabic Name Matching.” *OPEN TRANSACTIONS ON INFORMATION PROCESSING* 1–17.

Al-Ssulami, Abdulrakeeb M. 2015. “Hybrid String Matching Algorithm with a Pivot.” *Journal of Information Science*. doi: 10.1177/0165551514555668.

Berger, Bonnie, Michael S. Waterman, and Yun William Yu. 2020. “Levenshtein Distance, Sequence Comparison and Biological Database Search.” *IEEE Transactions on Information Theory*. doi: 10.1109/tit.2020.2996543.

Charras, Christian, and Thierry Lecroq. 2004. *Handbook of Exact String Matching Algorithms*. King’s College Publications.

Chowdhury, S. Dutta, U. Bhattacharya, and S. K. Parui. 2013. “Online Handwriting Recognition Using Levenshtein Distance Metric.” In *Proceedings of the International Conference on Document Analysis and Recognition, ICDAR*.

Christen, P. 2006. *A Comparison of Personal Name Matching Techniques and Practical Issues*, edited by Joint Computer Science Technical Report Series. Department of Computer Science.

Christen, Peter. 2006. “A Comparison of Personal Name Matching: Techniques and Practical Issues.” In *Proceedings - IEEE International Conference on Data Mining, ICDM*.

Christen, Peter. 2012. *Data Matching: Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection*.

Damerau, Fred J. 1964. “A Technique for Computer Detection and Correction of Spelling Errors.” *Communications of the ACM*. doi: 10.1145/363958.363994.

Delgado, Juan, Fernando Galárraga, Walter Fuertes, Theofilos Toulkeridis, Cesar Villacis, and Fidel Castro. 2016. “A Proposal of an Entity Name Recognition Algorithm to Integrate Governmental Databases.” In *2016 3rd International Conference on eDemocracy and eGovernment, ICEDEG 2016*.

Earley, Jay. 1969. 6. DAMERAU, F. A Technique for Computer Detection and Correction of Spelling Errors.

Hall, Patrick A. V., and Geoff R. Dowling. 1980. “Approximate String Matching.” *ACM*
Hand, David, and Peter Christen. 2018. “A Note on Using the F-Measure for Evaluating Record Linkage Algorithms.” Statistics and Computing. doi: 10.1007/s11222-017-9746-6.

Kondrak, Grzegorz. 2005. “N-Gram Similarity and Distance.” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Lertnattee, Verayuth, and Thitima Paluekpet. 2019. “Effects of Substring Position and Character Similarity on Human Perception of Thai Herb Name Similarity.” in Lecture Notes in Electrical Engineering.

Levenshtein, Vladimir. 1966. “Binary Codes Capable of Correcting Deletions, Insertions, and Reversals.” Soviet Physics Doklady.

Lisbach, Bertrand, Victoria Meyer, Bertrand Lisbach, and Victoria Meyer. 2013. “Name Matching and Identity Matching.” in Linguistic Identity Matching.

Millán-Hernández, Christian Eduardo, René Arnulfo García-Hernández, Yulia Ledeneva, and Ángel Hernández-Castañeda. 2019. “Soft Bigram Similarity to Identify Confusable Drug Names.” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Navarro, Gonzalo. 2001. “A Guided Tour to Approximate String Matching.” ACM Computing Surveys. doi: 10.1145/375360.375365.

Park, Chanjun, Kuekyeng Kim, Yeong Wook Yang, Minho Kang, and Heuiseok Lim. 2020. “Neural Spelling Correction: Translating Incorrect Sentences to Correct Sentences for Multimedia.” Multimedia Tools and Applications. doi: 10.1007/s11042-020-09148-2.

Rees, Tony. 2014. “Taxamatch, an Algorithm for near (‘Fuzzy’) Matching of Scientific Names in Taxonomic Databases.” PLoS ONE. doi: 10.1371/journal.pone.0107510.

Ukkonen, Esko. 1992. “Approximate String-Matching with q-Grams and Maximal Matches.” Theoretical Computer Science. doi: 10.1016/0304-3975(92)90143-4.
Table 1 (on next page)

The various weights for Soft-Bidist
Table 1: The various weights for Soft-Bidist that yielded similar results to other algorithms from literature.

Proposed Weights	wt_1	wt_2	wt_3	wt_4	wt_5	wt_6	wt_7	wt_8	wt_9
(LD).	0	1	1	0	1	1	1	1	1
(DLD).	0	1	0	0	1	1	1	1	1
N-DIST is n=2 "BI"	0	1	1	0.5	0.5	1	1	1	1
Table 2 (on next page)

The Randomize of weights for Soft-Bidist algorithm
Table 2: The randomize of weights for Soft-Bidist algorithm

No	Weights for Soft-Bidist	wt₁	wt₂	wt₃	wt₄	wt₅	wt₆	wt₇	wt₈	wt₉
1	Minimum.	0	1	0	0	0.5	1	1	1	1
2	Average.	0	1	0.7	0.2	0.8	1	1	1	1
3	Maximum (Cases 8, 9 is 0.5).	0	1	0	0	0.5	1	1	0.5	0.5
4	Average (Cases 8, 9 is 0.5).	0	1	0.7	0.2	0.8	1	1	0.5	0.5
5		0	1	1	0	0.5	1	1	1	1
6		0	1	0	0	0.5	1	1	1	1
7		0	1	0	0.2	0.2	1	1	1	1
8	Randomize weights	0	1	0	0.1	0.1	1	1	1	1
9		0	1	0	0	0.5	1	1	0.5	0.5
10		0	1	1	0	0.5	1	1	0.5	0.5
11		0	1	0.5	0	0.5	1	1	0.5	0.5
12		0	1	0	0.1	0.1	1	1	0.5	0.5
13		0	1	0.5	0	0.1	1	1	0.5	0.5
14		0	1	0	0	0.2	1	1	0.5	0.5
15		0	1	0	0	0.2	1	1	0.5	0.5
16	The applied in this paper.	0	1	0	0.2	0.2	1	1	0.5	0.5

Table 3 (on next page)

The results with different weights for Soft-Bidist
No	wt₁, wt₂, wt₃, wt₄, wt₅, wt₆, wt₇, wt₈ and wt₉	Average (percentage similarity)
1	0,1,1,0,1,1,1,1 and 1	0.83
2	0,1,0,0,1,1,1 and 1	0.87
3	0,1,1,0.5,0.5,1,1,1 and 1	0.82
4	0,1,0,0.5,0.5,1,1,1 and 1	0.89
5	0,1,1,0,0.5,1,1,1 and 1	0.87
6	0,1,0,0,0.5,1,1,1 and 1	0.91
7	0,1,0,0.2,0.2,1,1,1 and 1	0.91
8	0,1,0,1,0.1,1,1,1 and 1	0.93
9	0,1,0,0,2,1,1,1 and 1	0.93
10	0,1,1,0,0.5,1,1,0.5 and 0.5	0.89
11	0,1,0,0.5,0.5,1,1,0.5 and 0.5	0.91
12	0,1,0,0,0.5,1,1,0.5 and 0.5	0.93
13	0,1,0,0,0.5,1,1,0.5 and 0.5	0.88
14	0,1,0,0.2,0.2,1,1,0.5 and 0.5	**0.94**
15	0,1,0,0,1,0.1,1,0.5 and 0.5	0.96
16	0,1,0,0,0.2,1,1,0.5 and 0.5	0.95
17	0,1,0,0,0.5,1,1,0.5 and 0.5	0.96
18	0,1,0,0,0.1,1,1,0.5 and 0.5	0.97
Table 4 (on next page)

Comparison between algorithm from literature and Soft-Bidist
No.	Source	Target	DLD	LD	N-DIST	Soft-Bidist (0,1,0.5,1,0.5,0.5,1)	Soft-Bidist (0,1,0.2,0.2,1.0,1.0,0.5)
1	precede	preceed	0.86	0.71	0.79	1.00	0.97
2	promise	promiss	0.86	0.86	0.93	1.00	0.97
3	absence	absense	0.86	0.86	0.86	0.86	0.94
4	achieve	achieve	0.86	0.71	0.71	0.86	0.94
5	accidentally	accidentally	0.92	0.92	0.92	0.96	0.96
6	algorithm	algorythm	0.89	0.89	0.89	0.89	0.96
7	similar	Similer	0.86	0.86	0.86	0.86	0.94
8	dilemma	Dilemma	0.86	0.86	0.86	0.93	0.93
9	almost	allmost	0.86	0.86	0.86	0.93	0.93
10	amend	ammend	0.83	0.83	0.83	0.92	0.92
11	occurred	occured	0.88	0.88	0.88	0.94	0.94
12	embarrass	embarass	0.89	0.89	0.89	1.00	0.94
13	harass	harrass	0.86	0.86	0.86	1.00	0.93
14	really	Realy	0.83	0.83	0.83	0.92	0.92
	Average(percentage similarity)		0.86	0.84	0.86	0.84	**0.94**
Table 5 (on next page)

The mean similarity of LD, DLD, N-DIST, MDLD and Soft-Bidist algorithms with different dataset.
Table 5: The mean similarity of LD, DLD, N-DIST, MDLD and Soft-Bidist algorithms with different dataset.

Datasets	DLD	LD	N-DIST	MDLD	Soft-Bidist	Soft-Bidist
	Sim %	Sim %	Sim %	Sim %	Sim %	Sim %
1 Dataset 3 (English 60 pairs) [19].	0.86	0.83	0.81	0.87	0.89	**0.94**
2 Dataset 4 (English 4013 pairs) [19].	0.85	0.84	0.82	0.86	0.89	**0.92**
3 Dataset 5 (Portuguese 120 pairs) [21].	0.84	0.84	0.82	0.84	0.85	**0.91**
4 Dataset 6 ‘CAAB’ (641 pairs) [16].	0.94	0.95	0.93	0.94	0.95	**0.96**
5 Dataset 7 ‘Dalcin name pairs’ (171 pairs) [16].	0.95	0.94	0.93	0.95	0.97	**0.97**
6 Dataset 8 ‘CAABWEB’ (2047 pairs) [16].	0.93	0.93	0.92	0.93	0.95	**0.95**
7 Dataset 9 ‘GRIN genera’ (189 pairs) [16].	0.89	0.88	0.87	0.89	0.90	**0.94**
8 Dataset 10 ‘CAAB Genera’ (115 pairs) [16].	0.90	0.88	0.85	0.90	0.91	**0.94**
9 Dataset 11 ‘CAABWEB Genera’ (853 pairs) [16].	0.88	0.88	0.87	0.88	0.90	**0.93**
10 Dataset 12 ‘Arabic name (600 pairs) [22].	0.80	0.79	0.73	0.80	0.77	0.80
Similarity mean	0.88	0.88	**0.86**	0.89	**0.90**	**0.93**
Table 6 (on next page)

Similarities of calculated and string pairs
Table 6: The average similarities for proposed weights and compared methods presented at (Christen 2012)

No.	Algorithms	Average similarity
1	Jaro	0.86
2	Winkler	**0.88**
3	Bigram	0.62
4	Trigram	0.52
5	Positional bigrams	0.62
6	Skip-grams	0.62
7	Levenshtein edit distance (LD)	0.70
8	Damerau-Levenshtein edit distance (DLD)	0.72
9	BagDist	0.78
10	Editex	0.75
11	compression-based similarity using the ZLib compressor	0.66
12	longest common substring (length = 2)	0.67
13	longest common substring (length = 3)	0.60
14	Smith-Waterman edit distance	0.65
15	syllable alignment distance	0.66
16	MDLD	0.72
17	0,1,1,0,1,1,1,1,1 and 1 (Sof-Bidist)	0.70
18	0,1,0,0,1,1,1,1 and 1 (Sof-Bidist)	0.72
19	0,1,1,0,5,0,5,1,1,1 and 1 (Sof-Bidist)	0.68
20	0,1,0,5,0,5,1,1,1 and 1 (Sof-Bidist)	0.77
21	0,1,0,2,0,2,1,1,1 and 1 (Sof-Bidist)	0.78
22	0,1,0,0,1,0,1,0,5, 0.5, 0.5 and 0.5 (Sof-Bidist)	0.83
23	0,1,0,0,0.1, 0.5, 0.5 and 0.5 (Sof-Bidist)	0.85
24	0,1,0,0,0.1, 0.2, 0.2, 0.2 and 0.2 (Sof-Bidist)	**0.88**
Table 7 (on next page)

Correspondence between the predicted and the actual classes
Table 7: Correspondence between the predicted and the actual classes.

Algorithm	Predicted		
	Match	Not Match	
Actual (Truth)	Match	True Positive (TP)	False Negative (FN)
	Not Match	False Positive (FP)	True Negative (TN)
Table 8: Average f-measure values (best results shown boldface and worst results underlined) with threshold 0.90, 0.85, 0.80, , 0.75, 0.70 and 0.65 , of all datasets tested (3 for English, 1 for portuguese, 3 for species, 3 for genera, 1 for Arabic).
Table 8: The results of average f-measure values

Datasets	Compared Algorithm	Proposed Algorithm	Soft-Bidist			
	LD	DLD	N-DIST	MDLD	Sim %	
1 Dataset 3 (English 60 pairs)	0.77	0.85	0.74	0.85	0.91	0.95
2 Dataset 4 (English 4013 pairs)	0.75	0.76	0.73	0.89	0.90	0.94
3 Dataset 5 (Portuguese 120 pairs)	0.80	0.80	0.77	0.80	0.82	0.93
4 Dataset 6 ‘CAAB’ (641 pairs)	0.99	0.99	0.99	0.99	1.00	1.00
5 Dataset 7 ‘Dalcin name pairs’ (171 pairs)	1.00	1.00	1.00	1.00	1.00	1.00
6 ‘CAABWEB’ (2047 pairs)	0.96	0.97	0.94	0.98	0.98	0.99
7 Dataset 9 ‘GRIN genera’ (189 pairs)	0.93	0.94	0.88	0.94	0.95	0.95
8 Dataset 10 ‘CAAB Genera’ (115 pairs)	0.95	0.96	0.88	0.96	0.97	0.96
9 Dataset 11 ‘CAABWEB Genera’ (853 pairs)	0.91	0.93	0.84	0.79	0.91	0.94
10 Dataset 1 ‘Arabic name (600 pairs)	0.66	0.68	0.53	0.68	0.70	0.77
F-MEASURE MEAN	0.87	0.89	0.83	0.89	0.91	0.94
Table 9 (on next page)

Table 9: F1-scores of different algorithms, thresholds and similarity calculation.
Table 9: F1-scores of different algorithms, thresholds and similarity calculation.

Algorithms	Thresholds	65	70	75	80	85	90
1	LD	0.987	0.961	0.938	0.889	0.750	0.273
2	DLD	0.987	0.961	0.938	0.894	0.750	0.273
3	N-DIST	0.966	0.952	0.924	0.863	0.710	0.222
4	MDLD	0.987	0.961	0.938	0.894	0.750	0.273
5 [0,1,0,0.2,0.2,1,1,1] and 1 (Soft-Bidist)	0.987	0.970	0.966	0.938	0.909	0.794	
Table 10: F-measure mean values (best results shown boldface and worst results underlined) with threshold 0.90, 0.85, 0.80, 0.75, 0.70 and 0.65, of all datasets tested (3 for English, 1 for Portuguese, 3 for species, 3 for genera, 1 for Arabic).

Threshold	F-measure Mean Values	
	Best Result (Boldface)	Worst Result (Underlined)
0.90		
0.85		
0.80		
0.75		
0.70		
0.65		
Table 10: The results of F-measure mean values

Datasets	Compared Algorithm	Proposed Algorithm					
	LD	DLD	N-DIST	MDLD			
	Sim %	Sim %	Sim %	Sim %	Soft-Bidist (0,1,0,0.2,0	Soft-Bidist (0,1,0,0.2,0.2,1,0.5 and 0.5)	
					and 0.5)	1,1,0.5 and 0.5)	
1	Dataset 3 (English 60 pairs)	0.77	0.85	0.74	0.85	0.95	1.00
2	Dataset 4 (English 4013 pairs)	0.75	0.76	0.73	0.89	0.94	0.99
3	Dataset 5 (Portuguese 120 pairs)	0.80	0.80	0.77	0.80	0.93	0.95
4	Dataset 6 'CAAB' (641 pairs)	0.99	0.99	0.99	0.99	1.00	1.00
5	Dataset 7 'Dalcin name pairs' (171 pairs)	1.00	1.00	1.00	1.00	1.00	1.00
6	Dataset 8 'CAABWEB' (2047 pairs)	0.96	0.97	0.94	0.98	0.99	0.99
7	Dataset 9 'GRIN genera' (189 pairs)	0.93	0.94	0.88	0.94	0.95	0.99
8	Dataset 10 'CAAB Genera' (115 pairs)	0.95	0.96	0.88	0.96	0.96	0.99
9	Dataset 11 'CAABWEB Genera' (853 pairs)	0.91	0.93	0.84	0.79	0.94	0.98
10	Dataset 1 'Arabic name (600 pairs)	0.66	0.68	0.53	0.68	0.77	0.81
	F-MEASURE MEAN	0.87	0.89	0.83	0.89	0.94	0.97