Expert System for Diagnosing Newborn Babies Disease Using the Sorgenfrei Similarity Method

AdriTriandhika Septyanto¹*, Imam Husni Al Amin²*
* Teknik Informatika, Universitas Stikubank Semarang
andikaadri@gmail.com¹, imam@edu.unisbank.ac.id²

ABSTRACT

Newborn neonates who are 0-28 days old. At that time the baby has a physical condition that is very weak and helpless to the surrounding environment. Newborns need special handling different from babies at the age of 1 month also above. Diagnosis also treatment is quickly required by the midwife in an emergency. Without there are still many midwives who have not been able to handle it properly, causing the baby's condition to become worse. To get fast and accurate handling information, we need a system in the form of an expert system. Expert systems can diagnose newborn diseases using the Sorgenfrei similarity algorithm. The system can display information about the type of disease, symptoms, solutions, and the percentage of similarity from the results of consulting the symptoms input. The results of testing the system with the consultation of the symptoms included got the highest percentage of similarity results 53.33%. The percentage of similarity results below 20% will be entered into the revised table which will later be corrected by experts. This expert system is built based on a website that can be accessed by all midwives who need handling information.

I. INTRODUCTION

Neonatal is defined as a clinical syndrome in an infant 0-28 days of life or younger[1]. Newborn children screening is a must for examining every newborn for persuaded dangerous or potentially deadly disorders that aren't otherwise obvious at birth[2]. Weightless or below average becomes a problem that often occurs in newborns. In an emergency, diagnosis and help are needed quickly. Delay in providing help can result in death to the baby. In 2012 the number of neonatal infant deaths was 19 deaths per 1000 live births. In 2017 there were 15 deaths per 1000 live births [3]. In 5 years there was only a significant decrease in mortality.

Lack of adequate health facilities, inadequate diagnosis, and still minimal human resources in the field of health, causes a high rate of newborn mortality. These events, more frequently caused by improper intrauterine transfer of maternal blood oxygen to the fetus resulting in an acute inadequate supply of oxygen to the fetal organs and tissues[4]. Data collection starting from handling pregnancy, managing data of health workers, managing information on pregnancy problems by the community, delivery by medical personnel and neonatal visits need to be managed properly to produce information about good handling so that neonatal recovery can be adjusted by taking action - appropriate measures for neonatal issuance based on information data that has been generated with these problems, the authors want to create an expert system that is useful for diagnosing newborn diseases.

In the case of report submission, there is a problem caused by the delay in submission of the report which causes the data obtained is not up to date, so the decision making based on the data becomes inaccurate. To provide information about the disease accurately and precisely needed a system that can do this simultaneously. The most appropriate system used for this problem is the expert system.

Expert systems are computer programs that are derived from a branch of computer science research called Artificial Intelligence (AI)[5]. Expert systems are used to solve a large number of problems such as decision-making[6]. Computer-based systems using
knowledge, facts and reasoning techniques for an expert to solve problems. The inference engine applies the rules to known facts to deduce new facts [7]. From the problem the current proposed expert system is specialized in the diagnosis of disease in newborns [8].

II. RESEARCH METHODS

A. Similarity Algorithm

A similarity algorithm is a way to calculate the similarity of two objects by comparing the similarity based on syntax or semantic values. The coefficient is adopted to display the quantity of similarity. Algorithms for solving many pattern recognition problems such as classification, clustering, and data retrieval problems for more details can be seen in Table 1.

	1 (presence)	0 (Absence)
	a = i.j	b = i. j
0 (Absence)	c = i . j	d = i . j

Information:
- a = number of attributes where the values of i and j are equal to 1 (presence), which means positive matches
- b = number of attributes where the values of i and j are (0,1), which means i absence mismatches
- c = number of attributes where the values of i and j are (1,0), which means j absence mismatches

Similarities usually fall in the range of 0 to 1, where 0 there are absolutely no matching or similar cases, and a value of 1 means that it has a 100% match.

B. Similaritas Sorgenfrei

The similarity is a measure of the closeness of an object with other objects. Then what is meant by Sorgenfrei similarity is the method used to calculate the similarity between the distance of two probability distributions with the formula referred to in equation (1).

\[
S = \frac{n^2}{(a+b)x(a+c)}
\]

Information:
- S = Value Similarity
- a = The same number of attributes between consultation and data stored in the database.
- b = The amount of data stored in the database, which is not in the consultation.
- c = Number of consulting data attributes, which are not stored in the database.

C. System Description

Website-based expert system for newborns using the Sorgenfrei method. This application allows users to view newborn disease information. To start the application process, it is divided into two access rights, namely user and admin. The user can consult with the selected symptoms experienced by the baby. While the admin can make a consultation like a user plus the admin can input information, symptoms, and diseases.

In implementing this child expert system, it takes 4 stages of the process, namely retrieve, reuse, revise, and retain. The retive process is the process of finding data in a database with method sorgenfrei. Then the reus system process that provides the results of the calculation of the greatest similarity value will be used as a solution to the disease. Furthermore, in the process of revising process of revising the values that come out of the proposed solutionreus process that still does not meet the requirements will be accompanied in a special table, for later repaired experts to find the right solution [9]. After the revision process is finished and the most appropriate solution is found, the expert will add the relation to the relation table which can later be used for solving similar cases in the future [10].

Admin’s work process begins with logging in to the login page, then the admin will be directed to a display that has a choice of menus, illnesses, symptoms, solutions, and relationships to maintain data and information. For more clearly how the system works User work system architecture can be seen in Picture 1, while the admin work systemarchitecture can be seen in Figure 2.

Fig. 1 User system architecture.
The picture above explains the flow of the user’s role in using the system to consult newborn diseases.

![Diagram of system architecture]

Figure 2. Admin system architecture.

In the figure 2 above is an admin role that can access all the menus or features that are in the system created.

D. Knowledge Representation

The symptoms table is used as a knowledge base that will be compared with many symptoms, both those that have been recorded and those that have never been recorded. This database is used as a basis for comparing a user’s consultation with a pre-existing knowledge base. In the symptom table, there is a symptom code that shows the sequential number of symptoms and the name of the disease symptoms that exist in newborns. For more details, can be seen in Table 2.

**TABLE II
NAME OF SYMPTOMS**

Symptom Code	Name Symptoms
G01	Jaundice occurs on days 2 and 3
G02	Extreme movements are not active
G03	Yellow eye sclera
G04	The baby won’t suckle
G05	Yellow baby jaundice 24 hours after birth
G06	Stay for 7-14 days
G07	Jaundice of yellow baby accompanied by LBW (BW <2500 gram), infection
G08	Difficulty defecating
G09	Hard stool
G10	Stomach hard or palpable stool mass on the abdominal wall
G11	Pain in the anal area
G12	Fresh blood comes out due to anal injury.
G13	BAB > 4x / day
G14	Unconscious
G15	Sunken eyes
G16	Restless / fuzzy
G17	Non-elastic skin (pinch the skin of the stomach’s slow return)
G18	Diarrhea persists for 2 weeks
G19	Acute gastroenteritis in infants aged> 3 months
G20	Clinical syndromes
G21	Active movement (looking healthy)
G22	Self limited disease
G23	Responsiftheradaptearsuportif yang diberikan (kesadaranbaik)
G24	Cough
G25	Secretions from the nose (runny nose)
G26	Body weight at birth LBW = 1500 - 2499 grams
G27	Body weight at birth BBLSR = 1000 - 1499 grams
G28	Body length <45 cm
G29	Head circumference <32 cm
G30	Chest circumference <30 cm
G31	Inactive movements (hypotonic muscles)
G32	Head bigger than body, thin and fine hair
G33	Soft skull bones
G34	Simple-shaped ears and little cartilage
G35	Small / not formed nipples
G36	Breathing <20x / minute
G37	Thin, transparent skin, lanago (fine hair), especially on the forehead,
	temple and arms, visible blood vessels
G38	Genitalia is not perfect, in women the labia minor has not been covered by
	labia majora, the clitoris protrudes. In small scrotal LK men, the testes are
	not palpable
G39	Reflexes suck, swallow and cough weak
G40	Edema Extremities (swelling)
G41	Convulsions
G42	Fever (temperature> 37.5°C)
G43	Irregular eye movements
G44	The movements of the hands and feet (extremities) are not active
G45	Pain in the head and back
G46	Baby reflex is absent
G47	Cry loud and high pitch
G48	Decreased appetite
G49	Occurs 6-72 hours after birth
G50	Respiratory disorders
G51	Pale / blue baby
G52	Jaundice / jaundice
G53	Diarrhea
G54	Bloating
G55	No response
G56	Release the ties or clamps of the cord that is still attached
G57	Redness on the umbilical cord
G58	There is a secret on the umbilical cord
III. RESULT AND DISCUSSION

A. Results

The results of the research from the expert system with the Sorgenfrei method for diagnosing newborn diseases can be seen in Table 4.

TABLE IV

TEST RESULT	Selected Symptoms	Emerging diseases	Similarity Percentage
1. Defecate more than 4 times per day.	Acute diarrhea	**similaritas** 0,5333 or 53,33%	
2. Unconscious.	Newborns have problems or complications	**similaritas**0,0476 or 4,76%	
3. Concave Eyes			
4. Restless or Fussy	Cough and cold	**similaritas**0,0417 or 4,17%	
5. Movement is less active (Hypotonic Muscle).			
6. Edema Extremities (Swelling).			

B. Discussion

The expert system uses the sorgenfrei method to diagnose newborns calculated by sorgenfrei, referred to in equation (2).

\[S = \frac{a^2}{(a+b)(a+c)} \]

\(S \) = Value Similarity
\(a \) = The same number of attributes between consultation and data stored in the database.
\(b \) = The amount of data stored in the database, which is not in the consultation.
\(c \) = Number of consulting data attributes, which are not stored in the database.

Then the consultation is carried out by selecting the symptoms of newborn diseases, namely:
1. Chapter more than 4 times per day.
2. Unconscious.
3. Concave Eyes
4. Restless or Fussy
5. Movement is less active (Hypotonic Muscle).
6. Edema Extremities (Swelling).

The results of the expert system consultation with Sorgenfrein’s similarity to diagnose newborn diseases are:

1. Calculation of acute diarrheal disease

New case	Acute diarrhea
The symptoms:	The symptoms:
1. Defecate more than 4 times per day.	1. Defecate more than 4 times per day.
2. Unconscious.	2. Unconscious.
3. Concave eyes.	3. Concave eyes.
4. Restless or fussy.	4. Restless or fussy.
5. Movement is less active (Hypotonic Muscle).	5. Skin Not elastic.
6. Edema Extremities (swelling)	

Based on calculations with Sorgenfrein’s similarity, acute diarrhea has a value indicated in equation (3).

\[S = \frac{a^2}{(a+b)(a+c)} \]

so the similarity value \(S = 0.5333 \times 100\% = 53.33\% \).

2. Calculation of newborn problems with problems or complications

New case	Newborns have problems or complications
Symptoms:	Symptoms:
1. Defecate more than 4 times per day.	1. Chapter more than 4 times per day.
2. Unconscious.	2. Unconscious.
3. Sunken eyes.	3. Sunken eyes.
4. Restless or fussy.	4. Restless or fussy.
5. Inactivity (Hypotonic Muscle).	5. Inactivity (Hypotonic Muscle).
6. Edema Extremities (swelling)	6. Edema Extremities (swelling)
	7. Chest circumference <30 cm
	8. Head bigger than body, thin and fine hair
	9. Soft skull bones
	10. Simple-shaped ears and little cartilage
	11. Small or not formed nipples
	12. Breathing <20x / minute
	13. Thin skin, transparent, lanugo (fine hair), especially on the forehead, forehead temples and arms,

Based on calculations with Sorgenfrein’s similarity, newborns with problems or complications have a value indicated in equation (4):

\[S = \frac{a^2}{(a+b)(a+c)} \]

\(a = 2, b = 4, c = 12 \)

so the similarity value \(S = 0.0476 \times 100\% = 4.76\% \).

7. Calculation of cold cough disease

Kasusbaru	DiareAkut
Symptoms:	Symptoms:
1. Restless or fussy	1. Restless or fussy
2. Cough	2. Cough
3. Sometimes it contains	3. Sometimes it contains
4. Secret out of the nose (runny nose)	4. Secret out of the nose (runny nose)

Based on calculations with Sorgenfrein’s similarity, cold cough has a value indicated in equation (5).

\[S = \frac{a^2}{(a+b)(a+c)} \]

\(a = 1, b = 5, c = 3 \)

so the similarity value \(S = 0.0417 \times 100\% = 4.17\% \).

IV. CONCLUSION

The results of the research that the researchers have described in the previous chapters, the Sorgenfrei similarity method for diagnosing newborn diseases can be summarized as follows:

1. The Sorgenfrei similarity method can be used to find diagnoses of newborn diseases to users.
2. Sorgenfrei similarity produces a final value of similarity between 0 zero and 1 one.
3. Consultation results that show a percentage below 20% will be accommodated in the revised table to find the most appropriate solution.
4. The highest value of the research trial from the random selection of symptoms gets a percentage of 53.33%.

REFERENCES

[1] E. M. R. Shehab El-Din, M. M. A. El-Sokkary, M. R. Bassioumy, and R. Hassan, “Epidemiology of neonatal sepsis and implicated pathogens: A Study from Egypt,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/509484.

[2] S. S. A. Naser and I. A. El Haddad, “An Expert System for Genital Problems in Infants,” vol. 2, no. May, pp. 83–86, 2016.

[3] Ministry of Health, “Indonesia Health Profile 2014,” Kementeri. Kesehat. Republik Indonesia., vol. 51, no. 6, p. 40, 2015, doi: 10.1037/0022-3514.51.6.1173.

[4] M. A. M. Reis, N. R. S. Ortega, and P. S. P. Silveira, “Fuzzy expert system in the prediction of neonatal resuscitation,” Brazilian J. Med. Biol. Res., vol. 37, no. 5, pp. 755–764, 2004, doi: 10.1590/S0100-879X2004000500018.

[5] Bassem S. Abu-Nasser, “Medical Expert Systems Survey,” Med. Arh., vol. 49, no. 3–4, pp. 107–112, 2017.

[6] Alaa N. Akkila and Samy S. Abu Naser, “Proposed expert system for calculating inheritance in Islam,” World Wide J. Multidiscip. Res. Dev., vol. 2, no. 9, pp. 38–48, 2015.

[7] Amin, I. H. A, & Suhartono, S. (2012) Expert Systems Detecting Hair Damage Using Rule Base Reasoning with the Forward Chaining Method. JSINBIS (Journal of Business Information Systems), 2 (3), 134-138

[8] A. Z. A. O. Samy S. Abu Naser, “an Expert System for Diagnosing Eye Diseases Using Clips,” Theor. Appl. Inf. Technol., vol. 3, no. December, pp. 923–930, 2008.

[8] S. S. A. Naser and I. A. El Haddad, “An Expert System for Genital Problems in Infants,” Int. J. Med. Res., vol. 1, no. May, pp. 83–86, 2016, [Online]. Available: http://ssrn.com/abstract=2814417.

[9] A. Rahman, C. Slamet, W. Darmalaksana, Y. A. Gerhana, and M. A. Ramdhani, “Expert System for Deciding a Solution of Mechanical Failure in a Car using Case-based Reasoning,” JOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, 2018, doi: 10.1088/1757-899X/288/1/012011.

[10] H. Y. A. Abutair and A. Belghith, “Using Case-Based Reasoning for Phishing Detection,” Procedia Comput. Sci., vol. 109, pp. 281–288, 2017, doi: 10.1016/j.procs.2017.05.352.