Chiral Phenomenological Relations between Rates of Rare Radiative Decay of Kaon to Pion and leptons and the meson Formfactors.

V. Pervushin, V. Shilin

Joint Institute for Nuclear Research, 141980, Dubna, Russia.

Abstract

In framework of the chiral perturbation theory we obtain the phenomenological relations between decay branches of rare radiative kaon to pion and leptons $K^+ \to \pi^+ l^+ l^-$ and $K^0_S \to \pi^0 l^+ l^-$ and meson form factors. The comparison of these results with the present day experimental data shows us that the ChPT relations for a charge kaon can determine meson form factors from already measured decay rates at high precision level. However, in the case of the neutral kaon decays $K^0 \to \pi^0 e^+ e^-(\mu^+ \mu^-)$ the formfactor data are known to a high precision than data on the differential rates of radiative kaon decay $K^0 \to \pi^0 e^+ e^-(\mu^+ \mu^-)$.

1 Introduction

New data of decay branches $\text{Br}(K^+ \to \pi^+ l^+ l^-)$ and $\text{Br}(K^0_S \to \pi^0 l^+ l^-)$ were obtained a few years ago in the NA48 experiment [1, 2, 3]. In analysis of these data a number of theoretical models was used [4, 5, 6, 7, 8]. One of them is chiral perturbation theory with weak static interactions [7, 8] which take into account fermion loops. In this paper, we upgrade this result in order to study the relation between the decay branches and form factors.

In transitions $K^+ \to \pi^+ l^+ l^-$ and $K^0_S \to \pi^0 l^+ l^-$ the main role is played by one virtual photon exchange: $K \to \pi \gamma^* \to \pi l^+ l^-$. To describe it, we must use the theory of strong interactions (QCD) and the electroweak theory. Instead
of QCD we use chiral perturbation theory (ChPT) supposing a contribution of baryon loops in form factors [7, 8, 9, 10]. To apply electroweak interactions, we use ChPT in bosonization form and take into account the meson electromagnetic form factors and their resonance nature.

Main difference of the present paper from other approaches (for example [4, 5, 6, 9, 11]) is that we have only one coupling constant (g_8). Nevertheless, if we take experimentally determined charge radii of mesons and resonances, our prediction becomes more accuracy. We can conclude that the chiral effective Lagrangian approach help us to obtain the set of relations between experimental form factors and decay branches.

In this article, we ameliorate amplitudes from [7, 8], calculate the corresponding decay rates and test them with available experiments.

2 Chiral bosonization of EW model

We start with Lagrangian of weak interactions in bosonized form [7]:

$$ \mathcal{L} = -\frac{e}{2\sqrt{2}\sin \theta_W} (J^- W^+ + J^+ W^-), $$

$$ J^\pm_\mu = [J_{\mu}^1 \pm iJ_{\mu}^2] \cos \theta_C + [J_{\mu}^4 \pm iJ_{\mu}^5] \sin \theta_C, $$

where Cabbibo angle $\sin \theta_C = 0.223$. Using the Gell-Mann matrices λ^k one can define the meson current as [10]:

$$ i \sum \lambda^k J^k_\mu = i \lambda^k (V^k_\mu - A^k_\mu) = F_\pi^2 e^{i\xi} \partial_\mu e^{-i\xi}, $$

$$ \xi = F_\pi^{-1} \sum_{k=1}^{8} M^k \lambda^k = F_\pi^{-1} \left(\begin{array}{ccc} \pi^0 + \frac{\eta}{\sqrt{3}} & \pi^+ \sqrt{2} & K^+ \sqrt{2} \\ \pi^- \sqrt{2} & -\pi^0 + \frac{\eta}{\sqrt{3}} & K^0 \sqrt{2} \\ K^- \sqrt{2} & \bar{K}^0 \sqrt{2} & -\frac{2\eta}{\sqrt{3}} \end{array} \right), $$

here $F_\pi \simeq 92.4$ MeV. In the first orders in mesons one can write

$$ V^-_\mu = \sqrt{2} (\sin \theta_C (K^- \partial_\mu \pi^0 - \pi^0 \partial_\mu K^-) + \cos \theta_C (\pi^- \partial_\mu \pi^0 - \pi^0 \partial_\mu \pi^-)) $$

and

$$ A^-_\mu = \sqrt{2} F_\pi (\partial_\mu K^- \sin \theta_C + \partial_\mu \pi^- \cos \theta_C). $$

This Lagrangian allows us to use the instantaneous weak interaction model [7, 8].
In this section we briefly remind the results of the paper \cite{7}, which we will use in our work. Further discussions can be find in paper \cite{8}.

According to \cite{7, 8}, for the process $K^+ \rightarrow \pi^+ l^+ l^−$ we have diagrams shown in Fig.1 leading to the amplitude:

$$A_{K \rightarrow \pi l^+ l^-} = 2g_\text{s}eG_{\text{EW}}L_\nu D_\mu^{\gamma(\text{rad})}(q)(k_\mu + p_\mu)T(q^2, k^2, p^2),$$ \hspace{1cm} (1)
where $g_8 \simeq 5.1$ is the effective parameter of enhancement [7, 8, 4],

$$G_{EW} = \frac{\sin \theta_C \cos \theta_C}{8M_W^2} \frac{e^2}{\sin^2 \theta_W} \equiv \sin \theta_C \cos \theta_C \frac{G_F}{\sqrt{2}}.$$

$L_\mu = \bar{l} \gamma_\mu l$ is leptonic current and

$$T(q^2, k^2, p^2) = F^2 \left(\frac{f^V_\pi(q^2)k^2}{m^2_\pi - k^2 - i\epsilon} + \frac{f^V_K(q^2)p^2}{M^2_K - p^2 - i\epsilon} + \frac{f^A_K(q^2) + f^A_\pi(q^2)}{2} \right).$$

Here $F_\pi \simeq 92.4$ MeV, $f^V_{\pi,K}(q^2)$ and $f^A_{\pi,K}(q^2)$ are phenomenological meson form factors denoted by fat dots in Fig.1 (a, b, e, f) and (c, d, g, h), respectively.

On the mass shell the sum (2) takes the form:

$$T(q^2) = F^2 \left(\frac{f^A_K(q^2)}{2} - f^V_\pi(q^2) + (f^V_K(q^2) - f^V_\pi(q^2)) \frac{m^2_\pi}{M^2_K - m^2_\pi} \right).$$

In case of $K^0_S \rightarrow \pi^0 l^+ l^-$ there are not diagrams Fig.1 (a - d) and in the amplitude (1) instead of g_8 should be $(g_8 - 1)$ [7].

These amplitudes leads to the decay rate [4, 8, 9]

$$\Gamma = \bar{\Gamma}_{K \rightarrow \pi^+ l^-} \int \frac{dq^2}{4m^2_K} \rho(q^2)|\hat{\phi}(q^2)|^2,$$

where [4]

$$\rho(q^2) = \left(1 - \frac{4m^2_\pi}{q^2}\right)^{1/2} \left(1 + \frac{2m^2_\pi}{q^2}\right) \lambda^{3/2} \left(1, \frac{q^2}{M^2_K}, \frac{m^2_\pi}{M^2_K}\right),$$

$$\lambda(a, b, c) = a^2 + b^2 + c^2 - 2(ab + bc + ca),$$

$$\bar{\Gamma}_{K^+ \rightarrow \pi^+ l^+ l^-} = 1.37 \cdot 10^{-19} \text{ MeV},$$

and [7]

$$\bar{\Gamma}_{K^0 \rightarrow \pi^0 l^+ l^-} = \left(\frac{g_8 - 1}{g_8}\right)^2 \cdot \bar{\Gamma}_{K^+ \rightarrow \pi^+ l^+ l^-}. $$

4
\[\hat{\phi}(q^2) = \frac{(4\pi)^2 T(q^2)}{q^2} = \]

\[= \left(\frac{4\pi F_\pi^2}{q^2} \right) \left(\frac{f_K^A(q^2) + f_\pi^A(q^2)}{2} - f_\pi^V(q^2) + (f_K^V(q^2) - f_\pi^V(q^2)) \frac{m_\pi^2}{M_K - m_\pi^2} \right) \]

(4)

Thus, ChPT and instantaneous weak interaction model leads to formulas (3) and (4) as relationship between decay rates and formfactors.

4 Form factors

4.1 \(K^+ \rightarrow \pi^+ l^+ l^- \).

One can make an assumption that electromagnetic form factors of the kaon and pion are saturated with resonances as in the \(\rho \)-dominance model. One of possible models of such the saturation is ChPT with both meson and baryon loops [10, 12, 13, 14], so in [7, 8] at small \(q^2 \) they were chosen in the form

\[f_V(q^2) \simeq f_K^V(q^2) \simeq f_\pi^V(q^2) = 1 + M_\rho^2 q^2 + \alpha_0 \Pi_\pi(q^2) + \ldots, \]

\[f_A^M(q^2) \simeq f_K^A(q^2) \simeq f_\pi^A(q^2) = 1 + M_{a_0}^2 q^2 + \ldots. \]

(5)

We can calculate decay rates using the resonances [15]:

\[M_\rho = 775.49 \pm 0.34 \text{ MeV}, \quad I_G(J^{PC}) = 1^+ (1^-), \]

\[M_{a_0^1} = 980 \pm 20 \text{ MeV}, \quad I_G(J^{PC}) = 1^- (0^{++}); \]

(6)

and pion loop contribution:

\[\alpha_0 = \frac{4}{3} \frac{m_\pi^2}{(4\pi F_\pi)^2} = 0.01926 \pm 0.00077, \]

\[\Pi_\pi(t) = (1 - \bar{t}) \left(\frac{1}{t} - 1 \right)^{1/2} \arctan \left(\frac{\bar{t}^{1/2}}{(1 - \bar{t})^{1/2}} \right) - 1, \quad \bar{t} = \frac{t}{(2m_\pi^2)^2} < 1; \]

\[\Pi_\pi(t) = \frac{\bar{t} - 1}{2} \left(1 - \frac{1}{\bar{t}} \right)^{1/2} \left\{ i\pi - \log \frac{\bar{t}^{1/2} + (\bar{t} - 1)^{1/2}}{\bar{t}^{1/2} - (\bar{t} - 1)^{1/2}} \right\} - 1, \quad \bar{t} \geq 1. \]

(7)

Let us make two remarks at this point.
First, \(f_\pi^V(q^2) \) and \(f_K^V(q^2) \) are nothing but electromagnetic form factors of the charged pion and kaon, but we know them much better from experiment[15]. So we can prove \(f_\pi^V(q^2) \) using experimental data. At \(q^2 \to 0 \):

\[
f_\pi^V(q^2 \to 0) \simeq 1 + \frac{<r^2>}{6(hc)^2} q^2 \tag{8}
\]

\[
<r>^\pi_+ = 0.672 \pm 0.008 \text{ fm},
<r>^K_+ = 0.560 \pm 0.031 \text{ fm}. \tag{9}
\]

Of course, in \(<r>\) the \(\Pi^\pi(q^2) \) term is already included. To retrieve \(\Pi^\pi(q^2) \) (and nontrivial \(q^2 \)-dependence), expand it in series near zero:

\[
\alpha_0 \Pi^\pi(q^2 \to 0) \simeq -\frac{4q^2}{3(2m_\pi^+)^2}, \tag{10}
\]

subtract (10) from (8) and add (7):

\[
f_\pi^V(q^2 \to 0) \simeq 1 + \left(\frac{<r>^\pi_+}{6(hc)^2} + \frac{\alpha_0}{3(2m_\pi^+)^2} \right) q^2 + \alpha_0 \Pi^\pi(q^2) \tag{11}
\]

At large \(q^2 \), \(f^V_\pi(q^2) \) and \(f^V_K(q^2) \) have maximum at \(q^2 = M_\rho^2 \).

Second, beside \(a_0^1 \) there is:

\[
M_{a_0^2} = 1474 \pm 19 \text{ MeV}, \quad I^G(J^{PC}) = 1^-(0^{++}). \tag{12}
\]

If \(a_0^2 \) is not taken into account, a huge discrepancy with experiment results will be got.

Finally, using (6), (7), (9), (11), (12) we have the following improved hypothesis of (5) in Padé type approximations:

\[
f^V_{\pi^+}(q^2) = \frac{\gamma_\pi}{1 - \frac{1}{\gamma_\pi} \left(\frac{<r>^\pi_+}{6(hc)^2} + \frac{\alpha_0}{3(2m_\pi^+)^2} \right) q^2 + \alpha_0 \Pi^\pi(q^2)} + (1 - \gamma_\pi) \tag{13}
\]

\[
f^V_{K^+}(q^2) = \frac{\gamma_K}{1 - \frac{1}{\gamma_K} \left(\frac{<r>^K_+}{6(hc)^2} + \frac{\alpha_0}{3(2m_\pi^+)^2} \right) q^2 + \alpha_0 \Pi^\pi(q^2)} + (1 - \gamma_K)
\]

\[
f^A_{\pi^+}(q^2) \simeq f^A_{K^+}(q^2) \simeq f^A(q^2) = \frac{1}{1 - \frac{q^2}{M_{a_0^1}^2}} + \frac{1}{1 - \frac{q^2}{M_{a_0^2}^2}} - 1,
\]
\(\gamma_\pi = 1.176677 \) and \(\gamma_K = 0.855628 \) have been chosen to put the position of maximum of \(f_{\pi^+}^V(q^2) \) and \(f_{K^+}^V(q^2) \) to \(q^2 = M_p^2 \). At small \(q^2 \):

\[
f^A(q^2) = 1 + \frac{q^2}{M_{a_0}^2} + \frac{q^2}{M_{a_0}^2} + \ldots
\]

A plot of (4) with (13) is shown in Fig. 2, \(z = \frac{q^2}{M_{K^+}^2} \).

\[\begin{align*}
\text{Figure 2: The } |\hat{\phi}(q^2)|^2 \text{ defined by (4) and (13).}
\end{align*}\]

4.2 \(K_0^S \rightarrow \pi^0 l^+ l^- \).

In this case we have\[\text{[15]}\):

\[
< r^2 >_{K^0} = -0.077 \pm 0.010 \text{ fm}^2, \quad (14)
\]

and we can neglect the neutral pion electromagnetic radius \[\text{[16]}\):

\[
< r^2 >_{\pi^0} = 0. \quad (15)
\]

Notice that:

\[
\frac{< r^2 >_{K^0}}{6(\hbar c)^2} \simeq -0.33 \times 10^{-6} \text{ MeV}
\]

\[
\frac{d\alpha_\pi \Pi_\pi}{dq^2}(0) \simeq -0.33 \times 10^{-6} \text{ MeV}
\]
which means that $<r^2>_{K^0}$ is determined almost only by $\Pi_\pi(q^2)$, that is why we will not use resonance behavior of $f^V_\pi(q^2)$ and $f^V_K(q^2)$:

$$f^V_{\pi^0}(q^2) = 0$$

$$f^V_{K^0}(q^2) = \left(\frac{<r^2>_{K^0}}{6(hc)^2} + \frac{\alpha_0}{3(2m_\pi^+)^2}\right)q^2 + \alpha_0 \Pi_\pi(q^2)$$

$$f^A_{\pi^0}(q^2) \simeq f^A_{K^0}(q^2) \simeq f^A(q^2) = \frac{1}{1 - \frac{q^2}{M^2_{a_0^1}}} + \frac{1}{1 - \frac{q^2}{M^2_{a_0^2}}} - 2$$

At small q^2:

$$f^A(q^2) = q^2 \frac{M^2_{a_0^1}}{M^2_{a_0^1}} + q^2 \frac{M^2_{a_0^2}}{M^2_{a_0^2}} + \ldots$$

A plot of (4) with (16) is shown in Fig.3, $z = \frac{q^2}{M^2_{K^0}}$.

Figure 3: The $|\hat{\phi}(q^2)|^2$ defined by (4) and (16).

5 Decay rates

If we substitute formulae (13) and (16) into equations (4) and (3), we get decay rates summarized in table 1. We can see good agreement with exper-
iments in all cases. Large inaccuracy in K^+ decays arises from subtraction approximately equal to f^A and $f^{V+}_{\pi^+}$ in formula (13). This table shows us that at present day precision level, better to extract $f^{V+}_{\pi^+}$ and f^A from decay rates $K^+ \to \pi^+ l^+ l^-$. Differential decay rates are presented in Fig.4.

Table 1: Decay rates compared with experiments, MeV.

Decay	Γ	Γ_{exp}
$K^+ \to \pi^+ e^+ e^-$	$(1.29 \pm 0.40) \times 10^{-20}$	$(1.654 \pm 0.064) \times 10^{-20}$
$K^+ \to \pi^+ e^+ e^-$, $z > 0.08$	$(0.94 \pm 0.28) \times 10^{-20}$	$(1.212 \pm 0.043) \times 10^{-20}$
$K^+ \to \pi^+ \mu^+ \mu^-$	$(0.39 \pm 0.11) \times 10^{-20}$	$(0.431 \pm 0.075) \times 10^{-20}$
$K^0_S \to \pi^0 e^+ e^-$	$(5.41 \pm 0.68) \times 10^{-20}$	$(4.3 \ ^{+2.2}_{-1.9}) \times 10^{-20}$
$K^0_S \to \pi^0 e^+ e^-$, $q > 165$	$(2.90 \pm 0.37) \times 10^{-20}$	$(2.2 \ ^{+1.1}_{-0.9}) \times 10^{-20}$
$K^0_S \to \pi^0 \mu^+ \mu^-$	$(1.23 \pm 0.16) \times 10^{-20}$	$(2.1 \ ^{+1.1}_{-0.9}) \times 10^{-20}$

6 Conclusion

In framework of ChPT we calculated decay rates of $K^+ \to \pi^+ l^+ l^-$ and $K^0_S \to \pi^0 l^+ l^-$ using measured electromagnetic meson radii [15] and inserting resonances with quantum numbers of a_0-meson into formfactors in the instantaneous weak interaction. Taking into account the instantaneous weak interaction is the difference of our approach from other ones.

The results we obtained to be in good agreement with experiments, for instance one can determine the neutral kaon decay branch data using the meson form factor data. However, there is a large amount of inaccuracy. On the other hand, the high sensitivity of obtained decay rates allows us for a charge kaon to determine the form factors and masses of a_0 mesons from already measured $\Gamma(K^+ \to \pi^+ l^+ l^-)$ at high precision level.
Figure 4: The $\frac{d\Gamma}{dz}$ determined by relations (13), (16), (3).

Acknowledgments

The authors thank Profs. M.K. Volkov, L. Litov, V. Kekelidze, and Yu. S. Surovtsev for useful discussions. One of us (V.S.) is grateful to Direction of the Bogoliubov Laboratory of Theoretical Physics for the hospitality.

References

[1] J.Batley, et al., (NA48/2 collab.), Phys. Lett. B 677, 5, (2009) 246; 0903.3130 [hep-ex].
[2] J.Batley, et al., (NA48/1 collab.), Phys. Lett. B 576 (2003) 43; hep-ex/0309075.
[3] J. Batley, et al., (NA48/1 collab.), Phys. Lett. B 599 (2004) 197; hep-ex/0409011.

[4] G. Ecker, A. Pich, E. de Rafael, Nucl. Phys. B 291 (1987) 692.

[5] G. D’Ambrosio, et al., JHEP 9808 (1998) 4; hep-ph/9808289.

[6] S. Friot, D. Greynat, E. de Rafael, Phys. Lett. B 595 (2004) 301; hep-ph/0404136.

[7] A. Dubnickova, et al., JINR, E2-2006-80. Dubna, 2006; hep-ph/0606005.

[8] A. Dubnickova, et al., Phys. Part. Nucl. Lett. 5 (2008) 141; hep-ph/0611175.

[9] A. Belkov, Yu. Kalinovsky, V. Pervushin, JINR, P2-85-107. Dubna, 1985; A. Belkov, et al., Sov. J. Nucl. Phys. 44 (1986) 690.

[10] M. Volkov, V. Pervushin, Essentially Nonlinear Field Theory, Dynamical Symmetry and Pion Physics, Atomizdat, 1979 (in Russian).

[11] S. Gershtein, M. Khlopov, JETP Lett. 23 (1976) 338.

[12] A. Belkov, et al., Phys. Part. Nucl. 26 (1995) 239.

[13] A. Belkov, Phys. Part. Nucl. 36 (2005) 509.

[14] A. Belkov, et al., Phys. Lett. B. 220 (1989) 459.

[15] C. Amsler, et al., (Particle Data Group), Phys. Lett. B. 667, 1 (2008) 1.

[16] J. Bijnens, P. Talavera, Pion and Kaon Electromagnetic Form Factors; hep-ph/0203049.