The possibility of quasi-bound state formation of η-meson with helium isotopes

V. A. Tryasuchev and A. V. Isaev
Tomsk Polytechnic University, Tomsk, Russia

The necessary conditions of quasi-bound state formation of η-meson with isotopes 3He, 4He have been found within the framework of optical potential model. These conditions have been compared with the findings about helium nucleus densities and with the available information about ηN-scattering length. Thus, we have conclude that within the framework of discussed model η^{-3}He quasi-bound state formation is not possible, but η^{-4}He quasi-bound state formation is possible with the great probability.

PACS numbers: 21.10.-k

The interaction of η-mesons with helium isotopes has been considered in the frame of optical potential for the purpose of η^{-3}He and η^{-4}He quasi-bound state formation. Let us connect the optical potential distributions with the nuclear densities of the discussed nuclei using the findings of root-mean-square radii. For the description of low energy ηN-interaction let us use a well-known fact of resonance domination $S_{11}(1535)$ in the amplitude of this interaction at such energies. In that case the optical potential of η-A interaction of $U(r)$ takes the following form [1]:

$$2\mu U(r) = -4\pi(1 + \frac{m_\eta}{m_N})\rho(r)a_0,$$

where m_η, m_N are the meson and nucleon masses, μ is the reduced meson-nucleus mass, a_0 is the ηN-scattering length, $\rho(r)$ is the spherically symmetrical density of nucleon in nuclei, which has been chosen in Fermi form:

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R_c}{a})}, \quad (2)$$

Here R_c is the half-density radius, a is the thickness of nucleus diffusion surface layer, ρ_0 is the nucleon density of nucleus in the center. For the nucleus with the nucleon number A, two parameters in distribution (2) may be fixed by the conditions:

$$A = \int_0^\infty r^2\rho(r)dr, \quad \langle r^2 \rangle = \frac{1}{A}\int_0^\infty r^4\rho(r)dr, \quad (3)$$

where $\langle r^2 \rangle^{1/2}$ is the root-mean-square radius (r_{rms}) of the nucleus. The knowledge of rms radii of 3He, 4He nuclei [2] leaves only one free parameter of $U(r)$ radial distribution, which is called “diffuseness” and stand for a/R_c. The nucleus densities depend on the diffuseness parameters, as it may be seen in figures 1, 2.

For the formation of quasi-bound state in the complex potential with complex energy eigenvalue $E = -i(\varepsilon + \frac{\Gamma}{2})$ where ε is the binding energy, and Γ is the level width, the definite relation between absolute values of imaginary and real parts of this potential is required, at which the bound state is possible [3, 4]. The calculated formation boundaries, $\varepsilon \approx 0$, of the discussed η-nuclei in the dependence of imaginary potential part on the real one for different nucleon distributions in nuclei 3He and 4He are shown in figures 3, 4 in the complex plane of free ηN-scattering length. It is evident that at the nucleus diffuseness decrease for the quasi-bound state formation the greater real potential part is required, that is, real parts of ηN-scattering length. At the diffuseness increase, when a/R_c is over 0.25, the formation boundaries of η-nuclei practically stop shifting to the left, that limits the dependence of quasi-bound state formation on the nuclear density distribution. In view of impossibility of complex ηN-scattering length experimental determination a_0 is found indirectly, that is, they are model dependent and differ greatly from paper to paper [2, 6, 7, 8, 9, 10, 11, 12] (see table 1 in paper [13]). The values of ηN-scattering length getting into the darkened areas in figures 3, 4 demonstrate the possibility of η-nucleus formation at the attraction potential initiated by such a_0. And on the contrary, if these values are left in the white parts of figures 3, 4 the formation is not possible.

The bound states spectrum simulating results in η^{-3}He system are contradictory [13, 14, 15] and ambiguous [16]. The same situation presents in calculations of bound states in η^{-4}He system [13, 17]. One may see in figure 3 that formation of quasi-bound state η^{-3}He for the known data concerning length of ηN-scattering and root-mean-square radius of 3He nucleus is impossible for any diffuseness of 3He nucleus density. If we use “off-shell” length of ηN-scattering in potential (1) as authors of paper [13] insist, the conclusion will be the same because the real and imaginary parts of a_0 should, according to the cited paper, decrease proportionally. On the contrary, the existence of quasi-bound state of η^{-4}He within the limits of used model is possible and is almost independent from the diffuseness of 4He nucleus density as it may be seen in figure 4 if $|Re(a_0)| \geq 0.60$ fm.

The experimental result for both reactions $d + d \rightarrow ^4$He + η, $d + p \rightarrow ^3$He + η near the thresholds point

*Electronic address: trs@npi.tpu.ru
FIG. 1: The nucleon density distributions of 3He nucleus for different diffuseness parameter values a/R_c and fixed root-mean-square radii. The curve parameters are given in table 1.

r_{rms} (fm)	N^0	a/R_c	R_c (fm)	ρ_0 (nucleon/fm3)
1.9	1	0.10	2.210	0.090
	2	0.15	1.991	0.074
	3	0.20	1.770	0.093
	4	0.25	1.571	0.114

FIG. 2: The nucleon density distributions of 4He nucleus for different diffuseness parameter values a/R_c and fixed root-mean-square radii. The curve parameters are given in table 2.

r_{rms} (fm)	N^0	a/R_c	R_c (fm)	ρ_0 (nucleon/fm3)
1.6	1	0.05	2.021	0.113
	2	0.10	1.874	0.132
	3	0.15	1.687	0.163
	4	0.20	1.499	0.203
	5	0.25	1.331	0.250
FIG. 3: Curves are the boundaries of quasi-bound states in system $\eta - {^3}\text{He}$. The darkened areas are the areas of quasi-bound state formation of η-meson with ^3He nucleus in the complex plane of ηN-scattering length for different diffuseness a/R_c parameters: $1 - 0.25; 2 - 0.15; 3 - 0.1$. ηN-scattering lengths have been taken from works: $\blacksquare - [5]; \bullet - [6]; \blacktriangle - [7]; \blacktriangledown - [8]; \blacklozenge - [9]; \square - [10]; \blacktriangledown - [11]; \bigcirc - [12]$.

FIG. 4: Curves are the boundaries of quasi-bound states in system $\eta - {^4}\text{He}$. The darkened areas are the areas of quasi-bound state formation of η-meson with ^4He nucleus in the complex plane of ηN-scattering length for different diffuseness a/R_c parameters: $1 - 0.25; 2 - 0.15; 3 - 0.05$. ηN-scattering lengths have been taken from works: $\blacksquare - [5]; \bullet - [6]; \blacktriangle - [7]; \blacktriangledown - [8]; \blacklozenge - [9]; \square - [10]; \blacktriangledown - [11]; \bigcirc - [12]$.

[1] T. E. O. Ericson and F. Scheck, Nucl. Phys. B 19, 450 (1970).
[2] L. R. B. Elton, Nuclear sizes, (Oxford university press, Oxford) (1961).
[3] V. A. Tryasuchev, Phys. Atom. Nucl. 60, 187 (1997).
[4] A. Sibirtsev, et. al, Phys. Rev. C 70, 047001 (2004), nucl-th/0407073.
[5] M. Arima, et. al, Nucl. Phys. A 543, 613 (1992).
[6] A. M. Green and S. Wycech, Phys. Rev. C 55, R2167 (1997).
[7] M. Batinić and A. Švarc, Few-Body Systems 20, 69 (1996).
[8] N. Kaiser, et. al, Phys. Let. B 362, 23 (1995).
[9] V. V. Abaev and B. M. K. Nefkens, Phys. Rev. C 53, 385 (1996).
[10] C. Sauerman, et. al, Phys. Lett. B 341, 261 (1995).
[11] C. Wilkin, Phys. Rev. C 47, R938 (1993).
[12] L. Tiator, et. al, Nucl. Phys. A 580, 455 (1994).
[13] Q. Haider and L. C. Liu, Phys. Rev. C 66, 045208 (2002).
[14] A. Fix and H. Arenhövel, Phys. Rev. C 68, 044002 (2003).
[15] N. G. Kelkar, et. al, J. Phys. G 32, L19 (2006), nucl-th/0601080.
[16] C. Wilkin, et. al, nucl-ex/0707.1489.
[17] A. Budzanowski, et. al, (GEM Collaboration), nucl-ex/0811.3372.
[18] T. Mersmann, et. al, Phys. Rev. Lett. 98, 242301 (2007).
[19] W. Krzemien, et. al, nucl-ex/0810.2330.