Phase Transitions in an Aging Network.

Kamalika Basu Hajra and Paromgama Sen
Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India.

We consider a growing network in which an incoming node gets attached to the \(i^{th}\) existing node with the probability \(\Pi_i \propto k_i^\alpha \tau_i^\beta\), where \(k_i\) is the degree of the \(i^{th}\) node and \(\tau_i\) its present age. The phase diagram in the \(\alpha - \beta\) plane is obtained. The network shows scale-free behaviour, i.e., the degree distribution \(P(k) \sim k^{-\gamma}\) with \(\gamma = 3\) only along a line in this plane. Small world property, on the other hand, exists over a large region in the phase diagram.

PACS no: 05.70.Fh
Preprint no. CU-Physics-04/2004.

Complex web-like structures describe a wide variety of systems of high technological and intellectual importance. The statistical properties of many such networks have been studied recently with much interests. Such networks, with complex topology are common in nature and examples include the world wide web, the Internet structure, social networks, communication networks, neural networks to name a few [1–3].

Some of the common features which are of importance in these networks of diverse nature are:

(i) Diameter of the network: This is defined as the maximal shortest path over all vertex pairs. The networks in which the diameter \(D\) varies as the logarithm of the number of nodes \(N\), i.e., \(D \propto \ln(N)\), are said to have the small world (SW) property. On the other hand, if \(D\) varies as a power of \(N\) we get what can be termed as regular networks. One can also study \(D\), the average shortest distance between pairs of nodes. In general \(D\) and \(D\) have the same scaling behaviour.

(ii) Clustering coefficient: A common property of many real networks is the tendency to form clusters or triangles, quantified by the clustering coefficient. This is in contrast to random networks (Erdős and Rényi [4]) where small world property is present but the clustering tendency is absent.

(iii) Degree Distribution: The node degree distribution function \(P(k)\) gives the probability that a randomly selected node has exactly \(k\) edges. In a random network this is a Poisson distribution. In many real world networks \(P(k)\) shows a power law decay and such networks are termed Scale Free Networks.

In order to emulate the different features of real networks several models have been proposed. While the Watts-Strogatz [5] network provides an appropriate model for the small world network (i.e., small diameter and finite clustering coefficient), scale free properties of a network can be reproduced by models proposed later by Barabási and Albert (BA) [6] and independently by Hubermann and Adamic [7].

In the BA model, a network is grown from a few nodes and new nodes are added one by one. At a time \(t\), the incoming node is connected randomly to the \(i^{th}\) existing node with the attachment probability \(\Pi_i(t)\) given by

\[\Pi_i(t) \sim k_i(t),\]

where \(k_i\) is the degree of the \(i^{th}\) node. The degree distribution in the BA model shows the scale-free behaviour

\[P(k) \sim k^{-\gamma},\]

with \(\gamma = 3\).

Following its introduction, several modifications in the BA model have been studied. A few of them are worth mentioning here in the context of the present paper. Nonlinear dependence of the attachment probability on \(k\), in the model designed by Krapivsky et al (KRL) [8], shows that the scale-free property exists only for the linear dependence. This nonlinear model has been studied in much detail very recently in [9]. On the other hand, BA model on an Euclidean network [10,11] has also been considered in which the attachment probability has been modified as follows:

\[\Pi_i(t) \sim k_i(t)^\beta t^\delta,\]

where \(l\) is the Euclidean length between the new and old nodes. A phase diagram in the \(\beta - \delta\) plane was obtained along with other interesting features.

Another important modification in the BA model has been made by incorporating time dependence in the network [12,13]. In real life networks, a time factor may also modulate the attachment probability. In most of the real world networks, aging of the nodes usually takes place, e.g., one rarely cites old papers, or in social networks, people of the same age are more likely to be linked. Dorogovtsev and Mendes (DM) [12] studied the case when the connection probability of the new site with an old one is not only proportional to the degree \(k\) but also to the power of its present age, \(\tau\), such that

\[\Pi_i(t) \sim k_i(t)\tau_i^\alpha\]

with \(\alpha = 3\).
and they showed both numerically and analytically that the scale free nature disappears when $\alpha < -1$. Here α governs the dependence of the attachment probability on the "age difference" of two nodes, i.e., for negative values of α, a new node will tend to attach itself to the younger nodes. Therefore for the extreme case $\alpha \to -\infty$, a new node will attach itself to its immediate predecessor while for the case $\alpha \to \infty$, the oldest and a few very old nodes will get more edges. The time dependence presents a competing effect when $\alpha < 0$ but for $\alpha > 0$, the older nodes get even more rich, similar to the rich gets richer effect.

Encouraged by the existence of the various phase transitions observed in the modified BA models, we have further generalised the time dependent BA network. Here we generate a network such that the attachment probability is given by

$$\Pi_t(i) \sim k_i(t)^\beta \tau_i^{\alpha}.$$ \hspace{1cm} (5)

We expect here that $\beta \neq 1$ will change the behaviour of the DM model as in [8]. The competing effect of α is able to destroy the scale free nature of the DM model ($\beta = 1$). The effect of a positive $\beta(>1)$ and negative α could re-instate the scale free behaviour as in [11] and it is also possible to obtain a phase diagram in the $\alpha - \beta$ plane. Formally eq (5) is analogous to eq (3). However here the nodes are chronological, i.e., the age of the initial node is t at time t, that of the second node $t-1$ and so on. In the Euclidean network on the other hand the coordinates of the nodes are uncorrelated. Moreover, the dimensionality plays an important factor in it.

The known limits of this model are therefore

1. $\beta = 1$, $\alpha = 0$ - BA network
2. β any value, $\alpha = 0$ - KRL network
3. $\beta = 1$, α any value - DM network

When α and β are both zero, we get a random growing network which shows an exponential decay of $P(k)$ [14].

The network is generated in the usual manner where we start with a single node and at every time step the new node gets attached to one of the existing nodes with an attachment probability given by equation (5).

We have considered nodes with a single incoming link such that there are no loops and the clustering coefficient is zero. Thus we focus our attention on the degree distribution and the average distance to study the small world and scale free behaviour.

From eq (5) we predict that for any β as $\alpha \to +\infty$ a gel formation is expected when majority of the nodes tend to get attached to a particular node. On the other hand when $\alpha \to -\infty$ we expect a regular chain formation (in the time space) when each node gets attached to its immediate predecessor. The average shortest distance (D) for both $\alpha \to +\infty$ and $\alpha \to -\infty$ are easy to calculate. When $\alpha \to -\infty$, D is given by

$$D = \frac{\sum_1^N (k(k-1) + (N-k)(N-k+1))}{2N(N-1)}.$$

$$= (N+1)/3.$$

On the other hand, for large values of α, D has a finite value $\sim O(1)$. Hence it is natural to expect a transition from a small world behaviour to a regular behaviour as α is varied. In fact for $\beta = 0$, one can locate approximately the transition point using some simple arguments.

FIG. 1. The variation of the average shortest distance D with N for various values of α at (a)$\beta = 2$ and (b)$\beta = 0.5$. In (a) the exponent λ changes value from 1 to 0 sharply as we go from top to bottom of the figure, corresponding to $\alpha = -10, -5, -3, -2, 0$. In (b) λ changes from 1 to a relatively small value as $\alpha = -10, -5, -2, 0$ from top to bottom.

In analogy with [15], one can define here an "age difference factor" $\Delta\tau_{ij} = |t_i - t_j|$ if the i^{th} node of age t_i and j^{th} node of age t_j are connected. If the network has been evolved till a time $t (\geq 2)$, then for the incoming node we can write

$$\langle \Delta \tau \rangle_i = \frac{\int_1^t \tau^{\alpha+1} d\tau}{\int_1^t \tau^\alpha d\tau}.$$ \hspace{1cm} (6)

For the small world property, the behaviour of $\langle \Delta \tau \rangle$ for large t should be studied. From eq(6), for large t, $\Delta \tau \sim O(1)$ for $\alpha < -2$ and therefore there can be no small world behaviour for $\alpha < -2$ for large networks. On the other hand for $\alpha > -1$, $\langle \Delta \tau \rangle \sim O(t)$, from which one can expect SW property for $\alpha > -1$. We in fact find a small world to regular network transition at $\alpha = -1$ numerically.
The simulations have been made using a maximum of 2000 nodes for studying small world properties and 4000 nodes for determining degree distribution, using a maximum of 1000 configurations. In the analysis of the small world characteristics, we calculate D for the networks for different values of β and α. The D versus N curve is generally of the form $D \sim N^\lambda$, where the exponent λ depends on α (see Fig. 1).

In order to locate the transition to the small world (where λ is either zero or has a very small value) we note the variation of λ with α for different values of β. We observe that for all values of β, there is a sharp fall in λ from unity to a very small value indicating a transition from regular to small world behaviour. The transition point shifts to a more negative value of α as we move from smaller to larger values of β. Typical λ vs. α plots are shown in Fig. 2.

![Figure 2: The variation of the exponent λ with α for different values of β.](image)

Next we study the degree distribution $P(k)$ for the network for several values of α and β. For the regular chain limit ($\alpha \to -\infty$), most of the vertices have degree 2, while for the gel phase ($\alpha \to +\infty$), there will be a very high maximal degree and many leaves (i.e., nodes with degree=1). Thus the different phases can be identified from the behaviour of $P(k)$. First let us discuss the known case for $\beta = 1$. We find that $P(k)$ has an exponential decay at $\alpha = -1$ as in [12] and has scale-free (SF) behaviour for $\alpha > -0.5$. The latter value does not agree with [12] and the possible reasons of discrepancy are discussed later. For other values of α, $P(k)$ has a stretched exponential (SE) behaviour, i.e.,

$$P(k) \sim \exp(-ak^b), \quad (7)$$

where b depends on α. Allowing β to assume values greater than unity, we find that SF behaviour exists only for a specific value of $\alpha = \alpha^*$, e.g. at $\beta = 3$ we obtain this behaviour at $\alpha = \alpha^* = 2.5$ (Fig. 3).

![Figure 3: (a) The $P(k)$ vs k plot in log-log scale for $\beta = 3$. Here, at $\alpha = \alpha^* = 2.5$ (dashed line), there is scale free behaviour, while for other values (e.g. $\alpha = -2.8, -2.3$) this behaviour is lost. (b) $P(k)$ vs k plot in log-linear scale for $\beta = 0.8$. Here exponential behaviour is observed at $\alpha = -0.9$ (dashed line), while for other values (e.g. $\alpha = -0.5, -2.0$) stretched exponential nature is observed.](image)
FIG. 4. The phase diagram for the given network in the $\alpha-\beta$ plane. The small world (SW) regions with gel-like as well as stretched exponential (SE) behaviour, the regular chain region and the scale free region are indicated. The network is scale free along the thinner solid line while the broken line is the phase boundary for SW-regular transition and these two lines merge along the thicker solid line. The dotted line is the one along which $b = 1$, i.e., where the network is random in nature. (All lines are guides to the eye.)

In summary, we have generalised the BA network to include time-dependent or aging effects in the attachment probability (eq. (5)) such that both the time dependence and the degree dependence can be parametrically tuned. A phase diagram is obtained in the $\alpha-\beta$ plane, where α, β are the parameters governing the two factors respectively. We claim that this is the most generalised network where both time dependence and degree dependence are incorporated in the preferential attachment. There is a quantitative disagreement in the transition point at $\beta = 1$ as compared to [12] which may be because of the finite sizes considered here. The time and effort required to locate phase transition points are considerable and a finite size analysis has not been attempted therefore. Other results known earlier, e.g., gel formation beyond $\beta > 1$ for $\alpha = 0$, exponential decay of $P(k)$ for both $\alpha, \beta = 0$ etc. have been recovered in our simulations. Similar to the Euclidean network [10,11], the scale free behaviour is found to exist along a single line here. In fact, as regards the scale-free boundary, the present phase diagram is very much similar to that obtained in [11]. However, here the network belongs to the BA universality class ($\gamma = 3$) along the entire line. Moreover, one can compare the present results with the one dimensional Euclidean network only for which the phase diagram is available. A phase boundary for small world to regular transition has also been obtained. The network may have small world behaviour even when the degree distribution is exponential or stretched exponential. Along the $\alpha = 0$ line, the network retains the small world behaviour, consistent with the results of [9], where it was found that D assumed a finite value ($\sim \ln N$) for networks of different sizes for all values of β.

It is worth mentioning here that the limiting forms of the degree distribution, at extreme values of α, are delta functions in nature, but we have restricted our analysis to finite values of α. Also, we find that the phase diagram shows varied features for values of $\alpha < 0$ for which the model corresponds to realistic networks like citation, collaboration or social networks.

Acknowledgments: We thank S. S. Manna for useful comments. KBH is grateful to CSIR (India) F.NO.9/28(609)/2003-EMR-I for financial support. PS acknowledges DST grant no. SP/S2/M-11/99.

Email: kamalikabasu2000@yahoo.com, parongama@vsnl.net

[1] R. Albert and A. -L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[2] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks, Oxford University press (2003).
[3] D. J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton University Press, Princeton, New Jersey (1999).
[4] P. Erdös and A. Rényi, Publ. Math. Debrecen 6, 290 (1959); Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960).
[5] D. J. Watts and S. H. Strogatz, Nature 393, 440 (1998).
[6] R. Albert and A. -L. Barabási, Phys. Rev. Lett. 85, 5234 (2000).
[7] B. A. Huberman and L. A. Adamic, Nature (London) 401, 130 (1999).
[8] P. L. Krapivsky, S. Redner and F. Leyvraz , Phys. Rev. Lett. 85, 4629 (2000).
[9] R. N. Onody and P. A. de Castro, Physica A 336, 491 (2004).
[10] S. S. Manna and P. Sen, Phys. Rev. E 66, 066114 (2002).
[11] P. Sen and S. S. Manna, Phys. Rev. E 68, 026104 (2003).
[12] S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 62, 1842 (2000); 63 056125 (2001).
[13] H. Zhu, X. Wang and J-Y. Zhu, Phys. Rev. E 68, 056121 (2003).
[14] A. L. Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999).
[15] P. Sen, K.Bannerjee and T. Biswas, Phys. Rev. E 66, 037102 (2002).