MEDICINAL AND ANTIOXIDANT PROPERTIES OF SOME MEDICINAL PLANTS

Shelly Rana*, Ved Prakash and Anand Sagar

Department of Biosciences, Himachal Pradesh University, Shimla (H.P.) 171005, India

*Corresponding author’s E-mail: shellyrana87@rediffmail.com, Mob. 9459245058

Received 25 March 2016; Review Completed 28 April 2016; Accepted 28 April 2016, Available online 15 May 2016

ABSTRACT

Medicinal plants play very important role to preserve the human healthy life. The knowledge of their healing properties has been transmitted over the centuries within and among human communities. A large number of different biologically active and therapeutic potentially active constituents are drawn from plant kingdom. The utilization of these natural compounds (secondary metabolites) for human ailments as well as animals begins from time immemorial. In the present paper six plants (Ocimum sanctum, Ipomea carnea, Delbergia sissoo, Lantana camara, Carissa carandas and Ricinus communis) are reviewed for their chemical constituents, medicinal and antioxidant property which ultimately leads to tissue damage resulting in a number of degenerative diseases. Reactive oxygen species (ROS) are class of highly reactive molecules derived from the metabolism of oxygen reported to prevent oxidative damage caused by free radicals and may prevent the body from various disorders. In past few years, the search for effective and more reliable non-toxic natural compounds with antioxidant activity has been intensified. The present review undertakes a brief account of research report on plants with medicinal and antioxidant potential.

Keywords: Medicinal plants, Antioxidant activity, Free radicals, Chemical constituents

INTRODUCTION

Medicinal plants play a significant role in the health care of ancient and modern cultures. Ayurveda, the Indian system of medicine mainly uses plant based formulations to treat various human diseases because they contain the components of therapeutic potential. Plant based drugs are an important source of therapeutic agents because of their abundant availability, relatively cheaper cost and non-toxic nature when compared to modern medicine. The demand of medicinal plant products has been increased tremendously in recent years. More attention is being given to antioxidant property of plants and their associated health benefits. Many herbs contain antioxidant compounds which protects the cells from the damaging effects of free radicals.

It has been reported that oxidative stress is one of the major causative factors in inducing many chronic and degenerative ailments including atherosclerosis, ischemic heart disease, diabetes mellitus, cancer, immunosuppression and others. Oxidative process provides important routes for generating free radicals in foods, drugs and even in living systems.

Free radicals, also known as reactive oxygen species (ROS), are atoms or group of atoms with unpaired electrons and can be formed when oxygen reacts with certain molecules. Free radicals are highly reactive, that’s why they can initiate a chain reaction immediately once they are formed. They have the capability to disrupt cellular components such as DNA, proteins, and the cell membranes with whom they react. Free radicals accumulation is mainly responsible for human aging where the use of antioxidants can help to prevent the aging process by deterring the progression of free radicals. Reactive oxygen species (ROS) formed in vivo, such as superoxide anion, hydroxyl radical and H2O2 are highly energetic and potentially damaging transient species. They are continuously produced in the human body, as they are necessary for energy supply, detoxification, chemical signalling and immune function. However, these free radicals produced by sunlight, ultraviolet light, ionizing radiation, chemical reactions and various metabolic processes have a wide variety of pathological effects and the most notorious among them is Alzheimer’s disease. Other neurodegenerative diseases associated with oxidative stress include multiple sclerosis,Creutzfeldt–Jacob disease and meningoc-encephalitis. All these disorders are associated with significant increase in the specific and persistent lipid peroxidation marker F2-isoprostane.

According to most widely accepted free radical theory of aging, cells constantly produce free radicals through...
normal metabolic processes, ultraviolet light, and environmental toxins which causes cellular degeneration. This is considered a major factor to the aging process10. Valko11 have done an extensive review on the effect of free radicals and antioxidants in normal physiological functions and human disease.

Phenolic compounds obtained from medicinal plants possess strong antioxidant activity and may help protect the cells against the oxidative damage caused by reactive oxygen species2. They are generally known as radical scavengers, metal chelators, reducing agents, hydrogen donors, and singlet oxygen quenchers13. An antioxidant is a chemical species that reduces the rate of particular oxidation reactions in a specific manner. Antioxidants from plants terminate the action of free radicals thereby protecting the body from various diseases14.

Recent studies revealed that a number of plant products including polyphenols, terpenes, alkaloids and various plant extracts exert an antioxidant action15-18. There is also a considerable amount of evidence regarding an association between individuals who have a diet rich in fresh fruits and vegetables, and the decreased risk of cardiovascular diseases and certain types of cancer19,20. There is currently immense interest in natural antioxidants and their vital role in human health and nutrition. Considerable amount of data have been obtained on antioxidant properties of food plants around the globe21. However, traditionally used medicinal plants await such screening. On the other hand, the medicinal properties of plants have also been investigated in the light of recent scientific advancements throughout the world, due to their potent pharmacological properties, low toxicity and economic viability.

Nowadays, a great deal of effort being expanded to find effective and valuable antioxidants for the treatment or prevention of free radical-mediated deleterious effects. This review gives good information on some medicinal plants with antioxidant potential.

PLANTS WITH MEDICINAL AND ANTIOXIDANT PROPERTIES

Ocimum sanctum Linn. (Tulsi, Sacred Basil)

Family: Lamiaceae
Order: Lamiales
Genus: *Ocimum*
Species: *sanctum*

Chemical constituents:

Phytochemically, *Ocimum sanctum* contains a wide variety of chemical constituents such as
- α-Thujiene, Octane, Nonane, Benzene, (Z)-3-hexanol, Ethyl 2- methyl butyrate, α-pinene, β-pinene, Toluene, citronellall, Camphene, Sabinen, Dimethyl benzene, Myrcene, Ethyl benzene, Limocene, 1,8-cineole, cis-β-ocimene, p-cymene, Terpinolene, Allo-oc-imene, Butyl-benzene, α-cubebeine, Linalool, Eugenol, β-elemeine, (E)-cinnamal, Lactate, Isoaromaticynle, β-caryophyllene, Iso-eugenol, α-guaiene, α-amorphene, α-humulene, γ - humulene, 4,11- seiniadene, α-terpenoel, Isoborneol, Carvacrol, germacrene-D, α—selinene, β-selinene, α- murolene, cadineine, δ - Cuparene, Calamene, Geranole, Nerolidol, Caryophyllene oxide, Iedol, Humulene oxide, α- guaiol, τ - cadinol, α-bisbolol, (E)-famesol, Cissquesaiaine hydrate, Elemol, Tetradecanal, Selin-11-en-4- α-ol, 14-hydroxy-α-humulene. Alcoholic extract of leaves / aerial parts.
- Urosolic acid, Apigenin, Luteolin, Apigenin-7-O-glucuronide, Luteolin-7-O-glucuronide, Isorentin, Orientin, Molludistant, Stigmasterol, Vicinien-2, Vitexin, Isovitexin, Aesculein, Aesculin, Cholorgenic acid, Galuteolin, Circineol, Gallic acid, gallic acid methyl ester, Procatechuic acid, Vallinil acid, 4-hydroxybenzoic acid, Caffiec acid, Cholorgenic acid, Phenylpropane glucosides, β- Stigmasterol, urosolic 22-25.

Medicinal and antioxidant properties:

Ocimum sanctum possess anti-stress, hepatoprotective, immunomodulating, anti-inflammatory, antibacterial, antiviral, antifungal, antipyretic, anti-inflammatory, and antioxidant properties with a wide margin of safety26. The fresh leaves of *O. sanctum* has been shown to enhance the immunity and also to have anti-carcinogenic properties in experimental animals27. Besides above, *O. sanctum* has also been demonstrated to exhibit rejuvenating properties, anti-septic and anti-allergic effects29. Tulsi has many beneficial properties with negligible toxicity, and is generally considered as an ideal antistress/adaptogenic herb. *O. sanctum* has been found to exhibit therapeutic potential as antioxidant, hypolipidemic, and antioxidant medicine. Oral feeding also provides noticeable liver and aortic tissue protection from hypercholesterolemia-induced peroxidative damage29.

Ipomoea carnea Linn. (Beshram, Morning glory)

Family: Convolvulaceae
Order: Solanales
Genus: *Ipomoea*
Species: *carnea*

Chemical constituents:

The plant possess various bioactive compounds such as glycosides, alkaloids, reducing sugars, flavonoids, fatty acid, esters, alcohol1 and tannins34. The leaves of this plant revealed the presence of thirteen compounds which include hexadecanoic acid, stearic acid, 1, 2 diethyl phthalate, n-octadecanol, octacosane, hexatriacontane, tetracosane, 3-dithylaminol-1- propanol34,35. The *I. carnea* benzene and chloroform extracts yielded the compounds such as neophyadiene, 1-decanol, tetradecanoic acid, pentadecane, 1-iodo-2- methylundecane, trans-caryophyllene, eicosenoic, 2-butenoic acid and cholestan-3-one36.
Lantana camara is a widely used medicinal plant with a rich chemical profile. Its antibacterial, antitumor, anti-inflammatory, and anti-oxidant properties have been extensively studied. The plant is rich in isoflavones, iridoid glycosides, and lignans, which contribute to its antioxidant and antimicrobial activities.

Delbergia sissoo (Shisham, Sissu, Sissai, Sisam)

- **Family:** Fabaceae
- **Order:** Fabales
- **Genus:** Dalbergia
- **Species:** sissoo

Chemical Constituents:

The plant is rich in isoflavones (irisinol, biochanin-A, mungin, tectorigenin, prunetin, genistein, sissotrin and prunetin-4-Ogalactoside). The flavone norartocarpotin and F3-amyrin, F3-sitosterol and stigmasterol were isolated and identified from the green branches of aerial parts of *D. sissoo*. Amino acids like glycine, alanine, threonine, isoleucine, phenylalanine are also reported.

Medicinal and Antioxidant Properties:

Wood and bark of Dalbergia sissoo is considered as abortifacient, anithelmic, antipyretic, aphrodisiac, expectorant, and refrigerant. The wood is regarded useful for blood disorders, burning sensations, eye and nose disorders, scabies, scalding urine, stomach problems, and syphilis. Other various parts such as roots, bark, leaves and seeds are being used as remedy in many ailments including skin diseases, blood diseases, syphilis, stomach problems, dysentery, nausea, eye and nose disorders, aphrodisiac, expectorant. Butein isolated from Dalburgia have shown to inhibit the iron-induced lipid peroxidation in rat brain homogenate in concentration dependent manner with an IC 50 value 3.3±0.4μm. It was equivalent to α-tocopherol in reducing the stable free radical diphenyl-2-picrylhydrazyl (DPPH). Butein scavenged the peroxyl radical derived from 2,2-azobis (2-aminodopropane) dihydrochloride (AAPH) in an aqueous phase. Butein has also shown to inhibit copper-catalyzed oxidation of human low density lipoprotein (LDL) in a concentration dependent manner.

Medicinal and Antioxidant Properties:

The main constituents in oil of Indian Lantana include germacene D, 3-elemene, β-caryophyllene, β-elemene, α-copane and α-cadinene. The other major components also reported are caryophyllene, α-caryophyllene, germacrene D, γ-murolene, γ-elemene. In addition there were δ-cadinene, γ-terpinene, copaene, eucalyptol, 3-carene, β-pinene, sabine, limonene, o-cymene, borneol, germacrene D-4-ol. It is worth mentioning that there is a great variation in the chemical composition of L. camara oils reported up to now from the different parts of the world.

Medicinal and Antioxidant Properties:

It has been reported that a steroid, lanceramarone, from the leaves *L. camara*, exhibited cardio toxic properties and that lantamine, an alkaloid from the stem, bark and roots, exhibited antipyretic and antispasmodic properties comparable to those of quinine. In India, the leaves of this plant are boiled for tea and the decoction is a remedy against cough and also used as a lotion for wounds and pounded leaves are applied to cuts, ulcers and swellings. Antioxidant activity of the leaves of *L. camara* was reported by reducing power activity and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. Leaf extract exhibited high antioxidant effects, however younger leaves exhibited strong antioxidant activity than the older or matured leaves. Ethanolic extract of *L. camara* revealed significant antioxidant activity in vivo studies. The extract treatment declined the extent of lipid peroxidation in the kidneys of urolithic rats.

Carissa carandas (Karonda, Garnu, Crane berry)

- **Family:** Apocynaceae
- **Order:** Gentianales
- **Genus:** Carissa
- **Species:** carandas

Chemical Constituents:

Volatile oil of fresh flowers of *Carissa carandas* yields myrcene, limonene, camphene, carene, dipentene, farnesol, nerolidol, α-terpenedol, citronellal, β-ionone, nerylacetate, linalol and geranyl acetate. Fruits yield a mixture of volatile chemical constituents such as 2-phenyl ethanol, linalool, β-caryophyllene, iso amyl alcohol, benzyl acetate, luteol, oxalic, tartaric, citric, malic, malonic and glycolic acids, glycine, alaline, phenyl alaline, cerine, glucose, galactose and a novel triterpenic alcohol (carissol - an epimer of α-amyrin). The roots of this plant have yielded a number of volatile principles including 2-acetyl phenol. The fresh leaves were reported to have triterpenoid constituents as well as tannins, and a new isomer of urosolic acid namely carissic acid was also isolated.

Medicinal and Antioxidant Properties:

Carissa carandas has been utilised in many ethno-medicines and traditionally used as stomachic, anti diarrhoeal and anthelmintic. Stems are used to...
strengthen tendons; fruits in skin infections and leaves are remedy for fevers, earache, rheumatism, biliary dysfunction and syphilitic pain. It is also being consumed by the people as the raw or mature fruits are the most suitable for making pickle, jelly and candy. The pharmacological properties of *C. carandas* have been extensively studied, and the plant is reported to show anticonvulsant, analgesic, anti-inflammatory, antipyretic, antibacterial, antifungal, hepatoprotective, antioxidant, acute hypotensive and anti-cancer activities. More prominent pharmacological studies were conducted with roots, fruits and bark, whereas leaves are less explored. These studies investigated the phytochemical composition and antioxidant properties of *C. carandas* leaves and revealed its ability to inhibit free radical-mediated DNA damage.

Ricinus communis Linn. (Castor bean, Castor-oil plant, Eranda)

Family: Euphorbiaceae

Order: Malpighiales

Genus: *Ricinus*

Species: *communis*

Chemical constituents:

The Preliminary phytochemical studies of *R. communis* revealed the presence of steroids, saponins, alkaloids, flavonoids, and glycosides. The roots and dried leaves of *R. communis* showed the presence of Indole-3-acetic acid, alkaloids, ricinole, quercetin, xylopyranoside, quercetin-3-O-β-D-glucopyranoside, kaempferol O-β-rutinoside and quercetin-3-O-β-monoterpenoids (1,8-cineole, camphor and a sesquiterpenoid (β-caryophyllene), gallic acid, quercetin, genticis acid, rutin, epicatechin and ellagic acid are the major phenolic compounds isolated from leaves. The seeds of this plant contain consist of glycosides of ricinoleic, isoricinoleic, stearic and dihydroxystearic acids and also lipases and a ricinole.

Medicinal and antioxidant properties:

The castor oil obtained from the seeds of this plant is widely used traditionally and herbally as a medicine. The main use of castor oil is as a purgative, laxative, anticancer and ulcer healing. It is also used being as a lubricant, lamp fuel, a component of cosmetics, and in the ink, plastics, fibres, varnishes, paints, textile dyes, leather finishes, adhesives, waxes, and fungicides. In India, the leaves are generally used as food for silk worms and the stalks are used as fuel. *R. communis* possess wound healing activity due to the active constituent of castor oil which produce antioxidant activity and inhibit lipid per oxidation. The agents which inhibit lipid per oxidation are supposed to enhance the viability of collagen fibrils by increasing the strength of collagen fibres, increasing the circulation, preventing the cell damage and by promoting the DNA synthesis. The DPPH (1,1-diphenyl-2- picrylhydrazyl)-mediated *in vitro* study reveals the presence of gallic acid, quercetin, genticis acid, rutin, epicatechin and ellagic acid are the major phenolic compounds responsible for the antioxidant activity of the dry leaves of *Ricinus communis*.

CONCLUSION

Since time immemorial people have tried to find alternatives to alleviate pain and cure various illnesses. In every successive century from the development of humankind and advanced civilizations, the healing properties of many medicinal plants were identified, noted, and conveyed to the next generations. The benefits of one society were passed on to another, which upgraded the old properties, discovered new ones, till present days. From the above discussion, it has been revealed that the plants are excellent source of curing various ailments. Antioxidants play vital role in preventing the risk of so many diseases by interacting with free radicals. A number of active chemical constituents including phenolic compounds, such as flavonoids, phenolic acids, tannins, lignins, and alkaloids, vitamins etc., serve as useful antioxidants. The present review suggests that medicinal plants which possess considerable antioxidant potential are the best supplements for the diseases associated with oxidative stress. The literature review presented in this paper strongly approved the medicinal and antioxidant properties of all the mentioned plant species. The finding that these medicinal plants possess antioxidant and therapeutic activities implies that making these plants as an integral part of daily consumption may prevent various diseases.

ACKNOWLEDGEMENT

Financial assistance provided to first author by UGC, New Delhi in the form of BSR Fellowship and Laboratory facilities provided by Chairperson, Department of Biosciences, HP University, Shimla are highly acknowledged.

CONFLICT OF INTEREST

The authors hereby declare that there is no conflict of interest.
REFERENCES
1. World health organization regional office for the western Pacific. Research guidelines for evaluating the safety and efficacy of herbal medicines. Manila, 1993.
2. Agbor AG, Ngogang YJ. Toxicity of herbal preparations. Cam. J. Ethnobot. 2005; 1: 23-28.
3. Young IS, Woodside JV. Antioxidants in natural sources. J. Clin. Pathol. 2001; 54: 176-186.
4. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994; 344: 721-724.
5. Ali SS. Indian medicinal herbs as a source of antioxidant. Food and research International. 2008; 41: 1-15.
6. Gyanani MA, Yonamine M, Aniya Y. Free radical scavenging action of medicinal herbs from Ghana *Thomonina sanguinea* on experimentally induced liver injuries. Gen. Pharmacol. 2002; 32: 661-667.
7. Uritani I, Garcia VV, Mendoza, EM editors. Novel neutral antioxidant for utilization in food and biological systems.Japan: Japan Scientific Societies Press; 1994. 241-25.
8. Noda Y, Anzai-Kmori A, Kohono M,Shimmei M, Packer L. Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidant using the computerized JES- FR30 ESR spectrometer system. Biochem. Mol. Biol.Intern. 1997; 42: 35-44.
9. Greco A, Minghetti L, Levi G. Isoprostanes, novel markers of oxidative injury, help understanding the pathogenesis of neurodegenerative diseases. Neurochemical Research. 2000; 25: 1357.
10. Raja G, Panchali D. A study on antioxidant properties of different bioactive compounds. Journal of Drug Delivery & Therapeutics. 2014. 4(2): 105-115
11. Valko M, Leibfritz D, Monco, J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry and Cell Biology. 2007; 39: 44-84.
12. Kakkonen M, Hoppia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS and Heinonen M Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999; 47: 3954-3962.
13. Proestos C, Boziaris, I. S., Nychas, GJ E and Komaitis M. Analysis of flavonoids and phenolic acids in Greek aromatic plants: investigation of their antioxidant capacity and anti-inflammatory activity. Food Chem. 2006; 95: 664-67.
14. Lai LS, Chou ST. Studies on the antioxidative activities of Hsiantao (Mesona procumbens.Hems.) leaf gum. J.Agric. Food Chem. 2001; 49: 963-968.
15. Ahmad I, Mehmood Z, Mohammad F. Screening of some Indian medicinal plants for their antimicrobial properties. J.Ethnopharmacol. 1998; 62 : 183-193.
16. Zhou YC, Zheng RL. Phenolic compounds and an analog as superoxide anion scavengers and antioxidants. Bioch. Pharm. 1991; 2: 1177-1179.
17. Quinn LA, Tang HH. Antioxidant properties of phenolic compounds in macadamia nuts. J. Am. Oil Chem. Soc.1996; 73 : 1585-1588.
18. Seymour TA, Li SJ, Morrissey MT. Characterization of a Natural Antioxidant from Shrimp Shell Waste. J. Agri. Food Chem. 1996; 44 : 682-685.
19. Salah N, Miller NJ, Paganga G, TijburgL., Bollew GP, Rice Evans C. Polyphenolics flavonoids as scavenger of aqueous phase radicals and as chain breaking antioxidants. Arch. Biochem.Biophys. 1995; 2 : 339-346.
20. Hertog MGL, Sweetnam PM, FehilyAM, Elwood P C, Kromhout D. Antioxidant flavonoids and ischimic heart disease in a Welsh population of men: the caerphilly study. Am. J. Clin.Nutr. 1997; 65 : 1489-1494.
21. Reiter RJ, Robinson GD. Free Radicals, Bantam Book, USA. 1995; 24.
22. Pareek SK, Maheswari ML, Gupta R. Domestication studies of *O. sanctum* for high oil and eugenol content. Indian perfumer. 1980; 24: 93-100.
23. Pareek SK, maheswari ML, Gupta R. Oil content and its composition at different stages of growth in *O. sanctum* Lin. Indian Perfumer. 1982; 26: 86-89.
24. Asthana OP, Gupta R. Effects of NP levels on Physiological parameters at growth stages in sacred basil (*Ocimum sanctum* Lin). Indian perfumer. 1984; 28: 49-53.
25. Verma PK, Panja MS, Sharma GD, Talwar G. Evaluation of different species of *Ocimum* for their herb and oil yield under Haryana conditions. Indian Perfumer. 1989; 33: 79-83.
26. Gupta SC. Validation of herbage yield, oil yield and major component of various *Ocimum* species/ varieties (chemotypes) harvested at different stages of maturity. J Essent oil Res. 1996; 8:275-279.
27. Nair AGR, Gunasegaran R. Chemical investigation of certain south Indian Plants. Indian Perfumer. 1983; 21 B: 979-980.
28. Joshi A, Pathak AK, Tailang M. Comparative pharmacognostical characterization of selected species of oicium, Journal of Drug Delivery and Therapeutics, 2014. 4(2): 72-80
29. Mondal S, Mirdha BR, Mahapatra SC. The Science behind sacredness of Tulsi (*Ocimum sanctum* Linn.). Indian J Physiol Pharmacol. 2009; 53(4): 291-306.
30. Godhwani S, Godhwani JL, Vyas DS. *Ocimum sanctum*—A preliminary study evaluating its immunoregulatory profile in albino rats. Journal of Ethnopharmacology. 1988; 24: 193-198.
31. Hussain EHMA, Jamil, R. Hypoglycemic, hypolipidemic and antioxidant properties of Tulsi (*Ocimum sanctum*) on streptozotocin induced diabetes in rats. Indian J of Clin Biochemistry. 2001; 16(2): 190-194.
32. Yanpallewar SU, Rai S, Kumar M, Acharya SB. Evaluation of antioxidant and neuroprotective effect of *Ocimum sanctum* on transient cerebral ischemia and long-term cerebral hypoperfusion. Pharmacol Biochem Behav. 2004; 79:155-64.
33. Afifi MS, Amer MMA, El-Khayat S. A, Macro-and micro morphology of *Ipomoea carnea* Jack. Growing in Egypt. Part II. Stem and root. M. Pharm. Journal of Pharmaceutical Science. 1988; 4 : 88-97. (1988).
34. Tireky K, Yadava RP, Mandal TK, Banerjee NL.The pharmacology of *Ipomoea carnea*. Indian Veterinarian Journal. 1988; 65: 206-210.
35. Vaishali A, Eliza K, Manik K, Amuruta T, Pushpa P, Nirmala D. GC-MS Study of fatty acid, esters, alcohol from the leaves of *Ipomoea carnea*. Food Chem. 2005; 95: 664-67.
36. Zhou YC, Zheng RL. Phenolic compounds and an analog as superoxide anion scavengers and antioxidants. Bioch. Pharm. 1991; 2: 1177-1179.
37. Ahmed I, Mehmood Z, Mohammad F. Screening of some Indian medicinal plants for their antimicrobial properties. J.Ethnopharmacol. 1998; 62 : 183-193.
38. Teng CC, Zheng RL. Phenolic compounds and an analog as superoxide anion scavengers and antioxidants. Bioch. Pharm. 1991; 2: 1177-1179.
39. Quinn LA, Tang HH. Antioxidant properties of phenolic compounds in macadamia nuts. J. Am. Oil Chem. Soc.1996; 73 : 1585-1588.
40. Seymour TA, Li SJ, Morrissey MT. Characterization of a Natural Antioxidant from Shrimp Shell Waste. J. Agri. Food Chem. 1996; 44 : 682-685.
41. Salah N, Miller NJ, Paganga G, TijburgL., Bollew GP, Rice Evans C. Polyphenolics flavonoids as scavenger of aqueous phase radicals and as chain breaking antioxidants. Arch. Biochem.Biophys. 1995; 2 : 339-346.
42. Hertog MGL, Sweetnam PM, FehilyAM, Elwood P C, Kromhout D. Antioxidant flavonoids and ischimic heart disease in a Welsh population of men: the caerphilly study. Am. J. Clin.Nutr. 1997; 65 : 1489-1494.
43. Reiter RJ, Robinson GD. Free Radicals, Bantam Book, USA. 1995; 24.
44. Pareek SK, Maheswari ML, Gupta R. Domestication studies of *O. sanctum* for high oil and eugenol content. Indian perfumer. 1980; 24: 93-100.
antioxidant activities in *Lantana camara* (L.). Journal of Scientific Research. 2009; 1(2): 363-369.
44. Rana VS, Prasa D, Amarbo B. Chemical composition of the leaf oil of *Lantana camara*. J. Ess. Oil Res. 2005; 17(2): 198-200.
45. Pino JA, Rolando M, Aristides R, Carlos R, Pilar MM. Chemical composition of the essential oil of *Lantana camara* L. from Cuba. J. Ess. Oil Res. 2004; 16(3): 216-218.
46. Oyedeji OA, Ekundayo O, König WA. 2003. Volatile leaf oil constituents of *Lantana camara* L from Nigeria. Flav. Fragr. J. 18(5): 384-386.
47. Sastri BN. The Wealth of India, New Delhi, Council of Scientific and Industrial Res. 1962.
48. Verma RK, Verma SK. Phytochemical and termiticidal studies of *Lantana camara var. aculeata* leaves. Fitoterapia. 2006; 77: 466-468.
49. Mayee R, Thosar A. Evaluation of *Lantana camara* Linn. (Verbenaceae) for antiurolithistic and antioxidant activities in rats. International Journal of Pharmaceutical and Clinical Research 2011; 3 (1): 10-14.
50. Kumar S, Gupta P, Virupaksha Gupta V KL. A Critical Review on Karamarda (*Carissa carandas* Linn.). International Journal of Pharmaceutical & Biological Archives. 2013; 4(4): 637 – 642.
51. Zaki A, El-Tohamy S, El-Fattah S. Study of Lipid content and volatile oil of the different organs of *Carissa carandas* Lin. and *Carissa grandiflora* DC. growing in Egypt. Egyptian Journal of Pharmaceutical Sciences. 1983; 22(14):127-41 (1983).
52. Pino J, Marbot R, Vazques C. Volatile flavour constituents of Karnda (*Carissa carandas* L.) fruit. Journal of Essential Oil Research. 2004;16(5): 432-4.
53. Siddiqi S, Ghani U, S. Ali S, Usmani S, Begum S. Triterpenoidal Constituents of the leaves of *Carissa carandas*. Natural Products Research. 2003;17(3):153.
54. Naim Z, Khan M, Nizami S. Isolation of a new isomer of ursolic acid from fruits and leaves of *Carissa carandas*. Pakistan Journal of Scientific and Industrial Research. 1988; 31(11): 753-5.
55. Balakrishnan N, Bhaskar VH. Karaunda (*Carissa carandas* Linn.)- As a phytomedicine: A review. Kongposh publications. 2009: 95.
56. Mishra CK, Pattnaik AK, Rani A, Sasmal AD, Nema RK. Antifungal and antibacterial activity of *Carissa carandas* Linn. Int. J. Plant Sci. 2009; 4: 564–568.
57. Kadiri M, Ojewumi AW, Onatade TN. Indigenous uses and phytochemical contents of plants used in the treatment of menstrual disorders and after-child birth problems in abeokuta south local government area of Ogun State, Nigeria, Journal of Drug Delivery and Therapeutics 5 (3), 33–42
58. Hegde K, Joshi AB. Hepatoprotective effect of *Carissa carandas* Linn. root extract against CC14 and paracetamol induced hepatic oxidative stress. Indian J. Exp. Biol. 2009; 47: 660-667.
59. Aslam F, Rasool N, Riaz M, Zubair M, Abbass M, Bukhari TH, Bukhari IH. Antioxidant, haemolytic activities and GC–MS profiling of *Carissa carandas* roots. Int. J. Phytomed. 2011; 3: 567–578.
60. Shamim S, Ahmad SI, Pharmacodynamic study on acute hypotensive activities of *Carissa carandas* extract in normal rats. Pak. J. Pharm. Sci. 2012; 25: 577–582.
61. Khogali A, Barakat S, Abou-Zeid H. Isolation and identification of the phenolics from *Ricinus communis* L. Delta J. Sci. 1996; 16: 198–211.
62. Kang SS, Cordell A, Soejarto DD, Fong HHS. Alkaloids and flavonoids from *Ricinus communis*. J. Nat. Prod. 1985; 48 (1): 155–156.
63. Adei K, Neji G, Mohamed D, Radhouane G. Chemical composition and in vitro antioxidant properties of essential oil of *Ricinus communis* L. Journal of Medicinal Plants Research. 2011; 5(8): 1466-1470.
64. Simboli N, Takiff H, McNerney R. In-house phase amplification assay is a sound alternative for detecting rifampin-resistant *Mycobacterium tuberculosis* in low resource settings. Antimicrob Agents Chemother. 2005; 49: 425-427.
65. Noordhoek GT, van Embden JD, Kolk, AH. Reliability of nucleic acid amplification for detection of *Mycobacterium tuberculosis*: an international collaborative quality control study among 30 laboratories. Journal of Clinical Microbiology. 1996; 34; 2522-2525.
66. Singh PP, Chauhan SMS. Activity guided isolation of antioxidants from the leaves of *Ricinus communis* L. Food chemistry. 2009; 114(3): 1069 – 1072.