Brasier, M., Norman, D., Liu, A., Cotton, L. J., Hiscocks, J., Garwood, R., ... Wacey, D. (2017). Remarkable preservation of brain tissues in an Early Cretaceous iguanodontian dinosaur. In Earth System Evolution and Early Life: a Celebration of the Work of Martin Brasier (pp. 383-398). [SP448] (Special Publications; Vol. SP448, No. 1). Geological Society of London. https://doi.org/10.1144/SP448.3

Publisher's PDF, also known as Version of record
License (if available): CC BY
Link to published version (if available): 10.1144/SP448.3

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via the Lyell Collection at http://sp.lyellcollection.org/content/early/2016/10/25/SP448.3.abstract. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Remarkable preservation of brain tissues in an Early Cretaceous iguanodontian dinosaur

MARTIN D. BRASIER1†, DAVID B. NORMAN2*, ALEXANDER G. LIU2,3*, LAURA J. COTTON4, JAMIE E. H. HISCOCKS5, RUSSELL J. GARWOOD6,7, JONATHAN B. ANTCLIFFE8,9,10 & DAVID WACEY3,11

1Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
2Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
3School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
4School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, China
5Cantelupe Road, Bexhill-on-Sea, East Sussex TN40 1PP, UK
6School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
7Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
8Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
9Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
10Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
11Centre for Microscopy Characterisation and Analysis, and Australian Research Council Centre of Excellence for Core to Crust Fluid Systems, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia

*Correspondence: agscl2@cam.ac.uk; dn102@cam.ac.uk

Abstract: It has become accepted in recent years that the fossil record can preserve labile tissues. We report here the highly detailed mineralization of soft tissues associated with a naturally occurring brain endocast of an iguanodontian dinosaur found in c. 133 Ma fluvial sediments of the Wealden at Bexhill, Sussex, UK. Moulding of the braincase wall and the mineral replacement of the adjacent brain tissues by phosphates and carbonates allowed the direct examination of petrified brain tissues. Scanning electron microscopy (SEM) imaging and computed tomography (CT) scanning revealed preservation of the tough membranes (meninges) that enveloped and supported the brain proper. Collagen strands of the meningeal layers were preserved in collophane. The blood vessels, also preserved in collophane, were either lined by, or infilled with, microcrystalline siderite. The meninges were preserved in the hindbrain region and exhibit structural similarities with those of living archosaurs. Greater definition of the forebrain (cerebrum) than the hindbrain (cerebellar and medullary regions) is consistent with the anatomical and implied behavioural complexity previously described in iguanodontian-grade ornithopods. However, we caution that the observed proximity of probable cortical layers to the braincase walls probably resulted from the settling of brain tissues against the roof of the braincase after inversion of the skull during decay and burial.

Supplementary material: Information regarding associated fossil material, and additional images, can be found at https://doi.org/10.6084/m9.figshare.c.3519984

Gold Open Access: This article is published under the terms of the CC-BY 3.0 license.

†Deceased 16 December 2014.

From: BRASIER, A. T., McILROY, D. & MCLoughlin, N. (eds) Earth System Evolution and Early Life: a Celebration of the Work of Martin Brasier. Geological Society, London, Special Publications, 448, http://doi.org/10.1144/SP448.3
© 2016 The Author(s). Published by The Geological Society of London.
Publishing disclaimer: www.geolsoc.org.uk/pub_ethics
The fossil record of animal soft tissues is remarkably extensive, spanning the entire Phanerozoic (Allison & Briggs 1993) and potentially the latest Neoproterozoic (cf. Budd & Jensen 2015). Discussion of whole organism biology, including the consideration of soft tissues, is now commonplace, particularly in the study of marine invertebrates. The soft tissues of vertebrates (perhaps with the exception of those from the Mesozoic) and terrestrial organisms in particular are, by comparison, rarely preserved. Brain tissues are among the least commonly preserved soft tissues in the fossil record because fossilized brains themselves are extremely rare and, more importantly, because most brain tissues are highly labile. The vast majority of our knowledge of the brains of ancient organisms comes not from preserved brain tissue (although see Pradel et al. 2009), but from indirect sources. These include comparative anatomical studies of closely related extant taxa, the study of fossilized endocasts (the natural internal casts of braincases; e.g. Edinger 1929, 1941; Kurochkin et al. 2007) and three-dimensional digital reconstructions of the space within fossilized braincases. The exceptional preservation of neural tissues is known from a range of Cambrian marine arthropods from the Chengjiang preservation of neural tissues is known from a range of Cambrian marine arthropods from the Chengjiang Lagerstätte (e.g. Ma et al. 2012, 2015; Tanaka et al. 2013; Ortega-Hernández 2015), providing a critical window into understanding the evolution of the nervous system during the Cambrian explosion. By contrast, although neural tissue can (rarely) be preserved in fossil vertebrates (Triajstic et al. 2007), the direct replication of the soft tissue of the vertebrate brain has not previously been reported. Little information has been available (either directly or indirectly) regarding structures such as the meningeal and cortical tissues or associated brain vasculature. Fossilized soft tissue has never been reported for any terrestrial organism.

Perhaps unexpectedly, our knowledge of dinosaurian braincases and the structure of their endocranial cavities has a surprisingly long history. A well-preserved braincase (NHMUK R2501) was found almost 150 years ago in Wealden exposures on the Isle of Wight and was described as probably belonging to Iguanodon (Hulke 1871). Almost 30 years later, Andrews (1897) suggested that dinosaurian brains, and in particular their lobes and surface convolutions, were not closely pressed against the cranial wall so as to leave detailed impressions of their shape (as is known to be the case in pterosaurs, birds and mammals; Jerison 1970, 1971, 1973). Work by Dendy (1910) on extant reptiles, and others such as Ostrom (1961) and Hopson (1979), tended to reinforce the general opinion that reptile-grade vertebrates had brains that were not packed tightly within the braincase. Romer (1956) had previously observed that the embryonic expansion of the reptile brain is rapid and far advanced before skull development begins, so, at best, the interior walls of reptile braincases reflect the shape of the brain at an early (and comparatively poorly differentiated) state of its development, rather than at a later, more differentiated state. More recently, imaging techniques such as tomography have been used to create accurate three-dimensional representations of endocranial cavities in a variety of dinosaurs (Rogers 1999; Brochu 2000; Witmer et al. 2008; Witmer & Ridgely 2009; Lautenschlager et al. 2012), as well as other fossil taxa extending back into the Palaeozoic (e.g. Pradel et al. 2009; Giles & Friedman 2014; Marek et al. 2015).

Here we report for the first time that brain tissue preservation at a microscopic scale can take place within a braincase. The fossil cranial endocast described here was salvaged by one of us (JEHH) from intertidal exposures of the Tunbridge Wells Sandstone, Hastings Group (Upper Valanginian), east of Cooden, near Bexhill in Sussex (Fig. 1). Scanning electron microscopy (SEM) revealed detailed structures, interpreted as meningeal fabrics, blood vessels (including capillaries) and potentially superficial cortical tissues, which have been replaced by calcium phosphate (collophane) or moulded by microcrystalline iron carbonate (siderite). The organism from which this endocast originates has been referred to informally as ‘Iguanodon’. The taxon Iguanodon has, for historical reasons, a rather tortuous history that is unfortunate given its importance as one of the founding members of Richard Owen’s Dinosauria (Owen 1842). As Norman (2010, 2011, 2015) has demonstrated, a number of taxa of iguanodontian ornithopod dinosaurs have been collected from the English Wealden succession and referred to by the generic name Iguanodon. The type genus was first established on a range of disassociated material collected near Cuckfield in West Sussex, primarily by Mantell (1825, 1827). Following revision and re-description of Iguanodon-like material from the Weald of East and West Sussex by Norman (2010, 2011, 2015),
two Iguanodon-like taxa are now recognized from the Lower Wealden outcrops of Valanginian age: *Barilium dawsoni* (Norman 2011) and *Hypselospinus fittoni* (Norman 2015). The dimensions of the new specimen indicate that it came from an individual with a body length of 4–5 m and could therefore originate from either *Barilium* (up to 8 m long) or *Hypselospinus* (up to 6 m long).

Methods

The endocast specimen was analysed using conventional photographic methods, SEM and X-ray microtomography (μCT). The uncoated surface of the entire specimen was examined using a Philips XL30S environmental scanning electron microscope in the Centre for Microscopy Characterisation and Analysis at The University of Western Australia. The analysis conditions were an accelerating voltage of 15–20 kV, a working distance of c. 20 mm and a chamber pressure of 0.3–0.4 Torr. Qualitative elemental and mineral analyses were undertaken on small loose fragments of the endocast. These were carbon-coated and examined using a Zeiss Supra 1555 field-emission scanning electron microscope equipped with an Oxford Instruments X-Maz 80 silicon drift energy-dispersive x-ray spectrometry (EDS) detector and Aztec analysis software at the Centre for Microscopy Characterisation and Analysis. The entire specimen was scanned using μCT at the Natural History Museum, London.
Fig. 2. Biological context for the iguanodontian endocast from Bexhill. (a) Life-like restoration of the head and anterior neck based on the anatomy of the iguanodontian ornithopod *Iguanodon bernissartensis* (Norman 1980; OUMNH T.127). (b) Semi-transparent restoration of *I. bernissartensis* head showing the position and general morphology of the endocranial cavity (orange). (c) Interpreted image of the plaster cast of the endocranial cavity of *Mantellisaurus* cf. *atherfieldensis* (see also Supplementary material fig. 1a). The region in pale blue indicates the approximate extent of the natural endocranial cast described herein. The principal anatomical features and positions of brain-related tissues are indicated. Roman numerals indicate the positions of the principal cranial nerve canals, which have been superimposed with reference to earlier work by Norman (2004). (d) Natural cranial endocast with a false-colour overlay showing bone fragments (BF) in blue, a superficial layer (SL) of crystalline siderite (red) and an outer laminar layer (OLL) and outer tubular features (OTF) preserved in calcium phosphate (collophane; green). Natural colour = silty sediment.
X-rays were generated using a tungsten target with an accelerating voltage of 225 kV, a current of 190 μA and no added filtration. To maximize resolution, two scans were undertaken to cover the length of the specimen. For each scan, 3142 projections of 0.5 s exposure were collected and then reconstructed to create volumes with 38.9 μm voxels. These were converted to two image stacks that were cropped and then aligned in SPIERSalign (Sutton et al. 2012), surfaced in SPIERSedit, rendered in Blender (cf. Garwood & Dunlop 2014) and volume rendered in Drishti (Limaye 2012).

The specimen is currently in the private possession of Jamie Hiscocks, but negotiations are underway to have it housed in a public museum. The loose fragments analysed using SEM-EDS (OUMNH K59010/p1–p2) are housed alongside associated post-cranial material from the same site at the Oxford University Museum of Natural History (OUMNH K.59010/1–8). Copies of the μCT scan datasets are also available as OUMNH K59010/p3–p4. All SEM and μCT images have additionally been archived on the open access server Zenodo (doi: 10.5281/zenodo.50499).

Geological context

The cranial endocast (Figs 2d & 3) was exposed by tidal erosion and found among fluvial sedimentary units of the c. 133 Ma Early Cretaceous Upper Tunbridge Wells Formation (Fig. 1; see also Lake & Shephard-Thorn 1987; Allen & Wimbledon 1991; Radley 2006a, b; Batten 2011). The petrified endocast had been eroded from its matrix during the winter of 2004 and was collected, ex situ, from a tidal pool (Ordnance Survey coordinates TQ 72498 06692). It is possible that the specimen had been transported by longshore drift and was derived from the nearby Weald Clay, which outcrops c. 1 km to the west. The cranial endocast was found near other ornithopod remains that included limb fragments, a tarsal bone and broken vertebrae (OUMNH K.59010/4–8). Fossilized footprints and trackways of Iguanodon-like ornithopods were found at a similar stratigraphic level (cf. Beckles 1854), as well as amber with probable microbial inclusions. This level lies above beds in the Ashdown Formation containing amber with the oldest known spider silk (Brasier et al. 2009).

Large-scale endocast morphology and preservation

Superficial morphology

The natural cranial endocast (Figs 2d & 3) is close in both shape and size to the endocranial cavity seen within a specimen of ‘Iguanodon’ on display in the OUM (OUMNH K.59015a/p-c/p; Fig. 4; see also Norman & Weishampel 1990, fig. 25.8). The latter, to judge from its size, is most likely from a fully grown individual of Mantellisaurus atherfieldensis (Norman 1986) and was collected from the Isle of Wight in the 1860s. As the Wealden iguanodontian taxa are closely comparable anatomically, it is not unreasonable to use one as a template for the other. Comparisons between the new specimen and other Wealden natural endocasts
A superficial layer (SL) consisting of a very fine-grained, brown, <1 mm veneer of iron carbonate (siderite) is draped over the 'high points' along the dorsal mid-line and diagonally across the lateral margins of the endocast (Fig. 2d, red zone). This zone contains layers and patches of small reddish brown acicular iron carbonate crystals arranged parallel to the surface; these are also found coating pores and lining cavities within the outer laminar layer (OLL) (Supplementary material fig. 6a, b).

The Bexhill endocast lacks the olfactory bulb region at the extreme anterior end of the cranial cavity, as well as most of the floor and adjacent lateral walls and the area that would have been occupied by the medulla oblongata posteriorly (Fig. 2c, the pale blue shading indicates what is actually preserved in this natural cast). The ventral surface of the endocast, which would, in life, have been supported by the floor of the braincase, is weathered and much eroded. The dorsal and lateral portions of the forebrain and hindbrain (the areas occupied by the cerebral and cerebellar expansions) exhibit the best preservation (Figs 2d & 3; Supplementary material figs 3, 4). The mid-brain region, which would have been occupied by the optic lobes in life, is completely obscured in endocasts because these lobes were overlain by the cerebral and cerebellar expansions, as well as large vascular sinuses.

Preservation

Our SEM and CT studies of the entire Bexhill endocast reveal four structurally distinct regions (Fig. 2d):

1. Bone fragments (not in place) are located mainly in the ventral part of the endocast (Fig. 2d, blue). They consist of a coarse, dark, porous phosphate matrix with abundant Haversian canals or trabeculae (the diameter of the voids was intermediate between the two; Figs 3a & 5d, e) lined or entirely filled with iron carbonate microcrystals. The CT reconstruction revealed that the bone continues across the width of the specimen and has been eroded (Fig. 5a–d, in cream). We thus consider it likely that the bone represents either a collapsed remnant of the original braincase floor, or a fragment of bone deposited within the braincase along with the surrounding sediment.

2. A superficial layer (SL) consisting of a very fine-grained, brown, <1 mm veneer of iron carbonate (siderite) is draped over the 'high points' along the dorsal mid-line and diagonally across the lateral margins of the endocast (Fig. 2d, red zone). This zone contains layers and patches of small reddish brown acicular iron carbonate crystals arranged parallel to the surface; these are also found coating pores and lining cavities within the outer laminar layer (OLL) (Supplementary material fig. 6a, b).

3. The OLL flanks the mid-line SL as well as the prominent parts of the ridges on the lateral sides of the endocast, and is a more rugose textured, predominantly phosphatic area that is stained pale brown (Fig. 2d, green zone). This zone, which is 1–3 mm thick, consists of collophane in the form of layers and folds (Fig. 2d). There are large voids and irregular cavities that add to the overall three-dimensional complexity of this layer (Figs 5a–c & 6–8). Deeper within these layers the phosphate assumes an extremely fine granular texture penetrated by a network of very fine (15–30 μm) branching tubular structures, which are sometimes lined or infilled by microscopic siderite crystals (Supplementary material fig. 5b).

4. There is an underlying zone composed of fine-grained, carbonate-cemented, quartz siltstone sedimentary infill. This zone occupies (somewhat paradoxically) the ventral portion of the endocast and also fills some of the anterior and dorsal portions of the cerebral region (Fig. 2d, natural colour). This sediment-filled zone shows weak layering and draped bedding in CT slice sections (Fig. 5h–k) and ranges from firmly cemented sediment dorsally to more friable material ventrally. The sedimentary infill also contains numerous fragments of carbonized wood (e.g. Fig. 5f), at least one plant leaf (Fig. 5g) and fragments of cortical bone (Fig. 5d).

Mineralization

Qualitative SEM-EDS shows that the phosphate-rich layers (the OLL) are dominantly calcium-rich, typical of the composition of collophane, although they also contain significant iron in places (Supplementary material fig. 6). The carbonates are mostly iron-rich (siderite), although minor calcium is sometimes present. Iron-rich carbonates are generally indicative of freshwater environments, consistent with the freshwater environment of mineralization described later in this paper. Minor iron-rich silicates are distributed throughout much of the endocast. In the following discussion, we use the terms ‘collophane’ and ‘siderite’ for the predominant mineral phases involved in the preservation of brain membranes and putative cortical tissues, but acknowledge that the mineralogy sometimes deviates from these idealized end-members.

Detailed morphology

The cortical portions of the brain in living vertebrates have a structure of such complexity, on such a small scale, that the finer details can best
Fig. 4. A time sequence outlining the inferred taphonomic history of the iguanodontian natural endocast from Bexhill. Scale bar = 10 mm.
be examined using SEM techniques (e.g. Killer et al. 2003). Study of the Bexhill specimen using environmental SEM revealed structural details that appear to show features linked to brain architecture in this dinosaur (Figs 6–8). An attempt was made to identify and interpret these features in a neuroanatomical context (summarized schematically in Fig. 9).

The natural cranial endocast was unusually well-preserved along its dorsolateral flanks, corresponding to the approximate position of the cerebellum or anterior hindbrain (Fig. 2c, d); here, a SL can be traced along the dorsal surface, above the area occupied, when alive, by the superior sagittal sinus and occipital sinus (Fig. 2). This surface feature extends laterally as diagonal ridges preserved on either side of the endocast, corresponding to the area of the cranial cavity occupied by transverse venous sinuses (see also Norman & Weishampel 1990, figs 25.11, 25.12; Norman 2004, fig. 19.8). The SL was preserved as a veneer of brown, finely crystalline siderite that appears to overlie the OLL. The dorsal-most part of the SL most likely represents an early diagenetic coating of the braincase wall; it evidently lay outside the connective tissue layers that enveloped the brain itself and appears to faithfully take an impression of the inner bony lining of the braincase (Supplementary material figs 3, 4a); this layer is sporadically flecked by slivers of smooth, blackish compact cranial bone. Where the SL occupies the positions equivalent to the outer walls of the transverse venous sinuses, its presence is probably a result of the diagenetic infilling of these internal cranial spaces. We therefore infer that this moulding of the exterior surface occurred when siderite crystals began to grow in the epidural spaces located between the meninges and the overlying peristomeum; this phase of mineralization would have spread into the adjacent intradural sinuses during an early phase of decay.

The OLL takes the form of a layered structure of some complexity and consists of minerals that have directly replaced the protective sheaths (the meningeal and arachnoid maters) that enveloped
the brain cortex (grey matter). The OLL is thickest on the flanks of the endocast beneath the ‘dural peak’ (Fig. 2). Both optical microscopy and SEM revealed this layered region to be constructed of thin, interwoven laminar sheets of phosphate (Figs 6–8) that were either planar or, more commonly, corrugated into ribbon-like folds and trenches. These structures range from microns to millimetres in diameter and are conspicuously aligned across the brain axis. SEM reveals that these ribbons were themselves composed of aligned, micrometre-sized filaments (Figs 6, Dm). Some of the junctions between these ribbons contain small intradural spaces (Figs 6a, Ids). Small elongate voids, infilled largely with reddish brown, rod-shaped siderite crystals 20–30 µm in length occur within and between these ribbons (Fig. 6b, Si), which also generally lie parallel to the endocast surface. This OLL fabric of fibrous ribbons with occasional voids has all the microscopic features expected of either the perios- teum or meningeal mater (which together form the dura mater; see Fig. 9). These form the tough protective outer coatings seen in living vertebrate brains (cf. Runza et al. 1999 – as interpreted in Fig. 9). The ribbons and filaments are taken to represent the remains of bundles of fibrous collagen that have been replaced by phosphate before significant organic decay took place.

The web-like structure of phosphatized ribbons in the OLL is punctured locally by well-defined apertures (Fig. 6c, Ls); this web-like fabric closely resembles that seen in the arachnoid mater of the meninges (cf. Reina et al. 2002). The arachnoid mater in the dorsal hindbrain of living avian archosaurs is a thin sheet of interwoven collagen ribbons that comprises the innermost layer of the dura mater (Fig. 6b, c, Am; Fig. 8a, Am). In archosaurs, this layer directly overlies the cortex (grey matter) of the brain (Fig. 6b, Gm) without any intervening subarachnoid space and pia mater as found in the more complex brains of mammals (Runza et al. 1999). In this petrified natural cranial endocast, the innermost meningeal layer seemingly exhibits convolutions. These are interpreted as ‘gyri’ (see also Wilson 1971), reflecting in part the topographic complexity that exists between the arachnoid mater and the underlying cerebellar cortex (=grey matter) (Fig. 6b, c, Gm; see also summary Fig. 9).

The outer tubular features within the cranial endocast mainly lie within the fabric of the OLL and are predominantly arranged parallel to the endocast surface, just above what is suggested here to be the arachnoid mater (Figs 7 & 8a, Bv). The tubular structures are either rounded or compressed in cross-section and typically range up to 100 µm in diameter (compare Figs 7 & 8). Several examples show finely layered walls (Fig. 7) and their internal spaces are either lined or infilled with microcrystalline siderite formed during early diagenesis. These tubes are very similar in size and shape to...
blood vessels and form a network that extends across the surface of the meninges and, in some instances, penetrates the cortex as part of the blood supply (arterial) or drainage (venous) systems (see Fig. 9).

Immediately beneath the meninges some deeper areas of the endocast lack these laminar or ribbon-like features and exhibit a texture of considerable fine-scale complexity (Fig. 6b, c). This area could be interpreted as the mineralized remnants of cortical tissue (grey matter), representing an imperfect record of the complexity of the cerebellar cortex.

Figure 9 provides an idealized summary and interpretation of the dorsal cranium and endocranial cavity soft tissues that appear to have been preserved in the natural cranial endocast from Bexhill. Such soft tissue preservation is comparatively rare in non-avian dinosaurs and, indeed, in any terrestrial vertebrate, but this specimen clearly demonstrates that even brain-associated tissues can be preserved under exceptional taphonomic conditions.

Taphonomic history

The three zones of preservation that we recognize (carbonate, phosphate–carbonate, and siltstone), as well as their distribution on the natural endocast, are suggestive of a specific set of taphonomic conditions acting on the specimen during the period shortly after death, consistent with burial of the dinosaur braincase in an aqueous medium.

Conditions necessary for mineralization

The brain structures described here were preserved in phosphate and carbonate; however, to preserve soft tissue as phosphate, a locally anoxic environment is required to promote bacterially mediated mineralization (Briggs et al. 1993). In the predominantly fluvial system suggested by the sediments associated with this specimen, eutrophication (algal blooms) and/or stratification of the water column is required to result in water column anoxia. Under freshwater conditions, eutrophication adds phosphate to the water column in the form of a
phosphoric acid series. Ionized phosphoric acids (hydrogen phosphate H_2PO_4^-, dihydrogen phosphate H_3PO_4^-) and orthophosphoric acid (H$_3$PO$_4$) drastically reduce the pH of the water, rapidly fixing soft tissues (the equivalent of pickling) and degrading and dissolving the surrounding mineralized tissues. Consequently, the soft tissues associated with the brain could have been preserved and cast prior to complete burial by sediment, which would complete the sealing process before the bone of the braincase had been completely dissolved away. Any phosphogenic layer is likely to have formed at the base of the water column or within the upper layer of soft sediment beneath the sediment–water interface.

Taphonomic scenario

The death of the dinosaur may have occurred adjacent to or within a temporarily eutrophic water body. The body most likely collapsed into the water column and the head came to lie, inverted and partially buried, in sediment at the bottom of the water body. With the head in the proximity of the anoxic and phosphogenic layer, the processes of soft tissue preservation (linked to decay), dissolution of the surrounding bone and phosphatization could proceed. In an inverted position the upper (dorsal) portion of the brain was, in effect, ponded, because it lay within a bowl-shaped container formed by the occipital, parietal and lateral braincase wall bones. This container was lined by the periosteum and meninges – membranes that form tough sheaths surrounding the cortical portions of the brain.

The lower parts of the braincase floor and ventral brain tissues – overturned (Fig. 4) – decayed to form a stagnant (anoxic) pool of decomposing tissue and fluid enriched in phosphate and iron. The high-fidelity replacement of durable collagen proteins and blood vessels associated with the meninges on
the opposite, dorsal surface was facilitated by the very rapid growth of amorphous microcrystals of calcium phosphate (cf. Martill 2001). Autolithified bacteria were not observed associated with these microcrystals, suggesting that mineral replacement probably proceeded quickly. Phosphatization of the meningeal layers probably took place under conditions of low pH and low oxygen tension in fluids low in sulphate, but rich in ferrous ions (Allison & Pye 1994). Such fluids are typical of environments influenced by Fe$^{3+}$-reducing bacteria and with high concentrations of calcium, phosphate and ferric ions (released from the adjacent biological tissues, such as bone, brain tissue and blood cells; cf. Allison 2001). The local removal of ferrous ions by the formation of siderite may have further encouraged the rapid precipitation of calcium phosphate. Excess ferrous ions were also likely to have been incorporated into the phosphate phase in places, as suggested by our SEM-EDS analyses.

Deeper within the endocranial cavity, less refractory nervous tissues of the cerebellar cortex are presumed to have decayed away, or experienced much lower fidelity moulding via the precipitation of amorphous phosphate and carbonate microcrystals. The latter would probably have occurred under conditions that were relatively more alkaline, with more freely available bicarbonate ions. The siderite microcrystals in this region were typically rod-shaped and c. 30–50 μm long (Fig. 6b, Si); they were composed of nanocrystals of regular shape and size, perhaps reflecting some degree of bacterial mediation. Moulds and casts of heterotrophic bacteria are more usually coccoid (spheroidal) or bacillate (rod-shaped) in form, so the observed structures are unlikely to be bacterially derived artefacts (cf. Wilby & Briggs 1997; Liebig 2001; Martill 2001).

The ventral portion of the braincase (upper in terms of burial orientation) was evidently filled by episodic infiltrations of alluvial silt, carrying with it carbonized plant debris and broken bone. In places, phases of internal sediment deposition alternated with thin partings coated with siderite. There is a persistent, exposed suture line in iguanodontian dinosaurs between the bones that form the lateral walls and floor of the braincase (Norman 1977); this may have resulted in the floor of the braincase becoming detached from the remainder of the braincase as decay and dissolution proceeded, allowing sediment access to the floor of the endocranium. As the specimen was discovered ex situ, we cannot comment on the preservational processes that affected the rest of the body, or on the potential preservational fidelity they may or may not exhibit.

![Fig. 9. An idealized reconstruction of the head of an iguanodontian dinosaur showing the dorsal braincase and associated soft tissue features as evidenced by examination of the natural endocast from Bexhill. (a) Reconstruction of the head of an iguanodontian (OUMNH T.127) in the oblique anterior view showing the area of the skull roof that has been 'dissected' to the right. (b) Partly 'exploded' restoration of the underlying braincase and brain tissues identified following detailed examination of the structures preserved in the natural cranial endocast. Am, arachnoid mater (meninge); Av, arachnoid villus (protruding into a mid-line venous sinus); Bc, braincase bone (parietal); Bv, blood vessels; Co, collagenous sheath enclosing the brain structures and lining the bones of braincase (combined periosteal and meningeal sheets); Dm, dura mater (meninge); Es, epidural space; Gm, grey matter (brain cortex); Ids, intradural space (between the meninges); Sd, subdural space; Vs, sagittal venous sinus.](http://sp.lyellcollection.org/)

M. D. BRASIER ET AL.
How intelligent was the Bexhill iguanodontian?

Previous studies have suggested that dinosaur brains may have shared general similarities with those of modern crocodilians in having a thick outer packaging of dural tissue and extensive lymphatic and venous sinuses (Dendy 1909; Romer 1956; Ostrom 1961; Hopson 1979). It has been argued that the latter structures are very likely to obscure details of the brain tissue beneath, meaning that the topography of cranial endocasts of dinosaurs reflects (at best) an early ontogenetic stage in brain development (Romer 1956). As a consequence, dinosaur cranial endocasts typically reveal a generalized brain morphology, rather than (more desirable) fine details about the size, structure and therefore relative biological importance of the brain lobes and their bearing on probable behavioural repertoires (‘intelligence’) (Dendy 1909; Hopson 1979; Rogers 1999; Witmer et al. 2008).

Previous measurements of dinosaur endocast volumes estimate them to have contained as little as 50% of actual brain (Hopson 1979; Evans et al. 2009). Exceptions to this general assumption have been proposed: hadrosaurs (lambeosaurines, derived iguanodontian ornithopods) have been argued to have had brain tissues that filled rather more of the endocranial cavity (Evans 2005, cited in Evans et al. 2009), especially in the anterior and ventral regions of the endocasts where more detailed lobe-like structures (e.g. cerebral hemispheres and the hypothalamus) are discernible to the naked eye. More posterior regions of the endocranium in dinosaurs, adjacent to the cerebellum and medulla, are, by contrast, relatively poorly defined and may indeed have been overlain by extensive sinuses, as is the case in extant crocodilians (Ostrom 1961; Hopson 1979; Evans et al. 2009).

Comparison of the volume of dinosaur brains (judged from endocast volume), relative to the volume expected for a modern reptile of comparable body volume, gives what is known as the encephalization quotient (EQ) (Fig. 10). This allows for provisional estimates of intelligence (Hopson 1979; Evans 2005). In the case of iguanodontians, the EQ estimates range from 0.8 to 1.5 (Fig. 10; Hopson 1979). However, if the neural tissues in the cranial cavity of the Bexhill specimen were indeed tightly packed into the available space, then this dinosaur would have an EQ closer to 5.0, which would fall close to the base of the cited range of the largest brained dinosaurs, such as the bird-like avian theropods (Fig. 10). It has been argued on the basis of other anatomical attributes (e.g. Norman 1980, 1986, 2004) that iguanodontian dinosaurs had evolved a relatively complex range of locomotor skills and social behaviour patterns comparable with those suggested for their later Cretaceous descendants, the hadrosaurs (cf. Norman 2014, 2015). Some hadrosaurs (which are ornithopods and whose range of EQs overlap, or slightly exceed, those of the example discussed here) are known to have exhibited complex nesting and brooding behaviours (Horner & Makela 1979) and to have structures in their skulls indicating that sound production, using cranially located resonating chambers (Weishampel 1981), may have played an important role in their

Fig. 10. Encephalization quotients (EQ) estimated across a range of dinosaur clades/groupings. Extant crocodilians represent the reference marker (EQ = 1.0) for comparison with dinosaurs more generally. Ornithopods (such as *Iguanodon* and closely related taxa) exceed the EQ of extant crocodilians and overlap the values seen in basal (non-avian) theropods. Modified from Hopson (1979).
tissues in living species suggest that portions of adjacent tissues that invested the brain itself. Comparisons drawn with brain-associated soft membranous tissues lining the braincase walls and revealed hitherto unexpected details about the microscopy, as well as SEM and Iguanodon bernissartensis as younger (Barremian–Aptian), iguanodontians such as attributable to closely related, but geologically braincases and endocasts (both natural and artificial) ination of the specimen allowed comparison with sub-aerial burial of the braincase. Superficial exam- saur and during later phases of organic decay and layered siltstone, the latter having accumulated consists of a complex of siderite, collophane and known iguanodontian cranial cavities. The endocast phology of the anterior and dorsal portions of The endocast topography closely reflects the mor-
edocranium than previously predicted. The coun-

Conclusions

We have reported a remarkably preserved partial natural endocast of the cranial cavity of an iguano-
dontian ornithopod dinosaur, which, to our knowl-
dge, is the first described example of mineralized brain soft tissues from a fossilized terrestrial verte-
brate. This endocast was collected from an intertidal exposure of Valanginian (Early Cretaceous) age. The endocast topology closely reflects the mor-

ITICAL RESEARCH COUNCIL (grant number NE/ L011409/1). JBA acknowledges the ongoing support of the Department of Zoology and OUMNH, University of Oxford. RG is a Scientific Associate at the Natural History Museum, London, and a member of the Interdisciplinary Centre for Ancient Life. DW acknowledges funding from the Australian Research Council and the European Commission. This is CCFS paper 861. The authors would like to thank D. Martill and A. Iwaniuk for helpful suggestions during the review process.

JEHH found the specimen. MDB and DBN collaborated to develop this research project and co-ordinated the investigation. DW, AGL and RG conducted the analyses. DBN, MDB, JBA and AGL developed the manuscript and, fol-

D. Siveter and E. Howlett kindly facilitated imaging and study of ‘Iguanodon’ casts in the OUMNH collections. MDB acknowledges funds provided by V. and T. Brasier. DBN was supported by the Odell Trust Fund from Christ’s College Cambridge. AGL is supported by the Natural Environment Research Council (grant number NE/ L011409/1). JBA acknowledges the ongoing support of the Department of Zoology and OUMNH, University of Oxford. RG is a Scientific Associate at the Natural History Museum, London, and a member of the Interdisciplinary Centre for Ancient Life. DW acknowledges funding from the Australian Research Council and the European Commission. This is CCFS paper 861. The authors would like to thank D. Martill and A. Iwaniuk for helpful suggestions during the review process.
References

ALLEN, P. & WIMPLETON, W.A. 1991. Correlation of NW European Purbeck–Wealden (nonmarine Lower Cretaceous) as seen from the English type-areas. Cretaceous Research, 12, 511–526.

ALLISON, P.A. 2001. Decay. In: BRIGGS, D.E.G. & CROWTHER, P. (eds) Paleobiology II. Blackwell Science, Oxford, 237–255.

ALLISON, P.A. & BRIGGS, D.E. 1993. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology, 21, 527–530.

ALLISON, P.A. & PYE, K. 1994. Early diagenetic mineralization and fossil preservation in modern carbonate concretions. Palaios, 9, 561–575.

ANDREWS, C.W. 1897. Note on the cast of the brain of Iguanodon. Annals of the Magazine of Natural History, XIX, 585–591.

BATTEN, D.J. 2011. Wealden geology. In: BATTEN, D.J. (ed.) English Wealden Fossils. The Palaeontological Association, London, 7–14.

BECLES, S.H. 1854. On the Ornithiodichnites of the Wealden. Quarterly Journal of the Geological Society of London, 10, 456–464.

BRASIER, M.D., COTTON, L. & YENNEY, I. 2009. First report of amber with spider webs and microbial inclusions from the earliest Cretaceous (c. 140 Ma) of Hastings, Sussex. Journal of the Geological Society, London, 166, 989–997, http://doi.org/10.1144/0016-76492008-158

BRIGGS, D.E.G., KEAR, A.J., MARTILL, D.M. & WILBY, P.R. 1993. Phosphatization of soft-tissue in experiments and fossils. Journal of the Geological Society, London, 150, 1035–1038, http://doi.org/10.1144/gsjgs.150.6.1035

BROCHU, C.A. 2000. A digitally rendered endocast for Tyrannosaurus rex. Journal of Vertebrate Paleontology, 20, 1–6.

BUDD, G.E. & JENSEN, S. 2015. The origin of animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biological Reviews, first published online November 20, 2015, http://doi.org/10.1111/brv.12239

DENDY, A. 1909. The intracraniac vascular system of Sphenodon. Philosophical Transactions of the Royal Society of London B, 200, 403–426.

DENDY, A. 1910. On the structure, development and morphological interpretation of the pineal organs and adjacent parts of the brain of the tuatara (Sphenodon). Philosophical Transactions of the Royal Society of London B, 201, 227–331.

EDINGER, T. 1929. Die fossilen Gehirne. Ergebnisse der Anatomische Entwicklungsgeschichte, 28, 1–249.

EDINGER, T. 1941. The brain of Pterodactylus. American Journal of Science, 239, 665–682.

EVANS, D.C. 2005. New evidence on brain-endocranial cavity relationships in ornithischian dinosaurs. Acta Palaeontologica Polonica, 50, 617–622.

EVANS, D.C., RIDGELY, R. & WITMER, L.M. 2009. Endocranial anatomy of lambeosaurine hadrosaurids (Dinosauria; Ornithischia): a sensorineural perspective on cranial crest function. The Anatomical Record, 292, 1315–1337.

GARWOOD, R. & DUNLOP, J. 2014. The walking dead: Blender as a tool for paleontologists with a case study on extinct arachnids. Journal of Paleontology, 88, 735–746.

GILES, S. & FRIEDMAN, M. 2014. Virtual reconstruction of endocast anatomy in early ray-finned fishes (Ossteichthyes, Actinopterygii). Journal of Paleontology, 88, 636–651.

GUGGISBERG, C.A.W. 1972. Crocodiles: Their Natural History, Folklore and Conservation. David & Charles, Newton Abbott.

HOPSON, J.A. 1979. Paleoneurology. In: CANS, C., NORTH-CUTT, R.G. & ULINKSI, P. (eds) Biology of the Reptilia (Neurology A). Academic Press, New York, 9, 39–146.

HORNER, J.R. & MAKELA, R. 1979. Nest of juveniles provides evidence of family structure among dinosaurs. Nature, 282, 256–257.

HULKE, J.W. 1871. Note on a large reptilian skull from Brook, Isle of Wight, probably dinosaurian and referable to the genus Iguanodon. Quarterly Journal of the Geological Society of London, XXVII, 199–206, http://doi.org/10.1144/GSL.JGS.1871.027.01-02.27

JERSON, H.J. 1970. Brain evolution: new light on old principles. Science, 170, 1224–1225.

JERSON, H.J. 1971. More on why birds and mammals have big brains. The American Naturalist, 105, 185–189.

JERSON, H.J. 1973. Evolution of the Brain and Intelligence. Academic Press, New York.

KILLER, H.E., LAENG, H.R., FLAMMER, J. & GROS CURTH, P. 2003. Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. British Journal of Ophthalmology, 87, 777–791.

KROCHKIN, E.N., DYKE, G.J., SAVELIEV, S.V., PERVUSHOV, E.M. & POPOV, E.V. 2007. A fossil brain from the Cretaceous of European Russia and avian sensory evolution. Biology Letters, 3, 309–313.

LAKE, R.D. & SHEPHARD-THORN, E.R. 1987. Geology of the Country Around Hastings and Dungeness. British Geological Survey, Sheet Memoirs, 320/321. HMSO, London.

LAUTENSCHLAGER, S., RAYFIELD, E.J., ALTANGEREL, P., ZANNO, L.E. & WITMER, L.M. 2012. The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. Plos One, e52289.

LIEBIG, K. 2001. Bacteria. In: BRIGGS, D.E.G. & CROWTHER, P. (eds) Paleobiology II. Blackwell Science, Oxford, 253–255.

LIMAYE, A. 2012. Drishti: a volume exploration and presentation tool. In: STOCK, S.R. (ed.) Developments in X-Ray Tomography VIII. Proceedings, SPIE Conference, 8506. International Society for Optics and Photonics, San Diego, CA, 85060X–85060X.

MA, X., HOU, X., EDGEcombe, G.D. & STRAUFSEL, N.J. 2012. Complex brain and optic lobes in an early Cambrian arthropod. Nature, 490, 258–261.

MA, X., EDGEcombe, G.D., HOU, X., GORAL, T. & STRAUFSEL, N.J. 2015. Preservation pathways of corresponding brains of a Cambrian Euarthropod. Current Biology, 25, 2969–2975, http://doi.org/10.1016/j.cub.2015.09.063

MANTELL, G.A. 1825. Notice on the Iguanodon, a newly discovered fossil reptile from the sandstone of Tilgate Forest, in Sussex. Philosophical Transactions of the Royal Society of London, CXV, 179–186.
Mantell, G.A. 1827. Illustrations to the Geology of Sussex: With Figures and Descriptions of the Fossil of Tilgate Forest. Lupton Relfe, London.

Marek, R.D., Moon, B.C., Williams, M. & Benton, M.J. 2015. The skull and endocranium of a Lower Jurassic ichthyosaur based on digital reconstructions. Palaeontology, 58, 723–742.

Martill, D.M. 2001. The Santana Formation. In: Briggs, D.E.G. & Crowther, P. (eds) Paleobiology II. Blackwell Science, Oxford, 351–355.

Norman, D.B. 1977. On the anatomy of the ornithischian dinosaur Iguanodon. PhD thesis, King's College London.

Norman, D.B. 1980. On the ornithischian dinosaur Iguanodon bernissartensis from Belgium. Mémoires de l’Institut Royal des Sciences Naturelles de Belgique, 178, 1–105.

Norman, D.B. 1986. On the anatomy of Iguanodon atherfieldensis (Ornithischia: Ornithopoda). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, 56, 281–372.

Norman, D.B. 2004. Basal Iguanodontia. In: Weishampel, D.B., Dodson, P. & Osmolska, H. (eds) The Dinosauria. University of California Press, Berkeley, CA, 413–437.

Norman, D.B. 2010. A taxonomy of iguanodontians (Dinosauria: Ornithopoda) from the lower Wealden Group (Valanginian) of southern England. Zootaxa, 2489, 47–66.

Norman, D.B. 2011. On the osteology of the lower Wealden Group (Valanginian) ornithopod Barilium dawsoni (Iguanodontia: Styracosterna). Special Papers in Palaeontology, 86, 165–194.

Norman, D.B. 2014. Iguanodonts from the Wealden of England: do they contribute to the discussion regarding hadrosaurs origins? In: Evans, D. & Eberth, D. (eds) Hadrosaurs. Indiana University Press, Bloomington, IN, 10–43.

Norman, D.B. 2015. On the history, osteology and systematic position of the Wealden (Hastings Group) dinosaur Hypselosaurus fittoni (Iguanodontia: Styracosterna). Zoological Journal of the Linnean Society of London, 173, 92–189.

Norman, D.B. & Weishampel, D.B. 1990. Iguanodontia and related ornithopods. In: Weishampel, D.B., Dodson, P. & Osmolska, H. (eds) The Dinosauria. University of California Press, Berkeley, CA, 510–533.

Ortega-Hernández, J. 2015. Homology of head sclerites in Burgess Shale Euarthropods. Current Biology, 25, 1625–1631.

Ostrom, J.H. 1961. Cranial anatomy of the hadrosaurian dinosaurs of North America. Bulletin of the American Museum of Natural History, 122, 35–196.

Owen, R. 1842. Report on British Fossil Reptiles. Part ii. Report of the British Association for the Advancement of Science, 1841.

Pradel, A., Langer, M., Maisey, J.G., Gephyro-Kuyama, D., Cloetens, P., Janvier, P. & Tafforeau, P. 2009. Skull and brain of a 300-million-year-old chimae­roid fish revealed by synchrotron holotomography. Proceedings of the National Academy of Sciences of the United States of America, 106, 5224–2228.

Radley, J.D. 2006a. A Wealden guide I: the Weald Sub-basin. Geology Today, 22, 109–118.

Radley, J.D. 2006b. A Wealden guide II: the Wessex Sub-basin. Geology Today, 22, 187–193.

Reina, M.A., Casola, O.D.L., Lopez, A., Andres, J.A., Mora, M. & Fernandez, A. 2002. The origins of the spinal subdural space: ultrastructural findings. Anesthesia and Analgesia, 94, 991–995.

Rogers, S.W. 1999. Allosaurus, crocodiles and birds: evolutionary clues from spiral computed tomography of an endocast. Anatomical Record, 257, 162–173.

Romer, A.S. 1956. Osteology of the Reptiles. University of Chicago Press, Chicago.

Runza, M., Pietrabissa, R., Mantero, S., Albani, A., Quaglini, V. & Contro, R. 1999. Limbar dura mater biomechanics; experimental characterization and scanning electron microscopy observations. Anesthesia and Analgesia, 88, 1317–1321.

Sutton, M.D., Garwood, R.J., Siveter, D.J. & Siveter, D.J. 2012. SPIERS and VAXML; a software toolkit for tomographic visualisation and a format for virtual specimen interchange. Palaeontology Electronica, 15, 1–14.

Tanaka, G., Hou, X., Ma, X., Edgecombe, G.D. & Strausfeld, N.J. 2013. Cephalic neural ground pattern in a Cambrian great appendage arthropod. Nature, 502, 364–367.

Trinajstic, K., Marshall, C., Long, J. & Bifield, K. 2007. Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biology Letters, 3, 197–200.

Weishampel, D.B. 1981. Acoustic analyses of potential vocalization in lambeosaurine dinosaurs (Reptilia: Ornithischia). Paleobiology, 7, 252–261.

Wilby, P.R. & Briggs, D.E.G. 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios, 30 (Suppl. 1), 493–502.

Wilson, J.A. 1971. Early Tertiary vertebrate faunas, Vieja Group. Trans-Pecos Texas: Agriochoeridae and Merycoïdontidae. Texas Memorial Museum Bulletin, 18, 1–83.

Witmer, L.M. & Ridgely, R.C. 2009. New insights into the brain, braincase, and ear region of tyran­nosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior. The Anatomical Record, 292, 1266–1296.

Witmer, L.M., Ridgely, R.C., Dufau, D.L. & Simones, M.C. 2008. Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles and nonavian dinosaurs. In: Endo, H. & Frey, R. (eds) Anatomical Imaging: Towards a New Morphology. Springer, Berlin, 67–97.