Spatial Patterns of Ca2+ Signals Define Intracellular Distribution of a Signaling by Ca2+/Calmodulin-dependent Protein Kinase II*

Naouyuki Inagaki‡‡, Hidemasa Goto‡, Midori Ogawara, Yoshimi Nishi‡, Susumu Ando**, and Masaki Inagaki‡

From the §Laboratory of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464, Japan, Departments of ¶Neurophysiology and **Membrane Biochemistry, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173, Japan, and ¶Department of Pediatrics, Mie University School of Medicine, Edobashi, Tsu 514 Japan

Ca2+ plays a central role in cell signaling, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+ actions. The spatial distribution of intracellular Ca2+ signaling is not homogenous, rather it is dynamically organized, and it has been speculated that spatial patterns of Ca2+ signals may function as a form of cellular information transmitted to downstream molecules. To address this issue, we studied the intracellular distributions of the signalings by CaMKII and Ca2+ in the same astrocytes. The former was visualized by monitoring site-specific phosphorylation of a cytoskeletal protein vimentin, using site- and phosphorylation-specific antibodies, while the latter was examined by fura-2-based Ca2+ microscopy. Local Ca2+ signals induced vimentin phosphorylation by CaMKII localized in the same area. On the other hand, Ca2+ waves in astrocytes induced global phosphorylation of vimentin by CaMKII. A small population of vimentin filaments highly phosphorylated by CaMKII underwent structural alteration into short filaments at electron microscopic level. These results indicate that CaMKII transmits spatial patterns of Ca2+ signals to vimentin as cellular information. The possibility is discussed that spatial patterns of vimentin phosphorylation may be important for intracellular organization of vimentin filament networks.

Cell signaling is the fundamental strategy by which cells respond to extracellular stimuli. Intracellular distribution of cell signaling is considered to be an important factor affecting the manner in which cells respond to extracellular stimuli with spatial specificity (1, 2). Although little is known of the spatial aspect of cell signaling, that of Ca2+ signaling visualized by Ca2+ microscopy is presently the best characterized example. Numbers of reports have shown that intracellular Ca2+ signals occur locally and globally (3–6). The intracellular distribution of Ca2+ signaling in various types of cells was defined by the amplitude and direction of extracellular stimuli (7–10). Therefore, it has been speculated that spatial patterns of Ca2+ signals might be transmitted, as a form of cellular information, by a downstream molecule that induces Ca2+-dependent cellular responses (1–2, 6–10).

To address this issue, we visualized site-specific phosphorylation of vimentin by CaMKII and Ca2+ signaling in the same astrocytes. CaMKII is located downstream of Ca2+ signaling and is thought to regulate various cellular responses (11, 12). Vimentin is an intermediate filament protein distributed widely in the cytoplasm (13, 14) and is phosphorylated by several protein kinases, including CaMKII, in vivo (15, 16). Therefore, vimentin can serve as a substrate for the examination of the cytoplasmic distribution of protein kinase activities (17, 18). Here we report that vimentin phosphorylation by CaMKII was induced locally and globally by Ca2+ signaling. The intracellular area of the phosphorylation was precisely defined by that of Ca2+ signaling.

EXPERIMENTAL PROCEDURES

Preparation of Antibodies, Peptides, and Proteins—Production of monoclonal antibodies YT33, TM50, 4A4, and M082 was reported elsewhere (19–21). Vimentin peptides PV6 (Cys-Ser-Thr-Arg-Ser-Val-physophser-Ser-Ser-Ser-Tyr-Arg), V6 (Cys-Ser-Thr-Arg-Ser-Val-Ser-Ser-Ser-Tyr-Arg), PV38 (Cys-Ser-Thr-Arg-Thr-Tyr-physophser-Gly-Tyr-Ser-Ala-Leu), and V38 (Cys-Ser-Thr-Arg-Thr-Tyr-Ser-Leu-Gly-Ser-Ala-Leu) were synthesized as described previously (21). A monoclonal antibody against PV6 (M06) and a polyclonal antibody against PV38 (GK38) were produced following the methods described previously (21, 22). Then the specificity of M06 and GK38 was checked by enzyme-linked immunosorbent assay (21). M06 bound to PV6 but not to the unphosphorylated peptide V6, while GK38 reacted with PV38 but not with the unphosphorylated form V38. Production of recombinant vimentin and vimentin phosphorylated by CaMKII was described previously (19). The affinity-purified antibody specific for both 50- and 60-kDa subunits of CaMKII (23) was provided by Drs. K. Fujunaga and E. Miyamoto (Kumamoto University).

Cell Preparation and Drug Application—Primary cultured astrocytes (type 1 astrocytes) were prepared from the cerebral cortices of newborn rats as described previously (19). Two days before the experiments, astrocytes were subcultured on collagen (type 1, Sigma)-coated glass coverslips attached to silicon walls (Heraeus Flexiperm Disc) for the measurement of intracellular free Ca2+ concentration ([Ca2+]). Then they were differentiated into process-bearing astrocytes by incubation with 250 \(\mu \)M dibutyl cAMP in serum-free Eagle’s minimal essential medium. Ionomycin or prostaglandin F\textsubscript{2}a (PGF\textsubscript{2a}) dissolved in HEPES-buffered Krebs-Ringer solution (containing the following (in mM): NaCl, 115; KCl, 5.4; CaCl\textsubscript{2}, 2; MgCl\textsubscript{2}, 0.8; glucose, 13.8; Hepes, 20 (pH 7.4)) were bath applied, or locally applied using a micropipette (Sterile Femtotips, Eppendorf) equipped with Transjector 5246 (Eppendorf) by pressure (30 kPa). The flow speed of the locally applied solution was 0.05–0.1 \(\mu \)L/h.

*Ca2+, Measurements—The [Ca2+] of cultured astrocytes was measured as described elsewhere (8, 24). Briefly, the cells were incubated

© 1997 by The American Society for Biochemistry and Molecular Biology, Inc.

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 272, No. 40, Issue of October 3, pp. 25195–25199, 1997
Printed in U.S.A.
with 10 μM fura-2/AM in the Hepes-buffered Krebs-Ringer solution for 1 h and washed with the solution for 30 min. Cells on a coverslip were placed on the stage of an Olympus IMT-2 inverted microscope. Fluorescence images were obtained by a Hamamatsu CCD camera C2400 and stored in a digital image processor Argus-50. [Ca2+] was calculated from the ratio of the fluorescence intensities obtained with excitation at 340 nm and 380 nm on a pixel basis.

Immunocytochemistry—Cells were fixed with 3% formaldehyde in phosphate-buffered saline (PBS) for 10 min, followed by treatment with −20 °C methanol for 10 min. They were incubated with MO6 (3 μg/ml), YT33 (3 μg/ml), GK38 (14 μg/ml), TM50 (3 μg/ml), 4A4 (1 μg/ml), or MO82 (0.2 μg/ml) diluted in PBS for 2 h, followed by incubation with fluorescein isothiocyanate-conjugated anti-mouse antibodies (BioSource) diluted 1:100 by PBS for 1 h. Then the samples were examined with a fluorescent microscope (Olympus). For double immunostaining with MO82 and anti-vimentin antibody, fixed cells were incubated with MO82 (0.2 μg/ml) and goat anti-vimentin antibody (25) diluted 1:500 in PBS for 2 h. MO82 immunoreactivity was visualized by incubation with biotinylated anti-mouse IgG (Vector Laboratories Inc.) diluted 1:300 in PBS for 1 h, followed by the incubation with streptavidin-Texas Red (Amersham Corp.) diluted 1:300 in PBS for 1 h. On the other hand, vimentin immunoreactivity was visualized by incubation with fluorescein isothiocyanate-conjugated anti-goat antibodies (BioSource) diluted 1:300 in PBS for 1 h. Then the double-stained samples were examined by a confocal microscope (Olympus, LSM-GB200). Immunofluorescent localization of CaMKII in astrocytes was done using an affinity-purified antibody specific for both 50- and 60-kDa subunits of CaMKII (23) as described previously (28).

Western Blotting—Proteins or lysate of 1.8 × 105 astrocytes were loaded in the lanes, resolved by SDS-polyacrylamide gel electrophoresis, and transferred onto a polyvinylidene difluoride membrane (Immobilon-P, Millipore). Then the blots were incubated with 2 ng/ml MO82 or 10 ng/ml GK38 in TBS-T (20 mM Tris, pH 7.6, 137 mM NaCl, 0.1% Tween 20) overnight. Immunoreactive bands were visualized by horse-radish peroxidase-conjugated antibodies (Amersham) and the ECL Western blotting detection system (Amersham).

Electron Microscopy—Immunogold localization using MO82 was done as described previously (19). For standard electron microscopy, cells were fixed in 2% glutaraldehyde and 1 mM MgCl\textsubscript{2} in 0.1 M cacodylate buffer for 30 min followed by further fixation in 0.5% tannic acid in the same buffer at room temperature for 5 min. They were fixed again with 1% glutaraldehyde and 0.5% tannic acid in 0.1 M cacodylate buffer (pH 7.4) for 30 min, followed by postfixation with 1% OsO\textsubscript{4} in the same buffer on ice for 1 h. The cells were dehydrated with ethanol and embedded in Epon 812. Thin sections were mounted on grids, doubly stained with uranyl acetate and lead citrate, and observed under an electron microscope (JEM1200EX).

RESULTS AND DISCUSSION

Visualization of a Signaling by CaMKII—For visualization of CaMKII signaling, we monitored the site-specific phosphorylation of the cytoskeletal protein vimentin. Ser6, Ser38, Ser50, and Ser55 of vimentin are identified as the two major in vitro phosphorylation sites of vimentin by CaMKII, while Ser2, Ser33, Ser29, and Ser38 are phosphorylated not by CaMKII but by other kinases (15) (Table I). We recently developed monoclonal antibodies YT33, TM50, 4A4, and MO82 that recognize the site-specific phosphorylation of vimentin at Ser33, Ser29, Ser55, and Ser50 respectively (19–21, 27) (Table I). In addition, we produced a monoclonal antibody MO6 and a polyclonal antibody GK38 that recognize the phosphorylation of vimentin at Ser6 and Ser38 respectively (Table I), as described under “Experimental Procedures.” Consistent with the in vitro CaMKII phos-

TABLE I

Site	CaMKII	A kinase	C kinase	Cdc2 kinase	Antibody
Ser6	+	+	+	-	MO6
Ser38	+	+	-	-	GK38
Ser50	+	+	-	-	TM50
Ser55	+	+	-	-	4A4
Ser58	+	+	-	-	MO82

Fig. 1. Visualization of CaMKII signaling by monitoring the site-specific phosphorylation of vimentin. A, Western blot analysis of the reactivity of antibodies GK38 and MO82. Unphosphorylated vimentin (a, b, and d) and vimentin phosphorylated at 0.7 mol of phosphate/mol of protein by CaMKII (c and e) were resolved by SDS-polyacrylamide gel electrophoresis and stained with Coomassie Brilliant Blue (a) or immunoblotted with GK38 (b and c) or MO82 (d and e). B, specificity of GK38 and MO82 determined by inhibition assay. Vimentin phosphorylated by CaMKII was immunoblotted with GK38 (a–d) or MO82 (e–h) preincubated with buffer alone (a and e), or with 50 μg/ml V38 (b), V82 (f), PV38 (c and h), or PV82 (d and g). The arrowheads in A and B indicate sites of vimentin migration. C–J, fluorescent photomicrographs show the site-specific phosphorylation of vimentin in astrocytes stimulated with buffer alone (C and E) or 1 μM ionomycin for 10 min (D and F–J). After stimulation, the cells were immunostained with GK38 (C and D), MO82 (E and F), MO6 (G), YT33 (H), TM50 (I), or 4A4 (J). K and L, fluorescent photomicrographs at lower (K) and higher (L) magnifications show CaMKII immunoreactivity in astrocytes. Bars, 80 μm.
Cultured astrocytes differentiated by dibutyryl cAMP were used to detect CaMKII activity. Previous studies have demonstrated the existence of CaMKII in astrocytes (26, 28), and CaMKII activated by Ca\(^{2+}\) was shown to phosphorylate vimentin in these cells (19, 26). Furthermore, they display local and global Ca\(^{2+}\) signaling in response to neurotransmitters (8, 29).

In vivo phosphorylation of vimentin at Ser\(^82\), Ser\(^38\), Ser\(^50\), Ser\(^55\), and Ser\(^82\) were immunocytochemically visualized using antibodies MO6, YT33, GK38, TM50, 4A4 and MO82, respectively. When [Ca\(^{2+}\)] was elevated by incubation of the cells with 1 \(\mu\)M ionomycin for 10 min, the phosphorylation of vimentin at Ser\(^38\) and Ser\(^82\) markedly increased (Fig. 1, C–F) but those of Ser\(^6\), Ser\(^33\), Ser\(^50\), and Ser\(^55\) did not (Fig. 1, G–J). Elevations in the levels of phosphorylation at Ser\(^38\) and Ser\(^82\) were further confirmed by Western blotting analysis using GK38 and MO82 (Fig. 2). Thus, the sites of vimentin phosphorylated by [Ca\(^{2+}\)] elevation completely overlapped with the *in vitro* phosphorylation sites by CaMKII (Table I). These results indicate that the phosphorylation of vimentin at Ser\(^82\) and Ser\(^38\) detected the vimentin phosphorylation by CaMKII.

We also located CaMKII in differentiated astrocytes. The affinity-purified antibody specific for 50- and 60-kDa subunits of CaMKII (23) immunostained astrocytes as described previously (26). Both the cell bodies and processes showed diffuse immunoreactivity, indicating that CaMKII is distributed throughout the cytoplasm of differentiated astrocytes (Fig. 1, K and L).

Local and Global Signaling of CaMKII Induced by Ca\(^{2+}\) Signals—Ser\(^82\) is at present the only known phosphorylation site specific to CaMKII (Table I) and the Ca\(^{2+}\)-induced vimentin phosphorylation at Ser\(^82\) was inhibited by a specific inhibitor of CaMKII, KN-62 (19). Therefore in the following studies, we monitored the phosphorylation of Ser\(^82\) to visualize CaMKII. Ca\(^{2+}\) signaling in astrocytes was induced by PGF\(_2\alpha\); PGF\(_2\alpha\) binds to FP-receptors on astrocytes and induces phosphatidyliinositol 4,5-bisphosphate hydrolysis and intracellular Ca\(^{2+}\) mobilization (30). [Ca\(^{2+}\)], of astrocytes was measured using fura-2-based digital imaging Ca\(^{2+}\) microscopy, then they were fixed and immunostained with MO82.

When 10 \(\mu\)M PGF\(_2\alpha\) was locally applied using a micropipette for 15 s near the end of a process of an astrocyte, [Ca\(^{2+}\)], was elevated from the basal level (about 100 nM) to about 600 nM in the process but not in the cell body or in other processes (Fig. 3A, a and b). [Ca\(^{2+}\)], then decreased to the basal level within 4 min (Fig. 3A, c). The [Ca\(^{2+}\)], increase did not appreciably spread beyond the boundary seen in Fig. 3A, b, throughout the period. Activation of CaMKII monitored by the phosphorylation at Ser\(^82\) localized only in the process where [Ca\(^{2+}\)], had been elevated (Fig. 3A, d, arrowheads). We also observed local CaMKII activations that were similarly defined by the area of Ca\(^{2+}\) signals in five other experiments. Propagation of intracellular Ca\(^{2+}\) waves has been observed in astrocytes (8, 29). Consistent with reports that Ca\(^{2+}\) waves often initiate when cells receive stimuli strong enough to induce sustained [Ca\(^{2+}\)], elevation in a localized area (8, 31), sustained PGF\(_2\alpha\)-induced [Ca\(^{2+}\)], elevation propagated from a process to the cell body and then to the rest of the cell in the form of waves (Fig. 3B, a–c). In this case, vimentin phosphorylation by CaMKII was evoked throughout the cell (Fig. 3B, d). The data above show a good spatial correlation between Ca\(^{2+}\) signaling and vimentin phosphorylation by CaMKII. Next, astrocytes were double-immunostained by MO82 and an anti-vimentin antibody, then examined by confocal microscopy. Vimentin phosphorylation by CaMKII occurred locally and globally, defined by the area of Ca\(^{2+}\) signaling (Fig. 3C, a, b, d, and e). On the other hand, vimentin was localized diffusely throughout the cells (Fig. 3C, c and f). Furthermore, CaMKII immunoreactivity was observed diffusely throughout the cells (Fig. 1, K and L). These data demonstrate that local and global phosphorylation of vimentin by CaMKII was not due to local and global intracellular distribution of vimentin or CaMKII, thereby indicating that the spatial patterns of Ca\(^{2+}\) signaling were indeed transmitted by CaMKII to vimentin.

Electron Microscopic Analysis of the Vimentin Filaments—We noted here that a small population of vimentin filaments in the processes of ionomycin- or PGF\(_2\alpha\)-stimulated astrocytes underwent structural alteration into partial granular aggregates, but not in unstimulated cells. We counted the number of the gold particles per micron of filament. Similar data were obtained in three other samples. These data suggest that the filament reorganization occurs when the level of phosphorylation by CaMKII is very high. It is unclear whether the structural alteration observed here is a typical change of filament structure under control of cell signaling. Because the population of the fragmented filaments was very low, more minute and coordinated alteration of the filament dynamics not detectable by microscopy may predominate. However, these findings are consistent...
with in vitro data that vimentin filaments disassembled when phosphorylated by CaMKII (15). The possibility that organization of intracellular vimentin filament networks is regulated by local and global phosphorylation by CaMKII would need to be considered.

In conclusion, we visualized CaMKII signaling by monitoring the site-specific phosphorylation of vimentin and showed that the spatial patterns of Ca\(^{2+}\) signaling defined the intracellular distribution of vimentin phosphorylated by CaMKII. These results suggest that the spatial patterns of Ca\(^{2+}\) signaling were transmitted via CaMKII to vimentin, as a type of spatial information. Although the population was very low, the structural change of vimentin filaments observed here raises the possibility that spatial signaling from Ca\(^{2+}\) via CaMKII to vimentin may regulate the dynamics of vimentin filaments in astrocytes.

FIG. 3. Local and global signaling of CaMKII defined by the area of Ca\(^{2+}\) signals. A, local Ca\(^{2+}\) signaling evokes localized signaling of CaMKII. a–c, [Ca\(^{2+}\)]\(_i\), in an astrocyte before (a), and at 30 s (b) and 4 min (c) after the local application of 10 \(\mu M\) PGF\(_{2\alpha}\) for 15 s. The arrow in a indicates the site of PGF\(_{2\alpha}\) application. The arrowheads in b indicate the process that showed Ca\(^{2+}\) signaling, d, vimentin phosphorylation at Ser\(^{82}\) by CaMKII in the same astrocyte in a–c. The photograph is magnified to present the area indicated by a rectangle in b. The cell was fixed at 5 min after the [Ca\(^{2+}\)]\(_i\) measurement in c and immunostained by MO82. The arrowheads indicate the process that showed CaMKII signaling. Bar, 20 \(\mu M\). B, Ca\(^{2+}\) wave evokes global signaling of CaMKII. a–c, [Ca\(^{2+}\)]\(_i\), in an astrocyte before (a), and at 30 s (b) and 90 s (c) after the local application of 10 \(\mu M\) PGF\(_{2\alpha}\) for 15 s. The arrowhead in a indicates the site of PGF\(_{2\alpha}\) application. d, vimentin phosphorylation at Ser\(^{82}\) by CaMKII in the same astrocyte in a–c. The cell was fixed at 5 min after the [Ca\(^{2+}\)]\(_i\) measurement in c and stained with MO82.

FIG. 4. Electron microscopic analysis of vimentin filaments in partial granular aggregates. A and B, standard electron micrographs of vimentin filaments in a glial process usually observed (A) and those in granular aggregates (B). C–E, immunogold localization of the MO82 epitope in a glial process containing an aggregate of vimentin filaments (C) and photographs at higher magnification (D and E) of the areas in C. Arrows in D indicate filaments running in random directions. Note that the density of the gold particles is higher on the fiber aggregate (D) compared with those on the filaments in the flanking region (E). The asterisks in D and E indicate areas corresponding to those indicated by the asterisks in C. Astrocytes were stimulated by 1 \(\mu M\) ionomycin for 5 min, and electron micrographs were taken as described under “Experimental Procedures.” Bars, 500 nm.

In conclusion, we visualized CaMKII signaling by monitoring the site-specific phosphorylation of vimentin and showed that the spatial patterns of Ca\(^{2+}\) signaling defined the intracellular distribution of vimentin phosphorylated by CaMKII. These results suggest that the spatial patterns of Ca\(^{2+}\) signaling were transmitted via CaMKII to vimentin, as a type of spatial information. Although the population was very low, the structural change of vimentin filaments observed here raises the possibility that spatial signaling from Ca\(^{2+}\) via CaMKII to vimentin may regulate the dynamics of vimentin filaments in astrocytes.
with spatial specificity. CaMKII phosphorylates a wide range of cellular proteins as well as vimentin (11, 12), therefore a population of CaMKII activity that could not be monitored by phosphorylation of vimentin might exist. Spatial signaling from Ca$^{2+}$ via CaMKII to other substrates needs to be addressed in the future studies.

Acknowledgments—We thank Drs. K. Fukunaga and E. Miyamoto (Kumamoto University) for kindly providing anti-CaMKII antibodies, Dr. H. Kosako (our institute), Dr. B. Berninger (University of California, San Diego), Drs. K. Kanda, H. Asou, K. Watanabe, and T. Shirasawa (Tokyo Metropolitan Institute of Gerontology), and Dr. Y. Hori (Kyorin University) for advice regarding the experiments. We are also grateful to Dr. H. Yamamoto (Kumamoto University) and M. Ohara for critique of the manuscript, and M. Nishizawa, S. Kobayashi, M. Terashima, and K. Matsuzawa for technical support.

REFERENCES
1. Gilbert, S. H., Perry, K., and Fay, F. S. (1994) J. Cell Biol. 127, 489–507
2. Zheng, J. Q., Felder, M., Connor, J. A., and Poo, M. (1994) Nature 368, 140–144
3. Tank, D. W., Sugimori, M., Connor, J. A., and Linas, R. R. (1988) Science 242, 773–777
4. Tsien, R. W., and Tsien, R. Y. (1990) Annu. Rev. Cell Biol. 6, 715–760
5. Berridge, M. J. (1993) Nature 361, 315–325
6. Augustine, G. J., and Neher, E. (1992) Curr. Opin. Neurobiol. 2, 302–307
7. Poenie, M., Tsien, R. Y., and Schmitt-Veehulst, A.-M. (1987) EMBO J. 6, 2223–2232
8. Inagaki, N., Fukui, H., Ito, S., Yamatodani, A., and Wada, H. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 4215–4219
9. Muller, W., and Connor, J. A. (1991) Nature 354, 73–76
10. Ghosh, A., and Greenberg, M. E. (1995) Science 268, 239–247
11. Colbran, R. J., Schworer, C. M., Hashimoto, Y., Feng, Y.-L., Rich, D. P., Smith, M. K., and Soderling, T. R. (1989) Biochem. J. 258, 313–325
12. Hanson, P. I., and Schulman, H. (1992) Annu. Rev. Biochem. 61, 559–601
13. Frank, W. W., Schmid, E., Schiller, D. L., Winter, S., Jarasch, E. D., Moll, R., Denk, H., Jackson, B. W., and Illmensee, K. (1992) Cold Spring Harbor Symp. Quant. Biol. 46, 431–453
14. Steinert, P. M., and Roop, D. R. (1988) Annu. Rev. Biochem. 57, 593–625
15. Inagaki, M., Matsuoka, Y., Tsujimura, K., Ando, S., Tokui, T., Takahashi, T., and Inagaki, M. (1996) BioEssays 18, 481–487
16. Fuchs, E., and Weber, K. (1994) Annu. Rev. Biochem. 63, 345–382
17. Inagaki, N., Ito, M., Nakano, T., and Inagaki, M. (1994) Trends Biochem. Sci. 19, 448–452
18. Takai, Y., Inagaki, N., Tsutsumi, O., and Inagaki, M. (1996) Semin. Cell Dev. Biol. 7, 741–749
19. Ogawara, M., Inagaki, N., Tsujimura, K., Takai, Y., Sekimoto, M., Ha, M. H., Imajoh-Ohmi, S., Hirai, S.-I., Ohno, S., Sugitaya, H., Yamanishi, T., and Inagaki, M. (1995) J. Cell Biol. 131, 1055–1066
20. Takai, Y., Ogawara, M., Tomono, Y., Mori, C., Imajoh-Ohmi, S., Tsutsumi, O., Taketani, Y., and Inagaki, M. (1996) J. Cell Biol. 133, 141–150
21. Tsujimura, K., Ogawara, M., Takeuchi, Y., Imajoh-Ohmi, S., Ha, M.-H., and Inagaki, M. (1994) J. Biol. Chem. 269, 31097–31106
22. Nishizawa, K., Yano, T., Shihata, M., Ando, S., Saga, S., Takahashi, T., and Inagaki, M. (1991) J. Biol. Chem. 266, 3074–3079
23. Fukunaga, K., Goto, S., and Miyamoto, E. (1988) J. Neurochem. 51, 1070–1078
24. Tsien, R. Y., and Poenie, M. (1986) Trends Biochem. Sci. 11, 450–455
25. Takemura, K., Hirayama, R., Hirokawa, K., Inagaki, M., Tsujimura, K., Esaki, Y., and Mishima, Y. (1994) Pathobiology 62, 149–154
26. Yan, S., Fukunaga, K., Ushio, Y., and Miyamoto, E. (1994) J. Biol. Chem. 269, 5426–5439
27. Inagaki, M., Inagaki, N., Takahashi, T., and Takai, Y. (1997) J. Biochem. (Tokyo) 121, 407–417
28. Schulz, W. K., Baitinger, C., Schulman, H., and Kelly, P. T. (1988) J. Neurosci. 8, 1039–1051
29. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S., and Smith, S. J. (1990) Science 247, 470–473
30. Inagaki, N., and Wada, H. (1994) Glia 11, 102–109
31. Thorn, P., Lawrie, A. M., Smith, P. M., Gallacher, D. V., and Petersen, O. H. (1993) Cell 74, 661–668
32. Pechak, S., White, R., Neal, J., Subrahmanyan, L., and Kalnins, V. I. (1983) Dev. Brain Res. 7, 303–315