MITOGENOME ANNOUNCEMENT

Complete mitochondrial genomes of two marine monogonont rotifer Brachionus manjavacas strains

Min-Sub Kim*#, Young Hwan Lee*#, Duck-Hyun Kim*, Hee-Jin Kimb, Un-Ki Hwang*, Russell Shielc, Atsushi Hagiwarad, and Jae-Seong Leeda

aDepartment of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, South Korea; bInstitute of Integrated Science and Technology, Nagasaki University, Nagasaki, Japan; cMarine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea; dSchool of Biological Sciences, University of Adelaide, Adelaide, Australia; eOrganization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan

ABSTRACT
The complete mitochondrial genomes of Brachionus manjavacas German strain were 10,721 bp (mitochondrial DNA I) and 12,274 bp (mitochondrial DNA II) in size, while the complete mitochondrial genomes of B. manjavacas Australian strain were 10,889 bp (mitochondrial DNA I) and 12,443 bp (mitochondrial DNA II) in size. Of 12 protein-coding genes (PCGs), 99.6% of amino acid sequences were identical between the two strains. Of 12 PCGs of both B. manjavacas strains, three genes (ND1, ATP6, and ND5) had incomplete stop codon T. Furthermore, ATA was the start codon for ND4, ND5, and CO3 genes, whereas that for other PCGs was ATG in both strains. The base compositions of 12 PCGs in the B. manjavacas strains were similar, indicating that the mitochondrial genome of the two strains was structurally conserved over evolution. The gene structure and its orientation of 12 PCGs of B. manjavacas strains were identical, as shown in other marine Brachionus rotifers and the freshwater Brachionus rotifers, while the freshwater rotifer B. calyciflorus had an additional cytochrome b gene in the mitochondrial DNA I.

The marine rotifer Brachionus plicatilis species complex including Brachionus manjavacas (Fontaneto et al. 2007) consists of at least 15 species (Mills et al. 2017). However, there is no report on complete mitochondrial genome of B. manjavacas, while several complete mitochondrial genomes of other marine Brachionus rotifers have been published, including those of B. plicatilis, B. koreanus, B. rotundiformis, and B. paranguensis (Suga et al. 2008; Hwang et al. 2014; Kim et al. 2017; Choi et al. 2020). Thus, construction of a phylogenetic tree of the Brachionus rotifers with 12 protein-coding genes (PCGs) of the mitochondrial genome is important to unravel the relationship of species-specificity within the B. plicatilis species complex clade. In this study, we identified two complete mitochondrial genomes of the two strains B. manjavacas Germany and Australia.

The resting eggs of B. manjavacas German strain were collected by Dr. Harald Rosenthal by netting from sediments of Lake Colongulac (38°10′41.6″S and 143°10′52.9″E), West Victoria in 2000. These eggs hatched and were cultured in Nagasaki University, Japan (Kotani et al. 2006). To identify the complete mitochondrial DNA of two strains of B. manjavacas, live samples were sent to South Korea. The genomic DNAs obtained from the two strains of B. manjavacas (268.2 μm in length and 184.7 μm in width for German strain and 251.6 μm in length and 183.9 μm in width for Australian strain) were deposited at the Ichthyological Collection of the Faculty of Fisheries, Nagasaki University (FFNU) under accession nos. FFNU-Rot-0007 and FFNU-Rot-0008.

We sequenced whole body genomic DNA of the two strains of B. manjavacas using the 300 bp paired-end sequencing by NovaSeq 6000 (Illumina, San Diego, CA). De novo assembly was conducted by Spades version 3.13.0 (http://cab.spbu.ru/software/spades/). From the assembled B. manjavacas genome, 165,113 scaffolds (total 143,544,257 bp; N50 = 12,642 bp) for the German strain and 72,526 scaffolds (total 120,419,270 bp; N50 = 18,615 bp) for the Australian strain, we identified 16 (for German strain) and 9 (for Australian strain) mitochondrial scaffolds and obtained two complete mitochondrial DNA sequences for each strain through manual editing.

The complete mitochondrial genomes of B. manjavacas German strain were 10,721 bp (mitochondrial DNA I; GenBank no. MW559988) and 12,274 bp (mitochondrial DNA II; GenBank no. MW559989) in size. Of 12 PCGs, the identity and
The placement of the two strains of *Brachionus* in the genus *Brachionus* with 12 PCGs is shown in Figure 1. The two strains were clustered with *B. paraguensis* and *B. plicatilis* (NH1L strain), which are euryhaline species, but was separated from the super small (SS) type of marine rotifer *B. rotundiformis* (Indonesian strain) and the small-medium (SM) type of marine rotifer *B. koreanus* (South Korean strain), possibly supporting the phylogeny with CO1+ITS1 sequences and morphotypes recently reported by Mills et al. (2017).

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Funding

This research was supported by the Collaborative Genome Program of the Korea Institute of Marine Science and Technology Promotion funded by the Ministry of Oceans and Fisheries [No. 20180430] and also supported by a grant from the National Institute of Fisheries Science, Korea [R2021033].

ORCID

Jae-Seong Lee http://orcid.org/0000-0003-0944-5172

Data availability statement

The genome sequence data that support the findings of this study for *B. manjavacas* Australian strain are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/nuccore under the accession no. MW559986-MW559987. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA716452, SRR14040032, and SAMN18436264, respectively. The genome sequence data that support the findings of this study for *B. manjavacas* German strain are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/nuccore under the accession no. MW559988-MW559989. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA716453, SRR14040033, and SAMN18436265, respectively.

References

Choi BS, Kim DH, Lee JS, Kim HJ, Hagiwara A, Lee JS. 2020. Complete mitochondrial genome of the euryhaline monogonont rotifer *Brachionus paraguensis* (Rotifera, Brachionidae). Mitochondrial DNA B Resour. 51(1):502–503.

Fontaneto D, Giordani I, Melone G, Serra M. 2007. Disentangling the morphological stasis in two rotifer species of the *Brachionus plicatilis* species complex. Hydrobiologia. 583(1):297–307.

Fu Y, Hirayama K, Natsukari Y. 1991. Morphological differences between two types of the rotifer *Brachionus plicatilis* O.F. Müller. J Exp Mar Biol Ecol. 151(1):29–41.

Hwang DS, Suga K, Sakakura Y, Hagiwara A, Park HG, Rhee JS, Lee JS. 2014. Complete mitochondrial genome of the monogonont rotifer, *Brachionus koreanus* (Rotifera, Brachionidae). Mitochondrial DNA. 25(1):29–30.

Kim HS, Hwang DS, Kim HJ, Sakakura Y, Hagiwara A, Lee JS. 2017. Complete mitochondrial genome of the monogonont rotifer *Brachionus rotundiformis* (Rotifera, Brachionidae). Mitochondrial DNA B Resour. 21(1):39–40.
Kotani T, Ihara K, Hagiwara A. 2006. Cross-mating of euryhaline rotifer \textit{Brachionus plicatilis} strains as a means to develop useful strains for larval fish food. Aquaculture. 261(2):495–500.

Mills S, Alcántara-Rodríguez JA, Cirós-Pérez J, Gómez A, Hagiwara A, Hinson Galindo K, Jersabek CD, Malekzadeh-Viayeh R, Leasi F, Lee JS, et al. 2017. Fifteen species in one: deciphering the \textit{Brachionus plicatilis} species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia. 796(1):39–58.

Suga K, Mark Welch DB, Tanaka Y, Sakakura Y, Hagiwara A. 2008. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer \textit{Brachionus plicatilis}. Mol Biol Evol. 25(6):1129–1137.