Mitigation of wastewater biological pollution using the electrocoagulation method

Zinah K. K. Dosh1, Ammar K. A. Maslookhi2, Alyaa N. Al-Saidi3, Basel Alenezi4*, Joseph Amoako-Attah5

1PHC Bab Al-Moatham Training Centre, Baghdad, 10001, Iraq.
2Baghdad Teaching Hospital, Baghdad, 10001, Iraq.
3University of Kerbala, Kerbala, Iraq.
4B.Sc. Student, Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK.
5Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK.

E-mail: B.A.Alenezi@2017.ljmu.ac.uk

Abstract. Biological pollution of water and wastewater is a global grave concern, especially in developing countries due to insufficient treatment and sanitation. Additionally, the poor economy of the majority of the developing countries limits both applications of advanced treatment technologies and modern monitoring systems, which intensifies the problem of biological pollution. In this investigation, the electrocoagulation method, which is in situ production of coagulation agents by passing electric current via metallic electrodes, has been used as an affordable treatment method for the removal of bacteria from municipal wastewater (E. coli as an indicator). Wastewater sample was collected from Al-Rustamayah wastewater treatment plant, Baghdad city, Iraq. In this investigation, the electrocoagulation unit was supplied with iron electrodes (Fe-ELE). The impacts of current density (CD) and electrodes gapping (EG) on the performance of the Fe-ELE performance were optimized to attain the best activation percentage. The obtained results showed that the Fe-ELE achieved full deactivation of the E. coli after 45 minutes of treatment at EG of 5 mm, CD of 2 mA/cm² and an initial pH of 6.0.

1. Introduction
It is unquestionable fact that the inhabitants of the planet of Earth face a serious water sacristy due to several reasons, firstly due to the limited amount of fresh water on this planet that represents not more than 1% of the total quantity of water [1-3]. Secondly, the deterioration of the quality of freshwater due to the discharging of wastewaters, and the unsustainable consumption of water by population, industries, and agriculture [4-6]. Climate change is another hidden factor that causes drought in a different part of the world and increases the consumption rate of water [7-10], and it also affects the natural distribution water and rail across the world [11-14], which promoted the shortage of freshwater [15, 16]. The deterioration of the quality of the freshwater due to the discharge of wastewaters, including municipal, industrial and agricultural effluents, is the main concern for the environmental engineers and experts because of the huge volumes of these effluents in comparison with the volumes of the receiving water bodies (usually rivers and lakes) and because of the wide range of pollutants in such effluents [17-19]. For example, it has been reported that the annual usage of pesticides in the agricultural activities in China reached 300 million tons; a significant amount of these pesticides are returned to the freshwater...
resources with the drainage water causing serious pollution problems [20-22]. Besides, the concentrations of a wide range of contaminants, such as heavy metals, organic matter, nutrients, and dyes [23-26] have incredibly increased over the last decades due to the rapid expansion of urbanization and industrialization [27-29], for example, the concentrations of phosphorus-based contaminates in the freshwater have increased by 75% in comparison with their concentrations a few decades ago [30, 31]. Among these countless contaminates, the biological contaminates have brought the attention of the environmental engineers and experts due to their significant impacts on public health and the ecosystems [32-34].

In fact, the attention toward the biological pollutants has dramatically increased since the 1850’s when the English physician John Snow proved that cholera was a waterborne pathogen [35]. Since that time, the researchers have started to accumulate a better understanding of the spread of different pathogens via water that responsible for several dangerous diseases, such as diarrhea and gastrointestinal disorders. Nowadays, unfortunately, biological pollution has substantially increased due to, as mentioned above, the rapid increase in both urbanization and industrialization, for instance, it has been found that about 38 out of 125 wells in a rural area in Bangladesh were polluted with E. coli. Moreover, the lack of efficient treatment methods, especially in developing countries, intensifying this problem [32, 36]. Therefore, big efforts have been conducted to solve this problem by providing affordable and efficient disinfection methods, such as chlorination and chemical coagulation [36-38]. However, most of the chemical methods produce toxic by-products that limit their applications.

The present study aims at the application of an iron-based electrocoagulation unit (Fe-ELE) as a disinfection method for municipal wastewaters (to deactivate E. coli). In this study, the impacts of current density (CD) and electrodes gapping (EG) on the performance of the Fe-ELE performance were optimized to attain the best activation percentage. The authors would like to highlight that the section of the electrocoagulation method was basing on its unique advantages such as the cheapness, ease of operation, the possibility to control it using sensors, convenience production of sludge [19, 22]. The latter advantage is very important as it eliminates the need for large landfills and its related costs, such as the complex management and long term environmental effects [39, 40], or the need for recycling processes [41-48].

2. Materials and methods

In this part of the study, the authors explain the details of the Fe-ELE unit, municipal wastewater sample, and the treatment process.

2.1. Fe-ELE unit

The used ELE unit, in this study, was made from transparent plastic, and it was rectangular in shape with dimensions of 100 mm in length, 95 mm in width and its depth was 70 mm. This container was provided with 6 iron electrodes that have been arranged in an interchanged way so the solution will be mixed during its flow through the unit, see Figure 1. The dimensions of the electrodes were 80 mm in length and depth of 60 mm, and they were installed vertically inside the ELE unit. The dimensions of the reactor were selected according to the previous studies (within the used sizes), such as the study of Mohammed et al., [49]. Iron was used to manufacture electrodes due to its low cost and its global availability. Additionally, it must be highlighted that the ELE methods have been used here for many reasonable reasons, including the safety because it never produces secondary pollutants, cost-effectiveness, simplicity, and the compacted size [50-52].

The electrodes were taken out of the container, after each run, and cleaned using the diluted acidic solution and then rinse with deionized water to remove the residual acid [49, 53].
2.2. Wastewater sample
A concentrated wastewater sample was taken from Al-Rustamyiah wastewater treatment plant, Baghdad city, Iraq. This sample was diluted with denoised water (to 1%), and was used to perform the required experiments. Incubation and planting of the E. coli bacteria were carried out following the standard methods of the American Public Health Association (APHA). Initially, the diluted wastewater sample was planted to calculate the original number of the E.coli colonies, then the same procedures were followed after each experiment to calculate the residual E.coli colonies.

2.3. Treatment process
The first step in the treatment process was to calculate the original number of the E. coli colonies (this number was donated as X1). Then, 500 mL of the wastewater solution was electrolyzed using the Fe-ELE at different current densities (CD) (1, 2, and 3 mA/cm²) and electrodes gapping (EG) (5, 10, and 15 mm) to attain the best deactivation of the culturable bacteria. After each experiment, the residual number of the E. coli calculated (this number was donated as X2). The deactivation percentage (D%) was calculated as follows:

\[D\% = \frac{X_1 - X_2}{X_2} \times 100 \] \hspace{1cm} (1)

The initial pH of the solution was kept constant at 6 in all experiments because the pH of the wastewaters is usually between 5 and 6.

3. Results and discussion

3.1. Impact of CD on the deactivation of the E. coli
The literature confirms that the CD exerts a substantial effect of the removal of water/wastewater pollutants not because it governs the production of oxides from the electrodes that determines the removal efficiency but because it also determines the generation bubbles (hydrogen gas) that float pollutants to the surface of the solution [54]. Basing on these facts, the impact of the CD on the deactivation of the E. coli has been investigated at 1, 2, and 3 mA/cm². In these experiments, the treatment time, pH, and EG were kept at 45 minutes, 6.0, and 5 mm, respectively.

The obtained results indicated that maximizing the CD magnitude improved the deactivation of the E. coli, see Figure 2. For instance, the deactivation of the E. coli increased from about 79% at CD of 1 mA/cm² to 100% at CD of 3 mA/cm².
This improvement in the deactivation of the *E. coli* with the increase of the CD is attributed, as stated above, to the impact of the CD on both the production of oxides and hydrogen gas; the highest CD the higher the production of oxides and hydrogen gas. However, figure 3 reveals that the CD is not always useful for the treatment process because it increases the power consumption that decreases the economical efficiency of the Fe-ELE. For example, the power consumption increased from about 1 kW.h/m3 to 6.1 kW.h/m3 as the CD increased from 1 to 3 mA/cm2. Therefore, 2 mA/cm2 was used in this study as the optimum CD value.

![Figure 2](image1.png)

Figure 2. Impact of CD on the deactivation of the *E. coli*.

![Figure 3](image2.png)

Figure 3. Impact of CD on power consumption.
3.2. Impact of EG on the deactivation of the E. coli

The relevant studies indicated that there is a relationship between the EG and the electric current flow through the ELE units because the EG influences the electric resistance, i.e. the wider EG the higher the electric resistance [32, 54]. Thus, the impact of the EG on the deactivation of the E. coli has been studied at 5, 10, and 15 mm when the initial pH, CD, and treatment time were 6.0, 2 mA/cm2 and 45 minutes, respectively.

Figure 4 shows the impact of the EG on the deactivation of the E. coli, which confirms the findings of the previous studies; the wider EG the lower the efficiency of the ELE. It can be seen that the deactivation of the E. coli was lowered from 98% to about 86% when the EG increased from 5 to 15 mm. This change in the deactivation of the E. coli with the change of the EG is due to the negative impact of the latter parameter on the electric resistance of the ELE, which decreases the flow of the electric current through the ELE, and consequently it decreases the removal efficiency [17, 52].

![Figure 4. Impact of the EG on the deactivation of the E. coli.](image)

In summary, the results of the present study confirmed the ability of the Fe-ELE to deactivate the E. coli in the municipal wastewater, and the performance of the ELE could be improved by controlling the magnitude of CD and/or EG. Generally, the Fe-ELE could achieve a complete deactivation of the E. coli when the CD, ED, pH, and treatment time were 2 mA/cm2, 5 mm, 6.0, and 45 minutes, respectively. The authors mentioned above that one of the many attractive advantages of the ELE method is the possibility to control it using sensors, therefore; for future studies, it could be convenient to use provide the ELE with sensors, similar to those in [55-58], to enhance its performance.

4. Conclusion

The present study investigated the efficiency of an Fe-ELE unit in the deactivation of the culturable bacteria in the municipal wastewater under different operating conditions; the current density and the electrodes gapping. The results of this study proved that Fe-ELE could achieve full deactivation of the culturable bacteria in the municipal wastewater within a relatively short time (45 minutes). Generally, the results of the experiments showed that the deactivation of the culturable municipal wastewater was influenced by both current density and electrodes gapping. The deactivation percentage could be improved by maximizing the current density and minimizing the distance between electrodes. For future studies, the impacts of other operating parameters, such as the pH of the solution, should be investigated.
References

[1] Hashim K S, Al-Saati N H, Hussein A H and Al-Saati Z N 2018 An investigation into the level of heavy metals leaching from canal-dreged sediment: a case study metals leaching from dreged sediment First International Conference on Materials Engineering & Science

[2] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljefery M H and Carnacina I 2019 Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study Desalination and Water Treatment 150 406-12.

[3] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019 Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel Desalination and Water Treatment 168 165-74.

[4] Hashim K S, Al-Saati N H, Alquzweeni S S, Zubaidi S L, Kot P, Kraid I, Hussein A H, Alkhaddar R, Shaw A and Alwash R 2019 Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters First International Conference on Civil and Environmental Engineering Technologies (ICCEET) 384.

[5] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution IOP Conference Series: Materials Science and Engineering 888.

[6] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Falufi D, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride IOP Conference Series: Materials Science and Engineering 888.

[7] Zubaidi S L, Hashim K, Ethaib S, Al-Bdairi N S S, Al-Bugharbee H and Gharghan S K 2020 A novel methodology to predict monthly municipal water demand based on weather variables scenario Journal of King Saud University-Engineering Sciences 32 1-18.

[8] Zubaidi S L, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim K S, Gharghan S K, Kot P and Al-Khaddar R 2020 Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study Water 12 1-18.

[9] Zubaidi S L, Ortega-Martorell S, Kot P, Alkhaddar R M, Abdellatif M, Gharghan S K, Ahmed M S and Hashim K 2020 A Method for Predicting Long-Term Municipal Water Demands Under Climate Change Water Resources Management 34 1265-79.

[10] Grmasha R A, Al-sareji O J, Salman J M, Hashim K S and Jasim I A 2020 Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust WithinThree Land-Uses of Babyon Governorate, Iraq: Distribution, Sources, and Health Risk Assessment Journal of King Saud University - Engineering Sciences 33, 1-15.

[11] Zubaidi S L, Al-Bugharbee H, Muhsen Y R, Hashim K, Alkhaddar R M, Al-Jumeily D and Aljaaf A J 2019 The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate 12th International Conference on Developments in eSystems Engineering (DeSE)

[12] Zubaidi S L, Al-Bugharbee H, Ortega Martorell S, Gharghan S, Olier I, Hashim K, Al-Bdairi N and Kot P 2020 A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach Water 12 1-17.

[13] Zubaidi S L, Abdulkareem I H, Hashim K S, Al-Bugharbee H, Ridha H M, Gharghan S K, Al-Qaim F F, Muradov M, Kot P and Alkhaddar R 2020 Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand Water 12 1-18.

[14] Zubaidi S L, Al-Bugharbee H, Muhsin Y R, Hashim K and Alkhaddar R 2020 Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study IOP Conference Series: Materials Science and Engineering 888.

[15] Zubaidi S L, Kot P, Hashim K, Alkhaddar R, Abdellatif M and Muhsin Y R 2019 Using LARS-WG model for prediction of temperature in Columbia City, USA IOP Conference Series: Materials Science and Engineering 584.
[16] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter IOP Conference Series: Materials Science and Engineering 888.

[17] Al-Marri S, AlQuzzewni S S, Hashim K S, AlKhaddar R, Kot P, AlKizwini R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water IOP Conference Series: Materials Science and Engineering 888.

[18] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Faluji D and Zubaidi S L 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method IOP Conference Series: Materials Science and Engineering 888.

[19] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020 Electrochemical removal of brilliant green dye from wastewater IOP Conference Series: Materials Science and Engineering 888.

[20] Zhang Y, Han S, Liang D, Shi X, Wang F, Liu W, Zhang L, Chen L, Gu Y and Tian Y 2014 Prenatal exposure to organophosphate pesticides and neurobehavioral development of neonates: a birth cohort study in Shenyang, China Egyptian journal of petroleum 27 1275-90.

[21] Abduralaheem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water IOP Conference Series: Materials Science and Engineering 888.

[22] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makkiabadi M, Naghdali Z, Hashim K S and Ghanbari R 2020 Si multaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes Separation Science and Technology 55 3184-94.

[23] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach Journal of Environmental Management 196 224-33.

[24] Hashim K S, Shaw A, Al Khaddar R, Ortoneda Pedrola M and Phipps D 2017 Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach Journal of Environmental Management 197 80-8.

[25] Alattabi A W, Harris C B, Alkhaddar R M, Hashim K S, Ortoneda Pedrola M A and Phipps D 2017 Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor Journal of Water Process Engineering 20 207-16.

[26] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020 Electrochemical removal of brilliant green dye from wastewater IOP Conference Series: Materials Science and Engineering 888.

[27] Hashim K S, AlKhaddar R, Shaw A, Kot P, Aljumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management (Berline: Springer).

[28] Hassan Alnaimi I J I, Abuduljaleel Al-Janabi, Khalid Hashim, Michaela Gkantou, Salah L. Zubaidi, Patryk Kot, Magomed Muradov 2020 Ultrasonic-electrochemical treatment for effluents of concrete plants Ultrasonic-electrochemical treatment for effluents of concrete plants IOP Conference Series Materials Science and Engineering 888.

[29] Hashim K S, Idowu I A, Jasim N, Al Khaddar R, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W and Abdulredha M 2018 Removal of phosphate from River water using a new baffle plates electrochemical reactor MethodsX 5 1413-8.

[30] Hashim K S, Khaddar R A, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulredha M and Alawsh R 2019 Electrocoagulation as a green technology for phosphate removal from River water Separation and Purification Technology 210 135-44.
[32] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljeferi M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater. *Journal of Water Process Engineering* **33** 101079-86.

[33] Hashim K S, Ali S S M, AlRifaie J K, Kot P, Shaw A, Al Khaddar R, Idowu I and Gkantou M 2020 Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor. *Chemosphere* **247** 125868-75.

[34] Al-Jumeily D, Hashim K, Alkaddar R, Al-Tufaily M and Lunn J 2019 Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). *11th International Conference on Developments in eSystems Engineering (DeSE)*

[35] Ashbolt N J 2004 Microbial contamination of drinking water and disease outcomes in developing regions. *Toxicology* **198** 229-38.

[36] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a A 2021 Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment. *Journal of Cleaner Production* **280**

[37] Ghermaout D, Touahmia M and Aichouni M 2019 Disinfecting water: Electrocoagulation as an efficient process. *Applied Engineering* **3** 1-12.

[38] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, Aljeferi M and Al-Khaddar R 2020 Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies. *Water Science and Technology* **83** 1-17.

[39] Idowu I A, Atherton W, Hashim K, Kot P, Alkhaddar R, Alo B I and Shaw A 2019 An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences. *Waste Management* **87** 761-71.

[40] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Masoodi Z A, Sadique M and Hashim K 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations. *Data in Brief* **31** 105961-72.

[41] Shubbar A A, Al-Shaer A, AlKizwini R S, Hashim K, Hawesah H A and Sadique M 2019 Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar. *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)* 584.

[42] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust. *Journal of Building Engineering* **32** 1-17.

[43] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent. *Advances in Cement Research* **32** 1-38.

[44] Shubbar A A, Sadique M, Shanbara H K and Hashim K 2020 *The Development of a New Low Carbon Binder for Construction as an Alternative to Cement*. In *Advances in Sustainable Construction Materials and Geotechnical Engineering* (Berlin: Springer).

[45] Shubbar A A, Sadique M, Nasr M S, Al-Khafaji Z S and Hashim K S 2020 The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash. *Karbala International Journal of Modern Science* **6** 1-23.

[46] Abdulredha M, Rafid A, Jordan D and Hashim K 2017 The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition. *Procedia Engineering* **196** 779-84.

[47] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression. *Waste Management* **77** 388-400.
furnace slag and high calcium fly ash: An experimental and statistical approach *Construction and Building Materials* **187** 1051-60.

[49] Mohammed A-H, Hussein A H, Yeboah D, Al Khaddar R, Abdulhadi B, Shubbar A A and Hashim K S 2020 Electrochemical removal of nitrate from wastewater *IOP Conference Series: Materials Science and Engineering* 888.

[50] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraid I, Alkhaddar R, Shaw A and Alwash R 2019 Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method *2nd International Scientific Conference*

[51] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020 Removal of organic matter from water using ultrasonic-assisted electrocoagulation method *IOP Conference Series: Materials Science and Engineering* 888.

[52] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019 Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)* 584.

[53] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021 Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study *Science of The Total Environment* **756** 1-16.

[54] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor *Journal of Environmental Management* **189** 98-108.

[55] Gkantou M, Muradov M, Kamaris G S, Hashim K, Atherton W and Kot P 2019 Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection *Sensors* **19** 5175-89.

[56] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Moody A and Conway L 2019 A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna *Sensors* **19** 1813-23.

[57] Ryecroft S P, shaw A, Fergus P, Kot P, Hashim K and Conway L 2019 A Novel Gesomin Detection Method Based on Microwave Spectroscopy *12th International Conference on Developments in eSystems Engineering (DeSE)*

[58] Teng K H, Kot P, Muradov M, Shaw A, Hashim K, Gkantou M and Al-Shamma’a A 2019 Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete *Sensors* **19** 547-59.