Lung Volume Reduction Surgery in Patients with Heterogenous Emphysema: Selecting Perspective

Nguyen Truong Giang1, Trung Nguyen Ngoc1, Nguyen Van Nam1, Nguyen Viet Nhung2, Ta Ba Thang3, Dong Khac Hung3, Nguyen Duy Bac2, Chu Dinh Toi2, Pham Ngoc Hung1

1Department of Cardiothoracic Surgery, Vietnam Military Medical University, Hanoi, Vietnam; 2Vietnam National Lung Hospital, Hanoi, Vietnam; 3Department of Pneumology, Vietnam Military Medical University, Hanoi, Vietnam; 4Department of Training, Vietnam Military Medical University, Hanoi, Vietnam; 5Department of Human and Animal Physiology, Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam; 6Department of Epidemiology, Vietnam Military Medical University, Hanoi, Vietnam

Abstract

BACKGROUND: Lung volume reduction surgery (LVRS) was introduced to alleviate clinical conditions in selected patients with heterogenous emphysema. Clarifying the most suitable patients for LVRS remained unclear.

AIM: This study was undertaken to specifically analyze the preoperative factor affecting to LVRS.

METHODS: The prospective study was conducted at 103 Military Hospital between July 2014 and April 2016. Severe heterogenous emphysema patients were selected to participate in the study. The information, spirometry, and body plethysmographic pulmonary function tests in 31 patients who underwent LVRS were compared with postoperative outcomes (changing in FEV1 and CAT scale).

RESULTS: Of the 31 patients, there was statistically significant difference in the outcome of functional capacity, lung function between two groups (FEV1 ≤ 50% and > 50%) (∆FEV1: 22.46 vs 18.32%; p = 0.042. ∆CAT: 6.85 vs 5.07; p = 0.048). Changes of the FEV1 and CAT scale were no statistically significant difference in three groups residual volume. Patients with total lung capacity < 140% had more improved than others (∆FEV1: 23.81 vs 15.1%; p = 0.031).

CONCLUSION: Preoperative spirometry and body plethysmographic pulmonary function tests were useful measures to selected severe heterogenous emphysema patients for LVRS. Patients with FEV1 ≤ 50%, TLC in the range of 100-140% should be selected.

Introduction

Emphysema is an incurable with high prevalence in adults worldwide [1]. It has been treated according to the guideline of GOLD [1]. In severe emphysema, treatment included lung volume reduction (LVR) therapy in accordance with medical treatment to maximize clinically meaningful benefits [2]. Three common LVR therapies were surgery, endobronchial valve, endobronchial coil but each therapy was considered to feasible in selected patients [2]. LVR coil treatment for bilateral lung emphysema resulted in good safety and sustained outcomes with significant clinical improvements [3].

Endobronchial valves for intact interlobar fissures in emphysema improved significantly in lung function [4]. In severe emphysema with selected cases, LVRS has been showed good outcomes [5]. It was more widely used in the treatment of emphysema [6], [7] with selection criteria depended on characteristics of diseases and patients. In most series, LVRS was chosen for patients who had heterogenous emphysema with upper lobes occupying almost that present in about 25 percent of moderate-to-severe patients [8]. Thus, the benefit of LVRS did not generate to all patients. The reason behind this is that LVRS is suitable for selecting patients. It showed effective in patients with bilateral upper lobe heterogenous emphysema but did not use for the
arbitrary patient [9]. The NETT study pointed out the condition that benefits for LVRS were heterogeneous disease, low baseline exercise capacity, and upper lobe predominance [5]. Beyond the NETT selection criteria, more patients with different conditions also can be suitable for LVRS [10]. To get successful outcomes, patient selection and preoperation care were crucial [11].

Clarifying the most suitable patients for LVRS remained unclear. This study, therefore, was undertaken to specifically analyze the preoperative factor affecting to this surgery. This contributed to further refine the selection criteria when LVRS is performed for patients with severe heterogeneous emphysema.

Materials and Method

Patients

This prospective study was conducted at 103 Military Hospital between July 2014 and April 2016. Severe emphysema patients were selected to participate in the study. Patients had inclusion and no exclusion criteria underwent LVRS. Selecting criteria for LVRS showed in Table 1. Indications for LVRS included clinical symptom (severe dyspnea), spirometry (airflow obstruction), and image of emphysema (on chest radiography and computed tomographic (CT) scanning). Any history of childhood asthma/atopy, bronchiectasis, inhalation injury or drug-caused bronchiolitis was excluded from the study.

Table 1: Selecting criteria for LVRS

Inclusion criteria
Age 40-80 years
Severe, heterogeneous emphysema, at CT
Forced expiratory volume in one second ≤ 60% but > 20%
Residual volume ≥ 150%
Total lung capacity ≥ 100%
Resting room PaO2 > 45 mmHg
Quit smoking since at least 4 months

Evaluation before surgery

Six months before performing surgery, all patients stopped cigarettes and six-week before that, a pulmonary rehabilitation program for all patients was required. The final routine evaluation for surgery was managed without abnormal findings [12], [13], [14]. Patients had any contraindications to surgery at that time were excluded such as severe concurrent diseases, pleural scarring, pulmonary-artery hypertension or; using inappropriate glucocorticoids; and failure to complete the requirements above before surgery [5]. Dividing patients into two groups: group 1: 17 patients with FEV1 ≤ 50% before surgery and group 2: 14 patients with FEV1 > 50% before surgery.

Surgical Technique

Choosing a surgical technique depended on the condition of patients [15]. After placing lateral decubitus position, general anesthesia was used with provision for single-lung ventilation. Unilateral thoracoscopic surgery was performed in 6 patients and video-assisted thoracoscopic surgery (VATS) was performed in 25 patients to reduce lung volume. Approximately about 30% of the lung (estimating 30-40 grams) was resected (Figure 1).

Figure 1: Lung resection in lung volume reduction surgery (LVRS)

Follow-up

Three months after surgery, change FEV1 and CAT scale were compared to evaluate the valuable index for LVRS.

Statistical Analysis

Using SPSS ver. 20.0 software (IBM Corporation, Armonk, NY, USA) to analyze. Descriptive analysis was presented as a means ± standard deviations. Using Student’s paired t-test to compare with p-value that considered statistically significant was < 0.05.

Results

Patients’ characteristics

Thirty-one patients participated in and completed the study. There were no hospital deaths in all group. no patient died three months after surgery. Preoperative patient’s characteristics showed in Table 2. Functional capacity was assessed by the COPD Assessment Test scale (CAT). Spirometry demonstrated FEV1, TLC, and RV. All FEV1 values were less than normal with the mean was 49.46 percent and the lowest value was 23 percent. TLC was only minimally elevated with the value was more than 100 percent. Whereas RV was significantly elevated with patients, the value was more than 150
percent in all patients and the maximum value was 479 percent.

Table 2: Preoperative characteristics

Characteristics	Value
Age (years)	62.13 ± 5.77
Gender (M/F)	31 / 0
CAT scale	18.42 ± 5.57
Forced expiratory volume in one second (FEV1) Mean (%)	49.46 ± 12.22
≤ 50%	17
> 50%	14
Geansler index (%)	58.0 ± 11.93
Total lung capacity (TLC)	137.29 ± 23.83
Mean	106-227
Residual volume (RV)	219.25 ± 72.14
Range	153-479

Postoperative outcome

After LVRS, FEV1 significantly increased as a whole. Two groups were compared before surgery and three months after surgery. Detail information showed in Table 3. Changes in FEV1 and CAT scale in group 1 was 22.46% and 6.85. Group 1 had more improved than group 2.

Table 3: Comparison between two groups

Variable	∆FEV1	∆CAT
	Mean (95% CI)	Mean (95% CI)
FEV1 ≤ 50%	22.46 (7.75 − 37.16)	6.85 (5.84 − 7.4)
> 50%	18.32 (7.55 − 29.10)	5.07 (3.36 − 6.77)
Significance	p = 0.042	p = 0.048
RV 150–200%	19.81 (7.33 − 32.28)	5.3 (3.81 − 6.79)
200–250%	29.75 (8.87 − 50.64)	7.5 (5.11 − 8.88)
> 250%	16.37 (9.90 − 24.73)	6.4 (3.97 − 8.82)
Significance	p = 0.123	p = 0.19
TLC 100–140%	23.81 (10.21 − 37.41)	5.76 (4.45 − 7.06)
> 140%	15.10 (7.23 − 22.97)	6.27 (4.68 − 7.86)
Significance	p = 0.031	p = 0.6

Patient with a preoperative RV less than 200%, the mean of change FEV1 was 19.81% and change of CAT scale was 5.3. The FEV1 increased 29.75% for patients with RV from 200 to 250% compared with 16.37% for patients with RV greater than 250% (p > 0.05). Preoperative, 10 patients had TLC than 100% and less than 140% of the predicted value. Their postoperative mean FEV1 increased by 23.81% compared with 15.10% changes in patients with preoperative TLC greater than 140% of the predicted value.

In conclusion, preoperative spirometry and body plethysmographic pulmonary function tests were useful measures to selected severe heterogeneous emphysema patients for LVRS. Patients with FEV1 ≤ 50%, TLC in the range of 100-140% should be selected.
Ethical approval

This study is approved by the ethics committee of 103 Military Hospital.

Informed consent

The consent and commitment were signed by the patients in the study.

References

1. Vogelmeier CF, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. American journal of respiratory and critical care medicine. 2017; 195(5):557-582. https://doi.org/10.1164/rccm.201701-0218PP PMid:28128970

2. van Geffen WH, et al. Surgical and endoscopic interventions that reduce lung volume for emphysema: a systematic review and meta-analysis. Lancet Respir Med. 2019; 7(4):313-324. https://doi.org/10.1016/S2213-2600(18)30451-4

3. Deslee G, et al. Lung volume reduction coil treatment for patients with severe emphysema: a European multicentre trial. Thorax. 2014; 69(11):980-6. https://doi.org/10.1136/thoraxjnl-2014-205221 PMid:24891327 PMCid:PMC4215297

4. Davey C, et al. Bronchoscopic lung volume reduction with endobronchial valves for patients with heterogeneous emphysema and intact interlobar fissures (the BelieVer-HIFI study): a randomised controlled trial. Lancet. 2015; 386(9988):1066-73. https://doi.org/10.1016/S0140-6736(15)60001-0

5. National Emphysema Treatment Trial Research Group. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. New England Journal of Medicine. 2003; 349(21):2059-73. https://doi.org/10.1056/NEJMoa030287 PMid:12759479

6. Sharafkhaneh A, Hanania NA, Kim V. Pathogenesis of emphysema: from the bench to the bedside. Proc Am Thorac Soc. 2008; 5(4):475-7. https://doi.org/10.1513/pats.200708-126ET PMid:18453358 PMCid:PMC2645322

7. Minai OA, Benditt J, Martinez FJ. Natural History of Emphysema. Proc Am Thorac Soc. 2008; 5(4):468-74. https://doi.org/10.1513/pats.200802-018ET PMid:18453357 PMCid:PMC2645321

8. Argenziano M, Ginsburg ME. Lung Volume Reduction Surgery. Totowa, New Jersey: Humana Press Inc., 2002. https://doi.org/10.1007/978-1-59259-121-3

9. McKenna Jr RJ, et al. Patient selection criteria for lung volume reduction surgery. J Thorac Cardiovasc Surg. 1997; 114(6):957-64; discussion 964-7. https://doi.org/10.1016/S0022-5223(97)70110-2

10. Caviezel C, et al. Lung volume reduction surgery beyond the NETT selection criteria. J Thorac Dis. 2018; 10(Suppl 23):S2748-e2753. https://doi.org/10.21037/jtd.2018.08.93 PMid:30210828 PMCid:PMC6129809

11. Seadler B, et al. Clinical and Quality of Life Outcomes After Lung Volume Reduction Surgery. Ann Thorac Surg. 2019; 108(3):886-872. https://doi.org/10.1016/j.athoracsur.2019.03.089 PMid:31055037

12. Eda S, et al. The relations between expiratory chest CT using helical CT and pulmonary function tests in emphysema. Am J Respir Crit Care Med. 1997; 155(4):1290-4. https://doi.org/10.1164/ajrccm.155.4.9105069 PMid:9105069

13. Sciruba FC. Preoperative predictors of outcome following lung volume reduction surgery. Thorax. 2002; 57(2):47-52.

14. Zoumot Z, et al. Lung Volume Reduction in Emphysema Improves Chest Wall Asynchrony. Chest. 2015; 148(1):185-95. https://doi.org/10.1378/chest.14-2380 PMid:26564309 PMCid:PMC4493874

15. DeCamp Jr MM, et al. Lung volume reduction surgery: technique, operative mortality, and morbidity. Proc Am Thorac Soc. 2008; 5(4):442-6. https://doi.org/10.1513/pats.200803-023ET PMid:18453353 PMCid:PMC2645317

16. Huang W, et al. Several clinical interests regarding lung volume reduction surgery for severe emphysema: meta-analysis and systematic review of randomized controlled trials. J Cardiothorac Surg. 2011; 6:148. https://doi.org/10.1186/1749-8090-6-148 PMid:22074613 PMCid:PMC3226652

17. Stolk J, et al. Densitometry for assessment of effect of lung volume reduction surgery for emphysema. Eur Respir J. 2007; 29(6):1158-43. https://doi.org/10.1183/09031936.0005206 PMid:17331971

18. Bandyopadhyay S, et al. Segmental approach to lung volume reduction therapy for emphysema patients. Respiration. 2015; 89(1):76-81. https://doi.org/10.1159/000368036 PMid:25500669

19. Russi EW, Bloch KE, Weder W. Functional and morphological heterogeneity of emphysema and its implication for selection of patients for lung volume reduction surgery. Eur Respir J. 1999; 14(1):230-6. https://doi.org/10.1183/09031936.1999.14a349.x PMid:10489857

20. Gelb AF, et al. Lung function 5 yr after lung volume reduction surgery for emphysema. Am J Respir Crit Care Med. 2001; 163(7):1562-6. https://doi.org/10.1164/archithorac.2001.163.7.2009048 PMid:11401874

21. Clark SJ, et al. Surgical approaches for lung volume reduction in emphysema. Clin Med. 2014; 14(2):122-7. https://doi.org/10.7861/clinmedicine.14-2-122 PMid:24715121 PMCid:PMC4953281

22. Criner GJ, et al. The National Emphysema Treatment Trial (NETT): Part II: Lessons Learned about Lung Volume Reduction Surgery. Am J Respir Crit Care Med. 2011; 184(8):881-93. https://doi.org/10.1164/rccm.201103-0455OC PMid:21719757 PMCid:PMC3208657

23. Criner GJ, et al. Effect of lung volume reduction surgery on resting pulmonary hemodynamics in severe emphysema. Am J Respir Crit Care Med. 2007; 176(3):253-60. https://doi.org/10.1164/rccm.200608-1114OC PMid:17496227 PMcid:PMC1994220

24. Daniel TM, et al. Lung volume reduction surgery. Case selection, operative technique, and clinical results. Ann Surg. 1996; 223(5):526-33. https://doi.org/10.1097/00000658-199606000-00000 PMid:8651743 PMcid:PMC1235175

25. DeCamp Jr MM, et al. The evaluation and preparation of the patient for lung volume reduction surgery. Proc Am Thorac Soc. 2008; 5(4):427-31. http://doi.org/10.1513/pats.200707-087ET PMid:18453550 PMCid:PMC2645314

26. Dong Khac Hung DK, Ta Ba Thang. Lung reduction therapy in management of chronic obstructive pulmonary disease. Hanoi, Medicine Publisher, 2015.

27. Lee SD, et al. The COPD assessment test (CAT) assists prediction of COPD exacerbations in high-risk patients. Respiratory Medicine. 2014; 108(4):600-608. https://doi.org/10.1016/j.rmed.2013.12.014 PMid:24456895

28. Ghobadi H, et al. The Relationship between COPD Assessment Test (CAT) Scores and Severity of Airflow Obstruction in Stable COPD Patients. Tanaffos. 2012; 11(2):22-6.

29. Fishman A, et al. Patients at high risk of death after lung-volume-reduction surgery. N Engl J Med. 2001; 345(15):1075-83. https://doi.org/10.1056/NEJMoa11798 PMid:11596586