Multi-source cross-project software defect prediction based on deep integration

Jing Zhang¹, Wei Wang*, Yun He², Xinfa Li¹

¹Department of software Engineering, Yunnan University, Yunnan 650504, China
²Department of software Engineering, Yunnan Agricultural University, Yunnan 650504, China

wangwei@ynu.edu.cn

Abstract. Cross-project defect prediction (CPDP), training a machine learning model by using training data from other projects, has attracted much attention in recent years. This approach provides a feasible way for small-scale or new developed project with insufficient training data to carry out defect prediction. This paper focus on the bottleneck issue of CPDP, poor accuracy, and propose a deep learning model integration-based approach (MTrADL) for CPDP. This paper consists of two main phases. First, the similarity between target project and source projects is measured by the modified maximum mean discrepancy (MMD) and the top K source projects with high similarity to the target project are selected as training data. Second, for the selected training data, this paper use convolutional neural network (CNN) to build the defect predictor. Each selected training data corresponds to one CNN predictor. Then, multiple predictors are integrated to get the final prediction result. To examine the performance of the proposed approach, this paper conduct experiments on 41 datasets of PROMISE and compare our approach with three state-of-the-art baseline approaches: a training data selection model (TDS), a two-stage transfer learning model (TPTL), and the multi-source transfer learning model (MTrA). The experimental results show that the average F1-score of our approach is 0.76. Across the 41 datasets, on average, MTrADL respectively improves these baseline models by 39.8%, 28.50%, and 10% in terms of F1-score.

1. Introduction

The purpose of software defect prediction [1, 2] is to predict the number and distribution of software defects. Predicting results is of great significance for optimizing test resource allocation and reducing maintenance costs [3, 4]. Most existing approaches followed the cross-project defect prediction (CPDP) [5-10], which use training data from other projects (called source projects) to build the predictor for the project to be analyzed (called target project). Briand et al. [11] proposed the first CPDP model in 2002. Their experimental results showed the feasibility and potential usefulness of CPDP.

In order to improve the performance, two feasible ways are introduced [11, 12] (1) selecting appropriate source projects and (2) developing innovative defect modeling method.

In this study, we propose a multi-source cross-project defect prediction approach (MTrADL) based on deep learning. First, the modified maximum mean discrepancy (MMD) is used to select the source projects. Second, the convolutional neural network (CNN) is used as the base learner to build the defect predictor. Third, the final prediction result is generated by predictors integration.
2. Proposed approach

As shown in Figure 1, in order to improve the prediction accuracy of CPDP, we proposed MTrADL which involves two phases: source project selection and defect prediction model construction and integration.

In the first phase, MMD is used to evaluate the similarity between the multiple source projects and target project. The projects with the top k high similarity to the target project are selected as the training data to build the defect prediction model. In the second phase, each selected training data corresponds to one CNN predictor. Then the final predicting result is generated by integrating multiple predictors together.

In this section, it is supposed that we have N source projects \(\{s_1, s_2, ..., s_n\} \) and a target project T. Each source project contains many instances, and each instance corresponds to a class. Every instance involves two parts: a set of metrics x and its corresponding label y that is used to indicate the defective status (y=1 indicates defective, y=0 indicates clean). The purpose of MTrADL is to predict the corresponding label of one instance in the future by using the model trained with source projects \(\{s_1, s_2, ..., s_n\} \) and the target project T.

![Figure 1 Process of MTrADL for CPDP](image)

2.1 Source project selection

The source project selection aims to select K dataset from N candidate source datasets (K ≤ N), to build the training dataset for predictor.

In this subsection, we propose the source projects selection process based on the modified max mean discrepancy (MMD) [13, 14], and the similarity between source and target datasets is reflected as the similarity index. Then the source datasets \(s = \{s_1, s_2, ..., s_n\} \) are ranked by the similarity and the top K source datasets are selected as the training data for the predictor.

As shown in equation 1, MMD uses kernel function \(\phi(\cdot) \) to map linear inseparable data into the reproducing kernel hilbert space (RKHS) to make it linearly separable. The distance between the center points of two datasets is used to characterized the probability distribution difference between such two datasets. Here, \(x_{t,i} \) and \(x_{s,i} \) refer to the ith data of the target change data set and the source change data set, while \(n_t \) and \(n_s \) represent the number of target data and source data, respectively.

\[
MMD(X_t, X_s) = \left\| \frac{1}{n_t} \sum_{i=1}^{n_t} \phi(x_{t,i}) - \frac{1}{n_s} \sum_{i=1}^{n_s} \phi(x_{s,i}) \right\|_H^2
\]

(1)

However, we believe that the distance between center points of two dataset just reflects the difference from the perspective of mean. The variance is also an important characteristic for depicting the
probability distribution difference. Because of the distribution of the two data varies greatly due to the big variance difference. Therefore, we define the variance difference between two linearly separable datasets in RKHS as follows:

\[Var = \left(\frac{1}{n_1} \sum_{i=1}^{n_1} \phi(x_{s,i}) - \frac{1}{n_1} \sum_{i=1}^{n_1} \phi(x_{t,i}) \right)^2 - \left(\frac{1}{n_2} \sum_{i=1}^{n_2} \phi(x_{s,i}) - \frac{1}{n_2} \sum_{i=1}^{n_2} \phi(x_{t,i}) \right)^2 \]

(2)

The modified MMD (MVMD) is defined as follows. The \(\mu \) is a hyperparameters defined by the users, which reflects the relative importance of such two factors.

\[MVMD(X_s, X_t) = \mu Var + (1 - \mu) MMD \]

(3)

MMD is used to evaluate the similarity between the multiple source projects and the target project. Furthermore, according to the He et al. [15], recommendation the number of source projects should not exceed, we adopt this suggestion here and set the K equal to 3. Each project selected is called a dataset.

2.2 Defect prediction model construction and integration

In this section, we focus on CNN’s powerful ability of capturing highly complicated non-linear features as the base learner for each selected source dataset [16].

We trained CNN with the training data selected in the previous phase. CNN is just an application of this research, so we adopt the standard CNN architecture to build our base predictor [17].

As shown in Figure.2, other details of the CNN are as follows:

1. Input Layer: Through the data selection process described in the previous section, K source projects and a target project are obtained as the training datasets.
2. Convolutional layers: Researchers generally believe that adding depth of a model can achieve better results. Therefore, in this paper, we increase the number of convolutional layers from 1 to 2.
3. Activation function: Using the sigmoid activation function for classification.
4. Training and optimizer: Using an Adam optimizer [18] to train our model, which makes training faster.

Using the idea of deep learning, training method of CPDP based on instance migration is adopted. According to the above-mentioned steps, K base predictors suitable for the target project can be trained, and CPDP can be conducted for the target dataset.

Then used the K base predictors to generate final predicting result with the help of one ensemble learning technique.

3. Experiment

In order to evaluate the properties of proposed approach, the datasets, experimental design, experimental results are presented in this section.
3.1 Datasets
As shown in Table 1, the defect datasets used in this paper are collected by Jureczko and Madeyski from PROMISE data warehouse [19]. The datasets contain 71 releases of 38 different open source software projects and 6 releases of proprietary projects. In this experiment, as shown in Table 1, we used the same data set as that used by Liu and discarded releases ckjm. Table 1 lists the defect datasets (including data category and total number of defects) of the 41 releases from 14 software projects that we used.

Data preprocessing. Preprocessing involves two steps: normalization and imbalanced data handling. We transform all values of metrics into the [0,1] and use SMOTE to perform class imbalance processing such that the existing binary label had a positive to negative ratio of 5:5.

Table 1: Datasets

Dataset	#Class	#Defect (%)	#Target	Data set	#Class	#Defect (%)	#Target
ant-1-3	125	20 (16.00%)	36	lucene-2-2	247	144 (58.30%)	38
ant-1-4	178	40 (22.47%)	36	lucene-2-4	340	203 (59.71%)	38
ant-1-5	293	32 (10.92%)	36	poi-1-5	237	141 (59.49%)	37
ant-1-6	351	92 (26.21%)	36	poi-2-0	314	37 (11.78%)	37
ant-1-7	745	166 (22.28%)	36	poi-2-5	385	248 (64.42%)	37
camel-1.0	339	13 (3.83%)	37	poi-3-0	442	281 (63.57%)	37
camel-1.2	608	216 (35.53%)	37	reductor	176	27 (15.34%)	40
camel-1.4	872	145 (16.63%)	37	synapse-1-0	157	16 (10.19%)	38
camel-1.6	965	188 (19.48%)	37	synapse-1-1	222	60 (27.03%)	38
ivy-1.1	111	63 (56.76%)	38	synapse-1-2	256	86 (33.59%)	38
ivy-1.4	241	16 (6.64%)	38	tomcat	858	77 (8.97%)	40
ivy-2.0	352	40 (11.36%)	38	velocity-1-4	196	147 (75.00%)	39
jedit-3.2	272	90 (33.09%)	36	velocity-1-6	229	78 (34.06%)	39
jedit-4.0	306	75 (24.51%)	36	xalan-2-4	723	110 (15.21%)	37
jedit-4.1	312	79 (25.32%)	36	xalan-2-5	803	387 (48.19%)	37
jedit-4.2	367	48 (13.08%)	36	xalan-2-6	885	411 (46.44%)	37
jedit-4.3	492	11 (2.24%)	36	xalan-2-7	909	898 (98.79%)	37
log4j-1.0	135	34 (25.19%)	38	xerces-1-2	440	71 (16.14%)	38
log4j-1.1	109	37 (33.94%)	38	xerces-1-3	453	69 (15.23%)	38
log4j-1.2	205	189 (92.20%)	38	xerces-1-4	588	437 (74.32%)	38

3.2 Experimental design
We choose one release of a project as target dataset, and the remaining 13 projects were used as candidate source datasets.

If the target project contained multiple releases, we keep on one release and other releases are removed, and all releases of the remaining projects were used as the candidate source datasets for the experiments. Figure 3 presents an example of the experimental setup of the MTrADL method, when
release jedit-3-2 is used as the target dataset, the releases jedit-4-0, jedit-4-1, jedit-4-2, and jedit-4-3 are removed. All remaining 13 projects are used as candidate source datasets.

Baseline Methods. In order to show the feasibility and the advance nature of our approach, we tried to find out how effective it is in CPDP and whether it can perform better than the baseline methods. The TPTL [20], TDS [6] and MTrA [21] are set as the baseline methods.

4. Results and discussion

In this section, we discuss our experimental results and answer the research questions raised in the previous section.

F1-score comparison of MTrADL model and three baseline models (TDS, TPTL, and MTrA) for 41 datasets. “W/T/L” denotes the number of data sets when the baseline model performs better than MTrADL, when the baseline model performs as well as MTrADL, and when the baseline model performs worse than MTrADL, respectively.

Datasets	1. TDS	2. TPTL	3. MTrA	4. OUR APPROACH
ant-1-3	0.394	0.456	0.721	0.827
ant-1-4	0.345	0.377	0.571	0.778
ant-1-5	0.262	0.237	0.690	0.779
ant-1-6	0.449	0.595	0.746	0.827
ant-1-7	0.454	0.455	0.709	0.789
camel-1-0	0.111	0.093	0.752	0.843
camel-1-2	0.378	0.502	0.684	0.865
camel-1-4	0.323	0.339	0.623	0.659
camel-1-6	0.190	0.356	0.657	0.723
ivy-1-1	0.642	0.738	0.596	0.667
ivy-1-4	0.000	0.160	0.333	0.813
ivy-2-0	0.305	0.349	0.744	0.778
jedit-3-2	0.143	0.536	0.633	0.800
jedit-4-0	0.235	0.447	0.713	0.831
jedit-4-1	0.239	0.522	0.728	0.763
jedit-4-2	0.440	0.370	0.736	0.838
jedit-4-3	0.112	0.050	0.776	**0.926**
log4j-1-0	0.528	0.637	0.756	0.800
log4j-1-1	0.538	0.699	0.613	0.737
log4j-1-2	0.314	0.606	0.661	0.649
lucene-2-0	0.542	0.677	0.568	0.625
lucene-2-2	0.581	0.621	0.707	0.605
lucene-2-4	0.700	0.633	0.738	0.627
poi-1-5	0.600	0.713	0.723	0.632
poi-2-0	0.217	0.218	0.716	0.705
poi-2-5	0.554	0.728	0.715	0.756
poi-3-0	0.699	0.787	0.654	0.681
redactor	0.304	0.353	0.678	0.750
synapse-1-0	0.526	0.253	0.643	0.824
synapse-1-1	0.487	0.475	0.647	0.773
synapse-1-2	0.510	0.571	0.676	0.659
tomcat	0.083	0.287	0.684	0.835
velocity-1-4	0.136	0.734	0.736	0.830
velocity-1-6	0.025	0.568	0.738	0.717
xalan-2-4	0.345	0.403	0.761	**0.861**
Prediction performance. In terms of F1-score, the average values vary from 0.362, 0.475, 0.660 to 0.760 by using TDS, TPTL, MTrA, and MTrADL respectively.

Compared with TDS, MTrADL can achieve better performance on average. In terms of F1-score, MTrADL has 39.80% improvement as shown in Table 2. Therefore, it can be concluded that MTrADL has significant improvement than TDS in the performance of the F1-score. Especially, MTrADL can achieve the most significant improvements on releases camel-1-0, jedit-3-2, jedit-4-3, velocity-1-4, and xerces-1-2.

Compared with TPTL, MTrADL can achieve better performance on average. In terms of F1-score, MTrADL has 28.50% improvement as shown in Table 2. Therefore, it can be concluded that MTrADL has significant improvement than TPTL in the performance of the F1-score. Especially, MTrADL can achieve the most significant improvements on releases ivy-1-4 and camel-1-0.

Compared with MTrA, MTrADL can achieve better performance on average. In terms of F1-score, MTrADL has 10% improvement as shown in Table 2. Therefore, it can be concluded that MTrADL has significant improvement than MTrA in the performance of the F1-score.

Number of improvements. The statistical test showed that MTrADL outperforms TDS, TPTL, and MTrA on 39, 35, and 33 datasets, respectively, and the improvement rate exceeds 80.49%. Hereinafter to be referred as numbers. Thus, our approach achieved significant improvements in data selection and multi-source defect prediction.

5. Conclusion
This paper proposed a multi-source transfer learning model, namely MTrADL, based on deep learning for CPDP. The MTrADL model is highly effective, with an improvement rate of over 80.49%.

(1) From the perspective of predictive performance, compared to TDS and TPTL, the average F1-score improved by 39.8% and 28.50%, respectively. Compared with the classical MTrA algorithm, the average F1-score improved by 10%.

(2) From the perspective of the number of datasets, MTrADL outperformed TDS, TPTL, and MTrA on 39, 35, and 33 datasets, respectively, with an improvement rate of over 80.49%.

Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant Nos. 61462092, 61379032, and 61662085, the Young Scientist Scholarship of the Chinese Academy of Sciences under Grant No. W8090311, and the Scientific Research Fund project of Yunnan Education Department under Grant Nos. 2020Y0005 and 2020J0239.

References
[1] B. Caglayan, A. T. Misirli, et al. Predicting defective modules in different test phases[J]. Software Quality Journal, 2015,23(2): 205-227.
[2] Y. CHEN, X.-h. SHEN, et al. Application of Probabilistic Relational Model to Aerospace Software Defect Prediction[J]. Optics and Precision Engineering, 2013,21(7): 1865-1872(in Chinese).
[3] S. Hosseini, B. Turhan, et al. A systematic literature review and meta-analysis on cross project defect prediction[J]. IEEE Transactions on Software Engineering, 2017, 45(2): 111-147.

[4] X. Xia, E. Shihab, et al. "Predicting crashing releases of mobile applications," in Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 2016:1-10 (in Chinese).

[5] P. He, B. Li, et al. Simplification of training data for cross-project defect prediction[J]. arXiv preprint arXiv:1405.0773, 2014 (in Chinese).

[6] S. Herbold. "Training data selection for cross-project defect prediction," in Proceedings of the 9th International Conference on Predictive Models in Software Engineering, 2013.

[7] S. Amasaki, K. Kawata, et al. "Improving cross-project defect prediction methods with data simplification," in 2015 41st Euromicro Conference on Software Engineering and Advanced Applications, 2015:96-103.

[8] Y. Li, Z. Huang, et al. Evaluating data filter on cross-project defect prediction: Comparison and improvements[J]. IEEE Access, 2017, 5:25646-25656 (in Chinese).

[9] F. Rahman, D. Posnett, et al. "Recalling the imprecision of cross-project defect prediction," in Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, 2012:61.

[10] W. Wen, B. Zhang, et al. "An Empirical Study on Combining Source Selection and Transfer Learning for Cross-Project Defect Prediction," in 2019 IEEE 1st International Workshop on Intelligent Bug Fixing (IBF), 2019:29-38 (in Chinese).

[11] L. C. Briand, W. L. Melo, et al. Assessing the applicability of fault-proneness models across object-oriented software projects[J]. IEEE transactions on Software Engineering, 2002, 28(7): 706-720.

[12] T. Zimmermann, N. Nagappan, et al. "Cross-project defect prediction: a large scale experiment on data vs. domain vs. process," [J]. the 7th joint meeting of the European software engineering conference, 2009:91-100.

[13] A. Gretton, K. M. Borgwardt, et al. A kernel two-sample test[J]. Journal of Machine Learning Research, 2012, 13(Mar): 723-773.

[14] A. Smola, A. Gretton, et al. "A Hilbert space embedding for distributions," in International Conference on Algorithmic Learning Theory, 2007:13-31.

[15] Z. He, F. Shu, et al. An investigation on the feasibility of cross-project defect prediction[J]. Automated Software Engineering, 2012, 19(2): 167-199 (in Chinese).

[16] Pan, Lu, et al. An Improved CNN Model for Within-Project Software Defect Prediction[J]. Applied Sciences, 2019, 9(10): 21-38 (in Chinese).

[17] A. Krizhevsky, I. Sutskever, et al. "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012:1097-1105.

[18] D. Kingma, and J. Ba. Adam: A Method for Stochastic Optimization[J]. Computer Science, 2014.

[19] M. Jureczko, and L. Madeyski. "Towards identifying software project clusters with regard to defect prediction," in Proceedings of the 6th International Conference on Predictive Models in Software Engineering, 2010:1-10.

[20] C. Liu, D. Yang, et al. A two-phase transfer learning model for cross-project defect prediction[J]. Information and Software Technology, 2019, 107:125-136 (in Chinese).

[21] Y. Yi, and G. Doretto. "Boosting for transfer learning with multiple sources," 2010 (in Chinese).