MULTIPLICATION FORMULAS FOR THE ELLIPTIC GAMMA FUNCTION

GIOVANNI FELDER* AND ALEXANDER VARCHENKO**.1

*Departement Mathematik, ETH-Zentrum, 8092 Zürich, Switzerland
felder@math.ethz.ch

**Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA
anv@email.unc.edu

Abstract. The elliptic gamma function is a generalization of the Euler gamma function. Its trigonometric and rational degenerations are the Jackson q-gamma function and the Euler gamma function. We prove multiplication formulas for the elliptic gamma function, whose degenerations are the Gauss-Askey multiplication formula for the Euler and trigonometric gamma functions.

1. Introduction

Special functions defined by infinite products often have duplication formulas. Here are some examples.

\[
\sin (2\pi z) = 2 \sin (\pi z) \sin (\pi (z + \frac{1}{2})) ,
\]

\[
\Gamma(2z) \sqrt{\pi} = 2^{2z-1} \Gamma(z) \Gamma(z + \frac{1}{2}) ,
\]

\[
\Gamma_q(2z) \Gamma_q^2(\frac{1}{2}) = [2]_q^{2z-1} \Gamma_q(z) \Gamma_q^2(z + \frac{1}{2}) ,
\]

\[
\theta_0(2z, \tau) = \theta_0(z, \tau) \theta_0(z + \frac{1}{2}, \tau) \theta_0(z + \frac{\tau}{2}, \tau) \theta_0(z + \frac{1+\tau}{2}, \tau) .
\]

The function \(\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt \) is the Euler gamma function. It satisfies the functional equation \(\Gamma(z+1) = z \Gamma(z) \). Formula (1) is Legendre’s duplication formula.

Date: November 2002.
1Supported in part by NSF grant DMS-9801582.
The function $\Gamma_q(z)$ is Jackson’s q-gamma function. Set $x = e^{2\pi i z}$, $q = e^{2\pi i \tau}$, and denote

$$(x; q) = \prod_{j=0}^{\infty} (1 - x q^j).$$

Then

$$\Gamma_q(z) = \Gamma \text{trig}(z, \tau) = (1 - q) \frac{(q; q)}{(q^z; q)} .$$

The q-gamma function obeys the functional equation

$$\Gamma_q(z + 1) = [z]_q \Gamma_q(z),$$

where $[z]_q = \frac{1 - e^{2\pi i \tau z}}{1 - e^{2\pi i \tau}}$ is the trigonometric analog of the number z. The q-gamma function degenerates to Euler’s gamma function,

$$\lim_{\tau \to 0} \Gamma \text{trig}(z, \tau) = \Gamma(z).$$

Formula (2) is Askey’s duplication formula, see [A].

The function $\theta_0(z, \tau) = (x, q)(q/x, q)$ in (3) is one of Jacobi’s theta functions. Formula (3) see for instance in [Ra].

In this paper we give two duplication formulas for elliptic analogs of the gamma function,

$$\Gamma(2z, \tau, \sigma) = \Gamma(z, \tau, \sigma)\Gamma(z + \frac{\tau}{2}, \tau, \sigma)\Gamma(z + \frac{\sigma}{2}, \tau, \sigma)\Gamma(z + \frac{\tau + \sigma}{2}, \tau, \sigma)$$

$$\Gamma(z + \frac{1}{2}, \tau, \sigma)\Gamma(z + 1 + \frac{\tau}{2}, \tau, \sigma)\Gamma(z + 1 + \frac{\sigma}{2}, \tau, \sigma)\Gamma(z + 1 + \frac{\tau + \sigma}{2}, \tau, \sigma),$$

$$\Gamma(z, \tau, \sigma)\Gamma(z + \frac{1}{2}, 2\tau, \sigma) = \left(\frac{\theta_0(2\tau, \sigma)}{\theta_0(\tau, \sigma)}\right)^{2z-1} \Gamma(z, 2\tau, \sigma)\Gamma(z + \frac{1}{2}, 2\tau, \sigma),$$

see definitions below. The expression $\frac{\theta_0(z\tau, \sigma)}{\theta_0(\tau, \sigma)}$ is an elliptic analog of the number z. We have the trigonometric and rational limits of the theta function:

$$\frac{\theta_0(z\tau, \sigma)}{\theta_0(\tau, \sigma)} \xrightarrow{\sigma \to i\infty} \frac{1 - e^{2\pi i \tau z}}{1 - e^{2\pi i \tau}} \xrightarrow{\tau \to 0} z .$$

2. **Elliptic Gamma Function**

The *elliptic gamma function* is an elliptic generalization of the Euler gamma function. It is the meromorphic function of three complex variables z, τ, σ, with $\text{Im} \, \tau, \text{Im} \, \sigma > 0$ defined by the convergent infinite product

$$\Gamma(z, \tau, \sigma) = \prod_{j,k=0}^{\infty} \frac{1 - e^{2\pi i ((j+1)\tau + (k+1)\sigma - z)}}{1 - e^{2\pi i (j\tau + k\sigma + z)}} .$$
It is the unique solution of a functional equation involving the Jacobi theta function θ_0.

Theorem. [FV1] Suppose that τ, σ are complex numbers with positive imaginary part. Then $u(z) = \Gamma(z, \tau, \sigma)$ is the unique meromorphic solution of the difference equation

$$u(z + \sigma) = \theta_0(z, \tau) u(z)$$

such that:

(i) $u(z)$ obeys $u(z + 1) = u(z)$ and is holomorphic on the upper half plane $\text{Im} \, z > 0$,

(ii) $u((\tau + \sigma)/2) = 1$.

The elliptic gamma function first appeared in [R]. The modular properties of the elliptic gamma function and their relations to $SL(3, \mathbb{Z})$ are discussed in [FV1], appearances and applications of the elliptic gamma function can be found in [B, DP, JMN, JKKMW, FTV, FV2, FV3, FV4].

Let $\bar{\Gamma}$ be the function

$$\bar{\Gamma}(z, \tau, \sigma) = (q; q) \theta_0(\tau, \sigma)^{1-z} \Gamma(z\tau, \tau, \sigma), \quad q = e^{2\pi i\tau}, \quad r = e^{2\pi i\sigma}.$$

Then $u(z) = \bar{\Gamma}(z, \tau, \sigma)$ is a solution of the functional equation

$$u(z + 1) = \frac{\theta_0(\tau z, \sigma)}{\theta_0(\tau, \sigma)} u(z).$$

The normalization was chosen here so that $u(1) = 1$. As $\sigma \to i\infty$ we recover Jackson’s q-gamma function,

$$\Gamma_{\text{trig}}(z, \tau) = \lim_{\sigma \to i\infty} \bar{\Gamma}(z, \tau, \sigma).$$

3. Multiplication Formulas

3.1. The first multiplication formula.

Theorem. For any natural n we have

$$\Gamma(nz, \tau, \sigma) = \prod_{k_1, k_2, k_3 = 0}^{n-1} \Gamma(z + \frac{k_1 + k_2\tau + k_3\sigma}{n}, \tau, \sigma).$$
Proof. Let \(w = e^{2\pi i/n} \). Then the right hand side of this formula is

\[
\prod_{k_1,k_2,k_3=0}^{n-1} \prod_{l,m=0}^{\infty} \frac{1 - w^{-k_1}q^{l+\frac{n-k_3}{n}}r^{m+\frac{n-k_3}{n}}x^{-1}}{1 - w^{k_1}q^{l+\frac{k_3}{n}}r^{m+\frac{k_3}{n}}x} = \prod_{l,m=0}^{\infty} \frac{1 - q^{l+1}r^{m+1}x^{-n}}{1 - q^{n}r^{n}x^{-n}} = \Gamma(nz, \tau, \sigma).
\]

\[\square\]

3.2. The second multiplication formula.

Theorem. For any natural \(n \) we have

\[
\tilde{\Gamma}(nz, \tau, \sigma) \tilde{\Gamma}(\frac{1}{n}, n\tau, \sigma) \tilde{\Gamma}(\frac{2}{n}, n\tau, \sigma) \ldots \tilde{\Gamma}(\frac{n-1}{n}, n\tau, \sigma) = \left(\frac{\theta_0(n\tau, \sigma)}{\theta_0(\tau, \sigma)}\right)^{n-1} \Gamma(z, n\tau, \sigma) \Gamma(z + \frac{1}{n}, n\tau, \sigma) \Gamma(z + \frac{2}{n}, n\tau, \sigma) \ldots \Gamma(z + \frac{n-1}{n}, n\tau, \sigma) .
\]

The theorem is an easy consequence of the following two lemmas.

Lemma. For any natural \(m \) and \(n \), we have

\[
\Gamma(z, \tau, \sigma) = \prod_{a=0}^{m-1} \prod_{b=0}^{n-1} \Gamma(z + a\tau + b\sigma, m\tau, n\sigma) .
\]

Lemma. For any natural \(n \), we have

\[
\Gamma(\tau, n\tau, \sigma) \Gamma(2\tau, n\tau, \sigma) \ldots \Gamma((n-1)\tau, n\tau, \sigma) = \frac{1}{(q, q^n)(q^2, q^n)\ldots(q^{n-1}, q^n)} .
\]

References

[A] R. Askey, The \(q \)-gamma and \(q \)-beta functions, Applicable Anal. 8 (1978/79), no. 2, 125–141.

[B] R. J. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys., 70(1972) 193–228

[DP] B. Davies and I. Peschel, A unified treatment of Ising model magnetizations, Ann. Physik (1997) 187–214

[FTV] G. Felder, V. Tarasov and A. Varchenko, Solutions of the elliptic \(q \)KZB equations and Bethe ansatz I, Amer. Math. Soc. Transl. 180 (1997), 45–75; Monodromy of solutions of the elliptic Knizhnik-Zamolodchikov-Bernard difference equations, q-alg/9705017

[FV1] G. Felder and A. Varchenko, The Elliptic Gamma Function and \(SL(3, \mathbb{Z}) \ltimes \mathbb{Z}^3 \), Advances in Math. 156 (2000), 44–76.

[FV2] G. Felder and A. Varchenko, The \(q \)-deformed Knizhnik-Zamolodchikov-Bernard heat equation, Comm. Math. Phys. 221 (2001), no. 3, 549–571;
[FV3] G. Felder and A. Varchenko, *q-deformed KZB heat equation: completeness, modular properties and SL(3,\mathbb{Z})*, QA/0110081.

[FV4] G. Felder and A. Varchenko, *Even powers of divisors and elliptic zeta values*, math.QA/0205116.

[JMN] M. Jimbo, T. Miwa and A. Nakayashiki, *Difference equations for the correlation functions of the eight-vertex model*, J. Phys. A: Math. Gen. 26 (1993) 2199–2209.

[JKKMW] M. Jimbo, R. Kedem, H. Konno, T. Miwa and R. Weston, *Difference equations in spin chains with a boundary*, Nucl. Phys. B 448 [FS] (1995) 429–456.

[Ra] E. Rainville, *Special Functions*, Macmillan Co., 1960.

[R] S. N. M. Ruijsenaars, *First order analytic difference equations and integrable quantum systems*, J. Math. Phys. 38 (1997), no. 2, 1069–1146.