Porcine circovirus type 2 (PCV2) vaccines have become widely used since they became available in 2006. It is not uncommon for producers to use PCV2 vaccines in pigs younger than what is approved by manufacturers. The objective of this study was to determine the efficacy of a chimeric and a subunit PCV2 vaccine administered at 5 or 21 days of age. Forty-eight PCV2-naive piglets were randomly divided into six groups of eight pigs each. Vaccination was done at day 5 or day 21, followed by triple challenge with PCV2, porcine parvovirus (PPV), and porcine reproductive and respiratory syndrome virus (PRRSV) at day 49. Vaccinated pigs seroconverted to PCV2 approximately 14 days postvaccination and had a detectable neutralizing antibody response by 21 days postvaccination regardless of age at vaccination. At day 49, the pigs vaccinated with the chimeric vaccine had significantly higher levels of neutralizing antibodies than the pigs vaccinated with the subunit vaccine. After challenge, vaccinated pigs had significantly decreased levels of PCV2 viremia and a decreased prevalence and severity of microscopic lesions compared to the positive-control group, which had severe lymphoid lesions associated with abundant PCV2 antigen, compatible with PCV-associated disease. The results of this study indicate that, under the conditions of this study, vaccination of PCV2-naive pigs at day 5 or day 21 resulted in development of a detectable humoral immune response and provided reduction or complete protection against PCV2 viremia and PCV2-associated lesions after triple challenge with PCV2, PPV, and PRRSV.
managers prefer to vaccinate pigs at day 2 to day 5, which is when they are handling piglets for other reasons. There are concerns, ongoing discussions, and debate over whether the pig has a sufficiently mature immune system at this age and if passively acquired antibodies interfere with vaccination. Therefore, if vaccination against pathogens such as PCV2 is proven to be effective in pigs less than 1 week of age, this ultimately could lead to substantial changes in vaccination protocols on many farms.

The objective of this study was to determine the efficacy of two commercial PCV2 vaccines, an inactivated chimeric vaccine and a subunit vaccine, at day 5 and day 21, in a triple challenge model with PCV2, PPV, and PRRSV. The triple challenge model was used to mimic field conditions where coinfections with PCV2, PPV, and PRRSV are commonly observed (7, 8, 35, 36).

MATERIALS AND METHODS

Animals and housing. Forty-eight conventional cross-bred pigs were derived from six sows from a breeding herd known to be free of PCV2, PRRSV, and PPV as determined by routine serology conducted monthly. At 4 days of age, while still on the dam, all pigs were ear tagged and randomly assigned to one of six treatment groups within each litter so that at least one pig from each sow was in a given treatment group. The pigs were weaned at approximately 14 days of age and transported to the research facility. Upon arrival at the Iowa State University Livestock Infectious Disease Isolation Facility, the pigs were separated into four rooms: one room for the negative-control group, one room for the positive-control group, one room for both groups receiving the inactivated chimeric vaccine, and one room for both groups receiving the subunit vaccine. Pigs were housed in pens on a concrete floor that was cleaned once daily. Each room had separate ventilation systems and one nipple drinker. The vaccinated pigs were separated in two pens placed on opposite sides of the room according to timing of vaccination and transported to the research facility. Upon arrival at the Iowa State University Institutional Biosafety Committee (IBC 09-I-0030-A). The 48 pigs were randomized into groups of 8 pigs. The timeline of the experiment is summarized in Fig. 1. At day 5, 16 pigs were vaccinated with one of two PCV2 vaccines: an inactivated chimeric vaccine (chimeric-d5) or a viral subunit vaccine (subunit-d5). Similarly at day 21, 16 pigs were vaccinated with the inactivated chimeric vaccine (chimeric-d21) or a subunit vaccine (subunit-d21). Upon arrival to the research facility, blood was collected at weekly intervals until termination of the project at week 10. The blood samples were collected in serum separator tubes (Becton Dickinson vacutainer; 8.5 ml) and centrifuged at 2,000 × g for 10 min at 4°C, and the serum was separated into two aliquots and stored at −80°C until testing. All pigs, except for the negative-control group, were inoculated with PPV, PRRSV, and PCV2b at day 49, and all pigs were euthanized for necropsy at day 70.

Clinical evaluations. Upon arrival at the research facility the pigs were individually examined and then monitored daily for clinical signs of disease, such as inappetence, lethargy, lameness, and respiratory disease.

Vaccination. The inactivated chimeric vaccine used in this study was Suvaxyn PCV2 (serial number 1861229A; Fort Dodge Animal Health, Inc.). The subunit vaccine was Ingelvac CircoFLEX (serial number 309-136; Boehringer Ingelheim Vetmedica). Each of the pigs in the vaccinated groups received 2 ml of Suavaxyn PCV2 or 1 ml of Ingelvac CircoFLEX vaccine intramuscularly into the right neck via a 0.77-mm 22-gauge needle. Vaccination was done at day 5 or day 21.

PCV2b, PPV, and PRRSV inoculation. All pigs, excluding the negative-control group, were inoculated at day 49 with PCV2b, PPV, and PRRSV.

PCV2 inoculation. The PCV2 inoculum consisted of PCV2b isolate NC-16845 (32), which was propagated on PK-15 cells to a titer of 10^4.5 50% tissue culture infective doses (TCID50) per ml. PCV2 inoculation was done by administering 1 ml of the inoculum intramuscularly into the right neck and slowly dripping 2 ml of the inoculum intranasally (1 ml per nostril) while the pig was held in the upright position.

PPV inoculation. The PPV inoculum consisted of a tissue homogenate containing strain NADL-8 at a titer of 10^10.0 TCID50 per ml (25). PPV inoculation was done by slowly dripping 1 ml of inoculum intranasally while the pig was held in the upright position.

PRRSV inoculation. The PRRSV inoculum consisted of PRRSV isolate ATCC VR2385 (15). PRRSV was propagated on MARC-145 cells to the seventh passage at a titer of 10^7.0 TCID50 per ml. PRRSV inoculation was done by slowly dripping 2.5 ml of inoculum intranasally while the pig was held in the upright position.

Serology. (i) **PCV2.** All pig sera, from day 21 to day 70, were tested for anti-PCV2 antibodies by a PCV2 capsid protein-based enzyme-linked immunosorbent assay (ELISA) as previously described (28). A sample-to-positive (S/P) ratio of greater than or equal to 0.2 was considered positive. A fluorescent focus neutralization (FFN) assay was performed on serum samples collected 21 days after vaccination for all vaccinated pigs and at the day of challenge (day 49) for all pigs for the detection of neutralizing antibodies, using a previously described method (37).

(ii) **PPV.** The anti-PPV IgG antibodies were detected in serum from day 49 and day 70 via a hemagglutination inhibition (HI) assay, as previously described (26).

(iii) **PRRSV.** All pig sera from day 49 and day 70 were tested for anti-PRRSV antibodies by ELISA (PRRS X3Ab test; IDEXX Laboratories Inc., Westbrook, MA) according to the manufacturer’s instructions. An S/P ratio of 0.4 was used as the minimum positive cutoff value.

Quantitative real-time PCR assays. (i) **Total nucleic acid extraction.** All day 49, day 56, day 63, and day 70 serum samples were extracted using a total nucleic acid extraction kit (MagMAX viral isolation kit; Applied Biosystems, Foster City, CA).

![Figure 1](http://cvi.asm.org/)
CA) with the KingFisher Flex magnetic particle processor extraction system (Thermo Fisher Scientific, Waltham, MA).

(ii) PCV2. PCV2 viremia was determined by the detection of the presence and amount of viral DNA in serum samples from all pigs on day 49, day 56, day 63, and day 70 via quantitative PCR using the same primers and probes as previously described (42). This was done in a 7500 fast real-time PCR system (Applied Biosystems, Foster City, CA). A final 25-μl volume containing 2.5 μl of extracted DNA was processed under the following thermocycler conditions: 2 min at 50°C and 10 min at 95°C, followed by 40 cycles of 15 s at 95°C and 1 min at 60°C.

(iii) PPV. Viremia for PPV was determined by detection of the presence and amount of PPV DNA in serum samples collected on day 49, day 56, day 63, and day 70 via quantitative real-time PCR as previously described (42). The final volume of the reaction mixture was 25 μl, which consisted of 12.5 μl of commercially available master mix (TaqMan Universal PCR master mix; PE Applied Biosystems) with a final volume of 2 μl of each primer, 0.5 μl of nuclease-free water, and 8 μl of either PPV2 specific PCR probe mix, 1.25 μl of 20× multiplex primer mix, 0.75 μl of nuclease-free water, and 8 μl of either PRRSV RNA from the previous extraction or standards. The thermocycler conditions were as follows: 2 min at 50°C and 10 min at 95°C, followed by 40 cycles of 15 s at 95°C and 1 min at 60°C.

(iv) PRRSV. Quantitative real-time reverse transcription-PCR (RT-PCR) for PRRSV viremia was performed on serum samples collected on day 56, day 63, and day 70 using the TaqMan NA and EU PRRSV reagents (Applied Biosystem) as previously described (42). PRRSV RNA presence and quantity were identified with real-time RT-PCR by utilizing TaqMan NA and EU PRRSV reagents (Applied Biosystem) with a final volume of 25 μl containing 12 μl of 2× multiplex RT-PCR buffer, 2.5 μl of 10× PRRSV primer probe mix, 1.25 μl of 20× multiplex reaction mix, 0.75 μl of nuclease-free water, and 8 μl of either PRRSV RNA from the previous extraction or standards. The thermocycler conditions were as follows: 10 min at 45°C and 10 min at 95°C, followed by 40 cycles of 15 s at 95°C and 1 min at 60°C.

RESULTS

Clinical disease. After challenge, triple-challenged pigs in all groups developed mild to severe respiratory disease characterized by sneezing, increased respiratory rates, and clear nasal discharge. A portion of the triple-challenged pigs also became lethargic.

Seroconversion against PCV2, PPV, and PRRSV.

(i) PCV2. The negative-control pigs remained seronegative until termination of the study (Fig. 2A). Seroconversion to PCV2 in the vaccinated groups was similar for the day 5 (Fig. 2B) and day 21 (Fig. 2C) groups. By 14 days postvaccination, 2/8 subunit-d5, 3/8 subunit-d21, 7/8 chimeric-d5, and 8/8 chimeric-d21 animals had seroconverted; by 21 days after vaccination all vaccinated pigs except 2/8 subunit-d21 animals had seroconverted; by 28 days after vaccination all vaccinated pigs were seropositive for PCV2. There was a trend to lower levels of detectable anti-PCV2 IgG in pigs vaccinated with the subunit vaccine compared to those vaccinated with the chimeric vaccine, and this was independent of age of vaccination (Fig. 2B and C). The mean amounts of neutralizing antibody levels 21 days postvaccination were similar in pigs vaccinated at day 5 (mean log10 titers of 1.42 ± 0.16) (± standard error [SE]) and day 21 (1.56 ± 0.12); however, there was a significant difference when the data were analyzed by product (2.01 ± 0.14 for the chimeric vaccine and 1.39 ± 0.11 for the subunit vaccine).

As expected, when the data were evaluated by day of age rather than by days after vaccination, vaccination at day 5 resulted in significantly (P < 0.05) higher anti-PCV2 IgG levels from day 21 until day 42; however, there were no differences between the day 5- and day 21-vaccinated groups thereafter (Fig. 2A). At day 21, anti-PCV2 IgG was detected in 25% (2/8) of the subunit-d5 pigs and 87.5% (7/8) of the chimeric-d5 pigs. The prevalence of seropositive pigs was 100% at day 28 for the day 5-vaccinated pigs and 18.8% (3/16) for the day 21-vaccinated pigs. All pigs in these groups were seropositive for PCV2 by day 42. Regardless of timing of vaccination, the chimeric vaccine induced significantly (P < 0.05) higher levels of neutralizing antibodies at day 49 than the subunit vaccine, with mean group log10 titers of 2.38 ± 0.18 for the chimeric vaccine compared to 1.82 ± 0.12 for the subunit vaccine. Positive-control pigs started to seroconvert by day 63 (62.5%; 5/8 pigs) and day 70 (75%; 6/8 pigs) as detected by ELISA.

(ii) PPV. All groups were negative for anti-PPV antibodies on the day of challenge (day 49), and the nonchallenged negative controls remained negative until day 70. All pigs challenged with PPV seroconverted by day 70; however, 2/8 positive-control pigs had noticeably lower titers (1:2,048) than all other pigs (1:4,096 to >16,384). Overall, the mean group PPV titers of the PPV-challenged animals were not different among treated groups (data not shown).

Downloaded from http://cvl.asm.org/ on July 20, 2018 by guest
TABLE 1. Prevalence and mean log_{10} PCV2 DNA in pigs challenged with PCV2 at age 49 days.

Group	Prevalence (mean level ± SE)* of log_{10} PCV2 DNA on day:						
	56	63	70				
Subunit-d21	1/8	0.7	0.7	0/8	0.0	0/8	0.0
Subunit-d5	0/8	0.0	0/8	0/8	0/8	0/8	0/8
Chimeric-d21	1/8	0.6	0.6	0/8	0.0	0/8	0.0
Chimeric-d5	0/8	0.0	0/8	0/8	0/8	0/8	0/8
Positive controls	7/8	4.1	0.6	8/8	7.1	0.3	8/8

* Different superscript capital letters (A, B, and C) within a column indicate significantly ($P < 0.05$) different amounts of group mean PCV2 DNA.

(iii) PRRSV. All pigs in all groups were negative for anti-PRRSV IgG on the day of challenge (day 49), and the non-challenged negative controls remained negative until day 70. The majority of the pigs challenged with PRRSV seroconverted by day 70, with the exception of 2/8 positive-control pigs. Overall, the mean group anti-PRRSV IgG S/P ratios of the PRRSV-challenged pigs were not different among groups (data not shown).

PCV2, PPV, and PRRSV viremia. (i) PCV2. All pigs were negative for PCV2 DNA at the day of challenge (day 49), and the negative-control pigs remained negative for PCV2 DNA in serum until termination of the study at day 70. The prevalence and the log_{10} mean group amount of PCV2 DNA in the challenged groups are summarized in Table 1. All vaccinated groups had significantly ($P < 0.05$) smaller amounts of PCV2 DNA in serum than the positive-control group. When the data were divided based on age of vaccination, no evidence of an effect of age at vaccination on PCV2 viremia was seen. However, pigs vaccinated with the chimeric vaccine had significantly lower mean amounts of PCV2 genomic copies in serum samples on day 63 ($P = 0.021$) and day 70 ($P = 0.03$) than those vaccinated with the subunit vaccine. After challenge, PCV2 viremia was reduced by 75.4% to 100% in the vaccinated groups compared to the positive-control group.

(ii) PPV. All pigs were negative for PPV DNA at the day of challenge (day 49), and the negative-control pigs remained negative until the termination of the study. The prevalence of PPV DNA positive pigs at day 56 was 100% for subunit-d5 and subunit-d21, and it was 88.9% (7/8) for the chimeric-d5, chimeric-d21, and the positive-control groups. The overall prevalence rate of PPV DNA-positive animals was 68.8% (33/48) by day 63 and 20.8% (10/48) by day 70, with no significant differences among groups.

(iii) PRRSV. All pigs were negative for PRRSV RNA at the day of challenge (day 49), and the negative-control pigs remained PCR negative throughout the study. PRRSV RNA was detected in all PRRSV-challenged pigs on day 56, day 63, and day 70 without significant differences in the mean group PRRSV RNA levels among the challenged groups, regardless of vaccination status.

Gross lesions. There were no visible gross lesions in the noninfected control pigs. A portion of the triple-challenged pigs, regardless of vaccination status, had moderate to severe mottled, tan-colored, consolidated areas of lung tissue involving up to 51% of the lung surface. A portion of the pigs had lymph nodes that were up to three times the normal size. There were no significant differences in gross lesions between challenged pigs.

Microscopic lesions and presence of PCV2 antigen in tissues. The majority of the pigs developed mild to severe interstitial pneumonia lesions characterized by thickening of alveolar septa by macrophages and lymphocytes and mild to severe type 2 pneumocyte hypertrophy and hyperplasia. The mean group interstitial pneumonia scores ranged from 3.0 ± 0.1 to 3.6 ± 0.4 in the triple-challenged groups and were significantly higher ($P < 0.05$) than for the negative-control group (0.8 ± 0.1). Lymphoid lesions, if present, were characterized by mild to severe lymphoid depletion and mild to severe histiocytic replacement of lymphoid follicles.

The prevalence rates of PCV2 antigen and overall lymphoid lesion scores for the different groups are summarized in Table 2. The majority of vaccinated pigs had no remarkable lesions and were considered normal. Individual vaccinated pigs (7/32) had an overall lesion score of 1 or 2. In the positive-control group, 25% (2/8) of the pigs had microscopic lesions compatible with PCVAD associated with abundant amounts of PCV2 antigen and an overall lymphoid score of 9; 37.5% (3/8) of the pigs had moderate lymphoid lesions; the remaining 37.5% (3/8) of the pigs had no to mild lymphoid lesions.

DISCUSSION

The main objective of this study was to determine the efficacy of PCV2 vaccination at an earlier age than recommended

![FIG. 2. (A) Mean group PCV2 ELISA S/P ratios (± SE) on serum collected from piglets vaccinated at day of age 5 (d5) or 21 (d21) or nonvaccinated and challenged with PCV2, PPV, and PRRSV at day 49, which corresponds to 44 days after vaccination for day 5 piglets and 28 days after vaccination for day 21 piglets. An S/P ratio of 0.2 or greater was considered seropositive. Significant differences among groups on a certain day are indicated by different letters (A, B, and C). (B) Comparison of subunit-d5 and chimeric-d5 pigs at different days postvaccination. Significant differences among groups on a certain day are indicated by an asterisk. (C) Comparison of subunit-d21 and chimeric-d21 pigs at different days postvaccination. Significant differences among groups on a certain day are indicated by an asterisk.](http://cvl.asm.org/Downloaded from on July 20, 2018 by guest)
by the vaccine manufacturers. Several research groups have studied the efficacy of commercial PCV2 vaccines in pigs singularly infected with PCV2 (30, 31) or in pigs concurrently infected with multiple pathogens (33, 42). In all previous studies, vaccination was done according to the manufacturer’s label instructions. To our knowledge, this is the first controlled experimental study to test the efficacy of commercial vaccines used at less than 3 weeks of age in a manner not approved by the manufacturer; however, this regimen mimics what is commonly done in the field in the United States. Many producers prefer to vaccinate with a single-dose PCV2 product while piglets are undergoing castration, iron shots, tail docking, and teeth clipping between 2 and 5 days of age. However, there is concern that the immune system may not be mature enough to effectively respond to the vaccinations, potentially resulting in decreased vaccine efficacy and duration of immunity. To evaluate the benefits and shortcomings of early vaccination, this study entailed use of piglets blocked by litter and randomly assigned to early vaccination (day 5), regular vaccination (day 21), or no-vaccination (positive- and negative-control) groups.

After challenge, PCV2 viremia and associated lesions were similarly reduced in all vaccinated pigs regardless of timing of vaccination, indicating that day 5 pigs are capable of mounting a protective immune response. Vaccinated pigs were protected from development of PCV2-associated lesions independent of timing of vaccination, further indicating that both day 5 and day 21 vaccination protocols with either vaccine were effective. The pig immune system is unique in many ways that may be responsible for its ability to develop protective immunity from early vaccination. These factors include the full-length complementarity-determining region 3 (CDR3) of the heavy chain of immunoglobulin (4), limited genetic combinatorial preimmune repertoire development (4), and the absence of true gene conversion sometimes seen in other species (44). The above-mentioned characteristics of the pig immune system combined with the results of this study demonstrate that the 5-day-old suckling pig is indeed capable of mounting a protective immune response against PCV2 challenge.

The current study was done in PCV2-naive pigs; however, under field conditions most pigs will be seropositive due to the ubiquitous nature of PCV2 and high levels of anti-PCV2 antibodies in colostrum. Interference with vaccination against swine influenza virus associated with the presence of passively acquired antibodies has been documented (3, 23, 27, 38); however, evidence of passive antibody interference with PCV2 vaccination has not been confirmed under experimental conditions (30). Furthermore, PCV2 vaccines have been highly effective in the field, and almost all pigs are seropositive to PCV2 at the time of PCV2 vaccination (9, 19, 21, 41). In experimental PCV2 challenge models, outcomes are often similar between vaccine treatment groups (11, 24), and conclusions often lack power. Passively acquired antibodies in many instances decrease PCV2 viremia and prevent the development of clinical disease under controlled experimental conditions. PCV2 viremia and expression of clinical disease are often the main outcomes used for vaccine efficacy comparisons; however, when using animals with maternally derived anti-PCV2 antibodies, a much larger sample size may be required to demonstrate differences. Although the antibody-negative status of the pigs in the current study did not necessarily mimic what occurs with the majority of pigs in the field, studies performed in PCV2 antibody-free and PCV2 virus-free pigs are an important first step to increasing our understanding of potential advantages and disadvantages of early vaccination regimens.

To determine if there were differences in the efficacy of one vaccine over another, two different products were used side by side in this study. Several previous studies had been performed to determine the efficacy of PCV2 subunit vaccines and chimeric PCV2 vaccines (10, 12, 43). In these studies, vaccinated animals were shown to have strong antibody responses associated with decreased PCV2 viremia after challenge. Similarly, in our study the vaccinated animals, regardless of the type of PCV2 vaccine used, all developed a detectable antibody response and protective immunity as evidenced by significantly decreased PCV2 viremia and a decreased incidence and severity of lesions compared to the positive-control group. However, pigs vaccinated with the chimeric product had a stronger anti-PCV2 IgG response that was independent of age at vaccination and a lower prevalence of PCV2 viremic animals at day 63 and day 70 than pigs vaccinated with the subunit product. Moreover, and similar to a previous study using single-dose vaccination (42), vaccination with the chimeric product was associated with production of a stronger neutralizing antibody response than vaccination with the subunit vaccine.

In summary, under the conditions of this study, vaccination with chimeric or subunit PCV2 vaccines at 5 or 21 days of age induced a protective immune response in PCV2-naive pigs as demonstrated by development of anti-PCV2 antibodies and reductions of PCV2 viremia and PCV2-associated lesions in a triple challenge model with PCV2, PPV, and PRRSV.

ACKNOWLEDGMENTS

This study was funded by the National Pork Board Pork Checkoff Dollars. We thank Shayleen Schalk for assistance with the animal work.

REFERENCES

1. Allan, G. M., et al. 1999. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J. Comp. Pathol. 121:1–11.
2. Allan, G. M., et al. 2000. Experimental infection of colostrum deprived piglets with porcine circovirus 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) potentiates PCV2 replication. Arch. Virol. 145:2421–2429.
3. Blaskovic, D., et al. 1970. Experimental infection of weaning pigs with A-swine influenza virus. 3. Immunity in piglets farrowed by antibody-bearing dams experimentally infected a year earlier. Bull. World Health Organ. 42:771–777.
4. Butler, J. E. 2009. Isolator and other neonatal piglet models in development of porcine circovirus 2 and other nonenveloped viruses. Annu. Health Res. Rev. 10:35–52.
5. Dulac, G. G., and A. Afshar. 1989. Porcine circovirus antigens in PK-15 cell line (ATCC CCL-33) and evidence of antibodies to circovirus in Canadian pigs. Can. J. Vet. Res. 53:431–433.
6. Edwards, S., and J. J. Sands. 1994. Evidence of circovirus infection in British pigs. Vet. Rec. 134:680–681.
7. Ellis, J., et al. 2004. Porcine circovirus-2 and concurrent infections in the field. Vet. Microbiol. 98:159–163.
8. Ellis, J. A., et al. 2000. Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome. J. Vet. Diagn. Invest. 12:21–27.
9. Fachinger, V., R. Bischoff, S. B. Jedidia, A. Saalmüller, and K. Elbers. 2009. Porcine circovirus type 2 (PCV2) cloned into the genomic backbone of the pathogenic PCV type 2 (PCV2) cloned into the genomic backbone of the
nonpathogenic PCV1 induces protective immunity against PCV2 infection in pigs. J. Virol. 78:6297–6303.

11. Fort, M., et al. 2008. Porcine circovirus type 2 (PCV2) vaccination of conventional pigs prevents viremia against PCV2 isolates of different genotypes in geographically diverse locations. Vaccine 26:1063–1071.

12. Fort, M., et al. 2009. One dose of a porcine circovirus 2 (PCV2) sub-unit vaccine administered to 3-week-old conventional piglets elicits cell-mediated immunity and significantly reduces PCV2 viremia in an experimental model. Vaccine 27:4914–4920.

13. Gagnon, C. A., N. Music, G. Fontaine, D. Tremblay, and J. Harel. 2010. Emergence of a new type of porcine circovirus in swine (PCV): a type 1 and type 2 PCV recombinant. Vet. Microbiol. 144:18–23.

14. Gillespie, J., T. Opriessnig, X. J. Meng, K. Pelzer, and V. Buechner-Maxwell. 2009. Porcine circovirus type 2 and porcine circovirus-associated disease. J. Vet. Intern. Med. 23:1151–1163.

15. Halbur, P. G., et al. 1995. Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. Vet. Pathol. 32:668–660.

16. Harding, J., and E. Clark. 1997. Recognizing and diagnosing postweaning multisystemic wasting syndrome (PMWS). Swine Health Prod. 5:201–203.

17. Harms, P. A., P. G. Halbur, and S. D. Sorden. 2002. Three cases of porcine respiratory disease complex associated with porcine circovirus type 2 infection. J. Swine Health Prod. 10:27–30.

18. Harms, P. A., et al. 2001. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet. Pathol. 38:528–539.

19. Horlen, K. P., et al. 2008. A field evaluation of mortality rate and growth performance in pigs vaccinated against porcine circovirus type 2. J. Am. Vet. Med. Assoc. 232:906–912.

20. Kim, J., Y. H. Jung, C. Choi, and C. Chae. 2004. Enteritis associated with porcine circovirus 2 in pigs. Can. J. Vet. Res. 68:218–221.

21. Kismöller, M., et al. 2008. Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine 26:3443–3451.

22. Kravzovka, S., et al. 2000. Viral wasting syndrome of swine: experimental reproduction of postweaning multisystemic wasting syndrome in gnotobiotic swine by coinfection with porcine circovirus 2 and porcine parvovirus. Vet. Pathol. 37:254–263.

23. Looft, W. L., P. P. Heinen, A. T. Bianchi, W. A. Hunneman, and J. H. Verheijden. 2003. Effect of maternally derived antibodies on the clinical signs and immune response in pigs after primary and secondary infection with an influenza H1N1 virus. Vet. Immunol. Immunopathol. 92:23–35.

24. Lyoo, K., et al. 2011. Comparative efficacy of three commercial PCV2 vaccines in conventionally reared pigs. J. Vet. 189:58–62.

25. Mengeling, W. L., T. T. Brown, P. S. Paul, and D. E. Gutekunst. 1979. Efficacy of an inactivated virus vaccine for prevention of porcine parvovirus-induced reproductive failure. Am. J. Vet. Res. 40:204–207.

26. Mengeling, W. L., J. F. Ridpath, and A. C. Vorwald. 1988. Size and antigenic comparisons among the structural proteins of selected porcine parvovirus isolates. J. Gen. Virol. 69:825–837.

27. Mensik, J., and J. Pokorny. 1971. Development of antibody response to swine influenza virus in pigs. I. The influence of experimental infection of pregnant sows on serum antibody production by their progeny during postnatal development. Zentralbl. Veterinarmed. B 18:177–189.

28. Nawagtitul, P., et al. 2002. Modified indirect porcine circovirus (PCV) type 2-based and recombinant capsid protein (ORF2)-based enzyme-linked immunosorbent assays for detection of antibodies to PCV. Clin. Diagn. Lab. Immunol. 9:33–40.

29. Opriessnig, T., et al. 2006. Evidence of breed-dependent differences in susceptibility to porcine circovirus type 2-associated disease and lesions. Vet. Pathol. 43:281–293.

30. Opriessnig, T., A. R. Patterson, J. Elsener, X. J. Meng, and P. G. Halbur. 2008. Influence of maternal antibodies on efficacy of porcine circovirus type 2 (PCV2) vaccination to protect pigs from experimental infection with PCV2. Clin. Vaccine Immunol. 15:397–401.

31. Opriessnig, T., et al. 2010. Comparison of the effectiveness of passive (dam) versus active (piglet) immunization against porcine circovirus type 2 (PCV2) and impact of passively derived PCV2 vaccine-induced immunity on vaccination. Vet. Microbiol. 142:177–183.

32. Opriessnig, T., et al. 2008. Differences in virulence among porcine circovirus type 2 isolates are unrelated to cluster type 2a or 2b and prior infection provides heterologous protection. J. Gen. Virol. 89:2482–2491.

33. Opriessnig, T., H. G. Shen, N. Pal, S. Ramamooorthy, and P. G. Halbur. 2011. A live-attenuated chimeric PCV2 vaccine is transmitted to coincubated pigs but is not upregulated by concurrent infection with PPV and PRRSV and is efficacious in a PCV2a-PRRSV-PPV challenge model. Clin. Vaccine Immuno. 18:1261–1268.

34. Opriessnig, T., et al. 2004. Experimental reproduction of postweaning multisystemic wasting syndrome in pigs by dual infection with Mycoplasma hyopneumoniae and porcine circovirus type 2. Vet. Pathol. 41:562–640.

35. Pallarés, F. J., et al. 2002. Porcine circovirus type 2 (PCV-2) coinfections in US field cases of postweaning multisystemic wasting syndrome (PMWS). J. Vet. Diagn. Invest. 14:515–519.

36. Pogranichniy, R. M., K. J. Yoon, P. A. Harms, S. D. Sorden, and M. Daniels. 2002. Case-control study on the association of porcine circovirus type 2 and other swine viral pathogens with postweaning multisystemic wasting syndrome. J. Vet. Diagn. Invest. 14:449–456.

37. Pogranichniy, R. M., et al. 2000. Characterization of immune response of young pigs to porcine circovirus type 2 infection. Viral Immunol. 13:143–153.

38. Renshaw, H. W. 1975. Influence of antibody-mediated immune suppression on viral, cellular, and immune responses to swine influenza infection. Am. J. Vet. Res. 36:5–13.

39. Rousso, K. D. 1998. Porcine reproductive and respiratory syndrome. Vet. Pathol. 35:1–20.

40. Sheng, H. G., et al. 2002. Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2. J. Virol. 76:3232–3239.

41. Segales, J., et al. 2009. A genetically engineered chimeric vaccine against porcine circovirus type 2 (PCV2) improves clinical, pathological and virological outcomes in postweaning multisystemic wasting syndrome affected farms. Vaccine 27:7313–7321.

42. Shen, H. G., et al. 2010. Comparison of commercial and experimental porcine circovirus type 2 (PCV2) vaccines using a triple challenge with PCV2, porcine reproductive and respiratory syndrome virus (PRRSV), and porcine parvovirus (PPV). Vaccine 28:5960–5966.

43. Shen, H. G., et al. 2008. Protective immunity against porcine circovirus 2 by vaccination with ORF2-based DNA and subunit vaccines in mice. J. Gen. Virol. 89:1857–1865.

44. Sinkora, M., et al. 2003. Antibody repertoire development in fetal and neonatal piglets. VI. B cell lymphogenesis occurs at multiple sites with differences in the frequency of in-frame rearrangements. J. Immunol. 170:1781–1788.

45. Sorden, S. D., P. A. Harms, P. Nawagtitul, D. Cavanaugh, and P. S. Paul. 1999. Development of a polyvalent-antibody-based immunohistochemical method for the detection of type 2 porcine circovirus in formalin-fixed, paraffin-embedded tissue. J. Vet. Diagn. Invest. 11:526–530.

46. Tischer, I., H. Gelderblom, W. Vettermann, and M. A. Koch. 1982. A very small porcine virus with circular single-stranded DNA. Nature 295:328–330.