Data Article

Data on analysis of temperature inversion during spontaneous combustion of coal

Jun Guo a, b, c, *, Hu Wen a, b, c, Yin Liu a, b, **, Yongfei Jin a, b, c

a School of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an, 710054, China
b Key Laboratory of Western Mine and Hazard Prevention, Ministry of Education of China, Xi’an, 710054, China
c State Mine Emergency Rescue (Xi’an) Research Center, Xi’an, 710054, China

Article info

Article history:
Received 20 April 2019
Received in revised form 13 July 2019
Accepted 16 July 2019
Available online 24 July 2019

Keywords:
Coal spontaneous combustion
Temperature-programmed experiments
Various index gases
Environmental pollution control

Abstract

Data in this article presents the characteristic parameters of spontaneous combustion of coal with different ranks, including lignite, long flame coal, and anthracite. The coal samples were tested by the temperature programmed method. The gas concentration data produced at different temperature points during the heating process are obtained. Through monitoring the spontaneous combustion of coal in a coal mine, the field data in goaf are obtained. Through processing on the data from the experiment and field, three gas indices were obtained, which include CO/CO2, Graham value and Alkane ratio. The data is made available for further use and for furthering the understanding of the key findings of the related research, such as the early warning for spontaneous combustion of coal. For more insight please see A method for evaluating the spontaneous combustion of coal by monitoring various gases (Guo et al., 2019).

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The data shared in this paper include the gas data of coal samples acquired by the temperature programmed test, the field data from a coal mine with the spontaneous combustion of the coal seam, and processed data of the above data. The gas data (O₂, N₂, CO, CO₂, CH₄, C₂H₆, C₂H₄) of anthracite, lignite and two long-flame coal obtained through experimental tests, as shown in Tables 1–4. The field observation data is shown in Table 5, come from a goaf of coal seam where spontaneous combustion occurred. This coal seam belongs to a coal mine in Shaanxi province. What’s more, the three index parameter data (CO/CO₂, Graham value, chain alkane ratio) calculated from the index gas, as shown in Table 6 and Table 7.

2. Experimental design, materials and methods

2.1. Experimental design

2.1.1. Sample preparation

Select lignite, long flame coal, and anthracite, collect fresh exposed coal blocks in working face, crush them in air, sift out 200 g coal samples with particle size of 0–0.9 mm, 0.9–3 mm, 3–5 mm, 5–7 mm and 7–10 mm, mix them into 1000g samples, numbered 1–4#, and prepare for sealed storage test. The sample preparation process is shown in Fig. 1.
Table 1
Experimental data in lignite heating process.

Temperature/°C	O₂/%	N₂/%	CO/ppm	CO₂/ppm	CH₄/ppm	C₂H₆/ppm	C₂H₄/ppm
30	20.42	79.36	14.83	988.67	6.08	0.88	–
40	20.30	78.91	34.93	1397.20	9.11	1.24	–
50	19.95	78.73	101.20	3264.52	11.11	1.46	–
60	18.54	79.24	257.10	11178.26	11.81	1.66	–
70	16.78	80.31	454.40	18176.00	4.90	1.14	–
80	14.35	82.20	814.00	26258.07	1.70	3.22	–
90	14.11	82.82	1183.00	30333.33	1.96	5.62	–
100	13.41	83.31	1042.00	27421.05	1.82	4.29	–
110	12.89	82.82	11850.00	96341.46	2.54	7.45	–
120	10.86	84.47	1725.00	39204.55	3.02	13.90	–
130	4.92	88.83	2875.00	55288.46	4.64	23.30	–
140	1.93	89.20	4746.00	69794.12	22.49	17.92	–
150	1.27	88.38	7227.00	83068.97	5.48	20.62	–
160	1.16	88.29	9431.00	26258.07	6.44	1.70	3.22
170	1.13	87.91	11850.00	96341.46	7.01	23.61	–

Table 2
Experimental data in anthracite heating process.

Temperature/°C	O₂/%	N₂/%	CO/ppm	CO₂/ppm	CH₄/ppm	C₂H₆/ppm	C₂H₄/ppm
30	20.64	78.61	6.64	2088.68	4.32	2.57	–
40	20.79	78.40	7.91	1869.50	7.96	3.19	–
50	20.83	78.22	8.89	1760.00	8.34	3.57	–
60	20.53	78.22	21.90	2585.60	11.85	4.76	–
70	20.10	78.38	50.80	4673.41	13.24	5.26	–
80	19.44	79.22	94.90	6856.94	15.57	6.44	–
90	18.82	79.51	159.90	9095.56	19.34	9.44	–
100	18.74	79.47	216.40	7781.37	24.78	10.26	–
110	18.81	80.52	310.00	5145.23	27.81	14.56	7.93
120	18.76	80.51	427.40	3810.97	34.16	18.72	9.78
130	18.37	80.61	628.10	3392.20	43.64	22.03	11.87
140	17.66	80.34	955.50	4562.17	56.59	28.89	14.83
150	15.37	82.29	1783.00	8319.72	75.74	33.90	17.53
160	14.27	83.50	2477.00	10250.79	83.15	36.13	22.33
170	11.64	86.38	3732.00	12462.02	95.26	48.93	30.13

Table 3
Experimental data in long flame coal (1#) heating process.

Temperature/°C	O₂/%	N₂/%	CO/ppm	CO₂/ppm	CH₄/ppm	C₂H₆/ppm	C₂H₄/ppm
30	20.85	78.66	6.50	664.15	10.71	4.03	–
40	20.77	78.17	14.62	731.00	10.86	6.08	–
50	20.65	78.40	38.12	953.00	10.89	13.65	–
60	20.61	78.27	58.51	1244.89	12.21	16.68	–
70	20.07	78.31	156.20	2947.17	13.37	18.00	–
80	19.71	79.27	294.00	3500.00	14.58	20.86	–
90	18.42	80.39	526.00	3867.65	14.69	23.35	–
100	17.40	81.85	817.50	5413.91	15.98	23.87	–
110	16.74	81.24	1174.00	5870.00	16.17	24.81	1.03
120	16.47	82.10	1870.00	9303.48	17.10	24.91	1.34
130	17.60	80.64	2106.00	9360.00	18.22	29.39	3.83
140	16.18	80.72	3433.00	13203.85	34.58	31.23	9.24
150	11.43	84.11	9226.00	25310.69	83.14	33.65	13.38
160	10.39	85.07	11450.00	24361.70	123.15	34.81	16.33
170	9.69	85.51	13950.00	27493.64	155.80	36.22	24.25
Table 4
Experimental data in long flame coal (2#) heating process.

Temperature/°c	O₂/%	N₂/%	CO/ppm	CO₂/ppm	CH₄/ppm	C₂H₆/ppm	C₂H₄/ppm
30	20.78	78.73	3.25	160.29	2.37	1.03	–
40	20.30	79.07	11.86	966.80	2.39	1.35	–
50	20.64	78.45	17.18	580.60	2.47	2.31	–
60	20.09	78.76	54.32	1522.42	2.58	2.69	–
70	20.21	79.21	83.07	1560.59	2.63	3.66	–
80	19.65	79.33	187.20	3657.68	2.72	4.06	–
90	18.30	80.02	370.20	6576.66	3.05	4.10	–
100	17.46	82.09	491.90	7264.81	3.42	4.24	1.55
110	16.41	82.70	809.80	6739.91	4.57	4.63	3.09
120	12.47	85.08	1819.00	12781.96	8.51	6.47	4.91
130	10.57	85.75	2859.00	14785.17	13.38	10.45	9.25
140	7.39	88.19	4647.00	25214.32	25.80	15.59	14.30
150	7.24	88.13	6432.00	31400.12	42.99	21.59	24.08
160	5.14	88.58	9150.00	41719.86	86.00	23.94	32.88
170	4.56	89.15	11350.00	47944.92	121.50	25.64	36.77

Table 5
The field observation data.

Time/d	O₂/%	N₂/%	CO/ppm	CO₂/%	CH₄/%	C₂H₆/%
1	14.37	74.33	0.00	0.22	8.02	3.01
2	14.26	71.20	0.00	0.24	9.70	4.02
3	14.37	71.65	0.00	0.16	8.63	4.94
4	11.98	73.78	0.00	0.38	8.20	3.82
5	11.59	76.21	0.01	0.33	6.87	4.36
6	12.68	78.01	0.01	0.31	4.84	3.57
7	13.87	77.41	0.01	0.29	4.35	3.60
8	12.93	76.97	0.01	0.37	4.95	4.03
9	14.30	74.40	0.01	0.24	5.68	5.27
10	14.52	74.65	0.01	0.22	5.44	5.14
11	14.73	77.80	0.01	0.19	2.82	3.56
12	14.25	75.70	0.01	0.22	3.98	4.82
13	14.56	76.02	0.01	0.20	4.07	5.04
14	14.32	77.38	0.01	0.24	4.27	3.64
15	13.44	77.10	0.01	0.25	4.61	4.42
16	15.13	76.09	0.01	0.19	4.14	4.12
17	13.35	77.94	0.01	0.22	4.02	3.85
18	14.01	77.11	0.01	0.24	4.24	4.29
19	12.61	78.17	0.01	0.25	4.24	3.66
20	11.67	78.01	0.01	0.26	4.49	5.27
21	11.50	80.10	0.01	0.32	4.14	3.70
22	12.75	76.73	0.01	0.25	4.57	5.38
23	12.05	76.49	0.01	0.24	5.18	5.78
24	12.92	76.06	0.01	0.23	5.13	5.57
25	13.24	77.38	0.01	0.24	3.88	4.56
26	13.61	77.60	0.01	0.23	3.38	4.80
27	12.51	78.22	0.01	0.29	3.85	4.84
28	10.33	79.61	0.01	0.37	4.08	4.51
29	11.75	80.57	0.01	0.35	3.59	3.49
30	12.56	78.73	0.01	0.27	3.95	4.32
31	12.64	79.38	0.01	0.27	3.86	3.66
32	12.78	78.18	0.01	0.23	3.75	4.90
33	10.46	80.05	0.01	0.35	4.19	2.91
34	11.17	81.60	0.01	0.27	3.58	3.20
35	11.03	81.89	0.01	0.45	3.58	2.53
Table 6
Calculations results of gas index data for different coal samples.

Temperature/°C	Lignite	Anthracite	Long flame coal (1#)	Long flame coal (2#)					
	CO/CO₂	Graham Alkane ratio							
30	0.015	0.255	0.097	0.010	0.433	0.249	0.020	0.150	0.429
40	0.025	0.499	0.117	0.020	0.636	0.560	0.012	0.168	0.545
50	0.031	0.966	0.160	0.040	1.089	0.929	0.030	0.481	0.898
60	0.023	1.047	0.146	0.047	1.500	1.144	0.036	0.598	1.020
70	0.025	1.077	0.126	0.053	1.680	1.463	0.053	1.052	1.347
80	0.031	1.223	0.182	0.084	2.279	1.916	0.051	1.387	1.331
90	0.037	1.486	0.194	0.136	2.039	2.180	0.056	1.370	1.201
100	0.038	1.373	0.186	0.151	2.271	1.955	0.068	1.389	0.928
110	0.039	1.664	0.147	0.200	2.756	1.553	0.120	1.766	0.544
120	0.044	1.701	0.144	0.201	4.129	1.457	0.142	2.132	0.484
130	0.052	1.788	0.113	0.225	6.194	1.613	0.164	2.740	0.405
140	0.068	2.489	0.074	0.260	7.122	1.271	0.184	3.414	0.363
150	0.087	3.663	0.064	0.365	9.645	1.045	0.205	4.675	0.251
160	0.103	4.754	0.065	0.470	10.792	0.283	0.219	5.770	0.197
170	0.123	5.965	0.064	0.507	12.330	0.232	0.237	6.902	0.175

Table 7
Calculation results of gas index data for field monitoring.

Time/d	CO/CO₂	10 × Graham Alkane ratio	Alkane ratio	Time/d	CO/CO₂	10 × Graham Alkane ratio	Alkane ratio
1	0.014	0.467	0.375	19	0.040	1.216	0.863
2	0.015	0.519	0.415	20	0.042	1.168	1.173
3	0.024	0.573	0.572	21	0.036	1.200	0.895
4	0.012	0.521	0.466	22	0.045	1.394	1.177
5	0.016	0.574	0.634	23	0.048	1.318	1.115
6	0.019	0.709	0.738	24	0.053	1.485	1.085
7	0.023	0.939	0.827	25	0.048	1.507	1.177
8	0.020	0.929	0.814	26	0.051	1.611	1.422
9	0.035	1.225	0.927	27	0.042	1.425	1.256
10	0.041	1.389	0.944	28	0.033	1.153	1.103
11	0.053	1.562	1.265	29	0.034	1.265	0.572
12	0.054	1.734	1.213	30	0.043	1.363	1.094
13	0.056	1.738	1.238	31	0.044	1.399	0.949
14	0.042	1.497	0.854	32	0.047	1.338	1.307
15	0.041	1.348	0.958	33	0.032	1.063	0.694
16	0.051	1.636	0.994	34	0.043	1.201	0.896
17	0.039	1.137	0.958	35	0.026	1.183	0.706
18	0.039	1.330	1.011				

Fig. 1. A flow chart summarizing coal sample processing process.
2.1.2. Experimental test method

A temperature programmed test system for spontaneous combustion of coal in air bath is used in the experiment [2–4]. The structure of the system is shown in Fig. 2. Using this experimental device, coal samples are loaded into a cylindrical special steel coal sample tank with a diameter of 10 cm at the bottom and a height of 25 cm. As shown in Fig. 2, the experiment begins after sealing. Using an air pump or gas cylinder as a gas source, the air is supplied to a coal sample tank with 120 ml/min air flow. Air flows through a glass rotor flowmeter and gas conveying copper pipe, preheated by the heating box, and then passes through the bottom of the coal sample tank to the coal sample. After 30 minutes of venting air, the gas samples were collected at the rate of 0.3 °C/min and then analyzed by the SP-2120 gas chromatograph. The component data of gas products at different temperature points were obtained.

2.2. Data analysis

When the experimental data and field data are obtained, the biggest influence factor is the difference in air volume [5,6], so there are significant differences in the data results. In the analysis of the results, it is necessary to eliminate the dilution effect of air flow on the gas as far as possible. The gas index can satisfy this condition very well [7]. In addition, the mechanism of producing index gas in the coal oxidation process is different, CO and a lot of CO2 are produced. It is produced by the oxidation reaction between coal and oxygen. Some coal seams contain a part of CO2, CH4 and C2H6 gas, which will be resolved at low temperatures. There is generally no C2H4 in coal seams. C2H4 gas is produced mainly by cracking, so different gas means the reaction function represented by the standard is also different [8–10]. CO/CO2 can better reflect the intensity of oxidation, Graham value (G = ΔCO/ΔO2) can reflect the relationship between oxygen consumption and CO formation, and alkane ratio can reflect the intensity of coal pyrolysis [11]. By calculating the experimental and field data, the gas index data are obtained as shown in Tables 6 and 7.

2.3. Inversion method of coal temperature

By calculating the results of experimental data and field data, the results can be well corresponded. The natural ignition trend of the coal seam is qualitatively analyzed by selecting standard gas through

Fig. 2. The temperature programmed experimental apparatus.
experiments, and the degree of spontaneous combustion of the coal seam is quantitatively analyzed by gas index. The development law of spontaneous combustion of the coal seam in mine is predicted by combining the two kind of indexes [1]. The forecasting idea is shown in Fig. 3.

As shown in Fig. 3, firstly using a single indicator to qualitatively determine the potential for spontaneous combustion. The CO volume fraction is employed to determine the likelihood of spontaneous combustion. Due to C$_2$H$_4$ appeared above approximately 110 °C, so its volume fraction is also assessed to qualitatively evaluate the probability of spontaneous combustion. Secondly, using the gas ratio to determine the probability of spontaneous combustion. The CO/CO$_2$ ratio, Graham coefficient, and alkyl chain ratio are all determined via on-site measurements. Based on correlations derived from experimental testing, the above ratios are used to find the coal temperature. A comprehensive analysis of single gases such as CO and C$_2$H$_4$ as well as gas ratios is employed to calculate the coal temperature. The average values of the on-site indicators are calculated so as to obtain the average coal temperature at the site. The prediction accuracy and confidence intervals are set to the desired values. The degree of confidence for each temperature value obtained from the above process is calculated. An application of these data and this early warning for spontaneous combustion of coal can be found in Ref. [1].

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFC0808201); China Postdoctoral Science Foundation (2017M623209); Special Scientific Research Project of Shaanxi Provincial Education Department (17JK0495); Natural Science Basic Research Program of Shaanxi (2018JQ5080; 2018JM5009).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

[1] J. Guo, H. Wen, X.Z. Zheng, Y. Liu, X.J. Cheng, A method for evaluating the spontaneous combustion of coal by monitoring various gases, Process Saf. Environ. Prot. 126 (2019) 223–231.

[2] J.Y. Zhao, J. Deng, J.J. Song, C.M. Shu, Effectiveness of a high-temperature-programmed experimental system in simulating particle size effects on hazardous gas emissions in bituminous Coal, Saf. Sci. 115 (2019) 353–361.

[3] H. Wen, J. Guo, Y.F. Jin, K. Wang, Y.T. Zhang, X.Z. Zheng, Experimental study on the influence of different oxygen concentrations on coal spontaneous combustion characteristic parameters, Int. J. Oil Gas Coal Technol. 16 (2017) 187–202.

[4] Y.F. Jin, J. Guo, H. Wen, Experimental study on the high temperature lean oxygen oxidation combustion characteristic parameters of coal spontaneous combustion, J. China Coal Soc. 40 (2015) 596–602.

[5] J. Guo, Y. Liu, X.J. Cheng, H. Yan, Y.Q. Xu, A novel prediction model for the degree of rescue safety in mine thermal dynamic disasters based on fuzzy analytical hierarchy process and extreme learning machine, Int. J. Heat and Technol. 36 (2018) 1336–1342.

[6] X.H. Zhou, T.Y. Niu, G. Bai, A. Li, C. Wang, Study on influence of air supply on limit parameters of spontaneous combustion of lignite, J. Safety Sci. and Technol. 14 (2018) 82–86.

[7] Y.T. Liang, J. Zhang, L.C. Wang, H.Z. Luo, T. Ren, Forecasting spontaneous combustion of coal in underground coal mines by index gases: a review, J. Loss Prev. Process. Ind. 57 (2019) 208–222.

[8] T. Shi, X.F. Wang, J. Deng, Z.Y. Wen, The mechanism at the initial stage of the room-temperature oxidation of coal, Combust. Flame 140 (2005) 332–345.

[9] J. Deng, Q.W. Li, Y. Xiao, C.M. Shu, Experimental study on the thermal properties of coal during pyrolysis, oxidation, and re-oxidation, Appl. Therm. Eng. 110 (2017) 1137–1152.

[10] J. Deng, J.Y. Zhao, Y.N. Zhang, A.C. Huang, X.R. Liu, X.W. Zhai, C.P. Wang, Thermal analysis of spontaneous combustion behavior of partially oxidized coal, Process Saf. Environ. Prot. 104 (2016) 218–224.

[11] J. Deng, J.Y. Zhao, Y.N. Zhang, R.L. GENG, Study on coal spontaneous combustion characteristic temperature of growth rate analysis, Procedia Engineering 84 (2014) 796–805.