Limits on an Energy Dependence of the Speed of Light from a Flare of the Active Galaxy PKS 2155-304

F. Aharonian1,13, A.G. Akhperjanian2, U. Barres de Almeida8 A.R. Bazer-Bachi3, Y. Becherini12, B. Behera14, M. Beilicke4, W. Benbow1, K. Bernlöhr1,5, C. Boisso4, A. Bochow1, V. Borrel3, I. Braun1, E. Brion7, J. Brucker16, P. Brun7, R. Bühler1, T. Bulik24, I. Bütschig9, T. Buntian17, S. Carrigan1, P.M. Chadwick4, A. Charbonnier19, R.C.G. Chaves1, L.-M. Choumet10, A.-C. Clapson1, G. Coignet11, L. Costamante1,29, M. Dalton5, B. Degrange10, C. Deil1, H.J. Dickinson8, A. Djannati-Atai12, W. Domainko1, L.O.C. Drury13, F. Dubois11, G. Dubus17, J. Dyks24, K. Eghert3, D. Emmanuelopoulou14, P. Espigat12, C. Farnier15, F. Feinstein15, A. Fiasson15, A. Förster1, G. Fontaine10, M. Fülling5, S. Gabrić13, Y.A. Gallant19, L. Gérard12, B. Gibels10, J.F. Glicenstein7, B. Glück16, P. Goret7, C. Hadjichristidis8, D. Hauser14, M. Hauser14, S. Heinzelmann4, G. Heinzelmann4, G. Henri17, G. Hermann1, J.A. Hinton25, A. Hoffmann18, W. Hofmann1, M. Hollier9, S. Hoppe3, D. Horns4, A. Jacholkowska19, O.C. de Jager9, I. Jung16, K. Katarek27, S. Kaufmann14, E. Kendziorra18, M. Kerschhaggl15, D. Khangulyan1, B. Kiehl10, D. Keogh8, Nu. Komin15, K. Kosack1, G. Lambanna11, J.-P. Lenain10, T. Lohse3, V. Marandon12, J.M. Martin6, O. Martineau-Huynh19, A. Marcowith15, D. Maurin19, T.J.L. McComb8, C. Medina6, R. Moderski24, E. Moulin7, M. Naumann-Godo10, M. de Naurois19, D. Nedbal20, D. Nekrassov1, J. Niemiec28, S.J. Nolan8, S. Ohm1, J.-F. Olive3, E. de Oña Wilhelmi12,29, K.J. Orford8, J.L. Osborne8, M. Ostrowski23, M. Panter1, G. Pedaelet14, G. Pelletier17, P.-O. Petrucci17, S. Pita12, G. Pühlhofer14, M. Punch12, A. Quiros18, B.C. Raubenheimer9, M. Raue1, S. Rainaud3, J. Riegler1, L. Rob18, S. Rosier-Lees11, G. Rowell26, B. Rudak24, J. Ruppel21, V. Sahakian2, A. Santangelo18, R. Schlickeiser21, F.M. Schöck16, R. Schröder21, U. Schwanke5, S. Schwarzburg18, S. Schwemmer14, A. Shalchi21, J.L. Skilton5, H. So6, D. Spangler8, L. Stawarz23, R. Steenkamp22, C. Stegmann16, G. Supernova10, P.H. Tam14, J.-P. Tavernier19, R. Terrier12, O. Tibolla14, C. van Eldik1, G. Vasileiadis15, C. Venter1, J.P. Vialle11, P. Vincent19, M. Vivier7, H.J. Völk1, F. Volpe10,29, S.J. Wagner14, M. Ward8, A.A. Zdziarski24, and A. Zech6

1 Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany
2 Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan, Armenia
3 Centre d’Etude Spatiale des Rayonnements, CNRS/UPS, 9 av. du Colonel Roche, BP 4346, F-31029 Toulouse Cedex 4, France
4 Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany
5 Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany
6 LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 Place Jules Janssen, 92190 Meudon, France
7 IRFU/DSM/CÉA, CE Saclay, F-91191 Gif-sur-Yvette, France
8 University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.
9 Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa
10 Laboratoire Leprince-Ringuet, École Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
11 Laboratoire d’Annecy-le-Vieux de Physique des Particules, CNRS/IN2P3, 9 Chemin de Bellevue - BP 110 F-74941 Annecy-le-Vieux Cedex, France
12 Astroparticule et Cosmologie (APC), CNRS, Université Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13, France
13 Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland
14 Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany
15 Laboratoire de Physique Théorique et Astroparticules, CNRS/IN2P3, CNRS/INSU/CNRS, Université Joseph Fourier, BP 53, F-38041 Grenoble Cedex 9, France
16 Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany
17 LPNHE, Université Pierre et Marie Curie Paris 6, F-75252 Paris Cedex 5, France
18 LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France
19 School of Particle and Nuclear Physics, Charles University, V Holesovickach 2, 180 00 Prague 8, Czech Republic
20 Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, D 44780 Bochum, Germany
21 Observatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orła 171, 30-344 Kraków, Poland
22 Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland
23 School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, UK
24 School of Chemistry & Physics, University of Adelaide, Adelaide 5005, Australia
25 Toruń Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toruń, Poland
26 Instytut Fizyki Jędrzejowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Poland
27 European Associated Laboratory for Gamma-Ray Astronomy, jointly supported by CNRS and MPG
In the past few decades, several models have predicted an energy-dependence of the speed of light in the context of quantum gravity. For cosmological sources such as active galaxies, this miniscule effect can add up to measurable photon-energy dependent time lags. In this paper a search for such time lags during the H.E.S.S. observations of the exceptional very high energy flare of the active galaxy PKS 2155-304 on 28 July in 2006 is presented. Since no significant time lag is found, lower limits on the energy scale of speed of light modifications are derived.

PACS numbers: 12.60.Jv, 04.60.-m,11.25.Wx,96.50.S-

Albert Einstein’s postulate “that light is always propagated in empty space with a definite velocity c which is independent of the state of motion of the emitting body” [1] is one of the pillars of modern physics. Modification of this postulate would have far-reaching consequences for our understanding of nature, it is therefore important to constantly improve the verification of its validity. Particularly in the past few decades, a possible energy dependence of the speed of light has been predicted in the framework of quantum gravity models [2, 3, 4], leading to deviations from this postulate (for reviews see [6, 7, 8]). The speed of light modifications have different functional dependencies on the photon energy and helicity in different models. Predictions usually entail free parameters such as the relevant mass scale. However, it is commonly expected that this modification should appear at energies of the order of the Planck energy \(E_P = 1.22 \times 10^{19} \text{ GeV} \). For energies much smaller than the Planck energy, a series expansion is therefore expected to be applicable, allowing the energy dependence of the speed of light to be parameterized in a model-independent way [6]. The photon speed \(c' \) is written up to second order in energy \(E \) as:

\[
 c' = c \left(1 + \frac{\xi}{E_p} + \frac{\zeta E^2}{E_P^2}\right),
\]

where \(\xi \) and \(\zeta \) are free parameters. Even for the highest photon energies currently measured the corrections are expected to be very small. However, Amelino-Camelia et al. [6] suggested that these minuscule modifications can add up to measurable time delays for photons from cosmological sources. At a redshift \(z \), simultaneously-emitted photons, with energies \(E_1 \) and \(E_2 \), will arrive at the observer with a time delay \(\Delta t = t_1 - t_2 \) per energy difference \(\Delta E = E_1 - E_2 \) of [6]:

\[
 \frac{\Delta t}{\Delta E} \approx \frac{\xi}{E_p H_0} \int_0^z dz' \frac{(1 + z')}{\sqrt{\Omega_m (1 + z')^3 + \Omega_\Lambda}},
\]

where \(\Omega_m = 0.3 \), \(\Omega_\Lambda = 0.7 \) and \(H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1} \) are the cosmological parameters as currently measured. In the case of a vanishing linear term, the mean time delay of the photons per squared energy difference \(\Delta E^2 = E_1^2 - E_2^2 \) is:

\[
 \frac{\Delta t}{\Delta E^2} \approx \frac{3\zeta}{2E_P^2 H_0} \int_0^z dz' \frac{(1 + z')^2}{\sqrt{\Omega_m (1 + z')^3 + \Omega_\Lambda}}.
\]

The absence of such an energy dispersion has been used to set bounds on the parameters \(\xi \) and \(\zeta \). Gamma-ray bursts and very high energies flares of active galaxies have been the primary targets of these “time-of-flight” studies. For the linear dispersion term in Eq. 1, these measurements reach limits of \(|\xi| < 70–150 \) [10, 11, 12, 13, 14, 15] for gamma ray bursts. For active galaxies, dispersion measurements exist for only two sources: Mkn 421 and Mkn 501. Both are located at a similar redshift of \(\sim 0.03 \). For Mkn 421, a limit of \(|\xi| < 200 \) was set by the Whipple collaboration during a flare in 1996 [10]. For Mkn 501, an indication of higher energy photons lagging the lower energy ones was reported during a flare in 2005 by the MAGIC collaboration [17]. This dispersion was recently quantified to \(|\xi| \sim 30 \) [18]. Since the signal is however also marginally consistent with zero dispersion, limits of \(|\xi| < 60 \) and \(|\zeta| < 2.2 \times 10^{17} \) were derived [18]. While limits in \(\xi \) from time-of-flight measurements are approaching unity and probing Planck-scale energies, limits on \(\zeta \) are generally still far from this domain.

Time-of-flight measurements provide the most direct and model-independent test of the constancy of the speed of light with energy. However, alternative methods set more stringent limits relying on additional assumptions: Limits of \(|\xi| < 10^{-7} \) are deduced if the speed of light modifications in Eq. 1 are helicity dependent [12, 20], as predicted by some of the models [2, 3]. Also, constraining limits of \(|\xi| < 10^{-14} \) and \(\zeta > -10^{-6} \) were recently reported in [21] under several assumptions, for example the sign of the speed of light modification is assumed to be negative or helicity dependent and standard kinematics are required to be valid in a Lorentz-violating regime.

A caveat of time-of-flight measurements is that dispersion might be introduced by intrinsic source effects, which could cancel out dispersion due to modifications of the speed of light. In the case of a non-detection of dispersion this scenario is unlikely, since it requires both effects to have the same time scale and opposite sign. However, this “conspiracy of nature” [16] can only be ruled out with certainty by observations of sources at multiple distances, as – in contrast to dispersion from speed of light modifications – source intrinsic dispersion should not scale with distance. Population studies of this kind have been performed for gamma-ray bursts, resulting in limits of \(|\xi| < 1300 \) [12, 13, 14]. For active galaxies the data-set is currently too sparse to perform these studies.
In the present study, photon time delays were searched for during the VHE flare of the active galaxy PKS 2155-304 observed by the High Energy Stereoscopic System (H.E.S.S.) on July 28 in 2006. PKS 2155–304 is located at a redshift of \(z = 0.116 \) [22], almost four times more distant than Mkn 501 and Mkn 421. The light curve shows fast variability (∼200 s) and covers an energy range of a few TeV with no significant spectral variability [23]. Considering the unprecedented photon statistics (∼10,000 photons) at these energies, this flare provides a perfect testbed. The data presented here were analyzed using the standard H.E.S.S. analysis, described in detail in [24]. Time delays between light curves of different energies were sought in order to quantify a possible energy dispersion. For this, two different methods were applied, which are described in the following.

The first method determines the time lag between two light curves with the Modified Cross Correlation Function (MCCF) [25]. The MCCF is a standard cross correlation function [26], applied to oversampled light curves. This allows time delays below the duration of the flux bins to be resolved [25]. To optimize the energy gap between two energy bands, while keeping good event statistics in both, the correlation analysis was performed on the light curves between 200 and 800 GeV and above 800 GeV (see Fig. 1). The mean difference of the photon energies between the two bands is 1.0 TeV and the mean quadratic difference is 2.0 TeV². The MCCF of these light curves is shown in Fig. 2. In order to measure the time delay, the central peak of this distribution was fitted by a Gaussian function plus a first-degree polynomial, resulting in a maximum at \(\tau_{\text{peak}} = 20 \) s.

The error on the measured time delay is determined by propagating the flux errors via simulations. Ten thousand simulated light curves were generated for each energy band, by varying the flux points of the original oversampled light curve within its measurement errors, taking into account bin correlations. For each pair of light curves, the peak of the the MCCF was determined, resulting in a Cross Correlation Peak Distribution (CCPD) shown in the right panel of Fig. 2. The CCPD has an RMS of 28 s and yields the probability density of the error of \(\tau_{\text{peak}} \) [27, 28]. For 21% of the simulations the time delay is negative, therefore the measured time delay of 20 s is not significantly different from zero.

The response of the MCCF to energy dispersion is complex. Primarily, dispersion is expected to shift light curves in time according to their mean energy. However, dispersion also broadens their structures and photons might even get shifted out of a burst, decreasing the overall correlation. These “second order” effects become increasingly important once the time shifts approach the time scale of the observed structures in the light curve. The response of the MCCF to dispersion was therefore determined by injecting artificial dispersion into the H.E.S.S. data and measuring its effect on the CCPD. As shown in Fig. 3, the CCPD follows the injected time shift per energy linearly in the range of interest here, confirming the expected behaviour. The second order effects mentioned only introduce small deviations, visible at higher dispersion values. Nevertheless, the measured time delays are transformed to dispersion-per-energy with the calibration curve shown in Fig. 3 in order to take these effects into account. Since the measured \(\tau_{\text{peak}} \) was compatible with zero, a 95% confidence upper limit on a linear dispersion of 73 s TeV⁻¹ is given. Applying the analogous procedure to a quadratic dispersion
in energy yields a 95% confidence limit of 41 s TeV$^{-2}$.

The accuracy of the MCCF method was verified with an independent set of simulations. Eleven thousand new photon lists were generated from the real data using a parametric bootstrap method. The parametric model was obtained from a polynomial spline fit to the light curves in time bins of one minute and a fit of the energy distribution of the events in the real data. The CCPD of these new simulations confirmed the previously measured error on the time delay. Artificially introduced dispersion was always recovered within the expected accuracy. It should be noted that the dispersion limit does not depend strongly on the choice of preset parameters, such as the energy ranges and time binning of the light curves and the fit range of the MCCF peak. Varying these parameters within a reasonable range has only a small effect ($\lesssim 5$ s) on the final result.

To confirm the result obtained with the MCCF analysis, the dispersion measurement was repeated with an independent method, which is widely applied in time lag studies of GRB light curves [12, 13, 29]. Light curves were constructed in two energy bands, and a search for extrema was done using a Continuous Wavelet Transform (CWT) [30]. For this the LastWave package [31] was employed, which provides a list of extrema candidates with their positions. The extrema were associated in pairs between light curves and their relative time delay was measured. The association was performed with an algorithm based on the Lipschitz coefficient as in [12, 30].

The two energy bands were chosen to be 210 to 250 GeV and above 600 GeV, with a mean energy difference of 0.92 TeV. Since tiny dispersions are to be probed, a time bin-width of 60 seconds was found to be optimal for this study. The CWT method identified two pairs of extrema with a mean time delay of 27 seconds. In order to assess the error of this value, samples composed of hundreds of Monte Carlo experiments were analyzed for three linear dispersion values: 0 and ± 45 s TeV$^{-1}$, in analogy to the MCCF calibration. The values of the error on the measured time lag were found to range between 30 and 36 seconds. The relation between injected dispersion and measured time shift between light curves is again used to derive a limit on the dispersion, resulting in a 95% confidence limit of 100 s TeV$^{-1}$. The impact of systematic effects has also been investigated: selection of gamma-like events and the choice of the energy domain or time binning of the light curves change the results by 0.5σ at most. Various cuts on the CWT parameters have been applied and lead to negligible changes in the extrema identification.

The measured limits on the energy dispersion translate into limits on the energy scale of speed of light modifications. For a linear dispersion in energy, Eq. 2 yields $|\xi| < 17$ (or $|\xi|^{-1} E_p > 7.2 \times 10^{17}$ GeV) for the limit obtained with the MCCF method, at 95% confidence. The linear dispersion limits obtained from the Wavelet analysis yields a limit of $|\xi| < 23$ (or $|\xi|^{-1} E_p > 5.2 \times 10^{17}$ GeV), confirming this result. These limits are the most constraining limits from time-of-flight measurements to date. For a quadratic dispersion in energy, the MCCF method yields $|\zeta| < 7.3 \times 10^{19}$ (or $|\zeta|^{-1/2} E_p > 1.4 \times 10^{9}$ GeV) with Eq. 3.

This measurement opens a new redshift range for population studies of time delays from active galaxies, which are needed to rule out the possibility of time delay cancellation. For a final verdict on this question further VHE observations of active galaxies are needed. However, the result already shows that the time delay reported for Mkn 501 in [18], if considered significant, cannot be attributed to speed of light modifications. Current and future instruments such as Fermi for gamma ray bursts, or the proposed Cherenkov Telescope Array for active galaxies, will further improve the sensitivity of time-of-flight measurements, perhaps one day revealing deviations from Einstein’s postulate.

The support of the Namibian authorities and of the University of Namibia in facilitating the construction and operation of H.E.S.S. is gratefully acknowledged, as is the support by the German Ministry for Education and Research (BMBF), the Max Planck Society, the French Ministry for Research, the CNRS-IN2P3 and the Astroparticle Interdisciplinary Programme of the CNRS, the U.K. Science and Technology Facilities Council (STFC), the IPNP of the Charles University, the Polish Ministry of Science and Higher Education, the South African Department of Science and Technology and National Research Foundation, and by the University of Namibia. We appreciate the excellent work of the technical support.
staff in Berlin, Durham, Hamburg, Heidelberg, Palaiseau, Paris, Saclay, and in Namibia in the construction and operation of the equipment.

* supported by CAPES Foundation, Ministry of Education of Brazil

† Electronic address: Rolf.Buehler@mpi-hd.mpg.de

‡ Electronic address: Agnieszka.Jacholkowska@cern.ch

[1] A. Einstein, Annalen der Physik 322, 891 (1905) (translation from http://www.fourmilab.ch/etexts/einstein/specrel/www/).

[2] J. Alfaro, H. A. Morales-Técotl, and L. F. Urrutia, Phys. Rev. D 65, 103509 (2002).

[3] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, Physics Letters B 665, 412 (2008).

[4] G. Amelino-Camelia, G. Mandanici, A. Procaccini, and J. Kowalski-Glikman, International Journal of Modern Physics A 20, 6007 (2005).

[5] R. C. Myers and M. Pospelov, Physical Review Letters 90, 211601 (2003).

[6] G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and S. Sarkar, Nature 395, 525 (1998).

[7] D. Mattingly, Living Reviews in Relativity 8, 5 (2005).

[8] J. Ellis, K. Farakos, N. E. Mavromatos, V. A. Mitsou, and D. V. Nanopoulos, Astrophys. J. 535, 139 (2000).

[9] U. Jacob and T. Piran, Journal of Cosmology and Astroparticle Physics 1, 31 (2008).

[10] B. E. Schaefer, Physical Review Letters 82, 4964 (1999).

[11] S. E. Boggs, C. B. Wunderer, K. Hurley, and W. Coburn, Ap. J. Letters 611, L77 (2004).

[12] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A. S. Sarkar, and E. K. G. Sarkisyan, Astroparticle Physics 25, 402 (2006).

[13] J. Bolmont, A. Jacholkowska, J.-L. Atteia, F. Piron, and G. Pizzichini, ApJ 676, 532 (2008).

[14] R. Lamon, N. Produit, and F. Steiner, General Relativity and Gravitation 40, 1731 (2008).

[15] M. Rodriguez-Martinez, T. Piran, and Y. Oren, Journal of Cosmology and Astro-Particle Physics 5, 17 (2006).

[16] S. D. Biller et al. (Whipple Collaboration), Physical Review Letters 83, 2108 (1999).

[17] J. Albert et al. (MAGIC Collaboration), Ap. J. 669, 862 (2007).

[18] J. Albert et al. (MAGIC Collaboration), J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A. S. Sarkharov, and E. K. G. Sarkisyan, Phys. Lett. B in press 668, 253-257 (2008).

[19] R. J. Gleiser and C. N. Kozameh, Phys. Rev. D 64, 083007 (2001).

[20] Y.-Z. Fan, D.-M. Wei, and D. Xu, Monthly Notices Royal Astronomical Society 376, 1857 (2007).

[21] M. Galaverni and G. Sigl, Physical Review Letters 100, 021102 (2008).

[22] R. Falomo, J. E. Pesce, and A. Treves, Ap. J. Letters 411, L63 (1993).

[23] F. Aharonian et al. (H.E.S.S. Collaboration), Ap. J. Letters 664, L71 (2007).

[24] F. Aharonian et al. (H.E.S.S. Collaboration), A & A 457, 899 (2006).

[25] T.-P. Li, Y.-L. Qu, H. Feng, L.-M. Song, G.-Q. Ding, and L. Chen, Chinese Journal of Astronomy and Astrophysics 4, 583 (2004).

[26] R. A. Edelson and J. H. Krolik, Ap. J. 333, 646 (1988).

[27] D. Maoz and H. Netzer, Monthly Notices Royal Astronomical Society 236, 21 (1989).

[28] B. M. Peterson, I. Wanders, K. Horne, S. Collier, T. Alexander, S. Kaspi, and D. Maoz, The Publications of the Astronomical Society of the Pacific 110, 660 (1998).

[29] J. Ellis, N. E. Mavromatos, D. V. Nanopoulos, and A. S. Sakharov, A & A 402, 409 (2003).

[30] S. Mallat, Academic Press, San Diego (1999).

[31] E. Bacry, LastWave version 2.0.3 (2004), URL http://www.cmap.polytechnique.fr/~bacry/LastWave/