A4-3: Utilization-based Proxy Enrollment Versus Standard HMORN VDW Enrollment: A Pilot Validation Study

Irina Haller1; Brian Johnson1; Karen Riedlinger2; Pinky Barua3; Terese DeFor4; Paul Hitz1; Roy Pardee5; David Tabano6

1Essentia Institute of Rural Health; 2Kaiser Permanente Northwest; 3Geisinger Health System; 4Health Partners; 5Group Health Research Institute; 6Kaiser Permanente Colorado

Background/Aims: Most HMORN members offer both insurance coverage and health care. Health plan enrollment provides a well-defined population denominator for HMORN-based research. The HMORN common data model combines electronic data, routinely collected in health care delivery or claims processing, into the Virtual Data Warehouse (VDW). Sites with health plans capture insurance enrollment in the VDW enrollment file. Recently HMORN included sites that deliver health care without offering insurance. Since health plan membership is unknown, population denominators must be determined using alternate methods. This study validated a utilization-based proxy enrollment (PE) using standard VDW enrollment (SE) in 5 HMORN sites with Epic EHR and SE files. Methods: The utilization-based algorithm defines PE start at first of two non-ancillary health care visits (at least one being a primary care visit) separated by at least 90 days. PE ends at death or at the last qualifying visit if there is no utilization in the following 3-year period. PE files were built at each site by applying utilization-based algorithm to base tables created from Clarity. The PE and SE extracts included study ID, age, gender and the start/end of enrollment periods between 2000 and 2012, based on availability of Clarity data at the sites. The agreement between PE and SE was evaluated using differences in start/end of the first enrollment periods (days). Results: The differences between PE and SE starts varied by site with greater variation in children (~20 years) and older adults (64+ years). The differences varied by gender, but the differences between the genders were smaller in the young and the old. The differences were larger for males between ages of ~16 and 64, indicating less utilization by males than by females. The differences between PE and SE ends were generally negative across ages, indicating that PE extended beyond SE. Gender differences between PE and SE starts were similar to differences between PE and SE ends. These empirical results were confirmed by multivariate regression modeling. Conclusions: Agreement between PE and SE could be improved using additional parameters, as well as possible adjustment of the time lag for PE end in the utilization-based algorithm.

Keywords: Population denominator; Utilization-based enrollment

doi:10.3121/cmrr.2014.1250.a4-3

A4-4: Do Projects Have Complete Data Capture for Their Study Populations?

Donald Bachman1; Mark Hombrook1; Debra Ritzwoller2; Roy Pardee3; Alan Bauck4

1Kaiser Permanente Northwest; 2Kaiser Permanente Colorado; 3Group Health Research Institute

Background/Aims: Investigators often assume that when patients are enrolled in a health plan, they have complete capture of utilization data from their health plan sources. This assumption may not always be true as patients have many incentives to choose care at multiple settings (convenience, price, residence, insurance type, drug coverage), which can give rise to missing data. Complete capture of medical data for population-based research is crucial to our ability to identify populations who have not had particular exposures or outcomes. In case-control designs, where the control group does not have a specified exposure, we measure this condition by absence of data. To address this problem, the VDW enrollment work group created a new enrollment variable, called “Outside utilization”, designed to identify members suspected of incomplete capture of encounters or pharmacy fills. This work reports on a quality assurance analysis of the extent and nature of the data gaps at different sites. Methods: For V3, HMORN sites added new VDW variables in their enrollment file including the “Outside utilization” variable. This variable identifies populations suspected of having incomplete health care utilization capture. Since the reasons for incomplete data capture vary among the sites, the methods for identifying members with incomplete data capture were determined by the local site data managers. The authors distributed a program that computed utilization rates for specific cohorts for “complete” and “incomplete” data capture populations. We also computed rates for those on high deductible plans. We compared differences in these rates by year and site. In addition, we conducted a survey to determine how the incomplete populations were identified for each participating site. Results: Some sites clearly identify populations that have incomplete capture of data using the “Outside utilization” variable. At other sites, the difference in rates is less apparent. The sites that can distinguish patients with incomplete versus complete data have certain common definitions used when designing the “Outside utilization” variable. Conclusions: The “Outside utilization” variable identifies populations with incomplete data capture at some sites. We recommend that projects use this variable to exclude populations suspected of incomplete data capture when computing population-based utilization rates.

Keywords: Data Population

doi:10.3121/cmrr.2014.1250.a4-4

PS1-5: Converting to ICD-10 Clarity Structures

Jamila Gul1; Srivardhan Chimmula2

1Kaiser Permanente Northern California

Background/Aims: The transition to the ICD-10 code represents a huge undertaking for every Health Care Organization including Analytic teams. In Kaiser Northern California we have effectively engaged KP HealthConnect Application Coordinators, Business Partners, and Regional IT Leads to create and build ICD-10 impact awareness through education and leveraging our partner’s vast knowledge to identify critical areas of impact, issues, risks, assumptions and high level business objectives to support a successful transition to the ICD-10. Methods: To accommodate ICD-10, Epic has made significant changes to Clarity in their 2010 release including adding new fields, tables and views. These changes are designed to aid in reporting appropriate codes as well as allowing for historical reporting and trending. The new format of the codes will also be part of the changes to Clarity. Changes have been made to three main Epic Master Files: (1) Diagnosis masterfile - maintains a master set of diagnosis records. These diagnosis records can be industry-standard ICD codes used for billing or clinical terms used for clinical encounter documentation, but mapped to industry-standard ICD codes. The diagnosis code changes primarily impact clinical encounter documentation (problem list and a Dx association with encounters and orders), HIM coding, claims for all types of encounters. (2) ICD Procedure masterfile – maintains a master set of ICD hospital procedure records. ICD procedure codes in addition to supporting hospital inpatient billing. (3) Surgical Procedure masterfile - maintains a master set of records for each surgical procedure that can be performed with an operating room facility. It also contains procedure preference records, primarily used for scheduling surgical procedures. We would like to take a real study and switch the codes from ICD9 to ICD10. Results: By sharing a real life example and sample codes we are hoping to pass our learning and knowledge to others hoping to help eliminate some of the errors that we made. Also, discuss outstanding challenges and issues that Epic has not resolved. Conclusions: The purpose...