Efficient Plant Gene Identification Based on Interspecies Mapping of Full-Length cDNAs

NAOKI Amano†, TSUYOSHI Tanaka†, HISATAKA Numa, HIROAKI Sakai, and TAKESHI Itoh*

Bioinformatics Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan

*To whom correspondence should be addressed. Tel./Fax. +81 29-838-7065. E-mail: taitoh@affrc.go.jp

Edited by Katsumi Isono
(Received 19 March 2010; accepted 23 June 2010)

Abstract

We present an annotation pipeline that accurately predicts exon–intron structures and protein-coding sequences (CDSs) on the basis of full-length cDNAs (FLcDNAs). This annotation pipeline was used to identify genes in 10 plant genomes. In particular, we show that interspecies mapping of FLcDNAs to genomes is of great value in fully utilizing FLcDNA resources whose availability is limited to several species. Because low sequence conservation at 5′- and 3′-ends of FLcDNAs between different species tends to result in truncated CDSs, we developed an improved algorithm to identify complete CDSs by the extension of both ends of truncated CDSs. Interspecies mapping of 71 801 monocot FLcDNAs to the Oryza sativa genome led to the detection of 22 142 protein-coding regions. Moreover, in comparing two mapping programs and three ab initio prediction programs, we found that our pipeline was more capable of identifying complete CDSs. As demonstrated by monocot interspecies mapping, in which nucleotide identity between FLcDNAs and the genome was ∼80%, the resultant inferred CDSs were sufficiently accurate. Finally, we applied both interspecies mapping to 10 monocot and dicot genomes and identified genes in 210 551 loci. Interspecies mapping of FLcDNAs is expected to effectively predict genes and CDSs in newly sequenced genomes.

Key words: interspecies mapping; full-length cDNA; CDS identification; plant genome

1. Introduction

Following the sequencing of the Arabidopsis thaliana genome in 20001 and the Oryza sativa genome in 2005,2 several complete or nearly complete flowering plant genomes have been released.3–10 In addition, large-scale sequencing projects of important cereal crops are currently being undertaken by international consortia, including the International Barley Sequencing Consortium (http://www.barleygenome.org) and the International Wheat Genome Sequencing Consortium (http://www.wheatgenome.org).11,12 It is expected that accelerating genome sequencing technologies, such as next-generation sequencing, will lead to a dramatic increase in the genomic DNA data to be annotated.13,14 Therefore, to cope with the deluge of emerging sequence information, the development of an efficient annotation system is needed.

Exon–intron structures and the protein-coding sequences (CDSs) in genome sequences can be predicted either by ab initio predictions or by sequence similarity methods. While ab initio gene prediction programs may produce erroneous exon–intron structures,15–17 sequence similarity approaches generally show better results, although the number of available sequences in the current databases limits the number...
of genes that can be predicted. Tens of thousands of full-length cDNAs (FLcDNAs), which can be used to accurately determine exon–intron structures, are available for *O. sativa*, *Zea mays*, and *Arabidopsis thaliana*, and the quality of their genome annotations is generally thought to be high. In other species, however, sufficient numbers of FLcDNAs are not necessarily available for the corresponding genomes. To fully utilize FLcDNA resources, algorithms for interspecies mapping, which show better gene structure annotation than *ab initio* predictions, have been developed.

Identification of CDS regions is a crucial step in genome annotation. However, low sequence conservation at the 5′- and 3′-ends of FLcDNAs between different species frequently results in truncated CDSs. To solve this problem, we present a pipeline that is based on interspecies FLcDNA mapping to genomes, which predicts exon–intron structures and the CDSs. In this pipeline, both ends of truncated CDSs are extended so that the complete CDSs are obtained. Our FLcDNA mapping pipeline was validated and compared with two other cDNA mapping programs—sim4cc and GeneSeqer—as well as three *ab initio* gene prediction methods. In addition, we used only the loci that had the same CDS structures as the corresponding CDSs from other sources: the MSU6.1 data set for *O. sativa*, the TAIR 9.0 representative CDSs for *A. thaliana*, and the B73 RefGen_v1 Filtered Gene Set for *Z. mays*. If more than one CDS was predicted in a locus of *Z. mays*, the longest one was selected.

2. Materials and methods

2.1. FLcDNAs, genome sequences, and reference data sets

We retrieved 179,991 FLcDNAs from *A. thaliana*, *O. sativa*, *O. rufipogon*, *Hordeum vulgare*, *Z. mays*, *Sorghum bicolor*, *Brachypodium distachyon*, *A. thaliana*, *Lotus japonicus*, *Populus trichocarpa*, *Glycine max*, *Vitis vinifera*, and *Carica papaya*.

2.2. Pipeline of interspecies mapping and CDS identification

Figure 1 shows an overview of our new interspecies mapping pipeline that simultaneously identifies CDSs on predicted loci. Repetitive sequences on FLcDNAs were masked by RepeatMasker (http://www.repeatmasker.org) with the MIPS Repeat Element Database (mips-REdat 4.3) and the ‘complete set’ of the Triticeae Repeat Sequence Database release 10 (http://wheat.pw.usda.gov/ITMI/Repeats). Vector sequences were removed by the cross_match program. PolyA stretches were discarded using a custom-made program. Sequences with total unmasked lengths of 30 bp or more were used.

Before precise alignment between FLcDNAs and a genome, we first used blastn to approximately define genomic regions that correspond to FLcDNAs. Repetitive sequences on FLcDNAs were masked by RepeatMasker (http://www.repeatmasker.org) with the MIPS Repeat Element Database (mips-REdat 4.3) and the ‘complete set’ of the Triticeae Repeat Sequence Database release 10 (http://wheat.pw.usda.gov/ITMI/Repeats). Vector sequences were removed by the cross_match program. PolyA stretches were discarded using a custom-made program. Sequences with total unmasked lengths of 30 bp or more were used.

Before precise alignment between FLcDNAs and a genome, we first used blastn to approximately define genomic regions that correspond to FLcDNAs. Repetitive sequences on FLcDNAs were masked by RepeatMasker (http://www.repeatmasker.org) with the MIPS Repeat Element Database (mips-REdat 4.3) and the ‘complete set’ of the Triticeae Repeat Sequence Database release 10 (http://wheat.pw.usda.gov/ITMI/Repeats). Vector sequences were removed by the cross_match program. PolyA stretches were discarded using a custom-made program. Sequences with total unmasked lengths of 30 bp or more were used.

Before precise alignment between FLcDNAs and a genome, we first used blastn to approximately define genomic regions that correspond to FLcDNAs. Repetitive sequences on FLcDNAs were masked by RepeatMasker (http://www.repeatmasker.org) with the MIPS Repeat Element Database (mips-REdat 4.3) and the ‘complete set’ of the Triticeae Repeat Sequence Database release 10 (http://wheat.pw.usda.gov/ITMI/Repeats). Vector sequences were removed by the cross_match program. PolyA stretches were discarded using a custom-made program. Sequences with total unmasked lengths of 30 bp or more were used.

Before precise alignment between FLcDNAs and a genome, we first used blastn to approximately define genomic regions that correspond to FLcDNAs. Repetitive sequences on FLcDNAs were masked by RepeatMasker (http://www.repeatmasker.org) with the MIPS Repeat Element Database (mips-REdat 4.3) and the ‘complete set’ of the Triticeae Repeat Sequence Database release 10 (http://wheat.pw.usda.gov/ITMI/Repeats). Vector sequences were removed by the cross_match program. PolyA stretches were discarded using a custom-made program. Sequences with total unmasked lengths of 30 bp or more were used.

Before precise alignment between FLcDNAs and a genome, we first used blastn to approximately define genomic regions that correspond to FLcDNAs. Repetitive sequences on FLcDNAs were masked by RepeatMasker (http://www.repeatmasker.org) with the MIPS Repeat Element Database (mips-REdat 4.3) and the ‘complete set’ of the Triticeae Repeat Sequence Database release 10 (http://wheat.pw.usda.gov/ITMI/Repeats). Vector sequences were removed by the cross_match program. PolyA stretches were discarded using a custom-made program. Sequences with total unmasked lengths of 30 bp or more were used.
for each FLcDNA. Specificity (SP) was defined as TP/ (TP + FP), and sensitivity (SN) was defined as TP/ (TP + FN), where TP is the number of true positives, FP is the number of false positives, and FN is the number of false negatives. Single-exon genes were considered only in the CDS evaluation because they have no introns. To evaluate the CDS extension process, we examined whether the start and the stop codons of the reference set were included in the predictions. Reference CDSs that did not overlap with predictions were not used.

To investigate relationships between the nucleotide identity and mapping ratio, the nucleotide identity between a given FLcDNA and the genomic locus to which it was assigned by est2genome was calculated. The mapping ratio represents the percentage of FLcDNAs that were mapped by est2genome divided by all FLcDNAs used. To investigate correlations between nucleotide identity and SP, we selected representative CDSs for each species and calculated the SP of gene predictions between species for genomes and FLcDNAs.

2.4. Comparison with other programs
The newly developed annotation pipeline described in the present work was compared with three ab initio gene prediction tools, including GeneZilla, GlimmerHMM, and GeneMark.hmm. The options for O. sativa gene predictions were employed in GlimmerHMM and GeneMark.hmm predictions. For GeneZilla, we randomly selected 5000 genes from the rice annotation and used 4124, which contained both the start and the stop codons, to create a training model. Our annotation pipeline also was compared with other cDNA mapping programs, including sim4cc and GeneSeqer. We mapped 71,801 monocot FLcDNAs to the O. sativa genome with the default parameters of sim4cc and GeneSeqer. Alignments that covered 40% or more of FLcDNAs were selected for comparison of prediction efficiency. For the GeneSeqer predictions, the longest representative CDS was selected if multiple transcripts were aligned to one locus.

2.5. Estimating the number of shared genes in monocots
If FLcDNAs are collected randomly, the number of FLcDNAs per locus obeys a Poisson distribution. We estimated the number of all loci (N) from the number of loci found (L) and the number of FLcDNAs mapped (M) using the following formula:

\[
M/N = -\ln\left(1 - \frac{L}{N}\right)
\]
Given L and M, N can be estimated. To cover 99% of the genomic loci, $L/N = 0.99$. Hence, the number of FLcDNAs needed to cover 99% of the loci is:

$$M = 4.61 \times N$$

3. Results and discussion

3.1. Validation of interspecies mapping

To evaluate our pipeline, we aligned 71,801 FLcDNAs obtained from three monocots (*H. vulgare*, *Z. mays*, and *T. aestivum*) to the *O. sativa* genome. From this, a total of 54,004 (75.2%) non-rice monocot FLcDNAs were mapped and clustered into 22,500 loci, from which 22,142 CDSs were predicted in the *O. sativa* genome. If these CDSs overlapped with the reference CDSs, we examined SP and SN for exon–intron boundaries, introns, all introns, and the entire CDSs (Table 1). As expected, mapping-based methods, including our pipeline, generally showed higher SP and SN at the intron and all-introns levels than the *ab initio* methods; however, both the SP and the SN drastically dropped at the CDS level when using GeneSeqer. This is partly because the 5’- and 3’-ends of CDSs are poorly conserved and cannot be aligned in many cases. In fact, a significant number of *O. sativa* start or stop codons were not found in all the three mapping-based methods without extension of 5’- and 3’-ends of CDSs are poorly conserved and cannot be aligned in many cases. In fact, a significant number of *O. sativa* start or stop codons were not found in all the three mapping-based methods without extension of 5’- and 3’-ends (Table 2). In contrast, the extension of the start and the stop codons in our CDS identification led to the inclusion of more than 88 and 91% of these codons, respectively (Table 2), which were better than the other two methods. After the CDS extension process, the SP and SN of our pipeline increased by 12.2 and 9.8%, respectively, at the CDS level, which suggests that this extension step seems to be of great benefit for accurate CDS prediction.

3.2. Applicability of interspecies mapping

Although interspecies mapping is useful for detecting loci in related species, FLcDNAs from distantly related species may lead to incorrect predictions. To test the applicability of the interspecies mapping approach, we examined the relationship between species classification and mapping ratios. For this purpose, we used the *O. sativa*, *Z. mays*, and *A. thaliana* genomes because they had large numbers of FLcDNAs that could be used to create high-quality reference sets. We applied monocot FLcDNAs to the *O. sativa* and *Z. mays* genomes and dicot FLcDNAs to the *A. thaliana* genome. We also applied our algorithm to a monocot–dicot comparison. Figure 3 shows the relationship between the mapping ratio and the species classification. In general, mapping within both monocots and dicots yielded a higher SP and SN.

Table 1. Comparison of SP and SN in CDSs

Method	Exon–intron boundary^b	Intron^b	All introns^b	Entire CDS					
	SP	SN	SP	SN	SP	SN	SP	SN	
This study	94.6	75.5	92.6	74.2	58.5	49.5	55.5	44.4	
GeneSeqer	87.9	77.9	83.7	75.5	42.3	38.9	3.3	2.8	
Sim4cc^a	90.8	74.3	87.9	73.0	40.5	47.2	–^c	–^c	
GeneMark.hmm	87.6	87.6	76.2	80.7	22.1	25.6	24.0	25.1	
GeneZilla	87.4	77.0	76.4	68.3	29.9	30.7	31.8	35.1	
GlimmerHMM	91.3	75.5	81.7	69.1	36.3	35.8	39.4	38.7	

All values are expressed as percentages (%).

^aSim4cc does not report a representative transcript in a single locus, so each mapping result was evaluated separately.

^bCDS regions of the reference set were evaluated.

^cSim4cc does not predict CDS regions.
mapping ratio than mapping between a monocot and a dicot. Therefore, comparisons between distantly related species, such as a monocot and a dicot, do not seem to be appropriate. Within-monocot comparisons displayed a higher ratio than within-dicot comparisons. In addition, monocot-to-
Arabidopsis
mapping showed a lower mapping ratio compared with dicot-to-
maize
mapping, although evolutionary distances of these two comparisons were same. This difference of mapping ratios is possible because
Arabidopsis
might have undergone genome reduction that led to a lineage-specific deletion of genes.

To further ascertain the degree to which nucleotide differences affect the accuracy of the exon–intron structure predictions generated by interspecies mapping, we examined the relationship between the nucleotide sequence identity and the SP of all introns in our representative CDSs (Fig. 4). The correlation coefficient for this relationship is 0.88 (P = 8.6 \times 10^{-9}). This suggests that interspecies mapping within closely related species should detect a significant number of true exon–intron structures. If the nucleotide identity is more than 80%, the SP of all introns in a given set of CDSs is expected to be \sim 60% or more.

3.3. How many FLCDNAs are necessary for genome annotation?

A genome is composed of regions that are conserved among species and regions that are specific to a lineage, but interspecies mapping can identify only conserved genes. Here, on the basis of the interspecies mapping results, we estimated the numbers of conserved genes in monocots. If random sampling of FLCDNAs is assumed, the number of loci inferred

\begin{table}
\centering
\caption{Percentage of \textit{O. sativa} start and stop codons included in the alignments}
\begin{tabular}{|l|c|c|c|c|}
\hline
Method & Before extension (%) & After extension (%) & \\
& Start & Stop & Start & Stop \\
\hline
This study & 67.3 & 72.1 & 88.9 & 91.2 \\
GeneSeqer & 49.8 & 55.1 & 79.7 & 82.5 \\
Sim4cca & 45.7 & 58.1 & 82.2 & 85.7 \\
\hline
\end{tabular}
aLongest CDSs were selected.
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3}
\caption{Relationship between species classification and mapping ratio. The horizontal axis indicates the classification, and the vertical axis indicates the mapping ratio. We mapped FLCDNAs from three monocots and four dicots to the \textit{O. sativa} (rice) and \textit{Z. mays} (maize) genomes, and FLCDNAs from three dicots and six monocots to the \textit{A. thaliana} (Arabidopsis) genome. Bars at the top of the boxes represent the standard deviations.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{Correlation between nucleotide identity and SP. The horizontal axis indicates the nucleotide identity, and the vertical axis indicates the SP of all introns in CDSs. Open circles and triangles indicate within-monocot and -dicot mapping, respectively, and filled circles and triangles indicate between-dicot and -monocot mapping, respectively. The straight line shows the linear regression for all data (r = 0.88).}
\end{figure}
from the number of mapped FLcDNAs obeys a Poisson distribution (see the ‘Materials and methods’ section). We estimated the number of loci shared between *O. sativa* and the other monocots to be \(\sim 18,000 \) because 17,402 loci were identified among 54,004 transcripts. *Zea mays* and *S. bicolor* seem to contain \(\sim 21,000 \) and \(\sim 24,000 \) conserved loci, respectively. Note that, for this estimation, a single genomic region was selected if an FLcDNA was homologous to multiple regions. We also should note that, because the sampling of FLcDNAs was not completely random, the estimated numbers should be the lower limits. In addition, to more accurately estimate the total number of loci, we must consider lineage-specific genes that are undetectable by sequence similarity.

Next, we estimated the number of FLcDNAs needed to annotate homologous CDSs among monocot species. Assuming that \(\sim 83,000 \) FLcDNAs would need to be used to cover 99% of the \(\sim 18,000 \) loci in *O. sativa*, with a mapping ratio of 0.75, a total of \(\sim 110,000 \) FLcDNAs obtained from closely related species would be necessary for prediction of CDSs in *O. sativa*. This number may be an underestimate if FLcDNAs are not randomly cloned, but most of the genes should be included if more than 100,000 clones are collected from closely related species. Therefore, because there are more than 120,000 FLcDNAs in monocots, new genomes of monocots, such as wheat and barley, would be effectively annotated by using interspecies mapping.

3.4. CDS prediction in 10 species

We applied the interspecies mapping procedure to predict exon–intron structures and CDSs in 10 plant genomes: *O. sativa*, *Z. mays*, *A. thaliana*, *S. bicolor*, *B. distachyon*, *P. trichocarpa*, *G. max*, *V. vinifera*, *L. japonicus*, and *C. papaya*. Table 3 shows the number of the FLcDNAs used, the mapped FLcDNAs, and the CDS loci. Three examples of our interspecies mapping results for *O. sativa* were compared with the exon–intron structures of annotation release 2 of the rice genome (RAP2), which was based on an intraspecies mapping procedure\(^3^7\) (Fig. 5). First, three FLcDNAs derived from *Z. mays* were mapped to the Os11g0635500 locus of RAP2, and their 5'- and 3'-ends were extended. These predicted CDSs displayed exon–intron structures that were identical to those determined by an *O. sativa* FLcDNA with a CDS and UTRs (Fig. 5A). Second, the representative structure at the Os01g0120300 locus determined by an FLcDNA (Fig. 5B) was apparently truncated at the 5'-end. In contrast, the interspecies mapping results predicted the complete exon–intron structures including the start and the stop codons. Finally, a *H. vulgare*
FLcDNA (AK248420) predicted a novel transcribed locus candidate between Os08g0206900 and Os08g0207000 that had not yet been detected (Fig. 5C). In total, we identified 492 new loci that were missing in release 2 of the rice annotation. The numbers of new loci found in the 10 plant species examined are shown in Table 3. Additionally, we provide exon—intron structure and CDS data that were created by a combination of interspecies and intraspecies mapping methods (Supplementary Table S6). This comprehensive data set, which contains 210 551 genes from 10 species, will be useful for a large-scale sequence analysis of these flowering plants.

Because more than 120,000 monocot FLcDNAs are currently available, this FLcDNA data set seems to be large enough to annotate conserved genes in monocot genomes. We could provide relatively a high-quality CDS annotation using intraspecies and interspecies mapping. However, for dicot genomes, the 58,534 dicot FLcDNAs currently available do not seem to be sufficient to predict most of the gene structures. We expect that 50,000 more FLcDNAs from any dicots might improve the coverage of gene prediction in dicot genomes. To complement the shortage of FLcDNAs and explore lineage-specific genes, \textit{ab initio} prediction programs can be used in combination with interspecies and intraspecies mapping. Interspecies FLcDNA mapping, partly supported by \textit{ab initio} predictions, will be of great use for cost-effective annotation of newly released agronomically important plant genomes, such as those of wheat and barley.

4. Availability

A web service for the mapping of FLcDNAs to genomic DNA sequences is available (http://fpgp.dna.affrc.go.jp/index.html). Users can submit a sequence of up to 1 Mb and can specify dicot or monocot FLcDNAs to be mapped. After completion of the requested prediction, an URL indicating the prediction results is sent by e-mail. The CDS identification results of 10 plant genomes are available at our web site (http://fpgp.dna.affrc.go.jp/download.html).

Supplementary data: Supplementary data are available at www.dnaresearch.oxfordjournals.org.

Funding

This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Genomics for Agricultural Innovation, GIR-1001).

References

1. Arabidopsis Genome Initiative. 2000, Analysis of the genome sequence of the flowering plant \textit{Arabidopsis thaliana}, Nature, 408, 796–815.
2. International Rice Genome Sequencing Project. 2005, The map-based sequence of the rice genome, Nature, 436, 793–800.
3. Paterson, A.H., Bowers, J.E., Bruggmann, R., et al. 2009, The \textit{Sorghum bicolor} genome and the diversification of grasses, Nature, 457, 551–6.
18. Alexandrov, N.N., Troukhan, M.E., Brover, V.V., Ramakrishna, W. 2004, Consistent over-estimation of gene number in complex plant genomes, *Genomics*, 35, 187–8.

19. Itoh, T., Tanaka, T., Barrero, R.A., et al. 2007, Curated genome annotation of *Oryza sativa* ssp. *japonica* and comparative genome analysis with *Arabidopsis thaliana*, *Genome Res.*, 17, 175–83.

20. Seki, M., Narusaka, M., Kamiya, A., et al. 2002, Functional annotation of a full-length *Arabidopsis* cDNA collection, *Science*, 296, 141–5.

21. Seki, M., Satou, M., Sakurai, T., et al. 2004, RIKEN *Arabidopsis* full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions, *J. Exp. Bot.*, 55, 213–23.

22. Liang, C., Mao, L., Ware, D. and Stein, L. 2009, Evidence-based gene predictions in plant genomes, *Genome Res.*, 19, 1912–23.

23. Zhou, L., Pertea, M., Delcher, A.L. and Florea, L. 2009, Sim4cc: a cross-species spliced alignment program, *Nucleic Acids Res.*, 37, e80.

24. Brendel, V., Xing, L. and Zhu, W. 2004, Gene structure prediction from consensus spliced alignment of multiple ESTs matching the same genomic locus, *Bioinformatics*, 20, 1157–69.

25. Kikuchi, S., Satoh, K., Nagata, T., et al. 2003, Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice, *Science*, 301, 376–9.

26. Liu, X., Lu, T., Yu, S., et al. 2007, A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between *Oryza sativa indica* and *japonica* subspecies, *Plant Mol. Biol.*, 65, 403–15.

27. Lu, T., Yu, S., Fan, D., et al. 2008, Collection and comparative analysis of 1888 full-length cDNAs from wild rice *Oryza rufipogon* Griff. W1943, *DNA Res.*, 15, 285–95.

28. Sato, K., Shin, I.T., Seki, M., et al. 2009, Development of 5006 full-length cDNAs in barley: a tool for accessing cereal genomics resources, *DNA Res.*, 16, 81–9.

29. Alexandrov, N.N., Brover, VV, Freidin, S., et al. 2009, Insights into corn genes derived from large-scale cDNA sequencing, *Plant Mol. Biol.*, 69, 179–94.

30. Jia, J., Fu, J., Zheng, J., et al. 2006, Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (*Zea mays* L) seedlings, *Plant J.*, 48, 710–27.

31. Soderlund, C., Descour, A., Kudrna, D., et al. 2009, Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs, *PLoS Genet.*, 5, e1000740.

32. Umezawa, T., Sakurai, T., Totoki, Y., et al. 2008, Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice, *Science*, 301, 376–9.

33. Ralph, S.G., Chun, H.J., Cooper, D., et al. 2008, Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding, *BMC Genomics*, 9, 57.

34. Mochida, K., Yoshida, T., Sakurai, T., Ogihara, Y. and Shinozaki, K. 2009, TriFLDB: a database of clustered cDNA clones and their utility for the discovery of genes responding to insect feeding, *BMC Genomics*, 9, 57.

35. Aoki, K., Yano, K., Suzuki, A., et al. 2010, Large-scale analysis of full-length cDNAs from the tomato (*Solanum lycopersicum*) cultivar Micro-Tom, a reference system for the Solanaceae genomes, *BMC Genomics*, 11, 210.

36. Swarbreck, D., Wilks, C., Lamesch, P., et al. 2008, The *Arabidopsis* Information Resource (TAIR): gene structure and function annotation, *Nucleic Acids Res.*, 36, D1009–14.

37. Tanaka, T., Antonio, B.A., Kikuchi, S., et al. 2008, The Rice Annotation Project Database (RAP-DB): 2008 update, *Nucleic Acids Res.*, 36, D1028–33.

38. Ouyang, S., Zhu, W., Hamilton, J., et al. 2007, The TIGR rice genome annotation resource: improvements and new features, *Nucleic Acids Res.*, 35, D883–7.
39. Spannagl, M., Noubibou, O., Haase, D., et al. 2007, MIPSPlantsDB—plant database resource for integrative and comparative plant genome research, *Nucleic Acids Res.*, **35**, D834–40.

40. Mott, R. 1997, EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA, *Comput. Appl. Biosci.*, **13**, 477–8.

41. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990, Basic local alignment search tool, *J. Mol. Biol.*, **215**, 403–10.

42. Uniprot Consortium. 2009, The Universal Protein Resource (UniProt) 2009, *Nucleic Acids Res.*, **37**, D169–74.

43. Pruitt, K.D., Tatusova, T., Klimke, W. and Maglott, D.R. 2009, NCBI reference sequences: current status, policy and new initiatives, *Nucleic Acids Res.*, **37**, D32–6.

44. Borodovsky, M. and McIninch, J. 1993, Recognition of genes in DNA sequence with ambiguities, *Biosystems*, **30**, 161–71.

45. Majoros, W.H., Pertea, M., Delcher, A.L. and Salzberg, S.L. 2005, Efficient decoding algorithms for generalized hidden Markov model gene finders, *BMC Bioinformatics*, **6**, 16.

46. Majoros, W.H., Pertea, M. and Salzberg, S.L. 2004, TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders, *Bioinformatics*, **20**, 2878–9.

47. Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y.O. and Borodovsky, M. 2005, Gene identification in novel eukaryotic genomes by self-training algorithm, *Nucleic Acids Res.*, **33**, 6494–506.

48. Usuka, J., Zhu, W. and Brendel, V. 2000, Optimal spliced alignment of homologous cDNA to a genomic DNA template, *Bioinformatics*, **16**, 203–11.

49. Lander, E.S. and Waterman, M.S. 1988, Genomic mapping by fingerprinting random clones: a mathematical analysis, *Genomics*, **2**, 231–9.

50. Salse, J., Bolot, S., Throude, M., et al. 2008, Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution, *Plant Cell*, **20**, 11–24.