Isolation and characterization of microsatellite loci from *Oxytropis diversifolia* (Fabaceae)

Hui Wang1,3, Han Yang1, Pei-Liang Liu2, Chun Su1, Liang Xiao1, and Zhao-Yang Chang1,3

PREMISE OF THE STUDY: Microsatellite primers were developed for a perennial legume from northern China, *Oxytropis diversifolia* (Fabaceae), to investigate population genetic structure of this taxon, as well as potential hybridization events with closely related taxa in this genus.

METHODS AND RESULTS: One hundred and five primer pairs were designed from Illumina sequence data and screened for suitability. Fifteen of these primer pairs were polymorphic, and these primers amplified tri-, tetra-, and pentanucleotide repeats with 10–56 alleles per locus. Cross-amplification tests in three other *Oxytropis* species from northern China (*O. leptophylla*, *O. neimonggolica*, and *O. squammulosa*) revealed that all of these loci can be amplified successfully and show polymorphism.

CONCLUSIONS: These primer pairs can be used to assess the genetic diversity and population structure in future studies of *O. diversifolia*, as well as studies of potential hybridization events with closely related taxa in this genus.

KEY WORDS: Fabaceae; next-generation sequencing; nuclear microsatellites; *Oxytropis diversifolia*.

Oxytropis diversifolia E. Peter (Fabaceae) is a perennial herb occurring in dry *Stipa* L. grasslands/semi-desert regions of northern China and Mongolia (Zhu et al., 2010). In the Nei Mongol region of China, populations of this species show morphological variation for leaf shape: individuals may have leaves with only one leaflet, three leaflets, or one to three leaflets. Because of the essential role that leaves play in photosynthesis, it is broadly accepted that variation in leaf shape has major ecological and evolutionary consequences, and such a character is expected to experience different selection depending on environmental conditions (Nicotra et al., 2011). However, direct evidence to demonstrate that leaf shape is actually adaptive is comparatively rare (Kidner and Umbreen, 2010). Intraspecific phenotypic variation in leaf shape could simply be the result of either random genetic drift or indirect selection on genetically correlated characters. A classical approach to assess the roles of purely neutral processes and natural selection in phenotypic differentiation is to compare the geographic pattern for the trait of interest to a set of putatively neutral loci (e.g., allozymes, microsatellites, amplified fragment length polymorphism [AFLP] markers, and single-nucleotide polymorphism [SNP] markers). Currently, random-amplified polymorphic DNA (RAPD) and AFLP markers have been developed and used in *Oxytropis* DC. species (e.g., Chung et al., 2004), but microsatellite markers are lacking.

Here, we describe the development of microsatellite markers that will facilitate future research on leaf shape variation in *O. diversifolia*. In addition, the degree of congeneric cross-transferability of the markers was also assessed in three related *Oxytropis* species from northern China: *O. leptophylla* (Pall.) DC., *O. neimonggolica* C. W. Chang & Y. Z. Zhao, and *O. squammulosa* DC. We are particularly interested to test for potential hybridization of *O. leptophylla* with *O. diversifolia* (H. Wang, Northwest A&F University, Yangling, Shaanxi, China, personal observation).

METHODS AND RESULTS

Total genomic DNA was extracted from a dry leaf sample collected in Urad Zhongqi, Nei Mongol, China (Pop8, Appendix I; BioSample accession SAMN08408037), using the cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1990). A DNA library was constructed with the KAPA Hyper Prep Kit (catalog no. KK8500; Kapa Biosystems, Wilmington, Massachusetts, USA), and 2 × 150-bp paired-end sequencing was performed on an Illumina HiSeq 2500 system (Illumina, San Diego, California, USA) at the Sequencing and Genotyping Facility of Beijing Micoread Gene Technology Co. Ltd. (Beijing, China). A total of 3,421,900 raw sequence reads (2.52 Gbp, GenBank Short Read Archive accession...
SRP131738, BioProject ID PRJNA431827) were obtained. The paired-end reads were then processed using Trimmomatic version 0.35 (Bolger et al., 2014) and merged into ~240-bp sequences using FLASH version 1.2.11 (Magócs and Salzberg, 2011). In total, 3,079,710 clean reads assembled into 2,949,319 contigs.

SSR_pipeline software (Miller et al., 2013) was used to detect tri-, tetra-, and pentanucleotide repeats on the sequence set, and Primer Premier 5.0 (PREMIER Biosoft International, Palo Alto, California, USA) was used to develop primers for 105 loci, prioritizing motif diversity and melting temperature difference ≤1°C. An M13 tag (5′-TGTAAAACGACGGCCAGT-3′) was added to the 5′ end of the shorter primer of each locus. These primer pairs were tested on seven O. diversifolia individuals from different populations (Appendix 1). Each locus was initially amplified individually in 15-μL PCR reactions that contained 1.5 μL of 10× Buffer I, 200 μM of dNTPs, 0.27 μM of M13 primer (labeled with HEX), 0.1 μL of 1× TaKaRa HS Taq (TaKaRa Biotechnology, Dalian, Liaoning, China), 0.67 μM of reverse primer, and 1 μL of diluted template DNA. PCR thermocycling conditions were an initial denaturation of 95°C for 5 min; 30 cycles of 94°C for 30 s, 53°C for 30 s, and 72°C for 30 s; and a final extension at 60°C for 30 s, 56°C for 30 s, and 72°C for 30 s; followed by 10 cycles of 94°C for 30 s, 53°C for 30 s, and 72°C for 30 s; and a final extension at 60°C for 30 min. The PCR products were examined on a 2% agarose gel.

TABLE 1. Characteristics of 15 microsatellite loci developed for Oxytropis diversifolia.*

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	Fluorescent dye (Group)	GenBank accession no.
N754892	F: CGGTGATATTTCAATTTGCG	(ATAG)12	156–274	6-FAM (1)	MG693777
R: TGGGTCCCACTTATGGTTATCC					
N145635	F: CTGGGTGAGAAGAGGAGAAGA	(GAG)12	102–207	HEX (1)	MG693767
R: TTCTCAAGCTTACTATTTTGGAC					
N2724893	F: ACTAAGGGACACCATATATCA	(AAC)10	108–138	ROX (1)	MG693774
R: TACCTGATAATCATTTGGGA					
N876535	F: GAGGAAAGGGGAAGTGGAGA	(TCT)10	126–322	ROX (1)	MG693779
R: CGATGCGTGATTACCTTTAGCA					
N2720763	F: GCCGTTTATGATGATTACCTT	(TTT)10	119–215	6-FAM (2)	MG693773
R: GAAAGACTGAGGGGTAATCCCA					
N2717495	F: CCAACAATCAAAATTTGGCGG	(TCTA)10	144–199	HEX (2)	MG693772
R: GGAGTGTGTTTGTGATGAAAGT					
N178451	F: TCAGTACTTCTCCACATCA	(ATA)12	97–183	ROX (2)	MG693769
R: GGGAAATAGAGAGATATCCACTGC					
N161850	F: CTGCACTACACCTTCTTGTGTT	(AAT)12	105–180	6-FAM (3)	MG693768
R: CCAACAACCTTCCTTCTGCG					
N49251	F: CCAATGCGACGACCTCTTCAAA	(TCT)11	103–136	HEX (3)	MG693776
R: GGAGTACGCAATCCAGTCTTCAAAA					
N350553	F: TCAATTCCATCTCCTGGAACC	(TTT)12	130–280	HEX (3)	MG693775
R: TGGAGCTACATCCATCTACGA					
N935993	F: GATCACCTGGTGATGATTGGG	(ATG)12	90–117	ROX (3)	MG693780
R: CGCACTACACCCCTTGGAAT					
N1172223	F: TGGGATATGGAGGAGTCTGAG	(ATA)12	107–197	ROX (3)	MG693766
R: GACACCCCCGCATCAAT					
N803014	F: CTGGATGAGATTGGCTCTGAG	(AAT)12	125–197	6-FAM (4)	MG693778
R: TGGATTTTCTATGCAGAAG					
N2582349	F: TCCTCTAATGAGGATCTCAGGA	(ATCT)10	136–224	HEX (4)	MG693770
R: TGGAGATGAGAAGACCAAA					
N2697375	F: TGGCCTATGTTTGGGTTA	(TTATG)13	141–238	ROX (4)	MG693771
R: TCAAGAAGGAAATACCTGGGA					

*All values are based on 114 samples representing four populations (Baotoubei, Pop8, Hu, Dian1) located in dry grassland-semi-desert regions of northern China. For details of voucher and locality information, see Appendix 1.

Annealing temperature was 56°C for all loci.
in *O. diversifolia*. Tests of pairwise linkage disequilibrium were performed using GENEPOP 4.7 (Rousset, 2008). Only two genotypic disequilibria out of 420 (N876535 and N2720763, N876535 and N35053 in Pop8) were significant at the 5% level after Benjamini–Hochberg correction (Benjamini and Hochberg, 1995). We also used exact tests implemented by GENEPOP software to test for departure from Hardy–Weinberg equilibrium (HWE). A significant departure from HWE was recorded for almost all loci across the four populations (Table 2). Nine of the 15 loci failed to meet HWE expectations in at least one population. MICRO-CHECKER (van Oosterhout et al., 2004) identified the possibility of null alleles in some loci. Three loci (N2724893, N350553, N803014) showed evidence of stuttering in some populations, but not consistently across populations, indicated as a deficit of heterozygote genotypes with alleles of one repeat unit difference. No large allele dropouts were identified. These departures from HWE are likely due to inbreeding or genetic drift.

Cross-amplification of the 15 primer pairs was conducted on three related species from northern China: *O. leptophylla*, *O. neimonggolica*, and *O. squammulosa* (Appendix 1). All of the loci were successfully amplified and polymorphic. The number of alleles per locus varied from two to 22 in *O. leptophylla*, three to 21 in *O. neimonggolica*, and two to 18 in *O. squammulosa* (Table 3).

CONCLUSIONS

The 15 polymorphic microsatellites developed here will be used for population genetic studies on *O. diversifolia*. Cross-amplification experiments confirmed that these markers should be applicable in *O. neimonggolica*, *O. leptophylla*, and *O. squammulosa*, thus providing a novel population genetic tool in *Oxytropis*. The low-genomic-coverage Illumina sequencing reads generated in the present study could potentially be used to assemble high-copy-number gene regions, such as complete or partial chloroplast and mitochondrial genomes, as well as nuclear ribosomal RNA genes. Such gene sequences can be informative in phylogenetic

Table 2. Genetic properties of the 15 polymorphic microsatellite loci in *Oxytropis diversifolia*.

Locus	Baotoubei (n = 20)	Pop8 (n = 30)	Hu (n = 32)	Dian1 (n = 32)	Total (n = 114)	A_s
N745892	11	0.550 0.864***	17 0.600 0.889***	17 0.563 0.921***	21 0.710 0.937***	29
N145635	8	0.111 0.832***	16 0.517 0.877***	19 0.690 0.928***	18 0.645 0.906***	29
N2724893	6	0.750 0.728	7 0.433 0.699***	8 0.452 0.759***	8 0.406 0.584***	11
N876535	10	0.316 0.868***	27 0.724 0.946***	28 0.781 0.968***	28 0.531 0.960***	56
N2720763	8	0.421 0.852***	12 0.567 0.866***	10 0.438 0.880***	10 0.400 0.871***	13
N2717495	9	0.278 0.876***	14 0.241 0.859***	18 0.531 0.925***	18 0.367 0.936***	25
N178451	9	0.368 0.836***	14 0.800 0.873*	12 0.688 0.850*	12 0.563 0.900***	18
N161850	8	0.850 0.837***	18 0.897 0.907***	21 0.844 0.924**	16 0.839 0.901*	25
N49251	8	0.750 0.791***	9 0.733 0.815***	14 0.469 0.764***	16 0.467 0.823***	35
N350553	7	0.313 0.788***	21 0.500 0.930***	14 0.781 0.785***	8 0.581 0.717*	10
N935993	5	0.600 0.601***	8 0.567 0.767*	10 0.781 0.785*	8 0.581 0.717*	10
N1172223	12	0.700 0.885***	17 0.444 0.924***	19 0.533 0.925***	18 0.483 0.947***	26
N803014	3	0.412 0.597*	9 0.048 0.817***	10 0.240 0.857***	10 0.160 0.829***	16
N2528349	7	0.368 0.812***	14 0.600 0.788***	6 0.469 0.567*	7 0.531 0.589*	18
N2697375	8	0.750 0.835***	17 0.552 0.898***	18 0.677 0.921***	16 0.633 0.900***	31

Note: A_s = number of alleles detected across all individuals; A = total number of alleles; H_e = unbiased expected heterozygosity; H_o = observed heterozygosity; n = number of individuals sampled.

aVoucher and locality information are provided in Appendix 1.

Table 3. Cross-amplification of the 15 microsatellites developed for *Oxytropis diversifolia* in *O. neimonggolica*, *O. leptophylla*, and *O. squammulosa*.

Locus	O. leptophylla (n = 19)	O. neimonggolica (n = 20)	O. squammulosa (n = 16)
N745892	13 188–250	17 154–262	10 160–234
N145635	6 114–129	18 99–228	4 99–117
N2724893	6 120–135	7 120–138	7 117–138
N876535	16 154–316	20 135–226	18 194–310
N2720763	5 183–215	9 141–207	2 167–171
N2717495	11 144–210	15 160–202	4 164–170
N178451	11 103–158	10 103–168	7 103–158
N161850	22 102–171	19 102–192	7 105–177
N49251	4 106–118	6 112–130	8 112–133
N350553	3 172, 178	6 96–111	6 172–187
N935993	2 102, 105, 108	21 136–262	3 99, 105, 111
N1172223	6 125–179	16 131–203	14 137–203
N803014	4 134–215	3 134, 137, 140	6 134–149
N2528349	10 150–244	6 149–184	3 154, 158, 162
N2697375	10 157–205	17 161–209	3 161, 167, 205

Note: A = number of alleles detected across all individuals; n = number of individuals sampled.

aVoucher and locality information are provided in Appendix 1.
reconstruction of the genus *Oxytropis*, or even in a much broader phylogenetic scope.

ACKNOWLEDGMENTS

The authors thank Y.-B. Yan and E. Flaven for technical help with microsatellite amplification. E. Imbert for valuable comments on early versions of this paper, and R. Fuller for English editing. This work was supported by Fundamental Research Funds for the Central Universities (no. Z109021613 in Northwest A&F University) and the National Natural Science Foundation of China (no. 31700191) to H.W.

AUTHOR CONTRIBUTIONS

H.W. designed the experiment, collected samples in the field, analyzed the data, and wrote the manuscript. H.Y. did the molecular work under the supervision of H.W. P.-L.L. was responsible for the field work, collected the voucher specimens, and participated in writing the manuscript. C.S. and L.X. participated in the field work under the supervision of H.W. P.-L.L. was responsible for the field work, collected the voucher specimens, and participated in writing the manuscript. Z.-Y.C. supervised the entire study. All authors approved the final version of the manuscript.

DATA ACCESSIBILITY

Next-generation sequencing data: (1) BioSample accession SAMN08408037, (2) BioProject ID PRJNA431827, (3) GenBank Short Read Archive accession SRP131738. Sequence data for the 15 microsatellite loci were submitted to GenBank, and accession numbers are listed in Table 1.

LITERATURE CITED

Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society, Series B (Methodological)* 57: 289–300.

Chung, M., G. Gelembiuk, and T. J. Grivnish. 2004. Population genetics and phylogeography of endangered *Oxytropis campestris* var. *chartacea* and relatives: Arctic–alpine disjuncts in eastern North America. *Molecular Ecology* 13: 3657–3673.

Doyle, J. I., and J. L. Doyle. 1990. Isolation of plant DNA from fresh tissue. *Focus* 12: 13–15.

Holleley, C. E., and P. G. Geerts. 2009. MULTIPLEX MANGER 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. *BioTechniques* 46: 511–517.

Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28: 1647–1649.

Kidner, C. A., and S. U. Umbrreen. 2010. Why is leaf shape so variable. *International Journal of Plant Developmental Biology* 4: 64–75.

Magoč, T., and S. L. Salzberg. 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. *Bioinformatics* 27: 2957–2963.

Miller, M. P., B. J. Knaus, T. D. Mullins, and S. M. Haig. 2013. SSR_pipeline: A bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data. *Journal of Heredity* 104: 881–885.

Nicotra, A. B., A. Leigh, C. C. Jones, K. J. Niklas, D. L. Royer, and H. Tsukaya. 2011. The evolution and functional significance of leaf shape in the angiosperms. *Functional Plant Biology* 38: 535–552.

Peakall, R., and P. E. Smouse. 2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6: 288–295.

Peakall, R., and P. E. Smouse. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research–An update. *Bioinformatics* 28: 2537–2539.

Rousset, F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. *Molecular Ecology Resources* 8: 103–106.

van Oosterhout, C., W. F. Hutchinson, D. P. Wills, and P. Shipley. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Resources* 4: 535–538.

Zhu, X. Y., S. L. Welsh, and H. Ohashi. 2010. *Oxytropis* Candolle. In Z. Y. Wu, P. H. Raven, and D. Y. Hong [eds.], *Flora of China*, Vol. 10, 453–500. Science Press, Beijing, China, and Missouri Botanical Garden Press, St. Louis, Missouri, USA.

APPENDIX 1

Voucher and locality information for *Oxytropis* species used in this study.

Species	Population	n	Voucher no.*	Collection locality	Geographic coordinates
Oxytropis diversifolia E. Peter	Baotoubei	20	Chang2016005	Baotou, Nei Mongol, China	40°42′53.9"N, 110°6′15.9"E
O. diversifolia	Pop8	30	Chang2016024	Urad Zhongqi, Nei Mongol, China	41°24′06.3"N, 109°21′8.65"E
O. diversifolia	Hu	32	Chang2017034	Urad Zhongqi, Nei Mongol, China	41°34′16.3"N, 108°18′31.1"E
O. diversifolia	Dian1	32	Chang2017030	Urad Zhongqi, Nei Mongol, China	41°34′16.3"N, 108°18′31.1"E
O. diversifolia	Pop6	1	Chang2016022	Urad Zhongqi, Nei Mongol, China	41°34′16.3"N, 108°18′31.1"E
O. diversifolia	Damaonan	1	Chang2016015	Urad Zhongqi, Nei Mongol, China	41°25′58.13"N, 109°58′13.5"E
O. diversifolia	Changewenduoer	1	Chang2016076	Urad houqi, Nei Mongol, China	41°28′64.7"N, 106°57′05.4"E
O. leptophylla (Pall.) DC.	Bop2	19	Chang2016088	Guyang County, Nei Mongol, China	41°4′15.7"N, 110°6′25.2"E
O. neimongolica C. W. Chang & Y. Z. Zhao	Yangcigoukou	20	Chang2017005	Aba Zhuqi, Nei Mongol, China	39°1′89.7"N, 106°7′26.56"E
O. squammulosus DC.	Line	16	Chang2017043	Urad Zhongqi, Nei Mongol, China	41°24′06.3"N, 109°21′8.65"E

Note: n = number of individuals sampled; Chang = Zhao-Yang Chang, group collection indicator.

*All voucher specimens are deposited in the Northwest A&F University Herbarium (WKU), Yangling, Shaanxi, China.

Sample used for initial library construction.