MULTI-TRANSITION STUDY OF M51'S MOLECULAR GAS SPIRAL ARMS

E. Schinnerer1, A. Weiß2, S. Aalto3, and N. Z. Scoville4

1 MPI for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
2 MPI for Radioastronomy, Auf dem Hügel 69, 53121 Bonn, Germany
3 Department of Radio and Space Science, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
4 California Institute of Technology, MC 249-17, Pasadena, CA 91125, USA

Received 2010 February 5; accepted 2010 June 14; published 2010 August 2

ABSTRACT

Two selected regions in the molecular gas arms in M51 were mapped with the Owens Valley Radio Observatory (OVRO) mm-interferometer in the 12CO(2–1), 13CO(1–0), C18O(1–0), HCN(1–0), and HCO+(1–0) emission lines. The CO data have been combined with the 12CO(1–0) data from Aalto et al. covering the central 3.5 kpc to study the physical properties of the molecular gas. All CO data cubes were short spacing corrected using IRAM 30 m (12CO(1–0): NRO 45 m) single-dish data. A large velocity gradient analysis finds that the giant molecular clouds (GMCs) are similar to Galactic GMCs when studied at 180 pc (120 pc) resolution with an average kinetic temperature of $T_{\text{kin}} = 20(16)$ K and H$_2$ density of n(H$_2$) = 120(240) cm$^{-3}$ when assuming virialized clouds (a constant velocity gradient V_{rad}). The associated conversion factor between H$_2$ mass and CO luminosity is close to the Galactic value for most regions analyzed. Our findings suggest that the GMC population in the spiral arms of M51 is similar to those of the Milky Way and therefore the strong star formation occurring in the spiral arms has no strong impact on the molecular gas in the spiral arms. Extinction inferred from the derived H$_2$ column density is very high (A_V about 15–30 mag), about a factor of 5–10 higher than the average value derived toward H$_\text{II}$ regions. Thus, a significant fraction of the ongoing star formation could be hidden inside the dust lanes of the spiral arms. A comparison of MIPS 24 μm and Hα data, however, suggests that this is not the case and most of the GMCs studied here are not (yet) forming stars. We also present low (4.5$''$) resolution OVRO maps of the HCN(1–0) and HCO+(1–0) emission at the location of the brightest 12CO(1–0) peak.

Key words: galaxies: individual (NGC 5194) – galaxies: ISM – ISM: molecules – radio lines: ISM

1. INTRODUCTION

Since the first discovery of giant molecular clouds (GMCs) in our Galaxy, a major aim has been to understand the range of their physical properties and their dependence on environment. Recently, Bolatto et al. (2008) showed that the GMC properties are remarkably similar over a large range of environments using a large set of interferometric observations of local dwarf galaxies as well as of M31 and M33. Most studies of spiral galaxies outside the Local Group were undertaken using single-dish observations where the GMCs are no longer resolved. Thus, it is not obvious if the results of these studies can be directly applied to the GMC population present in these galaxies. Detailed analysis of the molecular gas at roughly GMC-scale resolution was only obtained for the centers of a few nearby galaxies such as IC 342, Maffei 2, and M82 (Meier & Turner 2001; Meier et al. 2008; Weiß et al. 2001) all suggesting that the properties of these GMCs differ from those found in galaxy disks by exhibiting higher kinetic temperatures and lower conversion factors likely due to the effect of the more vigorous star formation present in the centers of these galaxies. Thus, it would be interesting to know whether GMCs residing in galactic disks with enhanced star formation are similar to local GMCs or closer to those found in the central regions of external galaxies.

The Whirlpool galaxy M51 is an ideal target being one of the closest ($D = 8.4$ Mpc with 1" ~ 40.7 pc; Feldmeier et al. 1997) almost face-on grand design spiral galaxies. A significant fraction of its molecular gas is found in the spectacular spiral arms (e.g., Scoville & Young 1983; Aalto et al. 1999; Shetty et al. 2007; Koda et al. 2009). Therefore, it offers a unique opportunity to study the physical properties of the molecular gas within the spiral arms. For example, Kramer et al. (2005) combined single-dish data with observations from the Infrared Space Observatory (ISO) to investigate the state of the interstellar medium (ISM) in the center and selected arm regions finding indications that the ISM in M51 might differ from that of the Galaxy as most of the [Cii] line emission in M51 can be explained as arising from a photon-dominated region (PDR) unlike the 50% assumed for the Galaxy. Due to M51’s low inclination ($i \sim 20^\circ$) non-circular motions can be more easily separated from the galactic rotation. The unusually large streaming motions (60–150 km s$^{-1}$) found in M51 imply a very strong density wave whose general features are velocity discontinuities and streaming across the spiral arms (e.g., Roberts & Stewart 1987).

Besides the large number of Giant Molecular Cloud Associations (GMAFs: up to 16 within one spiral arm; Aalto et al. 1999), numerous star clusters and H$_\text{II}$ regions reside in the spiral arms as is obvious in high resolution Hubble Space Telescope (HST) imaging (e.g., Scoville et al. 2001). These populations have been extensively studied using HST data (e.g., Bastian et al. 2005; Lee et al. 2005; Scheepmaker et al. 2009, and references therein). Two interesting results in the context of this paper are that younger clusters show higher extinction and are located closer to spiral arms.

The paper is organized as follows. The observations are presented in Section 2 while the data are described in Section 3. A non-LTE analysis of the spectral lines is given in Section 4. The relation between the GMC properties and star formation is investigated in Section 5. A general discussion (Section 6) and a summary of our findings (Section 7) are provided at the end.

2. OBSERVATIONS

2.1. Millimeter Interferometric Observations

For this multi-transition study of the molecular gas spiral arms in M51a, two prominent regions (Figure 1) were
selected based on the interferometric map of the 12CO(1–0) line emission obtained earlier with the Owens Valley Radio Observatory (OVRO) mm-interferometer (Aalto et al. 1999) with short spacing correction (SSC) applied. The size of the circles corresponds to the primary beam at 3 mm. The light gray rectangles outline the western (top) and southern (bottom) regions that are studied.

![Figure 1](image_url)

Figure 1. Location of the two OVRO pointings (dark circles) overlaid onto the integrated 12CO(1–0) line emission (contours) from Aalto et al. (1999) with short spacing correction (SSC) applied. The size of the circles corresponds to the primary beam at 3 mm. The light gray rectangles outline the western (top) and southern (bottom) regions that are studied.

Table 1

Pointing	R.A. (J2000)	Decl. (J2000)
West	13:29:50.14	+47:11:25.27
South	13:29:55.17	+47:11:25.27

Note. Pointing centers for two selected fields in the M1 spiral arm of M51a.

Table 2

Pointing	Transition	Tracks	v_{LSR} (km s$^{-1}$)	Δv (km s$^{-1}$)	No. of Channels
West	12CO(2–1)	1.5L,1E,1H	489	2.6	64
	13CO(1–0)	1C,1L,1.5H	489	2.7	32
	C18O(1–0)	1C,1L,1.5H	488	5.5	16
	HCN(1–0)	1C,2L,1.5H	493	6.8	16
	HCO+(1–0)	1C,2L,1.5H	493	6.7	16
South	12CO(2–1)	1.5L,1E,1H	517	5.2	32
	13CO(1–0)	1C,1L,1H	517	5.6	16
	C18O(1–0)	1C,1L,1H	517	5.5	16
	HCN(1–0)	0.5C,4L,2H	523	6.8	16
	HCO+(1–0)	0.5C,4L,2H	523	6.7	16

Notes. Here, we list the final spectral resolution used and the v_{LSR} of the central channel. The observed tracks are given as the number of full (~5 hr on-source) tracks per configuration, e.g., 1.5L = 1.5 full tracks in L configuration.

Table 3

Pointing	Line	Weighting	rms (mJy beam$^{-1}$)	beam (“”)
West	12CO(2–1)	na	22	1.67 × 1.63
	12CO(2–1)	ro	26	1.31 × 1.28
	12CO(2–1)	un	27	1.27 × 1.25
	13CO(1–0)	na	17	3.91 × 3.19
	13CO(1–0)	ro	19	2.87 × 2.45
	C18O(1–0)	na	13	4.22 × 3.77
	HCN(1–0)	na	13	4.76 × 3.98
	HCO+(1–0)	na	12	4.67 × 3.93
South	12CO(2–1)	na	19	1.68 × 1.46
	12CO(2–1)	ro	22	1.33 × 1.21
	12CO(2–1)	un	25	1.28 × 1.20
	13CO(1–0)	na	17	4.45 × 3.69
	C18O(1–0)	na	15	4.63 × 4.18
	HCN(1–0)	na	12	3.88 × 3.28
	HCO+(1–0)	na	11	4.07 × 3.53

Notes. Three different values are used for weighting of the uv data, namely, a (Briggs) robust parameter of +5 (natural weighting”), 0 (robust weighting”), and −5 (uniform weighting”).

Table 4

Pointing	12CO(1–0)	12CO(2–1)	13CO(1–0)	C18O(1–0)
West-2.9	0.32	0.13	0.28	···
West-4.5	0.23	0.08	0.09	0.08
South-4.5	0.25	0.06	0.09	0.09

Notes. The rms noise in the short spacing corrected data cubes of the CO transitions. All CO data cubes have the same resolution of 2″ (West-2.9) or 4″ (West-4.5, South-4.5).

10% (15%) at 3 mm (1 mm). The calibration of the uv data was done using the OVRO software MMA (Scoville et al. 1994). For mapping and CLEANing we used the software package MIRIAD (Sault et al. 1995). The FWHM of the primary beam of the OVRO interferometer is about 60″ (38″) at 3 mm (1 mm).

In addition to the new observations, we use the 12CO(1–0) mosaic obtained by Aalto et al. (1999). The mosaicked map consists of 19 pointings observed in the C, L, and H configuration with OVRO. The final spectral resolution is 7.8 km s$^{-1}$ with 33
channels centered at a velocity of $v_{LSR} = 472$ km s$^{-1}$. The sensitivity of the naturally (uniform) weighted data is 19 mJy beam$^{-1}$ (25 mJy beam$^{-1}$) with a beam of 3\arcsec'9 \times 3\arcsec'3 (2\arcsec'9 \times 2\arcsec'). A complete description of the data set is given by Aalto et al. (1999).

2.2. Millimeter Single Dish Observations

For a meaningful comparison of the different tracers of the molecular gas, the interferometric data need to be corrected for missing short spacings (short spacing correction (SSC)). Therefore, we observed the regions of the western and southern OVRO pointings with the IRAM 30 m to obtain total power data. Around each pointing center a region of 80$''$ \times 80$''$ was mapped in the On-The-Fly (OTF) mode in 2001 July. The observations were carried out using the AB receiver combination in two frequency setups covering simultaneously the 13CO(1–0) and 13CO(2–1) or the C18O(1–0) and 13CO(2–1) lines in dual-polarization mode at 3 and 1 mm. Since we did not observe the 13CO(2–1) line at OVRO, the 1 mm data will not be described in the following.

The telescope beam size at the 3 mm observing frequencies is 22$''$. We used four of the 1 MHz filter banks as spectral back ends. Each unit has 256 channels resulting in a velocity resolution of 2.6 km s$^{-1}$ and a total velocity coverage of 670 km s$^{-1}$ at 3 mm, respectively. System temperatures were typically \approx170 K (T_A^*) for both frequency setups. Pointing was checked frequently and was found to be stable within 3$''$. Calibration was done every 15 minutes using the hot/cold-load absorber measurements. The OTF observations were done in equatorial coordinates, alternating the two orthogonal scanning directions. The scan speed was 2$''$ s$^{-1}$ with a dump time of 2 s and steps orthogonal to the scanning direction of 4$''$ yielding spectra spaced by 4$''$ on sky. Data were reduced using the CLASS software. Linear baselines were subtracted from each spectrum and intensities were converted to main beam brightness temperatures (T_{mb}). The calibrated, baseline-subtracted spectra were used to produce a three-dimensional data cube. During the gridding we reduced the velocity resolution to 5 km s$^{-1}$ for both lines. The resulting rms noise level for the 13CO(1–0) is 9 mK in both regions. For the C18O(1–0) line, we achieved an rms noise of 6 mK in the west and 12 mK in the south. We estimate fluxes are accurate to \pm10%.

For the SSC of the OVRO mosaic of the 12CO(1–0) data from Aalto et al. (1999) and our OVRO 12CO(2–1) observations, we used the 12CO(1–0) and 12CO(2–1) single-dish maps obtained with the NRO 45 m telescope (Nakai et al. 1994)5 and the HERA receiver array at the IRAM 30 m telescope (Schuster et al. 2007), respectively. The 12CO(1–0) data cube has spatial resolutions of 16$''$ and a spatial gridding of 7.5$''$ on sky for the region of interest here. The 12CO(2–1) data cube was observed in OTF mode and has a spatial resolution of 11$''$ and a spatial gridding of 7.5$''$. The rms noise levels at the resampled spectral resolution of 5.3 km s$^{-1}$ and 4.5 km s$^{-1}$ are 60 mK and 30 mK (T_{mb}) for the 12CO(1–0) and 12CO(2–1) lines, respectively. We have checked and corrected the astrometry of the single-dish maps relative to the OVRO maps by comparing the peaks in the integrated intensity maps before the SSC. For all maps, the astrometry turned out to be consistent within the pointing errors of the single-dish observations with applied shifts of (δRA. $= 4'5$, δdecl. $= -1'5$) and (RA. $= 3'2$, decl. $= 0'0$) for the 12CO(1–0) and 13CO(2–1) lines, respectively.

2.3. Short Spacing Correction

In order to recover the flux resolved out by the interferometer (missing flux), we combined the OVRO interferometric and single-dish data following the SSC method outlined by Weiß et al. (2001). In brief, this method uses the cleaned interferometer map as a starting point and replaces the central part of the uv-plane with visibilities calculated from the single-dish map using the same spatial and velocity grid and flux units as the interferometer map. The method requires knowledge of the interferometer clean beam and the single-dish beam (which has been approximated by a Gaussian). The method has no free parameters except for the choice of which part of the uv-plane is replaced by the single-dish data. All visibilities shorter than the smallest projected baseline of the interferometer data were taken from Fourier transforms of the single-dish data cubes. For the analysis, we produced short spacing corrected data cubes at 4\arcsec'5 (2\arcsec'9) for both (west only) regions (rms listed in Table 4). We find that the missing flux in the OVRO pointings is \approx50%, 40%, and 20% for the 12CO(1–0), 13CO(1–0), and C18O(1–0) lines, respectively, and \approx70% for the 12CO(2–1) line. The missing flux percentage is lower toward the strong emission peaks in the interferometer maps. All maps presented in the following are the short spacing corrected versions.

2.4. HST Archival Data

For comparison to sites of recent star formation we use archival HST data from the WFPC2 camera in the V band and Hα line as well as the NICMOS Paα line as presented by Scoville et al. (2001).

3. THE MOLECULAR ISM

In order to study the molecular gas emission, we created moment maps from the short spacing corrected data cubes using the Groningen Image Processing System (GIPSY) task “moment.” We used a 3σ (5σ or 7σ) limit and required that emission above this threshold be present in at least two adjacent channels to minimize the noise for the intensity maps (velocity fields). Note that this is a very strict cut and low level emission will be missed by the moment maps presented here.

3.1. CO Morphology

Strong line emission has been detected from the 12CO(1–0), 12CO(2–1), and 13CO(1–0) transitions while C18O(1–0) is only detected at a low level in some smaller peaks (see Figures 2–4). However, the relative brightness of peaks within the arms is different for each line, suggesting that different physical conditions might be present in different cloud structures. A slight change in CO morphology is apparent for the western region when comparing the 12CO(1–0), 12CO(2–1), and 13CO(1–0) line emissions at 4\arcsec'5 (Figure 2) and 2\arcsec'9 (Figure 3) resolution: small-scale geometry like the ridge connecting the peaks at a relative declination at +5$''$ and 0$''$ becomes more evident in the 12CO(1–0) and 13CO(1–0) maps. The difference is likely due to an extended low excitation component which is contributing more to the 12CO(1–0) line emission than the 12CO(2–1) one.

No significant offset is seen between the peaks in 12CO(1–0) and 13CO(1–0) (Figures 5 and 6). We verified that the location of the peaks in the moment 0 maps is not significantly affected by the inclusion of the single-dish data. Small offsets of a fraction of the beam are seen for some peaks (mainly in the 13CO(1–0) moment maps) as is expected in the case of low signal-to-noise.
Figure 2. Western region at 4′.5 resolution in molecular line emission of (from left to right): $^{12}\text{CO}(1–0)$, $^{12}\text{CO}(2–1)$, $^{13}\text{CO}(1–0)$, $^{13}\text{CO}(1–0)$, HCN (1–0), and HCO+(1–0). All maps shown are made from the SSC data cubes. The beam is shown in the bottom right corner of each panel. The angular offset is relative to the pointing center.

Figure 3. Western region at 2′.9 resolution in molecular line emission of $^{12}\text{CO}(1–0)$ (left), $^{12}\text{CO}(2–1)$ (middle), and $^{13}\text{CO}(1–0)$ (right). All maps shown are made from the SSC data cubes. The beam is shown in the bottom right corner of each panel. The angular offset is relative to the pointing center.

The smooth ridges present in the $^{12}\text{CO}(1–0)$ intensity map of Aalto et al. (1999) break up into smaller peaks at ∼1′.6 resolution, achieved in the $^{12}\text{CO}(2–1)$ data. In particular, the western region (Figure 7) splits into two gas lanes over a length of about 10′ (∼410 pc) while the southern region (Figure 8) shows up to three spurs along the leading side of the spiral arm similar to the features studied by Corder et al. (2008). The peaks in both regions appear to be slightly resolved at that resolution.

3.2. CO Kinematics

The 1′.6 resolution $^{12}\text{CO}(2–1)$ data allow us to study the molecular gas kinematics at about 65 pc resolution. Although the overall kinematics corresponds well with the low angular resolution velocities (Aalto et al. 1999, their Figure 3), the iso-velocities showing small deviations indicate that some GMAs move faster or slower (Figure 7 middle). While the general deviations from a pure rotational disk are present as well indicating an overall non-circular component, some peaks stand out in the velocity dispersion map suggesting that a few peculiar velocities in the velocity maps are due to a superposition of GMCs rather than actual streaming motions.
The most obvious example is the peculiar velocity field structure identified as streaming motion across the southern arm by Aalto et al. (1999) which is likely caused by a superposition of two GMCs rather than a distinct velocity feature due to streaming (Figure 8, middle and bottom panels). The high velocity dispersion observed in the GMA at offsets of +5″ and +0″ (GMA A10 following the nomenclature of Aalto et al. 1999) and the breakup into several sub-components of the GMA at offsets +12″ and +2″ (GMA A9) support our interpretation. In addition, the 1.6 resolution 12CO(2–1) data reveal that the higher velocity dispersion ridge seen in the 12CO(1–0) mosaic of Aalto et al. (1999) in particular in the western arm belongs to the second set of line peaks on the inner side of the spiral arm (see Figure 7, right panel).

Figure 4. Southern region at 4′.5 resolution in molecular line emission of 12CO(1–0) (top), 12CO(2–1) (middle), and 13CO(1–0) (bottom). All maps shown are made from the SSC data cubes. The beam is shown in the bottom right corner of each panel. The angular offset is relative to the pointing center.

Figure 5. Comparison of the location of the peak emission in 12CO(1–0) (gray contours) and 13CO(1–0) (black contours) in the western arm at 2′.9 resolution. The contours are in steps of 10% of the maximum value of 295 K km s⁻¹ starting at 20% for the 12CO(1–0) map and in steps of 10% of the maximum value of 37.3 K km s⁻¹ starting at 30% for the 13CO(1–0) data. All maps shown are made from the SSC data cubes.

Figure 6. Comparison of the location of the peak emission in 12CO(1–0) (gray contours) and 13CO(1–0) (black contours) in the southern arm at 4′.5 resolution. The contours are in steps of 10% of the maximum value of 201 K km s⁻¹ starting at 30% for the 12CO(1–0) map and in steps of 20% of the maximum value of 5.0 K km s⁻¹ starting at 20% for the 13CO(1–0) data. All maps shown are made from the SSC data cubes.
As emission from the C18O(1–0) line was only detected in a spiral arm gas we measured the CO line emission in all four transitions for several positions along the spiral arms. The integrated line fluxes were derived from Gaussian fits to the spectra and are listed in Tables 5 and 6 for the 2$''$ resolution data. Upper limits for the line flux were derived using three times the rms in the spectrum multiplied by the FWHM measured for the 12CO(1–0) line. The listed line width corresponds to the FWHM of the 12CO(1–0) line. The line ratios R_{21}, R_{13}, and R_{18} were derived by scaling the overall shape of the 12CO(2–1), 13CO(1–0), and C18O(1–0) spectra to the corresponding 12CO(1–0) spectrum and are listed in Tables 5 and 6 as well. Thus, the listed line ratios might not agree perfectly with a line ratio derived from the integrated line fluxes. This approach is more robust in the case of low S/N spectra than using the peak or integrated line flux which could be strongly affected by noise peaks. If no line was detectable in the data, we used the peak flux (upper limit) of the lines in question to derive a lower limit for the R_{13} and R_{18} ratios.

The derived line ratios R_{21} and R_{13} for the western 2$''$ resolution and southern 4$''$ resolution regions are shown as a function of position in Figures 9 and 10, respectively. In the western region, the R_{21} ratio is basically monotonically decreasing as a function of galactocentric distance with a value of $R_{21} = 0.72$ at position w1 corresponding to a radius of about 1.1 kpc (~$27''$) and values between 0.42 and 0.47 for positions w11–w14, which are at a radial distance of about 1.5 kpc (~$37''$). On the other hand, the R_{13} ratio shows a spread of values between 4.5 (w14) and 7.5 (w5) with no clear radial trend. However, most of the higher values are found close to the area of brightest CO emission. While the western region covers a larger range in galactic radii, the southern region is basically tracing molecular gas located at a distance of roughly 2.6 kpc from the center. Thus, R_{21} and R_{13} have fairly similar values over most of the positions, except for the most eastern ones (S6 and S7) which are located close to a very large H II region (see Section 5) and show a double line profile. It is interesting to note that both regions exhibit one component where the ratios are slightly higher than those found for the southernmost positions in the western region. We note that all trends seen within a single pointing should be real, as calibration uncertainties should only affect the absolute flux levels, and thus all positions investigated, in the same way.

Figure 7. Moment maps of the 12CO(2–1) line emission (at a resolution of 1$''$×1$''$ and short spacing corrected): integrated intensity map (left), velocity field (middle), and dispersion map (right). The contours in the intensity map are in steps of 10% of the peak value of 23.3 Jy beam$^{-1}$ km s$^{-1}$, the iso-velocity contours start at 450 km s$^{-1}$ with steps of 5 km s$^{-1}$, while the contours in the dispersion map start at 5 km s$^{-1}$ with a step of 5 km s$^{-1}$. The beam is shown in the bottom right corner of each panel. The angular offset is relative to the pointing center.

3.3. Dense Gas Tracers

HCN(1–0) and HCO+(1–0) line emissions were only detected in the western arm region at a low significance level (see Figure 2). HCO+(1–0) is confined to the bright CO peak at about $-2''$ and $+0''$ while HCN(1–0) might also be associated with another bright CO peak north of this position. Given the low significance of the detection, these data are not included in the following analysis.

4. NON-LTE ANALYSIS

In order to estimate the physical conditions in the molecular gas along the spiral arm gas we measured the CO line emission in all four transitions for several positions along the spiral arms. As emission from the C18O(1–0) line was only detected in a small fraction of the positions, we will focus on the 12CO(1–0), 12CO(2–1), and 13CO(1–0) line measurements for our analysis.

4.1. Line Ratios

Fourteen and nine positions were selected in the western arm region by basically centering them on distinct peaks of the CO line emission in the 2$''$ and 4$''$ resolution maps, respectively. In the southern region, seven positions were selected in a similar manner at 4$''$ resolution only. The western 2$''$ resolution and southern 4$''$ resolution positions are indicated in Figures 9 and 10, respectively. For the measurement of the line ratios R_{21} of the 12CO(2–1) to 12CO(1–0) line, R_{13} of the 12CO(1–0) and 13CO(1–0) line, and R_{18} of the 12CO(1–0) and C18O(1–0) line, all data cubes were converted from flux density with units of Jy beam$^{-1}$ to brightness temperature with units of K. For each position, spectra of the four CO lines were extracted at the central pixel. In a few positions, spectra showed evidence for two line components suggesting that more than one GMC is contributing to the emission peak. In these cases, two Gaussians were fit to the spectra.

The integrated line fluxes were derived from Gaussian fits to the spectra and are listed in Tables 5 and 6 as well. Thus, the listed line ratios might not agree perfectly with a line ratio derived from the integrated line fluxes. This approach is more robust in the case of low S/N spectra than using the peak or integrated line flux which could be strongly affected by noise peaks. If no line was detectable in the data, we used the peak flux (upper limit) of the lines in question to derive a lower limit for the R_{13} and R_{18} ratios.

The derived line ratios R_{21} and R_{13} for the western 2$''$ resolution and southern 4$''$ resolution regions are shown as a function of position in Figures 9 and 10, respectively. In the western region, the R_{21} ratio is basically monotonically decreasing as a function of galactocentric distance with a value of $R_{21} = 0.72$ at position w1 corresponding to a radius of about 1.1 kpc (~$27''$) and values between 0.42 and 0.47 for positions w11–w14, which are at a radial distance of about 1.5 kpc (~$37''$). On the other hand, the R_{13} ratio shows a spread of values between 4.5 (w14) and 7.5 (w5) with no clear radial trend. However, most of the higher values are found close to the area of brightest CO emission. While the western region covers a larger range in galactic radii, the southern region is basically tracing molecular gas located at a distance of roughly 2.6 kpc from the center. Thus, R_{21} and R_{13} have fairly similar values over most of the positions, except for the most eastern ones (S6 and S7) which are located close to a very large H II region (see Section 5) and show a double line profile. It is interesting to note that both regions exhibit one component where the ratios are slightly higher than those found for the southernmost positions in the western region. We note that all trends seen within a single pointing should be real, as calibration uncertainties should only affect the absolute flux levels, and thus all positions investigated, in the same way.
of the cloud. For the models presented here we fixed the 12CO abundance relative to H$_2$ and the 12CO/13CO abundance ratio to 8.0–5 and 30, respectively. The numbers correspond to values found in GMCs in the inner 3 kpc of the disk of the Milky Way (e.g., Langer & Penzias 1993; Milam et al. 2005). LVG models were calculated for two different assumptions of the velocity gradient: (1) a fixed value of $\frac{dv}{dr}$ set to 1 km s$^{-1}$ pc$^{-1}$, which is typical for local clouds and reasonable for M51’s clouds; (2) assuming a virialized cloud such that $\frac{dv}{dr} = 3.1 \sqrt{\frac{n(H_2)}{10^4}}$ (e.g., Goldsmith 2001). LVG line intensity ratios were computed for kinetic gas temperatures T_{kin} between 3 and 200 K and H$_2$ densities log n(H$_2$) between 2.0 and 4.0 (for details of the model, see Weiß et al. 2001).

4.3. M51 Model Results

The results of the LVG analysis are presented in Figures 9 and 10 and summarized in Table 7. Typical relative errors on the derived temperature are of the order of (75–100)% implying that solutions preferring higher temperatures are in principle also consistent with the low temperatures found for several locations. For the H$_2$ densities of N(H$_2$) and n(H$_2$), we find typical relative errors of about 25% (going up to ~50% in the less constrained cases). These errors are independent of the assumptions made for the velocity gradient.

The bulk of the CO emission probed here arises from cold clouds ($T_{\text{kin}} \sim 16$–20 K, depending on the assumption made for the velocity gradient) with a moderate H$_2$ density of n(H$_2$) \approx 240–120 cm$^{-3}$. It is interesting to note that the H$_2$ density in the assumption of a virialized cloud is typically (50–65)% of the H$_2$ density derived for a fixed velocity gradient. The average conversion factor derived from the LVG analysis of $X_{\text{CO}} = (1.3–2.0) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s is close to the Galactic value7 of $X_{\text{CO}} = (1.8 \pm 0.3) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s. This value was recently derived for the Milky Way by Dame et al. (2001) suggesting that the GMCs analyzed here are similar to those in the Milky Way, especially when assuming that they are all virialized clouds. Thus, the data presented here mainly probe the diffuse component of the ISM and not the dense gas that is involved in current star formation. In the remainder of this paper, we refer to the LVG results assuming virialized clouds. However, all trends discussed are present in both scenarios.

The most obvious spatial variation of the physical condition of the gas is a decrease of the kinetic temperature with increasing galactocentric radius along the western spiral arm region. Temperatures decrease from about 27 K at 1.1 kpc (position w1) to ~10 K at 1.6 kpc (position w14). This might indicate an effect of the interstellar radiation field (ISRF) on the cloud properties as these radii probe the transition from the central (bulge) region into the disk (for a discussion of the effect of H II regions, see Section 5). In the southern region, with an almost constant galactocentric radius of ~2.6 kpc, no such gradient is detected. These more distant regions are on average 5–10 K warmer than the furthest regions in the western arm (position w12 and w14). The derived radial temperature profile used by Meijerink et al. (2005) to model the heating mechanism at 850 μm shows a continuous decline of temperature with radius; however, the change over the distances relevant here is less than 2 K. The dust temperature map of Benford & Staguhn

Figure 8. Moment maps of the 12CO(2–1) line emission (at a natural resolution of 1.7′×1.5′ and short spacing corrected): intensity map (top), velocity field (middle), and dispersion map (bottom). The contours in the intensity map are in steps of 10% of the peak value of 12 CO at a position of 3%. The iso-velocity contours start at 490 km s$^{-1}$ and 20 km s$^{-1}$, while the contours in the dispersion map start at 5 km s$^{-1}$ with a step of 5 km s$^{-1}$. The beam is shown in the bottom right corner of each panel. The angular offset is relative to the pointing center.

4.2. LVG Parameters

To constrain the physical conditions of the GMCs we use a spherical, isothermal one-component large velocity gradient (LVG) model (Scoville & Solomon 1974; Goldreich & Kwan 1974). This treatment of the radiative transfer is valid for clouds in which a large-scale velocity gradient effectively makes the radiative transfer a local problem not requiring self-consistent solutions for the entire cloud. The assumption for this model is that due to the velocity gradient present the emission of a molecule is Doppler-shifted with respect to molecules in the rest of the cloud. For the models presented here we fixed the 12CO abundance relative to H$_2$ and the 12CO/13CO abundance ratio to 8.0–5 and 30, respectively. The numbers correspond to values found in GMCs in the inner 3 kpc of the disk of the Milky Way (e.g., Langer & Penzias 1993; Milam et al. 2005). LVG models were calculated for two different assumptions of the velocity gradient: (1) a fixed value of $\frac{dv}{dr}$ set to 1 km s$^{-1}$ pc$^{-1}$, which is typical for local clouds and reasonable for M51’s clouds; (2) assuming a virialized cloud such that $\frac{dv}{dr} = 3.1 \sqrt{\frac{n(H_2)}{10^4}}$ (e.g., Goldsmith 2001). LVG line intensity ratios were computed for kinetic gas temperatures T_{kin} between 3 and 200 K and H$_2$ densities log n(H$_2$) between 2.0 and 4.0 (for details of the model, see Weiß et al. 2001).

4.3. M51 Model Results

The results of the LVG analysis are presented in Figures 9 and 10 and summarized in Table 7. Typical relative errors on the derived temperature are of the order of (75–100)% implying that solutions preferring higher temperatures are in principle also consistent with the low temperatures found for several locations. For the H$_2$ densities of N(H$_2$) and n(H$_2$), we find typical relative errors of about 25% (going up to ~50% in the less constrained cases). These errors are independent of the assumptions made for the velocity gradient.

The bulk of the CO emission probed here arises from cold clouds ($T_{\text{kin}} \sim 16$–20 K, depending on the assumption made for the velocity gradient) with a moderate H$_2$ density of n(H$_2$) \approx 240–120 cm$^{-3}$. It is interesting to note that the H$_2$ density in the assumption of a virialized cloud is typically (50–65)% of the H$_2$ density derived for a fixed velocity gradient. The average conversion factor derived from the LVG analysis of $X_{\text{CO}} = (1.3–2.0) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s is close to the Galactic value (for detailed of the model, see Weiß et al. 2001) suggesting that the GMCs analyzed here are similar to those in the Milky Way, especially when assuming that they are all virialized clouds. Thus, the data presented here mainly probe the diffuse component of the ISM and not the dense gas that is involved in current star formation. In the remainder of this paper, we refer to the LVG results assuming virialized clouds. However, all trends discussed are present in both scenarios.

The most obvious spatial variation of the physical condition of the gas is a decrease of the kinetic temperature with increasing galactocentric radius along the western spiral arm region. Temperatures decrease from about 27 K at 1.1 kpc (position w1) to ~10 K at 1.6 kpc (position w14). This might indicate an effect of the interstellar radiation field (ISRF) on the cloud properties as these radii probe the transition from the central (bulge) region into the disk (for a discussion of the effect of H II regions, see Section 5). In the southern region, with an almost constant galactocentric radius of ~2.6 kpc, no such gradient is detected. These more distant regions are on average 5–10 K warmer than the furthest regions in the western arm (position w12 and w14). The derived radial temperature profile used by Meijerink et al. (2005) to model the heating mechanism at 850 μm shows a continuous decline of temperature with radius; however, the change over the distances relevant here is less than 2 K. The dust temperature map of Benford & Staguhn

6 For an average line width of 40 km s$^{-1}$ (see, e.g., Table 5) and an average cloud complex size of ~50 pc (see Section 5).

7 First determined by Sanders et al. (1984).
(2008) derived by fitting a gray-body thermal emission spectrum to data at 70, 160, 350, and 850 \(\mu \text{m} \) also shows an enhanced dust temperature at the center with a decline for larger radii. However, the dust temperature in the spiral arms themselves is higher than in the inter-arm regions. Overall, the change in temperature is not dramatic. Benford & Staguhn (2008) report a mean temperature of \((25 \pm 3) \text{ K} \) for the disk while the inner 3 kpc region has a higher temperature of 31 K. Therefore, it appears that changes (i.e., within the spiral arm) of the ISRF that are more local than the global radial trend could be causing the apparent observed trend in the western arm. However, higher resolution data such as observations from the Herschel Space Observatory and subsequent detailed modeling are required to address this in more detail.

There is no obvious large difference in the temperature and \(\text{H}_2 \) density of GMCs close to or around star-forming regions as traced by the presence of H\(\alpha \) emission (see Section 5; also indicated in Table 7). This finding suggests that the CO emission arising from or close to star-forming regions is still dominated by cold gas surrounding the H\(\text{II} \) regions and not immediately affected by the enhanced radiation from the H\(\text{II} \) region. There might be a slight effect present as half of the positions in the southern arm encompass H\(\text{II} \) regions (traced by H\(\alpha \) emission) and show slightly higher temperatures. The impact of star formation on the molecular clouds (e.g., heating at the cloud surfaces) is not measurable at a linear resolution of 180 pc (or even for the higher 120 pc resolution data). Only two positions stand out clearly: w5 in the western region and S7(B) in the southern region, both of which show the highest kinetic temperature of \(T_{\text{kin}} = 50 \text{ K} \), average \(\text{H}_2 \) densities, and the lowest conversion factor of \(X_{\text{CO}} = 0.5(0.8) \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s} \). Both GMC complexes are located on the inner edge of the CO spiral arm suggesting that they either live in an environment different from the clouds studied in the other locations or that their ISM has been heavily affected by the ongoing neighboring massive star formation (in the case of S7(B)).

4.4. \(X_{\text{CO}} \) Measurements for M51

Several studies were conducted in the past to derive the conversion factor \(X_{\text{CO}} \) for the molecular gas in M51. Most of these studies did find values well below a Galactic value of \(X_{\text{CO}} = (1.8 \pm 0.3) \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s} \) (Dame et al. 2001). Several reasons could explain the apparent mismatch between our results and these earlier works. One main advantage of the work presented here is its superior spatial resolution compared to the previous results.

Using single-dish observations of \(^{12}\text{CO} \) and \(^{13}\text{CO} \) line transitions and three different methods, Garcia-Burillo et al. (1993) found a value of \(X_{\text{CO}} = (0.8 \pm 0.3) \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s} \) for the center and the molecular spiral arms from LVG modeling and an even lower value when using only the \(^{13}\text{CO} \) emission line data. Assuming a constant ratio between the extinction and the \(\text{H}_2 \) column density \(N(\text{H}_2) \) as found for our Galaxy, Bohlin et al. (1978) gave a Galactic value of \(X_{\text{CO}} \sim 1.8 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s} \). Extending this work, Guelin et al. (1995) added 1 mm continuum measurements to estimate \(X_{\text{CO}} \) via the gas-to-dust ratio, again getting factors about four times lower than the standard value. The most likely explanation for the mismatch is that in these studies individual GMC complexes are not resolved and thus significant mixing of vastly different cloud properties can happen.

Using interferometric observations of the molecular gas disk, Nakai & Kuno (1995) applied the \(A_V \) method\(^8\) to those H\(\text{II} \) regions in the spiral arms that had both H\(\alpha \) as well as radio continuum emission (van der Hulst et al. 1988), which allowed for a good extinction estimate. They obtained a value of \(X_{\text{CO}} \sim (0.9 \pm 0.1) \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s} \) at about 10\('' \) resolution. Among possible sources of error they list a bias for probing gas with higher excitation temperatures as they are looking toward the H\(\text{II} \) region where the gas could be potentially

\(^8\) The adopted method by Nakai & Kuno (1995) takes into account gas located behind H\(\text{II} \) regions on a statistical basis.
heated more. They also caution that the conversion factor in the inter-arms might be completely different as the conditions for the molecular gas are expected to vary as well. Given that most of the gas for which we derived the conversion factor is not close to H II regions (see Section 5) those measurements are very likely affected by probing an environment very different from the one we probed.

Interestingly, applying virial mass measurements to the GMAs in the spiral arms of M51, Rand & Kulkarni (1990) and Adler et al. (1992) come to very opposite conclusions, with \(X_{\text{CO}} \sim 3 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s} \) and \(X_{\text{CO}} \sim 1.2 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s} \), respectively. Both studies measure virial masses assuming that the GMAs are resolved with typical sizes of 300–400 pc. In order to apply this method the assumption must be that the GMAs are bound complexes which might not be true given the fact that it is unclear whether they are just a gas accumulation due to orbit crowding or indeed self-gravitating entities (e.g., Rand & Kulkarni 1990; Adler et al. 1992). This is still an open issue discussed by Koda et al. (2009) for the GMAs identified in their high fidelity map as the elongated structure could easily be interpreted as being due to orbit crowding rather than resembling a bound entity even at their 4\('' \) resolution. As our high resolution \(^{12}\text{CO}(2–1) \) data show that these GMAs break up into several clumps that might no longer even correspond to single gas lanes (as, e.g., seen in the western region), it seems sensible that the assumption of bound systems is not valid for all GMAs.

In addition, enhanced velocity dispersion due to shocks or streaming motions will critically affect the measurements of the line width at the 10\('' \) resolution of the data used by the previous studies. Since Adler et al. (1992) mainly analyzed GMAs located in the central region where the dynamical properties are changing faster, this could be a possible explanation for the different results of both works as the method used is basically the same.

Taking a different approach and combining measurements of the first three transitions of \(^{12}\text{CO} \) with those of ISM cooling lines, Kramer et al. (2005) used a PDR model. However, their derived densities for the center and two regions covering the spiral arms at slightly larger radii are about 1 order of magnitude higher while their temperatures of 12.5 and 15 K are similar to our findings. A recent similar study of the central 3.5 kpc using a refined PDR model by Bell et al. (2007) finds a \(X_{\text{CO}} \) of 1/10 the Galactic value. As both studies were also done at low resolution, it is not clear that the ISM cooling lines as well as the CO lines have the same distribution and filling factors which could affect the estimation of \(X_{\text{CO}} \). Given that the molecular gas studied here is clearly not located close to H II regions, it is not obvious that the PDR assumption is applicable to our regions (see Section 5).

Since it is expected that \(X_{\text{CO}} \) is changing as a function of the environment, the assumption of a single excitation and a simple geometry over a large region can frequently yield misleading results. As our measurements have the highest spatial resolution and are confined to mainly probing a single environment, they should present a good estimate of \(X_{\text{CO}} \) for the spiral arms probed. Given the large uncertainties involved when averaging over large areas in galaxies, they are consistent with the previous results and only highlight the fact that deriving an average \(X_{\text{CO}} \) for an entire galaxy is not straightforward. In particular, the relation between the conversion factor and the gas density and temperature \(X_{\text{CO}} \sim T_{\text{kin}} \text{n(H}_2\text{)}^{0.5} \) can explain why the conversion factor is lower for studies that include a large fraction of the (presumably) less dense inter-arm gas.

4.5. Comparison to GMCs in Other Spiral Galaxies

The LVG models suggest that the physical conditions in the GMCs in the spiral arms of M51 are very similar to those in the Milky Way which have typical gas temperatures of 10 K and densities above 200 cm\(^{-3} \) (e.g., Scoville & Sanders 1987; for a recent compilation see Tielens 2005). Also, the observed average \(H_2 \) column density in M51’s GMCs of \(N(H_2) = (2.3–3.2) \times 10^{22} \text{ cm}^{-2} \) is similar to that typically found for GMCs in the Galactic plane of \(N(H_2) \sim 4 \times 10^{22} \text{ cm}^{-2} \) (Solomon et al. 1979).

Studies of GMCs in Local Group galaxies found that the cloud properties do vary between clouds with and without the...
Table 5
Line Fluxes and Ratios at 2′.9 Resolution

Position	Offset (″)	\(12\)CO(1–0) (K km s\(^{-1}\))	\(12\)CO(2–1) (K km s\(^{-1}\))	\(13\)CO(1–0) (K km s\(^{-1}\))	\(13\)CO(2–1) (K km s\(^{-1}\))	\(\nu_{50}\) (K km s\(^{-1}\))	\(12\)CO(2–1) / \(12\)CO(1–0)	\(13\)CO(2–1) / \(13\)CO(1–0)
w1	0;+15	187	116	26	60	0.72	5.5	
w2	0;+11	150	87	21	50	0.60	5.5	
w3	−6;−6	87	103	≤26	36	1.10	≥9.5	
w4	−2;+6	193	152	39	35	0.65	4.3	
w5	+1;+5	215	135	14	60	0.70	7.5	
w6	−1;+3	204	112	22	50	0.60	7.0	
w7	+2;+2	185	137	21	46	0.71	4.5	
w8	−1;0	303	157	31	40	0.55	7.5	
w9	−2;−3	222	117	≤23	45	0.55	≥9.0	
w10	+5;−4	102	65	≤22	43	0.63	≥7.0	
w11	+1;−5	185	102	31	30	0.45	7.7	
w12	+3;−9	128	64	23	31	0.45	7.3	
w13	+4;−12	142	71	28	36	0.47	6.5	
w14	+6;−15	215	113	47	38	0.42	4.5	

Notes. Here, we list the measured integrated line fluxes for the different position in the western pointing. The lower case letters refer to the 2′.9 resolution data that were used to derive the measurements. The x- and y-offsets are relative to the pointing centers given in Table 1. The FWHM \(\nu_{50}\) is derived from the \(12\)CO(1–0) line. The line ratios were derived from scaling the \(12\)CO(2–1), \(13\)CO(1–0), and \(^{13}\)C\(^{18}\)O(1–0) spectra to the \(12\)CO(1–0) spectrum. This method is more reliable than using the peak flux or the integrated flux in the case of low S/N data. Therefore, the line ratios listed are not in perfect agreement with the ratio of the integrated line fluxes.

Table 6
Line Fluxes and Ratios at 4′.5 Resolution

Position	Offset (″)	\(12\)CO(1–0) (K km s\(^{-1}\))	\(12\)CO(2–1) (K km s\(^{-1}\))	\(13\)CO(1–0) (K km s\(^{-1}\))	\(13\)CO(2–1) (K km s\(^{-1}\))	\(\nu_{50}\) (K km s\(^{-1}\))	\(12\)CO(2–1) / \(12\)CO(1–0)	\(13\)CO(2–1) / \(13\)CO(1–0)	
W1	0;+15	164	91	22	≤13	64	0.63	5.1	≥15
W2	0;+11	151	77	19	10	55	0.60	5.8	17
W3	−6;+7	83	89	4	≤9	45	1.10	10	≥10
W4	−2;+6	184	127	25	7	39	0.60	6.0	25
W5	+2;+4	155	115	18	≤11	55	0.76	5.7	≥14
W6	−1;0	273	136	27	6	42	0.53	8.0	25
W7	+1;−5	170	100	18	≤7	32	0.50	9.0	≥26
W8	+5;−10	113	67	16	≤8	39	0.54	7.8	≥14
W9	+7;−16	178	100	25	≤8	39	0.45	5.0	≥22
S1	−14;+2	44	46	≤5	≤3	26	0.87	≥8.6	≥9
S2	−5;−3	147	57	11	≤6	34	0.42	11	≥23
S3	−2;+1	134	62	7.0	≤7	37	0.48	9.0	≥19
S4	+3;+1	166	59	5	≤9	46	0.43	11	≥19
S5A	+5;−1	45	26	≤6	≤6	30	0.52	≥7.5	≥8
S5B	86	29	≤6	≤6	30	0.37	≥9.5	≥15	
S6A	+13;0	20	24	≤6	≤8	40	0.90	6.5	≥3
S6B	80	36	8	≤4	22	0.40	7.3	≥20	
S7A	+12;+5	60	26	3	≤6	33	0.55	10	≥10
S7B	32	21	2	≤5	26	0.71	14	≥6	

Notes. Here, we list the measured integrated line fluxes for the different position in the western and southern pointing. The capital letters refer to the 4′.5 resolution data where all measurements were obtained. See the notes to Table 5 for details.

The presence of star formation. Wilson et al. (1997) analyzed seven GMCs in M33 at 22″ resolution (corresponding to roughly 90 pc) using multi-line CO observations in conjunction with an LSGC model. They find that GMCs without star formation are typically colder, with \(T_{\text{kin}} \sim 10–20\) K, than GMCs with star formation present, with \(T_{\text{kin}} \sim 30–100\) K, for our assumed \([^{12}\text{CO}] / [^{13}\text{CO}]\) abundance ratio of 30. While the temperatures for the cold GMC population are similar to our values for M51, their derived densities are about 1 order of magnitude higher than our estimates for M51. Interestingly, they note that the sphere of influence for \(\text{HII}\) regions seems limited as GMCs within a 120 pc distance of an \(\text{HII}\) region do already show normal properties and no effect of heating. A recent study of GMCs in the Large Magellanic Cloud by Minamidani et al. (2008) also find a correlation between the star formation activity (measured by the H\(\alpha\) flux) and the temperature and density of the GMCs themselves. They propose an evolutionary sequence from cool \((T_{\text{kin}} \sim 10–30\) K) and low density (log(n(H\(_2\))) < 3) GMCs, through warm \((T_{\text{kin}} \sim 30–200\) K) and cool low density GMCs, to warm and dense GMCs where the first two types are in a young star formation phase where density has not yet reached high enough values to cause active massive star formation. GMCs in the last category are in a later star formation phase where the average density is higher.
results of the large velocity gradient analysis

Position	$\frac{dv}{dr}$	T_{kin} (K)	N(H$_2$) (1022 cm$^{-2}$)	N(H$_2$) (cm$^{-3}$)	X_{CO} (1020 cm$^{-2}$ K$^{-1}$ km$^{-1}$ s)				
w1	0.4	22	27	1.5	1.7	340	210	0.8	0.9
w2	0.4	13	13	1.8	2.1	280	160	1.2	1.4
w4a	0.5	12	13	2.8	3.5	350	230	1.5	1.8
w5	0.3	35	50	1.2	1.2	250	120	0.6	0.5
w6	0.3	18	22	1.6	2.4	230	120	0.8	1.2
w7	0.5	16	18	2.1	2.6	380	250	1.1	1.4
w8	0.3	14	16b	2.9	4.5	200	100	0.9	1.5
w11	0.3	8	10b	3.2	4.3	180	90	1.7	2.3
w12	0.3	8	10	2.2	2.9	190	100	1.7	2.3
w14	0.4	5b	5b	10.9	16.6	280	170	5.1	7.7
S2	0.2	13	15b	1.4	2.6	120	50	0.9	1.8
S3a	0.3	13	17	1.3	2.0	160	70	1.0	1.5
S4a	0.2	13	15b	1.5	2.9	120	50	0.9	1.8
S6Ba	0.2	7b	7b	1.7	3.0	190	100	2.1	3.7
S7A	0.2	21	24	0.4	0.7	140	60	0.7	1.2
S7Bb	0.3	43	50	0.2	0.3	260	110	0.5	0.8

(Values) 0.3 16 20 2.3 3.3 240 120 1.3 2.0

Notes: The kinetic temperatures T_{kin} and H$_2$ column and volume densities N(H$_2$) and n(H$_2$) were derived from the LVG analysis described in Section 4. Typical uncertainties for the kinetic temperature are (75–100)% while the H$_2$ densities have uncertainties of about 25% based on the (10–15)% calibration uncertainty for the CO line data. A CO abundance of [12CO]/[H$_2$] and [12CO]/[13CO] of 8.0 × 10$^{-5}$ and 30.0, respectively, were assumed. The velocity gradient $\frac{dv}{dr}$ was either kept fixed at 1.0 km s$^{-1}$ pc$^{-1}$ or virtualized gas was assumed where $\frac{dv}{dr} = 3.1 \times 10^{10}$ pc$^{-1}$. The corresponding conversion factors X_{CO} from CO line temperature to H$_2$ column density are also listed, the standard Galactic conversion factor is 1.8 × 1020 cm$^{-2}$ K$^{-1}$ km$^{-1}$ s$^{-1}$. The last row lists the average values of all regions analyzed.

a Bright Hα emission present inside CO aperture.

b Beam filling factor >1.

c A [12CO]/[13CO] abundance of 60.0 was used.

Thus, we conclude that the bulk of the GMCs observed in M51’s spiral arms are very similar to the ones in our own Galaxy and given their low temperatures are likely not impacted by (ongoing) star formation. This is not that surprising as most Hα regions are located close to CO peaks but rarely coincide (see Section 5) and as suggested by the M33 results from Wilson et al. (1997) the sphere of influence of an Hα region is small. This could also suggest that GMCs located in spiral arms are different from GMCs located in the center of starburst galaxies such as M82. Weiß et al. (2001) found significantly higher kinetic temperatures of T_{kin} between 50 and 190 K as well as gas densities (n(H$_2$)) between 5 × 102 and 2 × 104 cm$^{-3}$ and concluded that the ongoing massive star formation is significantly altering the cloud properties.

5. THE RELATION OF THE MOLECULAR ISM TO SITES OF STAR FORMATION

In order to compare the distribution of the molecular gas with the sites of recent star formation we use our CO data and archival HST images from Scoville et al. (2001). As expected the molecular gas coincides very well with the prominent dust lanes seen in the individual spiral arms. Using the 1″ resolution 12CO(2–1) data one can see that the emission peaks do fall into regions of high extinction obvious in the HST V-band image (Figures 11 and 12). In particular, the double gas lane in the brightest part of the western region does show a line of enhanced V-band emission between the two CO lanes.

While enhanced extinction is present across the full width of the ∼7″ gas spiral arms it is not uniform but rather patchy. The widths of the dust lanes visible in the HST V-band image range from about 0″.5 to 2″ suggesting that the GMCs we resolve in the 12CO(2–1) data are causing the extinction and that the molecular gas is mainly distributed within GMCs. An upper limit on the scale height of the gas disk is about 20–80 pc if we assume that the extincting material cannot have a larger vertical extent than a dust lane is wide. Combining these numbers with the derived H$_2$ column densities N(H$_2$) in Section 4 (see Table 7) returns approximately the H$_2$ volume densities n(H$_2$) obtained by the LVG analysis. This implies that most of the GMCs seen at 1″ resolution are mostly single entities and not blends of several GMCs.

Most of the Hα regions as traced by their Hα and Paα line emission lie downstream of the molecular gas as it is expected if star formation is occurring inside the molecular gas spiral arms (see Figures 11 and 12). Since the southern region is closer to corotation (where the pattern speed is closer to the angular velocity) than the western region, this can explain why two of the 12CO(2–1) peaks coincide with star formation whereas only one does so in the western region. Except for one case, all Paα peaks have Hα emission associated with them suggesting that extinction is not extreme toward Hα regions.

It is interesting to compare the average extinction toward Hα regions derived from the recombination line ratios of Hα and Paα of $A_{\text{V}} \sim 3.0$ (Scoville et al. 2001) with those estimated from the CO data. We use Equation (6) from Nakai & Kuno (1995) of N(H$_2$) = 1.87 × 1021 A_{V} (mag) − N(HI) (cm$^{-2}$)/2 and our average H$_2$ column density of $\langle N$(H$_2$) \rangle = (2.3–3.3) × 1022 cm$^{-2}$. Since the ISM is mostly molecular in the regions studied here, Schuster et al. (2007), e.g., find values for the ratio of surface density of \sumHI/ \sumH$_2$ < 0.2 for r ≤ 1.6 kpc.
and \(\sim 0.5 \) for the southern region at 2.6 kpc, we neglect the contribution from atomic hydrogen. The derived extinction is about \(A_V \sim 12–18 \), significantly larger than that measured in the \(\text{H\ II} \) regions. This value is even larger \((A_V \sim (15–33)) \) when using a Galactic relation of \(N({\text{H}_2})/A_V = 10^{21} \text{cm}^{-2} \text{K}^{-1} \text{s} \) \citep{Bokhltn1978}. Thus, a lot of massive star formation could be hidden inside the gas spiral arms and could only be detectable at longer wavelengths such as the infrared and radio. Using the HiRes deconvolved 24 \(\mu \)m MIPS image \citep{Dumas2010} and the \(\text{H}\alpha \) map from \citet{Calzetti2005} we tested this scenario at 2" resolution. As the 24 \(\mu \)m emission coincides with the CO emission and is thus mainly arising inside (or upstream) the \(\text{H}\alpha \) emission (see Figures 11 and 12), this supports the picture that hidden star formation does occur inside the spiral arms. Using the \(\text{H}\alpha \) emission located in the spiral arms and the 24 \(\mu \)m emission arising from the same area, star formation rates (SFRs) can be estimated.\(^9\) Correcting the observed \(\text{H}\alpha \) flux for the average extinction of \(A_V \sim 3 \) found for \(\text{H}\ II \) regions \citep{Scoville2001} and using the SFR prescriptions of \citet{Kennicutt1998} for \(\text{H}\alpha \) and of \citet{Rieke2009} for the 24 \(\mu \)m data, we find that the SFR hidden in the spiral arms is about 50% of that traced by \(\text{H}\alpha \). This “lack” of (embedded) star formation inside the gas spiral arms is consistent with the fact that the molecular gas is still cold and might therefore have not yet started to form new stars.

There is no strong correlation between the location of bright \(\text{H}\ II \) regions and massive CO clouds or holes, though most \(\text{H}\ II \) regions tend to lie next to a \(^{12}\text{CO}(2–1) \) peak. This would be in line with the picture described by \citet{Bastian2005} who found a correlation between the radius and mass for clusters of star clusters that is similar to the relation seen for GMCs. They interpret this as evidence that a GMC does form an assembly of star clusters.

\section{6. THE IMPACT OF THE STAR FORMATION ON THE ISM}

The physical properties of the GMC complexes located in the spiral arms of M51 are very similar to those observed for GMCs in our Galaxy. Our LVG analysis suggests that the conversion factor between CO line emission and \(\text{H}_2 \) mass is similar to the standard conversion factor \(X_{\text{CO}} \). This result is in apparent contradiction to other studies conducted in M51 at significantly lower angular resolution. The simplest explanation is that the conversion factor is not constant across the disk (or even within the spiral arms) but a function of environment (even for the diffuse gas probed here). Therefore, a spatial resolution matched to the size of GMC complexes is required to obtain reasonable numbers. Further, the assumption of a single value is not correct when measuring the total amount of gas present in a nearby spiral galaxy. Our 65 pc resolution \(^{12}\text{CO}(2–1) \) data show that the spiral arms break up into clumps at these scales that are roughly aligned along the spiral arms. In the western region, the CO peaks are more abundant toward the leading side of the spiral showing a slight shift from the peak of the smoother emission as traced by, e.g., the 4.5 resolution \(^{12}\text{CO}(1–0) \) emission (see Figures 2 and 7). No offset is obvious for the southern region (see Figures 4 and 8) as expected since the pattern is moving close to the angular velocity at these radii.

At our 120 pc resolution we find no evidence that star formation in \(\text{H}\ II \) regions affects the properties of the GMCs that are at about \(\gtrsim 1'' (40 \text{ pc}) \) distance in agreement with the findings in M33 by \citet{Wilson1997}. Only two positions which are located at the inner edge of the spiral arm exhibit elevated temperatures that may be related to the large-scale dynamics.

Based on the observations presented here, we conclude that most of the GMCs in the spiral arms of M51 are cold, dense structures that are not heavily affected by the neighboring star-forming \(\text{H}\ II \) regions. Despite the inferred high extinction of \(A_V \sim (15–30) \) toward these GMCs only about 50\% of the star formation traced by \(\text{H}\alpha \) emission coincides with the gas spiral arms indicating that most of the molecular gas seen is not yet actively forming stars.

\section{7. SUMMARY AND CONCLUSIONS}

M51 offers an ideal environment to study the physical properties of the molecular gas in the spiral arms of a disk galaxy. Combining short spacing corrected interferometric observations of
Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). We thank K. Schuster and C. Kramer for making available to us the HERA 12CO(2−1) data cube and G. Dumas for the HiRes version of the MIPS 24 μm image as well as her help with the SFRs. We are thankful for the public access to the ‘Nobeyama CO Atlas of Nearby Spiral Galaxies’. The comments and suggestions by the anonymous referee were highly appreciated and helped to improve the paper.

The Owens Valley Radio Observatory was funded in part by NSF grant AST 99-81546.

Facilities: OVRO:40m, IRAM:30m

REFERENCES

Aalto, S., Hüttemeister, S., Scoville, N. Z., & Thaddeus, P. 1999, ApJ, 522, 165
Adler, D. S., Lo, K. Y., Wright, M. C. H., Rydbeck, G., Plante, R. L., & Allen, R. J. 1992, ApJ, 392, 497
Bastian, N., Gieles, M., Efremov, Y. N., & Lamers, H. J. G. L. M. 2005, A&A, 443, 79
Bell, T. A., Whyatt, W., Viti, S., & Redman, M. P. 2007, MNRAS, 382, 1139
Benford, D. J., & Staguhn, J. G. 2008, in ASP Conf. Ser. 381, Infrared Diagnostics of Galaxy Evolution, ed. R.-R. Chary, H. I. Teplitz, & K. Sheth (San Francisco, CA: ASP), 132
Bolton, R. C., Savage, B. D., & Drake, J. F. 1978, ApJ, 224, 132
Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F., & Blitz, L. 2008, ApJ, 686, 948
Calzetti, D., et al. 2005, ApJ, 633, 871
Corder, S., Sheth, K., Scoville, N. Z., Koda, J., Vogel, S. N., & Ostriker, E. 2008, ApJ, 689, 148
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792
Dumas, G., Schinnerer, E., Tabatabaei, F. S., Beck, R., Velusamy, T., & Murphy, E. 2010, AJ, submitted
Feldmeier, J. J., Ciardullo, R., & Jacoby, G. H. 1978, ApJ, 132
García-Burillo, S., Güelín, M., & Cernicharo, J. 1993, A&A, 274, 123
Goldreich, P., & Kwan, J. 1974, ApJ, 189, 441
Goldsmith, P. F. 2001, ApJ, 557, 736
Güelín, M., Zyka, R., Mezger, P. G., Haslam, C. G. T., & Kreyea, B. 1995, A&A, 298, L29
Kennicutt, Jr. R. C. 1998, ARAA, 36, 189
Koda, J., et al. 2009, ApJ, 700, L132
Kramer, C., Mookerjee, B., Bayet, E., Garcia-Burillo, S., Gerin, M., Israel, F. P., Stutzki, J., & Wouterloot, J. G. A. 2005, A&A, 441, 961
Langer, W. D., & Penzias, A. A. 1983, ApJ, 408, 539
Lee, M. G., Chandar, R., & Whitmore, B. C. 2005, AJ, 130, 2128
Meier, D. S., & Turner, J. L. 2001, ApJ, 551, 687
Meier, D. S., Turner, J. L., & Hurt, R. L. 2008, ApJ, 675, 281
Meierink, R., Tilanus, R. P. J., Dullemond, C. P., Israel, F. P., & van der Werff, P. P. 2005, A&A, 430, 427
Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M., & Wyckoff, S. 2005, ApJ, 634, 1126
Minamidani, T., et al. 2008, ApJS, 175, 485
Nakai, N., & Kuno, N. 1995, PASJ, 47, 761
Nakai, N., Kuno, N., Handa, T., & Sofue, Y. 1994, PASJ, 46, 527
Rand, R. J., & Kulkarni, S. R. 1990, ApJ, 349, L43
Rieke, G. H., Alonso-Herrero, A., Weiner, B. J., Pérez-González, P. G., Blaylock, M., Donley, J. L., & Marcillac, D. 2009, ApJ, 692, 556
Roberts, Jr. R. W., & Stewart, G. R. 1987, ApJ, 314, 10
Sanders, D. B., Solomon, P. M., & Scoville, N. Z. 1984, ApJ, 276, 182

the 12CO(1−0), 12CO(2−1), and 13CO(1−0) line emissions in two selected arm regions in the central 6 kpc, an LVG analysis finds that the GMCs inside the spiral arm are similar to those observed in our Galaxy. The average kinetic temperature and H2 density (assuming virialized clouds) are $T_{\text{kin}} = 20$ K and $n(H_2) = 120$ cm$^{-3}$, respectively, at a linear resolution of 120 pc (290 pc for the southern region). Similarly, the derived conversion factor X_{CO} is close to the Galactic value of 1.8×10^{20} cm$^{-2}$ K$^{-1}$ km$^{-1}$ s$^{-1}$ recently derived by Dame et al. (2001). We interpret our results such that the physical properties of the GMC population do not change much as a function of environment in galaxy disks, consistent with the findings of Bolatto et al. (2008) who analyzed GMC properties in local galaxies.

Comparison of the derived molecular gas properties to the location of star formation shows no obvious trend suggesting that the massive star formation has no strong impact onto the GMCs inside the spiral arms. Comparison of the extinction inferred from the derived H2 density and measured toward HII regions shows that the extinction toward the molecular clouds is at least a factor of 5 higher, with an average A_V of 15−30 mag, than the average A_V of 3.1 mag inferred for HII regions by Scoville et al. (2001).

Figure 12. Comparison of the 12CO(2–1) line emission (same contours as Figure 8) to the stellar light distribution in the HST V band (top) as well as the Hα (middle top) and Paα (middle bottom) line emission mainly arising from HII regions and the MIPS 24 μm continuum emission tracing warm dust heated by young stars (bottom).
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes (San Francisco, CA: ASP), 433
Scheepmaker, R. A., Lamers, H. J. G. L. M., Anders, P., & Larsen, S. S. 2009, A&A, 494, 81
Schuster, K. F., Kramer, C., Hintschfeld, M., Garcia-Burillo, S., & Mookerjea, B. 2007, A&A, 461, 143
Scoville, N., Carlstrom, J., Padin, S., Sargent, A., Scott, S., & Woody, D. 1994, in ASP Conf. Ser. 59, IAU Colloq. 140, Astronomy with Millimeter and Submillimeter Wave Interferometry, ed. M. Ishiguro & J. Welch (San Francisco, CA: ASP), 10
Scoville, N., & Young, J. S. 1983, ApJ, 265, 148
Scoville, N. Z., Polletta, M., Ewald, S., Stolovy, S. R., Thompson, R., & Rieke, M. 2001, AJ, 122, 3017
Scoville, N. Z., & Sanders, D. B. 1987, in Astrophysics and Space Science Library, 134, Interstellar Processes, ed. D. J. Hollenbach & H. A. Thronson, Jr. (Dordrecht: Reidel), 21
Scoville, N. Z., & Solomon, P. M. 1974, ApJ, 187, L67
Shetty, R., Vogel, S. N., Ostriker, E. C., & Teuben, P. J. 2007, ApJ, 665, 1138
Solomon, P. M., Sanders, D. B., & Scoville, N. Z. 1979, ApJ, 232, L89
Tielens, A. G. G. M. 2005, The Physics and Chemistry of the Interstellar Medium (Cambridge: Cambridge Univ. Press)
Tosaki, T., Hasegawa, T., Shioya, Y., Kuno, N., & Matsushita, S. 2002, PASJ, 54, 209
van der Hulst, J. M., Kennicutt, R. C., Crane, P. C., & Rots, A. H. 1988, A&A, 195, 38
Weiß, A., Neininger, N., Hüttemeister, S., & Klein, U. 2001, A&A, 365, 571
Wilson, C. D., Walker, C. E., & Thornley, M. D. 1997, ApJ, 483, 210