Multi-institutional experience of genetic diagnosis in Ecuador: National registry of chromosome alterations and polymorphisms

César Paz-y-Miño, Verónica Yumiceba, and Paola E. Leone contributed equally to the study.

1Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
2Servicio de Genética Médica, Hospital de Especialidades, Quito, Ecuador
3CitoGen, Quito, Ecuador
4Laboratorio de Genética, Génica Laboratorios, Quito, Ecuador
5Laboratorio de Citogenética, SOLCA Nucleo de Cuenca, Cuenca, Ecuador
6Hospital “Dr. Juan Tanca Marengo”, SOLCA Matriz, Guayaquil, Ecuador
7Facultad de Medicina, Universidad Espíritu Santo, Guayaquil, Ecuador
8Centro de Diagnóstico y Estudios Biomédicos, Facultad de Ciencia Médicas, Universidad de Cuenca, Cuenca, Ecuador
9Hospital Gineco Obstétrico Isidro Ayora, Ministerio de Salud Pública, Quito, Ecuador
10Facultad de Ciencias Médicas, Universidad de Guayaquil, Guayaquil, Ecuador

Abstract

Background: Detection of chromosomal abnormalities is crucial in various medical areas; to diagnose birth defects, genetic disorders, and infertility, among other complex phenotypes, in individuals across a wide range of ages. Hence, the present study wants to contribute to the knowledge of type and frequency of chromosomal alterations and polymorphisms in Ecuador.

Methods: Cytogenetic registers from different Ecuadorian provinces have been merged and analyzed to construct an open-access national registry of chromosome alterations and polymorphisms.

Results: Of 28,806 karyotypes analyzed, 6,008 (20.9%) exhibited alterations. Down syndrome was the most frequent autosome alteration (88.28%), followed by Turner syndrome (60.50%), a gonosome aneuploidy. A recurrent high percentage of Down syndrome mosaicism (7.45%) reported here, as well as by previous Ecuadorian preliminary registries, could be associated with geographic location and admixed ancestral composition. Translocations (2.46%) and polymorphisms (7.84%) were not as numerous as autosomopathies (64.33%) and gonomopathies (25.37%). Complementary to conventional cytogenetics tests, molecular tools have allowed...
INTRODUCTION

Chromosomal disorders are categorized as numerical or structural abnormalities, affecting autosomes and sex chromosomes. Effects of these disorders are diverse depending on the specific chromosome region involved, such as syndromes, miscarriages, disabling diseases, congenital malformations, facial dysmorphism, intellectual disability, abnormal sexual development, malignancy, among others (Moorthie et al., 2017; Vikraman, 2015). Chromosome segregation during gametogenesis or mitosis during early fetal development, maternal age and environmental factors increase the risk of chromosomal abnormalities (Kim, Lee, Kim, Shim, & Cha, 2013; Mohammed, Shawky, Soliman, & Ahmed, 2011; Moorthie et al., 2017). Particularly, Ecuadorian population has adapted to live at high-altitude, besides being exposed to high UV radiation levels and other genotoxic agents (Paz-y-Miño, Cumbal, & Sánchez, 2012b; Paz-y-Miño, Guillen Sacoto, & Leone, 2016).

In Ecuador, the first initiatives to create a registry started in the early 90s with Varas (1990) who showed that 0.25% of 12,112 newborns in Quito had chromosomal alterations. Paz-y-Miño et al. (1990) reported 560 altered karyotypes from the Andean region. Eight years later, Paz-y-Miño et al. expanded his previous register, from a total of 1,453 karyotypes, 72.40% were abnormal. In 2006, a study conducted with shamans (witchdoctor) and suburban groups with low educational attainment and low socioeconomic status revealed that genetic terminology was poorly understood. Thus, some genetic alterations might not be diagnosed unless patients displayed a disabling phenotype that force them to attend to a medical appointment. Otherwise shamanic and natural medicine is preferable, as it is cheaper and accessible (Paz-y-Miño, Sánchez, Sarmiento, & Leone, 2006). The ECLAMC (Latin American Collaborative Study of Congenital Malformations) reported that between 1995 and 2008 the global rate of congenital malformations was 2.7%, an upright tendency from previous periods (Nazer & Cifuentes, 2011). According to the First Genetic Clinical Biopsychosocial Ecuadorian Study in disabled, named “Manuela Espejo Mission” and led by the Vice Presidency, showed that chromosome and monogenic etiologies represent the 42% and 16% of prenatal causes of intellectual disability, respectively (Misión Solidaria Manuela Espejo, 2012). In 2012, Paz-y-Miño et al published another chromosome registry, where 47.42% karyotypes out of 2,636 examined had chromosomal alterations and polymorphisms. In 2014, the National Institute of Statistics and Census (INEC) reported that congenital malformations and chromosomal abnormalities in Ecuador are the sixteenth cause of mortality with a percentage of 1.35% and a rate of 5.30, affecting regularly infants from birth to one year old (INEC, 2014).

The aim of this work is to unify cytogenetic registers of chromosomal alterations and polymorphisms of patients from different provinces of Ecuador to create an open-access National Chromosome Registry. For medical geneticists and public policy makers, it is essential to know the frequency of chromosomal abnormalities in the country, to promote cytogenetic and genetic testing for prenatal and post-natal diagnosis.

MATERIALS AND METHODS

2.1 Sample collection

In this retrospective and descriptive study, thirteen Ecuadorian cytogenetic sub-registers from Paz-y-Miño’s Groups (data
collected from 1984 to 2019), Servicio de Genética Médica, Hospital de Especialidades No.1 FFAA (1983–2014) (Leone & Paz-y-Miño, 2016), (2016–2018), CitoGen Laboratorio (1992–2013), Centro de Diagnóstico y Estudios Biomédicos de la Facultad de Ciencias Médicas, Universidad de Cuenca (2001–2010) (Alvarez, Jerves, Encalada, & Pesantez, 2010), Hospital “Dr. Juan Tanca Marengo”, SOLCA Guayaquil (2004–2018), Facultad de Ciencias Médicas, Universidad de Guayaquil (2005–2018), Laboratorio de Citogenética, SOLCA Cuenca (2006–2013) (Leone & Paz-y-Miño, 2016), Génica Laboratorios (2009–2018), Centro de Investigaciones, Universidad de Guayas (2010), Hospital Gineco Obstétrico Isidro Ayora (2014–2018), Hospital General Docente (2016–2017), Hospital General Provincial “Luis G. Dávila” (2016–2018) and Centro Especializado en Genética Médica (2017–2019), were included. Data used contained no identifiable personal information to protect individual privacy.

2.2 | Ethical compliance

This study was approved by the Human Research Ethics Committee of Universidad San Francisco de Quito 2018-127E.

2.3 | Cytogenetic and clinical analysis

GTG-banding technique was performed in peripheral blood, amniotic fluid, fetal tissues and placenta chorionic samples. Karyotypes were reported according to the International System for Human Cytogenomic Nomenclature (ISCN 2016) (International Standing Committee on Human Cytogenomic Nomenclature, 2016). When clinical indications for cytogenetic analysis were available, they were grouped into different categories: known chromosomic syndromes, rare phenotype (included > than 2 dysmorphic traits), chromosomopathies, disorders of sex development (DSD), intellectual disability/psychomotor delay and/or neurobehavioral alterations, growth delay, genetic diseases, infertility and recurrent miscarriages, family history of congenital diseases or chromosomopathies, prenatal diagnosis, preconceptional genetic counselling and infectious diseases. The cohort was divided in two age groups 0–17 years (infant-children) and ≥18 years (adults) to detect the most common clinical indications during lifespan.

2.4 | Molecular genetic analysis

With the advent of molecular technologies, diagnostic and research centers have been able to deepen the analysis to find an accurate cause of the patient's phenotype. While karyotyping reveals large chromosomal changes (typically > 5 Mb), chromosome painting (CP), comparative genomic hybridization (CGH), fluorescence in situ hybridization (FISH), genetic mapping array (GMA), multiplex ligation-dependent probe amplification (MLPA), and PCR of target regions detect genetic alterations at a higher resolution level. All techniques were performed according to standardized internal laboratory protocols.

3 | RESULTS

A total of 28,806 individuals (mean age 12.1 years, median age 7 years, age range of 0 to 80 years at diagnosis) from several provinces around Ecuador have been analyzed, of which 6,008 (20.9%) exhibited altered karyotypes. Those were classified in four tables according to the abnormality they displayed: autosomopathies 64.3% (3,865/6,008), gosomopathies 25.4% (1,524/6,008), translocations 2.5% (148/6,008) or polymorphisms 7.8% (471/6,008) (Figure 1) (Tables 1‒4). The mean parental age at the birth of their offspring is 30.93 years (median 31 years and range 15–50 years). By far, trisomy 21 was the most frequent autosomopathy described with 88.28% (all types added), followed by trisomy 18 and 13. It was noticed an elevated percentage of Down syndrome (DS) mosaicism. When referring to partial trisomies, monosomies (Table 1), and translocations (Table 3), breakpoints were not specified as patients have different affected regions in the same chromosome arm. Among all gosomopathies, Turner syndrome (TS) was a representative aneuploidy with 60.50% (all types added), followed by all DSD (19.55%) (Table 2). More than one third of the polymorphism correspond to the Yqh+ polymorphism (Table 4). In certain cases, complementary to cytogenetic testing, molecular assays were performed to ascertain genetic alterations that could possibly explain the patient's phenotype (Table 5). The two-main clinical indications for cytogenetic referral in the cohort were DS and infertility (Figure 2). Being DS, the most commonly confirmed by cytogenetic test in the infant-children group and infertility in the adult group (Figure 3a,b).
TABLE 1 Chromosomal Autosomal Anomalies in the Registry

Abnormal Karyotype	Number	Percentages
Trisomy 2	2	0.05
Trisomy 3	2	0.05
Trisomy 5	7	0.18
Trisomy 6	2	0.05
Trisomy 8 (mosaic)	7	0.18
Trisomy 7	1	0.03
Trisomy 9 (mosaic)	2	0.05
Trisomy 13	72	1.86
Trisomy 13 (mosaic)	7	0.18
Trisomy 14	1	0.03
Trisomy 15	4	0.10
Trisomy 16	3	0.08
Trisomy 18	108	2.79
Trisomy 18 (mosaic)	6	0.16
Trisomy 19	5	0.13
Trisomy 19 (mosaic)	1	0.03
Trisomy 20	3	0.08
Trisomy 21	Free trisomy	3,017 78.06
Mosaic	288	7.45
Translocation	104	2.69
Translocation (mosaic)	3	0.08
Trisomy 22	15	0.39
Other	5	0.13
Mosaicism		

Partial trisomy

Partial trisomy	Number	Percentages
add(1)(q) (mosaic)	1	0.03
add(2)(qter)	1	0.03
add(4)(p)	2	0.05
add(5)(q)	1	0.03
add(7)(p)	1	0.03
add(8)(p) (mosaic)	1	0.03
add(8)(q)	1	0.03
add(9)(p)	2	0.05
add(9)(q)	3	0.08
add(11)(p) (mosaic)	1	0.03
add(13)(p)	2	0.05
add(14)(p)	4	0.10
add(14)(p) (mosaic)	1	0.03
add(15)(p)	6	0.16
add(15)(q)	2	0.05
add(18)(p)	1	0.03
add(18)(q)	3	0.08
add(19)(p)	2	0.05
add(19)(q)	2	0.05
add(21)(p)	3	0.08
add(21)(q)	1	0.03
add(22)(p)	17	0.44

TABLE 1 (Continued)

Abnormal Karyotype	Number	Percentages
Other partial trisomies	24	0.62
Monosomy 9	2	0.05
Monosomy 16	1	0.03
Monosomy 17	2	0.05
Monosomy 21	1	0.03
Monosomy 22	2	0.05

Partial monosomy

Partial monosomy	Number	Percentages
del(1)(pter) (mosaic)	1	0.03
del(1)(q) (mosaic)	1	0.03
del(2)(p) (mosaic)	1	0.03
del(2)(q)	1	0.03
del(2)(q) (mosaic)	1	0.03
del(4)(p)	2	0.05
del(4)(q) (mosaic)	1	0.03
del(5)(p)	16	0.41
del(5)(p) (mosaic)	1	0.03
del(5)(q)	1	0.03
del(5)(q) (mosaic)	1	0.03
del(8)(q) (mosaic)	1	0.03
del(9)(p)	1	0.03
del(10)(q)	1	0.03
del(11)(q)	1	0.03
del(12)(q)	1	0.03
del(12)(p) (mosaic)	1	0.03
del(13)(q)	3	0.08
del(15)(q)	2	0.05
del(17)(q)	1	0.03
del(18)(p)	1	0.03
del(18)(qter)	1	0.03
del(21)(q)	1	0.03
del(22)(q)	5	0.13

Other monosomies

Other monosomies	Number	Percentages
i(17)	1	0.03
Ring Chromosomes		
r(4) (mosaic)	3	0.08
r(6)	1	0.03
r(9)	1	0.03
r(10)	1	0.03
r(15)	2	0.05
Other rings	6	0.16

Chromosomes		
inv(8)	1	0.03
inv(9)	34	0.88
inv(9) (mosaic)	1	0.03

(Continues)
Table 1 (Continued)

Abnormal Karyotype	Number	Percentages
inv(12)	1	0.03
inv(21)	1	0.03
TOTAL	3,865	100.00

4 | DISCUSSION

Chromosomal disorders are generally related to complex phenotypes characterized by intellectual disability, developmental disabilities, and birth defects (Theisen & Shaffer, 2010; Wang et al., 2011). After genetic evaluation, we can establish the etiology of 43%, 7% are due to environmental factors, but about 50% remain unknown (Armas García et al., 2016). Besides, chromosome alterations caused 20% of newborns death (Fernández-Hernández, Domínguez-Castro, Carlos Ibáñez-Salvador, Grether-González, & Aguinaga-Rios, 2013). Hence, efforts have been made to collect data to create an Ecuadorian Chromosome Registry to evaluate for the first time the status of disorders linked to chromosomes abnormalities. The period of karyotype collection does not match in all sub-registries owing to recent creation of cytogenetic laboratories or institutional management flaws to keep registries updated. From late 1980s to present, an increasing number of cytogenetic laboratories in healthcare institutions and geneticists have contributed to an exponential rise of the number of karyotypes processed (Paz-y-Miño, 2012). Most of the institutions that offer genetic services without age discrimination in Ecuador were included. A heterogeneous sample was joined to have a better national approach to chromosome prevalence; however, one should be careful to generalize conclusions. Another pitfall of this study is that the cohort may not be representative as it is made up of cases referred to genetic institutions with suspicion of a genetic condition. In addition, possibly some native closed populations are excluded from the cohort since they do not have access to healthcare.

DS is the most common birth defect and its estimated prevalence in USA is 14 per 10,000 livebirths (Presson et al., 2013) and in Europe 11.2 per 10,000 livebirths (Loane et al., 2012). The ECLAMC determined that DS prevalence corresponded to 18.8 per 10,000 livebirths. Ecuador has a reported prevalence of 14.8 per 10,000 livebirths (Nazer & Cifuentes, 2011). It should be stated that abortion is illegal in Ecuador, except when the pregnant woman's life and health are in danger or when a mentally disabled woman was raped (Center for Reproductive Rights), whereas in other European countries and in the United States DS-related elective pregnancy termination is allowed (De Graaf, Buckley, & Skotko, 2015; Morris & Springett, 2014). Trisomy 21 was the most frequent autosomopathy in all the sub-registries, comprising all together 3,412 cases (88.28%). Chromosomes 21 and 22 are the smallest chromosomes in the genome with approximately 225 and 545 genes, respectively, thus trisomy 21 can be tolerated more often than trisomy 22, even in the absence of mosaicism. (Littooij, Hochstenbach, Sinke, Tintelen, & Giltay, 2002; Modi, Berde, & Bhartiya, 2003). It is evident in our registry, as more patients displayed free trisomy 21 (78.06%) than mosaicism (7.45%).

Mosaicism can be caused during embryonic growth by non-disjunction, anaphase lagging or endoreplication. The percentage of mosaicism depends on the embryonic development stage when the aforementioned errors occur. Small percentages are generally associated with less severe phenotype, as the normal cell line might moderate the effects (Taylor et al., 2014). Mosaicism is seen in 2%–4% of patients diagnosed with DS (Papavassiliou et al., 2009), while in prenatal diagnosis the rate ranged from 1%–2% (Taylor et al., 2014; Vikraman, 2015). Therefore, 7.45% of trisomy 21 mosaics in the present registry showed a high incidence. Ecuadorians living at high-altitude have elevated ultraviolet radiation exposure, hypobaric hypoxia, hypoxemia; factors that can possibly modulate the genome and epigenome (Colleen, 2017). It has been described that hypoxia can cause chromosomal abnormalities and genomic instability in tumor endothelial cells inducing oxidative stress reactions and impairment of DNA repair (Kondoh et al., 2013; Luoto, Kumaeswaran, & Bristow, 2013). Two studies have found that anotia-microtia is highly prevalent in patients living above 2,500 meters above sea level such as Bolivia and Ecuador (González-Andrade, López-Pullas, Espín, & Paz-y-Miño, 2010). Polydactyly, harelip and DS are the top-three congenital malformations in Ecuador among 26 studied in nine South American countries. Prevalence heterogeneity of congenital malformations found in all Latin countries could be explained by different environmental factors or ethnic origin (Nazer & Cifuentes, 2011). A previous genetic study has shown that Ecuador is an admixed population with an ancestral contribution of Native American (59.6%), European (28.8%), and African (11.6%) (Zambrano et al., 2019). Polydactyly and harelip are often reported in African and Amerindian origins respectively, congruent with our ethnicity (Nazer & Cifuentes, 2011).

Knowing DS high frequency, routine prenatal tests such as cell-free fetal DNA, amniocentesis or chorionic villus sampling should be offered as a public health service, with the surveillance of a geneticist and physician, to women at risk (advanced maternal age > 35 years, previous history of congenital malformations, teratogens exposure). Especially, since children with DS have an elevated risk of congenital heart disease, vision disturbances, hearing loss or infection, hypothyroidism, digestive problems, and leukemia. (De Rubens Figueroa, Del Pozzo, Pablos Hach, Calderón Jiménez, & Rocío, 2003; Jørgensen et al., 2019). The fact that...
people with mosaic DS have a better survival rate, besides achieving higher education, jobs and reproduce, makes cyto-
genetic testing a suggestive predictor of DS social conditions (Zhu et al., 2014). In Ecuador, prenatal tests are performed privately and newborn screening as a public health service is available only for 4 disorders: phenylketonuria, galactosemia, congenital adrenal hyperplasia, and congenital hypothyroidism (Paz-y-Miño et al., 2016).

In this registry, after DS, trisomy 18 (Edwards syndrome) and trisomy 13 (Patau syndrome) are the autosome abnormalities with more karyotypes listed. This could be possibly tolerated owing to the low gene density in those chromosomes and low genomic imbalance produced in trisomies (Wiseman, Alford, Tybulewicz, & Fisher, 2009). It has been reported that when trisomy 8 and 9 occur, they are mosaic, which correlate with our results (Theisen & Shaffer, 2010).

Among gonosomal pathies, TS is one of the most common genetic disorders affecting 1:2,500 liveborns females, perhaps due to X-inactivation. It presents as complete or partial monosomy of the second X chromosome (Armas García et al., 2016). Our results are consistent with previous studies in México, Argentina, Chile and Colombia that reported 45,X monosomy as the most common karyotype associated with TS: 30%, 35%, 60%, and 73%, respectively.

Abnormal Karyotype	Number	Percentages
Turner syndrome		
45,X	616	40.42
mos 45,X/46,XX	227	14.90
mos 45,X/46,XX/47,XXX	4	0.26
mos 45,X/47,XXX	2	0.13
iXp	1	0.07
iXq	34	2.23
iXq (mosaic)	16	1.05
del(Xp)	4	0.26
del(Xq)	5	0.33
del(Xq) (mosaic)	5	0.33
Ring (mosaic)	7	0.46
Trisomy X		
47,XXX	31	2.03
mos 46,XX/47,XXX	26	1.71
Partial trisomy: Xq+	4	0.26
Partial trisomy: Xq+ (mosaic)	2	0.13
Partial trisomy: Xp+ (mosaic)	1	0.07
Fra (X)(q27.3)	44	2.89
Klinefelter syndrome		
47,XXY	121	7.94
mos 46,XY/47,XXY	13	0.85
mos 47,XXY/48,XXXXY	1	0.07
XYY syndrome		
47,XXY	34	2.23
mos 45,X/47,XXY	1	0.07
mos 46,XY/47,XXY	2	0.13
mos 47,XXX/47,XXY	12	0.79
48,XXYY	10	0.66
49,XXXXXY	2	0.13
Disorder of Sexual Development (DSD)		
46,XX DSD	88	5.77
46,XY DSD	118	7.74
Ovotesticular DSD	39	2.56
46,XX Testicular DSD	17	1.12
46,XY Complete Gonadal Dysgenesis	36	2.36
TOTAL	1,524	100
TS diagnosis is usually postponed until adolescence when pubertal delay, infertility and amenorrhea are present. Nevertheless, early TS diagnosis will provide the affected a close medical management of recurrent conditions, as there are associated comorbidities in childhood such as cardiovascular disease, hearing loss or infection, ophthalmologic impairments, gastrointestinal diseases, bone or kidney affections, dental abnormalities among others (Jørgensen et al., 2019; Shankar & Backeljauw, 2018).

DSD are the following sex chromosome alteration. Karyotype is a standard test used to classify them, yet laboratory tests and imaging of the genitourinary tract are key for differential diagnosis. It has been reported that intersexual status is a rare phenomenon, with an incidence of 1:5,500 (Kim & Kim, 2012). Although, the relatively numerous individuals with DSD in Ecuador may be a sign of consanguinity, since several conditions in DSD have an autosomal recessive inheritance. In a study of non-malformed liveborn infants, Ecuador has a consanguinity rate of 1.25% (Liascovich, Rittler, & Castilla, 2001). Alvarez, Quintero, and Ceballos (2011) reported Ecuadorian consanguineous marriages represented 2.8% of total marriages while in USA, it was estimated to be 0.2%–0.5% (Liascovich et al., 2001). For instance, the most frequent cause of female virilization is congenital adrenal hyperplasia, which is a group of autosomal recessive disorders. As the reports are based on small series of patients, this hypothesis should be considered cautiously (Bashamboo & McElreavey, 2014).

In relation to defined translocations, the most frequent reported here is t(13;14), a Robertsonian translocation. This structural arrangement occurs in approximately 1:1,000 newborns (Song et al., 2016) and accounts for ~75% of acrocentric chromosome fusions (Scriven, Flinter, Braude, & Ogilvie, 2001). Although, genomic information in carriers is complete and does not comprise their health and lifespan, they have the possibility to produce

TABLE 3 Translocations in the registry

Translocations	Number	Percentages
t(X:1)	1	0.68
t(X:8)	3	2.03
t(X:9) (mosaic)	1	0.68
t(X:21)	1	0.68
t(Y:14) (mosaic)	1	0.68
t(1;2)	1	0.68
t(1;4) (mosaic)	1	0.68
t(1;19)	1	0.68
t(1;20)	1	0.68
t(2;7)	1	0.68
t(2;8)	3	2.03
t(2;9)	1	0.68
t(2;12)	2	1.35
t(2;13)	4	2.70
t(2;14)	1	0.68
t(2;16)	1	0.68
t(2;18)	3	2.03
t(2;21)	3	2.03
t(3;15)	1	0.68
t(4;6) (mosaic)	1	0.68
t(4;11)	3	2.03
t(4;13)	1	0.68
t(4;15)	3	2.03
t(5;9) (mosaic)	1	0.68
t(5;14)	5	3.38
t(5;19)	1	0.68
t(6;7)	2	1.35
t(6;13)	1	0.68
t(7;10)	1	0.68
t(7;14) (mosaic)	3	2.03
t(7;15)	1	0.68
t(8;15)	1	0.68
t(9;11)	1	0.68
t(9;13) (mosaic)	1	0.68
t(9;14)	1	0.68
t(11;21)	2	1.35
t(11;22)	3	2.03
t(14;17) (mosaic)	1	0.68
t(3;6;11)	1	0.68
URET	24	16.22
t(13;13)	3	2.03
t(13;14)	20	13.51
t(13;14) (mosaic)	1	0.68
t(13;15)	4	2.70

(Continues)
unbalanced gametes, which increase the risk of infertility (Song et al., 2016). If one partner carries a translocation, genetic counseling should be offered to inform them the probabilities of their offspring to carry any chromosomal imbalance or to be advised to undergo assisted reproduction (Scriven et al., 2001). According to the Ecuadorian Society of Reproductive Medicine, the first IVF baby was born in 1992 in Guayaquil and until 2007 eight IVF private clinics have opened (Roberts, 2016).

Referring to polymorphisms, the highest percentage (37.79%) belongs to Yqh+ polymorphism, which indicates an increase in length of the heterochromatin on the long arm of the Y chromosome. This heterochromatin is formed by tandemly repeated sequences that do not encode proteins, therefore karyotypes with this polymorphisms are reported as normal similarly as Bhasin (2005) did. However, several studies have frequently identified Yqh+ polymorphisms in couples with recurrent miscarriages or male infertility supported by the following evidence (Cathrine, Chinnaswami, & Mahalingam, 2015; Madon, Athalye, & Parikh, 2005; Sahin et al., 2008; Wang et al., 2017). Heteromorphisms can alter synapsis of X and Y chromosomes during meiosis (Sahin et al., 2008). Genes required for viability and fertility may reside in the heterochromatin region (Madon et al., 2005). Increased heterochromatin can silence nearby gene expression by position-effect variegation (Minocherhomji et al., 2008). Conversely, Dong et al., (2013) studied family members of infertile individuals with Yqh± polymorphism and did not find any link as they were also found also in fertile family members. There are other factors that contribute to reproduction failure apart from Y heterochromatin size. Since there are other factors that contribute to reproductive failure, the function or direct clinical significant of Y polymorphisms is uncertain and still controversial (Tempest & Simpson, 2017).

Down syndrome and infertility/recurrent miscarriages were the two major clinical reasons to perform cytogenetic analysis in infant-children and adult group respectively. Reproductive problems like infertility and recurrent miscarriages can be caused by either autosomes or sex chromosomes abnormalities. Such abnormalities can be structural or numerical. In females, TS is the leading contributor to female infertility (Al-Alawi, Goud, Al-Harasi, & Rajab, 2016). In males, Klinefelter syndrome and Y chromosomes microdeletions are genetic causes that impair normal sperm production. Carriers of translocation and other chromosomal rearrangements are at an increased risk of miscarriages due to unbalanced chromosomal information inherited to their offspring (Song et al., 2016).

In this study, a conclusive finding of chromosomal disorders or polymorphisms was obtained in 20.9% of patients with diverse clinical indications. In Latin America, the prevalence of chromosomal abnormalities in invasive prenatal diagnosis varies from 2.8% (Cuba) (Méndez-Rosado et al., 2014), 14.0% (Colombia) (Fandiño-Losada, Lucumí-Villegas, Ramírez-Cheyne, Isaza-De Lourido, & Saldarriaga, 2018), 30% (Mexico) (Gómez-Puente, Esmer-Sánchez, & Quezada-Espinoza, Martínez-de Villarreal, 2012) up to 31% (Chile) (Vargas et al., 2016), which includes pregnancies with advanced maternal age, atypical ultrasound findings, parental carriage of chromosome alterations, abnormal maternal serum markers by invasive diagnostic testing. An expected higher frequency of chromosomal abnormalities, 69.5%, that causes spontaneous abortion was informed in Peruvian study (Quiroga de Michenena et al., 2007). Latin American studies that karyotyped malformed or alive newborns, stillbirths and adults seeking for genetic counselling evidenced frequencies of chromosomal alterations that are mostly close to ours; 4.3% (Chile) (Nazer et al., 2003), 20% (Armas García et al., 2016) (Mexico), 29.3% (Brazil) (Duarte et al., 2004), 29.3% (Mexico) (Hernández-Herrera et al., 2014). A relatively comparable study that includes Cuban individuals with heterogeneous clinical indications for cytogenetic test using peripheral blood, detected 14% of altered karyotypes including polymorphisms (Blanco Pérez, Mitjans Torres, & Miñoño Pérez, Socarrás Gómez, 2013). Frequent differences of chromosomal abnormalities may reflect different inclusion criteria for patients karyotype selection,

TABLE 4 Chromosomal polymorphisms in the registry

Polymorphisms	Number	Percentages
1qh+	16	3.40
2qh+	1	0.21
9qh+	87	18.47
9qh+ (mosaic)	2	0.42
9qh−	2	0.42
13ps+	2	0.42
13psstk+	1	0.21
14psstk+	1	0.21
15ps+	5	1.06
15psstk+	6	1.27
16qh+	33	7.01
21ps+	7	1.49
21psstk+	1	0.21
22psstk+	4	0.85
22pvar	1	0.21
Yqh+	178	37.79
Yqh−	65	13.80
Chromosomes	3	0.64
Supernumerary	11	2.34
+mar (mosaic)	44	9.34
Triploidy	1	0.21
TOTAL	471	100.00

expression by position-effect variegation (Minocherhomji et al., 2008). Conversely, Dong et al., (2013) studied family members of infertile individuals with Yqh± polymorphism and did not find any link as they were also found also in fertile family members. There are other factors that contribute to reproduction failure apart from Y heterochromatin size. Since there are other factors that contribute to reproductive failure, the function or direct clinical significant of Y polymorphisms is uncertain and still controversial (Tempest & Simpson, 2017).

Down syndrome and infertility/recurrent miscarriages were the two major clinical reasons to perform cytogenetic analysis in infant-children and adult group respectively. Reproductive problems like infertility and recurrent miscarriages can be caused by either autosomes or sex chromosomes abnormalities. Such abnormalities can be structural or numerical. In females, TS is the leading contributor to female infertility (Al-Alawi, Goud, Al-Harasi, & Rajab, 2016). In males, Klinefelter syndrome and Y chromosomes microdeletions are genetic causes that impair normal sperm production. Carriers of translocation and other chromosomal rearrangements are at an increased risk of miscarriages due to unbalanced chromosomal information inherited to their offspring (Song et al., 2016).

In this study, a conclusive finding of chromosomal disorders or polymorphisms was obtained in 20.9% of patients with diverse clinical indications. In Latin America, the prevalence of chromosomal abnormalities in invasive prenatal diagnosis varies from 2.8% (Cuba) (Méndez-Rosado et al., 2014), 14.0% (Colombia) (Fandiño-Losada, Lucumí-Villegas, Ramírez-Cheyne, Isaza-De Lourido, & Saldarriaga, 2018), 30% (Mexico) (Gómez-Puente, Esmer-Sánchez, & Quezada-Espinoza, Martínez-de Villarreal, 2012) up to 31% (Chile) (Vargas et al., 2016), which includes pregnancies with advanced maternal age, atypical ultrasound findings, parental carriage of chromosome alterations, abnormal maternal serum markers by invasive diagnostic testing. An expected higher frequency of chromosomal abnormalities, 69.5%, that causes spontaneous abortion was informed in Peruvian study (Quiroga de Michenena et al., 2007). Latin American studies that karyotyped malformed or alive newborns, stillbirths and adults seeking for genetic counselling evidenced frequencies of chromosomal alterations that are mostly close to ours; 4.3% (Chile) (Nazer et al., 2003), 20% (Armas García et al., 2016) (Mexico), 29.3% (Brazil) (Duarte et al., 2004), 29.3% (Mexico) (Hernández-Herrera et al., 2014). A relatively comparable study that includes Cuban individuals with heterogeneous clinical indications for cytogenetic test using peripheral blood, detected 14% of altered karyotypes including polymorphisms (Blanco Pérez, Mitjans Torres, & Miñoño Pérez, Socarrás Gómez, 2013). Frequent differences of chromosomal abnormalities may reflect different inclusion criteria for patients karyotype selection,
the population where the studied group came from and the alterations described. DS, Edwards syndrome, Patau syndrome, and TS were the most frequent abnormalities reported in other registers. As reported in our study DS was the first chromosome abnormality listed in all registers, followed by trisomy 18 and 13 in most to them (Armas García et al., 2016; Duarte et al., 2004; Fandiño-Losada et al., 2018; Gimeno-Martos et al., 2016; Hernández-Herrera et al., 2014; Nazer et al., 2003; Paz-y-Miño et al., 1998; Wellesley et al., 2012). DS and TS often evidenced great karyotype variability (Duarte et al., 2004; Gimeno-Martos et al., 2016), which emphasized the importance of differential cytogenetic diagnosis confirmation. The rest of structural autosomal rearrangements were similarly scarce and varied (Duarte et al., 2004; Gimeno-Martos et al., 2016; Gómez-Puente et al., 2012).

The common algorithm to diagnose if a patient, who exhibits dysmorphic features, has a chromosomal disorder starts with cytogenetic analysis. If the karyotype is not conclusive, molecular techniques are applied according to the case. For example, an autosomopathy initially reported by Paz-y-Miño, Cumbal, Araujo, and Sánchez (2012a) as add(8)(p23), was re-labeled as t(2;8)(p16.3;p23.1), after identifying that the additional segment in the short arm of chromosome 8 belongs to chromosome 2 and mapping the translocation breakpoints using genetic mapping arrays and FISH.

Cases	No	CP	CGH	FISH	GMA	MLPA	PCR-based
							Exon
							SRY
							STR
Deletions/duplications	8	X					
Disorders of sex development	33	X					
Disorders of sex development	3	X	X				
Disorders of sex development	1						
Down syndrome	2	X					
Genetic Disease	1	X					
Genetic Disease	1						X
Infectious Disease	1						X
Infertility	2	X	X				
Infertility	2						
Klinefelter syndrome	1						X
Marker chromosome identification	1						X
Partial trisomy	1						X
Partial Trisomy	3						
Rare phenotype	1						X
Rare phenotype	1						X
Ring Chromosome	2	X	X				
Situs Inversus	1	X	X				
Translocation	1						X
Translocation	2	X	X				
Translocation	1	X	X	X			
Turner syndrome	3						X
Turner syndrome with translocation	1	X	X				
Chromosomopathy	1						X
Chromosomopathy	1						
Total	75	1	1	5	6	2	12 8

Abbreviations: CGH, Comparative Genomic Hybridization; CP, Chromosome painting; GMA, Genetic mapping array; FISH, fluorescence in situ hybridization; MLPA, multiplex ligation-dependent probe amplification; PCR, polymerase chain reaction; SRY, SRY gene analysis; STR, short tandem repeats.
ring chromosome syndromes, arrays were applied to detect breakpoints at either telomere regions and if there was any significant genetic material loss, which provides a clue for the clinical signs (Paz-y-Miño et al., 2018). Another case worth mentioning, is one that by conventional cytogenetic an extra chromosomal region was detected in 14p, but with MLPA and genetic mapping arrays this region was matched to chromosome 9 genetic material. This was then registered as der(14)t(9;14)(p13.1;q11.2) (Leone et al., 2019). With a precise location of the chromosomal regions affected, it will be easier to match one or more genes to the phenotype of the patient and even elucidate the function of unknown genes. Other techniques as CGH can also be used to define deletions or duplications ranged between 3–5 Mb, while FISH and MLPA analyses can be applied to detect the chromosome of origin which comprises the microdeletion or duplication (Gómez-Puente et al., 2012; Wellesley et al., 2012). To identify single genes or polymorphism PCR is ideal. Regularly, patients with disorders of sex development are PCR-tested to detect SRY presence. Karyotyping is a genetic diagnosis method widely used, while molecular techniques are mainly used for research and scientific publication. Recently, few public services are combining clinical diagnosis with genetic approaches but is not a routine procedure.

5 | CONCLUSION

The publication of the Ecuadorian National Registry of chromosomal abnormalities and polymorphisms provides a baseline of cytogenetic data in Ecuador. This work aims to promote timely genetic diagnosis that can better inform management and family planning decisions. Finance support and application of a diagnosis algorithm that combines cytogenetics and modern molecular techniques could improve diagnosis to have a greatest impact on patient well-being.

ACKNOWLEDGMENT

We thank all cytogenetic staff that processed and provided the sub-registry of each institution when requested.
CONFLICT OF INTEREST
None declared.

AUTHORS CONTRIBUTION
César Paz-y-Miño: conceived the idea, coordinated, wrote manuscript and followed up with the development of the article. Verónica Yumiceba karyotyped, collected and processed data and wrote the manuscript. Germania Moreta, Rosario Paredes, Mónica Ruiz, Ligia Ocampo, Arianne Llamas Paneque, Catalina Ochoa Pérez, Juan Carlos Ruiz-Cabezas, Jenny Álvarez Vidal, Idarmis Jiménez Torres, Ramón Vargas-Vera, Fernando Cruz, Víctor Hugo Guapi N., Martha Montalván, Sara Meneses Álvarez, Maribel Garzón Castro, Elizabeth Lamar Segura, María Augusta Recalde Báez, María Elena Naranjo, Nina Tambaco Jijón, María Sinche, Pedro Licuy, Ramiro Burgos and Fabián Porras-Borja karyotyped and provided patients’ data. Andy Pérez-Villa karyotyped and contributed in writing editing. Isaac Armendáriz-Castillo, Jennyfer M. García-Cárdenas, Santiago Guerrero, Patricia Guevara-Ramírez, Andrés López-Cortés, Ana Karina Zambrano participated in writing editing. Paola E. Leone collected the data and contributed in writing and formatting. All authors have approved the final manuscript.

DATA AVAILABILITY STATEMENT
The data that support the results of this study are available from the corresponding author, César Paz-y-Miño, upon reasonable request.

ORCID
César Paz-y-Miño https://orcid.org/0000-0002-6693-7344
Verónica Yumiceba https://orcid.org/0000-0001-6998-7913
Rosario Paredes https://orcid.org/0000-0003-4438-5603
Ariane Llamas Paneque https://orcid.org/0000-0002-7161-1787
Ramón Vargas-Vera https://orcid.org/0000-0002-1922-8983
Andy Pérez-Villa https://orcid.org/0000-0001-6758-4299
Isaac Armendáriz-Castillo https://orcid.org/0000-0003-2636-2707
Jennyfer M. García-Cárdenas https://orcid.org/0000-0001-9035-7668
Santiago Guerrero https://orcid.org/0000-0003-3473-7214
Patricia Guevara-Ramírez https://orcid.org/0000-0002-4829-3653
Andrés López-Cortés https://orcid.org/0000-0003-1503-1929
Ana Karina Zambrano https://orcid.org/0000-0003-4102-3965
Paola E. Leone https://orcid.org/0000-0003-3351-2275

REFERENCES
Al-Alawi, I., Goud, T. M., Al-Harasi, S., & Rajab, A. (2016). Cytogenetic studies of 1232 patients with different sexual development abnormalities from the Sultanate of Oman. Reproductive BioMedicine Online, 32, 162–169. https://doi.org/10.1016/j.rbmo.2015.11.019
Álvarez, G., Quintero, C., & Ceballos, F. C. (2011). Inbreeding and genetic disorder. In K. Ikehara (Ed.), Advances in the study of genetic disorders (pp. 21–44). Rijeka, Croatia: InTech.
Álvarez, J., Jerves, T., Encalada, V., & Pesantez, L. (2010). Human karyotypes in peripheral blood, ten years of experience in the Department of Cytogenetics of the Diagnostics Center and Biomedical Studies of the Faculty of Medical Sciences University of Cuenca [Spanish]. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca, 30, 1–8.
Armas García, L., Gomez Valencia, L., García Días, A., Viayra Álvarez, G., Quintero, C., & Ceballos, F. C. (2011). Inbreeding and geographical distribution of 147 consanguineous families of the highland Andes. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca [Spanish]. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca [Spanish]. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca [Spanish].
Armas García, L., Gomez Valencia, L., García Días, A., Viayra Álvarez, G., Quintero, C., & Ceballos, F. C. (2011). Inbreeding and geographical distribution of 147 consanguineous families of the highland Andes. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca [Spanish]. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca [Spanish]. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca [Spanish].
Bashamboo, A., & McElreavey, K. (2014). Consanguinity and disorders of sex development. Human Heredity, 77, 108–117. https://doi.org/10.1159/000360763
Bhasin, M. K. (2005). Human population cytogenetics: A review. International Journal of Human Genetics, 5, 83–152. https://doi.org/10.1080/09727357.2005.11885918
Blanco Pérez, I., Mitjans Torres, M. C., Míñosofosé Pérez, S., & Socarrás Gómez A. (2013). Chromosomal disorders diagnosed in peripheral blood. Rev Ciencias Médicas, 17, 130–139.
Cathrine, S. L., Chinnaswami, P., & Mahalingam, K. (2015). Cytogenetic analysis of male infertility. IOSR Journal of Pharmacy and Biological Sciences, 10, 15–21.
Center for Reproductive Rights (2019). The World’s Abortion Laws. Retrieved from https://reproductiverights.org/worldabortionlaws.
Colleen, G. J. (2017). Epigenomics and human adaptation to high altitude. Journal of Applied Physiology, 123, 1362–1370. https://doi.org/10.1152/japplphysiol.00351.2017
Cortés-Gutiérrez, E. I., Dávila-Rodríguez, M. I., Vargas-Villarreal, J., & Cerda-Flores, R. M. (2007). Prevalence of chromosomal aberrations in Mexican women with primary amenorrhea. Reproductive BioMedicine Online, 15, 463–467. https://doi.org/10.1016/S1472-6483(10)60374-4
De Graaf, G., Buckley, F., & Skotko, B. G. (2015). Estimates of the live births, natural losses, and elective terminations with down syndrome in the United States. American Journal of Medical Genetics. Part A, 167, 756–767. https://doi.org/10.1002/ajmg.a.37001
De Rubens, F. J., Del Pozzo, M. B., Pablos Hach, J. L., Calderón Jiménez, C., & Rocío, C. U. (2003). Heart malformations in children with down syndrome. Revista Espanola De Cardiologia, 56, 894–899.
Del Rey, G., Martínez, A., Keselman, A., Escobar, M. E., Gryngarten, M., Venara, M., … Coco, R. (2018). Turner syndrome: Chromosome variations and its effects on phenotypic expression [Spanish]. Rev Hosp Niños, 60, 230–235.
Dong, Y., Jiang, Y.-T., Du, R.-C., Zhang, H.-G., Li, L.-L., & Liu, R.-Z. (2013). Impact of chromosomal heteromorphisms on reproductive failure and analysis of 38 heteromorphic pedigrees in Northeast China. Journal of Assisted Reproduction and Genetics, 30, 275–281. https://doi.org/10.1007/s10815-012-9910-z
percentage of trisomic cells present in different tissues NIH public access. *American Journal of Medical Genetics. Part A*, 573–583. https://doi.org/10.1002/ajmg.a.32729

Paz-y-Miño, C. (2012). Medical and human genetics in ecuador. In D. Kumar (Ed.), *Genomics and health in the developing world* (pp. 1199–1208). New York, NY: Oxford University Press.

Paz-y-Miño, C., Cumbal, N., Araujo, S., & Sánchez, M. E. (2012a). Alterations and chromosomal variants in the Ecuadorian population. *Journal of Biomedicine & Biotechnology*, 2012, 1–5. https://doi.org/10.1155/2012/432302

Paz-y-Miño, C., Cumbal, N., & Sánchez, M. E. (2012b). Genotoxicity studies performed in the ecuadorian population. *Molecular Biology International*, 2012, 1–10. https://doi.org/10.1155/2012/598984

Paz-y-Miño, C., Guevara-Aguirre, J., Paz-y-Miño, A., Velarde, F., Armendáriz-Castillo, I., Yumiceba, V., … Leone, P. E. (2018). Ring chromosome 15 – cytotgenetics and mapping arrays: A case report and review of the literature. *Journal of Medical Case Reports*, 12, 340. https://doi.org/10.1186/s13256-018-1879-5

Paz-y-Miño, C., Guiñan Sacoto, M. J., & Leone, P. E. (2016). Genetics and genomic medicine in Ecuador. *Molecular Genetics & Genomic Medicine*, 4, 9–17. https://doi.org/10.1002/mgmg.192

Paz-y-Miño, C., Sánchez, M. E., Burgos, R., Del Pozo, M., Dávalos, M. V., Tobar, C. J., … Leone, P. E. (1998). Collaborative national register of human chromosome alterations and variants: Ten years [Spanish]. *Rev MetroCiencia*, 7, 36–40.

Paz-y-Miño, C., Sánchez, M. E., Sarmiento, I., & Leone, P. E. (2006). Genetics and congenital malformations: interpretations, attitudes and practices in suburban communities and the shamans of Ecuador. *Public Health Genomics*, 9, 268–273.

Paz-y-Miño, C., Santillán, S., Sánchez, M. E., Córdova, A., Gutiérrez, S., Leone, P. E., … Cora, V. (1990). Collaborative registry of human chromosomal alterations and its variants [Spanish]. *Rev MetroCiencia*, 3, 29–36.

Presson, A. P., Partyka, G., Jensen, K. M., Devine, O. J., Rasmussen, S. A., Mccabe, L. L., & Mccabe, E. R. B. (2013). Current estimate of down syndrome population prevalence in the United States HHS public access. *Journal of Pediatrics*, 163, 1163–1168. https://doi.org/10.1016/j.jpeds.2013.06.013

Quiroga de Michelena, M. I., Díaz, A., Paredes, D., Rodríguez, O., Quipe, E., & Klein de Zelghibelm, E. (2007). Chromosomal study in spontaneous abortion and its clinical application [Spanish]. *Rev per Ginecol Obs.*, 53, 124–129.

Roberts, E. F. S. (2016). Resources and race: Assisted reproduction in Ecuador. *Reproductive Biomedicine & Society Online*, 2, 47–53. https://doi.org/10.1016/j.rbmo.2016.06.003

Román, R., Vallejo, M. E., Muñoz, M., Schneider, R., Youtlon, R., Henriquez, C., & Cassorla, F. (2002). Spontaneous growth of 83 Chilean girls with Turner’s syndrome Síndrome de Turner: Crecimiento y descripción clínica en 83 niñas chilenas. *Revista Médica De Chile*, 130, 977–984. https://doi.org/10.4067/S0034-9887200200090003

Sahin, F. I., Yilmaz, Z., Yuregir, O. O., Bulakbası, T., Ozer, O., & Zeyneloglu, H. B. (2008). Chromosome heteromorphisms: An impact on infertility. *Journal of Assisted Reproduction and Genetics*, 25, 191–195. https://doi.org/10.1007/s10815-008-9216-3

Saldarriaga, W., Valencia, M., Fandiño-Losada, A., Andrés Ruiz, F., & Isaza, C. (2014). Prenatal and postnatal presentation of cytogenetic variants in Turner syndrome [Spanish]. *Revista Chilena De Obstetricia Y Ginecologia*, 79, 277–282.

Scriven, P. N., Flinter, F. A., Braude, P. R., & Ogilvie, C. M. (2001). Robertsonian translocations–reproductive risks and indications for preimplantation genetic diagnosis. *Human Reproduction*, 16, 2267–2273. https://doi.org/10.1093/humrep/16.11.2267

Shankar, R. K., & Backeljauw, P. F. (2018). Therapeutic advances in endocrinology and metabolism. *Therapeutic Advances in Endocrinology and Metabolism*, 9, 33–44.

Song, J., Li, X., Sun, L., Xu, S., Liu, N., Yao, Y., … Wang, B. (2016). A family with Robertsonian translocation: A potential mechanism of speciation in humans. *Molecular Cytogenetics*, 9, 48. https://doi.org/10.1186/s13039-016-0255-7

Taylor, T. H., Gitlin, S. A., Patrick, J. L., Crain, J. L., Wilson, J. M., & Griffin, D. K. (2014). The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. *Human Reproduction Update*, 20, 571–581. https://doi.org/10.1093/humupd/dmu016

Tempest, H. G., & Simpson, J. L. (2017). Why are we still talking about chromosomal heteromorphisms? *Reproductive Biomedicine Online*, 35, 1–2. https://doi.org/10.1016/j.rbmo.2017.05.006

Theisen, A., & Shaffer, L. G. (2010). Disorders caused by chromosome abnormalities. *Application of Clinical Genetics*, 3, 159–174. https://doi.org/10.2147/TAGC.S8884

Varas, C. 1990. Congenital malformations and chromosomal study in newborns polymalformative syndrome [Spanish], Unpublished manuscript - BSc. Thesis, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

Vargas, P., Sepúlveda, S., Kusanovic, J. P., Parra, Z., Mellado, C., Pardo, R., … Cortes, P. (2016). Outcome of invasive prenatal study to diagnose aneuploidies in the Hospital Sótero del Río [Spanish]. *Revista Chilena De Obstetricia Y Ginecologia*, 81, 94–98.

Vikraman, S., Chandra, V., Balakrishbanan, B., Batra, M., Kuriaikose, R., & Kannoly, G. (2015). A rare balanced parental t(21q;21q) Robertsonian translocation that results in Down syndrome in all viable pregnancies. *International Journal of Reproduction, Contraception, Obstetrics and Gynecology*, 4, 514–517. https://doi.org/10.5455/2320-1770.ijrcog20150451

Wang, X., Zheng, X. B., Jin, H. S., Yu, H. J., Liang, L., Shu, Q., … Du, L. Z. (2011). A cytogenetic survey of 8584 children referred for suspected congenital disorders: The experience of a children’s hospital in China from 1996 to 2010. *Hong Kong Journal of Paediatrics*, 17, 3–11.

Wang, Y., Li, G., Zuo, M.-Z., Fang, J.-H., Li, H.-R., Quan, D.-D., … Peng, P.-P. (2017). Y chromosome polymorphisms may contribute to an increased risk of male-induced unexplained recurrent miscarriage. *Biosciences Reports*, 37, 1–7. https://doi.org/10.1042/BSR20160528

Wellesley, D., Dolk, H., Boyd, P. A., Greenlees, R., Haeusler, M., Nelen, V., … Tucker, D. (2012). Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. *European Journal of Human Genetics*, 20, 521–526. https://doi.org/10.1038/ejhg.2011.246

Wiseman, F. K., Alford, K. A., Tybuliewicz, V. L. J., & Fisher, E. M. C. (2009). Down syndrome–recent progress and future prospects. *Human Molecular Genetics*, 18, R75–R83. https://doi.org/10.1093/hmg/ddp010

Zambrano, A. K., Gaviria, A., Cobos-Navarrete, S., Gruceo, C., Rodríguez-Pollit, C., Armendáriz-Castillo, I., … Paz-y-Miño, C. (2019). The three-hybrid genetic composition of an Ecuadorian population using AIMS-InDels compared with autosomes, mitochondrial...
DNA and Y chromosome data. *Scientific Reports*, 9, 9247. https://doi.org/10.1038/s41598-019-45723-w

Zhu, J. L., Obel, C., Hasle, H., Rasmussen, S. A., Li, J., & Olsen, J. (2014). Social conditions for people with Down syndrome: A register-based cohort study in Denmark. *American Journal of Medical Genetics. Part A*, 164, 36–41. https://doi.org/10.1002/ajmg.a.36272

How to cite this article: Paz-y-Miño C, Yumiceba V, Moreta G, et al. Multi-institutional experience of genetic diagnosis in Ecuador: National registry of chromosome alterations and polymorphisms. *Mol Genet Genomic Med*. 2020;8:e1087. https://doi.org/10.1002/mgg3.1087