The Mu2e Experiment at Fermilab

Markus Röhrken
California Institute of Technology

On behalf of the Mu2e Collaboration

24th of July 2015
Charged Lepton Flavor Violation

• Charged lepton flavor violation (CLFV) is extremely suppressed in the Standard Model (SM) due to sums over \((\Delta m_{ij}/M_W)^4\), for example \(\mu \rightarrow e\gamma\):

\[
\mathcal{B}(\mu \rightarrow e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}
\]

• SM rates of CLFV are below any conceivable experimental sensitivity → any detection of a signal is an unambiguous evidence for physics beyond the SM

• Searches for CLFV have a long history:

Most stringent limits for muon decays:

- **MEG**

 PRL 110, 201801 (2013)

 \[
 \mathcal{B}(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13}
 \]

- **SINDRUM-II**

 EPJ C 47, 337 (2006)

 \[
 R_{\mu e}(\mu N \rightarrow eN \text{ on Au}) < 7 \times 10^{-13}
 \]
Sensitivity to Charged Lepton Flavor Violation

- Model-independent effective Lagrangian allowing for CLFV:
 \[\mathcal{L}_{\text{CLFV}} = \frac{m_\mu}{1 + \kappa} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1 + \kappa)} \bar{\mu}_L \gamma_\mu e_L \left(\sum_{q=u,d} \bar{q}_L \gamma_\mu q_L \right) \]

- Two types of amplitudes contribute to CLFV:

 Contact Terms
 \[\mu \to e\gamma \]
 \[\mu N \to eN \]

 Loops
 \[\mu \to e\gamma \]
 \[\mu N \to eN \]

- \(\mu \to e\gamma \) and \(\mu N \to eN \) have complementary sensitivity to new physics
 → important to search for both processes

- Mu2e can probe at all \(\kappa \) and mass scales up to \(10^4 \) TeV
Conversion of Muons to Electrons

- Mu2e searches for the neutrino-less μ^-→e^- conversion in the field of an atomic nucleus:
 - Coherent process
 - Kinematics of a two-body decay
 → mono-energetic electron
 - Lifetime muonic aluminum $\tau(1S)=864$ ns
 - Corrected for nuclear recoil and binding energy
 the signature is a single 105 MeV electron

- Observable: Ratio of μ^-→e^- conversion rate relative to muon capture by nucleus
 $$R_{\mu e} = \frac{\Gamma(\mu^- + A(Z, N) \rightarrow e^- + A(Z, N))}{\Gamma(\mu^- + A(Z, N) \rightarrow \nu_\mu + A(Z - 1, N))}$$

- Mu2e is designed to measure $R_{\mu e}$ with a single-event-sensitivity of 2.9×10^{-17}
 → sensitivity improvement of 4 orders of magnitude compared to SINDRUM-II
Background Processes

- The dominant irreducible background comes from the decay of bound muons
 - 39% of stopped muons decay in orbit (DIO)
 - recoil of the nucleus causes tail into the signal region
 - spectrum falls rapidly close to the endpoint

- Other backgrounds originate from:
 - radiative pion captures
 - beam-induced backgrounds
 - cosmic ray or antiproton induced backgrounds
The Mu2e Experiment

- Key components:
 - Intense 8 GeV proton beam
 - 3 superconducting solenoids (4.6T to 1T)
 - Muon stopping target, tracker and calorimeter

- Measurement principle:
 - Proton beam on tungsten target produces pions and muons
 - Muons are collected and propagated through s-shaped transport solenoid
 - Collimated low energy muons are stopped on an aluminum target
 - Trajectories and energies of electrons from muonic atoms are measured
Mu2e Timing Structure

- FNAL accelerator complex and Mu2e timing structure:
 - Utilize the pulsed structure of the proton beam and the lifetime of muonic atoms to suppress prompt backgrounds

Debuncher cycle 1695 ns

- Pions and muons arrive at target
- Prompt backgrounds, e.g. radiative pion captures
- Delayed processes: Conversion electrons
- Decay-in-orbit electrons

- Signal window
Tracker

• ≈20,000 straw tubes:
 - 5 mm diameter
 - 25 µm sense wire
 - 15 µm thick mylar walls
 - 80/20 Ar:CO₂

• 18 stations of straw chambers
 - 3 m long
 - low effective mass
 - insensitive to <53 MeV electrons

Tracker Momentum Resolution

Excellent momentum resolution better than a few hundred keV/c
Calorimeter

- Two disks placed behind the tracker
 - radii 36 to 70 cm
 - each disk: ≈800 BaF$_2$ crystals
 - crystals 3x3x20 cm (10 X$_0$)

- Each BaF$_2$ crystal is readout by 2 APDs
 - APDs tailored to discriminate between fast and slow scintillating components
 - unprecedented sensitivity in the UV
 - capable of high rates

- The calorimeter provides independent timing and energy measurements
 (resolution $\sigma(t)=0.5$ ns and $\sigma(E)/E=5\%$)

- The calorimeter contributes to particle identification and the trigger
Further Instrumentation

- Cosmic ray veto
 - Covers whole detector solenoid and downstream end of the transport solenoid
 - 4 layers of long scintillator strips with wavelength shifter and aluminum absorbers

- Muon stopping target monitor
 - measures delayed γ-rays from radioactive nuclei produced by nuclear muon captures
 - enables to determine the number of captured muons
 - important as normalization for $R_{\mu e}$
Background Estimates and Detection of the Signal

- Mu2e background estimates for 3 years of running:

Category	Background process	Estimated yield (events)
Intrinsic	Muon decay-in-orbit (DIO)	0.199 ± 0.092
Late Arriving	Muon capture (RMC)	0.000 ± 0.000
	Pion capture (RPC)	0.023 ± 0.006
	Muon decay-in-flight (μ-DIF)	<0.003
	Pion decay-in-flight (π-DIF*)	0.001 ± 0.001
	Beam electrons	0.003 ± 0.001
Miscellaneous	Antiproton induced	0.047 ± 0.024
25%	Cosmic ray induced	0.092 ± 0.020
	Total	0.37 ± 0.10

- Reconstructed simulated momentum spectra assuming $R_{\mu e} = 10^{-16}$

Separation of conversion from DIO electrons due to excellent momentum resolution

\rightarrow Signal is a peak over the background close to the endpoint
Current Status

- Mu2e received the DOE critical decision (CD-2/3b) approval in March 2015
 → the budget, timeline and baseline are fixed;
 i.e. for civil construction and magnet fabrication

- Testing of a transport solenoid coil prototype has started

- Construction of the detector building has started

- Preparations for DOE CD-3c “proceed with construction” review in early 2016

- The commissioning of the beam-line and detector are scheduled for 2020
Summary

• Mu2e will search charged lepton flavor violation at unprecedented sensitivity

• Mu2e has a 5σ discovery sensitivity to all $\mu\rightarrow e$ conversion rates greater than 2×10^{-16} and probes effective mass scales of new physics up to the 10^4 TeV scale

• Expected sensitivity is $R_{\mu e}(\mu N \rightarrow eN \text{ on Al}) < 6 \times 10^{-17}$ in 3 years running (improvement of 4 order of magnitude to previous experiments)

• Mu2e construction and next approval steps are proceeding on schedule

• Commissioning is scheduled for 2020
BACKUP
Prospects of Charged Lepton Flavor Violation

![Graph showing branching fraction upper limit from 1940 to 2030. The graph includes data points for various processes, such as $\mu \to e\gamma$, $\mu \to 3e$, and $\mu N \to eN$, with a factor 10,000 improvement indicated by an arrow.]

Phys. Rept. 352, 27 (2013)
Extinction Monitor

- Extinction defined as number of protons striking the production target between beam pulses to the number of protons striking during the beam pulses.

- For Mu2e an extinction of about 10^{-10} is required to reduce the backgrounds induced by out of time particles to an acceptable level.

- An extinction monitor will estimate the overall performance by monitoring the beam hitting the primary target.