Impact of *Alternaria solani* (Early blight) on cultivated tomato (*Solanum lycopersicum* L.) in North-eastern region of India and identification of early blight disease resistant tomato genotypes

Khaidem Malemnganba Meitei¹, G.C. Bora¹, Senjam Jinus Singh², *Anjan Kumar Sinha*³

¹Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat- 785013 (Assam), INDIA
²Department of Vegetable Science, Chaudhary Charan Singh Haryana Agricultural University, Hisar-125004 (Haryana), INDIA
³Department of Botany, Bankura Sammilani College, Bankura-722133 (West Bengal), INDIA

Received: January 29, 2015; Revised received: June 22, 2015; Accepted: August 25, 2015

Abstract: The present investigation was carried out to screen genotypes for resistance to Early blight disease of tomato (*Solanum lycopersicum* L.) of North Eastern region of India. Field trial was conducted in the Experimental Farm, Department of Horticulture, Assam Agricultural University, Jorhat during the years 2012-13 and 2013-14 consecutively. The disease severity of tomato genotypes was assessed by 0-5 points scale, percent Disease Incidence (PDI). Of the total materials screened, Sel-35 (TLBRH-6 X Konbilahi) and Sel-19 (TLBRH-6 X Konbilahi) were highly resistant, 7 were resistant, 14 were moderately resistant, 16 were susceptible and 6 were highly susceptible under field condition after inoculation during both years. The genotype having high yield and resistant to early blight was 10/TOLCVRES-3. The genotypes resistant to early blight but having low yield (Sel-35, Sel-19, Sel-9 and Sel-16) may be utilized in future breeding programme for improving yield through selection for higher fruit weight and fruit diameter. Alternatively, they may be used as parents in hybridization or backcrossing programme in order to transfer the gene for resistance to early blight to already adapted high yield varieties.

Keyword: Early blight, North-eastern region, Resistant, *Solanum lycopersicum*

INTRODUCTION

Tomato (*Solanum lycopersicum* L.) [formerly *Lycopersicon esculentum* Miller] is one of the most significant vegetable crops and cultivated in throughout the globe. In plant breeding study, the main objective of a breeder is to improve the fruit yield, a complex quantitative trait leading continuous variation, especially in major vegetable crops like tomato. Determining the appropriate selection indcia and development of efficient breeding scheme, the studies on genetic parameters and association analysis is much important (Chaerani *et al.*, 2007; Sharma *et al.*, 2008). The maladies leading to various horticultural yield losses in tomato is caused by fungi, bacteria, viruses, nematodes and also abiotic factors (Balanchar, 1992). Globally, early blight caused by the pathogen *Alternaria solani* (Ellis and Martin) Sorauer, most aggressive and destructive disease (Fry, 2008; Kumar and Srivastava, 2013) is an economically remarkable malady (Peralta *et al.*, 2005; Singh *et al.*, 2013) of cultivated tomato. The different agro-climatic zones suffer with heavy dew (Rotem and Reichert, 1964; Singh *et al.*, 2011), heavy rainfall [Northeast region of India reported the highest rainfall receiving on the earth (Jain *et al.*, 2012), high humidity (Sheri and MacNab, 1986; Singh *et al.*, 2013) and fairly high temperatures (24-29°C) (Yadav and Singh, 1998; Singh *et al.*, 2013) are more prevalent of this malady. Thus, it leads the most difficult tasks for plant breeder when high temperature and humidity conditions are prevalent. The damages caused by early blight from various parts of the countries viz., India, Canada, United States and Nigeria (Basu, 1974) reported agricultural yield losses up to 79% (Basu, 1974; Singh, 1985; Datar and Mayee, 1981, Yadav and Dabbas, 2012). In horticultural fruit crops loss may be as high as 95% under severe epiphytotic condition (Sridha and Naik, 1983). Disease-management strategies mainly depend on chemical fungicide applications, which are uneconomical and less effective due to increasing resistance of the pathogen against fungicides. Thus, identification of resistant sources from wild tomato species may be an effective method of integrated disease management strategy by reducing the environmental pollution by chemical toxicity. Early blight resistance was conferred by recessive polygenes at both seedling and adult plant stages (Thirhiammalappa and Lohithaswa, 2000). Many researchers identified the potent resistant to moderate resistant sources mainly in wild species *S.

Development and screening of early blight-resistant tomato cultivars following appropriate plants breeding tools is the only possible path for the identification and utilization of genetic resources resistant to Alternaria solani (Ellis and Martin) Sorauer [formerly L. hirsutum (Dunal) (Barksdale and Stoner, 1977; Chaerani et al., 2007; Kalloo and Banerjee, 1993; Poyasa and Tu, 1997; Foolad et al., 2000; Thirthamalappa and Lohithaswa, 2000; Singh et al., 2013)]. Many spots coalesced on the leaves, covering 25% of the surface area of the plant, 4 - Irregular, blighted leaves and sunken lesions with prominent concentric rings on the stem, petiole, and fruit, covering 40-50% of the surface area, 5 - Whole plant blighted, leaves and fruits starting to fall; foliar part free of disease. From the disease scored obtained from the above five point scale, percent disease index (PDI) (McKinney, 1923; Pandey et al., 2003) is calculated.

\[
PDI = \frac{\text{Sum of all rating X 100}}{\text{Total no. of observations X maximum rating grade}}
\]

After finding out the PDI values, the disease reaction classes for early blight infection based on percent disease severity in tomato were given as prepared by Peteira et al. (2002).

Disease reaction	PDI range
Highly resistant	0-12.5
Resistant	12.6–25.0
Moderately resistant	25.1–37.5
Susceptible	37.6–50.0
Highly susceptible	50.1 and above

The yield per ha data from each genotype obtained from disease free condition and that from disease infested conditions were taken separately to find out the loss in yield due to disease incidence. Later, it is calculated in percentage loss.

RESULTS AND DISCUSSION

The tomato genotypes differed in their resistance reaction against early blight (Table -3). Of the total forty five genotypes screened, Sel-35 (TLBRH-6 X Kombilahi) and Sel-19 (TLBRH-6 X Kombilahi) were highly resistant (which are the selections in segregating generations of the crosses between TLBRH-6 and S. pimpinellifolium L. [formerly L. pimpinellifolium (L.) Mill.] with PDI value range (0-12.5 %), 7 varieties were resistant with PDI value range (12.6-12.5 %), 14 were moderately resistant with PDI value range (25.6-37.5 %), 16 were susceptible with PDI value range (37.6-50 %) and 6 were highly susceptible with PDI value range (50.1 and above %) under field condition after inoculation during both years (Tables 2-4, Fig. 1). The genotype with earliness, high yield (Khaiem et al., 2014) and resistance to early blight was 10/
Table 1. Genotypes used for study and their salient characteristics.

S. N.	Genotypes	Source	Plant type	Duration (days)	Fruit size	Fruit shape
1	2012/TOLCVRES-1	AICRP (VC)	Determinate	124	Medium	Oval
2	2012/TOLCVRES-2	AICRP (VC)	Determinate	122	Medium	Flat
3	2012/TOLCVRES-3	AICRP (VC)	Determinate	111	Large	Oblong
4	2012/TOLCVRES-4	AICRP (VC)	Determinate	122	Medium	Round
5	2012/TOLCVRES-5	AICRP (VC)	Determinate	119	Medium	Round
6	2012/TOLCVRES-6	AICRP (VC)	Determinate	124	Medium	Round
7	2012/TOLCVRES-7	AICRP (VC)	Determinate	120	Large	Round
8	2012/TOLCVRES-8	AICRP (VC)	Determinate	124	Large	Round
9	2012/TOLCVRES-9	AICRP (VC)	Determinate	117	Medium	Round
10	2012/SPT/TOINDVAR-1	AICRP (VC)	Indeterminate	131	Medium	Round
11	2012/SPT/TOINDVAR-2	AICRP (VC)	Indeterminate	133	Large	Oblong
12	2012/SPT/TOINDVAR-3	AICRP (VC)	Indeterminate	131	Medium	Oval
13	2012/SPT/TOINDVAR-4	AICRP (VC)	Indeterminate	130	Medium	Round
14	2012/SPT/TOINDVAR-5	AICRP (VC)	Indeterminate	130	Medium	Round
15	2012/SPT/TOINDVAR-6	AICRP (VC)	Indeterminate	122	Medium	Round
16	2012/SPT/TOINDVAR-7	AICRP (VC)	Indeterminate	132	Medium	Flat round
17	2012/SPT/TOINDVAR-8	AICRP (VC)	Indeterminate	130	Large	Flat round
18	2012/SPT/TOINDVAR-9	AICRP (VC)	Indeterminate	134	Medium	Round
19	2012/SPT/TOINDVAR-10	AICRP (VC)	Indeterminate	124	Medium	Round
20	2012/SPT/TODVAR-1	AICRP (VC)	Determinate	117	Medium	Round
21	2012/SPT/TODVAR-2	AICRP (VC)	Determinate	117	Large	Flat round
22	2012/SPT/TODVAR-3	AICRP (VC)	Determinate	120	Medium	Round
23	2012/SPT/TODVAR-4	AICRP (VC)	Determinate	110	Medium	Round
24	2012/SPT/TODVAR-5	AICRP (VC)	Determinate	120	Medium	Oval
25	2012/SPT/TODVAR-6	AICRP (VC)	Determinate	123	Medium	Round
26	2012/SPT/TODVAR-7	AICRP (VC)	Determinate	122	Medium	Pear
27	2012/SPT/TODVAR-8	AICRP (VC)	Determinate	123	Medium	Round
28	2012/SPT/TODVAR-9	AICRP (VC)	Determinate	121	Medium	Round
29	2012/SPT/TODVAR10	AICRP (VC)	Determinate	117	Medium	Round
30	10/TOLCVRES-1	AICRP (VC)	Determinate	122	Medium	Flat round
31	10/TOLCVRES-2	AICRP (VC)	Determinate	118	Large	Pear
32	10/TOLCVRES-3	AICRP (VC)	Determinate	117	Medium	Oval
33	10/TOLCVRES-5	AICRP (VC)	Determinate	115	Medium	Round
34	10/TOLCVRES-6	AICRP (VC)	Determinate	118	Medium	Round
35	Sel-35(TLBRH-6 X Konbilahi)	AAU, Jorhat	Indeterminate	130	Small	Round
36	Sel-19 (TLBRH-6 X Konbilahi)	AAU, Jorhat	Indeterminate	128	Small	Round
37	Sel-46 (H-24 X Konbilahi)	AAU, Jorhat	Semi-indeterminate	125	Small	Round
38	Sel-16 (H-24 X Konbilahi)	AAU, Jorhat	Indeterminate	122	Small	Round
39	Sel-9 (TLBRH-5 X Konbilahi)	AAU, Jorhat	Semi-indeterminate	126	Small	Round
40	Arka vikas	IIHR, Bangalore	Semi-Determine	124	Medium	Oval
41	Hisar Arun	HAU, Hisar	Determine	118	Medium	Round
42	H-86	IIVR, Varanasi	Determine	117	Medium	Flat round
43	Punjab Chuhara(C)	PAU, Ludhiana	Determine	116	Large	Oblong
44	H-24(C)	IIVR, Varanasi	Determine	106	Slightly small	Round
45	NDT-3(C)	NDUAT, Fazilabad	Semi-indeterminate	128	Medium	Oval

Note: AICRP (VC)-All India Coordinated Research Project (Vegetable Crops), AAU-Assam Agricultural University, IIHR-Indian Institute of Horticultural research, HAU-Haryana Agricultural University, IIVR-Indian Institute of Vegetable Research, NDUAT- Narendra Deva University of Agriculture & Technology
Table 2. Percent disease incidence of early blight in the tomato genotypes.

Genotypes/Sources of Origin	Percent disease index (PDI)	Score						
	7 Days after inoculation	22 Days after inoculation	37 Days after inoculation	37 Days after inoculation				
	2012-13	2013-14	2012-13	2013-14	2012-13	2013-14	2012-13	2013-14
2012/TOLCVRES-1/								
2012/TOLCVRES-2/								
2012/TOLCVRES-3/								
2012/TOLCVRES-4/								
2012/TOLCVRES-5/								
2012/TOLCVRES-6/								
2012/TOLCVRES-7/								
2012/TOLCVRES-8/								
2012/TOLCVRES-9/								
2012/SPT/TOINDVAR-1/								
2012/SPT/TOINDVAR-2/								
2012/SPT/TOINDVAR-3/								
2012/SPT/TOINDVAR-4/								
2012/SPT/TOINDVAR-5/								
2012/SPT/TOINDVAR-6/								
2012/SPT/TOINDVAR-7/								
2012/SPT/TOINDVAR-8/								
2012/SPT/TOINDVAR-9/								

Contd.
Year	S.E. (m)	S.E. (%)
2012/SPT/TODVAR3/-	21.45	(27.57)ijkl
2012/SPT/TODVAR4/-	23.46	(28.96)ijkl
2012/SPT/TODVAR5/-	13.45	(21.50)ij
2012/SPT/TODVAR6/-	17.35	(24.60)ij
2012/SPT/TODVAR7/-	21.34	(27.48)ijkl
2012/SPT/TODVAR8/-	19.08	(25.88)ij
2012/SPT/TODVAR9/-	28.21	(32.06)ij
2012/SPT/TODVAR10/-	38.25	(38.19)ij
10/TOLCVRES1/-	17.67	(24.83)ij
10/TOLCVRES2/-	25.80	(30.50)ij
10/TOLCVRES3/-	24.35	(29.55)ij
10/TOLCVRES5/-	21.00	(27.26)ijkl
10/TOLCVRES6/-	22.54	(28.33)ij
Sel-35/-	10.23	(18.64)ij
Sel-19/-	10.50	(15.86)ij
Sel-46/-	9.78	(15.86)ij
Sel-16/-	15.20	(22.93)ij
Sel-9/-	10.28	(22.93)ij
Arka vikas/	29.73	(33.03)ij
Hisar Arun /CCS Haryana Agri. Uni., Hisar	21.44	(27.57)ij
H-86/	28.29	(32.12)ij
Punjab Chuhvara/ (Punjab Agri. Univ., Ludhiana)	25.34	(30.20)ij
H-24/	16.89	(24.25)ij
NDT-3/	28.37	(32.17)ij
C.D. (5%)	3.26	5.37
S.E. (m)	1.14	1.8

Khaidem Malemnganba Meitei et al. / J. Appl. & Nat. Sci. 7 (2): 672 - 680 (2015)
Table 3. Reaction of tomato genotypes against early blight on the basis percent disease index (PDI).

Genotypes	PDI value range (%)	Score	Reaction
Sel-35 and Sel-19 [2]	0-12.5	1	Highly resistant
Sel-46, Sel-16 and Sel-9 [7]	12.6-25.0	2	Resistant
Sel-46, Sel-16 and Sel-9 [7]	25.1-37.5	3	Moderately resistant
Sel-46, Sel-16 and Sel-9 [7]	37.6-50.0	4	Susceptible
Sel-46, Sel-16 and Sel-9 [7]	50.1 and above	5	Highly susceptible

Conclusion

The results obtained from the present work have given some important future line of work. The genotypes highly resistant to early blight were Sel-35 and Sel-19 and can be used as parents in hybridization or backcrossing programme in order to transfer the gene for resistance to already adapted varieties or susceptible varieties with desirable characters. The genotypes 2012/SPT/TOINDVAR-4, 2012/SPT/TODVAR-5, 2012/SPT/TODVAR-6, 2012/TOLCVRES-3, Sel-46, Sel-16 and Sel-9 showed resistant against Alternaria solani pathogen which may be further evaluated for stability in performance and for their durable resistance. The genotype 10/TOLCVRES-3 was found good for both high yield and resistant to early blight. Sel-35 and Sel-19 may be studied by combining classical breeding methods with molecular markers in future breeding programme.

REFERENCES

Barclay, T.H. and Stoner, A.K. (1977). A study of the inheritance of tomato early blight resistance. Plant Dis. Rep., 61: 63-65.

Balanchard D. (1992). A colour atlas of tomato diseases.
Table 4. Comparison of yield and its loss percentage between disease free condition and disease infested condition for the year 2012-13.

S. N.	Genotypes	Resistant reaction from PDI reading	Yield per ha (q) (disease free condition)	Yield per ha (q) (disease infested condition)	Loss in yield per ha (q) (due to disease incidence)	% loss in yield (due to disease incidence)
1	2012/TOLCVRES-1	HS	246.53	172.21	74.32	30.15
2	2012/TOLCVRES-2	S	192.4	154.21	38.19	19.85
3	2012/TOLCVRES-3	S	240.00	220.21	45.59	17.15
4	2012/TOLCVRES-4	MR	237.9	203.43	34.47	14.49
5	2012/TOLCVRES-5	HS	221.83	151.34	70.49	31.78
6	2012/TOLCVRES-6	MR	222.47	190.21	32.26	14.50
7	2012/TOLCVRES-7	S	181.6	146.42	35.18	19.37
8	2012/TOLCVRES-8	HS	230.2	160.24	69.96	30.39
9	2012/TOLCVRES-9	MR	250.87	220.12	30.75	12.26
10	2012/SPT/TOINDVAR-1	MR	205.48	176.48	29.00	14.11
11	2012/SPT/TOINDVAR-2	S	173.43	136.42	37.01	21.34
12	2012/SPT/TOINDVAR-3	HS	196.96	131.00	65.96	33.49
13	2012/SPT/TOINDVAR-4	R	126.1	118.80	7.30	5.79
14	2012/SPT/TOINDVAR-5	S	116.55	94.42	22.13	18.99
15	2012/SPT/TOINDVAR-6	S	159.55	132.21	27.34	17.14
16	2012/SPT/TOINDVAR-7	S	145.93	116.98	28.95	19.84
17	2012/SPT/TOINDVAR-8	MR	190.69	166.59	24.10	12.64
18	2012/SPT/TOINDVAR-9	HS	192.78	110.37	82.41	42.75
19	2012/SPT/TOINDVAR-10	MR	211.9	186.21	25.69	12.12
20	2012/SPT/TODVAR-1	MR	224.22	198.42	25.80	11.51
21	2012/SPT/TODVAR-2	MR	240.13	214.24	25.89	10.78
22	2012/SPT/TODVAR-3	S	264.67	212.11	52.56	19.86
23	2012/SPT/TODVAR-4	S	168.15	135.00	33.15	19.71
24	2012/SPT/TODVAR-5	R	188.52	170.21	18.31	9.71
25	2012/SPT/TODVAR-6	R	244.2	230.12	14.08	5.77
26	2012/SPT/TODVAR-7	MR	211.2	184.21	26.99	12.78
27	2012/SPT/TODVAR-8	MR	195.68	172.42	23.26	11.89
28	2012/SPT/TODVAR-9	S	235.62	189.00	46.62	19.79
29	2012/SPT/TODVAR10	HS	194.7	121.72	72.98	37.48
30	10/TOLCVRES-1	MR	201.29	178.34	22.95	11.40
31	10/TOLCVRES-2	S	208.67	168.21	40.46	19.39
32	10/TOLCVRES-3	R	268.82	250.12	18.70	6.96
33	10/TOLCVRES-5	S	196.78	158.21	38.57	19.60
34	10/TOLCVRES-6	MR	142.74	123.35	19.39	13.58
35	Sel-35	HR	80	77.56	2.44	3.05
36	Sel-19	HR	77.67	76.00	1.67	2.15
37	Sel-46	R	95.67	86.24	9.43	9.86
38	Sel-16	R	90.67	83.46	7.21	7.95
39	Sel-9	R	81.33	74.56	6.77	8.32
40	Arka Vikas	S	194.48	156.22	38.26	19.67
41	Hisar Arun	MR	205.56	182.24	23.32	11.34
42	H-86	S	146.27	118.21	28.06	19.18
43	Punjab Chhuhara	MR	221.76	198.24	23.52	10.61
44	H-24	S	303	252.21	50.79	16.76
45	NDT-3	S	258.19	212.12	46.07	17.84
Fig. 1. Comparison of percent disease index (PDI) on the genotypes artificially inoculated by A. solani for both the years 2012-13 and 2013-14.

Fig. 2. Yield comparison under early blight free and early blight infested condition during 2012-13.
Wolfe Pub. Ltd., Brook House, London, pp. 298.

Basu, P.K. (1974). Measuring early blight, its progress and influence on fruit losses in nine tomato cultivars. Canadian Pl. Dis. Survey, 54: 45-50.

Chaerani, R., Groenwold, R., Roel, P.S. and Voorrips, E. (2007). Assessment of early blight (Alternaria solani) resistance in tomato using a droplet inoculation method. J. Gen. Plant Pathol., 73:96–103.

Datar, V.V. and Mayee, C.D. (1981). Assessment of loss in tomato yield due to early blight. Ind. Phytopathology, 34: 191-195.

Fry, W. (2000). Phytophthora infestans: The Plant (and R Gene) Destroyer. Molecular Plant Pathology, 9: 385-340.

Foolad, M.R., Ntahimpera, N., Christ, B.J., and Lin, G.Y. (2005). Resistance to early blight of tomato with respect to various parameters of disease epidemics. J. Gen. Plant Pathology, 69: 364–371.

Petereit, B., Diaz, M.G. Chavez, Martinez B. and Miranda, I. (2002). Search of a RAPD marker associated to Alternaria solani resistance in tomato. Rev Protection Veg., 17(1): 6–13.

Pousa, V. and Tu, J. (1997). Response of cultivars and breeding lines of Lycopersicon spp. to Alternaria solani. Canadian Plant Disease Survey 76(1): 5–8.

Rotem, J. and Reichert, I. (1964). Dew – a principal moisture factor enabling early blight epidemics in a semiarid region of Israel. Plant Dis Rep., 48:211–215.

Sharma, A., Zhang, L., Nino-Liu, D., Ashrafi, H. and Foolad, M.R. (2008). A Solanum lycopersicum × Solanum pimpinellifolium linkage-map of tomato displaying genomic locations of R-genes, RGAs, and candidate resistance/defense-response ESTs. Int. J. Plant Genomics, Article ID 926090, doi:10.1155/2008/926090.

Singh, P.C., Singh, S., Kumar, R., Singh, M. and Rai, M. (2013). Genetic study of early blight resistance in tomato. Indian Society of Vegetable Science, National Symposium on Abiotic and Biotic Stress Management in Vegetable Crops.

Singh, P.C., Kumar, R., Singh, M., Rai, A., Singh, M.C. and Rai, M. (2011). Identification of resistant sources against early blight disease of tomato. Indian J. Hort, 68(4): 516-521.

Sherif, A.F., MacNab, A.A. (1986) Vegetable diseases and their control. Wiley, New York.

Singh, R.S. (1985). Disease of vegetable crops. Oxford and IBH Publishing Co. New Delhi, pp. 441.

Sridha, T.S. and Naik, L.B. (1983). Relative resistance of tomato cultivars to early blight. The Madras Agric. J., 70: 488-489.

Yadav, D.S. and Singh, S.P. (1998). Correlation and path analysis in tomato. J. of Hill Res., 112(2): 207-211.

Yadav, O.P. and Dabbas, M.R. (2012). Efficacy of fungicides in the management of early blight of tomato (Alternaria solani). Int. J. of Plant Protection, 5 (2): 413-416.