The histopathological hallmarks of Alzheimer disease (AD) include intraneuronal neurofibrillary tangles composed of abnormally hyperphosphorylated \(\tau \) protein. Insulin dysfunction might influence AD pathology, as population-based and cohort studies have detected higher AD incidence rates in diabetic patients. But how diabetes affects \(\tau \) pathology is not fully understood. In this study, we investigated the impact of insulin dysfunction on \(\tau \) phosphorylation in a genetic model of spontaneous type 1 diabetes: the nonobese diabetic (NOD) mouse. Brains of young and adult female NOD mice were examined, but young NOD mice did not display \(\tau \) hyperphosphorylation. \(\tau \) phosphorylation at \(\tau-1 \) and pS422 epitopes was slightly increased in nondiabetic adult NOD mice. At the onset of diabetes, \(\tau \) was hyperphosphorylated at the \(\tau-1, AT8, CP13, pS262, \) and pS422 epitopes. A subpopulation of diabetic NOD mice became hypothermic, and \(\tau \) hyperphosphorylation further extended to paired helical filament-1 and TG3 epitopes. Furthermore, elevated \(\tau \) phosphorylation correlated with an inhibition of protein phosphatase 2A (PP2A) activity. Our data indicate that insulin dysfunction in NOD mice leads to AD-like \(\tau \) hyperphosphorylation in the brain, with molecular mechanisms likely involving a deregulation of PP2A. This model may be a useful tool to address further mechanistic association between insulin dysfunction and AD pathology. *Diabetes* 62:609–617, 2013

RESEARCH DESIGN AND METHODS

Animals. Female NOD/ShiLtJ (The Jackson Laboratory, Bar Harbor, ME) were used as the onset of type 1 diabetes symptoms occurs earlier and with a higher incidence (60–80%) in comparison with males (20–30%) (17). As these mice were originally derived from outbred Institute of Cancer Research mice (ICR, also available as CD-1 mice) (18), we used ICR (Crl:CD1 [ICR]; Charles River Laboratories, Wilmington, MA) female animals as controls. Animals were handled according to procedures approved by the Comité de Protection des Animaux under the guidelines of the Canadian Council on Animal Care.

Monitoring of physiological parameters. The diagnosis of diabetes was done by monitoring the mice for glycosuria, glyceremia, and insulinemia. Mice were considered diabetic when nonfasting plasma glucose level was >12 mmol/L, and there was presence of glycosuria for 2 consecutive weeks (18). Glyceremia was monitored with reagents strips for urinalysis (Diastix; Bayer HealthCare, Pittsburgh, PA). Nonfasting blood glucose was measured using

Deregulation of Protein Phosphatase 2A and Hyperphosphorylation of \(\tau \) Protein Following Onset of Diabetes in NOD Mice

Marie-Amélie Papon,¹ Noura B. El Khoury,¹,² François Marcouiller,¹,² Carl Julien,¹,² Françoise Morin,¹ Alexis Bretteville,¹,² Franck R. Petry,¹,² Simon Gaudreau,³ Abdelaziz Amrani,³ Paul M. Mathews,⁴,⁵ Sébastien S. Hébert,¹,² and Emmanuel Planel¹,²

From the ¹Centre Hospitalier de l’Université Laval, Axe Neurosciences, Québec, Canada; the ²Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada; the ³Département de Pédiatrie, Université de Sherbrooke, Sherbrooke, Québec, Canada; the ⁴Nathan Kline Institute for Psychiatric Research, Orangeburg, New York; and the ⁵New York University School of Medicine, New York, New York. Corresponding author: Emmanuel Planel, emmanuel@planel.org. Received 16 February 2012 and accepted 24 July 2012. DOI: 10.2337/db12-0187. Copyright © 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
a glucometer with reagent strips (ACCU-CHEK Aviva Nano; Roche Diagnostics, Mannheim, Germany) or a Glucose Assay Kit (Biovision Inc., Mountain View, CA). Plasma insulin was determined using a sandwich enzyme immunoassay according to the manufacturer’s instructions (Mouse Insulin ELISA, Merckodia, Sweden). All mice were weighed at sacrifice, and the body temperature was monitored using a rectal probe (Thermalert TH-5; Physitemp, Clifton, NJ).

Protein extraction. Mice were killed by decapitation without anesthesia because anaesthesia can increase hypothermia-induced \(\tau \) phosphorylation (19). Brains were immediately removed, and tissues were dissected on ice. Cortical tissues were quickly weighed, frozen on dry ice, and maintained at \(-80^\circ C\). Protein extraction from frozen samples was performed as described previously (20).

Western blot analysis. SDS-PAGE and Western blot analysis was done as previously described (20). All antibodies used in this study are described in Table 1. Immunoreactive bands were visualized using the ImageQuant LAS 4000 imaging system (GE Healthcare Biosciences, Piscataway, NJ), and densitometric analysis was performed with Image Gauge analysis software (Fujiﬁlm USA, Valhalla, NY).

Immunofluorescence. Tissue fixation was done according to the cold Bouin’s method previously developed in our laboratory (21). Bound antibodies were visualized with Alexa Fluor 568–conjugated anti-mouse IgG (1:500) or Alexa Fluor 488–conjugated anti-rabbit IgG (1:1,000) (Molecular Probes, Eugene, OR). Immunoreactive bands were observed under a Carl Zeiss Axio Imager M2 (Carl Zeiss, Jena, Germany) microscope equipped with a Nuance FX multispectral imaging system (Cambridge Research & Instrumentation, Woburn, MA) and Nuance 2.10 software (Cambridge Research & Instrumentation).

PP2A immunoprecipitation assay. Brain phosphatase activity was determined using the Ser/Thr phosphatase Assay Kit from Millipore (Temecula, CA) according to the manufacturer’s instructions. After immunoprecipitation, the activity for PP2A was assessed by the release of phosphate from a chemically synthesized phosphopeptide over a period of 10 min at 30°C. The amount of phosphate released was measured by the absorbance of the malachite green–phosphate at 630 nm.

Statistical analysis. Statistical analyses were performed with GraphPad Prism software 4.0 (GraphPad). Differences between groups were calculated using a one-way ANOVA followed by a Newman-Keuls post hoc test. Effects were considered significant at \(P < 0.05 \). Protein phosphorylation between 4- and 30-week-old ICR mice was investigated.

RESULTS

Physiological parameters of NOD and ICR mice. We separated our animals into two age groups: young (4 weeks old, \(n = 5 \)) and adult (18–30 weeks old, \(n = 18 \)) mice (Table 2). We followed the development of type 1 diabetes symptoms by measuring several metabolic and physiological parameters including weight, glycemia, insulinemia, glycosuria, and body temperature (Table 2), because we have previously demonstrated that alterations of glucose metabolism can induce hypothermia leading to \(\tau \) hyperphosphorylation (21). At 4 weeks of age, young NOD mice were not diabetic and had lower glycemia in comparison with ICR controls, an observation that is consistent with the literature (17). No significant changes in body temperature were detected in these mice.

Adult NOD mice developed type 1 diabetes symptoms progressively and were accordingly classified into three subgroups (see Table 2 for groups and values). The first subgroup consisted of nondiabetic NOD mice (\(n = 7 \)) with a mean age of 30 weeks. This group did not show any significant changes in blood glucose or insulin levels when compared with their ICR controls. The second group consisted of glycosuric NOD mice (NODG, \(n = 7 \)) with a mean age of 25 weeks. These mice started to develop type 1 diabetes and were characterized by higher glycemia as well as glycosuria. Notably, blood insulin levels of this group of mice revealed hypoinsulinemia in comparison with ICR controls. Interestingly, four diabetic mice showed, in addition to hyperglycemia and glycosuria, a significant drop of body temperature, massive hyperglycemia, as well as hypoinsulinemia compared with ICR controls.
Antibodies used in this study

Name	Abbreviation	Epitope	Type	Origin	Provider	WB	IHC	
τ	Anti-τ-1, clone PC1C6	τ-1	Non-phospho-S195, 198, 199, 202	Mono	Mouse	Millipore	1/1,000	NU
	Anti-PHF-τ, clone AT8	AT8	pS202, pT205	Mono	Mouse	Thermo Scientific	1/1,000	NU
	Anti-PHF-τ, clone AT100	AT100	pT212, pS214	Mono	Mouse	Thermo Scientific	1/1,000	1/500
	CP13	CP13	pS202	Mono	Mouse	Peter Davies	1/1,000	NU
	TG-3	TG-3	pT231	Mono	Mouse	Peter Davies	1/1,000	NU
	Anti-τ (pS262)	PS262	pS262	Poly	Rabbit	Invitrogen	1/1,000	NU
	PHF-1	PHF-1	pS396, pS404	Mono	Mouse	Peter Davies	1/1,000	NU
	Anti-τ (pS422)	PS422	pS422	Poly	Rabbit	Invitrogen	1/1,000	NU
	Anti-human τ A0024	Total τ	Human τ COOH terminus	Poly	Rabbit	Dako	1/5,000	1/1,000

Kinases

Name	Abbreviation	Epitope	Type	Origin	Provider	WB	IHC	
GSK-3β	Phospho GSK3β (Ser9)	GSK-3β 1-160	Poly	Rabbit	BD Transduction	1/1,000	NU	
Akt	Phospho-Akt (Ser473)	pS473	Poly	Rabbit	Cell Signaling Technology	1/1,000	NU	
p44/p42 MAPK	Phospho-p44/42 MAPK (Erk1/2)	pT202, pY204	Poly	Rabbit	Cell Signaling Technology	1/1,000	NU	
SAPK/JNK	JNK	Human JNK2	Poly	Rabbit	Cell Signaling Technology	1/1,000	NU	
Cdk5 (C-8)	P35	Human p35 COOH terminus	Poly	Rabbit	Santa Cruz Biotechnology	1/1,000	NU	
CamKIIα (A-1)	CaMKII	Mouse CamKIIα 303-478	Mono	Mouse	Santa Cruz Biotechnology	1/1,000	NU	
Phosphatases	PP1 (E-9)	PP1	Human full-length PP1-α	Mono	Mouse	Santa Cruz Biotechnology	1/1,000	NU
Pan-calcineurin A	PP2A A subunit	Human PP2A A subunit (α and β)	Poly	Rabbit	Cell Signaling Technology	1/1,000	NU	
Anti-PP2A, C subunit, clone 7A6	Anti-PP2A, C subunit	Human PP2A C subunit 302-309	Mono	Mouse	Millipore	1/1,000	NU	
Demethylated-PP2A-C (4B7)	Demethylated-PP2A-C	Unmethylated PP2A C COOH terminus	Mono	Mouse	Santa Cruz	1/1,000	NU	
	PPP2R2A (2G9)	Rat PPP2R2A/PP2A, B55-α/PR55-α	Mono	Mouse	Cell Signaling Technology	1/1,000	NU	
	PPP2R2B	Human PPP2R2B	Poly	Rabbit	Bethyl Laboratories	1/1,000	NU	
	PP5	Human PP5 NH₂ terminus	Poly	Rabbit	Cell Signaling Technology	1/1,000	NU	

CTF, COOH-terminal fragments; IHC, dilution used in immunohistochemistry; MAPK, mitogen-activated protein kinase; Mono, monoclonal; NU, not used; PKB, protein kinase B; Poly, polyclonal; SAPK, stress-activated protein kinase; WB, dilution used in Western blotting.
We explored the activation patterns of all of these kinases with a panel of antibodies (Table 1).

The nondiabetic adult NOD mice did not show significant changes for any of the investigated kinases as compared with ICR mice (Fig. 3).

By contrast, the onset of diabetes was accompanied by several changes in the expression and activation pattern of τ kinases. Thus, both NODG and NODH mice revealed a significant increase in the phosphorylation state of GSK-3β at the Ser9 epitope, which reflects GSK-3β inhibition (Fig. 3B). Interestingly, we observed a strong increase in AKT phosphorylation in both diabetic NODG and NODH mice, which was accompanied by a significant decrease in the total levels of AKT (Fig. 3C and D), suggesting an activation of this kinase. However, there was no increase in τ phosphorylation in the AT100 epitope (T212/S214), a known in vitro phosphorylation site for AKT (24). As shown in Fig. 4A, levels of PP1 did not significantly change in all groups tested. By contrast, PP2B showed a significant decrease in both nondiabetic NOD and glycosuric NODG mice (Fig. 4B). In addition, we observed a slight increase in the expression of PP5 in NODH mice (Fig. 4H).

PP2A is a heterotrimeric holoenzyme consisting of a core dimer composed of a catalytic subunit (C) tightly bound with the scaffolding (A) subunit, and this core dimer associates with a variable regulatory B subunit. Only trimeric forms of PP2A containing the Bo or Bβ subunits associate with neural microtubules (27). Moreover, PP2A activity is enhanced by the methylation of its catalytic subunit (PP2A C) and is conversely decreased by its demethylation (28).

As our results failed to adequately explain the extent of τ hyperphosphorylation specific to type 1 diabetes in terms of kinase activation, we next assessed the expression levels of τ Ser/Thr protein phosphatases (PP). PP are classified into five types: PP1, PP2A, PP2B, PP2C, and PP5, all of them being highly expressed in the mammalian brain (25). Biochemical studies have previously demonstrated that all PP except PP2C can dephosphorylate τ in vitro (26). We thus examined the profiles of these four PP using specific antibodies (Table 1).

As shown in Fig. 4A, levels of PP1 did not significantly change in all groups tested. By contrast, PP2B showed a significant decrease in both nondiabetic NOD and glycosuric NODG mice (Fig. 4B). In addition, we observed a slight increase in the expression of PP5 in NODH mice (Fig. 4H).

PP2A is a heterotrimeric holoenzyme consisting of a core dimer composed of a catalytic subunit (C) tightly bound with the scaffolding (A) subunit, and this core dimer associates with a variable regulatory B subunit. Only trimeric forms of PP2A containing the Bo or Bβ subunits associate with neural microtubules (27). Moreover, PP2A activity is enhanced by the methylation of its catalytic subunit (PP2A C) and is conversely decreased by its demethylation (28).
Regional analysis of \(\tau \) hyperphosphorylation. In AD, the earliest detectable \(\tau \) hyperphosphorylation is localized in neurites of vulnerable neurons before undergoing somatodendritic relocalization (29) and aggregation as NFTs (30). To investigate a possible relocalization of somatodendritic relocalization (29) and aggregation as neurites of vulnerable neurons before undergoing the earliest detectable hyperphosphorylation, we examined the gross anatomical pattern of \(\tau \) phosphorylation by immunofluorescence. Staining of hippocampal sagittal sections clearly showed a robust increase in phospho-\(\tau \) immunoreactivity at the AT8 epitope in NODH mice and to a much lesser extent in the NODG group in comparison with ICR controls (Fig. 5A–C). However, we did not detect significant changes in total or phospho-\(\tau \) cellular localization, as revealed by AT8, total \(\tau \), and DAPI staining patterns (Fig. 5D–I).

Amyloid precursor protein metabolism in NOD mice. We also wanted to address the possibility that changes in amyloid precursor protein (APP) metabolism could be a plausible driving force for altered \(\tau \) phosphorylation in NOD mice (31). Except for a mild decrease in APP full-length in nondiabetic NOD mice, no other significant changes were observed in either APP full-length or APP COOH-terminal fragment levels in adult NOD mice (data not shown). These results confirm our previous data demonstrating that APP metabolism is not affected in mice with STZ-induced type 1 diabetes (10) and suggest that \(\tau \) hyperphosphorylation in NOD mice is not the result of alterations in APP metabolism.

DISCUSSION
In this study, we investigated \(\tau \) phosphorylation and its molecular mechanisms in the NOD mouse strain, one of the most valuable genetic animal models for type 1 diabetes (32). Our data suggest that spontaneous type 1 diabetes provokes a progressive \(\tau \) hyperphosphorylation that begins to be detectable in adult mice even during the nondiabetic stage, in which there is no apparent deregulation of glucose metabolism. We further show that \(\tau \) phosphorylation is greatly exacerbated in the presence of principal type 1 diabetes features, notably hyperglycemia and glycosuria, and further amplified by hypothermia. Finally, we demonstrate that \(\tau \) hyperphosphorylation during type 1 diabetes is likely attributable to a deregulation in PP2A, the major \(\tau \) phosphatase in vivo.

Our findings are consistent with our previous study (10) and several other studies showing \(\tau \) hyperphosphorylation at several epitopes in type 1 diabetes induced by STZ in mice (11–13), or rats (14). However, many of these articles did not document the temperature of the animals. This is important because we have reported before (10), and confirmed in this study, that \(\tau \) phosphorylation is increased when diabetic mice become hypothermic. Indeed, decreased temperature is a common outcome in both human (33) and experimental diabetes (10,34), and hypothermia is a powerful regulator of \(\tau \) phosphorylation, increasing it by 80% per degree Celsius below 37°C in mice (21).

In comparison with our previous study in STZ-treated mice (10), several differences can be noted in the pattern of \(\tau \) phosphorylation with the NOD mice. For example, in this study we observed that the AT8, pS262, and pS422 epitopes were hyperphosphorylated in nonhypothermic NODG mice, whereas these epitopes did not show any significant changes in the absence of hypothermia in STZ-induced animals. In contrast, \(\tau \) phosphorylation at the PHF-1 epitope was increased only in the group of hypothermic NODH mice, whereas we have detected a significant increase in this epitope in nonhypothermic mice.

FIG. 2. Effect of type 1 diabetes on \(\tau \) phosphorylation in adult NOD mice. Proteins from mice 18 to 30 weeks of age were extracted from mice cortices, separated by SDS-PAGE, and identified with the following antibodies: A: Tau-1, B: AT8, C: CP13, D: TG3, E: PS262, F: PHF-1, G: PS422, and H: total \(\tau \). Lanes are identified as follows: lanes 1 & 2, ICR control mice; lanes 3 & 4, nondiabetic NOD mice; lanes 5 & 6, diabetic glycosuric NODG mice, and lanes 7 & 8, glycosuric and hypothermic NODH mice. For each epitope, two representative lanes from each group are displayed. Dividing lines represent areas where lanes were removed and the remaining lanes were spliced together. Data are means ± SD. Asterisks indicate significant differences from controls, with *\(P < 0.05 \), **\(P < 0.01 \), and ***\(P < 0.001 \).
following STZ treatment (10). These differences could be due to the fact that NOD and STZ-induced mice develop insulin deficiency that characterizes type 1 diabetes in a differential manner. Indeed, whereas NOD mice showed lower (but detectable) blood insulin levels in comparison with control, insulin levels were not detectable in STZ-induced animals (10). Another possible explanation is that STZ might have a direct impact on tau phosphorylation in the brain. Although peripheral administration of STZ is not thought to impact the brain directly because its transport and cytotoxicity are dependent on the GLUT-2 glucose transporter (35), GLUT-2 has also been found in the mammalian brain, and intracerebroventricular application of STZ in minute amounts has been reported to directly induce hyperphosphorylation (36). Thus, NOD mice might be models more relevant to humans to study the impact of insulin dysfunction on tau phosphorylation during diabetes.

We observed tau hyperphosphorylation at the pS422 epitope in nondiabetic NOD mice prior to deregulation in the glucose metabolism. This epitope is associated with early pretangle formation (37) and the promotion of tau aggregation (38) and is characteristic of abnormal AD-like tau phosphorylation. Concurrent with hyperglycemia and glycosuria in adult NOD mice, tau phosphorylation increased at additional epitopes, notably AT8, CP13, pS262, PHF-1, and pS422. Some of these sites have been linked to specific aspects of tau pathology such as the inhibition of tau microtubules binding (e.g., Ser262) (39) and the promotion of tau aggregation (e.g., Ser396 and Ser422) (38). Moreover, PHF-1 is associated with late-paired helical filament and NFT formation (40). Therefore, it appears that insulin dysfunction results in an increase in tau phosphorylation at epitopes that are critical for the development of tau pathology.

During the nondiabetic stage, adult NOD mice did not show any changes in expression and activation patterns of all investigated kinases. We observed an increase in inhibitory phosphorylation of GSK-3β in both NODG and NODH mice, in accordance with previous studies revealing inhibition of GSK-3β in STZ-induced animal models (10,11,41). However, it should be mentioned that the elevation of GSK-3β Ser9 in NODH mice is not surprising, because GSK-3β Ser9 phosphorylation is a constant result of hypothermia in the mouse brain (21). The increased
phosphorylation of Ser9 could be explained by the activation of AKT observed in NODG and NODH mice. In fact, AKT was the only kinase activated in NOD mice, and its activation failed to explain the extent of hyperphosphorylation at multiple epitopes.

The analysis of different phosphatases in type 1 diabetes animal models is less documented compared with kinases. However, we (10) and others (11,14) have reported that PP2A is inhibited in STZ-induced animal models. In this study, we detected a decrease in the Bα regulatory subunit and an increase in demethylated (inhibition) and total PP2A catalytic subunit in NODG and NODH mice. These changes were paralleled by a significant decrease in the activity of PP2A. Although seemingly counterintuitive, the increase of the catalytic subunit along with a decrease in activity can be explained by the potent autoregulatory mechanism that adjusts PP2A C levels according to PP2A activity, in which inhibition of PP2A leads to the accumulation of the C subunit, either in vitro or in vivo (20,42). These results corroborate our previous observation of increased PP2A C concomitant with decreased PP2A activity in STZ-treated mice (10).

We also observed changes in PP2B and PP5 levels, but among all phosphatases that dephosphorylate τ, PP2A is the major τ phosphatase in vivo, with PP2A, PP1, PP5, and PP2B contributing to 71, 11, 10, and 7%, respectively, of the total τ phosphatase activity in the brain (43).

Importantly, PP2A can regulate the phosphorylation of all the sites studied in this paper (43), and its deregulation is thought to be an important factor in the evolution of AD pathology (26). Taken together, our results suggest that the progressive deregulation of PP2A in NOD mice is likely to be the cause of the observed τ hyperphosphorylation.

An important question is whether it is peripheral and/or central insulin dysfunction that causes PP2A deregulation and τ hyperphosphorylation. Some studies may hint that central insulin dysfunction is not involved in the phenotype of the NOD mice. For example, central insulin dysfunction, whether it is in patients (44) or mediated by knocking out the brain insulin receptor (9) or by direct injections of STZ in the rodent brain (36,45), does correlate with increased τ phosphorylation, but also with decreased AKT and GSK-3β Ser9 phosphorylation, the reverse of what we observed in NOD mice. In contrast, mice treated with STZ peripherally mirror what we observed in NOD mice, namely inhibition of PP2A and augmented phosphorylation of τ, AKT, and GSK-3β (10,11,46). It is interesting to note that the rise in AKT and GSK-3β Ser9

![Image](diabetes.diabetesjournals.org)

FIG. 4. Effect of type 1 diabetes on phosphatases in adult NOD mice. Proteins from mice 18 to 30 weeks of age were extracted from mice cortices, separated by SDS-PAGE, and identified with the following antibodies: A: PP1, B: PP2B, C: PP2A A, D: PP2A C, E: Demethylated PP2A C (PP2A C Dem), F: PP2A Bα, G: PP2A Bβ, H: PP5, and I: PP2A activity. Lanes are identified as follows: lanes 1 & 2, ICR control mice; lanes 3 & 4, nondiabetic NOD mice; lanes 5 & 6, diabetic glycosuric NODG mice, and lanes 7 & 8, glycosuric and hypothermic NODH mice. For each epitope, two representative lanes from each group are displayed. Dividing lines represent areas where lanes were removed and the remaining lanes were spliced together. Data are means ± SD. Asterisks indicate significant differences from controls, with *P < 0.05, **P < 0.01, and ***P < 0.001.
phosphorylation in both NOD and STZ-treated mice is probably one of the most valuable and relevant models to study the effects of insulin dysfunction on \(\tau\) phosphorylation in the brain. Crossing NOD mice with mouse models that express human \(\tau\) and develop NFTs might further help us to understand the impact of diabetes on the pathogenesis of AD.

ACKNOWLEDGMENTS

This work was supported by a Biomedical Doctoral Award from the Alzheimer Society of Canada (to N.B.E.K.), Post-doctoral Awards from the Alzheimer Society of Canada and the Alzheimer Society of Saskatchewan (to C.J.), and grants to E.P. from the Canadian Institutes of Health Research (MOP-106423 and PCN-102993), Fonds de Recherche en Santé du Québec (16205 and 20048), and the Natural Sciences and Engineering Research Council of Canada (354722). The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of this manuscript.

No potential conflicts of interest relevant to this article were reported.

M.-A.P. and N.B.E.K. performed the experiments and wrote the manuscript. F.Ma., C.J., F.Mo., A.B., and F.R.P. performed the experiments. S.G., A.A., and P.M.M. contributed to the research design and methods and the discussion sections and reviewed the manuscript. S.S.H. contributed to the discussion and reviewed the manuscript. E.P. designed the experiments and wrote the manuscript. E.P. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

The authors thank Dr. Peter Davies (Albert Einstein University, New York, NY) for the generous gift of \(\tau\) antibodies.

REFERENCES

1. Alonso AC, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 2001;98:6923–6928
2. Bretteville A, Planel E. Tau aggregates: toxic, inert, or protective species? J Alzheimers Dis 2008;15:441–446
3. Craft S, Watson GS. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 2003;4:169–178
4. Frolich L, Blum-Degen D, Riederer P, Hoyer S. A disturbance in the neuronal insulin receptor signal transduction in sporadic Alzheimer’s disease. Ann N Y Acad Sci 1999;893:290–293
5. Leibson CL, Rocca WA, Hanson VA, et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 1997;145:391–398
6. Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999;53:1937–1942
7. Leibson CL, Rocca WA, Hanson VA. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 1997;145:391–398
8. Schechter R, Beju D, Miller KE. The effect of insulin deficiency on tau and neurofilament in the insulin knockout mouse. Biochem Biophys Res Commun 2005;334:979–986
9. Schubert M, Gautam D, Surjo D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 2004;101:3100–3105
10. Planel E, Tatebayashi Y, Miyaoka T, et al. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 2007;27:13635–13648
11. Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 2006;55:3320–3325

FIG. 5. Regional anatomical localization of phosphorylated \(\tau\) protein in adult NOD mice. Unmixed fluorescent photomicrographs of hippocampal sagittal sections are shown with AT8 (Red, A–C), Total Tau (Green, D–F), or merged with DAPI (G–I), for the following conditions: control (ICR mice, A,D,G), glycosuric NODG mice (B,E,H), or glycosuric and hypothermic NODH mice (C,F,I). All images were taken at original magnification ×5.
12. Jolivalt CG, Lee CA, Beiswenger KK, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer’s disease and correction by insulin. J Neurosci Res 2008;86:3265–3274

13. Kim B, Baekeu C, Oh S, Hayes JM, Feldman EL. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 2009;150:5294–5301

14. Qua Z, Jiao Z, Sun X, Zhao Y, Ren J, Xu G. Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res 2011;1383:300–306

15. Ke YD, Delerue F, Gladbach A, Götz J, Ittmere LM. Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer’s disease. PLoS ONE 2009;4:e7017

16. Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 1980;29:1–13

17. Amrani A, Durant S, Throsby M, Coulaud J, Dardenne M, Homo-Delarche F. Glucose homeostasis in the non-obese diabetic mouse at the diabetic stage. Endocrinology 1998;139:1115–1124

18. Leiter EH. The NOD mouse: a model for insulin-dependent diabetes mellitus. Curr Protoc Immunol 2001;Chapter 15:Unit 15.19

19. Planal E, Richter KE, Nolan CE, et al. Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J Neurosci 2005;27:3090–3097

20. Planal E, Yasukake K, Fujita SC, Ishiguro K. Inhibition of tau protein phosphatase 2A overrides tau protein kinase glycogen synthase kinase 3 beta and cyclin-dependent kinase 5 inhibition and results in tau hyperphosphorylation in the hippocampus of starved mouse. J Biol Chem 2001;276:34298–34306

21. Planal E, Miyasaka T, Launey T, et al. Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer’s disease. J Neurosci 2004;24:2401–2411

22. Olivieri A, De Angelis S, Dionisi S, et al. Serum transforming growth factor-beta1 during diabetes development in non-obese diabetic mice and humans. Clin Exp Immunol 2010;162:407–414

23. Planal E, Sun X, Takashima A. Role of GSK-3 beta in Alzheimer’s disease pathology. Drug Dev Res 2005;64:491–510

24. Ksiezak-Reding H, Pyo HK, Feinstein B, Pasinetti GM. Akt/PKB kinase selectively inhibits GSK-3beta, GSK-3alpha, GSK-3gamma and GSK-3delta. FEBS Lett 2001;509:233–237

25. Price NE, Wadzinski B, Mumby MC. An anchoring factor targets protein kinase Calpha to the plasma membrane in the absence of insulin. J Biol Chem 2002;277:16853–16859

26. Tian Q, Wang J. Role of serine/threonine protein phosphatase in Alzheimer’s disease. Neurosignals 2002;11:262–268

27. Price NE, Wadzinski B, Mumby MC. An anchoring factor targets protein kinase Calpha to the plasma membrane in the absence of insulin. J Biol Chem 2002;277:16853–16859

28. Tian Q, Wilson GT, Mumby MC. Early phosphorylation of tau in Alzheimer’s disease occurs at Ser-202 and is preferentially located within neurites. Neuropeptide 2004;5:2358–2362

29. Braak E, Braak H, Mandelkow EM. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 1994;87:554–567

30. Braak E, Braak H, Mandelkow EM. A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 1994;87:554–567

31. Gasparini L, Netzer WJ, Greengard P, Xu H. Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci 2002;23:288–293

32. Kurinak H, Makino S. The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 1992;51:285–322

33. Neil HA, Dawson JA, Baker JE. Risk of hypothermia in elderly patients with diabetes. Br Med J (Clin Res Ed) 1986;293:416–418

34. Kilgour RD, Williams PA. Effects of diabetes and food deprivation on shivering activity during progressive hypothermia in the rat. Comp Biochem Physiol A Physiol 1986;114:159–165

35. Schnell WJ, Ferber S, Johnson JH, Newgard CB. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 1994;43:1325–1333

36. Grünblatt E, Šalkovskis M, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 2007;101:757–770

37. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 2002;103:26–35

38. Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 2008;15:2321–2328

39. Drewes G, Trinczek B, Ilenberger S, et al. Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 1995;270:7679–7688

40. Goedert M, Jakes R, Crowther RA, et al. Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein. Biochem J 1994;301:871–877

41. Li ZG, Zhang W, Sima AA. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 2007;56:1817–1824

42. Baharians Z, Schonthal AH. Autoregulation of protein phosphatase type 2A expression. J Biol Chem 1998;273:19019–19024

43. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation, Eur J Neurosci 2005;22:1942–1950

44. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 2011;225:54–62

45. Plaschke K, Kopitz J, Siegelin M, et al. Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis 2010;19:691–704

46. McMillan-Miller B, De Sarno P, Zujewsksa A, Song L, Jope RS. Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3. J Biol Chem 2005;280:39773–39781

47. Andjelkovic M, Jakubowics T, Cron P, Ming XF, Han JW, Hemmings BA. Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl Acad Sci USA 1996;93:5699–5704

48. Sims-Robinson C, Kim B, Rosko A, Feldman EL. How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 2010;6:551–559

49. Festa A, Williams K, D’Agostino R Jr, Wagenknecht LE, Haffner SM. The natural course of beta-cell function in nondiabetic and diabetic individuals: the Insulin Resistance Atherosclerosis Study. Diabetes 2006;55:1114–1120

50. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am 2004;88:787–835