ON THE RESIDUAL FINITENESS AND OTHER PROPERTIES
OF (RELATIVE) ONE-RELATOR GROUPS

STEPHEN J. PRIDE

(Communicated by Jonathan I. Hall)

Abstract. A relative one-relator presentation has the form \(\mathcal{P} = \langle x, H; R \rangle \)
where \(x \) is a set, \(H \) is a group, and \(R \) is a word on \(x^{\pm 1} \cup H \). We show that if
the word on \(x^{\pm 1} \) obtained from \(R \) by deleting all the terms from \(H \) has what
we call the unique max-min property, then the group defined by \(\mathcal{P} \) is residually
finite if and only if \(H \) is residually finite (Theorem 1). We apply this to obtain
new results concerning the residual finiteness of (ordinary) one-relator groups
(Theorem 4). We also obtain results concerning the conjugacy problem for one-
relator groups (Theorem 5), and results concerning the relative asphericity of
presentations of the form \(\mathcal{P} \) (Theorem 6).

1. Introduction

The question of when one-relator groups are residually finite is still open.
In the torsion-free case there are well-known examples of groups which are not
residually finite, namely the Baumslag-Solitar/Meskin groups [4], [15]:
\[G = \langle x; U^{-1}V^lUV^m \rangle, \]
where \(U, V \) do not generate a cyclic subgroup of the free group on \(x \), and \(|l| \neq |m|, |l|, |m| > 1\). On the other hand, there are some examples which are known to be
residually finite. For instance, it was shown in [3] that if
\[W = UV^{-1}, \]
where \(U, V \) are positive words on an alphabet \(x \) and the exponent sum of \(x \) in
\(UV^{-1} \) is 0 for each \(x \in x \), or if
\[W = [U, V], \]
where \(U, V \) are (not necessarily positive) words on \(x \) such that no letter \(x \in x \)
appears in both \(U \) and \(V \), then \(G = \langle x; W \rangle \) is residually finite.

In the torsion case there is the well-known open question:

Question 1 ([2], [5, Question OR1]). Is every one-relator group with torsion residually finite?
Question 1 is known to be true when \(G = \langle x; W^n \rangle \) where \(W \) is a positive word and \(n > 1 \) [9] (see also [19]). In [20], Wise obtains further related results, summed up by his “Quasi-Theorem 1.3”: If \(W \) is sufficiently positive, and \(W^n \) is sufficiently small cancellation, then \(G \) is residually finite.

A related open question is:

Question 2 ([5, Question OR6], [11, Question 8.68]). If a torsion-free one-relator group \(G_1 = \langle x; W \rangle \) is residually finite, then is \(G_n = \langle x; W^n \rangle \) also residually finite for \(n > 1 \)?

(Of course, if Question 1 is true, then Question 2 is trivially true.)

It was shown in [1] that Question 2 holds true when \(W \) has the form (1) or (2).

Here, amongst other things, we tackle Question 2 by considering relative presentations.

A relative presentation has the form

\[P = \langle x, H; r \rangle, \]

where \(H \) is a group and \(r \) is a set of expressions of the form

\[R = x_i^{\varepsilon_1} h_1 x_i^{\varepsilon_2} \ldots x_i^{\varepsilon_r} h_r \ (r > 0, x_i \in x, \varepsilon_i = \pm 1, h_i \in H, 1 \leq i \leq r). \]

The word

\[W = x_i^{\varepsilon_1} x_i^{\varepsilon_2} \ldots x_i^{\varepsilon_r} \ (r > 0, x_i \in x, \varepsilon_i = \pm 1, 1 \leq i \leq r) \]

is called the \(x \)-skeleton of \(R \). We do not require that the \(x \)-skeleton be reduced or cyclically reduced. The group \(G = G(P) \) defined by \(P \) is the quotient of \(H \ast F \) (where \(F \) is the free group on \(x \)) by the normal closure of the elements of \(H \ast F \) represented by the expressions \(R \in r \). The composition of the canonical imbedding \(H \rightarrow H \ast F \) with the quotient map \(H \ast F \rightarrow G \) is called the natural homomorphism, denoted by \(\nu : H \rightarrow G \) (or simply \(H \rightarrow G \)).

As is normal, we will often abuse notation and write \(G = \langle x, H; r \rangle \), or \(G \cong \langle x, H; r \rangle \).

When \(r \) consists of a single element \(R \), then we have the one-relator relative presentation

\[P = \langle x, H; R \rangle. \]

Heuristically, \(G = G(P) \) should be governed by the shape of the \(x \)-skeleton of \(R \) and the algebraic properties of \(H \).

Here we introduce the unique max-min property for the shape of \(W \). (Words of the form (1) are a very special case.) For a group \(H \), denote by \(\mathcal{M}_H \) the class of one-relator relative presentations of the form (5), where \(W \) has the unique max-min property.

Theorem 1. If \(P \) is in \(\mathcal{M}_H \), then

(i) the natural homomorphism \(H \rightarrow G(P) \) is injective;

(ii) \(G(P) \) is residually finite if and only if \(H \) is residually finite.

We can deduce from this

Theorem 2 (Substitution theorem). Let \(K \) be a one-relator group given by an ordinary presentation \(\langle y, z; S(y, z) \rangle \), and let \(P = \langle x, H; R \rangle \) be an \(\mathcal{M}_H \)-presentation. Then the group given by the relative presentation \(\langle x, y, H; S(y, R) \rangle \) is residually finite if and only if \(H \) and \(K \) are residually finite.
We can give the proof of this straightaway. Consider the $\mathcal{M}_{H \ast K}$-presentation $P = \langle x, H \ast K; Rz^{-1} \rangle$. By Theorem 1, $L = G(P)$ is residually finite if and only if $H \ast K$ is residually finite, which is equivalent to requiring that both H and K are residually finite (using results discussed in [12], p. 417). Now note that

$$L \cong \langle x, y, z, H; S(y, z), Rz^{-1} \rangle \cong \langle x, y, H; S(y, R) \rangle.$$

In particular, taking K to be defined by $\langle z; zn \rangle$ ($n > 1$) we have

Theorem 3. If $G = \langle x, H; R \rangle$ is a residually finite \mathcal{M}_H-group, then the group $G_n = \langle x, H; R^n \rangle$ ($n > 1$) is also residually finite.

Now take H to be a free group Φ. Then \mathcal{M}_Φ-groups are one-relator groups. Since Φ is residually finite ([12], p. 116 or p. 417), we obtain the following theorem concerning the residual finiteness of one-relator groups.

Theorem 4. Every \mathcal{M}_Φ-group $G = \langle x, \Phi; R \rangle$ is a residually finite one-relator group. Moreover, if $K = \langle y, z; S(y, z) \rangle$ is a one-relator group, then the one-relator group $\bar{K} = \langle x, y, \Phi; S(y, R) \rangle$ is residually finite if and only if K is residually finite. In particular, $G_n = \langle x, \Phi; R^n \rangle$ ($n > 1$) is residually finite.

The solution of the conjugacy problem for one-relator groups with torsion has been solved by B. B. Newman [16]. However, for the torsion-free case the problem is still open [5, Question O5].

Theorem 5. Every \mathcal{M}_Φ-group (Φ a finitely generated free group) has a solvable conjugacy problem. Also, such groups have a solvable power conjugacy problem.

(Two elements c, d of a group are said to be *power conjugate* if some power of c is conjugate to some power of d.)

Other aspects of relative presentations (and in particular, one-relator relative presentations) have been studied intensively, particularly asphericity. Recall [6] that a relative presentation \mathcal{P} is *aspherical* (more accurately, diagrammatically aspherical) if every spherical picture over \mathcal{P} contains a dipole. Under a weaker condition on shape (the *unique min property*, or equivalently the *unique max property*) we can prove

Theorem 6. Let \mathcal{P} be a relative presentation as in (5), where W has the unique min property. Then \mathcal{P} is aspherical.

It then follows from [6] (see Corollary 1 of Theorem 1.1, Theorem 1.3, and Theorem 1.4) that for the group $G = G(\mathcal{P})$ we have

(i) the natural homomorphism $H \to G$ is injective;
(ii) every finite subgroup of G is contained in a conjugate of H;
(iii) for any left $\mathbb{Z}G$-module A and any right $\mathbb{Z}G$-module B,

$$H^n(G, A) \cong H^n(H, A),$$

$$H_n(G, B) \cong H_n(H, B)$$

for all $n \geq 3$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
2. Max-min property

Let \(x \) be an alphabet. A \textit{weight function} on \(x \) is a function
\[\theta : x \rightarrow \mathbb{Z} \]
such that \(\text{Im} \, \theta \) generates the additive group \(\mathbb{Z} \) (that is, \(\text{gcd}\{\theta(x) : x \in x\} = 1 \)). A \textit{strict} weight function is one for which \(\theta(x) \neq 0 \) for all \(x \in x \).

Let \(W \) be a word on \(x \) as in (4). Given a weight function \(\theta \), we then have the function
\[\phi = \phi^\theta_W : \{0,1,2,\ldots,r\} \rightarrow \mathbb{Z}, \]
\[\phi(j) = \sum_{i=0}^{j} \varepsilon_i \theta(x_i), \]
where \(\phi(0) = 0 \) since the empty sum is taken to be 0. We will say that the weight function is \textit{admissible} for \(W \) if \(\phi(r) = 0 \).

For visual purposes, it is useful to extend \(\phi \) to a piecewise linear function \(\phi : [0, r] \rightarrow \mathbb{R} \), so that the graph of \(\phi \) in the interval \([j−1, j]\) is the straight line segment joining the points \((j−1, \phi(j−1)), (j, \phi(j)) (0 < j \leq r)\). We will informally refer to this graph as “the graph of \(W' \)” (with respect to \(\theta \)).

A word \(W \) as in (4) will be said to have the \textit{unique max-min property} if for some admissible strict weight function \(\theta \), the graph of \(W \) has a unique maximum and a unique minimum. To be precise, we require that, for some admissible strict weight function and some \(k,l \in \{1,2,\ldots,r\} \), we have \(\phi(j) < \phi(k) \) for all \(j \in \{1,2,\ldots,r\} \) and \(\phi(j) > \phi(l) \) for all \(j \in \{1,2,\ldots,r\} \) \(\{l\} \). We also require that \(x_k \neq x_{k+1} \) and \(x_l \neq x_{l+1} \) (subscripts modulo \(r \)). This amounts to requiring that \(W \) is “reduced at the unique maximum and minimum”; that is, \(x_k^{\varepsilon_k} \neq x_{k+1}^{\varepsilon_{k+1}}, x_l^{\varepsilon_l} \neq x_{l+1}^{\varepsilon_{l+1}} \) (subscripts modulo \(r \)). For at the maximum and minimum we must have either \(x_j \neq x_{j+1} \), or \(x_j = x_{j+1} \) and \(\varepsilon_j = -\varepsilon_{j+1} \) (\(j = k,l \)). If the two letters occurring at the unique maximum are not disjoint from the two letters occurring at the unique minimum (i.e. \(\{x_k, x_{k+1}\} \cap \{x_l, x_{l+1}\} \) is not empty), then we will say that \(W \) has the \textit{strong} unique max-min property.

A word \(W \) as in (4) will be said to have the \textit{unique min property} if for some strict weight function \(\theta \), the graph of \(W \) has a unique minimum (but not necessarily a unique maximum). The \textit{unique max property} is defined similarly, but is not really of interest because replacing \(\theta \) by \(-\theta \) will convert this property to the unique min property.

We let \(M^1_H \) (respectively \(S^1_H \)) denote the subclass of \(M_H \) consisting of relative presentations of the form (5) for which \(W \) has the unique max-min property (respectively, the strong unique max-min property) with respect to the weight function
\[1 : x \rightarrow \mathbb{Z} \quad x \mapsto 1 \, (x \in x). \]

Lemma 1. Every \(M_H \)-group can be embedded into an \(M^1_H \)-group.

Proof. Let \(G = (x,H; R) \) with \(R \) as in (3), and suppose \(W = x_1^{\varepsilon_1} x_2^{\varepsilon_2} \ldots x_r^{\varepsilon_r} \) has the unique max-min property with respect to some strict weight function \(\theta : x \rightarrow \mathbb{Z} \). We can assume \(\theta(x) > 0 \) for all \(x \). For if \(\theta(x) < 0 \), then we can replace \(x \) by \(x^{-1} \).

Let \[y = \{ y : y \in x, \theta(y) > 1 \}, \]
and let
\[\hat{x} = (x - y) \cup \{ y_1, y_2, \ldots, y_{\theta(y)} : y \in y \}. \]

Let \(\hat{G} = \langle \hat{x}, H; \hat{R} \rangle \), where \(\hat{R} \) is obtained from \(R \) by replacing each occurrence of \(y^{\pm 1} \)
by \((y_1y_2 \ldots y_{\theta(y)})^{\pm 1} (y \in y) \). It is easy to see that the \(\hat{x} \)-skeleton \(\hat{W} \) of \(\hat{R} \) has the
unique max-min property with respect to \(1 : \hat{x} \rightarrow \mathbb{Z} \). (The graph of \(\hat{W} \) is obtained
from that of \(W \) by stretching along the horizontal axis.) Moreover, \(G \) is embedded
into \(\hat{G} \), for we have the retraction \(\rho \) with section \(\mu \):
\[
\frac{\hat{G}}{\mu} \quad \rho \mu = \text{id}_G,
\]
\[
\rho : x \mapsto x (x \in x - y), \quad y_1 \mapsto y, \quad y_i \mapsto 1 (y \in y, 1 < i \leq \theta(y)), \quad h \mapsto h (h \in H),
\]
\[
\mu : x \mapsto x (x \in x - y), \quad y \mapsto y_1y_2 \ldots y_{\theta(y)} (y \in y), \quad h \mapsto h (h \in H). \quad \square
\]

Lemma 2. Every \(M^1_H \)-group can be embedded into an \(S^1_H \)-group.

*Proof.** Let \(G = \langle x, H; \hat{R} \rangle \), where the \(x \)-skeleton \(W \) of \(R \) has the unique max-
min property with respect to the constant function \(1 : x \rightarrow \mathbb{Z} \). Suppose the
letters occurring at the unique maximum are \(a, b \), and those occurring at the unique
minimum are \(c, d \). We can assume that \(\{ a, b \} \cap \{ c, d \} \) is empty; otherwise, there is
nothing to prove. Let \(y = x - \{ a, b, c, d \} \), and introduce a new alphabet
\[\hat{x} = \{ a, b, c, d, e \} \cup \{ y_1, y_2 : y \in y \}. \]

Let \(\hat{R} \) be obtained from \(R \) as follows. For each \(y \in y \), replace all occurrences of \(y^{\pm 1} \)
by \((y_1y_2)^{\pm 1} \), and replace all occurrences of \(a^{\pm 1} \) (respectively, \(b^{\pm 1} \), \(c^{\pm 1} \), \(d^{\pm 1} \))
by \((ea)^{\pm 1} \) (respectively, \((be)^{\pm 1}, (ec)^{\pm 1}, (de)^{\pm 1} \)). Let \(\hat{G} = \langle \hat{x}, H; \hat{R} \rangle \), and let \(\hat{W} \) be the
word obtained from \(\hat{R} \) by deleting all terms from \(H \). The graph of \(\hat{W} \) under the
weight function \(1 : \hat{x} \rightarrow \mathbb{Z} \) is the graph of \(W \) magnified by a factor of 2, and \(e \) occurs
at the unique maximum and the unique minimum. Moreover, \(G \) is embedded into
\(\hat{G} \) for we have the retraction \(\rho \) with section \(\mu \):
\[
\frac{\hat{G}}{\mu} \quad \rho \mu = \text{id}_G,
\]
\[
\rho : z \mapsto z (z \in \{ a, b, c, d \}), \quad e \mapsto 1, \quad y_1 \mapsto y, \quad y_2 \mapsto 1 (y \in y), \quad h \mapsto h (h \in H),
\]
\[
\mu : a \mapsto ea, \quad b \mapsto be, \quad c \mapsto ec, \quad d \mapsto de, \quad y \mapsto y_1y_2 (y \in y), \quad h \mapsto h (h \in H). \quad \square
\]

Remark 1. Note that in both the above proofs, we have \(\mu \nu = \hat{\nu} \), where \(\nu : H \rightarrow G \),
\(\hat{\nu} : H \rightarrow \hat{G} \) are the natural homomorphims. Thus if \(\hat{\nu} \) is injective, then so is \(\nu \).

Remark 2. Note also from the proof of the above two lemmas, we get that every
\(M_H \)-group is a retract of an \(S_H \)-group.

Remark 3. The referee has brought to my attention the work of K. S. Brown [8],
which is concerned with whether a homomorphism \(\chi \) from a one-relator group
\(B = \langle x : W \rangle \) \(| |x| \geq 2, W \) as in (4) and cyclically reduced) onto \(Z \) has a finitely
generated kernel. Such a homomorphism is induced by a weight function \(\theta \) which
is admissible for \(W \). However, since \(\theta \) need not be strict, it is necessary to interpret
the max-min property more widely. Thus the unique maximum could be a plateau:
and \(\phi(j) < \phi(k) \) for all \(j \in \{ k, k + 1 \} \). Similarly, the unique minimum
could be a reverse plateau. Then according to Brown [8], as restated in Theorem 2.2
of [13], ker χ is finitely generated if and only if $|x| = 2$, and W has the unique maximin property in the above sense with respect to the corresponding weight function. In our work we could also allow non-strict weight functions. However, for the most part this can be avoided. For example, if the unique maximum is a plateau with $x_k \neq x_{k+2}$, then we could transform it to a genuine maximum by deleting x_{k+1} from x and replacing H by $H \ast \langle x_{k+1} \rangle$. However, if the unique maximum is a plateau with $x_k = x_{k+2}$, then some of our arguments need to be modified, which we leave as an exercise for the reader.

3. A CONSTRUCTION

By a 2-complex of groups we mean a connected graph of groups (in the sense of Serre [18]) with trivial edge groups, together with a set of closed paths which we call defining paths. (These are essentially the generalized complexes defined in §1 of [10], where more detail can be found. Note however, that in [10] a 2-cell $c(\alpha)$ consists of all cyclic permutations of $\alpha^{\pm 1}$ for each one of our defining paths α. We specifically do not add these extra paths. This makes no significant difference.)

Let P be as in (5), and let θ be an admissible weight function for W. There is then an induced epimorphism

$$
\psi : G \to \mathbb{Z} \quad x \mapsto \theta(x) \ (x \in x), \ h \mapsto 0 \ (h \in H).
$$

We can construct a 2-complex of groups

$$
\tilde{P} = \langle \Gamma, H_n \ (n \in \mathbb{Z}) ; \ (n, R) \ (n \in \mathbb{Z}) \rangle
$$

whose fundamental group is isomorphic to the kernel K of ψ. The underlying graph Γ has vertex set \mathbb{Z}, edges $(n, x^\varepsilon) \ (n \in \mathbb{Z}, x \in x, \varepsilon = \pm 1)$, and initial, terminal and inversion functions i, τ, ν given by $i(n, x^\varepsilon) = n, \tau(n, x^\varepsilon) = n + \varepsilon \theta(x), (n, x^\varepsilon)^{-1} = (n + \varepsilon \theta(x), x^{-\varepsilon})$. The vertex groups are copies $H_n = \{(n, h) : h \in H\}$ of H (with the obvious multiplication $(n, h)(n, h') = (n, hh')$). We extend i, τ, ν to the elements of the vertex groups by defining $i(n, h) = n = \tau(n, h), (n, h)^{-1} = (n, h^{-1})$, where h^{-1} is the inverse of h in H. We extend θ to $x^{\pm 1} \cup H$ by defining $\theta(x^{-1}) = -\theta(x)$ ($x \in x$), $\theta(h) = 0 \ (h \in H)$. Then for any sequence $\alpha = z_1 z_2 \ldots z_q$ with $z_i \in x^{\pm 1} \cup H$ and any vertex $n \in \Gamma$, we have a path (n, α) in the graph of groups starting at n, where

$$(n, \alpha) = (n, z_1)(n + \theta(z_1), z_2)(n + \theta(z_1) + \theta(z_2), z_3) \ldots
$$

$$(n + \theta(z_1) + \theta(z_2) + \ldots + \theta(z_{q-1}), z_q).
$$

In particular we have the (closed) paths (n, R).

There is an obvious action of \mathbb{Z} on the above graph of groups, with $i \in \mathbb{Z}$ acting on vertices by $i \cdot n = i + n \ (n \in \mathbb{Z})$, and on the edges and vertex groups by $i \cdot (n, z) = (i + n, z) \ (n \in \mathbb{Z}, z \in x^{\pm 1} \cup H)$. This action of course extends to paths. Thus $(i, \alpha) = i(0, \alpha)$. In particular, $(i, R) = i(0, R)$, so \mathbb{Z} acts on \tilde{P}.

If we regard P as a 2-complex of groups with a single vertex o, edges $x^\varepsilon \ (x \in x, \varepsilon = \pm 1)$, vertex group H, and defining path R, then we have a mapping of 2-complexes of groups

$$
\rho : \tilde{P} \to P,
$$

$$
n \mapsto o, \ (n, x^\varepsilon) \mapsto x^\varepsilon, \ (n, h) \mapsto h, \ (n, R) \mapsto R
$$

$(n \in \mathbb{Z}, x \in x, \varepsilon = \pm 1, h \in H)$. This induces a homomorphism $\rho_* : \pi_1(\tilde{P}, 0) \to \pi_1(P, o) = G$.
which is injective, and \(\text{Im} \rho_s = K \). This can easily be proved by adapting the standard arguments of covering space theory for ordinary 2-complexes (see for example [17], pp. 157-159) to this relative situation.

4. PROOF OF THEOREM 1

Since residual finiteness is closed under taking subgroups, it follows from Lemmas 1 and 2 and Remark 1 at the end of §2 that it suffices to prove Theorem 1 for \(S_H \)-groups.

We will make use of the following results:

(a) A free product \(F \ast B \), where \(F \) is a free group, is residually finite if and only if \(B \) is residually finite;

(b) An infinite cyclic extension of a finitely generated group \(L \) is residually finite if and only if \(L \) is residually finite.

(The first of these follows from results on p. 417 of [12]; the second is a special case of Theorem 7, p. 29 of [14].)

We can assume \(x \) is finite. For if not let \(x' \) be the set of letters occurring in \(R \). Then \(G \) is isomorphic to \(G' \ast \Psi \) where \(G' \cong (\langle x' \rangle, H; R) \), and \(\Psi \) is the free group on \(x - x' \). So by (a) above, it is enough to work with \(G' \).

Let \(G \) be defined by an \(S_H \) presentation as in (5), with \(e \in x \) occurring at both the unique maximum and the unique minimum of the graph of \(W \) under the weight function \(\theta = 1 \). We denote the maximum and minimum values of \(\phi_W \) by \(M, m \), respectively. Note that \(m \leq 0 \leq M \) and \(m < M \).

We first deal with the trivial case when \(M - m = 1 \). Then up to cyclic permutation and inversion, \(R = eha^{-1}h' \), where \(a \in x - \{e\} \), \(h, h' \in H \). Thus \(G = \Phi \ast H \), where \(\Phi \) is the free group on \(x - \{e\} \), so the theorem holds by (a) above.

Now suppose \(M - m > 1 \). Let \(f \in x - \{e\} \).

We have the epimorphism

\[
\psi : G \to Z \quad x \mapsto 1 \quad (x \in x), \quad h \mapsto 0 \quad (h \in H).
\]

Also, we have the homomorphism

\[
\eta : Z \to G \quad 1 \mapsto f.
\]

Then \(\psi \eta = \text{id}_Z \), so \(G \) is a semidirect product \(K \rtimes \mathbb{Z} \), where \(K = \ker \psi \), and with the action of \(n \in \mathbb{Z} \) on \(K \) being induced by conjugation by \(f^n \).

The fundamental group of \(\tilde{\mathcal{P}} \) (at the vertex 0), as in §3, is isomorphic to \(K \).

We will obtain a relative presentation for \(K \) by collapsing a maximal tree.

The edges \((n, f)^{\pm 1} \) form a maximal tree \(T \) in \(\Gamma \). Let \(R_n \) be the word on

\[
\{(i, x) : i \in \mathbb{Z}, x \in x, x \neq f\} \cup (\bigcup_{i \in \mathbb{Z}} H_i) \) obtained from \((n, R) \) by deleting all edges from \(T \) which occur in \((n, R) \) and replacing all terms \((i, x^{-1}) \) by \((i - 1, x)^{-1} \) \((i \in \mathbb{Z}, x \in x, x \neq f) \). Then

\[
\mathcal{Q} = \{(n, x) : (n \in \mathbb{Z}, x \in x, x \neq f) \ast_{n \in \mathbb{Z}} H_n ; R_n \quad (n \in \mathbb{Z})\}
\]

is a relative presentation for \(K \). Moreover, since the edges in \(T \) constitute an orbit under the action of \(\mathbb{Z} \) on our graph of groups, the action of \(\mathbb{Z} \) on \(K \) is given by the automorphism

\[
\mu : (n, x) \mapsto (n + 1, x) \quad (x \in x, x \neq f), \quad (n, h) \mapsto (n + 1, h) \quad (h \in H)
\]

\((n \in \mathbb{Z})\).
Now consider the HNN-extension \overline{K} of K given by the relative presentation

$$\overline{Q} = \langle (n, x) \ (n \in \mathbb{Z}, x \in \mathbf{x}, x \neq f), s; R_n \ (n \in \mathbb{Z}) \rangle$$

$$s(n, x)s^{-1} = (n + 1, x) \ (n \in \mathbb{Z}, x \in \mathbf{x}, x \neq e, f),$$

$$s(n, h)s^{-1} = (n + 1, h) \ (n \in \mathbb{Z}, h \in H)).$$

The automorphism μ of K can be extended to an automorphism $\overline{\mu}$ of \overline{K} by defining $\overline{\mu}(s) = s$. Then $G = \overline{K} \rtimes \mu \mathbb{Z}$ can be embedded into $\overline{G} = \overline{K} \rtimes \overline{\mu} \mathbb{Z}$.

By our assumption, up to cyclic permutation and inversion, $(0, R)$ will have the form

$$(M - 1, e)(M, h)(M - 1, a)^{-1}\gamma_0((m, b)^{-1}(m, h')(m, e))^\varepsilon\delta_0,$$

where $h, h' \in H, \varepsilon = \pm 1, a, b \in \mathbf{x} - \{e\}$, and each term (i, z) occurring in the paths γ_0, δ_0 is such that both its initial and terminal vertices lie in the range $m + 1, m + 2, \ldots, M - 1$. Then

$$R_0 = (M - 1, e)\alpha_0(m, e)^\varepsilon\beta_0,$$

where α_0, β_0 do not contain any occurrence of $(i, e)^{\pm 1}$ with $i \leq m$ or $i \geq M - 1$. More generally, for $n \in \mathbb{Z}$

$$R_n = (n + M - 1, e)\alpha_n(n + m, e)^\varepsilon\beta_n,$$

where α_n, β_n do not contain any occurrence of $(i, e)^{\pm 1}$ with $i \leq n + m$ or $i \geq n + M - 1$.

Let F_0 be the free group on

$$(\mathbf{x} - \{e, f\}) \cup \{s, (m + 1, e), (m + 2, e), \ldots, (M - 1, e)\}.$$

Then there is a homomorphism

$$\overline{K} \to H \ast F_0$$

defined as follows:

$$s \mapsto s,$$

$$(n, x) \mapsto s^nxs^{-n} \ (x \in \mathbf{x}, x \neq e, f, n \in \mathbb{Z}),$$

$$(n, h) \mapsto s^nhs^{-n} \ (h \in H, n \in \mathbb{Z}),$$

$$(i, e) \mapsto (i, e) \ (m + 1 \leq i \leq M - 1),$$

and inductively, for $k = 0, 1, 2, \ldots$,

$$(k + M, e) \mapsto \beta_{k+1}^{-1}(k + 1 + m, e)^{-\varepsilon}\alpha_{k+1}^{-1},$$

$$(-k + m, e) \mapsto (\beta_{-k}(-k + M - 1, e)\alpha_{-k})^{-\varepsilon}.$$

This homomorphism is actually an isomorphism. The inverse is defined by

$$x \mapsto (0, x) \ (x \in \mathbf{x}, x \neq e, f),$$

$$h \mapsto (0, h) \ (h \in H),$$

$$(i, e) \mapsto (i, e) \ m + 1 \leq i \leq M - 1,$$

$$s \mapsto s.$$

Thus \overline{G} is an infinite cyclic extension of the group $F_0 \ast H$.

Remark 4. Note that by sending s to the generator $1 \in \mathbb{Z} \subseteq G = \overline{K} \rtimes \mu \mathbb{Z}$, we obtain a retraction of \overline{G} onto G (with section induced by the inclusion of K into \overline{K}).

We can now complete the proof.
Clearly, the natural homomorphism from \(H \) into \(\overline{G} \) is injective (and is thus injective into \(G \)). Hence if \(H \) is not residually finite, then neither is \(G \). It remains to show that if \(H \) is residually finite, then so is \(\overline{G} \) (and thus \(G \)).

Case 1. If \(H \) is finitely generated, then the result holds straightaway by (a) and (b) above.

Case 2. Suppose that \(H \) is not finitely generated. For any homomorphism \(\theta \) from \(H \) to a group \(H_\theta \) we obtain an induced homomorphism from \(\overline{G} = (F_0 \ast H) \rtimes \mathbb{T} \mathbb{Z} \) to \(\overline{G}_\theta = (F_0 \ast H_\theta) \rtimes \mathbb{T} \mathbb{Z} \) which acts as \(\theta \) on \(H \) and acts as the identity on \(F_0 \) and \(\mathbb{T} \mathbb{Z} \). Let \(g = (w_0 h_1 \ldots h_q w_q)n \) be a non-trivial element of \(\overline{G} \), where \(q \geq 0, h_1 \ldots h_q \in H - \{1\}, w_1, \ldots, w_q-1 \in F_0 - \{1\}, w_0, w_q \in F_0, n \in \mathbb{Z} \), and if \(q \) is 0, then either \(n \neq 0 \) or \(w_0 \) is non-trivial. Since residually finite groups are fully residually finite, there is a homomorphism \(\tau \) from \(H \) onto a finite group \(H_\tau \) such that \(\tau(h_i) \neq 1 \) \((i = 1, \ldots, q)\). So the image of \(g \) in \(\overline{G}_\tau = (F_0 \ast H_\tau) \rtimes \mathbb{T} \mathbb{Z} \) is non-trivial, and then Case 1 applies.

5. Proof of Theorem 5

Lemma 3. Let \(C \) be a group which is a retract of a group \(B \). If \(B \) has solvable conjugacy (or power conjugacy) problem, then so does \(C \).

Proof. By assumption we have maps \(\xymatrix{ B \ar@<1ex>[rr]^\rho \ar@<-1ex>[rr]_\mu & & C \} \), \(\rho \mu = \text{id}_C \). Clearly if \(c, d \in C \) are conjugate (respectively, power conjugate) in \(C \), then \(\mu(c), \mu(d) \) are conjugate (respectively, power conjugate) in \(B \). Conversely if there exists \(b \in B \) such that \(b \mu(c)b^{-1} = \mu(d) \) (respectively, \(b \mu(c)^{\epsilon}b^{-1} = \mu(d)^{\epsilon} \)), then \(\rho(b)c \rho(b)^{-1} = d \) (respectively, \(\rho(b)c^{\epsilon} \rho(b)^{-1} = d^{\epsilon} \)). Thus the result follows. \(\square \)

Now it is shown in [7] that infinite cyclic extensions of finitely generated free groups have a solvable conjugacy, and power conjugacy; problem. By Remarks 2 and 4, every \(\mathcal{M}_G \)-group is a retract of such a group.

6. Proof of Theorem 6

We will assume familiarity with the terminology in §3 of [6].

As in Lemma 1, we can assume that \(\theta(x) > 0 \) for all \(x \). We can extend \(\theta \) to any word \(U = y_1^{\epsilon_1} y_2^{\epsilon_2} \ldots y_s^{\epsilon_s} \) \((s > 0, \epsilon_i \in \mathbb{X}, \epsilon_i = \pm 1, 1 \leq i \leq s)\) by \(\theta(U) = \sum_{i=0}^{s} \epsilon_i \theta(y_i) \).

Let \(\mathbb{P} \) be a based connected spherical picture (with at least one disc) over \(\mathcal{P} \), with global basepoint \(O \), and basepoint \(O_\Delta \) for each disc \(\Delta \). (Note that since \(R \) is not periodic, there will be just one basepoint for each disc.) We will also choose, for each region \(R \), a point \(O_R \) in the interior of \(R \).

We can relabel \(\mathbb{P} \) to obtain a picture \(\overline{\mathbb{P}} \) over \(\overline{\mathcal{P}} \) as follows:

(a) For each region \(R \), choose a tranverse path \(\gamma_R \) from \(O \) to \(O_R \), and let \(U_R \) (a word on \(\mathbb{X} \)) be the label on the path \(\gamma_R \). Then the potential \(q(R) \) of \(R \) is \(\theta(U_R) \).

(b) For an arc tranversely labelled \(x \in \mathbb{X} \) say, relabel it by \((q(R), x)\) where \(R \) is the region where the tranverse arrow on the arc begins.

(c) For a corner of a disc, with label \(h \in H \) say, relabel the corner by \((q, h)\), where \(q \) is the potential of the region in which the corner occurs.

For a disc \(\Delta \), let \(q_\Delta \) be the potential of the region containing \(O_\Delta \). Then in the relabelled picture, \(\Delta \) will be labelled by the path \((q_\Delta, R)\).
Let Θ be a minimal disc, that is, a disc such that $q_{\Theta} \leq q_{\Delta}$ for all discs Δ. Let m be the minimum value of ϕ_{Θ}^θ, and let e be one of the two distinct letters occurring at the unique minimum. Then in the path $(0,R)$ there is a unique edge labelled (m,e). Now Θ is labelled by (q_{Θ},R) in \tilde{P}, and thus there is a unique edge labelled $(m+q_{\Theta},e)$ incident with Θ. This arc must intersect another disc Θ', which must also be labelled by (q_{Θ},R), but with the opposite orientation. Thus we obtain a dipole in \tilde{P} where Θ, Θ' are the discs of the dipole. Reverting to P, this dipole in \tilde{P} gives rise to a dipole in P.

Acknowledgement

I thank the referee for his/her helpful comments.

References

[1] R. B. J. T. Allenby and C. Y. Tang, Residual finiteness of certain 1-relator groups: extensions of results of Gilbert Baumslag, *Math. Proc. Camb. Phil. Soc.* 97 (1985), 225-230. MR0771817 (86k:20029)

[2] G. Baumslag, Residually finite one-relator groups, *Bull. Amer. Math. Soc.* 73 (1967), 618-620. MR0212078 (35:2953)

[3] G. Baumslag, Free subgroups of certain one-relator groups defined by positive words, *Math. Proc. Camb. Phil. Soc.* 93 (1985), 247-251. MR691993 (84i:20030)

[4] G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups, *Bull. Amer. Math. Soc.* 68 (1962), 199-201. MR0142635 (26:204)

[5] G. Baumslag, A. Miasnikov and V. Shpilrain, Open problems in combinatorial and geometric group theory, http://zebra.science.cccy.columbia.edu/web/nygtc/problems/

[6] W. A. Bogley and S. J. Pride, Aspherical relative presentations, *Proc. Edin. Math. Soc.* 35 (1992), 1-39. MR1150949 (93d:57004)

[7] O. Bogopolski, A. Martino, O. Maslakova and E. Ventura, The conjugacy problem is solvable for free-by-cyclic groups, *Bull. London Math. Soc.* 38 (2006), 787-794. MR2268363

[8] K. S. Brown, Trees, valuations, and the Bieri-Neumann-Strebel invariant, *Invent. Math.* 90 (1987), 479-504. MR914847 (89e:20060)

[9] V. Egorov, The residual finiteness of certain one-relator groups, *Algebraic Systems, Ivanov.* Gos. Univ., Ivanovo (1981), 100-121. MR745301 (85i:20035)

[10] J. Howie and S. J. Pride, A spelling theorem for staggered generalized 2-complexes, with applications, *Invent. Math.* 76 (1984), 55-74. MR739624 (85k:20103)

[11] Kourovka Notebook 15 (2002).

[12] W. Magnus, A. Karrass and D. Solitar, *Combinatorial Group Theory* (Second Edition), Dover, New York, 1976.

[13] J. Meier, Geometric invariants for Artin groups, *Proc. London Math. Soc.* (3) 74 (1997), 151-173. MR1416729 (97h:20049)

[14] C. F. Miller III, *On group-theoretic decision problems and their classification*, Annals of Mathematics Studies 68, Princeton University Press, 1971.

[15] S. Meskin, Nonresidually finite one-relator groups, *Trans. Amer. Math. Soc.* 164 (1972), 105-114. MR0258559 (44:2807)

[16] B. B. Newman, Some results on one-relator groups, *Bull. Amer. Math. Soc.* 74 (1968), 568-571. MR0222152 (36:5204)

[17] S. J. Pride, Star-complexes, and the dependence problems for hyperbolic complexes, *Glasgow Math. J.* 30 (1988), 155-170. MR942986 (89k:20049)

[18] J.-P. Serre, *Trees*, Springer-Verlag, Berlin Heidelberg New York, 1980.

[19] D. Wise, The residual finiteness of positive one-relator groups, *Comment. Math. Helv.* 76 (2001), 314-338. MR1839349 (2002d:20043)

[20] D. Wise, Residual finiteness of quasi-positive one-relator groups, *J. London Math. Soc.* (2) 66 (2002), 334-350. MR1920406 (2003f:20043)

Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, Scotland, United Kingdom

E-mail address: sjp@maths.gla.ac.uk