Entropic phase transitions and accompanying anomalous thermodynamics of matter

I L Iosilevskiy

Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia

E-mail: iosilevskiy@gmail.com

Abstract. Thermodynamic consequences of subdivision for all first-order phase transitions (PT) into enthalpy- and entropy-driven ones (H-PT and S-PT), proposed previously [arXiv:1403.8053], are under discussions. Key-value for proposed discrimination is main benefit (decreasing) in enthalpy or (nega)entropy in spontaneous phase decomposition, i.e. the sign of latent heat of PT and consequent slope of its $P(T)$-dependence. The main driving mechanism for many isostructural S-PT is the decay (delocalization) of some kind of bound complexes, e.g. atoms, molecules etc. Thermodynamic features of H-PT and S-PT differ significantly. Entropic PT are always the part of more general thermodynamic anomaly—domain where great number of usually positive second cross derivatives (e.g. Grüneisen parameter, thermal pressure coefficient etc.) became negative simultaneously. This domain is restricted (in the case of isostructural S-PT) by remarkable bound, where all mentioned second derivatives are equal to zero. Isostructural S-PT has more complicated topology of stable, metastable and unstable states and their boundaries—binodals and spinodals in comparison with ordinary enthalpic PTs. Two new thermodynamic objects accompany isostructural S-PT: (i) appearance of third (additional) region of metastable states with positive compressibility, isolated from the regions of stable states; (ii) appearance of new additional spinodal, topped with a new singular point, separating metastable and unstable states. These additional spinodal and singular point obey to relation $(\partial P/\partial V)_T = \infty$. All thermodynamic anomalies of entropic PTs correspond to conclusive and transparent geometrical feature of such PTs: multilayered structure of thermodynamic surfaces for temperature, entropy and internal energy as pressure–density functions $U(P, V)$, $S(P, V)$ and $T(P, V)$.

1. Introduction

Phase transition (PT) is universal phenomena in many terrestrial and astrophysical applications. There are very many variants of hypothetical PTs in ultra-high energy and density matter in interiors of neutron stars (so-called hybrid or quark-hadron stars) [1], in core-collapse supernovae explosions and in products of relativistic ions collisions in modern super-colliders (LHC, RHIC, FAIR, NICA etc.). Two hypothetical 1st-order phase transitions are the most widely discussed in study of high energy density matter ($\rho \sim 10^{14}$ g/cc): (i) – gas-liquid-like phase transition (GLPT) in ultra-dense nuclear matter: i.e. in equilibrium (Coulombless) ensemble of protons, neutrons and their bound clusters $\{p, n, N(A, Z)\}$ at $T \leq 20$ MeV, and (ii) – quark-hadron (deconfinement) phase transition (QHPT) at $T \leq 200$ MeV. (see e.g. [2, 3]). Both, GLPT and QHPT, when being represented in widely accepted $T-\mu_B$ plane (μ_B – baryonic chemical potential) are often considered as similar, i.e. amenable to one-to-one correspondence with...
possible transformation into each other by simple scaling (see e.g. figures 1 and 12 in [4]). The main statement of present paper is that this impression is illusive and that GLPT and QHPT belong to different classes: GLPT is typical enthalpic (VdW-like) PT, while “deconfinement-driven” QHPT is typical entropic PT (see [31] and [32]) like hypothetical ionization- and dissociation-driven phase transitions in shock-compressed dense hydrogen, nitrogen etc. in megabar pressure range (see e.g. [5]). It should be noted that the term enthalpic PT is not accepted and not used presently. As for the term “entropy-driven PT, it is used already in application to rather delicate structural PTs (e.g. [39–41] etc). In present paper the two terms, entropic and enthalpic PTs, are offered as general and universal ones for wide number of applications (e.g. [5]). Fundamental difference of entropic and enthalpic PTs, defined in this way, are discussed and illustrated below.

2. Comparison of GLPT and QHPT in density–temperature plane
GLPT and QHPT look as similar in T–μ_B plane (figures 1 and 2). It should be noted that unfortunately this type of representation is not revealing for PT analysis. Fundamental difference between GLPT and QHPT could be more evidently demonstrated in other variants of phase diagram widely used in electromagnetic plasmas community (see e.g. [5]). First one is density–temperature (T–ρ) diagram. Two these phase transitions (GLPT and QHPT) are sometimes considered in T–ρ plane as quantitatively, not qualitatively different in their schematic comparison (see e.g. fig. 2 in [7] and slide 2 in [6]). Numerical calculations of phase boundaries for GLPT and QHPT (see fig. 3 and 14 in [4]) demonstrate significant difference in structure of these two boundaries (fig. 3 below [8]).

It should be stressed [10] that remarkably similar structure of boundaries for two phase transitions are well known in electromagnetic plasmas. For example it is gas-liquid (left) and ionization-driven (right) phase transitions in dense hydrogen (figure 4) (see Figure in [9]).

3. Entropic vs. enthalpic phase transitions
It is almost evident that two gas–liquid-like PTs, from one side, and two “delocalization-driven” PTs (QHPT and PPT), from other side, are similar to each other. This similarity in forms of phase boundaries manifests identity in key physical processes, which rule by phase
transitions in both systems in spite of great difference in their densities and temperatures. When one compress isothermally “vapor” phase (subscript V) in case of GLPT, he reaches saturation conditions. At this moment the system “jumps” into “liquid” phase (subscript L) with decreasing of enthalpy and increasing of nega-entropy in accordance with equality rule for Gibbs free energy in 1st-order PT:

\[G_V = H_V - TS_V = H_L - TS_L = G_L, \]

\[\Delta G = 0 \iff \Delta H = H_V - H_L = T(S_V - S_L) \geq 0. \]

(1)

(2)

Opposite order of enthalpy and entropy change should be stressed for both “delocalization-driven” phase transitions (QHPT and PPT) in figures 1 and 2. The both systems, molecular hydrogen (M) and hadronic mixture (H), are ensembles of bound clusters, composed from “elementary” particles: protons and electrons in the case of hydrogen and u- and d-quarks in the case of QHPT. The both systems reaches correspondingly “pressure-deconfinement” or “pressure-ionization” conditions under iso–T compression and then jump into deconfinement (Q) or plasma (P) phases correspondingly with increasing enthalpy and decreasing nega-entropy (3), which is just opposite to that in enthalpic PT (2):

\[\Delta G_{PPT} = 0 \iff \Delta H = H_P - H_M = T(S_P - S_M) \geq 0, \]

\[\Delta G_{QHPT} = 0 \iff \Delta H = H_Q - H_H = T(S_Q - S_H) \geq 0. \]

(3)

(3*)
Here indexes “M” vs. “P” and “H” vs. “Q” denote “bound” and “non-bound” phases: molecular vs. plasma, and hadron vs. quark phases correspondingly. It is well-known that quark-gluon plasma (QGP) has “much greater number for degrees of freedom” than hadronic phase (see e.g. [2]). It just means much higher entropy of QGP vs. hadronic phase in thermodynamic terms. This opposite order of enthalpy and entropy changes in two discussed above phase transformation (GLPT and QHPT) is main reason for phase transition classification and terminology accepted and proposed in present paper: namely enthalpic (GLPT) vs. entropic (QHPT and PPT) phase transitions.

It is evident that besides well-known ionization-driven (plasma) PT, there are many other candidates for being members of entropy transitions class, namely those PTs, where delocalization of bound complexes is just the ruling mechanism for those phase transformations. It is e.g. well-known dissociation-driven PT in dense hydrogen, nitrogen and other molecular gases (e.g. [11,12] etc.). It is e.g. more exotic polimerization- and depolimerization-driven PTs in dense nitrogen and possibly other molecular gases (e.g. [14–17, 38] etc.). In all these cases basic feature of entropic (3) and enthalpic (2) PTs (e.g. [13]) leads immediately to opposite sign of $P(T)$–dependence at phase coexistence curve in accordance with Clausius – Clapeiron relation. Hence the positive or negative slope of pressure-temperature phase boundary – $P(T)_{\text{binodal}}$ is the key feature for delimiting of both types of PTs, i.e. enthalpic vs. entropic:

$$\Delta H = T\Delta S > 0 \Rightarrow \left(\frac{dP}{dT}\right)_{\text{binodal}} > 0 \quad (\text{enthalpic PT}),$$

$$\Delta H = T\Delta S < 0 \Rightarrow \left(\frac{dP}{dT}\right)_{\text{binodal}} < 0 \quad (\text{entropic PT}).$$

3.1. Comparison of entroic vs. enthalpic phase transitions in pressure–temperature plane

Opposite behavior of both types of PT is illustrated in figs. 5 and 6 above for $P-T$ diagram with gas–liquid and “plasma” phase transitions in xenon and hydrogen (see e.g. chapter 8.
Figure 6. $P-T$ phase diagram of gas liquid ($T_{r1}-C_1$) vs hypothetical plasma phase transition (part $T_{r2}-C_2$) in xenon with additional triple (T_{r2}, T_{r3}) and critical (C_2) points notified. Lines of constant ionization degree of xenon (α) are notified also. (Figure from [30]).

in [28]). Exponentially increasing (VdW-like) form of saturation $P(T)$ curve for ordinary GLPT in hydrogen, xenon and many other substances is well-known. Opposite decreasing $P(T)$ dependence for typical “plasma” phase transitions in hydrogen, xenon etc. [9, 30] (see fig. 6) as well as for dissociation-driven phase transitions in hydrogen [11, 12] and polymerization-driven phase transitions in nitrogen (see e.g. [14–17, 38]) is not recognized properly as a general phenomena [31,32]. As for enthalpic and entropic phase transition in ultra-dense nuclear matter, increasing $P-T$ dependence of GLPT in nuclear matter was calculated many times, e.g. [4,19,20] etc. (see e.g. Figure 5 in [31]). In contrast to that the $P-T$ phase diagram of QHPT (see Figure 6 in [31]) is known, but not widely known ([6,7,18]). It was calculated recently in [4]. Both phase transitions, GLPT and QHPT, have opposite $P(T)$ behavior in agreement with (4) and (5).

3.2. Enthalpic vs. entropic phase transitions in pressure–density (pressure–specific volume) plane
The most striking difference between entropic vs. enthalpic types of phase transitions could be demonstrated in comparison of their $P-V$ phase diagrams. It should be noted that just this phase diagram is the most important for analysis of many dynamic processes in dense plasma: e.g. shock or isentropic compression as well as adiabatic expansion, including anomalous shock rarefaction waves. $P-V$ phase diagram for VdW-like GLPT in ordinary substances is well known. GLPT in symmetric Coulombless nuclear matter has the same structure (see e.g. [19,20] etc.). In contrast to that the $P-V$ phase diagram for phase transitions, which are claimed as entropic PTs (ionization-, dissociation-, polymerization- and depolymerization-driven PTs and more general – “delocalization-driven” PTs [31]) were not explored properly yet. In particular, the $P-V$ phase diagram for Quark-Hadron phase transition (QHPT) was not explored up to date. It is just in
process on the base of QHPT calculations in [4].

Good example of typical $P-V$ phase diagram for entropic ionization-driven (“plasma”) phase transition (PPT) in xenon is exposed at fig. 7 accepted from [21] (see also fig. III.6.11a in [5]). Even more clearly anomalous thermodynamics in the vicinity of two-phase region for entropic PTs is illustrated at fig. 8 (below) for example of dissociation-driven phase transition in simplified EOS (SAHA-model) for shock-compressed deuterium (see also fig. 4 in [21]).

4. Anomalous thermodynamics in the vicinity of two-phase region of entropic PTs
Several important features of abnormal thermodynamic behavior in two-phase region of this PPT and in its close vicinity are demonstrated at the fig. 7 from [21] and fig. 8 from [22]:

(i) – more than one isotherms come through the critical point of entropic PTs (see e.g. fig. 8);
(ii) – several isotherms below and above critical isotherm cross each other not only in two-phase region (it is obligatory for entropic PT!) but in its close one-phase vicinity;
(iii) – many low-T isotherms $P(V)_T$ and $V(P)_T$ lay above, at least partially, of high-T isotherms (i.e. at higher P and higher V, correspondingly).

Comments: It should be stressed that features (ii) and (iii) means abnormal negative sign of thermal pressure and thermal expansion coefficients in discussed area around and within the two-phase region of entropic PT. It means that $(\partial P/\partial T)_V < 0$ and $(\partial V/\partial T)_P < 0$. We assume
that the violation of (ii) and (iii) occurs in isolated $P-V$ area, which is located between the regions with normal thermodynamics {i.e. with positive sign of $(\partial P/\partial T)_V$ and $(\partial V/\partial T)_P$}.

4.1. Abnormal negativity of cross second derivatives
Negativity of two second derivatives $(\partial P/\partial T)_V$ and $(\partial V/\partial T)_P$ is never isolated event. In frames of straightforward thermodynamic technique it proves to be equivalent to simultaneous negativity for infinite number of other accompanying second derivatives for thermodynamic potentials. In particular, negativity of $(\partial P/\partial T)_V$ and $(\partial V/\partial T)_P$ combined with the positivity of heat capacities C_V and C_P (as obligatory conditions of thermodynamic stability) leads to the negativity for following six cross derivatives: (here U, S and H are internal energy, entropy and enthalpy):

$$
\left(\frac{\partial P}{\partial T}\right)_V \leftrightarrow \left(\frac{\partial P}{\partial S}\right)_V \leftrightarrow \left(\frac{\partial P}{\partial U}\right)_V, \quad (6)
$$

$$
\uparrow \quad \uparrow \quad \uparrow
$$

$$
\left(\frac{\partial V}{\partial T}\right)_P \leftrightarrow \left(\frac{\partial V}{\partial S}\right)_P \leftrightarrow \left(\frac{\partial V}{\partial H}\right)_P. \quad (7)
$$

(i) It should be stressed and clarified that all six cross derivatives in (6) and (7) are positive or negative or equal to zero simultaneously.

(ii) Four cross derivatives in (6) and (7) are equivalent to three conventional thermodynamic coefficients:

(a) – thermodynamic Gruneizen parameter, $Gr \equiv V(\partial P/\partial U)_V$,

(b) – thermal expansion coefficient, $\alpha_T \equiv V^{-1}(\partial V/\partial T)_P$,

(c) – isochoric thermal pressure coefficient, $\alpha_P \equiv P^{-1}(\partial P/\partial T)_V$,

Comments: Simultaneous positivity or negativity of two cross derivatives: Gruneizen parameter (Gr) and thermal expansion coefficient (α_T) is well known and, for example, was used for explanation of abnormal properties of shock compression of nitrogen (see e.g. [15,16,38]) and anomalies in shock compression of silica (see [33] and discussion in [34]).
(iii) Using Maxwell relations one obtains one more group (“cluster”) of cross derivatives:

\[
\frac{\partial S}{\partial V} \bigg|_T \leftrightarrow -\frac{\partial S}{\partial P} \bigg|_T,
\]

\[
\downarrow \quad \uparrow
\]

\[
\frac{\partial T}{\partial P} \bigg|_S \leftrightarrow -\frac{\partial T}{\partial V} \bigg|_S.
\]

(8)

(9)

(iv) Using standard relation: \(\frac{\partial Y}{\partial X} \bigg|_Z = -\frac{\partial Z}{\partial X} \bigg|_Y \frac{\partial Y}{\partial Z} \bigg|_X \), one can re-derive the sign conjugation conditions (6), (7), (8) and (9):

Comments. One should be careful with the sign of two above written derivatives within the two-phase region of (congruent) entropic phase transition, first one in (7) and last one in (8): i.e. \(\frac{\partial V}{\partial T} \bigg|_P \) and \(-\frac{\partial S}{\partial P} \bigg|_T \). Both the derivatives tend to infinity (!) within the two-phase region, where isotherms and isobars coincide. But the “sign” of this infinity is conjugated with the sign of all eight other finite derivatives in (6), (7), (8) and (9). It means that the both derivatives, \(\frac{\partial V}{\partial T} \bigg|_P \) and \(-\frac{\partial S}{\partial P} \bigg|_T \), tend to minus infinity in the case of negative (anomalous) sign of all other finite derivatives in (6), (7), (8) and (9):

\[
\frac{\partial V}{\partial T} \bigg|_P \rightarrow -\infty \Leftrightarrow -\frac{\partial S}{\partial P} \bigg|_T \rightarrow -\infty \quad \text{(in two-phase region).}
\]

(10)

Comments: Negativity of all cross derivatives notified above leads to very important consequences in mutual order and behavior of all thermodynamic isolines in \(P-V \) plane, i.e. isotherms, isentropes and shock adiabats first of all. The main of such sequences is mentioned above abnormal crossing of isotherms in some region, which is direct sequence of negativity of \(\frac{\partial P}{\partial T} \bigg|_V \). The same is true for crossing of isentropes, which follows from negativity of \(\frac{\partial P}{\partial S} \bigg|_V \). It is known that anomalous crossing of Hugoniots adiabats follows from negativity of Gruneizen coefficient (see e.g. [33]). So-called “shock cooling” of nitrogen in reflected shocks [37] could also be explained with assumption of negative Gruneizen coefficient (see e.g. [14–16]). Thus abnormal negativity of whole group of cross derivatives (6), (7), (8) and (9) is of primary importance for the hydrodynamics of adiabatic flows, e.g. shock compression, isentropic expansion, adiabatic expansion into vacuum, spinodal decomposition etc. All these problems should be discussed separately [23, 24] (see also [25]).

5. Anomalous behavior of iso-lines in \(P-V \) plane and new additional region of metastable state within two-phase region of entropic PT

One meets anomalous behavior of isotherms within and near the two-phase region of discussed entropic phase transition at sufficiently low temperature, namely:

(i) – appearance of return-point behavior of metastable part of isotherm in upper spinodal region at low-density branch of isotherm (see e.g. upper end-point at \(T = 1500 \) K at fig. 8);

(ii) – one more third metastable section with positive compressibility (i.e. \(\frac{\partial P}{\partial V} \bigg|_T \neq 0 \)) appears within two-phase region of entropic transition in contrast to conventional structure of metastable and unstable parts in enthalpic Van-der-Waals-like (gas-liquid) phase transition. This new metastable section lays between two unstable parts of low enough subcritical isotherms within spinodal region of isotherm (see e.g. \(T = 1500 \) K at fig. 8). Features (5.i) and (5.ii) are in contrast to standard behavior of gas-liquid PT, where one unstable part of isotherm divides two metastable parts in ordinary VdW-loop;

(iii) – one more new spinodal (i.e. boundary between metastable and unstable parts within two-phase region) appears, which bounds this third metastable section. It is the locus of points obeying condition (12), which is opposite to well-known condition of standard spinodal for conventional (enthalpic) gas-liquid phase transition (11):

Conventional spinodal (enthalpic PT) \((\partial P/\partial V)\bigg|_T = 0 \),

\[
(11)
\]

New additional spinodal (entropic PT) \((\partial P/\partial V)\bigg|_T = \infty \).

\[
(12)
\]
(iv) – in addition to conventional critical point (i.e. the point, where \((\partial P/\partial V)_T = 0\) and \((\partial^2 P/\partial V^2)_T = 0\)), which is “upper” in \(T-V\) plane, and is “lower” in \(P-V\) plane, one more new singular point (notation below – NSP) appears within two-phase region of entropic PT at low enough subcritical isotherm. Isothermal compressibility is equal to zero in this NSP (i.e. \((\partial P/\partial V)_T = \infty\)) in contrast to the ordinary critical point, where isothermal compressibility is infinite, i.e. \((\partial V/\partial P)_T = \infty\)! This new singular point obeys to (12) and closes discussed third metastable section of entropic PT from above in \(T-V\) plane (upper end-point) and from below in \(P-V\) plane (lower end-point). More detailed discussions and illustrations of all mentioned above new objects are in progress [25].

Next anomalous features, exposed at fig. 7 and 8, should be emphasized in addition to those mentioned above:

(v) – spinodal cupola, which is always located inside binodal cupola in the case of enthalpic VdW-like PT, now located partially outside of binodal area in the case of entropic PT (Figure 8)

(vi) – spinodal point of rare branch of isotherm (it resembles “overcooled vapor” in VdW phase transition) may have higher density than spinodal point of dense branch of isotherm (which resembles “overheated liquid”) at low enough subcritical temperature (Figure 8).

6. “Zero-Boundary” – the border for the abnormal thermodynamics region

The region of discussed above abnormal thermodynamics (AT-region) always accompanies entropic phase transitions. At the same time it could be isolated region without any 1st-order phase transition-like discontinuity. Two variants of the boundary of such AT-region should be distinguished.

(i) First one: AT-region coincides with two-phase region of entropic PT so that AT-region and PT-region have common boundary. This is just the case for so-called non-isostuctural phase transitions, i.e. for transitions between phases with principally different structures, where coexisting phases could not be transformed continuously one into another. Well-known examples of non-isostuctural PTs are crystal–fluid PT (melting) and polymorphic PTs between phases with different crystalline lattices (e.g. bcc-fcc etc.). Great number of examples for such PTs with (at least partially) decreasing \(P(T)\)-dependence are well known (see e.g. Fig. 16 (generalized phase diagram) in [35]).

(ii) Second one: – the boundary of AT-region (at least partially) located in the region of regular thermodynamics with continuous transition from area with normal thermodynamics (positive sign of all cross derivatives (6), (7), (8) and (9)) to area with abnormal thermodynamics (negative sign of these derivatives). It is so in particular for the case of isolated AT-region (without phase transition at all) and in the case of isostuctural PT, like all fluid-fluid phase transitions, where critical point (or even several critical points!) must exist. New thermodynamic object appears in this latter case – the locus of points where all cross derivatives (6), (7), (8) and (9) are equal to zero simultaneously. (Having no widely accepted title for this object we would use below the notation “Zero-Boundary” – ZB). Remarkable features in behavior of thermodynamic iso-lines upon and in the vicinity of ZB, as well as main consequences for zero-value of cross derivatives (6), (7), (8), (9) for main hydrodynamic properties of adiabatic processes, e.g. shock and isentropic compression and expansion etc., will be later discussed separately.

(iii) The most evident thermodynamic properties upon at any point of Zero-Boundary are following:

(a) Isobaric and isochoric heat capacities are equal to each other:

\[C_p \equiv (\partial H/\partial T)_P = (\partial U/\partial T)_V \equiv C_V. \]

\[(13) \]
(b) Isothermal and isentropic speeds of sound are equal to each other:

\[a_S \equiv (\partial P/\partial \rho)^{1/2}_S = (\partial P/\partial \rho)^{1/2}_T \equiv a_T \]

(14)

(c) The slopes of four iso-lines: e.g. iso-\(T\), iso-\(S\), iso-\(U\), iso-\(H\) (temperature, entropy, internal energy and enthalpy) and slope of shock adiabat (Hugoniot) in \(P-V\)-plane are equal to each other at Zero-Line:

\[(\partial P/\partial V)_T = (\partial P/\partial V)_S = (\partial P/\partial V)_U = (\partial P/\partial V)_H = (\partial P/\partial V)_{Hug}. \]

(15)

7. Multilayered structure of thermodynamic surfaces \(X(P,V)\) in the region of abnormal thermodynamics

All mentioned above anomalies have clear geometric interpretation: – temperature, entropy and internal energy surfaces as a functions of pressure and density, e.g. \(T(P,V)\), \(S(P,V)\) and \(U(P,V)\), have multi-layered structure over the region of anomalous thermodynamics in \(P-V\) plane in the case of all entropic phase transitions. It is valid in particular, for all discussed above “delocalization-driven” phase transitions like ionization-, dissociation-, depolymerization-driven PTs, as well as for quark-hadron transition (QHPT) etc. Again, one should distinguish two variant of such multi-layered structure of \(T\), \(S\) and \(U\) over \(P-V\) plane: \((i)\) – when AT-region coincides with two-phase region of a phase transition, so that both have the same common boundary, which is the locus of break in \(T, S, U\)-surfaces; and \((ii)\) – when AT-region restricted (at least partially) by the separate boundary (outside of the two-phase boundary itself) with zero value for all cross derivatives mentioned in eq-s (6), (7), (8) and (9) (i.e. “Zero-boundary”).

8. What should we classify in case of unexplored phase transition

Keeping in mind discussed above difference between enthalpic and entropic phase transitions we ought to summarize main features, which should be classified, when one meets unexplored phase transition (see e.g. [5, 27]):

- Is this PT of 1\(^{st}\) or 2\(^{nd}\)-order?
- Is this PT enthalpic or entropic? (this paper)
- Is this PT isostructural or non-isostructural (like, for example, gas-liquid PT vs. crystal-fluid PT)?
- Is this PT congruent or non-congruent (see e.g. [4, 26, 27])?
- Do we use Coulombless approximation in description of this PT (see e.g. [4]), or we take into account all consequences of long-range nature of Coulomb interaction?
- What is the scenario of equilibrium phase transformation in two-phase region? Is it macro- or mesoscopic one (e.g. “structured mixed phase (SMP)” scenario (or so-called “pasta-plasma”))?

In this paper we made accent on analysis of following combination: 1\(^{st}\)-order, entropic, congruent, isostructural and/or non-isostructural, Coulomb-included phase transitions without possibility of SMP (pasta) scenario. Phase transitions with other more complicated combination of basic features would be discussed in following papers.

Conclusions

- Widely accepted visible equivalence of gas-liquid-like and quark-hadron (deconfinement) phase transitions in high energy density nuclear matter is illusive.
- Both phase transitions belong to fundamentally different sub-classes: Gas-Liquid PT is enthalpic one, while Quark-Hadron PT is entropic one.
Properties of entropic and enthalpic PTs differ significantly from each other.

Pressure-temperature dependence of phase boundary for enthalpic phase transition \((H-PT)\) and entropic one \((S-PT)\) have different sign i.e. \((dP/dT)_{H-PT} \geq 0\) vs. \((dP/dT)_{S-PT} \leq 0\).

Isotherms of entropic PT have anomalous behavior within the two-phase region at sufficiently low subcritical temperature. There is abnormal order for sequence of stable, metastable and unstable parts: e.g. stable-I / metastable-I / unstable-I / metastable-III / unstable-II / metastable-II / stable-II.

Binodals and spinodals of entropic PT have anomalous order in \(P-V\) plane. Isothermal spinodal \([e.g. (\partial P/\partial V)_T = 0]\) may be located outside binodal of entropic PT at low enough subcritical temperature.

Two-phase region and its close vicinity for entropic PT obey to abnormal thermodynamics. Namely: negative Gruneizen parameter, negative thermal and entropic pressure coefficients, negative thermal expansion coefficient \(\text{etc}.\) Besides there are abnormal order and intersections of isotherms, isentropes and abnormal order and intersections of shock adiabats (Hugoniots) \(\text{etc}.\)

All the features of discussed entropic phase transitions and accompanying abnormal thermodynamics region have transparent geometrical interpretation – multi-layered structure of thermodynamic surfaces for temperature, entropy and internal energy as a pressure-volume functions, e.g. \(T(P,V)\), \(S(P,V)\) and \(U(P,V)\).

Deconfinement-driven \((\text{QHPT})\) and ionization-driven “plasma” phase transitions \((\text{PPT})\) as well as dissociation- and depolymerization-driven PTs in \(N_2\) \(\text{etc}.\) are entropic PTs, and hence they have many common features in spite of many order difference in density and temperature.

It is promising to investigate entropic PTs experimentally, for example via volumetric heating by heavy ion beams \((\text{HIB})\), in strong shock compression and subsequent isentropic expansion, in quasi-isobaric expansion with exploding foil technique and via surface laser heating \(\text{etc}.\)

It is especially promising also to investigate entropic PTs theoretically in frames of traditional thermodynamic models (chemical picture) and via \(\text{ab initio}\) approaches.

Acknowledgments
Author acknowledges V Gryaznov for collaboration and for skilful calculations in obtaining phase diagram of modeling dissociative phase transition in deuterium, and M Hempell and V Dexheimer for collaboration and permission to use joint density-temperature phase diagram for GLPT and QHPT. Author acknowledges also V Fortov, D Blaschke and J Randrup for helpful and fruitful discussions. This work was supported by the Russian Science Foundation grant No. 14-50-00124.

References
[1] Haensel P, Potekhin A and Yakovlev D 2007 Neutron Stars: Equation of State and Structure (New York: Springer)
[2] Fortov V 2009 Phys. Usp.) 52 615
[3] Fortov V 2011 Extreme States of Matter on Earth and in Space (Berlin-Heidelberg: Springer)
[4] Hempel M, Dexheimer V, Schramm S and Iosilevskiy I 2013 Phys. Rev. C 88 014906 / arXiv:1302.2835
[5] Iosilevskiy I L and Starostin A N 2000 Thermodynamic stability and phase transitions in low-temperature plasmas in: Encyclopedia of Low-Temperature Plasma Physics vol I ed V Fortov (Moscow: Nauka) chapter III-1.6 pp 327-339
[6] Randrup J 2010 Int. Conf. on Critical Point and Onset of Deconfinement (Dubna, Russia) // http://theor.jinr.ru/ cphpod/Talks/260810/Randrup.pdf
[7] Randrup J 2012 Physics of Atomic Nuclei 75 764
[8] Hempel M and Dexheimer V 2013 (private communication)
[9] Kitamura H and Ichimaru S 1998 J. Phys. Soc. Japan 67 950
[10] Iosilevskiy I 2013 33th Int. Conf. High Energy Density Physics (Hirschegg, Austria)
[11] Morales M, Pierleoni C and Ceperley D M 2010 PNAS 107 12799; Phys. Rev. B 81 021202
[12] Lorenzen W, Holst B and Redmer R 2010 Phys. Rev. B 82 195107
[13] Mulenko I, Oleinikova E, Khomkin A, Filinov V, Bonitz M and Fortov V 2001 Phys. Lett. A 289 141
[14] Ross M and Rogers F 2006 Phys. Rev. B 74 024103
[15] Yakub E S 1994 Low Temp. Phys. 20 579
[16] Yakub L N 1993 Journ. Low Temp. Phys. 19 531; 2001 122 501
[17] Boates B and Bonev S 2009 Phys. Rev. Lett. 102 015701
[18] Satarov L and Mishustin I 2009 (private communication)
[19] Iosilevskiy I, Gryaznov V, Yakub E, Ronchi C and Fortov V 2003 Contrib. Plasma Phys. 43 316
[20] Iosilevskiy I 2010 Acta Physica Polonica B (Suppl) 3 589 (Preprint arXiv:1005.4192)
[21] Fortov V 2013 Equation of State (Moscow: FIZMATLIT)
[22] Gryaznov V and Iosilevskiy I 2009 J. Phys. A: Math. Theor. 42 214007
[23] Zel’dyuchov Ya and Raizer Yu 2008 Physics of Shock Waves and High-Temperature Hydrodynamics (Moscow: FIZMATLIT)
[24] Landau L D and Lifshitz E M 2006 Hydrodynamics (Moscow: FIZMATLIT)
[25] Iosilevskiy I Features of thermo- and hydrodynamics of matter with negative Gruneizen coefficient (in preparation).
[26] Iosilevskiy I, Gryaznov V, Yakub E, Ronchi C and Fortov V 2003 Contrib. Plasma Phys. 43 316
[27] Iosilevskiy I 2010 Acta Physica Polonica B (Suppl) 3 589 (Preprint arXiv:1005.4192)
[28] Fortov V 2013 Equation of State (Moscow: FIZMATLIT)
[29] Ebeling W and Reichert W 1985 Phys. Lett. A 108 80
[30] Ebeling W, Forster A, Fortov V, Gryaznov V and Polishuk A 1991 Thermophysical Properties of Hot Dense Plasmas (Stuttgart-Leipzig: Teubner)
[31] Iosilevskiy I 2013 Physics of Extreme States of Matter—2013 ed V E Fortov et al (Moscow: JIHT RAS) pp 136–40 (Preprint arXiv:1403.8053)
[32] Iosilevskiy I 2013 Enthalpic and entropic phase transitions in high energy density nuclear matter 4th Int. Conf. on Nuclear Fragmentation NUFR-2013 (Turkey)
[33] Medvedev A and Trunin R 2012 UFN (Fiz. Uspeshki Rus.) 182 829
[34] Brazhkin V 2012 Phys. Usp. 182 847
[35] Brazhkin V, Popova S and Voloshin R 1997 High Pressure Research 15 267–305
[36] Iosilevskiy I 2000 Thermodynamic properties of low-temperature plasmas in: Encyclopedia of Low-Temperature Plasma Physics vol 1 ed V Fortov (Moscow: Nauka) chapter III-1 pp 275–292
[37] Nellis W J and Radousky H B et al 1991 J. Chem. Phys. 94 2244–57
[38] Mochalov M, Zhernovkletov M, Il’kaev R, Mikhailov A, Fortov V, Gryaznov V, Iosilevskiy I et al 2010 JETP 137 67–80
[39] Onsager L 1949 Ann. N.Y. Acad. Sci. 51 627
[40] Frenkel Daan 1999 Physica A 263 26–38
[41] Zilman A Kiffer J Molino F Porte G and Safran S 2003 Phys. Rev. Lett. 91 015901