Secure Private Comparison of Equality using Quantum Resources

Tingting Wei and Cai Zhang*

College of Mathematics and informatics, South China Agricultural University, Guangzhou 510642, China

*Corresponding author email: zhangcai@scau.edu.cn

Abstract. Private comparison of equality is an essential task in secure multiparty computation. In this paper, we investigate such a task in quantum settings. Particularly, we design a comparison protocol using quantum resources. The protocol allows three users to verify whether the private inputs of three users are identical and preserve their inputs’ privacy without an extra third party who can help the verifying process. The proposed protocol does not require unitary operations for the information encoding, which, to some extent, facilitates the protocol’s implementation. In addition, the Trojan horse attacks are invalid to the proposed protocol as it only employs one-step quantum transmissions. We also show that the presented protocol is secure against some well-known attacks.

1. Introduction

The protocol for the millionaires’ problem was presented by Yao [1] for the first time in 1998. This protocol aims at determining who is richer between two users and keeping the privacy of their wealth. Since then, many researchers have been investigating how to compare private information. Reference [2] showed a protocol to verify whether two users’ private inputs are the same. Lo [3] proved that two-party equality evaluation in quantum settings is not secure. Yang et al. [4] used Einstein-Podolsky-Rosen pairs and a hash function for the design of the protocol of quantum private comparison (QPC). Reference [5] gave an efficient protocol to check if the users’ inputs are the same using triplet states. Tseng et al. [6] presented a protocol with high efficiency for equality comparison. In their protocol, it is not necessary to utilize EPR pairs. References [7-10] investigated QPC protocols that employ various entangled states like triplet W states and x-type states. Huang et al. [11] proposed a protocol to privately compare the inputs between users and investigated the effect of collective noise on their protocol. In reference [12], single photons are used to design a QPC protocol in which collective detection is involved. In reference [13], a quantum research algorithm is utilized for the construction of a QPC protocol. Ji et al. [14] presented several QPC protocols, in each of which entanglement and dense coding are employed. Note that these protocols are for the private comparison in a two-party scenario. One may be interested in private comparison among multiple parties. Reference [15] gave one of such protocols using GHZ class states. Reference [16] presented another one depending on d-dimensional basis states and in this protocol, entanglement swapping is not required. We were interested in other quantum states that can be employed to devise multiparty QPC protocols. Finally, based on the genuinely maximally entangled six-qubit state, we devise a three-party QPC protocol without an extra third party. Our contributions are: (1) presenting a novel three-party protocol for equality comparison which does not require unitary operations for encoding; (2) and giving a method to
They intend to verify whether the equation $|10\rangle\rangle$, $|\pm\rangle\rangle = \sqrt{\frac{1}{2}}(|0\rangle - |1\rangle)$

Two bases quantum channels are also authenticated. Three users in our protocol can be denoted by

detect participants’ attacks based on fake quantum states. We hope our work can help researchers to

We organize the rest of the paper in the following: Section 2 gives the details of the quantum state we

Quantum entanglement is important and useful, and has been applied in many quantum protocols

Reference [24] first shows a special entangled state that can be written as

We hope our work can help researchers to

Including quantum dense coding [17], quantum teleportation [18], quantum secure direct

Quantum entanglement is important and useful, and has been applied in many quantum protocols

We organize the rest of the paper in the following: Section 2 gives the details of the quantum state we

Reference [24] first shows a special entangled state that can be written as

This six-qubit state is denoted by φ_6 hereafter and it will be employed to construct a secure three-party

Two bases $B_1 = \{|\eta_1\rangle\rangle = \frac{1}{\sqrt{2}}(|0\rangle|\psi^+\rangle + |1\rangle|\phi^+\rangle), |\eta_2\rangle\rangle = \frac{1}{\sqrt{2}}(|0\rangle|\phi^-\rangle - |1\rangle|\psi^-\rangle), |\eta_3\rangle\rangle = \frac{1}{\sqrt{2}}(|0\rangle|\phi^+\rangle - |1\rangle|\psi^+\rangle), |\eta_4\rangle\rangle = \frac{1}{\sqrt{2}}(|0\rangle|\psi^-\rangle + |1\rangle|\phi^-\rangle), |\eta_5\rangle\rangle = \frac{1}{\sqrt{2}}(|0\rangle|\phi^-\rangle + |1\rangle|\psi^-\rangle)\rangle\rangle$ and $B_2 = \{|\eta_1\rangle\rangle = \frac{1}{\sqrt{2}}(|+\rangle|\phi^+\rangle + |-\rangle|\psi^+\rangle), |\eta_2\rangle\rangle = \frac{1}{\sqrt{2}}(|+\rangle|\psi^-\rangle - |1\rangle|\phi^-\rangle), |\eta_3\rangle\rangle = \frac{1}{\sqrt{2}}(|+\rangle|\psi^+\rangle + |1\rangle|\phi^+\rangle - |1\rangle|\psi^+\rangle), |\eta_4\rangle\rangle = \frac{1}{\sqrt{2}}(|+\rangle|\phi^-\rangle - |1\rangle|\psi^-\rangle)\rangle\rangle, |\eta_5\rangle\rangle = \frac{1}{\sqrt{2}}(|0\rangle|\psi^-\rangle - |1\rangle|\phi^-\rangle), |\eta_6\rangle\rangle = \frac{1}{\sqrt{2}}(|0\rangle|\phi^-\rangle + |1\rangle|\psi^-\rangle)\rangle\rangle\rangle\rangle$, where $|\psi^+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\rangle\rangle\rangle\rangle, |\phi^+\rangle = \frac{1}{\sqrt{2}}(|+\rangle + |1\rangle)\rangle\rangle\rangle\rangle, |\phi^-\rangle = \frac{1}{\sqrt{2}}(|+\rangle - |1\rangle)\rangle\rangle\rangle\rangle, |\psi^-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\rangle\rangle\rangle\rangle, and $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\rangle\rangle\rangle\rangle$, are needed to detect the honesty of the user who generates and distributes the particles of φ_6.

We adopt the assumption that the classical channels in our protocol are authenticated and that the quantum channels are also authenticated. Three users in our protocol can be denoted by P_1, P_2 and P_3, respectively. Suppose that $P_i (i = 1, 2, 3)$ has a secret bit string msg_i with length of l as his/her private input. They intend to verify whether the equation $msg_1 = msg_2 = msg_3$ holds, and meanwhile keep their private inputs secret. The protocol works on the assumption that P_1 is the user who prepares the state φ_6. Three users in advance agree on the following encoding: $|\psi^+\rangle$ is encoded as bits 00; $|\psi^-\rangle$ is encoded as bits 10; $|\phi^+\rangle$ is encoded as bits 10; $|\phi^-\rangle$ is encoded as bits 11. This encoding rule will be used to generate users’ private keys according to their measurement results.

The whole process of our protocol is in the following:

(I) P_1 generates $\left\lfloor \frac{l}{2} \right\rfloor + \theta$ ($\left\lfloor \cdot \right\rfloor$ represents the ceiling function) φ_6. He/she then selects particles 3 and 4 (particles 6 and 5) from each φ_6 to construct an ordered sequence T_{34} (T_{65}). Next, P_1 generates $2d$ decoy particles to detect outside eavesdropping. The quantum state of each of the decoy particles is chosen from $\{|0\rangle, |1\rangle, |+\rangle, |-\rangle\}$ randomly. After that he/she at random puts the first (second) d decoy particles into T_{34} (T_{65}) to produce a new sequence T'_{34} (T'_{65}). Note that the initial states of the decoy particles and their positions in T'_{34} and T'_{65} should not be revealed to anyone at this step.
Finally, P_1 sends T^*_3 and T^*_{65} to P_2 and P_3, respectively, and holds the sequence T_{12} that orderly consists of particles 1 and 2 from each V_{60b} in his/her own lab.

(II) After P_2 and P_3 have received T^*_3 and T^*_{65}, respectively, the information of the decoy states and their positions in T^*_3 and T^*_{65} is sent to P_2 and P_3, respectively. P_2 (P_3) then performs appropriate measurements on the decoy particles with the basis $\{|0\rangle, |1\rangle\}$ (C-basis) or the basis $\{|+, |\rangle\}$ (D-basis) depending on P_i’s information. Specifically, given that a decoy particle’s initial state is in $|0\rangle$ or $|1\rangle$ ($|+\rangle$ or $|\rangle\rangle$), the measurement with the C-basis (the D-basis) will be performed on this particle. P_2 (P_3) then announces his/her measurement results. Based on these results and the decoy particles’ initial states, P_1 calculates a rate of errors occurred. A high error rate exceeding the threshold will lead to an abortion of the protocol, and the protocol will then restart from Step (I).

The low error rate below the threshold allows the protocol to proceed.

(III) In this step, P_2 collaborates with P_3 to detect the honesty of P_1, namely P_2 (P_3) should exactly receive T_{34} (T_{65}). First, P_2 (P_3) takes out the decoy particles from T^*_3 (T^*_{65}) to obtain T^*_{34} (T^*_{65}). Next, they select θ states of φ_i (sample states) randomly for detection and announce the sample states’ positions to P_1. P_2 and P_3 then request P_1 to perform measurement with a random basis from $\{|0\rangle, |1\rangle, |+\rangle, |\rangle\rangle\}$ on particles 1 and 2 of each sample state. Given that P_1 carries out a measurement with the C-basis (the D-basis) on particles 1 and 2, P_2 does a measurement with the C-basis (the D-basis) on particle 3, and P_2 and P_3 perform a measurement with the basis B_2 (B_2) on particles 4, 5, 6. At last, P_2 and P_3 compute a rate of errors occurred by comparing their measurement results. A high rate of errors which exceeds the threshold will give rise to an abortion of the protocol, and the protocol will then restart from Step (I). The low error rate below the threshold suggests that P_2 (P_3) exactly receives T_{34} (T_{65}) and it allows the protocol to proceed to the next step.

(IV) After discarding the sample states, P_1 (P_2, P_3) performs a measurement with the Bell basis $\{|\phi^+\rangle, |\phi^-\rangle, |\psi^+\rangle, |\psi^-\rangle\}$ on particles 1 and 2 (particles 3 and 4, particles 6 and 5) of the k-th φ_i ($k = 1, 2, ..., \left\lceil \frac{n}{2}\right\rceil$). P_1 (P_2, P_3) then uses his/her measurement results and the encoding rule to obtain his/her key key_1 (key_2, key_3) that should not be learned by others. For instance, if the measurement results of the i-th φ_i is $V^i_{12} = |\phi^+\rangle$ ($V^i_{34} = |\phi^+\rangle$, $V^i_{65} = |\psi^+\rangle$), the k-th two bits of key_1 (key_2, key_3) should be 10 (10, 00). P_2 (P_2, P_3) eventually calculates $cmsg_1 = msg_1 \oplus key_1$ ($cmsg_2 = msg_2 \oplus key_2$, $cmsg_3 = msg_3 \oplus key_3$) (Here, \oplus represents the operation of pointwise addition in modulo two.)

(V) P_2 and P_3 reveal $cmsg_2$ and $cmsg_3$ to P_1, respectively, he/she then verifies whether the equation $msg_2 = cmsg_3$ holds. If $msg_2 \neq cmsg_3$, P_1 publishes the comparison result and all users obtain it. If $msg_2 = cmsg_3$, P_1 calculates either $cmsg_{13} = cmsg_1 \oplus cmsg_3$ or $cmsg_{12} = cmsg_1 \oplus cmsg_2$ at random. In the case where P_1 obtains $cmsg_{13}$, he/she announces $cmsg_{13}$ to P_2. Later, P_2 checks if the equation $msg_1 = cmsg_3$ holds based on key_2 and $cmsg_{13}$. In the case where P_1 obtains $cmsg_{12}$, he/she announces $cmsg_{12}$ to P_3. Later, P_3 checks if the equation $msg_2 = cmsg_2$ holds based on key_3 and $cmsg_{12}$. In either case, three users are eventually able to verify whether the equation $msg_1 = msg_2 = cmsg_3$ holds, and keep their private inputs secret, respectively.

3. Analysis of the Presented Protocol

3.1. Correctness Analysis

We now analyse the presented protocol’s correctness. The properties of the state φ_i and the encoding rule give $key_1 \oplus key_2 \oplus key_3 = 0$ (0 here denotes a bit string that has l 0s) in Step (V) of our protocol. Upon receiving $cmsg_2$ and $cmsg_3$ from P_2 and P_3, respectively, P_1 could compute

$$
key_1 \oplus cmsg_2 \oplus cmsg_3 = key_1 \oplus key_2 \oplus msg_2 \oplus key_3 \oplus msg_3 = msg_2 \oplus msg_3.
$$

After that, P_1 can check if $msg_2 \oplus msg_3 = 0$ holds based on the above equation. If P_1 learns that $msg_2 \oplus msg_3 \neq 0$, he/she then announces that $msg_1 = msg_2 = msg_3$ does not hold and the
procedure of the protocol terminates. Otherwise, P_2 (P_3) can check if $msg_1 = msg_3$ ($msg_1 = msg_2$) holds similarly in Step (V). The protocol can eventually correctly check if $msg_1 = msg_2 = msg_3$ holds or not.

3.2. Analysis of Security

3.2.1. Analysis of Security Against Outside attacks. Decoy particles are usually used to detect eavesdropping attacks like intercept-resend and entanglement-measurement attacks. This similar idea was first used in the BB84 protocol [24]. The outside adversary Eve who intends to eavesdrop will be caught in Step (II) of the protocol. Here we analyse the case where Eve starts an attack by intercepting the C-basis measurement to catch in Step (II). Here we analyse the case where Eve starts an attack by intercepting and resending particles. Suppose that a decoy particle’s state is $|0\rangle$. As Eve knows nothing about all the quantum states of decoy particles, she may perform the measurement with the C-basis or the D-basis randomly on this decoy particle, and transmit a fake one generated by her own relying on the result after measurement to P_2 or P_3. In Step (II), the probability that the attack will be detected is $1/4$. d such decoy particles give the probability of being caught $Pr = 1 - \left(\frac{3}{4}\right)^d$. Pr will be approaching to 1 as d goes large enough. Therefore, this attack started by Eve will be invalid to our protocol. Obviously, Eve can easily obtain $cmsg_{12}$, $cmsg_{3}$, $cmsg_{13}$ and $cmsg_{12}$. However, these ciphertexts are encrypted by the keys that are in users’ hands. Eve thus cannot derive users’ private bit strings without the keys from these ciphertexts.

There exists delay-photon Trojan horse attack as well as invisible photon Trojan horse attack in quantum cryptographic protocols which involve relaying quantum communication [25-27]. Hence these attacks are invalid to the proposed protocol as it only uses one-step quantum communications.

3.2.2. Attacks from either P_2 or P_3. Let us move on to the analysis of the case where either P_2 or P_3 wants to learn the others’ private inputs. Without loss of generality, P_2 is assumed to be a dishonest user who intends to obtain P_1’s and P_3’s private bit strings.

To finish this task, P_2 has to learn the values of key_1 and key_3. He will, however, fail to do that. The properties of q_6 and the encoding rule only give the equation $key_1 \oplus key_2 \oplus key_3 = 0$ to P_2. P_2 cannot attain the exact value of key_1 and the exact value of key_3. In Step (V), P_2 could obtain either $cmsg_{13}$ or $cmsg_{12}$, where c_{13} the ciphertext of $m_1 \oplus m_3$ encrypted by k_2 and c_{12} is the ciphertext of $m_1 \oplus m_2$ encrypted by k_3. However, P_2 fails to simultaneously attain $cmsg_{13}$ and $cmsg_{12}$ as P_1 randomly generates only one of them in Step (V). For the case where P_2 obtains $cmsg_{12}$, he can calculate $cmsg_{12} \oplus cmsg_{3} = cmsg_1 = key_1 \oplus msg_1$. For the case where P_2 learns $cmsg_{3}$ and $cmsg_{13}$, he can have $cmsg_{3} \oplus cmsg_{13} = key_1 \oplus msg_1$. In either case, he is unable to attain P_1’s private bit string msg_1 as he fails to learn the exact value of key_1. Similarly, P_2 cannot obtain P_3’s private bit string msg_3 because he cannot obtain the exact value of key_3. Hence P_2 will fail to get P_1’s and P_3’s private bit strings. For simplicity, we give an example where two-bit keys are used. Table 1 shows the relations between users’ keys and their measurement results. We can learn from the table that P_2 is unable to obtain the exact values of key_3 and key_3 according to his/her private key key_2.

Table 1. Three users’ measurement results and their corresponding keys

	P_1	P_2	P_3						
Results after	$	\psi^+\rangle_{12}$ ($	\psi^-\rangle_{12}$)	$	\psi^+\rangle_{34}$ ($	\psi^-\rangle_{34}$)	$	\psi^+\rangle_{65}$ ($	\psi^-\rangle_{65}$)
Keys	00 (01)	00 (00)	00 (01)						
Results after	$	\psi^+\rangle_{12}$ ($	\psi^-\rangle_{12}$)	$	\psi^+\rangle_{34}$ ($	\psi^-\rangle_{34}$)	$	\psi^+\rangle_{65}$ ($	\psi^-\rangle_{65}$)
Keys	00 (01)	01 (01)	01 (00)						
Results after	$	\psi^+\rangle_{12}$ ($	\psi^-\rangle_{12}$)	$	\psi^+\rangle_{34}$ ($	\psi^-\rangle_{34}$)	$	\psi^+\rangle_{65}$ ($	\psi^-\rangle_{65}$)
Keys	00 (01)	10 (10)	10 (11)						
We now study the attacks launched by P_1 who wishes to learn P_2’s and P_3’s private inputs. In our protocol, P_1 is equipped with more quantum devices than P_2 and P_3 as he/she is in charge of the preparation and distribution of the quantum state φ_6. P_1 may produce fake particles and pass them to P_2 and P_3. After that, P_1 derives the exact values of P_2’s and P_3’s keys according to the fake particles. Consequently, he/she obtains P_2’s and P_3’s private bit strings msg_2 and msg_3 by using key_2 and key_3 to decrypt $cmsg_2$ and $cmsg_3$, respectively. For example, P_1 deliberately transmits particles that form a Bell state $|\psi^-(\varphi^+)|$ to P_2 or P_3 if he wants some two bits in key_2 to be 11 (10). P_1 can also be honest to prepare φ_6 instead of fake particles. P_1 then transmits particular particles to P_2 (P_3) in such a way that he later derives others’ keys based on their measurement results and the encoding rule. However, these attacks are also invalid to our protocol as P_2 and P_3 can learn the dishonesty of P_1 in Step (III) by using θ quantum states of φ_6.

P_1’s most general attack can be characterized as a unitary operator U_E. P_1 performs U_E on qubits that contain φ_6 and a probe state whose initial state is $|0\rangle_v$ before sending P_2 and P_3 the particles. One can prove that final quantum state of φ_6 would be unentangled with P_1’s probe state if he/she passes the detection in Step (III). This implies that P_1 will obtain nothing about P_2’s and P_3’s measurement results through the probe. Hence P_1 cannot learn anything about key_2 and key_3.

Note that any two users can work together to obtain the third one’s key relying on the equation $key_1 \oplus key_2 \oplus key_3=0$, and therefore steal his/her private bit string. Designing practical multi-party QPC protocols secure against this attack will be our future work.

4. Conclusion

This study has presented a secure three-party QPC protocol using the quantum state φ_6 for the comparison of equality. Three users can verify whether their private bit stings are the same and protect their inputs’ privacy. Quantum unitary operations are not needed in our protocol for information coding due to the great properties of φ_6. We have also analysed the protocol’s security in details and shown that the outside and participant attacks are invalid to the presented protocol.

Acknowledgments

Our work is supported by the National Natural Science Foundation of China under Grant Nos. 61902132 and 11647140, the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2021A151011985, the Natural Science Foundation of Guangdong Province of China under Grant No. 2018A030310147, and the Young Talents Program of Colleges and Universities of Chinese Guangdong Province Office of Education under Grant No. 2019KQNCX012.

References

[1] Yao, A.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982) : 160-164 (1982)

[2] Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the socialist millionaires' problem.” Discret. Appl. Math. 111: 23-36 (2001)
[3] Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)
[4] Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A, Math. Theor. 42(5), 055305 (2009)
[5] Chen, X.B., Xu, G., Niu, X.X., et al.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)
[6] Lin, Jason, Chun-Wei Yang and T. Hwang.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13, 239-247 (2014)
[7] Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 3160–3163 (2011)
[8] Liu, W., Wang, Y., Jiang, Z., et al.: Protocol for the Quantum Private Comparison of Equality with X-Type State. Int. J. Theor. Phys. 51(1), 69-77 (2012)
[9] Liu, W., Wang, Y., Jiang, Z., et al.: New Quantum Private Comparison Protocol Using χ^-Type State. Int. J. Theor. Phys., 51, 1953-1960 (2012)
[10] Liu, W., Wang, Y., Cui, W.: Quantum private comparison protocol based on Bell entangled states.” Commun. Theor. Phys. 57 (4): 583-588 (2012)
[11] Huang, W., Wen, Q., Liu, B. et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56 (9), 1670–1678 (2013)
[12] Liu, B., Gao, F., Jia, H., et al.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12, 887-897 (2013)
[13] Zhang, W., Li, D., Song, T., et al.: Quantum private comparison based on quantum search algorithm. Int. J. Theor. Phys., 52, 1466-1473 (2013)
[14] Ji, Z., Fan, P., Zhang, H., Wang, H. Several two-party protocols for quantum private comparison using entanglement and dense coding. Optics Communications, 459: 124911 (2020)
[15] Chang, Y., Tsai, C., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12 (2), 1077-1088 (2013)
[16] Liu, W., Wang, Y., Wang, X.: Multi-party Quantum Private Comparison Protocol Using d-Dimensional Basis States Without Entanglement Swapping. Int. J. Theor. Phys. 53, 1085-1091 (2014)
[17] Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881-2884 (1992)
[18] Bennett, C.H., Brassard, G., Crépeau, et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70 13, 1895-1899 (1993)
[19] Zhou, L., Sheng, Y., Long, G.: Device-independent quantum secure direct communication against collective attacks. Chin. Sci. Bull. 65, 12-20 (2020)
[20] Qi, R., Sun, Z., Lin, Z., et al.: Implementation and security analysis of practical quantum secure direct communication. Light, Science & Applications, 8 (2019)
[21] Bennett, C.H., Brassard G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, System and Signal Processing. Pp.175-179, IEEE Press, Bangalore (1984)
[22] Ekert, A.K.: Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67 6, 661-663 (1991)
[23] Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829-1834 (1999)
[24] Borras, A., Plastino, A., Batle, J., Zander, C., Casas, M.: Multiqubit systems: highly entangled states and entanglement distribution. Journal of Physics A, 40, 13407-13421 (2007)
[25] Deng, F., Li, X., Zhou, H., Zhang, Z.: Improving the security of multi-party quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)
[26] Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems (6 pages). Phys. Rev. A 73, 22320 (2006)
[27] Li, X., Deng, F., Zhou, H.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)