Counting toroidal binary arrays, II

S. N. Ethier* and Jiyeon Lee†

Abstract

We derive formulas for (i) the number of toroidal $n \times n$ binary arrays, allowing rotation of rows and/or columns as well as matrix transposition, and (ii) the number of toroidal $n \times n$ binary arrays, allowing rotation and/or reflection of rows and/or columns as well as matrix transposition.

2010 Mathematics Subject Classification: Primary 05A05.

Keywords: toroidal array, Euler’s phi function, group action, orbit, Pólya’s enumeration theorem.

1 Introduction

A previous paper [1] found the number of (distinct) toroidal $m \times n$ binary arrays, allowing rotation of rows and/or columns, to be

$$a(m, n) := \frac{1}{mn} \sum_{c \mid m} \sum_{d \mid n} \varphi(c) \varphi(d) \frac{2^{mn/\text{lcm}(c,d)}}{\text{lcm}(c,d)},$$

where φ is Euler’s phi function and lcm stands for least common multiple. This is A184271 in the On-Line Encyclopedia of Integer Sequences [2]. The main diagonal is A179043. It was also shown that, allowing rotation and/or reflection of rows and/or columns, the number becomes

$$b(m, n) := b_1(m, n) + b_2(m, n) + b_3(m, n) + b_4(m, n),$$

where

$$b_1(m, n) := \frac{1}{4mn} \sum_{c \mid m} \sum_{d \mid n} \varphi(c) \varphi(d) \frac{2^{mn/\text{lcm}(c,d)}}{\text{lcm}(c,d)},$$

Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112 USA. ethier@math.utah.edu. Partially supported by a grant from the Simons Foundation (209632).

Department of Statistics, Yeungnam University, 214-1 Daedong, Kyeongsan, Kyeongbuk 712-749, South Korea. leejy@yu.ac.kr. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2013R1A1A3A04007670).
\[
b_2(m, n) := \frac{1}{4n} \sum_{d | n} \varphi(d) 2^{mn/d}
\]
\[
+ \begin{cases}
(4n)^{-1} \sum' \varphi(d) (2^{(m+1)n/(2d)} - 2^{mn/d}), & \text{if } m \text{ is odd;}

(8n)^{-1} \sum' \varphi(d) (2^{mn/(2d)} + 2^{(m+2)n/(2d)} - 2 \cdot 2^{mn/d}), & \text{if } m \text{ is even},
\end{cases}
\]
with \(\sum' := \sum_{d | n: d \text{ is odd}}\).

\[
b_3(m, n) := b_2(n, m),
\]
and

\[
b_4(m, n) := \begin{cases}
2^{(mn-3)/2}, & \text{if } m \text{ and } n \text{ are odd;}

3 \cdot 2^{mn/2-3}, & \text{if } m \text{ and } n \text{ have opposite parity;}

7 \cdot 2^{mn/2-4}, & \text{if } m \text{ and } n \text{ are even.}
\end{cases}
\]

(The formula for \(b_2(m, n)\) given in [1] is simplified here.) This is A222188 in the OEIS [2]. The main diagonal is A209251.

Our aim here is to derive the corresponding formulas when \(m = n\) and we allow matrix transposition as well. More precisely, we show that the number of (distinct) toroidal \(n \times n\) binary arrays, allowing rotation of rows and/or columns as well as matrix transposition, is

\[
\alpha(n) = \frac{1}{2} a(n, n) + \frac{1}{2n} \sum_{d | n} \varphi(d) 2^{n(n+d-2\lfloor d/2 \rfloor)/(2d)}, \quad (3)
\]

where \(a(n, n)\) is from (1). When we allow rotation and/or reflection of rows and/or columns as well as matrix transposition, the number becomes

\[
\beta(n) = \frac{1}{2} b(n, n) + \frac{1}{4n} \sum_{d | n} \varphi(d) 2^{n(n+d-2\lfloor d/2 \rfloor)/(2d)}
\]
\[
+ \begin{cases}
2^{(n^2-5)/4}, & \text{if } n \text{ is odd;}

5 \cdot 2^{n^2/4-3}, & \text{if } n \text{ is even},
\end{cases} \quad (4)
\]

where \(b(n, n)\) is from (2). At the time of writing, sequences (3) and (4) were not in the OEIS.

For an alternative description, we could define a group action on the set of \(n \times n\) binary arrays, which has \(2^{n^2}\) elements. If the group is generated by \(\sigma\) (row rotation) and \(\tau\) (column rotation), then the number of orbits is given by \(a(n, n)\); see [1]. If the group is generated by \(\sigma, \tau, \text{ and } \zeta\) (matrix transposition), then the number of orbits is given by \(\alpha(n)\); see Theorem 1 below. If the group is generated by \(\sigma, \tau, \rho\) (row reflection), and \(\theta\) (column reflection), then the number of orbits is given by \(b(n, n)\); see [1]. If the group is generated by \(\sigma, \tau, \rho, \theta, \text{ and } \zeta\), then the number of orbits is given by \(\beta(n)\); see Theorem 2 below.
Both theorems are proved using Pólya’s enumeration theorem (actually, the simplified unweighted version; see, e.g., van Lint and Wilson [3, Theorem 37.1, p. 524]).

To help clarify the distinction between the various group actions, we consider the case of 3×3 binary arrays as in [1]. When the group is generated by σ and τ (allowing rotation of rows and/or columns), there are 64 orbits, which were listed in [1]. When the group is generated by σ, τ, and ζ (allowing rotation of rows and/or columns as well as matrix transposition), there are 44 orbits, which are listed in Table 1 below. When the group is generated by σ, τ, ρ, and θ (allowing rotation and/or reflection of rows and/or columns), there are 36 orbits, which were listed in [1]. When the group is generated by σ, τ, ρ, θ, and ζ (allowing rotation and/or reflection of rows and/or columns as well as matrix transposition), there are 26 orbits, which are listed in Table 2 below.

Table 1: A list of the 44 orbits of the group action in which the group generated by σ, τ, and ζ acts on the set of 3×3 binary arrays. (Rows and/or columns can be rotated and matrices can be transposed.) Each orbit is represented by its minimal element in 9-bit binary form. Subscripts indicate orbit size. Bars separate different numbers of 1s.

\[
\begin{array}{cccccccc}
000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\
000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\
111 & 111 & 111 & 111 & 111 & 111 & 111 & 111 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\
000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\
000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\
000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\
000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\
000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\
000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\
000 & 000 & 000 & 000 & 000 & 000 & 000 & 000 \\
\end{array}
\]
Table 2: A list of the 26 orbits of the group action in which the group generated by σ, τ, ρ, θ, and ζ acts on the set of 3×3 binary arrays. (Rows and/or columns can be rotated and/or reflected and matrices can be transposed.) Each orbit is represented by its minimal element in 9-bit binary form. Subscripts indicate orbit size. Bars separate different numbers of 1s.

Table 3 provides numerical values for $\alpha(n)$ and $\beta(n)$ for small n.

Table 3: The values of $\alpha(n)$ and $\beta(n)$ for $n = 1, 2, \ldots, 12$.

n	$\alpha(n)$	$\beta(n)$
1	2	2
2	6	6
3	44	26
4	2200	805
5	674384	172112
6	954625404	239123150
7	5744406453840	1436120190288
8	14415102471496836	36028817512382026
9	1492250101286519583840	3731252531904344833632
10	633825300114296535353838471200	1584563250089172460150272
11	10985353370542379175011389992368	27463083426334757146923113956672
12	774314305635525874186817081357314024	19358285762613388352671214587814834041520

We take this opportunity to correct a small gap in the proof of Theorem 2 in [1]. The proof assumed implicitly that $m, n \geq 3$. The theorem is correct as stated for $m, n \geq 1$, so the proof is incomplete if m or n is 1 or 2. Following the proof of Theorem 2 below, we supply the missing steps.
2 Rotation of rows and columns, and matrix transposition

Let \(X_n := \{0, 1\}^{[0, 1, \ldots, n-1]} \) be the set of \(n \times n \) matrices of 0s and 1s, which has \(2^n \) elements. Let \(\alpha(n) \) denote the number of orbits of the group action on \(X_n \) by the group of order \(2n^2 \) generated by \(\sigma \) (row rotation), \(\tau \) (column rotation), and \(\zeta \) (matrix transposition). (Exception: If \(n = 1 \), the group is of order 1.)

Informally, \(\alpha(n) \) is the number of (distinct) toroidal \(n \times n \) binary arrays, allowing rotation of rows and/or columns as well as matrix transposition.

Theorem 1. With \(a(n, n) \) defined using (1), \(\alpha(n) \) is given by (3).

Proof. Let us assume that \(n \geq 2 \). By Pólya’s enumeration theorem,

\[
\alpha(n) = \frac{1}{2n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (2^{A_{ij}} + 2^{E_{ij}}),
\]

(5)

where \(A_{ij} \) (resp., \(E_{ij} \)) is the number of cycles in the permutation \(\sigma^i \tau^j \) (resp., \(\sigma^i \tau^j \zeta \)); here \(\sigma \) rotates the rows (row 0 becomes row 1, row 1 becomes row 2, \ldots, row \(n-1 \) becomes row 0), \(\tau \) rotates the columns, and \(\zeta \) transposes the matrix.

We know from [1] that

\[
a(n, n) = \frac{1}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{A_{ij}},
\]

(6)

so it remains to find \(E_{ij} \). The permutation \(\zeta \) has \(n \) fixed points and \(\binom{n}{2} \) transpositions, so \(E_{00} = n(n + 1)/2 \).

Notice that \(\sigma \) and \(\tau \) commute, whereas \(\sigma \zeta = \zeta \tau \) and \(\tau \zeta = \zeta \sigma \). Let \((i, j) \in \{0, 1, \ldots, n - 1\}^2 - \{(0, 0)\} \) be arbitrary. Then

\[
(\sigma^i \tau^j \zeta)^2 = (\sigma^i \tau^j \zeta)(\zeta \tau^i \sigma^j) = \sigma^{i+j} \tau^{i+j},
\]

hence

\[
(\sigma^i \tau^j \zeta)^{2d} = \sigma^{(i+j)d} \tau^{(i+j)d} = ((\sigma \tau)^{i+j})^d,
\]

\[
(\sigma^i \tau^j \zeta)^{2d+1} = \sigma^{(i+j)d+i+j} \tau^{(i+j)d+j} \zeta.
\]

Clearly, \((\sigma^i \tau^j \zeta)^{2d+1} \) cannot be the identity permutation, so \(\sigma^i \tau^j \zeta \) is of even order. Using the fact that, in the cyclic group \(\{a, a^2, \ldots, a^{n-1}, a^n = e\} \) of order \(n \), \(a^k \) is of order \(n / \gcd(k, n) \), we find that the permutation \(\sigma^i \tau^j \zeta \) is of order 2d, where \(d := n / \gcd(i + j, n) \). Therefore, every cycle of this permutation must have length that divides 2d.

We claim that all cycles have length \(d \) or \(2d \). Accepting that for now, let us determine how many cycles have length \(d \). A cycle that includes entry \((k, l)\) has length \(d \) if \((k, l)\) is a fixed point of \((\sigma^i \tau^j \zeta)^d \). For this to hold we must have

\[
(k, l) = (k, k + d),
\]

where \(1 \leq k \leq n-1 \), \(0 \leq d \leq n-1 \), and \(d = 0 \) or \(d \equiv 0 \pmod{n} \) if \(i + j \equiv 0 \pmod{n} \).
d odd (otherwise there would be no fixed points because we have excluded the case $i = j = 0$ and $(i + j)d/2 = \text{lcm}(i, j, n)/2$ is not a multiple of n). Since

$$(\sigma^i\tau^j\zeta)^d = \sigma^i(i+j)(d-1)/2+i\tau(j)(d-1)/2+j\zeta,$$

we must also have

$$(k, l) = ([l + (i + j)(d - 1)/2 + j], [k + (i + j)(d - 1)/2 + i]), \quad (7)$$

where $d := n/\gcd(i + j, n)$ and, for simplicity, $[r] := (r \mod n) \in \{0, 1, \ldots, n - 1\}$. For each $k \in \{0, 1, \ldots, n - 1\}$, there is a unique l (namely, $l := [k + (i + j)(d - 1)/2 + i]$) such that (7) holds; indeed,

$$
\begin{align*}
[l + (i + j)(d - 1)/2 + j] &= [k + (i + j)(d - 1)/2 + i] + (i + j)(d - 1)/2 + j] \\
&= [k + (i + j)(d - 1)/2 + i + (i + j)(d - 1)/2 + j] \\
&= [k + (i + j)d] \\
&= [k + (i + j)(n/\gcd(i + j, n))] \\
&= [k + \text{lcm}(i + j, n)] \\
&= k.
\end{align*}
$$

This shows that there are n fixed points of $(\sigma^i\tau^j\zeta)^d$. Each cycle of length d of $\sigma^i\tau^j\zeta$ will account for d such fixed points, hence there are n/d such cycles. All remaining cycles will have length $2d$, and so there are $n(n - 1)/(2d)$ of these. The total number of cycles is therefore $n(n + 1)/(2d)$.

The other possibility is that d is even and all cycles have the same length, $2d$, so there are $n^2/(2d)$ of them. Notice that d is a divisor of n, so the contribution to

$$
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{E_{ij}}
$$

from odd d is

$$
\sum_{d \mid n: \text{d is odd}} n\varphi(d)2^{n(n+1)/(2d)} \quad \text{(8)}
$$

and from even d is

$$
\sum_{d \mid n: \text{d is even}} n\varphi(d)2^{n^2/(2d)}. \quad \text{(9)}
$$

The reason for the coefficient $n\varphi(d)$ is that, if $d \mid n$, then the number of elements of the cyclic group $\{e, \sigma, (\sigma\tau)^2, \ldots, (\sigma\tau)^{n-1}\}$ that are of order d is $\varphi(d)$. And for a given $(i, j) \in \{0, 1, \ldots, n - 1\}^2$, there are n pairs $(k, l) \in \{0, 1, \ldots, n - 1\}^2$ such that $[k + l] = [i + j]$. Putting (8) and (9) together, we obtain

$$
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{E_{ij}} = \sum_{d \mid n} n\varphi(d)2^{n(n+d-2[d/2])/(2d)}, \quad \text{(10)}
$$

which, together with (5) and (6), yields (3). \qed
It remains to prove our claim that, for \((i, j) \in \{0, 1, \ldots, n - 1\}^2 - \{(0, 0)\}\), the permutation \(\sigma^i \tau^j \zeta\) cannot have any cycles whose length is a proper divisor of \(d := n / \gcd(i + j, n)\). Let \(c \mid d\) with \(1 \leq c < d\). We must show that \((\sigma^i \tau^j \zeta)^c\) has no fixed points. We can argue as above with \(c\) in place of \(d\). For \((k, l)\) to be a fixed point of \((\sigma^i \tau^j \zeta)^c\) we must have \((i + j)c\) a multiple of \(n\). But \(d := n / \gcd(i + j, n)\) is the smallest integer \(c\) such that \((i + j)c\) is a multiple of \(n\) because \((i + j)n / \gcd(i + j, n) = \text{lcm}(i + j, n)\).

Finally, we excluded the case \(n = 1\) at the beginning of the proof, but we notice that the formula (3) gives \(\alpha(1) = 2\), which is correct.

3 Rotation and reflection of rows and columns, and matrix transposition

Let \(X_n := \{0, 1\}^{0, 1, \ldots, n - 1} \times n\) be the set of \(n \times n\) matrices of 0s and 1s, which has \(2^{n^2}\) elements. Let \(\beta(n)\) denote the number of orbits of the group action on \(X_n\) by the group of order \(8n^2\) generated by \(\sigma\) (row rotation), \(\tau\) (column rotation), \(\rho\) (row reflection), \(\theta\) (column reflection), and \(\zeta\) (matrix transposition).

(Exceptions: If \(n = 2\), the group is of order 8; if \(n = 1\), the group is of order 1.)

Informally, \(\beta(n)\) is the number of (distinct) toroidal \(n \times n\) binary arrays, allowing rotation and/or reflection of rows and/or columns as well as matrix transposition.

Theorem 2. With \(b(n, n)\) defined using (2), \(\beta(n)\) is given by (4).

Proof. Let us assume that \(n \geq 3\). (We will treat the cases \(n = 1\) and \(n = 2\) later.) By Pólya’s enumeration theorem,

\[
\beta(n) = \frac{1}{8n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (2^{A_{ij}} + 2^{B_{ij}} + 2^{C_{ij}} + 2^{D_{ij}} + 2^{E_{ij}} + 2^{F_{ij}} + 2^{G_{ij}} + 2^{H_{ij}}),
\]

where \(A_{ij}\) (resp., \(B_{ij}, C_{ij}, D_{ij}, E_{ij}, F_{ij}, G_{ij}, H_{ij}\)) is the number of cycles in the permutation \(\sigma^i \tau^j\) (resp., \(\sigma^i \tau^j \rho, \sigma^i \tau^j \theta, \sigma^i \tau^j \rho \theta, \sigma^i \tau^j \zeta, \sigma^i \tau^j \rho \zeta, \sigma^i \tau^j \theta \zeta, \sigma^i \tau^j \rho \theta \zeta\)); here \(\sigma\) rotates the rows (row 0 becomes row 1, row 1 becomes row 2, \ldots, row \(n - 1\) becomes row 0), \(\tau\) rotates the columns, \(\rho\) reflects the rows (rows 0 and \(n - 1\) are interchanged, rows 1 and \(n - 2\) are interchanged, \ldots, rows \([n/2] - 1\) and \(n - [n/2]\) are interchanged), \(\theta\) reflects the columns, and \(\zeta\) transposes the matrix. The order of the group generated by \(\sigma, \tau, \rho, \theta,\) and \(\zeta\) is \(8n^2\), using the assumption that \(n \geq 3\).

We have already evaluated

\[
\alpha(n, n) = \frac{1}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{A_{ij}},
\]

\[
\alpha(n) = \frac{1}{2n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (2^{A_{ij}} + 2^{E_{ij}}),
\]

\[
\text{polv}(n, n) = \frac{1}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{D_{ij}}.
\]
and
\[b(n, n) = \frac{1}{4n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (2^{A_{ij}} + 2^{B_{ij}} + 2^{C_{ij}} + 2^{D_{ij}}), \]
so
\[\beta(n) = \frac{1}{2} b(n, n) + \frac{1}{4} (\alpha(n) - \frac{1}{2} a(n, n)) + \frac{1}{8n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (2^{E_{ij}} + 2^{F_{ij}} + 2^{G_{ij}} + 2^{H_{ij}}). \quad (11) \]

Let us begin with
\[\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{H_{ij}}. \]

Here we are concerned with the permutations \(\sigma^i \tau^j \rho \theta \zeta \) for \((i, j) \in \{0, 1, \ldots, n - 1\}^2 \). We will need some multiplication rules for the permutations \(\sigma, \tau, \rho, \theta, \) and \(\zeta \), specifically
\[\sigma \tau = \tau \sigma, \quad \sigma \theta = \theta \sigma, \quad \tau \rho = \rho \tau, \quad \rho \theta = \theta \rho, \quad \sigma \rho = \rho \sigma^{-1}, \quad \tau \theta = \theta \tau^{-1}, \]
and
\[\sigma \zeta = \zeta \sigma, \quad \tau \zeta = \zeta \tau, \quad \rho \zeta = \zeta \rho, \quad \theta \zeta = \zeta \theta. \]

It follows that (with \(\tau^{-i} := (\tau^{-1})^i \))
\[\sigma^i \tau^j \rho \theta \zeta = \xi^i \tau^j \zeta \theta \rho = \xi \tau^i \theta \zeta \rho = \xi \theta \rho \tau^{-i} \sigma^{-j}, \]
and hence
\[(\sigma^i \tau^j \rho \theta \zeta)^2 = (\sigma^i \tau^j \rho \theta \zeta)(\xi \rho \tau^{-i} \sigma^{-j}) = \sigma^{i-j} \tau^{i+j} = (\sigma \tau^{-1})^{i-j} = (\sigma^{-1} \tau)^{-i-j}. \quad (12) \]

In particular, if \(i \in \{0, 1, \ldots, n - 1\} \), then the permutation \(\sigma^i \tau^j \rho \theta \zeta \) is of order 2. Furthermore, under this permutation, the entry in position \((k, l)\) moves to position \((n - 1 - [l + i], n - 1 - [k + i])\), where, as before, \([r] := (r \mod n) \in \{0, 1, \ldots, n - 1\} \). Thus, \((k, l)\) is a fixed point if and only if
\[(k, l) = (n - 1 - [l + i], n - 1 - [k + i]). \quad (13) \]

For each \(k \in \{0, 1, \ldots, n - 1\} \) there is a unique \(l \in \{0, 1, \ldots, n - 1\} \) (namely \(l := n - 1 - [k + i] \)) such that (13) holds; indeed,
\[n - 1 - [l + i] = n - 1 - [n - 1 - [k + i] + i] = n - 1 - [n - 1 - (k + i) + i] = n - 1 - [n - 1 - k] = n - 1 - (n - 1 - k) = k. \]

Thus, \(\sigma^i \tau^j \rho \theta \zeta \) with \(i \in \{0, 1, \ldots, n - 1\} \) is of order 2 and has exactly \(n \) fixed points, hence \(\binom{n}{2} \) transpositions. This implies that \(H_{ii} = n(n + 1)/2 \) for such \(i \).

Now we let \((i, j) \in \{0, 1, \ldots, n - 1\}^2\) be arbitrary but with \(i \neq j \). Let us generalize (12) to
\[(\sigma^i \tau^j \rho \theta \zeta)^{2d} = \sigma^{(i-j)d} \tau^{(i+j)d} = ((\sigma \tau^{-1})^{i-j})^d = ((\sigma^{-1} \tau)^{i+j})^d, \]
The proof proceeds much like the proof of Theorem 1. Specifically, \(\sigma^i \tau^j \rho \theta \zeta \) is of order \(2d \), where \(d := n / \gcd(|i - j|, n) \). All cycles have length \(d \) or \(2d \). In fact, if \(d \) is odd, there are \(n/d \) cycles of length \(d \) and \(n(n - 1)/(2d) \) cycles of length \(2d \). If \(d \) is even, there are \(n^2/(2d) \) cycles, all of length \(2d \). And for a given \((i, j) \in \{0, 1, \ldots, n - 1\}^2 \), there are \(n \) pairs \((k, l) \in \{0, 1, \ldots, n - 1\}^2 \) such that \(|k - l| = |i - j| \).

We arrive at the conclusion that

\[
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{H_{ij}} = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{E_{ij}},
\]

where the equality holds by symmetry. We consider the permutations \(\sigma^i \tau^j \rho \zeta \) for \((i, j) \in \{0, 1, \ldots, n - 1\}^2 \). From the multiplication rules, it follows that

\[
\sigma^i \tau^j \rho \zeta = \zeta \theta \tau^{-i} \sigma^j
\]

and hence

\[
(\sigma^i \tau^j \rho \zeta)^2 = (\sigma^i \tau^j \rho \zeta)(\zeta \theta \tau^{-i} \sigma^j) = \sigma^i \tau^j \rho \theta \tau^{-i} \sigma^j = \sigma^{i-j} \tau^{i+j} \rho \theta = \theta \rho \tau^{-i-j} \sigma^{-i-j},
\]

which implies

\[
(\sigma^i \tau^j \rho \zeta)^4 = (\sigma^{i-j} \tau^{i+j} \rho \theta)(\theta \rho \tau^{-i-j} \sigma^{-i-j}) = e.
\]

So the permutation \(\sigma^i \tau^j \rho \zeta \) is of order 4. The entry in position \((k, l) \) moves to position \(([l + j], n - 1 - [k + i]) \) under this permutation. Thus, \((k, l) \in \{0, 1, \ldots, n - 1\}^2 \) is a fixed point of \(\sigma^i \tau^j \rho \zeta \) if and only if

\[
(k, l) = ([l + j], n - 1 - [k + i]).
\]

There is a solution \((k, l) \) if and only if there exists \(l \in \{0, 1, \ldots, n - 1\} \) such that, with \(k := [l + j] \), we have \(n - 1 - [k + i] = l \) or, equivalently,

\[
[l + i + j] = n - 1 - l. \tag{17}
\]

When \(i + j \leq n - 1 \), (17) is equivalent to

\[
l + i + j = n - 1 - l \quad \text{or} \quad l + i + j - n = n - 1 - l
\]

or to

\[
l = (n - 1 - i - j)/2 \quad \text{or} \quad l = (2n - 1 - i - j)/2.
\]

If \(n \) is odd and \(i + j \) is odd, then there is one fixed point, \((k, l) = ([2n - 1 - i + j]/2, [(2n - 1 - i - j)/2]) \). If \(n \) is odd and \(i + j \) is even, then there is one fixed
point, \((k, l) = ([n-1-i+j]/2), ([n-1-i-j]/2])\). If \(n\) is even and \(i+j\) is odd, then there are two fixed points, namely

\[
(\kappa, l) = ([n-1-i+j]/2), ([n-1-i-j]/2]), \\
(\kappa, l) = ([2n-1-i+j]/2), ([2n-1-i-j]/2)).
\]

Finally, if \(n\) is even and \(i+j\) is even, then there is no fixed point.

When \(i+j \geq n\), (17) is equivalent to

\[
l + i + j - n = n - 1 - l \quad \text{or} \quad l + i + j - 2n = n - 1 - l
\]

or to

\[
l = (2n-1 - i - j)/2 \quad \text{or} \quad l = (3n-1 - i - j)/2.
\]

If \(n\) is odd and \(i+j\) is odd, then there is one fixed point, \((\kappa, l) = ([2n-1-i+j]/2), ([2n-1-i-j]/2)). If \(n\) is odd and \(i+j\) is even, then there is one fixed point, \((\kappa, l) = ([n-1-i+j]/2), ([3n-1-i-j]/2)) = ([n-1-i+j]/2), ([n-1-i-j]/2)). If \(n\) is even and \(i+j\) is odd, then there are two fixed points, namely

\[
(\kappa, l) = ([2n-1-i+j]/2), ([n-1-i-j]/2)), \\
(\kappa, l) = ([n-1-i+j]/2), ([n-1-i-j]/2)).
\]

Finally, if \(n\) is even and \(i+j\) is even, then there is no fixed point. Notice that the results are the same for \(i+j \geq n\) as for \(i+j \leq n-1\).

Using (16), under the permutation \((\sigma^i \tau^j \rho \zeta)^2\), the entry in position \((\kappa, l)\) moves to position \((n-1-[k+i-j], n-1-[l+i+j])\). Thus, \((\kappa, l) \in \{0, 1, \ldots, n-1\}^2\) is a fixed point of \((\sigma^i \tau^j \rho \zeta)^2\) if and only if

\[
(\kappa, l) = (n-1-[k+i-j], n-1-[l+i+j]).
\]

A necessary and sufficient condition on \((\kappa, l)\) is (17) together with \([k+i-j] = n-1-k\). Solutions have \(l\) as before. On the other hand, \(k\) must satisfy

\[
k + i - j - n = n - 1 - k, \quad k + i - j = n - 1 - k, \quad \text{or} \quad k + i - j + n = n - 1 - k,
\]

or equivalently,

\[
k = ([n-1-i+j]/2) \quad \text{or} \quad k = ([2n-1-i+j]/2).
\]

If \(n\) is odd, the only fixed points of \((\sigma^i \tau^j \rho \zeta)^2\) are those already shown to be fixed points of \(\sigma^i \tau^j \rho \zeta\). If \(n\) is even and \(i+j\) is odd, there are two fixed points of \((\sigma^i \tau^j \rho \zeta)^2\) that are not fixed points of \(\sigma^i \tau^j \rho \zeta\), namely

\[
(\kappa, l) = ([n-1-i+j]/2), ([2n-1-i-j]/2)), \\
(\kappa, l) = ([2n-1-i+j]/2), ([n-1-i-j]/2)).
\]

Finally, there are no fixed points when \(n\) is even and \(i+j\) is even.
Consequently, if \(n \) is odd, then the permutation \(\sigma^i \tau^j \rho \zeta \), which is of order 4, has only one fixed point. Therefore, it has one cycle of length 1 and \((n^2 - 1)/4\) cycles of length 4. Thus,

\[
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{F_{ij}} = n^2 2^{(n^2+3)/4}.
\]

For even \(n \), if \(i + j \) is odd, then the permutation \(\sigma^i \tau^j \rho \zeta \) has two cycles of length 1 and one cycle of length 2, and the remaining cycles are of length 4. If \(i + j \) is even, then all cycles of the permutation \(\sigma^i \tau^j \rho \zeta \) are of length 4, hence there are \(n^2/4 \) of them. Thus,

\[
\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{F_{ij}} = \frac{1}{2} n^2 2^{(n^2-4)/4+3} + \frac{1}{2} n^2 2^{n^2/4} = 5n^2 2^{n^2/4-1}.
\]

These results, together with (3), (10), (11), (14), and (15), yield (4).

Finally, recall that we have assumed that \(n \geq 3 \). We notice that the formula (4) gives \(\beta(1) = 2 \) and \(\beta(2) = 6 \), which are correct, as we can see by direct enumeration.

In the derivation of (2) in [1], the proof requires \(m, n \geq 3 \) because the group \(D_m \times D_n \) used in the application of Pólya’s enumeration theorem (\(D_m \) being the dihedral group of order \(2m \)), is incorrect if \(m \) or \(n \) is 1 or 2. If \(m = 2 \), row rotation and row reflection are the same, so the latter is redundant. Thus, \(D_2 \) should be replaced by \(C_2 \), the cyclic group of order 2. The reason (2) is still valid is that \(b_1(2, n) = b_2(2, n) \) and \(b_3(2, n) = b_4(2, n) \), as is easily verified. If \(m = 1 \), again row reflection is redundant, so \(D_1 \) should be replaced by \(C_1 \). Here (2) remains valid because \(b_1(1, n) = b_2(1, n) \) and \(b_3(1, n) = b_4(1, n) \). A similar remark applies to \(n = 2 \) and \(n = 1 \), except that here \(b_1(m, 2) = b_3(m, 2) \), \(b_2(m, 2) = b_4(m, 2) \), \(b_1(m, 1) = b_3(m, 1) \), and \(b_2(m, 1) = b_4(m, 1) \).

References

[1] S. N. Ethier, Counting toroidal binary arrays, *J. Integer Sequences* 16 (2013), (13.4.7) 1–8.

[2] N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, [http://oeis.org/], 2015.

[3] J. H. van Lint and R. M. Wilson, *A Course in Combinatorics*, Second Ed., Cambridge University Press, 2001.