A Fast Iterative Method Python package

Thomas Grandits

1 Institute of Computer Graphics and Vision, TU Graz

Summary

The anisotropic eikonal equation is a non-linear partial differential equation, given by

\[
\begin{align*}
\left\langle \nabla \phi, D \nabla \phi \right\rangle &= 1 \quad \text{on } \Omega \\
\phi(x_0) &= g(x_0) \quad \text{on } \Gamma \subset \Omega
\end{align*}
\]

In practice, this problem is often associated with computing the earliest arrival times \(\phi \) of a wave from a set of given starting points \(x_0 \) through a heterogeneous medium (i.e. different velocities are assigned throughout the medium). This equation yields infinitely many weak solutions (Evans, 2010) and can thus not be straight-forwardly solved using standard Finite Element approaches.

\texttt{fim-python} implements the Fast Iterative Method (FIM), proposed in (Fu et al., 2013), purely in Python to solve the anisotropic eikonal equation by finding its unique viscosity solution. In this scenario, we compute \(\phi \) on tetrahedral/triangular meshes or line networks for a given \(D, x_0 \) and \(g \). The method is implemented both on the CPU using \texttt{numba} and \texttt{numpy}, as well as the GPU with the help of \texttt{cupy} (depends on CUDA). The library is meant to be easily and rapidly used for repeated evaluations on a mesh.

The FIM locally computes an update rule to find the path the wavefront will take through a single element. Since the algorithm is restricted to linear elements, the path through an element will also be a straight line. In the case of tetrahedral domains, the FIM thus tries to find the path of the linear update from a face spanned by three vertices \(v_1, v_2, v_3 \) to the opposite vertex \(v_4 \). \textit{Figure 1} visualizes the update. For triangles and lines, the algorithm behaves similarly but the update origin is limited to a side or vertex respectively. The exact equations used to solve this problem in this repository were previously described (among others) in (Grandits et al., 2020).

\textit{Figure 1:} Update inside a single tetrahedron

Two different methods are implemented in \texttt{fim-python}: In the \textit{Jacobi} method, the above local update rule is computed for all elements in each iteration until the change between two

Grandits, T., (2021). A Fast Iterative Method Python package. Journal of Open Source Software, 6(66), 3641. https://doi.org/10.21105/joss.03641
subsequent iterations is smaller than a chosen ε. This version of the algorithm is best suited for the GPU, since it is optimal for a SIMD (single instruction multiple data) architecture. The active list method is more closely related to the method presented in (Fu et al., 2013): We keep track of all vertices that require a recomputation in the current iteration on a so-called active list which we keep up-to-date.

Comparison to other tools

There are other tools available to solve variants of the eikonal equation, but they differ in functionality to fim-python.

scikit-fmm implements the Fast Marching Method (FMM) (Sethian, 1996), which was designed to solve the isotropic eikonal equation ($D = cI$ for $c \in \mathbb{R}$ and I being the identity matrix). The library works on uniform grids, rather than meshes.

GPUTUM: Unstructured Eikonal implements the FIM in CUDA for triangulated surfaces and tetrahedral meshes, but has no Python bindings and is designed as a command line tool for single evaluations.

Statement of need

The eikonal equation has many practical applications, including cardiac electrophysiology, image processing and geoscience, to approximate wave propagation through a medium. In the example of cardiac electrophysiology (Franzone et al., 2014), the electrical activation times ϕ are computed throughout the anisotropic heart muscle with varying conduction velocities D.

fim-python tries to wrap the FIM for CPU and GPU into an easy-to-use Python package for multiple evaluations with a straight-forward installation over PyPI. This should provide engineers and researchers alike with an accessible tool that allows evaluations of the eikonal equation for general scenarios.

References

Evans, L. C. (2010). *Partial differential equations* (Second, Vol. 19, p. xxii+749). American Mathematical Society, Providence, RI. https://doi.org/10.1090/gsm/019

Franzone, P. C., Pavarino, L. F., & Scacchi, S. (2014). *Mathematical cardiac electrophysiology* (Vol. 13). Springer. https://doi.org/10.1007/978-3-319-04801-7

Fu, Z., Kirby, R., & Whitaker, R. (2013). A Fast Iterative Method for Solving the Eikonal Equation on Tetrahedral Domains. *SIAM Journal on Scientific Computing*, 35(5), C473–C494. https://doi.org/10.1137/120881956

Grandits, T., Gillette, K., Neic, A., Bayer, J., Vigmond, E., Pock, T., & Plank, G. (2020). An inverse Eikonal method for identifying ventricular activation sequences from epicardial activation maps. *Journal of Computational Physics*, 419, 109700. https://doi.org/10.1016/j.jcp.2020.109700

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. *Proceedings of the National Academy of Sciences*, 93(4), 1591–1595. https://doi.org/10.1073/pnas.93.4.1591