Pharyngeal Microflora Disruption by Antibiotics Promotes Airway Hyperresponsiveness after Respiratory Syncytial Virus Infection

Ke Ni1, Simin Li1, Qiuling Xia1, Na Zang1, Yu Deng2, Xiaohong Xie2, Zhengxiu Luo2, Yan Luo1, Lijia Wang1, Zhou Fu2, Enmei Liu2*
1 Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing Medical University, Chongqing, China, 2 Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China

Abstract

Background: Regulatory T cells (Treg cells), which are essential for regulation of immune response to respiratory syncytial virus (RSV) infection, are promoted by pharyngeal commensal pneumococcus. The effects of pharyngeal microflora disruption by antibiotics on airway responsiveness and relative immune responses after RSV infection have not been clarified.

Methods: Female BALB/c mice (aged 3 weeks) were infected with RSV and then treated with either oral antibiotics or oral double distilled water (ddH2O) from 1 d post infection (pi). Changes in pharyngeal microflora were analyzed after antibiotic treatment for 7 d and 14 d. At 8 d pi and 15 d pi, the inflammatory cells in bronchoalveolar lavage fluid (BALF) were investigated in combination with tests of pulmonary histopathology, airway hyperresponsiveness (AHR), pulmonary and splenic Treg cells responses. Pulmonary Foxp3 mRNA expression, IL-10 and TGF-β1 in BALF and lung homogenate were investigated at 15 d pi. Ovalbumin (OVA) challenge was used to induce AHR after RSV infection.

Results: The predominant pharyngeal commensal, Streptococcus, was cleared by antibiotic treatment for 7 d. Same change also existed after antibiotic treatment for 14 d. After RSV infection, AHR was promoted by antibiotic treatment at 15 d pi. Synchronous decreases of pulmonary Treg cells, Foxp3 mRNA and TGF-β1 were detected. Similar results were observed under OVA challenge.

Conclusions: After RSV infection, antibiotic treatment cleared pharyngeal commensal bacteria such as Streptococcus, which consequently, might induce AHR and decrease pulmonary Treg cells.

Introduction

Respiratory syncytial virus (RSV) is one of the most common pathogens responsible for lower respiratory tract infection in infants and young children. It causes bronchiolitis and is related to recurrent wheezing in later childhood [1]. However, the exact factor that links RSV infection and recurrent wheezing is not clear. Antibiotic use, resulting in alteration of bacterial colonization in airway in neonates, is related to later recurrent wheezing [2,3]. Globally, antibiotic treatment is used frequently in patients with RSV infection [4]. However, antibiotic treatment is only recommended when bacterial infection is strongly suspected or proven after RSV infection [5,6] and the rate of RSV and bacteria co-infection is not high [7,8]. It is speculated that abuse of antibiotic treatment is the link between RSV infection and recurrent wheezing.

Wheezing is related to the differences of nasopharyngeal bacterial colonization [3]. In children with wheezing, bacterial colonization of the airway contains less dominant bacteria and more non-dominant bacteria than that of healthy children [9]. The pharyngeal microflora affects immune responses in surrounding lymphoid tissue. A higher proportion of Treg cells among adenoid mononuclear cells of children with positive pharyngeal commensal pneumococcus culture has been reported [10]. The whole cell antigen of pneumococcus induces adenoid IL-10-producing Treg cells proliferation [10]. Treg cells play an important role in modulating immune response to RSV infection. Increased Treg cells in peripheral blood or lung after RSV infection have been found in humans and mice [11–13]. The inhibitory effect of Treg cells on CD8+ T cells may balance RSV clearance and pathological processes and thus contribute to recovery [12–15].

citation_Ni_2012_PLOS_ONE_7_7_41104
Disruption of commensal microbiota caused by antibiotic treatment reduces pulmonary Treg cells and induces more severe airway inflammation in response to aero-allergen ovalbumin (OVA) challenge [16]. It is not clear whether this effect links RSV infection and later wheezing. In this study, pharyngeal microbiota was disrupted using the broad-spectrum antibiotics cefoperazone, to confirm its effect on RSV-induced airway inflammation, airway hyperresponsiveness (AHR) and to investigate the mechanisms involved. Previous studies indicate that following RSV infection, OVA sensitization via airway increases airway responsiveness to methacholine [17]. Therefore, OVA challenge was introduced in order to study the effect of disrupted pharyngeal microbiota on airway responsiveness induced by both pathogen and allergen exposure. Our study shows for the first time that after RSV infection in early life, pharyngeal microbiota disruption by antibiotic therapy can promote AHR and reduce pulmonary Treg cells synchronously.

Materials and Methods

Animal Model and Ethics Statement
Female BALB/c mice (10 ± 2 g, aged 3 weeks) were housed under specific pathogen-free conditions in individual ventilated cages at the Laboratory Animal Center of Chongqing Medical University. Animals were provided with food and sterile water ad libitum. Treatment protocols were conducted as follows: (1) oral cefoperazone treatment ad libitum after RSV infection: contained the RSV+7d-Antibiotics group and the RSV+14d-Antibiotics group; (2) oral cefoperazone treatment ad libitum after mock infection: contained the 7d-Antibiotics group and the 14d-Antibiotics group; (3) oral ddH2O treatment ad libitum after RSV infection: contained RSV groups tested at 8 d pi and 15 d pi; (4) oral ddH2O treatment ad libitum after mock infection: contained mock groups tested at 8 d pi and 15 d pi. Changes in pharyngeal microbiota were tested by polymerase chain reaction (PCR) at 8 d pi and 15 d pi. Airway inflammation, AHR, pulmonary and splenic Treg cells responses were analyzed in parallel. 1% (1 g/100 m PBS) OVA aerosol challenge for 30 min/d from 8 d pi to 14 d pi was administrated to amplify AHR after RSV infection, and identical tests were conducted at 15 d pi. PBS challenge was used as control. All animals were treated in strict accordance to the guidelines for the Laboratory Animal Use and Care from Chinese CDC and the Rules for the Medical Laboratory Animal (1998) from the Ministry of Health, China, under the protocols approved by National Institute for Communicable Disease Control and Prevention. All actions on animals were approved by the Ethics Committee of Chongqing Medical University.

Virus
Hep-2 cells were cultured in DMEM medium with 10% fetal bovine serum (FBS). RSV A2 strain was grown in Hep-2 cells with DMEM medium supplemented with 2% FBS. The virus was purified as follows: after cells and supernatant were harvested, repeated freezing and thawing were carried out to fully release the virus, and then were centrifuged at 4°C. The supernatant was harvested as virus suspension and frozen at −80°C. It was adjusted to contain 3–5 × 10^8 PFU of RSV/ml as assessed by plaque assay.

Infection of Mice
Mice were infected under anesthesia by intranasal inoculation of RSV (10^6 PFU in 100 μl virus suspension). Control mice were sham-infected with the DMEM medium with 2% FBS, which was centrifuged under the same conditions as the virus suspension’s. The efficacy of infection was certified by plaque assay and PCR in whole lung sample [18,19]. At 4 d pi, mice were sacrificed. The lungs were removed and partitioned, either (a) homogenized and cultured in Hep-2 cells, followed by examination of infection, demonstrated by the presence of syncytial lesions; or (b) used to extract RNA (Bioteke RNzol Reagent, Beijing, China) and reversely transcribed into cDNA (Takara PrimeScript RT reagent Kit, Dalian, China). RSV G protein gene primers were: P1: 5’-TGGGACACTCTTAAATCAT-3’ and P2: 5’-TGATTG-CAAGCCGTGAG AT-3’. The PCR products were sequenced to verify RSV infection.

Antibiotic Treatment and Identification of Pharyngeal Bacteria
As previously reported [20], Cefoperazone (0.5 mg/ml; Sigma-Aldrich, St. Louis, Mo, USA) was administered orally to mice ad libitum in drinking water. At 8 d pi and 15 d pi, some mice were randomly sacrificed. Throat swabs were cultured using Columbia Blood Agar, in an incubator with 5% CO2 for 20 h. Then, all colonies in the agar were collected and purified. The total DNA was extracted by DNeasy Kit (QIAGEN, Hilden, Germany). PCR of the V3 conservative region of 16s rRNA gene of all bacteria, and the specific region of Streptococcus and E coli were performed to confirm the antibiotic-induced disruption of pharyngeal microbiota. Primers used were as follows: V3 F: 5’-CCTAGGGAGGAGCAG-3’, R: 5’-ATTACGGG GCCTGCGG-3’; Streptococcus F: 5’T-GTA-CAGTTGCTTCAAGAGATAC-3’, R: 5’-ACGTTCGATTT- CATCACCGTG-3’; E coli: F: 5’-CTATTTTCTGTCGCCCTTC G-3’, R: 5’-GTTAAT GTAGTGTTGTCGAAAAC-3’ [21]. All products were proved by sequencing. Counting of pharyngeal bacterial colonies was performed as follows: mouse was sacrificed, its pharyngeal mucosa tissue was removed and frozen in PBS at 100 mg: 1 ml. 10 µl of the pharyngeal mucosa tissue homogenate was cultured dispersely on Columbia Blood Agar, in an incubator with 5% CO2 for 20 h. All bacterial colonies growing on Columbia Blood Agar were counted.

Bronchoalveolar Lavage Fluid and Lung Homogenate Analysis
For bronchoalveolar lavage fluid (BALF) analysis, mouse was sacrificed and its airway was lavaged six times with 0.5 ml PBS, then BALF was centrifuged. The supernatant was collected and stored at −80°C to test IL-10 and TGF-β1 by use of ELISA kits (Beijing 4A Biotech Co., Ltd. China), whereas the cells at bottom were classified according to standard morphologic criteria in 100 cells via light microscopy after Wright-Giemsa staining. For lung homogenate analysis, mouse was sacrificed and its lung was removed and weighted. All the lung tissue was grinded in PBS at 100 mg: 1 ml, and homogenate was then centrifuged. The supernatant was collected and stored at −80°C to test IL-10 and TGF-β1 by use of ELISA kits (Beijing 4A Biotech Co., Ltd. China).

Airway Responsiveness Detection
Pulmonary function measurement was performed by whole-body plethysmography (EMKA Technologies, Paris, France). AHR was expressed as enhanced pause (Penh) under each concentration of Methacholine (Sigma-Aldrich, St. Louis, Mo, USA), using PBS as baseline.

Flow Cytometry Analysis
To test the Treg cells, lung and spleen were minced separately in PBS. Collagenase A was used to digest only the lung tissue. All cells passed through a 45 µm mesh, and were centrifuged at 450 g
for 10 min at room temperature. Cells at the bottom were collected and washed, and the single-cell suspension was sent for flow cytometry analysis. Monoclonal antibodies anti-mouse CD4-FITC (Clone GK1.5, BD Biosciences, Heidelberg, Germany), anti-mouse CD25-PE (Clone PC61.5, eBioscience, San Diego, USA) and anti-mouse Foxp3-PE-Cy5 (Clone FJK-16s, eBioscience, San Diego, USA) were used to label the Treg cells. For intracellular staining of Foxp3, Foxp3 Fixation/Permeabilization (eBioscience, San Diego, USA) and 10× Permeabilization (eBioscience, San Diego, USA) were used. To prevent nonspecific binding of mAb, all samples were pre-incubated with purified rat IgG: anti-mouse CD16/CD32 monoclonal antibody (Clone 2.4G2, BD Biosciences, Heidelberg, Germany). Cellular phenotypes were measured using a BD FacsCaliber flow cytometer and analysis was carried out using the BD CellQuest software.

Real Time - Polymerase Chain Reaction
RNA from lung tissues was extracted and reversely transcribed into cDNA. The Foxp3 and β-actin were quantified by Real-time PCR (BIO-RAD, Hercules, USA). SYBR Green RealMasterMix (TIANGEN, Beijing, China) as well as the following primers were used as fluorescence: Foxp3: F: 5′-AGCTGGACGCTGAAAGGA-3′ and R: 5′-GCTACGTGCAAGGACGAC-3′; β-actin F: 5′-TGGCATGGTTACCA ACTGGGAC-3′ and R: 5′-TCACCGTTGGCTTAGGGTTC-3′. Both targets were run in triplicate.

Statistical Analysis
Graphpad Prism 5.0 utilizing Two-way ANOVA with Bonferroni post-tests were used to analyze AHR and inflammatory cell analysis. Other data were compared using Kruskal-Wallis test. All experimental results were expressed as mean ± SEM and P<0.05 was considered to be statistically significant.

Results
RSV Infection in Mice
Mice infected with RSV were sacrificed at 4 d pi. RSV titers in the lung were analyzed by plaque assay as 6.06±1.71 PFU/ml lung homogenate. RSV infection was also verified by PCR and sequencing.

Cefoperazone Disrupts the Pharyngeal Microflora in Mice
Without treatment, the predominant pharyngeal commensal bacterium was Streptococcus, as previously described [22]. After cefoperazone treatment for 7 d, Streptococcus in pharyngeal mucosa of mice was cleared (Fig. 1A), whereas some resistant E. coli were detectable (Fig. 1B). The number of bacterial colonies after cefoperazone treatment (3.00±0.58×10⁵ CFU/g of pharyngeal mucosa tissue) was markedly lower than the number (127.30±5.13×10⁵ CFU/g of pharyngeal mucosa tissue) in mock group. RSV infection did not affect the predominant microflora according to PCR analysis (Fig. 1A, 1B). At 15 d pi, the same change of pharyngeal microflora was found (data not shown).

Pharyngeal Microflora Disruption by Antibiotics Promotes AHR after RSV Infection
Enumeration of inflammatory cells in BALF, histological analysis and AHR tests were performed at 8 d pi and 15 d pi (Fig. 2A–H). RSV infection induced an obvious increase of inflammatory cells in BALF at 8 d pi but not at 15 d pi (Fig. 2A, 2B). Significant differences in subgroups of these inflammatory cells were detected. Normally, macrophages predominated in BALF (Fig. 2A, 2B). Increased number of lymphocytes was observed in BALF at 8 d pi and 15 d pi, whereas the number of macrophages did not increased highly and even reduced at 15 d pi (Fig. 2A, 2B). RSV infection alone did not induce obvious AHR at these time-points (Fig. 2D, 2E). Histopathological analysis revealed, after RSV infection, more inflammatory cell infiltrated around the bronchi at 8 d pi (Fig. 2G) and 15 d pi (Fig. 2H), although this injury was reduced at 15 d pi compared with 8 d pi. Antibiotic treatment after RSV infection also resulted in accumulation of inflammatory cells in airway, again predominantly lymphocytes, at 8 d pi (Fig. 2A) and 15 d pi (Fig. 2B). Antibiotic treatment after RSV infection induced AHR in response to methacholine challenge at high concentrations at 15 d pi but not at 8 d pi (Fig. 2D, 2E). Histopathological injury in the RSV plus antibiotic treatment group did not show significant difference from that of the RSV infection groups at these time-points (Fig. 2G, 2H). Antibiotic treatment alone did not obviously influence the inflammatory cell count in BALF, histopathological injury or AHR compared with mock group (Fig. 2A–H). In response to OVA challenge, no deteriorative trends were observed in inflammatory cell count in BALF or AHR tests (Fig. 2C, 2F), although greater inflammatory cell infiltration was found around the bronchi (Fig. 2H).

Figure 1. Examination of pharyngeal microflora. (A) PCR amplification of the specific region of Streptococcus. 1, Marker; 2, Positive control, streptococcus NCTC7466; 3, Negative control; 4, No RSV infection, oral ddH2O for 7 d; 5, After RSV infection, oral ddH2O for 7 d; 6, No RSV infection, oral antibiotics for 7 d; 7, After RSV infection, oral antibiotics for 7 d; 8, Marker. PCR product, 197 bps. (B) PCR amplification of the specific region of E. coli. 1, Marker; 2, Positive control, E. coli ATCC25922; 3, Negative control; 4, No RSV infection, oral ddH2O for 7 d; 5, After RSV infection, oral ddH2O for 7 d; 6, No RSV infection, oral antibiotics for 7 d; 7, After RSV infection, oral antibiotics for 7 d; 8, Marker. PCR product, 450 bps. doi:10.1371/journal.pone.0041104.g001
Pharyngeal Microflora Disruption Promotes AHR
Firstly, we demonstrated the disruption of the pharyngeal microflora following oral antibiotic treatment. Under normal conditions, Streptococcus was found to be the predominant pharyngeal bacterium, which was in accordance with previous studies [22]. It could be speculated that rapid growth of the predominant Streptococcus in the limited space competitively inhibited the growth of the non-dominant E. coli. Therefore, Streptococcus was positive whereas E. coli was negative in non-antibiotic treated groups. Following antibiotic treatment, Streptococcus was cleared while antibiotic-resistant E. coli remained. It removed the space constraint on E. coli growth. Consequently, Streptococcus was negative whereas E. coli was positive in the antibiotic treated groups.

Secondly, we demonstrated pharyngeal microflora disruption by antibiotics promoted AHR after RSV infection. In our study, RSV infection induced greater inflammatory cell accumulation in BALF and infiltration around the bronchi at 8 d pi. Furthermore, after period of acute inflammation, the inflammation relieved relatively at 15 d pi. However, AHR was not detected at these time-points. In different studies, the persistent time of AHR after RSV infection varies. [23,26], AHR Peak can be detected during the first 6 days after RSV infection, which is followed by a rapid reduction in this effect. In this study, AHR tests were performed at 8 d pi and 15 d pi, which were outside this peak period. This is considered to be the reason for the absence of AHR in our RSV infection model. Actually, we found AHR peak appeared at 4 d pi, reduced at 6 d pi and returned to normal level at 8 d pi (data not shown). However, when pharyngeal microflora was disrupted by antibiotic treatment for 14 days after infection, AHR was significantly induced at 15 d pi, thus indicating the effect of pharyngeal microflora on airway responsiveness.

The relationship between bacterial colonization in neonates and recurrent wheezing in later childhood has been reported. The Copenhagen prospective study on asthma in a childhood cohort indicates that neonates colonized with specific bacteria in the hypopharyngeal region are at increased risk of recurrent wheeze and asthma in early life [3]. Bacterial colonizations in airways are different between children with recurrent wheezing and healthy children [9]. There are increasing evidences indicating that microflora disruption caused by antibiotics, accompanied by recurrent allergen challenge, disrupts the immune balance of airways and aggravates airway inflammation [16,20]. In these studies, all of airway inflammation and AHR were allergen-induced. Our research is the first to demonstrate the influence of pharyngeal commensal microflora on pathogen-induced airway inflammation and AHR.

Thirdly, we observed that pharyngeal microflora disruption by antibiotics resulted in a decrease in Treg cells and Foxp3 mRNA expression in the lung after RSV infection. The search for a Treg cells-specific molecular marker has revealed that the majority, if not all, of these cells constitutively express the CD25 molecule and depletion of CD25+CD4+ T cells spontaneously evokes autoimmune disease [27]. Recent efforts have shown that natural Treg cells specifically express the transcription factor Foxp3 and that mutations of the Foxp3 gene produce a variety of immunological diseases in humans [28]. In our study, frequencies of Foxp3 expressing cells were downregulated after antibiotic treatment and after RSV infection. Consequently, the number of Treg cells was downregulated, which might result in the downregulation of Foxp3 mRNA expression.
Figure 3. Flow cytometry analysis of Treg cells response and real time-PCR analysis of Foxp3 mRNA expression. (A) Percentages of pulmonary Treg cells at 8 d pi. (B) Percentages of splenic Treg cells at 8 d pi. (C) Percentages of pulmonary Treg cells at 15 d pi. (D) Percentages of splenic Treg cells at 15 d pi. (E) Percentages of pulmonary Treg cells at 15 d pi. OVA exposure was introduced. (F) Percentages of splenic Treg cells at 15 d pi. OVA exposure was introduced. (G) Relative Foxp3 mRNA expression in lung at 15 d pi. The mock treated group was used as the standard. (H)
Relative Foxp3 mRNA expression in lung at 15 d pi, OVA exposure was introduced. The mock treated group was used as the standard. Data (N = 5–6) of FCM are presented as the mean ± SEM of three independent experiments. Please note that some groups of data are presented twice in different panels for better interpretation. Data of each group in mRNA expression analysis are based on N = 7–8. * P<0.05, **P<0.01, ***P<0.001.
doi:10.1371/journal.pone.0041104.g003

Figure 4. ELISA analysis of IL-10 and TGF-β1 in BALF. (A) IL-10 expression in BALF. (B) TGF-β1 expression in BALF. (C) IL-10 expression in homogenate. (D) TGF-β1 expression in homogenate. Data (N = 7–9) are presented as the mean ± SEM of two independent experiments. * P<0.05, **P<0.01, ***P<0.001.
doi:10.1371/journal.pone.0041104.g004
Pharyngeal Microflora Disruption Promotes AHR

References

1. Henderson J, Hilliard TN, Sherriff A, Stalker D, Al Shammari N, et al. (2005) Hospitalization for RSV bronchiolitis before 12 months of age and subsequent asthma, atopy and wheeze: a longitudinal birth cohort study. Pediatr Allergy Immunol 16: 386–392.

2. Penders J, Kummeling I, Thaiss C (2011) Infant antibiotic use and wheeze and asthma risk - a systematic review and meta-analysis. Eur Respir J.

3. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halljager LB, et al. (2007) Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 357: 1497–1495.

4. Spurlling GK, Fonseka K, Dous J, Del Mar C (2007) Antibiotics for bronchiolitis in children. Cochrane Database Syst Rev: CD005189.

5. (2006) Diagnosis and management of bronchiolitis. Pediatrics 118: 1774–1793.

6. Steiner RW (2004) Treating acute bronchiolitis with RSV. Am Fam Physician 69: 325–330.

7. Antonow JA, Hansen K, McKinstry CA, Byington CL (1998) Sepsis evaluations in hospitalized infants with bronchiolitis. Pediatr Infect Dis J 17: 231–236.

8. Jones JH, Hilliard TN, Sherriff A, Stalker D, Al Shammari N, et al. (2005) Hospitalization for RSV bronchiolitis before 12 months of age and subsequent asthma, atopy and wheeze: a longitudinal birth cohort study. Pediatr Allergy Immunol 16: 386–392.

9. Penders J, Kummeling I, Thaiss C (2011) Infant antibiotic use and wheeze and asthma risk - a systematic review and meta-analysis. Eur Respir J.

10. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halljager LB, et al. (2007) Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 357: 1497–1495.

11. Steiner RW (2004) Treating acute bronchiolitis with RSV. Am Fam Physician 69: 325–330.

12. Antonow JA, Hansen K, McKinstry CA, Byington CL (1998) Sepsis evaluations in hospitalized infants with bronchiolitis. Pediatr Infect Dis J 17: 231–236.

13. Jones JH, Hilliard TN, Sherriff A, Stalker D, Al Shammari N, et al. (2005) Hospitalization for RSV bronchiolitis before 12 months of age and subsequent asthma, atopy and wheeze: a longitudinal birth cohort study. Pediatr Allergy Immunol 16: 386–392.

14. Penders J, Kummeling I, Thaiss C (2011) Infant antibiotic use and wheeze and asthma risk - a systematic review and meta-analysis. Eur Respir J.

15. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halljager LB, et al. (2007) Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 357: 1497–1495.

16. Steiner RW (2004) Treating acute bronchiolitis with RSV. Am Fam Physician 69: 325–330.

17. Antonow JA, Hansen K, McKinstry CA, Byington CL (1998) Sepsis evaluations in hospitalized infants with bronchiolitis. Pediatr Infect Dis J 17: 231–236.

18. Jones JH, Hilliard TN, Sherriff A, Stalker D, Al Shammari N, et al. (2005) Hospitalization for RSV bronchiolitis before 12 months of age and subsequent asthma, atopy and wheeze: a longitudinal birth cohort study. Pediatr Allergy Immunol 16: 386–392.
18. Chavez-Bueno S, Mejias A, Gomez AM, Olsen KD, Rios AM, et al. (2005) Respiratory syncytial virus-induced acute and chronic airway disease is independent of genetic background: an experimental murine model. Virol J 2: 46.

19. Schwarze J, Makela M, Cieslewicz G, Dakhama A, Lahn M, et al. (1999) Transfer of the enhancing effect of respiratory syncytial virus infection on subsequent allergic airway sensitization by T lymphocytes. J Immunol 163: 5729–5734.

20. Noverr MC, Falkowski NR, McDonald RA, McKenzie AN, Huffnagle GB (2005) Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect Immun 73: 30–38.

21. Yu Z, Morrison M (2004) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70: 4800–4806.

22. Carpenzi de Gutierrez R, Miguel de Nader O, Ruiz Holgado AP, Nader-Macias ME (1999) Microbial flora variations in the respiratory tract of mice. Mem Inst Oswaldo Cruz 94: 701–707.

23. Stein RT, Sherrill D, Morgan WJ, Holberg CJ, Halonen M, et al. (1999) Respiratory syncytial virus in early life and risk of wheeze and allergy by age 13 years. Lancet 354: 541–545.

24. Fjaerli HO, Farstad T, Rod G, Rostvold T, Gulbrandsen P, et al. (2005) Acute bronchiolitis in infancy as risk factor for wheezing and reduced pulmonary function by seven years in Akershus County, Norway. BMC Pediatr 5: 31.

25. Estrapeau D, Torres JP, Somers CS, Tagliahue C, Khokhar S, et al. (2008) Respiratory syncytial virus persistence in the lungs correlates with airway hyperreactivity in the mouse model. J Infect Dis 198: 1435–1443.

26. Jafri HS, Chavez-Bueno S, Mejias A, Gomez AM, Rios AM, et al. (2004) Respiratory syncytial virus induces pneumonia, cytokine response, airway obstruction, and chronic inflammatory infiltrates associated with long-term airway hyperresponsiveness in mice. J Infect Dis 189: 1856–1865.

27. Sakaguchi S, Wing K, Miyara M (2007) Regulatory T cells - a brief history and perspective. Methods Mol Biol 707: 3–17.

28. Sakaguchi S, Wing K, Miyara M (2007) Regulatory T cells - a brief history and perspective. Eur J Immunol 37 Suppl 1: S116–123.

29. Osman S, Rask C, Wold AE, Hulknrautz S, Telemo E (2006) Impaired regulatory T cell function in germ-free mice. Eur J Immunol 36: 2356–2364.

30. Basset C, Thiam F, Martins CD, Holton J, Clements JD, et al. (2010) Cholera-like Enterotoxins and Regulatory T cells. Toxins (Basel) 2: 1774–1795.

31. Scerbo MJ, Bilobol MJ, Roth GA, Mondragon CG (2012) Synapsin peptide fused to E. coli heat-labile toxin B subunit induces regulatory T cells and modulates cytokine balance in experimental autoimmune encephalomyelitis. J Neuroimmunol 242: 16–25.

32. Burkhart JT, Wikstrom ME, Stumbles PA, Sly PD, Turner DJ (2009) Attenuation of allergen-induced airway hyperresponsiveness is mediated by airway regulatory T cells. Am J Physiol Lung Cell Mol Physiol 296: L307–319.

33. Presser K, Schwinge D, Wegmann M, Huber S, Schmitt S, et al. (2008) Coexpression of TGF-beta1 and IL-10 enables regulatory T cells to completely suppress airway hyperreactivity. J Immunol 181: 7731–7738.

34. Del Perro G, De Carli M, Almerigogna F, Giudizi MG, Biasiotto R, et al. (1993) Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 150: 355–360.

35. Letserio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16: 137–161.

36. Gordon ED, Sudha SS, Wang ZE, Woodruff PG, Yuan S, et al. (2012) A protective role for perisinus and TGF-beta in IgE-mediated allergy and airway hyperresponsiveness. Clin Exp Allergy 42: 144–153.

37. Alcorn JF, Rinaldi LM, Jaffe EF, van Loon M, Bates JH, et al. (2007) Transforming growth factor-beta1 suppresses airway hyperresponsiveness in allergic airway disease. Am J Respir Crit Care Med 176: 974–982.

38. Uhr EW, Casale J, Keszler RM, Busse WW, Lemanske RF, Jr., et al. (1996) Parainfluenza virus-induced persistence of airway inflammation, fibrosis, and dysfunction associated with TGF-beta 1 expression in brown Norway rats. Am J Respir Crit Care Med 154: 1034–1042.

39. O’Flaherty S, Saulnier DM, Pot B, Versalovic J (2010) How can probiotics and prebiotics impact mucosal immunity? Gut Microbes 1: 293–300.

40. Bienenstock J, McDermott MR (2005) Bronchus- and nasal-associated lymphoid tissues. Immunol Rev 206: 22–31.