Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review

Nadda Muhamad¹
Tullayakorn Plengsuriyakarn¹,²
Kesara Na-Bangchang¹,²

¹Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand; ²Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand

Abstract: Patients treated with conventional cancer chemotherapy suffer from side effects of the drugs due to non-selective action of chemotherapeutic drugs to normal cells. Active targeting nanoparticles that are conjugated to targeting ligands on the surface of nanoparticles play an important role in improving drug selectivity to the cancer cell. Several chemotherapeutic drugs and traditional/herbal medicines reported for anticancer activities have been investigated for their selective delivery to cancer cells by active targeting nanoparticles. This systematic review summarizes reports on this application. Literature search was conducted through PubMed database search up to March 2017 using the terms nanoparticle, chemotherapy, traditional medicine, herbal medicine, natural medicine, natural compound, cancer treatment, and active targeting. Out of 695 published articles, 61 articles were included in the analysis based on the predefined inclusion and exclusion criteria. The targeting ligands included proteins/peptides, hyaluronidase acid, folic acid, antibodies/antibody fragments, aptamer, and carbohydrates/polysaccharides. In vitro and in vivo studies suggest that active targeting nanoparticles increase selectivity in cellular uptake and/or cytotoxicity over the conventional chemotherapeutic drugs and non-targeted nanoparticle platform, particularly enhancement of drug efficacy and safety. However, clinical studies are required to confirm these findings.

Keywords: active targeting, nanoparticles, ligands, chemotherapy, natural active compounds, cancer

Introduction

Cancer remains one of the major causes of deaths worldwide. In 2017, approximately 1.7 million new cases and 600 thousand deaths were estimated to occur in the USA.¹ Most patients treated with conventional chemotherapy suffer from serious side effects due to non-selective action of chemotherapeutic drugs to normal cells. For a few decades, nanoparticles have been developed as a drug delivery system of various chemotherapeutic drugs to enhance drug efficacy and safety.²⁻⁴ Nanoparticles play an important role in increasing drug concentration in cancer cells by enhancing drug accumulation by passive and active targeting mechanisms as well as by decreasing drug efflux from cancer cells. The passive targeting nanoparticle is the mechanism by which the drugs leak from blood vessels supplying cancer cells and accumulate in the cells by enhanced permeability and retention (EPR) effect.² The active targeting nanoparticles, on the other hand, target ligands conjugated on the surface of nanoparticles, resulting in increasing cellular uptake by receptor-mediated endocytosis and therefore increased...
Muhamad et al
drug accumulation in cancer cells. This mechanism relies on the interaction between tumor ligands conjugated on the surface of nanoparticles and cell-surface receptors or antigens on cancer cell surfaces (Figure 1). Nanoparticles acting via both mechanisms have been shown to increase drug concentration in cancer cells. Active targeting nanoparticles have been shown in various studies to be more efficient in increasing drug accumulation in cancer cells and therefore play important role not only in modern cancer chemotherapy, but also in cancer therapy with traditional/herbal medicines. A number of nanoparticle formulations derived from these active compounds have been developed for active targeting purpose to improve anticancer efficacy and to reduce side effects. The objective of this current review is to summarize the research articles relating to the application of active targeting nanoparticles delivering system for chemotherapeutic drugs derived from chemical synthesis as well as natural sources.

Materials and methods
Study selection and inclusion and exclusion criteria
This systematic review was conducted through the search from PubMed database up to March 2017. The following keywords were used: nanoparticle, chemotherapy, traditional medicine, herbal medicine, natural medicine, natural compound, cancer treatment, and active targeting. Inclusion criteria for selection of the searched articles were 1) articles in full text and written in English; 2) articles with in vitro or in vivo investigations of effects of nanoparticles delivering chemotherapeutic drugs or traditional/herbal medicines on efficacy and/or safety; and 3) articles with investigations of targeting and receptor/antigen. The articles with insufficient data for extraction or those with application for radiotherapy, gene therapy, photodynamic therapy, or for diagnostic purpose, or duplicate articles, or review articles were excluded from the analysis.

Data extraction and collection
The titles and abstracts of articles searched from PubMed database using the above mentioned keywords were initially screened to obtain relevant original research articles according to the eligibility criteria. Thereafter, the full texts of all relevant articles were carefully examined in details to confirm their compliance with the defined eligibility criteria. The studies of active targeting nanoparticles applied for both chemotherapeutic drugs and traditional/herbal medicines for cancer were classified according to the types of targeting ligands.

Results
Study description
Twenty out of 695 research articles were initially excluded from the analysis during title screening for duplicate articles. The titles together with abstracts of the remaining articles were further checked for eligibility criteria and a total of 597 articles were excluded from the analysis. Finally, 61 out of 78 articles were included in the analysis, 17 articles being excluded due to unclear/inadequate information. The flow diagram of the search process is presented in Figure 2, and the

Figure 1 Passive targeting and active targeting mechanisms of nanoparticles.
effects of active targeting nanoparticles delivering modern chemotherapeutic drugs and traditional/herbal medicines for cancer are summarized in Tables 1 and 2.

Of the 61 articles included in the analysis, 54 (88.5%) investigated nanoparticles delivering modern chemotherapeutic drugs; the majority was doxorubicin (40.7%), followed by paclitaxel (8.5%). Types of targeting ligand platforms used included proteins or small peptides (15 articles), hyaluronic acids (HAs; 10 articles), folic acids (9 articles), antibodies (5 articles), aptamers (5 articles), carbohydrates or polysaccharide (5 articles), and other molecules (5 articles). Seven articles (11.5%) investigated nanoparticles delivering traditional/herbal medicines; the majority was curcumin (42.9%). The ligand platforms used were proteins or small peptides (2 articles), HA (1 article), folic acid (1 article), antibody (1 article), aptamer (1 article), and other molecule (1 article).

Discussion
Ligands for nanoparticle platform
Proteins or small peptides
Various types of proteins or small peptides were used to conjugate on the surface of nanoparticles to improve selectivity of chemotherapeutic drugs or traditional/herbal medicines to cancer cells. Transferrin, a serum glycoprotein, was one of the widely used targeting ligands. It plays a role in transferring iron from blood stream into the cells by binding to transferrin receptor on the cell surface. Uptregulation of transferrin receptor has been reported in metastatic and drug-resistant cancer cells.67 The transferrin-conjugating nanoparticles delivering chemotherapeutic drugs have been shown to improve cellular uptake of the drugs by cancer cells and enhance in vitro and in vivo cytotoxicity. For instance, the transferrin-conjugated polyethylene glycol (PEG) nanoparticle delivering hydroxycamptothecin was shown to provide longer retention time of drug in blood circulation, higher drug accumulation in cancer cells, and higher in vivo growth inhibitory activity against S180 tumor compared with non-targeted nanoparticles.16 In the study of transferrin-conjugated chitosan-PEG nanoparticles delivering paclitaxel, the targeted nanoparticles also exhibited higher cytotoxic activity to transferrin-overexpressing human non-small cell lung cancer cells (HOP-62). The respective half-maximal inhibitory concentrations (ICs50) were 0.3 µM and 2.0 µM.17 Apart from transferrin, arginine–glycine–aspartic acid (RGD) peptide has been used as targeting ligand to conjugate on the surface of nanoparticles to specifically target integrin αvβ3 receptor. This receptor is expressed on the surface of tumor vessels and various types of cancer cells and plays important roles in tumor growth promotion, metastasis, and angiogenesis.18 A number of RGD-conjugated nanoparticles delivering chemotherapeutic drugs or traditional/herbal medicines have been developed and demonstrated to promote their delivery to the cancer cells. The cyclic arginine–glycine–aspartic acid–tyrosine–lysine c(RGDyK)-conjugated poly(trimethylene carbonate)-PEG micellar nanoparticle delivering paclitaxel was shown to enhance cytotoxic activity of the drug to integrin αvβ3-overexpressing human glioblastoma cells.

Figure 2 Flow diagram showing the different phases of the systematic review.
Table 1 Summary of research articles that investigated active targeting NPs delivering chemotherapeutic drugs in cancer therapy

Ligand	Receptor/antigen	Drug-NP platform	Types of study	Outcome	Compared to non-targeted	Side effect	References
Proteins/peptides							
H2009.1 peptide	Integrin αβ6	Doxorubicin-liposome in vivo: human non-small cell lung cancer cell lines (H2009) xenograft	No difference in tumor targeting and tumor growth inhibition rate	No significant change in body weight	12		
IL-13 peptide	IL-13Rα2 receptor	Docetaxel-PEG-PCL in vitro: human glioblastoma cell lines (U87) in vivo: cell lines U87 orthotopic xenograft	Higher cellular uptake; 1.1-fold higher cellular apoptosis Higher tumor growth inhibition rate; 1.73-fold higher tumor targeting	Not evaluated	13		
AP-1 peptide	IL-4 receptor	Paclitaxel-cyclodextrin in vivo: human breast adenocarcinoma cell lines MDA-MB-231 xenograft	Specifically targeting tumor site; higher tumor growth inhibition rate	Low nonspecific toxicity	14		
Peptide CVKTPAQSC CD133+ receptor	Docetaxel-PLA in vitro: human lung cancer cell lines (A549) in vivo: cell lines A549 xenograft		30.5% higher cellular uptake ratio	No significant change in body weight	15		
Transferrin	Transferrin receptor	Hydroxycamptothecin-PEG in vivo: murine sarcoma cell lines (S180) xenograft	Higher anti-metastatic efficacy	No significant change in body weight	16		
Transferrin	Transferrin receptor	Paclitaxel-PEG-chitosan in vitro: non-small cell lung cancer cell lines (HOP-62)	Higher cellular uptake; 6.67-fold higher cytotoxicity	Not evaluated	17		
cRGDyK Peptide	Integrin αβ3	Paclitaxel-PEG-PTMC in vitro: human glioblastoma astrocytoma, epithelial-like cell lines (U87MG)	36.6% higher cellular uptake; 2.3-fold higher cytotoxicity; higher cellular apoptosis	Not evaluated	18		
RGDS	Integrin αβ3	Doxorubicin-PEG-MIONP in vitro: human cervical carcinoma cell lines (HeLa)	1.1-fold higher cellular uptake; higher cytotoxicity	Not evaluated	19		
cRGDyK	Integrin αβ3	Paclitaxel-micelle in vitro: human prostate cancer cell lines (PC-3) in vivo: cell lines PC-3 xenograft	1.93-fold higher cellular uptake; 1.26-fold higher cytotoxicity Higher tumor growth inhibition rate	No significant change in body weight	20		
RGD	Integrin αβ3 receptor	Doxorubicin-dendritic poly-L-lysine-gelatin in vitro: mouse mammary breast tumor cell lines (4T1) in vivo: cell lines 4T1 xenograft	Higher cytotoxicity	No significant change in body weight	21		
Bombesin peptide	Gastrin-releasing peptide receptor	Docetaxel-PLGA in vitro: human breast adenocarcinoma cell lines (MDA-MB-231)	1.18-fold higher tumor accumulation; 10.6% higher tumor growth inhibition rate	4-Fold higher cytotoxicity	22		
NR7 peptide	EGFR	Doxorubicin-PLGA-PEG in vitro: human ovarian carcinoma cell lines (SKOv3) in vivo: cell lines SKOv3 xenograft	3-Fold higher cellular uptake; 62.4-fold higher cytotoxicity	Low nonspecific toxicity	23		
LHRH peptide	LHRHR	Methotrexate-HSA in vitro: human breast carcinoma cell lines (T47D)	71.5% higher cellular uptake; 8.5-fold higher cytotoxicity	Not evaluated	24		
Active Targeting	Receptor	Nanoparticle	In Vitro Details	In Vivo Details	Summary		
-----------------	----------	--------------	-----------------	----------------	---------		
Angiopep-2	LRP	Doxorubicin-dendritic poly-L-lysine-gelatin NP	In vitro: mouse mammary breast tumor cell lines (4T1)	Higher cellular uptake; higher cellular apoptosis	Low side effect to normal tissue		
TbFGF peptide	FGFR	Paclitaxel-micelle	In vitro: murine Lewis lung carcinoma cell lines (LL/2), human hepatocellular liver carcinoma cell lines (HepG2), human lung cancer cell lines (A549), murine colorectal cancer cell lines (C26)	Higher accumulation of NP in tumor; higher tumor growth inhibition rate 18-fold higher cytotoxicity to LL/2; higher cellular uptake by 6.6-fold for HepG2, 6.2-fold for A549, 2.9-fold for C26, and 2.7-fold for LL/2	Not evaluated		
Hyaluronic acid	CD44 receptor	Topotecan hydrochloride-dendrimer	In vitro: human colorectal cancer cell lines (HCT-116)	Higher cellular uptake; 3-fold higher cytotoxicity compared to free drug Higher tumor growth inhibition rate; 3.6-fold and 1.7-fold higher drug accumulation in tumor compared to kidney and liver	Not evaluated		
Hyaluronic acid	CD44 receptor	Paclitaxel-micelle	In vitro: human breast adenocarcinoma cell lines (MCF-7)	4.1-fold higher cellular uptake	No significant change in body weight		
Hyaluronic acid	CD44 receptor	Cisplatin-chitosan	In vitro: human lung cancer cell lines (A549)	Higher cellular uptake; 8-fold higher cytotoxicity	Not evaluated		
Hyaluronic acid	CD44 receptor	Rapamycin-LbL-LCNP	In vitro: human breast adenocarcinoma cell lines (MCF-7 and MDA-MB-231)	Higher cytotoxicity, 1.35-fold for MDA-MB-231, and 1.1-fold lower cytotoxicity to MCF-7	No significant change in body weight		
Hyaluronic acid	CD44 receptor	Doxorubicin-PBLG	In vitro: Ehrlich ascites tumor-bearing mice	Higher tumor growth inhibition rate; higher survival time	Not evaluated		
Hyaluronic acid	CD44 receptor	Methotrexate-lipid-based NP	In vitro: murine melanoma cell lines (B16F10) xenograft	Higher tumor accumulation; higher tumor growth inhibition rate	Not evaluated		
Hyaluronic acid	CD44 receptor	Doxorubicin-hydroxylapatite	In vitro: human hepatocellular carcinoma cell lines (HepG2)	Higher cellular uptake; 46.3% higher cytotoxicity compared to free drug Higher in tumor targeting; lower tumor volume	No significant change in body weight		
Hyaluronic acid	CD44 receptor	Doxorubicin-HACE-PEG	In vitro: murine squamous cell carcinoma cell lines (SCC7) and mouse embryo fibroblast cell lines (NIH3T3)	Higher cellular uptake in CD44 overexpressing (SCC7) compared to CD44 negative (NIH3T3); no difference in cellular uptake compared to free drug 30% higher tumor growth inhibition rate compared to free drug	No significant change in body weight		

(Continued)
Table 1 (Continued)

Ligand	Receptor/antigen	Drug-NP platform	Types of study	Outcome	Side effect	References
Hyaluronic acid	CD44 receptor	Doxorubicin-hyaluronic acid-Lys-LA10	In vitro: doxorubicin-resistant human breast adenocarcinoma cell lines (MCF-7/ADR) In vivo: cell lines MCF-7/ADR xenograft	Higher cellular uptake compared to free drug; no difference in cytotoxicity	No significant change in body weight and low nonspecific toxicity	34
				Lower relative tumor volume; higher median survival time		
Hyaluronic acid	CD44 receptor	Doxorubicin-PBLG-LA	In vitro: human breast adenocarcinoma cell lines (MCF-7) In vivo: cell lines MCF-7 xenograft	10-Fold higher in cellular DOX level; higher cytotoxicity	No significant change in body weight and low nonspecific toxicity	35
Folate				No difference in tumor growth inhibition rate; higher survival time		
Folic acid	Folate receptor	Docetaxel-PEG-PLGA	In vitro: human cervical carcinoma cell lines (HeLa) In vivo: cell lines HeLa xenograft	26.7-Fold higher cellular uptake; 12-fold higher cytotoxicity compared to free drug	Higher tumor targeting; higher tumor growth inhibition rate	36
Folic acid	Folate receptor	Doxorubicin-dendrimer	In vitro: human epidermal carcinoma cell lines (KB)	1.4-Fold higher cellular uptake; 2.2-fold higher cytotoxicity	Not evaluated	37
Folic acid	Folate receptor	Gemcitabine-BSA	In vitro: human ovarian cancer cell lines (Ovar-5) and human breast adenocarcinoma cell lines (MCF-7)	2-Fold higher cellular uptake by MCF-7; higher cytotoxicity – 1.4-fold for MCF-7 and 1.6-fold for Ovar-5; higher cellular apoptosis	No significant change in body weight	38
Folic acid	Folate receptor	Carboplatin-PLGA-chitosan	In vitro: human cervical carcinoma cell lines (HeLa)	Higher cellular uptake in time-dependent manner; 1.67-fold higher cytotoxicity; higher cellular apoptosis		39
Folic acid	Folate receptor	Doxorubicin-polymeric NP	In vivo: human epidermal carcinoma cell lines (KB) xenograft	1.6-Fold higher tumor growth inhibition rate	No significant change in body weight and less cardiotoxicity	7
Folic acid	Folate receptor	Doxorubicin-PEG	In vitro: human epidermal carcinoma cell lines (KB), human lung cancer cell lines (A549) and human hepatocellular carcinoma cell lines (HepG2) In vivo: cell lines KB xenograft	Higher cellular uptake by KB cell; higher cytotoxicity – 1.2-fold for A549, 3.5-fold for KB, and 2.1-fold for HepG2	Higher tumor targeting; higher tumor growth inhibition rate; higher survival time	40
Folic acid	Folate receptor	Cisplatin-PEG-MSN	In vitro: human cervical carcinoma cell lines (HeLa)	Higher cellular uptake	Not evaluated	41
Target Molecule	Receptor	Drug Formulation	In Vitro/In Vivo	Summary	Notes	
----------------	----------	-----------------	-----------------	---------	-------	
Folic acid	Folate receptor	Doxorubicin-β-cyclodextrin	In vitro: human placenta choriocarcinoma cell lines (JAR), human colon adenocarcinoma cell lines (HT-29), human breast adenocarcinoma cell lines (MCF-7), and mouse fibroblast cell lines (3T3)	Higher cellular uptake – 2.09-fold by HT-29, 1.98-fold by MCF-7, and 7.31-fold by JAR; higher cytotoxicity – 12.39-fold for JAR, 6.73-fold for HT-29, and >1.5-fold for 3T3	Not evaluated	
Folic acid	Folate receptor	Paclitaxel-PEG-PLGA	In vitro: human endometrial carcinoma cell lines (HEC-1A)	Higher cellular uptake; 2.6-fold higher in cytotoxicity; 12% higher cellular apoptosis	Not evaluated	
Antibody	Anti-Fas mAb	Fas receptor	Cantothecin-PLGA	In vitro: human colorectal cancer cell lines (HCT116)	Higher cellular uptake; 58.9-fold higher cytotoxicity compared to free drug	Not evaluated
Antibody	Anti-CD20 mAb	CD20 receptor	Doxorubicin-DSPE-PEG2000	In vitro: human Burkitt’s lymphoma cell lines (Raji)	Selectively targeting CD-20-overexpressing cells (Raji)	Low nonspecific toxicity
Antibody	Anti-CD47 mAb	CD47 receptor	Gemcitabine-MIONP	In vitro: human pancreatic ductal adenocarcinoma primary cells (Panc215 and Panc354)	Higher cellular uptake; higher cytotoxicity	Not evaluated
Antibody	EGFR antibody	EGFR	Rapamycin-PLGA	In vitro: human breast adenocarcinoma cell lines (MCF-7)	13-fold higher cellular uptake; higher cytotoxicity; 2.4-fold higher cellular apoptosis	Not evaluated
Antibody	PR81 mAb	MUC1 receptor	5-fluorouracil-BSA	In vitro: human breast adenocarcinoma cell lines (MCF-7)	Higher cytotoxicity	Not evaluated
Aptamer	Aptamer AS1411	Nucleolin receptor	Doxorubicin-HPAeG	In vitro: human breast adenocarcinoma cell lines (MCF-7)	2-fold higher cellular uptake; 1.7-fold higher cytotoxicity	Not evaluated
Aptamer	Aptamer AS1411	Nucleolin receptor	Gemcitabine-PeG-PLGA	In vitro: human lung cancer cell lines (A549)	36% higher cellular uptake; 5.9-fold higher cytotoxicity	Not evaluated
Aptamer	Aptamer AS1411	Nucleolin receptor	Methotrexate-UnTHCPSi-PEI	In vitro: human breast adenocarcinoma cell lines (MDA-MB-231)	1.6-fold and 4.7-fold higher cellular uptake for 3 h and 12 h, respectively; higher cytotoxicity	Not evaluated
Aptamer	Aptamer AS1411	Nucleolin receptor	Docetaxel-mannitol-PLGA-TPGS	In vitro: human cervical carcinoma cell lines (HeLa)	Higher cellular uptake; 20-fold higher cytotoxicity	Not evaluated
Aptamer	Aptamer AS1411	Nucleolin receptor	Doxorubicin-polymersome	In vitro: human breast adenocarcinoma cell lines (MCF-7)	1.73-fold higher cellular uptake compared to mutated aptamer conjugates; 1.75-fold higher cytotoxicity compared to mutated aptamer conjugates	No significant change in body weight

(Continued)
Table 1 (Continued)

Ligand	Receptor/antigen	Drug-NP platform	Types of study	Outcome	Compared to non-targeted	Side effect	References
Carbohydrates/polysaccharides							
Lactose	ASGPR	Doxorubicin-lactose	In vitro: human hepatocellular carcinoma cell lines (SMMC-7221)	No difference in cytotoxicity and higher cellular uptake in time-dependent manner		Low nonspecific toxicity	53
Galactose	ASGPR	Doxorubicin-LPL	In vitro: human liver cancer cell lines (SK-HEP-1)	Higher tumor targeting; no difference in tumor growth inhibition rate			
Galactose	ASGPR	5-Fluorouracil-pectin	In vivo: human hepatocellular xenograft	Higher cellular uptake; higher cytotoxicity in dose-dependent manner; higher cellular apoptosis in liver enzyme			
Galactose	ASGPR	Paclitaxel-pyGf-PLA	In vitro: human hepatocellular carcinoma cell lines (HepG2)	Higher cellular uptake; 2.6-fold higher cytotoxicity compared to free drug			
Galactosamine	ASGPR	Lecithin receptor	In vitro: human breast adenocarcinoma cell lines (MDA-MB-468, MDA-MB-231, and MCF-7)	Higher tumor growth inhibition rate; higher survival time			
Galactose		Doxorubicin solid lipid NP	Ex vivo: MDA-MB-468 tumor	Higher tumor accumulation			
Galactose		EGFR	In vitro: human breast adenocarcinoma cell lines (MDA-MB-468)	Higher cellular uptake in MDA-MB-468; higher cytotoxicity			
Other molecules							
EGF	EGFR	Gemcitabine-stearyl	In vitro: human breast adenocarcinoma cell lines (MDA-MB-468, MDA-MB-231, and MCF-7)	Higher tumor growth inhibition rate; higher survival time			
EGF	EGFR	Doxorubicin-micelle	Ex vivo: MDA-MB-468 tumor	Higher cellular uptake in MDA-MB-468; higher cytotoxicity			
CSA	CD44 receptor	Doxorubicin-chondroitin sulfate	In vitro: human breast adenocarcinoma cell lines (MDA-MB-231)	Higher tumor growth inhibition rate; higher median survival time			
Folic acid and bovine	Folate receptor	Paclitaxel-lipid	In vitro: human breast adenocarcinoma cell lines (MDA-MB-231)	Higher cellular uptake compared to free drug; 1.67-fold higher cytotoxicity compared to free drug			
Hyaluronic acid and	SPARC	Paclitaxel-	In vitro: human breast adenocarcinoma cell lines (MCF-7)	Higher cellular uptake compared to free drug; 1.9-fold higher cytotoxicity compared to free drug			61
glycyrrhetinic acid		glycyrrhetinic acid graft-hyaluronic acid	In vitro: human hepatocellular carcinoma cell lines (HepG2) and murine melanoma cell lines (B16F10)	Higher cellular uptake compared to free drug; higher cytotoxicity to HepG2			62

Abbreviations: ASGPR, asialoglycoprotein receptor; BSA, bovine serum albumin; cRGDYK, cyclic arginine-glycine-aspartic acid-tyrosine-lysine; DSPE-PEG2000, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxypolyethylene glycol-2000; EGF, epidermal growth factor; EGRF, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; HACE, hyaluronic acid-carbohydrate; HSA, human serum albumin; HPAEG, hyperbranched poly(2-((2-(acryloyloxy)ethyl)dithiobenzoate)xyl)-polyethylene glycol methacrylate; IL, interleukin; LbL-LCNP, layer-by-layer-liquid crystalline nanoparticle; LHRH, luteinizing hormone-releasing hormone; LHRHR, luteinizing hormone-releasing hormone receptor; LPL, lipocalcin; LRP, low density lipoprotein-receptor; Lys-LA10, L-lysine methyl ester-lipoic acid; mAb, monoclonal antibody; MIONP, magnetic iron oxide nanoparticle; MSN, mesoporous silica nanoparticle; NP, nanoparticle; yP-glyoxal, poly(gamma-glutamic acid)-poly(L-glutamic acid); PCL, poly(lactide-co-glycolide); PCL, poly(ε-caprolactone); PEG, polyethylene glycol; PEG, polyethylene glycol; PeI, polyethylene glycol; PeG, polyethylene glycol; PGLa, poly(gamma-glutamic acid); Ploy(L-lactide); RGD, arginine–glycine–aspartic acid; RGD, arginine–glycine–aspartic acid; RGDS, arginine–glycine–aspartic acid–serine peptide; SPARC, secreted protein acidic and rich in cysteine; TβFGF, truncated basic fibroblast growth factor; TPGS, tocopheryl polyethylene glycol 1000 succinate; UnTHCPSi, undecylenic acid modified, thermally hydrocarbonized porous silicon.
Table 2 Summary of research articles that investigated active targeting NP delivering traditional/herbal medicines in cancer therapy

Ligand	Receptor/antigen	Drug-NP platform	Types of study	Outcome	
Proteins/peptides					
cRGD	Integrin αb3	Tanshinone IIA-mPEG-PLGA-PLL	In vitro: human hepatocellular carcinoma cell lines (Hep G2) In vivo: cell lines Hep G2 bearing mice	Higher cellular uptake; increase in cytotoxicity Higher tumor growth inhibition rate; higher accumulation of drug in tumor; 2.5-fold higher life-extended rate	No significant change in body weight
RGD	Integrin αb3	Curcumin-lipid-shell-polymer-core hybrid	In vitro: murine melanoma cell lines (B16) In vivo: cell lines B16 xenograft	No difference in cytotoxicity for B16; 19.6% higher cellular apoptosis compared to free drug Higher tumor growth inhibition rate	No significant change in body weight
Hyaluronic acid					
Hyaluronic acid	CD44 receptor	3,4-difluorobenzylidene curcumin-styrene maleic acid	In vitro: human pancreatic cancer cell lines (MiaPaCa-2, AsPC-1)	Higher cellular uptake in time-dependent manner; higher cytotoxicity – 1.75-fold for MiaPaCa-2 and 2-fold for AsPC-1	Not evaluated
Folate					
Folic acid	Folate receptor	Honokiol-PCEC	In vitro: human nasopharynx carcinoma cell lines HNE-I In vivo: cell lines HNE-I tumor-bearing mice	Higher cellular uptake; 2.1-fold higher cytotoxicity compared with free drug; 15.2% higher percent of cell apoptosis 1.3-fold delay in tumor growth compared with free drug; 1.7-fold higher median survival time	Not evaluated
Antibody					
Anti-annexin A2 antibody	Annexin A2 receptor	Curcumin-PLGA	In vitro: human breast adenocarcinoma cell lines (MDA-MB-231)	Higher cellular uptake	Not evaluated
Aptamer					
EpCAM aptamer	EpCAM protein	Curcumin-lipid-PLGA-lecithin hybrid	In vitro: human colon adenocarcinoma cell lines (HT29) and human embryonic kidney cell lines (HEK293T)	64-fold higher cellular uptake; higher cytotoxicity compared to EpCAM-negative HEK293T	Not evaluated
Other molecules					
HACE and AMPB	CD44 receptor and salicylic acid	Manassantin B-AMPB-HACE	In vitro: human breast adenocarcinoma cell lines (MDA-MB-231) In vivo: cell lines MDA-MB-231 xenograft	Higher cellular uptake compared to HACE conjugates alone; higher cytotoxicity compared to HACE conjugates alone 2.4-fold higher tumor targeting compared to HACE conjugates alone; higher tumor growth inhibition rate	No significant change in body weight

Abbreviations: AMPB, (3-aminomethylphenyl)boronic acid; cRGD, cyclic arginine-glycine-aspartic acid peptide; HACE, hyaluronic acid-ceramide; mPEG-PLGA-PLL, methoxy polyethylene glycol-poly(lactic-co-glycolic acid)-poly-L-lysine; NP, nanoparticle; PCEC, poly(ε-caprolactone)-polyethylene glycol-poly-(ε-caprolactone); PLGA, poly(lactic-co-glycolic acid); RGD, arginine-glycine-aspartic acid peptide.
(U87MG) compared with non-targeted nanoparticles and free drugs (mean IC$_{50}$: 0.022 µg/mL, 0.051 µg/mL, and 0.058 µg/mL, respectively). The targeted nanoparticles also exhibited greater activity on cell apoptosis (11.23% vs 8.31% and 8.03% vs 5.38% inhibition, for early and late apoptosis, respectively). The percentages (mean values) of free drug were 6.67% and 4.32%, respectively. In addition, cellular drug uptake by U87MG cells was significantly increased.18 Superior cytotoxic potency against integrin $\alpha_v\beta_3$-overexpressing human cervical carcinoma cells (HeLa) together with increased cellular uptake was also demonstrated with RGD-conjugated magnetic iron oxide nanoparticles (MIONPs)-PEG delivering doxorubicin compared with free drug and non-targeted MIONPs.19 In another study, improved cytotoxic activity by the cRGDyK-conjugated poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) nanoparticles delivering paclitaxel over the non-targeted nanoparticles and free drug was reported (mean IC$_{50}$: 51.16 ng/mL, 64.53 ng/mL, and 62.95 ng/mL, respectively). The enhanced activity was through direct targeting of the integrin $\alpha_v\beta_3$-overexpressing prostate cancer cells (PC-3), as well as increasing of cellular uptake by PC-3 cells. Moreover, the targeted nanoparticle was also shown to enhance in vivo tumor growth inhibition rate in PC-3 tumor-bearing mice.20

Other types of peptides that have been applied for conjugation on the surface of nanoparticles to increase selectivity of chemotherapeutic drugs to cancer cells include bombesin peptide-conjugated poly(lactic-co-glycolic acid) (PLGA) and NR7 peptide-conjugated PLGA-PEG nanoparticles. Bombesin-conjugated nanoparticles delivering docetaxel specifically bind to gastrin-releasing peptide receptor, which is overexpressed on cell surfaces of prostate, breast, ovarian, pancreatic, and colorectal cancers.22,69 This targeted nanoparticle was shown to enhance cytotoxic activity of the drug to the gastrin-releasing peptide receptor overexpressing human breast cancer cells (MDA-MB-231) compared with non-targeted nanoparticles (mean IC$_{50}$: 35.53 ng/mL and 142.23 ng/mL, respectively).22 The NR7 peptide-conjugated PLGA-PEG nanoparticle delivering doxorubicin was used for specific drug binding to epidermal growth factor receptor (EGFR) on the cancer cell surface.23 The EGFR is a known receptor that is overexpressed on various types of cancer cell surfaces including head and neck, renal, ovarian, breast, and non-small-cell lung cancer.47,69 Activation of this receptor results in inhibition of cell apoptosis, promotion of cell proliferation, triggering of angiogenesis, and enhancement of tumor survival and metastasis. Therefore, inhibition of the function of this receptor would be expected to benefit cancer treatment. The NR7 peptide-conjugated PLGA-PEG nanoparticles exhibited higher cytotoxic activity against human ovarian carcinoma cells (SKOV3) compared with non-targeted nanoparticles (mean IC$_{50}$: 0.05 µg/mL and 3.12 µg/mL, respectively).23 Although most studies demonstrated satisfactory outcomes of peptide- or protein-conjugated nanoparticles on targeting cancer cells, one study reported that H2009.1 peptide-conjugated liposome delivering doxorubicin to cancer cells expressing integrin $\alpha_v\beta_3$ receptor could not improve the efficacy of the drug. This was due to the liposome platform preventing the targeting ligand from binding to the receptor on the cancer cell surface, and resulted in relatively low drug accumulation in cancer cells.12

Hyaluronic acid

HA is a negatively charged linear glycosaminoglycan that consists of D-glucuronic acid and N-acetylated-glucosamine. It can specifically bind to CD44 receptor that is overexpressed on the cell surface of various types of cancer including lung, breast, colon, prostate, gastric, and head and neck cancers.70 HA is a widely used targeting ligand to conjugate on the surface of nanoparticles to improve selectivity of chemotherapeutic drugs to cancer cells and enhance drug efficacy and safety. In one study, HA with the two molecular weights, ie, 9.5 kDa and 35 kDa, was used to conjugate polymeric micelles delivering paclitaxel. The conjugate using 9.5 kDa HA was found to effectively increase drug cellular uptake by CD44-overexpressing human breast adenocarcinoma cells (MCF-7) compared with 35 kDa HA. In murine hepatic carcinoma (Heps), it also exhibited tumor growth inhibition at a higher rate and greater accumulation at the tumor site compared with other nanoparticle formulations.27 These results suggest that the molecular weight of HA directly influenced the efficacy of drug-loaded active targeting nanoparticles. The HA-conjugated chitosan nanoparticle delivering cisplatin was shown to increase drug cellular uptake by CD44-positive human lung cancer cells (A549) and effectively enhance cytotoxic activity of the drug, compared with non-targeted nanoparticles.28 The HA-conjugated liquid crystalline nanoparticle delivering rapamycin was reported to increase cytotoxic activity of the drug to CD44-overexpressing human breast adenocarcinoma cells (MDA-MB-231) compared with non-targeted nanoparticles (mean IC$_{50}$: 18 µg/mL and 24.3 µg/mL, respectively). Moreover, the targeted nanoparticles also enhanced in vivo tumor growth inhibition rate in Ehrlich ascites tumor-bearing mice.29

For traditional/herbal medicines, HA has also been used for conjugation on the surface of nanoparticles delivering
3,4-difluorobenzylidene curcumin resulting in increased cellular uptake and cytotoxic activity of the drug against human pancreatic cancer cells (MiaPaCa-2 and AsPC-1) compared with non-targeted nanoparticles (mean IC₅₀: 140 nM, 160 nM, and 245 nM, respectively). Interestingly, when the CD44 receptor was blocked by free soluble HA, the cytotoxic activity to MiaPaCa-2 cells was comparable between the targeted and non-targeted nanoparticles (mean IC₅₀: 234 nM and 245 nM, respectively). These results confirm that targeting ligand-conjugated nanoparticles enhances drug efficacy by improving cellular uptake through receptor-mediated endocytosis mechanism.

Folate

Folate or vitamin B9 is a stable and poorly immunogenic water-soluble vitamin. It is essential for DNA synthesis and replication, methylation, cell division and growth, and cell survival, particularly in rapidly dividing cells or cancer cells. Folic acid receptor is overexpressed on several cancer cell surfaces including ovarian, cervical, breast, lung, kidney, colorectal, and brain cancers. Using folic acid as cancer cell targeting of chemotherapeutic drug nanocarriers has been demonstrated in various studies to improve drug efficacy and safety profiles. The folic acid-conjugated PEG-PLGA nanoparticle delivering docetaxel was shown to increase drug cellular uptake by human cervical carcinoma cells (HeLa) with enhanced cytotoxic activity compared with free drug (mean IC₅₀: 0.69 µg/mL and 8.29 µg/mL, respectively). It also significantly inhibited tumor growth in HeLa tumor-bearing mice. The folic acid-conjugated albumin nanoparticle delivering gemcitabine was shown to enhance cytotoxic activity of the drug against folic acid receptor-overexpressing human breast adenocarcinoma cells (MCF-7) compared with non-targeted nanoparticles (mean IC₅₀: 0.175 µM and 0.240 µM, respectively). Similarly, in folic acid receptor-overexpressing human ovarian cancer cells (Ovcar-5), the targeted nanoparticles exhibited superior cytotoxic activity over the non-targeted nanoparticles (mean IC₅₀: 0.173 µM and 0.279 µM, respectively). On the other hand, activity of the targeted nanoparticles was found similar to that of non-targeted nanoparticles against folate receptor expressing human pancreatic cancer cells (MIAPaCa-2) (mean IC₅₀: 0.166 µM and 0.169 µM, respectively). In one study, the folic acid-conjugated PEG-PLGA nanoparticle delivering paclitaxel was shown to increase drug cellular uptake by folic acid-overexpressing human endometrial carcinoma cells (HEC-1A) with superior cytotoxic activity over the non-targeted nanoparticle (mean IC₅₀: 3.43 µg/mL and 8.81 µg/mL, respectively). Moreover, it also produced significantly higher cell apoptotic activity compared with non-targeted and free drug (35.94%, 23.97% and 19%, respectively). In vivo, it produced significant tumor growth inhibition in HEC-1A tumor-bearing mice. For traditional herbal medicines, folic acid-conjugated poly(epsilon-caprolactone)-PEG-poly (epsilon-caprolactone) nanoparticle delivering honokiol, a traditional Chinese medicine, was shown to increase compound cellular uptake by folic acid-overexpressing human nasopharynx carcinoma cells (HNE-1) with enhanced cytotoxic activity compared with free drug (mean IC₅₀: 18.41 µg/mL and 38.59 µg/mL, respectively). Furthermore, the targeted nanoparticles also resulted in significant cell apoptotic activity compared with non-targeted nanoparticles (86.07% and 70.89%, respectively) and prolongation of median survival time compared with non-targeted nanoparticles and free drug (median survival time: 57.5 days, 42.5 days, and 34 days, respectively).

Antibodies or antibody fragments

Antibodies or antibody fragments are one of the first targeting ligands used for conjugation on the surface of nanoparticles to target cancer cells due to their potential to specifically bind to antigens or receptors on cancer cell surfaces with high affinity. Various types of antibodies or antibody fragments have been used as targeting agents including anti-CD20 monoclonal antibody, anti-CD47 monoclonal antibody, EGFR antibody, and anti-Fas monoclonal antibody. These targeted nanoparticles have been shown to improve cellular uptake by cancer cells and enhance cytotoxic activity of the drugs to cancer cells. For instance, anti-CD20 monoclonal antibody-conjugated 1,2-distearoyl-sn-glycero-3-phosphothanolamine-N-methoxypolyethylene-glycol-2000 delivers doxorubicin active carbon nanoparticles to the target CD20 receptor. It exhibited higher cytotoxic activity against CD20-positive human Burkitt’s lymphoma cells (Raji) compared with non-targeted nanoparticles. The anti-CD47 monoclonal antibody-conjugated iron oxide magnetic nanoparticle delivering gemcitabine to the target CD47 receptor was shown to increase drug cellular uptake by human pancreatic ductal adenocarcinoma cells (Panc215 and Panc354). Their cytotoxic activity was also significantly enhanced. The EGFR antibody-conjugated PLGA nanoparticle delivering rapamycin was shown to exhibit higher cellular uptake by EGFR-overexpressing human breast adenocarcinoma cells (MCF-7) with enhanced cell apoptotic activity against all cell stages. For traditional herbal medicines, the anti-annexin A2 antibody-conjugated PLGA nanoparticle delivering...
Carbohydrates or polysaccharides

Galactose is one of targeting ligands in group of carbohydrates that is widely used as a targeting agent for nanoparticles. It is specifically recognized by the asialoglycoprotein receptor (ASGPR), which is overexpressed on liver cancer cell surface.54 The galactose-conjugated lithocholic acid-PEG-lactobionic acid nanoparticles delivering doxorubicin was shown to increase drug cellular uptake by human liver cancer cells (SK-HEP-1) leading to massive cell death and tumor growth inhibition compared with non-targeted nanoparticles. The galactose-conjugated pectin nanoparticle delivering 5-fluorouracil was shown to increase drug cellular uptake by human hepatocellular liver carcinoma cells (HepG2) with enhanced cytotoxic activity compared with free drug (mean IC50: 0.17×10^{-4} mol/L and 0.45×10^{-4} mol/L, respectively). Moreover, the targeted nanoparticle also improved pharmacokinetic profile of the drugs.55 On the other hand, the lactose-conjugated nanoparticle delivering doxorubicin was shown to improve drug efficacy, but not as good as galactose.53 The galactose conjugates not only specifically bind to ASGPR but also to lectin receptor, which is overexpressed on the alveolar macrophages, liver endothelial Kupffer cells, splenic macrophages, peritoneal macrophages, and macrophages of brain. The galactose-conjugated solid lipid nanoparticles delivering doxorubicin specifically targeted human lung cancer cells (A549) resulting in higher cellular uptake, enhanced cytotoxic activity, and improved pharmacokinetic profiles compared with non-targeted nanoparticles and free drug.57

Controlled drug release of active targeting nanoparticles

Controlled drug release is a property of drug delivery systems in cancer therapy. Drugs are delivered and released at specific location to avoid side effects to normal cells.72 Most studies included in this review showed biphasic characteristics of drugs released from both targeted and non-targeted nanoparticles, ie, initial burst release, followed by sustained release. For instance, about 48% and 46% of gemcitabine were released from folic acid-conjugated bovine serum albumin nanoparticles and non-targeted nanoparticles during the first 2 hours, respectively. Sustained release of up to 99% and 94% was observed at 36 hours and pH 7.4 after burst release of targeted and non-targeted nanoparticles, respectively.38 About 22% and 29% of doxorubicin were shown to release from galactose-conjugated solid lipid nanoparticles and non-targeted nanoparticles during the first 8 hours, respectively. After burst release, sustained released was observed up to 76% and 93% at 144 h and pH 7.4 for targeted and non-targeted nanoparticles, respectively.57 Moreover, in some cases, the amount of drug released from nanoparticles at endolysosomal environment (pH 5.5) or cancer cell environment (pH 6.8) was shown to be higher than that from physiological environment (pH 7.4). Up to 60% of doxorubicin was released from anti-CD20-conjugated active carbon nanoparticles and non-targeted nanoparticles at 12 hours and at pH 5.5. At pH 7.4, on the other hand, the release...
from nanoparticles was only 20%.⁴⁵ Similarly, about 28% and 24% of gemcitabine burst were released during the first 24 hours from AS1411 aptamer-conjugated PEG-PLGA nanoparticles and non-targeted nanoparticles, respectively. After burst release, up to 44% and 41% sustained release were observed in both formulations at 120 hours and pH 5.5 for targeted and non-targeted nanoparticles, respectively. Only 30% release was observed at pH 7.4.⁴⁹ In another study, doxorubicin released from chondroitin sulfate A-deoxycholic acid at day 6 was 92%, 53%, and 34% for pH 5.5, 6.8, and 7.4, respectively.⁴⁶ These results suggested that conjugation of targeting ligands on the surface of nanoparticles did not affect drug release from nanoparticles. Furthermore, higher amount of drug released at acidic pH would benefit the delivery of cancer chemotherapeutic agents to cancer cells with lower side effects to normal cells.

Conclusion

Active targeting nanoparticles of chemotherapeutic drugs or traditional/herbal medicines have been demonstrated in various studies both in vitro and in vivo to improve selectivity of cellular uptake of drugs to cancer cells through receptor-mediated endocytosis and/or cytotoxicity. They provide several advantages over the conventional chemotherapeutic drugs and non-targeted nanoparticle platform, particularly in regard to enhancement of drug efficacy and safety. Active targeting nanoparticles possess several advantages in cancer therapy including enhancement of selectivity of drugs to cancer cells to avoid side effects to normal cells, enhancement of drug accumulation and anticancer activity in cancer cells, and efficiency in control of drug release. Nevertheless, some disadvantages of active targeting nanoparticles include their limitation of clinical uses in only certain types of cancer that express specific receptors on the cell surfaces. Moreover, manufacturing of nanoparticle platforms is costly and requires sophisticated technology. Selection of the types of targeting nanoparticles is determined by the types of target proteins or receptors expressed on cancer cell surfaces. Clinical studies are required to confirm their application in cancer patients.

Acknowledgments

The authors would like to thank the Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine at Thammasat University, Rangsit Center, for providing all the necessary support in conducting this systematic review.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. *CA Cancer J Clin*. 2017;67(1):7–30.
2. Kuppens IE, Bosch TM, van Maanen MJ, et al. Oral bioavailability of docetaxel in combination with OC144-093 (ONT-093). *Cancer Chemother Pharmacol*. 2005;55(1):72–78.
3. Vandana M, Sahoo SK. Long circulation and cytotoxicity of PEGylated gemcitabine and its potential for the treatment of pancreatic cancer. *Biomaterials*. 2010;31(35):9340–9356.
4. Yu H, Tang Z, Zhang D, et al. Pharmacokinetics, biodistribution and in vivo efficacy of cisplatin loaded poly(L-glutamic acid)-g-methoxy poly(ethylene glycol) complex nanoparticles for tumor therapy. *J Control Release*. 2015;205:89–97.
5. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. *Clin Cancer Res*. 2008;14(5):1310–1316.
6. Zhuang Y, Deng H, Su Y, et al. Aptamer-functionalized and backbone redox-responsive hyperbranched polymer for targeted drug delivery in cancer therapy. *Biomacromolecules*. 2016;17(6):2050–2062.
7. Wu G, Wang Z, Bian X, Du X, Wei C. Folate-modified doxorubicin-loaded nanoparticles for tumor-targeted therapy. *Pharm Biol*. 2014;52(8):978–982.
8. Qi X, Fan Y, He H, Wu Z. Hyaluronic acid-grafted polyamidoamine dendrimers enable long circulation and active tumor targeting simultaneously. *Carbohydr Polym*. 2015;126:231–239.
9. Wang Y, Song D, Costanza F, et al. Targeted delivery of tanshinone IIA-conjugated mPEG-PLGA-PDLL-cRGD nanoparticles to hepatocellular carcinoma. *J Biomed Nanotechnol*. 2014;10(11):3244–3252.
10. Zhao Y, Lin D, Wu F, et al. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery. *Int J Mol Sci*. 2014;15(10):17565–17576.
11. Yang B, Ni X, Chen L, et al. Honokiol-loaded polymeric nanoparticles: an active targeting drug delivery system for the treatment of nasopharyngeal carcinoma. *Drug Deliv*. 2017;24(1):660–669.
12. Gray BP, McGuire MJ, Brown KC. A liposomal drug platform overcomes peptide ligand targeting to a cancer biomarker, irrespective of ligand affinity or density. *PLoS One*. 2013;8(8):e72938.
13. Gao H, Zhang S, Yang Z, Cao S, Jiang X, Pang Z. In vitro and in vivo intracellular distribution and anti-glioblastoma effects of docetaxel-loaded nanoparticles functioned with IL-13 peptide. *Int J Pharm*. 2014;466(1–2):8–17.
14. Namgung R, Mi Lee Y, Kim J, et al. Poly-cycloexetrin and poly-paclitaxel nano-assembly for anticancer therapy. *Nat Commun*. 2014;5:3702.
15. Yang N, Jiang Y, Zhang H, et al. Active targeting docetaxel-PLA nanoparticles eradicate circulating lung cancer stem-like cells and inhibit liver metastasis. *Mol Pharm*. 2015;12(1):232–239.
16. Hong M, Zhu S, Jiang Y, et al. Novel anti-tumor strategy: PEG-hydroxyxamthothecin conjugate loaded transferrin-PEG-nanoparticles. *J Control Release*. 2010;141(1):22–29.
17. Nag M, Gajbiye V, Kesharwani P, Jain NK. Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells. *Colloids Surf B Biointerfaces*. 2016;148:363–370.
18. Jiang X, Sha X, Xin H, et al. Self-aggregated pegylated poly (trimethylene carbonate) nanoparticles decorated with (cRgDyK) peptide for targeted paclitaxel delivery to integrin-rich tumors. *Biomaterials*. 2011;32(35):9457–9469.
19. Nazli C, Demirer GS, Yar Y, Acar HY, Kizilel S. Targeted delivery of doxorubicin into tumor cells via MMP-sensitive PEG hydrogel-coated magnetic iron oxide nanoparticles (MIONPs). *Colloids Surf B Biointerfaces*. 2014;122:674–683.
20. Gao Y, Zhou Y, Zhao L, et al. Enhanced antitumor efficacy by cyclic RGdyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. *Acta Biomater*. 2015;23:127–135.
21. Hu G, Zhang H, Zhang L, Ruan S, He Q, Gao H. Integrin-mediated active tumor targeting and tumor microenvironment response dendrimer-gelatin nanoparticles for drug delivery and tumor treatment. *Int J Pharm*. 2015;496(2):1057–1068.

22. Kullhari H, Pooja D, Shrivastava S, Naidu VGM, Sistla R. Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel. *Colloids Surf B Biointerfaces*. 2014;117:166–173.

23. Liu CW, Lin WJ. Polymeric nanoparticles conjugate a novel heptapeptide as an epidermal growth factor receptor-active targeting ligand for doxorubicin. *Int J Nanomedicine*. 2012;7:4749–4767.

24. Taheri A, Dinarvand R, Aryabi F, et al. Enhanced anti-tumor activity of methotrexate-human serum albumin conjugated nanoparticles by targeting with Luteinizing Hormone-Releasing Hormone (LHRH) peptide. *Int J Mol Sci*. 2011;12(7):4591–4608.

25. Hu G, Chun X, Wang Y, He Q, Gao H. Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetration of fabricated nanoparticles for triple-negative breast cancer treatment. *Oncotarget*. 2015;6(38):41258–41274.

26. Cai L, Qiu N, Li X, et al. A novel truncated basic fibroblast growth factor fragment-conjugated poly (ethylene glycol)-cholesterol amphiphilic polymeric drug delivery system for targeting to the FGRF-overexpressing tumor cells. *Int J Pharm*. 2011;408(1–2):173–182.

27. Yin S, Hu J, Chen X, et al. Intracellular delivery and antitumor effects of a redox-responsive polymer paclitaxel conjugate based on hyaluronic acid. *Acta Biomater*. 2015;26:274–285.

28. Suh MS, Shen J, Kuhn LT, Burgess DJ. Layer-by-layer nanoparticle platform for cancer active targeting. *Int J Pharm*. 2017;517(1–2):58–66.

29. Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY. Layer-by-layer-coated lyotropic liquid crystalline nanoparticles for active tumor targeting of ranpirnac. *Nanomedicine (Lond).* 2016;11(22):2975–2996.

30. Upadhayky KK, Mishra AK, Chuttani K, et al. The in vivo behavior and antitumor activity of doxorubicin-loaded poly (γ-benzyl l-glutamate)-block-hyaluronan polymersomes in Ehrlich ascites tumor-bearing BalB/c mice. *Nanomedicine*. 2012;8(1):71–80.

31. Mizrahy S, Goldsmith M, Levitan-Ben-Arye S, et al. Tumor targeting profiling of hyaluronic-acid coated lipid based-nanoparticles. *Nanoscale*. 2014;6(7):3742–3752.

32. Xiong H, Du S, Ni J, Zhou J, Yao J. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. *Biomaterials*. 2016;94:70–83.

33. Cho JJ, Yoon IS, Yoon HY, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. *Biomaterials*. 2012;33(4):1190–1200.

34. Zhong Y, Zhang J, Cheng R, et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. *J Control Release*. 2015;205:144–154.

35. Sun B, Deng C, Meng F, Zhang J, Zhong Z. Robust, active tumor-targeting and fast bioresponsive anticancer nanothapeutics based on natural endogenous materials. *Acta Biomater*. 2016;45:223–233.

36. Tao W, Zhang J, Zeng X, et al. Blended nanoparticle system based on miscible structurally similar polymers: a safe, simple, targeted, and surprisingly high efficiency vehicle for cancer therapy. *Adv Healthc Mater*. 2015;4(8):1203–1214.

37. Cheng L, Hu Q, Cheng L, et al. Construction and evaluation of PAMAM-DOX conjugates with superior tumor recognition and intracellular acid-triggered drug release properties. *Colloids Surf B Biointerfaces*. 2015;136:37–45.

38. Dubey RD, Alam N, Sanjek A, et al. Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gencitabine. *Int J Pharm*. 2015;492(1–2):80–91.

39. Ji J, Zuo P, Wang YL. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles. *Nanoscale Res Lett*. 2015;10(1):453.

40. Ye WL, Du JB, Zhang BL, et al. Cellular uptake and antitumor activity of DOX-hyd-PEG-FA nanoparticles. *PLoS One*. 2014;9(5):e97358.

41. Morelli C, Maris P, Sisci D, et al. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells. *Nanoscale*. 2011;3(8):3198–3207.

42. Yin JJ, Sharma S, Shunyak SP, et al. Synthesis and biological evaluation of novel folic acid receptor-targeted, β-cyclodextrin-based drug complexes for cancer treatment. *PLoS One*. 2013;8(5):e62289.

43. Liang C, Yang Y, Ling Y, Huang Y, Li T, Li X. Improved therapeutic effect of folate-decorated PLGA-PEG nanoparticles for endometrial carcinoma. *Bioorg Med Chem*. 2011;19(13):4057–4066.

44. McCarron PA, Marouf WM, Quinn DJ, et al. Antibody targeting of camptothecin-loaded PLGA nanoparticles to tumor cells. *Bioconjng Chem*. 2008;19(8):1561–1569.

45. Jiang S, Wang X, Zhang Z, et al. CD20 monoclonal antibody targeted nanoscale drug delivery system for doxorubicin chemotherapy: an in vitro study of cell lysis of CD20-positive Raji cells. *Int J Nanomedicine*. 2016;11:5505–5518. eCollection 2016.

46. Trabulo S, Aires A, Aicher A, Heeschen C, Cortijarana AL. Multifunctionalized iron oxide nanoparticles for selective targeting of pancreatic cancer cells. *Biochim Biophys Acta*. 2017;1861(6):1597–1605.

47. Acharya S, Dilnawaz F, Sahoo SK. Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. *Biomaterials*. 2009;30(29):5737–5749.

48. Kochakchadhe H, Shaioasadati SA, Mohammadnejad J, Paknejad M, Rasaei MJ. Attachment of an anti-MUC1 monoclonal antibody to 5-FU loaded BSA nanoparticles for active targeting of breast cancer cells. *Hum Antibodies*. 2012;21(3–4):49–56.

49. Alibolandi M, Ramezani M, Abnous K, Hadizadeh F. AS1411 Aptamer-decorated biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) polyplexolymersomes for the targeted delivery of gencitabine to non-small cell lung cancer in vitro. *J Pharm Sci*. 2016;105(5):1741–1750.

50. Zhang F, Correia A, Mäkiä E, et al. Receptor-mediated surface charge inversion platform based on porous silicon nanoparticles for efficient cancer cell recognition and combination therapy. *ACS Appl Mater Interfaces*. 2017;9(11):10034–10046.

51. Xu G, Yu X, Zhang J, et al. Robust aptamer-polydopamine-functionalized M-PLGA–TPGS nanoparticles for targeted delivery of docetaxel and enhanced cervical cancer therapy. *Int J Nanomedicine*. 2016;11:2953–2965.

52. Li X, Zhu X, Qiu L. Constructing aptamer anchored nanovesicles for enhanced tumor penetration and cellular uptake of water soluble chemotherapeutics. *Acta Biomater*. 2016;35:269–279.

53. Mou Q, Ma Y, Zhu X, Yan D. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy. *J Control Release*. 2016;230:34–44.

54. Singh B, Jang Y, Maharjan S, et al. Combination therapy with doxorubicin-loaded galactosylated poly(ethyleneglycol)-lithocholic acid to suppress the tumor growth in an orthotopic mouse model of liver cancer. *Biomaterials*. 2017;116:130–144.

55. Yu CY, Wang YM, Li NM, et al. In vitro and in vivo evaluation of pectin-based nanoparticles for hepatocellular carcinoma drug chemotherapy. *Mol Pharm*. 2014;11(2):638–644.

56. Lin HF, Chen SC, Chen MC, Lee PW, Chen CT, Sung HW. Paclitaxel-loaded poly(γ-glutamic-acid)-poly(lactide) nanoparticles as a targeted drug delivery system against cultured HepG2 cells. *Bioconjung Chem*. 2006;17(2):291–299.

57. Jain A, Kesharwani P, Garg NK, et al. Galactose engineered solid lipid nanoparticles for hepatocellular carcinoma drug delivery. *Nanomedicine (Lond)*. 2012;157(2):287–296.

58. Jain A, Kesharwani P, Garg NK, et al. Galactose engineered solid lipid nanoparticles for hepatocellular carcinoma drug delivery. *Nanomedicine (Lond)*. 2012;157(2):287–296.

59. Talielli M, Oliveira S, Rijcken CJ, et al. Intrinsically active nanobody-functionalized EGFR-targeted stearoyl tin sulfate A-based nanoparticles for tumor-targeted anticancer drug delivery. *Eur J Pharm Biopharm*. 2015;94:532–541.
61. Chen C, Hu H, Qiao M, et al. Anti-tumor activity of paclitaxel through dual-targeting lipoprotein-mimicking nanocarrier. *J Drug Target*. 2015;23(4):311–322.
62. Zhang L, Yao J, Zhou J, Wang T, Zhang Q. Glycyrrehetic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. *Int J Pharm*. 2013;441(1–2):654–664.
63. Kesharwani P, Banerjee S, Padhye S, Sarkar FH, Iyer AK. Hyaluronic acid engineered nanomicelles loaded with 3,4-difluorobenzylidene curcumin for targeted killing of CD44+ stem-like pancreatic cancer cells. *Biomacromolecules*. 2015;16(9):3042–3053.
64. Thamake SI, Raut SL, Ranjan AP, Gryczynski Z, Vishwanatha JK. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy. *Nanotechnology*. 2011;22(3):035101.
65. Li L, Xiang D, Shigdar S, et al. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells. *Int J Nanomedicine*. 2014;9:1083–1096.
66. Jeong JY, Hong EH, Lee SY, et al. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. *Acta Biomater*. 2017;53:414–426.
67. Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. *J Cancer Res Clin Oncol*. 2015;141(5):769–784.
68. Cornelio DB, Roesler R, Schwartzmann G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. *Ann Oncol*. 2007;18(9):1457–1466.
69. Master AM, Sen Gupta A. EGF receptor-targeted nanocarriers for enhanced cancer treatment. *Nanomedicine (Lond)*. 2012;7(12):1895–1906.
70. Kapoor A, Kumar S. Cancer stem cell: a rogue responsible for tumor development and metastasis. *Indian J Cancer*. 2014;51(3):282–289.
71. Zwickel GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. *Nano Reviews*. 2012;3:10.3402/nano.v3403i3400.18496.
72. Rodzinski A, Guduru R, Liang P, et al. Targeted and controlled anti-cancer drug delivery and release with magnetoelectric nanoparticles. *Sci Rep*. 2016;6:20867.