Ninjurin1
– A Novel Regulator of Angiogenesis Mediated by Pericytes –
Yasuyuki Fujita, MD, PhD; Atsuhiko Kawamoto, MD, PhD

Angiogenesis, the growth of new capillary from existing blood vessels, is an important natural process that is central to various pathophysiological processes in the body, not only during fetal development but also in postnatal tissue repair and disease development. Angiogenesis is a hallmark of wound healing, cancer development, ischemic and inflammatory diseases.1–3

The formation of new sprouts is dynamic and requires a large number of highly orchestrated processes. Three different types of endothelial cells (ECs), comprising tip, stalk and phalanx cells, have been suggested to be involved in sprouting angiogenesis. Attracted by proangiogenic signals, ECs degrade cell-cell junctions, including VE-cadherin and ZO-1, so that basement membrane and pericytes detach, allowing a tip cell to migrate in response to guidance signals. Following the migration of tip cells, stalk cells proliferate and form a lumen to maintain the integrity and perfusion of the growing vascular bed. Tip cells from neighboring sprouts meet and anastomose to form a perfused branch. Upon the initiation of blood flow, ECs become quiescent phalanx cells. Deposition of basement membrane and recruitment of mural cells stabilize the new connection. A fundamental feature of vessel maturation is the recruitment of the mural cells, pericytes and vascular smooth muscle cells that coat small capillaries and larger vessels, respectively.3 During angiogenesis, bidirectional pericyte-EC signaling is critical for capillary sprout formation. Observations of pericytes leading capillary sprouts also imply their role in EC guidance. As such, pericytes have recently emerged as a therapeutic target to promote or inhibit angiogenesis.4 The prominent signaling pathways that regulate endothelial-mural cell-cell communication are platelet-derived growth factor-β (PDGF-β)/PDGF receptor-β, angiopoietin 1 (Ang1)/Tie2 and transforming growth factor β, which control mural cell recruitment, EC viability and mural cell differentiation, respectively.3–6 However, the mechanisms which regulate their actions in microvascular physiology have been largely underinvestigated.

Nerve injury-induced protein 1, or Ninjurin-1 (Ninj1), is a cell-surface protein and an adhesion molecule. Ninj1 was originally discovered during the identification of molecules related to nerve injury and is known to be upregulated in neuronal and Schwann cells after sciatic nerve injury.7 The Ninj1 gene contains an open reading frame of 152 amino acids (aa), which encodes a predicted 16-kDa polypeptide. Ninj1 has 2 hydrophobic transmembrane domains (72–100 aa, and 118–139 aa) and a putative N-glycosylation site.7 In addition, the 12-residues on the N-terminal ectodomain of Ninj1 are crucial for its hemophilic binding activity (Figure).8 In mammals, there are 2 types of Ninjurin, Ninj1 and Ninj2, which share conserved hydrophobic regions for their transmembrane domains but differ in adhesion motifs and they do not interact with each other.8 Furthermore, the tissue distribution of Ninjurs

The opinions expressed in this article are not necessarily those of the editors or of the Japanese Circulation Society.

Received April 16, 2015; accepted April 20, 2015; released online May 7, 2015
Division of Vascular Regeneration, Unit of Regenerative Medicine, Institute of Biomedical Research and Innovation, Kobe, Japan
Mailing address: Atsuhiko Kawamoto, MD, PhD, Division of Vascular Regeneration, Unit of Regenerative Medicine, Institute of Biomedical Research and Innovation, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan. E-mail: kawamoto@fbri.org
ISSN-1346-9843 doi:10.1253/circj.CJ-15-0435
All rights are reserved to the Japanese Circulation Society. For permissions, please e-mail: cj@j-circ.or.jp
Ninj1 negatively regulates angiogenesis by mediating the interaction between PCs and EC tubes. Although the physiological or pathological significance of Ninj1 in angiogenesis and the precise mechanism of EC-PC interaction via Ninj1 remain unclear, these findings may open new avenues to treating ischemic diseases and pericyte-associated diseases, including cancer, diabetes and neurodegenerative disorders, by targeting the Ninj1-related pathways in capillary cells.

Disclosures

The authors have no conflict of interest directly relevant to the content of this article.

References

1. Folkman J. Angiogenesis: An organizing principle for drug discovery? Nat Rev Drug Discov 2007; 6: 273–286.
2. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011; 146: 873–887.
3. Gaengel K, Genove G, Armulik A, Betsholtz C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 2009; 29: 630–638.
4. Stapor PC, Sweat RS, Dashki DC, Betancourt AM, Murfee WL. Pericyte dynamics during angiogenesis: New insights from new identities. J Vase Res 2014; 51: 163–174.
5. Armulik A, Genove G, Betsholtz C. Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 2011; 21: 193–215.
6. Aburakawa Y, Kawabe J, Okada M, Yamauchi A, Asanome A, Kabara M, et al. Prostacyclin stimulated integrin-dependent angiogenic effects of endothelial progenitor cells and mediated potent circulation recovery in ischemic hind limb model. Circ J 2013; 77: 1053–1062.
7. Araki T, Milbrandt J. Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron 1996; 17: 353–361.
8. Araki T, Zimonjic DB, Popescu NC, Milbrandt J. Mechanism of homophilic binding mediated by ninjurin, a novel widely expressed molecule, is expressed in mature sensory and enteric neurons and promotes neurite outgrowth. J Biol Chem 1997; 272: 21373–21380.
9. Araki T, Milbrandt J. Ninjurin2, a novel homophilic adhesion molecule, is expressed in mature sensory and enteric neurons and promotes neurite outgrowth. J Neurosci 2000; 20: 187–195.
10. Ifergan I, Kebir H, Terouz S, Alvarez JI, Lecuyer MA, Gendron S, et al. Role of Ninjurin-1 in the migration of myeloid cells to central nervous system inflammatory lesions. Ann Neurol 2011; 70: 751–763.
11. Lee HJ, Ahn BJ, Shin MW, Jeong JW, Kim JH, Kim KW. Ninjurin-1 mediates macrophage-induced programmed cell death during early ocular development. Cell Death Differ 2009; 16: 1395–1407.
12. Yin GN, Kim JW, Jin HR, Kwon MH, Song KM, Choi MJ, et al. Nerve injury-induced protein 1 (Ninjurin-1) is a novel therapeutic target for cavernous nerve injury-induced erectile dysfunction in mice. J Sex Med 2013; 10: 1488–1501.
13. Matsuki M, Kabara M, Saito Y, Shimamura K, Minoshima A, Nishimura M, et al. Ninjurin1 is a novel factor to regulate angiogenesis through the function of pericytes. Circ J 2015 March 11; doi:10.1253/circj.CJ-14-1376 [Epub ahead of print].
14. Kabara M, Kawabe J, Matsuki M, Hira Y, Minoshima A, Shimamura K, et al. Immortalized multipotent pericytes derived from the vasa vasorum in the injured vasculature: A cellular tool for studies of vascular remodeling and regeneration. Lab Invest 2014; 94: 1340–1354.