Aging and the aggregating proteome

Della C. David*

Edited by: Joy Alcedo, Wayne State University, USA
Reviewed by: Ehud Cohen, The Hebrew University of Jerusalem, Israel
As-Lin Allen Hsu, University of Michigan, USA
*Correspondence: Della C. David, German Center for Neurodegenerative Diseases (DZNE), Paul-Ehrlich Str. 17, Tübingen, Germany. e-mail: della.david@dzne.de

For all organisms promoting protein homeostasis is a high priority in order to optimize cellular functions and resources. However, there is accumulating evidence that aging leads to a collapse in protein homeostasis and widespread non-disease protein aggregation. This review examines these findings and discusses the potential causes and consequences of this physiological aggregation with age in particular in relation to disease protein aggregation and toxicity. Importantly, recent evidence points to unexpected differences in protein-quality-control and susceptibility to protein aggregation between neurons and other cell types. In addition, new insight into the cell-non-autonomous coordination of protein homeostasis by neurons will be presented.

Keywords: protein aggregation, aging, protein homeostasis, C. elegans, neurodegeneration, chaperones

NATURE OF PROTEIN AGGREGATION IN DISEASE

Protein aggregation is the common defining feature in neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease as well as systemic amyloidosis. In these diseases, one or several distinct aggregation-prone polypeptides become misfolded and are packed into large insoluble hallmark structures. Disease aggregation affects proteins with very different native structures. For example, natively unfolded proteins such as tau and βamyloid aggregate in Alzheimer’s disease whereas globular proteins rich in β-sheets like transthyretin, rich in α-helices such as apolipoprotein A1 or containing both β-sheets and α-helices such as gelsolin aggregate in different types of systemic amyloidosis (Uversky et al., 2006). Despite these differences, X-ray diffraction results suggest that all these proteins adopt a very specific amyloid structure in the aggregates where they are stacked together in cross-β-sheets parallel to the fibril axis (Eisenberg and Jucker, 2012). Aggregates typically contain amyloid fibrils which grow at their ends by providing a template for the addition of further monomers. Soluble aggregation intermediates have also been identified, in particular prefibril and fibril oligomers which are recognized by different antibodies (Glabre, 2008). These structures are more reactive than the long fibrils and are generally considered more toxic to the organism. Although aggregates often contain different proteins, amyloid fibrils and oligomers are classically composed of identical proteins.

THE PROTEOME ON THE EDGE OF SOLUBILITY

The causes, consequences, and regulation of disease protein aggregation have been extensively discussed in other reviews (Soto, 2003; Ross and Potier, 2005; Douglas and Dillin, 2010; Eisenberg and Jucker, 2012). The present mini-review will focus on recent evidence related to the disruption of protein homeostasis with age leading to widespread protein insolubility and aggregation in the absence of disease. Indeed, it is predicted that all proteins have the capacity to aggregate under specific conditions. For example, changes in pH, heating, denaturing conditions, or increased protein concentrations all tend to favor aggregation. Recently, Goldschmidt et al. (2010) predicted that the majority of proteins have short self-complementary sequences, which can initiate the formation of a steric zipper structure thus promoting aggregation. Normally, aggregation is avoided by burying these aggregation-prone regions inside the protein during the folding process. However, partial unfolding could be sufficient to uncover these regions and lead to aggregation (Choi and Dobson, 2009).

Computational analysis indicates that the proteome is only marginally stable (Ghosh and Dill, 2010). Cells have likely optimized protein expression levels to prevent aggregation, leaving thereby little space for deviations in concentration (Tartaglia et al., 2007; Tartaglia and Vendruscolo, 2009). Indeed, this delicate balance can be easily disrupted. For example, exposing cells in culture to thermal stress prompts protein insolubility (Salomons et al., 2009). Artificially inducing macromolecular crowding coupled with increased ionic strength after exposure to high salt concentrations leads to widespread protein insolubility and rapid irreversible protein aggregation in the model organism Caenorhabditis elegans (Burkewitz et al., 2011).

DECREASED PROTEIN-QUALITY-CONTROL WITH AGE

In a healthy young organism, several layers of quality-control help proteins to remain functional and prevent aggregation (Balch et al., 2008). This starts with the regulation of transcriptional and translational rates as well as a tight control over the folding of newly synthesized proteins by providing different chaperones to assist the folding process (Hartl et al., 2011). After a damaged protein is deemed beyond repair, it is targeted by chaperones to the proteasomal or autophagy degradation systems (Ketten et al., 2010). In addition to the cytoplasmic protein-quality-control components, organelle-specific quality-control systems have been identified in the nucleus, endoplasmic reticulum, and mitochondria (Sidrauski et al., 1998; Haynes and Ron, 2010; Rosenbaum and Gardiner, 2011). As the organism ages, this regulation of protein homeostasis becomes disrupted. In C. elegans, a sharp decrease in chaperone expression is correlated with the end of life. For all organisms promoting protein homeostasis is a high priority in order to optimize cellular functions and resources. However, there is accumulating evidence that aging leads to a collapse in protein homeostasis and widespread non-disease protein aggregation. This review examines these findings and discusses the potential causes and consequences of this physiological aggregation with age in particular in relation to disease protein aggregation and toxicity. Importantly, recent evidence points to unexpected differences in protein-quality-control and susceptibility to protein aggregation between neurons and other cell types. In addition, new insight into the cell-non-autonomous coordination of protein homeostasis by neurons will be presented.

Keywords: protein aggregation, aging, protein homeostasis, C. elegans, neurodegeneration, chaperones

NATURE OF PROTEIN AGGREGATION IN DISEASE

Protein aggregation is the common defining feature in neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease as well as systemic amyloidosis. In these diseases, one or several distinct aggregation-prone polypeptides become misfolded and are packed into large insoluble hallmark structures. Disease aggregation affects proteins with very different native structures. For example, natively unfolded proteins such as tau and β-amyloid aggregate in Alzheimer’s disease whereas globular proteins rich in β-sheets like transthyretin, rich in α-helices such as apolipoprotein A1 or containing both β-sheets and α-helices such as gelsolin aggregate in different types of systemic amyloidosis (Uversky et al., 2006). Despite these differences, X-ray diffraction results suggest that all these proteins adopt a very specific amyloid structure in the aggregates where they are stacked together in cross-β-sheets parallel to the fibril axis (Eisenberg and Jucker, 2012). Aggregates typically contain amyloid fibrils which grow at their ends by providing a template for the addition of further monomers. Soluble aggregation intermediates have also been identified, in particular prefibril and fibril oligomers which are recognized by different antibodies (Glabre, 2008). These structures are more reactive than the long fibrils and are generally considered more toxic to the organism. Although aggregates often contain different proteins, amyloid fibrils and oligomers are classically composed of identical proteins.

THE PROTEOME ON THE EDGE OF SOLUBILITY

The causes, consequences, and regulation of disease protein aggregation have been extensively discussed in other reviews (Soto, 2003; Ross and Potier, 2005; Douglas and Dillin, 2010; Eisenberg and Jucker, 2012). The present mini-review will focus on recent evidence related to the disruption of protein homeostasis with age leading to widespread protein insolubility and aggregation in the absence of disease. Indeed, it is predicted that all proteins have the capacity to aggregate under specific conditions. For example, changes in pH, heating, denaturing conditions, or increased protein concentrations all tend to favor aggregation. Recently, Goldschmidt et al. (2010) predicted that the majority of proteins have short self-complementary sequences, which can initiate the formation of a steric zipper structure thus promoting aggregation. Normally, aggregation is avoided by burying these aggregation-prone regions inside the protein during the folding process. However, partial unfolding could be sufficient to uncover these regions and lead to aggregation (Choi and Dobson, 2009).

Computational analysis indicates that the proteome is only marginally stable (Ghosh and Dill, 2010). Cells have likely optimized protein expression levels to prevent aggregation, leaving thereby little space for deviations in concentration (Tartaglia et al., 2007; Tartaglia and Vendruscolo, 2009). Indeed, this delicate balance can be easily disrupted. For example, exposing cells in culture to thermal stress prompts protein insolubility (Salomons et al., 2009). Artificially inducing macromolecular crowding coupled with increased ionic strength after exposure to high salt concentrations leads to widespread protein insolubility and rapid irreversible protein aggregation in the model organism Caenorhabditis elegans (Burkewitz et al., 2011).

DECREASED PROTEIN-QUALITY-CONTROL WITH AGE

In a healthy young organism, several layers of quality-control help proteins to remain functional and prevent aggregation (Balch et al., 2008). This starts with the regulation of transcriptional and translational rates as well as a tight control over the folding of newly synthesized proteins by providing different chaperones to assist the folding process (Hartl et al., 2011). After a damaged protein is deemed beyond repair, it is targeted by chaperones to the proteasomal or autophagy degradation systems (Ketten et al., 2010). In addition to the cytoplasmic protein-quality-control components, organelle-specific quality-control systems have been identified in the nucleus, endoplasmic reticulum, and mitochondria (Sidrauski et al., 1998; Haynes and Ron, 2010; Rosenbaum and Gardiner, 2011). As the organism ages, this regulation of protein homeostasis becomes disrupted. In C. elegans, a sharp decrease in chaperone expression is correlated with the end of life.
the reproductive phase and leads to the aggregation of folding-defective mutant proteins (Ben-Zvi et al., 2009). In mammals, the unfolded protein response activated by ER stress is impaired with age (Brown and Naidoo, 2012). Furthermore, aging is associated with a decline in proteasome activity in a variety of tissues in rats (Anselmi et al., 1998; Keller et al., 2000). Similarly, lysosomal chaperone-mediated autophagy activity is reduced in old-aged rat livers and senescent human fibroblasts (Cuervo and Dice, 2000). Conversely, enhancing lysosomal degradation as well as overexpressing RNase L, one of the 190 proteasome subunits, suppresses disease-related protein aggregation (Tontonoz et al., 2009; Yang et al., 2011). Furthermore, aging is also associated with increased oxidative stress, leading to irreversible oxidation and nitration of proteins, which impairs their degradation (Squier, 2001; Poon et al., 2006). Errors during transcription and translation could provide a further challenge to the protein-quality-control system with age (Gidalevitz et al., 2010). In addition, molecular misreading during transcription causing dinucleotide deletions plays a role in Alzheimer's and Huntington's disease (van Deursen et al., 1998; Lam et al., 2000; de Pril et al., 2004). All these changes with age could contribute to widespread protein aggregation.

IDENTIFYING THE AGE-RELATED AGGREGATING PROTEOME

Although protein homeostasis is disrupted with age, it was unclear to what extent this affects the stability of the proteome (Morimoto and Cuervo, 2009). Recently, increased levels of protein hydrophobicity were detected in brains from aging rats which could promote protein aggregation (Chiti and Dobson, 2006; Dauni et al., 2010). Consequently, a study with Drosophila revealed the accumulation of aggregated proteins with age in different tissues (Demontis and Perrimon, 2010). These aggregated structures were detergent insoluble and appeared to be filamentous by electron microscopy, two features associated with disease aggregation. Independently, two groups set out to identify the age-related aggregating proteome in C. elegans using mass-spectrometry (David et al., 2010; Reis-Rodrigues et al., 2012). C. elegans is widely used to study the aging process as these animals have a relatively short lifespan and show many characteristic aging features observed in higher organisms (Garigan et al., 2002; Kenyon, 2003). To isolate proteins in a similar state to aggregated proteins in disease, both groups adopted sequential biochemical fractionation methods based on differential solubility, which is widely used to extract disease aggregates in the field of neurodegeneration research (Lee et al., 1999). Both groups discovered a substantial increase in the insolubility of several hundred proteins with age confirming a widespread disruption in protein homeostasis. The significant overlap in protein identities and functional categories between both studies shows that aggregation does not randomly affect the whole proteome, but rather a subset of proteins. Furthermore, computational analysis revealed that these aggregation-prone proteins have a higher propensity to form β-sheets, a driving force behind disease protein aggregation. In addition, in vivo analysis of several aggregation-prone proteins with fluorescent protein tags consistently showed the abnormal clumping of these proteins into aggregates-like structures where the proteins are in a highly immobile state (David et al., 2010). Although these physiological age-related aggregates resemble disease aggregates in several aspects, it remains to be determined whether these aggregates are in an amyloid or amorphous state. Interestingly, Alvarez et al. (2011) showed that the prefibrillar-oligomeric-specific antibody A11 binds specifically to structures in the aging worm in the absence of disease. This antibody recognizes a conformation characteristic of aggregation intermediates formed by diverse disease-related aggregation-prone proteins such as β-amyloid, α-synuclein, and polyglutamine (Kayed et al., 2003). These intermediates are considered as precursors to larger amyloid fibrils (Lee et al., 2011). Evidence from bacteria also suggests that a variety of proteins can aggregate into an amyloid structure. Indeed, overexpression of exogenous proteins in bacteria often leads to their aggregation and the analysis of these aggregates revealed a partial amyloid structure (Wang et al., 2008). As the authors propose, “there might be no amorphous state of a protein aggregate” and one could speculate that physiological age-related aggregates are composed of a mixture of amyloid and disordered structures.

THE CONSEQUENCES OF AGE-RELATED PHYSIOLOGICAL AGGREGATION IN NEURODEGENERATIVE DISEASE AND AGING

Aging is the main known risk factor for sporadic neurodegenerative diseases. Henceforth, an important question is whether non-disease protein aggregation may put the brain at risk for aggregation of disease proteins. Proteomic analyses of disease aggregates reveal a large number of proteins that are associated with the main hallmark disease-aggregating protein (Liao et al., 2004; Wang et al., 2005; Xia et al., 2008). Comparison with physiological age-aggregating proteins tells us that a significant proportion of these proteins can aggregate themselves without the presence of disease aggregates. Non-disease protein aggregation could initiate or accelerate disease aggregation by several mechanisms. First, physiological aggregation could titrate anti-aggregation factors away from disease-aggregating proteins. In C. elegans body-wall muscles, Gudlevitz et al. (2006) showed that expressing either aggregation-prone polyglutamine or mutated proteins sensitive to misfolding reduces the folding capacity in these cells leading to enhanced protein aggregation. Similarly, widespread protein insolubility caused by heat shock impaired the ubiquitin-dependent proteasomal degradation (Salomons et al., 2009). Second, the aggregation of non-disease-associated proteins could directly induce the aggregation of disease-specific proteins by a cross-seeding mechanism. Exposure of hydrophobic stretches plays an important role in promoting protein aggregation (Munch and Bertolotti, 2010). Recently, Olszach et al. (2011) found that artificially aggregating proteins preferentially forming oligomers with exposed hydrophobic surfaces caused the most damage to the cell. These artificial aggregating proteins efficiently sequestered cellular proteins into aggregates. Similarly, the misfolding and aggregation of non-disease proteins with age could reveal previously hidden hydrophobic stretches which may promote disease protein aggregation.

It is tempting to speculate on the consequences of physiological protein aggregation in the context of aging. During aging, aggregation affects a large number of proteins, which play a role in
An intricate protein-quality-control system normally ensures that vital functions. In bacteria, inclusions are formed preferentially to resolubilize the proteins or sequester aggregates away from mechanisms to deal with this aberrant protein aggregation and aggregates. Throughout evolution, the cell has developed different strategies to deal with protein aggregation. The subsequent recovery of luciferase activity after heat shock, Kern et al. (2010) searched for differences in chaperone capacity in neurons and muscle cells of young and aged C. elegans. They found that young muscles efficiently prevented protein aggregation but lost this activity with age. On the other hand, young neurons have...
a delayed chaperone response but compensate by increasing disaggregation and refolding activity. With age, neurons switched to the strategy used by young muscle cells in that they actively prevent aggregation but no longer promote refolding. In contrast, old muscle cells become highly susceptible to protein misfolding and aggregation. Similarly, Hamer et al. (2010) observed that the proteasome degrades chronic protein damage and aggregates in neurons. Using a photoconvertible fluorescent reporter marked for degradation by ubiquitin, the authors show that young neurons rapidly removed ubiquitinated proteins through the proteasome, whereas muscles only slowly degraded proteins. Higher protein turn-over in young neurons is achieved by improving substrate recognition using the ubiquitin-binding proteasome subunit RPN10. Interestingly, the degradation rate varies greatly between neuronal cell types which may help explain differences in neuronal susceptibility to protein homeostasis disruption. With age, the rate of protein degradation decreases solely in neurons while still remaining higher than in muscles. Overall, these different strategies used by neuronal and non-neuronal cells to control protein homeostasis and how they are modified to compensate during aging may render them more or less susceptible to physiological protein aggregation.

NON-AUTONOMOUS CONTROL OF PROTEIN AGGREGATION

Neurons play an important role in coordinating protein homeostasis regulation throughout the organism in response to changes in the environment. How does this affect physiological protein aggregation in different tissues? In C. elegans, thermoresponsive AFD neurons initiate activation of the transcription factor HSF-1, driving the transcription of chaperones, in non-neuronal tissues in response to acute heat stress (Frahald et al., 2008). However, in the absence of heat stress, these same neurons prevent the up-regulation of chaperones in non-neuronal tissues in response to chronic protein damage and aggregation (Frahald and Morimoto, 2011). Therefore under normal conditions, C. elegans blunts its protein folding machinery and cannot appropriately respond to protein aggregation. Neurons potentially also play a role in coordinating the mitochondrial unfolded protein response in non-neuronal tissues. Indeed, Durebex et al. (2011) found that mitochondrial impairment only in neurons induces the mitochondrial unfolded protein response in the intestine. Furthermore, excessive neuronal signaling through cholinergic motor neurons leads to increased misfolding of folding-defective proteins and aggregation of polyglutamine in muscle cells (Garcia et al., 2007). Therefore, depending on the circumstances, neurons can modulate protein homeostasis in both directions, either by promoting or inhibiting protein aggregation.

On the other hand, the state of protein homeostasis in non-neuronal tissue can influence neuronal protein homeostasis. Using a photoconvertible fluorescent reporter marked for degradation by ubiquitin, the authors show that young neurons rapidly removed ubiquitinated proteins through the proteasome, whereas muscles only slowly degraded proteins. Higher protein turn-over in young neurons is achieved by improving substrate recognition using the ubiquitin-binding proteasome subunit RPN10. Interestingly, the degradation rate varies greatly between neuronal cell types which may help explain differences in neuronal susceptibility to protein homeostasis disruption. With age, the rate of protein degradation decreases solely in neurons while still remaining higher than in muscles. Overall, these different strategies used by neuronal and non-neuronal cells to control protein homeostasis and how they are modified to compensate during aging may render them more or less susceptible to physiological protein aggregation.

OUTLOOK

The extensive identification of proteins aggregating during aging provides us with a starting point to understand the collapse in protein homeostasis with age. It will be essential to integrate our vast knowledge on protein homeostasis regulation to identify the key factors controlling physiological protein aggregation during the aging process. Delaying aging by dietary restriction or reducing insulin/IGF-1 signaling has been shown to mitigate the proteotoxicity of disease-protein aggregation in invertebrates and mammals (Morley et al., 2002; Cohen et al., 2006, 2009; Steinstra et al., 2008; Freude et al., 2009; Killick et al., 2009; Teixeira-Castro et al., 2011; Zhang et al., 2011). Similarly, reducing insulin/IGF-1-like signaling (David et al., 2010; Demonits and Perrimon, 2010) or using chemical compounds such as thioflavin (Alavez et al., 2011) tell us that it is also possible to modulate physiological age-related protein aggregation (also see review Alavez and Lithgow, 2011). In both C. elegans and Drosophila, age-dependent protein aggregation occurs without additional stresses or overexpression of exogenous proteins. Compared to expressing human disease-aggregating proteins in these models, examining age-dependent aggregation gives us an unparalleled opportunity to discover new physiological pathways that control aggregation. Particularly, it will be important to investigate the interplay between physiological and disease protein aggregation. A major goal will be to translate these findings into a mammalian system and use this knowledge to develop therapies to promote healthy aging in humans.

ACKNOWLEDGMENTS

I would like to thank Yelena Budovskaya and Mathias Jucker for critical reading of this manuscript.
Prevalent structural features of alpha-proteinopathies include aggregation of proteins as large, insoluble fibrils, which is found in the brains and other tissues of human Alzheimer’s disease patients. The development of these pathological conformations is the hallmark event in the formation of amyloid plaques and neurofibrillary tangles, which are the diagnostic markers for Alzheimer’s disease. However, the detailed mechanisms of fibril formation and their role in disease pathology remain incompletely understood.

The protein aggregates in Alzheimer’s disease are thought to arise through a process of misfolding, aggregation, and self-assembly, which involves the conversion of native, soluble protein into a fibrillar, insoluble form. This process is driven by changes in the protein’s secondary and tertiary structures, which lead to the formation of beta-sheets and beta-pleated sheets, respectively. These formations are characteristic of amyloid fibrils and are stabilized by hydrogen bonds and hydrophobic interactions.

The process of protein aggregation in Alzheimer’s disease is thought to involve the following steps:

1. Misfolding: The protein undergoes a conformational change, resulting in a loss of native structure.
2. Aggregation: Misfolded proteins associate with each other to form oligomers.
3. Fibrillogenesis: Oligomers aggregate into fibrils, which are further stabilized by hydrogen bonds and hydrophobic interactions.
4. Fibril maturation: Fibrils may undergo further structural modifications, leading to the formation of more complex aggregates.

The aggregation of proteins is driven by a variety of factors, including environmental, genetic, and epigenetic factors. In Alzheimer’s disease, the aggregation of amyloid-beta (Aβ) and tau proteins is thought to play a critical role in the pathogenesis of the disease. The aggregation of these proteins leads to the formation of amyloid plaques and neurofibrillary tangles, which are considered to be the hallmark features of Alzheimer’s disease.

The aggregation of proteins is a complex process that involves the interaction of a variety of factors. The factors that influence the aggregation of proteins include:

1. Protein sequence: The sequence of the protein is critical in determining its propensity to aggregate.
2. Temperature: Higher temperatures promote protein aggregation.
3. pH: Changes in pH can affect the stability of proteins and promote aggregation.
4. Ionic strength: Changes in ionic strength can affect the stability of proteins and promote aggregation.
5. Protein concentration: Higher concentrations of proteins promote aggregation.
6. Presence of other proteins: The presence of other proteins can affect the aggregation of a protein.

Understanding the mechanisms of protein aggregation is crucial for the development of therapeutic strategies for diseases characterized by protein aggregation, such as Alzheimer’s disease. Future research will likely focus on identifying the specific factors that contribute to protein aggregation and developing strategies to disrupt these processes.
Specht, S., Miller, S. B., Mogk, A., and Salomons, F. A., Menendez-Benito, Soto, C. (2003). Unfolding the role of protein aggregation and aging. Protein aggreg and aging 891–898.

Sidrauski, C., Chapman, R., and Walter, J. C. (2001). Oxidative stress and toxic stress. Nat. Rev. Neurosci. 2, 245–249.

Squier, T. C., Tandon, N. P., Fink, A. L. (2006). “Structural and functional roles of HSF-1 pathways.” in Trends Cell Biol. 16, 245–249.

Sukumar, S., Chapman, R., and Walter, J. C. (1998). The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol. 8, 245–249.

Soto, C. (2003). Unfolding the role of protein aggregation and aging. Trends Cell Biol. 32, 249–252.

Tartaglia, G. G., Uversky, V. N., Fernández, A., and Vendruscolo, M. (2005). Correlation between mRNA expression levels and protein aggregation propensity in subcellular localizations. Mol. Biol. 49, 1685–1707.

Tartaglia, G. G., Fuchsman, S., Dobson, C. M., and Vendruscolo, M. (2007). Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biotechnol. 25, 989–999.

Tonoki, A., Kuranaga, E., Tomioka, T., Onogawa, M. H., Nakazawa, H., Fujita, F., and Uchida, T. (2010). Mitochondrial Hsp70 is required for sequestration of protein aggregates in mitocondrial diseases. J. Cell Biol. 190, 617–628.

Tycko, R. (2001). Oxidative stress and protein aggregation during biological aging. Exp. Gerontol. 36, 1539–1550.

van den Hurk, H. H., Neubauer, V., van den Berghe, P., Eisenberg, D., and Riek, R. (2008). Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol. 6, e195. doi: 10.1371/journal.pbio.0060195

Wang, Q., Wolfer, R. L., Gimeno, F. I., Pan, C., Morinca, K. S., Zhang, J., et al. (2005). Proteinic analysis of neurofibillary tangles in Alzheimer disease identifies GADD45a as a detergent-insoluble paracellulal filament tau binding protein. FASEB J. 19, 869–877.

Wengler, G., Zelko, B., Weidig, A. C., Geller, A. D., Sven, Y., and Kaganovich, D. (2012). compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity. Proc. Natl. Acad. Sci. U.S.A. 109, 19,811–19,816.

Winkler, J., Sperber, A., Konig, L., Prigoznaier, S., Haidmann, U., Sojenk, V., et al. (2010). Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular aging. EMBO J. 29, 910–922.

Winkler, J., Tjelmeland, J., Bukau, B., and Mogk, A. (2012). Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J. Cell Biol. 198, 387–404.

Xia, Q., Liu, L., Cheng, D., Deng, D. M., Guo, M., Liu, J. S., et al. (2008). Proteinic identification of novel proteins associated with Lewy bodies. Front. Biosci. 13, 3830–3836.

Yang, D. S., Spindler, F., Moehn, P. S., Kasid, S., Kuma, A., Ohno, M., et al. (2011). Therapeutic effects of eliminating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. Anaplastology 7, 700–706.

Zhang, T., Mullan, P. C., Paric, G., and, Wang, J. (2011). TDP-43 neurotoxicity and protein aggregation mediated by heat shock factor and insulin/IGF-1 signaling. Hum. Mol. Genet. 20, 1952–1965.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 13 July 2012; accepted: 25 October 2012; published online: 20 November 2012 Citation: David DC (2012) Aging and the aggregating proteins. Front. Genet. 3:247. doi: 10.3389/fgene.2012.00247

This article was submitted to Frontiers in Genetics, a Specialty of Frontiers in Genetics. Copyright © 2012 David. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.