BsmI, TaqI, ApaI and FokI polymorphisms in the vitamin D receptor (VDR) gene and the risk of osteoporosis: A meta-analysis

Elias Zintzarasa,*, Paraskevi Rodopouloua and George N. Koukoulisb

aEvidence-Based Medicine Unit, Department of Biomathematics, University of Thessaly School of Medicine, Larissa, Greece
bDepartment of Endocrinology, University of Thessaly School of Medicine, Larissa, Greece

Abstract. A meta-analysis regarding BsmI, TaqI, Apal and FokI polymorphisms in the vitamin D receptor (VDR) gene and their associations with osteoporosis in females is reported. The meta-analysis involved 14, seven, seven and three studies for BsmI, TaqI, ApaI and FokI polymorphisms, respectively. The studies were association studies with osteoporotic cases and controls free of osteoporosis that provided the genotype distribution of individual cases and controls. For the BsmI polymorphism, the allele contrast b vs. B showed heterogeneity among studies ($p<0.01$, $I^2>50\%$) and the random effects (RE) pooled odds ratio (OR) was non-significant: 0.94 [95% confidence interval (CI) 0.63–1.38]. Caucasians, postmenopausal cases and studies with WHO diagnostic criteria showed no association under any genetic contrast. However, in East Asians, the OR for the dominant model [fixed effects OR = 0.14 (95\% CI 0.04–0.50) and RE OR = 0.16 (95\% CI 0.03–0.84)] was significant, indicating prevention. Overall, for the TaqI, ApaI and FokI polymorphisms, the allele contrast showed heterogeneity and the pooled RE ORs were non-significant [OR = 1.06 (95\% CI 0.71–1.60), OR = 0.99 (95\% CI 0.72–1.37) and OR = 1.17 (95\% CI 0.76–1.80), respectively]. The allele contrast for Caucasians, East Asians, postmenopausal cases and studies with WHO diagnostic criteria showed no association for TaqI, Apal and FokI. The allele contrast of homozygotes, and the recessive and dominant models the results followed the same pattern as the allele contrast. Therefore, the relationship between the VDR polymorphisms and osteoporosis remains an unresolved issue and other probable genetic-environmental risk factors interacting with the above polymorphisms should be investigated.

Keywords: VDR, osteoporosis, meta-analysis

1. Introduction

Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone leading to increased bone fragility and high risk fracture. Twin and family studies have shown that BMD is influenced by genetic determinants up to 80\%, which is the major predictor of osteoporosis [1–3].

Among the multiple candidate genes so far investigated in relation to BMD and osteoporosis the vitamin D receptor (VDR) gene is the first [4] and the most controversial one [1,5]. Four polymorphisms (BsmI, TaqI, Apal and FokI) of the VDR gene are the most frequently studied in association to BMD and osteoporosis. In the VDR gene cluster, the polymorphisms in each loci are detected with two alleles: BsmI (b and B), TaqI (t and T), Apal (a and A) and FokI (f and F).

The genetic association studies that have investigated so far the association between osteoporosis, and the BsmI, TaqI, Apal and FokI polymorphisms, provide some controversial or non-conclusive results, partly because each typically involved few cases and few con-
trols and, therefore, there was not enough information to demonstrate association. Furthermore, the interpretation is complicated by the fact that different populations, sampling strategies and number of loci included in the analyses have been used. In order to overcome the limitations of individual studies, and to resolve these controversial results, as well as to decrease the uncertainty of the effect size of estimated risk, a meta-analysis was conducted [6]. The meta-analysis estimated the effect of allele contrast, the contrast of homozygotes, and the contrasts for the dominant and recessive models. The consistency of genetic effects across populations from different ethnicities [7] and the effect of menopausal status were investigated. Furthermore, the heterogeneity between studies and the existence of potential bias were also investigated [8,9].

2. Methods

2.1. Selection of studies

All genetic association studies that investigated the association of the BsmI, TaqI, ApaI and FokI polymorphisms in the VDR gene with the development of osteoporosis published before December 2005 were considered in the meta-analysis. The studies were identified by extended computer based search of the PubMed database. The following searched criterion was used: (“VDR” or “BsmI” or “TaqI” or “ApaI” or “FokI” or “BsmI” or “TaqI” or “ApaI” or “FokI”) and (“BMD” or “Bone Mineral Density” or “Osteoporosis”) was used. The retrieved publications were then read in their entirety in order to assess their appropriateness for inclusion in this meta-analysis. All references cited in the publications were also reviewed to identify additional published work not identified by PubMed database search. Abstracts, case reports, editorials and review articles were excluded. The search was restricted to articles in English, French, and Spanish.

Genetic association studies that determine the distribution of the BsmI, TaqI, ApaI and FokI genotypes in cases with osteoporosis, and in a control group, were eligible for inclusion in the meta-analysis. All references cited in the publications were also reviewed to identify additional published work not identified by PubMed database search. Abstracts, case reports, editorials and review articles were excluded. The search was restricted to articles in English, French, and Spanish.

2.2. Data extraction

From each study the following information was extracted: first author, journal, year of publication, ethnicity of study population, demographics, menopausal status, method of BMD measurement, site of BMD measurement, matching, validity of the genotyping method, blindness of genotyping, and the number of cases and controls for each BsmI, TaqI, ApaI or FokI genotype. The frequencies of the alleles were calculated from the corresponding genotype distributions.

2.3. Meta-analysis

Prior to the main analysis, the significance of the associations for: i) the allele contrast, ii) the contrast of homozygotes, iii) the recessive and iv) dominant models. All associations were indicated as odds ratios (ORs) with the corresponding 95% confidence interval (CI). Based on the individual ORs, a pooled OR was estimated.

The heterogeneity between studies was tested using the Q-statistic [8,12]. When $p < 0.10$ then the heterogeneity was considered statistically significant. Heterogeneity was quantified with the I^2 metric, which is independent of the number of studies in the meta-analysis. I^2 takes values between 0% and 100% with higher values denoting greater degree of heterogeneity [13]. The pooled OR was estimated using fixed effects (FE; Mantel-Haenszel) and random effects (RE; DerSimonian and Laird) models [14]. The random effects model assumes a genuine diversity in the results of various studies and incorporates in the pooled OR the between studies variance. Therefore, when there is heterogeneity between studies the pooled OR was estimated using the RE model. Adjusted estimates of OR were considered whenever possible in a separate analysis. A cumulative meta-analysis and recursive cumulative meta-analysis were carried out in order to evaluate the trend of pooled OR for the allele contrast in time [15,16]. A differential magnitude of effect in large versus small studies (bias) for the allele contrast was checked using the Egger regression test for funnel plot asymmetry and the Begg-Mazumdar test [17,18].

The meta-analysis consisted of the main (overall) analysis which includes all available data, the subgroup analyses by ethnicity, menopausal status and diagnostic criteria, and sensitivity analysis which examines the effect of excluding specific studies (studies with controls not in HWE [10]).
Analyses were performed using Meta-Analyzer (Joseph Lau, Boston, Massachusetts, USA 1998), and CVF90 with IMSL library as employed in previous studies [19–21]. The distribution of the genotypes in the control group was tested whether it is in Hardy-Weinberg equilibrium using an exact test [10] implemented by GDA software [22].

3. Results

3.1. Eligible studies

The literature review identified 335 titles that met the search criteria. Data from 14 studies that investigated the association between any of the BsmI, TaqI, ApaI, and FokI polymorphisms and osteoporosis met the inclusion criteria and were included in the meta-analysis.

Fourteen studies dealt with BsmI [2,23–35], six with TaqI [2,24,28,30–32,35], six with ApaI [2,24,28,30–32,35] and three with FokI [30,31,33]. The studies were published between 1994 and 2004. In all studies, the cases were well defined following valid criteria, and the controls were healthy or non-osteoporotics diseased subjects. For the determination of the genetic polymorphisms of BsmI, TaqI, ApaI and FokI validated genotyping methods were used in all studies; namely, PCR and restriction of the PCR product with the enzyme corresponding to each polymorphism. In eight studies, the controls were age or sex matched [2,25–27,30–32,35], and in five studies, they were matched in years since menopause [2,26,31,32,35]. Studies were conducted in various populations of racial descent: nine involved Caucasians [23,24,26,28–32,35], two East Asians [25,27] and three other ethnicities (Mexican American, Latino, Turkish) [2,33,34]. Eleven studies reported that the cases were postmenopausal [2,24,26–28,30–35]. Nine studies reported diagnosis of cases based on WHO criteria [2,25,27,30–33,35]. A list of all the details abstracted from these studies is provided in Table 1.

3.2. Summary statistics

Overall, the studies provided 898/1594 cases/controls for BsmI, 500/776 cases/controls for TaqI, 540/1188 cases/controls for ApaI, and 153/246 cases/controls for FokI. In all polymorphisms there were excess of heterozygotes. In cases and controls, the alleles b, T, A, and F were the most common for BsmI, TaqI, ApaI, and FokI polymorphism, respectively (Table 1).

In seven studies [2,27,29,32–35] for the BsmI, in one study [28] for the TaqI, in four studies [2,28,32,35] for the ApaI, and in one study [33] for the FokI, the distribution of the genotypes in control group was not in Hardy-Weinberg equilibrium ($p < 0.05$), indicating genotyping errors and/or population stratification [36]. Therefore, a sensitivity analysis was carried out for these studies.

One study [28] reported linkage disequilibrium for BsmI, ApaI, TaqI, ApaI, TaqI polymorphisms, and one study [30] for FokI, BsmI, ApaI, TaqI polymorphisms.

3.3. Main results, subgroup and sensitivity analyses

Table 3 and Fig. 1 show the results for the association between the different polymorphisms and the risk of osteoporosis, and the homogeneity significance.

For the BsmI polymorphism and its relationship to osteoporosis the allele contrast b vs. B showed heterogeneity among studies ($p < 0.01$, $I^2 > 50\%$) and the pooled OR was non-significant: RE OR = 0.94 (95\% CI 0.63–1.38). In subgroup analysis, the RE pooled ORs for the Caucasians and East Asians were not significant [OR = 1.11 (95\% CI 0.71–1.73) and OR = 0.35 (95\% CI 0.06–2.01)], respectively. In addition, the studies reported cases as postmenopausal and the studies with WHO diagnostic criteria produced non-significant association [RE OR = 0.86 (95\% CI 0.57–1.30) and RE OR = 0.92 (95\% CI 0.54–1.56)]. Overall, in Caucasians, in postmenopausal cases and in studies with WHO diagnostic criteria the contrast of homoyzogotes (bb vs. BB), the recessive and dominant models for allele b produced non-significant results. In East Asians, the ORs for the contrast of homoyzogotes [RE OR = 0.12 (95\% CI 0.03–0.42) and RE OR = 0.15 (95\% CI 0.02–1.06)] and the dominant model [RE OR = 0.14 (95\% CI 0.04–0.50) and RE OR = 0.16 (95\% CI 0.03–0.84)] were significant, indicating prevention.

Overall, for the TaqI, ApaI and FokI polymorphisms and its relationship to osteoporosis the allele contrast showed heterogeneity among studies and the RE pooled ORs were non-significant [OR = 1.06 (95\% CI 0.71–1.50), OR = 0.99 (95\% CI 0.72–1.37) and OR = 1.17 (95\% CI 0.76–1.80), respectively]. The subgroup analysis for Caucasians, East Asians, postmenopausal cases and studies with WHO diagnostic criteria produced non-significant results. The contrast of homoyzogotes, and the recessive and dominant models the results followed the same pattern as the allele contrast for TaqI, ApaI, and FokI. The sensitivity analysis did not change the results for ever contrast and, hence, no significant association was detected.
Table 1
Characteristics of eligible studies considered in the meta-analysis

Author, Year	Racial descent	Polymorphisms	Cases	Diagnosis	Matching	N Healthy	Age (Mean±SD)yrs	Menopause	BMD site	BMD site
Melhus, 1994	Caucasian	BsmI	Ne	LS-hip	Ne	70	Mean=70.8yrs			
Riggs, 1995	Caucasian	BsmI, ApaI, TaqI	PSM	LS-hip	Ne	43	53.76yrs			
Lim, 1995	East Asian	BsmI	Ne	LS-hip	WHO	72	55-72yrs			
Yang, 1996	East Asian	BsmI	Ne	LS-hip	WHO	46	65±0.8yrs			
Houston, 1996	Caucasian	BsmI	Ne	LS-hip	WHO	44	66±0.85yrs			
Vandevyver, 1997	Caucasian	BsmI, ApaI, TaqI	PSM	LS-hip	Ne	84	66±8.4yrs			
Gennari, 1998	Caucasian	BsmI, ApaI, TaqI	PSM	LS-hip	WHO	176	58.2±6.8yrs			
Poggi, 1999	Caucasian	BsmI	Ne	LS-hip	WHO	40	Ne			
Zajickova, 2002	Caucasian	BsmI, ApaI, TaqI, FokI	PSM	LS-hip	WHO	65	63±7.8yrs			
Langdahl, 2000	Caucasian	BsmI, ApaI, TaqI, FokI	PSM	LS-hip	WHO	110	58.2±6.4yrs			
Douroudis, 2003	Caucasian	BsmI, ApaI, TaqI	PSM	Distal forearm	WHO	35	61±0.96yrs			
Lisker, 2003	Mexican	BsmI, FokI	Ne	LS-hip	WHO	65	65±6.8yrs			
Botinas-Fajardo, 2003	Latino	BsmI	Ne	Positive densitometry	Ne	54	61±8.3yrs			
Duman, 2004	Turkish	BsmI, ApaI, TaqI	PSM	LS-hip	WHO	57	53.16±3.31yrs			

Ne=non-extractable, SD=standard deviation, LS=lumbar spine, BMD=Bone Mineral Density, WHO=World Health Organization, BMI=body mass index, PSM=post-menopausal, Pre=pre-menopausal, OP=osteopenetics
Table 2
The genotype distribution and the allelic frequency of the (a) BsmI, (b) TaqI, (c) ApaI and (d) FokI VDR polymorphisms for all studies with osteoporotic cases and non-osteoporotic controls

(a) Distribution of BsmI VDR genotype

First author, year	Cases bb	Controls bb	Cases Bb	Controls Bb	Cases BB	Controls BB
Melhus, 1994	27(38)	71(9.1)	29(41)	35(46)	14(20)	34(44)
Riggs, 1995	11(27)	48(33)	20(30)	61(47)	9(22)	20(15)
Lim, 1995	6(84)	60(85)	9(12)	9(12)	2(2)	1(1)
Houston, 1996	17(38)	16(36)	19(43)	19(43)	8(18)	9(20)
Yanagi, 1996	22(47)	57(86)	12(26)	7(10)	12(26)	2(3)
Vandevyver, 1997	24(47)	57(86)	12(26)	7(10)	12(26)	2(3)
Gennari, 1998	23(47)	57(86)	12(26)	7(10)	12(26)	2(3)
Poggi, 1999	1(10)	8(20)	7(70)	28(70)	2(20)	4(10)
Langdahl, 2000	19(23)	21(26)	7(10)	12(26)	2(3)	56(60)
Zajickova, 2002	20(23)	21(26)	7(10)	12(26)	2(3)	56(60)
Douroudis, 2003	3(4)	7(10)	54(72)	36(65)	26(35)	4(10)
Duman, 2004	10(13)	15(22)	42(56)	26(33)	28(35)	4(10)
Total	28(32)	50(51)	267(53)	390(50)	143(28)	27(35)

(b) Distribution of TaqI VDR genotype

First author, year	Cases tt	Controls tt	Cases Tt	Controls Tt	Cases TT	Controls TT
Riggs, 1995	7(17)	20(15)	23(56)	57(43)	11(26)	53(40)
Vandevyver, 1997	5(10)	34(11)	30(65)	15(55)	11(23)	91(32)
Gennari, 1998	40(25)	11(7)	81(54)	71(49)	33(20)	62(43)
Langdahl, 2000	14(17)	13(17)	41(52)	34(45)	23(29)	28(37)
Zajickova, 2002	11(16)	8(24)	31(47)	14(42)	23(35)	11(33)
Douroudis, 2003	3(8)	9(20)	54(72)	42(63)	18(24)	17(25)
Duman, 2004	10(13)	15(22)	42(56)	28(42)	23(30)	23(34)
Total	28(32)	50(51)	267(53)	390(50)	143(28)	27(35)

(c) Distribution of ApaI VDR genotype

First author, year	Cases aa	Controls aa	Cases Aa	Controls Aa	Cases AA	Controls AA
Riggs, 1995	9(22)	31(24)	19(49)	39(46)	12(30)	38(29)
Vandevyver, 1997	22(25)	13(12)	45(51)	35(55)	20(22)	19(28)
Gennari, 1998	11(16)	26(18)	81(50)	84(58)	68(42)	34(23)
Langdahl, 2000	12(15)	17(22)	44(56)	32(43)	22(28)	25(33)
Zajickova, 2002	9(13)	6(18)	33(50)	17(51)	23(35)	10(30)
Lisker, 2003	10(13)	15(22)	42(56)	28(42)	23(30)	23(34)
Total	28(32)	50(51)	267(53)	390(50)	143(28)	27(35)

(d) Distribution of FokI VDR genotype

First author, year	Cases FF	Controls FF	Cases fF	Controls fF	Cases FF	Controls FF
Riggs, 1995	9(22)	31(24)	19(49)	39(46)	12(30)	38(29)
Zajickova, 2002	12(15)	17(22)	44(56)	32(43)	22(28)	25(33)
Lisker, 2003	10(13)	15(22)	42(56)	28(42)	23(30)	23(34)
Total	28(32)	50(51)	267(53)	390(50)	143(28)	27(35)
Table 3

Odds ratios (OR) with the corresponding 95% confidence interval (CI) and heterogeneity results (I^2 and p-values of Q-test) for the genetic contrasts of (a) BsmI, (b) TaqI, (c) ApaI, and (d) FokI VDR polymorphisms for osteoporosis

(a) Contrast for BsmI

Population	Fixed effects OR(95%CI)	Random effects OR(95%CI)	I^2 (%)	p-value Q-test
All	1.03(0.82-1.29)	1.02(0.71-1.46)		
All in HWE				
All WHO criteria	1.02(0.81-1.28)	1.01(0.69-1.49)		
Caucasians	1.00(0.82-1.24)	1.00(0.62-1.60)		
East Asians	0.30(0.18-0.53)	0.32(0.05-2.01)		
Postmenopausal	0.88(0.7-0.98)	0.88(0.56-1.38)		
Cauc. Postmen. WHO	0.84(0.68-1.03)	0.88(0.57-1.40)		

(b) Contrast for TaqI

Population	Fixed effects OR(95%CI)	Random effects OR(95%CI)	I^2 (%)	p-value Q-test
All	1.25(1.04-1.50)	1.06(0.71-1.56)		
All in HWE				
All WHO criteria	1.03(0.81-1.30)	1.02(0.69-1.49)		
Caucasians	1.00(0.82-1.24)	1.00(0.62-1.60)		
East Asians	0.30(0.18-0.53)	0.32(0.05-2.01)		
Postmenopausal	0.88(0.7-0.98)	0.88(0.56-1.38)		
Cauc. Postmen. WHO	0.84(0.68-1.03)	0.88(0.57-1.40)		

(c) Contrast for ApaI

(d) Contrast for FokI

Population	Fixed effects OR(95%CI)	Random effects OR(95%CI)	I^2 (%)	p-value Q-test
All	1.03(0.82-1.29)	1.02(0.71-1.46)		
All in HWE				
All WHO criteria	1.02(0.81-1.28)	1.01(0.69-1.49)		
Caucasians	1.00(0.82-1.24)	1.00(0.62-1.60)		
East Asians	0.30(0.18-0.53)	0.32(0.05-2.01)		
Postmenopausal	0.88(0.7-0.98)	0.88(0.56-1.38)		
Cauc. Postmen. WHO	0.84(0.68-1.03)	0.88(0.57-1.40)		
Table 3, continued

(c) Contrast for ApaI

Population	Fixed effects	Random effects	I² (%)	p-value	Q-test
	OR(95%CI)	OR(95%CI)			
a vs. A					
All	0.94(0.80-1.11)	0.99(0.72-1.37)	72	<0.01	
All in HWE	0.93(0.69-1.24)	0.93(0.69-1.24)	0	0.91	
All WHO criteria	0.85(0.68-1.02)	0.95(0.62-1.46)	75	<0.01	
Caucasians	0.93(0.78-1.10)	0.98(0.68-1.42)	76	<0.01	
Caucasians WHO	0.78(0.62-0.97)	0.92(0.54-1.58)	79	<0.01	
aa vs. AA					
All	0.91(0.64-1.29)	0.96(0.45-2.07)	74	<0.01	
All in HWE	0.81(0.44-1.47)	0.81(0.44-1.47)	0	0.92	
All WHO criteria	0.67(0.42-1.05)	0.88(0.30-2.59)	75	<0.01	
Caucasians	0.90(0.63-1.28)	0.95(0.40-2.27)	78	<0.01	
Caucasians WHO	0.62(0.38-1.01)	0.86(0.23-3.21)	80	<0.01	
Recessive model					
All	0.94(0.69-1.27)	0.92(0.50-1.71)	69	<0.01	
All in HWE	0.74(0.44-1.24)	0.74(0.44-1.24)	0	0.80	
All WHO criteria	0.72(0.48-1.08)	0.84(0.35-2.00)	69	0.01	
Caucasians	0.95(0.69-1.30)	0.94(0.47-1.90)	74	<0.01	
Caucasians WHO	0.70(0.45-1.09)	0.88(0.30-2.61)	76	<0.01	
Dominant model					
All	0.91(0.71-1.16)	0.98(0.65-1.47)	58	0.03	
All in HWE	1.05(0.67-1.64)	1.05(0.67-1.64)	0	0.68	
All WHO criteria	0.78(0.57-1.06)	0.92(0.52-1.61)	65	0.02	
Caucasians	0.87(0.67-1.13)	0.93(0.59-1.46)	62	0.02	
Caucasians WHO	0.71(0.51-0.99)	0.83(0.44-1.58)	68	0.03	

(d) Contrast for FokI

Population	Fixed effects	Random effects	I² (%)	p-value	Q-test
	OR(95%CI)	OR(95%CI)			
f vs. F					
All	1.13(0.84-1.52)	1.17(0.76-1.80)	50	0.14	
All in HWE	0.96(0.69-1.34)	0.96(0.69-1.34)	0	0.99	
All WHO criteria	1.13(0.84-1.52)	1.17(0.76-1.81)	50	0.14	
Caucasians	0.96(0.69-1.34)	0.96(0.69-1.34)	0	0.99	
ff vs. FF					
All	1.30(0.71-2.36)	1.55(0.43-5.59)	69	0.04	
All in HWE	0.86(0.43-1.69)	0.86(0.43-1.69)	0	0.84	
All WHO criteria	1.30(0.71-2.36)	1.55(0.43-5.59)	69	0.04	
Caucasians	0.86(0.43-1.69)	0.86(0.43-1.69)	0	0.84	
Recessive model					
All	1.13(0.67-1.89)	1.46(0.38-5.57)	77	0.01	
All in HWE	0.74(0.41-1.34)	0.74(0.41-1.33)	0	0.51	
All WHO criteria	1.13(0.67-1.89)	1.46(0.38-5.57)	77	0.01	
Caucasians	0.74(0.41-1.34)	0.74(0.41-1.33)	0	0.51	
Dominant model					
All	1.20(0.76-1.88)	1.20(0.76-1.88)	0	0.83	
All in HWE	1.15(0.69-1.93)	1.15(0.69-1.92)	0	0.60	
All WHO criteria	1.20(0.76-1.88)	1.20(0.76-1.88)	0	0.83	
Caucasians	1.15(0.69-1.93)	1.15(0.69-1.92)	0	0.60	

3.4. Potential bias

None of the studies included in the meta-analysis stated that genotyping was performed blinded to clinical status. Overall, for the BsmI polymorphism, the cumulative meta-analysis and recursive cumulative meta-analysis for the allelic contrast showed that RE OR declined from 3.06 in 1994 (first study) to 0.80 in 1996 (relative change = −74%) and then increased to 0.94 in 2004 (relative change = +18%). For the TaqI polymorphism, the RE OR declined from 1.38 in 1995 to 1.25 in 1997 (relative change = −9%) and then increased to 1.58 in 1998 (relative change = +26%); a downward trend in the period 1998–2004 existed (OR = 1.06 in 2004; relative change = −33%). For the Apal polymorphism, the RE OR was non-significant in the studied period, however, the magnitude of RE OR increased from 0.96 in 1995 to 1.18 in 1997 (relative change = +23%) and then declined to 0.99 in 2004 (relative change = −16%). The Egger test and the Begg-Mazumdar test indicated that there is no differential magnitude of effect in large versus small studies for the BsmI polymorphism ($p = 0.90$ and $p = 0.52$, respectively).

4. Discussion

The aetiology of developing osteoporosis is still unknown, however, several researchers have shown
the importance of age, gene-environment interactions, gene-gene interactions and life-style in the development of osteoporosis [1,37]. Most research carried out so far deals with the VDR gene and the fact that single point mutations in the gene are known to alter metabolic activity [1]. In order to partly cover the main limitation of genetic association studies, namely, low sample sizes in single studies, a meta-analysis offers a robust tool. The strength of the present analysis, however, is based on the aggregation of published case-control studies, thus there is more information for investigating the effect of the allele under investigation than the individual studies [38]. Although this meta-analysis involved a considerable amount of subjects, the investigation of the genetic associations should be based on large population studies with similar study designs. The results of this meta-analysis depended on the study design and the inclusion criteria of the cases and the controls in each study. The cases and controls involved in the meta-analysis were well defined with similar inclusion criteria, although they unavoidably cover a spectrum of disease in terms of clinical, demographic and life-style or dietary data [37]. Our meta-analysis was based on unadjusted estimates, although, a more precise analysis could be performed if adjusted (e.g. by age, dietary intake, BMI) estimates were provided in the studies.

In all polymorphisms, there is excess of homozygotes. The main and subgroup analyses in Caucasians and postmenopausal cases for the allele contrast, the recessive and dominant models for all polymorphisms produced non-significant results, and heterogeneity ranged from none to high. The genetic effects across the different ethnicities were not consistent: In East Asians, it seems that BsmI is a preventive factor of osteoporosis under a recessive model for allele b, however, this result was based on only two studies, and any inferences should be with cautious. The meta-analysis included papers in English, Spanish and French. How-
ever, it is known, that the most clear-cut data have been coming from Asian countries, such as Japan and Korea. Thus, the analysis may have missed some papers in Japanese or Korean dealing with the association of VDR gene polymorphisms and osteoporosis. There is a consistence in genetic effects across the diagnostic criteria (overall studies and Caucasian postmenopausal cases with WHO diagnostic criteria) since the effects were non-significant and they did not deviate substantially from the main analysis. The meta-analysis indicated no potential magnitude of effect in large versus small studies.

A published meta-analysis [39] investigated the association between BsmI and BMD based on mean differences in BMD level for each genotype, and involved studies published till 2000, whereas, the present meta-analysis investigated the risk of osteoporosis based on genotype distribution of cases and controls from studies published till December 2005. Cohorts that provided an average of BMD for each genotype were not considered in the meta-analysis since risk of osteoporosis cannot be calculated [40].

The main benefit for conducting this meta-analysis was to decrease the uncertainty of the effect size of estimated risk, and to provide evidence (positive or negative): For example, the allele contrast b vs. B indicated that the change in odds would be less than 49% or more than 47% conferring risk or protection from osteoporosis. The accumulated evidence has excluded the presence of an association between the VDR polymorphisms and the risk of osteoporosis, but an association may exist in East Asians, in particular for BsmI polymorphism. The lack of association between osteoporosis and candidate genes such as VDR, and the discrepancy of results might be due to other loci that are probably in linkage disequilibrium and affect the susceptibility to osteoporosis. Recently Fang et al. [41] identified 62 polymorphisms in potentially functional areas of the VDR gene and they demonstrated that the polymorphisms in the 5' promoter region and the 3'UTR of VDR contribute to the fracture risk in a large population. Osteoporosis is a complex disease with multifactorial aetiology and therefore, a minor contributing pathogenetic role of the VDR gene polymorphisms in specific cases, and in combination with other risk factors (such as dietary intake and exogenous hormones) that modulate the development of osteoporosis, cannot be totally excluded. Therefore, the relationship between the VDR polymorphisms and osteoporosis remains an unresolved issue and case-control studies that investigate gene-environment interaction might elucidate further genetics of osteoporosis.

References

[1] R. Rizzoli, J.P. Bonjour and S.L. Ferrari, Osteoporosis, genetics and hormones, Journal of Molecular Endocrinology 26 (2001), 79–94.
[2] B.S. Duman, R. Tanakol, N. Erensoy, M. Ozturk and S. Yilmazer, Vitamin D receptor alleles, bone mineral density and turnover in postmenopausal osteoporotic and healthy women, Medical Principles and Practice 13 (2004), 260–266.
[3] Z. Efsthathiou, G. Koukoulis, N. Stakias, A. Challa, E. Zintzaras and A. Tsatsoulis, Correlation of estrogen receptor alpha gene polymorphisms with spinal bone mineral density in peri- and post-menopausal Greek women, Maturitas 53 (2006), 380–385.
[4] N.A. Morrison, J.C. Qi, A. Tokita, P.J. Kelly, L. Krofts, T.V. Nguyen, P.N. Sambrook and J.A. Eisman, Prediction of bone density from vitamin D receptor alleles, Nature 367 (1994), 284–287.
[5] G.S. Cooper and D.M. Umbach, Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis, Journal of Bone and Mineral Research 11 (1996), 1841–1849.
[6] J. Lau, J.P. Ioannidis and C.H. Schmid, Quantitative synthesis in systematic reviews, Annals of Internal Medicine 127 (1997), 820–826.
[7] J.P. Ioannidis, E.E. Ntzani and T.A. Trikalinos, "Racial" differences in genetic effects for complex diseases, Nature Genetics 36 (2004), 1312–1318.
[8] E. Zintzaras and J.P. Ioannidis, Heterogeneity testing in meta-analysis of genome searches, Genetic Epidemiology 28 (2005), 123–137.
[9] J.P. Ioannidis, T.A. Trikalinos, E.E. Ntzani and D.G. Contopoulos-Ioannidis, Genetic associations in large versus small studies: an empirical assessment, Lancet 361 (2003), 567–571.
[10] B.S. Weir, Genetic Data Analysis II: Methods for Discrete Population Genetic Data, Sinauer Associates, Sunderland, Massachusetts, 1996.
[11] E. Zintzaras and J.P. Ioannidis, HEGESMA: genome search meta-analysis and heterogeneity testing, Bioinformatics 21 (2005), 3672–3673.
[12] W.G. Cochran, The combination of estimates from different experiments, Biometrics 10 (1954), 103–129.
[13] J.P. Higgins, S.G. Thompson, J.J. Deeks and D.G. Altman, Measuring inconsistency in meta-analyses, British Medical Journal 327 (2003), 557–560.
[14] M.R. Munafò and J. Flint, Meta-analysis of genetic association studies, Trends in Genetics 20 (2004), 439–444.
[15] J. Lau, E.M. Antman, J. Jimenez-Silva, B. Kupelnick, F. Mosteller and T.C. Chalmers, Cumulative meta-analysis of therapeutic trials for myocardial infarction, New England Journal of Medicine 327 (1992), 248–254.
[16] A. Whitehead, A prospectively planned cumulative meta-analysis applied to a series of concurrent clinical trials, Statistics in Medicine 16 (1997), 2901–2913.
[17] M. Egger, S.G. Davey, M. Schneider and C. Minder, Bias in meta-analysis detected by a simple, graphical test, British Medical Journal 315 (1997), 629–634.
[18] E. Zintzaras, M. Voulgaris and H.M. Moutsopoulos, The risk of lymphoma development in autoimmune diseases: a meta-analysis, Archives of Internal Medicine 165 (2005), 2337–2344.
[19] E. Zintzaras, I. Stefanidis, M. Santos and F. Vidal, Do alcohol-metabolizing enzyme gene polymorphisms increase the risk of
alcoholism and alcoholic liver disease? Hepatology 43 (2006), 352–361.
[20] E. Zintzaras, C677T and A1298C methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms in schizophrenia, bipolar disorder and depression: a meta-analysis of genetic association studies, Psychiatric Genetics 16 (2006), 105–115.
[21] E. Zintzaras, Methylenetetrahydrofolate reductase (MTHFR) gene and susceptibility to Breast Cancer: a meta-analysis, Clinical Genetics 69 (2006), 327–336.
[22] P.O. Lewis and D. Zaykin, Genetic Data Analysis: Computer program for the analysis of allelic data, http://lewis.eeb.uconn.edu/lewishome/software.html (2001).
[23] H. Melhus, A. Kindmark, S. Amer, B. Wilen, E. Lindh and S. Ljung hall, Vitamin D receptor genotypes in osteoporosis, Lancet 344 (1994), 949–950.
[24] B.L. Riggs, T.V. Nguyen, L.J. Melton, N.A. Morrison, W.M. O’Fallon, P.J. Kelly, K.S. Egan, P.N. Sambrook, J.M. Muhs, and J.A. Eisman, The contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women, Journal of Bone and Mineral Research 10 (1995), 991–996.
[25] S.K. Lim, Y.S. Park, J.M. Park, Y.D. Song, E.J. Lee, K.R. Kim, H.C. Lee and K.B. Huh, Lack of association between vitamin D receptor genotypes and osteoporosis in Koreans, Journal of Clinical Endocrinology and Metabolism 80 (1995), 3677–3681.
[26] L.A. Houston, S.F. Grant, D.M. Reid and S.H. Ralston, Vitamin D receptor polymorphism, bone mineral density, and osteoporotic vertebral fracture: Studies in a UK population, Bone 18 (1996), 249–252.
[27] H. Yanagi, S. Tomura, K. Kawanami, M. Hosokawa, M. Tanaka, K. Kobayashi, S. Tsuchiya, H. Amagai, K. Hayashi and H. Hamaguchi, Vitamin D receptor gene polymorphisms are associated with osteoporosis in Japanese women, Journal of Clinical Endocrinology and Metabolism 81 (1996), 4179–4181.
[28] C. Vandevyver, T. Wylin, J.J. Cassiman, J. Raus and P. Geusens, Influence of the vitamin D receptor gene polymorphisms on bone mineral density in postmenopausal and osteoporotic women, Journal of Bone and Mineral Research 12 (1997), 241–247.
[29] M. Poggi, S. Atorini, L. Nicastro, V. Chiarugi, M. Ruggiero, S. Pacini and M. Gulisano, Lack of association between body weight, bone mineral density and vitamin D receptor gene polymorphism in normal and osteoporotic women, Disease Markers 15 (1999), 221–227.
[30] B.L. Langdahl, C.H. Gravholt, K. Brixen and E.F. Eriksen, Polymorphisms in the vitamin D receptor gene and bone mass, bone turnover and osteoporotic fractures, European Journal of Clinical Investigation 30 (2000), 608–617.
[31] K. Zajickova, I. Zolkova, R. Bahbouh and A. Krepelova, Vitamin D receptor gene polymorphisms, bone mineral density and bone turnover: FokI genotype is related to postmenopausal bone mass, Physiological Research 51 (2002), 501–509.
[32] K. Douroudis, K. Tarass, G. Ioannidis, F. Giannakopoulos, P. Moutsatsou, N. Thalassinos and C. Papasteriades, Association of vitamin D receptor gene polymorphisms with bone mineral density in postmenopausal women of Hellenic origin, Maturitas 45 (2003), 191–197.
[33] R. Lisker, M.A. Lopez, S. Jasqui, S. Ponce De Leon Rosales, R. Correa-Rotter, S. Sanchez and O.M. Mutchnick, Association of vitamin D receptor polymorphisms with osteoporosis in mexican postmenopausal women, Human Biology 75 (2003), 399–403.
[34] L. Borjas-Fajardo, M. Zambrano, E. Fernandez, L. Pineda, A. Machin, P. de Romero, W. Zabala, M.A. Sanchez, J.A. Chacin and W. Delgado, Analysis of Bsm I polymorphism of the vitamin D receptor (VDR) gene in Venezuelan female patients living in the state of Zulia with osteoporosis, Investigacion Clinica 44 (2003), 275–282.
[35] L. Gennari, L. Becherini, L. Masi, R. Mansani, S. Bonelli, C. Cepollaro, S. Martini, A. Montagnani, G. Lentini, A.M. Becorpi and M.L. Brandi, Vitamin D and estrogen receptor allelic variants in Italian postmenopausal women: evidence of multiple gene contribution to bone mineral density, Journal of Clinical Endocrinology and Metabolism 83 (1998), 939–944.
[36] J. Xu, A. Turner, J. Little, E.R. Bleeker and D.A. Meyers, Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: hint for genotyping error? Human Genetics 111 (2002), 573–574.
[37] S. Ferrari, R. Rozzoli, T. Chevalley, D. Slosman, J.A. Eisman and J.-P. Bonjour, Vitamin-D-receptor-gene polymorphisms and change in lumbar-spine bone mineral density, Lancet 345 (1995), 423–424.
[38] S. Muncer, Response to: Power dressing and meta-analysis: incorporating power analyses into meta-analysis, Journal of Advanced Nursing 38 (2002), 274–280.
[39] A. Thakkinstian, C. D’Este, J. Eisman, T. Nguyen and J. Attia, Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study, Journal of Bone Mineral Research 19 (2004), 419–428.
[40] H.M. Macdonald, F.E. McGuigan and A. Stewart, Large-scale population-based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women, Journal of Bone Mineral Research 21 (2006), 151–162.
[41] Y. Fang, J.B. van Meurs, A. d’Alesio, M. Jhamai, H. Zhao, F. Rivadeneira, A. Hofman, J.P. van Leeuwen, F. Jehan, H.A. Pols and A.G. Uitterlinden, Promoter and 5′-untranslated-region haplotypes in the vitamin D receptor gene predispose to osteoporotic fracture: the rotterdam study, American Journal of Human Genetics 77 (2005), 807–823.