Cluster Decay Half-lives of 5d Transition Metal Nuclei using the Coulomb and Proximity Potential Model

K. E. Abd El Mageed¹, L. I. Abou Salem¹, K.A. Gado² Asmaa G. Shalaby¹,³

¹Department of Physics, Faculty of Science, Benha University, 13518 Egypt.
²Higher Institute of Engineering (BHIE), Bilbes, Sharqia, Egypt.
³World Laboratory for Cosmology and Particle Physics (WLCAPP), Cairo, Egypt.

Abstract

We have applied the Coulomb and Proximity potential model (CPPM), to calculate the half lives for various clusters decay of the selected even-even isotopes of the chosen nuclei. These nuclei are (Hf, W, Os, Pt and Hg) in 5d transition metal region in the periodic table with atomic number $72 \leq Z \leq 80$. Furthermore, half-lives are calculated using the universal formula (UNIV) for cluster decay. The calculated half–lives of alpha decay for the chosen isotopes are in good agreement with the experimental data especially with CPPM results. The alpha and cluster decays are more probable from the parents in the heavier mass number ($A=168–180$) than from the parents in the lighter mass number ($A=156–166$).

Keywords:- Proximity potential, universal function, half-life time of decay process, Q-Value

PACS :- 21.10.Dr, 21.10.Ft, 21.10.Hw

I. Introduction

The exotic decay or cluster radioactivity is the radioactive decay at which the nuclei emitting particle heavier than α-particle. This cold process is intermediate between α-decay and spontaneous fission. Sandulescu et al. [1] was first predicted this phenomenon on the basis of quantum mechanical fragmentation theory (QMFT). Spontaneous decay of nuclei by emission of clusters heavier than α particle is experimentally established. The emitted 14C, 24, 25, 26Ne, 28, 30Mg, 32, 34Si clusters from heavy nuclei were observed and the half- lives measured [2].

The cluster decay half-lives can be determined theoretically by the one dimensional Wentzel-Kramers-Brillouin (WKB) approximation [2] in which the nuclear potential has a significant role. There are many models to calculate the nuclear potential such as the double folding model (DFM) [3, 4] and liquid drop model [5]. In addition, the proximity potential model has been used to study the cluster radioactivity [6–8]. The importance of this model is that, it provides information about the radioactivity of different nuclei [9]. The Coulomb and Proximity Potential model (CPPM) [10] have been used to study alpha and cluster radioactivity in various mass regions of the nuclear chart.

Emails
1- karima.abdelmagid@fsc.bu.edu.eg
2- asmaa.shalaby@fsc.bu.edu.eg
The CPPM is used to study the cluster radioactivity and half-life times for various proton rich parents with \((Z = 56–64)\) and \((N = 56–72)\), decaying to doubly magic such as \(^{100}\text{Sn}\) \([10]\). This model has been used also to study the cold valleys in the radioactive decay of \(^{248–254}\text{Cf}\) isotopes and calculated alpha decay half-lives \([11]\). The cold valleys are the minima in the driving potential \((V-Q)\) plots against the mass number of the emitted cluster \(A_2\).

We studied the partitions of 4d transition metal nuclei using the core-cluster model in a previous work \([12]\). In the present work, we attempt to calculate the cluster-decay half-lives of parent nuclei using the coulomb and proximity potential model. We selected the 5d transition metal region in the periodic table in the framework of CPPM. The chosen even-even nuclei for this study are (Hf, W, Os, Pt and Hg) with atomic number \(72 \leq Z \leq 80\).

This paper is organized as follows: the details of the Coulomb and proximity potential model and universal formula are discussed in section II. The results and discussion are represented in section III. Finally, the conclusions from this work is represented.

II. Theoretical Model

II.a. The Coulomb and Proximity Potential model (CPPM)

The interaction potential barrier in CPPM is the sum of Coulomb, proximity and centrifugal potentials for the touching configuration and for the separated fragments. Shi and Swiatecki \([13]\) explained the overlap region by a simple power law interpolation. The implication of the proximity potential decreases the height of the potential barrier, which makes the model calculations closely agree with the experimental data.

The total interacting potential barrier for a parent nucleus exhibiting exotic decay is given by

\[
V = \frac{Z_1Z_2e^2}{r} + V_p(z) + \frac{\hbar^2\ell(\ell + 1)}{2\mu r}, \quad \text{for } z > 0 \tag{1}
\]

Where: \(Z_1\) and \(Z_2\) are the atomic numbers of the daughter and emitted cluster, \(z\) is the distance between the nearby surfaces between daughter and cluster. The distance between fragment centers \(r\), \(\ell\) is the angular momentum, and \(\mu\) is the reduced mass. The proximity potential \(V_p(z)\) is represented by Blocki et al. \([6]\),

\[
V_p(z) = 4\pi\gamma b\left[\frac{C_1C_2}{C_1 + C_2}\right]\phi\left(\frac{z}{b}\right) \tag{2}
\]

with the width of the nuclear surface \(b \approx 1\), and \(\gamma\) is the nuclear surface tension coefficient \([14]\) which is given by

\[
\gamma = 0.9517 \left\{1 - 1.7826 \left(N - Z\right)^2\right\}/A^2 \quad \text{MeV/fm}^2 \tag{3}
\]
Where, N, Z and A are the neutron, proton and mass number of the parent respectively. The central radii C_i (i refers to the daughter and/or cluster) related to sharp radii R_i as:

$$C_i = R_i - \left(\frac{b^2}{R_i} \right)$$ \hspace{1cm} (4)

To calculate R_i, we can use the semi-empirical formula in terms of mass number A_i [6] as following,

$$R_i = 1.28A_i^{1/3} + 0.8A_i^{-1/3} - 0.76$$ \hspace{1cm} (5)

The universal proximity potential [15] ϕ is given as

$$\phi(\varepsilon) = -4.41 \varepsilon - 0.7176$$ \hspace{1cm} for $\varepsilon \geq 1.9475$ \hspace{1cm} (6)

$$\phi(\varepsilon) = -1.7817 + 0.927\varepsilon + 0.0169\varepsilon^2 - 0.05148\varepsilon^3$$ \hspace{1cm} for $0 \leq \varepsilon \leq 1.9475$ \hspace{1cm} (7)

With $\varepsilon = z/b$. Using one-dimensional WKB approximation, the barrier penetrability P is given as

$$P = \exp \left(-\frac{2}{h} \int_a^b \sqrt{2\mu(V-Q)} \, dz \right)$$ \hspace{1cm} (8)

In eq.(8) the reduced mass $\mu = mA_1A_2/A$, m is the nucleon mass and A_1, A_2 are the mass numbers of daughter and emitted cluster respectively. The turning points “a” and “b” are determined from $V(a) = V(b) = Q$. The Q-value is given by

$$Q = M(A,Z) - M(A_1,Z_1) - M(A_2,Z_2)$$ \hspace{1cm} (9)

Where: $M(A,Z)$, $M(A_1,Z_1)$ and $M(A_2,Z_2)$ are the atomic masses of the parent, daughter and emitted cluster respectively. The spontaneous cluster decay process occurs when the Q-value is positive. The Q-values for all the cluster-decay are determined using the experimental mass table [16]. The half-life time of the cluster decay is given by,

$$T_{1/2} = \left(\frac{\ell \hbar^2}{\lambda} \right) = \left(\frac{\ell \hbar^2}{\sqrt{P}} \right)$$ \hspace{1cm} (10)

Where, λ is the decay constant, ν is the assault frequency written as $\nu = \frac{\omega}{2\pi} = \frac{2E_V}{h}$, and E_V is the empirical zero point vibration energy which is given by [17],
\[E_v = Q \left(0.056 + 0.039 \exp\left[\frac{(4 - A_2)}{2.5} \right] \right), \quad A_2 \geq 4 \]

II.b The universal Formula (UINV)

The half–life for the cluster decay is also evaluated by Poenaru et al. [18], in terms of a universal formula.

\[\log_{10} T_{1/2}(S) = -\log_{10} P - \log_{10} S + \log_{10}(\ell n2) - \log_{10} v \]

Where: \(P \) is the penetrability of an external Coulomb barrier and \(S \) is the preformation probability of the cluster at the nuclear surface which depends only on the mass number of the emitted cluster \(A_2 \), and \(v \) is a constant. The logarithm of the penetrability of an external Coulomb barrier \(P \) is given as

\[-\log_{10} P = 0.22873 \left(\mu A Z_1 Z_2 R_b \right)^{1/2} \times \left(\arccos r - \sqrt{r(1-r)} \right) \]

Where: \(\mu_A = A_1 A_2 / A_1 \), \(r = R_a / R_b \) where \(R_a \) and \(R_b \) are the turning points. The first turning point \(R_a \) is the separation distance at the touching configuration, and can be expressed as, \(R_a = R_t = R_1 + R_2 \), Where \(R_t = 1.2249 \left(A_1^{1/3} + A_2^{1/3} \right) \), and the second turning point defined as \(R_b = \frac{e^2 Z_1 Z_2}{Q} \).

The logarithm of the preformation factor \(S \) is given as [18]

\[\log_{10} S = -0.598(A_2 - 1) \]

The last two terms in the parentheses in equation (12) is denoted the additive constant \(C_{ee} \). In the case of even-even nucleus, \(C_{ee} \) is given by,

\[C_{ee} = [-\log_{10} v + \log_{10}(\ell n2)] = -22.16917 \]

III. Results and Discussion

In the present work we have applied the coulomb and proximity potential model (CPPM) to the cluster-decay of the 5d transition metal region in the periodic table. The selected nuclei (Hf, W, Os, Pt and Hg) have the atomic number in the range \(72 \leq Z \leq 80 \). This study beginning with the selection of the probable cluster from the selected isotopes through the cold valley plotting, in which \((V-Q)\) plotted versus \(A_2 \). The driving potential \((V-Q)\) is calculated for a specific parent for all possible cluster –daughter combinations. The driving potential is defined as the difference between the interaction potential \(V \) and the \(Q \)-value of the reaction.
Figure (1a-1e) presents the plots of the driving potential versus the mass number of the cluster A_2 for the chosen nuclei; this relation is called cold valley plots. From these figures one can notice that, the minima of the driving potential which represent the most probable decay are due to the shell closure of one or both the cluster and daughter. So that, the most probable clusters for the decay process from all the selected nuclei are ^4He, ^8Be, ^{12}C, ^{16}O, $^{20,22}\text{Ne}$, $^{24,26}\text{Mg}$, ^{32}S, $^{30,32}\text{Si}$ and ^{38}Ar. In addition to that, other deeper minima (valleys) can be found for the same parent nuclei, if one increases the mass number of the cluster.
Figure (1-b) The driving potential \((V-Q)\) as a function of the mass number of the emitted cluster \(A_2\), for \(^{158-166}W\) isotopes.

Figure (1-c) The driving potential \((V-Q)\) as a function of the mass number of the emitted cluster \(A_2\), for \(^{162-170}Os\) isotopes.
Figure (1-d) The driving potential \((V-Q) \) as a function of the mass number of the emitted cluster \(A_2 \), for \(^{166-174}\text{Pt} \) isotopes.

Figure (1-e) The driving potential \((V-Q) \) as a function of the mass number of the emitted cluster \(A_2 \), for \(^{172-180}\text{Hg} \) isotopes.
The values of logarithm of the half-life time, $\log_{10}(T_{1/2})$, for the chosen clusters are calculated using the Coulomb proximity potential (CPPM), and the universal formula (UNIV) from eq.(10) and eq.(12) respectively. The selected isotopes of even-even nuclei are $^{156-162}$Hf, $^{158-166}$W, $^{162-170}$Os, $^{166-174}$Pt, and $^{172-180}$Hg. The calculated values of $\log_{10}(T_{1/2})$ and the available experimental ones [16] for the clusters are listed in table (1). It is obvious that, the calculated values using CPPM are in agreement with the experimental values of α-decay more than the UNIV formula. We conclude that, this deviation is due to the difference in potential forms CPPM, and UNIV. Also it is clear that, the Q-value of the clusters have $N = Z$, is greater than the Q-value of the clusters have $N \neq Z$. On the other hand, the values of $\log_{10}(T_{1/2})$, for $N = Z$ are smaller than that of $N \neq Z$. This can be observed clearly, for example in the clusters (20Ne, 22Ne, 24Mg, 26Mg) emerged from the decay of 156Hf and 158Hf. In comparison for other isotopes this property can be extracted.

The calculated values of $\log_{10}(T_{1/2})$ using CPPM plotted as a function of the mass number of the parents for all the clusters presented in figures (2a-2e). From figure (2a) the values of $\log_{10}(T_{1/2})$ is plotted against the mass number of the isotopes of Hf with different clusters. As the atomic number is fixed $Z = 72$ for $^{156-162}$Hf$_{72}$, the plot ($\log_{10}(T_{1/2})$ vs. A) is equivalent to ($\log_{10}(T_{1/2})$ vs. N), in which N is the number of neutrons. From this figure, it is clear that, the lower line is for 8Be cluster while the upper one for 34S. Therefore, the $\log_{10}(T_{1/2})$ increases with increasing the mass number of the clusters. This means that, the life time of the decay process from the parent nuclei is longer as the mass number of the clusters is larger. Figures (2b-2e) represent the same plotting mentioned above in the other elements (W, Os, Pt, and Hg).

Figure (2-a) :- The values of $\log_{10}T_{1/2}$ versus the mass number (A) of parent isotopes $^{156-162}$Hf for different clusters.
Table (1).: The values of $\log_{10}(T_{1/2})$ for different isotopes calculated by CPPM and UNIV, in comparison with the available experimental data.

Parent Nuclei	Cluster Nuclei	Daughter Nuclei	Q-Value (MeV)	Log$_{10}(T_{1/2})$	The Present Work	Exp. [16]
				CPPM	UNIV	
^{156}Hf	^4He	^{152}Yb	6.0285	-1.62	-1.61	-1.64
	^8Be	^{148}Er	8.6700	21.31	31.70	-
	^{12}C	^{144}Dy	18.7030	28.32	28.62	-
	^{16}O	^{140}Gd	28.6520	36.62	30.32	-
	^{20}Ne	^{135}Sm	35.9860	46.83	37.84	-
	^{22}Ne	^{134}Sm	31.5330	54.37	52.36	-
	^{24}Mg	^{132}Nd	47.4920	52.12	35.56	-
	^{26}Mg	^{130}Nd	44.9440	56.52	42.78	-
	^{28}Si	^{128}Ce	59.1590	56.79	33.54	-
	^{30}Si	^{128}Ce	57.3860	59.99	38.18	-
	^{32}Si	^{128}Ce	51.1260	67.03	51.70	-
	^{32}S	^{124}Ba	67.238	63.16	36.43	-
	^{34}S	^{122}Ba	66.6730	65.25	38.93	-
^{158}Hf	^4He	^{154}Yb	5.4047	0.45	0.92	0.45
	^8Be	^{150}Er	10.7871	18.61	20.82	-
	^{12}C	^{144}Dy	20.4524	28.33	23.26	-
	^{16}O	^{142}Gd	29.5940	38.39	27.96	-
	^{20}Ne	^{136}Sm	36.4372	49.67	36.69	-
	^{22}Ne	^{136}Sm	32.7331	56.51	48.78	-
	^{24}Mg	^{132}Nd	47.4775	55.74	35.43	-
	^{26}Mg	^{130}Nd	45.5378	59.78	41.41	-
	^{28}Si	^{130}Ce	58.8132	60.93	33.9	-
	^{30}Si	^{128}Ce	57.8644	63.66	37.23	-
	^{32}Si	^{128}Ce	52.7957	69.85	48.18	-
	^{32}S	^{126}Ba	66.5829	67.85	37.19	-
	^{34}S	^{124}Ba	66.9190	69.41	38.39	-
^{160}Hf	^4He	^{156}Yb	4.9023	1.12	3.34	1.13
	^8Be	^{152}Er	9.6210	20.17	26.27	-
	^{12}C	^{144}Dy	21.9219	25.63	19.33	-
	^{16}O	^{144}Gd	30.5652	36.24	25.71	-
	^{20}Ne	^{140}Sm	36.5666	48.16	36.31	-
	^{22}Ne	^{138}Sm	33.5912	53.99	46.30	-
	^{24}Mg	^{138}Nd	47.2016	54.47	35.84	-
	^{26}Mg	^{136}Nd	45.9297	57.86	40.53	-
	^{28}Si	^{132}Ce	58.0325	59.92	34.94	-
	^{30}Si	^{130}Ce	57.9246	61.98	37.02	-
	^{32}Si	^{128}Ce	53.6803	67.33	38.66	-
	^{32}S	^{126}Ba	65.4632	66.94	38.64	-
	^{34}S	^{126}Ba	66.6703	67.85	38.66	-
Parent Nuclei	Cluster Nuclei	Daughter Nuclei	Q-Value (MeV)	Log$_{10}$(T$_{1/2}$)	The Present Work	Exp.[16]
---------------	---------------	----------------	---------------	----------------	-----------------	--------
162Hf	4He	158Yb	4.4162	1.58	6.05	1.59
	8Be	154Er	8.4942	21.45	32.57	-
	12C	150Dy	20.1404	26.14	23.94	-
	16O	146Gd	31.6535	33.34	23.25	-
	20Ne	142Sm	36.8595	45.61	35.48	-
	22Ne	140Sm	34.3116	50.74	44.28	-
	24Mg	138Nd	46.7828	52.34	36.40	-
	26Mg	136Nd	46.2448	55.00	39.70	-
	28Si	134Ce	57.1566	57.9	36.16	-
	30Si	132Ce	57.7349	59.40	37.10	-
	32Si	130Ce	54.3315	63.92	44.93	-
	32S	130Ba	64.1082	65.03	40.55	-
	34S	132Ba	66.6703	64.95	38.39	-
	158W	4He	6.6126	-2.42	-2.84	-2.90
	8Be	150Yb	10.001	18.61	26.46	-
	12C	146Er	20.627	26.27	25.09	-
	16O	142Dy	31.162	34.66	27.17	-
	20Ne	138Gd	39.004	44.72	34.49	-
	22Ne	136Gd	33.420	52.92	50.73	-
	24Mg	134Sm	51.615	49.80	31.80	-
	26Mg	132Sm	47.599	55.13	41.15	-
	28Si	130Nd	64.394	54.33	29.53	-
	30Si	128Nd	61.052	58.42	36.10	-
	32Si	126Nd	53.376	66.24	51.50	-
	32S	126Ce	73.141	60.63	32.29	-
	34S	124Ce	71.153	63.54	36.53	-
	160W	4He	6.0655	-1.06	3.55	-1.00
Parent Nuclei	Cluster Nuclei	Daugther Nuclei	Q-Value (MeV)	Log$_{10}$(T$_{1/2}$)	The Present Work	Exp.[16]
---------------	---------------	----------------	---------------	-------------------------	-----------------	--
			[16]		CPPM	UNIV
162W	4He	158Hf	5.6773	0.13	0.63	0.13
	8Be	154Yb	10.9901	18.68	21.72	-
	12C	150Er	23.8309	25.13	16.80	-
	16O	146Dy	33.2916	35.62	22.53	-
	20Ne	142Gd	40.0011	47.34	32.19	-
	22Ne	146Gd	35.8067	54.15	44.17	-
	24Mg	138Sm	51.431	53.82	31.78	-
	26Mg	136Sm	49.0251	58.05	38.13	-
	28Si	134Nd	63.1389	59.37	30.91	-
	30Si	132Nd	61.8584	62.26	34.54	-
	32Si	130Nd	56.6736	68.20	44.91	-
	32S	130Ce	71.4381	66.33	34.14	-
	34S	128Ce	71.4653	68.10	35.73	-

164W	4He	160Hf	5.2785	0.83	2.40	0.79
	8Be	156Yb	10.0889	20.26	25.81	-
	12C	152Er	22.2661	26.57	20.41	-
	16O	146Dy	34.3623	34.42	20.38	-
	20Ne	142Gd	40.7536	46.53	30.94	-
	22Ne	142Gd	36.7564	52.80	41.72	-
	24Mg	140Sm	51.1616	53.71	32.07	-
	26Mg	138Sm	49.4844	57.33	37.13	-
	28Si	136Nd	62.4642	59.5	31.69	-
	30Si	134Nd	61.8515	61.93	34.38	-
	32Si	132Nd	57.2756	67.35	43.67	-
	32S	132Ce	70.2586	66.77	35.55	-
	34S	130Ce	71.1267	67.99	36.01	-

166W	4He	162Hf	4.8560	1.27	4.53	1.28
	8Be	158Yb	9.1804	21.32	30.56	-
	12C	154Er	20.7168	27.28	24.44	-
	16O	150Er	32.1583	35.10	24.57	-
	20Ne	146Gd	41.2393	44.44	29.54	-
	22Ne	144Gd	37.8961	50.00	38.94	-
	24Mg	142Sm	51.0320	52.13	32.13	-
	26Mg	140Sm	49.7823	55.33	36.44	-
	28Si	138Nd	61.623	58.28	32.74	-
	30Si	136Nd	61.7441	60.15	34.37	-
	32Si	134Nd	57.836	64.95	42.52	-
The Present Work

Parent Nuclei	Cluster Nuclei	Daughter Nuclei	Q-Value (MeV) [16]	Log$_{10}(T_{1/2})$ The Present Work	Exp.[16]
32S	134Ce		68.9603	65.69	-
34S	132Ce		70.5145	66.42	37.18

162Os

Parent Nuclei	Cluster Nuclei	Daughter Nuclei	Q-Value (MeV) [16]	Log$_{10}(T_{1/2})$ The Present Work	Exp.[16]
4He	158W		6.7673	-2.20	-2.59
8Be	154Hf		13.288	14.09	14.89
12C	150Yb		24.135	23.73	18.16
16O	146Er		34.556	33.23	22.58
20Ne	142Dy		42.659	43.58	30.21
22Ne	140Dy		36.352	51.90	46.42
24Mg	138Gd		55.088	49.57	29.31
26Mg	136Gd		50.802	54.91	38.50
28Si	134Sm		68.366	54.4	27.42
30Si	132Sm		65.009	58.40	33.62
32Si	130Sm		57.081	66.05	48.39
^{34}S	128Nd		78.109	60.57	29.58

164Os

Parent Nuclei	Cluster Nuclei	Daughter Nuclei	Q-Value (MeV) [16]	Log$_{10}(T_{1/2})$ The Present Work	Exp.[16]
4He	160W		6.4794	-1.12	-1.62
8Be	158Hf		12.453	16.53	17.73
12C	152Yb		25.848	23.63	14.44
16O	148Er		35.743	34.13	20.32
20Ne	144Dy		43.139	45.47	29.24
24Mg	140Gd		55.243	51.99	28.97
26Mg	138Gd		51.399	57.14	37.34
28Si	136Sm		67.831	57.47	27.93
30Si	134Sm		65.336	61.05	33.04
^{32}S	132Nd		76.969	64.24	30.75
^{34}S	130Nd		76.055	66.56	33.5

166Os

Parent Nuclei	Cluster Nuclei	Daughter Nuclei	Q-Value (MeV) [16]	Log$_{10}(T_{1/2})$ The Present Work	Exp.[16]
4He	162W		6.1386	-0.94	-0.39
8Be	160Hf		11.724	16.99	20.44
12C	154Yb		24.4953	24.06	17.19
16O	150Er		37.1315	32.01	17.8
20Ne	148Dy		44.1601	43.43	27.31
24Mg	142Gd		55.4563	50.49	28.49
26Mg	140Gd		52.56	54.79	35.17
28Si	138Sm		67.5538	64.59	36.4
30Si	136Sm		65.8071	59.24	32.21
^{32}S	134Nd		76.2252	63.12	31.47
^{34}S	132Nd		75.9207	65.05	33.49
Parent Nuclei	Cluster Nuclei	Daughter Nuclei	\(Q\)-Value (MeV)	\(\log_{10}(T_{1/2})\)	\(\log_{10}(T_{1/2})\)
---------------	---------------	-----------------	------------------	-----------------	-----------------
				The Present Work	Exp.[16]
				CPPM	UNIV
168 Os					
\(^4\)He	\(^{166}\)W	\(^{64}\)W	5.8161	0.34	0.87
\(^8\)Be	\(^{160}\)Hf	\(^{160}\)Hf	11.0027	19.64	23.37
\(^{12}\)C	\(^{156}\)Yb	\(^{156}\)Yb	23.2716	26.95	19.88
\(^{16}\)O	\(^{152}\)Er	\(^{152}\)Er	35.244	35.49	20.93
\(^{20}\)Ne	\(^{148}\)Dy	\(^{148}\)Dy	44.9083	45.19	25.85
\(^{22}\)Ne	\(^{146}\)Dy	\(^{146}\)Dy	40.5927	51.46	36.30
\(^{24}\)Mg	\(^{144}\)Gd	\(^{144}\)Gd	55.7062	52.96	27.92
\(^{26}\)Mg	\(^{142}\)Gd	\(^{142}\)Gd	53.1872	57.11	33.90
\(^{28}\)Si	\(^{140}\)Sm	\(^{140}\)Sm	66.9618	59.47	28.71
\(^{30}\)Si	\(^{138}\)Sm	\(^{138}\)Sm	65.9438	62.16	31.79
\(^{32}\)Si	\(^{136}\)Sm	\(^{136}\)Sm	60.9017	67.76	41.21
\(^{32}\)S	\(^{136}\)Nd	\(^{136}\)Nd	75.2279	66.93	32.53
\(^{34}\)S	\(^{134}\)Nd	\(^{134}\)Nd	75.5912	72.59	40.03

170 Os					
\(^4\)He	\(^{166}\)W	\(^{166}\)W	5.5368	0.86	2.06
\(^8\)Be	\(^{162}\)Hf	\(^{162}\)Hf	10.3009	20.98	26.58
\(^{12}\)C	\(^{158}\)Yb	\(^{158}\)Yb	22.0838	28.23	22.77
\(^{16}\)O	\(^{154}\)Er	\(^{154}\)Er	33.4155	46.61	24.32
\(^{20}\)Ne	\(^{150}\)Dy	\(^{150}\)Dy	42.4249	47.18	30.08
\(^{22}\)Ne	\(^{148}\)Dy	\(^{148}\)Dy	41.9515	50.17	33.42
\(^{24}\)Mg	\(^{146}\)Gd	\(^{146}\)Gd	56.0927	52.65	27.20
\(^{26}\)Mg	\(^{144}\)Gd	\(^{144}\)Gd	54.0476	56.41	32.34
\(^{28}\)Si	\(^{142}\)Sm	\(^{142}\)Sm	66.553	59.71	29.07
\(^{30}\)Si	\(^{140}\)Sm	\(^{140}\)Sm	65.9625	62.12	31.60
\(^{32}\)Si	\(^{138}\)Sm	\(^{138}\)Sm	61.649	67.17	39.83
\(^{32}\)S	\(^{138}\)Nd	\(^{138}\)Nd	74.1074	67.63	33.78
\(^{34}\)S	\(^{136}\)Nd	\(^{136}\)Nd	75.2045	68.77	33.98
Parent Nuclei	Cluster Nuclei	Daughter Nuclei	Q-Value (MeV)	Log10(T1/2)	The Present Work	Exp.[16]		
				CPPM	UNIV			
166Pt	^4^He	^162^Os	7.2858	-2.48	-3.49	-3.50		
	^8^Be	^158^W	13.961	14.07	14.25	-		
	^12^C	^154^Hf	27.941	21.5	12.19	-		
	^16^O	^150^Yb	38.583	31.57	17.67	-		
	^20^Ne	^146^Er	46.572	42.45	26.1	-		
	^24^Mg	^142^Dy	59.262	48.96	26.13	-		
	^26^Mg	^144^Dy	54.253	54.59	35.74	-		
	^28^Si	^138^Gd	72.358	54.5	25.46	-		
	^30^Si	^136^Gd	68.731	58.58	31.72	-		
	^32^S	^134^Sm	82.6	60.84	27.63	-		
	^34^S	^132^Sm	80.219	63.89	31.93	-		
	^36^Ar	^130^Nd	92.036	66.66	29.85	-		
168Pt	^4^He	^164^Os	6.9896	-2.1	-2.59	-2.69		
	^8^Be	^160^W	13.377	14.81	16.07	-		
	^12^C	^156^Hf	26.809	22.4	14.23	-		
	^16^O	^152^Yb	40	30.52	15.33	-		
	^20^Ne	^148^Er	47.463	41.76	24.54	-		
	^24^Mg	^144^Dy	59.446	48.8	25.72	-		
	^26^Mg	^142^Dy	55.276	53.8	33.9	-		
	^28^Si	^140^Gd	72.217	54.56	25.45	-		
	^30^Si	^138^Gd	69.032	58.37	31.15	-		
	^32^S	^136^Sm	81.768	61.28	28.37	-		
	^34^S	^134^Sm	80.25	63.86	31.71	-		
	^36^Ar	^132^Nd	90.599	67.43	31.17	-		
170Pt	^4^He	^166^Os	6.7073	-1.71	-1.68	-1.86		
	^8^Be	^162^W	12.7541	15.67	18.16	-		
	^12^C	^158^Hf	25.798	23.25	16.17	-		
	^16^O	^154^Yb	38.3646	31.64	17.78	-		
	^20^Ne	^150^Er	48.5687	40.95	22.7	-		
	^24^Mg	^146^Dy	60.1839	48.3	24.57	-		
	^26^Mg	^144^Dy	56.4801	52.9	31.84	-		
	^28^Si	^142^Gd	72.1478	54.57	25.36	-		
	^30^Si	^140^Gd	69.9107	57.8	29.83	-		
	^32^S	^138^Sm	81.2088	61.58	28.81	-		
	^34^S	^136^Sm	80.438	63.75	31.3	-		
	^36^Ar	^134^Nd	89.5734	67.99	32.09	-		
Parent Nuclei	Cluster Nuclei	Daughter Nuclei	Q-Value (MeV) [16]	Log$_{10}(T_{1/2})$	The Present Work	Exp.[16]		
--------------	----------------	----------------	---------------------	---------------------	----------------	----------		
					CPPM	UNIV		
172Pt	4He	168Os	6.4645	-0.03	-0.85	-1.00		
	8Be	164W	12.1887	17.14	20.2	-		
	12C	160Hf	24.8338	24.89	18.16	-		
	16O	158Yb	36.898	33.65	20.14	-		
	20Ne	152Er	46.4384	43.53	25.9	-		
	24Mg	148Dy	60.6893	49.18	23.75	-		
	26Mg	146Dy	57.672	53.34	29.87	-		
	28Si	144Gd	72.1548	55.89	25.19	-		
	30Si	142Gd	70.295	58.95	29.16	-		
	32S	140Sm	80.374	63.52	29.59	-		
	34S	138Sm	80.332	65.32	31.24	-		
	36Ar	136Nd	88.3333	70.29	33.28	-		
174Pt	4He	170Os	6.1831	-0.09	0.19	-0.05		
	8Be	166W	11.628	19.01	22.39	-		
	12C	162Hf	23.8506	27.02	20.33	-		
	16O	158Yb	35.4288	36.23	22.68	-		
	20Ne	154Er	44.3284	46.81	29.35	-		
	24Mg	150Dy	57.9246	52.8	27.38	-		
	26Mg	146Dy	58.7493	54.47	28.14	-		
	28Si	144Gd	72.2599	57.81	24.9	-		
	30Si	142Gd	70.874	60.65	28.26	-		
	32S	140Sm	79.6837	66.13	30.22	-		
	34S	138Sm	80.0692	67.73	31.37	-		
	36Ar	136Nd	86.9314	73.5	34.7	-		
Parent Nuclei	Cluster Nuclei	Daughter Nuclei	Q-Value (MeV)	Log$_{10}(T_{1/2})$	The Present Work	Exp.[16]		
---------------	---------------	----------------	----------------	---------------------	------------------	---------		
				CPPM	UNIV			
172Hg	4He	168Pt	7.5237	-2.39	-3.53	-3.60		
	8Be	164Os	14.422	14.29	14.21	-		
	12C	166W	28.267	22.3	13.09	-		
	16O	158Hf	41.495	30.9	14.98	-		
	20Ne	152Yb	52.253	40.31	19.84	-		
	24Mg	148Er	64.303	47.91	22.01	-		
	28Si	144Dy	76.953	54.29	22.82	-		
	30Si	142Dy	73.444	58.19	28.51	-		
	32S	140Gd	86.688	61.34	26.06	-		
	34S	138Gd	84.479	64.27	30	-		
	38Ar	136Sm	95.933	67.68	28.93	-		
	40Ar	134Sm	94.981	69.76	31.37	-		
			89.009	74.6	39.59	-		
174Hg	4He	170Pt	7.2332	-2.03	-2.67	-2.67		
	8Be	166Os	13.8487	15	15.94	-		
	12C	162W	27.3539	23.02	14.73	-		
	16O	158Hf	40.1931	31.76	16.82	-		
	20Ne	154Yb	50.3276	41.53	22.42	-		
	24Mg	150Er	65.1184	47.4	20.87	-		
	28Si	146Dy	76.953	54.26	22.65	-		
	30Si	142Dy	74.3566	57.63	27.24	-		
	32S	140Gd	86.3286	61.51	26.26	-		
	34S	138Gd	85.0675	63.94	29.16	-		
	38Ar	136Sm	95.0829	68.12	29.59	-		
	40Ar	134Sm	94.8793	69.82	31.27	-		
			89.769	74.18	38.47	-		
176Hg	4He	172Pt	6.8993	-1.58	-1.61	-1.69		
	8Be	168Os	13.2719	15.76	17.81	-		
	12C	164W	26.4546	23.76	16.44	-		
	16O	160Hf	38.895	32.65	18.78	-		
	20Ne	156Yb	48.5271	42.72	25.01	-		
	24Mg	152Er	62.6542	48.82	23.76	-		
	28Si	148Dy	77.5727	53.9	21.82	-		
	30Si	146Dy	75.2146	57.11	26.06	-		
	32S	144Gd	86.0018	61.67	26.42	-		
	34S	142Gd	85.1179	63.9	28.92	-		
	38Ar	140Sm	93.9142	68.73	30.61	-		
	40Ar	138Sm	94.4393	70.06	31.54	-		
			90.0775	74.01	37.91	-		
Parent Nuclei	Cluster Nuclei	Daughter Nuclei	Q-Value (MeV)	Log$_{10}$(T$_{1/2}$)	The Present Work	Exp.[16]		
---------------	----------------	-----------------	---------------	------------------------	------------------	---------		
					CPPM	UNIV		
178Hg	4He	174Pt	6.5773	-0.57	-0.5	-0.57		
8Be	170Os		12.6685	17.66	19.92	-		
12C	166W		25.5719	25.81	18.22	-		
16O	162Hf		37.5898	35.15	20.88	-		
20Ne	158Yb		46.7359	45.83	27.77	-		
24Mg	154Er		60.2222	52.36	26.85	-		
28Si	150Dy		74.486	57.79	25.08	-		
30Si	148Dy		75.9699	58.92	25.02	-		
32S	146Gd		85.7848	64.18	26.47	-		
34S	144Gd		85.3749	66.22	28.45	-		
36Ar	142Sm		92.9019	71.9	31.49	-		
38Ar	140Sm		93.8545	73.04	31.96	-		
40Ar	138Sm		90.2214	76.71	37.54	-		
180Hg	4He	176Pt	6.2584	0.39	0.68	0.41		
8Be	172Os		12.0516	19.49	22.26	-		
12C	168W		24.6425	27.74	20.23	-		
16O	164Hf		36.3049	37.43	23.09	-		
20Ne	160Yb		44.9565	48.71	30.72	-		
24Mg	156Er		57.8936	55.58	30.04	-		
28Si	152Dy		71.3604	61.45	28.68	-		
30Si	150Dy		73.492	62.21	27.77	-		
32S	148Gd		82.0345	68.26	30.47	-		
34S	146Gd		85.7669	67.98	27.84	-		
36Ar	144Sm		91.9466	74.56	32.33	-		
38Ar	142Sm		93.4511	75.43	32.2	-		
40Ar	140Sm		90.2455	78.93	37.31	-		
Figure (2-b) :- The values of $\log_{10} T_{1/2}$ versus the atomic mass number (A) of parent isotopes $^{158-166}$W for different clusters.

Figure (2-c) :- The values of $\log_{10} T_{1/2}$ versus the mass number (A) of parent isotopes $^{162-170}$Os for different clusters.
Figure (2d) :- The values of $\log_{10} T_{1/2}$ versus the mass number (A) of parent isotopes $^{166-174}$Pt for different clusters.

Figure (2e) :- The values of $\log_{10} T_{1/2}$ versus the mass number (A) of parent isotopes $^{172-180}$Hg for different clusters.
The calculated values of log\(_{10}(T_{1/2})\) for alpha decay using CPPM for the chosen isotopes are plotted versus the mass number of the parent as shown in figure (3). This figure shows the calculated values compared with the experimental data [16]. It is obvious that, the isotopes of heavier atomic mass (A= 168 – 180) are more prone to alpha decay than the lighter ones (A= 156 – 166). Moreover, the daughters nuclei for the alpha-decay of the \(^{156-162}\text{Hf}\) are \(^{152}\text{Yb}\) isotopes with atomic number Z = 70 and neutron number N = 82, 84, 86 and 88 which implies the magic or near magic number of these neutron shells. The value of log\(_{10}(T_{1/2})\), is low for the \(^{156}\text{Hf}\) isotope due to N =82 closure in \(^{152}\text{Yb}\) daughter. Also, the daughter nuclei for alpha –decay of the \(^{158-166}\text{W}\) parent are the \(^{162-170}\text{Os}\) parents decay by alpha with W daughters with Z = 74 and N= 88 – 94. It is clear that alpha-decay half- lives have the lowest values for \(^{166-174}\text{Pt}\) and \(^{172-180}\text{Hg}\) isotopes. This can be explained as, the values of log\(_{10}(T_{1/2})\) decreasing due to the atomic and mass number increasing. Finally, figure (3) shows the calculated values of log\(_{10}(T_{1/2})\) are in less agreement with the experimental results [16] especially with increasing the atomic mass number of the parent nuclei.

![Figure (3) - The values of log\(_{10}(T_{1/2})\) versus the mass number (A) of isotopes of the parent nuclei (\(^{156-162}\text{Hf}, \ ^{158-166}\text{W}, \ ^{162-170}\text{Os}, \ ^{166-174}\text{Pt},\) and \(^{172-180}\text{Hg}\)) compared with the corresponding experimental values for \(\alpha\) -decay [16].]
Conclusion
The cold valley (V-Q) plots for the $^{156-162}$Hf, $^{158-166}$W, $^{162-170}$Os, $^{166-174}$Pt and $^{172-180}$Hg isotopes are analyzed to determine the possible clusters emitted from these isotopes. From the cold valley plots, we noticed that the selection of the most probable clusters are depending on the shell closure for one of the emitted fragments or both of them. The half-lives of clusters decay are calculated using CPPM and UNIV and listed in table (1). The calculated values of $\log_{10}(T_{1/2})$ by CPPM are in agreement with the experimental values of alpha–decay more than the calculated values by the UNIV formula. The Q-value of the clusters have $N = Z$ greater than of the clusters have $N \neq Z$. From this study we conclude that, the isotopes with the greater mass number are exposed to disintegrate through alpha than the isotopes with smaller mass number. Hence, the half-life time of alpha decay decreases as the mass number of the parent increases.

References

[1] A. Sandulescu, D. N. Poenaru and W. Greiner, Sov. J. Part. Nucl. **11**, 528 (1980).
[2] L Zheng, G. L. Zhang, J.C.Yang and W.W.Qu, Nucl. Phys. **A915**, 70 (2013).
[3] D. N. Basu, Phys. Lett. **B566**, 90 (2003).
[4] Z. Z. Ren, C. Xu, Z. J.Wang, Phys. Rev. **C70**, 034304 (2004).
[5] G. Royer, R. Moustabchir, Nucl. Phys. **A683**, 182 (2001).
[6] J. Blocki, J. Randrup, W. J. Swiatecki, C. F. Tsang, Ann. Phys.**(NY)105**, 427 (1977).
[7] W. D. Myers, W. J. Swiatecki, Phys. Rev. **C62**, 044610 (2000).
[8] P. Möller, J. R. Nix, Nucl. Phys. **A361**, 117 (1981).
[9] K. P. Santhosh, Antony Joseph, Pramana J. Phys. **58**, 611 (2002).
[10] K. P. Santhosh, Sabina Sahadevan, Nucl. Phys. **A847**, 42 (2010).
[11] R. K. Biju, Sabina Sahadevan, K. P. Santhosh, Antony Joseph, Pramana J. Phys. **70**, 427 (2008).
[12] K. E. Abd El Mageed and A. G. Shalaby, Chin. J. Phys. **53**, 040301 (2015), nucl-th/1312.2471.
[13] Y.J. Shi, W.J. Swiatecki, Nucl. Phys. **A438**, 450 (1985).
[14] K. P. Santhosh, Sabina Sahadevan, B. Priyanka, M. S. Unnikrishnan, Nucl. Phys. **A882**, 49 (2012).
[15] J. Blocki, W. J. Swiatecki, Ann. Phys. **(NY)132**, 53 (1981).
[16] National Nuclear Data Center (NNDC) in Brookhaven National Laboratory, http://www.nndc.bnl.gov/
[17] D. N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, Phys. Rev. **C32**, 572 (1985).
[18] D. N. Poenaru, R. A. Gherghescu, W. Greiner, Phys. Rev. **C83**, 014601 (2011).