Research Article

Measuring Performance of Ratio-Exponential-Log Type General Class of Estimators Using Two Auxiliary Variables

Javid Shabbir 1, Shakeel Ahmed 2, Aamir Sanaullah 3, and Ronald Onyango 4

1Department of Statistics, Quaid-i-Azam University, Islamabad 45320, Pakistan
2School of Natural Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
3Department of Statistics, COMSATS University Islamabad, Lahore Campus, Islamabad, Pakistan
4Department of Applied Statistics, Financial Mathematics and Actuarial Science, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya

Correspondence should be addressed to Ronald Onyango; assangaronald@gmail.com

Received 27 July 2021; Accepted 17 September 2021; Published 1 October 2021

Copyright © 2021 Javid Shabbir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In survey sampling, ratio, product, exponential-ratio, log-ratio, and regression type estimators are modified or constructed by many researchers to enhance the precision of the estimators under different sampling designs by using the auxiliary variables. These estimators are commonly used by taking the advantage of correlation coefficient between the study variable and the auxiliary variable(s). Some notable work by the authors includes Olkin [1]; Mohanty [2]; Abu-Dayyeh et al. [3]; Koyuncu and Kadilar [4]; Swain [5]; Lu and Yan [6]; Lu et al. [7]; Sanaullah et al. [8]; Lu [9]; Muneer et al. [10]; Shabbir and Gupta [11]; Akingbade and Okafor [12]; Shabbir et al. [13]; Shabbir et al. [14]; Bhushan et al. [15]; Lone et al. [16]; and Kumari and Thaur [17].

Consider a finite population \(\Gamma = [\Gamma_1, \Gamma_2, \ldots, \Gamma_N] \) of N units. A sample of size \(n \) units is drawn from a population by using simple random sampling without replacement (SRSWOR). Let \(y_i \) and \((x_i, z_i) \) be the characteristics of the study variable \(Y \) and the auxiliary variables \((X, Z) \), respectively. Let \(\bar{y} = n^{-1} \sum_{i=1}^{n} y_i \), and \(\bar{x} = n^{-1} \sum_{i=1}^{n} x_i, \bar{z} = n^{-1} \sum_{i=1}^{n} z_i \), respectively, be the sample means corresponding to the population means \(Y = N^{-1} \sum_{i=1}^{N} y_i \), and \(\bar{x} = N^{-1} \sum_{i=1}^{N} x_i, \bar{z} = N^{-1} \sum_{i=1}^{N} z_i \). To obtain the bias and MSE expressions, we define the following error terms: \(\Xi_0 = (\bar{y} - \bar{Y}) - 1 \), and \(\Xi_1 = (\bar{x} - \bar{X}) - 1 \), \(\Xi_2 = (\bar{z} - \bar{Z}) - 1 \), such that \(E(\Xi_0) = 0 \), \(E(\Xi_1) = 0 \), \(E(\Xi_2) = 0 \), \(E(X_i^2) = \Theta X_i^2 \), \(E(Y_i^2) = \Theta Y_i^2 \), \(E(\Xi_0^2) = \Theta \Xi_0^2 \), \(E(\Xi_1^2) = \Theta \Xi_1^2 \), \(E(\Xi_2^2) = \Theta \Xi_2^2 \), \(E(\Xi_i^2) = \Theta \Xi_i^2 \). Consider a finite population \(\Gamma = [\Gamma_1, \Gamma_2, \ldots, \Gamma_N] \) of N units. A sample of size \(n \) units is drawn from a population by using simple random sampling without replacement (SRSWOR). Let \(y_i \) and \((x_i, z_i) \) be the characteristics of the study variable \(Y \) and the auxiliary variables \((X, Z) \), respectively. Let \(\bar{y} = n^{-1} \sum_{i=1}^{n} y_i \), and \(\bar{x} = n^{-1} \sum_{i=1}^{n} x_i, \bar{z} = n^{-1} \sum_{i=1}^{n} z_i \), respectively, be the sample means corresponding to the population means \(Y = N^{-1} \sum_{i=1}^{N} y_i \), and \(\bar{x} = N^{-1} \sum_{i=1}^{N} x_i, \bar{z} = N^{-1} \sum_{i=1}^{N} z_i \). To obtain the bias and MSE expressions, we define the following error terms: \(\Xi_0 = (\bar{y} - \bar{Y}) - 1 \), and \(\Xi_1 = (\bar{x} - \bar{X}) - 1 \), \(\Xi_2 = (\bar{z} - \bar{Z}) - 1 \), such that \(E(\Xi_0) = 0 \), \(E(\Xi_1) = 0 \), \(E(\Xi_2) = 0 \), \(E(X_i^2) = \Theta X_i^2 \), \(E(Y_i^2) = \Theta Y_i^2 \), \(E(\Xi_0^2) = \Theta \Xi_0^2 \), \(E(\Xi_1^2) = \Theta \Xi_1^2 \), \(E(\Xi_2^2) = \Theta \Xi_2^2 \), \(E(\Xi_i^2) = \Theta \Xi_i^2 \).
2. Some Existing Estimators

Some existing estimators available in the literature are essential to be discussed here.

2.1. Sample Mean Estimator. The usual sample mean estimator and its variance are given as

\[\hat{Y}_{(0)} = \bar{Y}, \]
\[\text{Var}(\hat{Y}_{(0)}) = \Theta \bar{Y}^2 C_y^2. \]

2.2. Ratio Estimators. The usual ratio estimators when using single and two auxiliary variables are given by

(i) \[\hat{Y}^{(1)}_{(R)} = \bar{Y} \left(\frac{X}{x} \right), \]
(ii) \[\hat{Y}^{(2)}_{(R)} = \bar{Y} \left(\frac{Z}{x} \right), \]
(iii) \[\hat{Y}^{(3)}_{(R)} = \bar{Y} \left(\frac{X}{x} \right) \left(\frac{Z}{z} \right). \]

The MSEs of ratio estimators \[\hat{Y}^{(i)}_{(R)} (i = 1, 2, 3) \] to first order of approximation are given by

(i) \[\text{MSE} \left(\hat{Y}^{(1)}_{(R)} \right) = \Theta \bar{Y}^2 \left[C_y^2 + C_x^2 - 2C_{yx} \right], \]
(ii) \[\text{MSE} \left(\hat{Y}^{(2)}_{(R)} \right) = \Theta \bar{Y}^2 \left[C_y^2 + C_z^2 - 2C_{yz} \right], \]
(iii) \[\text{MSE} \left(\hat{Y}^{(3)}_{(R)} \right) = \Theta \bar{Y}^2 \left[C_y^2 + C_x^2 + C_z^2 - 2(C_{yx} + C_{yz}) + 2C_{xz} \right]. \]

The ratio estimators \[\hat{Y}^{(i)}_{(R)} (i = 1, 2, 3) \] are performing better than \[\hat{Y}_{(0)} \] under certain conditions.

2.3. Exponential-Ratio Estimators. The usual exponential-ratio estimators when using single and two auxiliary variables are given by

(i) \[\hat{Y}^{(1)}_{(E)} = \bar{Y} \exp \left(\frac{X - x}{X + x} \right), \]
(ii) \[\hat{Y}^{(2)}_{(E)} = \bar{Y} \exp \left(\frac{Z - z}{Z + z} \right), \]
(iii) \[\hat{Y}^{(3)}_{(E)} = \bar{Y} \exp \left(\frac{X - x}{X + x} \right) \exp \left(\frac{Z - z}{Z + z} \right). \]

The MSEs of exponential-ratio estimators \[\hat{Y}^{(i)}_{(E)} (i = 1, 2, 3) \] to first order of approximation are given by

(i) \[\text{MSE} \left(\hat{Y}^{(1)}_{(E)} \right) \equiv \Theta \bar{Y}^2 \left[C_y^2 + \frac{1}{4}C_x^2 - C_{yx} \right], \]
(ii) \[\text{MSE} \left(\hat{Y}^{(2)}_{(E)} \right) \equiv \Theta \bar{Y}^2 \left[C_y^2 + \frac{1}{4}C_z^2 - C_{yz} \right], \]
(iii) \[\text{MSE} \left(\hat{Y}^{(3)}_{(E)} \right) \equiv \Theta \bar{Y}^2 \left[C_y^2 + \frac{1}{4}(C_x^2 + C_z^2) - (C_{yx} + C_{yz}) + \frac{1}{2}C_{xz} \right]. \]

2.4. Log-Ratio Estimators. Recently many log-type estimators have appeared in the literature in various forms when the logarithmic relationship between the study variable and the auxiliary variables exists.

The usual log-ratio estimators when using single and two auxiliary variables are given by

(i) \[\tilde{Y}^{(1)}_{(log)} = \bar{Y} \left[1 + \log \left(\frac{X}{x} \right) \right], \]
(ii) \[\tilde{Y}^{(2)}_{(log)} = \bar{Y} \left[1 + \log \left(\frac{Z}{z} \right) \right], \]
(iii) \[\tilde{Y}^{(3)}_{(log)} = \bar{Y} \left[1 + \log \left(\frac{X}{x} \right) \right] \left[1 + \log \left(\frac{Z}{z} \right) \right]. \]

The MSEs of log-ratio estimators \[\tilde{Y}^{(i)}_{(log)} (i = 1, 2, 3) \] to first order of approximation are given by

(i) \[\text{MSE} \left(\tilde{Y}^{(1)}_{(log)} \right) \equiv \Theta \bar{Y}^2 \left[C_y^2 + C_x^2 - 2C_{yx} \right], \]
(ii) \[\text{MSE} \left(\tilde{Y}^{(2)}_{(log)} \right) \equiv \Theta \bar{Y}^2 \left[C_y^2 + C_z^2 - 2C_{yz} \right], \]
(iii) \[\text{MSE} \left(\tilde{Y}^{(3)}_{(log)} \right) \equiv \Theta \bar{Y}^2 \left[C_y^2 + C_x^2 + C_z^2 - 2(C_{yx} + C_{yz}) + 2C_{xz} \right]. \]

The MSEs of log-ratio estimators \[\tilde{Y}^{(i)}_{(log)} (i = 1, 2, 3) \] are exactly equal to the MSEs of ratio estimators \[\hat{Y}^{(i)}_{(R)} (i = 1, 2, 3) \] but their biases are different (not shown here).

2.5. Regression Estimators. The usual regression estimators when using single and two auxiliary variables are given by

(i) \[\bar{Y}^{(1)}_{(Reg)} = \bar{Y} + b_{yx} (X - x), \]
(ii) \[\bar{Y}^{(2)}_{(Reg)} = \bar{Y} + b_{yz} (Z - z), \]
(iii) \[\bar{Y}^{(3)}_{(Reg)} = \bar{Y} + b_{yx} (X - x) + b_{yz} (Z - z), \]

where \[b_{yx} = (s_{yx}/s_x^2) \] and \[b_{yz} = (s_{yz}/s_z^2) \] are the sample regression coefficients.
The MSEs of regression estimators \(\hat{\mathbf{Y}}^{(i)} \) \((i = 1, 2, 3)\) are given by

\[
\text{(i) MSE}\left(\hat{\mathbf{Y}}^{(1)} \right) = \Theta Y^2 C_y^2 (1 - \rho_y^2),
\]
\[
\text{(ii) MSE}\left(\hat{\mathbf{Y}}^{(2)} \right) = \Theta Y^2 C_y^2 (1 - \rho_y^2),
\]
\[
\text{(iii) MSE}\left(\hat{\mathbf{Y}}^{(3)} \right) = \Theta Y^2 C_y^2 (1 - \rho_y^2 + 2 \rho_x \rho_y \rho_z p_x z).
\]

These regression estimators \(\hat{\mathbf{Y}}^{(i)} \) \((i = 1, 2, 3)\) are performing better than \(\hat{\mathbf{Y}}^{(0)} \) and \(\hat{\mathbf{Y}}^{(j)} \) \((i = 1, 2, 3; j = R, E, \log)\) under certain conditions.

2.6. Some More Regression Type Estimators

Mohanty [2] suggested the following regression-type estimator:

\[
\hat{\mathbf{Y}}^{(M)} \text{ (Reg)} = \mathbf{Y} + b_{yx} (X - \bar{X}) \left(\frac{Z}{\sigma} \right).
\]

The MSE of \(\hat{\mathbf{Y}}^{(M)} \) is given by

\[
\text{MSE}\left(\hat{\mathbf{Y}}^{(M)} \text{ (Reg)} \right) = \Theta Y^2 \left[C_y^2 (1 - \rho_y^2) + C_z^2 - 2 C_{yz} + 2C_y C_z \rho_y \rho_z p_x z \right].
\]

Swain [5] introduced the following regression-type estimator

\[
\hat{\mathbf{Y}}^{(S)} \text{ (Reg)} = [\mathbf{Y} + d_0 (X - \bar{X})] \left(\frac{Z}{\sigma} \right).
\]

The minimum MSE of \(\hat{\mathbf{Y}}^{(S)} \) at optimum value of \(d_{0\text{ (opt)}} = (\mathbf{Y} (C_y \rho_y - C_z \rho_z) / C_y) \) is given by

\[
\text{MSE}\left(\hat{\mathbf{Y}}^{(S)} \text{ (Reg)} \right)_{\text{min}} = \Theta Y^2 C_y^2 \left[C_y^2 + C_z^2 - 2 C_{yz} \right] - \left(C_y \rho_y - C_z \rho_z \right)^2.
\]

The unbiased regression estimator when using two auxiliary variables is given by

\[
\hat{\mathbf{Y}}^{(U)} = \mathbf{Y} + d_1 (X - \bar{X}) + d_2 (Z - \bar{Z}),
\]

where \(d_1 \) and \(d_2 \) are constants.

The minimum MSE of \(\hat{\mathbf{Y}}^{(U)} \) at optimum values of \(d_{1\text{ (opt)}} = (S_y (\rho_y - \rho_z p_x z) / S_y (1 - \rho_y^2)) \) and \(d_{2\text{ (opt)}} = (S_y (\rho_y - \rho_z p_x z) / S_y (1 - \rho_z^2)) \) is given by

\[
\text{MSE}\left(\hat{\mathbf{Y}}^{(U)} \text{ (Reg)} \right)_{\text{min}} = \Theta Y^2 C_y^2 \left(1 - R_{yx}^2 \right),
\]

where \(R_{yx}^2 = (\rho_y^2 + \rho_z^2 - 2 \rho_y \rho_z p_x z / (1 - \rho_y^2)) \) is the multiple correlation coefficient.

3. Proposed General Class of Estimators

We propose a ratio-exponential-log type general class of estimators in estimating the finite population mean using two auxiliary variables when some parameters of the auxiliary variables are known. We also obtain different special estimators as members of the general class of estimators which are useful in different real-life situations. The proposed estimator is the combination of three special estimators including ratio, exponential-ratio, and log-ratio by using the linear transformation as

\[
\hat{\mathbf{Y}}^{(a_1, a_2, a_3; \gamma_1; \gamma_2; \gamma_3)} = \mathbf{Y} \left[M_1 \left(\frac{X}{\sigma_X} \right)^{a_1} \left\{ \exp \left(\frac{X - \bar{X}}{\sigma_X + \bar{X}} \right) \right\}^{a_2} \left\{ 1 + \log \left(\frac{X}{\sigma_X} \right) \right\}^{a_3} \right] + M_2 \left(\frac{Z}{\sigma_Z} \right)^{a_4} \left\{ \exp \left(\frac{Z - \bar{Z}}{\sigma_Z + \bar{Z}} \right) \right\}^{a_5} \left\{ 1 + \log \left(\frac{Z}{\sigma_Z} \right) \right\}^{a_6},
\]

where \(M_1, M_2 \) are constants, whose values are to be determined; \(a_1, a_2, a_3, a_4, a_5, a_6; \gamma_1, \gamma_2, \gamma_3 \) are scaler quantities; and \(\bar{X} = a \bar{X} + b \), \(\bar{Z} = c \bar{Z} + d \), and \(\bar{X} = \bar{X} + d \). Here \(a, b, c, d \) are the known parameters of the auxiliary variables which may be coefficients of variation \((C_x, C_z) \), coefficients of kurtosis \((\beta_{2x}, \beta_{2z}) \) and correlation coefficients \((\rho_y, \rho_z) \).

Solving (25) in terms of errors to the first order of approximation, we have

\[
\hat{\mathbf{Y}}^{(a_1, a_2, a_3; \gamma_1; \gamma_2; \gamma_3)} = \mathbf{Y} \left[M_1 \left\{ 1 + \bar{Z} - \Delta_1 g_1 \bar{X} - \Delta_2 g_2 \bar{Z}^2 \right\} + M_2 \left\{ 1 + \bar{Z} - \Omega_1 g_1 \bar{Z}_2 - \Omega_2 g_2 \bar{Z}_2 + \alpha_2 g_2 \bar{Z}^2 \right\} - 1 \right],
\]

where

\[
\Delta_1 = \frac{\Delta_2}{\Delta_1}, \quad \Omega_1 = \frac{\Delta_2}{\Omega_2}, \quad \alpha_2 = \frac{\Delta_2}{\alpha_2}.
\]
\[g_1 = \frac{aX + b}{aX + b}, \]
\[g_2 = \frac{cZ + d}{cZ + d}. \]
\[\Delta_1 = \alpha_1 + \frac{1}{2}\alpha_2 + \alpha_3, \]
\[\Delta_2 = \alpha_1\alpha_3 + \frac{1}{2}\alpha_2\alpha_3 + \frac{1}{2}\alpha_1 (\alpha_1 + 1) + \frac{1}{8}\alpha_2 (\alpha_2 + 2) + \frac{1}{2}\alpha_1\alpha_2 + \frac{1}{2}\alpha_3^2, \]
\[\Omega_1 = y_1 + \frac{1}{2}y_2 + y_3, \]
\[\Omega_2 = y_1y_3 + \frac{1}{2}y_2y_3 + \frac{1}{2}y_1 (y_1 + 1) + \frac{1}{8}y_2 (y_2 + 2) + \frac{1}{2}y_1y_2 + \frac{1}{2}y_3^2. \]

The bias of \(\widetilde{Y}_{(M)}^{(a_1,a_2,a_3,y_1,y_2,y_3)} \) to the first order of approximation is given by

\[\text{Bias}\left(\widetilde{Y}_{(M)}^{(a_1,a_2,a_3,y_1,y_2,y_3)} \right) = \mathbb{E}[M_1\{1 + \Theta(\Delta_2g_1^2C_x^2 - \Delta_1g_1C_{yx})\}]
+ M_2\{1 + \Theta(\Omega_2g_2^2C_z^2 - \Omega_1g_2C_{yz})\} - 1]. \]

The MSE of \(\widetilde{Y}_{(M)}^{(a_1,a_2,a_3,y_1,y_2,y_3)} \) to the first order of approximation is given by

\[\text{MSE}\left(\widetilde{Y}_{(M)}^{(a_1,a_2,a_3,y_1,y_2,y_3)} \right) \approx \mathbb{E}^2\left[M_1\{1 + \Xi_0 - \Delta_1g_1\Xi_1 - \Delta_1g_1\Xi_2\Xi_1 + \Delta_2g_1^3\Xi_1^2\}
+ M_2\{1 + \Xi_0 - \Omega_1g_2\Xi_2 - \Omega_1g_2\Xi_0\Xi_2 + \Delta_2g_2^3\Xi_2^2\} - 1\}^2. \]

Solving (29), we get

\[\text{MSE}\left(\widetilde{Y}_{(M)}^{(a_1,a_2,a_3,y_1,y_2,y_3)} \right) \approx \mathbb{E}^2\left[1 + M_1^2A_m + M_2^2B_m - 2M_1C_m - 2M_2D_m + 2M_1M_2E_m\right]. \]

where

\[A_m = 1 + \Theta\{C_x^2(\Delta_1^2 + 2\Delta_2)g_1^2C_x^2 - 4\Delta_1g_1C_{yx}\}, \]
\[B_m = 1 + \Theta\{C_x^2(\Omega_1^2 + 2\Omega_2)g_2^2C_z^2 - 4\Omega_1g_2C_{yz}\}, \]
\[C_m = 1 + \Theta\{\Delta_2g_1^2C_x^2 - \Delta_1g_1C_{yx}\}, \]
\[D_m = 1 + \Theta\{\Omega_1g_2^2C_z^2 - \Omega_1g_2C_{yz}\}, \]
\[E_m = 1 + \Theta\{C_x^2 + \Delta_2g_1^2C_x^2 + \Omega_2g_2^2C_z^2 - 2\Delta_1g_1C_{yx} - 2\Omega_1g_1C_{yx} + \Delta_1g_1g_2C_{xz}\}. \]
Solving (30), the optimum values $M_i (i = 1, 2)$ are given as

$$
M_{1(\text{opt})} = \frac{B_m C_m - D_m E_m}{A_m B_m - E_m^2},
$$

$$
M_{2(\text{opt})} = \frac{A_m D_m - C_m E_m}{A_m B_m - E_m^2}. \tag{32}
$$

The minimum MSE of $\hat{Y}_{\text{(M)}}^{(\alpha_1, \alpha_2, \alpha_3, \gamma_1, \gamma_2, \gamma_3)}$ to the first order of approximation is given by

$$
\text{MSE}\left(\hat{Y}_{\text{(M)}}^{(\alpha_1, \alpha_2, \alpha_3, \gamma_1, \gamma_2, \gamma_3)}\right)_{\text{min}} \geq \gamma^2 \left[1 - \frac{A_m D_m^2 + B_m C_m^2 - 2C_m D_m E_m}{A_m B_m - E_m^2}\right]. \tag{33}
$$

Some special estimators as members of the proposed general class of estimators are given by

(i) Putting $\alpha_1 = \gamma_1 = 1, \alpha_2 = \alpha_3 = \gamma_2 = \gamma_3 = 0$ in (25), we get

$$
\hat{Y}_{\text{(M)}}^{(0,1,0,1,0)} = \gamma \left[M_1 \left\{ \exp\left(\frac{X^* - X^*}{X^* + X}\right) \right\} + M_2 \left\{ \exp\left(\frac{Z^* - Z^*}{Z^* + Z}\right) \right\} \right]. \tag{34}
$$

(ii) Putting $\alpha_2 = \gamma_2 = 1, \alpha_1 = \alpha_3 = \gamma_1 = \gamma_3 = 0$ in (25), we get

$$
\hat{Y}_{\text{(M)}}^{(0,0,1,0,1)} = \gamma \left[M_1 \left\{ 1 + \log\left(\frac{X^*}{X}\right) \right\} + M_2 \left\{ 1 + \log\left(\frac{Z^*}{Z}\right) \right\} \right]. \tag{35}
$$

(iii) Putting $\alpha_3 = \gamma_3 = 1, \alpha_1 = \alpha_2 = \gamma_1 = \gamma_2 = 0$ in (25), we get

$$
\hat{Y}_{\text{(M)}}^{(0,0,0,1,1)} = \gamma \left[M_1 \left\{ \exp\left(\frac{X^*}{X^* + X}\right) \right\} \right] + M_2 \left\{ \exp\left(\frac{Z^*}{Z^* + Z}\right) \right\}. \tag{36}
$$

(iv) Putting $\alpha_1 = \alpha_3 = \gamma_3 = 1, \alpha_2 = \gamma_1 = \gamma_2 = 0$ in (25), we get

$$
\hat{Y}_{\text{(M)}}^{(1,1,0,1,0)} = \gamma \left[M_1 \left\{ \frac{X^*}{X^* + X} \right\} \right] + M_2 \left\{ \exp\left(\frac{Z^*}{Z^* + Z}\right) \right\}. \tag{37}
$$

(v) Putting $\alpha_1 = \alpha_3 = \gamma_3 = 1, \alpha_2 = \gamma_1 = \gamma_2 = 0$ in (25), we get

$$
\hat{Y}_{\text{(M)}}^{(1,0,1,1,0)} = \gamma \left[M_1 \left\{ \frac{X^*}{X^*} \right\} \right] + M_2 \left\{ 1 + \log\left(\frac{X^*}{X}\right) \right\}. \tag{38}
$$
(vi) Putting \(\alpha_2 = \alpha_3 = \gamma_2 = 1, \alpha_1 = \gamma_1 = \gamma_3 = 0 \) in (25), we get

\[
\tilde{Y}^{(0,1,0,1,0)}(M) = \mathcal{Y} \left[M_1 \left\{ \exp \left(\frac{X^* - X^*}{X^* + X^*} \right) \right\} \left\{ 1 + \log \left(\frac{X^*}{X^*} \right) \right\} + M_2 \left\{ \exp \left(\frac{Z^* - Z^*}{Z^* + Z^*} \right) \right\} \right].
\] (39)

(vii) Putting \(\alpha_1 = \alpha_2 = \alpha_3 = \gamma_2 = 1, \gamma_1 = \gamma_3 = 0 \) in (25), we get

\[
\tilde{Y}^{(1,1,0,1,0)}(M) = \mathcal{Y} \left[M_1 \left\{ \frac{X^*}{X^*} \right\} \left\{ \exp \left(\frac{X^* - X^*}{X^* + X^*} \right) \right\} \left\{ 1 + \log \left(\frac{X^*}{X^*} \right) \right\} + M_2 \left\{ \exp \left(\frac{Z^* - Z^*}{Z^* + Z^*} \right) \right\} \right].
\] (40)

(viii) Putting \(\alpha_1 = \gamma_1 = \gamma_2 = \gamma_3 = 1, \alpha_2 = \alpha_3 = 0 \) in (25), we get

\[
\tilde{Y}^{(1,0,1,1,1)}(M) = \mathcal{Y} \left[M_1 \left\{ \frac{X^*}{X^*} \right\} + M_2 \left\{ \frac{Z^*}{Z^*} \right\} \left\{ \exp \left(\frac{Z^* - Z^*}{Z^* + Z^*} \right) \right\} \left\{ 1 + \log \left(\frac{Z^*}{Z^*} \right) \right\} \right].
\] (41)

(i) Putting \(\alpha_2 = \gamma_1 = \gamma_2 = \gamma_3 = 1, \alpha_1 = \alpha_3 = 0 \) in (25), we get

\[
\tilde{Y}^{(0,1,0,1,1)}(M) = \mathcal{Y} \left[M_1 \left\{ \exp \left(\frac{X^* - X^*}{X^* + X^*} \right) \right\} + M_2 \left\{ \frac{Z^*}{Z^*} \right\} \left\{ \exp \left(\frac{Z^* - Z^*}{Z^* + Z^*} \right) \right\} \left\{ 1 + \log \left(\frac{Z^*}{Z^*} \right) \right\} \right].
\] (42)

(x) Putting \(\alpha_3 = \gamma_1 = \gamma_2 = \gamma_3 = 1, \alpha_1 = \alpha_2 = 0 \) in (25), we get

\[
\tilde{Y}^{(0,0,1,1,1)}(M) = \mathcal{Y} \left[M_1 \left\{ 1 + \log \left(\frac{X^*}{X^*} \right) \right\} + M_2 \left\{ \frac{Z^*}{Z^*} \right\} \left\{ \exp \left(\frac{Z^* - Z^*}{Z^* + Z^*} \right) \right\} \left\{ 1 + \log \left(\frac{Z^*}{Z^*} \right) \right\} \right].
\] (43)
Note: We can generate more sub-classes of the proposed general class of estimators by using different combinations.

4. Numerical Example

We use the following four real data sets for a numerical study.

Population 1 (see [19]):

\[
\begin{align*}
Y &= \text{Area under wheat in acres in 1974}, \\
X &= \text{Area under wheat in acres in 1971}, \\
Z &= \text{Area under wheat in acres in 1973}, \\
N &= 34, \\
n &= 20, \\
\bar{Y} &= 856.412, \\
\bar{X} &= 208.882, \\
\bar{Z} &= 199.441, \\
C_Y &= 0.8561, \\
C_X &= 0.721, \\
C_Z &= 0.753, \\
\rho_{yx} &= 0.449, \\
\rho_{yz} &= 0.443, \\
\rho_{xz} &= 0.980, \\
\beta_{2x} &= 2.910, \\
\beta_{2z} &= 3.732.
\end{align*}
\] (44)

Population 2 (see [18]):

\[
\begin{align*}
Y &= \text{Output of the factory}, \\
X &= \text{Number of workers}, \\
Z &= \text{Fixed capital}, \\
N &= 80, \\
n &= 20, \\
\bar{Y} &= 5182.637, \\
\bar{X} &= 285.125, \\
\bar{Z} &= 1126.463, \\
C_Y &= 0.354, \\
C_X &= 0.948, \\
C_Z &= 0.751, \\
\rho_{yx} &= 0.915, \\
\rho_{yz} &= 0.941, \\
\rho_{xz} &= 0.988, \\
\beta_{2x} &= 0.698, \\
\beta_{2z} &= 1.050.
\end{align*}
\] (45)

Population 3 (Punjab Development Statistics (2019)):

This data is taken from Punjab development of statistics of 36 districts of Punjab, Pakistan during 2018.

\[
\begin{align*}
Y &= \text{Number of reported crimes by hurt}, \\
X &= \text{Number of reported crimes by murdered}, \\
Z &= \text{Number of reported crimes by kidnapped}, \\
N &= 36, \\
n &= 10, \\
\bar{Y} &= 421.9722, \\
\bar{X} &= 112.3889, \\
\bar{Z} &= 412.2222, \\
C_Y &= 0.5718, \\
C_X &= 0.8336, \\
C_Z &= 1.4229, \\
\rho_{yx} &= 0.7786, \\
\rho_{yz} &= 0.6900, \\
\rho_{xz} &= 0.8483, \\
\beta_{2x} &= 7.5508, \\
\beta_{2z} &= 27.5415.
\end{align*}
\] (46)

Population 4 (see [19]):

This data are based on 69 villages of Doraha development bloc of Punjab, India.

\[
\begin{align*}
Y &= \text{Number of tube wells}, \\
X &= \text{Number of tractors}, \\
Z &= \text{Net irrigated area in hectares}, \\
N &= 69, \\
n &= 10, \\
\bar{Y} &= 135.2609, \\
\bar{X} &= 21.2319, \\
\bar{Z} &= 345.7536, \\
C_Y &= 0.8422, \\
C_X &= 0.7969, \\
C_Z &= 0.8478, \\
\rho_{yx} &= 0.9118, \\
\rho_{yz} &= 0.9224, \\
\rho_{xz} &= 0.9007, \\
\beta_{2x} &= 3.7653, \\
\beta_{2z} &= 7.2159.
\end{align*}
\] (47)
The results based on Populations 1–4 are given in Tables 1–11. We use the following expression to obtain the percent relative efficiency (PRE) as

\[
\text{PRE} = \frac{\text{Var} (\hat{Y}(0))}{\text{MSE}(\cdot)} \times 100, \quad (48)
\]

where \((\cdot) = \hat{Y}(0), \hat{Y}^{(1)}(R), \hat{Y}^{(2)}(R), \hat{Y}^{(3)}(R), \hat{Y}^{(4)}(R) \) \((i = 1, 2, 3; j = M, S, U)\).

In Table 1, we observed the following:

(i) The ratio and log-ratio estimators \(\hat{Y}^{(i)}(R), \hat{Y}^{(i)}(\text{log}) \) in population 2, \((\hat{Y}^{(2)}(R), \hat{Y}^{(2)}(\text{log})) \) in populations 2 and 3, and \((\hat{Y}^{(3)}(R), \hat{Y}^{(3)}(\text{log})) \) in all four populations are performing poorly as compared to \(\hat{Y}(0) \).

(ii) The exponential-ratio estimator \(\hat{Y}^{(3)}(E) \) in Populations 2 and 3 is not performing good.

(iii) Mohanty [2] regression estimator \(\hat{Y}^{(M)}(\text{Reg}) \) in populations 1–3 and Swain [5] estimator \(\hat{Y}^{(3)}(\text{Reg}) \) in Population 3 are not efficient as compared to \(\hat{Y}(0) \).

(iv) Among all the estimators above discussed, the performance of \(\hat{Y}^{(U)}(\text{Reg}) \) is the best.

5. Comparison of Estimators

Now we compare the proposed class of estimators with other existing estimators.

Condition 1. By (2) and (33), \(\text{MSE}(\hat{Y}^{(i)}(M))_{\min} < \text{Var} (\hat{Y}(0)) \) if

\[
\Theta C_y^2 + \frac{O_1}{O_2} - 1 > 0, \quad (49)
\]

where \(O_1 = A_m D_m^2 + B_m C_m^2 - 2C_m D_m E_m \) and \(O_2 = A_m B_m - E_m^2 \).

Condition 2. By ((4)–(6)) or ((12)–(14)) and (33), \(\text{MSE}(\hat{Y}^{(i)}(M))_{\min} < \text{MSE}(\hat{Y}^{(i)}(R), \hat{Y}^{(i)}(\text{log})) \) \((i = 1, 2, 3)\) if

\[
\begin{align*}
\Theta \left(C_y^2 + C_x^2 - 2C_{yx} \right) + \frac{O_1}{O_2} - 1 > 0, \\
\Theta \left(C_y^2 + C_z^2 - 2C_{yz} \right) + \frac{O_1}{O_2} - 1 > 0, \\
\Theta \left(C_y^2 + C_x^2 + C_z^2 - 2(C_{yx} + C_{yz}) + 2C_{xz} \right) + \frac{O_1}{O_2} - 1 > 0.
\end{align*}
\]

\[(50)\]

Condition 3. By ((8)–(10)) and (33), \(\text{MSE}(\hat{Y}^{(i)}(M))_{\min} < \text{MSE}(\hat{Y}^{(i)}(E)) \) \((i = 1, 2, 3)\) if

\[
\Theta \left(C_y^2 + \frac{1}{4} C_x^2 - C_{yx} \right) + \frac{O_1}{O_2} - 1 > 0,
\]

\[
\Theta \left(C_y^2 + \frac{1}{4} C_z^2 - C_{yz} \right) + \frac{O_1}{O_2} - 1 > 0,
\]

\[
\Theta \left(C_y^2 + \frac{1}{4} C_x^2 + C_z^2 - (C_{yx} + C_{yz}) + \frac{1}{2} C_{xz} \right) + \frac{O_1}{O_2} - 1 > 0.
\]

\[(51)\]

Condition 4. By ((16)–(18)) and (33), \(\text{MSE}(\hat{Y}^{(i)}(M))_{\min} < \text{MSE}(\hat{Y}^{(i)}(\text{Reg})) \) \((i = 1, 2, 3)\) if

\[
\Theta \left(C_y^2 + \frac{1}{4} C_x^2 - C_{yx} \right) + \frac{O_1}{O_2} - 1 > 0,
\]

\[
\Theta \left(C_y^2 + \frac{1}{4} C_z^2 - C_{yz} \right) + \frac{O_1}{O_2} - 1 > 0,
\]

\[
\Theta \left(C_y^2 + \frac{1}{4} C_x^2 + C_z^2 - (C_{yx} + C_{yz}) + \frac{1}{2} C_{xz} \right) + \frac{O_1}{O_2} - 1 > 0.
\]

\[(51)\]
Table 3: PRE of proposed estimator when \((\alpha_3 = \gamma_2 = 1, \alpha_1 = \alpha_5 = \gamma_1 = \gamma_3 = 0)\).

a	b	c	d	Pop. 1	Pop. 2	Pop. 3	Pop. 4
1	0	1	0	127.090	956.748	264.876	311.868
1	\(C_x\)	1	\(C_z\)	127.073	956.817	264.643	310.282
\(\beta_{2x}\)	\(C_x\)	\(\beta_{2z}\)	\(C_z\)	127.084	956.854	264.849	311.339
\(\beta_{2x}\)	\(\beta_{2z}\)	\(C_z\)	126.980	956.775	261.317	319.839	
1	\(\rho_{yx}\)	1	\(\rho_{yz}\)	127.079	956.808	264.675	310.291
1	\(\beta_{2x}\)	1	\(\beta_{2z}\)	127.011	956.783	261.624	314.469
\(\rho_{yx}\)	\(C_x\)	\(\rho_{yz}\)	\(C_z\)	127.075	956.803	264.642	310.422
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	126.900	956.788	260.260	316.213

Table 4: PRE of proposed estimator when \((\alpha_3 = \gamma_3 = 1, \alpha_1 = \alpha_2 = \gamma_1 = \gamma_2 = 0)\).

a	b	c	d	Pop. 1	Pop. 2	Pop. 3	Pop. 4
1	0	1	0	106.402	186.926	127.151	919.696
1	\(C_x\)	1	\(C_z\)	106.664	184.941	129.254	921.254
\(\beta_{2x}\)	\(C_x\)	\(\beta_{2z}\)	\(C_z\)	106.488	183.610	127.443	920.619
\(\beta_{2x}\)	\(\beta_{2z}\)	\(C_z\)	107.724	186.467	149.441	873.745	
1	\(\rho_{yx}\)	1	\(\rho_{yz}\)	106.555	185.296	129.179	921.052
1	\(\beta_{2x}\)	1	\(\beta_{2z}\)	107.357	186.124	144.723	889.198
\(\rho_{yx}\)	\(C_x\)	\(\rho_{yz}\)	\(C_z\)	106.615	183.553	129.618	920.360
\(\beta_{2x}\)	\(\rho_{yz}\)	\(C_z\)	106.941	184.727	129.828	921.127	
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	108.305	186.007	149.286	883.271

Table 5: PRE of proposed estimator when \((\alpha_1 = \alpha_2 = \gamma_2 = 1, \alpha_5 = \gamma_1 = \gamma_3 = 0)\).

a	b	c	d	Pop. 1	Pop. 2	Pop. 3	Pop. 4
1	0	1	0	126.769	914.223	141.181	807.850
1	\(C_x\)	1	\(C_z\)	126.777	914.152	141.896	794.946
\(\beta_{2x}\)	\(C_x\)	\(\beta_{2z}\)	\(C_z\)	126.771	914.197	141.216	804.456
\(\beta_{2x}\)	\(\beta_{2z}\)	\(C_z\)	126.818	913.997	150.724	732.960	
1	\(\rho_{yx}\)	1	\(\rho_{yz}\)	126.774	914.109	141.569	793.158
1	\(\beta_{2x}\)	1	\(\beta_{2z}\)	126.807	914.066	153.920	747.374
\(\rho_{yx}\)	\(C_x\)	\(\rho_{yz}\)	\(C_z\)	126.775	914.048	141.497	789.553
\(\beta_{2x}\)	\(\rho_{yz}\)	\(C_z\)	126.786	914.150	142.202	793.730	
\(\rho_{yx}\)	\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	126.770	914.155	141.204	803.975
\(\rho_{yx}\)	\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	126.849	914.058	159.313	741.821

Table 6: PRE of proposed estimator when \((\alpha_1 = \alpha_3 = \gamma_2 = 1, \alpha_2 = \gamma_1 = \gamma_3 = 0)\).

a	b	c	d	Pop. 1	Pop. 2	Pop. 3	Pop. 4
1	0	1	0	126.737	912.457	139.553	845.147
1	\(C_x\)	1	\(C_z\)	126.743	912.383	140.132	836.605
\(\beta_{2x}\)	\(C_x\)	\(\beta_{2z}\)	\(C_z\)	126.739	912.423	139.573	842.896
\(\rho_{yx}\)	\(C_x\)	\(\rho_{yz}\)	\(C_z\)	126.779	912.237	147.425	797.474
1	\(\rho_{yx}\)	1	\(\rho_{yz}\)	126.741	912.342	139.830	835.452
1	\(\beta_{2x}\)	1	\(\beta_{2z}\)	126.769	912.303	150.655	806.104
\(\beta_{2x}\)	\(\rho_{yz}\)	\(C_z\)	\(\rho_{yz}\)	126.742	914.284	139.744	833.140
\(\rho_{yx}\)	\(C_x\)	\(\rho_{yz}\)	\(C_z\)	126.752	912.380	140.393	835.815
\(\beta_{2x}\)	\(\rho_{yz}\)	\(C_z\)	\(\rho_{yz}\)	126.738	914.383	139.562	842.580
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	126.805	912.295	155.475	802.724
Table 7: PRE of proposed estimator when \((\alpha_2 = \alpha_3 = \gamma_2 = 1, \alpha_1 = \gamma_1 = \gamma_3 = 0)\).

a	b	c	d	Pop. 1	Pop. 2	Pop. 3	Pop. 4
1	0	1	0	126.710	920.174	140.021	784.443
1	C_x	1	C_y	126.715	920.076	140.691	775.612
\(\beta_{2x}\)	\(\beta_{2y}\)	\(\beta_{2z}\)	\(\beta_{2z}\)	126.711	920.126	140.050	782.185
\(\rho_{yx}\)	\(\rho_{xz}\)	\(\rho_{xz}\)	\(\rho_{xz}\)	126.743	919.891	149.088	727.261
\(\rho_{yx}\)	\(\rho_{xz}\)	\(\rho_{xz}\)	\(\rho_{xz}\)	126.713	920.025	140.371	774.362
\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	126.735	919.976	152.300	739.153
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	126.714	919.950	140.293	771.816
\(\rho_{yx}\)	\(\beta_{2x}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	126.763	919.965	157.553	734.610

Table 8: PRE of proposed estimator when \((\alpha_1 = \alpha_2 = \alpha_3 = \gamma_2 = 1, \gamma_1 = \gamma_3 = 0)\).

a	b	c	d	Pop. 1	Pop. 2	Pop. 3	Pop. 4
1	0	1	0	126.768	907.889	139.833	902.503
1	C_x	1	C_y	126.776	907.822	140.396	890.351
\(\beta_{2x}\)	\(\beta_{2y}\)	\(\beta_{2z}\)	\(\beta_{2z}\)	126.770	907.856	139.852	899.195
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	126.818	907.695	147.416	843.179
\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	126.772	907.787	140.103	888.744
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	126.806	907.753	150.567	852.694
\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	126.774	907.736	140.019	885.566
\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	126.785	907.820	140.649	889.257
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	126.769	907.821	139.842	898.731
\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	126.850	907.746	155.212	848.913

Table 9: PRE of proposed estimator when \((\alpha_1 = \gamma_1 = \gamma_2 = \gamma_3 = 1, \alpha_2 = \alpha_3 = 0)\).

a	b	c	d	Pop. 1	Pop. 2	Pop. 3	Pop. 4
1	0	1	0	123.139	145.452	159.789	669.527
1	C_x	1	C_y	123.185	146.707	161.602	702.708
\(\beta_{2x}\)	\(\beta_{2y}\)	\(\beta_{2z}\)	\(\beta_{2z}\)	123.155	147.296	160.040	678.643
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	123.384	146.324	178.354	820.621
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	123.168	146.636	161.528	707.218
\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	123.317	146.313	174.823	798.447
\(\beta_{2x}\)	\(\beta_{yz}\)	\(\rho_{yz}\)	\(\beta_{yz}\)	123.179	146.668	161.898	716.133
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	123.240	146.826	162.099	705.743
\(\beta_{2x}\)	\(\beta_{yz}\)	\(\rho_{yz}\)	\(\beta_{yz}\)	123.149	147.206	160.025	679.938
\(\rho_{yx}\)	\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	123.523	146.397	178.726	807.318

Table 10: PRE of proposed estimator when \((\alpha_2 = \gamma_1 = \gamma_2 = \gamma_3 = 1, \alpha_1 = \alpha_3 = 0)\).

a	b	c	d	Pop. 1	Pop. 2	Pop. 3	Pop. 4
1	0	1	0	127.304	483.947	272.896	931.187
1	C_x	1	C_y	127.306	485.394	272.843	952.519
\(\beta_{2x}\)	\(\beta_{2y}\)	\(\beta_{2z}\)	\(\beta_{2z}\)	127.304	486.023	272.627	955.357
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	127.314	485.060	274.208	928.019
\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	127.305	485.341	272.869	952.032
\(\beta_{2x}\)	\(\beta_{yz}\)	\(\rho_{yz}\)	\(\beta_{yz}\)	127.311	485.006	273.258	933.369
\(\rho_{yx}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	\(\rho_{yz}\)	127.306	485.413	272.947	952.016
\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	\(\rho_{yz}\)	127.304	485.948	272.626	955.247
\(\rho_{yx}\)	\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2z}\)	127.318	485.105	272.896	931.187
Table 11: PRE of proposed estimator when \((\alpha_3 = y_1 = y_2 = y_3 = 1, \alpha_1 = \alpha_2 = 0)\).

\(a\)	\(b\)	\(c\)	\(d\)	Pop. 1	Pop. 2	Pop. 3	Pop. 4
1	0	1	0	122.150	178.926	180.747	649.616
1	\(C_x\)	1	\(C_x\)	122.196	180.406	181.991	682.237
\(\beta_{2x}\)	\(C_x\)	\(\beta_{2x}\)	\(C_x\)	122.167	181.159	180.961	658.386
\(C_x\)	\(\beta_{2x}\)	\(C_x\)	\(\beta_{2x}\)	122.392	179.818	192.910	797.503
1	\(\rho_{xy}\)	1	\(\rho_{yz}\)	122.179	180.286	182.139	686.675
\(\beta_{2x}\)	\(\rho_{xy}\)	\(\beta_{2x}\)	\(\rho_{yz}\)	122.324	179.859	188.365	776.097
\(C_x\)	\(\rho_{xy}\)	\(C_x\)	\(\rho_{yz}\)	122.191	180.278	182.524	695.431
\(\rho_{xy}\)	\(\beta_{2x}\)	\(\rho_{yz}\)	\(\beta_{2x}\)	122.529	179.955	190.802	784.693

The proposed sub-classes of general estimators are performing well as compared to their competitor estimators. We have generated 10 sub-classes from the proposed general estimators with different combinations which all are efficient in different situations as compared to SRS. So, the proposed general class of estimators is preferable in further study.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] I. Olkin, "Multivariate ratio estimation for finite populations," *Biometrika*, vol. 45, no. 1-2, pp. 154–165, 1958.

[2] S. Mohanty, "Combination of regression and ratio estimate," *Journal of Indian Statistical Association*, vol. 5, pp. 16–19, 1967.

[3] W. A. Abu-Dayeh, M. S. Ahmed, R. A. Ahmed, and H. A. Muttlak, "Some estimators of a finite population mean using auxiliary information," *Applied Mathematics and Computation*, vol. 139, no. 2-3, pp. 287–298, 2003.

[4] N. Koyuncu and C. Kadilar, "Family of estimators of population mean using two auxiliary variables in stratified random sampling," *Communications in Statistics - Theory and Methods*, vol. 38, no. 14, pp. 2398–2417, 2009.

[5] A. K. P. C. Swain, "On classes of modified ratio type and regression-cum-ratio type estimators in sample survey using two auxiliary variables," *Statistics in Transition-New series*, vol. 23, no. 3, pp. 473–494, 2012.

[6] J. Lu and Z. Yan, "A class of ratio estimators of a finite population mean using two auxiliary variables," *PLos One*, vol. 9, no. 2, pp. 1–6, Article ID e89538, 2014.

[7] J. Lu, Z. Yan, and X. Peng, "A new exponential ratio-type estimator with linear combination of two auxiliary variables," *PLos One*, vol. 9, no. 12, 10 pages, Article ID e116124, 2014.

[8] A. Sanauallah, M. Noor-ul-Amin, and M. Hanif, "Generalized exponential type ratio estimator with linear combination of two auxiliary variables," *Pakistan Journal of Statistics*, vol. 31, no. 1, pp. 71–94, 2015.

[9] J. Lu, "Efficient estimator of a finite population mean using two auxiliary variables and numerical application in agricultural, biomedical, and power engineering," *Mathematical Problems in Engineering*, vol. 11.
[10] S. Muneer, J. Shabbir, and A. Khalil, “Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables,” Communications in Statistics - Theory and Methods, vol. 46, no. 5, pp. 2181–2192, 2017.

[11] J. Shabbir and S. Gupta, “Estimation of finite population mean in simple and stratified random sampling using two auxiliary variables,” Communications in Statistics - Theory and Methods, vol. 46, no. 20, pp. 10135–10148, 2017.

[12] T. J. Akingbade and F. C. Okafor, “A class of ratio-type estimator using two auxiliary variables for estimating the population mean with some known population parameters,” Pakistan Journal of Statistics and Operation Research, vol. 15, no. 2, pp. 329–340, 2019.

[13] J. Shabbir and S. Masood, “An improved general class of estimators for finite population mean in simple random sampling,” Communications in Statistics - Theory and Methods, 2020.

[14] J. Shabbir and S. Gupta, “A new improved difference-cum-exponential ratio type estimator in systematic sampling two auxiliary variables,” Journal of the National Science Foundation of Sri Lanka, vol. 48, no. 1, pp. 27–36, 2020b.

[15] S. Bhushan, R. Gupta, S. Singh, and A. Kumar, “Some log-type classes of estimators using multiple auxiliary information,” International Journal of Scientific Engineering and Research, vol. 8, no. 6, pp. 12–17, 2020.

[16] S. A. Lone, M. Subzar, and A. Sharma, “Enhanced estimators of population variance with the use of supplementary information in survey sampling,” Mathematical Problems in Engineering, vol. 2021, Article ID 9931217, 8 pages, 2021.

[17] C. Kumari and R. K. Thaur, “An efficient log-type class of estimators using auxiliary information under double sampling,” Journal of Statistics Applications & Probability, vol. 10, no. 1, pp. 197–202, 2021.

[18] M. N. Murthy, Sampling Theory and Methods, Statistical Publishing Society, Calcutta, India, 2nd edition, 1967.

[19] R. Singh and N. S. Mangat, Elements of Survey Sampling, Kluwer Academic Publishers, Amsterdam, Netherlands, 1996.