Factors Influencing Left Ventricular Ejection Fraction in patients with CMVD and OCAD

CURRENT STATUS: ACCEPTED

Henry Anselmo Mayala
JAKAYA KIKWETE CARDIAC INSTITUTE (JKCI)

henrymayala@yahoo.co.uk Corresponding Author
ORCiD: https://orcid.org/0000-0001-9677-2520

Mafuru Magesa
Huazhong University of Science and Technology

Abdalah Mkangala
Jakaya Kikwete Cardiac Institute

Mark Mayala
Jakaya Kikwete Cardiac Institute

Pedro Pallangyo
Jakaya Kikwete Cardiac Institute

Dickson Minja
Jakaya Kikwete Cardiac Institute

Mohamed Janabi
Jakaya Kikwete Cardiac Institute

Wang Zhao-hui
Huazhong University of Science and Technology Tongji Medical College

DOI:
10.21203/rs.2.23558/v1

SUBJECT AREAS
Cardiac & Cardiovascular Systems

KEYWORDS
Coronary artery microvascular dysfunction (CMVD), Coronary flow reserve (CFR), Left ventricular ejection fraction (LVEF), LDL-c, BNP
Abstract
Objective: The aim of our research was to evaluate the relationship involving LVEF, LDL, BNP, Troponin I and CFR, and to determine the predictors of LVEF in patients with CMVD and OCAD, and in patients with CMVD.

Results: The mean age was 58.5±12.5 years. Approximately 60% of the patients were women. Chest pain was the common symptom in both conditions around 45% followed by chest tightness which was 25%. In patients OCAD and CMVD we found low density lipoprotein-c (LDL-c) had significant inverse relationship with LVEF (r= -0.323, P= 0.042), LVEF also had significant negative relationship with BNP, and Troponin-I. While a significant direct relationship turned out to be observed linking LVEF with CFR (r= 0.422, P=0.007). Left ventricular ejection fraction had significant negative relationship with LDL-C (r= -0.489, P=0.029), and BNP (r= -0.472, P=0.035) in patients with OCAD only. Age, blood pressure, lipid levels, RDW, HbA1C, symptoms, NYHA classification, Alcohol drinking, hypertension, diabetes mellitus, troponin levels and BNP were the predictors for LVEF in CMVD patients. We depicted a strong negative relationship between LVEF and biomarkers (LDL-c, BNP, Troponin-I), with a significant positive association between LVEF and CFR.

Introduction
Coronary artery disease is a major non communicable disease problem around the world. The coronary vessels damage can be caused by an array of crucial risk factors such as hypertension, dyslipidemia, diabetes mellitus and smoking cigarettes [1]. Furthermore, obstructive coronary artery disease occurs less frequently in females, preceding studies revealed a poor prognosis in females in relation to male counterparts amid patients exhibiting with symptoms of stable angina [2]. Even though there is detailed documentation and guidelines emphasizing administration of secondary prevention medication, an under usage of these medication was observed, meaning that many patients with coronary artery disease did not attain the treatment objective for secondary prevention [3]. Epidemiology studies have revealed men to be more affected by OCAD compared to women. Moreover, female patients are believed to have more symptom burden and a higher rate of functional disability but a lower prevalence of OCAD, they usually present with NOCAD particularly CMVD. In
patients with CAD, men tend to have a higher lipid core compared with women [4].

Previous studies were done to investigate serum total cholesterol in relation to LVEF and Coronary artery disease where they found out higher total cholesterol and HDL-C are associated with higher LVEF [5,6]. There were no studies done in evaluating the LDL-c, BNP, Troponin-I and CFR in association with LVEF in patients with OCAD and CMVD.

In our study, we used a prospective clinical observational design to investigate the association between LVEF and LDL-c, BNP, Troponin-I, and CFR and to determine the predictors of LVEF

Methodology

Study population:
We recruited 40 patients attending to our hospital for the first time divided into two sub-group where by half had coronary microvascular disease and the other half had obstructive coronary artery disease.

Study Design:
A prospective clinical observational study

Inclusion Criteria:
ST-T dynamic variations on ECG (ST segment desolation, symmetrical T wave reversion, or dynamic change that appears at the time when the chest discomfort occurs)
Coronary artery examination by coronary angiography was accomplished
- 18–79 years of age
- We recruited patients who were showing up for the initial appointment to our medical institution and not in any treatment at all.

Exclusion Criteria:
Acute myocardial infarction
Patients who had percutaneous coronary intervention and those who had coronary artery bypass graft
A further cardiac disorders affecting ventricular wall motion or cardiac ejection function, such as stress cardiomyopathy, hypertrophic cardiomyopathy, dilated cardiomyopathy, myocarditis, myocardial amyloidosis
Severe arrhythmias such as permanent atrial fibrillation, recurrent and poorly controlled ventricular arrhythmias
Severe valvular heart disease
Follow up patients on medications including statins
Allergic habitus
Patients or their family members refused to participate in the study.

Definition Of Terms

1. CMVD-ST- segment depression or T-wave inversion on ECG but had TIMI 3 flow on
Coronary angiography

2. OCAD-ST- segment depression or T-wave inversion on ECG and either TIMI I or II flow on CAG

Study Objective:
The intention of this research was evaluating the relationship between LVEF and LDL, BNP, Troponin I and CFR, and to determine the predictors of LVEF in patients with CMVD and OCAD, and in patients with CMVD.

Image Acquisition
PET-CT scan was used to measure coronary flow reserve and assess the microvascular coronary perfusion. The images were obtained using a dedicated PET/CT scanner (Discovery VCT®, GE medical systems, Milwaukee WI, USA) immediately after intravenous injection of 3.75 to 5.55 MBq/kg of 13N-NH3, rest and ATP-stressed respectively.

A cutoff CFR value for our study was 2.6 [7].

Statistical Analysis Software:
The statistical analysis was done using IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp, U.S.A

Statistical analysis:
Baseline patient characteristics were summarized. All data are presented as mean ± SD for continuous variables and n (%) for categorical variables. Comparisons between groups were made using Pearson correlation or Spearman’s rho for continuous variables and Fisher exact test for categorical variables. A P-value of < 0.05 was considered statistically significant. A multivariate linear regression model was done to determine the predictors of LVEF.

Results
Patients Demographic and clinical characteristics
Forty patients participated in our study, whereby twenty patients had coronary microvascular dysfunction (CMVD) and twenty patients had obstructive coronary artery disease (OCAD). The mean age was 58.5 ± 12.5 years.
Approximately 60% of the patients were women. The mean left ventricular ejection fraction was 56.7 ± 7.9, and the mean coronary flow reserve was 2.04 ± 0.56 respectively. The patient’s demographic and clinical characteristics are summarized in Table 1.

Variables	Value
Age (mean ± SD)	58.5 ± 12.5
Gender n (%)	
• Male	16 (40)
• Female	24 (60)
Symptoms n (%)	
• Chest pain	18 (45)
• Chest tightness	10 (25)
• Difficulty in breathing	8 (20)
• mixed symptoms	4 (10)
NYHA classification n (%)	
• Class I	20 (50)
• Class II	12 (30)
• Class III	6 (15)
• Class IV	2 (5)
Smoking, n (%)	20 (50)
Alcohol, n (%)	18 (45)
Hypertension, n (%)	26 (65)
Diabetes mellitus, n (%)	16 (40)
Systolic BP in mmHg, (mean ± SD)	136.6 ± 20.9
Diastolic BP in mmHg, (mean ± SD)	82.6 ± 16.6
LDL-C in μmol/l, (mean ± SD)	3.5 ± 1.6
HDL-C in μmol/l, (mean ± SD)	1.16 ± 0.4
Troponin I in pg/ml, (mean ± SD)	18.9 ± 16.5
Red cell distribution width, n (%)	15.5 ± 3.2
Glycated Hemoglobin	6.3 ± 1.8
BNP in pg/ml, (mean ± SD)	113.3 ± 167.8
Left ventricular ejection fraction	56.7 ± 7.9
Coronary flow reserve	2.04 ± 0.56

Relationship between left ventricular ejection fraction (LVEF), LDL-c, BNP, troponin-I and CFR in patients with CMVD and OCAD

We hypothesized that the factors influencing left ventricular ejection fraction for patients with CMVD and OCAD to be LDL-C, BNP, Troponin-I and CFR. We conducted correlation tests using Spearman’s rho to assess the relationship between LVEF, LDL-C, BNP, Troponin-I and CFR in patients with CMVD and OCAD (Fig. 1A, B, C and D).

Low density lipoprotein-c (LDL-c) had significant inverse relationship with LVEF ($r = -0.323$, $P = 0.042$), LVEF also had significant negative relationship with BNP ($r = -0.562$, $P < .0001$), and troponin-I ($r = -0.311$, $P = 0.04$). While a significant positive relationship was observed between LVEF and CFR ($r = 0.422$, $P = 0.007$).

Relationship between left ventricular ejection fraction (LVEF), LDL-C and BNP in patients with OCAD

Left ventricular ejection fraction had significant negative relationship with LDL-C, and BNP. We observed fewer factors influencing the left ventricular ejection fraction when we separated OCAD from CMVD patients, and there
was no correlating factor in CMVD subgroup.

Determination of predictors of LVEF

i) In patients with CMVD and OCAD

A backward multivariate linear regression model was done for determination of predictors of LVEF in patients with CMVD and OCAD. In this study, the variables Age, symptoms, NYHA classification and BNP qualified to enter the model. After adjusting for confounders, the patients age (coefficient $\beta = 0.19$, 95% CI, 39.5–58.6, $P = 0.023$), Difficulty in breathing (coefficient $\beta = -6.95$, 95% CI, (-11.9) -(-2.0), $P = 0.007$), NYHA Class III (coefficient $\beta = -7.14$, 95% CI, (-12.55) -(-1.74), $P = 0.011$), NYHA Class IV (coefficient $\beta = -17.25$, 95% CI, (-26.18) -(-8.32), $P < .0001$), and BNP (coefficient $\beta = -0.03$, 95% CI, (-0.042) -(-0.019), $P < .0001$) were determined as predictors of LVEF in patients with CMVD and OCAD.

ii) In patients with CMVD

After adjusting for confounders, the patients age (coefficient $\beta = 1.31$, 95% CI, 1.07–1.55, $P < .0001$), systolic blood pressure (coefficient $\beta = -0.58$, 95% CI, (-0.76)-(-0.41), $P < .0001$), diastolic blood pressure (coefficient $\beta = -1.71$, 95% CI, (-2.14)-(-1.28), $P < .0001$), HDL (coefficient $\beta = -4.8$, 95% CI, (-8.5)- (1.14), $P = 0.02$), HbA1c (coefficient $\beta = 2.69$, 95% CI, 1.66–3.74, $P = 0.001$), Chest tightness (coefficient $\beta = 33.3$, 95% CI, 26.4–40.2, $P < .0001$), difficulty in breathing (coefficient $\beta = 12.3$, 95% CI, 6.93–17.7, $P = 0.002$), NYHA class I (coefficient $\beta = 20.4$, 95% CI, 13.3–27.5, $P = 0.001$), alcohol (coefficient $\beta = 20$, 95% CI, 15.6–24.6, $P < .0001$), Hypertension (coefficient $\beta = 57$, 95% CI, 47-67, $P < .0001$), Diabetes mellitus (coefficient $\beta = -64$, 95% CI, (-77)- (-51), $P < .0001$), Troponin I (coefficient $\beta = -1.65$, 95% CI, (-1.9)-(-1.3), $P < .0001$), and BNP (coefficient $\beta = 0.35$, 95% CI, 0.24–0.46, $P = 0.001$) were determined as predictors of LVEF in patients with CMVD (Table 2).
Table 2
Multivariate linear regression model investigating the predictors of LVEF in patients with CMVD (n = 20)

Predictors	Multivariate Final Model	P-value	95% Confidence Interval
Constant	109.99 ± 5.47	< .0001	95-124
Age	1.31 ± 0.09	< .0001	1.07-1.55
Systolic BP (mmHg)	(-0.58) ± 0.07	< .0001	(-0.76) -(-0.41)
Diastolic BP (mmHg)	(-1.71) ± 0.17	< .0001	(-2.14) -(-1.28)
HDL (µmol/l)	(-4.8) ± 1.4	0.02	(-8.5) -(-1.14)
RDW	2.15 ± 0.21	< .0001	1.6 ± 2.7
HbA1c	2.69 ± 0.4	0.001	1.66-3.74
Chest tightness	33.3 ± 2.69	< .0001	26.4-40.2
Difficulty in breathing	12.3 ± 2.09	0.002	6.93-17.7
NYHA class I	20.4 ± 2.7	0.001	13.3-27.5
Alcohol	20 ± 1.75	< .0001	15.6-24.6
Hypertension	57 ± 3.9	< .0001	47-67
Diabetes mellitus	(-64) ± 5	< .0001	(-77) -(-51)
Troponin I	(-1.65) ± 0.13	< .0001	(-1.9) -(-1.3)
BNP (pg/ml)	0.35 ± 0.043	0.001	0.24-0.46

LVEF, left ventricular ejection fraction, CMVD, coronary microvascular dysfunction, HDL, high density lipoprotein, RDW, red cell distribution width, HbA1c, glycated hemoglobin, BNP, brain natriuretic peptide

Discussion

The current research indicated a negative correlation between LVEF and LDL-c, BNP and Troponin-I in patients with OCAD and CMVD. To the best our knowledge, this is the first research to reveal the relationship between LVEF and biomarkers (LDL-C, BNP and Troponin-I). We also found out a positive association between LVEF and CFR in patients with OCAD AND CMVD. This finding was congruent with our previous study, whereby there was a positive correlation between LVEF and CFR [8].

Previous studies have shown that hyperlipidemia adversely influenced the left ventricular ejection fraction, particularly in patients with myocardial infarction. They went further and detailed an important positive correlation between left ventricular ejection fraction and high density lipoprotein-cholesterol, suggesting that HDL-cholesterol might influence left ventricular systolic function through extra-atherosclerotic mechanisms because they observed left ventricular ejection fraction was adversely influenced by dyslipidemia irrespective of the severity of coronary atherosclerosis [9, 10, 11]. There was another study in which, they investigated the association between lipid profile levels and right ventricular volume overload in congestive heart failure, where they revealed lipid levels (total cholesterol, triglycerides, low density lipoprotein-c, and high density lipoprotein-c) were inversely correlated to right ventricular end diastolic diameter and right atrium [12]. In our study, which involved patients with obstructive coronary artery disease and coronary microvascular dysfunction, we found out LDL-c to be inversely correlated with left ventricular ejection fraction and it was statistically significant. Meaning one-unit change increase in LDL-c is associated with a unit decrease in LVEF percentage. This show our study
concur with previous study findings.
Several studies have revealed a negative correlation between BNP and left ventricular ejection fraction. They revealed that BNP levels were low in patients with heart failure with preserved ejection fraction compared to patients with heart failure with reduced ejection fraction. In another study, they also discovered an important correlation between NT-proBNP and LVEF in elderly patients, whereby worsening LVEF had a significant correlation with NT-proBNP levels [13, 14]. In our study, we also found a negative correlation between left ventricular ejection fraction and B-type natriuretic peptide in patients with obstructive coronary artery disease and coronary microvascular dysfunction ($r = -0.562, P < .0001$) and in patients with OCAD alone ($r = -0.472, P = 0.035$), meaning that one unit change increase in BNP was related with a unit decrease in LVEF percentage.
Furthermore, another biomarker troponin-I is a power indicator of myocardial necrosis, it has been studied before and was found to be inversely correlated with left ventricular ejection fraction especially in patients after first myocardial infarction. They found out that the left ventricular ejection fraction of < 50% was predicted by troponin I concentration of >6.6 ng/ml. In another research analysis, it showed that patients with severe left ventricular systolic dysfunction (LVEF < 35%) had the highest level of troponin I and vice versa. They also showed that the LVEF had a negative correlation with troponin I levels ($r = -0.54, P = 0.001$). Despite the above fact, there was an exploration of troponin T, whereby it was also revealed that there was a negative correlation between troponin T levels and LVEF ($r = -0.72, P = < .0001$) [15, 16, 17]. In our findings, we showed that there was a significant negative relationship between troponin I and left ventricular ejection fraction in patients with OCAD and CMVD ($r = -0.311, P = 0.04$). Meaning one-unit change increase in troponin I levels was associated with a unit decrease in LVEF percentage.
Form our study, we discovered the importance of these biomarkers (LDL-c, BNP, and Troponin-I) as prognostic indicators for patients with OCAD and CMVD.
Moreover, there were studies done in the area of determination of predictors of LVEF. Whereby, their analysis demonstrated that several traditional and easily available factors were associated with a greater risk of heart failure development, even among low-risk CAD population. Some of the studies showed lipids predicted the severity of new onset CAD in type-2 DM patients and not in relation to LVEF, differentiating from our study. In another research, low HDL-c was strongly predictive of cardiovascular events in patients with coronary artery
disease [18, 19, and 20]. In our research we also found out that traditional risk factors influenced the LVEF concurring the previous studies even though we were the only one, who further evaluated patients with OCAD and CMVD. In the current published articles indicated the relevance of inflammatory biomarkers particularly CRP and Pentraxin 3 as the prognostic indicators of coronary artery disease congruent with our findings even though we assessed different biomarkers (LDL-c, BNP, troponin-I) [21,22].

We believe by sharing these findings of our study, will empower the clinicians with knowledge on coronary microvascular dysfunction in relation to OCAD, by exploring the relationship between LVEF and biomarkers, and predictors of LVEF in these patients.

Conclusion
There was a strong negative relationship between LVEF and biomarkers (LDL-c, BNP, Troponin-I), with a significant positive association between LVEF and CFR. Traditional risk factors were the predictors of LVEF in OCAD and CMVD patients.

Limitation
a small sample size was our study limitation

Declarations

Ethical approval and consent to participate:
The clinical protocol and the informed consent forms were approved by the ethics committee of Tongji medical college of Huazhong University of science and technology. All patients read and signed the published informed consent. This clinical study was conducted according to the revised declaration of Helsinki concerning biomedical research in using patient information. All authors agreed for this manuscript to be published.

Consent for publication
Not applicable

Availability of Data and materials
Data and materials are available upon request to the authors

Competing Interests
The authors declare that they have no competing interests

Funding:
This study did not receive any funding
Authors Contribution:

Drafting of manuscript was done by: HAM, MM, AM, MM, PG, DM, MJ, WZ. Critical revision and correction were done by: WZ. All authors read and approved the final manuscript.

Acknowledgements

We thank the Staffs and management of Union Hospital of Huazhong University of Science and Technology for granting permission to conduct this study. And we thank all patients who participated in the study

Abbreviations:

LVEF - left ventricular ejection fraction, LDL-C - low density lipoprotein-cholesterol, BNP - B-type natriuretic peptide, CFR - coronary flow reserve, CMVD - coronary microvascular disease, and OCAD - obstructive coronary artery disease.

Author Details:

1, 3, 4, 5, 6, 7 Jakaya Kikwete Cardiac Institute, P. O. Box 65141 Dar es Salaam, West Upanga, Kalenga Street, Ilala District, Dar es Salaam Region. Tel: +255-22-2152392 | +255 755144363 Mob : +255-782042019. Email: info@jkci.or.tz

2, 8 Huazhong university of science and technology, 1037 Luoyu Road, Wuhan, Hubei, China, Post Code: 430074, Tel: +86 27 87542457 Email: admission@hust.edu.cn

Data Sharing

For data sharing for this research paper, please contact the author by email: mayalahenry29@gmail.com

References

1. Gander J, Sui X, Hazlett LJ, et al. Factors related to coronary heart disease risk among men: validation of the Framingham risk score. Prev Chronic Dis. 2014; 11: E 140

2. Zhang Y, Liu Y, Zhang H, et al. Impact of sex specific differences in calculating the pretest probability of obstructive coronary artery disease in symptomatic patients. Coronary artery disease, 30(2): 124-130

3. Jotveit J, Halvorsen S, Kaldal A, et al. Unsatisfactory risk factor control and high rate of new cardiovascular events in patients with myocardial infarction and poor coronary artery disease.
4. Tian J, Wang X, Tian J, and Yu B. Gender difference in plaque characteristics of non-culprit lesions in patients with coronary artery disease. BMC Cardiovasc Dis 2019; 19:45

5. Liu Y, Hao Z, Xiao C, et al. Association of serum total cholesterol and left ventricular ejection fraction in patients with heart failure caused by coronary heart disease. Arch Med Sci. 2018; 14(5): 988-994

6. Zhao Q, Li J, Yang J, et al. Association of total cholesterol and HDL-c levels and outcome in coronary heart disease patients with heart failure. Medicine 2017; 96(6): e6094

7. Loffler and Bourque. Coronary microvascular dysfunction, microvascular angina, and management. Curr Cardiol Rep. 2016; 18(1): 1

8. Mayala HA, Bakari KH, Mghanga FP, and ZhaoHui W. Clinical significance of PET-CT Coronary flow reserve in diagnosis of non-obstructive coronary artery disease. BMC Res notes 2018; 11:566

9. Wang TD, Wu CC, Chen WJ, et al. Dyslipidemia have a detrimental effect on left ventricular systolic function in patients with a first myocardial infarction. Am J Cardiol. 1998; 81:531-537

10. Kempen HJ, Van Gent CM, Buytenhek R, et al. Association of cholesterol concentrations in low-density lipoprotein, high density lipoprotein, and high-density lipoprotein subfractions, and of apolipoproteins AI and AII, with coronary stenosis and left ventricular function. J Lab Clin Med. 1987; 109: 19-26

11. Wang TD, Lee CM, Wu CC, et al. The effects of dyslipidemia on left ventricular systolic function in patients with stable angina pectoris. Atherosclerosis 1999; 146:117-124

12. Chen Y, He XM, Meng H, et al. Relationship between lipid levels and right ventricular volume overload in congestive heart failure. J Geriatr Cardiol 2014; 11: 192-199

13. Leto L, Testa M, and Feola M. Correlation between B-type natriuretic peptide and functional/cognitive parameters in discharged congestive heart failure patients. International
4. Belagavi AC, Rao M, Pillai A, and Srihari US. Correlation between NT-proBNP and left ventricular ejection fraction in elderly patients presenting to emergency department with dyspnea. Indian Heart journal 2012; 6403:302-304

5. Somani D, Gahlot RS, Lakhota M, et al. Troponin I measurement after myocardial infarction and its correlation with left ventricular ejection fraction: A prospective study. JIACM 2005; 6(1): 38-41

6. Khan MH, Islam MN, Aditya GP, et al. Correlation of troponin-I level with left ventricular ejection fraction and in hospital outcomes after first attack of non-ST segment elevation myocardial infarction. Mymensingh Med J 2017; 26(4):721-731

7. Rao ACR, Collinson PO, Canepa-Anson R, and Joseph SP. Troponin T measurement after myocardial infarction can identify left ventricular ejection fraction of less than 40%. Heart 1998; 80:223-225

8. Lewis EF, Solomon SD, Jablonski KA, et al. Predictors of heart failure in patients with stable coronary artery disease: A PEACE study. Circ Heart Fail. 2009; 2(3): 209-216

9. Du Y, Chen J, Chen MH, et al. Relationship of lipid and lipoprotein ratios with coronary severity in patients with new on-set coronary artery disease complicated with type 2 diabetics. J Geriatr Cardiol 2016; 13: 685-692

10. Miller M, Saidler A, Kwiterovich PO, and Pearson TA. Long term predictors of subsequent cardiovascular events with coronary artery disease and desirable levels of plasma total cholesterol. Circ. 1992; 86:1165-1170

11. Altay S, Gurdogan M, Keskin M, et al. The Inflammation-Based Glasgow Prognostic Score as a prognostic factor in patients with intensive cardiovascular care unit. Medicina (Kaunas). 2019; 55(5): 139

12. Altay S, Cakmak H, Oz T, et al. Long term prognostic significance of pentraxin-3 in patients with
acute myocardial infarction: 5-year prospective cohort study. Anatol J Cardiol. 2017; 17(3): 202-209.

Figures

A: showing a negative correlation between LVEF (%) and LDL-C (µmol), B: showing a negative relationship between LVEF (%) and BNP (pg/ml), C: showing a positive correlation between LVEF (%) and CFR, and lastly D: showing a negative relationship between LVEF (%) and Troponin I (pg/ml)