Entangled States Generated via Two Superconducting Quantum Interference Devices (SQUIDs) in cavity QED

Yan Li

Department of Physics, College of Science and Engineering,
Yanbian University, Yanji, Jilin 133002, PR China

Shou Zhang*

Department of Physics, College of Science and Engineering,
Yanbian University, Yanji, Jilin 133002, PR China and
Center for Condensed-Matter Science and Technology,
Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China

Kyu-Hwang Yeon

Department of Physics, College of Natural Sciences,
Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea

Chung-In UM

Department of Physics, College of Science,
Korea University, Seoul 136-701, South Korea

We propose a scheme for generating entangled states for two superconducting quantum interference devices in a thermal cavity with the assistance of a microwave pulse.

Keywords: Entangled state, SQUID, cavity QED

PACS number(s): 42.50.Dv, 03.65.Ta, 03.67.-a

Quantum computers can solve some problems much faster than the classical computers, such as factorizing a large integer [1] and searching for an item from a disordered system [2]. Thus, finding out the practical qubits is the key problem in building the quantum computers. About seven years ago, superconducting quantum interference devices (SQUIDs) were

* To whom correspondence should be addressed. E-mail: szhang@ybnu.edu.cn
proposed as candidates to serve as the qubits for a superconducting quantum computer \[3\]. In the following years, some schemes were been proposed to perform quantum logic by using superconducting devices such as Josephson-junction circuits \[4, 5, 6\], Josephson junctions \[7, 8, 9\], Cooper pair boxes \[10, 11, 12\], and (SQUIDs) \[13, 14, 15, 16\].

Yang and Cnu \[17\] proposed a scheme to generate entanglement and logical gates. In their scheme, they entangled two SQUIDs with two levels in a vacuum cavity. Zhang et al. \[18\] presented a protocol to generate an entangled state with two three-level atoms. In this paper, we will entangle two SQUIDs with three levels in a thermal cavity driven by a classical field.

![FIG. 1: The Λ-type lowest three levels of the SQUIDs.](image)

We consider two SQUIDs coupled to a single-mode cavity. The Hamiltonian of the system is written as

\[
H = H_s + H_c + H_{c-s} + H_{m-s},
\]

where \(H_c\) and \(H_s\) are the Hamiltonian of the cavity field and the Hamiltonian of the SQUIDs, respectively. \(H_{m-s}\) is the interactional energy between the SQUIDs and the microwave pulse, and \(H_{c-s}\) is the interaction Hamiltonian between the SQUIDs and the cavity. The cavity is only coupled to the Λ-type lowest three levels of the SQUIDs, which are denoted by \(|0\rangle\), \(|1\rangle\), and \(|2\rangle\) (FIG.1) . In the case where the cavity field is far-off resonance with a transition between a levels \(|0\rangle\) and \(|1\rangle\) and a transition between levels \(|1\rangle\) and \(|2\rangle\), we assume the frequency of the microwave pulse to be equal to \(\omega_{20}\) (the transition frequency between levels
Thus, the interaction Hamiltonian in the interaction picture is

\[H_I = H_{Ic} + H_{Im}, \]

\[H_{Ic} = g \sum_{i=1,2} [e^{i\delta t} a_i^+ S_i^- + e^{-i\delta t} a S_i^+], \]

\[H_{Im} = \Omega \sum_{i=1,2} (S_i^+ + S_i^-), \]

(2)

where \(g \) is the coupling constant between the SQUIDs and the cavity field, corresponding to the transitions between \(|0\rangle \) and \(|2\rangle \); \(\delta \) is the detuning between \(\omega_{20} \) and the cavity frequency \(\omega \); \(a^\dagger \) and \(a \) are the creation and the annihilation operators for the cavity mode, \(S_i^+ = |2\rangle_i \langle 0|, S_i^- = |0\rangle_i \langle 2|; \) \(\Omega \) is the Rabi frequency; \(H_{Ic} \) and \(H_{Im} \) are the cavity-SQUIDs interaction Hamiltonian and the microwave pulse-SQUIDs interaction Hamiltonian in the interaction picture, respectively.

Following the method in Ref. [19], when \(2\Omega \gg \delta, g \) and \(\delta \gg g/2 \), we can obtain the effective Hamiltonian of the system

\[H_e = \lambda \left[\frac{1}{2} \sum_{i=1,2} (|0\rangle_i \langle 0| + |2\rangle_i \langle 2|) + (S_i^+ S_i^+ + S_i^+ S_i^- + H.c.) \right], \]

(3)

where \(\lambda = g^2/2\delta \). The evolution operator \(U(t) \) is given by

\[U(t) = e^{-iH_0t}e^{-iH_1t}, \]

(4)

where \(H_0 = \Omega \sum_{i=1}^2 (S_i^+ + S_i^-) \) and \([H_0, H_e] = 0\). Because \(U(t) \) is independent of the cavity field state, we allow the cavity to be in the thermal state. In order to generate a maximally entangled state of two SQUIDs, we assume that the two SQUIDs are prepared in the state \(|0\rangle_1 |0\rangle_2 \). Next, let us consider the first SQUID driven by a classical microwave pulse (without cavity) whose frequency is equal to \(\omega_{10} \). The interaction Hamiltonian is written as

\[H = \Omega (S_1^+ + S_2^-). \]

(5)

Hence \(|0\rangle_1 \) becomes

\[|0\rangle_1 \rightarrow \cos \Omega t |0\rangle_1 - i \sin \Omega t |1\rangle_1. \]

(6)

If we let \(\Omega t = \arccos \sqrt{\frac{2}{3}} \), the first SQUID is in the state

\[|\sqrt{\frac{2}{3}} 1\rangle_1 - i |\sqrt{\frac{2}{3}} 0\rangle_1. \]

(7)
while the second one is still in the state $|0\rangle_2$. Then, both the SQUIDs are put into the cavity.

The evolution operator is described by Eq. (4) which has no effect on the state $|1\rangle_1|0\rangle_2$. After an interaction time t_1, the state of the system is

$$|\psi(t_1)\rangle = \sqrt{\frac{1}{3}}|1\rangle_1|0\rangle_2 - i\sqrt{\frac{2}{3}}e^{-i\lambda t_1} \{\cos(\lambda t_1)[\cos \Omega t_1|0\rangle_1 - i \sin \Omega t_1|2\rangle_1]$$

$$\times [\cos \Omega t_1|0\rangle_2 - i \sin \Omega t_1|2\rangle_2] - i \sin(\lambda t_1)[\cos \Omega t_1|2\rangle_1 - i \sin \Omega t_1|0\rangle_1]$$

$$\times [\cos \Omega t_1|2\rangle_2 - i \sin \Omega t_1|0\rangle_2]\}.$$ (8)

We choose Ω and the interaction time t_1 appropriately so that $\lambda t_1 = \pi/2$ and $\Omega t_1 = k\pi$, with k being an integer. Then, we have

$$|\psi(\pi/2\lambda)\rangle = \sqrt{\frac{1}{3}}|1\rangle_1|0\rangle_2 + i\sqrt{\frac{2}{3}}|2\rangle_1|2\rangle_2.$$ (9)

SQUID 2 is then addressed by using a classical microwave pulse tuned to the transition $|0\rangle \leftrightarrow |1\rangle$ in the cavity. After this operation, the state, Eq. (9) becomes

$$|\psi'(\pi/2\lambda)\rangle = \sqrt{\frac{1}{3}}|1\rangle_1|1\rangle_2 + i\sqrt{\frac{2}{3}}|2\rangle_1|2\rangle_2.$$ (10)

Then we switch off the microwave pulse field, and the system will interact for another time t_2. Thus, the system’s time evolution operator has transformed the state in Eq. (10) into the state

$$|\psi(t_1 + t_2)\rangle = \sqrt{\frac{1}{3}}|1\rangle_1|1\rangle_2 + i\sqrt{\frac{2}{3}}e^{-i\lambda t_2} \{\cos(\lambda t_2)[\cos \Omega' t_2|2\rangle_1 - i \sin \Omega' t_2|0\rangle_1]$$

$$\times [\cos \Omega' t_2|2\rangle_2 - i \sin \Omega' t_2|0\rangle_2] - i \sin(\lambda t_2)[\cos \Omega' t_2|0\rangle_1 - i \sin \Omega' t_2|2\rangle_1]$$

$$\times [\cos \Omega' t_2|0\rangle_2 - i \sin \Omega' t_2|2\rangle_2]\\},$$ (11)

where Ω' is the Rabi frequency of the classical field during the interaction time t_2. If we choose the interaction time t_2 and the Rabi frequency Ω' appropriately so that $\lambda t_2 = \pi/4$ and $\Omega' t_2 = 2k'\pi$, with k' being an integer, we have

$$|\psi(t_1 + t_2)\rangle = \sqrt{\frac{1}{3}}(|1\rangle_1|1\rangle_2 + i e^{-i\pi/4}|2\rangle_1|2\rangle_2 + e^{-i\pi/4}|0\rangle_1|0\rangle_2).$$ (12)
After that, we apply a classical field whose phase is chosen appropriately, then SQUID 2 undergoes the transition $|2\rangle_2 \rightarrow e^{-i\frac{\pi}{4}}|2\rangle_2$, $|0\rangle_2 \rightarrow e^{i\frac{\pi}{4}}|0\rangle_2$. Thus, the state in Eq. (12) becomes

$$|\psi\rangle = \sqrt{\frac{1}{3}}(|0\rangle_1|0\rangle_2 + |1\rangle_1|1\rangle_2 + |2\rangle_1|2\rangle_2).$$

Equation (13)

It should be noted that the level space of the SQUIDs can be changed by using an external flux Φ_x or critical current I_c. Thus, the interaction time between the SQUIDs and cavity can be controlled by Φ_x. In summary, we have entangled two SQUIDs with three levels in a thermal cavity with the help of a microwave pulse.

ACKNOWLEDGMENTS

This work was supported by KOSEF and the National Natural Science Foundation of China under Grant No 60261002.

[1] P. W. Shor, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124.
[2] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997); 79, 4709 (1997).
[3] M. F. Bocko, A. M. Herr, and M. J. Feldman, IEEE Trans. Appl. Supercond. 7, 3638 (1997).
[4] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. Van der Wal, and S. Lloyd, Science 285, 1036 (1999).
[5] C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, Science 290, 773 (2000).
[6] T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S. Levitov, S. Lloyd, and J. J. Mazo, Phys. Rev. B 60, 15398 (1999).
[7] A. Shipman, G. Schön, and Z. Hermon. Phys. Rev. Lett. 79, 2371 (1997).
[8] A. Blais and A. M. Zagoskin, Phys. Rev. A 61, 042308 (2000).
[9] A. Steinbach, P. Joyez. A. Cottet. D. Esteve, M. H. Devoret, M. E. Haber, and J. M. Martinis, Phys. Rev. Lett. 87, 137003 (2001).
[10] T. Nakamura, Y. Pashkin, and J. S. Tsai, Nature (London) 398, 305 (1999).
[11] X. B. Wang and M. Keiji, Phys. Rev. B 65, 172508 (2002).
[12] Y. Makhlin, G. Schoen, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).
[13] J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature (London) 406, 43 (2000).
[14] X. Zhou, J. L. Habif, M. F. Bocko, and M. J. Feldman, e-print quant-ph/0102090.
[15] Z. Zhou, S. I. Chu, and S. Han, Phys. Rev. B 66, 054527 (2002).
[16] P. Silvestrini and L. Stodolsky, e-print con-mat/0004472.
[17] C. P. Yang and S. I. Chu, Phys. Rev. A 67, 042311 (2003).
[18] S. Zhang, Y. Li, K. H. Yeon, and C. I. Um, J Kor. Phys. Soc. 45, 884(2004).
[19] S. B. Zheng, Phys. Rev. A 68, 035801 (2003).