ABSTRACT

We present moderate- ($1''$) and high-resolution ($0''/2$) observations of the CO (2–1) emission at 43 GHz and radio continuum emission at 1.47 GHz from the $z=4.7$ QSO BRI 1202–0725 and the $z=4.4$ QSO BRI 1335–0417 using the Very Large Array. The moderate-resolution observations show that in both cases the CO emission is spatially resolved into two components separated by 1$''$ for BRI 1335–0417 and 4$''$ for BRI 1202–0725. The high-resolution observations show that each component has substructure on scales $/C0.2–0.5$, with intrinsic brightness temperatures ≥ 20 K. The CO ladder from (2–1) up to (7–6) suggests a high kinetic temperature for the gas ($T_{\text{kin}} \simeq 70$ K) and a high column density $N(H_2) \simeq 10^{24}$ cm$^{-2}$. In both sources the continuum-to-line ratio is $L_{\text{FIR}}/L_{\text{CO}} (1-0) \simeq 335$. All these characteristics (brightness temperature, excitation temperature, column density, and continuum-to-line ratio) are comparable to conditions found in low-redshift, ultraluminous nuclear starburst galaxies. We find that the CO-emitting regions in BRI 1202–0725 and BRI 1335–0417 must be close to face-on in order to avoid having the gas mass exceed the gravitational mass, implying perhaps unreasonably large rotational velocities. While this problem is mitigated by lowering the CO luminosity–to–H$_2$ mass conversion factor (X), the required X values become comparable to, or lower than, the minimum values dictated by optically thin CO emission. We considered the possibility of magnification by gravitational lensing in order to reduce the molecular gas masses.

Key words: galaxies: active — galaxies: distances and redshifts — galaxies: evolution — infrared radiation — radio continuum — radio emission lines

1. INTRODUCTION

The recent discoveries that the large majority of spheroidal galaxies in the nearby universe contain massive black holes and that the black hole mass correlates with the mass of the spheroid of the parent galaxy have led to the hypothesis of coeval formation of massive black holes and galaxy spheroids, perhaps occurring in merging galaxies at high redshift (Richstone et al. 1998; Gebhardt et al. 2000; Ferrarese & Merritt 2000; Franceschini et al. 1999; Blain et al. 1999; Kauffmann & Haenelt 2000). We have undertaken an extensive study of high-redshift QSOs in order to address the interesting question of coeval black hole and spheroidal galaxy formation. The large samples of high-z QSOs coming from wide-field surveys such as the Sloan Digital Sky Survey (Fan et al. 2001) and the Digitized Palomar Observatory Sky Survey (DPOSS; Djorgovski 1999) have greatly facilitated the study of high-redshift QSOs. Our studies involve (1) searches for thermal dust emission at millimeter wavelengths from a large sample of $z > 3.7$ QSOs (Carilli et al. 2001b; Omont et al. 2001), (2) high-resolution imaging at centimeter wavelengths of the nonthermal radio continuum emission from these sources (Carilli et al. 2001a, 2001b), and (3) observations of the CO line emission from selected sources with large infrared luminosities, as inferred from the millimeter continuum observations (Carilli, Menten, & Yun 1999).

The interesting result from the millimeter continuum surveys of high-redshift QSOs is that 30% of the sources are detected in surveys with flux density limits of 1–2 mJy at 250 GHz (Carilli et al. 2001b; Omont et al. 2001), corresponding to infrared luminosities $\geq 10^{12} L_\odot$ and dust masses $\geq 10^8$
Radio continuum studies of these sources show that the millimeter-to-centimeter spectral energy distributions (SEDs) of most of the sources are consistent with the radio- to far-IR correlation found for nearby star-forming galaxies (Condon 1992; Carilli et al. 2001a, 2001b; Yun et al. 2000). If the dust is heated by star formation, the implied star formation rates are of order $10^3 M_\odot$ yr$^{-1}$. On the other hand, the global SEDs for these sources from centimeter to optical wavelengths are not out of the range defined by lower redshift, lower luminosity QSOs (Carilli et al. 2001a, 2001b; Sanders et al. 1989), and hence the case for dust heating by star formation in these sources is by no means secure.

Searches for CO line emission from dust-emitting QSOs at $z > 4$ have resulted in the detection of molecular line emission from four sources to date: BRI 1202–0725, BRI 1335–0415, BRI 0952–0115, and BRI 2322+1944 (Ohta et al. 1996; Omont et al. 1996b; Guilloteau et al. 1997, 1999; Cox et al. 2002). The implied gas masses are large ($>10^{10} M_\odot$), leading some to speculate that star formation may be inevitable (Omont et al. 2001). Moreover, in at least one case (BRI 1202–0725) the molecular line and millimeter continuum emission is known to be spatially extended, with a bright emission region well separated from the optical QSO.

For sources at $z \geq 3.9$ the CO (2–1) transition is redshifted into the 43 GHz band of the Very Large Array (VLA), thereby allowing for sensitive observations to be made of the low-order transitions from these sources. The VLA also allows for subarcsecond angular resolution observations to be made, which are critical to the physical interpretation of the systems.

In this paper we present high-resolution observations of the CO (2–1) emission from BRI 1202–0725 at $z = 4.7$ and from BRI 1335–0415 at $z = 4.4$, along with radio continuum observations at 1.4 GHz of BRI 1202–0725. These data are combined with observations of higher order CO transitions in an attempt to understand the physical conditions in the molecular line-emitting regions of high-z QSOs. We use $H_\alpha = 65$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_M = 0.3$, and $\Omega_\Lambda = 0.7$.

2. THE SOURCES

By selecting for very red, pointlike optical sources, McMahon (1991) has identified a large sample of $z \geq 4$ QSOs from the Automatic Plate Measuring survey (Irwin, McMahon, & Hazard 1991), including the two sources BRI 1202–0725 at $z = 4.7$ and BRI 1335–0415 at $z = 4.4$. Optical spectra of both of these sources show strong associated Lyα absorption (Storrie-Lombardi et al. 1996).

2.1. BRI 1202–0725

Omont et al. (1996a) and Ohta et al. (1996) detect high-order CO line emission from BRI 1202–0725, as well as thermal continuum emission from warm dust at 1.35 mm. The continuum emission and line emission consist of a double source with an angular separation of 4$''$. The total flux density of the source at 1.2 mm is 12 ± 3 mJy, implying a far-IR luminosity of $L_{\text{FIR}} = 4.2 \times 10^{13} L_\odot$, assuming an SED typical for an ultraluminous infrared galaxy (ULIRG; $L_{\text{FIR}} \sim 10^{12}$), where L_{FIR} is defined as in Helou et al. (1988) and Condon (1992), i.e., the integrated luminosity between rest-frame wavelengths of 42 and 122 μm. The southern source in BRI 1202–0725 comprises about 65% of the total.

Observations of this source with the Infrared Space Observatory (ISO) at mid- to far-IR wavelengths constrain the dust temperature to be ≈ 70 K for a dust emissivity index $\beta = 1.5$ (Leech, Metcalfe, & Altieri 2001).

The CO observations of Omont et al. (1996a) and Guélène et al. (2002) indicate a difference in the CO line widths for the northern and southern components. Gaussian fitting to the CO (5–4) line emission profiles by Omont et al. (1996a) results in $z = 4.6947$, FWHM = 190 km s$^{-1}$, and an integrated line flux density of 1.1 ± 0.2 Jy km s$^{-1}$ for the southern source and $z = 4.6916$, FWHM = 350 km s$^{-1}$, and an integrated line flux density of 1.3 ± 0.3 Jy km s$^{-1}$ for the northern source. This difference is important, since it argues against gravitational lensing as the origin for the observed double source and large apparent luminosity. However, Guilloteau (2001) has recently called the difference in CO profiles into question because of the possible contamination of the line emission from the northern source by continuum emission at 3 mm. The data presented herein support the original conclusions of Omont et al. (1996a) and Guélène et al. (2002) for different line profiles for the northern and southern sources in BRI 1202–0725.

BRI 1202–0725 is a radio continuum source with a total flux density of 315 ± 80 μJy at 1.4 GHz (see § 4.1) and 141 ± 15 μJy at 4.9 GHz (Yun et al. 2000). Extrapolating the centimeter spectrum to millimeter wavelengths assuming a continuous power-law spectrum implies a nonthermal contribution to the integrated emission at 40 GHz of 80μJy. Conversely, extrapolating the (sub)millimeter dust emission spectrum downward to 40 GHz implies a thermal dust contribution of 25μJy, assuming $\beta = 1.5$.

Optical imaging of BRI 1202–0725 shows a pointlike QSO with $M_B = -28.5$, with faint near-IR and Lyα emission extending about 2$''$ north of the QSO (Hu, McMahon, & Egami 1996). The optical position of the QSO given by Hu et al. (1996) is $0\farcs5$ north of the position of the southern millimeter/centimeter/CO component. In the following we assume that this offset indicates the accuracy of the relative astrometry of the radio and optical images.

The (3σ) limit to the Lyα flux from the northern millimeter/centimeter/CO component in BRI 1202–0725 is $\sim 1 \times 10^{-17}$ ergs cm$^{-2}$ s$^{-1}$ (Hu et al. 1996), corresponding to a limit to the Lyα luminosity of 2×10^{42} ergs s$^{-1}$. For comparison, the Lyα luminosities of UV dropout galaxies at $z \sim 3.09$ are typically $(2-4) \times 10^{42}$ ergs s$^{-1}$ (Steidel et al. 2000). The line-emitting object detected 2$''$ northwest of the QSO has an Lyα luminosity of 4×10^{43} ergs s$^{-1}$ (Fontana et al. 1998; Petitjean et al. 1996). If this line emission is powered by star formation, then the star formation rate is greater than $20 M_\odot$ yr$^{-1}$, depending on the amount of dust extinction (Fontana et al. 2000). It is also possible that this line emission is powered by UV radiation from the QSO itself (Petitjean et al. 1996). The lack of CO and thermal dust emission from this position argues for the latter, while the lack of N\upalpha and C\upalpha emission lines argues for the former (Fontana et al. 1998; Ohta et al. 2000).

2.2. BRI 1335–0417

Guilloteau et al. (1997) have detected CO (5–4) line emission from BRI 1335–0417 at $z = 4.4074$, with FWHM = 420 km s$^{-1}$ and an integrated line intensity of 2.8 ± 0.3 Jy km s$^{-1}$. The flux density of the dust continuum emission measured at 1.35 mm with the Plateau de Bure
Interferometer (PdBI) at 2" resolution is 5.6 ± 1.1 mJy, while that measured at 1.25 mm with the IRAM 30 m telescope (10′6 resolution) is 10.3 ± 1.4 mJy. The implied far-IR luminosity based on the 1.25 mm measurement is $3.1 \times 10^{13} L_s$. The 1.35 mm PdBI observations show marginal evidence for an extended source, with a formal Gaussian size of $1.0^\circ \pm 0.4^\circ$, with major axis oriented roughly north-south.

No high-resolution optical images have been published of BRI 1335–0417. DPOSS shows an unresolved source with $M_B = -27.3$, although with a pixel scale of just 1′′ the details of the source structure remain unknown. BRI 1335–0417 has been detected in the radio continuum, with an integrated flux density of 220 ± 43 μJy at 1.4 GHz and 76 ± 11 μJy at 4.9 GHz (Carilli et al. 1999).

3. OBSERVATIONS

Table 1 lists the observing parameters for BRI 1202–0725 and BRI 1335–0417. We also present a re-analysis of the D configuration observations from Carilli et al. (1999).

Standard amplitude and phase calibration were applied, correcting for atmospheric opacity at high frequency, and the absolute flux density scale was set by observing 3C 286. Fast-switching phase calibration was employed for the high-frequency observations (Carilli & Holdaway 1999). The 43 GHz observations were dynamically scheduled and took place at night under excellent weather conditions. The rms phase variations after calibration were ≤ 20′′. The phase coherence was checked by imaging a calibrator with the same calibration cycle as that used for the target sources. At all times the coherence was found to be higher than 85%.

A severe limitation at the VLA for observing broad lines at high frequencies is the maximum correlator bandwidth of 50 MHz and the limited number of spectral channels (seven) when using this bandwidth and dual polarization. The bandwidth of 50 MHz corresponds to a velocity coverage of only 350 km s$^{-1}$ at 43 GHz. These correlator limitations preclude a meaningful determination of the line profile, so we chose to observe in continuum mode with two intermediate frequencies (IFs), with two polarizations for each IF in order to maximize sensitivity to the integrated line emission (Carilli et al. 1999). Our analysis will necessarily assume the line widths as given by the higher order transitions.

For the CO line observations of BRI 1202–0725, IF1 was centered on the emission line from the southern source, while IF2 was offset from this by 50 MHz. Based on the (admittedly noisy) spectra in Omont et al. (1996a), IF1 should contain most of the emission from the southern component, while the sum of the IFs covers the emission from the northern component. The continuum for BRI 1202–0725 was investigated with an observation at 43 GHz. For BRI 1335–0417, IF1 was centered on the emission line, while IF2 was centered 1400 km s$^{-1}$ off the line. Taking into account the limited width of the continuum band employed, we estimate that we are missing about 30% of the velocity-integrated line emission in BRI 1335–0417.

4. RESULTS

4.1. BRI 1202–0725

The VLA D configuration observations of the CO (2–1) emission from BRI 1202–0725 are shown in Figure 1, with a spatial resolution of about 2′′. Figure 1a shows the summed emission in IF1 and IF2 for the 40 GHz observations. Shown in gray scale in Figure 1a is the Lyα image of BRI 1202–0725 from Hu et al. (1996). Again, we have aligned the position of the optical QSO with the peak in the radio continuum, CO, and thermal dust emission for the southern source. Figures 1b and 1c show IF1 and IF2, respectively, for the 40 GHz observations. Figure 1d shows the continuum image at 43 GHz.

Table 2 lists the results for the two components in BRI 1202–0725. Columns (3) and (4) list the position of the measured CO components. Column (5) lists the 7 mm continuum flux densities at these positions, column (6) lists the observed CO flux densities, and column (7) lists the velocity-integrated CO emission. Column (8) lists the 1.4 GHz continuum flux densities, while column (9) lists the CO luminosities (in K km s$^{-1}$ pc2).

The southern CO component is clearly detected in IF1 of the 40 GHz observations (Fig. 1b) but is not seen in IF2 or

Source	Date	Configuration	Frequency (GHz)
BRI 1202–0725	1999 Mar	D (1 km)	40.485, 40.535
BRI 1202–0725	2001 May	B (10 km)	40.485, 40.535
BRI 1202–0725	2001 Nov	D	43.315, 43.365
BRI 1202–0725	1999 Aug	A (30 km)	1.365, 1.415
BRI 1335–0417	1999 Dec	B	42.635, 42.835
BRI 1335–0417	1999 Mar	D	42.635, 42.835

TABLE 2

Observed Parameters
Source

BRI 1202–0725 south
BRI 1202–0725 north
BRI 1335–0417 south
BRI 1335–0417 north

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.
in the 43 GHz continuum image (Figs. 1c and 1d). The northern component shows up in both IF channels for the 40 GHz observations (Figs. 1a–1c) but is not seen in the 43 GHz continuum image (Fig. 1d). From the 43 GHz image we set a 2σ upper limit of 0.16 mJy for the 43 GHz continuum emission from both the northern and southern components in BRI 1202–0725.

The lack of continuum emission at 43 GHz from the northern component in BRI 1202–0725 is significant in regard to the recent possible detection of 0.8 ± 0.15 mJy of...
continuum emission at 3 mm by Guilloteau (2001). The implied spectrum from 3 to 7 mm must be rising with a power-law index greater than 1.9. It also implies that the observed emission in IF1 and IF2 at 40 GHz for the northern source is CO (2–1) line emission (Figs. 1a–1c), and hence that the velocity profiles for the CO lines from the northern and southern sources are different.

Figure 2 shows the results from the B configuration observations with a resolution of about 0\'\'.25. The southern source in IF1 (Fig. 2b) appears as two unresolved, roughly equal components (flux densities C_{24}^J: 41 mJy, C_{60}^J: 12 mJy), separated by 0\'\'.3. The implied lower limit to the (redshift-corrected) brightness temperature for these components is about 25 K. The northern source in IF1 and IF2 (Fig. 2a) is marginally detected with a peak surface brightness of 0\'\'.25 C_{60}^J: 0.8 mJy beam$^{-1}$. This implies two or more compact components with flux densities below our detection threshold or diffuse emission on a scale C_{21}^J > 5.

Figure 3 shows the radio continuum image of BRI 1202−0725 at 1.4 GHz, with a resolution of about 2\'\'. Both components are detected, with flux densities as listed in Table 2. The total 1.4 GHz flux density of BRI 1202−0725 has been measured 3 times over the course of 3 yr with values of 240 ± 40 (Yun et al. 2000), 305 ± 60, and 390 ± 40 μJy. In our analysis we adopt the mean value of 315 μJy. It is possible that the source is variable, although making accurate flux density measurements at this level is difficult as a result of confusion problems arising in wide-field imaging at 1.4 GHz.

4.2. BRI 1335−0417

The low-resolution image of the CO (2–1) emission from BRI 1335−0417, as reproduced from Carilli et al. (1999), is shown in Figure 4a, along with the off-line channel in Figure 4b. For this image the UV data were naturally weighted in order to maximize sensitivity, at the expense of resolution. The rms noise on the image is 0.11 mJy beam$^{-1}$, and the resolution is about 1\'\'.6. The CO emission appears extended north-south in this image by about 1\'\'.

In order to investigate this extension in more detail, we reimaged the data using uniform weighting of the visibilities, which optimizes resolution at the expense of sensitivity. The result is shown in Figure 4c, with an rms noise of 0.14 mJy and resolution of about 1\'\'.3. The source is com
prised of two components separated by 1″3. Gaussian fitting to each component shows that they are unresolved, with upper limits to their sizes of about 1″1. Table 2 lists the component positions and flux densities.

The position of the 1.35 mm continuum peak is located within 0″2 of the southern CO component, and the millimeter continuum source also shows marginal evidence for a north-south extension on the scale of 1″0 (Guilloteau et al. 1997). The optical QSO position is within 0′1 of the southern source position.

Figure 5 shows the high-resolution (B configuration) image of the CO (2–1) emission from BRI 1335–0417. The naturally weighted beam is roughly circular with FWHM = 0″17. Nothing is detected in this high-resolution image to a 2 σ surface brightness limit of 0.18 mJy beam−1. Nondetection at high resolution could mean that the emis-
ion is diffuse on scales larger than the resolution with a (redshift-corrected) brightness temperature ≤ 22 K. On the other hand, a number of compact components distributed over 1° with higher brightness temperatures are certainly not precluded, e.g., the data allow for four small (<0.017) components each with brightness temperatures ≥ 22 K.

5. ANALYSIS

5.1. Masses

The H_2 gas masses can be calculated from the values of L' in Table 1 assuming a value of X, the H_2 mass-to-CO (1–0) luminosity conversion factor in M_\odot (K km s$^{-1}$ pc2)$^{-1}$. A value of $X \approx 4.6$ is applicable to Galactic giant molecular clouds (Dame et al. 1987; Strong et al. 1988; Bronfman et al. 1988), while for ULIRGs Downes & Solomon (1998) find a value of $X \approx 0.8$. This calculation also requires an extrapolation from the CO (2–1) measurements to the CO (1–0) luminosity. Assuming constant brightness temperature and using a value of X appropriate to ULIRGs lead to molecular gas masses of about $5 \times 10^{10} M_\odot$ for the CO-emitting components in BRI 1202–0725 and BRI 1335–0417.

We can also calculate the gravitational masses using the observed sizes and line widths for the sources and assuming a disk of gas in Keplerian rotation. For BRI 1202–0725 south we use a line width of 190 km s$^{-1}$ and a radius corresponding to half the separation of the two components, $0.015 = 1.1$ kpc, leading to an enclosed mass of $0.23 \times 10^{10} \text{sin}^{-2} i M_\odot$. For BRI 1335–0417 we do not have spatially resolved spectroscopy, so we adopt a line width of 420 km s$^{-1}$ and a radius of half the separation of the two components, $0.065 = 4.7$ kpc, leading to an enclosed mass of $4.8 \times 10^{10} \text{sin}^{-2} i M_\odot$.

An upper limit to i can be derived by assuming that the molecular gas mass dominates the total enclosed mass. Using $X = 0.8$ for BRI 1202–0725 south, we find $i \leq 12^\circ$, while for BRI 1335–0417 we find $i \leq 43^\circ$. These small angles lead to a significant problem in that the implied rotational velocities are then extremely large, ≥ 400 km s$^{-1}$. To obtain rotational velocities of ~ 250 km s$^{-1}$, more typical of large spiral galaxies, would require a further reduction in the conversion factor to $X \leq 0.2$. However, such a low X value would violate the minimum mass conditions dictated by optically thin CO emission, for which $X \sim 0.35$ for an excitation temperature of 50 K and assuming a Galactic CO abundance (Solomon et al. 1997). It may be that these systems are extremely massive, or perhaps the apparent CO luminosities are magnified by gravitational lensing (see §6).

5.2. Continuum-to-Line Ratios

We now consider the continuum-to-line ratio $L_{\text{FIR}}/L_{\text{CO}(1–0)}$. A nonlinear relationship between this ratio and L_{FIR} has been found by Solomon et al. (1997), in which values of 5–50 have been found for Galactic giant molecular clouds and for nearby galaxies with $L_{\text{FIR}} \leq 10^{10}$, while values of 80–250 have been found for ULIRGs.

For the QSOs discussed herein we derive the $L'(\text{CO}(1–0))$ from $L'(\text{CO}(2–1))$ assuming constant brightness temperature. Considering the integrated properties of BRI 1202–0725 leads to $L_{\text{FIR}}/L_{\text{CO}(1–0)} = (4.2 \times 10^{13} L_\odot)/(1.2 \times 10^{11} \text{K km s}^{-1} \text{pc}^2) = 350$. For BRI 1335–0417 we find $L_{\text{FIR}}/L_{\text{CO}(1–0)} = (3.1 \times 10^{13} L_\odot)/(9.6 \times 10^{10} \text{K km s}^{-1} \text{pc}^2) = 323$.

5.3. CO Excitation Conditions

Figure 6 shows the CO ladder for the various transitions observed in BRI 1202–0725 and BRI 1335–0417. The data have all been normalized to the velocity-integrated line flux for CO (5–4). For comparison, we have included the CO ladder observed for the best-studied nuclear starburst M82 (Güsten et al. 1993; Mao et al. 2000) and the CO ladder for the integrated emission from the Milky Way disk inside the solar radius (excluding the Galactic center) as seen by COBE (Fixsen, Bennett, & Mather 1999). The excitation conditions for the two QSOs follow those seen in M82, with roughly constant brightness temperature (intensity \propto frequency2) up to CO (5–4), and then roll off to higher order transitions. This behavior is very different from that seen for the disk of the Milky Way, for which the integrated line flux peaks at the CO (3–2) line.

We have used a standard one-component large velocity gradient (LVG) model simulating a spherical cloud to interpret the observed line ratios (see also Ohta et al. 1998). Input parameters are the kinetic temperature, the H_2 density, and the CO column density, the latter in the form $N(\text{CO}) = 3.08 \times 10^{17} n(\text{CO}) (\Delta V/\text{grad } V)$, with ΔV denoting the velocity gradient in km s$^{-1}$ pc$^{-1}$, $n(\text{CO})$ being the nominal CO number density, and $\text{grad } V$ describing the FWHM. Given the inhomogeneity of the interstellar medium in the Milky Way and nearby galaxies, our assumption of uniform physical conditions is crude but appropriate for a source with four detected lines from the main CO species and no information on rare isotopomers. The cosmic background was assumed to be at a temperature of 15 K.

Because of the lack of constraints, there is a clear degeneracy in LVG modeling between various parameters such as...
We briefly compare the properties of BRI 1202–0725 and BRI 1335–0417 to those found in nuclear starburst galaxies seen at lower redshift. Yun et al. (2000) found that the ratio of radio to far-IR luminosity for both these sources is within the range defined for active star-forming galaxies based on the tight radio–to–far-IR correlation (Condon 1992), although in both cases the ratio falls at the high end of the normal range, suggesting a possible contribution to the radio emission from the active galactic nucleus (AGN). For BRI 1202–0725 there is marginal evidence that the radio emission is time variable. Variability would rule out a starburst origin for the radio emission. Further radio continuum monitoring is in progress to test this interesting possibility.

The measured (redshift-corrected) brightness temperature for the CO (2–1) emission from the compact components in the southern source in BRI 1202–0725 is $T_b \geq 25$ K. This limit is consistent with values seen for the CO (2–1) emission from starburst nuclei of ULIRGs, for which brightness temperatures of $30–60$ K have been measured (Downes & Solomon 1998).

The excitation conditions for the CO for these two sources follow roughly those seen for the nuclear starburst galaxy M82 but are very different from those expected for the disk of a normal spiral galaxy. Assuming a Galactic abundance for CO of $\text{[CO]/H}_2 = 5 \times 10^{-5}$ (Wilson et al. 1986) implies an H$_2$ column density of order 10^{24} cm$^{-2}$. This value is similar to the molecular gas column density seen toward ULIRGs (Downes & Solomon 1998) but is an order of magnitude larger than that observed in the lower luminosity nuclear starburst galaxies M82 and NGC 253 (Harrison, Henkel, & Russell 1999; Mao et al. 2000). A low metallicity would suppress CO emission and would yield even higher H$_2$ column densities. It would be very interesting to measure the CO (1–0) line of the source. A direct comparison of CO (1–0) and (2–1) line intensities would provide significant information on optical depths, since the (1–0) line may be optically thin, while the (2–1) line is likely optically thick.

We have found that the continuum-to-line ratio, L_{FIR}/L', is about 335 for both sources. This ratio is at the high end of those seen for ULIRGs and suggests a continuation of the nonlinear trend for increasing continuum-to-line ratios with increasing far-IR luminosity. Considering L_{FIR} to be a measure of star formation rate and $L'(\text{CO (1–0)})$ to be a measure of molecular gas mass, it has been suggested that this nonlinear relation might imply a higher star formation efficiency ($\approx \text{star formation rate/gas mass}$) in higher luminosity galaxies, in particular for galaxies with $L_{\text{FIR}} \geq 10^{11} L_\odot$ (Solomon et al. 1997). For dense nuclear starbursts a number of groups (Solomon et al. 1997; Mao et al. 2000; Weiss et al. 2001) have shown that the densities are such that the entire interstellar medium in the starburst regions may be molecular and that the CO (1–0) emission may be dominated by this molecular intercloud medium, as opposed to being from the denser star-forming clouds themselves. This phenomenon would contribute to the nonlinear relationship between L_{FIR} and $L'(\text{CO (1–0)})$. For BRI 1202–0725 and BRI 1335–0417 there is also the obvious possibility of dust heating by the AGN, in which case the continuum-to-line ratio cannot be interpreted in the context of star formation.

Downes & Solomon (1998) show that for the nuclear starburst regions in ULIRGs the H$_2$ mass–to–CO (1–0) luminosity conversion factor, X, is a factor of 4 or so below the Galactic disk value. Even for this low value of X, we find that the CO-emitting regions in BRI 1202–0725 and BRI 1335–0417 must be close to face-on in order to avoid having the gas mass exceed the gravitational mass, implying perhaps unreasonably large rotational velocities. While this
problem is mitigated somewhat by lowering X even further, the required X values become comparable to, or lower than, the minimum values dictated by optically thin CO emission (Solomon et al. 1997).

One way of circumventing this mass problem would be to assume that the source is magnified by strong gravitational lensing. Magnification by a factor of 3 or so would avoid the minimum values dictated by optically thin CO emission, and the diffuse light from the thermal millimeter continuum for BRI 1202—0725, could possibly indicate gravitational lensing. On the other hand, neither source is double at optical wavelengths, arguing against lensing, although the possibility of differential obscuration along the two lines of sight complicates this conclusion (Hu et al. 1996). More telling is the difference in CO (2–1) line profiles for the two components in BRI 1202—0725, which is difficult, although perhaps not impossible, to explain in the context of gravitational lensing. Furthermore, double sources arise from strong gravitational lensing of very compact emitting regions (sizes less than or equal to a few parsecs). For extended emitting regions (≥100 pc), such as must be the case for the thermal CO and millimeter continuum emission, strong lensing will only occur if the extended emission regions cross a caustic in the source plane (Blandford & Narayan 1992). Such a phenomenon usually leads to more complex geometries, like arcs or rings, as in APM 0827+525 and IRAS 10214 (Lewis et al. 2001; Scoville et al. 1995). More sensitive, high-resolution imaging at centimeter and millimeter wavelengths is required to address this interesting question. Overall, the physical conditions in the molecular gas and dust in these systems are similar to those observed in nuclear starbursts at low redshift, including (1) the radio–to–far-IR luminosity ratio, (2) the CO brightness temperature, (3) the CO excitation conditions, (4) the CO column densities, and (5) the CO line–to–dust continuum ratio.

The National Radio Astronomy Observatory (NRAO) is operated by Associated Universities, Inc., under a cooperative agreement with the National Science Foundation. We thank E. Hu for allowing us to reproduce the Lyα image, S. Myers for discussions concerning gravitational lensing, and the referee for many important comments.

REFERENCES

Blain, A. W., Jameson, A., Smail, I., Longair, M. S., Kneib, J.-P., & Ivison, R. J. 1999, MNRAS, 309, 715
Blandford, R. D. & Narayan, R. 1992, AR&AA, 30, 311
Bronfman, L., Cohen, R. S., Alvarez, H., May, J., & Thaddeus, P. 1988, ApJ, 324, 248
Carilli, C. L., Bertoldi, F., Omont, A., Cox, P., McMohan, R. G., & Isaak, K. 2001a, AJ, 122, 1679
Carilli, C. L., et al. 2001b, ApJ, 555, 625
Carilli, C. L., & Holdaway, M. A. 1999, Radio Sci., 34, 817
Carilli, C. L., Menten, K. M., & Yun, M. S. 1999, ApJ, 521, L25
Condon, J. J. 1992, AR&AA, 30, 575
Cox, P., et al. 2002, A&A, in press
Dume, T., et al. 1987, ApJ, 322, 706
Djorgovski, S. G. 1999, in ASP Conf. Ser. 193, The Hy-Redshift Universe, ed. A. J. Bunker & W. J. M. van Breugel (San Francisco: ASP), 387
Downes, D., & Solomon, P. M. 1998, ApJ, 507, 615
Fan, X., et al. 2001, AJ, 121, 54
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Fixsen, D. J., Bennett, C. L., & Mathe, J. C. 1999, ApJ, 526, 207
Fontana, A., D’Odorico, S., Giavalisco, M., & Giavalisco, M. 2000, ApJ, 532, 170
Gebhardt, K., et al. 2000, ApJ, 539, L13
Guelin, M., et al. 2002, in preparation
Guilloteau, S., et al. 2001, in ASP Conf. Ser. 235, Science with the Atacama Large Millimeter Array, ed. A. Wootten (San Francisco: ASP), in press
Guilloteau, S., Omont, A., Cox, P., McMahon, R. G., & Petitjean, P. 1999, A&A, 349, 563
Guilloteau, S., Omont, A., McMahon, R. G., Cox, P., & Petitjean, P. 1997, A&A, 328, L1
Güsten, R., Serabyn, E., Kasemann, C., Schnell, A., Schneider, G., Schulz, A., & Young, K. 1993, ApJ, 402, 537
Harrison, A., Henkel, C., & Russell, A. 1999, MNRAS, 303, 157
Helou, G., Khan, I. R., Malek, L., & Boehmer, L. 1988, ApJS, 68, 151
Hu, E., McMahon, R. G., & Egami, E. 1986, ApJ, 459, L53
Irwin, M., McMahon, R. G., & Hazard, C. 1991, in ASP Conf. Ser. 21, The Space Distribution of Quasars, ed. D. Crampton (San Francisco: ASP), 117
Kauffmann, G., & Haehnelt, M. 2000, MNRAS, 311, 576
Koester, A., Storzer, H., Stutzki, J., & Sternberg, A. 1994, A&A, 284, 117
Kohno, K., et al. 2002, in preparation
Lecch, K. J., Metcalfe, L., & Altieri, B. 2001, MNRAS, 328, 1125
Lewis, G. F., Carilli, C., Papadopoulos, P., & Ivison, R. J. 2001, MNRAS, 330, L15
Mao, R. Q., et al. 2000, A&A, 358, 433
McMahon, R. G. 1991, in ASP Conf. Ser. 21, The Space Distribution of Quasars, ed. D. Crampton (San Francisco: ASP), 129
Ohta, K., et al. 1998, PASJ, 50, 303
Ohta, K., Yamada, T., Nakanishi, K., Kohno, K., Akiyama, M., & Kawabe, R. 1996, Nature, 382, 426
Omont, A., Cox, P., Bertoldi, F., McMahon, R. G., Carilli, C., & Isaak, K. G. 2001, A&A, 374, 371
Omont, A., McMahon, R. G., Cox, P., Kreyes, E., Bergeron, J., Pajot, F., & Storrie-Lombardi, L. J. 1996a, A&A, 315, 1
Omont, A., Petitjean, P., Guilloteau, S., McMahon, R. G., Solomon, P. M., & Pecontal, E. 1996b, Nature, 382, 428
Petitjean, P., Pecontal, E., Valls-Gabaud, D., & Charlot, S. 1996, Nature, 380, 411
Richstone, D., et al. 1998, Nature, 395, A14
Sanders, D. B., Phinney, E. S., Neugebauer, G., Soifer, B. T., & Matthews, K. 1989, ApJ, 347, 29
Scoville, N. Z., Yun, M. S., Brown, R. L., & vanden Bout, P. A. 1995, ApJ, 449, L109
Solomon, P. M., Downes, D., Radford, S., & Barrett, J. W. 1997, ApJ, 478, 144
Steidel, C. C., Adelberger, K. L., Shapley, A. E., Pettini, M., Dickinson, M., & Giavalisco, M. 2000, ApJ, 332, 170
Storrie-Lombardi, L. J., McMahon, R. G., Irwin, M. J., & Hazard, C. 1996, ApJ, 468, 121
Strong, A. W., et al. 1988, A&A, 207, 1
Weiss, A., Neininget, N., Hüttershmeister, S., & Klein, U. 2001, A&A, 365, 571
Wilson, T. L., Serabyn, E., Henkel, C., & Walmsley, C. M. 1986, A&A, 158, L1
Yun, M. S., Carilli, C. L., Kawabe, R., Tutui, Y., Kohno, K., & Ohta, K. 2000, ApJ, 528, 171