INTRODUCTION

Conjunctivitis can be caused by viruses, bacteria or fungi, exposure to chemicals or irritants or long-term presence of a foreign body such as hard or rigid contact lenses [1-3].

Plants have shown considerable activity against various microbes [4-7]. It is considered that plants are a source of a wide variety of bioactive molecules that can be used for the development of new medicines with a wider spectrum of activities and with less adverse effects than those produced by the drugs currently in use [7-9].

Bulgarian folk medicine treats conjunctivitis by several plants. Most popular are species of the genus Euphrasia, and even their common names are related to that use “ochanka” (in Bulgarian ochi: eyes) [10-13]. There are empirical data for a therapeutic effect of Geum urbanum, Althea officinalis, Pimpinella saxifraga, Anagalis arvensis, in cases of conjunctivitis [11-13].

Members of the Crassulaceae family are known for their antiseptic and antibacterial properties. Particularly, leaves of Echeveria gigantea Rose and Purpus are used for eye illness treatment [8], but there are no data about the chemical or biological studies.

The object of this study, xGraptoveria, is an intergeneric hybrid between Gropetalum paraguayense and Echeveria sp. div. It is a succulent, drought-resistant perennial grown as ornamental house plant in temperate regions, as it cannot survive winter outside. The parenting taxa belong to the Crassulaceae family. They are native to Mexico and are distributed widely in tropical and subtropical countries where they are mainly cultivated as ornamental plants, but are popular in Chinese herbal medicine.
To the best of our knowledge, there is no information in the literature on the application of *G. paraguayense* juice for treatment of conjunctivitis.

The aim of this study is to test the anti-conjunctivitis properties of *xGraptoveria* (Crassulaceae) and to identify its bioactive constituents.

MATERIALS AND METHODS

xGraptoveria

We have grown *xGraptoveria* as an ornamental house plant at the Institute of Organic Chemistry with Center of Phytochemistry, Sofia, Bulgaria for more than 10 years. The vegetative reproduction of this plant can be easily induced by separating offsets and leaf cuttings. Rosettes and fine wax cover are visible external features of the leaves [Figure 1].

Ethnobotanical Study

Since its introduction in Bulgaria, *xGraptoveria* has also found its place in folk medicine. Some anecdotal data have been reported for the use of freshly obtained leaf juice for treatment of eye problems, mainly forms of conjunctivitis. We managed to collect eye healing information for *xGraptoveria* via interviewing 11 herbalists that had already been treated with the same plant. A semi-structured questionnaire [14] was constituted using the following questions: (1) What is the plant used for; (2) How is it used; (3) What part of the plant is used; (4) What is the dose used for eye treatment; (5) How long does the treatment take; (6) How many applications are needed for eye improvement?

Treatment of Volunteers with Conjunctivitis by *xGraptoveria* Leaf Juice

Volunteers

Four women and four men of age between 33 and 60, volunteered to have their eyes treated by freshly prepared *xGraptoveria* Leaf Juice. All of them suffered from conjunctivitis as estimated by an ophthalmologist. The symptoms are described in Table 1.

Method of treatment

Fresh juice obtained directly by pressing out *xGraptoveria* leaf was immediately dropped in the irritated eye without any dilutions. Treatment of volunteers was performed in clean eyes as follows: 1 drop per eye; 2 times a day (in the morning and in the evening). The applications were done by the volunteers themselves at the Institute of Organic Chemistry with Centre of Phytochemistry, Sofia, Bulgaria.

Phytochemical Analysis of the Fresh Juice used for the Eye Treatment

*Preparation of extracts of *xGraptoveria***

Fresh leaves of *xGraptoveria* were picked and pressed out immediately to give watery juice. The juice was then extracted with *n*-butanol. The butanol extract (*xGBE*) was evaporated and analyzed by gas chromatography mass spectrometry (GC/MS).

GC/MS analysis

The analysis of *xGBE* was performed with a Hewlett Packard 6890 GC System Plus MS 5973 (Hewlett Packard, Palo Alto, CA, USA) equipped with capillary column HP5-MS (30 cm, 0.25 mm, 0.25 mm film thickness, Agilent Technology, USA). The carrier gas was helium with flow rate 0.8 mL/min. The following temperature program was used: 100-300°C (10 min isotherm) at 5°C/min. The method of electron-impact ionization was utilized. The ion source was set at 230°C and the ionization voltage was 70 eV. Because the ion current generated depends on the characteristics of the investigated compounds and is not true quantification, GC/MS analyses do not give exact quantitative data.

Preparation of the sample for GC/MS analyses

The sample of about 5 mg of *xGBE* was prepared. It was silylated prior to GC/MS measuring via mixing with 75 mL of dry pyridine and 25 mL of bis(trimethylsilyl)trifluoroacetamide and heating at 80°C for 20 min.

Identification of compounds

The GC/MS identification was based on the interpretation of the mass spectral fragmentation facilitated by HP Mass Spectral Library NIST98 (Hewlett Packard, Palo Alto, CA, USA). Not all, but the main components were identified.

RESULTS

Eleven interviews were performed according to a semi-structured questionnaire (Section 2.2.) [14]. The informants were chosen...
Table 1: Conjunctivitis symptoms, diagnosis and number of applications leading to improvement and complete cure of the volunteers

Gender	Age	Symptoms	Diagnosis	Improvement	Complete cure
Female	33	Redness in the area of sclera caused by visible capillaries; pain	Allergic conjunctivitis	3	6
Female	34	Redness in the area of sclera caused by visible capillaries	Allergic conjunctivitis	3	6
Female	45	Redness in the area of sclera caused by visible capillaries; stinging and itching eyes; purulent discharge	Bacterial conjunctivitis	2	6
Female	57	Redness in the area of sclera caused by visible capillaries; mucoid discharge; sticky eyelids	Allergic conjunctivitis	3	6
Male	34	Redness in the area of sclera caused by visible capillaries	Adenoviral conjunctivitis	2	6
Male	35	Redness in the area of sclera caused by visible capillaries; mucoid discharge; crusty eyelids	Bacterial conjunctivitis	3	6
Male	40	Redness in the area of sclera caused by visible capillaries; mucoid discharge	Bacterial conjunctivitis	2	6
Male	60	Redness in the area of sclera caused by visible capillaries	Allergic conjunctivitis	2	6

Eight volunteers were diagnosed by an ophthalmologist with various types of conjunctivitis (chronic allergic, adenoviral, and bacterial conjunctivitis) [Table 1]. Redness in the area of the sclera caused by visible capillaries was the symptom observed in all cases. Allergic conjunctivitis was the case for three of the women (age 33, 34 and 57) and one of the men (age 60). Redness and pain accompanied the symptoms of the 33-old woman. Volunteers with bacterial conjunctivitis suffered from redness, mucoid or purulent discharge and crusty eyelids. The symptoms diminished the 1st day (2-3 applications) and completely disappeared the next 3 days in all described cases. The symptoms, diagnosis and number of applications leading to improvement and complete cure of the volunteers are given in Table 1.

To study the components of xGraptoveria leaf juice that may be responsible for the curative effect on conjunctivitis, the juice was subjected to phytochemical analysis. In order to maximize the identification of constituents, the juice was extracted with n-butanol and the resulting extract (xGBE) was investigated by GC/MS. This method allowed for analysis of complex mixtures as described in 2.4.2. The GC/MS chromatogram of xGBE is presented on Figure 2. The extract investigated could contain a significant number of metabolites, including some minor compounds, which cannot be identified by other methods.

The main groups of organic compounds identified by GC/MS analysis in xGBE are presented in Table 2: Alkylamines (ethylamine and butylamine), hydroxyarboxylic acids (hydroxypropenoic, hydroxybutanoic, malic, dihydroxybutanoic and methylhydroxybenzoic acids), aliphatic and aromatic carboxylic acids (malonic, pentadecanoic, oleic, hexadecioic, palmitic, stearic, benzoic, and 3-pyridinecarboxylic acids), amino acids (tryptophane), alcohols (dihydroxyethane and glycerol), aromatic and aliphatic hydrocarbons (pentamethylheptane, ethyl-dimethylbenzene and tetramethylbenzene), and sugars. Some of them (hydroxypropenoic acid, pentamethylheptane, ethyl-dimethylbenzene, butylamine, dihydroxyethane, tetramethylbenzene, hydroxybutanoic acid, dihydroxybutanoic acid and methylhydroxybenzoic acid) can exist in several isomers. However, the method did not allow for identification of the existing forms.

DISCUSSION

Fresh juice of xGraptoveria leaves was used successfully for the complete cure of various types of conjunctivitis in 8 volunteers [Table 1]. The treatment conditions were taken from the informants who had recovered from conjunctivitis by treatment with the same plant. Since this is a very preliminary study it was defined between a small set of volunteers and no clinical and pharmacological research was embarked. However, we still aimed at finding a strong motivation for further profound study leading to relevant exploitation of xGraptoveria. For this reason, we analyzed the phytochemical composition of the fresh juice, which was exactly the curative part used for the treatment of conjunctivitis.
The GC/MS analysis allowed for identification of most of the fresh juice components. However, searching the literature did not reveal any anti-conjunctivitis activity for the identified single compounds. Instead we came across some data showing interesting biological functions for these constituents that may be in relation with the observed effect.

Conjunctiva, which is the place where conjunctivitis occurs, provides a major source of immune components in the cornea. It produces the antigen immunoglobulin A that plays a critical role in mucosal immunity and also contains macrophages, neutrophilic granulocytes, mast cells, lymphocytes, and other aspects of the general mucosal immune system [15]. The macrophages play a part in modulating the T-cell immune response and mediating both the innate and acquired immune responses. Interestingly, in this relation we observed that the fresh juice of xGraptoveria leaves is rich of alkylamines, mostly n-butylamine and some ethylamine [Table 2]. Alkylamines are known immune activators. For example, sec-butylamine and iso-butylamine can activate Vγ9Vδ2 T cells in humans as a consequence of inhibition of farnesyl diphosphate synthase and the intracellular accumulation of isopentenyl pyrophosphate [16-18]. Structure analysis of several antigenic and non-antigenic alkylamines indicates that a straight or branched alkyl chain of two to five carbons with a single primary amine group as the only substituent is active, while alkylamines with one carbon or more than five carbons, or any substituent other than the primary amino group have no effect [16,19].

Presence of tryptophan in the fresh juice may be useful for influence upon the inflammatory process. Furthermore, a number of recent studies have shown a clear association between tryptophan catabolism and inflammatory reactions in a vast array of disease states [20]. The remainder of the organic acids identified in the juice possess antimicrobial activity predominantly or a combination of several biological activities. Malic acid manifests antioxidant, anti-inflammatory and antibacterial activities [21-23]. Oleic acid is active against several Gram-positive bacteria [24]. Interesting synergistic relationships were observed between some of the acids. Palmitic, pentadecanoic and oleic acids gave a mixture which was much more potent as antimicrobial agent than the single acids against 11 microorganisms [25-27]. Another example concerns oleic and linoleic acids, which were more active together against Staphylococcus aureus and Micrococcus kristinae [24,28].

After all, we decided to speculate that the healing effect of xGraptoveria fresh leaf juice might be due to a synergistic effect of its constituents, part of which affect the immune response while the rest act against the invading microorganisms.

CONCLUSION

This is a preliminary study on the chemical composition and anti-conjunctivitis effect of xGraptoveria leaf fresh juice. It is hypothesized that the effect is due to the synergistic action of the bioactive constituents – mainly alkylamines, hydroxycarboxylic, aliphatic and aromatic carboxylic acids.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Colin C. Walker, Open University, UK for help with the identification of the xGraptoveria plant and Dr. M. Spassova, Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia for helpful discussions.

REFERENCES

1. Sethuraman U, Kamat D. The red eye: Evaluation and management. Clin Pediatr (Phila) 2009;48:588-600.
2. Cronau H, Kankanala RR, Mauger T. Diagnosis and management of red eye in primary care. Am Fam Physician 2010;81:137-44.
3. Goodman DM, Rogers J, Livingston EH. JAMA patient page. Conjunctivitis. JAMA 2013;309:2176.
4. Vashist H, Jinda A. Antimicrobial activities of medicinal plants - Review. Int J Res Pharm Biomed Sci 2012;2:222-30.
5. Modi C, Mody S, Patel H, Dudhatra G, Kumar A, Awale M. Herbal antibacterials: A review. J Intercult Ethnopharmacol 2012;1:52-61.
6. Silva NC, Fernandes JA. Biological properties of medicinal plants: A review of their antimicrobial activity. J Venom Anim Toxins Incl Trop Dis 2010;16:402-13.
7. Rios JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol 2005;100:80-4.
8. Rocha-Gracia RC, Arroyo M, Zarain PL, Carlos BH, Romero HS, Portugal EC, et al. Antimicrobial activity of crude extracts from Mexican plants against methicillin-resistant *Staphylococcus*. Afr J Biotechnol 2011;10:13202-18.
9. Recio MC, Rios JL, Villar A. A review of some antimicrobial compounds isolated from medicinal plants reported in the literature 1978-98. Phytother Res 1999;3:117-25.
10. Kozuharova E, Benbassat N, Napier J. New records of the medicinal properties of vascular plants, some traditionally accepted as medicinal plants and some less familiar to ethnobotanists. J Phytol Balkanica 2012;18:323-33.
11. Dimkova P. Natural healing methods and living with nature (in Bulgarian). Bulgarian traditional medicine: Astrala. 2001. p. 1-3.
12. Nikolov S. Specialized Encyclopedia of medicinal plants in Bulgaria (in Bulgarian). Sofia: Publishing House "Trud"; 2006.
13. Petkov V. Contemporary phytotherapy (in Bulgarian). Sofia: Medicine and Physiculture; 1992.
14. Martin GJ. Ethnobotany. London: Chapman & Hall; 1996.
15. Knop E, Knop N. The role of eye-associated lymphoid tissue in corneal immune protection. J Anat 2005;206:271-85.
16. Bukowski JF, Morita CT, Brenner MB. Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: Implications for innate immunity. Immunity 1999;11:57-65.
17. Percival SS, Bukowski JF, Milner J. Bioactive food components that enhance gammaddelta T cell function may play a role in cancer prevention. J Nutr 2008;138:1-4.
18. Thompson K, Rojas-Navea J, Rogers MJ. Alkylamines cause Valpha9Vdelta2 T-cell activation and proliferation by inhibiting the mevalonate pathway. Blood 2006;107:651-4.
19. Cao W, He W. The recognition pattern of gammaddelta T cells. Front Biosci 2006;10:2676-700.
20. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immuno Cell Biol 2003;81:247-65.
21. Rathnayaka RM. Antibacterial effect of malic acid against *Listeria monocyto genes*, *Salmonella enteritidis* and *Escherichia coli* in Mango, pineapple and papaya juices. Am J Food Technol 2013;8:74-82.
22. Taylor MB, Yanaki JS, Draper DO, Shurtz JC, Coglianese M. Successful short-term and long-term treatment of melasma and postinflammatory hyperpigmentation using vitamin C with a full-face iontophoresis mask and a mandelic/malic acid skin care regimen. J Drugs Dermatol 2013;12:45-50.
23. Tang X, Liu J, Dong W, Li P, Li L, Lin C, et al. The cardioprotective effects of citric Acid and L-malic Acid on myocardial ischemia/reperfusion injury. Evid Based Complement Alternat Med 2013;2013:820695.
24. Dilika F, Bremner PD, Meyer JJ. Antibacterial activity of linoleic and oleic acids isolated from *Helichrysum pedunculatum*: A plant used during circumcision rites. Fitoterapia 2000;71:450-2.
25. McGaw LJ, Jäger AK, van Staden J. Isolation of antibacterial fatty acids from Schotia brachypetala. Fitoterapia 2002;73:431-3.
26. Seidel V, Taylor PW. In vitro activity of extracts and constituents of Pelargonium against rapidly growing mycobacteria. Int J antimicrob Agents 2004;23:613-9.
27. Agoramookhty G, Chandrashekaran M, Venkatesalu V, Hsu MJ. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your eye mangrove from India. Braz J Microbiol 2007;38:739-42.
28. Meyer JJ, Dilika F. Antibacterial activity of *Helichrysum pedunculatum* used in circumcision rites. J Ethnopharmacol 1996;53:51-4.