Comparative analysis of the complete mitochondrial genomes in two limpets from Lottiidae (Gastropoda: Patellogastropoda): rare irregular gene rearrangement within Gastropoda

Jian-tong Feng¹, Ya-hong Guo¹, Cheng-rui Yan³, Ying-ying Ye¹,², Ji-ji Li¹, Bao-ying Guo¹,² & Zhen-ming Lü¹,²

To improve the systematics and taxonomy of Patellogastropoda within the evolution of gastropods, we determined the complete mitochondrial genome sequences of Lottia goshimai and Nipponacmea fuscoviridis in the family Lottiidae, which presented sizes of 18,192 bp and 18,720 bp, respectively. In addition to 37 common genes among metazoa, we observed duplication of the trnM gene in L. goshimai and the trnM and trnW genes in N. fuscoviridis. The highest A + T contents of the two species were found within protein-coding genes (59.95% and 54.55%), followed by rRNAs (56.50% and 52.44%) and tRNAs (56.42% and 52.41%). trnS1 and trnS2 could not form the canonical cloverleaf secondary structure due to the lack of a dihydrouracil arm in both species. The gene arrangements in all Patellogastropoda compared with those of ancestral gastropods showed different levels of gene rearrangement, including the shuffling, translocation and inversion of single genes or gene fragments. This kind of irregular rearrangement is particularly obvious in the Lottiidae family. The results of phylogenetic and gene rearrangement analyses showed that L. goshimai and Lottia digitalis clustered into one group, which in turn clustered with N. fuscoviridis in Patellogastropoda. This study demonstrates the significance of complete mitogenomes for phylogenetic analysis and enhances our understanding of the evolution of Patellogastropoda.

The order Patellogastropoda (common name, true limpets) consists of the most primitive gastropod molluscs, which inhabit intertidal rocky shores worldwide, from tropical to polar regions¹,². Most species from this group feed by scraping a fine film of microalgae from what appears to be a bare rock surface. Their shells have the appearance of hats of different sizes, generally reaching no more than 20 cm³⁴. These limpets, which are ecologically important in coastal regions, separated from other gastropods early in molluscan evolution⁵. They can be used in marine ecotoxicology research because of their wide distribution, and their gametes are available throughout the year⁶. This group is characterized by intraspecific polyphenism, the existence of cryptic species, and the intraspecific variation of characteristics such as shell morphology and colour. Therefore, it is difficult to identify species in this group by traditional methods alone⁹–¹⁰. The phylogenetic analysis of Patellogastropoda has generally focussed on Caenogastropoda, Neomphalina, Vetigastropoda, Neritimorpha and Heterobranchia. The phylogenetic position of the group and the evolutionary relationships among families of true limpets have been highly controversial¹¹,¹².

¹National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China. ²National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan 316022, China. ᵃemail: yeyy@zjou.edu.cn
Figure 1. Maps of the mitochondrial genomes of two Lottiidae species. The direction of gene transcription is indicated by the arrows.

Nipponacmea fuscoviridis (Teramachi, 1949) and *Lottia goshimai* (Nakayama, Sasaki & T. Nakano, 2017) both belong to the family Lottiidae. *N. fuscoviridis* commonly appears in temperate areas around the Japanese islands and the southeastern coastal region of China. Species of this genus are common along the Asian coast of the Pacific Ocean from Vietnam to Russia. *L. goshimai* was previously thought to be an intraspecific variant of the northern population of *N. fuscoviridis* and was later proven to be a new species; thus, there have been few studies on this species. Its developmental stages and gene expression were studied by Wang et al.

The complete mitochondrial genome provides more information than individual genes. It exhibits the characteristics of maternal inheritance, a high evolutionary rate and a relatively low intermolecular recombination rate, and it is becoming increasingly common for mitochondrial genomes to be used for phylogenetic reconstruction. The circular mitochondrial genome of gastropods generally contains 37 genes (22 transfer RNA genes, two ribosomal RNA genes, 13 protein-coding genes) and a noncoding control region. Nevertheless, Lottiidae species seem to be an exception, exhibiting different numbers of tRNA genes.

In the present study, two mitochondrial genomes (*L. digitalis* and *N. fuscoviridis*) from the Lottiidae family were sequenced, annotated and compared to the other available genomes from Patellogastropoda. We analysed the main characteristics of the newly generated mitogenomes, such as their nucleotide composition, codon usage and the secondary structure of their tRNAs. Complete mitogenome sequences from six subclasses of Gastropoda were downloaded from the GenBank database to reconstruct the phylogenetic tree. The results will help us to obtain further insight into the evolutionary relationships within Patellogastropoda.

Results and discussion

Characteristics, structure and organization of the mitogenomes. The gene arrangements found within Patellogastropoda mitochondrial genomes have been relatively conservative, but those of Lottiidae differ to some extent. The comparison of the two newly sequenced mitogenomes with a reported mitogenome from Lottiidae revealed the rearrangement of gene positions and structures. The complete mitochondrial genome sequences of *L. goshimai* and *N. fuscoviridis* were 18,192 bp and 18,720 bp, respectively (GenBank accessions MT248298 and MK395167) (Fig. 1, Table 1). Both circular mitochondrial genomes of the species contained 13 PCGs, 2 rRNA genes (12S rRNA and 16S rRNA), 22 putative tRNA genes and a control region (CR). Compared to the fragment of the genome previously published, we found an additional trnM gene in both species and additional trnW gene in *N. fuscoviridis*.

Overlapping and noncoding regions. Most of the genes identified in *N. fuscoviridis* are located on the heavy strand except for three PCGs and seven tRNAs. In addition, fourteen genes of *L. goshimai* (seven PCGs and seven tRNA genes) are located on the light strand, with the remaining genes being located on the heavy strand (Fig. 1 and Tables 2, 3). The mitochondrial genome of *L. goshimai* contains intergenic spacers with lengths ranging from 1 to 178 bp, and there are two genes showing overlapping nucleotides (6 and 20 bp). The longest intergenic spacer is located between *trnY* and *nad5* (Table 2). The mitochondrial genome of *N. fuscoviridis* exhibits intergenic spacers with lengths ranging from 2 to 380 bp, and there are two genes with overlapping nucleotides (4 and 11 bp). The longest intergenic spacer is located between *trnY* and *nad3* (Table 3). In conclusion, there are significant differences in the intergenic spacers and overlapping nucleotides of the two species, and these species of limpets also present large variations compared with other families (e.g., Nacellidae, Acmaeidae and Patellidae).
Subclass	Family	Species	Size (bp)	Accession no.
	Conidae	Concholepas concholepas	15,495	NC_017886
	Conidae	Rapana venosa	15,272	EU170053
Caenogastropoda	Conidae	Conus tribblei	15,570	NC027957
	Conidae	Conus tulipa	15,756	KR006970
	Turridae	Turricula nelioides spuria	16,453	MK251986
	Xenophoridae	Omastus exustus	16,043	MK327366
	Pomatiopsidae	Oncomelania hapensis robertsoni	15,188	LC276228
	Pomatiopsidae	Oncomelania hapensis noesophora	15,182	LC276226
	Pomatiopsidae	Oncomelania quadrasi	15,184	LC276227
	Turritellidae	Turritella bacillum	15,868	NC_029717
	Epitonidae	Epitonium scala	15,143	MK251987
Neomphaliones	Bathysciadiidae	Bathysciadiidae sp.	17,238	MH837532
	Cocculinidae	Cocococrafter sp.	13,983	MH837535
		Cocculina subcompressa	18,167	MH837536
	Turbinidae	Angaria delphinus	19,554	NC_031860
Vetigastropoda	Turbinidae	Angaria neglecta	19,470	NC_028707
	Turbinidae	Astralium haematragum	16,310	NC_031858
	Turbinidae	Bolma rugosa	17,432	NC_029366
	Turbinidae	Lanella aff. Cinereal	17,670	KP700096
	Turbinidae	Lanella granulate	17,190	NC_031857
	Tegulidae	Tegula brunnea	17,690	NC_016954
	Tegulidae	Tegula lividomaculata	17,375	NC_029367
	Tegulidae	Tectus pyramid	18,439	MF138911
	Tegulidae	Gibbula umbiliculis	16,277	NC_035682
	Tegulidae	Stomatella planulata	17,151	NC_031861
	Tegulidae	Umbonaria thomasi	15,998	MH729882
	Haliotidae	Haliotis rufescens	16,646	NC_036928
	Haliotidae	Haliotis laevigata	16,545	NC_024362
	Haliotidae	Haliotis rubra	16,907	AY588938
	Haliotidae	Haliotis tuberculata	16,521	FJ599667
Phasianellidae	Phasianella solida	16,698	NC_028709	
	Neritidae	Clithon retropectus	15,802	NC_037238
Neritimorpha	Neritidae	Nerita allicilla	15,314	MK516738
	Neritidae	Nerita yoldii	15,719	MK395169
	Neritidae	Nerita fulgurans	15,343	KF728888
	Neritidae	Nerita tessellata	15,741	KF728889
	Neritidae	Nerita versicolor	15,866	KF728890
	Neritidae	Nerita melanotragus	15,261	GU810158
	Aplysiida	Aplysia californica	14,117	AY569552
Heterobranchia	Aplysiida	Aplysia dactyfomelae	14,128	DQ999127
	Aplysiida	Aplysia hirodai	14,131	KF148053
	Polyceridae	Roboastra europaea	14,472	NC_004321
	Siphonariidae	Siphonaria pectinata	14,065	AY345049
	Volvatellidae	Ascobulla fragilis	14,745	AY345022
	Placobranchiadae	Elysia corinera	14,118	NC_035489
	Placobranchiadae	Elysia tomenta	14,088	NC_035490
	Onchidiidae	Onchidella celtica	14,150	AY345048
	Onchidiidae	Platevindex mortoni	13,991	NC_031934
	Ellobiidae	Myosotella myosotis	14,246	AY345053
	Pyramidellidae	Pyramidalina dolabrata	13,856	AY345054

Continued
Val, while Gln and His are the least common amino acids (Fig. 2). In an incomplete T stop codon, which is remarkably common in invertebrate mitogenomes.

and transcription initiation30. The mitogenomes of In and Lottiidae species are initiated with an ATN codon and terminated with TAN. Only the comparison of the initiation and termination codons of all PCGs showed that most of the PCGs of the two species range from 52.07% (nad4) to 57.25% (cox1) (Table 4). We observed the highest A + T contents of the two species in PCGs (59.95% and 54.55%), followed by rRNAs (56.50% and 52.44%) and tRNAs (56.42% and 52.41) (Table 4). The AT skew of the total PCGs is negative, and the GC skew is positive across the two species, indicating that they contain a slightly higher percentage of T and G bases than A and C bases. For each PCG of two Lottiidae species in addition to the cox2 gene of L. goshimai, most of the AT skew values are negative.

Protein-coding genes and codon usage. The total length of the all PCGs is 11,238 bp in L. goshimai and 11,154 bp N. fuscoviridis, accounting for 61.77% and 59.58% of the whole genome, respectively (Table 4). The comparison of the initiation and termination codons of all PCGs showed that most of the PCGs of the two Lottiidae species are initiated with an ATN codon and terminated with TAN. Only the cox1 gene of L. goshimai and nad3 of N. fuscoviridis start with GTG (Tables 2, 3). While the cox2, cox3 and cyt b genes of N. fuscoviridis use an incomplete T stop codon, which is remarkably common in invertebrate mitogenomes.

The analysis of the two Lottiidae species indicated that the most frequently used amino acids are Gly, Ser1 and L. goshimai (28.18% A, 32.00% T, 24.11% G and 15.71% C), and 54.15% for N. fuscoviridis (23.83% A, 30.32% T, 25.39% G and 20.46% C) (Table 4). The A + T contents of all PCGs in L. goshimai range from 55.65% (atp8) to 62.64% (cytb), and those in N. fuscoviridis range from 52.07% (nad4) to 57.25% (cox1) (Table 4). We observed the highest A + T contents of the two species in PCGs (59.95% and 54.55%), followed by rRNAs (56.50% and 52.44%) and tRNAs (56.42% and 52.41) (Table 4). The AT skew of the total PCGs is negative, and the GC skew is positive across the two species, indicating that they contain a slightly higher percentage of T and G bases than A and C bases. For each PCG of two Lottiidae species in addition to the cox2 gene of L. goshimai, most of the AT skew values are negative.

Transfer RNA genes. We identified 23 tRNA genes from the mitochondrial genome of L. goshimai, including one more trnM gene than is common in invertebrates, with lengths ranging from 65 (trnS2) to 72 bp (trnI). In addition, N. fuscoviridis exhibited one more trnW gene than L. goshimai, and 24 tRNA genes ranging from 64 (trnM1) to 72 bp (trnL) in length were identified. In both Lottiidae species, trnS1 and trnS2 cannot form a secondary structure due to the lack of dihydrouracil (DHU) arms, while other tRNAs are capable of folding into a typical clover-leaf secondary structure. The comparison of the tRNA genes of the two species showed that each corresponding amino acid is encoded by the same anticodon with the exception of the trnW1 gene of N. fuscoviridis, which is encoded by different anticodons (CCA). Moreover, methionine is encoded by two tRNAs with the same anticodons (CAT) (Tables 2, 3 and Figs. 3, 4).

Nonsynonymous and synonymous substitutions. We calculated the selection pressure (estimated by using Ka/Ks) on 13 PCGs in the two Lottiidae species (Fig. 5). Most of the Ka/Ks ratios are below 1 for these PCGs, indicating that they evolved under purifying selection. The remaining nad2, nad5, nad6 and cyt b genes, with high Ka/Ks ratios, may have been affected by positive selection during evolution. Positive selection is influenced by the external environment for the self-regulation and transformation of genes, the elimination

Subclass	Family	Species	Size (bp)	Accession no.
Patello gastropoda	Lottiidae	Nipponacmea fuscoviridis	18,720	MK395167
	Lottiidae	Lottia goshimai	18,192	MT248298
	Lottiidae	Lottia digitalis	26,835	DQ238599
Acmaeidae	Cellana radia		16,194	MH916651
	Nacella clupea		16,742	KT990124
	Nacella magellanica		16,663	KT990125
	Nacella concinna		16,761	KT990126
Patellidae	Patella fuscoviridis		14,400	MH916654
	Patella vulgata		14,808	MH916653
Outgroup	Mopaliidae	Cryptochiton stelleri	15,082	KJ569363
	Katharina tunica		15,532	NC_001636

Table 1. List of species analysed in this study with their GenBank accession numbers.
of genes that do not adapt to the environment, and the production of genes that can effectively adapt to the environment. Therefore, advantageous genes are retained after non-synonymous mutations.

The substitution saturation index was analysed on the basis of the combined dataset of all PCGs of 60 Gastropoda mitogenomes, and the observed Iss value (Iss = 0.651) was significantly lower than that of the critical value (Iss.cSym = 0.859, \(p = 0.0000 \)) (Fig. 6), indicating that sequence substitution is unsaturated; thus, the combined data are suitable for phylogenetic analysis.

Phylogenetic analysis

We used the Bayesian inference (BI) and maximum likelihood (ML) methods to reconstruct a phylogenetic tree based on 13 PCGs from the two new Lottiidae species and 58 other species within Gastropoda (i.e., 8 Patellogastropoda species, 11 Caenogastropoda species, 3 Neomphalina species, 17 Vetigastropoda species, 7 Neritimorpha species, and 12 Heterobranchia species), using two Mopaliidae species as outgroups.

In addition, in the BI analysis, due to the high rearrangement rate of Lottiidae species, which exhibited a long branch compared to other species of Patellogastropoda, we encountered a long-branch attraction (LBA) artefact in the process of constructing phylogenetic trees. This is a common systemic error in phylogenetic reconstruction resulting from the clustering of fast-evolving taxa in the tree, instead of revealing their genuine

Gene	Strand	Location	Length Codons	Intergenic nucleotide (bp)	Anticodon
cox1	+	1	1560	GTG/TAG 26	
trnM1	+	1587	1652	66	
nad1	−	1633	2562	ATG/TAG 37	
trnT	+	2600	2668	3 TGT	
trnY	−	2672	2738	9 GTA	
nad5	−	2748	4421	ATT/TAA 178	
nad6	+	4600	4902	303 ATG/TAG 51	
nad7	+	4954	6279	1326 ATG/TAG 67	
cox3	−	6347	7204	858 ATG/TAA 10	
trnG	+	7215	7274	67 TGC	
trnS2	+	7286	7350	65 TGA	
trnQ	+	7359	7425	67 TTG	
atp6	−	7448	8209	762 ATG/TAA 85	
cox2	−	8295	8960	666 ATG/TAA 86	
trnL1	+	9047	9112	66 5 TAG	
trnI	+	9118	9189	72 GAT	
trnP	+	9198	9265	68 1 TGG	
trnE	+	9267	9334	68 43 GAA	
nad6	+	9378	9896	519 ATG/TAA 4	
nad3	+	9901	10,254	354 ATG/TAA 11	
trnM2	−	10,266	10,332	67 45 CAT	
trnL2	+	10,378	10,443	66 12 TAA	
trnA	−	10,456	10,525	70 0 TGC	
trnN	−	10,526	10,593	68 15 GTT	
trnW	−	10,609	10,678	70 14 TCA	
nad2	−	10,693	11,655	963 ATT/TAA 103	
trnV	−	11,759	11,827	69 7 TAC	
trnK	+	11,835	11,903	69 15 TTT	
trnS1	+	11,919	11,985	67 10 TCT	
trnD	−	11,996	12,061	66 76 GTC	
trnS5	+	12,138	13,058	921 11	
trnE	+	13,070	13,139	70 11 TTC	
trnC	+	13,151	13,219	69 − 6 GCA	
trnL	+	13,214	14,746	1533 63	
cytb	+	14,810	15,973	1164 ATG/TAA 28	
trnK	+	16,002	16,070	69 1722 TCG	
atp8	−	17,793	17,951	159 ATG/TAA 145	
trnH	+	18,097	18,166	70 26 GTG	

Table 2. Annotation of the *Lottia goshimai* mitochondrial genome.
phylogenetic positions\(^3\). Specifically, the three species of the Lottiidae family and Heterobranchia erroneously formed a clade, but this situation did not appear in the ML analysis. Finally, we combined these two methods and obtained a basically consistent evolutionary tree through reference to previous research on the phylogeny of gastropods\(^3\) (Fig. 7).

The results showed a stable evolutionary tree topology in which each subclass formed a monophyletic clade. Most of the recovered clades were highly supported (Bayesian posterior probability (BPP) = 1, and Bootstrap (BS) = 100). The higher phylogenetic relationship of clade formed: (((Neomphalina + Vetigastropoda) + Neritimorpha) + Caenogastroopoda) + (Patellogastropoda + Heterobranchia). Patellogastropoda and Heterobranchia clustered together in the same clade, which was located on the outermost branch of the six subclasses. Lottiidae formed an independent branch as (\(N. fuscoviridis\) + (\(L. goshimai\) and \(Lottia digitalis\))). \(L. goshimai\) was shown to be the closest extant relative of \(Lottia digitalis\), and this clade clustered with \(N. fuscoviridis\).

The significance of Lottiidae species in the evolution and development of gastropods was confirmed through this study. Further mitogenome sequencing work was carried out to provide more comprehensive taxon sampling for the future, thus improving the understanding of the Lottiidae phylogeny and evolution within Gastropoda.

Gene	Strand	Location	Start	Stop	Length	Codons	Intergenic nucleotide (bp)	Anticodon
cox1	+	1	1551	1551	ATG/TAG	19		
trnl2	+	1571	1636	66		2	TAA	
cox3	+	1639	2425	787	ATG/T(AA)	99		
trnM1	+	2525	2588	64		15	CAT	
nad4	−	2604	3905	1302	ATG/TAA	81		
trnC	−	3987	4046	66		17	GCA	
nad1	+	4064	4999	936	ATG/TAG	5		
trnI	+	5005	5072	68		14	GTG	
trnA	+	5087	5153	67		84	TGC	
nad5	−	5238	6851	1614	ATT/TAG	1562		
atp8	+	8413	8574	162	ATG/TAG	3		
cox2	+	8578	9265	688	ATG/T(AA)	115		
atp6	+	9381	10,181	801	ATG/TAG	41		
cytb	+	10,223	11,357	1135	ATG/T(AA)	68		
trnG	+	11,426	11,491	66		6	TCC	
trnK	+	11,498	11,565	68		3	TTT	
trnI	+	11,569	11,640	72		4	GAT	
trnP	+	11,645	11,711	67		2	TGG	
trnN	+	11,714	11,780	67		7	GTT	
trnM2	+	11,788	11,855	68		60	CAT	
nad4l	−	11,916	12,212	297	ATA/TAA	220		
trnE	+	12,433	12,499	67		58	TTC	
nad6	+	12,558	13,046	489	ATA/TAG	4		
trnW1	−	13,051	13,116	66		11	CCA	
trnS1	+	13,128	13,193	66		378	TCT	
trnL1	−	13,572	13,637	66		2	TAG	
trnY	−	13,640	13,706	67		380	GTA	
nad3	+	14,087	14,440	354	GTG/TAG	−11		
trnL	+	14,430	15,867	1438		16		
trnD	+	15,884	15,948	65		6	GTG	
trnR	+	15,955	16,020	66		11	TCG	
trnP	+	16,032	16,097	66		0	GAA	
trnT	−	16,098	16,166	69		10	TGT	
trnW2	−	16,177	16,243	67		11	TCA	
trnQ	+	18,255	18,321	67		−4	TGG	
nad2	−	18,318	17,355	1038	ATT/TAA	6		
trnV	−	17,362	17,426	65		129	TAC	
trnS	+	17,556	18,491	936		3		
trnS2	+	18,495	18,561	67		159	TGA	

Table 3. Annotation of the *Nipponacmea fuscoviridis* mitochondrial genome.
Gene arrangement of Patellogastropoda. The gene arrangements in four subclasses were compared to the hypothetical ancestral gastropod gene order38 (Fig. 8). Among these subclasses, the fewest gene rearrangements are observed in *Bathyacmaea nipponica* of the Acmaeidae family, and only certain tRNA sequences exhibit shuffling (trnY and trnM), translocation (trnF, trnQ, trnF, trnC) and inversion (trnE)39. The gene order is closest to that of the family Nacellidae, with six tRNAs (trnT, trnR, trnN, trnA, trnK, trnI) and one PCG (nad3) exhibiting translocation. Recent studies of Nacellidae mitogenomes suggest that genome rearrangements are relatively conservative in this group11. The phylogenetic analyses showed that Nacellidae is the sister group of Acmaeidae, which confirmed that rearrangement may be helpful for phylogenetic analysis.

Table 4. Base composition of the mitochondrial genome of the two limpets.

Region	Size(bp)	A (%)	T (%)	G (%)	C (%)	A + T (%)	AT-skew	GC-skew	
Lg	18,192	28.18	23.83	32.00	30.32	24.11	25.39	15.71	
Nx	18,720	28.18	23.83	32.00	30.32	24.11	25.39	15.71	
Mitogenome	18,192	18,720	28.18	23.83	32.00	30.32	24.11	25.39	15.71
cox1	1560	24.49	22.63	36.15	34.62	24.04	24.37	15.32	
cox2	666	31.68	25.30	27.48	27.43	16.67	28.02	24.17	
cox3	805	25.59	20.08	32.55	35.58	18.88	26.94	22.98	
nad1	930	26.13	20.73	34.52	35.04	16.99	28.10	22.37	
nad2	963	28.45	21.39	30.43	31.31	16.20	18.69	24.92	
nad3	346	20.81	18.64	40.75	35.62	26.88	31.07	11.56	
nad4	1326	20.44	21.89	39.44	30.18	26.24	20.35	13.88	
nad4l	284	29.77	22.90	37.32	33.33	29.58	22.90	12.32	
nad5	1674	29.57	24.10	31.66	28.62	14.22	17.97	24.55	
nad6	519	18.30	23.31	43.93	32.31	24.28	30.06	13.49	
cytB	1159	21.74	20.88	40.90	34.45	20.97	25.81	16.39	
atp6	762	28.35	20.72	32.28	34.58	15.49	27.59	23.88	
trnAs	115	20.00	22.22	35.65	33.33	20.87	23.46	23.48	
rRNAa	1558	28.75	24.92	27.66	27.49	24.65	26.61	18.93	
PCGaz	11,238	24.33	21.91	35.62	32.65	20.87	25.03	19.178	

Figure 2. The codon distribution and relative synonymous codon usage (RSCU) in the mitogenomes of *L. goshimai* (Lg) and *N. fuscoviridis* (Nf). CDspT, codons per thousand codons.

Gene arrangement of Patellogastropoda. The gene arrangements in four subclasses were compared to the hypothetical ancestral gastropod gene order (Fig. 8). Among these subclasses, the fewest gene rearrangements are observed in *Bathyacmaea nipponica* of the Acmaeidae family, and only certain tRNA sequences exhibit shuffling (trnY and trnM), translocation (trnF, trnQ, trnF, trnC) and inversion (trnE). The gene order is closest to that of the family Nacellidae, with six tRNAs (trnT, trnR, trnN, trnA, trnK, trnI) and one PCG (nad3) exhibiting translocation. Recent studies of Nacellidae mitogenomes suggest that genome rearrangements are relatively conservative in this group. The phylogenetic analyses showed that Nacellidae is the sister group of Acmaeidae, which confirmed that rearrangement may be helpful for phylogenetic analysis. Compared with the
above two families, the gene order in Patellidae differs substantially, but the fragment from cytb to atp8 has been retained, with only a portion of this fragment exhibiting local inversion. However, the genome organization is almost the same in *Patella ferruginea* and *Patella vulgate*, indicating that they are conservative in the family Patellidae. The most noteworthy finding was that there are essential differences in gene arrangement among species of different Lottiidae families, but they share the common characteristic of *rrnL* and *rrnS* gene inversion. The mitogenomes of the Lottiidae family have retained a fraction of the clusters found in ancestral gastropods31. For instance, *Lottia digitalis* has retained *nad4-nad4L*, and *L. goshimai* has retained *nad5-nad4-nad4L*, with the *nad4* and *nad4L* fragments inverted in both cases. In addition, an extremely high rate of gene rearrangement is found in *N. fuscoviridis*, and the irregular ordering may be caused by a high rate of sequence evolution40. We will need to conduct more research on the family to verify this in the future.

Figure 3. Secondary structure of the tRNA genes of the *L. goshimai* mitochondrial genome.
Conclusion

In this study, the complete mitochondrial genome sequences of two new limpets, *L. goshimai* and *N. fuscoviridis*, belonging to Lottiidae, were characterized and compared. Duplications of tRNA genes are found in both species (*trnM* or *trnW*). In their tRNA secondary structures, both *trnS1* and *trnS2* are missing DHU stems, which is also observed in other species of the family. The phylogenetic relationships with other members of Gastropoda based on 13 mitochondrial PCGs were analysed. The results showed that the phylogeny was consistent with morphological observations and previous reports. In addition, a highly irregular rearrangement of mitochondrial genes was found within Lottiidae. Since there are currently few species in the family, it is impossible to determine whether this situation is associated with a single species or occurs throughout the family, which is worthy of further study.

Figure 4. Secondary structure of the tRNA genes of the *N. fuscoviridis* mitochondrial genome.
Materials and methods

Sample collection and DNA extraction. Specimens of L. goshimai and N. fuscoviridis were collected from the coastal area of Xiangshan County (29.48°N, 121.98°E), Zhejiang Province, in the East China Sea and Jinzhou City (40.88°N, 121.13°E), Liaoning Province, in the Bohai Sea, respectively. Morphological identification of these samples was carried out by using published taxonomic books/available taxonomic keys, and we consulted with a taxonomist from the Museum of Marine Biology of Zhejiang Ocean University41,42. The samples were preserved in absolute ethyl alcohol before DNA extraction. Total genomic DNA was extracted from the operculum using the salting-out method43 and was then stored at −20 °C before sequencing.

Mitochondrial genome sequencing, assembly and annotation. The whole mitogenomes of the two limpets were sequenced using the Illumina HiSeq X Ten platform (Shanghai Origingene Bio-pharm Technology Co., Ltd. China). An Illumina PE library with an insert size of 400 bp was generated. The original sequencing data have been stored in the sequence read archive (SRA, https://trace.ncbi.nlm.nih.gov/Traces/sra/) of the National
Center for Biotechnology Information (NCBI). NOVOPlasty software (https://github.com/ndierckx/NOVOPlasty) was used for the de novo assembly of the clean data without sequencing adapters to obtain the optimal assembly result. Two newly assembled mitochondrial genomes were annotated on the MITOS web server (https://mitos2.bioinf.uni-leipzig.de/index.py) using the invertebrate genetic code, and start and stop codons were confirmed by comparing the obtained nucleotide sequences with those from closely related limpets.

Figure 7. The phylogenetic tree for the two Lottiidae species and other gastropod species based on 13 PCGs. The purple dots indicate the two species sequenced in this study. The number at each node is the bootstrap probability.
Genome visualization, secondary structure prediction and comparative studies. Circular genome visualization was conducted with the CGView Server (https://stothard.afns.ualberta.ca/cgview_server/index.html)47. The secondary structure of the tRNA genes was predicted using the software ARWEN (https://130.235.244.92/ARWEN/) and the tRNAscan-SE v.2.0 web server (https://lowelab.ucsc.edu/trNAscan-SE/), as implemented on the MITOS web server45,46,48. The nucleotide composition and relative synonymous codon usage (RSCU) of each PCG were calculated using MEGA 7.050. AT and GC skew values were calculated with the following formula: AT skew = (A − T)/(A + T) and GC skew = (G − C)/(G + C)51. The ratio of nonsynonymous substitutions (Ka) to synonymous (Ks) substitutions was estimated with DnaSP6.052.

Preparation of datasets, model selection, phylogenetic analyses. For the phylogenetic analysis, DAMBE 5.3.19 was used to adjust the nucleotide sequences of 13 protein-coding genes (PCGs) of each species, and the nucleotide substitution saturation was analysed to determine whether these sequences were suitable for constructing phylogenetic trees53. Sixty published mitochondrial genomes were downloaded from NCBI as references, including those of 58 other marine gastropods and two outgroups (Cryptochiton stelleri and Katharina tunicata of Polyplacophora), and were analysed along with the mitogenome sequence of the two new Lottiidae species (Table 1). Then, the sequences of each of 62 species were aligned using ClustalW with the default parameters in MEGA 7.0. The phylogenetic analyses incorporated Bayesian inference (BI) methods using the program MrBayes v3.2 and maximum likelihood (ML) using IQ-TREE54,55. MrMTgui was used to combine the results of PAUP 4.0, Modeltest 3.7 and MrModeltest 2.3 to find the best substitution models (GTR + I + G) with the AIC for Bayesian inference (BI)56–58. BI analyses were conducted with two Markov chain Monte Carlo (MCMC) runs, each with four chains (three heated and one cold) run for 2,000,000 generations, with tree sampling every 1000 steps and a burn-in of 25%. ML analysis was performed with the best-fit substitution model automatically selected by ModelFinder, and the number of bootstrap replicates was set to 1000 in ultrafast likelihood bootstrapping to reconstruct a consensus tree59. The phylogenetic trees were visualized and edited using FigTree v1.4.360.

Data availability
The mitochondrial genome data has been submitted to NCBI GenBank under the following accession numbers: *Lottia goshimai* (MT248298), *Nipponacmea fuscoviridis* (MK395167).

Received: 21 April 2020; Accepted: 21 October 2020
Published online: 06 November 2020

References
1. Kawashima, H., Ohnishi, M. & Ogawa, S. Differences in Sterol Composition of Gonads of the Lottiid Limpets *Nipponacmea concinna* and *Nipponacmea fuscoviridis* from Northeastern Japan. *J. Oleo Sci.* 60, 501–504 (2011).
2. Stimson, J. The role of the territory in the ecology of the intertidal limpet *Lottia gigantea* (Gray). *Ecology* 54, 1020–1030 (1973).
3. Kristof, A., de Oliveira, A. L., Kolbin, K. G. & Wanninger, A. A putative species complex in the Sea of Japan revealed by DNA sequence data: A study on *Lottia cf. kogamogai* (Gastropoda: Patellogastropoda). *J. Zool. Syst. Evol. Res.* 54, 177–181 (2016).
4. Niu, C. J., Nakao, S. & Goshima, S. Energetics of the limpet *Lottia kogamogai* (Gastropoda: Patellogastropoda) in an intertidal rocky shore in southern Hokkaido Japan. *J. Exp. Mar. Biol. Ecol.* 224, 167–181 (1998).
5. Nakano, T. & Sasaki, T. Recent advances in molecular phylogeny, systematics and evolution of Patellogastropod limpets. *J. Mol. Evol.* 77, 203–217 (2011).
30. Fernández-Silva, P., Enriquez, J. A. & Montoya, J. Replication and transcription of mammalian mitochondrial DNA.

8. Nakano, T., Marshall, B. A., Kennedy, M. & Spencer, H. G. The phylogeny and taxonomy of New Zealand Notoacmea species (Mollusca: Patellagastropoda: Lottiidae) inferred from DNA sequences. Molluscan Res. 29, 33–59 (2009).

31. Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Phylogenet. Evol. 39, 562–567 (2006).

32. Uribe, J. E., Irisarri, I., Templado, J. & Zardoya, R. New patellogastropod mitogenomes help counteracting long-branch attraction in the deep phylogeny of gastropod mollusks. Mol. Phylogenet. Evol. 38, 261–265 (2006).

33. Williams, S. T., Foster, P. G. & Littlewood, D. T. J. The complete mitochondrial genome of a turbinid vetigastropod from Micronesia. Mol. Phylogenet. Evol. 133, 12–23 (2019).

34. Sevigny, J. L. Incorporation of deep-sea and small-sized species provides new insights into gastropods phylogeny. BMC Evol. Biol. 16, 164 (2016).

35. Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 15, 568–573 (1998).

36. Romero, P. E., Weigand, A. M. & Pfenninger, M. Positive selection on panpulmonate mitogenomes provide new clues on adaptive radiation in the deep-sea, hydrothermal vent limpet, Lepetodrilus nux, presents a novel vettigastropod gene arrangement. Mar. Genomics 12, 121–126 (2016).

37. Lee, H. et al. The mitochondrial genome sequence of a deep-sea, hydrothermal vent limpet, Lepetodrilus nux, presents a novel vettigastropod gene arrangement. Mar. Genomics 12, 121–126 (2016).

38. Vortsepeva, E., Ivanov, D., Puschke, G. & Tzetlin, A. Morphology of the jaw apparatus in 8 species of Patellagastropoda (Mollusca: Patellogastropoda) with special reference to Testudinula mediterranea (Lottiidae). Zoomorphology 132, 359–377 (2013).

39. Simison, W. B., Lindberg, D. R. & Moore, J. L. Rolling circle amplification of metazoan mitochondrial genomes. Proc. Natl. Acad. Sci. USA 98, 12715–12719 (2001).

40. Xu, W., Jameson, D., Tang, B. & Higgs, P. G. The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. J. Mol. Evol. 63, 375–392 (2006).

41. Fuchigami, T. & Sasaki, T. The shell structure of the Recent Patellogastropoda (Mollusca: Gastropoda). Paleontol. Res. 9, 143–168 (2005).

42. Dierickx, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids. Res. 45, e18 (2016).

43. Bertot, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).

44. Simison, W. B., Lindberg, D. R. & Moore, J. L. Rolling circle amplification of metazoan mitochondrial genomes. Mol. Phylogenet. Evol. 39, 562–567 (2006).
47. Grant, J. R. & Stothard, P. The CGView Server: a comparative genomics tool for circular genomes. *Nucleic. Acids. Res.* **36**, 181–184 (2008).
48. Laslett, D. & Canbäck, B. ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. *Bioinformatics* **24**, 172–175 (2008).
49. Lowe, T. M. & Eddy, S. R. trNAScan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic. Acids. Res.* **25**, 955–964 (1997).
50. Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* **33**, 1870–1874 (2016).
51. Hassanin, A., Léger, N. & Deutsch, J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. *Syst. Biol.* **54**, 277–298 (2005).
52. Rozas, J. & Rozas, R. DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. *Comput. Appl. Biosci.* **11**, 621–625 (1995).
53. Xia, X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. *Mol. Biol. Evol.* **30**, 1720–1728 (2013).
54. Ronquist, F. *et al.* Mrbayes 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. *Syst. Biol.* **61**, 539–542 (2012).
55. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. *Mol. Biol. Evol.* **32**, 268–274 (2015).
56. Swofford, D. L. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods*) Version 4. (Sinauer Associates, Sunderland, Massachusetts, 1998).
57. Posada, D. & Crandall, K. A. Modeltest: testing the model of DNA substitution. *Bioinformatics* **14**, 817–818 (1998).
58. Nylander, J. A., Ronquist, F., Huelsenbeck, J. P. & Nieves-Aldrey, J. Bayesian phylogenetic analysis of combined data. *Syst. Biol.* **53**, 47–67 (2004).
59. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* **14**, 587 (2017).
60. Rambaut A. FigTree, version 1.4.3, https://tree.bio.ed.ac.uk/software/figtree/ (accessed 1 July 2016).

Acknowledgements

This work was financially supported by the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes (No. 2019J00021), the Natural Science Foundation of Zhejiang Province (Grant No. LQ18D0600004), the Open Foundation from Marine Sciences in the First-Class Subjects of Zhejiang Province and the Project of Bureau of Science and Technology of Zhoushan (2020C21026).

Author contributions

F.J.T. analyzed the data, wrote the paper, and prepared the figures and tables. G.Y.H. and Y.C.R. collected field material and processed the samples. Y.Y.Y. conceived and designed the experiments, reviewed drafts of the paper. L.J.J. contributed analysis tools, reviewed drafts of the paper. G.B.Y and L.Z.M supervised and directed the work, all authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence

and requests for materials should be addressed to Y.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020