 Weak radius of the proton

C. J. Horowitz1*

1Center for Exploration of Energy and Matter and Department of Physics, Indiana University, Bloomington, IN 47405, USA

(Dated: September 19, 2018)

The weak charge of the proton determines its coupling to the Z^0 boson. The distribution of weak charge is found to be dramatically different from the distribution of electric charge. The proton’s weak radius $R_W \approx 1.580 \pm 0.033$ fm is over 80\% larger than its charge radius $R_{ch} \approx 0.84$ fm because of a very large pion cloud contribution. This large weak radius can be measured with parity violating electron scattering and may provide insight into the structure of the proton, various radiative corrections, and possible strange quark contributions.

The distributions of charge and magnetization provide crucial insight into the structure of the proton. Hofstadter in the 1950s determined that the charge distribution in the proton has a significant size ≈ 0.8 fm \cite{1}, while experiments at Jefferson Laboratory have shown that the magnetization is distributed differently from the charge \cite{2, 3}. More recently, an experiment with muonic hydrogen has found a surprising value for the charge radius of the proton R_{ch} \cite{4} that is smaller than previous determinations with electron scattering or conventional hydrogen spectroscopy \cite{5}. This proton radius puzzle has motivated considerable theoretical and experimental work and is presently unresolved \cite{6}.

In addition to its electric charge, the proton has a weak charge Q_p that characterizes the strength of the vector coupling to the Z^0 boson. The Jefferson Laboratory Q_{weak} collaboration has recently measured Q_p using parity violating electron scattering \cite{7},

$$ Q_p = 0.0719 \pm 0.0045 . $$

This value provides a sensitive test of the standard model at low energies, and the future P2 experiment aims to improve the accuracy further \cite{8}.

In the standard model, the weak neutral current is a mixture of the isovector weak and electromagnetic currents. As a result the Sachs form factor that describes the vector interaction of the Z^0 boson with the proton, $G_E^p(q^2)$, is related to the conventional electric form factors of the proton G_E and neutron G_n plus a possible strange quark contribution G_s^p \cite{9},

$$ 4G_E^p(q^2) = Q_pG_E(q^2) + Q_nG_E(q^2) - G_s^p(q^2) . $$

Here $q^2 = -q^2 > 0$ is the square of the momentum transfer and Q_n is the weak charge of the neutron.

The distribution of weak charge in the proton is characterized by a size or root mean square radius R_W that follows from the q^2 dependence of the form factor $4G_E^p(q^2)$. Using

$$ Q_pR_W^2 = -6 \frac{d}{dq^2}(4G_E^p)|_{q^2=0} , $$

one has,

$$ R_W^2 = R_{ch}^2 + \frac{Q_n}{Q_p} R_n^2 + \frac{3}{2m^2_s Q_p} \rho_s . \tag{4} $$

Here the neutron charge radius squared is $R_n^2 = -0.1148 \pm 0.0035$ fm2 \cite{11}, m_N is the nucleon mass, and the nucleon’s dimensionless strangeness radius squared ρ_s is defined,

$$ \rho_s = 4m_N^2 \frac{d}{dq^2} G_s^p|_{q^2=0} . \tag{5} $$

There have been several measurements of G_E^p and G_n^p using parity violating electron scattering, see for example \cite{10} \cite{11}. Recently the Q_{weak} collaboration determined ρ_s in addition to Q_p \cite{7},

$$ \rho_s = 0.20 \pm 0.11 . \tag{6} $$

We list in Table \ref{tab:1} values of the proton weak radius from Eq. \ref{4}. These involve the large ratio of the neutron to proton weak charges. At tree level $Q_n = -1$ and $Q_p = 1 - 4\sin^2\Theta_W \approx 0.05$. Including radiative corrections yields $Q_n = -0.9902$ and $Q_p = 0.0710$ \cite{12} \cite{13}. Note that Table \ref{tab:1} lists two lines for the proton because of the proton radius puzzle. The second line (and the line for the neutron, see below) corresponds to the smaller R_{ch} from muonic hydrogen. The $\approx \pm 0.033$ fm error in R_W, listed in Table \ref{tab:1} is dominated by the ± 0.11 error in ρ_s from Eq. \ref{6}.

\begin{table}[ht]
\begin{center}
\begin{tabular}{lll}
Particle & R_{ch} (fm) & R_W (fm) & ΔR (fm) \\
\hline
p & 0.8777 \pm 0.0007 \cite{12} & 1.600 \pm 0.032 & 0.723 \pm 0.032 \\
n & 0.8418 \pm 0.0007 \cite{13} & 1.580 \pm 0.033 & 0.739 \pm 0.033 \\
208Pb & 0.8545 \pm 0.0043 & 5.503 & 5.826 \pm 0.181 \cite{14} \\
\end{tabular}
\caption{The charge radius R_{ch}, weak radius R_W, and weak skin $\Delta R = R_W - R_{ch}$ for the proton, neutron, and 208Pb nucleus.}
\end{center}
\end{table}

\footnote{We neglect radiative corrections for the strange quark contribution.}

*Electronic address: horowit@indiana.edu
As shown in Table I, the weak radius of the proton R_W is over 80% larger than the charge radius R_c. We define the weak skin ΔR as the difference between the weak and charge radii $\Delta R = R_W - R_c$. The large value $\Delta R \approx 0.7$ fm shows that weak charges are more likely to be found at large distances from the origin than are electric charges.

The dramatic difference $R_W \gg R_c$ is a major result of this paper. Why does the distribution of weak charge have a spatial extent that is much greater than the extent of the (electric) charge? We first present an explanation in terms of hadronic coordinates and then we present an alternative description in terms of quark coordinates. Consider a virtual transition $p \rightarrow n + \pi^+$. The weak charge of the pion $Q_{\pi^+} = Q_p - Q_n = 1.061$ is much larger than Q_p. Therefore the pion “tails” in the proton at large radius, “wags the dog” and makes a very large contribution to R_W.

Another equivalent way to understand $R_W \gg R_c$ is to consider the distribution of up and down quarks. The weak charge of a proton Q_p is small because of a sensitive cancellation between the weak charges of two up quarks and the weak charge of one down quark. Therefore $\rho_W(r)$ is very sensitive to small differences between the distributions of up and down quarks. If the up quarks have a somewhat larger radius than the down quarks this will lead to $R_W \gg R_c$.

We note that R_W is sensitive to radiative corrections. If one evaluates R_W in Eq. (1) with the tree level weak charges $Q_n = -1$ and $Q_p = 0.05$ the result is $R_W \approx 1.8$ fm. This is about 15% larger than the values in Table I. One should study further the impact of radiative corrections on R_W.

For completeness, we also discuss the weak magnetic radius of the proton. The form factor describing the magnetic coupling of the Z^0 to the proton G_M^Z has the same form as Eq. (2)

$$4G_M^Z(q^2) = Q_p G_M^n(q^2) + Q_n G_M^u(q^2) - G_M^d(q^2).$$

Since $|Q_n| \gg Q_p$, we expect the weak magnetic radius of the proton to be close to the (conventional) magnetic radius of the neutron, and very different from R_W.

To gain additional insight into $R_W \gg R_c$, we consider coordinate space representations related to the local charge or weak charge density. We define the function $\rho_W(r)$ as the three dimensional Fourier transform of $G_M^Z(q^2)$,

$$\rho_W(r) = \int \frac{d^3q}{(2\pi)^3} e^{iq \cdot r} 4G_M^Z(q^2).$$

In the nonrelativistic limit $\rho_W(r)$ corresponds to the weak charge density of the proton. However relativistic effects can complicate this interpretation. We will consider a relativistic transverse density below [13]. For now $\rho_W(r)$ is defined by Eq. (8). We assume simple form factors $G_M^Z(q^2) = (1 + q^2/\Lambda^2)^{-2}$ and $G_M^n(q^2) = a q^2 (1 + q^2/\Lambda^2)^{-2}$ with the constants $\Lambda = \sqrt{2} R_c$ and $a = -R_n^2/6$ chosen to reproduce mean square radii. Of course more detailed form factors can be used, but we do not expect them to make qualitative differences. We neglect small strange quark contributions. This gives a simple analytic form for $\rho_W(r)$,

$$\rho_W(r) = \left\{ Q_p + Q_n \frac{R_p^2}{6} (2 - \frac{2\Lambda}{r}) \right\} \frac{3}{8\pi} e^{-\Lambda r}.$$

In Fig. 1 we plot the normalized function $\rho_W(r)/Q_p$. We see that $\rho_W(r)$ has a node near $r = 0.4$ fm. For reference, Fig. 1 also shows the function $r^2\rho_W(r)/Q_p$ (dashed blue line) versus radius r, see Eq. (9).

We now consider a relativistically consistent representation of the weak charge density of the proton provided by the transverse density $\rho_W^t(b)$ [15]. This is the two dimensional Fourier transform of the weak $F_1^{Z}p$ form factor,

$$\rho_W^t(b) = \int \frac{d^2q}{(2\pi)^2} e^{ib \cdot q} F_1^{Z}p(q^2),$$

$$\rho_W^t(b) = \int \frac{dq d^4q}{2\pi} J_0(qb) 4G^{Zp} + \tau 4G^{Zp} / 1 + \tau.$$
The impact of more accurate fits, see for example [17], should be explored.

Figure 2 shows the transverse weak density $\rho_W^t(b)/Q_p$, and the transverse charge densities of the proton $\rho^t(b)$, and neutron $\rho^t_n(b)$. These are defined as in Eq. 10 using F_1^p and F_1^n. At large distances both $\rho^t_W(b)/Q_p$ and $\rho^t_W(r)/Q_p$ are large and positive. This shows the large contribution of the pion tail. Furthermore, $\rho^t_W(b)/Q_p$ is very different from $\rho^t(b)$. Likewise $\rho^t_W(r)/Q_p$ is very different from $\rho^t(r)$. However $\rho^t_W(b)$ is positive for small impact parameters while $\rho^t_W(r)$ is negative at small r. Note that small impact parameter b does not necessarily correspond to small radius r. The large differences seen in Figs. 1 and 2 emphasize that the weak charge in a proton is distributed very differently from the electric charge.

![Graph](image)

FIG. 2: (Color online) Impact parameter b times the transverse charge density of the proton $b\rho^t(b)$ (solid black line), transverse weak density of the proton $b\rho^t_W(b)/Q_p$ (dashed blue line) and the transverse charge density of the neutron $b\rho^t_n(b)$ (dotted red line), see Eq. 10.

We plotted the normalized weak density $\rho^t_W(b)/Q_p$ in Fig. 2. Note that $2\pi\int_0^\infty db b\rho^t_W(b) = Q_p$. In addition, we included a factor of Q_p in the definition of R_W on the left hand side of Eq. 8. One could make a different choice of normalization. For example the factor Q_p could be omitted. This will change the magnitude of R_W. However no matter the normalization, $\rho^t_W(b)$ will still have a very different shape compared to $\rho^t(b)$. Our choice of normalization in Eq. 8 and the large values of R_W in Table 1 correctly describe how far one must extrapolate down in q^2 in order for finite size effects to be small so that one can accurately measure Q_p. Instead one must extrapolate down in q^2 until q^2R_W is small.

For comparison, we now discuss weak radii for the neutron and heavier nuclei. The form factor describing the coupling of the Z^0 to the neutron is G_E^Zn.

$$4G_E^Zn(q^2) = Q_nG_E^p(q^2) + Q_pG_E^n(q^2) - G_E^*(q^2).$$

Defining the neutron weak radius from $Q_nR_W^2 = -6dG_E^Zn/dq^2|_{q^2=0}$ yields,

$$R_W^2 = R_W^2 + Q_pR_n^2 + \frac{3}{2m^2_ch^2n}\rho_s.$$ (13)

Given $|Q_n| \gg Q_p$, the weak radius of the neutron, see Table 1 is very close to the charge radius of the proton $R_p \approx R_{ch}$. For light $N = Z$ nuclei such as the deuteron, 4He or 12C the weak radius of a nucleus is expected to be close to its charge radius. For mirror nuclei such as 3He and 3H the weak radius of 3He should be close to the charge radius of 3H and vice versa.

For heavy nuclei with $N > Z$ we expect a neutron skin with some of the extra neutrons collecting in the surface region so that the neutron radius is greater than the proton radius. As a result there will be a weak skin with $R_W > R_{ch}$. This has now been verified for 208Pb, where R_W has been measured in the PREX experiment [18], see Table 4.

Clearly the weak skin of the proton is not produced by a neutron skin even though both the proton and 208Pb have $R_W > R_{ch}$. Instead, the weak skin of the proton can be thought of as coming from an “up quark skin” rather than a neutron skin. The up quark skin describes an excess of up quarks at large radii in the proton. For example, a virtual π^+ cloud at large radii will increase the density of up quarks and reduce the net density of down quarks (minus down antiquarks) and produce an up quark skin. Thus, the proton could also be thought of as having a “pion skin”.

We end by exploring if there are nuclei with $R_W \gg R_{ch}$ that might have weak skins at least somewhat comparable to the very large $\Delta R \approx 0.7$ fm of the proton. We consider two possibilities. The first is a neutron halo nucleus such as 11Li where the neutron radius and R_W may be dominated by the weakly bound neutron halo that extends to very large radii [20]. The second possibility is simply a very neutron rich nucleus. This nucleus will likely have a thick neutron skin (and hence weak skin) because of all of the “extra” neutrons.

It is interesting to consider Ca isotopes. The heaviest stable $N = Z$ nucleus is 40Ca where we expect R_{ch} to be slightly larger than $R_W (\Delta R < 0)$ because the protons are pushed out by the Coulomb interaction. The CREX experiment should accurately measure R_W for the doubly closed shell neutron rich isotope 48Ca [21]. Here R_W depends on poorly measured three neutron forces. Microscopic chiral effective field theory calculations predict a thin weak skin for 48Ca, $\Delta R \approx 0.13$ fm [22] while dispersive optical model calculations predict a thick skin $\Delta R \approx 0.25$ fm [23]. Even more neutron rich Ca isotopes are expected to have thicker weak skins. Recently the isotopes 50Ca and 60Ca were observed at RIKEN [24] suggesting that very neutron rich Ca isotopes, perhaps up to 70Ca, are particle stable. The nucleus 70Ca, with 2.5 times more neutrons than protons, could have a very thick weak skin.

In conclusion, we have calculated the distribution of weak charge in the proton and find it to be dramatically
different from the distribution of electric charge. The weak radius R_W is over 80\% larger than the charge radius R_{ch} because of a very large pion cloud contribution. This large weak radius probes proton structure including differences between up and down quark distributions, and R_W can be measured with parity violating electron scattering.

Acknowledgments

We thank Bill Donnelly, Farrukh Fattoyev, Misha Gorshteyn, Zidu Lin, Gerry Miller, Seamus Riordan, and Mike Snow for helpful discussions. This work was started at the Mainz Institute for Theoretical Physics and we thank them for their hospitality. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under Awards DE-FG02-87ER40365 (Indiana University) and de-sc0018083 (NUCLEI SciDAC-4 Collaboration).

[1] R. Hofstadter, F. Bumiller, and M. R. Yearian, Rev. Mod. Phys. 30, 482 (1958).
[2] M. K. Jones et al. (The Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 84, 1398 (2000).
[3] O. Gayou et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 88, 092301 (2002).
[4] A. J. R. Puckett et al., Phys. Rev. Lett. 104, 242301 (2010).
[5] R. Pohl et al., Nature 466, 213 (2010).
[6] P. J. Mohr, B. N. Taylor and D. B. Newell, Rev. Mod. Phys. 80, 633 (2008).
[7] R. Pohl, R. Gilman, G. Miller, and K. Pachucki, Annual Review of Nuclear and Particle Science, 63, 175 (2013).
[8] D. Androic et al. (The Jefferson Lab Q_{weak} Collaboration), Nature 557, 207 (2018).
[9] Dominik Becker et al., arXiv:1802.04759, submitted to EPJ A (2018).
[10] J. Erler, C. J. Horowitz, S. Mantry, and P. A. Souder, Ann. Rev. Nucl. Part. Sci. 64, 269 (2014).
[11] S. Kopecky et al., Phys. Rev. C 56, 2229 (1997).
[12] R. González-Jiménez, J. A. Caballero, and T. W. Donnelly, Phys. Rev. D 90, 033002 (2014).
[13] A. Acha et al. (HAPPEX collaboration), Phys. Rev. Lett. 98, 032301 (2007).
[14] J. Beringer et al., Phys. Rev. D 86, 010001 (2012), [PDG].
[15] G. Miller, Annu. Rev. Nucl. Part. Sci. 60, 1 (2010).
[16] S. Glaster et al., Nucl. Phys. B32, 221 (1971).
[17] W. M. Alberico, S. M. Bilenky, C. Giunti, and K. M. Graczy, Phys. Rev. C 79, 065204 (2009).
[18] C. J. Horowitz et al., Phys. Rev. C 85, 032501(R) (2012).
[19] S. Abrahamyan et al. (PREX Collaboration), Phys. Rev. Lett. 108, 112502 (2012).
[20] I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985).
[21] The CREX proposal, unpublished, available at hallaweb.jlab.org/parity/prex.
[22] G. Hagen, A. Ekström, C. Forssén, G. R. Jansen, W. Nazarewicz, T. Papenbrock, K. A. Wendt, S. Bacca, N. Barnea, B. Carlsson, C. Drischler, K. Hebeler, M. Hjorth-Jensen, M. Miorelli, G. Orlandini, A. Schwenk and J. Simonis, Nature Physics 12, 186 (2016).
[23] M. H. Mahzoon, M. C. Atkinson, R. J. Charity, and W. H. Dickhoff, Phys. Rev. Lett. 119, 222503 (2017).
[24] O. B. Tarasov et al., Phys. Rev. Lett. 121, 022501 (2018).