High Dynamic Range 3-Moduli Set with Efficient Residue to Binary Converter

A. Hariri, R. Rastegar, K. Navi

Abstract—Residue Number System (RNS) is a valuable tool for fast and parallel arithmetic. It has a wide application in digital signal processing, fault tolerant systems, etc. In this work, we introduce the 3-moduli set \(\{2^n, 2^{n+1}, 2^{2n+1}\} \) and propose its residue to binary converter using the Chinese Remainder Theorem. We present its simple hardware implementation that mainly includes one Carry Save Adder (CSA) and a Modular Adder (MA). We compare the performance and area utilization of our reverse converter to the reverse converters of the moduli sets \(\{2^n-1, 2^n, 2^{2n+1}\} \) and \(\{2^n-1, 2^n, 2^{2n+1}, 2^{2n+1}+1\} \) that have the same dynamic range and we demonstrate that our architecture is better in terms of performance and area utilization. Also, we show that our reverse converter is faster than the reverse converter of \(\{2^n-1, 2^n, 2^{2n+1}\} \) for dynamic ranges like 8-bit, 16-bit, 32-bit and 64-bit however it requires more area.

Index Terms—Residue arithmetic, Residue to binary converter, Chinese remainder theorem (CRT)

I. INTRODUCTION

Residue Number System (RNS) arithmetic is a valuable tool for theoretical studies of fast arithmetic [5]. With its carry-free operations, parallelism and fault tolerance, RNS has been used in computer arithmetic since 1950s. These properties have made it very useful in some applications including digital signal processing and fault tolerant systems [4]. Different moduli sets have been presented for RNS that have different properties with regards to reverse conversion scheme for the proposed moduli set using the presented lemmas and the CRT. In Section IV, we provide the hardware implementation of the reverse converter and in Section V we evaluate this converter and compare the results with similar works. Finally, in Section VI we present our conclusions.

II. BACKGROUND

RNS is defined by a set \(S = \{m_1, m_2, \ldots, m_N\} \) where \(\gcd(m_i, m_j) = 1 \) for \(i, j = 1 \ldots N \) and \(i \neq j \) and \(\gcd \) means the greatest common divisor.

Every integer \(X \) in \([0, M-1] \) can be uniquely represented with a \(N \)-tuple where,

\[
M = \prod_{i=1}^{N} m_i,
\]

and \(R_i = \lfloor X \rfloor = (X \mod m_i) \) ; for \(i = 1 \) to \(N \)

The set \(S \) and the number \(R_i \) are called the moduli set and the residue of \(X \) modulo \(m_i \) respectively. The arithmetic operations can be carried out independently for each modulo, that is,

\[
\left\langle x_1, x_2, \ldots, x_N \right\rangle \bullet \left\langle y_1, y_2, \ldots, y_N \right\rangle = \left\langle \left\lfloor x_1 \cdot y_1 \rfloor_{m_1}, \left\lfloor x_2 \cdot y_2 \right\rfloor_{m_2}, \ldots, \left\lfloor x_N \cdot y_N \right\rfloor_{m_N} \right\rangle
\]
where • denotes one of the arithmetic operations of addition, subtraction, and multiplication.

Here, we propose the new moduli set \(\{2^n, 2^{n-1}, 2^{2n+1}\} \) and first, we show that this set meets the requirements of an RNS moduli set.

Theorem 1: The set \(\{2^n, 2^{n-1}, 2^{2n+1}\} \) is a moduli set for RNS.

Proof: We should show that the moduli are pair-wise relatively prime for any natural number \(n \). Obviously, the first moduli is relatively prime to the other moduli therefore we only show that the second and the third moduli are relatively prime. We assume that \(\gcd(2^{2n-1}, 2^{2n+1}) = d \) then we have \(d \mid (2^{2n-1}) \) and \(d \mid (2^{2n+1}) \) therefore, \(d \mid (2^{2n-1}+2^{2n+1}) \) so if \(d \mid (2 \times 2^{2n}) \) or we have \(d \mid (2^{2n+1}) \) so \(d = 1 \) or \(d = 2^w \) \((w \geq 1)\) but we know that \(d \neq 2^w \) because \(2^{2n-1} \) and \(2^{2n+1} \) are odd numbers so \(\gcd(2^{2n-1}, 2^{2n+1}) = d = 1 \).

So our proposed moduli set can be used in RNS and we can consider its reverse converter.

III. REVERSE CONVERTER

In this section, we present the reverse converter of the moduli set \(\{2^n, 2^{n-1}, 2^{2n+1}\} \) but first, we provide two lemmas which are based on the properties that have been used in calculating the reverse converters [1][4][11].

Lemma 1: The residue of a negative residue number \((- r)\) in modulo \((2^n - 1) \) is calculated by the one’s complement operation where \(0 \leq r < 2^n - 1 \).

Lemma 2: The multiplication of a residue number \(v \) by \(2^w \) in modulo \((2^n - 1) \) is carried out by \(P \)-bit circular left shift where \(P \) is a natural number.

Now, to calculate the number \(X \) from its residues, we can apply the CRT. The CRT is formulated as;

\[
X = \sum_{i=1}^{N} \hat{m}_i \left[\hat{m}_i^{-1} \times R_i \right]_{m_i} \quad (1)
\]

where

\[
M = \prod_{i=1}^{N} m_i ; \hat{m}_i = \frac{M}{m_i} ; \hat{m}_i^{-1} \times \hat{m}_i = 1
\]

and \(R_i = [X]_{m_i} \)

Assuming \(m_1 = 2^n, m_2 = 2^{n-1} \) and \(m_3 = 2^{2n+1} \) we have

\[
\hat{m}_1 = (2^n - 1) ; \hat{m}_2 = 2^n (2^n + 1) ; \hat{m}_3 = 2^n (2^{2n} - 1)
\]

Theorem 2: For the proposed moduli set, we have

\[
\left[\hat{m}_1^{-1} \right]_{m_1} = -1_{m_1} \quad (3)
\]

\[
\left[\hat{m}_2^{-1} \right]_{m_2} = 2^{n-1}_{m_2} \quad (4)
\]

\[
\left[\hat{m}_3^{-1} \right]_{m_3} = 2^{n-1}_{m_3} \quad (5)
\]

Proof: For (3) we have:

\[
|-1 \times (2^n - 1)_{m_1} = -2^n + 1_{m_1} = 1
\]

For (4) we have

\[
\left[2^{n-1} \times 2^n (2^n + 1) \right]_{2^{n-1}} = 2^{n-1} \times 2^n (2^n - 1) + 2^{n-1} \times 2 \times 2^n \quisite{d_{2^n-1}} = 2^{2n} \quito{d_{2^n-1}} = 1
\]

and for (5) we write

\[
\left[2^{n-1} \times 2^n (2^n - 1) \right]_{2^{n-1}} = -2^n \quito{d_{2^n-1}} = 1
\]

Equation (1) can be rewritten as

\[
X = \sum_{i=1}^{N} \hat{m}_i \left[\hat{m}_i^{-1} \times R_i \right]_{m_i} \quad (6)
\]

where \(K \) is an integer number and depends on the value of \(X \).

By replacing (2)-(5) in (6) we have:

\[
X = \sum_{i=1}^{N} \hat{m}_i \left[\hat{m}_i^{-1} \times R_i \right]_{m_i} = X_{R M K}
\]

In this case the number \(X \) can be computed by

\[
X = \left[\frac{X}{2^n} \right] \times 2^n + R_i \quad (9)
\]

Equation (8) can be written as

\[
\left[\frac{X}{2^n} \right] = \frac{\left[-2^{2n} \times R_i \right]_{2^{2n-1}}}{\left[2^{2n} + 1 \times 2^{n-1} \times R_i \right]_{2^{2n-1}} - M \times K}
\]

By dividing the both side of (7) by \(2^n \) and calculating the floor values in modulo \((2^n - 1) \) we have

\[
\left[\frac{X}{2^n} \right] = \frac{\left[-2^{2n} \times R_i \right]_{2^{2n-1}}}{\left[2^{2n} + 1 \times 2^{n-1} \times R_i \right]_{2^{2n-1}} - M \times K}
\]

or

\[
\frac{X}{2^n} = [S_1 + S_2 + S_3]_{2^{2n-1}}
\]

where

\[
S_1 = -2^{2n} \times R_i \quito{d_{2^{2n-1}}}
\]

\[
\frac{X}{2^n} = \left[S_1 + S_2 + S_3 \right]_{2^{2n-1}}
\]
where by adding (19) and (20) we have the final value of S_3.

$$S_3 = \left[2^{3n-1} - 2^{n-1} \right] \times R_3 \left[2^{n-1} \right] \quad (14)$$

Now, we consider (12)-(14) and simplify them for implementation in a VLSI system. It is necessary to note that r_{ij} means the j-th bit of R_i.

Evaluation of S_3:

The residue R_j can be represented in $4n$ bits as follows;

$$R_j = 00 \cdots 0 r_{1(j-1)} \cdots r_{1i} r_{10} \quad (15)$$

by applying Lemma 2 in modulo (2^{4n-1}) we have

$$\left[2^{3n} \times R_j \right] \left[2^{n-1} \right] = r_{1(j-1)}r_{1(j-2)} \cdots r_{1i} r_{10} 00 \cdots 00 \quad (16)$$

and finally by applying Lemma 1 we have

$$S_i = \left[-2^{3n} \times R_j \right] \left[2^{n-1} \right] = \overline{r_{1(j-1)}} \cdots \overline{r_{1i}} \overline{r_{10}} 11 \cdots 11 \quad (17)$$

where \overline{r} means the complement of r.

Evaluation of S_2:

The residue R_2 can be represented in $4n$ bits as follows;

$$R_2 = 00 \cdots 0 r_{22n-1} \cdots r_{21} r_{20} \quad (18)$$

we evaluate the two parts of S_2 separately using Lemma 2

$$\left[2^{3n-1} \times R_2 \right] \left[2^{n-1} \right] = r_{2(j-2)} \cdots r_{21} r_{20} 00 \cdots 00 \quad (19)$$

$$\left[2^{n-1} \times R_2 \right] \left[2^{n-1} \right] = 00 \cdots 00 r_{2(j-2)} \cdots r_{21} r_{20} 00 \cdots 00 \quad (20)$$

by adding (19) and (20) we have the final value of S_2 as

$$S_2 = \left[2^{3n-1} \times R_2 \right] + 2^{n-1} \times R_2 \left[2^{n-1} \right] = \quad (21)$$

$$\overline{r_{2(j-2)}} \cdots \overline{r_{21}} \overline{r_{20}} \overline{r_{2(j-2)}} \cdots \overline{r_{21}} \overline{r_{20}} r_{2(j-2)} \cdots r_{21} r_{20} \quad \text{n-Bits}$$

that is a $4n$-bit residue number.

Evaluation of S_1:

The residue R_1 can be represented in $4n$ bits as follows;

$$R_1 = 00 \cdots 0 r_{12n-1} \cdots r_{11} r_{10} \quad (22)$$

for the two parts of S_1 we use Lemma 2 and we write

$$\left[2^{3n-1} \times R_1 \right] \left[2^{n-1} \right] = r_{1(j-1)}r_{1(j-2)} \cdots r_{1i} r_{10} 00 \cdots 00 \quad (23)$$

$$\left[2^{n-1} \times R_1 \right] \left[2^{n-1} \right] = 00 \cdots 00 r_{1(j-2)} \cdots r_{1i} r_{10} 00 \cdots 00 \quad (24)$$

for (24) we apply Lemma 1 and we have

$$\left[-2^{n-1} \times R_1 \right] \left[2^{n-1} \right] = \overline{r_{1(j-2)}} \cdots \overline{r_{1i}} \overline{r_{10}} 11 \cdots 11 \quad (25)$$

therefore,

$$S_{1,1} = r_{1(j-1)}r_{1(j-2)} \cdots r_{1i} r_{10} 00 \cdots 00 \quad (26)$$

$$S_{1,2} = \overline{r_{1(j-2)}} \cdots \overline{r_{1i}} \overline{r_{10}} 11 \cdots 11 \quad (27)$$

so, S_1 includes two $4n$-bit numbers that are $S_{1,1}$ and $S_{1,2}$.

IV. HARDWARE IMPLEMENTATION

To implement the reverse converter, four $4n$-bit numbers should be summed up in modulo (2^{4n-1}). This requires a 2-level Carry Save Adder (CSA) tree that includes two $4n$-bit CSAs. Nevertheless by considering (17) and (27), it is clear that the $3n$ rightmost bits of S_1 and also the n leftmost bits of $S_{1,2}$ are ones. So, we replace the $3n$ rightmost bits of $S_{1,2}$ with the same bits of S_1. Based on this manipulation, the new numbers have been shown in (28) and (29). Consequently, now $S_{1,2}$ contains $4n$ ones and we know that it is equivalent to zero in modulo (2^{4n-1}). Now, we have 3 numbers and therefore, the required 2-level CSA can be replaced by only one CSA.

$$S'_i = \overline{r_{1(j-1)}} \cdots \overline{r_{1i}} \overline{r_{10}} 11 \cdots 11 \quad (28)$$

$$S_{1,2} = \overline{r_{1(j-2)}} \cdots \overline{r_{1i}} \overline{r_{10}} 11 \cdots 11 \quad (29)$$

Fig. 1 shows the hardware architecture of the reverse converter. The Operand Preparation (OP) component includes some wires and inverters and prepares the $4n$-bit numbers for the Multi Operand Modular Adder (MOMA). The CSA tree includes only one $4n$-bit CSA with End-Around Carry (EAC) [6]. The last component in MOMA is a Modular Adder (MA) and can be implemented using the methods of [6], [7] or [15]. The output of this adder is equivalent to $\frac{X}{\pi}$ and consequently, X can be computed by using (9).
V. EVALUATION AND COMPARISON

Moduli sets of [1] and [9] provide the same dynamic range as our moduli set. So, in this section we compare two properties of our moduli set to the moduli sets of [1] and [9]:

1) Time and area complexities of the reverse conversion and
2) Time complexity of the arithmetic operations in their

As outlined in the previous section, we compare our reverse converter to the reverse converter of a 3 moduli set proposed in [11]. Now, we compute the hardware utilization of our reverse converter in terms of adders and basic gates. As outlined in the previous section, we should sum up three 4n-bit numbers S_1, S_2, and $S_{1,3}$. For this purpose, one CSA which includes 4n Full Adders (FAs) is sufficient. But by considering the operands, it is clear that some of these FAs could be simplified further. For the (n-1) rightmost bits, we need (n-1) pairs of XNOR/OR gates instead of (n-1) FAs, since one of the inputs of each FA is 1. Similarly, for the middle (2n-1) bits, we replace the (2n-1) pairs of XOR/AND gates, since one of the inputs of each FA is 0. For the rest of the bits, we use (n+2) FAs. Besides this MOMA, the operand preparation includes some wires and inverters. Ignoring the wires, it includes (3n+1) inverters. The total amount of the used hardware is shown in Table I.

R/B Converter	Our work	[1]	[9]	[11]
DR	$2^n(2^n-1)$	$2^n(2^n-1)$	$2^n(2^n-1)$	$2^n(2^n-1)$
Inverters (OP)	$n+1$	$5n+3$	$4n$	$2m+1$
FAs	$n+2$	$7n+6$	$15n$	$2m$
XOR/AND Pairs	$n+1$	$2n+1$	-	-
XOR/AND Pairs	$n+1$	$2n+1$	-	-
Other	-	$2n-3$ inverter	-	XOR+HA
MUX	-	-	One 4×1	Two 2×1
MA	4n-bit	4n-bit	4n-bit	2m-bit

TABLE II

R/B	Delay	Unit Gate Delay
[1]	$t_{CLA}(4n)+t_{NOT}+t_{FA}$	$2\log_2(n)+7+7$
[9]	$t_{CLA}(4n)+t_{NOT}+4t_{FA}$	$2\log_2(n)+7+9$
[11]	$t_{CLA}(4n)+t_{NOT}+t_{MUX}+t_{FA}$	$2\log_2(n)+7+5$; if $\log_2(n)=\log_2(m)$ (1)
[11]	$t_{CLA}(4n)+t_{NOT}+t_{MUX}+t_{FA}$	$2\log_2(n)+5+5$; if $\log_2(2n)=\log_2(m)+1$ (2)

So far, we have shown that our converter has better area and time complexities than those of [1] and [9], but we have left one question unanswered. For an equal dynamic range, is a 4 or 5-moduli set always faster than a 3-moduli set? It is the magnitude of the largest modulo that dictates the speed of arithmetic operations; however, speed and cost do not just depend on the width of the residues but also depend on the moduli chosen [5]. Consequently, for the moduli set of [1], modulo 2^{2n+1} determines the overall speed of the RNS. The same is true for our proposed moduli set. Therefore our moduli set and the moduli set of [1], are both restricted to the time performance of modulo 2^{2n+1}. The moduli set of [9] includes two moduli of $(2^n+2^{(n+1)/2}+1)$ and $(2^n+2^{(n+1)/2}+1)$. Here, we compute the delay of addition in modulo $(2^n+2^{(n+1)/2}+1)$ by using the method of [11] and we compare it to delay of three FAs in comparison with [9]. In addition to this delay improvement, we have utilized much lower hardware than [1] and [9].
outperforms both moduli sets of [1] and [9].

In addition to comparing [1] and [9], we would like to compare our reverse converter to the reverse converters of 3-moduli sets. In [14], it has been shown that moduli set \(\{2^n, 2^n+1\} \) has the fastest and the most area efficient reverse converter among the other 3-moduli sets for the dynamic ranges of 8-bit, 16-bit, 32-bit and 64-bit. So, we compare our reverse converter to the reverse converter of [11] which is the most efficient reverse converter for \(\{2^n-1, 2^n, 2^n+1\} \). For the sake of a fair comparison, we consider the moduli set \(\{2^m-1, 2^m, 2^m+1\} \) where \(m \) is chosen in a way that provides similar dynamic ranges to our moduli set and more or less \(m \) can be the floor or ceiling value of \(5n/3 \). By using this approximation, the hardware utilization of the reverse converter of [11] has been derived and included in Table I. In Table II, we have compared our reverse converter to the reverse converter of [11] considering two cases. In case (1) our reverse converter is faster than the reverse converter of [11] and it is worthwhile to mention that for example, in [1, 50], this case covers 73% of dynamic ranges including 8-bit, 16-bit, 32-bit and 64-bit. In case (2) which covers 26% of dynamic ranges, our reverse converter and the reverse converter of [11] have the same delay but [11] requires less hardware area. Table IV shows the area and delay comparison of the proposed reverse converter and that of the [11] using the unit-gate model where the hardware area utilization of the gates are \(A_{\text{NOT}}=A_{\text{AND}}=A_{\text{OR}}=1 \) and \(A_{\text{XOR}}=2 \). The hardware area utilization of the modular adder has been computed using the adder of [15].

It can be concluded that the comparison of our work and [11] is purely dictated by the chosen dynamic range. However, for the discussed dynamic ranges, our reverse converter is faster than the reverse converter of [11] while [11] requires less area.

Table III

Additions in modulo \(\{2^n, 2^n+1, 2^{n+1}\} \)	Additions in modulo \(\{2^n, 2^n+1\} \)
\(\leq 4 + \log(n)+7 \)	\(2 \times \log(2n)+6 \times \log(n)+8 \)

Table IV

DR	\(n \)	\(m \)	\(A_{\text{Area}} \)	\(A_{\text{Latency}} \)	\(\text{Extra Area}\%) \)	\(\text{Extra Latency}\% \)	\(\text{Speed Up}\% \)	
8-bit	2	3	151	136	11.02	12	14	14.2
16-bit	4	6	341	298	14.42	14	16	12.5
32-bit	7	11	674	604	11.58	16	18	11.1
64-bit	13	22	1400	1330	5.26	18	20	10

VI. CONCLUSION

In this paper we proposed the moduli set \(\{2^n, 2^n-1, 2^m+1\} \) and its reverse converter. This moduli set provides the dynamic range of \(2^n \times (2^m-1) \) and the implementation results have shown that its reverse converter has better area and time complexities in comparison with the moduli sets with the same dynamic ranges. We also showed that for majority of the similar dynamic ranges, our reverse converter is faster than the reverse converter of \(\{2^n-1, 2^n, 2^n+1\} \) but the reverse converter of \(\{2^n-1, 2^n, 2^n+1\} \) has less area.

ACKNOWLEDGMENT

The authors wish to acknowledge the valuable help of Dr. T. Vergos with the modular adders.

REFERENCES

1. B. Cao, C. Chang and T. Srikanthan, “An efficient reverse converter for the 4-Modiuli Set \(\{2^n-1, 2^n, 2^n+1\} \) based on the new Chinese remainder theorem,” *IEEE Transaction on Circuits and Systems I*, Vol. 50 Issue 10, Oct. 2003 Page(s): 1296 – 1303.

2. A. P. Vinod and A. B Premkumar, “A memoryless reverse converter for the 4-moduli superset \(\{2^n-1, 2^n, 2^n+1, 2^{2n+1}\} \),” *Journal on Circuits, Syst., Comput.*, Vol 10, 0, No.1&2, Page(s):85–99,2000.

3. M Bhargdaj, T. Srikanthan and C. T. Clarke, “A reverse converter for the 4-Moduli superset \(\{2^n-1, 2^n, 2^n+1, 2^{2n+1}\} \),” In *The Proceeding of the 14th IEEE Symposium on Computer Arithmetic*, Adelaide, Australia, 14-16 April 1999 Page(s): 168 – 175.

4. N. Szabo and R. I. Tanaka, Residue number system and its application to computer technology, McGraw Hill New York 1967.

5. B. Parhami, Computer arithmetic, Oxford University Press, 2000.

6. S. J. Piestrak, “A High Speed Realization of a Residue to Binary Converter,” *IEEE Transaction on Circuits and Systems II*, Volume 42, Issue 10, Oct. 1995 Page(s): 661 – 663.

7. M. Bhargdaj, A. B. Premkumar and T. Srikanthan, “Breaking the 2n bit carry propagation barrier in residue to binary conversion for the \(\{2^n-1, 2^n, 2^n+1\} \) moduli set,” *IEEE Transaction on Circuits and Systems I*, Volume 45, Issue 9, Sept. 1998 Page(s): 998 – 1002.

8. A. Skavantzos, “An efficient residue to weighted converter for a new residue number system,” *Proceedings of the 8th Great Lakes Symposium on VLSI*, Feb. 1998 Page(s): 185 – 191.

9. A. A. Hasat, “VLSI implementation of new arithmetic residue to binary decoders,” *IEEE Transaction on Very Large Scale Integration (VLSI) Systems*, Volume 13, Issue 1, Jan. 2005 Page(s): 153 – 158.

10. Y. Wang, “Residue-to-binary converters based on new Chinese remainder theorems,” *IEEE Transaction on Circuits and Systems II*, Volume 47, Issue 3, March 2000 Page(s): 197-205.

11. Y. Wang, X. Song, M. Aboulhamid and H. Shen, “Adder based residue to binary number converters for \(\{2^n-1, 2^n, 2^{n+1}\} \)” *IEEE Transactions on Signal Processing*, Volume 50, Issue 7, July 2002 Page(s):1772 – 1779.

12. A. A. Hasat, “High-speed and reduced-area modular adder structures for RNS,” *IEEE Transactions on Computers*, Volume 51, Issue 1, Jan. 2002 Page(s):84 – 89.

13. C. Efstathiou, H.T. Vergos and D. Nikolos, “Fast parallel-prefix modulo \(2^n+1 \) adder,” *IEEE Transactions on Computers*, Volume 53, Issue 9, Sept. 2004 Page(s):1211-1216.

14. W. Wang, M.N.S Swamy, M.O. Ahmad and Y. Wang, “A study of the residue-to-binary converters for the three-moduli sets,” *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, Volume 50, Issue 2, Feb. 2003 Page(s):235 - 243.

15. L. Kalampoukas, D. Nikolos, C. Efstathiou, H.T. Vergos and J. Kalamianos, “High-speed parallel-prefix module 2\(^n\)-1 adders,” *IEEE Transactions on Computers*, Volume 49, Issue 7, July 2000 Page(s):673 - 680.