Abstract
A molecular hallmark of cancer is the presence of genetic alterations in the tumoral DNA. Understanding how these alterations translate into the malignant phenotype is critical for the adequate treatment of oncologic diseases. Several cancer genome sequencing reports have uncovered the number and identity of proteins and pathways frequently altered in cancer. In this article we discuss how integration of these genomic data with other biological and proteomic studies may help in designing anticancer therapies "a la carte". An important conclusion is that next generation treatment of neoplasias must be based on rational drug combinations that target various pathways and cellular entities that sustain the survival of cancer cells.

Review
A critical step towards defining a correct personalized anticancer therapy is the identification of the genes and pathways altered in the tumour of the patient, and the elucidation of their particular oncogenic role. The success of molecular studies in identifying potential molecular targets for therapeutic intervention is exemplified by the developments in the treatment of chronic myelogenous leukaemia (CML) [1]. This disease is characterized by the presence of the Philadelphia chromosome, created by a translocation which provokes constitutive activation of the tyrosine kinase Abl. The identification of this molecular alteration fostered the development of drugs such as Imatinib Mesylate that inhibit Abl kinase activity and successfully control the disease [2]. However, in most solid tumours multiple genetic lesions are expected to be required for tumour progression [3]. In fact, the clinical experience in the treatment of oncologic diseases indicates that combinations of drugs that act on different cellular targets demonstrate superiority over single agent-based treatments [4]. Yet, these combined treatments are mostly based on empirical trials and lack, in many instances, a biological rationale [5,6].

Given the positive experience that molecular knowledge has offered for the treatment of CML, efforts have been made to define the molecular alterations present in the DNA of distinct types of tumours. Here we will comment how novel high throughput techniques may help in finding more adequate and less toxic personalized anticancer therapies.

Somatic alterations in the cancer genome
In designing proper anticancer therapies the clinical and the preclinical researchers face several important questions: How many genetic alterations exist in a tumour? How many of them are responsible of promoting tumour growth? How many should be targeted to eradicate the tumour? The availability of technologies that allow large scale sequencing and genomics analyses of several tumours, together with strong bioinformatics tools and functional studies are contributing to answering these questions. Recent studies on the molecular profiling of breast and colon [7,8], lung [9-11], glioblastoma [12,13] and pancreatic [14] cancers have described alterations in multiple genes and pathways important for the control of cell number in these tumours. Although this is an already known concept, the value of these studies is that by sequencing of the whole transcriptome of individual tumours the researchers have uncovered the number of mutated genes as well as their identity. In the analysis of the genomes of breast and colorectal cancers [7], between 60 and 80 mutations that alter the amino acid sequence of proteins (non-silent mutations) were detected in a single tumour (Table 1). Noteworthy, although some of the genes were overlapping, most of them were not coincident, not only when comparing breast and colon tumours, but also when comparing tumours of the same type but from distinct patients. It should however be mentioned that these transcriptomic sequencing studies, while offering important molecular information on individual
tumours, must be complemented with other genomic analyses, as they may, for example, miss the overexpression of non-mutated HER2 that is present in one out of four patients with breast cancer, and that represents a relevant clinical target [15]. Another more recent study identified a larger number (292 mutations in coding regions, of which 187 were non-synonymous) of mutated genes in a cell line of colorectal cancer [16]. It is possible that these differences may stem from the fact that some works reported results from patients, while others used cell lines which may accumulate lesions along their in vitro establishment.

On the other side, sequencing of acute myeloid leukaemia (AML) samples have identified 10 mutations in protein-coding mRNAs [17,18]. Additional massive sequencing efforts, such as those carried out by the International Cancer Genome Consortium, will help in establishing a more accurate measurement of the average mutated genes/tumour.

By using bioinformatics analyses those authors indicated that most of the mutations in an individual breast or colon tumour were silent in terms of favouring tumour progression [7]. These analyses indicated that not more than 15 genes, that they term CAN genes (from “cancer” genes), are responsible for supporting tumour viability in each tumour. Some of the mutations identified affected genes that participate in the PI3K or NF\(\text{C20}\)B routes, two pathways linked to cell survival/proliferation, and that are potential therapeutic targets (Table 2). An important question that must be addressed is how many of these CAN genes must be targeted for efficient therapy of a tumour. On the basis of age-incidence data, some authors proposed that genetic alterations in 5-7 CAN genes may be required for solid tumour generation [19], and it is therefore expected that targeting of these genes or some of their downstream actor proteins may be therapeutically effective. We will

Table 1 Somatic mutations in cancer exomes and pathways affected

Tumour type (sample size)	Genes analyzed	Average number of mutated genes/patient	Major pathways deregulated	References
Breast \((n = 11)\)	18,191	62	RTKs, PI3K, NF\(\times\)B, Cell adhesion, Cytoskeleton, Extracellular matrix	[7]
Colorectal cancer \((n = 11)\)	18,191	88	RTKs, PI3K, Cell cycle, DNA damage (p53), Neuronal-type pathways (ionic channels), IDH1	[7]
Colorectal cancer \((n = 1)\)	Genome	292	Transcription (SPDEF), Metalloproteases (MMP28), PI3K, BRAF	[16]
Glioblastoma \((n = 22)\)	20,661	47	RTKs, PI3K, Cell cycle, DNA damage (p53), Neuronal-type pathways (ionic channels), IDH1	[13]
Pancreas \((n = 24)\)	20,661	48	Kras signalling, DNA damage control, Cell cycle, TGF\(\beta\) pathway, Wnt/Notch signalling, Cell adhesion and integrin signalling, MAPK signalling, Apoptosis	[14]
Glioblastoma \((n = 206)\)	601 selected genes	NA	RTKs, NF1, DNA damage, PI3K, Cell cycle, methylation, mismatch repair	[12]
Lung cancer \((n = 188)\)	623 genes implicated in cancer	NA	RTKs, DNA damage control, RAS (K and N), NF1, LRP1B (lipid metabolism), MAPK signalling, Wnt signalling, STK11 (Ser/Thr kinase)	[10]
Lung cancer \((n = 371)\)	NA	NA	Cell cycle, PI3K, RTKs, Tyrosine phosphatases, cAMP, Angiogenesis, NFKB2-1 (pneumocyte differentiation)	[9]
Lung cancer \((n = 4)\)	Genome	134	Cell cycle (Rb), DNA damage (p53), DNA helicase CHD7	[11]
Mesothelioma \((n = 4)\)	15,000	6	DNA damage, Extracellular matrix, Mitochondrial reductase activity, proteasome, Apoptosis	[54]
Diverse cancers \((n = 210)\)	518 kinases	NA	RTKs, JNK, MAPK, BRAF, DNA damage control	[20]
Renal cancer, clear cell \((n = 101)\)	3544	NA	Histone modifications (SETD2, JARID1C, UTX), VHL, NF2, HIF1A, PMS1 (DNA mismatch repair), WRN and NBN (DNA double strand repair)	[55]
Diverse cancers \((n = 3131)\)	NA	NA	Kinases, cell cycle, NF\(\times\)B, Myc, Apoptosis, Cell adhesion, DNA methylation, microtubule organization, transcription	[22]
Acute Myeloid leukaemia \((n = 1)\)	Genome	10	NRAS, NPM1, IDH1, CDC42, IMPG2, AKR1D4, LTA4H, FREM2, CEP170	[17,18]
Ovarian granulosa cell tumours \((n = 4)\)	Genome	NA	FOXL2	[56]

RTKs: receptor tyrosine kinases. NA: not available
comment later some biological studies that in fact support the use of a restricted number of targetable proteins that fall within that latter number.

Additional studies carried out in glioblastoma multiforme (GBM) [12,13] and pancreatic cancer [14], in addition to describing the somatic alterations in the DNA, advanced to more precisely defining the molecular pathways altered in these pathologies. Interestingly, in these tumours the number of mutated genes was lower (around 40 mutations/tumour) than in breast or colorectal cancer. By using similar and complementary techniques to search for point mutations, as well as gains and losses of genetic material, the two different reports analyzing the genomes of patients with GBM satisfyingly came to common conclusions [12,13]. These reports observed frequent alterations in three major signalling pathways that control cell proliferation: the receptor tyrosine kinase-PI3K route, the p53, and the retinoblastoma (RB) tumour suppressor pathways. Interestingly, some of these pathways were also found to participate in pancreatic as well as colon and breast cancer tumours, indicating overlapping of signalling pathways that may be critical in the genesis/progression of solid tumours. Interestingly also was the fact that mutations in the genome of GBM patients accumulated in patients treated with the alkylating agent temozolomide, a chemotherapeutic used in this pathology which is also highly mutagenic. Moreover, another study in which the genes coding for kinases of patients with several types of cancer were analyzed also showed that the highest prevalence of mutations in the kinases corresponded to GBM patients treated with temozolomide [20]. This indicates that resistance mechanisms may develop in

Table 2 Drugs in clinical development against pathways identified in genomic/proteomic studies
Receptor Tyrosine Kinases
Run-ErbB receptors
CI-1033 Pfizer phase II[57,58]
BIBW-2992 Boehringer Ingelheim phase II[57,59]
Neratinib Wyeth-Ayerst phase III[60,61]
MET
MK-2461 Merck phase I/II[62]
XL184 Exelixis phase I/II[62]
MetMAb Genentech phase II[63]
FGFR
MK-2461 Merck phase I/II[62]
Brivanib BMS phase II[64]
K-RAS-RAF
PLX4032 Plexikon Inc/Roche phase I[65]
PI3K-AKT Inhibitors-mTOR
Dual PI3K-mTOR
BEZ235 Novartis phase I/II[30,66,67]
XL765 Exelixis phase I[68]
SF1126 Semafore phase I/II[68,69]
BGT226 Novartis phase II[68]
PI3K Inhibitors
XL147 Exelixis phase I[68]
BKM120 Novartis phase I[68]
GDC0941 Genentech phase I[70,71]
AKT inhibitors
Perifosine Keryx phase I/II[72-74]
GSK690693 GSK phase I/II[75-77]
MK206 Merck phase I[68]
mTOR
OSI027 OSI Pharmaceuticals phase I/II[68]
AZD8055 AstraZeneca phase I/II[68]
MAPK inhibitors
MEK Inhibitors
CI-1040 Pfizer phase I/II[78,79]
AZD6244 AstraZeneca phase I/II[80,81]
XL518 Genentech phase I[71]
Cell Cycle
Flavopiridol Sanofi-aventis phase II/I[82]
SNS-032 BMS phase I/II[83]
R-547 Roche Phase I/II[83,84]
Selectilb Cyclacel Pharmaceuticals Phase I/II[85]
Histone Deacetylase inhibitors
Vorinostat (SAHA) Merck phase I/II[86]
Romidepsin Gloucester Pharmaceuticals Phase I/II[87,88]
MGCD0103 MethylGene, Inc phase I/II[89]
LBHS89 Novartis phase I/II[90,91]
Demethylating agents
Azacitidine Celgene approved[92,93]
Decitabine Eisai Pharmaceuticals approved[94]
DNA repair
PARP
Olaparib KuDOS Pharmaceuticals/AstraZeneca phase II[95]
AG-014699 Pfizer phase II[96]
ATM
KU-55933 KuDOS Pharmaceuticals preclinical[97]
Matrix Metalloproteinases
Neovastat Aterna Laboratories phase III[98,99]
Prinomastat Pfizer phase III [98,100,101]

http://www.molecular-cancer.com/content/9/1/202
these patients due to additive molecular alterations that favour the development of clones of cells resistant to the action of classical treatments. The sequencing efforts carried out in GBM also identified isocitrate dehydrogenase 1 (IDH1) as a protein that could act in the pathogenesis of this disease [13,21]. Interestingly, IDH1 was also found to be mutated in the genome of AML patients [18].

In lung cancer, using single nucleotide polymorphism (SNP) arrays, Weir et al. [9] analyzed the presence of copy-number alterations of chromosomal regions in a large proportion (n = 371) of lung tumours, and found frequent gains or losses of chromosomal regions. Some genomic alterations, such as copy number gain of chromosome 5p occurred in a high number of patients (60%). These alterations affected genes known to be frequently involved in lung cancer, such as EGFR/HER1, CCNE1, or KRAS. In addition, the paper describes a novel player in lung cancer pathophysiology, the NKX2-1 gene product, a transcription factor implicated in the formation of lung pneumocytes. Knocking down the expression of this protein in NCI-H1925 lung cancer decreased their ability to grow in an anchorage-dependent manner, indicating that this protein may represent a novel lung cancer promoting oncogene, and an interesting novel therapeutic target. Another report analyzed somatic mutations of 623 genes in 188 lung cancer samples [10]. These genes were selected for their already known implication in oncogenesis. KRAS or EGFR were mutated in a substantial proportion of patients; but, in addition, several other genes not formerly associated to lung cancer were identified, and included tumour suppressors (NF1, RB, ATM, and APC), as well as tyrosine kinase genes (ERBB4, ephrin receptor genes, KDR, FGFR4, and NTRK). Of note, 132 of the 188 tumours had at least one mutation in genes that participate in MAPK signalling. Also, mutations in multiple genes of the Wnt pathway were observed in 29 of the 188 samples. Frequent mutations were also detected in DNA damage response genes, including TP53, and ATM. This clustering of mutations in certain pathways which play a role in oncogenesis points to the possibility of interfering with them for the treatment of lung tumours. Moreover, from a more ample perspective the molecular studies mentioned above open outstanding possibilities in terms of better focusing on certain targeted therapies for these tumours, based on drugs that target components of the identified signalling pathways. Another report confirmed the relevance of p53 and Rb in lung cancer [11]. Here the researchers sequenced the whole genome of a lung cancer cell line and found 22,910 somatic mutations, of which 134 were included into coding exons, 94 of them causing changes in the primary sequence of the coded proteins. An ample study of somatic copy number alterations performed on 3131 tumour samples, and also using high resolution SNP arrays identified a median of 12 gains and losses in each patient tumour [22]. Frequent alterations in the control of cell cycle progression, apoptosis, DNA damage control, or kinase activity were reported.

The contribution of functional genomics to cancer therapy

A strategy that has been recently developed to massively identify potentially useful therapeutic targets is based on functional genomics studies using RNA-interference (RNAi) screenings. In one such functional screen based on the knockdown of 2,924 genes selected for their potential implication in tumour generation/progression, Schlabach et al. identified between 80-150 gene products important for tumour survival/proliferation [23]. Of them, 19 genes were shared by the three distinct tumoral cell lines analyzed (two from colon cancer, and one from breast cancer). Interestingly, the list of the identified proteins showed significant overlap between distinct tumoral cell lines, but were different from those identified to be essential for the survival of normal breast epithelial cells [23]. This indicates the existence of qualitative differences between normal and malignant cells with respect to proteins that support their respective viabilities. This is highly relevant from the therapeutic point of view, as it indicates that the targeting of proteins that specifically support survival of cancer cells is realistic, and may spare normal cells, therefore representing an efficient and likely safe therapeutic strategy. In addition, these authors also found a certain degree of overlapping between proteins that support viability in tumours from the same tissue origin. However, they also found proteins whose function was required to sustain viability of one tumour cell, but did not play a critical survival role in others. Thus, knock down of the protein phosphatase PP1 seriously affected survival of HCC1954 colon cancer cell line, but did not substantially affect DLD-1 colon cancer cells. These results support the concept of the distinct susceptibility of different tumours, and stress the importance of adequately selecting protein targets to achieve therapeutic success. Analogous functional genomic studies in haematological malignancies led to the identification of the IRF4 and genes regulated by this protein as potential therapeutic targets in multiple myeloma [24], and the demonstration that tyrosine kinases play an important role in sustaining AML vitality [25]. This last work is particularly interesting as the authors used fresh samples from patients to identify, by also using RNAi techniques, potentially relevant drug targets. More ample RNAi screening techniques, based on the knockdown of up to 17,000 different genes [26], have allowed an almost
universal analysis of the participation of the proteome in tumour survival, and have identified pathways and proteins that participate in tumour proliferation/survival [27].

In addition to finding potentially useful drug targets, these RNAi-based functional genomic screens have also been used to uncover mechanisms of drug resistance. Bernard and colleagues explored proteins involved in trastuzumab resistance in breast cancer and identified PTEN as one of the principal proteins whose lack of function was linked to trastuzumab resistance [28], in agreement to previous reports [29]. Moreover, preclinical data indicated that combination of agents that target HER2 and the PI3K route reverts resistance to trastuzumab [30].

In spite of the value of these studies, one of the potential pitfalls is the identification of relevant targets in vitro whose in vivo manipulation could be highly toxic. It is therefore mandatory to proceed into in vivo testing the manipulation of those targets (Figure 1).

Biological findings support the use of combined targeted therapies

An important aspect of the functional genomics assays is the finding of individual proteins whose targeting is deleterious for the tumoral cell, opening the door to the development of drugs that by interfering with their action may be therapeutically relevant as single agents. However, as mentioned above, the clinical experience suggests that efficient cancer treatment usually relies on the combination of agents that target distinct oncogenic networks. The fact that combination of agents may be more efficient than single agent treatment may be due to the heterogeneity of tumours, in some cases promoted by some anticancer treatments that either act as mutagens, as mentioned above in temozolomide-treated patients, or by the mutational heterogeneity within a single tumour. This heterogeneity has been recently proposed as a limit for the value of high throughput sequencing efforts in individual tumours [31]. The cross-talk between intracellular signalling pathways mainly activated by RTKs represents another reason to explain the efficacy of combination strategies. It has been reported that inhibition of certain pathways, such as the mTOR route may lead to increased MAPK activity [32]. Therefore, ablation of signals through both routes is required for efficient antitumoral action. Moreover, combined inhibition of PI3K and MAPK routes has shown superior antitumoral effect compared to individual targeting of either pathway [33].

Elegant biological studies supporting that adequate targeted drug combinations based on genomic profiling may be effective in cancer treatment has been offered by reports from the Massagué group [34,35]. These researchers used genomic and imaging techniques to analyze a particularly relevant property of tumoral cells, i.e. metastatic dissemination. Their strategy was based on the injection of a breast cancer cell line into the bloodstream of mice, and the selection of tumoral clones that homed to several organs. In their studies, genomic profiling identified signatures of genes that were particular of the cells that metastatized to a certain tissue. The researchers then selected some of these genes for further biological analyses, and suspected that four of them, Epirulgin, COX2, MMP1 and MMP2, represented therapeutic candidates in the case of lung metastases. In fact, experiments of gene knockdown confirmed the importance of these genes in breast cancer tumour growth in nude mice. Interestingly, single knockdown of only one of the coding mRNAs had little effect on the growth of these tumours as compared to double knockdowns. But the most impacting results were obtained by quadruple knockdowns. Reduction of the expression of the four mRNAs coding for the respective proteins fully abrogated tumour growth. These genomic-functional studies were complemented with targeted therapies aimed at neutralizing the activity of the four selected protein targets. Again, single agent treatment was less effective than combinations in preventing extravasation and lung colonization by the tumoral cells. Also, combination of three targeted agents, expected to neutralize the function of all four proteins, was more effective than dual combinations, and the triple combinations almost fully prevented lung invasion by the tumoral breast cancer cell population. Another recent analogous study identified a set of genes that mediate breast cancer metastasis to the brain [36]. Interestingly, some of them (COX2 and HB-EGF) share molecular identity or properties with those formerly described to participate in metastatic spreading to the lung. However, other proteins such as the sialyltransferase ST6GALNAC5 was specific for cells that metastatized to the brain, and could be involved in facilitating cell passage through the blood brain barrier. The findings of Massagué and colleagues come in support of the well established clinical concept that drug combinations are superior in efficacy to single agents to treat solid tumours. The added value of their work is the use of molecular and biological tools to define and verify adequate targets for therapeutic intervention.

Combined targeted therapies guided by proteomic studies

Probably the genomic portraits are insufficient in guiding the selection of antitumoral therapies. Indeed, studies on receptor tyrosine kinase (RTK) targeting in cancer have offered insights into the convenience of complementing the genomic data with proteomic
studies to establish efficient anticancer therapies. Stommel et al. [37] analyzed the phosphotyrosine content (indicative of activation) of 42 different RTKs in GBM. This disease may present alterations of the EGFR that result in its constitutive activation. However, response rates to agents that target exclusively the EGFR are poor. Stommel et al. found consistent activation of three or more RTKs in 19 out of 20 GBM cell lines. These RTKs included the EGFR, ErbB3/HER3, platelet-derived growth factor receptor α (PDGFRα), and MET. These
researchers then explored the value of targeting these activated receptors using several *in vitro* models. Inhibition of the activity of individual receptors had a marginal effect on the growth properties of the GBM cell lines. However, combination of drugs that targeted two receptors was superior to single agent treatments. Furthermore, triple combinations were more efficient than double combinations, and practically abolished tumour growth in soft agar colony forming assays. The authors conclude that coactivation of multiple RTKs may sustain cell proliferation in GBM, and that adequate treatment of this pathology must include a careful evaluation of the RTKs activated.

In line with those findings, two additional reports showed the importance of targeting multiple RTKs in breast [38] and lung cancers [39]. Both studies attempted to identify the mechanisms of resistance to therapies that target HER (Human EGFR-like Receptors) receptors. In the breast cancer study, resistance to gefitinib or erlotinib, agents that act on the EGFR, was accompanied by increased tyrosine phosphorylation of ErbB3/HER3 [38]. Similarly, gefitinib resistance in lung cancer was also found to be accompanied by ErbB3/HER3 signalling [39]. This up-regulation of ErbB3/HER3 signalling was due to amplification of MET. Concomitant treatment with gefitinib and the MET inhibitor PHA665752 provoked a decrease in cell survival not obtained by single drug treatments. The fact that multi-kinase inhibitors have reached the oncology clinic adds value to these experimental results and paves the way for the development of multikinase targeting strategies guided by proteomic analyses of the activation state of the kinome.

Limitations of targeted therapies based on genomic profiling

While the above mentioned studies offer unquestionable useful information about relevant targets for therapeutic intervention in cancer, several factors that can limit the efficacy of targeted therapies must be considered. One is the presence of molecular heterogeneity within a particular tumour [40]. The well known genetic instability of tumour cells may be responsible for the generation of different subclones of tumoral cells that could be represented at different amounts in the tumoral tissue (Figure 2). Those present in higher amounts are expected to be responsible for providing the genomic information, diluting the genomic landscapes of other tumoral cells present at lower amounts. The latter therefore escape detection by those genomic/proteomic analyses and result in tumour relapse, since targeted therapies are expected to focus on alterations present in the mostly abundant cells. Exemplifying this concept is the fact that chronic exposure to gefitinib, an agent that targets the EGFR, results in emergence of resistant lung cancer cells bearing a mutation in the EGFR that renders these tumoral cells insensitive to the drug [41]. Presumably, cancer initiating/stem cells represent another source of failure to targeted treatments, as they are expected to represent a minority of the cellular constituents of the tumour. Strategies to identify drugs that target these tumour initiating cells are being developed and may represent useful additions to targeted therapies [42].

Another factor that limits the efficacy of targeted agents is the presence of parallel activation of downstream pathways. A well characterized example is the preclinical identification of the lack of antitumor activity of agents against RTKs when mutations at the K-RAS and PI3K genes were present [43,44]. Translation of these studies to the clinic confirmed lack of activity of anti-EGFR antibodies like cetuximab or panitumumab in colon cancer tumours with K-RAS mutations [45,46]. These studies have been of much importance in selection of anti-EGFR therapies in colorectal cancer, as patients whose tumours express mutated forms of K-RAS are now excluded from treatments based on anti-EGFR drugs. In addition, among colorectal tumours carrying wild-type KRAS, other additional mutations in genes participating in EGFR signalling may cause resistance to anti-EGFR therapies. Thus, mutation of BRAF or PIK3CA or loss of PTEN expression may result in resistance to EGFR-targeted monoclonal antibody treatment [47,48].

Another important tumour component that is gaining importance as a targetable cell type is the stromal compartment. In multiple myeloma, a disease characterized by the accumulation of tumoral plasma cells, the interaction of these cells with the stroma is expected to be critical for sustaining survival of the myelomatous cells, and to provide drug resistance [49]. Moreover, treatments that target both the myeloma cell and the bone marrow microenvironment, such as the proteasome inhibitor bortezomib, or the immunomodulatory agents derived from thalidomide, have shown anti-myeloma activity and have reached the myeloma clinic [50]. Interestingly, genetic studies have demonstrated the presence of genetic alterations in the bone marrow mesenchymal cells of patients with multiple myeloma, supporting the concept that the stroma in the vicinity of the tumour may be cancerized [51]. In other neoplastic pathologies such as breast cancer, mesenchymal stem cells have been shown to promote metastatic dissemination of the tumoral cells [52]. Moreover, recent studies performed in myelodisplastic syndromes support the concept that initial alterations in the stromal compartment may favour the generation of secondary leukemias in a mouse model, further supporting a potential role of the stroma in the pathophysiology of at least certain...
tumours [53]. Therefore, efficient antitumoral therapies must also take into consideration these variables in order to achieve long lasting remissions.

Concluding remarks
The power of high scale “omics” analyses coupled with the ample portfolio of targeted drugs under clinical development and already approved offers hope for a more effective and individualized anticancer therapy. It is rewarding to observe that sophisticated genomic, proteomic and biological studies reinforce the already known clinical strategy of using drug combinations to treat cancer patients (Figure 1). The molecular and biological data herewith commented also offers clues as to how many targets, pathways or functions should be attacked. The preclinical evidence that targeting from one to four proteins may impede proliferation, survival or invasion properties of cancer cells indicates that these cells depend on a limited number of proteins to carry out these biological functions. That the studies mentioned above have correctly targeted some of these molecules is beyond doubt. However, it is possible that targeting other proteins could have a similar impact. In fact, few overlap exists between the molecules targeted in each of these individual papers, especially those that used functional genomics to identify potential targets. This can be interpreted as to say that these papers have found “a set”, (but not a unique “set”) of targets that are therapeutically relevant. Finding a correct algorithm for the combination of drugs that target a set of proteins critical for sustaining cancer cells should be pursued.

In conclusion, recent results using new “omic” techniques support the future use of targeted drug combinations for the treatment of solid tumours. In our opinion
to increase the efficiency of this process, it is critical to reach a close collaboration between academia, the pharmaceutical and biotechnological companies as well as regulatory authorities to develop rational studies with drug combinations based on strong preclinical data.

Acknowledgements
We thank Prof I. Tannock for the critical reading of the manuscript, and suggestions. Work in AP lab receives support from the Ministry of Science and Education of Spain (BFU2006-01813/BMC and BFU2009-07728/BMC), from the ISCIII (RD06/0020/0041), and from the European Community through the regional development funding program (FEDER). AO receives institutional support from the Fundación Ramón Areces.

Author details
1 Service de Oncología Médica, Complejo Hospitalario Universitario de Albacete y unidad AECC, Albacete, Spain. 2 Drug Development Program, Princess Margaret Hospital, Toronto, Canada. 3 Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain.

Authors’ contributions
Both authors contributed equally to the writing of this paper. Both authors also read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 5 May 2010 Accepted: 29 July 2010 Published: 29 July 2010

References
1. Sawyers CL: Chronic myeloid leukemia. N Engl J Med 1999, 340:1330-1340.
2. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Suda T, Sawyers CL: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001, 344:1031-1037.
3. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100:57-70.
4. Sawyers CL: Cancer: mixing cocktails. Nature 2007, 449:993-996.
5. Kwak EL, Clark MJ, Chabner B: Targeted agents: the rules of combination. Clin Cancer Res 2007, 13:5232-5237.
6. Jia J, Zhu F, Ma X, Cao Z, Li Y, Chen YZ: Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 2009, 8:111-128.
7. Wood LD, Parsons DW, Jones S, Lin J, Sp Jbrlom T, Leary RJ, Shen D, Bocar M, Sf, Barker P, Tkakj S, Siflman I, Szabo S, Dezso Z, Usynsky V, Nikolovska T, Nikolov K, Harbin M, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipin M, Willson J, Sukumar S, Polkay J, Park BH, Petryna RD, Clark MJ, Chabner B: The hallmarks of cancer. Cancer Cell 2007, 11:57-70.
8. Sawyers CL: Cancer: mixing cocktails. Nature 2007, 449:993-996.
9. Kwak EL, Clark MJ, Chabner B: Targeted agents: the rules of combination. Clin Cancer Res 2007, 13:5232-5237.
10. Jia J, Zhu F, Ma X, Cao Z, Li Y, Chen YZ: Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 2009, 8:111-128.
11. Wood LD, Parsons DW, Jones S, Lin J, Sp Jbrlom T, Leary RJ, Shen D, Bocar M, Sf, Barker P, Tkakj S, Siflman I, Szabo S, Dezso Z, Usynsky V, Nikolovska T, Nikolov K, Harbin M, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipin M, Willson J, Sukumar S, Polkay J, Park BH, Petryna RD, Clark MJ, Chabner B: The hallmarks of cancer. Cancer Cell 2007, 11:57-70.
12. Sawyers CL: Cancer: mixing cocktails. Nature 2007, 449:993-996.
13. Kwak EL, Clark MJ, Chabner B: Targeted agents: the rules of combination. Clin Cancer Res 2007, 13:5232-5237.
24. Shafter AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W, Powell J, Dave S, Yu X, Zhao H, Zeng Y, Chen B, Epstein J, Staudt LM: IRF4 addiction in multiple myeloma. Nature 2008, 454:226-231.

25. Tyner JW, Dininger MW, Lorius MM, Chang BH, Gotlib JR, Wilks SG, Erickson M, Kavokin SC, O'Hare T, Heinrich MC, Drucker BJ: RNAi screen for rapid therapeutic target identification in leukemia patients. Proc Natl Acad Sci USA 2009, 106:8695-8700.

26. Luo B, Cheung HW, Subramanian A, Sharifinia T, Okamoto M, Yang X, Hinkle G, Boehm JS, Beroukhim R, Weir BA, Meruelo C, Barbie DA, Awad T, Zhou X, Nguyen T, Piquian B, Li G, Golub TR, Meyerson M, Hacohen N, Hahn WC, Lander ES, Sabatini DM, Rao D: Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA 2008, 105:20380-20385.

27. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Frohling S, Chan EM, Sos ML, Michel K, Meruelo C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wriner BS, Ramsawamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, et al: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require BTK1. Nature 2009, 462:108-112.

28. Berns K, Horlings HM, Henningsby ET, Madiredjo M, Hijmans EM, Beelen K, Hinkle G, Boehm JS, Weir BA, Beroukhim R, Weir BA, Mermel C, Barbie DA, Hsu W, Johnson BE, Cantley LC, Baselga J, Hahn WC, Lander ES, Sabatini DM, Rao D: Genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007, 12:395-402.

29. Nagata Y, Lan KH, Zhou X, Tam M, Esteva FJ, Sahin AA, Klos KS, Li P, Manova-Todorova K, Massague J: Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 2009, 15:429-440.

30. Karapetsis CS, Kambath-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Rottet S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR: KRas mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008, 359:1757-1765.

31. Bernado R, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD: Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008, 26:1626-1634.

32. Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A: Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 2009, 101:1308-1324.

33. Inactivation of histone modifying genes. Nature 2007, 446:675-770.

34. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2011, 118:3063-3074.

35. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 2010, 16:483-489.

36. Metastatic stem cells from multiple myeloma patient samples display distinct genomic profile as compared with those from normal donors. Leukemia 2009, 23:1515-1527.

37. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007, 459:557-563.

38. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007, 459:1005-1009.

39. Response of tumor cells to targeted therapies. Science 2007, 318:287-290.

40. Metastasis. Nature 2007, 445:437-441.

41. Response of tumor cells to targeted therapies. Science 2007, 316:1039-1043.

42. Genome sequencing—an interim analysis. Cancer Res 2009, 69:4948-4950.
56. Shah SP, Kobel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalogeros SE, Sun M, Gulyani Y, Yodaia E, Jones S, Varhol R, Sweeneyton KD, Miller D, Clement PB, Crane C, Madore J, Provencher D, Leung P, DeFazio A, Khattra J, Tarsusli H, Zhao Y, Zheng T, Glover JN, Vanderhyden B, Zhao C, et al. Mutation of FOXO1 in granulosa-cell tumors of the ovary. N Engl J Med 2009, 360:2719-2729.

57. Ocana A, Amr E. Irreversible pan-ERBB tyrosine kinase inhibitors and breast cancer: Current status and future directions. Cancer Treat Rev 2009, 35:686-691.

58. Erlichman C, Boerner SA, Halgren CG, Speiker R, Wang XJ, James CD, Schefter TG, Malepaarda M, Ross DD, Bible KC, Kaufmann SH. The HER tyrosine kinase inhibitor CI1033 enhances cytotoxicity of 7-ethyl-10-hydroxycamptothecin and topotecan by inhibiting breast cancer resistance protein-mediated drug efflux. Cancer Res 2001, 61:739-748.

59. Perera SA, Li D, Shimamura T, Raso KG, Ji H, Chen L, Borgerman GM, Zaghid M, Brandstetter KA, Kubo S, Takashashi M, Chiriac LR, Padra P, Bronson RT, Shapiro G, Groulich H, Meyerson M, Guertler U, Chessa P, Solca F, Wistuba II. HER2YVMVA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc Natl Acad Sci USA 2009, 106:674-679.

60. Rabondron SK, Discanfani CM, Rasford EC, Baxter M, Floyd MB, Golas J, Hulett WA, Johnson BD, Nilakantan R, Overbeek E, Reich MR, Ren R, Shi X, Tsou HR, Wang YF, Wissner A. Antitumor activity of HKI-272, an orally irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res 2004, 64:3958-3965.

61. Wong KK, Fracasso PM, Bukowski RM, Lynch TJ, Munster PN, Shapiro G, Janne PA, Eder JP, Naughton MJ, Ellis MJ, Jones SF, Merheil T, Zacharkow C, Vernette J, Abac M, Cebe S, Powell C, Bunn P. HKI-272: A phase I study with neratinib (HKI-272), an irreversible pan ERBB receptor tyrosine kinase inhibitor in patients with solid tumors. Clin Cancer Res 2009, 15:2522-2538.

62. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 2009, 15:2207-2214.

63. Jin H, Yang R, Zheng Z, Romero M, Ross J, Bou-Reslan H, Carano RA, Kasman I, Mei E, Young J, Ji H, Zhang J, Ross S, Schwab R, Colbergen GM, Merchant M. MetMab, the one-armed SDS anti-c-Met antibody inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res 2008, 68:4360-4368.

64. Ayers M, Fargnoli J, Levin A, Wu Q, Platero JS. Discovery and validation of biomarkers that respond to treatment with bivanib alanimate a small-molecule VEGFR-2/FGFR-1 antagonist. Cancer Res 2007, 67:6969-6976.

65. Sala E, Molinari L, Truffa S, Gaetano C, Bollag GE, Gambacorti-Passerini C: BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol Cancer Ther 2008, 7:571-579.

66. Maia SM, Stuclif R, Bruggen J, Fuerst P, Schnell C, Fritsch C, Brandeis M, Chenn P, De P, Scholten R, Colbergen GM, Merchant M. MetMab, the one-armed SDS anti-c-Met antibody inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res 2008, 68:4360-4368.

67. Ayers M, Fargnoli J, Levin A, Wu Q, Platero JS. Discovery and validation of biomarkers that respond to treatment with bivanib alanimate a small-molecule VEGFR-2/FGFR-1 antagonist. Cancer Res 2007, 67:6969-6976.

68. El-Gabry EL, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Ayers M, Fargnoli J, Lewin A, Wu Q, Platero JS: NVP-BEZ235, a dual PI3K/mTOR inhibitor in patients with advanced cancer. Proc Am Assoc Cancer Res 2005, 46:91.

69. Ocana A, Amir E. Irreversible pan-ERBB tyrosine kinase inhibitors and breast cancer: Current status and future directions. Cancer Treat Rev 2009, 35:686-691.

70. Erlichman C, Boerner SA, Halgren CG, Speiker R, Wang XJ, James CD, Schefter TG, Malepaarda M, Ross DD, Bible KC, Kaufmann SH. The HER tyrosine kinase inhibitor CI1033 enhances cytotoxicity of 7-ethyl-10-hydroxycamptothecin and topotecan by inhibiting breast cancer resistance protein-mediated drug efflux. Cancer Res 2001, 61:739-748.

71. Perera SA, Li D, Shimamura T, Raso KG, Ji H, Chen L, Borgerman GM, Zaghid M, Brandstetter KA, Kubo S, Takashashi M, Chiriac LR, Padra P, Bronson RT, Shapiro G, Groulich H, Meyerson M, Guertler U, Chessa P, Solca F, Wistuba II. HER2YVMVA drives rapid development of adenosquamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc Natl Acad Sci USA 2009, 106:674-679.
86. O’Connor OA, Heaney ML, Schwartz L, Richardson S, Willim R, MacGregor-Coventer B, Curly T, Maskowtiz C, Portlock C, Horwitz S, Zelenetz AD, Frankel S, Richon V, Marks P, Kelly WK: Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 2006, 24:166-173.

87. Klimk VM, Ficancis S, Maslak P, Guernah I, Baum M, Wu N, Panagia K, Wright JJ, Pandolfi PP, Nimer SD: Tolerability, pharmacodynamics and pharmacokinetics studies of depsipeptide (romidepsin) in patients with acute myelogenous leukemia or advanced myelodysplastic syndromes. Clin Cancer Res 2008, 14:826-832.

88. Piekarz RL, Robey R, Sandor V, Bakke S, Wilson WH, Dahmouls L, Kingma DM, Turner ML, Altemus R, Bates SE. Inhibitor of histone deacetylation depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 2001, 98:2865-2868.

89. Garcia-Manero G, Yang H, Bueso-Ramos C, Ferrajoli A, Cortes J, Wierda WG, Faderl S, Koller C, Morris G, Rosner G, Loboda A, Fanin VR, Randolph SS, Hardwick JS, Reilly JF, Chen C, Ricker JL, Sersh JP. Richon VM, Frankel SR, Kantarjian HM. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 2008, 111:1060-1065.

90. Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F, Masson E, Rae P, Laird G, Sharma S, Kantarjian H, Dugan M, Albitar M, Bhalla K. A phase I study of intravenous LBHS89, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor in patients with refractory hematologic malignancies. Clin Cancer Res 2006, 12:4628-4635.

91. Ellis L, Pan Y, Smyth GK, George DJ, McCormack C, George DJ, McCormack C, Williams-Truax R, Mita M, Beck J, Burris H, Ryan G, Atadja P, Butterfoss D, Dugan M, Culver K, Johnstone RW, Prince HV. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res 2008, 14:4500-4510.

92. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, Schloch R, Gattermann N, Sanz G, List A, Gure SA, Seymour JF, Bennett JM, Byrd J, Backstrom J, Zimmerman M, McKenzie D, Beach C, Silverman LR. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised open-label, phase III study. Lancet Oncol 2009, 10:223-232.

93. Silverman LR, Demakos EP, Peterson BL, Komblit AB, Holland JC, Oldham-Reissig R, Stone RM, Nelson D, Powell BL, DeCastro CM, Ellerton J, Larson RA, Schiffer CA, Holland JF. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002, 20:2429-2440.

94. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, Klimk V, Slack J, de Castro C, Ravandi F, Helmer R, Shen L, Nimer SD, Leavitt R, Raza A, Saba H. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006, 106:1794-1803.

95. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Merigli-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009, 361:123-134.

96. Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A, Curtin N, Bodd Y, McHugh P, Newell D, Harris A, Johnson P, Steinfield H, Dewji R, Wang D, Robson L, Calvert H, Phase I study of the poly(ADP-ribose) polymerase inhibitor AG014699 in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 2008, 14:7917-7923.

97. Dickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Oll A, Reap PR, Jackson SP, Curtin NJ, Smith GC. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 2004, 64:9152-9159.

98. Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 2009, 27:5287-5297.

99. Latreille L, Batist G, Laborée F, Champagne P, Croteau D, Falardeau P, Levinton C, Hanton C, Evans WK, Dupont E: Phase IIHI trial of the safety and efficacy of AE-941 (Neovastat) in the treatment of non-small-cell lung cancer. Clin Lung Cancer 2003, 4:231-236.

100. Bosset D, O’Byrne KJ, von Pawel J, Curtin NJ, Cree ME, Price A, Nicolson M, Mercier R, Maubel E, Penning C, Zhang MH, Collier MA, Shepherd FA.

Cite this article as: Ocaña and Pandiella Personalized therapies in the cancer "omics" era. Molecular Cancer 2010 9:202.

Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 2005, 23:842-849.

101. Hande R, Coller M, Paradiso L, Stuart-Smith J, Dixon M, Clendeninn N, Yeung G, Alberti D, Binger K, Wilding G. Phase I and pharmacokinetic study of prinomastat a matrix metalloproteinase inhibitor. Clin Cancer Res 2004, 10:509-515.

doi:10.1186/1476-4598-9-202

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit