Enhancement of the photovoltaic performance of dye-sensitized solar cell using porous silicon layer as photoelectrode

Y Gamal¹, T Abdallah²* and G M Youssef²

¹ October High Institute for Engineering & Technology, Cairo, Egypt.
² Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

*Corresponding author e-mail address: tamer_sharaf@sci.asu.edu.eg (T. Abdallah)

Abstract. Porous Silicon Dye-sensitized solar cell (PS-DSSC) with N719 Dye was employed as photoelectrode. PS layers were formed on textured crystalline silicon CZ-Si (100) by electrochemical etching (ECE) in hydrogen fluoride (HF) based electrolyte at constant current density for different etching times. The morphological properties of the PS were investigated by scanning electron microscopy (SEM). The optical properties of the textured surfaces are studied using photoluminescence (PL) and reflectivity measurements. The bandgaps of PS from UV-Vis and PL measurements increase to 1.9 eV. The Current-Voltage (I-V) characteristics show that the short-circuit current density Jsc and the open-circuit voltage Voc increased as the porosity of the PS layer increased. These results show an improvement in the efficiency of PS-DSSC.

Keywords. Photovoltaics, Dye-sensitized solar cell, Porous Silicon, Electrochemical etching.

1. Introduction

Lately, photovoltaic devices, especially dye-sensitized solar cells (DSSCs), attract widespread academic and commercial attention by increasing the light-harvesting efficiency (LHE) of photovoltaic devices because of their low cost and higher efficiency[1-5]. Therefore, many approaches were made to improve the LHE, especially the improvement done through the photoanode. For example, plasmonic photoanodes, photonic crystal photoanodes, a porous active layer, hierarchically nanostructured photoanode, scattering layers[6-11].

One of the most critical issues is changing the optical design of the DSSC to improve the absorbance of light through the cell. Despite difficulties facing the researcher, such as losing the light reflectance and dye adsorption on the wide bandgap semiconductor. Scientists were hoping to discover new structures to enhance the light trapping through the photoanode. The texture of the surface plays a vital role in enhancing the conversion efficiency of the photovoltaic solar cell by lowering the reflection of light from the front surface, increasing the light trip inside the cell. As a result, the surface area of the photoanode increases[12-15]. The use of textured surface substrates as photoanode for DSSCs has been reported in some articles recently[16-17]. Thus, DSSC provides an economically and technically credible complementary concept to traditional PN junction photovoltaic devices.
In traditional photovoltaic systems, the semiconductor responsible for both the light absorption and charge carrier transport; on the other side, the two functions are separated here. Light is adsorbed to the surface of a wideband semiconductor, which is absorbed by a sensitizer. Charge separation created at the interface through photoinduced electrons is injected from the dye into the conduction band of the wideband semiconductor and then injected from the conduction band of the semiconductor to the charge collector. The role of dyes with a broad absorption band combining with oxide films of nanocrystalline morphology allows harvesting a large fraction of sunlight. Porous silicon (PS) has attracted much attention in the last years discovered in Bell Laboratories by accident as a byproduct of the wafer polishing process. This material is formed of a nanostructured PS skeleton. Porous silicon is well known for its abundance on the earth, good electrical conductivity, large specific surface area, and easy fabrication. PS is manufactured by electrochemical etching of silicon in hydrogen fluoride (HF) solution. In addition, the etchings methods help manage the morphological properties of PS layers (thickness and porosity). The critical factors in this method are the silicon doping type (P-type, n-type), the HF concentration, the electrolyte type (aqueous, organic, oxidant), the anodization etching time, and the surfactant. In this work, we use a porous silicon substrate as a photoanode in DSSC looked into the possibility of having a light-trapping process. First, we formed three different PS samples by using the electrochemical anodization etching process. Following that, ITO film was deposited on PSi substrates with electron beam sputtering, followed by the deposition of a wide bandgap (TiO₂) layer.

In this work, DSSCs have been constructed. An analysis involving SEM imaging for morphology, Photoluminescence spectroscopy (PL), UV–visible spectroscopy, and current-voltage measurements has been examined to characterize the proposed DSSC. Si substrates with different porosity layers changed both the dye absorption capacity and the optical property, making LHE far better.

2. Experimental

2.1 porous silicon fabrications

PS samples were fabricated by electrochemical etching of Czochralski (CZ) p-type [100] oriented silicon wafers with resistivity from (2 to 5) Ω. Cm and a thickness of 450 µm. firstly cut silicon samples into 1.5 × 1.5 cm² square samples. Before electrochemical etching, the wafers were and then dipped in trichloroethylene (isopropyl) and heated for 5 min then washed in de-ionized water, then dried under a stream of nitrogen (N₂) gas to remove all traces of native oxide. Porous silicon was formed in a Teflon electrochemical cell with two electrodes silicon wafer as an anode and platinum contacts of the electrolyte as a cathode.

The PS was prepared by electrochemical anodization method in an electrolyte of 40 % hydrofluoric acid and 96 % ethanol [HF: C₂H₅OH = 2:1 by volume] at a constant current density of 20 mA/cm², and different etching time 15, 25, and 35 min. The samples were cleaned with acetone and then dipped in ethanol to remove the inorganic residuals, then used N₂ gas to dry the samples. Ethanol is always added to the solution to reduce the surface tension of HF, enabling the H₂ gas created during the reaction to avoid and prevent it from attaching to the etching surface and then enhancing the homogeneity of the resulting PS.

2.2 Preparation of photo-anode for DSSC
Firstly the PS substrate was cleaned with acetone and ethanol and then dried with N₂ gas. Next, the Indium Tin Oxide (ITO) was deposited on the PS layer using the sputtering technique where the system pressure was below 2×10⁻⁷ torr. After the growth, we annealed the samples at 400 °C under vacuum for 20 min. The thickness of ITO thin film is 50 nm. An area of 1x1 cm² was identified on a porous silicon substrate with a thin layer of ITO by using adhesive tape. The adhesive tape was used to define the deposition area and controls the film thickness. A drop of TiO₂ paste is spread by using a glass rod in activating area. The TiO₂ paste was prepared as follows: in a glass mortar, grind 1 gm of commercial TiO₂ powder (Degussa, P25) with 1 ml of distilled water containing (10 % v:v) acetylacetone (alpha, India), the acetylacetone is used as a dispersing agent. The mixture was then diluted by adding 1 ml of distilled water with continuous grinding. Reducing the suspension's surface tension is done by adding a few drops of triton X-100 (oxford, India) as a surfactant to disperse the TiO₂ nanoparticles in the colloidal. The obtained paste was transferred to a dropper bottle and stored in the dark until use. The paste was then dried on the samples at room temperature for 20 minutes and then sintered at 450 °C for about 30 minutes. After cooling, immersed the TiO₂ electrode in a 1.5x10⁻⁴M solution of the sensitizer dye, namely cis-bis (isothiocyanato) bis(2,2'- bipyridyl-4,4-dicarboxylato) -ruthenium (II) (ruthenium-535, Solaronix) inanhydrous ethanol, for 24 h at room temperature, to absorb the dye on TiO₂. After that period, samples were rinsed with anhydrous ethanol to wash the unattached dye molecules away and dry. A counter-electrode was prepared from platinum on an ITO glass substrate. The two electrodes were put together in a sandwich cell, and the electrolyte was in between them. Two electrolyte solutions were used triiodide/iodine (I⁻/I₃) redox. The triiodide/iodine is prepared by mixing 0.1269 gm Iodine I₂ (0.05M) and 0.830 gm potassium iodide KI (0.5M) with 10 mL of ethylene glycol soluble them very well by continuous stirring.

Figure 1 The schematic diagram for porous silicon dye-sensitized solar cell (PS-DSSC)

3. Results and Discussion

3.1 PS morphology of the surface

Figure 2 shows the surface morphology of porous silicon samples using a scanning electron microscope (SEM) during the etching process. Figure 2 (a) shows the surface morphology before PS formation, whereas the image shows many different sizes of spaced pyramids covered the surface. Figure 2 (b-d) shows the surface morphology after PS formation, which was fabricated with constant current density 20 mA/cm² and different etching times 15, 25, and 35 min at room temperature. The images illustrate the increase in surface area and porosities with different etching times.
Figure 2 SEM image of top view (a) silicon substrate without etching (b) PS formed at 15 min etching time (c) PS formed at 25 min etching time (d) PS formed at 35 min etching time.

Figure (3) shows SEM images for the side view of the pyramids after depositing the ITO layer, which illustrates white light on the edge of pyramids, and TiO$_2$ which appears between and upon the pyramids. The high magnification shows the edge of the pyramid with a white beam of ITO and bubbles of TiO$_2$. In contrast, the ITO thickness is measured and found to be 49.71nm.

Figure 3 Side view of SEM image for ITO and TiO$_2$ on PS layer.

3.2 Optical properties

3.2.1 Photoluminescence (PL) of PS layers and pore size

Figure (4) show the photoluminescence spectra for PS samples with different etching times 15, 25, and 35 min and constant current density 20 mA/cm2 with peaks at 655, 653.7, and 652.6 nm, respectively. The
spectra show a blue shift indicates an increase in energy gap as etching time increased. The energy gap is calculated from

\[E_g = \frac{hc}{\lambda} = \frac{1240}{\lambda} \]

(1)

Where \(E_g \) is the Energy gap, \(h \) is Planck’s constant, \(c \) is the speed of light and \(\lambda \) the peak wavelength of the photoluminescence. The average pore diameter was calculated \(^{[36]}\)

\[E(\text{ev}) = E_g + \frac{h^2}{8d^2} \left[\frac{1}{m_e} + \frac{1}{m_h} \right] \]

(2)

The bandgap of bulk silicon \(E_g \) is 1.12 eV, \(h \) is Planck’s constant, the pore diameter is \(d \), \(m_e \) and \(m_h \) is the mass of electron and hole, respectively. substitution with \(E_g \), \(h \), \(m_h \) and \(m_e \), this formula is simplified to

\[d = \sqrt{\frac{26.948}{E-1.12}} \]

(3)

The calculated pore diameter (d) is 5.90, 5.88, and 5.87 (nm) for 15, 25, and 35 min etching times. Thus, the pore diameter is decreasing with increasing the etching time.

![Figure 4 Photoluminescence spectra of porous silicon sample with different etching time](image)

3.2.2 Reflectivity

Figure 5(a) shows the reflectance curve with different etching times. UV-Vis spectrophotometry was carried out to study optical changes on silicon after etching. We can calculate the energy bandgap by using the absorbance coefficient \((\alpha) \) and reflectance spectrograph \((R) \) \(^{[37, 38]}\).

\[\alpha = \frac{1}{2t} \ln \frac{R_{\text{max}} - R_{\text{min}}}{R - R_{\text{min}}} \]

(4)
The absorption coefficient is \(\alpha \) that the film's thickness is \(t \), \(R_{\text{max}} \) and \(R_{\text{min}} \) are the maximum and minimum reflectance in the diffused reflection spectra. The reflectance for any intermediate photon energy is \(R \). The calculated energy gap \(E_g \) computed from\(^{[39]}\)

\[
\alpha h \nu = A (h \nu - E_g)^m
\]

(5)

The edge width parameter is \(A \), \(m = \frac{1}{2} \) for direct transition, and 2 for indirect transition. As shown in figure 5(b), the graph was a plot between \((\alpha h \nu)^{1/2}\) and \(h \nu \) then drawing the tangent line to determine the energy gap.

![Figure 5 a) Reflectance curve b) The curve to determine the energy bandgap](image)

Table 1 comparison between energy band gaps from UV-Vis spectrophotometry and photoluminescence

Etching time (min)	Energy band gap (eV)	
	UV	PL
0	1.100	1.12 (literature)
15	1.880	1.893
25	1.885	1.897
35	1.900	1.900

3.3 I-V characteristic for PSDSSC

Figure (6) shows the I-V curve for PSDSSC with ruthenium dye for five etching times 0, 15, 20, 25, and 35 min. Table 2 shows the solar cell parameters. The curves show that the \(V_{\text{OC}} \) and \(J_{\text{sc}} \) increases to the highest open-circuit voltage values, 118 mV, and highest short-circuit current density of 0.223 mA/cm² at 35min etching time. Moreover, the fill factor reaches the highest value of 0.42 and six times the conversion efficiency for the 35 min etching time.
Figure 6 current-voltage characteristics of DSSCs fabricated by different etching time

Table (2) performance characteristics of DSSCs fabricated by different etching time

Time	VOC (volt)	JSC (mA/cm²)	Vmax (volt)	Jmax (mA/cm²)	Pmax (μW/cm²)	F.F
0	0.034	0.170	0.020	0.085	1.700	0.29
15	0.070	0.091	0.040	0.052	2.080	0.33
20	0.074	0.159	0.039	0.102	3.978	0.34
25	0.084	0.209	0.049	0.122	5.978	0.35
35	0.118	0.223	0.079	0.140	11.060	0.42

4. Conclusion

Porous silicon (PS) samples were prepared at constant etching current 20 mA/cm² at etching times 15, 20, 25, and 35 min used as photoanode in DSSC show that by increasing etching time, the energy bandgap was increased from 1.12 eV before etching to 1.9 eV after etching. The porosity increased, and the surface area of PS was increased, so we used PS as photoelectrode in DSSC because it helped the dye solution to distribute over a large surface area and absorb much light, which improved the efficiency of DSSC. The best DSSC, which had PS with an etching time of 35 min their efficiency was increased six times more than silicon before any etching.

5. References
[1] Kim Y and Lee D 2011 Development of Dye-Sensitized Solar Cell for High Conversion Efficiency. Solar Cells Dye-Sensitized Devices https://doi.org/10.5772/19577.

[2] McCune M, Zhang W, and Deng Y. 2012 High Efficiency Dye-Sensitized Solar Cells Based on Three-Dimensional Multilayered ZnO Nanowire Arrays with "Caterpillar-like" Structure Nano Letters 12 3656. https://doi.org/10.1021/nl301407b.

[3] Jung H S, Lee J K 2013 Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems. The Journal of Physical Chemistry Letters, 4 1682. https://doi.org/10.1021/jz400112n.

[4] Adel R, Abdallah T, Moustafa Y M, Al-sabagh A M, and Talaat H 2015 Effect of polymer electrolyte on the performance of natural dye sensitized solar cells Superlattices and Microstructures 86 62. https://doi.org/10.1016/j.spim.2015.07.024.

[5] Adel R, Abdallah T, and Talaat H 2019 Efficiency enhancement of photovoltaic performance of dye sensitized solar cell using conducting polymer electrolyte of different functional group. Journal of Physics: Conference Series 1253 012029. https://doi.org/10.1088/1742-6596/1253/1/012029.

[6] Guo M, Chen J, Zhang J, Su H, Liu L, Fu N, and Xi K 2018 Coupling plasmonic nanoparticles with TiO2 nanotube photonic crystals for enhanced dye-sensitized solar cells performance. Electrochimica Acta 263 373. https://doi.org/10.1016/j.electacta.2018.01.039.

[7] Shakeel A M, Pandy A K, and Abd Rahim N 2017 Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renewable and Sustainable Energy Reviews, 77 89. https://doi.org/10.1016/j.rser.2017.03.129.

[8] Fan K, Yu J, and Ho W 2017 Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Materials Horizons 4 319. https://doi.org/10.1039/c6mh00511j.

[9] Ghidelli M, Mascaretti L, Bricchi B R, Brognara A, Affifi T A, Russo V, Casari C S, and Bassi A L 2020 Light management in TiO2 thin films integrated with Au plasmonic nanoparticles. Semiconductor Science and Technology 35 035016. https://doi.org/10.1088/1361-6641/ab6cea.

[10] Boro B, Gogoi B, Rajbongshi B M, and Ramchiary A 2018 Nanostructured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renewable and Sustainable Energy Reviews 81 2264. https://doi.org/10.1016/j.rser.2017.06.035.

[11] Wang W, and Qi L 2019 Light Management with Patterned Micro- and Nanostructure Arrays for Photocatalysis, Photovoltaics, and Optoelectronic and Optical Devices. Advanced Functional Materials 29 1807275. https://doi.org/10.1002/adfm.201807275.

[12] Aliaghayee M, Fard H G, and Zandi A 2016 Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping. Journal of Electrochemical Science and Technology 7 218. https://doi.org/10.5229/jestct.2016.7.3.218.

[13] Boppella R, Mohammadpour A, Illa S, Farsinezhad S, Basak P, Shankar K, and Anorama S V 2016 Hierarchical rutile TiO2 aggregates: A high photonic strength material for optical and optoelectronic devices. Acta Materialia 119 92. https://doi.org/10.1016/j.actamat.2016.08.004.

[14] Dye-sensitized solar cell fabrication and light trapping 2013. https://etda.libraries.psu.edu/files/final_submissions/8884.

[15] Elshimy H, Abdallah T, and Shama A A 2020 Optimization of Spin Coated TiO2 Layer for Hole-Free Perovskite Solar Cell. IOP Conference Series: Materials Science and Engineering 762 012003. https://doi.org/10.1088/1757-899X/762/1/012003.

[16] Aliaghayee M, Ghafoori Fard H, and Zandi A 2015 A new method for improving the performance of dye sensitized solar cell using macro-porous silicon as photoanode. Journal of Porous Materials 22 1617. https://doi.org/10.1007/s10934-015-0045-3.

[17] Aliaghayee M, Fard H G, and Zandi A 2016 Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping. Journal of Electrochemical Science and Technology 7 218. https://doi.org/10.5229/jestct.2016.7.3.218.

[18] Han H, Huang Z, and Lee W 2014 Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9 271. https://doi.org/10.1016/j.nantod.2014.04.013.

[19] Tontini G, Greaves M, Ghosh S, Bayram V, and Barg S 2020 MXene-based 3D porous
macrostructures for electrochemical energy storage. *Journal of Physics: Materials* 3 022001. https://doi.org/10.1088/2515-7639/ab78f1.

[20] Salman K A, Omar K, and Hassan Z 2011 The effect of etching time of porous silicon on solar cell performance. *Superlattices and Microstructures* 50 647. https://doi.org/10.1016/j.spmi.2011.09.006.

[21] Ramizy A, Aziz W J, Hassan Z, Omar K, and Ibrahim K 2011 Improved performance of solar cell based on porous silicon surfaces. *Optik* 122 2075. https://doi.org/10.1016/j.ijleo.2010.11.026.

[22] Ramizy A, Aziz W J, Hassan Z, Omar K, and Ibrahim K 2010 The effect of porosity on the properties of silicon solar cell. *Microelectronics International* 27 117. https://doi.org/10.1108/13565361011034812.

[23] Omar K, and Salman K A 2017 Effects of Electrochemical Etching Time on the Performance of Porous Silicon Solar Cells on Crystalline n-Type (100) and (111). *Journal of Nano Research* 46 45. https://doi.org/10.4028/www.scientific.net/jnanor.46.45.

[24] Dantas M O S, Galeazzo E, Pees H E M, and Fernandez F J R 2002 Silicon micromechanical structures fabricated by electrochemical process. *Proceedings of IEEE Sensors*. https://doi.org/10.1109/icsens.2002.1037163.

[25] Theunissen M J, Appels J A, and Verkuylen W H 1970 Application of Preferential Electrochemical Etching of Silicon to Semiconductor Device Technology. *Journal of The Electrochemical Society* 117 959. https://doi.org/10.1149/1.2407698.

[26] Lv H, Shen H, Jiang Y, Gao C, Zhao H, and Yuan J 2012 Porous-pyramids structured silicon surface with low reflectance over a broad band by electrochemical etching. *Applied Surface Science* 258 5451. https://doi.org/10.1016/j.apsusc.2012.02.033.

[27] Naderi N, and Hashim M R 2012 A combination of electroless and electrochemical etching methods for enhancing the uniformity of porous silicon substrate for light detection application. *Applied Surface Science* 258 6436. https://doi.org/10.1016/j.apsusc.2012.03.056.

[28] Jakubowicz J 2003 Study of surface morphology of electrochemically etched n-Si (111) electrodes at different anodic potentials. *Crystal Research and Technology* 38 313. https://doi.org/10.1002/crat.200310037.

[29] Kolasinski K W 2005 Silicon nanostructures from electroless electrochemical etching. *Current Opinion in Solid State and Materials Science* 9 73. https://doi.org/10.1016/j.cossms.2006.03.004.

[30] Hafez A A, Mohammed M M, Ibrahim I H, and Youssef G M 2021 An attempt to prepare an easy-fabricated porous silicon-based electrochemical non-enzymatic sensor for glucose detection. *Applied Physics A* 127. https://doi.org/10.1007/s00339-021-05458-x.

[31] Youssef G M, El-Nahass M M, El-Zaia S Y, and Farag M A 2015 Effect of porosity on the electrical and photoelectrical properties of textured n+ p silicon solar cells. *Materials Science in Semiconductor Processing* 39 457. https://doi.org/10.1016/j.mssp.2015.05.054.

[32] El-Nahass M M, Youssef G M, El-Zaia S Y, and Noby S Z 2015. Electrical conduction mechanisms of CdTe quantum dots/p-si heterojunction. *Materials Science in Semiconductor Processing* 40 337. https://doi.org/10.1016/j.mssp.2015.05.039.

[33] Youssef G M, El-Zaia S Y, El-Malky M and Nawar H A 2015 Preparation and physical characterization of porous silicon layers for sensing applications. *International Journal of Applied, Physical and Bio-Chemistry Research (IJA PCB R)*.

[34] Youssef G M, M. El-Nahss M, El-Zaia S Y, and Farag M A 2015 Investigation of size and band gap distributions of nanoparticles from morphology and optical properties of porous silicon layers formed on a textured n+p silicon solar cell. *International Journal of Semiconductor Science & Technology (IJSST)*

[35] Ahmed A T, El Ghandoor H, El-Aasser M A, and Youssef G M 2019 Investigation of Porous Silicon Layers Properties Using Speckle Techniques for Photovoltaic Applications. *Silicon* 12 1603. https://doi.org/10.1007/s12633-019-00255-w.

[36] El-Brolossy T A, Abdallah S, Abdallah T, Awad H, Mohamed M B, Negm S, and Talaat H 2008.
Photoacoustic spectroscopy characterization of CdSe quantum rods. *The European Physical Journal Special Topics* **153** 369. https://doi.org/10.1140/epjst/e2008-00464-x.

[37] El-Nahass M M 1992 Structural and electrical properties of cadmium-sulpho-selenide solid solutions. *Journal of Materials Science: Materials in Electronics*, **3** 71. https://doi.org/10.1007/bf00701097.

[38] Tauc J, and Menth A 1972 States in the gap. *Journal of Non-Crystalline Solids*, **8** 569. https://doi.org/10.1016/0022-3093(72)90194-9.

[39] Handbook of Photovoltaic Science and Engineering 2003 https://doi.org/10.1002/0470014008.

Acknowledgments

The generous support of the Egyptian STDF grant ID 4929 is greatly appreciated.