Orthogonalization of fermion k-Body operators
and representability

Bach, Volker Rauch, Robert
April 10, 2019

Abstract

The reduced k-particle density matrix of a density matrix on finite-dimensional, fermion Fock space can be defined as the image under the orthogonal projection in the Hilbert-Schmidt geometry onto the space of k-body observables. A proper understanding of this projection is therefore intimately related to the representability problem, a long-standing open problem in computational quantum chemistry. Given an orthonormal basis in the finite-dimensional one-particle Hilbert space, we explicitly construct an orthonormal basis of the space of Fock space operators which restricts to an orthonormal basis of the space of k-body operators for all k.

1 Introduction

1.1 Motivation: Representability problems

In quantum chemistry, molecules are usually modeled as non-relativistic many-fermion systems (Born-Oppenheimer approximation). More specifically, the Hilbert space of these systems is given by the fermion Fock space $\mathcal{F} = \mathcal{F}_\Lambda(\mathcal{h})$, where \mathcal{h} is the (complex) Hilbert space of a single electron (e.g. $\mathcal{h} = L^2(\mathbb{R}^3) \otimes \mathbb{C}^2$), and the Hamiltonian \hat{H} is usually a two-body operator or, more generally, a k-body operator on \mathcal{F}. A key physical quantity whose computation is an important task is the ground state energy

$$E_0(\mathcal{H}) \doteq \inf_{\varphi \in \mathcal{S}} \varphi(\mathcal{H})$$

of the system, where $\mathcal{S} \subseteq B(\mathcal{F})'$ is a suitable set of states on $B(\mathcal{F})$, where $B(\mathcal{F})$ is the Banach space of bounded operators on \mathcal{F} and $B(\mathcal{F})'$ its dual. A direct evaluation of (1) is, however, practically impossible due to the vast size of the state space \mathcal{S}.

Abstract representability problem As has been widely observed, this problem can be reduced drastically by replacing the states $\tau \in \mathcal{S}$ by a quantity r_τ, the k-body reduction of τ, that only encodes the expectation values of
The representability problem for way. As it turns out, in the finite-dimensional case tor. In this case the two-body reduction i of) the set of density matrices on k most important case is B subspace of k because in concrete applications S sentability problems as discussed here is usually invisible in the pertinent litera- T raditional representability problems The general framework of repre- nsability framework breaks down in the infinite-dimension case, because

Thus the evaluation of (1) is, in principle, simplified, because the infimum has to be taken over the much smaller set \(\pi'_k(S) \). To explicitly compute the right hand side of (2) however, one has to find an efficient parametrization of the set \(\pi'_k(S) \). The representability problem for \(S \) (and \(k \in \mathbb{N}_0 \)) amounts to characterize the image \(\pi'_k(S) \) of representable functionals on \(O_k(F) \) in a computationally efficient way.

Traditional representability problems The general framework of representability problems as discussed here is usually invisible in the pertinent literature, because in concrete applications \(S \) is almost always chosen to be (a subset of) the set of density matrices on \(F \) and \(O_k(F)' \) is identified with a suitable subspace of \(B(F) \). Moreover, in applications of physics or chemistry the by far most important case is \(k = 2 \), as the Hamiltonian usually is a two-body operator. In this case the two-body reduction \(i'_k(\rho) \) of an \(N \)-particle density matrix can be identified with the (customary) 2-RDM, which is a bounded operator on \(\wedge^2 \mathfrak{h} \).

Erdahl’s representability framework In this paper, only the case \(\dim \mathfrak{h} < \infty \) is considered, which is sufficient for many important applications. For example, in quantum chemistry one commonly starts by choosing a finite subset of \(L^2(\mathbb{R}^3) \otimes \mathbb{C}^2 \) of spin orbitals and then considers their span \(\mathfrak{h} \). In the finite-dimensional case, the reduced \(k \)-body reduction of a density matrix \(\rho \) can be introduced as the image \(\pi_k(\rho) \) under the orthogonal projection onto \(O_k(F) \) [see §8],

\[
\pi_k : \mathcal{L}^2(F) \to O_k(F) \subseteq \mathcal{L}^2(F).
\]

As it turns out, in the finite-dimensional case \(\pi_k \) is an equivalent description of the map \(i'_k \) introduced above. The reason for this is that in the finite-dimensional case \(B(F) = \mathcal{L}^2(F) \), where \(\mathcal{L}^2(F) \) denotes the Hilbert space of Hilbert-Schmidt operators on \(F \), and we may identify \(B(F)' = \mathcal{L}^2(F) \) and \(O_k(F)' \cong O_k(F) \) via the Riesz isomorphisms. Under these identifications, the \(k \)-body reduction map \(i'_k \) is given by the adjoint \(i''_k \) of \(i_k \) and \(\pi_k = i_k i''_k \). This geometric interpretation of the representability problem is visualized in Fig. 1. Note that Erdahl’s representability framework breaks down in the infinite-dimensional case, because then \(k \)-body operators are generally not Hilbert-Schmidt anymore.
1.2 Related work

The idea of replacing density matrices by their reduced density matrices to simplify the evaluation of (1) can be traced back to Husimi [10]. First extensive analyses were carried out in the 1950’s and 1960’s and lead, e. g., to the solution of the representability problem for one-body reduced density matrices of \(N \)-particle density matrices \[5, 9, 21\] and the development of (still very inaccurate) lower bound methods based on representability conditions. In 1978 Erdahl introduced a new class of representability conditions \[8\], which were found to significantly increase the accuracy of lower bound methods \[4\]. In 2005 the representability problem for the one-body reduced density matrices of pure states was solved by Klyachko \[11\] based on results from quantum information theory. In 2012 Mazziotti established a hierarchy of representability conditions providing a formal solution of the representability problem for the two-body RDMs of \(N \)-particle density matrices \[15\]. However, the general representability problem has been found to be computationally intractible \[15\], even on a quantum computer \[12\]. Computational advances \[13\] enabled a range of recent applications \[17, 18, 16\]. Representability methods have also proved useful in Hartree-Fock theory \[2\]. For a more detailed overview on the history of representability problems, we refer to \[14\] and \[6\].

1.3 Goal and main results

The goal of the present work is to shed more light on the projection \(\pi_k \) in the finite-dimensional case. As a result, we explicitly diagonalize the orthogonal projections \(\pi_k \) simultaneously for all \(k \in \mathbb{N}_0 \). More specifically, we prove the following.

Theorem 1 (Main Theorem) Let \(\dim \mathfrak{h} = n < \infty \) and \(\varphi_1, \ldots, \varphi_n \) be an orthonormal basis of \(\mathfrak{h} \). For \(I = \{i_1 < \ldots < i_j\} \subseteq \{1, \ldots, n\} \) define \(c_I \doteq c(\varphi_{i_1}) \cdots c(\varphi_{i_j}) \) and \(n_I \doteq c_I^* c_I \), where \(c(\varphi) \) denotes the usual fermion annihilation operator. Then the following is found

1. An orthonormal basis \(\mathcal{B} \) of \(\mathcal{L}^2(\mathcal{F}) \) is given by the elements

\[
\frac{1}{\sqrt{2^{n-|I\cup J|}}} \sum_{A \subseteq L} (-2)^{|A|} n_A c_I^* c_J,
\]

where \(I, J, L \) run over all mutually disjoint subsets of \(\{1, \ldots, n\} \).

2. For any \(k \in \mathbb{N}_0 \), \(\mathcal{B} \cap \mathcal{O}_k(\mathcal{F}) \) is an orthonormal basis of \(\mathcal{O}_k(\mathcal{F}) \). \(\square \)

Orthogonal decompositions of \(\mathcal{L}^2(\mathcal{F}) \) as implied by **Theorem 1** have already been introduced, e. g., in \[8\] Sec. 8, where an orthogonal decomposition \(\mathcal{B}(\mathcal{F}) = \bigoplus_{n,m} \Lambda(n, m) \) is used to derive new classes of representability conditions. The spaces \(\Lambda(n, m) \) are generated by elements of the form \((69) \), see Sec. 5. The

\[1\] See Fig. 1 for a geometric interpretation of this result and its relation to the representability problem.
Figure 1: Geometric interpretation of the representability problem for density matrices in finite dimensions: the mapping of density matrices $\rho \in P_1$ to its k-body reduction as orthogonal projection π_k onto the subspace $O_k(F) \subseteq L^2(F)$ of k-body operators. The representability problem amounts to finding an efficient characterization of the image $\pi_k(P_1)$ within $O_k(F)$. The orthonormal basis \mathfrak{B} given in Theorem 1 is adapted to this situation as it restricts to an orthonormal basis $\mathfrak{B} \cap O_k(F)$ of $O_k(F)$ for every $k \in \mathbb{N}_0$.

Orthonormal basis elements given in Theorem 1, however, have the additional property of being normal ordered, which can be used to express $\pi_k(\rho)$ in terms of the customary reduced density matrices, as in the following example.

Corollary 2 Let ρ be a particle number-preserving density matrix, $\gamma \in \mathcal{B}(\mathfrak{h})$ its 1-RDM and $d\Gamma(\gamma) = \sum_{i,j} \gamma_{ji} c_i^* c_j$ the (differential) second quantization of γ. Then

$$2^n \pi_1(\rho) = (n+1) - 2 \text{tr}(\gamma) - 2\hat{N} + 4d\Gamma(\gamma), \quad (5)$$

where $\hat{N} = \sum_i c_i^* c_i$ denotes the particle number operator.

A similar formula for $\pi_2(\rho)$ exists, but is much more complicated.

1.4 Overview of the paper

In Sec. 2 we introduce the necessary terminology and notation of fermion many-particle systems and general density matrix theory, as well as, some features specific to the finite-dimensional setting. In Sec. 3 we compute the Hilbert-Schmidt scalar product of specific monomials in creation and annihilation operators (Proposition 11). In Sec. 4 we prove Theorem 1 in two steps, as follows.

1. The orthonormal basis \mathfrak{B} of $L^2(F)$ is constructed in Theorem 14.

2. In Theorem 16 we show that $\mathfrak{B} \cap O_k(F)$ is a basis of $O_k(F)$ for all $k \in \mathbb{N}_0$.

In many cases one also considers the space $O_k^R(F)$ of selfadjoint k-body operators. We generalize the above results in Theorem 19 where we apply a suitable
unitary transformation U on $\mathcal{L}^2(\mathcal{F})$ and show that the orthonormal basis $U(\mathcal{B})$ of $\mathcal{L}^2(\mathcal{F})$ restricts to an orthonormal basis of $\mathcal{O}_k^2(\mathcal{F})$ for all $k \in \mathbb{N}_0$. Finally, in Sec. 5 we present an alternative approach for constructing an orthonormal basis of $\mathcal{L}^2(\mathcal{F})$ with properties as in Theorem 1, which was first communicated to us by Gosset \footnote{dgosset@uwaterloo.ca} and turned out to be already present in \cite{8}.

1.5 Motivating application

We illustrate the virtue of having orthonormal bases of the space of operators explicitly available on the following example: Consider a fermionic many-particle system with finite-dimensional one-particle Hilbert space \mathfrak{h}, a two-body Hamiltonian of the form

$$
H = \sum_{i,j} t_{ij} c_i^* c_j + \frac{1}{2} \sum_{i,j,k,l} V_{ij;kl} c_i^* c_j^* c_l c_k,
$$

where $V_{ij;kl} \equiv \langle \varphi_i \otimes \varphi_j | V(\varphi_k \otimes \varphi_l) \rangle$ is a matrix element of a repulsive two-body potential $V \geq 0$. Let \mathcal{B} be an orthonormal basis of $\mathcal{L}^2(\mathcal{F})$. Then for any $\mathcal{A} \subseteq \mathcal{B}$ we have $P_{\mathcal{A}} \equiv \sum_{\theta \in \mathcal{A}} |\theta\rangle \langle \theta|$ $\leq \sum_{\theta \in \mathcal{B}} |\theta\rangle \langle \theta| = 1_{\mathcal{L}^2(\mathcal{F})}$ and, under suitable positivity requirements on the potential V, we obtain

$$
H \geq \sum_{i,j} t_{ij} c_i^* c_j + \frac{1}{2} \sum_{i,j,k,l} V_{ij;kl} c_i^* c_j^* P_{\mathcal{A}c_l c_k} \equiv H_{\mathcal{A}}.
$$

Thus $E_0(H_{\mathcal{A}})$ is a lower bound, which are usually more difficult to derive than upper bounds, for the ground-state energy $E_0(H)$ of the original quantum system. In many situations, after a suitable choice of an orbital basis $\varphi_1, \ldots, \varphi_n$ of \mathfrak{h}, the orthonormal basis \mathcal{B} given by Theorem 1 and a suitable choice of $\mathcal{A} \subset \mathcal{B}$ leads to a nontrivial lower bound $E_0(H_{\mathcal{A}})$ of $E_0(H)$.

2 Foundations

Throughout this work, \mathfrak{h} denotes the one-particle Hilbert space, i.e., a separable complex Hilbert space. We consider only the finite-dimensional case here and assume $n \equiv \text{dim}_\mathbb{C} \mathfrak{h} < \infty$ throughout the paper.

2.1 General notions

In this subsection, we will recall some relevant notions from general density matrix theory of fermion many-particle systems that are also valid when $\text{dim} \mathfrak{h} = \infty$. \footnote{dgosset@uwaterloo.ca}
Hilbert spaces If not stated otherwise, all Hilbert spaces are assumed to be complex. For a Hilbert space \mathcal{H}, the inner product between elements $\varphi, \psi \in \mathcal{H}$ is denoted by $\langle \varphi | \psi \rangle_{\mathcal{H}}$ and is assumed to be anti-linear in the first and linear in the second component. When there is no risk of confusion, we will freely omit the subscript \mathcal{H} of the inner product. By $\mathcal{B}(\mathcal{H})$ we denote the C*-algebra of linear bounded operators on \mathcal{H}.

Hilbert-Schmidt operators The space of Hilbert-Schmidt operators on a Hilbert space \mathcal{H} is denoted by $L^2(\mathcal{H})$ and is a Hilbert space with respect to the inner product $\langle a | b \rangle_{L^2(\mathcal{H})} = \text{tr}\{a^*b\}$. Furthermore, $L^2(\mathcal{F})$ is endowed with a natural real structure (i.e., a complex conjugate involution) given by the Hermitian adjoint.

Fermion Fock space For a Hilbert space \mathfrak{h}, the associated fermion Fock space $\mathcal{F}_\mathfrak{h} = \mathcal{F}(\mathfrak{h})$ is the completion of the Grassmann algebra $\bigwedge \mathfrak{h} = \bigoplus_{k \geq 0} \bigwedge^k \mathfrak{h}$ with respect to the inner product defined by

$$\langle \varphi_1 \wedge \cdots \wedge \varphi_k | \psi_1 \wedge \cdots \wedge \psi_l \rangle = \begin{cases} \det (\langle \varphi_i | \psi_j \rangle)_{i,j=1}^k & \text{if } k = l, \\ 0 & \text{otherwise}. \end{cases}$$

The neutral element $1 \in \mathbb{C} \cong \bigwedge^0 \mathfrak{h} \subset \mathcal{F}$ of the wedge product on \mathcal{F} is also called the (Fock) vacuum and denoted by $\Omega_\mathcal{F}$.

CAR Associated with \mathcal{F}, there are natural linear, respectively anti-linear, maps $c^*, c : \mathfrak{h} \to \mathcal{B}(\mathcal{F})$ called the creation- and annihilation operators which are defined for $f \in \mathfrak{h}$ and $\omega \in \mathcal{F}$ by $c(\varphi) = [c^*(\varphi)]^*$ and $c^*(f)\omega = f \wedge \omega$, respectively. They satisfy the canonical anti-commutation relations (CAR)

$$\{c^*(\varphi), c^*(\psi)\} = \{c(\varphi), c(\psi)\} = 0, \quad \{c^*(\varphi), c(\psi)\} = \langle \varphi | \psi \rangle, \quad \forall \varphi, \psi \in \mathfrak{h}, \quad (9)$$

and $c(\phi)\Omega_\mathcal{F} = 0$ for all $\phi \in \mathfrak{h}$. The mappings $c^*, c : \mathfrak{h} \to \mathcal{B}(\mathcal{F})$ induce a representation of the (abstract) CAR algebra generated by \mathfrak{h} [see [3, Sec. 5.2.2]], called the Fock representation.

Density matrices We denote by $\mathcal{P} \doteq L^1_+(\mathcal{F}) \subseteq L^2(\mathcal{F})$ the cone of positive, trace-class operators on \mathcal{F}. Elements ρ from the convex subset $\mathcal{P}_1 \subseteq \mathcal{P}$ which are normalized in the sense that $\text{tr}\{\rho\} = 1$ are called density matrices on \mathcal{F}. Elements of \mathcal{P}_1 uniquely represent the normal states on the C*-algebra $\mathcal{B}(\mathcal{F})$ [see [1, Theorem 2.7]].

2.2 Finite-dimensional features

We conclude this section by summarizing some more specific notions, which (partly) depend on the finite-dimensionality of \mathfrak{h}.
Generalized creation- and annihilation operators By the CAR, we may extend c, c^* to linear, respectively anti-linear, maps $c^*, c : \mathcal{F} \to \mathcal{B}(\mathcal{F})$ via
\[
c^*(\omega)\eta = \omega \wedge \eta, \quad c(\omega) = [c^*(\omega)]^*.
\] (10)
Note that the definition of c is such that $c(\phi_1 \wedge \cdots \wedge \phi_k) = c(\phi_k) \cdots c(\phi_1)$, for all $\phi_1, \ldots, \phi_k \in \mathfrak{h}$. We call c^*, c the generalized creation- and annihilation operators.\(^3\) Note that the CAR (9) do not hold for c^* and c, when $\phi, \psi \in \mathfrak{h}$ are replaced by general $\omega, \eta \in \mathcal{F}$.

Polynomials in Creation- and Annihilation-Operators We are particularly interested in operators on \mathcal{F}, which are “polynomials in creation- and annihilation” operators, i.e., elements in the complex $*$-subalgebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{F})$ generated by $\{c^*(\phi) \mid \phi \in \mathfrak{h}\}$. In the finite-dimensional case, $\mathcal{A} = \mathcal{B}(\mathcal{F})$ [see \cite{3}, Theorem 5.2.5] and we have a natural linear map
\[
\Theta : \mathcal{F} \otimes \bar{\mathcal{F}} \ni \omega \otimes \bar{\eta} \mapsto c^*(\omega)c(\eta) \in \mathcal{A},
\] (11)
where $\bar{\mathcal{F}}$ denotes the conjugate Hilbert space of \mathcal{F} [see \cite{7}, Sec. 1.2]. In fact, by the Wick Theorem, Θ is surjective and therefore an isomorphism, as the vector spaces involved are all finite-dimensional.

k-Body Operators Let $k \in \mathbb{N}_0$. We call a sum of operators of the form $c^*(\omega)c(\eta)$ with $\omega \in \mathcal{F}_r, \eta \in \mathcal{F}_s$, and $r + s = 2k$ a k-particle operator. More generally, a sum of l-particle operators with $l \leq k$ is called a k-body operator, and we denote the space of k-body operators by $\mathcal{O}_k(\mathcal{F})$. We also consider the \mathbb{R}-subspace $\mathcal{O}_k^R(\mathcal{F}) \subseteq \mathcal{O}_k(\mathcal{F})$ of selfadjoint (or real) elements of $\mathcal{O}_k(\mathcal{F})$, which are called k-body observables.

Remark 3 (On the Terminology of k-Body Operators) There are different conventions regarding the notion of a k-body operator. Especially in the physics literature this terminology usually refers to what we call a k-particle operator. For example, a typical Hamiltonian in second quantization is given by (6). In the physical literature, this operator would then often be considered as a sum of a one- and two-body operator, whereas in our convention (6) is a sum of a one- and two-particle operator and therefore a two-body operator. □

The Hilbert-Schmidt geometry Since in the finite-dimensional case we have $\mathcal{L}^2(\mathcal{F}) = \mathcal{B}(\mathcal{F})$, the mappings Θ, c^*, c introduced above are in fact mappings between (finite-dimensional) complex Hilbert spaces. In particular, using the natural isomorphism $\mathcal{F} \otimes \bar{\mathcal{F}} \cong \mathcal{L}^2(\mathcal{F})$ the map Θ defined in (11) gives rise to a linear automorphism
\[
\alpha : \mathcal{L}^2(\mathcal{F}) \ni |\omega\rangle\langle \eta| \mapsto c^*(\omega)c(\eta) \in \mathcal{L}^2(\mathcal{F}).
\] (12)
\(^3\)This terminology is also used, e.g, in \cite{13}.
3 Trace Formulas

The goal of this section is to prove Proposition 11 which provides a formula for the Hilbert-Schmidt inner product \(\langle a \mid b \rangle_{L^2(F)} \) between certain monomials \(a, b \) in creation and annihilation operators. Our approach is to evaluate

\[
\langle a \mid b \rangle_{L^2(F)} = \text{tr}\{a^* b\} = \sum_{I} \langle \varphi_I \mid a^* b \varphi_I \rangle_F \tag{13}
\]

for a suitable basis \((\varphi_I)_I\) of \(F \) (Proposition 7). The main work then is to characterize the set \(M \) of those \(I \) with non-vanishing contributions in (13) (Proposition 8).

3.1 Basic notation

Set-theory For a set \(X \), we denote by \(|X| \in \mathbb{N} \cup \{0, \infty\}\) the number of elements in \(X \) and by \(\mathcal{P}(X) \) the system of all subsets of \(X \). Given sets \(A_1, \ldots, A_\Lambda \in \mathcal{P}(X) \), we write \(\bigcupdot_{\ell=1}^{\Lambda} A_\ell \) for their union when we want to indicate or require the \(A_1, \ldots, A_\Lambda \) to be mutually disjoint, i.e., \(A_\alpha \cap A_\beta = \emptyset \) for all \(1 \leq \alpha < \beta \leq \Lambda \). Given a proposition \(p \) (e.g., a set-theoretic relation like \(x \in A \cap B \)) we write \(1(p) = \begin{cases} 1 & \text{if } p \text{ is true}, \\ 0 & \text{otherwise}. \end{cases} \tag{14} \)

In the case where \(p \) is of the form \(a = b \), we also write \(\delta_{a,b} \) for \(1(p) \) (the Kronecker Delta).

Orbital bases and induced Fock bases For the remainder of this paper, let \(h \) be finite-dimensional, \(\dim h = n < \infty \), and assume that \(\{\varphi_1, \ldots, \varphi_n\} \) is a fixed orthonormal basis. Let \(\mathcal{N}_n = \{1, \ldots, n\} \) and \(\mathcal{P}(\mathcal{N}_n) \) be the family of subsets of \(\mathcal{N}_n \). For \(A = \{a_1, \ldots, a_k\} \subseteq \mathcal{N}_n \) with \(a_1 < \cdots < a_k \) we define

\[
\varphi_A \doteq \begin{cases}
\varphi_{a_1} \wedge \cdots \wedge \varphi_{a_k} & A \neq \emptyset, \\
\Omega_F & A = \emptyset.
\end{cases} \tag{15}
\]

Then, by definition (8) of the inner product on \(F \), \((\varphi_A)_{A \subseteq \mathcal{N}_n} \) is an orthonormal basis of \(F \) and, using Diracs Bra-ket notation, \((|\varphi_A\rangle \langle \varphi_B|)_{A,B \subseteq \mathcal{N}_n} \) is an orthonormal basis of \(L^2(F) \). Applying the generalized creation and annihilation operators, we further define for \(A, B \subseteq \mathcal{N}_n \) the monomials

\[
c_A^* \doteq c^*(\varphi_A), \quad c_A \doteq c(\varphi_A), \quad c_{A,B} \doteq c_A^* c_B, \quad n_A \doteq c_{A,A}. \tag{16}
\]

3.2 Monomials acting on the induced Fock bases

To efficiently deal with the signs occurring in computations with the monomials of the form (16), we introduce for \(A_1, \ldots, A_k, B_1, \ldots, B_l \subseteq \mathcal{N}_n \) the multi-sign

\[
\begin{bmatrix} A_1 & \cdots & A_k \\ B_1 & \cdots & B_l \end{bmatrix} \doteq (\varphi_{A_1} \wedge \cdots \wedge \varphi_{A_k} \mid \varphi_{B_1} \wedge \cdots \wedge \varphi_{B_l}). \tag{17}
\]
The main use of these multi-signs is to account for the signs occurring when reordering products of elements of the form \((15)\), which is made precise by the following.

Lemma 4 The multi-sign \((17)\) vanishes, unless \(A_1 \cup \cdots \cup A_k = B_1 \cup \cdots \cup B_l\). However, if \(A_1 \cup \cdots \cup A_k = B_1 \cup \cdots \cup B_l\), then

\[
\begin{bmatrix}
A_1 & \cdots & A_k \\
B_1 & \cdots & B_l
\end{bmatrix}
(\varphi_{A_1} \land \cdots \land \varphi_{A_k}) = \varphi_{B_1} \land \cdots \land \varphi_{B_l}.
\] (18)

Proof Since the \(\varphi_i\) anti-commute as elements in \(\mathcal{F}\), it’s clear that \(\varphi_{A_1} \land \cdots \land \varphi_{A_k} = 0\) whenever the \(A_i\) are not mutually disjoint (and similarly for the \(B_i\)). Therefore the right-hand side of \((17)\) trivially vanishes unless the \(A_i\) and \(B_i\) are mutually disjoint, respectively. Now consider the case where the \(A_i\) and \(B_i\) are mutually disjoint, but their unions \(A\) respectively \(B\) are not equal, say there is \(a \in A \setminus B\) for some \(a \in \mathbb{N}_n\). Then \(\langle \varphi_a | \varphi_b \rangle = 0\) for all \(b \in B\), thus \(\langle \varphi_A | \varphi_B \rangle = 0\) by definition \((8)\) and

\[
\begin{bmatrix}
A_1 & \cdots & A_k \\
B_1 & \cdots & B_l
\end{bmatrix}
\varphi_{A_1} \land \cdots \land \varphi_{A_k} = \pm \langle \varphi_A | \varphi_B \rangle = 0,
\] (19)

which proves the first part. For the second part, assume that \(A_1 \cup \cdots \cup A_k = B_1 \cup \cdots \cup B_l\). Then, by anti-commuting the \(\varphi_i\), there is \(\lambda \in \{-1, +1\}\) such that

\[
\varphi \equiv \varphi_{A_1} \land \cdots \land \varphi_{A_k} = \lambda \cdot \varphi_{B_1} \land \cdots \land \varphi_{B_l} \equiv \lambda \cdot \tilde{\varphi}
\] (20)

Using the same argument, we find that \(\tilde{\varphi} = \pm \varphi_A\), thus \(\|\tilde{\varphi}\|^2 = 1\). Consequently,

\[
\begin{bmatrix}
A_1 & \cdots & A_k \\
B_1 & \cdots & B_l
\end{bmatrix}
\varphi_{A_1} \land \cdots \land \varphi_{A_k} = \langle \varphi | \tilde{\varphi} \rangle \varphi = \lambda^2 \|\tilde{\varphi}\|^2 \varphi = \tilde{\varphi}
\] (22)

\[= \varphi_{B_1} \land \cdots \land \varphi_{B_l}.
\]

Lemma 5 For \(A, B, I \subseteq \mathbb{N}_n\) we have

\[
c_A^* \varphi_I = 1(A \cap I = \emptyset) \begin{bmatrix} A & I \end{bmatrix} \varphi_{A \cup I} \] (23)

\[
c_A^* \varphi_I = 1(A \subseteq I) \begin{bmatrix} A & I \setminus A \end{bmatrix} \varphi_{I \setminus A}.
\] (24)

Proof If \(A \cap I \neq \emptyset\) then \(c_A^* \varphi_I = 0\) and also the right hand side of \((23)\) vanishes due to [Lemma 4]. Otherwise, if \(A \cap I = \emptyset\) then [Lemma 4] implies

\[
c_A^* \varphi_I = \varphi_A \land \varphi_I = \begin{bmatrix} A & B \end{bmatrix} \varphi_{A \cup B},
\] (25)
which completes the proof of (23).

To prove (24) note that, since \((\varphi_J)_{J \subseteq \mathbb{N}_n}\) is an orthonormal basis of \(\mathcal{F}\), we have
\[
c_A \varphi_I = \sum_{J \subseteq \mathbb{N}_n} \langle c_A \varphi_I | \varphi_J \rangle \varphi_J.
\] (26)

Unwinding the definitions and using Lemma 4, we compute
\[
\langle c_A \varphi_I | \varphi_J \rangle \varphi_J = \langle \varphi_I | \varphi_A \wedge \varphi_J \rangle = [I \ A \ J] [A \ I \ A \ I \ A].
\] (28)

thus (24) follows by combining (26) and (28).

\[\square\]

Remark 6 Definition (15) of the Fock space basis elements \(\varphi_A\) naturally generalizes to the case where \(A\) is a string over the alphabet \(\mathbb{N}_n\). Within this generalized framework, the multi-sign (17) can be interpreted as the anti-symmetric Kronecker Delta (see, e.g., the “algebraic framework” in [20]).

3.3 Derivation of the trace formula

Proposition 7 Let \(A, B, C, D \subseteq \mathbb{N}_n\), then
\[
\langle c_{A,B} | c_{C,D} \rangle_{L^2(\mathcal{F})} = \sum_{I \in \mathfrak{M}} [A \ I \ B][C \ I \ D][B \ I \ B][D \ I \ D].
\] (29)

where \(\mathfrak{M} = \mathfrak{M}(A, B, C, D)\) is the family of all \(I \subseteq \mathbb{N}_n\) such that
1. \(B \cup D \subseteq I\) and
2. \(A \cup (I \ \setminus B) = C \cup (I \ \setminus D)\).

Proof Since \((\varphi_I)_{I \subseteq \mathbb{N}_n}\) is an orthonormal basis of \(\mathcal{F}\), we have
\[
\langle c_{A,B} | c_{C,D} \rangle = \text{tr}\{c_B^* c_A c_C^* c_D\} = \sum_{I \subseteq \mathbb{N}_n} \langle c_A^* c_B \varphi_I | c_C^* c_D \varphi_I \rangle.
\] (30)

Using Lemma 5 we compute for arbitrary \(I \subseteq \mathbb{N}_n\)
\[
c_{A,B} \varphi_I = c_A^* (c_B \varphi_I) = \mathbb{1}(B \subseteq I) [B \ I \ B] c_A^* \varphi_I \setminus B
\]
\[
= \mathbb{1}(B \subseteq I) \mathbb{1}(A \cap (I \ \setminus B) = \emptyset) [B \ I \ B] \varphi_A \wedge \varphi_I \setminus B,
\] (31)

and similarly for \(c_{C,D} \varphi_I\), which yields
\[
\langle c_{A,B} \varphi_I | c_{C,D} \varphi_I \rangle = \mathbb{1}(I \in \mathfrak{M}) [A \ I \ B][C \ I \ D][B \ I \ B][D \ I \ D].
\] (32)

Combining (32) with (30), the assertion follows.

\[\square\]
As stated in Proposition 7, the contributing sets $I \subseteq \mathbb{N}_n$ in (29) must satisfy certain set-theoretic compatibility relations with the given sets A, B, C and D. Moreover, Proposition 7 is of limited use because of the complicated signs occurring in (29). The main part of this paper therefore is to overcome these difficulties by a careful analysis of the set \mathcal{M} of contributing subsets $I \subseteq \mathbb{N}_n$.

Proposition 8 Let $\mathcal{M} = \mathcal{M}(A, B, C, D)$ as in Proposition 7. Then the following conditions are equivalent:

1. $\mathcal{M} \neq \emptyset$,
2. $A \cup (D \setminus B) = C \cup (B \setminus D)$,
3. $B \cup D \in \mathcal{M}$,
4. $A \setminus B = C \setminus D$ and $B \setminus A = D \setminus C$.

In any of these cases,

$$\mathcal{M} = \{(B \cup D) \cup N \mid N \cap (A \cup C) = \emptyset\}. \quad (33)$$

Proof We will first show the equivalence of the conditions. The equivalence of 2 and 1 follows from a purely set-theoretic argument, see Lemma 9 below.

$\mathcal{M} \subseteq \mathcal{M}$: Choose $M \in \mathcal{M}$. By definition of \mathcal{M}, $B \cup D \subseteq M$, we may write $M = (B \cup D) \cup N$ so that $M \setminus B = (D \setminus B) \cup N$. Since $A \cap (M \setminus B) = \emptyset$ by definition of \mathcal{M}, also $A \cap (D \setminus B) \subseteq A \cap (M \setminus B) = \emptyset$, and similarly $C \cap (B \setminus D) = \emptyset$. Moreover, we have $A \cap N \subseteq A \cap (D \setminus B) \cup N = A \cap (M \setminus B) = \emptyset$ and similarly $C \cap N = \emptyset$. In summary, we have $(A \cup (D \setminus B)) \cup N = A \cup (M \setminus B) = C \cup (M \setminus D) = (C \cup (B \setminus D)) \cup N$ and therefore $A \cup (D \setminus B) = C \cup (B \setminus D)$.

$\mathcal{M} \subseteq \mathcal{M}$: By definition of \mathcal{M}, $M \vdash B \cup D \in \mathcal{M}$ if and only if $A \cup (M \setminus B) = C \cup (M \setminus D)$, but by construction $M \setminus B = D \setminus B$ and $M \setminus D = B \setminus D$.

This follows trivially.

Now it remains to prove (33), given the conditions hold. Denote the right-hand side of (33) by \mathcal{M}.

$\mathcal{M} \subseteq \mathcal{M}$: Choose some $M \in \mathcal{M}$. Since $B \cup D \subseteq M$, we can write $M = (B \cup D) \cup N$ for some $N \subseteq I \setminus (B \cup D)$ and now need to show that $N \cap (A \cup C) = \emptyset$. Since $A \cap (M \setminus B) = \emptyset$ by definition of \mathcal{M}, also $A \cap (D \setminus B) \subseteq A \cap (M \setminus B) = \emptyset$, and similarly $C \cap (B \setminus D) = \emptyset$. Moreover, we have $A \cap N \subseteq A \cap (D \setminus B) \cup N = A \cap (M \setminus B) = \emptyset$ and similarly $C \cap N = \emptyset$, thus $N \cap (A \cup C) = \emptyset$.

$\mathcal{M} \subseteq \mathcal{M}$: Let $M \vdash (B \cup D) \cup N \in \mathcal{M}$, i.e., $N \cap (A \cup C) = \emptyset$. Clearly, $B \cup D \subseteq M$. Moreover, by assumption we have $A \cup (D \setminus B) = C \cup (B \setminus D)$, thus

$$A \cap (M \setminus B) = A \cap (D \setminus B \cup N) = (A \cap (D \setminus B)) \cup (A \cap N) = \emptyset. \quad (34)$$

Similarly, $C \cap (M \setminus D) = \emptyset$. Finally,

$$A \cup (M \setminus B) = A \cup (D \setminus B \cup N) = (A \cup (D \setminus B)) \cup N = (C \cup (B \setminus D)) \cup N = C \cup (M \setminus D), \quad (35)$$
thus \(M \in \mathfrak{M} \), which completes the proof. \hfill \blacksquare

Lemma 9 Let \(X \) be a set and \(A, B, C, D \subseteq X \). Then the following conditions are equivalent

1. \(A \cup (D \setminus B) = C \cup (B \setminus D) \),
2. \(A \setminus B = C \setminus D \) and \(B \setminus A = D \setminus C \).

Proof \(\text{[1]} \Rightarrow \text{[2]} \). Let \(x \in A \setminus B \). Then \(x \in A \subseteq A \cup (D \setminus B) = C \cup (B \setminus D) \), thus \(x \in C \). Moreover, since \((A \setminus B) \cap D = A \cap (D \setminus B) = \emptyset \), we have \(x \notin D \), hence \(x \in C \setminus D \). This shows that \(A \setminus B \subseteq C \setminus D \). Exchanging the roles of \(A, C \) and \(B, D \) respectively, also \(x \in D \setminus C \). Let \(x \notin D \), thus \(x \notin A \). Moreover, since \((D \setminus C) \setminus A = A \cup (D \setminus B) \), i.e., \(x \notin B \setminus A \). Hence, \(x \in D \). Also, if \(x \in C \) then \(x \in C \setminus (B \setminus D) = A \cup (D \setminus B) \), so \(x \in D \setminus B \), which contradicts \(x \notin D \). This shows \(D \setminus C \subseteq B \setminus A \). Again, by renaming \(A, B, C \) and \(D \), we also see \(D \setminus C \subseteq B \setminus A \).

\(\text{[2]} \Rightarrow \text{[1]} \). We compute

\[
A \cap (D \setminus B) = A \cap D \cap B^c = (A \setminus B) \cap D = (C \setminus D) \cap D = \emptyset. \tag{37}
\]

Exchanging the roles of \(A, C \) and \(B, D \), we also get \(C \cap (B \setminus D) = \emptyset \). To show that \(A \cap (D \setminus B) = C \cap (B \setminus D) \), first note that

\[
A \cap D^c = (A \cap D^c \cap B) \cup (A \cap D^c \cap B^c) \subseteq (B \setminus D) \cup (A \setminus B) = (B \setminus D) \cup (C \setminus D) \subseteq C \cup (B \setminus D) \tag{38}
\]

and

\[
A \cap B = A \cap (A \cap B) \subseteq A \cap (B \setminus A)^c = A \cap (D \setminus C)^c = A \cap (C \cup D^c) = (A \cap C) \cup (A \cap D^c) \subseteq C \cup (B \setminus D), \tag{39}
\]

where we used \(\text{[38]} \) in the last step. Consequently, we conclude

\[
A \subseteq A \cap (D \setminus B)^c = A \cap (D^c \cup B) = (A \cap D^c) \cup (A \cap B) \subseteq C \cup (B \setminus D), \tag{40}
\]

where we used \(\text{[38]} \) and \(\text{[39]} \) in the last step. Moreover, we have

\[
D \setminus B \subseteq (D \setminus B) \cap A^c = [(D \setminus B) \cap A^c \cap C] \cup [(D \setminus B) \cap A^c \cap C^c] \subseteq C \cup (D \cap C^c \cap A^c) = C \cup (B \cap A^c) \subseteq C \cup B, \tag{41}
\]

and intersecting both sides of this inclusion with \(B^c \), we obtain \(D \setminus B \subseteq C \setminus B \subseteq C \). Combined with \(\text{[1]} \), this shows \(A \cup (D \setminus B) \subseteq C \cup (B \setminus D) \) and, by exchanging the roles of \(A, C \) and \(B, D \), the converse inclusion follows as well. \hfill \blacksquare
Remark 10 Lemma 9 can be further generalized by noting that the given conditions are also equivalent to the following (equivalent) conditions:

1. \(B \triangleleft D = A \triangleleft C \) and \(D \triangleleft B = C \triangleleft A \),

2. \(B \cup (A \cap C) = D \cup (C \cap A) \).

Proposition 11 (Trace Formula) Let \(K, A, B \subseteq \mathbb{N}_n \) and \(L, C, D \subseteq \mathbb{N}_n \) be mutually disjoint, respectively. Then

\[
\langle n_K c_{A,B} | n_L c_{C,D} \rangle_{\mathcal{L}^2(F)} = \delta_{A,C} \delta_{B,D} \cdot 2^{n-|A \cup B \cup K \cup L|}.
\] (42)

Proof Using Lemma 4 and Lemma 5, we find for any \(I \subseteq \mathbb{N}_n \)

\[
n_K \varphi_I = c_K^* (c_K \varphi_I) = \mathbb{1}(K \subseteq I) \begin{bmatrix} I \\ K \end{bmatrix} c_K^* \varphi_{I \setminus K} = \mathbb{1}(K \subseteq I) \begin{bmatrix} I \\ K \end{bmatrix} \varphi_{K \cap \varphi_{I \setminus K}} = \mathbb{1}(K \subseteq I) \varphi_I.
\] (43)

Combined with Lemma 6 we therefore get for any \(I \subseteq \mathbb{N}_n \)

\[
n_K c_{A,B} \varphi_I = \mathbb{1}(K \subseteq A \cup (I \setminus B)) \mathbb{1}(B \subseteq I) \mathbb{1}(A \cap I \setminus B = \emptyset) \cdot \begin{bmatrix} I \\ B \end{bmatrix} \varphi_{A \cap \varphi_{I \setminus B}}.
\] (44)

Consequently, we have with \(\mathcal{M} = \mathcal{M}(A, B, C, D) \) as in Proposition 8

\[
\langle n_K c_{A,B} \varphi_I | n_L c_{C,D} \varphi_I \rangle = \mathbb{1}(I \in \mathcal{M}) \mathbb{1}[K \subseteq A \cup (I \setminus B)] \mathbb{1}[L \subseteq C \cup (I \setminus D)] \cdot \begin{bmatrix} A \\ C \end{bmatrix} \begin{bmatrix} I \\ B \end{bmatrix} \mathbb{1}[I \subseteq D \cap I \setminus D] \] (45)

Since \(A \cap B = C \cap D = \emptyset \) by assumption, Proposition 8 implies that \(I \in \mathcal{M} \) = \(\delta_{A,C} \delta_{B,D} \mathbb{1}(B \subseteq I) \mathbb{1}(A \cap I = \emptyset) \). Thus (15) equals

\[
\delta_{A,C} \delta_{B,D} \mathbb{1}(B \subseteq I) \mathbb{1}(A \cap I = \emptyset) \mathbb{1}[K \cup L \subseteq A \cup (I \setminus B)].
\] (46)

Now observe that for \(A = C \) we have \(L \cap A = L \cap C = \emptyset \), i.e., \(K \cup L \subseteq A \cup (I \setminus B) \) is equivalent to \(K \cup L \subseteq I \setminus B \), which is further equivalent to \(K \cup L \subseteq I \). Hence (15) equals

\[
\delta_{A,C} \delta_{B,D} \mathbb{1}(I \cap A = \emptyset) \mathbb{1}(B \cup K \cup L \subseteq I)
\] (47)

and, by summing (47) over all \(I \subseteq \mathbb{N}_n \), we find

\[
\langle n_K c_{A,B} | n_L c_{C,D} \rangle = \delta_{A,C} \delta_{B,D} \mathcal{M}[\mathbb{N}_n \setminus (A \cup B \cup K \cup L)].
\] (48) ■
Example 12 (Trace of the Particle Number Operator) Let \(\text{dim } \mathfrak{h} = n < \infty \). By Lemma 5, the particle number operator \(\hat{N} = \sum_{k=0}^{n} k \cdot \text{id}_{A^k \mathfrak{h}} \). Consequently, its trace is given by \(\sum_{k=0}^{n} k \cdot \binom{n}{k} \). On the other hand, Proposition 11 implies \(\text{tr}\{\hat{N}\} = \sum_{i=1}^{n} \langle 1 | n_i \rangle = n \cdot 2^{n-1} \). Thus we proved the well-known identity

\[
\sum_{k=0}^{n} k \binom{n}{k} = \text{tr}\{\hat{N}\} = n \cdot 2^{n-1}, \tag{49}
\]

which also follows from differentiating \((1 + x)^n \) with respect to \(x \) and evaluating at \(x = 1 \).

\[\Box\]

4 Orthonormalization

In this section, given an orthonormal basis in \(\mathfrak{h} \), we will construct explicit orthonormal bases of \(L^2(\mathcal{F}) \) which restrict to the spaces of \(k \)-body operators and \(k \)-body observables, respectively.

4.1 Orthonormal basis of \(L^2(\mathcal{F}) \)

As implied by Proposition 11 the monomials \((n_K)_{K \subseteq \mathbb{N}_n} \) are not pairwise orthogonal. Inspired by computer algebraic experiments using Gram-Schmidt orthogonalization in low-dimensional cases, we introduce for \(K \subseteq \mathbb{N}_n \) the element

\[
b_K = \sum_{I \subseteq K} (-2)^{|I|} n_I \in L^2(\mathcal{F}). \tag{50}
\]

As we will see in Theorem 14 the \(b_K \) are pairwise orthogonal and can be used to construct an orthogonal basis of \(L^2(\mathcal{F}) \). The key ingredient is the following lemma, which is essentially a consequence of the binomial formula.

Lemma 13 Let \(K, L \) be finite sets. Then

\[
\sum_{I \subseteq K} \sum_{J \subseteq L} (-2)^{|I|+|J|} 2^{-|I \cup J|} = \delta_{KL}. \tag{51}
\]

Proof Let \(M = K \cap L \). We compute

\[
S = \sum_{I \subseteq K \cap L} (-2)^{|I|+|J|} 2^{-|I \cup J|} = \sum_{I \subseteq K \cap L} \frac{(-1)^{|I|+|J|}}{2^{-|I \cap J|}}, \tag{52}
\]

where we have used that \(|I \cup J| = |I| + |J| - |I \cap J| \). Since every \(I \subseteq K \) can be written uniquely as \(I = I_1 \cup I_2 \) with \(I_1 \equiv (I \cap M) \subseteq M \) and \(I_2 = I \setminus I_1 \subseteq K \setminus M \) and (similarly for \(J \subseteq L \)), we find

\[
S = \sum_{I_1, J_1 \subseteq M} \frac{(-1)^{|I_1|+|J_1|}}{2^{-|I_1 \cap J_1|}} \sum_{I_2 \subseteq K \setminus M} (-1)^{|I_2|} \sum_{J_2 \subseteq K \setminus M} (-1)^{|J_2|}. \tag{53}
\]
By the binomial formula, for any finite set X and $a \in \mathbb{C}$ we have
\[\sum_{Y \subseteq X} a^{|Y|} = (1 + a)^{|X|}. \quad (54) \]
In particular, for $a = -1$ we have $\sum_{Y \subseteq X} (-1)^{|Y|} = 1(X = \emptyset)$. Hence
\[\sum_{I_2 \subseteq K \setminus M} \sum_{J_2 \subseteq L \setminus M} (-1)^{|I_2|} (-1)^{|J_2|} = 1(K \setminus M = \emptyset) 1(L \setminus M = \emptyset) \]
\[= 1(K \subseteq L) 1(L \subseteq K) = \delta_{KL}. \quad (55) \]
Inserting (55) in (53), we find
\[S = \delta_{KL} \sum_{I,J \subseteq M} \frac{(-1)^{|I|+|J|}}{2^{-|I|+|J|}}. \quad (56) \]
To evaluate the sum in (56), instead of summing over all $I,J \subseteq M$, we sum over all $X = I \cap J \subseteq M$, $I_3 = I \setminus X \subseteq M \setminus X$ and $J_3 = J \setminus (X \cup I_3) \subseteq M \setminus (X \cup I_3)$ and apply (54) once again:
\[\sum_{I,J \subseteq M} \frac{(-1)^{|I|+|J|}}{2^{-|I|+|J|}} = \sum_{X \subseteq M} 2^{|X|} \sum_{I_3 \subseteq M \setminus X} (-1)^{|I_3|} \sum_{J_3 \subseteq M \setminus (X \cup I_3)} (-1)^{|J_3|} \]
\[= \sum_{X \subseteq M} 2^{|X|} \sum_{I_3 \subseteq M \setminus X} (-1)^{|I_3|} \mathbb{1}(I_3 = M \setminus X) \]
\[= \sum_{X \subseteq M} 2^{|X|} (-1)^{|M\setminus X|} = (-1)^{|M|} \sum_{X \subseteq M} (-2)^{|X|} \]
\[= (-1)^{|M|} (-1)^{|M|} = 1. \quad (57) \]
Combining (56) and (57), the assertion follows.

Theorem 14 Let b_K be defined as in (50), then an orthonormal basis of $L^2(F)$ is explicitly given by
\[\mathcal{B} = \left\{ \frac{b_K e_{I,J}}{\sqrt{2^n-|I|+|J|}} \in L^2(F) \right| K, I, J \subseteq \mathbb{N}_n \text{ pairwise disjoint} \right\}. \quad (58) \]

Proof Let $K, A, B \subseteq \mathbb{N}_n$ and $L, C, D \subseteq \mathbb{N}_n$ be mutually disjoint, respectively. By definition of b_K and using Proposition 11 we obtain
\[\langle b_K e_{A,B} | b_L e_{C,D} \rangle = \sum_{I \subseteq K} \sum_{J \subseteq L} (-2)^{|I|+|J|} \langle n_I e_{A,B} | n_J e_{C,D} \rangle \]
\[= \sum_{I \subseteq K} \sum_{J \subseteq L} (-2)^{|I|+|J|} \delta_{AC} \delta_{BD} 2^{n- |A \cup B|} 2^{- |I|+|J|} \]
\[= \delta_{AC} \delta_{BD} 2^{n- |A \cup B|} \left(\sum_{I \subseteq K} \sum_{J \subseteq L} (-2)^{|I|+|J|} 2^{- |I|+|J|} \right) \]
\[= \delta_{AC} \delta_{BD} 2^{n- |A \cup B|} \delta_{KL}, \quad (59) \]
where we used that for $A = C, B = D, I \subseteq K$ and $J \subseteq L$ we have $|A \cup B \cup I \cup J| = |A \cup B| + |I \cup J|$ in the third step and Lemma 13 (see below) in the last step. This shows that (58) is an orthonormal basis of its span S. Noting that

$$\dim S = |\mathcal{B}| = |\{ f : \mathbb{N}_n \to \{1, 2, 3, 4\}\}| = 4^n = \dim L^2(\mathcal{F}),$$

we conclude that $S = L^2(\mathcal{F})$.

\[\blacksquare\]

4.2 Orthonormal basis of k-body operators

Having established \mathcal{B} as an orthonormal basis of $L^2(\mathcal{F})$, we now proceed and show that \mathcal{B} restricts to a basis of $\mathcal{O}_k(\mathcal{F})$ for all $k \in \mathbb{N}_0$ (Theorem 16).

Lemma 15 A basis of $\mathcal{O}_k(\mathcal{F})$ is explicitly given by

$$\mathcal{B}_0 = \{ c_{I, J} | I, J \subseteq \mathbb{N}_n, |I| + |J| = 2l \text{ with } 0 \leq l \leq k \},$$

in particular, we have $\dim \mathcal{O}_k(\mathcal{F}) = \sum_{l=0}^{k} \binom{n}{2l}$.\!

Proof Since the mapping α defined in (12) is a linear automorphism of $L^2(\mathcal{F})$, the $c_{I, J} = \alpha (|\psi_I\rangle\langle \psi_J|)$ with $I, J \subseteq \mathbb{N}_n$ form a basis of $L^2(\mathcal{F})$. An element $A \in L^2(\mathcal{F})$ of the form

$$A = \sum_{I, J \subseteq \mathbb{N}_n} A_{I, J} c_{I, J}$$

is a k-body operator if and only if $A_{I, J} = 0$ whenever $|I| + |J|$ is odd or $|I| + |J| > 2k$. In other words, (61) a basis of $\mathcal{O}_k(\mathcal{F})$ and

$$\dim \mathcal{O}_k(\mathcal{F}) = |\mathcal{B}_0| = \sum_{l=0}^{k} \sum_{i=0}^{2l} \binom{n}{i} \binom{n}{2l-i} = \sum_{l=0}^{k} \binom{2n}{2l},$$

where we used Vandermonde’s identity.

\[\blacksquare\]

Theorem 16 The orthonormal C-space \mathcal{B} of $L^2(\mathcal{F})$ given in Theorem 14 restricts to an orthonormal basis \mathcal{B}_k of the space $\mathcal{O}_k(\mathcal{F})$ of k-body operators. More specifically, we have

$$\mathcal{B}_k \equiv \mathcal{B} \cap \mathcal{O}_k(\mathcal{F}) = \left\{ \frac{b_K c_{I, J}}{\sqrt{2^{n-|I\cup J|}}} \bigg| K, I, J \subseteq \mathbb{N}_n \text{ pairwise disjoint, } |I| + |J| + 2|K| = 2l \text{ with } 0 \leq l \leq k \right\}.$$

Proof Let $b \in \mathcal{B}$, i.e.,

$$b = b_K c_{I, J} = \sum_{L \subseteq K} \frac{(-1)^{|L|}}{\sqrt{2^{n-|I\cup J|}}} n_L c_{I, J}$$

for $K, I, J \subseteq \mathbb{N}_n$ pairwise disjoint. Since $n_L c_{I, J} = \pm c_{I \cup L, J \cup L}$ for every $L \subseteq K$, Lemma 15 implies that $b \in \mathcal{O}_k(\mathcal{F})$ if and only if $|I| + |J| + 2|K| = 2l$ for some $0 \leq l \leq k$, which proves (64). Finally, noting that we have a bijection $\mathcal{B} \ni b_K c_{I, J} \mapsto c_{I \cup K, J \cup K} \in \mathcal{B}_0$ with inverse $c_{I, J} \mapsto b_{I \cup J} c_{I, J}$, we conclude that $|\mathcal{B}_k| = |\mathcal{B}_0| = \dim \mathcal{O}_k(\mathcal{F})$ and therefore \mathcal{B}_k is a basis of $\mathcal{O}_k(\mathcal{F})$.

\[\blacksquare\]
4.3 Orthonormal basis of k-body observables

The orthonormal C-basis \mathcal{B} of $L^2(\mathcal{F})$ as given in [Theorem 14] does not immediately restrict to bases of k-body observables, since \mathcal{B}_C contains elements which are not self-adjoint. For example, if $I \subset \mathbb{N}_n$ is non-empty, then

$$(b_0 \epsilon I, 0)^* = c_I \neq c_I^* = b_0 \epsilon I, 0.$$

However, \mathcal{B}_C has the special property that $\mathcal{B}_C = \{b^* \mid b \in \mathcal{B}_C\}$, which allows us to obtain an orthonormal basis of self-adjoint elements by a suitable unitary transformation of $L^2(\mathcal{F})$. The general principle of this idea is given by the following.

Lemma 17 Let \mathcal{H} be a finite-dimensional, complex Hilbert space with real structure J and \mathcal{B} an orthonormal C-basis with $J(\mathcal{B}) \subseteq \mathcal{B}$. Then

1. \mathcal{B} is of the form

$$\mathcal{B} = (a_1, \ldots, a_k, b_1, b_1^*, \ldots, b_l, b_l^*) \text{ with } a_i = a_i^* \quad \forall 1 \leq i \leq k. \quad (66)$$

2. An orthonormal \mathbb{R}-basis of $\mathcal{V}_k \doteq \{v \in \mathcal{V} \mid J(v) = v\}$ is given by

$$\mathcal{B}_R \doteq \left(a_1, \ldots, a_k, \sqrt{2} \Re(b_1), \sqrt{2} \Im(b_1), \ldots, \sqrt{2} \Re(b_l), \sqrt{2} \Im(b_l) \right) \quad (67)$$

[Here, $\Re(a) \doteq \frac{1}{2}(a + a^*)$ and $\Im(a) \doteq \frac{1}{2i}(a - a^*)$ denote the real- and imaginary part of a, respectively]

Proof Since $J(\mathcal{B}) \subseteq \mathcal{B}$ and $J^2 = 1$, J defines an action of $\mathbb{Z}/2\mathbb{Z}$ on \mathcal{B}. The set \mathcal{B} is decomposed into the orbits of this action, which are either of length 1 or length 2 by the orbit-stabilizer Theorem. By construction, the orbits of length 1 are of the form $\{a = a^*\}$ and the orbits of length 2 are of the form $\{b, b^*\}$, hence the desired form (66) is obtained by selecting an element in each orbit of \mathcal{B}.

2 Let $f : \mathcal{V} \to \mathcal{V}$ be the C-linear map mapping \mathcal{B} to \mathcal{B}_R. Then f is represented with respect to \mathcal{B} by the unitary matrix

$$1_k \oplus \underbrace{U \oplus \cdots \oplus U}_{l \text{ times}} \text{ with } U \doteq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix} \in U(2). \quad (68)$$

In particular, with \mathcal{B} also \mathcal{B}_R is an orthonormal C-basis of \mathcal{V} and $|\mathcal{B}_R| = |\mathcal{B}|$. By construction we have $\mathcal{B}_R \subseteq \mathcal{V}_R$, thus \mathcal{B}_R is an orthonormal \mathbb{R}-basis of its \mathbb{R}-span U. Since U is an \mathbb{R}-subspace of \mathcal{V}_R of dimension $|\mathcal{B}_R| = |\mathcal{B}| = \dim_C \mathcal{V} = \dim_R \mathcal{V}_R$, we have $U = \mathcal{V}_R$, i.e., \mathcal{B}_R is an orthonormal \mathbb{R}-basis of \mathcal{V}_R. \blacksquare

Remark 18 The ordering (66) of the basis \mathcal{B} in Theorem 14 is not uniquely determined. However, if \mathcal{B} is endowed with a prescribed ordering, then \mathcal{B} can be uniquely reordered in the form (66) by requiring $a_1 < \cdots < a_k$ and $b_i < b_i^*$ for all $1 \leq i \leq l. \quad \square$
Theorem 19 An orthonormal \(\mathbb{C} \)-basis of \(L^2(\mathcal{F}) \) is explicitly given by

\[
\mathcal{B}^R = \left\{ 2^{-n/2} b_K \mid K \subseteq \mathbb{N}_n \right\} \cup \left\{ \frac{b_K (c_{I,J} \pm c_{J,I})}{2(n+1-|I\cup J|)/2} \mid K, I, J \subseteq \mathbb{N}_n \text{ mutually disjoint and } I < J \right\}.
\]

\(\mathcal{B}^R \) restricts to an orthonormal basis of the space \(\mathcal{O}_k^R(\mathcal{F}) \) of \(k \)-body observables for every \(k \in \mathbb{N}_0 \). More specifically, an orthonormal \(\mathbb{R} \)-basis of \(\mathcal{O}_k^R(\mathcal{F}) \) is given by

\[
\mathcal{B}^k = \mathcal{B}^R \cap \mathcal{O}_k^R(\mathcal{F}) = \left\{ b_K \mid K \subseteq \mathbb{N}_n \text{ and } |K| \leq k \right\} \cup \left\{ \frac{b_K (c_{I,J} \pm c_{J,I})}{2(n+1-|I\cup J|)/2} \mid K, I, J \subseteq \mathbb{N}_n \text{ pairwise disjoint, } I < J \text{ and } |I| + |J| + 2|K| = 2l \text{ with } 0 \leq l \leq k \right\},
\]

where \(I < J \) is to be understood with respect to the lexicographic ordering.

Proof The first statement follows immediately from Theorem 19 applied to the orthonormal \(\mathbb{C} \)-basis \(\mathcal{B} \) as given in Theorem 14, which has been ordered according to Remark 13 by defining \(b_K c_{A,B} < b_L c_{C,D} \Leftrightarrow (K, A, B) < (L, C, D) \) (lexicographic order).

5 Alternative construction of an orthonormal basis

In this section, we provide an alternative construction of an orthonormal basis of \(L^2(\mathcal{F}) \) which restricts to an orthonormal basis of \(\mathcal{O}_k(\mathcal{F}) \) in the sense of Theorem 16. This construction was already presented in [8, Sec. 8], but the corresponding proofs were deferred to a somewhat obscure reference.

Fix an orthonormal basis \(\varphi_1, \ldots, \varphi_n \) of the one-particle Hilbert space \(\mathfrak{h} \) and consider for \(j = 1, \ldots, 2n \) the operator

\[
a_j = \begin{cases}
 c_k^* + c_k & \text{if } j = 2k \text{ is even,} \\
 i(c_k^* - c_k) & \text{if } j = 2k + 1 \text{ is odd.}
\end{cases} \tag{69}
\]

By definition, the \(a_j \) are self-adjoint and, by the CAR \(\text{(9)} \), satisfy

\[
\{a_j, a_k\} = 2\delta_{jk}, \quad a_j^2 = \mathbb{1}. \tag{70}
\]

Moreover, for a subset \(J = \{j_1 < \cdots < j_l\} \subseteq \mathbb{N}_{2n} \) we define \(a_J = a_{j_1} \cdots a_{j_l} \), where \(a_{\emptyset} \equiv \mathbb{1} \) by convention. The following result has been suggested to us by Gosset. We present a proof which only relies on the algebraic properties \(\text{(70)} \) of the elements \(a_j \).

Theorem 20 An orthonormal \(\mathbb{C} \)-basis of \(L^2(\mathcal{F}) \) is given by

\[
\widetilde{\mathcal{B}} = \left\{ 2^{-n/2} a_J \mid K \subseteq \mathbb{N}_{2n} \right\}. \tag{71}
\]
Moreover, \(\mathfrak{B} \) restricts to an orthonormal basis \(\mathfrak{B}_k \) of \(\mathcal{O}_k(\mathcal{F}) \) for every \(k \in \mathbb{N}_0 \), where

\[
\mathfrak{B}_k = \mathfrak{B} \cap \mathcal{O}_k(\mathcal{F}) = \left\{ a_J \middle| J \subseteq \mathbb{N}_{2n} \text{ and } |J| = 2l \text{ with } 0 \leq l \leq k \right\}, \tag{72}
\]

Proof We will first show that \(\langle a_J | a_K \rangle = 2^n \delta_{JK} \) for all \(J, K \subseteq \mathbb{N}_{2n} \). If \(J = K = \{ j_1 < \cdots < j_l \} \) then, by self-adjointness of the \(a_j \) and \(a_j^2 = 1_F \) we have

\[
\langle a_J | a_K \rangle = \text{tr} \{ a_J^* a_J \} = \text{tr} \{ a_{j_1} \cdots a_{j_l} a_{j_l} \cdots a_{j_1} \} = \text{tr} \{ 1_F \} = 2^n.
\tag{73}
\]

Now consider the case \(J \neq K \). Without loss of generality, we may assume \(J \cap K = \emptyset \) because if \(i \in J \cap K \) then, by (70),

\[
\langle a_J | a_K \rangle_{\mathcal{L}^2(\mathcal{F})} = \text{tr} \{ a_J^* a_K \} = \pm \text{tr} \{ a_{J \setminus \{ i \}} a_{K \setminus \{ i \}} \}. \tag{74}
\]

Moreover, by setting \(I = J \cup K \) and noting that \(\langle a_J | a_K \rangle = \pm \text{tr} \{ a_I \} \), it suffices to show that \(\text{tr} \{ a_I \} = 0 \) for all non-empty \(I \subseteq \mathbb{N}_{2n} \). First, consider the case where \(|I| = l > 0 \) is even. Then, writing \(I = \{ i_1 < \cdots < i_l \} \) we obtain, using (70) and cyclicity of trace,

\[
\text{tr} \{ a_I \} = \text{tr} \{ a_{i_1} \cdots a_{i_l} \} = (-1)^{l-1} \text{tr} \{ a_{i_l} a_{i_1} \cdots a_{i_{l-1}} \} = (-1)^{l-1} \text{tr} \{ a_{i_1} \cdots a_{i_l} \} = -\text{tr} \{ a_I \}, \tag{75}
\]

thus \(\text{tr} \{ a_I \} = 0 \). On the other hand, if \(|I| \) is odd, then consider the natural \(\mathbb{Z}_2 \)-grading \(\mathcal{F} = \mathcal{F}_+ \oplus \mathcal{F}_- \) on \(\mathcal{F} \) induced by \(\chi \doteq (-1)^{\mathbb{N}} \), i.e. \(\mathcal{F}_\pm \doteq \ker \{ \chi \doteq 1 \} \). By definition, \(a_i \) is odd with respect to this grading for any \(i \in \mathbb{N}_{2n} \), hence also \(a_I \) is odd when \(|I| \) is odd and therefore \(\text{tr} \{ a_I \} = 0 \). We have thus proved that

\[
\langle a_J | a_K \rangle = 2^n \delta_{JK} \quad J, K \subseteq \mathbb{N}_{2n}. \tag{76}
\]

In particular, since \(|\mathfrak{B}_k| = 2^{2n} = \dim \mathcal{L}^2(\mathcal{F}) \), \(\mathfrak{B}_k \) is an ONB of \(\mathcal{L}^2(\mathcal{F}) \).

To prove (72) note that, by definition, an element \(a_J \) is an \(j \)-particle operator with \(j \doteq |J| \) for any \(J \subseteq \mathbb{N}_{2n} \), hence \(a_J \) is a \(k \)-body operator if and only if \(|J| = 2l \) for some \(0 \leq l \leq k \). By (72) and Lemma 15

\[
|\mathfrak{B}_k| = \sum_{l=0}^{k} \binom{2n}{2l} = \dim \mathcal{O}_k(\mathcal{F}), \tag{77}
\]

thus \(\mathfrak{B}_k \) is an orthonormal basis of \(\mathcal{O}_k(\mathcal{F}) \). \[\blacksquare \]

Remark 21 (Relation between \(\mathfrak{B} \) and \(\mathfrak{B} \)) If \(n > 0 \), the orthonormal bases \(\mathfrak{B} \) and \(\mathfrak{B} \) are different. In fact, \(\mathfrak{B} \cap \mathfrak{B} = \{ 2^{-n/2} 1_F \} \), since the elements of \(\mathfrak{B} \) are homogeneous with respect to the natural grading \(\mathcal{F} = \bigoplus_{k \geq 0} \mathfrak{h}^k \), whereas the elements \(a_J \in \mathfrak{B} \) are inhomogeneous whenever \(J \neq \emptyset \). \[\square \]
Acknowledgements

This research is supported by the German Research Foundation (DFG Project No. 399154669). Moreover, we are grateful to D. Gosset for suggesting the alternative construction presented in Sec. 5.

References

[1] Huzihiro Araki. Mathematical Theory of Quantum Fields. Oxford University Press, 1999. ISBN: 9780198517733.

[2] Volker Bach, Hans Konrad Knörr, and Edmund Menge. “Fermion correlation inequalities derived from G-and P-conditions”. In: Documenta Mathematica 17.14 (2012), pp. 451–481. ISSN: 1431-0643.

[3] Ola Bratteli and Derek W. Robinson. Operator Algebras And Quantum Statistical Mechanics 2. 2nd Edition. Springer, 2002. ISBN: 3-540-61443-5.

[4] Eric Cancès, Gabriel Stoltz, and Mathieu Lewin. “The electronic ground-state energy problem: A new reduced density matrix approach”. In: Journal of Chemical Physics 125 (2006). DOI: 10.1063/1.2222358

[5] A. J. Coleman. “Structure of fermion density matrices”. In: Reviews of Modern Physics 35.3 (1963), pp. 668–686. ISSN: 0034-6861. DOI: 10.1103/RevModPhys.35.668 arXiv: 0310359v1 [arXiv:cond-mat]

[6] A. John (Albert John) Coleman and V. I. Yukalov. Reduced density matrices: Coulson’s challenge. Springer, 2000, p. 282. ISBN: 9783540671480.

[7] Jan Dereziński and Christian Gerard. Mathematics of Quantization and Quantum Fields. Cambridge: Cambridge University Press, 2013. ISBN: 978-0-511-89454-1. DOI: 10.1017/CBO9780511894541

[8] Robert M. Erdahl. “Representability”. In: International Journal of Quantum Chemistry 13.6 (June 1978), pp. 697–718. ISSN: 0020-7608. DOI: 10.1002/qua.560130603

[9] Claude Garrod and Jerome K Percus. “Reduction of the N-Particle Variational Problem”. In: Journal of Mathematical Physics 5.12 (1964), pp. 1756–1776.

[10] Kodi Husimi. “Some Formal Properties of the Density Matrix”. In: Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 22.4 (1940), pp. 264–314. ISSN: 0370-1239. DOI: 10.11429/ppmsj1919.22.4_264

[11] Alexander A Klyachko. “Quantum marginal problem and N-representability”. In: Journal of Physics: Conference Series 36 (Apr. 2006), pp. 72–86. DOI: 10.1088/1742-6596/36/1/014

[12] Yi-Kai Liu, Matthias Christandl, and F. Verstraete. “Quantum Computational Complexity of the N-Representability Problem: QMA Complete”. In: Physical Review Letters 98.11 (Mar. 2007), p. 110503. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.98.110503 arXiv: 0609125 [quant-ph]
[13] David Arthur Mazziotti. “Large-Scale Semidefinite Programming for Many-Electron Quantum Mechanics”. In: Physical Review Letters 106.8 (Feb. 2011), p. 083001. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.106.083001

[14] David Arthur Mazziotti. Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules. Ed. by David Arthur Mazziotti. Wiley, 2007, p. 574. ISBN: 9780471790563. DOI: 10.1002/0470106603

[15] David Arthur Mazziotti. “Structure of Fermionic Density Matrices: Complete N-Representability Conditions”. In: Physical Review Letters 108.26 (June 2012). ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.108.263002 arXiv: 1112.5866

[16] Jason M. Montgomery and David Arthur Mazziotti. “Strong Electron Correlation in Nitrogenase Cofactor, FeMoco”. In: The Journal of Physical Chemistry A 122.22 (June 2018), pp. 4988–4996. ISSN: 1089-5639. DOI: 10.1021/acs.jpca.8b00941

[17] Shiva Safaei and David Arthur Mazziotti. “Quantum signature of exciton condensation”. In: Physical Review B 98.4 (July 2018), p. 045122. ISSN: 2469-9950. DOI: 10.1103/PhysRevB.98.045122

[18] Manas Sajjan and David Arthur Mazziotti. “Current-constrained density-matrix theory to calculate molecular conductivity with increased accuracy”. In: Communications Chemistry 1.1 (Dec. 2018), p. 31. ISSN: 2399-3669. DOI: 10.1038/s42004-018-0030-2

[19] Leszek Z. Stolarczyk. “The Hodge Operator in Fermionic Fock Space”. In: Collection of Czechoslovak Chemical Communications 70.7 (2005), pp. 979–1016.

[20] Leszek Z. Stolarczyk and Hendrik J. Monkhorst. “Quasiparticle Fock-space coupled-cluster theory”. In: Molecular Physics 108.21-23 (Nov. 2010), pp. 3067–3089. ISSN: 0026-8976. DOI: 10.1080/00268976.2010.518981

[21] Chen Ning Yang. “Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors”. In: Reviews of Modern Physics 34.4 (1962), p. 694.