Cerebrospinal Fluid YKL-40 and Chitotriosidase Levels in Frontotemporal Dementia Vary by Clinical, Genetic and Pathological Subtype

Ione O.C. Woollacotta Jennifer M. Nicholasb Carolin Hellerc Martha S. Foianic
Katrina M. Moorea Lucy L. Russella Ross W. Patersona Ashvini Keshavana
Jonathan M. Schotta Jason D. Warrena Amanda Heslegravec
Henrik Zetterbergc–e Jonathan D. Rohrera

aDementia Research Centre, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, UK; bDepartment of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK; cUK Dementia Research Institute, Department of Neurodegenerative Disease, Queen Square UCL Institute of Neurology, London, UK; dClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; eDepartment of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden

\textbf{Keywords}
Astrocytes \cdot Biomarkers \cdot Cerebrospinal fluid \cdot CHI3L1 \cdot Chitotriosidase \cdot Frontotemporal dementia \cdot Microglia \cdot Neuroinflammation \cdot Progranulin \cdot YKL-40

\textbf{Abstract}
Background: Chronic glial dysfunction may contribute to the pathogenesis of frontotemporal dementia (FTD). Cerebrospinal fluid (CSF) levels of glia-derived proteins YKL-40 and chitotriosidase are increased in Alzheimer’s disease (AD) but have not been explored in detail across the spectrum of FTD.

Methods: We investigated whether CSF YKL-40 and chitotriosidase levels differed between FTD patients and controls, across different clinical and genetic subtypes of FTD, and between individuals with a clinical FTD syndrome due to AD versus non-AD (frontotemporal lobar degeneration, FTLD) pathology (based on CSF neurodegenerative biomarkers). Eighteen healthy controls and 64 people with FTD (behavioural variant FTD, \textit{n} = 20; primary progressive aphasia [PPA], \textit{n} = 44; nfvPPA, \textit{n} = 16, svPPA, \textit{n} = 11, lvPPA, \textit{n} = 14, PPA-NOS, \textit{n} = 3) were included. 10/64 had familial FTD, with mutations in \textit{GRN} (\textit{n} = 3), \textit{MAPT} (\textit{n} = 4), or \textit{C9orf72} (\textit{n} = 3).

Results: CSF YKL-40 and chitotriosidase levels were higher in FTD, particularly lvPPA (both) and nfvPPA (YKL-40), compared with controls. \textit{GRN} mutation carriers had higher levels of both proteins than controls and \textit{C9orf72} expansion carriers, and YKL-40 was higher in \textit{MAPT} mutation carriers than controls. Individuals with underlying AD pathology had higher YKL-40 and chitotriosidase levels than both controls and those with likely FTLD pathology. CSF YKL-40 and chitotriosidase levels were variably associated with levels of T-tau, P-tau and Aβ42, and with each other, depending on clinical syndrome and underlying pathology.

Results: CSF YKL-40 and chitotriosidase levels were higher in FTD, particularly lvPPA (both) and nfvPPA (YKL-40), compared with controls. \textit{GRN} mutation carriers had higher levels of both proteins than controls and \textit{C9orf72} expansion carriers, and YKL-40 was higher in \textit{MAPT} mutation carriers than controls. Individuals with underlying AD pathology had higher YKL-40 and chitotriosidase levels than both controls and those with likely FTLD pathology. CSF YKL-40 and chitotriosidase levels were variably associated with levels of T-tau, P-tau and Aβ42, and with each other, depending on clinical syndrome and underlying pathology.

CSF YKL-40 but not...
Background

Frontotemporal dementia (FTD) causes progressive changes in behaviour (behavioural variant FTD, bvFTD) or language (primary progressive aphasia, PPA), and some individuals have concurrent motor neuron disease (MND) or an atypical parkinsonian disorder such as progressive supranuclear palsy (PSP) or corticobasal syndrome (CBS) [1]. Pathologically, most individuals have frontotemporal lobar degeneration (FTLD) with tau inclusions (FTLD-tau) or transactive response DNA binding protein-43 (TDP-43) inclusions (FTLD-TDP), although some, particularly those with logopenic variant PPA (lvPPA), have underlying Alzheimer’s disease (AD) pathology [2, 3]. Around two-thirds of cases are sporadic, but one-third are familial, associated most commonly with mutations in progranulin (GRN), microtubule-associated protein tau (MAPT) or chromosome 9 open reading frame 72 (C9orf72) [1]. Biomarkers are currently lacking that reliably differentiate the pathological changes in vivo in sporadic FTD, can predict onset of disease and guide timely initiation of future treatments in familial FTD, or assess treatment response in future clinical trials.

There is growing evidence that chronic neuroinflammation plays a role in FTD, especially in familial FTD secondary to mutations in GRN [4–7], but also in people with MAPT [8–10] and C9orf72 [11–16] mutations, and in sporadic FTD [6, 17–20]. Histological studies of brain tissue from patients with FTD implicate excessive microglial activation [9, 10, 21–29] and astrocystosis [26, 28] but also microglial dystrophy [21] in disease pathogenesis. Although microglia and astrocytes may initially be helpful in neurodegenerative diseases through phagocytosis of aggregated proteins and dying neurons and remodelling of synapses, over time they may become harmful, through chronic activation and release of pro-inflammatory cytokines and other toxic proteins. Accelerated microglial senescence, dysfunction and reduced phagocytic and supportive capacity may also exacerbate neuronal demise [30]. Inflammatory markers associated with these processes, particularly proteins derived from glial cells, may be detectable and altered in blood or cerebrospinal fluid (CSF), and could be useful biomarkers of chronic neuroinflammation and disease pathogenesis in FTD.

Although it is now well-established that levels of several glia-derived proteins are raised in CSF during various stages of neurodegenerative diseases such as AD or MND, fewer studies have explored how levels are altered in FTD. Three glia-derived proteins have been most extensively explored in neurodegenerative diseases: soluble triggering receptor expressed on myeloid cells 2 (sTREM2), YKL-40 (also known as chitinase-3-like protein 1, CHI3L1) and chitotriosidase (also known as CHIT1). Trem2 is an innate immune receptor expressed by myeloid cells, including microglia and peripheral macrophages [31], and is involved in phagocytosis, survival and migration of microglia. A soluble fragment (sTREM2) is cleaved and detectable in CSF and blood [32]. YKL-40 is a pro-inflammatory molecule released predominantly by activated astrocytes (and to a lesser extent by microglia) into the CSF and by activated peripheral macrophages into blood, which stimulates production of cytokines, and regulates macrophage, microglial and astrocytic functions, endothelial cell migration and tumour angiogenesis [33]. Chitotriosidase is a chitin-degrading enzyme expressed by activated microglia (but not by astrocytes) in CSF [34], and by peripheral macrophages in blood [35]. It induces activation of a pro-inflammatory microglial phenotype [34] and has a range of other immunomodulatory functions, including stimulation of chemotactic factors, fibrosis and tissue remodelling [36].

We have recently shown that although CSF sTREM2 levels are not raised in a mixed cohort of individuals with a diagnosis of FTD compared with controls, they are higher in certain subgroups of FTD, such as individuals with a clinical syndrome consistent with FTD but underlying AD pathology, and in symptomatic GRN mutation carriers [37]. This has implications for the use of glia-derived proteins as CSF biomarkers in clinical trials for a condition as diverse as FTD. CSF YKL-40 and chitotriosidase levels have not been compared across all the clinical and the main genetic subtypes of FTD or correlated within FTD subgroups with levels of validated CSF neurodegenerative biomarkers used in clinical practice: total tau (T-tau), phosphorylated tau-181 (P-tau) and amyloid beta 1–42 (Aβ42).
Table 1. Demographics and CSF biomarker levels of control and FTD groups (overall and clinical subgroups)

	Control	FTD	bvFTD	nfvPPA	svPPA	lvPPA	PPA-NOS
Participants, n	18	64	20	16	11	14	3
Male gender, n (% group)	7 (38.9)	45 (70.3)	19 (95.0)	9 (56.2)	7 (63.6)	7 (50.0)	3 (100.0)
Age at CSF, years, mean (SD)	64.3 (6.6)	64.6 (6.5)	63.4 (7.1)	66.9 (5.9)	60.8 (6.0)	66.5 (6.0)	64.6 (5.4)
Age at onset, years n/a	59.5 (6.9)	56.1 (6.7)	62.7 (6.1)	56.1 (5.3)	63.0 (6.7)	61.3 (4.1)	
Disease duration at CSF, years n/a	7.1 (3.8)	7.4 (5.6)	4.2 (1.9)	4.7 (2.1)	3.5 (2.0)	3.2 (1.3)	
CSF YKL-40, ng/mL	108 (30)	134 (53)	119 (50)	149 (57)	120 (30)	147 (64)	146 (45)
CSF chitotriosidase (raw in pg/mL; natural log values in italics)	1,762 (1,099)	3,975 (4,356)	3,730 (3,762)	4,156 (5,789)	2,652 (1,609)	5,330 (5,039)	3,142 (3,868)
CSF Aβ42, pg/mL	1,028.5 (208.6)	758.1 (280.7)	828.3 (171.7)	842.5 (298.0)	894.0 (247.4)	446.4 (148.3)	804.3 (434.2)
CSF T-tau, pg/mL	338.8 (82.1)	531.4 (404.5)	351.9 (135.5)	490.6 (247.8)	395.5 (200.3)	968.8 (617.0)	403.3 (208.5)
CSF P-tau, pg/mL	53.1 (10.4)	57.0 (30.6)	45.7 (17.0)	50.6 (18.1)	44.9 (19.8)	91.7 (41.6)	49.0 (14.4)
CSF T-tau/Aβ42 ratio, median (IQR)	0.3 (0.2–0.5)	0.5 (0.3–1.0)	0.4 (0.3–0.5)	0.6 (0.3–0.9)	0.4 (0.3–0.5)	2.0 (1.1–3.2)	0.4 (0.2–1.2)

Values are all mean (standard deviation) except for gender and CSF T-tau/Aβ42 ratio; IQR, interquartile range; n/a, not applicable. Genetic mutations seen in bvFTD were GRN (n = 1; one S78fs), MAPT (n = 4; two 10 + 16, two R406W) or C9orf72 (n = 3), and in nfvPPA were GRN (n = 2; two C31fs).

This study therefore set out to examine how CSF YKL-40 and chitotriosidase levels differ between individuals with a clinical diagnosis of FTD and cognitively normal controls, and between different clinical and genetic subtypes of FTD. We also aimed to clarify how CSF YKL-40 and chitotriosidase levels differ between individuals with similar clinical FTD syndromes but different underlying pathologies: FTLD versus AD, based on the CSF tau/Aβ42 biomarker profile. We also aimed to establish whether YKL-40 or chitotriosidase levels are associated with levels of T-tau, P-tau or Aβ42 in CSF, and to ascertain the relationship between YKL-40 and chitotriosidase levels, across the spectrum of FTD. Finally, we aimed to assess how YKL-40 and chitotriosidase levels are associated with parameters that may affect glial function and are relevant for future clinical trials, such as age, disease duration and sex.

Methods

Participants

The cohort consisted of 64 consecutively recruited individuals with dementia meeting consensus diagnostic criteria for either bvFTD [38] or PPA [39], and 18 healthy cognitively normal controls (as per [37], with the addition of an extra control, recruited subsequent to that study). Cases with additional motor neurone disease were not included in the study. The study was approved by the local NHS Research Ethics Committee and the Health Research Authority. All individuals gave informed written consent.

Within the patient group, 20 had bvFTD, 16 nonfluent variant PPA (nPvPPA), 11 semantic variant PPA (svPPA), 14 logopenic variant PPA (lvPPA) and 3 had a PPA syndrome not otherwise specified (PPA-NOS; not fulfilling criteria of any of the other PPA phenotypes). All participants with FTD were genetically screened for all known FTD causative mutations, including the C9orf72 expansion. Ten individuals were found to have familial FTD, with mutations in GRN (n = 3; two C31fs, one S78fs), MAPT (n = 4; two 10 + 16, two R406W) or C9orf72 (n = 3). All familial cases had a diagnosis of bvFTD except 2 individuals with GRN mutations who had nfvPPA. Demographics of the cohort are displayed in Table 1. Disease duration was calculated as the time, in years, between age at clinical onset of symptoms and date of CSF collection.

There was no difference in age at CSF collection between the FTD and control groups (p = 0.854), but the svPPA subgroup were younger than the nfvPPA (p = 0.018) and lvPPA (p = 0.031) subgroups. There was no significant difference in age between any of the genetic subgroups or when compared with controls. There was a higher proportion of males in the FTD group than in the control group (p = 0.014), and a higher proportion of males in the bvFTD subgroup versus all other clinical subgroups and controls (p = 0.006), other than the PPA-NOS group, where all 3 participants were male (Table 1). There was no significant difference in disease duration between any of the clinical subgroups (p = 0.105).
For all participants, CSF was collected and stored using standardised procedures [37, 40]. Samples were collected by lumbar puncture in polypropylene tubes, which were immediately transferred to the laboratory. Samples were then centrifuged and the supernatant aliquoted and stored at −80 °C within 30 min of arrival. Levels of T-tau, P-tau and Aβ42 were measured in CSF using commercially available INNOTEST sandwich enzyme-linked immunosorbent assays (Fujirebio Europe, Gent, Belgium).

CSF YKL-40 levels were measured using the commercially available Human YKL-40 Immunoassay Kit on the Mesoscale Discovery (MSD, Rockville, MD, USA) platform, with all samples assayed in duplicate and measured on the same day by a single operator using the same reagents. Briefly, CSF samples were diluted 1 in 400 with dilution buffer, and the provided standard reconstituted 1 in 20 using dilution buffer and serially diluted 1 in 4 to produce concentrations ranging from 50,000 to 12.2 pg/mL. 150 μL blocking agent was added to each well, and plates sealed and incubated at room temperature shaking at 500 rpm for 1 h. Plates were washed 3 times with 300 μL per well of PBS-T, then 50 μL of either diluted CSF sample, standard or blank (dilution buffer) was added to each well (pre-coated with capture antibody), and plates were sealed and incubated at room temperature shaking at 500 rpm for 2 h. Plates were washed 3 times with 300 μL of PBS-T and 25 μL of detection antibody solution (diluted 1 in 50) added per well, then sealed and incubated at room temperature shaking at 500 rpm for 2 h. After a further 3 washes with PBS-T, 150 μL of Read Buffer T (diluted 1 in 2) was added to each well and the plate immediately analysed on the SECTOR Imager using a 4-parameter logistic model with averaged replicates.

CSF chitotriosidase levels were measured using the commercially available CircuLex Human ELISA Kit (MBL International, MA, USA) with all samples assayed in duplicate and measured on the same day by a single operator using the same reagents. Briefly, CSF samples were diluted 1 in 5 with dilution buffer and the provided standard was diluted to produce concentrations ranging from 3,600 to 56.25 pg/mL. 100 μL of either diluted CSF sample, standard or blank (dilution buffer) was added to each well, and plates sealed and incubated at room temperature for 1 h shaking at 300 rpm, then washed 4 times with 350 μL wash buffer. 100 μL of HRP conjugated detection antibody was added and plates sealed and incubated at room temperature for 1 h shaking at 300 rpm, then washed 4 times with 350 μL wash buffer. 100 μL of substrate agent was added to each well and plates were sealed, covered in foil and incubated for 15 min at room temperature shaking at 300 rpm. Finally, 100 μL of stop solution was added to each well in the same order as the substrate agent, and plate absorbance read immediately on a microplate reader at dual wavelengths of 450/540 nm. The concentration of chitotriosidase in each sample was calculated using a four-parameter fitting method based on the standard curve, using values which were blank corrected and averaged over replicates.

Table 2. Demographics and CSF biomarker levels of control group and dementia groups defined by CSF neurodegenerative biomarker profile

	Control	AD biomarker-negative dementia (CSF T-tau/Aβ42 <1.0)	AD biomarker-positive dementia (CSF T-tau/Aβ42 >1.0)
Participants, n	18	49	15
Diagnosis	n/a	20 bvFTD, 14 nfvPPA, 10 svPPA, 3 lvPPA, 2 PPA-NOS	2 nfvPPA, 1 svPPA, 11 lvPPA, 1 PPA-NOS
Male gender, n (%) group	7 (38.9)	36 (73.4)	9 (60.0)
Age at CSF, years	64.3 (6.6)	64.1 (6.7)	65.9 (6.0)
Age at onset, years	n/a	58.6 (6.8)	62.4 (6.7)
Disease duration at CSF, years	n/a	5.6 (4.1)	3.5 (2.1)
CSF YKL-40, ng/mL	108 (30)	125 (45)	163 (67)
CSF chitotriosidase (raw in pg/mL; natural log values in italics)	1,762 (1,098); 7.3 (0.6)	3,336 (4,121); 7.8 (0.9)	5,975 (4,616); 8.4 (0.8)
CSF Aβ42, pg/mL	1,032.2 (214.3)	833.9 (265.4)	510.5 (165.7)
CSF T-tau, pg/mL	332.6 (82.4)	373.5 (173.0)	1,047.2 (511.3)
CSF P-tau, pg/mL	52.7 (10.6)	44.8 (15.3)	97.0 (34.3)
CSF T-tau/Aβ42 ratio, median (IQR)	0.3 (0.2–0.5)	0.4 (0.3–0.7)	1.6 (1.2–3.2)

Values are all mean (standard deviation) except for gender and CSF T-tau/Aβ42 ratio; IQR, interquartile range; n/a, not applicable.
Participant Stratification
We performed three separate group comparisons:
1. By clinical syndrome, comparing bvFTD, nfvPPA, svPPA, lvPPA, PPA-NOS, and controls.
2. By genetic group, comparing those with GRN mutations, MAPT mutations, C9orf72 expansions, and controls.
3. By pathological group, comparing those with likely Alzheimer’s disease, those with likely FTLD pathology, and controls.

We used levels of CSF T-tau and Aβ42 to calculate the T-tau/Aβ42 ratio for each participant to perform this stratification, classifying all individuals with dementia based on the CSF T-tau/Aβ42 ratio, with a cut-off of ≥1.0 (AD biomarker-positive, indicating likely AD) and <1.0 (AD biomarker-negative, indicating likely FTLD) [37, 40] (Table 2). The cognitively normal controls formed a comparison group with all having a CSF T-tau/Aβ42 ratio of <1.0. No significant difference in age at CSF was lower in the AD biomarker-positive subgroup than the AD biomarker-negative subgroup (p = 0.037). There were significantly more males in the AD biomarker-negative subgroup (73.4%) than in controls (38.9%) and the AD biomarker-positive subgroup (60.0%) (p = 0.032).

Statistical Analysis
For YKL-40, levels were detectable in CSF of all individuals, so analyses were performed on all 18 controls and 64 individuals with FTD. For chitotriosidase, 3 individuals (one control, one sporadic bvFTD and one sporadic nfvPPA) had persistently undetectable levels of chitotriosidase in CSF, despite assaying their samples again at 1 in 5 dilution and using neat CSF. Approximately 6% of the population possess a homozygous 24-bp duplication in exon 10 of the CHIT1 gene which leads to a complete enzymatic deficiency of chitotriosidase [41]. These 3 individuals were very likely to be carriers of this mutation, and their levels would bias com-

Fig. 1. Comparison of CSF YKL-40 levels between groups and subgroups. Graphs show how CSF YKL-40 levels differ across (a) controls and overall FTD group; (b) controls and clinical FTD subgroups; (c) controls and genetic FTD subgroups; (d) controls and CSF biomarker-defined pathological subgroups. Horizontal bars show mean CSF YKL-40 levels and upper and lower 95% confidence intervals for each group; * p < 0.05, ** p < 0.01.
Table 3. Adjusted mean differences in CSF YKL-40 and Ln(chitotriosidase) levels between all disease groups and subgroups and controls

Groups compared	Mean (SEM) difference in CSF YKL-40 (ng/mL) and Ln(chitotriosidase)	95% confidence intervals for mean difference in CSF YKL-40 (ng/mL) and Ln(chitotriosidase)	p value for comparison for YKL-40 and Ln(chitotriosidase)
FTD vs. control	31.0 (12.9)	5.23, 56.8	0.019
	0.522 (0.247)	0.031, 1.013	0.038
Clinical subgroups			
bvFTD vs. control	20.7 (16.9)	–12.9, 54.4	0.225
	0.414 (0.322)	–0.228, 1.057	0.202
nfvPPA vs. control	33.8 (16.5)	5.92, 71.8	**0.021**
	0.506 (0.317)	–0.126, 1.139	0.115
svPPA vs. control	20.9 (18.7)	16.3, 58.1	0.267
	0.362 (0.353)	–0.342, 1.067	0.309
lvPPA vs. control	36.3 (17.0)	2.40, 70.2	**0.036**
	0.788 (0.321)	0.148, 1.428	**0.017**
PPA-NOS vs. control	47.4 (30.5)	–13.2, 108.1	0.124
	0.107 (0.571)	–1.031, 1.245	0.852
nfvPPA vs. bvFTD	12.5 (19.9)	–27.3, 52.4	0.531
	0.064 (0.386)	–0.709, 0.837	0.869
svPPA vs. bvFTD	–4.33 (20.6)	–43.5, 36.8	0.833
	–0.066 (0.388)	–0.845, 0.712	0.399
lvPPA vs. bvFTD	8.84 (21.1)	–33.5, 51.2	0.677
	0.339 (0.399)	–0.462, 1.141	0.399
PPA-NOS vs. bvFTD	217.3 (33.3)	–44.9, 88.3	0.517
	–0.555 (0.624)	–1.61x, 0.897	0.571
svPPA vs. nfvPPA	–16.9 (21.5)	–60.0, 28.2	0.436
	–0.130 (0.411)	–0.954, 0.693	0.752
lvPPA vs. nfvPPA	–3.70 (19.0)	–41.8, 34.4	0.846
	0.276 (0.360)	–0.447, 0.999	0.448
PPA-NOS vs. nfvPPA	9.14 (33.5)	–57.9, 76.2	0.786
	–0.419 (0.631)	–1.68x, 0.847	0.509
lvPPA vs. svPPA	13.2 (22.2)	–31.3, 57.7	0.555
	0.406 (0.415)	–0.426, 1.239	0.332
PPA-NOS vs. svPPA	26.0 (34.8)	–43.7, 93.7	0.458
	–0.289 (0.649)	–1.591, 1.013	0.658
PPA-NOS vs. lvPPA	12.8 (33.9)	–55.2, 80.9	0.707
	–0.695 (0.634)	–1.96x, 0.577	0.278
Genetic subgroups			
GRN vs. control	111.9 (24.4)	61.5, 162.5	**<0.001**
	1.691 (0.366)	0.930, 2.452	**<0.001**
MAPT vs. control	51.3 (24.2)	1.10, 101.5	**0.046**
	0.622 (0.366)	–0.138, 1.382	0.104
C9orf72 vs. control	–9.17 (26.6)	–64.3, 45.9	0.733
	–0.073 (0.399)	–0.903, 0.758	0.857
GRN vs. MAPT	60.7 (31.4)	–4.47, 125.8	0.066
	1.06x (0.471)	0.088, 2.049	**0.034**
GRN vs. C9orf72	121.2 (32.6)	53.5, 188.8	**0.001**
	1.764 (0.489)	0.747, 2.781	**0.002**
MAPT vs. C9orf72	60.5 (29.8)	–1.36, 122.3	0.055
	0.695 (0.448)	–0.236, 1.626	0.136
Pathological subgroups			
AD biomarker-positive vs. control	55.5 (16.1)	23.5, 87.4	**0.001**
	1.086 (0.296)	0.495, 1.676	**<0.001**
AD biomarker-negative vs. control	22.4 (13.1)	–3.6, 48.4	0.091
	0.318 (0.243)	–0.166, 0.802	0.194
AD biomarker-positive vs. AD biomarker-negative	30.7 (15.2)	0.308, 61.0	**0.048**
	0.783 (0.277)	0.227, 1.338	**0.007**

SEM, standard error of the mean. p values in bold are significant at p < 0.05.
parisons of the groups if included (or assigned the lower limit of detection); hence, they were excluded from the chitotriosidase analysis, leaving 17 controls and 62 individuals with dementia.

All analyses were carried out using STATA14 (Stata Corporation, College Station, TX, USA), with a significance threshold of \(p < 0.05 \). Shapiro-Wilk tests of raw values and Q-Q plots of residuals from multivariable linear regressions were used to test assumptions of normality.

Assessment of residuals in multivariable linear regression analyses of YKL-40 across groups revealed these were normally distributed and so met the assumptions required for parametric multivariable linear regression analysis. However, the same assessment for chitotriosidase revealed that residuals were not normally distributed, and so chitotriosidase values were natural log (Ln) transformed, which then met assumptions required for multivariable linear regression analysis. Multivariable linear regressions were used to compare YKL-40 and Ln(chitotriosidase) levels between groups (FTD vs. controls and between clinical, pathological and genetic subgroups and vs. controls), adjusting for age and sex in all analyses, and for disease duration in analyses involving comparison of disease groups (but not for genetic subgroups due to small sample size). Post hoc pairwise tests were used to compare individual subgroups.

In each group (except genetic subgroups due to small sample size), multivariable linear regressions were used to investigate the association between:

(a) YKL-40 or Ln(chitotriosidase) levels and levels of CSF T-tau, P-tau and Aβ42, adjusted for age and sex (for the control group) and for age, sex and disease duration (for disease groups). Due to a non-linear relationship between T-tau levels and YKL-40 and chitotriosidase levels, T-tau values were Ln transformed and all regression analyses performed using Ln(T-tau).

(b) Ln(chitotriosidase) and Ln transformed YKL-40 levels (due to non-linear relationship between raw values), adjusted for age and sex, and for disease groups, disease duration as well.

(c) YKL-40 or Ln(chitotriosidase) and both age at CSF collection (adjusted for sex in the control group and both sex and disease duration in disease groups) and disease duration at CSF collection (for disease groups, adjusted for age and sex).

Mann-Whitney U tests were used to compare protein levels between males and females in each group (but not within genetic subgroups due to small sample size).

Results

CSF YKL-40 and Chitotriosidase Levels Are Higher in Certain FTD Syndromes than Controls

CSF YKL-40 levels were higher overall in individuals with a clinical FTD syndrome than in controls (mean [SD] = 134 [53] vs. 108 [30] ng/mL, \(p = 0.019 \); Fig. 1a, Tables 1, 3). However, this varied by clinical subtype (Fig. 1b; Tables 1, 3): YKL-40 levels were highest in individuals with nfvPPA (149 [57] ng/mL, \(p = 0.021 \) vs. controls) and lvPPA (147 [64] ng/mL, \(p = 0.036 \). Although individuals with PPA-NOS had similarly high YKL-40 levels (146 [45] ng/mL), the small size of this group meant that the difference from controls was not statistically significant (\(p = 0.124 \)). No significant differences were seen between YKL-40 levels in bvFTD or svPPA subgroups compared with controls, and there were no significant differences between clinical subgroups (Fig. 1b).

CSF chitotriosidase levels were also significantly higher overall in individuals with a clinical FTD syndrome compared with controls (Fig. 2a, Tables 1, 3; FTD: mean [SD] = 3,795 [4,358] vs. controls: 1,762 (1,098) pg/mL, \(p = 0.038 \)). Although a trend towards higher levels was seen in all clinical subgroups (Fig. 2b; Tables 1, 3), this only reached statistical significance in lvPPA (5,240 [5,039] pg/mL, \(p = 0.017 \)) and there were no significant differences between clinical subgroups.

CSF YKL-40 and Chitotriosidase Levels Differ by Underlying Gene Mutation in FTD

GRN mutation carriers had significantly higher levels of YKL-40 compared with controls (mean [SD] = 226 [42] vs. 108 [30] ng/mL, \(p < 0.001 \); Fig. 1c) and compared with C9orf72 expansion carriers (99 [40] ng/mL, \(p = 0.001 \), with a trend to a higher level compared with MAPT mutation carriers (150 [69] ng/mL, \(p = 0.066 \)). MAPT mutation carriers also had significantly higher YKL-40 levels than controls (\(p = 0.046 \); Fig. 1c), with a trend to higher levels compared with C9orf72 expansion carriers (\(p = 0.055 \)).

GRN mutation carriers had much higher levels of chitotriosidase compared with controls (mean [SD] = 9,492 [5,143] vs. 1,762 [1,098] pg/mL, \(p < 0.001 \), MAPT mutation carriers (2,770 [1,664] pg/mL, \(p = 0.034 \) and C9orf72 expansion carriers (1,688 [1,345] pg/mL, \(p = 0.002 \; \mathrm{Fig.} \; 2c \)). However, in contrast to YKL-40, MAPT mutation carriers had more similar chitotriosidase levels to controls (\(p = 0.104 \)) and C9orf72 expansion carriers (\(p = 0.136 \)).

CSF YKL-40 and Chitotriosidase Levels Are Higher in FTD Syndromes due to Underlying AD Pathology

Levels of both YKL-40 and chitotriosidase were highest in the AD biomarker-positive subgroup (YKL-40 mean [SD] = 163 [67] ng/mL; chitotriosidase = 5,975 [4,616] pg/mL) with significantly higher levels of both proteins in this subgroup compared with the AD biomarker-negative subgroup (YKL-40: 125 [45] ng/mL; \(p = 0.048 \), Fig. 1d; chitotriosidase: 3,336 [4,121] pg/mL, \(p = 0.007 \; \mathrm{Fig.} \; 2d \); Tables 2, 3) and also compared with controls (YKL-40: 108 [30] ng/mL, \(p = 0.001 \), Fig. 1d; chitotriosidase: 1,762 [1,098] pg/mL, \(p < 0.001 \); Fig. 1d; Tables 2, 3). There was a non-significant trend to a higher level

DOI: 10.1159/000506282
of each protein in the AD biomarker-negative subgroup versus controls (YKL-40: \(p = 0.091 \), Fig. 1d; chitotriosidase: \(p = 0.194 \), Fig. 2d; Tables 2, 3).

CSF YKL-40 and Chitotriosidase Are Variably Associated with T-tau, P-tau and Aβ42

Associations between levels of CSF neurodegenerative biomarkers T-tau, P-tau and Aβ42 and levels of CSF YKL-40 (Fig. 3) or chitotriosidase (Fig. 4) varied according to clinical diagnosis and CSF biomarker profile (i.e., underlying pathology). In controls, CSF YKL-40 and chitotriosidase were not significantly associated with any biomarker. In the overall FTD (dementia) group, CSF YKL-40 and chitotriosidase levels were significantly positively associated with both T-tau and P-tau levels, and there was a small, negative association of chitotriosidase with Aβ42 levels. For YKL-40: T-tau \(\beta \) (95% CI) = 42.996 (24.878, 61.113), \(p < 0.001 \) (Fig. 3a); P-tau \(\beta = 0.722 \) (0.339, 1.105), \(p < 0.001 \) (Fig. 3b); Aβ42 \(\beta = -0.003 \) (–0.051, 0.045), \(p = 0.907 \) (Fig. 3c). For chitotriosidase: T-tau \(\beta = 0.668 \) (0.306, 1.030), \(p < 0.001 \) (Fig. 4a); P-tau \(\beta = 0.009 \) (0.001, 0.016), \(p = 0.028 \) (Fig. 4b); Aβ42 \(\beta = -0.0009 \) (–0.0017, –0.0002), \(p = 0.044 \) (Fig. 4c).

Most clinical subgroups showed positive slopes for the association between YKL-40 and T-tau or P-tau levels (Fig. 3d, e), but this only reached significance in certain
subgroups. YKL-40 levels were significantly positively associated with T-tau levels in bvFTD (β [95% CI] = 109.3 [80.6, 138.1], $p < 0.001$) and nfvPPA ($\beta = 69.9$ [21.2, 118.6], $p = 0.009$), and with P-tau levels in bvFTD ($\beta = 1.746$ [0.607, 2.885], $p = 0.005$) and lvPPA ($\beta = 1.020$ [0.199, 1.841], $p = 0.020$). YKL-40 levels were not associated with Aβ42 levels in most subgroups, except in lvPPA (Fig. 3f), where there was a significant positive association ($\beta = 0.274$ [0.043, 0.506], $p = 0.025$). Chitotriosidase levels were positively associated with T-tau or P-tau levels only
in certain clinical subgroups (Fig. 4d, e). There was a significant association between chitotriosidase and T-tau levels in bvFTD ($\beta = 1.312 \ [0.132, 2.491], p = 0.003$) and lvPPA ($\beta = 0.937 \ [0.231, 1.642], p = 0.015$) and with P-tau levels in lvPPA ($\beta = 0.014 \ [0.001, 0.027], p = 0.043$). Although most clinical subgroups except lvPPA had borderline negative associations between chitotriosidase and Aβ42 levels, these did not reach significance (Fig. 4f).

Although both pathological subgroups (AD biomarker-positive and AD biomarker-negative) and controls
Fig. 5. Relationship between chitotriosidase and YKL-40 levels in CSF. Graphs show CSF chitotriosidase levels vs. CSF YKL-40 levels for controls and overall FTD group (a), clinical FTD subgroups (b) and controls and CSF biomarker-defined pathological subgroups (c). Chitotriosidase and YKL-40 values were Ln transformed before analysis. Lines in a are group regression lines adjusted for age and sex (controls) and age, sex and disease duration (dementia group). Lines in b are group regression lines for clinical subgroups adjusted for age, sex and disease duration. Lines in c are group regression lines adjusted for age and sex (controls) and age, sex and disease duration (CSF biomarker-defined pathological subgroups). See main text for individual β and p values for each association.

seemed to have positive associations between YKL-40 and T-tau and P-tau levels (Fig. 3g, h), associations were only significant in the AD biomarker-negative subgroup: T-tau β (95% CI) = 62.064 (37.676, 86.451), $p < 0.001$; P-tau β = 1.055 (0.261, 1.849), $p = 0.010$. The AD biomarker-positive subgroup had a significant, positive association between YKL-40 and Aβ42 levels ($\beta = 0.226 [0.011, 0.442]$, $p = 0.041$, Fig. 3i). There were no significant associations between chitotriosidase levels and T-tau, P-tau or Aβ42 levels in any pathological subgroup or controls.
Although there was a trend towards a positive association between chitotriosidase and T-tau in the AD biomarker-negative subgroup ($\beta = 0.631 \ [–0.003, 1.265]; \ p = 0.051$, Fig. 4g).

CSF Chitotriosidase Is Positively Associated with YKL-40 in FTD

CSF chitotriosidase levels were positively associated with YKL-40 levels within the whole cohort ($\beta \ [95\% \ CI] = 1.008 \ [0.507, 1.509], \ p < 0.001$) and in the overall FTD (dementia) group ($\beta = 1.094 \ [0.508, 1.680], \ p < 0.001$, Fig. 5a) but not in controls ($\beta = –0.203 \ [–1.605, 1.199], \ p = 0.774$, Fig. 5a). Levels of both proteins were also positively associated in most clinical subgroups (Fig. 5b) but reached significance only in bvFTD ($\beta = 1.369 \ [0.399, 2.340], \ p = 0.007$) and nfvPPA ($\beta = 1.388 \ [0.034, 2.742], \ p = 0.045$). Levels were positively associated in the AD biomarker-negative subgroup ($\beta = 1.226 \ [0.556, 1.896], \ p = 0.001$; Fig. 5c), but this did not reach significance in the AD biomarker-positive subgroup ($\beta = 0.275 \ [–0.781, 1.332], \ p = 0.604$; Fig. 5c).

Fig. 6. Relationship between CSF YKL-40 or chitotriosidase levels and age at CSF. Graphs show CSF YKL-40 levels vs. age in controls and overall FTD group (a) and clinical FTD subgroups (b), and CSF chitotriosidase levels vs. age in controls and overall FTD group (c) and clinical FTD subgroups (d). Chitotriosidase values were Ln transformed before analysis. Lines in a and c are group regression lines adjusted for sex (controls) and sex and disease duration (dementia group). Lines in b and d are group regression lines for individual clinical subgroups adjusted for sex and disease duration. See main text for individual β and p values for each association.
CSF YKL-40 and Chitotriosidase Levels Are Associated with Age

CSF YKL-40 levels were positively associated with age at CSF in the whole cohort (β [95% CI] = 1.989 [0.352, 3.625], p = 0.018). A similar magnitude of association was seen in the FTD group (β = 1.864 [0.059, 3.670], p = 0.043) and the control group (β = 2.467 [–1.074, 6.007], p = 0.169). Although most of the clinical subgroups (apart from nfvPPA and PPA-NOS) and both pathological subgroups appeared to have a positive slope for the association between YKL-40 levels and age, none reached significance. Chitotriosidase levels were not significantly associated with age in either the whole cohort (β = 0.007 [–0.024, 0.378], p = 0.661) or the FTD (β = 0.004 [–0.064, 0.073], p = 0.904; Fig. 6c) or control (β = 0.008 [–0.026, 0.042], p = 0.628; Fig. 6c) groups, or in any of the clinical (Fig. 6d) or pathological subgroups.

There were no significant associations between either YKL-40 (Fig. 7a) or chitotriosidase (Fig. 7c) levels and disease duration in the FTD group (YKL-40: β = –1.874 [–5.403, 1.655], p = 0.292; chitotriosidase: β = –0.016 [–0.082, 0.051], p = 0.631) or within any of the clinical (Fig. 7b, d) or pathological subgroups.
CSF YKL-40 and chitotriosidase levels did not differ significantly between males and females in the whole cohort or in FTD or control groups, or in any of the clinical or pathological subgroups.

Discussion

This study shows that levels of two glia-derived proteins, YKL-40 and chitotriosidase, are raised in the CSF of individuals with a clinical diagnosis of FTD compared with controls. However, levels are not consistently raised across all clinical subtypes, with highest YKL-40 levels in lvPPA and nfvPPA, and highest chitotriosidase levels in lvPPA. Individuals with a clinical syndrome consistent with FTD but a CSF neurodegenerative biomarker profile consistent with AD pathologically have particularly high levels of both proteins compared with controls, and higher levels than individuals with a diagnosis of FTD and non-AD like CSF biomarkers (likely FTLD), who have a non-significant trend to higher levels than controls. In a smaller subgroup analysis, both YKL-40 and chitotriosidase levels are highly elevated in FTD due to GRN mutations, and YKL-40 levels are also elevated in FTD due to MAPT mutations. Associations between YKL-40 and chitotriosidase levels, and with T-tau, P-tau and Aβ42 levels, vary depending on clinical diagnosis and CSF biomarker profile. CSF YKL-40 levels, but not chitotriosidase levels, are associated with age, and neither are associated with disease duration.

Raised CSF YKL-40 levels have previously been demonstrated in several FTD cohorts versus controls [33, 42–49], including in familial FTD [48], and compared with individuals with primary psychiatric diagnoses [50]. In contrast, few studies have examined CSF chitotriosidase levels in FTD. One study found higher chitotriosidase levels in FTD (in cases without CSF biomarker or pathological confirmation) compared with healthy controls [51], but another found similar levels to controls in a mixed familial FTD cohort [48]. Our results and results from previous biomarker and histological studies suggest significant glial activation is present in individuals with clinical diagnoses of FTD. However, previous biomarker studies have included individuals with different clinical syndromes, gene mutations and underlying pathologies (or co-pathologies) within FTD cohorts. This has limited our understanding of how glia-derived proteins vary in CSF across the spectrum of FTD, and how these biomarkers may be useful for clinical trials targeting different FTD subgroups. Our study therefore aimed to elucidate how levels of YKL-40 and chitotriosidase vary across the spectrum of FTD by examining these proteins at the subgroup level.

CSF YKL-40 and chitotriosidase levels were significantly raised in several, but not all, clinical subtypes of FTD and there was significant variability in levels within clinical subgroups. The highest YKL-40 levels were seen in lvPPA and nfvPPA, but the PPA-NOS subgroup also had high levels (likely not reaching significance when compared with controls due to small sample size). The highest chitotriosidase levels were in lvPPA, but other clinical subgroups showed non-significant trends towards higher levels than controls. There were no significant differences in levels between clinical subgroups. Very few studies have explored this previously: one study examining CSF YKL-40 levels in bvFTD, nfvPPA, svPPA, CBS and PSP compared with controls found raised levels in all syndromes (except PSP) and no significant differences between FTD subgroups, although individuals with lvPPA were not delineated from an accompanying typical AD group [43]. A study of CSF chitotriosidase levels in FTD found no significant difference between bvFTD and PPA, or between PPA subtypes, although PPA subgroups were much smaller than in our cohort and lacked biomarker or pathological correlation [51]. Different clinical subtypes of FTD may have widely differing pathologies, co-pathologies and disease mechanisms and hence differing degrees of glial activation which could affect YKL-40 and chitotriosidase release. In particular, patients with MND have much higher CSF YKL-40 levels [46, 48, 52–55] and CSF chitotriosidase levels or activity [34, 48, 51, 54–57] than controls, and higher chitotriosidase levels than in FTD [51], so our study did not include individuals with FTD-MND to avoid confounding results. The majority (78%) of our lvPPA subgroup had a CSF biomarker profile consistent with AD (rather than FTLD), and our nfvPPA subgroup contained 2 individuals with AD-like CSF biomarkers and 2 individuals with GRN mutations. In contrast, most individuals with bvFTD or svPPA had non-AD-like biomarkers and either a smaller percentage of (bvFTD) or no GRN mutations. We therefore hypothesise that the particularly high YKL-40 and chitotriosidase levels in lvPPA and high YKL-40 levels in nfvPPA may be due to more pronounced glial activation in individuals with underlying AD pathology and GRN mutations.

We were able to explore this further by stratifying our FTD cohort by CSF neurodegenerative biomarker profile (T-tau/Aβ42 ratio) rather than by clinical diagnosis. This was helpful in a previous study to demonstrate that
CSF sTREM2 levels are raised in individuals with a clinical diagnosis of an FTD syndrome but AD-like CSF biomarkers, particularly 1vPPA, compared with controls, but not in those with likely FTLD [37]. By repeating this approach, we confirm that there are also much higher levels of YKL-40 and chitotriosidase in the CSF of individuals with an FTD syndrome but AD-like CSF biomarkers compared with controls, and higher levels than in individuals with non-AD-like CSF (i.e., likely FTLD). Patients with typical amnestic AD have elevated levels of glia-derived proteins in CSF compared with controls, including YKL-40 [42, 47, 58–65, 66–69], sTREM2 [70–73], chitotriosidase [51, 59, 74, 75], glial fibrillary acidic protein [76–78] and S100beta [79–81]. This suggests there is pronounced astrocytic and microglial activation in association with AD pathology. The soluble phosphorylated tau species found in patients with amnestic AD are highly toxic to microglia, resulting in pronounced microglial dysfunction and dystrophy [82] and tau oligomers co-localise with microglia, astrocytes and pro-inflammatory cytokines in patients with AD and FTLD [26]. Patients with clinical FTD but underlying AD pathology would therefore also be expected to have very high levels of glia-derived proteins compared with controls, and data from this study and our previous study [37] support this.

Although CSF YKL-40 and chitotriosidase levels did not differ significantly between individuals with FTD and non-AD-like CSF biomarkers (likely FTLD) and controls, there was a trend towards higher levels of both proteins in this group. There was also significant intra-group variability in protein levels, particularly for chitotriosidase, suggesting glial activation may vary considerably according to the FTD subtype or disease mechanism. Other studies have explored this by stratifying pathologically confirmed FTLD groups and found higher CSF YKL-40 levels in both FTLD-tau and FTLD-TDP than in individuals with subjective memory impairment, and in FTLD-tau compared with AD [43, 44, 49]. One study found higher YKL-40 levels in “pure” FTLD-tau (excluding AD pathology) than in patients with FTLD-TDP or AD [44], although others have found higher levels in FTLD-TDP (but not FTLD-tau) compared with controls [43, 45]. Differences in the number of genetic FTD cases in FTLD subgroups or inclusion of individuals with co-pathology are likely to have contributed to these disparities between studies. FTLD-TDP cohorts have included patients with concurrent MND [45], or patients with GRN mutations [43] who we demonstrate have very high levels of both YKL-40 and chitotriosidase. FTLD-tau cohorts have included differing numbers of MAPT cases, who we show have particularly raised YKL-40 levels. This variability in levels according to pathology or disease mechanism has implications for the use of inflammatory proteins as fluid biomarkers in both research studies and clinical trials for a disease as pathologically diverse as FTD. It also emphasises the importance of detailed stratification of cohorts or use of CSF biomarker or pathological correlation in biomarker studies of FTD.

Although we were unable to divide our cohort into FTLD subtypes due to a lack of cases with pathological confirmation, we were able to include a small number of individuals with familial FTD, enabling an exploratory analysis of CSF YKL-40 and chitotriosidase levels in a small number of individuals with known pathology (FTLD-TDP: GRN or C9orf72 mutations or FTLD-tau: MAPT mutations), and also differing disease mechanisms despite similar pathology (GRN and C9orf72 mutations). GRN mutation carriers had very elevated YKL-40 and chitotriosidase levels, and MAPT mutation carriers had high YKL-40 levels compared with controls. Very few studies have examined glia-derived CSF biomarkers in individuals with genetic FTD. In a recent study, CSF YKL-40 levels, but not CSF chitotriosidase levels, were significantly elevated in 23 familial FTD cases (combining C9orf72, GRN or MAPT mutation carriers) compared with controls [48]. However, genetic subgroup analyses were not performed to analyse differences between mutation types and the genetic group contained a significant proportion of patients with C9orf72 expansions (15/23) (who we found to have similar levels of both proteins to controls), which may have influenced results. The highly elevated levels of YKL-40 and chitotriosidase in our GRN mutation group is consistent with multiple studies showing elevated levels of other inflammatory markers in GRN mutation carriers [6, 19, 37, 83–85]. GRN haploinsufficiency results in significant microglial dysfunction and activation [4, 21, 86], which could lead to excessive YKL-40 and chitotriosidase release as a mutation-specific effect, exacerbated by the general glial response to neurodegeneration, perhaps explaining the higher levels in GRN than C9orf72 mutation carriers. Patients with heterozygous GRN mutations also display significant lysosomal dysfunction [87, 88], which could exacerbate chitotriosidase release into CSF. Plasma [35] and CSF [89, 90] chitotriosidase are highly elevated in the lysosomal storage disorder Gaucher’s disease, where macrophages are chronically activated [35, 91] and plasma levels are already used for monitoring treatment response [92]. Serum YKL-40 levels are also raised (and serum GRN levels
are reduced) in Gaucher’s disease, and recombinant GRN reduces serum YKL-40 levels in GRN knockout mice and in fibroblasts from patients with Gaucher’s disease [91]. This strengthens the evidence for a link between GRN haploinsufficiency, glial activation, and lysosomal dysfunction, which could be detectable at an early stage, and reversible, in GRN mutation carriers.

The high YKL-40 levels observed in MAPT carriers are consistent with elevated CSF YKL-40 levels in FTLD-tau [43, 49] and colocalisation of activated astrocytes with tau oligomers in P301S MAPT mouse models [26]. There are also many activated microglia surrounding phosphorylated-tau positive neurons in MAPT P301S mice [8] or patients with P301S mutations [43] and pronounced frontotemporal microglial activation in MAPT mutation carriers [10]. This suggests that certain FLTD-tau pathologies, as well as tau in AD, may promote YKL-40 release. CSF chitotriosidase levels were also slightly raised in MAPT carriers, but this did not reach significance compared with controls. This may have been due to the small group size, or perhaps there is greater astrocytosis than microglial activation associated with certain MAPT mutations.

In order to explore further how biomarkers of glial activation link to neurodegeneration, we examined relationships between YKL-40 and chitotriosidase levels and CSF neurodegenerative biomarkers that are used in clinical practice and which reflect neuronal injury and tau pathology (T-tau and P-tau) and amyloid pathology (Aβ42). Overall, both YKL-40 and chitotriosidase levels were positively associated with T-tau and P-tau levels in FTD, but this association only reached significance in certain clinical subgroups. For T-tau, there was a significant association with YKL-40 in bvFTD and nfvPPA and with chitotriosidase in bvFTD and lvPPA. For P-tau, there was a significant association with YKL-40 in bvFTD and nfvPPA and with chitotriosidase in lvPPA. There was a small positive association between Aβ42 levels and YKL-40 in lvPPA, and although most subgroups seemed to have a negative association between Aβ42 and chitotriosidase, none reached significance. This variation in the strength of association between biomarkers may be explained by underlying pathologies (different FTLD subtypes or AD) being associated with varying degrees of glial activation, neurodegeneration and tau pathology, or differences in clinical subgroup sizes. Positive associations between levels of CSF YKL-40 or chitotriosidase and neurodegenerative biomarkers have been identified in many studies of typical AD, particularly for T-tau [42, 47, 58, 65–68, 93] and P-tau [42, 58, 65, 66, 68, 69, 93, 94].

Consistent with this, there was a strong association between levels of P-tau and both glia-derived proteins in our lvPPA subgroup, where most individuals had AD-like biomarkers and high levels of both YKL-40 and chitotriosidase, suggestive of significant hyperphosphorylated tau pathology and glial activation. Our results are consistent with strong associations between T-tau and YKL-40 identified in other studies of FTD [49, 58], but to our knowledge no studies have explored associations between chitotriosidase and neurodegenerative biomarkers in FTD. Our findings suggest that chitotriosidase release may be similarly linked to neurodegeneration in FTD.

In individuals with FTD but AD-like CSF (AD biomarker-positive subgroup), there were positive slopes for the association between YKL-40 and both T-tau and P-tau levels, but neither association reached significance, and chitotriosidase levels were not significantly associated with any neurodegenerative biomarker. This contrasts with the strong associations between sTREM2 and both T-tau and P-tau levels in this group found previously [37], and in studies of amnestic AD. However, levels of YKL-40 and chitotriosidase were very high in most individuals within this subgroup, so a lack of variability combined with a relatively small sample size may have hampered our ability to detect weak associations between biomarkers. It is unclear why there was a positive association between Aβ42 and YKL-40 in this subgroup, although others have shown a similar association [47, 66] or negative [94] or no significant [42] association with Aβ42 in AD. In individuals with likely FTLD (AD biomarker-negative subgroup), there was a significant positive association between YKL-40 and both T-tau and P-tau levels and a trend towards a positive association between chitotriosidase and T-tau levels. This suggests that glial activation may correlate with the degree of neuronal injury, and perhaps also tau pathology, in individuals with FTLD, supporting histopathological studies showing pronounced astrocytosis and microgliosis in FTLD, particularly tauopathies [9, 10, 26, 28, 95].

We also analysed associations between YKL-40 and chitotriosidase levels in our cohort, which to our knowledge has not been explored directly in FTD previously, although these seem to correlate moderately in AD [74] and in a combined familial MND and FTD cohort [48]. There was a strong positive association between levels of both proteins in FTD overall, and in most clinical subgroups, although this reached significance only in bvFTD and nfvPPA. Levels of YKL-40 and chitotriosidase were also highly associated in the AD biomarker-negative sub-
group, but this did not reach significance in the AD biomarker-positive subgroup, again likely due to high levels of both proteins in most individuals and smaller sample size. These results suggest that astrocytic and microglial activation arise in tandem in FTD syndromes due to FTLD and perhaps AD pathology.

Finally, we examined relationships between CSF YKL-40 and chitotriosidase levels and relevant clinical parameters such as age, disease duration and sex, which could independently affect glial activation. Age was strongly associated with YKL-40 levels in the whole cohort and in the FTD group, consistent with previous studies of YKL-40 in AD [47, 61, 68] and FTD [43, 45, 49], and a strong association between sTREM2 and age in FTD [37]. This may reflect increased glial activation associated with aging, especially within the context of neurodegeneration, and emphasises the importance of future studies of gli- derived biomarkers in neurodegenerative disease cohorts exploring associations with age and, where applicable, adjusting group comparisons for age. There was no significant association between age and chitotriosidase levels in any group. In MND, plasma chitotriosidase activity was not associated with age [57], and most studies of CSF chitotriosidase in AD and FTD have found no association with age [48, 59, 74]. It is unclear why this differs from YKL-40, but perhaps age has less of an influence on microglial chitotriosidase release. We found no association between either YKL-40 or chitotriosidase and disease duration in FTD, in contrast to sTREM2, where we previously described a negative association between CSF sTREM2 levels and disease duration [37], but consistent with a study of YKL-40 in FTD, where there was no association with disease duration [43]. However, our current data are cross-sectional, so we were unable to explore longitudinal changes in YKL-40 or chitotriosidase levels to confirm whether these markers alter throughout the disease course. Lastly, we found no difference in YKL-40 or chitotriosidase levels between males and females in any group, suggesting limited influence of sex on release of these proteins into CSF in both healthy individuals and patients with FTD.

Limitations of this study include the small size of some of the subgroups, which may have limited our power to detect significant differences between groups. However, this is inherent to a rare disease such as FTD which has multiple phenotypes, and difficult to avoid when analysing biomarker levels across a broad spectrum of disease, while confining CSF collection and biomarker analysis to one site in order to minimise inter-centre variation. Our patient cohort contained both individuals with a clinical diagnosis of an FTD syndrome most likely due to FTLD (bvFTD, svPPA and nfPPA) and those more commonly associated with AD pathology (lvPPA). The use of clinical diagnosis rather than pathological confirmation as an inclusion criterion meant a combination of different pathologies and mutations in the FTD group may have affected YKL-40 and chitotriosidase levels in this group overall. However, we were able to dissect out differences in protein levels between broad pathological entities (FTLD vs. AD) and gene mutations through stratification of the FTD group by CSF biomarker profile and through a preliminary analysis by mutation type. We also intentionally used a stringent cut-off of T-tau/Aβ42 ratio >1.0 to minimise misclassification of individuals into the wrong pathological subgroup, as employed previously [37]. In addition, all individuals with FTD were phenotyped in detail, meeting recent diagnostic criteria for bvFTD [38] or PPA [39].

Conclusions

We show that levels of two glia-derived proteins, YKL-40 and chitotriosidase, are higher in the CSF of individuals with a clinical diagnosis of FTD than in cognitively normal controls. However, levels are higher in individuals with an FTD syndrome due to underlying AD pathology (particularly lvPPA) than due to FTLD. We display preliminary evidence that there are mutation-specific differences in YKL-40 and chitotriosidase levels, with particularly pronounced elevations of YKL-40 and chitotriosidase in GRN mutation carriers, and YKL-40 in MAPT mutation carriers, which may remain undetected in mixed genetic FTD cohorts. As CSF YKL-40, and perhaps chitotriosidase, levels correlate with neurodegenerative biomarkers, particularly T-tau, and with each other, in individuals with likely FTLD, these proteins may reflect extensive astrocytic and microglial activation arising in tandem with neurodegeneration in individuals with FTLD.

Future studies should analyse CSF YKL-40 and chitotriosidase levels within larger cohorts of individuals with FTD, across a variety of clinical subgroups, and ideally in pathologically confirmed cases across the full spectrum of FTLD subtypes, with separate sporadic and genetic subgroups. Inclusion of a larger number of cases with mutations in GRN, MAPT and C9orf72 would enable confirmation of our preliminary observations of higher protein levels in symptomatic GRN and MAPT mutation carriers. Assessment of levels in presymptomatic mutation carri-
ers could establish when these change prior to expected symptom onset. Exploration of relationships between baseline and longitudinal measurements of CSF YKL-40 and chitotriosidase levels, and other markers of the disease process (such as serum or CSF neurofilament light levels or frontal lobe atrophy rate) in individuals with FTD, and presymptomatic individuals, would be extremely valuable. This could improve understanding of how chronic neuroinflammation links to neurodegeneration, enable determination of whether these proteins can be used as biomarkers of disease stage, intensity and progression, and provide validation for their use in upcoming clinical trials.

Statement of Ethics

The study was approved by the local NHS Research Ethics Committee and the Health Research Authority. All individuals gave informed written consent. The research was conducted ethically in accordance with the World Medical Association Declaration of Helsinki.

Disclosure Statement

H.Z. has served at scientific advisory boards of Roche Diagnostics, Wave, Samumed and CogRx, has given lectures in symposia sponsored by Biogen and Alzecure, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB, a GU Ventures-based platform company at the University of Gothenburg (all outside the submitted work). The other authors declare that they have no competing interests. No other authors have any conflicts of interest.

Funding Sources

This work was funded by the Medical Research Council (MRC) UK. The authors acknowledge the support of the National Institute for Health Research (NIHR) Queen Square Dementia Biomedical Research Unit and the University College London Hospitals Biomedical Research Centre; the Leonard Wolfson Experimental Neurology Centre; the MRC Dementias Platform UK and the UK Dementia Research Institute. The Dementia Research Centre is an Alzheimer’s Research UK coordinating centre and is supported by Alzheimer’s Research UK, the Brain Research Trust and the Wolfson Foundation. I.O.C.W. was funded by an MRC Clinical Research Training Fellowship (MR/M018288/1). K.M.M. is supported by an Alzheimer’s Society PhD Studentship. R.W.P. is funded by an NIHR Clinical Lectureship. A.K. is the recipient of a PhD Fellowship awarded by the Wolfson Foundation and a grant from the Weston Brain Institute. J.D.W. has received funding support from the Alzheimer’s Society. J.M.S. acknowledges the support of the EPSRC (EP/J020990/1), MRC Dementias Platform UK (MR/L023784/1), ARUK (ARUK-Network 2012-6-ICE; ARUK-PG2017-1946; ARUK-PG2017-1946), Brain Research UK (UCC14191, Weston Brain Institute [UB170045] and European Union’s Horizon 2020 research and innovation programme [Grant 666992]). H.Z. is a Wallenberg Academy Fellow. J.D.R. is an MRC Clinician Scientist (MR/M008525/1) and has received funding from the NIHR Rare Diseases Translational Research Collaboration (BRC149/NS/MH), the Bluefield Project and the Association for Frontotemporal Degeneration.

Author Contributions

I.O.C.W. and J.D.R. were involved in study design. All authors were involved in data collection. I.O.C.W., C.H., and M.S.F. were involved in data analysis. All authors were involved in drafting and critically revising the manuscript.

References

1 Woollacott IO, Rohrer JD. The clinical spectrum of sporadic and familial forms of frontotemporal dementia. *J Neurochem*. 2016 Aug;138 Suppl 1: 1–18.
2 Mackenzie IR, Neumann M. Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from post-mortem studies [Internet]. *J Neurochem*. 2016 Aug;138 Suppl 1: 1–18. Available from: http://doi.wiley.com/10.1111/jnc.13588
3 Lashley T, Rohrer JD, Mead S, Revesz T. Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. *Neuropathol Appl Neurobiol*. 2015 Dec;41(7):858–81.
4 Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang H-Y, et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. *Cell*. 2016;165:921–35.
5 Martens LH, Zhang J, Barnsda S, Zhou P, Kamiya S, Sun B, et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury [Internet]. *J Clin Invest*. 2012 Nov;122(11):3955–9. Available from: http://www.jci.org/articles/view/63113
6 Miller ZA, Rankin KP, Graff-Radford NR, Takada LT, Sturm VE, Cleveland CM, et al. TDP-43 frontotemporal lobar degeneration and autoimmune disease [Internet]. *J Neurol Neurosurg Psychiatry*. 2013 Sep;84(9):956–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23543794
7 Yin F, Banerjee B, Thomas B, Zhou P, Qian L, Jia T, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice [Internet]. *J Exp Med*. 2010 Jan;207(1):117–28. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2812536&tool=pmcentrez&rendertype=abstract
8 Bellucci A, Westwood AJ, Ingram E, Casametti F, Goedert M, Spillantini MG. Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein [Internet]. *Am J Pathol*. 2004 Nov;165(5):1643–52. [cited 2019 Apr 19] Available from: http://www.ncbi.nlm.nih.gov/pubmed/15509534
9 Bellucci A, Bugiani O, Ghetti B, Spillantini MG. Presence of reactive microglia and neuroinflammatory mediators in a case of frontotemporal dementia with P301S mutation. *Neurodegener Dis*. 2011;8(4):221–9.
10 Lant SB, Robinson AC, Thompson JC, Rollinson S, Pickering-Brown S, Snowden JS, et al. Patterns of microglial cell activation in frontotemporal lobar degeneration. *Neuropathol Appl Neurobiol*. 2014 Oct;40(6):686–96.
Atanasio A, Decman V, White D, Ramos M, Iliz B, Lee HC, et al. C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice. Sci Rep. 2016;6:23204.

Burberry A, Suzuki N, Wang JY, Moccia R, Mordes DA, Stewart MH, et al. Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease [Internet]. Sci Transl Med. 2016 Jul;8(347):347ra93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27412785

Miller ZA, Sturm VE, Camsari GB, Karydas A, Decman V, White D, Ramos M, et al. Ataxia telangiectasia-like disorder patients induce predominantly pro-inflammatory responses in microglia. J Neuroinflamm. 2017;14(1):1–18.

Atanasio A, Decman V, White D, Ramos M, Iliz B, Lee HC, et al. C9orf72 repeat expansion carriers and non-carriers. J Neuroimmunol. 2018;321:29–35.

Woollacott IO, Bochtella M, Sudre CH, Ridha BH, Strand C, et al. Early microgliosis precedes neuronal loss and behavioural impairment in mice with a frontotemporal dementia-causing CHMP2B mutation [Internet]. Hum Mol Genet. 2017 Mar;26(5):873–87. [cited 2017 Feb 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28093491

Kim G, Ahmadian SS, Peterson M, Parton Z, Mennon R, Weintraub S, et al. Asymmetric pathology in primary progressive aphasia with progranulin mutations and TDP inclusions. Neurology. 2016 Feb;86(7):627–36.

Kim G, Weintraub S, Bigio EH, Mesulam MM, et al. Symmetrical TDP pathology in primary progressive aphasia with right hemisphere language dominance. Neurology. 2018 Jan;90(5):s396–403.

Kim G, Bolbolan K, Gfen T, Weintraub S, Bigio EH, Rogalski E, et al. Atrophy and microglial distribution in primary progressive aphasia with transactive response DNA-binding protein-43 kDa. Ann Neurol. 2018 Jun;83(6):1096–104.

Nilson AN, English KC, Gerson JE, Barton JJ, Schreiber F, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016 Mar 18;351(6279):1324–9.

Schmidt CM, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hibbush BS, et al. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem. 2002 Dec;83(6):1309–20.

Kleinerger G, Yamanishi Y, Suarez-Calvet M, Czir E, Lohmann E, Cuyvers E, et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med. 2016;8:347ra86.

Baldacci F, Lista S, Cavedo E, Bonuccelli U, Hampel H. Diagnostic function of the neuroinflammatory biomarker YKL-40 in Alzheimer’s disease and other neurodegenerative diseases. Expert Rev Proteomics. 2017;14:285–99.

Mishra PS, Vijayalakshmi K, Nalini A, Sathyaprabha TN, Kramer BW, Alladi PA, et al. Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J Neuroinflamm. 2017;14(1):1–18.

Hollak CE, van Weely S, van Oers MH, Aerts JM. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994 Mar;93(3):1288–92.

Elmonen MA, van den Heuvel LP, Levtechenko EN. Immunomodulatory Effects of Chitotriosidase Enzyme. Enzyme Res. 2016;2016:2682680.

Woollacott IO, Nicholas JM, Heslegrave A, Keller C, Foiari MS, Dick KM, et al. Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup. Alzheimers Res Ther. 2018;10(1):1–14.

Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. [Internet]. Brain. 2011 Sep;134(PT 9):2456–77. [cited 2019 Apr 19] Available from: http://www.ncbi.nlm.nih.gov/pubmed/21810890

Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of progressive aphasia and its variants [Internet]. Neurology. 2011 Mar;76(11):1006–14. [cited 2019 Apr 19] Available from: http://www.neurology.org/cgi/doi/10.1212/WNL.0b013e3182110e6e

Paterson RW, Heywood WE, Heslegrave AJ, Magdalino NK, Andreasson U, Sinka E, et al. A targeted proteomic multiplex CSF assay identifies increased malate dehydrogenase and other neurodegenerative biomarkers in individuals with Alzheimer’s disease pathology [Internet]. Transl Psychiatry. 2016 Nov;6(11):e952.

Boot RG, Renkema GH, Verhoek M, Strijland A, Blik J, de Meulemeester TM, et al. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998 Oct;273(40):25680–5.

Alcolea D, Carmona-Iragui M, Suárez-Calvet M, Sánchez-Saúndonis MB, Sala I, Antón-Aguirre S, et al. Relationship between β-Secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer’s disease. J Alzheimers Dis. 2014;42(1):157–67.

CSF YKL-40 and Chitotriosidase Levels in Frontotemporal Dementia

Dement Geriatr Cogn Disord
DOI: 10.1159/000506282
43 Alcolea D, Vilaplana E, Suárez-Calvet M, Illán-Gala I, Blesa R, Clarimón J, et al. CSF sAPPβ, YKL-40, and neurofilament light in frontotemporal lobar degeneration. Neurology. 2017 Jul;89(2):178–88.

44 Alcolea D, Irwin DJ, Illán-Gala I, Muñoz L, Clarimón J, McMillan CT, et al. Elevated YKL-40 and low sAPPβ:YKL-40 ratio in antemortem cerebrospinal fluid of patients with pathologically confirmed FTLD. J Neurol Neurosurg Psychiatry. 2019 Feb;90(2):180–6.

45 Del Campo M, Galimberti D, Elias N, Boonkamp L, Pijnenborg YA, van Swieten JC, et al. Novel CSF biomarkers to discriminate FTLD and its pathological subtypes. Ann Clin Transl Neurol. 2018 Sep;5(10):1163–75.

46 Illán-Gala I, Alcolea D, Montal V, Dols-Icaro S, Steinacker P, Verde F, Fang L, Feneberg E, Andrés-Benito P, Domínguez R, Colomina D, Sanfilippo C, Longo A, Lazzara F, Cambria D, Vijverberg EGB, Dols A, Krudop WA, Del Oeckl P, Roeber S, et al.; German Consortium for Frontotemporal Lobar Degeneration. 2017 Jul; 89(2): 178–88.

47 Janelidze S, Hertz J, Zetterberg H, Landgren Wahl M, Santtila P, Bellenow K, et al. Cerebrospinal fluid neurogranin and YKL-40 as biomarkers of Alzheimer’s disease. Ann Clin Transl Neurol. 2015 Nov;3(1):12–20.

48 Ockel P, Weydt P, Steinecker P, Anderl-Straub S, Nordin F, Volk AE, et al.; German Consortium for Frontotemporal Lobar Degeneration. Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical stage. J Neurol Neurosurg Psychiatry. 2019 Jan;90(1):4–10.

49 Teunissen CE, Elias N, Koel-Simmelink MA, Durieux-Lu S, Malekzadeh A, Pham TV, et al. Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics. Alzheimers Dement (Amst). 2016 Jan 19;2:86-94.

50 Vijverberg EGB, Dols A, Krudop WA, Del Campo Milan M, Kerssens CJ, Gossink F, et al. Cerebrospinal fluid biomarker examination as a tool to discriminate behavioral variant frontotemporal dementia from primary psychiatric disorders. Alzheimers Dement. 2017 Mar 27;9:106.

51 Steinacker P, Verde F, Fang L, Feneberg P, Ockel P, Roeben S, et al.; FTLDc study group. Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. J Neurol Neurosurg Psychiatry. 2018 Mar;89(3):239–47.

52 Andrés-Benito P, Dominga Y, Colomina MJ, Llorens F, Povedano M, Ferrer I. YKL40 in sporadic amyotrophic lateral sclerosis: cerebrospinal fluid levels as a prognosis marker of disease progression. Aging (Albany NY). 2018 Sep;10(9):2367–82.

53 Sanfilippo C, Longo A, Lazzara F, Cambria D, Distefano G, Palumbo M, et al. CHI3L1 and CHI3L2 overexpression in motor cortex and spinal cord of ALS patients. Mol Cell Neurosci. 2017 Dec;85:162–9.

54 Thompson AG, Gray E, Thézéans ML, Charles PD, Evets S, Hu MT, et al. Cerebrospinal fluid macrophage biomarkers in amyotrophic lateral sclerosis. Ann Neurol. 2018 Feb;83(3):258–68.

55 Varghese AM, Sharma A, Mishra P, Vijayalakshmi K, Harsha HC, Sathyaprabha TN, et al. Chitotriosidase - a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin Proteomics. 2013 Dec;10(1):19.

56 Chen X, Chen Y, Wei Q, Ou R, Cao B, Zhao B, et al. Assessment of a multiple biomarker panel for diagnosis of amyotrophic lateral sclerosis [Internet]. BMC Neuro. 2016 Sep;16(1):173.

57 Pagliardini V, Pagliardini S, Corrado L, Lucenti A, Panigati L, Bersano E, et al. Chitotriosidase and lysosomal enzymes as potential biomarkers of disease progression in amyotrophic lateral sclerosis: a survey clinic-based study [Internet]. J Neurol Sci. 2015 Jan;348(1-2):245–50.

58 Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease [Internet]. Biol Psychiatry. 2010 Nov;68(10):903–12. [cited 2019 Apr 19] Available from: http://www.ncbi.nlm.nih.gov/pubmed/21035623.

59 Rosén C, Andersson CH, Andresson U, Molinouelo J, Bjerve M, Rami L, et al. Increased Levels of Chitotriosidase and YKL-40 in Cerebrospinal Fluid from Patients with Alzheimer’s Disease. Dement Geriatr Cogn Dis Extra. 2014 Jul;4(2):297–304.

60 Kester MJ, Teunissen CE, Supthin C, Herries EM, Ladenson JH, Xiong C, et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort [Internet]. Alzheimers Res Ther. 2015 Sep;7(1):59.

61 Wennström M, Surova Y, Hall S, Nilsson C, Minthon L, Hansson O, et al. The inflammatory marker YKL-40 is elevated in cerebrospinal fluid from patients with Alzheimer’s but not Parkinson’s disease or dementia with Lewy bodies. PLoS One. 2015 Aug 10(8):e0135458.

62 Llorens F, Thüne K, Tahir W, Kanata E, Diaz-Charles PD, Evetts S, Hu MT, et al. Chitotriosidase - a putative biomarker for sporadic amyotrophic lateral sclerosis [Internet]. Mol Neurodegener. 2017 Nov;12(1):83. Available from: https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-017-0264-6.

63 Hellwig K, Kvartsberg H, Portelius E, Andreassen OA, Panigati L, Bersano E, et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers [Internet]. EMBO Mol Med. 2016 May;8(5):466–76. [cited 2017 Feb 11] Available from: http://www.EMBOMMED.org/pubmed/26941262.

64 Deming Y, Black K, Carrell D, Cai Y, Del-Aguila JL, Fernandez MV, et al. Chitinase 3-like 1 protein (CHI3L1) locus influences cerebrospinal fluid levels of YKL-40 [Internet]. BMC Neuro. 2016 Nov;16(1):217.

65 Heslegrave A, Heywood W, Paterson R, Magdalino N, Svensson J, Johansson P, et al. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease [Internet]. Mol Neurodegener. 2016 Jan;11(1):3. Available from: http://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-016-0071-x.

66 Gisbert JD, Suárez-Calvet M, Monté GC, Tucholka A, Falcon C, Rojas S, et al. Cerebrospinal fluid sTREM2 levels are associated with gray matter volume increases and reduced diffusivity in early Alzheimer’s disease. Alzheimers Dement. 2016 Dec;12(12):1259–72.

67 Suárez-Calvet M, Kleinberger G, Araque Caballero MA, Brendel M, Rominger A, Alcolea D, et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers [Internet]. EMBO Mol Med. 2016 May;8(5):466–76. [cited 2017 Feb 11] Available from: http://www.EMBOMMED.org/pubmed/26941262.

68 Suárez-Calvet M, Araque Caballero MA, Kleinberger G, Bateman RJ, Fagan AM, Morris JC, et al.; Dominantly Inherited Alzheimer Network. Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci Transl Med. 2016 Dec;8(369):369ra178.

20 Dement Geriatr Cogn Disord
DOI: 10.1159/000506282
Woollacott et al.
74 Mattsson N, Tabatabaei S, Johansson P, Hansson O, Andreasson U, Månsson JE, et al. Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility [Internet]. Neuronmolecular Med. 2011 Jun;13(2): 151–9. Available from: http://link.springer.com/10.1007/s12176-011-8147-9
75 Watabe-Rudolph M, Song Z, Lausser L, Schnack C, Begus-Nahrmann Y, Scheithauer MO, et al. Chitinase enzyme activity in CSF is a powerful biomarker of Alzheimer disease. Neurology. 2012 Feb;78(8):569–77.
76 Ishiki A, Kamada M, Kawamura Y, Terao C, Shimoda F, Tomita N, et al. Gial fibrillary acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J Neurochem. 2016 Jan;136(2):258–61.
77 Jesse S, Steinacker P, Cepek L, von Arnim CA, Tumani H, Lehnert S, et al. Glial fibrillary acidic protein and protein S-100B: different concentration pattern of glial proteins in cerebrospinal fluid of patients with Alzheimer’s disease and Creutzfeldt-Jakob disease. J Alzheimers Dis. 2009;17(3):541–51.
78 Fukuyama R, Izu moto T, Fushiki S. The cerebrospinal fluid level of gliial fibrillary acidic protein is increased in cerebrospinal fluid of Alzheimer’s disease patients and correlates with severity of dementia. Eur Neurol. 2001;46(1):35–8.
79 Green AJ, Harvey RJ, Thompson EJ, Rossor MN. Increased S100B in the cerebrospinal fluid of patients with frontotemporal dementia. Neurosci Lett. 1997 Oct;235(1-2):5–8.
80 Peskind ER, Griffin WS, Akama KT, Raskind MA, Van Eldik LJ. Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer’s disease. Neurochem Int. 2001 Nov-Dec;39(5-6):409–13.
81 Petzold A, Jenkins R, Watt HC, Green AJ, Thompson EJ, Keir G, et al. Cerebrospinal fluid S100B correlates with brain atrophy in Alzheimer’s disease. Neurosci Lett. 2003 Jan; 336(6):167–70.
82 Navarro V, Sanchez-Meijas E, Jimenez S, Munoz-Castro C, Sanchez-Varo R, Davila JC, et al. Microglia in Alzheimer’s disease: Activated, dysfunctional or degenerative. Front Aging Neurosci. 2018 May;10:140.
83 Alcaz including C, de la Encarnación A, Moreno F, López de Munain A, Martín-Requero Á. Progranulin deficiency induces overactivation of WNT5A expression via TNF-α/NF-κB pathway in peripheral cells from frontotemporal dementia-linked granulin mutation carriers. J Psychiatry Neuroscience. 2016 Jun;41(4):225–39.
84 Bossù P, Salani F, Alberici A, Archetti S, Bellelli G, Galimberti D, et al. Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients. J Neuroinflammation. 2011;8:65.
85 Gibbons L, Rollinson S, Thompson JC, Robinson A, Davidson YS, Richardson A, et al. Plasma levels of progranulin and interleukin-6 in frontotemporal lobar degeneration. Neurobiol Aging. 2015;36:1603.e1-e4.
86 Kleinberger G, Capell A, Haass C, Van Broeckhoven C. Mechanisms of granulin deficiency: lessons from cellular and animal models. Mol Neurobiol. 2013 Feb;47(1):337–60.
87 Götzl JK, Mori K, Damme M, Fellerer K, Taubes A, et al. Common pathobioc hemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol. 2014;127(6):645–60.
88 Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaya M, Taubes A, et al. Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis [Internet]. Sci Transl Med. 2017 Apr; 9(385):eaah5642. Available from: http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aah5642
89 Schiffmann R, Heyes MP, Aerts JM, Dambrosia JM, Patterson MC, DeGraba T, et al. Prospective study of neurological responses to treatment with macrophage-targeted glucocerebrosidase in patients with type 3 Gaucher’s disease [Internet]. Ann Neurol. 1997 Oct; 42(4):613–21.
90 Zigdon H, Savidor A, Levin Y, Meshcherikova A, Schiffmann R, Futterman AH. Identification of a biomarker in cerebrospinal fluid for neuropathic forms of Gaucher disease. PLoS One. 2015 Mar;10(3):e0120194.
91 Jian J, Chen Y, Liberti R, Fu W, Hu W, Saunders-Pullman R, et al. Chitinase-3-like Protein 1: A Progranulin Downstream Molecular and Potential Biomarker for Gaucher Disease [Internet]. EBioMedicine. 2018 Feb;28:251–60.
92 Drugan C, Drugan TC, Grigorescu-Sido P, Naçu I. Modelling long-term evolution of chitotriosidase in non-neuropathic Gau cher disease. Scand J Clin Lab Invest. 2017 Jul; 77(4):275–82.
93 Olsson B, Hertz J, Lautner R, Zetterberg H, Någå K, Höglund K, et al. Microglial markers are elevated in the prodromal phase of Alzheimer’s disease and vascular dementia. J Alzheimers Dis. 2013;33(1):45–53.
94 Zhang H, Ng KP, Thiriault J, Kang MS, Pascual TA, Rosa-Neto P, et al. Cerebrospinal fluid phosphorylated tau, visinin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer’s disease. Transl Neurodegener. 2018;7(1):1–12.
95 Querol-Vilaseca M, Colom-Cadena M, Pegueroles J, San Martin-Paniello C, Claramon J, Belbin O, et al. YKL-40 (Chitinase 3-like 1) is expressed in a subset of astrocytes in Alzheimer’s disease and other tauopathies. J Neuroinflammation. 2017;14(1):1–10.