\textbf{\(\eta\)-invariant and flat vector bundles}

Xiaonan Ma\(^*\) and Weiping Zhang\(^†\)

\textit{Dedicated to the memory of Professor Shiing-shen Chern}

\begin{abstract}
We present an alternate definition of the mod \(Z\) component of the Atiyah-Patodi-Singer \(\eta\) invariant associated to (not necessary unitary) flat vector bundles, which identifies explicitly its real and imaginary parts. This is done by combining a deformation of flat connections introduced in a previous paper with the analytic continuation procedure appearing in the original article of Atiyah, Patodi and Singer.
\end{abstract}

\textbf{Keywords} flat vector bundle, \(\eta\)-invariant, \(\rho\)-invariant

\textbf{2000 MR Subject Classification} 58J

\section{Introduction}

Let \(M\) be an odd dimensional oriented closed spin manifold carrying a Riemannian metric \(g^TM\). Let \(S(TM)\) be the associated Hermitian bundle of spinors. Let \(E\) be a Hermitian vector bundle over \(M\) carrying a unitary connection \(\nabla^E\). Moreover, let \(F\) be a Hermitian vector bundle over \(M\) carrying a unitary flat connection \(\nabla^F\). Let

\begin{equation}
D^{E\otimes F} : \Gamma(S(TM) \otimes E \otimes F) \longrightarrow \Gamma(S(TM) \otimes E \otimes F)
\end{equation}

denote the corresponding (twisted) Dirac operator, which is formally self-adjoint (cf. [BGV]).

For any \(s \in \mathbb{C}\) with \(\text{Re}(s) \gg 0\), following [APS1], set

\begin{equation}
\eta(D^{E\otimes F}, s) = \sum_{\lambda \in \text{Spec}(D^{E\otimes F}) \setminus \{0\}} \frac{\text{Sgn}(\lambda)}{|\lambda|^s}.
\end{equation}

Then by [APS1], one knows that \(\eta(D^{E\otimes F}, s)\) is a holomorphic function in \(s\) when \(\text{Re}(s) > \frac{\dim M}{2}\). Moreover, it extends to a meromorphic function over \(\mathbb{C}\), which is holomorphic at \(s = 0\). The \(\eta\) invariant of \(D^{E\otimes F}\), in the sense of Atiyah-Patodi-Singer [APS1], is defined by

\begin{equation}
\eta(D^{E\otimes F}) = \eta(D^{E\otimes F}, 0),
\end{equation}

\(^*\)Centre de Mathématiques, UMR 7640 du CNRS, École Polytechnique, 91128 Palaiseau Cedex, France. (ma@math.polytechnique.fr)

\(^†\)Nankai Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, P.R. China. (weiping@nankai.edu.cn)
while the corresponding reduced η invariant is defined and denoted by

$$\tilde{\eta}(D\otimes F) = \frac{\dim(\ker D\otimes F) + \eta(D\otimes F)}{2}. \quad (1.4)$$

The η and reduced η invariants play an important role in the Atiyah-Patodi-Singer index theorem for Dirac operators on manifolds with boundary $[APS1]$.

In $[APS2]$ and $[APS3]$, it is shown that the following quantity

$$\rho(D\otimes F) := \tilde{\eta}(D\otimes F) - \mathrm{rk}(F)\tilde{\eta}(D) \mod \mathbb{Z} \quad (1.5)$$

does not depend on the choice of g^{TM} as well as the metrics and (Hermitian) connections on E. Also, a Riemann-Roch theorem is proved in $[APS3]$ (5.3)], which gives a K-theoretic interpretation of the analytically defined invariant $\rho(D\otimes F) \in \mathbb{R}/\mathbb{Z}$. Moreover, it is pointed out in $[APS3]$ Page 89, Remark (1)] that the above mentioned K-theoretic interpretation applies also to the case where F is a non-unitary flat vector bundle, while on $[APS3]$ Page 93 it shows how one can define the reduced η-invariant in case F is non-unitary, by working on non-self-adjoint elliptic operators, and then extend the Riemann-Roch result $[APS3]$ (5.3)] to an identity in \mathbb{C}/\mathbb{Z} (instead of \mathbb{R}/\mathbb{Z}). The idea of analytic continuation plays a key role in obtaining this Riemann-Roch result, as well as its non-unitary extension.

In this paper, we show that by using the idea of analytic continuation, one can construct the \mathbb{C}/\mathbb{Z} component of $\tilde{\eta}(D\otimes F)$ directly, without passing to analysis of non-self-adjoint operators, in case where F is a non-unitary flat vector bundle. Consequently, this leads to a direct construction of $\rho(D\otimes F)$ in this case. We will use a deformation introduced in $[MZ]$ for flat connections in our construction.

In the next section, we will first recall the above mentioned deformation from $[MZ]$ and then give our construction of $\tilde{\eta}(D\otimes F) \mod \mathbb{Z}$ and $\rho(D\otimes F) \in \mathbb{C}/\mathbb{Z}$ in the case where F is a non-unitary flat vector bundle.

Acknowledgements. The work of the second author was partially supported by the Cheung-Kong Scholarship of the Ministry of Education of China and the 973 Project of the Ministry of Science and Technology of China.

2 The η and ρ invariants associated to non-unitary flat vector bundles

This section is organized as follows. In Section 2.1 we construct certain secondary characteristic forms and classes associated to non-unitary flat vector bundles. In Section 2.2 we present our construction of the $\mod \mathbb{Z}$ component of the reduced η-invariant, as well as the ρ-invariant, associated to non-unitary flat vector bundles. Finally, we include some further remarks in Section 2.3.

2.1 Chern-Simons classes and flat vector bundles

We fix a square root of $\sqrt{-1}$ and let $\varphi : \Lambda(T^*M) \to \Lambda(T^*M)$ be the homomorphism defined by $\varphi : \omega \in \Lambda^i(T^*M) \to (2\pi\sqrt{-1})^{-i/2}\omega$. The formulas in what
follows will not depend on the choice of the square root of $\sqrt{-1}$.

If W is a complex vector bundles over M and ∇_0^W, ∇_1^W are two connections on W. Let W_t, $0 \leq t \leq 1$, be a smooth path of connections on W connecting ∇_0^W and ∇_1^W. We define Chern-Simons form $CS(\nabla_0^W, \nabla_1^W)$ to be the differential form given by

\[CS(\nabla_0^W, \nabla_1^W) = -\left(\frac{1}{2\pi \sqrt{-1}}\right)^{\frac{1}{2}} \varphi \int_0^1 \text{Tr} \left[\frac{\partial \nabla_t^W}{\partial t} \exp\left(-((\nabla_t^W)^2)\right) \right] dt. \]

Then (cf. [Z1, Chapter 1])

\[dCS(\nabla_0^W, \nabla_1^W) = \text{ch}(W, \nabla_1^W) - \text{ch}(W, \nabla_0^W). \]

Moreover, it is well-known that up to exact forms, $CS(\nabla_0^W, \nabla_1^W)$ does not depend on the path of connections on W connecting ∇_0^W and ∇_1^W.

Let (F, ∇^F) be a flat vector bundle carrying the flat connection ∇^F. Let g^F be a Hermitian metric on F. We do not assume that ∇^F preserves g^F. Let $(\nabla^F)^*\omega$ be the adjoint connection of ∇^F with respect to g^F.

From [BZ, (4.1), (4.2)] and [BL, §1(g)], one has

\[(\nabla^F)^*\omega = \nabla^F + \frac{1}{2} \omega(F, g^F) \]

with

\[\omega(F, g^F) = (g^F)^{-1} (\nabla^F g^F). \]

Then

\[\nabla^{F,e} = \nabla^F + \frac{1}{2} \omega(F, g^F) \]

is a Hermitian connection on (F, g^F) (cf. [BL, (1.33)]) and [BZ (4.3)]).

Following [MZ (2.47)], for any $r \in \mathbb{C}$, set

\[\nabla^{F,e, (r)} = \nabla^{F,e} + \frac{\sqrt{-1}}{2} \omega(F, g^F). \]

Then for any $r \in \mathbb{R}$, $\nabla^{F,e, (r)}$ is a Hermitian connection on (F, g^F).

On the other hand, following [BL (0.2)], for any integer $j \geq 0$, let $c_{2j+1}(F, g^F)$ be the Chern form defined by

\[c_{2j+1}(F, g^F) = (2\pi \sqrt{-1})^{-j} \frac{2^{-(2j+1)}}{2} \text{Tr} \left[\omega^{2j+1}(F, g^F) \right]. \]

Then $c_{2j+1}(F, g^F)$ is a closed form on M. Let $c_{2j+1}(F)$ be the associated cohomology class in $H^{2j+1}(M, \mathbb{R})$, which does not depend on the choice of g^F.

For any $j \geq 0$ and $r \in \mathbb{R}$, let $a_j(r) \in \mathbb{R}$ be defined as

\[a_j(r) = \int_0^1 (1 + u^2 r^2)^j du. \]

With these notation we can now state the following result first proved in [MZ, Lemma 2.12].

Proposition 2.1. The following identity in $H^{\text{odd}}(M, \mathbb{R})$ holds for any $r \in \mathbb{R}$,

\[CS\left(\nabla^{F,e}, \nabla^{F,e, (r)}\right) = -\frac{r}{2\pi} \sum_{j=0}^{+\infty} \frac{a_j(r)}{j!} c_{2j+1}(F). \]
2.2 η and ρ invariants associated to flat vector bundles

We now make the same assumptions as in the beginning of Section 1, except that we no longer assume ∇^F there is unitary.

For any $r \in \mathbb{C}$, let

$$D^{E \otimes F}(r) : \Gamma(S(TM) \otimes E \otimes F) \longrightarrow \Gamma(S(TM) \otimes E \otimes F)$$

(2.10)

denote the Dirac operator associated to the connection $\nabla^{F,e,(r)}$ on F. Since when $r \in \mathbb{R}$, $\nabla^{F,e,(r)}$ is Hermitian on (F, g^F), $D^{E \otimes F}(r)$ is formally self-adjoint and one can define the associated reduced η-invariant as in (1.4).

By the variation formula for the reduced η-invariant (cf. [APS1] and [BF]), one gets that for any $r \in \mathbb{R}$,

$$\eta(D^{E \otimes F}(r)) - \eta(D^{E \otimes F}(0)) \equiv \int_M \hat{A}(TM) \text{ch}(E) CS(\nabla^{F,e}, \nabla^{F,e,(r)}) \mod \mathbb{Z},$$

where \hat{A} and ch are standard notations for the Hirzebruch \hat{A}-class and Chern character respectively (cf. [Z1, Chapter 1]).

Let $D^{E \otimes F,e}$ denote the Dirac operator $D^{E \otimes F}(0)$.

From (2.9) and (2.11), one gets that for any $r \in \mathbb{R}$,

$$\eta(D^{E \otimes F}(r)) \equiv \eta(D^{E \otimes F,e}) - \frac{r}{2\pi} \int_M \hat{A}(TM) \text{ch}(E) \sum_{j=0}^{+\infty} \frac{a_j(r)}{j!} c_{2j+1}(F) \mod \mathbb{Z}.$$

(2.12)

Recall that even though when $\text{Im}(r) \neq 0$, $D^{E \otimes F}(r)$ might not be formally self-adjoint, the η-invariant can still be defined, as outlined in [APS3, page 93].

On the other hand, from (2.5) and (2.6), one sees that

$$\nabla^F = \nabla^{F,e,(\sqrt{-1})}.$$

(2.13)

We denote the associated Dirac operator $D^{E \otimes F}(\sqrt{-1})$ by $D^{E \otimes F}$.

We also recall that

$$\int_0^1 (1 - u^2)^j du = \frac{2^{2j}(j!)^2}{(2j + 1)!}.$$

(2.14)

We can now state the main result of this paper as follows.

Theorem 2.2. Formula (2.12) holds indeed for any $r \in \mathbb{C}$. In particular, one has

$$\eta(D^{E \otimes F}) \equiv \eta(D^{E \otimes F,e}) - \frac{\sqrt{-1}}{2\pi} \int_M \hat{A}(TM) \text{ch}(E) \sum_{j=0}^{+\infty} \frac{2^{2j} j!}{(2j + 1)!} c_{2j+1}(F) \mod \mathbb{Z}.$$

(2.15)

Equivalently,

$$\text{Re} (\eta(D^{E \otimes F})) \equiv \eta(D^{E \otimes F,e}) \mod \mathbb{Z},$$

$$\text{Im} (\eta(D^{E \otimes F})) = -\frac{1}{2\pi} \int_M \hat{A}(TM) \text{ch}(E) \sum_{j=0}^{+\infty} \frac{2^{2j} j!}{(2j + 1)!} c_{2j+1}(F).$$

(2.16)
Proof. Clearly, the right hand side of (2.12) is a holomorphic function in \(r \in \mathbb{C} \). On the other hand, by [APS3, page 93], \(\eta(D \otimes F(r)) \mod \mathbb{Z} \) is also holomorphic in \(r \in \mathbb{C} \). By (2.12) and the uniqueness of the analytic continuation, one sees that (2.12) holds indeed for any \(r \in \mathbb{C} \). In particular, by putting together (2.12) and (2.13), one gets (2.15). Q.E.D.

Recall that when \(\nabla^F \) preserves \(g^F \), the \(\rho \)-invariant has been defined in (1.5).

Now if we no longer assume that \(\nabla^F \) preserves \(g^F \), then by Theorem 2.2, one sees that one gets the following formula of the associated (extended) \(\rho \)-invariant.

Corollary 2.3. The following identity holds,

\[
\rho \left(D \otimes F \right) = \eta \left(D \otimes F, e \right) - \operatorname{rk}(F) \eta \left(D \right) - \frac{\sqrt{-1}}{2\pi} \int_M \hat{A}(TM) \operatorname{ch}(E) \sum_{j=0}^{\infty} \frac{2^{2j} j!}{(2j+1)!} c_{2j+1}(F) \mod \mathbb{Z}.
\]

Equivalently,

\[
\operatorname{Re} \left(\rho \left(D \otimes F \right) \right) = \eta \left(D \otimes F, e \right) - \operatorname{rk}(F) \eta \left(D \right) \mod \mathbb{Z},
\]

\[
\operatorname{Im} \left(\rho \left(D \otimes F \right) \right) = -\frac{1}{2\pi} \int_M \hat{A}(TM) \operatorname{ch}(E) \sum_{j=0}^{\infty} \frac{2^{2j} j!}{(2j+1)!} c_{2j+1}(F).
\]

It is pointed out in [APS3] that the Riemann-Roch formula proved in [APS3, (5.3)] still holds for \(\rho(D \otimes F) \) in the case where \(\nabla^F \) does not preserve \(g^F \). One way to understand this is that the argument in the proof of [APS3 (5.3)] given in [APS3] works line by line to give a K-theoretic interpretation of \(\eta(D \otimes F, e) - \operatorname{rk}(F) \eta(D) \). By (2.17) it then gives such an interpretation for \(\rho(D \otimes F) \).

2.3 Further remarks

Remark 2.4. The argument in proving Theorem 2.2 works indeed for any twisted vector bundles \(F \), not necessarily a flat vector bundle. This gives a direct formula for the mod \(\mathbb{Z} \) part of the \(\eta \)-invariant for non-self-adjoint Dirac operators.

Remark 2.5. In [Z2, Theorem 2.2], a K-theoretic formula for \(D \otimes F(r) \mod \mathbb{Z} \) has been given in the \(r \in \mathbb{R} \) case. As a consequence, one gets an alternate K-theoretic formula for \(\rho(D \otimes F) \) in [Z2 (4.6)] which holds in the case where \(\nabla^F \) preserves \(g^F \). By combining the arguments in [Z2] with Theorem 2.2 proved above, one can indeed extend [Z2 Theorem 2.2] and [Z2 (4.6)] to the case where \(\nabla^F \) might not preserve \(g^F \). We leave this to the interested reader. Here we only mention that this will provide an alternate K-theoretic interpretation of \(\rho \)-invariants in the case where \(\nabla^F \) does not preserve \(g^F \).

Remark 2.6. We refer to [MZ] where we have employed deformation (2.6) to study and generalize certain Riemann-Roch-Grothendieck formulas due to Bismut-Lott ([BL]) and Bismut ([B]), for flat vector bundles over fibred spaces.
References

[APS1] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry I. *Proc. Camb. Philos. Soc.* 77 (1975), 43-69.

[APS2] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry II. *Proc. Camb. Philos. Soc.* 78 (1975), 405-432.

[APS3] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry III. *Proc. Camb. Philos. Soc.* 79 (1976), 71-99.

[BGV] N. Berline, E. Getzler and M. Vergne, *Heat kernels and the Dirac operator*, Grundl. Math. Wiss. 298, Springer, Berlin-Heidelberg-New York 1992.

[B] J.-M. Bismut. Eta invariants, differential characters and flat vector bundles. With an appendix by K. Corlette and H.Esnault. *Chinese Ann. Math.* 26B (2005), 15-44.

[BF] J.-M. Bismut and D. S. Freed, The analysis of elliptic families, II. *Commun. Math. Phys.* 107 (1986), 103-163.

[BL] J.-M. Bismut and J. Lott, Flat vector bundles, direct images and higher real analytic torsion. *J. Amer. Math. Soc.* 8 (1995), 291-363.

[BZ] J.-M. Bismut and W. Zhang, An extension of a theorem by Cheeger and Müller. *Astérisque*, n. 205, Paris, 1992.

[MZ] X. Ma and W. Zhang, Eta-invariants, torsion forms and flat vector bundles. *Preprint*, math.DG/0405599

[Z1] W. Zhang, *Lectures on Chern-Weil Theory and Witten Deformations*, Nankai Tracks in Mathematics, Vol. 4, World Scientific, Singapore, 2001.

[Z2] W. Zhang, η-invariant and Chern-Simons current. *Chinese Ann. Math.* 26B (2005), 45-56.