Concise Review: Immunological Properties of Ocular Surface and Importance of Limbal Stem Cells for Transplantation

BAKIAH SHAHARUDDIN,a,b SAJJAD AHMAD,c ANNETTE MEESON,a SIMI ALId

Key Words. Corneal transplantation • Limbal stem cells • Transplantation rejection • Major histocompatibility complex

ABSTRACT

Cornea transplantation has been considered to be different from other solid organ transplantation because of the assumed immune-privileged state of the anterior chamber of the eye. Three major lines of thought regarding the molecular mechanisms of immune privilege in the eye are as follows: (a) anatomical, cellular, and molecular barriers in the eye; (b) anterior chamber-associated immune deviation; and (c) immunosuppressive microenvironment in the eye. However, cornea transplants suffer allograft rejection when breached by vascularization. In recent developments, cellular corneal transplantation from cultivated limbal epithelial cells has shown impressive advances as a future therapy. The limbal stem cell niche contains stem cells that promote proliferation and migration and have immunosuppressive mechanisms to protect them from immunological reactions. Limbal stem cells are also noted to display an enhanced expression of genes for the antiapoptotic proteins, a property that is imperative for the survival of transplanted tissues. Further investigation of the molecular mechanisms regulating the immune regulation of limbal stem cells is relevant in the clinical setting to promote the survival of whole corneal and limbal stem cell transplantation.

INTRODUCTION

The cornea is the most frequently transplanted organ in the United Kingdom, with 3,061 transplantations, or 49.6 cases performed per million population in 2009–2010 [1]. This is the highest recorded number of transplantations, surpassing solid organ transplantation such as adult kidney (892), pancreas (200), cardiothoracic organ (272), and liver (679) cases during the same period.

Corneal transplantation is the definitive therapy for most causes of corneal blindness, which is the result of a range of pathophysiologicals such as inherited disorders, infections, inflammations, perforations, trauma, and chemical injury. Importantly, transplantation is also performed to replace rejected or failed previous grafts in 20% of cases [2]. Approaches to corneal transplantation surgeries have evolved from whole cornea or partial thickness transplantation to single layer keratoplasty, with very promising outcomes [3, 4].

However, corneal transplantation is contra-indicated in the treatment of limbal stem cell deficiency, cellular therapy such as ex vivo limbal epithelial transplantation has shown impressive advances as a future treatment in the past decade or so [5–9].

The cornea is located in the anterior part of the eye and acts as a protective barrier to the interior structures. Corneal transparency is important to allow transmission of light onto the retina to obtain clarity of vision. The cornea consists of three major layers, which are derived from different germ layers (Fig. 1). The epithelial layer of the cornea develops from ectoderm, whereas the stroma and endothelium are mesenchymal in origin. There are six to eight cell layers of the epithelium, which lies on the Bowman’s membrane. The majority of the corneal thickness is contributed by the stromal layer, whereas the endothelial monolayer sits on the Descemet’s membrane, making up the most posterior part of the cornea. The cornea enjoys beneficial physical properties that constantly keep it in a dehydrated state due to organization of tightly packed collagen lamellae and the presence of compact keratocyte networks. The endothelial layer is equipped by physiological tight junctions to maintain corneal functions.
The most significant physiological changes during an immunological rejection occur in the endothelium, where there is rapid loss of cell density. The endothelium of the cornea is in a nonreplicative state after birth, making the loss of donor cells irreversible. In addition, the endothelium loses cellularity in an age-dependent manner at the rate of 0.56% cell loss per year [10]. This results in corneal decompensation and subsequent graft failure.

The cornea is devoid of blood vessels and is assumed to be protective of immune rejection of transplanted grafts, a condition termed corneal immune privilege [11]. Its avascularity implies a lack of angiogenic factors or the possibility that it may secrete antiangiogenic factors. Vascularization evokes an immune response and has implications for graft allorejection. In addition, the absence of corneal lymphatics prevents the channeling of antigen-presenting cells to the regional lymph nodes, thus not allowing alloantigen-specific T cells to be activated. Activated T cells travel to the graft bed and initiate the crucial process of graft rejection. However, the relative ease of topical steroid application on the cornea and the immune tolerance in the anterior chamber also contribute to the relative success rate of corneal transplantation. On the other hand, the conjunctiva, which is the neighboring structure and continuous with the corneal epithelium, is highly vascularized and often invades the cornea in pathological conditions, resulting in a debilitating vision due to a process called corneal neovascularization [12].

Innate immune responses of the ocular surface are nonspecific but important as the front lines to defend against corneal infections and toxins. The precorneal tear film serves as a physiological barrier to protect the eye. Among other substances, tears contain mucin, lactoferrin, and lysozyme [13]. Mucin has a gel property, to lubricate and become a chemical barrier, whereas lactoferrin and lysozyme have antimicrobial activities [14]. Other components of the ocular innate immune system include immunoglobulin (Ig)-A in the tears and inflammatory cytokines, such as interleukin (IL)-1α, IL-6, IL-8, and tumor necrosis factor (TNF)-α. The ability of cells to recognize pathogen-associated molecular patterns is through the expression of several Toll-like receptors (TLRs) [15].

Adaptive immune responses are much more pathogen-specific than their innate immune counterparts. These pathways are cell-mediated responses, which are usually slower acting and more efficient but can cause damage to surrounding tissue, resulting in damage to the vision.

Rejection in Corneal (Whole Tissue) Transplantation

Even though the cornea is the most frequently transplanted organ, the immunology of corneal transplantation and rejection has not been fully studied. For the most part, outcomes for whole cornea transplantation (penetrating keratoplasty) are dependent on the indications for surgery. Common indications for penetrating keratoplasty are keratoconus, corneal dystrophies, corneal opacities, and post-cataract surgeries. Comparisons of the outcome of corneal transplantation are difficult because of

Figure 1. Diagrammatic representation of human cornea showing the three main layers: epithelium, stroma, and endothelium. The Bowman’s membrane is an acellular layer that lies in the anterior stroma, just beneath the basement membrane of the epithelium. The Descemet’s membrane is the basement membrane of the endothelium.
the nonuniformity of data on surgical indications, patient demographics, type of grafts, survival analysis, and range of follow-up. In general, uncomplicated low-risk grafts give the highest survival rate with topical steroidal immune suppression. Based on surgical indications, the Australian Corneal Graft Registry reported that keratoconus has the highest 10-year survival rate (89%), compared with Fuch’s corneal dystrophy (73%), nonherpetic corneal opacity (70%), herpetic corneal opacity (60%), pseudophakic and aphakic corneal edema (40%), and regrafting (30%) [2].

A breakdown of survival analysis shows that the success rate of allogeneic penetrating keratoplasty for correcting visual acuity was highest in the first year of follow-up: it was 87% in the first year and was reduced to 52% after 10 years among Asians [16]. Generally, failed grafts are due to irreversible immunological rejection (34%), whereas corneal endothelial cell failure due to glaucoma (24%) and infection (14%) are common causes of failed grafts [2]. A similar trend was observed in a study of second grafts; in the majority of cases, immune rejection was the main cause of graft failure, although recurrence of disease and endothelial decompensation were also important causes [17]. Clinically, other associated factors that are implicated include the degree of prevascularization of the recipient bed, size of donor corneal button, position of the donor corneal button in the recipient bed, preservation methods for the donor corneal button, choice of immunosuppression, and immune status of the recipient.

Generally, the immune response to alloantigens is polarized in two directions: (a) activation of T helper type 1 (Th1) effector cells, which results in production of interferon (IFN)-γ, introduction of CD4+ as a surface determinant, and mediation of delayed immune response; and (b) activation of the T helper type 2 (Th2) pathways, which may produce cytokines that cross-regulate Th1 factors and inhibit their mediator functions. IFN-γ is an important proinflammatory cytokine in the rejection of major histocompatibility complex (MHC)-matched corneal allografts. It has been shown that manipulating the alloantigenic response from Th1 to Th2 pathways by blocking IFN-γ production in MHC-matched allografts significantly reduces the graft rejection rate [18].

The mechanism of rejection in cornea transplantation is a delayed type, T cell-mediated immune response, which is accelerated by the inflammatory process. In a rat corneal transplantation, CD4+ T cells had an important role in rejection, whereas the role of CD8+ T cells was not clearly shown. IL-2, IL-4, and IFN-γ are regarded as important inflammatory markers for corneal rejection [19]. This finding is in agreement with an experimental sheep corneal transplantation model, where acute rejection is associated with graft neovascularization, infiltration of CD4+ and CD8+ T cells, and production of IFN-γ and IL-2 in the graft [20]. But production of TNF-α, IL-4, and IL-10 was not evident, which the investigators hypothesized might be due to rapid T-cell death due to Fas-Fas ligand (FasL) interactions [21]. The expected result of this interaction would be induction of apoptosis in Fas bearing infiltrating leukocytes such as CD4+ T cells, CD8+ T cells, neutrophils, and macrophages [22]. The role of TNF-α in initiating, maintaining, and resolving inflammatory processes has been observed to show dynamic changes in allograft transplantation [23].

Concomitant epithelium and stroma, both peripherally and centrally, contain dendritic cells (DCs), which undergo maturation by expressing MHC class II and B7 costimulatory molecules during inflammation [24]. B7 costimulatory molecules provide potent stimulation for MHC/peptide-T cell receptor interaction to result in activation of T cells. B7 molecules are present as dimers on the surface of DCs or other forms of antigen-presenting cells (APCs).

A novel negative regulatory molecule has been described recently, which is a new member of the B7-CD28 superfamily, and it is referred to as programmed death-1 (PD-1) [25]. B7-H1 is a potential ligand for PD-1 [26]. B7-H1 has been found in corneal epithelium and endothelium and believed to have proapoptotic actions on T cells, thus prolonging the survival of corneal grafts [25].

Cornea as an Immune-Privileged Organ

Cornea transplantation has been regarded differently from other organ transplants because of the immune-privileged nature of the anterior chamber of the eye and the lack of direct allorecognition. Medawar revolutionized the concept of immune privilege in the cornea in 1940s [27]. He observed how skin grafts transplanted in the brain and the anterior chamber of the eyes could remain intact for extended periods of time even in the absence of any vascularization [27]. Medawar suggested that the immune reaction is mediated by blood plasma or by cells transported in it. During corneal transplantation, vascularization causes the breakdown of the immunologically privileged status of the cornea, resulting in graft rejection. It was also suggested that the epithelium rather than the stroma plays a role in the immune reaction [28].

The immune privilege of the cornea depends on multiple mechanisms to prevent immune destruction of grafts by alloantigenic responses. At present, three major lines of thought prevail regarding the molecular mechanisms of immune privilege in the eye: (a) anatomical, cellular, and molecular barriers in the eye; (b) anterior chamber-associated immune deviation (AACAID); and (c) immune suppressive microenvironment in the eye.

First, there is a direct absence of anatomical lymphatic drainage and a physiological blood-ocular barrier in the cornea that defines the immunological tolerance. Without lymphatic drainage, the antigens are unable to leave the grafts to the draining lymph nodes. The blood-ocular barrier effectively presents a physiological block for the immune cells to enter the tissues. These factors collectively act as physical barriers to stimulate immune response to grafts.

AACAID was first described as an aberrant immune response of the eye [29]. This refers to the phenomenon in which antigen-specific systemic immunological tolerance is induced to an antigen that has been introduced to the anterior chamber (Fig. 2). In this situation, antibody responses are preserved, whereas cellular responses such as delayed type hypersensitivity and cytotoxic T lymphocytes (CTLs) are suppressed. These include alloantigens involved in transplantation, soluble protein antigens, viral antigens, and tumor antigens [30].

Vascularization causes an allograft to be deemed high risk and robs it of its immune-privileged status. Immunological rejections in high-risk vascularized allografts occur because of the increased level of chemokines and inflammations at the site of the grafts, attracting allospecific activated T cells to the site [11, 31, 32]. Chemokines are heparin-binding proinflammatory proteins that are responsible for directing leukocyte migration. Chemokines are categorized as CXC, CC, C, and CX3C based on the
cysteine residue at the protein terminal. CXC chemokines (e.g., CXC-ligand 1 [CXCL1]) play a major role in recruiting activated allospecific T cells, macrophages, and other potent inflammatory mediators to the graft site, causing immunogenic rejection [31].

The anterior chamber contains transforming growth factor-β (TGF-β) and thrombospondin-1 (TSP-1), and antigen-presenting cells, which capture the antigens and secrete these into the bloodstream through the trabecular meshwork and reach the marginal zone in the spleen. TGF-β stops proliferation of cells, induces differentiation, or promotes apoptosis, whereas TSP-1 has an inhibitory effect on angiogenesis. Furthermore, there is production of TGF-β, macrophage inflammatory protein-2, and CXCL2 in the spleen. These in turn attract and bind to natural killer (NK) T cells and stimulate TGF-β, Th, T helper; TSP-1, thrombospondin-1; VIP, vasointestinal peptide.

Figure 2. Ocular immunity is provided by the physiological barrier of the precorneal tear film, induction of anterior chamber induced immune deviation (ACAID), and the immunosuppressive environment in the eye. Immunomodulatory molecules in the cornea consist of neuropeptides, cytokines, growth factors, and soluble immune peptides, which have anti-inflammatory, antiangiogenic, and proapoptotic activities that lead to death of allospecific T cells. Abbreviations: ACAID, anterior chamber induced immune deviation; APC, antigen-presenting cells; CCL5, C-C ligand-5; CXCL2, C-X-C ligand-2; Fasl, Fas ligand; GDNF, glial-derived neurotrophic factor; IL-10, interleukin-10; MIP-2, macrophage inflammatory protein-2; NKT, natural killer T cells; PD-1–B7–H1, programmed death-1 ligand–B7–H1 binding; T reg, regulatory T cells; TGF-β, transforming growth factor-β; Th, T helper; TSP-1, thrombospondin-1; VIP, vasointestinal peptide.

Ocular Growth Factors, Cytokines, Neuropeptides, and Soluble Immune Factors

Cytokine signaling and growth factor signaling are important factors that determine the functions of the cornea. In the limbal epithelium, there is a high expression of growth factors that have a role in normal human keratinocyte proliferation. They are members of the epidermal growth factor family, namely, transforming growth factor-α (TGF-α), amphiregulin, epiregulin, and hepatocyte-binding epidermal growth factor [33].

Human cornea epithelium has also been found to be protective against inflammation by production of glial cell-derived neurotrophic factor (GDNF), which suppresses IL-17-mediated inflammatory pathways [34]. It is also evident that limbal epithelial and stromal cells play a complementary role in limbal stem cell maintenance. GDNF, a member of the TGF-β superfamily, is abundant within the cornea stroma and is believed to mediate epithelial migration during corneal epithelial wound healing [35].

Corneal epithelial cells have been found to have receptors to GDNF (GFRα1), which is involved in activation of several intracellular signaling pathways, including the focal adhesion kinase and mitogen-associated protein kinase pathways. Thus, as an inducer to these pathways, GDNF plays an important role in cell migration and corneal wound healing [36]. Neurotrophic growth factors (NGFs) are also important in the homeostasis of corneal epithelium and wound healing [37].

Corneal epithelial cells produce proallergic cytokines, including the thymic stromal lymphopoietin, which is believed to link innate and adaptive immune mechanism in ocular surface [15]. It also recognizes pathogens and becomes activated by cytokines through a family of TLRs [38] and by activating the nuclear factor-κB signaling pathways [15]. This signaling pathway is involved in many cellular processes, including immune response, cellular survival, proliferation, and differentiation (reviewed by Ghosh and Karin [39]).

The highly expressed chemokines observed in limbal epithelial cells include cytokines such as chemokine (C-X-C motif) ligands 1 (CXCL1), 2, 3, 10, and 11 [33]. CXC chemokines are subdivided into two categories, those with a specific amino acid sequence (or motif) of glutamic acid-leucine-arginine (ELR-positive) or those without an ELR motif (ELR-negative). ELR-positive CXC chemokines act through their chemokine receptor, CXCR2 [40], which is chemotactic for neutrophils.

CXCL1, CXCL2, and CXCL3 are expressed by macrophages, neutrophils, and epithelial cells and have neutrophil chemotactic activity. CXCL1 elicits its effects by signaling through the chemokine receptors CXCR1 and CXCR2, whereas CXCL2 and
CXCL3 signal through the receptor CXCR2. They are involved in the processes of angiogenesis, inflammation, wound healing, and tumorigenesis [41, 42]. CXCL10 and CXCL11 are reactive to activated T and NK cells, which elicit their response through the chemokine receptor CXCR3. Additionally, CXCL10 is a potent inflammatory mediator that has been implicated in severe inflammatory diseases such as multiple sclerosis [43] and autoimmune thyroiditis [44].

Cytokines and chemokines present biphasic dynamic changes during the post-transplantation period in a rat model [45]. In the early phase, there was no significant difference in the elevated levels of the cytokines studied between the allograft and syngeneic grafts. However, these cytokines returned to pre-transplant levels after day 13 in the syngeneic group, whereas the levels of Th1 cytokines (IL-2, IL-12 p40, and IFN-γ), Th2 cytokines (IL-4, IL-6, IL-10, and IL-13), and anti-inflammatory/Th3 factors (TGF-B1/1 and IL-1RA) were increased in allografts [45].

The immunomodulatory factors also include cell surface molecules of the cornea and iris-ciliary body, which are the neuropeptides (i.e., α-melanocyte-stimulating hormone [α-MSH], vasoactive intestinal peptide, and somatostatin). Somatostatin mediates the anti-inflammatory effect by the induction of regulatory T cells. These T cells produce TGF-β and α-MSH, and through α-MSH production, regulatory T cells inhibit the proinflammatory action of IFN-γ [46]. Together, α-MSH and TGF-β suppress macrophage activity and recruitment of neutrophils, thus exerting their anti-inflammatory effects.

In addition, the constitutive presence of tissue-associated CD95 ligand (FasL) molecules on ocular surfaces is an important aspect of ocular immune privilege [47]. The expression of FasL molecules preserves ocular immunity by suppressing the damage from inflammation, especially viral in nature [48] and in allogeneic rejections [21, 47]. In the latter, FasL interacts with Fas expressed on leukocytes, resulting in apoptosis induction. Collectively, the microenvironment in the eye provides not only factors that suppress the inflammation but also cells and molecules that are involved in immune regulation.

Major Histocompatibility Complex Expression

The MHC gene complex presents antigens to T cells and determines the compatibility of donors for organ transplants. The human leukocyte antigen (HLA) system represents MHC, which encodes genes related to the immune system, and cell surface antigen-presenting proteins. MHC class II antigen presentation pathways are expressed by professional APCs, such as dendritic cells, macrophages, B cells, or epithelial Langerhans cells (LCs).

A critical factor influencing corneal graft rejection is the presence and the high density of such dendritic cells in the graft (donor APCs). Avoiding placement of a graft near the limbal area where the APCs are abundant is a logical surgical strategy in this instance. An approach to donor-specific immunosuppression by regulatory T cells to achieve graft tolerance may be taken to eliminate the risk of a violent rejection when donor and recipient dendritic cells coexist.

The most important antigen-presenting cells in the cornea are bone marrow-derived MHC class II + Langerhans cells, which are responsible for the sensitization of the host to alloantigens. Under normal conditions, LCs reside in the limbal area but may migrate to the cornea in response to inflammatory conditions [49]. Activation of alloreactive T cells is dependent on the antigen-presenting cells for the host to recognize foreign antigens on the grafts.

There is uneven distribution of Langerhans cells, which express HLA class II molecules in the cornea; this could possibly be the reason behind the prolonged survival of these grafts [50]. LCs were originally thought to be exclusively abundant in the limbal and conjunctival region, but not at the central cornea [51, 52]. HLA class II expression in normal corneal stroma and endothelia is also lacking and is mostly confined to the limbal region of the epithelium [53]. Expression of class II is also absent without stimulation by inflammatory mediators [54]. However, recent findings demonstrated that a heterogeneous population of immature and precursor dendritic cells also reside in the central corneal region [50]. These cells, labeled MHC class II-negative, are believed to be progenitor or immature LCs. Although these immature cells are capable of antigen uptake and processing, they are incapable of furnishing naïve T cells with the requisite B7 costimulatory molecules and thus unable to activate T cells [55]. Active suppression of LC maturation could be an important mechanism of corneal immune privilege.

Not surprisingly, there is a low incidence of corneal graft rejection although HLA matching of donor and recipient is not normally performed, especially in low-risk grafts [56]. In a study performed by the Collaborative Corneal Transplantation Studies Group in high-risk corneal transplantation patients, HLA-A, -B, and -DR matching did not reduce the rate of graft failure [56]. However, a more recent finding showed a strong correlation between HLA mismatch and rate of graft rejection in low-risk as well as high-risk patients [57]. Although matching of HLA-A and -B did not significantly affect the rejection rate in the low-risk group, it certainly benefited the high-risk group. Donor HLA class I antigens become the target of host CD8+ T lymphocytes when they are HLA-A and/or -B mismatched [57]. HLA-DR matching was also demonstrated to significantly reduce allograft rejection by 40% 3 years after surgery in the high-risk group [57]. The disadvantages of HLA matching include the costs and extended waiting time for suitable grafts. However, these need to be seriously weighed against the risk of failed grafts and further therapeutic complications, regrafting, and the overall impact on the pool of available donated cornea.

Despite encouraging results from MHC matching, grafts can still be rejected because of incompatibility in the minor MHC antigens. Th1 pathway and IFN-γ production was shown to be the mechanism involved in rejection of MHC-matched corneal allografts where minor MHC antigens are presented to the host [18]. Minor MHC antigens are naturally occurring polypeptides processed and presented by MHC molecules, shown to increase risk of graft failure in grafts-versus-host disease. Minor MHC antigens induce activation of T cells and also play an important role in allograft rejection of solid organs following transplantations [58–60]. Minor H antigens are loaded to MHC molecules in corneal grafts allowing for indirect T-cell allorecognition [61]. Alloreactive T cells recognize allogeneic peptides indirectly when they are introduced to self-MHC class I and II molecules. On the other hand, direct allorecognition occurs when T cells recognize donor alloantigens directly, irrespective of the peptides associated with the MHC molecules.

Experimental stimulation of human corneal epithelial cells with recombinant human IFN-γ demonstrated increased expression of MHC class II antigens [62, 63] and significant ability to stimulate allogeneic lymphocytes [63]. Another study revealed...
that corneal epithelium and endothelium express MHC class II antigens when stimulated by IFN-γ, whereas IFN-γ had no effect on the expression of MHC class I antigens [64].

A preliminary study in our laboratory using human telomerase-immortalized corneal epithelial cells [65–67] showed that HLA-A,B,C, HLA-DR, HLA-DQ, and HLA-DP antigens were significantly upregulated following IFN-γ stimulation at a concentration of 10 ng/ml for 3 days (Table 1) compared with unstimulated cells.

Table 1. Percentage of human telomerase-immortalized corneal epithelial cells expressing HLA-A,B,C, HLA-DR, HLA-DP, and HLA-DQ antigens stimulated by interferon-γ at 10 ng/ml for 3 days analyzed by flow cytometry

HLA	Unstimulated (%)	Average stimulated (%) (n = 2)	Standard deviation (±)
HLA-A,B,C	0.5	95.1	0.71
HLA-DR	0.6	91.75	1.06
HLA-DQ	0.4	32.35	7.42
HLA-DP	0.6	73.06	3.8

Abbreviation: HLA, human leukocyte antigen.

Corneal stroma makes up 90% of the corneal volume and consists of tightly packed lamella of collagen fibrils. The size of collagen fibrils and the organization of these densely packed structures contribute to corneal transparency. Corneal stroma is...
populated by mesenchymal keratocytes, which are quiescent after birth but undergo differentiation in response to wound, trauma, inflammation, or infection [94], which suggests plasticity of the cells to adapt to their environment.

Mesenchymal stem cells are nonhemopoietic stem cells that have regenerative ability and can differentiate into cell lineages of mesenchymal origin (i.e., adipocytes, chondrocytes, and osteocytes). Bone marrow-derived mesenchymal stem cells have shown excellent anti-inflammatory and wound healing properties when introduced to corneal injury models in animal studies [95–100]. Bone-marrow-derived mesenchymal stem cells (MSCs) have been investigated in the repair of corneal damage [99], and the proposed mechanism is suppression of new vessel formation and inflammation post-transplantation.

Evidence shows that graft is populated by host stromal cells [68] after corneal transplantation, which suggests that corneal keratocytes have potential stem cell properties [89]. Immunological privilege of corneal stromal stem cells was supported by the absence of T cell-mediated immune rejection, when these stem cells were injected in mouse corneal stroma [101]. The proliferative capacity of corneal stroma stem cells and their immune privilege clearly play an important role in corneal stromal tissue engineering [102–104].

Limbal epithelium also possesses stromal cells, which are adherent to plastic, have fibroblastic morphology, and are able to differentiate into multiple lineages suggestive of mesenchymal stem cells [89, 90, 105]. These cells can be isolated using protocols as described previously [106]. Limbal stromal MSCs grown in tissue culture also demonstrated inhibition of T-cell proliferation, and this is believed to be mediated by soluble factor(s) such as TGF-β [105]. Furthermore, limbal stem cell isolation and culture conditions can be enriched with other limbal niche cells or corneal stromal stem cells [107–109] or by using a side population discrimination assay, as a future cell therapy [101].

METHODS TO PREVENT REJECTION

Strategies to reduce the rejection rate must take into consideration immunosuppressive reagents and gene therapy. The use of anti-inflammatory mediators is an additional strategy to prolong survival of grafts. Soluble TNF-α receptor type I in a topical instillation form has shown favorable results in reducing murine allogeneic reactions [110]. TNF-α is a potent proinflammatory cytokine in alloimmune response. It is a macrophage-derived cytokine responsible for expression of adhesion and costimulatory molecules, neutrophil activation, chemokine stimulation, and inducing the nuclear factor-κB signaling pathway.

More recently, administration of IL-1 receptor antagonist (IL-1Ra) has been shown to be superior to corticosteroid immune suppression in mice alloge neic grafts [111, 112]. IL-1 is involved in mediation of acute phase reactions, chemotaxis, stimulation of new vessels, and, most importantly, the migration and recruitment of LCs. IL-1Ra is produced in abundance at the apical epithelial region in fresh cornea [113]. This potent inflammatory cytokine is derived from monocytes, macrophages, and resident corneal cells and expressed at high levels during corneal transplantation immune response. IL-1Ra has the effect of neutralizing IL-1 by suppressing LC migration, thus prolonging survival of allografts. Interestingly, the success of experimental ex vivo transduction of IL-1Ra in rat cornea will be a new landmark in
corneal gene therapy to treat corneal inflammatory conditions and corneal transplantation [114].

NGF gene therapy in combination with a cytotoxic T lymphocyte antigen 4 immunoglobulin G (CTLA4ig) has shown to prolong rodent corneal allografts survival by mediating its anti-inflammatory and antiapoptotic pathways [115]. This is not surprising since NGF and its receptors are abundantly present in a densely innervated organ like the cornea and are responsible for the wound healing process [38]. In other pharmacological developments, suppression of inflammation by IL-10 [116] and inhibition of intercellular adhesion molecule-1 or its ligand [117] are prospective potential therapies.

CONCLUSION

A challenging aspect of limbal stem cells is the absence of specific markers to uniquely identify these stem cells and to distinguish them from other adult stem cells, or limbal stem cells derived from transient amplifying cells. This necessitates a characterization process involving several modalities, such as reverse transcription-polymerase chain reaction, immunochemistry, or cell cycling methods. A consistent isolation method for limbal stem cells should also be instigated, to include protocols to enrich for limbal stem cells, such as functional phenotypic assays like the side population assay.

Ex vivo expanded limbal epithelial transplantation has proven to be able to reconstruct the ocular surface in limbal stem cell-deficient eyes. However, this method needs to be further refined to include protocols to assess tissue viability, the quality of tissue constructs, and safety assessment. In order for limbal stem cells to be successfully translated into favorable clinical outcomes, a good manufacturing practice-compliant protocol would be a positive step toward achieving high-quality tissues to fulfill the requirements for clinical transplantation [118].

Currently, it is still unclear how restoration of the damaged ocular surface takes place after limbal stem cell transplantation. It is very unlikely that it is due to replacement of stem cell numbers alone. Studying the limbal stem cell fate in different etiologies of stem cell deficiency and the types of tissue transplantation would be a future direction to explain the process of cellular restoration. At present, there is no consensus on limbal stem cell fate in different types of transplantation [119–121] such as in penetrating keratoplasty, alone or in combination with limbal allograft transplantation, or in the case of ex vivo limbal stem cell transplantation. The problem for case-to-case comparison exists in multiple diagnosis of limbal stem cell deficiency, tissue transplantation types, methods for cell tracking to determine the cellular fate, and nonstandard cut off points for cellular analysis to take place.

Importantly, the time taken for normalization of corneal epithelia after transplantation without trace of donor cells would change the type and duration for immunosuppression postsurgery [119]. The use of appropriate immune suppression and the duration of administration would ensure survival of the grafts without compromising the general well-being of the recipient.

Since cornea is the most frequently transplanted organ, the importance of understanding corneal immunology is of considerable interest. A major issue with whole cornea transplantation, allogeneic limbal tissues, or ex vivo limbal stem cell transplants remains their immunogenicity. Questions arise as to whether the ocular immune system is similar in all regions of the eye, and whether the immune privilege status of the anterior chamber applies to other ocular tissues. It would be interesting to explore immunogenicity of grafts placed on the cornea in an ocular reconstruction surgery where no breach of the anterior chamber happens at all.

Further investigation on the immunological factors in the cornea that allow tolerogenic potential of the organ to respond to ocular antigens is necessary to exploit corneal immune privilege to its full advantage. Identification of inflammatory molecules and apoptotic markers, identification of their signaling pathways, and identification of the role of HLA matching are some of the strategies to promote the survival of whole corneal and limbal stem cell transplantation. Furthermore, differential expressions of HLAs during the inflammation and rejection process may elucidate the role of antibodies alone or in combination with other soluble factors in donor antigen-specific immune suppression.

Molecular mechanisms regulating the immune plasticity of corneal stem cells could be relevant in the clinical setting and may explain the differences in the outcomes between murine and human systems in vitro and in vivo. Thus, understanding these mechanisms will contribute to the development of better therapeutic approaches for transplantation not only of the cornea but of other organs as well.

ACKNOWLEDGMENTS

We thank Dr. Charles Osei-Bempong and Mazen Darwiche for assistance with the graphics.

AUTHOR CONTRIBUTIONS

B.S.: conception and design, collection and/or assembly of data, manuscript writing; S. Ahmad: conception and design; A.M.: conception and design, final approval of manuscript; S. Ali: conception and design, collection and/or assembly of data, manuscript writing, final approval of manuscript.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

The authors indicate no potential conflicts of interest.

REFERENCES

1 Johnson ES. NHS Blood and Transplant. Transplant Activity in the UK: Activity Report 2009/10. Bristol, U.K.: National Health Service, 2010:94.

2 Williams KA, Lowe M, Bartlett C et al. Risk factors for human corneal graft failure within the Australian corneal graft registry. Transplantation 2008;86:1720–1724.

3 Borderie VM, Sandali O, Bullet J et al. Long-term results of deep anterior lamellar versus penetrating keratoplasty. Ophthalmology 2012;119:249–255.

4 Lee WB, Jacobs DS, Musch DC et al. Descemet’s stripping endothelial keratoplasty: Safety and outcomes: A report by the American Academy of Ophthalmology. Ophthalmology 2009;116:1818–1830.

5 Pellegrini G, Traverso CE, Franzl AT et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997;349:990–993.

6 Rama P, Matuska S, Paganoni G et al. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med 2010;363:147-155.
Corneal graft rejection occurs despite Fas ligand-induced apoptosis as a mechanism of immune privilege of corneal allografts. J Immunol 2000;164:5952–5955.
17 Freeman GJ, Long AJ, Iwai Y et al. Engagement of the Fas-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 1999;192:1027–1034.
18 Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to skin, to the anterior chamber of the eye. Br J Exp Pathol 1949;28:59–69.
19 Billingham RE, Boswell T. Studies on the problem of corneal homografts. Proc R Soc Lond B Biol Sci 1953;141:392–406.
20 Kaplan HJ, Streilein JW. Immune response to immunization via the anterior chamber of the eye. J Immunol 1977;118:809–814.
21 Niederkorn JY, Mellon J. Anterior chamber-associated immune deviation promotes corneal allograft survival. Invest Ophthalmol Vis Sci 1996;37:2700–2707.
22 Amescua G, Collings F, Sidani A et al. Effect of CXCL-1/KC production in high risk vascularized corneal allografts on T cell recruitment and graft rejection. Transplantation 2008;85:615–625.
23 Sano Y, Ksandar BR, Streilein JW. Fate of orthotopic corneal allografts in eyes that cannot support anterior chamber-associated immune deviation induction. Invest Ophthalmol Vis Sci 1995;36:2176–2185.
24 Polisetti N, Agarwal P, Khan I et al. Gene expression profile of epithelial cells and mesenchymal cells derived from limbal explant culture. Mol Vis 2010;16:1227–1240.
25 Bian F, Qi H, Ma P et al. An immunoprotective privilege of corneal epithelial stem cells against Th17 inflammatory stress by producing glial cell-derived neurotrophic factor. Stem Cells 2010;28:2172–2181.
26 You L, Ebner S, Kruse FE. Glial cell-de- rived neurotrophic factor (GDNF)-induced migra- tion, signal transduction and invasion in corneal epithe- lial cells. Invest Ophthalmol Vis Sci 2001;42:2496–2504.
27 You L, Kruse FE, Völkker HE. Neu- rotrophic factors in the human cornea. Invest Ophthalmol Vis Sci 2000;41:692–702.
28 Qi H, Li-D-G, Shine HD et al. Nerve growth factor and its receptor TrkA serve as potential markers for human corneal epithelial progeni- tor cells. Exp Eye Res 2008;86:34–40.
29 Kinoshita S, Ueta M. Innate immunity of the ocular surface. Jpn J Ophthalmol 2010;54:194–198.
30 Ghosh S, Karin M. Missing pieces in the NF-κB puzzle. Cell 2002;109:581–596.
31 Addison CL, Daniel TD, Burdick MD et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-in- duced angiogenic activity. J Immunol 2000;165:5269–5277.
32 Sun H, Chung W-C, Ryu S-H et al. Cyclic AMP-responsive element binding protein- and nuclear factor-κB-regulated CXC chemokine gene expression in lung carcinogenesis. Cancer Prev Res 2008;1:316–328.
33 Mohsenin A, Burdick MD, Molina JG et al. Enhanced CXCL1 production and angiogenesis in adenosine-mediated lung disease. FASEB J 2007;21:1026–1036.
34 Sørensen TL, Tani M, Jensen J et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999;103:810–815.
35 Antonelli A, Rotondi M, Fallahi P et al. High levels of circulating CXC chemokine ligand 10 are associated with chronic autoimmune thyroiditis and hypothyroidism. J Clin Endocri- nol Metab 2004;89:5496–5499.
36 King W, Comer R, Huddel T et al. Cytokine and chemokine expression kinetics after cor- neal transplantation. Transplantation 2000;70:1225–1233.
37 Taylor AW, Yee DG. Somatostatin is an immunesuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci 2003;44:2644–2649.
38 Stuart PM, Griffith TS, Usui N et al. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 1997;99:396–402.
39 Griffith T, Brunner T, Fletcher S et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995;270:1189–1192.
40 Niederkorn JY. Effect of cytokine-in-duced migration of Langerhans cells on corneal allograft survival. Eye 1995;9:215–218.
41 Hamrah P, Zhang Q, Liu Y et al. Novel Characterization of MHC class II-negative popu- lation of resident corneal Langerhans cells- type dendritic cells. Invest Ophthalmol Vis Sci 2002;43:639–646.
42 Niederkorn J, Ross J, He Y. Effect of donor Langerhans cells on corneal graft rejection. J Invest Dermatol 1992;109:1045–1066.
43 Williams DL. Major histocompatibility class II expression in the normal canine cornea and in canine chronic superficial keratitis. Vet Ophthalmol 2005;8:395–400.
44 Foets BJ, van den Oord JJ, Billiaux A et al. Heterogeneous induction of major histocompati- bility complex class II antigens on corneal endothelium by interferon-gamma. Invest Ophthalmol Vis Sci 1991;32:341–345.
45 Nicholls SM, Banerjee S, Figuereido FC et al. Differences in leukocyte phenotype and inter- feron-γ expression in stroma and endothelium during corneal graft rejection. Exp Eye Res 2006;83:339–347.
46 Thomson A, Lu L, Murase N et al. Microchimerism, dendritic cell progenitors and transplantation tolerance. Stem Cells 1995;13:622–639.
47 The collaborative corneal transplantation studies (CCTS): Effectiveness of histocompati- bility matching in high-risk corneal transplantation. Arch Ophthalmol 1992;110:1392–1403.
48 Khaireddin R, Wachtlin J, Hopfenmuller W et al. HLA-A, HLA-B and HLA-DR matching reduces the rate of corneal allograft rejection. Graefes Arch Clin Exp Ophthalmol 2003;241:1020–1028.
49 Kwan J, Malarkannan S, Burlingham WI et al. Primary vascularization of the graft deter- mines the immunodominance of minor minor H antigens during organ transplantation. J Immunol 2011;187:3997–4006.
50 Pabon MA, Navarro CE, Martin R et al. Minor histocompatibility antigens as risk factor...
for poor prognosis in kidney transplantation. Transplant Proc 2011;43:3319–3323.

60 Sano Y, Kander BR, Streilein JW. Langerhans cells, orthotopic corneal allografts, and direct and indirect pathways of T-cell allorecognition. Invest Ophthalmol Vis Sci 2000; 31:1422–1431.

61 Sonoda Y, Sano Y, Kander B et al. Characterization of cell-mediated immune responses elicited by orthotopic corneal allografts in mice. Invest Ophthalmol Vis Sci 1995; 36:427–434.

62 Iwata M, Kiritoshi A, Roat MI et al. Regulation of HLA class II antigen expression on cultured corneal epithelium by interferon-gamma. Invest Ophthalmol Vis Sci 1992;33: 2714–2721.

63 Iwata M, Yagamachi A, Roat MI et al. Human leukocyte antigen-class II-positive human corneal epithelial cells activate alloimmune T cells. Invest Ophthalmol Vis Sci 1994;35:3991–4000.

64 El-Asrar A, Oord JvD, Billiau A et al. Recombinant interferon-gamma induces HLA-DR expression on human corneal epithelial and endothelial cells in vitro: A preliminary report. Br J Ophthalmol 1989;73:587–590.

65 Robertson DM, Ho S-I, Cavanagh HD. Characterization of ANP63 isoforms in normal corneal, telomerase-immortalized human corneal epithelial cells. Exp Eye Res 2008;86:576–585.

66 Robertson DM, Kalangara JP, Baucom RB et al. A reconstituted telomerase-immortalized human corneal epithelium in vivo: A pilot study. Curr Eye Res 2011;36:706–712.

67 Fishman BM, Li L, Fisher S et al. Characterization of growth and differentiation in a telomerase-immortalized human corneal epithelial cell line. Invest Ophthalmol Vis Sci 2005; 46:470–478.

68 Wollensak G, Green WR. Analysis of sex-mismatched human corneal transplants by fluorescence in situ hybridization of the sex-chromosomes. Exp Eye Res 1999;68:341–346.

69 Hatanaka H, Koizumi N, Okumur N et al. A study of host corneal endothelial cells after non-Descemet stripping automated endothelial keratoplasty. Cornea 2013;32:76–80.

70 Daniels JT, Dart JKG, Tuft SJ et al. Corneal stem cells in review. Wound Repair Regen 2001;9:483–494.

71 Lim GA, Daniels JT. Ocular regeneration by stem cells: Present status and future prospects. Br Med Bull 2008;85:47–61.

72 Levis H, Daniels JT. New technologies in limbal epithelial stem cell transplantation. Curr Opin Biotechnol 2009;20:593–597.

73 Koizumi N, Okumura N, Kinosita S. Development of new therapeutic modalities for corneal endothelial disease focused on the proliferation of corneal endothelial cells using animal models. Exp Eye Res 2012;95:60–67.

74 Okumura N, Koizumi N, Ueno M et al. Enhancement of corneal endothelial wound healing by Rho-associated kinase (ROCK) inhibitor eye drops. Br J Ophthalmol 2011;95:1006–1009.

75 Okumura N, Koizumi N, Ueno M et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue. Am J Pathol 2012; 181:268–277.

76 Okumura N, Ueno M, Koizumi N et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci 2009;50:3680–3687.

77 Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci 1983;24:1442–1443.

78 Majo F, Rochat A, Nicolas M et al. Oligo-potent stem cells are distributed throughout the mammalian ocular surface. Nature 2008; 456:250–254.

79 Davanger M, Evenens A. Role of the peri-corneal papillary structure in renewal of corneal epithelium. Nature 1971;229:560–561.

80 Schermer A, Galvin S, Sun T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal localization of corneal epithelial stem cells. J Cell Biol 1986;103:49–62.

81 Schlötzer-Schrehardt U, Kruse F. Identification and characterization of limbal stem cells. Exp Eye Res 2005;81:247–254.

82 Yeung AM-H, Schlötzer-Schrehardt U, Kulikarni B et al. Limbal epithelial crypt: A model for corneal epithelial maintenance and novel limbal regional variations. Arch Ophthalmol 2012;126:665–669.

83 Sun TT, Tseng SC, Lavker RM. Location of corneal epithelial stem cells. Nature 2010;463: E10–E11.

84 Pellegrini G, Golisano O, Paterna P et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 1999;145:769–782.

85 Wei ZG, Wu RL, Lavker RM et al. In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells. Invest Ophthalmol Vis Sci 1993;34:1814–1828.

86 Huang AJW, Tseng SCG. Corneal epithelial wound healing in the absence of limbal epithelium. Invest Ophthalmol Vis Sci 1991;32: 96–105.

87 Cotsarelis G, Cheng S-Z, Dong G et al. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell 1989;57:201–209.

88 Dua HS, Shamuganathan VA, Powell-Richards AO et al. Limbal epithelial crypts: A novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 2005;89: 529–532.

89 Branch MJ, Hashmani K, Dhillon P et al. Mesenchymal stem cells derived from human limbal stem cells. BioMed Res Int 2014;2014:290314.

90 Majo F, Rochat A, Nicolas M et al. Limbal epithelial crypt: A niche of the niche microenvironment. Stem Cells 2011;29:473–482.

91 Jia Z, Jiao C, Zhao S et al. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp Eye Res 2012;102:44–49.

92 Jiang TS, Cai L, Ji W-Y et al. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis 2010;16:1304–1316.

93 Ma Y, Xu Y, Xiao Z et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells 2006;24:315–321.

94 Omoto M, Miyashita H, Shimura S et al. The use of human mesenchymal stem cell-derived feeder cells for the cultivation of transplantable epithelial sheets. Invest Ophthalmol Vis Sci 2009;50:2109–2115.

95 Du Y, Carlson EC, Funderburgh ML et al. Stem cell therapy restores transparency to defective murine corneas. Stem Cells 2009;27: 1635–1642.

96 Alamnos M, Sánchez-Quevedo MDC, Muñoz-Avilá JI et al. Construction of a complete rabbit cornea substitute using a fibrinagarose scaffold. Invest Ophthalmol Vis Sci 2006;47:3311–3317.

97 Wu J, Du Y, Watkins SC et al. The engineering of organized human corneal tissue through the spatial guidance of corneal stromal stem cells. Biomaterials 2012;33:1343–1352.

98 Zajicova A, Pokorná K, Lencova A et al. Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplant 2010;19:1281–1290.

99 Garfias Y, Nieves-Hernandez J, Garcia-Mejia M et al. Stem cells isolated from the human stromal limbus possess immunosuppressant properties. Mol Vis 2012;18:2087–2095.

100 Polisety N, Fatima A, Madhira SL et al. Mesenchymal cells from limbal stroma of human eye. Mol Vis 2008;14:431–442.

101 Chen S-Y, Hayashida Y, Chen M-Y et al. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods 2011;17:537–548.

102 Ordonez P, Di Girolamo N. Limbal epithelial stem cells: Role of the niche microenvironment. Stem Cells 2012;30:100–107.

103 Xie H-T, Chen S-Y, Li G-G et al. Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation. Stem Cells 2011;29:1874–1885.

104 Qian Y, Dekaris I, Yamagami et al. Topical soluble tumor necrosis factor receptor type I suppresses ocular chemokine gene expression and rejection of allogeneic corneal transplants. Arch Ophthalmol 2000;118:1666–1671.
111 Dana M, Yamada J, Streilein J. Topical interleukin 1 receptor antagonist promotes corneal transplant survival. Transplantation 1997;63:1501–1507.

112 Stapleton WM, Chaurasia SS, Medeiros FW et al. Topical interleukin-1 receptor antagonist inhibits inflammatory cell infiltration into the cornea. Exp Eye Res 2008;86:753–757.

113 Heur M, Chaurasia SS, Wilson SE. Expression of interleukin-1 receptor antagonist in human cornea. Exp Eye Res 2009;89:992–994.

114 Yuan J, Liu Y, Weilan H et al. An experimental study on in situ transfection of the interleukin-1 receptor antagonist (IL-1ra) gene into the rat cornea. Curr Eye Res 2012;37:997–1004.

115 Gong N, Pleyer U, Vogt K et al. Local overexpression of nerve growth factor in rat corneal transplants improves allograft survival. Invest Ophthalmol Vis Sci 2007;48:1043–1052.

116 Boorstein S, Einer S, Meyer R et al. Interleukin-10 inhibition of HLA-DR expression in human herpes stromal keratitis. Ophthalmology 1994;101:1529–1535.

117 Whitcup S, Nussenblatt R, Price FJ et al. Expression of cell adhesion molecules in corneal graft failure. Cornea 1993;12:475–478.

118 Di Iorio E, Ferrari S, A AF et al. Techniques for culture and assessment of limbal stem cell grafts. Ocul Surf 2010;8:146–153.

119 Daya SM, Watson A, Sharpe JR et al. Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology 2005;112:470–477.

120 Djalilian AR, Mahesh SP, Koch CA et al. Survival of donor epithelial cells after limbal stem cell transplantation. Invest Ophthalmol Vis Sci 2005;46:803–807.

121 Shimazaki J, Kaido M, Shinozaki N et al. Evidence of long-term survival of donor-derived cells after limbal allograft transplantation. Invest Ophthalmol Vis Sci 1999;40:1664-1668.