An updated checklist of the lichens of St. Eustatius, Netherlands Antilles

André Aptroot¹, Michael Stech²,³

¹ ABL Herbarium, Gerrit van der Veenstraat 107, NL-3762 XK Soest, The Netherlands ² Naturalis Biodiversity Center, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands ³ Leiden University, Leiden, The Netherlands

Corresponding author: André Aptroot (andreaptroot@gmail.com)

Academic editor: G. Rambold | Received 26 January 2018 | Accepted 17 March 2018 | Published 3 April 2018

Citation: Aptroot A, Stech M (2018) An updated checklist of the lichens of St. Eustatius, Netherlands Antilles. MycoKeys 33: 69–84. https://doi.org/10.3897/mycokeys.33.23911

Abstract
In the course of a multi-taxon biodiversity inventory for the island of St. Eustatius, lichens were collected from 11 plots representing different vegetation types. From these collections, 126 lichen species are reported, 54 of which are new reports for St. Eustatius. Most species could be identified to species level based on morphological and chemical characters. In a few cases, mtSSU DNA sequences were generated for a preliminary molecular identification and future phylogenetic studies. In total, 263 identified lichen species are currently known from St. Eustatius, as well as some additional genera with yet unidentified species and lichenicolous fungi.

Keywords
Biodiversity inventory, lichens, mtSSU, St. Eustatius

Introduction

Sint Eustatius is a small island (21 km²) in the northern Leeward Islands part of the West Indies. It is one of the six islands of the Netherlands Antilles and, since 2010, a special municipality of the Netherlands. Sint Eustatius is roughly divided into three parts, the Northern Hills, the urbanised central area (‘Cultuurvlakte’) and the southern part dominated by the steep dormant volcano The Quill (600 m elev.). Although the whole island of St. Eustatius has been heavily impacted by human activities, the northern and
southern parts are nowadays designated as National Parks with varied vegetation types especially on the slopes of The Quill. The latter comprise, for example, thorny woodlands, deciduous to evergreen seasonal forests, dry evergreen forest, montane thickets and elfin woodland (Stoffers 1956). A re-classification of the vegetation of St. Eustatius, based on cluster analysis of sample plots, resulted in 13 vegetation types characterised by different combinations of individual vascular plant species (Freitas et al. 2014).

Just as in almost all other groups of organisms, lichens are most diverse in the tropics (Sipman and Aptroot 2001). On St. Eustatius, they are commonly present on various substrates, including tree bark and twigs, siliceous rock, limestone, dead wood and living leaves. Despite their abundance, the lichen flora of St. Eustatius is still incompletely known. The authors are aware of only nine publications citing in total 14 lichen species from St. Eustatius, viz. *Phyllopsora corallina* (Eschw.) Müll. Arg. and *P. parvifoliella* (Nyl.) Müll. Arg. (Brako 1991), *Anisomeridium excellens* (Müll. Arg.) R.C. Harris (Harris 1995), *Syncesia glyphysoides* (Fée) Tehler (Tehler 1997), *Pseudopyrenula subnudata* Müll. Arg. (Harris 1998, as *P. diluta* var. *degenerans* Vain.), *Stirtonia neotropica* Aptroot, described based on material from St. Eustatius and Costa Rica (Aptroot 2009), *Syncesia subintegra* Sipman, described based on material from St. Eustatius, as well as *S. farinacea* (Fée) Tehler, *S. glyphysoides* and *S. graphica* (Fr.) Tehler (Sipman 2009), *Roccella gracilis* Bory (Aptroot and Schumm 2011), *Dirina paradoxa* (Fée) Tehler (Tehler et al. 2013), as well as *Astrothelium bicolor* (Taylor) Aptroot & Lücking, *A. phlyctaena* (Fée) Aptroot & Lücking and *Pseudopyrenula subnudata* Müll. Arg. (Aptroot and Lücking 2016).

The main source of information about the lichen flora of St. Eustatius is the online portal ‘Plants and Lichens of St. Eustatius’ (Boom et al. 2009). It contains a list with 209 lichen species, based on specimens collected by H. Sipman and W.R. Buck in 2008, identified by H. Sipman and mostly hosted in B (some in NY). In addition, some identified specimens are present in various other herbaria, some of which can be searched online. For instance, the database of BR cites the following identified specimens from St. Eustatius, collected by R. Hensen in 1991 and identified by the first author: *Megalaria bengalensis* Jagadeesh Ram & Aptroot, *Porina mastoidea* (Ach.) Müll. Arg. and *Sticta xanthotropa* (Kremp.) D.J. Galloway.

In 2015, a plot-based, multi-taxon biodiversity inventory of St. Eustatius was carried out by Naturalis Biodiversity Center, the European Invertebrate Survey (EIS) and different Dutch non-governmental organisations, together with St. Eustatius National Parks Foundation (STENAPA) and students from different Dutch universities. Here, the lichen records of that inventory are reported and an updated checklist of the lichens known from St. Eustatius is presented.

Materials and methods

As part of a multi-taxon inventory, lichens were collected on St. Eustatius from 11 plots (25 m × 25 m) in different main vegetation types according to Freitas et al. (2014). Two plots (H1, H2) were situated in the Northern Hills area, eight (M1–M5,
M7–M9) on and around The Quill in the southern part of the island and one (U1) in the central urban area. Details concerning the location and vegetation characteristics of the plot locations and the multi-taxon sampling approach are described in van Andel et al. (2016). Lichens were collected using a knife or hammer and chisel and subsequently air-dried and stored in paper bags.

Specimens were observed and identified by the first author using an Olympus SZX7 stereomicroscope and an Olympus BX50 compound microscope with interference contrast, connected to a Nikon Coolpix digital camera. Sections were mounted in tap water, in which all measurements were also taken. The chemistry of selected specimens was investigated by thin-layer chromatography (Orange et al. 2001), using solvent A.

DNA analysis based on mitochondrial ribosomal small subunit (mtSSU) sequences was carried out for ten unidentifiable or provisionally identified specimens of good quality (indicated in Table 1). Although the nuclear ribosomal ITS region is the generally accepted fungal DNA barcode locus (Schoch et al. 2012), mtSSU was chosen since more mtSSU than ITS sequences have yet been published for several of the genera or families to which the respective specimens putatively belong.

Genomic DNA was extracted using the NucleoMag 96 Plant kit (Macherey-Nagel) on the KingFisher Flex Purification System (ThermoFisher Scientific). The mtSSU region was PCR-amplified following Zoller et al. (1999) in terms of primers (mrSSU1/mrSSU3R) and the PCR protocol. PCR products were purified and sequenced at BaseClear B.V. (www.baseclear.com) using the amplification primers. Sequences were assembled and edited using Geneious v8.1.8 (Biomatters Ltd.) and subjected to a BLAST search (Altschul et al. 1990) against the GenBank database (megablast; considering, where possible, BLAST results with E value of 0.0 and query cover >90 %). Sequences are available in GenBank under accession numbers MH028639–MH028646.

To compile an updated list of the lichens of St. Eustatius, literature and internet sources were exhaustively consulted for previous reports and previous collectors were contacted for additional information.

Results and discussion

In total, 126 lichen species (and one identifiable lichenicolous fungus) were found in 243 collections (Table 1). The vast majority (113 species) could be identified to species level based on morphological and chemical characters, even though no identification book exists for any region nearby. However, many species have been described from other islands in the Caribbean, which can be expected to have many species in common. These were often already described in the 19th century and partly never studied again, but illustrations of their types are increasingly available. The authors also had access to various unpublished sources, such as the unpublished keys, descriptions and specimen citation (by H. Sipman) that was the basis of the internet checklist of St. Eustatius lichens and keys to the lichens from Puerto Rico (Harris 1989) and Guadeloupe (Øvstedal 2010), the latter with many illustrations of type and other specimens.
Table 1. Lichenised and lichenicolous fungi recorded in 11 plots on St. Eustatius. Species names in earlier publications are indicated in brackets. Author names are given in Table 2. Plots H1 and H2 are situated in the Northern Hills, M2–M9 on and around the volcano The Quill in the southern part of the island and U1 in the central urban area. Substrates occupied by each taxon are indicated per plot; b: bark, k: limestone, l: leaves, r: siliceous rock, s: soil, w: wood. Asterisks indicate first records for St. Eustatius (asterisks in brackets indicate additional taxa that are not yet identified to species level). Black dots (•) indicate specimens from which DNA was extracted.

Taxon	H1	H2	M1	M2	M3	M4	M5	M7	M8	M9	U1
(*): Acanthothecis sp. •											
Alyxia culmigena (Opegrapha herbarum)	r					w	b				
*Alyxia varia	b	b	b	b	b						
*Amandinea multispora						b					
*Anisomeridium subprostans						b					
Anisomeridium tamarindii						b					
(*): Anisomeridium sp. corticate c. pycnidia •							b				
*Anisomeridium terminatum						b					
Arthonia antillarum						b					
Arthonia caribaea	b	b	b	b	b						
Arthonia conferta		b	b	b	b	b	b				
Arthonia cryptodes						b					
Arthonia minuta	b					b					
*Arthonia paraspillarum	b	b									
Arthothelium macrothecum	b	b									
*Bacidia medialis	b, r r										
(*): Bacidia sp. apotheciate •	b, w b										
(*): Bacidia sp. sorediate •			b								
Bactrospora denticulata	b	b	b	b	b						
*Bactrospora junikii						b					
*Bogoriella annonacea	b	b									
*Brigantiaea leucosantha	b										
Buellia dejungensi	r	r	r	r	r						
*Buellia griseovirens						w	w				
Buellia mamillana (Buellia glaziouana)											
Caloplaca leptozona	r						r				
*Caloplaca obscurella											w
Coenogonium linkii			b	b							
*Coenogonium saepincola											w
Coenogonium strigosum											b
Coniocarpon cinnabarinum (Arthonia cinnabarinus)											b
*Crepnea carneoapruinata	b, r										
*Crepnea flavia											r
*Crypotheria punctosorediata											b
Cryptothecia striata	b	b, r									
(*): Cryptothecia sp. isidiate •	b										
(*): Cryptothecia sp. sterile •	b										
*Dactylopora saxatilis (lichenicolous on Pertusaria praetervisa)											r
Dichoporeiopsis nigrocinctum	b, r	b	b								
Taxon	H1	H2	M1	M2	M3	M4	M5	M7	M8	M9	U1
---	----	----	----	----	----	----	----	----	----	----	----
*Dictyomeridium amylosporum	b										
Diorygma hieroglyphicum				b							
Diorygma poitaei	b										
*Diorygma pruinoum	b										
*Endocarpon pallidulum	r			r	k	s	r				
Enterographa pallidella	b										
Enterographa subserialis	b										
Flakea papillata	b			b	r	w	b	r	r		
Glyphis scyphulifera	b										
Graphis caesiella	b										
*Graphis cincta	b										
Graphis dendrogramma	b			b							
*Graphis librata	b										
Gyrolechia basiae (Caloplaca basiae)		b		b	r						
*Hafellia curtellae	b										
Hyperphyscia adglutinata	b									b	
Lathagrium neglectum (Collema neglectum)											b
Lecanora legalloana	r		r	r	r	r					
*Lecanora leproplaca	b			b							
Lecanora leprosa											r
Lecanora prosecha	r	r		r	r	r	r				
Lecanora sulfurescens	r										
*Leparia fmkii	b										
*Leprocollema nova-caledonianum											w
Letrouitia domingensis	b										
Malmidea piperis (Malcolmia piperis)	b										
*Malmidea psychotrioides	b										
Malmidea vinosa (Malcolmia vinosa)	b										
Mazania carnea (Mazania ocellata)	b	b									
(*)Melaspilea sp. (licheniculous on Pyrenula dissimulans)	b										
*Microtheliopsis ulana	l										
*Mycoporium eschweileri			b	b							
Nyungwea anguinella (Enterographa anguinella)										b	
*Opegrapha atraea	b	b									
*Opegrapha lathyrygza	r										
*Opegrapha quintana	b										
(*)Opegrapha sp.					k						
Pelula bolanderi	r										
Pelula obscurans	r			r							
Pertusaria coccopoda	r			r							
Pertusaria praetervisa	r	r									
*Pertusaria texana	b										
Pertusaria xanthodes	b										
*Phaeographis cripata	b										
Phaeographis dendritica	b										
*Phyllopeltula corticola	b										
Phyllopora corallina	b			b	r	r					
Physcia astrotria	b										
Somewhat to the authors’ surprise, as many as 54 (almost 50 %) of the identified species are new records for St. Eustatius. This includes mostly relatively common and widespread tropical or Neotropical species, but also some rare species, notably *Staurolemma dussii* (Vain.) P.M. Jørg. & Henssen, which was so far only known from its type from Guadeloupe. Furthermore, it is remarkable that *Cresponea flava* (Vain.) Egea & Torrente was found on siliceous rock. The presence of so many additional species within the limited surface area of the plots, totalling 6875 m2 (0.03% of the total island surface), suggests that the exploration of the lichen flora of St. Eustatius has not yet been

Taxon	H1	H2	M1	M2	M3	M4	M5	M7	M8	M9	U1
Physcia erumpens											
Physcia integrata											
Physcia sorediosa											
Porina compressa	b	r									
Porina epiphylla	l										
Porina internigrans	b	b									
Porina leptalea	r										
Porina nucula	b	r									
Porina rubentior	l										
Porina tetracerae	b	b	r								
Porina thaxteri	l										
(*) Porotrichia cf. americana	r										
Pyrenopsis antillarum	r										
Pyrenula adacta	b	b	b	b							
Pyrenula breutelii (*Pyrenula macularis*)											
Pyrenula coccodes	b	b	b	b							
Pyrenula cruenta	b										
Pyrenula dissimulans	b	b	b	b	b						
Pyrenula nitidula	b										
Pyxine coccoides	b	b	b	b	b						
Ramalina stoffersii	r										
Rinodina antillarum	r										
Rinodina colobinoides	b	b									
Rinodina pyxinoides	r	r	r	r	r	r	r				
Sarcographa cf. tricosa •											
Squamulae subsoluta (*Caloplaca subsoluta*)	r	r	r	r							
Staurolemma dussii	b										
Sticta xanthotropa	r	r									
Stigmatochromma gerontoides	w										
(*) Stigmidium cf. schaereri	k										
Strigula decipiens	r										
Strigula phaea	b	r									
Strigula squaragula	l										
Syciesia decussans	b										
Thelenella luridella	r	r	r								
(*) Thelidium cf. decipiens *	k										
(*) Verrucaria cf. dolosa *	r										
Verrucaria nigrescens	r										
(*) Wetmoreana cf. appressa *	r										

[74]
exhaustive. However, no clearly undescribed species were found in the material and the number of species described based on material from St. Eustatius remains low with two, *Viz. Stirtonia neotropica* (Aptroot 2009) and *Synesia subintegra* (Sipman 2009).

Several specimens could not be identified with certainty in the present material but represent additional species (and in several cases additional genera). These are, for instance, Lichinaceae and Verrucariaceae, of which the taxonomy of the tropical taxa is incompletely known. Rather than describing them as new, they were listed with the name of the species that is morphologically most similar, preceded by “cf”. The BLAST results from the mtSSU sequences obtained from eight of these specimens in most cases allowed preliminary insights into their phylogenetic position.

The sequence of the *Anisomeridium* specimen with only conidia from St. Eustatius receives the highest BLAST hits with other representatives of the Monoblastiaceae in Nelsen et al. (2009, 2011), *Viz. Anisomeridium ubianum* (Vain.) R.C. Harris, *A. cf. wileyanum* (R.C. Harris) R.C. Harris, *Megalotremis verrucosa* (Makhija & Patw.) Aptroot and *Trypetheliopsis kalbii* (Lücking & Sérus.) Aptroot. The low sequence identities of 86−93 % clearly indicate that the St. Eustatius specimen belongs to another species in that family, but too few mtSSU sequences are yet available for a more precise molecular identification.

In the Graphidaceae, the top five BLAST hits for the specimen of *Acanthothecis* sp. were all with *Acanthothecis peplophora* (M. Wirth & Hale) E. Tripp & Lendemer specimens (97 % identity), whereas the identity with the sequence of the type species of *Acanthothecis, A. hololeucoides* (Nyl.) Staiger & Kalb, was only 89 %. The specimen from St. Eustatius thus most probably does not belong to *Acanthothecis* s.str., but may represent a species of ‘*Acanthothecis 2’* in the *Carbacanthographis* clade (cf. Rivas Plata et al. 2013, Medeiros et al. 2017). The *Sarcographa cf. tricosa* specimen received BLAST hits of 97 % identity with *Sarcographina glyphiza* (Nyl.) Kr.P. Singh & D.D. Awasthi and *Palloidogramme chlorocarpoides* (Nyl.) Staiger, Kalb & Lücking, both situated in the Graphioideae tribe Graphidae p.p. clade of Rivas Plata et al. (2013). However, another GenBank sequence of *P. chlorocarpoides*, as well as several species of other genera of same clade, were 96 % identical, including the single other specimen of *S. tricosa* in GenBank (but not the species of the *Sarcographa* s.str. clade sensu Rivas Plata et al. 2013). The identity of the St. Eustatius specimen thus remains ambiguous based on the presently available mtSSU sequence data.

Both the apotheciate and sorediate *Bacidia* specimens are closest to sequences of species of the *Toninia-Bacidia* p.p. clade in Miadlikowska et al. (2014), the former to *Toninia sedifolia* (Scop.) Timdal (94 % identity) and the latter to *Bacidia californica* S. Ekman and *B. phacodes* Körb. (88−89 % identity), respectively. Consequently, they do not belong to *Bacidia* s.str., which forms a separate clade (including the type species, *B. rosella* (Pers.) De Not.) in Miadlikowska et al. (2014).

In the Verrucariaceae, *Verrucaria* was resolved as polyphyletic and *Thelidium* mixed with *Polyblastia, Staurothele* p.p. and *Verrucaria* p.p. (*Polyblastia* clade) in molecular phylogenetic reconstructions (Gueidan et al. 2007, Muggia et al. 2010, Thüs et al. 2011). The sequence of the *Thelidium cf. decipiens* specimen from St. Eustatius, how-
Table 2. Updated checklist of the lichens of St. Eustatius.

Species	References
Lichens	
Acarospora chrysops (Tuck.) H.Magn.	Boom et al. (2009) as Acarospora dissipata H.Magn.
Alyxia varia (Pers.) Ertz & Tehler	present study
Alyxia ochrocheila (Nyl.) Ertz & Tehler	Boom et al. (2009) as Opegrapha herbarum Mont., present study
Alyxia variabilis (Müll. Arg.) Marbach	Boom et al. (2009)
Amandinea efflorescens (Müll. Arg.) Marbach	Boom et al. (2009)
Amandinea multispora (Kalb & Vězda) Marbach	present study
Amandinea propinquus (Nyl.) Elix & H. Maybofer	Boom et al. (2009) as Buellia propinquus (Nyl.) Riddle
Anisomeridium americum (A.Massal.) R.C. Harris	Boom et al. (2009)
Anisomeridium americum (A.Massal.) R.C. Harris	Boom et al. (2009), Harris (1995)
Anisomeridium subprostans (Nyl.) R.C. Harris	present study
Anisomeridium terminatum (Nyl.) R.C. Harris	Boom et al. (2009), present study
Anisomeridium tamarindii (Fée) R.C. Harris	Boom et al. (2009)
Anisomeridium tamarindii (Fée) R.C. Harris	Boom et al. (2009)
Anisomeridium tamarindii (Fée) R.C. Harris	Boom et al. (2009)
Anisomeridium tamarindii (Fée) R.C. Harris	Boom et al. (2009)
Anisomeridium tamarindii (Fée) R.C. Harris	Boom et al. (2009)
Arthonia antillarum (Fée) Nyl.	Boom et al. (2009), present study
Arthonia caribaea (Ach.) A. Massal.	Boom et al. (2009), present study
Arthonia conferta (Fée) Nyl.	Boom et al. (2009), present study
Arthonia cyanea (Müll. Arg.)	Boom et al. (2009)
Arthonia cyrtodes Nyl.	Boom et al. (2009)
Arthonia minuta Vain.	Boom et al. (2009), present study
Arthonia parviflora A. Massal.	present study
Astronthelium macrothecum (Fée) A. Massal.	Boom et al. (2009), present study
Astrothelium bicolor (Taylor) A. Massal.	Boom et al. (2009) as Trypethelium nitidiusculum (Nyl.) R.C. Harris, A. Massal.
Bogoriella annonacea (Müll. Arg.)	Boom et al. (2009) as Caloplaca cinnabarina (Ach.) Zahlbr.
Browniella cinnabarina (Ach.) S.Y. Kondr., Kärnefelt, A. Thell, Elix, J.Kim, A.S.Kondr. & J.-S.Hur	present study
Buellia boergesenii Imshaug	Boom et al. (2009)
Buellia dejungensi (Nyl.) Vain.	Boom et al. (2009), present study
Buellia griseovirens (Turner & Borrer ex Sm.) Almb.	present study
Buellia griseovirens (Turner & Borrer ex Sm.) Almb.	present study
Buellia majuscula (Tuck.) W.A. Weber	Boom et al. (2009) as Buellia glaziouana (Kremp.) Müll. Arg., present study
Buellia posthabita (Nyl.) Zahlbr.	Boom et al. (2009)
Bulbothrix scortella (Nyl.) Hale	Boom et al. (2009)
Bulbothrix suffixa (Stirt.) Hale	Boom et al. (2009)
Byssoloma leucoblepharum (Nyl.) Vain.	Boom et al. (2009)
Caloplaca diplacia (Ach.) Riddle	Boom et al. (2009)
Caloplaca leptozona (Nyl.) Zahlbr.	Boom et al. (2009), present study
Caloplaca obscura (Th. Fr.) J. Lahm	present study
Canoparmelia martinicana (Nyl.) Elix & Hale	Boom et al. (2009)
Carbacanthographis triphoroides (M. Wirth & Hale) Lücking	Boom et al. (2009)
Species	References
---------	------------
Chapsa cinchonarum (Fée) Frisch	Boom et al. (2009)
Chrysothrix xanthina (Vain.) Kalb	Boom et al. (2009)
Cladonia corymbites Nyl.	Boom et al. (2009)
Cladonia didyma (Fée) Vain.	Boom et al. (2009)
Cladonia subradiata (Vain.) Sandst.	Boom et al. (2009)
Coccocarpia palmicola (Spreng.) Arc. & D.J. Galloway	Boom et al. (2009)
Coccocarpia pelletia (Ach.) Müll. Arg.	Boom et al. (2009)
Coenogonium interpositum Nyl.	Boom et al. (2009)
Coenogonium leprieurii (Mont.) Nyl.	Boom et al. (2009)
Coenogonium linkii Ehrenb.	Boom et al. (2009)
Coenogonium saepincola Aptroot, Sipman & Lücking	present study
Coenogonium strigosum Rivas Plata, Lücking & Chaves	Boom et al. (2009), present study
Coenogonium subdilutum (Malme) Lücking, Aptroot & Sipman	Boom et al. (2009)
Coniocarpon cinnabarinum DC.	Boom et al. (2009) as Arthonia cinnabarina (DC.) Wallr., present study
Cryptothecia carneolutea (Tuck.) A. Massal.	Boom et al. (2009)
Cryptothecia megalocarpa (Müll. Arg.) R. Sant.	Boom et al. (2009)
Cryptothecia punctosorediata Sparrius	present study
Cryptothecia striata G. Thor	Boom et al. (2009), present study
Dichophoridium nigrocinctum (Ehrenb.) G. Thor	Boom et al. (2009), present study
Dictyomeridium amylosporum (Vain.) Aptroot, M.P. Nelsen & Lücking	present study
Dirina paradoxa (Fée) Tehler	Boom et al. (2009) as Divina approximata subsp. hioramii (B. de Lesd.) Tehler, Tehler et al. (2013)
Diviniaaria aegialita (Ach.) B.J. Moore	Boom et al. (2009)
Endocarpon pallidulum (Nyl.) Nyl.	present study
Enterographa compunctula (Nyl.) Redinger	Boom et al. (2009)
Enterographa multilocularis (Müll. Arg.) Sparrius	Boom et al. (2009)
Enterographa pallidella (Nyl.) Redinger	Boom et al. (2009), present study
Enterographa perez-biaredae Herrera-Camp. & Lücking	Boom et al. (2009)
Enterographa sipmanii Sparrius	Boom et al. (2009)
Enterographa subserialis (Nyl.) Redinger	Boom et al. (2009), present study
Eremothecella microcephalica Sipman	Boom et al. (2009)
Fissurina dumastii Fée	Boom et al. (2009)
Flakea papillata O.E. Erikss.	Boom et al. (2009), present study
Glyphis cicatricosa Ach.	Boom et al. (2009)
Glyphis scyphulifera (Ach.) Staiger	Boom et al. (2009), present study
Graphis caesiella Vain.	Boom et al. (2009), present study
Graphis chondrophylla (Redinger) Lücking	Boom et al. (2009)
Graphis cincta (Pers.) Aptroot	present study
Species	References
-------------------------------	---
Graphis dendrogramma Nyl.	Boom et al. (2009), present study
Graphis furcata Fée	Boom et al. (2009)
Graphis glaucescens Fée	Boom et al. (2009)
Graphis librata C. Knight	present study
Graphis lineola Ach.	Boom et al. (2009)
Graphis tenella Ach.	Boom et al. (2009)
Graphis tenellula Vain.	Boom et al. (2009)
Gyalectidium filicinum Müll. Arg.	Boom et al. (2009)
Gyalolechia bassiae (Ach.) Sochting, Frödin & Arup ex Ahl	Boom et al. (2009) as *Caloplaca bassiae* (Ach.) Zahlbr., present study
Hafellia bahiana (Malme) Sheard	Boom et al. (2009)
Hafellia curvatellae (Malme) Marbach	present study
Heterodermia albicans (Pers.) Swinscow & Krog	Boom et al. (2009)
Heterodermia galactophylla (Tuck.) W.L. Culb.	Boom et al. (2009)
Heterodermia lutescens (Kurok.) Follmann	Boom et al. (2009)
Heterodermia obscurata (Nyl.) Trevis.	Boom et al. (2009)
Heterodermia squamulosa (Degel.) W.L. Culb.	Boom et al. (2009)
Heterodermia verrucifera (Kurok.) W.A. Weber	Boom et al. (2009)
Hyperphyscia adglutinata (Förke) H. Mayrhofer & Poelt	Boom et al. (2009), present study
Hyperphyscia minor (Fée) D.D. Awarshi	Boom et al. (2009)
Lathrigostrum neglectum (Degel.) Otárola, P.M. Jörg. & Wedin	Boom et al. (2009) as *Collema neglectum* Degel., present study
Lecanactis epiluca (Nyl.) Tehler	Boom et al. (2009)
Lecanora galactiniza Nyl.	Boom et al. (2009)
Lecanora legalloana Elix & Øvstedal	Boom et al. (2009), present study
Lecanora leproplaca Zahlbr.	present study
Lecanora leprosa Fée	Boom et al. (2009), present study
Lecanora proemcha Ach.	Boom et al. (2009), present study
Lecanora sulfurescens Fée	Boom et al. (2009), present study
Leitodictyon exaltatum (Mont. & Bosch) Staiger	Boom et al. (2009)
Lepraria finkii (B. de Lesd.) R.C. Harris	present study
Leprocollema novacaledonianum (A.L. Sm.)	present study
Letrouitia domingensis (Pers.) Hafellner & Bellem.	Boom et al. (2009), present study
Leucodictyon bisporum (Nyl.) Sipman & Lücking	Boom et al. (2009)
Leucodictyon compactum (Ach.) A. Massal.	Boom et al. (2009)
Loefschmittia wallishii (Müll. Arg.) Vezda	Boom et al. (2009)
Malniidea piperis (Spreng.) Kalb, Rivas Plata & Lumbsch	Boom et al. (2009) as *Malcolmiella piperis* (Spreng.) Kalb & Lücking, present study
Malniidea psychotrioides (Kalb & Lücking) Kalb, Rivas Plata & Lumbsch	present study
Malniidea vinosa (Eschw.) Kalb, Rivas Plata & Lumbsch	Boom et al. (2009) as *Malcolmiella vinosa* (Eschw.) Kalb & Lücking, present study
Mazosia carnea (Eckfels) Aptroot & M. Cáceres	Boom et al. (2009) as *Mazosia ocellata* (Nyl.) R.C. Harris, present study
Mazosia phylloena (Nyl.) Zahlbr.	Boom et al. (2009)
Megalaria bengalensis Jagadeesh Ram & Aptroot	Hensen (BR)
Melanotrema meiospermum (Nyl.) Frisch	Boom et al. (2009)
Microtheliopsis uleana Müll. Arg.	present study
Species	References
---------	------------
Mycoporum eschweileri (Müll. Arg.) R.C. Harris	present study
Myriostigma candidum Krem.	Boom et al. (2009) as *Cryptothecia candida* (Kremp.) R. Sant.: incorrect report
Myriotrema myriotremoides (Nyl.) Hale	Boom et al. (2009)
Nyungwea anguinella (Nyl.) Aptroot	Boom et al. (2009) as *Enterographa anguinella* (Nyl.) Redinger, present study
Ocellularia depressa (Mont.) Hale	Boom et al. (2009)
Ocellularia interposita (Nyl.) Hale	Boom et al. (2009)
Ocellularia terebrata (Ach.) Müll. Arg.	Boom et al. (2009)
Opographa astraea Tuck.	present study
Opographa lithyriza Vain.	present study
Opographa quintana Tuck.	present study
Pannaria prolifica Vain.	Boom et al. (2009)
Parmotrema crinitum (Ach.) M. Choisy	Boom et al. (2009)
Parmotrema endosulphureum (Hillmann) Hale	Boom et al. (2009)
Parmotrema praesorediosum (Nyl.) Hale	Boom et al. (2009)
Parmotrema tinctorum (Nyl.) Hale	Boom et al. (2009)
Peltula bolanderi (Tuck.) Wetmore	Boom et al. (2009), present study
Peltula oblonga (Nyl.) Gyeln.	Boom et al. (2009), present study
Peltula octomera (Müll. Arg.) Fée	Boom et al. (2009), present study
Phaeographis scalpturata (Ach.) Staiger	Boom et al. (2009)
Phlyopeltula corticola (Büdel & R. Sant.) Kalb	present study
Physcia atrostriata Moberg	Boom et al. (2009), present study
Physcia crispa Nyl.	Boom et al. (2009)
Physcia erumpens Moberg	present study
Physcia integrata Moberg	present study
Physcia sinuosa Moberg	Boom et al. (2009)
Physcia sorediosa (Vain.) Lyngbe	Boom et al. (2009), present study
Playthecium colliculosum (Mont.) Staiger	Boom et al. (2009)
Polymeridium quinqueseptatum (Nyl.) R.C. Harris	Boom et al. (2009)
Porina conspersa Malme	present study
Porina epiphylla (Fée) Fée	Boom et al. (2009), present study
Porina intermagna (Nyl.) Müll. Arg.	Boom et al. (2009)
Porina leptalea (Durieu & Mont.) A.L. Sm.	present study
Porina maioidea (Ach.) Müll. Arg.	Hensen (BR), Boom et al. (2009)
Porina nitidula Müll. Arg.	Boom et al. (2009)
Porina nucula Ach.	Boom et al. (2009), present study
Porina octomera (Müll. Arg.) E.Schill.	Boom et al. (2009)
Species	References
--	--
Porina rubentior (Stirt.) Müll. Arg.	present study
Porina tetragonae (Ach.) Müll. Arg.	Boom et al. (2009), present study
Porina thecateri R. Sant.	present study
Pseudochapsa dilatata (Müll. Arg.) Parnmen, Lücking & Lumbsch	Boom et al. (2009) as *Chapsa dilatata* (Müll. Arg.) Kalb
Pseudopyrenula subgregaria Müll. Arg.	Boom et al. (2009)
Pseudopyrenula subnodulata Müll. Arg.	Harris (1998) as *Pseudopyrenula dilata* (Fée) Müll. Arg. var. *degenerans* Vain, Boom et al. (2009) as *Pseudopyrenula dilata*, Aptroot and Lücking (2016)
Pyrenopsis antillarum Vain.	present study
Pyrenula adacta Fée	present study
Pyrenula astroida (Fée) R.C. Harris	Boom et al. (2009)
Pyrenula bahiana Malme	Boom et al. (2009) as *Pyrenula concatenans* (Nyl.) R.C. Harris
Pyrenula breutelii (Müll. Arg.) A. P. Aptroot	Boom et al. (2009) as *Pyrenula macularis* (Zahlbr.) R.C. Harris, present study
Pyrenula cinerea Zahlbr.	Boom et al. (2009)
Pyrenula cocoes Müll. Arg.	Boom et al. (2009), present study
Pyrenula confinis (Nyl.) R.C. Harris	Boom et al. (2009)
Pyrenula cruenta (Mont.) Vain.	present study
Pyrenula disimilans (Müll. Arg.) R.C. Harris	present study
Pyrenula duplicans (Nyl.) A. P. Aptroot	Boom et al. (2009)
Pyrenula leucostoma Ach.	Boom et al. (2009)
Pyrenula mamillana (Ach.) Trevis.	Boom et al. (2009) as *Pyrenula xyloides* (Eschw.) Müll. Arg.
Pyrenula masariopora (Starbäck) R.C. Harris	Boom et al. (2009)
Pyrenula microtheca R.C. Harris	Boom et al. (2009)
Pyrenula nitidula (Bres.) R.C. Harris	Boom et al. (2009), present study
Pyrenula septicularis (Eschw.) R.C. Harris	Boom et al. (2009)
Pycine cocos (Sw.)	Boom et al. (2009), present study
Ramalina anceps Nyl.	Boom et al. (2009)
Ramalina complanata (Sw.) Ach.	Boom et al. (2009)
Ramalina dendroides (Nyl.) Nyl.	Boom et al. (2009)
Ramalina furcellata (Ach.) Zahlbr.	Boom et al. (2009)
Ramalina stoffersii Sipman	present study
Rinodina antillarum Vain.	present study
Rinodina colobinoides (Nyl.) Müll. Arg.	present study
Rinodina psycinoides Vain.	Boom et al. (2009), present study
Rockella gracilis Bory	Boom et al. (2009), Aptroot and Schumm (2011)
Roccellographa circumscripta (Leight.) Ertz & Tehler	Boom et al. (2009) as *Peterjamesia circumscripta* (Taylor) D. Hawksw.
Sarcographa heterocita (Mont.) Zahlbr.	Boom et al. (2009)
Sarcographa labyrinthica (Ach.) Müll. Arg.	Boom et al. (2009)
Sarcographa ramificans (Kremp.) Staiger	Boom et al. (2009)
Sarcographa tricosa (Ach.) Müll. Arg.	Boom et al. (2009), present study
Selrophyton elegans Eschw.	Boom et al. (2009)
Sclerophyton trinidadense Sparrius	Boom et al. (2009)
Sporopodium phloeochora (Mont.) A. Massal.	Boom et al. (2009)
Squamulea subolusta (Nyl.) Arup, Sochting & Frödén	Boom et al. (2009) as *Caloplaca subolusta* (Nyl.) Zahlbr., present study
Staurolemma duessii (Vain.) P.M. Jørg. & Henssen	present study
Stegobolus auberianus (Mont.) Frisch & Kalb	Boom et al. (2009)
Stegobolus granulosus (Tück.) Frisch	Boom et al. (2009)
Stegobolus subcavatus (Nyl.) Frisch	Boom et al. (2009)
Sticta xanthotropa (Kremp.) D.J. Galloway	Hensen (BR), present study
Species References

Stigmatochroma gerontoides (Stirt.) Marbach present study
Sirtoria neotropica Aptom
Sirtigula decipiens (Malme) P.M. McCarthy present study
Sirtigula macrospora Vain. Boom et al. (2009)
Sirtigula nemathora Mont. Boom et al. (2009)
Sirtigula obducta (Müll. Arg.) R.C. Harris Boom et al. (2009)
Sirtigula phaea (Ach.) R.C. Harris Boom et al. (2009)
Sirtigula smaragdula Fr. Boom et al. (2009), present study
Synalissa lichinella Vain. Boom et al. (2009)
Synecia decusata (Nyl.) Tehler present study
Synecia farinacea (Fée) Tehler Boom et al. (2009), Sipman (2009)
Synecia glyphysoides (Fée) Tehler Tehler (1997), Boom et al. (2009), Sipman (2009)
Synecia graphica (Fr.) Tehler Boom et al. (2009), Sipman (2009)
Synecia subintegra Sipman Boom et al. (2009), Sipman (2009)
Teloschistes flavicans (Sw.) Norman Boom et al. (2009) as Teloschistes flavicans var. crocea (Ach.) Müll. Arg.

Thalloloma hylosteum (Nyl.) Staiger
Thelenella luridella (Nyl.) H. Mayrhofer present study
Thelotrema porinoides Mont. & Bosch Boom et al. (2009)
Toninia submexicana B. de Lesd. Boom et al. (2009)
Trabesiella caeretata (Sm.) M. Choisy Boom et al. (2009)
Usnea baileyi (Stirt.) Zahlb. Boom et al. (2009)
Vierocellaria velata (Turner) I. Schmitt & Lumbsch Boom et al. (2009)
Verrucaria nigrescens Pers. present study
Xanthoparmelia succedans Eliis & J. Johnst. Boom et al. (2009)

Lichenicolous fungus

Dactylospora saxatilis (Schaer.) Hafellner (lichenicolous on Pertusaria praetervisa) present study

Additional genera (species uncertain)

Acanthothecis sp. present study
Bacidina sp. present study
Melaspilea sp. (lichenicolous fungus) present study
Psorotrichia sp. present study
Stigmidium sp. (lichenicolous fungus) present study
Thelidium sp. present study
Wetmoreana sp. present study

ever, is closest to the Catapyrenium-Placidiopsis-Verrucaria p.p. (V. caerulea DC., V. praetermissa (Trevis.) Anzi) clade (Muggia et al. 2010) with sequence identities of 96–97 %. The placement of the Verrucaria cf. dolosa specimen is more difficult to assess, since its sequence shows lower similarities of 92–94 % to representatives of different Verrucarieae genera, such as Agonimia, Bagliettoa and Verrucaria spp.

Finally, the mtSSU sequence of the Wetmoreana cf. appressa specimen from St. Eustatius is difficult to interpret, since it matches more closely with sequences of the Xanthoriaeae (sequence identity 97–99 %) than with Teloschistioideae, in which Wetmoreana is placed (e.g. Arup et al. 2013).

The lichen flora of St. Eustatius can be characterised as lowland, relatively dry Caribbean. As can be seen from Table 1, most species were found on one substratum
type, but some are less specialised. Also, there is a marked difference between the li-
chens of the different plots and the three main areas on St. Eustatius (Northern Hills,
central urban area, The Quill). However, the authors refrain from performing statisti-
cal comparisons of the lichen diversity between plots, since the number of plots per
main area differs and is still low and the sampling strategy was devised by specialists of
other organism groups. Nevertheless, the lichen data will be useful for an island-wide,
plot-based comparison of diversity amongst all organism groups sampled during the
2015 inventory.

In Table 2, an updated checklist is presented of the lichens of St. Eustatius, citing
only identified species, but based on all available sources and with their taxonomy
(nomenclature and sometimes species concept) updated where necessary. According
to this list, a total of 263 species are currently known from St. Eustatius. As a side ef-
effect of revising the existing records, one record becomes questionable, viz. *Myriostigma
candidum* Kremp., which is not known from the Neotropics. It is intended to continue
the exploration of the lichens of this island in the near future.

Acknowledgements

This research was funded by Naturalis Biodiversity Center. Fieldwork was co-organized
by T. van Andel, B. van der Hoorn and J. Miller (Naturalis) and facilitated by the Car-
ibbean Netherlands Science Institute (CNSI), St. Eustatius National Parks (STENAPA),
DCNA Island Conservationists H. Madden and A. van Zanten and field guide
C. Gibbs. Students E. Haber, T. Huijts, C. Posthouwer, T. Verheijden, R. Vogel and S.
Zwartsenberg of the Leiden University course Tropical Biodiversity and Field Methods as
well as R. Butôt (Naturalis) contributed to collecting. Student participation was fa-
cilitated by the Alberta Mennega Stichting and the Van Eeden Fonds. Koos Biesmeijer
facilitated the Naturalis Caribbean programme and participated in the fieldwork. Mar-
lon Murray and the St. Eustatius Historical Foundation allowed us to sample the urban
plot. Molecular lab work was carried out by R. Butôt. We are indebted to H. Sipman
(Berlin) for providing a copy of the unpublished keys, descriptions and specimen cita-
tion that was the basis for the internet checklist by Boom et al. (2009).

References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search
tool. Journal of Molecular Biology 215: 403–410. https://doi.org/10.1016/S0022-
2836(05)80360-2

Andel T van, Hoorn B van der, Stech M, Bantjes Arostegui S, Miller J (2016) A quantitative
assessment of the vegetation types on the island of St. Eustatius, Dutch Caribbean. Global
Ecology and Conservation 7: 59–69. https://doi.org/10.1016/j.gecco.2016.05.003
Aptroot A (2009) A revision of the lichen genus Stirtonia. The Lichenologist 41: 615–625. https://doi.org/10.1017/S0024282909990107

Aptroot A, Lücking R (2016) A revisionary synopsis of the Trypetheliaceae (Ascomycota: Trypethe-liales). The Lichenologist 48: 763–982. https://doi.org/10.1017/S0024282916000487

Aptroot A, Schumm F (2011) Fruticose Roccellaceae, an anatomical-microscopical atlas and guide with a worldwide key and further notes on some crustose Roccellaceae or similar lichens. Books on demand, Norderstedt.

Arup U, Sochting U, Frödén P (2013) A new taxonomy of the family Teloschistaceae. Nordic Journal of Botany 31: 16–83. https://doi.org/10.1111/j.1756-1051.2013.00062.x

Boon BM, Buck WR, Gracie CA, Tulig M (2009) Plants and Lichens of St. Eustatius. http://sweetgum.nybg.org/st_eustatius/index.php

Brako L (1991) Phyllopsora (Bacidiaceae). Flora Neotropica Monograph 55: 1–66.

Freitas JA de, Rojer AC, Nijhof BSJ, Debrot AO (2014) A landscape ecological vegetation map of Sint Eustatius (Lesser Antilles). Den Helder.

Gueidan C, Roux C, Lutzoni F (2007) Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycological Research 111: 1145–1168. https://doi.org/10.1016/j.mycres.2007.08.010

Harris RC (1989) Working keys to the lichen forming fungi of Puerto Rico. Tropical lichen workshop, Presented at Catholic University of Puerto Rico. [Published and distributed by the author]

Harris RC (1995) More Florida lichens. [Published and distributed by the author]

Harris RC (1998) A preliminary revision of Pseudopyrenula Müll. Arg. (lichenized Ascomycetes, Trypetheliaceae) with a redescription of the names previously assigned to the genus. In: Glenn MG, Harris RC, Dirig R, Cole MS (Eds) Lichenographia Thomsoniana: North American Lichenology in Honor of John W. Thomson. Mycotaxon Ltd., Ithaca, New York, 133–148.

Medeiros ID, Kraichak E, Lücking R, Mangold A, Lumbsch HT (2017) Assembling a Taxonomic Monograph of Tribe Wirthiotremateae (Lichenized Ascomycota: Ostropales: Graphidaceae). Fieldiana Life and Earth Sciences 9: 1–31. https://doi.org/10.3158/2158-5520-16.9.1

Miadlikowska J, Kauff F, Hågnerbba F, Oliver JC, Molnár K, Fraker E, Gaya E, Hafellner J, Hofstetter V, Gueidan C, Otálora MAG, Hodkinson B, Kukwa M, Lücking R, Björk C, Sipman HJM, Burgaz AR, Thell A, Passo A, Myllys L, Goward T, Fernández-Brime S, Hestmark G, Lendemer J, Lumbsch HT, Schmull M, Schoch CL, Sérusiaux E, Maddison DR, Arnold AE, Lutzoni F, Stenroos S (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132–168. https://doi.org/10.1016/j.ympev.2014.04.003

Muggia L, Gueidan C, Grube M (2010) Phylogenetic placement of some morphologically unusual members of Verrucariales. Mycologia 102: 835–846. https://doi.org/10.3852/09-153

Nelsen MP, Lücking R, Grube M, Mbatchou JS, Muggia L, Rivas Plata E, Lumbsch HT (2009) Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Studies in Mycology 64: 135–144. https://doi.org/10.3114/sim.2009.64.07
Nelsen MP, Lücking R, Mbatchou JS, Andrew CJ, Spielmann AA, Lumbsch HT (2011) New insights into relationships of lichen-forming Dothideomycetes. Fungal Diversity 51: 155–162. https://doi.org/10.1007/s13225-011-0144-7

Orange A, James PW, White FJ (2001) Microchemical Methods for the Identification of Lichens. British Lichen Society, London.

Øvstedal DO (2010) The lichens of Guadeloupe, French Antilles. Bergen Museum, Bergen.

Rivas Plata E, Parnmen S, Staiger B, Mangold A, Frisch A, Weerakoon G, Hernández MJE, Cáceres MES, Kalb K, Sipman HJM, Common RS, Nelsen MP, Lücking R, Lumbsch HT (2013) A molecular phylogeny of Graphidaceae (Ascomycota, Lecanoromycetes, Ostropales) including 428 species. In: Boonpragob K, Crittenden P, Lumbsch HT (Eds) Lichens: from genome to ecosystems in a changing world. MycoKeys 6: 55–94. https://doi.org/10.3897/mycokeys.6.3482

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the USA 109: 6241–6246. https://doi.org/10.1073/pnas.1117018109

Sipman HJM (2009) The lichen genus Syncesia (Arthoniales) on Saba and St. Eustatius (West Indies). Opuscula Philolichenum 7: 55‒60.https://doi.org/10.1017/S0953756201004932

Sipman HJM, Aptroot A (2001) Where are the missing lichens? Mycological Research 105: 1433–1439.

Stoffers AL (1956) The vegetation of the Netherlands Antilles. Mededelingen van het Botanisch Museum van het Herbarium van de Rijksuniversiteit Utrecht 135: 1‒142. [+ 28 pl]

Tehler A (1997) Syncesia (Arthoniales, Euascomycetidae). Flora Neotropica Monograph 74: 1–48.

Tehler A, Ertz D, Irestadt M (2013) The genus Dirina (Roccellaceae, Arthoniales) revisited. The Lichenologist 45: 427–476. https://doi.org/10.1017/S0024282913000121

Thüs H, Muggia L, Pérez-Ortega S, Favero-Longo SE, Joneson S, O’Brien H, Nelsen MP, Duque-Thüs R, Grube M, Friedl T, Brodie J, Andrew CJ, Lücking R, Lutzoni F, Gueidan C (2011) Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology 46: 399‒415. https://doi.org/10.1080/09670262.2011.629788

Zoller S, Scheidegger C, Sperisen C (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming Ascomycetes. The Lichenologist 31: 511–516. https://doi.org/10.1006/lich.1999.0220