EFFECT OF PLANTING DATE AND DENSITY ON AMARANTH (Amaranthus hypochondriacus L.) GROWTH INDICES AND FORAGE YIELD

Elham Moshaver¹*, Hamid Madani², Yahya Emam³, Ghorban Nour Mohamadi¹ and Hossein Heidari Sharifabad⁴

¹Department of Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
²Associate Professor, Department of Agronomy, Islamic Azad University, Arak Branch, Arak, Iran
³Professor, Department of Agronomy, Shiraz University, Shiraz, Iran
⁴Professor, Department of Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran

Received – January 31, 2016; Revision – April 15, 2016; Accepted – July 20, 2016
Available Online – August 31, 2016

DOI: http://dx.doi.org/10.18006/2016.4(5).541.547

KEYWORDS
Amaranth
Planting date
Yield
Stem dry weight
Leaf area index

ABSTRACT

To study the effects of planting date and plant density on Amaranth, two field experiments were conducted in 2013 at Marv-Dasht, Fars, Iran. The field experiments were conducted as split plot in a randomized complete block design with 3 replications. Plant density (6.6, 8.3 and 11.0 Plant.m⁻²) and planting date (June 22nd, July 6th and July 21st) were used as treatments. Results of this study revealed that the planting date and plant density had significant effect on number of leaf per plant, stem diameter, leaf dry weight, stem dry weight, forage yield, relative growth rate (RGR), crop growth rate (CGR) and leaf area index (LAI). Highest amaranth forage yield (11.7t.ha⁻¹) was obtained from 6.6 plant.m⁻² density and July 6th planting date. Moreover, in the experiment condition the amaranth yield was also reduced with delay in planting date from 6th to 21st July and increases the plant density from 6.6 to 11 plant.m⁻² significantly.

* Corresponding author
E-mail: elham.moshaver@yahoo.com (Elham Moshaver)

Peer review under responsibility of Journal of Experimental Biology and Agricultural Sciences.

All the article published by Journal of Experimental Biology and Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Based on a work at www.jebas.org.
1 Introduction

Amaranth (Amaranthus hypochondriacus) belongs to family of Amaranthaceae, used as livestock feed because of high percent of seed protein. Further use of amaranth as forage in tropical zone is also supported by its higher growth and development potential under tropical conditions (Kauffman, 1992). In recent decade’s frequency of its consumption widely increased in various continents such as China, Eastern South of Asia, Africa and America (Becker et al., 1981; Ravindran et al., 1996). Amaranth produced high amount of forage in a short period which can be used as dry forage or grain depot for ruminator and non-ruminator livestock (Sleugh et al., 2001). In terms of quality and protein level of amaranth it keeps pace with legumes plants or some time may have higher protein level than the leguminous crops (Sleugh et al., 2001). One of the most important features of amaranth is consumption of less water for normal growth (42-47 percent) as compared to other crops (Johnson & Henderson, 2002). Cultivation of this crop is affected by various factors such as seed quality, nitrogen level, planting date and plant densities (Rabbani et al., 2012).

According to Ansariardali & Aghaalikhani (2013) plant density and nitrogen level have significant effect the yield and quality of amaranth, these researchers reported that the treatment containing 180 kg per hectare nitrogen fertilizer and 140000 plants per hectare showed superiority over the other treatment and represent better agronomic characteristics. Further, effect of planting date on growth and performance of this crop was also studied by Aynehband et al. (2007) and reported that planting date also had an effect on the growth of crop and highest plant growth was reported from the crop grown in late July or early August and on this date plant also produced highest plant growth was reported from the crop gared during the plant growth period. To measure the plant growth indices like, Leaf area index (LAI), crop growth rate (CGR), relative growth rate (RGR) leaf area and plant dry weight was measured every two weeks from 30 days after planting dates as described by Gardner et al. (1991).

Field experiments were conducted at two locations at the same time as split plot in a randomized complete block design with 3 replications. Plant density (6.6, 8.3 and 11.0 Plant.m−2) and planting date (June 22nd, July 6th and July 21st) were used as treatments. Seedbed preparation consisted of spring disking and moldboard plowing. Amaranth seeds were planted at 1-1.5 cm depth in different plant density in 60 cm spaced rows. Various attributes such as forage yield, stem diameter, number of leaves per plant, leaf dry weight, stem dry weight were measured at harvesting time. Irrigation and weeding were applied during the plant growth period. To measure the plant growth indices like, Leaf area index (LAI), crop growth rate (CGR), relative growth rate (RGR) leaf area and plant dry weight was measured every two weeks from 30 days after planting dates as described by Gardner et al. (1991).

\[\text{LAI} = \frac{\text{LA}}{\text{GA}} \]
\[\text{CGR} = \frac{1}{\text{GA}} \times \frac{\text{W}_2 - \text{W}_1}{\text{T}_2 - \text{T}_1} \]
\[\text{RGR} = \frac{\ln\text{W}_2 - \ln\text{W}_1}{\text{T}_2 - \text{T}_1} \]

W: dry weight, T: sampling time, LA: leaf area, GA: ground area.

To determine the forage yield, stem diameter and leaf number per pant, 10 plants were harvested randomly from each plot and measured. Dry forage yield was measured after drying whole plants in 65° C for 72 h (Mugerwa & Bwabye1974; Rivelli et al., 2008). Analysis of variance of all the traits and comparison of means (by Duncan’s multiple range test) were carried out by MSTAT-C software and the diagrams were drawn by Microsoft Office Excel 2007.

Table 1: Physicochemical properties of Soil collected from the study areas.

Element	pH	Ec	Clay	Silt	Sand	N	P	K	Fe	Zn	Cu	Mn
Rate	d/s	m	(%)									
Location A	7.73	0.74	41	45	14	0.1	32.8	480	10.8	1.3	1.03	9.7
Location B	7.9	0.93	39.6	44.2	16.2	0.098	18	400	8.3	0.7	1.94	8.6

Journal of Experimental Biology and Agricultural Sciences
http://www.jebas.org
3 Results and Discussion

3.1 Stem diameter

Results of study revealed that plant density and planting date had significant effect on stem diameter (Table 2). Further, interactions of plant density and planting date were also reported significant. The highest stem diameter (7.33 cm) was reported from the treatment of July 6th planting date and 6.6 plant.m\(^{-2}\) density (Table 3). While, the lowest stem diameter (2.46 cm) was obtained from the treatments of July 21st planting date and 11 plant.m\(^{-2}\) density. It was reported that stem diameter significantly reduced by increase in plant density from 6.6 plant.m\(^{-2}\) and delay in planting date from July 6th. These results are in agreements with the findings of the Ayub et al. (2003) and Artega et al. (1991). According to Gimplinger (2008) decreases in plant density provided more space per plant and decreases plant competition which increased the growth characteristics especially amaranth stem diameter. Further, Moshaver et al. (2013 a) similarly reported that amaranth plant density and planting date had significant effect on thickness of stem.

3.2 Number of leaves per plant

Analysis of variance result for amaranth leaves number indicated the significant effect of planting date and plant density on amaranth leaves (Table 2). Maximum number of leaves per plant (395 leaves per plant) was obtained from 6.6 plant.m\(^{-2}\) density and planting date July 6th (Table 3). Similar results were observed by Aynehband et al. (2007), these researchers were reported that different planting date had significant effect on qualitative and quantitative performance along with leaf number of amaranth (Aynehband et al., 2007).

Additionally, Henderson et al. (2000) reported that plant density in amaranth could affect the number of leaf per plant. Further, they highlight that in high plant densities, the size of leaf was lower.

3.3 leaf Dry Weight

Leaf dry weight in amaranth was one of the research targets of plant quality. Results of this study suggested that highest leaf dry weight (2075.6kg.ha\(^{-1}\)) was reported from the plant shown on July 6th planting date and 6.6 plant.m\(^{-2}\) density simultaneously (Table3). In a study, Ansariardali & Aghaaliikhani (2013) considered the effect of planting density on qualitative and quantitative performance of amaranth; lower plant density causes the increase the number of leaf and leaf weight in plants.

3.4 Stem dry weight

Plant density and planting date interaction treatments had significant effect on Stem dry weight in both years (Table 2). Like other growth attributes, highest mean stem dry weight (7916.8kg.ha\(^{-1}\)) was gained from July 6th planting date and 6.6 plant.m\(^{-2}\) density too (Table 3). In an investigations on the effect of plant density on qualitative and quantitative performance of amaranth Tucker (1986) reported that amaranth stem had significant effect on the density and high plant density declined the stem diameter, number of leaf and plant height. The recognition of optimal density causes increasing in stem diameter, stem weight and at last dry matter by suitable planting date and providing good seedbed (environmental conditions) of growth and development of shoot of amaranth in optimal temperature. Results of these investigations had compatibility with findings Henderson et al. (2000).
Table 3 Means comparison of interaction effects of density and planting date on investigation traits in two locations.

Treatments	measured traits					
Density (Plant.m⁻²)	Planting date	Stem diameter (cm)	no. Leaf per plants	leaf dry weight (kg.ha⁻²)	steam dry weight (kg.ha⁻²)	Dried forage yield (kg.ha⁻²)
6.6 June 22 A	5.30⁹	351.16⁹	1748.00⁹	3727.00⁹	6244.00⁹	
B	5.23⁹	335.83⁹	1540.60⁹	3987.40⁹	5915.47⁹	
8.3 June 22 A	3.96⁹	286.33⁹	1513.60c	1517.60⁹	4400.63⁹	
B	4.03⁹	268.33⁹	1492.26⁹	3980.80⁹	5504.47⁹	
11 June 22 A	3.40⁹	199.60⁹	1180.30⁹	1307.90⁹	3962.60⁹	
B	3.66⁹	180.41g	1739.46⁹	2898.50⁹	4757.50⁹	
6.6 July 6 A	7.33⁹	391.76⁹	2056.00⁹	7547.00⁹	11279.70⁹	
B	7.00⁹	395.00⁹	2075.60⁹	7916.80⁹	11748.80⁹	
8.3 July 6 A	5.03⁹	287.83⁹	1762.66⁹	4368.00⁹	7720.07⁹	
B	5.06⁹	281.66⁹	1889.33⁹	4752.20⁹	7339.60⁹	
11 July 6 A	4.02⁹	237.00⁹	1218.06⁹	4373.60⁹	6719.17⁹	
B	4.03⁹	207.66⁹	1313.03⁹	4310.17⁹	6272.93⁹	
6.6 July 21 A	4.58⁹	225.00⁹	1328.00⁹	2952.0⁹	4492.87⁹	
B	4.50⁹	237.66⁹	1204.60⁹	3015.6⁹	4505.6⁹	
8.3 July 21 A	3.73⁹	111.00⁹	1318.66³	2762.67⁹	4123.90⁹	
B	3.00⁹	164.33⁹	1012.00⁹	2731.47⁹	4052.67⁹	
11 July 21 A	2.65⁹	97.66⁹	1113.20⁹	2503.60⁹	3847.90⁹	
B	2.46⁹	112.66⁹	985.96⁹	2209.53⁹	3699.6⁹	

Means in each column followed by similar letter(s) are not significantly different at 5% probability level using Duncan’s Multiple Range Test.

3.5 Dry forage yield

Results of this study suggested that Amaranth forage yield was significantly affected by plant density and planting date at both experimental sites (Table 2). Comparison of forage yield showed that, the highest dry forage yield (11748.80kg.ha⁻¹) was reported from the planting date July 6th and plant densities 6.6 plant.m⁻² while the lowest one (3699.6 kg.ha⁻¹) was reported from the planting date July 21th and plant density 11 plant.m⁻² (Table 3). Dry forage yield reported in this study are similar to the findings of Moshaver et al. (2013 b) those have reported 11279.70 kg.ha⁻¹ forage yields. Similarly, Weber (1987) reported that by increasing density and delaying planting date decreased the dry forage yield of amaranth crops. It was reported that dry forage of amaranth to different density and planting dates shows multiple reactions and at suitable planting date and optimal density increased dry forage yields.

3.6 Leaf Area Index (LAI)

Trends of amaranth leaf area index at different density and planting date Inserted curves were represented in figure 1 (A and B). All treatments had similar trends and showed highest LAI values after 75 days of planting when the last leaf is appeared and flower will start appear at the end of stem.

![Figure 1 Effect of planting dates (A) and plant density (B) on Amaranth leaf area index.](http://www.jebas.org)
In the beginning of growth period, the growth of leaf area index was so low but by spending time not only the plant growth increased but value of LAI also increased and will reach to maximum. In the end of growing season some decline in LAI was also reported. Among various tested planting dates and plant density, maximum LAI was reported at density 6.6 plant m$^{-2}$. Further, it was reported that by increasing the plant density, LAI was declined. Probably, the reason of this affair is suitable distribution of plants, suitable overlapping of leaves and their less shading which causes better usage of environmental factors.

The maximum LAI in July 6th planting date and the least LAI observed in July 21st planting date. Murua (2002) was reported that effects of planting date is correlated with the temperature and ultimately affect the number of leaves and development of plant covering. Temperature can increases the speed of leaves appearance but necessarily it does not guarantee the increases the leaf surface and its durability (Nourmohamadi et al., 2002). Suitable LAI not only increased the speed of product synthesis but also had significant effect on the rate of photosynthesis, production of higher matter and on performance. By delaying planting date, senescence and defoliation of leaves happened faster and on the other hand because of the length of growth period, the time of expanding leaves surface is less and at last LAI is declined (Azizi & Mahrokh, 2007).

3.7 Crop Growth Rate (CGR)

Figure 2 shows that speed of crop growth at different plant density and planting date in amaranth. In the first stages of growth, the value of crop growth is low but by spending time, rate of crop growth started increasing. Values of crop growth were highest at the time of flowering. The highest speed of crop growth was observed in plant density of 6.6 plant m$^{-2}$ at July 6th planting date (Figure 2). On the other hand increasing density declined the speed of crop growth. High plant density increasing shading in plant and limited the rate of light absorption which could finally affected the plant growth and performance. Increasing plant density causes increasing plants competition and at last limiting the availability of food elements and declining CGR (Shumway et al., 1992). In general high speed of crop growth means aggregation of high dry matter and more performance. Therefore treatment which has more speed of crop growth and it has the performance of more forage (Moghimi & Emam, 2012).
3.8 Relative Growth Rate (RGR)

Figure 3 showing that by increasing plant age, relative growth rate started declined linearly. As observed for other growth attributes, maximum relative growth rate was observed in 6.6 plant m\(^{-2}\) density at July 6\(^{th}\) planting date. Since by increasing plant age, adds on structure tissue of plant which these structure tissue have no share in growth, relative growth rate will be negative during the time and increasing breath at the last season of growth (Pandey et al., 2000). It was reported by many researchers that relative growth rate of crop will declined through growth season by shading arising plant density and by delaying planting date and increasing temperature and the severity of breathing (Eddowes, 1969; Bueno & Atkins, 1982). Azizi & Mahrokh (2007) reported in their studies on corn that increasing density causes declining growth indices such as RGR.

Conclusion

In general, the results of this study showed that, the amaranth plant is very sensitive to planting date and plant density as well. The effect of planting date and plant densities could be most effectiveness on forage yield, leaf numbers, dry weight and also, trends in growth indices significantly. With this paper we try to highlight that the right range for plant density and planting date in every environment condition with producing high crop yield and sharp growth indices are accompanied emphatically.

Conflict of interest

Authors would hereby like to declare that there is no conflict of interests that could possibly arise.

Reference

Ansariardali S, Aghaaliikhani M (2013) Effect of nitrogen and density on qualitative and quantitative performance of forage Amaranth. Iranian Journal of Agronomy Science 1:35-4.

Artega JD, Otriz E, Bertolli L (1991) Assessment of nutrient quality of protein in six cultivars of sorghum. Journal of Agronomy16:65-76.

Aynehband A, Aqasizadeh V, Memkarbashi M (2007) Evaluation of quantitative and qualitative characteristics of Amaranth cultivars in different planting dates. Iranian Journal of Field Crops Research 5:221-228.

Ayub M, Tanveer A, Nadeem MA, Tayyub M (2003) Fodder Yield and Quality of Sorghum (Sorghum bicolor L.) As Influenced by Different Tillage Methods and Seed Rates. Journal of Agronomy 2: 179-184. DOI: 10.3923/ja.2003.179.184.

Azizi F, Mahrokh A(2007) Effect of planting date and plant density on growth index and yield and yield components of sweet corn- KSC403. Iranian Journal of Field Crops Research 10:764-773.

Becker R, Wheeler EL, Lorenz K, Stafford AE, Grosjean OK, Betschart AA, Saunders RM (1981) A compositional study of Amaranth grain. Journal of Food Science 46: 1175-1180. DOI: 10.1111/j.1365-2621.1981.tb03018.x.

Bueno A, Atkins R (1982) Growth analysis of grain sorghum hybrids. Iowa State Journal of Research 56:367-381.

Eddowes M (1969) Physiological studies of competition in Zea mays L. I. Vegetative growth and ear development in maize. The Journal of Agricultural Science 72: 185-193. DOI:10.1017/S0021859600022085.

Gardner FP, Brent pearce R, Mitchell RL (1991) Physiology of crop plants. Cornell University Press Pp: 400.

Henderson TL, Johnson BL, Schneider AA (2000) Row spacing, plant population and cultivar effects on grain amaranth in the Northern Great Plains. Agronomy Journal 92:329-336. DOI:10.2134/ajronj2000.922329x.

Johnson BL, Henderson TL (2002) Water use patterns of grain amaranth in the Northern Great Plains. Agronomy Journal 94:1437-1443. DOI:10.2134/ajronj2002.1437.

Kauffman CS (1992) Realizing the potential of grain amaranth. Food Reviews International 8:5-21. http://dx.doi.org/10.1080/87559129209540927.

Gimplinger DM, Schulte Auf’M Erley G, Dobos G, Kaul HP (2008) Optimum crop densities for potential yield and harvestable yield of grain amaranth are conflicting. European Journal of Agronomy 28: 119-125. http://dx.doi.org/10.1016/j.eja.2007.05.007.

Moghimi N, Emam Y (2012) Evaluation of morphophysiologic characteristics and yield of forage sorghum cultivars under nitrogen levels and water deficit stress. Iranian Journal of Field Crops Research 6:27-36.

Moshaver et al
Mugerwa JS, Bwabye R (1974) Yield composition and in vitro digestibility of *Amaranthus hybridus* subspecies incurvatus. Tropical Grasslands 8:49-53.

Murua M (2002) Polymer seed coating effects on feasibility of early planting in corn, planting date and corn productivity. M.Sc. Thesis submitted to Purdue University.

Nour-Mohamadi GH, Syadat S, Kashani A (2002) Agronomy (cereal). Ahwaz-Iran University Press Pp: 428.

Pandey RK, Maranville JW, Chetima MM (2000) Deficit irrigation and nitrogen effects on maize in a Sahelian environment II. Shoot growth, nitrogen uptake and water extraction. Agricultural Water Management 46:15-27.

Rabbani H, Mirhadi SA, Aliarabi H, Fazaeli H, Mahjobi HR (2012) Evaluating of silage and fresh protein of two Variations of forage amaranth and comparison with forage corn by protein and carbohydrate Cernel system. 5th Iran Pasture Science Congress, University of Esfahan, Iran held on August 29, 2012.

Ravindran V, Hood RL, Gill RJ, Kneale CR, Bryden WL (1996) Nutritional evaluation of grain amaranth (*Amaranthus hypochondriacus*) in broiler diets. Animal Feed Science and Technology 63: 323-331. doi:10.1016/S0377-8401(96)00997-2.

Rivelli AR, Gherbin P, De Maria S, Pizza S (2008) Field evaluation of *Amaranthus* species for seed and biomass yield in southern Italy. Italian Journal of Agronomy 3:225-229.

Shumway CR, Cothren JI, Serna Saldivar SO, Rooney LW (1992) Planting date and moisture effects on yield, quality, and alkaline-processing characteristics of food-grade maize. Crop Science 32:1265-1268.

Sleugh BB, Moore KJ, Brummer EC, Knapp AD, Russell J, Gibson L (2001) Forage nutritive value of various amaranth species at different harvest dates. Crop Science 41:466-472. doi:10.2135/cropsci2001.412466x.

Tucker JB (1986) Amaranth: The once and future crop. Bio Science Journal 36:9-13.

Weber LE (1987) Amaranth grain production guide. Rodale Research Center, Rodale Press Inc. Pennsylvania, USA Pp: 178.