Proteomic Analysis of *Schistosoma mansoni* Cercarial Secretions

Giselle M. Knudsen‡, Katalin F. Medzihradszky§¶, Kee-Chong Lim‡¶, Elizabeth Hansell‡, and James H. McKerrow‡¶**

Schistosomiasis is a global health problem caused by several species of schistosome blood flukes. The initial stage of infection is invasion of human skin by a multicellular larva, the cercaria. We identified proteins released by cercariae when they are experimentally induced to exhibit invasive behavior. Comparison of the proteome obtained from skin lipid-induced cercariae (the natural activator), a cleaner mechanical induction procedure, and an un-induced proteomic control allowed identification of protein groups contained in cercarial acetabular gland secretion versus other sources. These included a group of proteins involved in calcium binding, calcium regulation, and calcium-activated functions; two proteins (paramyosin and SPO-1) implicated in immune evasion; and protease isoforms implicated in degradation of host skin barriers. Several other protein families, traditionally found as cytosolic proteins, appeared concentrated in secretory cells. These included proteins with chaperone activity such as HSP70, -86, and -60. Comparison of the three experimental proteomes also allowed identification of protein contaminants from the environment that were identified because of the high sensitivity of the MS/MS system used. These included proteins from the intermediate host snail in which cercariae develop, the investigator, and the laboratory environment. Identification of proteins secreted by invasive larvae provides important new information for validation of models of skin invasion and immune evasion and aids in rational development of an anti-schistosome vaccine.

Molecular & Cellular Proteomics 4:1862–1875, 2005.

Schistosomiasis is an infectious disease caused by trematode flatworms of the genus *Schistosoma*. It is endemic in 74 developing countries with more than 80% of infected people living in sub-Saharan Africa. It is estimated that 200 million people are infected worldwide, and 200,000 new infections were reported by the World Health Organization in 2003 (1). Although treatment with the drug praziquantel is effective and inexpensive (2), frequent schistosome reinfection occurs in endemic areas and may cause irreversible damage to the liver, kidneys, or urinary tract. Thus schistosomiasis has earned a Category II disease ranking next to malaria for importance as a target tropical disease by the World Health Organization Special Programme for Research and Training in Tropical Diseases (www.who.int/tdr/). There are three major species of *Schistosoma*. *Schistosoma mansoni*, a major species in Africa and South America, was used as a model in this study.

The life cycle of *S. mansoni* is complex (3) (Fig. 1). The initiation of infection of the human host by schistosome parasites involves penetration of skin by a multicellular larva (0.1 mm) called a cercaria(ae). Cercariae have forked tails that propel them through fresh water. Depending upon their specific vertebrate host, cercariae can respond to a variety of stimuli, including motion, light, and shadow, chemical gradients, and heat. Upon contact with human skin, cercariae are stimulated by the lipid on the surface of skin to begin penetration. Initial penetration involves mechanical entry into the superficial, cornified layer of skin, which presents little barrier in the aquatic environment. However, further entry requires degradation of intercellular bridges between epidermal cells, the dermal/epidermal basement membrane, and the extracellular matrix of the dermis. Ultimately the larvae, which have now shed their tails and are called schistosomula, enter small vessels in the superficial dermis where they complete their life cycle as described above.

Proteins secreted by cercariae play key roles in facilitating skin invasion and evading the immune response of the host. Microscopic and biochemical analyses have identified three potential sources of proteins released by cercariae. First, a carbohydrate-rich surface glycocalyx is released upon entry. This glycocalyx protects the organism from osmotic shock in fresh water but is a potent activator of complement and must be jettisoned prior to entry into the bloodstream (4, 5). Second, proteolytic secretions are produced by the set of two groups of acetabular “glands,” which are in fact clusters of cells with cytoplasmic processes extending into the anterior end of the organism (6). Acetabular cells release their contents beginning at the earliest stages of skin invasion and, at least in human skin, well into the superficial dermis. The escape glands, a third potential source of secretions, appear to re-
lease their contents late in invasion as the organisms enter dermal vessels.

The only consistently effective experimental vaccine against schistosome infection is that produced by irradiation of cercariae. Identifying the protein repertoire released during the initial stage of the skin invasion is key to both understanding the pathogenesis of infection and ultimately preventing it.

We carried out proteomic analysis of the secretions of cercariae stimulated to invade and transform into schistosomula by two independent techniques (4, 7, 8). In addition to identifying the major protein components released during this initial stage of infection, our analysis provides insights into how "background" protein species can be identified with mass spectrometry technology in a complex "ecosystem" of target organism, snail host, investigator, and laboratory environment.

EXPERIMENTAL PROCEDURES

Maintenance of the Schistosome Life Cycle—S. mansoni inhabit the blood stream of infected hosts. The life cycle also requires an aquatic or amphibious snail intermediate host. A Puerto Rican strain of S. mansoni was used for all experiments. This isolate was originally obtained from Dr. Fred Lewis of the Biomedical Research Institute, Bethesda, MD, but has been maintained in our laboratory for 10 years.

Biomphalaria glabrata snails are used as intermediate hosts and are maintained in a BSL2 laboratory in accordance with all approved biosafety protocols. Cercariae are obtained using a light induction method described previously (9). Cercarial secretions were prepared according to two methods reported previously (10) in response to human skin lipid and from cultures of mechanically transformed larvae. Proteins released without stimulation were also collected. Specifically these samples were prepared as follows.

Cercariae were "shed" from their host snails in glass culture dishes overnight (9). In the first method, which recapitulates the biological stimulus, cercariae were placed in a Fisher Petri dish coated with human skin lipid. The cercariae were monitored microscopically and allowed to secrete for 1.5–2 h into water warmed to 37 °C by immersion of the Petri dish in a water bath. Cercarial bodies and tails were then removed from the secretions by centrifugation at 3000 rpm, and the secreted protein mixture was lyophilized and stored at −20 °C. This sample is referred to as skin lipid-induced "cercarial secretion."

An alternative method for inducing secretion was through mechanical tail shearing to transform the cercariae into schistosomula (11, 12). This provides a cleaner protein sample known to contain acetabular gland secretions (11). Cercariae that were shed in aquarium water were chilled and allowed to settle in a 50-ml centrifuge tube, and the aquarium water was exchanged twice with cold distilled water by decantation/resuspension followed by gentle centrifugation at 3000 rpm to collect the cercariae. The cercariae were then sheared through a small bore syringe until >90% of the larval tails were released and transferred to a 10-cm Petri dish containing 50% serum-free schistosome culture medium 169 (13) at room temperature for 1.5–2 h. Finally the plate was swirled to remove the schistosomula and tail debris by pipette. The conditioned medium was collected and pooled, while the acetalbular secretions, visible in a dissecting microscope as vesicles, were retained on the plate surface. These vesicles could then be released from the plate surface by scraping using a cell scraper (Corning Costar, Acton, MA) and rinsing with a few milliliters of 0.1% SDS solution.

First Stage Preparation by SDS-PAGE—One-dimensional SDS-PAGE was performed on the cercarial secretion samples using NOVEX Tris-glycine 4–20% acrylamide gels from Invitrogen and SeeBlue Plus 2 standards from Invitrogen to calibrate the molecular weight range. The gels were stained with silver stain according to the method by Shevchenko (14) with modifications that reduce background staining (15).

In-gel Digestion and LC-MS/MS Analysis—The SDS-PAGE gel protein bands were excised, reduced with dithiothreitol, alkylated with...
S. mansoni Cercarial Secretions

Protein name	Accession number	Molecular mass	Gel band index no.	Coverage	Unique peptides	Mascot protein score
Enolase (2-phosphoglycerate dehydratase)* (Sm)	Q27877	46.9	1, 3–11, 13–15	60	25	1447
Fructose-bisphosphate aldolase* (Sm)	P53442	39.6	3–11, 13, 14	64	30	1379
Hemoglobin (Bg)	CAH23231	53.5	4–11, 13–19	62	23	1250
Actin 2* (Sm)	AAC46966	41.7	3–11, 13–15	52	22	908
Ribulose-1,5-bisphosphate carboxylase, large (Ls)	P48706	52.9	5, 6, 9, 13, 14, 18, 20, 21	31	14	725
Glutathione S-transferase,* 28 kDa (GST 28) (Sm)	P09792	23.8	3, 4, 5, 8, 9	51	13	564
Triose-phosphate isomerase* (TIM) (Sm)	P48501	28.1	6–9	39	9	483
Keratin, type II cytoskeletal 1 (Hs)	P04264	66.0	3–8, 10	15	10	460
Keratin 10, type I, cytoskeletal (Hs)	KRHU0	59.5	6–8, 14, 15	31	17	508
GST (Sm, 218 aa)	AAB21173	25.4	8	46	8	493
14-3-3 protein homolog 1a* (Sm)	Q26540	28.3	6, 7, 8	42	10	457
Vaccine-dominant antigen Sm21.7* (Sm)	A45630	21.6	1–5	48	9	456
Serine protease beta (Bg)	AAG40234	26.3	5, 8, 9	42	8	446
Keratin 1; cytokeratin 1; hair protein (Hs)	NP_006112	66.0	14, 15, 20	17	9	425
Thioredoxin* (Sm)	AAL79841	11.9	2, 3, 4	63	9	422
GAPDH (major larval surface antigen)* (P-37) (Sm)	P20287	36.3	1–8, 10	40	11	397
Tegumental protein Sm20.8* (Sm)	AAC79131	20.8	2, 3, 4	49	11	396
Elastase 2a (Sm)	AAM43941	28.6	1, 3, 5, 8	41	8	366
ATP:guanidino kinase SMC74* (Sm)	P16641	76.2	5–11, 13–17	19	11	361
Pancreatic elastase precursor (elastase 1a) (Sm)	A28942	28.5	1, 3–6, 8	47	8	355
Developmentally regulated albumin gland gene (Bg)	AAC83410	65.8	6, 7, 11	7	4	240
Thioredoxin peroxidase 2* (Sm)	AAJ17299	21.0	7	13	5	231
Elastase (elastase 1b) (Sm)	AAC46967	29.5	1–6, 9	23	5	296
Fatty acid-binding protein Sm14* (Sm)	AAL15461	14.8	5	32	4	275
Ubiquitin (Sm)	AAG49553	14.6	1, 2	41	4	254
Phosphoenolpyruvate carboxykinase* (Sm)	AAD24794	70.4	3, 8–10, 14–16	14	10	252
Epidermal cytokeratin 2 (Hs)	AAC83410	65.8	6, 7, 11	7	4	240
Calpain (EC 3.4.22.17) large chain* (Sm)	A39343	86.9	6, 7	7	5	239
Peptidyl-prolyl cis-trans isomerase* (PPIase) (Sm)	Q26565	17.6	3–7	13	4	231
Phosphoglycerate kinase* (Sm)	P41759	44.5	2, 3, 5, 8, 9, 13	25	7	219
Prolactin-inducd protein (Hs)	AAE51411	69.2	15, 20	6	3	109
Homolog to phosphoglycerate mutase* (Sm)	TCR764	34.9	2–4, 8	17	5	210
Weakly similar to lactate dehydrogenase* (Sm)	TC16735	35.9	3–5, 7–10	7	2	178
Similar to malate dehydrogenase,* cytosolic (Sm)	TC17066	36.1	10	24	3	177
Similar to histone H4 (Sm)	TCL4578	11.3	4, 5	51	4	183
Probable dynein light chain (SM10) (Sm)	Q94748	10.4	1–3	60	5	172
Albumin (Bt)	AAB86571	29.0	10, 11	28	4	158
Similar to malate dehydrogenase,* mito (Sm)	AAU51411	69.2	15, 20	6	3	109
Chlorophyll a/b-binding protein (Ee)	AAF26741	28.1	7	17	4	165
Putative cys alkylpeptidase* (Sm)	AAA44142	56.4	15	6	3	165
Ribulose-1,5-bisphosphate carboxylase, small (Ls)	Q40250	20.3	1, 2, 4–6	23	4	162
Unknown (serpin) (Sm)	AAB86571	29.0	10, 11	28	4	158
Ferritin-2 heavy chain (Sm)	P25319	20.1	7	17	3	152
Homolog to calmodulin (Sm)	TCR612	16.8	6	19	2	108
Similar to pyruvate kinase* (Sm)	TC7454	61.7	15	3	2	76
Serine protease (Bg)	AAG40233	26.2	8	8	2	146
SPO-1 protein* (anti-inflammatory protein 6) (Sm)	AAD26122	13.6	4–6	11	2	146
S100 calcium-binding protein A7; psoriasis 1 (Hs)	NP_002954	11.4	4	12	2	121
70,000 molecular weight antigen/hsp70 homolog* (Sm)	CAA28976	68.0	7–9	5	3	114
TABLE I—continued

Protein name	Accession number	Molecular mass	Gel band index no.	Coverage	Unique peptides	Mascot protein score
Peptidyl-prolyl cis-trans isomerase B precursor^a (Sm)	Q26551	23.2	7	8	2	114
Similar to muscle glycogen phosphorylase^a (Sm)	TC13591	96.2	16	3	2	106
Calcium-binding protein (Sm)	AAA29921	17.8	6, 7	7	1	95
Heat shock protein 86^a (Sm)	A45529	50.9	13	3	1	93
Homolog to tubulin β-2 chain^a (Sm)	TC7336	47.7	6	7	3	92
Similar to carbonyl reductase^a (Sm)	AAC46898	30.6	8	8	2	92
Keratin 10, type I, epidermal (Hs)	A31994	57.2	4, 5	4	1	91
Homolog to H2B histone (Sm)	TC13606	13.5	6	19	2	90
Similar to histone H3 (Sm)	TC13658	15.3	5	13	2	88
Cysteine protease inhibitor (Sm)	AAQ16180	11.3	3, 5	27	2	88
ATP-diphosphohydrolase 1^a (Sm)	AAP94734	61.3	15	3	1	81
Similar to ATP synthase β-chain mito^a (Sm)	TC13604	57.5	13	3	1	77
Calponin homolog (Sm)	AAB47536	38.3	5, 6	4	1	77
Elongation factor 1-α^a (Sm)	CAA69721	50.9	7, 8	6	2	77
Actin-binding/filamin-like protein^a (Sm)	AAR26703	106.0	6	1	1	70
Ficolin (Hs)	BAA12120	34.3	7, 9	3	7	67
Cu,Zn-superoxide dismutase (Sm)	AAC14467	15.7	6	7	1	67
Lysozyme C (1,4-β-N-acetylglucosaminidase) (Hs)	NP_000230	16.5	5	8	1	66
Lipocalin 1, tear prealbumin (Hs)	NP_002288	19.2	6	6	1	64
Fimbrin^a (Sm)	AAA2988	274.2	16	2	1	63
Heat shock protein HSP60^a (Sm)	AM69406	58.4	13	3	1	53
6-Phosphofructokinase^a (Sm)	Q27778	86.0	10	2	1	51
Similar to nucleoside-diphosphate kinase^a (Sm)	TC11413	17.7	6	14	2	55

^a These proteins were also identified in the tegumental subproteome reported by van Balkom et al. (37) and are presumed to originate from tegumental shedding. See “Discussion” for details.

iodoacetic acid, and then subjected to in-gel digestion¹ with side chain-protected porcine trypsin (Promega, Madison, WI) (16, 17). The resulting peptides were extracted and then analyzed by on-line liquid chromatography/mass spectrometry using an HPLC system consisting of a Famos autoinjector and an Eksigent nanoflow pump coupled to a quadrupole-orthogonal acceleration-time-of-flight hybrid tandem mass spectrometer, a QSTAR XL (Applied Biosystems, Foster City, CA). The reversed-phase chromatography was controlled with Eksigent software to develop a 5–50% acetonitrile gradient in 30 min using 0.1% formic acid as the ion pairing agent at a 350 nl/min flow rate. Data were acquired in information-dependent acquisition mode: 1-s mass measurements were followed by 3-s CID experiments for the multiply charged precursor ions were computer-selected and the collision conditions were adjusted to the charge state and the m/z values of the precursor ions. CID data were analyzed using Analyst QS service pack 6 software (Applied Biosystems) with the Mascot script 1.6b4 (Matrix Science, London, UK). Parameters used in the Mascot script were as follows: AutoCentroid for the TOF; 20-ppm merge distance, 10-ppm minimum width, 50% percentage height, and 100-ppm maximum width; PeakFinding for Spectrum: 0.5% default threshold, 400-gauss filter, and a gaussian filter limit of 10. Information-dependent acquisition survey scan centroid parameters were as follows: automatic charge state determination from survey scan, 50% percentage height, and 0.02-amu merge distance. MS/MS averaging of information-dependent acquisition dependents was as follows: reject spectra if less than eight peaks, 0.5 Da precursor mass tolerance for grouping, and 10 maximum and 1 minimum cycles between groups. MS/MS data centroid and threshold parameters were as follows: remove peaks with <0% of highest intensity, centroid all MS/MS data, no smoothing, 50% height percentage, and 0.05-amu merge distance.

Database searches were performed using Mascot Server version 2.0.01 (18, 19), and the MS-Tag and MS-Pattern modules of the internal Protein Prospector server version 4.11 (20) were applied to individual peptide sequences and CID data. Searches were performed first on the National Center for Biotechnology Information non-redundant (NCBiR) data bank (September 8, 2004), and the results were parsed into a working database. The Mascot Server search parameters were as follows. Only tryptic peptides were considered with one missed cleavage allowed. Variable modifications included carbamidomethylation or propionamidation (<i>i.e.</i> acrylamide addition) of Cys residues, protein N-acetylation, Met oxidation, and pyroglutamate formation from N-terminal Gln residues. Mass accuracy was within 100 ppm in MS and 0.2 Da for CID data. Peptide sequences matched to species other than schistosomes by Mascot were further BLAST searched against the expressed sequence tags available from The Institute for Genomic Research (TIGR) S. mansoni genome project in version 5.0 (www.tigr.org/tdb/tgi/smgi/). If the peptides were identical or matched to schistosome sequences, the Mascot scores were transferred. Gene Ontology (GO)² annotations were assigned based on sequence similarity searches against the GO annotated proteins in the Swiss-Prot and TrEMBL databases at European Bioinformatics Institute calculated using the GOtobl server (21).

Serine Protease Activity of the Cercarial Secretions—Activity was measured using a fluorescense end point assay detecting proteolytic
cleavage of specific substrates for cercarial elastase (also known as acetylable protease) versus background snail serine proteases: succinyl-AAPF-aminomethylcoumarin and carbobenzoxy-(Z)-FPR-aminomethylcoumarin, respectively, as described previously (22, 23). Total fluorescence was monitored for 6 h (excitation, 355 nm; emission, 460 nm) on a Molecular Devices Flex Station. Protein concentration was determined using the Bradford assay, and the activity values are reported in relative fluorescence units per second per microgram of protein.

RESULTS

The 72 proteins identified in the skin lipid-induced cercarial secretion sample (SDS-PAGE gel shown in Fig. 2) are listed in Table I. Microscopic examination of cercariae stimulated in this manner showed no significant morphologic damage, but tails were released, and acetalubular gland contents were secreted as documented by Alizarin Red staining (24) (Fig. 3). Proteins related to calcium binding and regulation were numerous in this sample. EF-hand motifs were found in calcium-regulated protein calponin (25). The presence of numerous Ca$^{2+}$-regulated proteins is consistent with reports of high (8–10 M) levels of Ca$^{2+}$ in cercarial acetalubular (secretion) glands (26) and the presence of calpain, a calcium-activated cysteine protease in acetalubular glands of the related schistosome S. japonicum (27).

The schistosome proteins in the lipid-induced sample also included many previously identified schistosome antigens such as the vaccine candidates GST (Sm28), triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Sm37), fatty acid-binding protein (Sm14), peptidy-ly prolyl cis-trans isomerase (cyclophilin, PN18), filamin (PR-52), and phosphoglycerate kinase (PL45) (28, 29). Twelve schistosome glycolytic proteins were found; those producing abundant peptides were enolase, fructose-bisphosphate aldolase, GAPDH, and phosphoenolpyruvate carboxykinase.

At the detection level of the QSTAR XL system used, it was possible to identify proteins from the laboratory environment in the lipid-induced sample. These included the snail digestive “trypstases” called serine proteases α and β, snail hemoglobin, and a developmentally regulated albumin gland gene characterized as part of the snail immune response to schistosome infection (30). Human investigator proteins included lysozyme C, a prolactin-induced protein, tear lipocalin 1, skin-related keratins, and psoriasin. Photosynthetic proteins such as ribulose-1,5-bisphosphate carboxylase/oxygenase, and chlorophyll aligned with sequences from Lactuca sativa, the lettuce used as a food source for the B. glabrata snails. These and other photosynthetic plant proteins as well as serine protease β, but not the developmentally regulated albumin gland gene protein, were found in a sample of aquarium water conditioned by uninfected snails (data not shown).

The lipid-induced cercarial secretions contained the three S. mansoni cercarial elastase (CE) gene isoforms that are known to be expressed (1a, 1b, and 2a) (22). The peptide sequences found are shown in an alignment of the CE isoforms in Fig. 4, showing 54, 42, and 57% sequence coverage, respectively. N-terminal prodomains for these enzymes are absent; the first peptides detected in the sequence are immediately adjacent to a known prodomain processing site at Leu27 (CE1a numbering). As confirmation for these three isoforms, CID mass spectra for example isoform-unique peptides are shown in Figs. 5–7. CE peptides were found in bands 1–9 (Fig. 2, left panel). The lowest molecular weight bands contain peptides from the C terminus of the protein, whereas band 9 contained the full-length catalytic domain of the protease. The presence of CE2a in band 12, i.e. at molecular mass ~40 kDa, was also unambiguously established from a tryptic peptide, 119QTLSGFTIVMLAQVMNQLSGIR142 (data not shown).

The tryptases of B. glabrata in this sample were sequenced with 13% sequence coverage for serine protease α but 45% sequence coverage for serine protease β, which had both termini included (23). These peptides were found in bands 7 and 8 with the exception of a single peptide in band 5. The amount of elastase relative to snail serine protease activity in the lipid-induced secretion sample was 1:40 (0.8:46.7 relative fluorescence units/s/μg using AAPF:FPR aminomethylcoumarin substrates).
To identify background proteins released without any stimulation to invade, cercariae incubated in water alone were also analyzed (Table II). As expected, there were reduced amounts of protein relative to lipid-stimulated cercariae (0.47 g/10 l by Bradford assay compared with 1.7 g/10 l). The schistosome proteins that yielded the most abundant peptides in this sample were abundant cytosolic proteins, actin, enolase, Sm20.8, thioredoxin, and triose-phosphate isomerase (31). Background laboratory environment proteins were present here as well: chlorophyll a/b-binding protein, ribulose-1,5-bisphosphate carboxylase/oxygenase, snail serine proteases and the developmentally regulated snail albumin gland gene, and bovine serum albumin.

To minimize contamination of cercaria secretion samples by investigator, snail, and laboratory environment components, cercariae were rinsed and then mechanically transformed to release their vesicular acetabular gland secretions. This “vesicular preparation” produced slightly reduced amounts of protein compared with the lipid-induced cercarial secretions (0.5 g/10 l by Bradford assay), but was enriched 40-fold in proportion to cercarial elastase activity over the snail serine protease background. The cercarial elastase peptides were found exclusively in bands 8–10 (Fig. 2, right panel), and unique peptides were again identified for the three CE isoforms 1a, 1b, and 2a. No prodomain peptides were detected, and the C-terminal peptide was detected in bands 8–10. However, in contrast to the lipid-induced sample, the N-terminal peptide starting at Ser27 appeared in band 9, whereas the Val84 peptide is the first N-terminal peptide in band 8. This suggests that the elastases are intact and active in this preparation, whereas they had been partially degraded in the lipid-induced sample. Of the 89 proteins identified in this sample (Table III), 84 were from S. mansoni.

Thirty-three proteins in the mechanically sheared cercarial preparation were not identified previously in the lipid-induced cercarial secretions sample. Among these were the motor proteins paramyosin (Sm97), myosin heavy and light chains (Sm62, Irv5), tropomyosins I and II, and myosin regulatory chain and a collection of refolding/chaperone proteins: the T-complex protein-1 components, major egg antigen P40 (a homolog to HSP20); and protein-disulfide isomerase. Furthermore peptides from the heat shock proteins were also present at significantly increased levels: HSP60 (from one to 19 peptides, cercarial secretions to vesicles preparations), HSP70 (from three to 10 peptides), and HSP86 (from one to three peptides). Also present were the 14-3-3 protein, calcium-binding protein (GenBank™ accession number A30792), and calreticulin. Increased numbers of peptides from cytoskeletal proteins - and -tubulin as well as a number of other metabolic proteins, arginase, citrate synthase, transketolase, and ATP-dependent proteins, including calcium ATPase 2, mitochondrial ADP/ATP translocator protein, and SNaK1 protein, were identified.

GO annotations for molecular function, biological process, and cellular component could be assigned for many of the schistosome-derived proteins using the program GOblet, which transfers GO annotations based on sequence similarity searches against the TrEMBL and Swiss-Prot databases (Table IV). The percentages of cercarial secretome proteins found in each GO category are compared with the percentages found for all the full-length S. mansoni proteins listed in the NCBI nr data bank. GO categories where there is an interesting enrichment of proteins in the cercarial secretions sample over all schistosome proteins are “binding function” (including the calcium-binding proteins) and “enzymatic activity” (including the hydrolytic enzymes). The percentage of chaperone activity was enriched more than twice over that generally observed in the NCBI nr data bank schistosomes. Among the biological processes, “physiological processes”
and "metabolism" seemed greatly enhanced in this sample. Finally the apparent cellular component of 60% of these proteins is intracellular as would be expected for the numerous glycolytic proteins identified.

DISCUSSION

Schistosomiasis is a global health problem affecting more than 250 million people. Infection is initiated when an infectious larval form, the cercaria, invades human skin and gains
FIG. 7. Low energy CID spectrum of tryptic peptide Ser224-Pro-Gln-Gly-Pro-Val-Leu-Gly-Val-Ser-His-Gly-Val-Thr-Leu-Ser-Asn-Arg242, a unique peptide for *S. mansoni* elastase 2a, NCBI accession number 21217531/H11549.AAM43941.1. The precursor ion was \(m/z \) 635.38(3+).

TABLE II

Protein name	Accession number	Molecular mass	Gel band index no.	Coverage	Unique peptides	Mascot protein score
Ribulose-1,5-bisphosphate carboxylase, large (Ls)	P48706	52.9	10	27	12	688
Enolase (2-phosphoglycerate dehydratase)\(^a\) (Sm)	Q27877	46.9	9	32	11	679
Developmentally regulated albumin gland gene (Bg)	AAB00448					
Ribulose-1,5-bisphosphate carboxylase, small (Ls)	Q40250	20.3	6, 7	23	4	136
Myoglobin (Bg)	AAC24318	16.1	6	15	2	150
Glutathione S-transferase, 28 kDa (GST 28)\(^a\) (Sm)	P09792	23.8	8	8	2	116
Hemoglobin (Bg)	CAH23232	43.0	9	7	3	144
Hemoglobin (Bg)	CAH22321	53.5	9	5	2	116
Homolog to elongation factor 1-\(\alpha\) (Sm)	TC16831	50.9	9	2	1	88
Serine protease \(\alpha\) (Bg)	AAC46966	41.7	9	14	4	240
Hemoglobin (Bg)	CAH23233	53.5	9	5	2	116
Thioredoxin peroxidase 3\(^a\) (Sm)	TC10839	24.9	8	5	1	49
Triose-phosphate isomerase\(^a\) (Sm)	TC16805	28.1	8	6	1	46

*As in Table I, these proteins were also identified in the tegumental subproteome reported by van Balkom *et al.* (37). In the absence of stimulation, these proteins are presumed to be released by incidental damage to cercarial or ambient shedding of tegument.

S. mansoni Cercarial Secretions
TABLE III
Proteins released from acutabular glands

Eighty-five proteins were identified in the *S. mansoni* acutabular vesicles sample of which 82 were from schistosome and 33 proteins were not identified previously in the lipid-induced cercarial secretion sample of Table I. ER, endoplasmic reticulum; see Table I legend for other abbreviations.

Protein name	Accession number	Molecular mass (kDa)	Gel band index	Coverage	Unique peptides	Mascot protein score
Myosin heavy chain^a (Sm)	A59287	222.3	11–19	42	85	4230
Paramyosin^a (Sm)	P06198	100.4	11, 13–17	57	52	3091
Fructose-bisphosphate aldolase^a (Sm)	P53442	39.6	8, 10–14	66	23	1378
Actin 2 (Sm)	AAC6966	41.7	9–13, 15–17	69	28	1355
Phosphoehnpyruvate carboxykinase (Sm)	AAD24794	70.4	15	43	22	1159
Enolase (2-phosphoglycerate dehydratase)^a (Sm)	Q27877	46.9	9–14	39	14	925
Heat shock protein HSP60^a (Sm)	AAM69406	58.4	14, 15, 18	33	19	814
GAPDH (major larval surface antigen) (P-37)^a (Sm)	P20287	36.3	8–13	49	18	789
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
Tropomyosin 2^a (TMI) (Sm)	P42638	32.6	11, 12	28	11	608
Tropomyosin 1 (TMI) (polypeptide 49) (Sm)	P42637	32.9	11, 12	42	12	602
Fructose-bisphosphate aldolase^a (Sm)	CA28976	68.0	11, 14	17	10	596
Actin 2 (Sm)	AAC7383	47.7	13	28	6	515
Fructose-bisphosphate aldolase^a (Sm)	P41759	44.5	12, 13	27	9	334
Myoglobin (Bg)	CAH23231	53.5	16–18	19	8	462
Hemoglobin (Bg)	TC16844	36.3	11, 12	22	6	453
GAPDH (P-37)	AAC7383	47.7	13	28	6	515
Similar to GAPDH (major larval surface antigen) (P-37)^a (Sm)	P41759	44.5	12, 13	27	9	334
Phosphoglycerate kinase^a (Sm)	P41759	44.5	12, 13	27	9	334
Similar to Phosphoglycerate kinase^a (Sm)	A45630	21.6	3, 4, 6, 8, 9	41	8	412
Glutathione (Sm)	AAC7383	47.7	13	28	6	515
Similar to Glutathione (Sm)	AAC7383	47.7	13	28	6	515
Triose-phosphate isomerase^a (Sm)	P41759	44.5	12, 13	27	9	334
Similar to Triose-phosphate isomerase^a (Sm)	AAC7383	47.7	13	28	6	515
Hemoglobin (Bg)	AAC7383	47.7	13	28	6	515
Similar to Hemoglobin (Bg)	AAC7383	47.7	13	28	6	515
ATP:guanido kinase^a (Sm)	A45630	21.6	3, 4, 6, 8, 9	41	8	412
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
Calcium ATPase 2^a (Sm)	AAC72576	111.5	14, 17–19	12	11	616
access to the bloodstream through superficial dermal vessels. Understanding the mode of larval invasion and, in parallel, the mechanism of immune evasion utilized by invading larvae is key to rational development of vaccines or drugs to prevent this disease.

We carried out a proteomic analysis of the secretory products of cercariae induced to invade by two well characterized experimental protocols. In the first, human skin lipid, the natural stimulant for cercarial invasion, induced invasive behavior in vitro and led to identification of a spectrum of proteins released from three potential cercarial sources: the large acetabular glands known to secrete proteases during invasion, the smaller head glands thought to play a role in late stages of vessel entry, and proteins released from turnover of the surface tegumental membrane complex.

Table I shows 72 proteins identified through LC-MS/MS analysis of lipid-induced secretions. A number of calcium-binding proteins and the cercarial elastase (also known as cercarial protease and acetabular gland protease), identified previously as acetabular gland secretions, were present. Absent from these samples were many of the tegument-bound antigens previously reported: Sm25, Sm23, Sm22, Sm15, Sm13, and Sm8 (29, 32). The only example of this type of protein found in lipid-induced secretions was the fatty acid-binding protein Sm14. Many of these proteins have transmembrane motifs, and therefore it seems likely that the contribution of the shed membrane-associated tegumental proteins to lipid-induced cercarial secretions is minimal in comparison with acetabular gland derivatives (33).

Other proteins that were abundant in this sample were soluble glycolytic proteins such as triose-phosphate isomerase, GAPDH, and phosphoglycerate kinase. There are three possibilities why these “cytosolic” proteins appear in secretions. First, they may merely represent proteins that have “leaked” from cercariae because of “artificial” damage during lipid stimulation. However, careful microscopic analysis of

Protein name	Accession number	Molecular mass (kDa)	Coverage	Unique peptides	Mascot protein score	
Phosphoglycerate mutasea (Sm)	TC7546	34.9	17, 18	8	2	141
Actin-binding/filamin-like proteina (Sm)	AAC26703	106.0	16, 17	3	2	138
14-3-3 ε isoforma (Sm)	AAF21436	28.7	10, 11	14	3	138
Ubiquitin (Bg)	AAG49553	14.6	2, 8	22	3	129
Calreticulina (Sm)	AAA19024	43.0	13	5	2	127
Similar to T-complex protein-1, β subunita (Sm)	TC13620	57.0	14	5	2	126
Similar to citrate synthasea (Sm)	TC10655	47.9	13	4	2	119
Protein-disulfide isomerase homologa (Sm)	CAA80520	54.2	14	3	2	119
Similar to T-complex protein γa (Sm)	TC13671	51.7	15	2	1	119
Similar to pyruvate kinasea (Sm)	TC7454	61.7	15	4	2	118
Similar to HEL proteina (Sm)	TC7459	50.6	13	5	2	102
Weakly similar to troponin T (Sm)	TC7449	22.2	3, 4	6	3	95
Homolog to H2B histone (Sm)	TC13606	13.5	3, 6–9	16	2	90
Similar to T-complex protein-1, γ subunita (Sm)	TC13671	51.7	11, 14, 15	2	1	88
Similar to hypothetical Schistosoma japonicum protein (Sm)	TC17017	13.8	3, 4	10	1	87

...as in Table I, these proteins were also identified in the tegumental subproteome reported by van Balkom et al. (37) but might also represent acetabular cell cytoplasm (see “Discussion”).
TABLE IV

Functional GO annotations of secreted proteins

GO annotations for the 96 cercarial secretion (96 CS) *Schistosoma* sequences identified in this study compared with the ~650 non-fragmentary *schistosome* proteins of the NCBI nr data bank. GO annotations were assigned based on sequence similarity searches against the GO annotated proteins in the Swiss-Prot and TrEMBL databases calculated using the GOblet server at goblet.molgen.mpg.de. The three main GO categories are in boldface: Molecular function, Biological process, and Cellular component. Percentage values for GO categories that are apparently enriched in the 96 CS dataset are also highlighted in boldface.

GO category	Name	96 CS	Percentage 96 CS	650 total	Percentage 650 total
GO:0003674	Molecular function	90	93.75	448	71.11
GO:0016209	Antioxidant activity	2	2.08	26	4.13
GO:0004601	Peroxidase activity	1	1.04	8	1.27
GO:0005488	Binding	57	59.38	278	44.13
GO:0030246	Carbohydrate binding	1	1.04	6	0.95
GO:0008289	Lipid binding	2	2.08	15	2.38
GO:006782	Metal ion binding	20	20.83	91	14.44
GO:000166	Nucleotide binding	23	23.96	77	12.22
GO:0005515	Protein binding	11	11.46	49	7.78
GO:0003824	Catalytic activity	48	50.00	267	42.38
GO:0016787	Hydrolase activity	19	19.79	90	14.29
GO:0016853	Isomerase activity	4	4.17	20	3.17
GO:0016301	Kinase activity	7	7.29	35	5.56
GO:0016829	Lyase activity	5	5.21	9	1.43
GO:0016491	Oxidoreductase activity	13	13.54	91	14.44
GO:0016740	Transferase activity	10	10.42	73	11.59
GO:0003754	Chaperone activity	15	15.63	39	6.19
GO:003777	Heat shock protein activity	7	7.29	25	3.97
GO:003234	Enzyme regulator activity	3	3.13	10	1.59
GO:004857	Enzyme inhibitor activity	3	3.13	10	1.59
GO:0019207	Kinase regulator activity	1	1.04	3	0.48
GO:0005554	Molecular function unknown	1	1.04	4	0.63
GO:0003774	Motor activity	7	7.29	29	4.60
GO:003777	Microtubule motor activity	4	4.17	15	2.38
GO:005198	Structural molecule activity	7	7.29	20	3.17
GO:005200	Structural constituent of cytoskeleton	2	2.08	2	0.32
GO:005212	Structural constituent of eye lens	1	1.04	3	0.48
GO:003735	Structural constituent of ribosome	3	3.13	8	1.27
GO:000215	Transporter activity	11	11.46	83	13.17
GO:000386	Carrier activity	4	4.17	42	6.67
GO:005489	Electron transporter activity	4	4.17	14	2.22
GO:0015075	Ion transporter activity	4	4.17	34	5.40
GO:0008150	Biological process	83	86.46	422	66.98
GO:0007610	Behavior	2	2.08	9	1.43
GO:0007611	Learning and/or memory	1	1.04	7	1.11
GO:005795	Regulation of behavior	1	1.04		
GO:0007622	Rhythmic behavior	1	1.04	1	0.16
GO:0000004	Biological_process unknown	2	2.08	9	1.43
GO:0009987	Cellular process	39	40.63	206	32.70
GO:0007154	Cell communication	7	7.29	73	11.59
GO:005875	Cellular physiological process	36	37.50	169	26.83
GO:0007275	Development	13	13.54	76	12.06
GO:000653	Morphogenesis	7	7.29	46	7.30
GO:0007389	Pattern specification	1	1.04	5	0.79
GO:000003	Reproduction	5	5.21	126	20.00
GO:000782	Physiological process	80	83.33	330	52.38
GO:000875	Cellular physiological process	36	37.50	134	21.27
GO:000817	Coagulation	1	1.04	4	0.63
GO:002592	Homoeostasis	3	3.13	11	1.71
GO:0008152	Metabolism	60	62.50	217	34.44
GO:000874	Organismal physiological process	5	5.21	30	4.76
GO:005896	Response to stimulus	7	7.29	34	5.40
GO:005789	Regulation of biological process	1	1.04	6	0.95
GO:005795	Regulation of behavior	1	1.04		
GO:0005575	Cellular_component	63	65.63	335	53.17
larvae during this collection procedure showed no significant morphologic damage, and the small group of proteins does not match the proteome of an extract of whole cercariae reported by Curwen et al. (31). The second possible source is the syncytium, or cytosolic component of the tegument, also reported to be shed as “vesicles” with tegumental membrane by developing larvae (5, 10). GST, phosphofructokinase (34), fructose-bisphosphate aldolase (35), and phosphoenolpyruvate carboxykinase (36) have all been localized to the Sm tegument. Very recently an analysis of the tegumental subproteome of schistosomes was reported (37). Of the proteins identified in this study, 95 were found in the tegument preparations as indicated in Tables I–III.

A third possible source of cytosolic proteins is the secretory acetabular glands. The acetabular glands are in fact a set of cells in the posterior portion of the cercaria head. Cell processes extend to the anterior of the larva to serve as “ducts” for passage of secretory material. Because these glands are in fact cells that release their cytoplasmic contents during secretion, at least some of the glycolytic enzymes identified may be from this cellular source. The acetabular cells are indeed a major volume of the cercaria (6).

The exact source of these cytosolic components including glycolytic and metabolic enzymes is a key issue for laboratories working on development of the subunit schistosome vaccine. Curwen et al. (31) recently reported a proteomic analysis of soluble sonicates from several stages of S. mansoni. The authors identified the 40 most abundant soluble proteins across the schistosome life cycle and reached the important conclusion that these primarily represent cytosolic enzymes, which appear to vary little with transition from stage to stage. They make the compelling argument that such proteins are less likely to be suitable vaccine components as it is unlikely for them to be “seen” by the host immune system in intact larvae or adult. Although our analysis of cercarial secretions raises the possibility that some of these glycolytic enzymes may be released from sources like acetabular cells, it is nevertheless imperative for groups working on specific vaccine candidates to confirm location within developing larvae and whether or not such proteins are accessible to an induced immune response. Taking into consideration the conclusions of Curwen et al. (31), it is instructive to note the striking differences between the GO category shown in Table IV for presumed secretion-related proteins versus all the non-fragmentary S. mansoni proteins listed in the NCBI data bank. There is an enrichment of binding function in the cercarial secretions, specifically metal ion nucleotide and protein binding categories. There are also enriched enzymatic activities including hydrolases (like the acetylalbund protease, isomerase, kinase, and lyase activities). The percentage of chaperone activity is enriched more than twice over that generally observed in the NCBI data bank of schistosome proteins. This may indicate that chaperone proteins are concentrated within secretion sources like the acetylalbund glands to facilitate or maintain folding of secreted proteins that are densely “packed” in acetylalbund gland vesicles (4).

In the absence of any stimulation, 15 proteins were identified. Two of these were snail digestive enzymes (see discussion below). The schistosome proteins identified represent a subset of those released by “shedding” of the tegument (e.g., GST), as discussed above, or merely of high abundance (enolase). Some of these proteins match those in the “soluble” sonicate analysis of Curwen et al. (31) and therefore have likely leaked from damaged organisms.

In the lipid-induced secretion analysis, an important observation was the identification of contaminating proteins from the laboratory environment due to the high sensitivity of the QSTAR XL system. This serves as a caveat for investigators to carefully characterize proteins to separate those that represent elements of the biological phenomenon being studied versus those that may invariably come from environmental contamination. The latter are more easily identified as the sensitivity of LC-MS/MS increases despite careful attention to sample preparation. In our analysis, one such group represented proteins from the snail host in which the cercariae develop. Although not schistosome proteins, these provide important biological information. First it is clear that the snail digestive enzymes (snail trypsinases) are released as cercariae emerge from the hepatopancreas adjacent to the snail digestive tract. In addition, a protein that is a component of the snail’s own defense response to developing parasites was identified (developmentally regulated albumin gland protein). The methods of analysis were so sensitive we could even detect proteins from the lettuce on which the snails feed.

The sensitivity of QSTAR XL also meant that trace amounts of protein from the investigator preparing the samples could

GO category	Name	96 CS	Percentage	650 total	Percentage
GO:0005623	Cell	62	64.58	279	44.29
GO:0042995	Cell projection	1	1.04	4	0.63
GO:0005622	Intracellular	58	60.42	197	31.27
GO:0016020	Membrane	13	13.54	92	14.60
GO:0008372	Cellular_component unknown	5	5.21	9	1.43
GO:0005576	Extracellular	2	2.08	13	2.06
GO:0005578	Extracellular matrix	1	1.04	7	1.11
GO:0005615	Extracellular space	1	1.04	4	0.63
be detected. This included keratin from sloughed epidermal cells during collection of skin lipid. Proteins were also identified from human tears, presumably from microscopic lachrymal gland droplets that exited the technician’s eye as samples were prepared and observed.

Finally proteins were identified that represent trace contamination from the laboratory environment. Principal among these was bovine serum albumin. We were able to identify this as a laboratory contaminant because, although our laboratory primarily uses BSA in preparation of tissue culture media, a second laboratory from which we obtained snails uses human serum albumin, which was the trace contaminant when those snails were used. This indicates how readily serum albumin can contaminate a laboratory environment and, with the increased sensitivity of LC-MS/MS, can contaminate protein samples as well.

To minimize environmental contamination and directly identify the protein contents of the acetabular gland secretions, a second secretion collection method was used. This involves mechanically shearing the tails off the cercariae, which has been shown to stimulate and induce invasion behavior, specifically release of acetalbul gland contents (11, 12). By this method, the number of schistosome-related proteins relative to snail proteins increased substantially. Using an internal standard of protease activity known to be released by cercariae (cercarial elastase) versus snails (snail trypetas), the change in ratio of these enzyme activities showed that the mechanical shearing method indeed gave a more direct analysis of the acetalbul gland proteins. Acetalbul secretions appeared on the plate as small vesicles, the form in which they are released from the acetalbul cells before they rupture in the host (4). An interesting observation was that the acetalbul gland protease isolated from the intact vesicles showed no autoproteolysis products but was present as an active, mature catalytic domain or proform prior to its release. N-terminal signal peptide sequences were found in all predicted sequences of the cercaral elastase species, calreticulin, SPO-1, endoplasm, protein-disulfide isomerase, GAPDH, and prohibitin using two different motif search methods, InterPro (38) and SignalP (39).

Proteomic analysis of isolated acetalbul gland vesicles also validated previous reports of specific proteins residing in these organelles by immunolocalization. Aside from the cercaral elastase, paramyosin and SPO-1 (Sm16) were also validated previous reports of specific proteins residing in these organelles by immunolocalization. Aside from the cercaral elastase, paramyosin and SPO-1 (Sm16) were also validated previous reports of specific proteins residing in these organelles by immunolocalization. Aside from the cercaral elastase, paramyosin and SPO-1 (Sm16) were also validated previous reports of specific proteins residing in these organelles by immunolocalization. Aside from the cercaral elastase, paramyosin and SPO-1 (Sm16) were also validated previous reports of specific proteins residing in these organelles by immunolocalization.

Proteomic analysis of cercaral secretions induced by two independent methods identifies a spectrum of proteins that can be mined for potential anti-schistosome vaccine components. Furthermore, identification of ‘functional’ proteins such as cercaral elastase, calcium-binding proteins, and paramyosin provides clues or validation of proposed mechanisms of host skin invasion and immune evasion. Finally sorting of environmental contaminants from schistosome proteins serves to alert investigators that the increasing sensitivity of LC-MS/MS may invariably result in identification of “environmental” contaminants. In our case, these came from the “biological ecosystem” of schistosome and snail, the investigator preparing the sample, and the laboratory environment.

Acknowledgment—We gratefully acknowledge Aenoch Lynn of the Mass Spectrometry Facility, University of California San Francisco, for Perl scripts that aided in sorting and parsing data from the Mascot analyses.

* This work was supported by the Sandler Family Supporting Foundation, by National Center for Research Resources, National Institutes of Health Grants RR001614, RR015804, and RR012961 to the University of California San Francisco (UCSF) Mass Spectrometry Facility (Director A. L. Burlingame), and by a Veterans Affairs merit award (to J. H. M.). Core support was from the UCSF Liver Center. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

REFERENCES
1. World Health Organization (2002) Strategic Direction for Research. TDR Strategic Direction: Schistosomiasis, World Health Organization, Geneva
2. Coi1, D., and Pica-Mattoccia, L. (2003) Praziquantel. Parasitol. Res. 90, Suppl. 1, S3–S9
3. He, Y. Y. (1993) Biology of Schistosoma japonicum. From cercaria penetrating into host skin to producing egg. Chin. Med. J. (Engl. Ed.) 106, 576–583
4. Fishelson, Z., Amir, P., Friend, D. S., Markovsky, M., Pettit, M., Newport, G., and McKerrow, J. H. (1992) Schistosoma mansoni: cell-specific expression and secretion of a serine protease during development of cercariae. Exp. Parasitol. 75, 87–98
5. Skelly, P. J., and Shoemaker, C. B. (2000) Induction cues for tegument formation during the transformation of Schistosoma mansoni cercariae. Int. J. Parasitol. 30, 625–631
6. Dorsey, C. H., Cousin, C. E., Lewis, F. A., and Stirewalt, M. A. (2002) Ultrastructure of the Schistosoma mansoni cercaria. Micron 33, 279–323
7. Fusco, A. C., Salafsky, B., Ellenberger, B., and Li, L. H. (1988) Schistosoma...
mansonii: correlations between mouse strain, skin eicosanoid production, and cercarial skin penetration. J. Parasitol. 74, 253–261
8. Fusco, A. C., Salafsky, B., Vanderkooi, G., and Shibuya, T. (1991) Schis-
tosoma mansoni: the role of calcium in the stimulation of cercarial proteinase release. J. Parasitol. 77, 649–657
9. Lim, K. C., Sun, E., Bahgat, M., Bucks, D., Guy, R., Hinz, R. S., Cullander, C., and McKerrow, J. H. (1999) Blockage of skin invasion by schistosome cercariae by serine protease inhibitors. Am. J. Trop. Med. Hyg. 60, 487–492
10. Stirewalt, M. A. (1974) Schistosoma mansoni: cercaria to schistosomule. Adv. Parasitol. 12, 115–182
11. Markovinsky, M., Fishelson, Z., and Arnon, R. (1988) Purification and char-
acterization of proteases secreted by transforming schistosomula of Schistosoma mansoni. Mol. Biochem. Parasitol. 30, 45–54
12. Basch, P. F. (1981) Cultivation of Schistosoma mansoni in vitro. I. Establish-
ishment of cultures from cercariae and development until pairing. J. Parasitol. 67, 179–185
13. Basch, P. F. (1991) Schistosomes. Development, Reproduction, and Host
Relations, Oxford University Press, New York
14. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectro-
metric sequencing of proteins silver-stained polycrylamide gels. Anal. Chem. 68, 850–858
15. Mortz, E., Krogh, T. N., Vorum, H., and Gorg, A. (2001) Improved silver
staining protocols for high sensitivity protein identification using matrix-
assisted laser desorption/ionization/time of flight analysis. Proteomics 1,
1359–1363
16. Hellman, U., Wernstedt, C., Gonen, J., and Heldin, C. H. (1995) Improve-
ment of an ‘In-Gel’ digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224, 451–455
17. Rosenfeld, J., Capdevieille, J., Guillomet, J. C., and Ferrara, P. (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-
dimensional gel electrophoresis. Anal. Biochem. 203, 173–179
18. Choudhary, J. S., Blackstock, W. P., Creasy, D. M., and Cottrell, J. S. (2001)
Matching peptide mass spectra to EST and genomic DNA databases. Trends Biotechnol. 19, S17–S22
19. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence data-
bases using mass spectrometry data. Electrophoresis 20, 3551–3567
20. Clauer, K. R., Baker, P. R., and Burlingame, A. L. (1999) Role of accurate mass measurement (<1 ppm) in protein identification strategies em-
ploying MS or MS/MS and database searching. Anal. Chem. 71, 2871–2882
21. Groth, D., Lehrrch, H., and Hennig, S. (2004) GOBlet: a platform for Gene
Ontology annotation of anonymous sequence data. Nucleic Acids Res. 32, W313-W317
22. Salter, J. P., Choe, Y., Albrecht, H., Franklin, C., Lim, K. C., Craik, C. S., and
McKerrow, J. H. (2002) Cercarial elastase is encoded by a functionally
conserved gene family across multiple species of schistosomes. J. Biol.
Chem. 277, 24618–24624
23. Salter, J. P., Lim, K. C., Hansell, E., Hsieh, I., and McKerrow, J. H. (2000) Schistosome invasion of human skin and degradation of dermal elastin
are mediated by a single serine protease. J. Biol. Chem. 275, 38667–38673
24. Stirewalt, M. A. (ed) (1966) Skin Penetration Mechanisms of Helminths,
Academic Press, New York, pp. 115–182
25. Gusev, N. B. (2001) Some properties of caldesmon and calponin and the participation of these proteins in regulation of smooth muscle contrac-
tion and cytoskeleton formation. Biochemistry (Mosc.) 66, 1112–1121
26. Dresden, M. H., and Edlin, E.M. (1975) Schistosoma mansoni: calcium

S. mansoni Cercarial Secretions

Molecular & Cellular Proteomics 4.12 1875