Peptidoglycan: a post-genomic analysis

Caroline Cayrou1, Bernard Henrissat2, Philippe Gouret3, Pierre Pontarotti3 and Michel Drancourt1*

Abstract

Background: To derive post-genomic, neutral insight into the peptidoglycan (PG) distribution among organisms, we mined 1,644 genomes listed in the Carbohydrate-Active Enzymes database for the presence of a minimal 3-gene set that is necessary for PG metabolism. This gene set consists of one gene from the glycosyltransferase family GT28, one from family GT51 and at least one gene belonging to one of five glycoside hydrolase families (GH23, GH73, GH102, GH103 and GH104).

Results: None of the 103 Viruses or 101 Archaea examined possessed the minimal 3-gene set, but this set was detected in 1/42 of the Eukarya members (Micromonas sp., coding for GT28, GT51 and GH103) and in 1,260/1,398 (90.1%) of Bacteria, with a 100% positive predictive value for the presence of PG. Pearson correlation test showed that GT51 family genes were significantly associated with PG with a value of 0.963 and a p value less than 10^-3. This result was confirmed by a phylogenetic comparative analysis showing that the GT51-encoding gene was significantly associated with PG with a Pagel’s score of 60 and 51 (percentage of error close to 0%). Phylogenetic analysis indicated that the GT51 gene history comprised eight loss and one gain events, and suggested a dynamic on-going process.

Conclusions: Genome analysis is a neutral approach to explore prospectively the presence of PG in uncultured, sequenced organisms with high predictive values.

Keywords: Peptidoglycan, Genome, Glycoside hydrolase, Glycosyltransferase, Gram, Beta-lactamines, Glycopeptides

Background

The macromolecule peptidoglycan (PG) is a component of the bacterial cell wall that participates in withstanding osmotic pressure, maintaining the cell shape and anchoring other cell envelope components [1] PG is composed of linear glycan strands cross-linked by short peptides, with glycan strands of alternating N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) residues linked by β-1→4 bonds [1]. PG is at the basis of the first classification of bacteria using the staining procedure developed by Hans Christian Joachim Gram in 1884 [2]. This method reveals the presence of PG, with blue-colored Gram-positive bacteria having a thick PG layer, red-colored Gram-negative bacteria having a thin PG layer and poorly stained bacteria lacking PG. However, Gram staining lacks sensitivity and specificity for the detection of PG: for example, Mycobacterium organisms show variable results with Gram staining, despite the fact that they do have PG [3]. In addition, PG-less Planctomycetes and Chlamydia bacteria stain red like Gram-negative bacteria [4,5]. Further exploration of PG using electron microscopy observation of the cell wall refined previous optic microscopy observations, and biochemical analyses further allowed analyzing the cell wall PG composition, contributing to the description of additional Gram-positive species [6].

PG biosynthesis is a dynamic complex process involving 20 enzymatic reactions, including the formation of GlcNAc-MurNAc dimers by a glycosyltransferase (GT) of family GT28 (in this report, we adopted the family classification described in the CAZy database [7,8]) and the polymerization of the dimers to form the linear glycan strands by family GT51 glycosyltransferase [9]. These two glycosyltransferase families were the only ones evolved in the PG synthesis. Furthermore, PG lysis involves enzymes that may belong to six different glycoside hydrolase (GH) families, GH23, GH25, GH73, GH102, GH103 and GH104. Indeed, GH23 and GH25 families include enzymes called lysozyme known to lyse...
the PG. GH73 family enzymes showed a similar folding as GH23 and GH102, 103 and 104 families showed similar catalytic activities. So, we supposed that the six GHs could be isofunctional. Therefore, to be able to synthesize and to degrade PG, an organism needs a minimal set of three genes, comprising one GT28 gene, one GT51 gene and at least one gene of the five GH families mentioned above.

To circumvent the limitations associated with the aforementioned morphological and biochemical approaches to assess the presence of PG in living organisms, we aimed to develop a post-genomic, neutral approach to depict its presence among sequenced representatives of the four domains of life [10] by screening the Carbohydrate-Active Enzymes database (CAZy) [8] for the presence of the minimal set of three genes.

Results

Whereas none of the 103 tested Viruses and none of the 101 tested Archaea genomes exhibited the 3-gene set (Table 1, Additional file 1), some representatives encode

Table 1 Distribution of peptidoglycan metabolism genes among all of the domains of life and among 21 bacteria phyla
Bacteria phyla

Archaea (n=101)
Viruses (n=103)
Eukaryotes (n=42)
Bacteria (n=1398)
Actinobacteria (n=136)
Aquificae (n=9)
Bacteroides-Chlorobi (n=59)
Chlamydia (n=27)
Chloroflexi (n=14)
Cyanobacteria (n=42)
Defieribacteres (n=3)
Deinococcus-Thermus (n=13)
Dictyoglomi (n=2)
Elusimicrobia (n=2)
Fibrobacteres-Acidobacteria (n=7)
Firmicutes (n=318)
Fusobacteria (n=5)
Nitrospirae (n=2)
Planctomycetes (n=6)
Proteobacteria (n=673)
Spirochaetes (n=27)
Synergistetes (n=3)
Tenacibaculum (n=32)
Thermotogae (n=11)
Verrucomicrobia (n=4)
Unclassified (n=3)

The corresponding percentage of the genome explored is indicated in parentheses.
one or two genes of this 3-gene set. Indeed, the *Pseudomonas* phage JG024 and *Burkholderia ambifaria* phage Bcep F1 genomes encode one GH23 gene each. For *Archaea*, the *Methanosaeta concilii* GP-6 genome contained one GH73, and the *Methanothermobacter marburgensis* str. Marburg, *Methanobacterium* sp. AL-21, *Methanothermobacter marburgensis* str. Marburg, *Methanobacterium* sp. AL-21, *Methanothermus fervidus* DSM 2088 and *Methanopyrus kandleri* AV19 genomes encode one GT28 gene. Among 42 tested *Eukaryota*, only the *Micromonas* sp. genome encodes GT28, GT51 and GH103 (Table 1, Figure 1, Additional file 1). A total of 4 other photosynthetic *Eukaryota* genomes do not contain the complete 3-gene set but do encode a portion of these genes: the *Ostreococcus lucimarinus* CCE9901 and *Oryza sativa japonica* group nuclear genomes encode one and four GT28 genes, respectively; and the *Arabidopsis thaliana* nuclear and chloroplastic genomes encode a total of four GT28 genes. The *Paulinella chromatophora* chromatophore genome encodes one GT28 and one GT51 gene. Three non-photosynthetic *Eukaryota* genomes encode one GH23 gene, i.e. *Cryptococcus bacillisporus* WM276, *Cryptococcus neoformans* var. *neoformans* and *Homo sapiens*. By analyzing the presence of at least one gene of the 3-gene set in 42 *Eukaryota* genomes, we found that these genes were significantly more present in the photosynthetic *Eukaryota* genomes (5/7, 71.4%) than in the non-photosynthetic *Eukaryota* genomes (3/35, 8.5%) (P-value=0.0001). Comparing the presence of each gene family between *Bacteria* and the other domains of life yielded a significant association between *Bacteria* and the presence of GH23, GH73, GH102, GH103, GT28 (P-value <10^-7) and GH104 (P-value <2.10^-5). The 3-gene set was found in 1,260/1,398 (90.1%) bacteria, whereas 138 (9.9%) bacteria appeared to lack at least one of these three genes (Table 1; Additional file 2 and Additional file 3). A review of the literature indicated that all *Bacteria* possessing the 3-gene set have been previously demonstrated to have PG, resulting in a 100% positive predictive value of the 3-gene set for the presence of PG in an organism. For 30/138 (21.7%) organisms lacking the 3-gene set, PG information was lacking in the literature, whereas a literature review confirmed the absence of PG in 84/138 (60.9%) and the presence of PG in 24/138 (17.4%) organisms (Additional file 3). These data yielded a 77.8% negative predictive value of the 3-gene set for the presence of PG (Table 1).

The Pearson correlation test indicated a significant correlation between the absence of any gene of the 3-gene set and the absence of PG, with the highest correlation value (0.963) for GT51 (P<10^-3), as confirmed by the principal component analysis (Figure 2).

The phylogenetic comparative analysis yielded 13 clusters (Table 2, Additional file 4). Two of the clusters aggregated the loss of PG with some PG metabolism genes: one involved PG loss and GT51 loss, with a Pagel's score of 60, a percentage of error close to zero and five positive dates (cluster III) and another cluster involved PG loss, the loss of GT51 and GH23 genes, with a Pagel's score of 51, a percentage of error close to zero and four positive dates (cluster IV).

Based on the GT51 criterion, 5/114 (4.4%) organisms (*Coprococcus* sp. ART55/1 [11], *Ruminococcus torques* L2-14 [11], *Prochlorococcus marinus* str. NATL1A, *Prochlorococcus marinus* str. NATL2A [12], *Thermobaculum terrenum* ATCC BAA-798 [13]) were misidentified as PG-less, lending to the absence of GT51 a 100% sensibility, a 99.53% specificity, a 94.38% positive predictive value and a 100% negative predictive value for the presence of PG in the organism. We observed that 114/1,398 (8.2%) Bacteria lacking GT51 were distributed into 13/1,114 sequence tree from IODA. GT51 gene gain event is represented by an orange circle. GT51 gene loss events are presented by a red square.
21 (62%) Bacteria phyla, including Tenericutes (32/32; 100%), Chlamydia (27/27; 100%), Planctomycetes (6/6; 100%), Verrucomicrobia (3/4; 75%), Synergistetes (1/3; 33%), Fibrobacteria/Acidobacteria (1/7; 14.3%), Thermotogae (1/11; 9%), Chloroflexi (5/64; 7.8%), Cyanobacteria (2/42; 4.8%), Proteobacteria (29/674; 4.3%), Spirochaetes (1/27; 3.7%), Firmicutes (4/318; 1.3%), Actinobacteria (1/135; 0.7%) and Thermobaculum terrenum (Figure 3).

Among the three phyla incorporating only GT51-less bacteria, Planctomycetes and Chlamydia were closely related, and they belong to the same superphylum PVC as Verrucomicrobia, together comprising 75% of GT51-less organisms. The apparent absence of GT51 gene was confirmed by exploring each genome using basic local alignment search tool (BLAST) analysis [14]. The GT51 gene gain/loss events analysis indicated eight loss events and only one gain event. Among Proteobacteria, one loss event involved Orientia tsutsugamusti stc. Ikeda (PG-less organism), and the Wolbacteria, Ehrlichia and Anaplasma branches (Figure 4) (PG less organisms). In other phyla, loss event was observed for Thermobaculum terrenum ATCC BAA 798 (PG producing organism), Prochlorococcus marinus str. NATL1A and Prochlorococcus marinus str. NATL2A (PG producing organisms), Ruminococcus torques L2-4 (PG producing organism), the node joining of Dehalococcoides organisms (PG-less organisms), the node before Tenericutes and the node joining the Verrucomicrobia, Chlamydia and Planctomycetes phyla (Figure 1). The only one GT51 gene gain event was observed for Akkermansia muciniphila ATCC BAA 835 (Figure 1) (PG producing organism).

The gain/loss phylogenetic trees are available on the IODA website [15].

The multivariable analysis of life style, genome size, GC content and absence or presence of PG indicated that a GC content <50%, genome size <1.5 Mb and an obligate intracellular life style were significantly correlated with the absence of PG, with odds ratios of 7.7, 80 and 19.5 and confidence intervals of 3–15.5, 42.4–152.4 and 11.7–32.5, respectively (P<10⁻³). Examples of such GT51-negative, PG-less obligate intracellular Bacteria include Chlamydia [16], Anaplasma, Ehrlichia, Neorickettsia and Orientia [17,18].

Figure 2 Multiple variable analysis of peptidoglycan metabolism genes. a) Pearson correlation test results. We compared the absence of each gene with the absence of PG. We excluded values obtained from genomes with no information for PG. b) Principal component analysis results. We compared the absence of each gene with the absence of PG. We excluded values obtained from genomes with no information for PG.
In this study, mining the CAZy database allowed the detection of a minimal set of three genes involved in PG synthesis among the four different domains of life. The fact that this complete 3-gene set was not detected in Archaea and Viruses organisms is in agreement with the previously known absence of PG in these organisms and validated our method [19]. In Archae, family GT28 genes are only very distantly related to the bona fide bacterial GTs involved in PG synthesis, and it is possible that the archaenal GT28 enzymes have a function unrelated to PG. In viruses, detecting a few genes potentially involved in the synthesis and in the degradation of PG was not surprising: such viruses were indeed bacterial phages in which GH genes could have recombined with the bacterial host genome [20,21] and could be used to break through the peptidoglycan layer to penetrate their bacterial hosts.

More surprising was the observation that the Eukaryote Micromonas sp. encodes a complete 3-gene set. Micromonas sp. is a photosynthetic picoplanktonic green alga containing chloroplasts (Figure 5) [22]. A significant association was observed between photosynthetic Eukaryotes and the presence of genes involved in PG metabolism. Chloroplasts are thought to descend from photosynthetic Cyanobacteria ancestors, and their presence in photosynthetic Eukaryotes is thought to result from Eukaryotes-Cyanobacteria symbiosis [23]. Moreover, PG has been detected in the cell wall of Glaucothynes chloroplasts [24,25]. We, therefore, interpreted the presence of a complete 3-gene set in Micromonas sp. as deriving from its chloroplast and the presence of some PG metabolism genes in other photosynthetic Eukaryotes as remnants of an ancient complete set. Additionally, the Eukaryote GT28 gene could be a remote homolog involved in plant-specific glycolipid biosynthesis and not PG metabolism. In this scenario, Eukaryotes ancestors did not encode genes for PG biosynthesis, some photosynthetic Eukaryotes further
acquired such a capacity after Eukaryotes-Cyanobacteria symbiosis 1.5-1.2 billion years ago (Keeling 2004), and lateral genetic transfer occurred between Eukaryotes and chloroplasts [25-27]. GH23 is also encoded by free non-photosynthetic Eukaryotes; in Eukaryotes, GH23 could act as antimicrobial molecule [28]. Accordingly, we found that the minimal 3-gene set was specific for Bac-

teria, with a 100% positive predictive value for the pres-

cence of PG. Its predictive negative value was low, but we

further determined that a lack of GT51 in the genome

had a predictive negative value of 100% for the lack of

PG in an organism. Moreover, our phylogenetic com-

parative analysis correlated the GT51 gene history and

the PG history. Indeed, we observed that among the

clusters including PG losses, GT51 gene losses were

involved with a good Pagel’s score (cluster III and cluster

IV) (Table 2). These results show that PG function is

strongly linked to the presence of the GT51 gene. Thus,

the GT51 gene could be used to predict the capacity of

an organism to produce PG in its cell wall.

A lack of GT51 was found in <10% of bacterial organ-

isms. Under a parsimony hypothesis, this observation

suggests that Bacteria ancestral genomes encoded GT51

and that the lack of GT51 gene in some bacteria results

from loss events. Surprisingly, such loss events are

observed in almost 2/3 Bacteria phyla, indicating that

several independent loss events occurred during the evo-

lutionary history of these different Bacteria phyla. These

scenarios were confirmed by the gain/loss analysis fea-

turing a GT51-containing Bacteria ancestor and eight

GT51 losses. Moreover, we noticed that GT51 loss oc-

curred in only few strains of the same species, as

observed for Prochlorococcus marinus. Our careful

examination of genomes did not find GT51 gene frag-

ment, validating GT51 loss events which are on-going. A

loss event could be counterbalanced by GT51 acquisi-

tion, as observed in Akkermansia muciniphila of the

Verrucomicrobia phylum. A. muciniphila is living within

intestinal microbiome a large microbial community

where several lateral gene transfers have been reported

[29]. GT51 gain/loss is a dynamic process dependent on

selection pressure due to a PG advantage/disadvantage

balance.

PG supports some important functions of the bacterial

cell, preserving cell integrity by withstanding turgor

pressure and maintaining a defined yet flexible shape.

Nevertheless, PG is also an Achilles’ heel for

Bacteria, as some environmental organisms produce

molecules that inhibit PG synthesis. The mold Penicil-

lium notatum was shown by Alexander Fleming to pro-

duce penicillin, a PG synthesis inhibitor and the first

antibiotic used to treat bacterial infections in humans

[30]. Vancomycin is another PG synthesis inhibitor pro-

duced by the soil bacterium Streptomyces orientalis [31].
However, PG is found in the vast majority of bacteria, including bacterial organisms living in the same niches as antibiotic-producing organisms. Accordingly, we observed that the absence of PG correlates with the intracellular life style and genome reduction [32]. In addition, free-living PG-less Bacteria and Archaea organisms use various osmoadaption strategies, such as the intracellular accumulation of inorganic ions, salt-tolerant enzymes or the accumulation of selected negative or neutral organic molecules [33,34] to maintain cell shape despite the absence of PG. Archaea cell walls could also contain other polymers, such as pseudomurein, methanochondroitin, heterosaccharide and glutaminylglycan, participating in the mechanical strength of the cell wall [19].

Conclusions

The exploration of PG in bacteria shows great heterogeneity in PG content. Genome analysis with ancestral reconstructions and phylogenetic comparative analyses offer a neutral tool to explore this heterogeneity and trace the evolutionary history of PG. These analyses also allowed the identification of genes that could be used to predict functional features.

Methods

Screening the CAZY database

We extracted the GH23, GH73, GH102, GH103, GH10, GT28 and GT51 gene content for each genome available in CAZy in April 2011 [7], i.e., 1 398 Bacteria genomes distributed among 21 phyla, 42 Eukaryota genomes, 101 Archae genomes and 103 Viruses genomes. This database is updating regularly GenBank finished genomes for their content in carbohydrate active enzymes, providing with their EC number, gene name and product description. We then searched for the simultaneous presence of one GT28, one GT51 and at least one GH as evidence for PG metabolism. To assess the predictive value of this minimal 3-gene set, we correlated its bioinformatic detection with biological evidence for the presence of PG. We searched biological evidence for the presence of PG by screening Pubmed [35] using ‘peptidoglycan’, ‘cell wall’, ‘life style’ and the name of the genus as keywords. We further explored the HAMAP website.
[36], GenBank database [37] and Genome OnLine Database GOLD [38] for additional strain and genomic information. To confirm the absence of the GT51 gene in a strain, the GT51 gene nucleotide sequence of the closest strain was extracted and compared using National Center for Biotechnology Information (NCBI) BLAST to the complete genome of the strain.

Statistical analyses
We examined the significance of the association between each gene family and each domain of life using the chi-squared test and STATCALC from EpiInfo version 6. The data were entered into an Excel spreadsheet and were analyzed using PASW statistics 17.0 (SPSS Inc., Chicago, Illinois, USA). To assess the independent factors associated with the absence of PG, binary logistic regression was performed. The dependent variable was the absence of PG, and the independent variables were life style, GC content and genome size. The goodness of fit of the results of the regression analysis was tested using the Hosmer-Lemeshow test. A correlation analysis was performed using the Pearson correlation test to assess the interaction between the absence of PG and the absence of each PG metabolism gene in the study. Principal component analysis (PCA) was used to identify colinearity between the absence of PG and the absence of each gene. The results of the PCA are shown on a factor loading plot.

Phylogenetic tree construction
Bacteria phylogenetic trees were constructed based on the 16S rRNA gene sequence. An initial phylogenetic tree containing 111 16S rRNA gene sequences representing each Bacteria phylum was constructed and rooted using the Archaea Methanobrevibacter smithii 16S rRNA gene sequence. Multiple sequence alignments were performed using MUSCLE [39]. Phylogeny reconstruction of aligned sequences was performed in MEGA 5 using the neighbor-joining method and the bootstrapping method [40] after 1,000 iterations. To highlight different PG evolution events further, a second 16S rRNA gene sequence-based phylogenetic tree was constructed incorporating 1,114 sequences analyzed using the Maximum Likelihood method.

Phylogenetic comparative analysis
The gain/loss event analysis was conducted using DAGOBH multi-agents software system [41], integrating the PhyloPattern library [42] for Mirkin parsimony [43] ancestral node annotation and for the automatic

Figure 5 Intracellular structure and genome distribution of the PG genes in photosynthetic Eukaryotes.
N= nucleus, M= mitochondria, C= chloroplast, Cp= chromatophore, Nm= nucleomorph.

Cayrou et al. BMC Microbiology 2012, 12:294
http://www.biomedcentral.com/1471-2180/12/294
Page 8 of 10
reading of trees. The parameters were arranged to minimize the detection of gain events. To explore the existing link between the selected genes and PG, two vertical clustering calculations were conducted by DAGOBH, one focusing on dates (framing of two special events) and the other focusing on feature number (gene or PG). Clusters were verified using Pagel’s method [44].

Additional files

Additional file 1: Results of genomes analysis for Archaea, virus and Eukarya strains.

Additional file 2: Results of genomes analysis for 1398 bacteria strains. The 1114 strains used for tree construction were highlighted in grey. PG=peptidoglycan; Set= peptidoglycan metabolism module; ND= not determined; + = presence; -= absence.

Additional file 3: Results of genomes analysis for 138 bacteria strains without the peptidoglycan metabolism module. PG=peptidoglycan; ND=not determined; + = presence; -=absence.

Additional file 4: Phylogenetic comparative analysis detailed dates.

Abbreviations

BLAST: Basic Local Alignment Search Tool; CAZY: Carbohydrate Active Enzymes; GH: Glycoside hydrolase; GOLD: Genome OnLine Database; BLAST: Basic Local Alignment Search Tool; Cazy: Carbohydrate Active Enzymes; NCBI: National Center for Biotechnology Information; PCA: Principal component analysis; PG: Peptidoglycan.

Competing interests

Authors have no competing interest.

Authors’ contributions

CC, BH performed CAZY analyses. CC, PG, PP performed evolution analyses. MD designed research, critically reviewed data and drafted the manuscript. All authors contributed in writing the manuscript and reviewed and approved its final version.

Acknowledgements

The authors acknowledge the help of Prof. Hervé Richet in statistical analyses.

Author details

1Unite de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 7872 IRD 198, Mediterranee Infection, Aix-Marseille-Universite, Marseille, France. 2Architecte et Fonction de Macromolecules Biologiques, Aix-Marseille Universite, CNRS UMR 7257, Marseille, France. 3Evolution Biologique et Modeleisation, UMR-CNRS 6632, Universite de Provence, Marseille, France.

Received: 8 May 2012 Accepted: 6 December 2012 Published: 18 December 2012

References

1. Vollmer W, Blanot D, de Pedro MA: Peptidoglycan structure and architecture. FEMS Microbiol Rev 2008, 32:1–167.

2. Gram HC: The differential staining of Schizymocytes in tissue sections and in dried preparations. Furschteine der Medicin 1884, 2:185–199.

3. Wayne LG, Kubica GP: The Mycobacteria. In Bergey’s Manual of Systematic Bacteriology. Volume 2. 1st edition. Edited by Sneath PHA, Mair NS, Sharpe ME, Holt JG. Baltimore: Williams & Wilkins; 1986:1435–1457.

4. Fukunaga Y, Kurahashi M, Sakaiya Y, Chuchi M, Yokota A, Harayama S: Phycisphaera mikiensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaera classis nov. in the phylum Planctomycetes. J Gen Appl Microbiol 2009, 55:267–275.

5. Fukushi H, Hirai K: Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int J Syst Evol Microbiol 1992, 42:306–308.

6. Tindall BJ, Rosselló-Móra R, Busse HU, Ludwig W, Kämpfer P: Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010, 60:269–269.

7. The Carbohydrate Active EnZymes database. http://www.cazy.org/.

8. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZY): an expert resource for Glycogenomics, Nucleic Acids Res 2009, 37:233–238.

9. van Heijenoort J: Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 2001, 11:25–36.

10. Boyer M, Madou MA, Gimenez G, La Scola B, Raoult D: Phylogenetic and phyloetic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One 2010, 5:e1530.

11. Ezaki T, Kawai Y, Nagai T, Ushiki K, Yoshimura Y, Iizuka T, Tsurumi H, Shibata H, Sugiura H, Janssen PHB: Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallistica gen. nov. for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol 2001, 51:1521–1528.

12. Ting CS, Hsich C, Sundaraman S, Manella C, Marko M: Cryo-electron tomography reveals the comparative three-dimensional architecture of P. chrysocephali, a globally important marine cyanobacterium. J Bacteriol 2007, 189:4485–4493.

13. Botero LM, Brown KB, Bünefliels S, Bun M, Casterholz RW, Young M, McDermott TR: Thermobaculum terrenum gen. nov., sp. nov. a non-phototrophic gram-positive thermophile representing an environmental clone group related to the Chloroflexi (green non-sulfur bacteria) and Thermomicrobia. Arch Microbiol 2004, 181:269–277.

14. Autschl SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403–410.

15. JDBA website. http://ioda.univ-provence.fr.

16. Pawelka MS: In: Another brick in the wall. Trends Microbial 2007, 15:147–149.

17. Dummer JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, Ray SC, Rikhina Y, Rurangirva FR: Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 2001, 51:1245–1265.

18. Izard L, Fuller A, Blacksell SD, Paris DH, Richards AL, Aukanit N, Nguyen C, Jiang J, Fenwick S, Day NJP, Graves S, Stensen J: Isolation of a Novel Orientio Species (O. chito sp. nov.) from a patient infected in Dubai. J Clin Microbiol 2010, 48:4404–4409.

19. van Heijenoort J: Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 2001, 11:25–36.

20. Boyer M, Madou MA, Gimenez G, La Scola B, Raoult D: Phylogenetic and phyloetic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PLoS One 2010, 5:e1530.

21. Ezaki T, Kawai Y, Nagai T, Ushiki K, Yoshimura Y, Iizuka T, Tsurumi H, Shibata H, Sugiura H, Janssen PHB: Proposal of the genera Anaerococcus gen. nov., Peptoniphilus gen. nov. and Gallistica gen. nov. for members of the genus Peptostreptococcus. Int J Syst Evol Microbiol 2001, 51:1521–1528.

22. Ting CS, Hsich C, Sundaraman S, Manella C, Marko M: Cryo-electron tomography reveals the comparative three-dimensional architecture of P. chrysocephali, a globally important marine cyanobacterium. J Bacteriol 2007, 189:4485–4493.

23. Botero LM, Brown KB, Bünefliels S, Bun M, Casterholz RW, Young M, McDermott TR: Thermobaculum terrenum gen. nov., sp. nov. a non-phototrophic gram-positive thermophile representing an environmental clone group related to the Chloroflexi (green non-sulfur bacteria) and Thermomicrobia. Arch Microbiol 2004, 181:269–277.

24. Autschl SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403–410.

25. JDBA website. http://ioda.univ-provence.fr.

26. Pawelka MS: In: Another brick in the wall. Trends Microbial 2007, 15:147–149.

27. Dummer JS, Barbet AF, Bekker CPJ, Dasch GA, Palmer GH, Ray SC, Rikhina Y, Rurangirva FR: Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 2001, 51:1245–1265.

28. Izard L, Fuller A, Blacksell SD, Paris DH, Richards AL, Aukanit N, Nguyen C, Jiang J, Fenwick S, Day NJP, Graves S, Stensen J: Isolation of a Novel Orientio Species (O. chito sp. nov.) from a patient infected in Dubai. J Clin Microbiol 2010, 48:4404–4409.

29. van Heijenoort J: Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 2001, 11:25–36.
29. Derrien M, Vaughan EE, Plugge CM, de Vos WM: Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004, 54:1469–1476.

30. Bush K: The coming of age of antibiotics: discovery and therapeutic value. Ann N Y Acad Sci 2010, 1213:1–4.

31. Levine DP: Vancomycin: a history. Clin Infect Dis 2006, 42:55–512.

32. Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D: Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol Direct 2009, 4:13.

33. Martin DD, Ciulla RA, Roberts MF: Osmoadaptation in archaea. Appl Environ Microbiol 1999, 65:1815–1825.

34. Roesser M, Müller V: Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 2001, 3:743–754.

35. PubMed website. http://www.ncbi.nlm.nih.gov/pubmed.

36. High-quality Automated and Manual Annotation of microbial Proteomes (HAMAP) website. http://hamap.expasy.org/.

37. GenBank database. http://www.ncbi.nlm.nih.gov/genbank/.

38. Genome Online Database GOLD. http://genomesonline.org.

39. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792–1797.

40. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596–1599.

41. Gouret P, Paganini J, Dainat J, Louati D, Darbo E, Pontarotti P, Levasseur A: Integration of evolutionary biology concepts for functional annotation and automation of complex research in evolution: the multi-agent software system DAGOBAT. In Evolutionary biology-concept, biodiversity, macroevolution and genome evolution. Part 1. Edited by Pontarotti P. Berlin Heidelberg: Springer; 2011:71–87.

42. Gouret P, Thompson JD, Pontarotti P: PhyloPattern: regular expressions to identify complex patterns in phylogenetic trees. BMC Bioinformatics 2009, 10:298.

43. Mirkin BG, Fenner T, Galperin MY, Koonin EV: Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 2003, 3:2.

44. Barker D, Pagel M: Predicting functional gene links from phylogenetic-statistical analyses of whole genomes. PloS Comput Biol 2005, 1:e3.