Kinetic Monte Carlo simulations of dislocations in heteroepitaxial growth

F. Much(∗), M. Ahr, M. Biehl and W. Kinzel

Sonderforschungsbereich 410, Institut für Theoretische Physik
Julius-Maximilians-Universität Würzburg
Am Hubland, 97074 Würzburg, Germany

(received 22 June 2001; accepted in final form 1 October 2001)

PACS. 07.05.Tp – Computer modeling and simulation.
PACS. 61.72.Lk – Linear defects: dislocations, disclinations.
PACS. 81.10.Aj – Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation.

Abstract. – We determine the critical layer thickness for the appearance of misfit dislocations as a function of the misfit ε between the lattice constants of the substrate and the adsorbate from Kinetic Monte Carlo (KMC) simulations of heteroepitaxial growth. To this end, an algorithm is introduced which allows the off-lattice simulation of various phenomena observed in heteroepitaxial growth (see, e.g., Politi P., Grenet G., Marty A., Ponchet A. and Villain J., Phys. Rep., 324 (2000) 271 and Pimpinelli A. and Villain J., Physics of Crystal Growth (Cambridge University Press) 1998) including critical layer thickness for the appearance of misfit dislocations, or self-assembled island formation. The only parameters of the model are deposition flux, temperature and a pairwise interaction potential between the particles of the system. Our results are compared with a theoretical treatment of the problem and show good agreement with a simple power law.

Introduction. – Heteroepitaxial growth has been a field of intense study in recent years. This is mainly due to the improved performance of semiconductor and opto-electronic devices which can be achieved using strained layer epitaxy. Here the heteroepitaxial growth by depositing material onto a substrate with the same crystal structure as the adsorbate but a slightly different lattice constant is of special interest.

In the early stages of this kind of heteroepitaxial growth the adsorbate is coherent with the substrate. In this state the crystal topology is that of a perfect crystal, i.e. each particle has the same coordination number and its nearest and next-nearest neighbors form the same geometrical figure with only slightly modified distances [1,2].

As the thickness of the adsorbate film increases, the elastic energy of the film rises until it is energetically favorable to form dislocations in order to relieve the strain. In this new incoherent state the crystal topology is perturbed near the substrate/adsorbate interface. The thickness of the adsorbate film at which this occurs is called the critical layer thickness h_c.

Theoretical models were proposed in order to determine h_c as a function of material parameters [1,3–5]. In this letter we determine the critical layer thickness as a function of the misfit between the lattice constants of the substrate and the adsorbate using computer simulations.

(*) E-mail: much@physik.uni-wuerzburg.de

© EDP Sciences
In order to simulate heteroepitaxial growth, one has to overcome the limitations of a fixed lattice. One obvious way to perform off-lattice simulations is molecular dynamics (MD), see, for instance, [4] in the context of misfit dislocations. MD methods have the advantage of conceptual simplicity but can only be applied to rather small system sizes at very high temperature and deposition rates. Because of the high computational efforts the critical layer thickness has been determined for only a few values of the misfit.

Here, we propose a KMC algorithm for the simulation of the early stages of heteroepitaxial growth. In contrast to similar off-lattice algorithms suggested before — for example, by Faux et al. [6,7], Plotz et al. [8] or Schindler [9] — we are able to simulate heteroepitaxial growth for rather thick adsorbate layers and over a wide range of the misfit between the lattice constants of the substrate and the adsorbate.

In the following we consider only growth in 1+1 dimensions. However, the method can be extended to (2+1)-dimensional growth. To our knowledge this is the first time that the critical layer thickness for the appearance of dislocations is observed in Monte Carlo simulations. We find that our results fit well to a power law, as has been observed for several semiconductor compounds [5].

Method. — The aim here is to gain general insight into relevant mechanisms of heteroepitaxial growth. We therefore choose a simple Lennard-Jones potential,

\[
U_{ij}(\sigma) = 4U_0 \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right],
\]

as particle interaction, which is numerically easy to handle and saves computer time compared to more realistic empirical potentials like the EAM approximation (see, e.g., [10]). However, we focus on the observation of effects which should not depend on the particular choice of the potential.

The equilibrium distance \(r_0 \) between two isolated particles interacting via \(U_{ij} \) becomes \(r_0 = \sqrt[6]{2}\sigma \) and is slightly smaller in the bulk material. Because of the isotropy of the Lennard-Jones, potential the particles arrange in a triangular lattice. In order to save computer time the interaction potential \(U_{ij} \) is cut off at a distance \(r_{ij} > 3r_0 \). The interaction strength at this distance is less than 1% of the value at the equilibrium distance and can therefore be neglected. The interaction of two substrate particles is given by \(U_{ij}(\sigma_S) \). Two adsorbate particles interact via \(U_{ij}(\sigma_A) \), whereas we assume that a substrate and an adsorbate particle interact via \(\frac{1}{2}(U_{ij}(\sigma_S) + U_{ij}(\sigma_A)) \).

We would like to stress that growth is not simulated on a fixed lattice but rather two particles \(i \) and \(j \) are separated by a continuous distance \(r_{ij} \). There are two possible events in our simulations: deposition and hopping diffusion of adsorbate particles. As calculated by Schindler [9], in Lennard-Jones systems the activation barriers for exchange diffusion are up to three times higher than those for hopping diffusion. As our simulations take place at a relatively low temperature, hopping diffusion can therefore be considered as the preferred diffusion mode and for the sake of simplicity exchange diffusion is completely neglected.

The two-dimensional simulation cell is open in vertical and has periodic boundary conditions in lateral direction. Adsorbate particles are randomly deposited on the crystal surface with a rate \(R_d = LF \), where \(L \) is the system size and \(F = 1 \, s^{-1} \) is the deposition flux. The rate \(R_i \) for a diffusion event \(i \) is given by an Arrhenius law:

\[
R_i = \nu_0 e^{-\frac{E_{a,i}}{k_B T}},
\]

where \(E_{a,i} \) is the activation energy of the diffusion process.

where \(\nu_0 = 10^{12} \text{ s}^{-1} \), \(E_{a,i}, T \) are the attempt frequency, the activation barrier for the diffusion step \(i \) and the simulation temperature, respectively.

\(E_{a,i} \) is given by \(E_{a,i} = E_{t,i} - E_{b,i} \), where \(E_{t,i} \) denotes the energy of the particle at the transition state and \(E_{b,i} \) the energy at the binding state. Both are calculated for a frozen crystal using Brent’s method [11]. Here the saddle point search for the calculation of \(E_{t,i} \) can be replaced by a simpler maximum search in \(1+1 \) dimensions.

To consider the elastic deformation of the crystal after each microscopic event (diffusion or deposition) the total potential energy of the \(n \)-particle system

\[
E_{\text{tot}} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} U_{ij}
\]

is minimized using a conjugate gradient method [11] under variation of the coordinates of all particles (substrate and adsorbate) within a circle of radius \(3r_0 \) around the particle where the event took place. In order to avoid strain caused by this local relaxation of the crystal, after a distinct number of microscopic events — depending on the misfit \(\varepsilon \) — a minimization of \(E_{\text{tot}} \) under variation of all particle coordinates is performed.

Both mentioned types of relaxation do not lead to a substantial rearrangement of the crystal but the coordinates and activation energies of the affected particles are changed slightly. The number of events between two global relaxations is chosen in such a way that the change of the activation energy due to the relaxation is less than 0.5 percent.

The obtained rates for deposition and diffusion of adsorbate particles are used in a rejection-free KMC simulation. Using a binary tree structure [12] an event \(i \) is chosen with the correct probability \(R_i / R \), where

\[
R = R_d + \sum_i R_i
\]

is the total rate of all microscopic processes. Then this event is performed and the rates of all affected events are updated. Unlike in standard Monte Carlo simulations, time does not advance linearly in discrete time steps \(\Delta t \). Instead the time interval \(\tau \) between two microscopic processes is randomly drawn from a Poisson distribution \(P(\tau) = Re^{-R\tau} \) by \(\tau = -\ln \rho / R \), where \(\rho \) is a uniformly distributed random number between 0 and 1.

Each simulation run starts with six atomic layers of substrate with a fixed bottom layer. The system size \(L \) (number of particles in the substrate’s upper layer) is between \(L = 100 \) and \(L = 200 \). Within this range we found no significant dependence of the results on \(L \). However, because of the periodic boundary conditions, for \(L = 30 \) the critical layer thickness is increased for misfits \(|\varepsilon| \leq 5\% \) in comparison to systems with \(L = 100 \) or \(L = 200 \). Results from smaller system sizes are therefore not taken into account.

Measuring lengths in units of \(\sigma_S, \sigma_A \) are chosen between 0.85 and 1.11, so we can simulate heteroepitaxial growth for misfits

\[
\varepsilon = \frac{\sigma_A - \sigma_S}{\sigma_S}
\]

between \(-15\%\) and \(+11\%\).

Results and discussion. – In the following the temperature is set to \(T = 0.03 \frac{U_0}{k_B} \), which is sufficiently low compared to the melting temperature \(T_m = 0.415 \frac{U_0}{k_B} \) of a pure two-dimensional Lennard-Jones solid [13].
Heteroepitaxial growth is now simulated in order to determine the critical layer thickness h_c for the appearance of dislocations as a function of the misfit ε. To this end between 5 and 10 independent simulation runs are carried out for each value of ε.

In the early stages of the simulations dislocation-free mounds of adsorbate particles form on the substrate. With an increasing number of deposited particles these mounds grow and dislocations appear where two mounds merge. The number and circumference of the initial mounds depends thereby on the misfit: the smaller $|\varepsilon|$ is, the fewer and larger dislocation-free mounds arise and the fewer dislocations are finally counted. In each simulation run several dislocations appear almost simultaneously and after the deposition of a few monolayers of adsorbate after the first appearance of dislocations in the crystal their number remains constant. The thickness of the adsorbate layer at which dislocations first appear is registered as h_c.

To prove the existence of a dislocation we determine the coordination number n_c of each particle by calculating the Voronoy polyhedra [14,15]. Voronoy polyhedra are a generalization of the Wigner-Seitz cell to a system without a fixed lattice. The number of sides of a Voronoy polyhedron gives the coordination number n_c ($n_c = 6$ for a particle in a perfect triangular lattice). A Burgers circuit [16] is drawn around regions of the crystal with $n_c \neq 6$. A non-vanishing Burgers vector then indicates the appearance of a dislocation.

Figure 1 shows sections of two crystals obtained in our simulations for (left panel) $\varepsilon = +10\%$ and (right panel) $\varepsilon = +6\%$. The grey level for a particle in these pictures is obtained from the particle’s average distance to its nearest neighbors of the same kind. The lighter the grey level the more this particle is under compression.

Figure 2 shows the number of dislocations per unit length n_D/L counted for each value of ε about 6 monolayers deposited adsorbate after the first appearance of a dislocation in the crystal (the maximum number of dislocations should be reached for this thickness of the adsorbate layer). The dashed line gives the theoretical number of dislocations in a system of size...
Fig. 2 – Number of dislocations per system size n_D/L as a function of the misfit ε. The error bars represent the standard error of the simulation results. The dashed line gives the theoretical number of perfect dislocations in a system of size L.

Fig. 3 – Critical thickness h_c vs. misfit $|\varepsilon|$ for $\varepsilon < 0$ (upper curve) and $\varepsilon > 0$ (lower curve). The error bars are obtained as the standard error of the simulation results. The solid lines are calculated using eq. (6) where $a^* = 0.15$ for $\varepsilon < 0$ and $a^* = 0.05$ for $\varepsilon > 0$.

L under the assumption that $n_D = L|\varepsilon|$ perfect dislocations can appear. Perfect dislocations (fig. 1, left panel) are those for which the crystal topology far from the substrate/adsorbate interface is the same as in the coherent state and the Burgers vector is therefore an integer multiple of the lattice vector. The formation of partial dislocations (fig. 1, right panel) —characterized by a Burgers vector which is a rational fraction of a lattice vector— causes the deviations from the theoretical results for $-0.07 \leq \varepsilon \leq -0.03$ and $0.04 \leq \varepsilon \leq 0.08$. This is due to the fact that partial dislocations are spatially more extended than perfect dislocations. For this reason in the case $\varepsilon > 0$ more and for $\varepsilon < 0$ less dislocations than $n_D = L|\varepsilon|$ have to be built when partial dislocations appear. Why partial dislocations only appear for distinct values of ε is still unknown.

Figure 3 shows the critical layer thickness h_c plotted vs. the absolute value of the misfit ε. For $-0.03 < \varepsilon < 0.02$ the critical thickness is too large to be observed in our simulations.

The simulation results show a dependence of h_c on the sign of the misfit. This was found before by Dong et al. [4]. We believe this dependence is due to the fact that the Lennard-Jones potential is not harmonic. The potential is steeper in compression ($\varepsilon > 0$) than in tension ($\varepsilon < 0$), so that for $\varepsilon > 0$ it becomes favorable to form a dislocation for smaller values of h_c.

Our simulation results agree well with a power law (solid lines in fig. 3)

$$h_c = a^*\varepsilon^{-3/2}$$

which was proposed by Cohen-Solal et al. [5].

There, an energy balance model is proposed for calculating the critical layer thickness in heteroepitaxial growth of semiconductor compounds. To this end the classical strain energy, without any change of the substrate or dislocation formation, and the deformation energy due to a full system of interfacial misfit dislocations were compared. The method yields the $\varepsilon^{-3/2}$ power law, where h_c depends mainly on the misfit ε. Their model was compared with experimental data revealing an excellent agreement for IV-IV, III-V and II-VI semiconductor
compounds with values for a^* between $a^* = 0.15$ and $a^* = 0.50$. A nonlinear fit of our results yields $a^* = 0.15$ for $\varepsilon < 0$ and $a^* = 0.05$ for $\varepsilon > 0$.

Thus our quite simple $(1+1)$-dimensional model shows qualitatively the same dependence of the critical layer thickness on the misfit as semiconductor samples grown in molecular beam epitaxy. The values of a^* obtained from our simulations show the same order of magnitude as the experimental ones but are expected to depend on the dimension and the applied interacting potential.

Conclusion. – The goal of this examination was to determine the critical layer thickness for heteroepitaxial growth of Lennard-Jones particles. For this purpose we propose a novel KMC algorithm.

We demonstrate that with this algorithm it is possible to simulate the appearance of dislocations for a wide range of misfits and rather large system sizes compared to commonly used methods like molecular-dynamics simulations.

We find our simulation data in good agreement with a very simple $\varepsilon^{-3/2}$ power law, where the critical thickness depends mainly on the lattice mismatch. This law has been identified in various systems before [5] and may thus be considered as quite general.

The developed algorithm is applicable in the simulation of various other phenomena observed in heteroepitaxial growth. In future work we will examine the 2D-3D transition in island growth and step-bunching on vicinal surfaces, for instance.

We would like to thank A. Schindler for fruitful discussions about problems concerning the simulation of heteroepitaxial growth. FM and MA were supported by the Deutsche Forschungsgemeinschaft.

REFERENCES

[1] Politi P., Grenet G., Marty A., Ponchet A. and Villain J., Phys. Rep., 324 (2000) 271.
[2] Pimpinelli A. and Villain J., Physics of Crystal Growth (Cambridge University Press) 1998.
[3] Matthews J. W. and Blakeslee E. A. J., J. Crystal Growth, 27 (1974) 118.
[4] Dong L., Schnitker J., Smith R. W. and Srolovitz D. J., J. Appl. Phys., 83 (1997) 217.
[5] Cohen-Solal G., Bailly F. and Barbé M., J. Crystal Growth, 138 (1994) 68.
[6] Faux D. A., Gaynor G., Carson C. L., Hall C. K. and Bernholc J., Phys. Rev. B, 42 (1990) 2914.
[7] Spjut H. and Faux D. A., Surf. Sci., 306 (1994) 233.
[8] Plotz W. M., Hingerl K. and Sitter H., Phys. Rev. B, 45 (1992) 12122.
[9] Schindler A., Theoretical Aspects of Growth on One and Two Dimensional Strained Crystal Surfaces (Dissertation, Duisburg, 1999).
[10] Somfai E. and Sander L. M., cond-mat/9909328 (1999).
[11] Press W. H., Teukolsky S. A., Vetterling W. T. and Flannery B. P., Numerical Recipes in C (Cambridge University Press) 1992.
[12] Newman M. E. J. and Barkema G. T., Monte Carlo Methods in Statistical Physics (Oxford University Press) 1999.
[13] Abraham F. F., Melting, Localization, and Chaos, edited by Kalia R. K. and Vashishta P. (Elsevier, New York) 1982.
[14] Ashcroft N. W. and Mermin N. D., Solid State Physics (Saunders College Publishing) 1976.
[15] Strandburg K. J., Rev. Mod. Phys., 60 (1988) 161.
[16] Hirth J. P. and Lothe J., Theory of Dislocations (McGraw-Hill Book Company) 1968.