Background and Purpose The aim of this study was to determine the incidence and clinical significance of positional downbeat nystagmus (pDBN) after treatment of posterior canal (PC) benign paroxysmal positional vertigo (BPPV).

Methods We recruited 77 patients with a diagnosis of PC BPPV, and assessed the presence of pDBN during follow-up positional tests after performing the Epley maneuver.

Results An immediate response to the Epley maneuver was exhibited by 57 of the 77 patients, with resolution of their positional torsional upbeat nystagmus (pT-UBN). Twenty-two (39%) of them exhibited pDBN during follow-up tests performed 1 hour later. The latency and duration of pDBN were 3.2 \pm 2.0 and 12.0 \pm 10.0 s (mean \pm SD), respectively. The maximum slow-phase velocity of pDBN was 5.1 \pm 2.5 degrees, and ranged from 2.0 to 12.2 degrees. A torsional component was also observed in six patients. The patients with pDBN were much more likely to develop a typical form of PC BPPV again at a 1-week follow-up (5/22, 23%) compared to those without pDBN (1/31, 3%; $p=0.036$). pDBN disappeared in all patients within 6 months.

Conclusions Our study found transient pDBN in 40% of patients with PC BPPV after the immediate resolution of positional vertigo and pT-UBN. pDBN may be attributed to residual debris in the distal portion of the PC, which can move toward the ampulla producing an ampullopetal flow of endolymph during positioning.

Key Words positional downbeat nystagmus, posterior canal benign paroxysmal positional vertigo, Epley maneuver.

INTRODUCTION

Positional downbeat nystagmus (pDBN) is a type of central positional nystagmus resulting from disruption of the brainstem or cerebellar vestibular network.1-5 pDBN of central origin is often associated with brainstem or cerebellar signs such as gait unsteadiness with falls, motor weakness, clumsiness of extremities, diplopia, and slurred speech.1 However, diagnosing isolated pDBN in the absence of other neurological signs remains challenging.5,6 It can be ascribed to benign paroxysmal positional vertigo (BPPV) involving an anterior canal (AC).5-10 In AC BPPV, the otoconial debris moves away from the cupula during straight head-hanging (SHH) or Dix-Hallpike (DH) maneuver, giving rise to an ampullofugal deflection of the cupula and excitation of the AC. This situation produces pDBN with a torsional nystagmus in which the top poles of the eyes beat toward the involved ear. Since the AC is closer to the sagittal plane than the posterior canal (PC), the torsional component may be much smaller.

There have been recent reports of a variant of PC BPPV that presents with torsional down-
beat nystagmus during SHH and DH maneuver.11-14 If the debris is located in the nonampullary arm of the PC near the common crus, it can induce an ampullopetal deflection of the cupula during positional tests, leading to pDBN via inhibition of the PC. Some patients can be diagnosed with a typical form of PC BPPV before or after the development of pDBN.15 Transient pDBN can also be observed after PC BPPV is treated.16 However, the overall incidence and clinical importance of pDBN in PC BPPV have not been systematically explored previously.

The aim of this study was to determine the incidence and characteristics of pDBN after applying a canalith repositioning procedure (CRP) for PC BPPV. The determined characteristics of pDBN included its latency, duration, maximum slow-phase velocity (SPV), and natural course.

METHODS

Subjects

We consecutively recruited 77 patients with a diagnosis of PC BPPV in Pusan National University Yangsan Hospital from January to December 2016. PC BPPV was diagnosed according to the following criteria: 1) a history of vertigo provoked by changes in head position, 2) torsional upbeat nystagmus (with the upper pole of the eyes beating toward the affected ear) in positional tests (SHH and DH maneuver), and 3) vertigo associated with the elicited nystagmus. We excluded patients with multiple canal involvement or atypical positional nystagmus.

Study design

We treated all patients with the Epley maneuver according to the treatment guideline.7 The treatment response was assessed 1 hour after performing a single maneuver, and responders were defined as resolution of positional vertigo and positional torsional upbeat nystagmus (pT-UBN). We evaluated the presence of pDBN in the responder group in follow-up tests performed 1 hour later. Using three-dimensional video-oculography (SLMED, Seoul, Korea), we analyzed the latency, maximum SPV, duration, and presence of a torsional component of pDBN. The nonresponders who failed on initial maneuver, were instructed to perform the Brandt-Daroff exercise.

Oculographic analysis of pDBN

Twenty-two (39%) of the 57 patients in the responder group showed pDBN during the follow-up tests performed 1 hour later (Figs. 1 and 2). A torsional component was observed in six patients (27%) (Fig. 2): CCW in four with a prior right-side PC BPPV and CW in two with a prior left-side PC BPPV.

The evoked positions were SHH and bilateral DH maneuver in six patients, SHH and unilateral DH maneuver in nine (nine ipsilateral and two contralateral), unilateral or bilateral DH maneuver in six (three ipsilateral, two contralateral, and one bilateral), and SHH in one.

The latency and duration of pDBN were 3.2±2.0 and 12.0±10.0 s, respectively. The maximum SPV of pDBN was 5.1±2.5 degrees, and ranged from 2.0 to 12.2 degrees. The nystagmus did not reverse during the sitting position from SHH and DH maneuver in any patients.

Despite having pDBN, none of the patients experienced intense positional vertigo.
At the 1-week follow-up in the responder group (Fig. 1), the pT-UBN was again observed in five patients with pDBN, but in only one without pDBN. The resolution rate of pT-UBN was higher in the responders without pDBN (30/31, 97%) than in those with pDBN (17/22, 77%). pDBN disappeared in six patients, but the remaining 11 still had pDBN. The follow-up evaluation was completed in seven of the 11 patients who still had pDBN at the 1-week follow-up. pDBN disappeared within 6 months in five patients (three after 1 month, one after 5 months, and one after 6 months), and the remaining two patients experienced relapse of PC BPPV on the opposite side during follow-up. One patient with pDBN resolution at the 1-week follow-up experienced relapse in the same canal at 2 months.

The 1-week follow-up was completed by 16 of the 20 non-responders (Fig. 1). Six still had pT-UBN, but the remaining ten showed resolution of positional vertigo and pT-UBN. Six of them did not have nystagmus during positional tests, while four had pDBN without concomitant positional vertigo. The evoked positions were SHH and bilateral DH maneuver in two, SHH and contralateral DH maneuver in one, and ipsilateral DH maneuver in one. Three patients had no torsional component, but one with prior right-side PC BPPV
had CCW torsional nystagmus with pDBN. pDBN disappeared in all of the patients within 2 months.

DISCUSSION

Our study shows that transient pDBN can be observed in 40% of patients with PC BPPV after the immediate resolution of positional vertigo and pT-UBN. Although the pDBN was not sufficiently intense to induce positional vertigo, it could last for 6 months. The patients with pDBN were much more likely to develop a typical form of PC BPPV again at the 1-week follow-up.

pDBN of peripheral origin has traditionally been linked to BPPV involving the AC.5-10 Therefore, the pDBN in our patients may have been due to translocation of otoconia into the AC from the PC during the Epley maneuver. However, this hypothesis is not supported by the presence of a torsional component of pDBN in some of the patients. If the Epley maneuver resulted in otoconia moving into the ipsilateral AC from the PC, the torsional component would be directed to the upper pole of the eye to the left ear (CCW) for the left AC or to the right ear (CW) for the right AC. In our patients, however, the torsional component of pDBN was directed CCW and CW for prior right- and left-side PC BPPV, respectively, which was not in accordance with the direction evoked by excitation of the ipsilateral AC. Furthermore, some patients who initially showed CCW or CW torsional pDBN consequently developed right- or left-side PC BPPV, respectively. Therefore, pDBN in our patients may have originated from the initially involved PC. The Epley maneuver results in the otoconia within the PC dropping out into the utricle, leading to resolution of pT-UBN. However, some otoconial debris can remain in the nonampullary arm of the PC near the common crus (Fig. 3A). In such cases, when the patient lies down into head-hanging position, the residual debris in the PC could move toward the ampulla producing an ampullopetal flow of endolymph (Fig. 3B).11-14 This would generate an inhibitory discharge of the posterior ampullary nerve and evoke pDBN. The absence of a torsional component in most cases of pDBN may be due to the anatomy of the semi-
circular canals. Since the nonampullary arm of the PC is closer to the sagittal plane, the vertical component of the nystagmus is greater than the torsional one.17 Alternatively, any debris present in both the AC and PC on one side after the Epley maneuver could move ampullopetally in the AC and ampullofugally in the PC during positional tests, resulting in the absence of torsional components.15

pDBN originating from the PC has already been reported previously. Vannucchi et al.11 described patients who initially presented with vertical torsional downbeat nystagmus suggestive of AC BPPV.12 However, at the next follow-up these patients exhibited a typical form of PC BPPV on the side opposite to the initially diagnosed AC, which is similar to five patients in our study. Those authors hypothesized that the debris could be localized to the distal portion of the PC, leading to pDBN similar to that for the contralateral AC, and named this variant apogeotropic PC BPPV. Cambi et al.15 assessed the natural course of pDBN of presumed peripheral origin. They found that 40% of patients were diagnosed with a typical form of PC BPPV before or after a diagnosis of pDBN, and proposed that pDBN and PC BPPV are related. Our study provides further evidence that pDBN is related to an atypical form of PC BPPV.

Despite having pDBN, none of the patients experienced intense positional vertigo. This is inconsistent with previous reports of patients with pDBN due to apogeotropic PC BPPV experiencing even worse symptoms.11,12 However, previous cases showed positional vertigo with pDBN on their first visit before developing a typical form of PC BPPV, whereas our patients had pDBN after the immediate resolution of typical PC BPPV. Our patients might have already adapted to the symptoms due to them experiencing repeated positional vertigo. Furthermore, the amplitude of pDBN was quite small and the nystagmus did not last long. These factors may have contributed to the absence of intense positional vertigo in our patients. Some felt a mild and continuous dizziness, but these symptoms can remain in any BPPV patients following a successful CRP.18

In our study, 23% of the patients with pDBN had developed a typical form of PC BPPV again at a 1-week follow-up. This suggests that the presence of pDBN after a CRP may be a sign of incomplete or partial resolution of PC BPPV. Considering that tiny debris in the distal portion of the PC might induce pDBN, the accumulated debris can move toward the ampullary end of the PC and produce an ampullofugal flow of endolymph. To prevent tiny debris from accumulating within the canal, it may be better to recommend regular physical activity to patients showing pDBN. Alternatively, repeated application of the Epley maneuver may be helpful to remove any residual debris in the canal.

Our study was subject to several limitations, such as the sample being rather small and some patients not completing follow-up evaluations. These features may have reduced the statistical power of the analysis and contributed to an inability to obtain significant findings.

In conclusion, transient pDBN can be observed in patients with PC BPPV after the immediate resolution of positional vertigo and pT-UBN. This can also be present before a diagnosis of typical PC BPPV. pDBN may be ascribed to otocional debris in the distal portion of the PC, which can move toward the ampulla producing an ampullopetal flow of endolymph during positioning. Although pDBN disappears spontaneously in most cases, it may indicate the incomplete or partial resolution of PC BPPV.

Conflicts of Interest

The authors have no potential conflicts of interest to disclose.

REFERENCES

1. Macdonald NK, Kaski D, Saman Y, Al-Shaikh Sulaiman A, Anwer A, Bamiou DE. Central positional nystagmus: a systematic literature review. Front Neurol 2017;8:141.
2. Choi JY, Kim JH, Kim HJ, Glasauer S, Kim JS. Central paroxysmal positional nystagmus: characteristics and possible mechanisms. Neurology 2015;84:2238-2246.
3. Brandt T. Positional and positioning vertigo and nystagmus. J Neurol Sci 1990;95:3-28.
4. Lee JY, Lee WW, Kim JS, Kim HJ, Kim JK, Jeon BS. Perverted head-shaking and positional downbeat nystagmus in patients with multiple system atrophy. Mov Disord 2009;24:1290-1295.
5. Bertholon P, Bronstein AM, Davies RA, Rudge P, Thilo KV. Positional down beating nystagmus in 50 patients: cerebellar disorders and possible anterior semicircular canalolithiasis. J Neurol Neurosurg Psychiatry 2002;72:366-372.
6. Ogawa Y, Suzuki M, Otuka K, Shimizu S, Inagaki T, Hayashi M, et al. Positional and positioning down-beating nystagmus without central nervous system findings. Auris Nasus Larynx 2009;36:698-701.
7. Kim JS, Zee DS. Clinical practice. benign paroxysmal positional vertigo. N Engl J Med 2014;370:1138-1147.
8. Imai T, Takeda N, Ito M, Nakamae K, Sakae H, Fujioka H, et al. Three-dimensional analysis of benign paroxysmal positional nystagmus in a patient with anterior semicircular canal variant. Otol Neurotol 2006;27:362-366.
9. Yacovino DA, Hain TC, Gualtieri F. New therapeutic maneuver for anterior canal benign paroxysmal positional vertigo. J Neurol 2009; 256:1851–1855.
10. Anagnostou E, Kouzi I, Spengos K. Diagnosis and treatment of anterior-canal benign paroxysmal positional vertigo: a systematic review. J Clin Neurol 2015;11:262–267.
11. Vannucchi P, Pecci R, Giannoni B. Posterior semicircular canal benign paroxysmal positional vertigo presenting with torsional downbeat nystagmus: an apogeotropic variant. Int J Otolaryngol 2012;2012:413603.
12. Vannucchi P, Pecci R, Giannoni B, Di Giustino F, Santimone R, Menegucci A. Apogeotropic posterior semicircular canal benign paroxysmal positional vertigo: some clinical and therapeutic considerations. Audiol Res 2015;5:130.
13. Califano L, Salafia F, Mazzone S, Melillo MG, Califano M. Anterior canal BPPV and apogeotropic posterior canal BPPV: two rare forms
of vertical canalolithiasis. Acta Otorhinolaryngol Ital 2014;34:189-197.
14. Büki B, Mandalà M, Nuti D. Typical and atypical benign paroxysmal positional vertigo: literature review and new theoretical considerations. J Vestib Res 2014;24:415-423.
15. Cambi J, Astore S, Mandalà M, Trabalzini F, Nuti D. Natural course of positional down-beating nystagmus of peripheral origin. J Neurol 2013;260:1489-1496.
16. von Brevern M, Bertholon P, Brandt T, Fife T, Imai T, Nuti D, et al. Benign paroxysmal positional vertigo: diagnostic criteria. J Vestib Res 2015;25:105-117.
17. Kanebayashi H, Suzuki M, Ogawa Y. [Measurement of helical angle of the human semicircular canals using rapid-prototyped inner ear model]. Equilib Res 2008;67:294-300.
18. Giommetti G, Lapenna R, Panichi R, Mobaraki PD, Longari F, Ricci G, et al. Residual dizziness after successful repositioning maneuver for idiopathic benign paroxysmal positional vertigo: a review. Audiol Res 2017;7:178.