Streptococcus Salivarius Subsp **Salivarius** BIO5- Toxicity Evaluation of a Possible Probiotic Strain

By Fantinato V, Camargo HR & Sousa ALOPilleggi

Abstract- Probiotic bacteria, which are traditionally studied to aid intestinal functions, are also currently being researched for benefits in other parts of the body such as the oral cavity. In the case of throat infections caused by bacteria, which traditional treatment involves antibiotics, some researchers are studying the possibility of introducing special strains of commensal bacteria into the mouth that can specifically inhibit the tonsillitis agent *Streptococcus pyogenes* for both prevention and treatment of such disease. A PCR assay was used to identify *Streptococcus salivarius* subsp *salivarius*. Therefore, tests for the complete absence of toxicity of these strains are required to ensure their safe use in human trials. In this research, we evaluated the new *Streptococcus salivarius* subsp *salivarius* BIO5 strain for toxicity factors, as follows: clinical, ophthalmic lesions, behavioral observations, mortality, anatomopathological examination, biopsy, hematology, serum biochemistry, and urine analysis. This strain, isolated from the oral cavity and with bacteriocinogenic activity against S. pyogenes, showed a complete absence of toxicity and thus it may be used in replacement therapy as a probiotic.

Keywords: *Streptococcus salivarius*, probiotics, bacteriocin, *Streptococcus pyogenes*, toxicity.

GJMR-J Classification: NLMC Code: WC 210

© 2020. Fantinato V, Camargo HR & Sousa ALOPilleggi. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Streptococcus Salivarius Subsp Salivarius BIO5-Toxicity Evaluation of a Possible Probiotic Strain

Fantinato V a, Camargo HR a & Sousa ALOPilleggi p

Abstract- Probiotic bacteria, which are traditionally studied to aid intestinal functions, are also currently being researched for benefits in other parts of the body such as the oral cavity. In the case of throat infections caused by bacteria, which traditional treatment involves antibiotics, some researchers are studying the possibility of introducing special strains of commensal bacteria into the mouth that can specifically inhibit the tonsillitis agent Streptococcus pyogenes for both prevention and treatment of such disease. A PCR assay was used to identify Streptococcus salivarius subsp salivarius. Therefore, tests for the complete absence of toxicity of these strains are required to ensure their safe use in human trials. In this research, we evaluated the new Streptococcus salivarius subsp salivarius BIO5 strain for toxicity factors, as follows: clinical, ophthalmic lesions, behavioral observations, mortality, anatomopathological examination, biopsy, hematology, serum biochemistry, and urine analysis. This strain, isolated from the oral cavity and with bacteriocinogenic activity against S. pyogenes, showed a complete absence of toxicity and thus it may be used in replacement therapy as a probiotic.

Keywords: Streptococcus salivarius, probiotics, bacteriocin, Streptococcus pyogenes, toxicity.

I. Introduction

Probiotic bacteria, which are traditionally studied to aid intestinal functions, are also currently being researched for benefits in other parts of the body such as the oral cavity. Thus, commensal microorganisms of the mouth, ears, and nose have been researched for the prevention or treatment of oropharyngeal diseases such as periodontitis, caries, sore throat, and otitis.

This study aimed to evaluate the presence or absence of toxicity of the Streptococcus salivarius subsp salivarius BIO5 strain1. The Streptococcus salivarius subsp salivarius species is an indigenous microorganism of the mouth, and its niches are the tongue and mucous membranes. It is a bacterium that sets in soon after birth, remaining dominant from childhood through life2, 3. Some strains are capable of producing bacteriocin-like inhibitory substances (BLIS)4 in vitro against the agent of bacterial tonsillitis - Streptococcus pyogenes or Group A Streptococcus (GAS). Tonsillitis is one of the most common childhood diseases, which when repeated may lead to the development of rheumatic fever and cause severe sequels5. Considering this knowledge, the possibility of performing replacement therapy was considered by introducing positive bacteriocin strains through some vehicle into the oral cavity of children with tonsillitis. The purpose of performing toxicity tests with an indigenous microorganism of the oral cavity is that this species - Streptococcus salivarius subsp salivarius- has been studied as the ideal probiotic for controlling bacterial tonsillitis caused by Streptococcus pyogenes. Despite being a beneficial and non-pathogenic saprophytic microorganism, it is necessary to confirm that the strain in question is completely safe. As a probiotic, S. salivarius has been used with the K12 strain successfully through oral tablets preceded by a mouthwash with an antiseptic6, 7, 8.

The BIO5 strain of Streptococcus salivarius has been studied for the development of a product other than the K12 strain that is administered through tablets. Lately, new strains of S. salivarius have been studied for the same purpose: control and treatment of tonsillitis as well as otitis and halitosis9, 10. Therefore, confirmatory tests for the complete absence of toxicity of the Streptococcus salivarius BIO5 strain are required.

II. Material & Methods

We obtained one strain with clear evidence of bacteriocin-like production and inhibition against most of the 100 strains of S. pyogenes. The Streptococcus salivarius subsp salivarius BIO5 strain was tested by PCR11 to identify S. salivarius.PCR primers specific for S. salivarius, Ssa442F (5’-AAC GTT GAC CTT ACG CTA GCC AC-3’) and Ssa2712R (5’-GAT TCT GTC AAA GAA GCC AC-3’) were used to amplify a 2271 bp fragment from dextranase (dex) gene. Isolates were prepared for PCR by pelleting 3 ml of bacteria grown in BHI broth, subsequently suspended in 1 ml of sterile MilliQ water. 5 µl aliquots of the cell suspension were used in a 50 µl reaction containing Reaction Buffer Biotools 1x with 2 mM MgCl2 (Madrid, Spain), 1 µM of each primer (Invitrogen, Carlsbad, CA, USA), 2 mM dNTPs mix (Invitrogen) and 2, 0 U of Taq polymerase (Invitrogen). The amplification reaction was performed in an Eppendorf Mastercycler gradient thermal cycler (Eppendorf, Hamburg, Germany) as described bygarashi et al11 as it follows: 95°C for 10 min followed...
by 26 cycles of denaturation at 94°C for 1 min, annealing at 55°C for 1 min and extension at 72°C for 1 min. The last cycle comprised denaturation at 94°C for 1 min, annealing at 55°C for 1 min and final extension step at 72°C for 5 min. The PCR fragments were subjected to electrophoresis on 1.5% agarose gel in TAE buffer 1x and stained with ethidium bromide.

Toxicity tests
The toxicity tests for this study were clinical, ophthalmic lesions, behavioral observations, mortality, anatomopathological examination, biopsy, hematology, serum biochemistry, and urine analysis. The authors complied with the guidelines for the care and use of laboratory animals as described by the U.S. National Institutes of Health.

a) Test Product Preparation
The BIO5 strain was seeded from blood agar stock on Mitis Salivarius agar and incubated at 37°C/24h for confirmation of culture purity. From this growth, suspensions were prepared in saline solution at concentrations from 10^8 to 10^9 CFU/ml. This preparation was called Test Product.

b) Animal Studies
Animals of the Rattusnovigericus species, Wistar Lineage, albino rats were used. A total of 100 animals were initially used - 50 males and 50 females. These animals received three different doses of the Test Product for a period of 28 consecutive days, namely 1.0, 2.0, and 4.0 ml/kg. The animals originated from the breeding room of the company CALLYX Laboratórios & Consultorias-Paulínia, São Paulo, Brazil.

- Administration in repeated doses, in a rodent (rat albinus "Wistar"), of the test product (1.0, 2.0 and 4.0 ml) by kg of body weight of 10 animals per dose (total of 50 males and 50 females), which received each of the dosages of the test product plus a control group and a “recovery group”.
- Clinical, visual, and behavioral observations were made over the entire period of the treatment of the animals with different doses of the test product, i.e., for 28 consecutive days. There were two daily observations: in the morning and the afternoon.
- Samples of blood/plasma (with the help of a syringe moistened with heparin or not) were collected for additional tests including complete hematology, serum biochemistry tests, electrolytes, and urine analysis.

III. Results

a) Experimental Design

GROUP	MALE	FEMALE
Control group	10	10
Dose 1.0ml/kg	10	10
Dose 2.0ml/kg	10	10
Dose 4.0ml/kg	10	10
Dose 4.0ml/kg (Product test “Recovery”)	10	10
Animal & Total	50	50

- Mortality
 No deaths were detected throughout the acclimation phase and experimentation (Table 1).

- Anatomopathological examination
 All animals that survived the various treatments after 28 days of observation were deeply anesthetized and euthanized ethically. The procedure was necropsy on all rats. Potential injuries were recorded and tissue was collected for histopathological examinations.

- Biopsy
 No lesions were found in organic and/or any substantial tissue of animals examined by necropsy (adrenal, aorta, articulation, spleen, bladder, brain, cerebellum and pons, heart, esophagus, stomach, pylorus and cardio, epididymis, salivary gland, liver, testicle, duodenum, ileum, jejunum, cecum, colon, rectum, larynx, lymph nodes, bone marrow, skeletal muscle, prostate, thyroid, pancreas, skin, lungs, kidneys, thymus, thyroid, and trachea.

- Test substance administration
 No problems related to the Test Product administration were found. – Changing the standard of feed and water consumption No changes were observed in the patterns of water and feed intake, both in the acclimation phase (day zero to day seven) and throughout the experimental period (from day zero to day 28).

- Daily observations
 No changes were detected with behavioral and/or clinical significance during the entire acclimation phase and experimentation.

- Ophthalmology
 There were no problems and/or specific ophthalmic lesions in any of the animals treated.
throughout the acclimation phase and/or experimentation.

- Hematology

Different hematological parameters were analyzed in animals treated with repeated doses of the test product observed for 53 consecutive days, and no changes were verified (Table 2).

- Serum biochemistry

Different parameters of serum biochemistry were analyzed in animals treated with repeated doses of the test product observed for 53 consecutive days, and no changes were verified (Table 3).

- Urine analysis

Different parameters of urine were analyzed in animals treated with repeated doses of the test product observed for 53 consecutive days (Table 4). Urine analysis (quantitative method) of 10 animals (males) per group receiving doses of 1.0, 2.0, and 4.0 ml/kg. Averages or rankings for the following parameters: color, turbidity, pH, presence of leukocytes (cells/ml), presence of glucose (mg/dL), bilirubin, and presence of blood (erythrocytes/ml).

Table 1: Number of animals used in each group, number of dead animals and the percentage of deaths for the three treatment groups performed at a single dose

Group	Product Dose	Animal number	Sex	Number Death	Mortality %
1	Product Test / 1.0 ml/kg	10	M	0	0
2	Product Test / 2.0 ml/kg	10	M	0	0
3	Product Test / 4.0 ml/kg	10	M	0	0
4	”Recovery“ Product Test / 4.0 ml/kg	10	M	0	0
1	Product Test / 1.0 ml/kg	10	F	0	0
2	Product Test / 2.0 ml/kg	10	F	0	0
3	Product Test / 4.0 ml/kg	10	F	0	0
4	”Recovery“ Product Test / 4.0 ml/kg	10	F	0	0

Table 2: Hematological evaluation of ten animals (male) group, which received the dose of 1.0, or 2.0 or 4.0 ml/kg of Test Product

Male	Control	Low set Dose ml/kg	Intermed Dose ml/kg	Highest Dose ml/kg	Normal Values RatsA	Unit
Total number erythrocytes	7.6	7.2	7.7	8.1	6.0-9.0	10^{12}/L
Hemoglobin concentration	14.1	14.7	14.9	15.4	11.0-17.0	g/dL
Hematocrites	44.3	42.4	41.5	42.0	38.0-50.0	%
MCHC	31.9	31.7	32.6	32.9	31.0-36.0	g/dL
% reticulocytes	0	0	1	1	1.0-4.0	% RBC
Total number granulocytes	4.7	4.4	4.9	5.1	1.0-6.0	10^{9}/L
% de granulocytes	16.8	17.8	18.9	22.2	5.0-30.0	%
Number lymph / monoc	7.5	7.3	6.6	5.9	4.0-16.0	10^{9}/L
Total leukocytes	12.8	12.2	11.6	13.7	4.0-17.0	10^{9}/L
Number lymphocytes	8.3	9.6	9.2	9.2	3.0-15.0	10^{9}/L
Number neutrophils	3.7	4.1	5.1	5.2	0.0-6.0	10^{9}/L
Number monocytes	1.0	1.4	1.1	1.5	0.2-2.0	10^{9}/L
Number eosinophils	0.1	0.2	0.4	0.2	0.0-0.5	10^{9}/L
Number basophils	0	0	0	0	Rare	10^{9}/L
Number platelets	756	657	678	458	800-1400	10^{9}/L
Coagulation time	194	192	224	324	100-500	s

Animal clinical chemistry/A practical guide for toxicologists and biomedical researchers. G.O.Evans / CRC Press
Table 3: Biochemical tests of serum of ten animals (male) by the groups that received doses of 1.0, 2.0 or 4.0 ml/kg of the test product – Males

Carrier	Dose ml/kg	Dose ml/kg	Dose ml/kg	Values Rats(A)	Units
Color	ligh	ligh	ligh	ligh	ligh
	transluce	transluce	transluce	transluce	
pH	7,5	7,1	7,7	7,1	6.0 - 8.0
Leukocytes	25	25	0	0	until 100 Leucocytes/ml
Protein	30	30	0	0	until 100 mg/dl
Glucose.	Negative	Negative	Negative	Negative	Negative
Ceton	0	15	0	15	until 15 mg/dl
Urobilinogen	Normal	Normal	Normal	Normal	Normal
Bilirubin	Negative	Negative	Negative	Negative	Negative
Blood.	Negative	Negative	Negative	Negative	Negative

Animal clinical chemistry/ A practical guide for toxicologists and biomedical researchers. G.O.Evans / CRC Press

Table 4: Analysis of urine (quantitative method) of ten animals (male) group received the doses of 1.0, 2.0 or 4.0 ml/kg

Control	Lowest Dose ml/kg	Intermed Dose ml/kg	Highest Dose ml/kg	Normal Value rats (A)	Units
Total Protein	7.3	7.2	7.0	6.8	5.0-8.0 g/dL
Albumin	4.0	4.2	4.1	3.9	3.0-5.0 g/dL
Globulin	2.2	2.6	2.1	2.6	1.0-3.0 g/dL
Relationalbumin/ globulin	1.5	1.1	1.2	1.4	0.0-2.0 g/dL
Aspartateaminotransferase	76.8	65.8	72.4	74.4	20.0-100.0 IUL
Alaninaminotransferase	54.6	56.8	66.5	67.2	10.0-80.0 IU/L
Alkalinephosphatase	89.9	99.6	98.4	78.8	70.0-450.0 IU/L
Total bilirubin	0.3	0.2	0.2	0.3	0.0-0.5 mg/dL
Creatinin	0.4	0.5	0.5	0.7	0.1-0.8 mg/dL
Ureanitrogena	13.4	13.6	13.5	12.6	12.0-24.0 mg/dL
Glucose	123.5	143.6	133.7	142.9	140.0-220.0 mg/dL
Total Colesterol	57.8	67.8	77.8	65.7	20.0-110.0 mg/dL
Calcium	10.3	11.5	11.3	11.5	10.0-12.0 109/L
Phosphorus	6.0	5.9	6.1	6.6	5.0-7.0 mg/dL
Sodium	138.4	140.2	142.4	144.3	136.0-154.0 Mmol/L
Chloride	98.3	95.5	98.3	92.4	98.0-110.0 Mmol/L
Potassium	5.5	5.6	5.2	7.1	5.0-7.0 Mmol/L

Animal clinical chemistry/ Urine Analysys / A practical guide for toxicologists and biomedical researchers. G.O.Evans / CRC Press
IV. Discussion

All articles published on the Streptococcus salivarius subsp salivarius species agree that this microorganism is an indigenous and saprophyte inhabitant of the human oral cavity. It is installed on the tongue and mucus membranes shortly after birth, remaining in these habitats for life.³,⁴ It is an abundant and predominant isolate of the human oral microbiota with the basic function of protecting this environment by hindering or preventing the entry of other foreign or pathogenic microorganisms, aiding the control of the ecological balance of the microbiota and oral health.

In recent years, several authors have been studied the Streptococcus salivarius K12 strain as a probiotic in the treatment of tonsillitis caused by S. pyogenes, showing promising results.⁶⁷⁸.

As the S. salivarius species has only recently been used as a probiotic, when searching the literature for toxicity data of this species we found rare reports of toxicity studies, because it is a saprophytic and indigenous microorganism of the oral cavity. The only study on S. salivarius toxicity was carried out with the K12 strain, in which the authors analyzed toxicity, antibiotic resistance, virulence determinants, the production of deleterious metabolic by-products, and genetic stability.³ The various sets of data obtained in this study showed no evidence of toxicity and no acute or subacute toxicity effects associated with the K12 strain, leading to the cure of tonsillitis and otitis.

La Mantia et al²⁰ used the S. salivarius 24SMB and Streptococcus oralis 89a nasal spray Rinogermina for preventing recurrent acute otitis media in children. The results showed that all actively treated children with the highest acute otitis had a reduction of recurrence, whereas only 50% of the children in the control group had reduced the disease.

De Grandi et al²¹ studied the efficiency of nasal instillation of S. salivarius 24SMBc and S. oralis 89a. In particular, nasal swabs were sampled one, two, and four weeks after seven days of treatment with Rinogermina. They analyzed modulations of the abundance of pathogenic species such as Corynebacterium diphtheriae, Haemophilus parainfluenzae, Moraxella catarrhalis, Prevotella denticola, Prevotella melaninogenica, Rothia dentocariosa, Staphylococcus aureus, and Streptococcus pseudopneumoniae. They characterized a significant temporary decrease in those species. The beneficial effects of S. salivarius 24SMBc and S. oralis 89a nasal intake were assessed but seemed to be restricted in specific temporal windows.

Marquart et al²² studied virulence aspects of 22 streptococci strains isolated from endophthalmitis, one of which was Streptococcus salivarius. This strain showed amikacin resistance, vancomycin sensitivity, and intermediate cefazidime sensitivity. Bacterial genomic DNA from each of the 22 isolates was tested for the presence of the gene encoding pneumolysin, ply. This base pair gene is present in S. pneumoniae and encodes a cytotoxin involved in virulence, but the S. salivarius strain did not present it. The protease activity was also negative for this strain, as well as cytotoxicity or hemolytic.

To identify putative probiotics, Frick et al²³ tested some commensal bacteria on their toxicity, invasiveness, inhibition of Yersinia-induced inflammation in vitro and in vivo, and modulation of dextran sodium sulfate (DSS)-induced colitis in mice. None of the commensal bacteria tested, including Streptococcus salivarius, was toxic for or invaded the epithelial cells.

As the authors cited, despite different studies, our results also showed the absence of any virulent activity in vivo and in vitro, proving that the S. salivarius BIO5 strain can be used as a probiotic in the treatment or prevention of bacterial tonsillitis or other infections in humans.

The K12 strain is administered through tablets. Before administration, a mouthwash with strong antiseptics is required to eliminate part of the microbiota and facilitate the introduction of the strain in question. The authors who used S. salivarius 24SMB strains used an intranasal administration.⁹,¹⁰.

As we are discussing new bacteria and proposing their use as probiotics, it is appropriate to refer to the Food and Agriculture Organization (FAO), World Health Organization (WHO), and the International Scientific Association for Probiotics and Prebiotics (ISAPP).

In 2001, the Food and Agriculture Organization of the United Nations and the World Health Organization¹⁶ debated the field of probiotics, starting with the definition: “live microorganisms, which when administered in adequate amounts confer a health benefit on the host”.

Revisiting the term ‘probiotic’ in October 2013 by the International Scientific Association for Probiotics and Prebiotics (ISAPP)¹⁷ to discuss the field of probiotics, a more grammatically correct definition would be worded as, “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host”. The differentiation between probiotic and commensal was also established. Although probiotics are isolated from normal microbiota, as long as they are not isolated and proven to be beneficial to health, they cannot be called probiotics.

As the literature already shows several works published successfully on the treatment of tonsillitis, especially in children, with S. salivarius, we aim to use the BIO5 strain in the treatment and prevention of this disease but using a different vehicle from those used so far.

Confirming the absence of toxicity of the Streptococcus salivarius subsp salivarius BIO5 strain, we
feel confident in performing the next step, i.e. the study in humans, with this new strain, hoping we can call it a probiotic.

V. Conclusion

The test fulfilled the purposes to evidence potential toxic effects on animals - males and females - in any of the doses (1.0, 2.0, 4.0 ml/kg). Neither hematological nor pathological changes were observed in serum biochemistry among many different groups. The results obtained allowed us to affirm that the test product did not induce toxic effects evident in doses used of the Test Product analyzed, which is Streptococcus salivarius subsp salivarius BIO5. Therefore, the Streptococcus salivarius BIO5 strain can be safely used in the prevention or treatment of bacterial tonsillitis in humans as it has been shown that such strain did not cause any toxic effects in animals.

Bibliography References

1. Fantinato V, Camargo, HR, Sousa ALOP. (2018) Probiotics study with Streptococcus salivarius and its ability to produce bacteriocins and adherence to KB cells. Rev. Odontol UNESP: 48(1).
2. McCarthy C, Snyder ML, Parker RB. (1965) The indigenous oral flora of man. I. The newborn to the 1 year old infants. Arch Oral Biol (10):61-70.
3. Carlsson J, Grahnén H, Jonsson G, Wikner S. (1970) Early establishment of Streptococcus salivarius in the mouth of infants. J Dent Res. 49:415-8.
4. Tagg JR, Bannister LV. (1979) “Fingerprint” betahemolytic streptococci by their production of and sensitivity to bacteriocin-like inhibitors. J Med Microbiol.12:397-411.
5. Sahin MS, Yalcın MU, Kocyigit D. (2016) Prevalence of rheumatic heart disease in patients with recurrent tonsillitis and elevated anti-streptolysin O titers. Int J Pediatr Otorhinolaryngol. Oct; 89:133-5. doi: 10.1016/j.ijporl.2016.08.004. Epub 2016 Aug 6.
6. Wescombe PA, Heng NC, Burton JP, Chilcott CN, Tagg JR. (2009) Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol. 4(7):819-35. Review.
7. Di Pierro F, Colombo M, Giuliani MG, Danza ML, Basile I, Bollani T, Conti AM, Zanvit A, Rottoli AS. (2016) Effect of administration of Streptococcus salivarius K12 on the occurrence of streptococcal pharyngo-tonsillitis, scarlet fever and acute otitis media in 3 years old children. Eur Rev Med Pharmacol Sci. 20(21):4601-4606.
8. Di Pierro F, Risso P, Poggi E, Timitilli A, Bolloli S, Bruno M, Caneva E, Campus R, Giannattasio A. (2018) Use of Streptococcus salivarius K12 to reduce the incidence of pharyngo-tonsillitis and acute otitis media in children: a retrospective analysis in not-recurrent pediatric subjects. Minerva Pediatr. 70(3):240-245.
9. La Mantia I, Varricchio A, Ciprandi G. (2017) Bacteriotherapy with Streptococcus salivarius 24SMB and Streptococcus oralis 89a nasal spray for preventing recurrent acute otitis media in children: a real-life clinical experience. Int Gen Med. Jun 19; 10:171-175. doi: 10.2147/IGM.S137614.
10. De Grandi R, Bottagisio M, Di Girolamo S, Bidossi A, De Vecchi E, Drago L. (2019) Modulation of opportunistic species Corynebacterium diphteriae, Haemophilus parainfluenzae, Moraxella catarrhalis, Prevotella denticola, Prevotella melaninogenic, Rothia dentocariosa, Staphylococcus aureus and Streptococcus pseudopneumoniae by intranasal administration of Streptococcus salivarius 24SMBc and Streptococcus oralis 89a combination in healthy subjects. Eur Rev Med Pharmacol Sci. Mar; 23(1 Suppl):60-66. doi: L26355/eurrev_201903_17351.
11. Igarashi T, Yano Y, Sasa R, Yamamoto A, Goto N. (2001) Identification of Streptococcus salivarius by PCR and DNA probe. Letters Appl Microbiol. 32(6):394-97.
12. Animal hematotoxicology (2008) A practical guide for toxicologists and biomedical researchers. G O Evans/CRC Press. USA.
13. Burton JP, Chilcott CN, Wescombe PA, Tagg JR. (2010) Extended Safety Data for the Oral Cavity Probiotic Streptococcus salivarius K12. Probiotics Antimicrob Proteins. Oct; 2(3):135-44. doi: 10.1007/s12602-010-9045-4.
14. Marquart ME, Benton AH, Galloway RC, Stempack LM. (2018) Antibiotic susceptibility, cytotoxicity, and protease activity of viridans group streptococci causing endophthalmitis. PLoS One. 2018 Dec 21; 13(12): doi: 10.1371/journal.pone.0209849. eCollection 2018.
15. Frick JS, Fink K, F, Maria J. Niemiec MJ, Quitadamo M, Schenk K, Autenrieth IB. (2007). Identification of Commensal Bacterial Strains That Modulate Yersinia enterocolitica and Dextran Sodium Sulfate-Induced Inflammatory Responses: Implications for the Development of Probiotics. Infect Immun. Jul. 75(7): 3490–3497.
16. Health and nutritional properties of Probiotics in food including poder milk with live lactic acid bacteria. World Health Organization online].http://www.who.int/foodsafety/publications/fs _management/en/probiotics.pdf(2001).
17. Hill, C. et al. (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 published online 10 June 2014.