THE COHOMOLOGY OF \((S(n, k))\) RELEVANT TO MORAVA STABILIZER ALGEBRA

LIMAN CHEN, XIANGJUN WANG AND XUEZHI ZHAO

Abstract. In this paper we redefine a increasing filtration on the the Hopf algebra \(S(n, k)\), From which we get a spectral sequence called May spectral sequence. As an application we computed \(H^\ast S(n, n)\) at prime 2, \(H^\ast S(3, 2)\) at prime 3 and \(H^\ast S(4, 2)\) at prime \(p \geq 5\).

1. Introduction

In stable homotopy theory, the “chromatic” point of view plays an important role (cf. \([3, 11, 14]\)). Fix a prime \(p\). Let \(E(n)_\ast\), \(n \geq 0\) be the Johnson-Wilson homology theories and let \(L_n\) be localization functor with respect to \(E(n)_\ast\). Then there are natural transformations \(L_nX \longrightarrow L_{n-1}X\), and the chromatic tower

\[
\cdots \longrightarrow L_nX \longrightarrow L_{n-1}X \longrightarrow \cdots \longrightarrow L_2X \longrightarrow L_1X \longrightarrow L_0X.
\]

By the Hopkins-Ravenel chromatic convergence theorem, the homotopy inverse limit of this tower is the \(p\)-localization of \(X\).

\[X \longrightarrow \text{Holim}L_nX.\]

Thus the homotopy groups \(\pi_\ast(L_nX)\) is the part of homotopy groups \(\pi_\ast(X)\) one could see from \(E(n)_\ast\).

To determine the homotopy groups \(\pi_\ast(L_nX)\), one has the Adams-Novikov spectral sequence based on the Brown-Peterson spectrum \(BP\), whose \(E_2\)-term is

\[E_2^{s,t} = \text{Ext}^{s,t}_{BP,BP}(BP_\ast,BP_\ast(L_nX)).\]

(cf. \([1, 10, 11, 14]\))

To determine the Adams-Novikov \(E_2\)-term \(\text{Ext}^{s,t}_{BP,BP}(BP_\ast,BP_\ast(L_nX))\) one has the Bockstein spectral sequence. This is an argument based on the cohomology of the Morava stabilizer algebra \(S(n)\) at each prime \(p\) (cf. \([11, 16, 17, 19]\)). Here the Hopf algebra \(S(n)\) is defined as

\[S(n) = \mathbb{Z}/p \otimes_{K(n)_\ast} K(n)_\ast, K(n)_\ast \otimes_{K(n)_\ast} \mathbb{Z}/p,\]

where \(K(n)_\ast = \mathbb{Z}/p[v_n, v_n^{-1}]\),

\[K(n)_\ast, K(n) = K(n)_\ast \otimes_{BP} BP, BP \otimes_{BP} K(n)_\ast = K(n)_\ast[t_1, t_2, \ldots]/(v_n t_n^p - v_n^p t_n),\]

\(K(n)_\ast\) acts on \(\mathbb{Z}/p\) by sending \(v_n\) to 1. Thus

\[S(n) = \mathbb{Z}/p[t_1, t_2, \ldots, t_s]/(t_n^p - t_n).\]
We write \(S(n,k) = S(n)/(t_j : j < k) = \mathbb{Z}/p[t_k, t_{k+1}, \ldots, t_s, \ldots]/(t^n - t_s) \). The Hopf algebra structure of \(S(n) \) determines that of \(S(n,k) \), while \(S(1) = S(n) \). Let \(V(n-1) \) and \(T(k-1) \) denote the Smith-Toda spectra and the Ravenel spectra respectively characterized by

\[
BP_*V(n-1) = BP_*/I_n = BP_*(p, v_1, \ldots, v_{n-1}) \quad \text{and} \quad BP_*T(k-1) = BP_*[t_1, t_2, \ldots, t_{k-1}].
\]

If \(L_nV(n-1) \wedge T(k-1) \) exist, (although \(V(n-1) \) does not exist (cf. \([10]\)), but \(V(n-1) \wedge T(k-1) \) might exist), then by the change of rings theorem, the \(E_2 \)-term of the Adams-Novikov spectral sequence converging to \(\pi_*(L_n V(n-1) \wedge T(k-1)) \) is

\[
\Ext^{*,*}_{BP_*, BP_*}(BP_*, BP_*(L_n V(n-1) \wedge T(k-1))) \\
\cong \Ext^{*,*}_{S(n,k)}(\mathbb{Z}/p, \mathbb{Z}/p) \otimes K(n)_*[v_{n+1}, \ldots, v_{n+k-1}].
\]

In this paper, we will use \(H^{*,*}(S(n,k)) \) to denote the \(\Ext \) groups \(\Ext^{*,*}_{S(n,k)}(\mathbb{Z}/p, \mathbb{Z}/p) \).

In \([5, 13]\), Ravenel and Henn determined \(H^{*,*}(S(1)), H^{*,*}(S(2)) \) at all primes, and \(H^{*,*}(S(3)) \) at the odd primes \(p \geq 5 \). \(H^{*,*}(S(n,k)) \) is known from \([11]\) for \(k \geq n \) at odd primes and \(k > n \) at the prime 2. In \([15]\) Shimomura and Tokashiki computed \(H^{*,*}(S(n), n-1) \) at odd primes \(p > 3 \). In this paper we will be concentrated on the case \(k \leq n \).

Consider the cohomology of the Hopf algebra \(S(n,k) \) at all primes. In section 2 of this paper, we follow Ravenel’s ideal (cf. \([11]\) 3.2.5 Theorem), redefined the May filtration in \(S(n,k) \) and its cobar complex \(C^{*,*}(S(n,k)) \). This filtration induces a spectral sequence so called May spectral sequence \(E^{*,*,M}_{r}(n,k), d_r \) that converges to \(H^{*,*}(S(n,k)) \). Then in section 3 we prove that the \(E_2 \)-term of the May spectral sequence is isomorphic to the cohomology of

\[
\{E|h_{i,j}|k \leq i \leq s_0, j \in \mathbb{Z}/n| \otimes P|b_{i,j}|k \leq i \leq s_0 - n, j \in \mathbb{Z}/n|, d_1\}
\]

where \(s_0 = \max \left\{ \left\lfloor \frac{2pm + p - 2}{2(p - 1)} \right\rfloor, n + k - 1 \right\} \) and \(\left\lfloor \frac{2pm + p - 2}{2(p - 1)} \right\rfloor \) is the integer part of \(\frac{2pm + p - 2}{2(p - 1)} \). In particular, if

\[
n + k - 1 \geq \left\lfloor \frac{2pm + p - 2}{2(p - 1)} \right\rfloor,
\]

the May’s \(E_2 \)-term becomes the cohomology of

\[
\{E|h_{i,j}|k \leq i \leq n + k - 1, j \in \mathbb{Z}/n|, d_1\}.
\]

The homological dimension of each element is given by

\[
s(h_{i,j}) = 1, \quad s(b_{i,j}) = 2.
\]

For the May differentials, one has \(d_r : E^{*,*,M}_{r}(S(n,k)) \rightarrow E^{*,*,M-1}_{r}(S(n,k)) \) and if \(x \in E^{*,*,S}_{r}(S(n,k)) \) then

\[
d_r(x \cdot y) = d_r(x) \cdot y + (-1)^s x \cdot d_r(y).
\]

The first May differential \(d_1 \) is given by

\[
d_1(h_{i,j}) = - \sum_{k \leq m \leq i-k} h_{m,j} h_{i-m,j+k}, \quad \text{and} \quad d_1(b_{i,j}) = 0.
\]

We analyze the higher May differentials and give a collapse theorem in section 4. As an consequence we compute the cohomology of \(S(n,n) \) at the prime 2, \(S(3,2) \) at the prime 3 and \(S(4,2) \) at the prime \(p \geq 5 \) in section 5.
2. The May spectral sequence

Let \(p \) be a prime, \(BP_s = \mathbb{Z}_p[v_1, v_2, \cdots] \) and \(BP_sBP = BP_t[t_1, t_2, \cdots] \). For the Hazewinkel’s generators described inductively by \(v_s = pm_s - \sum_{i=1}^{k-1} v_i p^i m_i \) (cf. [4] and [10]) 1.2), the diagonal map \(\Delta : BP_sBP \to BP_sBP \otimes BP_sBP \) is given by
\[
\sum_{i+j=s} m_i(\Delta t_j) = \sum_{i+j+k=s} m_i t_j^i \otimes t_k^{i+j}.
\]
One can easily prove that
\[
\Delta(t_1) = t_1 \otimes 1 + 1 \otimes t_1
\]
\[
\Delta(t_2) = \sum_{i+j=2} t_i \otimes t_j^i - v_1 b_{1,0},
\]
where \(p \cdot b_{1,0} = \Delta(t_1^p) - t_1^p \otimes 1 - 1 \otimes t_1^p \). Inductively define
\[
p \cdot b_{s,k-1} = \Delta(t_s^p) - \sum_{i+j=s} t_i^p \otimes t_j^{i+p} + \sum_{0<i<s} v_i^{p^i} b_{s-i,k+i-1},
\]
one has
\[
\Delta(t_{s+1}) = \sum_{i+j=s+1} t_i \otimes t_j^i - \sum_{0<i<s+1} v_i b_{s+1-i,j-1}.
\]
Thus for the \(n \)-th Morava K-theory \(K(n) = \mathbb{Z}/p[v_n, v_n^{-1}] \), the Hopf algebra
\[
K(n)_* K(n) = K(n)_* \otimes_{BP_sBP} BP_sBP \otimes_{BP_sBP} K(n)_*
\]
is isomorphic to
\[
K(n)_* K(n) = \mathbb{Z}/p[t_1, t_2, \cdots, t_s, \cdots]/(v_n t_s^{p^n} - v_n^{p^s} t_s).
\]
And \(S(n) = \mathbb{Z}/p \otimes K(n)_* K(n) \otimes K(n)_* \), \(\mathbb{Z}/p \) is isomorphic to
\[
S(n) = \mathbb{Z}/p[t_1, t_2, \cdots, t_n, t_{n+1}, \cdots]/(t_s^{p^n} - t_s).
\]
The inner degree of \(t_s \) in \(S(n) \) is
\[
|t_s| \equiv 2(p-1)(1 + p + \cdots + p^{s-1}) \quad \text{mod } 2(p-1)(1 + p + \cdots + p^{n-1})
\]
because \(v_n \) is sent to 1. The structure map \(\Delta : S(n) \to S(n) \otimes S(n) \) acts on \(t_s \) as follows
\[
\Delta(t_s) = \sum_{0 \leq i \leq s} t_i \otimes t^{p^i}_{s-i} \quad \text{for } s \leq n
\]
\[
\Delta(t_s) = \sum_{0 \leq i \leq s} t_i \otimes t^{p^i}_{s-i} - b_{s-n,n-1} \quad \text{for } s > n
\]
where \(b_{i,j} = \sum_{0 < m < p} (p \cdot t^{m p^i}_{i} \otimes t^{p-m p^j}_{j} \) at odd primes and \(b_{i,j} = t_{i}^{2j} \otimes t_{i}^{j} \) at the prime 2. For the integer \(k \geq 1 \), let \(S(n,k) = S(n)/(t_s | s < k) \). We have
\[
S(n,k) = \mathbb{Z}/p[t_k, t_{k+1}, \cdots, t_{n+k}, t_{n+k+1}, \cdots]/(t_s^{p^n} - t_s),
\]
the structure map $\Delta : S(n,k) \to S(n,k) \otimes S(n,k)$ acts on t_s as

$$\Delta(t_s) = 1 \otimes t_s + \sum_{k \leq i \leq s-k} t_i \otimes t^{p^k}_{s-k} + t_s \otimes 1 \quad \text{for } s \leq n + k - 1,$$

(2.2) \hspace{1cm} \Delta(t_s) = 1 \otimes t_s + \sum_{k \leq i \leq s-k} t_i \otimes t^{p^k}_{s-k} + t_s \otimes 1 - b_{s-n,n-1} \quad \text{for } s \geq n + k.

In the resulting May spectral sequence, we want to have the 0-th May differential is

$$d_0(t^{p^n}_s) = 0$$

and the first May differential is given by

$$d_1(t_s) = t_k \otimes t^{p^k}_{s-k} + t_{k+1} \otimes t^{p^{k+1}}_{s-k-1} + \cdots + t_{s-k} \otimes t^{p^{s-k}}_1$$

for $s \leq n + k - 1$, and for $s \geq n + k$

$$d_1(t_s) = \begin{cases} t_k \otimes t^{p^k}_{s-k} + \cdots + t_{s-k} \otimes t^{p^{s-k}}_1 & \text{if the May filtration } M(t_k \otimes t^{p^k}_{s-k}) > M(b_{s-n,n-1}), \\ -b_{s-n,n-1} & \text{if the May filtration } M(t_k \otimes t^{p^k}_{s-k}) \leq M(b_{s-n,n-1}). \end{cases}$$

So we define the May filtration on $S(n,k)$ as:

Definition 2.3 In the Hopf algebra $S(n,k)$, we define May filtration M as follows:

1. For $k \leq s \leq n + k - 1$, set the May filtration of t^p_s as $M(t^p_s) = 2s - 1$.
2. For $n + k \leq s$, inductively set the May filtration of t^p_s as

$$M(t^p_s) = \max\{2s - 1, \ pM(t^p_{s-n}) + 1\},$$

3. For the monomial $t^{j_1}_s \cdot t^{j_2}_{s_2} \cdots t^{j_m}_{s_m}$, where $s_i \neq s_j$ define its May filtration as

$$M(t^{j_1}_s \cdot t^{j_2}_{s_2} \cdots t^{j_m}_{s_m}) = \sum_{1 \leq i \leq m} M(t^{j_i}_s).$$

Lemma 2.4 Let $s_0 = \max \left\{ \left\lfloor \frac{2pn + p - 2}{2(p-1)} \right\rfloor, n + k - 1 \right\}$ where $\left\lfloor \frac{2pn + p - 2}{2(p-1)} \right\rfloor$ is the integer part of $\frac{2pn + p - 2}{2(p-1)}$. Then the May filtration of t^p_s satisfies

1. $M(t^p_s) > M(t^p_{s-1}) + 1$ and
2. For $s \leq s_0$, the May filtration $M(t^p_s) = 2s - 1$.
3. For $s > s_0$, $pM(t^p_{s-n}) + 1 \geq 2s - 1$ and the May filtration $M(t^p_s) = pM(t^p_{s-n}) + 1$.

Proof.

1. If $s_0 = \max \left\{ \left\lfloor \frac{2pn + p - 2}{2(p-1)} \right\rfloor, n + k - 1 \right\} = n + k - 1$. From its definition, we see that for $s \leq n + k - 1 = s_0$, the May filtration of t^p_s is $2s - 1$ and $M(t^p_s) > M(t^p_{s-1}) + 1$.

From $n + k - 1 \geq \left\lfloor \frac{2pn + p - 2}{2(p-1)} \right\rfloor$, one sees that

$$s_0 + 1 = n + k > \frac{2pn + p - 2}{2(p-1)} \quad \text{and} \quad p(2k - 1) + 1 > 2(n + k) - 1.$$
Thus from \(M(t^p_{n+k}) = 2k - 1\), one knows that the May filtration of \(t^p_{n+k}\) is \(pM(t^p_k) + 1\) and
\[
M(t^p_{n+k}) = p(2k - 1) + 1 > 2(n + k) - 1 = M(t^p_{n+k-1}) + 1.
\]
Inductively suppose that \(M(t^p_s) > M(t^p_{s-1}) + 1\) and for \(s_0 < s \leq m\),
\[
pM(t^p_{s-n}) + 1 > 2s - 1,
\]
so the May filtration \(M(t^p_s) = pM(t^p_{s-n}) + 1\). Then from \(M(t^p_{m+1-n}) > M(t^p_{m-n}) + 1\) one get
\[
pM(t^p_{m+1-n}) + 1 > p\left(M(t^p_{m-n}) + 1\right) + 1 = pM(t^p_{m-n}) + p + 1
\]
\[
> 2m - 1 + p \geq 2(m + 1) - 1.
\]
The May filtration of \(t^p_{m+1}\) is \(pM(t^p_{m+1-n}) + 1\).

If \(s_0 = \left[\frac{2pm + p - 2}{2(p-1)}\right] > n + k - 1\), then for \(k \leq s \leq s_0\), \(s \leq \frac{2pm + p - 2}{2(p-1)}\). This implies
\[
p(2(s-n) - 1) + 1 \leq 2s - 1.
\]
From \(\frac{2pm + p - 2}{2(p-1)} \leq 2n\) we see that \(s - n \leq n \leq n + k - 1\). Thus the May filtration
\[
M(t^p_s) = 2(s - n) - 1 \quad \text{and} \quad M(t^p_s) + 1 < 2s - 1.
\]
This implies that the May filtration of \(t^p_s\) is \(2s - 1\) and \(M(t^p_s) > M(t^p_{s-1}) + 1\).

Notice that \(s_0 + 1 = \left[\frac{2pm + p - 2}{2(p-1)}\right] + 1 > \frac{2pm + p - 2}{2(p-1)}\), this implies
\[
p(2(s_0 + 1 - n) - 1) + 1 > 2(s_0 + 1 - 1).
\]
The May filtration of \(t^p_{s_0+1-n}\) is \(2(s_0 + 1 - n) - 1\), so the May filtration
\[
M(t^p_{s_0+1}) = pM(t^p_{s_0+1-n}) + 1.
\]
Similarly, by induction we get the Lemma. \(\square\)

Example: The May filtration in \(S(4, 2)\) is given by:

\[
\begin{array}{cccccccccc}
 t_2 & t_3 & t_4 & t_5 & t_6 & t_7 & t_8 & t_9 & t_{10} & \ldots \\
 p = 2 & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 19 & 23 & \ldots \\
 p = 3 & 3 & 5 & 7 & 9 & 11 & 16 & 22 & 28 & 34 & \ldots \\
 p \geq 5 & 3 & 5 & 7 & 9 & 3p+1 & 5p+1 & 7p+1 & 9p+1 & p(3p+1)+1 & \ldots \\
\end{array}
\]

Let \(F^{*,M}(n, k)\) be the sub-module of \(S(n, k)\) generated by the elements with May filtration \(\leq M\). Set \(E^{*,M}(n, k) = F^{*,M}(n, k)/F^{*,M-1}(n, k)\). One can see from Lemma 2.4 that
\[
(2.5) \quad E^{*,*}(n, k) \cong \bigotimes_{k \leq s} T[t^p_s | j \in Z/n]
\]
is a bigraded Hopf algebra, where \(T[\]\) denote the truncated polynomial algebra of height \(p\) on the indicated generators. The structure map
\[
\Delta : E^{*,*}(n, k) \rightarrow E^{*,*}(n, k) \otimes E^{*,*}(n, k)
\]
acts the the generators \(t^p_s\) as \(\Delta(t^p_s) = 1 \otimes t^p_s + t^p_s \otimes 1\).
Let $C^{s,t}(n,k) = \bigotimes \mathcal{S}(n,k)$ denote the cobar construction of $S(n,k)$ where $\mathcal{S}(n,k) = Ker \epsilon$ denote the augmentation ideal of $S(n,k)$. The differential

$$d : C^{s,t}(n,k) \rightarrow C^{s+1,t}(n,k)$$

is given on the generators as

$$d(\alpha_1 \otimes \cdots \otimes \alpha_s) = \sum_{1 \leq i \leq s} (-1)^i \alpha_1 \otimes \cdots \otimes (\Delta(\alpha_i) - \alpha_i \otimes 1 - 1 \otimes \alpha_i) \otimes \cdots \otimes \alpha_s.$$

(2.6)

In general, the generator $\alpha_1 \otimes \alpha_2 \otimes \cdots \otimes \alpha_s$ of $C^{s,t}(n,k)$ is denoted by $[\alpha_1|\alpha_2|\cdots|\alpha_s]$. For the generator $[\alpha_1|\alpha_2|\cdots|\alpha_s]$, define its May filtration as

$$M([\alpha_1|\alpha_2|\cdots|\alpha_s]) = M(\alpha_1) + M(\alpha_2) + \cdots + M(\alpha_s).$$

Let $FC^{s,t,M}(n,k)$ denote the sub-complex of $C^{s,t}(n,k)$ generated by the elements with May filtration $\leq M$. Then we get a short exact sequence

$$0 \rightarrow FC^{s,t,M-1}(n,k) \rightarrow FC^{s,t,M}(n,k) \rightarrow E^{s,t,M}_0(n,k) \rightarrow 0$$

of cochain complexes. The cochain complex

$$E^{s,t,M}_0(n,k) = FC^{s,t,M}(n,k)/FC^{s,t,M-1}(n,k)$$

is isomorphic to the cobar complex of $E^{*,*}(n,k)$ given in (2.5). Let $E^{s,t,M}_1(n,k)$ be the homology of $(E^{s,t,M}_0(n,k), d_0)$. Then (2.7) gives rise to a spectral sequence (so called the May spectral sequence)

$$\{E^{s,t,M}_r(n,k), d_r\}$$

that converges to

$$H^{s,t}(C^{s,t}(n,k), d) = Ext^{s,t}_{S(n,k)}(\mathbb{Z}/p, \mathbb{Z}/p).$$

Theorem 2.8 For $k \leq n$ the Hopf algebra $S(n,k)$ can be given an increasing filtration as in Definition (2.3). The associated bigraded Hopf algebra $E^{s,t,M}(n,k)$ is primitively generated with the algebra structure of (2.5). In the associated spectral sequence, the E_1-term $E^{s,t,M}_1(n,k)$ is isomorphic to

$$E[h_{i,j} | k \leq i, j \in \mathbb{Z}/n] \otimes P[h_{i,j} | k \leq i, j \in \mathbb{Z}/n].$$

The homological dimension of each element is given by $s(h_{i,j}) = 1, s(b_{i,j}) = 2$ and the degree is given by

$$h_{i,j} \in E^{1,2(p'-1)p',*}_{1}(n,k),$$

$$b_{i,j} \in E^{2,2(p'-1)p'+1,*}_{1}(n,k)$$

where $h_{i,j}$ corresponds to ℓ^p_i and $b_{i,j}$ corresponds to $\sum (\begin{pmatrix} p \end{pmatrix}/m_i^{mp'_i} \otimes \ell_i^{(p-m)p'})$. One has

$$d_r : E^{s,t,M}_r(n,k) \rightarrow E^{s+1,t,M-r}_{r}(n,k)$$

and if $x \in E^{s,t,*}_r(n,k)$ then

$$d_r(x \cdot y) = d_r(x) \cdot y + (-1)^s x \cdot d_r(y).$$

In the E_1-term of this spectral sequence, we have the following relations:

$$h_{i,j} \cdot h_{i,j} = -h_{i,j} \cdot h_{i,j}, \quad h_{i,j} \cdot b_{i,j} = b_{i,j} \cdot h_{i,j}, \quad b_{i,j} \cdot b_{i,j} = b_{i,j} \cdot b_{i,j}.$$
Proof. It is a routine calculation in homology algebra that for the truncated polynomial algebra $\Gamma = T[x]$ with $|x| \equiv 0 \mod 2$ and x primitive,

$$Ext^{1}(Z/p, Z/p) = E[h] \otimes P[b]$$

where $h \in Ext^{1}$ is represented in the cobar complex by x and $b \in Ext^{2}$ is represented by $\sum \binom{n}{m}/p(x^{m} \otimes x^{p-m})$ ($b = h^{2}$ represented by $x \otimes x$ at the prime 2). Notice that the E_{0}-term of the spectral sequence is isomorphic to the cobar complex of $E^{*,M}(n,k)$. Theorem 4.3.22, in the cobar complex of BP/I_{n} Theorem 3.3 and Lemma 3.4 and 3.8).

Thus (3.1) and (3.2) are given by

$$H^{*,M}(E_{0}^{*,M},(n,k),d_{0}) = Ext^{*,M}_{T[x^{p}]}(Z/p,Z/p) = \bigotimes_{k \leq s} Ext^{*,*}_{T[x^{p}]}(Z/p,Z/p)$$

Thus the May’s E_{1}-term

$$E_{1}^{*,M}S(n,k) = E[h_{i,j}|i \leq s, j \leq Z/n] \otimes P[b_{i,j}|k \leq i,j \leq Z/n].$$

Notice that $d_{0}(t_{i}^{p^{j}} \cdot t_{1}^{p^{j}}) = -t_{i}^{p^{j}} \otimes t_{1}^{p^{j}} - t_{1}^{p^{j}} \otimes t_{i}^{p^{j}}$, we get $h_{i,j}h_{i_{1},j_{1}} = h_{i_{1},j_{1}}h_{i,j}$. In a similar way, one can prove that $h_{i,j} \cdot b_{i_{1},j_{1}} = b_{i_{1},j_{1}} \cdot h_{i,j}$ and $b_{i,j} \cdot b_{i_{1},j_{1}} = b_{i_{1},j_{1}} \cdot b_{i,j}$ (cf. [6] Lemma 3.4 and 3.8).

3. The first May differentials

Now suppose $k \leq n$, then $s_{0} \leq 2n$. From (2.2) and Lemma 2.4 one has

$$d_{1}(h_{i,j}) = - \sum_{k \leq r \leq i} h_{r,j}h_{i-r,j+r} \quad \text{for } i \leq s_{0}$$

$$d_{1}(h_{i,j}) = b_{i-n,j+n-1} \quad \text{for } s_{0} < i.$$

Thus for $i > s_{0} - n$, $b_{i,j}$ is the boundary of the first May differentials. Recall from [10] Theorem 4.3.22, in the cobar complex of BP/I_{n} one has

$$d_{1}(b_{i,j}) = \sum_{0 < r < i} \left(b_{r,j} \otimes t_{i-r}^{p^{j+1}} - t_{r}^{p^{j+1}} \otimes b_{i-r,j+r}
ight)$$

Thus for $i \leq s_{0} - n$, the first May differential $d_{1}(b_{i,j}) = 0$. This implies:

Theorem 3.3 Let $k \leq n$ and s_{0} be given in Lemma 2.4. The E_{2}-term of the May spectral sequence is isomorphic to the cohomology of

$$E_{1}^{*,*}S(n,k) = E[h_{i,j}|k \leq i \leq s_{0}, j \leq Z/n] \otimes P[b_{i,j}|k \leq i \leq s_{0} - n, j \leq Z/n].$$

The first May differential are given by

$$d_{1}(h_{i,j}) = - \sum_{k \leq r \leq i} h_{r,j}h_{i-r,j+r} \quad \text{for } i \leq s_{0}$$

$$d_{1}(b_{i,j}) = 0 \quad \text{for } k \leq i \leq s_{0} - n.$$

At the prime $p = 2$, $s_{0} = 2n$. The reduced May E_{1}-term becomes

$$E_{1}^{*,*}S(n,k) = E[h_{i,j}|n < i \leq 2n, j \leq Z/n] \otimes P[h_{i,j}|k \leq i \leq n, j \leq Z/n]$$

and the first May differential of $h_{2n,j}$ is given by

$$d_{1}(h_{2n,j}) = - \sum_{k \leq i \leq 2n-k} h_{i,j}h_{2n-i,j+i} + h_{n,j+n-1}^{2}$$
Proof. We define a filtration in the May’s E_1-term
\[E_1^{*,*}(n, k) = E[h_{i,j} | k \leq i, j \in \mathbb{Z}/n] \otimes P[b_{i,j} | k \leq i, j \in \mathbb{Z}/n] \]
as follows: for each $s \geq k$, define
\[
F^s(n, k) = \begin{cases}
E[h_{i,j} | k \leq i \leq s] & \text{for } k \leq s \leq n + k - 1 \\
E[h_{i,j} | k \leq i \leq s] \otimes P[b_{i,j} | k \leq i \leq s - n] & \text{for } n + k - 1 < s.
\end{cases}
\]
From (3.1), we see that for each $s \geq k$, $F^s(n, k)$ is a sub-complex of $E_1^{*,*}(n, k)$ that satisfies
\[F^{s_0}(n, k) = \tilde{E}_1^{*,*}(n, k) = E[h_{i,j} | k \leq i \leq s_0, j \in \mathbb{Z}/n] \otimes P[b_{i,j} | k \leq i \leq s_0 - n, j \in \mathbb{Z}/n] \]
and
\[F^k(n, k) \hookrightarrow F^{k+1}(n, k) \hookrightarrow \cdots \hookrightarrow F^s(n, k) \hookrightarrow F^{s+1}(n, k) \hookrightarrow \cdots \hookrightarrow E_1^{*,*}(n, k). \]
Indeed, for $s > n + k - 1$,
\[F^s(n, k) = F^{s-1}(n, k) \bigotimes (E[h_{s,j} | j \in \mathbb{Z}/n] \otimes P[b_{s-n,j} | j \in \mathbb{Z}/n]). \]
For $s > s_0$ one has $d_1(h_{s,j}) = b_{s-n,j+n-1}$. Thus
\[E[h_{s,j} | j \in \mathbb{Z}/n] \otimes P[b_{s-n,j} | j \in \mathbb{Z}/n] \]
is a sub-complex of $F^s(n, k)$ whose cohomology is \mathbb{Z}/p concentrated at dimensional 0. This implies
\[H^* F^{s_0}(n, k) \cong H^* F^{s+1}(n, k) \cong \cdots \cong H^* F^s(n, k) \cong \cdots \cong H^* E_1^{*,*}(n, k) \]
At prime $p = 2$, $s_0 = \left\lfloor \frac{2 \times 2n}{2} \right\rfloor = 2n > n + k - 1$. The first May differentials are deduced from (2.2). \hfill \Box

As a corollary one can easily see that if $\frac{2pn + p - 2}{2(p - 1)} \leq n + k - 1$, then the reduced May’s E_1-term becomes
\[\tilde{E}_1^{*,*}(n, k) = E[h_{i,j} | k \leq i \leq n + k - 1, j \in \mathbb{Z}/n]. \]

Theorem 3.4 If $\frac{2pn + p - 2}{2(p - 1)} \leq n + k - 1$, then the cohomology of $S(n, k)$ is of dimensional n^2.

4. **The higher May differentials in the MSS for $S(n, k)$**

From (3.2) we see that the first non-trivial May differential of $b_{i,j}$ appears at
\[
d_r(b_{i,j}) = \begin{cases}
0 & \text{if } i < 2k. \\
\xi_{i-k,j} h_{k,j} + \xi_{i-k,j+1} h_{k,j+1} & \text{if } i \geq 2k.
\end{cases}
\]
In [6] (2.10) and (2.11), a collapse theorem is given for the higher May differentials in the exterior part $E[h_{i,j} | i > 0, j \geq 0]$ of the MSS for the steenrod algebra A at odd primes. In this section, we will give a similar collapse theorem for the higher May differentials of $E_1^{*,*}(n, k)$.

Let p be an odd prime. We define a Hopf algebra $T(n, k)$ as
\[
T(n, k) = P[\xi_i | k \leq i \leq n + k - 1].
\]
The inner degree of ξ_i is defined to be $|\xi_i| = 2(p-1)(1+p+\cdots+p^{i-1})$ and the structure map $\Delta : T(n,k) \to T(n,k) \otimes T(n,k)$ acts on ξ_i by

$$\Delta(\xi_i) = \xi_i \otimes 1 + \sum_{k \leq r \leq i-k} \xi_r \otimes \xi_{i-r}^p + 1 \otimes \xi_i.$$

There is a Hopf algebra reduction homomorphism $\Phi : T(n,k) \to S(n,k)$ which send ξ_i to t_i. The image of Φ is $P[t_i | k \leq i \leq n+k-1]/(t_i^{p^k} - t_i)$ and $\text{Ker} \Phi$ is the idea generated by $(\xi_i^p - \xi_i)$. Further more the homomorphism Φ also induces homomorphism in cobar complexes and cohomologies

$$\Phi : \text{Ext}^{*,*}_{T(n,k)}(Z/p, Z/p) \to \text{Ext}^{*,*}_{S(n,k)}(Z/p, Z/p).$$

Similar to that of definition 2.3, we set May filtration on $T(n,k)$ as

$$M(\xi_i^{p^k}) = 2i - 1$$

and let $F^{*,*}T(n,k)$ be the sub-module of $T(n,k)$ generated by the elements with May filtration $\leq M$. Then $E^{*,*}T(n,k) = F^{*,*}T(n,k)/F^{*,*}T(n,k)$ becomes a bigraded Hopf algebra with the structure of

$$E^{*,*}T(n,k) = \bigotimes T[\xi_i^{p^k} | k \leq i \leq n+k-1, \ j \geq 0]$$

and $\Delta(\xi_i^{p^k}) = \xi_i^{p^k} \otimes 1 + 1 \otimes \xi_i^{p^k}$.

Consider the cobar construction $C^{*,*}T(n,k)$ of $T(n,k)$. Similarly for the generator $[\beta_1|\beta_2|\cdots|\beta_s]$ of $C^{*,*}T(n,k)$ define its May filtration as

$$M([\beta_1|\beta_2|\cdots|\beta_s]) = M(\beta_1) + M(\beta_2) + \cdots + M(\beta_s)$$

and let $FC^{*,*}T(n,k)$ denote the sun-complex generated by elements with May filtration $\leq M$. We get a spectral sequence $E_r^{*,*}T(n,k)$, d_r with E_0-term

$$E_0^{*,*}T(n,k) = FC^{*,*}T(n,k)/FC^{*,*}T(n,k)$$

which is isomorphic to the cobar complex of $E^{*,*}T(n,k)$. The E_1-term of this spectral sequence is isomorphic to

$$E_1^{*,*}T(n,k) = E[h_{i,j} | k \leq i \leq n+k-1, \ j \geq 0] \otimes P[b_{i,j} | k \leq i \leq n+k-1, \ j \geq 0].$$

Noticed that the reduction map $\Phi : T(n,k) \to S(n,k)$ is May filtration preserving, it induces a homomorphism of May spectral sequences

$$\Phi : E^{*,*}_r T(n,k) \to E^{*,*}_r S(n,k).$$

Theorem 4.4 The reduction map $\Phi : T(n,k) \to S(n,k)$ induces a homomorphism between May spectral sequences $\Phi : E^{*,*}_1 T(n,k) \to E^{*,*}_1 S(n,k)$ which sends $h_{i,j}$ and $b_{i,j}$ to $h_{i,j}$ and $b_{i,j}$ respectively. It sends infinite cocycles of $E^{*,*}_r T(n,k)$ to that of $E^{*,*}_r S(n,k)$.

Similar to [6] (2.10) and (2.11) we give a collapse theorem in the MSS for $T(n,k)$. To the generators $h_{i,j}$, $b_{i,j} \in E^{*,*}_1 T(n,k)$ define their index as

$$SI(h_{i,j}) = SI(b_{i,j}) = i.$$

given a monomial $g = x_1 x_2 \cdots x_m \in E^{*,*}_1 T(n,k)$ where each x_i is of the generators $h_{i,j}$ or $b_{i,j}$, define its sum of index as

$$SI(g) = SI(x_1) + SI(x_2) + \cdots + SI(x_m).$$

For example the sum of index of $h'_{4,0} h'_{3,0} b'_{2,1}$ is 9.
We use \(s(x) \) to denote the homological dimension of \(x \). Noticed that the May filtration of \(h'_{i,j} \), \(b'_{i,j} \) satisfies

\[
M(h'_{i,j}) = 2i - 1 = 2SI(h'_{i,j}) - 1 = 2SI(h'_{i,j}) - s(h'_{i,j})
\]
\[
M(b'_{i,j}) = p(2i - 1) > 2SI(b'_{i,j}) - 2 = 2SI(b'_{i,j}) - s(h'_{i,j})
\]
we see that for the monomial \(g = x_1x_2 \cdots x_m \in E^*_T(n,k) \) of homological dimension \(s \), its May filtration satisfies

\[
M(g) = M(x_1) + M(x_2) + \cdots + M(x_m)
\]
\[
\geq 2SI(x_1) - s(x_1) + 2SI(x_2) - s(x_2) + \cdots + 2SI(x_m) - s(x_m)
\]
\[
= 2SI(g) - s
\]
and the equality holds if and only if \(g \) is a monomial in \(E[h'_{i,j}] | k \leq i \leq n + k - 1, j \geq 0 \).

Given an integer \(t = 2(p-1)(c_0 + c_1p + \cdots + c_mp^m) \) with \(0 \leq c_i < p \), we define its sum of degree as

\[
Sd(t) = c_0 + c_1 + \cdots + c_m
\]
and for an element \(g \in E^*_T(n,k) \), express its inner degree \(|g|\) as \(|g| = 2(p-1)(c_0 + c_1p + \cdots + c_mp^m)\), where \(0 \leq c_i < p \) and define its sum of degree to be

\[
Sd(g) = Sd(|g|) = c_0 + c_1 + \cdots + c_m.
\]

Then from

\[
|h'_{i,j}| = 2(p-1)(p^j + p^{j+1} + \cdots p^{j+i-1})
\]
\[
|b'_{i,j}| = 2(p-1)(p^{j+1} + p^{j+2} + \cdots + p^{j+i})
\]
we see that \(SI(h'_{i,j}) = Sd(h'_{i,j}), SI(b'_{i,j}) = Sd(b'_{i,j}). \) But for the reason of the \(p \)-adic numbers one has

\[
SI(x_1x_2 \cdots x_s) \geq Sd(x_1x_2 \cdots x_m).
\]

Theorem 4.9 In the May spectral sequence for \(T(n,k) \),

1. If the inner degree \(t = 2(p-1)(c_0 + c_1p + \cdots + c_mp^m) \) and the May filtration
 \[M < 2Sd(t) - s = 2(c_0 + c_1 + \cdots + c_m) - s, \]
 then the May’s \(E_1 \)-term \(E_1^{s,t,M}T(n,k) = 0. \)
2. If a cocycle \(g \in E[h'_{i,j}] | k \leq i \leq n + k - 1, j \geq 0 \) in the exterior part of May’s \(E_1 \)-term satisfies \(SI(g) = Sd(g) \), then it is an infinite cocycle in the MSS for \(T(n,k) \) and \(\Phi(g) \) is an infinite cocycle in the MSS for \(S(n,k) \).

Proof. (1) follows from (4.6) and (4.8).

Suppose \(g \in E[h'_{i,j}] | k \leq i \leq n + k - 1, j \geq 0 \) is a cocycle in the exterior part of May’s \(E_1 \)-term \(E_1^{s,t,M}T(n,k) \) that satisfies \(SI(g) = Sd(g) \). Then its May filtration \(M = 2SI(g) - s = 2Sd(t) - s \). Consider the higher May differentials

\[
d_r : E_r^{s,t,M}T(n,k) \to E_r^{s+1,t,M-r}T(n,k),
\]
we see that \(M - r < 2Sd(t) - (s + 1) \) for \(r > 1 \). Thus the target \(E_r^{s+1,t,M-r}T(n,k) \) and then \(E_r^{s+1,t,M-r}T(n,k) \) is zero. \(\square \)
Example Let $p \geq 5$. The E_2-term of the May spectral sequence for $H^{*,*}S(4,2)$ is isomorphic to the homology of

$$E[h_{2,j}, h_{3,j}, h_{4,j}, h_{5,j} | j \in \mathbb{Z}/4]$$

with first May differentials

$$d_1(h_{2,j}) = 0, \quad d_1(h_{3,j}) = 0, \quad d_1(h_{4,j}) = h_{2,j}h_{2,j+2}, \quad d_1(h_{5,j}) = h_{2,j}h_{3,j+2} + h_{3,j}h_{2,j+3}.$$

So $h_{5,0}h_{4,0}h_{3,0}h_{2,0}$ is a cohomology class in May’s E_2-term.

To prove that $h_{5,0}h_{4,0}h_{3,0}h_{2,0}$ is a 4-dimensional cocycle in the MSS $E^{4,*}_1S(4,2)$, consider the MSS for $T(4,2)$. $h_{5,0}h'_{4,0}h'_{3,0}h'_{2,0}$ is a 4-dimensional cocycle in the exterior part of May’s E_1-term $E^{4,*,M}_1T(4,2)$.

$$\deg(h'_{5,0}h'_{4,0}h'_{3,0}h'_{2,0}) = 2(p-1)(4 + 4p^2 + 2p^3 + p^4),$$

$$SI(h'_{5,0}h'_{4,0}h'_{3,0}h'_{2,0}) = 14 = Sd(h'_{5,0}h'_{4,0}h'_{3,0}h'_{2,0}).$$

Thus it is an infinite cocycle in the MSS for $T(4,2)$ and $h_{5,0}h_{4,0}h_{3,0}h_{2,0} = \Phi(h'_{5,0}h'_{4,0}h'_{3,0}h'_{2,0})$ is an infinite cocycle in the MSS for $S(4,2)$.

5. The Cohomology of $S(n, n)$ at $p = 2$ and of $S(3, 2)$ at $p = 3$

As an application of Theorem 3.3, we will compute $H^{*,*}S(n, n)$ at $p = 2$, $H^{*,*}S(3, 2)$ at prime $p = 3$ and $H^{*,*}S(4, 2)$ at prime $p \geq 5$ in this section.

5.1. The cohomology of $S(n, n)$ at prime two. Consider the cohomology of $S(n, n)$ at $p = 2$. The reduced Mays E_1-term becomes

$$\tilde{E}_1^{*,*}S(n, n) = P[h_{n,j} | j \in \mathbb{Z}/n] \otimes E[h_{s,j} | n < s < 2n, j \in \mathbb{Z}/n]$$

(cf. Theorem 3.3). Noticed that the only non-trivial first May differential is

$$d_1(h_{2n,j}) = h_{2n,j-1} + h_{2n,j}.$$

We see that the E_2-term is the tensor product of $E[h_{s,j}] | n < s < 2n]$ and the cohomology of

$$\{ P[h_{n,j} | j \in \mathbb{Z}/n] \otimes E[h_{2n,j} | j \in \mathbb{Z}/n], \quad d_1 \}.$$

Lemma 5.2 The May’s E_2-term $E_2^{*,*,*}S(n, n)$ at $p = 2$ is isomorphic to the tensor product of $E[h_{s,j}] | n < s < 2n, j \in \mathbb{Z}/n]$ and $E[h_{n,j}, \rho_{2n} | j \in \mathbb{Z}/n] \otimes P[h_{n,j-1}]$, where $\rho_{2n} = \sum_{0 \leq j < n} h_{2n,j}$ and $h_{2n,j} = h_{n,n-1} - h_{2n,j}$.

Proof. We define $b_{n,j} = h_{n,j} + h_{n,j+1}$ for $0 \leq j \leq n - 2$ and define $b_{n,n-1} = h_{n}^{2}$ for $j = n$. It is easy to see that $P[h_{n,j} | j \in \mathbb{Z}/n]$ could be divided as the tensor product of $P[b_{n,j} | 0 \leq j < n]$ and $E[h_{n,j} | j \in \mathbb{Z}/n]$ as $\mathbb{Z}/2$-modules.

$$P[h_{n,j} | 0 \leq j \leq n - 1] = P[b_{n,j} | 0 \leq j \leq n - 1] \otimes E[h_{n,j} | 0 \leq j \leq n - 1].$$

From (5.1) we see that

$$d_1(h_{2n,j}) = \begin{cases} b_{n,j-1} & \text{if } 1 \leq j < n \\ \sum_{0 \leq i < n-2} b_{n,i} & \text{if } j = n. \end{cases}$$

The cohomology of $\{ P[h_{n,j} | j \in \mathbb{Z}/n] \otimes E[h_{2n,j} | j \in \mathbb{Z}/n], \quad d_1 \}$ is isomorphic to the tensor product of $E[h_{n,j} | j \in \mathbb{Z}/n]$ and the cohomology of

$$P[b_{n,j} | 0 \leq j < n] \otimes E[h_{2n,j} | j \in \mathbb{Z}/n].$$
The generator of \(P[b_{n,j}|j \in \mathbb{Z}/n] \) are denoted as
\[
b^{s_1}_{n,i_1} b^{s_2}_{n,i_2} \cdots b^{s_m}_{n,i_m}
\]
such that \(s_i > 0 \), \(0 \leq i_1 < i_2 < \cdots < i_m < n \) and the generators of \(E[h_{2n,j}|j \in \mathbb{Z}/n] \) are denoted as
\[
h_{2n,j_k} \cdots h_{2n,j_2} h_{2n,j_1}
\]
such that \(n \geq j_k > \cdots > j_2 > j_1 > 0 \).

For the generators of \(E[h_{2n,j}|0 < j \leq n] \otimes P[b_{n,j}|0 \leq j < n] \) described as above, one has

1. For \(j_1 > i_1 + 1 \),
\[
h_{2n,j_k} \cdots h_{2n,j_2} h_{2n,j_1} b^{s_1}_{n,i_1} b^{s_2}_{n,i_2} \cdots b^{s_m}_{n,i_m}
\]
is the leading term of the first May differential
\[
d_1(h_{2n,j_k} \cdots h_{2n,j_2} h_{2n,j_1} h_{2n,i_1-1} b^{s_1}_{n,i_1} b^{s_2}_{n,i_2} \cdots b^{s_m}_{n,i_m}).
\]
While for \(i_1 < n - 1 \),
\[
b^{s_1}_{n,i_1} b^{s_2}_{n,i_2} \cdots b^{s_m}_{n,i_m}
\]
is the leading term of the first May differential
\[
d_1(h_{2n,i_1+1} b^{s_1}_{n,i_1} b^{s_2}_{n,i_2} \cdots b^{s_m}_{n,i_m}).
\]

2. For \(j_1 \leq i_1 + 1 \) and \(j_1 < n \), the leading term of the first May differential
\[
d_1(h_{2n,j_k} \cdots h_{2n,j_2} h_{2n,j_1} b^{s_1}_{n,i_1} b^{s_2}_{n,i_2} \cdots b^{s_m}_{n,i_m})
\]
is
\[
h_{2n,j_k} \cdots h_{2n,j_2} b_{2n,j_1-1} b^{s_1}_{n,i_1} b^{s_2}_{n,i_2} \cdots b^{s_m}_{n,i_m}.
\]

3. For \(j_1 = n = i_1 + 1 \),
\[
d_1(h_{2n,n} b^{s_1}_{n,n-1} \cdot x) = \sum_{i=0}^{n-2} b_{n,i} b^{s_1}_{n,n-1} \cdot x = d_1(\sum_{i=0}^{n-2} h_{2n,i+1} b^{s_1}_{n,n-1} \cdot x)
\]

Thus the cohomology of \(E[h_{2n,j}|j \in \mathbb{Z}/n] \otimes P[b_{n,j}|j \in \mathbb{Z}/n] \) is isomorphic to \(E[p_{2n}|j \in \mathbb{Z}/n] \otimes P[b_{n,n-1}] \), where \(\rho_{2n} = \sum_{0 \leq j < n} h_{2n,j} \). The Lemma follows.

Theorem 5.3 The Mayer E_\(\infty \)-term \(E^{\ast,\ast}_{\infty} S(n,n) \) is isomorphic to its \(E_2 \)-term. Thus the cohomology of \(S(n,n) \) at prime 2 isomorphic to the tensor product of \(E[h_{s,j}|n < s < 2n] \) and \(E[h_{n,j}, \rho_{2n}, j \in \mathbb{Z}/p] \otimes P[h_{n,0}] \)

Proof. It is easy to see from (2.2) that for \(n \leq s < 2n \), \(h_{s,j} \) is an infinite cocycle. From \(d(t_{2n} + t_{2n}^2 + \cdots + t_{2n}^{2n-1}) = 0 \) we get the infinite cocycle \(\rho_{2n} \). The Theorem follows.

5.2. The cohomology of \(S(3,2) \) at prime 3.

Now consider the cohomology of \(S(3,2) \) at prime \(p = 3 \). From Lemma 2.4 we see that the \(s_0 = 4 \). Thus from Theorem 3.3 we see that the reduced May’s \(E_1 \)-term is

\[
E^{\ast,\ast}_{1} S(3,2) = E[h_{2,j}, h_{3,j}, h_{4,j}|j \in \mathbb{Z}/3]
\]

and the first May differentials are given by
\[
d_1(h_{2,j}) = 0 \quad d_1(h_{3,j}) = 0 \quad \text{and} \quad d_1(h_{4,j}) = -h_{2,j} h_{2,j+2}.
\]
The May’s E_2-term is isomorphic to

$$E_2^{*,*,*}S(3,2) = H^{*,*,*}(E[h_{2,j}, h_{4,j}|j \in Z/3], d_1) \otimes E[h_{3,j}|j \in Z/3]$$

Lemma 5.5 The May E_2-term for $H^*S(3,2)$ at $p = 3$ has Poincare series $(x^6 + 3x^5 + 6x^4 + 9x^3 + 6x^2 + 3x + 1)(x + 1)^3$. It is the tensor product of $E[h_{3,j}|j \in Z/3]$ and the $Z/3$ module C generated by the following element.

Dimension	0	1	2	3	4	5	6	A	
Generators	$h_{2,j}$	g_j	l_j	k_j	l_j'	k_jk_{j+1}	g_jg_{j+1}	g_jl_{j+1}	\(A\)

where \(j \in Z/3\), \(g_j = h_{4,j}h_{2,j}\), \(k_j = h_{4,j}h_{2,j+2}\), \(l_j = h_{4,j}h_{4,j+1}h_{2,j}\) and

\[
\begin{align*}
l_j' &= h_{4,j}h_{4,j+1}h_{2,j+1} + h_{4,j+1}h_{4,j+2}h_{2,j} \\
A &= h_{4,0}h_{4,1}h_{4,2}h_{2,0}h_{2,1}h_{2,2} = -g_0g_1g_2.
\end{align*}
\]

Proof. From (5.4), it is easy to see that $d_1(h_{4,j}h_{2,j}) = 0$, $d_1(h_{4,j}h_{2,j+2}) = 0$ and from $d_1(h_{4,j+1}) = h_{2,j+1}h_{2,j+3} = h_{2,j+1}h_{2,j}$, we see that $d_1(h_{4,j}h_{4,j+1}h_{2,j}) = 0$. These gives the cohomology classes g_j, k_j and l_j. From

\[
\begin{align*}
d_1(h_{4,j}h_{4,j+1}h_{2,j+1}) &= -h_{2,j}h_{2,j+2}h_{4,j+1}h_{2,j+1} = -h_{4,j+1}h_{2,j}h_{2,j+1}h_{2,j+2} \\
d_1(h_{4,j+1}h_{4,j+2}h_{2,j}) &= h_{4,j+1}h_{2,j+2}h_{2,j+4}h_{2,j} = h_{4,j+1}h_{2,j}h_{2,j+1}h_{2,j+2}
\end{align*}
\]

we get l_j'. A routine computation shows that $H^*(E[h_{2,j}, h_{4,j}|j \in Z/3]) = C$. \(\square\)

Theorem 5.6 The May E_2-term for $H^{*,*}S(3,2)$ at $p = 3$ is the E_∞-term, thus $H^{*,*}S(3,2)$ is the tensor product of $E[h_{3,j}|j \in Z/3]$ and C.

Proof. It is easy to see that $h_{2,j}$ and $h_{3,j}$ are infinite cycles. To prove that all the higher May differentials are trivial, consider the May filtration of each generator in the E_2-term and the differentials

$$d_r : E_r^{*,*,M}S(3,2) \to E_r^{*,1,M-r}S(3,2).$$

One has

\[
\begin{align*}
g_j &\in E_2^{2,*,10}S(3,2) \\
l_j &\in E_2^{3,*,17}S(3,2) \\
h_{2,j} &\in E_2^{1,*,3}S(3,2) \\
k_j &\in E_2^{2,*,10}S(3,2) \\
l_j' &\in E_2^{3,*,17}S(3,2) \\
h_{3,j} &\in E_2^{1,0,5}S(3,2).
\end{align*}
\]

The May filtration of g_j and k_j are 10. Beside, it is easy to check that each generator in the 3rd dimension $E_2^{3,*,*}S(3,2)$ listed as below

$$l_j, \quad l_j', \quad k_jh_{2,j}, \quad g_jh_{3,i}, \quad k_jh_{3,i}, \quad h_{3,i}h_{3,j}h_{2,k}, \quad h_{3,0}h_{3,1}h_{3,2}$$

has May filtration ≥ 10. Thus g_j and k_j are infinite cycles. Similarly one can prove that l_j and l_j' are infinite cycles. This complete the proof. \(\square\)
5.3. The cohomology of $S(4,2)$ at the primes $p > 3$. In this case, $s_0 = 5$ and the reduced May’s E_1-term is

$$
E_1^{t,*} \cong S(4,2) = E[h_{2,j}, h_{3,j}, h_{4,j}, h_{5,j}| j \in \mathbb{Z}/4].
$$

To compute the E_2-term, we set a filtration on the exterior algebra $E[h_{2,j}, h_{3,j}, h_{4,j}, h_{5,j}| j \in \mathbb{Z}/4]$ as follows:

$$
F^k = \bigoplus_{0 \leq r \leq k} Z/p\{h_{5,j}, \ldots h_{5,j_r}\} \otimes E[h_{2,j}, h_{3,j}, h_{4,j}| j \in \mathbb{Z}/4]
$$

where $h_{5,j_1} \cdots h_{5,j_r}$’s are the generators of the r-dimensional module of the exterior algebra $E[h_{5,j}| j \in \mathbb{Z}/4]$. This filtration gives raise to a spectral sequence with

$$
E_0^k = F^k/F^{k-1} = Z/p\{h_{5,j_1} \cdots h_{5,j_r}\} \otimes E[h_{2,j}, h_{3,j}, h_{4,j}| j \in \mathbb{Z}/4].
$$

The E_1-term of this spectral sequence is

$$
E_1^k = Z/p\{h_{5,j_1} \cdots h_{5,j_r}\} \otimes H^*E[h_{2,j}, h_{3,j}, h_{4,j}| j \in \mathbb{Z}/4],
$$

and the differentials are given by

$$
d_r : E_r^k \rightarrow E_r^{k-r}.
$$

By a routine computation, we get

Theorem 5.7 The cohomology of $E[h_{2,j}, h_{3,j}, h_{4,j}| j \in \mathbb{Z}/4]$ is the tensor product of $E[h_{3,j}, \rho_0, \rho_1]$ and \mathbb{N}, where

$$
\rho_0 = h_{4,0} + h_{4,2}, \quad \rho_1 = h_{4,1} + h_{4,3},
$$

and \mathbb{N} is the direct sum of the modules generated by the following cohomology classes:

$$
\begin{align*}
1; & \quad h_{2,j}; & e_j &= h_{2,j}h_{2,j+1}, & g_j &= h_{4,j}h_{2,j}; \\
\rho_0 = h_{2,j}g_{j+1}, & \quad h_{2,j}g_{j+1}; & h_{2,j}g_{j+3}; & \quad g_jg_{j+1}, & e_jg_{j+2}, & h_{2,j}g_{j+1}g_{j+2}; & e_0g_2g_3
\end{align*}
$$

with $j \in \mathbb{Z}/4$. Beside, we also have the following relations:

$$
h_{2,i}h_{2,i+2} = 0, \quad h_{2,i}g_{i+2} = h_{2,i+2}g_i, \quad h_{2,i}g_{i+2}g_{i+3} = h_{2,i+2}g_i + 3g_i.
$$

With the add of a personal computer, we compute that

Theorem 5.8 The cohomology of the exterior algebra $E[h_{2,j}, h_{3,j}, h_{4,j}, h_{5,j}]$ has Poincaré series

$$(1 + t)^4(1 + 6t + 18t^2 + 59t^3 + 92t^4 + 176t^5 + 161t^6 + 176t^7 + 92t^8 + 59t^9 + 18t^{10} + 6t^{11} + t^{12}).$$

The ranks at each cohomological dimension are listed as

$$
\begin{align*}
0, & \quad 1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 6, \quad 7, \quad 8, \quad 9, \quad \cdots \quad 16, \\
1, & \quad 10, \quad 48, \quad 171, \quad 461, \quad 976, \quad 1671, \quad 2303, \quad 2558, \quad 2303, \quad \cdots \quad 1
\end{align*}
$$

From the collapse Theorem 4.9, we claim that the MSS for the cohomology of $S(4,2)$ collapse at E_2-term.
ON $H^*(S(n,k))$

References

[1] J. F. Adams, _Stable Homotopy and Generalised Homology_. University of Chicago Press, Chicago 1974.
[2] H. Cartan and S. Eilenberg, _Homological Algebra_, Princeton University Press 1956.
[3] P. Goerss, H. W. Henn, M. Mahowald and C. Rezk, A resolution of the $K(2)$–local sphere at the prime 3. _Ann. Math._ **162** (2005) 777-822.
[4] M. Hazewinkel, A universal formal group law and complex cobordism, _Bull. A. M. S._ **81** (1975), 930-933.
[5] H. W. Henn, Centralization of abelian p-subgroups and mod-p cohomology of profinite groups, _Duke Math. J._ **91** (1998), 561-585.
[6] S. Nave, Lee, The Smith-Toda complex $V((p+1)/2)$ does not exist, _Ann. Math._ **171** (2010) 491-509.
[7] X. Liu and X. Wang, A four-filtered May spectral sequence and its applications, _Acta. Math. Sin. (English Ser.)_ **24** (2008) 1507-1524.
[8] J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras. _J. Algebra_ **3** (1966) 123-146.
[9] J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras; application to the Steenrod algebra. _Princeton Univ., 1964 Thesis._
[10] H. Miller, D. C. Ravenel and S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence _Ann. of Math._ **106** (1977), 469-516.
[11] D. C. Ravenel, _Nilpotence and Periodicity in Stable Homotopy Theory_, Ann. of Math. Studies **128**, Princeton Univ. Press, Princeton, NJ, 1992.
[12] D. C. Ravenel, The cohomology of the Morava stabilizer algebras _Math. Z._ **152** (1977), 287-297.
[13] D. C. Ravenel, Localization with respect to certain periodic homology theories. _Amer. J. Math._ **106** (1984) 351-414.
[14] Shimomura, K., and Tokashiki, S., The cohomology of $S(n,n-1)$ relevant to the Morava Stabilizer algebra at odd prime, _Kochi Journal of Mathematics_ **7** (2012), 109-118.
[15] X. Wang, The homotopy groups $\pi_*(L_2S^0)$ at the prime 3, _Topology_ **34** (2002), 1183-1198.
[16] K. Shimomura and X. Wang, The Adams-Novikov E_2-term for $\pi_*(L_2S^0)$ at the prime 2, _Math. Z._ **241** (2002) 271-311.
[17] Tangora, M. C. On the cohomology of the Steenrod algebra, _Math. Z._ **116** (1970) 18–64.
[18] X. Wang, $\pi_*(L_2T(1)/(v_1))$ and its applications in computing $\pi_*(L_2T(1))$ at the prime two, _Forum Math._ **19** (2007), 127-147.

School of Mathematical Science, Nankai University, Tianjin 300071, P. R. China
E-mail address: chenlimanstar1@163.com

School of Mathematical Science and LPMC, Nankai University, Tianjin 300071, P. R. China
E-mail address: xjwang@nankai.edu.cn

Department of Mathematics & Institute of mathematics and interdisciplinary science, Capital Normal University, Beijing 100048, P. R. China
E-mail address: zhaoxve@mail.cnu.edu.cn