Oxytetracycline Degradation by Heat-Activated Peroxydisulfate and Peroxymonosulfate Oxidation: Optimization by Box-Behnken Design

Kubra Ulucan-Altuntas¹,²,* Senem Yazici Guvenc¹, Emine Can-Güven¹,

Fatih Ilhan¹, Gamze Varank¹

¹ Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Davutpasa, 34220, Istanbul, Turkey

² University of Padova, Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy

* Corresponding author

* Kubra Ulucan-Altuntas

¹ Yildiz Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, Davutpasa, 34220, Istanbul, Turkey

email: kulucan@yildiz.edu.tr

² University of Padova, Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy

Email: kubra.altuntas@unipd.it
Oxytetracycline Degradation by Heat-Activated Peroxydisulfate and Peroxymonosulfate

Oxidation: Optimization by Box-Behnken Design

ABSTRACT

This study investigates the removal of oxytetracycline performed by persulfate (PS) and peroxymonosulfate (PMS) processes. For this purpose, response surface methodology was used to examine the effectiveness of PS and PMS processes under both alkaline and thermal conditions. The effect of four independent variables, which were selected as pH, PS/PMS concentration, temperature, and time, were analyzed in a wide range. The working pH was between pH 3–11 to compare acidic and alkaline conditions, and the temperature was selected between 30 and 90 ºC to evaluate the effect of thermal activation of sulfate radicals for both processes. According to the results of prepared Response Surface Methodology (RSM) models, all four independent variables were determined to be highly significant for both PS and PMS. Especially in the PMS process, the highest PMS concentration was observed to complete degradation of OTC. The conditions for the highest removal were pH 9 and PS/PMS concentration was approximately 4mM for both processes, while the temperature and required time were 72.9 ºC and 75 ºC, 26.5 min and 20 min, for PS and PMS processes, respectively. PS process has higher kinetic constants at all pH values than the PMS process.

Keywords: Antibiotic, Persulfate Activation, Peroxymonosulfate Activation, Sulfate radicals, Hydroxyl radicals

1 Introduction

With industrialization, environmental pollution has become an important problem for all living beings; especially these effects are observed at the points where the chemicals used end up with
the discharge or release. One of these emerging chemicals is broad-spectrum antibiotics, which are used to treat infections in humans and animals. Oxytetracycline (OTC) is a low-cost prophylactic antibiotic with broad-spectrum activity, one of the tetracycline (TC) group antibiotics. Although it is for humanitarian purposes, it is a pharmaceutical pollutant that is frequently used as a supplement in the breeding of livestock (Lai et al., 2020). It is a recalcitrant pharmaceutical pollutant for biodegradation, showing that it will be abundant in the aquatic environment for many years. OTC, which has been started to be investigated due to its encounter in aquatic environments (lakes, rivers, etc.), remains in nature for a long time due to its persistence and poses a threat to the deterioration of the ecosystem by triggering the formation of antibiotic-resistant bacteria. Therefore, OTC was chosen as the target pollutants to be degraded by persulfate and peroxymonosulfate processes.

Due to the ineffectiveness of traditional biological treatment methods, especially advanced oxidation techniques are among the issues that need to be investigated (Cuerda-Correa et al., 2020). Today, many advanced oxidation processes are successfully applied in many treatment facilities (Ulucan-Altuntas and Ilhan, 2018; Basturk et al., 2020; Can-Guven et al., 2020). From this viewpoint, the Fenton process is used as the most common oxidation process (Zhang et al., 2017; Han et al., 2020; Lai et al., 2020), and several authors have reported that ozone (Li et al., 2008), UV (Yan et al., 2020), photocatalytic membrane reactors (Espíndola et al., 2019) are also effective for OTC degradation. Among the studies conducted for the last decade, advanced oxidation processes (AOPs) based on persulfate activation (PS) are one of the promising methods for the treatment of recalcitrant pollutants. When it reacts with hydroxyl radicals, sulfate radicals with a high oxidative ability and longer life than other active species are formed. Persulfate (PS) and peroxymonosulfate (PMS) are the most effective oxidants in the production of sulfate radicals (Li et al., 2020). So far, the use of ultraviolet (Ao et al., 2019; Bi et al., 2020), microwave (Genç et al., 2020), sonication (Cherifi et al., 2019), heat treatment (Can-Guven et al., 2020), and transition metal ions (Malakotian et al., 2019; Bi et al., 2020) in PS and PMS activation has been tried in the removal of recalcitrant contaminants. Compared to the Fenton process, it has the potential to replace Fenton process applications since it is easier to store and transport persulfate than \(\text{H}_2\text{O}_2 \).

While heat is effective in activating PS and PMS, it can also improve the degradation of the organic compound. The heat activation of PS and PMS occurs by breaking the single bond between the
oxygens. The equation showing the formation of sulfate radicals by activation of PS and PMS is as follows (Eq.1 and Eq.2):

\[
S_2O_8^{2-} \rightarrow 2SO_4 \cdot \quad \text{(Eq.1)}
\]

\[
HSO_5^- \rightarrow SO_4 \cdot +HO \cdot \quad \text{(Eq.2)}
\]

As can be understood from Eq1 and Eq.2, only sulfate radicals are formed in PS activation, while by using PMS, sulfate radical (SO\(_4^\cdot\)) and hydroxyl radicals (\(\cdot\)OH) can be formed. However, the reaction of water and SO\(_4^\cdot\) radicals to form \(\cdot\)OH radicals is too slow to be significant in most processes, it is stated in the literature that SO\(_4^\cdot\) radicals transform more quickly into \(\cdot\)OH radicals with the effect of temperature and pH (Eq.3).

\[
SO_4 \cdot +H_2O \rightarrow SO_4^{2-} + HO \cdot +H^+ \quad \text{(Eq.3)}
\]

It has been encountered in some studies that SO\(_4^\cdot\) radicals are effective when pH is acidic, and hydroxyl radicals are seen in PS activation when pH is alkaline. Besides, PS can be activated only by adjusting the pH to alkaline conditions. In this mechanism, the perhydroxyl radicals formed to play an active role in the formation of sulfate radicals (Eq.4 and Eq.5), hydroxyl radicals (Eq. 6), and superoxides (Eq. 5) (Wang and Wang, 2018).

\[
S_2O_8^{2-} + H_2O \rightarrow 2SO_4^{2-} + HO_2^- + H^+ \quad \text{(Eq.4)}
\]

\[
S_2O_8^{2-} + HO_2^- \rightarrow SO_4^{2-} + SO_4^\cdot + O_2^- \cdot +H^+ \quad \text{(Eq.5)}
\]

\[
SO_4 \cdot +OH^- \rightarrow SO_4^{2-} + HO \cdot \quad \text{(Eq.6)}
\]

Although there are studies conducted with heat and alkaline environment activation of PS, the number of studies with PMS is quite limited. According to the studies, it is also seen that the effect of the inlet pH changes on the degradation of different pollutants. Some persulfate and peroxymonosulfate processes made in OTC degradation in the literature are shown in Table 1. It is seen in the studies that UV, transition metal activators, and heat treatment are used as activators. Most of the studies have been done with persulfate activation and it is seen that no comparison with peroxymonosulfate has been made. In the persulfate study activated by heat treatment, it was seen that 2h time was required for complete mineralization.
Table 1. Comparison table of previously published studies

Activator	Treatment Conditions	Degradation Eff.	Ref
UV and pre-magnetized Fe⁰	OTC Conc. 0.8 mg/L, UV Power 6W/L, Fe0 0.1mM, PS 0.1 mM, pH 7.3	approx. 99% in 30 min	(Pan et al., 2019)
Copper Sulphate and UV (solar simulation)	OTC 0.04 mM, OTC: Cu²⁺:PS=1:1.5:1.75	93.5% in 60 min	(Bi et al., 2020)
Thermo activated	OTC 0.03 mM, PS: 2mM, Temperature 50°C, pH:7	100% in 240 min	(Ji et al., 2016)
UV/PS/Cu/NaHCO₃	OTC 0.01 mM, PS: 1 mM, Cu: 0.01 mM, NaHCO₃: 6 mM, UV 80 mJ/cm²	approx. 99% in 240 min	(Liu et al., 2016a)
Biochar and Bentonite supported Fe⁰	Biochar supported Fe0: 0.5 g/L, Fe3O4: 0.3 g/L, PS: 4 mM, TC: 10 mg/L, pH10	93% in 5 min	(Li et al., 2020)
Ultrasound/Fe₃O₄	OTC: 20 mg/L, pH10	92.99% in 90 min	(Malakotian et al., 2019)
Co₃O₄ CNT	TTC: 0.045 mM, PMS: 0.2 mM, pH 3.1, Catalyist: 1.0g/L	93.6% in 80 min	(Liu et al., 2020)
UV	UV dose 150 mJ/cm²	98%	(Ao et al., 2019)

Response surface methodology (RSM) is a set of statistical methods used to find the optimum point based on independent variables. RSM is an experimental design that is widely used, and it both minimizes the amount of waste that can be generated and provides an optimized result faster. In light of this information, the effects of PS and PMS on oxytetracycline degradation, activated by the use of both heat and initial pH, were compared in this study. PS and PMS processes were evaluated with a 4-factor 5-level central composite design, in which PS/PMS concentration, pH, temperature, and time were considered as independent variables. According to the optimized results, the intermediate products were evaluated via UV-vis spectrum. This study is the first study that compares the PS and PMS processes for OTC degradation.
2 Materials and Method

2.1 Chemicals and Reagents

The chemicals used in this study are in lab quality. Oxytetracycline (C_{22}H_{24}N_{2}O_{9}) was purchased from Sigma Aldrich (Turkey). Sulfuric acid (H_{2}SO_{4}, purity 98%) and sodium hydroxide (NaOH, purity ≥97.0%) were obtained from Merck, Turkey, and both were applied in 0.1N and 0.1N concentration for pH adjustment.

2.2 Experimental studies and reactor design

The experiments were conducted in 50 mL Erlenmeyer flasks placed on a magnetic stirrer with a heater (Weightech Instruments, WH-H320, Turkey). The flasks were closed and the temperature of the samples was measured regularly by a temperature probe during experiments. The pH of each sample was measured before and after the experiments by WTW Multi 9620 IDS, Turkey. The initial concentration of OTC was 10 mg/L and measured at 355 nm wavelength by UV–visible spectrophotometer (WTW–Photolab 6600 UV-vis, Turkey).

2.3 Response Surface Methodology

Response surface methodology was used to optimize the study both with PS and PMS experiments. Four factor-five level design was applied by performing the independent variables, initial pH (A), PS/PMS concentration (B), initial temperature (C), and time (D) on OTC degradation (y). The levels were coded according to the α value of ±2 which can be calculated via Eq.7. Actual and coded values of independent variables can be seen in Table 2.

\[
\alpha = \frac{x_i - x_o}{\Delta x} \quad \text{(Eq.7)}
\]

In Eq.7, α is code for independent variables, x_i is the actual value of x_i variable, x_o is the actual value in the med-point, and Δx shows the changes in x_i variable. Experimental data were analyzed with the quadratic equation as given in Eq. 8.

\[
y = a_0 + \sum a_i x_i + \sum a_{ij} x_i x_j + \sum a_{ii} x_i^2 \quad \text{(Eq.8)}
\]
In Eq. 8, \(y \) shows the response value of design, \(a_0 \) shows the constant value of design, \(a_i, a_{ii} \) and \(a_{ij} \) show the coefficients of the linear, quadratic, and interaction, \(x_i \) and \(x_j \) show the independent variables. In this study, the response is selected as OTC degradation efficiency. According to selected levels and the number of independent variables, the number of runs in the central composite design (CCD) were given in Table 3.

Table 2. Actual and coded values of independent variables

Variables	Units	Code	Levels				
			-2	-1	0	+1	+2
pH	A	3	5	7	9	11	
PS/PMS Concentration	mM	B	1	2	3	4	5
Temperature	°C	C	30	45	60	75	90
Time	min	D	10	20	30	40	50

The OTC degradation efficiencies were calculated according to Eq. (9)

\[
\% \text{ OTC Degradation} = \frac{C_0 - C_t}{C_0} \cdot 100
\]

where \(C_0 \) and \(C_t \) are the initial and effluent OTC concentrations after a treatment time of \(t \), respectively.
Table 3. CCD runs and OTC degradation efficiencies of PS and PMS Processes as the response

Run	pH	PS/PMS Conc.	Temp.	Time	PS Process Y₁ Actual, %	PS Process Y₁ Predicted, %	PS Process Y₂ Actual, %	PS Process Y₂ Predicted, %	PMS Process Y₁ Actual, %	PMS Process Y₁ Predicted, %	PMS Process Y₂ Actual, %	PMS Process Y₂ Predicted, %
1	5	2 (-1)	45 (-1)	20 (-1)	57.60	52.00	46.60	41.83				
2	9	2 (-1)	45 (-1)	20 (-1)	65.50	64.50	56.80	55.12				
3	5	4 (+1)	45 (-1)	20 (-1)	69.60	68.40	66.76	62.41				
4	9	4 (+1)	45 (-1)	20 (-1)	80.60	78.30	73.90	72.71				
5	5	2 (-1)	75 (+1)	20 (-1)	65.40	66.50	58.20	57.60				
6	9	2 (-1)	75 (+1)	20 (-1)	79.30	80.10	70.50	70.63				
7	5	4 (+1)	75 (+1)	20 (-1)	78.20	78.10	75.40	74.00				
8	9	4 (+1)	75 (+1)	20 (-1)	87.50	89.20	81.80	84.04				
9	5	2 (-1)	45 (-1)	40 (+1)	65.20	61.70	61.40	56.34				
10	9	2 (-1)	45 (-1)	40 (+1)	74.30	71.50	68.90	66.07				
11	5	4 (+1)	45 (-1)	40 (+1)	80.90	77.20	74.89	70.52				
12	9	4 (+1)	45 (-1)	40 (+1)	87.20	84.30	79.50	77.27				
13	5	2 (-1)	75 (+1)	40 (+1)	73.80	73.20	69.30	66.25				
14	9	2 (-1)	75 (+1)	40 (+1)	84.70	84.20	74.20	75.72				
15	5	4 (+1)	75 (+1)	40 (+1)	84.80	83.90	77.40	76.25				
16	9	4 (+1)	75 (+1)	40 (+1)	89.60	92.30	82.20	82.74				
17	3	3 (±0)	60 (±0)	30 (±0)	56.20	61.20	43.20	52.04				
18	11	3 (±0)	60 (±0)	30 (±0)	82.30	82.00	73.60	71.82				
19	7	1 (-2)	60 (±0)	30 (±0)	60.50	64.10	55.40	60.03				
20	7	5 (+2)	60 (±0)	30 (±0)	87.60	88.60	85.20	87.62				
21	7	3 (±0)	30 (-2)	30 (±0)	53.70	62.80	48.01	57.72				
22	7	3 (±0)	90 (+2)	30 (±0)	89.70	85.20	81.60	78.96				
23	7	3 (±0)	60 (±0)	10 (-2)	72.00	72.90	59.40	61.68				
24	7	3 (±0)	60 (±0)	50 (+2)	82.10	85.80	70.10	74.88				
25	7	3 (±0)	60 (±0)	30 (±0)	78.20	80.00	63.07	64.83				
26	7	3 (±0)	60 (±0)	30 (±0)	80.80	80.00	65.80	64.83				
27	7	3 (±0)	60 (±0)	30 (±0)	81.0	80.0	65.63	64.83				
3 Results and Discussion

Before determining the levels given in the matrix in Table 2, pre-studies were done, according to the studies conducted in the literature (Table 1), which are mostly for PS activation. Thermal and alkali activation of PS and PMS were studied for the points given in Table 4, and it was observed that the effect of pH and temperature were significant. Therefore, the level of pH was selected, starting from pH 3 to pH11 and the levels for temperature was ranged from 30 – 90°C. Since high degradation efficiencies were achieved under high PMS concentration and high required time, lower values of both parameters were chosen as levels (Table 2).

Table 4. Pre-studies for determining the levels of CCD

Runs	pH	PS Conc., mM	PMS Conc., mM	Time, min	Temperature, °C	Degradation Eff., %
1	7.0	5	-	60	70	89.5
2	7.0	5	-	60	90	95.0
3	2.5	5	-	60	70	80.6
4	2.5	5	-	60	30	75.6
5	7.0	-	5	60	70	62.1
6	11.0	-	5	60	70	99.3
7	2.5	-	5	60	70	88.1
8	2.5	-	5	60	30	88.1

According to the central composite design, the runs were designed in a batch mode as given in Table 3. The response of CCD was selected as OTC degradation. The PS and PMS processes were evaluated separately, and compared based on degradation, active species, and intermediate products.

3.1 Model Accuracy

All runs given in Table 3 were studied with the PS process by considering the concentrations of B parameter as PS concentrations (Table 2). Regarding the obtained responses (Table 3), the quadratic model was used as the most suitable model to explain the relationship between the experienced and the values of OTC degradation estimated using ANOVA results in the PS process. The results of the statistical analysis of ANOVA are shown in detail in Table 5. The results obtained in the studies with PS show that the oxidation performance gives satisfactory results. By considering the regression coefficients, the reliability between the actual data and the predicted
values of the responses was proved by the quadratic model. Variance analysis values were given in Table 5 to better understand the optimization performance of the study. The regression coefficient (R^2) was determined as above 90%, which shows the model performance is good. The fit of the model appears to be in good accordance with the R^2 with adjusted R^2 values. Besides, there is a slight difference between the experimental and predicted values shown in Table 3, resulting in a low coefficient of variation value (C.V. value). The accuracy and repeatability of the experiments were confirmed by this low C.V. value (C.V. <10%) (Can-Guven et al., 2020; Varank, 2020). The adequate precision value is required to be greater than 4 to measure the predicted response and the corresponding error value (the signal-to-noise ratio)(Rahdar et al., 2020). In this study, it was found to be over 4 (Table 5). The fitness of the model can be considered as desired. The non-significant lack of fit values can be submitted as the best fit (Varank, 2020).

Table 5. ANOVA results of the quadratic model for Heat-activated PS oxidation

Source	Sum of Squares	df	Mean Square	F-value	P-value	Significance
Model	2721.95	14	194.42	9.11	0.0002	
A-pH	653.93	1	653.93	30.65	0.0001	HS
B-PS/PMS	898.40	1	898.40	42.11	< 0.0001	HS
C-Temperature	751.44	1	751.44	35.22	< 0.0001	HS
D-Time	246.44	1	246.44	11.55	0.0053	S
AB	6.72	1	6.72	0.32	0.5850	NS
AC	1.31	1	1.31	0.06	0.8085	NS
AD	7.61	1	7.61	0.36	0.5615	NS
BC	22.09	1	22.09	1.04	0.3290	NS
BD	0.88	1	0.88	0.04	0.8426	NS
CD	8.70	1	8.70	0.41	0.5350	NS
A²	94.38	1	94.38	4.42	0.0572	NS
B²	17.67	1	17.67	0.83	0.3808	NS
C²	47.85	1	47.85	2.24	0.1601	NS
D²	0.52	1	0.52	0.03	0.8782	NS
Residual	256.02	12	21.34			
Lack of Fit	251.16	10	25.12	10.33	0.0914	NS
Pure Error	4.86	2	2.43			
Cor Total	2977.97	26				

R^2 0.914

Adjusted R^2 0.814

C.V. % 6.09

Adeq. Precision 11.69

HS: Highly significant, S: significant, NS: Non-significant
Besides, the P values of each parameter given in Table 5 were evaluated according to the 95% confidence interval. Parameters with a value of P less than 0.05 were considered as significant and those with a value lower than 0.0001 were considered as highly significant. It can be seen from Table 5 that the linear terms of the selected independent variables were significant, but quadratic forms were not so effective. The equation obtained based on these data is obtained as given in Eq.10.

\[y_1 = 80.02 + 5.225A + 6.117B + 5.60C + 3.208D - 0.65AB + 0.288AC - 0.688AD - 1.175BC - 0.225BD - 0.738CD - 2.104A^2 - 0.904B^2 - 1.492C^2 - 0.154D^2 \]

(Eq.10)

The coefficients in Eq.10 assistance to understand the importance of the effect of variables on the response, in terms of both magnitude and signs. Therefore, the fact that all independent variables (A, B, C, and D) have positive coefficients indicates that these variables have a positive effect on OTC degradation. Rather, all the coefficients belong to the interaction, and the quadratic terms of the independent variables (except AC) have negative signs indicating that they have negative effects on OTC degradation. Moreover, the highest coefficient within all independent variables belongs to PS concentration. According to this information, time can be considered as the less effective parameter. Since the P-values of independent variables are significant, we can also express that all independent variables have a high impact on OTC degradation.

The same model used for the PS process was also modeled for the PMS process by applying the concentrations determined in the B parameter as PMS. The CCD is designed as quadratic and the predicted values of the model outputs were given in Table 2. The results obtained in the studies with PMS show that it gives acceptable results when the degradation performance is examined. The regression coefficient of the model was obtained as 0.89 and C.V was less than 10%. Besides, as mentioned above, the adequate precision value was used to measure the signal-to-noise ratio. A higher value than 4 shows the accuracy of the model. P-values of the parameters can also be seen in Table 6. The model was evaluated with a confidence interval of 95%, and it can be seen that the linear forms of the independent variables were the most effective within all components of the quadratic model. The equation obtained according to the ANOVA results was given in Eq.11.
\[y_2 = 64.833 + 4.944A + 6.898B + 5.31C + 3.301D - 0.745AB - 0.066AC \]
\[- 0.89AD - 1.047BC - 1.60BD - 1.464CD - 0.726A^2 \]
\[+ 2.249B^2 + 0.876C^2 - 0.862D^2 \]
(Eq.11)

Source	Sum of Squares	df	Mean Square	F-value	P-value	Significance
Model	2951.37	14	210.81	6.90	0.0009	HS
A-pH	586.58	1	586.58	19.19	0.0009	HS
B-PS/PMS, mM	1141.95	1	1141.95	37.36	<0.0001	HS
C-Temperature, °C	676.62	1	676.62	22.14	0.0005	HS
D-Time, min	261.54	1	261.54	8.56	0.0127	S
AB	8.93	1	8.93	0.2920	0.5988	NS
AC	0.07	1	0.07	0.0023	0.9629	NS
AD	12.64	1	12.64	0.4136	0.5322	NS
BC	17.53	1	17.53	0.5734	0.4635	NS
BD	40.87	1	40.87	1.34	0.2700	NS
CD	34.30	1	34.30	1.12	0.3103	NS
A²	11.22	1	11.22	0.3670	0.5559	NS
B²	107.95	1	107.95	3.53	0.0847	NS
C²	16.38	1	16.38	0.5359	0.4782	NS
D²	15.86	1	15.86	0.5190	0.4851	NS
Residual	366.80	12	30.57			
Lack of Fit	362.12	10	36.21	15.49	0.0621	NS
Pure Error	4.68	2	2.34			
Cor Total	3318.17	26				

\[R^2 = 0.8895 \]
\[Adjusted R^2 = 0.7605 \]
\[C.V. \% = 8.16 \]
\[Adeq. Precision = 11.11 \]

HS: Highly significant, S: significant, NS: Non-significant

The Pareto chart also illustrates the influence of independent variables on OTC degradation using Eq. 12, where \(\beta_i \) represents the coefficient of the independent variables (Majumdar and Pal, 2020).

\[P_i = \left(\frac{\beta_i^2}{\sum \beta_i^2} \right) \times 100 (i \neq 0) \]
(Eq.12)

Pareto chart was prepared for PS and PSM processes and showed in Figure 1a and Figure 1b, respectively. The independent parameters which are effective more than 1% are considered for
Pareto charts. For both processes, the most effective parameter can be revealed as PS/PMS concentration (B) and followed by temperature (C), pH (A), and time (D). The P values of the interaction and quadratic terms of the models were higher than 0.05 which shows the low/non-impact on the OTC degradation. The percentage of the effects of these terms is less than 4%.

Figure 1. Pareto charts for (a) PS process and (b) PMS process
We can also analyze the adequacy of the model by the normal probability graphs which define the difference between the predicted results and the experimental results. Normal probability plots used to evaluate the normality of residues are obtained by plotting predicted residues versus observed residues as given in Figure 2. It implies that the quadratic regression model that appears to be distributed along a straight line is satisfactory.

Figure 2. Actual vs. predicted values for (a) PS and (b) PMS oxidation
3.2 Comparison of PS and PMS Processes

Three-dimensional (3D) response surface graphs show the effect of only two factors on OTC degradation efficiency, while the other two factors are fixed at the midpoint ($\alpha = 0$). Factors can be evaluated within the ranges given in Table 1. The effect of independent variables can be observed via the 3D plot generated via CCD. These plots were prepared for PS and PMS processes separately and the comparison of the processes was established accordingly. As can be seen from the surface graphs given in Figure 3, the OTC degradation efficiencies were increasing with the increment on all independent variables. This was also gathered from ANOVA results. The higher degradation efficiencies were expected with the increase of PS concentrations since it is the most important variable of the process (Figure 3.a)(Can-Guven et al., 2020). According to Figure 3.a, when the PS concentration was higher than 3mM, and pH is higher than pH7, the degradation efficiencies can be obtained at a higher value than 80%. As per Figure 3.b and Figure 3.c, with higher values than 60°C for temperature, 30 min, and pH7, the degradation efficiencies are higher than 80%. This can also be understood from the intercept of Eq.9, which is 80. All 3D figures were illustrated for OTC degradation efficiencies versus 2 independent variables, while the other two parameters were selected at the center point. The highest degradation efficiency can be seen in Figure 3.e as approximately 92% with the highest PS concentration (5 mM), highest time (50 min) at pH7 and 60°C.

Figure 3.b, Figure 3.d, and Figure 3.f show the effect of temperature with other independent variables on OTC degradation. Considering that the increase in temperature has a positive effect on both increasing the efficiency of sulfate radicals and degradation of OTC, a value at high temperature will be optimum as expected. Likewise, the effect of the pH factor is an effective parameter on PS processes. PS can be activated at low pH values but also at alkaline conditions. Therefore, the effect of pH was screened in a very broad spectrum (pH3 – pH11). According to Figure 3.a, 3.b, and 3.c, OTC degradation obtained at alkaline conditions.
Figure 3. 3D plots for heat activated-PS oxidation
Figure 4. 3D plots for heat activated-PS oxidation
The linear effects of independent variables in Equation 10 are positive, which shows that all parameters are positively affecting. This can also be seen from Figure 4 that OTC degradation is linear to the increment in the values of each parameter. The highest coefficient within all independent variables belongs to PMS concentration, which shows that it is the most effective parameter within all. Similarly, it can be gathered from Figure 4 that the PMS concentration is the most effective parameter, while the effect of time is lower than the others. This effect of time, which is less than other parameters, can be seen from Figure 4.c, 4.e, and 4.f and also from P-Value from Table 5. The graph with the highest removal efficiency (approximately 98%) was attained in Figure 4.d, and it was obtained in the case where the PMS concentration was the highest. Also, from Figure 4.d, higher OTC degradation with the increment of temperature can be caused by the formation of hydroxyl radicals at higher temperatures. To have a higher degradation than 80%, all parameters should be in a higher alpha value than 0.9, which means that the conditions higher than pH9, 4 mM PMS concentration, 75°C, and 40 min of reaction time. However, this situation is different for the case where the PMS concentration is 5mM at the highest point, the effectiveness of all other parameters is low (Figure 4.a, 4.d, and 4.e). Especially, the time parameter is not affecting, when PMS concentration is 5mM; the OTC degradation efficiency is approximately 90% regardless of time (Figure 4.e). This shows that the effectiveness of PMS can be seen at the highest concentration.

3.3 Optimization of PS and PMS Processes

Eq. 10 and Eq. 11 were optimized to understand the conditions under which the highest removal efficiency is at the levels of the experimental matrix given in Table 2. Both processes were optimized taken into account all parameters, and it was obtained that the degradation efficiencies that could be obtained for PS and PMS processes were 89.7% and 84.0%, respectively (Table 7). Accordingly, the optimum pH is approximately 9, and the optimum temperature was obtained as 72.9 and 75.0°C for PS and PMS processes, respectively. It has been gathered that while 26.5 min of reaction time is needed for the PS process, 20 min is sufficient for PMS. Figure 2.e shows that the degradation efficiency is the same regardless of the time when the PS/PMS is 4mM. Nevertheless, a low reaction time is required, the efficiency of the PMS process was lower than the PS process. Ji et al. (2016) emphasized in their study that 240 min was needed to achieve 100% removal in the persulfate process they activated with heat (Table 1). Malakotian et al. (2019)
reported that for OTC removal, 90 min were needed for approximately 93% removal with 4mM
PS they activated with magnetite and UV. In their sonocatalysis with peroxydisulfate study by
Kumar Subramani et al. (2019), it was found that 1h was required for degradation of OTC at a
concentration of 2mg/L with 99% yield (In this study, the temperature used is 55°C and the PS
concentration was 1g/L). According to the literature and results of this study, it can be revealed
that the use of PS is more effective than the PMS process.

Reaction pH is important in PS/PMS processes for two reasons, one is for conversion to sulfate
radical and the other is that there are four different types of OTC at different pH. This may cause
generated active species against different OTC types to give different reactions. Liu et al. (2016b)
mentioned that the sulfate radical anion may have a negative effect on anionic and zwitterionic
organic compounds. OTC molecule exists in the cationic form at acidic pHs, while it exists in
zwitterionic form when pH is between pH3 and pH7. The reason for the low effects of both PS
and PMS processes between pH 3-7 can also be explained in this way. To understand this issue, k_t
values were calculated at the optimum point based on the data given in Table 7. PS and PMS
concentration was selected as 4mM to obtain the same value, and the temperature was selected as
75°C. The calculation of k_t values was calculated based on Equation 13.

$$C = C_0 \cdot \exp(-k_t \cdot t)$$
(Eq.13)

Where C_0 and C were the initial and effluent concentration (mg/L) at “t” time (min) and k_t is the
pseudo-first-order constant (min$^{-1}$). Exponential function versus time was prepared at different pH
values to calculate k_t, and the results can be seen in Figure 5. Accordingly, the optimum pH can
also be obtained from k_t as pH 9. After pH 9, while the k_t values for PS were reduced, it stayed the
same for the PMS process. The form of OTC$^{2-}$ which exits on pH11 does not react well with PS
activation (Liu et al., 2016b). Suggested that the active species on the PS process is known that
mostly SO$_4^-$ radicals existed under alkaline conditions; the reaction of SO$_4^-$ radicals and OH$^-$ can
decrease the effectiveness of SO$_4^-$ radicals which causes low OTC degradation efficiencies (Eq.6).

When k_t values at acidic and alkali conditions were compared, the PS process seems to be more
effective. Since it is known that only SO$_4^-$ radicals exit at the PS process, it can be concluded that
both SO$_4^-$ radicals are more effective than OH$^-$ radicals in both PS and PMS processes.
Table 7. Optimum conditions for Heat activated-PS/PMS oxidation

Conditions	PS	PMS
A - pH	8.9	9.0
B - PS/PMS, mM	3.9	4.0
C - Temperature, °C	72.9	75.0
D - Time, min	26.5	20.0
Max. Removal efficiency, %	89.7	84.0

Figure 5. k_t values at different pH values with Ps and PMS processes

The accuracy of the model expresses with the confidence interval (Ulucan-Altuntas and Debik, 2020) which is calculated via Equation 14.

$$CI = \bar{x} \pm z \frac{s}{\sqrt{n}}$$ \hspace{1cm} (Eq.14)

Where CI is the confidence interval, \bar{x} is the sample mean, z is the value of confidence level value, s is the sample standard deviation and n is the number of samples. The confidence level was selected as 95% for this study, thus, z was used as 1.96. CI was determined as ± 4.2 and ± 4.6 for PS and PMS processes. The studies were established three times at the optimum point given in
Table 7 for both processes and the results were 87.6 ± 4.2 and 80.2 ± 4.6 for PS and PMS processes, respectively, which are acceptable for the prepared model.

Figure 6. UV-vis spectrum of OTC samples before and after treatment by (a) PS and (b) PMS processes.
To analyze the degradation intermediate products, UV-Visible wavelength spectrum was used for the samples studied at the optimum point given in Table 7. The spectrums of the samples before and after treatment by PS and PMS processes were given in Figure 6.a and Figure 6.b, respectively. Two wide peaks were observed at the initial OTC samples. While the wide peak between 320 nm and 400 nm disappeared in the effluent samples of both processes, the peak at 265 nm seen in the initial sample was shifted to 255 nm in the effluent sample of the PMS process (Fig.6.b) but was not observed in the PS process (Fig.6.a). Since OTC is a naphthol ring, naphthalene is an expected by-product as a result of degradation. The presence of naphthalene has been stated in the literature that the OTC compound will be formed by breaking the stable naphthol ring (Kumar Subramani et al., 2019). The wide peak seen at 255nm can be seen as the transformation of naphthene as a result of degradation. Looking at the absorbance values around 220 nm, an increase in height is seen as a result of both processes. This case shows simple acidic compounds with -C=O- bonds, such as acetic acid. This can be stated as the last step (by-product) of degradation. The issue of determining the degradation by-products and complete mineralization will be investigated in further studies.

Conclusion

This study was conducted to compare PS and PMS processes on OTC degradation by optimization with central composite design. The independent variables were selected as initial pH, PS/PMS concentration, temperature, and time for both processes in which PS/PMS concentration was determined as the most important variables within them. For both processes, the importance of the independent variables was determined as PS/PMS concentration > temperature > initial pH > time. According to CCD models, only the linear terms were concluded as the effective independent variables for both processes. Kinetic constants for pseudo-first-order for different pH values calculated at highest PS/PMS concentrations showed that PMS has slightly higher k constants, meaning better in OTC degradation. Kinetic constants were attained as 0.068 and 0.071 min⁻¹ for PS and PMS processes, respectively. According to optimum conditions, optimum pH is pH9, PS/PMS concentration is approximately 4 mM, the temperature is 72.9°C and 75°C and the required time was 26.5 min and 20 min for PS and PMS processes, respectively. Besides, according to the UV-vis spectrum, while the peak for OTC decreased for both processes, peak height at 225 nm showed that compounds with -C=O- bonds were increased at both PS and PMS processes All
results promote PS is more effective than the PMS process. In light of this information, additional processes can be used in PS/PMS activation to lower the required PS/PMS concentration.

Ethics declarations

- Completing Interest: The Authors declare that there is no conflict of interest.
- Ethical Approval: Not applicable (This study did not recruit any human/animal subjects.)
- Consent to Participate: Not applicable (This study did not recruit any human subjects.)
- Consent to Publish: Not applicable (This study is not published previously)

Funding – Not applicable

Availability of data and materials

The datasets obtained during this study are available from the corresponding author on reasonable request.

Author contributions

All authors are contributed to designing the study. SYG, ECG, and FI are contributed to the whole experiments, KUA and GV helped partially on experiments. KUA, SYG, and GV were contributed to analyzing response surface methodology. KUA was the major contributor in writing the manuscript, while all authors were contributed to writing, revising, and finalizing the manuscript. All authors approved the final manuscript.
References

Ao, X., Sun, W., Li, S., Yang, C., Li, C., and Lu, Z. (2019). Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation. Chem. Eng. J. 361, 1053–1062. doi:10.1016/j.cej.2018.12.133.

Basturk, I., Varank, G., Murat Hocaoglu, S., and Yazici Guvenc, S. (2020). Medical laboratory wastewater treatment by electro-fenton process: Modeling and optimization using central composite design. Water Environ. Res., wer.1433. doi:10.1002/wer.1433.

Bi, W., Wu, Y., and Dong, W. (2020). The degradation of oxytetracycline with low concentration of persulfate sodium motivated by copper sulphate under simulated solar light. Chem. Eng. J. 393, 122782. doi:10.1016/j.cej.2019.122782.

Can-Guven, E., Guvenc, S. Y., Kavan, N., and Varank, G. (2020). Paper mill wastewater treatment by Fe 2+ and heat-activated persulfate oxidation: Process modeling and optimization. Environ. Prog. Sustain. Energy. doi:10.1002/ep.13508.

Cherifi, Y., Addad, A., Vezin, H., Barras, A., Ouddane, B., Chaouchi, A., et al. (2019). PMS activation using reduced graphene oxide under sonication: Efficient metal-free catalytic system for the degradation of rhodamine B, bisphenol A, and tetracycline. Ultrason. Sonochem. 52, 164–175. doi:10.1016/j.ultsonch.2018.11.012.

Cuerda-Correa, E. M., Alexandre-Franco, M. F., and Fernández-González, C. (2020). Advanced oxidation processes for the removal of antibiotics from water. An overview. Water (Switzerland) 12, 102. doi:10.3390/w12010102.

Espíndola, J. C., Cristóvão, R. O., Mendes, A., Boaventura, R. A. R., and Vilar, V. J. P. (2019). Photocatalytic membrane reactor performance towards oxytetracycline removal from synthetic and real matrices: Suspended vs immobilized TiO2-P25. Chem. Eng. J. 378, 122114. doi:10.1016/j.cej.2019.122114.

Genc, N., Durna, E., and Kayapinar Cicigun, H. K. (2020). Response Surface Modeling and Optimization of Microwave-Activated Persulfate Oxidation of Olive Oil Mill Wastewater.
Han, C. H., Park, H. D., Kim, S. B., Yargeau, V., Choi, J. W., Lee, S. H., et al. (2020). Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment. *Water Res.* 172, 115514. doi:10.1016/j.watres.2020.115514.

Ji, Y., Shi, Y., Dong, W., Wen, X., Jiang, M., and Lu, J. (2016). Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. *Chem. Eng. J.* 298, 225–233. doi:10.1016/j.cej.2016.04.028.

Kumar Subramani, A., Rani, P., Wang, P. H., Chen, B. Y., Mohan, S., and Chang, C. T. (2019). Performance assessment of the combined treatment for oxytetracycline antibiotics removal by sonocatalysis and degradation using Pseudomonas aeruginosa. *J. Environ. Chem. Eng.* 7, 103215. doi:10.1016/j.jece.2019.103215.

Lai, W., Xie, G., Dai, R., Kuang, C., Xu, Y., Pan, Z., et al. (2020). Kinetics and mechanisms of oxytetracycline degradation in an electro-Fenton system with a modified graphite felt cathode. *J. Environ. Manage.* 257, 109968. doi:10.1016/j.jenvman.2019.109968.

Li, K., Yediler, A., Yang, M., Schulte-Hostede, S., and Wong, M. H. (2008). Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products. *Chemosphere* 72, 473–478. doi:10.1016/j.chemosphere.2008.02.008.

Li, Z., Sun, Y., Yang, Y., Han, Y., Wang, T., Chen, J., et al. (2020). Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway. *Environ. Res.* 183, 109156. doi:10.1016/j.envres.2020.109156.

Liu, D., Li, M., Li, X., Ren, F., Sun, P., and Zhou, L. (2020). Core-shell Zn/Co MOFs derived Co3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation. *Chem. Eng. J.* 387, 124008. doi:10.1016/j.cej.2019.124008.

Liu, Y., He, X., Duan, X., Fu, Y., Fatta-Kassinos, D., and Dionysiou, D. D. (2016a). Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism. *Water Res.* 95, 195–204. doi:10.1016/j.watres.2016.03.011.
Liu, Y., He, X., Fu, Y., and Dionysiou, D. D. (2016b). Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate. *J. Hazard. Mater.* 305, 229–239. doi:10.1016/j.jhazmat.2015.11.043.

Majumdar, A., and Pal, A. (2020). Optimized synthesis of Bi4NbO8Cl perovskite nanosheets for enhanced visible light assisted photocatalytic degradation of tetracycline antibiotics. *J. Environ. Chem. Eng.* 8, 103645. doi:10.1016/j.jece.2019.103645.

Malakotian, M., Asadzadeh, S. N., Khatami, M., Ahmadian, M., Heidari, M. R., Karimi, P., et al. (2019). Protocol encompassing ultrasound/Fe3O4 nanoparticles/persulfate for the removal of tetracycline antibiotics from aqueous environments. *Clean Technol. Environ. Policy* 21, 1665–1674. doi:10.1007/s10098-019-01733-w.

Pan, Y., Zhang, Y., Zhou, M., Cai, J., and Tian, Y. (2019). Enhanced removal of emerging contaminants using persulfate activated by UV and pre-magnetized Fe0. *Chem. Eng. J.* 361, 908–918. doi:10.1016/j.cej.2018.12.135.

Rahdar, S., Pal, K., Mohammadi, L., Rahdar, A., Goharniya, Y., Samani, S., et al. (2020). Response surface methodology for the removal of nitrate ions by adsorption onto copper oxide nanoparticles. *J. Mol. Struct.*, 129686. doi:10.1016/j.molstruc.2020.129686.

Ulucan-Altuntas, K., and Debik, E. (2020). Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI, degradation mechanism, and pathways. *Front. Environ. Sci. Eng.* 14. doi:10.1007/s11783-019-1196-2.

Ulucan-Altuntas, K., and Ilhan, F. (2018). Enhancing Biodegradability of Textile Wastewater by Ozonation Processes: Optimization with Response Surface Methodology. *Ozone Sci. Eng.* doi:10.1080/01919512.2018.1474339.

Varank, G. (2020). Leachate nanofiltration concentrate treatment by advanced electrochemical processes to achieve zero waste discharge: modeling and optimization. doi:10.5004/dwt.2020.26361.

Wang, J., and Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. *Chem. Eng. J.* 334, 1502–1517.
Yan, H., Luo, M., Chen, Q., Jeong, T., Zhang, J., and Wang, L. (2020). Efficacy and Mechanism of Chemical-free VUV/UV Process for Oxytetracycline Degradation: Continuous-flow Experiment and CFD Modeling. *Chem. Eng. J. Adv.*, 100059. doi:10.1016/j.ceja.2020.100059.

Zhang, F., Yue, Q., Gao, Y., Gao, B., Xu, X., Ren, Z., et al. (2017). Application for oxytetracycline wastewater pretreatment by Fenton iron mud based cathodic-anodic-electrolysis ceramic granular fillers. *Chemosphere* 182, 483–490. doi:10.1016/j.chemosphere.2017.05.058.