Polycyclic Aromatic Hydrocarbons and Potentially Toxic Elements in Soils of the Vicinity of the Bulgarian Antarctic Station “St. Kliment Ohridski” (Antarctic Peninsula)

Evgeny Abakumov1*, Timur Nizamutdinov1, Rossitsa Yaneva2 and Miglena Zhiyanski2

1Department of Applied Ecology, Biological Faculty, Saint Petersburg State University, Saint-Petersburg, Russia, 2Forest Research Institute–Bulgarian Academy of Sciences, Sofia, Bulgaria

The investigation conducted was dialed to quantitative and qualitative evaluation of 15 priority polycyclic aromatic hydrocarbons (PAHs) and Potentially Toxic Elements (Cu, Pb, Zn, Cd, Ni, and Cr) in soils and cryoconites on “St. Kliment Ohridski” Antarctic station territory and its vicinities. Estimation of benzo(a)pyrene (BaP)–equivalents, PAHs and different PAHs isomer pair ratios were used for identification of general toxicity, nature and origin of individual PAHs and their groups. Total concentrations of PAHs in BaP–equivalents showed, that \(\sum_{15} \text{PAH} \) of all selected points was higher than the threshold concentration (20 \(\mu \text{g} \times \text{kg}^{-1} \)–Russian environmental legislation) for benzo(a)pyrene. Different PAHs isomer ratios showed the natural (petrogenic) source of PAHs at all soils examples (except Cryosol Toxic Transportic). The maximum content among potentially toxic elements was recorded for Zn (75.7 mg \(\times \text{kg}^{-1} \) at L26), the minimum for Cd (0.201 mg \(\times \text{kg}^{-1} \) at L1A). Average concentrations of potentially toxic elements are generally lower compared to the results of previous studies. Application of \(I_{\text{geo}} \) index, characterizes the majority of the studied soils as unpolluted or practically unpolluted. Data obtained indicates that there is no current critical anthropogenic load on the environmental components of the landscapes investigated.

Keywords: livingston island, isomer ratios, trace metals, pollution assessment, geoaccumulation index, sources

INTRODUCTION

Nowadays the Antarctica is one of the most interesting and informative environmental model for evaluation of possible contaminants accumulation in pristine ecosystems. This territory was not intensively affected by human and therefore it can be used as reference area for adaptation and harmonization of threshold concentrations and evaluation of current contamination rates (Tin et al., 2009).

The challenges of nature conservation in Antarctica indicated in the Protocol on Environmental Protection (Madrid Protocol, 1998), faced with the necessity of regulation and implementation of environmental management in vicinities of the Antarctic stations with aim to decrease of hydrocarbons combustion effects and further accumulation of polycyclic aromatic compounds in the components of cryogenic ecosystems of Antarctica. In order to understand the amount of combusted fuel at the stations, data of the expedition of the Bulgarian Antarctic Institute in...
2012–2013 can be exampled and taken into account for further evaluation. With aim to support the expedition, 5000 L of diesel liquid fuel were brought to the «St. Kliment Ohridski » station (December 14, 2012–February 25, 2013) (BAI, 2013). Other authors noted that the stations of the year-round stay (station Bellingshausen) can spend up to 150 000 L of diesel fuel per year (Abakumov et al, 2015).

The use of fossil fuels with current techniques leads to regular spilling of oil products that contaminate the surface and soils of terrestrial environments, inland and oceanic waters (Kennicutt et al., 1991; Waterhouse, 2001; Aislabie et al., 2004; Frenot et al., 2005). Numerous logistic aspects in Antarctic region result in waste disposal management, which often leads to the sporadic transportation of the untreated sewage into the ocean and on the territory around the stations (Connor, 2008; Tin et al., 2009; Martins et al., 2010).

Data obtained in previous researches showed that the large fuel spills from transport and tourist vessels have been occurring since the 80s of the 20th century. For example, in 1987 there was a spilling effect of 600,000 L diesel fuel near United States Palmer Station, Antarctic Peninsula (Aronson et al., 2011). The spills of hydrocarbon compounds and exhaust gases are the cause of chemical contamination the terrestrial Antarctic ecosystems, which is the most characteristic environmental impact of human activities in Antarctica Chen and Blume (1997), Aislabie et al. (2004), Bargagli (2006) Several chemical and biological studies conducted recently have shown the presence of atypical chemical contaminants such as Potentially Toxic Elements (PTEs), Polychlorinated Biphenyl (PCB) Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Dibenzoazines (PCDDs) in soils, coastal waters, micro and macroorganisms (Snape et al., 2001; Negri et al., 2006; Hale et al., 2008; Martins et al., 2010; Abakumov et al., 2014; Abakumov et al., 2015; Pourret and Hursthouse, 2019).

Human and animal activities played an important role in PAHs distribution in the soil (Na et al., 2020). Among chemical pollutants, polycyclic aromatic hydrocarbons (PAHs) and trace metals have a special place, as they can enter the Antarctic not only through local discharges and emissions, but also through transboundary transfer from tropical and temperate regions of the southern hemisphere (Aislabie et al., 1999; Bargagli, 2006; Bargagli, 2008; Abakumov et al., 2014). Polycyclic aromatic hydrocarbons represent organic compounds of benzene series differing in the number and position of benzene rings showed mutagenic and carcinogenic effects. The higher molecular weight PAHs (MW > 202) with 4–6 benzene rings are frequently related to burning processes and are highly toxic to organisms due to their carcinogenic and mutagenic potential (Yunker et al., 2002; Yang et al., 2008; Martins et al., 2010). PAHs are known as mobile pollutants, polycyclic aromatic hydrocarbons of natural and anthropogenic origin that are included in the permanent monitoring list by the EU and United States Environmental Protection Agency (Baek et al., 1991; Nisbet and Lagoy, 1992; Howsam and Jones, 1998). In the Polar Regions with low temperatures, PAHs are less subjected to microbical degradation; therefore, they are deposited and preserved in soils and cryoconite (Lodygin et al., 2008; Hodson, 2014; Abakumov et al., 2015; Cook et al., 2016).

The proportion (isomer pair ratios) between concentrations of natural and anthropogenic PAHs can serve as an index of the anthropogenic influences of soil and can used as tracers to identify possible sources of PAH (Pandey et al., 1999; Yunker et al., 2002; Li et al., 2017).

Potentially Toxic Elements can be transported over long distances through the atmospheric circulation, and eventually deposited through dry and wet deposition to the Antarctic regions (Bargagli, 2006, 2008; Trevizani et al., 2018; Liu et al., 2021). They were determined in fossil fuels contaminated soils in different regions of Antarctica (Padeiro et al., 2016; Smykla et al., 2018; Alekseev and Abakumov, 2020; Gran-Scheuch et al., 2020). Also these elements have carcinogenic and mutagenic effects and can damage cellular membranes, proteins, enzymes, and DNA (Beyersmann and Hartwig, 2008; Ali et al., 2013; Padeiro et al., 2016).

The main goal of this work is to estimate the level of pollution of soils and cryoconites with potentially toxic elements and polycyclic aromatic hydrocarbons on the territory of the Bulgarian Antarctic Station “St. Kliment Ohridski” and its vicinity (Livingstone Island, South Shetland Islands, Antarctic Peninsula). In abovementioned context this research was aimed: 1) to estimate the concentrations of 15 PAHs and 6 potentially toxic elements, 2) to assess the contamination of soils with PAHs, their benzypprene equivalents were calculated, as well as to calculate various isomeric ratios of PAHs, in order to identify their possible source of origin and 3) to assess the nature of soil contamination by potentially toxic elements, we calculated a geoaccumulation index (Igeo).

MATERIALS AND METHODS

The study was performed on 11 soil and cryoconite samples taken at the Bulgarian Antarctic Station “St. Kliment Ohridski” on Livingston Island (region of Antarctic Peninsula, Western Antarctica) during the Bulgarian Antarctic expedition realized form December 21, 2019 till January 6, 2020. The precise coordinates of the sampling points and geographic description of the area are presented in Table 1.

The soils were collected from the 0–10 cm depth and cryoconites from cryoconite holes, all samples were saved in polyethylene bags, then was transported to the station laboratory air dried, after what the artificial remnants and roots have been removed, soils have been sieved through 2 mm and transported to Saint-Petersburg State University laboratories in polyethylene bags.

The Livingston Island is located at 62°38’29”S and 60°21’53”W (Figure 1). The “St. Kliment Ohridski” station situated 88 km southwest of station Bellingshausen (King George Island), 796 km southeast of Diego Ramirez Islands (the southernmost land of South America), 2,96 km of Spanish summer station “Juan Carlos I”, 28, 55 km from Chilean–United States station “Shirreff Base” (Ivanov, 2015).
The first permanent (no wintering) station on Livingston Island was the Spanish one “Juan Carlos I” (62°39′46″S, 60°23′20″W), built from 7 to January 11, 1988 (Ivanov, 2015). Another scientific base on Livingston Island is the Chilean–United States facility Shirreff Base (62°28′12″S, 60°46′17″W), with its two sections named Guillermo Mann Base and Shirreff Field Station, and opened in 1990/91 and 1996/97, respectively, (CEP, 2011). The Bulgarian station appeared a few years later than the Spanish one. The “St. Kliment Ohridski” base was opened during the 1993/94-season on the Livingston Island. Infrastructure of station includes kitchen, messroom, living rooms, food storage, toilets and bathrooms.

All three bases are permanent settlements, although inhabited only during the summer season, with accommodation capacity for a total of 54 persons. In particular, most of the solid waste is shipped for dumping outside Antarctica, with incineration gradually phased out. As elsewhere in Antarctica, the island’s bases use electricity produced mostly by diesel generators (Ivanov, 2015).

The Geoaccumulation Index (I_{geo}) allows us to classify seven levels (Table 2) of soil contamination, from Practically unpolluted ($I_{geo} \leq 0$) to Extremely polluted ($I_{geo} > 5$) (Muller, 1979; Jiang et al., 2019). The generic calculation formula is as follows:

$$I_{geo} = \log_2\left(\frac{C_n}{1.5B_n}\right)$$

where C_n—the measured concentration of the element in soil, B_n—the geochemical background value.

The content of Potentially Toxic Elements was determined following the standard ISO 11047–1998 “Soil Quality-Determination of Cadmium (Cd), Cobalt (Co), Copper (Cu), Lead (Pb), Manganese (Mg), Nickel (Ni), and Zinc (Zn) in Aqua Regia Extracts of Soil - Flame and Electrothermal Atomic Absorption Spectrometric” method at Atomic absorption spectrophotometer Kvant 2M (Moscow, Russia) (ISO, 1998).

The concentrations of 15 PAHs–naphthalene (NAP), acenaphthene (ANA), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), pyrene (PYR), benzo(a)anthracene (BaA), chrysene (CHR), benzo(b) fluoranthene (BbF), benzo(k)fluoranthene (BkF), 3,4-benzo(a) pyrene (BaP), dibenzo(a,h)anthracene (DBA), dibenzo(g,h,i) perylene (BPE), and indeno (1,2,3-c,d) pyrene (IPY) in soils and cryoconites on the territory of Bulgarian Antarctic base and its vicinities were determined on the basis of State Standard (GOST 96), which is based on method Flyuorat-02-Panorama, Russia (GOST, 1996).

Extraction of PAHs was carried out at room temperature with a mixture of hexane-acetone (1:1) with ultrasonic treatment of the extraction system in an ultrasonic bath Branson 5510 (United States) (EPA, 2007). PAHs fraction was cleaned by using column chromatography on silica gel (SW, EPA, 1996). Qualitative and quantitative determination of PAHs in soils was carried out by the method of reversed-phase high-efficiency liquid chromatography in the gradient mode and
spectrofluorometric detection on the chromatograph "Lumahrom" ("Lumex", Russia). Chromatography was performed at a temperature of 30°C on a column of Supelco Supelcosil™ LC-PAH 5 µm (25 cm × 2.1 mm). The acetonitrile–water gradient was used as a mobile phase. Sample volume of 10 µl was introduced with the help of a dosing crane. Individual PAHs were identified with chromatography mass spectrometry (spectrograph model: Shimadzu QP 5050A, Japan) (Gilichinsky et al., 2010). The detection limits of the studied PAHs are: NAP–16 µg × kg⁻¹; ANA–1.5 µg × kg⁻¹; FLU–1.4 µg × kg⁻¹; PHE–2.0 µg × kg⁻¹; ANT–0.3 µg × kg⁻¹; FLT–6.7 µg × kg⁻¹; PYR–6.7 µg × kg⁻¹; BaA–1.5 µg × kg⁻¹; CHR–0.8 µg × kg⁻¹; BbF–1.4 µg × kg⁻¹; BkF–0.3 µg × kg⁻¹; BaP–0.3 µg × kg⁻¹; DBA–1.8 µg × kg⁻¹; BPE–1.6 µg × kg⁻¹; IPY–6.7 µg × kg⁻¹. Identification of PAHs was carried out by retention times and comparison of fluorescence spectra of components released the column with standard PAHs spectra. The quantitative analysis of PAHs was carried out using the external standard method. To assess the accuracy of the method, the above-described analytical procedure

![FIGURE 1](Location map of St. Kliment Ohridski station (AAD, 2009; Ivanov, 2015).)

TABLE 2 | Classification of Igeo value

Classification	Igeo Value	Reference
Practically unpolluted	Igeo ≤ 0	Muller (1979), Jiang et al. (2019)
Uncontaminated to slightly polluted	0 < Igeo ≤ 1	
Moderately polluted	1 < Igeo ≤ 2	
Moderately to highly polluted	2 < Igeo ≤ 3	
Highly polluted	3 < Igeo ≤ 4	
Highly to extremely polluted	4 < Igeo ≤ 5	
Extremely polluted	Igeo > 5	
was subjected to the standard of bottom sediments containing surfactants (Standard Reference Material 1944 New York/New Jersey Waterway Sediment - NIST, United States) (Agency, 1986; PND, 2003; Gabov et al., 2007; Gabov et al., 2008).

Statistical data processing and visualization was performed using Statsoft Statistica 12, GraphPad Prizm 9.0.0 and QGIS 3.16.

RESULTS AND DISCUSSION

Concentration and Origin of PAHs

Some data on detected PAHs concentrations in soils of Livingston Island (Bulgarian Antarctic Station “St. Kliment Ohridski” and its vicinity) are given in the Figure 2. It should be noted that at all sampling points (except L26) the differences in concentrations are minor. For example, naphthalene content in non-toxic soils types varies from 48 to 70 μg kg⁻¹. For example, naphthalene content in non-toxic soils types varies from 48 to 70 μg kg⁻¹.

Concentrations of other PAHs in all natural soils are almost the same. Calculated index Σ₁₅PAHs for all selected samples of natural soil ranged from 170 to 200 μg kg⁻¹. Calculated index Σ₁₅PAHs for all selected samples of natural soil ranged from 170 to 200 μg kg⁻¹. Σ₇carcinogenicPAHs (CHR, BaP, BaA, IPY, DBA, BPE, IPY) is 37 μg kg⁻¹.

The following concentrations of PAHs in soils which are not subject to anthropogenic influence were noted in the earlier research in different regions of Antarctica. McMurdo Dry Valley (control site): NAP <30 μg kg⁻¹, ANA <30 μg kg⁻¹, PHE <30 μg kg⁻¹, FLU <30 μg kg⁻¹, ANT <30 μg kg⁻¹, FLT <30 μg kg⁻¹, PYR <30 μg kg⁻¹, BaA <30 μg kg⁻¹ (Aislabie et al., 1999). Admiralty Bay, King George Island: Ulmann Point ΣPAHs <10 μg kg⁻¹, Botany Point ΣPAHs <30 μg kg⁻¹, Monsimete Cove ΣPAHs <15 μg kg⁻¹ for some higher molecular PAHs (FLU, PYR, BaA, CHR, BbF, BbF, BaP, IPY, DBA, BPE) (Aislabie et al., 2010).

The content of PAHs in the vicinity of Russian Antarctic stations was studied by Abakumov et al. (2015); in these works, the list of identified PAHs is similar to our work. Haswell Archipelago: Σ₁₅PAHs = 22.8 μg kg⁻¹. Hudson Mountains: Σ₁₅PAHs = 33.9 μg kg⁻¹. Vicinity of Leningradskaya station Σ₁₅PAHs = 21.7 μg kg⁻¹. The vicinities of Mirny station Σ₁₅PAHs = 90.9 μg kg⁻¹ (Abakumov et al., 2015).

PAHs concentrations in Antarctica are often from soils and sediments located in highly contaminated areas where accidental spills have occurred, or close to research stations (Cabrero et al., 2012). On the Admiralty Bay, King George Island, Antarctica the maximum PAHs (high molecular PAHs (FLU, PYR, BaA, CHR, BbF, BbF, BaP, IPY, DBA, BPE)) concentration at Ferraz station occurred at 3.5 cm soil layer (454.9 μg kg⁻¹). The PAHs isomer pair ratio analysis showed that the major sources of PAHs are fossil fuels/petroleum (gasoline and diesel). The authors suggested that this may be related to activities at British station “G” in 1960s (established at the location of the Ferraz station). In areas of Admiralty Bay with less anthropogenic impact PAHs content is significantly lower (from 11.8 to 270.5 μg kg⁻¹) (Martins et al., 2004; Martins et al., 2010).

In the McMurdo Dry Valley region around Scott Base, Marble Point and the Wright Valley near Lake Vanda, Σ₁₅PAHs (same with our PAHs list) content of fuel oil-contaminated soils ranged from 41 to 8105 μg kg⁻¹ of dried soil. At the Scott Base PAHs levels of 362 μg kg⁻¹ in drum storage site were detected in the 0–2 cm surface soil layer compared with 8105 μg kg⁻¹ in the 2–10 cm depth and 2543 μg kg⁻¹ in the deeper 20–30 cm layer. At McMurdo Dry Valley reference points PAHs concentrations ranged from 15 to 45 μg kg⁻¹ dry weight (Aislabie et al., 2004).

Previous investigations in anthropogenic loaded areas in Antarctica have reported PAHs levels in soils in the vicinity of stations Bellingshausen and Henryk Arstowski (King George Island, South Shetland Islands) and station Academician Vernadsky (Galindez Island, Argentinian Islands). At some points around the station Academician Vernadsky, the content of Σ₁₅PAHs (same with our PAHs list) reaches 94771.2 μg kg⁻¹. The maximum level of contamination is observed near the aerology building and diesel station, the contribution of HMW...
PAHs exceeds 20%. At Bellingshausen station the maximum content of \sum_{15}PAHs in soil at the diesel station is up to 911 $\mu g \times kg^{-1}$, with a higher contribution of HMW PAHs. In the vicinity of the Henryk Arststowski station \sum_{15}PAHs content ranges from 114 to 188.3 $\mu g \times kg^{-1}$ (Abakumov et al., 2014; Abakumov et al., 2015).

Previously, investigations of PAHs content in different regions and climatic conditions have already been conducted. The values of \sum_{13}PAHs (same with our list) ranged from 36.9 to 323 $\mu g \times kg^{-1}$ (dry weight) in soil (HMW PAHs prevailed), from 154 to 231 $\mu g \times kg^{-1}$ in moss, and from 48 to 333 $\mu g \times kg^{-1}$ in reindeer dung at Ny-Ålesund, Svalbard in the Arctic (Wang et al., 2009).

For a comparative assessment, it is important to cite the results of some studies of PAH content in soils of anthropogenic-loaded urbanized areas. Investigations of \sum_{15}PAHs (same with our PAHs list) content in soils of urbanized areas show the following results: Ljubljana 218–4,490 $\mu g \times kg^{-1}$, Torino 148–3,410 $\mu g \times kg^{-1}$, while soil samples from Glasgow show very high values 1490–5,1800 $\mu g \times kg^{-1}$. Analyzed PAHs ratios indicated pyrogenic origin of chemicals. In soil samples from Glasgow show very high values 1490–5,1800 $\mu g \times kg^{-1}$.

Previously, investigations of PAHs content in different regions and climatic conditions have already been conducted. The values of \sum_{15}PAHs (same with our list) ranged from 36.9 to 323 $\mu g \times kg^{-1}$ (dry weight) in soil (HMW PAHs prevailed), from 154 to 231 $\mu g \times kg^{-1}$ in moss, and from 48 to 333 $\mu g \times kg^{-1}$ in reindeer dung at Ny-Ålesund, Svalbard in the Arctic (Wang et al., 2009).

For a comparative assessment, it is important to cite the results of some studies of PAH content in soils of anthropogenic-loaded urbanized areas. Investigations of \sum_{15}PAHs (same with our PAHs list) content in soils of urbanized areas show the following results: Ljubljana 218–4,490 $\mu g \times kg^{-1}$, Torino 148–3,410 $\mu g \times kg^{-1}$, while soil samples from Glasgow show very high values 1490–5,1800 $\mu g \times kg^{-1}$.

Previously, investigations of PAHs content in different regions and climatic conditions have already been conducted. The values of \sum_{15}PAHs (same with our list) ranged from 36.9 to 323 $\mu g \times kg^{-1}$ (dry weight) in soil (HMW PAHs prevailed), from 154 to 231 $\mu g \times kg^{-1}$ in moss, and from 48 to 333 $\mu g \times kg^{-1}$ in reindeer dung at Ny-Ålesund, Svalbard in the Arctic (Wang et al., 2009).

For a comparative assessment, it is important to cite the results of some studies of PAH content in soils of anthropogenic-loaded urbanized areas. Investigations of \sum_{15}PAHs (same with our PAHs list) content in soils of urbanized areas show the following results: Ljubljana 218–4,490 $\mu g \times kg^{-1}$, Torino 148–3,410 $\mu g \times kg^{-1}$, while soil samples from Glasgow show very high values 1490–5,1800 $\mu g \times kg^{-1}$.

Previously, investigations of PAHs content in different regions and climatic conditions have already been conducted. The values of \sum_{15}PAHs (same with our list) ranged from 36.9 to 323 $\mu g \times kg^{-1}$ (dry weight) in soil (HMW PAHs prevailed), from 154 to 231 $\mu g \times kg^{-1}$ in moss, and from 48 to 333 $\mu g \times kg^{-1}$ in reindeer dung at Ny-Ålesund, Svalbard in the Arctic (Wang et al., 2009).

For a comparative assessment, it is important to cite the results of some studies of PAH content in soils of anthropogenic-loaded urbanized areas. Investigations of \sum_{15}PAHs (same with our PAHs list) content in soils of urbanized areas show the following results: Ljubljana 218–4,490 $\mu g \times kg^{-1}$, Torino 148–3,410 $\mu g \times kg^{-1}$, while soil samples from Glasgow show very high values 1490–5,1800 $\mu g \times kg^{-1}$.

Previously, investigations of PAHs content in different regions and climatic conditions have already been conducted. The values of \sum_{15}PAHs (same with our list) ranged from 36.9 to 323 $\mu g \times kg^{-1}$ (dry weight) in soil (HMW PAHs prevailed), from 154 to 231 $\mu g \times kg^{-1}$ in moss, and from 48 to 333 $\mu g \times kg^{-1}$ in reindeer dung at Ny-Ålesund, Svalbard in the Arctic (Wang et al., 2009).

For a comparative assessment, it is important to cite the results of some studies of PAH content in soils of anthropogenic-loaded urbanized areas. Investigations of \sum_{15}PAHs (same with our PAHs list) content in soils of urbanized areas show the following results: Ljubljana 218–4,490 $\mu g \times kg^{-1}$, Torino 148–3,410 $\mu g \times kg^{-1}$, while soil samples from Glasgow show very high values 1490–5,1800 $\mu g \times kg^{-1}$.

Previously, investigations of PAHs content in different regions and climatic conditions have already been conducted. The values of \sum_{15}PAHs (same with our list) ranged from 36.9 to 323 $\mu g \times kg^{-1}$ (dry weight) in soil (HMW PAHs prevailed), from 154 to 231 $\mu g \times kg^{-1}$ in moss, and from 48 to 333 $\mu g \times kg^{-1}$ in reindeer dung at Ny-Ålesund, Svalbard in the Arctic (Wang et al., 2009).

For a comparative assessment, it is important to cite the results of some studies of PAH content in soils of anthropogenic-loaded urbanized areas. Investigations of \sum_{15}PAHs (same with our PAHs list) content in soils of urbanized areas show the following results: Ljubljana 218–4,490 $\mu g \times kg^{-1}$, Torino 148–3,410 $\mu g \times kg^{-1}$, while soil samples from Glasgow show very high values 1490–5,1800 $\mu g \times kg^{-1}$.

Previously, investigations of PAHs content in different regions and climatic conditions have already been conducted. The values of \sum_{15}PAHs (same with our list) ranged from 36.9 to 323 $\mu g \times kg^{-1}$ (dry weight) in soil (HMW PAHs prevailed), from 154 to 231 $\mu g \times kg^{-1}$ in moss, and from 48 to 333 $\mu g \times kg^{-1}$ in reindeer dung at Ny-Ålesund, Svalbard in the Arctic (Wang et al., 2009).

For a comparative assessment, it is important to cite the results of some studies of PAH content in soils of anthropogenic-loaded urbanized areas. Investigations of \sum_{15}PAHs (same with our PAHs list) content in soils of urbanized areas show the following results: Ljubljana 218–4,490 $\mu g \times kg^{-1}$, Torino 148–3,410 $\mu g \times kg^{-1}$, while soil samples from Glasgow show very high values 1490–5,1800 $\mu g \times kg^{-1}$.

Previously, investigations of PAHs content in different regions and climatic conditions have already been conducted. The values of \sum_{15}PAHs (same with our list) ranged from 36.9 to 323 $\mu g \times kg^{-1}$ (dry weight) in soil (HMW PAHs prevailed), from 154 to 231 $\mu g \times kg^{-1}$ in moss, and from 48 to 333 $\mu g \times kg^{-1}$ in reindeer dung at Ny-Ålesund, Svalbard in the Arctic (Wang et al., 2009).

For a comparative assessment, it is important to cite the results of some studies of PAH content in soils of anthropogenic-loaded urbanized areas. Investigations of \sum_{15}PAHs (same with our PAHs list) content in soils of urbanized areas show the following results: Ljubljana 218–4,490 $\mu g \times kg^{-1}$, Torino 148–3,410 $\mu g \times kg^{-1}$, while soil samples from Glasgow show very high values 1490–5,1800 $\mu g \times kg^{-1}$.

Previously, investigations of PAHs content in different regions and climatic conditions have already been conducted. The values of \sum_{15}PAHs (same with our list) ranged from 36.9 to 323 $\mu g \times kg^{-1}$ (dry weight) in soil (HMW PAHs prevailed), from 154 to 231 $\mu g \times kg^{-1}$ in moss, and from 48 to 333 $\mu g \times kg^{-1}$ in reindeer dung at Ny-Ålesund, Svalbard in the Arctic (Wang et al., 2009).

For a comparative assessment, it is important to cite the results of some studies of PAH content in soils of anthropogenic-loaded urbanized areas. Investigations of \sum_{15}PAHs (same with our PAHs list) content in soils of urbanized areas show the following results: Ljubljana 218–4,490 $\mu g \times kg^{-1}$, Torino 148–3,410 $\mu g \times kg^{-1}$, while soil samples from Glasgow show very high values 1490–5,1800 $\mu g \times kg^{-1}$.
values are characteristic for petrogenic processes of PAHs formation.

For cross-checking the nature of the origin of PAHs, bi-plots were constructed between some values of the obtained relations (Figure 3).

As can be seen in the figure above, the correlation values show high statistical correlation between each other \((r^2 > 0.66) \). In all the plotted figures, the soil sample L26, which was sampled directly in the territory of the Antarctic station, stands apart. All PAHs for this soil, which are shown on the visualized ratios, are of pyrogenic (combustion) origin. The existence of PAHs of pyrogenic origin is caused by the incinerator using the diesel fuel used to eliminate waste, as well as by the diesel electric generator that supplies the station with electric power.

BaP-Equivalence of PAHs Concentrations

Taking into account that not all chemical contaminants have maximum permissible concentration (MPC) in soils, especially regional MPCs for Antarctic continent, BaP-equivalence of PAHs concentrations were calculated. Since in the EU and the

Table 3 | Possible PAHs isomer ratios.

PAHs isomer ratios	Range of values	Possible sources of PAH	References
ANT/(ANT + PHE)	<0.10	Petroleum/Baseline source	Yunker et al. (2002), Wang et al. (2009), Tobiszewski and Namieśnik (2012), Shamilishvili et al. (2016)
	>0.10	Indicates a dominance of combustion	
FLU/(FLU + PYR)	<0.40	Most petroleum/Baseline source	Mandalakis et al. (2002), Yunker et al. (2002), Fang et al. (2004), Ravindra et al. (2008), Shamilishvili et al. (2016)
	0.40-0.50	Liquid fossil fuel (vehicle and crude oil) combustion	
	>0.50	Characteristic of grass, wood or coal combustion	
BaA/(BaA + CHR)	<0.20	Petroleum/Baseline source	Yunker et al. (2002), Tobiszewski and Namieśnik (2012), Shamilishvili et al. (2016)
	0.20-0.35	Liquid fossil fuel (vehicle and crude oil) combustion	
	>0.35	Combustion	
IPY/(IPY + BPE)	<0.20	Petroleum/Baseline source	Yunker et al. (2002), Shamilishvili et al. (2016)
	0.20-0.50	Liquid fossil fuel (vehicle and crude oil) combustion	
	>0.50	Imply grass, wood and coal combustion	
PHE/ANT	>10	Petrogenic	Budzinski et al. (1997), Khairy et al. (2009)
	<10	Pyrolytic	
FLU/PYR	>1.0	Petrogenic	Budzinski et al. (1997), Khairy et al. (2009)
	>0.50	Pyrolytic	
BaP/BPE	<0.60	Non-traffic source	Pandey et al. (1999), Ravindra et al. (2008)
	>0.60	Traffic source	
\(\sum \) PyrPAHs/\(\sum \) PAHs	<0.30	Petroleum/Baseline source	Hwang et al. (2004), Bailer et al. (2019)
	0.30-0.70	Petroleum, combustion, baseline source	
	>0.70	Mostly combustion	
\(\sum \) LMW PAHs/\(\sum \) HMW PAHs	<1	Pyrogenic	Socio et al. (2000), Zhang et al. (2008), Chunhui et al. (2017)
	>1	Petrogenic	

*pyrogenic PAHs - FLT, PYR, BaA, CHR, BbF, BbK, BaP, BPE, IPY.
*light molecular weight, 2-3 ring PAHs.
*heavy molecular weight HMW, 4-6 ring PAHs.

Table 4 | PAHs isomer ratios in studied soils and cryoconites.

Soil Type	L1E	L21	L28	L10	L6	L1A	L26	L2	L1C	L22	L9
ANT/(ANT + PHE)	0.05	0.06	0.04	0.03	0.04	0.04	0.18	0.04	0.04	0.04	0.04
FLU/(FLU + PYR)	0.23	0.23	0.18	0.19	0.23	0.23	0.23	0.23	0.22	0.17	0.23
BaA/(BaA + CHR)	0.69	0.67	0.63	0.62	0.67	0.67	0.46	0.66	0.60	0.69	0.70
IPY/(IPY + BPE)	0.78	0.77	0.78	0.78	0.78	0.80	0.58	0.77	0.78	0.78	0.79
BaP/BPE	0.18	0.17	0.18	0.18	0.17	0.20	1.00	0.17	0.18	0.18	0.19
PHE/ANT	21.00	20.00	27.00	28.00	23.00	23.00	4.62	23.00	23.00	25.00	23.00
FLU/PYR	0.30	0.30	0.22	0.24	0.30	0.30	0.10	0.29	0.29	0.21	0.30
\(\sum \) PyrPAHs/\(\sum \) PAHs	0.38	0.41	0.37	0.35	0.39	0.37	0.41	0.35	0.38	0.38	0.37
\(\sum \) LMW PAHs/\(\sum \) HMW PAHs	0.97	1.10	0.89	0.80	1.00	0.93	0.98	0.84	0.97	0.95	0.93

*pyrogenic PAHs - FLT, PYR, BaA, CHR, BbF, BbK, BaP, BPE, IPY.
*light molecular weight, 2-3 ring PAHs.
*heavy molecular weight HMW, 4-6 ring PAHs.
United States PAHs in various environments are controlled based on the calculation of human health risks, it was decided to use the standards adopted in Russian environmental legislation for convenience.

In Russia, the control of concentrations of various PAHs in the environment is based on monitoring 3-4 benzo(a)pyrene. According to the environmental protection laws, its maximum permissible concentration (MPC) in soil is \(20 \mu g \times kg^{-1} \) (Hygienic Norms, 2006). The methods of calculation of BaP-equivalents are well studied and have long been applied in studies of anthropogenic impact on natural territories (USEPA, 1993; Verbruggen et al., 2001; Jung et al., 2010). The method makes it possible to evaluate the effect of both the PAHs complex and each of them individually (Bari et al., 2010; Jennings, 2012).

BaP-equivalents values were calculated by simply multiplication of PAHs concentrations by Toxic Equivalent Factor (TEF) values (Nisbet and Lagoy, 1992). Benzo(a)pyrene was among the first chemical carcinogens identified more than 70 years ago. Many jurisdiction use TEFs applied to their BaP-equivalents to regulate other PAH (Loeb and Harris, 2008; Jennings, 2012; Shamilishvili et al., 2016).

The values of toxicity of investigated PAHs by 3-4 benzo(a) pyrene are presented on the Figure 4. As can be seen from the results obtained, for toxic soil (point L26) BaP-equivalents \(\sum_{15} \)PAHs is 56.2 \(\mu g \times kg^{-1} \), which is more than 2 times higher than the standards of Russian environmental legislation. The main contribution to BaP-equivalents \(\sum_{15} \)PAHs is formed by: DBA 30.0 \(\mu g \times kg^{-1} \), BaP 19.0 \(\mu g \times kg^{-1} \), IPY 2.58 \(\mu g \times kg^{-1} \). \(\sum_{7} \)carcinogenic PAHs is 54.6 \(\mu g \times kg^{-1} \), which is also more than 2 times higher than the Russian standard. It should be noted that the share of carcinogenic PAHs in BaP-equivalents is more than 90 percent.

For natural Antarctic soils the proportion of different PAHs in BaP – equivalents are significantly different from toxic soil sample. For almost all samples of natural soil \(\sum_{15} \)PAHs in BaP-equivalents is close to 34 \(\mu g \times kg^{-1} \). The main
contribution in all cases is DBA $30 \mu g \times kg^{-1}$, IPY $2 \mu g \times kg^{-1}$, the remaining PAHs are significantly smaller. $\sum_{\text{carcinogenic}}$PAHs in BaP-equivalents for all natural soils is close to $33 \mu g \times kg^{-1}$ with a DBA share of over 90%.

Taking into account that DBA concentrations in toxic and natural soils is a same ($6 \mu g \times kg^{-1}$), one might say that baseline source of DBA in BaP-equivalents in soils and cryoconites more than Russian MPC of 3-4 benzo(a)pyrene.

Content of Potentially Toxic Elements

Figure 5 shows the content of Potentially Toxic Elements in soils and cryoconites. Zn has the highest content of all metals. In the soil sample from the anthropogenic-loaded area (L26) the Zn concentration is $75.7 mg \times kg^{-1}$. The lowest concentration was detected in sample L1A–$16.5 mg \times kg^{-1}$. High concentrations of Zn were recorded at L6 and L10, although soils in these areas are not subjected to anthropogenic load. As can be seen in the diagram presented in **Figure 4**, the variability of concentrations of other metals is significantly lower compared to zinc. The content does not change significantly. The minimum content among all Potentially Toxic Elements is observed for Cd, the maximum concentration is fixed in point L10–$0.509 mg \times kg^{-1}$.

Potential Toxic Elements in soils with anthropogenic load (Cryosol Toxic Transportic) following relation: $Zn > Cu > Pb > Ni > Cr > Cd$. Cryosol Ornitic: $Zn > Ni > Cu > Pb > Cr > Cd$. Typihical Cryosols and Cryoconites in most cases: $Zn > Cu > Ni > Pb > Cr > Cd$.

Previously, some results of studies of the content of potentially toxic elements in soils, cryoconites and ornithogenic sediments in the Antarctic Continent have already been published. In the cryoconites King George Island recorded the content of potentially toxic elements in the following order: $Zn > Cu > Ni > Cr > Pb > Cd$ (Polyakov et al., 2020). In the anthropogenically loaded soils of Robert Island near The Chilean refuge Luis Risopatrón, the concentrations were in the following order $Cr > Cu > Zn > Ni > Pb > Cd$ (Neto et al., 2017). Technosols from Hope Bay, Esperanza Station showed relation $Pb > Zn > Cu > Ni > Cr > Cd$. With an extremely high Pb content of $19381 mg \times kg^{-1}$ and Cd content of $44 mg \times kg^{-1}$ (Bueno Guerra et al., 2011). King George Island, Stranger Point, ornithogenic soils near Gentoo penguin colonies, showed potentially toxic elements ratios: $Cu > Zn > Pb > Cr > Ni > Cd$, at a Cu concentration of $389.98 mg \times kg^{-1}$ and a Cd concentration of $3.93 mg \times kg^{-1}$ (Celis et al., 2015).

Unfortunately, the soils of Livingston Island are poorly investigated in terms of heavy metals concentration, so below is a comparison with the results of few studies of soils of Livingston Island and King George Island, as it is similar in climate conditions and is a short distance to Livingston Island. Vlček et al. (2017) present data for pristine soils on Livingston Island (Hannah point area), which are similar to our results for undisturbed soils. The
authors note the highest Zn concentration (55 mg × kg⁻¹) in undisturbed soils, which is identical to our data (Vlček et al., 2017). The results for the other heavy metals are also similar. The investigations Santos et al. (2005); Vlček et al. (2017); Bueno et al. (2018) provide data on the content of trace metals both in pristine soils of King George Island and for anthropogenically loaded areas near the Antarctic stations. The data given by these researchers for pristine soils are generally similar to ours. For anthropogenically loaded territories, there are similarities in the content of Cu, Zn, and Pb. The average Zn 63.1, Cu 52.2, and Pb 6.3 mg × kg⁻¹ were found in the soils of Artigas Antarctic Scientific Base (Bueno et al., 2018). For soils of Brazilian Antarctic Station Comandante Ferraz (Ferraz), data on average Zn concentrations of 52 mg/kg are given (Santos et al., 2005). We also recorded the maximum concentrations of Zn, Cu and Pb among all the studied metals in a soil sample taken on the territory of the station “St. Kliment Ohridski” (point L26).

Statistical analysis of the obtained data matrix of trace elements concentrations showed that most elements are in close correlation relationship (Table 5).

Significant Spearman correlation coefficients ($r > 0.61$) were obtained practically for the elements. High correlation values between Ni and Zn ($r = 0.91$), Cr and Zn ($r = 0.85$), and between Cd and Cu ($r = 0.82$) are especially significant.

Classification of Soil Contaminations

Livingston Island is not well surveyed in terms of background concentrations of trace metals in the soil, so we used concentrations of trace metals in King George Island soils to calculate the geoaccumulation index (I_{geo}). King George Island is the closest large island to Livingston Island, they are very similar in climatic conditions and are part of the South Shetland Islands. There are many publications on heavy metal content in the pristine soils of King George Island (Amaro et al., 2015; Dalfior et al., 2016; Alekseev and Abakumov, 2020; Polyakov et al., 2020). Based on these studies, we calculated average values of heavy metal concentrations in pristine soils of the South

TABLE 5 | Spearman Rank Order Correlations (r) between concentrations of potentially toxic elements (Bolded correlations are significant at $p < 0.05$).

	Cu	Pb	Zn	Cd	Ni	Cr
Cu	1.00	0.59	0.47	0.82	0.49	0.57
Pb	1.00	0.70	0.84	0.74	0.61	
Zn	1.00	0.61	0.91	0.85		
Cd	1.00	0.62	0.71			
Ni	1.00	0.82				
Cr	1.00					

FIGURE 6 | I_{geo} values for the studied soils in the vicinity of “St. Kliment Ohridsky” station.
Shetland Islands. The following values of the geochemical background value (B_p) were obtained: Cu–63, Pb–5.65, Zn–42.6, Cd–0.25, Ni–11.83, and Cr–22.95 mg × kg$^{-1}$.

In most of the studied soils, the values of the I_{geo} for all the studied potentially toxic elements are less than zero ($I_{geo} \leq 0$), which allows us to classify them as Practically unpolluted (Figure 6).

Values above zero are recorded at L28, L10, and L26 sampling points. At L28 point, the I_{geo} value for Cd is 3.46. This soil is characterized as Highly polluted ($3 < I_{geo} \leq 4$). Also a high level of Cd content compared with background values was recorded at point L10, the values of I_{geo} index equal to 2.26. Cd contamination is characterized as Moderately to highly polluted ($2 < I_{geo} \leq 3$). The highest values of the I_{geo} index are found at L26 point. Here Pb and Zn contamination is characterized as Highly polluted ($3 < I_{geo} \leq 4$). I_{geo} values for Pb and Zn at point L26 are 3.85 and 3.82, respectively. It should be noted that the study area near point L26, is anthropogenically loaded, soil samples were taken directly in the territory of the Bulgarian Antarctic station. Bueno et al. (2018) reports data on soil contamination of Ferraz station (King George Island) based on Igeo index calculations. The level of contamination of Zn (moderately to highly polluted) and Cr (Moderately polluted) is identified (Bueno et al., 2018). It can be noted a similarity with the character of soil contamination on the territory of the station "St. Kliment Ohridski". Averaging the I_{geo} values for all points, the ratio of the pollution level is as follows Cr > Cu > Pb > Cd > Ni > Zn. With values for Cr and Zn equal to –0.32 and –1.94, respectively. The average values for all potentially toxic elements are characterized as Practically unpolluted ($I_{geo} \leq 0$).

REFERENCES

AAD (2009). Antarctica: 1000 Metre Contours. 1: 45 000 000. Australia: Australian Antarctic Division.

Abakumov, E., Lodygin, E., Gabov, D., and Krylenkov, V. (2014). [Polycyclic Aromatic Hydrocarbons Content in Antarctica Soils as Exemplified by the Russian Polar Stations], Gig Sanit 1, 31–35.

Abakumov, E. V., Parnikoza, I. Y., Lupachev, A. V., Lodygin, E. D., Gabov, D. N., and Kunakh, V. A. (2015). [CONTENT OF POLYCYCLIC AROMATIC HYDROCARBONS IN SOILS OF ANTARCTIC STATIONS REGIONS]. Gig Sanit 94, 20–25.

Agency, U. S. E. P. (1986). SW-846 Test Method 8310: Polynuclear Aromatic Hydrocarbons. Washington, DC: US EPA.

Aislable, J., Balks, M., Astori, N., Stevenson, G., and Symons, R. (1999). Polycyclic Aromatic Hydrocarbons in Fuel-Oil Contaminated Soils, Antarctica. Chemosphere 39 (13), 2201–2207. doi:10.1016/S0045-6535(99)00144-7

Aislable, J. M., Balks, M. R., Fogg, I. M., and Waterhouse, E. J. (2004). Hydrocarbon Spills on Antarctic Soils: Effects and Management. Environ. Sci. Technol. 38 (5), 1265–1274. doi:10.1021/es0305149

Alekseev, I., and Abakumov, E. (2020). The Content and Distribution of Trace Elements and Polycyclic Aromatic Hydrocarbons in Soils of Maritime Antarctica. Environ. Monit. Assess. 192 (11), 1–22. doi:10.1007/s10661-020-08618-2

Ali, H., Khan, E., and Sajad, M. A. (2013). Pythoremediation of Heavy Metals-Concepts and Applications. Chemosphere 91 (7), 869–881. doi:10.1016/j.chemosphere.2013.01.075

Amaro, E., Padeiro, A., de Ferro, A. M., Mota, A. M., Leppe, M., Verkulich, S., et al. (2015). Assessing Trace Element Contamination in Filides Peninsula (King George Island) and Ardley Island, Antarctic. Mar. Pollut. Bull. 97 (1-2), 523–527. doi:10.1016/j.marpolbul.2015.05.018

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

EA-field work, conceptualization, TN—laboratory analyzes, data processing, MG—writing manuscript, RY—field work, data processing. All authors have read and agreed to the published version of the manuscript.

FUNDING

This work was supported by Russian Foundation for Basic Research, Projects No 18–04–00900, 19–54–18003 and 19–05–50107.

ACKNOWLEDGMENTS

The authors are very grateful to the participants and organizers of the Russian and Bulgarian Antarctic National Expeditions. And Research park of Saint-Petersburg State University, Chemical Analysis and Materials Research Centre for assistance with routine soil analyses.

Aronson, R. B., Thatje, S., McClintock, J. B., and Hughes, K. A. (2011). Anthropogenic Impacts on Marine Ecosystems in Antarctica. Ann. New York Acad. Sci. 1223 (1), 82–107. doi:10.1111/j.1749-6632.2010.05926.x

Baek, S., Field, R., Goldstone, M., Kirk, P., Lester, J., and Perry, R. (1991). A Review of Atmospheric Polycyclic Aromatic Hydrocarbons: Sources, Fate and Behavior. Water Air Soil Pollut. 60 (3-4), 279–300. doi:10.1007/bf00283268

BAI (2013). Exchange of Information in Accordance with Article VII (5) Bulgarian Antarctic Activities 2012/2013 [Online]. Sofia, Republica Bulgaria: Bulgarian Antarctic Institute. Available: http://www.ats.aq/devA5/./%5cDocuments%5cIE%5cChgann13e.doc [Accessed].

Balmer, J. E., Hung, H., Yu, Y., Letcher, R. J., and Muir, D. C. G. (2019). Sources and Environmental Fate of Pyrogenic Polycyclic Aromatic Hydrocarbons (PAHs) in the Arctic. Emerging Contaminants 5, 128–142. doi:10.1007/jm.econ2019.04.002

Bargagli, R. (2006). Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact. Berlin, Germany: Springer Science & Business Media.

Bargagli, R. (2008). Environmental Contamination in Antarctic Ecosystems. Sci. total Environ. 400 (1-3), 212–226. doi:10.1016/j.scitotenv.2008.06.062

Bari, M. A., Baumbach, G., Kuch, B., and Scheffknecht, G. (2010). Particle-phase Concentrations of Polycyclic Aromatic Hydrocarbons in Ambient Air of Rural Residential Areas in Southern Germany. Air Qual. Atmos. Health 3 (2), 103–116. doi:10.1007/s11869-009-0057-8

Beyersmann, D., and Hartwig, A. (2008). Carcinogenic Metal Compounds: Recent Insight into Molecular and Cellular Mechanisms. Arch. Toxicol. 82 (8), 493–512. doi:10.1007/s00204-008-0313-y

Budzinski, H., Jones, I., Bellocq, J., Pierard, C., and Garrigues, P. (1997). Evaluation of Sediment Contamination by Polycyclic Aromatic Hydrocarbons in the Gironde Estuary. Mar. Chem. 58 (1-2), 85–97. doi:10.1016/s0304-4203(97)00028-5
PCDD/Fs in the Atmosphere of Athens (Greece). Atmos. Environ. 36 (25), 4023–4035. doi:10.1016/s1352-2310(02)00562-x

Madrid Protocol. (1998). Protocol on Environmental Protection to the Antarctic Treaty, Madrid, 4 October 1991, 30 ILM 1461 (Accessed January 14, 1998).

Martins, C. C., Bicego, M. C., Rose, N. L., Taniguchi, S., Lourenço, R. A., Figueira, R. C. L., et al. (2010). Historical Record of Polycyclic Aromatic Hydrocarbons (PAHs) and Spheronidal Carbonaceous Particles (SCPs) in Marine Sediment Cores from Admiralty Bay, King George Island, Antarctica. Environ. Pollut. 158 (1), 192–200. doi:10.1016/j.envpol.2009.07.025

Martins, C. C., Bicego, M. C., Taniguchi, S., and Montone, R. C. (2004). Aliphatic and Polycyclic Aromatic Hydrocarbons in Surface Sediments in Admiralty Bay, King George Island, Antarctica. Antarctic Sci. 16 (2), 117–122. doi:10.1017/s09540044001932

Morillo, E., Romero, A. S., Maqueda, C., Madrid, L., Aijmone-Marsan, F., Grzmac, H., et al. (2007). Soil Pollution by PAHs in Urban Soils: a Comparison of Three European Cities. J. Environ. Monit. 9 (9), 1001–1008. doi:10.1039/b705955h

Muller, G. (1979). Schwermetalle in den Sedimenten des Rheins: Veranderungen seit 1971 Umschau, 79, 778–783 (in German).

Na, G., Gao, Y., Li, R., Gao, H., Hou, C., Ye, J., et al. (2020). Occurrence and Sources of PAHs in Surface Sediments from the Inlet, Admiralty Bay (King George Island, Antarctica). Mar. Pollut. Bull. 200, doi:10.1016/j.marpolbul.2019.10.009

Negri, A., Burns, K., Boyle, S., Brinkman, D., and Webster, N. (2006). New Zealand Antarctic Institute (Antarctica NZ: New Zealand Antarctic Institute (Antarctica New Zealand)).

Nisbet, I. C. T., and Lagoy, P. K. (1992). Toxic Equivalency Factors (TEFs) for PCDD/Fs in the Atmosphere of Athens (Greece). Environ. Sci. Total Environ. 16 (3), 290–300. doi:10.1016/0032-0070(92)90099-x

Padeiro, A., Amaro, E., dos Santos, M. M. C., Araújo, M. F., Gomes, S. S., Leppe, M., et al. (2016). Trace Element Contamination and Availability in the Fildes Peninsula, King George Island, Antarctica. Environ. Sci. Process. Impacts 18 (6), 648–657. doi:10.1039/cem20055e

Pandey, P. K., Patel, K. S., and Lenicek, I. (1999). Polycyclic Aromatic Hydrocarbons: Need for Assessment of Health Risks in India? Study of an Urban-Industrial Location in India. Environ. Monit. Assess. 59 (3), 287–319. doi:10.1023/a:1006189605672

PND, F. (2003). 16.1: 2: 2.2: 3.39-03. High Eff cient Liquid Chro Matography

Pourret, O., and Hursthouse, A. (2019). It

Punshumus, R., and Van Weel, A. (2001). Ecotoxicological Serious Risk Concentrations for Soil, Sediment and (Ground) Water: Updated Proposals for First Series of Compounds.doi:10.2118/67863-1

Vlček, V., Juřička, D., and Miková, J. (2017). Heavy Metal Concentration in Selected Soils and Sediments of Livingston Island, Deception Island, King George Island, James Ross Island (Antarctica). Czech Polar Rep. 7 (1), 18–33.

Wang, Z., Ma, X., Na, G., Lin, Z., Ding, Q., and Yao, Z. (2009). Correlations between Physicochemical Properties of PAHs and Their Relation with the Transboundary Movement of the Air and Canopy Throughfall. Environ. Pollut. 153 (3), 594–601. doi:10.1016/j.envpol.2007.09.004

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Abakumov, Nizamutdinov, Yaneva and Zhiyanski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.