Generalized Rainbow Turán Numbers of Odd Cycles

József Balogh ∗ Michelle Delcourt † Emily Heath ‡ Lina Li §

September 23, 2021

Abstract

Given graphs F and H, the generalized rainbow Turán number $\text{ex}(n, F, \text{rainbow-}H)$ is the maximum number of copies of F in an n-vertex graph with a proper edge-coloring that contains no rainbow copy of H. B. Janzer determined the order of magnitude of $\text{ex}(n, C_s, \text{rainbow-}C_t)$ for all $s \geq 4$ and $t \geq 3$, and a recent result of O. Janzer implied that $\text{ex}(n, C_3, \text{rainbow-}C_{2k}) = O(n^{1+1/k})$. We prove the corresponding upper bound for the remaining cases, showing that $\text{ex}(n, C_3, \text{rainbow-}C_{2k+1}) = O(n^{1+1/k})$. This matches the known lower bound for k even and is conjectured to be tight for k odd.

1 Introduction

The Turán number of a graph H is the maximum number of edges in an H-free graph on n vertices, denoted $\text{ex}(n, H)$. This has been generalized in many different ways. For example, the rainbow Turán number $\text{ex}^*(n, H)$, introduced in [1], is the maximum number of edges in a graph on n vertices which can be properly edge-colored with no rainbow copy of H. Another natural variation is the generalized Turán number $\text{ex}(n, F, H)$, which is the maximum number of copies of a graph F in an n-vertex graph that contains no copy of H, and was first studied systematically by Alon and Shikhelman [2]. Both of these problems have been extensively studied, see for example [3, 1] and [2, 4, 5, 6, 7, 8, 9, 10].

∗Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA, and Moscow Institute of Physics and Technology, Russian Federation. E-mail: jobal@illinois.edu. Research supported by NSF RTG Grant DMS-1937241, NSF Grant DMS-1764123, Arnold O. Beckman Research Award (UIUC Campus Research Board RB 18132), the Langan Scholar Fund (UIUC), and the Simons Fellowship.

†Department of Mathematics, Ryerson University, Toronto, Ontario M5B 2K3, Canada. E-mail: mdelcourt@ryerson.ca. Research supported by NSERC under Discovery Grant No.2019-04269 and an AMS-Simons Travel Grant.

‡Department of Mathematics, Iowa State University, Ames, IA 50011, USA. Email: eheath@iastate.edu. Research supported by NSF RTG Grant DMS-1937241.

§Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. Email: lina.li@uwaterloo.ca.
Gerbner, Mézéros, Methuku and Palmer [11] considered the following generalized problem which unites the two concepts above. Given two graphs \(F \) and \(H \), the \textit{generalized rainbow Turán number}, denoted by \(\text{ex}(n, F, \text{rainbow-}H) \), is the maximum number of copies of \(F \) in an \(n \)-vertex graph which can be properly edge-colored to avoid a rainbow copy of \(H \). Note that trivially we have \(\text{ex}(n, F, \text{rainbow-}H) \geq \text{ex}(n, F, H) \). The question for \(F = H \) has been studied for paths, trees, cycles and cliques, see [11, 12, 13].

Recently, B. Janzer [13] determined the order of magnitude of \(\text{ex}(n, C_s, \text{rainbow-}C_{2k}) \) for all cases except for \(s = 3 \). In the case \(s = 3 \), he gave the following bounds.

\textbf{Theorem 1.1} (Janzer [13]). If \(k \geq 2 \) is odd then \(\text{ex}(n, C_3, \text{rainbow-}C_{2k}) = \Omega(n^{1+1/k}) \), and if \(k \) is even then \(\text{ex}(n, C_3, \text{rainbow-}C_{2k+1}) = \Omega(n^{1+1/k}) \). Furthermore, for every integer \(k \geq 2 \), we have
\[
\text{ex}(n, C_3, \text{rainbow-}C_{2k}) = O(\text{ex}^*(n, C_{2k})),
\]
and
\[
\text{ex}(n, C_3, \text{rainbow-}C_{2k}) \geq \text{ex}(n, C_3, C_{2k}) = \Omega(\text{ex}(n, \{C_4, C_6, \ldots, C_{2k}\})),
\]
\[
\text{ex}(n, C_3, \text{rainbow-}C_{2k+1}) \geq \text{ex}(n, C_3, C_{2k+1}) = \Omega(\text{ex}(n, \{C_4, C_6, \ldots, C_{2k}\})).
\]

Very recently, O. Janzer [3] settled a well-known conjecture of Keevash, Mubayi, Sudakov and Verstraëte [1], proving that
\[
\text{ex}^*(n, C_{2k}) = \Theta(n^{1+1/k}). \tag{1}
\]
Together with Theorem 1.1, this yields \(\text{ex}(n, C_3, \text{rainbow-}C_{2k}) = O(n^{1+1/k}) \), which is tight for \(k \) odd.

In this paper, we study the remaining open case for cycles, proving an upper bound on \(\text{ex}(n, C_3, \text{rainbow-}C_{2k+1}) \) which matches the lower bound given by B. Janzer [13] for \(k \) even and which is expected to be sharp for \(k \) odd as well.

\textbf{Theorem 1.2}. For \(k \geq 2 \), we have
\[
\text{ex}(n, C_3, \text{rainbow-}C_{2k+1}) = O\left(n^{1+1/k}\right).
\]

In Section 2, we give a self-contained proof of the upper bound on \(\text{ex}(n, C_3, \text{rainbow-}C_5) \) which gives an explicit constant, although it is likely not best possible. In Section 3, we prove Theorem 1.2 by applying (1) to a subgraph in which every rainbow copy of \(C_{2k} \) extends to a rainbow copy of \(C_{2k+1} \) in the original graph. Throughout the paper, we use \(P_k \) to denote the path with \(k \) edges.

\section{No rainbow \(C_5 \)}

\textbf{Theorem 2.1}. We have \(\text{ex}(n, C_3, \text{rainbow-}C_5) \leq 32n^{3/2} \).
Proof. Let G be an n-vertex graph with a proper edge-coloring c containing no rainbow copy of C_5. First, we will show that G contains at most $4|E(G)|$ triangles.

Fix a vertex $v \in V(G)$ and let d denote the degree of v. We will count in two ways the pairs (S, e) where $S \subseteq N(v)$ contains $\lceil d/2 \rceil$ neighbors of v and $e \in E(G[S])$ satisfies $c(e) \neq c(vu)$ for every $u \in S$. There are $\binom{d}{\lceil d/2 \rceil}$ ways to choose the set S. Throw out any edge in $G[S]$ whose color appears on an edge incident with v and S. Let E' denote the set of remaining edges in $G[S]$. Now E' must be rainbow P_3-free, otherwise we can find a rainbow copy of C_5 in G. Therefore, since Johnston, Palmer, and Sarkar [14] showed that $\text{ex}^*(n, P_3) = \frac{3}{2}n$, we have $|E'| \leq \frac{3}{2}\left\lceil \frac{d}{2} \right\rceil$. Thus, the number of triangles containing v which are formed in this way, that is, the number of pairs of such a set S and an edge from E' of a different color, is at most $\frac{3}{2}\left\lceil \frac{d}{2} \right\rceil \binom{d}{\lceil d/2 \rceil}$.

On the other hand, we could instead first choose an edge e in the neighborhood of v to form our triangle, which can be done in $|E(G[N(v)])|$ ways, and then select an additional $\lceil d/2 \rceil - 2$ vertices from $N(v)$ to form the rest of S. However, we do not want the color of e to appear on an edge incident to v. Since the edge coloring is proper, this only requires us to throw out at most one vertex from $N(v)$ since at most one edge incident to v can have the same color as e. Thus, we can pick the remaining vertices of S in at least $\binom{d-3}{\lceil d/2 \rceil - 2}$ ways. Therefore, we have

$$|E(G[N(v)])| \cdot \binom{d-3}{\lceil d/2 \rceil - 2} \leq \frac{3}{2}\left\lceil \frac{d}{2} \right\rceil \binom{d}{\lceil d/2 \rceil}.$$

Thus, $|E(G[N(v)])| \leq 6d$, so the number of triangles in G is at most $\frac{1}{3}\sum_{v \in V(G)}|E(G[N(v)])| \leq \frac{1}{3}\sum_{v \in V(G)}6d(v) = 4|E(G)|$.

We may assume that every edge of G is in a triangle, otherwise we could delete an edge without decreasing the number of triangles. Now assume towards a contradiction that $|E(G)| \geq 8n^{3/2}$.

One-by-one, delete vertices of degree less than $4\sqrt{n}$ in G. Note that not all vertices are deleted, since otherwise $|E(G)| < 4n^{3/2}$. Denote by G' the remaining induced subgraph with minimum degree $\delta(G') \geq 4\sqrt{n}$, and let $n' = |V(G')|$. Fix an arbitrary vertex $v \in V(G')$.

A cherry is a path of length 2. We will form an auxiliary graph F with vertex set $V(F) = N_{G'}(v)$ which contains an edge uw if and only if there are at least seven cherries of the form uxw in G'. We will show that F must contain a vertex of degree at least 3 and use this vertex to find a rainbow copy of C_5 in G.

Let $S \subseteq N_{G'}(v)$ be a set of $\lceil \sqrt{n} \rceil$ vertices. We will count the cherries in G' with endpoints in S. Since each vertex x in $V(G')$ is the center vertex in exactly $\binom{d_3(x)}{2}$ cherries of this

\[d_S(x) = |N_G(x) \cap S|.\]
Figure 1: If there is a vertex of degree at least 3 in F, then G contains a rainbow copy of C_5. Edges in F are dashed while edges in G are solid.

In this form, we can count the desired cherries as follows:

$$\sum_{x \in V(G')} \left(\frac{d_S(x)}{2} \right) \geq n' \left(\frac{1}{n'} \sum_{x \in S} d_S(x) \right) = n' \left(\frac{1}{n'} \sum_{s \in S} d_{G'}(s) \right) \geq \frac{n' \cdot \delta(G') |S|}{2} \geq \frac{(\delta(G') |S|)^2}{4n'} \geq \frac{16n|S|^2}{4n'} > 7 \left(\frac{|S|}{2} \right),$$

where we use convexity and the fact that $\delta(G') \geq 4\sqrt{n}$. Thus, there must be some pair of vertices in S which are the endpoints of at least seven cherries in G', and hence, these vertices are adjacent in F. Since S was an arbitrary set of $\lceil \sqrt{n} \rceil$ vertices in $N_{G'}(v) = V(F)$, we have shown that $\alpha(F) \leq \sqrt{n}$, where $\alpha(F)$ denotes the independence number of F. This gives $\Delta(F) \geq |F|/\alpha(F) - 1 \geq 4\sqrt{n}/\sqrt{n} - 1 \geq 3$, so there is a vertex u in F of degree at least 3. Let x, y, z be neighbors of u in F. By assumption, the edge uv is in at least one triangle in G, so there is a vertex $w \in V(G)$, possibly in $\{x, y, z\}$, which forms a triangle with uv.

Let $c(vw) = 1$ and $c(uw) = 2$. Then since c is a proper coloring, at least one of $vx, vy,$ and vz is colored with a new color, say $c(vx) = 3$. Since ux is an edge in F, there are at least seven cherries in G' with endpoints u and x, and hence, at least one with new colors 4 and 5 which avoids v and w. Thus, there is a rainbow copy of C_5 in G, and we reach a contradiction. Therefore, G must contain at most $8n^{3/2}$ edges, and hence, at most $32n^{3/2}$ triangles, as desired.

3 No rainbow C_{2k+1}

Proof of Theorem 1.2. Let G be an n-vertex graph with a proper edge-coloring $f : E(G) \to C$ containing no rainbow copy of C_{2k+1}. We may assume each edge in G is in at least one triangle.

As in Section 2, we begin by giving a bound on the number of triangles in G in terms of the number of edges in G. Fix a vertex $v \in V(G)$ and let d denote the degree of v. Pick a set $S \subset N(v)$ containing $\lceil d/2 \rceil$ neighbors of v, and throw out any edge in $G[S]$ which is colored using some color which appears on an edge from v to S.

\[\sum_{x \in V(G')} \left(\frac{d_S(x)}{2} \right) \geq n' \left(\frac{1}{n'} \sum_{x \in S} d_S(x) \right) = n' \left(\frac{1}{n'} \sum_{s \in S} d_{G'}(s) \right) \geq \frac{n' \cdot \delta(G') |S|}{2} \geq \frac{(\delta(G') |S|)^2}{4n'} \geq \frac{16n|S|^2}{4n'} > 7 \left(\frac{|S|}{2} \right), \]
Then \(G[S] \) cannot contain a rainbow copy of \(P_{2k-1} \). A result of Ergemlidze, Györi, and Methuku [15] showed that \(\text{ex}^*(n, P_{k+1}) < \left(\frac{9k}{7} + 2 \right) n \). Therefore, we obtain

\[
|E(G[S])| \leq \text{ex}^* \left(\left\lceil \frac{d}{2} \right\rceil, P_{2k-1} \right) \leq \frac{18k - 4}{7} \cdot \left\lceil \frac{d}{2} \right\rceil.
\]

By counting the triangles containing \(v \) and two adjacent vertices in \(S \) in two ways, we get

\[
|E(G[N(v)])| \cdot \left(\frac{d - 3}{\lfloor d/2 \rfloor - 2} \right) \leq \frac{18k - 4}{7} \cdot \left\lceil \frac{d}{2} \right\rceil \cdot \left(\frac{d}{\lfloor d/2 \rfloor} \right).
\]

Thus, \(|E(G[N(v)])| \leq \frac{72k - 16}{21} d \), and the number of triangles in \(G \) is at most

\[
\frac{1}{3} \sum_{v \in V(G)} |E(G[N(v)])| \leq \frac{72k - 16}{21} \cdot \frac{144k - 32}{21} |E(G)|.
\]

We will show that \(|E(G)| = O(n^{1+1/k}) \).

Assume towards a contradiction that \(G \) has more edges. For each edge \(uv \in E(G) \), arbitrarily fix a vertex \(w = w(uv) \) such that \(u, v, \) and \(w \) form a triangle in \(G \). We will find a subgraph of \(G \) in which any rainbow copy of \(C_{2k} \) can be extended to a rainbow copy of \(C_{2k+1} \) in \(G \). To this end, randomly select a partition of \(V(G) \) into parts \(A \) of size \(\lceil n/2 \rceil \) and \(B \) of size \(\lfloor n/2 \rfloor \). Similarly, take a random partition of \(C \) into parts \(X \) and \(Y \) of sizes \(\lceil |E|/2 \rceil \) and \(\lfloor |E|/2 \rfloor \), respectively.

Let \(F \) be the subgraph with vertex set \(B \) which contains an edge \(uv \in E(G[B]) \) if and only if the vertex \(w = w(uv) \) is in \(A \) and \(f(w) \in X \) while \(f(uw), f(vw) \in Y \). Then the expected number of edges in \(F \) is least \(|E(G)|/64 \), so we can fix partitions \((A, B) \) and \((X, Y) \) such that the corresponding graph \(F \) has at least this many edges.

Note that \(F \) inherits the proper edge-coloring \(f \) from \(G \), so we can apply (1) to this subgraph. Since \(\text{ex}^*(n, C_{2k}) = O(n^{1+1/k}) \), there must be a rainbow copy of \(C_{2k} \) in \(F \). This cycle contains only vertices in \(B \), so we can replace an arbitrary edge \(uv \) in the cycle by a pair of edges \(uw \) and \(vw \) with \(w \in A \) to create a copy of \(C_{2k+1} \) in \(G \). Furthermore, the cycle in \(F \) is colored only with colors from \(X \), while the new edges have colors from \(Y \), so we have found a rainbow copy of \(C_{2k+1} \). But this is a contradiction, since \(G \) contains no rainbow copies of \(C_{2k+1} \). Thus, \(|E(G)| = O(n^{1+1/k}) \), which implies that the number of triangles in \(G \) is \(O(n^{1+1/k}) \), as desired.■

Acknowledgments

We are grateful to Oliver Janzer for his suggestion which simplified our original proof of Theorem 1.2. We would also like to thank the anonymous referees for their careful reading and useful suggestions.
References

[1] P. Keevash, D. Mubayi, B. Sudakov, J. Verstraëte, Rainbow Turán problems, Comb. Probab. Comput. 16 (2007) 109–126. doi:10.1017/S0963548306007760.

[2] N. Alon, C. Shikhelman, Many T copies in H-free graphs, J. Comb. Theory, Ser. B 121 (2016) 146–172. doi:10.1016/j.jctb.2016.03.004.

[3] O. Janzer, Rainbow Turán number of even cycles, repeated patterns and blow-ups of cycles (2020). arXiv:2006.01062.

[4] B. Bollobás, On complete subgraphs of different orders, Math. Proc. Camb. Philos. Soc. 79 (1) (1976) 19–24. doi:10.1017/S0305004100052063.

[5] B. Bollobás, E. Györi, Pentagons vs. triangles, Discrete Math. 308 (2008) 4332–4336. doi:10.1016/j.disc.2007.08.016.

[6] P. Erdős, On the number of complete subgraphs contained in certain graphs, Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962) 459–474.

[7] D. Gerbner, E. Győri, A. Methuku, M. Vizer, Generalized Turán problems for even cycles, J. Comb. Theory, Ser. B 145 (2020) 169–213. doi:10.1016/J.JCTB.2020.05.005.

[8] L. Gishboliner, A. Shapira, A generalized Turán problem and its applications, Int. Math. Res. Not. 2020 (11) (2020) 3417–3452. doi:10.1093/imrn/rny108.

[9] E. Győri, H. Li, The maximum number of triangles in C_{2k+1}-free graphs, Comb. Probab. Comput. 21 (2012) 187–191. doi:10.1017/S0963548311000629.

[10] A. A. Zykov, On some properties of linear complexes, Mat. Sb. (N.S.) 24 (1949) 163–188.

[11] D. Gerbner, T. Mészáros, A. Methuku, C. Palmer, Generalized rainbow Turán problems (2019). arXiv:1911.06642.

[12] W. T. Gowers, B. Janzer, Generalizations of the Ruzsa-Szemerédi and rainbow Turán problems for cliques, Comb. Probab. Comput. 30 (4) (2021) 591–608. doi:10.1017/S0963548320000589.

[13] B. Janzer, The generalised rainbow Turán problem for cycles (2020). arXiv:2005.08073.

[14] D. Johnston, C. Palmer, A. Sarkar, Rainbow Turán problems for paths and forests of stars, Electron. J. Comb. 24 (1) (2017) P1.34. doi:10.37236/6430.

[15] B. Ergemlidze, E. Győri, A. Methuku, On the rainbow Turán number of paths, Electron. J. Comb. 26 (1) (2019) P1.17. doi:10.37236/7889.