Introduction

Microorganisms (bacteria, archaea and fungi), together with lichens and insects, due to their biodeteriorative potential, damage items of cultural heritage. Fungi play an important role in archives and libraries where stored objects are made of paper or parchment. The main component of paper is cellulose, and of parchment it is inner collagen type I, with its typical fibre arrangement and external gelatin layers. Paper and parchment can be sources of energy, carbon and nitrogen for numerous microorganisms.

Bacteria are the main contaminants of parchment due to their preferences for higher pH [1-6]. Filamentous fungi also play an important role in biodeterioration due to their preferences for lower temperature and higher humidity, often present in archives. Typical fungal deterioration is caused by the slow-growing, often mitosporic, cellulolitic or proteolytic

Effect of Fungi on the Destruction of Historical Parchment and Paper Documents

Hanna Kwaśna1*, Joanna Karbowska-Berent2, Jolanta Behnke-Borowczyk1

1Poznań University of Life Sciences, Department of Forest Pathology, Poznań, Poland
2Nicolaus Copernicus University, Faculty of Fine Arts, Toruń, Poland

Received: 9 May 2019
Accepted: 24 July 2019

Abstract

Fungal frequency and diversity were studied in historical, parchment and paper documents using Illumina sequencing. In total, 156 494, 52 451 and 41 615 sequences were obtained from three samples. Documents were colonized by 225 taxa. Glomeromycota, Zygomycota, Ascomycota and Basidiomycota were represented by 1, 8, 131 and 83 taxa, respectively. Fungal communities included plant pathogens, epiphytes or endophytes of a wide range of plants and possibly opportunistic plant pathogens, saprotrophs common in soil, on decaying leaves, needles, wood and on other plant material, human pathogens, animal and nematode pathogens, entomopathogenic taxa, mycoparasites, white and black yeast-like taxa, taxa with antagonistic and medicinal properties, lichenized fungi, food contaminants, common contaminants of indoor, built environments, taxa on herbivore dung, keratin-degrading taxa, xerophilic taxa, and an endangered fungi included in the Red List of Threatened Species. A non-destructive and non-invasive method for quantitative characterization of parchment deterioration, based on spectral measurements, was used for evaluating the scale of damage. The collagen-to-gelatin ratio, estimated from the synchronous fluorescence spectra of the studied samples and of pure collagen and gelatin, was suggested for characterizing parchment condition. Analysis of fluorescence peaks indicated the moderate stage of deterioration of the studied documents.

Keywords: diversity, fungi, ITS1/2 rDNA, historical documents, parchment

*e-mail: hanna.kwasna@up.poznan.pl

DOI: 10.15244/pjoes/111236
ONLINE PUBLICATION DATE: 2020-02-17
and often xerophilic Ascomycetes from the genera Alternaria, Aspergillus, Cladosporium, Chaetomium, Chrysosporium, Paecilomyces, Penicillium, Phoma or Stachybotrys [5, 7-16]. On contaminated objects, fungi produce coloured stains (species of Chaetomium, Epicoccum, Monoascus), and emit strong odours (Trichoderma spp.) or toxic compounds (Stachybotrys spp.).

Fungal contamination usually arises from airborne inoculum. Colonization is determined by the nature and chemical composition of the material, climate, conditions of storage (i.e., poor ventilation and temperature changes, which cause water condensation), the mode and frequency of document usage and methods of cleaning.

Deterioration may cause distortion and deformation of documents. They become misshapen, the text fades, and contaminated areas may be covered with white films and multi-coloured spots and residues, called ‘foxing’ [17].

Biodeterioration and mechanical damage result from chemical degradation by fungal enzymes (cellulases, collagenases), chemical modification of inorganic components and production of pigments and organic acids penetrating and discoloring the document structure [10, 15, 18, 19].

The need for prevention and correct protection of historical objects is emphasized by conservators, archivists, and museologists [11, 20]. Implementation of appropriate remedial measures must be preceded by detailed research, including detection and recognition of the potential microbial hazard.

The aims of this study were: (i) to determine the abundance and diversity of fungi in historic parchment and paper documents in two archives in Poland, and (ii) to consider the destructive activity of the fungi detected in the prevailing environmental conditions.

Detection and identification of fungi was based on fungal genomic ITS rDNA studied with the Illumina technique. The ITS rDNA sequencing for studies of fungal contamination on historical documents was applied earlier [15, 21].

Materials and Methods

Description of Documents

Analyses of three samples from two documents were made in 2016.

Document 1 is a book by Ioannes de Pineda SI entitled “Ad suos in Salomonem commentarios ... libri octo”, printed in 1613 in Mainz, Germany. Until 1881 the book was in a cloister in the Warmian-Masurian Voivodeship in northeastern Poland. In 1882 the book was moved to an attic of the parish building and stored in a wooden cabinet, with seasonal variations in temperature and humidity. Currently the book is stored in the Old Documents Archive in Toruń Diocese. Its binding is made of cardboard covered with parchment. Its pages are made of handmade paper. The page edges are dyed with ultramarine. The book shows symptoms of deformation and fungal contamination (powdery or fluffy white, grey, reddish, brown or black deposits in numerous places on the binding and pages). The text is faded.

Document 2 is a torah originating from the 19th century from Zamość County in eastern Poland. In 1940-1970, wrapped in paper, it was stored in a wooden cabinet with exposure to seasonal variations of temperature and humidity. Since 2014 it has been stored in acid-free paper in a wood and glass cabinet in the storeroom of the Foundation for the Preservation of Jewish Heritage in Poland, in Warsaw. Its scroll is made of calf parchment treated with chalk and polished. Two wooden shafts are made of maple wood. Four crowns attached to shafts are made of lime wood. The wooden elements are polychromed and dyed with orpiment, ultramarine, English red, red lead, white, green and black natural paints and calcium carbonate. The handwriting on the scroll is done with metallic ink. Defects have been repaired with calfskin glued with gum Arabic or joined with natural or partly dyed linen threads. The torah parchment is creased and cracked vertically and horizontally. Its deterioration occurs mostly in gum Arabic-treated parts. There is no visible fungal contamination.

Quantitative Characterization of Parchment Deterioration

Both documents and the control currently made parchment sample were independently assessed by spectral measurements at 25°C [22]. The fluorescence was examined with a spectro-fluorimeter equipped with a surface-analysis accessory. Spectra were measured from both sides. The excitation wavelengths were 243 nm and 298 nm. The excitation and emission bandwidths were 4 nm. Fluorescence was correlated with deterioration of documents. Quantitative analysis was based on the comparison of spectra of collagen, gelatin and our samples. The collagen-to-gelatin ratio (C/G ratio) and the percentage of collagen were estimated.

Sampling for Mycological Analysis

Samples 1 and 2 from **Document 1** were respectively from white, fluffy deposits present on the parchment of the book binding and from greyish powdery deposits present on the book pages. **Sample 3** from **Document 2** was from cream-beige-brown spots covered with powdery deposits present on gum Arabic-treated parts of the torah scroll. Samples were collected with a sterile scalpel from the surface of 1 cm² areas with no text.
Molecular Identification
DNA Extraction, Amplification and Sequencing

DNA was extracted with a Bead-Beat Micro AX Gravity Kit (A & A Biotechnology). ITS 1/2 rDNA amplification was performed with fungus-specific primers gITS7 (5' GTG ART CAT CGA RTC TTT G 3') [23] and iITS4 (5'TCC TCC GCT TAT TGATAT GC 3). The PCR reaction mixture (25 μl) consisted of 12.5 μl of 2x MixPCR, 0.2 μM of each primer, 1.5 μl of purified and diluted DNA and 10.6 μl of water. The PCR reaction was performed under the following conditions: denaturation at 94ºC for 5 min, followed by 35 cycles of denaturation at 94ºC for 30 s, annealing at 56ºC for 30 s and elongation at 72ºC for 30 s, and a final elongation at 72ºC for 7 min. The amplicons were sequenced using the Illumina technique.

Bioinformatics Analysis

A table of operational taxonomic units (OTUs) was prepared by PIPITS, version 1.2.0 [24]. Read-pairs were joined with PEAR, version 0.9.6 [25], filtered with a quality threshold of q = 30 by FASTX-toolkit, version 0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/index.html), converted to Fasta format and merged into a single file. Prepared sequences were dereplicated and subregions of ITS were selected with the use of ITSx, version 1.0.11 [26]. Unique sequences and those shorter than 100 bp were removed. Remaining sequences were clustered with 97% sequence identity. The resulting representative sequences for each cluster were subjected to chimera detection and removal using the UNITE UCHIME reference dataset, version 6.0 (https://unite.ut.ee/index.php). The input sequences were then mapped onto the representative sequences and taxonomy assigned using an RDP Classifier, version 2.10.2 against UNITE fungal ITS reference database, version 11.2 [27]. Sequences were identified by comparison with reference sequences from the National Center for Biotechnology Information (NCBI) database. The abundance of fungi was defined as the number of OTUs in a sample. Frequency of an individual taxon was defined as the percentage (%) of OTUs in the total number of OTUs. Diversity was defined as the number of species in a sample.

Statistical Analysis

Diversity in microbial communities was calculated for each community. Analyses were based on the abundance of fungi and taxonomic composition of communities [28]. Diversity is indicated by Margalef’s diversity index (DMg) and Shannon’s diversity index (H'). Evenness and dominance are indicated by Simpson’s diversity index (D), Shannon’s evenness index (E) and Berger-Parker’s dominance index (d). The similarity between fungal communities is determined by Sorensen’s qualitative similarity index (CN).

Results

Compared to the control, aging and deterioration of documents caused a decrease in fluorescence intensity, the spectral shift of the main peak and an overall change in the fluorescence spectral features. For 298 nm excitation samples 1-3 overall fluorescence peaks were at 440-460 nm, and control sample fluorescence peaked at 400 nm. For 243 nm excitation the second broad weak bands of samples 1-3 emerged at 400-500 nm, and control sample fluorescence peak was at 300 nm. The spectrum of collagen consisted of two well-defined peaks at 305 and 345 nm and an additional broad band with a maximum at 440 nm. The spectrum of gelatin has a well-defined peak at 440 nm and additional broad bands at 305 and 345 nm. Spectra of samples 1 and 3 shifted toward pure gelatin. The C/G ratio in sample 1 was 0.8-8.2 and in sample 3 was 1.2-8.0. The average percentage of collagen in samples 1 and 3 was 8.9 and 9.1.

Three samples yielded, respectively, 156 494, 52 451 and 41 615 raw sequences (Table 1). There were 156 393 = 99.93%, 52 355 = 99.81% and 40 689 = 97.77% sequences of culturable fungi; 9 = 0.006%, 37 = 0.071% and 548 = 1.317% sequences of non-culturable fungi; and 37 = 0.024%, 19 = 0.036% and 375 = 0.901% sequences of organisms with no reference sequence in NCBI.

Documents were colonized by at least 225 fungal taxa (Table 1). Glomeromycota, Zygomycota, Ascomycota and Basidiomycota were represented

![Fig. 1. Venn diagram: overlapping circles illustrate the similarities, differences, and relationships between fungal communities, with numbers of taxa shown.](image-url)
Table 1. Frequency of taxons in documents.

No.	Taxon	Category	Order	Similarity to the reference sequence	Document 1	Document 2	Document 3				
					Sample 1	Paper page	Torah parchment				
					Sample 1	Paper page	Torah parchment				
					Sample 3						
					No. OTUs	Frequency (%)	No. OTUs	Frequency (%)	No. OTUs	Frequency (%)	
1	Glomeromycota				1	0.001	0	0	0		
1	Entrophospora contigua nom. Nud	Diversisporales	97%		1	0.001	0	0	0		
1	Mortierella elongata Linnem. + M. gamsii Milko + M. horticola Linnem. + M. macroystis W. Gams + M. parvispora Linnem. + M. sclerotii Milko + Mortierella sp.	saprotroph	Mortierellales	98-100%	9	0.006	67	0.128	847	2.035	
2	Mucor plumbeus Bonord.	saprotroph, animal pathogen, indoor contaminant	Mucorales	99%	3225	2.061	81	0.154	414	0.995	
	Ascomycota				151875	97.048	52071	99.276	34501	82.905	
1	Acremonium charticola (Lindau) W. Gams + Acremonium sp.	saprotroph	Hypocrales	99%	27138	17.341	37	0.071	76	0.183	
2	Alternaria alternata (Fr.) Keissl. + A. obovulda (E.G. Simmons) Woudenh. & Crous + Alternaria sp.	epiphyte, endophyte, latent plant pathogen	Pleosporales	99%	1628	1.040	419	0.799	4620	11.102	
3	Arachniotus aurantiacus (Kamyschko) Arx	saprotroph	Onygenales	99%	141	0.090	0	0	68	0.163	
4	Arthrinium phaeospermum (Corda) M.B. Ellis + Arthrinium sp.	human pathogen	Incertae sedis	100%	7	0.004	62	0.118	438	1.053	
5	Ascomycota				97-99%	6252	3.995	46	0.088	59	0.142
6	Aspergillus albertensis J.P. Tewari + A. candidus Link + A. halophilicus M. Chr., Papav. & C.R. Benj + A. jense-nii Jurjević, S.W. Peterson & B.W. Horn + A. penicillioides Speg. + A. proliferans G. Sm. + A. tardicrescens Sklenar, Houbrazen, Zalar & Hubka + A. tennesseensis Jurjević, S.W. Peterson & B.W. Horn + A. versicolor (Vuill.) Tirab. + Aspergillus sp.	saprotroph	Eurotiales	98-100%	12659	8.089	4420	8.427	475	1.141	
7	Aureobasidium pullulans (de Bary & Löwenthal) G. Arnaud	black yeast-like, epiphyte, endophyte, latent plant pathogen	Dothideales	100%	6	0.004	4	0.008	160	0.384	
Table 1. Continued.

No.	Fungus Name	Source	Type	Class	Order	Family	Genus	Species	100%	25	0.016	130	0.248	2211	5.313
8.	*Beauveria bassiana* (Bals.-Criv.) Vuill. + *B. caladonica* Bissett & Widden	entomopathogenic	Hypocreales	100%	30	0.019	180	0.343	2258	5.426					
9.	*Bionectria rossmaniae* Schroers.	saprotroph	Hypocreales	99%	25	0.016	130	0.248	2211	5.313					
10.	*Botryosphaeria stevensii* Shoemaker	plant pathogen	Botryosphaeriales	99%	1	0.001	14	0.027	171	0.411					
11.	*Botrytis cinerea* Pers	plant pathogen	Helotiales	99%	58	0.037	462	0.881	6572	15.792					
12.	*Cadophora* sp.	plant pathogen	Helotiales	99%	2	0.001	1	0.002	19	0.046					
13.	*Candida boleticola* Nakase + *C. sake* (Saito & M. Ota) Uden & H.R. Buckley ex S.A. Mey. & Ahearn + *C. tropicalis* (Castell.) Berkhout	human pathogen	Saccharomycetales	99%	0	0	1	0.002	40	0.096					
14.	*Capronia semi-immersa* (Cand. & Sulmont) Unter. & F.A. Naveau	black yeast-like	Chaetothyriales	99%	4	0.003	0	0	0	0					
15.	*Cenangium ferruginosum* Fr.	plant pathogen	Helotiales	99%	0	0	0	0	5	0.012					
16.	*Chaetomium globosum* & *C. iranianum* Asgari & Zare + *C. umbonatum* D. Brewer	saprotroph, human pathogen	Sordariales	100%	84852	54.221	39177	74.693	1619	3.890					
17.	*Chalara* sp.	saprotroph	Microascales	99	13	0.008	123	0.235	1844	4.431					
18.	*Chaeotothyriales*														
19.	*Chrysosporium undulatum* P. Vidal, Guarro & Ulfig	keratin degrader	Onygenales	100	8	0.005	0	0	0	0					
20.	*Cladosporium herbarum* (Pers.) Link + *C. iridis* (Fautrey & Roum.) G.A. de Vries + *C. pseudocladosporioides* Bensch, Crous & U. Braun + *C. ramotenellum* K. Schub., Zalar, Crous & U. Braun + *Cladosporium* sp.	epiphyte, endophyte, latent plant pathogen, indoor contaminant	Capnodiales	98-100%	36	0.023	13	0.025	541	1.300					
21.	*Clonostachys rosea* (Preuss) Mussat	epiphyte, endophyte, latent plant and nematode pathogen, mycoparasite	Hypocreales	100%	2	0.001	27	0.051	455	1.093					
22.	*Coniothyrium olivaceum* Bonord.	epiphyte, endophyte, latent plant pathogen	Pleosporales	98%	1	0.001	1	0.002	43	0.103					
23.	*Cordyceps farinosa* (Holmsk.) Kepler, B. Shrestha & Spatafora	with medicinal properties	Hypocreales	100%	1	0.001	2	0.004	46	0.111					
24.	*Cyclaneusma minus* (Butin) DiCosmo, Peredo & Minter	plant pathogen	Rhytismatales	100%	1	0.001	2	0.004	73	0.175					
25.	*Cytospora* sp.	plant pathogen	Diaporthales	99%	0	0	0	0	17	0.041					
26.	*Debaryomyces prosopidis* Phaff, Vaughan-Mart. & Starmer	food contaminant	Saccharomycetales	100%	1	0.001	0	0	218	0.524					
27.	*Desmazerella acicola* Lib.	saprotroph	Pezizales	99%	1	0.001	0	0	0	0					
	Species	Habitat	Kingdom	Class	Genus	Distribution	Toxicity								
---	--	--	---------------	----------------	---------------------	--------------------------	------------------------								
28	*Didymella macrostoma* (Mont.) Qian Chen & L. Cai + *D. piniodes* (Berk. & A. Bloxam) Petr	plant pathogen	Pleoporaes												
29	*Diplodia allocellula* Jami, Gryzenh, Slippers & M.J. Wingf.	epiphyte, endophyte, latent plant pathogen	Botryosphaeriales												
30	*Dothideomycetes*														
31	*Epicoccum nigrum* Link	epiphyte, endophyte, latent plant pathogen	Pleosporales												
32	*Erysiphe syringae* Schwein.														
33	*Exophiala xenobiotica* de Hoog, J.S. Zeng, Harrak & Deanna A. Sutton + *E. spinosa*	black yeast-like, human pathogen	Chaetothyriales												
34	*Fusarium armeniacum* (G.A. Forbes, Windels & L.W. Burgess) L.W. Burgess & Summerell + *F. avenaceum* (Fr.) Sac. + *F. sporotrichioides* Sherb.	plant pathogen	Hypocreales												
35	Herpotrichiellaeae														
36	*Heydenia alpina* Fresen.	saprotroph	Incertae sedis												
37	*Hyaloscypha aureliella* (Nyl.) Huhtinen	saprotroph	Helotiales												
38	*Hypogymnia physodes* (L.) Nyl.	lichenized fungus	Lecanorales												
39	*Infundichalara microchona* (W. Gams) Rêblová & W. Gams	saprotroph	Helotiales												
40	*Isaria farinosa* (Holmsk.) Fr.	entomopathogenic													
41	*Lecanicillium longisporum* (Petch) Zare & W. Gams	saprotroph, entomopathogenic	Hypocreales												
42	*Lecythophora* sp.	saprotroph, human pathogen	Coniochaetales												
43	Leotiomycetes														
44	*Leptodontidium trabinellum* (P. Karst.) Baral, Platas & R. Galán + *L. pinastri* sp.	epiphyte, endophyte, latent plant pathogen	Helotiales												
45	*Leptospora rubella* (Pers.) Rabenh.	epiphyte, endophyte, latent plant pathogen	Incertae sedis												
46	*Lophodermium pinastri* (Schrad.) Chevall.	plant pathogen	Rhytismatales												
47	*Microascus brevicaulis* S.P. Abbott + *Microascus melanosporus* (Udagawa) Woudenb. & Samson	epiphyte, endophyte, latent plant pathogen, indoor contaminant	Microascales												
48	*Microsphaeropsis proteae* (Croux & Denman) Croux & Denman	plant pathogen	Pleosporales												
49.	*Mollisia* sp.	epiphyte, endophyte, latent plant pathogen	Helotiales	99%	1	0.001	0	0	0	0					
50.	*Mycosphaerella tassiana* (De Not.) Johanson	plant pathogen	Mycosphaerellales	99%	26	0.017	0	0	67	0.161					
51.	*Naevula perexigua* (Roberge ex Desm.) K. Holm & L. Holm	epiphyte, endophyte, latent plant pathogen	Helotiales	99%	0	0	0	0	9	0.022					
52.	*Nectria cinnabarina* (Tode) Fr.	plant pathogen	Hypocreales	99%	0	0	1	0.002	18	0.043					
53.	*Neoascocytis exitialis* (Morini) Qian Chen & L. Cai	plant pathogen	Pleosporales	99%	13	0.008	0	0	0	0					
54.	*Neocatenulostroma gornymanicum* (Crous & U. Braun) Quaedvl. & Crous	plant pathogen	Capnodiales	99%	0	0	0	0	14	0.034					
55.	*Neophaeomoniella eucalypti* Rooney-Lath. & Crous	epiphyte, endophyte, latent plant pathogen	Phaeomoniellales	100%	0	0	0	0	1	0.002					
56.	*Neophaeothecoidea proteae* (Crous) Quaedvl. & Crous	plant pathogen	Capnodiales	99%	0	0	0	0	3	0.007					
57.	*Oculimacula yallundae* (Wallwork & Spooner) Crous & W. Gams	plant pathogen	Helotiales	99%	0	0	0	0	19	0.046					
58.	*Ophiognomonia soognovii* D.M. Walker	epiphyte, endophyte, latent plant pathogen	Diaporthales	100%	2	0.001	0	0	0	0					
59.	*Opisthiochroma novo-ulmi* Brasier	plant pathogen	Ophiostomatales	100%	0	0	5	0.010	56	0.135					
60.	*Paraphaeosphaeria michotii* (Westend.) O.E. Erikss.	epiphyte, endophyte, latent plant pathogen	Pleosporales	99%	0	0	0	0	12	0.029					
61.	*Penicillium chrysogenum* Thom + *P. citrinum* Thom + *P. decumbens* Thom + *P. goetzii* J.D. Rogers, Frisvad, Houbaken & Samson + *P. olsonii* Bainier & Sartory + *P. roseogriseum* Dierckx + *P. spinulosum* Thom + *Talaromyces marneffei* (Segretain, Capponi & Sureau) Samson, N. Yilmaz, Frisvad & Seifert + *T. rugulosus* (Thom) Samson, N. Yilmaz, Frisvad & Seifert	saprotroph	Eurotiales	99-100%	15249	9.744	1398	2.665	439	1.055					
62.	*Phaeococcomyces eucalypti* Crous & R.G. Shivash	black yeast-like, epiphyte, endophyte, latent plant pathogen	Chaetothyriales	100%	0	0	0	0	10	0.024					
63.	*Phialosimplex* sp.	animal pathogen	Eurotiales	98%	0	0	0	0	7	0.017					
64.	*Phoma herbarum* Westend	plant pathogen	Pleosporales	100%	0	0	0	0	9	0.022					
65.	Pleosporales	Pleosporales	100%	0	0	0	0	9	0.022						
66.	*Pleomphora ossicola* Crous, Kwaczynski & H.-G. Wagner	epiphyte, endophyte, latent plant pathogen	Xylariales	100%	1	0.001	0	0	0	0					
67.	*Pseudogymnoascus roseus* Raillo	saprotroph	Incertae sedis	100%	6	0.004	0	0	0	0					
No.	Species	Observations	Order	Genus	Bootstrap Support	# of Genomes	# of Gaps	# of Missed	# of Different	# of Benjamini-Adjustment					
-----	---------------------------------	---	------------------------	----------------------	-------------------	----------------	-----------	-------------	---------------	--------------------------					
68.	*Pseudopithomyces chartarum* (Berk. & M.A. Curtis) Jin F. Li, Ariyaw. & K.D. Hyde	plant and animal pathogen, saprotroph, keratin degrader	Pleosporales	100%	1	0.001	21	0.040	228	0.548					
69.	*Rhinocladiella atrovirens* Nannf.	plant pathogen, human pathogen	Chaetothyriales	100%	0	0	0	0	26	0.062					
70.	*Rhytismataceae*	plant pathogen	Rhytismatales	100%	1	0.001	0	0	0	0					
71.	*Saccharomyctaeles*		Saccharomyctaeles	100%	0	0	0	0	32	0.077					
72.	*Sanocladium strictum* (W. Gams) Summerb.	saprotroph	Hypocreales	99%	1	1.063	0	0	0	0					
73.	*Scheffersomyces coipomensis* (C. Ramirez & A.E. González) H. Urbina & M. Blackw. + *S. ergatensis* (Santa María) H. Urbina & M. Blackw.	white yeast-like, plant pathogen	Pleosporales	99%	113	0.072	0	0	12	0.029					
74.	*Sordaria fimicola* (Roberge ex Desm.) Ces. & De Not.	on dung of herbivores	Sordariales	99%	12	0.008	27	0.051	1373	3.299					
75.	*Sphaerulina pseudovirgareae* Quaedvl., Verkley & Crous	plant pathogen	Mycosphaerellales	99%	0	0	0	0	2	0.005					
76.	*Sporothrix inflata* de Hoog	saprotroph, human pathogen	Ophiostomatales	100%	0	0	0	0	6	0.014					
77.	*Strasseria geniculata* (Berk. & Broome) Höhn.	plant pathogen	Incertae sedis	99%	22	0.014	139	0.265	3646	8.761					
78.	*Sriatibotrys rhabdosporus* L. Lombard & Crous	epiphyte, endophyte, latent plant pathogen	Hypocreales	99%	113	0.072	0	0	12	0.029					
79.	*Sugismaniaella paludigena* (Golubev & Blagod.) H. Urbina & M. Blackw.	saprotroph, entomopathogenic	Saccharomyctaeles	99%	1	0.001	3	0.006	37	0.089					
80.	*Sydowiia polyspora* (Breif. & Tavel) E. Müll.	plant pathogen	Dothideales	99%	2	0.001	1	0.002	187	0.449					
81.	*Taphrina carpini* (Rostr.) Johanson + *T. deformans* (Berk.) Tul. + *Taphrina sp.*	plant pathogen	Taphrinales	99%	10	0.006	1	0.002	28	0.067					
82.	*Tetracladium* sp.	epiphyte, endophyte, latent plant pathogen	Helotiales	99%	6	0.004	0	0	0	0					
83.	*Thelebolus ellipsoideus* Bnumm. & de Hoog	on dung of herbivores	Thelebolales	99%	0	0	0	0	7	0.017					
84.	*Thysanectria strobii* (Hirooka, Rossman & P. Chaverri) Jaklitsch & Voglmayr	plant pathogen	Incertae sedis	99%	0	0	7	0.013	158	0.380					
85.	*Trichocomaceae*		Eurotiales	99%	0	0	0	0	43	0.103					
86.	*Trichoderma longbrachiatum* Rifai + *T. reesei* E.G. Simmons + *T. semiorbis* (Berk.) Jaklitsch & Voglmayr	saprotroph	Hypocreales	99%	1169	0.747	5125	9.771	2701	6.490					
87.	*Trichomonascus ciferrii* (M.T. S.M. Van der Walt & Johanssen) Kurtzman & Robnett	epiphyte, endophyte, latent plant pathogen, human pathogen	Saccharomyctaeles	99%	0	0	0	0	7	0.017					
Table 1. Continued.

No.	Species	Classification	Effect on Plant	Genus	Order	Family	% Identity	Effect on Wood	O/F	Moisture	Use	Origin	Notes	
88.	*Truncatella spadicea* S.J. Lee & Crous	plant pathogen	Amphisphaeriales	99%	2	0.001	0	0	16	0.038				
89.	*Volucrispora graminea* Ingold, P.J. McDougall & Dann	epiphyte, endophyte, latent plant pathogen	Incertae sedis	99%	0	0	0	0	11	0.026				
	Basidiomycota													
1.	*Armillaria ostoyae* (Romagn.) Herink	plant pathogen	Agaricales	100%	1	0.001	4	0.008	195	0.469				
2.	*Athelia acrospora* Jülich	facultative plant parasite, corticioid	Atheliales	100%	1	0.001	0	0	42	0.101				
3.	*Baespora myosura* (Fr.) Singer	mushroom species	Agaricales	99%	14	0.009	0	0	0					
4.	*Bjerkandera adusta* (Willd.) P. Karst.	plant pathogen	Polyporales	99%	34	0.022	7	0.013	147	0.353				
5.	*Bulleromyces albus* Boekhout & Á. Fonseca	yeast-like	Tremellales	99%	2	0.001	0	0	0					
6.	*Calocybegraveolens* (Pers.) Singer	mushroom species	Agaricales	99%	2	0.001	0	0	0					
7.	*Ceraceomyces serps* (Tode) Ginns	corticioid or resupinate, in the Red List of Threatened Species	Amylocorticiales	100%	0	0	0	0	0	0.012				
8.	*Ceratobasidiaceae*													
9.	*Ceratobasidium sp.*	plant pathogen	Cantharellales	98%	0	0	0	0	49	0.118				
10.	*Coprinellus disseminatus* (Pers.) J.E. Lange	mushroom species	Agaricales	100%	3	0.002	0	0	0					
11.	*Cryptococcus tephrensis* Vishniac	yeast-like	Tremellales	100%	4	0.003	5	0.010	79	0.190				
12.	*Cystofilobasidiales*	yeast-like	Cystofilobasidiales	99%	0	0	0	0	11	0.026				
13.	*Cystofilobasidium macerans* Samp.	yeast-like	Cystofilobasidiales	99%	0	0	0	0	11	0.026				
14.	*Daedaleopsis confragosa* (Bolton) J. Schrót.	plant pathogen	Polyporales	100%	9	0.006	0	0	0					
15.	*Dioszegia buhagiarii* A. Fonseca, J. Inácio & Spenc. + Mart. + D. frisingensis A. Fonseca, J. Inácio & J.P. Samp. + D. hungarica Zsolt	yeast-like	Tremellales	99-100%	51	0.033	0	0	21	0.050				
16.	*Entylomatales*		Entylomatales	100%	5	0.003	6	0.011	44	0.106				
17.	*Fibroporia vaillantii* (DC.) Parmasto	saprotroph	Polyporales	98%	0	0	0	0	411	0.988				
18.	*Filobasidium chernovii* (Á. Fonseca, Scorzetti & Fell) Xin Zhan Liu, F.Y. Bai, J.Z. Groenew. & Boekhout + F. floriforme L.S. Olive + F. wieringae (Á. Fonseca, Scorzetti & Fell) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout	yeast-like	Filobasidiales	99-100%	2	0.001	0	0	35	0.084				
19.	*Flammulina velutipes* (Curtis) Singe	mushroom species	Agaricales	99%	0	0	0	0	7	0.017				
No.	Species	Life Form	Order	Genus	Family	Continent	Isolation	Percentage	Mean1	Mean2	Mean3	Mean4	Mean5	
-----	--	----------------------------------	---------------------	--------------------	------------------------	-----------	------------	------------	-------	-------	-------	-------	-------	
20.	*Hapalopilus rutilans* (Pers.) Murrill	polypore taxon	Polyporales					100%	0	0	0	0	18	0.043
21.	*Heterobasidion annosum* (Fr.) Bref.	plant pathogen	Russulales					100%	1	0.001	0	0	102	0.245
22.	*Hyphodontia querzina* (Pers.) J. Enkss. + *Hyphodontia* sp.	corticioid or resupinate	Hymenochaetales					99%	8	0.005	0	0	0	0
23.	*Hypholoma acutum* (Sacc.) E. Horak	mushroom species	Agaricales					100%	0	0	0	0	10	0.024
24.	*Ibertoniella pannonica* (Niwa, Tomai-Leh., T. Deák & Nakase) Xin Zhan Liu, F.Y. Bai, J.Z. Groenew. & Boekhout + *I. perplexans* Derx	plant pathogen	Cystofilobasidiales					99%	55	0.035	0	0	344	0.827
25.	*Leptosporomyces galzitini* (Bourd) Jüllich	corticioid or resupinate	Atheliales					100%	0	0	0	0	12	0.029
26.	*Leucopaxillus tricolor* (Peck) Kühner	mushroom species	Agaricales					100%	0	0	0	0	16	0.038
27.	*Leucosporidiella creatinivora* (Golubev) J.P. Samp.	yeast-like	Leucosporidiales					99%	4	0.003	0	0	0	0
28.	*Malassezia globosa* Midgley, E. Guého & J. Guillot + *M. restricta* E. Guého, J. Guillot & Midgley + *M. symposium* R.B. Simmons & E. Guého + *Malassezia* sp.	yeast-like, human and animal pathogen					100%	3	0.002	10	0.019	1063	2.554	
29.	*Merypsis giganteus* (Pers.) P. Karst.	polypore taxon	Malasseziales					100%	0	0	0	0	137	0.329
30.	*Myces aurantiomarginata* (Fr.) Quél. + *M. pura* (Pers.) P. Kumm.	mushroom species	Polyporales					99%	6	0.004	0	0	5	0.012
31.	*Naganishia adeliensis* (Scorzetti, I. Petrescu, Yarrow & Fell) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout + *N. diffusa* (Zach) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout	yeast-like, human and animal pathogen	Tremellales					99%	122	0.078	2	0.004	45	0.108
32.	*Peniophora incarnata* (Pers.) P. Karst. + *P. pini* (Schleich. ex DC.) Boidin	plant pathogen	Russulales					99%	15	0.010	4	0.008	110	0.264
33.	*Phaeoclavulina flaccida* (Fr.) Giachini	conid taxon	Gomphales					99%	0	0	0	0	13	0.031
34.	*Phellinus pini* (Brot.) Pilát	plant pathogen	Hymenochaetales					99%	2	0.001	7	0.013	67	0.161
35.	*Phlebia radiata* Fr. + *Ph. tremellosa* (Schrad.) Nakasone & Burs.	facultative plant parasite, corticioid or resupinate	Polyporales					100%	9	0.006	0	0	0	0
36.	*Phlebiella christianssonii* (Parmasto) K.H. Larss. & Hjortslam	corticioid or resupinate	Polyporales					99%	0	0	0	0	18	0.043
37.	*Phlebiopsis gigantea* (Fr.) Jüllich	saprotroph	Polyporales					100%	1	0.001	0	0	3	0.007
38.	*Puccinia caricina* DC.	plant pathogen	Pucciniales					100%	0	0	0	0	23	0.055
39.	*Resinicium bicolor* (Alb. & Schwein.) Parmasto	corticioid or resupinate	Incertae sedis					100%	7	0.004	27	0.051	451	1.084
40.	*Rhizoctonia solani* J.G. Kühl + *Rhizoctonia* sp.	plant pathogen	Cantharellales					100%	150	0.096	0	0	51	0.123
No.	Species	Classification	Percentage	P.M.	I.R.	Y.M.	R.M.	O.M.						
------	--	----------------------------------	------------	-----	-----	-----	-----	-----						
41.	**Rhodocollybia butyracea** (Bull.) Lennox	mushroom species	99%	10	0.006	0	0	0						
42.	**Rhodosporidium kraochilovae** Hamam., Sugiy. & Komag.	yeast-like	100%	141	0.090	0	0	0						
43.	**Rhodotorula mucilaginosa** (A. Jörg.) F.C. Harrison + Rhodotorula sp.	yeast-like, plant pathogen	100%	331	0.212	1	0.002	18	0.043					
44.	Russulales		100%	4	0.003	4	0.008	94	0.226					
45.	**Schizophyllum commune** Fr.	plant pathogen, polypor taxon	100%	5	0.003	0	0	0						
46.	**Sebacina** sp.	coral taxon	98%	0	0	0	0	59	0.142					
47.	**Sistotrema** sp.	corticioid or resupinate	100%	2	0.001	0	0	17	0.041					
48.	**Sistotremastrum suecicum** Litsch. ex J. Eriks.	plant pathogen, corticioid or resupinate	100%	0	0	24	0.046	30	0.072					
49.	**Sporidiobolus metaroseus** J.P. Samp. & E. Valério + S. pararoseus Fell & Tallman + S. salmonicolor Fell & Tallman	yeast-like, plant pathogen	100%	85	0.054	3	0.006	431	1.036					
50.	**Sporobolomyces coprosmae** Hamam. & Nakase + S. ruberrimus Yamasaki & H. Fujii ex Fell, Pinel, Scorzetti, Statzell & Yarrow	yeast-like	100%	4	0.003	0	0	9	0.022					
51.	**Steccherinum ochraceum** (Pers.) Gray	facultative plant parasite, corticioid or resupinate	98%	0	0	0	0	13	0.031					
52.	**Strobilurus albipilatus** (Peck) V.L. Wells & Kempton + S. stephanocystis** (Kühner & Romagn. ex Hora) Singer	plant pathogen, mushroom species	99%	5	0.003	0	0	15	0.036					
53.	**Symmetrospora coprosmae** (Hamam. & Nakase) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout	yeast-like	100%	5	0.003	0	0	0	0					
54.	**Tilletiopsis pallescens** Gokhale	mycoparasite	100%	10	0.006	0	0	53	0.127					
55.	**Trametes gibbosa** (Pers.) Fr.: T. versicolor (L.) Lloyd	saprotroph	100%	10	0.006	19	0.036	210	0.505					
56.	Tremellales	plant pathogen	99-100%	1	0.001	0	0	11	0.026					
57.	**Tritirachium oryzae** (Vincens) de Hoog	human and animal pathogen	99%	58	0.037	0	0	0	0					
58.	**Vishniaczyma victoriae** (M.J. Montes, Belloch, Galiana, M.D. Garcia, C. Andrés, S. Ferrer, Torr.-Rodr. & J. Guin- ea) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout	saprotroph	100%	1	0.001	0	0	199	0.478					
59.	**Wallemia mariae** (J. Kickx f) Zalar & de Hoog	xerophilic	99%	8	0.005	2	0.004	72	0.173					
Table 1. Continued.

No.	Species	Taxonomy	Cult. (%)	Culturable fungi	Non-culturable fungi	Organisms with no reference sequence in NCBI	Number of fungal taxa	Margalef’s diversity index-DMg	Shannon’s diversity index-H	Simpson’s diversity index-D	Shannon’s evenness index-E	Berger–Parker’s dominance index-d	Sorensen’s qualitative similarity index-CN		
60	*Xylodon flaviporus* (Berk. & M.A. Curtis ex Cooke) Riebesehl & Langer	corticioid or resupinate Hymenochaetales	99%	55	0.035	40 0.076 0 0	78 0.187	156393	99.935	52355	99.817	40689	97.775	0.57	0.44
1	*Physarum loratum* Shuang L. Chen, Yu Li & H.Z. Li	Physarales	98%	55	0.035	40 0.076 0 0	78 0.187	156393	99.935	52355	99.817	40689	97.775	0.57	0.44
1	*Salvia syriaca* L.	Lamiales	100%	0	0.000	0 0.000 3 0	0 0.007	137	0.024	19	0.036	375	0.901	0.57	0.44

Sorensen’s similarity index-CN for sample 1 and sample 3 was 0.56

Bold – the most abundant taxa
by 1, 8, 131 and 83 taxa, respectively. Non-culturable organisms were represented by 70 taxa. More than 90% of taxa were identified to genus or species. There were 142 and 205 taxa in parchment (samples 1 and 3) and 88 taxa in paper (sample 2). The number of species shared by parchment and paper from a single archive in Toruń was 9, and by the two parchments from two different archives (Toruń and Warsaw) was 33 (Fig. 1). The number of species shared by all three samples was 61, and the numbers of taxa separate for samples 1, 2 and 3 were respectively 36, 1 and 85.

Fungal communities consisted of the few abundant taxa and many rare taxa. The most frequent were Ascomycota from the genera Acremonium, Alternaria, Aspergillus, Beauveria, Bionectria, Botrytis, Chaetomium, Penicillium and Trichoderma. The most common were Chaetomium murorum, Chaetomium globosum and Chaetomium iranianum.

Communities included plant pathogens, epiphytes or endophytes of a wide range of plants, and possibly facultative plant pathogens, saprotrophs known from soil, decaying leaves, needles, wood (soft, white and brown rot fungi) and other plant material, human, animal and nematode pathogens, entomopathogenic taxa with worldwide distribution and a relatively wide host range, mycoparasites, white and black yeast-like taxa, taxa with medicinal properties, lichenized fungi, food contaminants, indoor contaminants, taxa known from herbivore dung, keratin-degrading taxa, mushroom-producing taxa, corticioid, resupinate, polypore, coral annual or perennial taxa, taxa with antagonistic properties, xerophilic taxa and endangered fungi included in the Red List of Threatened Species. The mycobiota of parchment, compared with that of paper, had: (i) more diversity, indicated by DMg (16.14 and 11.28 versus 7.34), H (3.55 and 2.04 versus 1.72) and D (0.05 and 0.18 versus 0.27); (ii) more even distribution of species, indicated by E (0.68 and 0.41 versus 0.39); and (iii) less dominance of single species, indicated by d (0.15 and 0.27 versus 0.39). There was more similarity in communities on paper and parchment stored in one place (Toruń) (CN = 0.57) and on parchment stored in different places (CN = 0.56) than on paper and parchment stored in two different places (CN = 0.44) (Table 1).

Discussion

Historical paper or parchment documents should be stored in a cool, stable environment – ideally at 20°C and 50% relative humidity in a well-insulated and ventilated room, with no direct daylight or artificial light, in an acid- and lignin-free storage box. Such conditions had not always been provided for the documents studied. The torah, in particular, had been moved continually, not always been provided for the documents studied. The torah, in particular, had been moved continually, and stored in the acid- and lignin-free storage box. Such conditions had not always been provided for the documents studied.

This may explain its advanced deterioration and high microbial contamination.

A non-destructive and non-invasive method for quantitative characterization of deterioration, based on spectral measurements, was applied to evaluate the scale of damage of the studied documents. The collagen-to-gelatin ratio, which can be estimated from the synchronous fluorescence spectra of modern and historical samples and of pure collagen and gelatin data, was applied for characterization of parchment condition. Analysis of fluorescence peaks and their comparison with peaks of other studies indicated the moderate stage of chemical deterioration of the studied documents. If there was at least 225 fungal taxa detected on both documents, their state seemed to result partly from fungal colonization.

The mycobiota of historical parchment documents has not received as much attention as the mycobiota of paper documents. Studies of parchment and leather have concentrated mostly on their physical damage and chemical changes and only rarely on their microbial colonization [1, 5, 7, 15, 16]. The greater diversity of mycobiota on parchment compared with paper (170 and 137 versus 87 taxa) supports earlier findings [6]. Studies emphasize a parchment’s vulnerability to fungal infestation and colonization, resulting from its chemical properties. Parchment contains proteins (~95% collagen) and some lipids (glycerides). With their low pH, both are ideal sources of nutrients for fungi. The preparation of parchment includes treatment with lime, which neutralizes the excessive acidity. Additional compounds (e.g., gum Arabic used for repair of document 1) might be additional sources of specific nutrients, increasing the spectrum of microorganisms.

The vulnerability of parchment to fungal infestation can also result from its extremely strong response to environmental variation. It deforms and deteriorates with the slightest change in temperature and humidity. Physical changes may be followed by chemical degradation; in high humidity the collagen fibres lose their initial high thermal and mechanical stability and convert to gelatin, which can easily be degraded by many fungal taxa, including Alternaria alternata, Aspergillus spp., Mucor plumbeus, Penicillium chrysogenum, Phoma herbarum and Trichoderma longibrachiatum detected by us and others [29, 30]. Aspergillus versicolor and Penicillium chrysogenum are among the most efficient, degrading 25-30% of gelatin in 2-3 weeks after colonization [16, 30].

The number of taxa presented here, detected with the Illumina technique applied, was much higher than in other studies, when only nine species from Aspergillus, Mucor, Phoma and Penicillium genera in nine historical parchment documents were detected with multiphasic approach applied, various sampling procedures and different microbiological methods [5], and 42 species (mostly from Alternaria, Cladosporium, Epicoccum and Penicillium genera) were detected with classical and molecular methods [15].
The most frequent taxa detected belonged to the Ascomycota. Often they are ubiquitous fungi present in human habitations due to intensive reproduction, easy dispersal, strong degrading properties and wide habitat range [5, 7, 10, 15, 16, 31, 32]. They usually have cellulolytic and proteolytic properties [5, 33-37]. Basidiomycota occurred more rarely. The proteolytic activity of Basidiomycota has been confirmed in the genera of Armillaria, Cantharelus, Russula and Schizophyllum [38]. The number and diversity of proteases produced by these taxa seem to be remarkable. Proteolysis by other taxa among those detected can also be expected, even though it has not yet been studied or proven. Production of proteases in Basidiomycota, however, seems to be regulated by the carbon and nitrogen sources and C:N ratio and activated at low levels of compounds containing accessible nitrogen [39, 40]. Parchment rich in nitrogen therefore may not be the best substrate for Basidiomycota.

Some taxa detected were more or less specialized. One of those is Chaetomium, which occurred in Document 1 with 53.12% and 73.07% frequency. The fungus is a specialist colonizer of leather and skin due to its utilization of collagen and keratin. Its dominance can also result from: (i) successful survival during long-distance travels, (ii) coping with extreme conditions at high elevations, (iii) resistance to antifungal substances produced by neighbours, and (iv) the production of antimicrobial compounds [41-43].

We recorded a few species of Cladosporium, but they were less frequent than in other studies. The most common Penicillium was Penicillium chrysogenum, which was also the predominant species on other parchment documents [5, 16]. Another Penicillium, i.e., P. decumbens, was common in one study [16] but rare in ours.

Acremonium charticola, Beauveria bassiana, Biencnectia rossmaniae, Botrytis cinerea, Chaetomium murorum, Fusarium armeniacum, Fusarium avenaceum, Fusarium sporotrichioides, Malassezia globosa, Mortierella spp., Sarocladium strictum, Serpula himantioides, Sordaria fimicola, Strasseria geniculata, and most species of Aspergillus and Penicillium recorded had never been isolated previously from parchment documents. Bjerkandera adusta and Phoma herbarum were detected only recently [5].

Many of the species detected occur naturally as epiphytes on a wide range of plants. Some, however, are known from their extreme habitats. Candida sake, Cystofilobasidium macerans, Leuconспорidiella creatinivora, Mortierella spp., Naganishia adeliensis, Tetracladium, Thelebolus ellipsoideus and Volucrispora graminea prefer moist and cold habitats [44]. Exophiala xenobiota is known for habitats rich in monoaromatic hydrocarbons and alkanes. Naganishia spp. and Wallemia spp. are flexible ‘opportunitrophs’ known from the most extreme terrestrial habitats on Earth [45].

The group of the most unexpected and surprising taxa included: (i) Arachniotus aurantiacus, Candida boleticiola, and Debaryomyces prosopidis, known from dung, mushrooms and exudates of mesquite trees, respectively; (ii) Candida sake, Naganishia adeliensis, and Vishniacozyma victoriae, known from seawater, decaying algae, mosses, lichens and soil in extremely cold, Arctic and Antarctic habitats [44, 46]; (iii) Leptospora rubella and Phaeococcymosus eucalypti, known from living leaves and leaf litter of Eucalyptus, and (iv) Pleurophoma ossicola and Rhodotorula mucilaginosa, known from bone and human beings [47].

The presence of taxa known from remote locations or non-native plants can be explained by fungal mobility. Microorganisms can be transported over long distances. Biogeographic patterns of microbial community structure show widespread long-distance dispersal on a global scale [48-50].

Some of the fungi detected may be potential opportunistic pathogens in immunocompromised patients. They may cause allergies, asthma, infections of the eye, ear, skin, nails, sinus, lungs, joints, bones, brain or the central nervous system [51-53]. Extracellular proteolytic enzymes may contribute to their pathogenicity on humans [33].

There is, however, an example of a beneficial, commensal human-fungus relationship involving Malassezia globose, which has been detected in both documents. Though the fungus seems to play a pathogenic role in several dermatologic conditions, its proteases may hydrolyse Staphylococcus aureus protein A – an important virulence factor involved in immunity evasion and infection on human skin [37].

Mycological analyses of archived documents often give different results depending on the character and age of the substrate, conditions of storage, inter-species relationships and interactions, and techniques used [2, 4, 7]. Older collections are generally colonized by higher numbers of fungi [15]. Exposure to light, suitable pH, emissions, pollutants including ozone, and volatile organic and inorganic compounds are vital [54]. Each document has its own history and its own specific contaminants. Each item should therefore be considered as a unique example with its own specific characteristics.

The culture-independent method used in this study contributes to a more complete survey of the mycobiota. This approach does not, however, give any information on the functional role of a particular taxon. The Illumina technique used based on rDNA gene detection is unable to give any information on the biodegradative potential of fungi detected and hazard connected with their presence in an archive. The molecular analysis used might have referred to DNA fragments that do not belong to microorganisms currently present. The method does not explain whether particular taxa can grow in parchment or occur only in the form of dormant propagules that fall onto the document from the air. Therefore, while the analysis has identified significant and potentially important diversity of fungi, it remains incomplete without information on their activity.
Analysis of both diversity and activity of fungi would be possible using transcriptomic technologies that would provide a broad account of active and dormant cellular processes.

Conclusions

Old written documents or other items can have priceless historical value to our cultural heritage, whether used for communication or religious purposes. Studies of biodeterioration-related fungi in documents and religious objects are important for understanding the scale of the biodeterioration process, and the necessity for and methods of conservation.

Acknowledgements

The authors are grateful to Prof. Elżbieta Jabłońska from the Department of Paper and Leather Conservation, Nicolaus Copernicus University in Toruń, Poland, for her kind collaboration.

Conflict of Interest

The authors declare no conflict of interest.

References

1. KARBOWSKA-BERENT J., STRZELCZYK A.B. The role of Streptomyces in the biodeterioration of historic parchment. Copernicus University Press, 2000.
2. MICHAELSEN A., PIŇAR G., PINZARI F. Molecular and microscopic investigation of the microflora inhabiting a deteriorated Italian manuscript dated from the 13th century. Microb. Ecol. 60, 69, 2010.
3. PIŇAR G., PINZARI F., STERFLINGER K. Modern technologies as basis for the preservation of parchment. In: López Montes A.M., Collado Montero F., Medina Flórez V., Espejo Arias T., García Bueno A. (Eds) 18th International meeting on heritage conservation. 250, 2011.
4. PRINCIPI P., VILLA F., SORLINI C., CAPITTELLI F. Molecular studies of microbial community structure on stained pages of Leonardo da Vinci’s Atlantic Codex. Microb. Ecol. 61, 214, 2011.
5. KRAKOVA L., CHOVANOVÁ K., SELIM S.A., ŠIMONOVIČOVÁ A., PUŠKAROVÁ A., MAKOVÁ A., PANGALLO D. A multiphasic approach for investigation of the microbial diversity and its biodegradative abilities in historical paper and parchment documents. Int. Biodeter. Biodegr. 70, 117, 2012.
6. PINZARI F., CIALEI V., PIŇAR G. A case study of ancient parchment biodeterioration using variable pressure and high vacuum scanning electron microscopy. Historical technology, Materials and conservation: SEM and microanalysis. In: Meeks N., Cartwright C., Meek A., Mongiatti A. (Eds) Archetype Publications - International Academic Projects,1 Birdcage Walk, London. 2012.
7. MESQUITA N., PORTUGAL A., VIDEIRA S., RODRÍGUEZ-ECHEVERRÍA S., BANDEIRA A.M.L., SANTOS M.J.A., FREITAS H. Fungal diversity in ancient documents: a case study on the archive of the University of Coimbra. Int. Biodeter. Biodegr. 63, 626, 2009.
8. PINZARI F., MONTANARI M. Mould growth on library materials stored in compactus-type shelving units (Chapter 11) In: Abdul-Wahab A., J-Sulaiman S.A. (Eds) Sick building syndrome in public buildings and workplaces. Burlington. Elsevier. 2011.
9. PINZARI F., COLAIIZZI P., MAGGI O., PERSIANI A.M., SCHÜTZ R., RABIN I. Fungal bioleaching of mineral components in a twentieth-century illuminated parchment. Anal. Bioanal. Chem. 402, 1541, 2012.
10. STERFLINGER K., PINZARI F. The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment. Environ. Microb. 14 (3), 559, 2012.
11. NUNES L., MESQUITA N., CABOVERDEA S., LEITÃO-BANDEIRAC A.M., CAROLINOD M.M., PORTUGAL A., BOTELHO M.L. Characterization of an airborne microbial community: a case study in the archive of the University of Coimbra, Portugal. Int. Biodeter. Biodegr. 79, 36, 2013.
12. TROIANO F., POLO A., VILLA F., CAPITTELLI F. Assessing the microbiological risk to stored sixteenth century parchment manuscripts: a holistic approach based on molecular and environmental studies. Biofouling 30 (3), 299, 2014.
13. PIŇAR G., STERFLINGER K., ETTENAUER J., QUANDT A., PINZARI F. A combined approach to assess the microbial contamination of the Archimedes palimpsest. Microb. Ecol. 69, 118, 2015.
14. PIŇAR G., STERFLINGER K., PINZARI F. Unmasking the measles-like parchment discoloration: molecular and microanalytical approach. Environ. Microb. 17, 427, 2015.
15. DE CARVALHO H.P, MESQUITA N., TROVÃO J., DA SILVA J.P, ROSA B., MARTINS R., BANDEIRA A.M.L., PORTUGAL A. Diversity of fungal species in ancient parchments collections of the Archive of the University of Coimbra. Int. Biodeter. Biodegr. 108, 57, 2016.
16. LECH T. Evaluation of a parchment document, the 13th century incorporation charter for the City of Krakow, Poland, for microbial hazards. Appl. Environ. Microb. 82 (9), 2620, 2016.
17. ARAI H. Foxing caused by fungi: twenty-five years of study. Int. Biodeter. Biodegr. 46, 181, 2000.
18. MONTEMARINI-CORTE A., FERRONI A., SALVO V.S. Isolation of fungal species from test samples and maps damaged by foxing, and correlation between these species and the environment. Int. Biodeter. Biodegr. 51, 167, 2003.
19. STERFLINGER K., PINZARI F. Microbial deterioration of cultural heritage and works of art – tilting at windmills? Appl. Microbiol. Biot. 97, 9637, 2013.
20. KARBOWSKA-BERENT J. disinfection of paper-based cultural property. Wydawnictwo Naukowe UMK, Toruń. 2014 [In Polish].
21. MICHAELSEN A., PINZARI F., RIPKA K., LUBITZ W., PIŇAR G. Application of molecular techniques for identification of fungal communities colonizing paper material. Int. Biodeter. Biodegr. 58, 133, 2006.
22. DOLGIN B., BULATOV V., SCHECHTE I. Non-destructive assessment of parchment deterioration by optical methods. Anal. Bioanal. Chem. DOI 10.1007/s00216-007-1410-0. 2007.
23. IHRMARK K., BŐDEKER I.T., CRUZ-MARTINEZ K., FRIBERG H., KUBARTOVA A., SCHENCK J., STRID Y., STENLID J., BRANDSTRÖM-DURLING M., CLEMMENSEN K.E., LINDAHL B.D. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82 (3), 666, 2012.

24. GWEON H.S., OLIVER A., TAYLOR J., BOOTH T., GIBBS M., READ D.S., GRIFFITHS R.I., SCHONROGGE K. PIPITS: An automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6 (8), 973, 2015.

25. ZHANG J., KOBERT K., FLOURI T., STAMATAKIS A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30 (5), 614, 2014.

26. BENGTSSON-PALME J., VELDRE V., RYBERG M., HARTMANN M., BRANCO S., WANG Z., GODHE A., BERTRAND Y., DE WIT P., SANCHEZ M., EBERSBERGER I., SANLI K., DE SOUZA F., KRISTIANSSON E., ABARENKOV K., ERIKSSON K.M., NILSSON R.H. Improved software detection and analysis of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6 (8), 973, 2015.

27. MAGURRAN A.E. Ecological diversity and its measurement. Princeton, NJ; Princeton University Press. 1998.

28. LEONHARTSBERGER S., LAFFERTY R.M., KORNETI L. Use of collagen hydrolysate as a complex nitrogen source for the synthesis of penicillin by Penicillium chrysogenum. J. Biotechnol. 30, 299, 1993.

29. ABRUSCI C., MARQUINA D., DEL AMO A., CATALINA F. Biodegradation of cinematographic gelatin emulsion by bacteria and filamentous fungi using indirect impedance technique. Int. Biodeter. Biodegr. 60, 137, 2007.

30. KARBOWSKA-BERENT J., GÓRNY R.L., STRZELCZYK A.B., WLAZLO A. Airborne and dust strains. Acta Microbiol. Immun. Hung. 51 (3), 283, 2004.

31. PANGALLO D., KRAKOVÁ L., CHOVANOVÁ K., BUCKOVÁ M., ŠUŠKAROVÁ A., ŠIMONOVIČOVÁ A. Disclosing a crypt: microbial diversity and degradation activity of the microflora isolated from funeral clothes of Cardinal Peter Pazmany. Microbiol. Res. 168, 289, 2013.

32. ZAFERANLOO B., QUANG T.D., DAUMOO S., GHORBANI M.M., MAHON P.J., PALOMBO E.A. Optimization of protease production by endophytic fungus, Alternaria alternata, isolated from an Australian native plant. World J. Microbiol. Biot. 30 (6), 1755, 2014.

33. BEHERA B.C., SETHI B.K., MISHRA R.R., DUTTA S.K., THATOI H.N. Microbial cellulosomes – Diversity & biotechnology with reference to mangrove environment: A review. J. Gen. Engin. Biotechn. 15, 197, 2017.

34. LI H., GOH B.N., TEH W.K., JANG Z., GOH J.P.Z., GOH A., WU G., HOON S.S., RAIDA M., CAMATTARI A., YANG L., O’DONOGHUE A.J., DAWSON T.L. JR. Skin commensal Malassezia globosa decreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138 (5), 1137, 2018.

35. JOHNSTON J.M., RAMOS S.F., BILBREY R.E., GATHMAN A.C., LILLY W.W. Characterization of ScPrI, a small serine protease, from mycelia of Schizothyrium commune. Mycol. Res. 104, 726, 2000.

36. SATO S., LIU F., KOC H., TIEN M. Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates. Microbiology 153, 3023, 2007.

37. VASINA D.V., PAVLOV A.R., KOROLEVA O.V. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate. BMC Microbiology 16 (1), 106, 2016.

38. SERENA C., ORTONEDA M., CAPILLA J., PASTOR F.J., SUTTON D.A., RINALDI M.G., GUARRO J. In vitro activities of new antifungal agents against Chaetomium spp. and inoculum standardization. Antimicrob. Agents Chemother. 47, 3161, 2003.

39. McMULLIN D.R., SUMARAH M.W., MILLER J.D. Chaetoglobosins and azaphilones produced by Canadian strains of Chaetomium globosum isolated from the indoor environment. Mycologia 95, 955, 2003.

40. McMULLIN D.R., SUMARAH M.W., BLACKWELL B.A., MILLER J.D. New azaphilones from Chaetomium globosum isolated from the built environment. Tetrahedron Lett. 54 (6), 568, 2013.

41. BALLESTER-TOMÁS L., PRIETO J.A., GIL J.F., BAEZA M., RANDEZ-GIL F. The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine. Int. J. Food Microbiol. 245, 59, 2017.

42. CHMIDT S.K., VIMERCATI L., DARYC J.L., ARÁN P., GENDRON E.M.S., SOLON A.J., PORAZINSKA D., GÓH A., WU G., HOON S.S., RAIDA M., CAMATTARI A., YANG L., O’DONOGHUE A.J., DAWSON T.L. JR. Skin commensal Malassezia globosa decreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138 (5), 1137, 2018.

43. CHMIDT S.K., VIMERCATI L., DARYC J.L., ARÁN P., GENDRON E.M.S., SOLON A.J., PORAZINSKA D., GÓH A., WU G., HOON S.S., RAIDA M., CAMATTARI A., YANG L., O’DONOGHUE A.J., DAWSON T.L. JR. Skin commensal Malassezia globosa decreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138 (5), 1137, 2018.

44. CHMIDT S.K., VIMERCATI L., DARYC J.L., ARÁN P., GENDRON E.M.S., SOLON A.J., PORAZINSKA D., GÓH A., WU G., HOON S.S., RAIDA M., CAMATTARI A., YANG L., O’DONOGHUE A.J., DAWSON T.L. JR. Skin commensal Malassezia globosa decreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138 (5), 1137, 2018.
48. BARBERÁN A., HENLEY J., FIERER N., CASAMAYOR E.O. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Sci. Total Environ. 487, 187, 2007.
49. DARCY J.L., LYNCH R., KING A.J., ROBESON M.S., SCHMIDT S.K. Global distribution of Polaromonas phylotypes – evidence for a highly successful dispersal capacity. PLoS One 6, 23742, 2011.
50. ITANI G.N., SMITH C.A. Dust rains deliver diverse assemblages of microorganisms to the Eastern Mediterranean. Sci. Rep. 6, 22657, 2016.
51. DE HOOG G.S., GUARRO J., GENE J., FIGUERAS M.J. Atlas of Clinical Fungi. Centraalbureau voor Schimmelcultures, Utrecht /Universitat Rovira i Virgili, Reus, Spain. 2001.
52. TSIODRAS S., PAPAGEORGIOU S., MELETIADIS J., TOFAS P., PAPPA V., PANAYIOTIDES J., KARAKITSOS P., ARMAGANIDIS A., PETRIKKOS G. Rhodotorula mucilaginosa associated meningitis: A subacute entity with high mortality. Med. Mycol. Case Rep. 6, 46, 2014.
53. SCHEUFEN S., STROMMER D.S., WEISENBORN D.I., PRENGER-BERNINGHOFF E., THOM N., BAUER N., KÖHLER K., EWERS C. Clinical manifestation of an amelanotic Sporothrix schenckii complex isolate in a cat in Germany. JMM Case Reports. 2015.
54. PINHEIRO A.C., VIEGAS C., VIEGAS S., VERÍSSIMO C., BRANDÃO J., MACEDO M.F. Indoor air quality in Portuguese archives: a snapshot on exposure levels. J. Toxicol. Env. Heal. A 75, 1359, 2012.
