Generalized parton distributions and spin structures of light mesons from a light-front Hamiltonian approach

Sreeraj Nair

In collaboration with L. Adhikari (ISU, USA), C. Mondal (IMP, China), S. Xu (IMP, China), S. Jia (ANL, USA), X. Zhao (IMP, China) and J. P. Vary (ISU, USA)

Based on: arXiv-2110.05048 [accepted by PRD]

Nov 30, 2021
Basis Light-Front Quantization (BLFQ)

- Nonperturbative approach
- Solve the light-front eigenvalue equation: \(H_{\text{LF}} | \psi \rangle = M^2 | \psi \rangle \)
- General BLFQ algorithm:

 1. Formulate \(H_{\text{LF}} \)
 2. Construct basis states
 3. Calculate matrix elements
 4. Diagonalize
 5. Evaluate observables

J. P. Vary, H. Honkanen, J. Li, P. Maris, S. J. Brodsky, A. Harindranath, G. F. de Teramond, P. Sternberg, E. G. Ng, and C. Yang, Phys. Rev. C 81, 035205 (2010).

P. Wiecki, Y. Li, X. Zhao, P. Maris, and J. P. Vary, Phys. Rev. D 91, 105009 (2015).
Effective Hamiltonian: BFLQ-NJL Model

\[H_{\text{eff}} = \frac{\vec{k}^{\perp 2} + m_q^2}{x} + \frac{\vec{k}^{\perp 2} + m_{\bar{q}}^2}{1 - x} + \kappa^4 x (1 - x) \vec{r}^{\perp 2} + \frac{\kappa^4}{(m_q + m_{\bar{q}})^2} \partial_x \left(x(1 - x) \partial_x \right) + H_{\text{NJL}} \]

\[| \pi \rangle_{\text{phys}} = a | q\bar{q} \rangle + b | q\bar{q}g \rangle + c | q\bar{q}q\bar{q} \rangle + \ldots \]

[1] S. Jia and J. P. Vary, Phys. Rev. C 99, 035206 (2019).

[2] S. Klimt, M. F. M. Lutz, U. Vogl and W. Weise, Nucl. Phys. A 516, 429-468 (1990).
Meson Light Front Wave Functions (LFWFs)

The valence LFWFs in orthonormal bases [1]

\[\psi_{rs}(x, \vec{k}_\perp) = \sum_{n,m,l} \langle n, m, l, r, s | \psi \rangle \times \phi_{nm}(\vec{k}_\perp) \chi_l(x) \]

- transverse direction
 \[\phi_{nm}(\vec{k}_\perp) \sim (|\vec{k}_\perp|^m) \times \exp(-\vec{k}_\perp^2) L_n^m(\vec{k}_\perp^2) \]

- longitudinal direction
 \[\chi_l(x) \sim x^{\beta/2} (1 - x)^{\alpha/2} P_l^{(\alpha, \beta)}(2x - 1) \]

Y. Li, P. Maris and J. P. Vary, Phys. Rev. D 96, 016022 (2017).
BLFQ-NJL model parameters

- Parameters are fixed to
 - reproduce the ground state masses
 - experimental charge radii of π^+ and the K^+ \cite{1}

- Successfully applied to
 - compute the PDAs and the EMFFs \cite{1}
 - PDFs for the pion and the kaon and pion-nucleus induced Drell-Yan cross sections \cite{2,3}

- Summary of the model parameters \cite{1}

Valence flavor	N_{max}	L_{max}	κ(MeV)	m_q(MeV)	$m_{\bar{q}}$(MeV)
ud	8	8–32	227	337	337
$u\bar{s}$	8	8–32	276	308	445

\cite{1} S. Jia and J. P. Vary, Phys. Rev. C 99, 035206 (2019).
\cite{2} J. Lan, C. Mondal, S. Jia, X. Zhao and J. P. Vary, Phys. Rev. D 101, 034024 (2020).
\cite{3} J. Lan, C. Mondal, S. Jia, X. Zhao and J. P. Vary, Phys. Rev. Lett. 122, 172001 (2019).
Generalized Parton Distributions (GPDs) : Spin-0 Meson

two independent GPDs at leading twist

\[H_P(x, \zeta, t) = \int \frac{dz^-}{4\pi} e^{ixP^+z^-} \langle \mathcal{P}(P') | \bar{\Psi}_q(0) \gamma^+ \Psi_q(z) | \mathcal{P}(P) \rangle |_{z^+ = z^\perp = 0} \]

\[i\epsilon^{ij} q_i^\perp \frac{E_T^P}{2M_P} (x, \zeta, t) = \int \frac{dz^-}{4\pi} e^{ixP^+z^-} \langle \mathcal{P}(P') | \bar{\Psi}_q(0) i\sigma^j + \gamma_5 \Psi(z)_q | \mathcal{P}(P) \rangle |_{z^+ = z^\perp = 0} \]

- \(H \Rightarrow \) chirally even unpolarized quark GPD
- \(E_T \Rightarrow \) chirally odd transversely polarized quark GPD
- \(P(P') \) denotes the meson momentum of initial (final) state of the meson \((\mathcal{P}) \).
- We choose \(A^+ = 0 \) and the kinematical region: \(0 < x < 1 \) at zero skewness \((\zeta = 0) \).
Results: Pion GPDs

- $H^\pi_u (x, 0) \Rightarrow$ symmetric with peak at $x = 0.5$
- $E^{\pi}_{Tu} (x, 0) \Rightarrow$ asymmetric with peak below $x = 0.5$
- peak in the GPDs shift towards higher values of x
- oscillations are numerical artifacts due to longitudinal cutoff L_{max}
Results: Kaon GPDs

\[H^K_u(x, t) \]

\[H^K_s(x, t) \]

\[E^K_Tu(x, t) \]

\[E^K_Ts(x, t) \]
The Mellin moments of the valence GPDs give the generalized FFs

\[A_{n0}^q(t) = \int_0^1 dx \, x^{n-1} \, H^q(x, 0, t) \]
\[B_{Tn0}^q(t) = \int_0^1 dx \, x^{n-1} \, E_T^q(x, 0, t) \]

- \(H^q(x, 0, t) \) \(\xrightarrow{\text{first moment}} \) \(A_{10}^q(t) \) electromagnetic FF of an unpolarized quark

- \(E_T^q(x, 0, t) \) \(\xrightarrow{\text{first moment}} \) \(B_{T10}^q(t) \) tensor FF when the quark is transversely polarized

- The second moments \(\rightarrow \) gravitational FFs of the quarks
The EMFF $A_{10}(t)$ of the pion is compared with the experimental data and the lattice QCD result [1].

The gravitational FF $A_{20}(t)$ is compared with the parameterization of lattice QCD simulations at $\mu^2 = 4 \text{ GeV}^2$ [2].

$B_{T10}(t)$ and $B_{T20}(t)$ are compared with lattice QCD and the χ_{QM} results at the same scale $\mu^2 = 4 \text{ GeV}^2$.

[1] D. Brömmel et al. [QCDSF/UKQCD], Eur. Phys. J. C 51, 335-345 (2007).
[2] D. Brömmel et al. [QCDSF/UKQCD], Phys. Rev. Lett. 101, 122001 (2008).
[3] S. i. Nam and H. C. Kim, Phys. Lett. B 700, 305-312 (2011).
Results: Kaon Generalized Form Factors

(a) \(A^{K,u}_{10}, A^{K,u}_{20}, A^{K,s}_{10}, A^{K,s}_{20} \) (this work)

(b) \(A^K_{10} = e_u A^{K,u}_{10} + e_s A^{K,s}_{10} \) (EMFF data)

(c) \(B^{K,u}_{10}, B^{K,u}_{20}, B^{K,s}_{10}, B^{K,s}_{20} \)
Spin densities in Impact Parameter Space

The density of quarks with transverse spin \vec{s}^\perp

$$\rho^n(\vec{b}^\perp, \vec{s}^\perp) = \frac{1}{2} \left[A_{n0}^q(\vec{b}^\perp) - \frac{\vec{s}_i^\perp \epsilon_{ij} \vec{b}_j^\perp}{M_P} B_{Tn0}^q(\vec{b}^\perp) \right]$$

unpolarized quark $\rightarrow \vec{s}^\perp = 0$

transversely polarized quark $\rightarrow \vec{s}^\perp = (+1, 0)$
probability densities as a function of b_y at fixed $b_x = 0.15$ fm

results are found to be consistent with the results of lattice QCD [1] and the χQM [2].

[1] D. Brömmel et al. [QCDSF/UKQCD], Phys. Rev. Lett. 101, 122001 (2008).
[2] S. I. Nam and H. C. Kim, Phys. Lett. B 700, 305-312 (2011).
Spin densities in Impact Parameter Space: Kaon

\[\rho(\bar{b}^1) [\text{fm}^{-2}] \]

\[\rho_T(\bar{b}^1) [\text{fm}^{-2}] \]

\[\rho(\bar{b}^\perp) [\text{fm}^{-2}] \]

\[\rho_T(\bar{b}^\perp) [\text{fm}^{-2}] \]
Spin densities in Impact Parameter Space: Kaon

Figure 1:
- **Top Left:** Graph showing spin density $\rho(b^+)$ as a function of b^y for $b^x = 0.15$ fm, u quark.
- **Top Right:** Graph showing spin density $\rho_T(b^+)$ as a function of b^y for $b^x = 0.15$ fm, u quark.
- **Bottom Left:** Graph showing spin density $\rho(b^+)$ as a function of b^y for $b^x = 0.15$ fm, s quark.
- **Bottom Right:** Graph showing spin density $\rho_T(b^+)$ as a function of b^y for $b^x = 0.15$ fm, s quark.

Legend:
- **BLFQ - NJL**
- **χQM**

Units:
- $\rho(b^+)$ and $\rho_T(b^+)$ are measured in $[\text{fm}^{-2}]$.
Average transverse shift $\langle b_y^\perp \rangle_n$

Average transverse shift of the peak position along b_y direction [1]

$$\langle b_y^\perp \rangle_n = \frac{\int d^2\vec{b} \cdot b_y^\perp \rho_n(\vec{b}^\perp, \vec{s}^\perp)}{\int d^2\vec{b}^\perp \rho_n(\vec{b}^\perp, \vec{s}^\perp)} = \frac{1}{2M_P} \frac{B^q_{Tn0}(0)}{A^q_{n0}(0)}$$

Approach	$\langle b_y^\perp \rangle_1^{q/P}$ fm	$\langle b_y^\perp \rangle_2^{q/P}$ fm	$\langle b_y^\perp \rangle_1^{u/K}$ fm	$\langle b_y^\perp \rangle_2^{u/K}$ fm	$\langle b_y^\perp \rangle_1^{s/K}$ fm	$\langle b_y^\perp \rangle_2^{s/K}$ fm
BLFQ-NJL (this work)	0.162 \pm 0.003	0.131 \pm 0.003	0.164 \pm 0.003	0.141 \pm 0.002	0.114 \pm 0.002	0.114 \pm 0.002
Lattice QCD [1]	0.151 \pm 0.024	0.106 \pm 0.028
χQM [2]	0.152
χQM (model I) [3]	0.168	0.166
χQM (model II) [3]	0.139	0.100
CCQM [4]	0.090 \pm 0.001	0.080 \pm 0.001
NJL model [5]	0.116	0.083

[1] D.Brömmel et al. [QCDSF/UKQCD], Phys. Rev. Lett. 101, 122001 (2008).
[2] S. i. Nam and H. C. Kim, Phys. Lett. B 700, 305-312 (2011).
[3] S. i. Nam and H. C. Kim, Phys. Lett. B 707, 546-552 (2012).
[4] C. Fanelli, E. Pace, G. Romanelli, G. Salme and M. Salmistraro, Eur. Phys. J. C 76, 253 (2016).
[5] J. L. Zhang and J. L. Ping, Eur. Phys. J. C 81, 814 (2021).
Transverse squared radius $\langle b_{\perp}^2 \rangle_q(x)$

Squared radius of the quark density [1]

$$\langle b_{\perp}^2 \rangle_q(x) = \frac{\int d^2 \vec{b}_{\perp} (\vec{b}_{\perp})^2 q(x, \vec{b}_{\perp})}{\int d^2 \vec{b}_{\perp} q(x, \vec{b}_{\perp})};$$

$$\langle b_{\perp}^2 \rangle = \sum_q e_q \frac{1}{N_q} \int_0^1 dx H^q(x, 0, 0) \langle b_{\perp}^2 \rangle_q(x)$$

![Graph showing the transverse squared radius for pions and kaons.](image)

- $\langle b_{\perp}^2 \rangle_{\pi} = 0.285 \text{ fm}^2$
- $\langle b_{\perp}^2 \rangle_{K} = 0.223 \text{ fm}^2$
- $\langle b_{\perp}^2 \rangle_{\pi}^{\exp} = 0.301 \pm 0.014 \text{ fm}^2$ [2]
- $\langle b_{\perp}^2 \rangle_{K}^{\exp} = 0.209 \pm 0.047 \text{ fm}^2$ [2]

[1] R. Dupre, M. Guidal and M. Vanderhaeghen, Phys. Rev. D 95, 011501 (2017).

[2] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
Conclusion

- We investigated the valence quark GPDs of the light pseudoscalar mesons in the BLFQ-NJL model.

- We also calculated the spin densities of the unpolarized and transversely polarized quark inside the pion and the kaon.

- Our results were found to be consistent with lattice QCD and χQM results.

Thank You