A novel inhibitor L755507 efficiently blocks c-Myc/MAX heterodimerization and induces apoptosis in cancer cells

Ashutosh Singh¹, Ankur Kumar¹, Prateek Kumar¹, Namyashree Nayak¹, Taniya Bhardwaj¹, Rajanish Giri¹, Neha Garg²*

¹School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India

²Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi- 221005, Uttar Pradesh, India

*Corresponding Author

Neha Garg, Ph.D.
Department of Medicinal Chemistry,
Institute of Medical Sciences, Banaras Hindu University,
Varanasi- 221005, Uttar Pradesh, India
Telephone: +91-9818082907
Email: nehagarg@bhu.ac.in

Running title: L755507 abrogates the dimerization of Myc/MAX.
Figure S1. Dot plot depicting docking score and binding energy of top 178 compounds from Selleckchem Bioactive library (blue squares) and reported Myc/MAX inhibitor from the literature (red squares). The arrow denotes the position of L755507 corresponding to its binding energy and docking score.

Figure S2. High-throughput virtual screening aided in the discovery of hit bioactive compounds against oncogenic Myc. (A) The potential binding poses and respective ligand molecular interactions of second hit molecule, Pol_B_Sul, and reported Myc inhibitors, 10074-G5 (B) 10074-A4 (C) and PKUMDL-YC-1204 (D) with the identified Site-3 residues of Myc.

Figure S3. Gene Expression Profiling Interactive Analysis (GEPIA) was performed to validate Myc mRNA expression in various cancer samples vs. normal samples. Data represented as mean ± SD (*p < 0.05). (Abbreviation: CECS-Cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL-Cholangiocarcinoma, COAD-Colon adenocarcinoma, DLBC-Lymphoid Neoplasm Diffuse Large B-cell Lymphoma, ESCA- Esophageal carcinoma, GBM- Glioblastoma multiforme, KIRC- Kidney renal clear cell carcinoma, KIRP- Kidney renal papillary cell carcinoma, LGG- Brain Lower Grade Glioma, LUSC- Lung squamous cell carcinoma, PRAD- Prostate adenocarcinoma, READ- Rectum adenocarcinoma, STAD- Stomach adenocarcinoma, and THYM-Thymoma)

Figure S4. Mantel-Cox survival curve represents high Myc expression with reduced overall survival in different cancer types compared with low Myc expression.

Figure S5. Endogenous expression of Myc in three cell lines viz. D341, HL-60, and HT-29 were characterized by (A) flow cytometry, (B) western blot, and (C) real-time quantitative PCR.

Figure S6. Cytotoxicity result of L755507 on low-Myc expressing cell lines. (A) Endogenous expression of Myc on two glioma cell lines, i.e., LN-18 and U-87 MG, was probed with western blot and compared with HT-29. (B) Anticancer profile of L755507 on LN-18 and U-87 MG cells after 48 hrs of treatment. The bar represents the mean ± SEM of three independent experiments. (C) The obtained IC50 values of L755507 against the two low-Myc expressing cell lines. Values represent mean ± SEM of three independent experiments.
Figure S7. Cytotoxicity result of the Pol_B_Sul on three Myc expressing cell lines. (A) Anticancer profile of Pol_B_Sul on three cell lines. The bar represents mean ± SEM of three independent experiments. (B) The dose-response curve used to generate the IC₅₀ value of Pol_B_Sul on three studied cell lines. Data points represent mean ± SEM of three independent experiments. (C) The obtained IC₅₀ values of Pol_B_Sul. Values represent mean ± SEM of three independent experiments.

Figure S8. L755507 treatment resulted in the inhibition of Myc transcriptional activity, which is evident from the decreased mRNA level of Myc target genes (CAD, ODC1, NOP58, and NOP56). All three cell lines were treated with the indicated concentration of L755507 for 36 hrs and subjected to qPCR. Bars represent mean ± SD of three experimental replicates (p-value vs DMSO control. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns = non-significant).

Figure S9. The mRNA expression level of the Myc target gene (CAD, ODC1, NOP58, and NOP56) after treatment with various concentrations of 10074-G5. All three cell lines were treated with the indicated concentration of 10074-G5 for 36 hrs and subjected to qPCR. Bars represent mean ± SD of three experimental replicates (p-value vs DMSO control. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns = non-significant).

Figure S10. Change in the protein level of c-Myc target genes (CAD, NOP58, and OD1) after treatment with 10074-G5. Bars represent mean ± SD of two independent experiments (p-value vs untreated. *p<0.05, **p<0.01, ***p<0.001).

Figure S11. Isothermal titration calorimetry isotherm for the interaction of L755507 with Myc peptide. The upper panel relates to calorimetric response as successive injections of L755507 into sample cell containing Myc peptide. The bottom panel corresponds to integrated heats of interactions as a function of [L755507-Myc] molar ratio.

Figure S12. The graph represents the fluorescence lifetime decay measurement of Myc with different concentrations of the ligand 10074-G5.

Figure S13. Molecular dynamics simulations analysis of Myc/Pol_B_Sul complex for 100 ns. Root Mean Square Deviation (RMSD) of the Cα atoms of unbound Myc (blue) and Myc bound to Pol_B_Sul (olive), and Root Mean Square Fluctuation (RMSF) in Cα atoms of unbound Myc (blue) and Myc bound to Pol_B_Sul (olive).
Figure S14. (A) Timeline depiction of the total number of specific contacts the Myc made with Pol_B_Sul throughout the simulation period of 100ns. (B) Histogram representation of various interactions formed by residues of Myc with Pol_B_Sul (values more than 1 show multiple interactions) during a course of computational simulations. The color in the bars, i.e., green, purple, red, and blue, represents hydrogen bonds, hydrophobic, ionic, and water bridge interactions. (C) Interaction occupancy of Site-3 residues with Pol_B_Sul throughout the simulation period.

Table S1. Complete detail of antibodies used in different experiments in this study.

Table S2. List of Real-time quantitative PCR primers used in the study.

Table S3. Predicted shallow active sites on the apo structure of Myc from the Myc-MAX complex generated by SiteMap.

Table S4. Docking score and binding energy of hit bioactive compounds and the reported Myc inhibitors bind to the identified site on Myc.

Table S5: List of sub-structures from PubChem database of L755507 with their docking score and binding energy scores against identified Site-3 of Myc.

Table S6: Prediction of pharmacokinetic properties of L755507 using QikProp and OSIRIS DataWarrior programs. a: Estimated number of H-bond donors; b: Estimated number of H-bond acceptors; c: Predicted octanol/water partition coefficient; d: Predicted aqueous solubility; e: Conformation-independent predicted aqueous solubility.

Movie S1 (separate file). 100ns simulation trajectory of Myc/L755507 complex showed a stable binding of compound (Red) with Myc (Blue).
Figure S1. Dot plot depicting docking score and binding energy of top 178 compounds from Selleckchem Bioactive library (blue squares) and reported Myc/MAX inhibitor from the literature (red squares) (1, 2). The arrow denotes the position of L755507 corresponding to its binding energy and docking score.
Figure S2. High-throughput virtual screening aided in the discovery of hit bioactive compounds against oncogenic Myc. (A) The potential binding poses and respective ligand molecular interactions of second hit molecule, Pol_B_Sul, and reported Myc inhibitors, 10074-G5 (B) 10074-A4 (C) and PKUMDL-YC-1204 (D) with the identified Site-3 residues of Myc.
Figure S3. Gene Expression Profiling Interactive Analysis (GEPIA) was performed to validate Myc mRNA expression in various cancer samples vs. normal samples. Data represented as mean ± SD (*p < 0.05). (Abbreviation: CECS-Cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL-Cholangiocarcinoma, COAD-Colon adenocarcinoma, DLBC-Lymphoid Neoplasm Diffuse Large B-cell Lymphoma, ESCA- Esophageal carcinoma, GBM- Glioblastoma multiforme, KIRC- Kidney renal clear cell carcinoma, KIRP- Kidney renal papillary cell carcinoma, LGG- Brain Lower Grade Glioma, LUSC- Lung squamous cell carcinoma, PRAD- Prostate adenocarcinoma, READ- Rectum adenocarcinoma, STAD- Stomach adenocarcinoma, and THYM-Thymoma)
Figure S4. Mantel-Cox survival curve represents high Myc expression with reduced overall survival in different cancer types compared with low Myc expression.
Figure S5. Endogenous expression of Myc in three cell lines viz. D341, HL-60, and HT-29 were characterized by (A) flow cytometry, (B) western blot, and (C) real-time quantitative PCR.
Figure S6. Cytotoxicity result of L755507 on low-Myc expressing cell lines. (A) Endogenous expression of Myc on two glioma cell lines, i.e., LN-18 and U-87 MG was probed with western blot and compared with HT-29. (B) Anticancer profile of L755507 on LN-18 and U-87 MG cells after 48 hrs of treatment. The bar represents mean ± SEM of four independent experiments. (C) The obtained IC50 values of L755507 against the two low-Myc expressing cell lines. Values represent mean ± SEM of four independent experiments.
Figure S7. Cytotoxicity result of the Pol_B_Sul on three Myc expressing cell lines. (A) Anticancer profile of Pol_B_Sul on three cell lines. The bar represents mean ± SEM of three independent experiments. (B) The dose-response curve used to generate the IC$_{50}$ value of Pol_B_Sul on three studied cell lines. Data points represent mean ± SEM of three independent experiments. (C) The obtained IC$_{50}$ values of Pol_B_Sul. Values represent mean ± SEM of three independent experiments.
Figure S8. L755507 treatment resulted in the inhibition of Myc transcriptional activity, which is evident from the decreased mRNA level of Myc target genes (CAD, ODC1, NOP58, and NOP56). All three cell lines were treated with the indicated concentration of L755507 for 36 hrs and subjected to qPCR. Plots represent mean ± SD of three experimental replicates (p-value vs DMSO control. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).
Figure S9. mRNA expression level of Myc target gene (CAD, ODC1, NOP58, and NOP56) after treatment with various concentration of 10074-G5. All three cell lines were treated with the indicated concentration of 10074-G5 for 36 hrs and subjected to qPCR. Plots represent mean ± SD of three experimental replicates (p-value vs DMSO control. ns = non-significant, *p<0.05, **p<0.01, ***p<0.001).
Figure S10. Change in the protein level of c-Myc target genes (CAD, NOP58, and OD1) after treatment with 10074-G5. Plots represent mean ± SD of three independent experiments (p-value vs DMSO control. ns = non-significant *p<0.05, **p<0.01).
Figure S11. Isothermal titration calorimetry isotherm for the interaction of L755507 with Myc peptide. The upper panel relates to calorimetric response as successive injections of L755507 into sample cell containing Myc peptide. The bottom panel corresponds to integrated heats of interactions as a function of [L755507-Myc] molar ratio.
Figure S12. The graph represents the fluorescence lifetime decay measurement of Myc with different concentrations of the ligand 10074-G5.
Figure S13. Molecular dynamics simulations analysis of Myc/Pol_B_Sul complex for 100 ns. Root Mean Square Deviation (RMSD) of the C-a atoms of unbound Myc (blue) and Myc bound to Pol_B_Sul (olive) and Root Mean Square Fluctuation (RMSF) in C-a atoms of unbound Myc (blue) and Myc bound to Pol_B_Sul (olive).
Figure S14. (A) Timeline depiction of the total number of specific contacts the Myc made with Pol_B_Sul throughout the simulation period of 100ns. (B) Histogram representation of various interactions formed by residues of Myc with Pol_B_Sul (values more than 1 show multiple interactions) during a course of computational simulations. The color in the bars, i.e., green, purple, red, and blue, represents hydrogen bonds, hydrophobic, ionic, and water bridge interactions. (C) Interaction occupancy of Site-3 residues with Pol_B_Sul throughout the simulation period.
Table S1. Complete detail of antibodies used in different experiments in this study.

Name	Supplier	Catalog Number	Application
Anti-Myc-FITC	Miltenyi Biotech	130-116-653	Flow cytometry
Mouse-IgG1-FITC (Isotype)	Miltenyi Biotech	130-113-761	Flow cytometry
CAD Polyclonal Antibody	Thermo fisher scientific	PA5-71471	Western blot
ODC1 Monoclonal Antibody	Thermo fisher scientific	MA5-25138	Western blot
NOP58 Polyclonal Antibody	Thermo fisher scientific	PA5-53811	Western blot
MAX Polyclonal Antibody	Thermo fisher scientific	PA5-80800	Western blot
Myc Monoclonal Antibody	Thermo fisher scientific	13-2500	Western blot/Co-immunoprecipitation
Anti-beta-Actin Monoclonal Antibody	Sigma-Aldrich	MABT825	Western blot
GAPDH Monoclonal Antibody	Thermo fisher scientific	AM4300	Western blot
Goat anti-Rabbit IgG (H+L) Secondary antibody	Thermo fisher scientific	65-6120	Western blot
Goat anti-Mouse IgG (H+L) Secondary antibody	Thermo fisher scientific	62-6520	Western blot
Table S2. List of Real-time quantitative PCR primers used in the study.

Gene	Forward Primer 5’-3’	Reverse Primer 5’-3’
1 Actβ	GAGCACAGAGCCTCGCCTTT	ACATGCCGGAGCCGTTGTC
2 GAPDH	TGCACCACCAACTGCTTAGC	GGCATGGACTGTGGTCATGAG
3 Myc	AATGAAAAAGGCCCAAGGTAGTTTATCC	GTCGTTTCCGCAAACAGTCTCTCTTC
4 CAD	TAGTCCTTGGCTCTGGCGTCTA	TAGTCGTTGCTGACTGTCTCTG
5 ODC1	CCAAAAGCAGTCTGTCCGTCAG	CAGAGATTGCTGCAAGAGAT
6 NOP56	GGCTAAGGCTATTGGATG	TGTGTAGGCTTGCCGGTATTC
7 NOP58	TGTTATGGCTTGGCATTTCCCTG	GCAGCAACTCAAGAAAGCTTGGC
Table S3. Predicted shallow active sites on the apo structure of Myc from the Myc-MAX complex generated by SiteMap.

Sites	Site Score	Draggability score	Solvent Exposure	Hydrophobicity	Hydrophilicity	Residues
Site 1	0.857	0.963	0.783	0.055	0.572	911,914,915,917,918,921,922,925,935,936,937,938,939,942
Site 3	0.744	0.861	0.89	0.58	0.14	913,917,920,921,924,927,928,943,946,947,949,950,953
Site 2	0.695	0.779	0.855	0.071	0.435	925,926,929,931,932,933,934,935
Site 4	0.677	0.776	0.903	0.343	0.2	960,961,963,964,967,968,970,971,974,975
Site 5	0.631	0.712	0.889	0.143	0.31	963,966,967,969,970,973,974,976,977,980
Table S4. Docking score and binding energy of hit bioactive compounds and the reported Myc inhibitors bind to the identified site on Myc.

Compound	Docking score (kcal/mol)	MMGBSA ΔG Bind (kcal/mol)	2D Structure	
L755507	-7.151	-54.925		
Salvianolic acid B	-12.886	-50.504		
Sennoside A	-7.993	-50.108		
Paromomycin Sulfate	-7.152	-42.81		
Heparin sodium	-8.956	-42.277		
Pemetrexed	-7.648	-39.066		
Polymyxin B sulphate	-9.584	-38.927		
Drug	pKa 1	pKa 2		
-------------------------------	--------	--------		
Rosmarinic acid	-7.772	-37.905		
Acarbose	-7.426	-37.342		
Cefixime	-7.028	-37.167		
Neomycin sulfate	-7.002	-36.528		
Leucovorin Calcium	-7.76	-36.409		
Omniscan (gadodiamide)	-7.373	-36.315		
Folic Acid	-7.508	-36.116		
Raltitrexed	-8.86	-35.47		
PubChem Compound ID	2D structure	IUPAC Name	Docking score (kcal/mol)	MMGBSA ΔG Bind (kcal/mol)
---------------------	--------------	---	--------------------------	---------------------------
L755507	![Image](image1.png)	1-hexyl-3-[4-[[4-[2-[[2S)-2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethy]l]phenyl]sulfamoyl]phenyl]urea	-7.151	-54.925
44268498	![Image](image2.png)	1-hexyl-3-[4-[[4-[2-[[2S)-2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethy]l]phenyl]sulfamoyl]phenyl]-1,3-dimethylurea	-6.583	-61.607
44268569	![Image](image3.png)	3-hexyl-1-[4-[[4-[2-[[2S)-2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethy]l]phenyl]sulfamoyl]phenyl]-1-methylurea	-6.374	-37.949

*Reported Myc/MAX inhibitors from the literature.

Table S5: List of sub-structures from PubChem database of L755507 with their docking score and binding energy scores against identified Site-3 of Myc.
Catalog Number	Chemical Structure	Name	Log P	MW
18683394	![Structure 1](image)	1-hexyl-3-[4-[[4-\[2-[[2-hydroxy-3\[4-\[(2-\methylpropan-2-\yl)oxy]phenoxy]\propyl]amino]ethyl\]phenyl]sulfamoyl\]phenyl]urea	-6.248	48.003
46882763	![Structure 2](image)	1-hexyl-3-[4-[[4-\[2-[[\(2S\)-2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]2-methylpropyl]phenyl]sulfamoyl\]phenyl]urea	-6.066	37.189
44268571	![Structure 3](image)	1-cyclohexyl-3-[4-[[4\-2-\[(2S)-2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl\]phenyl\]sulfamoyl\]phenyl]urea	-5.661	43.631
59879613	![Structure 4](image)	1-hexyl-3-[4-[[4-\[2-[[2S]-2-hydroxy-3-\[4-\[(2-\methylpropan-2-\yl)oxy]phenoxy]\propyl]amino]ethyl\]phenyl\]sulfamoyl\]phenyl]urea	-4.989	40.572
44268495	![Structure 5](image)	1-[4-[[4-\[2-\[(2S)-2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl\]phenyl\]sulfamoyl\]phenyl]-3-octylurea	-4.974	59.717
10122287	![Structure 6](image)	1-[4-[[4-\[2-\[(3,6-dihydroxy-2,2-dimethyl-3,4-dihydrochromen-4-yl)amino]ethyl\]phenyl\]sulfamoyl\]phenyl]-3-hexylurea; hydrochloride	-3.061	53.202
10122288	![Chemical Structure](image)	1-4-[[4-2-[(3,6-dihydroxy-2,2-dimethyl-3,4-dihydrochromen-4-yl)amino]ethyl]phenyl][sulfamoyl]phenyl]-3-hexylurea	-3.061	-53.205
Table S6: Prediction of pharmacokinetic properties of L755507 using QikProp and OSIRIS DataWarrior programs. a: Estimated number of H-bond donors; b: Estimated number of H-bond acceptors; c: Predicted octanol/water partition coefficient; d: Predicted aqueous solubility; e: Conformation-independent predicted aqueous solubility.

Molecule	Mol. Wt (130.0 - 725.0)	H-donors \(^a\) (0.0 - 6.0)	H-acceptors \(^b\) (2.0 - 20.0)	LogP \(^c\) (-2.0 - 6.5)	LogS \(^d\) (-6.5 – 0.5)	CIQPlogS \(^e\) (-6.5 – 0.5)
L755507	584.73	6	11.2	3.232	-6.303	-5.6

Molecule	Mol. Wt	H-donors \(^d\)	H-acceptors \(^d\)	LogP \(^c\)	LogS \(^d\)	Mutagenic	Tumorigenic
L755507	585.74	6	10	2.689	-5.663	None	None

Movie S1 (separate file). 100ns simulation trajectory of Myc/L755507 complex showed a stable binding of compound (Red) with Myc (Blue).
References

1. Yin, X., Giap, C., Lazo, J. S., and Prochownik, E. V. (2003) Low molecular weight inhibitors of Myc-Max interaction and function. *Oncogene*. **22**, 6151–6159

2. Yu, C., Niu, X., Jin, F., Liu, Z., Jin, C., and Lai, L. (2016) Structure-based Inhibitor Design for the Intrinsically Disordered Protein c-Myc. *Sci. Rep.* **6**, 1–11