Polynomial bounds for chromatic number.

IV. A near-polynomial bound for excluding the five-vertex path

Alex Scott1
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Paul Seymour2
Princeton University, Princeton, NJ 08544

Sophie Spirkl3
University of Waterloo, Waterloo, Ontario N2L3G1, Canada

August 8, 2021; revised June 26, 2024

1Research supported by EPSRC grant EP/V007327/1.
2Supported by AFOSR grant FA9550-22-1-0234, and by NSF grant DMS-2154169.
3We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding reference number RGPIN-2020-03912]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG) [numéro de référence RGPIN-2020-03912].
Abstract

A graph G is H-free if it has no induced subgraph isomorphic to H. We prove that a P_5-free graph with clique number $\omega \geq 3$ has chromatic number at most $\omega \log_2(\omega)$. The best previous result was an exponential upper bound $(5/27)^{3\omega}$, due to Esperet, Lemoine, Maffray, and Morel. A polynomial bound would imply that the celebrated Erdős-Hajnal conjecture holds for P_5, which is the smallest open case. Thus, there is great interest in whether there is a polynomial bound for P_5-free graphs, and our result is an attempt to approach that.
1 Introduction

If G, H are graphs, we say G is H-free if no induced subgraph of G is isomorphic to H; and for a graph G, we denote the number of vertices, the chromatic number, the size of the largest clique, and the size of the largest stable set by $|G|$, $\chi(G)$, $\omega(G)$, $\alpha(G)$ respectively.

The k-vertex path is denoted by P_k, and P_4-free graphs are well-understood; every P_4-free graph G with more than one vertex is either disconnected or disconnected in the complement [24], which implies that $\chi(G) = \omega(G)$. Here we study how $\chi(G)$ depends on $\omega(G)$ for P_5-free graphs G.

The Gyárfás-Sumner conjecture [10, 25] says:

1.1 Conjecture: For every forest H there is a function f such that $\chi(G) \leq f(\omega(G))$ for every H-free graph G.

This is open in general, but has been proved [10] when H is a path, and for several other simple types of tree ([3, 11, 12, 13, 14, 17, 19]; see [18] for a survey). The result is also known if all induced subdivisions of a tree are excluded [17].

A class of graphs is hereditary if the class is closed under taking induced subgraphs and under isomorphism, and a hereditary class is said to be χ-bounded if there is a function f such that $\chi(G) \leq f(\omega(G))$ for every graph G in the class (thus, the Gyárfás-Sumner conjecture says that, for every forest H, the class of H-free graphs is χ-bounded). Louis Esperet [8] made the following conjecture:

1.2 (False) Conjecture: Let G be a χ-bounded class. Then there is a polynomial function f such that $\chi(G) \leq f(\omega(G))$ for every $G \in G$.

Esperet’s conjecture was recently shown to be false by Briański, Davies and Walczak [2]. However, this raises the further question: which χ-bounded classes are polynomially χ-bounded? In particular, the two conjectures 1.1 and 1.2 would together imply the following, which is still open:

1.3 Conjecture: For every forest H, there exists $c > 0$ such that $\chi(G) \leq \omega(G)^c$ for every H-free graph G.

This is a beautiful conjecture. In most cases where the Gyárfás-Sumner conjecture has been proved, the current bounds are very far from polynomial, and 1.3 has been only been proved for a much smaller collection of forests (see [15, 20, 22, 23, 21, 5, 16]). In [23] we proved it for any P_5-free tree H, but it has not been settled for any tree H that contains P_5. In this paper we focus on the case $H = P_5$.

The best previously-known bound on the chromatic number of P_5-free graphs in terms of their clique number, due to Esperet, Lemoine, Maffray, and Morel [9], was exponential:

1.4 If G is P_5-free and $\omega(G) \geq 3$ then $\chi(G) \leq (5/27)3^{\omega(G)}$.

Here we make a significant improvement, showing a “near-polynomial” bound:

1.5 If G is P_5-free and $\omega(G) \geq 3$ then $\chi(G) \leq \omega(G)^{\log_2(\omega(G))}$.

(The cycle of length five shows that we need to assume $\omega(G) \geq 3$. Sumner [25] showed that $\chi(G) \leq 3$ when $\omega(G) = 2$.) Conjecture 1.3 when $H = P_5$ is of great interest, because of a famous conjecture due to Erdős and Hajnal [6, 7], that:
1.6 Conjecture: For every graph H there exists $c > 0$ such that $\alpha(G)\omega(G) \geq |G|^c$ for every H-free graph G.

This is open in general, despite a great deal of effort; and in view of [4], the smallest graph H for which 1.6 is undecided is the graph P_5. Every forest H satisfying 1.3 also satisfies the Erdős-Hajnal conjecture, and so showing that $H = P_5$ satisfies 1.3 would be a significant result. (See [1] for some other recent progress on this question.)

We use standard notation throughout. When $X \subseteq V(G)$, $G[X]$ denotes the subgraph induced on X. We write $\chi(X)$ for $\chi(G[X])$ when there is no ambiguity.

2 The main proof

We denote the set of nonnegative real numbers by \mathbb{R}_+, and the set of nonnegative integers by \mathbb{Z}_+. Let $f : \mathbb{Z}_+ \rightarrow \mathbb{R}_+$ be a function. We say

- f is non-decreasing if $f(y) \geq f(x)$ for all integers $x, y \geq 0$ with $y > x \geq 0$;
- f is a binding function for a graph G if it is non-decreasing and $\chi(H) \leq f(\omega(H))$ for every induced subgraph H of G; and
- f is a near-binding function for G if f is non-decreasing and $\chi(H) \leq f(\omega(H))$ for every induced subgraph H of G different from G.

In this section we show that if a function f satisfies a certain inequality, then it is a binding function for all P_5-free graphs. Then at the end we will give a function that satisfies the inequality, and deduce 1.5.

A cutset in a graph G is a set X such that $G \setminus X$ is disconnected. A vertex $v \in V(G)$ is mixed on a set $A \subseteq V(G)$ or a subgraph A of a graph G if v is not in A and has a neighbour and a non-neighbour in A. It is complete to A if it is adjacent to every vertex of A. We begin with the following:

2.1 Let G be P_5-free, and let f be a near-binding function for G. Let G be connected, and let X be a cutset of G. Then

$$\chi(G \setminus X) \leq f(\omega(G) - 1) + \omega(G)f(\lfloor \omega(G)/2 \rfloor).$$

Proof. We may assume (by replacing X by a subset if necessary) that X is a minimal cutset of G; and so $G \setminus X$ has at least two components, and every vertex in X has a neighbour in $V(B)$, for every component B of $G \setminus X$. Let B be one such component; we will prove that $\chi(B) \leq f(\omega(G) - 1) + \omega(G)f(\lfloor \omega(G)/2 \rfloor)$, from which the result follows.

Choose $v \in X$ (this is possible since G is connected), and let N be the set of vertices in B adjacent to v. Let the components of $B \setminus N$ be $R_1, \ldots, R_k, S_1, \ldots, S_{\ell}$, where R_1, \ldots, R_k each have chromatic number more than $f(\lfloor \omega(G)/2 \rfloor)$, and S_1, \ldots, S_{ℓ} each have chromatic number at most $f(\lfloor \omega(G)/2 \rfloor)$. Let S be the union of the graphs S_1, \ldots, S_{ℓ}; thus, $\chi(S) \leq f(\lfloor \omega(G)/2 \rfloor)$. For $1 \leq i \leq k$, let Y_i be the set of vertices in N with a neighbour in $V(R_i)$, and let $Y = Y_1 \cup \cdots \cup Y_k$.

(1) For $1 \leq i \leq k$, every vertex in Y_i is complete to R_i.

2
Let \(y \in Y_i \). Thus, \(y \) has a neighbour in \(V(R_i) \); suppose that \(y \) is mixed on \(R_i \). Since \(R_i \) is connected, there is an edge \(ab \) of \(R_i \) such that \(y \) is adjacent to \(a \) and not to \(b \). Now \(v \) has a neighbour in each component of \(G \setminus X \), and since there are at least two such components, there is a vertex \(u \in V(G) \setminus (X \cup V(B)) \) adjacent to \(v \). But then \(u-v-y-a-b \) is an induced copy of \(P_5 \), a contradiction. This proves (1).

(2) \(\chi(Y) \leq (\omega(G) - 1)f(\lfloor \omega(G)/2 \rfloor) \).

Let \(1 \leq i \leq k \). Since \(f(\lfloor \omega(G)/2 \rfloor) < \chi(R_i) \leq f(\omega(R_i)) \), and \(f \) is non-decreasing, it follows that \(\omega(R_i) > \omega(G)/2 \). By (1), \(\omega(G[Y_i]) + \omega(R_i) \leq \omega(G) \), and so \(\omega(G[Y_i]) < \omega(G)/2 \). Consequently \(\chi(Y_i) \leq f(\lfloor \omega(G)/2 \rfloor) \), for \(1 \leq i \leq k \). Choose \(I \subseteq \{1, \ldots, k\} \) minimal such that \(\bigcup_{i \in I} Y_i = Y \). From the minimality of \(I \), for each \(i \in I \) there exists \(y_i \in Y_i \) such that for each \(j \in I \setminus \{i\} \) we have that \(y_i \notin Y_j \); and so the vertices \(y_i \ (i \in I) \) are all distinct. For each \(i \in I \) choose \(r_i \in V(R_i) \). For all distinct \(i, j \in I \), if \(y_i, y_j \) are nonadjacent, then \(r_i-y_i-v-y_j-r_j \) is isomorphic to \(P_5 \), a contradiction. Hence the vertices \(y_i \ (i \in I) \) are all pairwise adjacent, and adjacent to \(v \); and so \(|I| \leq \omega(G) - 1 \). Thus, \(\chi(Y) = \chi(\bigcup_{i \in I} Y_i) \leq (\omega(G) - 1)f(\lfloor \omega(G)/2 \rfloor) \). This proves (2).

All the vertices in \(N \setminus Y \) are adjacent to \(v \), and so \(\omega(G[N \setminus Y]) \leq \omega(G) - 1 \). Moreover, for \(1 \leq i \leq k \), each vertex of \(R_i \) is adjacent to each vertex in \(Y_i \), and \(Y_i \neq \emptyset \) since \(B \) is connected, and so \(\omega(R_i) \leq \omega(G) - 1 \). Since there are no edges between any two of the graphs \(G[N \setminus Y], R_1, \ldots, R_k \), their union (\(Z \) say) has clique number at most \(\omega(G) - 1 \) and so has chromatic number at most \(f(\omega(G) - 1) \). But \(V(B) \) is the union of \(Y, V(S) \) and \(V(Z) \); and so

\[
\chi(B) \leq f(\omega(G) - 1) + (\omega(G) - 1)f(\lfloor \omega(G)/2 \rfloor) + f(\lfloor \omega(G)/2 \rfloor).
\]

This proves 2.1.

2.2 Let \(\Omega \geq 1 \), and let \(f : \mathbb{Z}_+ \to \mathbb{R}_+ \) be non-decreasing, satisfying the following:

- \(f \) is a binding function for every \(P_5 \)-free graph \(H \) with \(\omega(H) \leq \Omega \); and
- \(f(w - 1) + (w + 2)f(\lfloor w/2 \rfloor) \leq f(w) \) for each integer \(w > \Omega \).

Then \(f \) is a binding function for every \(P_5 \)-free graph \(G \).

Proof. We prove by induction on \(|G|\) that if \(G \) is \(P_5 \)-free then \(f \) is a binding function for \(G \). Thus, we may assume that \(G \) is \(P_5 \)-free and \(f \) is near-binding for \(G \). If \(G \) is not connected, or \(\omega(G) \leq \Omega \), it follows that \(f \) is binding for \(G \), so we assume that \(G \) is connected and \(\omega(G) > \Omega \). Let us write \(w = \omega(G) \) and \(m = \lfloor w/2 \rfloor \). If \(\chi(G) \leq f(w) \) then \(f \) is a binding function for \(G \), so we assume, for a contradiction, that:

(1) \(\chi(G) > f(w - 1) + (w + 2)f(m) \).

We deduce that:

(2) Every cutset \(X \) of \(G \) satisfies \(\chi(X) > 2f(m) \).
If some cutset X satisfies $\chi(X) \leq 2f(m)$, then since $\chi(G \setminus X) \leq f(w - 1) + wf(m)$ by 2.1, it follows that $\chi(G) \leq f(w - 1) + (w + 2)f(m)$, contrary to (1). This proves (2).

(3) If P, Q are cliques of G, both of cardinality at least $w/2$, then $G[P \cup Q]$ is connected.

Suppose not; then there is a minimal subset $X \subseteq V(G) \setminus (P \cup Q)$ such that P, Q are subsets of different components (A, B say) of $G \setminus X$. From the minimality of X, every vertex $x \in X$ has a neighbour in $V(A)$ and a neighbour in $V(B)$. If x is mixed on A and mixed on B, then since A is connected, there is an edge a_1a_2 of A such that x is adjacent to a_1 and not to a_2; and similarly there is an edge b_1b_2 of B with x adjacent to b_1 and not to b_2. But then $a_2-a_1-x-b_1-b_2$ is an induced copy of P_5, a contradiction; so every $x \in X$ is complete to at least one of A, B. The set of vertices in X complete to A is also complete to P, and hence has clique number at most m, and hence has chromatic number at most $f(m)$; and the same for B. Thus, $\chi(X) \leq 2f(m)$, contrary to (2). This proves (3).

If $v \in V(G)$, we denote its set of neighbours by $N(v)$, or $N_G(v)$. Let $a \in V(G)$, and let B be a component of $G \setminus (N(a) \cup \{a\})$; we will show that $\chi(B) \leq (w - m + 2)f(m)$.

A subset Y of $V(B)$ is a joint of B if there is a component C of $B \setminus Y$ such that $\chi(C) > f(m)$ and Y is complete to C. If \emptyset is not a joint of B then $\chi(B) < f(m)$ and the claim holds, so we may assume that \emptyset is a joint of B; let Y be a joint of B chosen with Y maximal, and let C be a component of $B \setminus Y$ such that $\chi(C) > f(m)$ and Y is complete to C.

(4) If $v \in N(a)$ has a neighbour in $V(C)$, then $\chi(V(C) \setminus N(v)) \leq f(m)$.

Let $N_C(v)$ be the set of neighbours of v in $V(C)$, and $M = V(C) \setminus N_C(v)$; and suppose that $\chi(M) > f(m)$. Let C' be a component of $G[M]$ with $\chi(C') > f(m)$, and let Z be the set of vertices in $N_C(v)$ that have a neighbour in $V(C')$. Thus, $Z \neq \emptyset$, since $N_C(v), V(C') \neq \emptyset$ and C is connected. If some $z \in Z$ is mixed on C', let p_1p_2 be an edge of C' such that z is adjacent to p_1 and not to p_2; then $a-v-z-p_1-p_2$ is an induced copy of P_5, a contradiction. So every vertex in Z is complete to $V(C')$; but also every vertex in Y is complete to $V(C)$ and hence to $V(C')$, and so $Y \cup Z$ is a joint of B, contrary to the maximality of Y. This proves (4).

(5) $\chi(Y) \leq f(m)$ and $\chi(C) \leq (w - m + 1)f(m)$.

Let X be the set of vertices in $N(a)$ that have a neighbour in $V(C)$. Since C is a component of $B \setminus Y$ and hence a component of $G \setminus (X \cup Y)$, and a belongs to a different component of $G \setminus (X \cup Y)$, it follows that $X \cup Y$ is a cutset of G. By (2), $\chi(X \cup Y) > 2f(m)$. Since $\omega(C) \geq m + 1$ (because $\chi(C) > f(m)$, and f is near-binding for G) and every vertex in Y is complete to $V(C)$, it follows that $\omega(G[Y]) \leq w - m - 1 \leq m$, and so has chromatic number at most $f(m)$ as claimed; and so $\chi(X) > f(m)$. Consequently there is a clique $P \subseteq X$ with cardinality $w - m$. The subgraph induced on the set of vertices of C complete to P has clique number at most m, and so has chromatic number at most $f(m)$; and for each $v \in P$, the set of vertices of C nonadjacent to v has chromatic number at most $f(m)$ by (4). Thus, $\chi(C) \leq (|P| + 1)f(m) = (w - m + 1)f(m)$. This proves (5).
(6) $\chi(B) \leq (w - m + 2)f(m)$.

By (3), every clique contained in $V(B) \setminus (V(C) \cup Y)$ has cardinality less than $w/2$ (because it is anticomplete to the largest clique of C) and so

$$\chi(B \setminus (V(C) \cup Y)) \leq f(m);$$

and hence $\chi(B \setminus Y) \leq (w - m + 1)f(m)$ by (5), since there are no edges between C and $V(B) \setminus (V(C) \cup Y)$. But $\chi(Y) \leq f(m)$ by (5), and so $\chi(B) \leq (w - m + 2)f(m)$. This proves (6).

By (6), $G \setminus N(a)$ has chromatic number at most $(w - m + 2)f(m)$. But $G[N(a)]$ has clique number at most $w - 1$ and so chromatic number at most $f(w - 1)$; and so $\chi(G) \leq f(w - 1) + (w - m + 2)f(m)$, contrary to (1). This proves 2.2.

Now we deduce 1.5, which we restate:

2.3 If G is P_5-free and $\omega(G) \geq 3$ then $\chi(G) \leq \omega(G)^{\log_2(\omega(G))}$.

Proof. Define $f(0) = 0$, $f(1) = 1$, $f(2) = 3$, and $f(x) = x^{\log_2(x)}$ for every real number $x \geq 3$. Let G be P_5-free. If $\omega(G) \leq 2$ then $\chi(G) \leq 3 = f(2)$, by a result of Sumner [25]; if $\omega(G) = 3$ then $\chi(G) \leq 5 \leq f(3)$, by an application of the result 1.4 of Esperet, Lemoine, Maffray, and Morel [9]; and if $\omega(G) = 4$ then $\chi(G) \leq 15 \leq f(4)$, by another application of 1.4. Consequently every P_5-free graph G with clique number at most four has chromatic number at most $f(\omega(G))$.

We claim that

$$f(x - 1) + (x + 2)f(\lfloor x/2 \rfloor) \leq f(x)$$

for each integer $x > 4$. If that is true, then by 2.2 with $\Omega = 4$, we deduce that $\chi(G) \leq f(\omega(G))$ for every P_5-free graph G, and so 1.5 holds. Thus, it remains to show that

$$f(x - 1) + (x + 2)f(\lfloor x/2 \rfloor) \leq f(x)$$

for each integer $x > 4$. This can be verified by direct calculation when $x = 5$, so we may assume that $x \geq 6$.

The derivative of $f(x)/x^4$ is

$$(2 \log_2(x) - 4)x^{\log_2(x)-5},$$

and so is nonnegative for $x \geq 4$. Consequently

$$\frac{f(x - 1)}{(x - 1)^4} \leq \frac{f(x)}{x^4}$$

for $x \geq 5$. Since $x^2(x^2 - 2x - 4) \geq (x - 1)^4$ when $x \geq 5$, it follows that

$$\frac{f(x - 1)}{x^2 - 2x - 4} \leq \frac{f(x)}{x^2},$$

that is,

$$f(x - 1) + \frac{2x + 4}{x^2}f(x) \leq f(x),$$

5
when \(x \geq 5 \). But when \(x \geq 6 \) (so that \(f(x/2) \) is defined and the first equality below holds), we have

\[
f([x/2]) \leq f(x/2) = (x/2)^{\log_2(x/2)} = (x/2)^{\log_2(x)} - 1 = (2/x)(x/2)^{\log_2(x)} = (2/x^2)f(x),
\]

and so

\[
f(x - 1) + (x + 2)f([x/2]) \leq f(x)
\]

when \(x \geq 6 \). This proves 2.3.

References

[1] P. Blanco and M. Bucić, “Towards the Erdős-Hajnal conjecture for \(P_5 \)-free graphs”, manuscript, September 2022.

[2] M. Briański, J. Davies and B. Walczak, “Separating polynomial \(\chi \)-boundedness from \(\chi \)-boundedness”, arXiv:2201.08814.

[3] M. Chudnovsky, A. Scott and P. Seymour, “Induced subgraphs of graphs with large chromatic number. XII. Distant stars”, J. Graph Theory 92 (2019), 237–254, arXiv:1711.08612.

[4] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, “Erdős-Hajnal for graphs with no five-hole”, submitted for publication, arXiv:2102.04994.

[5] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, “Polynomial bounds for chromatic number. VI. Adding a four-vertex path”, submitted for publication, arXiv:2202.10412.

[6] P. Erdős and A. Hajnal, “On spanned subgraphs of graphs”, Graphentheorie und Ihre Anwendungen (Oberhof, 1977).

[7] P. Erdős and A. Hajnal, “Ramsey-type theorems”, Discrete Applied Math. 25 (1989), 37–52.

[8] L. Esperet, Graph Colorings, Flows and Perfect Matchings, Habilitation thesis, Université Grenoble Alpes (2017), 24, https://tel.archives-ouvertes.fr/tel-01850463/document.

[9] L. Esperet, L. Lemoine, F. Maffray, and G. Morel, “The chromatic number of \{P_5, K_4\}-free graphs”, Discrete Math. 313 (2013), 743–754.

[10] A. Gyárfás, “On Ramsey covering-numbers”, in Infinite and Finite Sets, Vol. II (Colloq., Keszthely, 1973), Coll. Math. Soc. János Bolyai 10, 801–816.

[11] A. Gyárfás, “Problems from the world surrounding perfect graphs”, Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413–441.

[12] A. Gyárfás, E. Szemerédi and Zs. Tuza, “Induced subtrees in graphs of large chromatic number”, Discrete Math. 30 (1980), 235–344.

[13] H. A. Kierstead and S. G. Penrice, “Radius two trees specify \(\chi \)-bounded classes”, J. Graph Theory 18 (1994), 119–129.
[14] H. A. Kierstead and Y. Zhu, “Radius three trees in graphs with large chromatic number”, *SIAM J. Disc. Math.* **17** (2004), 571–581.

[15] X. Liu, J. Schroeder, Z. Wang and X. Yu, “Polynomial χ-binding functions for t-broom-free graphs”, arXiv:2106.08871.

[16] I. Schiermeyer and B. Randerath, “Polynomial χ-binding functions and forbidden induced subgraphs: a survey”, *Graphs and Combinatorics* **35** (2019), 1–31.

[17] A. Scott, “Induced trees in graphs of large chromatic number”, *J. Graph Theory* **24** (1997), 297–311.

[18] A. Scott and P. Seymour, “A survey of χ-boundedness”, *J. Graph Theory* **95** (2020), 473–504, arXiv:1812.07500.

[19] A. Scott and P. Seymour, “Induced subgraphs of graphs with large chromatic number. XIII. New brooms”, *European J. Combinatorics* **84** (2020), 103024, arXiv:1807.03768.

[20] A. Scott, P. Seymour and S. Spirkl, “Polynomial bounds on chromatic number. I. Excluding a biclique and an induced tree”, *J. Graph Theory*, to appear, arXiv:2104.07927.

[21] A. Scott and P. Seymour, “Polynomial bounds for chromatic number. V. Excluding a tree of radius two and a complete multipartite graph”, submitted for publication, arXiv:arXiv:2202.05557.

[22] A. Scott, P. Seymour and S. Spirkl, “Polynomial bounds on chromatic number. II. Excluding a star-forest”, *J. Graph Theory*, **101** (2022), 318–322, arXiv:2107.11780.

[23] A. Scott, P. Seymour and S. Spirkl, “Polynomial bounds on chromatic number. III. Excluding a double star”, *J. Graph Theory*, **101** (2022), 323–340, arXiv:2108.07066.

[24] D. Seinsche, “On a property of the class of n-colorable graphs”, *J. Combin. Theory, Ser. B*, **16** (1974), 191–193.

[25] D. P. Sumner, “Subtrees of a graph and chromatic number”, in *The Theory and Applications of Graphs*, (G. Chartrand, ed.), John Wiley & Sons, New York (1981), 557–576.