Supplementary Materials

Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance

Meng Zhao a, Yizhuo Wang a, Ling Li b, Shuyun Liu a, Chengshi Wang a, Yujia Yuan a, Guang Yang c, Younan Chen a, Jingqiu Cheng a, Yanrong Lu a, Jingping Liu a*

a Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China

b Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China

c Animal Center, West China Hospital, Sichuan University, Chengdu, China.

Co-first authors: These authors contributed equally to the authorship of this article

*Corresponding Authors: Jingping Liu

Address: Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China

Tel: +86-28-85164029, Fax: +86-28-85164030

E-mail: liujingping@scu.edu.cn
Figure S1. The vehicle (DMSO/PBS) alone had no influence on renal lesions in IRI-AKI mice. (A) Serum CREA and UREAL concentrations of mice on day 5 after IRI-AKI (n = 6; *p < 0.05 vs. CON group). (B) Representative micrographs of renal H&E staining in mice with different treatments. (C) Real-time PCR analysis of Bax, ICAM-1, MCP-1, TFAM, ATP5a-1, and PGC-1α mRNA levels in kidneys of mice on day 5 after IRI-AKI (n = 3; *p < 0.05 vs. CON group). (D) mtDNA copy number in kidneys of mice on day 5 after IRI-AKI (n = 3; *p < 0.05 vs. CON group).
Figure S2. Measurement of ROS production in HK2 cells under different stress conditions.

(A) Determination of intracellular ROS in the HK2 cells under H/R conditions using the DCFH-DA staining (scale bar = 50 μm). (B) Determination of intracellular ROS and mtROS in HK2 cells under t-BHP conditions with the DCFH-DA and MitoSOX staining (Scale bar = 50 μm). (C) Determination of mtROS level in HK2 cells under t-BHP conditions using flow cytometry with MitoSOX staining.
Figure S3. TFAM degradation was enhanced in HK2 cells under oxidative stress. (A) Cell viability was determined by CCK8 assay (n = 3; *p < 0.05 vs. Control group; # p < 0.05 vs. t-BHP group). (B) Western blotting of TFAM, Lon, and p53 proteins in HK2 cells under t-BHP conditions with or without bortezomib treatment. (C) Quantitative analysis of protein expression detected by western blotting (n = 3; *p < 0.05 vs. Control group; # p < 0.05 vs. t-BHP group).
Figure S4. (A) Observation of mitochondria and quantification of mitochondrial length in HK2 cells under H/R conditions. HK2 cells were treated with or without MT and then stained with anti-TOM20. (B) Real-time PCR analysis of PGC-1α, ATP5a-1, and NDUFS8 mRNA levels in HK2 cells under H/R conditions with or without MT treatment (n = 3; *p < 0.05 vs. Control group; #p < 0.05 vs. H/R group).
Figure S5. (A) Double-IF staining of TOM20 (red) and TFAM (green) in the HK2 cells under H/R conditions with or without TFAM siRNA treatment (scale = 10 µm). (B) Quantitative analysis of TFAM protein expression in the HK2 cells (n = 6; *p < 0.05 vs. Control group; #p < 0.05 vs. H/R group; &p < 0.05 vs. MT group).
Figure S6. TFAM deficiency abolished the protective role of mtROS scavenger in the HK2 cells. (A) Real-time PCR analysis of TFAM mRNA levels in HK2 cells. (B) Western blotting analysis of TFAM protein levels in the HK2 cells at 48 h after transfection. (C) Real-time PCR analysis of TFAM and PGC-1α mRNA levels in HK2 cells under H/R conditions (n = 3; *p < 0.05 vs. Control group; #p < 0.05 vs. H/R group; &P < 0.05 vs. MT group).
Figure S7. Loss of TFAM under oxidative stress induced cytokine production in HK2 cells.

(A) Western blotting analysis of ICAM-1, Bax, and TFAM protein levels in HK2 cells under H/R conditions with various treatments. (B) Quantitative analysis of ICAM-1 and TFAM protein expression detected by western blotting (n = 3; *p < 0.05 vs. Control group; # p < 0.05 vs. H/R group; & p < 0.05 vs. MT group).
Figure S8. (A) Double-IF staining of TFAM (red) and dsDNA (green) in HK2 cells under H/R conditions with various treatments (scale bar = 10 μm). (B) Average size of mtDNA nucleoid in HK2 cells of different groups (n = 20 cells; *p < 0.05 vs. Control group; #p < 0.05 vs. H/R group). (C) Quantification of cytoplasmic dsDNA (yellow arrows) intensity in HK2 cells (n = 16 cells; *p < 0.05 vs. Control group; #p < 0.05 vs. H/R group; &p < 0.05 vs. MT group).
Figure S9. Representative images of the TFAM (red), dsDNA (green), and DAPI costaining in kidney of normal control mice (scale bar = 10 μm).
Gene	Sequence 5'-3'	Species
TFAM	AGCTCAGAACCAGATGCAA	Human
	CCGCCCTATAAGCATTCTTGA	
PGC1-α	TGCTGAAGAGGCAAGAGACA	
	CACACACGCACACTCCATC	
NDUFS8	CATCTACTGCGGTCTTGTG	
	GGGCGTCACCAGATACAGT	
ATP5a-1	AGAGGACAGGAGCCATTGTG	
	TCAGACCAACTCGCTACG	
UQRC1	CAGTCCTCTCAGGCCCACCGT	
	CCGATCTTTGCTCCCTTTGA	
IL-1β	TGGCACAAAGGGAGCAAGAAA	
	CTGGCTGATGAGACAGGAGAT	
TNF-α	TGCTGACATTGGAGTGTG	
	TGTCATCGGAGGCTGAGAAG	
GAPDH	ACCACAGTCCATGCCCCACAC	
	TCCACCACCTTGTTGCTGTGA	
TFAM	CACCCAGATGCAAAACTTTCAAG	
	CTGCTTTTATACCTGGTCACAG	
PGC1-α	CACCAAAACACAGAAACAG	
	GGGTCAGAGGAAGAGATAAAGTTG	
ATP5a-1	CATTTGATGATGTTTGCG	
	TCCCCAACACGACAACTCC	Mouse
Bax	TGGAGATGAACTGGACAGCA	
	TGAAGTTGCCCATCAGAAAC	
MCP-1	AGTTGACCGTAAATCTGAGC	
	GTGGTTTGGGAAAGGTTAGTG	
ICAM-1	ACCCAAACGTGAAGCTGTGTTG	
	CACACTCCCGGAAAAACGAAT	
TNF-α	CCAGGAGAAAGTCAGCCTCCT	
	TCATCAGGGCTTGGAGCTCA	
GAPDH	CAGATCCACCCGGATATTTGGG	
	CATGACAACTTTGGCCATTGG	
Gene	Sequence 5'-3'	Species
-------	--------------------------------	-----------
hB2M	TGTTCCCTGCTGGGTAGCTCT	Human
	CCTCCATGATGCTGCTTACA	
mtND1	CACTTTCACACAGACATCA	
	TGGTTAGGCTGGTGTAGGG	
COX2	ATAACCGAGTCGTTCTGCAAT	Mouse
	TTCAGAGCATTGGCAGTAGAA	
Rsp18	TGTGTAGGGGACTGGTGGACA	
	CATCACCCACTTTACCCCAAAA	