Assignment of Irrigation Norms for Available Water Reserves Taking Into Account Soil Heterogeneity as a Water Saving Approach to Crop Irrigation

F Abdrazakov¹, O Mikheeva¹, T Pankova, S Orlova¹ and E Mizyurova¹
¹The Vavilov Saratov State Agrarian University, Saratov, 410012, Russia

abdrazakov.fk@mail.ru

Abstract. Water-saving irrigation regimes for crops include reducing irrigation costs by reducing water supply. However, it also affects obtaining maximum crop yields, and increasing the fertility of the land, and avoiding negative environmental consequences. Creating the optimal, most favorable, comfortable level of soil moisture is a difficult task, which is influenced by many factors. One of the approaches to the appointment of irrigation norms is to take into account the heterogeneity of the soil profile and available moisture reserves. Formulas for calculating irrigation rates for available moisture reserves allow rational use of irrigation water, minimizing losses. The calculation was carried out according to two formulas - according to A.N. Kostyakova both for available moisture reserves for the 0-60 cm layer as a whole and layers every 10 cm. The choice of the estimated year was based on the availability of a water balance deficit, defined as the difference between the water consumption E and precipitation Pe for the calculation period. As a result of calculations, the following results were obtained: taking into account the heterogeneity of the soil profile, it is possible to save from 100 to 400 m³ / ha during the growing season without loss of crop yield.

1. Introduction

Resource-conservation methods of watering are understood as reducing the cost of land irrigation by saving water, modernizing machines and mechanisms, choosing the optimal method of watering, and conducting complex land reclamation [1, 2].

A water-conservation irrigation regime of agricultural crops includes a reduction in the cost of irrigation by reducing water supply. However, it also affects obtaining maximum crop yields, increasing land fertility, and avoiding negative effects on the environment. Creating the optimal, most favorable, comfortable level of soil moisture is a difficult task, which is influenced by many factors. In the current situation of water deficit, a sharp increase in the cost of 1 m³ of water, the issue of water-conservation irrigation regimes of agricultural crops is most acute [3, 8, 9, 11, 12, 14, 18]. The subjects of the study are different approaches to the appointment of irrigation norms. The objective of the study was to find the most rational water-saving method of assigning an irrigation rate that would take into account environmental factors as much as possible.

The purpose of the experiment was to determine the timing and norms of irrigation using available moisture reserves (taking into account the heterogeneity of the soil).

2. Methods of Research
The conducted research has shown that the humidification of a specific soil layer in a certain range of humidity gives significant results in saving irrigation water and a maximum increase in the yield of cultivated crops [4, 5, 10, 13, 17].

The research plot is located on the second over-floodplain terrace of the Volga River. The second over-floodplain terrace of the Volga (Kholmskaya or Srednekhvalinskaya) occupies an area from 27 to 35 meters of absolute height, 2 – 7 km wide, deeply extending to the East along the banks of the Saratovka River. Its surface is flat, in the Volga strip there are old trees-channels and closed depressions. Sometimes the microrelief expressed in the form of hollows.

On the predominant part of the terrace area, the slopes are small from 0.002 to 0.005, directed mainly towards the Volga river and the Saratovka river. The processes of plane erosion are poorly developed [2, 3].

![Figure 1. - Surface relief of the research plot. Height from a randomly selected zero. The original scale is 1: 1000. Vertical cross-section through 10 sm](image)

The modern surface relief of the research plot has an anthropogenic character (Fig. 1). The scope of repeated height measurements at one point most often varies from 0 to 2.5 cm (maximum 4.5 cm), due to measurement errors and the available nanorelief of the field surface. The plot was repeatedly subjected to planning using long-range planners.

During the growing season, the contours of the drying zones are modified. The layer of maximum moisture consumption is gradually shifted, moving from the upper 0-10 cm in the initial phase of vegetation to the underlying layers of soil. The main consumption of soil moisture is due to the root system. Depending on the rate of growth and distribution of the main mass of roots, a drying front of the soil profile is formed [6, 7] (Fig. 2).
The purpose of the experiment was to determine the timing and norms of watering using available moisture reserves (taking into account the heterogeneity of soils). As a comparison, we used the traditional approach in assigning irrigation regimes using the Kostyakov’s A. N. method.

Data from the 38-year series were used to determine the calculated irrigation regime. The calculation was performed using two formulas — for A. N. Kostyakov’s method and for available moisture reserves, for a layer of 0-60 cm the whole and layers every 10 cm. The calculation year was selected based on the availability of the water balance deficit, which is defined as the difference between water consumption E and precipitation P_e for the calculation period (for the calculation period from the spring tillering phase to full ripeness). Water consumption was calculated on the basis of meteorological data for the considered period of time. Weather station data from the town Marks were used. Water consumption was calculated using A. S. and S. M. Alpatyevs’ method.

3. Results and Discussion

Using mathematical statistics formulas, we determined the main characteristics of the variability of the series [15, 16, 19, 20]. The coefficient of variation is 0.22; the coefficient of asymmetry is 0.43. The standard deviation is 65, 93.

After calculating the statistical parameters of the series, we made a theoretical security curve for the water balance deficit. On the security curve, we showed the average values of the water balance deficit over the period in descending order.
Figure 3. a) The water balance deficit security curve and b) the water balance deficit security curve with an overlay of the average water balance deficit values for the period in descending order.

To determine the years of the corresponding estimated security (25, 50, 75, and 95% security), we use the water balance deficit security curve with an overlay of real years [1].

Calculated irrigation regimes and water savings for years of varying security are presented using two approaches in table 1:

Table 1. Values of watering and irrigation norms for years of estimated security (25, 50, 75, 95%) water balance deficit, m³/ha

Vegetation period	Vegetation phases	By A.N. Kostyakov	Available moisture reserves				
		By layers	Layer 0-60 cm	By layers	Layer 0-60 cm	Water balance deficit security	Irrigation water saving
10.04-20.04	tillering	0	0	0	0	0	0
20.04-30.04	piping	0	0	0	0	0	0
1.05-10.05	piping	0	0	0	0	0	0

Note: The table provides values for different vegetation periods and phases, including layers of moisture reserves and irrigation water savings for various water balance deficit security levels.
Date	Operation	Value 1	Value 2	Value 3	Value 4
10.05-20.05	earing	515	414	364	403
20.05-31.05	earing	0	0	0	0
1.06-10.06	earing	515	414	364	403
10.06-20.06	flowering	0	0	0	0
20.06-30.06	ripening	0	0	473	504
1.07-10.07	ripening	636	518	0	0
10.07-20.07	ripening	0	0		

Irrigation norm, m³/ha

Date	Operation	Value 1	Value 2	Value 3	Value 4
10.04-20.04	tillering	0	0	0	0
20.04-30.04	piping	0	0	0	0
1.05-10.05	piping	0	414	364	403
10.05-20.05	earing	515	414	0	403
20.05-31.05	earing	515	414	364	403
1.06-10.06	earing	515	414	364	403
10.06-20.06	flowering	0	0	0	0
20.06-30.06	ripening	0	518	473	504
1.07-10.07	ripening	636	0	0	0
10.07-20.07	ripening	0			

Irrigation norm, m³/ha

Date	Operation	Value 1	Value 2	Value 3	Value 4
10.04-20.04	tillering	0	0	0	0
20.04-30.04	piping	0	0	0	0
1.05-10.05	piping	0	414	364	403
10.05-20.05	earing	515	0	364	0
20.05-31.05	earing	515	414	364	403
1.06-10.06	earing	515	414	364	403
10.06-20.06	flowering	515	414	364	403
20.06-30.06	ripening	0	518	473	504

Heterogeneity of the soil profile 27%
4. Conclusion

From the data given in the table, it can be concluded that if we calculate watering norms taking into account the heterogeneity of soils, the A. N. Kostyakov’s formula gives an overestimation of the results on average by 11-27%. Therefore, using the formula for calculating watering norms for available moisture reserves is more rational. When taking into account the heterogeneity of the soil profile, it is possible to save from 100 to 400 m³/ha during the growing season without losing crop yield.

References

[1] Abdrazakov F K 2018 Studies of winter wheat irrigation rationing calculated security for the water balance deficit of the zone of insufficient and unstable moisture Agrarian scientific journal no. 11 pp 46-51
[2] Mikheeva O V 2007 Construction of humidity dynamics on dark chestnut soils of the Saratov Volga region using the SWAP model Vestnik of the Saratov State Agrarian University named after N. I. Vavilov no. 3 pp 72 – 73
[3] Zatinatsky S V 2011 On the applicability of the SWAP model in the study of the dynamics of moisture reserves in the conditions of the Saratov Volga region Vestnik of the Saratov State Agrarian University named after N.I.Vavilov no. 3 pp 28-31
[4] Panferova N I, Reshetkina N M 1995 Ecological principles of regulation hydrogeochemical regime of irrigated lands St. Petersburg, Hydrometeoizdat p 360
[5] 1982 Instructions for operational planning of watering agricultural crops Kiev, Ukrgiproprovodkhaz, p 66
[6] Shadskikh V A 2015 Geoinformational database of land irrigation management in the Marks’ district of the Saratov region Scientific life no. 1 pp 82-93
[7] Pulatov Y E 2017 Water-Saving technologies and efficiency of water use in agriculture Ecology and construction no. 4
[8] Tinasilov M D 2012 International experience of water resources management: innovation of water supply and modularity
[9] Yasonidi O E 2004 Water conservation in irrigation, monograph SCM Nabla URGTU (NPI) 2004 p 473
[10] Kobuliev Z V and Pulatov Y E 2013 Water problems of Central Asia and ways to solve them // Collection of articles dedicated to the international year of water cooperation – p 125
[11] Schuck E., Green G. (2002): Supply Based Water Pricing in a Conjunctive Use System Implications for Resource and Energy Use Resource and Energy Econ. Vol 24(3) pp 175–192
[12] Chakravorty U, Magné B, Moreaux M 2006 A Hotelling Model With A Ceiling On The Stock Of Pollution Journal of Econ Dynamics and Control Vol. 30(12) pp 2875–2904
[13] Chakravorty U and Umetsu Ch 2003 Basinwide Water Management a Spatial Model Journal of Environmental Econ. and Management Vol 45(1) pp 1–23
[14] Ding Y and R Song 2006 Effects on Non Renewable Resource Exploitation, a Dynamic Comparative Model *Asian Social Science* Vol 2(12) pp 36–40

[15] Elnaboulsi J C 2009 An Incentive Water Pricing Policy for Sustainable Water Use *Environ Resource Econ* 42 p 451

[16] Danilyan V I 2009 Water resources – a strategic factor for long-term development of the Russian economy *Vestnik RAS* Vol 79(9) pp 789-798

[17] Ivanov M 2008 Cooling and cleaning of recirculated water Municipal complex of Russia Vol 48(6) pp 82-86

[18] Kosolapova N A 2014 Mathematical tools for strategic management of water resources in the region *TerraEconomicus* 12 pp 192-196

[19] Chernova O A, Mitrofanova I V and Din Lan An 2017 Water-conservation innovative technologies in agrarian and industrial complex of the South of Russia *Economics Yesterday, Today and Tomorrow* 7(3B) pp 312 – 325