RETNAL ABNORMALITIES IN TRANSGENIC MICE OVEREXPRESSING ABERRANT HUMAN FUS[1-359] GENE

Soldatov VO, Kukharsky MS, Soldatova MO, Puchenkova OA, Nikitina YuA, Lysikova EA, Kartashkina NL, Deykin AV, Pokrovsky MV

1 Belgorod State National Research University, Belgorod, Russia
2 Institute of Physiologically Active Substances, Moscow, Russia
3 Kursk State Medical University, Kurск, Russia
4 Sechenov First Moscow State Medical University, Moscow, Russia

Retinal damage is an optional sign in a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The aim of this work was to assess the structural and functional state of the retina in a murine model of ALS caused by overexpression of the aberrant FUS protein [1-359]. The retinal examination was carried out on 12 transgenic and 13 wild-type mice of 2.5-3 months of age. The study revealed not statistically significant higher level of ophthalmoscopic violations in FUS[1-359] mice. Moreover, gene expression assay confirmed an increased expression of the inflammatory genes Vegfa, Il1b, Il6, Icam1, Tnfα. However, despite the detected structural and functional abnormalities, western blot analysis and quantitative PCR did not detect the expression of the protein and mRNA products of the FUS transgene in the retina of FUS[1-359] mice.

Keywords: FUS protein, transgenic mice, ALS, retinopathy, inflammation

Funding: the study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of the scientific project № 19-315-90114.

Author contribution: Soldatov VO — the main idea, design of the experiment, ophthalmoscopy, writing an article, design of primers for gene expression assay; Kukharsky MS — the main idea, design of the experiment, writing an article, western blot analysis; Soldatova MO — RNA isolation, qPCR, Puchenkova OA — retina and spinal cord collection, RNA extraction, qPCR; Nikitina YuA — preparation of animal populations, genotyping, western blot analysis; Lysikova EA — preparation of animal populations, genotyping, western blot analysis, writing an article; Kartashkina NL — interpretation and scoring of ophthalmoscopic picture; Deykin AV — consultation on the main idea and design of the study; Pokrovsky MV — consultation on the main idea and design of the study.

Compliance with ethical standards: animal procedures were approved by the local ethics committee of the Belgorod State National Research University (protocol № 5/19-25 dated september 25, 2019). All manipulations were carried out in compliance with the requirements of the International Recommendations of European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (1997).

Correspondence should be addressed: Vladislav O. Soldatov
Pobedy, 85, 308015, Belgorod; pharmsoldatovll@gmail.com

Received: 19.08.2021 Accepted: 28.08.2021 Published online: 31.08.2021
DOI: 10.24075/brsmu.2021.043
Сетчатка является наиболее доступным для изучения отделом нервной системы и одной из самых уязвимых сенсорных тканей. Подобные свойства актуализировали изучение офтальмологических коррелятов неврологических заболеваний, открывая возможности для улучшения диагностики и изучения нейродегенеративных процессов. За счет эмбриональной общности и схожести протоопического состава сетчатка может выступать платформой для развития тех же патологических каскадов, что и центральная нервная система [1]. В частности, повреждение сетчатки было обнаружено при боковом амиотрофическом склерозе (BAC) [2, 3], заболевании, для которого характерна прогрессирующая гибель мотонейронов вследствие накопления нерастворимых белковых агрегатов [4].

Белковые включения при BAC имеют сложный состав и могут состоять из различных белков, среди которых чаще всего обнаруживают PHK-связывающие белки или антиоксидантный фермент супероксиддисмутазу 1, а также другие компоненты: нейрофиламенты, убиквитин [5]. В 5% семейных случаев BAC ассоциировано с накоплением агрегатов, основным компонентом которых является белок FUS. Одна из причин развития FUS-протеинопатии — мутации в домене сигнала апоптоза (NLS) и выход белка из ядра в цитоплазму, где он приобретает способность к формирования нерастворимых белковых агрегатов [6].

Цель данного исследования — оценить взаимосвязь между нейрональной экспрессией патологических форм белка FUS и активацией некоторых патологических путей в сетчатке.

МАТЕРИАЛЫ И МЕТОДЫ

Животные

В качестве модельного объекта FUS-протеинопатии были использованы мыши, несущие трансген абберантного человеческого гена FUS с искусственно укороченным NLS (кодирует укороченный FUS[1-359]) [7]. Данная модель характеризуется манифестацией в возрасте 3–4 месяцев клинической картиной BAC, которая сопровождается развитием морфологических и молекулярных признаков нейродегенерации, включая гибель нейронов и нейровоспаление [8].

Исследование проводили на 25 мышах (обого пола) линии CD-1, 12 из которых были гемизиготами FUS, а 13 служили контролем дикого типа. Мышей содержали в сетчатке.

Иммуноблотинг

Образцы сетчатки пуллировали от двух животных, принадлежащих к одной группе. После разделения в геле белики переносили методом полусухого электроблотинга на поливинилденфторидную мембрану Hybond-P (Cytiva; Великобритания), предварительно обработанную 100%-м метанолом, для которого характерна прогрессирующая гибель мотонейронов вследствие накопления нерастворимых белковых агрегатов [4].

Количественная ПЦР

Ткани контрлатеральных сетчаток от каждого животного пуллировали и инкубировали 15 мин в растворе ExtracTaq® (Евроген; Россия). После лигирования образцообразования и обработки хлороформом экстракция, а образовавшийся осадок РНК промывали последовательно изопропиловым спиртом и 70%-ным этиловым спиртом. Полученный осадок разбавляли в 20 мкл воды и с использованием скриптопрофотометра IMPLENNanoPhotometer® (Implen; Германия) измеряли концентрацию полученной РНК (200 нг/мкл). Обратную транскрипцию проводили с использованием набора MMLVRTSK021 в соответствии с протоколом фирмы-производителя (Евроген; Россия). Праймеры для количественной ПЦР подбирали с использованием ресурса Primer-BLAST (NCBI) с соблюдением ряда условий: 1) температура плавления 59–61 °C; 2) один из праймеров в паре должен отжигаться на область межэкзонного соединения; 3) прямой и обратный праймеры не должны образовывать ауто- и кроссдимеры в одной смеси; 4) размер ПЦР-продукта должен быть от 95 до 200 п.н.; праймеры должны быть специфичны к максимальному количеству транскриптов гена.

Затем в амплификаторе BioRad CFX96 проводили ПЦР образцов с использованием интеркалирующего красителя SYBR® Green Master Mix (Bio-Rad Laboratories, США) и олигонуклеотидных праймеров (Евроген; Россия) (табл.). Уровень экспрессии генов интереса (GOI) оценивали относительно генов домашнего хозяйства (НКГ) Gapdh и Actb. Расчет экспрессии в конкретной точке производился по формуле: Экспрессия гена = 2^[Cyc(HKG)-Cyc(GOI)].
Таблица. Праймеры, использованные в данной работе

Мишень	Последовательность праймера 1 (Forward)	Последовательность праймера 2 (Reverse)	Длина продукта, п.н.
Actb	5’–CGC AGC CAC TGT CGA GTC–3’	5’–GCC CAC GAT GGA GGG GAA TA–3’	195
Gapdh	5’–AGG AGA GTG TTT CCT GGT CCG–3’	5’–TGA GGT CAA TGA AGG GGT CG–3’	145
Icam1	5’–CAT GCC GCA CAG AAT TGG AT–3’	5’–GCT GAC CTT TGG GAT GAG–3’	118
Il6	5’–AAA GCC AGA TGC CTT CAG AGA GA–3’	5’–TGG AAA TGG GGG TAG GAA GGA CT–3’	100
Il1b	5’–GAC ACC TTT TQA CAG TGA TGA–3’	5’–GAC AGC CCA GGT CAA AGG TT–3’	95
Tnfa	5’–ACT GAA CTT CCG GGT GAT CG–3’	5’–ACT TGG TGG TTT GTG AGT GTG–3’	105
Vegfa	5’–GCA CTG GAC CCT GGT GAC AC–3’	5’–CCA CCA GGG TCT CATC GAA–3’	152
Bdnf	5’–CTT GAT TTT GCC GGG GAC–3’	5’–GCA GGA TGG TTT GTC GAC CTC T–3’	175
Alg7	5’–GCC GCG ACA GCA TTA GGA TT–3’	5’–ATG GGA GGA AAG CAG TGT GGA–3’	118
Alg5	5’–TCA GCT CTT CTT TGG AAC ATC AC–3’	5’–AAG TGA GCC TCA ACC GCA TC–3’	95
Bax	5’–CGA GAG GTC TTT TGG CGG GT–3’	5’–TCT TGG ATC CAG ACA AGC AGC–3’	197
Bcl2	5’–CTG GGA TGG CTT TGG GGA ACT–3’	5’–GGC AGG TTT GTC GAC CTC AC–3’	155

Результаты офтальмоскопического исследования.

А. Снимки офтальмоскопической картины глазного дна экспериментальных животных.

Б. Результаты офтальмоскопической балльной оценки глазного дна экспериментальных животных. ДЗН — диск зрительного нерва.

Детекцию специфического связывания антител проводили с помощью реагентов ECL Plus (Cytiva; Великобритания) согласно инструкции производителя. Для детекции хемилюминесценции использовали рентгеновскую пленку. Количество анализ результатов иммуноблотинга проводили с помощью денситометрического анализа, с использованием прибора BioSpectrum AC Chemi HR410 и программного обеспечения Vision Works LS (UVP; Великобритания). При проведении денситометрического анализа специфический сигнал от анализируемого белка нормализовали по отношению к сигналу от β-актина (после реинкубации мембраны с соответствующими антителами) для каждой дорожки отдельно.

Результаты исследования

Трансгенные мыши FUS[1-359] демонстрируют умеренные офтальмоскопические аномалии

В обоих группах у части животных были обнаружены сосудистые аномалии и отечность диска зрительного нерва, что в целом характерно для мышей линии CD-1 [9, 10]. При статистическом анализе не выявлено достоверных различий между мутантными и дикотипными животными, однако у мышей FUS[1-359] отмечена тенденция к более выраженным нарушениям по всем исследуемым параметрам (рис. 1).

Аберрантный FUS не экспрессируется в сетчатке

Вестерн-блот-анализ не выявил наличие FUS-иммунопозитивного сигнала в тканях сетчатки трансгенных мышей (рис. 2). Кроме того, при количественной ПЦР также не обнаружена экспрессия FUS на уровне мРНК. Таким образом, анализ экспрессии не подтвердил ретинальную экспрессию трансгена ни на транскриптомном, ни на белковом уровнях.

Трансгенные мыши FUS[1-359] характеризуются увеличенной экспрессией провоспалительных генов в сетчатке

При анализе ретинальной экспрессии таргетных генов было обнаружено, что в сетчатке трансгенных мышей FUS[1-359] происходит активация провоспалительных факторов Vegfa, Icam1, Il6, Il1b и Tnfa. Выраженных изменений экспрессии генов нейрогенерации (Bdnf), аутофагии (Alg7, Alg5) и регуляции апоптоза (Bax, Bcl2) обнаружено не было (рис. 3).

Рис. 1. Результаты офтальмоскопического исследования. **А.** Снимки офтальмоскопической картины глазного дна экспериментальных животных. **Б.** Результаты офтальмоскопической балльной оценки глазного дна экспериментальных животных. ДЗН — диск зрительного нерва.
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Вовлечение сетчатки в патологический процесс было обнаружено при большинстве дегенеративных заболеваний центральной нервной системы, включая болезнь Альцгеймера [11], болезнь Паркинсона [12, 13] и лобно-височную деменцию [14]. Закономерно, что офтальмологические аномалии слабой степени выраженности также являются частым немоторным симптомом БАС [15]. Среди типичных клинических находок описаны нарушение цветового зрения [16], а также истончение сетчатки [17] и желтого пятна [18–20].

В нашем исследовании мы не обнаружили статистически значимых различий в выраженности патологических изменений сетчатки у исследуемых животных. Тем не менее по всем исследуемым параметрам была выявлена однозначная тенденция к более выраженным нарушениям у трансгенных мышей FUS[1-359]. Особенно яркие различия были обнаружены в отношении артериальной сети, что согласуется с результатами других исследователей [21].

Поскольку иммуноблотинг и количественная ПЦР показали, что трансген не экспрессируется в сетчатке, мы решили выяснить механизмы дегенерации сетчатки с помощью изучения активности наиболее общих молекулярных путей нейродегенеративного повреждения мотонейронов. В связи с этим в качестве основных таргетных мишеней мы выбрали гены, регулирующие воспаление, апоптоз и аутофагию. Несмотря на то что вовлеченность путей аутофагии [22–24] и апоптоза [25] при БАС была подтверждена в исследованиях in vivo и in vitro, мы не нашли значимого отклонения в экспрессии генов Atg7, Atg5, Bax, Bcl2. Однако среди выбранных мишеней, была выраженно изменена экспрессия генов Vegfa, Icam1, Il6, Il1b и Tnfa, что указывает на роль воспаления в механизмах ретинальной дегенерации у мышей FUS[1-359]. Эти данные согласуются с предыдущими результатами, касающимися драматической роли воспалительной активации (и ее фармакологического подавления) в мышиной модели FUS[1-359] [26, 27].

Таким образом, несмотря на отсутствие ретинальной экспрессии aberrantной формы белка FUS, трансгенные животные имеют признаки дегенеративных изменений сетчатки. Среди потенциальных механизмов повреждения заднего отрезка глаза можно выделить активацию микроглии [28], сосудистую регрессию [20], нейроофтальмологические взаимодействия через глимфатическую систему [29].

ВЫВОДЫ

Проведенное исследование продемонстрировало, что трансгенные мыши FUS[1-359] склонны к развитию структурных и функциональных аномалий глазного дна, несмотря на отсутствие экспрессии трансгена в сетчатке. Дальнейшие исследования природы выявленных нарушений могут актуализировать наиболее значимые механизмы FUS-ассоциированной ретинопатии.
1. Yap TE, Balendra SI, Almonte MT, Cordeiro MF. Retinal correlates of neurological disorders. Ther Adv Chron Dis. 2019; 10: 2040622319882205. DOI: 10.1177/2040622319882205.

2. Cerveró A, Casado A, Riancho J. Retinal changes in amyotrophic lateral sclerosis: looking at the disease through a new window. J Neurol. 2021; 268 (6): 2083–9. DOI: 10.1007/s00415-019-09654-w.

3. Rojas P, de Hoz R, Ramírez Al, et al. Changes in Retinal OCT and their correlations with neurological disability in early ALS Patients, a Follow-Up Study. Brain Sci. 2019; 9 (12): 337. DOI: 10.3390/brainsci9120337.

4. Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, et al. A comprehensive review of amyotrophic lateral sclerosis. Neuropharmacology. 2017; 41 (6): 310–4. DOI: 10.1016/j.neuropharm.2017.12.031.

5. Boven L, Jiang QL, Moss HE. Diffuse colour discrimination as marker of afferent visual system dysfunction in amyotrophic lateral sclerosis. Neuroophthalmology. 2017; 41 (6): 310–4. DOI: 10.1080/01658107.2017.1326153.

6. Rohani M, Meyeamie A, Zamani B, Sowlat MM, Akhondi FH. Reduced retinal nerve fiber layer (RNFL) thickness in ALS patients: a window to disease progression. J Neurol. 2018; 265 (7): 1557–62. DOI: 10.1007/s00415-018-8863-2.

7. Fawzi AA, Simonett JM, Purts P, et al. Clinicopathological report of ocular involvement in ALS patients with C9orf72 mutation. Amyotrophic Lateral Sclerosis Frontotemporal Degener. 2014; 15 (7–8): 569–80. DOI: 10.3109/21678421.2014.951941.

8. Ringelstein A, Allbrecht P, Sudmeyer M, et al. Subtle retinal pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2014; 1 (4): 290–7. DOI: 10.1002/acn2.46.

9. Rojas P, Ramírez Al, Fernández-Albarral JA, López-Cuenca I, Salobrar-García E, Cabena M, et al. Amyotrophic Lateral Sclerosis: A Neurodegenerative Motor Neuron Disease With Ocular Involvement. Front Neurosci. 2020; 14: 566858. DOI: 10.3389/fnins.2020.566858.

10. Crivello M, Hogg MC, Jirstrom E, Halang L, Woods I, Rayner M, et al. Vascular regression precedes motor neuron loss in the FUS (1-359) ALS mouse model. Dis Model Mech. 2019; 12 (8): 10.1093/dmm/sem132.

11. Evans CS, Holzbaur ELF. Autophagy and mitophagy in ALS. Neurobiol Dis. 2019; 122: 35–40. DOI: 10.1016/j.nbd.2018.07.005.

12. Strohm L, Behrends C. Glia-specific autophagy dysfunction in ALS. Semin Cell Dev Biol. 2020; 99: 122–82. DOI: 10.1016/j.semcdb.2019.05.024.

13. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jiangamreddy MJ, Mehrpour M, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders, Prog Neurobiol. 2014; 112: 24–49. DOI: 10.1016/j.pneurobio.2013.10.004.

14. de Munter JPJM, Shafarevich I, Liundup A, Pavlov D, Wolters EC, Gorio A, et al. Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice. CNS Neurosci Ther. 2020; 26 (5): 504–17. DOI: 10.1111/cns.13302.

15. de Munter JPJM, Shafarevich I, Liundup A, Pavlov D, Wolters EC, Gorio A, et al. Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice. CNS Neurosci Ther. 2020; 26 (5): 504–17. DOI: 10.1111/cns.13302.

16. Boven L, Jiang QL, Moss HE. Diffuse colour discrimination as marker of afferent visual system dysfunction in amyotrophic lateral sclerosis. Neuroophthalmology. 2017; 41 (6): 310–4. DOI: 10.1080/01658107.2017.1326153.

17. Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, et al. A comprehensive review of amyotrophic lateral sclerosis. Neuropharmacology. 2017; 41 (6): 310–4. DOI: 10.3390/brainsci9120337.

18. Rojas P, de Hoz R, Ramírez Al, et al. Changes in Retinal OCT and their correlations with neurological disability in early ALS Patients, a Follow-Up Study. Brain Sci. 2019; 9 (12): 337. DOI: 10.3390/brainsci9120337.

19. Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, et al. A comprehensive review of amyotrophic lateral sclerosis. Neuropharmacology. 2017; 41 (6): 310–4. DOI: 10.1080/01658107.2017.1326153.
17. Funikov SY, Rezvykh AP, Mazin PV, Morozov AV, Maltsev AV, Shelkovnikova TA, Peters OM, Deykin AV, et al. Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J Biol Chem. 2013; 288 (35): 25266–274. DOI: 10.1074/jbc.M113.492017.

18. Funkov SY, Rezvykh AP, Mazin PV, Morozov AV, Maltsev AV, Chicheva MM, et al. FUS(1-359) transgenic mice as a model of ALS: pathophysiological and molecular aspects of the proteinopathy. Neurogenetics. 2018; 19 (3): 189–204. DOI: 10.1007/s10048-018-0553-9.

19. Mukaratiwa S, Petterino C, Naytor SW, Bradley A. Incidences and Range of Spontaneous Lesions in the Eye of Crl:CD-1(OR) BR Mice Used in Toxicity Studies. Toxicol Pathol. 2015; 43 (4): 530–5. DOI: 10.1177/0192623314548767.

20. De Groef L, Dekeyser E, Geeraerts E, Lefevere E, Stalmans I, Salinas-Navarro M, et al. Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains. Exp Eye Res. 2016; 145: 225–47. DOI: 10.1016/j.exer.2016.01.006.

21. Hart NJ, Koronyo Y, Black KL, Koronyo-Hamaoui M. Ocular indicators of Alzheimer’s: exploring disease in the retina. Acta Neuropathol. 2016; 132 (6): 767–87. DOI: 10.1007/s00401-016-1613-6.

22. Mohana Devi S, Mahalaxmi I, Asewathy NP, Dhivya V, Balachandar V. Reduced retinal nerve fiber layer (RNFL) thickness in ALS patients: a window to disease progression. J Neurol. 2018; 265 (7): 1557–62. DOI: 10.1007/s00415-018-8863-2.

23. Fawzi AA, Simonett JM, Purta P, et al. Clinicopathologic report of ocular involvement in ALS patients with C9orf72 mutation. Amyotroph Lateral Scler Frontotemporal Degener. 2014; 15 (7–8): 569–80. DOI: 10.3109/21678421.2014.951941.

24. Ringelstein M, Albrecht P, Sudmeyer M, et al. Subtle retinal pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2014; 1 (4): 290–7. DOI: 10.1002/acn2.46.

25. Rojas P, Ramirez AI, Fernandez-Albarra JA, Lopez-Cuenca I, Salobrar-Garcia E, Cadena M, et al. Amyotrophic Lateral Sclerosis: A Neurodegenerative Motor Neuron Disease With Ocular Involvement. Front Neurosci. 2020; 14: 566858. DOI: 10.3389/fnins.2020.566858.

26. Crivello M, Hogg MC, Jirström E, Halang L, Woods I, Rayner M, et al. Vascular regression precedes motor neuron loss in the FUS (1-359) ALS mouse model. Dis Model Mech. 2019; 12 (8): dmm042336. DOI: 10.1242/dmm.042336.

27. Rudnick ND, Griffey CJ, Guarnieri P, Gerbino V, Wang X, Pierson JA, et al. Distinct roles for motor neuron autophagy early and late in the SOD1(G93A) mouse model of ALS. Proceedings of the National Academy of Sciences of the United States of America. 2017; 114: E8294–E8303.

28. Evans CS, Holzbaur ELF. Autophagy and mitophagy in ALS. Neurobiol Dis. 2019; 122: 35–40. DOI: 10.1016/j. nbd.2018.07.005.

29. Strohm L, Behrends C. Glia-specific autophagy dysfunction in ALS. Semin Cell Dev Biol. 2020; 99: 172–82. DOI: 10.1016/j. semcdb.2019.05.024.

30. Ghavami S, Shojaei S, Vagehnej B, Ande SR, Jangamreddy JR, Mehrpour M, et al. Autophagy and apoptosis dysfunction in amyotrophic lateral sclerosis in mice. CNS Neurosci Ther. 2020; 26 (5): 504–17. DOI: 10.1111/cns.13280.

31. de Munter JPJM, Shafarevich I, Liundup A, Pavlov D, Wolters EC, Gorkova A, et al. Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice. CNS Neurosci Ther. 2020; 26 (5): 502–3. DOI: 10.1111/ cns.13302.

32. Ninkina N. Stem cell therapy and FUS[1-359]-transgenic mice: A recent study highlighting a promising ALS model and a promising therapy. CNS Neurosci Ther. 2020; 26 (5): 502–3. DOI: 10.1111/ cns.13302.

33. Ramírez AI, de Hoz R, Salobrar-Garcia E, Salazar JJ, Rojas B, Ajoy D, et al. The Role of Microglia in Retinal Neurodegeneration: Alzheimer’s Disease, Parkinson, and Glaucoma. Front Aging Neurosci. 2017; 9: 214. DOI: 10.3389/fnagi.2017.00214.

34. Dolzhikova AA, Bobytsev II, Belykin AE, Shevchenko OA, Pobeda AS, Dolzhikova IN, et al. Pathogenesis of neurodegenerative pathology and new concepts of transport and metabolic systems of the brain and eye. Kursk Scientific and Practical Bulletin "Man and His Health". 2020; (1): 45–57. DOI: 10.21626/vestnik/2020-1/06.