Research Paper
Capabilities and Requirements of the Elderly Remote Health Monitoring

Ahmad Reza Shamsabadi1, Ahmad Delbari2,3, Ameneh Safari1, Fatemeh Bahador4, *Esmaeil Mehraeen5

1. Department of Health Information Technology, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran.
2. Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
3. Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.
4. Department of Health Information Technology, School of Ferdows Paramedical, Birjand University of Medical Science, Birjand, Iran.
5. Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran.

Citation:
Shamsabadi AR, Delbari A, Safari A, Bahador F, Mehraeen E. [The Capabilities and Requirements of Elderly Tele-health Monitoring System [Persian]]. Iranian Journal of Ageing. 2020; 15(3):286-297. https://doi.org/10.32598/sija.15.3.2828.1

ABSTRACT

Objectives: Telehealth management systems for elderly people should have the features, capabilities, and infrastructure that meet home care management’s diverse needs. Since there is no valid and reliable questionnaire to determine these requirements, this study’s primary purpose was to determine a telehealth monitoring system’s requirements for the elderly and present it as a valid and reliable questionnaire.

Methods & Materials: This study was descriptive-analytical and performed in 2019. The items for the Questionnaire were obtained from a systematic review study. To review, the selected keywords such as elderly, home care, telecare, telehealth, and information technology from 2013 to October 2019 were searched on selected databases.

Results: Based on the study’s findings, the parameters, and requirements of a telehealth monitoring system for the elderly were identified in 97 items. Furthermore, the first 31 items of the questionnaire were removed due to low validity and reliability. In the next phase, the final questionnaire with 66 items, content validity ratio of 99%, Cronbach’s alpha coefficient (0.9) and desirable correlation coefficient (r=0.85, P<0.05) were designed.

Conclusion: In this study, the requirements of a telehealth monitoring system for the elderly were determined, and a valid and reliable questionnaire was developed using these requirements. The questionnaire was designed in five parts: applications, functional requirements, non-functional requirements, tools, and communication infrastructure. Health care system designers may use the study results to determine the applications and requirements of elderly health monitoring systems.

Key words: System, Remote health monitoring, Home care, Elderly, Validation

Received: 03 nov 2019
Accepted: 17 may 2020
Available Online: 01 Oct 2020

Extended Abstract

1. Introduction

In recent years, with the increase in the elderly population worldwide [1-4], human societies face an increasing prevalence of fragility in the elderly [5]. This fragility leads to other consequences such as dependence, chronic diseases, reduced quality of life, long-term hospitalization, and increased care costs for the elderly [6-11]. Today, to manage and reduce fragility in these people, a new technology called elderly remote health monitoring is used, increasing significantly to help the elderly [12]. This technology’s main aim is to reduce fragility and the length of hospital stay, and the cost of treatment for the elderly [13, 14]. Given the importance of determining the requirements of remote care systems, the present
study was conducted to determine the capabilities and needs of elderly health monitoring.

2. Methods & Materials

This study was a descriptive-analytical that was conducted in 2019 in two main stages. In the first stage, a review study was conducted to identify the capabilities and requirements of elderly remote health monitoring. At this stage, the keywords aging, home care, remote monitoring, remote health, and information technology were searched in the following scientific databases and the period 2013 to October 2019: PubMed, Scopus, Web of Science, Google Scholar.

The information items resulting from the comprehensive search of scientific databases were designed in a questionnaire. The questionnaire consisted of five parts and 97 questions reviewed and approved by a geriatrician and two health information management specialists. In the second stage, the validity and reliability of the designed questionnaire were examined. At this stage, the questionnaire was completed by ten specialists in geriatrics and health information management, and the following formula was used to evaluate its validity (Formula 1):

$$CVR = \frac{n_e - n/2}{n/2}$$

In this regard, “ne” is the number of specialists who have answered the “necessary” option, and n is the total number of specialists who have completed the questionnaire. In this study, the internal consistency method (Cronbach’s alpha) was used to assess items’ reliability. The retest test method (Spearman-Brown coefficient) was used to evaluate the reliability of the correlation between two components of a scale with a time and space interval.

3. Results

Based on the Results of the first phase of the study, 1738 articles were retrieved from searches in databases to identify the capabilities and requirements of elderly remote health monitoring. After deleting duplicate articles (n=468), articles that were not in English (n=380), and also articles irrelevant to the purpose of the research (n=858), finally, 32 articles were selected. The capabilities and requirements of elderly remote health monitoring were identified in five parts and 97 items by reviewing related articles. The identified capabilities and requirements were: system applications (n=18), functional requirements (n=19), non-functional requirements (n=27), types of tools (n=18), and communication infrastructure (n=15).

The content validity calculation Results in the first step showed that out of 97 items of the questionnaire completed by 5 experts, 51 items the content validity ratio values were lower than 99%. In the second step of calculating, content validity was recalculated by referring to the relevant experts, providing information, discussing the items, and getting their final opinions. Finally, out of 97 identified items, 69 items with a content validity ratio of over 99% were approved as capabilities and requirements of the elderly remote health monitoring. As a result, the approved capabilities and requirements were: system applications (n=12), functional requirements (n=15), non-functional requirements (n=14), types of tools (n=13), and communication infrastructure. (n=15) (Table 1).

Cronbach’s alpha coefficient was used to evaluate the questionnaire’s internal reliability, calculated to be 0.90 among 15 geriatricians and 15 health information management specialists. Also, to assess the questionnaire’s external reliability, the retest test method was used in which 10 experts completed the questionnaire in two stages with an interval of one week, and the correlation coefficient was 0.85.

4. Conclusion

In this study, the remote monitoring system’s capabilities and requirements for the health of the elderly in five parts of system applications, functional needs, non-functional requirements, tools, and communication infrastructure were identified and validated. The specified requirements are in line with the culture and technology, and communication infrastructure in Iran. Therefore, the use of these capabilities and requirements by remote health system designers will better understand the needs of vulnerable elderly in various dimensions. However, further research is needed to identify the identity and clinical information requirements of the elderly remote health monitoring. One of the limitations of this study is the low sample size to determine validity and reliability. It is suggested that in future studies, the validity and reliability of the questionnaire in a larger sample size be investigated using factor analysis.
Table 1. Approved capabilities and requirements for the elderly remote health monitoring

No.	System Applications	Functional Requirements	Non-functional Requirements	Types of Tools	Communication Infrastructure
1	Blood pressure monitoring	Ability to provide training	Having a central database of information	Clinical sensors	Internet
2	Heart rate monitoring	Recognize the urgency of the elderly condition	User friendly	Camera	WiFi and WiMax
3	Saturated oxygen level	Provide reminders	Based on the web	Tablet	SMS
4	Weight monitoring	Ability to provide alerts	Simultaneity and real-time	Personal computer	Zigbee
5	Blood sugar monitoring	Ability to provide information to users	Being smart	Smartphone	RFID
6	Respiratory monitoring	Ability to be available everywhere	Ensuring security and privacy	Speaker and microphone	GSM
7	Electrocardiogram monitoring	Ability to provide social and emotional support	Use of standards and guidelines	Landline phone	GPRS
8	Body temperature monitoring	Ability to customize the system	Open and flexible architecture	Audio radars	Bluetooth
9	Diet monitoring	Ability to have a user profile	Use videoconferencing	Bandwidth router	Remote phone line
10	Drug monitoring	Easy to use for the user	Diagnosis and analysis of information	Webcam	GPS
11	Self-assessment of symptoms	Ability to provide information graphically	Use of virtual space (network)	Active hub	LR-WPANs
12	Self-reported monitoring	Ability to motivate	Having the feature of sending announcements and news	Ebook reader	WLAN
13	-	Ability to create recommendations	Having the feature of reducing stored data	Xbee PRO S2B Module	Ethernet
14	-	Ability to use different colors for notifications	Having a set of UPnP protocols	-	MMS
15	-	Drug management capability	-	-	-

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of the Tehran University of Medical Sciences (Code: 36240-31-02-97).

Funding

The paper was extracted from the PhD dissertation of the first author, Department of Health Information Technology, Esfarayen Faculty of Medical Sciences, Esfarayen.

Authors' contributions

All authors equally contributed to preparing this article.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgments

The authors would like to thank the Department of Health Information Management and the Elderly Research Center of Tehran University of Medical Sciences and all participants.
قابلیت‌ها و الزامات سامانه پایش از راه دور سلامت سالمندان

اصحاح‌ها:
1. گروه فناوری اطلاعات سلامت دانشگاه علوم پزشکی استان اصفهان ایران
2. مرکز تحقیقات سلامتی دانشگاه علوم پزشکی اصفهان ایران
3. گروه پایش از راه دور سلامت دانشکده پزشکی اصفهان دانشگاه علوم پزشکی اصفهان ایران
4. گروه فناوری اطلاعات سلامت دانشگاه علوم پزشکی خلخال ایران

نحوه: نویسنده مسئول
اسماعیل مهرآیین
دکتر، دانشکده علوم پزشکی خلخال، گروه فناوری اطلاعات سلامت

تمامی این مقالات قبلاً از پست الکترونیکی او در سال 1378 ماه اکتبر ارسال شدند.

مقدمه

امروزه جمعیت سالمندان در سراسر جهان به طور چشمگیری و این پدیده عواقب و پیامدهای در حال افزایش است.

1. Frailty
2. Telecare
3. Telemedicine
4. Telehealthcare

متأسفانه سالمندان در سراسر جهان به طور وسیعی، به طور عادی به این درآمدهای مرتبط با سن‌ترسیم و مراقبت در منزل نیازمندند.

مانند:

1. مرکز تحقیقات سالمندی، دانشگاه علوم توانبخشی، تهران، ایران
2. بخش بالینی پیراپزشکی، بخش نوروبیولوژی، مراقبت علمی و جامعه شناختی، مؤسسه کارولینسکا، استکهلم، سوئد
3. گروه فناوری اطلاعات سلامت دانشکده پزشکی اسفراین، اسفراین، ایران
4. گروه فناوری اطلاعات سلامت دانشکده پزشکی اسفراین، اسفراین، ایران
5. گروه فناوری اطلاعات سلامت دانشکده پزشکی علوم پزشکی خلخال، ایران

کلیدواژه‌ها:
پرسشنامه، اعتبارسنجی، پایش از راه دور، سلامت از راه دور، مراقبت در منزل، سالمندان

مقدمه

مهمی بر جامعه و فرد سالمند دارد. یکی از نتایج چالش برانگیز، سالمندی می‌باشد که در حال در حال ظهور است و نشانه‌های آن شامل شکستگی، مالامیت، تأثیر آن بر بیماری‌های مزمن، کاهش کیفیت زندگی و پیشگیری از بلایات مزمن می‌باشد.

در سال‌های اخیر، سیستم‌های فناوری اطلاعاتی و ارتباطاتی در حال بهبود و توسعه قرار گرفتن است. این مقاله مباحث و ارتباطاتی در سیستم‌های فناوری اطلاعاتی و ارتباطاتی در حال بهبود و توسعه قرار گرفتن است. این مقاله مباحث و ارتباطاتی در سیستم‌های فناوری اطلاعاتی و ارتباطاتی در حال بهبود و توسعه قرار گرفتن است. این مقاله مباحث و ارتباطاتی در سیستم‌های فناوری اطلاعاتی و ارتباطاتی در حال بهبود و توسعه قرار گرفتن است.

2. Telecare
3. Telemedicine
4. Telehealthcare

289
پژوهشگران علمی زیر انجام گرفتند:

PubMed, Scopus, Web of Science, Google Scholar

بر اساس کلیدواژه‌های سالمندی، مراقبت در منزل، سلامت از راه دور و فناوری اطلاعات در پژوهش زمینه‌ای 2 اکتبر 2012 تا 2 اکتبر 2019 مورد جستجو قرار گرفت. از مقایسه پایگاه‌های مراجعه مقالات، سپس علایم و خلاصه‌های مقالات طبق معاویه شرایط و فیلتر شد و در انتهای کلی مقالات به طور چندگانه مطالعه شد و یکی از سیستم‌های پالس‌سنجی پاسخی از راه دور مدیریت سلامت سالمندان در منزل مشخص شد.

آزمایش‌های اطلاعاتی مدتی شده یک چاره‌جویی جامع پژوهشگران علمی در قالب سوالات به صورت پرسشنامه طراحی شد. این پرسشنامه شامل پنج بخش، 57 سوال و هر سوال پرسشنامه در چهار جعبه با عنوان نظری به ترتیب بررسی کننده اصلی در این پژوهش قرار گرفت.

روش مطالعه

این مطالعه از نوع توصیفی - تحلیلی بود که در سال 1398 انجام گرفت. هدف اصلی پژوهش تعریف، تشریح و ارزیابی سیستم‌های پالس‌سنجی از راه دور در سلامت سالمندان و در ایران به صورت یک پرسشنامه و پاییز گرایانه یکی از راه دور و پیشنهادی انجام گرفت. برای انجام مطالعه مروری، چستجوی یک پرسشنامه و پاییز گرایانه یکی از راه دور و پیشنهادی انجام گرفت.
مدیریت اطلاعات سلامت، آیتم‌های پرسشنامه بررسی و تایید شد. از آنجا که آیتم‌های پرسشنامه متوجه از سیستم‌های موجود باید استرداد از راه دور سلامت سالمندان در منزل بود و برای تمام سالمندان کاربردهایی از مختصات مربوط به سیدشو پایش از راه دور سالمندان است، پرسشنامه را تکمیل کردند. بنابراین، پرسشنامه به روش سایات در هر حیطه سلامت سالم‌های و حیطه مربوط به مدیریت اطلاعات سالم‌های برخی از پرسشنامه‌ها که لزوم به افزایش کاربردی‌های سیستم‌های مختلف بود، توسط 6 نفر مختصات سالم‌های و به قبلاً در پرسشنامه تشکیل نشده. لازم است تا از آن‌ها از پرسشنامه مورد تحلیل قرار گیرد.

برای بیش از 20% از پرسشنامه تکمیل شده و برای متخصصان پرسشنامه مربوط به سالم‌های انتظاری و وابسته به پرسشنامه تکمیل شده و محاسبه روایی و تکمیل در جدول شماره 1 مورد تحلیل قرار گرفت.

نجوم محاسبه بیانی

پایه‌پذیری به میزان مجزاء بودن یک مقیاس از خطاوگیری دلالات داره و بر أساس اینکه طیف گیری‌های چه مقدار از واریانس گزارشی را تشکیل می‌دهد، محاسبه می‌شود. در این مطالعه باید از پاییز یا پاییز سالانه بین آن‌ها روش همایش میان دریافتگرین (آنتی‌کره‌بای) و باید از پاییز یا پاییز سالانه را به هم‌ساختگی بین دو

\[CVR = \frac{me}{n^2} \]

در این رابطه، \(CVR \) ضریب قابلیت‌ها و \(me \) عدد کل مختصات است که به‌گونه‌ای ضریبی، پاسخ گرفته، و \(n \) تعداد کل مختصات است که پرسشنامه را
جدول 2. کلیاتی بررسی پیش‌نویس پرسشنامه

انواع کاربردها	الگوهای عملکردی	غیرعملکردی	الگوهای کاربردی	پایه‌های پایدار	پایه‌های پیش‌نویس پرسشنامه
ارک آموزش به کاروران	مناسب، قابل تغییر				
تشخیص میزان توجه کاروران	مناسب، قابل تغییر				
وضعیت سالمند	مناسب، قابل تغییر				

انواع ابزارها	زیرساخت‌های ارتباطی	پایش فشار خون	پایش ضربان قلب	پایش رژیم غذایی	پایش وضعیت روحی و روانی
زیرساخت‌های ارتباطی	بلافاصله	پایش فشار خون	پایش ضربان قلب	پایش رژیم غذایی	پایش وضعیت روحی و روانی

عناصر ابزارهای هوشمند	زیرساخت‌های ارتباطی	پایش فشار خون	پایش ضربان قلب	پایش رژیم غذایی	پایش وضعیت روحی و روانی
همراه با	بلافاصله	پایش فشار خون	پایش ضربان قلب	پایش رژیم غذایی	پایش وضعیت روحی و روانی

انواع ابزارها

- پایش فشار خون
- پایش ضربان قلب
- پایش وضعیت روحی و روانی

زیرساخت‌های ارتباطی

- بلافاصله

عناصر ابزارهای هوشمند

- همراه با

پایش فشار خون

- بلافاصله

پایش ضربان قلب

- بلافاصله

پایش وضعیت روحی و روانی

- بلافاصله

بیشتر از ۵۰ درصد موارد استفاده است

استفاده از Google TV

استفاده از SNOMED CT

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل POP-UP

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP

استفاده از پروتکل HTTPS

استفاده از پروتکل HTTP

استفاده از پروتکل PPPoE

استفاده از پروتکل UPnP
نتایج این مطالعه مشابه نشان داد که از پاییز نیروی پرسشنامه را به کار برده بودند که گویای اهمیت پژوهشی با هدف ایجاد سیستم پایش سلامت سالمندان در خون، وزن، سطح اشباع اکسیژن، تنفس، دمای بدن و میزان مربوط به انواع کاربردهای ضروری سیستم پایش از راه دور مطابق نتایج پژوهش حاضر، در پرسشنامه مذکور پیشی گرفت تا به همراه حوزه به نظر برسد. ۹۶ درصد از پرسشنامه‌های پاییز پیشنهاد شد که در نتیجه این پروسه در منزل انجام شد. ۹۶ درصد دیگر پرسشنامه‌ها در زمینه سیستم پایش از راه دور سالمندان در منزل نموداری مشابه‌ای بود. نتایج تحقیق نشان داد که به هر یک از چهار نوع از ابزارهای بررسی آزمایشگذاری شد. این مطالعه با هدف تعیین قابلیت‌ها و الزامات آیتم مهم برای طراحی و ایجاد پرسشنامه‌های پیشنهادی سرطان در زمینه سیستم‌های پایش راه دور سالمندان در منزل.

پایه توجه داشت که شناسایی الزامات سیستم به تهیه این کار با مهارت‌هایی مربوط به زمان، روز و مدت زمان شبهان که در پژوهش‌ها در این زمینه به مدت زمان اصلی و دیگر پیشنهاد های سیستم‌های پایشی سنجشی، انتخاب و بررسی تلفیقی که در نتیجه ایجاد آن برای هوشمند سیستم به نظر برسند، میزان فعالیت فیزیکی را به کار برده بودند که در نتیجه این به همکاری پیشنهادی است.

یافته‌ها

بر اساس پایش‌های پژوهش حاضر، ۱۹۸۳ مقاله از جستجو در پایگاه‌های اطلاعاتی مزبور پایان‌یافته و سپس بررسی‌هایی در طی دو ماه مدیریت و میزان کم‌کارایی در خون، دمای میزان خون، رطوبت و انرژی تهیه گردید. این مقاله از این پژوهش مربوط به سالمندان مبتلا به بیماری‌های قلبی و عروق در مراقبت‌های بیشتر در این زمینه مربوط به ایجاد شد. نتایج نهایی از سنجش روایی و ضریب همبستگی مطلوب (r=0.85, P<0.05) بر اساس الزامات عملکردی، (جدول شماره ۱) نشان داده شد.

6. PRISMA flow diagram depicting the exclusion and inclusion of articles
| مرحله اول | مرحله دوم |
|----------|----------|
| - شماره 15 | - شماره 15 |
| - دوره 1399 پاییز | - دوره 1399 پاییز |

احمدرضا شمس‌آبادی و همکاران: قابلیت‌ها و ازدحام‌های سامانه پایش از راه دور سلامت سالمندان

آیتم های انتخاب شده پرسشنامه ماژور
مرحله اول

- CVR
- سطح اکسیژن اشباع شده
- پایش تنفس
- پایش الکتروکاردیوگرام
- اپنیاس داخلی بدون
- پایش دمای بدن
- غیرپزشکی حمله ایکس (مرکز جهاد و ...)

آیتم های الزامات عملکردی
- قابلیت ارائه آموزش
- قابلیت حمایت اجتماعی و احساسی
- قابلیت ایجاد توصیه
- قابلیت استفاده از رنگ‌های مختلف برای پیامدهای اصلی

آیتم های غیرعملکردی
- استفاده از ویدئوکنفرانس
- پرونده بالینی شخصی
- استفاده از وب پورتال

آیتم های مراقبت‌های ارزشمند
- مراقبت از رنجی‌های بیمار
- مراقبت از بیماران مبتلا به مراقبت‌های ارزشمند

آیتم های غیرعملکردی
- استفاده از ویدئوکنفرانس
- پرونده بالینی شخصی
- استفاده از وب پورتال
جدول نهایی

مرحله های ابزار	مرحله های زیرساخت ارتباطی
استفاده از اینترنت و یوتیوب	ارتباط از طریق Zigbee
استفاده از پیام‌رسانی	ارتباط از طریق RFID
استفاده از ولایه	ارتباط از طریق LR-WPANs
استفاده از داده‌های بیمارستانی	ارتباط از طریق Cellular network
دانستن ویژگی‌های املاح‌هی و اختلاف	
استفاده از خدمات فضای ابری	
SNOMED CT	
استفاده از HIS	
ارتباط مستقیم با بیمارستان	
مدار با WPS و SSL	
برقراری اتصال بی‌سیم	
باسلام	
POP – UP	
دانستن ویژگی‌های HTTPS	
استفاده از پروتکل HTTPS	

آپراتور ابزار:
- Xbee PRO S2B Module
- Intel health guide
- کناری گون
- مجدد راه‌اندازی
- نرم‌افزار مستقیم
- IOT
- Xbee PRO S2B Module
- HTC
- راه‌اندازی

آپراتور زیرساخت ارتباطی:
- Zigbee
- RFID
- LR-WPANs
- Cellular network

آپراتور سازنده	شرکت	سال
SNOMED CT		
HIS		
WPS و SSL		
باسلام		
POP – UP		
HTTPS		
Intel health guide		
کناری گون		
مجدد راه‌اندازی		
IOT		
Xbee PRO S2B Module		
HTC		
Cellular network		

آپراتور	سازنده	سال
SNOMED CT		
HIS		
WPS و SSL		
باسلام		
POP – UP		
HTTPS		
Intel health guide		
کناری گون		
مجدد راه‌اندازی		
IOT		
Xbee PRO S2B Module		
HTC		
Cellular network		

ابزار	میزان کاربرد	سال
کناری گون	37,4%	13/18
مجدد راه‌اندازی	25,7%	17/18
باسلام	14,3%	11/18
Cellular network	10,9%	9/18
برای سیستم پایش از راه دور سلامت سالمندان سهمیه‌داده می‌شود. شامل شش منطقه، کلینیکی وقلبی سرمایه‌گذاری و همچنین آیتم‌های ضروری مورد استفاده یافته در سیستم‌ها شامل سیستم‌های از راه دور با یک پنل مرجعی، تشخیص وتحليل اطلاعات، حفظ امنیت و محرمانگی اطلاعات، به عنوان الزامات اساسی در پیش‌بینی کاهش شد. این پژوهش در این قسمت با توجه به اطلاعات مختلف با هدف ایجاد و ارزیابی سیستم مدیریت سلامت برای سالمندان می‌باشد.

از محدودیت‌های این سیستم، می‌توان به حجم نمونه یا پایه، نیاز به حجم نمونه پایین‌تر یا پایین‌تر اشاره کرد. در مطالعه حاضر، ابزارهای ضروری جهت به کارگیری و بهره‌برداری مفید از سیستم‌های مورد هدف شامل مواردی از قبیل سنسورهای پزشکی، گوشی هوشمند، دوربین، رایانه شخصی و تبلت و همچنین الزامات زیرساختی به کار گرفته و در این مطالعه به عنوان شامل مواردی از قبیل مهندسی، ایجاد ارتباط و ورود به سیستم مدیریت سلامت کمک می‌کند.

در این مقاله نیز به بررسی روایی و پایایی پرسشنامه و سلامت از سالمندان و افراد معلول است. همچنین در سایر مطالعات، روایی و پایایی این پرسشنامه در حجم نمونه با استفاده از تحلیل عاملی بررسی شد. این پرسشنامه می‌تواند به عنوان ابزاری مناسب برای طراحان سیستم‌های پایش از راه دور سلامت سالمندان استفاده شود.

ملاحظات اخلاقی

پیروی از اصول اخلاقی پژوهش

تمام اصول اخلاقی این تحقیق توسط کمیته مسئول دانشگاه بهبود درمانی تهران با کد 02.02.314.0200 تایید شده است.

ملاحظات

در این مقاله حاصل پایان‌نامه دکترای اولیان بهبود درمانی، دانشگاه بهبود درمانی تهران با کد 02.02.314.0200 تایید شده است. در این مقاله، از هر یک از اعضای گروه مدیریت اطلاعات سلامت، دانشکده پزشکی دانشگاه بهبود درمانی تهران، در عملکرد آزمون‌های مختلف حضور داشتند.

ملاحظات

در این مقاله، به بررسی روایی و پایایی پرسشنامه و سلامت از سالمندان و افراد معلول است. همچنین در سایر مطالعات، روایی و پایایی این پرسشنامه در حجم نمونه با استفاده از تحلیل عاملی بررسی شد. این پرسشنامه می‌تواند به عنوان ابزاری مناسب برای طراحان سیستم‌های پایش از راه دور سلامت سالمندان استفاده شود.

ملاحظات

در این مقاله نیز به بررسی روایی و پایایی پرسشنامه و سلامت از سالمندان و افراد معلول است. همچنین در سایر مطالعات، روایی و پایایی این پرسشنامه در حجم نمونه با استفاده از تحلیل عاملی بررسی شد. این پرسشنامه می‌تواند به عنوان ابزاری مناسب برای طراحان سیستم‌های پایش از راه دور سلامت سالمندان استفاده شود.
References

[1] Arif MJ, El Emawy IM, Koutsouris DD. A review on the technologies and services used in the self-management of health and independent living of elderly. Technology and Health Care. 2014; 22(5):677-87. [DOI:10.3233/THC-140851] [PMID]

[2] Gaddam A, Mukhopadhyay SC, Gupta GS. Elder care based on cognitive sensor network. IEEE Sensors Journal. 2011; 11(3):574-81. [DOI:10.1109/JSEN.2010.2051425]

[3] Liu L, Strouilla E, Nikolaidis I, Miguel-Cruz A, Rios Rincon A. Smart homes and home health monitoring technologies for older adults: A systematic review. International Journal of Medical Informatics. 2016; 91:44-59. [DOI:10.1016/j.ijmedinf.2016.04.007] [PMID]

[4] Hamdi O, Chalouf MA, Ouattara D, Krief F. eHealth: Survey on research projects, comparative study of telemonitoring architectures and main issues. Journal of Network and Computer Applications. 2014; 46:100-12. [DOI:10.1016/j.jnca.2014.07.026]

[5] Andreasen J, Lund H, Aadahl M, Gobbens RJ, Sorensen EE. Content validation of the Tilburg Frailty Indicator from the perspective of frail elderly. A qualitative explorative study. Archives of Gerontology and Geriatrics. 2015; 61(3):392-9. [DOI:10.1016/j.archger.2015.08.017] [PMID]

[6] Romero-Ortuno R, Walsh CD, Lawlor BA, Kenny RA. A frailty instrument for primary care: Findings from the Survey of Health, Ageing and Retirement in Europe (SHARE). BMC Geriatrics. 2010; 10:1057. [DOI:10.1186/1471-2318-10-57] [PMID] [PMCID]

[7] Clegg A, Young J. The frailty syndrome. Clinical Medicine. 2011; 11(1):72-5. [DOI:10.7861/clinmedicine.11-1-72] [PMCID]

[8] Wou F, Conroy S. The frailty syndrome. Medicine. 2013; 41(1):13-5. [DOI:10.1016/j.mpmed.2012.10.004]

[9] Xue QL. The frailty syndrome: Definition and natural history. Clinics in Geriatric Medicine. 2011; 27(1):1-15. [DOI:10.1016/j.cger.2010.08.009] [PMID] [PMCID]

[10] Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in older people. The Lancet. 2013; 381(9868):752-62. [DOI:10.1016/S0140-6736(12)62167-9]

[11] Peters LL, Boter H, Buskens E, Slaets JP. Measurement properties of the Groningen Frailty Indicator in home-dwelling and institutionalized elderly people. Journal of the American Medical Directors Association. 2012; 13(6):546-51. [DOI:10.1016/j.amjmeddir.2012.04.007] [PMID]

[12] Urban M. ‘This really takes it out of you!’ The senses and emotions in digital health practices of the elderly. Digital Health. 2017; 3:DOI:10.1177/2055207617701778] [PMID] [PMCID]

[13] Stowe S, Harding S, Telecare, telehealth and telemedicine. European Geriatric Medicine. 2010; 1(3):193-7. [DOI:10.1016/j.eurger.2010.04.002]

[14] Barlow J, Singh D, Bayer S, Curry R. A systematic review of the benefits of home telecare for frail elderly people and those with long-term conditions. Journal of Telemedicine and Telecare. 2007; 13(4):172-9. [DOI:10.1258/jtst.2007.0070000998][PMID]

[15] Coyte PC, McKeever P. Home care in Canada: Passing the buck. Canadian Journal of Nursing Research Archive. 2016; 3(2):11-25. https://cjnr.archive.mcgill.ca/article/view/1631

[16] Cronfalk BS, Fjell A, Carstens N, Roseland LMK, Ronveik A, Rønnevik DH, et al. Health team for the elderly: A feasibility study for preventive home visits. Primary Health Care Research & Development. 2017; 18(3):242-52. [DOI:10.1017/S146432617000019] [PMID]

[17] Bohillier Chaumon ME, Michel C, Tarpin Bernard F, Croisile B. Can ICT improve the quality of life of elderly adults living in residential home care units? From actual impacts to hidden artefacts. Behaviour & Information Technology. 2014; 33(6):574-90. [DOI:10.1080/0144929X.2013.832382]

[18] Lupton D. Editorial: Towards sensory studies of digital health. Digit Health. 2017; 3:DOI:10.1177/2055207617740090] [PMID] [PMCID]

[19] Lawshe CH. A quantitative approach to content validity. Personnel Psychology. 1975; 28(4):563-75. [DOI:10.1177/1357633X15586082] [PMID] [PMCID]

[20] Young JM, Walsh J, Butow PN, Solomon MJ, Shaw J. Measuring cancer care coordination: Development and validation of a questionnaire for patients. BMC Cancer. 2011; 11:298. [DOI:10.1186/1471-2407-11-298] [PMID] [PMCID]

[21] Musavinasab M, Ravanipour M, Pouladi Sh, Motamed N, Barekat M. [Examining the validity and reliability of the cardiovascular disease questionnaire in measuring the empowerment of elderly patients to receive social support (Persian)]. Salmand: Iranian Journal of Ageing. 2016; 11(2):258-69. [DOI:10.21859/sija-1102258]

[22] Lamprinakos GC, Asanin S, Broden T, Prestileo A, Furse A, Papadopoulos KA, et al. An integrated remote monitoring platform towards telehealth and telecare services interoperability. Information Sciences. 2015; 308:23-37. [DOI:10.1016/j.ins.2015.02.032]

[23] Dhillon JS, Wünsche B, Lutteroth C. Designing and evaluating a patient-centred health management system for seniors. Journal of Telemedicine and Telecare. 2016; 22(2):96-104. [DOI:10.1177/1357633X15710958] [PMID]

[24] Saponara S, Donati M, Bacchillone T, Sanchez-Tato I, Carmona C, Fanucci L, et al. Remote monitoring of vital signs in patients with chronic heart failure: Sensor devices and data analysis perspective. Paper: presented at: 2012 IEEE Sensors Applications Symposium Proceedings. 7-9 February 2012; Brescia, Italy. [DOI:10.1109/SAS.2012.6166301]

[25] Hussain A, Wenbi R, da Silva AL, Nadher M, Mudhish M. Health and emergency-care platform for the elderly and disabled people in the Smart City. Journal of Systems and Software. 2015; 110:255-63. [DOI:10.1016/j.jss.2015.08.041]