ANTIFUNGAL POTENTIAL OF PIMPINELLA ANISUM, CARUM CARVI AND CORIANDRUM SATIVUM EXTRACTS. A COMPARATIVE STUDY WITH FOCUS ON THE PHENOLIC COMPOSITION

ADRIANA TRIFAN1, ANDRA-CRISTINA BOSTĂNARU2*, SIMON VLAD LUCA1,3, ADINA CATINCA GRĂDÎNARU1, ALEXANDRA JITĂREANU1, ANA CLARA APROTOSOAIE1, ANCA MIRON1, OANA CIOANCĂ1, MONICA HĂNCIANU1, LĂCRĂMIOARA OCHIUZ1, ALEXANDRA BUJOR1, PETRUȚA AELENEI4, MIHAI MAREȘ2

1Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iași, 16 Universității Street, 700115, Iași, Romania
2Laboratory of Antimicrobial Chemotherapy, Ion Ionescu de la Brad University of Veterinary Medicine of Iași, 8 Aleea Mihail Sadoveanu, 700489, Iași, Romania
3Biothermodynamics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
4Fiterman Pharma LLC, 127 Păcurari Street, 700544, Iași, Romania

*corresponding author: acbostanaru@gmail.com

Abstract

The present study aimed to characterize the phenolic extracts obtained from fruits of Pimpinella anisum L., Carum carvi L. and Coriandrum sativum L. (Apiaceae), and to assess their antifungal activity against main etiological agents involved in onychomycosis and other dermatomycoses (Trichophyton rubrum, T. mentagrophytes, Microsporum canis, M. gypseum and Candida albicans). Total phenolic and flavonoid contents varied from 3.80 ± 0.49 to 24.16 ± 0.82 mg gallic acid equivalents (GAE)/100 g dw, and 12.51 ± 0.14 to 37.75 ± 0.21 mg catechin equivalents (CE)/100 g dw, respectively. HPLC-DAD-ESI-Q-TOF-MS/MS analysis revealed the presence of chlorogenic acid, dicafeoilchinic acid, luteolin and apigenin pentoside in all analysed samples. The extracts showed antifungal activity against all tested strains, with minimal inhibitory concentration (MIC) values in the range of 1.25-5 mg/mL. These results provide evidence that phenolic extracts obtained from fruits of P. anisum, C. carvi and C. sativum might be sources of antifungal agents with putative use in onychomycosis.

Rezumat

Obiectivul studiului de față a fost caracterizarea extractelor polifenolice obținute din fructe de Pimpinella anisum L., Carum carvi L. și Coriandrum sativum L. (Apiaceae) și determinarea activității lor antifungice asupra agenților etiologici majori implicați în oniconomicozes și alte dermatomicoze (Trichophyton rubrum, T. mentagrophytes, Microsporum canis, M. gypseum și Candida albicans). Conținutul în polifenoli totali și flavonoide a variat între 3.80 ± 0.49 și 24.16 ± 0.82 mg echivalentă acid galic (GAE)/100 g produs vegetal, și 12.51 ± 0.14 și 37.75 ± 0.21 mg echivalenți catechine (CE)/100 g produs vegetal, respectiv. Analiza HPLC-DAD-ESI-Q-TOF-MS/MS a identificat prezența acidului clorogenic, acidului dicafeoilchinic, luteolinei și apigenol-pentozidei în toate probele investigate. Extractele au prezentat activitate antifungică asupra tuturor tulpinilor testate, cu valori ale concentrației minime inhibitorii cuprinse în intervalul 1.25 - 5 mg/mL. În concluzie, extractele polifenolice obținute din fructe de P. anisum, C. carvi și C. sativum reprezintă surse de agenți antifungici cu potențială utilizare în tratamentul onicomicozelor.

Keywords: Pimpinella anisum L., Carum carvi L., Coriandrum sativum L., Apiaceae, phenolics, chemical composition, antifungal activity

Introduction

Pimpinella anisum L. (anise), Carum carvi L. (caraway) and Coriandrum sativum L. (coriander) are plant species belonging to the Apiaceae family, widely used for their medicinal and culinary properties. Even though their health benefits have been mainly associated with the essential oil [15, 18], these species contain significant amounts of phenolic compounds. The latter have been recognized to possess many biological effects including anti-inflammatory, anti-microbial, hypolipidemic, antioxidant, anti-mutagenic and anticarcinogenic activity [1, 6]. In order to identify natural compounds with putative use in onychomycosis, we screened the antifungal properties of phenolic extracts obtained from anise, caraway and coriander fruits.

Onychomycoses are fungal infections of the finger or toenails, mainly caused by fungi of Trichophyton, Microsporum and Epidermophyton genera, and some Candida species. Onychomycoses are among the most common nail disorders in adults (15 - 40% of all...
nail diseases) and are often intractable, with relapses due to poor adherence to long-term treatment regimens and development of antifungal resistance mechanisms [11]. Current available therapies consist of both oral and topical treatment, but their efficacy is hampered by side effects and poor nail plate penetration [8]. Therefore, the development of novel antifungal drugs targeting structures that are unique to fungal pathogens and ensure nail permeation is a challenge. In the search for new antifungal lead structures, interest in natural product-based screening has gained much attention [21]. Among the plant-derived products, phenolics are one of the most diverse classes of specialized metabolites that play an important role in plant growth and reproduction, and, more, are involved in the plant defensive response to various insults, including microbial attacks [14]. Therefore, the present study was designed to evaluate the in vitro antifungal properties of phenolic extracts obtained from anise, caraway and coriander fruits against several pathogenic dermatophytes (Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, and Microsporum gypseum) and yeasts (Candida albicans) involved in the aetiology of onychomycosis and other dermatomycoses. To the best of our knowledge, the effects of phenolic extracts on dermatophytes have not been investigated. Herein, an analysis of individual phenolic compounds was performed, correlating these phytochemicals with the antifungal activity of the Apiaceae extracts.

Materials and Methods

Chemicals
Aluminium chloride, (+)-catechin, dimethyl sulfoxide (DMSO), Folin-Ciocalteu’s phenol reagent, gallic acid, methanol, sodium hydroxide, sodium nitrite, sodium carbonate were purchased from Sigma-Aldrich (Steinheim, Germany). Acetonitrile and formic acid for LC-MS were purchased from J.T. Baker Inc. (Deventer, The Netherlands). Saboraund dextrose agar (SDA) was purchased from Biolab (Hungary).

Plant material and extraction
Raw plant material (fruits of anise, caraway and coriander) was purchased from a local pharmacy. Voucher specimens (s20180901, s20180902 and s20180903) were deposited in the Herbarium of the Department of Pharmacognosy, Faculty of Pharmacy, Iași, Romania. The fruits (5 g) were powdered and extracted three times with methanol (50 mL) for 30 min by sonication at 60°C. The obtained solutions were evaporated to dryness under reduced pressure at 40°C. The extraction yields were 11.96% for anise, 10.22% for caraway, and 5.09% for coriander.

Total phenolic and flavonoid contents
The extracts were re-dissolved in DMSO (10 mg/mL) and the total phenolic content (TPC) was assayed by Folin-Ciocalteu method [19], whereas total flavonoid content (TFC) was estimated according to Trifan et al. [20]. TPC was expressed as mg GAE/100 g dry weight (dw) and TFC were calculated as mg CE/100 g dw.

HPLC-DAD-ESI-Q-TOF-MS/MS analysis
Qualitative high-performance liquid chromatography with diode array detector coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-DAD-ESI-Q-TOF-MS/MS) experiments were conducted on an Agilent 1200 HPLC system (Agilent Technologies, Santa Clara, California, USA) equipped with an auto-sampler (G1329A), a degasser (G1379B), a binary pump (G1312C), a column oven (G1316B), a DAD detector (G1315B) and a Q-TOF-MS (G6530B). The separations were carried out on a Phenomenex Gemini C18 (100 × 2 mm, 3 µm) column, following the method described in Luca et al. [9]. All compounds were identified according to their mass, fragmentation pattern and UV–VIS characteristics by comparison with literature data.

Fungal strains
For experimental validation, the methanolic extracts of anise, caraway and coriander were evaluated for antifungal activity against five standard strains, namely Trichophyton rubrum ATCC 28188, Trichophyton mentagrophytes ATCC 36107, Microsporum canis CECT 20190, Microsporum gypseum CECT 2098 and Candida albicans ATCC 90028. Thus, fungi were grown on SDA and were incubated for 48 hours (yeast strain) or 15 days at 30°C (dermatophyte strains). All of the strains were cultured until the maximal numbers of conidia were formed.

Preparation of standard inoculum and agar dilution assay
The antifungal screening of the methanolic extracts was performed by determining the minimum inhibitory concentrations (MICs) using an agar dilution method. Testing plates were prepared by mixing 20 mL of melted SDA with an appropriate volume of extracts eluted in DMSO. The final concentrations of methanolic extracts were 1.25, 2.5, and 5 mg/mL respectively. Control agar plates with 5% DMSO were also tested. Itraconazole was used as control at concentrations of 0.03, 0.06, 0.125, and 0.25 mg/mL. The plates were kept for 10 minutes at room temperature and were subsequently inoculated with the fungal strains as follows: 10 µL of standardized suspension (10⁶ CFU/mL) was inoculated onto the control plates and the media incorporating the investigated extracts. The inoculated plates were incubated at 30°C for 48 hours or 15 days depending on the type of fungi (until mature colonies were formed on the control plates). The MIC was defined as 100% inhibition of the fungi. Experiments were performed in triplicate.

Statistical analysis
All experiments were performed in triplicate and the results were expressed as mean±standard deviation (SD).
Results and Discussion

Anise presented the highest content in phenolics (24.16 mg GAE/100 g dw) and flavonoids (37.75 mg CE/100 g dw), in comparison with caraway and coriander (Table I). Our data are within the range reported in literature regarding TPC and TFC in Apiaceae fruits [6, 10, 13].

Table I

Extract	TPC (mg GAE/100 g dw)	TFC (mg CE/100 g dw)
Pimpinella anisum L.	24.16 ± 0.82	37.75 ± 0.21
Carum carvi L.	22.26 ± 0.76	24.02 ± 0.08
Coriandrum sativum L.	3.80 ± 0.49	12.51 ± 0.14

Data of the tentative identification, retention time, molecular ion, molecular formula, and main MS/MS fragment ions of phenolic compounds in anise, caraway and coriander fruits are presented in Table II. Figure 1 shows the base peak chromatograms of phenolic profiles belonging to investigated samples.

Figure 1.

Chromatographic profiles of Apiaceae fruit extracts obtained by HPLC-DAD-ESI-Q-TOF-MS/MS (base peak chromatograms); identity of compounds as in Table II.

The phenolic profile of Apiaceae fruits presented hydroxycinnamic acid derivatives (caffeic, quinic, ferulic and hydroxybenzoic acid derivatives), flavone derivatives (apigenin, luteolin derivatives) and flavonol derivatives (quercetin and kaempferol derivatives), alongside two polyols (sorbitol and malic acid) (Table II). Our study revealed the presence of chlorogenic acid, dicaffeoylquinic acid, luteolin and apigenin pentoside in all analysed samples.
No.	Proposed identity	Rt (min)	[M-H]_{exp.} (m/z)	[M-H]_{calc.} (m/z)	Δ (ppm)	Molecular formula	MS/MS fragments (m/z)	P.a.	C.e	C.s	Refe
1	Sorbitol	1.6	181.0714	181.0718	1.99	C_{6}H_{12}O_{6}	163.0607	✓	✓	✓	[4]
2	Malic acid	2.3	133.0145	133.0142	-1.89	C_{4}H_{6}O_{5}	115.0039	✓	✓	✓	[4]
3	Hydroxybenzoic acid hexoside	4.5	299.0775	299.0762	-0.86	C_{13}H_{16}O_{8}	137.0211	✓	✓	✓	[4]
4	Hydroxybenzoic acid	14.7	137.0246	137.0244	-0.60	C_{4}H_{6}O_{5}	–	✓	✓	✓	[4]
5	Apigenin pentoside	16.3	401.0889	401.0878	-2.72	C_{20}H_{16}O_{9}	269.0992	✓	✓	✓	[9]
6	Chlorogenic acid	17.6	353.0882	353.0878	-1.11	C_{16}H_{18}O_{9}	191.0507, 179.0269, 173.0409, 135.0417	✓	✓	✓	[3]
7	Thymoquinol hexoside	18.1	327.1448	327.1449	0.39	C_{16}H_{13}O_{7}	165.0919, 161.0487	✓	✓	✓	–
8	Caffeic acid	18.7	179.0353	179.0350	-1.76	C_{6}H_{6}O_{4}	135.0456	✓	✓	✓	[3]
9	Neochlorogenic acid	19.1	353.0890	353.0878	-3.40	C_{16}H_{16}O_{9}	191.0507, 179.0269, 135.0417	✓	✓	✓	[3]
10	Feruloylquinic acid	20.4	367.1045	367.1035	-2.84	C_{12}H_{18}O_{9}	191.0604	✓	✓	✓	[7]
11	Luteolin-C-hexoside	21.8	447.0938	447.0933	-1.15	C_{20}H_{16}O_{11}	357.1021, 327.0919, 297.0686, 285.0552	✓	✓	✓	[10]
12	Apigenin-C-hexoside-O-pentoside	23.0	563.1396	563.1406	1.82	C_{26}H_{28}O_{14}	443.0975, 413.0986, 311.0578, 293.0491, 269.0459	✓	✓	✓	[3]
13	Apigenin-C-hexoside	23.6	431.0986	431.0984	-0.53	C_{21}H_{20}O_{10}	413.0859, 341.0578, 311.0478	✓	✓	✓	[3]
14	Quercetin-O-rutinoside	23.7	609.1459	609.1461	0.34	C_{27}H_{28}O_{16}	301.0371, 277.0311, 255.0319, 151.0011	✓	✓	✓	[3]
15	Luteolin-O-hexoside	24.3	447.0913	447.0933	4.43	C_{21}H_{20}O_{11}	285.0381, 227.0221, 199.0356, 151.0026	✓	✓	✓	[10]
16	Quercetin-O-hexoside	24.4	463.0869	463.0882	2.80	C_{21}H_{20}O_{12}	301.0370, 271.0239, 255.0302, 151.0041	✓	✓	✓	[3]
17	Kaempferol-O-rutinoside	25.2	593.1515	593.1515	-0.52	C_{26}H_{28}O_{15}	285.0317, 255.0232, 227.0259	✓	✓	✓	[3]
18	Ferulic acid	25.9	193.0518	193.0506	-0.86	C_{10}H_{16}O_{4}	178.0292, 161.0235	✓	✓	✓	[3]
19	Kaempferol-O-hexoside	26.0	447.0926	447.0933	-1.56	C_{21}H_{20}O_{11}	285.0408, 255.0263, 227.0370	✓	✓	✓	[3]
20	Dicaffeoylquinic acid	27.0	515.1215	515.1195	-3.88	C_{26}H_{28}O_{12}	353.0896, 191.0545, 179.0360	✓	✓	✓	[3]
It is noteworthy that ferulic acid derivatives were identified only in the coriander extract; the presence of these compounds was previously described in coriander fruits by El-Zaeddi et al. and Barros et al. [3, 7]. C- and O,C-glycosylated flavonoids (luteolin and apigenin derivatives) were characteristic for anise extract, being identified according to the fragmentation patterns described by Martins et al. and Barros et al. [3, 10]. O-glycosylated flavonols were also tentatively identified, namely kaempferol derivatives, which were found only in the caraway extract, and quercetin derivatives that were present both in caraway and coriander extracts. O-glycosylated flavonols (luteolin derivatives) were identified only in anise and coriander fruits.

The antifungal activity of anise, caraway and coriander extracts is presented in Table III; the MIC values ranged from 1.25 to 5 mg/mL. Anise and caraway evidenced the highest antifungal activity against all tested strains, although less pronounced than the positive control, namely itraconazole. Overall, the extracts were more effective against T. rubrum and M. gypseum with MIC values of 1.25 mg/mL and showed slight antifungal effects against T. mentagrophytes. C. albicans was more susceptible to anise and caraway, meanwhile coriander and anise proved fungicidal activity against M. canis (Table III). The antifungal effects of the investigated spices are due to their content in phenolic compounds such as apigenin, luteolin, quercetin, kaempferol and their derivatives, caffeic and chlorogenic acids, which have been previously reported to possess significant antimicrobial properties. Thus, apigenin and its derivative apigenin-7-O-glucoside proved antifungal activity against C. albicans strains (MIC values of 0.05 - 0.15 mg/mL) [16]. Alves et al. showed the efficacy of luteolin and quercetin against Candida strains (MIC = 0.625 - 1.25 mg/mL) and more, that these flavonoids were able to inhibit the fungal biofilm formation [2]. Caffeic acid (MIC 1 mg/mL) displayed antifungal effects against C. albicans, activity that was related to inhibition of isocitrate lyase, key-enzyme essential for the virulence of the yeast [5]. More, a derivative of caffeic acid, chlorogenic acid was able to inhibit the fungal growth of C. albicans at micromolar concentrations (MIC 80 μg/mL), due to the disruption of cell membrane structure [17].

Table III

Sample/Positive control	MIC (mg/mL)	T. rubrum ATCC 28188	T. mentagrophytes ATCC 36107	M. canis CECT 20190	M. gypseum CECT 2098	C. albicans ATCC 90028
Pimpinella anisum L.	1.25	2.5	1.25	1.25	1.25	5
Carum carvi L.	1.25	5	1.25	1.25	1.25	1.25
Coriandrum sativum L.	1.25	1.25	5	1.25	1.25	1.25
Itraconazole	0.125	0.125	0.06	0.125	0.125	0.03

Despite the fact that the three species belong to the same family, there were differences in their chemical composition and antifungal activity, thus emphasizing the heterogeneity in the bioactive constituents of plants from the same botanical family. Indeed, these Apioceae plants have different medicinal uses. It is also important to note that culture and pedo-climatic conditions, harvesting time, but also storage and manipulation procedures, significantly affect the phytochemical composition, and, consequently, their bioactivity. Among them, phenolic compounds act as contributors to the antifungal potential of plant extracts, this being evidenced in the present study: anise and caraway extracts provided the most prominent antifungal effect mainly conferred by their content in phenolic compounds.
Conclusions

The phenolic extracts obtained from anise, caraway and coriander fruits exhibited antifungal activities, thus underlining their putative use as therapeutic agents in onychomycosis. Nevertheless, further studies are necessary to assess the in vivo efficacy of the studied plant extracts, as also to deepen knowledge on their mechanism of action.

Acknowledgement

This research was financially supported by “Grigore T. Popa” University of Medicine and Pharmacy Iași, Romania, grant no. 7246/12.04.2018.

Conflict of interest

The authors declare no conflict of interest.

References

1. Açimović M, Kostadinović L, Popović S, Dojčinović N, Apiaceae seeds as functional food. Journal of Agricultural Sciences, 2015; 60(3): 237-246.

2. Alves CT, Ferreira IC, Barros L, Silva S, Azeredo J, Henriques M, Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against Candida species. Future Microbiol., 2014; 9(2): 139-146.

3. Barros L, Dueñas M, Dias MI, João Sousa M, Santos-Buelga C, Ferreira I, Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chem., 2012; 132: 841-848.

4. Bujor A, Miron A, Luca SV, Skalicka-Wozniak K, Silion M, Ancuceanu R, Dinu M, Girard C, Demougeot C, Totoson P, Metaboli profile, arginase inhibition and vasorelaxant activity of Cornus mas, Sorbus aucuparia and Viburnum opulus fruit extracts. Food Chem. Toxicol., 2019; 133: 1-10.

5. Cheah HL, Lim V, Sandai D, Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS ONE, 2014; 9: 1-8.

6. Christova-Bagdasarian VL, Bagdasarian KS, Atanassova MS, Phenolic profile: antioxidant and antibacterial activities from the Apiaceae family (dry seeds). Moutage J Pharm Med Sci., 2013; 2: 26-31.

7. El-Zaeddd H, Calín-Sánchez Á, Nowicka P, Martínez-Tomé J, Noguera-Artiaga L, Burló F, Wojdylo A, Carbonell-Barrachina AA, Preharvest treatments with malic, oxalic, and acetylsaliclic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chem., 2017; 226: 179-186.

8. Gupta AK, Foley KA, Versteeg SG, New antifungal agents and new formulations against dermatophytes. Mycopathologia, 2017; 182(1-2): 127-141.

9. Luca SV, Miron A, Aprotosoaie AC, Mihai CT, Vochita G, Gherghel D, Ciocarlan N, Skalicka-Wozniak K, HPLC-DAD-ESI-Q-TOF-MS/MS profiling of Verbasum ovalifolium Donn ex Sims and evaluation of its antioxidant and cytoxicogenic activities. Phytochem Anal., 2019; 30: 34-45.

10. Martins N, Barros L, Santos-Buelga C, Ferreira I, Antioxidant potential of two Apiaceae plant extracts: A comparative study focused on the phenolic composition. Ind Crops Prod., 2016; 79: 188-194.

11. Monod M, Méhul B, Recent findings in onychomycosis and their application for appropriate treatment. J Fungi (Basel), 2019; 5(1): 1-10.

12. Msaada K, Ben Jemia M, Salem N, Bachrouch O, Sriti J, Tammar S, Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arab J Chem., 2017; 10: S3176-S3183.

13. Pandey MM, Vijayakumar M, Rastogi S, Rawat AKS, Phenolic content and antioxidant properties of selected Indian spices of Apiaceae. J. Herbs Spices Med Plants, 2012; 18(3): 246-256.

14. Popovici V, Bucur L, Popescu A, Caraiane A, Badea V, Determination of the content in usnic acid and polyphenols from the extracts of Usnea barbata L. and the evaluation of their antioxidant activity. Farmacia, 2018, 66(2): 337-341.

15. Sayed-Ahmad B, Thierry Talou T, Saad Z, Hijazi A, Merah O, The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind Crop Prod., 2017; 109: 661-671.

16. Smiljковic M, Stanisavljevic D, Stojkovic D, Petrovic I, Marjanovic Vicent I, Popovic J, Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCL J., 2017; 16: 795-807.

17. Sun G, Lee DG, Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl Chem., 2010; 82: 219-226.

18. Trifan A, Aprotosoaie AC, Spac A, Hâncianu M, Miron A, Stanescu U, Contributions to the chemical study of the essential oil isolated from coriander (Omagiu cultivar) fruits. Farmacia, 2012; 60(2): 177-183.

19. Trifan A, Opitz SEW, Josuran R, Grubelnik A, Esslinger N, Peter S, Brüm S, Meier N, Wolfgram E, Is comfrey root more than toxic pyrrolizidine alkaloids? Salvianolic acids among antioxidant polyphenols in comfrey (Symphytum officinale L.) roots. Food Chem Toxicol., 2018; 112: 178-187.

20. Trifan A, Sava D, Bucur LA, Mihai CT, Aprotosoaie AC, Cioancă O, Hâncianu M, Miron A, Antioxidant and cytotoxic activities of Phyllopora pseudoceranoides (Gmelin) New. et Tayl. Farmacia, 2016; 64(4): 502-506.

21. van Vuuren S, Viljoen A, Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta Med., 2011; 77(11): 1168-1182.