Unfolding communities in large complex networks: Combining defensive and offensive label propagation for core extraction

Lovro Šubelj and Marko Bajec

University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia

(Dated: January 14, 2013)

Label propagation has proven to be a fast method for detecting communities in large complex networks. Recent developments have also improved the accuracy of the approach, however, a general algorithm is still an open issue. We present an advanced label propagation algorithm that combines two unique strategies of community formation, namely, defensive preservation and offensive expansion of communities. Two strategies are combined in a hierarchical manner, to recursively extract the core of the network, and to identify whisker communities. The algorithm was evaluated on two classes of benchmark networks with planted partition and on almost 25 real-world networks ranging from networks with tens of nodes to networks with several tens of millions of edges. It is shown to be comparable to the current state-of-the-art community detection algorithms and superior to all previous label propagation algorithms, with comparable time complexity. In particular, analysis on real-world networks has proven that the algorithm has almost linear complexity, $O(m^{1.19})$, and scales even better than basic label propagation algorithm (m is the number of edges in the network).

PACS numbers: 89.75.Fb, 89.75.Hc, 87.23.Ge, 89.20.Hh

I. INTRODUCTION

Large real-world networks can comprise of local structural modules (communities) that are groups of nodes, densely connected within and only loosely connected with the rest of the network. Communities are believed to play important roles in different real-world systems (e.g., may correspond to functional modules in metabolic networks [1]); moreover, they also provide a valuable insight into the structure and function of large complex networks [1–3]. Nevertheless, real-world networks can reveal even more complex modules than communities [4, 5].

Over the last decade the research community has shown a considerable interest in detecting communities in real-world networks. After the seminal paper of Girvan and Newman [6] a vast number of approaches has been presented in the literature. In particular, approaches optimizing modularity Q (significance of communities due to a selected null model [7]) [8–12], graph partitioning [13, 14] and spectral algorithms [9, 15], statistical methods [4], algorithms based on dynamic processes [16–20], overlapping, hierarchical and multiresolution methods [1 6 20], and other [21] (for an excellent survey see [22]).

The size of large real-world networks has forced the research community in developing scalable approaches that could be applied to networks with several millions of nodes and billions of edges. A promising effort was made by Raghavan et al. [13], who employed a simple label propagation to find significant communities in large real-world networks. Tibely and Kertész [23] have shown that label propagation is in fact equivalent to a large zero-temperature kinetic Potts model, when Barber and Clark [11] have further refined the approach into a modularity optimization algorithm. Just recently, Liu and Murata [12] have combined the modularity optimization version of the algorithm with a multistep greedy agglomeration [24], and derived an extremely accurate community detection algorithm.

Leung et al. [19] have investigated label propagation on large web networks, mainly focusing on scalability issues, and have shown that the performance can be significantly improved with label hop attenuation and by applying node preference (i.e. node propagation strength). We proceed their work in developing two unique strategies of community formation, namely, defensive preser-
viation of communities, where preference is given to the nodes in the core of each community, and offensive expansion of communities, where preference is given to the border nodes of each community. Cores and borders are estimated using random walks, formulating the diffusion over the network.

Furthermore, we propose an advanced label propagation algorithm, diffusion and propagation algorithm, that combines the two strategies in a hierarchical manner – the algorithm first extracts the core of the network and identifies whisker communities [20] (appendix A), and then recurses on the network core (Fig. 1). The performance of the algorithm has been analyzed on two classes of benchmark networks with planted partition and on 23 real-world networks ranging from networks with tens of nodes to networks with several tens of millions of edges. The algorithm is shown to be comparable to the current state-of-the-art community detection algorithms and superior to all previous label propagation algorithms, with comparable time complexity. In particular, the algorithm exhibits almost linear time complexity (in the number of edges of the network).

The rest of the article is structured as follows. Section II gives a formal introduction to label propagation, and reviews subsequent advances, relevant for this research. Section III presents the diffusion and propagation algorithm and discusses the main rationale behind it. Empirical evaluation with discussion is done in section IV and conclusion in section V.

II. LABEL PROPAGATION AND ADVANCES

Let the network be represented by an undirected graph \(G(N,E) \), with \(N \) being the set of nodes of the graph and \(E \) being the set of edges. Furthermore, let \(c_n \) be a community (label) of node \(n \), \(n \in N \), and \(\mathcal{N}(n) \) the set of its neighbors.

The basic label propagation algorithm (LPA) [18] exploits the following simple procedure. At first, each node is labeled with an unique label, \(c_n = l_n \). Then, at each iteration, node is assigned the label shared by most of its neighbors (i.e. maximal label),

\[
c_n = \text{argmax}_l |\mathcal{N}^l(n)|,
\]

where \(\mathcal{N}^l(n) \) is the set of neighbors of \(n \) that share label \(l \) (in the case of ties, one maximal label is chosen at random). Due to the existence of multiple edges within the communities, relative to the number of edges between the communities, nodes in a community will adopt the same label after a few iterations. The algorithm converges when none of the labels change anymore (i.e. equilibrium is reached) and nodes sharing the same label are classified into the same community.

The main advantage of label propagation is its near linear time complexity – the algorithm commonly converges in less then 10 iterations (on networks of moderate size). Raghavan et al. [18] observed that after 5 iterations 95% of nodes already obtain their “right” label. Their observation can be further generalized: the number of nodes that change their label on first four iterations roughly follow the sequence 90%, 30%, 10%, 5%. However, due to the algorithm’s simplicity, the accuracy of identified communities is often not state-of-the-art (section V).

Leung et al. [19] have noticed that the algorithm, applied to large web networks, often produces a single large community, occupying more than a half of the nodes of the network. Thus, they have proposed a label hop attenuation technique, to prevent the label from spreading too far from its origin. Each label \(l_n \) has associated an additional score \(s_n \) (initially set to 1) that decreases after each propagation (Eq. (1)). Hence,

\[
s_n = \left(\max_{i \in N^c(n)} s_i \right) - \delta,
\]

with \(\delta \) being the attenuation ratio. When \(s_n \) reaches 0, the label can no longer propagate onward (Eq. (3)), which successfully eliminates the formation of a single major community [19].

Leung et al. [19] have also shown that hop attenuation has to be coupled with node preference \(f_i \) (i.e. node propagation strength), in order to achieve superior performance. The label propagation updating rule (Eq. (1)) is thus reformulated into

\[
c_n = \text{argmax}_l \sum_{i \in \mathcal{N}^l(n)} f^c_i s_i w_{ni},
\]

where \(w_{ni} \) is the edge weight (equal to 1 for unweighted graphs) and \(\alpha \) is a parameter of the algorithm. They have experimented with preference equal to the degree of the node, \(f_i = k_i \), and \(\alpha = 0.1 \), however, no general approach was reported.

Label hop attenuation in Eq. (2) can be rewritten into an equivalent form that allows altering \(\delta \) during the course of the algorithm [19]. One keeps the label distance from the origin \(d_n \) (initially set to 0) that is updated after each propagation.

\[
d_n = \left(\min_{i \in N^c(n)} d_i \right) + 1,
\]

when the score \(s_n \) is

\[
s_n = 1 - \delta d_n.
\]

Raghavan et al. [18] have already shown that the updating rule of label propagation (Eq. (1)), or its refinements (Eq. (3)), might prevent the algorithm from converging. Imagine a bipartite network with two sets of nodes, i.e. red and blue nodes. Let, at some iteration of the algorithm, all red nodes share label \(b_r \) and all blue nodes share label \(b_b \). Due to the bipartite structure of the network, at the next iteration, all red, blue nodes will adopt the original labels, failing the algorithm to converge.
The problem can be avoided with asynchronous updating [18]. Nodes are no longer updated all together, but sequentially, in random order. Thus, when node’s label is updated, (possibly) already updated labels of its neighbors are considered (in contrast to synchronous updating that considers only labels from the previous iteration). It should be noted that asynchronous updating can even increase the performance of the algorithm [19].

Furthermore, when a node has equally strong connections with two or more communities, its label would, in general, constantly change [18 19]. The problem is particularly apparent in author collaboration (co-authorship) networks, where a single author often collaborates with different research communities. On the collaboration network of network scientists [9] the basic label propagation algorithm fails to converge, as there are up to 10% of nodes that would change their label even after 10000 iterations – results suggest that there are at least 20% of nodes, i.e. over 300 scientists, collaborating with different research communities [28].

Leung et al. [19] suggested including concerned label itself into the maximal label consideration (and not merely neighbors’ labels); however, we use a slightly modified version [18]. When there are multiple maximal labels among neighbors, and one of them equals the concerned label, the node retains its label. The main difference here is that the modified version considers concerned label only when there exist multiple maximal labels among neighbors. On the discussed collaboration network, such an algorithm converges in around 4 iterations.

Never converging nodes can also be regarded as a clear signature of overlapping communities [1], where nodes can belong to multiple communities. Extension of label propagation to detect overlapping communities was just recently proposed by Gregory [29] (and previously discussed in [18 19]). However, due to simplicity, we investigate only basic (no-overlap) versions of the label propagation algorithm.

Another important issue of label propagation is the stability of identified community structure [18], especially in large networks. For more detailed discussion see [12 18 23].

Label propagation, with asynchronous updating, accesses the nodes in a random order. Nodes are then shuffled after each iteration, mainly to address the problems discussed above. Although this subsequent reshuffling does not increase the algorithm’s complexity, it does indeed increase its computational time. Nevertheless, results in Fig. 2 show that LPA without subsequent reshuffling of nodes (LPAS) only slightly decreases the performance of the basic LPA. Thus, all the approaches, presented in the following section, use asynchronous updating with a single (initial) shuffling of nodes.

III. DIFFUSION AND PROPAGATION ALGORITHM

The section presents diffusion and propagation algorithm that combines several approaches, also introduced in this section. We thus give here a brief review of these.

First, we further analyze label hop attenuation for LPA (section III A) and propose different dynamic hop attenuation strategies in section III B. Next, we consider various approaches for node propagation preference (section III C). By estimating node preference by means of the diffusion over the network, we derive two algorithms that result in two unique strategies of community formation, namely, defensive preservation and offensive expansion of communities. The algorithms are denoted defensive and offensive diffusion and attenuation LPA (DDLPA and ODALPA); and are presented in section III B.

The DALPA algorithms are combined into basic diffusion and propagation algorithm (BDPA), preserving the advantages of both defensive and offensive approach (section III C). BDPA already achieves superior results on networks of moderate size (section III D), for the use also with larger networks, the algorithm is further enhanced with core extraction and whiskers identification. The improved algorithm is denoted (general) diffusion and propagation algorithm (DPA); and is presented in section III C.

A. Dynamic hop attenuation

Hop attenuation has proven to be a reliable technique for preventing the emergence of a major community, occupying most of the nodes of the network [19]. It is, however, not evident what should the value of attenuation ratio δ be (Eq. (2)). Leung et al. [19] have experimented with values around 0.10, and obtained good results, still their experimental setting was rather limited. Furthermore, our preliminary empirical analysis suggests that there is no (simple) universal value for δ, applicable for all different types of networks (results are omitted).
Leung et al. [19] have also observed that large values of δ may prevent the natural growth of communities and have proposed a dynamic strategy that decreases δ from 0.50 towards 0. In the early iterations of the algorithm, large values of δ prevent a single label from rapidly occupying large set of nodes and ensure the emergence of a number of strong community cores. The value of δ is then decreased, to gradually relax the restriction and to allow formation of the actual communities depicted in the network topology. Results on real-world networks show that such a strategy has very good performance on larger networks (section IV); still, the results can be further improved. Empirical evaluation in section IV also proves that the strategy is too aggressive for smaller networks, where it is commonly outperformed even by basic LPA.

We propose different dynamic hop attenuation strategies, based on the hypothesis that hop attenuation should only be employed, when a community, or a set of communities, is rapidly occupying a large portion of the network. Otherwise, the restriction should be (almost) completely relaxed, to allow label propagation to reach the equilibrium unrestrained. Thus, the approach would retain the dynamics of label propagation and still prevent the emergence of a major community.

We have considered several strategies for detecting the emergence of a large community, or a set of large communities. Due to limited space, we limit the discussion to two. After each iteration, the value of δ (initially set to 0) is updated according to the following rule:

nodes: δ is set to the proportion of nodes that changed their label,

communities: δ is set to the proportion of communities (i.e. labels) that disappeared.

Both strategies successfully address the problem of a major community formation, however, the detailed comparison is omitted. The algorithms proposed here all use nodes strategy, due to much finer granularity, opposed to the communities approach – after 4 iterations the number of communities is, in general, already 20 times smaller than the number of nodes (section II); thus, the estimate of δ is rather rough for the communities strategy. For the empirical evaluation see section IV.

B. Defensive and offensive propagation

Leung et al. [19] have proved that using node preference, to increase the propagation strength (i.e. label spread) from certain nodes, can improve the performance of basic LPA. We conducted several experiments by using variations of different measures of node centrality for node propagation preference (i.e. degree and eigenvector centrality [30] [31] and node clustering coefficient [32]). Results are omitted, however, they clearly indicate that none of these static measures applies for all different types of networks (i.e. general networks).

We have also observed that good performance can be obtained by putting higher preference to the core of each community (i.e. to its most central nodes). For instance, on the Zachary’s karate club network [33], where three high degree nodes reside in the core of the two (natural) communities, degree and eigenvector centralities are superior. However, on Girvan and Newman [6] benchmark networks, where all the nodes have equal degree (on average), the measures render useless and are outperformed by node clustering coefficient. On the Lancichinetti et al. [27] benchmark networks, the best performance is, interestingly, obtained by inverted degree or eigenvector centrality. The measures seem to counterpart each node’s degree (low degree nodes have high propagation strength, and vice-versa), thus, the propagation utilizes merely the connectedness among nodes, disregarding its strength.

Based (also) on the above observations, we have developed two algorithms that estimate node preference by means of the diffusion over the network. During the course of algorithms, the diffusion is formulated using a random walker within each of the (current) communities of the network. The rationale here is twofold: (1) to estimate (the label) propagation within each of the (current) communities [34]; and (2) to derive an estimation of the core and border of each (current) community (with the core being the most central nodes of the community and the border being its edge nodes).

Let p_n be the probability that a random walker, utilized on the community labeled with c, visits node n. p_n can be computed as

$$p_n = \sum_{i \in N^\gamma(n)} p_i/k_i^{c_n},$$

where the sum goes over all the neighbors of n, within the community c_n, and $k_i^{c_n}$ is the intra-community degree of node i. The employed formulation is similar to the algorithms like PageRank [35] and HITS [36], and also to the basic eigenvector centrality measure.

Finally, we present the two algorithms mentioned above, namely, defensive and offensive diffusion and attenuation LPA (DDALPA and ODALPA). The defensive algorithm applies preference (i.e. propagation strength) to the core of each community, i.e. $f_n^D = p_n$, and the updating rule in Eq. (3) rewrites to

$$c_n = \arg\max_l \sum_{i \in N^\gamma(n)} p_i s_i w_{ni}. \quad (7)$$

On the other hand, the offensive version applies preference to the border of each community, i.e. $f_n^O = 1 - p_n$, and the updating rule becomes

$$c_n = \arg\max_l \sum_{i \in N^\gamma(n)} (1 - p_i) s_i w_{ni}. \quad (8)$$

Opposed to the algorithm of Leung et al. [19], the main novelty here is in considering (current) communities, found by the algorithm, to estimate the (current)
FIG. 3. (Color online) Comparison of defensive and offensive label propagation on two real-world networks, i.e., social network of American football matches on an U.S. college [6] and metabolic network of nematode Caenorhabditis elegans [37]. The revealed communities are shown with pentagonal nodes and the sizes, and intensities of colors (shadings), of nodes are proportional to the sizes of communities. The networks comprise two relatively different community structures, considering the distribution of sizes of the communities. That is rather homogeneous in the case of football and (presumably) power-law in the case of elegans.

Defensive and offensive label propagation algorithms result in two unique strategies of community formation, namely, defensive preservation and offensive expansion of communities. The defensive algorithm quickly establishes a larger number of strong community cores (in the sense of Eq. (7)) and is able to defensibly preserve them during the course of the algorithm. This results in an immense ability of detecting communities, even when they are only weakly defined in the network topology. On the other hand, the offensive approach produces a range of communities of various sizes, as commonly observed in the real-world networks [3, 18]. Laying the pressure on the border of each community expands those that are strongly defined in the network topology. This constitutes a more natural (offensive) struggle among the communities and results in a great accuracy of the communities revealed.

Comparison of the algorithms on two real-world networks is depicted in Fig. 3. The examples show that defensive propagation prefers networks with rather homogeneous distribution of the sizes of the communities; and that offensive propagation favors networks with more heterogeneous (e.g. power-law) distribution. It should, however, be noted that both approaches can achieve superior performance on both of the networks. Still, on average, the defensive approach performs better on social network football [6], when offensive outperforms defensive on the metabolic network elegans [37].

For an empirical analysis and further discussion of the algorithms see section IV; and for pseudo-code of the algorithms and discussion on some of the implementation issues see appendix B.

C. Diffusion and propagation algorithm

Defensive and offensive label propagation (section III B) convey two unique strategies of community formation. An obvious improvement would be to combine the strategies, thus, retaining the strong detection ability of the defensive approach and high accuracy of the offensive strategy. However, simply using the algorithms one after another does not attain the desired properties. The reason is that any label propagation algorithm, being run until convergence, finds local optimum (i.e. local equilibrium) that is hard to escape from.
FIG. 4. (Color online) Diagram of (general) diffusion and propagation algorithm (DPA). Algorithm combines defensive and offensive label propagation in a hierarchical manner (steps 1. and 2.), to extract the core of the network (red heptagon communities) and to identify whisker communities (blue triangle and orange square communities). Whiskers are retained as identified communities, when the algorithm is recursively applied to the core of the (community) network. The recursion continues until all of the nodes of the (current) network are classified into the same community (i.e. offensive propagation in step 2. flood-fills), when basic diffusion and propagation algorithm (BDPA) is applied (steps 3. and 4.). For more detailed discussion on the algorithms see text.

Raghavan et al. [18] have already discussed the idea (however, in different context) that label propagation could be improved, if one had a priori knowledge about community cores. Core nodes could then be labeled with the same label, leaving all the other nodes labeled with an unique label. During the course of the algorithm, the (uniquely labeled) nodes would tend to adopt the label of their nearest attractor (i.e. community core) and thus join its community. This would improve the algorithm’s stability [18] and also the accuracy of the identified communities (section IV).

The defensive and offensive label propagation algorithms are combined in the following manner. First, the defensive strategy is applied, to produce initial estimates of the communities and to accurately detect their cores. All border nodes of each community are then relabeled (labeled with an unique label), so that approximately one half of the nodes retain their original label. Last, the offensive strategy is applied, which refines the community cores and accurately detects also their borders. Such combined strategy preserves advantages of both, defensive and offensive, label propagation algorithms and is denoted basic diffusion and propagation algorithm (BDPA). Schematic representation of the algorithm is depicted in Fig. 4 (steps 3. and 4.).

The core (and border) of each community is estimated by means of diffusion p_n (section III B). As core nodes possess more intra-community edges than border nodes, this results in higher values of p_n for core nodes. Thus, within the algorithm, the node n is relabeled due to the following rule,

$$c_n = \begin{cases} c_n & \text{for } p_n > m_{c_n} \\ l_n & \text{for } p_n \leq m_{c_n}, \end{cases} \quad (9a)$$

where m_{c_n} is the median of values p_n, for nodes in community c_n, and l_n is an unique label. Thus, the core nodes retain their original labels, when all border nodes are relabeled. Note that all nodes, with p_n equal to median, are also relabeled, to adequately treat smaller communities, where most of the nodes share the same value of p_n.

Empirical evaluation shows that BDPA significantly outperforms basic LPA and also the algorithm of Leung et al. [19] on smaller networks. However, when networks become larger, the hop attenuation strategy of Leung et al. [19] produces much larger communities, with higher values of modularity (on average).

Different authors have proposed approaches that detect communities in a hierarchical manner (e.g. [10]). The algorithm is first applied to the original network and initial communities are obtained. One then constructs the community network, where nodes represents communities, and edges are added between them, when their nodes are connected in the original network. The
The idea was also proposed in the context of label propagation [19]; however, the authors did not report any empirical results. We have analyzed the behavior of hierarchical label propagation on real-world networks and also on benchmark networks with planted partition. The analysis has shown that, on the second iteration (when the algorithm is first run on the community network), the label propagation (already) produces one major community or even flood-fills (all nodes are classified into the same community).

Although the analysis revealed undesirable behavior, we have observed that the major community commonly coincides with the core of the network, where other communities correspond to whisker communities. Leskovec et al. [8] have extensively analyzed large social and information networks and observed that (these) networks reveal clear core-periphery structure – most of the nodes are in the central core of the network that does not have a clear community structure, whereas the best communities reside in the periphery (i.e. whiskers) that is only weakly connected with the core. For further discussion see appendix A.

Based on the above observations, we propose the following algorithm denoted (general) diffusion and propagation algorithm (DPA) – schematic representation of the algorithm is depicted in Fig. 4. First, defensive label propagation is applied to the original network (step 1.), which produces a larger number of smaller communities that are used to construct corresponding community network. Second, the offensive label propagation is used on the constructed community network (step 2.), to extract the core of the network (i.e. its major community) and to identify whisker communities (i.e. all other communities). The above procedure is then recursively applied only to the core of the (community) network, when the whisker communities are retained as identified communities. The recursion continues until the offensive propagation in step 2. flood-fills (i.e. extracted core contains all of the nodes of the network analyzed), when the basic BDPA is applied (steps 3. and 4.).

Empirical analysis on real-world networks shows that DPA outperforms all other label propagation algorithms (with comparable time complexity) and is comparable to current state-of-the-art community detection algorithms. Furthermore, the algorithm exhibits almost linear complexity (in the number of edges of the network) and scales even better than the basic LPA. It should also be noted that the application of the algorithm is not limited to networks that exhibit core-periphery structure.

For a thorough empirical analysis and further discussion on both presented algorithms see section IV and for pseudo-code of the algorithms and discussion on some of the implementation issues see appendix B.

IV. EVALUATION AND DISCUSSION

The section presents results of the empirical evaluation of the proposed algorithms.

Algorithms were first compared on two classes of benchmark networks with planted partition, namely, Girvan and Newman [6] and Lancichinetti et al. [27] benchmark networks. For the latter, we also vary the size of the networks (1000 and 5000 nodes) and the size of the communities (from 10 to 50 and from 20 to 100 nodes). Results are assessed in terms of normalized mutual information (NMI) [52] and are shown in Fig. 5.

Analysis clearly shows the difference between defensive and offensive propagation, especially on larger networks (Fig. 5(d,e)). The offensive propagation (ODALPA) performs slightly better than the basic LPA, and can still relatively accurately detect communities, when LPA already performs rather poorly (Fig. 5(d)). On the other hand, the defensive propagation (DDALPA) does not detect communities as accurately as the other two approaches (Fig. 5(d,e)), however, the algorithm still reveals the communities even when they are only weakly defined (and the other two approaches clearly fail). In other words, the defensive algorithm has high recall, whereas the offensive approach achieves high precision.

Furthermore, BDPA (and DPA) outperforms all three aforementioned algorithms. Note that the performance does not simply equal to the upper-hull of those for DDALPA and ODALPA. The analysis also shows that core extraction (i.e. DPA) does not improve the results on networks with thousands of nodes or less; the slight improvement on Girvan and Newman [6] benchmark results only from hierarchical investigation, and not core extraction. Nevertheless, as shown below, the results can be significantly improved on larger networks.

Lancichinetti and Fortunato [53] have conducted a thorough empirical analysis of more than 10 state-of-the-art community detection algorithms. To enable the comparison, the benchmark networks in Fig. 5 were selected so they exactly coincide with those used in [53]. By comparing the results, we can conduct that DPA does indeed perform at least as good as the best algorithms analyzed in [53], namely, hierarchical modularity optimization of Blondel et al. [10], model selection approach of Rosvall and Bergstrom [16], spectral algorithm proposed by Donetti and Munoz [15] and multiresolution spin model of Ronhovde and Nussinov [20]. Moreover, on larger networks (Fig. 5(d,e)), DPA obtains even better results than all of the algorithms analyzed in [53] – for $\mu = 0.8$, none of the analyzed algorithms can obtain NMI above ≈ 0.35, when the values for DPA are 0.651, 0.541 respectively.

DPA (and BDPA) was further analyzed on 23 real-world networks (Table 1), ranging from networks with tens of nodes to networks with several tens of millions of edges [54]. To conduct a general analysis, we have considered a wide range of different types of real-world networks, in particular, social, communication, citation,
FIG. 5. (Color online) Comparison of the proposed algorithms on two classes of benchmark networks with planted partition, namely, Girvan and Newman [6] benchmark networks and four sets of Lancichinetti et al. [27] benchmark networks (the results are averages over 100 realizations). Network sizes equal 128, 1000 and 5000 nodes; and communities comprise of up to 100 nodes. (Gray) straight lines at $\mu = 0.5$ denote the point beyond which the communities are no longer defined in the strong sense [13].

collaboration, web, Internet, biological and other networks (all networks were treated as unweighted and undirected). Due to a large number of networks considered, detailed description is omitted.

DPA algorithm was compared with all other proposed label propagation algorithms (due to our knowledge) and a greedy modularity optimization approach (Table I). The algorithms are as follows: LPA denotes basic label propagation [18] and LPAD denotes LPA with decreasing hop attenuation and node preference equal to the degree of the node [19] (section II). The modularity optimization version of LPA is denoted LPAQ [11] and its refinement with multistep greedy merging LPAM [12]. Furthermore, GMO denotes greedy modularity optimization proposed by Clauset et al. [8].

For each algorithm, we report peak (maximal) modularities obtained on the networks analyzed. Modularities for LPA, LPAD, BDPA and DPA were obtained by running the algorithms from 2 to 100000 times on each network (depends on the size of the network). On the other hand, peak modularities for LPAQ and LPAM (and also GMO) were reported by Liu and Murata [12].

The results show that DPA outperforms all other label propagation algorithms, except LPAM on networks of medium size (i.e. *elegans*, *emails*, *pgp* and *codmat*). However, further analysis reveals that, on these networks, LPAM already has considerable time complexity compared to DPA. It should also be noted that modularities, obtained by LPAM on three of these networks, correspond to the highest modularity values ever reported in the literature. Similarly, peak modularities obtained by DPA (and some others) on smaller networks also
equal the highest modularities ever published (due to our knowledge, the modularity for football even slightly exceeds the highest value ever reported, i.e. 0.606, opposed to 0.605). In summary, DPA obtains significantly higher values of modularity than other comparable label propagation approaches, especially on larger networks (with millions of nodes and edges).

As already discussed in section III C, BDPA achieves superior results on smaller networks, better than LPA, LPAQ and LPAD (and GMO). However, the algorithm is not appropriate for larger networks, where hierarchical core extraction prevails (i.e. DPA).

We have also analyzed the number of core extractions (section III C), made by DPA on these networks (Table I). Core extraction does not gain on networks with less than thousands of nodes or edges, where the average number is commonly close to 0. However, when networks become larger, a (single) core extraction produces a significant gain in modularity (on these networks). Interestingly, even on the network with several millions of nodes and several tens of millions of edges (i.e. live), the number of extractions is still 1 (on average).

Next, we have thoroughly compared the time complexity of a single LPA and DPA (and also LPAM [12]). On each iteration of the algorithms, each edge of the network is visited (at most) twice. Thus the time complexity of a single iteration equals $O(m)$, with m being the number of edges. The complexity for DPA is even lower, after the core has been extracted, however, due to simplicity, we consider each iteration to have complexity $O(m)$.

Iterative algorithms (like label propagation) are commonly assessed only on smaller networks, where the number of iterations can be bounded by a small constant. In this context, both LPA and DPA exhibit near linear complexity, $O(m)$. However, on networks with thousands or millions of nodes and edges, this “constant” indeed increases – even for simple LPA, which is known by its speed, the number of iterations notably increases on larger networks. We have thus analyzed the total number of iterations, made by the algorithms on real-world networks (Table I). The results are shown in Fig. 6 (the number of edges m is chosen to represent the size of the network). Note that the number of iterations for DPA corresponds to the sum of the iterations, made by all of the algorithms run within (i.e. DDALPA, ODALPA and BDPA).

As already discussed earlier, DPA (and LPA) scale much better than LPAM – the average number of iterations on the network with tens of millions of edges is 147, 78 for DPA, LPA respectively, when LPAM already exceeds 300 iterations on networks with tens of thousands of edges. Furthermore, results also show that DPA scales

Network	Description	Nodes	Edges	GMO	LPA	LPAD	LPAQ	LPAM	BDPA	DPA	# c.e.	time
karate	Zachary’s karate club.	34	78	0.381	0.416	0.402	0.399	**0.420**	**0.419**	**0.420**	0.02	
dolphins	Lusseau’s bottlenose dolphins.	62	159	**0.529**	0.526	0.516	0.526	0.528	0.528	0.529	0.59	
books	Co-purchased political books.	105	441	**0.526**	0.519	0.522	**0.527**	0.527	0.527	0.527	0.46	
football	American football league.	115	616	0.556	**0.606**	**0.606**	0.604	**0.605**	**0.606**	**0.606**	0.37	
elegans	Metabolic network C. elegans.	453	2078	**0.526**	0.421	0.421	0.409	**0.452**	0.424	**0.427**	0.17	
jazz	Jazz musicians.	198	2742	0.439	0.443	0.443	**0.445**	**0.445**	**0.444**	0.00		
netsci	Network scientists.	1589	2742	0.902	0.947	0.907	**0.960**	1.00				
yeast	Yeast protein interactions.	2114	4480	0.694	**0.738**	**0.703**	0.725	**0.824**	1.04			
emails	Emails within an university.	1133	5451	0.503	0.557	0.560	0.537	**0.582**	0.555	**0.562**	0.01	
power	Western U.S. power grid.	4941	6594	0.612	0.804	0.668	0.908	1.14				
blogs	Weblogs on politics.	1490	16718	**0.426**	**0.426**	**0.426**	**0.426**	1.00				
ppp	PGP web of trust.	10680	24340	0.849	0.754	0.844	0.726	**0.884**	0.782	**0.869**	1.08	
asi	Autonomous syst. of Internet.	22963	48436	0.511	0.591	0.528	**0.606**	1.02	0 s			
codmat5	Cond. Matt. archive 2003.	27519	116181	0.661	0.683	0.582	**0.755**	0.634	**0.735**	1.00	1.5 s	
codmat5	Cond. Matt. archive 2005.	36458	171736	0.586	0.643	0.608	0.683	1.00				
knn5	KDD-Cup 2003 dataset.	27770	352285	0.624	**0.630**	0.619	0.617	1.00	3 s			
nec	nec web overlay map.	75885	357317	0.693	0.738	0.703	**0.767**	1.03				
epinions	Epinions web of trust.	75879	508837	0.382	0.362	0.399	**0.402**	1.00	4.5 s			
amazon3	Amazon co-purchasing 2003.	262111	1.2M	0.682	0.749	0.701	**0.857**	1.01	20 s			
ndedu	Webpages in nd.edu domain.	325729	1.5M	0.840	0.890	0.863	**0.903**	1.14				
google	Web graph of Google.	875713	4.3M	0.805	0.923	0.822	**0.968**	1.01	2.5 m			
nber	NBER patents citations.	3.8M	16.5M	0.573	0.624	0.583	**0.759**	1.20				
live	Live Journal friendships.	4.8M	69.0M	0.538	0.539	0.557	**0.693**	1.00	44 m			

\(^a\) Reduced to the largest component of the original network.
\(^b\) Obtained with slightly modified version of DPA (see caption).
\(^c\) Average number of core extractions and computational times for DPA.

TABLE I. Peak (maximal) modularities Q for various label propagation algorithms and a greedy optimization of modularity. The modularity for DPA for elegans was obtained with $\delta_{\text{max}} = 1$ and for asi with $\delta_{\text{max}} = 0$ (appendix [3]); else the values are 0.420 and 0.588 respectively. Opaque solid values correspond to the approaches that have significant time complexity compared to DPA.
even better than simple LPA (i.e. $O(m^{1.19})$, opposed to $O(m^{1.23})$), however, it is outperformed by LPA due to a larger constant. Nevertheless, the analysis shows promising results for future analyses of large complex networks.

In the context of analyzing large networks, it should be mentioned that by far the fastest convergence is obtained by using the defensive propagation algorithm DDALPA (section III B). On the largest of the networks (i.e. live), the algorithm converges in only 25 iterations (three times faster than LPA), still, the modularity of the revealed community structure is only 0.470.

Last, we have also studied the stability of DPA (and BDPA), and compare it with simple LPA. The latter is known to find a large number of distinct community structures in each network [12,18,23], when Tibely and Kertész [23] have also argued that these are relatively different between themselves. Indeed, on zachary network LPA revealed 628 different community structures (in 10000 iterations), when this number equals 159, 124 for BDPA, DPA respectively. However, as the number of distinct communities can be misleading, we have rather directly compared the identified community structures.

In Table II we show mean pairwise NMI of distinct community structures that were identified by the algorithms on selected set of real-world networks. DPA (and BDPA) shows to be more stable than LPA, moreover, the identified community structures are relatively similar for all of the algorithms considered (in most networks analyzed). Interestingly, the results also seem to correlate with revealed modularities in Table I – clearer the community structure of the network, more stable the algorithms appear. Nevertheless, as indicated by various authors before [18,23], the number of different community structures can be very high, specially in larger networks (e.g., 1116, 1330 for DPA applied to football, jazz network respectively).

(Cumulative) distributions of sizes of communities, revealed with the proposed algorithms on three real-world networks, are shown in Fig. 7.

V. CONCLUSION

The article proposes an advanced label propagation community detection algorithm that combines two unique strategies of community formation. The algorithm analyzes the network in a hierarchical manner that recursively extracts the core of the network and identifies whisker communities. Algorithm employs only local measures for community detection, and does not require the number of communities to be specified beforehand. The proposition was rigorously analyzed on benchmark networks with planted partition and on a wide range of real-world networks, with up to several millions of nodes and tens of millions of edges. The performance of the algorithm is comparable to the current state-of-the-art community detection algorithms, moreover, the algorithm exhibits almost linear time complexity (in the number of edges of the network) and scales even better than the basic label propagation algorithm. The proposal thus gives prominent grounds for future analysis of large complex networks.

The work also provides further understanding on dynamics of label propagation, in particular, how different propagation strategies can alter the dynamics of the process and reveal community structures, with unique properties.

ACKNOWLEDGMENTS

The authors wish to thank (anonymous) reviewers for comments and criticisms that helped on improving the article. The work has been supported by the Slovene Research Agency ARR S within the research program P2-0359.

Network	Nodes	Edges	LPA	BDPA	DPA
karate	34	78	0.574	0.578	0.660
dolphins	62	159	0.714	0.762	0.774
books	105	441	0.737	0.803	0.805
football	115	616	0.878	0.896	0.897
elegans	453	2025	0.610	0.615	0.618
jazz	198	2742	0.602	0.748	0.808

TABLE II. Mean pairwise NMI of distinct community structures identified by different label propagation algorithms in 10000 iterations (on selected set of networks from Table I).
Appendix A: Core-periphery structure

Leskovec et al. [3] have conducted an extensive analysis of large social and information, and some other, networks. They have observed that these networks can be clearly divided into the central core and remaining periphery (i.e. core-periphery structure). Periphery is constituted of many small, well defined communities (in terms of conductance [55]) that are only weakly connected to the rest of the network. When they are connected by a single edge, they are called whiskers (or 1-whiskers). On the other hand, the core of the network consists of larger communities that are well connected between, and thus only loosely defined in the sense of communities. Their analysis have thus revealed that the best communities (due to conductance) reside in the periphery of these networks (i.e. whiskers), and have a characteristic size of around 100 nodes. For further discussion see [3, 56].

Appendix B: Algorithms

In this section we give the pseudo-code of all the algorithms, proposed in the article (Fig. 8, Fig. 9 and Fig. 10), and discuss some of the implementation issues.

Due to the nature of label propagation, it may be that, when the algorithm converges, two (disconnected) communities share the same label. This happens when node propagates its label in two direction, but is itself relabeled in the later stages of the algorithm. Nevertheless, disconnected communities can be detected at the end using a simple breath-first search.

Each run of BDPA or DPA (Fig. 9, Fig. 10) unfolds several sets of communities and the best are returned at the end (due to some measure of goodness of communities). For the analysis in section IV, algorithms reported community structure that obtained highest modularity (computed on the original network). Thus, the results might be attributed to modularity’s resolution limit problem [57], or other limitations [58], still, this is not a direct artefact of the algorithms.

Additional note should be made for the offensive propagation algorithm ODALPA (Fig. 8). When used on networks with several thousands of nodes or less, diffusion values p_n should only be updated (line 13) after the first iteration, otherwise the algorithm might not converge. The reason is that, during the first iteration, communities are still rather small (due to the size of the network) and thus all of the nodes lay in the border of the communities. Hence, updating diffusion values results in applying propagation preference to all of the nodes.

[1] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature, 435, 814 (2005).
[2] E. Ravasz and A. Barabási, Phys. Rev. E, 67, 026112
Communities k

Input: Graph $G(N,E)$ with weights W
Output: Communities C (i.e. node labels)

1. $\delta \leftarrow 0$
2. for $n \in N$ do
 3. $c_n \leftarrow l_n$ \{Unique label.\}
 4. $d_n \leftarrow 0$
 5. $p_n \leftarrow 1/|N|$
3. end for
4. shuffle(N)
5. while not converged do
6. for $n \in N$ do
7. $c_n \leftarrow \arg \max_i \sum_{i \in \mathcal{N}(n)} p_i (1 - \delta d_i) w_{ni}$
8. if c_n has changed then
9. $d_n \leftarrow \left(\min_{i \in \mathcal{N}(n)} d_i \right) + 1$
10. $p_n \leftarrow \sum_{i \in \mathcal{N}(n)} p_i / k_i$
11. end if
12. end for
13. $\delta \leftarrow \text{proportion of labels changed}$
14. if $\delta \geq \delta_{\text{max}}$ then
15. δ_{max} is fixed to $\frac{1}{2}$.
16. end if
17. end while
18. return C

FIG. 8. Defensive label propagation algorithm with (dynamic) hop attenuation (DDALPA). In the offensive version (ODALPA), the node preference p_i is replaced by $1 - p_i$ (line 10) and the degree k_i is replaced by k_i (line 13).

Input: Graph $G(N,E)$ with weights W
Output: Communities C (i.e. node labels)

$C \leftarrow \text{DDALPA}(G,W)$
for $c \in C$ do
 {Retain community cores.}
 $m_c \leftarrow \text{median}\{p_n \mid n \in N \land c_n = c\}$
 for $n \in N \land c_n = c \land p_n \leq m_c$ do
 $c_n \leftarrow l_n$ \{Unique label.\}
 $d_n \leftarrow 0$
 $p_n \leftarrow 0$ \{Maximal preference.\}
 end for
end for
$C \leftarrow \text{ODALPA}(G,W)$
return C \{Returns best communities.\}

FIG. 9. Basic diffusion and propagation algorithm (BDPA).

Input: Graph $G(N,E)$ with weights W
Output: Communities C (i.e. node labels)

$C \leftarrow \text{DDALPA}(G,W)$
$C_C \leftarrow \text{ODALPA}(G_C,W_C)$
if C_C contains one community then
 $C \leftarrow \text{BDPA}(G,W)$
else
 {Recursion on core c in C_C.}
 $C \leftarrow (C_C - \{c\}) \cup \text{DPA}(G_C(c),W_C(c))$
end if
return C \{Returns best communities.\}

FIG. 10. Diffusion and propagation algorithm (DPA).
counterpart of the approach would produce more accurate results in practice.

[35] S. Brin and L. Page, Comput. Networks ISDN, 30, 107 (1998).

[36] J. M. Kleinberg, J. ACM, 46, 604 (1999).

[37] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. Barabási, Nature, 407, 651 (2000).

[38] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, Behav. Ecol. Sociobiol., 54, 396 (2003).

[39] V. Krebs, “A network of co-purchased books about U.S. politics.” http://www.orgnet.com/ (2008).

[40] P. Gleiser and L. Danon, Adv. Complex Syst., 6, 565 (2003).

[41] H. Jeong, S. P. Mason, A. Barabási, and Z. N. Oltvai, Nature, 411, 41 (2001).

[42] R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A. Arenas, Phys. Rev. E, 68, 065103 (2003).

[43] L. A. Adamic and N. Glance, in Proceedings of the International Workshop on Link Discovery (2005) pp. 36–43.

[44] M. Boguná, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas, Phys. Rev. E, 70, 056122 (2004).

[45] M. E. J. Newman, P. Natl. Acad. Sci. USA, 98, 404 (2001).

[46] arXiv citation network on high energy particle physics (KDD-Cup 2003 dataset). http://www.sigkdd.org/kddcup/ (2003).

[47] M. Hoerdt, M. Jaeger, A. James, D. Magoni, J. Maillard, D. Malka, and P. Merindol, “Internet IPv4 overlay map produced by network cartographer (nec).” http://www.labri.fr/perso/magoni/nec/ (2003).

[48] M. Richardson, R. Agrawal, and P. Domingos, in Proceedings of the International Semantic Web Conference, Vol. 2 (2003) pp. 351–368.

[49] J. Leskovec, L. A. Adamic, and B. A. Huberman, ACM Trans. Web, 1 (2007).

[50] R. Albert, H. Jeong, and A. Barabási, Nature, 401, 130 (1999).

[51] B. H. Hall, A. B. Jaffe, and M. Tratjenberg, The NBER patent citation data file: Lessons, insights and methodological tools, Tech. Rep. (National Bureau of Economic Research, 2001).

[52] L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas, J. Stat. Mech., P09008 (2005).

[53] A. Lancichinetti and S. Fortunato, Phys. Rev. E, 80, 056117 (2009).

[54] The analysis on networks with hundreds of millions or even billions of edges was bounded due to limited memory resources.

[55] B. Bollobás, Modern graph theory (Springer-Verlag, 1998).

[56] J. Leskovec, K. J. Lang, and M. W. Mahoney, in Proceedings of the ACM International Conference on World Wide Web (2010).

[57] S. Fortunato and M. Barthelemy, P. Natl. Acad. Sci. USA, 36 (2007).

[58] B. H. Good, Y. de Montjoye, and A. Clauset, Phys. Rev. E, 81, 046106 (2010).