ОЦЕНКА СЕЙСМОСТОЙКОСТИ ВЫСОТНЫХ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ ВОЗДЕЙСТВИЯХ УРОВНЯ «МАКСИМАЛЬНОЕ РАСЧЕТНОЕ ЗЕМЛЕТРЯСЕНИЕ» НЕЛИНЕЙНЫМ СТАТИЧЕСКИМ МЕТОДОМ

Аннотация. В статье рассмотрен мультимодальный нелинейный статический метод (MNSM) при оценке сейсмостойкости высотных сооружений. Объектом исследования является ветроэлектрическая установка высотой 80 метров. В статье предложена методика учета высших форм колебаний, а также модифицированный алгоритм поиска характерической точки при оценке сейсмостойкости нелинейным статическим методом. Для верификации полученных результатов выполнен расчет на сейсмическое воздействие уровня «Максимальное Расчетное Землетрясение» («MCE») с использованием прямого динамического метода, учитывая возможность развития неупругих деформаций и локальных хрупких разрушений. Выполнен сравнительный анализ результатов, по результатам которого погрешность в расчетах не превышает 12%.

Ключевые слова: сейсмическое воздействие, проектное землетрясение, максимальное расчетное землетрясение, линейно-спектральный анализ, нелинейный статический метод (PushoverAnalysis), прямой динамический метод, ветроэлектрическая установка.

SEISMIC RESISTANCE ESTIMATION OF HIGH-RISE STRUCTURES UNDER DUCTILITY LEVEL EARTHQUAKE BY NONLINEAR STATIC METHOD

Abstracts. The article discusses the multimodal nonlinear static method (MNSM) in assessing the seismic resistance of high-rise structures. The object of the study is a wind power plant 80 meters high. The article proposes a method for factoring in the highest forms of vibrations, as well as a modified algorithm for finding a characteristic point when assessing seismic resistance by a nonlinear static method. To verify the results obtained, the calculation for the seismic effect of the level "Maximum Design Earthquake" ("MCE") was performed using the direct dynamic method, taking into account the possibility of development of inelastic deformations and local brittle fractures in the load-bearing structural elements. A comparative analysis of the results was carried out, according to the results of which the error in the calculations does not exceed 12%.

Keywords: seismic impact, strength level earthquake, ductility level earthquake, response spectrum analysis, nonlinear static method (Pushover Analysis), time history analysis, steel structures, wind power plant.
Введение
Как правило, оценка сейсмоустойчивости высотных зданий и сооружений при сейсмическом воздействии уровня «Максимальное Расчетное Землетрясение» (МРЗ) выполняется во временной области с применением инструментальных или синтезированных акселерограмм. Формирование расчетных динамических моделей выполняется с учетом возможности развития в несущих элементах конструкции неупругих деформаций и локальных хрупких разрушений [1]. Данная метод наиболее точно описывает отклик системы при землетрясении, но является весьма трудоемким и требует значительных временных затрат при интегрировании уравнений движения. В последнее время значительное внимание уделяется альтернативным методом оценки сейсмоустойчивости, из которых наибольшее распространение получил нелинейный статический метод или Pushover-Analysis. Отклик системы вычисляется на основании нелинейного статического расчета, при котором на расчетную модель действует моно-тонно возрастающим инерционным силами с постоянным по высоте распределением. Критерий окончания расчета — достижение системой целевых перемещений либо ее разрушение. Предложенные системы распределения инерционных сил не учитывают влияние высших форм колебаний на общий отклик системы. В работах [2], [3], [4] для решения данной проблемы предложена изменяющаяся во времени система инерционных сил. В исследованиях [5], [6], [7] при оценке сейсмоустойчивости систем помимо главной формы колебаний дополнительно выполнялся Pushover-анализ, в котором система инерционных сил соответствовала высшим формам колебаний.
В работе [8] был предложен мультимодальный нелинейный статический метод («МНСМ»), позволяющий учесть необходимое количество форм высших колебаний. Предложенный метод значительно упрощает поиск характеристической точки на кривой несущей способности за счет введения понятия энергоемкости системы. В данной статье детально описан МНСМ, представлены результаты расчетов МНСМ и прямым динамическим методом для высотных сооружений — ветроэлектрических установок (ВЭУ).

Методика учета высших форм колебаний
Для определения отклика системы с учетом влияния высших форм колебаний рассмотрим следующий метод, для чего введем понятие модифицированной системы инерционных сил.

Под модифицированной системой инерционных сил будем понимать систему сил, полученную на основании суперпозиции сил методом «Корень Квадратный Суммы Квадратов» [9], при которой перемещение верха рассматриваемой расчетной модели будет соответствовать суммарным перемещениям, полученным на основании линейно-спектрального анализа. Графическое представление сложения инерционных сил выполнено на рисунке 1.

Рисунок 1 — Графическое представление метода суммирования модальных откликов «Корень Квадратный Суммы Квадратов»
Безопасность зданий и сооружений

Таким образом, модифицированная система инерционных сил определяется выражением (1):

$$R_{sum} = \alpha \left(\sum_{i=1}^{n} R_i^2 \right)^{1/2}$$

где R_i – модальный отклик конструкции, соответствующий i-й форме собственных колебаний;

$$\alpha = \frac{\Delta_{RSA}}{\Delta_{SRSS}}$$ – коэффициент редуцирования, равный соотношению максимального перемещения верха системы Δ_{RSA}, полученного на основании линейно-спектральной теории, к перемещениям Δ_{SRSS}, полученным на основании модифицированной системы сил.

Согласно [10], [11] для разрушения материала, независимо от того, какая будет приложена нагрузка (т.е. статическое медленное загружение, динамическое – быстрое загружение, однократное или многократное), необходимо затратить одно и то же количество энергии. Таким образом, энергия деформации линейной системы с модифицированной системой инерционных сил тождественна энергии деформации системы с учетом пластических деформаций. Целевое значение энергоёмкости системы возможно определить на основании модифицированной системы инерционных сил (рисунок 2):

$$W_i = \frac{V_i \Delta_i}{2}$$

где V_i – сдвигающая сила в основании системы, полученная на основании линейно-спектрального анализа;

Δ_i – перемещение верха системы.

Следующим этапом оценки сейсмостойкости является построение на основании нелинейного статического расчета системы с одной степенью свободы при действии модифицированной системы инерционных сил графика зависимости «Усилие в основании V – Смещение верха системы Δ» – график несущей способности. Учитывая, что энергии упругой и упругопластической деформации равны, полученное значение перемещения верха системы Δ_p, является целевым значением для оценки сейсмостойкости всей системы в целом, на осно- вании которого возможно определить междурядные смещения, внутренние усилия в элементах системы, а также проанализировать заупругую работу узлов и элементов системы.

В зависимости от положения характеристической точки на кривой несущей способности возможно оценить общий характер повреждения конструкции в целом.

Постановка задачи и описание расчетной модели

Современные ВЭУ - это машины, преобразующие энергию ветра в механическую энергию вращающегося ветроколеса, а затем в электрическую энергию. Общий вид таких установок представлен на фото 1.

Ветроэлектрические установки состоят из следующих основных компонентов:

– Ветроколесо (ротор), преобразующее энергию набегающего ветрового потока в механическую энергию вращения оси турбины. Диаметр ветроколеса колеблется от нескольких метров до нескольких десятков метров. Частота вращения составляет от 15 до 100 об/мин;

– Мультипликатор – промежуточное звено между ветроколесом и электрогенератором, который повышает частоту вращения вала ветроколеса и обеспечивает согласование с оборотами генератора;

– Башня (ее иногда укрепляют стальными растяжками), на которой установлено ветроколесо. У ВЭУ большой мощности высота башни достигает 100 м. Обычно это цилиндрические мачты, хотя применяются и решетчатые башни;
– Основание (фундамент).
Характеристики рассматриваемой ВЭУ представлены в таблице 1. Башня – трёхсекционная тонкостенная стержень-оболочка; толщина стенки нижней секции – t_1=30 мм, средней – t_2=25 мм и верхней – t_3=15 мм, башня имеет диаметр сечения по внешнему периметру внизу – D_1= 4,3 м, наверху – D_2= 2,6 м.

Рисунок 2 – Графическое представление метода суммирования модальных откликов «Корень Квадратной Суммы Квадратов»: а) упругая работа; б) упругопластическая работа; в) равенство энергии при упругой и упругопластической работе

Фото 1 – Ветроэлектрическая установка Acciona AW-82-1500 класса IEC III В

Расчетная сейсмичность площадки строительства принята по результатам сейсмического микрорайонирования и составляет 8 баллов по шкале MSK-64. Исходное сейсмическое воздействие задано однокомпонентной акселерограммой, представленной на рисунке 3.

В качестве материала конструкций для расчетной динамической модели (РДМ) принята сталь, диаграмма деформирования которой представлена на рисунке 4. Для описания нелинейной работы элементов системы принята модель изотропного упрочнения материала (Bilinear Kinematic Hardening) [12]. Диаграммы деформирования стали при растяжении и сжатии принимают одинаковыми, с учетом нормируемых сопротивлений стали растяжению и сжатию. Поверхность текучести описывается критерием Вон-Мизеса и представляет из себя цилиндр, ось которого совпадает с осью гидростатического сжатия в осях главных напряжений.
Рисунок 3 Акселерограмма горизонтальной компоненты землетрясения

Рисунок 4 – Диаграмма деформирования стали при изотропном упрочнении

Таблица 1 – Характеристики ветроэлектрической установки

№	Наименование	Значение
1	Установленная мощность, МВт	1.5
2	Ометаемая площадь, м²	5345
3	Количество лопастей, шт.	3
4	Диаметр ветроколеса, м	82
5	Длина одной лопасти, м	39
6	Масса одной лопасти, кг	5780
7	Масса ротора, кг	32340
8	Масса гондолы, кг	52500
9	Высота башни до оси ступицы, м	80
10	Радиус ступицы, м	3.3
Анализ результатов расчета
Для оценки сейсмостойкости РДМ мультибимальным нелинейным статическим методом (МНСМ) согласно выражению (1) найдем модифицированную систему инерционных сил на основании линейно-спектрального анализа.
Полученная модифицированная система инерционных сил, коэффициенты редуцирования, сдвигающая сила в основании, энергоемкость системы, а также полученные результаты по перемещениям точек системы и внутренним усилиям представлены в таблице 3. Сопоставление результатов приведено в таблице 4.

Таблица 3 – Результаты расчета мультибимальным нелинейным статическим методом

№	Наименование	Значение
1	Инерционная сила в уровне верхнего узла после сложения модальных откликов, кг	12951.41
2	Инерционная сила в уровне среднего узла после сложения модальных откликов, кг	10218.39
3	Инерционная сила в уровне нижнего узла после сложения модальных откликов, кг	9419.69
4	Суммарная модальная масса учитываемых форм колебаний, %	98.689
5	Максимальные перемещения верхнего узла по результатам расчета на основе линейно-спектральной теории, мм	129.07
6	Максимальные перемещения верхнего узла при действии модифицированной системы инерционных сил, мм	217.44
7	Коэффициент редуцирования	0.59359
8	Максимальная суммарная поперечная сила в заделке системы при действии редуцированной системы инерционных сил, кН	189.71
9	Потенциальная энергия деформации системы / Энергоемкость системы, кДж	122.42
Таблица 3

№	Наименование	Значение
10	Максимальные перемещения верхнего узла системы по результатам расчета МНСМ, мм	130.71
11	Максимальные перемещения среднего узла системы по результатам расчета МНСМ, мм	59.58
12	Максимальные перемещения нижнего узла системы по результатам расчета МНСМ, мм	16.05

Таблица 4 – Оценка погрешности МНСМ для РДМ при сейсмическом воздействии

Сравниваемый параметр	Прямой динамический метод	Нелинейный статический метод	Погрешность, %
Верхний узел H=80 m	133.99	130.71	-2.45
Средний узел H=52 m	56.23	59.58	+5.62
Нижний узел H=26 m	14.27	16.05	+11.09

Выводы

В процессе математического исследования выполнены расчеты во временной области с использованием записей ускорений, построена кривая несущей способности, выполнен нелинейный статический расчет и модальный анализ для расчетной модели несущих конструкций ветроэлектрической установки.

Для учета влияния высших форм колебаний при оценке сейсмостойкости систем использована методика поиска начальных инерционных сил для последующего нахождения характерной точки на графике несущей способности системы – мультимодальный нелинейный статический метод. Полученные результаты сравнивались с откликом системы, полученным прямым динамическим методом. По результатам выполненного комплекса расчетов можно сделать вывод о целесообразности применения предложенной методики. Максимальная погрешность результатов расчетов не превышает 12%, обеспечивая при этом запас при оценке сейсмостойкости. Авторами предложен алгоритм, позволяющий автоматизировать предложенную методику [13].

Стоит отметить, что при меньших затратах машинного времени мультимодальный нелинейный статический метод может быть достойной альтернативой прямому динамическому методу.

СПИСОК ЛИТЕРАТУРЫ

1. СП 14.13330.2014. Строительство в сейсмических районах. М.:2014.
2. Fajfar P., Fischinger M. (1988). N2—A Method for Nonlinear Seismic Analysis of Regular Structures. Proceedings, Ninth World Conference on Earthquake Engineering. Vol. 5. Pp. 111-116. Tokyo-Kyoto, Japan.
3. Bracci, J.M., Kunnath, S.K. and Reinhorn, A.M. (1997). Seismic Performance and Retrofit Evaluation for Reinforced Concrete Structures. American Society of Civil Engineers, Journal Structural Engineering, Vol. 123. No. 1. Pp. 3-10.
4. Gupta B., Kunnath S.K. Adaptive Spectra-based Pushover Procedure for Seismic Evaluation of Structures. Earthquake Spectra. 2000. Vol. 16. No. 2. Pp. 367-392, Earthquake Engineering Research Institute, Oakland, California
REFERENCES

1. SP 14.13330.2014. Seismic Building Design Code. Moscow: 2014
2. Fajfar P., Fischinger M. N2—A Method for Nonlinear Seismic Analysis of Regular Structures. Proceedings, Ninth World Conference on Earthquake Engineering, 1988. Vol. 5. Pp. 111-116. Tokyo-Kyoto, Japan.
3. Bracci J.M., Kunnath S.K., Reinhorn A.M. Seismic Performance and Retrofit Evaluation for Reinforced Concrete Structures. American Society of Civil Engineers, Journal Structural Engineering. 1977. Vol. 123. No. 1. Pp. 3-10.
4. Gupta B., Kunnath S.K. Adaptive Spectra-based Pushover Procedure for Seismic Evaluation of Structures. Earthquake Spectra. 2000. Vol. 16. No. 2. Pp. 367-392. Earthquake Engineering Research Institute, Oakland, California.
5. Paret T.F., Sasaki K.K., Eilbek D.H., Freeman S.A. Approximate Inelastic Procedures to Identify Failure Mechanisms from Higher Mode Effects. Proceedings, Eleventh World Conference on Earthquake Engineering, Paper, 1996. No. 966. Acapulco, Mexico.
6. Sasaki K.K., Freeman S.A., Paret T.F. Multimode Pushover Procedure (MMP)—A Method to Identify the Effects of Higher Modes in a Pushover Analysis. Proceedings, Sixth U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Seattle, Washington, 1988.
7. Matsumori T., Otani S., Shiohara H., Kabayesawaza T. Earthquake Member Deformation Demands in Reinforced Concrete Frame Structures. Proceedings, U.S.-Japan Workshop on Performance-Based Earthquake Engineering, Methodology for R/C Bldg. Structures, 1999. Pp. 79-94, Maui, Hawaii.
8. Zubritskiy M.A., Ushakov O.Y., Sabitov L.S. Account for the contribution of higher modes under system seismic resistance estimation by nonlinear static method / IOP Conference Series: Materials Science and Engineering. 2019. Volume 570. Number 1.
9. Birbraer A.N. Расчет конструкций на сейсмостойкость. СПб.:Наука, 1998. 255 с., ил. 70.
10. Мяртычев О.В., Джинчвелашвили Г.А. Проблемы учета нелинейностей в теории сейсмостойкости (гипотезы и заблуждения): монография. Москва: МГСУ, 2012. 192 с. (Библиотека научных разработок и проектов МГСУ)
11. Мяртычев О.В. Безопасность зданий и сооружений при сейсмических и аварийных воздействиях: монография / ГОУ ВПО Моск. гос. строит. уч.-т. М.: МГСУ, 2010. 152 с.
12. ANSYS HELP [Электронный ресурс] // URL: https://ansyshelp.ansys.com/
13. Свидетельство о государственной регистрации программы для ЭВМ №2019667065. Мультимодальный нелинейный статический метод при оценке сейсмостойкости системы МПА-1. Правообладатель: Зубрицкий Максим Александрович. Авторы: Сабитов Л.С., Зубрицкий М.А., Ушаков О.Ю. Заявка 2019663503, дата гос. Регистр. В Реестре программ для ЭВМ 18.12.19 г. – 1 с.
Безопасность зданий и сооружений

Информация об авторах

Зубрицкий Максим Александрович
ООО «УралКонцептПроект», г. Екатеринбург, Россия,
главный специалист.
E-mail: zubrickiy_maksim@mail.ru

Ушаков Олег Юрьевич
ФГАОУ ВО «УрФУ имени первого Президента России Б.Н. Ельцина», г. Екатеринбург, Россия,
к.т.н., доцент кафедры систем автоматизированного проектирования объектов строительства.
E-mail: ushakovoleg@yandex.ru

Сабитов Линар Салихзанович
ФГАОУ ВО «Казанский (Приволжский) федеральный университет», г. Казань, Республика Татарстан, Россия,
k.т.n., доцент кафедры биомедицинской инженерии и управления инновациями.
E-mail: sabitov-kgasu@mail.ru

Information about authors

Zubritskiy Maksim A.
OOO "UralConceptProject", Ekaterinburg, Russia
Chief Specialist
E-mail: zubrickiy_maksim@mail.ru

Ushakov Oleg U.
Federal State Autonomous Educational Institution of Higher Education «Ural Federal University named after the first
President of Russia B.N. Yeltsin», Ekaterinburg, Russia,
candidate in tech. sc., docent of the dep. of system of computer-aided design of construction objects.
E-mail: ushakovoleg@yandex.ru

Sabitov Linar S.
Federal State Autonomous Educational Institution of Higher Education «Kazan Federal University», Kazan, Republic
of Tatarstan, Russia,
candidate in tech. sc., docent of the dep. Biomedical Engineering and Innovation Management.
E-mail: sabitov-kgasu@mail.ru