Positive Selection Is Not Required for Thymic Maturation
of Transgenic γδ T Cells
By Edina Schweighoffer and B.J. Fowlkes

From the Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and
Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0420

Summary
Previously published reports describing thymic differentiation in two TCRγδ transgenic
mouse models have suggested that γδ T cells require MHC-mediated positive selection to
reach full maturity. Recent studies indicate that recognition of antigen by mature γδ T cells is
not MHC restricted, raising the issue of why developing γδ T cells would even require MHC-
driven positive selection. Therefore, we have reinvestigated the requirements for development
and selection in G8 γδ T cell receptor (TCR) transgenic mice. Analyses of absolute cell num-
bers, phenotypic subsets, and functional competence of thymic and peripheral G8 γδ T cells
indicate that these cells can fully mature in class I MHC-deficient mice. Moreover, mixed bone
marrow chimeras demonstrate that γδ T cells of mutant B2-microglobulin (β2m−) origin are
partially deleted in the presence of H-2d-bearing thymocytes (previously believed to be the
haplotype mediating positive selection). We conclude that there is no requirement for class I-like
molecules for the maturation/development of these transgenic γδ T cells and that the differences
in thymocyte phenotype and number observed are, instead, attributable to effects of
clonal deletion.

The major events in the intrathymic differentiation of
αβ T cells have been intensely investigated and well
deﬁned, while the maturation process for γδ T cells is less
well understood. Since the proportion of γδ T cells in the
thymus is <1% (1), studies on the development of these
cells has been greatly aided by γδ TCR transgenic mice.
For our investigation, we have used the G8 mouse (2) that
carries a transgene containing productively rearranged
γ and δ TCR genes derived from a T cell clone (3, 4) pro-
duced by immunization of BALB/c nu/nu mice with
B10.BR spleen cells. The reactivity of the original T cell
clone and of the γδ T cells from the transgenic mice has
been mapped to T22/T10 in the nonclassical (class Ib) re-
region of the MHC (TL-region). The strongest reactivity
was observed with H-2b, intermediate with H-2d, and no
reactivity with H-2a antigen-presenting cells (APCs) (4).

Like classical MHC class I (class Ia) molecules, the putative
class Ib ligand of the G8 TCR associates with β2-micro-
globulin (β2m)1 (5); therefore, the absence of β2m may in-
fluence the developmental fate of the transgenic γδ T cells.
Consistent with this idea were the reported phenotypic dif-
ferences between the G8 β2m+n and G8 β2m− thymuses that
demonstrated a higher proportion of HSA−CD44hiCD45RBhi
γδ T cells in the class I+ mice (6). Moreover, the G8 β2m−
thymocytes did not proliferate to allogeneic stimulation,
and these mice had very few, if any, peripheral lymphoid
γδ T cells (7). These data lead to the conclusion that γδ T
cells, like αβ T cells, require MHC-dependent positive se-
lection to complete their maturation. Similar conclusions
were reached using another TCRγδ transgenic strain,
KN6, which has a similar pattern of recognition to G8 and
was shown to react to T22, as well (8, 9). In contrast to
these results, an investigation of γδ development in non-
transgenic β2m− mice indicated that many or most γδ cells
do not require class I or class I-like MHC for their devel-
opment (10). These conflicting results could be explained if
only a subset of γδ T cells use MHC for positive selection.

In our efforts to investigate the cellular and molecular in-
teractions involved in thymic γδ T cell development, sur-
prisingly, we found no requirement for β2m-associated
molecules for full γδ T cell maturation in G8 mice. Since
the only other example of MHC requirement for γδ develop-
ment arises from a transgenic strain with very similar
ligand reactivity to G8 (11), our findings raise the issue of
whether any γδ T cells require MHC-driven positive sele-
ction.

Materials and Methods

Mice. G8 transgenic mice (2) were backcrossed five times to
B10.D2 mice and crossed two times to β2m− (H-2d) mice (previ-
ously backcrossed five times to C57BL/10 (B10) mice) to gener-

1 Abbreviation used in this paper: β2m, β2-microglobulin.
ate TCRγδ transgenic, β2m⁺ offspring (H-2b or H-2d). C57BL/6 mice were obtained from the National Cancer Institute (Frederick, MD) and B10.D2 mice from The Jackson Laboratory (Bar Harbor, ME). Mice were bred and housed in an NIAID Research Animal Facility according to AAALAC specifications. RAG-2⁻ (H-2b) (12) and β2m⁻ (13) mice (both backcrossed five times to C57BL/10) were bred and maintained on NIAID contract at Bioqual Inc. (Rockville, MD).

Monoclonal Antibodies And Flow Cytometry. For flow cytometric analyses, cells were stained according to standard protocols (14) using the following labeled antibodies: anti-TCRγδ-biotin (GL3), anti-TCRγ2-biotin or -FITC (UC3-10A6), anti-TCRαβ-FITC or -PE (H57-597), anti-CD5(Ly-1)-biotin or -PE (IM7), anti-CD45RB-biotin or -PE (16A), anti-CD24/HSA-biotin or -PE (M1/69), anti-KL-FITC (SF1-1.1), all obtained from PharMingen (San Diego, CA); anti-TCRγδ-FITC (GL3), streptavidin-TC or -PE, from Caltag Labs. (San Francisco, CA); and avidin-APC (Molecular Probes, Eugene, OR). For cell sorting, cells were stained with anti-TCRγδ-biotin/APC-avidin, anti-HSA-PE, and anti-TCRαβ-FITC and sorted into γδ⁺αβ⁻HSA⁺ and γδ⁺αβ⁻HSA⁻ cell populations, respectively. To avoid FcR-mediated binding of antibodies, cells were pretreated with anti-Fc-receptor mono-

Figure 1. Two-color flow cytometric analyses reveal phenotypic differences between thymocytes from G8 β2m⁺ (H-2b) and G8 β2m⁻ mice. Freshly prepared thymocytes were stained with anti-TCRγδ mAb and the indicated antibodies. FACS² density plots are shown; data were collected using live gating for the TCRγδ⁺ cells. (Data are plotted in two-color format to facilitate comparison with data from chimeras shown in Fig. 4.)

Figure 2. Thymocyte numbers in G8 β2m⁺ (H-2b) and G8 β2m⁻ mice. (Top) Total number of γδ thymocytes isolated from G8 β2m⁺ (H-2b) and G8 β2m⁻ mice, respectively. (Bottom) Number of HSA⁺ γδ thymocytes per mouse derived from the product of the percentage of HSA⁺ and HSA⁺ γδ thymocytes and the total number of thymocytes. Each circle represents one mouse. Average values for each group are shown as columns: (top) 2.9 × 10⁴ vs. 15.3 × 10⁴; (bottom) 31.5 × 10⁴ vs. 25.3 × 10⁴.
clonal antibody (mAb), 24G2. Data were acquired and analyzed on a FACScan® using Cellquest, Lysys II, and PC-Lysys software, all from Becton-Dickinson (Mountain View, CA). Electronic cell sorting was performed on a FACStar® Plus (Becton-Dickinson).

Radiation Bone Marrow Chimeras. Bone marrow chimeras were made according to standard protocols (14). Briefly, NK cells of the recipients were depleted by injecting PK136 antibody (15) intraperitoneally the night before bone marrow transfer. Recipients were lethally irradiated (1,000 rads) 2-4 h before bone marrow transfer. Bone marrow suspensions were prepared from femurs and tibias of donors and were T cell depleted using anti-Thy-1.2 (J11) (16) and anti-Ly-1.2 (C3PO) (17) antibodies with low-tox rabbit complement (Cedarlane Labs, Westbury, NY). Recipients were injected with 2×10^7 donor bone marrow cells, intravenously. 5 wk after bone marrow transfer, the chimeric mice were killed and their thymuses were removed and analyzed.

Proliferation Assay. Responder cells were prepared from G8 TCR transgenic thymocytes or lymph node cells (depleted of B cells using anti-mouse Ig-coated plates [14]) that were enriched for double negative (CD4-CD8-) cells using anti-CD8 (3-155) and anti-CD4 (RL-172) antibodies with low-tox rabbit complement (Cedarlane Labs.). Irradiated (3,000 rads) stimulator cells were prepared from C57BL/6 (H-2b) or B10.D2 (H-2b) spleen cells by T cell depletion (using anti-Thy-1.2 [J11] (16) antibody and rabbit complement), and 2×10^5 sorted responder cells were added to 3×10^5 stimulator cells per well in U-bottom 96-well plates. Proliferation was measured after 3 d of culture by [3H]thymidine incorporation (1 μCi/ml pulse for 18 h). Samples were harvested with a 96-well harvester (Brandel, Gaithersburg, MD), and [3H]thymidine incorporation was measured in a Betaplate counter (Pharmacia, Uppsala, Sweden). All values represent means of triplicate wells.

Results

To define the MHC requirements for γδ T cell development, we compared the phenotype and function of G8 TCR-γδ+ T cells of normal and MHC class I-deficient (β2m-) mice. We analyzed thymocytes of these strains for surface expression of HSA, CD44, CD45, and CD5 (Fig. 1). In agreement with the previously published results (6), MHC class I+ thymuses have a higher percentage of HSA-CD44hiCD45RhiCD5hi γδ thymocytes than those of class I- mice. It is noteworthy that only class I+ mice show a relative increase in γδ thymocytes bearing HSA- and CD5hi, both considered to be markers of thymocyte maturation. Also of note is the enrichment in the class I+ thymuses for cells bearing high levels of the activation markers CD44 (18) and CD45RB (19).

Surprising were our analyses of absolute thymocyte numbers. Although there is a large variation in the number of γδ thymocytes, we find on average five to six times more of these cells in the β2m-deficient G8 mice (Fig. 2, top). This difference in cell numbers can be due to negative selection in the β2m+ mice or to a failure of positive selection in the class I-deficient mice, leading to an accumulation of immature (HSA+) cells at the “pre-positive selection” stage. If the latter interpretation were correct, we would not expect to see any (or very few) HSA- γδ T cells in the class I- thymuses. The percentages of HSA- thymocytes in Fig. 1 are deceiving, however, since, as determined by sampling a large pool of mice, the β2m+ and β2m- thymuses harbor comparable numbers of HSA- γδ T cells (Fig. 2, bottom).
Table 1. Proliferation of Sorted TCR γδ T Cells

Stimulators	H-2^b	H-2^b	H-2^d	H-2^d
Responders	APC	APC + IL-2	APC	APC + IL-2
G8 Thymocytes				
G8β2m⁺γδ⁺HSA⁺	318	35,958	320	13,928
G8β2m⁺γδ⁺HSA⁻	34,140	111,233	1,041	11,995
G8β2m⁺γδ⁻HSA⁻	33	43,489	21	2,881
G8β2m⁺γδ⁻HSA⁻	37,065	72,563	1,198	15,917

G8 Lymph node cells

G8β2m⁺γδ⁻HSA⁻	3,114	101,923	129	2,963
G8β2m⁺γδ⁻HSA⁻	15,002	116,720	96	4,253
G8β2m⁺γδ⁻HSA⁻	4,646	65,135	478	1,607
G8β2m⁺γδ⁻HSA⁻	17,826	103,110	483	1,729

Thymocytes and peripheral lymph node cells from G8 β2m⁺ (H-2^b) and G8 β2m⁺ mice were isolated, stained with anti-TCR γδ, anti-TCRαβ⁻, and anti-HSA antibodies, and then sorted into γδ⁺αβ⁻HSA⁺ and γδ⁺αβ⁻HSA⁻ cell populations. Cells were assayed as described in Materials and Methods. IL-2 (100 U/ml) was added where indicated. Cpm values show means of triplicate wells. Data are representative of six experiments. No response is elicited by β2m⁺ APCs, equivalent to results with H-2^b APCs (not shown).

A distinct population of TCRγδ⁺TCRαβ⁻ T cells is able to mature and reach the periphery of both the β2m⁺ and β2m⁻ G8 mice (Fig. 3, a and b). These γδ T cells are 85–90% CD4⁻8⁻ and 10–15% CD4⁻8⁺ (not shown). In addition, there is a small population of CD4⁺ T cells expressing both αβ and γδ TCR (Fig. 3, a and b). Although there has been no report of HSA⁺ γδ T cells in the peripheral lymphoid organs, we observe both a HSA⁺ and HSA⁻ γδ T cell subpopulation in the lymph nodes of G8 mice (β2m⁺ or β2m⁻) (Fig. 3, c and d). The presence of HSA on a subset of peripheral γδ T cells raises the issue of whether HSA on γδ T cells is a marker of maturation stage, state of activation, or a lineage marker—a question that has not been resolved.

To demonstrate that the γδ T cells of the β2m⁻ mice are functional and bear the transgenic γδ TCR, TCRγδ⁺αβ⁻ cells from G8 β2m⁻ thymuses and lymph nodes were sorted and assayed for specific alloreactivity (7). As shown in Table 1, regardless of whether γδ T cells developed in the presence or absence of β2m and whether they are from the thymus or from lymph nodes, they all make specific responses to H-2^b, but no response to H-2⁻ or β2m⁻ APCs. Although the HSA⁻ γδ cells proliferate without exogenous cytokines, the HSA⁺ γδ T cell response is dependent on added IL-2.

Thus, in marked contrast to previous reports, where no γδ T cells appeared in the β2m⁻ peripheral lymphoid organs, these results demonstrate that γδ T cells of G8 mice can functionally mature and reach the periphery in the absence of β2m. This argues against a developmental block due to the absence of class I and suggests, instead, that negative selection may be responsible for the reduced number of γδ thymocytes and the altered proportions of subsets in the H-2^d mice.

To address this latter possibility, we constructed radiation bone marrow chimeras using stem cells from G8 β2m⁻ or G8 β2m⁻ donors, or a mixture of these two bone marrows. Irradiated B10.D2 or β2m⁻ mice served as recipients. These experiments allowed us to follow interactions between the β2m⁻ and β2m⁺ G8 hematopoietic cells in the thymus, since the class I expression of the chimeric thymocytes could be used to identify the cells derived from each bone marrow donor. Table 2 shows that repopulation with either unmixed donor marrow (G8 β2m⁻→β2m⁻ or G8 β2m⁺→β2m⁻) results in similar γδ thymocyte numbers to those of intact animals (Fig. 2 a); that is, the G8 β2m⁻ donors give rise to about five to six times more γδ thymocytes than their class I⁻ counterparts. More importantly, the lower number of G8 γδ thymocytes in the mixed chimeras, equivalent to those that received unmixed β2m⁻ marrow only (Table 2), reveals a dominant effect imposed by the β2m⁻ hematopoietic cells, a property normally associated with negative selection.

To address this latter possibility, we constructed radiation bone marrow chimeras using stem cells from G8 β2m⁻ or G8 β2m⁻ donors, or a mixture of these two bone marrows. Irradiated B10.D2 or β2m⁻ mice served as recipients. These experiments allowed us to follow interactions between the β2m⁻ and β2m⁺ G8 hematopoietic cells in the thymus, since the class I expression of the chimeric thymocytes could be used to identify the cells derived from each bone marrow donor. Table 2 shows that repopulation with either unmixed donor marrow (G8 β2m⁻→β2m⁻ or G8 β2m⁺→β2m⁻) results in similar γδ thymocyte numbers to those of intact animals (Fig. 2 a); that is, the G8 β2m⁻ donors give rise to about five to six times more γδ thymocytes than their class I⁻ counterparts. More importantly, the lower number of G8 γδ thymocytes in the mixed chimeras, equivalent to those that received unmixed β2m⁻ marrow only (Table 2), reveals a dominant effect imposed by the β2m⁻ hematopoietic cells, a property normally associated with negative selection.

Phenotypic analysis provided evidence that a subset of γδ T cells was the target of this deleterial effect (Fig. 4). β2m⁻-derived thymocytes are distinguished from β2m⁻-derived ones by staining with labeled anti-K^d class I antibody. The phenotype of the thymocytes in unmixed bone marrow chimeras (Fig. 4, a–c) corresponds to that of intact donors (Fig. 1) and is independent of the recipient's genotype, such that there is a higher percentage of the γδ thymocytes that are HSA⁻ in the mixed chimeras, equivalent to those that received unmixed β2m⁻ marrow only (Table 2), reveals a dominant effect imposed by the β2m⁻ hematopoietic cells, a property normally associated with negative selection.

Table 2. TCR γδ⁺ G8 Thymocyte Numbers in Chimeric Mice

Donors	Recipients	G8 β2m⁻ + G8 β2m⁻	G8 β2m⁻
B10.D2	8.8	1.8	1.74
B10.D2	3.5	0.9	1.82
β2m⁻	9.1	2.3	0.77
β2m⁻	9.9	3.2	1.04
β2m⁻	19.2	2.7	3.8
β2m⁻	13.5	2.6	0.9
Average	10.7	2.1	1.7
(STD)	(5.3)	(0.8)	(1.1)

5 wk after bone marrow transfer, thymuses were removed and analyzed. Numbers of γδ cells are displayed for each thymus in millions.
etic elements, acquire the phenotype of the G8 β2m⁺ (Kd⁺)-derived thymocytes; that is, they contain a higher percent of the HSA⁺,CD44hi,CD45RBhi cells (Fig. 4, d-f). From these altered distributions, it appears that it is the immature HSA⁺,CD44hi,CD45RBhi population that is the primary target of this negative selection. This deletion seems to be much less dramatic than the negative selection of γδ T cells originally described in H-2b mice (2), in that the remaining cells are TCRγδhi (as in the intact mice analyzed in Figs. 1 and 3), and they respond to stimulation with H-2b APC. Similarly, there are well-documented examples of incomplete deletion in αβ T cell development, where coreceptor quantity or MHC levels, as well as quantity of peptide, can affect the degree of selection (20).

The question arises as to what cell types are mediating the deletion in the class I⁺ mice. Epithelial elements do not seem to play a role, since the class I haplotype expressed on the radioresistant cells of the recipients does not seem to affect the developmental pattern in the bone marrow chimeras. Among the hematopoietic cells, the most obvious candidates are the macrophages, the dendritic cells, or the thymocytes themselves. To investigate this issue, we made radiation chimeras using bone marrow of G8 β2m⁺ mice mixed with RAG-2⁻bone marrow. This latter strain was chosen because mice carrying mutations in both of their RAG-2 alleles lose the ability to generate T and B cells (12) but retain other hematopoietic cells. Fig. 5 shows that, unlike mixes made with nonmutant bone marrow, RAG-2⁻ hematopoietic cells do not mediate phenotypic changes in the γδ T cells derived from β2m⁻ marrow (Fig. 5, a-c vs. d-f).

Figure 4. Thymic phenotype of radiation chimeras. a-i show three-color flow cytometric analysis of thymocytes from chimeras made with unmixed bone marrow stained and analyzed similarly to the intact G8 β2m⁺ and G8 β2m⁻ (H-2b) mice, respectively (shown in Fig. 1). d-f are analyses of mixed bone marrow chimeras. Cells derived from the G8 β2m⁺ vs. G8 β2m⁻ (H-2b) bone marrow can be distinguished based on class I (Kd) expression. All plots were gated for γδ thymocytes. The numbers in parentheses represent percentages of each quadrant normalized for the percentages of β2m⁺ or β2m⁻-derived γδ thymocytes. FACS® plots are representative of six experiments.
These latter results suggested that either thymocytes or thymic B cells could be inducing negative selection. To investigate this possibility, we bred G8 with RAG-2-deficient mice to produce G8 RAG-2~ offspring selected to be homozygous for H-2d. The G8 RAG-2~ mice contain about the same number of γδ thymocytes (3.1 ± 1.8 × 10⁶) as the G8 RAG-2~ animals, indicating that whatever the deleting element is in the H-2d mice, it must be present on the γδ cells themselves. Accordingly, chimeras made from G8 β2m~ bone marrow mixed with G8 RAG-2~ marrow induced deletion in the β2m~ derived (Kd) γδ thymocytes (Fig. 5, g-i). Although these findings demonstrate that γδ thymocytes are able to promote deletion, they do not exclude the αβ thymocytes or the thymic B cells as additional mediators of negative selection. We plan to assess the role of αβ thymocytes using H-2d TCR-β or TCR-α mutant mice since, in the absence of TCR-β, T cell maturation is blocked at the double negative (CD4−CD8−) stage, while in the TCR-α knockout mice, thymocytes proceed to the double positive (CD4+CD8+) stage (21).

Discussion

TCR transgenic mice have been used extensively to study development and selection in αβ T cells. In contrast, requirements for γδ selection using such mice has been limited to two strains (G8 and KN6). The ligand for the γδ TCR in both cases is class I b, T22. It was somewhat perplexing that these transgenic γδ T cells failed to develop in β2m mutant mice whereas γδ development, in general, ap-

![Figure 5. Thymic phenotype of chimeras constructed with mixtures of G8 β2m~ bone marrow and either RAG-2~ (H-2d) (d-f) or G8 RAG-2~ (H-2d) (g-i) bone marrow. a-c show the unmixed (G8 β2m~→β2m~) chimeras for comparison. Cells derived from the G8 β2m~ vs. RAG-2~ (H-2d) or G8 RAG-2~ (H-2d) bone marrow can be distinguished based on class I (Kd) expression. All plots shown are gated for γδ thymocytes. The numbers in parentheses represent percentages of each quadrant normalized for the percentages of β2m~ or β2m~ derived γδ thymocytes. FACS® plots are representative of three experiments.](image-url)
The described ligand of the G8 clone appears to be encoded by the T22b (23) and T10b (24) genes of the MHC. The corresponding allele of T22b in the H-2d haplotype is structurally defective (5, 8); T10b, however, appears to be intact (8). In addition, T22 seems to be widely expressed (spleen, thymus, liver, kidney, etc.), while T10 is more restricted to spleen, thymus, and peritoneal exudate cells (8). Based on these data, T10 could be a potential candidate ligand causing the negative selection of transgenic γδ T cells that we observe in the B2m- mice. Whatever the ligand is, our data suggest that it is not expressed on the epithelium or on the thymic APCs but rather on the thymocytes, as has been shown for other TL family members (25).

In an earlier publication (6), the enrichment for a subset of γδ thymocytes with a CD45RBbMEL-14b phenotype in G8 H-2d mice that was not observed in B2m- mice seemed to be consistent with the notion that activation markers could be expressed by cells undergoing positive selection. Since we show here that G8 γδ T cells in the H-2d mouse are undergoing some negative selection, these activation markers could be restricted to cells engaged in clonal deletion. The fact that we do not detect proliferation of G8 γδ T cells from B2m- mice in response to H-2d APCs could be explained as is for the αβ lineage; that is, that negative selection of thymocytes can be triggered by lower avidity interactions than those required for the activation of mature T cells (26, 27). The relative depletion of the HSAb γδ cells in the H-2d thymus, compared with those in B2m- mice, indicates that the HSAb cells are the target of this deleterional mechanism. Thus, depletion of HSAb γδ thymocytes would increase the relative proportion of HSA- γδ cells, making it appear that more mature γδ thymocytes were present in the H-2d than in the class I-deficient mice. The failure to see diminution of HSA- γδ thymocytes in the thymus and in the periphery of the class I- G8 mice either could be explained by the accumulation of mature cells that survive deletion or implies that the HSA+ cells are not precursors to the HSA- cells.

Although MHC-restricted antigen responsiveness of αβ T cells is well documented, the rules for antigen recognition by γδ T cells remain elusive. γδ T cells have been reported to recognize a wide variety of antigens, including MHC class I (5, 28) and class II (29) molecules, mycobacterial peptides, heat shock proteins (30, 31), and small non-peptide ligands (32). At the same time, recent studies investigating class I- and class Iβ-specific γδ T cell clones have demonstrated that antigen processing and binding of peptides to the MHC molecules are not necessary for γδ T cell activation (23, 24). Taken together, these conflicting data suggest that the nature of αβ and γδ TCR recognition is quite distinct. Moreover, the requirements for T cell maturation in these two lineages seems to be different, in that nontransgenic B2m- (10) and class I- deficient (22) mice seem to have normal γδ T cell populations. If γδ T cell antigen recognition is not MHC restricted, and if the purpose of thymic positive selection is to produce a large cohort of mature T cells that recognizes foreign antigens in the context of self-MHC, there should be no purpose for MHC-mediated positive selection in γδ development. This view is consistent with the data presented here. We have shown that the more mature, HSAb γδ thymocytes exist in the B2m- mice in numbers comparable to those in B2m+ thymuses and that functional transgenic cells are present in the periphery. We do not find any evidence for a developmental block in class I-deficient G8 γδ TCR transgenic mice. Indeed, we have demonstrated that class I-mediated positive selection is not necessary for complete γδ maturation. Given the similarities in MHC recognition of G8 to KN6 (the only other TCR-γδ transgenic strain reported to require positive selection), we question whether MHC-driven positive selection is required in any γδ development. While we cannot exclude the possibility, of course, that B2m-independent ligands interact with γδ thymocytes at some point in their development and influence their fate, the existence and nature of such ligands have yet to be elucidated.
We thank Drs. J. Bluestone and L. Matis for the G8 mice; B. Koller and O. Smithies for the β2m; F. Alt for the RAG-2 gene–targeted mutant mice; D. Raultet, L. Matis, E. Robey, F. Macchiariini, and C. Fieschaeker for critically reading the manuscript; E.O. Matechak for her expert assistance in many aspects of the work; and C. Eigsti for cell sorting.

Address correspondence to B.J. Fowlkes, LCMI, NIAID, Bldg. 4, Room 111, 4 Center Dr., MSC-0420, NIH, Bethesda, MD 20892-0420.

Received for publication 27 December 1995 and in revised form 8 March 1996.

References

1. Penninger, J., V.A. Wallace, K. Kishihara, T. Molina, H. Krause, and T.W. Mak. 1991. Molecular organization, ontogeny and expression of murine αβ and γδ T cell receptors. Exp. Clin. Immunogenet. 8:57–74.

2. Dent, A.L., L.A. Matis, F. Hooshmand, S.M. Widacki, J.A. Bluestone, and S.M. Hedrick. 1990. Self-reactive γδ T cells are eliminated in the thymus. Nature (Lond.). 343:714–719.

3. Matis, L.A., R. Cron, and J.A. Bluestone. 1987. Major histocompatibility complex-linked specificity of γδ receptor-bearing T lymphocytes. Nature (Lond.). 330:262–264.

4. Bluestone, J.A., R.Q. Cron, M. Cotterman, B.A. Houlden, and L.A. Matis. 1988. Structure and specificity of T cell receptor γδ on major histocompatibility complex antigen-specific CD3+, CD4–, CD8– T lymphocytes. J. Exp. Med. 168:899–1916.

5. van Kaer, L., M. Wu, Y. Ichikawa, K. Ito, M. Bonneville, S. Ostrand-Rosenberg, D.B. Murphy, and S. Tonegawa. 1991. Recognition of MHC TL gene products by γδ T cells. Immunol. Rev. 120:89–115.

6. Wells, F.B., Y. Tatsumi, J.A. Bluestone, S.M. Hedrick, J.P. Allison, and L.A. Matis. 1993. Phenotypic and functional analysis of positive selection in the γδ T cell lineage. J. Exp. Med. 177:1061–1070.

7. Wells, F.B., S.J. Gahm, S.M. Hedrick, J.A. Bluestone, A. Dent, and L.A. Matis. 1991. Requirement for positive selection of γδ receptor-bearing T cells. Science (Wash. DC). 253:903–905.

8. Ito, K., L. van Kaer, M. Bonneville, S. Hsu, D.B. Murphy, and S. Tonegawa. 1990. Recognition of the product of a novel MHC TL region gene (27b) by a mouse γδ T cell receptor. Cell. 62:549–561.

9. Haas, W., P. Pereira, and S. Tonegawa. 1993. Gamma/delta cells. Annu. Rev. Immunol. 11:637–685.

10. Correa, I., M. Bix, N.S. Liao, M. Zijlstra, R. Jaenisch, and D. Raultet. 1992. Most γδ T cells develop normally in β2-microglobulin-deficient mice. Proc. Natl. Acad. Sci. USA. 89:653–657.

11. Pereira, P., M. Zijlstra, J. McMaster, J.M. Loring, R. Jaenisch, and S. Tonegawa. 1992. Blockade of transgenic γδ T cell development in β2-microglobulin deficient mice. EMBO (Eur. Mol. Biol. Organ.) J. 11:25–31.

12. Shinkai, Y., G. Rathbun, K.P. Lam, E.M. Olitz, V. Stewart, M. Mendelsohn, J. Charron, M. Datta, F. Young, A.M. Stall, and F.W. Alt. 1992. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangements. Cell. 68:855–867.

13. Koller, B.H., P. Marrack, J.W. Kappler, and O. Smithies. 1990. Normal development of mice deficient in β-2M, MHC class I proteins and CD8+ T cells. Science (Wash. DC). 248:1227–1230.

14. Coligan, J.E., A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, and W. Strober, eds. 1994. Current Protocols in Immunology. John Wiley & Sons, Inc., New York.

15. Koo, G.C., F.J. Dumont, M. Tutt, J. Hackett, and V. Kumar. 1986. The NK-1.1(−) mouse: a model to study differentiation of murine NK cells. J. Immunol. 137:3742–3747.

16. Bruce, J., F.W. Symington, T.J. McKearn, and J. Sprent. 1981. A monoclonal antibody discriminating between subsets of T and B cells. J. Immunol. 127:2496–2501.

17. Mark, C., F. Figueroa, Z.A. Nagy, and J. Klein. 1982. Cyto-toxic monoclonal antibody specific for the Lyt-1.2 antigen. Immunogenetics. 16:95–97.

18. Budd, R.C., J.C. Cerottini, and H.R. MacDonald. 1987. Phenotypic identification of memory cytolytic T lymphocytes in a subset of Lyt-2+ cells. J. Immunol. 138:1009–1013.

19. Wallace, V.A., W.P. Fung-Leung, E. Timms, D. Gray, K. Kishihara, D.Y. Loh, J. Penninger, and T.W. Mak. 1992. CD45RA- and CD45RBγδ+ expression induced by thymic selection events. J. Exp. Med. 176:1657–1663.

20. Robey, E., and B.J. Fowlkes. 1994. Selective events in T cell development. Annu. Rev. Immunol. 12:675–705.

21. Mombaerts, P., A.R. Clarke, M.A. Rudnicki, J. Iacomini, S. Itohara, J.J. Laflaille, L. Wang, Y. Ichikawa, R. Jaenisch, M.L. Hooper, and S. Tonegawa. 1992. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature (Lond.). 360:225–231.

22. Bigby, M., J.S. Markovitz, P.A. Bleicher, M.J. Grusby, S. Simha, M. Siebretch, M. Wagner, C. Nagler-Anderson, and L.H. Gimlicher. 1993. Most γδ T cells develop normally in the absence of MHC class II molecules. J. Immunol. 151:4465–4475.

23. Weintraub, B.C., M.R. Jackson, and S.M. Hedrick. 1994. Gamma delta T cells can recognize nonclassical MHC in the absence of conventional antigenic peptides. J. Immunol. 153:3051–3058.

24. Schild, H., N. Mavaddat, C. Litzenberger, E.W. Ehrlich, M.M. Davis, J.A. Bluestone, L. Matis, R.K. Draper, and Y.H. Chien. 1994. The nature of major histocompatibility complex recognition by γδ T cells. Cell. 76:29–37.

25. Flaherty, L., E. Elliott, J.A. Tine, A.C. Walsh, and J.B. Water. 1990. Immunogenetics of the Q and TL regions of the mouse. Crit. Rev. Immunol. 10:131–175.

26. Pircher, H., U.H. Rohrer, D. Moskophidis, R.M. Zinkerngeln, and H. Hengartner. 1991. Lower receptor avidity required for thymic clonal deletion than for effector T-cell function. Nature (Lond.). 351:482–485.

27. Vasquez, N.J., J. Kaye, and S.M. Hedrick. 1992. In vivo and in vitro clonal deletion of double-positive thymocytes. J. Exp.
28. Vidovic, D., M. Roglic, K. McKune, S. Guerder, C. Mackay, and Z. Dembic. 1989. Qa-1 restricted recognition of foreign antigen by a γδ T-cell hybridoma. *Nature (Lond.)* 340:646–650.

29. Matis, L.A., A.M. Fry, R.Q. Cron, M.M. Cotterman, R.F. Dick, and J.A. Bluestone. 1989. Structure and specificity of a class II MHC alloreactive γδ T cell receptor heterodimer. *Science (Wash. DC)*. 245:746–749.

30. Born, W., M.P. Happ, A. Dallas, C. Reardon, R. Kubo, T. Shinnick, P. Brennan, and R. O’Brien. 1990. Recognition of heat shock proteins and γδ cell function. *Immunol. Today* 11: 40–43.

31. Rajasekar, R., G.K. Sim, and A. Augustin. 1990. Self heat shock and γδ T-cell reactivity. *Proc. Natl. Acad. Sci. USA* 87: 1767–1771.

32. Tanaka, Y., S. Shigetoshi, E. Nieves, G. DeLibero, D. Rosa, R.I. Modlin, M.B. Brenner, B.R. Bloom, and C.T. Morita. 1994. Nonpeptide ligands for human γδ T cells. *Proc. Natl. Acad. Sci. USA* 91:8175–8179.