Research Article

Mineral Heterogeneity Characterization of the Lacustrine Yanchang Shales, Ordos Basin Using Micro-Fourier Transform Infrared Spectroscopy (Micro-FTIR) Technique

Bing Luo,1,2 Zhiguo Shu,1,2 Yalin Chen,1,2 Zhuo Li,3 Yufei Hou,3 Liwei Wang,3 Youdong Yang,3 and Zhikai Liang3

1SINOPEC Jianghan Oilfield Company, Qianjiang, Hubei 433123, China
2Research Institute of Petroleum Exploration and Development, SINOPEC Jianghan Oilfield Company, Wuhan, Hubei 430223, China
3State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

Correspondence should be addressed to Zhuo Li; lizhuopaper@163.com

Received 29 January 2021; Accepted 1 August 2021; Published 29 August 2021

1. Introduction

Shales have received worldwide attention due to their emergence as effective unconventional hydrocarbon reservoirs [1–5]. Shale gas is an unconventional gas resource which is generated and accumulated in organic-rich shales [6]. Shale gas is primarily found in free gas and adsorbed gas occurrences [7, 8]. Shales are typical fine-grained sedimentary rock with complex matrix components, multiscale heterogeneity of mineral and organic matter (OM) compositions, and significant lithofacies variation in rock texture and structure, which have important impacts on shale gas exploration and development [9–14]. Accurate determination and fine characterization of mineral composition and distribution in the micro- and nanoscale is of great significance for pore structure characterization and petrophysical evaluation of gas shales [15–19]. At present, the evaluation of the mineral composition of gas shale mainly depends on bulk rock mineral analysis based on microscope observation on thin sections and X-ray detection. However, the existing techniques have limitations in higher resolution and in situ fine characterization, and it is difficult to evaluate the heterogeneous distribution characteristics of mineral compositions at high resolution using these methods [20–23]. Under actual geological conditions, the multiscale heterogeneity of mineral compositions, distribution, and rock texture in shale is still significant [24–27]. Therefore, the characterization of shale heterogeneity needs improvement in the spatial resolution and in situ mineral composition measurement.
Transmission Fourier transform infrared (FTIR) spectroscopy has been widely used for many years to effectively assess mineral compositions [28–30]. However, traditional FTIR experiments are time consuming and prone to problems. Diffuse reflectance FTIR spectroscopy (DRIFTS) requires the use of a diluent, such as potassium bromide (KBr), for high-quality reflectance results [31]. DRIFTS has the advantage of no physical contact with the analyte, and the technique can be automatically performed and compared with previous results. Attenuated total reflectance- (ATR-) FTIR has been used in a wide range of fields in the field of geology [32, 33]. Unlike transmission and DRIFTS, ATR-FTIR can be used to treat very few samples without dilution. However, ATR-FTIR still requires crushing and homogenization of the powder samples, resulting in loss of spatial and heterogeneity information. This approach requires that surfaces be highly polished, and even then, the quality of the DRIFTS spectra tends to be much lower than the spectra acquired using ATR. The novel micro-FTIR experiment provides a direct measurement technology of mineral distribution in micro- to nanoscales [22]. FTIR microscopy does not require the samples to be pulverized. The principle of micro-FTIR is based on the specific absorption characteristics of infrared rays by chemical bonds in macerals and minerals [34, 35]. Previous research has used spatially resolved FTIR to create three component mineralogy maps [28]. This allows for localized measurements to characterize composition heterogeneous in very small scales. Therefore, multiple micro-FTIR measurements across a sample can be performed rapidly and precisely. Therefore, micro-FTIR experiment is suitable for higher-resolution characterization of mineral distribution heterogeneity of shale. Another advantage of micro-FTIR spectrum is that in situ measurements can be carried out at submicron scale, which is particularly effective for analyzing mineral heterogeneity in fine-grained gas shales [22].

In this study, two different lacustrine shale samples from the Triassic Yanchang Formation in Ordos Basin were analyzed by micro-FTIR, which provided more detailed data of heterogeneous mineral composition and rock texture and structure. The objectives of this paper are as follows: (1) to study the micromineral heterogeneity of shale by micro-FTIR experiments, (2) to quantitatively characterize the in situ mineral composition of shale by micro-FTIR spectra, and (3) to compare the micro-FTIR results with the traditional bulk shale XRD method.

2. Samples and Methods

Two lacustrine shale samples with different rock texture features from the Triassic Yanchang Formation, Ordos Basin, were selected after carefully examining more than 20 shale samples. These samples were collected in Well FY-2 (Figure 1). The study area is located on the southeast Yishan slope of the Ordos Basin (Figure 1(b)). The target reservoir is the 7th member of the Yanchang Formation (Chang-7 member) of the Upper Triassic strata (Figure 2).

The Ordos Basin, located on the northwestern North China plate, can be divided into six structural units: the
Yimeng uplift zone in the north, the Weibei uplift zone in the south, the Jinxixi flexural fold zone in the east, the Yishan slope, the Xiyuan obduction zone, and the Tianhuan depression in the west (Figure 1(a)). Late Triassic strata formed in a large-scale inland freshwater lacustrine environment in the internal part of the Ordos Basin. The Chang-7 member deposits consist of deep and semideep facies that are mostly black or blackish gray organic-rich shales, which are primary source rocks in the study area [36, 37].

Each sample was separated into several parts for bulk mineral composition, thin section petrological observation, and micro-FTIR spectra measurements. Thin sections of the lacustrine shale samples were prepared with a thickness of about 80 μm. Petrological observation on the thin sections was performed on an OLYMPUS microscope with crossed polarized light and plane polarized light. Additional samples were prepared as blocks, then were polished for an ultrasmooth surface. A micro-FTIR spectra experiment was performed using a Bruker Lumos FTIR microscope (Bruker Optics, Billerica, MA). A total of 200 spectra (100 spectra for each sample) were collected. There was a micro-FTIR measurement spacing interval of 80 μm across each sample (for a total of 8 mm in length) to get the in situ heterogeneous characteristics in shale samples (red blocks in Figure 3).

Each spectrum ranges from 400 to 4000 cm⁻¹, with a resolution of 4 cm⁻¹. A nonnegative least squares (NNLS) curve-fitting method was used to quantify the matrix components in samples [21]. Standards for composition calibration

Epoch	Formation	Member	Lithology column	Sedimentary facies	Thickness (m)
Upper Triassic	Yanchang	Chang 1		Fluvial-Lacustrine--Swamp	0–245
		Chang 2		Fluvial-Lacustrine	120–160
		Chang 3		Fluvial-Lacustrine	100–170
		Chang 4		Deep-Lacustrine	90–130
		Chang 5		Deep-Lacustrine	180–200
		Chang 6		Lacustrine	100–190
		Chang 7		Fluvial	200–320

Figure 2: Stratigraphic column and depositional environment of the upper Triassic Yanchang Formation in the Ordos Basin, NW China.
followed published databases [21–23, 34–38]. Averaged spectra were used for the prediction of bulk mineral compositions and compared with bulk XRD results.

3. Results

3.1. Bulk Mineral Compositions and TOC Contents.

Mineral compositions and TOC contents of the lacustrine Yanchang shale samples are listed in Table 1. The TOC of the massive argillaceous shale is 3.5%, relatively richer in OM than the silty laminated shale with a TOC value of 1.7%. The equivalent Ro values of the two samples are both in the oil generation window (0.9-1.1%). XRD results show that the mineral compositions in the Yanchang shale are dominated by quartz and clay minerals. The silty laminated shale has higher quartz contents, while the massive argillaceous shale has higher feldspar and clay contents. Both samples have relatively high clay contents (41.1% and 48.8%). For the silty laminated shale, the quartz, feldspar, carbonate, and pyrite contents are 35.2%, 11.1%, 7.1%, and 3.1%. For the massive argillaceous shale, the quartz, feldspar, carbonate, and pyrite contents are 25.3%, 15.8%, 5.2%, and 4.2%.

3.2. Mineral Information Derived from Micro-FTIR.

Laminae of the sample L-1 can be clearly seen (Figure 3(a)). Silty laminae are commonly grayish-white and different from adjacent clayey laminae in grain size and mineral composition. Most grains in silty laminae range from 40 μm to 160 μm in size, while grains in clayey laminae are mostly less

![Figure 3](image-url)

Figure 3: Photos of cores and thin sections of shale samples L-1 and L-2. (a) Silty laminated shale (sample ID L-1, 1400 m). (b) Massive argillaceous shale (sample ID L-2, 1625 m). (c) Thin section images of sample L-1, showing silty laminae in silty laminated shale that can be seen by naked eyes. (d) Thin section images of sample L-2, showing argillaceous shale without silty laminae.

Sample ID	Lithology	Depth (m)	TOC (%)	Ro (%)	Quartz	Feldspar	Calcite	Dolomite	Pyrite	Clay (%)
L-1	Silty laminated shale	1400	1.7	0.93	35.2	11.1	7.1	2.2	3.1	41.1
L-2	Massive argillaceous shale	1625	3.5	1.02	25.3	15.8	5.2	0	4.2	48.8

Table 1: Mineral composition and geochemical characteristics of the Yanchang shale samples.
than 6 \mu m in size (Figure 3(c)). The detrital grains and the mud matrix or organic matter are mixed and poorly sorted in the massive argillaceous shale, and the grain sizes are mostly less than 10 \mu m (Figure 3(d)).

The micro-FTIR spectra measured for ten selected spots on the polished surface of the shale samples L-1 and L-2 are shown in Figure 4.

The spectra are highly diverse even when the measured spots are closely located. Micro-FTIR is a surface technique involving specular reflectance, which can produce derivative-shaped peaks or apparent absorbance dips [39]. A previous study has reported the characteristic peaks in micro-FTIR spectra; for example, carbonates have characteristic peaks at 1630 cm\(^{-1}\), 900 cm\(^{-1}\), and 720 cm\(^{-1}\); phyllosilicates display characteristic peaks at 1280–1150 cm\(^{-1}\) and 1060–1020 cm\(^{-1}\); and quartz expresses a unique peak at 1360 cm\(^{-1}\) [21] (Table 2).

Mineral composition data of the selected measured spots obtained by NNLS processing are listed in Table 3. The sum of the mineral phases should ideally reach 100 vol.%, but actually accounted for 80%-90%. This indicates that some minor minerals like phosphates are ignored during the model prediction process. The selected spots in the silty laminated shale sample (L-1) have relatively high quartz (28.26-42.39 wt%), feldspar (11.95-14.24 wt%), and clay mineral (36.39-44.09 wt%) contents. A higher clay mineral content (44.01-49.64 wt%) was determined in the massive argillaceous shale sample (L-2) than in the silty laminated shale sample (L-1). In addition, there are large variations in mineral content within a microscale region in both L-1 and L-2.

4. Discussion

4.1. Quantification of Mineralogy through Micro-FTIR Spectra. The KBr FTIR spectra of standard minerals and kerogen have been published [21]. Previous studies presented that the characteristic infrared absorption band range of carbonate minerals is between 1500 and 1400 cm\(^{-1}\), mainly due to the vibration of the internal Co bond [21–23]. The infrared absorption characteristics of silicate minerals are between 1200-800 cm\(^{-1}\) and 600-400 cm\(^{-1}\). The peak at 798-780 cm\(^{-1}\) corresponds to the tetrahedral bridging bond in quartz. Phyllosilicates can be separated from quartz according to the occurrence of minerals. The results of tensile vibration of the hydrogen oxygen bond are 3750-3400 cm\(^{-1}\). The characteristic infrared absorption band of kerogen is in the wavelength range of 1800-1000 cm\(^{-1}\) (hydrocarbon bond stretching of aliphatic hydrocarbon) [21].

In order to constrain the quantitative analysis of mineral components in rocks, the FTIR spectra of shales and pure minerals have been carefully compared by previous studies, such as the relative contents of clay, quartz, carbonate, and organic matter in shales [20–23]. The overlapping of infrared bands of some analytes and the resulting errors are inevitable.
4.2. In Situ Heterogeneity Characteristics. In the present study, the heterogeneous distribution of mineral compositions in the lacustrine shale samples (red blocks in Figure 3) were derived from the totally obtained 200 micro-FTIR spectra and shown in Figure 5.

The spacing of 80 μm for each micro-FTIR measurement spots were selected to get in situ heterogeneous characteristics in shale samples. Therefore, micro-FTIR spectra measurements are able to capture the specific information expressed by the heterogeneity at high spatial resolution [21].

In general, silty laminae with higher quartz content (40–60 wt %) had lower concentrations of clay minerals. It was observed that, despite general agreement between the averaged FTIR results and the XRD data (Table 1), there are large standard deviations for most minerals. The mean value determined from micro-FTIR predicted values are compared with the XRD-measured bulk sample values (Figure 6). Overall, the mineral compositions calculated from the micro-FTIR compared well to the bulk XRD results.

Recent studies have shown that shale has strong heterogeneity in mineral composition, structure, and pore structure [40–48]. The lighter layers contain more quartz and less clay minerals than the darker ones. Changes in mineralogical composition from microscopic FTIR spectra along the length of the sample are clearly shown (Figure 5). Color changes in the measurement area are noted in the mineral composition derived from microscopic FTIR, which is reflected in mineralogical changes along the measurement area. The quartz and clay mineral compositions most clearly show the layered structure of the L-1 sample (Figure 5). The distribution of quartz and clay shows the layered structure of the L-1 sample most clearly, showing alternating distribution of high concentration and low concentration along the y-axis perpendicular to the bedding plane. Laminae is attributed to seasonal cycles [49–50], which may explain fluctuations in organic and mineral content.

At the micron scale, the regular changes of mineral composition and distribution obtained by microscopic FTIR spectra (Figure 5) can be used to precisely understand the heterogeneity and high-quality reservoir characterization of shales. In addition, minerals are the result of sensitive changes in physical and chemical conditions due to depositional environment evolution. In the shale gas production process, large

Sample ID	Spot ID	Quartz (wt%)	Feldspar (wt%)	Calcite (wt%)	Dolomite (wt%)	Pyrite (wt%)	Clay (wt%)	Kerogen (wt%)	Hydrogen oxygen (wt%)	Kerogen (wt%)	Quartz (wt%)	Silicate (wt%)
L-1	#1	32.07	14.24	—	1.3	—	42.54	32.66	—	—	—	8.36
	#2	28.26	11.95	—	—	3.2	39.75	24.71	6.54	7.27	—	10.80
	#3	42.39	12.68	—	2.2	—	36.39	24.80	—	—	—	11.79
	#4	38.60	13.80	4.95	—	2.05	44.09	31.57	—	—	—	11.79
	#5	37.94	13.64	4.1	—	3.11	43.06	26.18	—	—	—	15.77
L-2	#6	34.77	15.65	—	—	0.21	47.47	25.06	—	—	—	16.36
	#7	36.56	13.11	—	1.6	49.64	21.41	12.53	—	—	—	12.53
	#8	30.24	10.12	—	11.04	42.97	27.18	—	—	—	—	—
	#9	31.47	12.51	4.01	—	1.8	45.67	22.71	8.22	—	—	—

Table 2: Micro-FTIR spectra peaks of specific minerals.

Minerals	Carbonates	Phyllosilicates	Hydrogen oxygen	Kerogen	Quartz	Silicate
Micro-FTIR spectra peaks (cm⁻¹)	1600, 900, and 720	1280–1150 and 1060–1020	3750–3400	1800–1000	1360	1200–800 and 600–400

Table 3: Mineral composition calculated from micro-FTIR spectra of the Yanchang shale samples.
changes may occur, which may lead to more changes in cross well productivity [2–4]. Therefore, a better understanding of the changes in development and production can provide important guidance for the efficient development of lacustrine shale gas. Considering the small mismatch value and good fitting, we believe that the micro-FTIR technique provides an effective method for quantitative evaluation of the shale matrix at a micron scale. Two main advantages of the micro-FTIR are proposed. Firstly, this is an in situ technique to avoid destructive and potentially contaminated grinding of the sample. It
can be used to analyze in situ shale samples with constant kerogen mineral assemblage and spatial information. Secondly, the micro-FTIR spectra measurements can capture the abundant information expressed by heterogeneity at high spatial resolution.

5. Conclusions

Based on the above study, the following conclusions can be drawn:

1. Mineral compositions in the Yanchang shale are dominated by quartz and clay minerals. The massive argillaceous shale is OM richer than the silty laminated shale. The silty laminated shale has higher quartz contents, while the massive argillaceous shale has higher feldspar and clay contents.

2. The micro-FTIR results are basically consistent with the bulk shale XRD results. The analyzed massive argillaceous shale and silty laminated shales in the study area show obvious heterogeneity within the measurement interval of 80 μm. The mineral composition of homogenous samples observed by naked eyes is also strongly heterogeneous when measured by the micro-FTIR technique.

3. The micro-FTIR technique provides a fast and non-destructive method to determine the heterogeneity of mineral components in shale samples. The mineral composition information of sample heterogeneity can be obtained by multiple measurements.

4. The micro-FTIR techniques can precisely characterize the in situ compositional heterogeneity of shale samples and capture abundant information expressed by shale heterogeneity while providing resolution for shale mineralogy research.

Data Availability

The mineral composition, geochemical characteristics, and micro-FTIR spectra experiment result data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 41502123) and the National Major Project of China (No. 2016ZX05034-001).

References

[1] J. B. Curtis, “Fractured shale-gas systems,” AAPG Bulletin, vol. 86, pp. 1921–1938, 2002.

[2] S. L. Montgomery, D. M. Jarvie, K. A. Bowker, and R. M. Pollastro, "Mississippian Barnett Shale, Fort Worth Basin, north-central Texas: gas-shale play with multi-trillion cubic foot potential," AAPG Bulletin, vol. 89, no. 2, pp. 155–175, 2005.

[3] D. M. Jarvie, R. J. Hill, T. E. Ruble, and R. M. Pollastro, "Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment," AAPG Bulletin, vol. 91, pp. 475–499, 2007.

[4] R. M. Pollastro, D. M. Jarvie, R. J. Hill, and C. W. Adams, "Geologic framework of the Mississippian Barnett Shale, Barnett-Paleozoic total petroleum system, Bend Arch–Fort Worth Basin, Texas," AAPG Bulletin, vol. 91, no. 4, pp. 405–436, 2007.

[5] R. G. Loucks, R. M. Reed, S. C. Ruppel, and U. Hammers, “Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores,” AAPG Bulletin, vol. 96, no. 6, pp. 1071–1098, 2012.

[6] K. Zhang, Z. Jiang, L. Yin et al., “Controlling functions of hydrothermal activity to shale gas content-taking lower Cambrian in Xiwu Basin as an example,” Marine and Petroleum Geology, vol. 85, pp. 177–193, 2017.

[7] K. Zhang, Y. Song, S. Jiang et al., “Shale gas accumulation mechanism in a syncline setting based on multiple geological factors: an example of southern Sichuan and the Xiwoo Basin in the Yangtze Region,” Fuel, vol. 241, pp. 468–476, 2019.

[8] K. Zhang, Y. Song, C. Jia et al., “Vertical sealing mechanism of shale and its roof and floor and effect on shale gas accumulation, a case study of marine shale in Sichuan basin, the Upper Yangtze area,” Journal of Petroleum Science and Engineering, vol. 175, pp. 743–754, 2019.

[9] R. G. Loucks and S. C. Ruppel, “Mississippian Barnett Shale: lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas,” AAPG Bulletin, vol. 91, no. 4, pp. 579–601, 2007.

[10] M. Mastalerz, L. L. He, Y. B. Melnichenko, and J. A. Rupp, “Porosity of coal and shale: insights from gas adsorption and SANS/USANS techniques,” Energy & Fuels, vol. 26, no. 8, pp. 5109–5120, 2012.

[11] Z. Li, Z. Jiang, H. Yu, and Z. Liang, “Organic matter pore characterization of the Wufeng-Longmaxi shales from the Fuling gas field, Sichuan Basin: evidence from organic matter isolation and low-pressure CO₂ and N₂ adsorption,” Energies, vol. 12, no. 7, p. 1207, 2019.

[12] W. Ji, F. Hao, H. Schulz, Y. Song, and J. Tian, “The architecture of organic matter and its pores in highly mature gas shales of the Lower Silurian Longmaxi Formation in the Upper Yangtze Platform, south China,” AAPG Bulletin, vol. 102, no. 12, pp. 2909–2942, 2019.

[13] K. Zhang, Y. Song, S. Jiang et al., “Mechanism analysis of organic matter enrichment in different sedimentary backgrounds: a case study of the Lower Cambrian and the Upper Ordovician-Lower Silurian, in Yangtze region,” Marine and Petroleum Geology, vol. 99, pp. 488–497, 2019.

[14] B. Liu, J. Sun, Y. Zhang et al., “Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshan Kou Formation in the Changling sag, southern Songliao Basin, NE China,” Petroleum Exploration and Development, vol. 48, no. 3, pp. 608–624, 2021.

[15] K. Zhang, J. Peng, X. Wang et al., “Effect of organic maturity on shale gas genesis and pores development: a case study on marine shale in the upper Yangtze region, South China,” Open Geosciences, vol. 12, no. 1, pp. 1617–1629, 2020.
[16] K. Zhang, P. Jun, L. Weiwei et al., "The role of deep geofluids in the enrichment of sedimentary organic matter: a case study of the Late Ordovician-Early Silurian in the upper Yangtze region and early Cambrian in the lower Yangtze region, south China," Geofluids, vol. 2020, Article ID 8868638, 12 pages, 2020.

[17] Z. Li, Z. Liang, Z. Jiang et al., "The impacts of matrix composition on nanopore structure and fractal characteristics of lacustrine shales from the Changle Fault Depression, Songliao Basin, China," Minerals, vol. 9, no. 2, p. 127, 2019.

[18] Z. Li, Z. Jiang, X. Zhao and L. Xiao, "Pore connectivity characterization of lacustrine shales in Changle Fault Depression, Songliao Basin, China: insights into the effects of mineral compositions on connected pores," Minerals, vol. 9, no. 3, p. 198, 2019.

[19] B. Liu, A. Bechtel, R. F. Sachsenhofer, D. Gross, R. Gratzer, and X. Chen, "Depositional environment of oil shale within the second member of Permian Lucaogou Formation in the Santanghu Basin, Northwest China," International Journal of Coal Geology, vol. 175, pp. 10–25, 2017.

[20] S. Bernard, B. Horsfield, H. M. Schulz, R. Wirth, A. Schreiber, and N. Sherwood, "Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany)," Marine and Petroleum Geology, vol. 31, no. 1, pp. 70–89, 2012.

[21] Y. Chen, A. Furmann, M. Mastalerz, and A. Schimmelmann, "Quantitative analysis of shales by KBr-FTIR and micro-FTIR," Fuel, vol. 116, pp. 538–549, 2014.

[22] Y. Chen, M. Mastalerz, and A. Schimmelmann, "Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy," International Journal of Coal Geology, vol. 104, pp. 22–33, 2012.

[23] K. E. Washburn, J. E. Birdwell, M. Foster, and F. Gutierrez, "Detailed description of oil shale organic and mineralogical heterogeneity via Fourier transform infrared microscopy," Energy & Fuels, vol. 29, no. 7, pp. 4264–4271, 2015.

[24] Z. Li, Z. Jiang, Z. Liang, H. Yu, and Y. Yang, "Pore-Structure Characterisation of Tectonically Deformed Shales: Wufeng-Longmaxi Formation in Western Hunan Province, Southern Impact of Laminae on Pore Structures of Lacustrine Shales in the Southern Songliao Basin, NE China," Australian Journal of Earth Sciences, 2019.

[25] K. Zhang, J. Chengzao, S. Yan et al., "Analysis of Lower Cambrian shale gas composition, source and accumulation pattern in different tectonic backgrounds: a case study of Weiyan Block in the Upper Yangtze region and Xiuwu Basin in the Lower Yangtze region," Fuel, vol. 263, article 115978, 2020.

[26] B. Liu, Y. Gao, K. Liu et al., "Pore structure and adsorption hysteresis of the middle Jurassic Xishanyao shale formation in the Southern Junggar Basin, northwest China," Energy Exploration & Exploitation, vol. 39, no. 3, pp. 761–778, 2021.

[27] D. Liu, Z. Li, Z. Jiang et al., "Impact of laminae on pore structures of lacustrine shales in the southern Songliao Basin, NE China," Journal of Asian earth sciences, vol. 182, article 103935, 2019.

[28] B. H. Ruessink and D. G. Harville, "Quantitative analysis of bulk mineralogy: The applicability and performance of XRD and FTIR," in Proceedings of the Society of Petroleum Engineers Formation Damage Control Symposium, Lafayette, LA, 1992.

[29] M. M. Herron, A. Matteson, and G. Gustavson, "Dual-range FT-IR mineralogy and the analysis of sedimentary formations," in Proceedings of the Society of Core Analysts Annual Technical Conference, Calgary, Alberta, Canada, 1997.

[30] B. D. Ballard, "Quantitative mineralogy of reservoir rocks using Fourier transform infrared spectroscopy," in Proceedings of the Society of Petroleum Engineers Annual Technical Conference and Exhibition, Anaheim, CA, 2007.

[31] P. R. Griffiths and J. A. Haseth, Fourier Transform Infrared Spectroscopy, Wiley-Interscience, Hoboken, NJ, 2nd edition, 2007.

[32] C. M. Müller, B. Pejic, L. Esteban, C. D. Plane, M. Raven, and B. Mizaikoff, "Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems," Scientific Reports, vol. 4, article 6764, 2014.

[33] M. Klinkenberg, R. Dohrmann, S. Kaufhold, and H. Stanjek, "A new method for identifying Wyoming bentonite by ATR-FTIR," Applied Clay Science, vol. 33, no. 3-4, pp. 195–206, 2006.

[34] D. C. Cronauer, R. W. Snyder, and P. C. Painter, "Characterization of oil shale by FTIR spectroscopy," Abstracts of Papers of the American Chemical Society, pp. 122–130, 1982.

[35] M. Mastalerz and R. Marc Bustin, "Electron microprobe and micro-FTIR analyses applied to maceral chemistry," International Journal of Coal Geology, vol. 24, no. 1-4, pp. 333–345, 1993.

[36] H. Li, H. Guo, Z. Yang, and X. Wang, "Tight oil occurrence space of Triassic Chang 7 member in Northern Shanxi Area, Ordos Basin, NW China," Petroleum Exploration and Development, vol. 42, no. 3, pp. 434–438, 2015.

[37] L. Sun, J. Tuo, M. Zhang, C. Wu, Z. Wang, and Y. Zheng, "Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis," Fuel, vol. 158, pp. 549–557, 2015.

[38] M. Mastalerz and R. M. Bustin, "Application of reflectance micro-Fourier transform infrared analysis to the study of coal macerals: an example from the late Jurassic to early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada," International Journal of Coal Geology, vol. 32, no. 1-4, pp. 35–67, 1996.

[39] P. R. Griffiths and J. A. D. Haseth, Fourier Transform Infrared Spectrometry, John Wiley & ons. INC., Publication, 2nd edition, 2006.

[40] X. Tang, J. Zhang, X. Wang et al., "Shale characteristics in the southeastern Ordos Basin, China: implications for hydrocarbon accumulation conditions and the potential of continental shales," International Journal of Coal Geology, vol. 128-129, pp. 32–46, 2014.

[41] X. Wang, S. Gao, and C. Gao, "Geological features of Mesozoic lacustrine shale gas in south of Ordos Basin, NW China," Petroleum Exploration and Development, vol. 41, no. 3, pp. 326–337, 2014.

[42] D. J. K. Ross and R. M. Bustin, "Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation," AAPG Bulletin, vol. 92, no. 1, pp. 87–125, 2008.

[43] D. J. K. Ross and R. Marc Bustin, "The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs," Marine and Petroleum Geology, vol. 26, no. 6, pp. 916–927, 2009.
[44] P. C. Hackley, “Geological and geochemical characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, south Texas: A future shale gas resource?,” *AAPG Bulletin*, vol. 96, no. 8, pp. 1449–1482, 2012.

[45] D. M. Jarvie, R. J. Hill, T. E. Ruble, and R. M. Pollastro, “Unconventional shale-gas systems: the Mississippian Barnett Shale of northcentral Texas as one model for thermogenic shale-gas assessment,” *AAPG Bulletin*, vol. 91, no. 4, pp. 475–499, 2007.

[46] T. J. Kinley, L. W. Cook, J. A. Breyer, D. M. Jarvie, and A. B. Busbey, “Hydrocarbon potential of the Barnett Shale (Mississippian), Delaware Basin, west Texas and southeastern New Mexico,” *AAPG Bulletin*, vol. 92, no. 8, pp. 967–991, 2008.

[47] R. G. Loucks, R. M. Reed, S. C. Ruppel, and D. M. Jarvie, “Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale,” *Journal of Sedimentary Research*, vol. 79, no. 12, pp. 848–861, 2009.

[48] R. J. Hill, D. M. Jarvie, J. Zumberge, M. Henry, and R. M. Pollastro, “Oil and gas geochemistry and petroleum systems of the Fort Worth Basin,” *AAPG Bulletin*, vol. 91, no. 4, pp. 445–473, 2007.

[49] X. M. Xiao, B. Q. Zhao, Z. L. Thu, Z. G. Song, and R. W. T. Wilkins, “Upper Paleozoic petroleum system, Ordos Basin, China,” *Marine and Petroleum Geology*, vol. 22, no. 8, pp. 945–963, 2005.

[50] C. Jiang, X. Wang, L. Zhang et al., “Geological characteristics of shale and exploration potential of continental gas shale in Chang 7 member of Yanchang Formation, southeast Ordos Basin,” *Geology in China*, vol. 40, no. 6, pp. 1880–1888, 2013.