Cosmological Fast Optical Transients with the Zwicky Transient Facility: A Search for Dirty Fireballs

Anna Y. Q. Ho,1, 2, 3 Daniel A. Perley, 4 Yuhan Yao, 5 Dmitry Svinkin, 6 A. de Ugarte Postigo, 7 R. A. Perley, 8 D. Alexander Kann, 9 Eric Burns, 10 Igor Andreoni, 11, 12, 13 Eric C. Bellm, 14 Elisabetta Bissaldi, 15, 16 Joshua S. Bloom, 17 Andrew J. Drake, 17 José Feliciano Agüí Fernández, 9 Dmitry Frederiks, 6 Matthew J. Graham, 5 Boyan A. Hristov, 18 Mansi K. Kasliwal, 5 S. R. Kulkarni, 5 Harsh Kumar, 19, 20 Russ R. Laher, 21 Alexandra L. Lysenko, 6 Bagrat Mailyan, 22 Christian Malacaria, 23 A. A. Miller, 24 S. Poolakkil, 25, 26 Reed Riddle, 17 Anna Ridnaia, 6 Ben Rusholme, 21 Volodymyr Savchenko, 27 Jesper Sollerman, 28 Christina Thöne, 29 Anastasia Tsvetkova, 6 Mikhail Ulanov, 6 and Andreas von Kienlin 30

1 Miller Institute for Basic Research in Science, 468 Donner Lab, Berkeley, CA 94720, USA
2 Department of Astronomy, University of California, Berkeley, CA, 94720, USA
3 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4206, Berkeley, CA 94720, USA
4 Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK
5 Cahill Center for Astrophysics, California Institute of Technology, MC 249-17, 1200 E California Boulevard, Pasadena, CA, 91125, USA
6 Ioffe Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russia
7 Artemis, Observatoire de la Côte d’Azur, Université Côte d’Azur, CNRS, 06304 Nice, France
8 National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801, USA
9 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain
10 Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
11 Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA.
12 Department of Astronomy, University of Maryland, College Park, MD 20742, USA.
13 Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA
14 DIRAC Institute, Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195, USA
15 Dipartimento di Fisica “M. Merlin” dell’Università e del Politecnico di Bari, I-70126 Bari, Italy
16 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy
17 Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125
18 Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899, USA
19 Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
20 LLSTC Data Science Fellow 2018
21 IPAC, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
22 Center for Astro, Particle, and Planetary Physics, New York University Abu Dhabi, Abu Dhabi, UAE
23 Universities Space Research Association, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805, USA
24 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Road, Evanston, IL 60201, USA
25 Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899, USA
26 Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899, USA
27 ISDC, Department of Astronomy, University of Geneva, Chemin d’Ecogia, 16 CH-1290 Versoix, Switzerland
28 The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden
29 Astronomical Institute of the Czech Academy of Sciences (ASU-CAS), Fríčova 298, 251 65 Ondřejov, CZ
30 Max-Planck Institut für extraterrestrische Physik, D-85748 Garching, Germany

Submitted to ApJ

ABSTRACT

Dirty fireballs are a hypothesized class of relativistic massive-star explosions with an initial Lorentz factor \(\Gamma_{\text{init}} \) below the \(\Gamma_{\text{init}} \sim 100 \) required to produce a long-duration gamma-ray burst (LGRB), but
which could still produce optical emission resembling LGRB afterglows. Here we present the results of a search for on-axis optical afterglows using the Zwicky Transient Facility (ZTF). Our search yielded seven optical transients that resemble on-axis LGRB afterglows in terms of their red colors ($g - r > 0$ mag), faint host galaxy ($r > 23$ mag), and rapid fading ($dr/dt > 1$ mag d$^{-1}$). Spectroscopy of the transient emission within a few days of discovery established cosmological distances ($z = 0.876$ to $z = 2.9$) for six events, tripling the number of afterglows with redshift measurements discovered by optical surveys without a γ-ray trigger. Upon a retrospective search, four events (ZTF 20aabixyp/AT 2020ky, ZTF 21aagwjr/AT 2021buv, ZTF 21aakruew/AT 2021cwd, ZTF 21abfnpqw/AT 2021qbd) turned out to have a likely associated LGRB (GRB 200524A, GRB 210204A, GRB 210212B, GRB 210610B), while three did not (ZTF 20aajnksq/AT 2020blt, ZTF 21ayelq/AT 2021any, ZTF 21ayokph/AT 2021lfa). Our search revealed no definitive new class of events: the simplest explanation for the apparently “orphan” events is that they were regular LGRBs missed by high-energy satellites due to detector sensitivity and duty cycle, although it is possible that they were intrinsically faint in γ-rays or viewed slightly off-axis. We rule out a scenario in which dirty fireballs have a similar energy per solid angle to LGRBs and are an order of magnitude more common. In addition, we set the first direct constraint on the ratio of the opening angles of the material producing γ-rays and the material producing early optical afterglow emission, finding that they must be comparable.

1. INTRODUCTION

Decades of observations of long-duration γ-ray bursts (LGRBs) and their associated afterglows have revealed that in the deaths of some massive ($M > 10 M_\odot$) stripped-envelope stars, the newborn compact object can couple 10^{51} erg of energy to ultra-relativistic (initial Lorentz factor $\Gamma_{\text{init}} \gg 100$) material, and that this phenomenon preferentially occurs in low-metallicity environments (Kouveliotou et al. 2012). In the traditional LGRB model (Piran 2004; Mészáros 2006; Kumar & Zhang 2015), the outflow is collimated into a jet a few degrees wide as it tunnels through the star. Viewed on-axis, the observer sees a seconds-long burst of γ-rays from collisions within the jet, then emission from X-ray to radio wavelengths called the “afterglow” (Mészáros & Rees 1997; Sari et al. 1998; van Paradijs et al. 2000; Panaitescu & Kumar 2002; Greiner et al. 2011) on timescales of minutes to years. Thousands of afterglows have been detected to date\(^1\), almost all in targeted follow-up observations of discoveries by GRB satellites such as the High Energy Transient Explorer 2 (HETE-2; Ricker et al. 2003), Fermi (Meegan et al. 2009), and Swift (Gehrels et al. 2004).

Despite the significant progress made by LGRB discoveries, many important questions cannot be answered by relying on existing γ-ray satellites to discover relativistic outflows from collapsing stars. In particular, the rate and angular structure of LGRB jets are unknown in large part because observed LGRBs are viewed almost entirely on-axis (or close to on-axis; Ryan et al. 2015), with only a few suggested exceptions (Huang et al. 2004; Ramirez-Ruiz et al. 2005; Butler et al. 2005; Kriessler et al. 2009). Relatedly, it is unknown whether ultra-relativistic speeds, which can only be attained with very small amounts of matter entrained in the jet (“low mass-loading”), are central to the phenomenon. It has been hypothesized that mass-loaded jets (“dirty fireballs”; Paczyński 1998; Dermer et al. 1999) are more common (Huang et al. 2002), but have gone unnoticed because their emission peaks at energies below the range of γ-ray detectors (Dermer et al. 1999), instead appearing as X-ray flashes (Heise et al. 2001; Zhang et al. 2004; Sakamoto et al. 2005; Soderberg et al. 2007).

A promising approach to answering the above questions is to find relativistic outflows via their afterglow emission, without relying on a trigger from a γ-ray satellite. Assuming that dirty fireballs result in successful relativistic outflows with a similar energy per solid angle to LGRBs, they should produce luminous and rapidly fading optical afterglows (Huang et al. 2002; Rhoads 2003). The afterglows from clean or dirty fireballs viewed off-axis ($\theta_{\text{obs}} > 1/\Gamma_{\text{init}}$) will eventually become visible to the observer as the jet decelerates and expands sideways, often referred to as “orphan” afterglows (Rhoads 1997; Perna & Loeb 1998; Dalal et al. 2002; Granot et al. 2002; Nakar et al. 2002; Totani & Panaitescu 2002). For a structured jet (see Granot & Ramirez-Ruiz 2010 for an overview) orphan afterglows could also be detected from jets viewed within the initial opening angle of relativistic material, but outside the narrow high-Lorentz factor region emitting γ-rays; such events have been referred to as “on-axis orphans” (Nakar & Piran 2003).

Finding optical afterglows without a GRB trigger is a longstanding goal of transient surveys, and prior to the Zwicky Transient Facility (ZTF; Bellm et al. 2019a; Graham et al. 2019) had only been achieved three times. Searches at X-ray (Grindlay 1999; Greiner et al. 2000;}

\(^1\) https://www.mpe.mpg.de/~jcg/grbgen.html
In implications for dirty fireballs, jet collimation, and the cosmological LGRB population. In multiwavelength properties of the ZTF afterglows to the overview of the sample in fireballs. We describe our search strategy and give an most stringent constraint to date on the rate of dirty nous (van Eerten et al. 2010). cause off-axis emission is slower-evolving and less luminous to events viewed far outside the jet axis, be- viewed on- (or close to on-) axis; these searches are not possible to cosmological transients, our discussion is limited to sources detected GRB. We note that by focusing on fast cos- z = 0.876 to z = 2.9. Four events had no associated detected GRB. We note that by focusing on fast cosmological transients, our discussion is limited to sources viewed on- (or close to on-) axis; these searches are not sensitive to events viewed far outside the jet axis, be- cause off-axis emission is slower-evolving and less luminous (van Eerten et al. 2010).

In this paper, we use the ZTF afterglows to set the most stringent constraint to date on the rate of dirty fireballs. We describe our search strategy and give an overview of the sample in §2. In §3 we compare the multwavelength properties of the ZTF afterglows to the cosmological LGRB population. In §4 we discuss the implications for dirty fireballs, jet collimation, and the prevalence of relativistic jets in collapsing massive stars. In §5 we summarize and discuss how to make progress.

Throughout the paper we use the term “afterglow” to refer to cosmological fast optical transients whose observed properties strongly resemble GRB afterglows. In addition, for brevity we use the term “orphan afterglow” to refer to afterglows with no associated detected GRB. However, as discussed in §3.2, an associated LGRB cannot be ruled out, so a more precise term would be “apparently orphan.” We use “on-axis” to refer to a viewing angle that is within the opening angle of the initial relativistic material.

We assume a flat ΛCDM cosmology with $H_0 = 67.7 \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}$ and $\Omega_M = 0.307$ (Planck Collaboration et al. 2016). Times are presented in UTC, and magnitudes are given in AB. The optical photometry and spectroscopy will be made public through WISEREP, the Weizmann Interactive Supernova Data Repository (Yaron & Gal-Yam 2012).

2. OBSERVATIONS

2.1. ZTF

The ZTF custom mosaic camera (Dekany et al. 2020) is mounted on the 48-inch Samuel Oschin Telescope (P48) at Palomar Observatory. As summarized in Bellm et al. (2019b), during Phase I (ZTF-I) observing time was divided between public (40%), partnership (40%), and Caltech surveys (20%). During ZTF-II it is 50% public and 30% partnership. Three custom filters are used (g_{ZTF}, r_{ZTF}, and i_{ZTF}: hereafter g, r, and i; Dekany et al. 2020) and images reach a typical dark-time limiting magnitude of $r \sim 20.5$ mag.

Images are processed and reference-subtracted by the IPAC ZTF pipeline (Masci et al. 2019) using the Zackay et al. (2016) image-subtraction algorithm. Every 5-σ point-source detection is saved as an “alert.” Alerts are distributed in Avro format (Patterson et al. 2019) and can be filtered based on a machine learning real-bogus metric (Mahabal et al. 2019; Duev et al. 2019); host-galaxy characteristics, including a star-galaxy classifier (Tachibana & Miller 2018); and light-curve properties. During ZTF Phase I (ZTF-I; 2018–2020) the collabora- tion used a web-based system called the GROWTH marshals (Kasliwal et al. 2019) to identify, monitor, and coordinate follow-up observations for transients of inter- est. In ZTF Phase II (ZTF-II; 2020–2023) the collabora- tion uses the Fritz marshal (van der Walt et al. 2019; Duev et al. 2019).

The afterglows discussed in this paper were discovered as part of ZTF surveys with three different cadences. Four events were discovered as part of high-cadence (HC) observations, either the high-cadence partnership survey, which covered 2500 deg2 with six visits per night (three in r and three in g), or the ZTF Uniform Depth
Survey (ZUDS2), which covered 2500 deg2 with six visits per night (2r, 2g, and 2i). Three events were discovered in gr one-day cadence data, including two from public observations shadowing the Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2014) fields (van Roestel et al. 2019). Finally, two events were discovered as part of the public ZTF-II all-sky survey, which covers 15,000 deg2 in r- and g-band every two nights.

2.2. Search Procedure

Every night, the ZTF alert stream is filtered by several independent pipelines to identify young or fast-evolving transients, such as ZTFReST (Andreoni et al. 2020, 2021). In this paper we focus on events discovered via the approach described in Ho et al. (2020b) and Perley et al. (2021c). In short, basic cuts are applied to remove artifacts, asteroids, and stellar flares. Remaining transients are divided into several groups, including new transients, those with no detections prior to the current night. One of us (AYQH, DAP, YY) visually inspects the new transients and determines whether any meet the following criteria for afterglows:

1. A fast rise from the previous non-detection ($\gtrsim 0.5$ mag d$^{-1}$)

2. Red colors ($g-r > 0$ mag) expected from optically thin synchrotron radiation (see Ho et al. 2020b) OR rapid intra-night fading in a single band

3. Either no, or a very faint, associated host in deep archival imaging from the Legacy Survey (Dey et al. 2019) or Pan-STARRS1 (Chambers et al. 2016)

Our search criteria evolved over time. Based on a strategy developed to discover afterglows in iPTF data (Ho et al. 2018), we initially searched for events only on the basis of rapid intra-night fading, and discovered several afterglows this way; we use these events for our discussion of rates in §4. However, the intra-night fading approach has two limitations: it requires multiple observations per night in a single filter, and ZTF only obtains high-cadence observations across a few thousand square degrees of sky. In addition, when an afterglow is discovered it has already faded significantly, making spectroscopic follow-up more difficult. To discover afterglows earlier in their evolution and over a wider area of sky, we broadened our strategy to also include events that rapidly brighten (Ho et al. 2020b). This approach enabled us to discover two events in the two-day cadence all-sky public survey (ZTF 21aakruw and ZTF 21ayokph) that showed no significant fading in the ZTF data: in fact, each event had only one g-band and one r-band measurement in the alert stream. We discuss the possibilities enabled by discovering afterglows in the all-sky survey in §5.

When a candidate is identified by the daily scanner, we check for associated detected GRBs, obtain follow-up observations to confirm the afterglow nature, and publicly announce the discovery of the transient. In most cases, we obtain deep imaging to measure the rate of fading and obtain a better constraint on the color. We primarily use the Liverpool Telescope (LT; Steele et al. 2004) due to its sensitivity, robotic scheduling, and multi-band capabilities. When LT is unavailable, we request observations with the Spectral Energy Distribution Machine (SED; Blagorodnova et al. 2018; Rigault et al. 2019) on the Palomar 60-inch telescope (P60; Cenko et al. 2006a) or the Growth-India Telescope (GIT). The latency from the first ZTF detection to the first epoch of follow-up imaging has ranged from 0.2–0.9 d. For identifying an associated detected GRB, we search the archives of the third Interplanetary Network (IPN3), which consists of ten spacecraft that provide all-sky full-time monitoring for high-energy bursts.

The most sensitive GRB detectors in the IPN are the Burst Alert Telescope (BAT; Barthelmy et al. 2005) on board the Neil Gehrels Swift observatory (Swift; Gehrels et al. 2004), the Gamma-ray Burst Monitor (GBM; Meegan et al. 2009) on the Fermi spacecraft, and the KONUS instrument on the Wind spacecraft (Konus-Wind; Aptekar et al. 1995). If a transient is confirmed to be rapidly fading, and has colors consistent with optically thin synchrotron radiation, we trigger X-ray observations with Swift and optical spectroscopy of the transient emission to measure its redshift. If a candidate is confirmed to be cosmological and is “orphan,” i.e., has no associated detected GRB, we trigger radio observations with the Very Large Array (VLA; Perley et al. 2011). The time from first ZTF detection to public announcement is typically 24 hr.

2.3. Overview of ZTF Afterglows

Table 1 summarizes the afterglows discovered by optical transient surveys to date, although in this paper we focus on the seven events discovered by the searches described in §2.2. Pre-ZTF, three afterglows had been discovered using optical surveys: PTF11agg

\footnote{https://github.com/zuds-survey/zuds-pipeline}

\footnote{http://www.ssl.berkeley.edu/ipn3/index.html}
With ZTF, the number of optically discovered afterglows has increased from three (of which two had redshift measurements) to 13 (of which nine have redshift measurements). One event (AT 2019pim; Perley et al. in prep.) was identified in follow-up observations to a gravitational-wave trigger (Kasliwal et al. 2020). Two events (AT 2020sev and AT 2020yxz) were identified exclusively by ZTFReST and published in Andreoni et al. (2021). Table 1 includes events with either a likely detected GRB counterpart, or confirmation of relativistic ejecta from a redshift measurement or radio observations; it does not include some candidate extragalactic fast transients such as ZTF19aanhtzz (AT 2019aacu; Andreoni et al. 2020). In our consideration of event rates (§4) we use stricter selection criteria to ensure a complete sample.

The afterglows in Table 1 constitute the shortest-lived optical extragalactic transients that have been discovered in optical survey data and followed up in real time. To illustrate this, Figure 1 shows the duration above half-maximum and the peak absolute magnitude for optical transients, primarily with light curves observed by ZTF (Fremling et al. 2020; Perley et al. 2020; Ho et al. 2021c). Most supernovae (SNe) evolve on timescales from 10–100 d, powered by radioactive decay, with their characteristic duration set by diffusion through optically thick ejecta (Villar et al. 2017a). By contrast, the afterglow emission is governed by optically thin synchrotron radiation. We caution that for the afterglows, estimates of the duration and peak luminosity are imprecise because the ZTF cadence is much slower than the light-curve timescale; the exception is AT 2019pim due to TESS observations of the light curve (Perley et al. in prep; Fausnaugh et al. 2019). To estimate the duration, we use best-fit power laws to the light curve (§3.2). The luminosity estimates are described in §3.3.

In the remainder of this section we provide discovery and follow-up details for events discovered by our search procedure that have not yet been published. The X-ray, optical, and radio observations are provided in Tables 5, 6, and 7 in the Appendix. When appropriate we estimate the chance spatial and temporal coincidence of the optical transient with a GRB, by calculating the number of LGRBs we expect a given facility to detect in the localization region during the time interval of interest. For Fermi-GBM, we use the fact that during the year 2020 GBM detected 422 bursts, an average of 1.5 d$^{-1}$.

2.3.1. ZTF 20abbiixp / AT 2020kmn / GRB 200524A

ZTF 20abbiixp was first detected by ZTF on 2020 May 24.29 (MJD 58993.29) in an r-band image at $r = 17.35 \pm 0.04$ mag as part of the ZTF Uniform Depth Survey. The most recent non-detection was 0.84 d prior at $g > 20.51$ mag. The most recent r-band non-detection was 1.01 d prior at $r > 20.79$ mag, giving an r-band rise rate of ≥ 3.4 mag d$^{-1}$.

There were five detections the first night, all in r-band, which showed significant fading of 0.35 mag over 0.48 hr;

Figure 1. The duration and luminosity of optical transients. Measurements of superluminous supernovae (SLSNe), Type Ia supernovae (SN Ia), and most core-collapse supernovae (SNe) are from the ZTF Bright Transient Survey (Fremling et al. 2020; Perley et al. 2020). Measurements of short-duration core-collapse SNe and AT 2018cow-like transients are from dedicated searches for fast-evolving transients (Prentice et al. 2018; Perley et al. 2019b, 2021c; Ho et al. 2020c, 2021c; Yao et al. 2021e). For reference we also show the timescale and luminosity of the optical emission from GW170817/AT 2017gfo (Coulter et al. 2017; Cowperthwaite et al. 2017; Kasliwal et al. 2017; Drout et al. 2017; Villar et al. 2017b) and of iPTF14yb (the only optically discovered afterglow prior to ZTF with a redshift measurement; Cenko et al. 2015). The afterglows discussed in this paper are the fastest and most luminous optical transients discovered and followed up in real time. Due to the cadence of ZTF, our measurements typically represent upper limits on the duration and lower limits on the peak luminosity. Measurements are in rest-frame g-band when possible, with a crude k-correction applied (Equation 1 for afterglows; see Ho et al. (2021c) for other sources).

list4 during the year 2020 IPN detected 422 bursts, an average of 1.5 d$^{-1}$.

4 http://www.ssl.berkeley.edu/ipn3/masterli.txt
we provide the full set of ZTF photometry in Table 5, and plot the r-band light curve in Figure 2. Legacy Survey imaging (Dey et al. 2019) showed no associated host at the transient position down to $g \sim r \sim 24$ mag. The fast rise, rapid intra-night fading, and lack of detected host in deep imaging led the transient to be flagged by the daily scanner on 2020 May 24. ZTF 20abbiixp also passed the ZTFReST search criteria during their science validation (Andreoni et al. 2021).

A search for an associated GRB identified the long-duration GRB 200524A (Pookalil et al. 2020; Fana Dirirsa et al. 2020) consistent with the position and time of ZTF 20abbiixp. GRB 200524A had triggered the Fermi-GBM and the Fermi-Large Area Telescope (LAT; Atwood et al. 2009), and Swift X-ray Telescope (XRT; Burrows et al. 2005) ToO observations had been initiated (Evans & Swift Team 2020). The burst was found to also have triggered ASTROSAT (Gupta et al. 2020; Singh et al. 2014) and Konus-Wind (Svinink et al. 2020).

The trigger time was 1.8 hr prior to the first ZTF detection. The offset was 0.151 deg from the LAT position, which had a localization region of radius 0.2 deg (90% containment, statistical error only). The expected number of GRBs detected by GBM in this location over a 0.84 d window is $N_{GRB} \times 0.84 d \times (\pi(0.2)^2)/41253 = 2 \times 10^{-6}$. We therefore consider the association secure. We publicly reported the transient (Ho et al. 2020a) and saved it to the Transient Name Server (TNS), where it was assigned the name AT 2020kym.
Figure 2. The r-band light curve (corrected for Milky Way extinction) of each ZTF afterglow compared to the sample of afterglows detected in follow-up observations to Swift-BAT triggers (Kann et al. 2010) and Fermi-GBM triggers (Singer et al. 2015). The left panel shows afterglows with associated detected GRBs, and the right panel shows afterglows with no associated detected GRB. For the “orphan” events, we caution that the estimated t_0 is uncertain. The shaded region corresponds to the 25 to 75 percentile bounds of the Swift-BAT sample (Kann et al. 2010). The crosses indicate the first detection of each Fermi-GBM afterglow in Singer et al. (2015). The horizontal grey line indicates the nominal ZTF limiting magnitude of 20.5 mag. Photometry is obtained from Cenko et al. (2013, 2015); Bhalerao et al. (2017); Ho et al. (2020b); Andreoni et al. (2021); and Perley et al. in prep. For ATLAS17aeu we include c-band points. For AT 2019pim we include TESS points obtained at $\Delta t < 0.1$ d. Our searches tend to find afterglows that are brighter than the bulk of the follow-up sample.

2.3.2. ZTF 21aaeyldq / AT 2021any

ZTF 21aaeyldq was first detected by ZTF on 2021 January 16.29 (MJD 59230.29) in an r-band image at $r = 17.92 \pm 0.06$ mag as part of the high-cadence partnership survey. The most recent non-detection was 20.3 minutes prior at $r > 20.28$ mag (in a public-data image), giving a rise rate of > 167 mag d$^{-1}$. There were six detections the first night in r and g-band, which showed significant fading of 1.9 mag over 3.3 hours and an extinction-corrected red color of $g - r = (0.25 \pm 0.19)$ mag. The ZTF photometry is presented in Table 5, the gr light curve is shown in Figure 3, and the r-band light curve is shown compared to other events in the right panel of Figure 2. No host galaxy was visible at the transient position in deep Legacy Survey pre-imaging (> 24 mag). Due to the fast fading, red color, and lack of detected host, the transient was flagged by the daily scanner on 2021 January 16.75.

We searched the Fermi-GBM Burst Catalog\(^8\), the Fermi-GBM Subthreshold Trigger list\(^9\) (with reliability flag not equal to 2), the Swift GRB Archive\(^10\), and the Gamma-Ray Coordinates Network archives\(^11\) for an associated GRB between the last ZTF non-detection (2021 January 16.28) and the first ZTF detection 20 minutes later. No associated GRB had been reported. We searched the pointing history of different satellites, and determined that the transient position was visible\(^12\) to Fermi-GBM for 14 out of the 20 minutes in the interval between the last non-detection and the first detection. The position was not visible to Swift-BAT, Konus-Wind, or SPI-ACS (Vedrenne et al. 2003) on board the INTonightal Gamma-ray Astrophysics Laboratory (INTEGRAL; Winkler et al. 2003). INTEGRAL was

8. https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html
9. https://gcn.gsfc.nasa.gov/fermi_gbm_subthresh_archive.html
10. https://swift.gsfc.nasa.gov/archive/grb_table/
11. https://gcn.gsfc.nasa.gov/gcn3_archive.html
12. Search conducted using https://github.com/annayqho/HE_Burst_Search
Figure 3. The optical, X-ray, and radio light curves of two new “orphan” afterglows, AT 2021any (top panel) and AT 2021lfa (bottom panel), together with their best-fit power laws. Data presented in this paper is shown as filled points, with different symbols for different instruments. Data obtained from GCNs (Zhu et al. 2021; Guelbenzu et al. 2021) is shown as unfilled circles. The optical data have been corrected for Milky Way extinction. X-ray data are shown with a plus sign and scaled by a factor of 30 for clarity. Radio X-band data are shown with crosses. Arrows indicate upper limits. An ‘S’ along the top marks an epoch of spectroscopy. The best-fit t_0 is calculated as described in §3.2—we caution that these values are uncertain.

not obtaining data due to its regular perigee passage. Konus-Wind was only recording data in its S2 detector. Despite the high incident angle to the source (115 deg), reasonable upper limits on the γ-ray emission may be derived (§3.2). We published the transient to the TNS on January 16.9 and it was assigned the name AT 2021any.

AT 2021any was observed with the Optical Spectrograph and InfraRed Imager System (OSIRIS; Cepa et al. 2000) mounted on the 10.4 m Gran Telescopio Canarias (GTC) telescope at the Roque de los Muchachos Observatory in the island of La Palma (Spain). The observation consisted of 4×900 s exposures with grism R1000B and a 1″ wide slit, aligned with the parallactic angle,
Figure 4. Optical spectra of AT 2021any (top panel; OSIRIS/GTC) and AT 2021lfa (middle and bottom panels; GMOS-S/Gemini), two afterglows with no associated detected GRB. Vertical lines mark absorption features used to measure the redshifts of $z = 2.5131$ (AT 2021any) and $z = 1.063$ (AT 2021lfa). Regions affected by telluric absorption are also marked. The blue line in the AT 2021any panel is the error spectrum.

which results in a resolving power of ~ 600 and spectral coverage between 3700 and 7800 Å. The observation was performed at a mean epoch of 00:06 UT on 17 January 2021. The data reduction was performed using a custom pipeline based on shell scripts and IRAF routines that included bias, response, wavelength and flux calibration based on the observation of a spectrophotometric star.

As mentioned by de Ugarte Postigo et al. (2021a) the spectrum (see Figure 4) shows several prominent absorption features corresponding to Ly-α, S II, O I, Si II, Si IV, C II, C IV, Fe II, Al II, and Al III at a common redshift of $z = 2.5131 \pm 0.0016$. To determine the redshift we use the average value calculated for each of the unblended features, taking as uncertainty their standard deviation. The equivalent widths measured for
these lines are displayed in Table 2, together with their measured wavelength and redshift. The reduced spectra can be plotted and downloaded within the GRBSpec database\(^{13}\) (de Ugarte Postigo et al. 2014).

Table 2. Equivalent widths measured from the optical spectra of AT 2021any and AT 2021fa.

Name	Obs. λ (Å)	Feature	z	EW (Å)
AT 2021any	4421.02	S II 1259.52	2.5131	7.41 ± 1.26
	5770.59	Si II 1260.42	2.5131	1.03 ± 0.05
	4574.15	O I 1302.17	2.5131	9.31 ± 1.03
	4553.21	Si II 1304.37	2.5131	1.03 ± 0.05
	4686.88	C II 1334.53	2.5120	10.13 ± 0.94
	4894.84	Si IV 1393.76	2.5119	5.38 ± 0.88
	4926.22	Si IV 1402.77	2.5118	3.46 ± 0.77
	5364.17	Si II 1526.71	2.5135	7.81 ± 0.74
	5440.73	C IV 1548.2	2.5143	17.58 ± 0.98
	5647.44	Fe II 1608.45	2.5111	8.98 ± 0.91
	5870.30	Al II 1670.79	2.5135	7.82 ± 0.85
	6518.77	Al II 1854.72	2.5147	2.97 ± 0.64
	6549.65	Al III 1862.79	2.5160	1.49 ± 0.52
AT 2021fa	4834.99	Fe II 2344	1.063	2.51 ± 0.82
	4897.54	Fe II 2374	1.063	2.65 ± 0.85
	4914.12	Fe II 2382	1.063	3.52 ± 0.90
	5334.21	Fe II 2586	1.063	3.12 ± 0.95
	5363.12	Fe II 2600	1.063	3.94 ± 0.92
	5768.26	Mg II 2796	1.063	3.30 ± 0.85
	5780.84	Mg II 2803	1.063	4.63 ± 0.88

Preceding our spectroscopic observations with OSIRIS, we obtained two acquisition images of 60 s and 30 s exposure time, respectively, in the r’ filter (first reported in de Ugarte Postigo et al. 2021a). The afterglow is clearly detected in each image. No calibration images were taken for these observations, but the raw images are of high quality.

After a weather-induced delay, we obtained two epochs of observations with the Calar Alto Faint Object Spectrograph (CAFOS) mounted on the 2.2m telescope of the Centro Astronómico Hispano en Andalucía (CAHA), Almería, Spain, in the RC filter (first reported in Kann et al. 2021a, and Kann et al. 2021b). The observations consisted of 10 × 360 s at ≈ 1.7 d after the GRB, and another 12 × 360 s a night later. Observing conditions were fair, but with mediocre seeing. The afterglow is clearly detected in each stack. Images were bias-subtracted, flatfielded, aligned and stacked with standard procedures in ESO MIDAS\(^{14}\) and PyRAF\(^{15}\). The CAFOS and OSIRIS photometry is presented in Table 5. Additional optical follow-up optical observations of AT 2021any were reported by a variety of facilities (Kumar et al. 2021; Ahumada et al. 2021; Zhu et al. 2021; Coughlin & Ahumada 2021a;b; Rossi et al. 2021c; Guelbenzu et al. 2021; Ghosh et al. 2021).

We obtained a Swift-XRT\(^{16}\) observation of AT 2021any beginning 0.81 d after the first optical detection. We obtained three epochs of 3 ks exposures and reduced the data using the online tool\(^{17}\) developed by the Swift team (Evans et al. 2007). In the first epoch X-ray emission was detected at the transient position, and there was no detection in the subsequent two epochs. The log of observations is provided in Table 6. Taking a neutral hydrogen column density of \(n_H = 8.12 \times 10^{20} \text{ cm}^{-2}\) (Willingale et al. 2013) and assuming a power-law spectrum with photon index \(\Gamma = 2\), the unabsorbed flux density is \(2.9 \times 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1}\). We used webpimms\(^{18}\) to convert the count rate to a flux density. The X-ray light curve is shown in Figure 3.

We obtained eight epochs of observations of AT 2021any with the VLA under our ToO program\(^{19}\): six epochs were in X-band (10 GHz), one epoch was in X- and Ku-band (15 GHz), and one epoch was in S- (3 GHz), C- (6 GHz), X-, and Ku-band. The source J0808-0751 was used as a phase calibrator. For most observations 3C138 was used as the flux calibrator, although to account for the recent flaring behavior of this source we also observed 3C286 during the third epoch and in the final two epochs we observed 3C286 only. Reduction of the data was performed using the Astronomical Image Processing System (AIPS) using standard synthesis imaging techniques. Calibration was performed by hand, with regions of the spectrum heavily contaminated by radio frequency interference (RFI) excluded. We reported the first detection (Perley et al. 2021a) and the observations are listed in Table 7. The 10 GHz radio light curve is shown in Figure 3, and the evolution of the radio spectral energy distribution (SED) is shown in Figure 5.

2.3.3. ZTF 21aagwbgjr / AT 2021buv / GRB 210204A

\(^{13}\) http://grbspec.eu

\(^{14}\) https://www.eso.org/sci/software/esomidas/

\(^{15}\) https://iraf-community.github.io/pyraf.html

\(^{16}\) PI: Ho; target ID 13991

\(^{17}\) https://www.swift.ac.uk/userobjects/

\(^{18}\) https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3pimms/w3pimms.pl

\(^{19}\) VLA/20B-164 and VLA/21A-319, PI: Perley
Figure 5. Evolution of the radio spectral energy distribution (SED) of AT 2021any (circles) and AT 2021lfa (squares), afterglows with no associated detected GRB. The lines show power-law fits to the data for each epoch with > 2 data points. The SEDs of AT 2021any appear optically thin throughout. The SEDs of AT 2021lfa appear self-absorbed up to 21.71 d, then become optically thin, suggesting that the self-absorption frequency has passed through the VLA observing bands. Note that the light curve of AT 2021lfa shows evidence for scintillation at $\nu \lesssim 10$ GHz.

ZTF 21aagwbjr was first detected in an image obtained on 2021 February 04.30 at $r = 17.11 \pm 0.05$ mag as part of the one-day cadence TESS shadowing survey. The previous non-detection was 1.87 hr prior at $g > 18.25$ mag. The previous r-band non-detection was 1.05 d prior at $r > 20.35$ mag, giving a rise rate in r-band of > 3.1 mag d$^{-1}$. There was only one detection the first night. There were four detections the second night, two in r-band and two in g-band. Due to the rapid fade rate of 2.15 ± 0.14 mag d$^{-1}$ in r-band, the
extinction-corrected red color \((g - r = 0.42 \pm 0.19 \text{ mag})\), and the presence of a faint \((g = 24.6 \text{ mag}, r = 23.7 \text{ mag})\) counterpart (putative host galaxy) at the transient position in Legacy Survey imaging, the transient was flagged by the daily scanner on February 05.7. This source was independently discovered by ZTFReST, and the ZTF photometry was presented in Andreoni et al. (2021).

A search for an associated GRB identified the long-duration GRB 210204A consistent with the position and time of ZTF 21aagwbrj. GRB 210204A had triggered Fermi-GBM (Fermi GBM Team 2021), the Gamma-Ray Detector (GRD) on board the Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor (GECAM; Zhang et al. 2019; Li et al. 2021), Konus-Wind (Frederiks et al. 2021a; Frederiks & Konus-Wind Team 2021), and AstroSat (Waratkar et al. 2021). The trigger time of February 04.27 was 43 minutes prior to the first ZTF detection. The IPN localized the burst to a region of 6.7 \text{ deg}^2 (Hurley et al. 2021). The number of expected GRBs detected by the IPN in this region over the 1.87 hr window is \(2 \times 10^{-5}\), so the association is quite secure. The transient was reported (Kool et al. 2021) and saved to the TNS, where it was assigned the name AT 2021buv. The multiband properties of AT 2021bun will be published in a separate paper by Kumar et al. Here we simply summarize the follow-up observations that were obtained.

We measured the redshift of AT 2021buv using a long-slit spectrum obtained with GMOS-S\(^{20}\) (Gimeno et al. 2016). The observation was conducted in the Nod-and-Shuffle mode with a 1''0-wide slit, beginning at 2021-02-06 01:19:09.2 UT, or 42.8 hr after the Fermi-GBM trigger. We obtained \(2 \times 450\) s spectroscopic exposures with the B600 grating and \(2 \times 450\) s exposures with the R400 grating, providing coverage over the range 3620–9600 Å. We reduced the spectrum using the IRAF package for GMOS, and clearly detected Mg II and Mg I in absorption at \(z = 0.876\). The redshift of \(z = 0.876\) was independently measured using VLT/X-shooter (Xu et al. 2021) from absorption features including fine-structure lines of Fe II, and emission lines of O II, O III, Hβ, and Hα. The GMOS spectrum will be published by Kumar et al.

AT 2021buv was also detected in the X-ray (Evans & Swift Team 2021; Kennea et al. 2021) and radio (Chandra et al. 2021) bands. Additional optical photometry has been made available (Teja et al. 2021; Belkin et al. 2021; Rossi et al. 2021a; Gupta et al. 2021a) and include reports of a jet break (Gupta et al. 2021a; Rossi et al. 2021a).

2.3.4. ZTF 21aakruew / AT 2021cwd / GRB 210212B

ZTF 21aakruew was first detected in a ZTF image obtained on 2021 February 12.37 at \(g = 19.57 \pm 0.21\) mag, as part of the public survey. The last non-detection was 2.0 d prior at \(g > 20.88\) mag, giving a rise rate of \(>0.7\) mag d\(^{-1}\). The extinction-corrected color was \(g - r = 0.02 \pm 0.26\) mag and there was no host galaxy visible at the transient position in Legacy Survey imaging (down to \(g \sim r \sim 24\) mag). Due to the fast rise and lack of detected host, the transient was noted by the daily scanner on February 12.7.

The uncertainty in the \(g - r\) color was not sufficient to determine whether it was red as expected for optically thin synchrotron emission \((g - r = 0.24\) mag\) or blue as expected for thermal flares \((g - r = -0.17\) mag\). To determine the color more precisely, we obtained LT griz imaging on February 12.98. The LT imaging revealed rapid fading of 2.4 mag d\(^{-1}\) in r-band and red colors (extinction-corrected \(g - r = 0.75 \pm 0.21\) mag). We report our optical photometry in Table 5.

We could not identify any GRB consistent with the position and time of ZTF 21aakruew. We publicly announced the transient (Yao et al. 2021d) and saved it to the TNS, where it was assigned the name AT 2021cwd. After our announcement, the IPN announced that AT 2021cwd was in the localization region of long-duration GRB 210212B by Konus-Wind, INTEGRAL, and Swift-BAT (Svinkin et al. 2021a,b). The burst time was 6.2 hr prior to the first ZTF detection. Follow-up optical photometry was obtained by us with LT as well as by other groups (Pozenenko et al. 2021; Nicuesa Guelbenzu & Klose 2021). A conservative estimate of the 3-σ IPN localization area is 1286 \text{ deg}^2 (the BAT coded region cannot be confidently excluded). The number of GRBs expected to be detected by the IPN in this area during the 2 d window is 0.09, so the association is fairly secure. Unfortunately no redshift measurement was obtained of this event.

2.3.5. ZTF 21aayokph / AT 2021lfa

ZTF 21aayokph was first detected in a public ZTF image on 2021 May 04.23 at \(r = 18.60 \pm 0.08\) mag. The last non-detection was 1.92 d prior at \(r > 20.23\) mag (also in a public-survey image) giving a rise rate in r-band of \(>0.8\) mag d\(^{-1}\). The source was detected in both r and g-band the first night, with an extinction-corrected red color of \(g - r = 0.17 \pm 0.14\) mag. The nearest object in Legacy Survey pre-imaging was 2''9 away, at \(g=24.2\) mag and \(r=23.5\) mag. Due to the fast rise, red color, and lack of detected host galaxy at the transient position, the

\(^{20}\) ToO program GS-2021A-Q-124; PI: A. Ho
The SED was obtained at $\Delta t = 1.7$ d by LT in the $ugriz$ bands and shows a dropoff before u band, likely due to extinction. We show a fit to an SMC dust extinction law.

transient was flagged by the daily scanner on May 04.7. We searched for an associated GRB; none was identified in the 1.92 d window consistent with the optical-transient position. We publicly reported the source (Yao et al. 2021b) and saved it to the TNS, where it was assigned the name AT 2021lfa.

We obtained a long-slit spectrum of AT 2021lfa with GMOS-S21 starting on 2021 May 05.18, or $\Delta t = 0.95$ d after the first optical detection. The observation was performed in the Nod-and-Shuffle mode with a 1′0-wide slit. We obtained 2×450 s exposures with each of the B600 grating and the R400 grating, providing coverage over the range 3620–9540 Å. No flux calibration was performed. The spectrum was reduced using the IRAF package for GMOS. We clearly identified absorption lines of Mg II $\lambda\lambda 2796,2803$ at the redshift of $z = 1.063$ in the B600 and R400 spectra. Absorption lines from Mg I and Fe II were marginally detected in the spectra at a consistent redshift. We therefore determined that $z = 1.063$ is the most probable redshift for AT 2021lfa, although in practice this is only a lower limit. The lack of observed Damped Lyman Alpha (DLA) places an upper limit of $z < 2.3$. We reported the redshift measurement in Yao et al. (2021b). The spectrum with our line identifications is shown in Figure 4, and the measured line strengths are reported in Table 2.

We observed the position of AT 2021lfa with Swift-XRT22 beginning on May 05.23, or $\Delta t = 1$ d after the first optical detection (Ho et al. 2021a). We obtained two epochs of 5 ks exposures separated by 2.5 d and reduced the data using the online tool developed by the Swift team. In the first epoch X-ray emission was detected at the transient position with a count rate of $(9.3 \pm 0.17) \times 10^{-3}$ s$^{-1}$, and there was no detection in the second epoch with a 3-σ upper limit of $< 4.4 \times 10^{-3}$ s$^{-1}$. The log of observations is provided in Table 6. Taking a neutral hydrogen column density of $n_H = 2.16 \times 10^{20}$ cm$^{-2}$ and assuming a power-law spectrum with photon index $\Gamma = 2$, webpimms gives an unabsorbed 0.3–10 keV flux density of 3.5×10^{-13} erg cm$^{-2}$ s$^{-1}$. The X-ray measurements are shown in Figure 3.

We obtained follow-up observations with the SEDM and LT. LT image reduction was provided by the basic IO:O pipeline. P60 and LT image subtraction was performed following Fremling et al. (2016) using PS1 images for $griz$ and SDSS for u-band. Our photometric observations are provided in Table 5. Optical photometry was also obtained by other groups (Watson et al. 2021; Butler et al. 2021; Kim et al. 2021; Fu et al. 2021; O’Connor et al. 2021; Pankov et al. 2021a; Rossi et al. 2021b), including a claimed detection 3 h prior to the first ZTF detection (Lipunov et al. 2021). The r-band light curve is shown in Figure 2, the multi-band optical light curve is shown in Figure 3, and the optical SED obtained with LT at $\Delta t = 1.7$ d is shown in Figure 6.

We obtained nine separate epochs of observations of AT 2021lfa with the VLA under our ToO program23. The epochs generally involved various combinations of X, Ku, and C-bands, although in one epoch L-band was also included, and in some cases an observation was repeated in the lowest-frequency band after a few hours or days to look for evidence of short-timescale scintillation. The log of observations is provided in Table 7. We employed 3C286 as a flux calibrator for all observations and J1224+0330 as the phase calibrator. In three of these epochs we also observed J1407+2827 in X-band only as a polarization leakage calibrator, although no evidence of polarization in the afterglow was detected. Observations were reduced using AIPS in the same manner as for the observations of AT 2021any. The 10 GHz radio light curve is shown in Figure 3, and the evolution of the SED is shown in Figure 5.

21 Program GS-2021A-Q-124, PI: Ho

22 Target ID 14306, PI: Ho

23 VLA/21A-319, PI: Perley
2.3.6. ZTF 21abfmpwn / AT 2021qbd / GRB 210610B

ZTF 21abfmpwn was first detected in an image obtained as part of the high-cadence partnership survey on 2021 June 11.23 at $g = 18.49 \pm 0.10$ mag. The last non-detection was 0.85 d prior at $r > 20.20$ mag (in a public survey image), and the most recent non-detection in the same filter was 0.94 d prior at $g > 20.46$ mag (also in a public survey image). The rise time was therefore > 2.1 mag d$^{-1}$ in g-band. The daily scanner promptly identified ZTF 21abfmpwn as the afterglow to the Swift long-duration GRB 210610B (Page et al. 2021), which was known to have a bright associated X-ray and optical afterglow and a redshift of $z = 1.1345$ (Fynbo et al. 2021; de Ugarte Postigo et al. 2021b; Dutta et al. 2021). GRB 210610B was also detected by Fermi-GBM (Malacaria et al. 2021) and Konus-Wind (Frederiks et al. 2021b). The burst time was 9.7 hr before the first ZTF detection.

The transient would have passed our selection criteria regardless of the known GRB association due to its rapid rise, its red color (extinction-corrected $g - r = 0.32 \pm 0.07$ mag), significant intra-night fading (0.32 mag in 3.1 hr), and faint ($g = 23$, $r = 23$) object $0\farcs3$ away in Legacy Survey imaging. We publicly reported the ZTF detection (Perley et al. 2021b) and saved the afterglow to the TNS, where it was assigned the name AT 2021qbd. We provide the ZTF photometry in Table 5.

Because AT 2021qbd was associated with a well-observed GRB, we did not obtain any further follow-up observations. The afterglow was also detected at millimeter (Laskar et al. 2021; Smith et al. 2021) and radio (Alexander et al. 2021) wavelengths.

3. COMPARISON TO THE LGRB POPULATION

In this section we compare the properties of the optically discovered afterglows to the population of optical afterglows detected in follow-up observations of GRB triggers.

3.1. Redshift Distribution

In Figure 7 we show the cumulative redshift distribution of all optically discovered events to date compared to that of Swift-BAT GRBs with optical afterglows24. Current optical searches sample a wide range of redshifts, from $z = 0.9$ to $z = 3$. However, we cannot discern any statistically significant differences between the optically selected and GRB-selected events at this stage due to the small sample size. In the future, it will be interesting to see whether the “orphan” events lie at different redshifts from the events with associated detected GRBs.

![Figure 7. Cumulative redshift distribution of optically discovered afterglows with (five events; solid line) or without (four events; dashed line) associated detected GRBs. For reference we show the distribution for afterglows discovered in follow-up observations to triggers from Swift-BAT (dotted line). The optically discovered events span a wide range of redshifts ($z = 0.9$ to $z = 3$) but the small sample size precludes the discernment of any difference in the populations.](https://swift.gsfc.nasa.gov/archive/grb_table/)
Table 3. Properties of (or limits on) the prompt \(\gamma \)-ray emission accompanying afterglows discovered by optical surveys. Uncertainties are given at 1-\(\sigma \) confidence. Quantities were calculated as part of this work unless specified in the references column. Values were calculated in the 20 keV–10 MeV range (80–1500 keV for \(T_{90} \)) unless otherwise specified. \(T_{90} \) and \(E_p \) values are presented in the observer-frame. \(E_{\gamma, iso} \) and \(L_{\gamma, iso} \) have a \(k \)-correction applied, which transforms the energetics from the observer-frame 20 keV–10 MeV energy range to the 1/(1 + z) keV–10/(1 + z) MeV band.

Name (GRB)	Inst.	\(T_{90} \) (s)	Fluence \((10^{-6} \text{ erg cm}^{-2}) \)	Peak Flux \((10^{-6} \text{ erg cm}^{-2} \text{s}^{-1}) \)	\(E_p \) (keV)	\(E_{\gamma, iso} \) \((10^{52} \text{ erg}) \)	\(L_{\gamma, iso} \) \((10^{52} \text{ erg s}^{-1}) \)	Ref.
PTF11aag	—	< 0.4	< 0.4					
iPTF14yb (140226A)	IKO	13.5 ± 1.1 \(^d \)	5.1 ± 5.6	0.64 ± 0.72	215 ± 28	13.6 ± 1.7	5.6 ± 0.9	[1]
ATLAS17aeu (170105A)	AIKP	3.3 ± 0.6	2.39 ± 0.12	0.75 ± 0.04	56 ± 12	—		
AT2019vim \(^e \)	—	< 0.35	< 0.4	< 0.3	< 0.3	< 0.4	< 0.3	[1]
AT2020btl	—	< 0.4	< 0.2	< 1.0	< 0.3	< 0.2	< 0.3	[1]
AT2020kmn (200524A)	AFK	66.0 ± 9.9	34.8 ± 4.3	6.33 ± 1.04	215 ± 28	13.6 ± 1.7	5.6 ± 0.9	[1]
AT2020sev (200817A)	FKS	388.6 ± 26.5	6.6 ± 4.3	0.38 ± 0.07	427 ± 82	—		
AT2020yxs (201103B)	GIK	63.6 ± 20.2	52.6 ± 7.0	14.9 ± 1.4	403 ± 39	16.9 ± 1.5	10.1 ± 0.9	[1]
AT2021anx	—	< 10.0	< 1.0	< 1.4	< 1.4	< 0.2	< 0.3	[1]
AT2021buv (210204A)	ABCFIKOS	197.0 ± 6.0	80.9 ± 5.4	5.6 ± 1.06	137 ± 13	22.6 ± 1.5	2.9 ± 0.6	[1]
AT2021ewd (210212B)	IK	41.2 ± 2.9	8.7 ± 1.7	0.67 ± 0.08	208 ± 34	—		
AT2021ifa	—	< 0.4	< 0.4	< 0.2	< 0.12	< 0.2	< 0.3	[1]
AT2021jdb (210610B)	FKS	48.5 ± 4.2	136.0 ± 5.5	10.7 ± 1.1	255 ± 8	47.8 ± 1.9	8.0 ± 0.8	[1]

\(^a \) A: ASTROSAT (CTZT); B: GECAM-B (GRD); C: CALET (GBM); F: Fermi (GBM); G: AGILE (MCAL); I: INTEGRAL (SPI-ACS); K: Konus (Wind); O: Mars-Odyssey (HEND); P: TGS (POLAR); S: Swift (BAT)

\(^b \) Measured using the time-integrated spectrum

\(^c \) For GRB 140226A the \(T_{90} \) was calculated using INTEGRAL (SPI-ACS) data at \(\gtrsim 80 \) keV.

\(^d \) Our value of \(T_{90} \) is calculated in the 70–300 keV Konus-Wind energy band and is consistent with Stalder et al. (2017). In the softer 20–70 keV band, \(T_{90} = 20 \pm 4 \) s (more similar to Blaher et al. 2017).

\(^e \) We take the median flux upper limit from a Fermi-GBM targeted search, using a soft template with 10 s duration.

\(^f \) For GRB 201103B and GRB 201212B \(T_{90} \) is calculated in the 80–1000 keV band.

References—[1] Perley et al. in prep., [2] Ho et al. (2020b)

quantity for drawing comparisons with the LGRB population, we also use a typical fluence threshold to estimate an upper limit on \(E_{\gamma, iso} \). The upper limits on \(L_{\gamma, iso} \) and \(E_{\gamma, iso} \) in Table 3 have cosmological corrections applied.

We fit the AT 2021any ZTF light curve with a broken power law following the same procedure applied to AT 2020bht (Ho et al. 2020b), which made use of a modified fitting function from Zeh et al. (2006). We fit the function to the \(g \)- and \(r \)-band light curves simultaneously, with a constant offset in magnitude between the light curves. Since the host galaxy is not detected in deep Legacy Survey imaging, and the ZTF points are all brighter than 20 mag, we do not fit for a constant offset from the host. Using the `curve_fit` package in `scipy`, we find a best-fit \(t_0 \) that is nine minutes after the last non-detection and 11 minutes prior to the first detection.

The best-fit temporal power-law index is \(\alpha_1 = 0.57 \pm 0.04 \) prior to the break, and \(\alpha_2 = 1.18 \pm 0.01 \) after the break, with a break at \(\Delta t = 3.9 \) hr. The goodness of fit is \(\chi^2/\nu = 3.4 \) for \(\nu = 8 \) degrees of freedom. The pre-break index we measure is shallower than the value of \(\alpha_1 = 0.89 \pm 0.03 \) reported by Gupta et al. (2021b) on the basis of GCN photometry. The post-break index we measure is shallower than the value of \(\alpha_2 = 2.3 \) reported by Kann et al. (2021b). The best fit is shown in Figure 3.

We fit the AT 2021ifa light curve to a single power law, to the \(g \)-, \(r \)-, and \(i \)-band light curves simultaneously, with a constant offset in magnitude between each pair of bands. Since the host galaxy is not detected in deep Legacy Survey imaging, we do not fit for a constant offset from the host. We find a best-fit \(t_0 \) of May 03.29, which is \(0.98 \pm 0.01 \) d prior to the first detection and \(0.94 \) d after the last non-detection. The best-fit temporal power-law index is \(\alpha = 2.54 \pm 0.02 \), with a goodness of fit of \(\chi^2/\nu = 4.7 \) for \(\nu = 18 \) degrees of freedom. The fits do not capture an apparent late-time flattening in the \(r \)- and \(i \)-band light curves; further imaging will be required to determine whether the flattening is due to the host-galaxy contribution. The fit is shown in Figure 3.
Our best-fit t_0 for AT 2021any is within the interval of visibility to Fermi-GBM. Using the Fermi-GBM trigger sensitivity, we estimate that the upper limit on the peak flux is 1×10^{-7} erg cm$^{-2}$ s$^{-1}$, although a ground-based analysis could reduce the sensitivity by a factor of 2–3. However, early optical afterglow light curves can have complex behavior (Kann et al. 2010), so our power-law fit may not be appropriate. To be conservative, we report an upper limit based on Konus-Wind. AT 2021any had only non-standard Konus-Wind data, so we estimate an upper limit on the flux of 10^{-6} erg cm$^{-2}$ s$^{-1}$ (20–10,000 keV; 3.68 s timescale), a factor of a few higher than typical Konus-Wind peak flux upper limits (Ridnaia et al. 2020). For the fluence, a conservative upper limit is 10^{-5} erg cm$^{-2}$ (Tsvetkova et al. 2021). The corresponding upper limits on E_{iso} and L_{iso} are reported in Table 3.

We compute new upper limits for PTF 11agg in a consistent way. The interval of interest is the 21.5 hr between the last non-detection and the first detection. Konus-Wind was taking data with stable background conditions for 98% of the time. We find an upper limit on the peak flux of 10^{-7} erg cm$^{-2}$ s$^{-1}$ (20 keV–10 MeV, 2.944 s timescale), which is insensitive to the assumed spectral model. We set a fluence threshold in the same way as for AT 2021lfa.

We can now compare the energetics of the prompt high-energy emission to that of typical LGRBs. The burst durations and L_{iso} values in Table 3 classify each event as a classical LGRB with $L_{\text{iso}} > 10^{49.5}$ erg s$^{-1}$ (Cano et al. 2017). The values of T_{90} range from 3.3 s (for ATLAS17aeu / GRB 170105A) to 388.6 s (for AT2020sev / GRB 200817A). It is not surprising that we would detect more LGRB afterglows than SGRB af--
tergows, because LGRB afterglows are an order of magnitude more luminous than short-duration GRB afterglows (Kann et al. 2011; Berger 2014).

For the orphan events we cannot rule out an associated prompt LGRB with a “classical” high luminosity of $L_{\gamma,\text{iso}} > 10^{45.5}$ erg s$^{-1}$ (Cano et al. 2017). This can be understood as follows. For most events, the coverage by sensitive detectors such as Swift-BAT and Fermi-GBM, together with the uncertainty on the burst time, means that the most robust upper limit comes from Konus-Wind. The Konus-Wind flux threshold of a few 10^{-7} erg cm$^{-2}$ s$^{-1}$ could only rule out a $10^{49.5}$ erg s$^{-1}$ GRB at $z = 0.16$ (800 Mpc), much lower redshift than any of our events.

The cumulative distributions of the prompt energetics are shown in Figure 8. For comparison, we show the distribution of GRBs in the Fermi-GBM Burst Catalog\(^{25}\) (Gruber et al. 2014; von Kienlin 2014; Narayana Bhat et al. 2016; von Kienlin et al. 2020; Poolakkil et al. 2021), and LGRBs from Konus-Wind with redshift measurements (Tsvetkova et al. 2017). The sample size is too small to discern statistically significant differences. However, so far it appears that if the orphan events are ordinary LGRBs, the bursts have lower luminosities and energies than the events with detected LGRBs. The limits are consistent with a picture in which the GRB-associated events have higher luminosities and energies, making them detectable by all-sky GRB monitors, whereas the orphan events have lower but still ordinary LGRB parameters.

3.3. Optical Light Curves

In Figure 2 we show the r-band light curves of the ZTF afterglows compared to the sample of optical afterglows detected in follow-up observations of Swift-BAT GRBs presented in Kann et al. (2010), and of Fermi-GBM GRBs presented in Singer et al. (2015). The shaded region indicates the 25 and 75 percentile bounds of the Kann et al. (2010) sample. The left panel shows the events with GRB associations, including two events detected prior to ZTF (iPTF14yib and ATLAS17aeu), and the right panel shows the events with no associated detected GRB, including one event detected prior to ZTF (PTF11agg). The left panel of Figure 2 shows that the events with detected GRBs have particularly bright afterglows—most events are brighter than the 75th percentile from the Kann et al. (2010) sample.

Comparing the brightness of the orphan optical afterglows, shown in the right panel of Figure 2, is challenging because of the uncertainty on the true time of first light. Using the best-fit t_0 values for PTF11agg and AT 2021lfa, the light curves appear to be brighter than those of most GRB afterglows. The best-fit t_0 values for AT 2021any and AT 2020blt suggest that the light curves are fairly typical in brightness for GRB afterglows. The most extreme case—a value of t_0 equal to the last non-detection—would put the first AT 2020blt detection at $\Delta t = 0.74$ d, and the first AT 2021any detection at $\Delta t = 0.014$ d. So, while AT 2020blt could also have been fairly bright, AT 2021any would still be typical.

Table 4.

Properties of the optical light curves for optically discovered afterglows with redshift measurements: the temporal power-law decay index α_O, and the rest-frame u-band luminosity at $\Delta t = 11$ h and $\Delta t = 1$ d. In many cases we retrieved the temporal power-law index from the literature or the GCN archive, and indicate the references in the final column. The time ranges are in the observer-frame. The luminosity measurements are from this paper.

Name	α_O	L_u (11h) (erg s$^{-1}$)	L_u (1d) (erg s$^{-1}$)	Ref.
iPTF14yib	1.02	8.2×10^{43}	3.4×10^{43}	[1]
AT 2019pim	0.9 (\(\Delta t < 3\) d), 0 (\(3 < \Delta t < 8\) d), 2 (\(8 < \Delta t\))	4.4×10^{44}	1.6×10^{44}	[2]
AT 2020blt	0.54 (\(\Delta t < 1\) d), 2.62 (\(\Delta t > 1\) d)	8.4×10^{44}	1.9×10^{44}	[3]
AT 2020kym	1.53 (\(\Delta t < 0.8\) d), 0.8 (\(\Delta t > 0.8\) d)	2.5×10^{44}	1.0×10^{44}	
AT 2020yxx	0.96	1.2×10^{45}	4.2×10^{44}	[4]
AT 2021any	0.7 (\(\Delta t < 0.8\) d), 2.3 (\(\Delta t > 0.8\) d)	4.0×10^{44}	1.9×10^{44}	[5]
AT 2021buv	0.6 (\(\Delta t < 2.2\) d), 1.7 (\(\Delta t > 2.2\) d)	1.9×10^{45}	4.3×10^{44}	[6]
AT 2021lfa	2.54	2.4×10^{45}	3.9×10^{44}	
AT 2021hgd	1.57	2.0×10^{45}	3.3×10^{44}	[7]

References—[1] Cenko et al. (2015), [2] Perley et al. in prep. [3] Ho et al. (2020b) [4] Andreoni et al. (2021) [5] Kann et al. (2021b) [6] Rossi et al. (2021a) [7] Pankov et al. (2021b)
For events with measured redshifts, we construct rest-frame u-band optical light curves to compare the optical luminosity of LGRB afterglows. We convert the observed r-band light curves using the following equation,

$$L_u(t) = 4\pi D_L^2 F_r(t)(1+z)^{-\alpha_O+\beta_O-1} \left(\frac{\nu_u}{\nu_r}\right)^{-\beta_O},$$

where D_L is the luminosity distance, $F_r(t)$ is the observed r-band flux at a given time t, and z is the redshift. The temporal and spectral indices are defined as $F_\nu \propto t^{-\alpha_O} \nu^{-\beta_O}$. The frequencies are set to $\nu_u = 8.3 \times 10^{14}$ Hz and $\nu_r = 4.9 \times 10^{14}$ Hz for u- and r-band, respectively. For each event we adopt a typical value of $\beta_O = 0.6$ (Greiner et al. 2011). The values of α_O we adopt for each burst are shown in Table 4, and the resulting light curves are shown in Figure 9. We also take a cross-section of the light curves at 11 h and 1 d in the rest-frame; we provide the luminosities in Table 4. The luminosities are typical of LGRB light curves (Racusin et al. 2011) and we find no evidence that the orphan events are distinct.

As a final check, we calculate the rest-frame r-band luminosities of the orphan events at 11 h, and plot them compared to the limits on E_{iso} in Figure 10. We compare them to a sample of LGRBs from Nysewander et al. (2009). For the comparison, we calculate the rest-frame r-band luminosity using the same adopted spectral index $\beta = 1$ as in Nysewander et al. (2009). The limits on E_{iso} are not sensitive enough to rule out a contemporaneous LGRB for any event.

3.4. Multiwavelength Properties of the Orphan Afterglows

In this section, we analyze the multiwavelength data of AT 2021any and AT 2021lfa, and put the properties of all optical orphan afterglows discovered to date in the context of the LGRB population. To date, five orphan optical afterglows have been discovered: PTF11agg ($0.5 \lesssim z \lesssim 3.0$), AT 2019pim ($z = 1.2596$), AT 2020blt ($z = 2.9$), AT 2021any ($z = 2.5131$), and AT 2021lfa ($z = 1.063$). The properties of PTF11agg and AT 2020blt were presented in Cenko et al. (2013) and Ho et al. (2020b) respectively, and AT 2019pim will be discussed in detail in a separate paper by Perley et al. Gupta et al. (2021b) analyzed the public data of AT 2021any and concluded that its properties were consistent with being a LGRB viewed on-axis. By modeling the optical light curve of AT 2020blt, and adopting deeper limits on accompanying γ-ray emission than Ho et al. (2020b), Sarin et al. (2021) argued that it was likely viewed on-axis but with an unusually low γ-ray efficiency of $< 2.8\%$.

The optical light curves of AT 2021any and AT 2021lfa have temporal indices that are similar to those of LGRB optical afterglows in the literature (Zeh et al. 2006; Kann et al. 2010; Li et al. 2012; Wang et al. 2018). The AT 2021lfa power-law index of $\alpha = 2.54 \pm 0.02$ is close to expectations for synchrotron emission from a power-law distribution of electrons after the edge of the jet is visible, for a typical electron energy power-law index of $p = 2.5$ (Sari et al. 1999). The AT 2021any light curve shows a clear break. The post-break index of $\alpha_2 = 1.2$ is close to expectations for synchrotron emission before the edge of the jet is visible (Sari et al. 1999). The pre-
Light curves like that observed accompanying AT 2021lfa are commonly attributed to two effects in collimated relativistic jets (Rhoads 1997; Sari et al. 1999): sideways expansion and the edge of the jet being visible, both of which are thought to occur when the Lorentz factor $\Gamma(t) \propto \theta_0^{-1}$, where θ_0 is the opening angle of the jet. At early times, the afterglow decay would have been shallower. The fact that we did not observe the transition suggests that it occurred within a day of the burst in the rest-frame, which is common for LGRB optical afterglows (Zeh et al. 2006; Kann et al. 2010; Wang et al. 2018), and enables us to estimate the opening angle of the jet. To estimate the opening angle, we use the expression from Sari et al. (1999):

$$t_{\text{jet}} = 6.2 \left(\frac{E_{52}}{n_1} \right)^{1/3} \left(\frac{\theta_0}{0.1} \right)^{8/3} \text{hr},$$

where E_{52} is E_{iso} in units of 10^{52} erg, n_1 is the circum-burst density in units of cm$^{-3}$, and t_{jet} is the time of the jet break. For AT 2021lfa, we adopt $t_{\text{jet}} < 22$ hr and $E_{52} < 0.12$. The opening angle, which is more sensitive to the timing of the break, is therefore $< 12^\circ$. For AT 2021any, the shallower decay index suggests that we did not observe the transition. Taking $t_{\text{jet}} > 0.6$ d in the rest-frame, and $E_{52} < 14.3$, we infer an opening angle of $> 6^\circ$.

The optical light curves constrain our viewing angle. For AT 2021any, the shallow ($\alpha = 1.2$) index is consistent with an event viewed directly on-axis, in agreement with Gupta et al. (2021b). For AT 2021lfa, from the available photometry we cannot determine whether the event was initially viewed on-axis. However, given the high luminosity, it must have been viewed at least very close to on-axis.

Interestingly, of the five orphan optical afterglows observed so far, all show either a prominent break in the light curve or steep temporal evolution. We discussed AT 2021any and AT 2021lfa above. AT 2020blt had a clear jet break (Ho et al. 2020b). AT 2019pim had a complicated light curve, with several segments with different decay indices: an early segment had $\alpha = 0.9$ while a later segment appeared to show a steeper value of $\alpha = 2$, which could also represent a break. The light curve of PTF11agg was fit by a single power-law with index $\alpha = 1.66 \pm 0.35$, but possibly a value as steep as $\alpha = 2.5$ due to the uncertainty on the burst time. The data are consistent with AT 2021any, AT 2019pim, and AT 2020blt being viewed within the initial opening angle of the jet, while AT 2021lfa and PTF11agg may have been viewed slightly off-axis.

The optical spectra of AT 2021any and AT 2021lfa are also typical of LGRB afterglows. We compare the strength of the redshift-corrected spectral features of each object with those of a large sample of GRB afterglow spectra. To do this, we calculate a line strength parameter (LSP; de Ugarte Postigo et al. 2014) and construct a line strength diagram. Using the LSP, we can compare the average strength of the lines with the LGRB sample. Using the line-strength diagram, we can identify differences in the composition or ionisation of an individual object with those typical of LGRB environments.

In the case of AT 2021any, we obtain an LSP of 0.58 ± 0.40, which implies that the observed features are stronger than those of 80% of the sample. The line strength diagram for this spectrum (Figure 11) shows no clear deviations of the relative line strength of the lines with those of the sample, except perhaps a slight deficit of Al III. So although the lines are stronger than average, there is no significant difference in the ionization state or composition. For AT 2021lfa we calculate a value of LSP = -0.05 ± 0.11, close to the average of the LGRB sample. The line strength diagram (Figure 11) also shows a line strength distribution that follows the average values of the sample, with the same relative strength of lines.

![Figure 11. Line strength diagram comparing the features in the spectra of AT 2021any and AT 2021lfa, two apparently orphan afterglows, with those of a large sample of GRB afterglows. The lines of AT 2021any are stronger than average, they show similar relative strengths as those of the sample. The lines of AT 2021lfa the line strengths are average for LGRB afterglows.](image-url)
The optical to X-ray SEDs of AT2021any and AT2021lf are also typical of LGRBs. For AT2021any we take the NOT photometry from Zhu et al. (2021) at $\Delta t = 0.8 \, \text{d}$, and find a spectral index of $\beta_O = 1.00 \pm 0.01$ across the gr bands where $f_\nu \propto \nu^{-\beta_O}$. At this epoch, the spectral index from the optical to X-ray band is shallower, $\beta_{OX} = 0.6$. We show the UVOIR SED of AT2021lf in Figure 6. The best-fit observed spectral index is $\beta_O = 1.24 \pm 0.01$, including a rapid drop between the g and u bands, which implies host dust extinction. By fitting an SMC-like extinction law (Fitzpatrick 1999; Gordon et al. 2003), we find $\beta_O = 0.32 \pm 0.46$ and $A_V = 0.45 \pm 0.19 \, \text{mag}$. At the epoch of the SEDM observation 0.3 d later, the optical to X-ray index is $\beta_{OX} = 0.4$. The values of β_O, β_{OX}, and A_V are all standard for LGRB afterglows (Cenko et al. 2009; Greiner et al. 2011).

The low signal-to-noise of our X-ray observations precludes a detailed analysis of the X-ray data, so we focus on comparing the overall X-ray luminosity to that of LGRB afterglows. For comparison we use the analysis of Steffit/XRT data in Margutti et al. (2013). We estimate the rest-frame 0.3–30 keV luminosity of each of our events, converting the count rate to unabsorbed estimate the rest-frame 0.3–30 keV luminosity of each Swift LGRB afterglows. For comparison we use the analysis. By fitting an SMC-like extinction law (Fitzpatrick 1999; Gordon et al. 2003), we find $\beta_{OX} = 0.6$. The values of β_O, β_{OX}, and A_V are all standard for LGRB afterglows (Cenko et al. 2009; Greiner et al. 2011).”

For AT2021any, the flux drops by a factor of four from 4.91 d to 6.86 d. The rebrightening at $\Delta t = 20 \, \text{d}$ represents a factor of 2–3 change in flux over seven days in the observer-frame (two days in the rest-frame); the fade represents a factor of 5–6 over the same timescale.

Interstellar scintillation can cause short-term variations at these frequencies, and we find that it likely makes a significant contribution to the light curve of AT2021any. Scintillation results from small-scale inhomogeneities in the ISM, which change the phase of an incoming wavefront. As the Earth moves, the line of sight to a background source changes, so the net effect is an observed change in flux. The effect is greatest for sources observed at a frequency ν_{obs} that is close to the transition frequency ν_0, which separates strong scattering ($\nu_{\text{obs}} < \nu_0$) from weak scattering ($\nu_{\text{obs}} > \nu_0$). Using the NE2001 model of the ISM (Cordes & Lazio 2002), we find that the positions of AT2021any and AT2021lf have a transition frequency $\nu_0 = 15 \, \text{GHz}$ and $\nu_0 = 8 \, \text{GHz}$, respectively. So, the 10 GHz light curve of AT2021any is very likely affected by scintillation. The 10 GHz light curve of AT2021lf may not be: it is possible that the earliest emission represents a truly distinct emission component, such as a reverse shock (Kulkarni et al. 1999; Sari et al. 1999; Harrison et al. 2001; Laskar et al. 2013; Perley et al. 2014; Laskar et al. 2016).

The SED evolution of AT2021any is shown in Figure 5. The data at all epochs is fainter with increasing frequency, suggesting that the emission is optically thin at all epochs, i.e., that the synchrotron self-absorption frequency $\nu_a < 8 \, \text{GHz}$. We fit a power-law of the form $f_\nu = f_\nu \nu^\beta$ to each epoch, and find significant changes with time. In particular, the spectral index appears to be steeper ($f_\nu \propto \nu^{-2}$) during the brightest parts of the light curve. The spectral index is shallower ($\nu^{-0.5}$) between brightening episodes, which is a more typical spectral index for GRB afterglows at frequencies below the cooling frequency $\nu_a < \nu < \nu_c$ (Granot & Sari 2002). If the brightening is due to scintillation, it may be that the changing spectral index is also due to the frequency-dependent effects of scintillation.

In the full SED evolution of AT2021lf (Figure 6), which spans 7.83–103.58 d, we appear to observe the transition from optically thick to optically thin regimes. During the epochs 7.83–15.72 d, corresponding to the first peak and rise of the light curve, the data appear to be self-absorbed. We measure a power-law index of $\nu^{1.15 \pm 0.01}$ at $\Delta t = 7.83 \, \text{d}$ and an index of $\nu^{1.86 \pm 0.02}$ at $\Delta t = 11.82 \, \text{d}$. By 21.71 d, the index has become significantly more shallow: we measure $\beta = 0.26 \pm 0.01$. During the fading of the light curve, at 47.74 d and 103.58 d, we measure an optically thin spectral index
of $\beta = -0.66 \pm 0.21$ and $\beta = -0.68 \pm 0.01$, respectively, indicating that the self-absorption frequency has passed through the VLA observing bands, and that the cooling frequency lies above the VLA bands at all epochs of observation.

In conclusion, we do not find any clear differences between the multwavels wavelength properties of the orphan optical afterglows and the population of LGRBs discovered by high-energy satellites. So, at this stage we have no evidence of a population of optical afterglows that are distinct from LGRBs. We address the implications in §4.

4. DISCUSSION

In §3.2, we concluded that the optically discovered afterglows resemble the population of on-axis LGRBs in terms of their γ-ray to radio properties. Although the events listed in Table 1 were not selected in a fully consistent way, we can still draw valuable conclusions from the ratio of events with associated detected GRBs to those without.

4.1. Comparison to LGRB Rate

First we compare our detected afterglow rate to the LGRB rate. To do this, we adopt a similar approach to Cenko et al. (2013): construct a mock catalog of LGRBs, adopt a light curve from the Swift/BAT follow-up sample obtained with the P60 telescope (Cenko et al. 2009), then check how many of these events would have been discovered by us using ZTF by folding the light curve through the log of ZTF observations.

We created a log of all the observations in which we could have reliably discovered an afterglow. To be conservative, we only used field-nights in which an event could have been recognized via intra-night fading. We used ztfquery and the ZTF observation log to select all field-nights in the years 2020 and 2021 with the following criteria:

1. A typical limiting magnitude fainter than 20 mag,
2. At least two r-band observations that night,
3. An r-band observation the previous night in the same filter with a limiting magnitude fainter than 20 mag, and
4. A field with Galactic latitude $|b| > 15$ deg.

Applying the criteria above resulted in an observation log of 19,190 field-nights and 35,171 unique observations. We used ztfquery to estimate a typical limiting magnitude for each of the field-nights in each filter.

Next, we constructed a mock catalog of LGRBs. In the last few years, Swift/BAT detected an average of 73 LGRBs yr$^{-1}$. Accounting for the field-of-view and duty cycle in the same way as Cenko et al. (2013), we estimate an all-sky rate of 511 yr$^{-1}$, slightly less than the rate of 630 yr$^{-1}$ adopted by Cenko et al. (2013) (which included SGRBs). In two years of ZTF, we therefore expect there to be 1022 LGRBs. We assigned each of our 1022 mock GRBs a random burst time t_0, uniformly distributed between 1 January 2020 and 31 December 2021; a random R.A. and Dec. uniformly distributed across the sky; and a random GRB R-band light curve based on the sample of Cenko et al. (2009). We excluded four events—GRB 050607, GRB 060110, GRB 071003, and GRB 071011—because they had Galactic latitudes $|b| < 15$ deg. For the light curve, we obtained P60 R_C-band data from Cenko et al. (2009), and in some cases added photometry from the literature (Cenko et al. 2006b; Soderberg et al. 2007; Perley et al. 2008; Covino et al. 2008; Littlejohns et al. 2012). If the data did not extend to below the ZTF detection threshold, we extrapolated the light curve using the best-fit power law from Cenko et al. (2013).

We considered nine bursts “dark” to the P48. For the remainder, we sampled the light curve using the ZTF observation log, to check if it would have been identified by us. We defined a detection as being 0.5 mag brighter than the limiting magnitude. We checked if the set of detections met the following criteria:

1. First detection brighter than 20 mag
2. Pair of detections within the first night with separation Δt where $0.02 d < \Delta t < 0.6 d$

The above criteria were chosen to be a restrictive subset of our filter, so that we can be more confident in our completeness. Note that observations were grouped by field ID, so we ignore overlap between fields. Taking overlap into account would slightly increase the LGRB discovery rate. Three afterglows passed these criteria in 2020 and 2021 (AT 2020blt, AT 2021any, and AT 2021qbd) of which two (AT 2020blt and AT 2021any) were orphan.

We ran the simulation 1000 times, and the resulting number of expected detected LGRB afterglows is shown in the left panel of Figure 12. The vertical dotted line shows the number of events we detected with ZTF under these criteria (which are more stringent than our actual criteria). We estimate that the probability of detecting one LGRB afterglow is 60%, while the probability

26 GRB 050412, GRB 050915A, GRB 060510B, GRB 060805A, GRB 060823A, GRB 061122A, GRB 070521, GRB 080230, and GRB 050915

27 An additional source, AT 2021kym, passes the criteria if field overlap is taken into account.
Figure 12. Left panel: The simulated number of LGRB afterglows serendipitously detected by ZTF as intra-night transients in two years of observations (2020 and 2021) based on the all-sky Swift/BAT rate, the sample of Swift/BAT afterglows from Cenko et al. (2009), and 1000 Monte Carlo trials. The distribution is well described by a Poisson function with $\lambda = 1.04$. The vertical dotted line shows the observed number, including one LGRB-associated and two orphan events. Right panel: The simulated number of dirty fireballs serendipitously detected by ZTF for three different hypothetical relative rates. The vertical dotted line shows the number of observed orphan afterglows. If both are dirty fireballs, their rate does not exceed $6 \times$ the LGRB rate (95% confidence). If neither are dirty fireballs, then the upper limit is $3 \times$ the LGRB rate (95% confidence). Note that the true number of ZTF detected afterglows is higher; we consider a restricted sample for the rate estimate to ensure completeness.

of detecting three LGRB afterglows is only 7%. So, we can be confident that our searches are reasonably complete. Detecting three events appears unlikely, but we cannot formally rule it out, particularly given the uncertainties in the expected number of LGRBs, which we estimate to be $\sim 10\%$. So, from a rate estimate we do not have definitive evidence of a new class of relativistic explosions.

4.2. The Rate of Dirty Fireballs

We did not detect any confirmed new class of relativistic explosions using our experiment, so can set the most robust upper limit to date on the dirty-fireball rate. A longstanding puzzle in the LGRB field is the “baryon loading problem”: that to efficiently produce γ-rays, the baryon loading content can only be as large as $M \gtrsim 10^{-4} M_\odot$ (Piran 2004). In the baryon-rich environment of a massive-star interior, it may be more natural for jets become mass-loaded, in which case they could not accelerate material to $\Gamma_{\text{init}} \gg 100$ (Huang et al. 2002). It has been argued that dirty fireballs would have a similar energy to clean fireballs (with the energy in lower-Lorentz factor material: Huang et al. 2002) and would be similarly collimated (Rhoads 2003), in which case the optical afterglows would look very similar (Huang et al. 2002).

Even in the extreme case that all three orphan afterglows (AT 2020blt, AT 2021any, AT 2021lfa) are dirty fireballs, we can dismiss the possibility that dirty fireballs produce similar optical afterglows to LGRBs (as originally conceived) and are an order of magnitude more common than LGRBs. This result is not surprising. Cenko et al. (2015) and Ho et al. (2018) searched Palomar Transient Factory data for extragalactic fast transients and recovered only one known GRB afterglows, iPTF14yb, already suggesting that dirty fireballs were not a significant population in the fast optical transient sky. Searches for fast X-ray transients have also resulted in the conclusion that the ratio of dirty ($50 \lesssim \Gamma_0 \lesssim 200$) fireballs to LGRBs ($\Gamma_0 \gg 200$) can be no more than a factor of a few (Grindlay 1999; Dermer et al. 1999; Greiner et al. 2000; Nakar & Piran 2003).

To make this limit quantitative, we use the result from our simulation in Figure 12. The right panel of Figure 12 shows the expected number of detected on-axis dirty fireballs for three different hypothetical rates relative to the LGRB rate, assuming the same afterglow properties for both groups. The vertical dotted line shows the number of orphan afterglows detected (AT 2020blt and AT 2021any). For each relative rate, we integrated the Poisson probability distribution function above $N = 2$ to see when we would expect to see at least two events at 95% confidence. Assuming that both are dirty fireballs (which is unlikely), we rule out a scenario in which dirty fireballs produce similar on-axis optical afterglows to ordinary LGRBs and have a rate that is six times
the LGRB rate (95% confidence). Assuming neither is a dirty fireball, which we consider more likely, the limit becomes three times the LGRB rate.

The lack of a large population of dirty fireballs has several possible explanations. One possibility is that mass-loaded jets are less likely to escape the envelope. Another possibility is that the process of jet production and propagation somehow precludes the entrainment of matter. A final possibility is that low-Lorentz factor jets are successful but produce significantly different optical afterglows; for example, if they have a lower energy per solid angle, the optical afterglow would be fainter. Lei et al. (2013) investigated two different jet-launching mechanisms, and found that baryon-rich jets tended to be less luminous. A lower-Lorentz factor outflow could also exhibit a longer plateau phase due to the longer deceleration time (Shen & Matzner 2012; Duffell & MacFadyen 2015), resulting in suppressed early afterglow emission. As calculated in Ho et al. (2020h), a dirty fireball with $\Gamma_{\text{init}} = 10$ would have a deceleration time of 1.2 d. A typical rest-frame u-band luminosity of LGRB afterglows at 1 d in the rest-frame is 10^{41}erg s^{-1} (Racusin et al. 2011), about an order of magnitude fainter than the luminosity at which we are discovering afterglows (Figure 9). So, more sensitive searches may be required to test this scenario.

4.3. The Optical Beaming Factor

Finding optical afterglows without a GRB trigger is also of interest as a way to directly constrain the solid angle of the material producing optical afterglow emission, sometimes referred to as the “optical beaming factor,” $f_{b,\text{opt}}$. As discussed in Nakar & Piran (2003), the collimation-corrected GRB energy is typically calculated using the optical beaming factor, with an implicit assumption that $f_{b,\text{opt}} \approx f_{b,\gamma}$ (Frail et al. 2001; Panaitescu & Kumar 2001). However, until now there has been no direct test of this assumption.

Our work establishes that $f_{b,\text{opt}} \approx f_{b,\gamma}$. By the same argument as in §4.2, we find $f_{b,\text{opt}} < 6f_{b,\gamma}$ at 95% confidence, if our orphan events were viewed outside the γ-ray emitting region. If the orphan events were simply LGRBs missed by satellites, then we have $f_{b,\text{opt}} < 3f_{b,\gamma}$. This result is consistent with top-hat jet models (the “spherical approximation”), because in these models, the beaming is expected to be similar for all the relativistic material.

Nakar & Piran (2003) performed a similar exercise and came to a similar conclusion, using X-ray afterglows. They found that the X-ray beaming factor must be close to the γ-ray beaming factor, so concluded that the bulk energies at $\Gamma = 200$ (the γ-ray emitting material) and $\Gamma = 10$ (the X-ray emitting material) are similar, and that the homogeneous jet approximation is reasonable. Our work shows that the energies in the γ-ray, X-ray, and optical-emitting material are all similar.

The result that the beaming factor of the afterglow-emitting material is similar to the beaming factor of the γ-ray emitting material is consistent with jet structures predicted by simulations, and the emission predicted from analytical modeling. In collapsar simulations, the jet develops radial and angular structure from its interaction with the dense stellar material (Zhang et al. 2004; McKinney 2006; Tchekhovskoy et al. 2008; Duffell & MacFadyen 2015; Gottlieb et al. 2021). Most relevant for this work is the angular structure: a narrow ultrarelativistic core with a wide mildly relativistic sheath or cocoon, sometimes referred to as a “two-component” jet (see Granot & Ramirez-Ruiz 2010 for a review). The relative amount of energy in the wide and narrow components depends on a number of factors, but is likely at most comparable for successful jets (Ramirez-Ruiz et al. 2002; Nakar & Piran 2017; De Colle et al. 2018). So, the energy per solid angle from the wider component should be significantly lower than that of the narrow component, leading to fainter afterglow emission, as predicted by Nakar & Piran (2017). We would therefore expect to be biased against afterglow emission from the wide-angle material in our current searches for cosmological ($z \gtrsim 1$) transients.

4.4. The Prevalence of Relativistic Jets in Collapsing Massive Stars

By searching for cosmological relativistic explosions in the ZTF data, we have found no clear new phenomenon that is more common than LGRBs. This result has implications for the fraction of core-collapse SNe that harbor central engines and successful, LGRB-energy relativistic outflows. The observed rate of LGRBs has large uncertainties, as does the beaming fraction; from rates alone, the intrinsic LGRB rate could be anywhere from 0.01% to 1% of the CC SN rate (see Table 10 of Ho et al. 2020c). Radio searches have discovered one likely off-axis afterglow, and have constrained the rate to be 40–240 Gpc$^{-3}$ yr$^{-1}$, or 0.06%–0.1% of the CC SN rate (Mooley et al. 2022). Our searches support the idea that energetic relativistic outflows are rare: that the rate is within a factor of a few of the LGRB rate. However, we cannot set any constraints on the prevalence of weaker, lower-energy jets.

5. SUMMARY AND CONCLUSIONS

In this paper, we summarized the cosmological fast transients discovered by ZTF without a GRB trigger.
Extragalactic fast transients powered by optically thin synchrotron emission can be efficiently discovered using high-cadence observations, by requiring rapid evolution (to rule out ordinary extragalactic transients like SNe) and red colors (to rule out the primary contaminant, stellar flares). Using rapid-turnaround spectroscopy, X-ray, and radio observations, we measured the redshift of almost all of the events, and showed that they closely resemble on-axis LGRB afterglows. A significant fraction of events turned out to have an associated detected LGRB upon a retrospective search. Our results rule out a scenario in which low-Lorentz factor jets (“dirty” or “failed” fireballs) have a similar energy per solid angle to clean fireballs and are more common than classical GRBs, consistent with past searches at X-ray and optical wavelengths. In addition, we set the first direct constraint on the optical beaming factor in LGRBs, finding that it must be comparable to the γ-ray beaming factor.

Our searches were originally motivated by the search for dirty fireballs. The discovery of a population of optical afterglows with a rate greatly exceeding the LGRB rate would have lent strong support for their existence (Cenko et al. 2013). However, it is now clear that it is not so simple. It may be more efficient to search for the prompt X-ray emission expected to accompany a dirty fireball, such as the X-ray flashes found by HETE-2 (Sakamoto et al. 2005). This will become possible in the next few years with facilities such as the Space Variable Object Monitor (SVOM; Wei et al. 2016; Cordier et al. 2015) and Einstein-Probe (Yuan et al. 2018), and perhaps in the next decade with facilities like the Gamow Explorer (White et al. 2021). Millimeter-wavelength observations of the reverse shock could help infer the initial Lorentz factor (e.g., Laskar et al. 2019).

In addition, our current searches are not sensitive to fainter populations, such as highly off-axis afterglows or very dirty fireballs with a long deceleration time. Finding off-axis events is essential for studying LGRB jet structure, and the lack of a significant population of luminous dirty fireballs simplifies the picture. We will address search strategies for finding slower-evolving relativistic explosions in future work.

Our work resulted in the discovery of several orphan events of unknown origin. Ruling out an associated detected LGRB is not straightforward, and at present requires determining the pointing histories of different high-energy satellites; this work benefited from the coordination enabled by the IPN. Based on the coverage and sensitivity of the different spacecraft, the simplest explanation for the orphan events is that they were ordinary LGRBs for which the prompt emission was simply missed. To determine whether this was truly the case, more sensitive high-energy observations would be required. An all-sky facility with a fluence threshold equal to that of the BAT ($10^{−8}$ erg cm$^{−2}$) could rule out an $E_{\gamma,iso} = 10^{51}$ erg GRB out to $z = 3$, which includes all of the events in our sample. A burst with 10^{50} erg could be ruled out at $z \lesssim 1.5$.

If a population of energetic orphan optical afterglows exists, say at 10% of the overall GRB rate, a sample of $\sim 10^2$ afterglows with sensitive limits on associated high-energy emission would be needed to identify ~ 10 orphans; this would in turn require a significant increase in the discovery rate over what is currently being done, and the sensitivity to discover fainter afterglows at the same redshift to what we are doing now. With a much higher afterglow discovery rate, manual scanning and triggering will be impractical, as it already is for GRBs themselves. This would motivate an optical version of the Swift facility: autonomous candidate identification and triggering for confirmation. Some of the events in our sample could have been intra-night triggers, since there was a non-detection followed by a detection on the same night. With a manageable false positive rate, deep imaging facilities could confirm a candidate based on fade rate and colors. Spectroscopy to measure the redshift, and X-ray and radio follow-up observations to detect the afterglow at other wavelengths, could then be autonomously performed. Given that the typical time from the close of the ZTF shutter to the release of alerts is eight minutes (Maschi et al. 2019), with higher latencies primarily coming from crowded Galactic fields, it is not unreasonable to strive for afterglow identification, classification, and follow-up within thirty minutes of core-collapse.

ACKNOWLEDGMENTS

We acknowledge with gratitude the contributions of the late Kevin Hurley in founding and maintaining the Interplanetary Network, which was essential for this work.

A.Y.Q.H. would like to thank Ragnhild Lunnan for helpful comments on the manuscript; and Eliot Quataert, Dan Kasen, Andrew MacFadyen, and Paul Duffell for fruitful discussions about jet structure and dirty fireballs. D.A.P.’s contribution was performed in part at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611. This work was partially supported by a grant from the Simons Foundation. D.F., A.T., and M.U. acknowledge support from RSF grant 21-12-00250. D.A.K. and J.F.A.F acknowledges support from Spanish National Research Project RTI2018-098104-J-I00.
ZTF Afterglows

H.K. thanks the LSSTC Data Science Fellowship Program, which is funded by LSSTC, NSF Cybertraining Grant #1829740, Brinson and Moore Foundations. J.F.A.F. acknowledges support from the Spanish Ministerio de Ciencia, Innovación y Universidades through the grant PRE2018-086507.

Based on observations obtained with the Samuel Oschin Telescope 48-inch and the 60-inch Telescope at the Palomar Observatory as part of the ZwickyTransient Facility project. ZTF is supported by the National Science Foundation under Grants No. AST-1440341 and AST-2034437 and a collaboration including current partners Caltech, IPAC, the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the University of Maryland, Deutsches Elektronen-Synchrotron and Humboldt University, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee, Trinity College Dublin, Lawrence Livermore National Laboratories, IN2P3, University of Warwick, Ruhr University Bochum, Northwestern University and former partners the University of Washington, Los Alamos National Laboratories, and Lawrence Berkeley National Laboratories. Operations are conducted by COO, IPAC, and UW.

The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias with financial support from the UK Science and Technology Facilities Council.

SED Machine is based upon work supported by the National Science Foundation under Grant No. 1106171.

Based on observations obtained at the international Gemini Observatory, a program of NSF’s NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. on behalf of the Gemini Observatory partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigación y Desarrollo (Chile), Ministerio de Ciencia, Tecnología e Innovación (Argentina), Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea).

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

APPENDIX

A. OPTICAL PHOTOMETRY

In Table 5 we provide optical photometry for the afterglows in our sample.

Table 5. Optical photometry for afterglows, not corrected for Milky Way extinction. Time given relative to \(t_0 \) as estimated in the text. P48 values were measured using forced photometry (Yao et al. 2019).

Name	Date	\(\Delta t \)	Inst.	Filt.	Mag
	(MJD)	(d)			(AB)
AT2021any	59230.2916	0.0141	P48	r	17.92 \pm 0.02
AT2021any	59230.3307	0.0532	P48	g	19.35 \pm 0.05
AT2021any	59230.3316	0.0541	P48	g	19.41 \pm 0.06
AT2021any	59230.3563	0.0788	P48	g	19.67 \pm 0.06
AT2021any	59230.3712	0.0937	P48	r	19.40 \pm 0.05
AT2021any	59230.3717	0.0942	P48	r	19.41 \pm 0.05
AT2021any	59230.4303	0.1528	P48	r	19.91 \pm 0.11
AT2021any	59230.9772	0.6997	GTC	r	21.74 \pm 0.08
AT2021any	59232.0996	1.7321	CAHA	r	22.75 \pm 0.13
AT2021any	59233.0184	2.7409	CAHA	r	22.92 \pm 0.12
AT2020kym	58993.2863	0.0752	P48	r	17.33 \pm 0.01
AT2020kym	58993.2886	0.0775	P48	r	17.38 \pm 0.02
AT2020kym	58993.3041	0.0930	P48	r	17.63 \pm 0.02

Table 5 continued
Name	Date	Δt	Inst.	Filt.	Mag
AT2020kym	58993.3065	0.0954	P48	r	17.66 ± 0.02
AT2020kym	58994.2141	1.0629	P48	g	21.60 ± 0.21
AT2020kym	58994.2993	1.0882	P48	r	21.33 ± 0.21
AT2021cwd	59257.3697	0.2600	P48	g	19.57 ± 0.09
AT2021cwd	59257.4158	0.3061	P48	r	19.51 ± 0.07
AT2021cwd	59257.9850	0.8753	LT	g	21.65 ± 0.17
AT2021cwd	59257.9860	0.8763	LT	r	20.88 ± 0.13
AT2021cwd	59257.9871	0.8774	LT	i	20.80 ± 0.13
AT2021lfa	59338.2324	0.9393	P48	r	18.60 ± 0.08
AT2021lfa	59338.3126	1.0195	P48	g	18.80 ± 0.11
AT2021lfa	59338.8893	1.5962	LT	g	20.12 ± 0.04
AT2021lfa	59338.8920	1.5988	LT	r	19.75 ± 0.03
AT2021lfa	59338.8946	1.6015	LT	i	19.46 ± 0.04
AT2021lfa	59339.0342	1.7411	LT	u	21.73 ± 0.31
AT2021lfa	59339.0376	1.7445	LT	g	20.52 ± 0.04
AT2021lfa	59339.0403	1.7472	LT	r	20.12 ± 0.04
AT2021lfa	59339.0429	1.7498	LT	i	19.82 ± 0.04
AT2021lfa	59339.0456	1.7525	LT	z	19.63 ± 0.07
AT2021lfa	59339.1898	1.8967	SEDM	g	20.88 ± 0.08
AT2021lfa	59339.1925	1.8994	SEDM	r	20.41 ± 0.07
AT2021lfa	59339.1952	1.9021	SEDM	i	20.05 ± 0.08
AT2021lfa	59339.8817	2.5886	LT	g	21.70 ± 0.06
AT2021lfa	59339.8868	2.5936	LT	r	21.19 ± 0.05
AT2021lfa	59340.8917	2.5986	LT	i	21.09 ± 0.07
AT2021lfa	59340.8923	3.5992	LT	g	22.36 ± 0.08
AT2021lfa	59340.8973	3.6042	LT	r	22.10 ± 0.10
AT2021lfa	59340.9023	3.6092	LT	i	21.77 ± 0.10
AT2021lfa	59341.8829	4.5897	LT	g	23.10 ± 0.14
AT2021lfa	59341.8878	4.5947	LT	r	22.83 ± 0.14
AT2021lfa	59341.8928	4.5997	LT	i	22.34 ± 0.15
AT2021lfa	59343.9336	6.6405	LT	g	24.04 ± 0.28
AT2021lfa	59343.9419	6.6488	LT	r	22.88 ± 0.14
AT2021lfa	59343.9501	6.6570	LT	i	22.89 ± 0.23
AT2021qbd	59376.2325	0.4053	P48	g	18.49 ± 0.02
AT2021qbd	59376.2752	0.4480	P48	r	18.23 ± 0.02
AT2021qbd	59376.3206	0.4935	P48	r	18.37 ± 0.02
AT2021qbd	59376.3601	0.5329	P48	g	18.77 ± 0.03
AT2021qbd	59377.2694	1.4422	P48	r	20.30 ± 0.10
AT2021qbd	59377.3326	1.5055	P48	g	20.75 ± 0.14
AT2021qbd	59377.3336	1.5064	P48	g	20.87 ± 0.12
AT2021qbd	59377.3613	1.5341	P48	g	20.80 ± 0.14
AT2021qbd	59377.3959	1.5687	P48	r	20.24 ± 0.10
AT2021qbd	59378.2548	2.4277	P48	r	21.69 ± 0.33
AT2021qbd	59378.3232	2.4961	P48	r	21.14 ± 0.20
B. X-RAY OBSERVATIONS

In Table 6 we provide a log of our X-ray observations of the orphan afterglows AT 2021any and AT 2021lfa.

Table 6. 0.3–10 keV X-ray observations for afterglows from Swift/XRT. Time given relative to \(t_0 \) as estimated in the text. Uncertainties are 1-\(\sigma \) and upper limits are 3-\(\sigma \). The conversion from X-ray count rate to unabsorbed flux uses a hydrogen column density listed in the text, and a photon index of \(\Gamma = 2 \) for all sources.

Name	Date (MJD)	\(\Delta t \) (d)	Exp. (ks)	Count Rate (\(10^{-3} \) s\(^{-1} \))	Flux (\(10^{-13} \) erg s\(^{-1} \) cm\(^{-2} \))
AT 2021any 59231.10	0.83	3.7	7.20 ± 2.00	3.30 ± 0.90	
AT 2021any 59234.08	3.80	2.6	< 4.70	< 2.10	
AT 2021any 59239.58	9.31	2.9	< 4.30	< 1.90	
AT 2021lfa 59339.23	1.94	5.0	9.30 ± 1.70	3.50 ± 0.60	
AT 2021lfa 59341.69	4.39	5.1	< 4.40	< 1.60	

C. RADIO OBSERVATIONS

In Table 7 we provide a log of our VLA radio observations of the orphan afterglows AT 2021any and AT 2021lfa.

Table 7. Log of our VLA radio observations of two afterglows with no associated detected GRBs. Time given relative to \(t_0 \) as estimated in the text. Radio upper limits are 3\(\times \) the image RMS. Uncertainties on radio measurements are given as the quadrature sum of the image RMS and a 5\% uncertainty on the flux density due to flux calibration. Note that some measurements are non-independent (i.e., the same bandpass is broken into windows and also quoted as the full bandwidth together).

Name	Date (MJD)	\(\Delta t \) (d)	Band	\(\nu \) (GHz)	\(\Delta \nu \) (GHz)	\(F_v \) (\(\mu \)Jy)	Conf.
AT2021any 59235.19	4.91	X	9.981	3.58	91 ± 5	A	
AT2021any 59235.19	4.91	X	10.98	1.79	63 ± 6	A	
AT2021any 59235.19	4.91	X	9.0	1.79	116 ± 8	A	
AT2021any 59235.19	4.91	X	11.5	0.896	66 ± 9	A	
AT2021any 59235.19	4.91	X	10.49	0.896	62 ± 7	A	
AT2021any 59235.19	4.91	X	9.51	0.896	99 ± 8	A	
AT2021any 59235.19	4.91	X	8.49	0.896	133 ± 9	A	
AT2021any 59237.13	6.86	X	9.981	3.58	25 ± 4	A	
AT2021any 59237.13	6.86	X	10.98	1.79	33 ± 6	A	
AT2021any 59237.13	6.86	X	9.0	1.79	< 15	A	
AT2021any 59237.13	6.86	X	11.5	0.896	37 ± 9	A	
AT2021any 59237.13	6.86	X	10.49	0.896	35 ± 8	A	
AT2021any 59237.13	6.86	X	9.51	0.896	29 ± 8	A	
AT2021any 59237.13	6.86	Ku	15.1	5.38	21 ± 4	A	
AT2021any 59237.13	6.86	Ku	13.58	2.69	20 ± 6	A	
AT2021any 59237.13	6.86	Ku	16.62	2.69	24 ± 6	A	
AT2021any 59237.13	6.86	Ku	12.81	1.34	25 ± 9	A	
AT2021any 59237.13	6.86	Ku	14.31	1.34	20 ± 7	A	
AT2021any 59237.13	6.86	Ku	15.85	1.34	32 ± 8	A	
AT2021any 59240.17	9.90	S	3.0	1.1	67 ± 14	A	

Table 7 continued
Name	Date (MJD)	Δt (d)	Band	ν (GHz)	Δν (GHz)	F_ν (µJy)	Cont.
AT2021any	59240.17	9.90	S	3.3	0.64	38 ± 11	A
AT2021any	59240.17	9.90	C	5.1	1.8	< 47	A
AT2021any	59240.17	9.90	C	7.0	2.0	34 ± 7	A
AT2021any	59240.17	9.90	X	10.0	4.0	< 21	A
AT2021any	59240.17	9.90	X	9.0	2.0	< 27	A
AT2021any	59240.17	9.90	Ku	15.3	5.0	31 ± 6	A
AT2021any	59240.17	9.90	Ku	15.1	2.0	46 ± 9	A
AT2021any	59244.31	14.04	X	9.5	3.1	24 ± 5	A
AT2021any	59244.31	14.04	X	9.0	2.0	32 ± 4	A
AT2021any	59244.31	14.04	X	10.0	2.0	16 ± 4	A
AT2021any	59244.31	14.04	X	8.5	1.0	34 ± 6	A
AT2021any	59244.31	14.04	X	9.5	1.0	32 ± 6	A
AT2021any	59244.31	14.04	X	10.5	1.0	20 ± 6	A
AT2021any	59244.31	14.04	X	11.5	1.0	< 24	A
AT2021any	59251.08	20.81	X	9.7	3.6	78 ± 6	A
AT2021any	59251.08	20.81	X	9.0	2.0	89 ± 6	A
AT2021any	59251.08	20.81	X	10.8	1.6	67 ± 9	A
AT2021any	59251.08	20.81	X	8.5	1.0	98 ± 8	A
AT2021any	59251.08	20.81	X	9.5	1.0	78 ± 7	A
AT2021any	59251.08	20.81	X	10.5	1.0	72 ± 11	A
AT2021any	59251.08	20.81	X	11.5	1.0	43 ± 15	A
AT2021any	59258.25	27.97	X	9.7	3.6	13 ± 4	A
AT2021any	59273.11	42.84	X	9.7	3.6	18 ± 3	A
AT2021any	59306.06	75.78	X	9.0	2.0	< 12	D
AT2021any	59306.06	75.78	X	10.8	1.6	< 17	D
AT2021lfa	59340.01	2.72	X	9.0	2.0	46 ± 7	D
AT2021lfa	59340.01	2.72	X	10.8	1.6	< 39	D
AT2021lfa	59345.08	7.79	X	9.0	2.0	254 ± 14	D
AT2021lfa	59345.08	7.79	X	10.8	1.6	279 ± 17	D
AT2021lfa	59345.12	7.83	Ku	13.1	0.9	238 ± 16	D
AT2021lfa	59345.12	7.83	Ku	14.0	0.9	280 ± 17	D
AT2021lfa	59345.12	7.83	Ku	14.9	0.9	288 ± 16	D
AT2021lfa	59345.12	7.83	Ku	15.8	0.9	287 ± 17	D
AT2021lfa	59345.12	7.83	Ku	16.7	0.9	322 ± 18	D
AT2021lfa	59345.12	7.83	Ku	17.7	0.9	276 ± 18	D
AT2021lfa	59345.12	7.83	X	9.0	2.0	147 ± 10	D
AT2021lfa	59345.12	7.83	X	10.8	1.6	168 ± 10	D
AT2021lfa	59349.11	11.82	Ku	13.1	0.9	206 ± 15	D
AT2021lfa	59349.11	11.82	Ku	14.0	0.9	206 ± 15	D
AT2021lfa	59349.11	11.82	Ku	14.9	0.9	223 ± 16	D
AT2021lfa	59349.11	11.82	Ku	15.8	0.9	226 ± 16	D
AT2021lfa	59349.11	11.82	Ku	16.7	0.9	264 ± 18	D
AT2021lfa	59349.11	11.82	Ku	17.7	0.9	257 ± 19	D
AT2021lfa	59349.11	11.82	X	9.0	2.0	< 7 ± 2	D
AT2021lfa	59349.11	11.82	X	10.8	1.6	107 ± 8	D
AT2021lfa	59353.01	15.72	Ku	13.1	0.9	247 ± 16	D
AT2021lfa	59353.01	15.72	Ku	14.0	0.9	237 ± 15	D
AT2021lfa	59353.01	15.72	Ku	14.9	0.9	277 ± 17	D
AT2021lfa	59353.01	15.72	Ku	15.8	0.9	263 ± 17	D
AT2021lfa	59353.01	15.72	Ku	16.7	0.9	287 ± 18	D
AT2021lfa	59353.01	15.72	Ku	17.7	0.9	271 ± 18	D
Table 7 (continued)

Name	Date (MJD)	Δt (d)	Band	ν (GHz)	$\Delta\nu$ (GHz)	F_r (µJy)	Conf.
AT2021lfa 59353.01	15.72	X	9.0	2.0	155 ± 9	D	
AT2021lfa 59353.01	15.72	X	10.8	1.6	127 ± 8	D	
AT2021lfa 59359.00	21.71	Ku	13.1	0.9	149 ± 12	D	
AT2021lfa 59359.00	21.71	Ku	14.0	0.9	196 ± 13	D	
AT2021lfa 59359.00	21.71	Ku	14.9	0.9	224 ± 13	D	
AT2021lfa 59359.00	21.71	Ku	15.8	0.9	208 ± 13	D	
AT2021lfa 59359.00	21.71	Ku	16.7	0.9	239 ± 14	D	
AT2021lfa 59359.00	21.71	X	17.7	0.9	234 ± 16	D	
AT2021lfa 59359.00	21.71	X	9.0	2.0	194 ± 11	D	
AT2021lfa 59359.00	21.71	X	10.8	1.6	209 ± 12	D	
AT2021lfa 59385.03	47.74	X	9.0	2.0	194 ± 10	DtoC	
AT2021lfa 59385.03	47.74	X	10.8	1.6	172 ± 10	DtoC	
AT2021lfa 59440.03	102.73	L	1.43	0.4	< 585	C	
AT2021lfa 59440.03	102.73	L	1.81	0.4	< 276	C	
AT2021lfa 59440.03	102.73	C	4.5	1.0	< 42	C	
AT2021lfa 59440.03	102.73	C	5.5	1.0	84 ± 12	C	
AT2021lfa 59440.03	102.73	C	6.5	1.0	60 ± 11	C	
AT2021lfa 59440.03	102.73	C	7.5	1.0	47 ± 10	C	
AT2021lfa 59440.03	102.73	C	8.0	1.0	54 ± 13	C	
AT2021lfa 59440.03	102.73	C	7.0	2.0	62 ± 9	C	
AT2021lfa 59440.87	103.58	Ku	13.1	2.0	64 ± 7	C	
AT2021lfa 59440.87	103.58	Ku	15.1	2.0	60 ± 6	C	
AT2021lfa 59440.87	103.58	Ku	17.1	2.0	45 ± 8	C	
AT2021lfa 59440.87	103.58	X	8.5	1.0	74 ± 8	C	
AT2021lfa 59440.87	103.58	X	9.5	1.0	60 ± 8	C	
AT2021lfa 59440.87	103.58	X	10.5	1.0	41 ± 8	C	
AT2021lfa 59440.87	103.58	X	11.5	1.0	54 ± 11	C	
AT2021lfa 59440.87	103.58	X	9.0	2.0	67 ± 6	C	
AT2021lfa 59440.87	103.58	X	11.0	2.0	45 ± 6	C	
AT2021lfa 59440.87	103.58	C	4.5	1.0	140 ± 13	C	
AT2021lfa 59440.87	103.58	C	5.5	1.0	95 ± 11	C	
AT2021lfa 59440.87	103.58	C	6.5	1.0	49 ± 8	C	
AT2021lfa 59440.87	103.58	C	7.5	1.0	67 ± 8	C	
AT2021lfa 59440.87	103.58	C	5.0	2.0	118 ± 11	C	
AT2021lfa 59440.87	103.58	C	7.0	2.0	59 ± 7	C	
AT2021lfa 59509.61	172.32	Ku	12.5	1.0	31 ± 11	B	
AT2021lfa 59509.61	172.32	Ku	13.5	1.0	49 ± 7	B	
AT2021lfa 59509.61	172.32	Ku	14.5	1.0	29 ± 8	B	
AT2021lfa 59509.61	172.32	Ku	15.5	1.0	26 ± 8	B	
AT2021lfa 59509.61	172.32	X	16.5	1.0	22 ± 8	B	
AT2021lfa 59509.61	172.32	Ku	17.5	1.0	46 ± 10	B	
AT2021lfa 59509.61	172.32	Ku	13.1	2.0	42 ± 7	B	
AT2021lfa 59509.61	172.32	Ku	15.1	2.0	27 ± 5	B	
AT2021lfa 59509.61	172.32	Ku	17.1	2.0	32 ± 6	B	
AT2021lfa 59509.61	172.32	X	9.0	2.0	38 ± 5	B	
AT2021lfa 59509.61	172.32	X	11.0	2.0	28 ± 5	B	
AT2021lfa 59509.61	172.32	X	10.0	4.1	33 ± 4	B	
AT2021lfa 59509.61	172.32	C	5.0	2.0	50 ± 8	B	
AT2021lfa 59509.61	172.32	C	7.0	2.0	28 ± 7	B	
AT2021lfa 59517.54	180.24	C	5.0	2.0	24 ± 8	B	
AT2021lfa 59517.54	180.24	C	7.0	2.0	37 ± 7	B	
AT2021lfa 59582.39	245.10	Ku	15.1	6.1	17 ± 3	B	
AT2021lfa 59582.39	245.10	Ku	13.6	3.1	21 ± 5	B	
Table 7 (continued)

Name	Date (MJD)	Δt (d)	Band	ν (GHz)	Δν (GHz)	F_ν (µJy)	Conf.
AT2021lfa	59582.39	245.10	Ku	16.6	3.1	13 ± 5 B	
AT2021lfa	59582.39	245.10	Ku	12.8	1.5	27 ± 8 B	
AT2021lfa	59582.39	245.10	Ku	14.3	1.5	14 ± 6 B	
AT2021lfa	59582.39	245.10	Ku	15.8	1.5	8 ± 7 B	
AT2021lfa	59582.39	245.10	X	10.0	4.1	19 ± 4 B	
AT2021lfa	59582.39	245.10	X	9.0	2.0	22 ± 5 B	
AT2021lfa	59582.39	245.10	X	11.0	2.0	16 ± 6 B	
AT2021lfa	59582.39	245.10	C	6.1	3.8	30 ± 5 B	
AT2021lfa	59582.39	245.10	C	7.0	2.0	23 ± 6 B	
AT2021lfa	59582.39	245.10	C	5.1	1.8	32 ± 7 B	

REFERENCES
Ahumada, T., Della Costa, J., Cenko, B., & Quimby, R. 2021, GRB Coordinates Network, 29309, 1
Alexander, K. D., Laskar, T., Kilpatrick, C., et al. 2021, GRB Coordinates Network, 30218, 1
Andreoni, I., Kool, E. C., Sagüés Carracedo, A., et al. 2020, ApJ, 904, 155, doi: 10.3847/1538-4357/abbf4c
Andreoni, I., Coughlin, M. W., Kool, E. C., et al. 2021, ApJ, 918, 63, doi: 10.3847/1538-4357/ac0bc7
Aptekar, R. L., Frederiks, D. D., Golenetskii, S. V., et al. 1995, SSRv, 71, 265, doi: 10.1007/BF00751332
Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071, doi: 10.1088/0004-637X/697/2/1071
Barthelmy, S. D., Barbier, L. M., Cummings, J. R., et al. 2005, SSRv, 120, 143, doi: 10.1007/s11214-005-5096-3
Belkin, S., Novichonok, A., Pozanenko, A., et al. 2020, GRB Coordinates Network, 27820, 1
Belkin, S., Pozanenko, A., Klunko, E., et al. 2021, GRB Coordinates Network, 29417, 1
Bellm, E. C. 2016, PASP, 128, 084501, doi: 10.1088/1538-3873/128/966/084501
Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019a, PASP, 131, 018002, doi: 10.1088/1538-3873/aaecbe
Bellm, E. C., Kulkarni, S. R., Barlow, T., et al. 2019b, PASP, 131, 068003, doi: 10.1088/1538-3873/ab0c2a
Berger, E. 2014, ARA&A, 52, 43, doi: 10.1146/annurev-astro-081913-035926
Berger, E., Leibler, C. N., Chornock, R., et al. 2013, ApJ, 779, 18, doi: 10.1088/0004-637X/779/1/18
Bhalerao, V., Kasliwal, M. M., Bhattacharya, D., et al. 2017, ApJ, 845, 152, doi: 10.3847/1538-4357/aa81d2
Blagorodnova, N., Neill, J. D., Walters, R., et al. 2018, PASP, 130, 035003, doi: 10.1088/1538-3873/aaa53f
Blazek, M., Kann, D. A., de Ugarte Postigo, A., et al. 2020, GRB Coordinates Network, 27810, 1
Burrows, D. N., Hill, J. E., Nousek, J. A., et al. 2005, SSRv, 120, 165, doi: 10.1007/s11214-005-5097-2
Butler, N., Watson, A. M., Kutyrev, A., et al. 2021, GRB Coordinates Network, 29941, 1
Butler, N. R., Sakamoto, T., Suzuki, M., et al. 2005, ApJ, 621, 884, doi: 10.1086/427746
Cano, Z., Wang, S.-Q., Dai, Z.-G., & Wu, X.-F. 2017, Advances in Astronomy, 2017, 8929054, doi: 10.1155/2017/8929054
Capalbi, M., Perri, M., D’Elia, V., et al. 2020, GRB Coordinates Network, 27811, 1
Cenko, S. B., Fox, D. B., Moon, D.-S., et al. 2006a, PASP, 118, 1396, doi: 10.1086/508366
Cenko, S. B., Kasliwal, M., Harrison, F. A., et al. 2006b, ApJ, 652, 490, doi: 10.1086/508149
Cenko, S. B., Kelemen, J., Harrison, F. A., et al. 2009, ApJ, 693, 1484, doi: 10.1088/0004-637X/693/2/1484
Cenko, S. B., Frail, D. A., Harrison, F. A., et al. 2011, ApJ, 732, 29, doi: 10.1088/0004-637X/732/1/29
Cenko, S. B., Kulkarni, S. R., Horesh, A., et al. 2013, ApJ, 769, 130, doi: 10.1088/0004-637X/769/2/130
Cenko, S. B., Urban, A. L., Perley, D. A., et al. 2015, ApJL, 803, L24, doi: 10.1088/2041-8205/803/2/L24
Cepa, J., Aguiar, M., Escalera, V. G., et al. 2000, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4008, Optical and IR Telescope Instrumentation and Detectors, ed. M. Iye & A. F. Moorwood, 623–631, doi: 10.1117/12.395520
Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv e-prints, arXiv:1612.05560, https://arxiv.org/abs/1612.05560
Chandra, P., Bhalerao, V., Misra, K., & Anupama, G. C. 2021, GRB Coordinates Network, 29541, 1
Greiner, J., Krühler, T., Klose, S., et al. 2011, A&A, 526, A30, doi: 10.1051/0004-6361/201015458
Grindlay, J. E. 1999, ApJ, 510, 710, doi: 10.1086/306617
Gruber, D., Goldstein, A., Weller von Ahlefeld, V., et al. 2014, ApJS, 211, 12, doi: 10.1088/0067-0049/211/1/12
Guelbenzu, A. N., Rau, A., & Klose, S. 2021, GRB Coordinates Network, 29330, 1
Gupta, R., Pandey, S. B., Kumar, A., et al. 2021a, GRB Coordinates Network, 29490, 1
Gupta, R., Kumar, A., Bhushan Pandey, S., et al. 2021b, arXiv e-prints, arXiv:2111.11795.
https://arxiv.org/abs/2111.11795
Gupta, S., Sharma, V., Bhattacharya, D., et al. 2020, GRB Coordinates Network, 27818, 1
Harrison, F. A., Yost, S. A., Sari, R., et al. 2001, arXiv e-prints, astro.
https://arxiv.org/abs/astro-ph/0103377
Heise, J., Zand, J. I., Kippen, R. M., & Woods, P. M. 2001, in Gamma-ray Bursts in the Afterglow Era, ed. E. Costa, F. Frontera, & J. Hjorth, 16, doi: 10.1007/10385353_4
Hou, A., Yao, Y., & Perley, D. 2021a, GRB Coordinates Network, 29053, 1
Ho, A. Y. Q., Perley, D. A., Yao, Y., & Andreoni, I. 2021b, Transient Name Server AstroNote, 20, 1
Ho, A. Y. Q., Yao, Y., Perley, D. A., & GROWTH Collaboration. 2020a, GRB Coordinates Network, 25658, 1
Ho, A. Y. Q., Kulkarni, S. R., Nugent, P. E., et al. 2018, ApJL, 854, L13, doi: 10.3847/2041-8213/aaaa62
Ho, A. Y. Q., Perley, D. A., Beniamini, P., et al. 2020b, ApJ, 905, 98, doi: 10.3847/1538-4357/abc34d
Ho, A. Y. Q., Perley, D. A., Kulkarni, S. R., et al. 2020c, ApJ, 895, 49, doi: 10.3847/1538-4357/ab88ucherly, K., Ipn, Mitrofanov, I. G., et al. 2021, GRB Coordinates Network, 29408, 1
Izzo, L. 2020, GRB Coordinates Network, 27817, 1
Kann, D. A., de Ugarte Postigo, A., Thoene, C. C., et al. 2021a, GRB Coordinates Network, 29321, 1
Kann, D. A., Klose, S., Zhang, B., et al. 2010, ApJ, 720, 1513, doi: 10.1088/0004-637X/720/2/1513
—. 2011, ApJ, 734, 96, doi: 10.1088/0004-637X/734/2/96
Kann, D. A., Nicuesa Guelbenzu, A., de Ugarte Postigo, A., et al. 2021b, GRB Coordinates Network, 29344, 1
Kasliwal, M. M., Nakar, E., Singer, L. P., et al. 2017, Science, 358, 1559, doi: 10.1126/science.aap9455
Kasliwal, M. M., Cannella, C., Bagdasaryan, A., et al. 2019, PASP, 131, 038003, doi: 10.1088/1538-3873/aafbc2
Kasliwal, M. M., Anand, S., Ahumada, T., et al. 2020, ApJ, 905, 145, doi: 10.3847/1538-4357/abc335
Kennea, J. A., Osborne, J. P., Page, K. L., et al. 2021, GRB Coordinates Network, 29413, 1
Khabibullin, I., Sazonov, S., & Sunyaev, R. 2012, MNRAS, 426, 1819, doi: 10.1111/j.1365-2966.2012.21807.x
Kim, V., Pankov, N., Krugov, M., et al. 2021, GRB Coordinates Network, 29950, 1
Kool, E., Andreoni, I., Ho, A., et al. 2021, Transient Name Server AstroNote, 54, 1
Kouveliotou, C., Wijers, R. A. M. J., & Woosley, S. 2012, Gamma-ray Bursts
Krühler, T., Greiner, J., Afonso, P., et al. 2009, A&A, 508, 593, doi: 10.1051/0004-6361/200912649
Kuin, N. P. M., Page, K. L., & Swift UVOT Team. 2020, GRB Coordinates Network, 27825, 1
Kulkarni, S. R., Djorgovski, S. G., Odewahn, S. C., et al. 1999, Nature, 398, 389, doi: 10.1038/18821
Kumar, A., Pandey, S. B., Ghosh, A., et al. 2020a, GRB Coordinates Network, 27806, 1
Kumar, A., Pandey, S. B., Gupta, R., et al. 2021, GRB Coordinates Network, 29308, 1
Kumar, H., Bhalerao, V., Anupama, G. C., et al. 2020b, GRB Coordinates Network, 27800, 1
Kumar, P., & Zhang, B. 2015, PhR, 561, 1, doi: 10.1016/j.physrep.2014.09.008
Laskar, T., Berger, E., Zauderer, B. A., et al. 2013, ApJ, 776, 119, doi: 10.1088/0004-637X/776/2/119
Laskar, T., Alexander, K. D., Berger, E., et al. 2016, ApJ, 833, 88, doi: 10.3847/1538-4357/833/1/88
Laskar, T., van Eerten, H., Schady, P., et al. 2019, ApJ, 884, 121, doi: 10.3847/1538-4357/abc00e
Laskar, T., Alexander, K. D., Kilpatrick, C., et al. 2021, GRB Coordinates Network, 30217, 1
Law, C. J., Gaensler, B. M., Metzger, B. D., Ofek, E. O., & Sironi, L. 2018, ApJL, 866, L22, doi: 10.3847/2041-8213/aae5f3
Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395, doi: 10.1086/648598
Lei, W.-H., Zhang, B., & Liang, E.-W. 2013, ApJ, 765, 125, doi: 10.1088/0004-637X/765/2/125
