A high mannose concentration is well tolerated by colorectal adenocarcinoma and melanoma cells but toxic to normal human gingival fibroblast: an in vitro investigation (Article) (Open Access)

Mazlan, M.A.1,2, Ismail, M.L.M.1,2, Ibrahim, M.2,3
1Department of Basic Medical Sciences for Nursing, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indira Mahkota, Kuantan, Pahang 25200, Malaysia
2IIUM Molecular and Cellular Biology Research Cluster (iMoleC), International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indira Mahkota, Kuantan, Pahang 25200, Malaysia
3Department of Physics, Faculty of Science, Benha University, Benha, 13518, Egypt

Abstract
Background: The primary cause of cancer is gene mutation which allows the growth of abnormal and damaged cells. Nutrition is one of the key factors that either increases or decreases the risk of cancer. Mannose has been found in many fruits such as oranges, apples and berries. Mannose has been linked to increase the risk factors or potential therapeutic for cancers. However, insufficient information is available on the effects of high mannose concentration on the normal and cancer cell lines. This study aimed to evaluate the viability patterns of human cancer and normal cell lines treated with mannose. Human gingival fibroblast (HGF), skin malignant melanoma (A375) and colorectal adenocarcinoma (HT29) cell lines were cultured and treated with additional mannose in three respective concentrations: 1 mg/ml, 5 mg/ml and 10 mg/ml. Then, cell viability was measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)-assay. Results: The HGF cells’ viability percentage pattern of viability showed a rapid decline of nearly 95% on the third day of treatment. A375 cells were able to survive in high mannose condition as the cell viability percentage was at the highest value on Day 5. Meanwhile, HT29 cells showed declining cell viability pattern when treated with mannose. The data exhibited significance; the p value was less than 0.001. Conclusions: High mannose concentration can be toxic to HGF. In addition, A375 is adaptive to mannose at all concentrations in which it shares the same pattern with the untreated group. However, the cell viability pattern for HT29 cell is declining. © 2020, The Author(s).

Mannose impairs lung adenocarcinoma growth and enhances the sensitivity of A549 cells to carboplatin
Sha, J., Cao, D., Cui, R. (2020) Cancer Management and Research
D-mannose suppresses macrophage IL-1β production
Torretta, S., Scagliola, A., Ricci, L. (2020) Nature Communications
Mannose is an insulin-regulated metabolite reflecting whole-body insulin sensitivity in man
Ferrannini, E., Bokarewa, M., Brembeck, P. (2020) Metabolism: Clinical and Experimental

View all related documents based on references
Find more related documents in Scopus based on: Authors > Keywords >
Funding details

| Funding sponsor                          | Funding number                                                                 | Acronym |
|-----------------------------------------|--------------------------------------------------------------------------------|---------|
| International Islamic University Malaysia | FRGS15-253-0494, FRGS15-253-0494, FRGS15-253-0494, FRGS15-253-0494              | IIUM    |
| International Islamic University Malaysia | FRGS15-253-0494, FRGS15-253-0494, FRGS15-253-0494, FRGS15-253-0494              | IIUM    |

Funding text #1
This research was supported by the International Islamic University Malaysia with grant number FRGS15-253-0494. Therefore, the authors would like to thank the International Islamic University Malaysia (IIUM) especially the IIUM Molecular and Cellular Biology Research Cluster for providing the necessary help to conduct this study.

Funding text #2
The findings of this study have been funded by International Islamic University Malaysia with grant number FRGS15-253-0494. The fund was used to purchase the necessary materials for the sake of this study.

---

**ISSN:** 11108630  
**Source Type:** Journal  
**Original language:** English  
**DOI:** 10.1186/s43042-020-00109-w

**Document Type:** Article  
**Publisher:** Springer Science and Business Media Deutschland GmbH

**References (28)**

1. Wu, S., Zhu, W., Thompson, P., Hannun, Y.A.  
   Evaluating intrinsic and non-intrinsic cancer risk factors  
   *(Open Access)*  
   *(2018)* *Nature Communications*, 9 (1), art. no. 3490. Cited 36 times.  
   [http://www.nature.com/ncomms/index.html](http://www.nature.com/ncomms/index.html)  
   doi: 10.1038/s41467-018-05467-z

View at Publisher

2. Baumann, K.  
   Cell death: Multitasking p53 promotes necrosis  
   *(2012)* *Nature Reviews Molecular Cell Biology*, 13 (8), pp. 480–481. Cited 23 times.  
   doi: 10.1038/nrm3401

View at Publisher

3. Jacomin, A.-C., Gul, L., Sudhakar, P., Korcsmaros, T., Nezis, I.P.  
   What we learned from big data for autophagy research  
   *(Open Access)*  
   *(2018)* *Frontiers in Cell and Developmental Biology*, 6 (AUG), art. no. 92. Cited 5 times.  
   [https://www.frontiersin.org/articles/10.3389/fcell.2018.00092/full](https://www.frontiersin.org/articles/10.3389/fcell.2018.00092/full)  
   doi: 10.3389/fcell.2018.00092

View at Publisher
Molecular Pathways in Cardiomyopathies

Miyamoto, S.D., Stauffer, B.L., Sucharov, C.C.

(2017) Cardioskeletal Myopathies in Children and Young Adults, pp. 39-64.
http://www.sciencedirect.com/science/book/9780128000403
ISBN: 978-012800040-3
doi: 10.1016/B978-0-12-800040-3.00003-0

View at Publisher

Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis?

Ying, Y., Padanilam, B.J.

(2016) Cellular and Molecular Life Sciences, 73 (11-12), pp. 2309-2324. Cited 41 times.
http://link.springer.de/link/service/journals/00018/index.htm
doi: 10.1007/s00018-016-2202-5

View at Publisher

Prostaglandin E2-EP2 signaling as a node of chronic inflammation in the colon tumor microenvironment

Aoki, T., Narumiya, S.

(2017) Inflammation and Regeneration, 37 (1), art. no. 4. Cited 14 times.
http://inflammregen.biomedcentral.com/
doi: 10.1186/s41232-017-0036-7

View at Publisher

Scientific evaluation of dietary factors in cancer

Roomi, M.W., Niedzwiecki, A., Rath, M.

(2018) / Nutri Med Diet Care, 4 (29). Cited 3 times.
https://doi.org/10.23937/2572-3278.1510029

Effect of diet on mortality and cancer recurrence among cancer survivors: A systematic review and meta-analysis of cohort studies

Schwedhelm, C., Boeing, H., Hoffmann, G., Aleksandrova, K., Schwingshackl, L.

(2016) Nutrition Reviews, 74 (12), pp. 737-748. Cited 76 times.
http://nutritionreviews.oxfordjournals.org/
doi: 10.1093/nutrit/nuw045

View at Publisher

Structures and characteristics of carbohydrates in diets fed to pigs: A review

Navarro, D.M.D.L., Abelilla, J.J., Stein, H.H.

(2019) Journal of Animal Science and Biotechnology, 10 (1), art. no. 39. Cited 8 times.
www.jasbsci.com/
doi: 10.1186/s40104-019-0345-6

View at Publisher

Mannose metabolism: More than meets the eye

Sharma, V., Ichikawa, M., Freeze, H.H.

(2014) Biochemical and Biophysical Research Communications, 453 (2), pp. 220-228. Cited 58 times.
http://www.sciencedirect.com/science/journal/0006291X
doi: 10.1016/j.bbrc.2014.06.021

View at Publisher
11 Chu, J., Mir, A., Gao, N., Rosa, S., Monson, C., Sharma, V., Steet, R., (...), Sadler, K.C.

A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation (Open Access)

(2013) DMM Disease Models and Mechanisms, 6 (1), pp. 95-105. Cited 22 times.
http://dmm.biologists.org/content/6/1/95.full.pdf+html
doi: 10.1242/dmm.010116

View at Publisher

12 Zhang, D., Chia, C., Jiao, X., Jin, W., Kasagi, S., Wu, R., Konkel, J.E., (...), Chen, W.

D-mannose induces regulatory T cells and suppresses immunopathology (Open Access)

(2017) Nature Medicine, 23 (9), pp. 1036-1045. Cited 45 times.
http://www.nature.com/nm/index.html
doi: 10.1038/nm.4375

View at Publisher

13 Zhuang, A., Yap, F.Y.T., McCarthy, D., Leung, C., Sourris, K.C., Penfold, S.A., Thallas-Bonke, V., (...), Forbes, J.M.

Globally elevating the AGE clearance receptor, OST48, does not protect against the development of diabetic kidney disease, despite improving insulin secretion (Open Access)

(2019) Scientific Reports, 9 (1), art. no. 13664. Cited 2 times.
www.nature.com/srep/index.html
doi: 10.1038/s41598-019-50221-0

View at Publisher

14 Shahbuddin, M.

(2014) Development of konjac glucomannan hydrogels for wound healing. Cited 2 times.
University of Sheffield, United Kingdom

15 He, Y., Zhu, Q., Chen, M., Huang, Q., Wang, W., Li, Q., Huang, Y., (...), Di, W.

The changing 50% inhibitory concentration ([IC50]) of cisplatin: A pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer (Open Access)

(2016) Oncotarget, 7 (43), pp. 70803-70821. Cited 32 times.
http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&op=article&op=download&type%5B%5D=12223&type%5B%5D=38690
doi: 10.18632/oncotarget.12223

View at Publisher

16 DeRossi, C., Bode, L., Eklund, E.A., Zhang, F., Davis, J.A., Westphal, V., Wang, L., (...), Freeze, H.H.

Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality (Open Access)

(2006) Journal of Biological Chemistry, 281 (9), pp. 5916-5927. Cited 56 times.
http://www.jbc.org/cgi/reprint/281/9/5916
doi: 10.1074/jbc.M511982200

View at Publisher
17. Parveen, S., Chen, B., Liu, L., Tan, T.
   Enzymatic phosphorylation of mannose by glucomannokinase from Mycobacterium phlei using inorganic polyphosphate
   (2017) Enzyme and Microbial Technology, 104, pp. 16-21. Cited 4 times.
   www.elsevier.com/locate/enzmictec
doi: 10.1016/j.enzmictec.2017.05.006
   View at Publisher

18. de la Fuente, M., Peñas, P.F., Sols, A.
   Mechanism of mannose toxicity
   (1986) Biochemical and Biophysical Research Communications, 140 (1), pp. 51-55. Cited 37 times.
doi: 10.1016/0006-291X(86)91056-9
   View at Publisher

19. Reuter, S., Gupta, S.C., Chaturvedi, M.M., Aggarwal, B.B.
   Oxidative stress, inflammation, and cancer: How are they linked? (Open Access)
   (2010) Free Radical Biology and Medicine, 49 (11), pp. 1603-1616. Cited 2498 times.
doi: 10.1016/j.freeradbiomed.2010.09.006
   View at Publisher

20. Gonzalez, P.S., O'Prey, J., Cardaci, S., Barthet, V.J.A., Sakamaki, J-I., Beaumatin, F., Roseweir, A., (...), Ryan, K.M.
   Mannose impairs tumour growth and enhances chemotherapy (Open Access)
   (2018) Nature, 563 (7733), pp. 719-723. Cited 78 times.
http://www.nature.com/nature/index.html
doi: 10.1038/s41586-018-0729-3
   View at Publisher

21. Domenici, L., Monti, M., Bracchi, C., Giorgini, M., Colagiovanni, V., Muzii, L., Benedetti Panici, P.
   D-mannose: a promising support for acute urinary tract infections in women. A pilot study
   (2016) European review for medical and pharmacological sciences, 20 (13), pp. 2920-2925. Cited 31 times.

22. Ofek, I., Mosek, A., Sharon, N.
   Mannose-specific adherence of Escherichia coli freshly excreted in the urine of patients with urinary tract infections, and of isolates subcultured from the infected urine (Open Access)
   (1981) Infection and Immunity, 34 (3), pp. 708-711. Cited 42 times.
doi: 10.1128/iai.34.3.708-711.1981
   View at Publisher

23. El-Mosalamy, H., Salman, T.M., Ashmawey, A.M., Osama, N.
   Role of chronic E. Coli infection in the process of bladder cancer- An experimental study (Open Access)
   (2012) Infectious Agents and Cancer, 7 (1), art. no. 19. Cited 13 times.
doi: 10.1186/1750-9378-7-19
   View at Publisher
Liu, T., Zhang, L., Joo, D., Sun, S.-C.  
NF-κB signaling in inflammation (Open Access)  
(2017) Signal Transduction and Targeted Therapy, 2, art. no. e17023. Cited 1156 times.  
www.nature.com/sigtrans  
doi: 10.1038/sigtrans.2017.23  
View at Publisher

Bloemer, J., Bhattacharya, S., Amin, R., Suppiramaniam, V.  
Impaired insulin signaling and mechanisms of memory loss  
(2014) Progress in Molecular Biology and Translational Science, 121, pp. 413-449. Cited 31 times.  
http://www.elsevier.com/books/book-series/progress-in-molecular-biology-and-translational-science  
ISBN: 978-012800101-1  
doi: 10.1016/B978-0-12-800101-1.00013-2  
View at Publisher

El-Far, A.H.  
The role of receptors for advanced glycation end product in pancreatic carcinogenesis  
(2016) Pancreat Disord Ther, 6 (1), p. 1000166. Cited 4 times.  
https://doi.org/10.4172/2165-7092.1000166

Abe, R., Shimizu, T., Sugawara, H., Watanabe, H., Nakamura, H., Choei, H., Sasaki, N., (...), Shimizu, H.  
Regulation of Human Melanoma Growth and Metastasis by AGE-AGE Receptor Interactions  
(2004) Journal of Investigative Dermatology, 122 (2), pp. 461-467. Cited 126 times.  
http://www.nature.com/jid/index.html  
doi: 10.1046/j.0022-202X.2004.22218.x  
View at Publisher

Gill, V., Kumar, V., Singh, K., Kumar, A., Kim, J.-J.  
Advanced glycation end products (AGEs) may be a striking link between modern diet and health  
(Open Access)  
(2019) Biomolecules, 9 (12), art. no. 888. Cited 13 times.  
https://www.mdpi.com/2218-273X/9/12/888/pdf  
doi: 10.3390/biom9120888  
View at Publisher

© Copyright 2020 Elsevier B.V., All rights reserved.
