On δ'-like potential scattering on star graphs

S S Man'ko

Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, 1 Universytetska str., 79000 Lviv, Ukraine

E-mail: s.manko@franko.lviv.ua

Received 5 July 2010, in final form 13 September 2010
Published 13 October 2010
Online at stacks.iop.org/JPhysA/43/445304

Abstract

We discuss the potential scattering on the noncompact star graph. The Schrödinger operator with the short-range potential localized in a neighborhood of the graph vertex is considered. We study the asymptotic behavior of the corresponding scattering matrix in the zero-range limit. It has been known for a long time that in dimension 1 there is no non-trivial Hamiltonian with the distributional potential δ', i.e. the δ' potential acts as a totally reflecting wall. Several authors have, in recent years, studied the scattering properties of the regularizing potentials $\alpha\varepsilon^{-2} Q(x/\varepsilon)$ approximating the first derivative of the Dirac delta function. A non-zero transmission through the regularized potential has been shown to exist as $\varepsilon \to 0$. We extend these results to star graphs with the point interaction, which is an analog of the δ' potential on the line. We prove that generically such a potential on the graph is opaque. We also show that there exists a countable set of resonant intensities for which a partial transmission through the potential occurs. This set of resonances is referred to as the resonant set and is determined as the spectrum of an auxiliary Sturm–Liouville problem associated with Q on the graph.

PACS numbers: 02.30.Tb, 03.65.Nk, 02.30.Hq

1. Introduction

Schrödinger operators with potentials supported on a discrete set of points (such potentials are usually termed ‘point interactions’) have attracted considerable attention both in the physical and mathematical literature over several decades. One of the reasons for this is that such singular Hamiltonians are widely used in various applications to atomic, nuclear and solid state physics. Applications also arise in optics, for instance, in dielectric media where electromagnetic waves scatter at boundaries or thin layers. Another reason is that Schrödinger operators with point interactions often form ‘solvable’ models in the sense that the resolvents of such operators can explicitly be calculated. Consequently the spectrum, eigenfunctions,
as well as resonances and scattering quantities, can also be determined explicitly (see [2, 3] and references therein). In the physically oriented literature, point interactions are often understood as sharply localized potentials, exhibiting a number of interesting features and unusual effects not seen for regular potentials.

Currently, there is an increasing interest in solvable models on graphs in particular, as a reaction to a great deal of progress in fabricating graph-like structures of a semiconductor material, for which graph Hamiltonians represent a natural model (see the survey [25] for details). The idea to investigate quantum mechanics of particles confined to a graph originated with the study of free-electron models of organic molecules [29–31]. Among the systems that were successfully modeled by quantum graphs, we mention, e.g. single-mode acoustic and electromagnetic waveguide networks [19], Anderson transition [4] and quantum Hall systems with long-range potential [6], fracton excitations in fractal structures [5], and mesoscopic quantum systems [24]. The essential component of such graph models is the wavefunction coupling in the vertices. The interface conditions have to be chosen to make the Hamiltonian self-adjoint or, in physical terms, to ensure the conservation of the probability current at the vertex.

One of the most natural ways to define a graph Hamiltonian corresponding to a point interaction supported by the branching point is to choose an appropriate self-adjoint extension of the corresponding free Hamiltonian with the interaction points removed. This approach has been realized in [18], where the authors found that a vertex joining \(n \) graph edges can be described by \(n^2 \) real parameters defining the interface condition at the vertex. A general form of such a coupling was described in [23] by a pair of \(n \times n \) matrices \(A, B \) such that
\[\text{rank}(A, B) = n \text{ and } AB^* \text{ is self-adjoint; the boundary values have to satisfy the conditions} \]

\[A\Psi(a) + B\Psi'(a) = 0. \]

(1)

Here the symbol \(\Psi(a) \) is used for the column vector of the boundary values at the vertex \(a \), and analogously \(\Psi'(a) \) stands for the vector of the first derivatives, taken all in the outgoing direction.

Another possible approach to define the vertex coupling is to approximate a quantum graph with a thin quantum waveguide (see [1, 11, 16, 28] and references therein). Different vertex couplings were also discovered in [8, 13, 14, 18].

The Schrödinger operators with the Dirac delta function and its derivatives in potentials have been studied intensively since the eighties of last century (see [2, 3, 12] and the references given there). One of the first well-studied Hamiltonians was the operator with Dirac’s delta-function potential \(\delta \). A case of special interest arises when the \(\delta \) potential is replaced by the derivative \(\delta' \) of the Dirac delta function. Šeba [32] appears to have been among the first to consider such a Hamiltonian. To define the Hamiltonian \(-\frac{d^2}{dx^2} + \delta'(x) \), he approximated \(\delta' \) by regular potentials \(\varepsilon^{-2} Q(x/\varepsilon) \) and then investigated the convergence of the corresponding family of regular Schrödinger operators

\[S_\varepsilon = -\frac{d^2}{dx^2} + \frac{1}{\varepsilon^2} Q \left(\frac{x}{\varepsilon} \right). \]

Here \(Q \) is an integrable function. If \(Q \) has zero mean and the integral \(\int_{\mathbb{R}} Q(t) dt \) is equal to \(-1\), then the sequence \(\varepsilon^{-2} Q(x/\varepsilon) \) converges in the sense of distributions as \(\varepsilon \to 0 \) to \(\delta' \), which served as a motivation for such an approximation. Šeba claimed that the operators \(S_\varepsilon \) converge in the uniform resolvent sense to the direct sum of the unperturbed half-line Schrödinger operators subject to the Dirichlet boundary conditions at \(x = 0 \). From the viewpoint of scattering theory, it means that the \(\delta' \)-barrier is completely opaque, i.e. in the limit \(\varepsilon \to 0 \) the potential \(\varepsilon^{-2} Q(x/\varepsilon) \) becomes a totally reflecting wall at \(x = 0 \) splitting the system into two independent subsystems lying on the half-lines \((−\infty, 0)\) and \((0, \infty)\).
But this result is in conflict with the conclusions reached in [33], where the resonances in the transmission probability for the δ'-like potential have been observed. In that paper an exactly solvable model with a step function αQ was considered. The authors found a discrete set of intensities α_n, for which partial transmission through the limiting δ' potential occurs. The values α_n are the roots of a transcendent equation depending on the regularization Q. Exactly solvable models with other piecewise constant potentials as well as nonrectangular regularizations of δ' have later been studied in [34–37] and the same conclusion has been drawn.

In [20, 21] the authors approximated the formal Hamiltonian $-\frac{d^2}{dx^2} + q(x) + \alpha \delta'(x)$ on the line by regular Schrödinger operators

$$S_\varepsilon(\alpha, Q) = -\frac{d^2}{dx^2} + q(x) + \frac{\alpha}{\varepsilon^2} Q\left(\frac{x}{\varepsilon}\right)$$

and the similar resonant effect was discovered. Here the function $Q \in C^\infty_0(-1, 1)$ has zero mean, α is a real coupling constant and q is a real-valued fixed potential tending to $+\infty$ as $|x| \to \infty$, which ensures that the spectrum of $S_\varepsilon(\alpha, Q)$ is discrete. The map assigning a self-adjoint operator $S(\alpha, Q)$ to each pair (α, Q) was constructed there. The choice of $S(\alpha, Q)$ was determined by proximity of its energy levels and pure states to those for the Hamiltonian with regularized potentials for small ε. It was established that for almost all coupling constants, the operator $S(\alpha, Q)$ is just the direct sum of the Schrödinger operators with potential q on half-axes subject to the Dirichlet boundary conditions at the origin. But in the exceptional case, the nontrivial coupling at the origin arises. The notion of the resonant set Σ_Q, which is the spectrum of the problem

$$-g'' + \alpha Q(t)g = 0, \quad t \in (-1, 1), \quad g(-1) = g(1) = 0,$$

with respect to the spectral parameter α was introduced in [20, 21]. The coupling function $\theta_Q : \Sigma_Q \to \mathbb{R}$ defined via $\theta_Q(\alpha) = g_\alpha(1)/g_\alpha(-1)$ was also constructed where g_α is an eigenfunction corresponding to the eigenvalue $\alpha \in \Sigma_Q$. In the case when the coupling constant α belongs to the resonance set, the δ'-barrier admits a partial transmission of a particle, and an appropriate wavefunction obeys the interface conditions

$$\psi (+0) = \theta_Q(\alpha)\psi (-0), \quad \theta_Q(\alpha)\psi' (+0) = \psi' (-0).$$

Studies of [20, 21] have been continued in [22, 26]. First the findings of [33–37] were generalized in [26], where the scattering on an arbitrary potential of the form $\alpha e^{-Q(x/\varepsilon)}$ has been considered. It was proved that such a potential is asymptotically transparent only if a coupling constant belongs to the resonant set. Moreover, the scattering amplitude for the Hamiltonians $S_\varepsilon(\alpha, Q)$ and $-\frac{d^2}{dx^2}$ converges as $\varepsilon \to 0$ to that for the limiting Hamiltonian $S(\alpha, Q)$. In [22] the authors have not only pointed out a mistake in [32], but also have showed that the operators $S_\varepsilon(\alpha, Q)$ converge in the uniform resolvent sense as $\varepsilon \to 0$ to $S(\alpha, Q)$. The results of [22, 26] were obtained for the special case $q = 0$; generally, the same can be derived without difficulty.

Many of the point interactions on the line were extended to deal with graphs. One of the best known is the δ coupling at n-edge vertex:

$$\psi_1(a) = \cdots = \psi_n(a), \quad \sum_{j=1}^n \psi_j'(a) = \alpha \psi(a)$$

(see, e.g., [13, 14]). Such a model is a generalization of the Hamiltonian

$$-\frac{d^2}{dx^2} + \alpha \delta(x),$$
given by \(S_{a, \delta} \psi = -f'' \) on the domain
\[\mathcal{D}(S_{a, \delta}) = \{ f \in H^2(\mathbb{R} \setminus \{0\}) | f(0) = f'(0) = 0 \} \].

A similar generalization is possible for the model for Schrödinger operators with \(\delta' \)-interactions, defined by \(S_{\beta, \delta} \psi = -f'' \) on the set of functions
\[\mathcal{D}(S_{\beta, \delta}) = \{ f \in H^2(\mathbb{R} \setminus \{0\}) | f'(0) = 0 \} \].

This generalization was described in [13, 14]:
\[\psi_1(a) = \cdots = \psi_n(a), \quad \sum_{i=1}^n \psi_i(a) = \beta \psi'(a), \]
and was called \(\delta'_i \) coupling. For the \(\delta'_i \) and \(\delta' \) couplings, there is an approximation in terms of more regular interaction, namely these couplings at an \(n \)-edge vertex can be approximated by means of \(n + 1 \) couplings of the \(\delta \) type provided the latter are properly scaled [7]. Such an approximation comes from a seminal work of Cheon and Shigehara [10], and was developed by various authors [8, 15]. For instance, in [8] the problem of approximating all singular vertex couplings in a quantum graph is solved. The waveguide approximation to \(\delta \) and \(\delta' \) couplings was proposed in [17].

In the following section, we briefly sketch the findings of [27], where an analog for the Hamiltonian \(S_{\alpha, Q} \) was considered on the metric graph. It is worth pointing out that the vertex coupling conditions obtained in [27] correspond to the \(\delta' \)-like potential and are completely different from the \(\delta \) and \(\delta' \) couplings mentioned above.

1.1. Graph Hamiltonian with the \(\delta' \)-like potential

It will be convenient to recall the basic notions of the theory of differential equations on graphs. By a metric graph \(G = (V, E) \) we mean a finite set \(V \) of points in \(\mathbb{R}^3 \) (whose elements are called vertices) together with a set \(E \) of smooth regular curves connecting the vertices (the elements of \(E \) are called edges). The sets of vertices and edges of the graph \(G \) are sometimes denoted by \(V(G) \) and \(E(G) \) respectively. A map \(f : G \to \mathbb{R} \) is said to be a function on the graph, and the restriction of \(f \) on the edge \(g \in E(G) \) will be denoted by \(f_g \). Let us introduce the space of functions on the graph \(C^\infty(G) = \{ f | f_g \in C^\infty(\mathbb{R}) \text{ for all } g \in E(G) \} \). Each edge is equipped with a natural parameterization; the differentiation is performed with respect to the natural parameter. We denote by \(df/dg(a) \) the limit value of the derivative at the point \(a \in V(G) \) taken in the direction away from the vertex. The integral of \(f \) over \(G \) is the sum of integrals over all edges
\[\int_G f \, dG = \sum_{g \in E(G)} \int_g f \, dg. \]

Let \(L_2^2(G) \) be a Hilbert space with the inner product \((u, v) = \int_G u \overline{v} \, dG \) and with the norm \(\| \cdot \|_{L_2^2(G)} \). We also introduce the Sobolev spaces \(H^k(G) = \{ f \in L_2^2(G) | f_g \in H^k(\mathbb{R}) \text{ for all } g \in E(G) \} \) and the space of absolutely continuous functions \(AC(G) = \{ f | f_g \in AC(\mathbb{R}) \text{ for all } g \in E(G) \} \).

Let us consider a noncompact star graph \(\Gamma \) consisting of three edges \(\gamma_1, \gamma_2 \) and \(\gamma_3 \). All edges are connected at the vertex \(a \). Then \(E(\Gamma) = \{ \gamma_1, \gamma_2, \gamma_3 \} \) and suppose that all edges are half-lines. We write \(a^\gamma_1 \) for the point of intersection of the \(\varepsilon \)-sphere, centered at \(a \), with the edge \(\gamma_1 \in E(\Gamma) \) and denote by \(\Gamma_\varepsilon \) a sub-partition of \(\Gamma \) containing new vertices \(a^\gamma_1, a^\gamma_2 \) and \(a^\gamma_3 \). Each \(a^\gamma_\varepsilon \) divides the edge \(\gamma_\varepsilon \) of the graph \(\Gamma \) into two edges \(\omega^\gamma_\varepsilon \) and \(\nu^\gamma_\varepsilon \) of the graph \(\Gamma_\varepsilon \) (see figure 1). Let \(\Omega_\varepsilon \) be a star subgraph of \(\Gamma_\varepsilon \) such that \(V(\Omega_\varepsilon) = \{ a, a^\gamma_1, a^\gamma_2, a^\gamma_3 \} \) and \(E(\Omega_\varepsilon) = \{ \omega^\gamma_1, \omega^\gamma_2, \omega^\gamma_3 \} \).
By $\Omega \subset \mathbb{R}_+^3$ we denote the ε^{-1}-homothety of the graph Ω_ε, centered at a. Obviously, the resulting graph does not depend on the small parameter ε. The graph Ω is a star with a center at the origin b of the auxiliary space $\mathbb{R}_+^3 \xi$ and with the vertices a_j, which are the images of the points a_i. The edge of Ω connecting b to a_j will be denoted by ω_j.

We introduce the set $\mathcal{Q} = \{ Q \in C^\infty(\Omega) | \int_\Omega Q \, d\Omega = 0 \}$. For each nonzero element $Q \in \mathcal{Q}$, let us define the sequence $Q_\varepsilon(x) = \begin{cases} \varepsilon^{-2} Q((x - a)/\varepsilon) & \text{for } x \in \Omega_\varepsilon, \\ 0 & \text{for } x \in \Omega \setminus \Omega_\varepsilon. \end{cases}$

The potential Q_ε is referred to as the δ'-like potential.

In [27], the family of Schrödinger operators on the star graph was discovered:

$$H_\varepsilon(\alpha, Q)f = -f'' + (q + \alpha Q_\varepsilon)f,$$

$$D(H_\varepsilon(\alpha, Q)) = \left\{ f \in L_2(\Gamma) | f, f' \in AC(\Gamma), -f'' + (q + \alpha Q_\varepsilon)f \in L_2(\Gamma),
\begin{array}{c}
f_{\omega_1}(a) = f_{\omega_2}(a) = f_{\omega_3}(a), \\
\sum_{j=1}^{3} \frac{df}{d\omega_j}(a) = 0,
\end{array}
\right\},$$

where $Q \in \mathcal{Q}$, α is a real coupling constant and q is a smooth real-valued potential such that $q_\gamma(x) \to +\infty$ as $|x| \to +\infty$ for all $\gamma \in E(\Gamma)$. Such behavior of q ensures the discreteness of the spectrum of $H_\varepsilon(\alpha, Q)$. A self-adjoint operator $H(\alpha, Q)$ has been assigned to each pair (α, Q). The choice of an operator is argued by the close proximity of the energy levels and the pure states for the Hamiltonians $H_\varepsilon(\alpha, Q)$ and $H(\alpha, Q)$ respectively. Two spectral characteristics of the function Q are introduced in [27]: the resonant set Σ, which is the spectrum of the eigenvalue problem

$$-g'' + \alpha Qg = 0 \quad \text{on} \quad \Omega \setminus V(\Omega),$$

$$g_{\omega_1}(b) = g_{\omega_2}(b) = g_{\omega_3}(b), \quad \sum_{j=1}^{3} \frac{dg}{d\omega_j}(b) = 0,$$

and the coupling function $\theta : \Sigma \to \mathbb{CP}^2$, where \mathbb{CP}^2 is the complex projective plane. The spectrum of the problem (2)–(4) is real, discrete and has two accumulation points $\pm \infty$. It
consists of simple and double eigenvalues. Write Σ_1 for the subset of simple eigenvalues of the problem (2)–(4), and by Σ_2 we denote the subset of double eigenvalues. The resonant set can be represented as the union of Σ_1 and Σ_2.

Let α be a simple eigenvalue of the problem (2)–(4) with an eigenfunction u_α such that $u_\alpha^2(a_1) + u_\alpha^2(a_2) + u_\alpha^2(a_3) = 1$; then introduce

$$\theta_1(\alpha) = u_\alpha(a_1), \quad \theta_2(\alpha) = u_\alpha(a_2), \quad \theta_3(\alpha) = u_\alpha(a_3).$$

For $\alpha \in \Sigma_2$, we consider

$$\theta_1(\alpha) = v_\alpha(a_2) w_\alpha(a_3) - v_\alpha(a_3) w_\alpha(a_2),
\theta_2(\alpha) = v_\alpha(a_3) w_\alpha(a_1) - v_\alpha(a_1) w_\alpha(a_3),
\theta_3(\alpha) = v_\alpha(a_1) w_\alpha(a_2) - v_\alpha(a_2) w_\alpha(a_1),$$

where v_α and w_α form a basis in the corresponding eigenspace such that $\theta_1^2(\alpha) + \theta_2^2(\alpha) + \theta_3^2(\alpha) = 1$. The coupling function is defined via $\theta(\alpha) = (\theta_1(\alpha), \theta_2(\alpha), \theta_3(\alpha))$. It is easy to check that if we change a basis in the eigenspace, the point $(\theta_1(\alpha), \theta_2(\alpha), \theta_3(\alpha)) \in \mathbb{C}^3$ should be replaced by $(\lambda \theta_1(\alpha), \lambda \theta_2(\alpha), \lambda \theta_3(\alpha))$ with some complex λ; hence, we shall find it convenient to consider θ as a function from the resonant set into \mathbb{C}^3. In the non-resonant case, when the coupling constant α does not belong to the resonant set, $H(\alpha, Q)$ is the direct sum of the Schrödinger operators with the potential $\epsilon(\alpha, Q)$ as a function from the resonant set into \mathbb{C}. In the non-resonant case, we will denote by $P_{\lambda}(\alpha)$ the orthogonal projector onto the finite-dimensional space spanned by all eigenfunctions corresponding to the eigenvalues λ_α of $H(\alpha, Q)$ such that $\lambda_\alpha \rightarrow \lambda$ as $\epsilon \rightarrow 0$. The results of [27] may be summed up in the following theorem.

Theorem 1.1. All eigenvalues of $H(\alpha, Q)$ (except at most a finite number) are bounded as $\epsilon \rightarrow 0$. Let λ_α be an eigenvalue of $H(\alpha, Q)$ bounded as $\epsilon \rightarrow 0$; then λ_α has a finite limit λ that is a point of the spectrum of $H(\alpha, Q)$. Moreover, $\|P_{\lambda}(\epsilon) - P_{\lambda}\| \rightarrow 0$ as $\epsilon \rightarrow 0$. Conversely, if λ is an eigenvalue of $H(\alpha, Q)$, then there exists an eigenvalue λ_α of $H(\alpha, Q)$ such that $\lambda_\alpha \rightarrow \lambda$ as $\epsilon \rightarrow 0$.

Although the close proximity of the energy levels and pure states for the limiting and regularized Hamiltonians have been shown, we are still in the dark about the convergence as
\(\varepsilon \to 0 \) of the operators \(H_\varepsilon(\alpha, Q) \) in any topology. As a result, we do not know anything about the convergence of the scattering quantities or other physical characteristics. Our objective in this paper is to give one further motivation for the choice of the Hamiltonian \(H(\alpha, Q) \).

We shall study the scattering properties of the finite-range potentials \(\alpha Q\varepsilon \) on the graph \(\Gamma_\varepsilon \) in the limit \(\varepsilon \to 0 \). We prove that the scattering coefficients depend on the intensity \(\alpha \) and the function \(Q \) in such a way that for all values of \(\alpha \) the barrier \(\alpha Q\varepsilon \) is completely opaque except for the set \(\Sigma \) of resonant values, at which a partial transmission through the potential occurs. It will also be shown that the scattering amplitude for the Hamiltonians \(H_\varepsilon(\alpha, Q) \) and \(H_0 \) converges as \(\varepsilon \to 0 \) to that for the limiting Hamiltonian \(H(\alpha, Q) \).

Here the Hamiltonian \(H_0 \) of a free particle on \(\Gamma_1 \) acts via \(H_0 f = -f'' \) on its domain consisting of the functions from \(H^2(\Gamma) \) that are continuous on \(\Gamma \) and satisfy the Kirchhoff boundary conditions at the vertex.

2. Scattering problem for the \(\delta' \)-like potential on the graph

Let us state the main result of this paper.

Theorem 2.1. For each \(k > 0 \) and \(\alpha \in \mathbb{R} \), the scattering matrix for the operators \(H_\varepsilon(\alpha, Q) \) and \(H_0 \) converges as \(\varepsilon \to 0 \) to the scattering matrix for \(H(\alpha, Q) \) and \(H_0 \).

To start with, we briefly treat stationary scattering on the graph \(\Gamma_1 \) associated with the Hamiltonians \(H(\alpha, Q) \) and \(H_0 \). From now on we assume that \(q \) is a zero function, i.e. the operator \(H(\alpha, Q) \) involves no potential and \(H_\varepsilon(\alpha, Q) \) has only perturbed potential \(\alpha Q\varepsilon \). It is sufficient for us to look at the nontrivial case when the coupling constant \(\alpha \) belongs to the resonant set \(\Sigma = \Sigma_1 \cup \Sigma_2 \), since in the opposite case the particle is always reflected. Let us introduce a natural parametrization \(s \in (0, +\infty) \) on each edge of \(\Gamma_1 \) and \(\Gamma_\varepsilon \), where \(s = 0 \) corresponds to the vertex \(a \). Consider the incoming monochromatic wave \(e^{-ik\xi} \) with \(k > 0 \) coming from infinity along the edge \(\gamma_3 \). The corresponding wavefunction has the form

\[
\psi_n(s, k) = \begin{cases}
T_{nm} e^{ik\xi} & \text{on } \gamma_m, \ m \neq n, \\
T_{nn} e^{-ik\xi} & \text{on } \gamma_n.
\end{cases} \tag{7}
\]

Here \(T_{nn} \) are the reflection coefficients and \(T_{nm} \) are the transmission coefficients. Substituting \(\psi_n \) into the matching conditions (5) or (6), we derive the scattering matrix that can be expressed via the coupling function

\[
S(\alpha) = (-1)^{j-1}2 \begin{pmatrix} \theta_1^2(\alpha) - \frac{1}{2} & \theta_1(\alpha)\theta_2(\alpha) & \theta_1(\alpha)\theta_3(\alpha) \\
\theta_1(\alpha)\theta_2(\alpha) & \theta_2^2(\alpha) - \frac{1}{2} & \theta_2(\alpha)\theta_3(\alpha) \\
\theta_1(\alpha)\theta_3(\alpha) & \theta_2(\alpha)\theta_3(\alpha) & \theta_3^2(\alpha) - \frac{1}{2} \end{pmatrix}
\]

if \(\alpha \in \Sigma_j \) for \(j = 1, 2 \). Note that the scattering matrix does not depend on \(k \). It is a consequence of a scale-invariant character of vertex couplings (5) and (6) (see, e.g., [9]).

Next let us look in detail at stationary scattering for the Hamiltonians \(H(\alpha, Q) \) and \(H_0 \) and find the limit as \(\varepsilon \to 0 \) of the scattering amplitude. Consider the incoming monochromatic wave \(e^{-iks} \) coming from infinity along the edge \(\gamma_3 \).

We shall seek a positive-energy solution of the problem

\[
-\gamma'' + \alpha Q\varepsilon \gamma = k^2 \gamma \text{ on } \Gamma \setminus \{a\}, \quad \gamma_{\omega_1}(a) = \gamma_{\omega_2}(a) = \gamma_{\omega_3}(a), \quad \sum_{j=1}^{3} \frac{d\gamma}{d\alpha_j}(a) = 0 \tag{8}
\]
that coincides on $\Gamma_\epsilon \setminus \Omega_{\epsilon}$ with ψ_3 given by (7). Let $u_a = u_a(\xi, \epsilon), v_a = v_a(\xi, \epsilon)$ and $w_a = w_a(\xi, \epsilon)$ be a linearly independent system of solutions of the problem

$$-g^{\alpha\beta} + \alpha Qg = \epsilon^2 g \text{ on } \Omega \setminus \{b\}, \quad g_{\alpha\beta}(b) = g_{\alpha\beta}(b), \quad \sum_{j=1}^3 \frac{dg}{d\alpha_j}(b) = 0$$

(9)
on the graph Ω. Clearly, the functions $u_a((x-a)/\epsilon, \epsilon k), v_a = v_a((x-a)/\epsilon, \epsilon k)$ and $w_a = w_a((x-a)/\epsilon, \epsilon k)$ form a linearly independent system of solutions of the problem (8) on Ω_{ϵ}. Hence the desired solution on Ω_{ϵ} can be represented as a linear combination of this function with the coefficients A, B and C respectively. Write $x = \epsilon k$. Since the potential αQ, has discontinuities at the points α_1, α_2 and α_3, we demand that the conditions

$$y_{\alpha j}(\alpha) = y_{\alpha 0}(\alpha), \quad \frac{dy}{d\alpha_j}(\alpha) + \frac{dy}{d\alpha_j}(\alpha) = 0, \quad j = 1, 2, 3, \quad (10)$$

hold. On substituting our solution into (10), we obtain the linear system $Mc = r$ for the vector of unknown coefficients $c(\alpha, k) = (T_{31}, T_{32}, T_{33}, A, B, C)^T$. Here $r(\alpha) = (0, 0, 0, 0, e^{-i\alpha}, e^{-i\alpha})^T$ and

$$M(\alpha, k) = \begin{pmatrix} 0 & 0 & u_a(1, k) & v_a(1, k) & w_a(1, k) \\ -i \epsilon e^{i\alpha} & 0 & 0 & u_a(2, k) & v_a(2, k) \\ -i \epsilon e^{i\alpha} & 0 & u_a(3, k) & v_a(3, k) & w_a(3, k) \end{pmatrix}.$$Clearly, the functions $u_a(\cdot, 0), v_a(\cdot, 0)$ and $w_a(\cdot, 0)$ form a linearly independent system of solutions of the problem (2), (3). In what follows, we shall omit the second argument of these functions and keep in mind that it equals zero. We introduce the determinants

$$h_0(\alpha) = \begin{vmatrix} u_a(1) & v_a(1) & w_a(1) \\ u_a(2) & v_a(2) & w_a(2) \\ u_a(3) & v_a(3) & w_a(3) \end{vmatrix}, \quad h_1(\alpha) = \begin{vmatrix} \frac{du_a}{d\alpha}(1) & \frac{dv_a}{d\alpha}(1) & \frac{dw_a}{d\alpha}(1) \\ \frac{du_a}{d\alpha}(2) & \frac{dv_a}{d\alpha}(2) & \frac{dw_a}{d\alpha}(2) \\ \frac{du_a}{d\alpha}(3) & \frac{dv_a}{d\alpha}(3) & \frac{dw_a}{d\alpha}(3) \end{vmatrix}.$$Let us also consider the function $h_{a m}$ which is just the determinant $h_{1 m}$ with the mth row replaced by the mth row of h_0 for $n = 0, 1, m = 1, 2, 3.$

Let us denote by $\Delta(\alpha, k)$ the determinant of the matrix $M(\alpha, k)$. It admits the asymptotic expansion

$$\Delta(\alpha, k) = h_1(\alpha + i\epsilon \{3 h_1(\epsilon) - h_0(\epsilon)\} + \epsilon k^2(-9/2 h_1(\epsilon) + 3 H_0(h_1(\epsilon))) + O(\epsilon^3)$$
as $\epsilon \to 0$, where $H_0(\epsilon) = \sum_{n=1}^3 h_{a m}(\epsilon)$ for $n = 0, 1, 2, 3, m = 1, 2, 3,$. Employing Cramer’s rule, we derive

$$T_{31}(\alpha, k) = -2 i \epsilon(1 + i\epsilon) \Delta(\alpha, k), \quad \begin{vmatrix} u_a(1) & v_a(1) & w_a(1) \\ \frac{du_a}{d\alpha}(1) & \frac{dv_a}{d\alpha}(1) & \frac{dw_a}{d\alpha}(1) \\ \frac{du_a}{d\alpha}(2) & \frac{dv_a}{d\alpha}(2) & \frac{dw_a}{d\alpha}(2) \end{vmatrix}$$

$$- \frac{2 \epsilon^2}{\Delta(\alpha, k)} \begin{vmatrix} u_a(1) & v_a(1) & w_a(1) \\ u_a(2) & v_a(2) & w_a(2) \end{vmatrix} + O(\epsilon^3).$$
Proof. Suppose, contrary to our claim, that there exists
and

By construction

and

is nontrivial on

is a characteristic determinant of the eigenvalue problem (2)–(4).

\[T_{32}(\kappa, \alpha) = \frac{2i\kappa(1 + i\kappa)}{\Delta(\kappa, \alpha)} \begin{vmatrix} \frac{d\omega}{d\alpha}(a_1) & \frac{du}{d\alpha}(a_1) & \frac{dw}{d\alpha}(a_1) \\ \frac{d\omega}{d\kappa}(a_2) & \frac{du}{d\kappa}(a_2) & \frac{dw}{d\kappa}(a_2) \\ u_\alpha(a_2) & v_\alpha(a_2) & w_\alpha(a_2) \end{vmatrix} + \frac{2\kappa^2}{\Delta(\kappa, \alpha)} \begin{vmatrix} \frac{d\omega}{d\alpha}(a_1) & \frac{du}{d\alpha}(a_1) & \frac{dw}{d\alpha}(a_1) \\ \frac{d\omega}{d\kappa}(a_2) & \frac{du}{d\kappa}(a_2) & \frac{dw}{d\kappa}(a_2) \\ u_\alpha(a_2) & v_\alpha(a_2) & w_\alpha(a_2) \end{vmatrix} + O(\kappa^3), \]

\[T_{33}(\kappa, \alpha) = (\Delta(\kappa, \alpha))^{-1} [-h_1(\alpha) + i\kappa[H_0(\alpha) - 2h_{03}(\alpha) - h_1(\alpha)] - \kappa^2[H_1(\alpha) + H_0(\alpha) - 2(h_{13}(\alpha) + h_{03}(\alpha)) - 1/2h_1(\alpha)] + O(\kappa^3) \]

as \(\kappa \to 0 \). Similar asymptotics can be derived without difficulty in the case when the wave packet comes from infinity along \(\gamma_1 \) or \(\gamma_2 \). We shall study the asymptotic behavior as \(\kappa \to 0 \) of the scattering coefficients. Three cases are to be distinguished: \(\Delta(\kappa, \alpha) = O(1) \), \(\Delta(\kappa, \alpha) = O(\kappa) \) and \(\Delta(\kappa, \alpha) = O(\kappa^2) \) as \(\kappa \to 0 \).

Lemma 2.2. The set of roots of the equation \(h_1(\zeta) = 0 \) coincides with the resonant set, i.e. \(h_1 \) is a characteristic determinant of the eigenvalue problem (2)–(4).

Proof. It is easily seen that the system \(u_\alpha, v_\alpha \) and \(w_\alpha \) of solutions of the problem (9) may be chosen so that

\[u_\alpha(b) = 0, \quad \frac{du_\alpha}{d\alpha}(b) = 0, \quad \frac{du_\alpha}{d\kappa}(b) = 1, \]

\[v_\alpha(b) = 0, \quad \frac{dv_\alpha}{d\alpha}(b) = 0, \quad \frac{dv_\alpha}{d\kappa}(b) = 1. \]

Clearly, \(u_\alpha \) vanishes on \(\omega_1 \) and \(v_\alpha \) vanishes on \(\omega_2 \). Let us consider the linear combination

\[g = \frac{du_\alpha}{d\alpha}(a_1) \frac{du_\alpha}{d\alpha}(a_2) u_\alpha + \frac{du_\alpha}{d\kappa}(a_2) \frac{du_\alpha}{d\kappa}(a_1) v_\alpha - \frac{du_\alpha}{d\kappa}(a_1) \frac{du_\alpha}{d\kappa}(a_2) w_\alpha. \]

By construction \(\frac{dv_\alpha}{d\kappa}(a_1) = \frac{dv_\alpha}{d\kappa}(a_2) = 0 \) and \(\frac{dv_\alpha}{d\kappa}(a_1) = h_1(\alpha) \). Hence if \(h_1(\alpha) = 0 \) and \(g \) is nontrivial on \(\Omega \), then \(g \) is an eigenfunction of the problem (2), corresponding to \(\alpha \), and therefore \(\alpha \in \Sigma \).

Note that at least one of the values \(\frac{d\omega}{d\alpha}(a_1) \), \(\frac{d\omega}{d\alpha}(a_2) \) or \(\frac{d\omega}{d\alpha}(a_j) \) is different from zero for \(j = 1, 2, 3 \). Now consider the exceptional case, when \(g \) is trivial, i.e. all coefficients in (12) equal zero. Then we show that both values \(\frac{d\omega}{d\kappa}(a_1) \) and \(\frac{d\omega}{d\kappa}(a_1) \) are zero. Conversely, suppose that \(\frac{d\omega}{d\kappa}(a_1) \neq 0 \). Since \(\frac{d\omega}{d\alpha}(a_1) \frac{d\omega}{d\kappa}(a_2) = 0 \), one obtains \(\frac{d\omega}{d\alpha}(a_2) = \frac{d\omega}{d\kappa}(a_2) = \frac{d\omega}{d\kappa}(a_2) = 0 \), a contradiction. Similarly, \(\frac{d\omega}{d\alpha}(a_2) \neq 0 \). It follows that \(\frac{d\omega}{d\alpha}(a_1) = \frac{d\omega}{d\kappa}(a_1) = 0 \) and \(\frac{d\omega}{d\kappa}(a_1) = \frac{d\omega}{d\kappa}(a_2) = 0 \). Thus the function \(g_1 = \frac{d\omega}{d\kappa}(a_3) u_\alpha - \frac{d\omega}{d\kappa}(a_3) v_\alpha \) satisfies \(\frac{d\omega}{d\alpha}(a_1) = \frac{d\omega}{d\alpha}(a_2) = \frac{d\omega}{d\alpha}(a_3) = 0 \). If \(g_1 \) is nontrivial on \(\Omega \), then it is an eigenfunction of the problem (2), corresponding to \(\alpha \), and if not, then \(u_\alpha \) would be a desired eigenfunction.

What is left is to show that \(\alpha \in \Sigma \) implies \(h_1(\alpha) = 0 \). If we choose the new basis \(u_\alpha, v_\alpha \) and \(w_\alpha \) such that \(u_\alpha \) is an eigenfunction of the problem (2)–(4) corresponding to \(\alpha \), then the first column of the determinant is zero and the assertion follows.

Lemma 2.3. The set of roots of the equation \(H_0(\zeta) = 0 \) that belongs to the resonant set coincides with \(\Sigma_2 \).

Proof. Suppose, contrary to our claim, that there exists \(\alpha \in \Sigma_1 \) such that \(H_0(\alpha) = 0 \). We choose the new linearly independent system \(u_\alpha, v_\alpha \) and \(w_\alpha \) such that \(u_\alpha \) is an eigenfunction
of the problem (2)–(4) corresponding to \(\alpha \). Write \(V = (\frac{d(u_\alpha(a_1))}{d\omega_1}, \frac{d(u_\alpha(a_2))}{d\omega_2}, \frac{d(u_\alpha(a_3))}{d\omega_3}) \) and
\[W = (\frac{d(v_\alpha(a_1))}{d\omega_1}, \frac{d(v_\alpha(a_2))}{d\omega_2}, \frac{d(v_\alpha(a_3))}{d\omega_3}) \]. These vectors are linearly independent. Indeed, in the opposite case there exists a nonzero number \(\lambda \) such that \(V = \lambda W \). Therefore \(v_\alpha - \lambda w_\alpha \) is an eigenfunction of the problem (2)–(4) corresponding to \(\alpha \) that is linearly independent with \(u_\alpha \), a contradiction.

In view of the Lagrange identities
\[u_\alpha(a_1) \frac{d(u_\alpha(a_1))}{d\omega_1} + u_\alpha(a_2) \frac{d(u_\alpha(a_2))}{d\omega_2} + u_\alpha(a_3) \frac{d(u_\alpha(a_3))}{d\omega_3} = 0, \]
\[u_\alpha(a_1) \frac{d(v_\alpha(a_1))}{d\omega_1} + u_\alpha(a_2) \frac{d(v_\alpha(a_2))}{d\omega_2} + u_\alpha(a_3) \frac{d(v_\alpha(a_3))}{d\omega_3} = 0, \]
the vector \(U = (u_\alpha(a_1), u_\alpha(a_2), u_\alpha(a_3)) \) is orthogonal to both vectors \(V \) and \(W \). The identity \(H_0(\alpha) = 0 \) can be written as
\[u_\alpha(a_1) \left| \begin{array}{ccc}
\frac{d(u_\alpha(a_1))}{d\omega_1} & \frac{d(u_\alpha(a_2))}{d\omega_2} & \frac{d(u_\alpha(a_3))}{d\omega_3} \\
\frac{d(u_\alpha(a_2))}{d\omega_1} & \frac{d(u_\alpha(a_2))}{d\omega_2} & \frac{d(u_\alpha(a_3))}{d\omega_3} \\
\frac{d(u_\alpha(a_3))}{d\omega_1} & \frac{d(u_\alpha(a_3))}{d\omega_2} & \frac{d(u_\alpha(a_3))}{d\omega_3}
\end{array} \right| + u_\alpha(a_2) \left| \begin{array}{ccc}
\frac{d(v_\alpha(a_1))}{d\omega_1} & \frac{d(v_\alpha(a_2))}{d\omega_2} & \frac{d(v_\alpha(a_3))}{d\omega_3} \\
\frac{d(v_\alpha(a_2))}{d\omega_1} & \frac{d(v_\alpha(a_2))}{d\omega_2} & \frac{d(v_\alpha(a_3))}{d\omega_3} \\
\frac{d(v_\alpha(a_3))}{d\omega_1} & \frac{d(v_\alpha(a_3))}{d\omega_2} & \frac{d(v_\alpha(a_3))}{d\omega_3}
\end{array} \right| = 0. \]

It follows that \(U \) is orthogonal to the vector product \(V \times W \), hence that \(U \) is a zero vector, i.e. \(u_\alpha(a_1) = u_\alpha(a_2) = u_\alpha(a_3) = 0 \), and finally that \(u_\alpha \) is a zero function, which is impossible.

Let \(\alpha \) belong to \(\Sigma_2 \). We select a linearly independent system \(u_\alpha, v_\alpha \) such that \(u_\alpha \) and \(v_\alpha \) form a basis in the corresponding eigenspace. Obviously, the determinant \(H_0(\alpha) \) vanishes, and the proof is complete.

\[\square \]

Remark 2.4. The roots of the equation \(h_1(z) = 0 \) as well as \(H_0(z) = 0 \) do not depend on the choice of the linearly independent system of solutions of the problem (9).

Lemma 2.5. The function \(H_1 \) is different from zero on \(\Sigma_2 \).

Proof. In contrast, suppose that there exists \(\alpha \in \Sigma_2 \) such that \(H_1(\alpha) = 0 \). Let us select the system \(u_\alpha, v_\alpha \) of linearly independent solutions of the problem (9) such that \(u_\alpha \) and \(v_\alpha \) are the eigenfunctions of the problem (2)–(4) corresponding to \(\alpha \). Set \(U = (u_\alpha(a_1), u_\alpha(a_2), u_\alpha(a_3)) \) and \(V = (v_\alpha(a_1), v_\alpha(a_2), v_\alpha(a_3)) \). Note that the vectors \(U \) and \(V \) are linearly independent, since in the opposite case the functions \(u_\alpha \) and \(v_\alpha \) would be linearly dependent.

From the Lagrange identities
\[u_\alpha(a_1) \frac{d(u_\alpha(a_1))}{d\omega_1} + u_\alpha(a_2) \frac{d(u_\alpha(a_2))}{d\omega_2} + u_\alpha(a_3) \frac{d(u_\alpha(a_3))}{d\omega_3} = 0, \]
\[v_\alpha(a_1) \frac{d(v_\alpha(a_1))}{d\omega_1} + v_\alpha(a_2) \frac{d(v_\alpha(a_2))}{d\omega_2} + v_\alpha(a_3) \frac{d(v_\alpha(a_3))}{d\omega_3} = 0, \]
it follows that the vector \(W = (\frac{d(u_\alpha(a_1))}{d\omega_1}, \frac{d(u_\alpha(a_2))}{d\omega_2}, \frac{d(u_\alpha(a_3))}{d\omega_3}) \) is orthogonal to \(U \) and \(V \). The identity \(H_1(\alpha) = 0 \) can be written in the form
\[\frac{d(u_\alpha(a_1))}{d\omega_1} \begin{vmatrix} u_\alpha(a_1) & u_\alpha(a_1) \\ v_\alpha(a_1) & v_\alpha(a_1) \end{vmatrix} + \frac{d(u_\alpha(a_2))}{d\omega_2} \begin{vmatrix} u_\alpha(a_1) & u_\alpha(a_1) \\ v_\alpha(a_1) & v_\alpha(a_1) \end{vmatrix} + \frac{d(u_\alpha(a_3))}{d\omega_3} \begin{vmatrix} u_\alpha(a_1) & u_\alpha(a_1) \\ v_\alpha(a_1) & v_\alpha(a_1) \end{vmatrix} = 0. \]
Consequently, \(W \) is orthogonal to the vector product \(U \times V \). Analysis similar to that in the proof of the previous lemma gives the assertion of the lemma.

\[\square \]

We are now in a position to prove the main result. Without loss of generality we establish the convergence of the transmission coefficient \(T_{\beta \lambda}(\epsilon k, \alpha) \) as \(\epsilon \to 0 \). Other coefficients may be handled in much the same way.
Proof of theorem 2.1 (The non-resonant case). Since α is not a resonant coupling constant, $h_1(\alpha) \neq 0$. From (11) it immediately follows that $T_{31}(\varepsilon k, \alpha) = O(\varepsilon k)$ as $\varepsilon \to 0$.

The case of simple resonance. If $\alpha \in \Sigma_1$, then $h_1(\alpha) = 0$ and $H_0(\alpha) \neq 0$ in light of lemmas 2.2, 2.3. By (11)

$$T_{31}(\varepsilon k, \alpha) = \frac{2}{H_0(\alpha)} \begin{vmatrix} u_0(1) & v_0(1) & w_0(1) \\ \frac{d u_0}{d \alpha}(1) & \frac{d v_0}{d \alpha}(1) & \frac{d w_0}{d \alpha}(1) \end{vmatrix} + O(\varepsilon k), \quad \varepsilon \to 0. $$

We continue by choosing the new linearly independent system u_α, v_α and w_α such that u_α is an eigenfunction of the problem (2)–(4) corresponding to α satisfying the condition $u_\alpha^2(1) + u_\alpha^2(2) + u_\alpha^2(3) = 1$ and $\frac{d u_\alpha}{d \alpha}(2) = 0$. Observe that

$$T_{31}(0, \alpha) = 2\theta_1(\alpha) \frac{du_\alpha}{d \alpha}(1) \frac{dw_\alpha}{d \alpha}(1) H_0^{-1}(\alpha). \quad (13)$$

Now let us express $T_{31}(0, \alpha)$ via the coupling function. Taking into account the Lagrange identities we see that

$$\frac{u_\alpha(1)}{u_\alpha(1)} = - \frac{du_\alpha}{d \alpha}(3), \quad \frac{u_\alpha(2)}{u_\alpha(2)} = \frac{du_\alpha}{d \alpha}(3), \quad \frac{u_\alpha(3)}{u_\alpha(3)} = - \frac{du_\alpha}{d \alpha}(3).$$

Therefore

$$h_{01}(\alpha) = -u_\alpha(1) \frac{du_\alpha}{d \alpha}(3) \frac{du_\alpha}{d \alpha}(2) = u_\alpha^2(1) \frac{du_\alpha}{d \alpha}(3) \frac{du_\alpha}{d \alpha}(2), \quad (14)$$

$$h_{02}(\alpha) = u_\alpha(2) \left\{ \frac{du_\alpha}{d \alpha}(3) \frac{du_\alpha}{d \alpha}(1) - \frac{du_\alpha}{d \alpha}(3) \frac{du_\alpha}{d \alpha}(1) \right\} = \frac{u_\alpha^2(2) \frac{du_\alpha}{d \alpha}(3) \frac{du_\alpha}{d \alpha}(2)}{\theta_3(\alpha)}. \quad (15)$$

By construction $h_{03}(\alpha) = u_\alpha^2(3) \frac{du_\alpha}{d \alpha}(1) \frac{du_\alpha}{d \alpha}(2)/\theta_3(\alpha)$. Recall that $H_0(\alpha) = h_{01}(\alpha) + h_{02}(\alpha) + h_{03}(\alpha)$. Combining (14) and (15) yields

$$H_0 = \frac{du_\alpha}{d \alpha}(1) \frac{du_\alpha}{d \alpha}(2) \left\{ u_\alpha^2(1) + u_\alpha^2(2) + u_\alpha^2(3) \right\} = \frac{du_\alpha}{d \alpha}(2) \frac{du_\alpha}{d \alpha}(2) \theta_3(\alpha).$$

Then by (13),

$$T_{31}(0, \alpha) = 2\theta_1(\alpha) \theta_3(\alpha) = T_{31}(\alpha).$$

The case of double resonance. Finally suppose that $\alpha \in \Sigma_2$. By lemmas 2.2, 2.3 and 2.5, we have $h_1(\alpha) = H_0(\alpha) = 0$ and $H_1(\alpha) \neq 0$; thus,

$$T_{31}(\varepsilon k, \alpha) = \frac{2}{H_1(\alpha)} \begin{vmatrix} u_0(1) & v_0(1) & w_0(1) \\ \frac{d u_0}{d \alpha}(1) & \frac{d v_0}{d \alpha}(1) & \frac{d w_0}{d \alpha}(1) \end{vmatrix} + O(\varepsilon k), \quad \varepsilon \to 0$$

by (11). Let us choose the new basis u_α, v_α and w_α such that u_α and v_α are the eigenfunctions of the problem (2) corresponding to α satisfying $\theta_1^2(\alpha) + \theta_2^2(\alpha) + \theta_3^2(\alpha) = 1$. Consequently,

$$T_{31}(0, \alpha) = -2\theta_3(\alpha) \frac{du_\alpha}{d \alpha}(1) H_1^{-1}(\alpha).$$

Since the Lagrange identities hold, it follows that

$$\frac{du_\alpha}{d \alpha}(1) = \frac{du_\alpha}{d \alpha}(2) = \frac{du_\alpha}{d \alpha}(3).$$
Table 1. Resonant intensities and coupling function.

α	θ₁(α)	θ₂(α) = θ₁(α)
8.8104	-0.9992	0.0279
28.5513	0.9999	0.0012
59.5701	-0.9999	0.997 × 10⁻⁴

We thus get

\[h_{11}(α) = θ₁(α) \frac{dw_a}{dω_1}(a_1), \]
\[h_{12}(α) = θ₂(α) \frac{dw_a}{dω_2}(a_2) = \frac{θ₂^2(α)}{θ₁(α)} \frac{dw_a}{dω_1}(a_1), \]
\[h_{13}(α) = θ₃(α) \frac{dw_a}{dω_3}(a_3) = \frac{θ₃^2(α)}{θ₁(α)} \frac{dw_a}{dω_1}(a_1). \]

By recalling \(H_1(α) = h_{11}(α) + h_{12}(α) + h_{13}(α) \), one obtains

\[H_1(α) = \frac{dw_a}{dω_1}(a_1) \left[θ₁^2(α) + θ₂^2(α) + θ₃^2(α) \right] = \frac{dw_a}{dω_1}(a_1); \]

hence,

\[T_{31}(0, α) = -2θ₁(α)θ₃(α) = T_{31}(α), \]

and the proof is complete. □

3. An example

We suppose that the shape of a short-range potential in an actual model can be approximately described as follows:

\[Q = \begin{cases} 7 & \text{on } ω₁, \ s \in [0, 0.5), \\ -7 & \text{on } ω₁, \ s \in (0.5, 1], \\ 0 & \text{otherwise}. \end{cases} \]

We study the scattering properties of the potentials \(αε^{-2}Q((x - a)/ε) \) on \(Γ_ε \) as \(ε → 0 \) for these models. As shown before, the scattering amplitude for the Hamiltonians \(H_ε(α, Q) \) and \(H₀ \) converges as \(ε → 0 \) to that for the limiting Hamiltonian \(H(α, Q) \). Certainly, the resonant set and the coupling function to be found are specific to the given shape \(Q \).

Since the function \(Q \) vanishes outside the edge \(ω₁ \), the resonant set \(Σ \) coincides with the set \(Σ₁ \) of the simple eigenvalues of (2)–(4). In fact, all eigenfunctions are constant outside the edge \(ω₁ \) and the resonant set is the spectrum of the problem

\[-g'' + αQg = 0 \quad \text{on } ω₁, \quad \frac{dg}{dω_1}(a₁) = \frac{dg}{dω_1}(b) = 0. \]

Table 1 lists the first three positive resonant values of \(α \) (numerically computed using \(Maple \)) and the corresponding values of the coupling function \(θ(α) \). Tables 2–4 list the scattering matrices for different resonant intensities. We note that the transmission coefficients decay very fast.

The similar effects were observed when the asymptotic behavior of the scattering coefficients for \(H_ε(α, Q) \) was discovered directly to the given shape \(Q \). Figure 2 shows the logarithm of the transmission probability \(|T_{31}(εk, α)|^2 \) versus \(α \) for \(εk = 0.0001 \) and \(εk = 0.01 \). From this figure we see that \(|T_{31}(εk, α)|^2 \) vanishes as \(ε → 0 \) except when \(α \) takes resonant values which correspond to the spikes of \(|T_{31}(εk, α)|^2 \). Observe also that the transmission coefficient \(T_{31}(εk, α) \) decays as \(α → ∞ \).
Figure 2. Logarithm of the transmission probability $|T_3(\varepsilon_k, \alpha)|^2$ against α at $\varepsilon_k = 0.0001$ (solid curve) and 0.01 (dash curve).

Table 2. Scattering matrix for $\alpha = 8.8104$.

0.9968	-0.0558	-0.0558
-0.0558	-0.9984	0.0016
-0.0558	0.0016	-0.9984

Table 3. Scattering matrix for $\alpha = 28.5513$.

0.9996	0.0024	0.0024
0.0024	-0.9999	0.288 × 10^{-5}
0.0024	0.288 × 10^{-5}	-0.9999

Table 4. Scattering matrix for $\alpha = 59.5701$.

0.9996	-0.0002	-0.0002
-0.0002	-0.9999	0.199 × 10^{-7}
-0.0002	0.199 × 10^{-7}	-0.9999

Acknowledgment

The author expresses his gratitude to Professor Yu Golovaty for stimulating and helpful discussions.

References

[1] Albeverio S, Cacciapuoti C and Finco D 2007 J. Math. Phys. 48 032103
[2] Albeverio S, Gesztesy F, Høegh-Krohn R and Holden H 2005 Solvable Models in Quantum Mechanics (With an Appendix by Pavel Exner) 2nd revised edn (Providence, RI: AMS Chelsea Publishing) p 488
[3] Albeverio S and Kurasov P 1999 Singular Perturbations of Differential Operators: Solvable Schrödinger-Type Operators (Cambridge: Cambridge University Press) p 429
[4] Anderson P W 1981 Phys. Rev. B 23 4828
[5] Avrasiy Y and Luck J 1992 Phys. Rev. B 45 1074
[6] Chalker J T and Coddington P D 1988 J. Phys. C: Solid State Phys. 21 2665
[7] Cheon T and Exner P 2004 J. Phys. A: Math. Gen. 37 L329
[8] Cheon T, Exner P and Turek O 2010 Ann. Phys. 325 548
[9] Cheon T, Exner P and Turek O 2009 arXiv:0908.3717v1
[10] Cheon T and Shihehara T 1998 Phys. Lett. A 243 111
[11] Dell'Antonio G F and Tenuta L 2006 J. Math. Phys. 47 072102
[12] Demkov Yu N and Ostrovskii V N 1988 Zero-Range Potentials and Their Applications in Atomic Physics (New York: Plenum) p 240
[13] Exner P 1995 Phys. Rev. Lett. 74 3503
[14] Exner P 1996 J. Phys. A: Math. Gen. 29 87
[15] Exner P, Neilhardt H and Zagrebnov V 2002 Commun. Math. Phys. 224 593
[16] Exner P and Post O 2005 J. Geom. Phys. 54 77
[17] Exner P and Post O 2009 J. Phys. A: Math. Theor. 42 415305
[18] Exner P and Šeba P 1989 Rep. Math. Phys. 28 7
[19] Flesia C, Johnston R and Kunz H 1987 Europhys. Lett. 3 497
[20] Golovaty Yu D and Man’ko S 2009 Ukz. Math. Bull. 6 179 (arXiv:0909.1034v1[math.SP])
[21] Golovaty Yu D and Man’ko S 2009 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryk. Tekh. Nauky 2009 16
[22] Golovaty Yu D and Hryniv R O 2010 J. Phys. A: Math. Theor. 43 155204 (arXiv:0911.1046v1[math.SP])
[23] Kostrykin V and Schrader R 1999 J. Phys. A: Math. Gen. 32 595
[24] Kowal D, Sivan U, Entin-Wohlman O and Imry Y 1990 Phys. Rev. B 42 9009
[25] Kuchment P 2002 Waves Random Media 12 R1
[26] Man’ko S 2009 Visnyk Lviv Univ.: Mech. Math. 71 142
[27] Man’ko S 2010 Visnyk Chernivtsi Univ.: Mech. (submitted)
[28] Molchanov S and Vainberg B 2007 Commun. Math. Phys. 273 533
[29] Pauling L 1936 J. Chem. Phys. 4 673
[30] Platt J R 1949 J. Chem. Phys. 17 484
[31] Richardson M J and Balazs N L 1972 Ann. Phys. 73 308
[32] Šeba P 1986 Rep. Math. Phys. 24 111
[33] Christiansen P L, Arnbak H C, Zolotaryuk A V, Ermakov V N and Gaididei Y B 2003 J. Phys. A: Math. Gen. 36 7589
[34] Zolotaryuk A V, Christiansen P L and Iermakova S V 2006 J. Phys. A: Math. Gen. 39 9329
[35] Toyama F and Nogami Y 2007 J. Phys. A: Math. Theor. 40 F685
[36] Zolotaryuk A V 2008 Adv. Sci. Lett. 1 187
[37] Zolotaryuk A V 2010 J. Phys. A: Math. Theor. 43 105302