Interactions between Over-the-Counter and Illicit Drugs Utilizing Cytochrome P450 Metabolism: Potential for Exacerbation of Pharmacological Response

David R. Wallace, PhD1,2*; Kara K. Crosswy, MS2

1Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma 74107-1898, USA
2Department of Forensic Sciences, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma 74107-1898, USA

ABSTRACT

Aim: To determine the interaction of over-the-counter (OTC) and illicit psychostimulants at the cytochrome P450 enzyme, CYP2D6. CYP2D6 is responsible for 20% of hepatic Phase I metabolism and is a site of drug-drug interactions, leading to increased drug toxicity.

Materials and Methods: We examined the effects of OTC drugs; 1) the prototype H2-antagonist cimetidine (CMT) and 2) the opioid agonist cough suppressant dextromethorphan (DEX); as well as two scheduled drugs, methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) for their ability to interfere with CYP2D6 activity. Assays with human CYP2D6 determined the inhibitory potential (IC50) of each drug. Kinetic analysis (Vmax and Km) was accomplished using rodent hepatic microsomes.

Results: Maximum inhibition of CYP2D6 activity following exposure to CMT+MDMA was significantly reduced 75-85% compared to quinidine (control) values. These data showed inhibitory effects in CYP2D6 activity in each compound tested. Alterations in CYP2D6 activity may result in complex drug-drug interactions leading to elevated plasma levels of drugs and increased risk for toxicity. Assays using rat CYP2D2 demonstrated Vmax elevations in the CMT group (493%) compared to control (naïve, no treatment) values (19.9±5.1 pmol/mg protein/min). The Km was increased 218% in CMT compared to controls (3.1±0.5 μM). Collectively, all MA challenged groups exhibited increases in total enzyme [Vmax; 280-490%] and affinity [Km; 165-220%] values compared to the control group. The increase in both Vmax and Km suggests that the low affinity/high capacity CYP2D2 isoform is upregulated.

Conclusion: Our findings suggest that in vivo, MA acts as a CYP2D2-inducer, which will lead to altered secondary drug metabolism, increasing the risk of drug-related toxicity. Coupled with the ability of CMT and DEX to interfere with MA metabolism, a complex drug-drug interaction is possible, leading to increased toxicity. Our findings substantiate the hypothesis that the combination of illicit and OTC drugs could result in complex drug-drug interactions increasing the risk for severe drug-related toxicity.

KEY WORDS: Cimetidine; Methamphetamine; Dextromethorphan; Ecstasy; CYP2D6; Hepatosomes; Methyleneedioxyamphetamine.
INTRODUCTION

The cytochrome P450 (CYP) enzyme system is a superfamily of hemoproteins that catalyze the Phase I metabolism of numerous xenobiotics and is usually associated with hepatic metabolism.1,2 CYP enzymes are also found in the small intestine, kidney, lung, and brain.1 CYP2D6 is the second largest drug metabolizer (20%) and is an important part of the phase I drug metabolism, which transforms a functional group or adds a functional group to the drug to introduce or unmask polar bodies.3 The active catalytic site of CYP2D6 contains acidic amino acid residues (Asp301 and Glu216) and as such will bind substrates which contain basic nitrogen and planar aromatic ring groups.6 CYP2D6 has been studied extensively due to its genetic polymorphisms and its large number of substrates.1 Based on genetic profiling, CYP2D6 polymorphisms are separated into the following classifications: 1) poor, 2) normal, and 3) extensive metabolizer. Allelic variants that are prevalent in ethnic populations that are known to be poor metabolizers are the CYP2D6*10 and CYP2D6*17 variants.7 Ethnic populations which express these alleles, would have reduced function and be ‘poor’ metabolizers, whereas individuals with the ‘normal’ alleles will be able to adequately metabolize, and the last group, the ‘extensive’ metabolizers, will either express more of the active alleles, or will have been ‘induced’ by a secondary drug leading to a greater number of enzyme molecules.2,8,9 Most drugs or chemicals exhibit reversible inhibition where there is competition for the catalytic site.9 Inhibition magnitude is a function of the inhibiting agent concentration and the affinity of the agent for CYP2D6.15 Inhibitors of CYP activity lead to increased drug adverse effects associated with the increase in the drug concentration.1,2,9 Clemens et al confirmed the increase in adverse effects when MDMA and MA are administered concurrently.16 The ability of X-ray crystallography to determine the CYP2D6 three-dimensional structure has aided significantly in understanding the mechanism of substrate activity at the CYP2D6 catalytic site.17

Drug-drug interactions resulting in an increased incidence of toxicity is significant. Improved understanding of CYP2D6 activity in the presence of illicit drugs will lead to better interpretation and predictions of drug-drug interactions.

Methamphetamine (MA) and 3,4-methylenedioxy-methamphetamine (MDMA) are abused psychostimulant drugs often ingested as part of polydrug use. Drug-drug interactions at the level of the hepatic CYP microsomal system (Phase I reactions) can result in unexpected and dangerous side effects. Interactions between drugs may also affect forensic/medical toxicological analysis and interpretation. OTC-related inhibition of MA or MDMA metabolism will result in the accumulation of the illicit drug leading to increased toxicity. Cimetidine (CMT) and MDMA10-12 are inhibitors of CYP2D6 whereas dextromethorphan (DEX) and MA are substrates for the CYP2D6 isozyme.2,13,14 Comparing the actions of CMT and DEX at CYP2D6, CMT exhibits 20-fold lower potency at inhibiting compared to DEX (200 µM vs. 10 µM).15 Inhibitors of CYP activity lead to increased drug adverse effects associated with the increase in the drug concentration.1,2,9 Clemens et al confirmed the increase in adverse effects when MDMA and MA are administered concurrently.16 The ability of X-ray crystallography to determine the CYP2D6 three-dimensional structure has aided significantly in understanding the mechanism of substrate activity at the CYP2D6 catalytic site.17 A sample schematic for the metabolism of MA, MDMA, CMT, and DEX (Figure 1) includes the primary metabolite for each of the parent compounds.

Amphetamine (AMP) was first synthesized as a nasal decongestant to replace ephedrine.18 Later, AMP was used to treat...
methamphetamine (MDMA) was first synthesized as an appetite suppressant, yet never received approval for medical use. It was abused in the 1960s and 1970s for its psychoactive and hallucinogenic properties, and it was classified as “C-I” (no medicinal use, highly addictive). Currently, MDMA is an illicit recreational drug that is very popular, primarily at all-night parties or raves. MDMA is an analog of MA formed by methylenedioxy substitution and is structurally similar to MA. In rats, MDMA stimulates 5-HT release which is believed to be a synergistic or additive effect of MDMA and MA that may be due to interactions at a common metabolic point, such as CYP2D6.

Cimetidine (CMT) is a commonly used over-the-counter medication for the treatment of acid reflux disease and heartburn. CMT was one of first in the class of histamine H₂ blockers/antagonists that prevent H⁺ secretion from the parietal cells into the stomach lumen. CMT can bind to the cytochrome P450 heme iron reactive site, inhibiting all cytochrome-dependent Phase I enzyme activity. Due to this interaction at P450 sites, CMT has been associated with many drug-drug interactions involving the inhibition of CYP2D6 and other P450 isozymes.

When CMT is combined with MA, levels of both MA and AMP were significantly higher in the rat CNS compared to rats that did not receive CMT. CMT is metabolized by P450 enzymes to its major metabolite, an S-oxide. The half-life of CMT is relatively short (2-4 hours) and is quickly cleared from the body by urinary excretion (70% of unchanged CMT) or the S-oxide form (20%). The use of CMT as an acid-reducer is widespread, but the exact mechanism of P450 inhibition is not entirely understood. More work is needed to enhance our understanding of the potential of drug-drug interactions associated with CMT use.

Methylenedioxymethamphetamine (MDMA) is an easily obtainable drug, and the ease of production, in combination with its euphoric effects, dependent on the order of administration. The sequence and MA, when taken concurrently, can produce greater adverse long-term electrophysical abnormalities in MDMA users and decreases toxicity?

This study examines the interactions between two OTC drugs and two illicit drugs at CYP2D6 and asks: can OTC drugs interfere with the metabolism of the illicit drugs leading to increased toxicity? Drugs and Human Performance Fact sheets from the National Highway Traffic Safety Administration also report "potential inhibitors of the CYP2D6 isozyme could decrease the rate of methamphetamine elimination if administered concurrently, while potential inducers could increase the rate of
elimination.” Collectively, this work will improve our understanding of potential drug-drug interactions between OTC and illicit drugs and the potential hazards associated with polydrug use/abuse. This work is significant since unforeseen drug interactions may lead to the misinterpretation of toxicology results.

EXPERIMENTAL DESIGN

Chemicals and Drugs

Methamphetamine HCl, 3, 4-methylenedioxyamphetamine HCl, cimetidine, dextromethorphan-HBr, acetaminophen, dimethyl sulfoxide (DMSO), 3-[2-(N, N-diethyl-N-methylamino) ethyl]-7-methoxy-4-methylcoumarin (AMMC) were purchased from Sigma Chemical Company (St. Louis, MO, USA). The inhibitor screening kit CYP2D6/AMMC was purchased from BD Biosciences (Woburn, MA). The P450 HTS kit include: AMMC, fluorescent metabolite (AMHC), cofactors CYP2D6 (CYP2D6*1 + P450 reductase), non-fluorescent inhibitor screening kit CYP2D6 and NADPH utilized an excitation/emission filter of 360 nm/460 nm. Background values were subtracted from the treatment wells before statistical analysis.

Inhibition Studies: Rat CYP2D2

Animals and treatment: Rats were randomly assigned to one of the 5 treatment groups: The first group was control (naïve); treatment groups included: vehicle control (VC; 0.9% saline and DMSO, 4%); CMT (10 mg/kg); DEX (10 mg/kg); and the combination of CMT+DEX (10 mg/kg each). Rats received a single daily injection from day 1 till day 7 at the same time each day. All compounds were administered via intraperitoneal (IP) injections to minimize first-pass effects. On Day 8, the drug-treated rats (not naïve rats) were challenged with a 5 mg/kg IP injection of MA. Seven hours after MA injection, rats were lightly anesthetized using carbon dioxide gas, and sacrificed by decapitation. The median and the left lateral hepatic lobes were harvested and frozen in liquid nitrogen. Samples were stored at -80 °C until use.

Hepatic microsome preparation: Hepatic microsomal fractions were prepared with slight modifications as previously described.53 Briefly, frozen (-80 °C) rat livers were thawed and minced in 2-4 mL of homogenizing buffer (0.1 M potassium phosphate, pH 7.4 and 0.25 M sucrose), then brought to 30 mL with additional homogenizing buffer. Homogenization was completed with 10 strokes at 900 rpm using a Teflon pestle/glass homogenizer (Wheaton, USA). Nuclei and mitochondria were removed by centrifugation at 9,000 xg for 20 min at 4 °C. The resulting supernatant (S1) was centrifuged at 100,000 xg for 60 min. The pellet (P2; containing microsomes) was resuspended in 20 mL of incubation buffer (0.1 M potassium phosphate, pH 7.4, 0.25M sucrose, 1 mM EDTA, and 5% glycerol) and used immediately or stored frozen (-80 °C) until use. Florence et al showed washed microsomes could be stored at -80°C for up to 30 days without loss of activity. All stored microsomes in the present studies were used before the end of the 30 day period.
Protein Analysis: Commercially available Coomassie-blue-based protein assay (Bio-Rad, Richmond, CA, USA) based on the Bradford method was used to determine total protein concentration. Based on specific CYP2D2 activity, the calculations for pmol/mg protein/min were determined.

In vivo Kinetic Studies: The in vivo kinetic studies used the HTS kit from the in vitro studies with modifications. The assay was used to quantify the CYP2D2 (rat) enzyme activity for each of the drug treatment groups following MA challenge by measuring the production of fluorescent AHMC. The activity of CYP2D2 was determined following seven-day exposure to CMT, DEX, and CMT/DEX, or saline using AMMC as a probe. This probe has been shown to be highly selective for rat CYP2D2, as well as the human CYP2D6 isoform. Rat hepatic microsomes were used in place of the purified human CYP2D6 utilized in the in vitro assay.

Assays were performed as described above. The enzyme mix for the treatment groups was prepared for each microsomal fraction by adding H2O, buffer (0.5 M potassium phosphate, pH 7.4, filter sterilized), and enzyme (microsomal fraction), a 79:20:0.75 mix. For the treatment groups, enzyme mix and AMMC (0.5 µM to 3.29 µM) were mixed in the well for a total volume of 100 μL. Varying AMMC concentrations produced a concentration response curve that determined enzyme kinetics. The plate was incubated for 30 min at 37 °C, and the reaction was terminated by the addition of stop reagent. The fluorescence generated by AMMC was quantified as described previously at excitation/emission wavelengths of 360 nm/460 nm. Assays were performed as four assays (N=4) in duplicate.

Statistical Analysis

For the in vitro CYP2D6 inhibition assays, the inhibitory potency of quinidine and each test compound was determined by measuring the IC50 value for each compound. This data was curve fit using an iterative nonlinear curve fitting program in PRISM 7.01 (GraphPad Software Inc., San Diego, CA, USA). IC50 values and the maximum inhibition percentage were then analyzed using the Kruskal-Wallis nonparametric test followed by the Dunn’s comparison (using quinidine as the comparison group). A significance level was set at α=0.05.

For the in vivo enzyme kinetic assay, data was collected similar to above and calculated using a nonlinear fit (rectangular hyperbola) of the data, yielding Vmax and Km values. Kinetic data were then analyzed using one-way ANOVA followed by Dunnett’s posthoc test to compare each of the treatment groups to the Km (µM) and Vmax (pmol of AMMC formed/mg protein/minute) values obtained from naïve rats. The significance level again was set at α=0.05. All data are expressed as the mean±standard error of the mean (SEM).

RESULTS AND DISCUSSION

Inhibition Studies Purified CYP2D6

To determine inhibition of CYP2D6 by quinidine and test compounds the IC50 values were calculated for each inhibition curve (Figure 2). Then, the mean log IC50 values for each were group were obtained and compared (Figure 3A and 4A). The IC50 values for each test compound were then compared to the

![Figure 2](https://example.com/figure2.png)

Figure 2: Inhibition of CYP2D6 Activity by OTC and Illicit Drugs. Purified Human CYP2D6 was Incubated in the Presence of the Non-Fluorescent 3-[2-(N, N-Diethyl-N-Methylamino) Ethyl]-7-Methoxy-4-Methylcoumarin (AMMC, 10 mM) which was then Demethylated to the Fluorescent Metabolite 3-[2-(N, N-Diethylamino) Ethyl]-7-Hydroxy-4-Methylcoumarin Hydrochloride (AHMC). Enzyme-Substrate Mixtures were incubated with 8 Concentrations of CMT, DEX, MA or MDMA (0.2 nM – 100 µM) for 10 min at 37°C. The Quantity of Fluorescent Product (AHMC) was then Measured with a Fluorescence Excitation/Emission Filter of 360 nm/460 nm. Data was Fit using Nonlinear Regression Analysis and both 1-site and 2-site Models were Compared. Curves were best Fit to the Simpler, 1-site Model and from this Analysis, the IC50 and Maximum Inhibition Values could be Determined (expressed in Figures 3 and 4). Each of the Data Points Represent 4 Assays (N=4) Performed in Duplicate, Except for the DEX Group which was an N=3. Data then Expressed as the Means±SEM.
quinidine IC$_{50}$ value (3.8 nM) which was used as the ‘control.’ Our values are similar to the values reported elsewhere and in the manufacturer literature (3-11 nM). Figure 2 represents the inhibition curve from each test compound (and quinidine) and the data are expressed as the mean±SEM of 4 assays performed in duplicate for each test compound except for the DEX and CMT+MA groups which are three assays performed in duplicate. Another indicator of effect at CYP2D6 was the measurement of the maximum inhibition elicited by each of the test compounds. The maximum inhibition (35-40%) of quinidine was set as 100% inhibition, and each group was then calculated as a percentage of the quinidine maximum (Figure 3B and 4B). When examining single compound, there was no effect on the log IC$_{50}$ values compared to quinidine ($H_{5,20}$=5.66; $p=0.2263$, Figure 3A). Comparing the maximum inhibition of the single test compounds to quinidine revealed a significant effect of treatment ($H_{5,20}=13.69$; $p=0.0084$, Figure 3B) with both the MA and MDMA groups exhibiting significantly less inhibition compared to the quinidine group ($p<0.05$). When examining the effects of multiple drug exposures, to determine if there may be synergistic, additive or potentiating effects, there was a generalized lowering of log IC$_{50}$ values ($H_{2,1}=14.42$; $p=0.0252$, Figure 4A). Comparison to quinidine values revealed that only the CMT+DEX+METH log IC$_{50}$ value was significantly ($p<0.05$) reduced compared to quinidine values. In the combination treatment groups, all groups exhibited significantly reduced inhibition compared to quinidine, yet there were no differences between any of the combination treatment groups (Figure 4B). Collectively these data suggest none of the drugs resulted in the inhibition of CYP2D6 to the same extent as quinidine, the prototype CYP2D6 inhibitor. Although, not potent inhibitors, each of the test compounds did elicit some level of inhibition of CYP2D6 activity. Each test compound (single or combination) displayed a lower affinity for CYP2D6 compared to quinidine (usually 10- to 100-fold lower IC$_{50}$ values compared to the 3-11nM IC$_{50}$ value reported for quinidine). In general, the in vitro assays suggest that each of the OTC and illicit drugs can inhibit CYP2D6 to a relatively small extent and that the weak

![Figure 3: Effects of Single Drug Exposure on CYP2D6 Activity.](image1)

![Figure 4: Effects of Combination Drug Exposure on CYP2D6 Activity.](image2)
inhibition observed does not exhibit any other characteristics in the combination groups such as synergism, potentiation or additivity.

Each of the drugs tested have reported action at CYP2D6 either as an inhibitor, an inducer, or a substrate. CMT has been reported to have inhibitory effects on CYP2D6 in both humans and rodents. DEX interacts with a greater number of P450 isozymes, with CYP2D6 being a major contributor to DEX metabolism by O-demethylation. It is clear that OTC drugs such as CMT and DEX can play a significant role in the development of drug-drug interactions leading to increased toxicity by interference with CYP2D6 metabolism. There is an extensive body of work regarding the metabolism of MA and MDMA. CYP2D6 is involved in multiple steps in the metabolism of both MA and MDMA. Earlier reports suggest that the parent compound for MA and its parent compound, amphetamine, act at CYP2D6 with low micromolar affinity. Our findings demonstrate that a potential interaction between OTC and illicit drugs does exist and that the interaction may lead to increased risk of toxicity. Overall, our findings show the calculated IC50 values for the test compounds were reduced by a 75-85% decrease compared to IC50 values associated with quinidine. The IC50 value for quinidine of 3.8 nM was consistent with the value reported by the manufacturer and other researchers. The efficacy of inhibition or maximum inhibition was lower than the inhibition that was observed with quinidine, suggesting that the test compound only weakly interacted with CYP2D6 compared to quinidine.

Studies using MA and MDMA employed a variety of different methodologies to measure kinetic parameters. Taavitsainen et al reported an IC50 value for MA of 414 μM, but this study used DEX as the substrate probe, not AMMC. De la Torre et al reported MDMA’s rate of activation is decreased when quinidine is added, suggesting MDMA is metabolized to CMT, DEX or a combination, the CYP2D2 enzyme in the rat develops to a lower affinity isoform. Comparing Vmax values revealed the more robust changes. Across all treatment groups, it appeared that the CYP2D2 activity had shifted to a higher capacity (280-490%). Vmax values were significantly different from naïve control values (p<0.05). The only group that was not statistically different from naïve was the combination of CMT+DEX. It is unclear as to whether these relatively small changes would result in significant changes in metabolism. Literature describing the actions of DEX on CYP2D6 are the most prevalent and use DEX as a probe to determine enzyme activity or phenotyping. Also DEX has been used to categorize the metabolizer-typing of the patient. Studies on DEX-mediated CYP2D6 inhibition report IC50 values for DEX of 1.89 μM to 2.0 μM dependent on drug concentration. Based on the DEX studies, it is clear that DEX exerts a robust effect at CYP2D6 and could be an important OTC drug when considering potential drug-drug interactions.

Inhibition Studies with rodent isozyme: CYP2D2

Rats were treated as described above for 7 days (day 1 to day 7) and then challenged on Day 8 with MA. Following challenge (7 hours), rats were sacrificed and hepatic lobes removed to determine the conversion of AMMC to AMHC. The Km (μM) and Vmax (pmol of AMHC/mg protein/minute) values are presented in Table 1. Comparison of Km values across treatments revealed a significant effect of treatment (F4,15 =4.067; p=0.0199). Although reductions in Km ranged from 65-121% compared to naïve values, the actual range was from 3-6.8 μM. The saline, CMT, and DEX groups were significantly different from naïve control values (p<0.05). The only group that was not statistically different from naïve was the combination of CMT+DEX. Dunnett’s posthoc analysis showed that the only group that was significantly different from naïve was the CMT group (p<0.05).

We further confirmed and extended the in vitro findings with in vitro studies utilizing adult male Sprague-Dawley rats. Rodent CYP2D2 activity following daily drug administration was measured using a modified assay based on the in vitro studies. Our in vivo results suggest that both Vmax and Km values were elevated in the treatment groups. Vmax values increased 280-490% and Km values increased 165-220% in treatment groups compared to Vmax and Km values from the control (naïve) group. Collectively, these results suggest that following treatment with CMT, DEX or a combination, the CYP2D2 enzyme in the rat shifts towards a low affinity/high capacity CYP2D2 isoform.

| Table 1: Mean Kₘ & Vmax Values for each Treatment Groups. |
Naive	Saline	CMT	DEX	CMT/DEX		
Kₘ (μM)	Mean±SEM	3.08±0.46	6.81±0.73	6.72±1.34	6.40±0.47	5.09±0.55
Vmax (pmol/mg protein/minute)	Mean±SEM	19.9±5.1	65.9±12.0	98.3±22.1	70.5±15.1	56.4±6.1

*p<0.05 compared to corresponding naïve values.
The rightward shift direction of the kinetic curves would lead to a slowing of metabolism over time, and as a result, increasing the concentration of other drugs/compounds which require CYP2D6 for their metabolism. All test compounds reduced the activity of CYP2D6, i.e., weak inhibition; therefore further studies are relevant.

In vivo studies showed that pre-treatment with CMT, DEX or CMT+DEX for 7 days followed by an MA challenge on day 8 resulted in CYP2D2 activity that exhibited a lower affinity and higher capacity. This data implies that MA may be an inducer via CYP2D2 if elevations in V_{max} represent an increase in the quantity of CYP2D2 protein. Conversely, V_{max} elevation may be due to changes in the catalytic activity of the existing enzymes. Dostalek et al suggest that MA may be an inducer of DEX metabolism via CYP2D2; therefore the co-administration of MA with DEX may result in decreased drug plasma levels thus a decrease in drug effects.12 Conversely, reports have shown that co-administration of DEX and MA reduces the reinforcing properties of MA, via inhibition of DA neurons in the brain.79 This effect could lead to increased MA administration to achieve the same “high,” which will bring plasma levels closer to toxicity. Similar results were reported by Glick et al and these findings also extended DEX and DXO effects to include reductions in both morphine and nicotine self-administration as well as MA.45 Studies on MDMA metabolism are more recent, but tend to support previous findings with other MA analogs. Although CYP2D6 is the major route of metabolism, other P450 isozymes contribute to the overall metabolism of MDMA.11,12,74,75 A recent study examined the potential drug-drug interactions between MDMA and caffeine.76 Although, the authors report that there are no drug-drug interactions which significantly alter MDMA metabolism, the authors acknowledge the importance of the investigation into drug-drug interactions. DEX effects can be extended to the central nervous system where reductions in self-administration and neuroprotection are believed to be through non-NMDA glutamate receptor-mediated functions.12,77,78 The K_{m} value in the control (naïve) group was consistent with the suggested K_{m} value reported by the manufacturer (BD Biosciences). This suggests that the results from both assays are relevant to each other and can be compared. Most studies that measure enzyme activity of CYP2D6 or CYP2D2 use DEX as the substrate,23 but this study uses the reduction of AMMC to AHMC to determine the enzyme activity. A few studies report the kinetic parameters for MA, CMT, and DEX, but most use different methods or in vitro instead of in vivo.20,61 Lin et al report V_{max} and K_{m} values for MA, but the values are for both isomers of MA and both types of reactions (4-hydroxylation and N-demethylation) whereas this study did not differentiate between the two isomers or the two types of reactions.86 Madeira et al report V_{max} and K_{m} values for CMT but the study is done in vitro instead of in vivo and with DEX as the probe.79

CONCLUSION

Poly-drug use is a growing concern due to the potential for drug-drug interactions and increased risk for severe drug-related toxicity. The current study addressed this question by using the combination of the two scheduled drugs, MA (C-II) and MDMA (C-I), and two common and inexpensive OTC drugs, CMT and DEX. CYP2D6 is an important area of research due to the large role it plays in metabolism, its genetic polymorphisms among humans, and its large number of substrates. There has been some concern regarding the impact of hepatic CYP2D6 interactions since there are other sites that are involved in the metabolism of drugs, such as the intestine, kidney, and brain. The clinically relevant drug, Selegiline, has been used in the treatment of Parkinson’s disease and is metabolized to MA by CYP2D6 and as such may be subject to genetic variations. Benetton et al. report that any P450 phenotyping variations would be insignificant for the metabolism of Selegiline to MA, and this was further extended to include the metabolism of MA and MDMA.86,79 Regardless, there are variations in CYP2D6 activity and not just in hepatic P450 systems. An understudied area is a role that P450 enzymes have in the brain in the metabolism of centrally-acting drugs.80,81 The pharmacogenetic impact on the metabolism of MDMA is more pronounced with allele-dependency dictating the rate and extent of metabolism.82 Although, the mechanisms are not clear, there still exists the change for drug-drug interactions leading to toxicity. Since MA and MDMA are popular and easily obtainable, drug-drug interactions are probable. This study determined that the inhibitor potency of all test compounds and quinidine were relatively the same. It was determined that some maximum test compounds inhibition decreased significantly compared to maximum quinidine and CMT/MDMA inhibition. This suggests that all the test compounds inhibited CYP2D6 activity; one or all of the drugs may not be metabolized as quickly resulting in toxicity of those drugs. The quinidine IC$_{50}$ value was consistent with reported values. This indicates that the CYP2D6 was performed in accordance with the manufacturer’s specifications. The V_{max} value in the CMT treated group increased significantly compared to naïve. The K_{m} values in the CMT and saline treated group increased significantly compared to naïve. Both kinetic parameters showed there was an increase after the MA challenge but no effects due to the OTC drugs. This suggests that the low affinity/high capacity CYP2D2 isofrom was upregulated meaning that more CYP2D2 was present, suggesting that MA is an inducer via CYP2D2. Understanding that MA can induce CYP2D2 and CYP2D6 is important considering the co-administration of other drugs such as DEX, CMT, or MDMA. This information is vital since many other drugs can be used recreationally to achieve a ‘high’ or to combine drugs to potentiate or prolong the high associated with an illicit drug. Increasing our understanding of these drug-drug relationships will aid in our interpretation of forensic toxicological findings as well as provide a better foundation for understanding toxicological relationships between various drugs.

CONFLICTS OF INTEREST

The authors declare that they have no conflict of interest involved with this manuscript.
REFERENCES

1. Badyal DK, Dadhich AP. Educational forum cytochrome P450 and drug interactions. Indian J Pharmacol. 2001; 33: 248-259.

2. Brown C. Overview of drug interactions modulated by cytochrome P450. US Pharm. 2001: HS26-HS45.

3. Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high sensitivity real time reverse transcription PCR. Yakugaku Zasshi. 2003; 123(5): 369-375. doi: 10.1248/yakushi.123.369

4. Drummer O, Odell M. Pharmacokinetics and duration of action. In: Bentlfiff G, McAllister L, eds. The Forensic Pharmacology of Drugs of Abuse. 1st ed. Abingdon, UK: Taylor & Francis; 2001: 27-29.

5. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013; 138(1): 103-141. doi: 10.1016/j.pharmthera.2012.12.007

6. Raunio H, Kuusisto M, Pentikäinen OT. Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes. Front Pharmacol. 2015; 6(123): 1-14. doi: 10.3389/fphar.2015.00123

7. Shen H, He MM, Liu H, et al. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos. 2007; 35(8): 1292-1300. doi: 10.1016/j.dmd.107.015354

8. Qu Q, Qu J, Han L, et al. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro. Nat Publ Gr. 2014; 35(10): 685-696. doi: 10.1038/apis.2013.202

9. Cupp M, Tracy T. Cytochrome P450: New nomenclature and clinical implications. Am Fam Physician. 1998; 57(1): 107-116.

10. Van LM, Heydari A, Yang J, et al. The impact of experimental design on assessing mechanism-based inactivation of CYP2D6 by MDMA (Ecstasy). J Psychopharmacol. 2006; 20(6): 834-841. doi: 10.1177/0269881106062902

11. Van LM, Hargreaves JA, Lennard MS, Tucker GT, Rostami-Hodjegan A. Inactivation of CYP2D6 by methylenedioxymethamphetamine in different recombinant expression systems. Eur J Pharm Sci. 2007; 32(1): 8-16. doi: 10.1016/j.ejps.2007.05.002

12. Van LM, Swales J, Hammond C, Wilson C, Hargreaves JA, Rostami-Hodjegan A. Kinetics of the time-dependent inactivation of CYP2D6 in cryopreserved human hepatocytes by methylenedioxymethamphetamine (MDMA). Eur J Pharm Sci. 2007; 31(1): 53-61. doi: 10.1016/j.ejps.2007.02.005

13. Brown C. Overview of Drug–Drug Interactions with SSRIs. US Pharm. 2008: HS3-HS19.

14. Cupp MJ, Tracy TS. Cytochrome P450: New nomenclature and clinical implications. Am Fam Physician. 1998; 57(1): 107-116.

15. Martinez C, Albet C, Agundez JA, et al. Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin Pharmacol Ther. 1999; 65(4): 369-376. doi: 10.1016/S0009-9236(99)70129-3

16. Clemens KJ, Cornish JL, Li KM, Hunt GE, McGregor IS. MDMA (‘Ecstasy’) and methamphetamine combined: Order of administration influences hyperthermic and long-term adverse effects in female rats. Neuropharmacology. 2005; 49(2005): 195-207. doi: 10.1016/j.neuropharm.2005.03.002

17. Maréchal J-D, Kemp C, Roberts G, Paine M, Wolf C, Sutcliffe M. Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions. Br J Pharmacol. 2008; 153: 82-89. doi: 10.1038/sj.bjp.0707570

18. Drummer O, Odell M. Stimulants. In: Bentlfiff G, McAllister L, eds. The Forensic Pharmacology of Drugs of Abuse. 1st ed. Abingdon, UK: Taylor & Francis; 2001: 49-102.

19. Levine B. Principles of Forensic Toxicology. 4th ed. Washington, DC, USA: AACCP Press; 2013.

20. Logan B. Methamphetamine-effects on human performance and behavior. Forensic Sci Rev. 2002; 14(1-2): 133-151.

21. Shoblock JR, Sullivan EB, Maisonneuve IM, Glick SD. Neurochemical and behavioral differences between D-methamphetamine and D-amphetamine in rats. Psychopharmacology (Berl). 2003; 165: 359-369. doi: 10.1007/s00213-002-1288-7

22. Logan B, Couper F. 3,4-Methylenedioxymethamphetamine — effects on human performance and behavior. Forensic Sci Rev. 2003; 15(1): 11-28.

23. Oesterheld JR, Armstrong SC, Cozza KL. Med-Psych Drug-Drug Interactions Update Ecstasy: Pharmacodynamic and Pharmacokinetic Interactions. Psychosomatics. 2004; 45(1): 84-87. doi: 10.1176/appi.psy.45.1.84

24. Casco C, Forcella MC, Beretta G, Grieco A, Campana G. Long-term effects of MDMA (Ecstasy) on the human central nervous system revealed by visual evoked potentials. Addict Biol. 2005; 10(2): 187-195. doi: 10.1080/13556210500123340

25. Escobedo I, O’Shea E, Orio L, et al. A comparative study on the acute and long-term effects of MDMA and 3,4-dihydroxy-
methamphetamine (HHMA) on brain monoamine levels after i.p. or striatal administration in mice. *Br J Pharmacol.* 2009; 144(2): 231-241. doi: 10.1038/sj.bjp.0706071

26. De Letter EA, Belpaire FM, Clauwaert KM, Lambert WE, Van Boeckel JF, Piette MH. Post-mortem redistribution of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) in the rabbit. Part II: Post-mortem infusion in trachea or stomach. *Int J Legal Med.* 2002; 116(4): 225-232. doi: 10.1007/s00414-002-0293-z

27. Jantratid E, Prakongpan S, Dressman J, et al. Biowaiver monographs for immediate solid oral dosage forms: Cimetidine. *J Pharm Sci.* 2006; 95(5): 974-984. doi: 10.1002/jps.20614

28. Liska DJ. The detoxification enzyme systems. *Alter Med Rev.* 1998; 3(3): 187-198.

29. Madeira M, Levine M, Chang TKH, Mirfazaelian A, Bellward GD. The effect of cimetidine on dextromethorphan O-demethylase activity of human liver microsomes and recombinant CYP2D6. *Drug Metab Dispos.* 2004; 32(4): 460-467. doi: 10.1124/dmd.32.4.460

30. Park E, Cho H, Lee Y. Effect of Cimetidine and Phenobarbital on metabolite kinetics of Omeprazole in rats. *Arch Pharm Res.* 2005; 28(10): 1196-1202.

31. Draper AJ, Madan A, Parkinson A. Inhibition of coumarin 7-hydroxylase activity in human liver microsomes. *Arch Biochem Biophys.* 1997; 341(1): 47-61. doi: 10.1006/abbi.1997.9964

32. Suzuki T, Chiang H-JF, Misawa M. Effects of quinidine and cimetidine on the methamphetamine level in the rat brain. 32. Suzuki T, Chiang H-JF, Misawa M. Effects of quinidine and cimetidine on the methamphetamine level in the rat brain. *Jpn J Pharmacol.* 1987; 43: 103-106. doi: 10.1254/jjp.43.103

33. Levine M, Bellward GD. Effect of cimetidine on hepatic cytochrome P450: Evidence for formation of a metabolite-intermediate complex. *Drug Metab Dispos.* 1995; 23(12): 1407-1411.

34. Larsson R, Erlandson P, Bodenar G, Norlander B, Fransson L, Strouth L. Pharmacokinetics of cimetidine and its sulphoxide metabolite during haemodialysis. *Eur J Clin Pharmacol.* 1982; 21(4): 325-330. doi: 10.1007/BF00637621

35. Ogbru O. Cimetidine, Tagamet HB. http://www.medicinenet.com/cimetidine/article.html. Accessed June 30, 2017.

36. Manap RA, Wright CE, Gregory A, et al. The antitussive effect of dextromethorphan in relation to CYP2D6 activity. *Br J Clin Pharmacol.* 1999; 48: 382-387. doi: 10.1046/j.1365-2125.1999.00029.x

37. CESAR. Dextromethorphan (DXM). http://www.cesar.umd.edu/cesar/drugs/dxm.asp. Accessed June 30, 2017.

38. Nicholson K, Hayes B, Balster R. Evaluation of the reinforcing properties and phencyclidine-like discriminative stimulus effects of dextromethorphan and dextrophan in rats and rhesus monkeys. *Psychopharmacology (Berl).* 1999; 146(1): 49-59.

39. Ehret GB, Daali Y, Chabert J, et al. Influence of CYP2D6 activity on pre-emptive analgesia by the N-Methyl-D-Aspartate antagonist dextromethorphan in a randomized controlled trial of acute pain. *Pain Physician.* 2013; 16: 45-56.

40. Lotrich F, Rosen J, Pollock B. Dextromethorphan-induced delirium and possible methadone interaction. *Am J Geriatr Pharmacother.* 2005; 3(1): 17-20.

41. Frank D, Jaehde U, Fuhr U. Evaluation of probe drugs and pharmacokinetic metrics for CYP2D6 phenotyping. *Eur J Clin Pharmacol.* 2007; 63(4): 321-333. doi: 10.1007/s00228-006-0250-8

42. Glick SD, Maisonneuve IM, Dickinson HA, Kitchen BA. Comparative effects of dextromethorphan and dextrorphan on morphine, methamphetamine, and nicotine self-administration in rats. *Eur J Pharmacol.* 2001; 422(1-3): 87-90. doi: 10.1016/S0014-2999(01)01066-4

43. Withow LE, Houston JB. Sigmoidal kinetics of CYP3A substrates: An approach for scaling dextromethorphan metabolism in hepatic microsomes and isolated hepatocytes to predict in vivo clearance in rat. *J Pharmacol Exp Ther.* 1999; 290(1): 58-65.

44. Min DJ, Ku Y-M, Vichiendilokkul A, Fleckenstein LL. A urine metabolic ratio of dextromethorphan and 3-methoxymorphinan as a probe for CYP3A activity and prediction of cyclosporine clearance in healthy volunteers. *Pharmacotherapy.* 1999; 19(6): 753-759. doi: 10.1592/phco.19.9.753.31536

45. Kerry NL, Somogyit AA, Bochner F, Mikus G, Somogyi AAA. The role of CYP2D6 in primary and secondary oxidative metabolism of dextromethorphan: In vitro studies using human liver microsomes. *Br J clin Pharmac.* 1994; 38(3): 243-248. doi: 10.1111/j.1365-2125.1994.tb04348.x

46. Magarey J. Dextromethorphan. INCHEM. http://www.inchem.org/documents/pims/pharm/pim179.htm. Published 1996. Accessed June 30, 2017.

47. Couper FJ, Logan BK. *Drugs and Human Performance Fact Sheets – Methamphetamine and Amphetamines.* 2014. https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/809725-drugshumanperformfs.pdf. Accessed August 1, 2017.
48. Chauret N, Dobbs B, Lackman RL, et al. The use of 3- [2- (N, N-Diethyl-N-Methylammonium) Ethyl] -7-Methoxy-4- methylo coumarin (AMMC) as a specific Cyp2D6 probe in Human liver microsomes. Drug Metab Dispos. 2001; 29(9): 1196-1200.

49. Riley RJ, Grime K. Metabolic screening in vitro: Metabolic stability, CYP inhibition and induction. Drug Discov Today Technol. 2004; 1(4): 365-372. doi: 10.1016/j.ddt.2004.10.008

50. Crespi CL, Miller VP, Penman BW. Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal Biochem. 1997; 248(57): 188-190. doi: 10.1006/abio.1997.2145

51. Palamanda JR, Favreau L, Lin C, Nomeir AA. Validation of a rapid microtiter plate assay to conduct cytochrome P450 2D6 enzyme inhibition studies. Drug Discov Today. 1998; 3(10): 466-470. doi: 10.1016/S1359-6446(98)01248-3

52. Turpeinen M, Korhonen LE, Tolonen A, et al. Cytochrome P450 (CYP) inhibition screening: Comparison of three tests. Eur J Pharm Sci. 2006; 29(2): 130-138. doi: 10.1016/j.ejps.2006.06.005

53. Nelson AC, Huang W, Moody DE. Variables in human liver microsomal preparation: Impact on the kinetics of L-acetylmethadol (LAAM) N-demethylation and dextromethorphan O-de-methylation. Drug Metab Dispos. 2001; 29(3): 319-325.

54. Florence VM, Di Stefano EW, Sum CY, Cho AK. The metabolism of (R)-(+-)-amphetamine by rabbit liver microsomes. Drug Metab Dispos. 1982; 10(4): 312-315.

55. Bradford MM. A Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-254.

56. Stresser DM, Turner SD, Blanchard AP, Miller VP, Crespi CL. Cytochrome P450 fluorometric substrates: Identification of isoform-selective probes for rat CYP2D2 and human CYP3A4. Drug Metab Dispos. 2002; 30(7): 845-852. doi: 10.1124/dmd.30.7.845

57. Pelkonen O, Puurunen J. Effect of cimetidine on microsomal drug metabolism in man. Biochem Pharmacol. 1980; 29(22): 3075-3080. doi: 10.1016/0006-2952(80)90448-7

58. Levine M, Law EY, Bandiera SM, Chang TK, Bellward GD. In vitro cimetidine inhibits hepatic CYP2C6 and CYP2C11 but not CYP1A1 in adult male rats. J Pharmacol Exp Ther. 1998; 284(2): 493-499.

59. Klotz U, Reimann IW. Drug Interactions through binding to cytochrome P450: The experience with H2-receptor blocking agents. Pharm Res. 1984; 1(2): 59-62. doi: 10.1023/A:101634729923

60. Schmider J, Greenblatt DJ, Fogelman SM, Von Moltke LL, Shader RI. Metabolism of dextromethorphan in vitro: Involvement of cytochromes P450 2D6 and 3A3/4, with a possible role of 2E1. Biopharm Drug Dispos. 1997; 18(3): 227-240. doi: 10.1002/(SICI)1099-081X(199704)

61. Lin LY, Di Stefano EW, Schmitz DA, et al. Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6. Drug Metab Dispos. 1997; 25(9): 1059-1064.

62. Wu D, Victoria Otton S, Inaba T, Kalow W, Sellers EM. Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol. 1997; 53(11): 1605-1612. doi: 10.1016/S0006-2952(97)00014-2

63. Sorkin E, Darvey D. Review of cimetidine drug interactions. Drug Intell Clin Pharm. 1983; 17(2): 110-120.

64. Taavitsainen P, Kiukaanniemi K, Pelkonen O. In vitro inhibition screening of human hepatic P450 enzymes by five angiotensin-II receptor antagonists. Eur J Clin Pharmacol. 2000; 56(2): 135-140. doi: 10.1007/s002280050731

65. Yamamoto T, Suzuki A, Kohno Y. Application of microtiter plate assay to evaluate inhibitory ESEs of various compounds on nine cytochrome P450 isoforms and to estimate their inhibition patterns. Drug Metab Pharmacokinet. 2002; 17(5): 437-448. doi: 10.2133/dmpk.17.437

66. de la Torre R, Yubero-Lahoz S, Pardo-Lozano R, Farré M, MDMA, methamphetamine, and CYP2D6 pharmacogenetics: What is clinically relevant? Front Genet. 2012; 3(NAV): 1-8. doi: 10.3389/fgene.2012.00235

67. Orihishi M, Matsu Y, Nishioka M, Ichikawa Y. In vivo administration of H2 blockers, cimetidine and ranitidine, reduced the contents of the cytochrome P450IID (CYP2D2) subfamily and their activities in rat liver microsomes. Int J Biochem. 1994; 26(6): 751-758. doi: 10.1016/0020-711X(94)90104-X

68. Martinez C, Albet C, Agundez JA, et al. The genetic polymorphisms of drug-metabolizing enzymes are a common determinant of interindividual differences in the therapeutic effect and toxicity of many drugs. Clin Pharmacol Ther. 1999; 65(4): 369-376. doi: 10.1016/S0006-2952(99)70129-3

69. Rendić S. Drug interactions of H2-receptor antagonists involving cytochrome P450 (CYPs) enzymes: From the laboratory to the clinic. Croat Med J. 1999; 40(3): 357-367.

70. Ruffalo R, Thompson J, Segal J. Diazepam-cimetidine drug interaction: A clinically significant effect. South Med J. 1981; 74(9): 1075-1078.
71. Dostalek M, Jurica J, Pistovcakova J, et al. Effect of methamphetamine on cytochrome P450 activity. *Xenobiotica*. 2007; 37(12): 1355-1366. doi: 10.1080/00498250701652877

72. Dostalek M, Hadasova E, Hanesova M, et al. Effect of methamphetamine on the pharmacokinetics of dextromethorphan and midazolam in rats. *Eur J Drug Metab Pharmacokinet*. 2005; 30(3): 195-201. doi: 10.1007/BF03190620

73. Yang PP, Huang EYK, Yeh GC, Tao PL. Co-administration of dextromethorphan with methamphetamine attenuates methamphetamine-induced rewarding and behavioral sensitization. *J Biomed Sci*. 2006; 13(5): 695-702. doi: 10.1007/s11373-006-9096-4

74. Kreth KP, Kovar KA, Schwab M, Zanger UM. Identification of the human cytochromes P450 involved in the oxidative Metabolism of “Ecstasy” - related designer drugs. *Biochem Pharmacol*. 2000; 59: 1563-1571. doi: 10.1016/S0006-2952(00)00284-7

75. Meyer MR, Peters FT, Maurer HH. The role of human Hepatic cytochrome P450 isozymes in the metabolism of racemic 3, 4-methylenedioxoy- methamphetamines and its enantiomers. *Pharmacology*. 2008; 36(11): 2345-2354. doi: 10.1124/dmd.108.021543

76. Downey C, Daly F, O’Boyle KM. An in vitro approach to assessing a potential drug interaction between MDMA (ecstasy) and caffeine. *Toxicol In Vitro*. 2014; 28(2): 231-239. doi: 10.1016/j.tiv.2013.10.021

77. Shin EJ, Nah SY, Kim WK, et al. The dextromethorphan analog dimemorfan attenuates kainate-induced seizures via signal receptor activation: comparison with the effects of dextromethorphan. *Br J Pharmacol*. 2005; 144(7): 908-918. doi: 10.1038/sbjj.bjp.0705998

78. Shin EJ, Nah SY, Chae JS, et al. Dextromethorphan attenuates trimethyltin-induced neurotoxicity via σ1 receptor activation in rats. *Neurochem Int*. 2007; 50(6): 791-799. doi: 10.1016/j.neuint.2007.01.008

79. Benetton SA, Fang C, Yang Y-O, et al. P450 Phenotyping of the metabolism of selegiline to desmethylselegiline and methamphetamine. *Drug Metab Pharmacokinet*. 2007; 22(2): 78-87. doi: 10.2133/dmpk.22.78

80. Cheng J, Zhen Y, Miksys S, et al. Potential role of CYP2D6 in the central nervous system. *Xenobiotica*. 2013; 43(11): 973-984. doi: 10.3109/00498254.2013.791410

81. Haduch A, Bromek E, Daniel WA. Role of brain cytochrome P450 (CYP2D) in the metabolism of monoaminergic neurotransmitters. *Pharmacol Rep*. 2013; 65(6): 1519-1528.

82. Ramamoorthy Y, Yu A, Suh N, Haining RL, Tyndale RF, Sellers EM. Reduced (+)-3,4-methylenedioxymethamphetamine (“Ecstasy”) metabolism with cytochrome P450 2D6 inhibitors and pharmacogenetic variants in vitro. *Biochem Pharmacol*. 2002; 63(12): 2111-2119. doi: 10.1016/S0006-2952(02)01028-6