SUMMARY

The foraging strategy of 98 ant species is examined in relation to their colony size. Six foraging strategies are distinguished, namely individual, tandem, group/mass, and mass recruitment, trunk trail, and army ant type, and are seen to be associated with increasing colony size. This supports the hypothesis that the larger the colony, the more the individual worker is integrated into a network of chemical communication. Two extreme organisational blueprints are proposed. The first consists of small societies which rely on the capacity for learning of its members to exploit the foraging area efficiently. The second relies on the complex collective patterns that spontaneously emerge from chemically mediated recruitment processes interacting with the environment.
INTRODUCTION

Some 12,000 ant species are known by now, with colony sizes ranging from a few individuals to 20,000,000 individuals. What constraints does this vast range of colony sizes place on the systems of organisation that they use? Alternatively, how does this range of colony sizes reflect the different systems of organisation used? We shall examine these questions in relation to ant foraging strategy, which as well as being the most visible aspect of their activity illustrates most clearly the roles and limits of communication in their collective behavior.

This paper aims to verify a prediction of the following hypothesis (Pasteels et al. 1985; Deneubourg et al. 1986). In theory, the organization of a small insect society can rely on most individuals at any moment "knowing", principally by learning, what it must do, where it must go, etc., and the workers' behavior has a strong determinist component. In a large insect society organization by individual learning is harder to achieve (Deneubourg et al. 1987). The workers' behavior is necessarily more random and their coordination becomes a major problem. To cope with this, a completely different organisational system is added to that already in place. This supplementary system is based on the complex collective structures, patterns and decisions that spontaneously emerge from simple autocatalytic interactions between numerous individuals and with the environment, mediated by essentially chemical communication (see, e.g., Pasteels et al. 1987; Goss and Deneubourg in press; Beckers et al subm.; Deneubourg et al. in press a and b; Goss et al. subm.)

The prediction that follows from this hypothesis is that the larger the colony size, the less foraging is individually based and the more the individual foragers are coordinated by mass chemical communication.

We shall use the following categories of foraging strategy that, as shall be discussed below, represent a crescendo of the integration of the individual forager into a network of communication: individual, recruitment, trunk trail and group hunting, their definitions being inspired by the work of different authors (e.g. Rosengren 1971; Wilson 1971; Leuthold 1975; Oster & Wilson 1978; Maschwitz 1975; Moffet 1988; Traniello in press).

By individual foraging we mean foraging without systematic cooperation or communication in the discovery, capture or transport of prey items. Each forager leaves the nest, searches for food and transports it individually (e.g. Cataglyphis bicolor, Pachycondyla apicalis).

By foraging with recruitment, we mean that a scout having discovered a food item returns to the nest and transmits the information concerning its location
to inactive foragers waiting in the nest. These recruits can become recruiters in their turn. It should be noted that recruiting species rely to a large extent on individual foraging for the discovery and exploitation of small sources.

Roughly speaking, three recruitment types can be distinguished. With tandem recruitment, the scout guides one recruit to the food item, with or without trail laying (e.g. *Leptothorax* sp.). With mass recruitment, a trail laid by the recruiter while returning to the nest guides recruits to the food (e.g. *Solenopsis invicta, Monomorium pharaonis*). Invitation by the recruiter in the nest is often active. With group recruitment, the scout guides a group of nestmates, in some cases (if not all) laying a pheromone trail to the nest (e.g. *Tetramorium caespitum, Camponotus socius*). However, as every species that we know uses group recruitment also uses a more or less efficient mass recruitment, we shall refer to group/mass recruitment. Note that some authors distinguish a fourth recruitment system, group raiding (type IV - Oster and Wilson 1978), which is characterised by a very strong invitation and recruitment trail that results in a large group of recruits leaving the nest together in a rush. We have included this system in group/mass recruitment.

With trunk trails, semi-permanent trails guide foragers to long-lasting food sources (e.g. many *Formica* sp.), and also serve as starting-off points for individual foragers, which may also recruit to the trunk-trails. Finally, group hunting foragers (sensu Moffet 1988, including army ants) leave the nest and forage collectively in a swarm along a well-defined trail system that is constructed as the swarm progresses (e.g. *Dorylinae* sp.).

These descriptions are by no means meant to be definitive, and there are of course species whose foraging does not fall neatly into one or indeed any of these categories. Nevertheless, as shall be discussed below, they represent a crescendo of the integration of the individual forager into a network of communication. Other recruitment systems are known to exist (such as short-distance recruitment or non-directional recruitment), but for lack of data have been omitted. Similarly, the colony sizes given are average figures, obtained by different techniques, and generally with rather small sample sizes. Polycalic societies pose a special problem. For these reasons, the values quoted must be considered only as first-order approximations.

RESULTS AND DISCUSSION

Table I presents the colony size and foraging system of 98 different species. Fig. 1 presents the foraging system as a function of the colony size.
Although the data base is small compared to the number of known ant species, a distinct trend is clear (note the logarithmic scale). The smaller societies rely on individual foragers that do not transmit their discoveries. The largest societies rely on permanent chemical communication between the individuals. Between these two limits, one finds the different types of recruitment. Again, the smaller recruiting societies rely on a slow, individual recruitment, where a recruiter interacts directly with one or a few individuals. The larger recruiting societies rely on the faster mass recruitment, where one recruiter can interact via a chemical trail with a large number of potential recruits. The trail transmits both the position of the source and that of the nest to the recruits. Note that we have listed the species in Table I by alphabetical order for facility, and that the same tendency appears in each sub-family.

Taking these results into consideration we propose two extreme blueprints for the way in which ants organise their foraging.

The first blueprint consists of small societies which rely on the capacity for learning of its members to exploit the foraging area efficiently. Individual foragers, for example, develop fidelity to parts of their foraging area and can orient themselves over large distances (Fresneau 1985; Wehner et al. 1983). They do not interact directly with each other, nor do they communicate their food discoveries, yet they are capable of dividing the foraging area amongst themselves (Deneubourg et al. 1987). The society may be considered to have placed its complexity at the level of the individual.

The second blueprint consists of large societies whose individual behavior may be considered as simple. They rely on a highly developed network of chemical communication based on permanent trail-laying behavior to coordinate the foragers' activity and to aid their orientation. Their capacity for individual orientation is limited not only because it is not so needed as the trails are there, but also because too much individuality could prevent collective foraging from functioning efficiently. It is surely no coincidence that the largest and most chemically integrated societies, i.e. the different army ants and termites, are practically blind. The colony size is large, not simply to ensure that their "inefficient" workers manage to perform the necessary tasks by sheer weight of numbers (Oster and Wilson 1978; Herbers 1981), but because they need a large reserve of individuals for the amplifying mechanisms (e.g. recruitment) by which they structure their foraging to work (e.g. Pasteels et al. 1987). The society may be said to have placed its complexity more at the level of the interactions between individuals.
Between these two extremes, we find intermediate sized societies which rely on individual scouts to forage small food items and on recruitment to amplify the information relating to important food sources. The sequence tandem/group-mass/mass is characterised by an increasing number of individuals that react to the recruiters' signals, and is associated with an increasing colony size. In mass recruiting species there is a tendency in the largest societies to lay trail pheromone not only when returning with food but also when leaving the nest and more or less continually in the foraging area (e.g. *Pheidole militicida* - Hölldobler and Möglich 1980; *Iridomyrmex humilis* - Van Vorhis Key and Baker 1986; Aron et al. in press).

There is of course a large degree of overlapping between the different categories in fig. 1. This is to be expected whenever one tries to categorize nature, but is also the result of imprecision in our knowledge of colony size, which is anyway highly variable for a given species. Furthermore, others factors such as the size, distribution and type of food exploited intervene, and ant foraging strategy and food type are obviously connected (e.g. Carrol and Janzen 1973; Traniello in press).

Other less precise data confirm the tendency seen in fig. 1. For example we know that *Crematogaster ashmeadi* colonies are very large and that they use mass recruitment (Leuthold 1968a, b), whereas *Bothroponera tesserinoda* colonies are small and use tandem recruitment foraging.

The same overall tendency as shown here for ant species, also noted by Buschinger (1980) for dulotic ants, is well known in the Apidae. Species with small colonies, such as bumblebees, use an individual foraging strategy. Those with large colonies, such as honeybees, melipones and trigones, use recruitment (Lindauer and Kerr 1958; Seeley 1985). The tendency is also observed in terns (Erwin 1978).

We would like to end this paper with an appeal to readers to help us increase the size of our data base. We would welcome any information about colony size and foraging system, whether for species already in Table I or for any other ant species.

Acknowledgement: Drs. G. Delye, D. Fresneau, K. Jaffe, L. Keller, J.P. Lachaud, L. Plateau and J.-P. Suzzoni kindly sent us unpublished information. This work is supported in part by the Belgian program on interuniversity attraction poles and Les Instituts Internationaux de Physique et de Chimie.
REFERENCES (TEXT)

ARON, S., J.M. PASTEELS AND J.L. DENEUBOURG

In press. Spatial organisation in the Argentine ant, *Iridomyrmex humilis* (Mayr). Biol. Behav.

BECKERS, R., J.L. DENEUBOURG, S. GOSS, AND J.M. PASTEELS

Subm. Collective decision making through food recruitment.

BUSCHINGER, A., W. EHRHARDT, AND U. WINTER

1980. The organization of slave raids in dulotic ants - a comparative study (Hymenoptera; Formicidae). Z. Tierpsychol., 53: 245-264.

CARROL, C., AND D.H. JANZEN

1973. Ecology of foraging by ants. Annu. Rev. Ecol. Syst., 4: 231-257.

DENEUBOURG, J.L., S. ARON, S. GOSS, J.M. PASTEELS, AND G. DUERINCK

1986. Random behaviour, amplification process and number of participants. How they contribute to the foraging properties of ants. Evolution, Games and Learning (D. Farmer, A. Lapedes, N. Packard and B. Wendroff, eds.), 176-186, Physica D 22.

DENEUBOURG, J.L., S. GOSS, J.M. PASTEELS, D. FRESNEAU AND J.-P. LACHAUD

1987. Self-organization mechanisms in ant societies (II): Learning in foraging and division of labor. From Individual To Collective Behaviour In Social Insects (J.M. Pasteels and J.L. Deneubourg, eds.), 177-196, Birkhäuser, Basel.

DENEUBOURG, J.L., S. ARON, S. GOSS, AND J.M. PASTEELS

In press a. The self-organizing exploratory pattern of the Argentine ant *Iridomyrmex humilis*. J. Ins. Behav.

DENEUBOURG, J.L., S. GOSS, N. FRANKS AND J.M. PASTEELS

In press b. The blind leading the blind: chemical mediated morphogenesis and army ant raiding patterns. J. Ins Behav.

ERWIN, M.

1978. Coloniality in terns: the role of social feeding. Condor 80: 211-215.
Fresneau, D.
1985. Individual foraging and path fidelity in a Ponerine ant. Ins. Soc. 32: 109-116.

Goss, S. and J.L. Deneubourg
In press. The self-organisation clock pattern of Messor pergandei (Formicidae, Myrmicinae). Soc. Ins.

Goss, S., S. Aron, J.L. Deneubourg and J.M. Pasteels
subm. Self-organised short-cuts in the Argentine ant. Experientia.

Herbers, J.M.
1981. Reliability theory and foraging by ants. J. Theor. Biol 89: 175-189.

Hölldobler, B. and M. Mötlich.
1980. The foraging system of Pheidole militicida (Hymenoptera: Formicidae). Ins. Soc. 27: 399-415.

Leuthold, R.H.
1968. A tibial gland scent-trail and trail-laying behavior in the ant Crematogaster ashmeadi. Psyche 75: 233-248.

Leuthold, R.H.
1968. Recruitment to food in the ant Crematogaster ashmeadi. Psyche 75: 334-350.

Leuthold, R.H.
1975. Orientation mediated by pheromones in social insects. Proc. Symp. IUSSI. Pheromones and defensive secretions in social insects (P. Noirot, P. Howse and G. Le Masne, eds.), 197-211, Université de Dijon.

Lindauer, M. and W.E. Kerr
1958. Die gegenseitige Verständigung bei den stachellosen Bienen. Z. vergl. Physiol. 41: 405-434.
MASCHWITZ, U.
1975. Old and new trends in the investigation of chemical recruitment in ants. Proc. Symp. IUSSI. Pheromones and defensive secretions in social insects (P. Noirot, P. Howse and G. Le Masne, eds.), 47-59, Université de Dijon.

MOFFET, M.W.
1988. Foraging dynamics in the group-hunting myrmicine ant, *Pheidologeton diversus*. J. Ins. Behav. 1: 309-331.

OSTER, G.F., AND E.O. WILSON
1978. Caste and Ecology in the Social Insects. Princeton University Press, Princeton.

PASTEELS, J.M., J.L. DENEUBOURG AND S. GOSS
1985. Transmission and amplification of information in a changing environment: the case of insect societies. Laws of Nature and Human Conduct (I. Prigogine and M. Sanglier, eds.), 129-156, G.O.R.D.E.S., Brussels.

PASTEELS, J.M., J.L. DENEUBOURG AND S. GOSS
1987. Self-organization mechanisms in ant societies (I): Trail recruitment to newly discovered food sources. From Individual To Collective Behaviour In Social Insects (J.M. Pasteels and J.L. Deneubourg, eds.), 155-176, Birkhäuser, Basel.

ROSENGREN, R.
1971. Route fidelity, visual memory and recruitment behaviour in foraging wood ants of the genus *Formica* (Hym., Formicidae). Act. Zool. Fenn. 133: 1-106.

SEELEY, T.D.
1985. Honeybee Ecology. Princeton University Press, Princeton.

TRANIELLO, J.R.
In press. Foraging strategies in ants. Ann. Rev. Entomol.
VAN VORHIS KEY, S.E., AND T.C. BAKER
1986. Observations on the trail deposition and recruitment behaviors of the Argentine ant, *Iridomyrmex humilis* (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 79: 283-288.

WEHNER, R., R.D. HARKNESS AND P. SCHMID-HEMPEL
1983. Foraging strategies in individually searching ants *Cataglyphis bicolor*. Gustav Fischer Verlag, Stuttgart.

WILSON E.O.
1971. The Insect Societies. Harvard University Press, Cambridge (Mass.).
Fig. 1. Foraging strategy as a function of colony size for 100 ant species (see Table 1). The small vertical bars mark the 25, 50 (median) and 75 percentiles.
Table I. Average colony size and foraging strategy of 98 ant species. The subfamilies (in brackets) are: 1=Aneuretinae, 2=Cerapachyinae, 3=Dolichoderinae, 4=Dorylinae, 5=Formicinae, 6=Leptanillinae, 7=Myrmeciinae, 8=Myrmicinae, 9=Ponerinae, 10=Pseudomyrmecinae. The foraging types are: I= Individual, TR= Tandem recruitment, GM=Group/Mass recruitment, MR= Mass recruitment, TT= Trunk trail, CH= Group hunting.

Species (subfamily)	Nest Size	Type	References
Acromyrmex landolti (8)	1,000	MR	Jaffe pers. comm.
octospinosus	50,000	MR	Blum et al 1964; Jaffe pers. comm.
Aenictus laeviceps (4)	85,000	GH	Schneirla 1965
Amblyopone pallipes (9)	15	I	Traniello 1978; Lachaud pers. comm.
Aneuretis simoni (1)	40	MR	Traniello and Jayasuriya 1981; Jayasuria and
			Traniello 1985
Anomma nigricans (4)	1,036,800	GH	Vosseler 1905
wilverthi	20,000,000	GH	Raignier and van Boven 1955
Atta cephalotes (8)	500,000	MR	Jaffe and Howse 1979; Jaffe pers. comm.
sexdens	5,000,000	MR	Riley et al. 1974; Jaffe pers. comm.
texana	10,000,000	MR	Moser and Blum 1963; Riley et al. 1974; Jaffe
			pers. comm.
Azteca foreli (3)	50,000	MR	Jaffe pers. comm.;
Camponotus aethiops (5)	2,500	I	Suzzoni pers. comm.
pennsylvanicus	2,200	MR	Pricer 1908; Traniello 1977
sericeus	250	TR	Hölldobler et al. 1974
truncatus	50	I	Suzzoni pers. comm.
Species	Abundance	Class	Reference
----------------------------	-----------	-------	---
Cataglyphis bicolor	2,000	I	Wehner et al. 1983
cursor	1,000	I	Cagniant 1983; Lenoir pers. comm.
Conomyrma bicornis	5,000	MR	Jaffe pers. comm.
Crematogaster sumicrasti	1,000	MR	Jaffe pers. comm.
Cyphomyrnx rimosus	100	I	Blum et al. 1964; Jaffe pers. comm.
Daceton armigerum	10,000	I	Blum and Portocarrero 1965; Jaffe pers. comm.
Diacamma rugosum	100	I	Fukumoto and Abe 1983
Dinoponera australis	30	I	Fowler 1985
quadriiceps	60	I	Dantas de Araujo pers. comm.
Eciton burchelli	425,000	GH	Schneirla 1957
hamatum	300,000	GH	Schneirla 1957; Rettenmeyer 1963
rapax	275,000	GH	Sudd and Franks 1987
Ectatomma ruidum	125	I	Lachaud et al. 1984
Erebonymyrna nevermanni	180	TT	Wilson 1986
Formica aquilonia	400,000	TT	Zakharov 1978
bruni	1,400	MR	Cherix and Maddalena-Feller 1987
cunicularia	1,100	I	Deffernez pers. comm.
fusca	500	MR	Wallis 1964; Möglich and Hölldobler 1975
lugubris	40,000	TT	Rosengren 1971; Breen 1979
polycrerna	450,000	TT	Rosengren 1971; Kruk-de-Bruin et al. 1977;
prattensis	60,000	TT	Horstmann 1982
rufa	4,000,000	TT	Rosengren 1971; Jensen 1977
yessensis	51,000	TT	Gösswald 1951; Rosengren 1971
Iridomyrnx humilis	150,000	MR	Ito 1973; Cherix 1987
Labidus pradator	1,000,000	GH	Rettenmeyer 1963
Species	Population	Reference	
---------------------------------	------------	---	
Lasius fuliginosus (5)	2,500,000	Hainaut-Riche et al. 1980; Quinet et Pasteels 1987.	
niger	5,500	Stradling 1970; Brian 1977	
Leptogenys chinensis (9)	367	Maschwitz and Schönegge 1983	
ocellifera	50,000	Maschwitz and Mühlenberg 1975	
Leptothorax acervorum (8)	250	Dobrzanski 1966; Büschinger 1971; Möglich et al. 1974; Mölich 1979	
ambiguus	50	Talbot 1965; Mölich 1979	
curvispinosus	50	Headley 1943; Talbot 1965; Mölich 1979	
duloticus	12	Talbot 1957; Alloway 1979; Mölich 1979	
longispinosus	65	Headley 1943	
muscorum	300	Büschinger 1966; Mölich et al. 1974	
nylanderi	280	Plateau pers. comm.	
unifasciatus	325	Lane 1977; Plateau pers. comm.	
Messor barbar a (8)	8,000	Delye pers. comm.	
sancta	3,500	Delye pers. comm.; Suzzoni pers. comm.	
Monomorium pharaonis (8)	800	Peacock et al. 1955; Sudd 1960	
Myrmecia gulosa (7)	900	Haskins and Haskins 1950; Robertson 1971	
Myrmica rubra (8)	1,000	Stradling 1970; Petal 1972; Cammaerts and Cammaerts 1980	
ruginodis	2,000	Stradling 1970; Brian 1972; Cammaerts and Cammaerts 1980	
sabuleti	3,000	Brian 1972; Cammaerts and Cammaerts 1980	
Myrmicaria eumenoides (8)	20,000	Levieux 1983	
Myrmoteras barbouri (5)	8	Moffet 1986a	
toro	22	Moffet 1986a	
Neivamyrmex nigrescens (4)	30,000	Topoff et al. 1980	
Species	Population	Data Source	
----------------------------------	------------	---	
Novomessor cockerelli (8)	350	MR Hölldobler et al. 1978.	
Ocyrmex barbiger (8)	200	MR Marsh 1985	
Odontomachus bauri (9)	300	I Jaffe and Marcuse 1983	
haematoda	500	TR Hölldobler and Engel 1978; Jaffe pers. comm	
trogodytes	240	TR Dejean 1982; Dejean and Bashingwa 1985	
Ocophylla longinoda (5)	480,000	MR Way 1954; Hölldobler and Wilson 1978	
Ophthaloopon berthoudi (9)	400	I Peeters and Crewe 1987	
Oligomyrmex overbecki (8)	400	TT Moffet 1986b	
Pachycondyla apicalis (9)	90	I Lachaud et al. 1984; Fresneau 1985	
caffraria	70	TR Lévieux 1967; Agboqba 1981	
comutata	400	GM Mill 1982, 1984	
obscuricornis	100	I Traniello and Hölldobler 1984; Fresneau 1984;	
villosa	500	I Lachaud et al. 1984; Lachaud pers. comm.	
Pheidole embolopyx (8)	300	MR Wilson and Hölldobler 1985	
fallax	10,000	MR Law et al. 1965; Jaffe pers. comm.	
pallidula	5,000	MR Detrain pers. comm.	
Pheidologeton diversus (8)	250,000	GH Moffet 1988;	
silenus	100,000	GH Moffet 1988;	
Pogonomyrmex badius (8)	4,300	MR Brian et al. 1967; Hölldobler and Wilson 1970	
californicus	4,500	MR Hölldobler and Wilson 1970; Erickson 1972	
occidentalis	3,880	MR Lavigne 1969; Hölldobler and Wilson 1970	
Ponera eduardi (9)	1,500	TR Le Masne 1952; Bernard 1968	
Proatta butteli (8)	10,000	MR Moffet 1986c	
Pseudomyrmex termitarius (10)	75	TR Jaffe pers. comm.	
triplarinus	10,000	TR Jaffe pers. comm.	
Species	Quantity	Source	
--	----------	------------	
Serrastruma lujae (8)	57	Dejean 1982	
serrula	78	Dejean 1982	
Smithistruma emarginata (8)	199	Dejean 1982	
truncatidens	133	Dejean 1982	
Solenopsis invicta (8)	100,000	Wilson 1962; Tshinkel 1987	
Tapinoma erraticum (3)	1,000	Meudec 1979; Verhaeghe et al. 1980	
Tetramorium caespitum (8)	14,000	Brian et al 1967; Pasteels et al. 1987	
Trachymyrmex urichi (8)	100	Jaffe and Villegas 1985; Jaffe pers.comm.	
Zacryptocerus varians (8)	1,000	Wilson 1976; Jaffe pers.comm.	

Dejean 1982, Wilson 1962; Tshinkel 1987, Meudec 1979; Verhaeghe et al. 1980, Brian et al 1967; Pasteels et al. 1987, Jaffe and Villegas 1985; Jaffe pers.comm.
REFERENCES (TABLE I)

AGBOGBA, C.
1981. L'approvisionnement en proies chez quelques espèces de fourmis. Coll. UIEIS, sect franç., Toulouse, 18-22.

ALLOWAY, T.M.
1979. Raiding behaviour of two species of slave making ants: Harpagoxenus americanus (Emery) and Leptothorax duloticus Wesson (Hymenoptera: Formicidae). Anim. Behav. 27: 202-210.

BERNARD, F.
1968. Les Fourmis d’Europe Occidentale et Septentrionale. Masson et Cie, Paris.

BLUM, M.S. AND C.A. PORTOCARRERO
1966. Chemical releasers of social behavior. X. An attine trail substance in the venom of a non-trail laying myrmicine, Daceton armigerum (Latreille) Psyche 73: 150-155.

BLUM, M.S., J.C. MOSER AND A.D. CORDERO
1964. Chemical releasers of social behaviour. II. Source and specificity of the odor trail in four Attine genera. (Hym., Form.). Psyche 71: 1-7.

BREED, M.D. AND B. BENNETT
1985. Mass recruitment to nectar sources in Paraponera clavata: A field study. Ins. Soc. 32: 198-208.

BREEN, J.
1979. Worker populations of Formica lugubris Zett. nests in Irish plantation woods. Ecol. Entomol. 4: 1-7.

BRIAN, M.V.
1972. Population turnover in wild colonies of the ant Myrmica. Ekol. Pol., 20: 43-53.

BRIAN, M.V.
1977. Ants. The new naturalist, Collins, London.
Brian M.V., G. Elmes and A.F. Kelly
1967. Populations of the ant Tetramorium caespitum Latreille. J. Anim. Ecol. 36: 337-342.

Büsinger, A.
1966. Untersuchungen an Harpagoxenus sublaevis Nyl. (Hym.,Formicidae). I. FreilandBonn. Zool. Beitr. 22: 322-331.

Büsinger, A.
1971. Zur Verbreitung der Sozialparasiten von Leptothorax acervorum (Fabr.) (Hym.,Form.). Bonn. Zool. Beitr. 22: 322-331.

Cagniant, H.
1983. La Parthénogenèse Thélytoque et Arrhénotoque des ouvrières de la fourmi Cataglyphis cursor (Fonscolombe) (Hym. Form.). Etude biométrique des ouvrières et de leurs potentialités reproductrices. Ins. Soc. 30: 241-254.

Cammaerts, M.C. and R. Cammaerts
1980. Food recruitment strategies of the ants Myrmica sabuleti and M. ruginodis. Behav. Processes. 5: 251-270.

Cherix, D.
1987. Relation between diet and polyethism in Formica colonies. From Individual To Collective Behaviour In Social Insects (J.M. Pasteels and J.L. Deneubourg, eds.), 155-176, Birkhäuser, Basel.

Cherix, D. and C. Maddalena-Feller
1987. Foraging strategy in Formica bruni in relation to colony structure: An important step towards polycalism. Chemistry and Biology of Soil Insects (J. Eder and H. Rembold, eds.), 515-516 Verlag Peperny, München.

Dejean, A.
1982. Quelques aspects de la prédation chez les fourmis de la tribu des Dacetini. (Formicidae - Myrmicinae). Thèse de Doctorat d'Etat. Université Paul Sabatier, Toulouse.
DEJEAN, A. AND E.P. BASHINGWA
1985. La prédation chez Odontomachus troglodytes Santschi (Formicidae - Ponerinae). Ins. Soc. 32: 23-42.

DOBZANSKI, J.
1966. Contribution to the ethology of Leptothorax acervorum. Acta Biol. Exper. (Warsaw) 26: 71-78.

ERICKSON J.M.
1972. Mark-recapture techniques for population estimates of Pogonomymex ant colonies: an evaluation of the P32 technique. Ann. Ent. Soc. Am. 65: 57-61.

FOWLER, H.G.
1985. Populations, foraging and territoriality in Dinoponera australis (Hymenoptera, Formicidae). Revta bras. Ent. 29: 443-447.

FRESNEAU, D.
1984. Développement ovarien et statut social chez une fourmi primitive Neoponera obscuricornis Emery (Hym. - Form., Ponerinae). Ins. Soc. 31: 387-402.

FRESNEAU, D.
1985. Individual foraging and path fidelity in a ponerine ant. Ins. Soc. 32: 109-116.

FUKUMOTO, Y. AND T. ABE
1983. Social organization of colony movement in the tropical ponerine ant Diacamma rugosum. J. Ethol. 1: 101-108.

GÖSSWALD K.
1951. Die rote Waldameise im Dienste der Waldhygiene. Lüneburg: Metta Kinau Verlag.
HAINAUT-RICHE, B., G. JOSENS AND J.M. PASTEELS
1980. L’approvisionnement du nid chez Lasius fuliginosus: pistes, cycles d’activité et spécialisation territoriale des ouvrières. C.R. UIEIS sect. franç. Lausanne, 71-78.

HASKINS, C.P. AND E.H. HASKINS
1950. Notes on the biology and social behavior of the archaic Ponerine ants of the genera Myrmecia and Promyrmecia. Ann. ent. Soc. Am., 43: 461-491.

HEADLEY, A.E.
1943. Population studies of two species of ants, Leptothorax longispinosus and Leptothorax curvispinosus Mayr. Ann. Entomol. Soc. Amer. 36: 743-753.

HÖLDOBLER, B. AND ENGEL
1978. Tergal and sternal glands in ants. Psyche 85: 285-330.

HÖLDOBLER, B. AND E.O. WILSON
1970. Recruitment Trails in the harvester ant Pogonomyrmex badius. Psyche 77: 385-399.

HÖLDOBLER, B. AND E.O. WILSON
1978. The multiple recruitment systems of the african weaver ant Oecophylla longinoda. Behav. Ecol. Sociobiol. 3: 19-60.

HÖLDOBLER, B., M. MÖGLICH AND U. MASCHWITZ
1974. Communication by Tandem Running in the ant Camponotus sericeus. J. Comp. Physiol. 90: 105-127.

HÖLDOBLER, B., R.C. STANTON AND H. MARKUL
1978. Recruitment and food-retrieving behavior in Novomessor (Formicidae, Hymenoptera). Behav. Ecol. Sociobiol. 4: 163-181.

HORSTMANN, K.
1982. Die Energiebilanz der Waldameisen (Formica polycrata Förster) in einem Eichenwald. Ins. Soc. 29: 402-421.
Ito, M.
1973. Seasonal population trends and nest structure in a polydomous ant, *Formica (Formica) yessensis* Forel (Hym., Formicidae). J. Fac. Sci. Hokkaido Univ., Ser. VI, Zool., 19: 270-293.

Jaffe K. and P.E. Howse
1979. The mass recruitment system of the leaf-cutting ant *Atta cephalotes* (L.). Anim. Behav., 27: 930-939.

Jaffe K. and M. Marcuse
1983. Nestmate recognition and territorial behaviour in the ant *Odontomachus bauri* Emery (Formicidae Ponerinae). Ins. Soc. 30: 466-481.

Jaffe, K., and G. Villegas G.
1985. On the communication system of the fungus growing ant *Trachymyrmex urichi*. Ins. Soc. 32: 257-274.

Jayasuria, A.K. and J.F.A. Traniello
1985. The Biology of the primitive ant *Aneuretus simoni* (Emery) (Formicidae: Aneuretinae). I. Distribution, abundance, colony structure, and foraging ecology. Ins. Soc. 32: 363-375.

Jensen, T.F.
1977. Annual foraging activity of a colony of *Formica pratensis* Retz. Proceedings VIIIth International Congress IUSSS, Wageningen, 217-218.

Kruk-de-Bruin, M., L.C.M. Rost and F.G.A.M. Draisma
1977. Estimates of the number of foraging ants with the Lincoln-index method in relation to the colony size of *Formica polyctena*. J. Anim. Ecol. 46: 457-470.

Lachaud, J.P., D. Fresneau and J. Garcia-Perez
1984. Etude des stratégies d'approvisionnement chez 3 espèces de fourmis ponerines (Hym.: Formicidae). Folia Entomol. Mex. 61: 159-177.
LANE A.
1977. Recrutement et orientation chez la fourmi *Leptothorax unifasciatus* (Latr.): Rôle de la piste et des tandems. Thèse de 3e cycle, Dijon, p. 124.

LAVIGNE R.J.
1969. Bionomics and nest structure of *Pogonomyrmex occidentalis*. Ann. Ent. Soc. Am. 62: 1166-1175.

LAW, J.H., RAIGNIER, AND E.O. WILSON.
1965. Biochemical polymorphism in ants. Science 149: 544-546.

LE MASNE, G.
1952. Les échanges alimentaires entre adultes chez la fourmi *Ponera eduardi* Forel. C.R. Acad. Sci. Paris D 235: 1549-1551.

LEVIEUX, J.
1983. Mode d'exploitation des ressources alimentaires épidées de savanes africaines par la fourmi *Myrmicaria eumenoides* Gerstaecker. Ins. Soc 30: 165-176.

MARSH, A.C.
1985. Microclimatic factors influencing foraging patterns and success of the thermophilic desert ant, *Ocymyrmex barbiger*. Ins. Soc. 32: 286-296.

MASCHWITZ, U. AND M. MÜHLENBERG
1975. Zur Jagdstrategie einiger orientalischer *Leptogenys*-Arten (Formicidae: Ponerinae). Oecologia 20: 65-83.

MASCHWITZ, U. AND P. SCHÖNEGGE
1983. Foraging communication, nest moving recruitment and prey specialization in the oriental ponerine *Leptogenys chinensis*. Oecologia 57: 175-182.

MEUDEC, M.
1979. Comportement d'émigration chez la fourmi *Tapinoma erraticum* (Form. Dolichoderinae). Un exemple de régulation sociale. Thèse, Université de Tours.
MILL, A.E.
1982. Emigration of a colony of the giant Termite hunter Pachycondyla communata (Roger) (Hymenoptera: Formicidae). Entomologist's monthly magazine 118: 243-245.

MILL, A.E.
1984. Predation by the Ponerine ant Pachycondyla communata on termites of the genus Syntermes in Amazonian rain forest. J. Nat. Hist. 18: 405-410.

MOFFET, M.W.
1986a. Trap-jaw predation and other observations on two species of Myrmoteras (Hymenoptera: Formicidae). Ins. Soc. 33: 85-99.

MOFFET, M.W.
1986b. Notes on behavior of the dimorphic ant Oligomyrmex overbecki (Hymenoptera: Formicidae). Psyche 93: 107-116.

MOFFET, M.W.
1986c. Behavior of the group predatory ant Proatta butteli (Hymenoptera: Formicidae): an old world relative of the attine ants. Ins. Soc. 33: 444-457.

MOFFET, M.W.
1988. Nesting, emigrations, and colony foundation in two group-hunting Myrmicine ants (Hymenoptera: Formicidae: Pheidologeton). Advances in Myrmecology, E.J. Brill, Leiden, ed. Trager, J.C.: 355-370.

MÖGLICH, M.
1979. Tandem calling pheromone in the genus Leptothorax (Hym., Formicidae): Behavioral analysis of specificity. J. Chem. Ecol. 5: 35-52.

MÖGLICH, M. AND B. HÖLDDOBLER
1975. Communication and orientation during foraging and emigration in the ant Formica fusca. J. Comp. Physiol. 101: 275-288.
MÖGLICH, M., U. MASCHWITZ AND B. HÖLLODBLER
1974. Tandem calling: a new kind of signal in ant communication. Science 186: 1046-1047.

MOSER J.C. AND M.S. BLUM
1963. Trail marking substances in the Texas leaf-cutting ant: Source and potency. Science 140: 1228.

PASTEELS, J.M, J.L DENEUBOURG AND S. GOSS
1987. Self-organization mechanisms in ant societies (I): Trail recruitment to newly discovered food sources. From Individual To Collective Behaviour In Social Insects (J.M. Pasteels and J.L. Deneubourg, eds.), 155-176, Birkhäuser, Basel.

PEACOCK, A.D., F.L. WATERHOUSE AND A.T. BAXTER
1955. Studies in Pharaoh's ant Monomorium pharaonis (L.) 10. Viability in regard to temperature and humidity. Entomologists' Monthly magazine 86: 294-298.

PEETERS, C. AND R. CREWE
1987. Foraging and recruitment in ponerine ants: Solitary hunting in the queenless Ophthalmopone berthoudi (Hymenoptera: Formicidae). Psyche 94: 201-214.

PETAL, J.
1972. Methods of investigating the productivity of ants. Ekol. polsk. 94: 9-22.

PRICER, J.L.
1908. The life history of the carpenter ant. Biological Bulletin, Marine Biological Laboratory, Woods Hole, 14: 177-218.

QUINET, Y. AND J.M PASTEELS
1987. Description et évolution spatio-temporelle du réseau de pistes chez Lasius fuliginosus. Actes Coll. Ins. Soc. 4: 211-218.
RAIGNIER, A. AND J. VAN BOVEN
1955. Etude taxonomique, biologique et biométrique des Dorylus du sous-genre Anomma (Hymenoptera, Formicidae). Annales du Musée Royal du Congo Belge, n.s. 4, Sc. Zool., 2: 1-359.

RETTELMeyer, C.W.
1963. Behavioral studies of army ants. Kansas University Science Bulletin, 44: 281-465.

Riley, R.G., R.M. Silverstein, B. Carrol AND R. Carrol
1974. Methyl 4-Methylphenyle-2-Carboxylate: A volatile trail pheromone from the Leaf-cutting ant Atta cephalotes. J. Ins. Physiol. 20: 651-654.

ROBERTSON, P.L.
1971. Pheromones involved in aggressive behaviour in the ant, Myrmecia gulosa. J. Insect Physiol. 17: 691-715.

Rosengren, R.
1971. Route fidelity, visual memory and recruitment behaviour in foraging Wood ants of the genus Formica (Hym. Formicidae). Acta Zool. Fen. 133: 3-91.

Schneirla, T.C.
1957. A comparison of species and genera in the ant sub-family Dorilinae with respect to functional pattern. Ins. Soc. 4: 259-298.

Schneirla, T.C.
1965. Cyclic functions in genera of legionary ants (Subfamily Dorylinae). Proceedings of the Twelfth International Congress of Entomology, London, 1964, pp. 336-338.

stradling, D.J.
1970. The estimation of worker ant populations by the mark-release-recapture method: an improved marking technique. J. Anim. Ecol. 39: 575-591.
Sudd, J.H.
1960. The foraging method of Pharaoh's ant *Monomorium pharaonis*. Anim. Behav., London, 8: 67-75.

Sudd, J.H., and N. Franks.
1987. The Behavioural Ecology of Ants. Blackie, Glasgow.

Talbot, M.
1957. Population studies of the slave making ant *Leptothorax duloticus* and its slave *Leptothorax curvispinosus*. Ecology, 38: 449-456.

Talbot, M.
1965. Populations of ants in a low field. Ins. Soc. 12: 19-48.

Topoff, H., J. Mirenda, R. Drojal, and S. Herrick.
1980. Behavioral ecology of mass recruitment in the army ant *Neivamyrmex nigrescens*. Anim. Behav. 28: 779-789.

Traniello, J.F.A.
1977. Recruitment behaviour, orientation, and the organization of foraging in the carpenter ant *Camponotus pennsilvanicus*. Behav. Ecol. Sociobiol. 2: 61-79.

Traniello, J.F.A.
1978. Caste in a primitive ant: Absence of age polyethism in *Amblyopone*. Science 202: 770-772.

Traniello, J.F.A. and B. Hölldobler
1986. Chemical communication during tandem running in *Pachycondyla obscuricornis*. J. Chem. Ecol 7: 1023-1033.

Traniello, J.F.A. and A.K. Jayasuriya
1986. The fire ant, *Solenopsis invicta*, as a successful "weed". J. Chem. Ecol 7: 1023-1033.
TSCINKEL, W.R.
1981. Chemical communication in the primitive ant Aneuretis simoni: the role of the sternal and pygidial glands. Chemistry and Biology of Soil Insects (J. Eder and H. Rembold, eds.), 515-585-588, Verlag Peperny, München.

VERHAEGHE, J.C., P. CHAMPAGNE AND J.M. PASTEELS
1980. Le recrutement alimentaire chez Tapinoma erraticum (Hym, Form.). Biol.- Ecol. méditerranéenne 7:167-168.

VOSSELER J.
1905. Die Ostafrikanische Treiberameise. Der Pflanzer 1: 284-302.

WAIIUS D.I.
1964. The foraging behaviour of the ant Formica fusca. Behaviour 23: 149-175.

WAY, M.J
1954. Studies of the life history and ecology of the ant Oecophylla longinoda Latreille. Bull. Ent. Res. 45: 93-112.

WEHNER, R., R.D. HARKNESS AND P. SCHMID-HEMPEL
1983. Foraging Strategies in Individually Searching Ants. Cataglyphis bicolor (Hymenoptera: Formicidae). Gustav Fischer Verlag, Stuttgart, New York.

WILSON, E.O.
1962. Chemical communication among workers of the fire-ant Solenopsis saevissima (Fr. Smith). 1. The organization of mass foraging. 2. An information analysis of the odour trail. 3. The experimental induction of social responses. Anim. Behav. 10: 134-164.

WILSON, E.O.
1976. A social ethogram of the neo-tropical arboreal ant Zacryptocerus varians (Fr. Smith). Anim. Behav. 24: 354-363.
WILSON, E.O.

1986. Caste and division of labour in *Erebomyrma*, a genus of dimorphic ants (Hymenoptera: Formicidae: Myrmicinae). Ins. Soc. 33: 59-69.

WILSON, E.O. AND B. HÖLDÖBLER

1985. Caste-specific techniques of defense in the polymorphic ant *Pheidole embolopyx* (Hymenoptera: Formicidae). Ins. Soc. 32: 3-22.

ZAKHAROV, A.A.

1978. Estimate of the population numbers in the complex of formicaria. Zool. Zh. 57: 1656-1662.