ESTIMATION OF A k–MONOTONE DENSITY, PART 1: CHARACTERIZATIONS, CONSISTENCY, AND MINIMAX LOWER BOUNDS

By Fadoua Balabdaoui*,‡ and Jon A Wellner†

University of Göttingen and University of Washington

Shape constrained densities are encountered in many nonparametric estimation problems. The classes of monotone or convex (and monotone) densities can be viewed as special cases of the classes of k–monotone densities. A density g is said to be k–monotone if $(-1)^l g^{(l)}$ is nonnegative, nonincreasing and convex for $l = 0, \ldots, k-2$ if $k \geq 2$, and g is simply nonincreasing if $k = 1$. These classes of shaped constrained densities bridge the gap between the classes of monotone (1-monotone) and convex decreasing (2-monotone) densities for which asymptotic results are known, and the class of completely monotone (∞–monotone) densities. It is well-known that a density is completely monotone if and only if it is a scale mixture of exponential densities (Bernstein’s theorem). Thus one motivation for studying the problem of estimation of a k–monotone density is to try to gain insight into the problem of estimating a completely monotone density.

In this series of four papers we consider both (nonparametric) Maximum Likelihood estimators and Least Squares estimators of a k–monotone estimator. In this first part (part 1), we prove existence of the estimators and give characterizations. We also establish consistency properties, and show that the estimators are splines of order k (degree $k-1$) with simple knots. We further provide asymptotic minimax risk lower bounds for estimating a k–monotone density $g_0(x_0)$

*Research supported in part by National Science Foundation grant DMS-0203320

†Research supported in part by National Science Foundation grant DMS-0203320, NIAID grant 2R01 AI291968-04, and an NWO Grant to the Vrije Universiteit, Amsterdam

$‡$Corresponding author

AMS 2000 subject classifications: Primary 62G05, 60G99; secondary 60G15, 62E20

Keywords and phrases: completely monotone, inversion, minimax risk, mixture models, multiply monotone, nonparametric estimation, rates of convergence, shape constraints
and its derivatives $g_0^{(j)}(x_0)$, $j = 1, \ldots, k-1$, at a fixed point x_0 under the assumption that $(-1)^k g_0^{(k)}(x_0) > 0$.

Part 2 of the series gives algorithms for computation of the estimators and an application of the methods to earthquake aftershock data. In part 3 we describe and establish existence of the limiting process H_k which governs the asymptotic distribution theory modulo a certain conjecture involving a Hermite interpolation problem. In part 4 we give the limiting distribution theory in terms of H_k, again modulo the same Hermite interpolation problem.

1. Introduction. Shape constrained densities are encountered in many nonparametric estimation problems. Monotone densities arise naturally via connections with renewal theory and uniform mixing (see Vardi (1989) and Woodroofe and Sun (1993) for examples of the former, and Woodroofe and Sun (1993) for the latter in an astronomical context). Convex densities arise in connection with Poisson process models for bird migration and scale mixtures of triangular densities; see e.g. Hampel (1987), Anevski (2003), and Lavéé, Safrie, and Meilijson (1991).

Estimation of monotone densities on the positive half-line $\mathbb{R}^+ = [0, \infty)$ was initiated by Grenander (1956) (with related work by Ayer, Brunk, Ewing, Reid, and Silverman (1955), Brunk (1958), and Van Eeden (1956, Van Eeden (1957)). Asymptotic theory of the maximum likelihood estimators was developed by Prakasa Rao (1969) with later contributions by Groeneboom (1985), Groeneboom (1989), Birgé (1987), Birgé (1989), and Kim and Pollard (1990).

Estimation of convex densities on \mathbb{R}^+ was apparently initiated by Anevski (1994) (see also Anevski (2003)), and was pursued by Wang (1994) and Jongbloed (1995). The limit distribution theory for the (nonparametric) maximum likelihood estimator and its first derivative at a fixed point was obtained by Groeneboom, Jongbloed, and Wellner (2001b).

Our goal here (and in the accompanying papers Balabdaoui and Wellner (2004a), Balabdaoui and Wellner (2004b), and Balabdaoui and Wellner (2004c)) is to develop nonparametric estimators and asymptotic
theory for the classes of \(k \)-monotone densities on \([0, \infty)\) defined as follows: \(g \) is a \(k \)-monotone density on \((0, \infty)\) if \(g \) is nonnegative and \((-1)^lg^{(l)}\) is nonincreasing and convex for \(l \in \{0, \ldots, k-2\} \) for \(k \geq 2 \), and simply nonnegative and nonincreasing when \(k = 1 \). As will be shown in section 2, it follows from the results of Williamson (1956), Lévy (1962), and Gneiting (1999) that \(g \) is a \(k \)-monotone density if and only if it can be represented as a scale mixture of Beta\((1, k) \) densities; i.e. with \(x_+ \equiv x1\{x \geq 0\} \),

\[
g(x) = \int_0^\infty \frac{k}{y^k} (y - x)^{k-1} dF(y)
\]

for some distribution function \(F \) on \((0, \infty)\). Note that for \(k = 1 \) this recovers the well known fact that monotone densities are in a one-to-one correspondence with scale mixtures of uniform densities, and, for \(k = 2 \), the corresponding fact frequently used by Groeneboom, Jongbloed, and Wellner (2001b) that convex decreasing densities are in a one-to-one correspondence with scale mixtures of the triangular, or Beta\((1, 2) \), densities.

Our motivation for studying nonparametric estimation in the classes \(\mathcal{D}_k \) has several components: besides the obvious goal of generalizing the existing theory for the 1-monotone (i.e. monotone) and 2-monotone (i.e. convex and decreasing) classes \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \), these classes play an important role in several extensions of Hampel’s bird migration problem which are discussed further in Balabdaoui and Wellner (2005a). They also provide a potential link to the important limiting case of the \(k \)-monotone classes, namely the class \(\mathcal{D}_\infty \) of completely monotone densities. Densities \(g \) in \(\mathcal{D}_\infty \) have the property that \((-1)^lg^{(l)}(x) \geq 0\) for all \(x \in (0, \infty) \) and \(l \in \{0, 1, \ldots\} \). It follows from Bernstein’s theorem (see e.g. Feller (1971), page 439, or Gneiting (1998)) that \(g \in \mathcal{D}_\infty \) if and only if it can be represented as a scale mixture of exponential densities; i.e.

\[
g(x) = \int_0^\infty y^{-1} \exp(-x/y) dF(y)
\]

for some distribution function \(F \) on \((0, \infty)\). Completely monotone densities arise naturally in connection with mixtures of Poisson processes and have...
been used in reliability theory (see e.g. Harris and Singpurwalla (1968),
Doyle, Hansen, and McNolty (1980), Hill, Saunders, and Laud (1980)),
and empirical Bayes estimation (see Robbins (1964) and Robbins (1980)).
Jewell (1982) initiated the study of maximum likelihood estimation in the
family D_∞ and succeeded in showing that the MLE \hat{F}_n of the mixing distri-
bution function F is unique and almost surely weakly consistent. Although
consistency of the MLE follows now rather easily from the results of Pfanzagl (1988)
and van de Geer (1993), little is known about rates of convergence or asymptotic
distribution theory for either the estimator \hat{g}_n of the
mixed density g in D_∞ (the “forward” or “direct” problem) or the estimator
\hat{F}_n of the mixing distribution function F (the “inverse” problem). Although
our present methods do not yield solutions of these difficult questions, the
development of methods and theory for general k–monotone densities may
throw some light on the issues and problems.

Now we briefly describe the contents of the four related papers of which
the present manuscript is part 1.

In this paper (part 1), we consider the Maximum Likelihood \hat{g}_n and Least
Squares \hat{g}_n estimators of a density $g_0 \in D_k$ for a fixed integer $k \geq 2$ based
on a sample X_1, \ldots, X_n i.i.d. with density g_0. We show that the estimators
exist, provide characterizations, and establish consistency of the estimators
and their derivatives $\hat{g}_n^{(j)}$ and $\hat{g}_n^{(j)}$ for $j \in \{1, \ldots, k-1\}$ (uniformly on closed
sets bounded away from 0). In section 4 we establish asymptotic minimax
lower bounds for estimation of $g_0^{(j)}(x_0), j = 0, \ldots, k-1$ under the assumption
that $g_0^{(k)}(x_0)$ exists and is non-zero. In part 1 we also include statements of
known results for estimation of a completely monotone density $g_0 \in D_\infty$
whenever possible. One of the remaining open questions concerns existence
of the least squares estimator; see Section 2. In section 5 we illustrate both
the maximum likelihood and least squares estimators for $k = 3$ and $k = 6$
in both the direct and inverse problems via artificial data generated from a
standard exponential distribution.
In part 2 (Balabdaoui and Wellner (2004a)) we provide algorithms for computation of the estimators and for computation of (approximations to) the limit process $H_{c,k}$ defined in part 3 (Balabdaoui and Wellner (2004b)). We call the basic algorithm developed and used in part 2 an iterative $(2k-1)-$spline algorithm since it extends the “cubic spline algorithm” developed in Groeneboom, Jongbloed, and Wellner (2001a) and Groeneboom, Jongbloed, and Wellner (2003). Part 3 is devoted to a study of the corresponding canonical Gaussian problem and the “envelope” (k even) or envelope (k odd) processes $H_k = \lim_{c \to \infty} H_{c,k}$ which arise in the solution of the Gaussian version of the problem. Thus part 3 extends and is analogous to the treatment for the case $k = 2$ given by Groeneboom, Jongbloed, and Wellner (2001a). Finally, part 4 (Balabdaoui and Wellner (2004c)) gives joint asymptotic distribution theory at a fixed point $x_0 \in (0, \infty)$ of the vector of centered and scaled derivative estimators

$$n^{(k-j)/(2k+1)}(\bar{g}_n^{(j)}(x_0) - g_0^{(j)}(x_0)), \quad j = 0, \ldots, k-1$$

where \bar{g}_n is either the MLE \hat{g}_n or the LSE \tilde{g}_n, under the assumption that $g_0^{(k)}(x_0)$ exists and is non-zero. This yields behavior of the corresponding estimators of the mixing distribution F_0 at fixed points (the inverse problem) as a corollary.

Thus the main outcome of parts 3 and 4 generalizes the asymptotic distribution theory for estimating a nondecreasing density, and a nondecreasing and convex density at a fixed point: If $x_0 > 0$ and g_0 is a k-monotone density defined on $(0, \infty)$ such that g_0 is k-times differentiable at x_0 with $(-1)^k g_0^{(k)}(x_0) > 0$, and $g_0^{(k)}$ is assumed to be continuous in a neighborhood of x_0, then our goal in parts 3 and 4 is to show that

$$\begin{pmatrix}
\frac{n^{k-1}}{k+1} (g_n(x_0) - g_0(x_0)) \\
\frac{n^{k-1}}{k+1} (g_n^{(1)}(x_0) - g_0^{(1)}(x_0)) \\
\vdots \\
\frac{n^{k-1}}{k+1} (g_n^{(k-1)}(x_0) - g_0^{(k-1)}(x_0))
\end{pmatrix} \rightarrow_d
\begin{pmatrix}
c_0(g_0)H_k^{(k)}(0) \\
c_1(g_0)H_k^{(k+1)}(0) \\
\vdots \\
c_{k-1}(g_0)H_k^{(2k-1)}(0)
\end{pmatrix}$$
and

\[
n^{rac{1}{2k+1}}(\bar{F}_n(x_0) - F_0(x_0)) \to_d \left(\frac{(-1)^k x_0^k}{k!} c_{k-1}(g_0) H_k^{(2k-1)}(0), \right.
\]

where \(\bar{g}_n\) is either the MLE of LSE, \(\bar{F}_n\) is the corresponding estimator of the mixing distribution function \(F_0\),

\[
c_j(g_0) = \left\{ \left(g_0(x_0) \right)^{k-j} \left(\frac{(-1)^k g_0^{(k)}(x_0)}{k!} \right)^{2j+1} \right\}^{\frac{1}{2k+1}},
\]

for \(j = 0, \cdots, k - 1\), and \(H_k\) is an almost surely uniquely defined stochastic process that is \((2k)\)-convex (i.e., \(H_k^{(2k-2)}\) exists and convex), and stays above (below) the \((k-1)\)-fold integral of two-sided Brownian motion plus a polynomial drift of the form \(t^{2k}/(2k)!\) if \(k\) is even (odd). Only a change of scale is necessary to realize that \(H_1\) and \(H_2\) are very closely related to the greatest convex minorant of \(W(t) + t^2, t \in \mathbb{R}\), where \(W\) is two-sided Brownian motion, and the “envelope”, \(H\), of

\[
\begin{cases}
 \int_0^t W(s)ds + t^4, & \text{if } t \geq 0 \\
 \int_0^t W(s)ds + t^4, & \text{if } t < 0.
\end{cases}
\]

Deriving the rate of convergence of both the estimators \(\hat{g}_n\) and \(\tilde{g}_n\) and their derivatives \(\hat{g}_n^{(j)}, \tilde{g}_n^{(j)}, j = 1, \cdots, k - 1\), and proving the existence of the stochastic processes \(H_k\) for \(k > 2\) involved in the joint asymptotic distribution still depends on a key conjecture: that the distance between two successive knots of the MLE or LSE that are in the neighborhood of \(x_0\) is \(O_p(n^{-1/(2k+1)})\) as the sample size \(n \to \infty\), and that distance between two successive points of touch between the \((k-1)\)-fold integral of two-sided Brownian motion plus \(t^{2k}/(2k)!\) and \(H_k\) is \(O_p(1)\). Both problems are of the same nature and one can go from the first to the second one via a simple scaling argument. We refer to this common problem as the \textit{gap problem}.

We will show in parts 3 and 4 that the gap problem can be reduced to the solution of a certain problem related to Hermite interpolation. That is, the gap problem has a solution if the following conjecture involving Hermite
interpolation is true: Consider Hermite interpolation (as described for example in Nürnberger (1989), pages 108-109 or DeVore and Lorentz (1993) pages 161 - 162) of some smooth function \(f \) via splines of odd-degree. More specifically, if \(f \) is some real-valued function in \(C^{(j)}[0,1] \) for some \(j \geq 2 \),

\[
0 = y_0 < y_1 < \cdots < y_{2k-4} < y_{2k-3} = 1 \text{ is a given increasing sequence, then the uniquely defined spline } \mathcal{H} f \text{ of degree } 2k - 1 \text{ and interior knots } y_1, \ldots, y_{2k-4} \text{ satisfying the } 4k - 4 \text{ conditions }
\]

\[
(\mathcal{H} f)(y_i) = f(y_i), \quad (\mathcal{H} f)'(y_i) = f'(y_i), \quad i = 0, \ldots, 2k - 3,
\]

then we conjecture that there exists a constant \(c_{k,j} \) depending only on \(k \) and \(j \) such that, if \(j \geq k \),

\[
\sup_{0 < y_0 < \cdots < y_{2k-4} < 1} \| f - \mathcal{H} f \|_\infty \leq c_{k,j} \| f^{(j)} \|_\infty,
\]

where \(\| \cdot \|_\infty \) is the supremum norm over \([0,1]\).

This Hermite interpolation problem has apparently not been investigated in detail in the spline or approximation theory literature, and hence an analysis of the corresponding interpolation error is yet to be developed. It is, however, precisely the interpolation problem involved in understanding our least squares estimators, both for finite sample sizes and in the limiting Gaussian problem: as will be shown in parts 3 and 4, the connecting link is the classical theorem of Schoenberg and Whitney (1953) and its generalization by Karlin and Ziegler (1966); see Nürnberger (1989), page 109, or DeVore and Lorentz (1993), page 162.

However, the approximation theory literature has considered a related conjecture for another Hermite problem whose solution is a different odd-degree spline, also called a complete spline. Given a function \(f \in C^{(k-1)}[0,1] \), and an increasing sequence \(0 = y_0 < y_1 < \cdots < y_m < y_{m+1} = 1 \), the complete spline interpolant, \(\mathcal{C} f \), of degree \(2k - 1 \) with interior knots \(y_1, \ldots, y_m \) satisfies the \(2k + m \) conditions

\[
\left\{
\begin{array}{ll}
(\mathcal{C} f)(y_i) = f(y_i), & i = 1, \ldots, m \\
(\mathcal{C} f)^{(l)}(y_0) = f^{(l)}(y_0), & (\mathcal{C} f)^{(l)}(y_{m+1}) = f^{(l)}(y_{m+1}), \\
& l = 0, \ldots, k - 1.
\end{array}
\right.
\]
When f is in $C^{(j)}[0,1]$ for $j \geq k$, the error in this more usual Hermite problem is known to be uniformly bounded independently of the location of the knots. Proof of this uniform boundedness is due to Shadrin (1992). More precisely, the argument follows from his Theorem 6.4, page 94. de Boor (1974) had investigated the problem for $j = 2k$, and conjectured uniformity of the bound for this particular case. Furthermore, de Boor (1974) reduced the problem to a further conjecture: for any $k > 4$, the supremum norm of the L_2-spline projector that maps $C^{(k)}[0,1]$ to the space of splines of degree $k - 1$ with knots y_1, \ldots, y_m is bounded independently of the location of the knots. This conjecture remained unsolved for more than 25 years: Shadrin (2001) presents a proof thereof. Thus, there is a closely related interpolation problem in which the interpolation error does hold uniformly in the knots, and this gives some hope that “uniformity in the knots” will hold in our problem as well.

In our Hermite interpolation problem, the spline interpolant matches not only the value of the function at the knots but also the value of its first derivative. So intuitively, one should expect our spline to “behave better” than the complete spline, and the interpolation error to be smaller. On the other hand, our conjecture is supported by numerical evidence for $k = 3, 4, 5, 6$. Our computations suggest that for these particular values, $c_{k,j} \leq 1/((k-1)!(j-k)!)$.

For further details see Balabdaoui and Wellner (2005b).

2. The Maximum Likelihood and Least Squares estimators: Existence and characterization.

2.1. Mixture representation of a k-monotone density. Williamson (1956) gave the following characterization of a k-monotone function on $(0, \infty)$:

Theorem 2.1 (Williamson, 1956) A function g is k-monotone on $(0, \infty)$ if and only if there exists a nondecreasing function γ bounded at 0 such that

$$g(x) = \int_0^\infty (1 - tx)^{k-1} d\gamma(t), \quad x > 0$$
where \(y_+ = y1_{(0, \infty)}(y) \).

The next theorem gives an inversion formula for the function \(\gamma \):

Theorem 2.2 (Williamson, 1956) If \(g \) is of the form (1) with \(\gamma(0) = 0 \), then at a continuity point \(t > 0 \), \(\gamma \) is given by

\[
\gamma(t) = \sum_{j=0}^{k-1} \frac{(-1)^{k-j} g^{(j)}(1/u)}{j!} \left(\frac{1}{u} \right)^j.
\]

For proofs of Theorems 2.2.1 and 2.2.2, see Williamson (1956).

From the characterization given in (1), we can easily derive another integral representation for \(k \)-monotone functions that are Lebesgue integrable on \((0, \infty)\); i.e., \(\int_0^\infty g(x)dx < \infty \).

Lemma 2.1 (Integrable \(k \)-monotone characterization) A function \(g \) is an integrable \(k \)-monotone function if and only if it is of the form

\[
g(x) = \int_0^\infty \frac{k(t-x)^{k-1}}{t^k}dF(t), \quad x > 0
\]

where \(F \) is nondecreasing and bounded on \((0, \infty)\). Thus \(g \) is a \(k \)-monotone density if and only if it is of the form (2) for some distribution function \(F \) on \((0, \infty)\).

Proof. This follows from Theorem 5 of Lévy (1962) by taking \(k = n + 1 \) and \(f \equiv 0 \) on \((-\infty, 0]\).

Lemma 2.2 (\(k \)-monotone inversion formula) If \(F \) in (2) satisfies \(\lim_{t \to \infty} F(t) = \int_0^\infty g(x)dx \), then at a continuity point \(t > 0 \), \(F \) is given by

\[
(3) F(t) = G(t) - tg(t) + \cdots + \frac{(-1)^{k-1}}{(k-1)!} t^{k-1} g^{(k-2)}(t) + \frac{(-1)^{k-2}}{k!} t^k g^{(k-1)}(t),
\]

where \(G(t) = \int_0^t g(x)dx \).
Proof. By the mixture form in (2), we have for all $t > 0$

$$F(\infty) - F(t) = \frac{(-1)^k}{k!} \int_t^\infty x^k dg^{(k-1)}(x).$$

But, for $j = 1, \cdots, k, t^j G^{(j)}(t) \searrow 0$ as $t \to \infty$. This follows from Lemma 1 in Williamson (1956) applied to the $(k+1)$-monotone function $G(\infty) - G(t)$. Therefore, for $j = 1, \cdots, k$, $t^j G^{(j-1)}(t) \searrow 0$ as $t \to \infty$.

Now, using integration by parts, we can write

$$F(\infty) - F(t) = \frac{(-1)^k}{k!} \int_t^\infty x^k g^{(k-1)}(x) dx + \frac{(-1)^{(k-1)}}{(k-1)!} \int_t^\infty x^{k-1} g^{(k-1)}(x) dx$$

$$= \frac{(-1)^k}{k!} t^k g^{(k-1)}(t) - \frac{(-1)^{k-1}}{(k-1)!} t^{k-1} g^{(k-2)}(t)$$

$$+ \frac{(-1)^{k-2}}{(k-2)!} \int_t^\infty x^{k-2} g^{(k-2)}(x) dx$$

$$\vdots$$

$$= \frac{(-1)^k}{k!} t^k g^{(k-1)}(t) - \frac{(-1)^{k-1}}{(k-1)!} t^{k-1} g^{(k-2)}(x) + \cdots - \int_t^\infty g(x) dx,$$

Using the fact that $F(\infty) = \int_0^\infty g(x) dx$, the result follows. ■

For completeness and for comparison, we also give the corresponding characterization and inversion formula in the completely monotone case:

Lemma 2.3 (Integrable completely monotone characterization) A function g is an integrable completely monotone function if and only if it is of the form

$$g(x) = \int_0^\infty \frac{1}{t} \exp(-x/t) dF(t), \quad x > 0$$

where F is nondecreasing and bounded on $(0, \infty)$. Thus g is a completely monotone density if and only if it is of the form (4) for some distribution function F on $(0, \infty)$.
Lemma 2.4 (Completely-monotone inversion formula) If F in (4) satisfies $\lim_{t \to \infty} F(t) = \int_0^\infty g(x)dx$, then at a continuity point $t > 0$, F is given by

$$F(t) = \lim_{k \to \infty} \sum_{j=0}^k \frac{(-1)^j}{j!} (kt)^j G^{(j)}(kt)$$

where $G(t) = \int_0^t g(x)dx$.

Proofs. Lemma 2.3 follows from the classical result of Bernstein; see Widder (1946), pages 141-163; Feller (1971), page 439; and Gneiting (1998). Lemma 2.4 follows from the development in Feller (1971), pages 232-233. For further details, see Balabdaoui and Wellner (2005a).

The characterization in (2) is more relevant for us since we are dealing with k-monotone densities. It is easy to see that if g is a density, and F is chosen to be right-continuous and to satisfy the condition of Lemma 2.2, then F is a distribution function. For $k = 1$ ($k = 2$), note that the characterization matches with the well known fact that a density is nondecreasing (nondecreasing and convex) on $(0, \infty)$ if and only if it is a mixture of uniform densities (triangular densities). More generally, the characterization establishes a one-to-one correspondence between the class of k-monotone densities and the class of scale mixture of Beta’s with parameters 1 and k.

From the inversion formula in (3), one can see that a natural estimator for the mixing distribution F is obtained by plugging in an estimator for the density g and it becomes clear that the rate of convergence of estimators of F will be controlled by the corresponding rate of convergence for estimators of the highest derivative $g^{(k-1)}$ of g. When k increases the densities become smoother, and therefore the inverse problem of estimating the mixing distribution F becomes harder.

In the next section, we consider the nonparametric Maximum Likelihood and Least Squares Estimators of a k-monotone density g_0. We show that these estimators exist and give characterizations thereof. In the following,
\(M_k \) is the class of all \(k \)-monotone functions on \((0, \infty)\), \(D_k \) is the sub-class of \(k \)-monotone densities on \((0, \infty)\), \(X_1, \ldots, X_n \) are i.i.d. from \(g_0 \), and \(G_n \) is their empirical distribution function, \(G_n(x) = n^{-1} \sum_{i=1}^{n} \{X_i \leq x\} \) for \(x \geq 0 \).

2.2. Maximum likelihood estimation of a \(k \)-monotone density. Let

\[
l_n(g) = \int_{0}^{\infty} \log g(x) \, dG_n(x)
\]

be the log-likelihood function (really \(n^{-1} \) times the log-likelihood function, but we will abuse notation slightly in this same way throughout). We want to maximize \(l_n(g) \) over \(g \in D_k \). To do this, it is frequently of help to change the optimization problem to one over the whole cone \(M_k \cap L_1(\lambda) \). This can be done by introducing the “adjusted likelihood function” \(\psi_n(g) \) defined as follows:

\[
\psi_n(g) = \int_{0}^{\infty} \log g(x) \, dG_n(x) - \int_{0}^{\infty} g(x) \, dx,
\]

for \(g \in M_k \cap L_1(\lambda) \). Then, as in GJW (2001a), Lemma 2.3, page 1661, the maximum likelihood estimator \(\hat{g}_n \) also maximizes \(\psi_n(g) \) over \(M_k \cap L_1(\lambda) \).

Using the integral representations established in the previous subsection, \(\psi_n \) can also be rewritten as

\[
\psi_n(F) = \left\{ \begin{array}{c}
\int_{0}^{\infty} \log \left(\int_{0}^{\infty} \frac{k(t-x)^{k-1}}{t} \, dF(t) \right) \, dG_n(x) - \int_{0}^{\infty} \int_{0}^{\infty} \frac{k(t-x)^{k-1}}{t} \, dF(t) \, dx, \\
- \int_{0}^{\infty} \log \left(\int_{0}^{\infty} \frac{1}{t} \exp(-x/t) \, dF(t) \right) \, dG_n(x) - \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{t} \exp(-x/t) \, dF(t) \, dx,
\end{array} \right.
\]

where \(F \) is bounded and nondecreasing.

Lemma 2.5 The maximum likelihood estimator \(\hat{g}_{n,k} \) in the classes \(D_k \), \(k \in \{1, 2, \ldots, \infty\} \) exists. Furthermore, \(\hat{g}_{n,k} \) is the maximizer of \(\psi_n \) over \(M_k \cap L_1(\lambda) \). Moreover, for \(k \in \{1, 2, \ldots\} \) the density \(\hat{g}_{n,k} \) is of the form

\[
\hat{g}_{n,k}(x) = \hat{w}_1 \frac{k(\hat{a}_1 - x)^{k-1}}{\hat{a}_1^k} + \cdots + \hat{w}_m \frac{k(\hat{a}_m - x)^{k-1}}{\hat{a}_m^k},
\]
for some \(m = \hat{m}_k \), while for \(k = \infty \), \(\hat{g}_{n,\infty} \) is of the form

\[
\hat{g}_{n,\infty}(x) = \frac{\hat{w}_1}{\hat{a}_1} \exp(-x/\hat{a}_1) + \cdots + \frac{\hat{w}_m}{\hat{a}_m} \exp(-x/\hat{a}_m)
\]

for some \(m = \hat{m}_\infty \) where \(\hat{w}_1, \ldots, \hat{w}_m \) and \(\hat{a}_1, \ldots, \hat{a}_m \) are respectively the weights and the support points of the maximizing mixing distribution \(\hat{F}_{n,k} \).

Proof. First, we prove that there exists a density \(\hat{g}_n \) that maximizes the “usual” log-likelihood \(l_n = \int_0^\infty \log g(x) dG_n(x) \) over the class \(D_k \) with \(k \) finite. For \(g \) in \(D_k \), let \(F \) be the distribution function such that

\[
g(x) = \int_0^\infty \frac{k(y-x)^{k-1}}{y^k} dF(y).
\]

The unicomponent likelihood curve \(\Gamma \) as defined by Lindsay (1983A) (see also Lindsay (1995)) is then

\[
\Gamma = \left\{ \left(\frac{k(y-X_1)^{k-1}}{y^k}, \frac{k(y-X_2)^{k-1}}{y^k}, \ldots, \frac{k(y-X_n)^{k-1}}{y^k} \right) : y \in [0, \infty) \right\}.
\]

It is easy to see that \(\Gamma \) is bounded (notice that the \(i \)-th component is equal to 0 whenever \(y < X_i \)). Also, \(\Gamma \) is closed. By Theorems 18 and 22 of Lindsay (1995), there exists a unique maximizer of \(l_n \) and the maximum is achieved by a discrete distribution function that has at most \(n \) support points.

Now, let \(g \) be a \(k \)-monotone function in \(M_k \cap L_1(\lambda) \) and let \(\int_0^\infty g(x) dx = c \) so that \(g/c \in D_k \). We have

\[
\psi_n(g) - \psi_n(\hat{g}_n) = \int_0^\infty \log \left(\frac{g(x)}{c} \right) dG_n(x) + \log(c) - c + 1
\]

\[
- \int_0^\infty \log (\hat{g}_n(x)) dG_n(x)
\]

\[
\leq \int_0^\infty \log \left(\frac{g(x)}{c} \right) dG_n(x) - \int_0^\infty \log (\hat{g}_n(x)) dG_n(x)
\]

\[
\leq 0
\]

since \(\log(c) \leq c - 1 \). Thus \(\psi_n \) is maximized over \(M_k \cap L_1(\lambda) \) by \(\hat{g}_n \in D_k \).
In the case \(k = \infty \), the assertions of the lemma are proved by Jewell (1982).

The following lemma gives a necessary and sufficient condition for a point \(t \) to be in the support of the maximizing distribution function \(\hat{F}_{n,k} \). For \(k \in \{3, \ldots \} \) it generalizes lemma 2.4, page 1662, Groeneboom, Jongbloed, and Wellner (2001b).

Lemma 2.6 Let \(X_1, \ldots, X_n \) be i.i.d. random variables from the true density \(g_0 \), and let \(\hat{F}_{n,k} \) and \(\hat{g}_{n,k} \) be the MLE of the mixing and mixed distribution respectively. Then, for \(k \in \{1, 2, \ldots \} \),

\[
\hat{H}_{n,k}(t) \equiv \mathbb{G}_n \left(\frac{k(t - X)^{\frac{k-1}{k}}/t^k}{\hat{g}_{n,k}(X)} \right) \leq 1,
\]

with equality if and only if \(t \in \text{supp}(\hat{F}_{n,k}) = \{\hat{a}_1, \cdots, \hat{a}_m\} \). In the case \(k = \infty \)

\[
\hat{H}_{n,\infty}(t) \equiv \mathbb{G}_n \left(\frac{\exp(-X/t)}{t\hat{g}_{n,\infty}(X)} \right) \leq 1, \quad \text{for all } t > 0
\]

with equality if and only if \(t \in \text{supp}(\hat{F}_{n,\infty}) = \{\hat{a}_1, \cdots, \hat{a}_m\} \).

Remark 2.1 By factoring out \(t^{k-1} \) and replacing \(t \) by \(kv \) (say), it becomes clear that the function \(\hat{H}_{n,\infty} \) on the right side of (7) is a natural limiting version as \(k \to \infty \) of the functions \(\hat{H}_{n,k} \) on the right side of (6).

Proof. Since \(\hat{F}_n \) maximizes the log-likelihood

\[
l_n(F) = \frac{1}{n} \sum_{j=1}^{n} \log \left(\int_{0}^{\infty} \frac{k(y - X)^{\frac{k-1}{k}}}{y^k} dF(y) \right),
\]

it follows that for all \(t > 0 \)

\[
\lim_{\epsilon \searrow 0} \frac{l_n((1-\epsilon)\hat{F}_n + \epsilon t) - l_n(\hat{F}_n)}{\epsilon} \leq 0.
\]
This yields
\[\frac{1}{n} \sum_{j=1}^{n} \frac{k(t - X_j)^{k-1}/t^k - \hat{g}_n(X_j)}{\hat{g}_n(X_j)} \leq 0 \]
or
\[\frac{1}{n} \sum_{j=1}^{n} \frac{k(t - X_j)^{k-1}/t^k}{\hat{g}_n(X_j)} \leq 1. \] (8)

Now, let \(M_n \) be the set defined by
\[M_n = \left\{ t > 0 : \frac{1}{n} \sum_{j=1}^{n} \frac{k(t - X_j)^{k-1}/t^k}{\hat{g}_n(X_j)} = 1 \right\}. \]

We will prove now that \(M_n = \text{supp}(\hat{F}_n) \). We write \(P_{\hat{F}_n} \) for the probability measure associated with \(\hat{F}_n \). Integrating the left hand side of (8) with respect to \(\hat{F}_n \), we have
\[\frac{1}{n} \sum_{j=1}^{n} \int_0^\infty \frac{k(t - X_j)^{k-1}/t^k}{\hat{g}_n(X_j)} d\hat{F}_n(t) = \frac{1}{n} \sum_{j=1}^{n} \hat{g}_n(X_j) = 1. \]

But, using the definition of \(M_n \), we can write,
\[1 = \frac{1}{n} \sum_{j=1}^{n} \int_0^\infty \frac{k(t - X_j)^{k-1}/t^k}{\hat{g}_n(X_j)} d\hat{F}_n(t) \]
\[= \frac{1}{n} \sum_{j=1}^{n} \int_{\mathbb{R}^+ \setminus M_n} \frac{k(t - X_j)^{k-1}/t^k}{\hat{g}_n(X_j)} d\hat{F}_n(t) + \frac{1}{n} \sum_{j=1}^{n} \int_{M_n} \frac{k(t - X_j)^{k-1}/t^k}{\hat{g}_n(X_j)} d\hat{F}_n(t), \]
and so
\[P_{\hat{F}_n}(\mathbb{R}^+ \setminus M_n) = \int_{\mathbb{R}^+ \setminus M_n} \frac{1}{n} \sum_{j=1}^{n} \frac{k(t - X_j)^{k-1}/t^k}{\hat{g}_n(X_j)} d\hat{F}_n(t) \]
\[< P_{\hat{F}_n}(\mathbb{R}^+ \setminus M_n), \text{ if } P_{\hat{F}_n}(\mathbb{R}^+ \setminus M_n) > 0. \]

This is a contradiction and we conclude that \(P_{\hat{F}_n}(\mathbb{R}^+ \setminus M_n) = 0. \)

The proof of the result for \(k = \infty \) is given by Jewell (1982), page 481.

\[\blacksquare \]
2.3. The Least Squares estimator of a k-monotone density. The least squares criterion is

$$Q_n(g) = \frac{1}{2} \int_0^\infty g^2(x)dx - \int_0^\infty g(x)dG_n(x).$$ (9)

We want to minimize this over $g \in D_k \cap L^2(\lambda)$, the subset of square integrable k-monotone functions. Although existence of a minimizer of Q_n over $D_k \cap L^2(\lambda)$ is quite easily established, the minimizer has a somewhat complicated characterization due to the density constraint $\int_0^\infty g(x)dx = 1$. Therefore we will actually consider the alternative optimization problem of minimizing $Q_n(g)$ over $M_k \cap L^2(\lambda)$. In this optimization problem existence requires more work, but the resulting characterization of the estimator is considerably simpler. Further we will show that even though the resulting estimator does not necessarily have total mass one, it does have total mass converging almost surely to one and it consistently estimates $g_0 \in D_k$.

Using arguments similar to those in the proof of Theorem 1 in Williamson (1956), one can show that $g \in M_k$ if and only if

$$g(x) = \int_0^\infty (t - x)^{k-1}d\mu(t)$$

for a positive measure μ on $(0, \infty)$. Thus we can rewrite the criterion in terms of the corresponding measures μ: by Fubini’s theorem

$$\int_0^\infty g^2(x)dx = \int_0^\infty \int_0^\infty r_k(t, t')d\mu(t)d\mu(t')$$

where

$$r_k(t, t') \equiv \int_0^\infty (t - x)^{k-1}(t' - x)^{k-1}dx = \int_0^{t \wedge t'} (t - x)^{k-1}(t' - x)^{k-1}dx,$$

and

$$\int_0^\infty g(x)dG_n(x) = \int_0^\infty \int_0^\infty (t - x)^{k-1}d\mu(t)dG_n(x) = \int_0^\infty s_{n,k}(t)d\mu(t)$$

where

$$s_{n,k}(t) \equiv G_n((t - X)^{k-1}).$$
Hence it follows that, with $g = g_\mu$

$$Q_n(g) = \frac{1}{2} \int_0^\infty \int_0^\infty r_k(t, t')d\mu(t)d\mu(t') - \int_0^\infty s_{n, k}(t)d\mu(t) \equiv \Phi_n(\mu)$$

Now we want to minimize Φ_n over the set X of all non-negative measures μ on R^+. Since Φ_n is convex and can be restricted to a subset C of X on which it is lower semicontinuous, a solution exists and is unique.

Proposition 2.1 The problem of minimizing $\Phi_n(\mu)$ over all non-negative measures μ has a unique solution $\tilde{\mu}$.

Proof. Existence follows from Zeidler (1985), Theorem 38.B, page 152. Here we verify the hypotheses of that theorem.

We identity X of Zeidler’s theorem with the space X of nonnegative measures on $[0, \infty)$, and we show that we can take M of Zeidler’s theorem to be

$$C \equiv \{ \mu \in X : \mu(t, \infty) \leq Dt^{-(k-1/2)} \}$$

for some constant $D < \infty$.

First, we can, without loss, restrict the minimization to the space of nonnegative measures on $[X(1), \infty)$ where $X(1) > 0$ is the first order statistic of the data. To see this, note that we can decompose any measure μ as $\mu = \mu_1 + \mu_2$ where μ_1 is concentrated on $[0, X(1))$ and μ_2 is concentrated on $[X(1), \infty)$. Since the second term of Φ_n is zero for μ_1, the contribution of the μ_1 component to $\Phi_n(\mu)$ is always non-negative, so we make $\inf \Phi_n(\mu)$ no larger by restricting to measures on $[X(1), \infty)$.

We can restrict further to measures μ with $\int_0^\infty t^{k-1}d\mu(t) \leq D$ for some finite $D = D_\omega$. To show this, we first give a lower bound for $r_k(s, t)$.

For $s, t \geq t_0 > 0$ we have

$$r_k(s, t) \geq \frac{(1 - e^{-v_0})t_0}{2k} s^{k-1}t^{k-1}$$

where $v_0 \approx 1.59$. To prove (10) we will use the inequality

$$(1 - v/k)^{k-1} \geq e^{-v}, \quad 0 \leq v \leq v_0, \quad k \geq 2.$$
This inequality holds by straightforward computation; see Hall and Wellner (1979), especially their Proposition 2.) Thus we compute

\[
 r_k(s,t) = \int_0^\infty (s-x)^{k-1} (t-x)^{k-1} dx
 = s^{k-1} t^{k-1} \int_0^\infty (1 - x/s)^{k-1} (1 - x/t)^{k-1} dx
 = \frac{1}{k} s^{k-1} t^{k-1} \int_0^\infty \left(1 - \frac{y}{sk}\right)^{k-1} \left(1 - \frac{y}{tk}\right)^{k-1} dy
 \geq \frac{1}{k} s^{k-1} t^{k-1} \int_0^{v_0 (s \wedge t)} e^{-y/s} e^{-y/t} dy
 = \frac{1}{k} s^{k-1} t^{k-1} \int_0^{v_0 (s \wedge t)} e^{-cy} dy, \quad c \equiv 1/s + 1/t
 = \frac{1}{k} s^{k-1} t^{k-1} \frac{1}{c} \int_0^{v_0 (s \wedge t)} e^{-cy} dy,
 = \frac{1}{k} s^{k-1} t^{k-1} \frac{1}{c} (1 - \exp(-c(s \wedge t)v_0))
 \geq \frac{1}{k} s^{k-1} t^{k-1} \frac{1}{c} (1 - \exp(-v_0))
\]

since

\[
 c(s \wedge t) = \frac{s + t}{st} (s \wedge t) = \begin{cases}
 (t+s)/t, & s \leq t \\
 (t+s)/s, & s \geq t
\end{cases} \geq 1.
\]

But we also have

\[
 \frac{1}{c} = \frac{1}{(1/s) + (1/t)} = \frac{st}{s + t} \geq \frac{1}{2} s \wedge t \geq \frac{1}{2} t_0
\]

for \(s, t \geq t_0 \), so we conclude that (10) holds.

From the inequality (10) we conclude that for measures \(\mu \) concentrated on \([X(1), \infty)\) we have

\[
 \int \int r_k(s,t) d\mu(s) d\mu(t) \geq \left(\frac{1 - e^{-v_0}}{2k} X(1) \right)^2 \left(\int_0^\infty t^{k-1} d\mu(t) \right)^2.
\]

On the other hand,

\[
 \int_0^\infty s_{n,k}(t) d\mu(t) \leq \int_0^\infty t^{k-1} d\mu(t).
\]
Combining these two inequalities it follows that for any measure \(\mu \) concentrated on \([X(1), \infty) \) we have
\[
\Phi_n(\mu) = \frac{1}{2} \iint r_k(t, s) d\mu(t) d\mu(s) - \int_0^\infty s_{n,k}(t) d\mu(t) \\
\geq \frac{(1 - e^{-\nu_0})X(1)}{4k} \left(\int_0^\infty t^{k-1} d\mu(t) \right)^2 - \int_0^\infty t^{k-1} d\mu(t) \\
\equiv Am^2_{k-1} - m_{k-1}.
\]
This lower bound is strictly positive if
\[
m_{k-1} > 1/A = \frac{4k}{(1 - e^{-\nu_0})X(1)}.
\]
But for such measures \(\mu \) we can make \(\Phi \) smaller by taking the zero measure. Thus we may restrict the minimization problem to the collection of measures \(\mu \) satisfying
\[
m_{k-1} \leq 1/A.
\]
Now we decompose any measure \(\mu \) on \([X(1), \infty) \) as \(\mu = \mu_1 + \mu_2 \) where \(\mu_1 \) is concentrated on \([X(1), MX(n)] \) and \(\mu_2 \) is concentrated on \((MX(n), \infty) \) for some (large) \(M > 0 \). Then it follows that
\[
\Phi_n(\mu) \geq \frac{1}{2} \iint r_k(t, s) d\mu_2(t) d\mu_2(s) - \int_0^\infty t^{k-1} d\mu(t) \\
\geq \frac{(1 - e^{-\nu_0})MX(n)}{4k} (MX(n))^{2k-2} \mu(MX(n), \infty)^2 - 1/A \\
\equiv B \mu(MX(n), \infty)^2 - 1/A > 0
\]
if
\[
\mu(MX(n), \infty)^2 > \frac{1}{AB} = \frac{4k}{(1 - e^{-\nu_0})X(1)} \frac{4k}{(1 - e^{-\nu_0})(MX(n))^{2k-1}},
\]
and hence we can restrict to measures \(\mu \) with
\[
\mu(MX(n), \infty) \leq \frac{4k}{(1 - e^{-\nu_0})X^{1/2}(n)^{k-1/2}} \frac{1}{M^{k-1/2}}
\]
for every \(M \geq 1 \). But this implies that \(\mu \) satisfies
\[
\int_0^\infty t^{k-3/4} d\mu(t) \leq D
\]
for some $0 < D = D_\omega < \infty$, and this implies that t^{k-1} is uniformly integrable over $\mu \in C$. Alternatively, for $\lambda \geq 1$ we have

$$\int_{t > \lambda} t^{k-1} d\mu(t) = \lambda^{k-1} \mu(\lambda, \infty) + (k-1) \int_{\lambda}^{\infty} s^{k-2} \mu(s, \infty) ds$$

$$\leq \lambda^{k-1} \frac{K}{\lambda^{k-1/2}} + (k-1) \int_{\lambda}^{\infty} s^{k-2} K s^{-(k-1/2)} ds$$

$$= K \lambda^{-1/2} + (k-1) K \int_{\lambda}^{\infty} s^{-3/2} ds$$

$$\leq K \lambda^{-1/2} + (k-1) 2 K \lambda^{-1/2}$$

$$\to 0 \quad \text{as} \quad \lambda \to \infty$$

uniformly in $\mu \in C$.

This implies that for $\{\mu_m\} \subset C$ satisfying $\mu_m \Rightarrow \mu_0$ we have

$$\limsup_{m \to \infty} \int_{0}^{\infty} s_{n,k}(t) d\mu_m(t) \leq \int_{0}^{\infty} s_{n,k}(t) d\mu_0(t),$$

and hence Φ is lower-semicontinuous on $C:

$$\liminf_{m \to \infty} \Phi_n(\mu_m) \geq \Phi(\mu_0).$$

Since Φ_n is lower semi-compact (i.e. the sets $C_r \equiv \{\mu \in C : \Phi_n(\mu) \leq r\}$ are compact for $r \in \mathbb{R}$), the existence of a minimum follows from Zeidler (1985), Theorem 38.B, page 152. Uniqueness follows from the strict convexity of Φ_n.

The following proposition characterizes the least squares estimators.

Proposition 2.2 For $k \in \{1, 2, \ldots\}$ define $\mathcal{Y}_{n,k}$ and $\mathcal{H}_{n,k}$ respectively by

$$\mathcal{Y}_{n,k}(t) = \int_{0}^{t} \int_{0}^{t_{k-1}} \cdots \int_{0}^{t_2} \mathcal{G}_n(t_1) dt_1 dt_2 \cdots dt_{k-1}, \quad x \geq 0,$$

and

$$\mathcal{H}_{n,k}(t) = \int_{0}^{t} \int_{0}^{t_k} \cdots \int_{0}^{t_2} \mathcal{G}_n(t_1) dt_1 dt_2 \cdots dt_k, \quad x \geq 0.$$
Then $\tilde{g}_{n,k}$ is the LS estimator over $\mathcal{M}_k \cap L_2(\lambda)$ if and only if the following conditions are satisfied for $\tilde{g}_{n,k}$ and $\tilde{H}_{n,k}$:

\begin{align}
\begin{cases}
\tilde{H}_{n,k}(t) \geq \Upsilon_{n,k}(t), & \text{for } t \geq 0, \\
\tilde{H}_{n,k}(t) = \Upsilon_{n,k}(t), & \text{for } t \in \text{supp} \{\tilde{F}_{n,k}\}.
\end{cases}
\end{align}

(13)

Remark 2.2 Note that for $k \in \{1, 2, \ldots\}$ the processes $\Upsilon_{n,k}$ and $\tilde{H}_{n,k}$ can be written in the more compact forms

$$
\Upsilon_{n,k}(t) = \int_0^t \frac{(t - x)^{k-1}}{(k-1)!} d\mathbb{G}_n(x)
$$

and

$$
\tilde{H}_{n,k}(t) = \int_0^t \frac{(t - x)^{k-1}}{(k-1)!} \tilde{g}_n(x)dx.
$$

Proof. Let $\tilde{g}_n \in \mathcal{M}_k \cap L_2(\lambda)$ satisfy (13), and let g be an arbitrary function in $\mathcal{M}_k \cap L_2(\lambda)$. Then

$$
Q_n(g) - Q_n(\tilde{g}_n) = \frac{1}{2} \int g^2(x)dx - \frac{1}{2} \int \tilde{g}_n^2(x)dx
$$

$$
- \int g(x)d\mathbb{G}_n(x) + \int \tilde{g}_n(x)d\mathbb{G}_n(x).
$$

Now, using integration by parts

$$
\int_0^\infty (g(x) - \tilde{g}_n(x))d\mathbb{G}_n(x)
$$

$$
= - \int_0^\infty \mathbb{G}_n(x)(g'(x) - \tilde{g}'_n(x))dx
$$

$$
= \int_0^\infty \left(\int_0^x \mathbb{G}_n(y)dy \right) (g''(x) - \tilde{g}''_n(x))dx
$$

$$
\vdots
$$

$$
= (-1)^k \int_0^\infty \Upsilon_n(x)(dg^{(k-1)}(x) - d\tilde{g}_n^{(k-1)}(x)),
$$

and
\[
\int_0^\infty (g^2(x) - \tilde{g}_n^2(x)) \, dx \\
= \int_0^\infty (g(x) + \tilde{g}_n(x))(g(x) - \tilde{g}_n(x)) \, dx \\
= -\int_0^\infty \left(\int_0^x g(y) \, dy + \int_0^x \tilde{g}_n(y) \, dy \right) (g'(x) - \tilde{g}_n'(x)) \, dx \\
= (-1)^k \int_0^\infty (G_k(x) + \tilde{H}_n(x))(dg^{(k-1)}(x) - d\tilde{g}_n^{(k-1)}(x)),
\]
where \(G_k\) is the \(k\)-th order integral of \(g\). Hence,
\[
Q_n(g) - Q_n(\tilde{g}_n) = \frac{1}{2}(-1)^k \int_0^\infty (G_k(x) + \tilde{H}_n(x))(dg^{(k-1)}(x) - d\tilde{g}_n^{(k-1)}(x)) \\
- (-1)^k \int_0^\infty Y_n(x)(dg^{(k-1)}(x) - d\tilde{g}_n^{(k-1)}(x)) \\
= \frac{1}{2}(-1)^k \int_0^\infty (G_k(x) - \tilde{H}_n(x))(dg^{(k-1)}(x) - d\tilde{g}_n^{(k-1)}(x)) \\
+ (-1)^k \int_0^\infty (\tilde{H}_n(x) - Y_n(x))(dg^{(k-1)}(x) - d\tilde{g}_n^{(k-1)}(x)) \\
\geq (-1)^k \int_0^\infty (\tilde{H}_n(x) - Y_n(x))(dg^{(k-1)}(x) - d\tilde{g}_n^{(k-1)}(x)).
\]
To see that, we notice (using integration by parts) that
\[
(-1)^k \int_0^\infty (G_k(x) - \tilde{H}_n(x))(dg^{(k-1)}(x) - d\tilde{g}_n^{(k-1)}(x)) = \int_0^\infty (g(x) - \tilde{g}_n(x))^2 \, dx.
\]
But condition (13) implies that
\[
\int_0^\infty (\tilde{H}_n(x) - Y_n(x))d\tilde{g}_n^{(k-1)}(x) = 0.
\]
Therefore,
\[
Q_n(g) - Q_n(\tilde{g}_n) \geq \int_0^\infty (\tilde{H}_n(x) - Y_n(x))(-1)^k dg^{(k-1)}(x) \geq 0,
\]
since \(\tilde{H}_n \geq Y_n\) and \((-1)^{k-2}g^{(k-1)}(x) = (-1)^k dg^{(k-1)}(x) \geq 0\) because \((-1)^{k-2}g^{(k-2)}\) is convex.
Conversely, take \(g_t \in \mathcal{M}_k \) to be
\[
g_t(x) = \frac{(t - x)^{k-1}}{(k-1)!}, \quad x \geq 0.
\]
We have:
\[
\lim_{\epsilon \to 0} \frac{Q_n(\tilde{g}_n + \epsilon g_t) - Q_n(\tilde{g}_n)}{\epsilon} = \int_0^t \frac{(t - x)^{k-1}}{(k-1)!} \tilde{g}_n(x) dx - \int_0^t \frac{(t - x)^{k-1}}{(k-1)!} d\mathbb{G}_n(x).
\]
Using integration by parts, we obtain
\[
0 \leq \lim_{\epsilon \to 0} \frac{Q_n(\tilde{g}_n + \epsilon g_t) - Q_n(\tilde{g}_n)}{\epsilon} = \tilde{H}_n(t) - \mathbb{V}_n(t).
\]
Finally, since \(\tilde{g}_n \) maximizes \(Q_n \) it follows that
\[
0 = \lim_{\epsilon \to 0} \frac{Q_n((1 + \epsilon)\tilde{g}_n) - Q_n(\tilde{g}_n)}{\epsilon} = \int_0^\infty \tilde{g}_n^2(x) dx - \int_0^\infty \tilde{g}_n(x) d\mathbb{G}_n(x)
\]
\[
= \int_0^\infty (\tilde{H}_n(x) - \mathbb{V}_n(x))(1)^{k-1}d\tilde{g}_n^{(k-1)}(x),
\]
which holds if and only if the equality in (13) holds.

In order to prove that the LSE is a spline of degree \(k - 1 \), we need the following result.

Lemma 2.7 Let \([a, b] \subseteq (0, \infty)\) and let \(g \) be a nonnegative and nonincreasing function on \([a, b]\). For any polynomial \(P_{k-1} \) of degree \(\leq k - 1 \) on \([a, b]\), if the function
\[
\Delta(t) = \int_0^t (t - s)^{k-1} g(s) ds - P_{k-1}(s), \quad t \in [a, b]
\]
admits infinitely many zeros in \([a, b]\), then there exists \(t_0 \in [a, b] \) such that \(g \equiv 0 \) on \([t_0, b]\) and \(g > 0 \) on \([a, t_0) \) if \(t_0 > a \).

Proof. By applying the mean value theorem \(k \) times, it follows that \((k - 1)!g = \Delta^{(k)} \) admits infinitely many zeros in \([a, b]\). But since \(g \) is assumed to be nonnegative and nonincreasing, this implies that if \(t_0 \) is the smallest zero of \(g \) in \([a, b]\), then \(g \equiv 0 \) on \([t_0, b]\). By definition of \(t_0 \), \(g > 0 \) on \([a, t_0) \) if \(t_0 > a \).

\[\text{imsart-aos ver. 2005/05/19 file: kmon-pl-bwf4.tex date: November 10, 2018}\]
Remark 2.3 In the previous lemma, the assumption that Δ has infinitely many zeros can be weakened. Indeed, we obtain the same conclusion if we assume that Δ has $k + 1$ distinct zeros in $[a, b]$.

Now, we will use the characterization of the LSE \tilde{g}_n together with the previous lemma to show that it is a finite mixture of $Beta(1, k)$’s. We know from Proposition 13 that \tilde{g}_n is the LSE if and only if

$$\bar{H}_n(t) \geq \bar{Y}_n(t), \quad \text{for } t > 0,$$

and

$$\int_0^\infty \left(\bar{H}_n(t) - \bar{Y}_n(t) \right) d\tilde{g}_n^{(k-1)}(t) = 0$$

where

$$\bar{H}_n(t) = \int_0^t \frac{(t-s)^{k-1}}{(k-1)!} \tilde{g}_n(t) \, dt,$$

and

$$\bar{Y}_n(t) = \int_0^t \frac{(t-s)^{k-1}}{(k-1)!} dG_n(t).$$

The condition in (15) implies that \bar{H}_n and \bar{Y}_n have to be equal at any point of increase of the monotone function $(-1)^{k-1} \tilde{g}_n^{(k-1)}$. Therefore, the set of points of increase of $(-1)^{k-1} \tilde{g}_n^{(k-1)}$ is included in the set of zeros of the function $\tilde{\Delta}_n = \bar{H}_n - \bar{Y}_n$. Now, note that \bar{Y}_n can be given by the explicit expression:

$$\bar{Y}_n(t) = \frac{1}{(k-1)!} \frac{1}{n} \sum_{j=1}^n (t - X(j))^{k-1}, \quad \text{for } t > 0.$$

In other words, \bar{Y}_n is a spline of degree $k - 1$ with simple knots $X(1), \cdots, X(n)$ (for a definition of the multiplicity of knots, see e.g. de Boor (1978), page 96, or DeVore and Lorentz (1993), page 140). Also note that the function $(-1)^{k-1} \tilde{g}_n^{(k-1)}$ cannot have a positive density with respect to Lebesgue measure λ. Indeed, if we assume otherwise, then we can find $0 \leq j \leq n$ and an
interval $I \subset (X(j), X(j+1))$ (with $X(0) = 0$ and $X(n+1) = \infty$) such that I has a nonempty interior, and $\tilde{H}_n \equiv \Upsilon_n$ on I. This implies that $\tilde{H}_n^{(k)} \equiv \Upsilon_n^{(k)} \equiv 0$, since Υ_n is a polynomial of degree $k - 1$ on I, and hence $\tilde{g}_n \equiv 0$ on I. But the latter is impossible since it was assumed that $(-1)^{k-1}\tilde{g}_n^{(k-1)}$ was strictly increasing on I. Thus the monotone function $(-1)^{k-1}\tilde{g}_n^{(k-1)}$ can have only two components: discrete and singular. In the following theorem, we will prove that it is actually discrete with finitely many points of jump.

Proposition 2.3 There exists $m \in \mathbb{N}\setminus\{0\}$, $\tilde{a}_1, \ldots, \tilde{a}_m$ and $\tilde{w}_1, \ldots, \tilde{w}_m$ such that for all $x > 0$, the LSE \tilde{g}_n is given by

$$
\tilde{g}_n(x) = \tilde{w}_1 \frac{k(\tilde{a}_1 - x)^{k-1}}{\tilde{a}_1^k} + \cdots + \tilde{w}_m \frac{k(\tilde{a}_m - x)^{k-1}}{\tilde{a}_m^k}.
$$

Proof. We need to consider two cases:

(i) The number of zeros of $\tilde{\Delta}_n = \tilde{H}_n - \Upsilon_n$ is finite. This implies by (15) that the number of points of increase of $(-1)^{k-1}\tilde{g}_n^{(k-1)}$ is also finite. Therefore, $(-1)^{k-1}\tilde{g}_n^{(k-1)}$ is discrete with finitely many jumps and hence \tilde{g}_n is of the form given in (16).

(ii) Now, suppose that $\tilde{\Delta}_n$ has infinitely many zeros. Let j be the smallest integer in $\{0, \ldots, n - 1\}$ such that $[X(j), X(j+1)]$ contains infinitely many zeros of $\tilde{\Delta}_n$ (with $X(0) = 0$ and $X(n+1) = \infty$). By Lemma 2.7, if t_j is the smallest zero of \tilde{g}_n in $[X(j), X(j+1)]$, then $\tilde{g}_n \equiv 0$ on $[t_j, X(j+1)]$ and $\tilde{g}_n > 0$ on $[X(j), t_j]$ if $t_j > X(j)$. Note that from the proof of Proposition 2.1, we know that the minimizing measure $\tilde{\mu}_n$ does not put any mass on $(0, X(1)]$, and hence the integer j has to be strictly greater than 0.

Now, by definition of j, $\tilde{\Delta}_n$ has finitely many zeros to the left of $X(j)$, which implies that $(-1)^{k-1}\tilde{g}_n^{(k-1)}$ has finitely many points of increase in $(0, X(j))$. We also know that $\tilde{g}_n \equiv 0$ on $[t_j, \infty)$. Thus we only need to show that the number of points of increase of $(-1)^{k-1}\tilde{g}_n^{(k-1)}$ in $[X(j), t_j]$ is finite, when $t_j > X(j)$. This can be argued as follows: Consider z_j to be the smallest
zero of $\tilde{\Delta}_n$ in $[X(j), X(j+1)]$. If $z_j \geq t_j$, then we cannot possibly have any point of increase of $(-1)^{k-1}\tilde{g}_n^{(k-1)}$ in $[X(j), t_j]$ because it would imply that we have a zero of Δ_n that is strictly smaller than z_j. If $z_j < t_j$, then for the same reason, $(-1)^{k-1}\tilde{g}_n^{(k-1)}$ has no point of increase in $[X(j), z_j)$. Finally, $(-1)^{k-1}\tilde{g}_n^{(k-1)}$ cannot have infinitely many points of increase in $[z_j, t_j)$ because that would imply that Δ_n has infinitely zeros in (z_j, t_j), and hence by Lemma 2.7, we can find $t'_j \in (z_j, t_j)$ such that $\tilde{g}_n \equiv 0$ on $[t'_j, t_j]$. But this impossible since $\tilde{g}_n > 0$ on $[X(j), t_j)$.

Remark 2.4 We have not succeeded in extending Proposition 2.1 to the case $k = \infty$. It is possible to prove the existence of a least squares estimator if the maximization is carried over over $D_\infty \cap L^2(\lambda)$ rather than $M_\infty \cap L^2(\lambda)$, but this does not seem (to us) to be the right direction to proceed.

3. Consistency. In this section, we will prove that both the MLE and LSE are strongly consistent. Furthermore, we will show that this consistency is uniform on intervals of the form $[c, \infty)$, where $c > 0$.

3.1. Consistency of the maximum likelihood estimator. Consistency of the maximum likelihood estimators for the classes D_k in the sense of Hellinger convergence of the mixed density is a relatively simple straightforward consequence of the methods of Pfanzagl (1988), Van de Geer (1993), and Van de Geer (1996). As usual, the Hellinger distance H is given by $H^2(p, q) = (1/2) \int \{\sqrt{p} - \sqrt{q}\}^2 d\mu$ for any common dominating measure μ.

Proposition 3.1 Suppose that $\hat{g}_{n,k}$ is the MLE of g_0 in the class D_k, $k \in \{1, \ldots, \infty\}$. Then

$$H(\hat{g}_{n,k}, g_0) \to_{a.s.} 0 \quad \text{as} \quad n \to \infty.$$

Furthermore $\hat{F}_{n,k} \to_d F_0$ almost surely where $\hat{F}_{n,k}$ is the MLE of the mixing distribution function F_0.
Proof. This follows from the methods of Pfanzagl (1988), Van de Geer (1993), and Van de Geer (1996), by using the Glivenko-Cantelli preservation theorems of Van der Vaart and Wellner (2000). See also Van de Geer (1999), page 54, example 4.2.4, and Wellner (2003b), pages 98 to 99.

The following lemma establishes a useful bound for \(k\)-monotone densities.

Lemma 3.1 If \(g\) is a \(k\)-monotone density function for \(k \geq 2\), then

\[
g(x) \leq \frac{1}{x} \left(1 - \frac{1}{k}\right)^{k-1}
\]

for all \(x > 0\).

Proof. We have

\[
g(x) = \int_x^\infty \frac{k}{y^k} (y-x)^{k-1} dF(y) = \frac{1}{x} \int_x^\infty \frac{kx}{y} (1 - \frac{x}{y})^{k-1} dF(y) \\
\leq \frac{1}{x} \sup_{x \leq y < \infty} \frac{kx}{y} \left(1 - \frac{x}{y}\right)^{k-1} = \frac{k}{x} \sup_{0 < u \leq 1} u (1 - u)^{k-1} \\
= \frac{1}{x} \left(1 - \frac{1}{k}\right)^{k-1}
\]

since, with \(g_k(u) = u(1 - u)^{k-1}\) we have

\[
g'_k(u) = (1 - u)^{k-1} - u(k-1)(1 - u)^{k-2} = (1 - u)^{k-2}(1 - ku)
\]

which equals zero if \(u = 1/k\) and this yields a maximum. (Note that when \(k = 2\), this bound equals \(1/(2x)\) which agrees with the bound given by Jongbloed (1995), page 117 in this case.)

Proposition 3.2 Let \(g_0\) be a \(k\)-monotone density on \((0, \infty)\) and fix \(c > 0\). Then

\[
\sup_{x \geq c} |\hat{g}_n(x) - g_0(x)| \to_{a.s.} 0, \quad as \ n \to \infty.
\]
Proof. Let F_0 be the mixing distribution function associated with g_0. Then for all $x > 0$, we have

$$g_0(x) = \int_0^\infty \frac{k(t-x)^{k-1}}{t^k} dF_0(t).$$

Now, let Y_1, \ldots, Y_m be i.i.d. from F_0. Taking $m = n$, let F_n be the corresponding empirical distribution and g_n the mixed density

$$g_n(x) = \int_0^\infty \frac{k(t-x)^{k-1}}{t^k} dF_n(t), \quad x > 0.$$

Let $d > 0$. Using integration by parts, we have for all $x > d$

$$|g_n(x) - g_0(x)| = \left| \int_x^\infty \frac{k(t-x)^{k-1}}{t^k} d(F_n - F_0)(t) \right|
= \left| \int_x^\infty \frac{(k-1)t^{k-1} - k(t-x)^{k-1}}{t^{2k}} (F_n - F_0)(t) dt \right|
\leq \left(\int_x^\infty \frac{k^2(t-x)^{k-2}}{t^k} dt + \int_x^\infty \frac{k^2(t-x)^{k-2}}{t^{k+1}} dt \right) \|F_n - F_0\|_\infty
\leq \left(\int_d^\infty \frac{k(t-d)^{k-2}}{t^k} dt + k^2 \int_d^\infty \frac{(t-d)^{k-2}}{t^{k+1}} dt \right) \|F_n - F_0\|_\infty
\leq \left(2k^2 \int_d^\infty \frac{(t-d)^{k-2}}{t^k} dt \right) \|F_n - F_0\|_\infty
= C_d \|F_n - F_0\|_\infty.$$

By the Glivenko-Cantelli theorem, the sequence of k-monotone densities $(g_n)_n$ satisfies

$$\sup_{x \in [d, \infty)} |g_n(x) - g_0(x)| \to a.s. \ 0, \ \text{as} \ n \to \infty.$$

Since the MLE \hat{g}_n maximizes the criterion function over the class $\mathcal{M}_k \cap L_1(\lambda)$, we have

$$\lim_{\epsilon \searrow 0} \frac{1}{\epsilon} (\psi_n(1-\epsilon)\hat{g}_n + \epsilon g_n) - \psi_n(\hat{g}_n) \leq 0,$$

and this is equivalent to

$$\int_0^\infty \frac{g_n(x)}{g_0(x)} dG_n(x) \leq 1.$$
Let \(\hat{F}_n \) denote again the MLE of the mixing distribution. By the Helly-Bray theorem, there exists a subsequence \(\{ \hat{F}_l \} \) that converges weakly to some distribution function \(\hat{F} \) and hence for all \(x > 0 \)
\[
\hat{g}_l(x) \to \hat{g}(x), \quad \text{as} \; l \to \infty,
\]
where
\[
\hat{g}(x) = \int_0^\infty k \frac{(t-x)^{k-1}}{t^k} d\hat{F}(t), \quad x > 0.
\]
The previous convergence is uniform on intervals of the form \([d, \infty), \; d > 0\]. This follows since \(\hat{g}_l \) and \(\hat{g} \) are monotone and \(\hat{g} \) is continuous.

Much of the following is along the lines of Jongbloed (1995), pages 117-119, and Groeneboom, Jongbloed, and Wellner (2001b), pages 1674-1675. We are going to show that \(\hat{g} \) and the true density \(g_0 \) have to be the same. For \(0 < \alpha < 1 \) define \(\eta_\alpha = G_0^{-1}(1 - \alpha) \). Fix \(\epsilon \) so small that \(\epsilon < \eta_\epsilon \). By (1) there is a number \(D_\epsilon > 0 \) such that \(\hat{g}_l(\eta_\epsilon) \geq D_\epsilon \) for sufficiently large \(l \).

To see this, note that (1) implies that
\[
1 \geq \int_0^\infty \frac{g_l(x)}{\hat{g}_l(x)} dG_l(x) \geq \int_{\eta_\epsilon}^\infty \frac{g_l(x)}{\hat{g}_l(x)} dG_l(x) \geq \frac{1}{\hat{g}_l(\eta_\epsilon)} \int_{\eta_\epsilon}^\infty g_l(x) dG_l(x),
\]
and hence
\[
\liminf_l \hat{g}_l(\eta_\epsilon) \geq \liminf_l \int_{\eta_\epsilon}^\infty g_l(x) dG_l(x) = \int_{\eta_\epsilon}^\infty g_0(x) dG_0(x) > 0,
\]
by the choice of \(\eta_\epsilon \) and hence we can certainly take \(D_\epsilon = \int_{\eta_\epsilon}^\infty g_0(x) dG_0(x)/2 \).

Hence, by continuity of \(g_l \) and the bound in Lemma 3.1
\[
\hat{g}_l(z) \leq \frac{1}{z} (1 - \frac{1}{k})^{k-1} \equiv \frac{e_k}{z}, \quad \hat{g}_l(z) \leq \frac{1}{z} (1 - \frac{1}{k})^{k-1} \equiv \frac{e_k}{z},
\]
\(g_l/\hat{g}_l \) is uniformly bounded on the interval \([\epsilon, \eta_\epsilon]\). That is, there exist two constants \(c_\epsilon \) and \(\overline{c}_\epsilon \) such that for all \(x \in [\epsilon, \eta_\epsilon] \)
\[
c_\epsilon \leq \frac{g_l(x)}{\hat{g}_l(x)} \leq \overline{c}_\epsilon.
\]
In fact,
\[
\frac{g_l(x)}{\tilde{g}_l(x)} \leq \frac{g_l(\epsilon)}{\tilde{g}_l(\eta_k)} \leq \frac{\epsilon^{-1}e_k}{D_{\epsilon}},
\]
while
\[
\frac{g_l(x)}{\tilde{g}_l(x)} \geq \frac{g_l(\eta_k)}{\tilde{g}_l(\epsilon)} \geq \frac{g_0(\eta_k) / 2}{\epsilon^{-1}e_k}
\]
using the (uniform) convergence of \(g_l\) to \(g_0\). Therefore
\[
\frac{g_l(x)}{\tilde{g}_l(x)} \rightarrow \frac{g_0(x)}{\hat{g}(x)}
\]
uniformly on \([\epsilon, \eta]\). For sufficiently large \(l\), we have using (1)
\[
\int_{\epsilon}^{\eta_k} \frac{g_0(x)}{\hat{g}(x)} dG_l(x) \leq \int_{\epsilon}^{\eta_k} \left(\frac{g_l(x)}{\tilde{g}_l(x)} + \epsilon \right) dG_l(x) \leq 1 + \epsilon.
\]
But since \(G_l\) converges weakly to \(G_0\) the distribution function of \(g_0\) and \(g_0/\hat{g}\) is continuous and bounded on \([\epsilon, \eta]\), we conclude that
\[
\int_{\epsilon}^{\eta_k} \frac{g_0(x)}{\hat{g}(x)} dG(x) \leq 1 + \epsilon.
\]
Now, by Lebesgue’s monotone convergence theorem, we conclude that
\[
\int_{0}^{\infty} \frac{g_0(x)}{\hat{g}(x)} dG_0(x) \leq 1,
\]
which is equivalent to
\[
(2) \quad \int_{0}^{\infty} \frac{g_0^2(x)}{\hat{g}(x)} dx \leq 1.
\]
Define \(\tau = \int_{0}^{\infty} \hat{g}(x) dx\). Then \(\hat{h} = \tau^{-1} \hat{g}\) is a \(k\)-monotone density. By (2), we have that
\[
\int_{0}^{\infty} \frac{g_0^2(x)}{\hat{h}(x)} dx = \tau \int_{0}^{\infty} \frac{g_0^2(x)}{\hat{g}(x)} dx \leq \tau.
\]
Now consider the function
\[
K(g) = \int_{0}^{\infty} \frac{g_0^2(x)}{\hat{g}(x)} dx
\]
defined on the class C_d of all continuous densities g on $[0, \infty)$. Minimizing K is equivalent to minimizing

$$
\int_0^\infty \left(\frac{g_0^2(x)}{g(x)} + g(x) \right) dx.
$$

It is easy to see that the integrand is minimized pointwise by taking $g(x) = g_0(x)$. Hence $\inf_{C_d} K(g) \geq 1$. In particular, $K(\hat{h}) \geq 1$ which implies that $\tau = 1$. Now, if $g \neq g_0$ at a point x, it follows that $g \neq g_0$ on an interval of positive length. Hence, $g_0 \neq g \Rightarrow K(g) > 1$. We conclude that we have necessarily $\hat{h} = \hat{g} = g_0$.

We have proved that from each subsequence of \hat{g}_n, we can extract a further subsequence that converges to g_0 almost surely. The convergence is again uniform on intervals of the form $[c, \infty)$, $c > 0$ by monotonicity of \hat{g}_n and \hat{g} and continuity of g_0.

Corollary 3.1 Let $c > 0$. For $j = 1, \cdots, k - 2$,

$$
\sup_{x \in [c, \infty)} \left| \hat{g}_n^{(j)}(x) - g_0^{(j)}(x) \right| \rightarrow_{a.s.} 0, \text{ as } n \rightarrow \infty,
$$

and for each $x > 0$ at which g_0 is $k - 1$-times differentiable,

$$
\hat{g}_n^{(k-1)}(x) \rightarrow_{a.s.} g_0^{(k-1)}(x).
$$

Proof. This follows along the lines of the proof in Jongbloed (1995), page 119, and Groeneboom, Jongbloed, and Wellner (2001b), Lemma 3.1, page 1675.

3.2. The Least Squares estimator. We also have strong and uniform consistency of the LSE \hat{g} on intervals of the form $[c, \infty)$, $c > 0$.
Proposition 3.3 Fix $c > 0$ and suppose that the true k-monotone density g_0 satisfies $\int_0^\infty x^{-1/2}dG_0(x) < \infty$. Then $\|\tilde{g}_n - g_0\|_2 \to a.s. 0$, and

$$\sup_{x \geq c} |\tilde{g}_n(x) - g_0(x)| \to a.s. 0, \text{ as } n \to \infty.$$

Proof. The main difficulty here is that we don’t know whether the LSE \tilde{g}_n is a genuine density; i.e. $\tilde{g}_n \in \mathcal{M}_k$ but not necessarily $\tilde{g}_n \in \mathcal{D}_k$. Once we show that \tilde{g}_n stays bounded in L_2 with high probability, the proof of consistency will be much like the one used for $k = 2$; i.e., consistency of the LSE of a convex and decreasing density (see Groeneboom, Jongbloed, and Wellner (2001b)). The proof for $k = 2$ is based on the very important fact that the LSE is a density, which helps in showing that \tilde{g}_n at the last jump point $\tau_n \in [0, \delta]$ of \tilde{g}_n' for a fixed $\delta > 0$ is uniformly bounded. The proof would have been similar if we only knew that

$$\int_0^\infty \tilde{g}_n(x)dx = O_p(1).$$

Here we will first show that $\int_0^\infty \tilde{g}_n^2 d\lambda = O(1)$ almost surely. From the last display in the proof of Proposition 2.2

$$\int_0^\infty \tilde{g}_n^2(x)dx = \int_0^\infty \tilde{g}_n(x)dG_n(x)$$

and hence

$$\sqrt{\int_0^\infty \tilde{g}_n^2(x)dx} = \int_0^\infty \tilde{u}_n(x)d\mathbb{G}_n(x),$$

(3)

where $\tilde{u}_n \equiv \tilde{g}_n/\|\tilde{g}_n\|_2$ satisfies $\|\tilde{u}_n\|_2 = 1$. Take \mathcal{F}_k to be the class of functions

$$\mathcal{F}_k = \left\{ g \in \mathcal{M}_k, \int_0^\infty g^2 d\lambda = 1 \right\}.$$

In the following, we show that \mathcal{F}_k has an envelope $G \in L_1(G_0)$.

imsart-aos ver. 2005/05/19 file: kmon-p1-bwf4.tex date: November 10, 2018
Note that for $g \in \mathcal{F}_k$ we have
\[
1 = \int_0^\infty g^2 d\lambda \geq \int_0^x g^2 d\lambda \geq xg^2(x),
\]
since g is decreasing. Therefore
\[
g(x) \leq \frac{1}{\sqrt{x}} \equiv G(x)
\]
for all $x > 0$ and $g \in \mathcal{F}_k$; i.e. G is an envelope for the class \mathcal{F}_k. Since $G \in L_1(G_0)$ (by our hypothesis) it follows from the strong law that
\[
\int_0^\infty \tilde{u}_n(x)dG_n(x) \leq \int_0^\infty G(x)dG_n(x) \rightarrow a.s. \int_0^\infty G(x)dG_0(x), \text{ as } n \rightarrow \infty
\]
and hence by (3) the integral $\int_0^\infty \tilde{g}_n^2 d\lambda$ is bounded (almost surely) by some constant M_k.

Now we are ready to complete the proof. Most of the following arguments are similar to those of proof of consistency of the LSE when $k = 2$ as given in Groeneboom, Jongbloed, and Wellner (2001b).

Let $\delta > 0$ and τ_n be the last jump point of $\tilde{g}_n^{(k-1)}$ if there are jump points in the interval $(0, \delta]$, otherwise we take τ_n to be 0. To show that the sequence $(\tilde{g}_n(\tau_n))_n$ stays bounded, we consider two cases:

1. $\tau_n \geq \delta/2$. Let n be large enough so that $\int_0^\infty \tilde{g}_n^2 d\lambda \leq M_k$. We have
\[
\tilde{g}_n(\tau_n) \leq \tilde{g}_n(\delta/2) \leq (2/\delta)(\delta/2)\tilde{g}_n(\delta/2) \leq (2/\delta) \int_0^{\delta/2} \tilde{g}_n(x)dx
\]
\[
\leq (2/\delta) \sqrt{\delta/2} \sqrt{\int_0^{\delta/2} \tilde{g}_n^2(x)dx} \leq \sqrt{2/\delta} \int_0^\infty \tilde{g}_n^2(x)dx = \sqrt{2M_k}/\delta.
\]
2. $\tau_n < \delta/2$. We have
\[
\int_{\tau_n}^{\delta} \tilde{g}_n(x)dx \leq \sqrt{\delta - \tau_n} \sqrt{\int_{\tau_n}^{\delta} \tilde{g}_n^2(x)dx}
\]
\[
\leq \sqrt{\delta} \sqrt{\int_0^\infty \tilde{g}_n^2(x)dx} = \sqrt{\delta M_k}.
\]
Using the fact that \tilde{g}_n is a polynomial of degree $k - 1$ on the interval $[\tau_n, \delta]$ we have

$$\sqrt{\delta M_k} \geq \int_{\tau_n}^{\delta} \tilde{g}_n(x)dx$$

$$= \tilde{g}_n(\delta)(\delta - \tau_n) - \frac{\tilde{g}_n'(\delta)}{2}(\delta - \tau_n)^2 + \cdots + (-1)^{k-1} \frac{\tilde{g}_n^{(k-1)}(\delta)}{k!}(\delta - \tau_n)^k$$

$$\geq (\delta - \tau_n) \left(\tilde{g}_n(\delta) + \frac{1}{k}(-1)^{k-1} \tilde{g}_n'(\delta)(\delta - \tau_n) \right.$$

$$+ \cdots + (-1)^{k-1} \frac{\tilde{g}_n^{(k-1)}(\delta)}{(k-1)!}(\delta - \tau_n)^{k-1} \left) \right.$$

$$= (\delta - \tau_n) \left(\tilde{g}_n(\delta) \left(1 - \frac{1}{k} \right) + \frac{1}{k} \tilde{g}_n(\tau_n) \right)$$

$$\geq \frac{\delta}{2k} \tilde{g}_n(\tau_n)$$

and hence $\tilde{g}_n(\tau_n) \leq 2k\sqrt{M_k}/\delta$. Therefore, combining the bounds, we have for large n

$$\tilde{g}_n(\tau_n) \leq 2k\sqrt{M_k}/\delta = C_k. \quad (5)$$

Now, since $\tilde{g}_n(\delta) \leq \tilde{g}_n(\tau_n)$, the sequence $\tilde{g}_n(x)$ is uniformly bounded almost surely for all $x \geq \delta$. Using a Cantor diagonalization argument, we can find a subsequence $\{n_l\}$ so that, for each $x \geq \delta$, $g_{n_l}(x) \to \tilde{g}(x)$, as $l \to \infty$. By Fatou’s lemma, we have

$$\int_\delta^\infty (\tilde{g}(x) - g_0(x))^2dx \leq \liminf_{l \to \infty} \int_\delta^\infty (\tilde{g}_{n_l}(x) - g_0(x))^2dx. \quad (6)$$

On the other hand, the characterization of \tilde{g}_n implies that $Q_n(\tilde{g}_n) \leq Q_n(g_0)$, and this yields

$$\int_0^\infty (\tilde{g}_n(x) - g_0(x))^2dx \leq 2 \int_0^\infty (\tilde{g}_n(x) - g_0(x))d(G_n(x) - G_0(x)).$$

Thus we can write

$$\int_\delta^\infty (\tilde{g}_{n_l}(x) - g_0(x))^2dx \leq \int_0^\infty (\tilde{g}_{n_l}(x) - g_0(x))^2dx$$

$$\leq 2 \int_0^\infty (\tilde{g}_{n_l}(x) - g_0(x))d(G_{n_l}(x) - G_0(x)) \to_{a.s.} 0. \quad (7)$$
as \(l \to \infty \). The last convergence is justified as follows: since \(\int_0^\infty \tilde{g}_n^2 d\lambda \) is bounded almost surely, we can find a constant \(C > 0 \) such that \(\tilde{g}_n - g_0 \) admits \(G(x) = C/\sqrt{x}, x > 0 \), as an envelope. Since \(G \in L_1(G_0) \) by hypothesis and since the class of functions \(\{(g - g_0)1_{[G \leq M]} : g \in \mathcal{M}_k \cap L_2(\lambda)\} \) is a Glivenko-Cantelli class for every \(M > 0 \) (each element is a difference of two bounded monotone functions) (7) holds. From (6), we conclude that
\[
\int_0^\infty (\tilde{g}(x) - g_0(x))^2 dx \leq 0,
\]
and therefore, \(\tilde{g} \equiv g_0 \) on \((0, \infty)\) since \(\delta > 0 \) can be chosen arbitrarily small.

We have proved that there exists \(\Omega_0 \) with \(P(\Omega_0) = 1 \) and such that for each \(\omega \in \Omega_0 \) and any given subsequence \(\tilde{g}_{n_1}(\cdot, \omega) \), we can extract a further subsequence \(\tilde{g}_{n_2}(\cdot, \omega) \) that converges to \(g_0 \) on \((0, \infty)\). It follows that \(\tilde{g}_n \) converges to \(g_0 \) on \((0, \infty)\), and this convergence is uniform on intervals of the form \([c, \infty), c > 0 \) by the monotonicity and continuity of \(g_0 \).

Corollary 3.2 Let \(c > 0 \). Under the assumption of Proposition 3.3, we have for \(j = 1, \ldots, k - 2 \),
\[
\sup_{x \in [c, \infty)} |\tilde{g}_n^{(j)}(x) - g_0^{(j)}(x)| \to_{a.s.} 0, \text{ as } n \to \infty,
\]
and for each \(x > 0 \) at which \(g_0 \) is \(k - 1 \)-times differentiable,
\[
\tilde{g}_n^{(k-1)}(x) \to_{a.s.} g_0^{(k-1)}(x).
\]

Proof. See the proof of Corollary 3.1.

4. Asymptotic Minimax risk lower bounds for the rates of convergence. In this section our goal is to derive minimax lower bounds for the behavior of any estimator of a \(k \)-monotone density \(g \) and its first \(k - 1 \) derivatives at a point \(x_0 \) for which the \(k \)-th derivative exists and is non-zero. The proof will rely upon the basic Lemma 4.1 of Groeneboom (1996);
see also Jongbloed (2000). This basic method seems to go back to Donoho and Liu (1987) and Donoho and Liu (1991)). The relationship of our results to other rate results due to Kiefer (1982), Stone (1980), Fan (1991), and Zhang (1990) will be discussed later in the section.

As before, let \(\mathcal{D}_k \) denote the class of \(k \)-monotone densities on \([0, \infty)\). Here is the notation we will need. Consider estimation of the \(j \)-th derivative of \(g \in \mathcal{D}_k \) at \(x_0 \) for \(j \in \{0, 1, \ldots, k-1\} \). If \(\hat{T}_n \) is an arbitrary estimator of the real-valued functional \(T \) of \(g \), then the \((L_1-\text{)}\)minimax risk based on a sample \(X_1, \ldots, X_n \) of size \(n \) from \(g \) which is known to be in a suitable subset \(\mathcal{D}_{k,n} \) of \(\mathcal{D}_k \) is defined by

\[
MMR_1(n, T, \mathcal{D}_{k,n}) = \inf_{t_n} \sup_{g \in \mathcal{D}_{k,n}} E_g |\hat{T}_n - Tg|.
\]

Here the infimum ranges over all possible measurable functions \(t_n : \mathbb{R}^n \to \mathbb{R} \), and \(\hat{T}_n = t_n(X_1, \ldots, X_n) \). When the subclasses \(\mathcal{D}_{k,n} \) are taken to be shrinking to one fixed \(g_0 \in \mathcal{D}_k \), the minimax risk is called local at \(g_0 \). The shrinking classes (parametrized by \(\tau > 0 \)) used here are Hellinger balls centered at \(g_0 \):

\[
\mathcal{D}_{k,n} \equiv \mathcal{D}_{k,n,\tau} = \left\{ g \in \mathcal{D}_k : H^2(g, g_0) = \frac{1}{2} \int_0^\infty \left(\sqrt{g(x)} - \sqrt{g_0(x)} \right)^2 dx \leq \frac{\tau}{n} \right\},
\]

The behavior, for \(n \to \infty \) of such a local minimax risk \(MMR_1 \) will depend on \(n \) (rate of convergence to zero) and the density \(g_0 \) toward which the subclasses shrink. The following lemma is the basic tool for proving such a lower bound.

Lemma 4.1 Assume that there exists some subset \(\{g_\epsilon : \epsilon > 0\} \) of densities in \(\mathcal{D}_{k,n} \) such that, as \(\epsilon \downarrow 0 \),

\[
H^2(g_\epsilon, g_0) \leq \epsilon(1 + o(1)) \quad \text{and} \quad |T_{g_\epsilon} - T_{g_0}| \geq (\epsilon \epsilon^r (1 + o(1))
\]

for some \(c > 0 \) and \(r > 0 \). Then

\[
\sup_{\tau > 0} \liminf_{n \to \infty} n^r MMR_1(n, T, \mathcal{D}_{k,n}) \geq \frac{1}{4} \left(\frac{cr}{2c} \right)^r.
\]
Proof. See Jongbloed (1995) and Jongbloed (2000). ■

Here is the main result of this section:

Proposition 4.1 Let $g_0 \in D_k$ and x_0 be a fixed point in $(0, \infty)$ such that g_0 is k times differentiable at x_0 ($k \geq 2$). An asymptotic lower bound for the local minimax risk of any estimator $\hat{T}_{n,j}$ for estimating the functional $T_jg_0 = g_0^{(j)}(x_0)$, is given by:

\[
\sup_{\tau > 0} \liminf_{n \to \infty} \frac{n^{-\frac{k-1}{2k+1}}}{\lambda_{k,1}} \left\{ g_0^{(k)}(x_0) \right\}^{2j+1} \left(g_0(x_0)^{k-j} \right)^{1/(2k+1)} d_{k,j},
\]

where $d_{k,j} > 0$, $j \in \{0, \ldots, k-1\}$. Here

\[
d_{k,j} = \frac{1}{4} \left(\frac{k-j}{2k+1} \right)^{\frac{k-j}{2k+1}} \lambda_{k,1}^{(j)} \left(\lambda_{k,2} \right)^{\frac{k-j}{2k+1}}
\]

where

\[
\lambda_{k,2} = 2^{4(k+1)} \frac{(2k+3)(k+2)}{(k+1)^2} \frac{(2(k+1))!^2}{(4k+7)!((k-1)!)^2 \left(\frac{k}{(k/2-1)} \right)^2}, \quad \text{when } k \text{ is even}
\]

and

\[
\lambda_{k,2} = 2^{4(k+2)} (2k+3)(k+2) \frac{(2(k+1))!^2}{(4k+7)!((k!)^2 \left(\frac{k+1}{(k-1)/2} \right)^2}, \quad \text{when } k \text{ is odd}
\]

and, with $r(x) \equiv (1-x^2)^{k+1}(1+x)$ for $-1 \leq x \leq 1$ and $C_{k,j} \equiv r^{(j)}(0)$,

\[
\lambda_{k,1}^{(j)} = \left| \frac{C_{k,j}}{C_{k,k}} \right|, \quad 0 \leq j \leq k-1.
\]

Proposition 4.1 also yields lower bounds for estimation of the corresponding mixing distribution function F at a fixed point.
Corollary 4.1 Let $g_0 \in D_k$ and let x_0 be a fixed point in $(0, \infty)$ such that g_0 is $k-$times differentiable at x_0, $k \geq 2$. Then, for estimating $Tg_0 = F(x_0)$ where F_0 is given in terms of g_0 by (3),

$$\sup_{\tau > 0} \liminf_{n \to \infty} n^{\frac{1}{2k+1}} MMR_1(n, T, D_{k,n,\tau}) \geq \left\{ \frac{g_0^{(k)}(x_0)^{2k-1}g_0(x_0)}{k!} \right\}^{1/(2k+1)} \frac{d^k}{k!} d_{k,k-1},$$

The lower bound results in Proposition 4.1 are consistent with the results of Kiefer (1982) and Stone (1980) (although our result involves a slightly stronger lower bound since the supremum is over just a local neighborhood of the truth). In particular, Kiefer showed that rates of convergence in estimation cannot be improved by order restrictions, but that order restrictions might result in improvements of the constants. This latter suggestion has been investigated in detail in the case of monotone densities by Birgé (1987), Birgé (1989). The dependence of our lower bound on the constants $g_0(x_0)$ and $g_0^{(k)}(x_0)$ matches with the known results for $k = 1$ and $k = 2$ due to Groeneboom (1985) and Groeneboom, Jongbloed, and Wellner (2001b), and will reappear in the limit distribution theory for $k \geq 3$ in Balabdaoui and Wellner (2004c).

The result of Corollary 4.1 is consistent with the lower bound results of Zhang (1990) and Fan (1991) in the deconvolution setting as we now explain.

To link up with the deconvolution literature we transform our scale mixture problem to a location mixture or deconvolution problem. To do this we will reparametrize our $k-$monotone densities so that the beta kernels converge to the limiting exponential kernels: Note that if

$$g(x) = \int_0^\infty \frac{1}{y} \left(1 - \frac{y}{kz}\right)^{k-1} dF(y),$$

then for $X \sim g$, $Z = Z_k \sim k \times \text{Beta}(1,k)$, and $Y \sim F$ with Y and Z independent, we have

$$X \overset{d}{=} ZY.$$
Thus
\[X^* = \log X = \log Y + \log Z \equiv Y^* + Z^* . \]

Hence the density \(g^* \) of \(X^* \) is given by
\[
g^*(x) = \int_{-\infty}^{\infty} \left(1 - \frac{1}{k} e^{x-y}\right)^{k-1} e^{x-y} dF^*(y) = \int_{-\infty}^{\infty} f_{Z^*}(x-y)dF^*(y)
\]
where \(F^*(y) = F(e^y) \) is the distribution function of \(Y^* \).

For the completely monotone case corresponding to \(k = \infty \), the corresponding formulas for \(g \) and \(g^* \) are given by
\[
g(x) = \int_{0}^{\infty} \frac{1}{y} \exp(-x/y) dF(y),
\]
and
\[
g^*(x) = \int_{-\infty}^{\infty} \exp(-e^{x-y}) e^{x-y} dF^*(y) = \int_{-\infty}^{\infty} f_{Z^*_\infty}(x-y)dF^*(y).
\]

According to Fan (1991), we need to compute the characteristic function \(\phi_{Z^*} \) and bound its modulus above and below for large arguments. Thus we calculate first for \(Z^*_\infty \): from Abramowitz and Stegun (1964), page 930,
\[
\phi_{Z^*_\infty}(t) = \int_{-\infty}^{\infty} e^{itx} e^{-e^x} dz = \int_{0}^{\infty} e^{it\log e^{-v}} dv = \Gamma(1 + it).
\]
Thus by Abramowitz and Stegun (1964), page 256,
\[
|\phi_{Z^*_\infty}(t)|^2 = \Gamma(1 + it)\Gamma(1 - it) = \frac{\pi t}{\sinh(\pi t)} = \frac{2\pi t}{e^{\pi t} - e^{-\pi t}},
\]
and it follows that
\[
\sqrt{2\pi|t|\exp(-\pi|t|/2)} \leq |\phi_{Y^*_\infty}(t)| \leq \sqrt{3\pi|t|\exp(-\pi|t|/2)}
\]
for \(|t| \geq 1\). Thus the hypothesis (1.3) of Fan (1991) holds with \(\beta = 1 \), \(\beta_1 = 1/2 \) and \(\beta_0 = 1/2 \). This implies the first hypothesis of Fan’s theorem 4, page 1263, and thus we are in the case of a “super-smooth” convolution kernel. Fan’s second hypothesis is easily satisfied by the current extreme
value distribution function since \(f_{Z_{\infty}}(y) = O(|y|^{-2}) \) as \(y \to \pm \infty \). It therefore follows in the completely monotone case \((k = \infty) \) that for estimation of \(F_0^*(y_0) = F(e^{l_0}) \) the resulting minimax lower bound yields the rate of convergence \((\log n)^{-1}\). This rate could also be deduced from Zhang (1990), Corollary 3, page 824. (Note that the tail behavior of the characteristic function of our extreme value kernel coincides with the tail behavior of the characteristic function of the Cauchy kernel and that Zhang’s example 2 yields the rate \((\log n)^{-1}\) in the case of the Cauchy kernel.)

We can also follow the deconvolution approach to obtain a minimax lower bound for estimation of the mixing distribution in the \(k \)-monotone case: the characteristic function of \(Z_k^* = \log Z_k \) is given by

\[
\phi_{Z_k^*}(t) = \int_{-\infty}^{\infty} e^{itz} \left(1 - \frac{1}{k} e^z \right)^{k-1} e^z \, dz = \int_0^{k} e^{it\log v (1 - v/k)^{k-1}} \, dv
\]

Thus

\[
|\phi_{Z_k^*}(t)|^2 = \frac{k^it \Gamma(k+1)\Gamma(1+it)}{\Gamma(k+1+it)} \frac{\Gamma(k+1)}{\Gamma(k+1)^2} = \frac{(k!)^2}{(k^2 + t^2) \cdots (1 + t^2)} \sim \frac{(k!)^2}{t^{2k}} \quad \text{as} \quad t \to \infty.
\]

It should also be noted that

\[
\lim_{k \to \infty} |\phi_{Z_k^*}(t)|^2 = \lim_{k \to \infty} \frac{(k!)^2}{(k^2 + t^2) \cdots (1 + t^2)} = \frac{\pi t}{\sinh(\pi t)} = |\phi_{Y_{\infty}}(t)|^2.
\]

Thus

\[
|\phi_{Z_k^*}(t)| \sim \frac{k!}{t^k} \quad \text{as} \quad t \to \infty,
\]

and we are in the situation of a smooth convolution kernel of hypothesis (1.4) of Fan (1991), page 1263, with Fan’s \(\beta = k \) in our setting. Thus Fan’s theorem (extended to negative values of \(l \)) gives our rate of convergence for estimating \(F^*(y_0) = F(e^{l_0}) \) or \(g^{(k-1)} \) by taking \(l = -1, \alpha + m = 0, \) and
\[\beta = k. \] By “extending” Fan’s theorem further and taking \(l = -(k - j) \), we get the rate of convergence \(n^{-(k-j)/(2k+1)} \), \(j = 1, \ldots, k-1 \) for estimation of \(g_0^{(j)}(x_0) \).

Proof of Proposition 4.1. Let \(\mu \) be a positive number and consider the function \(g_\mu \) defined by:

\[
g_\mu(x) = g_0(x) + s(\mu)(x_0 + \mu - x)^{k+1}(x - x_0 + \mu)^{k+2}1_{[x_0-\mu,x_0+\mu]}(x), \quad x \in (0, \infty)
\]

where \(s(\mu) \) is a scale to be determined later. We denote the unscaled perturbation function by \(\tilde{g}_\mu \); i.e.,

\[
\tilde{g}_\mu(x) = (x_0 + \mu - x)^{k+1}(x - x_0 + \mu)^{k+2}1_{[x_0-\mu,x_0+\mu]}(x).
\]

If \(\mu \) is chosen small enough so that the true density \(g_0 \) is \(k \)-times differentiable on \([x_0-\mu,x_0+\mu]\) and \(g_0^{(k)} \) is continuous on the latter interval, the perturbed function \(g_\mu \) is also \(k \)-times differentiable on \([x_0-\mu,x_0+\mu]\) with a continuous \(k \)-th derivative. Now, let \(r \) be the function defined on \((0, \infty)\) by

\[
r(x) = (1 - x)^{k+1}(1 + x)^{k+2}1_{[-1,1]}(x) = (1 - x^2)^{k+1}(1 + x)1_{[-1,1]}(x).
\]

Then, we can write \(\tilde{g}_\mu \) as

\[
\tilde{g}_\mu(x) = \mu^{2k+3}r \left(\frac{x - x_0}{\mu} \right).
\]

Then for \(0 \leq j \leq k \)

\[
g_\mu^{(j)}(x_0) - g_0^{(j)}(x_0) = s(\mu)\mu^{2k+3-j}r^{(j)}(0).
\]

The scale \(s(\mu) \) should be chosen so that for all \(0 \leq j \leq k \)

\[
(-1)^j g_\mu^{(j)}(x) > 0, \quad \text{for } x \in [x_0-\mu,x_0+\mu].
\]

But for \(\mu \) small enough, the sign of \((-1)^j g_\mu^{(j)}\) will be that of \((-1)^j g_0^{(j)}(x_0)\), and hence \(g_\mu \) is \(k \)-monotone. For \(j = k \),

\[
g_\mu^{(k)}(x_0) = g_0^{(k)}(x_0) + s(\mu)\mu^{k+3}r^{(k)}(0).
\]
Assume that $r^{(k)}(0) \neq 0$. Set
\[s(\mu) = \frac{g^{(k)}_0(x_0)}{r^{(k)}(0)} \times \frac{1}{\mu^{k-3}}. \]

Then for $0 \leq j \leq k - 1$
\[g^{(j)}_\mu(x_0) = g^{(j)}_0(x_0) + \mu^{k-j} \frac{g^{(k)}_0(x_0)r^{(j)}(0)}{r^{(k)}(0)} = g^{(j)}_0(x_0) + o(\mu), \]
as $\mu \to 0$, and so we can choose μ small enough so that $(-1)^j g^{(j)}_\mu(x_0) > 0$.

For $j = k$
\[(-1)^k g^{(k)}_\mu(x_0) = 2(-1)^k g^{(k)}_0(x_0) > 0. \]

To show that $r^{(j)}(0) \neq 0$ for $0 \leq j \leq k$, we define
\[x_{n,m} = \left((1 - x^2)^n \right)^{(m)} \bigg|_{x=0}. \]

Let $m \geq 2$ and $2n \geq m$. We have
\[
\left((1 - x^2)^n \right)^{(m)} = \left((1 - x^2)^n \right)^{(m-1)} \\
= (-2nx(1 - x^2)^{n-1})^{(m-1)} \\
= -2n \left(x ((1 - x^2)^{n-1})^{(m-1)} + (m-1) ((1 - x^2)^{n-1})^{(m-2)} \right)
\]
where in the last equality, we used Leibniz’s formula for the derivatives of a product; see e.g. Apostol (1957), page 99. Evaluating the last expression at $x = 0$ yields
\[x_{n,m} = -2n(m-1)x_{n-1,m-2}. \]

If m is even, we obtain
\[
x_{n,m} = (-2)^{m/2} \prod_{i=0}^{m/2-1} (n-i) \times \prod_{i=0}^{m/2-1} (m-2i-1) \times x_{n-m/2,0} \\
= (-2)^{m/2} \prod_{i=0}^{m/2-1} (n-i) \times \prod_{i=0}^{m/2-1} (m-2i-1)
\]
since \(x_{n-m/2,0} = 1 \). Similarly, when \(m \) is odd, we have

\[
x_{n,m} = (-2)^{(m-1)/2} \prod_{i=0}^{(m-1)/2-1} (n-i) \cdot \prod_{i=0}^{(m-1)/2-1} (m-2i-1) \cdot x_{n-(m-1)/2,1} = 0,
\]

since \(x_{n-(m-1)/2,1} = 0 \). Now, we have for \(1 \leq j \leq k \)

\[
\begin{align*}
\tau(j)(x) &= \left((1-x^2)^{k+1}(1+x)\right)^{(j)} \\
&= (x+1)\left((1-x^2)^{k+1}\right)^{(j)} + j\left((1-x^2)^{k+1}\right)^{(j-1)}
\end{align*}
\]

and hence

\[
\tau(j)(0) = \left((1-x^2)^{k+1}\right)^{(j)}_{x=0} + j\left((1-x^2)^{k+1}\right)^{(j-1)}_{x=0}.
\]

Therefore, when \(j \) is even, the second term vanishes and

\[
\tau(j)(0) = (-2)^{j/2} \prod_{i=0}^{j/2-1} (k+1-i) \times \prod_{i=0}^{j/2-1} (j-2i-1) \neq 0.
\]

When \(j \) is odd, the first term vanishes and

\[
\begin{align*}
\tau(j)(0) &= (-2)^{(j-1)/2} \prod_{i=0}^{(j-1)/2-1} (k+1-i) \times j \times \prod_{i=0}^{(j-1)/2-1} (j-2i-2) \\
&= (-2)^{(j-1)/2} \prod_{i=0}^{(j-1)/2-1} (k+1-i) \times \prod_{i=0}^{(j-1)/2} (j-2i) \neq 0.
\end{align*}
\]

We set

\[
C_{k,j} = \tau(j)(0), \quad \text{for} \quad 1 \leq j \leq k.
\]

Then \(C_{k,k} \) specializes to

\[
C_{k,k} = \begin{cases}
(-2)^{k/2} \prod_{i=0}^{k/2-1} (k+1-i) \times \prod_{i=0}^{k/2-1} (k-2i-1), & \text{if } k \text{ is even} \\
(-2)^{(k-1)/2} \prod_{i=0}^{(k-1)/2-1} (k+1-i) \times \prod_{i=0}^{(k-1)/2} (k-2i), & \text{if } k \text{ is odd.}
\end{cases}
\]
The previous expressions can be given in a more compact form. After some algebra, we find that

\begin{equation}
C_{k,k} = \begin{cases}
2 \times (-1)^{k/2}(k+1)(k-1)!(-1)^{k/2-\frac{k}{2}} & \text{if } k \text{ is even} \\
(-1)^{(k-1)/2}k!(k-1)!^{(k-1)/2} & \text{if } k \text{ is odd}.
\end{cases}
\end{equation}

We have for $0 \leq j \leq k-1$,

\[|T_j(g_{\mu}) - T_j(g_0)| = |g_{\mu}^{(j)}(x_0) - g_0^{(j)}(x_0)| = \left| \frac{C_{k,j}}{C_{k,k}} g_0^{(k)}(x_0) \right| \mu^{k-j} \equiv \lambda_{k,1}^{(j)} \left| g_0^{(k)}(x_0) \right| \mu^{k-j} \]

where we defined $\lambda_{k,1}^{(j)} = |C_{k,j}/C_{k,k}|$ for $j \in \{0, \ldots, k-1\}$. Furthermore

\[
\int_0^{\infty} \frac{(g_{\mu}(x) - g_0(x))^2}{g_0(x)} \, dx = \frac{(g_0^{(k)}(x_0))^2}{\mu^{2(k+3)}(C_{k,k})^2} \int_{x_0 - \mu}^{x_0 + \mu} \frac{(x_0 + \mu - x)^2(2(k+1)(x - x_0 + \mu)^2(2(k+2)))}{g_0(x)} \, dx
\]

\[
= \frac{(g_0^{(k)}(x_0))^2}{\mu^{2(k+3)}(C_{k,k})^2} \int_{-\mu}^{\mu} (\mu^2 - y^2)^2(2(k+1))(y + \mu)^2 dy
\]

\[
= \frac{(g_0^{(k)}(x_0))^2}{\mu^{2(k+3)}(C_{k,k})^2} \times \mu^{4(k+1)+3} \int_{-1}^{1} \frac{(1 - z^2)^{2(k+1)}(z + 1)^2}{g_0(x_0 + \mu z)} \, dz
\]

\[
= \frac{(g_0^{(k)}(x_0))^2}{(C_{k,k})^2} \int_{-1}^{1} \frac{(1 - z^2)^{2(k+1)}(z + 1)^2}{g_0(x_0 + \mu z)} \, dz \mu^{2k+1}
\]

\[
= \frac{(g_0^{(k)}(x_0))^2}{(C_{k,k})^2} \int_{-1}^{1} \frac{(1 - z^2)^{2(k+1)}(z + 1)^2}{g_0(x_0 + \mu z)} \, dz \left(\frac{C_{k,k}}{2} \right)^2 \mu^{2k+1} + o(\mu^{2k+2})
\]

as $\mu \searrow 0$. This gives control of the Hellinger distance as well in view of Jongbloed (2000), Lemma 2, page 282, or Jongbloed (1995), Corollary 3.2, pages 30 and 31. We set

\[\lambda_{k,2} = \frac{\int_{-1}^{1} (1 - z^2)^{2(k+1)}(z + 1)^2 \, dz}{(C_{k,k})^2}. \]
The constants $\lambda_{k,2}$ can be given more explicitly using the formula
\[
I_{n,2p} = \int_0^1 (1 - x^2)^n x^{2p} \, dx = 2^{n+1} \frac{n!(n+1)!}{(2n+2)!} \frac{(n+p)!}{(2n+1)!},
\]
for any integers n and p, using the convention
\[
\binom{n+p}{n+1} = \binom{2(n+p)+1}{2(n+1)},
\]
when $p = 0$. We have,
\[
\int_{-1}^1 (1 - x^2)^{2(k+1)} (x+1)^2 \, dx = \int_{-1}^1 (1 - x^2)^{2(k+1)} x^2 \, dx + \int_{-1}^1 (1 - x^2)^{2(k+1)} \, dx,
\]
since
\[
\int_{-1}^1 (1 - x^2)^{2(k+1)} \, dx = 0,
\]
and hence
\[
\int_{-1}^1 (1 - x^2)^{2(k+1)} (x+1)^2 \, dx = 2(I_{2(k+1),2} + I_{2(k+1),0})
\]
\[
= 2^{4k+6} \frac{(2(k+1))!(2k+3)!}{(4k+6)!} \frac{(2k+3)^{2k+7}}{(4k+7)^2} + \frac{2^{4k+5}((2(k+1))!^2}{(4k+5)!}
\]
\[
= 2^{4k+5} \frac{((2(k+1))!^2}{(4k+6)!} \left(\frac{2(2k+3)}{4k+7} + (4k+6) \right)
\]
\[
= 2^{4k+5} \frac{((2(k+1))!^2}{(4k+7)!} ((4k+6) + (4k+6)(4k+7))
\]
\[
= 2^{4k+5} \frac{((2(k+1))!^2}{(4k+7)!} (4k+6)(4k+8)
\]
\[
(2) = 2^{4(k+2)} (2k+3)(k+2) \frac{(2(k+1))!^2}{(4k+7)!}
\]

Combining (1) and (2), we find that $\lambda_{k,2}$ is given by
\[
\lambda_{k,2} = 2^{4(k+1)} \frac{(2k+3)(k+2)}{(k+1)^2} \frac{(2(k+1))!^2}{(4k+7)!((k-1))!^2 \left(\frac{k}{(k/2-1)} \right)^2},
\]
when k is even,
\[\lambda_{k,2} = 2^{4(k+2)}(2k+3)(k+2) \frac{((2(k+1))!)^2}{(4k+7)!k!^2} \left(\frac{k+1}{(k-1)/2} \right)^2, \] when \(k \) is odd.

Now, by using the change of variable \(\epsilon = \mu^{2k+1}(b_k + o(1)) \), where

\[b_k = \lambda_{k,2} \left(\frac{g_0^{(k)}(x_0)}{g_0(x_0)} \right)^2 \]

so that \(\mu = (\epsilon/b_k)^{1/(2k+1)}(1 + o(1)) \), then for \(0 \leq j \leq k-1 \), the modulus of continuity, \(m_j \), of the functional \(T_j \) satisfies

\[m_j(\epsilon) \geq \lambda_{k,1}^{(j)} g_0^{(k)}(x_0) \left(\frac{\epsilon}{b_k} \right)^{(k-j)/(2k+1)} (1 + o(1)). \]

The result is that

\[m_j(\epsilon) \geq (r_{k,j}\epsilon)^{k-j} (1 + o(1)), \]

where

\[r_{k,j} = \left(\lambda_{k,1}^{(j)} g_0^{(k)}(x_0) \right)^{(2k+1)/(k-j)} b_k \]

and hence

\[\sup_{\tau > 0} \lim_{n \to \infty} \inf_{n \to \infty} n^{k-j} MMR_1(n, T_j, D_{k,n,\tau}) \geq \frac{1}{4} \left(\frac{k-j}{2k+1} e^{-1} \right)^{k-j} \left(r_{k,j} \right)^{k-j} \]

which can be rewritten as

\[\sup_{\tau > 0} \lim_{n \to \infty} n^{k-j} MMR_1(n, T_j, D_{k,n,\tau}) \geq \frac{1}{4} \left(\frac{k-j}{2k+1} e^{-1} \right)^{k-j} \lambda_{k,1}^{(j)} \left(\frac{g_0^{(k)}(x_0)}{g_0(x_0)} \right)^{2k+1} g_0(x_0) \left(\frac{k-j}{2k+1} \right) \]

for \(j = 0, \cdots, k-1 \).
5. Preliminary numerical results. From the standard Exponential distribution $\text{Exp}(1)$ we simulated two samples of respective sizes $n = 100$ and $n = 1000$. For any fixed $k \geq 1$, the Exponential density is k-monotone. Based on each sample, we computed the LSE and MLE for $k = 3$ and $k = 6$ in both the direct and inverse problems using the iterative $(2k-1)$-th spline algorithm described in Balabdaoui and Wellner (2004b). It should be noted that the true mixing distribution that corresponds to a standard Exponential when viewed as a k-monotone density is $\text{Gamma}(k+1,1)$. Indeed,

$$\int_{x}^{\infty} \frac{1}{\Gamma(k)} (t-x)^{k-1} e^{-(t-x)} dt = 1$$

for all $x > 0$, and hence

$$\exp(-x) = \int_{x}^{\infty} \frac{(t-x)^{k-1}}{(k-1)!} e^{-t} dt = \int_{0}^{\infty} \frac{(t-x)^{k-1}}{(k-1)!} e^{-t} dt$$

$$= \int_{0}^{\infty} k \frac{(t-x)^{k-1}}{t^k} \frac{1}{k!} t^k e^{-t} dt = \int_{0}^{\infty} k \frac{(t-x)^{k-1}}{t^k} f_k(t) dt,$$

where f_k is the $\text{Gamma}(k+1,1)$ density.

For $k = 3$, the plots in Figures 1 and 2 show the ML and LS estimators of the Exponential density (direct problem) and the Gamma distribution (inverse problem) based on $n = 100$ and 1000 respectively. For $k = 6$, similar plots were produced and are shown in Figures 3 and 4.

Table 1

k, n	N_{it}	(\tilde{a}, \tilde{w})
$k = 3, n = 100$	13	(0.569, 0.0459), (1.829, 0.168), (1.909, 0.0347), (2.839, 0.497), (7.939, 0.027), (7.989, 0.227)
$k = 3, n = 1000$	14	(0.814, 0.042), (1.674, 0.027), (2.124, 0.300), (3.254, 0.100), (4.924, 0.450), (5.334, 0.001), (8.874, 0.037), (9.934, 0.039)
$k = 6, n = 100$	4	(2.109, 0.067), (4.999, 0.750), (17.449, 0.190)
$k = 6, n = 1000$	6	(2.625, 0.017), (3.615, 0.478), (6.575, 0.478), (11.375, 0.262)
Table 2

Table of the obtained ML estimates for $k = 3, 6$ and $n = 100, 1000$. A support point is denoted by \hat{a} and its mass by \hat{w}.

k, n	(\hat{a}, \hat{w})
$k = 3, n = 100$	(0.549, 0.040), (1.259, 0.051), (1.819, 0.072), (2.579, 0.027), (2.589, 0.492), (6.839, 0.314)
$k = 3, n = 1000$	(0.684, 0.025), (1.664, 0.126), (2.114, 0.184), (3.164, 0.141)
$k = 6, n = 100$	(4.794, 0.236), (4.824, 0.184), (8.304, 0.107)
$k = 6, n = 1000$	(3.839, 0.428), (3.849, 0.165), (10.479, 0.405)

The figures illustrate consistency in both the direct and inverse problems, and it can be seen that convergence in the direct problem is faster than it is in the inverse problem. This is already predicted by the corresponding theoretical rates of convergence, $n^{-k/(2k+1)}$ and $n^{-1/(2k+1)}$ respectively.

Note that the number of jump points of the estimators of the mixing Gamma distribution, which are also the knots of the estimators of the Exponential density, are fewer for $k = 6$ than for $k = 3$: e.g. for $n = 1000$, there are 8 jump points for $k = 3$ versus 4 only when $k = 6$ (for both estimators). This was also observed in other simulations, and we obtained even fewer points for larger values of k. This is not surprising and is rather a consequence of the fact that gap between the knots (of order $n^{-1/(2k+1)}$) is expected to get bigger with k. When k increases, the number of constraints on the estimated mixed density grows, and hence it becomes harder to “untangle” the mixing distribution F from the very smooth Beta kernel. Finally, it should be mentioned that although the MLE and LSE show very small visible differences in the direct problem, it can be easily checked by comparing the locations of jump points or the heights of the jumps that these estimators are different (compare Table 1 and Table 2).
Fig 1. Illustration of k-monotone estimation for $k = 3$ via the ML and LS methods based on a sample size $n = 100$. Plots (1a) and (1b) show the LS and ML estimators (dashed lines) of the exponential density (solid line). Plots (2a) and (2b) show the LS and ML estimators (dashed line) of $\text{Gamma}(4, 1)$ (solid line), the true mixing distribution.
Fig 2. Illustration of k-montone estimation for $k = 3$ via the ML and LS methods based on a sample size $n = 1000$. Plots (1a) and (1b) show the LS and ML estimators (dashed lines) of the exponential density (solid line). Plots (2a) and (2b) show the LS and ML estimators (dashed line) of Gamma$(4, 1)$ (solid line), the true mixing distribution.
FIG 3. Illustration of k-monotone estimation for $k = 6$ via the ML and LS methods based on a sample size $n = 100$. Plots (1a) and (1b) show the LS and ML estimators (dashed lines) of the exponential density (solid line). Plots (2a) and (2b) show the LS and ML estimators (dashed line) of Gamma(7,1) (solid line), the true mixing distribution.
FIG 4. Illustration of k-monotone estimation for $k = 6$ via the ML and LS methods based on a sample size $n = 1000$. Plots (1a) and (1b) show the LS and ML estimators (dashed lines) of the exponential density (solid line). Plots (2a) and (2b) show the LS and ML estimators (dashed line) of Gamma($7, 1$) (solid line), the true mixing distribution.

6. Conclusion. In this first part, we have established existence of the MLE \hat{g}_n and LSE \tilde{g}_n of a k-monotone density g_0, and provided characterizations. We have proved that both estimators are consistent in several senses as a first step toward understanding their asymptotic behavior. Consistency of higher derivatives of the estimators is usually not guaranteed in nonparametric density estimation problems, but here it is obtained “for free” because of the particular shape constraints and smoothness of the density. In the sense of pointwise mean absolute error, local asymptotic minimax lower bounds show that the rate of convergence of the j-th derivative of the MLE and LSE for $j = 0, \cdots, k - 1$ cannot be faster than $n^{-(k-j)/(2k+1)}$.

Parts 3 and 4 are devoted to show that this rate, modulo a conjecture about boundedness of the error in a particular Hermite interpolation prob-
lem, is attained by the j-th derivative of the estimators, and that the joint asymptotic distribution of these derivatives involve a $(2k)$-convex stochastic process staying above (below) the $(k - 1)$-fold integral of two-sided Brownian motion plus a deterministic drift if k is even (odd). In the joint limiting distribution, the asymptotic variances are found to have the same dependence on $g_0(x_0)$ and $|g_0^{(k)}(x_0)|$ as the asymptotic constants obtained in the minimax lower bounds.

Acknowledgements: We gratefully acknowledge helpful conversations with Carl de Boor, Nira Dyn, Tilmann Gneiting, and Piet Groeneboom.
References.

Abramowitz, M. and Stegun, I. A. (1964). *Handbook of Mathematical Functions*. National Bureau of Standards, Washington. (Seventh reprinting by Dover, New York, 1970).

Anevski, D. (1994). Estimating the derivative of a convex density. *Technical Report 1994:8*, Dept. of Math. Statistics, Univ. of Lund.

Anevski, D. (2003). Estimating the derivative of a convex density. *Statistica Neerl.* **57**, 245 - 257.

Apostol, T. (1957). *Mathematical Analysis*, Addison-Wesley, Reading.

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E. (1955). An empirical distribution function for sampling with incomplete information. *Ann. Math. Statist.* **26**, 641 - 647.

Balabdaoui, F. (2004). Nonparametric estimation of k-monotone density: A new asymptotic distribution theory. Ph.D. dissertation, University of Washington, Department of Statistics.

Balabdaoui, F. and Wellner, J. A. (2004a). Estimation of a k-monotone density, part 2: algorithms for computation and numerical results. Technical Report 460, Department of Statistics, University of Washington. Available at: http://www.stat.washington.edu/www/research/reports/2004/.

Balabdaoui, F. and Wellner, J. A. (2004b). Estimation of a k-monotone density, part 3: limiting Gaussian versions of the problem; envelopes and envelopes Technical Report 461, Department of Statistics, University of Washington. Available at: http://www.stat.washington.edu/www/research/reports/2004/.

Balabdaoui, F. and Wellner, J. A. (2004c). Estimation of a k-monotone density, part 4: limit distribution theory and the spline connection. Technical Report 462, Department of Statistics, University of Washington. Available at: http://www.stat.washington.edu/www/research/reports/2004/.

Balabdaoui, F. and Wellner, J. A. (2005a). Mixtures and monotonicity: a
review of estimation under monotonicity constraints. To appear, Kjell Doksum Festschrift volume.

Balabdaoui, F. and Wellner, J. A. (2005b). Conjecture of error boundedness in a new Hermite interpolation problem via splines of odd-degree. *Technical Report 480*, Department of Statistics, University of Washington.

Birgé, L. (1987). Estimating a density under order restrictions: nonasymptotic minimax risk. *Ann. Statist.* **15**, 995 - 1012.

Birgé, L. (1989). The Grenander estimator: a nonasymptotic approach. *Ann. Statist.* **17**, 1532 - 1549.

Brunk, H. D. (1958). On the estimation of parameters restricted by inequalities. *Ann. Math. Statist.* **29**, 437 - 454.

de Boor, C. (1973). The quasi-interpolant as a tool in elementary polynomial spline theory. In *Approximation Theory* (Austin, TX, 1973), 269 - 276. Academic Press, New York.

de Boor, C. (1974). Bounding the error in spline interpolation. *SIAM Review* **16**, 531 - 544.

de Boor, C. (1976). A bound on the L_∞ norm of L_2 approximation by splines in terms of global mesh ratio. *Math. Comp.* **30**, 765 - 771.

de Boor, C. (1978). *A Practical Guide to Splines*. Springer-Verlag, New York.

DeVore, R. A. and Lorentz, G. G. (1993). *Constructive Approximation*. Springer-Verlag, New York.

Donoho, D. L. and Liu, R. C. (1987). Geometrizing rates of convergence, I. Technical Report 137, Dept. of Statistics, Univ. California, Berkeley.

Donoho, D. L. and Liu, R. C. (1991). Geometrizing rates of convergence, II, III. *Ann. Statist.* **19**, 633 - 667, 668 - 701.

Doyle, J., Hansen, E. and McNolty, F. (1980). Properties of the mixed exponential failure process. *Technometrics* **22**, 555-565.

Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. *Ann. Statist.* **19**, 1257 - 1272.
Feller, W. (1971) An Introduction to Probability Theory and Its Applications. Vol. 2, 2nd ed. Wiley, New York.

Gneiting, T. (1998). On the Bernstein-Hausdorff-Widder conditions for completely monotone functions. Exposition. Math. 16, 181 - 183.

Gneiting, T. (1999). Radial positive definite functions generated by Euclid’s hat. J. Multivariate Analysis 69, 88 - 119.

Grenander, U. (1956). On the theory of mortality measurement, Part II. Skand. Actuar. 39, 125 - 153.

Groeneboom, P. (1985). Estimating a monotone density. Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II. Lucien M. LeCam and Richard A. Olshen eds. Wadsworth, New York. 529 - 555.

Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy functions. Probab. Th. Rel. Fields 81, 79 - 109.

Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation. Birkhäuser, Boston.

Groeneboom, P. (1996). Inverse problems in statistics. Proceedings of the St. Flour Summer School in Probability. Lecture Notes in Math. 1648, 67 - 164. Springer, Berlin.

Groeneboom, P., Jongbloed, G., and Wellner, J. A. (2001a). A canonical process for estimation of convex functions: The “invelope” of integrated Brownian motion +t^4. Ann. Statist. 29, 1620 - 1652.

Groeneboom, P., Jongbloed, G., and Wellner, J. A. (2001b). Estimation of convex functions: characterizations and asymptotic theory. Ann. Statist. 29, 1653 - 1698.

Groeneboom, P., Jongbloed, G., and Wellner, J. A. (2003). The support reduction algorithm for computing nonparametric function estimates in mixture models. Available in Math. ArXiv. at: http://front.math.ucdavis.edu/math.ST/0405511.

Hall, W. J. and Wellner, J. A. (1979). The rate of convergence in law of the maximum of an exponential sample. Statistica Neerlandica 33
Hampel, F.R. (1987). Design, modelling and analysis of some biological datasets. In Design, data and analysis, by some friends of Cuthbert Daniel, C.L. Mallows, editor, 111 - 115. Wiley, New York.

Harris, C. M. and Singpurwalla, N. (1968). Life distributions derived from stochastic hazard functions. IEEE Trans. on Reliability **R-17**, 70- 79.

Hill, D. L., Saunders, R. and Laud, P. W. (1980). Maximum likelihood estimation for mixtures. Canad. J. Statist. **8**, 87 - 93.

Jewell, N. P. (1982). Mixtures of exponential distributions. Ann. Statist. **10**, 479 - 484.

Jongbloed, G. (1995). *Three Statistical Inverse Problems; estimators-algorithms-asymptotics*. Ph.D. dissertation, Delft University of Technology, Department of Mathematics.

Jongbloed, G. (2000). Minimax lower bounds and moduli of continuity. Statist. Probab. Lett. **50**, 279 - 284.

Karlin, S. and Ziegler, Z. (1966). Tchebyseffian spline functions. SIAM Num. **3**, 514 - 543.

Kiefer, J. (1982). Optimum rates for non-parametric density and regression estimates under order restrictions. In Statistics and Probability: Essays in Honor of C. R. Rao, 419 - 428. G. Kallianpur, P. R. Krishnaiah, and J.K. Ghosh, editors. North Holland, Amsterdam.

Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. **18**, 191-219.

Lavee, D., Safrie, U. N., and Meilijson, I. (1991). For how long do trans-Saharan migrants stop over at an oasis? *Ornis Scandinavica* **22**, 33 - 44.

Lévy, P. (1962). Extensions d’un théorème de D. Dugué et M. Girault. Z. Wahrscheinlichkeitstheorie **1**, 159 - 173.

Lindsay, B. (1983a). The geometry of mixture likelihoods: a general theory. Ann. Statist. **11**, 86 - 94.

Lindsay, B. (1983b). The geometry of mixture likelihoods, Part II: the
exponential family. *Ann. Statist.* **11**, 783 - 792.

Lindsay, B. (1995). *Mixture Models: Theory, Geometry and Applications*. IMS, Hayward.

Nürnberg, G. (1989). *Approximation by Spline Functions*. Springer-Verlag, New York.

Pfanzagl, J. (1988). Consistency of maximum likelihood estimators for certain nonparametric families, in particular: mixtures. *J. Statist. Planning and Inference* **19**, 293 - 310.

Prakasa Rao, B. L. S. (1969). Estimation of a unimodal density. *Sankya Series A* **31**, 23 - 36.

Robbins, H. (1964). The empirical Bayes approach to statistical decision problems. *Ann. Math. Statist.* **35**, 1 - 20.

Robbins, H. (1980). Estimation and prediction for mixtures of the exponential distribution. *Proc. nat. Acad. Sciences* **77**, 2382-2383.

Schoenberg, I. J. and Whitney, A. (1953). On Pólya frequency functions III. the positivity of translation determinants with applications to the interpolation problem by spline curves. *TAMS* **74**, 246 - 259.

Shadrin, A. Yu. (1992). On the approximation of functions by interpolating splines defined on nonuniform nets. *Math. USSR-Sb* **71**, 81-99. (Original Russian version in *Math. Sb.* **181** (1990), 1236 - 1255.

Shadrin, A. Yu. (2001). The L_∞ norm of the L_2-spline projector is bounded independently of the knot sequence: a proof of de Boor’s conjecture. *Acta Math.* **187**, 59 - 137.

Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. *Ann. Statist.* **8**, 1348 - 1360.

van de Geer, S. (1993). Hellinger consistency of certain nonparametric maximum likelihood estimators. *Ann. Statist.* **21**, 14 - 44.

van de Geer, S. (1996). Rates of convergence for the maximum likelihood estimator in mixture models. *J. Nonparametric Statist.* **6**, 293 - 310.

van de Geer, S. (1999). *Empirical Processes in M-Estimation*. Cambridge University Press, Cambridge.
van der Vaart, A. W. and Wellner, J. A. (2000). Preservation theorems for Glivenko-Cantelli and uniform Glivenko-Cantelli classes, pp. 115 - 134 In High Dimensional Probability II, Evarist Giné, David Mason, and Jon A. Wellner, editors, Birkhäuser, Boston.

Van Eeden, C. (1956). Maximum likelihood estimation of ordered probabilities. Proc. Konink. Nederl. Akad. Wetensch. A 59, 444 - 455.

Van Eeden, C. (1957). Maximum likelihood estimation of partially ordered probabilities. Proc. Konink. Nederl. Akad. Wetensch. A 60, 128 - 136.

Vardi, Y. (1989). Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation. Biometrika 76, 751 - 761.

Wang, Y. (1994). The limiting distribution in concave regression. Preprint, Univ. Missouri, Columbia.

Wellner, J. A. (2003b). Empirical processes: theory and applications. Lectures presented at Torgnon, Italy, July 2003. Available at: http://www.stat.washington.edu/jaw/RESEARCH/TALKS/talks.html.

Widder, D. V. (1941). The Laplace Transform. Second printing. Princeton University Press, Princeton.

Williamson, R. E. (1956). Multiply monotone functions and their Laplace transforms. Duke Math. J. 23, 189 - 207.

Woodroofe, M. and Sun, J. (1993). A penalized maximum likelihood estimate of \(f(0^+) \) when \(f \) is non-increasing. Statistica Sinica 3, 501 - 515.

Zeidler, E. (1985). Nonlinear Functional Analysis and its Applications III: Variational Methods and Optimization. Springer-Verlag, New York.

Zhang, C-H. (1990). Fourier methods for estimating mixing densities and distributions. Ann. Statist. 18, 806 - 831.
BALABDAOI AND WELLNER

Institute for Mathematical Stochastics
Georgia Augusta University Goettingen
Maschmuehlenweg 8-10
D-37073 Goettingen
Germany
E-mail: fadous@math.uni-goettingen.de

Department of Statistics
Box 354322
University of Washington
Seattle, WA 98195-4322
E-mail: jaw@stat.washington.edu