Interplay between carrier localization and magnetism in diluted magnetic and ferromagnetic semiconductors

Tomasz DIETL1,2,3*

1 Institute of Physics, Polish Academy of Science, al. Lotników 32/46, PL 02-668 Warszawa, Poland
2 Institute of Theoretical Physics, University of Warsaw, PL-00-681 Warszawa, Poland
3 ERATO Semiconductor Spintronics Project, Japan Science and Technology Agency, al. Lotników 32/46, PL-02-668 Warszawa, Poland

The presence of localized spins exerts a strong influence on quantum localization in doped semiconductors. At the same time carrier-mediated interactions between the localized spins are modified or even halted by carriers’ localization. The interplay of these effects is discussed for II-VI and III-V diluted magnetic semiconductors. This insight is exploited to interpret the complex dependence of resistance on temperature, magnetic field, and concentration of valence-band holes in (Ga,Mn)As. In particular, high field negative magnetoresistance results from the orbital weak localization effect. The resistance maximum and the associated negative magnetoresistance near the Curie temperature are assigned to the destructive influence of preformed ferromagnetic bubbles on the ”antilocalization” effect driven by disorder-modified carrier-carrier interactions. These interactions account also for the low-temperature increase of resistance. Furthermore, the sensitivity of conductance to spin splitting and to scattering by spin disorder may explain resistance anomalies at coercive fields, where relative directions of external and molecular fields change.

KEYWORDS: diluted magnetic semiconductors, carrier-mediated ferromagnetism, quantum localization

1. Introduction

In course of the years (Ga,Mn)As has reached the status of a model system for understanding1,2 and exploiting3 carrier-controlled ferromagnetism in semiconductors. One of the prominent aspects of this system is the interplay between carrier-mediated ferromagnetism and carrier localization. In this paper we first recall the present view on the nature of localization in doped semiconductors. We then discuss results of comprehensive studies of interplay between localization and magnetism in doped II-VI diluted magnetic semiconductors. Equipped with relevant information, we present mechanisms which determine charge transport properties of ferromagnetic (Ga,Mn)As films.

2. Localization in non-magnetic doped semiconductors

2.1 Critical concentration

The metal-insulator transition (MIT) is one of most characteristic features of doped semiconductors.4 In the bulk three-dimensional (3D) case the zero-temperature conductivity vanishes at \(r_s \approx 2.5 \), where \(r_s \) is the ratio of an average distance between the carriers to the Bohr radius \(a_B \) of the relevant dopant, \(r_s = (3/4\pi n)^{1/3}/a_B \), with \(n \) being the carrier concentration or, equivalently, the net concentration of the majority impurities. Accordingly, the critical carrier concentration \(n_c \), where \(n_c/a_B \approx 0.25 \), is of the order of \(10^{14} \text{ cm}^{-3} \) in \(n \text{-InSb} \) but rises to \(10^{16} \) and \(10^{19} \text{ cm}^{-3} \) for GaAs doped with shallow donors and acceptors, respectively. Obviously, \(a_B \) and thus \(n_c \) can be changed by, \(e.g. \) strain or the magnetic field.

2.2 Beyond the region of metal-insulator transition

At low carrier densities, \(n \ll n_c \), charge transport proceeds due to thermally activated phonon-assisted hopping between impurity states. In this regime many-body correlation effects are of primary importance making, for instance, that the particular impurities are occupied only by a single carrier and that the one-electron density-of-states acquires a gap at the Fermi energy.5

In the high density range, \(n \gg n_c \), many-body screening washes out bound states, so that carriers abandon parent impurities and reside in the relevant band. Here, carrier correlations and disorder-induced band tailing shift the band down in energy by \(\Delta E_s \approx 2E_I/r_s \), where \(E_I \) is the impurity binding energy. This sizable band-gap narrowing is clearly seen in tunneling and luminescence experiments.6 At the same time, according to Landau theory of Fermi liquids, many-body effects result in a minor renormalization of the carrier dispersion for \(n \gg n_c \). Furthermore, since screened Coulomb potentials are weak, the conductivity is well described by the Drude-Boltzmann model in this regime. A number of experiments, including Shubnikov de Haas oscillations, magnetoplasma resonances, and thermoelectric effects support the applicability of this simple approach to charge and heat transport in the region of high densities.

2.3 Quantum localization

The experimentally relevant impurity concentrations correspond rather often to the transition region between the two extreme situations described above. Accordingly, neither single impurity wave functions nor Bloch-type plane waves can serve for the carrier description. In the metallic regime, single-particle and many-body

*E-mail address: dietl@ifpan.edu.pl
quantum interference effects leading to Anderson-type and Mott-type localization, respectively, are of crucial importance. These quantum effects modify the Drude-Boltzmann conductance and ultimately lead to MIT on decreasing the carrier density towards \(n_c \).

However, MIT may also be viewed as delocalization of carriers residing in the impurity band. Indeed, with the increase of the impurity concentration, an overlap between the single-impurity wave functions increases, which can ultimately lead to an insulator-to-metal transition. Within this picture, the MIT occurs before the impurity states merge with the relevant band. Accordingly, there is a region of concentrations, for which metallic-like charge transport takes place within the impurity band, whose characteristics have little to do with those of unperturbed band states. Arguments summarized below show that this is not the case. Actually, MIT in doped semiconductors appears to be of the Anderson-Mott character, \(i. e. \), occurs primarily due to localization of band carriers by scattering. This means, as argued in details recently,\(^7,\)\(^8\) that states relevant for the carrier-mediated ferromagnetism retain the band character across MIT.

2.4 Two fluids model

It is a formidable task to describe quantitatively effects of both disorder and carrier-carrier correlations near the Anderson-Mott transition.\(^4\) In particular, standard computational tools, such as the coherent potential approximation (CPA), do not capture the relevant physics. A large number of studies in the past have led to the conclusion that doped semiconductors near the MIT exhibit duality, \(i. e. \), they show metallic band-like nature in one type of measurements, whereas at the same time they can exhibit impurity-band-like nature in another. There were observations of 1s-to-2p impurity transitions in metallic \(n \)-GaAs,\(^9\) valley splitting effects in \(n \)-Ge,\(^10\) and the presence of a Curie-Weiss component in the magnetic susceptibility.\(^11\) All of these can be interpreted as evidence of transport taking place in the impurity band. On the other hand, weak localization theory\(^12\)–\(^14\) which assumes that localization has Anderson’s character, \(i. e. \) localization of band carriers by scattering, is successful in quantitatively explaining the temperature and field dependence of the conductance. Specific heat and Pauli susceptibility measurements, for example in \(n \)-Si, can be described by assuming a band mass across MIT.\(^11\) In this situation, the two-fluid model of electronic states in doped semiconductors has been proposed.\(^15\)

2.5 Weak localization regime and metal-to-insulator transition

In a somewhat simplified picture, the co-existence of two kinds of behavior discussed above results from the fact that randomness allows for the presence of isolated impurities, whose strong Curie-like paramagnetism and optical response dominate in some temperature and spectral regions, respectively, even if their concentration is statistically irrelevant. Within this view, the statistically relevant states are band-like across the MIT. As mentioned above, the Anderson-Mott localization of such states can occur owing to two quantum phenomena specific to many-body disordered systems.\(^4\)\(^,\)\(^12\)–\(^14\) First is one-electron interference of scattered waves corresponding to self-intersecting trajectories. Second results from interference of carrier-carrier interaction amplitudes corresponding to successive carrier-carrier scattering events that happen due to the diffusive character of carriers’ motion in disorder systems. Importantly, if spin effects are taken into account, each of these two quantum effects produces corrections of both signs (”localization” and ”anti-localization” terms, respectively), whose relative importance depends on the presence of perturbations affecting spin and phase of the wave functions. Hence, the conductivity near MIT shows a strong and specific dependence on the dimensionality, magnetic field, spin splitting, spin-dependent scattering, temperature, and frequency. In particular, a fitting of the a. c. conductivity values by the Drude formula may lead to highly misleading results. These quantum effects control also a character of the critical behavior at MIT as well as account for universal conductance fluctuations and quantum noise in diffusive nanostructures.

In parallel to \(r_s \), it is convenient to describe the degree of localization by the the product of the Fermi wave vector \(k_F \) and mean free path \(l \) calculated for given scattering potentials within the standard lowest order perturbation theory. Actually, the parameter \(k_F l \) is more universal than \(r_s \), and characterizes the Anderson-Mott localization for an arbitrary form of static disorder. According to the Brooks-Herring formula for the case of ionized impurity scattering \(k_F l \) and \(r_s \) are related in a simple relation, which at MIT, \(i. e. r_s = 2.5 \), gives \(k_F l \approx 5.8(1 - K)/(1 + K) \), where \(0 < K < 1 \) is the compensation ratio. In particular, the Drude-Boltzmann theory is valid in the limit \(k_F l > 1 \).

When disorder increases, so that the magnitude of \(k_F l \) decreases, we enter into the so-called weakly localized regime. Here quantum corrections start to affect the conductivity value significantly so that \(\sigma \) ceases to be related to the microscopic parameter \(l \) in the standard way, \(\sigma = e^2 k_F^2 l/(3\pi^2\hbar) \).

The presence of quantum corrections to conductivity has been verified quantitatively in a number of doped semiconductors. One of many examples is shown in Fig. 1, where magnetoresistance of a \(n \)-ZnO thin film is shown for various temperatures.\(^16\) As seen, in the weakly localized regime \((k_F l < 10 \) for this sample), the present theory\(^12\)–\(^14\) describes quite precisely a rather complex field and temperature dependence of resistivity. The quantitative description of the data allowed one to determine the magnitude of the Rashba spin-orbit term specific to the wurtzite ZnO, \(\lambda_{so} \), and the phase breaking time brought about by inelastic scattering processes. It worth recalling that the weak-field positive magnetoresistance (MR) results from the one-particle spin-orbit ”anti-localization” effect, while negative MR at higher fields has the orbital origin – it comes from the influence of the magnetic field \(B \) (vector potential) on the phase difference of two transmission amplitudes corresponding to two possible paths along self-crossing trajectories. The corresponding field-induce con-
3. Effects of magnetic ions on localization

3.1 Trapping and doping

A number of transition metal and rare earth impurities gives rise to deep band-gap levels derived from highly localized d and f shells. Owing to the relatively large on-site correlation energy U, the acceptor state (which can trap an electron) resides at much higher energies than the donor state (which can donate an electron or in other words trap a hole). Magnetic impurities that introduce mid-gap states are exploited to fabricate semi-insulating materials, such as GaAs:Cr or InP:Fe. In contrast, if the impurity levels of the donor or acceptor character are degenerate with the conduction or valence band, respectively, shallow donor-like or acceptor-like states appear in the band gap. To this class belong Sc in CdSe, Mn in GaAs, and Fe in GaN, in the band gap. To this class belong Sc in CdSe, Mn in GaAs, and Fe in GaN, which exhibit properties specific to n-type and p-type semiconductors, respectively. Furthermore, it has been suggested that a strong local potential associated with the magnetic atom can enhance the binding energy (by the so-called central cell corrections) or even produce a bound state in the gap.

3.2 Effects of exchange interaction

In addition to forming trapping or doping centers, as discussed above, the magnetic impurities affect carrier localization via the strong s,p,d exchange interaction between localized spins and effective mass carriers. This interaction gives rise to: (i) giant spin splitting of bands, which depends on the magnitude and direction of macroscopic magnetization of localized spins; (ii) spin-disorder scattering; and (iii) formation of bound magnetic po-
3.3 Drude-Boltzmann effects

Some of the phenomena specific to magnetically doped semiconductors can be interpreted by incorporating the above-mentioned exchange effects into the Drude-Boltzmann formalism. For instance, the giant magnetization-dependent spin splitting explains the behavior of Shubnikov-de Haas effect in DMS as well as the magnitudes of both anisotropic magnetoresistance and resistance shoulder at $T < T_C$ in ferromagnetic semiconductors deeply in the metallic phase. Furthermore, the a.c. conductivity and domain-wall resistance of (Ga,Mn)As can be understood in a semi-quantitative fashion within the Drude-Boltzmann-like approach.

Similarly, by adding the free energy of bound magnetic polarons to the acceptor binding energy, the temperature and field dependent conductance of p-(Cd,Mn)Te in the thermal activation range has been described. However, many experiments show that materials in question very often reside on or at the vicinity of MIT boundary. In such a case, the influence of spin phenomena upon the quantum corrections to the Drude-Boltzmann conductivity determines the dependence of transport properties on the magnetic field and temperature.

3.4 Quantum localization phenomena

3.4.1 Temperature dependent localization and colossal negative magnetoresistance

Already early studies of magnetic semiconductors revealed that the exchange interaction between effective mass carriers and disordered spins increases localization, i.e., shifts MIT to higher carrier densities. Accordingly, a colossal decrease of the resistivity is observed when the spins of magnetic ions get aligned by the external magnetic field or when the transition to an ordered magnetic state takes place.

These findings are usually explained invoking the presence of either bound magnetic polarons (BMP) or a nanoscale phase separation. According to the BMP scenario, put forward in the context of europium chalcogenides, the exchange interaction leads to the formation of a spin-polarized cloud of magnetic ions inside the Bohr sphere of occupied impurities. This increases the impurity binding energy, reduces α_B, and thus increases n_c. Within the nanoscale phase separation model, developed for colossal magnetoresistance oxides, a competition between carrier-mediated ferromagnetism and intrinsic antiferromagnetism leads to a phase separation into magnetically ordered and disordered regions. This spatially inhomogeneous state sets in at a temperature T^* which is typically significantly higher than the Curie temperature T_C below which a global ferromagnetic order develops. Finally, it has been suggested that carrier density fluctuations associated with the presence of ionized impurities lead to an enhancement of ionized-impurity scattering by the associated magnetization cloud, the reasoning known as the magnetic-impurity model.

According to data for n-(Cd,Mn)Se collected in Fig. 4, a similar behavior has been found in DMS. In particular, the magnitude of resistance grows substantially on lowering temperature. This temperature-dependent localization observed also in n-(Cd,Zn,Mn)Se, n-(Zn,Mn)O, and n-(Zn,Co)O can be removed by the magnetic field resulting in colossal negative MR. Importantly, the effect exists only in the vicinity of MIT, which rules out the magnetic-impurity model.

The above findings have been interpreted in terms of the effect of spin-disorder scattering upon the quantum corrections to conductivity. Such scattering, if efficient enough, destroys quantitatively important "anti-localization" terms stemming from the disorder-modified carrier-carrier interactions. However, in order to explain the magnitude of the effect and its temperature dependence, the Mn spins have to form ferromagnetic bubbles whose magnetization should increase as magnetic susceptibility on lowering temperature. The formation of BMP around impurity-like states at the local-
As mentioned above, the field-induced ordering of localized spins leads to colossal negative MR. This MR can be enhanced further on by spin-splitting-induced redistribution of carriers between spin subbands, which shifts the Fermi energy away from the localization boundary.45 The effect is particularly strong in p-type DMS, where the redistribution increases the participation of light holes in charge transport. Actually this effect accounts mainly for the field-induced insulator-to-metal transition in p-(Hg,Mn)Te presented in Figs. 2 and 3.

3.4.2 Spin-splitting-induced negative magnetoresistance

As mentioned above, the field-induced ordering of localized spins leads to colossal negative MR. This MR can be enhanced further on by spin-splitting-induced redistribution of carriers between spin subbands, which shifts the Fermi energy away from the localization boundary.45 The effect is particularly strong in p-type DMS, where the redistribution increases the participation of light holes in charge transport. Actually this effect accounts mainly for the field-induced insulator-to-metal transition in p-(Hg,Mn)Te presented in Figs. 2 and 3.

3.4.3 Spin-splitting-induced positive magnetoresistance

The "anti-localization" terms whose destruction by spin-disorder scattering leads to temperature dependent localization, can also be partly destroyed by spin splitting. Due to the giant spin splitting, the effect is particularly strong in DMS, where it scales rather with magnetization than with the magnetic field. As shown in Figs. 4 and 6, where experimental findings for n-(Cd,Mn)Se and n-(Zn,Mn)O are presented,16 spin-splitting-induced positive MR competes at high temperatures with negative MR caused by the orbital weak-localization effect, whereas at low temperatures it is masked by temperature dependent localization and the associated colossal negative MR. As seen, weak-localization theory12–14 describes satisfactorily the data, except for the low temperature regime, as no quantitative model is presently available for temperature dependent localization.
A similar behavior, i.e., the appearance of temperature-dependent positive MR in the presence of magnetic ions, has been observed also for n-(Cd,Mn)Se, n-(Cd,Mn)Te, n-(Cd,Zn,Mn)Se, and n-(Zn,Co)O, and quantitatively described, as in Fig. 6, by the effect of the field-induced giant spin splitting on disorder-modified electron-electron interactions.

In accord with such an interpretation, no corresponding MR was found in ferromagnetic (Ga,Mn)As, where hole states are spin-polarized already in the absence of an external magnetic field.

3.4.4 Effects of spin splitting on Hall resistance

The quantum localization phenomena affect also the behavior of Hall conductivity in disordered systems. Actually, sizable anomalies in the Hall resistance of II-VI n-type DMS have been observed. They have been assigned to the influence of the giant spin splitting on quantum localization or on the anomalous Hall effect.

3.5 Carrier-mediated ferromagnetism at localization boundary

The Curie temperature T_C of (Ga,Mn)As and (Zn,Mn)Te one of the thermodynamic characteristics, shows no critical behavior at MIT. At the same time, T_C vanishes rather rapidly when moving away from MIT into the insulator phase, while it grows steadily with the magnitude of the conductivity on the metal side of MIT. Guided by these observations, the band scenario has been proposed in order to describe the ferromagnetism in ferromagnetic III-V and II-VI semiconductors on both sides of MIT.

Within this model, the hole localization length, which diverges at MIT, remains much greater than the average distance between acceptors for the experimentally important range of hole densities. Thus, holes can be regarded as band-like at the length scale relevant for the coupling between magnetic ions. Hence, the spin-spin exchange interactions are effectively mediated by the itinerant carriers, so that the p-d Zener model can be applied also to the insulator side of MIT. This view has been strongly supported by results of inelastic neutron scattering of nearest neighbor Mn pairs in p-(Zn,Mn)Te. In this experiment, the hole-induced change in the pair interaction energy shows the value expected for the band carriers despite that the studied sample was on the insulator side of MIT.

Since large mesoscopic spatial fluctuations in the magnitude of the density-of-states are expected near MIT, the ferromagnetic order develops locally already at $T^* > T_C$. This disorder-induced cluster ferromagnetism explains temperature dependent localization, as discussed above, as well elucidates why in samples on the insulator side of MIT only a fraction of spins is aligned ferromagnetically.

4. Quantum localization effects in (Ga,Mn)As

4.1 Metal-insulator transition and onset of ferromagnetism in (Ga,Mn)As

Comparing to GaAs doped with shallow acceptors such as Carbon, the Mn impurity introduces a stronger local potential stemming from sizable p-d hybridization. This increases the Mn acceptor ionization energy E_I, reduces a_B and, thus, enlarges n_c, perhaps by one order of magnitude, comparing to, e.g., GaAs:C. This shift of n_c is presumably smaller in InSb:Mn and InAs:Mn but even larger in GaP:Mn and GaN:Mn where $E_I \approx 1$ eV due to the short bond length and strong p-d hybridization. Within the model put forward here, once MIT is approached from the insulator side, many-body screening washes out bound states and makes the appearance of itinerant holes capable of transmitting magnetic interactions between diluted spins. The band scenario can serve for the description of ferromagnetism in this regime.

Experimentally, the onset of the carrier-mediated ferromagnetism is located rather close to MIT in (Ga,Mn)As, in agreement with the notion that the presence of band-like states are necessary carrier-mediated ferromagnetism. Comparing to p-(Zn,Mn)Te, where T_C exceeds barely 5 K, T_C in (Ga,Mn)As reaches rather fast a 20–30 K level. This difference is associated with a higher value of the density-of-states at n_c and the absence of competing antiferromagnetic interactions in (Ga,Mn)As. Actually, ferromagnetic order starts to develop at $T^* > T_C$ in the regions where the local carrier density is large enough to support long-range ferromagnetic correlations between randomly distributed Mn spins.

As could be expected for samples on the insulator side of MIT, in which the disorder-driven fluctuations of the local density-of-states are particularly large, the field and temperature dependence of magnetization shows that even at $T \ll T_C$ only a fraction of spins is aligned ferromagnetically. According to this model, the portion of the material encompassing the ferromagnetic bubbles,
and thus the magnitude of the spontaneous ferromagnetic moment, grows with the net acceptor concentration, extending over the whole sample volume well within the metallic phase.59

4.2 Temperature dependence of resistance in (Ga,Mn)As

As argued above, a characteristic feature of carrier-controlled ferromagnetic semiconductors at the localization boundary is the presence of randomly oriented ferromagnetic bubbles, which start to develop at $T^* > T_C$. Together with critical thermodynamic fluctuations that develop $T
ightarrow T_C$, they account for a resistance maximum near T_C and the associated negative magnetoresistance, as shown in Fig. 7.21 Both effects disappear deeply in the metallic and isolating phases. The underlying physics is analogous to that accounting for similar anomalies, albeit at much lower temperatures, in n-type DMS at the localization boundary, as discussed above. According to this insight, the presence of randomly oriented ferromagnetic bubbles has two consequences. First they constitute potential barriers of the order of the Fermi energy, which diminish conductance. Second, they give rise to efficient spin-disorder scattering of the carriers. Such scattering reduce "anti-localization" corrections to conductivity near the Anderson-Mott transition.4,12–14

In particular, spin-disorder scattering, once more efficient than spin-orbit scattering, destroys "anti-localization" quantum corrections to the conductivity associated with the one-particle interference effect40 and with the particle-hole triplet channel.41 While both phenomena increase the resistance value upon approaching T_C, the latter – resulting from disorder-modified carrier correlation – is usually quantitatively more significant.4,12–14

As expected within the above model, the resistance maximum tends to disappear deeply in the insulator phase54 (where ferromagnetic bubbles occupy only a small portion of the sample) as well as deeply in the metallic phase52 (where ferromagnetic alignment is uniform and quantum localization unimportant). In the metallic region, the resistance is approximately constant down to T_C and gradually decreases at lower temperatures. The Drude-Boltzmann approach taking into account the spin-splitting-induced carrier redistribution between spin subbands describes satisfactorily the data in this range.30 Furthermore, the disappearance of the resistance maximum away from MIT appears to suggest that contributions expected from critical scattering54 and magnetic-impurity36,62,63 models are quantitatively unimportant, a conclusion indirectly supported by the fact that rather large values of the exchange integral β had to be assumed to fit the temperature dependence of resistance near T_C in (Ga,Mn)As samples close to MIT within those models.61,62

In addition to the resistance changes near T_C, a sizable resistance increase with lowering temperature shows up at $T \ll T_C$ in metallic (Ga,Mn)As, an onset of the effect visible in Fig. 7. It is known that carrier spin polarization destroys the Kondo effect. Actually, this upturn of resistance can be explained in terms of quantum corrections to the conductivity in the weakly localized regime58 for the spin-polarized universality class.17 Assuming that only singlet electron-hole channel is relevant in this case, the temperature dependence of conductance is given by12–14

$$\Delta \sigma = \frac{0.915 e^2}{3 \pi^2 h} \sqrt{\frac{k_B T}{h D}} \quad (1)$$

or

$$\Delta \sigma = 4.4 \sqrt{\frac{m^* T [K]}{m_e k_F l}} \Omega_{\text{cm}}^{-1}. \quad (2)$$

We see that since $m^*/(m_e k_F l) \approx 1$, the expected change of conductance between 1 and 4 K is about 4.4 (Ωcm)$^{-1}$, in a good agreement with the experimental data summarized in Ref. 64. This reconfirms the band character of the relevant states in (Ga,Mn)As. Importantly, the proximity to MIT17,64 or the dimensional cross-over in thin films65 will modify the $T^{1/2}$ dependence at low temperatures.

4.3 Magnetoresistance of (Ga,Mn)As

It is important to begin by noting that an additional flavor of p-type ferromagnetic semiconductors is a large magnitude of the anomalous Hall effect (AHE). This should be taken into account when determining the magnitudes of conductivity tensor components from resistivity measurements, even in the absence of an external magnetic field at $T < T_C$.

It is convenient to discuss MR separately in four regions. In the temperature range near T_C, the magnetic-field orientation of preformed magnetic bubbles as well as the rapid polarization of the Mn spins work together to remove the enhancement of resistance.

![Fig. 7. (color online) Temperature dependence of resistivity for Ga$_{1-x}$Mn$_x$As films on the both sides of the metal-insulator transition. Resistance maximum in the vicinity of the Curie temperature and the associated negative magnetoresistance (inset) are seen (after Matsukura et al.21 reproduce with the permission, Copyright (1998) by the American Physical Society).](image-url)
components already within the Drude-Boltzmann approach lead to a specific anisotropy of the conductivity tensor domi-
nate. As known, in the presence of spin-orbit interactions, a field-induced reorientation of spontaneous magnetization anisotropy energy. In this regime, effects related to the spin splitting energy is greater than the spin relaxation rates. Worth recalling at this point that the spin splitting is a consequence of the weak-localization orbital effect, quantitatively describes in terms of the weak-localization or-
itized. As shown in Fig. 8, this high-field MR can be quan-
titatively reproduced with the permission, Copyright (2004) by Elsevier).

However, the negative MR persists in the field and temperature region, where Mn spins are entirely polarized. As shown in Fig. 8, this high-field MR can be quantitatively describes in terms of the weak-localization orbital effect, which near MIT shows up in the cyclotron energy is greater than the spin relaxation rates. It worth recalling at this point that the spin splitting specific to the ferromagnetic phase reduces spin-scattering rates rather substantially. Interestingly, the orbital effect in question accounts presumably for the insulator-to-metal transition revealed for (Ga,Mn)As in high magnetic fields.

The third region of interest corresponds to the magnetic fields determined by the magnitude of the anisotropy energy. In this regime, effects related to the field-induced reorientation of spontaneous magnetization dominate. As known, in the presence of spin-orbit interaction, non-zero values of magnetization and/or strain lead to a specific anisotropy of the conductivity tensor components already within the Drude-Boltzmann approach. This results in a dependence of the resistance magnitude on the direction of magnetization as well as to the appearance of the so-called planar Hall effect. If all hole subbands remain occupied, anisotropic magnetoresistance (AMR) is of the order of a few percent. However, when the Fermi energy becomes smaller than the subband spin splitting, AMR and the related tunneling magnetoresistance (TAMR) can be quite large, especially near MIT. According to the results presented in Fig. 2, despite of a large value of AMR, the critical point remains invariant to the relative orientation of the current and magnetization direction in cubic (Hg,Mn)Te. This may not be, however, the case of strained (Ga,Mn)As films, where the critical point can be displaced by changing the direction of magnetization.

Finally, we turn to possible origins of a linear MR across zero magnetic field and of an associated resistance jump at the coercive field H_c, which have been detected experimentally in ferromagnetic (Ga,Mn)As. As discussed above, spin splitting leads to sizable positive and negative contributions to MR in n-type and p-type II-VI DMS, respectively. Furthermore, AMR and AHE, rather sizable in (Ga,Mn)As, originate also from a non-zero value of spin splitting. Obviously, at $T \ll T_c$, the spins are entirely polarized so that the giant exchange spin splitting does not vary with the magnitude of the external magnetic field. However, it may depend on the field orientation in respect to the crystallographic directions. Furthermore, the total spin splitting consists of the giant exchange contribution and a smaller anisotropic band term linear in the magnetic field. Similarly, the Hall conductance contains also a normal term that is linear in the field. Another mechanism is possible if a part of localized spins is coupled by an antiferromagnetic interaction or not coupled at all. In such a case spin-disorder scattering rate contains a term linear in the field-induced magnetization. Which of these effects dominates is unclear by now but since the relative sign of the field-independent and field-dependent terms changes at H_c, both linear MR and resistance jump at H_c are expected for the mechanisms discussed here, as observed.

5. Summary

The results discussed in this paper reemphasize the significance of quantum localization effects in the physics of diluted magnetic and ferromagnetic semiconductors. These phenomena originate from interference of scattered waves and interference of carrier-carrier interaction amplitudes. These two interference manifestations have to be considered on equal footing and they account for a rather complex field, magnetization, and temperature dependence of resistance. In a wide region around the metal-insulator critical point, the quantum phenomena coexist with or dominate over Drude-Bolzmann effects, such as anisotropic magnetoresistance.

The insight gained from studies of II-VI Mn-based DMS has been exploited here to describe magnetotransport phenomena in (Ga,Mn)As and related compounds. According to the present understanding, the high-field positive magnetococonductance of (Ga,Mn)As, $\Delta \sigma \sim B^{1/2}$, present in virtually all other doped semicon-
ductors, results from the orbital weak-localization effect. The resistance maximum and the associated negative magnetoresistance near the Curie temperature are as-
signed to the cluster ferromagnetism specific to magneti-
cally doped semiconductors at the localization boundary. The randomly oriented ferromagnetic bubbles reduce the conductance directly as well as by destroying the ”anti-
localization” quantum corrections driven by disorder modified carrier-carrier interactions. The randomness-
localization” quantum corrections driven by disorder con-
ductance directly as well as by destroying the ”anti-
cantly doped semiconductors at the localization boundary.

The resistance maximum and the associated negative
ductance, ∆σ ∼ T^{1/2} at T ≪ T_C, which can be modified by the dimensional cross-over in thin films. Furthermore, the sensitivity of conductance to spin splitting may explain resistance anomalies at coercive fields, where the relative direction of the molecular and external magnetic fields changes.

In this paper, we have assumed that the localized spins are distributed randomly. Nevertheless, as we have argued, non-uniformities of magnetization occur due to large fluctuations in the local density of carrier states are distributed randomly. Nevertheless, as we have argued, non-uniformities of magnetization occur due to large fluctuations in the local density of carrier states near MIT. However, in a number of DMS, the distribution of magnetic ions is highly non-random. Actually, nano-scale regions containing a large concentration of the magnetic constituent appear to account for the high-temperature ferromagnetism observed in a variety of such systems. This aspect of DMS has recently been reviewed elsewhere.72,73

Acknowledgments

This work was supported in part by NANOSPIN E. C. project (FP6-2002-IST-015728), by the Humboldt Foundation, and carried out in collaboration with T. Andrearczyk, P. Glod, M. Sawicki, and T. Wojtowicz in Warsaw, J. Jaroszynski in Tallahassee, F. Matsukura and H. Ohno in Sendai, and with G. Bauer and A. Bonanni in Linz.

1) F. Matsukura, H. Ohno and T. Dietl, in Handbook of Magnetic Materials, edited by K. Buschow (Elsevier, Amsterdam, 2002), vol. 14, p. 1.
2) T. Jungwirth, J. Sinova, J. Mašek, J. Kucera and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).
3) T. Dietl, H. Ohno and F. Matsukura, IEEE-Trans. Electronic Devices 54, 945 (2007).
4) D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).
5) B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).
6) V. Palankovski, G. Kaihlinger-Grujin and S. Selberherr, Materials Sci. Engin. B 66, 46 (1999).
7) T. Jungwirth, Jairo Sinova, A. H. MacDonald, B. L. Gallagher, V Novák, K. V. Edmonds, A. W. Rushforth, R. P. Campion, C. T. Foxon, L. Eaves, E. Olejnk, J. Mašek, S.-R. E. Yang, J. Wunderlich, C. Gould, L. W. Molenkamp, T. Dietl Molenkamp and H. Ohno Ohno Phys. Rev. B) 76, 125206 (2007).
8) H. Ohno and T. Dietl, J. Magn. Magn. Mat. (in press).
9) S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson and G. A. Thomas, Phys. Rev. B 48, 11394 (1993).
10) T. F. Rosenbaum, S. Pepke, R. N. Bhatt and T. V. Ramakrishnan, Phys. Rev. B 42, 11214 (1990).
11) M. A. Paalanen, J. E. Graebner, R. N. Bhatt and S. Sachdev, Phys. Rev. Lett. 61, 597 (1988).
12) B. L. Altshuler and A. G. Aronov, in Electron-Electron Inter-
actions in Disordered Systems, edited by A. L. Efros and M. Pollak (North Holland, Amsterdam, 1985), p. 1.
13) H. Fukuyama, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (North Holland, Amsterdam, 1985), p. 155.
14) P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
15) M. A. Paalanen, R. N. Bhatt and S. Sachdev, Physica B 169, 223 (1991).
16) T. Andrearczyk, J. Jaroszynski, G. Grahbecki, T. Dietl, T. Fukumura and M. Kawasaki, Phys. Rev. B 72, 121309 (2005).
17) T. Wojtowicz, T. Dietl, M. Sawicki, W. Plesiewicz and J. Jaroszynski, Phys. Rev. Lett. 56, 2419 (1986).
18) J. Jaroszynski and T. Dietl, Physica B 177 469 (1992).
19) H. Ohno, H. Munekata, T. Penney, S. von Molnár and L. L. Chang, Physica B 155, 357 (1989).
20) P. Glod, T. Dietl, T. Fromherz, G. Bauer and I. Miotkowski, Phys. Rev. B 49, 7797 (1994).
21) F. Matsukura, H. Ohno, A. Shen and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).
22) C. Benoit à la Guillaume, D. Scalbert and T. Dietl, Phys. Rev. B 46, 9853(R) (1992).
23) T. Dietl, F. Matsukura and H. Ohno, Phys. Rev. B 66, 033203 (2002).
24) T. Dietl, cond-mat/0703278.
25) W. Pacuski, P. Kossacki, D. Ferrand, A. Golnik, J. Cibert, M. Wegscheider, A. Navarro-Quezada, A. Bonanni, M. Kiecana, M. Sawicki, et al., Phys. Rev. Lett. p. in press (2008), arXiv:0708.3296.
26) P. Wachtler, in Handbook on the Physics and Chemistry of Rare Earth, edited by J. K. A. Gschneidner and L. Eyring (North-Holland, Amsterdam, 1979), vol. 2, p. 507.
27) T. Dietl, in Handbook of Semiconductors, edited by S. Maj-
han (North Holland, Amsterdam, 1994), vol. 3B, p. 1251.
28) M. Jaczyski, J. Kossut and R. R. Galążka, phys. stat. sol. (b) 88, 73 (1978).
29) Y. Shapira and R. L. Kautz, Phys. Rev. B 10, 4781 (1974).
30) M. Lázaro-Sancho and L. Brey, Phys. Rev. B 68, 245211 (2004).
31) E. M. Hankiewicz, T. Jungwirth, T. Dietl, C. Timm and J. Sinova, Phys. Rev. B 70, 245211 (2004).
32) D. Chiba, M. Yamanouchi, F. Matsukura, T. Dietl and H. Ohno, Phys. Rev. Lett. 96, 096602 (2006).
33) J. Jaroszynski and T. Dietl, Solid State Comm. 55, 492 (1985).
34) B. L. Sheu, R. C. Myers, J.-M. Tang, N. Samarth, D. D. Awschalom, P. Schiffer and M. E. Flatté, Phys. Rev. B 57, 227205(2008).
35) E. Dagotto, T. Hotta and A. Moreo, Phys. Rep. 344, 1 (2001).
36) E. L. Nagaev, Phys. Rep. 346, 387 (2001).
37) M. Sawicki, T. Dietl, J. Kossut, J. Igalson, T. Wojtowicz and M. Sawicki, Physica B 508 (1996).
38) T. Dietl, L. Świerkowski, J. Jaroszynski, M. Sawicki and T. Woji-
towicz, Physica Scripta T 4, 20 (1986).
39) P. Glöd, T. Dietl, M. Sawicki and I. Miotkowski, Physica B 194-196, 995 (1994).
40) I. Terry, T. Penney, S. von Molnár and P. Becla, Phys. Rev. Lett. 69, 1800 (1992).
41) J. Jaroszynski, T. Andrearczyk, G. Karczewski, J. Wóbel, T. Wojtowicz, D. Popović and T. Dietl, Phys. Rev. B 76, 045322 (2007).
42) I. Smorchkova, N. Samarth, J. Kikkawa and D. Awschalom, Phys. Rev. Lett. 78, 3571 (1997).
43) T. Dietl, T. Andrearczyk, A. Lipińska, M. Kiecan, M. Tay and Y. Wu, Phys. Rev. B 76, 155312 (2007).
44) D. Kehrsakos, N. Papanikolaou, K. N. Trohidou and T. Dietl, Phys. Rev. Lett. 94, 127201 (2005).
45) D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon,
S. Tatarenko, G. Fishman, T. Andrarczyk, J. Jaroszyński, S. Kolešnik, T. Dietl, et al., Phys. Rev. B 63, 085201 (2001).

H. Fukuyama and K. Yosida, J. Phys. Soc. Japan 46, 1522 (1979).

Y. Shapira, N. F. Oliveira Jr., P. Becla and T. Q. Vu, Phys. Rev. B 63, 085201 (2001).

F. Matsukura, M. Sawicki, T. Dietl, D. Chiba and H. Ohno, Physica E 21, 1032 (2004).

V. K. Dugaev, A. Cripeux and P. Bruno, Phys. Rev. B 64, 104411 (2001).

M. Sawicki and T. Dietl, in Proceedings of the 19th International Conference on the Physics of Semiconductors, edited by W. Zawadzki (Institute of Physics, Polish Academy of Sciences, Warsaw, 1988) p. 1217.

J. Cumings, L. S. Moore, H. T. Chou, K. C. Ku, G. Xiang, S. A. Croooker, N. Samarth and D. Goldhaber-Gordon, Phys. Rev. Lett. 96, 196404 (2006).

S. J. Potashnik, K. C. Ku, S. H. Chun, J. J. Berry, N. Samarth and P. Schiffer, Appl. Phys. Lett. 79, 1495 (2001).

R. P. Campion, K. W. Edmonds, L. X. Zhao, K. Y. Wang, C. T. Foxon, B. L. Gallagher and C. R. Staddon, J. Cryst. Growth 251, 311 (2003).

T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand Science 287, 1019 (2000).

T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205 (2001).

H. Kępa, L. V. Khoi, C. M. Brown, M. Sawicki, J. K. Furdyna T. M. Giebańtowicz, and T. Dietl, Phys. Rev. Lett. 91, 087205 (2003).

M. Mayr, G. Alvarez and E. Dagotto, Phys. Rev. B 65, 241202 (2002).

A. Oiwa, S. Katsumoto, A. Endo, M. Hirasawa, Y. Iye, H. Ohno, F. Matsukura, A. Shen and Y. Sugawara, Solid State Commun. 103, 209 (1997).

T. Jungwirth, K. Y. Wang, J. Mašek, K. W. Edmonds, J. König, J. Sinova, M. Polini, N. Goncharuk, A. H. MacDonald, M. Sawicki, et al., Phys. Rev. B 73, 165205 (2006).

C. Timm, M. E. Raikh and F. von Oppen, Phys. Rev. Lett. 94, 036602 (2005).

T. Omiya, F. Matsukura, T. Dietl, Y. Ohno, T. Sakon, M. Motokawa and H. Ohno, Physica E 7, 976 (2000).

S. U. Yuldashev, H. Im, V. S. Yalishev, C. S. Park, T. W. Kang, S. Lee, Y. Sasaki, X. Liu and J. K. Furdya, Appl. Phys. Lett. 82, 1206 (2003).

S. T. B. Goghenwein, S. Russo, A. F. Morpurgo, T. M. Klappwijk, W. van Roy and J. de Boeck, Phys. Rev. B B, 193306 (2005).

J. Honolka, S. Masmanidis, H. X. Tang, D. D. Awschalom and M. L. Roukes, Phys. Rev. B 75, 245310 (2007).

D. Neumaier, M. Schlapps, U. Wurstbauer, J. Sadowski, M. Reinwald, W. Wegscheider and D. Weiss, arXiv:0711.3378v2.

V. K. Dugaev, P. Bruno and J. Barnaš, Phys. Rev. B 64, 144423 (2001).

S. Katsumoto, A. Oiwa, Y. Iye, H. Ohno, F. Matsukura, A. Shen and Y. Sugawara, phys. stat. sol. (b) 205, 115 (1998).

H. X. Tang, R. K. Kawakami, D. D. Awschalom and M. L. Roukes, Phys. Rev. Lett. 90, 107201 (2003).

P. Sankowski, P. Kacman, J. A. Majewski and T. Dietl, Phys. Rev. B 75, 045306 (2007).

K. Pappert, M. J. Schmidt, S. Humphfner, C. Ruster, G. M. Schott, K. Brunner, C. Gould, G. Schmidt and L. W. Molenkamp, Phys. Rev. Lett. 97, 186402 (2006).

M. Cseontos, T. Wojtowicz, X. Liu, M. Dobrowolska, B. Jankó, J. K. Furdyna and G. Mihály, Phys. Rev. Lett. 95, 227203 (2005).

T. Dietl, J. Phys.: Condens. Matter 19, 165204 (2007).

T. Dietl, J. Appl. Phys. (2008), arXiv:0711.0343.