Neurological manifestations and neuroimaging findings in patients with SARS-CoV2—a systematic review

Nikita Mohan¹, Muhammad Ali Fayyaz², Christopher del Rio³, Navpreet Kaur Rajinder Singh Khurana⁴*, Sampada Sandip Vaidya⁵, Esteban Salazar³, John Joyce⁶ and Amrat Ayaz Ali⁷

Abstract

Background: The COVID-19 pandemic has drastically affected everyone in a hit or miss manner. Since it began, evidence of the neuro-invasive potential of the virus has been intensifying significantly. Several pathways have been hypothesized to elucidate the neurotropic nature of SARS-CoV2. It is the need of the hour to collect vital information.

Objective: To evaluate and correlate the neuro-radiological and neurological manifestations in patients diagnosed with SARS-CoV2.

Methods: Relevant studies were identified through four databases—the Cochrane Library, PubMed, Science Direct, and Web of Science. These were searched using relevant keywords—“COVID-19,” “SARS-CoV2,” “neurological manifestations,” “neuroimaging,” “CT,” and “MRI.” Relevant articles were screened according to a pre-defined inclusion and exclusion criteria from December 2019 to August 2020.

Results: Our review included a total of 63 full text publications with 584 patients, composed mainly of observational studies, case reports, and case series. The most common neurological manifestations associated with COVID-19 were altered mental status, stroke, and paralysis. About 17.85% patients who underwent neuroimaging were found to have ischemic changes suggestive of a stroke. This was followed by hemorrhagic changes as the second most common finding. The most commonly involved vessel was the Middle Cerebral Artery. Besides stroke, we found that SARS-CoV2 could be the cause for new-onset seizures, Guillain-Barre Syndrome, encephalitis, and many other severe neurological diseases.

Conclusion: The information that we have obtained so far will prove dynamic to healthcare providers working against the COVID-19 pandemic. It is necessary to be aware of these atypical neurological findings for the early diagnosis and treatment of COVID-19 infected patients. However, to completely understand the connection between SARS-CoV2 and the nervous system, further research is necessary.

Keywords: SARS-CoV 2, Stroke, Neuro-invasive, COVID-19, Neuroimaging
Introduction

The infamous COVID-19 pandemic has drastically involved everyone in a hit or miss manner. The world is currently fighting against a highly infectious novel coronavirus, known as SARS-CoV2. What began as an outbreak of pneumonia in Wuhan, China, has rapidly engulfed the entire world [1]. As of August 31, 2020, this virus has infected approximately 25 million people and caused 844 thousand deaths globally [2]. The pandemic has posed severe challenges to public health, and the medical community continues to struggle in hitherto mysterious zones, especially in terms of reliable therapeutic interventions. In one study, health care providers utilized extracorporeal membrane oxygenation (ECMO) for patients with acute respiratory distress syndrome secondary to COVID-19, although early reports seem to have a high mortality rate due to devastating neurological insult [3].

Though the respiratory symptoms are the most common, there have been studies which highlight the potential neurotropism of the virus. The incubation period of COVID-19 infected patients, whether asymptomatic or possessing wide spread signs and symptoms, varies from 2 to 11 days with an approximate mortality rate of 2-4% [4]. In an observational study in Wuhan, 36.4% of the patients had neurological involvement such as impaired consciousness, acute cerebrovascular events, headache, seizure, hyposmia, and hypogeusia [5]. There have also been several reports on patients presenting with neurological involvement as the initial symptoms [6, 7].

This initial data reflects that the brain seems to be a target organ for various infections and critical diseases, either due to direct insult or through secondary involvement. The peripheral nervous system (PNS) is also particularly susceptible during infection-related immunemediated diseases [8].

Even though there is extensive data on the respiratory involvement of SARS-CoV2, documentation of its neurological aspect has been limited to observational studies and case reports. There is a further lack of information on the neuroimaging findings of COVID-19. In this rapidly evolving situation, it has become essential for healthcare providers to stay updated on the various atypical presentations of SARS-CoV2 and keep in mind COVID-19 as a potential diagnosis when encountering such cases. Therefore, we performed a comprehensive literature search in this systematic review to ascertain the different neurological manifestations and neuroimaging findings linked with COVID-19 infection.

Objective

To evaluate and correlate the neuro-radiological and neurological manifestations in patients diagnosed with SARS-CoV2.

To identify neuro-invasive pathways of COVID infection.

Methods

A comprehensive search of the literature was performed from the following databases: PubMed, Web of Science, Cochrane Library, and Science Direct. The following search terms were used in combination with the Boolean operators AND and OR; “COVID-19,” “SARS-CoV2,” “neurological manifestations,” “neuroimaging,” “MRI,” and “CT.” We selected for analysis only articles in which the title and abstract contained the aforementioned search terms. In an initial screen, we excluded articles which were duplicates, and those in which title and abstract were not relevant to our search terminology. Of the remaining studies, screening was done based on the full text of the article under the following inclusion criteria: (1) Studies reporting patients with laboratory confirmation of SARS-CoV2, (2) case reports, case series, cohort studies, and case-control studies, (3) studies in which subjects were above the age of 18, (4) studies containing neuroimaging (CT or MRI) of the brain, (5) studies performed between December 2019 and August 2020. The exclusion criteria were as follows: (1) reviews, editorials, or commentaries. (2) Studies in which subjects were in the pediatric age group, were pregnant, or had prior neurological conditions. (3) Studies with no neurological evaluation, (4) studies published in any language other than English, without available English translations. The articles were screened in their entirety, by two independent readers, in each of the aforementioned scientific databases, to determine eligibility for inclusion. Discrepancies were discussed among all authors, and a collective effort was undertaken to resolve them.

The search strategy and article selection process are depicted in the flowchart in Fig. 1 as per the PRISMA statement.

Results

Through the search strategy, we identified 63 articles with neurological and neuroimaging manifestations in patients infected with COVID-19. We included 584 patients who presented with neurological manifestations and underwent different neuroimaging modalities. The age of patients ranged from 24-88 years.

In terms of neuroimaging findings (Table 1), among these 63 articles, 584 patients underwent neuroimaging. Four hundred and twenty eight (67.61%) patients that underwent neuroimaging did not have any abnormality on CT or MRI. For the remaining 156 patients, neuroimaging findings were in descending order as follows: ischemic changes (17.85%), with the middle cerebral artery (MCA) being the most frequent anatomical location; hemorrhagic changes (6.31%), diffuse edema
(1.57%), encephalitis (1.57%), herniation (with uncal and subfalcine as the most common) (1.26%), venous thrombosis (0.7%), atrophy (0.4%), inflammatory process (0.4%), and constriction (0.4%). The absence of flow and signal changes was 0.3% each. The least common findings were acute myelitis, high-grade glioma, calcification of the proximal left internal carotid artery (ICA), a demyelinating lesion in left temporal and right occipital lobes, dissection of the left vertebral artery, and small-vessel disease comprised the remaining 0.6% (0.1% each) (Fig. 2).

Out of the 157 distinct neurological manifestations presented in the 63 articles (Table 2), we were able to identify 5 possible groups. Patients were only included once per group. In order of prevalence: altered mental status (52.5%), sensory alterations (19.7%), motor alterations (17.7%), others (5.5%), and seizures (4.6%) (Fig. 3). Certain articles with a larger patient population did not specify its prevalence for the different neurological manifestations. The only group with a female predominance was sensory alterations (51.7%). No group had a defined male predominance. Altered mental status and others had a greater representation of unspecified sex (79.8% and 80% respectively) (Fig. 4).

Discussion

Since the outbreak of the SARS-CoV2 virus in December 2019, the majority of research has been...
Table 1 Reported studies on COVID-19 patients with neurological manifestations with positive findings on major imaging modalities

Article name	Imaging modality	Neuroimaging findings
1. A case of COVID-19 respiratory Illness with Subsequent seizure and hemiparesis [9]	CT—head	Subcortical hypoattenuation with sulcal effacement in the left occipital and posterior parietal lobes suggestive of ischemic changes
2. A case series of devastating intracranial hemorrhage during venovenous extracorporeal membrane oxygenation for COVID-19 [3]	CT—head	Multicompartment intracranial hemorrhage with marked diffuse edema and secondary infarction of the left anterior and posterior cerebral artery territories due to vascular compression
3. A first case of meningitis/encephalitis associated with SARS-coronavirus-2 [10]	MRI—brain	Diffusion weighted images (DWI) showed hyperintensity along the wall of inferior horn of right lateral ventricle. Fluid-attenuated inversion recovery (FLAIR) images showed hyperintense signal changes in the right mesial temporal lobe and hippocampus—suggestive of right lateral ventriculitis and encephalitis.
4. Acute abducens nerve palsy in a patient with the novel coronavirus disease (COVID-19) [11]	MRI—brain	Denervation of CN VI- as evident by hyperintensity on T2 weighting of atrophic left lateral rectus muscle
5. Acute disseminated encephalomyelitis after SARS-CoV-2 infection [12]	MRI—brain and spine	6 enhancing lesions, most with ring enhancement and some with nodular enhancement Hyperintense signal of the optic nerves bilaterally Hyperintense spindle-like T2 lesion
6. Acute myelitis as a neurological complication of COVID-19: a case report and MRI findings [13]	Gadolinium-enhanced MRI—spine	Extensive diffuse hyperintense signal of the gray matter of cervical, dorsal, and lumbar regions of the spinal cord Mild enlargement and swelling of the cervical cord Areas of restricted diffusion on DWI and apparent diffusion coefficient (ADC)
7. Acute polyradiculoneuritis with locked-in syndrome in a patient with COVID-19 [14]	MRI—spine	Massive symmetrical contrast enhancement of the spinal nerve roots at all levels of the spine including the cauda equina
8. Acute profound sensorineural hearing loss after COVID-19 pneumonia [15]	MRI—brain	Pronounced contrast enhancement in the right cochlea and a partially decreased fluid signal in the basal turn of the right cochlea Adjacent to the temporal bone, meningeal contrast enhancement was seen at the base of the right temporal lobe Signs of an inflammatory process in the cochlea
9. Basal ganglia involvement and altered mental status: a unique neurological manifestation of coronavirus disease 2019 [16]	CT—head	B/L basal ganglia hyper-density suggestive of subacute hemorrhagic event Involvement of basal ganglia in subacute bleeding
10. Bilateral posterior cerebral artery territory infarction in a SARS-CoV-2 infected patient: discussion about an unusual case [17]	MRI—brain	B/L and asymmetric acute occipito-temporal infarction of the posterior cerebral arteries (PCA) with occlusion of P3 segments Hemorrhagic transformation of the previous lesions
11. Bilateral trochlear nerve palsy due to cerebral vasculitis related to COVID-19 infection [18]	MRI—brain	Signs of vasculitis of the vertebrobasilar system Inflammatory signs in the periaqueductal region, along the topography of the trochlear nuclei
12. Cerebral microhemorrhage and purpuric rash in COVID-19: the case for a secondary microangiopathy [19]	MRI—brain	Multiple areas of micro-hemorrhage throughout the corpus callosum, B/L juxtacortical white matter, basal ganglia, cerebellum, and brain- stem, without clear asymmetry Discrete areas of FLAIR hyperintensity correlating with some of the larger areas of SWI changes suggesting larger macro-hemorrhage Areas of diffusion restriction
13. Cerebral nervous system vasculitis in a COVID-19 patient with pneumonia [20]	CT—headMRI—brain	Cortical-subcortical blood-related hyperdensities in the right occipital lobes and B/L fronto-parietal Signal restriction of the cortex in a parietal and parieto-occipital region and at the pons level suggestive of subacute phase of cortical inflammation and ischemia
14. Cerebral venous thrombosis: a typical presentation of COVID-19 in the young [21]	CT—headMRI—brain	Left temporoparietal hemorrhagic venous infarct with edema and mass effect with 5 mm rightward shift Hyperintense DWI signal of the left temporoparietal hemorrhagic infarct with mass effect and effacement of the left lateral and third ventricle with 4 mm rightward shift Absence of flow in the sigmoid sinus, left transverse and internal jugular vein (IJV) secondary to venous thrombosis
Article name	Imaging modality	Neuroimaging findings
---	------------------	--
15 Coexistence of COVID-19 and acute ischemic stroke report of four cases [22]	MRI—brain	Total middle cerebral artery (MCA) infarction
		Left lenticulostriate artery infarction
		Right pontine infarction
16 Concomitant neurological symptoms observed in a patient diagnosed with coronavirus disease 2019 [23]	CT—head	No abnormality
17 Coronavirus 2019 (COVID-19)-associated encephalopathies and cerebrovascular disease: the New Orleans experience [24]	CT—head, MRI—brain	Focal encephalitides and vasculitides
		Diffuse hypoattenuation, focal hypodensities in deep structures, subacute ischemic strokes, and subcortical parenchymal hemorrhages
		Viral encephalitis: restriction and FLAIR changes in corpus callosum as well as B/L deep structures
18 COVID-19 presenting as stroke [25]	CT—head, CT, MRI—brain	Case 1—Loss of gray-white differentiation at the left occipital and parietal lobes, consistent with acute infarct.
		Evolution of a large acute infarct in the left MCA territory with hyperdense appearance of left MCA vessels—consistent with an acute thrombus
19 COVID-19 presenting with seizures [26]	CT—head	Case 2—Moderate hypodensity in the right frontal lobe suggestive of an acute infarct
		Case 3—Occclusion of the right internal carotid artery (ICA) at origin with a core infarct in the right MCA distribution and a surrounding ischemic penumbra
20 COVID-19 related neuroimaging findings: a signal of thromboembolic complications and a strong prognostic marker of poor patient outcome [27]	CT—head	Case 4—acute infarct in the left medial temporal lobe
		Chronic microvascular ischemic changes
		Acute left MCA infarct
		Multiple small acute infarcts in B/L cerebral hemispheres
		Large acute hemorrhage in the brainstem and right cerebral hemisphere
		Ischemic and hemorrhagic stroke, hypoxic anoxic brain injury, encephalitis
		Severe cerebral edema with mass effect, diffuse cerebral sulcal effacement, brainstem compression with narrowing of the 4th ventricle due to downward cerebellar tonsillar herniation
		Severe diffuse cerebral arterial and dural venous sinus constriction
22 COVID-19-associated encephalopathy: neurological manifestation of COVID-19 [29]	CT—head, MRI—brain	Hypodensity of bilateral thalamus
		Signal changes of brain parenchyma including insula, B/L dorsal frontal lobes, and thalamus with restricted diffusion of globus pallidus (features of encephalopathy)
23 COVID-19-associated ophthalmoparesis and hypothalamic involvement [30]	MRI—brain	T2/FLAIR Hyperintensity (H) in the brainstem, including the medial temporal lobes, mammillary bodies, CN VI nuclei, thalami, and hypothalamus
24 COVID-19-associated pulmonary and cerebral thromboembolic disease [31]	CT—head, MRI—brain	Partial right Sylvian segment (M2), superior division occlusion and right opercular (M3), parietal segment occlusions
		Multiple, discrete, peripheral acute infarctions of the right MCA territory with some hemorrhagic conversion
25 COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia [32]	CT—head, MRI—brain	Increased hypodensity and swelling of the brain stem, and a new area of cortical and subcortical hypodensity in the left occipital lobe suggestive of an acute posterior circulation infarct
		Extensive, symmetrical changes in the supratentorial and infratentorial compartments.
		Hemorrhage and diffuse swelling in the amygdalae and brain stem
		Microhemorrhage and extensive abnormal signal were found in a symmetrical distribution within the dorsolateral putamina, ventrolateral thalamic nuclei, sub-insular regions, splenium of the corpus callosum, cingulate gyri, and subcortical periventricular regions
26 COVID-19-related strokes in adults below 55 years of age: a case series [33]	CT—head	Right MCA, Left MCA, and left basal ganglia infarction
27 COVID-19-associated encephalitis mimicking glial tumor [34]	MRI—brain	Hyperintense signal in the left temporal lobe in T2 and T2 FLAIR imaging suggestive of high-grade glioma
28 De novo status epilepticus in patients with COVID-19 [35]	CT—head, MRI—brain	No abnormality
Article name	Imaging modality	Neuroimaging findings
--	------------------	---
29 Delirium as a presenting feature in COVID-19: neuroinvasive infection or autoimmune encephalopathy? [36]	CT—head, MRI—brain	Case 1—3 hyperintense foci on diffusion suggesting cellular infiltration/inflammation or small infarcts / Case 2—Changes in the limbic system with partial diffusion restriction, consistent with limbic encephalitis
30 Emergency room neurology in times of COVID-19: malignant ischaemic stroke and SARS-CoV-2 infection [7]	CT—head, CTA	Established infarct in the territory of the left MCA with a mild deviation of the midline / Occlusion of the left MCA, ACA and ICA with a free-floating thrombus in the ascending aorta
31 Encephalopathy and seizure activity in a COVID-19 well controlled HIV patient [37]	CT—head, MRI—brain	No abnormality
32 COVID-19-associated myositis with severe proximal and bulbar weakness [38]	MRI—brain	Extensive edema and enhancement suggestive of inflammatory myopathy / Central nonenhancement in the vastus medialis, consistent with myonecrosis
33 Evolution and resolution of brain involvement associated with SARS-CoV2 infection: a close clinical—paraclinical follow up study of a case [39]	CT—head, MRI—brain	High signal abnormalities in B/L pons, thalami, and medial temporal lobes
34 First case of focal epilepsy associated with SARS-coronavirus-2 [40]	CTA, MRI—brain	Proximal left ICA plaques with focal calcification / Dilated ventricular system with a prominent and patent aqueduct of Sylvius
35 First case of SARS-CoV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease [41]	MRI—brain	No abnormality
36 First motor seizure as presenting symptom of SARS-CoV-2 infection [42]	CT—head	No abnormality
37 Focal EEG changes indicating critical illness associated cerebral microbleeds in a COVID-19 patient [43]	MRI—brain	Focal injury without encephalopathy / Diffuse microbleeds in B/L juxtacortical white matter, corpus callosum, and internal capsule
38 Fulminant cerebral edema as a lethal manifestation of COVID-19 [44]	CT—head	Extensive vasogenic edema and herniation of temporal lobes toward the brain stem with obliteration of basal cerebral cisterns, multiple juxtacortical microbleeds, which may be compatible with venous hemorrhagic infarction, effacement of ventricles and peripheral sulci and gyri
39 Intracranial hemorrhage in a young COVID-19 patient [45]	CT—head	Large, multiloculated right ICH associated with vasogenic edema; uncal and sub-falcine herniation without an underlying ischemic stroke
40 Ischemic stroke associated with novel coronavirus 2019: a report of three cases [46]	CT—head	Case 1. Low-density lesion at right cerebellar suggestive of acute ischemic stroke / Case 2. Attenuation and effacement at the right hemisphere around the Sylvian fissure / Case 3. Hypo-density at left basal ganglion
41 Locked-in with COVID-19 [47]	MRI—brain, MRA	Numerous foci of restricted diffusion within the pons, (correlating with FLAIR signal abnormality) consistent with acute pontine ischemic infarcts / Decreased flow in distal right vertebral artery with a patent basilar artery
42 Macrothrombosis and stroke in patients with mild COVID-19 infection [48]	CT—head, MRI—brain	Nonocclusive thrombus in the right common carotid artery, extending into the ICA / Acute stroke in the territory of the right MCA
43 Malignant cerebral ischemia in a COVID-19 infected patient: case review and histopathological findings [49]	CT—head	Large right MCA infarct
44 Multiple sclerosis following SARS-CoV-2 infection [50]	MRI—brain	Supratentorial periventricular demyelinating lesions in right occipital lobe and left temporal
45 Necessity of brain imaging in COVID-19 infected patients presenting with acute neurological deficits [51]	CT—head	Case 1—B/L subacute infarcts, basilar cistern effacement, a left-to-right midline shift, intraparenchymal hemorrhage, sub-falcine, and uncal herniation
Table 1 Reported studies on COVID-19 patients with neurological manifestations with positive findings on major imaging modalities

Article name	Imaging modality	Neuroimaging findings
46 Neuronalgic amyotrophy following infection with SARS-CoV-2 [52]	MRI—brain	Case 2.—Pre-op - large volume hemorrhage within the right temporal and parietal lobes, surrounding edema, midline shift, uncal herniation, and entrapment of the temporal horns. Post-op—right-sided craniectomy and anterior temporal lobectomy—improvement in overall mass effect
47 Neurological manifestations in critically ill patients with COVID-19: a retrospective study [53]	CT—head	Low density lesions in the following: Case 1. B/L, parietal and frontal lobes, right occipital lobe Case 2. Left hemisphere, B/L, temporal, and occipital lobes Case 3. B/L, parietal and frontal lobes Case 4. Right hemisphere Case 5. Left midbrain Case 6. Right side of the periventricular area
48 Novel coronavirus (COVID-19)-associated Guillain-Barré syndrome: case report [54]	MRI—spine	No evidence of myelopathy or radiculopathy
49 Olfactory gyrus intracerebral hemorrhage in a patient with COVID-19 infection [55]	CT—head	Right olfactory gyrus ICH with surrounding edema, with no evidence of soft tissue injury or cerebral contusion
50 Orbitofrontal involvement in a neuroCOVID-19 patient [56]	MRI—brain	Hyperintensity of the right orbital prefrontal cortex adjacent to the olfactory bulb, which seemed to spread toward the right caudate nucleus and mesial prefrontal cortex
51 Posterior reversible encephalopathy syndrome (PRES); another imaging manifestation of COVID-19 [57]	CT—head	Symmetric hypoattenuation of the external capsules and posterior subcortical cerebral white matter
52 Prolonged confusional state as first manifestation of COVID-19 [6]	CT—head	Mild chronic small vessel ischemic changes
53 Reversible cerebral vasoconstriction syndrome and dissection in the setting of COVID-19 infection [58]	CT—head	B/L convexity SAH
54 Reversible encephalopathy syndrome (PRES) in a COVID-19 patient [59]	CT—head	Posterior frontal and temporo-parieto-occipital symmetrical B/L hypodensity of the subcortical white matter, and a small left occipital parenchymal hemorrhage. Absence of vascular malformation and alterations of posterior circle vessel caliber- suggestive of vasoconstriction mechanism Onset of right temporal hypodensity, correlated to hemorrhagic process
55 SARS-CoV-2-associated Guillain-Barré syndrome with dysautonomia [60]	CT—head	No abnormalities
56 Severe headache as the sole presenting symptom of COVID-19 pneumonia: a case report [61]	MRI—brain	Nonspecific white matter hyperintensities
57 Steroid-responsive encephalitis in coronavirus disease 2019 [62]	CT—head	No abnormalities
58 Stroke and COVID19: not only a large-vessel disease [63]	CT—head	Small cortical acute ischemic lesions in the right pre- and post-central gyrus, without signs of previous ischemic lesions and hemorrhagic infarction
59 Stroke in patients with SARS-CoV-2 infection: case series [64]	CT—head	Case 1.—CT showed numerous hypodense lesions involving different cortical and subcortical regions of B/L cerebral hemispheres Case 2.—Ischemic lesion involving the frontal lobe on the right side; Occlusion of the right pericallosal artery; multiple, B/L supratentorial and infra-tentorial ischemic lesions. Case 3.—Small hypodense area in the right thalamus of presumed ischemic origin Case 4.—Focal T2-FLAIR HI lesion in the left precentral gyrus with a bright signal on DWI sequence, and mild post-contrast
Table 1: Reported studies on COVID-19 patients with neurological manifestations with positive findings on major imaging modalities (Continued)

Article name	Imaging modality	Neuroimaging findings
60 Subcortical myoclonus in COVID-19: comprehensive evaluation of a patient [65]	MRI—brain	Cerebral small-vessel disease of moderate severity
61 Thalamic perforating artery stroke on computed tomography perfusion in a patient with coronavirus disease 2019 [66]	CT—head	Small focal hypoperfusion in the paramedian perforating vascular territory supplying the left medial thalamus
62 Two patients with acute meningoencephalitis concomitant with SARS-CoV-2 infection [67]	MRI—brain	2 punctate acute ischemic lesions in each cerebellar hemisphere
63 COVID-19 is associated with an unusual pattern of brain microbleeds in critically ill patients [68]	MRI—brain	Microbleeds in unusual distribution, particularly involving the anterior/posterior limbs of internal capsule (five patients), middle cerebellar peduncles (5/9 patients), and the corpus callosum

centered around respiratory pathogenesis and manifestations of the virus. However, recent focus has shifted toward its invasive nature and complications in the nervous system. There has been a surge in the number of cases documenting the nervous system involvement in COVID-19 positive patients with minimal respiratory involvement. Some studies reported absence of SARS-CoV-2 RNA in the nasal and throat swabs even though it was found to be present in the cerebrospinal fluid upon further investigations [10]. However, our understanding of the pathophysiology behind such neurological manifestations and the data on neuroimaging still remains limited.

Pathogenesis
Currently, there are 4 mechanisms of neuro-invasion that have been hypothesized.
Article name	Article type	N = no. of patients	Age/sex	General signs and symptoms	Neurological manifestations	
1 A case of COVID-19 respiratory illness with subsequent seizure and hemiparesis [9]	Case report	1	38-year-old male	Progressive cough, Fever, Dyspnea	Generalized tonic—clonic seizure (GTCS), Left-sided hemiplegia, Decreased right side spontaneous movements	
2 A case series of devastating intracranial hemorrhage during venovenous extracorporeal membrane oxygenation for COVID-19 [3]	Case series	4	Mean age—50.7 years	Anisocoria, Gaze defect, Altered mental status (AMS), Agitation	Neck stiffness, Transient generalized seizures, Glasgow coma scale (GCS)—6/15, Diplopia (acute, binocular, horizontal)	
3 A first case of meningitis/encephalitis associated with SARS-coronavirus-2 [10]	Case report	1	24-year-old male	Headache, Generalized fatigue, Fever and sore throat		
4 Acute abducens nerve palsy in a patient with the novel coronavirus disease (COVID-19) [11]	Case report	1	32-year-old male	Fever and cough, Dizziness, Fatigue	Diplopia (acute, binocular, horizontal)	
5 Acute disseminated encephalomyelitis after SARS-CoV-2 infection [12]	Case report	1	64-year-old female	Influenza-like syndrome	Anosmia, ageusia, B/L vision impairment, Right	ker sensory deficit
6 Acute myelitis as a neurological complication of COVID-19: a case report and MRI findings [13]	Case report	1	32-year-old male	Flu-like symptoms	Urinary retention, B/L lower limb weakness	
7 Acute polyradiculoneuritis with locked-in syndrome in a patient with COVID-19 [14]	Letter to the editor	1	51-year-old male	Flu-like symptoms	Progressive upper and lower limb weakness, Acral paresthesia	
8 Acute profound sensorineural hearing loss after COVID-19 pneumonia [15]	Correspondence (case report)	1	60-year-old male	Fever with cough	Sensorineural hearing loss	
9 Basal ganglia involvement and altered mental status: a unique neurological manifestation of coronavirus disease 2019 [16]	Case report	1	54-year-old female	Low-grade fever, Cough	AMS, GCS-10/15	
10 Bilateral posterior cerebral artery territory infarction in a SARS-CoV-2 infected patient: discussion about an unusual case [17]	Case report	1	51-year-old male	Cough, Diarrhea	Headache, Dysequia, Abrupt cortical blindness, Disorientation	
11 Bilateral trochlear nerve palsy due to cerebral vasculitis related to COVID-19 infection [18]	Case report	1	69-year-old male	Fever, Abdominal pain, Left posterior chest pain	Binocular diplopia, Severe stabbing occipital headache, Bilateral paresis of CN IV	
12 Cerebral microhemorrhage and purpuric rash in COVID-19: The case for a secondary microangiopathy [19]	Case report	1	69-year-old male	Dyspnea, cough, Diarrhea, Fever, Diffuse rash	Deterioration of mental status	
13 Cerebral nervous system vasculitis in a COVID-19 patient with pneumonia [20]	Case report	1	64-year-old male	Fever, Cough	Tetraplegia and B/L mute plantar response, GCS-6/15	
14 Cerebral venous thrombosis: a typical presentation of COVID-19 in the young [21]	Case report	1	25-year-old female	Cough, Low-grade fever, Mild shortness of breath	GTCS with post-ictal confusion, Decreased level of arousal, Global aphasia, Right facial nerve palsy, B/L CN VI palsy	
15 Coexistence of COVID-19 and acute ischemic stroke report of four cases [22]	Case report	4	45-year-old female, 67-year-old female, 72-year-old male	Fever, Cough, Shortness of breath	Left facial paresis, Dysesthan, Hemiparesis	
Article name	Article type	N = no. of patients	Age/sex	General signs and symptoms	Neurological manifestations	
---	------------------	---------------------	--------------------------------	---	---	
16 Concomitant neurological symptoms observed in a patient diagnosed with	Case report	1	77-year-old male	Loss of consciousness	Mild ataxia	
coronavirus disease 2019 [23]					Left hemi-hypoesthesia	
17 Coronavirus 2019 (COVID-19)-associated encephalopathies and cerebrovascular	Retrospective	27	Mean age—598 years	Poor mental state	Headache	
disease: the New Orleans experience [24]	cohort study				Dizziness	
18 COVID-19 presenting as stroke [25]	Case series	4	73-year-old male	Altered mental status	Headache	
19 COVID-19 presenting with seizures [26]	Case report	1	72-year-old male	Fever	Facial drop	
20 COVID-19 related neuroimaging findings: a signal of thromboembolic	Retrospective	454	Median age—64 years	AMS/delirium (37.6%)	Stroke	
complications and a strong prognostic marker of poor patient outcome [27]	cohort study				Mechanical fall/ trauma (25.5%)	
21 COVID-19-associated encephalopathy with fulminant cerebral vasoconstriction:	Case report	1	50-year-old male	AMS	Headache	
CT and MRI findings [28]					Dizziness	
22 COVID-19-associated encephalopathy: neurological manifestation of	Case report	1	43-year-old male	Decreased level of consciousness	Headache	
COVID-19 [29]					GCS: 3/15	
23 COVID-19-associated ophthalmoparesis and hypothalamic involvement [30]	Case report	2	60-year-old female	Patient 1. Fever	Headache	
			35-year-old female	Nausea	Right hemi-cranial headache	
				Cough	Diplopia	
				Patient 2. History of vomiting	Paresthesia	
					Decreased arousal	
					Drowsiness	
					Increased irritability	
					Increased muscle weakness	
					B/L CN VI palsy	
24 COVID-19-associated pulmonary and cerebral thromboembolic disease [31]	Case report	1	79-year-old female	Aphasia	Mild paraparesis	
25 COVID-19 related acute necrotizing encephalopathy with brain stem	Case report	1	59-year-old female	Episodes of vacant staring	Speech arrest	
involvement in a patient with						
Table 2: General signs and symptoms, and associated neurological manifestations reported in the studies on COVID-19 infected patients (Continued)

Article name	Article type	N = no. of patients	Age/sex	General signs and symptoms	Neurological manifestations
aplastic anemia [32]					Flexion of both shoulders
26 COVID-19-related strokes in adults below 55 years of age: a case series [33]	Case series	6	33-year-old female	Myalgia	Cough
			39-year-old male	Vomiting	Dyspnea
			40-year-old male		Myalgia
			47-year-old female	Lethargy	Headache
			49-year-old female		Global aphasia
			53-year-old male		Hemiplegia
27 COVID-19-associated encephalitis mimicking glial tumor [34]	Case report	1	35-year-old female	Headache	Drug-refractory seizures
28 De novo status epilepticus in patients with COVID-19 [35]	Case series	2	49-year-old female	Patient 1. None	Patient 1. B/L tonic clonic seizures
			73-year-old female	Patient 2. Shortness of breath	Altered mental status
				Lower limb edema	Patient 2. Face and arm myoclonus
29 Delirium as a presenting feature in COVID-19, neuroinvasive infection or autoimmune encephalopathy? [36]	Case report (letter to the editor)	2	46-year-old male	Patient 1. Status epilepticus	Acute hypoactive delirium
			79-year-old female	Patient 2. Generalized seizure	Dizziness
				Impaired cognition and vigilance	Left-sided ptosis
30 Emergency room neurology in times of COVID-19: malignant ischemic stroke and SARS-CoV-2 infection [7]	Case report	1	36-year-old female	Unconsciousness	Global aphasia
					Right hemiplegia
31 Encephalopathy and seizure activity in a COVID-19 well controlled HIV patient [37]	Case report	1	41-year-old male	Abdominal pain	Confusion and agitation
				Intractable vomiting	GTCS
				Dry cough	Left-sided ptosis
32 COVID-19-associated myositis with severe proximal and bulbar weakness [38]	Case report (letter to the editor)	1	58-year-old female	Cough	Proximal bulbar weakness
				Dyspnea	Bilateral ptosis
				Myalgia with severe generalized weakness	Facial weakness
				Myalgia	Hypoplasia
				Odynophagia	Profound symmetric proximal limb weakness
33 Evolution and resolution of brain involvement associated with SARS-CoV2 infection: a close clinical—paraclinical follow up study of a case [39]	Case report	1	39-year-old female	Fever with dry cough	Decline in consciousness
				Myalgia and anosmia	Multiple episodes of GTCS
34 First case of focal epilepsy associated with SARS-coronavirus-2 [40]	Case report	1	73-year-old female	Fatigue	Painful muscle stiffening and twitching in the left leg and arm (focal seizure)
				Dry cough	Paresthesia and hypoesthesia in left upper limb, left hemithorax, and hemifacial
				Back pain	Clonic movements in the right arm
					Loss of consciousness
35 First case of SARS-COV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease [41]	Case report	1	42-year-old female	Mild respiratory symptoms	Cognition
					Impaired cognition and vigilance
36 First motor seizure as presenting symptom of SARS-COV-2 infection [42]	Case report	1	54-year-old male	Conjunctivitis	Agitation
				Fever	Impaired cognition and vigilance
37 Focal EEG changes indicating critical illness associated cerebral microbleeds in a COVID-19	Case report	1	56-year-old female	Cough	McGill et al. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery (2021) 57:68
Article name	Article type	N = no. of patients	Age/sex	General signs and symptoms	Neurological manifestations
--	-------------------	---------------------	--------------------------	--------------------------------------	--
Executive dysfunction	Case report 1	57-year-old male		Fatigue and fever	Dilated and nonreactive pupils
				Dyspnea	Absent brain stem reflexes
				Nausea/vomiting	
				Diarrhea	
	Case report 1	42-year-old male		Severe cough	U/L pupillary changes—progressed to B/L fixed and dilated pupils
				Fever (103°F)	Loss of all brain stem reflexes
	Case reports 3	88-year-old female		Fever	Ataxia
		85-year-old female		Dry cough	Dysarthria
		55-year-old male		Asthenia	Impaired orientation
					Drowsiness
					Peripheral/central facial paresis
					Limb weakness
					Impaired memory
					Acute hemiplegia
					Bilocals aphasia
	Case report 1	25-year-old female		Cough	Unable to exhibit motor functions
				Shortness of breath	Only able to follow commands through horizontal eye movement and
				Fever	eye blinking
				Malaie	B/L Babinsky sign +
	Case report 3	33-year-old female		Cough	Patient 1—Left sided hemiplegia with hemisensory loss
		77-year-old female			Patient 2—Sudden onset aphasia with left side hemiparesis
		55-year-old male			Patient 3—Left sided weakness
	Case report 1	48-year-old male		Dyspnea	Left-sided hemiplegia and neglect
				Cough	Speech abnormalities
	Case report 1	29-year-old female		Anosmia, dysgeusia	Reduced visual acuity in right eye
				Asthenia	Eye movements associated with increased retro-ocular pain and
					color desaturation
	Case study 2	Mean age—66 Â± 11.1 years		Fever	Persistent severe pain in the right shoulder
				Cough	agitated by arm extension with gradual shift to forearm and hand
				Shortness of breath	Paresis of index and long fingers
				Patient 1. Fever, cough	Progressive weakness of right hand
				Patient 2. Lethargy	Delirium
					Acute ischemic stroke
					Intracerebral hemorrhage
					Hypoxic-ischemic brain injury
					Flaccid paralysis
	Case report 1	54-year-old male		Rhinorrhea	Ascending limb weakness and numbness
Article name	Article type	N = no. of patients	Age/sex	General signs and symptoms	Neurological manifestations
---	-------------------------------	--------------------	------------------	--	---
Barré syndrome: case report [54]	Case report	1	72-year-old male	Odynophagia, Fever, chills, and night sweats	Quadriparesis, Facial diplegia, Mild ophthalmoplegia, Focal onset status epilepticus with Todd’s paralysis
Olfactory gyrus intracerebral hemorrhage in a patient with COVID-19 infection [55]	Case report	1	69-year-old male	Anosmia, Cough, Fever	Anosmia, Status epilepticus
Orbital involvement in a neuroCOVID-19 patient [56]	Case report	1	59-year-old male	Fever, Dyspnea	Encephalopathy
Posterior reversible encephalopathy syndrome (PRES): another imaging manifestation of COVID-19 [57]	Case report	1	72-year-old male	Lethargy	Prolonged confusion
Reversible cerebral vasospasm and dissection in the setting of COVID-19 infection [58]	Case report	1	76-year-old female	Severe cough	Severe thunderclap headache
Reversible encephalopathy syndrome (PRES) in a COVID-19 patient [59]	Case report	1	60-year-old male	Fever, Dyspnea	Drowsiness, Blurred vision, AMS, Decreased left nasolabial fold
SARS-CoV-2-associated Guillain–Barré syndrome with dysautonomia [60]	Letter to the editor	1	72-year-old male	Mild diarrea, Anorexia, Chills	Symmetric paresthesia, Ascending appendicular weakness, Tendon reflexes- absent, Diminished sensation to light touch, SIADH and Dysautonomia, Severe generalized headache, Neck pain
Severe headache as the sole presenting symptom of COVID-19 pneumonia: a case report [61]	Case reports and case series	1	76-year-old female	Fever, Cough, Asthenia	Cognitive fluctuations, Severe akinetic syndrome associated with mutism, Palpomental and glabella reflexes + Moderate nuchal rigidity, Dyssynergia
Steroidresponsive encephalitis in coronavirus disease 2019 [62]	Case report	1	60-year-old male	Fever, Cough, Asthenia	Cognitive fluctuations, Severe akinetic syndrome associated with mutism, Palpomental and glabella reflexes + Moderate nuchal rigidity, Dyssynergia
Stroke and COVID-19: not only a large-vessel disease [63]	Case report	1	49-year-old female	Fever, Cough, Dyspnea	Left-sided hemiparesis, Hemianesthesia, and facial weakness, Myoclonus elicited by action and tactile stimuli predominant in right proximal inferior limb muscles, Confusion, Behavioral abnormalities
Stroke in patients with SARS-CoV-2 infection: case series [64]	Retrospective observational case series	6	Median age—69 years	Fever, Cough, Dyspnea	Left-sided hemiparesis, B/L fixed and dilated pupils, Loss of consciousness, Confusion, Behavioral abnormalities
Subcortical myoclonus in COVID-19: comprehensive evaluation of a patient [65]	Case report	1	58-year-old male	Fever, Cough, Dyspnea	Myoclonus elicited by action and tactile stimuli predominant in right proximal inferior limb muscles, Sudden right facial palsy, Mild Right limb weakness
Thalamic perforating artery stroke on computed tomography perfusion in a patient with coronavirus disease 2019 [66]	Case report	1	50-year-old male	Bilateral pneumonia	Sudden right facial palsy, Mild Right limb weakness, Dyssynergia, Myoclonus elicited by action and tactile stimuli predominant in right proximal inferior limb muscles, Confusion, Behavioral abnormalities
Article name	Article type	N = no. of patients	Age/sex	General signs and symptoms	Neurological manifestations
--------------	--------------	---------------------	---------	---------------------------	---------------------------
62 Two patients with acute meningoencephalitis concomitant with SARS-CoV-2 infection [67]	Case report	2	64-year-old female 67-year-old female	Flu-like symptoms	Tonic clonic seizures Headache Psychotic symptoms Disorientation with motor perseverations with BA, grasping Aggressiveness Left hemianopia Sensory hemineglect
63 COVID-19 is associated with an unusual pattern of brain microbleeds in critically ill patients [68]	Case series	9	Mean age—67.7 years	Fever Cough Dyspnea	Delayed recovery of consciousness Psychomotor agitation Confusion
Receptor modulation
The body has a traditional angiotensin-converting enzyme (ACE) in lung capillaries which is a part of the renin-angiotensin-aldosterone system (RAAS) and is involved in regulating blood pressure. COVID-19 is known to use ACE2 receptors, present in the endothelium of the heart, kidneys, and alveolar cells, especially alveolar type 2 (AT2), for cell entry. Binding to these receptors, the virus hampers the body’s natural mechanism of decreasing blood pressure thus increasing the likelihood of intracranial hemorrhages and stroke [69–71]. The neurons and glial cells are known to have ACE2 receptors, possibly explaining the neurotropism of the virus [72]. The mechanism of entry hypothesized is that the spikes present on the virus might link with ACE2 on the capillary endothelium, damaging the blood-brain barrier (BBB) and thus gaining entry into CNS [71]. The two areas are involved in the central regulation of respiration—nucleus of the tractus solitarius and ventrolateral medulla also express ACE2 receptors.

Trans-cribrial transmission
The anosmia in many cases points toward viral entry via olfactory bulb and across the cribriform plate [71]. This mechanism has been linked with murine experiments which led to the detection of the virus in the midbrain, basal ganglia, infralimbic cortex, and the piriform via intranasal inoculation of...
COVID-19 [69, 73]. SARS-CoV-2 may use ACE2 or trans-membrane protease serine 2 (TMPRSS2) receptors to infect olfactory receptor neurons in the olfactory epithelium [74].

Blood-brain barrier spread

Prior research of SARS-CoV and MERS has shown that cytokines like tumor necrosis factor (TNF-α) and interleukins (IL-6 and IL-1) led to direct death of neurons in the respiratory center in the medulla [73, 75]. The prolific response of the immune system leads to an enormous release of these cytokines and chemokines. They lead to increased permeability and breakdown of the BBB resulting in increased entry of leukocytes. They can also precipitate glutamate receptor-induced neuronal hyperexcitability which may be the reason behind acute seizures linked with the virus. Furthermore, hyperinflammatory and immune responses can result in cytokine storm syndrome which is a severe manifestation of COVID-19 [72].

Trans-synaptic transmission

The entry of the virus into CNS through the peripheral nerves is another hypothesized secondary pathway. The alveoli in the lungs have sensory innervations that detect changes in O₂ and CO₂. These pathways run-up to the respiratory centers in the brainstem and send signals to the pre-synapses there. Porcine hepatitis E virus studies depict a similar pathway of transmission and since HEV is almost homologous to hCoV-OC43 2, a close relative of SARS-CoV-2, it might be the same case here [76].

The neuropathological mechanisms reported to play a role in the development of neurological disorders in COVID-19 are—hypoxic brain injury and immune-mediated damage. The hypoxic brain injury is believed to be due to the alveolar gas exchange disorders caused by proliferation of virus in the alveolar cells [71]. As mentioned above, severe immune response resulting in a cytokine storm can also lead to the development of neurological manifestations [72].

Neuro-radiological manifestations

About 17.85% patients who underwent neuroimaging were found to be having ischemic changes suggestive of a stroke. Rajan Jain [27] and colleagues found that the inpatient COVID-19 positive population with stroke had a poor outcome. Similarly, in a systematic review by Sebastian Fredman [77] and colleagues, mortality rate of 45% was reported in the admitted COVID-19 positive patients affected with ischemic stroke. Large vessel involvement was found to be the most common, particularly the MCA. The association of COVID-19 and cerebrovascular disease has been well established but it is still unclear whether this is a de novo occurrence or a complication of already existing atheromatous plaques [78]. The role of stenotic lesions resulting in ischemic changes is also unclear. Hemorrhagic changes were found to be the second most common positive imaging finding particularly involving the corpus callosum and subcortical parenchyma. Aikaterini Fitsiori [68] and colleagues reported that COVID-19 or its treatment may cause unusual microbleeds, predominantly affecting the corpus callosum. All these patients were suffering from severe or moderate acute respiratory distress. This could be due to microangiopathic changes resulting from the cytokine-induced pathogenesis discussed above. Simon Pao [79] and colleagues concluded that ischemic changes were seen in both mild and severe infections whereas hemorrhagic changes were more prevalent in severely affected patients.

Neurological findings

In this study, we observe that COVID-19 patients presented with a variety of neurological complications. In our review, the most prevalent finding has been altered mental status (52.5%). Among the earliest articles about COVID-19 by Mao [5] and colleagues was a retrospective study that showed that 36.4% of patients presented with nervous system abnormalities, and among them, patients who had severe disease were more vulnerable to acute cerebrovascular disease and altered consciousness. The neurotropism of the virus leading to inflammation in the CNS may be a cause of altered mental status. Macrophages and microglia which proliferate to the areas concentrated by viral antigen have shown to cause demyelination leading to memory and cognitive deficits. This was observed in a murine study conducted with several strains of the virus [80, 81]. Nepal G [80], and colleagues mention the importance of early identification of altered mental status in SARS-CoV-2 patients to check for a possible reversible cause leading to its early management. Confusion, agitation, drowsiness, lethargy, and psychotic symptoms were some of the most commonly observed subsets of symptoms included in altered mental status (Table 2).

Stroke has been observed to be the most frequent finding in neuroimaging of patients affected by COVID-19. A peculiar thing about COVID-19 related strokes is that they can be found in younger patients as observed in a case series by Ashrafi [33] which explores this association in patients younger than the age of 55, where the youngest patient, a 33-year-old, was without any previous comorbidities. Several studies have mentioned the prothrombotic and inflammatory nature of COVID-19, and some reports mention stroke symptoms being the first presentation in many cases. Lee SG [82] and Spence JD [83] mention that about 20-55% of SARS-CoV-2 patients exhibited laboratory values indicating
coagulopathies. The prevalence of ischemic strokes is slightly higher than that of hemorrhagic strokes as seen in a 6-patient case series by Morassi [64] where 4 were affected by ischemic stroke and 2 by hemorrhagic. Other frequently seen manifestations include paralysis, headaches, and altered speech. As far as we know, this is the only study with documentation of reports published until August 2020 which is based on the nervous system involvement and neuro-radiological findings of COVID-19 patients. The limitations of our study were that a subset of reported neurological or neuroimaging findings in severely ill and elderly patients may be incidental. The radiological findings might have been susceptible to clinical bias hence it is difficult to standardize them. Radiological imaging presumably is performed selectively on those presenting with notable neurological involvement, leaving out the probable findings in those diseases which are milder in nature, as routine imaging may increase the risk of transmission of the virus. Our study only included articles published in the English language.

Conclusion
In the past few months of the global pandemic, the connection between COVID-19 and neurological manifestations has been growing substantially. Having strong knowledge about such associations will prove to be instrumental in early detection, isolation, and care of patients who present with unusual neurologic symptoms, especially during the ongoing pandemic. Focus on long-term neurologic sequelae and neuroimaging findings is necessary to further the research on the neurotropic involvement of SARS-CoV-2.

Abbreviations
ACE: Angiotensin-converting enzyme; ACE2: Angiotensin-converting enzyme 2; AT2: Alveolar type 2 cells; BBB: Blood-brain barrier; CNS: Central nervous system; CT: Computed tomography; HEV: Hepatitis E virus; ICA: Internal carotid artery; IL-1: Interleukin 1; IL-6: Interleukin 6; MCA: Middle cerebral artery; MRA: Magnetic resonance angiography; MRl: Magnetic resonance imaging; RAAS: Renin angiotensin aldosterone system; SARS-CoV-2: Severe acute respiratory syndrome-coronavirus 2; TMPRSS2: Transmembrane protease serine 2; TNF: Tumor necrosis factor

Acknowledgements
Not applicable

Authors’ contributions
NM contributed to the conception, design, acquisition, analysis of data, drafted the work and approved the submitted version, and has agreed to be personally accountable for their contributions. ES contributed to the conception, design, acquisition, analysis of data, drafted the work and approved the submitted version, and has agreed to be personally accountable for their contributions. JG contributed to the conception, design, acquisition, analysis of data, drafted the work and approved the submitted version, and has agreed to be personally accountable for their contributions. The authors read and approved the final manuscript.

Funding
The authors declare that no funding was received for this research.

Availability of data and materials
The authors declare that the data supporting the findings of this study are available within the article (and its supplementary information files).

Declarations
Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33. https://doi.org/10.1056/NEJMoa2001017.
2. WHO Coronavirus Disease (COVID-19) Dashboard. 2020 [cited 2020-08-31]. Available from: https://covid19.who.int/.
3. Usman AA, Hany J, Acker A, Ollia SE, Bermudez C, Cucchiaro B, et al. A case series of devastating intracranial hemorrhage during venovenous extracorporeal membrane oxygenation for COVID-19. J Cardiothorac Vasc Anesth. 2020;44(11):3006–12. https://doi.org/10.1053/j.jvca.2020.07.063.
4. Nailkar HR, Zibaee B, Nasimi A, Bahir N. The neurological manifestations of COVID-19: a review article. Neurol Sci. 2020;41(7):1756–286. 0.1127.
5. Yao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–90. https://doi.org/10.1001/jamaneurol.2020.01127.
6. Buti I, Sawlani V, Geberhiwot T. Prolonged confusional state as first manifestation of COVID-19. Annals of Clinical and Translational Neurology. 2020;7(8):1450–2. https://doi.org/10.11002/acn3.51067.
7. Gonzalez-Pinto T, Luna-Rodriguez A, Moreno-Estebanez A, Agirre-Beitia G, Gonzalez-Antiguedad A, Ruiz-Lopez M. Emergency room neurology in times of COVID-19: malignant ischaemic stroke and SARS-CoV-2 infection. Eur J Neurol. 2020;27(9):e25. https://doi.org/10.1111/ene.14286.
8. Trivignoli G, Paladimou L, Katanos AH, Caso V, Kohrmann M, Molina C, et al. Neurological manifestations and implications of COVID-19 pandemic. Ther Adv Neurol Disord. 2020;13:1756288420932036.
9. Hamidi A, Sabayan B, Sorond F, Nemeth AJ, Borhani-haghighi A. A case of COVID-19 respiratory illness with subsequent seizure and hemiparesis. Galen Medical Journal. 2020;9:1915. https://doi.org/10.16681/gmj.v9i0.1915.
52. Siekmann T, Kitzler HH, Lueck C, Platek I, Reichmann H, Barlinn K. Neuroallergic amyotrophy following infection with SARS-CoV-2. Muscle Nerve. 2020;62(4):E68–70. https://doi.org/10.1002/mus.27035.

53. Fan S, Xiao M, Han F, Xia P, Bai X, Chen H, et al. Neurological manifestations in critically ill patients with COVID-19: a retrospective study. Front Neurol. 2020;11:806. https://doi.org/10.3389/fneur.2020.00806.

54. Rana S, Lima AA, Chandra R, Valeriano J, Desai T, Freiberg W, et al. Novel coronavirus (COVID-19)-associated Guillain-Barre syndrome: case report. J Clin Neuromuscul Dis. 2020;21(4):240–2. https://doi.org/10.1097/JCN.0000000000001309.

55. Thu SS, Matin N, Levine SR. Olfactory gyrus intracerebral hemorrhage in a patient with COVID-19 infection. J Clin Neurosci. 2020;79:275–6. https://doi.org/10.1016/j.jocn.2020.07.033.

56. Le Guennec L, Devianne J, Jalin L, Cao A, Galanaud D, Navano V, et al. OrbitalfrONTAL involvement in a neuroCOVID-19 patient. Epilepsia. 2020;61(8):e90–4. https://doi.org/10.1111/epi.16612.

57. Rogg J, Baker A, Tung G. Posterior reversible encephalopathy syndrome (PRES): another imaging manifestation of COVID-19. Interdiscip Neurosurg. 2020;22:100880. https://doi.org/10.1016/j.ijnr.2020.100880.

58. Dakay K, Kaur G, Gulko E, Santarelli J, Bowers C, Mayer SA, et al. Reversible cerebral vasocostruction syndrome and dissection in the setting of COVID-19 infection. J Stroke Cerebrovasc Dis. 2020;29(9):105011. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105011.

59. Princicotta Cardilli L, Tabaei Damaravadi P, Carimati F, Barli F, Clemensi A, Marelli M, et al. Reversible encephalopathy syndrome (PRES) in a COVID-19 patient. J Neurol. 2020;267(11):3157–60. https://doi.org/10.1007/s00415-020-01000-7.

60. Su XW, Palka SV, Rao RR, Chen FS, Brackney CR, Cambi F. SARS-CoV-2-associated Guillain-Barre syndrome with dysautonomia. Muscle Nerve. 2020;62(2):E48–E9. https://doi.org/10.1002/mus.26988.

61. Kimambo H, Chin JH, Mnacho M, Punatar P, Msilanga D, Chagula AC. Severe headache as the sole presenting symptom of COVID-19 pneumonia: a case report. Interdiscip Neurosurg. 2020;22:100882. https://doi.org/10.1016/j.ijnr.2020.100882.

62. Pilotto A, Oddolini S, Masciocchi S, Cornelli A, Volonghi I, Gazzina S, et al. Steroid-responsive encephalitis in coronavirus disease 2019. Ann Neurol. 2020;88(2):423–7. https://doi.org/10.1002/ana.25783.

63. Frisullo G, Bellavia S, Scala I, Piana C, Morosetti R, Brunetti V, et al. Stroke and COVID-19: not only a large-vessel disease. J Stroke Cerebrovasc Dis. 2020;29(10):105074. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105074.

64. Morassi M, Bagatto D, Cobelli M, D’Agostini S, Gigli GL, Bna C, et al. Stroke in patients with SARS-CoV-2 infection: case series. J Neurol. 2020;267(8):2185–92. https://doi.org/10.1007/s00415-020-08988-2.

65. Muccioli L, Rondelli F, Ferri L, Rosini G, Cortelli P, Guarino M. Subcortical myoclonus in COVID-19: a comprehensive evaluation of a patient. Mov Disord Clin Pract. 2020;7(8):973–71. https://doi.org/10.1002/mdc3.13046.

66. Rudilloso S, Esteller D, Urra X, Chamorro A. Thalamic perforating artery stroke on computed tomography perfusion in a patient with coronavirus disease 2019. J Stroke Cerebrovasc Dis. 2020;29(8):104974. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104974.

67. Bernard-Valnet R, Pizzarotti B, Anichini A, Demurs Y, Russo E, Schmidausser M, et al. Two patients with acute meningoencephalitis comitant with SARS-CoV-2 infection. Eur J Neurol. 2020;27(9):e43–4. https://doi.org/10.1111/ene.14298.

68. Fittosi A, Pugin D, Thiefry C, Lalive P, Vargas MI. COVID-19 is associated with an unusual pattern of brain microbleeds in critically ill patients. J Neuroimaging. 2020;30(3):593–7. https://doi.org/10.1111/jon.12755.

69. Doobay MF, Talman LS, Obr TD, Tian X, Davison RL, Lazzartiges E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R373–81. https://doi.org/10.1152/ajpregu.00292.2006.

70. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259–60. https://doi.org/10.1038/s41569-020-0360-5.

71. Abboud H, Abboud FZ, Khabbouh H, Arkha Y, El Abbadi N, El Ouali A. COVID-19 and SARS-CoV-2 infection: pathophysiology and clinical effects on the nervous system. World Neurosurg. 2020;140:49–53. https://doi.org/10.1016/j.wneu.2020.05.193.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.