Chagas disease (American *Trypanosomiasis*) is a neglected tropical illness caused by the hemoflagellate protozoan *Trypanosoma cruzi*. This infection is considered a world-wide health problem with a lack of treatment options due to the absence of a vaccine and global spreading (1, 2). *Trypanosoma cruzi* infection was initially endemic in rural areas of Latin America and, transmitted by contaminated insect vectors of the Reduviidae family. Insects become vectors after biting *T. cruzi*-infected animals or humans. The parasite can also be directly transmitted by blood transfusion and organ transplantation as well as orally and congenitally (3-4). The incubation period (the time between *T. cruzi* exposure and development of symptoms) varies according to the infection route; for example, transmission by vector has an incubation time from 8 to 120 days, whereas in congenital transmission it varies from 3 to 12 days; roughly the same for oral transmission (5, 6).

Acute Chagas disease is characterized by a systemic infection that leads to the strong activation of the adaptive immune response. Outbreaks of oral contamination by the infective protozoan *Trypanosoma cruzi* are frequent in Brazil and other Latin American countries, and an increased severity of clinical manifestations and mortality is observed in infected patients. These findings have elicited questions about the specific responses triggered after *T. cruzi* entry via mucosal sites, possibly modulating local immune mechanisms, and further impacting regional and systemic immunity. Here, we provide evidence for the existence of differential lymphoid organ responses in experimental models of acute *T. cruzi* infection.

Keywords: *Trypanosoma cruzi*, lymph nodes, spleen, cytokine, T cell activation

In immunocompetent hosts, the high parasitemia observed in the acute phase is quickly controlled through immune effector mechanisms. As a result, *T. cruzi* numbers in the blood and tissues drop drastically to almost undetectable levels as the infected individual enters the chronic phase. Nevertheless, *in situ* PCR (Polymerase Chain Reaction) and confocal analyses have shown that even in the chronic phase, tissues are not parasite-free (11-18). Several tissues, including the heart and the nervous system, as well as adipocytes, retain amastigote forms that perpetuate the chronic infection (19-21). Additionally, Chagas disease may be reactivated during periods of immunosuppression, such as in patients with HIV/AIDS or undergoing immunosuppressive drug therapy (22, 23).

Although controlled, *T. cruzi* persistence in tissues appears to be associated with inflammatory lesions and disease severity in the chronic phase (12, 13, 18, 24-28). Using two models of chronic infection, Zhang and Tarleton (18) demonstrated that parasite clearance from tissues resulted in the disappearance of associated inflammatory lesions and resolution of disease. Taken together, these studies clearly demonstrate that Chagas disease is a systemic infection and that the immune response is important in containing *T. cruzi* replication in the acute phase which impacts disease severity during the chronic phase of the infection.

SYSTEMIC OR MUCOSAL ROUTES OF *T. CRUZI* INFECTION DIFFERENTIALLY AFFECT PARASITE LOAD AND MORTALITY IN MICE

Experimental models of *T. cruzi* infection have been widely used to study various aspects of the pathogenesis and pathophysiology of Chagas disease. In fact, the vast majority of our knowledge on the biology of *T. cruzi* infection was initially obtained...
Target tissue	Human	Animals
Acute		
Adipose tissue	ND	Ferreira et al. (21)
Adrenal gland	ND	ND
Blood	Qvarnstrom et al. (80)	Moreira et al. (11), Qvarnstrom et al. (80)
Bone	ND	ND
Bone marrow	Baena Teran et al. (85)	ND
Cartilage	ND	Da Costa et al. (86), Morocoima et al. (84)
Central Nervous System	Mortara et al. (19)	Mortara et al. (19)
Gastro Intestinal Tract	Mortara et al. (19)	ND
Heart	Mortara et al. (19), Vago et al. (91), Schijman et al. (90)	Andrade et al. (87), Buckner et al. (77), Guarnier et al. (78), Andrade et al. (87), Guarner et al. (78)
Liver	ND	Hoft et al. (69), Buckner et al. (77), Guarner et al. (78)
Lung	Mortara et al. (19)	ND
Lymph nodes	ND	Hoft et al. (69), Guarner et al. (78), Giddings et al. (74)
Muscle	ND	Buckner et al. (77), Guarner et al. (78)
Pancreas	ND	Guarner et al. (78)
Peritoneal cells	ND	Silva et al. (57)
Skin	ND	ND
Spleen	ND	Hoft et al. (69), Buckner et al. (77), Guarner et al. (78), Combs et al. (20), Giddings et al. (74)
Stomach/esophagus	ND	Vago et al. (91)
Thymus	ND	Da Costa et al. (86)
Kidney	19	Buckner et al. (77), Guarner et al. (78), Castro-Sesquen et al. (63)
Nasal cavity	ND	Giddings et al. (74)
Bladder	ND	Buckner et al. (77)
Chronic		
Adipose tissue	ND	Andrade and Silva (76), Buckner et al. (77), Guarner et al. (78), Combs et al. (20)
Adrenal gland	ND	Buckner et al. (77), Correa-de-Santana et al. (79)
Blood	ND	Hoft et al. (69), Buckner et al. (77), Cortez et al. (81), Guillermo et al. (65), Silva et al. (57), Veolo et al. (62), Castro-Sesquen et al. (63)
Bone	ND	Morocoima et al. (64)
Bone marrow	ND	Morocoima et al. (64)
Cartilage	ND	ND
Central Nervous System	Mortara et al. (19)	Mortara et al. (19)
Gastro Intestinal Tract	Mortara et al. (19)	ND
Heart	Mortara et al. (19), Vago et al. (91), Schijman et al. (90)	Andrade et al. (87), Buckner et al. (77), Guarner et al. (78), Combs et al. (20), Castro-Sesquen et al. (63)
Liver	ND	ND
Lung	Mortara et al. (19)	ND
Lymph nodes	ND	Hoft et al. (69), Guarner et al. (78), Giddings et al. (74)
Muscle	ND	Buckner et al. (77), Guarner et al. (78)
Pancreas	ND	Guarner et al. (78)
Peritoneal cells	ND	Silva et al. (57)
Skin	ND	ND
Spleen	ND	Hoft et al. (69), Buckner et al. (77), Guarner et al. (78), Combs et al. (20), Giddings et al. (74)
Stomach/esophagus	ND	Vago et al. (91)
Thymus	ND	Da Costa et al. (86)
Kidney	19	Buckner et al. (77), Guarner et al. (78), Castro-Sesquen et al. (63)
Nasal cavity	ND	Giddings et al. (74)
Bladder	ND	Buckner et al. (77)

ND – not detected.
using experimental mouse models. It is well established that the immune response and immunopathologic manifestations following *T. cruzi* infection are dependent on genetically heterogeneous host populations, parasite strain, inoculum size, and route of infection. Moreover, the anatomical route of pathogen invasion may directly impact upon the host immune response and host resistance (Box 1). In this way, several studies compared mucosal and systemic *T. cruzi* infection and mortality in mice.

In 1967, Marsden showed that CFI mice infected with the Peruvian strain of *T. cruzi* by systemic routes (*intraperitoneal* (*i.p.*), *intravenous* (*i.v.*), or *subcutaneous* (*s.c.*)) showed higher infection rates (67–100%) and mortality than mucosal routes (*oral* (*o.i.*), *intragastric* (*i.g.*), *intrarectal* (*i.r.*), *genitalia* (*gen.*), or *conjunctival* (*cnj.*) (17–67%) (29). Similar results were observed in a study by Camandaroba et al. (30) in which *i.p.* and *i.g.* inoculation with the Peruvian and Colombian strains of *T. cruzi* were compared in Swiss mice. Caradonna and Pereiraperrin (31) infected BALB/c and C57BL/6 mice with the Tulahuén strain of *T. cruzi* via *s.c.* and intranasal (*i.n.*) routes and observed higher mortality in the *s.c.* group. Interestingly, mice infected via the *i.n.* route developed higher brain parasitism and lower blood parasitemia than animals infected via the *s.c.* route, suggesting a preferential homing of the parasite to the brain after *i.n.* administration (31).

Taken together, these observations suggest that the route of parasite entry into the host is a key factor in Chagas pathogenesis. It is logical to think that following parasite entry, the initial target tissues/cells in the circulation (Table 2) may contribute to the development of an immune response able to control infection.

SYSTEMIC TRYPANOSOMA CRUZI ENTRY INDUCES A DIFFERENTIAL RESPONSE IN SECONDARY LYMPHOID ORGANS OF INFECTED MICE

Acute and chronic *T. cruzi* infections promote significant increases in the size and numbers of cells in the subcutaneous lymph node (SCLN) and spleen (SP), likely due to persistent T and B cell polyclonal activation in these tissues (32, 33). Parasite-derived proteins, such as trans-sialidase and racemase, as well as *T. cruzi*-derived DNA have been shown to contribute to lymphocyte proliferation in Chagas disease (34–36). Interestingly, the majority of polyclonal lymphocytes activated during early *T. cruzi* infection do not appear to be parasite-specific (37–45). However, the relative role of T and B cells in controlling *T. cruzi* infection remains controversial. Although there are data showing that T and B cell activation is necessary for limiting *T. cruzi* expansion, the polyclonal activation also appears to contribute to the pathological alterations observed in Chagas disease (44, 46, 47). Similarly to splenocytes, SCLN-derived effector T cells from infected mice secrete high amounts of IL-2, IL-4, IL-10, and IFN-γ, suggesting the existence of a mixed type-1 and type-2 profiles of cytokine secretion (48, 49).

The process of expansion and contraction by the lymphocyte population in the secondary lymphoid organs can be regarded as a regional response to systemic *T. cruzi* infection. Gut-associated lymphoid tissues are specialized for draining antigens present in the gastrointestinal tract and are also involved in the tolerogenic immune response. In this respect, gut-associated lymphoid tissues may be involved in the progressive damage of the digestive system (meagocolon and megaesophagus) that is a consequence of chronic *T. cruzi* infection (50–52). For these reasons, the mesenteric lymph nodes (MLN) and Peyer’s Patches (PP) are also studied in systemic infections, since they may be involved in the gut pathological changes that are observed in infected patients. In contrast to the hyperplasia of the SP and SCLN observed in infected mice, there is a reduction in the size and cell number of the MLN and PP, possibly due to the increased depletion of T and B lymphocytes (49, 53, 54).

As a consequence of cell activation, T lymphocyte apoptosis is also observed in lymphoid tissues (Box 2). In fact, the Fas molecule is one candidate to regulate T and B lymphocyte responses in both the SP and SCLN during the acute infection (33, 54, 55). For example, it has been shown that Fas selectively kills activated IgG+ B lymphocytes with specificities for parasite antigens (56). Moreover, SP-derived CD4+ and CD8+ T cells respond to Fas-induced apoptosis, as they demonstrate increased Fas/FasL expression and caspase-8 activation during acute infection (48, 55). In agreement with these data, it has been shown that the *in vivo* injection of anti-FasL and a general caspase inhibitor (zVAD-fmk) into acutely infected mice impairs T and B lymphocyte death and improves the host immune response to infection in both SCLN and SP (55, 57). Blockade of activated CD8+ T cell death increases IFN-γ secretion by splenocytes in the initial stages of infection, and IL-4 and IL-10 are induced at later stages (55, 58).
T cell apoptosis can be stimulated in secondary lymphoid organs by features such as activation-induced cell death (AICD), granymes, or growth factor withdrawal (59, 60).

The abundance of antigens and cytokine production (IL-2) in the microenvironment is essential to trigger the cell death pathway (60). In the presence of a given antigen, IL-2 prompt T cells to die by AICD, through activation of death receptor molecules (Fas or TNFR and caspase-8 activation) (61–63). The absence of antigen, deprivation of cytokines or cytotoxic factors (such as oxidative stress and glucocorticoids) initiates the intrinsic apoptotic pathway, regulated by anti-apoptotic BCL-2 family members that can be divided into three subgroups of proteins: (1) the pro-survival members (Bcl-2, Bcl-xL, Mcl-1, A1/Bfl-1, and Bcl-w); (2) the pro-apoptotic BH3-only proteins (Bim, Bid, Puma, Bad, Bmf, Hrk, Bik, and Noxa) activated transcriptionally, post-transcriptionally, or post-translationally by cytotoxic factors; and (3) multi-BH domain pro-apoptotic protein (Bak and Bax) (64–67). The intrinsic pathway of death involves mitochondrial membrane permeabilization, cytochrome c release into the cytoplasm, activation of caspase-9, and downstream effector caspases (60). Interestingly, regulatory T cells deprives the effector T cells of growth factors (such as IL-2), which causes either proliferation arrest and apoptosis mediated by growth factor withdrawal (59, 68).

Diminished numbers of MLN and PP lymphocytes from T. cruzi-infected mice appear to be associated with differences in lymphocyte activation, proliferation, and apoptosis. MLN-derived cells from infected mice show reduced numbers of proliferating lymphocytes in vivo and decreased cytokine production (IL-2, IL-4, IL-10) in vitro by activated T cells, which have been demonstrated to produce mainly type-1 cytokines (33, 49). In addition to Fas, TNFR1/p55-mediated signaling and IL-4 depletion through caspase-9 activation are involved in T cell death and consequent MLN atrophy seen in the course of acute infection (33, 49). These data suggest that distinct mechanisms are involved in lymphocyte contraction events.

These studies demonstrated that lymphocyte apoptosis in secondary lymphoid organs represents an important feature of the immune response to a given pathogen. In agreement, the in vivo administration of zVAD-fmk reduces lymphocyte apoptosis in secondary lymphoid tissues and increases host resistance to T. cruzi infection (49). Moreover, SP or MLN cells are involved in the host immune response, as splenectomy or MLN excision prior to T. cruzi infection in mice increases susceptibility to infection with elevated blood parasitemia (49, 54). In this context, further studies are necessary to approach apoptosis-associated molecules that might be operating as a consequence of regional response following T cell activation and regulation in the course of T. cruzi infection (Box 2).

DOES A DISTINCT ROUTE OF INFECTION INTERFERE WITH SECONDARY LYMPHOID ORGAN DYNAMICS?

Previous data have revealed that oral T. cruzi inoculation results in blood parasitemia and heart tissue parasitism, thereby clearly indicating a systemic infection (30, 69, 70). A primary infection with insect-derived infective forms delivered orally resulted in parasite replication within epithelial cells of the gastric mucosa (69).

This initial invasion is related to establishment of a progressive gastritis and allows further systemic dissemination of the parasite. Nonetheless, the short replication period at this mucosal site induces specific immunity, as protection was observed after a secondary mucosal challenge. Such protection apparently involves the specific production of IgA and IgG (69) and possibly employs CCR5–CCL5 signaling (71).

Protection may also be due to IFN-γ-producing lymphocytes as indicated by their increased frequency in the gastric mucosa and draining lymph nodes of orally infected mice (69). Moreover, a mucosal vaccination approach leading to polarized type-1 or type-2 responses (72) as well as the mucosal challenge of genetically deficient mice (73) reinforced the central role for a type-1 response in providing protection following mucosal infection. Interestingly, these humoral and cellular responses are also protective after parasite inoculation in the conjunctival mucosa, a natural portal of entry for T. cruzi that leads to nasal infection with subsequent systemic spreading (74).

Following outbreaks of oral contamination by T. cruzi, a clear increase in the severity of clinical manifestations was observed in infected patients compared with other types of transmission routes (7, 75). These observations raise important questions concerning the particular features of T. cruzi entry via the mucosa, including the possible modulation of local immune mechanisms and the impact on regional and systemic immunity. In fact, we have previously shown that mice infected via both the i.p. and s.c. routes show similar parasitism and induce SCLN expansion as well as MLN atrophy (33). Interestingly, the s.c. route induced higher SCLN cell expansion and similar MLN atrophy at the peak of parasitemia when compared with the i.p. route. These data suggest that unlike SCLN cells, MLN lymphocytes are similarly affected upon infection using both inoculation routes (33).

One can argue that an oral or intragastric infection might impact more severely on the mucosal associated lymphoid organs than the SCLN and SP. We still lack information regarding SCLN behavior in oral infection, but hyperplasia of the lymphoid follicles in the SP has been reported (30). Additionally, Hoft et al. (69) showed that after oral T. cruzi infection, BALB/c mice had an increase in gastric lymph node size. In this study, the analysis of cytokine production by gastric lymph node cells and splenocytes showed that IFN-γ and IL-4 were produced in these tissues. These data indicate that in both systemic and mucosal infections splenocytes exhibit a mixed type-1 and type-2 profile of cytokine secretion (48, 49, 69). Regarding the MLN response upon oral infection, no data have been reported in the literature. Therefore, a comparative analysis of oral infections versus other infection routes should be critically performed to better understand the immune mechanisms that are involved in the response to mucosal T. cruzi infection.

CONCLUSION AND PERSPECTIVES

Chagas disease is characterized by both protective and immunopathogenic responses. An antigenic challenge in the host elicits a complex protective immune response that includes both inflammatory and regulatory networks. These networks are observed after T. cruzi infection and are induced due to
systemic infection. However, different routes of parasite entry may impact these immune circuits, define particular regional immune responses, and perhaps change the existing view of how the host mounts a protective immune response. Thus, the current micro-epidemic of the oral transmission of Chagas disease prompts revisiting previous findings (99). More importantly, new studies investigating the influence of a primary infection with the parasite through mucose should be performed.

ACKNOWLEDGMENTS

This work was funded with grants from Fiocruz, CNPq, and Faperj (Brazil).
32. Minoprio PM, Coutinho A, Joskowi-icz M, D’Imperio Lima MR, Eisen H. Polyclonal lymphocyte responses to murine Trypanosoma cruzi infection. II. Cytotoxic T lymphocytes. Scand J Immunol (1986) 24:669–79. doi:10.1111/j.1365-3083.1986.tb02186.x

33. de Meis J, Mendes-Da-Cruz D, Farias-De-Oliveira DA, Correa-De-Santana E, Pinto-Mariz F, Cotta-De-Almeida V, et al. Atrophy of mesenteric lymph nodes in experimental Chagas’ disease: differential role of Fas/Fas-L and TNFR1/TNF pathways. Microbes Infect (2006) 8:221–31. doi:10.1016/j.micinf.2005.06.027

34. Bryan MA, Norris KA. Genetic immunization converts the Trypanosoma cruzi B-Cell mitogen proline racemase to an effective immunogen. Infect Immun (2010) 78:810–22. doi:10.1128/IAI.00926-09

35. Reina-San-Martin B, Degrave W, Shepard W, Gregoire D, Bazin H, Capron A. Trypanosoma cruzi trans-sialidase is an inducer of paracrine type 1 CD8 and type 2 CD4 T cell responses of type 1 CD8 and type 2 CD4 T cell responses. Int Immunol (2000) 12:593–601. doi:10.1093/ium/14.3.299

36. Acosta Rodriguez EV, Zuniga EI, Montes CL, Merino MC, Bermejo DA, Amezcua Veely MC, et al. Trypanosoma cruzi infection infects the B-cell compartment favouring parasite establishment: can we strike first? Scand J Immunol (2007) 66:137–42. doi:10.1111/j.1365-3083.2007.01960.x

37. Rodríguez AM, Santoro F, Afnan D, Bazin H, Capron A. Trypanosoma cruzi infection in B-cell-deficient rats. Infect Immun (1981) 31:524–9.

38. Minoprio P, Burlen O, Pereira P, Guilbert B, Andrade L, Hontebeyrie-Joskowicz M, et al. Most B cells in acute Trypanosoma cruzi infection lack parasite specificity. Scand J Immunol (1988) 28:553–61. doi:10.1111/j.1365-3083.1988.tb01487.x

39. Minoprio P, Coutinho A, Spinella S, Hontebeyrie-Joskowicz M. Xid immunodeficiency imparts increased parasite clearance and resistance to pathology in experimental Chagas’ disease. Int Immunol (1991) 3:427–33. doi:10.1093/intimm/3.5.427

40. Yoshida N, Araya JE, Da Silvaere JF, Giorgio S. Trypanosoma cruzi anti-body production and T cell response induced by stage-specific surface glycoproteins purified from metacyclic trypanosomes. Exp Parasitol (1993) 77:405–13. doi:10.1006/expp.1993.1100

41. Freire-de-Lima C, Pecanha LM, Dos Reis GA. Chronic experimental Chagas’ disease: functional syngenic T-cell cooperation in vitro in the absence of an exogenous stimulus. Infect Immun (1996) 64:2861–6.

42. De Arruda Hinds LB, Alexandre-Moreira MS, Devecce-Ricardo D, Nunes MP, Pecanha LM. Increased immunoglobulin secretion by B lymphocytes from Trypanosoma cruzi infected mice after B lymphocytes-natural killer cell interaction. Parasite Immunol (2001) 23:581–6. doi:10.1046/j.1365-3083.2001.00418.x

43. Girones N, Rodriguez CJ, Carrasco-Marin E, Heranze RA, De Rejo JL, Fresno M. Dominant T- and B-cell epitopes in an autoantibotic linked to Chagas’ disease. J Clin Invest (2001) 107:985–93. doi:10.1172/JCI10734

44. Gao W, Wortis HH, Pereira MA. The Trypanosoma cruzi trans-sialidase is a T cell-independent B cell mitogen and an inducer of non-specific Ig secretion. Int Immunol (1992) 4:299–308. doi:10.1093/ium/14.3.299

45. Acosta Rodriguez EV, Zuniga EI, Montes CL, Merino MC, Bermejo DA, Amezcua Veely MC, et al. Trypanosoma cruzi infection infects the B-cell compartment favouring parasite establishment: can we strike first? Scand J Immunol (2007) 66:137–42. doi:10.1111/j.1365-3083.2007.01960.x

46. Tarleton RL, Grusby MJ, Postan M, Giorgio S. Proline racemase to an effective mitogen and an inducer of non-specific Ig secretion. J Immunol (2000) 165:553–61. doi:10.4049/jimmunol.165.1.553

47. Millar AE, Kahn SJ. The SA85-6314–21. doi:10.1006/expr.1997.4171

48. de Meis J, Morrot A, Farias-D’Imperio Lima MR, Eisen H. Polyclonal lymphocyte responses to Trypanosoma cruzi infected mice. Exp Parasitol (1997) 87:58–64. doi:10.1006/expv.1997.4171

49. de Meis J, Morrot A, Farias-De-Oliveira DA, Villa-Verde DM, Savino W. Differential regional immune response in Chagas disease. PLoS Negl Trop Dis (2009) 3:e417. doi:10.1371/journal.pntd.0000417

50. Guinea L, Silva EM, Ribeiro-Gomes FL, De Meis J, Pereira WF, Yagita H, et al. The Fas death pathway controls coordinated expansion of type 1 CD8 and type 2 CD4 T cells in Trypanosoma cruzi infection. J Leukoc Biol (2007) 81:942–51. doi:10.1189/jlb.1006643

51. Doni RL, Gronvik KO. Trypanosoma cruzi: T cell subpopulations in the Peyer’s patches of BALB/c infected mice. Exp Parasitol (1997) 87:58–64. doi:10.1006/expv.1997.4171

52. de Meis J, Morrot A, Farias-De-Oliveira DA, Villa-Verde DM, Savino W. Differential regional immune response in Chagas disease. PLoS Negl Trop Dis (2009) 3:e417. doi:10.1371/journal.pntd.0000417

53. Zhang X, Xu X, Liu Y. Activation-induced cell death in T cells and autoimmunity. Cell Mol Immunol (2004) 1:186–92.

54. Korf A, Korf A, O’Reilly LA, Tal I, Echeverry N, et al. BCL-2 family member BOK is widely expressed but its loss has only minimal impact in mice. Cell Death Differ (2012) 19:915–25. doi:10.1038/cdd.2011.210

55. Mason KD, Lin A, Robb L, Josefsson EC, Henley KJ, Gray DH, et al. Proapoptotic Bak and Bax guard against fatal systemic and organ-specific autoimmune disease. Proc Natl Acad Sci U S A (2013) 110:2599–604. doi:10.1073/pnas.1215071110

56. Willis SN, Fletcher I, Kaufmann T, Von Delft MF, Chen L, Czabotar PE, et al. Apoptosis initiated when HIV-13 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science (2007) 315:856–9. doi:10.1126/ science.1131289

57. Chipuk JE, Green DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol (2008) 18:157–64. doi:10.1016/j.tcb.2008.01.007

58. Pandiyan P, Zhang L, Isha- hara S, Reed J, Lenardo MJ, CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol (2007) 8:1353–62. doi:10.1038/nature07136

59. Hoft DF, Farrar PL, Krazt-Owens K, Shaffer D. Gastric invasion by Trypanosoma cruzi and induction of protective mucosal immune responses. Infect Immun (1996) 64:380–10.

60. Alberti E, Acosta A, Sarmiento ME, Hidalgo C, Vidal T, Fachado A, et al. Specific cellular and humoral immune response in BALB/c mice immunised with an expression of Regional immune response in Chagas disease

Frontiers in Immunology | Immunological Memory

July 2013 | Volume 4 | Article 216 | 6
Type 1 immune response in Chagas disease

Hoft DF, Eickhoff CS. Type 1 immunity provides optimal protection against both mucosal and systemic Trypanosoma cruzi challenges. Infect Immun (2002) 70:6715–25. doi:10.1128/IAI.70.12.6715-6725.2002

Hoft DF, Eickhoff CS. Type 1 immunity provides both optimal mucosal and systemic protection against a mucosally invasive, intra-cellular pathogen. Infect Immun (2005) 73:4934–40. doi:10.1128/IAI.73.8.4934-4940.2005

Giddings OK, Eickhoff CS, Smith TF, Bryant LA, Hoft DF. Anatomical route of invasion and protective mucosal immunity in Trypanosoma cruzi conjunctival infection. Infect Immun (2006) 74:5549–60. doi:10.1128/IAI.00319-06

Shikanai-Yasuda MA, Carvalho NR. Oral transmission of Chagas disease. Clin Infect Dis (2012) 54:845–52. doi:10.1093/cid/cir956

Andrade ZA, and Silva HR. Parasitism of adipocytes by Trypanosoma cruzi. Mem Inst Oswaldo Cruz (1985) 80:521–2. doi:10.1590/S0074-02761995000400018

Vasconcelos FM, Wilson AJ, Van Voorhis WC. Detection of live Trypanosoma cruzi in tissues of infected mice by using histochemical stain for beta-galactosidase. Infect Immun (1999) 67:403–9.

Guarner J, Bartlett J, Zaki SR, Colley DG, Grijalva MJ, Powell MR. Mouse model for Chagas disease: immuno-histochemical distribution of different stages of Trypanosoma cruzi in tissues throughout infection. Am J Trop Med Hyg (2001) 65:152–8.

Correa-de-Santana E, Pazé-Pereira M, Theodoropoulou M, Kenji Nihei O, Griebel Y, Bozza M, et al. Hypothyroidism-pituitary-adrenal axis during Trypanosoma cruzi acute infection in mice. J Neuroimmunol (2006) 173:12–22. doi:10.1016/j.neurommun.2005.08.015

Quarrrnstrom Y, Schijman AG, Veron V, Aznar C, Steuer F, Da Silva AI. Sensitive and specific detection of Trypanosoma cruzi DNA in clinical specimens using a multi-target real-time PCR approach. PLoS Negl Trop Dis (2012) 6:e1689. doi:10.1371/journal.pntd.0001689

Corretz M, Silva MR, Neira I, Ferreira D, Sasso GR, Luquetti AO, et al. (2006). Trypanosoma cruzi surface molecule gp90 downregulates invasion of gastric mucosal epithelium in orally infected mice. Microbes Infect 8:36–44. doi:10.1016/j.micinf.2005.05.016

Velasco VM, Guedes PM, Andrade IM, Gałas IS, Martins HR, Carneiro CM, et al. Trypanosoma cruzi blood parasitism kinetics and their correlation with heart parasitism intensity during long-term infection of Beagle dogs. Mem Inst Oswaldo Cruz (2008) 103:528–34. doi:10.1590/S0074-02762008000600003

Castro-Sesquen YE, Gilman RH, Yuiri V, Cok J, Angulo N, Escalante H, et al. Detection of soluble antigen and DNA of Trypanosoma cruzi in urine is independent of renal injury in the guinea pig model. PLoS ONE (2013) 8:e58840. doi:10.1371/journal.pone.0058840

Morecocz AA, Rodriguez M, Herrara L, Urdenata-Morales S, Trypanosoma cruzi: experimental parasitism of bone and cartilage. Parasitol Res (2006) 99:663–8. doi:10.1007/s00436-006-0211-2

Baena Teran R, Arancibia A, Basquiera AL, De La Fuente JL, Ricchi B, De Diller AB. Trypanosoma cruzi in the bone marrow. Br J Haematol (2012) 157:1. doi:10.1111/j.1365-2141.2012.09940.x

Da Costa SC, Calabrese KS, Bauer TL, Correa-Oliveira R, D’Avila Reis D, Macedo AM, Adad SJ, et al. Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am J Pathol (2000) 156:1805–9.

Schijman AG, Viglano CA, Viotti RI, Burgos JM, Brandariz S, Lococo BE, et al. Trypanosoma cruzi DNA in cardiac lesions of Argentinean patients with end-stage chronic chagas heart disease. Am J Trop Med Hyg (2004) 70:210–20.

Vago AR, Silva DM, Adad SJ, Correa-Oliveira R, D’Avila Reis D. Chronic Chagas disease: presence of parasite DNA in the oesophagus of patients without megaoesophagus. Trans R Soc Trop Med Hyg (2003) 97:308–9. doi:10.1590/S0037-86822003006000034

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 15 April 2013; accepted: 13 July 2013; published online: 26 July 2013.

Copyright © 2013 de Meis, Barreto de Albuquerque, Silva dos Santos, Farias-de-Oliveira, Berbert, Cotta-de-Almeida and Savino W (2013) Trypanosoma cruzi entrance through systemic or mucosal infection sites differentially modulates regional immune response following acute infection in mice. Front. Immunol. 4:216. doi: 10.3389/fimmu.2013.00216

This article was submitted to Frontiers in Immunological Memory, a specialty of Frontiers in Immunology.

Copyright © 2013 de Meis, Barreto de Albuquerque, Silva dos Santos, Farias-de-Oliveira, Berbert, Cotta-de-Almeida and Savino W. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.