Status of the Unitarity Triangle Analysis

Viola Sordini, on behalf of the UTfit collaboration

M. Bona, M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, F. Parodi, M. Pierini, C. Schiavi, L. Silvestrini, V. Sordini, A. Stocchi, C. Tarantino, V. Vagnoni

http://www.utfit.org
Outline

- CP violation in the SM: the CKM mechanism
- UTfit: method and inputs
- Inputs from Unitarity Triangle Analysis (UTA)
- Actual constraint on the CKM parameters from all measurements
- Compatibility plots – tension in the fit?
- UTfit and lattice QCD
- UTA and NP
- Conclusions
CP violation and CKM matrix

\[
\begin{pmatrix}
 d' \\
 s' \\
 b'
\end{pmatrix} =
\begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
 d \\
 s \\
 b
\end{pmatrix}
\]

weak interaction eigenstates

\[V_{\text{CKM}} \]

mass eigenstates

Unitary matrix

UNITARITY CONDITION:
\[
V_{\text{CKM}}^+ V_{\text{CKM}} = V_{\text{CKM}}^* V_{\text{CKM}} = 1
\]

six independent relations, within them we choose:
\[
V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0
\]

B physics

In a complex plane \((\bar{\rho}, \bar{\eta})\)

Cabibbo

Kobayashi

Maskawa
Method and Inputs

Bayes theorem

\[
f(\tilde{\rho}, \tilde{\eta}, x_1, x_2, \ldots x_N \mid c_1, c_2, \ldots c_M) \propto \prod_{j=1}^{M} f_i(c_j \mid \tilde{\rho}, \tilde{\eta}, x_1, \ldots x_N) \prod_{i=1}^{N} f_i(x_i) f_0(\tilde{\rho}, \tilde{\eta})
\]

Constraints \(c_i \sim f_i(c_i \mid \rho, \eta \ldots)\)

- \((b \to u)/(b \to c)\)
- \(\tilde{\rho}^2 + \tilde{\eta}^2\)
- \((\Lambda), \lambda_1, F(1)\)
- \(\epsilon_K\)
- \(\tilde{\eta}[(1-\tilde{\rho}) + P]\)
- \(B_K\)
- \(\Delta m_d, \Delta m_d / \Delta m_s\)
- \((1-\tilde{\rho})^2 + \tilde{\eta}^2\)
- \(f_B^2 B_B, \xi\)
- \(A_{(CP)}(J/\Psi K_S)\)
- \(\sin 2\beta\)

References

M.Ciuchini et al. JHEP 0107 (2001) 013. hep-ph/0012308

M.Bona et al. (UTfit collaboration) JHEP 0507 (2005) 028. hep-ph/0501199
Sides + ε_K: inputs and results

Direct CP violation in the K sector

68% prob. 95% prob.

ε_K

LEP-time analysis (with big recent contribution from Tevatron for Δm_s and B-factories for V_{ub} and V_{cb})

Semileptonic B decays

$|V_{ub}|/|V_{cb}|$

Bs and Bd mixing

Δm_d

$\Delta m_s/\Delta m_d$

Contours at 68% and 95% probability are shown

Dependence on non-perturbative hadronic parameters

$$\bar{\rho} = 0.177 \pm 0.028$$

$$\bar{\eta} = 0.358 \pm 0.026$$
Angles: inputs and results

$\sin 2 \beta = 0.668 \pm 0.028$

$\alpha = [81^\circ, 102^\circ] \cup [164^\circ, 171^\circ]$ at 95% confidence

$\gamma = (78 \pm 12)^\circ$

$\bar{\rho} = 0.126 \pm 0.028$

$\bar{\eta} = 0.332 \pm 0.018$

$2\beta + \gamma = (\pm 90 \pm 32)^\circ$
Results

\[\bar{\rho} = 0.177 \pm 0.028 \]
\[\bar{\eta} = 0.358 \pm 0.026 \]

NP should appear as "corrections" to the CKM pictures

95\% prob. regions shown

\[\bar{\rho} = 0.126 \pm 0.028 \]
\[\bar{\eta} = 0.332 \pm 0.018 \]

\[\bar{\rho} = 0.156 \pm 0.020 \]
\[\bar{\eta} = 0.342 \pm 0.013 \]
Compatibility plots

A way to “measure” the agreement of a single measurement with the indirect determination from the fit using all the other inputs: test for the SM description of the flavor physics

The cross has the coordinates \((x, y) = (\text{central value, error})\) of the direct measurement.

Color code: agreement between the predicted values and the measurements at better than 1, 2...n \(\sigma\).
Tension in the fit?

Contours (68% and 95%) for the vertex position determined by $\Delta m_s/\Delta m_d$, $|V_{ub}/V_{cb}|$

Relying on semileptonic form factors determined from Lattice QCD and QCD sum rules

$$V^{\text{INDIRECT}}_{ub} = (3.48 \pm 0.16) \times 10^{-3}$$
$$V^{\text{Exclusive}}_{ub} = (3.50 \pm 0.40) \times 10^{-3}$$
$$V^{\text{Inclusive}}_{ub} = (3.99 \pm 0.15 \pm 0.40 [\ flat]) \times 10^{-3}$$

Relying on some HQET parameters extracted from experimental fits with some model dependence
UTfit vs lattice QCD

Fit overconstrained: UT analysis without relying on theoretical calculations of hadronic matrix elements. Using angles measurements, $|V_{ub}/V_{cb}|$ to determine CKM parameters and Δm_d, Δm_s, and ϵ_K to determine the LQCD quantities (assuming the validity of the SM).

Main goal: identify where lattice QCD calculation improvements are necessary

Parameter	UTangle	UTangle + V_{ub}/V_{cb}	lattice QCD results
B_K	0.78 ± 0.07	0.75 ± 0.07	0.75 ± 0.07
$f_{B_s}/\sqrt{B_s}$ (MeV)	265.6 ± 3.6	264.7 ± 3.6	270 ± 30
ξ	1.27 ± 0.05	1.26 ± 0.05	1.21 ± 0.04
f_{B_d} (MeV)	191 ± 13	191 ± 13	200 ± 20

(V.Lubicz, C.Tarantino, arXiv: 0807.4605 [hep-lat])

M.Bona et al. JHEP 0610:081, 2006 (hep-ph/0606167)
UTA beyond the SM

- start from a NP-free CKM determination
- parametrize generic NP in all sectors
- fit simultaneously for CKM and NP parameters

General parametrization for B_q-B_q mixing ($q=d,s$)

$$C_{B_q} e^{2i \phi_{B_q}} = \frac{\langle B_q | H_{SM+NP} | \bar{B}_q \rangle}{\langle B_q | H_{SM} | \bar{B}_q \rangle} = 1 + \frac{A_{q}^{NP} e^{2i \phi_{NP}}}{A_{q}^{SM} e^{2i \phi_{SM}}}$$

where:
$$\phi_{d}^{SM} = \beta \quad \phi_{s}^{SM} = -\beta_{s} \quad C_{SM} = 1 \quad \phi_{SM} = 0$$

SM \rightarrow SM+NP

SM	SM+NP
γ^{SM}	γ^{SM}
$(V_{ub}/V_{cb})^{SM}$	$(V_{ub}/V_{cb})^{SM}$
ϵ_{K}^{SM}	$C_{\epsilon_{K}}^{SM}$
Δm_{K}^{SM}	$C_{\Delta m_{K}}^{SM}$
β^{SM}	$\beta^{SM} + \Phi_{B_{d}}$
α^{SM}	$\alpha^{SM} - \Phi_{B_{d}}$
Δm_{d}^{SM}	$C_{B_{d}} \Delta m_{d}^{SM}$
Δm_{s}^{SM}	$C_{B_{d}} \Delta m_{s}^{SM}$
β_{s}^{SM}	$\beta_{s}^{SM} + \Phi_{B_{s}}$
Additional constraints for NP analysis

$\Delta m_s=|A_{full}^s|=C_{B_s} \Delta m_{s}^{SM}$

$2 \phi_s=\text{arg}(A_{full}^s)=2(\beta_s-\phi_{B_s})$

- Semileptonic asymmetry in B_s, A_{SL}^s ([D0 Collaboration] Phys.Rev.Lett.98:151801, 2007)

$$A_{SL}^s = \frac{\Gamma(\bar{B}_s \to l^+ X)-\Gamma(\bar{B}_s \to l^- X)}{\Gamma(\bar{B}_s \to l^+ X)-\Gamma(\bar{B}_s \to l^- X)} = \text{Im} \left(\frac{\Gamma_{12}^s}{A_{full}^s} \right)$$

- Dimuon charge asymmetry, $A_{SL}^{\mu\mu}$ ([D0 collaboration] Phys.Rev.D74:092001, 2006 – [CDF collaboration] note 9015)

$$A_{SL}^{\mu\mu} = \frac{\int d\chi d_0 A_{SL}^d + \int s \chi s_0 A_{SL}^s}{\int d\chi d_0 + \int s \chi s_0}$$

- B_s lifetime measurement from flavor specific final states, $\tau_{B_s}^{FS}$ (ALEPH, CDF, DELPHI, D0, OPAL, see ref [19] in arXiv:0803.0659)

$$\tau_{B_s}^{FS} = \frac{1}{\Gamma_s} \left(1 - \left(\frac{\Delta \Gamma_s}{2 \Gamma_s} \right)^2 \right)$$

- Two-dimensional likelihood scan for $\Delta \Gamma_s$ and ϕ_s from the flavor-tagged analysis $B_s \to J/\psi \phi$ ([D0 Collaboration] arXiv:0802.2255)

- Two-dimensional likelihood ratio for $\Delta \Gamma_s$ and ϕ_s from the time dependent tagged angular analysis $B_s \to J/\psi \phi$ ([CDF collaboration] arXiv:0712.2397)

see A. Chandra talk on Monday
New physics in K sector

\[C_{\Delta m_K} = 0.96 \pm 0.34 \]

\[C_{\epsilon_K} = 0.99 \pm 0.16 \]

NP contributions to the K mixing

\[C_{\epsilon_K} = \frac{\text{Im} < K^0 | H_{SM+NP} | \bar{K}^0 >}{\text{Im} < K^0 | H_{SM} | \bar{K}^0 >} \]

\[C_{\Delta m_K} = \frac{\text{Re} < K^0 | H_{SM+NP} | \bar{K}^0 >}{\text{Re} < K^0 | H_{SM} | \bar{K}^0 >} \]
New physics in B_d sector

$C_{B_d} = 0.96 \pm 0.23$

$\phi_{B_d} = (-2.9 \pm 1.9)^\circ$

~ 1.5 sigma effect from sin2b “tension”

NP contributions to the B_d mixing

$C_{Bd} e^{2i \phi_{B_d}} = \frac{\langle B_d | H_{SM+NP} | \bar{B}_d \rangle}{\langle B_d | H_{SM} | \bar{B}_d \rangle}$

Δm_d^{SM}

up to $\sim 10\%$ effects still allowed
New physics in B_s sector

$C_{B_s} = 0.97 \pm 0.20$

$\phi_{B_s} = (-70 \pm 7)^\circ U (-18 \pm 7)^\circ$

$C_{B_s} e^{2i\phi_{B_s}} = \frac{<B_s|H_{SM+NP}|\bar{B}_s>}{<B_s|H_{SM}|\bar{B}_s>}$

SM contributions

SM at $\sim 2.6\sigma$

68% prob.

95% prob.
Conclusions

- Combination of all the available information
 http://www.utfit.org

- SM description of CP violation through the CKM mechanism is successful: all experimental measurements in agreement, physics beyond the SM should appear as a correction

- Small tension in the fit, due to the Vub measurement

- Extraction of hadronic parameters

- Indication for NP with new sources of flavor violation. Clear pattern arises:

 - 1 ↔ 2: strongly suppressed
 - 1 ↔ 3: ≤O(10%)
 - 2 ↔ 3: O(1)
http://www.utfit.org/

Ciuchini et al. "2000 CKM triangle analysis: A Critical review with updated experimental inputs and theoretical parameters." JHEP 0107:013,2001 (hep-ph/0012308)

M. Bona et al. [UTfit Collaboration]
"The Unitarity Triangle Fit in the Standard Model and Hadronic Parameters from Lattice QCD: A Reappraisal after the Measurements of Δms and BR(B → τν)"
JHEP 0610:081,2006 (hep-ph/0606167)

M. Bona et al. [UTfit Collaboration]
"The 2004 UTfit Collaboration Report on the Status of the Unitarity Triangle in the Standard Model",
JHEP 0507 (2005) 028 (hep-ph/0501199)

M. Bona et al. [UTfit Collaboration]
"Model-independent constraints on Delta F=2 operators and the scale of New Physics"
0707.0636 (hep-ph)
Backup
Angles, inputs

\(\sin 2\beta \): from the time dependent asymmetry measurement in \(B^0 \rightarrow J/\Psi K_S \) only, theoretical error taken into account (Ciuchini et al. PRL95:221804, 2005).

Ambiguity removed by measurements from angular analysis of time dependent studies in \(B^0 \rightarrow J/\Psi K_S^* \) and Dalitz analysis of \(B^0 \rightarrow D^0 \pi^0 \).

\[
\sin 2\beta = 0.668 \pm 0.028
\]

68% prob.
95% prob.
B° \rightarrow (\rho\pi)^0 analysis on the Dalitz plot. The penguin contributions delete in:
\[A = A(B^0 \rightarrow \rho^+\pi^-) + A(B^0 \rightarrow \rho^-\pi^+) + 2A(B^0 \rightarrow \rho^0\pi^0) = (T_{+-} + T_{-+} + 2T_{00}) e^{-i\alpha} \]
and similarly A_{\bar{B}}, for CP conjugated.
We extract \(\alpha \) directly from data measuring
\[R = \frac{A_{\bar{B}}}{A} = e^{2i\alpha} \]
Penguin contributions cancel out in the sum: non need to fit for them.
As for gamma from Bs (Ciuchini et al. Phys.Lett.B645:201-203,2007)
Angles, inputs

\[\gamma = \text{arg} \left\{ \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right\} \]

Overall constraint:

\[B \to D^{(*)0} (D^{(*)0}) K^{(*)} \text{ decays can proceed both through } V_{cb} \text{ and } V_{ub} \text{ amplitudes} \]

- **GLW**
 - \(D^0 (\bar{D}^0) \to K_S \pi^0, K^+ K^-, \pi^+ \pi^- \)

- **ADS**
 - \(D^0 (\bar{D}^0) \to K^- \pi^+, K^- \pi^+ \pi^0 \)

- **DALITZ**
 - \(D^0 (\bar{D}^0) \to K_S \pi \pi, \pi \pi \pi^0 \)

GLW

ADS

DALITZ

\[\gamma = (78 \pm 12)^\circ \]

68% prob.

95% prob.
Angles, inputs

Sensitivity to γ proportional to an important parameter:

CHARGED B

$B \rightarrow DK$

$r_B(\text{ch}) = |A_{V_{ub}}(\text{ch})/A_{V_{cb}}(\text{ch})|$

- $r_B(DK)$
 - 0.10 ± 0.02

$B \rightarrow DK^*$

$r_B(DK^*) = 0.092 \pm 0.066$

NEUTRAL B

$B \rightarrow D^*K$

$r_B(D^*K)$

- 0.091 ± 0.033

$B \rightarrow DK^*$

$r_B(DK^*) = 0.092 \pm 0.066$

$B \rightarrow \text{neut}$

$r_B(\text{neut}) = |A_{V_{ub}}(\text{neut})/A_{V_{cb}}(\text{neut})|$

- 68% prob.
- 95% prob.
2$\beta + \gamma$: from the time dependent analysis of $B^0 \to D(\ast) \pi$ and $B^0 \to D \rho$.

The only information we can extract from data is the 2D distributions:

Assuming SU(3) and neglecting annihilations (+-100% error convoluted with the experimental one):

- **Overall constraint:**

 - $2\beta + \gamma = (\pm 90 \pm 32)^\circ$

 - 68% prob.
 - 95% prob.
New physics in B_d sector