Optical and Electrical characterization of Silver nanowire-reduced graphene oxide hybrid thin film on PET for transparent electronics

Manpreet Kaur¹,²*, Twinkle¹,², Rahul Sharma¹, Anjali¹,², Harjot¹,², Gh Mustafa¹,², Suresh Kumar¹, J.K. Goswamy¹

¹University Institute of Engineering and Technology, Panjab University, Chandigarh, 160025, India.
²Department of Physics, Panjab University, Chandigarh, 160014, India.

*Corresponding Author’s e-mail: manpreet.pu17@gmail.com

Abstract. Abstract: Graphene is an excellent nanoscale allotrope of carbon in which carbon atoms are bonded through sp² hybridization. Graphene itself or its thin film exhibits excellent transparency to visible light. Silver nanowires are also being used for making transparent electrodes. Herein, we prepared a thin film of reduced graphene oxide and silver nanowires on flexible PET (polyethylene terephthalate) substrate. Characterization of graphene oxide/reduced graphene oxide has been carried out through X-ray diffraclometry, FTIR (Fourier transformed infrared spectroscopy). Ultraviolet-visible spectroscopy and I-V measurements demonstrated high conductivity and transmittance of the above prepared film.

Keywords: Graphene, Ag, PET, transparent electronics.

1. Introduction

Transparent conducting films (TCFs) have found applications in various electronic devices such as flat panel displays, solar cells, wearable electronics etc. [1]. Indium tin oxide (ITO) has been used at large scale for making TCFs but it suffers from some serious drawbacks like limited availability, high cost and brittle nature [2,3]. Graphene has the potential to replace ITO in electronic industry due to its superior properties like excellent transparency, great mechanical flexibility and low processing cost. Silver nanowires have also been considered as potential candidate for making TCFs [4, 5]. However, nanowire-nanowire junction resistance, high material cost and instability are some of the issues with silver nanowires to be used alone for fabricating thin TCFs [6-8]. In contrast graphene is stable, excellent electronic conductor. A combination of carbon nanotubes and silver nanowires has been utilized to prepare highly conductive TCFs [9-11]. Herein, we have demonstrated the use of a combination of graphene and silver nanowires to prepare high quality TCFs. The properties of graphene and silver nano wires are utilized through a single nanohybrid film. The hybrid will have large number of conductive channels, therefore the percolation threshold will be reduced [12]. Graphene can be easily prepared using Hummer’s method, chemical vapor deposition (CVD), molecular beam epitaxy (MBE) and simple mechanical exfoliation [13-15]. Mechanical exfoliation technique is not suitable for industrial applications, whereas, CVD and MBE techniques cost very high. We have used improved Hummer’s method for producing graphene oxide. In-turn graphene oxide was reduced using ascorbic acid [16].

2. Materials and Methods
2.1 Materials

Graphite flakes were obtained from Sigma Aldrich, India. Chemical reagents, H$_2$SO$_4$, H$_3$PO$_4$ and H$_2$O$_2$ were from Sigma Aldrich, India, silver nitrate (AgNO$_3$), Polyvinylpyrrolidone and ethylene Glycol were procured from Fisher Scientific, India. Ferric chloride (FeCl$_3$) was procured from Sigma Aldrich, India.

2.2 Experimental

Graphene oxide was prepared by following modified Hummers method and reduced using ascorbic acid [15-18]. Silver nanowires were prepared previously reported literature [19]. 1 mg rGO and mixed it in 5 mL of DMF, dispersed through sonication for 30 min and a thin film on PET sheet was prepared by simple drop casting and allowed to dry in an oven for 4 hrs at 40 °C. Afterwards, rGO/PET film was dipped in silver nanowire solution four times and again dried. The schematic of experimental procedure is shown in figure 1.

![Schematic diagram of rGO/PET and PET/rGO/Ag nanohybrid film.](image)

Figure 1: Schematic diagram of rGO/PET and PET/rGO/Ag nanohybrid film.

3. Results and Discussion

XRD pattern of the film is displayed in figure 2. The XRD pattern of reduced graphene oxide gives a characteristic peak around $2\theta=26^\circ$ confirming the effective reduction of GO. The XRD pattern of rGO/Ag thin film showed a peak $2\theta=38.26^\circ$, which is attributed to (111) plane reflection of FCC lattice of silver nanowires [20].
Figure 2: XRD spectra of rGO/Ag nanowire hybrid and rGO.

The wavelength dependence of optical transmittance spectra of rGO and rGO/Ag transparent films are given in figures 3(a) and 3(b) respectively. The observation reflects the good crystallinity of the prepared films. The optical transmittance of the films is about 70% at wavelength 550 nm for rGO which is further enhanced after introducing Ag nanowires in rGO to 82% at wavelength 550 nm [21]. The optical constants of rGO and rGO/Ag were determined from transmittance spectrum of rGO and rGO/Ag nanowire composite.
Figure 3: (a) UV-Vis Spectra of rGO film (b) UV-Vis Spectra of rGO/Ag film.

Figure 4 (a) shows FTIR spectrum of rGO film. The absorption peaks at 1648, 1006 cm\(^{-1}\) attributes to C=C and C-O bond stretching vibrations respectively [23]. Figure 4 (b) shows FTIR spectrum of rGO/Ag nanowire composite film. The absorption band at 3222 cm\(^{-1}\) is due to stretching vibrations of –OH groups on graphene surface. Absorption peak at 1705 cm\(^{-1}\) may be attributed to C=O stretches in PVP or some unreduced part of rGO. 1356 cm\(^{-1}\) is related to –CH\(_2\) bending of PVP, 1250 cm\(^{-1}\) related to CH\(_2\) wagging in PVP, 1098 cm\(^{-1}\) C-O stretching in rGO (unreduced), 860 cm\(^{-1}\) CH\(_2\) bending of PVP, 725 cm\(^{-1}\) due to CH\(_2\) rocking of PVP [24].

Figure 4: FTIR Spectra of (a) rGO and (b) rGO/Ag nanocomposite.
Electrical properties of rGO and rGO/Ag nanocomposite are studied by Current-Voltage (I-V) characteristics. I-V is done by using Keithley source meter 2400. I-V response for rGO and rGO/Ag nanocomposite is shown in figure 5. The value of resistance for rGO and rGO/Ag nanocomposite was found to be $2.6 \times 10^5 \ \Omega$ and $0.5 \times 10^5 \ \Omega$ respectively. The results show that the resistance of the rGO has decreased after introducing silver nanowires.

![I-V graph of rGO and rGO/Ag nanowire hybrid](image)

Figure 5: (a) I-V graph of rGO, (b) I-V graph of rGO/Ag

4. Conclusion

In this work we successfully synthesized rGO and rGO/Ag nanocomposite film. The optical and electronic properties of rGO and rGO-Ag Nanowire hybrid are studied. XRD and FTIR verified the synthesis of rGO and rGO/Ag nanowire hybrid.

Acknowledgements

Suresh Kumar would like to thank SERB (Science and Engineering Research Board) and DST (Department of Science and Technology), New Delhi, India for ECRA Research grant (ECR/2016/00104). Authors would like to thank the Department of physics for X-ray diffraction measurements.
References

[1] Gao Y, Wang W, Song N, Gai Y and Zhao Y 2017 Fabrication of highly flexible transparent conductive film with a sandwich-structure consisted of graphene/silver nanowire/graphene. *J Mater Sci Mater Electron.* 28 17031–37.

[2] Koh S, Gan H, Phua K, Akimov A and Bai P 2014 The Potential of Graphene as an ITO Replacement in Organic Solar Cells. *IEEE Journal on Selected Topics in Quantum Electronics.* 20 36–42.

[3] Woo S 2018 Transparent Conductive Electrodes Based on Graphene-Related Materials *Micromachines.* 10 24–28.

[4] Lian L, Xi X, Dong D and He G 2018 Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode. *Organic Electronics.* 60 9–15.

[5] Zhang R and Engholm M 2018 Recent Progress on the Fabrication and Properties of Silver Nanowire- Based Transparent Electrodes *Nanomaterials.*

[6] Zhang N, Yang Q, Tang R and Xu J 2014 Toward Improving the Graphene–Semiconductor Composite Photoactivity via the Addition of Metal Ions as Generic Interfacial Mediator. *ACS Nano.* 8 623–633.

[7] Tien W, Hsiao T, Liao H, Yu H, Lin C, Wang S, Li M and Ma M 2013 Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive. *Carbon* 58 198–207.

[8] Gao Y, Wang W, Song N, Gai Y and Zhao Y 2017 Fabrication of highly flexible transparent conductive film with a sandwich-structure consisted of graphene/silver nanowire/graphene. *J Mater Sci: Mater Electron.* 28 17031–37.

[9] Martinez M, Ishteev A, Fahimi A, Velten J, Jurewicz I, Dalton B, Collins S, Baughman H and Zakhidov A 2019 Silver Nanowires on Carbon Nanotube Aerogel Sheets for Flexible, Transparent Electrodes. *ACS Applied Materials and Interfaces.* 11 32235–43.

[10] Pillai R, Wang J, Wang Y, Sk M, Prakoso B, Rusli and Chan-Park B 2016 Totally embedded hybrid thin films of carbon nanotubes and silver nanowires as flat homogenous flexible transparent conductors. *Scientific Reports.* 6 1–12.

[11] Stapleton J, Afire A, Ellis V, Shapter G, Andersson G, Quinton S and Lewis A 2013 Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes *Science and Technology of Advanced Materials.* 14 035004.

[12] Liu Y, Chang Q and Huang L 2013 Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires. *Journal of Materials Chemistry C.* 1 2970–74.

[13] Dreyer R., Park S, Bielawski W and Ruoff S 2010 The chemistry of graphene oxide. *Chemical Society Reviews.* 39 228–240.

[14] Novoselov S, Geim K, Morozov V, Jiang D, Zhang Y, Dubonos V, Grigorieva V and Firsov A 2004 Electric Field Effect in Atomically Thin Carbon Films. *Science.* 306 666–669. [15] Kumar S ,Nair R, Pillai P, Gupta S, Iyengar M, Sood A 2014 Graphene Oxide– MnFe2O4 Magnetic Nano hybrids for Efficient Removal of Lead and Arsenic from Water. *ACS Applied Materials and Interfaces.* 6 17426–36.

[16] Andrijanto E, Shoelarta S, Subiyanto G and Rifki S 2016 Facile synthesis of graphene from graphite using ascorbic acid as reducing agent. AIP Conference Proceedings, 1725. [17] Marcano C, Kosynkin V, Berlin M, Sintskii A, Sun Z, Slesarev A, Alemany B, Lu W and Tou M 2010 Improved Synthesis of Graphene Oxide. *ACS Nano.* 4 4806–14.
[18] Kaur M, Twinkle, Kumar S and Gowsamy J 2020 Graphene-PVDF flexible nanohybrids for supercapacitor application. AIP Conference Proceedings, 020197.

[19] Li S, Liu D, Tian N, Liang Y, Gao C, Wang S, & Zhang Y 2019 High-performance temperature sensor based on silver nanowire. Materials Today Communications, 100546. [20] Zahir A, Chauhan S, Bagavan A, Kamaraj C, Elango G, Shankar J, Arjaria N, Roopan M, Rahuman A and Singh N 2015 Green Synthesis of Silver and Titanium Dioxide Nanoparticles Using Euphorbia prostrata Extract Shows Shift from Apoptosis to G0/G1 Arrest followed by Necrotic Cell Death in Leishmania donovani. Antimicrobial Agents and Chemotherapy. 59 4782–99.

[21] Zhu E, Yuan S and Janssen M 2014 Optical transmittance of multilayer graphene. Epl. 108 1–5.

[22] Bera M, Gupta P and Maji P 2018 Facile One-Pot Synthesis of Graphene Oxide by Sonication Assisted Mechanochemical Approach and Its Surface Chemistry. J NanosciNanotechnol. 18 902-912.

[23] Hamdy Z, Elmetwally A, Amr A and Ahmed T 2019 Characterization and some physical studies of PVA/PVP filled with MWCNTs Journal of Materials Research and Technology. 8 904-913.