Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The effect of the COVID-19 pandemic on acute coronary syndrome hospitalizations and out-of-hospital cardiac arrest in Greece

C.J. Kapelios a, b, *, C. Siafarikas c, M. Bonou a, S. Liatis c, J. Barbetseas a

a Cardiology Department, Laiko General Hospital, Athens, Greece
b Department of Health Policy, London School of Economics and Political Science, London, UK
c First Department of Propaedeutic Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece

ABSTRACT

Objectives: After coronavirus disease 2019 (COVID-19) outbreak, striking decreases in the number of hospital admissions for acute coronary syndromes (ACSs) and rises in rates of out-of-hospital cardiac arrest (OHCA) have been noted.

Study design: This is an analysis of prospectively collected data from a cardiology department in a single, large volume hospital of the National Health System of the Metropolitan area of Athens.

Methods: We investigated the numbers of OHCA and hospital admissions for ACS during a 1-year period and made comparisons between the pre-COVID-19 and the COVID-19 outbreak periods.

Results: One hundred and eighty five patients were admitted during the total period of observation with the diagnosis of ACS. The mean monthly number of admissions for ACS for the pre-COVID-19 era was significantly higher than that for the post-COVID-19 era (20.1 ± 7.8 vs 8.8 ± 6.5 admissions, P = 0.024). The cases of OHCA which were transferred to our emergency room department by emergency medical services during the same period were nominally lower in the prepandemic compared with the post-pandemic era (1.9 ± 1.7 vs 4.0 ± 4.6, P = 0.28).

Conclusions: The present study provides hints on the potential unintended consequences of the pandemic in countries characterized by fewer COVID-19 cases and fatalities but prompt measures of social contact restrictions and lockdown.

© 2020 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

Keywords: SARS-CoV-2, COVID-19, Lock-down, Public health, Social policy.

To face the coronavirus disease 2019 (COVID-19) pandemic,1 strict social containment measures have been implemented worldwide, and healthcare systems have been reorganized to cope with the expected surge in the numbers of critically ill patients.2 However, Greek authorities adopted strict and timely social distancing policies to contain COVID-19 spread.3 These policies were proven highly efficient as Greece reported one of the lowest incidence and fatality rates worldwide during the first pandemic wave.4 After COVID-19 outbreak, striking decreases in the number of hospital admissions for acute coronary syndromes (ACSs) have been noted.5,6 Similarly, early studies from regions severely affected by the pandemic have supported that the rates of out-of-hospital cardiac arrest (OHCA) have significantly risen during this period.7 Furthermore, mechanical complications of ACS, which have been rendered infrequent in the era of timely coronary reperfusion, have resurfaced during the pandemic.8 Lockdown measures which hinder access to healthcare services and/or fear of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) contraction, which deters patients from seeking health care, could be advocated as potential explanations for aforementioned trends. Nonetheless, data from countries, which have been least affected by the pandemic, such as Greece, are for the time limited. The aim of the present analysis was to investigate the numbers of (a) hospital admissions for ACS and (b) OHCA during a 1-year period (July 1, 2019–June 30, 2020) and make comparisons between the pre-COVID-19 and the COVID-19 outbreak periods.

This is an analysis of prospectively collected data from a cardiology department in a single, large volume hospital of the National Health System of the Metropolitan area of Athens (Laiko General Hospital, Athens). Based on an ad hoc design form, we collected demographic data, data pertaining to patient history, clinical presentation, laboratory profile, treatment, and in-hospital outcomes.
of patients presenting with ACS. We divided the study period into two subperiods: 1st July 2019 up to 31st January 2020 (preponder-
demic period) and 1st February up to 30th June 2020 (COVID-19
outbreak period). To assess for simultaneous trends in OHCA, we
analyzed all cases of OHCA which were transferred to our emer-
gency department during the same period by emergency medical
services (EMSS). We collected demographic data (such as age and
gender) and data pertaining to patient history among the latter
patients. The study was approved by the ethics committee of our
institution and was carried out in accordance with the Declaration
of Helsinki.

One hundred and eighty five patients were admitted during the
total period of observation with the diagnosis of ACS. The mean
monthly number of admissions for ACS for the pre-COVID-19 era
was significantly higher than that for the post-COVID-19 era
(20.1 ± 7.8 vs 8.8 ± 6.5 admissions, P = 0.024, Supplementary
Fig. 1A). The number of hospitalizations for ACS was remarkably
lower for the months that aggressive lockdown measures (quar-
tantine) were enforced (March and April 2020) when compared
with the other months of the pandemic (5.5 ± 2.1 vs 11.8 ± 6.8,
P = 0.16).

The baseline characteristics of the patients hospitalized for ACS
during the study period and the characteristics of their hospitali-
sations stratified by the two subperiods are depicted in Table 1.
There were not significant differences in terms of age, history, and
other available parameters indicating severity (type of ACS, high-
sensitivity troponin T levels, left ventricular ejection fraction). Pa-
patients presenting before the COVID-19 era had significantly lower
levels of total cholesterol (168 ± 43 vs 185 ± 48 mg/dl, P = 0.036)
and a trend toward lower levels of low-density lipoprotein (LDL)
cholesterol (99 ± 37 vs 111 ± 37 pg/ml, P = 0.067), compared with
patients presenting during the pandemic. These differences are
most probably attributed to the higher rates of statin receipt among
patients of the pre-COVID-19 era (45.4% vs 22.7%, P = 0.007).
Importantly, patient outcome rates in terms of invasive therapy and
death did not differ between the two subperiods (Table 1). Inter-
estingly though, the patients presenting before the COVID-19 era
had significantly more diseased vessels compared with patients of
the COVID-19 era (1.9 ± 1.0 vs 1.5 ± 0.8, P = 0.018), reinforcing
the notion that, in the pandemic period, patients with more extended
coronary artery disease may have not reached the hospital alive.
The cases of OHCA which were transferred to our emergency room
department by EMSS during the same period were nominally lower
in the pre-COVID compared with the postpandemic era (1.9 ± 1.7
vs 4.0 ± 4.6, P = 0.28, Supplementary Fig. 1B). Moreover, in the
COVID-19 era, one patient (2.3%) developed a ventricular septal
rupture after presenting delayed with a large anterior myocardial
infarction. No mechanical complication had been witnessed in the
pre-COVID-19 era.

In conclusion, the COVID-19 pandemic is associated with
reduced numbers of ACS admissions, possibly due to the restrictive
measures in healthcare facilities. Even so, the ACS patient profiles
during the pandemic did not significantly differ, a fact implying that
this trend was not guided by a true reduction in healthcare needs,
but rather than to limited seeking of healthcare services on pa-

tients’ end.9 The simultaneous increases in OHCA corroborate,
although do not prove, this hypothesis. Similar trends have been
recently reported from New York City, USA, a region dramatically
afflicted by the pandemic.10 The present study, however, is the first
to provide hints on the potential unintended consequences of the
pandemic in countries characterized by fewer COVID-19 cases and
fatalities but prompt measures of social contact restrictions and
lockdown. Future studies should address the impact of the
pandemic on the population-level morbidity and mortality rates of

Table 1
Baseline and hospital-related characteristics of study patients.

Variable	Prepandemic era (N = 141)	Pandemic era (N = 44)	P
Age, years	65.4 ± 12.1	65.8 ± 12.9	0.88
Male gender, %	83.7	75.0	0.19
Coronary artery disease, %	29.1	22.7	0.41
Dyslipidemia, %	54.6	45.5	0.29
Statin, %	45.4	22.7	0.007
Hypertension, %	57.4	45.5	0.16
Smoking, %	41.8	34.1	0.48
Former	12.1	18.2	
Chronic kidney disease, %	9.2	9.1	0.98
Diabetes mellitus, %	33.3	22.7	0.18
Serum creatinine, mg/dl	1.3 ± 1.4	1.5 ± 1.4	0.54
High sensitivity troponin T, pg/ml	2,242 ± 4030	1,742 ± 2,966	0.38
Total cholesterol, mg/dl	168 ± 43	185 ± 48	0.036
LDL cholesterol, mg/dl	99 ± 37	111 ± 37	0.067
HDL cholesterol, mg/dl	41 ± 14	40 ± 11	0.80
Left ventricular ejection fraction,%	51 ± 10	50 ± 10	0.64
ACS type, %			0.26
Unstable angina	15.6	15.9	
NSTEMI	48.9	61.4	
STEMI	35.5	22.7	
Coronary angiogram performed, %	92.2	95.5	0.46
Diseased vessels, n	1.9 ± 1.0	1.5 ± 0.8	0.018
Mechanical complication, %	0.0	2.3	0.24
Outcome, %			0.99
Conservative	26.2	25.0	
PCI	49.6	52.3	
CABG referral	21.3	20.5	
Death	2.8	2.3	
Length of stay, days	5.9 ± 3.1	5.4 ± 2.9	0.54

ACS: acute coronary syndrome; CABG: coronary artery bypass grafting; HDL: low density lipoprotein; LDL: low density lipoprotein; NSTEMI: non-ST-elevation myocardial infarction; STEMI: ST-elevation myocardial infarction; PCI: percutaneous coronary intervention.
such populations. Importantly, the rates of selected treatment modalities did not differ before and after the pandemic outbreak. Thus, contrary to what has been reported elsewhere, our data indicate that physicians’ decision-making on the course of treatment in the setting of ACS was not affected by the pandemic. Nonetheless, this warrants confirmation in larger studies.

Author statements

Ethical approval

The study was approved by the Ethics Committee of our institution and was carried out in accordance with the Declaration of Helsinki.

Funding

The project was partially supported by an unrestricted grant from Boehringer Ingelheim Hellas. Boehringer Ingelheim Hellas was not involved in the study design, roll-out, data collection, and data analysis.

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.puhe.2020.12.006.

References

1. Saglietto A, D’Ascenzo F, Zoccai GB, De Ferrari GM. COVID-19 in Europe: the Italian lesson. *Lancet* 2020;395:1110–1.
2. Lazaros G, Oikonomou E, Theofili P, Theodoropoulou A, Triantafyllou K, Charitos C, Charalambus G, Papanikolaou A, Gastouniotis I, Siasos G, Vlachopoulos C, Toussoulis D. The impact of COVID-19 pandemic on adult cardiac surgery procedures. *Hellenic J Cardiol* 2020;51:109–9666(20):30161–5.
3. Moris D, Schizas D. Lockdown during COVID-19: the Greek success. *In Vivo* 2020 Jun;34(3 Suppl):1695–9.
4. COVID-19 coronavirus pandemic. Available online at https://www.worldometers.info/coronavirus/#countries. Last accessed on July 18, 2020.
5. De Rosa S, Spaccarotella C, Basso C, Calebrò MP, Curcio A, Filardi PP, Mancone M, Mercuro G, Muscoli S, Nodari S, Pedrini R, Sinagra G, Indolfi C. SocietàItaliana di Cardiologia and the CUC Academy investigators group Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. *Eur Heart J* 2020 Jun 7;41(22):2083–8.
6. Metzler B, Siostrzonek P, Binder RK, Bauer A, Reindsladler SJ. Decline of acute coronary syndrome admissions in Austria since the outbreak of COVID-19: the pandemic response causes cardiac collateral damage. *Eur Heart J* 2020 May 14;41(19):1852–3.
7. Baldi E, Sechi GM, Mare C, Caneveti F, Brancaglione A, Primi R, Klersy C, Palo A, Conti E, Ronchi V, Beretta G, Reali F, Parogni P, Facchin F, Rizzi U, Bussi D, Ruggeri S, Ottone Visconti I, Savastano S, researchers LombardiaCARe. COVID-19 kills at home: the close relationship between the epidemic and the increase of out-of-hospital cardiac arrests. *Eur Heart J* 2020 Jun 20:ehaa508. https://doi.org/10.1093/eurheartj/ehaa508.
8. Atrey NR, Kawamoto K, Velayothy P, Arain MA, Cohen DG, Wanamaker BL, El Eila AA, Romano MA, Grossman PM. Acute myocardial infarction and papillary muscle rupture in the COVID-19 era. *JACC Case Rep* 2020;2(10):1637–41.
9. Trioufi K, Chrysosbouou G, Koritori M, Leootanis I, Dalakouras I, Papanikolaou A, Charalambs C, Sambatakou H, Siasos G, Panagiotakos D, Toussoulis D. The mystery of “missing” visits in an emergency cardiology department, in the era of COVID-19; a time-series analysis in a tertiary Greek General Hospital. *Clin Res Cardiol* 2020 Jun 6;1–7.
10. Mountantonakis SE, Saleh M, Coleman K, Kuvin J, Singh V, Jauhar R, Ong L, Qui M, Epstein LM. Out-of-hospital cardiac arrest and acute coronary syndrome hospitalizations during the COVID-19 surge. *J Am Coll Cardiol* 2020 Jul 11;75(7):1097–1089(20):35664–7. https://doi.org/10.1016/j.jacc.2020.07.021.
11. Garcia S, Albaghdadi MS, Meraj PM, Schmidt C, Garberich R, Jaffer FA, Dixon S, et al. Reduction in ST-segment elevation cardiac catheterization laboratory activations in the United States during COVID-19 pandemic. *J Am Coll Cardiol* 2020;75(22):2871–2.