Stroboscopic aliasing in long-range interacting quantum systems

Shane P. Kelly, 1, 2, 3, * Eddy Timmermans, 4 Jamir Marino, 3 and S.-W. Tsai 2

1 Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2 Department of Physics and Astronomy, University of California Riverside, Riverside, California 92521, USA
3 Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany
4 XCP-5, XCP Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

We unveil a mechanism for generating oscillations with arbitrary multiplets of the period of a given external drive, in long-range interacting quantum many-particle spin systems. These oscillations break discrete time translation symmetry as in time crystals, but they are understood via two intertwined stroboscopic effects similar to the aliasing resulting from video taping a single fast rotating helicopter blade. The first effect is similar to a single blade appearing as multiple blades due to a frame rate that is in resonance with the frequency of the helicopter blades’ rotation; the second is akin to the optical appearance of the helicopter blades moving in reverse direction. Analogously to other dynamically stabilized states in interacting quantum many-body systems, this stroboscopic aliasing is robust to detuning and excursions from a chosen set of driving parameters, and it offers a novel route for engineering dynamical n-tuplets in long-range quantum simulators, with potential applications to spin squeezing generation and entangled state preparation.

Introduction. The field of dynamical stabilization has a long tradition tracing back to the Kapitza pendulum in the mid 60s [1]: a rigid rod can be stabilized in an inverted position by parametrically driving its suspension point with a tuned oscillation amplitude and at high frequency. The working principle of a dynamically stabilized upside-down pendulum is the building block for realizing periodic motion in atomic physics, plasma physics and in the theory of dynamical control in cybernetical physics. Periodic drives are a versatile tool that can be employed to stabilize systems in configurations prohibited at equilibrium. Applications in the quantum domain range from cold atoms to trapped ions [2–9]: a drive with large amplitude and fast frequency can stabilize an entire band of excitations, turning the dynamics of a collective mode from a runaway trajectory into a periodic orbit. In this work, we propose a flexible route to engineer periodic dynamical responses characterized by arbitrary integer fractions of the period of the drive, relevant for a broad class of quantum many-body simulators.

Periodic dynamics in isolated many-particle systems, can also be found in the absence of an external drive. Examples range from quantum ‘scars’ [10–14] to the dynamical confinement of correlations [15–21] and encompass the role of dynamical symmetries [22–26] in evolving persistent temporal oscillations. The quest for time translation breaking in periodically driven quantum systems [27, 28] has recently morphed into the search for quantum time crystals [29–31]. A discrete time crystal (DTC) occurs when the discrete time translation symmetry of a periodically driven system is spontaneously broken into a smaller symmetry subgroup. One iconic example [32, 33] of DTC occurs when the spins of a disordered spin chain are flipped at periodic intervals, and their local magnetization oscillates with a period twice the one of the spin flips. In this model, the stability of the time crystalline behaviour is provided by the extensive set of quasi-local integrals of motion which are characteristic of many-body localized phases occurring at strong disorder [34, 35].

Since original experiments in trapped atomic ions and in nitrogen-vacancy centers [36, 37], many other mechanisms for time crystals have been proposed [34, 38–48].
and observed [49–53]. In all of these systems, the periodic dynamics are split into two parts: the natural dynamics of a system that possesses a Z_n symmetry, and a kick process that sequentially switches among the n symmetry sectors. An n-period DTC (or ‘n-tuplets dynamics’) occurs since it takes n of such kick processes to bring the system back to its original configuration [54].

In this work we show how to engineer dynamics with arbitrary n-tuples that are not distinguished by the sectors of a Z_n symmetry. Differently from time crystals, their stability emerges as a cooperative effect between the natural dynamics and the kick process. Subharmonic response with any value of n can be generated provided that the kick period is in resonance with the n^{th} harmonic of a collective mode, and this collective mode remains stable, though deformed, during the kicked process. This results in stroboscopic dynamics which display n period oscillations between n emergent dynamical fixed points.

By considering the kick akin to the sampling performed by a video camera, we identify this subharmonic response as similar to a type of stroboscopic aliasing that occurs when filming a single blade helicopter: when the helicopter blade is rotating at the n^{th} subharmonic frequency of the camera’s frame rate, its video will appear to have n stationary blades. Unlike the sampling performed by the camera, the kick acts on the long-range simulator increasing or decreasing the frequency of the system. This results in another stroboscopic aliasing effect in which the apparent n stationary blade appear to slowly move forward or backwards depending on if the blade frequency was increased or decreased (cf. with Fig. 1). We show that for a general class of kicks, both forward and backward aliasing appears and generate a set of n stroboscopic fixed points that stabilize the subharmonic response. Stroboscopic aliasing produces also a set of n unstable dynamical fixed points which we argue could be used for generating spin squeezing and entangled states.

Stroboscopic Aliasing. We consider a long-range interacting Ising model [55–60] in which the interaction strength is periodically kicked $U(m) = (U_1 U_2)^m$. We define U_a as a unitary generated by the following hamiltonian

$$H_a = -\sum_{k=1}^{N} \sigma_k^x + \frac{\Lambda_a}{2N^{1-\alpha}} \sum_{k,j=1}^{N} \frac{\sigma_k^x \sigma_j^x}{|k-j|^{\alpha}},$$

where N is the number of spin-halves, σ_k, which live on a one dimensional lattice, and the unitaries are evolved for different times t_1 and t_2 and for different interaction strengths Λ_1 and Λ_2 (i.e. $U_a = e^{it_a H_a}$, with $a = 1, 2$). The Kac rescaling factor with $N^{1-\alpha}$ is to ensure the extensivity of the hamiltonian in the thermodynamic limit [61]. The subharmonic response emerges when t_1 is in resonance with a collective mode of H_1 and $t_2 \ll t_1$. Focusing our attention to this limit, we will refer to U_2 as the kick.

The emergent subharmonic response is most clearly explained in the $\alpha = 0$ infinite range limit in which the model reduces to the LMG model [62–64]. In the large N limit, dynamics reduce to the motion of the collective magnetization $J_\alpha = \frac{1}{N} \sum_i \sigma_i^\alpha$ [65]. The phase space of this collective mode has conjugate variables given by z (the projection of the spin onto the z axis) and by the phase ϕ of the spin in the x-y plane. The non-linear classical dynamics of H_1 are integrable and can display a separatrix for strong enough Λ_1. When t_1 and t_2 are large, the classical dynamics has a chaotic structure in the same universality class as the standard map [66]. When t_2 is small, most of the integrable trajectories of H_1 remain unchanged except for when the kick frequency is in resonance with a harmonic of a trajectory of H_1; in this case, $t_3 \approx \tau/n$, where τ is the period of a trajectory of H_1.

When this condition is met for an integer $n > 1$, the dynamics display persistent subharmonic oscillations, and a few instances are shown in Fig. 1 and Fig. 2 (with $\Lambda_1 = 10$ and $\Lambda_2 = 0$). To understand why these oscillations occur and to assess their stability, we will first work in the limit $\Lambda_2 = 0$, and turn our attention to the first plot of Fig. 1 where we have shown a set of $U(m)$ stroboscopic trajectories near an emergent fixed point with a $n = 1$ resonance. There we have also plotted the resonant ($n = 1$) trajectory of H_1 in black. Since $t_1 \approx \tau(E)$, U_1 completes one period of the trajectory and evolves a spin initialized on this trajectory back to its initial point. Thus, ignoring for the moment $1/N$ quantum corrections [67], we can approximate $U_1 \approx 1$ for initial states on this resonant trajectory. Similarly, when initial states start on an H_1 trajectory with period slightly less than t_1, they appear to move slightly forward along the
trajectory by a time \(t_1 - \tau \). Again, we can approximate \(U_1(t_1) \approx U_1(t_1 - \tau) \) when \(U_1 \) acts in this region of phase space. Similarly when \(t_1 < \tau \), the state appears to move slightly backwards by a time \(\tau - t_1 \) and we can approximate \(U_1(t_1) \approx U_1(\tau - t_1) \). This inspires us to label the trajectories with \(\tau < t_1 \) as ‘forward’ trajectories and the trajectories with \(\tau > t_1 \) as ‘backward’ trajectories. This apparent forward and backward motion is the same stroboscopic aliasing effect that occurs when video taping a helicopter blade with a frame rate similar to the rotation frequency.

We now consider the action of the \(U_2 \) kick. For \(\Lambda_2 = 0 \), the kick is a \(J_x \) rotation, and in the region of phase space shown in the first plot of Fig. 1, a \(J_x \) rotation increases \(z \) and keeps \(\phi \) approximately constant. Therefore, when \(z > 0 \) a spin on a forward trajectory is kicked towards the backward trajectories, while when \(z < 0 \), a spin on a backwards trajectory is kicked towards the forward trajectories. Thus, in this region of phase space, the interplay of stroboscopic aliasing and the kick causes the spin to switch back and forth between the forward and backward trajectories and creates a new stroboscopic fixed point. For small \(t_2 \), these non-trivial tori are separated by the perturbed LMG tori by two separatrices that meet at \(n \) unstable fixed point (See Fig. 2).

When the resonance condition occurs for \(n > 1 \) a similar description holds up to a few subtleties. First, \(U_1 \) only completes a fraction \((1/n) \) of a trajectory. Therefore, we should define the forward and backward trajectories based on the classical trajectories of the unitary, \(U'_1 = (U_1U_2)^{n-1}U_1 \). In the perturbative limit of small \(t_2 \), the classical periods and trajectories of \(U'_1 \) will only be slightly shifted from the LMG trajectories, and we can follow similar arguments as above. The dynamics defined by \(U''(m) = (U'_1U_2)^m \) will then have a similar fixed point structure and trajectories as shown in Fig. 1, but will only capture the dynamics when looking every \(n \) steps of \(U \). Looking at every step, we see that \(U \) will shift the fixed point and resonant trajectories of \(U'' \) to \(n \) different \(U'' \) fixed points in phase space before returning to the original \(U'' \) fixed point. This shows that, at the resonances, there must be \(n \) stroboscopic fixed points of the \(U'' \) dynamics, and this is confirmed in Fig. 2. Since these are fixed points of the \(U'' \) dynamics, the \(U'' \) dynamics display a period-\(n \) oscillation due to \(U'' \) moving the spin between the \(n \) different fixed points of \(U'' \). In the analogy to stroboscopic aliasing, this subharmonic response is similar to a filmed single blade helicopter apparently showing multiple \(n \) blades when the frame rate \(1/t_1 \) is \(n \) times the frequency of the helicopter \(1/\tau \).

Stability. Unlike the stroboscopic aliasing that occurs while filming helicopters, the stroboscopic aliasing subharmonic response is actively stabilized by the interplay between aliasing and kicking, and it does persist when the drive parameters are slightly detuned. First, we discuss the stability of stroboscopic aliasing to the accumulation of quantum fluctuations in the course of long-time dynamics. In the bare LMG model \(H_1 \), fluctuations lead to the collapse of periodic oscillations \([68]\), while in the exact numerical calculations, we find that such collapse does not occur for the aliasing subharmonic response. This can be understood in a semiclassical picture where quantum fluctuations are captured by a quantum diffusion process that spreads the wave function along the conservative classical trajectory \([70]\). Collapse of periodic oscillations occurs when the diffusion process reaches a steady state with the wave function completely spread out along the periodic trajectory performed by the classical dynamics.

For the stroboscopic aliasing subharmonic response, the steady state contains an oscillation that moves the spin between the \(n \) dynamical fixed points. These oscillations remain quantum because the wave function remains localized around these fixed points. Qualitatively, this is expected by regarding quantum corrections as quantum jumps that move the spin off of its classical trajectory. In the large \(N \) limit, these jumps are exponentially suppressed \([70]\), and so they can only move a spin within the well of an emergent fixed point, but not between them. Thus, we expect that quantum corrections cannot spread the state between the different stable emer-

![FIG. 3. In this plot we demonstrate the stability of the \(n = 2 \) Stroboscopic Aliasing subharmonic oscillations to variation of hamiltonian parameters and many body perturbations. Calculations are done for the hamiltonian (1) in one dimension. The bottom two panels are for \(\alpha = 0 \) and are computed using exact quantum dynamics. They show the order parameter \(\max J_y(f) \) discussed in the text as a function of \(\alpha_2 \), \(t_2 \) (left) and \(t_1 \) and the initial phase \(\phi \) (right). In these plots, the brightest yellow corresponds to \(J_y(f) = 1 \), while the darkest blue to \(J_y(f) = 0 \). The top panel is computed for finite \(\alpha \) using DTWA. It shows the same order parameter as a function of \(\alpha \), and its insets show \(J_y(t) \) at the points indicated by the arrows.](image)
gent fixed points and that the subharmonic response to be robust to quantum fluctuations. This is confirmed by the stability of the subharmonic response after $m = 500$ oscillations, and the dynamics of $|J|^2 = \sum_{\alpha} \langle J_{\alpha}\rangle^2$, which shows that spins move along the surface of the Bloch sphere (See Fig. 2).

Therefore, one should expect the stroboscopic aliasing subharmonic response to be stable to variations in t_a and Λ_a as long as they only deform the emergent fixed point structure. To test the extent of this stability, we focus on the $n = 2$ case shown in Fig. 1 and work with an initial state completely polarized along the J_y direction. As shown in the same figure, the subharmonic response is observed in oscillations of J_y between 1 and -1. We therefore use the Fourier spectrum, $J_y(f) = \frac{1}{2\pi} \sum_{n=1} e^{-i\pi n} J_y(n)$ of the y component of the spin to assess the stability of the stroboscopic aliasing subharmonic response. When oscillations are stable for long times, the discrete Fourier spectrum, $J_y(f)$ will be singularly peaked around $f = \pi$. Thus, similar to [45], we take $\max_f J_y(f)$ as our order parameter for the $n = 2$ stroboscopic aliasing oscillation phase.

A phase diagram of this order parameter in the t_2 and Λ_2 parameter space is shown in Fig. 3. The pronounced stability to variation in Λ_2 reflects the fact that any U_2 that connects the forward and backward trajectories in this region of phase space is sufficient to stabilize the fixed point there. When t_2 becomes large, the majority of the resonant trajectories around the fixed points become chaotic and the phase is destroyed. Fig 3 also shows that the phase is stable to variations in t_1. This is because there is a continuum of periods with $\tau = 2t_1$ which can be in resonance with U_1.

Up to now, we have discussed the limit of $\alpha = 0$ in the Hamiltonian (1). In this case, dynamics are well approximated by the motion of a single large spin, and the evolved states are constrained to a Hilbert space where the spins at different sites are indistinguishable by permutation symmetry. This Hilbert space has only N states and does not fully reflect the many body nature of a realistic experiment. Therefore, we study the robustness of the subharmonic response at finite α. We use the Discrete Truncated Wigner Approximation (DTWA) which yields accurate results in long-range interacting models [71–77]. DTWA evolves the dynamics according to classical equations of motion, but treats exactly quantum fluctuations in the initial state by sampling over a discrete Wigner distribution [70].

We again compute $\max_f J_y(f)$ and the results are shown in Fig. 3. For $N = 100$, quantum diffusion occurs on observable time scales. As shown in the inset and discussed above for $\alpha = 0$, this decreases the amplitude of the subharmonic response but does not result in a complete decay. For $N = 200$, our numerics show that, up to computable time scales, the oscillations are almost perfect up to $\alpha = 0.2$ at which the subharmonic response starts to slowly decay. This indicates that for large values of α, many body effects relax the oscillations before quantum diffusion in the collective Hilbert space occurs. As we increase N, this critical α grows to larger values indicating that these many body effects are a finite size effect and are suppressed at large N. While these numerics cannot identify the critical value in the thermodynamic limit, they do show that oscillations are stable for finite α, finite N and within observable time scales.

Generality and Perspectives. We believe that the stroboscopic aliasing subharmonic response discussed in this work is a general phenomenon provided a few requirements are satisfied. The collective mode should have only one dominant frequency, otherwise the kick cannot be in resonance with a single period. Furthermore, the kick must deform the collective mode, although not completely destroy it. The trajectory of the deformed collective mode should cross the bare trajectory in two points since this will allow for the dynamics of $U_1' = (U_1 U_2)^n^{-1} U_1$ to cross back and forth across the resonant trajectory. Notice that these requirements are easily satisfied when the classical phase space of the collective mode is two dimensional because this guarantees regular trajectories with only one frequency. Despite such required regularity in the collective mode dynamics, integrability is not required as demonstrated by the robustness of the subharmonic response to many body perturbations at finite α. Furthermore, the dynamics of the collective mode is not required to be conservative either. We demonstrate this aspect by considering the effect of a global spin decay modeled by a Lindblad jump operator proportional to J^-, which occurs naturally in cavity QED experiments [78–81]. For $\kappa = 0.5$ the model has a limit cycle for initial states polarized close to $J_x = -1$ [41] during its natural evolution, t_1. Choosing t_1 to be in resonance with the period of these collective modes, we are able to find a subharmonic response and have plotted examples for $n = 4$ and $n = 3$.

![Fig. 4. Stroboscopic aliasing subharmonic response in the presence of collective spin emission. Depending on initial conditions an $n = 4$ or an $n = 3$ subharmonic oscillation can occur. Dynamics are computed using the same methods as in [41].](image-url)
in Fig. 4.

To conclude, we remark that the stroboscopic aliasing effects discussed so far should be observable in experiments. The Hamiltonian (1) is used to describe trapped ion experiments [82, 83] in which the transverse field is easily controlled and can be employed to implement the kicks of \(\Lambda \). Furthermore, the emergent unstable fixed points could also be used to create squeezing or more general entangled states in a way similar to the bare unstable fixed points of \(H_1 \). Similar to Refs. [65, 84–86] such fixed points have two stable directions and two unstable directions. A quantum state initialized on the unstable fixed point, compresses in the two stable directions and expands in the two unstable direction creating, on short times, a squeezed state. At longer times, the state is stretched further apart and no longer resembles a squeezed state, yet it might show non-gaussian entanglement properties controlled by the shape of the separatrix [85]. Since separatrices in the stroboscopic aliasing discussed here, have different topologies, they can open opportunities to generate new classes of entangled states in trapped ions simulators or in ultracold atoms experiments [65, 86], potentially with novel metrological uses.

Finally, studying the critical properties of the transition away from the stroboscopic aliasing response, and analyzing its interplay with quantum fluctuations [87, 88] remains an interesting future direction of research.

ACKNOWLEDGMENTS

Acknowledgments: S. P. K. would like to acknowledge stimulating discussions with Levent Subasi and David Campbell. S. P. K. acknowledges financial support from the UC Office of the President through the UC Laboratory Fees Research Program, Award Number LGF-17-476883. S. P. K. and J. M. acknowledge support by the Dynamics and Topology Centre funded by the State of Rhineland Palatinate. S. W. T. acknowledge support by National Science Foundation (NSF) RAISE TAQS (award no. 1839153). The research of E. T. in the work presented in this manuscript was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20180045DR.
[18] Marton Kormos, Mario Collura, Gabor Takács, and Pasquale Calabrese, “Real-time confinement following a quantum quench to a non-integrable model,” Nature Physics 13, 246–249 (2017).

[19] Fangli Liu, Rex Lundgren, Paraj Titum, Guido Pagano, Jieheng Zhang, Christopher Monroe, and Alexey V. Gorshkov, “Confined quasiparticle dynamics in long-range interacting quantum spin chains,” Phys. Rev. Lett. 122, 150601 (2019).

[20] Paolo Pietro Mazza, Gabriele Perfetto, Alessio Lerose, Mario Collura, and Andrea Gambassi, “Suppression of transport in nondisordered quantum spin chains due to confined excitations,” Phys. Rev. B 99, 180302 (2019).

[21] Riccardo Javier Valencia Tortora, Pasquale Calabrese, Marton Kormos, Mario Collura, Gabor Takács, and Andrea Pizzi, Johannes Knolle, and Andreas Nunninkamp, “Period-doubling of time crystals,” Phys. Rev. B 102, 041117 (2020).

[22] Marko Medenjak, Berislav Buča, and Dieter Jaksch, “Isolated heisenberg magnet as a quantum time crystal,” Phys. Rev. B 102, 041117 (2020).

[23] Koki Chinzei and Tatsuhiko N. Ikeda, “Time crystals protected by floquet dynamical symmetry in hubbard models,” Phys. Rev. Lett. 125, 060601 (2020).

[24] Daniel K. Mark and Olexei I. Motrunich, “η-pairing states as true scars in an extended hubbard model,” Phys. Rev. B 102, 075132 (2020).

[25] Sanjay Moudgalya, Nicolas Renault, and B. Andrei Bernevig, “η-pairing in hubbard models: From spectrum generating algebras to quantum many-body scars,” Phys. Rev. B 102, 085140 (2020).

[26] Berislav Buca, Archak Purkayastha, Giacomo Guarnieri, Mark Titchinson, Dieter Jaksch, and John Goold, “Quantum many-body attractor with strictly local dynamical symmetries,” arXiv preprint arXiv:2008.11166 (2020).

[27] Frank Wilczek, “Quantum Time Crystals,” Phys. Rev. Lett. 109, 160401 (2012).

[28] Haruki Watanabe and Masaki Oshikawa, “Absence of quantum time crystals,” Phys. Rev. Lett. 114, 251603 (2015).

[29] Vedika Khemani, Roderich Moessner, and S. L. Sondhi, “A Brief History of Time Crystals,” Phys. Rev. Lett. 118, 075132 (2017).

[30] Dominic V. Else, Christopher Monroe, Chetan Nayak, and Norman Y. Yao, “Discrete Time Crystals,” arXiv:1905.13232 (2019).

[31] Krzysztof Sacha and Jakub Zakrzewski, “Time crystals: A review,” Rep. Prog. Phys. 81, 016401 (2017).

[32] Vedika Khemani, Achilleas Lazarides, Roderich Moessner, and S. L. Sondhi, “Phase Structure of Driven Quantum Systems,” Phys. Rev. Lett. 116, 250401 (2016).

[33] Dominic V. Else, Bela Bauer, and Chetan Nayak, “Floquet Time Crystals,” Phys. Rev. Lett. 117, 090402 (2016).

[34] Dmitry Abanin, Wojciech De Roeck, and François Huveneers, “Exponentially slow heating in periodically driven many-body systems,” Phys. Rev. Lett. 115, 256803 (2015).

[35] Rahul Nandkishore and David A. Huse, “Many-Body Localization and Thermalization in Quantum Statistical Mechanics,” Annual Review of Condensed Matter Physics 6, 15–38 (2015).

[36] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D. Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, and C. Monroe, “Observation of a discrete time crystal,” Nature 543, 217–222 (2017).

[37] Soonwon Choi, Joonhee Choi, Renate Landig, Georg Kuesko, Hengyuan Zhou, Junichi Isoya, Fedor Jelezko, Shinobu Onoda, Hitoshi Suniya, Vedika Khemani, Curt von Keyserlingk, Norman Y. Yao, Eugene Demler, and Mikhail D. Lukin, “Observation of discrete time-crystalline order in a disordered dipolar many-body system,” Nature 543, 221–225 (2017).

[38] Tongcang Li, Zhe-Xuan Gong, Zhang-Qi Yin, HT Quan, Xiaobo Yin, Peng Zhang, L-M Duan, and Xiang Zhang, “Space-time crystals of trapped ions,” Physical review letters 109, 163001 (2012).

[39] Angelo Russomanno, Fernando Iemini, Marcello Dalmonte, and Rosario Fazio, “Floquet time crystal in the Lipkin-Meshkov-Glick model,” Phys. Rev. B 95, 214307 (2017).

[40] Zongping Gong, Ryusuke Hamazaki, and Masahito Ueda, “Discrete Time-Crystalline Order in Cavity and Circuit QED Systems,” Phys. Rev. Lett. 120, 040404 (2018).

[41] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M. Dalmonte, and R. Fazio, “Boundary time crystals,” Phys. Rev. Lett. 121, 035301 (2018), arXiv:1708.05014.

[42] Diego Barberena, Robert J. Lewis-Swan, James K. Thompson, and Ana Maria Rey, “Driven-dissipative quantum dynamics in ultra-long-lived dipoles in an optical cavity,” Phys. Rev. A 99, 053411 (2019).

[43] Bihui Zhu, Jamir Marino, Norman Y. Yao, Mikhail D. Lukin, and Eugene A. Demler, “Dicke time crystals in driven-dissipative quantum many-body systems,” New J. Phys. 21, 073028 (2019).

[44] Federica Maria Surace, Angelo Russomanno, Marcello Dalmonte, Alessandro Silva, Rosario Fazio, and Fernando Iemini, “Floquet time crystals in clock models,” Phys. Rev. B 99, 104303 (2019), arXiv:1811.12426.

[45] Andrea Pizzi, Johannes Knolle, and Andreas Nunninkamp, “Period-SnS discrete time crystals and quasicrystals with ultracold bosons,” Phys. Rev. Lett. 123, 150601 (2019), arXiv:1907.04703.

[46] David J. Luitz, Roderich Moessner, S. L. Sondhi, and Vedika Khemani, “Prethermalization without Temperature,” Phys. Rev. X 10, 021046 (2020).

[47] Dominic V. Else, Bela Bauer, and Chetan Nayak, “Prethermal Phases of Matter Protected by Time-Translation Symmetry,” Phys. Rev. X 7, 011026 (2017).

[48] Kristopher Tucker, Bihui Zhu, Robert J. Lewis-Swan, Jamir Marino, Felix Jimenez, Juan G. Restrepo, and Ana Maria Rey, “Shattered Time: Can a Dissipative Time Crystal Survive Many-Body Correlations?” New J. Phys. 20, 123003 (2018), arXiv:1805.03343.

[49] Soham Pal, Naveen Nishad, T. S. Mahesh, and G. J. Sreejith, “Temporal Order in Periodically Driven Spins in Star-Shaped Clusters,” Phys. Rev. Lett. 120, 180602 (2018).

[50] Jared Rovny, Robert L. Blum, and Sean E. Barrett, “31P NMR study of discrete time-crystalline signatures in an ordered crystal of ammonium dihydrogen phosphate,” Phys. Rev. B 97, 184301 (2018).

[51] Jared Rovny, Robert L. Blum, and Sean E. Barrett, ...
“Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System,” Phys. Rev. Lett. 120, 180603 (2018).

[52] Antonio Rubio-Abadal, Matteo Ippoliti, Simon Hollerith, David Wei, Jun Rui, S. L. Sondhi, Vedika Khemani, Christian Gross, and Immanuel Bloch, “Floquet Prethermalization in a Bose-Hubbard System,” Phys. Rev. X 10, 021044 (2020).

[53] Sannuli Autti, Petri J Heikkinen, Jere T Mäkinen, Grigori E Volovik, Vladislav V Zavjalov, and Vladimir B Eltsov, “Ac josephson effect between two superfluid time crystals,” arXiv preprint arXiv:2003.06313 (2020).

[54] Vedika Khemani, C. W. von Keyserlingk, and S. L. Sondhi, “Defining time crystals via representation theory,” Phys. Rev. B 96, 115127 (2017).

[55] Bruno Sciolla and Giulio Biroli, “Quantum quenches, dynamical transitions, and off-equilibrium quantum criticality,” Physical Review B 88, 201110 (2013).

[56] Arnab Das, K Sengupta, Diptiman Sen, and Bikas K Chakrabarti, “Infinite-range ising ferromagnet in a time-dependent transverse magnetic field: Quench and ac dynamics near the quantum critical point,” Physical Review B 74, 144423 (2006).

[57] Amit Dutta, Gabriel Aeppli, Bikas K Chakrabarti, Uma Divakaran, Thomas F Rosenbaum, and Diptiman Sen, Quantum phase transitions in transverse field spin models: from statistical physics to quantum information (Cambridge University Press, 2015).

[58] F Tonielli, R Fazio, S Diehl, and J Marino, “Orthogonality catastrophe in dissipative quantum many-body systems,” Physical Review Letters 122, 040604 (2019).

[59] Alessio Lerose, Bojan Žunković, Jamir Marino, Andrea Gambassi, and Alessandro Silva, “Impact of nonequilibrium fluctuations on prethermal dynamical phase transitions in long-range interacting spin chains,” Physical Review B 99, 045128 (2019).

[60] Alessio Lerose, Jamir Marino, Bojan Žunković, Andrea Gambassi, and Alessandro Silva, “Chaotic dynamical ferromagnetic phase induced by nonequilibrium quantum fluctuations,” Physical review letters 120, 130603 (2018).

[61] M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, “On the many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory,” Nuclear Physics 4, 216–228 (1963).

[62] A. J. Glick, H. J. Lipkin, and N. Meshkov, “Validity of many-body approximation methods for a solvable model: (III). Diagram summations,” Nuclear Physics 62, 211–224 (1965).

[63] H. J. Lipkin, N. Meshkov, and A. J. Glick, “Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory,” Nuclear Physics 62, 188–198 (1965).

[64] N. Meshkov, A. J. Glick, and H. J. Lipkin, “Validity of many-body approximation methods for a solvable model: (II). Linearization procedures,” Nuclear Physics 62, 199–210 (1965).

[65] A. Micheli, D. Jaksch, J. I. Cirac, and P. Zoller, “Many-particle entanglement in two-component Bose-Einstein condensates,” Physical Review A 67, 013607 (2003).

[66] Boris V Chirikov, “A universal instability of many-dimensional oscillators systems,” Physics Reports 52, 263–379 (1979).

[67] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, “Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, pi oscillations, and macroscopic quantum self-trapping,” Physical Review A 59, 620–633 (1999).

[68] Alessio Lerose, Bojan Žunković, Jamir Marino, Andrea Gambassi, and Alessandro Silva, “Impact of nonequilibrium fluctuations on prethermal dynamical phase transitions in long-range interacting spin chains,” Phys. Rev. B 99, 045128 (2019).

[69] Phillip Weinberg and Marin Bukov, “Quspin: a python package for dynamics and exact diagonalisation of quantum many body systems part i: spin chains,” (2017).

[70] Anatoli Polkovnikov, “Phase space representation of quantum dynamics,” Annals of Physics 325, 1790–1852 (2010).

[71] J. Schachenmayer, A. Pikovsky, and A. M. Rey, “Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a Discrete Phase Space,” Phys. Rev. X 5, 041022 (2015).

[72] A. Piñeiro Orioli, A. Safavi-Naini, M. L. Wall, and A. M. Rey, “Nonequilibrium dynamics of spin-boson models from phase space methods,” Phys. Rev. A 96, 033607 (2017), arXiv:1705.06203.

[73] Shainen M Davidson, Dries Sels, and Anatoli Polkovnikov, “Semiclassical approach to dynamics of interacting fermions,” Annals of Physics 384, 128–141 (2017).

[74] OL Acevedo, A Safavi-Naini, J Schachenmayer, ML Wall, R Nandkishore, and AM Rey, “Exploring many-body localization and thermalization using semiclassical methods,” Physical Review A 96, 033604 (2017).

[75] Bhuvanesh Sundar, Kenneth C Wang, and Kaden RA Hazzard, “Analysis of continuous and discrete wigner approximations for spin dynamics,” Physical Review A 99, 043627 (2019).

[76] Silvia Pappalardi, Anatoli Polkovnikov, and Alessandro Silva, “Quantum echo dynamics in the sherrington-kirkpatrick model,” arXiv preprint arXiv:1910.04769 (2019).

[77] Reyhaneh Khasseh, Angelo Russomanno, Markus Schmitt, Markus Heyl, and Rosario Fazio, “Discrete truncated wigner approach to dynamical phase transitions in ising models after a quantum quench,” arXiv preprint arXiv:2004.09812 (2020).

[78] Emily J. Davis, Gregory Bentsen, Ionut-Dragos Potirniche, Vir B. Eltsov, “Ac josephson effect between two superfluid time crystals,” arXiv preprint arXiv:2003.06313 (2020).

[79] Juan A Muniz, Diego Barberena, Robert J Lewis-Swan, Dylan J Young, Julia RK Cline, Ana Maria Rey, and James K Thompson, “Exploring dynamical phase transitions with cold atoms in an optical cavity,” Nature 580, 602–607 (2020).

[80] J. Marino and A. M. Rey, “Cavity-qed simulator of slow and fast scrambling,” Phys. Rev. A 99, 051803 (2019).

[81] Gregory Bentsen, Ionut-Dragos Potirniche, Vir B. Bulchandani, Thomas Scaffidi, Xiangyu Cao, Xiao-Liang Qi, Monika Schleier-Smith, and Ehud Altman, “Integrable and chaotic dynamics of spins coupled to an optical cavity,” Phys. Rev. X 9, 041011 (2019).

[82] Joseph W. Britton, Brian C. Sawyer, Adam C. Keith, C.-C. Joseph Wang, James K. Freericks, Hermann Uys, Michael J. Biercuk, and John J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–493.
Jiehang Zhang, Guido Pagano, Paul W Hess, Antonis Kyprianidis, Patrick Becker, Harvey Kaplan, Alexey V Gorshkov, Z-X Gong, and Christopher Monroe, “Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator,” Nature 551, 601–604 (2017).

Khan W. Mahmud, Heidi Perry, and William P. Reinhardt, “Quantum phase-space picture of Bose-Einstein condensates in a double well,” Physical Review A 71, 023615 (2005).

Helmut Strobel, Wolfgang Musessel, Daniel Linnemann, Tilman Zibold, David B. Hume, Luca Pezze’, Augusto Smerzi, and Markus K. Oberthaler, “Fisher information and entanglement of non-Gaussian spin states,” Science 345, 424–427 (2014).

Shane P. Kelly, Eddy Timmermans, and S.-W. Tsai, “Detecting macroscopic indefiniteness of cat states in bosonic interferometers,” Phys. Rev. A 100, 032117 (2019).

Alessio Lerose, Jamir Marino, Bojan Žunković, Andrea Gambassi, and Alessandro Silva, “Chaotic dynamical ferromagnetic phase induced by nonequilibrium quantum fluctuations,” Phys. Rev. Lett. 120, 130603 (2018).

Alberto Sartori, Jamir Marino, Sandro Stringari, and Alessio Recati, “Spin-dipole oscillation and relaxation of coherently coupled bose-einstein condensates,” New Journal of Physics 17, 093036 (2015).