COLLAPSIBILITY TO A SUBCOMPLEX OF A GIVEN DIMENSION IS NP-COMPLETE

GIOVANNI PAOLINI

Abstract. In this paper we extend the works of Tancer and of Malgouyres and Francés, showing that \((d, k)\)-Collapsibility is NP-complete for \(d \geq k + 2\) except \((2, 0)\). By \((d, k)\)-Collapsibility we mean the following problem: determine whether a given \(d\)-dimensional simplicial complex can be collapsed to some \(k\)-dimensional subcomplex. The question of establishing the complexity status of \((d, k)\)-Collapsibility was asked by Tancer, who proved NP-completeness of \((d, 0)\) and \((d, 1)\)-Collapsibility (for \(d \geq 3\)). Our extended result, together with the known polynomial-time algorithms for \((2, 0)\) and \(d = k + 1\), answers the question completely.

1. Introduction

Discrete Morse theory is a powerful combinatorial tool which allows to explicitly simplify cell complexes while preserving their homotopy type [For98, Cha00, BW02, Koz07]. This is obtained through a sequence of “elementary collapses” of pairs of cells. Such process might decrease the dimension of the starting complex, or sometimes even leave a single point (in which case we say that the starting complex was collapsible).

The problem of algorithmically determine collapsibility, or find “good” sequences of elementary collapses, has been studied extensively [EG96, JP06, MF08, BL14, BLP16, Tan16]. Such problems proved to be computationally hard even for low dimensional simplicial complexes. For 2-dimensional complexes there exists a polynomial-time algorithm to check collapsibility [JP06, MF08], but finding the minimum number of “critical” triangles (without which the remaining complex would be collapsible) is already NP-hard [EG96]. In dimension \(d \geq 3\), collapsibility to some 1-dimensional subcomplex [MF08] or even to a single point [Tan16] were proved to be NP-complete.

In [Tan16], Tancer also introduced the general \((d, k)\)-Collapsibility problem: determine whether a \(d\)-dimensional simplicial complex can be collapsed to some \(k\)-dimensional subcomplex. He showed that \((d, k)\)-Collapsibility is NP-complete for \(k \in \{0, 1\}\) and \(d \geq 3\), extending the result of Malgouyres and Francés about NP-completeness of \((3, 1)\)-Collapsibility [MF08]. Tancer also pointed out that the codimension 1 case \((d = k + 1)\) is polynomial-time solvable as is the \((2, 0)\) case. He left open the question of determining the complexity status of \((d, k)\)-Collapsibility in general.

In this short paper we extend Tancer’s work, and prove that \((d, k)\)-Collapsibility is NP-complete in all the remaining cases.

Theorem 3.2. The \((d, k)\)-Collapsibility problem is NP-complete for \(d \geq k + 2\), except for the case \((2, 0)\).
To do so, we prove that \((d, k)\)-Collapsibility admits a polynomial-time reduction to \((d + 1, k + 1)\)-Collapsibility (Theorem 3.1). Then the main result follows by induction on \(k\). The base cases of the induction are given by NP-completeness of \((3, 1)\)-Collapsibility (for codimension 2) and of \((d, 0)\)-Collapsibility (for codimension \(d \geq 3\)).

2. Collapsibility and discrete Morse theory

We refer to [Hat02] for the definition and the basic properties of simplicial complexes, and to [Koz07] for the definition of elementary collapses. The simplicial complexes we consider do not contain the empty simplex, unless otherwise stated. Our focus is the following decision problem.

Problem 2.1: \((d, k)\)-Collapsibility.

Parameters: Non-negative integers \(d > k\).

Instance: A finite \(d\)-dimensional simplicial complex \(X\).

Question: Can \(X\) be collapsed to some \(k\)-dimensional subcomplex?

We are now going to recall a few definitions of discrete Morse theory [For98, Cha00, Koz07], so that we can state the \((d, k)\)-Collapsibility problem in terms of acyclic matchings.

Given a simplicial complex \(X\), its *Hasse diagram* \(H(X)\) is a directed graph in which the set of nodes is the set of simplexes of \(X\), and an arc goes from \(\sigma\) to \(\tau\) if and only if \(\tau\) is a face of \(\sigma\) and \(\dim(\sigma) = \dim(\tau) + 1\). A *matching* \(\mathcal{M}\) on \(X\) is a set of arcs of \(H(X)\) such that every node of \(H(X)\) (i.e. simplex of \(X\)) is contained in at most one arc in \(\mathcal{M}\). Given a matching \(\mathcal{M}\) on \(X\), we say that a simplex \(\sigma \in X\) is *critical* if it doesn’t belong to any arc in \(\mathcal{M}\). Finally we say that a matching \(\mathcal{M}\) on \(X\) is *acyclic* if the graph \(H(X)^{\mathcal{M}}\), obtained from \(H(X)\) by reversing the direction of each arc in \(\mathcal{M}\), does not contain directed cycles.

By standard facts of discrete Morse theory (see for instance [Koz07], Section 11.2), “collapsibility to some \(k\)-dimensional subcomplex” is equivalent to “existence of an acyclic matching such that the critical cells form a \(k\)-dimensional subcomplex”.

To simplify the proof of Theorem 3.1 we quote the following useful lemma from [Koz07], adapting it to our notation.

Theorem 2.3 (Patchwork theorem, [Koz07]). Let \(P\) be a poset. Let \(\varphi: X \to P\) be an order-preserving map (where the order on \(X\) is given by inclusion), and assume
to have acyclic matchings on subposets $\varphi^{-1}(p)$ for all $p \in P$. Then the union of these matchings is itself an acyclic matching on X.

Notice that the subposets $\varphi^{-1}(p)$ are not subcomplexes of X in general, but still they have a well-defined Hasse diagram (the induced subgraph of $H(X)$). Thus all the previous definitions (matching, critical simplex, acyclic matching) apply also to each subposet.

3. Main result

Theorem 3.1. Let $d > k \geq 0$. Then there is a polynomial-time reduction from (d, k)-Collapsibility to ($d + 1, k + 1$)-Collapsibility.

Proof. Let X be an instance of (d, k)-Collapsibility, i.e. a d-dimensional simplicial complex. Let $V = \{v_1, \ldots, v_r\}$ be the vertex set of X. Construct an instance X' of ($d + 1, k + 1$)-Collapsibility, i.e. a ($d + 1$)-dimensional complex, as follows. Let $n \geq 1$ be the number of simplices in X. Roughly speaking, X' is obtained from X by attaching $n + 1$ cones of X to X. More formally, introduce new vertices w_1, \ldots, w_{n+1} and define X' as the simplicial complex on the vertex set $V' = \{v_1, \ldots, v_r, w_1, \ldots, w_{n+1}\}$ given by

$$X' = X \cup \left\{ \sigma \cup \{w_i\} \mid \sigma \in X, \ i = 1, \ldots, n + 1 \right\}.$$

Then X' has $n(n + 2)$ simplices. We are going to prove that X is a yes-instance of (d, k)-Collapsibility if and only if X' is a yes-instance of ($d + 1, k + 1$)-Collapsibility.

Suppose that X is a yes-instance of (d, k)-Collapsibility. Then there exists an acyclic matching \mathcal{M} on X such that all critical simplices have dimension $\leq k$. Construct a matching \mathcal{M}' on X' as follows:

$$\mathcal{M}' = \left\{ \sigma \cup \{w_i\} \rightarrow \sigma \mid \sigma \in X \right\} \cup \left\{ \sigma \cup \{w_i\} \rightarrow \tau \cup \{w_i\} \mid (\sigma \rightarrow \tau) \in \mathcal{M}, \ i = 2, \ldots, n + 1 \right\}.$$

This matching corresponds to collapsing the first cone together with X (only the vertex w_1 remains), and every other "base-less" cone by itself (as a copy of X). To prove that \mathcal{M}' is acyclic, consider the set $P = \{w_1, \ldots, w_{n+1}\}$ with the partial order $w_i < w_j$ if and only if $i = 1$ and $j > 1$.

Let $\varphi: X' \rightarrow P$ be the order-preserving map given by

$$\varphi(\sigma) = \begin{cases}
 w_j & \text{if σ contains w_j for some $j \geq 2$;} \\
 w_1 & \text{otherwise.}
\end{cases}$$

Then \mathcal{M}' is a union of matchings \mathcal{M}'_j on each fiber $\varphi^{-1}(w_j)$. The matching \mathcal{M}'_1 is acyclic on $\varphi^{-1}(w_1)$, since the arcs of \mathcal{M}'_1 define a cut of the Hasse diagram of $\varphi^{-1}(w_1)$. The Hasse diagram of each $\varphi^{-1}(w_j)$ for $j \geq 2$ is isomorphic to $H(X \cup \{\emptyset\})$, and the matching \mathcal{M}'_j maps to \mathcal{M} via this isomorphism. Since \mathcal{M} is acyclic on $H(X \cup \{\emptyset\})$, each \mathcal{M}'_j is also acyclic on $\varphi^{-1}(w_j)$. By the Patchwork theorem (Theorem 2.3), \mathcal{M}' is acyclic on X'.

The set of critical simplices of \mathcal{M}' is

$$\text{Cr}(X', \mathcal{M}') = \{w_1\} \cup \left\{ \sigma \cup \{w_i\} \mid \sigma \in \text{Cr}(X, \mathcal{M}) \cup \{\emptyset\}, \ i = 2, \ldots, n + 1 \right\}.$$
In particular, all critical simplices have dimension \(\leq k + 1 \). Therefore \(X' \) is a yes-instance of \((d + 1, k + 1)\)-\textsc{Collapsibility}.

Conversely, suppose now that \(X' \) is a yes-instance of \((d + 1, k + 1)\)-\textsc{Collapsibility}. Let \(M' \) be an acyclic matching on \(X' \) such that all critical simplices have dimension \(\leq k + 1 \). Since \(X \) contains \(n \) simplices, and there are \(n + 1 \) cones, there must exist an index \(j \in \{1, \ldots, n + 1\} \) such that
\[
\left(\sigma \cup \{w_j\} \rightarrow \tau \right) \notin M' \quad \forall \sigma \in X.
\]
In other words, the matching on the \(j \)-th cone cannot mix simplices containing \(w_j \) and simplices not containing \(w_j \). Then we can construct a matching \(M \) on \(X \) as follows:
\[
M = \left\{ \sigma \rightarrow \tau \mid \sigma, \tau \in X \text{ satisfying } \left(\sigma \cup \{w_j\} \rightarrow \tau \cup \{w_j\} \right) \in M' \right\}.
\]
Notice that if there is some 0-dimensional \(\sigma \in X \) such that \((\sigma \cup \{w_j\} \rightarrow \{w_j\}) \in M' \), then \(\sigma \) is critical with respect to \(M \) (it would be matched with \(\tau = \emptyset \) which doesn’t exist in \(X \)). The Hasse diagram of \(X \) injects into the Hasse diagram of the \(j \)-th cone via the map
\[
\iota: \sigma \mapsto \sigma \cup \{w_j\},
\]
and by construction arcs of \(M \) map to arcs of \(M' \). Since \(M' \) is acyclic, \(M \) is also acyclic. The set of critical simplices of \(M \) is
\[
\text{Cr}(X, M) = \left\{ \sigma \in X \mid \sigma \cup \{w_j\} \in \text{Cr}(X', M') \text{ or } \left(\sigma \cup \{w_j\} \rightarrow \{w_j\} \right) \in M' \right\}.
\]
In the first case \(\sigma \cup \{w_j\} \) has dimension \(\leq k + 1 \), and in the second case \(\sigma \) is 0-dimensional. In particular, all critical simplices have dimension \(\leq k \). Therefore \(X \) is a yes-instance of \((d, k)\)-\textsc{Collapsibility}. \(\square \)

The \((d, k)\)-\textsc{Collapsibility} problem admits a polynomial-time solution when \(d = k + 1 \) and also for the case \((2, 0)\) [JP06, MF08, Tan16]. Malgouyres and Francés [MF08] proved that \((3, 1)\)-\textsc{Collapsibility} is NP-complete, and Tancer extended this result to \((d, k)\)-\textsc{Collapsibility} for \(k \in \{0, 1\} \) and for all \(d \geq 3 \). Using this as the base step and Theorem 3.1 as the induction step, we obtain the following result.

Theorem 3.2. The \((d, k)\)-\textsc{Collapsibility} problem is NP-complete for \(d \geq k + 2 \), except for the case \((2, 0)\). \(\square \)

4. Acknowledgements

I would like to thank my father, Maurizio Paolini, for giving useful comments and suggesting corrections. I would also like to thank Luca Ghidelli, for checking the proof carefully and for being my best man.

References

[BL14] B. Benedetti and F. H. Lutz, *Random discrete Morse theory and a new library of triangulations*, Experimental Mathematics **23** (2014), no. 1, 66–94.

[BLPS16] B. A. Burton, T. Lewiner, J. Paixão, and J. Spreer, *Parameterized complexity of discrete Morse theory*, ACM Transactions on Mathematical Software (TOMS) **42** (2016), no. 1, 6.

[BW02] E. Batzies and V. Welker, *Discrete Morse theory for cellular resolutions*, Journal fur die Reine und Angewandte Mathematik (2002), 147–168.
[Cha00] M. K. Chari, *On discrete Morse functions and combinatorial decompositions*, Discrete Mathematics 217 (2000), no. 1, 101–113.

[EG96] Ö. Eğecioğlu and T. F. Gonzalez, *A computationally intractable problem on simplicial complexes*, Computational Geometry 6 (1996), no. 2, 85–98.

[For98] R. Forman, *Morse theory for cell complexes*, Advances in mathematics 134 (1998), no. 1, 90–145.

[Hat02] A. Hatcher, *Algebraic topology*, Cambridge University Press, 2002.

[JP06] M. Joswig and M. E. Pfetsch, *Computing optimal Morse matchings*, SIAM Journal on Discrete Mathematics 20 (2006), no. 1, 11–25.

[Koz07] D. Kozlov, *Combinatorial algebraic topology*, vol. 21, Springer Science & Business Media, 2007.

[MF08] R. Malgouyres and A. R. Francés, *Determining whether a simplicial 3-complex collapses to a 1-complex is NP-complete*, International Conference on Discrete Geometry for Computer Imagery, Springer, 2008, pp. 177–188.

[Tan16] M. Tancer, *Recognition of collapsible complexes is NP-complete*, Discrete & Computational Geometry 55 (2016), no. 1, 21–38.