Learning-based Bounded Synthesis for Semi-MDPs with LTL Specifications

Ryohei Oura and Toshimitsu Ushio, Member, IEEE,

Abstract—This letter proposes a learning-based bounded synthesis for a semi-Markov decision process (SMDP) with a linear temporal logic (LTL) specification. In the product of the SMDP and the deterministic K-co-Büchi automaton (dKcBA) converted from the LTL specification, we learn both the winning region of satisfying the LTL specification and the dynamics therein based on reinforcement learning and Bayesian inference. Then, we synthesize an optimal policy satisfying the following two conditions. (1) It maximizes the probability of reaching the winning region. (2) It minimizes a long-term risk for the dwell time within the winning region. The minimization of the long-term risk is done based on the estimated dynamics and a value iteration. We show that, if the discount factor is sufficiently close to one, the synthesized policy converges to the optimal policy as the number of the data obtained by the exploration goes to the infinity.

Index Terms—Bounded Synthesis, Linear Temporal Logic, Reinforcement Learning, Bayesian inference, Semi-Markov Decision Process.

I. INTRODUCTION

Linear temporal logic (LTL) is used to describe a complex control specification [1]. In recent years, several automata-guided reinforcement learning (RL) have been investigated to synthesize an optimal controller for an unknown controlled stochastic system, e.g., Markov decision process (MDP), under an LTL specification [2], [3], [4], [5]. They constructed the product MDP from the MDP and a Rabin or Büchi automaton converted from the LTL specification. An optimal controller was learned on the product MDP by maximizing the expected return with a reward assignment according to the acceptance condition. In [6], [7], truncated LTL specifications were used and rewards were assigned according to the converted automaton. Bounded synthesis is an alternative synthesis approach to avoid the state-complexity of Rabin automata [8]. A bounded synthesis and reinforcement learning-based optimal controller synthesis for MDPs has been proposed [9].

On the other hand, many systems have intrinsic stochasticity of a time interval between state transitions, namely dwell time, as well as that of state transition. The stochasticity of the dwell time may degrade a quantitative performance of the controller that satisfies the LTL specification. For example, a round trip time in patrol of a museum by a mobile robot depends on dwell times in exhibition rooms. So, in practice, it is important to take a risk for the dwell time, e.g., the variance of the dwell time, into account to achieve a long-term task. A semi-Markov decision process (SMDP) is leveraged as a model of a controlled stochastic system to represent the stochasticity of the dwell time and that of the state transition [10]. Several reinforcement learning methods for SMDPs have been advocated [11], [12]. They mainly aimed at maximizing an accumulative rewards in the continuous time. To the best of our knowledge, however, reinforcement learning of a control policy satisfying an LTL specification under the stochastic dwell time has not been addressed. Several model-based RL methods for LTL specifications and cost minimization have been addressed [13], [14], [15]. However, they only considered the (almost) sure satisfaction of the LTL specifications and applied a model-based RL to all states.

In this letter, we propose a bounded synthesis and learning-based method for the optimal policy synthesis that minimizes a long-term risk for the dwell time under the satisfaction of a given LTL specification with the maximal probability. First, we represent the unknown controlled system by an SMDP and convert the given LTL specification into a dKcBA. Then, for the product SMDP from them, we synthesize an optimal policy satisfying the following two conditions. (1) It maximizes the probability of reaching the winning region. (2) It minimizes the risk for the dwell time within the winning region.

The rest of this letter is organized as follows. Section II reviews an SMDP, LTL, and ω-automata. Section III formulates a control problem given by an LTL specification with a risk by the dwell time. Section IV proposes a bounded synthesis and learning-based method for an optimal policy synthesis.

Notations: N is the set of positive integers. N_0 is the set of non-negative integers. R is the set of real numbers. $R_{\geq 0}$ is the set of non-negative real numbers. For a set A, we denote its cardinality by $|A|$ and the set of probability distributions over A by $\mathcal{D}(A)$. For two sets A and B, denoted by A^B is the set of mappings from B to A. We denote the empty string by ϵ.

II. PRELIMINARIES

A. Semi-Markov decision process

A semi-Markov decision process (SMDP) is a continuous-time dynamic system [10], [11], [12] modeled by a tuple $SM = (S, A, T, D, s', AP, L)$, where S is the finite set of sates, A is the finite set of actions, $T : S \times S \times A \to [0, 1]$ is the state transition probability, $D : S \times A \times S \to \mathcal{D}(R_{\geq 0})$ is the dwell time probability function, $s' \in S$ is the initial state, AP is the finite set of atomic propositions, and $L : S \to 2^{AP}$ is the labeling function [1]. Let $A(s) = \{a \in A \mid \exists s' \in S \text{ s.t. } T(s' \mid s, a) > 0\}$. Note that $\sum_{s' \in S} T(s' \mid s, a) = 1$.
for any \(s \in S \) and any \(a \in A(s) \). We sometimes denote \(D(- | s, a, s') \) instead of \(D(s, a, s')(-) \) for any \((s, a, s') \in S \times A \times S \).

Remark 1: The semi-Markov kernel \(P : S \times B(\mathbb{R}_{\geq 0}) \times S \times A \to [0, 1] \), where \(B(\mathbb{R}_{\geq 0}) \) is the Borel set over \(\mathbb{R}_{\geq 0} \), is defined as \(P(s', \tau | s, a) = T(s' | s, a)D(\tau | s, a, s') \) for any \((s, a, s') \in S \times A \times S \) and any \(\tau \in B(\mathbb{R}_{\geq 0}) \).

In the SMDP \(S,M \), an infinite (time-abstract) path starting from a state \(s_0 \in S \) is defined as a sequence \(\rho = s_0a_0s_1 \ldots \in S(AS)^\infty \) such that \(T(s_{i+1} | s_i, a_i) > 0 \) for any \(i \in \mathbb{N}_0 \). A finite path is a finite sequence in \(S(AS)^* \). In addition, we sometimes represent \(\rho \) as \(\rho' \) to emphasize that \(\rho \) starts from \(s_0 = s^l \). For a path \(\rho = s_0a_0s_1 \ldots \), we define the corresponding labeled path \(L(\rho) = L(s_0)L(s_1) \ldots \in (2^{AP})^\omega \). \(InfPath_{SM}^S \) (resp., \(FinPath_{SM}^S \)) is defined as the set of infinite (resp., finite) paths starting from \(s_0 = s^l \) in the SMDP \(S,M \). For each finite path \(\rho \), last(\(\rho \)) denotes its last state.

Let \(InfPath_{SM}^S \) (resp., \(FinPath_{SM}^S \)) be the set of infinite (resp., finite) paths starting from \(s_0 = s^l \) in the SMDP \(S,M \) under a policy \(\pi \). The time-abstract behavior of the SMDP \(M \) under a policy \(\pi \) is defined on a probability space \((InfPath_{SM}^S, FinPath_{SM}^S, Pr_{SM}^\pi) \). For any policy \(\pi \) and any state \(s \in S \), the probability of paths starting from \(s \) satisfies an LTL formula \(\varphi \) on the SMDP \(S,M \) under \(\pi \) is defined as follows.

\[
P_r^{SM}(s \models \varphi) \triangleq P_r^{SM}(\{\rho \in InfPath_{SM}^S(s) | \rho \models \varphi\})
\]

Similarly, we define the probability of paths starting from the initial state \(s \) and the initial action \(a \) satisfies \(\varphi \) as \(P_r^{SM}(s, a \models \varphi) \) the satisfaction probability of \(\varphi \) on \(S,M \) under \(\pi \).

C. Bayesian inference

To estimate the state transition and the dwell time probability, we use the following Bayesian inference procedure \([16]\).

Let \(\Theta \) be the metric space of parameters and \(O \) be the set of observations. For \(O \subseteq O \) and \(\Theta \in \Theta \), we first introduce a parametric model \(p(O | \Theta) \) and choose a prior \(p(\Theta) \). Next, we observe data \(O_n = \{o_0, o_1, \ldots, o_n\} \) from the system. We then update the posterior probability \(p(\Theta | O_n) \propto p(O_n | \Theta)p(\Theta) \).

\[
p(\Theta | O_n) \propto p(O_n | \Theta)p(\Theta).
\]

Aposterior probability guarantees that the posterior probability concentrates in the neighborhood of the true parameter under mild conditions as \(n \to \infty \) \([17]\), namely the estimated parameter converges to the true parameter in probability.

Assumption 1: Assume the following conditions.

1) \(\Theta \to p(- | \Theta) \) is measurable.

2) \(\Theta \neq \emptyset \) implies \(p(- | \Theta) \neq p(- | \Theta') \).

Theorem 1 \([17]\): Under Assumption 1 there exists \(\Theta_1 \subseteq \Theta \) with \(p(\Theta_1) = 1 \) and, for any \(\Theta_1 \in \Theta_1 \), if \(O_n = \{o_1, \ldots, o_n\} \sim p(- | \Theta_1) \) i.i.d. then, for any neighborhood \(B \) of \(\Theta_1 \), we have \(\lim_{n \to \infty} p(\Theta \in B | O_n) = 1 \) a.s. [p(- | \Theta_1)].

III. Problem Statement

We consider the SMDP \(S,M \) with unknown \(T \) and \(D \) and the LTL specification \(\varphi \). We aim to synthesize a control policy that minimizes the long-term risk for the dwell time of \(S,M \) under the achievement of \(\varphi \) with the maximal probability.

To determine the satisfaction of \(\varphi \) for \(S,M \), we introduce the product SMDP \(S,M^\otimes \) of the
SMDP $S,M=(S,A,T,D,s^0,AP,L)$ and the dKcBA $det(B_p,K)=(F,\Sigma,\Delta,F^I,Acc_d)$. S,M^\otimes is given by the tuple $(S^\otimes,A^\otimes,T^\otimes,D^\otimes,s^\otimes,Acc^\otimes)$, where $S^\otimes = S \times F$ is the finite set of states; $s^\otimes = (s,F^I)$ is the initial state, where $(F^I,L(s^I,F^I)) \in \Delta$. $A^\otimes=\emptyset$ and $A^\otimes(s)=A(s)$ for each $s^\otimes=(s,F) \in S^\otimes$. $T^\otimes : S^\otimes \times S^\otimes \times A^\otimes \to [0,1]$ is the transition probability defined as, for any $s^\otimes = (s,F), s'^\otimes = (s',F') \in S^\otimes$ and any $a \in A(s)$,$$
abla(s')|s^\otimes,a) = \begin{cases} T(s'|s,a) & \text{if } (F,L(s),F') \in \Delta, \\ 0 & \text{otherwise}. \end{cases}, \quad (5)$$

$D^\otimes : S^\otimes \times A \times S^\otimes \to \mathbb{R}_{\geq 0}$ is the dwell time probability defined as, for any $(s^\otimes = (s,F), a,s^\otimes' = (s',F')) \in S^\otimes \times A \times S^\otimes$, $D^\otimes(s,a,s'^\otimes) = D(s,a,s')$, where $s^\otimes = (s,F)$ and $s'^\otimes = (s',F')$, and $Acc^\otimes = S \times Acc_d$. Note that Acc^\otimes is non-empty since Acc_d is non-empty. In the following, the product SMDP S,M^\otimes of a given SMDP and a dKcBA converted from an LTL formula φ will be called a product SMDP associated with φ. For any product SMDP S,M^\otimes, its acceptance condition is a safety condition since it is satisfied when any path generated on S,M^\otimes under a policy always stays in $S^\otimes \setminus Acc^\otimes$. For a subset S_{sub}^\otimes of S^\otimes, we introduce an atomic proposition “This state belongs to S_{sub}^\otimes”, which denotes S_{sub}^\otimes by abuse of notation. Namely, we say that a state $s \in S^\otimes$ satisfies S_{sub}^\otimes if $s \in S_{\text{sub}}^\otimes$. Then, the acceptance condition of S,M^\otimes is represented by

$$\varphi_B = \square \neg Acc^\otimes. \quad (6)$$

A policy on the product SMDP S,M^\otimes is defined as a mapping $\pi : S^\otimes \times A \to \{0,1\}$. A policy π is positional if, for any $s \in S^\otimes$ and any $a \in A^\otimes(s)$, there exists one action $a' \in A^\otimes(s)$ such that $\pi(s,a) = 1$ if $a = a'$, and $\pi(s,a) = 0$ for any $a \in A^\otimes(s)$ with $a \neq a'$. We sometimes denote a positional policy π as a mapping from S^\otimes to A, that is, $\pi(s) = a$ for any $(s,a) \in S^\otimes \times A$ if $\pi(s,a) = 1$.

In the following, we sometimes omit the superscript \otimes. We define the set of winning pairs $W_{\pi} \subseteq S^\otimes \times A$ and the winning region $W_{\pi} \subseteq S^\otimes$ as follows.

$$W = \{ s \in S^\otimes \mid \exists \pi \text{ s.t. } P_{\pi}S,M^\otimes(s | \varphi_B) = 1 \}.$$

$$W_{\pi} = \{(s,a) \in S^\otimes \times A \mid \exists \pi \text{ s.t. } P_{\pi}S,M^\otimes(s,a | \varphi_B) = 1 \}.$$

We define a risk factor for the dwell time $Risk : S \times A \times S \to \mathbb{R}_{\geq 0}$ as follows. For any $(s,a,s') \in S \times A \times S$,

$$Risk(s,a,s') = f(D(s,a,s')), \quad (7)$$

where $f : D(\mathbb{R}_{\geq 0}) \to \mathbb{R}$. As examples of f, we have $f_{\alpha}(d) = \inf \{ t \mid d(\tau > t) < \alpha \}$ with $\alpha \in [0,1]$ and $f_\lambda d(\mu = \mu + \lambda \sigma$ with $\lambda \in [0,1]$, where μ and σ are the mean and the standard deviation of d, respectively.

For a policy π on the SMDP S,M and a risk factor for the dwell time $Risk$, we define the value function $V_{\pi}^{Risk} : W \to \mathbb{R}$ for the risk factor as follows. For any $s \in W$,

$$V_{\pi}^{Risk}(s) = \mathbb{E}_\pi[\sum_{n=0}^{\infty} \gamma^n Risk(s_{n+1},s_{n+1}) \mid s_0 = s], \text{ where } \mathbb{E}_\pi \text{ denotes the expected value given that the action selection follows the policy } \pi \text{ from the state } s \text{ and } \gamma \in [0,1) \text{ is a discount factor.}$$

We define the action-value function $Q_{\pi}^{Risk} : W_p \to \mathbb{R}$ as follows. For any $(s,a) \in W_p$,

$$Q_{\pi}^{Risk}(s,a) = \mathbb{E}_\pi[\sum_{n=0}^{\infty} \gamma^n Risk(s_{n+1},a_{n+1}) \mid s_0 = s, a_0 = a].$$

Then, we aim at the synthesis of a positional policy $\pi^* : S^\otimes \to A$ on the product SMDP S,M^\otimes that satisfies the following conditions:
1) $\pi^* \in \Pi_{\varphi_B}(s^\otimes)$.
2) $\pi^* \in \arg\min_{\pi \in \Pi_B} V_{\pi}^{Risk}(s), \forall s^\otimes = (s,F) \in W,$

where $\Pi_{\varphi_B}(s^\otimes) = \arg \max_{\pi \in \Pi_B} \delta_\pi S,M^\otimes(s^\otimes | \varphi_B)$ for any $s^\otimes \in S^\otimes$. We say that the above policy π^* is optimal with respect to φ_B and Risk or simply optimal. We denote the set of optimal policies as $\Pi_{\varphi_B}^{*}$.

Running example: We consider the surveillance problem of a mobile robot in a grid world depicted in Fig. 1(a) as a running example. The set of states is $S = \{1,\ldots,5\}^2$. The set of actions is $A = \{UL,UR,DL,DR\}$. The black disk represents the robot and its initial state is the right corner (5, 5). The robot moves up and left with probabilities 0.5 under the actions UL. Under UR, it moves up and right with probabilities of 0.5, respectively. Likewise, DL and DR trigger each transition to down, left, and right with probabilities of 0.5. Under an action, if the robot faces a wall, it makes the transition to a movable direction w.p.1. If the robot has no movable direction under an action, it stays in the same state. The blue and green areas represent the recharge point and the access point, which are labeled with a and b. The red area represents the dangerous area, which is labeled with c. The dwell time probability is given by the exponential distribution $D(dt \mid s,a,s') = \lambda_{s,a} e^{-\lambda_{s,a} t} dt$ for each transition (s,a,s'). The parameter $\lambda_{s,a}$ is given by $max_{s_0 = (s_x, s_y)} 10$ for each pair of $s_0 = (s_x, s_y)$, where $s = (s_x, s_y)$, which implies that the closer the robot is to the wall, the larger the tail of the dwell time distribution is. The specification is given as “Visit the blue and green areas infinitely often while avoiding the red area”. The specification formally represented as

$$\varphi_{ex} = \square \diamond a \land \square \diamond b \land \square \diamond c. \quad (8)$$

The dKcBA with $K = 20$ converted from φ_{ex} is shown in Fig. 1(b). Intuitively, the robot is required to visit the blue and the green areas within $K = 20$ time steps infinitely often. The robot aims to satisfy φ_B obtained from φ_{ex} with the maximal probability and simultaneously minimize the accumulative risk of the dwell time. When we set $Risk(s,a,s') = \lambda_{s,a}$, the robot has to move as near as the state (3, 3) as possible.

IV. Bounded Synthesis and Learning of Policy
We synthesize an optimal policy by the following 3 phases.

1) We estimate W and W_p of S,M^\otimes. Simultaneously, we learn the dynamics T and D of S,M within W_p based on the Bayesian inference. After that, we learn the policy $\pi_{\text{sub}} : S^\otimes \times W \to A$ that achieves the maximum satisfaction probability of φ_B. Note that learning the
Fig. 1: (a) The grid world that the robot (black disk) moves. The blue and the green areas are the access point and the recharge point, respectively. The areas are labeled with a and b, respectively. The red area is the dangerous area, which is labeled with c. (b) The dKcBA with $K = 20$ converted from φ_{ex}. Each state is numbered with q_i, $i = 0, \ldots, 442$. For simplicity, we omit the states transitioned by the label c, other some states, and some edges. Each dotted line represents the consecutive transition by the label.

behavior in and outside W separately is based on the safety acceptance condition of dKcBA.

2) Based on the value iteration, we synthesize a policy $\pi_{\text{win}} : W \rightarrow A$ that minimizes V^{risk} utilizing the estimated T and D.

3) We synthesize an optimal policy by combining π_{tr} and π_{win}.

We first describe phase 1). We define a reward function $\mathcal{R} : S^0 \rightarrow \mathbb{R}$ and a discount factor function $\Gamma : S^0 \rightarrow \{\gamma, \gamma_{\text{acc}}\}$ inspired by [3], where $\gamma, \gamma_{\text{acc}} \in (0, 1)$, as follows.

$$\mathcal{R}(s) = \begin{cases} (1 - \gamma_{\text{acc}})r_n & \text{if } s \in \text{Acc}^0, \\ 0 & \text{otherwise}, \end{cases} \tag{9}$$

where r_n is a negative value.

$$\Gamma(s) = \begin{cases} \gamma_{\text{acc}} & \text{if } s \in \text{Acc}^0, \\ \gamma & \text{otherwise}. \end{cases} \tag{10}$$

Then, we introduce the state-action value function $Q_{\pi} : S^0 \times A \rightarrow \mathbb{R}$ as follows. For any $s \in S$ and any $a \in A(s)$,

$$Q_{\pi, \gamma}(s, a) = \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \mathcal{R}(s_{t+1}) \prod_{k=0}^{t-1} \Gamma(s_{k+1}) | s_0 = s, a_0 = a],$$

where \mathbb{E}_{π} is the expected value under the policy π. We call the following function $Q^* : S^0 \times A \rightarrow \mathbb{R}$ an optimal state-action value function. For any $s \in S^0$ and any $a \in A(s)$,

$$Q^*(s, a) = \max_{\pi \in A^0} Q_{\pi, \gamma}(s, a). \tag{11}$$

We show the overall procedure to learn W, W_p, T, and D of the SMDP in Algorithm 1. In Line 3, we initialize the state-action value Q^0. In Lines 4 and 5, we initialize W^0 and W_p^0 using Q^0 as the estimates of W and W_p, respectively. In Line 6, we initialize ∂W^0 using W^0 and W_p^0, which is used in exploration. Next, in each episode k, we keep exploring in W^k until leaving W^k. We explain the details of the exploration policy $\pi_k^e(s, \cdot)$. Later during the learning, we observe dwell times $\tau \in \mathbb{R}_{\geq 0}$ as well as state transitions. In Line 16, we keep observed data only within W^k. We denote the set of observed data as $\mathcal{O} = \{(s_i, a_i, s_{i+1}, \tau_i)| i \in I\}$, where I is an index set of the data. In Line 17, using Function [2], Q^k is updated and W^k, W_p^k, and ∂W^k are updated by $Q^k + \partial W^k$. Then, we sample a state from ∂W^k and continue the learning. We model T as a parametric distribution $g_T(\cdot | \Theta_T)$ and D as a parametric distribution $g_D(\cdot | \Theta_D)$. We denote the sets of parameters of g_T and g_D as Θ_T and Θ_D, respectively. In Line 20, we calculate their posteriors $h_T(\theta_T^e | \mathcal{O}^e_{\text{data}})$ and $h_D(\theta_D^e | \mathcal{O}^e_{\text{data}})$ based on [4] every ℓ step, where $\ell \in \mathbb{N}$ is a given positive integer, with observed data.

Assumption 2: The following conditions hold at phase 1.

1) The learning rate α is a constant.

2) For each $s \in W^\infty$, s is observed infinitely often w.p.1.

It is known that W^k (resp., W_p^k) is monotonically decreasing under Assumption 2, i.e., $W^k \subseteq W^{k'}$ (resp., $W_p^k \subseteq W_p^{k'}$) for $k < k'$.

Algorithm 1 Learning of Winning region and Dynamics

Input: LTL formula φ, SMDP SM, and ℓ.

Output: Estimates of W_p, h_T, and h_D.

1. Convert φ to $dKcBA$ $\det(B_c, K)$.
2. Construct the product SMDP SM^0 of SM and $\det(B_c, K)$.
3. Initialize $Q : S^0 \times E^0 \rightarrow \mathbb{R}$ with -1 for any $(s, a) \in \text{Acc}^0 \times A$ and 0 otherwise.
4. Initialize $W^0 = \{s \in S^0 | \exists a \in A(s) \text{ s.t. } Q^0(s, a) = 0\}$.
5. Initialize $W_p^0 = \{(s, a) \in S^0 \times A | Q^0(s, a) = 0\}$.
6. Initialize $\partial W^0 = \{s \in W^0 | \exists a \in W^0, \exists s' \notin W^0, \text{ s.t. } T(s, a) > 0\}$.
7. Sample $s \in W^0$ and set $k = 0$.
8. while W_p^k does not converge. do
9. while True do
10. Take action a under $\pi_k^e(s, \cdot)$. Observe $o = (s, a, s', \tau)$ and $r = \mathcal{R}(s, a, s')$. Append o to \mathcal{O}.
11. if $s' \notin W^k$ then
12. Go to Line 16.
13. end if
14. $s \leftarrow s'$.
15. end while
16. Remove all (s, a, s', τ) from \mathcal{O} with respect to (s, a).
17. Update Q^k, W^k, ∂W^k, and W_p^k using the update rules given by Function [2]
18. Sample $s \in \partial W^k$.
19. $k \leftarrow k + 1$.
20. if $k/\ell \notin \mathbb{N}$ then
21. Calculate the posterior of h_T and h_D with observed data \mathcal{O} within W_p^k.
22. end if
23. end while
any $k' \leq k$. Furthermore, $W^\infty := \lim_{k \to \infty} W^k = W$ (resp., $W_p^\infty := \lim_{k \to \infty} W_p^k = W_p$) holds w.p.1 [9].

Details of Exploration: To facilitate the simultaneous collection of the transition and dwell time data efficiently, we use an entropy-based policy $\pi_{ent}^k : W_p \to [0,1]$ that satisfies the following conditions. For any k and any $(s^o = (s,F,a), (s^o, a') \in W^k$,

$$H[h_T(\cdot | \zeta_{sa}^T)] + \frac{1}{n_{sa}} \sum_{s' \in S} H[h_D(\cdot | \zeta_{s'as}^D)]$$

$$\leq H[h_T(\cdot | \zeta_{sa}^T)] + \frac{1}{n_{sa}} \sum_{s' \in S} H[h_D(\cdot | \zeta_{s'as}^D)]$$

$$\Rightarrow \pi_{ent}^k(s^o, a') \leq \pi_{ent}^k(s^o, a'),$$

where $H[h(\cdot)] = - \int h(x) \ln h(x) dx$ is the entropy of h and $n_{sa} = |\{s' \in S | T(s'| s, a) > 0\}|$. Intuitively, π_{ent}^k enhances to issue an action that triggers more informative transitions. An estimate of T, denoted by \hat{T}, is given as follows. For any $((s,F), a) \in W_p$ and any $s' \in S$,

$$\hat{T}(s' | s, a) = \int g_T(s' | \theta^P_{sa}) h_T(\theta_{sa}^T | \zeta_{sa}^T) d\theta_{sa}^T. \quad (12)$$

We define an estimate of the transition probability of the product SMDP $\hat{T}^\infty : S^\infty \times S^\infty \times A \to [0,1]$ for \hat{T} in accordance with (5). To facilitate the efficient learning of W_p, we introduce $\pi_{\hat{T}^\infty}^k : W_p \to [0,1]$ that satisfies the following condition. For any k and any $(s^o, a), (s^o, a') \in W_p$,

$$\sum_{s \in W^k} \hat{T}^\infty(s' | s, a) \leq \sum_{s \in W^k} \hat{T}^\infty(s' | s, a')$$

$$\Rightarrow \pi_{\hat{T}^\infty}^k(s^o, a) \leq \pi_{\hat{T}^\infty}^k(s^o, a').$$

Moreover, for each episode k, we restrict the region where an initial state is sampled to ∂W^k given by

$$\partial W^k = \{s \in W_p | \exists(a, s) \in W_p, s', s' \notin W_p s.t. T(s'| s, a) > 0\}.$$

Intuitively, $\pi_{\hat{T}^\infty}^k$ and the state-sampling from ∂W^k enhance to take an out-going transition from W^k for each k. We define an exploration policy $\pi_{ex}^k : W_p \to [0,1]$ as follows. For any k and any $(s, a) \in W_p$,

$$\pi_{ex}^k(s, a) = \begin{cases} \pi_{\hat{T}^\infty}^k(s, a) & \text{if } s \in \partial W^k, \\ \pi_{ent}^k(s, a) & \text{otherwise.} \end{cases} \quad (13)$$

π_{ex}^k is expected to facilitate the efficient learning of W_p and the unbiased learning of T and D.

Note that, for any transition (s, a, s') stored in O after the learning, using π_{ex}^k, we have $(s, a) \in W_p$ and $s' \in W$ w.p.1 under Assumption 2 [9].

After the learning of W_p, T, and D, we compute π^{γ}_{T}, $S^\infty \setminus W \to A$ defined as follows. For any $s \in S^\infty \setminus W$,

$$\pi^{\gamma}_{T}(s) = \arg \max_{a \in A(s)} Q^*_\gamma(s,a). \quad (14)$$

Theorem 2: Given a product SMDP S^∞ associated with an LTL formula φ, there exists a discount factor $\gamma' \in (0,1)$ such that, for any $\gamma > \gamma'$ and any $s \in S^\infty$, the following equation holds.

$$P_{\pi^{\gamma}_{T}}S^\infty|\varphi = \max_{\gamma \in \gamma'} P_{\pi^{\gamma}_{T}}S^\infty|\varphi. \quad (15)$$

A proof of Theorem 2 is similar to the proof of Theorem 3 in [9] and omitted. From Theorem 2, for any γ sufficiently close to one, π^{γ}_{T} maximizes the satisfaction probability of φ_B.

The learning scheme of π^{γ}_{T} is based on the update rule of Q-learning $Q(s,a) \leftarrow (1-\alpha_i)Q(s,a) + \alpha_i \{r + \max_{a'} Q(s',a')\}$, where (s,a,s') and r are the observed transition and the corresponding reward, respectively, and i is the iteration number. However, in the learning scheme, each learning episode is terminated when entering the estimated winning region W^∞.

We denote the learned π^{γ}_{T} as $\hat{\pi}^{\gamma}_{T}$. We assume the following condition.

Assumption 3: $\sum_{i=1}^{\infty} \alpha_i = \infty$ and $\sum_{i=1}^{\infty} \alpha_i^2 < \infty$ hold.

![Fig. 2: (a) The average of $Indk^k$ per episode. (b) The black arrows are illustrative actions taken by the learned robot at the states. The red arrows represent an obtained sample path.](image-url)
Next, we describe phase 2. An estimate of D, denoted by \hat{D}, is given as follows. For any $((s, F), a) \in W_p^∞$ and any $s' \in S$,
$$\hat{D}(\tau | s, a, s') = \int g_D(\tau | \theta^{D_{sas}}_a) h_D(\theta^{D_{sas}}_a | \zeta^{D_{sas}}_a) d\theta^{D_{sas}}_a.$$
(16)

We introduce $A_\varphi : W^∞ \rightarrow A$ as follows.
$$A_\varphi(s^\circ) = \{a \in A | (s^\circ, a) \in W_p^∞\}.$$
(17)

Denoted by $\text{Risk}(s, a, s')$ is the risk of the transition (s, a, s') for D, i.e., by \hat{D}, we have $\hat{\text{Risk}}(s, a, s') = f(\hat{D}(s, a, s'))$ for any $(s, a, s') \in S \times A \times S$. With \hat{T}, Risk, and A_φ, we define $\hat{Q}_\text{Risk} : W_p^∞ \rightarrow \mathbb{R}$ as follows and compute it by the value iteration.
$$\hat{Q}_\text{Risk}^∞(s^\circ, a) = \sum_{s' \in S^∞} \hat{T}(s' | s, a) \hat{\text{Risk}}(s, a, s') + \gamma_r \min_{a' \in A_\varphi(s^\circ)} \hat{Q}_\text{Risk}^∞(s'^\circ, a'),$$
where $s^\circ = (s, F)$. Then, we obtain $\hat{\pi}_\text{win} : W^∞ \rightarrow A$ as follows.
$$\hat{\pi}_\text{win}(s) = \arg \max_{a \in A_\varphi(s^\circ)} \hat{Q}_\text{Risk}^∞(s^\circ, a).$$
(18)

Finally, in phase 3), we obtain a policy $\pi^∞ : S^∞ \rightarrow A$ by combining π^γ_{tr} and π_{win}. For any $s \in S^∞$, we define $\pi^∞$ as follows.
$$\pi^∞(s) = \begin{cases} \hat{\pi}_{\text{win}}(s) & \text{if } s \in W^∞, \\ \hat{\pi}^γ_{tr}(s) & \text{otherwise.} \end{cases}$$
(19)

Assumption 4: Assume the following conditions:

1. For any $(s^\circ, (s, F), a) \in W_p$ and any $(s', F') \in \{s^\circ \in W^∞ | T(s^\circ | s, a) > 0\}$, there exist θ°_{sa} and $\theta^{D_{sas}}_a$ such that $T(\cdot | s, a) = g_T(\cdot | \theta^{\circ}_{sa})$ and $D(\cdot | s, a, s') = g_D(\cdot | \theta^{D_{sas}}_a)$.

2. g_T and g_D satisfy Assumption $\mathbb{1}$.

Theorem 3: Let SM° be the product SMDP associated with an LTL formula φ. Under Assumptions $\mathbb{2}$, $\mathbb{3}$, and $\mathbb{4}$, there exist $\gamma' \in (0, 1)$ and an optimal policy $\pi^* \in \Pi^\circ_{\varphi_\text{Risk}}$ such that, for any $\gamma > \gamma'$, $\hat{\pi}^γ_{tr} = \pi^* \in$ probability as $t \rightarrow \infty$.

Proof: Recall that $W^∞ = W_p$ and $W^∞ = W$ hold w.p.1 under Assumption $\mathbb{2}$. Thus, for any $(s, a) \in W_p$ and $(s', F') \in \{s' \in W | T(s^\circ | s, a) > 0\}$, we have $T(\cdot | s, a) = T(\cdot | s, a)$ and $D(\cdot | s, a, s') = D(\cdot | s, a, s')$ in probability as $t \rightarrow \infty$ by Theorem $\mathbb{1}$ under Assumptions $\mathbb{2}$ and $\mathbb{4}$. This implies $Q^\circ_{\text{Risk}} = \hat{Q}_\text{Risk}^∞$ Hence, for each $s \in S$, $\hat{\pi}_{\text{win}}(s)$ maximizes Q°_{Risk} on $A_\varphi(s)$ in probability. By Theorem $\mathbb{3}$ and the convergence property of Q-learning $\mathbb{13}$, under Assumption $\mathbb{3}$ there exists γ' such that, for any $\gamma > \gamma'$, $\hat{\pi}^γ_{tr}$ maximizes the satisfaction probability of φ_B w.p.1. Therefore, there exists an optimal policy $\pi^* \in \Pi^\circ_{\varphi_\text{Risk}}$ such that we have $\hat{\pi}^γ_{tr} = \pi^*$ in probability.

By Theorem $\mathbb{3}$, we can synthesize an optimal policy under the discount factor sufficiently close to 1 and the sufficient iteration in Algorithm $\mathbb{1}$.

In the running example, we model T and D as a categorical distribution and an exponential distribution, respectively. Prior for each distribution is chosen as a Dirichlet distribution and a Gamma distribution. We give the risk for transitions as $\text{Risk}(s, a, s') = \mu_{sas} + \sigma_{sas}$, where μ_{sas} and σ_{sas} are the mean and the standard deviation of the estimated dwell time. We set the parameters as $\gamma_r = 0.9$ and $\ell = 1$. We show a sample path by the learned $\hat{\pi}^γ_{tr}$ as the red arrows in Fig. 2(b).

We observe that the robot tends to move near (3,3) under the satisfaction of φ_{ex} after learning, which implies that the robot minimizes the long-term risk while satisfying φ_{ex}.

V. Conclusion

In this letter, for a semi-Markov decision process, we proposed a learning-based bounded synthesis of the optimal policy that minimizes a long-term risk for the dwell time under the satisfaction of a given LTL specification. We show that the synthesized policy is equal to an optimal one in probability under some assumptions and conditions. Future works are to extend the proposed method to the continuous state space and to develop the learning method to estimate the winning region and the policy to minimize an accumulative risk concurrently. It is also future work to apply the proposed method to a real system.

References

[1] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press, 2008.
[2] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia, “A learning based approach to control synthesis of Markov decision processes for linear temporal logic specifications,” in Proc. 53rd IEEE Conf. Decis. Control, pp. 1091–1096, 2014.
[3] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Control synthesis from linear temporal logic specifications using model-free reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Automation, pp. 10349–10355, 2020.
[4] E. M. Hahn, M. Perez, S. Schewe, F. Sommenzi, A. Trivedi, and D. Wojtczak, “Omega-regular objectives in model-free reinforcement learning,” in Int. Conf. Tool. Algo. Constr. Analy. Sys., pp. 395–412, 2019.
[5] R. Oura, A. Sakakibara, and T. Ushio, “Reinforcement learning of control policy for linear temporal logic specifications using limit-deterministic generalized Buchi automata,” IEEE Conf. Syst. Lett., vol. 4, no. 3, pp. 761–766, 2020.
[6] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal logic specifications using model-free reinforcement learning,” in Proc. IEEE/RSJ Int. Conf. Intel. Robot. Syst., pp. 3834–3839, IEEE, 2017.
[7] X. Li, Z. Serlin, G. Yang, and C. Belta, “A formal methods approach to interpretable reinforcement learning for robotic planning,” Science Robotics, vol. 4, no. 37, 2019.
[8] E. Filiot, N. Jin, and J.-F. Raskin, “Antichains and compositional algorithms for LTL synthesis,” Form. Meth. Syst. Design, Vol. 39, no. 3, pp. 261–296, 2011.
[9] R. Oura, T. Ushio, and A. Sakakibara, “Bounded synthesis and reinforcement learning of supervisors for stochastic discrete event systems with LTL specifications,” arXiv:2105.03081, 2021.
[10] S. M. Ross, Applied probability models with optimization applications. Courier Corporation, 2013.
[11] S. J. Bradtke and M. O. Duff, “Reinforcement learning methods for linear temporal logic specifications,” in proc. 7th Adv. Neur. Info. Proc. Syst., vol. 7, pp. 393–400, 1994.
[12] S. Schmoll and M. Schubert, “Semi-Markov reinforcement learning for stochastic resource collection,” in Proc. 29th Int. Conf. Int. Joint Conf. Artif. Intel., pp. 3349–3355, 2021.
[13] B. Wu, B. Hu, and H. Lin, “A learning based optimal human robot collaboration with linear temporal logic constraints,” arXiv:1706.00007, 2017.
[14] M. Wen and U. Topcu, “Probably approximately correct learning in stochastic games with temporal logic specifications,” in Proc. Int. Joint Conf. Artif. Intel., pp. 3630–3636, 2016.
[15] J. Fu and U. Topcu, “Probably approximately correct mdp learning and control with temporal logic constraints,” arXiv:1404.7073, 2014.
[16] C. M. Bishop, Pattern Recognition and Machine Learning. Springer: New York, 2006.
[17] J. W. Miller, “A detailed treatment of Doob’s theorem,” arXiv:1801.03122, 2018.
[18] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, 1996.