Hepatotropic growth factors protect hepatocytes during inflammation by upregulation of antioxidative systems

Matthias Glanemann, Daniel Knobeloch, Sabrina Ehnert, Mihaela Culmes, Claudine Seeliger, Daniel Seehofer, Andreas K Nussler

Matthias Glanemann, Daniel Knobeloch, Daniel Seehofer, Department of General-, Visceral- and Transplantation Surgery, Charité, Campus Virchow Klinikum, Universitätsmedizin Berlin, 13353 Berlin, Germany
Sabrina Ehnert, Mihaela Culmes, Claudine Seeliger, Andreas K Nussler, Department of Traumatology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany

Author contributions: Glanemann M, Knobeloch D, Ehnert S and Nussler AK contributed equally to this work; Glanemann M, Knobeloch D, Ehnert S and Nussler AK designed the research and performed the experiments, analyzed the data and wrote the paper; Seehofer D performed the shift analysis; Culmes M and Seeliger C helped with data analysis and wrote parts of the paper.

Supported by The Federal Ministry of Research (BMBF - 01 GN0984)

Correspondence to: Dr. Andreas K Nussler, Professor, Department of Traumatology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany. andreas.nuessler@googlemail.com
Telephone: +49-89-41406310 Fax: +49-89-41406313
Received: July 12, 2010 Revised: August 16, 2010
Accepted: August 23, 2010
Published online: May 7, 2011

Abstract

AIM: To investigate effects of hepatotropic growth factors on radical production in rat hepatocytes during sepsis.

METHODS: Rat hepatocytes, isolated by collagenase perfusion, were incubated with a lipopolysaccharide (LPS)-containing cytokine mixture of interleukin-1β, tumor necrosis factor-α and interferon-γ to simulate sepsis and either co-incubated or pre-incubated with hepatotropic growth factors, e.g. hepatocyte growth factor, epidermal growth factor and/or transforming growth factor-α. Cells were analyzed for glutathione levels. Culture supernatants were assayed for production of reactive oxygen intermediates (ROIs) as well as NO₂⁻, NO₃⁻ and S-nitrosothiols. To determine cellular damage, release of aspartate aminotransferase (AST) into the culture medium was analyzed. Activation of nuclear factor (NF)-κB was measured by electrophoretic mobility shift assay.

RESULTS: Rat hepatocytes treated with the LPS-containing cytokine mixture showed a significant increase in ROI and nitrogen oxide intermediate formation. AST leakage was not significantly increased in cells treated with the LPS-containing cytokine mixture, independent of growth-factor co-stimulation. However, pretreatment with growth factors significantly reduced AST leakage and ROI formation while increasing cellular glutathione. Application of growth factors did not result in increased NF-κB activation. Pretreatment with growth factors further increased formation of NO₂⁻, NO₃⁻ and S-nitrosothiols in hepatocytes stimulated with LPS-containing cytokine mixture. Thus, we propose that, together with an increase in glutathione increased NO₂⁻, NO₃⁻ formation might shift their metabolism towards non-toxic products.

CONCLUSION: Our data suggest that hepatotropic growth factors positively influence sepsis-induced hepatocellular injury by reducing cytotoxic ROI formation via induction of the cellular protective antioxidative systems.

© 2011 Baishideng. All rights reserved.

Key words: Primary human hepatocytes; Hepatocyte proliferation; Cytokines; Hepatotropic growth factors; Nitric oxide; Glutathione

Peer reviewer: Ana Cristina Simões e Silva, Federal University of Minas Gerais, Department of Pediatrics, Avenida Bernardo Monteiro, 1300 apto 1104, Belo Horizonte, 30150-281, Brazil
INTRODUCTION

After partial hepatectomy, the remaining liver tissue undergoes rapid regeneration of its lost mass. Although it has been studied for many years, the exact mechanisms and interactions of this regenerative process are still the focus of many investigations. Despite advances in surgical techniques and perioperative management, liver failure occasionally occurs after extended hepatectomy often being associated with postoperative infections that lead to multiple organ failure and death.

Although a two-thirds resection of the liver is not fatal, there is increased sensitivity to endotoxin, caused by up-regulation of the toll-like receptor 4, in the period following experimental hepatectomy. Thus, intravenous injection of a sub-lethal dose of lipopolysaccharide (LPS) 48 h after surgery results in a high mortality in rats. LPS directly activates Kupffer cells (the hepatic macrophages) to produce the tumor necrosis factor (TNF-α) and other inflammatory cytokines through activation of the transcription factor, nuclear factor (NF)-κB. During liver regeneration, however, cytokines as well as hepatotropic growth factors have been well demonstrated to be involved in the process of tissue regeneration.

Numerous publications suggest a direct link between nitric oxide (NO) production, cellular loss of glutathione (GSH) and reduction of glutathione reductase activity. Thus, depletion of GSH reduces cellular NO levels while increasing superoxide formation, because GSH is an important cofactor for NO synthase. Togo et al. suggest that NF-κB is the major transcription factor regulating the initial steps of liver regeneration. Growth factors, by different mechanisms, play an essential role in cell growth, proliferation, differentiation and DNA synthesis. Certain interplays between cytokines and growth factors indeed seem to exist. Inflammatory cytokines increase the intracellular radical formation if not being blocked by intracellular antioxidative systems, e.g. GSH. Therefore, it might be possible that adequate proliferation and regeneration occurs after partial hepatectomy, and the interplay of growth factors and cytokines could be shifted towards protective proliferation rather than hepatocellular injury.

Using an experimental model of sepsis/inflammation, we investigated the effects of hepatotropic growth factors, hepatocyte growth factor (HGF), epidermal growth factor (EGF) and/or transforming growth factor (TGF)-α on radical production and glutathione content in rat hepatocytes that were exposed to an inflammatory cytokine mixture of interferon (IFN)-γ, TNF-α and interleukin (IL)-1β, including LPS.

MATERIALS AND METHODS

Isolation, culture and treatment of primary rat hepatocytes

Rat hepatocytes were isolated from healthy Sprague-Dawley rats with a body weight between 250 and 300 g (Fa. Harlan-Winkelmann, Borechen, Germany) in accordance with the institutional guidelines of the Charité (Berlin, Germany) by collagenase P (Boehringer, Mannheim, Germany) digestion as described previously. Hepatocytes were separated from non-parenchymal cells by differential centrifugation at 50 g. Cells were further purified by density gradient centrifugation using 30% Percoll (Pharmacia, Piscataway, NJ, USA). Hepatocyte purity, assessed by microscopy, was >95% and viability, examined by trypan blue exclusion method, was consistently >90%. Immediately after isolation, hepatocytes were plated onto gelatin-coated culture dishes (5 × 10⁶ cells/cm²) in Williams medium E (0.5 mmol/L L-arginine, 1 μmol/L insulin, 15 mmol/L HEPES, 2 mmol/L L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin and 10% fetal calf serum). The next day, experiments were performed in serum-free medium. To imitate inflammation, cells were stimulated with a cytokine mixture (CM) consisting of 100 U/mL IFN-γ, 500 U/mL TNF-α, 10 U/mL IL-1β and 10 μg/mL LPS (Escherichia coli 111:B4) for 24 h.

To investigate the effect of growth factors on inflammation, cells were either co-stimulated or pretreated (12 h) with 20 ng/mL HGF, 30 ng/mL EGF and/or 20 ng/mL TGF-α.

Measurement of NOx, NO· and S-nitrosothiols

Culture supernatants were assayed for the stable end products of NO oxidation (NOx and NO·) and S-nitrosothiols using modified procedures based on the Griess reaction as described previously.

Aspartate aminotransferase measurement

In order to evaluate cellular damage, culture supernatants were measured for aspartate aminotransf erase (AST) leakage using commercially available reaction kits (Roche Diagnostics, Mannheim, Germany).

Determination of cellular GSH levels

To evaluate total cellular GSH levels [GSH + oxidized glutathione (GSSG)] cells were suspended in 1 mL metaphosphoric acid (3%) and centrifuged at 1000 g for 5 min. Supernatants were adjusted to pH 7.5-8.0 with K2CO3. Total cellular GSH was assayed, using an enzymatic recycling procedure, as described previously.

Reduced GSH was sequentially oxidized by 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) to GSSG. The rate of DTNB formation was monitored at 412 nm and glutathione content was determined from a standard curve. To determine GSSG, GSH was masked with 2-vinylpyridine. Then, GSSG was reduced by NADPH to GSH in the presence of glutathione reductase to react again with DTNB. Oxidized and
Results are expressed as mean ± SE of at least five independent experiments (N = 5) measured in triplicates (n = 3). Data sets were compared by Kruskal-Wallis followed by Dunn’s multiple comparison test (GraphPad Prism software; El Camino Real, Sunnyvale, CA USA). P < 0.05 was taken as minimum level of significance.
slightly increased ROI production (65.0 ± 6.7 to 70.0 ± 7.0 pmol O₂⁻/min every 10⁵ cells) without a notable effect on intracellular glutathione levels (Figure 2A and B, grey bars). However, pretreatment with growth factors, both individually or in combination, significantly reduced ROI production by subsequent stimulation with LPS-containing CM. At the same time, intracellular glutathione levels were significantly increased. This goes along with the reduction in AST leakage observed with growth-factor-pretreated cells (Figure 1, grey bars). Combination of all three growth factors did not further decrease ROI production or increase intracellular glutathione compared to pretreatment with single growth factors. Pretreatment with HGF alone was not able to reduce ROI production by subsequent stimulation with LPS-containing CM.

Determination of NO⁻, NO₃⁻ and S-nitrosothiol formation in rat hepatocytes pretreated with growth factors

Incubation of hepatocytes (N = 5, n = 3) with the LPS-containing CM led to a significant increase in NO production as compared to untreated controls. Formation of stable end products of NO oxidation (NO⁻ and NO₃⁻) and S-nitrosothiols was even more increased in hepatocytes pretreated with growth factors when subsequently stimulated with LPS-containing CM. Pretreatment with HGF alone did not further increase NO⁻, NO₃⁻ and S-nitrosothiols compared to stimulated cells without pretreatment (Figure 3). This was in accordance with the lack of reduction of ROIs under the same conditions.

Determination of NF-κB activation in rat hepatocytes stimulated with LPS-containing CM pretreated with or without growth factors

Rat hepatocytes, with and without pretreatment with growth factors, were stimulated with LPS-containing CM. NF-κB activation was measured at 0.5, 1, 2, 3 and 6 h after stimulation by EMSA. NF-κB was markedly increased 6 h after stimulation with LPS-containing CM (Figure 4A). Pretreatment with the combined or individual growth factors did not further increase NF-κB activation (Figure 4B). Moreover, growth factors alone (without LPS-containing CM) were not able to cause NF-κB expression (Figure 4B). The competition assay
using an excess of unlabeled κB probes demonstrated the specificity of the signal (Figure 4C).

DISCUSSION

Recovery after partial hepatectomy requires an adequate interplay between hepatotropic growth factors and cytokines, as both factors are markedly involved and obviously well-balanced in the process of residual liver tissue proliferation and regeneration. In this context, it has been reported that IL-6 plays a crucial role for regeneration, because it is supposed to prime remnant hepatocytes, in a way that they can fully respond to growth factors and enter a pre-replicative phase (G1). However, in our earlier studies, we have found that addition of IL-6 to hepatocyte cultures does not alter ROI or nitrogen oxide intermediate production in the presence of other inflammatory cytokines. When using the mentioned growth factors, there was also a lack of significant alterations in ROIs, and intracellular glutathione was seen. This suggests that growth factors have no direct impact on radical formation, cellular injury and/or cellular antioxidative protection systems.

Under septic or inflammatory conditions, as in the case of any infectious post-operative complication, when both plasma HGF and inflammatory cytokine levels are increased, cytokine and growth factor compositions might be different. Indeed, increased cytokine levels and protein–protein interactions may have positive and negative effects on liver regeneration. Thus, IL-1β is markedly expressed during inflammation, and acts as a very potent inhibitor of hepatocyte proliferation. Clinically observed, severe infections may seriously affect the post-operative course after liver resection, which results in an increased incidence of liver insufficiency and patient loss.

Obviously, cytokines and growth factors act in a well-balanced process under normal regenerative conditions. To gain a better understanding of the avoidance of the deleterious effects of postoperative infectious complications following liver resection, the interplay of growth factors and cytokines was a focus of our attention.

As cytokine reduction is hard to achieve if inflammation has already occurred, we focused our analysis on the effects of hepatotropic growth factor pretreatment in hepatocytes exposed to an inflammatory LPS-containing CM. In the present study, we could demonstrate that growth factors, namely HGF, EGF and/or TGF-α may positively influence influenced cytokine-induced hepatocellular injury. In pre-treated hepatocytes, we found increased NO levels, while the expression of NF-κB was comparable to untreated controls. Our results confirm the study of Kaido et al who have reported on successful prevention of post-operative liver failure in cirrhotic rats by continuous HGF supply. They have shown that rats with HGF-secreting fibroblasts (genetically modified to secret rat HGF and implanted in syngeneic rat spleen 7 d prior to exposition exposure of to hepatotoxins)
showed a dramatic resistance to carbon tetrachloride- and LPS-induced liver injury, which resulted in a significantly improved survival rate (80% vs 20%). In the same line of evidence, Kosai et al. have shown that HGF treatment 6 h and 30 min before and 3 h after intra-peritoneal LPS administration resulted in a significant increase of survival in mice (75% vs 0%). Although not focusing on pathophysiological interactions of HGF and cytokines, they clearly described HGF-related hepatic protection in case of severe endotoxemia.

Although several mechanisms may lead to hepatocyte injury, oxidative stress with increased radical formation as a consequence of inflammation, sepsis or ischemia-reperfusion, plays an important role. Intracellular antioxidative systems, e.g. p38-mitogen activated protein kinase or p21 may protect the cells, but they also decrease the hepatocyte proliferation rate by inhibiting hepatic DNA synthesis during the late G1 phase. Other intracellular antioxidative systems include upregulation of enzymes e.g. heme oxygenase-1 by NF-κB [31]. We hypothesize that increased glutathione synthesis reduces the amount of cytotoxic radical formation. As further mechanisms improve oxygen supply, subsequent NO-dependent vasodilatation may contribute to the growth-factor-related protection of rat hepatocytes during sepsis. This could explain the results of Seto et al. [32] who have observed that HGF pretreatment attenuates LPS-induced sinusoidal endothelial cell injury and intra-sinusoidal fibrin deposition.

However, further studies are required because this kind of cell protection was present only in hepatocyte pretreatment. Indeed, direct stimulation of rat hepatocytes with growth factors had no impact on intracellular ROI levels, glutathione content or AST levels under septic conditions. Nevertheless, this aspect could provide new therapeutic options in case of partial hepatectomy. Pretreatment with hepatotropic growth factors may potentially decrease the incidence of postoperative liver insufficiency in patients undergoing extended liver resection, and successively reduce the incidence of postoperative liver insufficiency in case of patients undergoing extended liver resection and may potentially decrease the incidence of postoperative liver insufficiency.

REFERENCES

1. Hsieh HC, Chen YT, Li JM, Chou TY, Chang MF, Huang SC, Tseng TL, Liu CC, Chen SF. Protein profilings in mouse liver regeneration after partial hepatectomy using iTRAQ technology. J Proteome Res 2009; 8: 1004-1013
2. Kontouras J, Boura P, Lygidakis NJ. Liver regeneration after hepatectomy. Hepatogastroenterology 2001; 48: 556-562
3. Mangnall D, Bird NC, Majeed AW. The molecular physiology of liver regeneration following partial hepatectomy. Liver Int 2003; 23: 124-138
4. Tsukamoto I, Wakabayashi M, Takebayashi K, Nomura S. Control of thymidine kinase during liver regeneration after partial hepatectomy. Biochim Biophys Acta 1996: 1290: 267-272
5. Fukazawa A, Yokoi Y, Kurachi K, Uno A, Suzuki S, Konno H, Nakamura S. Implication of B lymphocytes in endotoxin-induced hepatic injury after partial hepatectomy in rats. J Surg Res 2007; 137: 21-29
6. Garcea G, Malden CJ. Liver failure after major hepatic resection. J Hepatobiliary Pancreat Surg 2009; 16: 145-155
7. Takayashiki T, Yoshihjome H, Kimura F, Ohtsuka M, Shinmizu Y, Kato A, Ito H, Shimizu H, Ambiru S, Togawa A, Miyazaki M. Increased expression of toll-like receptor 4 enhances endotoxin-induced hepatic failure in partially hepatectomized mice. J Hepatol 2004; 41: 621-628
8. Kalbiri M, Yanagida H, Yokoiwaga N, Hikijaka T, Kwon AH, Okumura T, Kamiyama Y. Effects of pirenidone on endotoxin-induced liver injury after partial hepatectomy in rats. J Transplant Proc 2004; 36: 1957-1976
9. Deutschman CS, Haber BA, Andrejko K, Cressman DE, Harisson R, Elkon E, Taub R. Increased expression of cytokine-induced neutrophil chemoattractant in septic rat liver. Am J Physiol 1996; 271: R959-R600
10. Fausto N, Laird AD, Webber EM. Liver regeneration. 2. Role of growth factors and cytokines in hepatic regeneration. FASEB J 1995; 9: 1527-1536
11. Bolatos JP, Heales SJ, Peuchen S, Barker JE, Land JM, Clark JB. Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radic Biol Med 1996; 21: 995-1001
12. Luperchio S, Tamir S, Tannenbaum SR. NO-induced oxidative stress and glutathione metabolism in rodent and human cells. Free Radic Biol Med 1996; 21: 513-519
13. Nussler AK, Billar TR, Liu ZZ, Morris SM Jr. Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem 1994; 269: 1257-1261
14. Shu Z, Jung M, Beger HG, Harziniing M, Han F, Butzer U, Bruckner UB, Nussler AK. pH-dependent changes of nitric oxide, peroxynitrite, and reactive oxygen species in hepatocellular damage. Am J Physiol 1997; 273: G1118-G1126
15. Harbrecht BG, Di Silvio M, Chough V, Kim Y, Simmons RL, Billar TR. Glutathione regulates nitric oxide synthase in cultured hepatocytes. Ann Surg 1997; 225: 75-87
16. Minamimiyata Y, Takemura S, Koyama K, Yu H, Miyamoto M, Inoue M. Dynamic aspects of glutathione and nitric oxide metabolism in endotoxemic rats. Am J Physiol 1996; 271: G575-G581

COMMENTS

Background
The exact mechanisms and interactions of the regenerative process in the liver after partial hepatectomy remain unclear. The well-balanced interplay of liver growth factors and cytokines is strongly interfered when any infectious postoperative complications occur. This effect leads to higher mortality via radical formation.

Research frontiers
The deleterious effects of postoperative infectious complications following liver resection have not been examined adequately. In particular, the interplay of pretreated growth factors and cytokines was studied.

Innovations and breakthroughs
The main reason for increased survival of growth-factor-pre-treated hepatocytes is the intracellular antioxidative system that prevents cell-damaging radical formation. Nitric oxide production during sepsis especially increases cell survival.

Applications
Pretreatment with hepatotropic growth factors can be a new therapeutic option
Togo S, Makino H, Kobayashi T, Morita T, Shimizu T, Kubota T, Ichikawa Y, Ishikawa T, Okazaki Y, Hayashizaki Y, Shimada M. Mechanism of liver regeneration after partial hepatectomy using mouse cDNA microarray. J Hepatol 2004; 40: 464-471

Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem 1990; 265: 7709-7712

Kataoka H, Kawaguichi M. Hepatocyte growth factor activator (HGFA): pathophysiological functions in vivo. FEBS J 2010; 277: 2230-2237

Knieé Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 2001; 161: III-XIII, 1-151

Heo JS, Lee SH, Han HJ. Regulation of DNA synthesis in mouse embryonic stem cells by transforming growth factor-α: involvement of the PI3-K/Akt and Notch/Wnt signaling pathways. Growth Factors 2008; 26: 104-116

Butzer U, Weidenbach H, Gansauge S, Gansauge F, Beger HG, Nussler AK. Increased oxidative stress in the RAW 264.7 macrophage cell line is partially mediated via the S-nitrosothiol-induced inhibition of glutathione reductase. FEBS Lett 1999; 445: 274-278

Jung M, Drapier JC, Weidenbach H, Renia L, Oliveira L, Wang A, Beger HG, Nussler AK. Effects of hepatocellular iron imbalance on nitric oxide and reactive oxygen intermediates production in a model of sepsis. J Hepatol 2000; 33: 387-394

Nussler AK, Glanemann M, Schirmeier A, Liu L, Nüssler NC. Fluorometric measurement of nitrite/nitrate by 2,3-diaminonaphthalene. Nat Protoc 2006; 1: 2223-2226

Schmid RM, Adler G. NF-kappaB/rel/IkappaB: implications in gastrointestinal diseases. Gastroenterology 2000; 118: 1208-1228

Court FG, Wemyss-Holden SA, Dennison AR, Maddern GJ. The mystery of liver regeneration. Br J Surg 2002; 89: 1089-1095

Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology 2006; 43: 545-553

Streetz KL, Luedde T, Manns MP, Trautwein C. Interleukin 6 and liver regeneration. Gut 2000; 47: 309-312

Masson S, Dáveau M, François A, Bodenant C, Hiron M, Ténière P, Salier JP, Scotté M. Up-regulated expression of HGF in rat liver cells after experimental endotoxemia: a potential pathway for enhancement of liver regeneration. Growth Factors 2001; 18: 237-250

Sakom M, Kita Y, Yoshida T, Umeshita K, Gotoh M, Kanai T, Kawasaki T, Kambayashi J, Monden M. Plasma hepatocyte growth factor levels are increased in systemic inflammatory response syndrome. Surg Today 1996; 26: 236-241

Secine K, Fujishima S, Aikawa N. Plasma hepatocyte growth factor is increased in early-phase sepsis. J Infect Chemother 2004; 10: 110-114

Xie C, Gao J, Zhu RZ, Yuan YS, He HL, Huang QS, Han W, Yu Y. Protein-protein interaction map is a key gateway into liver regeneration. World J Gastroenterol 2010; 16: 3491-3498

Böhm F, Köhler UA, Speicher T, Werner S. Regulation of liver regeneration by growth factors and cytokines. EMBO Mol Med 2010; 2: 294-305

Furutani M, Arii S, Monden K, Adachi Y, Funaki N, Higashitsuji H, Fujita S, Mise M, Ishiguro S, Kitao T. Immunologic activation of hepatic macrophages in septic rats: a possible mechanism of sepsis-associated liver injury. J Lab Clin Med 1994; 123: 430-436

Matsumata T, Yanaga K, Shimada M, Shirabe K, Taketomi A, Sugimachi K. Occurrence of intraperitoneal septica complications after hepatic resections between 1985 and 1990. Surg Today 1995; 25: 49-54

Shigeta H, Nagino M, Kamiya J, Uesaka K, Sano T, Yamaamoto H, Hayakawa N, Kanai M, Nimura Y. Bacteremia after hepatectomy: an analysis of a single-center, 10-year experience with 407 patients. Langenbecks Arch Surg 2002; 387: 117-124

Kaido T, Seto S, Yamaoka S, Yoshikawa A, Imamura M. Perioperative continuous hepatocyte growth factor supply prevents postoperative liver failure in rats with liver cirrhosis. J Surg Res 1998; 74: 173-178

Kosai K, Matsumoto K, Funakoshi H, Nakamura T. Hepatocyte growth factor prevents endotoxin-induced lethal hepatic failure in mice. Hepatology 1999; 30: 151-159

Crary GS, Albrecht JH. Expression of cyclin-dependent kinase inhibitor p21 in human liver. Hepatology 1998; 28: 738-743

O’Reilly MA. Redox activation of p21Cip1/WAF1/Sdi1: a multifunctional regulator of cell survival and death. Antioxid Redox Sign 2005; 7: 108-118

Liu S, Hou W, Yao P, Zhang B, Sun S, Nüssler AK, Liu L. Quercetin protects against ethanol-induced oxidative damage in rat primary hepatocytes. Toxicol In Vitro 2010; 24: 516-522

Seto S, Kaido T, Yamaoka S, Yoshikawa A, Arii S, Nakamura T, Niwano M, Imamura M. Hepatocyte growth factor prevents lipopolysaccharide-induced hepatic sinusoidal endothelial cell injury and intrasinusoidal fibrin deposition in rats. J Surg Res 1998; 80: 194-199

S-Editor Wang YR L-Editor Kerr C E-Editor Zheng XM