Iron plaque formation in the roots of *Pistia stratiotes* L.: Importance in phytoremediation of cadmium

K.S. Tamna, Abin Sebastian, M.N. V. Prasad

Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India, 500046.
Figure S1 Iron plaque formation in *Pistia stratoites* with 200.0 μM FeSO4 at pH 6.5
Figure S2 Appearance of plants treated with various ferric ion salts at pH 6.5 for induction of plaque.
Figure S3 Number of days required for iron plaque formation at different pH
Figure S4 EDS spectra of root of plants without plaque
Figure. S5 EDS spectra of root of plants with plaque
Figure S6 Quantitative estimation of calcium (a) and potassium (b) content in roots *Pistia stratoites*. NP-plants without plaque, P-Plants with plaque.
Figure S7: Iron plaque acted as barrier in the uptake of Safranin dye which resulted in more dye in the solution and hence more absorbance. Abbreviations: NP - plants without plaque, P - Plants with plaque.
Figure S8 FTIR spectra of leaf powder of plants

- Plants without plaque
- Plants without plaque + 50.0 μM CdCl$_2$
- Plants with plaque
- Plants with plaque + 50.0 μM CdCl$_2$
Figure S9: Determination of total phenolic content in roots and leaves of *Pistia stratoites*. NP - plants without plaque, P - plants with plaque.