Abstract: Pin nematodes of the genus *Paratylenchus* are obligate ectoparasites of a wide variety of plants that are distributed worldwide. In this study, individual morphologically vouchered nematode specimens of fourteen *Paratylenchus* species, including *P. aculentus, P. elachistus, P. goodeyi, P. holdemani, P. idalimus, P. microdorus, P. nanus, P. neoamblycephalus, P. straeleni* and *P. veruculatus*, are unequivocally linked to the D2-D3 of 28S, ITS, 18S rRNA and COI gene sequences. Combined with scanning electron microscopy and a molecular analysis of an additional nine known and thirteen unknown species originating from diverse geographic regions, a total of 92 D2-D3 of 28S, 41 ITS, 57 18S rRNA and 111 COI new gene sequences are presented. *Paratylenchus elachistus, P. holdemani* and *P. neoamblycephalus* are recorded for the first time in Belgium and *P. idalimus* for the first time in Europe. *Paratylenchus* is an excellent example of an incredibly diverse yet morphologically minimalistic plant-parasitic genus, and this study provides an integrated analysis of all available data, including coalescence-based molecular species delimitation, resulting in an updated *Paratylenchus* phylogeny and the corrective reassignment of 18 D2-D3 of 28S, 3 ITS, 18S rRNA and 25 COI gene sequences that were previously unidentified or incorrectly classified.

Keywords: D2-D3 of 28S; ITS; 18S; COI; morphology; morphometrics; *Paratylenchus*; plant-parasitic nematodes; phylogeny; taxonomy

1. Introduction

The plant-parasitic nematode (PPN) genus *Paratylenchus* Micoletzky, 1922, commonly known as pin nematodes, are obligate ectoparasites of a wide variety of plants, including herbs, shrubs and trees, that are distributed worldwide and cause various symptoms in their host plants [1–5]. This genus was reviewed by Tarjan [6], who provided the first key to the species. In subsequent years, several attempts were made to split the genus and group its representatives into new genera. The genus *Gracilacus* Raski, 1962, was proposed for members of the *Paratylenchus* species with stylet lengths longer than 48 µm [7]. The validity of *Gracilacus* was supported by Thorne and Malek [8], Raski and Luc [9], Maggenti et al. [10], Raski [11], Esser [12], Andrássy [13] and Yu et al. [14], while Siddiqi [15] treated it as a subgenus of *Paratylenchus*. *Gracilacus* was synonymised with *Paratylenchus* by Brzeski [16], and it was recognized in further works of Siddiqi and Goodey [17], Geraert [18], Brzeski [19], Nguyen et al. [20], Decraemer and Hunt [21], Van den Berg et al. [22], Ghaderi et al. [23],...
Hesar et al. [24] and Maria et al. [25]. The genus *Paratylenchoides* Raski, 1973 was assigned to *Paratylenchus* species with stronger cephalic sclerotisations, dorso-ventrally narrower heads and small narrow rounded protrusions on the anterior surface of conoid lip region [26]. Siddiqi [15] subsequently lowered *Paratylenchoides* to a sub-generic level for *Paratylenchus*, while Raski and Luc [9] synonymised the two genera owing to the apparent lack of morphological differences between them and Siddiqi [2] accepted this. It was proposed that another genus, *Gracilipaurus* Ganguly and Khan, 1990, included four species displaying long stylets and tubercles on the surface of the cuticle [27]. However, Brzeski [19] did not consider cuticular ornamentation as a generic characteristic, a decision that led to the synonymising of *Gracilipaurus*. The monotypic genus *Cacopaurus* Thorne, 1943 was also proposed and distinguished from *Paratylenchus* by the obese female body, tubercles on annuli of the female cuticle and sessile parasitism [28]. Although Goodey [29] synonymised *Cacopaurus* with *Paratylenchus* due to the lack of consistent differential traits—apart from the female of the former sometimes being sessile and slightly swollen—*Cacopaurus* has been, nevertheless, accepted by Raski [7], Raski and Luc [9], Ebsary [30], Raski [11], Brzeski [19], Siddiqi [2], Andrassy [13] and Ghaderi et al. [23,31].

Nematodes of the genus *Paratylenchus* in a broad sense or *sensu lato* are characterised by: small size (<0.7 mm); females being vermiform to obese; C, J or 6 shapes when heat relaxed; two to four lateral lines; cuticle with or without ornamentations; often continuous cephalic regions of rounded to conoid, truncate or trapezoid shapes; protruding or non-protruding submedian lobes; stylet lengths ranging between 10 and 120 µm; well-developed valves of median bulb, slender isthmuses and rounded to pyriform end bulbs in female pharynges; secretory-excretory pores are often at the level between median bulb and end bulb; spermathecae with or without sperm cells; commonly swollen prevulval region; vulvae with or without lateral flaps; presence or absence of a short post-vulval uterine sac; tails ranging from conoid to hemispherical with variable tail termini. The diagnostic traits of juveniles and males are less frequently used for identification, except for looking for the presence of a stylet and looking at the length of the spicules of males.

Recently, Ghaderi et al. [23] recognized 117 species of *Paratylenchus sensu lato* (excluding *Cacopaurus*), six species of * inquirendae* and four of *nomina nuda*. The nominal species were pragmatically divided into eleven groups based on stylet length, number of lateral lines and absence vs. presence of vulval flaps in females. Since then, seven more species of *Paratylenchus* have been described and linked to DNA sequences [14,25,32–36]. Molecular work on this nematode group is gaining momentum and provides an attractive solution to difficulties encountered in species identification, as well as phylogenetic relationships among species. Subbotin et al. [37], Chen et al. [38,39] and van Megen et al. [40] started to molecularly characterise some *Paratylenchus* spp. using the D2-D3 of 28S rRNA, ITS rRNA and 18S rRNA gene sequences, respectively. Lopez et al. [41] used ITS rRNA gene to examine phylogenetic relationships among four nematode genera; two of the included genera were *Paratylenchus* and *Gracilacus*. Van den Berg et al. [22] conducted the first comprehensive phylogenetic study including several *Paratylenchus* spp. by using 58 28S rRNA and 40 ITS rRNA gene sequences. Several other studies provided additional molecular characterisations, phylogenetic analyses and descriptions of new *Paratylenchus* species [14,25,32–36,42–50]. In a study by Hesar et al. [24], 28S rRNA and ITS rRNA gene sequences of several *Paratylenchus* spp. as well as *Cacopaurus pestis* Thorne, 1943, were updated. In addition to providing the first molecular characterisation of *C. pestis*, their phylogenetic analyses based on the two partial gene sequences did not support the monophyly of the genera *Cacopaurus, Gracilacus* and *Gracilipaurus* that were all found embedded within the clade of *Paratylenchus*.

Despite these recent efforts to integrate and include molecular information in species descriptions and species delineations of *Paratylenchus*, several taxonomic challenges still remain. This is often the case in the field of nematology in general, but the genus *Paratylenchus* is a perfect case in point. Most of the traditionally described species are not yet linked to molecular data, numerous sequences that are currently available are not linked to
established species and/or morphological information, sequences are often misplaced and the existence of cryptic species within the genus is common.

Species boundaries in Paratylenchus are sometimes difficult to delimit based solely on morphology because of the limited diagnostic features and morphological plasticity. As of December 2020, only 40 Paratylenchus sensu lato species have been linked to molecular data in the GenBank and this database also includes several putative, new, unidentified and incorrectly classified sequences. These misidentified sequences may result in a cascade of erroneous interpretations, including incorrect morphological identification [51] and flawed interpretations of species identity based on relationships in phylogenetic trees. Cryptic species are also likely to represent a component of Paratylenchus diversity [22]. It is important to note that correct differentiation of species belonging to agricultural nematode pests from its sibling species has gained importance for a number of reasons, including food security, quarantine regulations and nonchemical pest management strategies [52].

The aims of this study are to: (1) provide and update molecular barcodes of several known and unknown Paratylenchus species using four partial sequences—D2-D3 of 28S, ITS and 18S rRNA gene and COI gene of mtDNA; (2) link these molecular data to comprehensive morphological information, including light microscopy (LM) and scanning electron microscopy (SEM) images and morphometrics; (3) reconstruct an updated Paratylenchus phylogeny; (4) provide a molecular species delimitation for all four markers; (5) reassign unidentified and/or incorrectly classified GenBank sequences to the appropriate species.

2. Results

2.1. Species Identification, Characterisation and Delimitation

Ten identified and four unidentified Paratylenchus species, recovered from soil samples collected in Belgium, were morphologically and molecularly characterised. The identified species were Paratylenchus aculentus Brown, 1959, Paratylenchus elachistus Steiner, 1949, Paratylenchus goodeyi Oostenbrink, 1953, Paratylenchus holdemani Raski, 1975, Paratylenchus idalimus (Raski, 1962) Siddiqi and Goodey, 1964, Paratylenchus microdorus Andrassy, 1959, Paratylenchus nanus Cobb, 1923, Paratylenchus neoamblycephalus Geraert, 1965, Paratylenchus straeleni (De Coninck, 1931) Oostenbrink, 1960 and Paratylenchus veruculatus Wu, 1962. The unidentified Paratylenchus spp. were Paratylenchus sp.2, Paratylenchus sp.BE11, Paratylenchus sp.D, and Paratylenchus sp.F. Paratylenchus elachistus, P. holdemani, P. idalimus and P. neoamblycephalus were reported for the first time in Belgium and P. idalimus was recorded for the first time in Europe. Additional sequences of Paratylenchus aquaticus Merny, 1966, Paratylenchus dianthus Jenkins and Tylor, 1956, Paratylenchus hamatus Thorne and Allen, 1950, Paratylenchus leptos Raski 1975, P. nanus, Paratylenchus projectus Jenkins 1956, Paratylenchus shenzhenensis Wang, Xie, Li, Xu, Yu and Wang, 2013, P. straeleni and Paratylenchus tenuicaudatus Wu, 1961 and thirteen unidentified Paratylenchus species that originated from diverse geographic regions are also provided (Table 1). In total, 68 D2-D3 of 28S, 38 ITS, 57 18S rRNA and 84 COI gene sequences were linked to morphological data of the abovementioned ten known and four unknown species collected from Belgium, and 24 D2-D3 of 28S, 3 ITS rRNA and 27 COI gene sequences were added to the other nine known and thirteen unidentified species.
Table 1. List of *Paratylenchus* populations included in this study. Accession numbers of three ribosomal RNA genes (D2-D3 of 28S, ITS and 18S) and a mitochondrial gene (COI) fragments are provided for 18 identified and 14 unidentified *Paratylenchus* species. Accession numbers in italics are ones generated in this study.

Species	Locality	Associated Plant Host	Sample Code	GenBank Accession Numbers	Source			
P. aculentus	Belgium, Ghent, Citadel Park; 51°02′05″ N; 3°43′10″ E	Grasses under a tree	BE9	MW413626- MW413328, MW413358- MW413389, MW413692- MW413693, MW421639- MW421642	C.M. Etongwe			
P. aquaticus	USA, Florida, Princeton	Aechmea sp.	CD3375	MW413557	S.A. Subbotin			
type A	USA, Hawaii, Waimanalo	Bromeliad (Neoregelia sp.)	CD619	KF242239, KF242240, KF242277, KF242278	MW411845, S.A. Subbotin, Van den Berg et al. [22]			
P. aquaticus	USA, Kansas, Manhattan, Waimanalo	Grasses	CD686	KF242241	MW411838, S.A. Subbotin, Van den Berg et al. [22]			
type A	USA, Kansas, Manhattan- Marlatt park	Grasses	CD686	KF242241	MW411838, S.A. Subbotin, Van den Berg et al. [22]			
P. aquaticus	South Africa, Gauteng, Tarlton	Chrysanthemum	CD552	KF242226- KF242229, KF242271, KF242272	Van den Berg, Van den Berg et al. [22]			
P. dianthus	Belgium, Ghent, Ghent University Botanical Garden; 51°2′53″ N; 3°14′20″ E	Leek	BE2	MW413621- MW413622, MW413735, MW413737- MW413739, MW421686	C.M. Etongwe			
P. enigmaticus	Belgium, Ghent, Ghent University Botanical Garden; 51°2′7.63″ N; 3°43′20.07″ E	Wild oregano	BE4	-	MW413732- MW413734, -	C.M. Etongwe		
P. enigmaticus	Belgium, Ghent, Ghent University Botanical Garden; 51°2′7.10″ N; 3°43′19.28″ E	Wild oregano	BE4	-	MW413732- MW413734, -	C.M. Etongwe		
P. enigmaticus	USA, Idaho	Unknown plant	CD2485	MW413568, MW413583	MW411828, S.A. Subbotin			
P. elachistus	Belgium, Kortrijk; 50°47′58″ N; 3°11′37″ E	Grasses under a thorny tree	BE15	MW413629- MW413630, MW413590- MW413593, MW413694- MW413697, MW421643- MW421646	C.M. Etongwe			
P. goodeyi	Belgium, Merendree; 51°04′12″ N; 3°34′37″ E	Grasses around a beech tree	BE22	MW413631- MW413633, MW413594	MW421647- MW421649, C.M. Etongwe			
P. hamatus	USA, California, Merced County, Planada	Fig tree (Ficus carica)	CD1155	KF242212	MW411821, S.A. Subbotin, Van den Berg et al. [22]			
P. hamatus	USA, California	Trees	CD1914	MW413564, MW413585	MW411823, S.A. Subbotin			
Species	Locality	Associated Plant Host	Sample Code	GenBank Accession Numbers	Source			
-----------------	---------------------------------	-----------------------	-------------	---------------------------	--------------------------------			
P. hamatus	USA, California, Kern county	Grape (Vitis sp.)	CD2534a, b	MW413565, MW413566	A. Westphal			
P. hamatus	USA, California, Kern county, Delano	Grape, Cherry	CD3372	MW413558	S.A. Subbotin			
P. hamatus	USA, California, Kern county, Maricopa	Apricot (Prunus sp.)	CD454	KF242206, KF242216, KF242217	S.A. Subbotin, Van den Berg et al. [22]			
P. holdemani	Belgium, Ghent, Blaarmeresen; 51°02'18.9" N; 3°41'17.2" E	Grasses under a tree Fraxinus sp.	AR3	MW413634–MW413635	MW413595, MW413700, MW421658	P.R. Singh, C.M. Etongwe		
P. holdemani	Belgium, Ghent, Blaarmeresen; 51°02'18.9" N; 3°41'17.2" E	Grasses under a tree next to a stream	BE19	MW413639, MW413641	MW413596, MW413702, MW421653–MW421657	C.M. Etongwe		
P. idalimus	Belgium, Ghent, Blaarmeresen; 51°02'18.9" N; 3°41'17.2" E	Grasses under a tree next to a stream	BE19	MW413644	-	-	C.M. Etongwe	
P. idalimus	Belgium, Ghent, Blaarmeresen; 51°02'18.9" N; 3°41'23" E	Grasses under a tree	BE20	MW413643	-	MW413703–MW413704	-	C.M. Etongwe
P. idalimus	USA, California, Napa county, Napa	Grape (Vitis sp.)	CD106	KF242237, KF242238, KF242275, KF242276	MW411839	S.A. Subbotin, Van den Berg et al. [22]		
P. leptos	Ethiopia, Jimma Zone, Gera district	Coffee	Ge16c	MW413645–MW413653	-	-	MW421659–MW421665	A.W. Aseffa
P. microdorus	Belgium, Zwijnaarde; 51°00'19" N; 3°42'11" E	Grasses	BE11	-	MW413597	-	-	C.M. Etongwe
P. microdorus	Belgium, Ghent, Citadel Park; 51°02'05" N; 3°43'10" E	Grasses under a tree	BE9	MW413654–MW413655	MW413598–MW413600, MW413705–MW413706, MW421666–MW421667	C.M. Etongwe		
Table 1. Cont.

Species	Locality	Associated Plant Host	Sample Code	GenBank Accession Numbers	Source		
P. nanus	USA, California, Humboldt county, Trinidad, sample 5B; 41°02'40.6" N; 124°07'18.1" W	Unknown plant	CD3141	MW413576	S.A. Subbotin		
	USA, Washington, Mason County, Skokomish, sample 32B; 47°18'07.0" N; 123°10'95.6" W	Unknown plant	CD3217	MW413575	S.A. Subbotin		
P. nanus	USA, California, Riverside	Grasses	CD728	KF242194, KF242197	S.A. Subbotin, Van den Berg et al. [22]		
	USA, California, Marin county	*Festuca* sp.	CD850	KF242192, KF242193	S.A. Subbotin, Van den Berg et al. [22]		
P. nanus	USA, California, Marin county	Grasses	CD860	KF242191, KF242195	S.A. Subbotin, Van den Berg et al. [22]		
P. nanus	Belgium, Gouvy, Rogery; 50°14'39.8" N; 5°57'21.9" E	Grasses under tree *Trifolium* sp.	AR3	-	P.R. Singh		
P. nanus	Belgium, Zwijnaarde; 51°00'19" N; 3°42'11" E	Grasses under a tree	BE11	MW413658–MW413659	C.M. Etongwe		
P. nanus	Belgium, Ghent, Blaarmeersen; 51°07'14" N; 2°39'29" E	Grasses under a tree	BE18	MW413657	C.M. Etongwe		
P. neoambly- cepalus	Belgium, Ghent, Citadel Park; 51°02'09" N; 3°43'06" E	Cypress tree	BE10	MW413660–MW413663	C.M. Etongwe		
P. neoambly- cepalus	USA, California, Madera county, Madera	Grasses	CD1223	KF242190	S.A. Subbotin, Van den Berg et al. [22]		
Species	Locality	Associated Plant Host	Sample Code	GenBank Accession Numbers	Source		
------------------	---------------------------------	-----------------------	-------------	--------------------------	-------------------------------		
P. projectus	Belgium, Ghent University Botanical Garden; 51°27’.53” N; 3°43’.00.07” E	Leek	BE2	MW413656, MW413605, MW413709–MW413710	C.M. Etongwe		
P. projectus	USA, California, Butte county, Gridley	Walnut (Juglans sp.)	CD137	KF242199, KF242265, KF242266	S.A. Subbotin, Van den Berg et al. [22]		
P. projectus	South Africa, Western Cape, George	Bent grass	CD587	KF242198, KF242200, KF242263, KF242264	Van den Berg, Van den Berg et al. [22]		
P. shenzenensis	USA, Florida, Apopka	Unknown plant	CD2728	MW413579	S.A. Subbotin		
P. straeleni	Belgium, Zwijnaarde; 51°00’.19” N; 3°42’.11” E	Grasses under a tree	BE11	MW413686, MW413623	C.M. Etongwe		
P. straeleni	Belgium, Kortrijk; 50°47’.58” N; 3°11’.37” E	Grasses under a thorny tree	BE15	MW413685, MW413624–MW413625, MW413743–MW413746, MW413708–MW413712	C.M. Etongwe		
P. straeleni	Belgium, Ghent, Blaarmeersen; 51°02’.18.9” N; 3°41’.17.2” E	Grasses under a thorny tree next to a stream	BE19	- , - , -	C.M. Etongwe		
P. straeleni	USA, North Carolina	Unknown plant	CD1433	MW413577	W. Ye		
P. straeleni	USA, California, Monterey county	Oak	CD1775	MW413578	S.A. Subbotin		
P. straeleni	USA, California, Napa county	Tree	CD899	KF242236	S.A. Subbotin, Van den Berg et al. [22]		
P. tenuicaudatus	USA, California, Glenn county, Orland	Prune (Prunus sp.)	CD57	KF242223, KF242225, KF242261, KF242262	S.A. Subbotin, Van den Berg et al. [22]		
P. tenuicaudatus	USA, California, Glenn county, Butte City	Prune (Prunus sp.)	CD61	KF242224, KF242259, KF242260	S.A. Subbotin, Van den Berg et al. [22]		
Species	Locality	Associated Plant Host	Sample Code	GenBank Accession Numbers	Source		
-----------------	-----------------------------------	-----------------------------	-------------	---------------------------	------------		
P. verruculatus	Belgium, Ghent, Blaarmeersen; 51°02′14″ N; 3°41′23″ E	Grasses under a tree	BE20	MW413687–MW413691	C.M. Etongwe		
Paratylenchus sp.2	Belgium, Kortrijk; 50°47′58″ N; 3°11′37″ E	Grasses under a thorny tree	BE15	MW413670–MW413671	C.M. Etongwe		
Paratylenchus sp.2	Belgium, Ghent, Blaarmeersen; 51°02′14″ N; 3°41′23″ E	Grasses under a tree	BE20	-	MW413726- MW413728	C.M. Etongwe	
Paratylenchus sp.2	Kyrgyzstan	Trees and grasses	CD2139	MW413567	S.A. Subbotin		
Paratylenchus sp.2	USA, California, Yolo county, Davis	Grasses under a willow tree	CD604	KF242220–KF242222	MW411825	S.A. Subbotin, Van den Berg et al. [22]	
Paratylenchus sp.3	USA, California, Santa Barbara county, Goleta	Lemon (Citrus sp.)	CD232	KF242231, KF242232	MW411810	S.A. Subbotin, Van den Berg et al. [22]	
Paratylenchus sp.3	USA, Florida	Unknown plant	CD2726	MW413573	MW411820	S.A. Subbotin	
Paratylenchus sp.4	USA, Oregon	Trees	CD986	KF242203	MW411829	S.A. Subbotin, Van den Berg et al. [22]	
Paratylenchus sp.7	USA, California, Riverside, UCR campus	Unknown plant	CD1004	KF242242	MW411830	S.A. Subbotin	
Paratylenchus sp.AH	USA, California, El Dorado county, Placerville, Apple hills, sample N12	Unknown plant	CD1692	MW420921	MW411844	S.A. Subbotin	
Paratylenchus sp.BE11	Belgium, Zwielpoort; 51°00′19″ N; 3°42′11″ E	Grasses under a tree	BE11	MW413672–MW413674	MW413617	MW421687–MW421688	C.M. Etongwe
Paratylenchus sp.CaD	USA, California, El Dorado county, Placerville, Apple hills, sample, N7	Unknown plant	CD1686	MW413561	MW411841	S.A. Subbotin	
Species	Locality	Associated Plant Host	Sample Code	GenBank Accession Numbers	Source		
---------------------	----------------------------------	-----------------------	-------------	---------------------------	-----------------		
Paratylenchus sp.CaD	USA, California, El Dorado county, Placerville, Apple hills, sample N16	Unknown plant	CD1695a, b	MW413560, MW413562, MW413584	S.A. Subbotin		
Paratylenchus sp.CaD	USA, California, El Dorado county, Placerville, Apple hills, sample N20	Unknown plant	CD1696	MW413563	S.A. Subbotin		
Paratylenchus sp.CaD	USA, California, Yolo county, Putah Creek	Rubus sp.	CD1791	MW413559	S.A. Subbotin		
Paratylenchus sp.D	Belgium, Ghent, Blaarmeersen; 51°02'14" N; 3°41'23" E	Grasses under a tree	BE20	MW413664– MW413669, MW413611– MW413614, MW413719– MW413723, MW412689– MW412699	C.M. Etongwe		
Paratylenchus sp.Dia	USA, California, Contra Costa County, Mount Diablo State Park	Unknown plant	CD1776	MW413574	S.A. Subbotin		
Paratylenchus sp.F	Belgium, Ghent, Blaarmeersen; 51°07'14" N; 2°39'29" E	Grasses under a tree	BE18	- MW413728	C.M. Etongwe		
Paratylenchus sp.F	Belgium, Merendree; 51°04'12" N; 3°34'37" E	Grasses around a beech tree	BE22	MW413675– MW413679, MW413618– MW413620, MW413727, MW413729– MW413731, MW412700– MW412702	C.M. Etongwe		
Paratylenchus sp.F	Russia, Primorsky Krai, Olginisky district	Unknown plant	CD1842, CD1844	MW413571, MW413572	J. Zograf		
Paratylenchus sp.Ge16	Ethiopia, Jimma Zone, Gera district	Coffee	Ge16c	MW413680– MW413682	C.M. Etongwe		
Paratylenchus sp.J	USA, Washington, Mason County, Skokomish, sample 32E; 47°18'07.0" N; 123°10'95.6" W	Unknown plant	CD3216	MW413570	S.A. Subbotin		
Table 1. Cont.

Species	Locality	Associated Plant Host	Sample Code	GenBank Accession Numbers	Source
Paratylenchus sp.J	USA, Oregon, Douglas County, Oakland, sample 35; 43°28'59.9" N 123°19'24.5" W	Unknown plant	CD3220	MW413569 - - -	S.A. Subbotin
Paratylenchus sp.NL	The Netherlands, Hilversum	Holly NL	MW413683– MW413684 -	MW413740– MW413742	G. Karssen
Paratylenchus sp.SK	South Korea	Pinus sp.	CD1384	MW413580 - -	S.A. Subbotin

2.1.1. *Paratylenchus aculentus*

Females (Sample BE9; Figure 1, Table 2): Heat relaxed specimens open C- to J-shape. Lateral field with three lateral lines. Deirids not observed (not necessarily an indication that they are absent). Cephalic region rounded, low, sometimes appearing slightly truncated, submedian lobes not protruded. Stylet 52–61 µm long, cone 80–91% of stylet length, knobs 2–4 µm across. Pharynx well developed, about one-third of body length. Secretory-excretory pore between median bulb and isthmus level. Spermapheca rounded to slightly oval and filled with sperm cells. Preprevulval swelling not prominent. Vulval flaps very small and can be visible under LM. Vulval located at 71–76% of body length from anterior end. Vagina straight to slightly oblique, reaching to almost half of body width. Anus obscure. Tail 18–25 µm long, tapers gradually to a finely or bluntly rounded terminus.

Molecular characterisation: Three D2-D3 of 28S, two ITS, two 18S rRNA and four COI gene sequences were generated without intraspecific sequence variations. The D2-D3 of 28S and the 18S sequences, respectively, were found to be similar to KP966492 (99% similarity; 4 out of 544 bp difference) and KP966494 (100% similarity; 800 bp) of *P. colinus* from Iran after Hesar et al. [24].

Remarks: Males were not found. Female morphology and morphometrics matched very well with *P. aculentus*. This species has been reported earlier in Belgium [53]. Although the D2-D3 and 18S sequences pointed towards *P. colinus*, the current population had no cuticular ornamentations present in the anterior part of the body and female bodies were not swollen and submedian lobe protrusions were not seen, which are important characteristics for *P. colinus*. According to Ghaderi et al. [23], *P. aculentus* is part of Group 9 of the *Paratylenchus* species with stylet lengths longer than 40 µm, three lateral lines and absence of vulval flaps. Here, we confirm the presence of small vulval flaps in *P. aculentus*, clearly supported by SEM. This was also an observation originally made by Brzeski [19]. *Paratylenchus aculentus* should, therefore, be placed in Group 8 with *P. colinus* and *P. idalimus*; furthermore, the close affinity of our *P. aculentus* population with *P. colinus* is also molecularly supported by the very conserved 18S rRNA gene fragment.
Figure 1. Light and scanning electron microscopy images of *Paratylenchus aculentus* females: (A) face view; (B,D,E) anterior region; (C,J) total body; (G) vulva region; (F,H,I) tail region.
Table 2. Female morphometrics of *Paratylenchus aculentus*, *Paratylenchus goodeyi*, *Paratylenchus idalimus* and *Paratylenchus straeleni* from fixed specimens mounted in glycerine. All measurements except for ratios and percentages are given in μm and in the form mean ± stdev (range).

Population	*P. aculentus* (BE9)	*P. goodeyi* (BE22)	*P. idalimus* (BE19 and BE20)	*P. straeleni* (BE15)
n	12	17	7	11
L	266 ± 20.1 (233–03)	348 ± 42.5 (266–452)	299 ± 20.7 (278–332)	358 ± 13.1 (330–379)
a	19.6 ± 2.0 (16.3–23.2)	20.7 ± 1.7 (16.7–23.2)	21.0 ± 1.3 (20–23)	22.6 ± 0.9 (20.7–24.3)
b	2.6 ± 0.1 (2.4–2.8)	3.2 ± 0.3 (2.9–3.7)	2 ± 0.2 (2.0–2.4)	3.6 ± 0.1 (3.4–3.7)
c	12.4 ± 1.5 (10.8–15.2)	11.9 ± 1.4 (10.1–13.5)	12.1 ± 0.6 (12.1–13.1)	10.6 ± 1.0 (8.9–11.8)
Maximum body width	13.6 ± 1.3 (11.6–15.5)	17.0 ± 3.3 (13.0–27.0)	14.0 ± 1.4 (13.0–16.1)	15.9 ± 0.7 (14.6–16.7)
Stylet length	56.0 ± 3.3 (52.4–61.2)	52.1 ± 2.8 (47.0–58.6)	89.0 ± 3.5 (84.1–93.0)	55.7 ± 1.7 (53.5–58.6)
Cone length	49.1 ± 3.6 (43.0–54.9)	43.0 ± 2.7 (48.2–48.5)	78.0 ± 2.9 (74.0–83.1)	44.7 ± 1.7 (42.2–47.4)
Cone%stylet	87.5 ± 3.8 (80.1–91.0)	82.4 ± 2.5 (78.0–89.6)	88.0 ± 2.2 (83–89)	80 ± 1.8 (76–83)
Knob width	3.2 ± 0.5 (2.3–4.0)	4.1 ± 0.6 (3.3–5.2)	4.0 ± 0.2 (4.0–4.3)	3.9 ± 0.4 (3.1–4.6)
Pharynx length	101 ± 8.3 (87.0–113)	109 ± 11.7 (92.7–133)	130 ± 12.8 (114–147)	100 ± 3.8 (92.1–105)
Anterior end to SE pore	66.7 ± 5.2 (54.3–74.4)	80.7 ± 8.6 (68.5–99.0)	95.0 ± 11.7 (82.0–115)	82.5 ± 2.9 (79.4–87.6)
SE pore%L	25.2 ± 0.9 (23.3–26.4)	22.9 ± 1.4 (21.0–25.8)	31 ± 4.2 (28–40)	23.0 ± 0.7 (22–24)
Anterior end to vulva	193 ± 16.1 (165–218)	279 ± 31.9 (216–356)	233 ± 17.9 (214–260)	270 ± 18.8 (249–330)
V%	72.5 ± 1.5 (70.8–75.7)	80.1 ± 1.4 (77.8–82.3)	78.0 ± 0.9 (77–79)	81 ± 1.9 (80–84)
Body width at anus	7.6 ± 0.5 (7.0–8.3)	9.7 ± 0.5 (9.7–10.0)	7.0 ± 0.1 (7.0–7.1)	10.1 ± 0.4 (9.1–10.5)
Tail length	20.9 ± 2.3 (18.1–25.1)	29.0 ± 2.4 (25.8–32.1)	25.0 ± 2.2 (22.0–28.1)	34.4 ± 3.7 (31–40.8)

2.1.2. *Paratylenchus elachistus*

Females (Sample BE15; Figure 2, Table 3): Heat relaxed specimens open C- to J-shape. Lateral field with four lateral lines. Deirids visible under SEM. Cephalic region conical-rounded to sometimes truncated. *En face* square-shaped, showing poorly developed submedian lobes, two pronounced lateral ridges and small indistinct dorso-ventral ridges around oral opening, two slit-like amphidial openings laterally. Stylet 20–22 μm long, cone 61–68% of stylet length and knobs 3–4 μm across. Pharynx well developed, about one-fourth of body length. Hemizonid commonly above secretory-excretory pore about two body annuli long. Secretory-excretory pore between mid-isthmus and end bulb level. Spermatheca rounded to oval and filled with sperm cells. Vulval flaps rounded, prominent. Vulva located at 80–83% of body length from anterior end. Vagina oblique, reaching to half of body width. Tail 21–29 μm long, conical, thin and terminus from spicate to pointed or minutely rounded.

Molecular characterisation: Two D2-D3 of 28S, four ITS, four 18S rRNA and four COI gene sequences were generated for the first time from this species without intraspecific sequence variations.

Remarks: Males were not found. This species is reported for the first time in Belgium and has only been recorded in Poland and Slovakia before in Europe [19,54,55]. Female morphology and morphometrics agree well with the original description [56] and also with descriptions of other populations [19,31]. *Paratylenchus elachistus* can be separated from its closest species, *Paratylenchus minutus*, Lindford in Lindford, Oliveira & Ishii, 1949, by a longer body length (0.23–0.34 mm vs. 0.19–0.31 mm), a more robust and longer stylet (19–25 μm vs. 15–21 μm) and a more slender tail, commonly with spicate to finely rounded tail termini.
Figure 2. Light and scanning electron microscopy images of *Paratylenchus elachistus* females: (A,B) face view; (C,D,G–I) anterior region; (E,F) vulva region; (J) total body; (K–Q) tail region; arrows pointed to deirid in (J) and spermatheca in (M).
Plants 2021, 10, 408

Female morphometrics of *Paratylenchus elachistus*, *Paratylenchus holdemani*, *Paratylenchus microdorus* and *Paratylenchus veruculatus* from fixed specimens mounted in glycerine. All measurements except for ratios and percentages are given in µm and in the form mean ± stdev (range).

Population	*P. elachistus* (BE15)	*P. holdemani* (AR3)	*P. microdorus* (BE9)	*P. veruculatus* (BE20)
n	24	31	10	15
L	301 ± 12.5 (283–329)	359 ± 47 (285–475)	330.7 ± 20 (297–355)	286 ± 24.7 (251–331)
a	20.4 ± 1.1 (17.7–22.6)	20.9 ± 1.9 (16.4–25.2)	21.4 ± 1.4 (18.7–23.1)	19.8 ± 1.9 (17.2–23.3)
b	4.1 ± 0.2 (3.8–4.3)	4.1 ± 0.7 (2.2–5.1)	5.0 ± 0.5 (4.5–6.2)	3.8 ± 0.3 (3.3–4.2)
c	12.1 ± 0.9 (10.9–14.3)	14.8 ± 1.4 (12.4–17.7)	10.6 ± 0.9 (9.2–12)	17.8 ± 1.8 (14.6–20.6)
c’	2.8 ± 0.2 (2.4–3.3)	2.5 ± 0.3 (2.1–3.2)	3.8 ± 0.5 (2.8–4.5)	2.2 ± 0.2 (1.8–2.6)
Maximum body width	14.8 ± 1.0 (12.7–16.6)	17.3 ± 3.0 (11.3–23.8)	15.5 ± 1.4 (13.3–17.1)	14.5 ± 1.4 (12.5–16.5)
Stylet length	20.9 ± 0.7 (19.7–22.2)	22.5 ± 2.0 (19.0–26.1)	12.4 ± 1.3 (10.6–14.7)	14.2 ± 0.5 (13.1–14.8)
Cone length	13.3 ± 0.4 (12.4–13.9)	15.1 ± 1.1 (13.2–18.5)	6.7 ± 1.3 (4.8–8.1)	8.9 ± 0.3 (8.3–9.3)
Cone%stylet	63.7 ± 1.5 (60.5–67.5)	67.3 ± 3.5 (60.9–77.4)	53.4 ± 5.7 (45.3–60.4)	62.8 ± 1.1 (60.3–64.8)
Knob width	3.5 ± 0.2 (3.1–4.1)	3.3 ± 0.4 (2.9–4.2)	3.1 ± 0.3 (2.7–3.5)	
Pharynx length	74.5 ± 2.6 (70.4–80.6)	89.7 ± 21.5 (66.1–161)	66.6 ± 6.4 (56.2–76.1)	75.8 ± 7.0 (60.8–88.4)
Anterior end to SE pore	60.7 ± 3.9 (54.0–68.5)	74.8 ± 9.1 (60.1–99.0)	63.6 ± 4.7 (57.5–71.3)	62.3 ± 6.5 (51.2–74.4)
SE pore%L	20.1 ± 0.9 (18.6–21.9)	21.2 ± 1.8 (16.4–23.7)	19.2 ± 1.1 (17.3–20.6)	21.8 ± 2.0 (17.5–25.6)
Anterior end to vulva	245 ± 10.2 (226–269)	303 ± 40.9 (238–391)	245 ± 22.0 (215–284)	
V%	81.3 ± 0.9 (79.7–83.2)	84.3 ± 1.8 (81.3–90.5)	81 ± 1.6 (79.1–82.8)	85.7 ± 1.4 (83.8–89.7)
Body width at anus	8.9 ± 0.7 (7.5–9.9)	10.0 ± 1.3 (7.2–12.3)	8.5 ± 1.3 (6.8–10.8)	7.3 ± 0.6 (6.3–8.8)
Tail length	24.8 ± 2.2 (20.9–29.1)	25.2 ± 2.8 (20.0–29.5)	31.8 ± 3.1 (28.1–35.9)	16.1 ± 1.7 (13.6–19.1)

2.1.3. Paratylenchus goodeyi

Females (Sample BE22; Figure 3, Table 2): Heat relaxed specimens C- to J-shape. Lateral field with four lateral lines. Deirids observed under LM. Cephalic region conical-rounded, submedian lobes not protruding except in two freshly killed specimens where small protrusions were seen under LM. Stylet 47–59 µm long, cone 78–90% of stylet length, stylet guide faintly seen, knobs 3–5 µm across. Pharynx well developed, about one-third of body length. Secretory-excretory pore around median bulb level. Spermatheca oval to elongate, filled with sperm cells. Vulval flaps present. Vulva located at 78–82% of body length from anterior end, in one female a short post-vulva sac observed. Vagina oblique and reaching to two-third of body width. Tail 26–32 µm long, conoid with variable terminus from finely rounded to bluntly rounded and rarely pointed.

Molecular characterisation: Three D2-D3 of 28S, one ITS, two 18S rRNA and three COI gene sequences were generated for the first time for this species without intraspecific sequence variations.

Remarks: Males were not found. Females morphology and morphometrics agree well with former *P. goodeyi* descriptions [18,19,57]. This species was originally described from the Netherlands and has been reported from many European countries, including Belgium. *Paratylenchus goodeyi* is one of the 22 species of the Group 10 of *Paratylenchus* after Ghaderi et al. [23] with stylet length more than 40 µm, four lateral lines and presence of vulval flaps. This species is comparable to other members of the group namely *Paratylenchus ivorenensis* Luc & de Guiran, 1962, *Paratylenchus pandatus* (Raski, 1976) Siddiqi, 1989 and *P. straeleni* with females having more or less conical-rounded heads, stylet lengths in the range 40–61 µm (except for *P. pandatus* for which, a stylet length up to 68 µm was rarely reported). However, the vulvae of *P. goodeyi* and *P. straeleni* are located more posteriorly (77–88%) than that of the other two species (70–78%); *P. ivorenensis* and *P. goodeyi* have been reported with variable tail termini, while *P. pandatus* and *P. straeleni* have been found usually with finely rounded to sub-acute female tail termini.
2.1.4. *Paratylenchus holdemani*

Females (Sample AR3; Figure 4, Table 3): Heat relaxed specimens C- to J-shape. Lateral field with four lateral lines. Deirids not observed. Cephalic region slightly truncated, submedian lobes not protruded. *En face* showing four small submedian lobes, four irregular ridges around oral opening, slit-like lateral amphidial openings. Stylet 19–26 μm long, cone 61–77% of stylet length, knobs 3–4 μm across. Pharynx well developed, about one-fourth of body length. Secretory-excretory pore commonly between mid-isthmus and end bulb level. Spermatheca rounded, filled with sperm cells. Vulval flaps prominent. Vulva located at 81–90% of body length from anterior end. Vagina oblique and reaching to two-third of body width. Tail 20–30 μm long, conoid with regularly finely rounded to sometimes bluntly rounded or digitate terminus.
Figure 4. Light and scanning electron microscopy images of Paratylenchus holdemani females: (A,F) face view; (B–D,G,H) anterior region; (E,I) total body; (J–O) tail region; arrow pointed to deirid in (E).
Males: Two males were obtained from Sample AR3 and one from Sample BE20. Their conspecificity with the females was confirmed by identical D2-D3 of 28S rRNA and COI gene sequences identified from the AR3 and BE20 males, respectively. The males had an average stylet length of approximately 12 µm and spicule length of 21 µm.

Molecular characterisation: Three D2-D3 of 28S, one 18S rRNA and three COI gene sequences were generated from the AR3 females, whereas two D2-D3 of 28S, one ITS, one 18S rRNA and four COI gene sequences were generated from the BE20 females. No sequence from either population showed any intraspecific variations. The D2-D3 sequences were found to be identical to *P. bukowinensis* sequences that originated from Italy [37] and Belgium [47]; however, morphological data for these populations are not available for comparison and both are considered here as representatives of *P. holdemani*.

Remarks: This species has been reported for the first time in Belgium and has only been reported in the Czech Republic in Europe [19]. The morphology and morphometrics of the AR3 population agree well with the original description [58] and with the population from the Czech Republic [19]. Although our D2-D3 sequences were identical to a *P. bukowinensis* sequence (AY780943), the female morphology of this Belgian population is different from *P. bukowinensis* descriptions. Most importantly, the average stylet length (22.5 µm) of our population is shorter than for many previously reported *P. bukowinensis* populations. In addition, the cephalic region of *P. bukowinensis* is more rounded than that of *P. holdemani*. *Paratylenchus holdemani* is comparable to *P. hamatus* and *Paratylenchus baldaccii* Raski, 1975, but is distinguishable from both species by a shorter stylet length of 22.5 ± 2.0 (19–26) µm vs. always above 26 µm. In this study, greater variation in the tail termini was observed in our *P. holdemani* population compared to the other two species.

2.1.5. *Paratylenchus idalimus*

Females (Samples BE19 and BE20, two nearby localities; Figures 5 and 6, Table 2): Heat relaxed specimens J- or open C-shape. Lateral field with three lateral lines. Deirids not observed. Cephalic region conical-truncate, submedian lobes well developed and protruding. Stylet 84–93 µm long of which 83–89% is cone, prominent stylet guide, knobs about 4 µm across. Pharynx well developed, occasionally reaching up to half of body length. Secretory-excretory pore around level of stylet knobs which is above median bulb level. Spermatheca small, rounded, usually filled with sperm cells. Vulval lips slightly protruding. Vulval flaps reduced and small, sometimes easily overlooked. Vulva located at 77–79% of body length from anterior end. Vagina oblique, often reaching to two-third of body width. Anus obscure. Tail 22–28 µm long, conoid with subacute to finely rounded terminus.

Molecular characterisation: Two identical D2-D3 of 28S and two identical 18S rRNA gene sequences were generated from the BE20 population, whereas one D2-D3 sequence, identical to that of the BE20 sequence, was generated from the BE19 population. These sequences were generated for the first time for this species.

Remarks: Males and swollen females were not found. Only one juvenile was recorded from the BE20 population with a stylet length of 42 µm. This is the first time the species has been reported in Europe. Female morphology and morphometrics based on seven females from both populations (three from BE19 and four from BE20) agree well with the description of the slender female by Raski [7] in the USA. This species and *P. colinus* are the only two members of Group 8 of *Paratylenchus* [23]. It differs from *P. colinus* in having a longer stylet (84–93 µm vs. 56–72 µm), more pronounced protrusion of submedian lobes, slightly posterior position of vulva (77–79% vs. 69–78%) and absence vs. presence of cuticular ornamentation in anterior body.
Figure 5. Light microscopy images of *Paratylenchus idalimus* females from sample BE19: (A) total body; (B–D) anterior region; (E–G) lateral field and tail region; arrow pointed to secretory–excretory pore in D.
Figure 6. Light microscopy images of *Paratylenchus idalimus* females from sample BE20: (A,F) total body; (B–E) anterior region; (G–J) tail region.

2.1.6. *Paratylenchus microdorus*

Females (Sample BE9; Figure 7, Table 3): Body small, heat relaxed specimens open C- to 6-shape. Lateral field with four lateral lines. Deirids not observed. Cephalic region conical-truncate, submedian lobes sometimes slightly protruding. *En face* showing four submedian lobes and slit-like lateral amphidial openings. Stylet 11–15 µm long, cone 45–60% of stylet length. Pharynx about one-fifth of body length. Secretory-excretory pore between mid-isthmus and end bulb level. Spermaticca rounded, empty or filled with sperm cells. Vulval flaps prominent. Vulva located at 79–83% of body length from anterior end. Vagina oblique, reaching to half of the body width. Post-vulval uterine sac not seen. Tail 28–36 µm long, conoid and terminus pointed to subacute to sometimes finely rounded.
Molecular characterisation: Three D2-D3 of 28S, three ITS, four 18S rRNA and three COI gene sequences were generated without intraspecific variability; the ITS and the COI sequences are new for this species. Only 300 bp of the D2-D3 sequences were found to be homologous with four *P. microdorus* sequences from Germany (MF325254–MF325257; 98% similarity; 5 bp difference). The 18S rRNA sequences are 98–99% similar with *P. microdorus* from the Netherlands (AY284632 and AY284633; 8–15 out of 880 bp difference).

Remarks: Males were not found. Female morphologies and morphometrics agree well with the original description [59] and other populations [16,31], except for a slightly shorter stylet length (11–15 µm vs. 13–18 µm). Wide variations in the tail termini have been reported for this species [31]. However, for the BE9 population, finely rounded to subacute female tail termini were commonly observed. This species is comparable to *Paratylenchus recisus* Siddiqi, 1996, *Paratylenchus variabilis* Raski, 1975 and *P. veruculatus*, with
a female stylet length within 11–17 µm, four lateral lines, presence of vulval flaps, secretory–excretory pore at the posterior part of pharynx and vulva located at 78–87% of body length. However, they differ from each another in having conical-truncate heads with sometimes slightly protruded submedian lobes in *P. microdorus*, broadly rounded to truncated head with central swallow depression in *P. recisus*, rounded to almost hemispherical head in *P. variabilis* and low and broadly rounded head in *P. veruculatus*. Only *P. microdorus* and *P. veruculatus* males have been reported to have weak stylets, while stylets in the males of the other two species are degenerated.

2.1.7. *Paratylenchus nanus*

Females (Sample BE11; Figure 8, Table 4): Heat relaxed specimens open C- to J-shape. Lateral field with four lateral lines. Deirids not observed. Cephalic region conical-rounded, in some specimens with sloping sides to rounded end, submedian lobes not protruding under LM. *En face* square shaped, revealing four submedian lobes, four distinct ridges around oral opening, lateral ridges slightly larger than dorso-ventral ridges, and two slit-like lateral amphidial openings. Stylet 27–31 µm long, cone 67–78% of stylet length and knobs 3–5 µm across. Pharynx well developed, about one-fourth of body length. Hemizonid just above secretory-excretory pore, about two body annuli long. Secretory-excretory pore between isthmus and end bulb level. Spermatheca rounded and filled with sperm cells. Vulval flaps present. Vulva located at 82–86% of body length from anterior end. Vagina oblique, reaching up to half of body width. Tail 19–26 µm long, conoid, often more pronounced curvature on dorsal side ending with sub-acute to finely rounded terminus.

Molecular characterisation: Seven D2-D3 of 28S, four ITS, four 18S rRNA and seven COI gene sequences were generated without any intraspecific sequence variations among four *P. nanus* populations—AR3, BE1, BE11 and BE18. The D2-D3 and the ITS sequences were, respectively, identical to KF242194, KF242197 and KF242267, KF242268 of *P. nanus* from Van den Berg et al. [22].

Remarks: Only in the BE11 population was a sufficient number of females recovered to allow morphological and morphometrical data comparisons, which agreed well with the original description [60] and subsequent descriptions of *P. nanus* [19,22,58]. Van den Berg et al. [22] reported two sibling species of *P. nanus* with different genotypes—type A and type B (the latter of which was recently transferred to *P. projectus*) [61]. This correction suggests that the available 28S (MN720102–MN720103) and COI (MN734387 and MN734388) sequences of *P. nanus* from South Korea [48] were misidentified as they were found to be identical to the *P. projectus* sequences. *Paratylenchus nanus* is very similar to *P. projectus* and *P. neoamblycephalus*. It differs from *P. projectus* in having a conical-rounded vs. more trapezoid head shape and sperm-filled vs. empty spermatheca. It is differentiated from *P. neoamblycephalus* by more rounded vs. oval spermathecae and a conoid tail with pronounced curvature on the dorsal side ending with a subacute or finely rounded terminus vs. a conoid tail with subacute terminus or almost acute tip. Furthermore, in our study we also observed that the ridges around the oral opening of the freshly killed specimens protruded more in *P. neoamblycephalus* compared to *P. nanus* when observed under LM.
Figure 8. Light and scanning electron microscopy images of *Paratylenchus nanus* females: (A,E,F,L) face view; (B,D,G,H,J,K,M) anterior region; (I) total body; (N,O,P–U) tail region.
Table 4. Female morphometrics of *Paratylenchus nanus*, *Paratylenchus neoamblycephalus*, *Paratylenchus* sp.2, *Paratylenchus* sp.D and *Paratylenchus* sp.F from fixed specimens mounted in glycerine. All measurements except for ratios and percentages are given in µm and in the form mean ± stdev (range).

Population	*P. nanus* (BE11)	*P. neoamblycephalus* (BE10)	*Paratylenchus* sp.2 (BE15)	*Paratylenchus* sp.D (BE20)	*Paratylenchus* sp.F (BE22)
n	30	15	16	11	17
L	318 ± 15.8	337 ± 20.2	347 ± 20.7	328 ± 36.1	300 ± 21.1
(287–352)	(301–367)	(308–389)	(201–287)	(191–244)	(18.4–23.0)
a	18.1 ± 1.3	18.4 ± 1.0	23.2 ± 1.8	21.5 ± 1.6	20.3 ± 1.3
(15.6–20.4)	(16.8–19.9)	(20.1–28.7)	(19.1–24.4)	(18.4–23.0)	
b	3.9 ± 0.3 (3.5–4.8)	4.3 ± 0.5 (3.4–4.9)	3.9 ± 0.3 (3.5–4.4)	3.6 ± 0.3 (3.3–4.1)	4.0 ± 0.3 (3.7–4.6)
(14.8 ± 1.3)	(14.6 ± 1.5)	(13.2 ± 0.7)	(14.5 ± 1.4)	(12.9 ± 0.8)	(11.8–14.0)
c	(12.8–16.8)	(12.9–16.6)	(12.3–14.4)	(12.0–15.8)	(11.8–14.0)
c’	2.0 ± 0.2 (1.7–2.6)	2.2 ± 0.2 (1.9–2.4)	3.1 ± 0.2 (2.9–3.5)	2.7 ± 0.3 (2.5–3.2)	2.6 ± 0.2 (2.3–2.9)
Max. body width	17.6 ± 1.2	18.3 ± 1.4	15.1 ± 1.3	15.3 ± 2.2	14.8 ± 1.1
(15.4–20.5)	(16.8–20.7)	(13.2–16.8)	(13.2–19.9)	(13.3–16.6)	
Stylet length	28.8 ± 1.2	33.4 ± 0.9	28.4 ± 1.5	27.5 ± 1.0	27.6 ± 1.2
(26.7–31.2)	(32.0–34.3)	(26.5–31.4)	(25.7–28.9)	(25.3–29.6)	
Cone length	20.2 ± 1.4	22.6 ± 0.9	19.2 ± 1.0	17.7 ± 0.8	18.5 ± 0.9
(17.7–23.4)	(21.4–24.5)	(17.5–20.8)	(17.0–19.2)	(17.1–20.3)	
Cone%stylet	70.1 ± 3.6	67.8 ± 2.8	67.5 ± 2.0	64.3 ± 2.0	67.1 ± 1.3
(64.9–78.5)	(63.0–72.5)	(64.4–71.2)	(60.7–67.3)	(65.2–69.5)	
Knob width	3.9 ± 0.4 (3.1–4.6)	4.8 ± 0.2 (4.4–5.1)	4.1 ± 0.3 (3.5–4.7)	4.0 ± 0.3 (3.5–4.6)	3.6 ± 0.3 (3.3–4.1)
Pharynx length	81.6 ± 5.4	79.7 ± 9.1	88.2 ± 4.1	89.6 ± 7.3	74.8 ± 4.9
(65.4–91.1)	(65.7–93.8)	(78.0–96.7)	(76.0–104)	(67.7–83.1)	
Ant. end to SE	65.7 ± 6.0	63.9 ± 4.7	72.3 ± 4.5	74.6 ± 6.8	63.0 ± 5.4
pore	(54.7–75.0)	(52.2–70.0)	(64.2–90.0)	(66.7–90.2)	(51.5–70.6)
SE pore%L	20.6 ± 1.4	19.0 ± 1.5	20.8 ± 1.3	23.6 ± 0.9	21.0 ± 1.6
(17.0–22.5)	(15.8–21.7)	(19.4–23.5)	(22.1–24.8)	(18.6–24.2)	
Ant. end to vulva	270 ± 18.8	275 ± 15.0	286 ± 17.1	270 ± 27.9	217 ± 17.2
(249–330)	(247–296)	(252–313)	(239–320)	(217–278)	
V%	83.8 ± 1.1	81.9 ± 0.9	82.2 ± 0.8	83.7 ± 1.0	82 ± 0.7 (80.9–83.5)
(81.7–85.7)	(80.7–83.8)	(81.2–83.5)	(81.8–85.2)	(81.8–85.2)	
Body width at	10.9 ± 0.9	10.6 ± 0.8	8.6 ± 0.7 (7.6–9.8)	8.0 ± 0.6 (7.3–8.7)	9.0 ± 0.6 (8.0–9.9)
anus	(9.3–12.6)	(9.4–12.0)	(8.0–12.0)	(8.3–13.0)	(8.5–13.0)
Tail length	21.7 ± 1.9	23.2 ± 2.6	26.1 ± 2.0	22.0 ± 3.0	23.1 ± 2.4
(18.9–25.5)	(20.2–27.8)	(23.0–28.7)	(18.0–25.6)	(20.2–26.5)	

2.1.8. *Paratylenchus neoamblycephalus*

Females (Sample BE10; Figure 9, Table 4): Heat relaxed specimens open C-shape. Lateral field with four lateral lines. Deirids clearly visible on SEM images. Cephalic region truncated-rounded, submedian lobes sometimes very slightly protruding under LM. *En face* showing four rounded to oval submedian lobes, four ridges around oral opening, lateral ridges thicker than dorso-ventral ridges and seen as a protruding bi-lobed structure under LM. Stylet 32–34 µm long, cone 63–73% of stylet length, knobs 4–5 µm across. Pharynx about one-fourth of body length. Secretory-excretory pore between mid-isthmus and end bulb level, with swellings sometimes seen at the duct near the opening in freshly killed specimens. Spermataeca oval and filled with sperm cells. Vulval flaps present. Vulva located at 81–84% of body length from anterior end. Vagina oblique and reaching up to half of body width. Tail 20–28 µm long, conoid and terminating to sub-acute to almost acute tip.
Figure 9. Light and scanning electron microscopy images of Paratylenchus neoamblycephalus females: (A,C) face view; (B) total body; (D–H) anterior region; (I–O) tail region; arrows pointed to secretory-excretory pore in (H) and deirid in (G).

Males: Two males were obtained with very thin stylets in freshly killed specimens, which were not visible after fixation, and spicules of 24 µm long. Their conspecificity with the females was confirmed by identical COI and D2-D3 sequences.

Molecular characterisation: Four D2-D3 of 28S, five ITS, six 18S rRNA and eight COI gene sequences were generated without intraspecific sequence variations. The 18S and the COI sequences are new for this species. The D2-D3 sequences were found to be identical to
KF242189 and KF242190 of an unidentified *Paratylenchus* sp. 6 from the USA [22], which is considered here as *P. neoamblycephalus*. However, the D2-D3 sequences were only 89% similar (79 out of 710 bp difference) with MG925221 and 92% similar (43 out of 546 bp difference) with MK506807 of *P. neoamblycephalus* from the USA and Iran, and named here as type A and type B, respectively. Interestingly, we observed 17 ambiguous nucleotide sites in the American *P. neoamblycephalus* type B sequence, which was found to be similar to *P. projectus* (previously *P. nanus* type B; KF242198–KF242201; 98% similarity; 16–20 out of 690 bp difference) after Van den Berg et al. [22,61]. On the other hand, the Iranian *P. neoamblycephalus* sequence [22] was similar to *P. nanus* (KF242194 and KF242197; 95% similarity; 27 out of 575 bp difference) [22]. Furthermore, our ITS sequences were only 74% similar (222 out of 865 bp difference) to MK506794 of *P. neoamblycephalus* type A generated from the same Iranian population.

Remarks: This species is reported for the first time in Belgium. Female morphology and morphometrics agree well with the original description from Germany [18] and to subsequent descriptions from Poland [19]. *Paratylenchus neoamblycephalus* is very similar to *P. nanus* and a comparison is provided above.

2.1.9. *Paratylenchus straeleni*

Females (Sample BE15; Figure 10, Table 2): Heat relaxed specimens J- to C-shape. Lateral field with four lateral lines. Deirids clearly visible under SEM. Cephalic region conical-rounded to sometimes slightly truncated, submedian lobes not protruded. Stylet straight to slightly curved, 54–59 µm long, cone 76–83% of stylet length, knobs 3–5 µm across. Pharynx roughly one-fourth of body length. Secretory-excretory pore between isthmus and end bulb level. Spermatheca rounded to sometimes slightly ovoid and filled with sperm cells. Vulval flaps distinct. Vulva located at 80–84% of body length from anterior end. Vagina oblique, occasionally reaching to two-third of body width. Tail conical, 31–41 µm long, and terminus sharply pointed to minutely rounded.

Males: Two males were recovered without stylets and with spicule lengths of 20 and 22 µm, respectively. Their conspecificity with the females was confirmed by identical COI sequences.

Molecular characterisation: One D2-D3 of 28S, two ITS (99% similarity; 4 out of 830 bp difference), three identical 18S rRNA and five identical COI gene sequences were generated from the BE15 population. From another population (BE11), single D2-D3, ITS and 18S sequences and three identical COI sequences were also generated. All the sequences from both populations showed no intraspecific variation, except for the ITS sequences. The 18S sequences were 99% similar (3–5 out of 930 bp difference) with *P. straeleni* from the Netherlands (AY284630 and AY284631). The D2-D3 sequences were 97–99% similar (11–18 out of 700 bp difference) with four *P. straeleni* sequences—i.e., MK506804 from Iran [24], KM875547 from Turkey [42], and KF242235 and KF242236 from the USA [22]. The COI sequences were generated for the first time for this species. Remarkably, the Belgian ITS sequences were only 62% similar (295 bp difference) to the Iranian *P. straeleni* sequence (MK506791) of Hesar et al. [24].

Remarks: Female morphology and morphometrics agree well with the original description, also from Belgium [62], and subsequent descriptions of globally distributed *P. straeleni* populations [31]. This species is comparable to *P. goodeyi* as described above.
Figure 10. Light and scanning electron microscopy images of *Paratylenchus straeleni* females: (A) whole body; (B,D) face view; (C,G–J) anterior region; (E) vulva region; (F,K,L) tail region; (M) total body; arrows pointed to deirids in (A,C).
2.1.10. *Paratylanchus veruculatus*

Females (Sample BE20; Figure 11, Table 3): Heat relaxed specimens open C-shape to slightly ventrally curved. Lateral field with four lateral lines. Deirids not observed. Cephalic region broadly rounded, submedian lobes not protruding. *En face* rectangular with indistinct submedian lobes, four irregular ridges around oral opening and lateral amphidial openings. Stylet 13–15 \(\mu m\) long, cone 60–65% of stylet length, knobs about 3 \(\mu m\) across. Pharynx roughly one-fourth of total body length. Hemizonid two body annuli long, usually visible just above secretory-excretory pore. Secretory-excretory pore between mid-isthmus and end bulb level. Spermatheca rounded and filled with sperm cells, young females with empty spermatheca also seen. Vulval flaps prominent. Vulva located at 84–90% of body length from anterior end. Vagina oblique and long, reaching up to three-fourth of body width. Tail 14–19 \(\mu m\) long, conoid with often broadly rounded to sometimes finely rounded terminus.

Figure 11. Light and scanning electron microscopy images of *Paratylanchus veruculatus* females: (A–C) face view; (D–G) anterior region; (H,O) total body; (I–N) lateral field and tail region.
Molecular characterisation: Five D2-D3 of 28S (99% similarity; 1–2 out of 720 bp difference) and two identical 18S rRNA and seven COI gene (97–100% similarity; 12–13 out of 410 bp difference) sequences were generated for the first time for this species.

Remarks: Female morphology and morphometrics agree well with the original description [63] and with other populations [19,31]. This species is comparable to other species with a short stylet such as *P. microdorus*, *P. recisus* and *P. variabilis* (see also above).

2.1.11. *Paratylenchus* sp.2

Females (Sample BE15; Figure 12, Table 4): Heat relaxed specimens open C-shape. Lateral field with four lateral lines. Deirids observed under SEM. Cephalic region conical-rounded, sometimes slightly trapezoid, submedian lobes not protruding under LM. *En face* square-shaped, showing four rounded, poorly separated submedian lobes, four ridges around oral opening, lateral ridges more prominent and larger than dorso-ventral ridges. Stylet 27–31 µm long, cone 64–71% of stylet length, knobs about 4 µm across. Pharynx well developed, about one-fourth of body length. Hemizonid just above secretory-excretory pore, about two body annuli long. Secretory-excretory pore between mid-isthmus and end bulb level. Spermatheca rounded to occasionally slightly ovoid, filled with sperm cells. Vulval flaps prominent. Vulva located at 81–84% of body length from anterior end. Vagina oblique, reaching up to two-third of body width. Tail 23–29 µm long, conoid, slender and terminating with finely rounded tip.

Molecular characterisation: Two identical sequences each of D2-D3 of 28S, ITS, 18S rRNA as well as the COI gene were generated. The D2-D3 and ITS sequences were found to be, respectively, identical to KF242220 and KF242221 and 99% similar (five out of 750 bp difference) to KF242243 of *Paratylenchus* sp.2, which was identified as a member of the *P. hamatus* species complex [22]. The 18S and COI sequences were generated for the first time.

Remarks: Males were not found. The female morphology and morphometrics are in agreement with the description of *P. hamatus* [64]. Based on morphology and D2-D3 and ITS sequences, Van den Berg et al. [22] considered *P. hamatus* as a species complex containing several species, including *P. hamatus sensu stricto* collected from the type locality, and *Paratylenchus* sp.1 and *Paratylenchus* sp.2, collected from other places in California. *Paratylenchus* sp.1 is identified as representative of *P. tenuicaudatus*. *Paratylenchus* sp.2 is morphologically similar with *P. hamatus sensu stricto* but differs based on D2-D3 and ITS sequences [22], and this species appears to be not only present in the USA (California) but also in Belgium and Kyrgyzstan.
Figure 12. Light and scanning electron microscopy images of *Paratylenchus* sp.2 females: (A,B) face view; (C) total body; (D–I) anterior region; (J–O) tail region; arrows pointed at deirids in (C,I).

2.1.12. *Paratylenchus* sp.BE11

Females (Sample BE11; *n* = 3; Figure 13): Body about 0.3 mm long with maximum body width of about 15 µm, heat relaxed specimens open C- to 6-shape. Lateral field with four lateral lines. Deirids not observed. Head broadly rounded, submedian lobes not protruded, cephalic sclerotization strong. Stylet about 15 µm long, cone 60% of stylet length, knobs 3 µm across. Pharynx about one-fourth of body length. Secretory-excretory pore at the
level of pharyngeal end bulb or about 70 µm from anterior end. Spermatheca rounded and filled with sperm cells. Vulval flaps small and rounded. Vulva located at 80–82% of body length from anterior end. Tail 25–32 µm, conoid with bluntly rounded tip.

Figure 13. Light microscopy images of *Paratylenchus* sp.BE11 females: (A) total body; (B–E) anterior region; (F–H) tail region; (I) total body; (J) lateral field.

Molecular characterisation: Three identical D2-D3 of 28S, one ITS rRNA and two identical COI gene sequences were generated.
Remarks: No males were found. Female description is based on only three freshly killed specimens, while sufficient specimens are needed for a comprehensive species characterisation. The female morphology is close to *P. variabilis*, *P. veruculatus* and *Paratylenchus vexans* Thorne and Malek, 1986. These four species have more or less broadly rounded heads with non-protruding submedian lobes, stylet lengths in the range of 12–18 μm, four lateral lines, sperm-filled spermathecae, vulval flaps and conoid tails with more or less rounded termini. However, our population appears to have a stronger cephalic sclerotisation and slightly more anteriorly located vulvae (80–82% vs. 80–87%) compared to the other three species. This species is a sister to *P. microdorus* in the D2-D3 tree (96% similarity; 27 out of 740 bp difference), ITS tree (93% similarity; 37 out of 530 bp difference) as well as the COI tree (91% similarity; 36 out of 420 bp difference). It can, however, be readily morphologically distinguished from *P. microdorus* (see above).

2.1.13. *Paratylenchus* sp.D

Females (Sample BE20; Figure 14, Table 4): Heat relaxed specimens open C-shape. Lateral field with four lateral lines. Cephalic region conical-rounded to sometimes slightly trapezoid, submedian lobes not protruding under LM. Deirids visible under SEM. En face showing four well-separated rounded submedian lobes and four ridges around oral opening. Stylet 26–29 μm long, cone 61–67% of stylet length, knobs about 4 μm across. Pharynx about one-fourth of body length. Hemizonid just above secretory-excretory pore, about two body annuli long. Secretory-excretory pore between mid-isthmus and end bulb level. Spermatheca empty. Vulval flaps prominent, commonly rounded. Vulva located at 82–85% of body length from anterior end. Vagina oblique reaching up to half of body width. Tail 18–26 μm long, conoid with finely rounded to bluntly rounded terminus, sometimes dorsally sinuate.

Molecular characterisation: Seven D2-D3 of 28S (99% similarity; one out of 730 bp difference), four ITS, five 18S rRNA and eleven COI gene sequences were generated without intraspecific sequence variation.

Remarks: Males were not found. The female morphology and morphometrics is close to *P. projectus* and *Paratylenchus neoprojectus* Wu and Hawn, 1975. The cephalic region of females were seen with both rounded to trapezoid shape, secretory-excretory pore located between mid-isthmus to end bulb level, empty spermatheca and tail termini which fit both the above two species. However, the molecular data appears to be different from any available sequences including that of *P. projectus*. A comparative study of this species with type specimens of *P. neoprojectus* and its molecular information should further confirm whether or not this species is *P. neoprojectus*.
Figure 14. Light and scanning electron microscopy images of *Paratylenchus* sp.D females; (A,G,H) face view; (B–F,M,N) anterior region; (I,L) total body; (J,K,O–Q) tail region; arrow pointed to deirid in L.

2.1.14. *Paratylenchus* sp.F

Females (Sample BE22; Figure 15, Table 4): Heat relaxed specimen open C- to 6-shape. Lateral field with four lateral lines. Deirids present. Cephalic region conical-truncate, slightly rounded in few specimens, submedian lobes not protruding under LM. *En face* square-shaped, showing four rounded submedian lobes, four ridges around oral opening, dorso-ventral ridges much larger than the lateral ridges, slit like amphidial apertures laterally. Stylet 25–30 µm long, cone 65–70% of stylet length, knobs about 4 µm across. Pharynx about one-fourth of body length. Hemizonid just above secretory-excretory pore,
about two body annuli long. Secretory-excretory pore between mid-isthmus and end bulb level. Spermatheca oval to elongated and filled with sperm cells. Vulval flaps rounded to oval and very prominent. Vulva located at 81–84% of body length from anterior end. Vagina oblique, reaching up to two-third of body width. Tail 20–26 µm long, conoid with regularly bluntly rounded terminus.

Figure 15. Light and scanning electron microscopy images of *Paratylenchus* sp.F females: (A–C) face view; (D,E,L,M,P,Q) anterior region; (F,G) vulva region; (H–K,O,R–T) tail region; (N) total body.
Males: Heat relaxed specimen curved slightly ventrally, about the same body length as females but slightly slender. Cephalic region conoid and rounded. Stylet and pharynx degenerated. Secretory-excretory pore at about one-fifth of body length from anterior end. Spicule arcuate ventrally, about 21.5 µm in length. Gubernaculum 3–5 µm long. Tail conical with finely rounded tip. Conspecificity of males with females was confirmed by identical D2-D3, 18S and ITS sequences.

Molecular characterisation: Five D2-D3 of 28S, three ITS, four 18S rRNA and three COI gene sequences were generated without intraspecific sequence variations. The D2-D3, 18S and COI sequences were found to be identical, respectively, to MN783707, MN783708, MN783668–MN783670 and MN782407–MN782413 of *Paratylenchus* sp.F [47], while the ITS sequences were generated for the first time.

Remarks: Specimens belong to the same population as *Paratylenchus* sp.F in Etongwe et al.’s work [47]. Detailed morphological reanalysis revealed very close similarity to *P. nanus*. Nevertheless, the submedian lobes of this species appear to be somewhat more rounded than that of *P. nanus* based on SEM images and the vulval flaps also appear to be more pronounced and rounded compared to that of the latter. However, these characteristics need careful additional observations based on more specimens from both species. All four gene sequences of *Paratylenchus* sp.F were closest to the sequences of *P. elachistus* and phylogenetic analysis revealed their highly supported (PP > 90%) sister relationship. However, this species is morphologically different from *P. elachistus en face*, with rounded vs. poorly differentiated submedian lobes, stylet lengths of 25–30 µm vs. 20–22 µm and bluntly rounded vs. spicate to pointed tail termini.

2.2. Phylogenetic and Species Delimitation Analysis

The D2-D3 domains of the 28S rRNA gene alignment (744 bp long) included 128 sequences of 31 *Paratylenchus* species and three outgroup species. Forty-nine new sequences were included in this analysis. The Bayesian 50% majority rule consensus tree inferred from the analysis of the D2-D3 alignment contained three highly supported major clades and a weakly supported one (Figure 16, PP < 70%). The molecular species delimitation based on the generalized mixed-yule coalescent (GMYC) and Poisson tree process (bPTP) methods revealed 66 and 63 putative species, respectively, a result that is largely congruent with former species delineations. However, *P. projectus*, *P. straeleni*, *P. minor* and *P. shenzhenensis* were further divided into 6, 5 (four according to bPTP), 2 and 2 separate lineages, respectively.

The ITS rRNA gene alignment (995 bp long) included 99 sequences of 37 *Paratylenchus* species and three outgroup species. Thirty-six new sequences were included in this analysis. The Bayesian 50% majority rule consensus tree inferred from the analysis of the ITS alignment contained four highly supported major clades (Figure 17). Results of molecular species delimitation showed a high discrepancy between the models used—i.e., 48 putative species based on GMYC vs. 56 species based on bPTP. Additionally, molecular species delimitation based on the GMYC and bPTP methods did not correspond to species demarcation based on morphology and clade support; for example, virtually all individual sequences of *P. chongqingensis* and *P. shenzhenensis* were delineated as separate species.
Figure 16. Phylogenetic relationships within populations and species of *Paratylenchus*, as inferred from Bayesian analysis using the D2-D3 of 28S rRNA gene sequence dataset with the GTR + I + G model. Posterior probability of more than 70% is given for the appropriate clades. Newly obtained sequences are indicated in bold. \(^1\) = originally identified as *P. nanus*, \(^2\) = originally identified as *P. bukowinensis*, \(^3\) = originally identified as *Paratylenchus* sp., \(^4\) = originally identified as *Paratylenchus* sp.8, \(^5\) = originally identified as *Paratylenchus* sp.E, \(^6\) = originally identified as *Graclacus* sp. \(^7\) = originally identified as *Paratylenchus* sp.5 and \(^8\) = originally identified as *Paratylenchus* sp.6. Black and grey bars represent species boundaries estimated by generalized mixed-yule coalescent (GMYC) and Poisson tree process (bPTP) methods, respectively (only differences with GMYC provided).
Figure 17. Phylogenetic relationships within populations and species of *Paratylenchus* as inferred from Bayesian analysis using the ITS rRNA gene sequence dataset with the GTR + I + G model. Posterior probability more than 70% is given for appropriate clades. Newly obtained sequences are indicated in bold. 1 = originally identified as *P. nanus* and 2 = originally identified as *Paratylenchus* sp. Black and grey bars represent species boundaries estimated by GMYC and bPTP methods, respectively.

The 18S rRNA gene alignment (899 bp long) included 88 sequences of 31 *Paratylenchus* species and two outgroup species. Fifty-four new sequences were obtained for this study. The Bayesian 50% majority rule consensus tree inferred from the analysis of the partial 18S sequence alignment contained four highly supported major clades (Figure 18). Molecular species delimitation failed to delimit well established species—for example *P. goodeyi*, *P. veruculatus*, *P. nanus* and *P. neoamblycephalus* were identified as belonging to the same species. Furthermore, both models provided highly varied results (14 putative species according to GMYC vs. 26 according to bPTP), reducing the confidence in said results.
Figure 18. Phylogenetic relationships within populations and species of *Paratylenchus*, as inferred from Bayesian analysis using the 18S rRNA gene sequence dataset with the GTR + I + G model. Posterior probability more than 70% is given for appropriate clades. Newly obtained sequences are indicated in bold. ¹ = originally identified as *P. dianthus* and ² = originally identified as *P. nanus*. Black and grey bars represent species boundaries estimated by GMYC and bPTP methods, respectively.

The COI gene alignment (745 bp long) included 130 sequences of 31 *Paratylenchus* species and three outgroup species. Seventy-one new sequences were included in this analysis. The Bayesian 50% majority rule consensus tree inferred from the analysis of the COI sequence alignment contained four moderate (Figure 19, PP = 70–90%) or highly supported major clades. Both employed species delineation methods, GMYC and bPTP, provided exactly the same 54 putative species delineations. These results were largely consistent with those obtained using other methods. However, *P. enigmaticus*, *P. microdorus* and *P. veruculatus* were subdivided into different species despite these sequences originating from the same population and their corresponding D2-D3 sequences being similar.
Paratylenchus straeleni was appointed as a species complex with nine putative species. Statistical parsimony networks showing the phylogenetic relationships between different isolates of P. straeleni and P. enigmaticus based on COI sequences are given in Figure 19B,C. The maximum variation of sequences for P. straeleni was found to be 9.1%.

Taking both morphological and molecular evidence together, we have been able to reassign a total of 49 Paratylenchus sequences, including 18 D2-D3 of 28S, 3 ITS, 3 18S rRNA and 25 COI gene sequences, to their appropriate species (Table 5). However, we cannot exclude that in future, the identification of Paratylenchus species made in this study may be improved in light of new datasets.

Table 5. List of some existing unidentified or incorrectly classified Paratylenchus sequences on the GenBank reassigned to corrected species. In total, 18 D2-D3 of 28S, 3 ITS, 3 18S rRNA and 25 COI gene sequences have been reassigned.

Gene	GenBank Accession No.	Linked Species	Country of Origin	Reference	Reassigned Species Name	
D2-D3	MN437514	Gracilacus sp.	Myanmar	Du, Y. (Unpublished)	P. sinensis	
D2-D3	AY760943	P. bukowinensis	Italy	Subbotin et al. [37]	P. holdemani	
D2-D3	MN088372	P. bukowinensis	Iran	Mirbabaei et al. [46]	P. holdemani	
D2-D3	MN783703	P. bukowinensis	Belgium	Etongwe et al. [47]	P. holdemani	
D2-D3	AY760944	Paratylenchus sp.	Italy	Subbotin et al. [37]	P. tenuicaudatus	
D2-D3	MH166807	Paratylenchus sp.	China	Fan et al. (Unpublished)	P. lepidus	
D2-D3	KF242223	Paratylenchus sp.1	USA	Van den Berg et al. [22]	P. tenuicaudatus	
D2-D3	KF242224	Paratylenchus sp.1	USA	Van den Berg et al. [22]	P. tenuicaudatus	
D2-D3	KF242225	Paratylenchus sp.1	USA	Van den Berg et al. [22]	P. tenuicaudatus	
D2-D3	KF242237	Paratylenchus sp.5	USA	Van den Berg et al. [22]	P. idalimius	
D2-D3	KF242338	Paratylenchus sp.5	USA	Van den Berg et al. [22]	P. minor	
D2-D3	KT258978	Paratylenchus sp.	China	Liu et al. (Unpublished)	P. neoamblycephalus	
D2-D3	KF242189	Paratylenchus sp.6	USA	Van den Berg et al. [22]	P. neoamblycephalus	
D2-D3	KF242190	Paratylenchus sp.6	USA	Van den Berg et al. [22]	P. straeleni	
D2-D3	KF242233	Paratylenchus sp.8	USA	Van den Berg et al. [22]	P. straeleni	
D2-D3	KF242234	Paratylenchus sp.8	USA	Van den Berg et al. [22]	P. straeleni	
D2-D3	MN783711	Paratylenchus sp.8	Belgium	Etongwe et al. [47]	P. straeleni	
D2-D3	MN783712	Paratylenchus sp.E	Belgium	Etongwe et al. [47]	P. microdorus	
ITS	KT258979	Paratylenchus sp.	China	Liu et al. (Unpublished)	P. minor	
ITS	KF242260	Paratylenchus sp.1	USA	Van den Berg et al. [22]	P. tenuicaudatus	
18S	KF242259	Paratylenchus sp.1	USA	Van den Berg et al. [22]	P. tenuicaudatus	
18S	AJ966496	P. dianthus	Belgium	Meldal et al. [65]	P. enigmaticus	
18S	KJ636435	P. nanus	The Netherlands	Van Megen et al. (Unpublished)	Paratylenchus sp.F	
18S	KY119503	P. nanus	Ireland	Ortiz et al. [66]	Munawar et al. (Unpublished)	Paratylenchus sp.
COI	MF770960	Gracilacus sp.	USA	(Unpublished)	P. straeleni	
COI	MN710983	Gracilacus sp.	USA	Powers et al. [49]	P. straeleni	
COI	MN710984	Gracilacus sp.	USA	Powers et al. [49]	P. straeleni	
COI	MN711354	Paratylenchus sp.	USA	Powers et al. [49]	P. straeleni	
COI	MN711355	Paratylenchus sp.	USA	Powers et al. [49]	P. hamatus	
COI	MN711356	Paratylenchus sp.	USA	Powers et al. [49]	P. hamatus	
COI	MN711357	Paratylenchus sp.	USA	Powers et al. [49]	P. hamatus	
COI	MN711358	Paratylenchus sp.	Canada	Powers et al. [49]	P. straeleni	
COI	MN711359	Paratylenchus sp.	Canada	Powers et al. [49]	P. straeleni	
COI	MN711360	Paratylenchus sp.	Canada	Powers et al. [49]	P. straeleni	
COI	MN711363	Paratylenchus sp.	USA	Powers et al. [49]	P. straeleni	
COI	MN711367	Paratylenchus sp.	Ireland	Powers et al. [49]	P. straeleni	
COI	MN711368	Paratylenchus sp.	Ireland	Powers et al. [49]	P. straeleni	
COI	MN711369	Paratylenchus sp.	Ireland	Powers et al. [49]	P. straeleni	
COI	MN711374	Paratylenchus sp.	USA	Powers et al. [49]	P. straeleni	
COI	MN711375	Paratylenchus sp.	Canada	Powers et al. [49]	P. straeleni	
COI	MN711376	Paratylenchus sp.	Canada	Powers et al. [49]	P. straeleni	
COI	MN711377	Paratylenchus sp.	Poland	Powers et al. [49]	P. holdemani	
COI	MN711378	Paratylenchus sp.	Canada	Powers et al. [49]	P. enigmaticus	
COI	MN711380	Paratylenchus sp.	Canada	Powers et al. [49]	P. straeleni	
COI	MN711364	Paratylenchus sp.	Ireland	Powers et al. [49]	P. straeleni	
COI	MN711365	Paratylenchus sp.	Ireland	Powers et al. [49]	P. straeleni	
COI	MN782401	Paratylenchus sp.8	Belgium	Etongwe et al. [47]	P. straeleni	
COI	MN782404	Paratylenchus sp.B	Belgium	Etongwe et al. [47]	P. straeleni	
COI	MN782405	Paratylenchus sp.B	Belgium	Etongwe et al. [47]	Paratylenchus sp.D	
COI	MN782406	Paratylenchus sp.E	Belgium	Etongwe et al. [47]	P. microdorus	
Figure 19. (A). Phylogenetic relationships within populations and species of *Paratylenchus*, as inferred from Bayesian analysis using the COI gene sequence dataset with the GTR + I + G model. Posterior probability more than 70% is given for appropriate clades. Newly obtained sequences are indicated in bold. 1 = originally identified as *Paratylenchus* sp., 2 = originally identified as *P. nanus*, 3 = identified as *Paratylenchus* sp. E, 4 = originally identified as *Gracilacus* sp., 5 = originally identified as *Paratylenchus* sp. 8, 6 = originally identified as *Paratylenchus* sp. B; (B). Statistical parsimony network showing the phylogenetic relationships between COI haplotypes for *P. straeleni*; (C). Statistical parsimony network showing the phylogenetic relationships between COI haplotypes for *P. enigmaticus*. Pies (circles) represent the sequences with the same haplotype and their size is proportional to the number of these sequences in the samples. Numbers of nucleotide differences between the sequences are indicated on lines connecting the pies. Small black circles represent missing haplotypes. Bars represent species boundaries estimated by both GMYC and bPTP methods (identical results).
3. Discussion

The genus *Paratylenchus sensu lato*, with 124 valid species, is an important plant-parasitic group consisting of several commonly occurring and economically important species such as *P. bukowinensis, P. dianthus, P. hamatus, P. nanus, P. neoamblycephalus* and *P. projectus*, which are difficult to separate solely based on morphology [14,23,25,31–36]. Female morphological traits are the most commonly used features for the identification of *Paratylenchus* populations, with the relative lengths of stylet cones and the positions of the secretory-excretory pores and vulvae as the most informative traits [31,67], while several ratios such as a, c and c’ show high intraspecific variation. Given the limited species-specific female traits, some characteristics of males and juveniles—such as the presence or absence of stylet and male spicule length—may also be used to supplement the available data. However, care must be taken—for example, the occasional observance of a thin stylet in freshly killed juveniles or males that was invisible once the specimens were fixed highlights the importance of reporting this characteristic from both freshly killed and fixed specimens. Further complicating *Paratylenchus* taxonomy is the presence of mixture of species within one locality and sample [31]—an observation which calls for precaution concerning the conspecificity of several life stages. Indeed, the presence of multiple species in a soil sample was amply illustrated in our study. Seventy five percent of our investigated soil samples contained multiple species, with up to five different *Paratylenchus* species present in the same sample. This is, to the best of our knowledge, one of the highest numbers of species of one plant-parasitic nematode genus present in a single soil sample. More suitable morphological characters such as ridges around the oral opening or distinct to fused submedian lobes in face view also appear to be usefully informative but were only clearly revealed in our study with supporting evidence from SEM; additionally, the small vulval flaps in *P. aculentus* confirmed in this study have often been overlooked in previous studies under LM. Scanning electron microscopy is known to be important in nematode taxonomy [68–70], and this is especially true for the genus *Paratylenchus* as demonstrated in this study.

Nevertheless, even if all existing morphological tools are carefully employed, it remains impossible for all *Paratylenchus* species to be morphologically delineated, owing to the existence of cryptic species such as *P. aquaticus* [22]. The extensive use of new molecular data in the current study has demonstrated a remarkable molecular diversity in *Paratylenchus*, with several additional cryptic species being potentially present. The most obvious example is *P. straeleni*, which comprises 9, 5 and 4 putative species according to COI-(both GMYC and bPTP), D2-D3 (GMYC) and D2-D3 (bPTP)-based molecular species delimitation methods, respectively. It is noteworthy that the *P. straeleni* COI sequences have clearly clustered according to geographical location, as revealed by the COI haplotype network. The problems of morphologically delineating the *Paratylenchus* species have been further demonstrated in our study by the difficulties experienced in distinguishing between *Paratylenchus* sp.2, *Paratylenchus* sp.D and *Paratylenchus* sp.F, which were found to be very similar to *P. hamatus, P. projectus/P. neoprojectus* and *P. nanus*, respectively. A formal description with an appropriate diagnosis can only be developed for these putative new species following detailed observations of additional specimens and a thorough comparison with type materials of the known species.

Taken together, it is abundantly clear that molecular data are essential in advancing *Paratylenchus* taxonomy. Unfortunately, the several sequences published for *Paratylenchus* have serious limitations. One such issue is that the majority of the available D2-D3, 18S and ITS rRNA sequences have either not been linked to morphological data or have been associated with poor morphological data, thereby rendering them unreliable for use in identification purposes. For example, sequences of *P. aculentus, P. leptos, P. microdorus, P. neoamblycephalus*, etc., are not currently linked to reliable and clear morphological data and any subsequent identification based on these sequences may, therefore, lead to the deposition of further sequences under incorrect names [51]. An additional problem identified with the currently available 18S sequences, which are often relatively short (700–800 bp), is
that several *Paratylenchus* species were detected with almost identical sequences. It is clear that to render these conserved sequences useful, complete or nearly complete lengths of the 18S rRNA gene (1600–1800 bp) will be required to allow species delimitation [71–74].

In the present study, we have also applied DNA-based species delimitation approaches to infer putative species boundaries on a given phylogenetic input, based on two different models [75,76] and four gene fragments (D2-D3 of 28S, ITS, 18S rRNA and *COI*). These coalescence-based species delimitation methods are rapidly gaining popularity in studies on closely related species that are difficult to distinguish based on phenotypic features, and have been applied to various euca ryotic groups [77,78]. However, despite plant-parasitic nematodes being a morphologically minimalistic group par excellence, such methods have been rarely applied to this group; nevertheless, they appear to be largely congruent with traditional methods [79–81]. Conversely, we have observed a remarkable discrepancy among the genes used, showing a poor link between DNA species delimitation and other methods, including a discrepancy between the employed models. The ITS and 18S rRNA genes gave, respectively, a likely overestimation and underestimation of the number of putative species, while for *COI* and D2-D3 of 28S rRNA genes, we observed, to a certain extent, an agreement with traditional methods, albeit with a likely overestimation of the number of species in several cases. This was not unexpected, as it has been exemplified by several studies that methods of species delimitation based on the coalescent model tend to overestimate phylogenetic lineages [52,77,82]. Both approaches (bPTP and GMYC) are similar in the fact that they identify significant changes in the pace of branching events on the tree. However, GMYC uses time to identify branching rate transition points, whereas, in contrast, bPTP directly uses the number of substitutions. Based on real and simulated data, both methods yield, in general, similar results [76,83]. This is the case for our COI-based output (identical results) and the D2-D3-based output (two differences, bPTP being more conserved). If differences have been observed, bPTP usually yields a more conservative delimitation than GMYC [76,80,83]. This is contrary to our unexpected ITS and 18S results and reduces the trust in the latter. Counterintuitively, the mutation rate of a chosen marker does not have a direct influence on its effectiveness to detect species. Mitochondrial markers reveal clearer discontinuities between interspecific divergence and intraspecific variation because of their faster coalescence within species lineages compared with nuclear loci, not necessarily because of their higher mutation rates [84,85]. The discrepancy between ITS and other delimitation methods in this study agrees with previous observations pointing to an unclear transition between species-level and population-level genetic distance for ITS [78]. Furthermore, it has been indicated that species delimitation based on single gene trees has serious limitations due to gene tree-species tree incongruence—confusions caused by processes including incomplete lineage sorting, trans-species polymorphism, hybridisation and introgression [78]. Multilocus approaches provide a posteriori double-check for contamination, sequencing errors or mitochondria-specific pitfalls [86]—for example, the high *COI* gene sequence variations within *P. enigmaticus*, *P. microdorus* and *P. veruculatus* observed in this study, despite these sequences originating from the same population. Although both nuclear and mitochondrial sequences were provided consistently from the same morphologically vouchered individuals, this study was restricted to the use of only single-locus data since only a limited number of other *Paratylenchus* individuals (and plant-parasitic nematodes in general) are linked to the same two genes. A further rigorous acquisition of both D2-D3 of 28S and *COI* gene sequences, which appear most promising for species delimitation in plant-parasitic nematodes (see [74]), will allow for more substantiated coalescence-based, multilocus species delimitation in plant-parasitic nematodes. Nevertheless, based on all obtained evidence, our findings support the proposition of Puillandre et al. [87], Padial et al. [88] and Qing et al. [80], that DNA-based species delimitation methods are important tools for the exploration of species delineation in diverse groups, but that identification of any new putative species will require further corroboration by an integrative taxonomic approach.
4. Materials and Methods

4.1. Nematode Populations

Nematode samples used in this study were collected from various localities (Table 1). Bulk soil samples of about 500 mL from 15–20 cm depths were collected from twelve locations in Belgium using a shovel. They were subsequently stored at 4 °C until nematode extraction. Nematodes were extracted from soil using a modified Baermann’s method [89] or a rapid centrifugal flotation method [90]. Nematode extracts were observed under a stereo microscope. *Paratylenchus* populations were picked out in an embryo glass dish and stored in tap water at 4 °C for further analysis.

4.2. Morphological Study

Morphological study of nematodes was carried out using both heat relaxed and fixed specimens mounted on temporary and permanent slides, respectively. For preparation of a temporary mount of a nematode, a Cryo-Pro label (VWR International) was cut into two halves and stuck at the centre of a glass slide creating a small parallel gap between them. A single nematode was then transferred in a drop of distilled water to the glass slide in the centre of the gap. The nematode was then heat relaxed by passing over a flame a few times and covered with a glass coverslip. The specimen was then examined, photographed and measured using an Olympus BX51 DIC Microscope (Olympus Optical, Tokyo, Japan), equipped with an Olympus C5060Wz camera [91]. After recording morphological data, the specimen was recovered from the slide by adding a few drops of water from one end of the gap and collecting the nematode that was flushed out on the other end of the gap. The recovered specimens were subsequently used to extract genomic DNA as described in the next section.

A small nematode suspension of the remaining nematodes was heated in an embryo glass dish with a few drops of Trump’s fixative ((2% paraformaldehyde, 2.5% glutaraldehyde in 0.1 M Sorenson buffer (sodium phosphate buffer at pH = 7.5)) in a microwave (700 Watts) for 3–4 sec and leaving it at room temperature for 1 h and at 4 °C for 24 h and followed by gradually transferring to anhydrous glycerine, as described in Singh et al. [92]. The fixed specimens were then mounted in glycerine on glass slides and were studied as above using the camera-equipped microscope. Species identification was carried out both at Nematology Research Unit of Ghent University and National Plant Protection Organization, Wageningen, the Netherlands.

For scanning electron microscopy, specimens fixed in Trump’s fixative were washed in 0.1 M phosphate buffer (pH = 7.5) and dehydrated in a graded series of ethanol solutions, critical point-dried with liquid CO₂, mounted on stubs with carbon tabs (double conductive tapes), coated with gold of 25 nm, and photographed with a JSM-840 EM (JEOL) at 12 kV [92].

4.3. Extraction of DNA, PCR and Sequencing

Genomic DNA was extracted from individual heat relaxed nematode specimen, which had been morphologically vouchedered. The cuticle of the specimen was punctured using a fine entomological pin mounted on a thin bamboo stick, which was also used as nematode picking tool and the nematode was subsequently transferred to a PCR tube with 20 µL of worm lysis buffer (50 mM KCl, 10 mM Tris at pH = 8.3, 2.5 mM MgCl₂, 0.45% NP 40 (Tergitol Sigma), 0.45% Tween 20) and incubated at −20 °C (at least 10 min). This was followed by adding 1 µL proteinase K (1.2 mg/mL), incubation at 65 °C (1 h) and 95 °C (10 min) and ending by centrifuging the mixture at 14,000 rpm for 1 min [92]. Genomic DNA from a single nematode was used to amplify four DNA fragments—D2-D3 of 28S, partial ITS and partial 18S rRNA gene and partial COI gene of mtDNA. PCR and sequencing were completed in two laboratories: Nematology Research Unit, Gent University, Belgium and Nematology lab, Plant Pest Diagnostic Center, CDFA, Sacramento, California, USA. For PCR amplifications of the D2-D3 of 28S, ITS and 18S rRNA gene sequences, the primer pairs D2A: 5’-ACA AGT ACC GTG AGG GAA AGT TG-3'/D3B: 5’-TCC TCG GAA GGA
ACC AGC TAC TA-3′ [93], Vrain2F: 5′-CTT TGT ACA CAC CGC CCG CTG CT-3′/Vrain2R: 5′-TTT CAC TCG CCG TTA CTA AGG GAA TC-3′ [94] or TW81: 5′-GTT CCC GTA GGT GAA CTC GC-3′/AB28: 5′-ATA TGC TTA AGT TCA GCG GGT-3′ [95], and SSU18A: 5′-AAA GAT TAA GCC ATG CAT G-3′/SSU26R: 5′-CAT TCT TGG CAA ATG CTT TCG-3′ [96] were used, respectively, with thermal profiles described by Singh et al. [97] and Tahna Maafi et al. [98]. Partial COI gene was amplified using the primer pairs JB3: 5′-TTT TTT GGG CAT CCT GAG GTT TAT-3′/JB4.5: 5′-TTT TTT GGG CAT CCT GAG GTT TAT-3′ according to Bowles et al. [99] or COI-F5: 5′-AAT WTW GGT GTT GGA ACT TCT TGA AC-3′/COI-R9: 5′-CTT AAA ACA TAA TGR AAA TGW GCW ACW ACA TAA GTA TC-3′ according to Powers et al. [100]. The PCR products were purified [101] and sent to Macrogen [102] and Genewiz [103] for sequencing. New sequences were assembled using Geneious Prime 2020.0.5 and deposited to the GenBank under the accession numbers given in Table 1.

4.4. Phylogenetic and Species Delimitation Analysis

The new sequences for each gene (D2-D3 of 28S, ITS, 18S rRNA and COI) were aligned using Clustal X 1.83 [104] with their corresponding published gene sequences [22,24,32–39,42–50]. Outgroup taxa for each dataset were chosen based on previously published data [105]. Sequence datasets were analysed with Bayesian inference (BI) using MrBayes 3.1.2 [106] under the GTR + I + G model. BI analysis was initiated with a random starting tree and was run with four chains for 1.0 × 10⁶ generations for 18S and ITS rRNA gene alignments, 5.0 × 10⁶ generations for D2-D3 of 28S rRNA gene alignment and 9.0 × 10⁶ generations for COI gene alignment. The Markov chains were sampled at intervals of 100 generations. Two runs were performed for each analysis. The log-likelihood values of the sample points stabilised after approximately 1,000 generations. After discarding burn-in samples and evaluating convergence, the remaining samples were retained for further analysis. The topologies were used to generate a 50% majority rule consensus tree. Posterior probabilities (PPs) are given on appropriate clades. Sequence analyses of alignments were performed with PAUP∗ 4b10 [107]. Pairwise divergences between taxa were computed as absolute distance values and as percentage mean distance values based on whole alignment with adjustments for missing data.

The COI gene alignments for *P. straeleni* and *P. enigmaticus* were used to construct phylogenetic network estimation using statistical parsimony, as implemented in POPART software [108].

Species delimitation of *Paratylenchus* in this study was undertaken using an integrated approach that considered morphological and morphometric evaluations combined with molecular-based phylogenetic inference (tree-based methods) and coalescent-based molecular species-delimitation methods. Putative species boundaries on a given phylogenetic input tree were inferred using a Bayesian implementation of the Poisson tree processes (bPTP) method [76] and using the generalized mixed-yule coalescent (GMYC) method [75]; see Qing et al. [80] for more details. Ultrametric trees were constructed using BEAST v1.10.4 [109] based on D2-D3, ITS, 18S and COI sequences, respectively. Default prior distributions were used and analyses were run for 1 × 10⁷ generations, saving trees every 1 × 10³ generations. The final trees were produced after removing 2,000 samples (20%) as burn-ins, and the maximum clade credibility tree was calculated using TreeAnnotator 1.10.4 [109]. Finally, for the bPTP method, an unrooted Bayesian 50% majority-rule consensus tree, containing only ingroups and unique haplotypes, was uploaded on the online server [110] and 1 × 10⁵ Markov chain Monte Carlo (MCMC) generations were performed. The same tree was also uploaded on the GMYC web server [111] using the single threshold method.

5. Conclusions

An integrative approach by linking DNA sequences and morphological characters represents the best way to move nematode taxonomy forward. Creating this link involves
the rigorous generation of multiple DNA sequences from individual morphologically
vouchered nematode specimens, which, in the current study, resulted in the first molecular
caracterisations for five species, the first COI sequences for eight species and, most
importantly, the reassignments of 18 D2-D3 of 28S, 3 ITS, 3 18S rRNA and 25 COI gene
sequences, which had been unidentified or misidentified.

This study showed that *Paratylenchus* is a case in point, representing an incredibly
diverse yet morphologically minimalistic plant-parasitic genus. Our recommendations for
future protocol in *Paratylenchus* taxonomy, which are also valid for integrative nematode
taxonomy, are: (1) to include SEM in new descriptions or re-descriptions; (2) to use juvenile
and male traits after their conspecificity is irrefutably proven using molecular data; (3) to
unequivocally link elaborate morphological data with both nuclear D2-D3 of 28S rRNA
and mitochondrial COI gene sequences; (4) to employ caution when performing molecular
identification using partial 18S rRNA gene fragments only; (5) to make use of the promising
molecular species delineation methods to establish species boundaries, but base this on
multilocus data and merely use it as one of the elements of integrative taxonomy.

Author Contributions: Conceptualisation, P.R.S., W.B. and S.A.S.; methodology, P.R.S., M.C., W.B.
and S.A.S.; software, P.R.S., W.B. and S.A.S.; validation, P.R.S., G.K., W.B. and S.A.S.; formal analysis,
P.R.S., G.K., W.B. and S.A.S.; investigation, P.R.S., G.K., W.B. and S.A.S.; resources, P.R.S., G.K., M.C.,
W.B. and S.A.S.; data curation, P.R.S., G.K. and S.A.S.; writing—original draft preparation, P.R.S.;
writing—review and editing, W.B., S.A.S. and G.K.; visualisation, P.R.S. and M.C.; supervision, W.B.
and G.K.; project administration, W.B.; funding acquisition, W.B. and S.A.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Ghent University, Belgium, UGent BOF01D05918 and the
Plant Pest Diagnostic Center, CDFA, USA.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the cur-
rent study are available from the corresponding author on reasonable request.

Acknowledgments: The authors thank E. Van den Berg, A. Westphal, J. Zogfar, C.M. Etongwe
and A.W. Aseffa for providing nematode specimens and soil samples.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Micoletzky, H. *Die freilebenden Erd-Nematoden;* Archiv für Naturgeschichte: Berlin, Germany, 1922.
2. Siddiqi, M.R. *Tylenchida: Parasites of Plants and Insects,* 2nd ed.; CABI Publishing: Wallingford, UK, 2000.
3. Manzanilla-López, R.H.; Marbán-Mendoza, N. *Practical plant nematology;* BBA: Colegio de Postgraduados, Mexico, 2012.
4. Fourie, H.; Spaull, V.W.; Jones, R.K.; Daneel, M.S.; De Waele, D. *Nematology in South Africa: A View from the 21st Century;* Springer: Cham, Switzerland, 2017.
5. Subbotin, S.A.; Chitambar, J.J. *Plant Parasitic Nematodes in Sustainable Agriculture of North America;* Springer: Cham, Switzerland, 2018.
6. Tarjan, A.C. A review of the genus *Paratylenchus* Micoletzky, 1922 (Paratylenchinae: Nematoda) with a description of two new species. *Ann. N. Y. Acad. Sci.* 1960, 84, 329–390. [CrossRef]
7. Raski, D.J. *Paratylenchidae n. fam. with descriptions of five new species of Gracilacus n. g. and an emendation of Cacopaurus Thorne, 1943, Paratylenchus Micoletzky, 1922 and Criconematidae Thorne, 1943. Proc. Helm. Soc. Wash.* 1962, 29, 189–207.
8. Thorne, G.; Malek, R.B. *Nematodes of the Northern Great Plains part I. Tylenchida [Nemata Secernentra;]* South Dakota State University, Brookings: Sioux Falls, SD, USA, 1968.
9. Raski, D.J.; Mac, L. A reappraisal of Tylenchina (Nemata). 10: The superfamily Criconematoidae Taylor, 1936. *Rev. Nematol.* 1987, 10, 409–444.
10. Maggenti, A.R.; Mac, L.; Raski, D.J.; Fortuner, R.; Geraert, E. A reappraisal of Tylenchina (Nemata). 11. List of generic and supra-generic taxa, with their junior synonyms. *Rev. Nematol.* 1988, 11, 177–188.
11. Raski, D.J. *Tylenchulidae of agricultural soils. In Manual of Agricultural Nematology;* Nickle, W.R., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1991; pp. 761–794.
12. Esser, R.P. A diagnostic compendium to species included in Paratylenchinae Thorne, 1949 and Tylenchocriconematinae Raski & Siddiqi, 1975 (Nematoda: Criconematidea). *Nematologica* 1992, 38, 146–163.
43. Esmaeili, M.; Heydari, R.; Castillo, P.; Bidhendi, M.Z.; Palomares-Rius, J.E. Molecular characterisation of two known species of *Paratylenchus* Micoletzky, 1922 from Iran with notes on the validity of *Paratylenchus audriellus* Brown, 1959. *Nematology* 2016, 18, 591–604. [CrossRef]

44. Zhuo, K.; Liu, X.; Tao, Y.; Wang, H.; Lin, B.; Liao, J. Morphological and molecular characterisation of three species of *Paratylenchus* Micoletzky, 1922 (Tylenchida: Paratylenchidae) from China, with a first description of the male *P. rostocaudatus*. *Nematology* 2018, 20, 837–850. [CrossRef]

45. Maria, M.; Miao, W.; Ye, W.; Zheng, J. Updated description of *Paratylenchus lepidus* Raski 1975 and *P. minor* Sharma, Sharma and Khan, 1986 by integrating molecular and ultra-structural observations. *J. Nematol.* 2019, 51, 1–13. [CrossRef]

46. Mirbabaie, H.; Eskandari, A.; Ghaderi, R. On the synonymy of *Paratylenchus micoletzkyi* Micoletzky, 1922 and descriptions of new species. Part II of three parts. *Belg. J. Zool.* 1995, 126, 591–604. [CrossRef]

47. Etongwe, C.M.; Singh, P.R.; Bert, W.; Subbotin, S.A. Molecular characterisation of some plant-parasitic nematodes (Nematoda: Tylenchida) from Belgium. *Russ. J. Nematol.* 2020, 28, 1–28.

48. Mvamula, A.O.; Kabir, M.F.; Lee, G.; Choi, I.H.; Kim, Y.H.; Bae, E.J.; Lee, D.W. Morphological characterisation and molecular phylogeny of several species of *Criconematina* (Nematoda: Tylenchida) associated with turfgrass in Korea, as inferred from ribosomal and mitochondrial DNA. *Nematology* 2020, 22, 939–956. [CrossRef]

49. Powers, T.; Harris, T.S.; Higgins, R.S.; Mullin, P.G.; Powers, K.S. Nematode biodiversity assessments need vouchedered databases: A BOLD reference library for plant-parasitic nematodes in the superfamily Criconematoidae. *Genome* 2020, 5, 1–10. [CrossRef] [PubMed]

50. Wang, W.H.; Chen, P.J. First Report of a Pin Nematode (*Paratylenchus dianthus*) on Chrysanthemum in Taiwan. *Plant Dis.* 2020, 104, 995. [CrossRef]

51. Janssen, T.; Karssen, G.; Couvreur, M.; Waeyenberge, L.; Bert, W. The pitfalls of molecular species identification: A case study within the genus *Pratylenchus* (Nematoda: Pratylenchidae). *Nematology* 2017, 19, 1179–1199. [CrossRef]

52. Palomares-Rius, J.E.; Cantalapiedra-Navarrete, C.; Castillo, P. Cryptic species in plant-parasitic nematodes. *Nematology* 2014, 16, 1105–1118. [CrossRef]

53. Bert, W.; Geraert, E. Nematode species of the order Tylenchida, new to the Belgian nematofauna with additional morphological data. *Belg. J. Zool.* 2000, 130, 47–57.

54. Brzeski, M.W. Paratylenchinae: Morphology of some known species and descriptions of *Gracilicus bilineata* sp. n. and *G. vera* sp. n. (Nematoda: Tylenchulidae). *Nematologica* 1995, 41, 535–565. [CrossRef]

55. Lišková, M.; Sasanelli, N.; D’Addabbo, T. Some notes on the occurrence of plant parasitic nematodes on fruit trees in Slovakia. *Plant Prot. Sci.* 2007, 43, 26–32. [CrossRef]

56. Steiner, G. Plant nematodes the grower should know. In *Proc. Soil Sci. Soc.* J., 1949, 2, 37–39.

57. Oostenbrink, M. A note on *Paratylenchus* in the Netherlands with the description of *P. goodeyi* sp. n. (Nematoda, Criconematidae). *Tijdschr. Plantenziekten* 1953, 59, 207–216. [CrossRef]

58. Raski, D.J. Revision of the genus *Paratylenchus* Micoletzky, 1922 and descriptions of new species. Part II of three parts. *J. Nematol.* 1975, 7, 274–295. [PubMed]

59. Andrässy, I. Neue und wenig bekannte nematoden aus Jugoslawien. *Ann. Hist. Nat. Musei Natl. Hung.* 1959, 51, 259–275.

60. Cobb, N.A. Notes on *Pratylenchus*, a genus of nema. *J. Wash. Acad. Sci.* 1923, 13, 254–257.

61. Subbotin, S.A.; Yan, G.; Kantor, M.; Handoo, Z. On the molecular identity of *Paratylenchus nanus* Cobb, 1923 (Nematoda: Tychenchida). *J. Nematol.* 2020, accepted.

62. De Coninck, L. Sur trois espéces nouvelles de *nematoles* libres trouvés en Belgique. *Bul. Mus. Roy. D’hist. Nat. Belg.* 1931, 7, 1–5.

63. Wu, L.Y. *Paratylenchus veruculatus* n. sp. (Criconematidae: Nematoda) from Scotland. *Can. J. Zool.* 1962, 40, 773–775. [CrossRef]

64. Thorne, G.; Allen, M.W. *Paratylenchus hamatus* n. sp. and *Xiphinema index* n. sp., two nematodes associated with fig roots, with a note on *Paratylenchus* aneps Cobb. *Proc. Helm. Soc. Wash.* 1950, 17, 27–35.

65. Meldal, B.H.; Debenham, N.J.; De Ley, P.; De Ley, I.T.; Vanlenteren, J.R.; Vierstraete, A.R.; Bert, W.; Borgonie, G.; Moens, T.; Tyler, P.A.; et al. An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. *Mol. Phylogenetics Evol.* 2007, 42, 622–636. [CrossRef]

66. Ortiz, V.; Phelan, S.; Mullins, E. A temporal assessment of nematode community structure and diversity in the rhizosphere of cysgenic *Phytophthora infestans*-resistant potatoes. *BMC Ecol.* 2016, 16, 1–23. [CrossRef] [PubMed]

67. Hanel, L.; Brzeski, M. Paratylenchinae: Evaluation of diagnostic morpho-biological characters of females in the genus *Paratylenchus* Micoletzky, 1922 (Nematoda: Tychenchidae). *Nematology* 2000, 2, 253–261. [CrossRef]

68. Hirschmann, H. Scanning electron microscopy as a tool in nematode taxonomy. In *Concepts in Nematode Systematics*; Stone, A.R., Platt, H.M., Kahlil, L.F., Eds.; Academic Press: New York, NY, USA, 1983; pp. 95–111.

69. Wergin, W.P. Scanning electron microscopic techniques and applications for use in nematology. In *Plant Parasitic Nematodes*; Zuckerman, B.M., Rhode, R.A., Eds.; Academic Press: New York, NY, USA, 1981; Volume 3, pp. 175–204.

70. Eisenback, J.D. Techniques for preparing nematodes for scanning electron microscopy. In *An Advanced Treatise on Meloidogyne*; Barker, K.R., Carter, C.C., Sasser, N.S., Eds.; Raleigh, State University Graphics: Raleigh, NC, USA, 1985; Volume 2, pp. 79–105.

71. Nessonova, E.; Smirnov, A.; Fahrni, J.; Pawlowski, J. Barcoding amoebae: Comparison of SSU, ITS and COI genes as tools for molecular identification of naked lobeose amoebae. *Protist* 2010, 161, 102–115. [CrossRef]
Plants 2021, 10, 408

108 Morise, H.; Miyazaki, E.; Yoshimitsu, S.; Eki, T. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing. PLoS ONE 2012, 7, 1–10. [CrossRef] [PubMed]

109 Armenteros, M.; Rojas-Corzo, A.; Ruiz-Abierno, A.; Derycke, S.; Backeljau, T.; Decraemer, W. Systematics and DNA barcoding of free-living marine nematodes with emphasis on tropical desmodorids using nuclear LSU rDNA and mitochondrial COI sequences. Nematology 2014, 16, 979–989. [CrossRef]

110 Kiewnick, S.; Holterman, M.; van den Elsen, S.; van Megen, H.; Frey, J.E.; Helder, J. Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. Eur. J. Plant Pathol. 2014, 140, 97–110.

111 Pons, J.; Barraclough, T.G.; Gomez-Zurita, J.; Cardoso, A.; Duran, D.P.; Hazell, S.; Kamoun, S.; Sumlin, W.D.; Vogler, A.P. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 2006, 55, 595–609. [CrossRef]

112 Zhang, J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013, 29, 2869–2876. [CrossRef] [PubMed]

113 Carstens, B.C.; Pelletier, T.A.; Reid, N.M.; Satler, J.D. How to fail at species delimitation. Mol. Ecol. 2013, 22, 4369–4383. [CrossRef]

114 Leliaert, F.; Verbruggen, H.; Vanormelingen, P.; Steen, F.; López-Bautista, J.M.; Zuccarello, G.C.; De Clerck, O. DNA-based species delimitation in algae. Eur. J. Phycol. 2014, 49, 179–196. [CrossRef]

115 Janssen, T.; Karssen, G.; Orlando, V.; Subbotin, S.; Bert, W. Molecular characterization and species delimiting of plant parasitic nematode of the genus Pratylenchus from the Penetrans group (Nematoda: Pratylenchidae). Mol. Phylogenet. Evol. 2017, 117, 30–48. [CrossRef]

116 Qing, X.; Bert, W.; Gamliel, A.; Bucki, P.; Duvrinin, S.; Alon, T.; Miyara, S.B. Phylogeography and molecular species delimitation of Pratylenchus capsici n. sp., a new root-lesion nematode in Israel on pepper (Capsicum annuum). Phytopathology 2018, 109, 847–858. [CrossRef]

117 Xu, X.; Qing, X.; Xie, J.L.; Yang, F.; Peng, Y.L.; Ji, H.L. Population structure and species delimitation of rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae), in China. Plant Pathol. 2020, 69, 159–167. [CrossRef]

118 Padial, J.M.; De la Riva, I. A paradigm shift in our view of species drives current trends in biological classification. Biol. Rev. 2020, 23, 1–21.

119 Prévot, V.; Jordans, K.; Sonet, G.; Backeljau, T. Exploring Species Level Taxonomy and Species Delimitation Methods in the Facultatively Self-Fertilizing Land Snail Genus Ruminia (Gastropoda: Pulmonata). PLoS ONE 2013, 8, e60736. [CrossRef]

120 Zink, R.M.; Barrowclough, G.F. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 2008, 17, 2107–2121. [CrossRef]

121 Palumbi, S.R.; Cipriano, F.; Hare, M.P. Predicting nuclear gene coalescence from mitochondrial data: The three-times rule. Evolution 2001, 55, 859–868. [CrossRef]

122 Jörgen, K.M.; Norenborg, J.L.; Wilson, N.G.; Schrödl, M. Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evol. Biol. 2012, 12, 1–18. [CrossRef] [PubMed]

123 Puillandre, N.; Modica, M.V.; Zhang, Y.; Sirovich, L.; Boisselier, M.C.; Cruaud, C.; Holford, M.; Samadi, S. Large-scale species delimitation method for hyperdiverse groups. Mol. Ecol. 2012, 21, 2671–2691. [CrossRef]

124 Padial, J.M.; Miralles, A.; De la Riva, I.; Vences, M. The integrative future of taxonomy. Front. Zool. 2010, 7, 1–16. [CrossRef]

125 Whitehead, A.G.; Hemming, J.R. A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Plant Dis. Rep. 1964, 48, 692.

126 Available online: https://www.youtube.com/watch?v=qWITH1yB1U0&t=2s (accessed on 15 February 2021).

127 Jenkins, W.R.B. A rapid centrifugal-flotation technique for separating nematodes from soil. Mol. Biochem. Parasitol. 1986, 23, 2107–2121.

128 Jenkins, W.R.B. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis. Rep. 1964, 48, 692.

129 Available online: https://www.youtube.com/watch?v=qWITH1yB1U0&t=2s (accessed on 15 February 2021).

130 Singh, P.R.; Nyiragatare, A.; Janssen, T.; Couvreur, M.; Decraemer, W.; Bert, W. Morphological and molecular characterisation of Pratylenchus roundi n. sp. (Tylenchida: Pratylenchidae) associated with maize in Rwanda. Nematology 2018, 20, 781–794. [CrossRef]

131 Nunn, G.B. Nematode Molecular Evolution. An Investigation of Evolutionary Patterns among Nematodes Based Upon DNA Sequences. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 1992.

132 Vrain, T.C.; Wakarchuk, D.A.; Levesque, A.C.; Hamilton, R.I. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum complex. Fundam. Appl. Nematol. 1992, 15, 563–573.

133 Curran, J.; Driver, F.; Ballard, J.W.O.; Milner, R.J. Phylogeny of Metarhizium: Analysis of ribosomal DNA sequence data. Mycol. Res. 1994, 98, 547–552. [CrossRef]

134 Mayer, W.E.; Herrmann, M.; Sommer, R.J. Phylogeny of the nematode genus Pristionchus and implications for biodiversity, biogeography and the evolution of hermaphroditism. BMC Evol. Biol. 2007, 7, 1–13. [CrossRef] [PubMed]

135 Singh, P.R.; Couvreur, M.; Decraemer, W.; Bert, W. Survey of slug-parasitic nematodes in East and West Flanders, Belgium and description of Angiostoma gandavensis n. sp. (Nematoda: Angiostomidae) from arionid slugs. J. Helminthol. 2019, 94, 1–11. [CrossRef]

136 Tanha Maafi, Z.; Subbotin, S.A.; Moens, M. Molecular identification of cyst-forming nematodes (Heteroderidae) from Iran and a phylogeny based on the ITS sequences of rDNA. Nematology 2003, 5, 99–111. [CrossRef]

137 Bowles, J.; Blair, D.; McManus, D.P. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol. Biochem. Parasitol. 1992, 54, 165–173. [CrossRef]
100. Powers, T.O.; Bernard, E.C.; Harris, T.; Higgins, R.; Olson, M.; Lodema, M.; Mullin, P.; Sutton, L.; Powers, K.S. COI haplotype groups in *Mesocriconema* (Nematoda: Criconematidae) and their morphospecies associations. *Zootaxa* **2014**, 3827, 101–146. [CrossRef]

101. Singh, P.R.; Karssen, G.; Couvreur, M.; Bert, W. Morphological and molecular characterization of *Heterodera dunensis* n. sp. (Nematoda: Heteroderidae) from Gran Canaria, Canary Islands. *J. Nematol.* **2020**, 52, 1–14.

102. Available online: https://dna.macrogen.com (accessed on 30 December 2020).

103. Available online: https://www.genewiz.com (accessed on 15 December 2020).

104. Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res.* **1997**, 25, 4876–4882. [CrossRef]

105. Subbotin, S.A.; Sturhan, D.; Adams, B.J.; Powers, T.O.; Mullin, P.G.; Chizhov, V.N.; Vovlas, N.; Baldwin, J.G. Molecular phylogeny of the order tylenchida: Analysis of nuclear ribosomal RNA genes. *J. Nematol.* **2006**, 38, 296.

106. Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics* **2001**, 17, 754–755. [CrossRef] [PubMed]

107. Swofford, D.L.; Sullivan, J. Phylogeny inference based on parsimony and other methods using PAUP™ Practice. In *The Phylogenetic Handbook, a Practical Approach to DNA and Protein Phylogeny*; Salemi, M., Vandamme, A.M., Eds.; Cambridge University Press: Cambridge, UK, 2003; pp. 182–206.

108. Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. *Mol. Biol. Evol.* **1999**, 16, 37–48. [CrossRef]

109. Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. *Mol. Biol. Evol.* **2012**, 29, 1969–1973. [CrossRef] [PubMed]

110. Available online: https://species.h-its.org (accessed on 10 December 2020).

111. Available online: https://species.h-its.org/gmyc (accessed on 10 December 2020).