Using waste as resource to realize a circular economy: Circular use of C, N and P

Slootweg, J.C.

DOI
10.1016/j.cogsc.2020.02.007

Publication date
2020

Document Version
Final published version

Published in
Current opinion in green and sustainable chemistry

License
CC BY

Citation for published version (APA):
Slootweg, J. C. (2020). Using waste as resource to realize a circular economy: Circular use of C, N and P. Current opinion in green and sustainable chemistry, 23, 61-66. https://doi.org/10.1016/j.cogsc.2020.02.007
Using waste as resource to realize a circular economy: Circular use of C, N and P
J. Chris Slootweg

Chemistry traditionally focuses on converting resources into product, which resulted in the development of a plethora of synthetic methodologies creating a vast amount of molecules and materials that are currently used in society. This linear production model, however, has created a lot of waste that also enters the environment creating local, and also global, major environmental problems. This provides a new role for chemistry, one that focuses on the development of new recovery and recycling processes to advance the efficient use of resources, as well as the development of novel synthetic methods that use waste as resource.

Introduction
The year 2019 was the International Year of the Periodic Table (#IYPT2019), where chemists celebrated the 150th birthday of the Periodic Table of Chemical Elements in the format proposed by Mendeleev in 1869 [1–7]. The European Chemical Society (EuChemS) created for the occasion a special representation of the periodic table that highlights element scarcity (Figure 1) [8]. EuChemS thereby emphasizes that ‘we have to use our precious resources with much more care in the years to come, and we need to carefully look at our tendencies to waste and improperly recycle such items. Unless solutions are provided, we risk see many of the natural elements that make up the world around us run out — whether because of limited supplies, their location in conflict areas, or our incapacity to fully recycle them’ [9*]. This means that from now on, we have to fully grasp the issue of element scarcity and take action to realize element circulation. Conservation of our elementary building blocks can only be carried out by recovery and recycling them after their use [10–13]. The development of chemistry that enables the circular use of our elements, molecules and materials is therefore key [14**,15**], next to preventing chemicals from entering the environment [16,17], and thus avoiding them to cause pollution [18]. Safe and circular by design of molecules and materials for a sustainable future is thus of utmost importance [19*,20]. Inducing such change from the current linear ‘take-make-dispose’ model to a more circular one requires a holistic approach [21**–23] to design a new system of using and reusing our precious elements.

Waste as resource
There is obviously plenty of waste available for use as resource materials but where to start? The most stringent waste problems are addressed by the nine planetary boundaries of Steffen, Rockström et al. [25**,26], which are: climate change, loss of biodiversity, ozone depletion, ocean acidification, biogeochemical flows (the flow of nitrogen and phosphorus), land-system change (deforestation), fresh water use, atmospheric aerosol loading and chemical pollution (Figure 2). Shockingly, society’s activities have pushed four of these sustainability targets beyond the boundaries into unprecedented territory, namely: extinction rate (one of two indicators for biosphere integrity), atmospheric carbon dioxide (an indicator for climate change), and the biogeochemical flow of nitrogen and phosphorus, of which the latter three can be solely ascribed to the chemistry of three elements: Carbon, nitrogen and phosphorus. Urgent action therefore needs to be taken to return to safe operating space in these processes.

Current Opinion in Green and Sustainable Chemistry 2020, 23:61–66
This review comes from a themed issue on Waste Valorization
Edited by Daniel Pleissner and Sergiy Smetana
Available online 19 March 2020
https://doi.org/10.1016/j.cogsc.2020.02.007
2452-2236/© 2020 Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

For complete overview of the section, please refer the article collection - Waste Valorization
predominately ammonia (NH₃) that are discharged into the aquatic environment and/or atmosphere. For phosphorus, it concerns phosphate, which is next to ammonia essential for plant growth, yet this building block of life also ends up in aquatic systems causing eutrophication [28].

Carbon

The negative impact of carbon dioxide on climate change [29] can be reduced by decreasing carbon emissions caused by the burning of gas, oil, coal and biomass for energy production and advancing cement production [30,31], but also by removing CO₂ from the atmosphere by carbon capture [32,33] or even direct air capture [34]. Subsequently, CO₂ is available for recycling, which is established for the synthesis of high-value speciality chemicals [35–37], yet only a few industrial processes use CO₂ as resource [38]. The challenge, though, is to develop novel methods for CO₂ recycling that aim to compete with petrochemistry for the synthesis of bulk chemicals [39, 40*]. In this respect, converting CO₂ into CO is considered as an attractive approach because CO can be readily utilized as a feedstock for value-added chemicals and fuels through the existing downstream thermochemical reactions [41,42]. In addition, methane also contributes significantly to climate change, as it is a roughly 30 times more potent greenhouse gas than CO₂. Therefore, the use of methane as resource for the production of value-added products is also of great interest [43*,44]. Particularly appealing is methane dry reforming with CO₂, thus using both greenhouse gases, to produce...
syngas (CO + H₂) directly, which was recently made possible at room temperature using thermally stable and highly selective photocatalysts [45*]. These recent developments are promising and will help creating a carbon reuse economy [46], particularly using renewable energy [47].

Nitrogen

Managing the nitrogen issue to sustain food production and the environment [21**,48*] is effective by advancing ammonia synthesis [49–54] and to reduce nitrogen discharge from livestock, domestic and industrial sources [55] and to restore water quality [56]. Current efforts to reduce pollution through wastewater treatment [57,58] and by improving cropland nitrogen management can remedy this situation. Interestingly, anaerobic ammonium oxidizing (anammox) bacteria own a central position in the global N-cycle, as they have the ability to oxidize ammonium (NH₄⁺) to N₂ under anoxic conditions using nitrite (NO₂⁻) [59]. Next to being indispensable in marine ecosystems [60], the anammox process is also a sustainable way of removing ammonium from effluents and ammonia from waste gas. Because ammonia is a key fertilizer component, recovery and recycling, instead of decomposition into N₂, can greatly improve the sustainable use of nitrogen as it alleviates the environmental burden of ammonia as well as creates locally new (renewable) N-resources that can be reused efficiently [61,62].
Phosphorus
The third element discussed herein that is wasted on large scale is phosphorus. Therefore, it is also key to close the phosphorus cycle\cite{63,64*,65*}. Interestingly, Hennig Brand first discovered the element of phosphorus in 1669 by converting phosphate waste from human urine into white phosphorus (P\(_4\)), before fossil phosphate rock was primarily used as resource for the production of fertilizers, feed and food additives, and many more phosphorus-containing chemicals. To realize the sustainable use of phosphorus, we have to follow in the footsteps of Brand and advance phosphorus recovery and recycling by using phosphate waste as resource\cite{66–68}. Next to reducing the environmental impact of eutrophication, this will also provide a local source of renewable phosphates that reduces dependencies on import from elsewhere. To realize a circular phosphorus economy, the biggest challenge is to steer the development and implementation of phosphorus recovery and recycling techniques in such a way that the recovered phosphate waste is always suited for use as resource enabling its recycling into marketable products. Struvite (Mg\(\text{NH}_4\)\(\text{PO}_4\)\(\cdot\)6\(\text{H}_2\text{O}\)) is an interesting candidate in this respect, as it can be produced in good purity and it recovers both phosphorus and nitrogen from the environment\cite{28,69,70}. Recently, also other promising means of capturing ammonium and phosphate ions together were developed\cite{71,72}, which bodes well for the future. These emerging technologies showcase that reuse of water pollutants by extracting carbon, nitrogen and phosphorus from wastewater is feasible and, at the same time, generates renewable resources and saves energy\cite{73*}, underlining the potential of improved nutrient recovery and recycling\cite{74}.

Conclusions and outlook
It is clear that chemistry needs to adjust its focus on prime resources and also incorporate waste as valuable starting material. By optimizing the use and reuse of our all precious elements, so not just carbon, nitrogen and phosphorus, by applying chemistry as enabling tool we can realize a circular economy. This requires circular thinking and systems thinking in the education of current and future leaders\cite{22,75}. All in all, sustainable chemistry is key in the development of a sustainable future and is of immense importance to realize the United Nations Sustainable Development Goals\cite{76*–79}.

Conflict of interest statement
J.C.S. is the shareholder and serves as the scientific advisor of SusPhos BV.

Acknowledgements
This work was supported by The Netherlands Organization for Scientific Research (NWO/ENW) by a NWA Idea Generator grant (J.C.S.). J.C.S. acknowledges the Alexander von Humboldt Foundation for a Humboldt Research Fellowship for Experienced Researchers.

References
Papers of particular interest, published within the period of review, have been highlighted as:
* of special interest
** of outstanding interest

1. Gil MP, Zysman-Colman E: A tale of two tables. Nat Chem 2019, 11:757–759.
2. Poliakoff M, Makin ADJ, Tang SLY, Poliakoff E: Turning the periodic table upside down. Nat Chem 2019, 11:391–393.
3. Francl M: Ephemeral elements. Nat Chem 2019, 11:2–4.
4. Kundu S: Elements of science and fiction. Nat Chem 2019, 11:13–16.
5. Restrepo G: Challenges for the periodic systems of elements: chemical, historical and mathematical perspectives. Chem Eur J 2019, 25:15430–15440.
6. Leal W, Restrepo G: Formal structure of periodic system of elements. Proc Royal Soc A 2019, 475:20180581.
7. Anastas PT, Zimmerman JB: The periodic table of the elements of green and sustainable chemistry. Green Chem 2019, 21:6545–6566.
8. Gibb BC: Critical chemical commodities. Nat Chem 2019, 11:99–101.
9. https://www.euchems.eu/euchems-periodic-table/.

This website offers background information about the EuChemS periodic table.
10. Nakamura E, Sato K: Managing the scarcity of chemical elements. Nat Mater 2011, 10:158–161.
11. Supanchaiyamat N, Hunt AJ: Conservation of critical elements of the periodic table. ChemSusChem 2019, 12:397–403. This article presents some important points on critical elements, including examples, and the importance of adopting sustainable practices in the use of all elements of the periodic table.
12. Gruter G-J: Recycling. Towards a circular economy. Chimica Oggi/Chem Today 2018, 36:68–69.
13. Schrijvers D, Hool A, Blengini GA, Chen W-Q, Dewulf J, Eggert R, van Ellen L, Gauss R, Goddin J, Habib K, Hagelukén C, Hirota A, Hofmann-Amtbrink M, Kosmol J, Le Gleuher M, Grohó M, Ku A, Lee M-H, Liu G, Nansai K, Nuss P, Peck D, Reiller A, Sonnemann G, Tercero L, Thorenz A, Wäger PA: A review of methods and data to determine raw material criticality. Resour Conserv Recycl 2020, 155:104617.
14. Keijer T, Bakker V, Slootweg JC: Circular chemistry to enable a ** circular economy. Nat Chem 2019, 11:190–195. This commentary coins the term Circular Chemistry and introduces its twelve principles. The concept of circular chemistry aims to replace today's linear 'take–make–dispose' approach with circular processes, which will optimize resource efficiency across chemical value chains and enable a closed-loop, waste-free chemical industry.
15. Kümmeler K, Clark JH, Zuin VG: Rethinking chemistry for a ** circular economy. Science 2020, 367:369–370. This article highlights various ways how to integrate chemistry into a circular economy.
16. Johnson AC, Jin X, Nakada N, Sumpter JP: Learning from the past and considering the future of chemicals in the environment. Science 2020, 367:384–387.
17. Escher BI, Stapleton HM, Schymanski EL: Tracking complex mixtures of chemicals in our changing environment. Science 2020, 367:388–392.
18. Vermeulen R, Schymanski EL, Barabási A-L, Miller GW: The exposome and health: where chemistry meets biology. Science 2020, 367:393–396.
19. Zimmerman JB, Anastas PT, Erythropel HC, Leitner W: * Designing for a green chemistry future. Science 2020, 367:397–400. This study highlights that products, feedstocks, and manufacturing processes will need to integrate the principles of green chemistry and
green engineering, including systems thinking and systems design at the molecular level.

20. Mellor KE, Coish P, Brooks BW, Gallagher EP, Mills M, Kavanagh TJ, Sincox N, Lasker GA, Botta D, Voutchkova-Kostal A, Kostal J, Mullins ML, Nesmith SM, Corrales J, Kristofco L, Saari G, Steele WB, Melnikov F, Zimmerman JB, Anastas PT: The safer chemical design game. Gamification of green chemistry and safer chemical design concepts for high school and undergraduate students. *Green Chem Lett Rev* 2018, 11:103–110.

21. Mahaffy PG, Matlin SA, Holme TA, MacKellar J: Beyond reductionist thinking in chemistry for the reductive functionalization of CO₂. *Angew Chem Int Ed* 2012, 51:187–190.

22. Mahaffy PG, Matlin SA, Whalen M, Holme TA: Integrating the molecular basis of sustainability into general chemistry through systems thinking. *J Chem Educ* 2019, 96:2730–2741.

23. Anastas PT: The role of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere. *BMC Microbiol* 2017, 17:307.

24. Thornton BF, Burdette SC: Neutron star dust and the elements of Earth. *Nat Chem* 2019, 11:4–10.

25. Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heineke J, Mace GM, Persson LM, Bennet EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heineke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S, planetary boundaries: guiding human development on a changing planet. *Science* 2015, 347, 1259855.

26. This report provides an updated and extended analysis of the planetary boundaries framework, introduced in 2009, and highlights essential targets to sustain planet earth.

27. Cordell D, White S: Peak phosphorus: clarifying the key issues of a vicious debate about long-term phosphorus security. *Sustainability* 2011, 3:2027–2049.

28. de Boer MA, Kabbe C, Slocweg JC: Comment on “application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere”. *Environ Sci Technol* 2018, 52: 14564–14565.

29. Lenton TM, Rockström J, Gaffney O, Rahmstorf S, Richardson K, Steffen W, Schellnhuber HJ: Climate tipping points — too risky to bet against. *Nature* 2019, 575:592–595.

30. Ellis LD, Badel AF, Chiang ML, Park RJ-Y, Chiang Y-M: Toward electrochemical synthesis of cement—an electrolyzer-based process for decarbonating CaCO₃ while producing useful gas streams. *Proc Natl Acad Sci USA* 2019. https://doi.org/10.1073/pnas.1802173116.

31. Schneider J: Decarbonizing construction through carbonation. *Proc Natl Acad Sci USA* 2019. https://doi.org/10.1073/pnas.1913867116.

32. Mac Dowell N, Fennell PS, Shah N, Maitland GC: The role of CO₂ capture and utilization in mitigating climate change. *Nat Clim Change* 2017, 7:243–249.

33. Septavaux J, Tosi C, Jame P, Nervi C, Gobetto R, Leclaire J: Simultaneous CO₂ capture and metal purification from waste streams using triple-level dynamic combinatorial chemistry. *Nat Chem* 2020, 12:202–212.

34. Brethomé FM, Williams NJ, Seipp CA, Kidder MK, Custelcean R: Direct air capture of CO₂ via aqueous-phase absorption and crystalline-phase release using concentrated solar power. *Nat Energy* 2018, 3:553–559.

35. Das Neves Gomes C, Jacquet O, Villiers C, Thürey P, Ephrathikine M, Cantai T: A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO₂. *Angew Chem Int Ed* 2012, 51:187–190.

36. Verma S, Lu S, Kenis PJA: Co-electrolysis of CO₂ and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. *Nat Energy* 2019, 4:466–474.

37. North M: Across the board: Michael North on carbon dioxide biorefinery. *ChemSusChem* 2019, 12:1763–1765.

38. Kleij AW, North M, Urakawa A: CO₂ catalysis. *ChemSusChem* 2017, 10:1036–1038.

39. Vogt C, Monai M, Kramer GJ, Weckhuysen BM: The renaissance of the Sabatier reaction and its applications on Earth and in space. *Nat Catal* 2019, 2:188–197.

40. Rao H, Schmidt LC, Bonin J, Robert M: Visible-light-driven methane formation from CO₂ with a molecular iron catalyst. *Nature* 2017, 548:74–77.

41. Tackett BM, Gomez E, Chen JG: Net reduction of CO₂ via its electrocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. *Nat Catal* 2019, 2:381–386.

42. He Q, Liu D, Hoon Lee J, Liu Y, Xie Z, Hwang S, Kattel S, Song L, Chen JG: Electrochemical conversion of CO₂ to syngas with controllable CO/H₂ ratios over Co and Ni single-atom catalysts. *Angew Chem Int Ed* 2020, 59. https://doi.org/10.1002/anie.201912719.

43. Hu A, Guo J-J, Pan H, Zuo Z: Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. *Science* 2016, 351, 658–672.

44. Jang J, Shen K, Morales-Guió CG: Electrochemical direct partial oxidation of methane to methanol. *Joule* 2019, 3(11): 2599–2603.

45. Zhou L, Martinez JMP, Finzel J, Zhang C, Swearer DF, Tian S, Robatjazi H, Lou M, Dong L, Henderson L, Christopher P, Carter EA, Nordlander P, Halas NJ: Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. *Nat Energy* 2020, 5:61–70.

46. Lehtonen J, Järnefelt V, Alakurtti S, Arasto A, Hannula I, Harlin A, Tähtinen M: The carbon reuse economy: transforming CO₂ from a pollutant into a resource. *VTT Technical Research Centre of Finland; 2019. https://doi.org/10.32040/2019.978-951-38-8709-4.

47. Service RF: Renewable bonds. *Science* 2019, 365:1236–1239.

48. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W: How a century of ammonia synthesis changed the world. *Nature Geosci* 2008, 1:636–639.

49. Soilevich G: Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. *Nat Catal* 2019, 2:377–380.

50. Suryanto BHR, Du H-L, Wang D, Chen J, Simonov AN, MacFarlane DR: Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. *Nat Catal* 2019, 2:290–296.

51. Andersen SZ, Colić V, Yang S, Schwalbe JA, Nielanzer AC, McEnaney JM, Enemark-Rasmussen K, Baker JG, Singh AR, Rohr BA, Stahl MJ, Blair SJ, Mazzavilla S, Kibsgaard J, Vesborg PCK, Cargnello M, Bent SF, Jaramillo TF, Stephens IEL,
Norskov JK, Chorkendorff I: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570:504–508.

52. McPherson IJ, Sudmeier T, Fellowes JP, Wilkinson I, Hughes T, Tsang SCE: The feasibility of electrochemical ammonia synthesis in molten LiCl–KCl eutectics. Angew Chem Int Ed 2019, 58:17433–17441.

53. Murakami T, Nishikiori T, Nohira T, Ito Y: Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J Am Chem Soc 2003, 125:334–336.

54. McEnaney JM, Singh AR, Schwabe JA, Kibsgaard J, Lin JC, Cargnello M, Jaramillo TF, Norskov JK: Ammonia synthesis from N₂ and H₂O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ Sci 2017, 10:1621–1630.

55. Kanter DR, Searchinger TD: A technology-forcing approach to reduce nitrogen pollution. Nat Sustain 2018, 1:544–552.

56. Yu C, Huang X, Chen H, Godfray HCJ, Wright JS, Hall JW, McPherson IJ, Sudmeier T, Fellowes JP, Wilkinson I, Hughes T, Tsang SCE: Greening the global phosphorus cycle: how green chemistry and green engineering principles can help achieve planetary P sustainability. Green Chem Eng 2019, 13:8479–8481.

57. Wang X, Daigger G, Lee D-J, Liu J, Ren N-Q, Qu J, Liu G, Butler D: Evolving wastewater infrastructure paradigm to enhance harmony with nature. Sci Adv 2018, 4, eaao2010.

58. van der Hoek JP, Dujiff R, Reinstra O: Nitrogen recovery from wastewater: possibilities, competition with other resources, and adaptation pathways. Sustainability 2018, 10:4605.

59. Zhu G, Wang S, Wang C, Zhou L, Zhao S, Li Y, Li F, Jetten MSM: Ye H, Ngo H, Guo W, Liu Y, Chang SW, Nguyen DD, Liang H, Schwark L: Use of calcined dolomite as chemical precipitant in the simultaneous removal of ammonium and phosphate from synthetic wastewater and from agricultural sludge. Chem Eng 2018, 3:40.

60. Zhao S, Wang C, Zhou L, Ren ZJ: Concurrent nitrogen and phosphorus recovery using flow-electrode capacitive deionization. ACS Sustainable Chem Eng 2019, 7:8744–7850.

61. Li W-W, Yu H-Q, Rittmann BE: Reuse water pollutants. Nature 2015, 528:29–31.

62. Bian Y, Chen X, Lu L, Liang P, Ren ZJ: Recycling nutrients contained in human excreta to agriculture: pathways, processes, and products. Crit Rev Env Sci Tec 2019, 49:695–743.

63. Reitzel K, Bennett WW, Berger N, Brownlie J, Broun S, Christensen ML, Cordell D, van Dijk K, Eigner H, Glud RN, Grönfors O, Herrmann L, Houtou S, Hupfer M, Jacobs B, Korving L, Kjærgaard C, Limatainen H, Loosdrecht MCM, Macintosh KA, Magid J, Maia F, Martín-Ortega J, McGrath J, Meulepas R, Murphy M, Nester T-S, Neumann G, Nielsen UG, Nielsen PH, O’Flaherty V, Qu H, Santner J, Seufert V, Spears B, Stringer LG, Stutter M, Verbist PH, Wilfert P, Williams PN, Metson GS: New training to meet the global phosphorus challenge. Environ Sci Technol 2019, 53:8479–8481.

64. Withers PJA, Elser JJ, Hinton J, Ohtake H, Schipper WJ, van Dijk KC: Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability. Green Chem 2015, 17:2087–2099.

65. Withers PJA: Closing the phosphorus cycle. Nat Sustain 2019, 2:1001–1002.

66. Ohtake H, Teuneda S, Eds., Phosphorus recovery and recycling. * Singapore: Springer; 2018.*

This piece highlights that phosphorus recovery is as important for closing the phosphorus cycle as its discovery 350 years ago was for food production.

67. Tonini D, Saveyn HGM, Huygens D: Environmental and health co-benefits for advanced phosphorus recovery. Nat Sustain 2019, 2:1051–1061.