eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS

Lindsey D. Goodman¹, Mercedes Prudencio³, Ananth R. Srinivasan², Olivia M. Rifai², Virginia M.-Y. Lee⁴, Leonard Petrucelli³ and Nancy M. Bonini¹,²*

Abstract
The discovery of an expanded (GGGGCC)n repeat (termed G4C2) within the first intron of C9orf72 in familial ALS/FTD has led to a number of studies showing that the aberrant expression of G4C2 RNA can produce toxic dipeptides through repeat-associated non-AUG (RAN-) translation. To reveal canonical translation factors that impact this process, an unbiased loss-of-function screen was performed in a G4C2 fly model that maintained the upstream intronic sequence of the human gene and contained a GFP tag in the GR reading frame. 11 of 48 translation factors were identified that impact production of the GR-GFP protein. Further investigations into two of these, eIF4B and eIF4H, revealed that downregulation of these factors reduced toxicity caused by the expression of expanded G4C2 and reduced production of toxic GR dipeptides from G4C2 transcripts. In patient-derived cells and in post-mortem tissue from ALS/FTD patients, eIF4H was found to be downregulated in cases harboring the G4C2 mutation compared to patients lacking the mutation and healthy individuals. Overall, these data define eIF4B and eIF4H as disease modifiers whose activity is important for RAN-translation of the GR peptide from G4C2-transcripts.

Keywords: eIF4B, eIF4H, Drosophila, Amyotrophic lateral sclerosis (ALS) (Lou Gehrig disease), C9orf72, RAN-translation, Neurodegeneration

Introduction
In Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Degeneration (FTD), the presence of a hexanucleotide expansion of > 30 GGGGCC repeats (termed G4C2) within the C9orf72 gene is the most prominent mutation in familial disease [17, 65]. The mechanisms underlying potential toxicity associated with G4C2 are still being defined with two leading hypotheses centering around gain-of-function mechanisms [5, 93]: sequestration of RNA-binding proteins by the aberrant expression of sense- and antisense- G4C2 RNA [30, 90]; repeat-associated non-AUG (RAN-) translation of repeat-containing transcripts produce dipeptides that are toxic to neurons [4, 25, 47–49, 56, 58]. Five dipeptides can be produced from these transcripts, depending on the reading frame: GA and GR (sense strand associated), PA and PR (antisense strand associated), and GP (produced from both sense and antisense strands).

In recent years, it has become clear that dipeptides produced from G4C2 RNA transcripts cause neurodegenerative effects [5, 93]. Of the 5 potential RAN-translation products, GR and PR cause particularly strong degenerative phenotypes in multiple model systems, including Drosophila [22, 53]. Therefore, increasing understanding of the mechanisms underlying expression of these dipeptides would highlight potential therapeutic avenues centered around preventing their expression.

Many mechanistic questions remain regarding RAN-translation in G4C2-associated disease. Recent investigations have drawn a number of parallels between mechanisms underlying general translation [10, 77, 78] and RAN-translation [37, 96], finding that dipeptide production is sensitive to the inhibition/downregulation of canonical translation factors: elf4E, elf4G, elf4A, elf2a, elf2A [12, 27, 84, 97]. Of interest, elf4A is a DEAD-Box helicase [3],...
and thus may be important for the unwinding of G4C2-RNA for translation. While eIF4A has relative weak helicase activity alone, this can be significantly stimulated by accessory proteins eIF4B and eIF4H [24, 31, 59, 68, 70, 74, 82, 91]. These latter factors contain RRM-domains and, importantly, have been reported to interact directly with the G4C2 RNA [14, 29, 72].

In an unbiased, directed screen for canonical translation factors, we identified 11 potential translation factors that modulate GR-production in G4C2-expressing flies. Further investigations into two of these, eIF4B and eIF4H (fly orthologue to eIF4H), further defined them as modifiers of G4C2-toxicity. Their downregulation significantly reduced GR-levels in animals expressing the repeat. Further investigations into eIF4B and eIF4H in C9+ derived cells revealed that eIF4H was significantly downregulated. eIF4H downregulation also occurred in post-mortem tissue from C9+ ALS/FTD compared to C9- ALS/FTD and healthy individuals. This work identifies eIF4B and eIF4H as important disease modifiers that alter RAN-translation of the GR-reading frame.

Results

GFP-tagged GR dipeptides are produced in LDS-(G4C2)n flies with expanded (>30) repeats

We previously identified a number of translation factors as modifiers of G4C2-toxicity [26]. To investigate these and other factors in the context of RAN-translation, a new C9orf72 fly model for ALS/FTD was designed (Fig. 1a). This model contained the 114-base pair sequence immediately upstream of the repeat in intron 1 of C9orf72 in ALS/FTD patient genomes (termed a “leader” sequence; LDS). The addition of this sequence puts the repeat in a more patient-relevant context while this region is likely to influence pathological mechanisms, including RAN-translation [36, 73, 87, 96]. G4C2 expansions can produce three sense-strand associated dipeptides: GA, GR, and GP. Importantly, of these GR is associated with extreme toxicity in multiple models, including flies eIF4B and eIF4H as important disease modifiers that may mediate GR-associated RAN-translation, we defined them as modifiers of G4C2-toxicity. Their downregulation significantly reduced GR-levels in animals expressing the repeat. Further investigations into eIF4B and eIF4H in C9+ derived cells revealed that eIF4H was significantly downregulated. LDS-G4C2 transgenes were expressed in the fly optic system using GMR-GAL4 (Fig. 1e). LDS-(G4C2)CTRL animals showed external and internal eye morphologies similar to controls, supporting that the short repeat was not toxic [22, 26, 41, 53]. In contrast, expression of LDS-(G4C2)EXP caused mild pigment loss externally and dramatic loss of retinal tissue internally, indicative of neurodegeneration.

To further assess GR production, fluorescence imaging of the fly eyes revealed that the LDS-(G4C2)EXP expressing animals produced GFP-positive puncta (Fig. 1f). In contrast, a control fluorescence protein (DSRED) did not show punctate formation but rather had a uniform diffuse signal, indicating that the unique punctate fluorescence pattern seen with LDS-(G4C2)EXP was the result of the GR. LDS-(G4C2)CTRL animals were also imaged and showed no GFP signal, even with 5-10x longer exposure time (data not shown).

Overall, these data indicate that expression of LDS-(G4C2)EXP in flies can induce toxicity and that GFP-tagged GR are produced by an expanded LDS-G4C2 transcript.

A loss of function screen for candidate RAN-translation factors

Despite recent advances into mechanisms underlying G4C2-associated RAN-translation, a full understanding of which canonical translation factors are involved remains unclear [12, 27, 37, 84, 96]. To define translation factors that may mediate GR-associated RAN-translation, we designed a loss-of-function (LOF) fly screen utilizing external eye imaging for toxicity, and GR-GFP fluorescence of the eyes for protein, in LDS-(G4C2)EXP expressing animals (Fig. 2a). 48 RNAi [57, 60] or LOF mutant [6, 7, 80, 81] fly lines were obtained that target specific translation factors, covering 86% of the 56 known translation factors in the fly genome.
40 of 48 (83.3%) lines were RNAi and 8 of 48 (16.6%) were mutant lines. 28 of the 48 tested LOF lines altered toxicity and/or GR-GFP levels caused by LDS-(G4C2) EXP expression in the fly eye, assessed by comparing images with controls (Fig. 2a, step 1). These 28 lines were further examined in a fly model that expresses (GR) 36 from a non-G4C2 transcript [53], to determine if they acted downstream of toxic GR-production in the LDS-(G4C2) EXP animals (Fig. 2a, step 2). 6 of the LOF lines targeting translation factors were found to similarly alter GR-induced toxicity in this model and were not further studied. The remaining 22 LOF lines were further tested for unspecific effects using quality control experiments (Fig. 2a, step 3) [13, 26, 41, 55]. Specifically, lines were examined to eliminate those that cause an effect when expressed on their own in the eye and tested to confirm no effect on the protein levels of a control (LacZ) transgene.

In summary, 20 of the lines did not alter toxicity or GR-GFP levels in LDS-(G4C2) EXP expressing animals (Fig. 2b). 17 lines were excluded from further study because they either caused increased GR-GFP levels (1 line), altered LDS-(G4C2) EXP toxicity but not GR-GFP signal (4 lines), could alter GR-toxicity independent of G4C2-RNA (6 lines), or failed quality control experiments (6 lines; termed “unspecific modifiers”). Thus, from the screen of 48 factors, 11 candidate RAN-translation factors were identified (Table 1, Additional file 2: Table S2).
Depletion of eIF4B or eIF4H1 mitigates toxicity in LDS-(G4C2)EXP animals

Of the 11 factors that reduced GR-GFP levels, eIF4B and eIF4H1 (fly orthologue to human eIF4H) were intriguing. These two factors have independent and redundant roles in activating eIF4A [24, 31, 59, 68, 70, 74, 82, 91] which was recently identified as a RAN-translation factor in a G4C2-model [27, 84]. Further, eIF4B and eIF4H had previously been reported to bind G4C2 RNA through RNA recognition motifs (RRMs) [14, 29, 72]. To further investigate eIF4B and eIF4H1 as modifiers of LDS-(G4C2)EXP in flies, a second, independent set of RNAi lines targeting these genes was obtained (termed RNAi-2). All RNAi lines were confirmed to downregulate the expected targets, eIF4B or eIF4H1 (Fig. 3a, Additional file 1: Figure S3A). Further, eIF4B RNAi did not cause reduced expression of eIF4H1, and vice versa, indicating that expression of these two genes is independent and that the RNAi lines are specific. Interestingly, ubiquitous downregulation of eIF4B or eIF4H1 by RNAi...
produced viable adults with no obvious phenotype (Fig. 3b), supporting that these genes are not essential in the fly (also [33]).

The effects of co-expressing elf4B, elf4H1, or control (Luc) RNAi with LDS-(G4C2)EXP using GMR-GAL4 were analyzed in the eye. Externally, elf4B or elf4H1 RNAi caused reduced toxicity compared to the control RNAi, seen by recovered red pigment and ommatidial organization (Fig. 4a). Internally, retinal tissue loss caused by LDS-(G4C2)EXP was also mitigated by depletion of elf4B or elf4H1. Blinded quantification of the total surface area for retina tissue or of tissue depth (at the point of the optic chiasm) revealed that suppression was consistent and significant (Fig. 4b). Suppression was recapitulated with a second set of RNAi lines, supporting that the effects seen are the result of downregulating these target genes (Additional file 1: Figure S4B-C).

To further assess if elf4B and elf4H1 could be acting downstream of toxic GR-production, RNAi lines targeting elf4B, elf4H1, or control (Luc) were co-expressed with (GR)_36 in the fly eye using GMR-GAL4. The (GR)_36 transgene produces a GR dipeptide from a non-G4C2 repeat transcript [53]. In contrast to the effect in LDS-(G4C2)EXP animals, elf4B and elf4H1 RNAi increased GR-toxicity in both the external and internal eye (Fig. 4c-d). This argues that these genes do not act on the same pathway in GR animals as in LDS-(G4C2)EXP animals. Depletion of either elf4B or elf4H1 on their own did not alter normal eye morphology (Fig. 4e-f).

Depletion of elf4B or elf4H1 reduces GR-production in LDS-(G4C2)EXP animals

As elf4B and elf4H1 are canonical translation factors we hypothesized that they modified LDS-(G4C2)EXP toxicity by mediating translation from the G4C2 transcript. To further test if depletion of these factors reduced GR production, elf4B, elf4H1, or control (Luc) RNAi were co-expressed with LDS-(G4C2)EXP in the fly eye and fluorescence imaging was performed (Fig. 5a). Blinded quantification of GR-GFP signal in LDS-(G4C2)EXP flies revealed that elf4B depletion caused a 48.3 ± 13% decrease in total GR-GFP fluorescence (Fig. 5b, grey). Further, elf4H1 depletion caused a 65.5 ± 3.7% decrease in GR-GFP fluorescence levels. As puncta formation was
associated with fluorescently tagged GR (see Fig. 1), additional analyses were performed to define changes in the number of bright GR-GFP puncta and the average size of these puncta (Fig. 5b, black). eIF4BRNAi reduced the number of puncta from 233 per eye to 44 per eye, an 81% reduction. Additionally, the average size of the puncta per eye was reduced by 63% (7.6 μm² to 2.8 μm²).

eIFH1 RNAi caused a 91% reduction in the number of GR-GFP puncta per eye (233 to 20) and the size of the puncta was reduced from 7.6 μm² to 2.4 μm², a 68% reduction. Effects on GR-GFP levels and puncta were also seen using the second set of RNAi lines targeting eIF4B and eIF4H1 (Additional file 1: Figure S3D-E).

While we had already determined that eIF4B and eIF4H1 RNAi did not alter toxicity downstream of GR production (see Fig. 4c-d), we considered whether their depletion could modify LDS-(G4C2)EXP upstream of translation, on the transcriptional level. To assess this, we used qPCR to measure transcript levels of the LDS-(G4C2)EXP transgene in animals co-expressing control RNAi (Luc), eIF4B or eIF4H1 RNAi (Fig. 5b, light grey). Depletion of eIF4B or eIF4H1 did not alter LDS-(G4C2)EXP RNA levels, further supporting that they act on the translational level.

To test the specificity of eIF4B and eIF4H1 to translation of a G4C2 transcript, we first confirmed specificity of the effect of eIF4B and eIF4H1 RNAi, by assessing whether their depletion had an effect on eye fluorescence of a control DsRed transgene in the fly optic system (GMR-GAL4) (Fig. 5c). Blinded quantification supported that total fluorescence was unchanged, arguing that the effect in LDS-(G4C2)EXP animals was specific to the GR-tagged fluorescent protein (Fig. 5d). We further used western immunobLOTS to analyze protein levels produced from a control (LacZ) transgene in animals co-expressing eIF4B, eIF4H1, or control (Luc) RNAi (Fig. 5e). Transgenes were expressed using GMR-GAL4 and protein was extracted from whole heads. Consistent with fluorescence data using DsRed, no significant difference in the amount of β-galactosidase protein translated from the LacZ transcript was seen. The second set of RNAi lines targeting eIF4B and eIF4H1 also did not alter protein expression from a control (LacZ) gene (Additional file 1: Figure S3F). These data are consistent with previous reports that these factors are not essential for general translation [2, 11, 15, 33].

Overall, these data support that eIF4B or eIF4H1 modify LDS-(G4C2)EXP toxicity by mediating toxic GR production. Importantly, translation from the G4C2 transcript is particularly sensitive to their depletion as expression from control transcripts were unaltered under similar conditions.

EIF4H is downregulated in ALS/FTD cases harboring a G4C2 expansion in C9orf72

Data in the fly supported that eIF4B and eIF4H1 were modifiers of LDS-(G4C2)EXP that could alter the amount of GR produced from the repeat-containing transcript. To further investigate these translation factors in...
Fig. 4 Depletion of elf4B and elf4H1 selectively suppresses LDS-(G4C2)exp associated toxicity.
a. Using GMR-GAL4, RNAi-mediated depletion of elf4B or elf4H1 in LDS-(G4C2)exp expressing flies results in reduced toxicity in both the external and internal eye: seen externally by recovered pigment and ommatidial structure, seen internally by recovered retinal tissue integrity.
b. Blinded quantification of internal retina tissue was done by measuring the total surface area of tissue present and by measuring the depth of the tissue at the position where the optic chiasm occurs.

\[n = 9-10 \text{ animals per genotype.} \]

c. elf4B or elf4H1 RNAi was expressed in (GR)36 flies (GMR-GAL4) and effects on GR-associated toxicity were observed in the external and internal eye.

d. Blinded quantification of internal retina tissue.

\[n = 5-9 \text{ animals per genotype.} \]

e. elf4B or elf4H1 RNAi was expressed in control flies (GMR-GAL4) and effects on the normal eye were observed externally and internally.

f. Blinded quantification of internal retina tissue.

\[n = 4 \text{ animals per genotype.} \]

For graphs, shown are individual data points representing 1 animal with mean ± SD. Statistics: one-way ANOVAs with Tukey’s multiple comparison correction, p-values **** < 0.0001, *** < 0.001, ** < 0.01, * < 0.05, no significance > 0.05. RNAi lines: control (JF01355), elf4B (HMS04503), elf4H1 (HMS04504). For full genotypes see Additional file 7: Table S1.
disease, we considered that the expression of the human orthologues to these factors, eIF4B and eIF4H, could be dysregulated if they played a critical role in G4C2-associated expression. eIF4B and eIF4H protein levels were assessed by western immunoblot in primary fibroblast cell lines (Fig. 6.A; lines described in Additional file 3: Table S3). The mean expression from four independent C9 + patient derived lines was compared to the mean expression from five independent lines derived from healthy individuals. Interestingly, eIF4B total levels were unchanged while eIF4H levels were reduced by 47.5%. As eIF4B is inhibited by phosphorylation at Ser422 [64, 69], we further examined levels of phospho-eIF4B to determine whether this factor was
dysregulated by protein modification. No obvious changes were observed in phospho-eIF4B levels visually or relative to total eIF4B in C9+ versus healthy cells.

Data from patient-derived cells supported that eIF4H is dysregulated in C9+ situations. To further assess this finding in patients, total RNA was extracted from post-mortem, cerebellar tissue from 112 ALS/FTD individuals or 22 healthy individuals and the expression from eIF4B or eIF4H were defined by qPCR (Fig. 6b; individuals described in Additional file 4: Table S4). The ALS/FTD cohort were further broken down based on the presence or absence of the G4C2-repeat expansion in C9orf72 into 46 C9- ALS/FTD and 66 C9+ ALS/FTD cases. Consistent with protein data from fibroblast lines, eIF4B expression was unaltered in disease. Importantly, eIF4H was significantly downregulated by 71.2% in C9+ ALS/FTD compared to healthy controls and 54.4% compared to C9- ALS/FTD cases.

These data indicate a significant decrease in eIF4H expression in response to the presence of expanded G4C2 in ALS/FTD.

Discussion

Mechanisms underlying repeat-associated non-AUG (RAN-) translation remain unclear despite evidence that this form of translation occurs in disease [37, 96]. To help define potential RAN-translation factors, we developed a gain-of-function fly model for C9orf72-associated ALS/FTD that expressed an expanded GGGGCC hexanucleotide repeat (termed G4C2) downstream of the sequence normally found upstream of the repeat in patients (114 bp of intronic DNA found 5’-prime of the repeat in intron 1 of C9orf72 in ALS/FTD); the transgene expressed also contained a GFP tag downstream of the repeat in the GR reading frame (see Fig. 1). Using this model, we screened 48 of 56 canonical translation factors in flies [50] to define those that could impact...
expression of the GR dipeptide (see Fig. 2 and Additional file 2: Table S2). 11 candidate RAN-translation factors were defined (see Table 1). When depleted, these factors reduced GR-GFP levels, reduced G4C2-induced toxicity, and did not reduce toxicity associated with a non-G4C2 transcript generated toxic GR protein. Further investigations into two of these, elf4B and elf4H1 (fly orthologue to elf4H), revealed that their depletion reduced G4C2-induced toxicity and GR-GFP levels, but did not alter G4C2 RNA levels (see Fig. 5 and Additional file 1: Figure S3). Investigations into elf4B and elf4H expression in patient-derived cells and in post-mortem tissue revealed that elf4H is significantly downregulated in ALS/FTD patients harboring the G4C2 expansion (C9 + ALS/FTD) (see Fig. 6). This effect was not seen in ALS/FTD patients lacking the G4C2 mutation (C9-ALS/FTD), arguing that it is a response to the presence of the repeat. These data highlight elf4B and elf4H as novel factors mediating disease-associated pathways.

To our knowledge, this is the first in vivo investigation into canonical translation factors that impact dipeptide production in a C9orf72-associated disease model. The simplest hypothesis is that these factors impact the process of RAN translation from the G4C2 repeat-containing transcript. Interestingly, our data suggest that production of the GR dipeptide requires specific factors as only 11 of 48 canonical translation factors screened altered GR-GFP levels in G4C2-expressing animals. Further, investigations into mammalian systems and in disease-relevant tissue using DPR-specific antibodies will determine if elf4B or elf4H depletion disrupts expression of multiple DPR and confirm effects on GR production [98]. Although these factors could function to alter GR-production through alternative means versus RAN-translation (i.e. stability of the protein, altered expression of more direct RAN-translation factors), it is compelling that the factors identified converge at key regulatory steps of translation initiation and that the majority of these factors function together or with previously suggested RAN-translation factors (see Fig. 7). We ruled out factors that similarly altered toxicity caused by the GR dipeptide, Supporting that they act on pathways not associated with toxicity of the GR protein. We also ruled out mechanisms underlying G4C2 transcription and RNA stability for elf4B and elf4H, as G4C2 transcript levels are unaltered by their depletion (see Fig. 5b). Although our investigations here focused on elf4B and elf4H, we note that we defined a number of other intriguing factors that act on either on G4C2- and/or GR-associated toxicity (see Table 1).

The fly model developed herein expresses the LDS-G4C2 transcript as an mRNA, containing a 5′-prime m7G cap and polyadenylated (poly(A)-) tail. In disease, the G4C2-RNA could exist in multiple forms [93], including: improperly spliced C9orf72-mRNA transcripts retaining the repeat [58], properly spliced intronic sequence kept stable by the repeat [30, 90], altered transcription initiation products [71], or aborted C9orf72-transcript products [29]. Interestingly, fly models that express expanded G4C2 within properly spliced introns do not show dipeptide expression nor toxicity, despite the formation of RNA foci [88]. Further, improperly spliced C9orf72-transcripts can be shuttled from the nucleus to the cytoplasm where they undergo RAN-translation [32]. Overall, these data support that G4C2 repeats retained in capped and polyadenylated C9orf72-mRNA are able to produce toxic dipeptides and are relevant to patients. Whether or not G4C2-associated RAN translation is dependent on the presence of this 5′-prime cap (and poly(A)-tail) is still debated [12, 27, 84].

Our investigations draw parallels between the canonical functions of translation factors [50] and RAN-translation (see Model, Fig. 7). However, there are multiple types of translation that may be pertinent to disease, including cap-independent mechanisms, such as IRES translation [28, 37, 76, 77]. Of the 11 candidate RAN-translation factors we identified, 4 have been reported to function in cap-independent translation: elf4B [38, 75], elf4H [91], elf5B [23], elf2β [44]. Interestingly, elf4B or elf4H significantly strengthen elf4A-mediated unwinding of longer, more complex 5′ UTRs in transcripts [70, 74, 82, 91]. This activity is thought to mediate scanning of the 5′ UTR for translation start sites [79] and recruitment of ribosomal subunits [75, 92]. Overall, these data suggest a model for G4C2-associated RAN-translation where elf4B/elf4H and elf4A mediate dipeptide production during this scanning process [28, 84]. Further, frame-shifting during scanning could result in the production of all three sense-strand associated dipeptides (GA, GR, GP) from a near-cognate alternative start codon, CUG, found upstream of the repeat in the GA-reading frame [84].

In addition to their involvement in non-canonical translation and in stimulating elf4A (previously reported as a RAN-translation factor [27, 84]), we chose to focus on elf4B and elf4H as they are RNA-binding proteins (RBPs) containing homologous RNA recognition motifs (RRMs) [66]. Screens for RBPs that interact with G4C2-RNA identified both elf4B and elf4H, supporting our data that they function in translation from G4C2 transcripts [14, 29, 72]. Both elf4B and elf4H can independently stimulate the helicase activity of elf4A during translation [24, 31, 59, 68, 70, 74, 82, 91] while key differences between them are noted. Structural data supports that elf4H is constitutively active while elf4B contains a regulatory carboxyl domain containing multiple phosphorylation sites [52, 64]. This may explain why elf4H is downregulated in C9+ ALS/FTD but not elf4B (see Fig. 6), as elf4B can be regulated by de/
phosphorylation. However, no significant changes were observed for phospho-eIF4B at Ser422, an inhibitory modification [69, 77], in four C9+ derived cell lines versus five control cell lines. Extended analyses are needed to increase the sample size and to test for eIF4B phosphorylation at other marks [9, 89]. Overall, we hypothesize that eIF4H is downregulated as the result of compensatory mechanisms: cells may actively

Fig. 7 Model comparing potential G4C2 RAN-translation mechanisms and canonical translation. **a.** Ternary complex formation requires eIF5-mediated exchange of GDP to GTP on elf2 complex (includes elf5s 2α, 2β, 2γ). elf2α is highly regulated during stress and is reported to mediate G4C2 translation [12, 27]. elf2β and elf5 were identified as modifiers in this study. **b.** In normal translation, the formation of the 43S pre-initiation complex (PIC) involves the joining of a number of factors, including Ternary complex (described in a) and elfs 1, 1A, 3, and 5. **c.** A minimal PIC complex may potentially mediate RAN-translation [1, 42, 76, 86]. **d.** mRNA transcripts are recognized by the elf4F complex, includes elfs 4E, 4G, 4A. All of these have been defined as G4C2 translation factors arguing that G4C2 RAN-translation is cap-dependent [12, 84]. elf4E recognizes the 5-prime m'G cap on mRNAs [10, 77, 78]; notably, 4 of 6 elf4E components were identified in our screen. elf4A is recruited by elf4F to mRNA transcripts (via the scaffold protein elf4G). mRNA is then unwound by elf4A, an activity that is significantly promoted by elf4B or elf4H, identified herein [24, 68, 70, 82, 91]. This action allows for the formation of the 48S scanning complex. **e.** In canonical translation, the 48S scanning complex moves down a transcript until identifying an AUG start codon. A CUG codon in the LDS sequence upstream of G4C2 may function as a start codon in the GA-reading frame [27, 84]. Frame-shifting could allow for translation of the GR and GP from this codon. Candidate RAN translation factors elf5B, and potentially elf5, mediate ribosome scanning, start codon recognition, and translation activation [10, 45, 61]. We note that mechanisms underlying RAN-translation are still relatively unknown. This model is based on current literature and canonical functions of translation factors.
downregulate eIF4H to reduce expression of toxic GR dipeptide. Alternatively, as eIF4H had previously been reported to bind G4C2-RNA [14, 29, 72], the reduced eIF4H RNA levels could be the result of a more complex feedback loop: as eIF4H protein is sequestered by G4C2 RNA foci, cells may respond by downregulating eIF4H transcription as they may sense that there is plenty of this translation factor present. However, the eIF4H that is present may not be functioning normally. Localization studies in patient tissue are needed to determine if eIF4H is indeed sequestered into G4C2-foci. In either scenario, data supports that eIF4H plays an important role in C9+ disease while further investigations would help define its role in disease progression.

Studies in multiple model systems support that eIF4B and eIF4H loss does not inhibit global translation, including yeast [2, 15], flies [33], and mice [11]. Interestingly, yeast and flies (see Fig. 3b) with downregulated eIF4B or eIF4H are viable [2, 15, 33] and eIF4H+/− mice do not have notable deficits [11]; although eIF4B and eIF4H have been suggested to be important for brain development [9, 11, 20, 67]. The downstream consequences of eIF4H downregulation in C9+ ALS/FTD may be broader than simply altering RAN-translation as depletion of eIF4B and eIF4H in cultured cells has been shown to induce stress granule formation [54]. Interestingly, since eIF4H expression is reduced in C9+ ALS/FTD and C9+ derived cells (see Fig. 6), this raises a potential connection to mechanisms underlying TDP-43 pathology/toxicity [16, 21]. Further, our data in GR-expressing flies argues that the depletion of these factors downstream of GR-production can feed into pathways disrupted by this toxic dipeptide (see Fig. 4c-d) [35, 83, 85, 94].

In conclusion, in an unbiased, targeted screen we identified eIF4B and eIF4H as canonical translation factors that, when depleted in flies, disrupted toxicity caused by the expression of expanded G4C2 RNA. Interestingly, eIF4H was downregulated in C9+ ALS/FTD patients, indicating a distinct role in C9orf72-associated disease. These factors may represent unique G4C2 modifiers that couple RAN-translation to dysregulation of RNA metabolism in disease [16, 34, 95].

Methods and materials

Patient samples and clinical, genetic and pathological assessments

Participant information is summarized in Additional file 4: Table S4. Protocols were approved by the Mayo Clinic Institutional Review Board and Ethics Committee. All participants (or authorized family members) were provided written informed consent before information gathering, autopsies and postmortem analyses. Trained neurologists diagnosed patients with ALS and/or FTD after reviewing neurological and pathological information. The presence or absence of an expanded G4C2 within intron 1 of C9orf72 was done using a previously established protocol for repeat-primed polymerase chain reaction [17].

Drosophila work

Stocks were maintained on standard cornmeal-molasses medium. Fly lines used are detailed in Additional file 2: Table S2 and Additional file 5: Table S5. Fly lines obtained from Bloomington Drosophila Stock Center (BDSC) and Vienna Drosophila Resource Center (VDRC) are noted.

Fly RNAi efficacy

All control and RNAi lines are defined in Additional file 5: Table S5. RNAi efficacy was determined using Da-GAL4 (adults or larvae) as previously described [26, 51].

Characterization of LDS-(G4C2)n fly models

Transgenes were inserted into pUAST vectors and randomly inserted into w1118 fly genomes. The LDS-G4C2 model has a 5′ leader sequence (LDS) inserted immediately upstream of the G4C2 repeats, 114 bp of sequence upstream of the repeat in intron 1 of C9orf72 in patients, and a 3′ GFP tag in the GR reading frame. Repeat-length determination: Genomic DNA was extracted from individual fly lines and the transgenes present were amplified by PCR using primers designed to flank the repeat (Additional file 6: Table S6). Amplification was done using a KAPA HiFi HotStart kit (Kappa #KK2501) and PCR product sizes were quantified using agarose gels and a Bioanalyzer, previously described [26]. Control w1118 animals were included in experiments and showed no signal. RNA expression: Transgenes were expressed as previously described using H5-Gal4 [26] and RNA levels were assessed by qPCR, using primers designed to amplify the GFP tag (Additional file 6: Table S6). Control w1118 animals were included in experiments and showed no signal.

LOF external fly eye screen

Publicly available RNAi [57, 60] or mutant [6, 7, 80, 81] loss-of-function (LOF) fly lines targeting canonical translation factors were obtained from the Bloomington Drosophila Stock Center (BDSC). Additional UAS-RNAi lines targeting eIF4B and eIF4H1 were obtained from Vienna Drosophila Resource Center (VDRC) [18].

External eye imaging

LOF males were crossed to recombinant females: UAS-LDS-(G4C2)EXP, GMR-GAL4 (III) (26 °C). Multiple w− and w+ controls were setup with every experiment to assess any natural variability, including a UAS-Luc RNAi
Triplicate samples of 5 Fly tissue: Western immunoblots (WB) moSci #11130051), 1% pen/strep, DMEM (high glucose, media: 15% FBS (Sigma), 1x MEM Amino Acids (ThermoCultured using standard protocols in DMEM complete Fibroblast cells

Defining unspecific LOF lines were performed as previously described [26].

External eye fluorescence imaging

LOF males were crossed to recombinant females: UAS-LDS-(G4C2)EXP, GMR-GAL4 (III) (26 °C) and 1-2d progeny were imaged on a Leica DM6000B and quantified as previously described [26]. w° or w° controls were used for accurate comparisons depending on the background of the LOF lines and the final genotypes of animals. Any changes to the GR-GFP levels using LUT Z-stacked images were noted. Resulting phenotype was categorized into one of six groups: suppressors, mild suppressors, no effect, mild enhancers, enhancers, and lethal enhancers (Additional file 1: Figure S2).

Quality control experiments

Defining unspecific LOF lines were performed as previously described [26].

Fibroblast cells

Cultured using standard protocols in DMEM complete media: 15% FBS (Sigma), 1x MEM Amino Acids (ThermoSci #11130051), 1% pen/strep, DMEM (high glucose, plus sodium pyruvate). Cells were maintained in a 5% CO₂ incubator at 37 °C.

Western immunoblots (WB)

Fly tissue: Tripllicate samples of 5–10 heads per genotype were homogenized using disposable pellet/pestles tissue grinders (Kimble Chase #749520–0000) and motor (Kimble Chase #749540–0000). For βgal: heads were directly homogenized into 1X NuPAGE LDS sample buffer. For GR/GFP: heads were homogenized into RIPA buffer (50 mM Tris-HCL (pH 7.5), 150 mM NaCl, 1% NP-40, 50 mM NaF, 0.5% DOC), plus protease inhibitors (Sigma #0589297001), 1 mM PMSF, and 1 mM DTT. Fibroblast cells: cells were lysed in RIPA buffer plus protease inhibitors, 1 mM PMSF, and 1 mM DTT, and phosphatase inhibitors (Sigma #04906845001) for 30 min at 4 °C. All RIPA lysates: quantified by Bradford; 20 μg of protein was run per lane. All WBs: run using a standard protocol with Invitrogen’s XCell SureLock blot system, 4–12% Bis-Tris NuPAGE gels and a wet transfer with PVDF membrane, except βgal which was transferred with an iBlot dry transfer system (program 2, 8 min) and nitrocellulose membrane. Antibodies: anti-βgalactosidase (Promega #Z3781, 1:2000), anti-αTubulin (DSHB #AA4.3, 1:2000), anti-GFPβLb (Takara #632380, 1:10,000), anti-GR (gift from V. M-Y. Lee #2316, 1:1000). H. sapiens antibodies: anti-eIF4B (Cell Signaling #3592, 1:1000), anti-eIF4H (Cell Signaling #3469, 1:1000), anti-phospho-eIF4B (Cell Signaling #3591,1:1000), anti-GAPDH (Sigma #G8795, 1:5000).

Secondary antibodies: Mouse-HRP (Jackson Immunoresearch Labs #115–035-146, 1:5000), Rabbit-HRP (Jackson Immunoresearch Labs #111–035-144, 1:5000) [8]. Blots were analyzed using Amersham ECL Prime Detection Reagent and imaged on an Amersham Imager 600.

Quantitative real-time PCR (qPCR)

All primers are defined in Additional file 6: Table S6. For both fly and human qPCRs, protocols are previously described with the following changes [26]. Flies: For Da-GAL4 assays, tripllicate samples of 5 whole animals were processed per condition. For GMR-GAL4 assays, triplicate samples of 20 fly heads (1-2d) were processed per condition. Humans: Total RNA was extracted from frozen postmortem tissue from the cerebellum using the RNAeasy Plus Mini Kit (QIAGEN), previously described [62]. RNA integrity (RIN) was verified on an Agilent 2100 bioanalyzer. RIN values ranged from 6.7 to 10, with most of the samples falling between 9.1 and 9.8.

Statistical analysis and data availability

GraphPad Prism 8.00 software was used to develop all graphs and for all statistical analyses. P-values < 0.05 were considered significant. All relevant data are included within the manuscript and supplementary data. Additional inquiries can be directed to the corresponding author, including reagent requests. No statistical methods were used to predetermine sample sizes and data distributions were assumed to be normal, similar to previous work [8, 19, 26, 39, 40, 51, 53, 62, 63]. Fly and fibroblast data: A two-tailed unpaired student t-test or one-way ANOVA with Tukey’s multiple comparisons test was performed when appropriate. Researchers were blinded to the genotype of all samples to maintain unbiased scoring. Human qPCRs: Nonparametric, one-way ANOVAs with Dunn’s multiple comparisons test were performed as data distribution was not normal.

Additional files

Additional file 1: Figure S1. Extended LDS-G4C2 fly line characterization. Figure S2. Extended translation factor screen data. Figure S3. elf4B and elf4H RNAi-2 data. Figure S4. Full western immunoblot images. (DOCX 1150 kb)
The authors declare that they have no competing interests.

Acknowledgements

We thank Shizuka B. Yamada and Aaron Gitler at Stanford University for post-screening investigations. Also, thank you to Edward B. Lee, Thomas A. Jongs, Zhaojun (Joe) Zhou and members of the Bonini laboratory for helpful comments. Further thanks to Peter Todd for discussions on unpublished translation factor data. Undergraduate and post-baccalaureate students Luis F. Martinez-Ramirez, Kimberly Newman, Benjamin Gallo, and Ken Yanagisawa provided minimal technical support. We thank the Transgenic RNAi Project (TRIP) at Harvard Medical School (NIH/NIGMS R01-GM084947) and the Vienna Drosophila Research Center for developing transgenic RNAi fly stocks used in this study. We thank the Center for Neurodegenerative Disease Research (CNDR) at the University of Pennsylvania for the antibody targeting GR. This work was supported by the Systems and Integrative Biology NIH/NIGMS training grant T32-GM075171 (to LDLG), Amyotrophic Lateral Sclerosis Association (to MP and LP), NIH/NINDS R35-NS097273 (to LP), NIH/NINDS P01-NS084974 (to LP), NIH/NINDS P01-NS090114 (LP), Mayo Clinic Foundation (to LP), Robert Packard Center for ALS Research at Johns Hopkins (to LP), Target ALS Foundation (to LP), NIH/NINDS R01-NS072823 (to NMB), and NIH/NINDS R35-NS097272 (to NMB).

Authors’ contributions

This work was done by LDLG under the mentorship of NMB. MP performed patient studies and analyses under the mentorship of LP. ARS performed western blots on fibroblast cells. OR setup crosses and collected samples for DsRed fluorescence imaging. VYML provided a GR-antibody. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. Neuroscience Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. 2. Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA. 3. Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32244, USA. 4. Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Received: 8 February 2019 Accepted: 25 March 2019

Published online: 25 April 2019

References

1. Akulich KA, Andreev DE, Terenin IM, Smirnova VV, Anisimova AS, Makeeva DS, Arkhipova VL, Stolboushkina EA, Garber MB, Prokofjeva MM et al (2016) Four translation initiation pathways employed by the leaderless mRNA in eukaryotes. Sci Rep 6:37905

2. Altmann M, Müller PP, Wittmer B, Ruchti F, Lanker S, Trachsel H (1993) A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 48 contributes to RNA helicase activity. EMBO J 12:3997–4003

3. Andreou AZ, Klostermeier D (2013) The DEAD-box helicase eIF4A. RNA Biol 10:19–32

4. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, DeJesus-Hernandez M, van Blitterswijk MJ, Jansen-West K, Paul JW, Rademakers R et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polyglutamines specific to c9FTD/ALS. Neuron 77:639–646

5. Balendra R, Isaacs AM (2018) C9orf72 -mediated ALS and FTDP: multiple pathways to disease. Nat Rev Neurol 14:544

6. Bellen HJ, Lewis RW, He Y, Carlson JW, Evans-Holm M, Bae E, Kim J, Metaxakis A, Savakis C, Schulze KL et al (2011) The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188:731–743

7. Bellen HJ, Lewis RW, Liao G, He Y, Carlson JW, Tsang G, Evans-Holm M, Hießinger PR, Schulze KL, Rubin GM et al (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167:761–781

8. Bessen A (2017) TDP-43 promotes neurodegeneration by impairing chromatin remodelling. Curr. Biol 27:3579–3590 e6

9. Bettegazzi B, Bellani S, Roncon P, Guarnieri F, Reitz A, Codazzi F, Valtorta F, Simonato M, Grohovaz F, Zacchetti D (2017) eIF4B phosphorylation at Ser504 links synaptic activity with protein translation in physiology and pathology. Sci Rep 7:10564

10. Browning KS, Baley-Serres J (2015) Mechanism of cytoplasmic mRNA translation. Arab Bock Am Soc Plant Biol 13

11. Capossela S, Muzio L, Bertoli A, Bianchi V, Dati G, Chabane L, Gredi C, Politis LS, Biffs S, D’Adamo P et al (2012) Growth defects and impaired cognitive–behavioral abilities in mice with knockout for Eif4a2, a gene located in the mouse homolog of the Williams-Beuren syndrome critical region. Am J Pathol 180:1121–1135

12. Cheng W, Wang S, Mestre AA, Fu C, Makaren A, Xian F, Hayes LR, Lopez-Gonzalez R, Driemeyer J, Jiang J et al (2018) C9orf72 GGGGCC repeat-associated non-AUG translation is upregulated by stress through eIF2α phosphorylation. Nat Commun 9:51

13. Chung CY, Bessen A, Kennerdell JR, Sartoris A, Unger T, Porta S, Kim H-J, Smith ER, Shilatifard A, Van Deerlin V et al (2018) aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. Nat Commun 9:515

14. Cooper-Knock J, Walsh MJ, Higginbottom A, Robin Highley J, Dicken MI, Edsbauer D, Ince PG, Wharton SB, Wilson SA, Kirby J et al (2014) Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain 137:2040–2051

15. Coppolecchia R, Buser P, Storz A, Linder P (1993) A new yeast translation initiation factor suppresses a mutation in the eIF-4A RNA helicase. EMBO J 12:4003–4011

16. Coyne AN, Zaepfel BL, Zarnescu DC (2017) Failure to deliver and –amyotrophic lateral sclerosis. Neuron 72:245

17. deJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Gilmer HF, Adamson J et al (2011) Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Nature 72:245–256

18. Dietzl G, Chen D, Schnorrer F, Su-KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151

19. Elden AC, Kim H-J, Hart MP, Chen-Potkin AS, Johnson BS, Fang X, Armakola M, Geier F, Greene R, Lu MM et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075

20. Eom T, Muhammad IA, Toskas P, Benardi V, Zhong J, Sacco A, Tiedge H (2014) Neuronal BC RNAs cooperate with eIF4B to mediate activity-dependent translational control. J Cell Biol 207:237–252

21. Fernandes, N., Eshleman, N. and Buchan, J.R. (2018) Stress granules and ALS: a case of causation or correlation? In Sattler, R., Donnelly, C.J. (eds), RNA metabolism in Neurodegenerative Diseases. Springer International Publishing, Cham, Vol. 20, pp. 173–212

22. Freibaum BD, Lu Y, Lopez-Gonzalez R, Kim NC, Almeida S, Lee K-H, Badders S et al (2016) The role of eukaryotic translation factor 4B in C9orf72 compromises nucleocytoplasmic transport. Nature 525:129–133
64. Raught B, Pietteit F, Gingras A-C, Livingstone M, Shahbazian D, Mayeur GL, Polakiewicz RD, Sonenberg N, Hershew JY (2004) Phosphorylation of eukaryotic translation initiation factor 4B Ser422 is modulated by 56 kinases. EMBO J 23:1761–1769

65. Renton AE, Wajonie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuro J 72:257–268

66. Richter-Cook NJ, Dever TE, Hensold JO, Merrick WC (1998) Purification and characterization of a new EUKARYOTIC protein translation factor EUKARYOTIC INITIATION FACTOR 4H. J Biol Chem 273:7579–7587

67. Rode S, Ohm H, Anhäuser L, Wagner M, Rosing M, Deng X, Qin O, Leidel SA, Storkebaum E, Rentmeester A et al (2018) Differential requirement for translation initiation factor pathways during erythroblast-dependent neuronal remodeling in Drosophila Cell Rep 24:2287–2299 e4

68. Rogers GW, Richter NJ, Lima WF, Merrick WC (2001) Modulation of the helicase activity of eIF4A by elf4B, elf4H, and elf4F. J Biol Chem 276:30934–30942

69. Roper PP, Tipisirovic I (2018) Signaling pathways involved in the regulation of mRNA translation. Mol Cell Biol 38

70. Rozovsky N, Butterworth AC, Moore MJ (2008) Interactions between eIF4AI and its accessory factors elf4B and elf4H. RNA 14:2136–2148

71. Sareen D, O’Rourke JG, Meera P, Muhammad AR, Grant S, Simpkinson M, Bell S, Camona S, Ornelas L, Sahabian A et al (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with C9ORF72 repeat expansion Sci. Transl. Med. 5:208ra149

72. Saylak J, Yamamoto Y, Kitano S, Takiyama M, Asahina N, Kino Y (2014) Molecular network analysis suggests a logical hypothesis for the pathologic role of C9orf72 in amyotrophic lateral sclerosis/frontotemporal dementia. J Cereb Nerv Syst Dis 6:69–78

73. Sellsler C, Bijens RAM, Hef N, Natasa S, Jung L, Tropel P, Gaberot C, Jacobs A (2018) Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress. Neurobiology of Disease 116:155–169

74. Sonobe Y, Ghadge G, Masaki K, Sendoel A, Fuchs E, Roos RP (2018) A non-ATG translation initiation factor. EMBO J 23:1761–1769

75. Srivastava V, Hershwy JW, Hershey JW, Burgering BMT, Calhovhen CF (2009) AGC kinases regulate phosphorylation and activation of eukaryotic translation initiation factor 4B. Oncogene 28:95–106

76. Sorenson N, Hinnenbusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

77. Sorenson N (2018) Translation of expanded CGG repeats in a name? Trends Biochem Sci. https://doi.org/10.1016/j.tibs.2018.04.002

78. Sorenson N (2018) Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress. Neurobiology of Disease 116:155–169

79. Sonobe Y, Ghadge G, Masaki K, Sendoel A, Fuchs E, Roos RP (2018) A non-ATG translation initiation factor. EMBO J 23:1761–1769

80. Sorenson N, Hinnenbusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

81. Spilka R, Emt C, Mehta A, Haybaek J (2013) Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 340:38–49

82. Spirin AS (2009) How does a scanning ribosomal particle move along the 5′-untranslated region of eukaryotic mRNA? Brownian ratchet model. Biochemistry 48:10688–10692

83. Spradling AC, Stern DM, Kiss I, Roote J, Lavery T, Robin GM (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci U S A 92:10824–10830

84. Sun Y, Alas E, Lindqvist L, Sonenberg N, Pelletier J, Meller A (2012) The proline–arginine repeat protein linked to C9-ALS/FTD causes neuronal toxicity by inhibiting the DEAD-box RNA helicase-mediated ribosome biogenesis. Cell Death Dis. 9:347

85. Tabet R, Schafer S, Freyermuth F, Jahnke M, Workman M, Lee C-Z, Lin C-C, Jiang J, Jansen-West K, Abu-Abed M et al (2018) CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nat Commun 9:152