Source Coding With Side Information Using List Decoding

Mortuza Ali
Dept. Electrical and Electronic Engineering
The University of Melbourne, Vic 3010, Australia
Email: mortuzaa@unimelb.edu.au

Margreta Kuijper
Dept. Electrical and Electronic Engineering
The University of Melbourne, Vic 3010, Australia
Email: mkuijper@unimelb.edu.au

Abstract—The problem of source coding with side information (SCSI) is closely related to channel coding. Therefore, existing literature focuses on using the most successful channel codes namely, LDPC codes, turbo codes, and their variants, to solve this problem assuming classical unique decoding of the underlying channel code. In this paper, in contrast to classical decoding, we have taken the list decoding approach. We show that syndrome source coding using list decoding can achieve the theoretical limit. We argue that, as opposed to channel coding, the correct sequence from the list produced by the list decoder can effectively be recovered in case of SCSI, since we are dealing with a virtual noisy channel rather than a real noisy channel. Finally, we present a guideline for designing constructive SCSI schemes using Reed Solomon code, BCH code, and Reed-Muller code, which are the known list-decodable codes.

I. INTRODUCTION

Recently, in the context of sensor network and mobile multimedia applications [1], [2], [3], distributed source coding has gained significant attention from the research community. The information theoretic limit for independent encoding of correlated sources has been established by Slepian and Wolf in [4]. According to the Slepian-Wolf theorem, independent encoding of correlated sources with joint decoding can be as efficient as joint encoding and decoding. More specifically, in the compression of two correlated sources \(\{X_i\}\) and \(\{Y_i\}\) the rates achievable with independent encoding but joint decoding are bounded by \(R_X \geq H(X|Y), R_Y \geq H(Y|X), R_X + R_Y \geq H(X,Y)\). In this paper, we focus on the asymmetric approach where \(\{Y_i\}\) is encoded at a rate \(H(Y)\) in the conventional way and \(\{X_i\}\) is encoded at a rate \(H(X|Y)\) assuming that \(\{Y_i\}\) is available at the decoder. The asymmetric approach is also known as source coding with side information (SCSI) in the literature.

The essential idea of distributed source coding is binning [5], [6]. Consider the encoding of a source \(\{X_i\}\) in the presence of the side information \(\{Y_i\}\) available at the decoder. Let \(X\) and \(Y\) are the alphabets of \(\{X_i\}\) and \(\{Y_i\}\) respectively. For large enough \(n\), with high probability a source sequence \(x \in X^n\) belongs to a set of approximately \(2^{nH(X|Y)}\) sequences that are jointly typical with the side information sequence \(y \in Y^n\). Thus if \(y\) were available both at the encoder and decoder, the outcomes from the source \(\{X_i\}\) could be encoded using approximately \(H(X|Y)\) bits on average with a very small probability of error. In this case, both the encoder and decoder could construct the same set of jointly typical sequences and use the same indexing leading to correct decoding. However, even if \(\{Y_i\}\) is not available at the encoder, it is possible to achieve the same rate of \(H(X|Y)\). The idea is to randomly assign each of the source sequences in \(X^n\) to one of the \(2^{nR}\) bins, where \(R > H(X|Y)\). Given a source sequence \(x\), the encoding operation is to transmit the index of the bin to which \(x\) belongs and the decoding operation is to choose the sequence \(\hat{x}\) from the indexed bin which is jointly typical with the side information sequence \(y\). Since for large enough \(n\) with high probability all the sequences that are jointly typical with a given \(y\) will belong to different bins, with high probability \(\hat{x}\) will be equal to \(x\).

It follows from the above that a practical binning algorithm needs to partition the source data space into a minimum number of bins, ensuring that for any typical side information sequence each of the bins contains only one jointly typical source sequence. In other words, in an appropriate measure of distance it should put as many source sequences as possible in a bin while maximizing the minimum distance between any pair of sequences in the bin. Thus each of the bins can play the role of a good channel code. This connection between binning and channel codes was first indicated in [7] while interpreting the Slepian-Wolf coding. Due to this close connection between binning and channel coding, most of the SCSI schemes proposed in the literature are based on the most successful channel codes namely LDPC codes, turbo codes, and their variants. In these schemes, depending on the conditional entropy \(H(X|Y)\), a channel code of a particular rate needs to be selected. However, there is always a gap between the compression rate that can be achieved with a specific channel code and the conditional entropy for which it can yield near lossless compression. For example, although the turbo code-based scheme in [8] and LDPC-based scheme in [9] have been designed for compression rates of 0.67 and 0.25, they achieve near lossless compression only when \(H(X|Y) = 0.49\) and 0.20 bits, respectively. More importantly, for a given conditional entropy, there is no guideline for choosing the rate of the code to be designed that can ensure near lossless recovery.

In this paper we present a SCSI scheme based on list decoding. Although list decoding yields a list of codewords, as opposed to the classical unique decoding, we demonstrate
that the correct codeword can conveniently be extracted from the list in the case of SCSI. The main advantage of using list decoding is that it can improve the compression rate significantly as compared to its classical counterpart. Moreover, the approach allows for a guideline for the choice of channel rate and channel code.

The organization of the rest of the paper is as follows. We review the technique of syndrome source coding, a compression technique based on channel codes, in Section II. In Section III, we present the notion of list decoding and describe how this can be used to design a SCSI scheme based on the technique of syndrome source coding. The use of existing list-decodable codes in the design of practical constructive codes for SCSI is detailed in Section IV. Finally we conclude the paper in Section V.

II. SYNDROME SOURCE CODING

The most challenging problem in the design of a practical binning scheme is the systematic construction of bins with algebraic structures so that the bin indexing and typical set decoding can be performed with reasonable complexity. In this regard, there is a close connection between binning and channel codes. A channel code induces a partitioning of the source data space into cosets that can be indexed by their respective syndromes [10]. If the cosets of a channel code are such that each of them with high probability contains only one sequence from the typical set then the cosets effectively act as bins. In this case the index of the bin can be computed as the syndrome of the sequence.

Consider encoding a memoryless binary symmetric source \(\{X_i\} \) with correlated side information \(\{Y_i\} \) available only at the decoder such that

\[
Y_i = X_i \oplus U_i
\]

where \(\{U_i\} \) is an i.i.d. Bernoulli source with parameter \(p < 1/2 \). If \(\{Y_i\} \) were present at the encoder as well, it could encode \(\{X_i\} \) at a rate \(H(X|Y) = H(U) = -p \log p - (1 - p) \log (1 - p) \). According to the Slepian-Wolf theorem, \(\{X_i\} \) can be compressed at the same rate even if \(\{Y_i\} \) is present only at the decoder. This SCSI scenario can be modelled with an additive noise channel where \(\{X_i\}, \{Y_i\}, \) and \(\{U_i\} \) correspond to input, output, and noise respectively (see Fig. 1). Clearly this additive noise channel is equivalent to a binary symmetric channel (bSC) with a crossover probability \(p \) (see Fig. 1). This modelling of the correlation between source and side information with a virtual channel allows us to use a channel code for the bSC to design a SCSI scheme [11] as described below.

The capacity \(C_{bSC} \) of the bSC and equivalently of the additive noise channel is

\[
C_{bSC} = 1 - H(U), \quad H(U) = -p \log p - (1 - p) \log (1 - p)
\]

According to the channel coding theorem [12], there exists an \((n, k)\) linear block code \(C \) of rate \(k/n = R > (C_{bSC} - \delta) \) such that the error probability \(P_e < \epsilon \) for any \(\epsilon > 0 \) and \(\delta > 0 \). Here the error event \(x \neq \hat{x} \) corresponds to the fact that when the actual noise vector is \(u \), the decoder decides the noise vector to be \(\hat{u} \) and \(u \neq \hat{u} \). Therefore, \(Pr(x \neq \hat{x}) = Pr(u \neq \hat{u}) \). Now consider the following scheme of compression of \(\{X_i\} \) with the side information \(\{Y_i\} \) available only at the decoder based on this channel code. The encoding operation is to compute the syndrome of a source sequence \(x \in \mathbb{F}_2^n \) as \(s = Hx^T \), where \(H \) is the parity check matrix of \(C \). If \(s_x \) denotes the coset corresponding to the syndrome \(s \), then clearly \(x \in s_x \). The decoding operation is to find the sequence \(\hat{x} \) nearest (in Hamming distance) to the side information sequence \(y \in \mathbb{F}_2^n \) in the coset \(C_s \). This is equivalent to finding the minimum-weight noise vector \(\hat{u} \) such that \(\hat{x} = y + \hat{u} \). Thus the probability of error of the scheme is \(Pr(x \neq \hat{x}) = Pr(u \neq \hat{u}) \), same as the channel decoding error, which tends to zero as \(n \to \infty \). This coding scheme which can compress \(\{X_i\} \) at a rate \((n - k)/n < H(U) + \delta \) with an arbitrarily small probability of error is known as syndrome source coding [13]. Clearly, if a channel code of rate \(R \) is used for syndrome source coding, the achieved compression rate is \(1 - R \).

III. SYNDROME SOURCE CODING USING LIST DECODING

Clearly, the underlying linear block code \(C \) and its associated decoding algorithm impact the performance of a syndrome source coder. Let \(C \) be a \((n, k)\) linear block code over \(GF(q) \). In the decoding of channel codes, the objective is to find the transmitted codeword \(e \in C \), given the received word \(r \in GF(q)^n \). The natural decoding approach is to find the codeword which has the maximum likelihood of being transmitted given that \(r \) has been received. This approach known as maximum likelihood decoding (MLD) amounts to finding the codeword \(\hat{e} \) closest to \(r \) in an appropriate measure of distance. However, MLD is known to be NP-complete in general [14]. Therefore, bounded distance decoding (BDD) which has greatly reduced complexity is preferred in practice that ensures correct decoding only when the number of errors is upper bounded by some error correcting radius \(\tau \). Obviously, an unambiguous BDD is possible only if \(\tau \leq \lfloor (d_{\min} - 1)/2 \rfloor \) where \(d_{\min} \) is the minimum distance of the code \(C \).

Let us see the implication of BDD for channel coding and in turn for syndrome source coding. For a bSC with crossover probability \(p \), the expected Hamming distance between the transmitted codeword \(e \) and the received word \(r \) is \(E[d(e, r)] = np \). Thus for unambiguous decoding, we need a code \(C \) with \(d_{\min} > 2np \). However, the largest rate possible for a binary code of \(d_{\min} = 2np \) is upper bounded by
$1 - H(2p)$, see [15], which is much smaller than the capacity of the channel $1 - H(p)$.
This in turn implies that the compression rate achievable with syndrome source coding that relies on BDD is lower bounded by $H(2p)$, which is much bigger than the conditional entropy $H(p)$.

In the above scenario, the main constraint is the requirement of unique decoding which sets the decoding radius to $\lfloor \frac{H(p) - 1}{2} \rfloor$. One way to circumvent this limitation is to increase the decoding radius beyond $\lfloor \frac{H(p) - 1}{2} \rfloor$ and allow the decoder to output a list of codewords. This approach will be feasible as long as (i) the list contains only a small number of codewords and (ii) there is an effective way of extracting the correct codeword from the list. The method of decoding beyond $\lfloor \frac{H(p) - 1}{2} \rfloor$ is known as list decoding in the literature. Let $B_q(r, e)$ denote the Hamming sphere of radius e around a point r in the space $GF(q)^n$.

A code C over $GF(q)$ is said to be (p, L) list-decodable if $|B_q(r, np) \cap C| \leq L$. List decoding is considered feasible as long as L grows polynomially with the block length n.

To assess the feasibility of this method, let us look at the theoretical limits on list decoding. It has been shown in [16] that for any integer $L \geq 2$, there exists a family of binary linear (p, L) list-decodable channel codes of rate $R \geq 1 - H(p) - 1/L$. Allowing L to grow, a rate arbitrarily close to the theoretical limit $1 - H(p)$ can be achieved. This in turns implies that the corresponding syndrome source coders have compression rate $\leq H(p) + 1/L$, which can be made arbitrarily close to the conditional entropy $H(p)$ by allowing L to grow.

For non-binary alphabets, the capacity of list decoding is similar to the binary linear case. It has been shown in [16] that for any alphabet size of $q \geq 2$, list size $L \geq 2$, and $p \in (0, 1 - 1/q)$, there exists a family of (p, L) list-decodable q-ary channel codes of rate $R \geq 1 - H_q(p) - 1/L$. Here $H_q(p) = p \log_q(q - 1) - (1 - p) \log_q(q - 1) - p \log_q(1 - p)$ is the q-ary entropy function. Thus, if the q-ary source $\{X_i\}$ and the side-information $\{Y_i\}$ are correlated in such a way that

$$Pr(X_i \neq Y_i) = p,$$

then $H(X|Y) = H_q(p)$. If a linearity constraint is imposed on the channel code, then the best known limit on list-decoding capacity [17] turns out to be $R \geq 1 - H_q(p) - 1/\log_q(L + 1)$. Consequently, the corresponding q-ary syndrome source coders have a compression rate $\leq H_q(p) + 1/\log_q(L + 1)$. We see that this requires exponentially bigger list size L than its binary counterpart.

A geometrical interpretation of syndrome source coding using list decoding: Consider the correlation model between the source and side information as defined in [2]. According to the law of large numbers, for large enough n, given a side information sequence $y \in GF(q)^n$, the source sequence $x \in GF(q)^n$ with high probability will be within a thin shell on the surface of $B_q(y, np)$. In fact, the thin shell corresponds to the set of sequences that are jointly typical with y. The total number of points in the shell is approximately equal to $|B_q(y, np)|$, since for large n almost all the point in $B_q(y, np)$ will be in the thin shell. It is known [16] that the number of points contained in $B_q(y, np)$ is bounded by

$$|B_q(y, np)| \leq q^{nH_q(p)}.$$

Now consider syndrome encoding of x using an (n, k) channel code C over $GF(q)$. Clearly C induces a partitioning of the source data space $GF(q)^n$ into q^{n-k} cosets. Since the points in the shell are uniformly distributed over $GF(q)^n$, for any syndrome s, the number of points in $B_q(y, np) \cap C_s$ is approximately $q^{nH_q(p)} / q^{n-k}$. From the list decoding point of view, this syndrome source coding is feasible if $|B_q(y, np) \cap C_s|$ is small, which holds only if $R = k/n \leq (1 - H_q(p))$.

Extracting the correct sequence from the list: CRC codes are widely used in practice for error detection. A CRC-ρ code is defined by a generator polynomial $g(ξ)$ of degree $ρ$ that assigns ρ-bit parity to a sequence. In the setting of list-decoding based syndrome source coding, the use of a CRC code is expected to be effective for at least two reasons. Firstly, while in the context of channel coding, the CRC bits are also subject to channel noise, this is not the case for syndrome source coding. In syndrome source coding, we can assume that these CRC bits along with the syndrome will be available to the decoder without error. Secondly, since the list size L is small (polynomial in n), only a few parity bits should be sufficient to correctly identify the desired sequence. A CRC-ρ code is expected to detect the correct codeword from a list of size L if $ρ \geq \log L$. Thus a syndrome source coder based on list decoding that uses a CRC code to extract the correct sequence has a compression rate of $H_q(p) + 1/\log_q(L + 1) + \log L/n$, which approaches to $H_q(p)$ as L and n grow.

Given a linear (p, L) list-decodable code C over $GF(q)$ of rate $> 1 - H_q(p)$, let us articulate the encoding and decoding operations involved in the syndrome coding of x in the presence of a side information y available only at the decoder.

Encoding: Let H be the parity check matrix of the code C. Then the syndrome of a source sequence x can be computed as $s = Hx^T$. Let $g(ξ)$ be the generator polynomial of a CRC-ρ code and $x(ξ)$ be the polynomial of degree at most $n - 1$ that corresponds to the sequence x. Then the ρ-bit CRC of x corresponds to the polynomial $h(ξ) = x(ξ) \mod g(ξ)$ of degree at most $ρ - 1$.

Decoding: First we need to list decode C_s considering the side information y as the received word. For this, given any $a \in C_s$, the list decoding algorithm for C can be used as follows. Compute $y' = y - a$. Using the list decoding algorithm for C, determine the list L consisting of those codewords of C which are within the Hamming sphere of radius np around y'. Then adding a to each of the codewords in L, we get the list L_s consisting of the words from C_s that are at a Hamming distance $\leq np$ from y. Finally, from L_s pick the word x such that $x(ξ) \mod g(ξ) = h(ξ)$.

Remarks: The problem of finding any $a \in C_s$ amounts to solving the system of linear equations $H a^T = s$. Since there are more unknown than equations, there is at least one nonzero solution to it. Thus, we can find an $a \in C_s$ in polynomial time, for example, using Gaussian elimination.
IV. CONSTRUCTIVE CODE DESIGN

Although the encoding and decoding algorithms presented in the previous section are theoretically sound, there are at least two challenges while designing codes for real-world applications. Firstly, the scheme assumes that $d(x, y) \approx np$ with high probability, which holds when $n \to \infty$. However, in the real world we have to operate with finite n. Secondly, the scheme also depends on the availability of a (p, L) list-decodable code with an efficient encoder and decoder. To date, efficient list decoding algorithms are known for the families of Reed-Solomon (RS), Bose-Chaudhuri-Hocquenghem (BCH), and Reed-Muller (RM) codes. Associated with each of these codes C is a known list decoding radius τ. Before presenting the main results on these families of codes and their potential in syndrome source coding, in the following we provide a general guideline that can be used to design practical SCSI schemes for the correlation model defined in (2).

Block length n: For better performance it is desirable to have n as large as possible. However, for large n the computational complexity may become problematic. While RS codes in practical applications are mostly of length $n = 256$ (due to the byte oriented world), it is feasible to go up to $n = 1024$ with binary BCH and RM codes.

List decoding radius τ: In theory, for n approaching ∞, a list decoding radius of $\tau < np + \delta$, where $\delta > 0$, is sufficient. In practice, for fixed n we need to have a list decoding radius of $\tau > T_{\epsilon}$, where T_{ϵ} is such that $Pr(d(x, y) > T_{\epsilon}) < \epsilon$. It can be shown that for large n we need to choose T_{ϵ} slightly bigger than np. Let r be a random variable representing $d(x, y)$. Then clearly r has a binomial distribution with mean np and variance $\sqrt{np(1 - p)}$. For large n, with high probability r will be in the vicinity of np. For example, for $n = 1000$, $p = 0.4$, and $\epsilon = 10^{-4}$, the value of T_{ϵ} is 459. If we want to decrease the error probability to $\leq 10^{-5}$, we will need to increase T_{ϵ} only by 9 to 468.

Code rate R: Since the compression rate achieved with syndrome source coding based on a channel code of rate R is $1 - R$, we need to pick a code of largest rate R whose list decoding radius is at least T_{ϵ}.

CRC code generator $g(x)$: There are a number of standard CRC codes, see [13]. Since the list produced by the list decoder is guaranteed to be small, a few CRC bits would be enough to correctly extract the source sequence from the list. In practice, the CRC-12 is expected to be enough and for $n = 1000$ this would incur only 1.2% of redundancy.

In the following we discuss the main list decoding results for the families of RS, BCH, and RM codes and their implication for syndrome source coding.

RS code: An (n, k) RS code C over $GF(q)$ is defined by the following parity check matrix H where $1 \leq k \leq n < q$, b is an integer, and α is an element of $GF(q)$ of multiplicative order n.

$$H = \begin{pmatrix}
1 & \alpha^b & \cdots & \alpha^{(n-1)b} \\
1 & \alpha^{b+1} & \cdots & \alpha^{(n-1)(b+1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{b+n-k-1} & \cdots & \alpha^{(n-1)(b+n-k-1)}
\end{pmatrix}$$

It follows from the parity check matrix that $c \in C$ if and only if $c(\alpha^{b+j}) = 0$ for all $0 \leq j \leq n - k - 1$. RS code can also be defined with the following generator matrix where, $\alpha_1, \alpha_2, \ldots, \alpha_n$ are distinct nonzero element of $GF(q)$.

$$G = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_n \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_n^{k-1}
\end{pmatrix}$$

According to this generator matrix, the codeword corresponding to a message u can be computed as $c = (u(\alpha_1), u(\alpha_2), \ldots, u(\alpha_n))$. The family of RS codes are maximum distance separable (MDS) and thus has $d_{\min} = n - k + 1$. A list decoding algorithm was first discovered for low rate RS codes by Sudan [19] and later improved and extended for all rates by Guruswami and Sudan [20]. For a RS code of rate R, the Guruswami-Sudan algorithm can correct up to $n(1 - \sqrt{R})$ errors which is clearly beyond half its the minimum distance. Guruswami-Sudan algorithm uses the polynomial representation corresponding to G. Given a received word r, the essential idea of the algorithm is to find the polynomials $u(\xi)$ of degree at most k such that $u(\alpha^j) = r_j$ for at least τ values of $j \in [0, n - 1]$. Recently, Wu [21] has proposed an alternative algorithm that can also achieve the same list decoding radius but with a reduced complexity. Wu's algorithm relies on polynomial representation corresponding to H and is akin to Berlekamp-Massey algorithm.

Example: Let us design a SCSI scheme for the correlation model as defined in (2) given that $q = 2^5$, $p = 0.3$, $\epsilon = 10^{-4}$ and $n = 255$. For these values of n and ϵ, the value of T_{ϵ} turns out to be $T_{\epsilon} = 105$. Thus we need a code having $\tau > 105$. Using the fact that the RS code of rate R has $T_{\epsilon} = n(1 - \sqrt{R})$, we find that the (255, 88) is the desired RS code. Thus the compression rate achieved with this scheme is $1 - R = 0.6549$. When 12 CRC bits are considered the compression rate increases to 0.702. In contrast, unique decoding would require a code with $d_{\min} = 2T_{\epsilon} + 21 = 211$. It is the (255, 45) RS code that has $d_{\min} = 211$. The use of this code for syndrome source coding with unique decoding can only achieve a compression rate of 0.8235.

Binary BCH code: Binary BCH codes can be interpreted as alternate codes of RS codes [10], i.e., if C_{RS} is an RS code over $GF(2^m)$, then $C_{RS} \cap GF(2)^n$ is a BCH code. This interpretation allows the Wu’s list decoding algorithm for RS codes to be used for the list decoding of BCH codes. However, Wu [21] has also presented an improved algorithm for list decoding of binary BCH that can achieves a list decoding
radius of \(\tau = \frac{n}{2}(1 - \sqrt{1 - 2D}) \), where \(D = d_{\text{min}}/n \) is the designed relative distance of the BCH code.

Example: Consider designing a SCSI scheme for the correlation model as defined in (1) for \(p = 0.2 \) and \(\epsilon = 10^{-4} \). As binary BCH codes of length up to 1023 can be implemented without any difficulty, we choose \(n = 1023 \). For the given values of \(n, p, \) and \(\epsilon, \) we calculate \(T_e = 254 \). The (1023, 56) BCH code with \(D > 0.3743 \) has \(\tau > 382 \) and thus can achieve an error probability of \(P_e < 10^{-4} \) if used for syndrome source coding. The compression rate of this scheme is 0.9453 which slightly increases to 0.9570 when 12 CRC bits are considered. Note that with unique decoding it would need a code of \(d_{\text{min}} > 508 \). The BCH code of designed distance > 508 is the (1023, 11) code which only achieves a compression rate of 0.9892.

RM codes: For any integers \(m \) and \(r \) with \(0 \leq r \leq m \), the \(r \)-th order binary RM code is a \((n = 2^m, k(r, m))\) code having \(d_{\text{min}} = 2^m - r \), where the dimension \(k(r, m) = 1 + \binom{m}{1} + \cdots + \binom{m}{r} \). RM codes can be constructed in many ways. Among these, the Boolean function based construction [22] is considered the simplest.

The best known list decoding algorithm is known to be the one by Gopalan, Klivans, and Zuckerman [23]. The Gopalan-Klivans-Zuckerman algorithm relies on the Boolean function based construction and achieves a list decoding radius of \(\tau = \frac{n}{2}(1 - \sqrt{1 - 4D}) \), where \(D \) is the relative distance of the code.

Example: Consider designing a SCSI scheme for binary correlated sources using RM codes. Let \(p = 0.3 \) and \(\epsilon = 10^{-4} \). To operate in high dimension we choose \(n = 10 \) which corresponds to RM codes of length \(n = 1024 \). For these values of \(n, p, \) and \(\epsilon, \) the required list decoding radius turns out to be \(T_e = 364 \). According to the list decoding radius of the Gopalan-Klivans-Zuckerman algorithm, we need a RM code of \(d_{\text{min}} > 235 \). The second order RM code is the (1024, 56) code having \(d_{\text{min}} = 256 \) and thus can ensure the desired probability of error. The compression rate with this scheme is 0.9453. When the CRC bits are included it only increases to 0.9570. In contrast, with unique decoding it is not possible to achieve any compression for \(p = 0.3 \) and \(\epsilon = 10^{-4} \), since it requires \(d_{\text{min}} > 728 \) which is only possible for \(r = 0 \).

V. CONCLUSION

We applied channel coding ideas on list decoding to the setting of Distributed Source Coding (DSC). In DSC it is customary to model the correlation between the source information and the side information via a virtual channel. In this paper we recognize the advantage that additional bits can be sent outside of the virtual channel. We exploit this advantage to accomplish selection of the correct data from the list obtained by the list decoder. The additional bits are provided by a CRC code. We show that our list decoding-based source coding has a compression rate that is significantly higher than a classical unique decoding-based source coder. Moreover, the proposed approach has the advantage that given the conditional entropy, it allows for a clear guideline for choosing the channel rate and channel code corresponding to the desired compression rate. Our future work aims at the design of practical codes through this approach, in particular the design of efficient source decoding methods.

ACKNOWLEDGMENT

This research is supported by the Australian Research Council (ARC).

REFERENCES

[1] S. S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed compression in a dense microsensor network,” IEEE Signal Process. Mag., vol. 19, no. 2, pp. 51–60, 2002.

[2] Z. Xiong, A. D. Liveris, and S. Cheng, “Distributed source coding for sensor networks,” IEEE Signal Process. Mag., vol. 21, no. 5, pp. 80–94, 2004.

[3] B. Girod, A. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed video coding,” Proc. IEEE, vol. 93, no. 1, pp. 71–83, 2005.

[4] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information sources,” IEEE Trans. Inf. Theory, vol. IT-19, no. 4, pp. 471–480, 1973.

[5] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley and Sons, Inc., 1991.

[6] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems. New York: Academic Press, 1981.

[7] A. D. Wyner, “Recent results in the Shannon theory,” IEEE Trans. Inf. Theory, vol. IT-20, pp. 2–10, 1974.

[8] J. Bajcsy and P. Mitra, “Coding for the Slepian-Wolf problem with turbo codes,” in Proc. IEEE Global Communications Conference (GLOBECOM ‘01), San Antonio, TX, Nov. 2001, pp. 1400–1404.

[9] A. D. Liveris, Z. Xiong, and C. N. Georghiades, “Compression of binary sources with side information at the decoder using LDPC codes,” IEEE Commun. Lett., vol. 6, no. 10, pp. 440–442, Oct. 2002.

[10] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam: North-Holland Publishing Company, 1977.

[11] R. Zamir, S. Shamai, and U. Erez, “Nested linear/lattice codes for structured multiterminal binning,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1250–1276, Jun. 2002.

[12] D. J. C. MacKay, Information Theory, Inference, and Learning Algorithms. Cambridge: Cambridge University Press, 2003.

[13] T. C. Anancha, Jr, “Syndrome-source-coding and its universal generalization,” IEEE Trans. Inf. Theory, vol. IT-22, no. 4, pp. 432–436, 1976.

[14] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent intractability of certain coding problems,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 384 – 386, 1978.

[15] V. Guruswami, “List decoding of binary codes—a brief survey of some recent results,” LNCS, vol. 5557, pp. 97–106, 2009.

[16] ——, “Algorithmic results in list decoding,” Foundations and Trends in Theoretical Computer Science, vol. 2, no. 2, pp. 107 – 195, 2007.

[17] ——, “List decoding of error-correcting codes,” LNCS, vol. 3282, 2004.

[18] S. B. Wicker, Error control systems for digital communication and storage. Upper Saddle River, New Jersey 07458: Prentice Hall, 1995.

[19] M. Sudan, “Decoding of Reed-Solomon codes beyond the error-correction bound,” J. Complexity, vol. 13, no. 1, pp. 180–193, 1997.

[20] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometry codes,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1757 – 1767, 1999.

[21] Y. Wu, “New list decoding algorithms for Reed-Solomon and BCH codes,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3611 – 3630, 2008.

[22] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, 2nd ed. New Jersey: Pearson Prentice Hall, 2004.

[23] P. Gopalan, A. R. Klivans, and D. Zuckerman, “List-decoding Reed-Muller codes over small fields,” in Proc. ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 2008, pp. 265–274.