The Huntsman Telescope

Lee Spitler
https://huntsman.space/

Photo by Sarah Caddy
LO-COST: Lee's Outstanding Cost-effective Optical Systems Team

INSTRUMENT SCIENTIST
ANTHONY HORTON

LOW SURFACE BRIGHTNESS SPECIALIST
DANIEL PROLE

GALAXY CAVE GOBLIN
FERGUS LONGBOTTOM

UNIVERSE SIMULATOR
AMIR EBADATI BAZKIAEI

SOFTWARE WRANGLER
WILFRED GEE

MISSION COMMANDER
LEE SPITLER

EXOPLANET HUNTER
JAMIE ANDRES ALVARADO MONTES

ALIEN HUNTER
SARAH CADDY
Image credit: Fergus Longbottom
Optical: Huntsman HI: Westmeier, Braun & Koribalski, 2010
Transit Photometry with the Huntsman Telescope

![Diagram of planet orbiting a star with brightness and time axes.](Photo by Sarah Caddy)
10 lenses equivalent to a D~0.5m telescope

Full field of view
1.9° x 1.3°

Pixel scale
1.24"x1.24" per pixel

Image sensor
Sony IMX183,
Back-illuminated, 84% QE,
1.6e- RN, 12-bit, 15000e FW

Canon 400mm 2.8L IS II telephoto lens
D=14cm

20 Mega pixels
CMOS image sensors
ZWO ASI183MM Pro
Current filters:
g-, r-, Halpha, SII, Lum, blank

Not installed:
Exoplanet diffuser, polarising filter
27101 - LRGB

Luminance, Red, Green, and Blue astronomy filter set

Filters in this Set	Price
27040 (AS)	$
27041 (AS)	$
27042 (AS)	$
27043 (AS)	$

https://www.chroma.com/
Movie Mode

CMOS sensor with electronic shutter means we can observe with exposure times as short as 32 microsecond.

With ~19 frames/second for full field per camera means that ~10 lenses can obtain a 190 frames/second "movie" of the sky.

Why hasn’t this been possible before?

CCD have long readout & exposure times or optimised for a small field of view (e.g. EMCCD)

CMOS sensitivity has improved rapidly
Data rates are the a challenge:
40 megabytes per image *
20 frames / second *
8 hours / night *
10 cameras *
= 200 terabytes / night
~6 GB / second
Need edge computing

Jetson Xavier NX
Proxima Cen
M-dwarf
$R = 9.45$ mag

Optical Photometry & Spectroscopy

$Z_{adko} g'$
TESS (scaled $\times 10$)
Hα EW

5σ

1σ

$t + 58605.38154$ MBJD (hour)
"complex" flare event

e.g. 1 minute time resolution

Information about the physics of stellar flare heating and radiation

Davenport et al. 2014
https://iopscience.iop.org/article/10.1088/0004-637X/797/2/122
Initial survey will be only sensitive to bright sources/events
Future surveys can target fainter sources/events
Macquarie can make instruments for larger telescopes
Misc COTS devices

- Acroname USB hub
 - Can power cycle each USB port via App
- Software Bisque Paramount MEII
 - 109kg payload capacity - we are very near the limit
 - Controlled via TheSkyX software, linked to our control software via TCP/IP cmds
- Fitlet-2 fanless control computer
 - Atom x7-E3950, RAM: 16 GB, M.2 SATA 250 GB, -20°C to 70°C
- UPS, NPS, router, ethernet switches
- Weather station
 - AAG cloudwatch, PurpleAir dust monitors (one outside, one inside dome)
 - SQM and TESS sky brightness monitors
 - https://tess.dashboards.stars4all.eu/d/datasheet_stars54/stars54?orgId=1
 - https://www.purpleair.com/map?opt=1/mAQI/a10/cC0&key=PN8NL7OCYY3VLZJ6#18.87/-31.2720966/149.0616937
- Lights
 - Zigbee-based wifi light controls unstable, now use USB-powered LEDs
non-COTS equipment

● Lens tubes - designed by AAO intern
● AC to DC power supply - assembled by Daniel B, SSO/ANU Staff
● Filter-wheel / lens adaptor - designed by A. Horton & MQ METS
● Dome controller - designed by F. Longbottom, MQ PhD student
● Dome shutter controller - designed by Steve Lee
● The dome - made by AstroDomes