Dental Medicine Nanosystems: Nanoparticles and their use in Dentistry and Oral Health Care

Hassan Lboutounne*
International University of Rabat; International Faculty of Dentistry; Technopolis Parc, Rocade of Rabat Sale, Sala Al Jadida Morocco

Corresponding Author: Hassan Lboutounne, Assistant Professor, PhD., International University of Rabat International Faculty of Dental Medicine, Technopolis Parc, Rocade of Rabat-Sale, 11100 - Sala Al Jadida - Morocco. Tel: + 212 (0) 530104138, E-mail: hassan.lboutounne@uir.ac.ma

Citation: Hassan Lboutounne (2017), Dental Medicine Nanosystems: Nanoparticles and their use in Dentistry and Oral Health Care. Int J Dent & Oral Heal. 3:10, 145-157. DOI: 10.25141/2471-657X-2017-10.0150

Copyright: ©2017 Hassan Lboutounne. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Received: October 26, 2017; Accepted: November 06, 2017; Published: December 30, 2017

Abstract

The major goal in dentistry and oral health care is maintaining the health of oral tissues. Thus, to achieve this goal, the advances in nanosciences and nanotechnology have paved the way to approach this goal. The application of these nanotechnologies to dental medicine have given rise to nanodentistry, which is an innovative branch of science. Many studies indicate extensive application of the medical nanosystems in numerous fields of nanodentistry such as prevention, diagnosis, therapeutic, restoration and tissue regeneration. The latter, cover all dentistry specialties such as restorative dentistry, periodontics, endodontic, orthodontics, prosthodontics, oral implantology and regenerative dental Medicine. These dental Medicine nanosystems as nanostructured materials constitute new innovative nanoproducts that make possible the maintenance of oral health care in a very precise, safe and effective way. The objective of this review is to expose briefly, the recent advances in these dental Medicine nanosystems, especially in nanoparticles and nanoparticles-based nanomaterials. In addition, the article sets out to describe the various potential applications of this type of nanostructured materials and the challenges they present in clinical, cosmetic and esthetic dental and oral health care.

Keywords: Dental Medicine Nanosystems; Nanodentistry; Nanoparticles; Nanomaterials; Oral Health Care

Introduction

Nanotechnology is the engineering of functional systems by controlling atoms and molecules to achieve effective, complete control of the structure of matter with new functions. The nanotechnology tools and ideas allow to create a new nanosystem with novel, physico-chemicals, mechanicals, and biological properties. However, the applications of these nanotechnologies has rapidly expanded into all areas of health care science including that of odontological science [1]. Nanotechnology aided in processing a variety Dental Medicine Nanosystems (DMN) with innovative applications. Nanosystems means the assembly of nanoscale components for the purpose of performing a function. In the literature, nanosystems are described as manufactured nanostructured particles (nanoparticles) and nanostructured materials (nanomaterials) or their combination. The nanomaterials may have intrinsic properties related to their structures and their components or develop new properties related to the simple structuring caused by the incorporation of the nanoparticles. In the recent years, various advances in engineering of nanoparticles and nanomaterials or their combination, have allowed the development of a new innovative DMN. The advances in the applications of these DMN cover all dentistry specialties namely restorative dentistry [2], periodontics [3], endodontic [4], orthodontics [5-6], prosthodontics [7], oral implantology [8-9], regenerative dentistry [10]. They all cover dental fields such as prevention, diagnosis, therapeutic, restoration and tissue regeneration [11]. DMN are numerous, varied and have greatly extended. This field has been the subject of potential in a wide spectrum of dental industry and oral health care. The present review, focuses on the following DMN: nanoparticles [12-13-14], nanoparticles-based nanomaterials [15-16-17-18]. Nanoparticles are divided into, organic nanoparticles [19], inorganic [20] and hybrids [21]. In this regard, they are often used in dentistry and oral health care in free or incorporated form. Dental materials (metals, composites / resin-composites and polymers) are used as restorative systems, adhesives and bonding systems, cement and sealant systems and tissue regenera-
The incorporation of nanoparticles in dental materials proves to be very promising as it makes it possible to obtain new DMN systems. Hence, it will improve the functional and structural properties of dental materials, while optimize clinical, cosmetic and esthetic dental and oral health care performances [22]. On the other hand, recently, the nano-safety of the inorganic nanoparticles for use in diverse biomedical applications including dentistry was investigated. The results of which are encouraging and emphasise the need for more precise and more detailed studies [23].

The aim of this review is to demonstrate and to describe the recent advances in the nanoparticles and their incorporation into dental nanomaterials. In addition, view their potential applications for prevention, therapeutic, restoration, tissues regeneration and diagnosis.

Dental Prevention and Prophylaxis Applications

Tooth wear is a dental disease and includes tooth erosion and tooth loss. The comprehension of the main oral problems and the challenges related to DMN in the oral environment and this constitutes the basis for developing innovative and new nanoproduct that can provide an improved oral tissue protection. This could be beneficial especially for improving the effectiveness of preventive therapy for dental pathologies and oral diseases. Currently, established prevention of dental plaque relies heavily on tooth-brushing and the strengthening of tooth enamel by fluoride. Therefore, the development of enhanced dental medicine nanosystems for oral hygiene is of paramount importance in increasing the protection of the teeth and of the oral cavity from detrimental processes [24]. These developments concern nanoparticles and nanoparticle-based materials, in particular, aspects related to preventing the formation of dental plaque, biofilm and primary, secondary infections. However, the organic and inorganic nanoparticles were used in free or incorporated forms, and several strategies are used to design these dental prevention nanostructured materials such as dental medicine nanosystems as shown as in Figure 1. On the other hand, the prevention of the biofilm development concerns dental equipment and this is the case in dental unit water lines (DUWL) [25]. It was reported that the problem of the susceptibility of biofilm development and bacterial growth in DUWL, leads to water contamination, which causes health and ecological effects. Overall, recent advances in the design and use of these DMN for dental prevention and prophylaxis are described in Table 1 and 2.

Figure 1: Illustration of Dental Medicine Nanosystems design and the strategies of their use for preventive, therapeutic, restoration, tissues regeneration and their combination.
Table 1: Use of nanoparticles (NPs) for dental prevention treatments / Prophylactic prevention.

Type and Composition	Form	Aim(s) and Strategy
Chitosane; BA-NPs	Colloidal Solution	- Incorporation of NPs by inclusion in matrix
		- Bioadhesion into dental tissues
		- Antibacterial effect
		- Mineralisation effect
		- Sustained and release of bioactive molecules delivery nanosystem
		- Caries prevention by demineralisation inhibition
	Transmucosal patch	- Incorporation of NPs by inclusion in matrix
	(TP; (Diclofenac diethylamine / DDEA): PA)	- TP loaded with DDEA-SLN applied at the gingival site immediately after dental surgery has the potential to produce therapeutic relief locally which is prolonged 24th
	Colloidal Solution	- Sustained and release of bioactive molecules delivery nanosystem
		- Low and continuous release of fluoride at pH
		- Protection against caries development by mineralisation
		- Remineralisation agents
Organic nanoparticles		- Anti-adhesion agents

Legend: NPs: Nanoparticles; MA: Memineralisant agents; PA: Pharmacological agents; ADA: Anti-demineralisant agents; BA: Bioadhesive agents; RA: Remineralisant agents; AAA: Anti-adhesion agents.

Table 2: Use of nanoparticles (NPs) for dental prevention treatments / Prophylactic prevention.

Type and Composition	Form	Aim(s) and Strategy
Copper Oxide (CuO-NPs): PA	Colloidal Solution	- Antimicrobial NPs
		- Preventing dental caries or dental infections
Zirconium (ZrO2-NPs): PA	Bioactive resins	- Incorporation of NPs by inclusion in matrix
		- Antimicrobial NPs
		- Antibacterial effect
		- Anticaries
Silver (Ag-NPs)	Colloidal Solution	- Antimicrobial NPs
		- Antibacterial effect
		- Antibiofilm in dental unit water lines
		- Prevention of water contamination
Calcium carbonate (CaCO3): RA-NPs	Toothpaste	- Incorporation of NPs by inclusion in matrix
		- Reduced or prevent tooth erosion
		- Remineralize initial enamel lesions

Legend: NPs: Nanoparticles; MA: Memineralisant agents; PA: Pharmacological agents; ADA: Anti-demineralisant agents; BA: Bioadhesive agents; RA: Remineralisant agents; AAA: Anti-adhesion agents.

Dental Therapeutic Applications

Dental therapeutic treatments can have a triple purpose, preventive therapy, curative therapy and tissues regenerative therapy. The innovative therapeutic nanostructured materials, as nanoparticles or nanoparticles based nanomaterials was recently reviewed [22]. However, their use for dental applications have undergone extensive investigations due to their potential antimicrobial effect. In this regard, the exploitation of their toxic properties to bacteria, fungi and viruses as well as their incorporation into dental materials in order to control oral infections was reported [19-26]. Accordingly, all these studies, have reviewed the importance of this antimicrobial effect of these nanoparticles whether in free form or incorporated form. Thus, the therapeutic nanostructured materials are a real therapeutic alternative in dentistry. Several strategies are used to design and to formulate this nanostructured materials for the treatment of dental and oral diseases. Regardingly, Figure 1 illustrates the design of the therapeutic dental nanostructured materials. In addition, the recent studies reflect recent advances in DMN for dental therapeutics applications (combination of preventive therapy and curative therapy) are described in Table 3 & 4. On the other hand, concerning tissue regenerative therapy, the understanding of the cell biological processes underlies development and regeneration of oral tissues and leads to novel regenerative approaches and strategies. However, the recent
Table 3: Use of nanoparticles (NPs) for dental therapeutic treatments / Prevention therapy and Curative therapy

Type and Composition	Form	Aim (s) and Strategy	Reference(s)
Mesoporous silica (SiO₂-NPs)	Colloidal solution	- Anti-inflammatory effect	Li et al., 2017 [33]
Mesoporous silica (SiO₂-NPs)	Colloidal solution	- Sustained and release of bioactive molecules delivery nanosystem	
Mesoporous silica (SiO₂-NPs)	Colloidal solution	- In vitro BE-NPs exhibits notable anti-inflammatory effects in gingival epithelial cells through effective release and cellular internalization approaches	
Silver (Ag-NPs)	Micellar solution (Farnesol)	- Sustained and release of bioactive molecules delivery nanosystem	Zhou et al., 2016 [59]
Zinc oxide (ZnO-NPs)	Colloidal solution	- Antimicrobial NPs	Afra et al., 2017 [55]
Zinc oxide (ZnO-NPs)	Colloidal solution	- Synergistically antibacterial and anti-biofilm effects	
Silicon dioxide (SiO₂-NPs)	Nanofilm (Poly(ethylene terephthalate)-glycol and Silica@oxane)	- Incorporation of NPs by inclusion in matrix	Lin et al., 2016 [56]
Magnesium (M-NPs)	Colloidal solution	- Anti-hyperosensitivity effect	Dabbagh et al., 2014 [57]

Legend: NPs: Nanoparticles; MA: Memineralising agents; PA: Pharmacological agents; ADA: Anti-demineralising agents; BA: Bioadhesive agents; RA: Remineralising agents; AAA: Anti-adhesion agents.
Table 5: Use of nanoparticles for dental tissues regenerative therapy

Metal	Mineral	Form	Incorporated	Aim(s) and Strategy	Reference(s)
Gold (Au-NPs)	Calcium silicate (Ca$_3$SiO$_4$-NPs)	Colloidal solution	Calcium phosphate cement (CPC)	Incorporation of Au-NPs improved cells behavior on CPC, including better cell adhesion and proliferation, and enhanced osteogenic differentiation	Xia et al., 2017
				Au-NPs-CPC enhanced the osteogenic functions of cells (hDPSCs) and as bioactive additives thus enhance bone regeneration	
				- Endodontic materials for biocompatible and osteogenic dental pulp tissue regenerative	Huang et al., 2017
				- Used as drug carriers to maintain sustained release gentamicin and FGF-2	
				- The Ca$_3$SiO$_4$-NPs stimulate more osteogenically-related protein than calcium silicate matrix because of the FGF-2 release	
				- Antimicrobial NPs	Heo et al., 2016
				- The Au-NPs were osteogenic agents due to their potential effects on the stimulation of osteoblast differentiation.	
				- The Au-NPs were immobilized on the titanium implants surface	
				- The Au-NPs enhances the osteogenic differentiation in vivo	
				- The Au-NPs have significant influence on the osseous interface formation in vivo	
				- Au-NPs can be useful as osseo-integration inducing dental implants for formation of an osseous interface and maintenance of nascent bone formation.	
				- BGs-NPs were non-toxic at a concentration of 20 mg/ml	Ajina et al., 2015
				- Increased proliferation cell with smaller BGS-NPs	
				- Use in dental and bone treatments as fillers or bone-tissue bond forming materials	

Legend: NPs: Nanoparticles; MA: Memineralisant agents; PA: Pharmacological agents; ADA: Anti-demineralisant agents; BA: Bioadhesive agents; RA: Remineralisant agents; AAA: Anti-adhesion agents.

Dental Restoration Applications

The nanoparticles are promising for incorporation in dental materials-related restorative materials systems, adhesives-bonding systems, cements and sealants systems and prosthesis bases systems. Therefore, these nanoparticles have potential to significantly improve the biological, mechanical, optical, thermal and the physico-chemical properties of dental medicine nanosystems (nanostructured materials). Thus, the production of nanostructured and functionnalized dental materials with more efficient biological properties must take into consideration the non-sacrifice of the other properties of these dental materials. Concerning restorative nanomaterials, in the dental implantology, infection is the most common factor that leads to dental implant failure. Antibacterial implant surfaces based on nano-scale modifications appear as an attractive strategy for control of peri-implantitis. The summary of the application of nanoparticles as dental implant coating nanomaterials that control and improve the implant success rate, with focus on enhanced osseointegration and antimicrobial effect was overviewed [34]. The investigation of the addition of an antibacterial agent to dental implants may provide the opportunity to decrease the percentage of implant. However, the use of nanoparticles to coat implants could provide osteoconductive and antimicrobial functionalities to prevent failure. But, the current research in dental adhesives and bonding nanomaterials, aims at increasing the durability of resin–dentin bonds. Thus, the fundamental processes responsible for the aging mechanisms involved in the degradation of resin-bonded interfaces and the potential approaches to prevent and counteract this degradation by creating stable resin–dentin bonds that are able to resist the collagenolytic hydrolysis are also reviewed [35]. In the case of dental cements and sealants nanomaterials, glass ionomer cement (GICs) are usually used as restorative materials have still lots of challenges due to their secondary caries and low mechanical properties. Therefore, many efforts have been proposed to modify the antibacterial and the mechanical features of GICs in order to prevent the secondary caries. Particularly, to achieve this goal, the nanoparticles were incorporated into GICs and their effectiveness has been proven [36]. Finally, in the case of dental prosthesis nanomaterials, the incorporation of nanoparticles was used in order to have a high biocompatibility with the oral tissues, excellent esthetics, superior mechanical properties. Clinical failures of complete or partial dental prosthesis are most likely in the form of fracture either due to fatigue or impact forces of mastication. Several strategies are used to improve and to ameliorate the structure and the functions of these dental restoration materials as well as all the problems related to their contact with the various dental tissues and especially the interfaces. Thus, Figure 1 illustrates the design of the restorative dental nanostructured materials. In addition, the latest studies and in DMN for dental restoration applications (combination of restoration, prevention and therapy) are described in Table 6 (A, B, C, D, E, F) and 7.
Table 6 (A): Use of nanoparticles (NPs) in dental nanomaterials for restoration treatments

Metal and Composition	Type and Composition	Form	Aim (s) and Strategy	Reference(s)
Silica (SiO₂-NPs) PA	Hydroxyapatite (Ca₃(PO₄)₂(OH)₂-NPs)	Dental stone	- Incorporation of NPs by inclusion in matrix; - Addition of SiO₂-NPs to affect the dimenlal tensile strength and compressive strength; - Surface roughness lower when SiO₂-NPs were added	De Cesaros et al., 2013 [51]

Legend: NPs: Nanoparticles; MA: Memineralisant agents; PA: Pharmacological agents; ADA: Anti-demineralisant agents; BA: Bioadhesive agents; RA: Remineralisant agents; AAA: Anti-adhesion agents.

Table 6 (B): Use of nanoparticles (NPs) in dental nanomaterials for restoration treatments.

Type and Composition	Form	Aim (s) and Strategy	Reference(s)	
Fluoro-Silica (F-SiO₂-NPs) PA	Resin composite	- Photo-crosslinked polyurethane polymer (PU); - Superhydrophobic coating for preventing microleakage in a dental composite restoration; - Superhydrophobic coatings with low PU:F-SiO₂ ratio (1:3) possessed excellent structure, high contact angle, low sliding angle, good transparency, the prominent cell viability and biocompatibility for clinical application; - Superhydrophobic coatings effectively prevented water permeation in resin composite restoration	Cao et al., 2017 [5]	
Silica (SiO₂-NPs) PA	Resin composite	- Incorporation of NPs by inclusion in matrix; - Antimicrobial NPs; - Composite resin reinforced with SiO₂-NPs exhibits HA nanowires provide both efficient restorative and high antimicrobial activity	Ai et al., 2017 [21]	
Silver (Ag-NPs) PA	Graphite oxide sheets	Aluminum Ceramics (Al₂O₃)	- Incorporation of NPs by inclusion in matrix; - High antibacterial activity at very low concentration; - Use as additive for endodontic fillings	Genzerakids et al., 2016 [84]
Zirconium (ZrO₂-NPs)	Nanozirconium (ZrO₂-NPs) Nanoparticles	- Incorporation of NPs by inclusion in matrix; - High optical properties; - Achievement of high transparency of polycrystalline alumina ceramics	Trimeurt et al., 2015 [65]	
Gold (Au-NPs) PA	Gold nanostructures	Silver nanowires	- Incorporation of NPs by inclusion in matrix; - Significant Ag ion release in the presence of Au; - Resin composite modified with mixture of Au-NPs and Ag-NPs have lower light transmission and have opaque appearance; - Higher microhardness	Sokolowski et al., 2014 [66]
Glass fibers	Glass fibers	- Antimicrobial NPs; - Nanosystem for cost dental fillings for endodontic therapy; - Glass fibers filaments covered the surface with Ag-NPs who formed film; - Potential mechanical and antibacterial properties	Neumayr-Raissen et al., 2014 [67]	
Table 6 (C): Use of nanoparticles (NPs) in dental nanomaterials for restoration treatments.

Metal	Type and Composition	Form	Aim(s) and Strategy	Reference(s)
Copper (Cu-NPs)	PA	Orthodontic adhesive	- Incorporation of NPs by inclusion in matrix	
- Antimicrobial NPs
- NPs did not show mechanical properties.
- At higher concentrations they produce more mechanical resistance.
- Prevent the degradation of adhesive-dentin interfaces. | [93] |
| Zirconia (ZrO₂-NPs) | Titanium dioxide (TiO₂-NPs) | Adhesive resin-composite | - Incorporation of NPs by inclusion in matrix
- Antimicrobial NPs
- Antibacterial activity.
- Adding ZrO₂-NPs and TiO₂-NPs to orthodontic adhesive increased compressive strength, tensile strength, and shear bond strength in vitro. | [94] |
| Sepiolite (Mg₃Si₄O₁₀(OH)₂-NPs) | | Medacrylate dentin bonding | - Mg₃Si₄O₁₀(OH)₂-NPs can be considered as novel fillers to improve the mechanical properties of dentin bonding agents.
- Incorporation of the Mg₃Si₄O₁₀(OH)₂-NPs improved the bond strength to dentin with the highest values obtained at 1 νL. | [95] |
| Zinc oxide (ZnO-NPs) | PA | Adhesive resin-composite | - Incorporation of NPs by inclusion in matrix
- Antimicrobial NPs
- Use of single bond of adhesive with 10% of ZnO-NPs.
- Increases of anti-microbial properties without affecting bond strength. | [96] |
| Silver (Ag-NPs) | Calcium phosphate (Ca₃(PO₄)₂-NPs) | Adhesive resin-composite | - Antimicrobial NPs
- Quaternary ammonium hydroxides (QAH). Ag-NPs antibacterial effect.
- Ca₃(PO₄)₂-NPs released calcium phosphate ions and remineralized tooth lesions and neutralized acids.
- Combining Ag-NPs Ca₃(PO₄)₂-NPs QAH, a new class of composites and adhesives with antibacterial and remineralization double benefits. | [97] |

Legend: NPs: Nanoparticles; MA: Memineralisant agents; PA: Pharmacological agents; ADA: Anti-demineralisant agents; BA: Bioadhesive agents; RA: Remineralisant agents; AAA: Anti-adhesion agents.

Table 6 (D): Use of nanoparticles (NPs) in dental nanomaterials for restoration treatments.

Metal	Type and Composition	Form	Aim(s) and Strategy	Reference(s)
Zinc oxide (ZrO-NPs)	PA	Glass monomer cements (GMCs)	- Incorporation of NPs by inclusion in matrix	
- Antimicrobial NPs
- Inhibition of ZrO-NPs at concentration 1% and 2% did not promote their antimicrobial activity against S. mutans.
- Most important advantages of the GMCs are associated with their ability to release long-term antimicrobial agents. | [98] |
| Hydroxyapatite (Ca₃(PO₄)₂(OH)₂-NPs) | Fluorapatite (Ca₃(PO₄)₂(F-NPs) | Glass monomer cements (GMCs) | - Incorporation of NPs by inclusion in matrix
- Bioactive HA-NPs and F-NPs improved mechanical properties of GMCs. | [99] |
| Ferritite (Mg₂SiO₄-NPs) | | Glass monomer cements (GMCs) | - Highest compressive strength, flexural strength, and diametral tensile strength.
- Addition of 1 νL Mg₂SiO₄-NPs to the ceramic component of GMC is desired for dental restorations applications. | [100] |
| Hydroxyapatite (Ca₃(PO₄)₂(OH)₂-NPs) | Calcite (CaCO₃-NPs) | Tricalcium Dicalcium Silicate Cement (TDS) | - The analyze of hydration reactions and bioceramic properties
- Hydrochemical properties were improved.
- Good properties, including sealing ability, biocompatibility, and the capacity to induce tissue regeneration. | [101] |
| Titanium dioxide (TiO₂-NPs) | Hydroxyapatite (Ca₃(PO₄)₂(OH)₂-NPs) | Tricalcium Dicalcium Silicate cement (TDS) | - Incorporation of TiO₂-NPs with weight ratio of 1% increased the setting time, compressive strength and pull out bond strength of modified cement. | [102] |
| Bioactive glass (BG-NPs) | | Glass monomer cements (GMCs) | - BG-NPs incorporated GMC enhanced mechanical properties and biomineralization properties without cytotoxicity. | [103] |

Legend: NPs: Nanoparticles; MA: Memineralisant agents; PA: Pharmacological agents; ADA: Anti-demineralisant agents; BA: Bioadhesive agents; RA: Remineralisant agents; AAA: Anti-adhesion agents.
Table 6 (E): Use of nanoparticles (NPs) in dental nanomaterials for restoration treatments.

Type and Composition	Form	Aim(s) and Strategy	Reference(s)	
Tensile ... (TiO₂-NPs)	Acrylic resin denture (PMMA)	- Antimicrobial NPs	Ton et al., 2017	
... (TiO₂-NPs)	Acrylic resin denture (PMMA)	- Incorporation of TiO₂-NPs in PMMA polymer matrix was proved to have antibacterial effects while modified viscosity characteristics and expected lower mechanical parameters	[60]	
... (TiO₂-NPs)	Acrylic resin denture (PMMA)	- Success of non-leachable PMMA composite was successfully used with stereolithographic technique for complete denture manufacturing	Rashid et al., 2017	
Inorganic nanoparticles	Calcium phosphate (CaP-NP): MA	Acrylic resin denture (PMMA)	- Increase the fracture toughness, the elastic modulus and the Glass Transition Temperature of PMMA resins used in fixed provisional restorations	Toupour et al., 2018
Neem (ZnO-NPs)	Poly (methyl methacrylate) resin	Acrylic resin denture (PMMA)	- Inhibition of colonies of main microorganisms associated with dental prostheses	De Carne et al., 2016
Silver (Ag-NPs): PA			- No change of the mechanical properties	[59]

Legend: NPs: Nanoparticles; MA: Memineralisant agents; PA: Pharmacological agents; ADA: Anti-deminerallisant agents; BA: Bioadhesive agents; RA: Remineralisant agents; AAA: Anti-adhesion agents.

Table 6 (F): Use of nanoparticles (NPs) in dental nanomaterials for restoration treatments.

Type and Composition	Form	Aim(s) and Strategy	Reference(s)
Copper (Cu-NP): PA	Collodial solution	- Antimicrobial NPs	Shihong et al., 2017
Zinc (Zn-NP): PA		- Antimicrobial effect	[57]
Silver (Ag-NPs): PA	Resin-composite	- Antimicrobial NPs	Yamada et al., 2017
Silver (Ag-NPs): PA	Orthodontic resins	- Antimicrobial NPs	Lee et al., 2017
Silver (Ag-NPs): PA	Collodial solution	- Antimicrobial NPs	Kamischo et al., 2015
Silver (Ag-NPs): PA	Epoxy resin	- Antimicrobial NPs	Argüeta-Torregrosa et al., 2014
Zinc oxide (ZnO-NPs): PA	flowable resin composite	- Antimicrobial NPs	Hagen et al., 2013

Legend: NPs: Nanoparticles; MA: Memineralisant agents; PA: Pharmacological agents; ADA: Anti-deminerallisant agents; BA: Bioadhesive agents; RA: Remineralisant agents; AAA: Anti-adhesion agents.
Table 7: Use of nanoparticles (NPs) in dental nanomaterials for restoration treatments

Type and Composition	Metal	Polymer	Mineral	Free	Form Incorporated	Aim(s) and Strategy	Reference(s)
Organic nanoparticles	Quaternary PolyEthylenglycol (QPEG) NPs, PA-NPs	Resin composite	- Incorporation of NPs by inclusion in matrix - Antimicrobial NPs - Antibacterial effect by direct contact - Preventing bacterial recontamination during restoring teeth	[92]			
Hybrid nanoparticles	Polysaccharide-acrylic (PSA), Zinc oxide (ZnO), Silica (SiO2), Dimethylglycine (DMH), Hypochlorite for sodium (NaClO); (PSA-ZnO-SiO2-DMH-Cl-NPs): PA	Titanium implants	- Antimicrobial NPs - PSA-ZnO-SiO2-DMH Cl-NPs were immobilized on the surface of titanium plates - Modified surface exhibited excellent antibacterial activity - No obvious cytotoxicity - Novel surface system provides a promising self antibacterial biofilm for metallic implants without using antibiotics	[94]			
Zinc oxide (ZnO-NPs): PA, Chitosan (C-NPs): BA	Orthodontic resin composite	- Incorporation of NPs by inclusion in matrix - Antimicrobial NPs - Biodegradation effect - 10% of NPs mixture (ZnO NPs and C NPs) has induced an antibacterial activity in resin composite	[92]				

Legend: NPs: Nanoparticles; MA: Memineralisant agents; PA: Pharmacological agents; ADA: Anti-demineralisant agents; BA: Bioadhesive agents; RA: Remineralisant agents; AAA: Anti-adhesion agents.

Dental Diagnosis Applications

The cancer diagnosis which involves the design, characterization, production, and application of dental nanosystems was reviewed \[40\]. Recently, an increased amount of efforts have been made to develop less invasive early diagnostic modalities for oral cancer, of which the in vivo high resolution imaging of oral epithelial tissues using novel optical systems and the chemical analysis of saliva show great promise as valuable tools. The metallic nanoparticles as iron nanoparticles (Fe-NPs) single or conjugated with polysaccharides, and gold nanoparticles (Au-NPs) single or conjugated with antibodies or peptides for specific cellular biomarkers were used in dental diagnostic. They have recently been investigated as optical or magnetical contrasting agents in medical imaging techniques for early detection of oral cancer, and for identifying and differentiating infectious pathogens \[41\].

Conclusion

The applications of nanostructured materials (nanoparticles and nanomaterials or their combination) such as dental medicine nanosystems (DMN) generally imply products that may bring prevention, diagnosis and therapy diseases and / or restoration of disorders and / or tissues regenerative of oral cavity benefits. The advances in surface and interface processing and engineering of nanoparticles, nanomaterials and their combination, allowed the design of a new nanostructured materials with innovative properties which can be a real support for the improvement of dental treatments. Currently, there is a wide range of this DMN developments and applications in different fields and specialties of dentistry and made dental procedures fast, reliable, effective, safe and less painful. The development of the DMN have raised substantial interest thanks to their use nowadays either in pre-clinical investigation they have already been approved and are in clinical practice of dentistry and oral health care. Currently, the challenge is to detail the cytotoxicity studies in vitro and especially in vivo, with the aim of taking numerous research outcomes and convert them into strategies for the development of clinical, cosmetic, esthetic dental practice and oral health care marketable nanoproducts. In addition, the development of new functional nanostructured materials and their design in the form of nanosystems, including “nanomachines” or “nanorobots” more effective and more suitable for dental treatment and oral health are in full evolution.

References

1. Gupta R, Tomer AK, Dubey S (2017) Recent advances in the field of nanotechnology: A review. Journal of Dental and Medical Sciences 16 (1): 14-18.
2. Khurshid Z, Zafar M, Qasim S, Shahab S, Naseem M, Abureqaliba A (2015) Advances in nanotechnology for restorative dentistry. Materials 8: 717-731.
3. Iadiz MAR, Bamedi M, Fakour SR (2017) Periodontal diseases and recently applied nanotechnology: A review article. Health 9: 345-351.
4. Chung SH, Park YS. Local drug delivery in endodontics: A lit-
1. Batra P, Mushraq A, Mazumder J, Rizvi MS, Miglani R (2016) Nanoparticles and their applications in orthodontics. Adv Dent Oral Health 2 (2): 1-10.

2. Lee SJ, Heo M, Lee D, Han S, Moon JH, Lim HN, Kwon K (2017) Preparation and characterization of antibacterial orthodontic resin containing silver nanoparticles. Applied Surface Science. (In Press). doi.org/10.1016/j.apsusc.2017.04.030.

3. Wang W, Liao S, Zhu Y, Liu M, Zhao Q, Fu Y (2015) Recent applications of nanomaterials in prosthodontics. Journal of Nanomaterials. http://dx.doi.org/10.1155/2015/408643.

4. Shradhanjali A, Bouzid T, Sinitskii A, Yul Lim J (2017) Graphene for dental implant applications. Adv Dent & Oral Health 4 (4): 1-3.

5. Cao D, Zhang Y, Li Y, Shi X, Gong F, Guo X, Shi Z, Zhu S, Cui Z (2017) Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration. Mater Sci Eng C Mater Biol Appl 1 (78): 333-340.

6. Chieruzzi M, Pagano S, Moretti S, Pinna R, Milia E, Torre L, Eramo S (2016) Nanomaterials for tissue engineering in dentistry. Nanomaterials 6 (134): 1-21.

7. Abou-Neel EA, Bozec L, Perez RA, Kim HW, Knowles JC (2015) Nanotechnology in dentistry: prevention, diagnosis, and therapy. Inter J Nanomed 10 : 6371-6394.

8. Correa JM, Mori M, Sanchez LA, De-Peralta T, Tredwin CJ, Handy RD (2017) Advanced nano-and bio-materials: A pharmaceutical approach. Int J Pharm 510 (2): 407-408.

9. Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M (2016) Organic nanomaterials and their applications in the treatment of oral deseases. Molecules 21 (207): 1-23.

10. Jiang M, Daikim S, Park TE, Choe HC (2017) Ultra-fine structural properties of Pd-Ag-HAp nanoparticle deposition on protruded TiO2 barrier layer for dental implant. Applied Surface Science. (In Press). Doi.org/10.1016/j.apsusc.

11. Ai M, Du Z, Zhu S, Geng H, Zhang X, Cai Q, Yang X (2017) Composite resin reinforced with silver nanoparticles–ladder hydroxyapatite nanowires for dental application. Dental Materials 33 (1): 12-22. http://www.demajournal.com/article/S0109-5641(16)30486-9/fulltext

12. Elkassas D, Araf A. The innovative applications of therapeutic nanostructures in dentistry (2017) Nanomedicine Journal 13 (4): 1543-1562. http://www.nanomedjournal.com/article/S1549-9634(17)30028-X/fulltext

13. Cheng L, Zhang K, Zhang N, Melo MAS, Weir MD, Zhou XD, Bai YX, Reynolds MA, Xu HHK (2017) Developing a New Generation of Antimicrobial and Bioactive Dental Resins. J Dent Res 96(8): 855-863. http://journals.sagepub.com/doi/abs/10.1177/0022034517709739?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed

14. Gitipour A, Al-Abed SR, Thiel SW, Kirk G.Scheckel KG, To TEMAT (2017) in dental unit waterlines: Assessment of the physicochemical transformations of the AgNPs. Chemosphere 2255.

15. Batra P, Mushraq A, Mazumder J, Rizvi MS, Miglani R (2016) Nanoparticles and their applications in orthodontics. Adv Dent Oral Health 2 (2): 1-10.

16. Lee SJ, Heo M, Lee D, Han S, Moon JH, Lim HN, Kwon K (2017) Preparation and characterization of antibacterial orthodontic resin containing silver nanoparticles. Applied Surface Science. (In Press). doi.org/10.1016/j.apsusc.2017.04.030.

17. Wang W, Liao S, Zhu Y, Liu M, Zhao Q, Fu Y (2015) Recent applications of nanomaterials in prosthodontics. Journal of Nanomaterials. http://dx.doi.org/10.1155/2015/408643.

18. Shradhanjali A, Bouzid T, Sinitskii A, Yul Lim J (2017) Graphene for dental implant applications. Adv Dent & Oral Health 4 (4): 1-3.

19. Cao D, Zhang Y, Li Y, Shi X, Gong F, Guo X, Shi Z, Zhu S, Cui Z (2017) Fabrication of superhydrophobic coating for preventing microleakage in a dental composite restoration. Mater Sci Eng C Mater Biol Appl 1 (78): 333-340.

20. Chieruzzi M, Pagano S, Moretti S, Pinna R, Milia E, Torre L, Eramo S (2016) Nanomaterials for tissue engineering in dentistry. Nanomaterials 6 (134): 1-21.

21. Abou-Neel EA, Bozec L, Perez RA, Kim HW, Knowles JC (2015) Nanotechnology in dentistry: prevention, diagnosis, and therapy. Inter J Nanomed 10 : 6371-6394.

22. Correa JM, Mori M, Sanchez LA, De-Peralta T, Tredwin CJ, Handy RD (2017) Advanced nano-and bio-materials: A pharmaceutical approach. Int J Pharm 510 (2): 407-408.

23. Wittke S, Zimpel A, Bein T, Braig S, Stoiber K, Vollmar A, Muller D, Haastert-Talini K, Schaeske J, Stiesch M, Zahn G, Mohmeyer A, Behrens P, Eickelberg O, Bolukbas DA, Meiners S (2017) Validating metal-organic framework nanoparticles for their nanosafety in diverse biomedical applications. Adv. Health Care. Mater. 6 (2): 1-12. DOI:10.1002/adhm.201600818.

24. Cheng L, Zhang K, Zhang N, Melo MAS, Weir MD, Zhou XD, Bai YX, Reynolds MA, Xu HHK (2017) Developing a New Generation of Antimicrobial and Bioactive Dental Resins. J Dent Res 96(8): 855-863. http://journals.sagepub.com/doi/abs/10.1177/0022034517709739?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed

25. Gitipour A, Al-Abed SR, Thiel SW, Kirk G.Scheckel KG, To TEMAT (2017) in dental unit waterlines: Assessment of the physicochemical transformations of the AgNPs. Chemosphere 2255.

26. Correa JM, Mori M, Sanchez HL, Da-Cruz AD, Poiate Jr. E, Poiate IAVP (2015) Silver nanoparticles in dental biomaterials. Int J Biomater 9: 1-9. doi:10.1155/2015/485275. https://www.hindawi.com/journals/ijbm/2015/485275/

27. Khan ST, Musarrat J, Al-Khedhairy AA (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. 2016. Colloids and Surfaces B: Biointerfaces 146: 70-83.

28. Zahn G, Mohmeyer A, Behrens P, Eickelberg O, Bolukbas DA, Meiners S (2017) Validating metal-organic framework nanoparticles for their nanosafety in diverse biomedical applications. Adv Health Care Mater 6 (2): 1-12.

29. Haffner SM, Malmsten M (2017) Membrane interactions
and antimicrobial effects of inorganic nanoparticles. Advances in Colloid and Interface Science. (In press). doi.org/10.1016/j.cis.2017.07.029

30. Noronha VT, Paula AJ, Durán G, Galembeck A, Cogo-Müller K, Franz-Montan M, Durán N (2017) Silver nanoparticles in dentistry. Dent Mater 33(10):1110-1126.

31. Allaker RP, Memarzadeh K. Nanoparticles and the control of oral infections (2014) International Journal of Antimicrobial Agents 43 (2): 95-104.

32. Sanchez-Sanchez G (2016) Antimicrobial nanoparticles in dentistry. A fad or a real therapeutic option? Journal of Oral Research. 30: 140-141.

33. Cadinoiu AN, Daraba OM, Merlusca P, Anastasiu D, Vasiliiu M, Chirap AM, Burlui V (2014) Liposomal formulations with potential dental applications. Biomaterials 4 (4): 271-277.

34. Parnia F, Yazdani J, Javaherzadeh V, Maleki-Dizaj S (2017) Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. J Pharm Sci 20 (1): 148-160.

35. Frassetto A, Breschi L, Turco G, Marchesi G, Di Lenarda R, Tay FR, Pashley DH, Cadenero M (2016) Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability-A literature review. Dental Materials 32 (2): e41-e53.

36. Hafshejani TM, Zamanian A, Venugopal JR, Revzani Z, Sefat F, Saeb MR, Vahabi H, arrintaj P, Mozafari M (2017) Antibacterial glass-ionomer cement restorative materials: A critical review on the current status of extended release formulations. Journal of Controlled Release 262 (28): 317-328 https://www.sciencedirect.com/science/article/pii/S0168365917307630?via%3Dihub

37. Zhao F, Dan Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5(4): 2054-2130.

38. Amrollahi P, Shah B, Seifi A, Tayebi L (2016) Recent advancements in regenerative dentistry: A review. Materials Science and Engineering 69 (C): 1383-1390.

39. Bottino MC, Pankajakshan D, Nör JE (2017) Advanced Scaffolds for Dental Pulp and Periodontal Regeneration. Dent Clin North Am 61(4):689-711.

40. Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M (2014) Antimicrobial drug delivery systems for treatment of oral cancer: a review. Int J Nanomedicine 9: 3719–3735. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134022/

41. Kim J, Abdou-Mohamed MA, Zagorovsky K, Chan WCW (2017) State of Diagnosing Infectious Pathogens Using Colloidal Nanomaterials. Biomaterials (In Press). doi.org/10.1016/j.biomaterials.2017.08.013.

42. Wassel MO, Khattab MA (2017) Antibacterial activity against Streptococcus mutans inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes. Journal of Advanced Research 8 (4): 387-392.

43. Nguyen S, Escudero C, Sediqi N, Smistad G, Hiorth M (2017) Fluoride loaded polymeric nanoparticles for dental delivery. Eur J Pharm Sci 104: 326-334.

44. Malviya N, Somisety K, Vemulak K (2015) Design and Development of a novel transmucosal patch Embedded with Diclofenac Diethylamine loaded solid lipid nanoparticles. Journal of Young Pharmacists 7 (1): 45-55.

45. Amiri M, Etemadifar Z, Daneshkazemi A, Nateghi M (2017) Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and candida species. J Dent Biomater 4 (1): 347-352.

46. Fathima JB, Pugazhendhi A, Venis R (2017) Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 110: 245-251. doi: 10.1016/j.micpath.

47. Dizaj SM, Barzegar-Jalali M, Zarrintan MH, Adibka K, Lotfi pour F (2015) Calcium carbonate nanoparticles: potential in bone and tooth disorders. Pharmaceutical Sciences 20: 175-182.

48. Pistone S, Rykke M, Smistad G, Hiorth M (2017) Polysaccharide-coated liposomal formulations for dental targeting. Int J Pharm 516 (1-2): 106-115.

49. Del Caprio-Perochena A, Kishen A, Felliti R, Bhagirath AY, Medapati MR, Lai C, Cunha RS (2017) Antibacterial properties of chitosan nanoparticles and propolis associated with calcium hydroxide against single-and multispecies biofilm: An in vitro and in situ study. J Endo (In press). Doi: 10.1016/j.joen.2017.03.017.

50. Priyadarshini BM, Mitali K, Lu TB, N. Dubey N, Fawzy AS (2017) PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface. Dent Mater 33 (7): 830-846.

51. Zhou J, Horeb B, Geels-Hwang G, Klein MI, Koo H, Benoit DS (2016) Characterization and optimization of pH-responsive polymer nanoparticles for drug delivery to oral biofilms. J Mater Chem B 4 (18): 3075-3085.

52. Horeb B, Klein MI, Hwang G, Li Y, Kim D, Koo H, Benoit DS (2015) pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano 9 (3): 2390-2404.

53. Li X, Luo W, Ng TW, Leung PC, Zhang C, Leung KC, Jin L (2017) Nanoparticle-encapsulated baicalein markedly modulates pro-inflammatory response in gingival epithelial cells. J Nanoscale Pharm Sci 104: 326-334.

54. Salama A (2017) Dicarboxylic cellulose decorated with silver nanoparticles as sustainable antibacterial nanocomposite material. Environmental Nanotechnology, Monitoring & Management. (In press). doi.org/10.1016/j.enmm.2017.08.003 https://www.sciencedirect.com/science/article/pii/S2215153217300624

55. Afra SM, Modaresi F (2017) The use of synergistically anti-plaque nanoparticles in treating dental caries. J Dent Oral Disord Ther 6 (5): 00214.

56. Lin X, Hwangbo S, Jeong H, Cho YA, Ahn HW, Hong JK

International Journal of Dentistry and Oral Health Volume 3 Issue 10, December 2017
68. Gutiérrez MF, Malaquias P, Hass V, Matos TP, Lourenço L, Reis A, Loguercio AD, Farago PV (2017) The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. Journal of Dentistry 61: 12-20.

69. Felemban NH, Ebrahim MI (2017) The influence of adding modified zirconium oxide-titanium dioxide nanoparticles on mechanical properties of orthodontic adhesive: an in vitro study. BMC Oral Health 17 (43). DOI: 10.1186/s12903-017-0332-2.

70. Fallahzadeh F, Safarzadeh-Khosroshahi S, Atal M (2017) Dentin bonding agent with improved bond strength to dentin through incorporation of sepiolite nanoparticles. J Clin Exp Dent 9 (6): e738-e742.

71. Sun J, Petersen EJ, Watson SS, Sims CM, Kassman A, Frukht-beyn S, Skrtic D, OK MT, Jacobs DS, Reipa V, Ye Q (2017) Bio-physical characterization of functionalized titania nanoparticles and their application in dental adhesives. Acta Biomaterialia 53: 585–597. https://www.sciencedirect.com/science/article/pii/S1742761713300922

72. Safiarpour M, Rahmani M, Tahiri M, Peymani A (2016) Antibacterial and bond strength properties of dental adhesive containing zinc oxide nanoparticles. Braz J Oral Sci 15(1): 66-69.

73. Cheng L, Zhang K, Weir MD, Melo MA, Zhou X, Xu HH (2015) Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine 10(4): 627-641. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347904/

74. Garcia PPNS, Cardia MFB, Francisconsi RS, Dovigo LN, Spolidorio DMP, De Souza Rastelli AN, Botta AC (2017) Antibacterial activity of glass ionomer cement modified by zinc oxidenanoparticles. Microsc Res Tech 80 (5): 456-461.

75. Barandehfard F, Rad MK, Hosseinnia A, Khoshroo K, Tahiri M, Jazayeri HE, Moharamzadeh K, Tayebi (2016) The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceramics International 42 (15): 17866-17875.

76. Sayyedan FS, Fathi MH, Edris H, Doostmohammadi A, Mor-tazavi V, Hanifi A (2014) Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements. Ceramics International 40 (7): B: 10743-10748.

77. Moreno-Vargas YA, Luna-Arias JP, Flores-Flores JO, Oroz-co E, Bucio L (2017) Hydration reactions and physicochemical properties in a novel tricalcium-dicalcium silicate-based cement containing hydroxyapatite nanoparticles and calcite: A comparative study. Ceramics International (In press) doi/10.1016/j.ceramint.2017.07.027.

78. Samiei M, Janani M, Asl-Aminabadi N, Ghasemi N, Divband B, Shirazi S, Kafili K (2017) Effect of the TiO2 nanoparticles on the selected physical properties of mineral trioxide aggregate. J Clin Exp Dent 9 (2): e191-e195.

79. Kim DA, Lee JH, Jun SK, Kim HW, Eltohamy M, Lee HH

(2016) Organosilicate based superhydrophilic nanofilms with enhanced durability for dentistry application. Journal of Industrial and Engineering Chemistry 36: 30-34. https://www.sciencedirect.com/science/article/pii/S1226086X16000794

57. Dabbagh A, Abu Kasim NH, Bakri MM, Wakily H, Rama-sindarum C, Abdullah BJJ (2014) Polyethylene-glycol coated maghemite nanoparticles for treatment of dental hypersensitivity. Materials Letters. 121: 89-92.

58. Venugopal A, Muthuchamy N, Tijani H, Gopalan AI, Lee KP, Lee HJ, Kyung HM (2017) Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties. Korean J Orthod 47 (1): 3-10.

59. Van Hengel IAJ, Riol M, Fratila-Apachitei LE, Witte-Bouma J, Farrell E, Zadpoor AA, Zaat SAI, Apachitei I (2017) Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. J Biomaterials 140: 1-15.

60. Pokrowiecki R, Zareba T, Szaraniec B, Palka K, Mielczarek A, Menaszek E, Tyski S (2017) In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. Int J Nanomedicine 12: 4285-4297. doi: 10.2147/IJN.S131163.

61. De Cessero L, De Oliveira EMN, Caruio LHB, Papaléo RM, EG. Mota EG (2017) The addition of silica nanoparticles on the mechanical properties of dental stone. Journal of Prosthetic Dentistry (In press). doi: 10.1016/j.prosdent.2017.01.001.

62. Abdulkareem EH, Memarzadeh K, Allaker RP, Huang J, Pratte n J, Spratt D (2015) Anti-biofilm activity of zinc oxide and hy droxyapatite nanoparticles as dental implant coating materials. Journal of Dentistry 43 (12): 1462-1469.

63. Massa MA, Covarrubias C, Bittner M, Fuentevilla IA, Capetillo P, Von Marttens A, Carvajal JC (2014) Synthesis of antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles. Materials Science and engineering C45, 146-153.

64. Gerasymchuk Y, Lukowiak A, Kedziora A, Bubbote-Ploskonska G, D.Piatek D, Bachanek T, Chernii V, Tomachyns k L, Reis A, Loguercio AD, Farago PV (2017) The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. Journal of Dentistry 61: 12-20.

69. Felemban NH, Ebrahim MI (2017) The influence of adding modified zirconium oxide-titanium dioxide nanoparticles on mechanical properties of orthodontic adhesive: an in vitro study. BMC Oral Health 17 (43). DOI: 10.1186/s12903-017-0332-2.

https://bmcoralhealth.biomedcentral.com/articles/10.1186/s12903-017-0332-2

70. Fallahzadeh F, Safarzadeh-Khosroshahi S, Atal M (2017) Dentin bonding agent with improved bond strength to dentin through incorporation of sepiolite nanoparticles. J Clin Exp Dent 9 (6): e738-e742.

71. Sun J, Petersen EJ, Watson SS, Sims CM, Kassman A, Frukt-beyn S, Skrtic D, OK MT, Jacobs DS, Reipa V, Ye Q (2017) Bio-physical characterization of functionalized titania nanoparticles and their application in dental adhesives. Acta Biomaterialia 53: 585–597. https://www.sciencedirect.com/science/article/pii/S1742761713300922

72. Safiarpour M, Rahmani M, Tahiri M, Peymani A (2016) Anti- microbial and bond strength properties of dental adhesive containing zinc oxide nanoparticles. Braz J Oral Sci 15(1): 66-69.

73. Cheng L, Zhang K, Weir MD, Melo MA, Zhou X, Xu HH (2015) Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine 10(4): 627-641. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4347904/

74. Garcia PPNS, Cardia MFB, Francisconsi RS, Dovigo LN, Spolidorio DMP, De Souza Rastelli AN, Botta AC (2017) Antibacterial activity of glass ionomer cement modified by zinc oxidenanoparticles. Microsc Res Tech 80 (5): 456-461.

75. Barandehfard F, Rad MK, Hosseinnia A, Khoshroo K, Tahiri M, Jazayeri HE, Moharamzadeh K, Tayebi (2016) The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceramics International 42 (15): 17866-17875.

76. Sayyedan FS, Fathi MH, Edris H, Doostmohammadi A, Mottazavi V, Hanifi A (2014) Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements. Ceramics International 40 (7): B: 10743-10748.

77. Moreno-Vargas YA, Luna-Arias JP, Flores-Flores JO, Oroz-co E, Bucio L (2017) Hydration reactions and physicochemical properties in a novel tricalcium-dicalcium silicate-based cement containing hydroxyapatite nanoparticles and calcite: A comparative study. Ceramics International (In press) doi/10.1016/j.ceramint.2017.07.027.

78. Samiei M, Janani M, Asl-Aminabadi N, Ghasemi N, Divband B, Shirazi S, Kafili K (2017) Effect of the TiO2 nanoparticles on the selected physical properties of mineral trioxide aggregate. J Clin Exp Dent 9 (2): e191-e195.

79. Kim DA, Lee JH, Jun SK, Kim HW, Eltohamy M, Lee HH
(2017) Sol-gel-derivated bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and mineralization properties. Dent Mater 33 (7): 805-817.

80. Totu EE, Nechifor CN, Nechifor G, Aboul-Enein HY, Cristache CM (2017) Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolithographic complete denture manufacturing – the future in dental care for elderly edentulous patients? Journal of Dentistry 59: 68-77.

81. Rashahmadi S, Hasanazadeh R, Mosalman S (2017) Improving the mechanical properties of poly Methyl Methacrylate Nanocomposites for dentistry Applications Reinforced with Different Nanoparticles. J Polymer-Plastics Technology and Engineering 56 (12): 1-11.

82. Topouzi M, Kontonasaki E, Bikiaris D, Papadopoulou L, Paraskevopoulos KM, Koidis P (2017) Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles. Journal of the Mechanical Behavior of Biomedical Materials 69: 213-222 https://www.sciencedirect.com/science/article/pii/S1751616117300206

83. Natale LC, Alania Y, Rodrigues MC, Simões A, De Souza DN, Lima E, Arana-Chavez VE, Hewer TLR, Hiers R, Esteban-Flores FL, Brito GES, Khajotia S, Braga RR (2017) Synthesis and characterization of silver phosphate/calcium phosphate mixed particles capable of silver nanoparticle formation by photoreduction. Materials Science and Engineering: C 76: 464-471.

84. Gad MM, Rahoma A, Al-Thobity AM, Ar-Rejaie AS (2016) Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases. Int J Nanomedicine 11: 5663-5643.

85. De Castro DT, Valente MLC, Da Silva CHL, Watanabe E, Siqueira RL, Schiavon MA, Alves OL, Dos Reis AC (2016) Evaluation of antibiofilm and mechanical properties of new nanocomposites based on acrylic resins and silver vanadate nanoparticles. Archives of Oral Biology 67: 46-53.

86. Mahross HZ, Baroudi K (2015) Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material. Eur J Dent 9 (2): 207-212.

87. Stubbings J, Brown J, Gareth J. Price J (2017) Sonochemical production of nanoparticle metal oxides for potential use in dentistry. Ultrasones Sonochemistry 35 (B): 646-654. https://www.sciencedirect.com/science/article/pii/S135041771630150X

88. Yamada R, Nozaki K, Horiuchi N, Yamashita K, Nemoto R, Miura H, Nagai A (2017) Ag nanoparticle-coated zirconia for antibacterial prosthesis. 2017. Materials Science and Engineering: C 78 (1): 1054-1060.

89. Karasenkov Y, Frolov G, I Pogorelsky I, N Latuta N, Gusev A, Kuznetsov D, Leont’ev V (2015) Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infections processes. IOP Conf. Series: Materials Science and Engineering 98: 1-7.

90. Argueta-Figueroa L, Morales-Luckie RA, Scougall-Vilchis RJ, Oscar F.Olea-Mejia OF (2014) Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Progress in Natural Science: Materials International 24 (4): 321-328.

91. Chambers C, Stewart SB, Su B, Jenkinson HF, Sandy JR, Ireland AJ (2017) Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers. 2017. Dental Materials 33 (3): e115-e123.

92. Hojati ST, Alaghemand H, Hamze F, Babaki FA, Rajab-Nia R, Rezvani MB, Kaviani M, Atai M (2013) Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dental Materials 29 (5): 495-505.

93. Slvero DK, Zatslman N, Hazan R, Weiss EI, Beyth N (2015) Characterisation of the antibacterial effect of polyethyleneimine nanoparticles in relation to particle distribution in resin composite. Journal of Dentistry 43 (2): 287-294.

94. Li Y, Liu X, Tan L, Cui Z, Yang X, Yeung KWK, Pan H, Wu S (2017) Construction of N halamine labeled silica/zinc oxide hybrid nanoparticles for enhancing antibacterial ability of Ti implants. Materials Science and Engineering: C 76: 50-58. https://www.sciencedirect.com/science/article/pii/S0928493116324432?via%3Dihub

95. Mirhashemi AH, Bahador A, Kassaei MZ, Daryakenari G, MSA. Akhoundi MSA, Sodagar A (2013) Antimicrobial effect of nano-zinc oxide and nano-chitosan particles in dental composite used in orthodontics. J Med Bacteriol 2 (3, 4): 1-10.

96. Xia Y, Chen H, Zhang F, Bao C, Weir MD, Reynolds MA, Ma J, Gu N, Xu HHK (2017) Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. Nanomedicine. (In Press). doi: 10.1016/j.nano.2017.08.014.

97. Huang CY, Huang TH, Kao CT, Wu YH, Chen WC, Shie MY (2017) Mesoporous calcium silicate nanoparticles with drug delivery and odontogenesis properties. J Endod 43 (1): 69-76.

98. Heo DN, Ko WK, Lee HR, Lee SJ, Lee D, Um SH, Lee JH, Woo YH, Zhang LG, Lee DW, Kwon IK (2016) Titanium dental implants surface-immobilized with gold nanoparticles as osteoinductive agents for rapid osseointegration. J Colloid Interface Sci 469 (1): 129-137.

99. Ajita J, Saravanan S, Selvaratnam A (2015) Effect of size of bioactive glass nanoparticles on mesenchymal stem cell proliferation for dental and orthopedic applications. Materials Science and Engineering: C 53: 142-149.