AAscan, PCRdesign and MutantChecker: A Suite of Programs for Primer Design and Sequence Analysis for High-Throughput Scanning Mutagenesis

Dawei Sun, Martin K. Ostermaier, Franziska M. Heydenreich, Daniel Mayer, Rolf Jaussi, Joerg Standfuss, Dmitry B. Veprintsev

Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland and Department of Biology, ETH Zurich, Zurich, Switzerland

Abstract

Scanning mutagenesis is a powerful protein engineering technique used to study protein structure-function relationship, map binding sites and design more stable proteins or proteins with altered properties. One of the time-consuming tasks encountered in application of this technique is the design of primers for site-directed mutagenesis. Here we present an open-source multi-platform software AAscan developed to design primers for this task according to a set of empirical rules such as melting temperature, overall length, length of overlap regions, and presence of GC clamps at the 3’ end, for any desired substitution. We also describe additional software tools which are used to analyse a large number of sequencing results for the presence of desired mutations, as well as related software to design primers for ligation independent cloning. We have used AAscan software to design primers to make over 700 mutants, with a success rate of over 80%. We hope that the open-source nature of our software and ready availability of freeware tools used for its development will facilitate its adaptation and further development. The software is distributed under GPLv3 licence and is available at http://www.psi.ch/lbr/aascan.

Introduction

Site-directed mutagenesis is a cornerstone of protein engineering. It was first used to study the function of the catalytic residues in the tyrosyl-tRNA synthetase [1]. Surface scanning using site-directed mutagenesis, a systematic substitution of protein residues by other amino acids, notably alanine, was first employed to characterise the binding site of the C1q, a component of an immune response system, on the surface of the Fc domain of an antibody [2]. The term alanine scanning was coined by Jim Wells in the mapping of the human growth hormone interaction surface with the corresponding receptor [3]. Alanine scanning has become an indispensable technique to study structure-function relationship in proteins, to obtain structural information about their folding intermediates as well as to engineer them for altered stability or functionality [4,5,6,7,8,9].

In order to introduce a mutation into a recombinantly produced protein, its coding DNA sequence is modified by using mutagenesis primers in a polymerase chain reaction (PCR). Numerous software solutions to primer design task already exist that design mutagenesis primers according to a set of empirical rules and some take the complexity of the template into account. However, when it comes to designing several hundred primers for scanning mutagenesis, no convenient solution is openly accessible. Here, we present the AAscan software to automatically design batches of primers to perform a scanning mutagenesis of a whole protein. We used this software to make several hundreds of alanine mutants of Gα1l and arrestin-1.

Results

Mutagenesis strategy and workflow

A convenient way of performing site-directed mutagenesis is an adaptation [10] of the original ligation-independent cloning protocol [11]. The target plasmid is amplified with two primers which contain the mutation site (Figure 1) leading to a linear PCR product with short identical sequence at both ends. Transformation into E. coli Mach1, NovaBlue or TG1 strains leads to end repair which restores a circular plasmid containing the introduced mutation [12,13]. While the exact mechanism of this reaction is not well understood, from our experience the mentioned above cell strains are more efficient than other cell strains commonly used for DNA manipulation. The repair requires a minimal primer overlap of 13 bp. The mutation site could be located anywhere in the pair of primers and not necessarily in the overlap region, however, certain limitations are discussed below. Unlike the PCR product, the original template is methylated. This allows digestion of the template with DpnI in order to minimise the background. Alternatively, the PCR template may be methylated enzymatically at CpG dinucleotides.
and is eliminated by certain strains of E. coli that contain wt McrBC restriction system [14]. After transformation and plating with appropriate antibiotics, several single colonies are sent for sequencing as bacterial slabs on a 96-well plate. If mutagenesis was not successful after three attempts, alternative methods were used to generate the remaining mutants.

Primer design by AAscan

The software interface (Figure 2) includes a text box for entering the template DNA sequence, the choice of codons to be used for mutagenesis, fields to define the region of the protein sequence to be mutated, various options used in primer design described above and, finally, different options for the output data format.

The template sequence for scanning mutagenesis include the flanking regions of 50-60 bp (but at least with a length equivalent to the number of bp given in the field “max length”) as the primers may anneal outside of the protein coding region, if the position to be mutated is close to the protein termini. The flanking regions are shown in capital letters in Figure 2.

The position of the 1st nucleotide in the protein coding sequence needs to be specified so that the software can convert the amino acid position to nucleotide coordinates. For example, if the 40 bp

![Image](image-url)
of the vector upstream of the protein coding sequence are included, the position of A from the first ATG is 49.

Two different codons for mutagenesis need to be specified for the desired substitution, and the program will choose the one that introduces the least number of mismatches. If the template codon is already encoding an alanine, the codon will be mutated to another amino acid, for example glycine. Two alternative codons choices are provided. Of course, the mutations can be designed for any desired amino acid, not only alanine. If only one codon encodes a particular amino acid, or use of a particular codon is preferred, the same codon needs to be entered. If more than two codons encode a particular amino acid, the two preferred codons are selected based on the expression organism and goals of the project.

To design the primers, either a single amino acid position or a range needs to be specified. AAscan designs the shortest primers with a length in between the “min length” and “max length” entered by the user. The melting temperature (Tm) is designed to be as close to the “min Tm” as possible, not exceeding the “max Tm”. The maximal difference between melting temperatures of forward and reverse primers may not exceed the value given in “MaxDelta Tm”.

Tm is calculated according to the following formula [15]:

\[Tm = 64.9 \times C + 41 \times G - 16.4 \times \frac{\text{length of the primer}}{1000} \]

Two melting temperatures are reported. The first (Tm) is relevant for the initial cycles of the PCR when the primer anneals to the original template DNA, with mismatches in the mutation site. The second Tm value (Tmfull) is relevant for the later stages of the PCR, when sufficient product was already amplified and the full length sequence of the primer anneals to the newly synthesised template without mismatches. The increased stability of primers may lead to a change in the efficiency of the PCR reaction.

In addition, several further parameters are taken into account:

“MinAnnealLen” is the minimal distance from the mutation codon to the 3’ end of the primer, and in our experience it should be at least 15bp.

“minGCclamp” is the minimal number of G or C bases at the 3’ end of the primer. The “minGCclamp” can be set to 0 if the GC clamp is not required. If the checkbox “OptimisedGCclamp” is selected, “OptimisedGCclamp” score is calculated according to the rules formulated in [16]. Depending on the combination of the last three nucleotides of the 3’ end of the primer, score is assigned as follows: [GC] [GC] [GC] = 0; [ATGC] [ATGC] [AT] = 1; [ATGC] [AT] [GC] = 2; and [AT] [GC] [GC] = 3. The score of 0 corresponds to the worst GC clamp and 3 to the best, respectively. In this context, [ATGC] means any nucleotide, [AT] means A or T, and [GC] means G or C, respectively.

“MinOverlap” and “MaxOverlap” is the length of the overlap sequence between the ends of the resulting PCR fragment. The default range is 13 to 15 bp. If the overlap is too short (<11 bp), this will result in decreased efficiency of end repair [17], while too long overlaps may lead to undesired self-annealing of primers.
ordered – convenient for generating orders. “FASTA” generates a FASTA formatted list of primers.

Separate F and R” checkbox creates two separate lists of forward and reverse oligonucleotides which can be useful for ordering.

“Verbose” activates additional information printout which may helpful for primer design.

The results of the primer design from one or both output text boxes can be copied to the clipboard and pasted in the order form. “File/Open” and “File/Save” menu items allow opening and saving of the projects (sequences and options). The data are saved in binary format and manual editing of the data file is not supported.

MutantChecker: sequencing results analysis

The amount of sequencing results needed to be analysed stimulated the development of a software to align and identify mutations semi-automatically (Figure 3). Mutant checker is a software designed to align and identify mutations semi-automatically which facilitates analysis of large numbers of sequencing results. It aligns the sequencing results to the reference sequence using an empirical likelihood function. This a number of perfect matches in a sliding track of 7 nucleotides along the whole length of reference sequence. This function (Eq. 1) does not allow gaps, as we are looking only for mutations, and not deletions or insertions.

\[
\text{score} = \sum_{i=1}^{N-6} \prod_{j=i}^{i+6} \text{match}(\text{seq}1[i], \text{AND seq}2[j])
\]

For every possible offset between two sequences to be compared, an overlap region is copied into seq1 and seq2. The length of the overlap region is N. The match function compares if the nucleotides seq1 [i] and seq2 [i] at position i are the same (result = 1) or different (result = 0). By combining the match function over a sliding window of 7 nucleotides, the software calculates if all 7 nucleotides are the same. The sliding window is then moved by one nucleotide, and calculations are repeated. The total score for the alignment with a given offset is a sum of individual scores. The maximal score corresponds to the best alignment. The function has significant differentiating power between right and wrong alignments.

If the sequencing results contain the desired mutation and no additional rearrangements, then there will only be one possible alignment. On the other hand, if during recombination event in the cell part of the sequence was duplicated, there will be two or more possible alignment positions reported on a graph.

The MutantChecker can also reverse complement the sequence if the sequencing was done with reverse primers, for mutations close to the C-terminus of the protein. The software can also process batches of sequences which dramatically speeds up the analysis of sequencing results.

PCR cloning primer design software

Seamless cloning has gained acceptance as a very convenient cloning method which allows seamless integration of the desired DNA sequences into a vector [12,18]. Versions of this method also allow deletion or replacement of a part of a sequence with a single PCR reaction. At the core of the method is a PCR amplification of the vector backbone and, in a separate reaction, amplification of the desired insert, so that the ends have identical sequences overlapping by about 15 bp. During the PCR stage it is also

Figure 4. PCR cloning primer design software interface. (1) Upstream portion of the vector, up to the cloning position. (2) Additional sequence to include between the vector and the 5' end of the target gene, eg protease cleavage site. (3) Sequence of the target, encoded by the template. (4) Additional sequence to include between the vector and the 5' end of the vector. (5) Downstream portion of the vector. (6) Resulting sequence, i.e. the 3' end of the target gene, eg protease cleavage site. (5) Prime encoded by the template. (4) Additional sequence to include between the vector and the 5' end of the vector, up to the cloning position. (2) Figure 4. PCR cloning primer design software interface. (1) Upstream portion of the vector, up to the cloning position. (2) Additional sequence to include between the vector and the 5' end of the target gene, eg protease cleavage site. (3) Sequence of the target, encoded by the template. (4) Additional sequence to include between the vector and the 5' end of the vector, up to the cloning position. (2)
possible to have additional sequences included in the primer, for example a coding sequence for a protease restriction site. The cloning primer design software (Figure 4) simplifies the task of designing such primers. The inputs of the software are the approximately 50 bp long vector sequences upstream and downstream of the insert, as well as the sequence of the insert. There is also a possibility to include additional sequences between the insert and the vector. Such short sequences will be included in the primers and may be useful for insertion or replacement of restriction sites, protease cleavage sites or purification tags. The software designs primers to amplify the vector and the insert. It subsequently adds the desired inclusions and the required 15 bp overlaps needed for homologous recombination. It offers the user several options of primer pair design which may be advantageous in different situations (Figure 5). When cloning several different inserts into the same vector, it makes sense to have a primer pair for vector amplification and various primer pairs for amplification of the inserts. The opposite would be desired if the same insert was cloned into different vectors. In a third case, where due to the insertion of the relatively long additional DNA sequence the primers are long, and may be advantageous to have a balanced length of primers due to the technical difficulties of producing very long primers. In this case, four primers of balanced lengths would be advantageous when primers with long additional DNA sequences are designed.

Experimental Results

Optimisation of PCR conditions and workflow

We have optimised the PCR reaction conditions for obtaining single bands at 5-8 kb (linearized vectors) on 0.7% or 1% agarose gels. However, visually detectable bands were not essential to obtain mutant clones.

All solutions were strictly kept on ice. 1X Phusion High-Fidelity PCR master mix with GC or HF buffer, or KOD polymerase with its supplied buffer, were supplemented with 400 mM TMSO and 12 pg/μL DNA template for amplification. 17 μL PCR master mix were combined with each 1.5 μL of both forward and reverse primer at stock concentration of 1 μM in each well of 96-well microplate.

For the PCR with a vector of approximately 8 kbp we used touchdown protocol [19], the detailed conditions were as follows: Initial denaturation at 98°C for 30 sec, then 20 step-down thermal cycles consisting of the denaturation at 98°C for 20 sec, annealing from 60°C down to 50°C for 30 sec with 0.5°C per cycle decrement, and extension at 72°C for 2min, followed by 20 thermal cycles (98°C for 20 sec, 54°C for 30 sec, 72°C for 2min), and final extension at 72°C for 5 min. Afterwards reactions were kept at 10°C.
DpnI digestion was also optimised to reduce the background. We have incubated 20 units of DpnI in 20 µL PCR mixture overnight at 37°C.

Transformation and sequencing
We have used the E.coli strain Mach1 for all DNA manipulations. The chemically competent cells had an efficiency of >10^7 colonies/µg of pBR322 DNA for reliable results. Transformation steps were also optimized by adding 4 µl of PCR product into another 96-well microplate filled with 50 µl Mach1 cell suspension. After 25 min on ice, the mixture was incubated in the PCR machine at 42°C (heat shock) for 45 s and then placed back on ice for 2 min. The transformed cells were then transferred to a 96 deep-well plate filled with 600 µl S.O.C. media and incubated at 37°C for 2 h. 100 µl of 650 µl samples were plated on LB agar plate with appropriate antibiotics and incubated at 37°C overnight. A single colony of each mutant was transferred into a 96-well Agar plate with appropriate antibiotics and sequenced by the GATC Biotech Company (Figure 6).

To minimise sequencing costs, we have sent one or two clones for sequencing, and sent additional ones only if the first round of sequencing did not yield the desired mutation. It has been

Figure 6. Workflow of the high throughput mutagenesis.
doi:10.1371/journal.pone.0078878.g006
Figure 7. Influence of secondary structure and melting temperatures of primers on the success of mutagenesis. Features of primer pairs (ΔTm) are counted once, features of single primers (ΔG) were counted separately for the reverse and forward primer of a pair and are represented in one graph. Solid bars represent the number of primers with a particular value of a feature (left axis), striped bar represent the fraction failed (right axis). The standard deviation of the fraction failed was calculated as $\left\{ f(1-f)/N \right\}^{1/2}$, where f is fraction failed and N is the total number of primers in a particular category. Success (black) or failure (grey) of mutagenesis, as well as fraction failed (striped) in dependence of (A) the ΔG of hairpins formed by the primers, (B) the ΔG of homodimers formed by the primers, (C) primer melting temperatures calculated for mutation of the native DNA (early PCR cycles), (D) primer melting temperatures calculated for mutation of the DNA containing the mutation (later cycles of PCR), (F) quality score of the GC clamp and (G) GC content of the primer.
doi:10.1371/journal.pone.0078878.g007
Effect of primer properties on success of mutagenesis

To generate the mutants not obtained by the method described above we used an alternative two-fragment approach. Each mutagenic primer was used for a PCR together with a suitable primer on the complementary strand in the origin region of the plasmid (Figure 8). While potentially any pair of primers could be chosen, the origin region was approximately on the opposite side of the plasmid from the mutagenesis site. This way we generated two PCR products of about half the size of the plasmid. In addition, the origin region is identical in many expression vectors, making it a convenient choice. After checking their size on a gel, the fragments were purified by reaction cleanup (Qiagen) and assembled by the CloneEZ reaction (Genscript) or by the Gibson reaction [21]. This approach is more laborious, but it was successful in all 15 cases tried.

Conclusions

Making mutants by a PCR method using primers designed by AAscan software has a success rate similar to other reported studies. Of course, the task of designing primers is very much simplified. The biggest advantage is the automatic design of a series of primers, which eliminates the errors associated with one by one, and the time savings offered. There is a certain fraction of mutants which we were not able to obtain using this method, and it is most efficient to use alternative methods in these cases, such as the two fragment approach described above, or synthetic DNA

Figure 8. Two-fragment PCR mutagenesis strategy for difficult mutants. Each mutagenesis primer is used together with another primer annealing approximately opposite the mutation site, e.g. origin region of the plasmid. The resulting two PCR fragments are re-combined by CloneEZ or Gibson reaction to form the original circular plasmid.

doi:10.1371/journal.pone.0078878.g008
constructs. The open source nature of the AAscan and associated software makes it easily adaptable to various scenarios. We hope that AAscan and associated software will become a useful tool for many laboratories.

Materials and Methods

All primers were ordered from Integrated DNA technologies, as desalted oligonucleotides, on a 96-well plate, concentration normalised to 100 μM. Phusion High-Fidelity PCR master mix with HF and GC buffer was purchased from Thermo Scientific. DpnI was purchased from Fermentas. ExoSapIT was from Affymetrix. All PCR were performed using Eppendorf Mastercycler pro S. The S.O.C media contains 2% (w/v) Tryptone, 0.5% (w/v) yeast extract, 8.6 mM NaCl, 2.5 mM KCl, 20 mM MgSO4, and 20 mM Glucose. Sequencing was done by GATC Biotech (Germany).

Thermodynamic properties of primers were determined using the VectorNTI® Advance 11.5 software (Invitrogen) and the OligoArrayAux programme from the UNAfold software package (Markam and Zuker, 2008). The calculations of thermodynamic properties by VectorNTI® Advance 11.5 and OligoArrayAux were compared at 25°C and a salt concentration of 50 mM. The nucleic acid type was set to DNA. Otherwise, the default settings of the two programs were used.

The OligoArrayAux hybrid-ss-min and hybrid-min programmes were used for the calculation of Gibbs energies for primer hairpins and homodimers. The temperature was set to 65°C as this temperature can be used for annealing of the primers in PCR. The calculated Gibbs energy is given in kcal/mol.

Software development and availability

Software was developed using FreePascal and Lazarus IDE (http://www.lazarus.freepascal.org/).

Precompiled executable files and a source code are available at http://www.psi.ch/lbr/alascan.

Author Contributions

Conceived and designed the experiments: DS MKO JS DBV. Performed the experiments: DS MKO DM RJ. Analyzed the data: DS MKO FH RJ JS DBV. Contributed reagents/materials/analysis tools: DBV. Wrote the paper: DS MKO FH RJ DBV.

References

1. Winter G, Fersht AR, Wilkinson AJ, Zoller M, Smith M (1982) Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding. Nature 299: 756-758.
2. Duncan AR, Winter G (1989) The binding site for C1q on IgG. Nature 332: 730-740.
3. Cunningham BC, Wells JA (1989) The binding site for C1q on IgG. Nature 332: 730-740.
4. Kristensen C, Kjeldsen T, Wiberg FC, Schaffer L, Hach M, et al. (1997) Alanine scanning mutagenesis of insulin. The Journal of biological chemistry 272: 12978-12983.
5. Warne T, Moukhametzianov R, Nehmé R, Edwards PC, Leslie AG, et al. (2011) The structural basis for agonism and partial agonism in a beta1-adrenergic receptor. Nature.
6. Tate CG, Schertler GF (2009) Engineering G protein-coupled receptors to facilitate their structure determination. Curr Opin Struct Biol 19: 396-398.
7. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, et al. (2008) Structure of the beta1-adrenergic G protein-coupled receptor. Nature 454: 486-491.
8. White JT, Noiain N, Shihata Y, Love J, Kloss B, et al. (2012) Structure of the agonist-bound neurotensin receptor. Nature 490: 508-513.
9. Neuwieder H, Sharpe TD, Rutherford TJ, Johnson CM, Allen MD, et al. (2009) The folding mechanism of BBL: Plasticity of transition-state structure observed within an ultrafast folding protein family. Journal of Molecular Biology 390: 1060-1073.
10. Liu H, Naismith JH (2000) An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC biotechnology 9: 11.
11. Bubke P, Winkler M, Bautsch W (1993) Rapid cloning by homologous recombination in vivo. Nucleic Acids Research 21: 3601-3602.
12. Olieric N, Kuchen M, Wagen S, Sauter M, Crone S, et al. (2010) Automated seamless DNA co-transformation cloning with direct expression vectors applying positive or negative insert selection. BMC Biotechnology 10: 56.
13. van den Eeuw F, Lovel J (2006) RF cloning: a restriction-free method for inserting target genes into plasmids. Journal of biochemical and biophysical methods 67: 67-74.
14. Liang X, Peng L, Li K, Peterson T, Katzren F (2012) A method for multi-site-directed mutagenesis based on homologous recombination. Analytical Biochemistry 427: 99-101.
15. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5: 109-111.
16. Canaves JM, Moore A, West B (2004) PCR primer selection tool optimized for high-throughput proteomics and structural genomics. Biotechniques 36: 1040-1042.
17. Amlanier C, de Jong PJ, Schmitz G (1994) Minimal length requirement of the single-stranded tails for ligation-independent cloning (LIC) of PCR products. PCR methods and applications 4: 172-177.
18. Festa F, Steel J, Bani X, Labaer J (2013) High-throughput cloning and expression library creation for functional proteomics. Proteomics 13: 1301-1309.
19. Don RH, Cox PT, Wainwright RJ, Baker K,Mattick JS (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research 19: 4008.
20. Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proceedings of the National Academy of Sciences of the United States of America 92: 4611-4615.
21. Gibson DG, Young L, Chuang RY, Venter JG, Hutchison CA III, et al. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature methods 6: 343-345.