A COMPLEX SOURCE OF ELECTRICAL ENERGY FOR THREE-PHASE CURRENT BASED ON A STAND-ALONE VOLTAGE INVERTER

Purpose. To substantiate the operability of a combined power source of asynchronous electric drive of a vehicle, consisting of two power sources and one autonomous voltage inverter, to establish operating modes using zero combinations of inverter keys and to formulate a condition for energy transfer to an electromechanical converter from an additional power source.

Methodology. In the study on the work of an autonomous voltage inverter with two power sources, methods of mathematical and simulation modeling were used. To select the optimal method for implementing the control algorithm, a comparative analysis method and an analysis of a symmetric power system were applied.

Findings. The efficiency of the asynchronous motor power system from one autonomous voltage inverter with two power sources is proved. The paper presents mathematical calculations for constructing an electromechanical circuit, a modified algorithm for switching the keys of an inverter of a combined power source is given; physical processes are described.

Originality. The conditions of energy transfer to the electromechanical converter from an additional power source are formulated, which are provided by the choice of the load circuit parameters of the EMF of the additional source and increase the voltage component and the load capacity of the electromechanical converter.

Practical value. The electromechanical circuit of the vehicle’s asynchronous electric drive has been simplified due to the combined power supply, consisting of two power supplies and one autonomous voltage inverter. One of the sources is an additional source that is connected to the electric motor through the connection circuit to the zero point of the stator motor windings and the “negative” terminal of the autonomous voltage inverter and includes a DC–DC inverter, diode, inductor and discharge resistor.

Keywords: autonomous voltage inverter, direct current sources, electric drive

Introduction. Currently, the integration of several sources of electrical energy into an electromechanical system is not new. Two or more sources can be used for uninterrupted power supply of an electric energy consumer. In such hybrid systems, the disadvantages of one energy source are mitigated by the advantages of another and vice versa. For example, some sources provide peak power, while others focus on sustainable operation. To ensure the effective joint use of two sources of electrical energy of various types in one electromechanical system is the task of this article.

Results. Consider a three-phase stand-alone voltage inverter powered by two DC sources with EMF E_1 and E_2 and assume $E_1 > E_2$. The source EMF E_1 is connected to the three-phase consumer (primary circuit of the induction motor) through the inductance L_p, the current limiting resistor R_i, and the diode V_D to zero point “0” (Fig. 1) [1, 2].

The three-phase consumer system is symmetric for complex phase resistances

\[Z_j = R_j + j\omega_j L_j, \]

where R_j is active phase resistance; L_j is phase inductance; ω_j is angular frequency of the power supply.

To create a three-phase symmetric system of voltages in the windings of the consumer, it is necessary to form a rotating magnetic field. The following algorithm with a minimal number of switching and zero-state for keys must be provided for the E_j source:

1st sector: 000 \rightarrow 100 \rightarrow 110 \rightarrow 111 \rightarrow 110 \rightarrow 100 \rightarrow
2nd sector: 000 \rightarrow 010 \rightarrow 110 \rightarrow 111 \rightarrow 110 \rightarrow 010 \rightarrow
3rd sector: 000 \rightarrow 010 \rightarrow 011 \rightarrow 111 \rightarrow 011 \rightarrow 001 \rightarrow
4th sector: 000 \rightarrow 001 \rightarrow 101 \rightarrow 111 \rightarrow 101 \rightarrow 001 \rightarrow
5th sector: 000 \rightarrow 001 \rightarrow 101 \rightarrow 111 \rightarrow 101 \rightarrow 001 \rightarrow
6th sector: 000 \rightarrow 100 \rightarrow 101 \rightarrow 111 \rightarrow 101 \rightarrow 000 \rightarrow

It is obvious that the sector switching of the inverter transistors gives a stepped voltage curve. To obtain sinusoidal phase voltage

\[V_a = V_m \cos \omega t; \quad V_b = V_m \cos \left(\omega t - \frac{2\pi}{3} \right); \]
\[V_c = V_m \cos \left(\omega t - \frac{4\pi}{3} \right). \]

It is necessary to form a vector of voltage V_1 in the space of coordinates (α, β), aligned with the α axis with the phase A axis (Fig. 2), of the form

\[V_1 = 2/\sqrt{3}(V_a + aV_b + a^2V_c), \]

where $a = e^{i \frac{2\pi}{3}}; \quad a^2 = e^{i \frac{4\pi}{3}}; \quad V_m$ is the phase voltage amplitude.

The space-time vector in exponential form V_1 will look like

\[V_1 = |V_1| e^{i\theta}, \]

where $\theta = \omega t, \quad |V_1| = \frac{3}{2} V_m$.

Since the vector V_1 can be projected on the axis α and β of the coordinate system (α, β), it can be represented as

\[V_1 = V_{1\alpha} + jV_{1\beta}, \]

where $V_{1\alpha}, V_{1\beta}$ are the projections of the vector V_1 on the axis α and β respectively.

That is

\[V_{1\alpha} = V_m \cos \theta; \quad (1) \]
\[V_{1\beta} = V_m \sin \theta. \quad (2) \]

Thus, for the angle $\theta = \omega t$, the position of the vector V_1 will be determined by its projections $V_{1\alpha}, \pi$, and $V_{1\beta}, \pi$. Accordingly, for the angle $\theta = \omega t + \Delta t$, these will be the projections $V_{1\alpha+i}, \pi$ and $V_{1\beta+i}, \pi$.

If we consider the position of the vector V_1 between these two states, then its projections on the α and β axis for the current intermediate position $\theta < \theta < \theta + \pi$ can be described by the equations [3]
Thus, the state (000) of the keys of the autonomous voltage inverter is an unconditional combination for the formation of a closed current flow through the VD diode and inductance L_0, which ensures the emergence of the EMF and voltage increase by the entire value, creating the conditions for opening the VD diode for other combinations of keys and power consumer from two sources of energy.

There are switching periods of operation of the keys of an autonomous voltage inverter, which are essential for the operation of an integrated power source. Consider the possibility of increasing the open time of the diode VD due to the influence of inductance L_0 and the resistance R_0 in the EMF circuit E_0. This will provide an opportunity to increase the connection time of the source E_0 to the consumer.

The transient process equation for changing the current $I_0(t)$ from zero to maximum I_{om} for time t_0 of the state (000) has the form

$$E_0 = \left(R_0 + \frac{Rf}{3} \right) I_{\text{om}}(t) + \left(L_0 + Lf \right) \frac{dI_0(t)}{dt}.$$ (5)

Since the time t_0 of the keys state (000) is small, we can consider a linear increasing of the current $I_0(t)$ during this time. In this case, the current integral I_0 is estimated by the area of the triangle with the base t_0 and height I_{om}. Then, after integrating equation (5) within the time t_0, we have

$$E_0 = \left(R_0 + \frac{Rf}{3} \right) \frac{I_{\text{om}}}{2} + \left(L_0 + Lf \right) \frac{I_{\text{om}}}{t_0}.$$

Therefore

$$I_{\text{om}} = E_0 \left(R_0 + \frac{Rf}{3} \right) \frac{1}{2} \left(L_0 + \frac{Lf}{3} \right) / t_0.$$

We mean that the time of the zero state (000) and the zero state (111) are equal, and also

$$T_0 = \tau_0 + \tau_0 + \tau_0,$$

where $\tau_0 = 2t_0/T_0$.

By the end of time t_0, the voltage at the anode of the diode VD will be

$$V_{0}\left(I_0^{(1)} \right) = E_0 - L_0 I_{\text{om}} / t_0 - I_{\text{om}} R_0.$$ (6)

At the moment of transition of the inverter from state (000) to state (100), the phase A of the consumer at the source E_1 is switched and the load changes abruptly (Fig. 4) [5].

In this case, the voltage V_{0} from the source side E_1 is applied to the cathode of the diode VD. The energy accumulated in the inductance L_0 is spent on maintaining the decreasing current I_0. At this point in time, the voltage at the anode will be equal to

$$V_{0}\left(I_0^{(1)} \right) = E_0 + L_0 I_{\text{om}} / t_0 - I_{\text{om}} R_0.$$ (7)

The open state of the VD diode will be provided by the inequality

Fig. 4. Equivalent scheme of the current I_0 flow in the state (100) of the inverter keys (Legend – Fig. 1)
For the state of the switches (100), the phases of the consumer
act as a voltage divider E_i with levers $2/3 E_i$ and $1/3 E_i$ and
resistances Z_i and Z_0, respectively (Fig. 4). In the case of
the state of the keys (110), the shoulders are reversed (Fig. 5).

Since the voltage shoulder $2/3 E_i$ is maximum for all states of the
inverter switches, we can assume that a constant transfer
of energy to the consumer from the source E_0 is possible with
the diode VD open, when $V_{10\text{max}} = 2E_i/3$. The minimum vol-

tage level at the cathode of the diode VD should be $V_{10\text{min}} = E_i/3$.

Since all nonzero states of the inverter switches are described
by circuits (Fig. 4) and (Fig. 5), we represent these
states in the form of a generalized circuit (Fig. 6) and use
the loop current method to determine the parameters of the oper-
ating mode of the load from two power sources in each of states.

We proceed from the fact that in the circuit (Fig. 6) transient
processes of current changes occur due to jump-like
parametric disturbances.

In order to generalize, we consider a transient process in a
circuit with an inductively active load for the time Δt from
the moment of a step change of the supply of a constant voltage
V with zero initial conditions $V(0) = 0$.

The transient process equation for a circuit has the form

$$V(t) = I(t)R + L \frac{dI(t)}{dt}$$ \hspace{1cm} (8)

The integral of the equation (8) in the interval $0-\Delta t$ is

$$\int_0^{\Delta t} V(t) dt = R \int_0^{\Delta t} I(t) dt + L \int_0^{\Delta t} \frac{dI(t)}{dt}.$$

From the condition of a linear increase in the current
(since Δt is small), we have

$$I(t) = \frac{\Delta I}{\Delta t} t.$$

Since $\int_0^{\Delta t} I(t) dt = I(\Delta t)$ and $V(t) dt = V \Delta t$, we have

$$\int_0^{\Delta t} V(t) dt = \int_0^{\Delta t} I(\Delta t) \frac{\Delta I}{\Delta t} dt.$$

That is, equation (9) has the form

$$V\Delta t = RL\frac{\Delta I}{\Delta t} + L\frac{dI}{dt},$$

or

$$V = I(\Delta t)\left(\frac{R}{2} \frac{L}{\Delta t}\right) = I(\Delta t)Z(\Delta t).$$

where $Z(\Delta t)$ is the equivalent load resistance in the transient.

Based on the above reasoning, we will present, according
to equation (10), the resistance in the circuit (Fig. 6) for
neighboring nonzero states of the inverter [8], for example, for
the modes (100) and (110):

- mode 100

$$Z_i(t_i) = \frac{R_i}{2} + \frac{L_i}{t_i}$$

$$Z_0(t_i) = \frac{R_0}{2} + \frac{L_0}{t_i}$$

$$Z_{10}(t_i) = \frac{R_{10}}{4} + \frac{L_{10}}{t_i}.$$ \hspace{1cm} (11)

- mode 110

$$Z_i(t_i) = \frac{R_i}{4} + \frac{L_i}{(2t_i)}$$

$$Z_0(t_i) = \frac{R_0}{2} + \frac{L_0}{t_i}$$

$$Z_{10}(t_i) = \frac{R_{10}}{2} + \frac{L_{10}}{t_i}.$$ \hspace{1cm} (12)

Here the t_i is the transition time in the mode (100);
t_j is the transient process time in the (110) mode.

According to the method of loop currents, we have (Fig. 6)

$$E_i = I_i(Z_i + Z_{10}) + I_0Z_{10}.$$ \hspace{1cm} (13)

From equations (6) and (7) it follows

$$I_i = E_i \frac{Z_{10}}{D};$$ \hspace{1cm} (14)

$$I_0 = -E_i \left(\frac{Z_{10}}{D} + Z_{10} \frac{Z_0}{D}\right);$$

$$I_{10} = I_i + I_0 = E_i \frac{Z_0}{D} + E_0 \frac{Z_10}{D}.$$ \hspace{1cm} (15)

where $D = Z_iZ_0 + Z_iZ_{10} + Z_0Z_{10}$.

It must be taken into account that E_0 includes the compo-

Z_0 component $\frac{E_{in}}{I_{in}}$, i.e.

$$E_0 = E_{in} + L_{0}I_{in}/I_0.$$ \hspace{1cm} (16)

Phase voltage in a 3-phase system is obtained by multipl-
ing the currents I_i and I_{10} by the corresponding phase
resistance, which vary depending on the state of the switches [9].

If we take the expression for currents and voltages in relative terms, then we get

$$z(t) = r/2 + 1/t;$$

$$\tau = R/R_s; l = L/I_s; z(t) = Z(t)/Z_0; \tau = t/T_0;$$

$$R_s, L_0, Z_0, T_s - \text{base values}; Z_0 = R_s; L_0 = Z_0T_s.$$ \hspace{1cm} (17)

Then the currents by the formulas (11–13) in relative units
are equal to

$$i_i(t) = \left(\frac{z_i(t) + z_{10}(t)}{d(t)}\right);$$

$$i_0(t) = \left(\frac{z_0(t)}{d(t)}\right);$$

$$i_{10}(t) = \left(\frac{z_{10}(t)}{d(t)}\right);$$

$$i_{11}(t) = \left(\frac{z_{11}(t)}{d(t)}\right);$$

$$i_{22}(t) = \left(\frac{z_{22}(t)}{d(t)}\right);$$

$$i_{21}(t) = \left(\frac{z_{21}(t)}{d(t)}\right).$$

End – Fig. 1

Legend – Fig. 1

Legend – Fig. 2

Fig. 5. Equivalent scheme of the current I_0 flow in the state
(110) of the inverter keys (Legend – Fig. 1)

Fig. 6. Equivalent scheme of the inverter switches states (Leg-
end – Fig. 1)
where

\[e_1' = E_b'/E_b; \quad e_6' = E_6'/E_b; \quad z_1 = Z_1/z_b; \quad z_{10} = Z_{10}/z_b; \]

\[z_0 = Z_0/z_b; \quad i(t) = (I_1^2)/I_b; \quad i_0 = e_0 + l_0|\theta_0|/\tau_0, \]

where \(I_b = L_0/L_b; \quad i_0 = l_0/i_b; \quad \tau_0 = t_0/T_b. \)

The voltage across the resistances \(z_1(t), z_{10}(t), z_0(t) \) is defined as

\[\psi(t) = i(t)z_1(t); \quad \psi_{10}(t) = i_{10}(t)z_{10}(t); \]

\[\psi_0(t) = i_0(t)z_0(t). \]

We return to the 3-phase load system (Fig. 1) and consider the alternation of connecting the phases to the upper and lower shoulders of the inverter. When connecting one phase of the load to the upper arm, the resistance of this phase will be equal to

\[z_1(\tau_1) = r_f/2 + L_f/\tau_1, \]

where \(\tau_1 \) is the relative connection time.

At the same time, two other phases are connected to the lower shoulder of the inverter and have a total resistance

\[z_{10}(\tau_1) = z_1(\tau_1)/2. \]

When switching the keys, a sequential step change in the phase resistances occurs. For example, from state (100), the inverter goes into state (110). In this case, phase B is connected to phase A connected to the upper arm of the inverter. Then, if the time spent in this state does not change, then the resistance of phase A changes to \(Z_{10}(t_1) \), the resistance of phase B remains the same \(Z_1(t_1) \), and the resistance of phase C changes to \(Z_{10}(t_1) \) [10].

If we consider the intermediate resistance of the voltage vector between the two states (100) and (110), when the residence time of the vector in state (100) is \(\tau_1 \), and in state (110) — \(\tau_2 \), then the voltage at the load phases will be determined as

\[\theta_{1A} = \theta_1(t_1)\tau_1 + \theta_1(t_2)\tau_2; \]

\[\theta_{1B} = -\theta_0(t_1)t_1 - \theta_1(t_2)\tau_2; \]

\[\theta_{1C} = -\theta_0(t_1)\tau_1 + \theta_0(t_2)\tau_2, \]

where

\[\theta_1(t_1) = z_1(t_1)\dot{i}_1(t_1); \]

\[\theta(\tau_1) = z_0(t_1)\dot{i}_0(t_1); \]

\[\theta(\tau_2) = z_0(t_2)\dot{i}_0(t_2); \]

\[\dot{z}_1(\tau_1) = r_f/2 + L_f/\tau_1; \]

\[\dot{z}_1(\tau_1) = r_f/4 + L_f/(2\tau_1); \]

\[\dot{z}_0(\tau_1) = r_f/4 + L_f/(2\tau_1). \]

Phase voltages in other sectors of the vector \(\overline{V} \) are described in a similar way.

Thus, equations (14—17) allow us to obtain the average values of the inverter voltage for the period of time the keys are in a certain combination during the switching cycle, when the stand-alone voltage inverter operates from one power source.

If we take, for example, the following indicators of the system shown in (Fig. 1) relative units: \(e_1 = 1; e_6 = 0.3; r_f = 1; l_f = 1; r_0 = 1; l_0 = 1 \), then for an alternating voltage of a given frequency with an amplitude \(\theta_m = 0.667 \), we will have a picture of the stresses shown in (Fig. 7).

Conclusions. We can say that the proposed generalized scheme, which consists of a complex source of direct current EMF (Fig. 1), is theoretically operable, makes it possible to calculate the general parameters of the mode of this source and increases the energy flow to the consumer.

Analysis of the combinations of inverter keys showed that to ensure the correct supply of energy to the consumer, it is necessary to use zero combinations of keys of the autonomous voltage inverter in a certain sequence.

In Fig. 7, the dashed lines represent the symmetric phase voltage system. Fig. 7 shows that the amplitude \(|\theta| \) of the supply voltage vector of the combined source increases the amplitude and acquires a variable component \(\theta_m \).

The amplitudes of the phase voltages also increase, which leads to an increase in the effective value of the voltage in the phases. In this case, the cosine dependence of the instantaneous voltage in the phases is distorted, without causing a change in the oscillation period. There is also a shift of the potential of the zero point of the load in the direction of increase by a certain amount.

References.

1. Salari, O., Hashtrudi Zaud, K., Bakhshai, A., & Jain, P. (2018). Hybrid Energy Storage Systems for Electric Vehicles: Multi-Source Inverter Topologies. In 14th International Conference on Power Electronics (CIEP), 24—26 Oct. 2018, Cholula, Mexico. https://doi.org/10.1109/CIEP.2018.8537377.

2. Neuburger, M., & Haag, J. (2015). Photovoltaik im Elektrofahrzeug. Forschungsbericht für die Elektrotechnik in Baden Württemberg 2014, 14—17. ISSN 2199-4889.

3. Pirienko, S., Neuburger, M., Ammann, U., Thrimawithana, D.J., Balakhontsev, A., & Cheng, P.-W. (2018). Evaluation of the small-scale wind turbine converter’s efficiency built with various types of semiconducting devices. In IEEE 3rd International Conference on Intelligent Energy and Power Systems, 4, December 2018, (pp. 166—171). https://doi.org/10.1109/IEPS.2018.8559517.

4. Beshita, A., Aziukovskyi, O., Balakhontsev, A., & Shestakov, A. (2017). Combined power electronic converter for simultaneous operation of several renewable energy sources. In International Conference on Modern Electrical and Energy Systems (MEES), 28 June 2017, (pp. 236—239). Kremlinchuk, Ukraine. https://doi.org/10.1109/MEES.2017.8248898.

5. Beshita, A., Sr., Balakhontsev, A., & Khudolii, S. (2019). Performances of Asynchronous Motor within Variable Frequency Drive with Additional Power Source Plugged via Com-
Комплексний джерело електричної енергії для трифазного струму на основі автономного інвертора напруги

Г.Г. Півняк, О.О. Бешта
Національний технічний університет «Дніпропетровська політехніка», г. Дніпропетровськ, Україна, е­мейл: beshta.o.o@nmu.one

Мета. Обґрунтувати працездатність комбінованого джерела живлення асинхронного електроприводу транспортного засобу, що складається із двох джерел живлення та одного автономного інвертора напруги. Одне із джерел є додатковим джерелом, що підключене до електродвигуна через схему під’єднання до нульової точки статорних обмоток двивугна та «мінусового» термінала автономного інвертора напруги, і включає DC–DC інвертор, діод, дросель і розрядний резистор.

Результати. Показана працездатність комбінованого джерела живлення асинхронного електроприводу від одного автономного інвертора напруги та одного додаткового джерела живлення, на основі «мінусового» термінала автономного інвертора напруги. Одне із джерел є додатковим джерелом, що підключене до електродвигуна через схему під’єднання до нульової точки статорних обмоток двивугна та «мінусового» термінала автономного інвертора напруги, і включає DC–DC інвертор, діод, дросель і розрядний резистор.

Практична значимість. Спрощена електромеханічна схема асинхронного електроприводу транспортного за-

Ключове слово: автономний інвертор напруги, джерела постійного струму, електропривод